PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
 C12N 15/12, 15/63, 5/16, C12P 21/08, C07K 16/18, 16/40

(11) International Publication Number:

WO 97/12039

(43) International Publication Date:

3 April 1997 (03.04.97)

(21) International Application Number:

PCT/CA96/00655

A2

(22) International Filing Date:

27 September 1996 (27.09.96)

(30) Priority Data:

60/006,063 27 September 1995 (27.09.95) US 60/007,788 30 November 1995 (30.11.95) US 60/015,217 9 April 1996 (09.04.96) US 08/664,962 14 June 1996 (14.06.96) US (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on

08/664,962 (CON) 14 June 1996 (14.06.96)

(71)(72) Applicant and Inventor: KRYSTAL, Gerald [CA/CA]; 601 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (CA).

(74) Agent: BERESKIN & PARR; 40th floor, 40 King Street West, Toronto, Ontario M5H 3Y2 (CA).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: SH2-CONTAINING INOSITOL-PHOSPHATASE

(57) Abstract

Novel SH2-containing inositol-phosphatase which has a src homology 2 (SH2) domain and exhibits phospholns-5-ptase activity, and nucleic acid molecules encoding the novel protein are disclosed. The invention also relates to methods for identifying substances which affect the binding of the protein to Shc and/or its phospholns-5-ptase activity and methods for screening for agonists or antagonists of the binding of the protein and Shc.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithrania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ.	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

20

Title: SH2-CONTAINING INOSITOL-PHOSPHATASE

FIELD OF THE INVENTION

The invention relates to a novel SH2-containing inositol-phosphatase, truncations, analogs, homologs and isoforms thereof; nucleic acid molecules encoding the protein and truncations, analogs, and homologs of the protein; and, uses of the protein and nucleic acid molecules.

BACKGROUND OF THE INVENTION

Many growth factors regulate the proliferative, differentiative and metabolic activities of their target cells by binding to, and activating cell surface receptors that have 10 tyrosine kinase activity (Cantley, L.C., et al. 1991, Cell 64:281-302; and Ullrich, A., and J. Schlessinger. 1990, Cell 61:203-212). The activated receptors become tyrosine phosphorylated through intermolecular autophosphorylation events, and then stimulate intracellular signalling pathways by binding to, and phosphorylating cytoplasmic signalling proteins (Cantley, L.C., et al. 1991, Cell 64:281-302; and, Ullrich, A., and J. Schlessinger, 1990, Cell 61:203-212). Many cytoplasmic signalling proteins share a common structural motif, known as the src homology 2 (SH2) domain, that mediates their association with specific phosphotyrosine-containing sites on activated receptors (Heldin, C.H. 1991, Trends Biochem. Sci. 16:450-452; Koch, C.A., et al., 1991, Science 252:669-674; Margolis, B. 1992, Cell Growth Differ. 3:73-80; McGlade, C.J., et al., 1992, Mol. Cell. Biol. 12: 991-997; Moran, M.F., et al., 1990, Proc. Natl. Acad. Sci. USA 87:8622-8626; and Reedijk, M., et al., 1992, EMBO J. 11:1365-1372).

Two SH2-containing proteins, Grb2 and Shc, have been implicated in the Ras signalling pathway (Lowenstein, E.J., et al., 1992, Cell 70:431-442, and, Pelicci, G., et al., 1992, Cell 70 93-104.). Grb2 and Shc act upstream of Ras and bind directly to activated receptors (Buday, L., and J. Downward, 1993, Cell 73:611-620; Matuoka, K. et al., 1993, EMBO J. 12:3467-3473, Oakley, B.R. et al., 1980, Anal. Biochem. 105:361-363., Reedijk, M., et al., 1992, EMBO J. 11:1365-1372; Rozakis-Adcock, M., et al., 1992 Nature 360: 689-692; and, Songyang, Z., et al., 1993, Cell 72:767-778), or to designated SH2 docking proteins, such as the insulin receptor substrate 1 (IRS-1), which is tyrosine phosphorylated in response to insulin (Baltensperger, K., et al., Science 260:1950-1952; Pelicci, G., et al., 1992, Cell 70:93-104; Skolnik, E.Y., 1993, EMBO 30 J. 12:1929-1936; Skolnik, E.Y., et al., 1993, Science 260:1953-1955; and Suen, K-L., et al., 1993 Mol. Cell. Biol. 13: 5500-5512).

Grb2 is a 25 kDa adapter protein with two SH3 domains flanking one SH2 domain. It has been shown in fibroblasts to shuttle its constitutively bound Ras guanine nucleotide exchange factor, Sos1, to activated receptors (or to IRS-1 (Skolnik, E.Y., 1993, EMBO J. 12:1929-35 1936; and Skolnik, E.Y., et al., 1993, Science 260:1953-1955), (Baltensperger, K., et al., Science 260:1950-1952; Buday, L., and J. Downward, 1993, Cell 73:611-620; Egan, S.E. et al., 1993, Nature (London) 367:87-90; Gale, N.W., et al., 1993, Nature (London) 363:88-92; Li, N., et al.,

1993, Nature (London) 363-85-88; Olivier, J.P. et al., 1993, Cell 73:179-191; and Rozakis-Adcock, M., et al., 1993 Nature (London) 363:83-85). Binding of the SH2 domain of Grb2 to tyrosine phosphorylated proteins activates Sos1 which then catalyzes the activation of Ras by exchanging GDP for GTP (Buday, L., and J. Downward. 1993. Cell 73:611-620 12,,20; Egan, S.E. Et al, 1993, Nature 363:45-51; Gale, N.W et al., 1993 Nature 363:88-92; Li, N., et al., 1993 Nature 363:85-88).

Shc is also an adapter protein that is widely expressed in all tissues. The protein contains an N-terminal phosphotyrosine binding (PTB) domain (Kavanaugh, V.M. Et al., 1995 Science, 268:1177-1179; Craparo, A., et al., 1995, J. Biol. Chem. 270:15639-15643; van der Geer, P., & Pawson, T., 1995, TIBS 20:277-280; Batzer, A.G., et al., Mol. Cell. Biol. 1995, 15:4403-4409; and Trub, T., et al., 1995, J. Biol. Chem. 270:18205-18208) and a C-terminal SH2 domain (Pelicci, G., et al., 1992. Cell 70:93-104) and can associate, in its tyrosine phosphorylated form, with Grb2-Sos1 complexes and may increase Grb2-Sos1 interactions following growth factor stimulation (Egan, S.E. Et al, 1993, Nature 363:45-51;Rozakis-Adcock, M., et al., 1992, Nature 360:689-692; and Ravichandran, K.S., 1995, Mol. Cell. Biol. 15:593-600). Shc appears to function as a bridge between Grb2-Sos1 complexes and tyrosine kinases where the latter are incapable, for lack of an appropriate consensus sequence, of binding Grb2-Sos1 directly (Egan, S.E. Et al, 1993, Nature 363:45-51).

Preliminary evidence suggests that Shc and Grb2 may be used by members of the hemopoietin receptor superfamily (Cutler, R.L., et al., 1993, J. Biol. Chem. 268:21463-21465, 20 Damen, J.E., et al., 1993, Blood 82:2296-2303). Although members of this family lack endogenous kinase activity, following ligand binding, they are apparently tyrosine phosphorylated by a closely associated JAK family member (Argetsinger, L.S., et al., 1993, Cell 74:237-244; Lutticken, C., et al., 1994, Science 263:89-92; Silvennoinen, O., et al., 1993, Proc. Natl. Acad. Sci. USA 90:8429-8433; and Witthuhn, B.A., et al., 1993, Cell 74:227-236). The hemopoietic growth factors, erythropoietin (Ep), interleukin-3 (IL-3) and steel factor (SF) (which utilizes a receptor with endogenous tyrosine kinase activity, i.e., c-kit,(Chabot, B., et 1988, Nature (London) 335:88-89)), have been shown to induce the tyrosine phosphorylation of Shc and its subsequent association with Grb2 (Cutler, R.L., et al., 1993, J. Biol. Chem. 268:21463-21465). Stimulation of members of the hemopoietin receptor superfamily has also been reported to result in the association of Shc with uncharacterized proteins with molecular masses of 130 kDa (Smit, L., et al., J. of Biol. Chem. 269(32):20209, 1994), 150 kDa (Lioubin, M.N., et al., Mol. Cell. Biol. 14(9):5682, 1994), and 145 kDa (Damen, J., et al., Blood 82(8):2296, 1993, and Saxton, T.M. et al., J. Immunol. 623, 1994).

SUMMARY OF THE INVENTION

The present inventor has identified and characterized a protein that associates with Shc in response to multiple cytokines. The unique protein, herein referred to as "SH2-containing inositol-phosphatase" or "SHIP" (for SH2-containing, inositol 5-phosphatase),

30

35

Ö

contains an amino terminal src homology 2 (SH2) domain, two phosphotyrosine binding (PTB) consensus sequences, a proline rich region, and two motifs highly conserved among inositol polyphosphate-5-phosphatases (phosphoIns-5-ptases). Cell lysates immunoprecipitated with antiserum to the protein exhibit phosphoIns-5-ptase activity, in particular, both phosphatidylinositol trisphosphate (PtdIns-3,4,5-P₃) and inositol tetraphosphate (Ins-1,3,4,5-P₄) 5-phosphatase activity. This activity implicates SHIP in the regulation of signalling pathways that control gene expression, cell proliferation, differentiation, activation, and metabolism, in particular, the Ras and phospholipid signalling pathways. This finding permits the identification of substances which affect SHIP and which may be used in the treatment of conditions involving perturbation of signalling pathways.

The present invention therefore provides a purified and isolated nucleic acid molecule comprising a sequence encoding an SH2-containing inositol-phosphatase which has a src homology 2 (SH2) domain and exhibits phosphoIns-5-ptase activity. The SH2-containing inositol-phosphatase is further characterized by it ability to associate with Shc and by having two phosphotyrosine binding (PTB) consensus sequences, a proline rich region, and motifs highly conserved among inositol polyphosphate-5-phosphatases (phosphoIns-5-ptases).

In an embodiment of the invention, the purified and isolated nucleic acid molecule comprises (i) a nucleic acid sequence encoding an SH2-containing inositol-phosphatase having the amino acid sequence as shown in SEQ ID NO:2 or Figure 2 (A); and, (ii) nucleic acid sequences complementary to (i). In another embodiment of the invention, the purified and isolated nucleic acid molecule comprises (i) a nucleic acid sequence encoding an SH2-containing inositol-phosphatase having the amino acid sequence as shown in SEQ ID NO:8 or Figure 11; and, (ii) nucleic acid sequences complementary to (i).

In a preferred embodiment of the invention, the purified and isolated nucleic acid molecule comprises

- (i) a nucleic acid sequence encoding an SH2-containing inositol-phosphatase having the nucleic acid sequence as shown in SEQ ID NO:1 or Figure 3, wherein T can also be U;
- (ii) a nucleic acid sequence complementary to (i), preferably complementary to the full length nucleic acid sequence shown in SEQ ID NO: 1 or Figure 3; or
- (iii) a nucleic acid molecule differing from any of the nucleic acids of (i) and (ii) in codon sequences due to the degeneracy of the genetic code.

In another preferred embodiment of the invention, the purified and isolated nucleic acid molecule comprises

- (i) a nucleic acid sequence encoding an SH2-containing inositol-phosphatase having the nucleic acid sequence as shown in SEQ ID NO:7 or Figure 10, wherein T can also be U;
- (ii) a nucleic acid sequence complementary to (i), preferably complementary to the full length nucleic acid sequence shown in SEQ ID NO: 7 or Figure 10;

20

25

30

35

G

(iii) a nucleic acid molecule differing from any of the nucleic acids of (i) and (ii) in codon sequences due to the degeneracy of the genetic code.

The invention also contemplates (a) a nucleic acid molecule comprising a sequence encoding a truncation of the SH2-containing inositol-phosphatase, an analog or homolog of the SH2-containing inositol-phosphatase or a truncation thereof, (herein collectively referred to as "SHIP related protein" or "SHIP related proteins"); (b) a nucleic acid molecule comprising a sequence which hybridizes under high stringency conditions to the nucleic acid encoded by a SH2-containing inositol-phosphatase having the amino acid sequence as shown in SEQ ID NO:2 or Figure 2 (A), or SEQ ID NO:8 or Figure 11, wherein T can also be U, or complementary sequences thereto, or by a SHIP related protein; and (c) a nucleic acid molecule comprising a sequence which hybridizes under high stringency conditions to the nucleic acid encoded by the SH2-containing inositol-phosphatase having the nucleic acid sequence as shown in SEQ ID NO:1 or Figure 3, or SEQ ID NO:7 or Figure 10, wherein T can also be U, or complementary sequences thereto.

The invention further contemplates a purified and isolated double stranded nucleic acid molecule containing a nucleic acid molecule of the invention, hydrogen bonded to a complementary nucleic acid base sequence.

The nucleic acid molecules of the invention may be inserted into an appropriate expression vector, i.e. a vector which contains the necessary elements for the transcription and translation of the inserted coding sequence. Accordingly, recombinant expression vectors adapted for transformation of a host cell may be constructed which comprise a nucleic acid molecule of the invention and one or more transcription and translation elements operatively linked to the nucleic acid molecule.

The recombinant expression vector can be used to prepare transformed host cells expressing SH2-containing inositol-phosphatase or a SHIP related protein. Therefore, the invention further provides host cells containing a recombinant molecule of the invention. The invention also contemplates transgenic non-human mammals whose germ cells and somatic cells contain a recombinant molecule comprising a nucleic acid molecule of the invention which encodes an analog of SH2-containing inositol-phosphatase, i.e. the protein with an insertion, substitution or deletion mutation.

The invention further provides a method for preparing a novel SH2-containing inositol-phosphatase, or a SHIP related protein utilizing the purified and isolated nucleic acid molecules of the invention. In an embodiment a method for preparing an SH2-containing inositol-phosphatase or a SHIP related protein is provided comprising (a) transferring a recombinant expression vector of the invention into a host cell; (b) selecting transformed host cells from untransformed host cells; (c) culturing a selected transformed host cell under conditions which allow expression of the SH2-containing inositol-phosphatase or SHIP

20

35

Ò

related protein; and (d) isolating the SH2-containing inositol-phosphatase or SHIP related protein.

The invention further broadly contemplates a purified and isolated SH2-containing inositol-phosphatase which contains an SH2 domain and which exhibits phosphoIns-5-ptase activity. In an embodiment of the invention, a purified SH2-containing inositol-phosphatase is provided which has the amino acid sequence as shown in SEQ ID NO:2 or Figure 2 (A). In another embodiment of the invention, a purified SH2-containing inositol-phosphatase is provided which has the amino acid sequence as shown in SEQ ID NO:8 or Figure 11. The purified and isolated protein of the invention may be activated i.e. phosphorylated. The invention also includes truncations of the protein and analogs, homologs, and isoforms of the protein and truncations thereof (i.e. "SHIP related proteins").

The SH2-containing inositol-phosphatase or SHIP related proteins of the invention may be conjugated with other molecules, such as proteins to prepare fusion proteins. This may be accomplished, for example, by the synthesis of N-terminal or C-terminal fusion proteins.

The invention further contemplates antibodies having specificity against an epitope of SH2-containing inositol-phosphatase or a SHIP related protein of the invention. Antibodies may be labelled with a detectable substance and they may be used to detect the SH2-containing inositol-phosphatase or a SHIP related protein of the invention in tissues and cells.

The invention also permits the construction of nucleotide probes which are unique to the nucleic acid molecules of the invention and accordingly to SHIP or a SHIP related protein of the invention. Thus, the invention also relates to a probe comprising a sequence encoding SH2-containing inositol-phosphatase or an SHIP related protein. The probe may be labelled, for example, with a detectable substance and it may be used to select from a mixture of nucleotide sequences a nucleotide sequence coding for a protein which displays one or more of the properties of SHIP.

The invention still further provides a method for identifying a substance which is capable of binding to SHIP, or a SHIP related protein or an activated form thereof, comprising reacting SHIP, or a SHIP related protein, or an activated form thereof, with at least one substance which potentially can bind with SHIP, or a SHIP related protein or an activated form thereof, under conditions which permit the formation of complexes between the substance and SHIP or SHIP related protein or an activated form thereof, and assaying for complexes, for free substance, for non-complexed SHIP or SHIP related protein or an activated form thereof, or for activation of SHIP.

Still further, the invention provides a method for assaying a medium for the presence of an agonist or antagonist of the interaction of SHIP, or a SHIP related protein or an activated form thereof, and a substance which binds to SHIP, a SHIP related protein or an activated form thereof. In an embodiment, the method comprises providing a known concentration of

20

35

۵

SHIP, or a SHIP related protein, with a substance which is capable of binding to SHIP, or SHIP related protein and a test substance under conditions which permit the formation of complexes between the substance and SHIP, or SHIP related protein, and assaying for complexes, for free substance, for non-complexed SHIP or SHIP related protein, or for activation of SHIP, or SHIP related protein. In a preferred embodiment of the invention, the substance is Shc or a part thereof, or an SH3-containing protein or part thereof.

Still further the invention contemplates a method for assaying for the affect of a substance on the phospholns-5-ptase activity of SHIP or a SHIP related protein having phospholns-5-ptase activity comprising reacting a substrate which is capable of being hydrolyzed by SHIP or a SHIP related protein to produce a hydrolysis product, with a test substance under conditions which permit the hydrolysis of the substrate, determining the amount of hydrolysis product, and comparing the amount of hydrolysis product obtained with the amount obtained in the absence of the substance to determine the affect of the substance on the phospholns-5-ptase activity of SHIP or the SHIP related protein.

Substances which affect SHIP or a SHIP related protein may also be identified using the methods of the invention by comparing the pattern and level of expression of SHIP or a SHIP related protein of the invention in tissues and cells in the presence, and in the absence of the substance.

The substances identified using the method of the invention may be used in the treatment of conditions involving the perturbation of signalling pathways, and in particular in the treatment of proliferative disorders. Accordingly, the substances may be formulated into pharmaceutical compositions for adminstration to individuals suffering from one of these conditions.

Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples while indicating preferred embodiments of the invention are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

30 <u>DESCRIPTION OF THE DRAWINGS</u>

The invention will be better understood with reference to the drawings in which:

Figure 1 are immunoblots showing lysates prepared from B6SUtA $_1$ cells, treated \pm IL-3, immunoprecipitated with anti-Shc, followed by protein A Sepharose (lanes 1&2) or incubated with GSH bead bound GST-N-SH3 (lanes 3&4) or GSH bead bound GST-C-SH3 (lanes 5&6);

Figure 2 shows the amino acid sequence of murine SHIP (A) and a schematic diagram of the domains of the novel protein of the invention (B);

Figure 3 shows the nucleic acid sequence of murine SHIP;

WO 97/12039 PCT/CA96/00655

-7-

Figure 4 shows immunoblots of lysates from B6SUtA $_1$ cells, treated \pm IL-3, immunoprecipitated with anti-Shc (lanes 1&2), NRS (lanes 3&4) or anti-15mer (lanes 5&6) or precleared with anti-15mer and then immunoprecipitated with anti-Shc (lanes 7&8) (A); and lysates from B6SUtA $_1$ cells, stimulated with IL-3, immunoprecipitated with anti-Shc (lane 1) or anti-15mer (lane 2) and bound proteins eluted with SDS-sample buffer containing Nethylmaleimide in lieu of 2-mercaptoethanol (B);

Figure 5 shows Northern blot analysis of 2 µg of polyA RNA from various tissues probed with a random primer-labeled PCR fragment encompassing a 1.5-kb fragment corresponding to the 3' end of the p145 cDNA (lanes 1-6, spleen, lung, liver, skeletal muscle, kidney and testes, respectively (Clontech); lane 7, separately prepared blot of bone marrow;

Figure 6 is a graph showing the results of anti-15mer, anti-Shc and NRS immunoprecipitates with B6SUtA₁ cell lysate incubated with [3 H]Ins-1,3,4,5-P₄ under conditions where product formation was linear with time (A); and shows immunoblots of anti-15mer, NRS and anti-Shc immunoprecipitates (as well as \pm recombinant 5-ptase II, ie. PtII&BL (blank)) incubated with PtdIns[3 P]-3,4,5-P₃ under conditions where product formation was linear with time and the reaction mixture chromatographed on TLC(B);

Figure 7 shows the amino acid sequence of Shc;

Figure 8 shows the nucleic acid sequence of Shc;

Figure 9 shows the amino acid and nucleic acid sequences of Grb2;

Figure 10 shows the nucleic acid sequence of human SHIP;

Figure 11 shows the amino acid sequence of human SHIP;

Figure 12 shows a comparison of the amino acid sequences of human and murine SHIP; and

Figure 13 shows a comparison of the nucleic acid sequences of human and murine SHIP.

25 **DETAILED DESCRIPTION OF THE INVENTION**

10

20

The following standard abbreviations for the amino acid residues are used throughout the specification: A, Ala - alanine; C, Cys - cysteine; D, Asp- aspartic acid; E, Glu - glutamic acid; F, Phe - phenylalanine; G, Gly - glycine; H, His - histidine; I, Ile - isoleucine; K, Lys - lysine; L, Leu - leucine; M, Met - methionine; N, Asn - asparagine; P, Pro - proline; Q, Gln - glutamine; R, Arg - arginine; S, Ser - serine; T, Thr - threonine; V, Val - valine; W, Trp-tryptophan; Y, Tyr - tyrosine; and p.Y., P.Tyr - phosphotyrosine.

I. Nucleic Acid Molecules of the Invention

As hereinbefore mentioned, the invention provides an isolated and purified nucleic acid molecule having a sequence encoding an SH2-containing inositol-phosphatase (SHIP) which contains an SH2 domain and exhibits phospholns-5-ptase activity. The term "isolated and purified" refers to a nucleic acid substantially free of cellular material or culture medium when produced by recombinant DNA techniques, or chemical precursors, or other chemicals when chemically synthesized. An "isolated and purified" nucleic acid is also substantially

25

30

35

free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) from which the nucleic acid is derived. The term "nucleic acid" is intended to include DNA and RNA and can be either double stranded or single stranded.

The murine SHIP coding region was cloned by purifying the protein based on Grb2-C-SH3 affinity chromatography. An unambiguous sequence obtained from the purified protein, VPAEGVSSLNEMINP, was used to construct a degenerate oligonucleotide probe. The full length cDNA was cloned using a PCR based strategy and a B6SUtA₁ cDNA library as more particularly described in the Example herein. The nucleic acid sequence of murine SHIP is shown in Figure 3 or in SEQ. I.D. NO. 1. The underlined ATG is the likely start site (starting at nucleic acid 139). However, the predicted protein sequence shown in Figure 2 (A) (SEQ.ID.NO. 2) is from an in frame ATG starting slightly upstream at nucleotide 130. The nucleotides from approximately 151 to 444 code for the SH2 domain; the nucleotides from 1886 to 1934, and 2144 to 2167 code for 5-phosphatase motifs; the nucleotides from 1783 to 2130 code for the 5-ptase domain; nucleotides 2866-2880 and 3175 to 3189 code for the PTB domain target sequences, INPNY and ENPLY; and, the nucleotides 3013 to 3580 code for the proline-rich domain.

The nucleic acid sequence of human SHIP is shown in Figure 10 and and Figure 13 (or in SEQ.ID.NO. 7). The human SHIP gene was mapped to chromosome 2 at the junction between q36 and q37. The nucleotides from approximately 141 to 434 in Figure 10 (SEQ.ID.NO. 7) code for the SH2 domain; the nucleotides from 1876 to 1924 and 2134 to 2157 in Figure 10 code for 5-phosphatase motifs; the nucleotides from 1773 to 2120 in Figure 10 code for the 5-ptase domain; nucleotides 2856 to 2870 and 3177 to 3191 in Figure 10 code for the PTB domain target sequences, INPNY and ENPLY; and the nucleotides 3009 to 3564 in Figure 10 code for the proline-rich domain. Figure 13 shows a comparison of the nucleic acid sequences encoding human SHIP and murine SHIP. The nucleic acid sequences encoding human and murine SHIP are 81.6% identical.

The invention includes nucleic acids having substantial homology or identity with the nucleic acid sequences encoding human and murine SHIP. Homology or identity refers to sequence similarity between the nucleic acid sequences and it may be determined by comparing a position in each sequence which is aligned for purposes of comparison. When a position in the compared sequence is occupied by the same nucleotide base, then the molecules are identical or homologous at that position.

It will be appreciated that the invention includes nucleic acid molecules encoding truncations of SHIP, and analogs and homologs of SHIP and truncations thereof (i.e., SHIP related proteins), as described herein. It will further be appreciated that variant forms of the nucleic acid molecules of the invention which arise by alternative splicing of an mRNA corresponding to a cDNA of the invention are encompassed by the invention.

Another aspect of the invention provides a nucleic acid molecule which hybridizes under high stringency conditions to a nucleic acid molecule which comprises a sequence which encodes SHIP having the amino acid sequence shown in Figure 2 (A) or SEQ ID NO:2, or Figure

25

35

11 or SEQ ID NO:8, or to a SHIP related protein, and preferably having the activity of SHIP. Appropriate stringency conditions which promote DNA hybridization are known to those skilled in the art, or can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. For example, 6.0 x sodium chloride/sodium citrate (SSC) at about 45°C, followed by a wash of 2.0 x SSC at 50°C may be employed. The stringency may be selected based on the conditions used in the wash step. By way of example, the salt concentration in the wash step can be selected from a high stringency of about 0.2 x SSC at 50°C. In addition, the temperature in the wash step can be at high stringency conditions, at about 65°C.

Isolated and purified nucleic acid molecules encoding a protein having the activity of SHIP as described herein, and having a sequence which differs from the nucleic acid sequence shown in SEQ ID NO:1 or Figure 3, or SEQ ID NO:7 or Figure 10, due to degeneracy in the genetic code are also within the scope of the invention. Such nucleic acids encode functionally equivalent proteins (e.g., a protein having SH2-containing inositol-phosphatase activity) but differ in sequence from the sequence of SEQ ID NO:1 or Figure 3, or SEQ ID NO:7 or Figure 10, due to degeneracy in the genetic code.

In addition, DNA sequence polymorphisms within the nucleotide sequence of SHIP (especially those within the third base of a codon) may result in "silent" mutations in the DNA which do not affect the amino acid encoded. However, DNA sequence polymorphisms may lead to changes in the amino acid sequences of SHIP within a population. It will be appreciated by one skilled in the art that these variations in one or more nucleotides (up to about 3-4% of the nucleotides) of the nucleic acids encoding proteins having the activity of SHIP may exist among individuals within a population due to natural allelic variation. Any and all such nucleotide variations and resulting amino acid polymorphisms are within the scope of the invention.

An isolated and purified nucleic acid molecule of the invention which comprises DNA can be isolated by preparing a labelled nucleic acid probe based on all or part of the nucleic acid sequence shown in SEQ ID NO: 1 or Figure 3, (for example, nucleotides 2830 to 2874 encoding VPAEGVSSLNEMINP; nucleotides encoding NEMINP or VPAEGV; or nucleotides 151 to 444 encoding the SH2 domain), or based on all or part of the nucleic acid sequence shown in SEQ ID NO: 7 or Figure 10, and using this labelled nucleic acid probe to screen an appropriate DNA library (e.g. a cDNA or genomic DNA library). For instance, a cDNA library made from hemopoietic cells can be used to isolate a cDNA encoding a protein having SHIP activity by screening the library with the labelled probe using standard techniques. Alternatively, a genomic DNA library can be similarly screened to isolate a genomic clone encompassing a gene encoding a protein having SH2-containing inositol-phosphatase activity. Nucleic acids isolated by screening of a cDNA or genomic DNA library can be sequenced by standard techniques.

An isolated and purified nucleic acid molecule of the invention which is DNA can also be isolated by selectively amplifying a nucleic acid encoding SHIP using the polymerase chain reaction (PCR) methods and cDNA or genomic DNA. It is possible to design synthetic oligonucleotide primers from the nucleotide sequence shown in SEQ ID NO:1 or Figure 3, or shown in SEQ ID NO:7 or Figure 10, for use in PCR. A nucleic acid can be amplified from cDNA or genomic DNA using these oligonucleotide primers and standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. It will be appreciated that cDNA may be prepared from mRNA, by isolating total cellular mRNA by a variety of techniques, for example, by using the guanidinium-thiocyanate extraction procedure of Chirgwin et al., Biochemistry, 18, 5294-5299 (1979). cDNA is then synthesized from the mRNA using reverse transcriptase (for example, Moloney MLV reverse transcriptase available from Gibco/BRL, Bethesda, MD, or AMV reverse transcriptase available from Seikagaku America, Inc., St. Petersburg, FL).

An isolated and purified nucleic acid molecule of the invention which is RNA can be isolated by cloning a cDNA encoding SHIP into an appropriate vector which allows for transcription of the cDNA to produce an RNA molecule which encodes a protein which exhibits phospholns-5-ptase activity. For example, a cDNA can be cloned downstream of a bacteriophage promoter, (e.g. a T7 promoter) in a vector, cDNA can be transcribed in vitro with T7 polymerase, and the resultant RNA can be isolated by standard techniques.

A nucleic acid molecule of the invention may also be chemically synthesized using standard techniques. Various methods of chemically synthesizing polydeoxynucleotides are known, including solid-phase synthesis which, like peptide synthesis, has been fully automated in commercially available DNA synthesizers (See e.g., Itakura et al. U.S. Patent No. 4,598,049; Caruthers et al. U.S. Patent No. 4,458,066; and Itakura U.S. Patent Nos. 4,401,796 and 4,373,071).

Determination of whether a particular nucleic acid molecule encodes a protein having SHIP activity can be accomplished by expressing the cDNA in an appropriate host cell by standard techniques, and testing the ability of the expressed protein to associate with Shc and/or hydrolyze a substrate as described herein. A cDNA having the biological activity of SHIP so isolated can be sequenced by standard techniques, such as dideoxynucleotide chain termination or Maxam-Gilbert chemical sequencing, to determine the nucleic acid sequence and the predicted amino acid sequence of the encoded protein.

The initiation codon and untranslated sequences of SHIP or a SHIP related protein may be determined using currently available computer software designed for the purpose, such as PC/Gene (IntelliGenetics Inc., Calif.). The intron-exon structure and the transcription regulatory sequences of the gene encoding the SHIP protein may be identified by using a nucleic acid molecule of the invention encoding SHIP to probe a genomic DNA clone library. Regulatory elements can be identified using conventional techniques. The function of the

15.

25

elements can be confirmed by using these elements to express a reporter gene such as the bacterial gene lacZ which is operatively linked to the elements. These constructs may be introduced into cultured cells using standard procedures or into non-human transgenic animal models. In addition to identifying regulatory elements in DNA, such constructs may also be used to identify nuclear proteins interacting with the elements, using techniques known in the art.

The 5' untranslated region of murine SHIP comprises nucleotides 1 to 138 in Figure 2(A) or SEQ ID. NO. 1, and the 5' untranslated region of human SHIP comprises nucleotides 1 to 128 in Figure 10 or SEQ ID. NO. 7.

The sequence of a nucleic acid molecule of the invention may be inverted relative to its normal presentation for transcription to produce an antisense nucleic acid molecule. An antisense nucleic acid molecule may be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art.

II. SHIP Proteins of the Invention

The amino acid sequence of murine SHIP is shown in SEQ.ID.No.2 or in Figure 2 (A) and the amino acid sequence of human SHIP is shown in SEQ.ID.No. 8 or in Figure 11. SHIP contains a number of well-characterized regions including an amino terminal src homology 2 (SH2) domain containing the sequence DGSFLVR which is highly conserved among SH2 domains; two phosphotyrosine binding (PTB) consensus sequences; proline rich regions near the carboxy terminus containing a class I sequence (PPSQPPLSP) and class II sequences (PVKPSR, PPLSPKK, AND PPLPVK); and two motifs highly conserved among inositol polyphosphate-5-phosphatases (i.e. the sequences WLGDLNYR and KYNLPSWCDRVLW).

The SHIP protein is expressed in many cell types including hemopoietic cells, bone marrow, lung, spleen, muscles, testes, and kidney.

In addition to the full length SHIP amino acid sequence (SEQ. ID.NO:2 or Figure 2(A); SEQ. ID.NO:8 or Figure 11), the proteins of the present invention include truncations of SHIP, and analogs, and homologs of SHIP and truncations thereof as described herein. Truncated proteins may comprise peptides of between 3 and 1090 amino acid residues, ranging in size from a tripeptide to a 1090 mer polypeptide. For example, a truncated protein may comprise the SH2 domain (the amino acids encoded by nucleotides 151 to 444 as shown in Figure 3 and encoded by nucleotides 141 to 434 in Figure 10); the proline rich regions (the amino acids encoded by nucleotides 3013 to 3580 in Figure 3 and encoded by nucleotides 3009 to 3564 in Figure 10); the 5-phosphatase motifs (amino acids encoded by nucleotides 1886 to 1934 and 2144 to 2167 in Figure 3 and encoded by nucleotides 1876 to 1924 and 2134 to 2157 in Figure 10); the 5-ptase domain (the amino acids encoded by nucleotides 1783 to 2130 in Figure 3 and encoded by nucleotides 1773 to 2120 in Figure 10); the PTB domain target sequences, INPNY and ENPLY (the amino acids encoded by nucleotides 2866-2880 and 3175 to 3189 in Figure 3 and encoded by nucleotides 2856 to 2870 and 3177 to 3191 in Figure 10)); or NPXY sequence of SHIP.

15

20

25

30

35

The truncated proteins may have an amino group (-NH2), a hydrophobic group (for example, carbobenzoxyl, dansyl, or T-butyloxycarbonyl), an acetyl group, a 9-fluorenylmethoxy-carbonyl (PMOC) group, or a macromolecule including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates at the amino terminal end. The truncated proteins may have a carboxyl group, an amido group, a T-butyloxycarbonyl group, or a macromolecule including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates at the carboxy terminal end. An isoprenoid may also be attached to a truncated protein comprising the 5-ptase domain to localize SHIP 5-ptase to the inside of the plasma membrane.

The proteins of the invention may also include analogs of SHIP as shown in SEQ. ID. NO. 2 or Figure 2 (A), or as shown in SEQ. ID. NO. 8 or Figure 11, and/or truncations thereof as described herein, which may include, but are not limited to, SHIP (SEQ. ID. NO. 2 or Figure 2(A); SEQ. ID. NO. 8 or Figure 11), containing one or more amino acid substitutions, insertions, and/or deletions. Amino acid substitutions may be of a conserved or non-conserved nature. Conserved amino acid substitutions involve replacing one or more amino acids of the SHIP amino acid sequence with amino acids of similar charge, size, and/or hydrophobicity characterisitics. When only conserved substitutions are made the resulting analog should be functionally equivalent to SHIP (SEQ. ID. NO. 2 or Figure 2(A); SEQ. ID. NO. 8 or Figure 11). Non-conserved substitutions involve replacing one or more amino acids of the SHIP amino acid sequence with one or more amino acids which possess dissimilar charge, size, and/or hydrophobicity characteristics. By way of example, D675 may be replaced with A675 in Figure 2(A) (or 672 in Figure 11) to create an analog which does not have 5-ptase activity.

One or more amino acid insertions may be introduced into SHIP (SEQ. ID. NO. 2 or Figure 2(A); SEQ. ID. NO. 8 or Figure 11). Amino acid insertions may consist of single amino acid residues or sequential amino acids ranging from 2 to 15 amino acids in length. For example, amino acid insertions may be used to destroy the PTB domain target sequences or the prolinerich consensus sequences so that SHIP can no longer bind SH3-containing proteins.

Deletions may consist of the removal of one or more amino acids, or discrete portions (e.g. one or more of the SH2 domain, PTB consensus sequences; the sequences conserved among inositol polyphosphate-5-phosphatases) from the SHIP (SEQ. ID. NO. 2 or Figure 2(A), SEQ. ID. NO. 8 or Figure 11) sequence. The deleted amino acids may or may not be contiguous. The lower limit length of the resulting analog with a deletion mutation is about 10 amino acids, preferably 100 amino acids.

It is anticipated that if amino acids are replaced, inserted or deleted in sequences outside the amino terminal src homology 2 (SH2) domain, the phosphotyrosine binding (PTB) consensus sequences, the proline rich region and motifs highly conserved among inositol polyphosphate-5-phosphatases, that the resulting analog of SHIP will associate with Shc and exhibit phospholns-5-ptase activity.

The proteins of the invention also include homologs of SHIP (SEQ. ID. NO. 2 or Figure 2(A); SEQ. ID. NO. 8 or Figure 11) and/or truncations thereof as described herein. Homology or identity refers to sequence similarity between sequences and it may be determined by comparing a position in each sequence which may be aligned for purposes of comparison. A degree of homology between sequences is a function of the number of matching positions shared by the sequences. Homologs will generally have the same regions which are characteristic of SHIP, namely an amino terminal src homology 2 (SH2) domain, two phosphotyrosine binding (PTB) consensus sequences, a proline rich region and two motifs highly conserved among inositol polyphosphate-5-phosphatases. It is anticipated that, outside of the well-characterized regions of SHIP specified herein (i.e. SH2 domain, PTB domain etc), a protein comprising an amino acid sequence which is about 50% similar, preferably 80 to 90% similar, with the amino acid sequences shown in SEQ ID NO:2 or Figure 2(A), or SEQ. ID. NO. 8 or Figure 11, will exhibit phosphoIns-5-ptase activity and associate with Shc.

A comparison of the amino acid sequences of murine and human SHIP are shown in Figure 12. As shown in Figure 12, human and murine SHIP are 87.2% identical at the amino acid level.

The invention also contemplates isoforms of the protein of the invention. An isoform contains the same number and kinds of amino acids as the protein of the invention, but the isoform has a different molecular structure. The isoforms contemplated by the present invention are those having the same properties as the protein of the invention as described herein.

The present invention also includes SHIP or a SHIP related protein conjugated with a selected protein, or a selectable marker protein (see below) to produce fusion proteins. Further, the present invention also includes activated or phosphorylated SHIP proteins of the invention. Additionally, immunogenic portions of SHIP and SHIP related proteins are within the scope of the invention.

SHIP and SHIP related proteins of the invention may be prepared using recombinant DNA methods. Accordingly, the nucleic acid molecules of the present invention having a sequence which encodes SHIP or a SHIP related protein of the invention may be incorporated in a known manner into an appropriate expression vector which ensures good expression of the protein. Possible expression vectors include but are not limited to cosmids, plasmids, or modified viruses (e.g. replication defective retroviruses, adenoviruses and adeno-associated viruses), so long as the vector is compatible with the host cell used. The expression vectors are "suitable for transformation of a host cell", means that the expression vectors contain a nucleic acid molecule of the invention and regulatory sequences selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid molecule. Operatively linked is intended to mean that the nucleic acid is linked to regulatory sequences in a manner which allows expression of the nucleic acid.

The invention therefore contemplates a recombinant expression vector of the invention containing a nucleic acid molecule of the invention, or a fragment thereof, and the necessary regulatory sequences for the transcription and translation of the inserted protein sequence. Suitable regulatory sequences may be derived from a variety of sources, including bacterial, fungal, viral, mammalian, or insect genes (For example, see the regulatory sequences described in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Selection of appropriate regulatory sequences is dependent on the host cell chosen as discussed below, and may be readily accomplished by one of ordinary skill in the art. Examples of such regulatory sequences include: a transcriptional promoter and enhancer or RNA polymerase binding sequence, a ribosomal binding sequence, including a translation initiation signal. Additionally, depending on the host cell chosen and the vector employed, other sequences, such as an origin of replication, additional DNA restriction sites, enhancers, and sequences conferring inducibility of transcription may be incorporated into the expression vector. It will also be appreciated that the necessary regulatory sequences may be supplied by the native SHIP and/or its flanking regions.

The invention further provides a recombinant expression vector comprising a DNA nucleic acid molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner which allows for expression, by transcription of the DNA molecule, or an RNA molecule which is antisense to the nucleotide sequence of SEQ ID NO: 1 or Figure 2(A), or SEQ. ID. NO. 8 or Figure 11. Regulatory sequences operatively linked to the antisense nucleic acid can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance a viral promoter and/or enhancer, or regulatory sequences can be chosen which direct tissue or cell type specific expression of antisense RNA.

The recombinant expression vectors of the invention may also contain a selectable marker gene which facilitates the selection of host cells transformed or transfected with a recombinant molecule of the invention. Examples of selectable marker genes are genes encoding a selectable marker protein such as G418 and hygromycin which confer resistance to certain drugs, β -galactosidase, chloramphenicol acetyltransferase, firefly luciferase, or an immunoglobulin or portion thereof such as the Fc portion of an immunoglobulin preferably IgG. Transcription of the selectable marker gene is monitored by changes in the concentration of the selectable marker protein such as β -galactosidase, chloramphenicol acetyltransferase, or firefly luciferase. If the selectable marker gene encodes a protein conferring antibiotic resistance such as neomycin resistance transformant cells can be selected with G418. Cells that have incorporated the selectable marker gene will survive, while the other cells die. This makes it possible to visualize and assay for expression of recombinant expression vectors of the invention and in particular to determine the effect of a mutation on expression and phenotype.

30

It will be appreciated that selectable markers can be introduced on a separate vector from the nucleic acid of interest.

The recombinant expression vectors may also contain genes which encode a fusion moiety which provides increased expression of the recombinant protein; increased solubility of the recombinant protein; and aid in the purification of the target recombinant protein by acting as a ligand in affinity purification. For example, a proteolytic cleavage site may be added to the target recombinant protein to allow separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Typical fusion expression vectors include pGEX (Amrad Corp., Melbourne, Australia), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-tranferase (GST), maltose E binding protein, or protein A, respectively, to the recombinant protein.

Recombinant expression vectors can be introduced into host cells to produce a transformant host cell. The term "transformant host cell" is intended to include prokaryotic and eukaryotic cells which have been transformed or transfected with a recombinant expression vector of the invention. The terms "transformed with", "transfected with", "transformation" and "transfection" are intended to encompass introduction of nucleic acid (e.g. a vector) into a cell by one of many possible techniques known in the art. Prokaryotic cells can be transformed with nucleic acid by, for example, electroporation or calcium-chloride mediated transformation. Nucleic acid can be introduced into mammalian cells via conventional techniques such as calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofectin, electroporation or microinjection. Suitable methods for transforming and transfecting host cells can be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press (1989)), and other laboratory textbooks.

Suitable host cells include a wide variety of prokaryotic and eukaryotic host cells. For example, the proteins of the invention may be expressed in bacterial cells such as *E. coli*, insect cells (using baculovirus), yeast cells or mammalian cells. Other suitable host cells can be found in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1991).

More particularly, bacterial host cells suitable for carrying out the present invention include *E. coli*, *B. subtilis*, *Salmonella typhimurium*, and various species within the genus' *Pseudomonas*, *Streptomyces*, and *Staphylococcus*, as well as many other bacterial species well known to one of ordinary skill in the art. Suitable bacterial expression vectors preferably comprise a promoter which functions in the host cell, one or more selectable phenotypic markers, and a bacterial origin of replication. Representative promoters include the β-lactamase (penicillinase) and lactose promoter system (see Chang et al., Nature 275:615, 1978), the trp promoter (Nichols and Yanofsky, Meth in Enzymology 101:155, 1983) and the tac promoter (Russell et al., Gene 20: 231, 1982). Representative selectable markers include various

35

antibiotic resistance markers such as the kanamycin or ampicillin resistance genes. Suitable expression vectors include but are not limited to bacteriophages such as lambda derivatives or plasmids such as pBR322 (see Bolivar et al., Gene 2:9S, 1977), the pUC plasmids pUC18, pUC19, pUC118, pUC119 (see Messing, Meth in Enzymology 101:20-77, 1983 and Vieira and Messing, Gene 19:259-268, 1982), and pNH8A, pNH16a, pNH18a, and Bluescript M13 (Stratagene, La Jolla, Calif.). Typical fusion expression vectors which may be used are discussed above, e.g. pGEX (Amrad Corp., Melbourne, Australia), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ). Examples of inducible nonfusion expression vectors include pTrc (Amann et al., (1988) Gene 69:301-315) and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89).

Yeast and fungi host cells suitable for carrying out the present invention include, but are not limited to Saccharomyces cerevisae, the genera Pichia or Kluyveromyces and various species of the genus Aspergillus. Examples of vectors for expression in yeast S. cerivisae include pYepSec1 (Baldari. et al., (1987) Embo J. 6:229-234), pMFa (Kurjan and Herskowitz, (1982) Cell 30:933-943), pJRY88 (Schultz et al., (1987) Gene 54:113-123), and pYES2 (Invitrogen Corporation, San Diego, CA). Protocols for the transformation of yeast and fungi are well known to those of ordinary skill in the art.(see Hinnen et al., PNAS USA 75:1929, 1978; Itoh et al., J. Bacteriology 153:163, 1983, and Cullen et al. (Bio/Technology 5:369, 1987).

Mammalian cells suitable for carrying out the present invention include, among others: COS (e.g., ATCC No. CRL 1650 or 1651), BHK (e.g., ATCC No. CRL 6281), CHO (ATCC No. CCL 61), HeLa (e.g., ATCC No. CCL 2), 293 (ATCC No. 1573) and NS-1 cells. Suitable expression vectors for directing expression in mammalian cells generally include a promoter (e.g., derived from viral material such as polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40), as well as other transcriptional and translational control sequences. Examples of mammalian expression vectors include pCDM8 (Seed, B., (1987) Nature 329:840) and pMT2PC (Kaufman et al. (1987), EMBOJ. 6:187-195).

Given the teachings provided herein, promoters, terminators, and methods for introducing expression vectors of an appropriate type into plant, avian, and insect cells may also be readily accomplished. For example, within one embodiment, the proteins of the invention may be expressed from plant cells (see Sinkar et al., J. Biosci (Bangalore) 11:47-58, 1987, which reviews the use of *Agrobacterium rhizogenes* vectors; see also Zambryski et al., Genetic Engineering, Principles and Methods, Hollaender and Setlow (eds.), Vol. VI, pp. 253-278, Plenum Press, New York, 1984, which describes the use of expression vectors for plant cells, including, among others, pAS2022, pAS2023, and pAS2034).

Insect cells suitable for carrying out the present invention include cells and cell lines from *Bombyx* or *Spodotera* species. Baculovirus vectors available for expression of proteins in cultured insect cells (SF 9 cells) include the pAc series (Smith et al., (1983) Mol. Cell Biol.

3:2156-2165) and the pVL series (Lucklow, V.A., and Summers, M.D., (1989) Virology 170:31-39).

Alternatively, the proteins of the invention may also be expressed in non-human transgenic animals such as, rats, rabbits, sheep and pigs (see Hammer et al. (Nature 315:680-683, 1985), Palmiter et al. (Science 222:809-814, 1983), Brinster et al. (Proc Natl. Acad. Sci USA 82:44384442, 1985), Palmiter and Brinster (Cell. 41:343-345, 1985) and U.S. Patent No. 4,736,866).

The proteins of the invention may also be prepared by chemical synthesis using techniques well known in the chemistry of proteins such as solid phase synthesis (Merrifield, 1964, J. Am. Chem. Assoc. 85:2149-2154) or synthesis in homogenous solution (Houbenweyl, 1987, Methods of Organic Chemistry, ed. E. Wansch, Vol. 15 I and II, Thieme, Stuttgart).

N-terminal or C-terminal fusion proteins comprising SHIP or a SHIP related protein of the invention conjugated with other molecules, such as proteins may be prepared by fusing, through recombinant techniques, the N-terminal or C-terminal of SHIP or a SHIP related protein, and the sequence of a selected protein or selectable marker protein with a desired biological function. The resultant fusion proteins contain SHIP or a SHIP related protein fused to the selected protein or marker protein as described herein. Examples of proteins which may be used to prepare fusion proteins include immunoglobulins, glutathione-S-transferase (GST), hemagglutinin (HA), and truncated myc. The present inventor has made GST fusion proteins containing the SH2 domain of SHIP and GST fusion proteins containing the 5-ptase domain attached to an isoprenoid to localize SHIP 5-ptase to the inside of the plasma membrane.

Phosphorylated or activated SHIP or SHIP related proteins of the invention may be prepared using the method described in Reedijk et al. The EMBO Journal 11(4):1365, 1992. For example, tyrosine phosphorylation may be induced by infecting bacteria harbouring a plasmid containing a nucleotide sequence of the invention, with a λ gt11 bacteriophage encoding the cytoplasmic domain of the Elk tyrosine kinase as an Elk fusion protein. Bacteria containing the plasmid and bacteriophage as a lysogen are isolated. Following induction of the lysogen, the expressed protein becomes phosphorylated by the tyrosine kinase.

IV. Utility of the Nucleic Acid Molecules and Proteins of the Invention

The nucleic acid molecules of the invention allow those skilled in the art to construct nucleotide probes for use in the detection of nucleic acid sequences in biological materials. Suitable probes include nucleic acid molecules based on nucleic acid sequences encoding at least 6 sequential amino acids from regions of the SHIP protein as shown in SEQ.ID NO:2 or Figure 2 (A), and SEQ.ID NO:8 or Figure 11. For example, a probe may be based on the nucleotides 2830 to 2874 in Figure 3 (or SEQ ID.NO. 1) encoding VPAEGVSSLNEMINP; the nucleotides encoding NEMINP or VPAEGV; or the nucleotides 151 to 445 in Figure 3 (or SEQ ID.NO. 1) encoding the SH2 domain. Preferably, the probe comprises a 1 to 1.5kb segment corresponding to the 5' and 3' ends of the 5Kb SHIP mRNA. A nucleotide probe may be labelled with a detectable

35

substance such as a radioactive label which provides for an adequate signal and has sufficient half-life such as ³²P, ³H, ¹⁴C or the like. Other detectable substances which may be used include antigens that are recognized by a specific labelled antibody, fluorescent compounds, enzymes, antibodies specific for a labelled antigen, and luminescent compounds. An appropriate label may be selected having regard to the rate of hybridization and binding of the probe to the nucleotide to be detected and the amount of nucleotide available for hybridization. Labelled probes may be hybridized to nucleic acids on solid supports such as nitrocellulose filters or nylon membranes as generally described in Sambrook et al, 1989, Molecular Cloning, A Laboratory Manual (2nd ed.). The nucleic acid probes may be used to detect genes, preferably in human cells, that encode SHIP, and SHIP related proteins. The nucleotide probes may therefore be useful in the diagnosis of disorders of the hemopoietic system including chronic myelogenous leukemia, and acute lymphocytic leukemia, etc.

SHIP or a SHIP related protein of the invention can be used to prepare antibodies specific for the proteins. Antibodies can be prepared which bind a distinct epitope in an unconserved region of the protein. An unconserved region of the protein is one which does not have substantial sequence homology to other proteins, for example the regions outside the well-characterized regions of SHIP as described herein. Alternatively, a region from one of the well-characterized domains (e.g. SH2 domain) can be used to prepare an antibody to a conserved region of SHIP or a SHIP related protein. Antibodies having specificity for SHIP or a SHIP related protein may also be raised from fusion proteins created by expressing for example, trpE-SHIP fusion proteins in bacteria as described herein.

Conventional methods can be used to prepare the antibodies. For example, by using a peptide of SHIP or a SHIP related protein, polyclonal antisera or monoclonal antibodies can be made using standard methods. A mammal, (e.g., a mouse, hamster, or rabbit) can be immunized with an immunogenic form of the peptide which elicits an antibody response in the mammal. Techniques for conferring immunogenicity on a peptide include conjugation to carriers or other techniques well known in the art. For example, the peptide can be administered in the presence of adjuvant. The progress of immunization can be monitored by detection of antibody titers in plasma or serum. Standard ELISA or other immunoassay procedures can be used with the immunogen as antigen to assess the levels of antibodies. Following immunization, antisera can be obtained and, if desired, polyclonal antibodies isolated from the sera.

To produce monoclonal antibodies, antibody producing cells (lymphocytes) can be harvested from an immunized animal and fused with myeloma cells by standard somatic cell fusion procedures thus immortalizing these cells and yielding hybridoma cells. Such techniques are well known in the art, (e.g., the hybridoma technique originally developed by Kohler and Milstein (Nature 256, 495-497 (1975)) as well as other techniques such as the human B-cell hybridoma technique (Kozbor et al., Immunol. Today 4, 72 (1983)), the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al. Monoclonal

Antibodies in Cancer Therapy (1985) Allen R. Bliss, Inc., pages 77-96), and screening of combinatorial antibody libraries (Huse et al., Science 246, 1275 (1989)]. Hybridoma cells can be screened immunochemically for production of antibodies specifically reactive with the peptide and the monoclonal antibodies can be isolated. Therefore, the invention also contemplates hybridoma cells secreting monoclonal antibodies with specificity for SHIP or a SHIP related protein as described herein.

The term "antibody" as used herein is intended to include fragments thereof which also specifically react with a protein, or peptide thereof, having the activity of SHIP. Antibodies can be fragmented using conventional techniques and the fragments screened for utility in the same manner as described above. For example, F(ab')2 fragments can be generated by treating antibody with pepsin. The resulting F(ab')2 fragment can be treated to reduce disulfide bridges to produce Fab' fragments.

Chimeric antibody derivatives, i.e., antibody molecules that combine a non-human animal variable region and a human constant region are also contemplated within the scope of the invention. Chimeric antibody molecules can include, for example, the antigen binding domain from an antibody of a mouse, rat, or other species, with human constant regions. Conventional methods may be used to make chimeric antibodies containing the immunoglobulin variable region which recognizes the gene product of SHIP antigens of the invention (See, for example, Morrison et al., Proc. Natl Acad. Sci. U.S.A. 81,6851 (1985); Takeda et al., Nature 314, 452 (1985), Cabilly et al., U.S. Patent No. 4,816,567; Boss et al., U.S. Patent No. 4,816,397; Tanaguchi et al., European Patent Publication EP171496; European Patent Publication 0173494, United Kingdom patent GB 2177096B). It is expected that chimeric antibodies would be less immunogenic in a human subject than the corresponding non-chimeric antibody.

Monoclonal or chimeric antibodies specifically reactive with a protein of the invention as described herein can be further humanized by producing human constant region chimeras, in which parts of the variable regions, particularly the conserved framework regions of the antigen-binding domain, are of human origin and only the hypervariable regions are of non-human origin. Such immunoglobulin molecules may be made by techniques known in the art, (e.g., Teng et al., Proc. Natl. Acad. Sci. U.S.A., 80, 7308-7312 (1983); Kozbor et al., Immunology Today, 4, 7279 (1983); Olsson et al., Meth. Enzymol., 92, 3-16 (1982)), and PCT Publication WO92/06193 or EP 0239400). Humanized antibodies can also be commercially produced (Scotgen Limited, 2 Holly Road, Twickenham, Middlesex, Great Britain.)

Specific antibodies, or antibody fragments, reactive against proteins of the invention may also be generated by screening expression libraries encoding immunoglobulin genes, or portions thereof, expressed in bacteria with peptides produced from the nucleic acid molecules of the present invention. For example, complete Fab fragments, VH regions and FV regions can be expressed in bacteria using phage expression libraries (See for example Ward et al., Nature

341, 544-546: (1989); Huse et al., Science 246, 1275-1281 (1989); and McCafferty et al. Nature 348, 552-554 (1990)). Alternatively, a SCID-hu mouse, for example the model developed by Genpharm, can be used to produce antibodies, or fragments thereof.

Antibodies specifically reactive with SHIP or a SHIP related protein, or derivatives thereof, such as enzyme conjugates or labeled derivatives, may be used to detect SHIP in various biological materials, for example they may be used in any known immunoassays which rely on the binding interaction between an antigenic determinant of SHIP or a SHIP related protein, and the antibodies. Examples of such assays are radioimmunoassays, enzyme immunoassays (e.g.ELISA), immunofluorescence, immunoprecipitation, latex agglutination, hemagglutination, and histochemical tests. Thus, the antibodies may be used to detect and quantify SHIP in a sample in order to determine its role in particular cellular events or pathological states, and to diagnose and treat such pathological states.

In particular, the antibodies of the invention may be used in immuno-histochemical analyses, for example, at the cellular and sub-subcellular level, to detect SHIP, to localise it to particular cells and tissues and to specific subcellular locations, and to quantitate the level of expression.

Cytochemical techniques known in the art for localizing antigens using light and electron microscopy may be used to detect SHIP. Generally, an antibody of the invention may be labelled with a detectable substance and SHIP may be localised in tissue based upon the presence of the detectable substance. Examples of detectable substances include various enzymes, fluorescent materials, luminescent materials and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, biotin, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; and examples of suitable radioactive material include radioactive iodine I¹²⁵, I¹³¹ or tritium. Antibodies may also be coupled to electron dense substances, such as ferritin or colloidal gold, which are readily visualised by electron microscopy.

Indirect methods may also be employed in which the primary antigen-antibody reaction is amplified by the introduction of a second antibody, having specificity for the antibody reactive against SHIP. By way of example, if the antibody having specificity against SHIP is a rabbit IgG antibody, the second antibody may be goat anti-rabbit gamma-globulin labelled with a detectable substance as described herein.

Where a radioactive label is used as a detectable substance, SHIP may be localized by radioautography. The results of radioautography may be quantitated by determining the density of particles in the radioautographs by various optical methods, or by counting the grains.

20

25

30

As discussed herein, SHIP associates with Shc following cytokine stimulation of hemopoietic cells, and it has a role in regulating proliferation, differentiation, activation and metabolism of cells of the hemopoietic system. Therefore, the above described methods for detecting nucleic acid molecules of the invention and SHIP, can be used to monitor proliferation, differentiation, activation and metabolism of cells of the hemopoietic system by detecting and localizing SHIP and nucleic acid molecules encoding SHIP. It would also be apparent to one skilled in the art that the above described methods may be used to study the developmental expression of SHIP and, accordingly, will provide further insight into the role of SHIP in the hemopoietic system.

SHIP has unique and important roles in the regulation of signalling pathways that control gene expression, cell proliferation, differentiation, activation, and metabolism. This finding permits the identification of substances which affect SHIP regulatory systems and which may be used in the treatment of conditions involving perturbation of signalling pathways. The term "SHIP regulatory system" refers to the interaction of SHIP or a SHIP related protein and Shc or a part thereof, to form a SHIP-Shc complex thereby activating a series of regulatory pathways that control gene expression, cell division, cytoskeletal architecture and cell metabolism. Such pathways include the Ras pathway, the pathway that regulates the breakdown of polyphosphoinositides through phospholipase C, and PI-3-kinase activated pathways, such as the emerging rapamycin-sensitive protein kinase B (PKB/Akt) pathway.

A substance which affects SHIP and accordingly a SHIP regulatory system may be assayed using the above described methods for detecting nucleic acid molecules and SHIP and SHIP related proteins, and by comparing the pattern and level of expression of SHIP or SHIP related proteins in the presence and absence of the substance.

Substances which affect SHIP can also be identified based on their ability to bind to SHIP or a SHIP related protein. Therefore, the invention also provides methods for identifying substances which are capable of binding to SHIP or a SHIP related protein. In particular, the methods may be used to identify substances which are capable of binding to, and in some cases activating (i.e., phosphorylating) SHIP or a SHIP related protein of the invention.

Substances which can bind with SHIP or a SHIP related protein of the invention may be identified by reacting SHIP or a SHIP related protein with a substance which potentially binds to SHIP or a SHIP related protein, under conditions which permit the formation of substance -SHIP or -SHIP related protein complexes and assaying for complexes, for free substance, or for non-complexed SHIP or SHIP related protein, or for activation of SHIP or SHIP related protein. Conditions which permit the formation of substance SHIP or SHIP related protein complexes may be selected having regard to factors such as the nature and amounts of the substance and the protein.

20

The substance-protein complex, free substance or non-complexed proteins may be isolated by conventional isolation techniques, for example, salting out, chromatography, electrophoresis, gel filtration, fractionation, absorption, polyacrylamide gel electrophoresis, agglutination, or combinations thereof. To facilitate the assay of the components, antibody against SHIP or SHIP related protein or the substance, or labelled SHIP or SHIP related protein, or a labelled substance may be utilized. The antibodies, proteins, or substances may be labelled with a detectable substance as described above.

Substances which bind to and activate SHIP or a SHIP related protein of the invention may be identified by assaying for phosphorylation of the tyrosine residues of the protein, for example using antiphosphotyrosine antibodies and labelled phosphorus.

SHIP or SHIP related protein, or the substance used in the method of the invention may be insolubilized. For example, SHIP or SHIP related protein or substance may be bound to a suitable carrier. Examples of suitable carriers are agarose, cellulose, dextran, Sephadex, Sepharose, carboxymethyl cellulose polystyrene, filter paper, ion-exchange resin, plastic film, plastic tube, glass beads, polyamine-methyl vinyl-ether-maleic acid copolymer, amino acid copolymer, ethylene-maleic acid copolymer, nylon, silk, etc. The carrier may be in the shape of, for example, a tube, test plate, beads, disc, sphere etc.

The insolubilized protein or substance may be prepared by reacting the material with a suitable insoluble carrier using known chemical or physical methods, for example, cyanogen bromide coupling.

The proteins or substance may also be expressed on the surface of a cell using the methods described herein.

The invention also contemplates a method for assaying for an agonist or antagonist of the binding of SHIP or a SHIP related protein with a substance which is capable of binding with SHIP or a SHIP related protein. The agonist or antagonist may be an endogenous physiological substance or it may be a natural or synthetic substance. Substances which are capable of binding with SHIP or a SHIP related protein may be identified using the methods set forth herein. In a preferred embodiment, the substance is Shc, or a part of Shc, in particular the SH2 domain of Shc, PTB recognition sequences of Shc, or the region containing Y³¹⁷ of Shc (i.e. amino acids 310 to 322) or an activated form thereof. The nucleic acid sequence and the amino acid sequence of Shc are shown in Figures 7 & 8 (SEQ ID. Nos. 3 and 4), respectively. Shc, or a part of Shc, may be prepared using conventional methods, or they may be prepared as fusion proteins (See Lioubin, M.N. Et al., Mol. Cell. Biol. 14(9):5682, 1994, and Kavanaugh, W. M., and L.T. Williams, Science 266:1862, 1994 for methods for making Shc and Shc fusion proteins). Shc, or part of Shc may be activated i.e. phosphorylated using the methods described for example by Reedijk et al. (The EMBO Journal, 11(4):1365, 1992) for producing a tyrosine phosphorylated protein. The substance may also be an SH3 containing protein such as

20

30

35

Grb2, or a part of Grb2, in particular the SH3 domain of Grb2. The nucleic acid sequence and the amino acid sequence of Grb2 are shown in Figure 9 (SEQ. ID. 5 and NO. 6, respectively).

Therefore, in accordance with a preferred embodiment, a method is provided which comprises providing a known concentration of SHIP or a SHIP related protein, incubating SHIP or the SHIP related protein with Shc, or a part of Shc, and a suspected agonist or antagonist under conditions which permit the formation of Shc-SHIP or Shc-SHIP related protein complexes, and assaying for Shc-SHIP or Shc-SHIP related protein complexes, for free Shc, for non-complexed SHIP or SHIP related proteins, or for activation of SHIP or SHIP related protein complexes and methods for assaying for Shc-SHIP or Shc-SHIP related protein complexes, for free Shc, for non-complexed SHIP or SHIP related protein, or for activation of SHIP or SHIP related protein complexes, for free Shc, for non-complexed SHIP or SHIP related protein, or for activation of SHIP or SHIP related protein are described herein.

It will be understood that the agonists and antagonists that can be assayed using the methods of the invention may act on one or more of the binding sites on the protein or substance including agonist binding sites, competitive antagonist binding sites, non-competitive antagonist binding sites or allosteric sites.

The invention also makes it possible to screen for antagonists that inhibit the effects of an agonist of the interaction of SHIP or a SHIP related protein with a substance which is capable of binding to SHIP or a SHIP related protein. Thus, the invention may be used to assay for a substance that competes for the same binding site of SHIP or a SHIP related protein.

The methods described above may be used to identifying a substance which is capable of binding to an activated SHIP or SHIP related protein, and to assay for an agonist or antagonist of the binding of activated SHIP or SHIP related protein, with a substance which is capable of binding with activated SHIP or activated SHIP related protein. An activated (i.e. phosphorylated) SHIP or SHIP related protein may be prepared using the methods described for example in Reedijk et al. The EMBO Journal, 11(4):1365, 1992 for producing a tyrosine phosphorylated protein.

It will also be appreciated that intracellular substances which are capable of binding to SHIP or a SHIP related protein may be identified using the methods described herein. For example, tyrosine phosphorylated proteins (such as the 97 kd and 75 kd proteins) and non-tyrosine phosphorylated proteins which bind to SHIP or a SHIP related protein may be isolated using the method of the invention, cloned, and sequenced.

The invention also contemplates a method for assaying for the affect of a substance on the phospholns-5-ptase activity of SHIP or a SHIP related protein having phospholns-5-ptase activity comprising reacting a substrate which is capable of being hydrolyzed by SHIP or SHIP related protein to produce a hydrolysis product, with a substance which is suspected of affecting the phospholns-5-ptase activity of SHIP or a SHIP related protein, under conditions which permit the hydrolysis of the substrate, determining the amount of hydrolysis product,

15

30

35

and comparing the amount of hydrolysis product obtained with the amount obtained in the absence of the substance to determine the affect of the substance on the phosphoIns-5-ptase activity of SHIP or SHIP related proteins. Suitable substrates include phosphatidylinositol trisphosphate (PtdIns-3,4,5-P₃) and inositol tetraphosphate (Ins-1,3,4,5-P₄). The former substrate is hydroylzed to PtdIns-3,4-P₂ which may be identified by incubation with phosphoIns-4-ptase which converts the bis phosphate product to PtdIns-3-P. The latter is hydrolyzed to Ins-1,3,4-P₃ which is identified by treatment with phosphoIns-1-ptase and phosphoIns-4-ptase. Conditions which permit the hydrolysis of the substrate, may be selected having regard to factors such as the nature and amounts of the substance, substrate, and the amount of SHIP or SHIP related proteins.

The invention further provides a method for assaying for a substance that affects a SHIP regulatory pathway comprising administering to a non-human animal or to a tissue of an animal, a substance suspected of affecting a SHIP regulatory pathway, and quantitating SHIP or nucleic acids encoding SHIP, or examining the pattern and/or level of expression of SHIP, in the non-human animal or tissue. SHIP may be quantitated and its expression may be examined using the methods described herein.

The substances identified by the methods described herein, may be used for modulating SHIP regulatory pathways and accordingly may be used in the treatment of conditions involving perturbation of SHIP signalling pathways. In particular, the substances may be particularly useful in the treatment of disorders of the hemopoietic system such as chronic myelogenous leukemia, and acute lymphocytic leukemia.

SHIP is believed to enhance proliferation. Therefore, inhibitors of SHIP (e.g. truncated or point mutants or anti-sense) may be useful in reversing disorders involving excessive proliferation, and stimulators of SHIP may be useful in the treatment of disorders requiring stimulation of proliferation. Accordingly, the substances identified using the methods of the invention may be used to stimulate or inhibit cell proliferation associated with disorders including various forms of cancer such as leukemias, lymphomas (Hodgkins and non-Hodgkins), sarcomas, melanomas, adenomas, carcinomas of solid tissue, hypoxic tumors, squamous cell carcinomas of the mouth, throat, larynx, and lung, genitourinary cancers such as cervical and bladder cancer, hematopoietic cancers, head and neck cancers, and nervous system cancers, benign lesions such as papillomas, arthrosclerosis, angiogenesis, and viral infections, in particular HIV infections; and autoimmune diseases including systemic lupus erythematosus, Wegener's granulomatosis, rheumatoid arthritis, sarcoidosis, polyarthritis, pemphigus, pemphigoid, erythema multiforme, Sjogren's syndrome, inflammatory bowel disease, multiple sclerosis, myasthenia gravis, keratitis, scleritis, Type I diabetes, insulin-dependent diabetes mellitus, Lupus Nephritis, allergic encephalomyelitis. Substances which stimulate cell proliferation identified using the methods of the invention may be useful in the treatment of conditions involving damaged cells including conditions in which degeneration of tissue occurs such as arthropathy, bone resorption, inflammatory disease, degenerative disorders of the central nervous system; and for promoting wound healing. The SH2 domain of SHIP has been found to be important for tyrosine phosphorylation, binding to Shc, and for translocation to membranes. The SH2 domain has also been shown to be important in the viability of various haemopoietic cells. Therefore, substances which enhance or inhibit SHIP may affect viability of haemopoietic cells, and they may be useful in preventing or treating conditions requiring enhancement or inhibition of viability of haemopoietic cells.

The substances may be formulated into pharmaceutical compositions for adminstration to subjects in a biologically compatible form suitable for administration in vivo. By "biologically compatible form suitable for administration in vivo" is meant a form of the substance to be administered in which any toxic effects are outweighed by the therapeutic effects. The substances may be administered to living organisms including humans, and Administration of a therapeutically active amount of the pharmaceutical animals. compositions of the present invention is defined as an amount effective, at dosages and for periods of time necessary to achieve the desired result. For example, a therapeutically active amount of a substance may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of antibody to elicit a desired response in the individual. Dosage regima may be adjusted to provide the optimum therapeutic response. For example, several divided doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation. 20

10

25

35

The active substance may be administered in a convenient manner such as by injection (subcutaneous, intravenous, etc.), oral administration, inhalation, transdermal application, or rectal administration. Depending on the route of administration, the active substance may be coated in a material to protect the compound from the action of enzymes, acids and other natural conditions which may inactivate the compound.

The compositions described herein can be prepared by per se known methods for the preparation of pharmaceutically acceptable compositions which can be administered to subjects, such that an effective quantity of the active substance is combined in a mixture with a pharmaceutically acceptable vehicle. Suitable vehicles are described, for example, in Remington's Pharmaceutical Sciences (Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa., USA 1985). On this basis, the compositions include, albeit not exclusively, solutions of the substances in association with one or more pharmaceutically acceptable vehicles or diluents, and contained in buffered solutions with a suitable pH and iso-osmotic with the physiological fluids.

The reagents suitable for applying the methods of the invention to identify substances that affect a SHIP regulatory system may be packaged into convenient kits providing the necessary materials packaged into suitable containers. The kits may also include suitable supports useful in performing the methods of the invention.

WO 97/12039 PCT/CA96/00655

- 25A -

The invention also provides methods for examining the function of the SHIP protein. Cells, tissues, and non-human animals lacking in SHIP expression or partially lacking in SHIP expression may be developed using recombinant expression vectors of the invention having specific deletion or insertion mutations in the SHIP gene. For example, the PTB recognition sequences, SH2 domain, 5-ptase domain, or proline-rich sequences may be deleted. A

recombinant expression vector may be used to inactivate or alter the endogenous gene by homologous recombination, and thereby create a *SHIP* deficient cell, tissue or animal.

Null alleles may be generated in cells, such as embryonic stem cells by deletion mutation. A recombinant SHIP gene may also be engineered to contain an insertion mutation which inactivates SHIP. Such a construct may then be introduced into a cell, such as an embryonic stem cell, by a technique such as transfection, electroporation, injection etc. Cells lacking an intact SHIP gene may then be identified, for example by Southern blotting, Northern Blotting or by assaying for expression of SHIP using the methods described herein. Such cells may then be fused to embryonic stem cells to generate transgenic non-human animals deficient in SHIP. Germline transmission of the mutation may be achieved, for example, by aggregating the embryonic stem cells with early stage embryos, such as 8 cell embryos, in vitro; transferring the resulting blastocysts into recipient females and; generating germline transmission of the resulting aggregation chimeras. Such a mutant animal may be used to define specific cell populations, developmental patterns and in vivo processes, normally dependent on SHIP expression.

The following non-limiting example are illustrative of the present invention:

EXAMPLES

30

The following materials and methods were utilized in the investigations outlined in example 1:

20 PURIFICATION PROTOCOL

20 litres of B6SUtA₁ cells, grown to confluence in RPMI containing 10% FCS and 5 ng/ml of GM-CSF, were lysed at 2x107 cells/ml with PSB containing 0.5% NP40 (Liu et al., Mol. Cell. Biol. 14, 6926 (1994)) and incubated with GSH-beads bearing GST-Grb2-C-SH3. Bound material was eluted by boiling with 1% SDS, 50 mM Tris-Cl, pH 7.5, and diluted to reduce the SDS to < 0.2% for Amicon YM100, Microcon 30 concentration and 3 rounds of Bio-Sep SEC S3000 (Phenomenex) HPLC to remove GST-Grb2-C-SH3 and other low molecular weight material. Following 2D-PAGE (P.H. O'Farrell, J. Biol. Chem. 250, 4007 (1975)), transfer to a PVDF membrane (Liu et al., Mol. Cell. Biol. 14, 6926 (1994)), and Ponceau S staining, the 145-kD spot was excised and sent to the Harvard Microchemistry Facility for trypsin digestion, C₁₈ HPLC and amino acid sequencing.

CLONING OF cDNA FOR p145

Degenerate 3' oligonucleotides were synthesized based on the peptide sequence NEMINP, ie 5' GACATCGATGG(G,A)TT(T,G,A)ATCAT(C,T)TC (A,G)TT-3' to carry out PCR amplification 3' and 5' from a plasmid library of randomly primed B6SUtA₁ cDNA employing 5' PCR primers based on plasmid vector sequence flanking the cDNA insertion site. PCR reactions (ExpandTM Long Template PCR System, Boehringer Mannheim) were separated on TAE-agarose gels, transferred to Hybond-N+ Blotting membrane (Amersham) and probed for hybridizing bands with a γ-32P-dATP end-labelled degenerate oligonucleotide based on the

15

20

25

30

upstream, b ut overlapping, n ot peptide s e que nce VPAEGV:5'GTAACGGGT(C,T,A,G)CC(C,T,A,G)GC (C,T,A,G)GA(A,G)G(C,T,A,G)GT-3'. A 314 bp hybridizing DNA fragment was identified, gel purified, subcloned into Bluescript KS+, sequenced and the projected translation confirmed to match that of the original amino acid sequence obtained with the exception of E

C at amino acid #4: VPA CGVSSLNEMINP. Specific primers were synthesized based on the DNA sequence to proceed both 3' and 5' of the 314 bp original clone to clone 3 overlapping cDNAs totalling 4047 bp in length and encoding a complete coding sequence of 1190 amino acids. DNA sequence was obtained for both strands (Amplicycle, Perkin Elmer), employing both subcloning and oligomer primers. Data base comparisons were performed with the MPSearch program, using the Blitz server operated by the European Molecular Biology Laboratory (Heidelberg, Germany).

Determining If p145 Is A Phospholns-5-ptase

PtdIns[32P]-3,4,5-P₃ was prepared using PtdIns-4,5-P₂ and recombinant PtdIns-3-kinase provided by Dr. L. Williams (Chiron Corp) (17). 5-ptase activity was measured by evaporating 30,000 cpm of TLC purified PtdIns[32P]-3,4,5-P₃ with 150 ug phosphatidylserine under N₂ and resuspending by sonication in assay buffer. Reaction mixtures (25 µl) containing immunoprecipitate or 5-ptase II, 50 mM Tris-Cl, pH 7.5, 10 mM MgCl₂ and substrate were rocked for 30 min at 37°C. Reactions were stopped and the product separated by TLC (L.A. Norris and P.W. Majerus, J. Biol. Chem. 269, 8716 (1994)). Hydrolysis of [3H]Ins-1,3,4,5-P4 by immunoprecipitates was measured as above in 25 µl containing 16 µM [3H]Ins-1,3,4,5-P4 (6000 cpm/nmol) under conditions where the reaction was linear with time (20 min, 37°C) and enzyme amount (C.A. Mitchell et al., J. Biol. Chem. 264, 8873 (1989)). Proof that the InsP3 product was [3H]Ins-1,3,4-P3 was obtained by incubation with recombinant inositol-polyphosphate-4- and 1-phosphatase and the bis phosphate products separated on Dowex-formate.

LEGENDS FOR FIGURES DISCUSSED IN EXAMPLE 1

- Figure 1. The Grb2-C-SH3 domain specifically binds the tyrosine phosphorylated, Shcassociated p145. Lysates prepared from B6SUtA₁ cells (2), treated ± IL-3, were either immunoprecipitated with anti-Shc (Transduction Laboratories), followed by protein A Sepharose (lanes 1&2) or incubated with GSH bead bound GST-Grb2-N-SH3 (lanes 3&4) or GSH bead bound GST-Grb2-C-SH3 (lanes 5&6). Proteins were eluted by boiling in SDS sample buffer and subjected to Western analysis using 4G10. For lane 7, lysates from IL-3-stimulated B6SUtA₁ cells were incubated with GSH bead bound GST-Grb2-C-SH3, and anti-Shc immunoprecipitates carried out with the unbound material.
- Figure 2. Amino acid sequence of p145. (A) Deduced amino acid sequence of p145. The hatched box indicates the SH2 domain; the heavily underlined amino acids, the 2 target sequences for binding to PTB domains; the asterisks, the location of the proline rich motifs; and the lightly underlined amino acids, the 2 conserved 5-ptase motifs. Data base comparisions were

35

performed with the MPSearch program using the Blitz server operated by the European Molecular Biology Laboratory (Heidelberg, Germany). (B) Diagrammatic representation of the various domains within p145.

Figure 4. Anti-15mer antiserum recognizes the Shc-associated p145 and co-precipitates Shc. (A) Lysates from B6SUtA₁ cells, treated ± IL-3, were either immunoprecipitated with anti-Shc (lanes 1&2), NRS (lanes 3&4) or anti-15mer (lanes 5&6) or precleared with anti-15mer and then immunoprecipitated with anti-Shc (lanes 7&8). Western analysis was then performed with 4G10. (B) Lysates from B6SUtA1 cells, stimulated with IL-3, were immunoprecipitated with anti-Shc or anti-15mer and the bound proteins eluted at 23°C for 30 min with SDS-sample buffer containing 1 mM N-ethylmaleimide in lieu of 2-mercaptoethanol. Western blotting was 10 then carried out with 4G10 (upper panel) and the blot reprobed with anti-Shc (lower panel). Figure 5. Expression of p145 RNA in murine tissues. Northern blot analysis of 2 µg of polyA RNA from various tissues probed with a random primer-labeled PCR fragment encompassing a 1.5-kb fragment corresponding to the 3' end of the p145 cDNA (lanes 1-6, spleen, lung, liver, 15 skeletal muscle, kidney and testes, respectively (Clontech); lane 7, separately prepared blot of bone marrow). Similar intensities were observed upon probing with a random primer-labeled PCR fragment encompassing a 1.5-kb fragment corresponding to the 5' end. Exposure time was 30 hrs. In addition to the prominant 5-kb band, a faint band of 4.5-kb was apparent on the autoradiogram.

Figure 6. p145 contains Ins-1,3,4,5-P₄ and PtdIns-3,4,5-P₃ 5-phosphatase activity. (A) 2x10⁷ B6SUtA₁ cells were lysed and anti-15^{mer}, anti-Shc and NRS immunoprecipitates incubated with [3H]Ins-1,3,4,5-P₄ under conditions where product formation was linear with time. Assays were also carried out ± recombinant 5-ptase II as controls. (B) 1/10th of anti-15^{mer}, NRS and anti-Shc immunoprecipitates (as well as ± recombinant 5-ptase II, ie. PtII&BL(blank))) were incubated with PtdIns[32P]-3,4,5-P₃ under conditions where product formation was linear with time and the reaction mixture chromatographed on TLC (18).

EXAMPLE 1

In preliminary studies aimed at purifying p145, immobilized GST fusion proteins containing the C-terminal (but not the N-terminal) SH3 domain of Grb2 were found to bind a prominent tyrosine phosphorylated protein doublet from B6SUtA₁ cell lysates that possessed the same mobility in SDS-gels as p145 (Figure 1, lanes 1-6). Silver stained gels of Grb2-C-SH3 bound material indicated this doublet was prominent in terms of protein level as well, and most abundant in B6SUtA₁ cells (compared to MO7E, TF1, Ba/F3, DA-3 and 32D cells, data not shown). To determine if this Grb2-C-SH3 purified doublet was p145, B6SUtA₁ cell lysates were precleared with Grb2-C-SH3 beads and this dramatically depleted p145 in subsequent anti-Shc immuno-precipitates (Figure 1, lane 7). Further proof was obtained by carrying out 2D-PAGE (P.H. O'Farrell, J. Biol. Chem. 250, 4007 (1975)) with the two preparations,

followed by Western analysis, using anti-PY antibodies. An identical pattern of multiple spots was obtained in the 145-kD range, with isoelectric points ranging from 7.2 to 7.8.

Based on these findings, a purification protocol was devised as described above and two sequences were obtained from the purified protein; VPAEGVSSLNEMINP, which was used to construct degenerate oligonucleotides, and DGSFLVR, which strongly suggested the presence of an SH2 domain.

The full length cDNA for p145 was then cloned using a PCR based strategy and a B6SUtA1 cDNA library as described above. The deduced 1190 amino acid sequence, possessing a theoretical pI of 7.75 (consistent with the 2D-gel results) revealed several interesting motifs (Figure 2). Close to the amino terminus is the DGSFLVR sequence that is highly conserved among SH2 domains and, taken together with sequences surrounding this motif, suggests that p145 contains an SH2 domain most homologous, at the protein level, to those within Abl, Bruton's tyrosine kinase and Grb2. There are also two motifs, ie., INPNY and ENPLY, that, in their phosphorylated forms, are theoretically capable of binding to PTB domains (P. Blaikie et al., J. Biol. Chem. 269, 32031 (1994); W.M. Kavanaugh et al., Science 268, 1177 (1995); I. Dikic et al., J. Biol. Chem. 270, 15125 (1995); P. Bork and B. Margolis, Cell 80, 693 (1995); Z. Songyang et al., J. Biol. Chem. 270, 14863 (1995); A. Craparo et al., J. Biol. Chem. 270, 15639 (1995); P. van der Geer and T. Pawson, TIBS 20, 277 (1995); A.G. Batzer et al., Mol. Cell. Biol. 15, 4403 (1995); T. Trub et al., J. Biol. Chem. 270, 18205 (1995)). As well, several predicted proline-rich motifs are present near the carboxy terminus, including both class I (eg, PPSQPPLSP) and class II (eg, PVKPSR, PPLSPKK, PPLPVK (K. Alexandropoulos et al., Proc. Natl. Acad. Sci. U.S.A. 92, 3110 (1995); C. Schumacher et al., J. Biol. Chem. 270, 15341 (1995)). Most interestingly, there are 2 motifs that are highly conserved among 5-ptases, ie, WLGDLNYR and, 73 amino acids C-terminal to this, KYNLPSWCDRVLW (X. Zhang et al., Proc. Natl. Acad. Sci. U.S.A. 92,4853 (1995).

To identify tyrosine phosphorylated proteins that interact with p145 in vivo and to confirm p145 had been sequenced, lysates from B6SUtA1 cells were immunoprecipitated with rabbit antiserum (ie, anti-15mer) generated against the 15mer used for cloning E. Harlow and D. Lane, Antibodies, A Laboratory Manual. Cold Spring Harbor Laboratory, (1988)). Western analysis, using anti-PY, revealed, as expected, a 145-kD tyrosine phosphorylated doublet with an identical mobility in SDS gels to p145 (Figure 4(A), lanes 1&2 and 5&6). Pre-immune serum did not immunoprecipitate this or any other tyrosine phosphorylated protein (Figure 4(A), lanes 3&4). Moreover, anti-Shc immunoprecipitates of lysates precleared with anti-15mer no longer contained p145 (Figure 4(A), lane 8). Interestingly, anti-15mer immunoprecipitates from lysates of IL-3-stimulated B6SUtA1 cells consistently contained 50-55-kD and, occasionally, 75- and 97-kD tyrosine phosphorylated proteins (Figure 4(A), lane 6). The 50-55-kD protein was shown to be Shc by treating anti-15mer immunoprecipitates with Nethylmaleimide prior to SDS-PAGE to alter the mobility of the interfering IgH chain (M.R.

20

25

30

Block et al., Proc. Natl. Acad. Sci. U.S.A. 85, 7852 (1988)), and then carrying out Western analysis with anti-PY (Figure 4(B), upper panel) and anti-Shc antibodies (Figure 4(B), lower panel).

To examine whether the expression of p145 was restricted to hemopoietic cells, Northern blot analysis was carried out with polyA purified RNA from various murine tissues. A 5.0-kb p145 transcript was found to be expressed in bone marrow, lung, spleen, muscle, testes and kidney, suggesting the presence of this protein in many cell types (Figure 5).

Lastly, to determine if p145 was indeed a 5-ptase, lysates from B6SUtA1 cells were immunoprecipitated with anti-15mer, anti-Shc or normal rabbit serum (NRS) and the immunoprecipitates tested with various 5-ptase substrates (X. Zhang et al., Proc. Natl. Acad. Sci. U.S.A. 92,4853 (1995) and as described herein). As can be seen in Figure 6(A), anti-15mer, but not NRS, immunoprecipitates hydrolyzed [3H]Ins-1,3,4,5-P4 to [3H]Ins-1,3,4-P3. The product of the reaction was shown to be [3H]Ins-1,3,4-P₃ by incubation with recombinant inositol-polyphosphate-1- and 4-phosphatases, followed by the separation of the bisphosphate product on Dowex-formate (Zhang, X., et al., Proc.Natl.Acad.Sci.U.S.A. 92:4853-4856, 1995 and Jefferson, A.B. And Majerus, P.W. J. Biol. Chem. 270:9370-9377, 1955). In the presence of 3 mM EDTA, no hydrolysis of [3H]Ins-1,3,4,5-P₄ was observed, suggesting that this 5-ptase is Mg++ -dependent. Interestingly, no significant difference in activity was observed between anti-15mer immunoprecipitates from stimulated and unstimulated cells. Moreover, as one might expect, anti-Shc immunoprecipitates possessed 5-ptase activity, but only after IL-3-stimulation. In addition, anti-15mer, but not NRS, immunoprecipitates catalyzed the hydrolysis of PtdIns[32P]-3,4,5-P₃, as did recombinant 5-ptase II (Figure 6(B)). Once again there was no significant difference in activity between IL-3-stimulated and unstimulated cells and anti-Shc immunoprecipitates possessed 5-ptase activity only after cells were stimulated. This suggests that IL-3 affects only the localization of p145 and not its 5ptase activity. In studies with other 5-ptase substrates, anti-15mer immunoprecipitates did not hydrolyse Ins-1,4,5-P3 or PtdIns-4,5-P2. P145 5-ptase substrate specificity is therefore distinct from that of other 5-ptases such as 5-ptase II, OCRL 5-ptase and a novel Mg++-independent 5ptase (Zhang, X., et al., Proc.Natl.Acad.Sci.U.S.A. 92:4853-4856, 1995; Jefferson, A.B. And Majerus, P.W. J. Biol. Chem. 270:9370-9377, 1955; and Jackson, S.P. Et al., EMBO J. 14:4490-4500, 1995).

Of the 5-ptases cloned to date (X. Zhang et al., Proc. Natl. Acad. Sci. U.S.A. 92,4853 (1995)), p145 is the first to possess an SH2 domain and to be tyrosine phosphorylated. Thus, p145 may play an important role in cytokine mediated signalling. In this regard, Cullen et al just reported that Ins-1,3,4,5-P₄, which is rapidly elevated in stimulated cells (I.R. Batty et al., Biochem. J. 232, 211 (1985)), binds to and stimulates a member of the GAP1 family (P.J. Cullen et al., Nature 376, 527 (1995)). It is therefore conceivable that p145, through its association with Shc, regulates Ras activity by hydrolyzing RasGAP bound Ins-1,3,4,5-P₄. In

20

35

addition, with its multiple protein:protein interaction domains and its unique 5-ptase substrate specificity, p145 could play an important role in regulating Ca++-independent PKC activity (Toker, A., et al., J. Biol. Chem. 269:32358-32367, 1994), the emerging Akt/PKB pathway (Burgering, B.M. And Coffer, P.J., Nature 376:599-602, 1995) and other as yet uncharacterized PI-3-kinase stimulated cascades. In terms of its association with Shc, p145 may interact via its phosphorylated tyrosines with the SH2 of Shc, via its phosphorylated PTB recognition sequences with the PTB of Shc (as suggested by *in vitro* studies with the Shc-associated p145 in 3T3 cells (F.A. Norris and P.W. Majerus, J. Biol. Chem. 269, 8716 (1994)) and/or via its SH2 domain with Y³¹⁷ of Shc.

In summary, a tyrosine phosphorylated 145 kDa protein has been purified that associates with Shc in response to multiple cytokines from hemopoietic cells and shown it to be a novel, SH2-containing 5-ptase. Based on its properties it is suggested it be called SHIP for SH2-containing inositol-phosphatase.

EXAMPLE 2

15 Cloning of hSHIP cDNA

Duplicate nitrocellulose (Schleicher & Schuell, Keene, NH) plaque-lifts were prepared from approximately 1x106 pfu of a custom-made MO7e/MO7-ER \(\lambda\)gt11 cDNA library created from 10µg of poly-A RNA (Clontech, Palo Alto, CA). Phage DNA bound to these membranes was denatured and hybridized (1.5X SSPE, 1% SDS, 1% Blotto, 0.25mg/ml ssDNA) at 50°C for 18 hours with non-overlapping, [\lambda^{32}P]dCTP randomly labeled cDNA fragments corresponding to either 1.5 kb of the 5' - most region (including the SH2 domain) or 1.1 kb of the central region (including the 5-Ptase domain) of murine SHIP. Probed membranes were washed three times with 0.5X SSC, 0.5% SDS at 50°C for 30 minutes each. Membranes were exposed to Kodak X-Omat film (Rochester, NY) and plaques which hybridized with both probes were identified and the phage isolated. Thirteen cDNA inserts were removed from "positive" phage by EcoRI digestion, gel purified, and subcloned into pBluescript KS+ for further analysis. One full-length cDNA, 4926 nt in length, was further digested with either PstI or XhoI and re-subcloned into pBluescript KS+ for automated ABI/Taq Polymerase sequencing (NAPS Unit, University of British Columbia, Vancouver, Canada) using standard T7 and T3 oligoprimers. Regions not overlapped by restriction fragments were sequenced using specific nucleotide oligoprimers. The human SHIP CDNA sequence is set out in Figure 10 and in SEQ.ID.NO.12.

Having illustrated and described the principles of the invention in a preferred embodiment, it should be appreciated to those skilled in the art that the invention can be modified in arrangement and detail without departure from such principles. We claim all modifications coming within the scope of the following claims.

All publications, patents and patent applications referred to herein are incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT:
 - (A) NAME: Krystal, Gerald
 - (B) STREET: 601 West 10th Street
 - (C) CITY: Vancouver
 - (D) STATE: British Columbia
 - (E) COUNTRY: Canada
 - (F) POSTAL CODE: V52 1L3
- (ii) TITLE OF INVENTION: SH2-CONTAINING INOSITOL-PHOSPHATASE
- (iii) NUMBER OF SEQUENCES: 8
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: BERESKIN & PARR
 - (B) STREET: 40 KING STREET WEST
 - (C) CITY: TORONTO
 - (D) STATE: ONTARIO
 - (E) COUNTRY: CANADA
 - (F) ZIP: M5H 3Y2
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible

 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: PCT/CA96/00655
 - (B) FILING DATE: 27 SEPT 1996
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Kurdydyk, Linda M.
 - (B) REGISTRATION NUMBER: 34,971
 - (C) REFERENCE/DOCKET NUMBER: 7771-018
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 416-364-7311
 - (B) TELEFAX: 416-361-1398

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4040 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: murine
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: mSHIP
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 139..3693

	(xi)	SEÇ	UENC	E DE	SCRI	PTIC	N: S	EQ 1	D NO):1:	,					
CCCI	GGTA	LGG A	GCAC	CAGA	G GC	TTAA	TCTO	AGA	AGGC#	ACA	GGCC	GCAC	GT C	CTCAC	CCTAG	60
AGAG	GGCC	CT G	AACI	ACTI	T GC	TGGA	GTGI	ccc	TCCI	rggg	AGTO	GCTC	CT C	ACCC	CAGTCC	120
AGGA	(GACC	CA T	GCCI	GCC										ATC Ile 10		171
	TCC Ser	Lys														219
	CTT Leu															267
	CTG Leu 45															315
	GAT Asp															363
TTC Phe	ACG Thr	AAG Lys	CTG Leu	GAC Asp 80	CAG. Gln	CTC Leu	ATC Ile	GAC Asp	TTT Phe 85	TAC Tyr	AAG Lys	AAG Lys	GAA Glu	AAC Asn 90	ATG Met	411
	CTG Leu															459
	ATT Ile															507
	CTG Leu 125															555
	GAC Asp															603
	CTG Leu															651
	AGT Ser								Lys							699
AGC Ser	ACT Thr	CAG Gln 190	CTC Leu	CTC Leu	CTG Leu	GAT Asp	TCC Ser 195	GAC Asp	TTT Phe	TTG Leu	AAA Lys	ACG Thr 200	GGC Gly	TCC Ser	AGC Ser	747
AAC Asn	CTC Leu 205	CCT Pro	CAC His	CTG Leu	AAG Lys	AAG Lys 210	CTG Leu	ATG Met	TCA Ser	CTG Leu	CTC Leu 215	TGC Cys	AAG Lys	GAG Glu	CTC Leu	795
CAT His 220	GGG Gly	GAA Glu	GTC Val	ATC Ile	AGG Arg 225	Thr	CTG Leu	CCA Pro	TCC Ser	CTG Leu 230	Glu	TCT Ser	CTG Leu	CAG Gln	AGG Arg 235	843

TTG Leu	TTT Phe	GAC Asp	CAA Gln	CAG Gln 240	CTC Leu	TCC Ser	CCA Pro	GGC Gly	CTT Leu 245	CGC Arg	CCA Pro	CGA Arg	CCT Pro	CAG Gln 250	GTG Val	891
CCC Pro	GGA Gly	GAG Glu	GCC Ala 255	AGT Ser	CCC Pro	ATC Ile	ACC Thr	ATG Met 260	GTT Val	GCC Ala	AAA Lys	CTC Leu	AGC Ser 265	CAA Gln	TTG Leu	939
ACA Thr	AGT Ser	CTG Leu 270	CTG Leu	TCT Ser	TCC Ser	ATT Ile	GAA Glu 275	GAT Asp	AAG Lys	GTC Val	AAG Lys	TCC Ser 280	TTG Leu	CTG Leu	CAC His	987
GAG Glu	GGC Gly 285	TCA Ser	GAA Glu	TCT Ser	ACC Thr	AAC Asn 290	AGG Arg	CGT Arg	TCC Ser	CTT Leu	ATC Ile 295	CCT Pro	CCG Pro	GTC Val	ACC Thr	1035
TTT Phe 300	GAG Glu	GTG Val	AAG Lys	TCA Ser	GAG Glu 305	TCC Ser	CTG Leu	GGC Gly	ATT Ile	CCT Pro 310	CAG Gln	AAA Lys	ATG Met	CAT His	CTC Leu 315	1083
AAA Lys	GTG Val	GAC Asp	GTT Val	GAG Glu 320	TCT Ser	GGG Gly	AAA Lys	CTG Leu	ATC Ile 325	GTT Val	AAG Lys	AAG Lys	TCC Ser	AAG Lys 330	GAT Asp	1131
				AAG Lys												1179
AAG Lys	TCC Ser	CAG Gln 350	AAG Lys	TTT Phe	CTA Leu	AAC Asn	AAG Lys 355	TTG Leu	GTG Val	ATT Ile	TTG Leu	GTG Val 360	GAG Glu	ACG Thr	GAG Glu	1227
				CTG Leu												1275
AGA Arg 380	GAA Glu	GGC Gly	TTC Phe	TGT Cys	CAA Gln 385	CTC Leu	CTG Leu	CAG Gln	CAG Gln	ATG Met 390	AAG Lys	AAC Asn	AAG Lys	CAT His	TCG Ser 395	1323
GAG Glu	CAG Gln	CCA Pro	GAG Glu	CCT Pro 400	GAC Asp	ATG Met	ATC Ile	ACC Thr	ATC Ile 405	TTC Phe	ATT Ile	GGC Gly	ACT Thr	TGG Trp 410	AAC Asn	1371
ATG Met	GGT Gly	AAT Asn	GCA Ala 415	CCC Pro	CCT Pro	CCC Pro	AAG Lys	AAG Lys 420	ATC Ile	ACG Thr	TCC Ser	TGG Trp	TTT Phe 425	CTC Leu	TCC Ser	1419
AAG Lys	GGG Gly	CAG Gln 430	GGA Gly	AAG Lys	ACA Thr	CGG Arg	GAC Asp 435	GAC Asp	TCT Ser	GCT Ala	GAC Asp	TAC Tyr 440	ATC Ile	CCC Pro	CAT His	1467
GAC Asp	ATC Ile 445	TAT Tyr	GTG Val	ATT Ile	GGC Gly	ACC Thr 450	CAG Gln	GAG Glu	GAT Asp	CCC Pro	CTT Leu 455	GGA Gly	GAG Glu	AAG Lys	GAG Glu	1515
TGG Trp 460	Leu	GAG Glu	CTA Leu	CTC Leu	AGG Arg 465	CAC His	TCC Ser	CTG Leu	CAA Gln	GAA Glu 470	GTC Val	ACC Thr	AGC Ser	ATG Met	ACA Thr 475	1563
TTT Phe	AAA Lys	ACA Thr	GTT Val	GCC Ala 480	ATC Ile	CAC His	ACC Thr	CTC Leu	TGG Trp 485	AAC Asn	ATT Ile	CGC Arg	ATA Ile	GTG Val 490	GTG Val	1611
CTT Leu	GCC Ala	AAG Lys	CCA Pro	GAG Glu	CAT His	GAG Glu	AAT Asn	CGG	ATC Ile	AGC Ser	CAT His	ATC Ile	TGC Cys	ACT Thr	GAC Asp	1659

			495					500					50 5			
AAC Asn	GTG Val	AAG Lys 510	ACA Thr	GGC Gly	ATC Ile	GCC Ala	AAC Asn 515	ACC Thr	CTG Leu	GGA Gly	AAC Asn	AAG Lys 520	GGA Gly	GCA Ala	GTG Val	1707
GGA Gly	GTG Val 525	TCC Ser	TTC Phe	ATG Met	TTC Phe	AAT Asn 530	GGA Gly	ACC	TCC Ser	TTG Leu	GGG Gly 535	TTC	GTC Val	AAC Asn	AGC Ser	1755
CAC His 540	TTG Leu	ACT Thr	TCT Ser	GGA Gly	AGT Ser 545	GAA Glu	AAA Lys	AAG Lys	CTC Leu	AGG Arg 550	AGA Arg	AAT Asn	CAA Gln	AAC Asn	TAT Tyr 555	1803
ATG Met	AAC Asn	ATC Ile	CTG Leu	CGG Arg 560	TTC Phe	CTG Leu	GCC Ala	CTG Leu	GGA Gly 565	GAC Asp	AAG Lys	AAG Lys	CTA Leu	AGC Ser 570	CCA Pro	1851
TTT Phe	AAC Asn	ATC Ile	ACC Thr 575	CAC His	CGC Arg	TTC Phe	ACC Thr	CAC His 580	CTC Leu	TTC Phe	TGG Trp	CTT Leu	GGG Gly 585	GAT Asp	CTC Leu	1899
AAC Asn	TAC Tyr	CGC Arg 590	GTG Val	GAG Glu	CTG Leu	CCC Pro	ACT Thr 595	TGG Trp	GAG Glu	GCA Ala	GAG Glu	GCC Ala 600	ATC Ile	ATC Ile	CAG Gln	1947
AAG Lys	ATC Ile 605	AAG Lys	CAA Gln	CAG Gln	CAG Gln	TAT Tyr 610	TCA Ser	GAC Asp	CTT Leu	CTG Leu	GCC Ala 615	CAC His	GAC Asp	CAA Gln	CTG Leu	1995
CTC Leu 620	CTG Leu	GAG Glu	AGG Arg	AAG Lys	GAC Asp 625	CAG Gln	AAG Lys	GTC Val	TTC Phe	CTG Leu 630	CAC His	TTT Phe	GAG Glu	GAG Glu	GAA Glu 635	2043
GAG Glu	ATC Ile	ACC Thr	TTC Phe	GCC Ala 640	CCC Pro	ACC Thr	TAT Tyr	CGA Arg	TTT Phe 645	GAA Glu	AGA Arg	CTG Leu	ACC Thr	CGG Arg 650	GAC Asp	2091
AA G Lys	TAT Tyr	GCA Ala	TAC Tyr 655	ACG Thr	AAG Lys	CAG Gln	AAA Lys	GCA Ala 660	ACA Thr	GGG Gly	ATG Met	AAG Lys	TAC Tyr 665	AAC Asn	TTG Leu	2139
					CGA Arg											2187
GTG Val	GTC Val 685	TGT Cys	CAG Gln	TCC Ser	TAT Tyr	GGC Gly 690	AGT Ser	ACC Thr	AGT Ser	GAC Asp	ATC Ile 695	ATG Met	ACG Thr	AGT Ser	GAC Asp	2235
CAC His 700	AGC Ser	CCT Pro	GTC Val	TTT Phe	GCC Ala 705	ACG Thr	TTT Phe	GAA Glu	GCA Ala	GGA Gly 710	GTC Val	ACA Thr	TCT Ser	CAA Gln	TTC Phe 715	2283
GTC Val	TCC Ser	AAG Lys	AAT Asn	GGT Gly 720	CCT Pro	GGC Gly	ACT Thr	GTA Val	GAT Asp 725	AGC Ser	CAA Gln	GGG Gly	CAG Gln	ATC Ile 730	GAG Glu	2331
TTT Phe	CTT Leu	GCA Ala	TGC Cys 735	TAC Tyr	GCC Ala	ACA Thr	CTG Leu	AAG Lys 740	ACC Thr	AAG Lys	TCC Ser	CAG Gln	ACT Thr 745	AAG Lys	TTC Phe	2379
TAC Tyr	TTG Leu	GAG Glu 750	TTC Phe	CAC His	TCA Ser	AGC Ser	TGC Cys 755	TTA Leu	GAG Glu	AGT Ser	TTT Phe	GTC Val 760	AAG Lys	AGT Ser	CAG Gln	2427

				GAG Glu									2	2475	
				AAG Lys 785									2	2523	
				ATC Ile									2	2571	
				GGC Gly									2	2619	
				TAC Tyr									2	2667	
				GAG Glu									:	2715	
				GAC Asp 865									:	2763	
				AAG Lys				-	-			 	:	2811	
				AGG Arg									:	2859	
				AAC Asn									:	2907	
-				ACC Thr									:	2955	
				CCC Pro 945									•	3003	
				CCT Pro										3051	
			Thr	ACC Thr			Pro							3099	
		Gly		CTG Leu		Val					Gln			3147	
	 Leu			CCC Pro	Met					Leu				3195	
												CCC		3243	

1020					1025					1030)				1035	
AAG Lys	ATG Met	CTG Leu	CGG Arg	AAG Lys 1040	Glu	CCC Pro	CCG Pro	CCC Pro	TGT Cys 1045	Pro	GAC Asp	CCA Pro	GGA Gly	ATC Ile 1050	Ser	3291
TCA Ser	CCC Pro	AGC Ser	ATC Ile 1055	Val	CTC Leu	CCC Pro	AAA Lys	GCC Ala 1060	Gln	GAG Glu	GTG Val	GAG Glu	AGT Ser 1065	Val	AAG Lys	3339
GGG Gly	ACA Thr	AGC Ser 1070	Lys	CAG Gln	GCC Ala	CCT Pro	GTG Val 1075	Pro	GTC Val	CTT Leu	GGC Gly	CCC Pro 1080	Thr	CCC Pro	CGG Arg	3387
ATC Ile	CGC Arg 1085	Ser	TTT Phe	ACC Thr	TGT Cys	TCT Ser 1090	Ser	TCT Ser	GCT Ala	GAG Glu	GGC Gly 1095	Arg	ATG Met	ACC Thr	AGT Ser	3435
GGG Gly 1100	Asp	AAG Lys	AGC Ser	CAA Gln	GGG Gly 1105	Lys	CCC Pro	AAG Lys	GCC Ala	TCA Ser 1110	GCC Ala	AGT Ser	TCC Ser	CAA Gln	GCC Ala 1115	3483
CCA Pro	GTG Val	CCA Pro	GTC Val	AAG Lys 1120	Arg	CCT Pro	GTC Val	AAG Lys	CCT Pro 112	Ser	AGG Arg	TCA Ser	GAA Glu	ATG Met 1130	Ser	3531
CAG Gln	CAG Gln	ACA Thr	ACA Thr 113	Pro	ATC Ile	CCA Pro	GCT Ala	CCA Pro 114	Arg	CCA Pro	CCC Pro	CTG Leu	CCA Pro 114	Val	AAG Lys	3579
AGT Ser	CCT Pro	GCT Ala 115	Val	CTG Leu	CAG Gln	CTG Leu	CAA Gln 115	His	TCC Ser	AAA Lys	GGC Gly	AGA Arg 116	Asp	TAC Tyr	CGT Arg	3627
GAC Asp	AAC Asn 116	Thr	GAA Glu	CTC Leu	CCC Pro	CAC His 117	His	GGC Gly	AAG Lys	CAC His	CGC Arg 117	Gln	GAG Glu	GAG Glu	GGG Gly	3675
CTG Leu 1180	Leu	GGC Gly	AGG Arg	ACT Thr	GCC Ala 118		CAGT	GAG (CTGC'	TGGT	GA T	CGGA	GCCT	G		3723
GAG	BAAC	AGC 2	ACAA	AGCA	GA C	CTGC	GACC'	T CT	CTCA	GGAT	GCC'	TCTC	TCA (GGAT	GCCTCT	3783
TGG	AGGA	CCT (CCTG	CTAG	CT C'	TTCT	TGCC	T AG	CTTC.	AAGT	CCC.	AGGC'	TGT (GTAT'	TTTTT	3843
TCA	GGAA.	ACG	GCCT	CACT	TC T	CTGT	GGTC	C AA	GAAG	TGTG	CTG	CTGG	CTG	CCAC	ACTGTG	3903
CGG	CAGA'	TGC	TAAA	GCTG	GA T	GACA	AACG	C AC	GCCA	TACA	GAC.	AGCA	GAC .	AGCG(GCACTG	3963
GGT	CTCA	GAA	CTTG	GATT	CC T	GGGC	CTTC	т тс	CAGT	CGCC	GTT	TTAA	AGA .	AAGG.	AACTAA	4023
CGG	AGCT	GCT	CATC	CGA												4040

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1185 amino acids
 (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Val Pro Gly Trp Asn His Gly Asn Ile Thr Arg Ser Lys Ala Glu Glu Leu Leu Ser Arg Ala Gly Lys Asp Gly Ser Phe Leu Val Arg Ala Ser Glu Ser Ile Pro Arg Ala Cys Ala Leu Cys Val Leu Phe Arg Asn Cys Val Tyr Thr Tyr Arg Ile Leu Pro Asn Glu Asp Asp Lys Phe Thr Val Gln Ala Ser Glu Gly Val Pro Met Arg Phe Phe Thr Lys Leu Asp Gln Leu Ile Asp Phe Tyr Lys Lys Glu Asn Met Gly Leu Val Thr His Leu Gln Tyr Pro Val Pro Leu Glu Glu Glu Asp Ala Ile Asp Glu Ala Glu Glu Asp Thr Glu Ser Val Met Ser Pro Pro Glu Leu Pro Pro Arg Asn Ile Pro Met Ser Ala Gly Pro Ser Glu Ala Lys Asp Leu Pro Leu Ala Thr Glu Asn Pro Arg Ala Pro Glu Val Thr Arg Leu Ser Leu Ser Glu Thr Leu Phe Gln Arg Leu Gln Ser Met Asp Thr Ser Gly Leu Pro 165 170 Glu Glu His Leu Lys Ala Ile Gln Asp Tyr Leu Ser Thr Gln Leu Leu Leu Asp Ser Asp Phe Leu Lys Thr Gly Ser Ser Asn Leu Pro His Leu Lys Lys Leu Met Ser Leu Leu Cys Lys Glu Leu His Gly Glu Val Ile 215 Arg Thr Leu Pro Ser Leu Glu Ser Leu Gln Arg Leu Phe Asp Gln Gln 230 235 Leu Ser Pro Gly Leu Arg Pro Arg Pro Gln Val Pro Gly Glu Ala Ser 245 250 Pro Ile Thr Met Val Ala Lys Leu Ser Gln Leu Thr Ser Leu Leu Ser Ser Ile Glu Asp Lys Val Lys Ser Leu Leu His Glu Gly Ser Glu Ser Thr Asn Arg Arg Ser Leu Ile Pro Pro Val Thr Phe Glu Val Lys Ser Glu Ser Leu Gly Ile Pro Gln Lys Met His Leu Lys Val Asp Val Glu Ser Gly Lys Leu Ile Val Lys Lys Ser Lys Asp Gly Ser Glu Asp Lys 325 330 Phe Tyr Ser His Lys Lys Ile Leu Gln Leu Ile Lys Ser Gln Lys Phe 345

Leu Asn Lys Leu Val Ile Leu Val Glu Thr Glu Lys Glu Lys Ile Leu Arg Lys Glu Tyr Val Phe Ala Asp Ser Lys Lys Arg Glu Gly Phe Cys 375 Gln Leu Leu Gln Gln Met Lys Asn Lys His Ser Glu Gln Pro Glu Pro Asp Met Ile Thr Ile Phe Ile Gly Thr Trp Asn Met Gly Asn Ala Pro Pro Pro Lys Lys Ile Thr Ser Trp Phe Leu Ser Lys Gly Gln Gly Lys 425 Thr Arg Asp Asp Ser Ala Asp Tyr Ile Pro His Asp Ile Tyr Val Ile Gly Thr Gln Glu Asp Pro Leu Gly Glu Lys Glu Trp Leu Glu Leu Leu Arg His Ser Leu Gln Glu Val Thr Ser Met Thr Phe Lys Thr Val Ala Ile His Thr Leu Trp Asn Ile Arg Ile Val Val Leu Ala Lys Pro Glu 490 His Glu Asn Arg Ile Ser His Ile Cys Thr Asp Asn Val Lys Thr Gly Ile Ala Asn Thr Leu Gly Asn Lys Gly Ala Val Gly Val Ser Phe Met Phe Asn Gly Thr Ser Leu Gly Phe Val Asn Ser His Leu Thr Ser Gly Ser Glu Lys Lys Leu Arg Arg Asn Gln Asn Tyr Met Asn Ile Leu Arg Phe Leu Ala Leu Gly Asp Lys Lys Leu Ser Pro Phe Asn Ile Thr His 570 Arg Phe Thr His Leu Phe Trp Leu Gly Asp Leu Asn Tyr Arg Val Glu 585 Leu Pro Thr Trp Glu Ala Glu Ala Ile Ile Gln Lys Ile Lys Gln Gln Gln Tyr Ser Asp Leu Leu Ala His Asp Gln Leu Leu Glu Arg Lys Asp Gln Lys Val Phe Leu His Phe Glu Glu Glu Glu Ile Thr Phe Ala 630 Pro Thr Tyr Arg Phe Glu Arg Leu Thr Arg Asp Lys Tyr Ala Tyr Thr 650 Lys Gln Lys Ala Thr Gly Met Lys Tyr Asn Leu Pro Ser Trp Cys Asp Arg Val Leu Trp Lys Ser Tyr Pro Leu Val His Val Val Cys Gln Ser 680 Tyr Gly Ser Thr Ser Asp Ile Met Thr Ser Asp His Ser Pro Val Phe

٠.

Ala Thr Phe Glu Ala Gly Val Thr Ser Gln Phe Val Ser Lys Asn Gly Pro Gly Thr Val Asp Ser Gln Gly Gln Ile Glu Phe Leu Ala Cys Tyr 730 Ala Thr Leu Lys Thr Lys Ser Gln Thr Lys Phe Tyr Leu Glu Phe His Ser Ser Cys Leu Glu Ser Phe Val Lys Ser Gln Glu Gly Glu Asn Glu Glu Gly Ser Glu Gly Glu Leu Val Val Arg Phe Gly Glu Thr Leu Pro 775 Lys Leu Lys Pro Ile Ile Ser Asp Pro Glu Tyr Leu Leu Asp Gln His Ile Leu Ile Ser Ile Lys Ser Ser Asp Ser Asp Glu Ser Tyr Gly Glu 810 Gly Cys Ile Ala Leu Arg Leu Glu Thr Thr Glu Ala Gln His Pro Ile Tyr Thr Pro Leu Thr His His Gly Glu Met Thr Gly His Phe Arg Gly 840 Glu Ile Lys Leu Gln Thr Ser Gln Gly Lys Met Arg Glu Lys Leu Tyr 855 Asp Phe Val Lys Thr Glu Arg Asp Glu Ser Ser Gly Met Lys Cys Leu Lys Asn Leu Thr Ser His Asp Pro Met Arg Gln Trp Glu Pro Ser Gly 890 Arg Val Pro Ala Cys Gly Val Ser Ser Leu Asn Glu Met Ile Asn Pro 905 Asn Tyr Ile Gly Met Gly Pro Phe Gly Gln Pro Leu His Gly Lys Ser Thr Leu Ser Pro Asp Gln Gln Leu Thr Ala Trp Ser Tyr Asp Gln Leu Pro Lys Asp Ser Ser Leu Gly Pro Gly Arg Gly Glu Gly Pro Pro Thr Pro Pro Ser Gln Pro Pro Leu Ser Pro Lys Lys Phe Ser Ser Thr Thr Asn Arg Gly Pro Cys Pro Arg Val Gln Glu Ala Arg Pro Gly Asp Leu Gly Lys Val Glu Ala Leu Leu Gln Glu Asp Leu Leu Thr Lys 1000 Pro Glu Met Phe Glu Asn Pro Leu Tyr Gly Ser Val Ser Ser Phe Pro Lys Leu Val Pro Arg Lys Glu Gln Glu Ser Pro Lys Met Leu Arg Lys 1030 1035 Glu Pro Pro Pro Cys Pro Asp Pro Gly Ile Ser Ser Pro Ser Ile Val 1045 1050 1055

Leu	Pro	Lys	Ala 1060		Glu	Val	Glu	Ser 1065		Lys	Gly	Thr	Ser 1070		Gln		
Ala	Pro	Val 1075		Val	Leu	Gly	Pro 1080		Pro	Arg	Ile	Arg 1085		Phe	Thr	•	
Cys	Ser 1090		Ser	Ala	Glu	Gly 1095		Met	Thr	Ser	Gly 1100		Lys	Ser	Gln		
Gly 1105		Pro	Lys	Ala	Ser 1110		Ser	Ser	GÌn	Ala 1115		Val	Pro	Val	Lys 1120		
Arg	Pro	Val	Lys	Pro 1125	Ser	Arg	Ser	Glu	Met 1130		Gln	Gln	Thr	Thr 1135	_		
Ile	Pro	Ala	Pro 1140	_	Pro	Pro	Leu	Pro 1145		Lys	Ser	Pro	Ala 1150		Leu		
Gln	Leu	Gln 1155		Ser	Lys	Gly	Arg 1160		Tyr	Arg	Asp	Asn 1165		Glu	Leu		
Pro	His 1170		Gly	Lys	His	Arg 1175		Glu	Glu	Gly	Leu 1180		Gly	Arg	Thr		
Ala 1185	5																
(2)	INF	ORMA!	rion	FOR	SEQ	ID N	10:3	:									
	<i>(</i> i) SE(OUENC	TE CE	IARAC	TER	STI	3S :									
	, 4	(1	A) LE	ENGTH	1: 30	31 h	oase	pair	cs								
					nucl DEDNE												
					OGY:			316									
	(ii) MO	LECUI	LE TY	PE:	DNA	(gei	nomi	=)								
	(vi	(2	A) OF	RGAN:	OURCE ISM: N: Sh	Homo			S	•							
	(ix) FE	ATURI	ᡓ:													
٠		()	A) NA	AME/I	KEY: ION:		.150	3									
	(vi	\ SE	OHEN	רם פר	ESCR	[ኮ ጥፒ (ON:	SEO '	ID N	0:3:							
GCG	GTAA	CCT .	AAGC'	rggcz	AG TO	3GCG'	rgat(C CG	GCAC(CAAA	TCG	GCCC	GCG (FTGC	GTGCGG		60
AGA	CTCC	ATG .	AGGC	CCTG	GA C							GGC Gly					111
				Glu	GGG Gly				Gly					Thr			159
				15					20					25			
CAC His	GGG Gly	AGC Ser	TTT Phe 30	GTC Val	AAT Asn	AAG Lys	CCC Pro	ACG Thr 35	CGG Arg	GGC Gly	TGG Trp	CTG Leu	CAT His 40	CCC Pro	AAC Asn		207
GAC Asp	AAA Lys	Val	Met	GGA Gly	CCC Pro	GGG Gly	Val	Ser	TAC Tyr	TTG Leu	GTT Val	Arg	Tyr	ATG Met	GGT Gly		255
		45					50					55					

TGT Cys	GTG Val 60	GAG Glu	GTC Val	CTC Leu	CAG Gln	TCA Ser 65	ATG Met	CGT Arg	GCC Ala	CTG Leu	GAC Asp 70	TTC Phe	AAC Asn	ACC Thr	CGG Arg	303
ACT Thr 75	CAG Gln	GTC Val	ACC Thr	AGG Arg	GAG Glu 80	GCC Ala	ATC Ile	AGT Ser	CTG Leu	GTG Val 85	TGT Cys	GAG Glu	GCT Ala	GTG Val	CCG Pro 90	351
GGT Gly	GCT Ala	AAG Lys	GGG Gly	GCG Ala 95	ACA Thr	AGG Arg	AGG Arg	AGA Arg	AAG Lys 100	CCC Pro	TGT Cys	AGC Ser	CGC Arg	CCG Pro 105	CTC Leu	399
AGC Ser	TCT Ser	ATC Ile	CTG Leu 110	GGG Gly	AGG Arg	AGT Ser	AAC Asn	CTG Leu 115	AAA Lys	TTT Phe	GCT Ala	GGA Gly	ATG Met 120	CCA Pro	ATC Ile	447
ACT Thr	CTC Leu	ACC Thr 125	GTC Val	TCC Ser	ACC Thr	AGC Ser	AGC Ser 130	CTC Leu	AAC Asn	CTC Leu	ATG Met	GCC Ala 135	GCA Ala	GAC Asp	TGC Cys	495
AAA Lys	CAG Gln 140	ATC Ile	ATC Ile	GCC Ala	AAC Asn	CAC His 145	CAC His	ATG Met	CAA Gln	TCT Ser	ATC Ile 150	TCA Ser	TTT Phe	GCA Ala	TCC Ser	543
GGC Gly 155	GGG Gly	GAT Asp	CCG Pro	GAC Asp	ACA Thr 160	GCC Ala	GAG Glu	TAT Tyr	GTC Val	GCC Ala 165	TAT Tyr	GTT Val	GCC Ala	AAA Lys	GAC Asp 170	591
CCT Pro	GTG Val	AAT Asn	CAG Gln	AGA Arg 175	GCC Ala	TGC Cys	CAC His	ATT Ile	CTG Leu 180	GAG Glu	TGT Cys	CCC Pro	GAA Glu	GGG Gly 185	CTT Leu	639
GCC Ala	CAG Gln	GAT Asp	GTC Val 190	ATC Ile	AGC Ser	ACC Thr	ATT Ile	GGC Gly 195	CAG Gln	GCC Ala	TTC Phe	GAG Glu	TTG Leu 200	CGC Arg	TTC Phe	687
AAA Lys	CAA Gln	TAC Tyr 205	CTC Leu	AGG Arg	AAC Asn	CCA Pro	CCC Pro 210	AAA Lys	CTG Leu	GTC Val	ACC Thr	CCT Pro 215	CAT His	GAC Asp	AGG Arg	735
ATG Met	GCT Ala 220	GGC Gly	TTT Phe	GAT Asp	GGC Gly	TCA Ser 225	GCA Ala	TGG Trp	GAT Asp	GAG Glu	GAG Glu 230	GAG Glu	GAA Glu	GAG Glu	CCA Pro	783
CCT Pro 235	GAC Asp	CAT His	CAG Gln	TAC Tyr	TAT Tyr 240	AAT Asn	GAC Asp	TTC Phe	CCG Pro	GGG Gly 245	AAG Lys	GAA Glu	CCC Pro	CCC Pro	TTG Leu 250	831
GGG Gly	GGG Gly	GTG Val	GTA Val	GAC Asp 255	ATG Met	AGG Arg	CTT Leu	CGG Arg	GAA Glu 260	GGA Gly	GCC Ala	GCT Ala	CCA Pro	GGG Gly 265	GCT Ala	879
GCT Ala	CGA Arg	CCC Pro	ACT Thr 270	GCA Ala	CCC Pro	AAT Asn	GCC Ala	CAG Gln 275	ACC Thr	CCC Pro	AGC Ser	CAC His	TTG Leu 280	GGA Gly	GCT Ala	927
ACA Thr	TTG Leu	CCT Pro 285	GTA Val	GGA Gly	CAG Gln	CCT Pro	GTT Val 290	GGG Gly	GGA Gly	GAT Asp	CCA Pro	GAA Glu 295	GTC Val	CGC Arg	AAA Lys	975
CAG Gln	ATG Met 300	Pro	CCT Pro	CCA Pro	CCA Pro	CCC Pro 305	TGT Cys	CCA Pro	GGC Gly	AGA Arg	GAG Glu 310	CTT Leu	TTT Phe	GAT Asp	GAT Asp	1023
CCC Pro	TCC Ser	ТАТ Туг	GTC Val	AAC Asn	GTC Val	CAG Gln	AAC Asn	CTA Leu	GAC Asp	AAG Lys	GCC Ala	CGG Arg	CAA Gln	GCA Ala	GTG Val	1071

315	320	. 325		330
GGT GGT GCT GGG CCC Gly Gly Ala Gly Pro 335	CCC AAT CCT Pro Asn Pro	GCT ATC AAT Ala Ile Asn 340	GGC AGT GCA CCC Gly Ser Ala Pro 345	CGG 1119 Arg
GAC CTG TTT GAC ATG Asp Leu Phe Asp Met 350	AAG CCC TTC Lys Pro Phe	GAA GAT GCT Glu Asp Ala 355	CTT CGG GTG CCT Leu Arg Val Pro 360	CCA 1167 Pro
CCT CCC CAG TCG GTG Pro Pro Gln Ser Val 365	TCC ATG GCT Ser Met Ala 370	Glu Gln Leu	CGA GGG GAG CCC Arg Gly Glu Pro 375	TGG 1215 Trp
TTC CAT GGG AAG CTG Phe His Gly Lys Leu 380	AGC CGG CGG Ser Arg Arg 385	GAG GCT GAG Glu Ala Glu	GCA CTG CTG CAG Ala Leu Leu Gln 390	CTC 1263 Leu
AAT GGG GAC TTC TTG Asn Gly Asp Phe Leu 395	GTA CGG GAG Val Arg Glu 400	AGC ACG ACC Ser Thr Thr 405	ACA CCT GGC CAG Thr Pro Gly Glr	TAT 1311 Tyr 410
GTG CTC ACT GGC TTG Val Leu Thr Gly Leu 415	Gln Ser Gly	CAG CCT AAG Gln Pro Lys 420	CAT TTG CTA CTG His Leu Leu Leu 425	Val
GAC CCT GAG GGT GTG Asp Pro Glu Gly Val 430	GTT CGG ACT Val Arg Thr	AAG GAT CAC Lys Asp His 435	CGC TTT GAA AGT Arg Phe Glu Ser 440	GTC 1407
AGT CAC CTT ATC AGC Ser His Leu Ile Ser 445	TAC CAC ATG Tyr His Met 450	Asp Asn His	TTG CCC ATC ATC Leu Pro Ile Ile 455	TCT 1455
GCG GGC AGC GAA CTG Ala Gly Ser Glu Leu 460	G TGT CTA CAG I Cys Leu Gln 465	CAA CCT GTG Gln Pro Val	GAG CGG AAA CTC Glu Arg Lys Leu 470	TGA 1503
TCTGCCCTAG CGCTCTCT	TC CAGAAGATG	CCTCCAATCC	TTTCCACCCT ATTC	CCTAAC 1563
TCTCGGGACC TCGTTTGG	GA GTGTTCTGT	G GGCTTGGCCT	TGTGTCAGAG CTG	GAGTAG 1623
CATGGACTCT GGGTTTCA	TA TCCAGCTGA	G TGAGAGGGTT	TGAGTCAAAA GCC	rgggtga 1683
GAATCCTGCC, TCTCCCCA	AAA CATTAATCA	C CAAAGTATTA	ATGTACAGAG TGG	CCCTCA 1743
CCTGGGCCTT TCCTGTGC	CA ACCTGATGO	C CCTTCCCCAA	GAAGGTGAGT GCT	TGTCATG 1803
GAAAATGTCC TGTGGTGA	ACA GGCCCAGTG	G AACAGTCACC	CTTCTGGGCA AGGC	GGGAACA 1863
AATCACACCT CTGGGCTT	rca gggtatccc	CA GACCCCTCTC	AACACCCGCC CCC	CCCATGT 1923
TTAAACTTTG TGCCTTTC	GAC CATCTCTTA	G GTCTAATGAT	ATTTTATGCA AAC	AGTTCTT 1983
GGACCCCTGA ATTCTTC	AAT GACAGGGAT	rg ccaacacctt	CTTGGCTTCT GGG	ACCTGTG 2043
TTCTTGCTGA GCACCCT	CTC CGGTTTGGC	ET TGGGATAACA	GAGGCAGGAG TGG	CAGCTGT 2103
CCCCTCTCCC TGGGGAT	ATG CAACCCTTA	AG AGATTGCCCC	AGAGCCCCAC TCC	CGGCCAG 2163
GCGGGAGATG GACCCCT	CCC TTGCTCAG	rg cctcctggcc	GGGGCCCTC ACC	CCAAGGG 2223
GTCTGTATAT ACATTTC	ATA AGGCCTGC	CC TCCCATGTTG	CATGCCTATG TAC	TCTGCGC 2283
CAAAGTGCAG CCCTTCC	TCC TGAAGCCT	CT GCCCTGCCTC	CCTTTCTGGG AGG	GCGGGGT 2343

GGGGGTGACT	GAATTTGGGC	CTCTTGTACA	GTTAACTCTC	CCAGGTGGAT	TTTGTGGAGG	2403
TGAGAAAAGG	GGCATTGAGA	CTATAAAGCA	GTAGACAATC	CCCACATACC	ATCTGTAGAG	2463
TTGGAACTGC	ATTCTTTTAA	AGTTTTATAT	GCATATATTT	TAGGGCTGCT	AGACTTACTT	2523
TCCTATTTTC	TTTTCCATTG	CTTATTCTTG	AGCACAAAAT	GATAATCAAT	TATTACATTT	. 2583
ATACATCACC	TTTTTGACTT	TTCCAAGCCC	TTTTACAGCT	CTTGGCATTT	TCCTCGCCTA	2643
GGCCTGTGAG	GTAACTGGGA	TCGCACCTTT	TATACCAGAG	ACCTGAGGCA	GATGAAATTT	2703
ATTTCCATCT	AGGACTAGAA	AAACTTGGGT	CTCTTACCGC	GAGACTGAGA	GGCAGAAGTC	2763
AGCCCGAATG	CCTGTCAGTT	TCATGGAGGG	GAAACGCAAA	ACCTGCAGTT	CCTGAGTACC	2823
TTCTACAGGC	CCGGCCCAGC	CTAGGCCCGG	GGTGGCCACA	CCACAGCAAG	CCGGCCCCCC	2883
CTCTTTTGGC	CTTGTGGATA	AGGGAGAGTT	GACCGTTTTC	ATCCTGGCCT	CCTTTTGCTG	2943
TTTGGATGTT	TCCACGGGTC	TCACTTATAC	CAAAGGGAAA	ACTCTTCATT	AAAGTCCCGT	3003
ATTTCTTCTA	АААААААА	ААААААА				3031

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 474 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Asn Lys Leu Ser Gly Gly Gly Gly Arg Arg Thr Arg Val Glu Gly

Gly Gln Leu Gly Gly Glu Glu Trp Thr Arg His Gly Ser Phe Val Asn

Lys Pro Thr Arg Gly Trp Leu His Pro Asn Asp Lys Val Met Gly Pro

Gly Val Ser Tyr Leu Val Arg Tyr Met Gly Cys Val Glu Val Leu Gln

Ser Met Arg Ala Leu Asp Phe Asn Thr Arg Thr Gln Val Thr Arg Glu

Ala Ile Ser Leu Val Cys Glu Ala Val Pro Gly Ala Lys Gly Ala Thr

Arg Arg Arg Lys Pro Cys Ser Arg Pro Leu Ser Ser Ile Leu Gly Arg

Ser Asn Leu Lys Phe Ala Gly Met Pro Ile Thr Leu Thr Val Ser Thr

Ser Ser Leu Asn Leu Met Ala Ala Asp Cys Lys Gln Ile Ile Ala Asn

His His Met Gln Ser Ile Ser Phe Ala Ser Gly Gly Asp Pro Asp Thr 150 155 145

Ala Glu Tyr Val Ala Tyr Val Ala Lys Asp Pro Val Asn Gln Arg Ala Cys His Ile Leu Glu Cys Pro Glu Gly Leu Ala Gln Asp Val Ile Ser 180 Thr Ile Gly Gln Ala Phe Glu Leu Arg Phe Lys Gln Tyr Leu Arg Asn Pro Pro Lys Leu Val Thr Pro His Asp Arg Met Ala Gly Phe Asp Gly Ser Ala Trp Asp Glu Glu Glu Glu Pro Pro Asp His Gln Tyr Tyr 225 235 Asn Asp Phe Pro Gly Lys Glu Pro Pro Leu Gly Gly Val Val Asp Met 250 Arg Leu Arg Glu Gly Ala Ala Pro Gly Ala Ala Arg Pro Thr Ala Pro Asn Ala Gln Thr Pro Ser His Leu Gly Ala Thr Leu Pro Val Gly Gln 280 Pro Val Gly Gly Asp Pro Glu Val Arg Lys Gln Met Pro Pro Pro Pro 295 Pro Cys Pro Gly Arg Glu Leu Phe Asp Asp Pro Ser Tyr Val Asn Val 310 305 Gln Asn Leu Asp Lys Ala Arg Gln Ala Val Gly Gly Ala Gly Pro Pro 330 Asn Pro Ala Ile Asn Gly Ser Ala Pro Arg Asp Leu Phe Asp Met Lys 345 Pro Phe Glu Asp Ala Leu Arg Val Pro Pro Pro Pro Gln Ser Val Ser Met Ala Glu Gln Leu Arg Gly Glu Pro Trp Phe His Gly Lys Leu Ser 380 Arg Arg Glu Ala Glu Ala Leu Leu Gln Leu Asn Gly Asp Phe Leu Val 385 390 395 Arg Glu Ser Thr Thr Pro Gly Gln Tyr Val Leu Thr Gly Leu Gln 405 410 Ser Gly Gln Pro Lys His Leu Leu Leu Val Asp Pro Glu Gly Val Val 425 Arg Thr Lys Asp His Arg Phe Glu Ser Val Ser His Leu Ile Ser Tyr His Met Asp Asn His Leu Pro Ile Ile Ser Ala Gly Ser Glu Leu Cys Leu Gln Gln Pro Val Glu Arg Lys Leu 465 470

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1109 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: mRNA

(vi) ORIGINAL SOURCE:
 (A) ORGANISM: Homo sapiens
 (B) STRAIN: GRB2

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 79..732

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

	, ,,,,		, 0				J	,	LD IV							
GCC	GTGA	LAT 1	rcggc	GGC1	C AC	GCCC	CCT	CC1	rccci	rtcc	CCC	rgcti	rca (GCT	CTGAG	60
CACT	ODAD?	CAG C	CGCTC	CAGA	ATG Met 1	GAA Glu	GCC Ala	ATC Ile	GCC Ala 5	AAA Lys	TAT Tyr	GAC Asp	TTC Phe	AAA Lys 10	GCT Ala	111
ACT Thr	GCA Ala	GAC Asp	GAC Asp 15	GAG Glu	CTG Leu	AGC Ser	TTC Phe	AAA Lys 20	AGG Arg	GGG Gly	GAC Asp	ATC Ile	CTC Leu 25	AAG Lys	GTT Val	159
TTG Leu	AAC Asn	GAA Glu 30	GAA Glu	TGT Cys	GAT Asp	CAG Gln	AAC Asn 35	TGG Trp	TAC Tyr	AAG Lys	GCA Ala	GAG Glu 40	CTT Leu	AAT Asn	GGA Gly	207
AAA Lys	GAC Asp 45	GGC Gly	TTC Phe	ATT Ile	CCC Pro	AAG Lys 50	AAC Asn	TAC Tyr	ATA Ile	GAA Glu	ATG Met 55	AAA Lys	CCA Pro	CAT His	CCG Pro	255
TGG Trp 60	TTT Phe	TTT Phe	GGC Gly	AAA Lys	ATC Ile 65	CCC Pro	AGA Arg	GCC Ala	AAG Lys	GCA Ala 70	GAA Glu	GAA Glu	ATG Met	CTT Leu	AGC Ser 75	303
AAA Lys	CAG Gln	CGG Arg	CAC His	GAT Asp 80	GGG Gly	GCC Ala	TTT Phe	CTT Leu	ATC Ile 85	CGA Arg	GAG Glu	AGT Ser	GAG Glu	AGC Ser 90	GCT Ala	351
CCT Pro	GGG Gly	GAC Asp	TTC Phe 95	TCC Ser	CTC Leu	TCT Ser	GTC Val	AAG Lys 100	TTT Phe	GGA Gly	AAC Asn	GAT Asp	GTG Val 105	CAG Gln	CAC His	399
TTC Phe	AAG Lys	GTG Val 110	CTC Leu	CGA Arg	GAT Asp	GGA Gly	GCC Ala 115	GGG Gly	AAG Lys	TAC Tyr	TTC Phe	CTC Leu 120	TGG Trp	GTG Val	GTG Val	447
AAG Lys	TTC Phe 125	AAT Asn	TCT Ser	TTG Leu	AAT Asn	GAG Glu 130	CTG Leu	GTG Val	GAT Asp	TAT Tyr	CAC His 135	AGA Arg	TCT Ser	ACA Thr	TCT Ser	495
GTC Val 140	TCC Ser	AGA Arg	AAC Asn	CAG Gln	CAG Gln 145	ATA Ile	TTC Phe	CTG Leu	CGG Arg	GAC Asp 150	ATA Ile	GAA Glu	CAG Gln	GTG Val	CCA Pro 155	543
CAG Gln	CAG Gln	CCG Pro	ACA Thr	TAC Tyr 160	GTC Val	CAG Gln	GCC Ala	CTC Leu	TTT Phe 165	GAC Asp	TTT Phe	GAT Asp	CCC Pro	CAG Gln 170	GAG Glu	591
GAT Asp	GGA Gly	GAG Glu	CTG Leu 175	GGC Gly	TTC Phe	CGC Arg	CGG Arg	GGA Gly 180	GAT Asp	TTT Phe	ATC Ile	CAT His	GTC Val 185	ATG Met	GAT Asp	639
AAC	TCA	GAC	ccc	AAC	TGG	TGG	AAA	GGA	GCT	TGC	CAC	GGG	CAG	ACC	GGC	687

SUBSTITUTE SHEET (RULE 26)

Asn	Ser	Asp 190		Asn	Trp	Trp	Lys 195	Gly	Ala	Cys	His	Gly 200	Glr	Thr	Gly	•	
								-		AAC Asn				TAA *			732
GAG:	CAAC	SAA (GCAA!	rtat:	LA TI	\AGA/	AGTO	AA E	TAAA	AATE	AACA	CATA	ACA	AAAG	TTAA	'AA '	792
ACC	CACAZ	AGC 1	rgcc:	rctg/	AC AC	GCAG	CTG	GA(GGA(GTGC	AGA	ACACO	CTG	GCCG	GGTC	AC 8	852
CCT	GTGAC	cc r	rctc?	ACTT:	rg gr	rtgg <i>i</i>	ACTI	AT T	GGGG	GTGG	GAG	GGGG	CGT	TGGA'	ATTI	.AA !	912
AAT	GCCA/	AAA (CTTAC	CTA	LA A	ATTA	AGAA	AG!	TTTT'	TTAT	ACA	ATTI	rtc	ACTG	CTGC	TC !	972
CTC	rttc	מככ י	TCCT?	rtgt	T T	r TTT ?	r T CA?	י ככי	TTTT'	TTCT	CTT	CTGTC	CCA	TCAG'	TGCA	T G 10	032
ACG!	KATT1	AGG (CCAC	GTAT	AG TO	CTAC	GCTG/	A CG	CCAA'	TAAT	AAA	AAAC	AAG	AAAC	CAAA	AA 1	092
AAA	AAAA	cc (GAAT'	rca												1:	109

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 218 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Glu Ala Ile Ala Lys Tyr Asp Phe Lys Ala Thr Ala Asp Asp Glu
1 5 10 15

Leu Ser Phe Lys Arg Gly Asp Ile Leu Lys Val Leu Asn Glu Glu Cys 20 25 30

Asp Gln Asn Trp Tyr Lys Ala Glu Leu Asn Gly Lys Asp Gly Phe Ile 35 40 45

Pro Lys Asn Tyr Ile Glu Met Lys Pro His Pro Trp Phe Phe Gly Lys 50 55 60

Ile Pro Arg Ala Lys Ala Glu Glu Met Leu Ser Lys Gln Arg His Asp 65 70 75 80

Gly Ala Phe Leu Ile Arg Glu Ser Glu Ser Ala Pro Gly Asp Phe Ser 85 90 95

Leu Ser Val Lys Phe Gly Asn Asp Val Gln His Phe Lys Val Leu Arg

Asp Gly Ala Gly Lys Tyr Phe Leu Trp Val Val Lys Phe Asn Ser Leu 115 120 125

Asn Glu Leu Val Asp Tyr His Arg Ser Thr Ser Val Ser Arg Asn Gln 130 140

Gln Ile Phe Leu Arg Asp Ile Glu Gln Val Pro Gln Gln Pro Thr Tyr 145 150 155 160

Val Gln Ala Leu Phe Asp Phe Asp Pro Gln Glu Asp Gly Glu Leu Gly 165 170 175

Phe Arg Arg Gly Asp Phe Ile His Val Met Asp Asn Ser Asp Pro Asn 180 190 Trp Trp Lys Gly Ala Cys His Gly Gln Thr Gly Met Phe Pro Arg Asn Tyr Val Thr Pro Val Asn Arg Asn Val 210 (2) INFORMATION FOR SEQ ID NO:7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4870 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (vii) IMMEDIATE SOURCE: (B) CLONE: hSHIP (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 113..3673 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: CCCAAGAGGC AACGGCCGC AGGTTGCAGT GGAGGGCCT CCGCTCCCCT CGGTGGTGTG 60 TGGGTCCTGG GGGTGCCTGC CGGCCCAGCC GAGGAGGCCC ACGCCCACCA TG GTC 115 Val CCC TGC TGG AAC CAT GGC AAC ATC ACC CGC TCC AAG GCG GAG GAG CTG 163 Pro Cys Trp Asn His Gly Asn Ile Thr Arg Ser Lys Ala Glu Glu Leu 10 CTT TGC AGG ACA GGC AAG GAC GGG AGC TTC CTC GTG CGT GCC AGC GAG 211 Leu Cys Arg Thr Gly Lys Asp Gly Ser Phe Leu Val Arg Ala Ser Glu 20 TCC ATC TTC CGG GCA TAC GCG CTC TGC GTG CTG TAT CGG AAT TGC GTT 259 Ser Ile Phe Arg Ala Tyr Ala Leu Cys Val Leu Tyr Arg Asn Cys Val TAT ACT TAC AGA ATT CTG CCC AAT GAA GAT GAT AAA TTC ACT GTT CAG 307 Tyr Thr Tyr Arg Ile Leu Pro Asn Glu Asp Asp Lys Phe Thr Val Gln GCA TCC GAA GGC GTC TCC ATG AGG TTC TTC ACC AAG CTG GAC CAG CTC 355 Ala Ser Glu Gly Val Ser Met Arg Phe Phe Thr Lys Leu Asp Gln Leu ATC GAG TTT TAC AAG AAG GAA AAC ATG GGG CTG GTG ACC CAT CTG CAA 403 Ile Glu Phe Tyr Lys Lys Glu Asn Met Gly Leu Val Thr His Leu Gln TAC CCT GTG CCG CTG GAG GAA GAG GAC ACA GGC GAC GAC CCT GAG GAG 451 Tyr Pro Val Pro Leu Glu Glu Glu Asp Thr Gly Asp Pro Glu Glu

105

	_				GTG Val											499
Pro		Thr			TCC Ser 135				Lys							547
					ACC Thr											595
					CAA Gln											643
					CAA Gln											691
TCT Ser	GAA Glu 195	TTT Phe	GTG Val	AAG Lys	ACA Thr	GGG Gly 200	TCC Ser	AGC Ser	AGT Ser	CTT Leu	CCT Pro 205	CAC His	CTG Leu	AAG Lys	AAA Lys	739
CTG Leu 210	ACC Thr	ACA Thr	CTG Leu	CTC Leu	TGC Cys 215	AAG Lys	GAG Glu	CTC Leu	TAT Tyr	GGA Gly 220	GAA Glu	GTC Val	ATC Ile	CGG Arg	ACC Thr 225	7 87
					TCT Ser											835
					CGT Arg											883
					CTC Leu											931
GAA Glu	GAC Asp 275	AAG Lys	GTC Val	AAG Lys	GCC Ala	TTG Leu 280	CTG Leu	CAC His	GAG Glu	GGT Gly	CCT Pro 285	GAG Glu	TCT Ser	CCG Pro	CAC His	. 979
CGG Arg 290	CCC Pro	TCC Ser	CTT Leu	ATC Ile	CCT Pro 295	CCA Pro	GTC Val	ACC Thr	TTT Phe	GAG Glu 300	GTG Val	AAG Lys	GCA Ala	GAG Glu	TCT Ser 305	1027
					AAA Lys											1075
AAA Lys	CTG Leu	ATC Ile	ATT Ile 325	AAG Lys	AAG Lys	TCC Ser	AAG Lys	GAT Asp 330	GGT Gly	TCT Ser	GAG Glu	GAC Asp	AAG Lys 335	TTC Phe	TAC Tyr	1123
AGC Ser	CAC His	AAG Lys 340	Lys	ATC Ile	CTG Leu	CAG Gln	CTC Leu 345	Ile	AAG Lys	TCA Ser	CAG Gln	AAA Lys 350	TTT Phe	CTG Leu	AAT Asn	1171
AAG Lys	TTG Leu 355	Val	ATC Ile	TTG Leu	GTG Val	GAA Glu 360	Thr	GAG Glu	AAG Lys	GAG Glu	AAG Lys 365	ATC Ile	CTG Leu	CGG Arg	AAG Lys	1219
GAA Glu	TAT	GTT Val	TTT Phe	GCT Ala	GAC Asp	TCC Ser	AAA Lys	AAG Lys	AGA Arg	GAA Glu	GGC Gly	TTC Phe	TGC Cys	CAG Gln	CTC Leu	1267

370					375					380					385	
CTG Leu	CAG Gln	CAG Gln	ATG Met	AAG Lys 390	AAC Asn	AAG Lys	CAC His	TCA Ser	GAG Glu 395	CAG Gln	CCG Pro	GAG Glu	CCC Pro	GAC Asp 400	ATG Met	1315
ATC Ile	ACC Thr	ATC Ile	TTC Phe 405	ATC Ile	GGC Gly	ACC Thr	TGG Trp	AAC Asn 410	ATG Met	GGT Gly	AAC Asn	GCC Ala	CCC Pro 415	CCT Pro	CCC Pro	1363
	AAG Lys															1411
	GAC Asp 435															1459
	GAG Glu															1507
	CTG Leu							Thr								1555
	CTC Leu															1603
	CGG Arg															1651
	ACA Thr 515															1699
	ACC Thr															1747
	AAA Lys														-	1795
	CTG Leu															1843
	CAC															1891
	TGG Trp 595															1939
	_					Asp					Glu				CAG Gln 625	1987
	GTC Val				Phe					Ile					Thr	2035

		TTT Phe															2083
		ACA Thr 660															2131
		AAG Lys															2179
		AGC Ser															2227
		GCA Ala															2275
		GAC Asp															2323
		ACC Thr 740															2371
		GAG Glu															2419
		GGG Gly															2467
		ATT Ile														•	2515
		ATC Ile															2563
		CTT Leu 820															2611
		ACC Thr															2659
		CAG Gln															2707
		ACG Thr															2755
CTC Leu	ACC Thr	AGC Ser	CAC His 885	GAC Asp	CCC Pro	ATG Met	AAG Lys	CAG Gln 890	TGG Trp	GAA Glu	GTC Val	ACT Thr	AGC Ser 895	AGG Arg	GCC Ala		2803
CCT Pro	CCG Pro	TGC Cys	AGT Ser	GGC Gly	TCC Ser	AGC Ser	ATC Ile	ACT Thr	GAA Glu	ATC Ile	ATC Ile	AAC Asn	CCC Pro	AAC Asn	TAC Tyr		2851

900		905		910	
ATG GGA GTG Met Gly Val 915	GGG CCC TTT Gly Pro Phe	GGG CCA CCA Gly Pro Pro 920	ATG CCC CTG Met Pro Leu 925	CAC GTG AAG His Val Lys	CAG 2899 Gln
ACC TTG TCC Thr Leu Ser 930	CCT GAC CAG Pro Asp Gln 935	CAG CCC ACA Gln Pro Thr	GCC TGG AGC Ala Trp Ser 940	TAC GAC CAG Tyr Asp Gln	CCG 2947 Pro 945
CCC AAG GAC Pro Lys Asp	TCC CCG CTG Ser Pro Leu 950	GGG CCC TGC Gly Pro Cys	AGG GGA GAA Arg Gly Glu 955	AGT CCT CCG Ser Pro Pro 960	ACA 2995 Thr
CCT CCC GGC Pro Pro Gly	CAG CCG CCC Gln Pro Pro 965	ATA TCA CCC Ile Ser Pro 970	Lys Lys Phe	TTA CCC TCA Leu Pro Ser 975	ACA 3043 Thr
GCA AAC CGG Ala Asn Arg 980	Gly Leu Pro	CCC AGG ACA Pro Arg Thr 985	CAG GAG TCA Gln Glu Ser	AGG CCC AGT Arg Pro Ser 990	GAC 3091 Asp
CTG GGG AAG Leu Gly Lys 995	AAC GCA GGG Asn Ala Gly	GAC ACG CTG Asp Thr Leu 1000	CCT CAG GAG Pro Gln Glu 100	GAC CTG CCG Asp Leu Pro 5	CTG 3139. Leu
ACG AAG CCC Thr Lys Pro 1010	GAG ATG TTT Glu Met Phe 101	Glu Asn Pro	CTG TAT GGG Leu Tyr Gly 1020	TCC CTG AGT Ser Leu Ser	TCC 3187 Ser 1025
TTC CCT AAG Phe Pro Lys	CCT GCT CCC Pro Ala Pro 1030	AGG AAG GAC Arg Lys Asp	CAG GAA TCC Gln Glu Ser 1035	CCC AAA ATG Pro Lys Met 104	Pro
CGG AAG GAA Arg Lys Glu	CCC CCG CCC Pro Pro Pro 1045	TGC CCG GAA Cys Pro Glu 105	Pro Gly Ile	TTG TCG CCC Leu Ser Pro 1055	AGC 3283 Ser
ATC GTG CTC Ile Val Leu 106	Thr Lys Ala	CAG GAG GCT Gln Glu Ala 1065	GAT CGC GGC Asp Arg Gly	GAG GGG CCC Glu Gly Pro 1070	GGC 3331 Gly
				TGC TCA TCC Cys Ser Ser 5	
GCC GAG GGC Ala Glu Gly 1090	AGG GCG GCC Arg Ala Ala 109	Gly Gly Asp	AAG AGC CAA Lys Ser Gln 1100	GGG AAG CCC Gly Lys Pro	AAG 3427 Lys 1105
				AGG CCC ATC Arg Pro Ile 112	Lys
			Thr Pro Pro	ACC CCG ACG Thr Pro Thr 1135	
	1123			1133	
	CTG CCA GTC	AAG AGC CCC	GCG GTG CTG	CAC CTC CAG His Leu Gln 1150	

AAG CAC CGG CCG GAG GAG GGG CCA CCA GGG CCT CTA GGC AGG ACT GCC Lys His Arg Pro Glu Glu Gly Pro Pro Gly Pro Leu Gly Arg Thr Ala 1170 1185	3667
ATG CAG TGAAGCCCTC AGTGAGCTGC CACTGAGTCG GGAGCCCAGA GGAACGGCGT Met Gln	3723
GAAGCCACTG GACCCTCTCC CGGGACCTCC TGCTGGCTCC TCCTGCCCAG CTTCCTATGC	3783
AAGGCTTTGT GTTTTCAGGA AAGGGCCTAG CTTCTGTGTG GCCCACAGAG TTCACTGCCT	3843
GTGAGGCTTA GCACCAAGTG CTGAGGCTGG AAGAAAAACG CACACCAGAC GGGCAACAAA	3903
CAGTCTGGGT CCCCAGCTCG CTCTTGGTAC TTGGGACCCC AGTGCCTCGT TGAGGGCGCC	3963
ATTCTGAAGA AAGGAACTGC AGCGCCGATT TGAGGGTGGA GATATAGATA ATAATAATAT	4023
TAATAATAAT AATGGCCACA TGGATCGAAC ACTCATGATG TGCCAAGTGC TGTGCTAAGT	4083
GCTTTACGAA CATTCGTCAT ATCAGGATGA CCTCGAGAGC TGAGGCTCTA GCCACCTAAA	4143
ACACGTGCCC AAACCCACCA GTTTAAAACG GTGTGTGTTC GGAGGGGTGA AAGCATTAAG	4203
AAGCCCAGTG CCCTCCTGGA GTGAGACAAG GGCTCGGCCT TAAGGAGCTG AAGAGTCTGG	4263
GTAGCTTGTT TAGGGTACAA GAAGCCTGTT CTGTCCAGCT TCAGTGACAC AAGCTGCTTT	4323
AGCTAAAGTC CCGCGGGTTC CGGCATGGCT AGGCTGAGAG CAGGGATCTA CCTGGCTTCT	4383
CAGTTCTTTG GTTGGAAGGA GCAGGAAATC AGCTCCTATT CTCCAGTGGA GAGATCTGGC	4443
CTCAGCTTGG GCTAGAGATG CCAAGGCCTG TGCCAGGTTC CCTGTGCCCT CCTCGAGGTG	4503
GGCAGCCATC ACCAGCCACA GTTAAGCCAA GCCCCCCAAC ATGTATTCCA TCGTGCTGGT	4563
AGAAGAGTCT TTGCTGTTGC TCCCGAAAGC CGTGCTCTCC AGCCTGGCTG CCAGGGAGGG	4623
TGGGCCTCTT GGTTCCAGGC TCTTGAAATA GTGCAGCCTT TTCTTCCTAT CTCTGTGGCT	4683
TTCAGCTCTG CTTCCTTGGT TATTAGGAGA ATAGATGGGT GATGTCTTTC CTTATGTTGC	4743
TTTTTCAACA TAGCAGAATT AATGTAGGGA GCTAAATCCA GTGGTGTGTG TGAATGCAGA	4803
AGGGAATGCA CCCCACATTC CCATGATGGA AGTCTGCGTA ACCAATAAAT TGTGCCTTTC	4863
ТТАААА	4870

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1187 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Val Pro Cys Trp Asn His Gly Asn Ile Thr Arg Ser Lys Ala Glu Glu 1 5 10 15

Leu Leu Cys Arg Thr Gly Lys Asp Gly Ser Phe Leu Val Arg Ala Ser 20 25 30

Glu Ser Ile Phe Arg Ala Tyr Ala Leu Cys Val Leu Tyr Arg Asn Cys Val Tyr Thr Tyr Arg Ile Leu Pro Asn Glu Asp Asp Lys Phe Thr Val Gln Ala Ser Glu Gly Val Ser Met Arg Phe Phe Thr Lys Leu Asp Gln - 70 Leu Ile Glu Phe Tyr Lys Lys Glu Asn Met Gly Leu Val Thr His Leu Gln Tyr Pro Val Pro Leu Glu Glu Glu Asp Thr Gly Asp Asp Pro Glu 105 Glu Asp Thr Glu Ser Val Val Ser Pro Pro Glu Leu Pro Pro Arg Asn Ile Pro Leu Thr Ala Ser Ser Cys Glu Ala Lys Glu Val Pro Phe Ser Asn Glu Asn Pro Arg Ala Thr Glu Thr Ser Arg Pro Ser Leu Ser Glu Thr Leu Phe Gln Arg Leu Gln Ser Met Asp Thr Ser Gly Leu Pro Glu Glu His Leu Lys Ala Ile Gln Asp Tyr Leu Ser Thr Gln Leu Ala Gln Asp Ser Glu Phe Val Lys Thr Gly Ser Ser Ser Leu Pro His Leu Lys Lys Leu Thr Thr Leu Leu Cys Lys Glu Leu Tyr Gly Glu Val Ile Arg Thr Leu Pro Ser Leu Glu Ser Leu Gln Arg Leu Phe Asp Gln Gln Leu 230 Ser Pro Gly Leu Arg Pro Arg Pro Gln Val Pro Gly Glu Ala Asn Pro Ile Asn Met Val Ser Lys Leu Ser Gln Leu Thr Ser Leu Leu Ser Ser 265 Ile Glu Asp Lys Val Lys Ala Leu Leu His Glu Gly Pro Glu Ser Pro His Arg Pro Ser Leu Ile Pro Pro Val Thr Phe Glu Val Lys Ala Glu 295 Ser Leu Gly Ile Pro Gln Lys Met Gln Leu Lys Val Asp Val Glu Ser 310 Gly Lys Leu Ile Ile Lys Lys Ser Lys Asp Gly Ser Glu Asp Lys Phe Tyr Ser His Lys Lys Ile Leu Gln Leu Ile Lys Ser Gln Lys Phe Leu Asn Lys Leu Val Ile Leu Val Glu Thr Glu Lys Glu Lys Ile Leu Arg Lys Glu Tyr Val Phe Ala Asp Ser Lys Lys Arg Glu Gly Phe Cys Gln 375

Leu Leu Gln Gln Met Lys Asn Lys His Ser Glu Gln Pro Glu Pro Asp Met Ile Thr Ile Phe Ile Gly Thr Trp Asn Met Gly Asn Ala Pro Pro Pro Lys Lys Ile Thr Ser Trp Phe Leu Ser Lys Gly Gln Gly Lys Thr 425 Arg Asp Asp Ser Ala Asp Tyr Ile Pro His Asp Ile Tyr Val Ile Gly Thr Gln Glu Asp Pro Leu Ser Glu Lys Glu Trp Leu Glu Ile Leu Lys 455 His Ser Leu Gln Glu Ile Thr Ser Val Thr Phe Lys Thr Val Ala Ile His Thr Leu Trp Asn Ile Arg Ile Val Val Leu Ala Lys Pro Glu His 490 Glu Asn Arg Ile Ser His Ile Cys Thr Asp Asn Val Lys Thr Gly Ile Ala Asn Thr Leu Gly Asn Lys Gly Ala Val Gly Val Ser Phe Met Phe Asn Gly Thr Ser Leu Gly Phe Val Asn Ser His Leu Thr Ser Gly Ser 535 Glu Lys Lys Leu Arg Arg Asn Gln Asn Tyr Met Asn Ile Leu Arg Phe Leu Ala Leu Gly Asp Lys Lys Leu Ser Pro Phe Asn Ile Thr His Arg 570 Phe Thr His Leu Phe Trp Phe Gly Asp Leu Asn Tyr Arg Val Asp Leu Pro Thr Trp Glu Ala Glu Thr Ile Ile Gln Lys Ile Lys Gln Gln Gln Tyr Ala Asp Leu Leu Ser His Asp Gln Leu Leu Thr Glu Arg Arg Glu 615 Gln Lys Val Phe Leu His Phe Glu Glu Glu Glu Ile Thr Phe Ala Pro 635 Thr Tyr Arg Phe Glu Arg Leu Thr Arg Asp Lys Tyr Ala Tyr Thr Lys 650 Gln Lys Ala Thr Gly Met Lys Tyr Asn Leu Pro Ser Trp Cys Asp Arg Val Leu Trp Lys Ser Tyr Pro Leu Val His Val Val Cys Gln Ser Tyr Gly Ser Thr Ser Asp Ile Met Thr Ser Asp His Ser Pro Val Phe Ala 695 Thr Phe Glu Ala Gly Val Thr Ser Gln Phe Val Ser Lys Asn Gly Pro Gly Thr Val Asp Ser Gln Gly Gln Ile Glu Phe Leu Arg Cys Tyr Ala Thr Leu Lys Thr Lys Ser Gln Thr Lys Phe Tyr Leu Glu Phe His Ser Ser Cys Leu Glu Ser Phe Val Lys Ser Gln Glu Gly Glu Asn Glu Glu Gly Ser Glu Gly Glu Leu Val Val Lys Phe Gly Glu Thr Leu Pro Lys Leu Lys Pro Ile Ile Ser Asp Pro Glu Tyr Leu Leu Asp Gln His Ile 790 Leu Ile Ser Ile Lys Ser Ser Asp Ser Asp Glu Ser Tyr Gly Glu Gly Cys Ile Ala Leu Arg Leu Glu Ala Thr Glu Thr Gln Leu Pro Ile Tyr Thr Pro Leu Thr His His Gly Glu Leu Thr Gly His Phe Gln Gly Glu 840 Ile Lys Leu Gln Thr Ser Gln Gly Lys Thr Arg Glu Lys Leu Tyr Asp Phe Val Lys Thr Glu Arg Asp Glu Ser Ser Gly Pro Lys Thr Leu Lys 870 Ser Leu Thr Ser His Asp Pro Met Lys Gln Trp Glu Val Thr Ser Arg 890 Ala Pro Pro Cys Ser Gly Ser Ser Ile Thr Glu Ile Ile Asn Pro Asn Tyr Met Gly Val Gly Pro Phe Gly Pro Pro Met Pro Leu His Val Lys 920 Gln Thr Leu Ser Pro Asp Gln Gln Pro Thr Ala Trp Ser Tyr Asp Gln 935 Pro Pro Lys Asp Ser Pro Leu Gly Pro Cys Arg Gly Glu Ser Pro Pro 950 Thr Pro Pro Gly Gln Pro Pro Ile Ser Pro Lys Lys Phe Leu Pro Ser Thr Ala Asn Arg Gly Leu Pro Pro Arg Thr Gln Glu Ser Arg Pro Ser 985 Asp Leu Gly Lys Asn Ala Gly Asp Thr Leu Pro Gln Glu Asp Leu Pro 1000 Leu Thr Lys Pro Glu Met Phe Glu Asn Pro Leu Tyr Gly Ser Leu Ser 1015 Ser Phe Pro Lys Pro Ala Pro Arg Lys Asp Gln Glu Ser Pro Lys Met 1025 1030 1035 Pro Arg Lys Glu Pro Pro Pro Cys Pro Glu Pro Gly Ile Leu Ser Pro 1050 Ser Ile Val Leu Thr Lys Ala Gln Glu Ala Asp Arg Gly Glu Gly Pro 1060 1065 Gly Lys Gln Val Pro Ala Pro Arg Leu Arg Ser Phe Thr Cys Ser Ser 1075 1080

Ser Ala Glu Gly Arg Ala Ala Gly Gly Asp Lys Ser Gln Gly Lys Pro 1090 1095 1100

Lys Thr Pro Val Ser Ser Gln Ala Pro Val Pro Ala Lys Arg Pro Ile 1105 1110 1115 1120

Lys Pro Ser Arg Ser Glu Ile Asn Gln Gln Thr Pro Pro Thr Pro Thr 1125 1130 1135

Pro Arg Pro Pro Leu Pro Val Lys Ser Pro Ala Val Leu His Leu Gln 1140 1145 1150

His Ser Lys Gly Arg Asp Tyr Arg Asp Asn Thr Glu Leu Pro His His 1155 1160 1165

Gly Lys His Arg Pro Glu Glu Gly Pro Pro Gly Pro Leu Gly Arg Thr 1170 1175 1180

Ala Met Gln 1185

ICLAIM:

20

25

- 1. A purified and isolated nucleic acid molecule comprising a sequence encoding an SH2-containing inositol-phosphatase which has a src homology 2 (SH2) domain and exhibits phospholns-5-ptase activity.
- An SH2-containing inositol-phosphatase as claimed in claim 1 which is further characterized by having an amino terminal src homology 2 (SH2) domain, two phosphotyrosine binding (PTB) consensus sequences, a proline rich region, and motifs highly conserved among inositol polyphosphate-5-phosphatases (phospholns-5-ptases).
- 3. A purified and isolated nucleic acid molecule as claimed in claim 1, comprising (i) a nucleic acid sequence encoding an SH2-containing inositol-phosphatase having the amino acid sequence as shown in SEQ ID NO:2 or Figure 2 (A); or, (ii) nucleic acid sequences complementary to (i).
 - 4. A purified and isolated nucleic acid molecule as claimed in claim 1, comprising (i) a nucleic acid sequence encoding an SH2-containing inositol-phosphatase having the amino acid sequence as shown in SEQ ID NO:8 or Figure 11; or, (ii) nucleic acid sequences complementary to (i).
 - 5. A purified and isolated nucleic acid molecule as claimed in claim 1, comprising (i) a nucleic acid sequence encoding an SH2-containing inositol-phosphatase having the nucleic acid sequence as shown in SEQ ID NO:1 or Figure 3, wherein T can also be U;
 - (ii) a nucleic acid sequence complementary to (i); or
 - (iii) a nucleic acid molecule differing from any of the nucleic acids of (i) and (ii) in codon sequences due to the degeneracy of the genetic code.
 - 6. A purified and isolated nucleic acid molecule as claimed in claim 1, comprising (i) a nucleic acid sequence encoding an SH2-containing inositol-phosphatase having the nucleic acid sequence as shown in SEQ ID NO:7 or Figure 10, wherein T can also be U;
 - (ii) a nucleic acid sequence complementary to (i); or
 - (iii) a nucleic acid molecule differing from any of the nucleic acids of (i) and (ii) in codon sequences due to the degeneracy of the genetic code.
- 30 7. A purified and isolated nucleic acid molecule comprising a sequence which hybridizes under high stringency conditions to the nucleic acid molecule as claimed in claim 5.

5

- 8. A purified and isolated nucleic acid molecule as claimed in claim 1, which is a double stranded nucleic acid molecule or RNA.
- 9. A recombinant expression vector adapted for transformation of a host cell comprising a nucleic acid molecule as claimed in claim 1 and one or more transcription and translation elements operatively linked to the nucleic acid molecule.
- 10. A host cell containing a recombinant expression vector as claimed in claim 9.
- 11. A method for preparing an SH2-containing inositol-phosphatase comprising (a) transferring a recombinant expression vector as claimed in claim 9 into a host cell; (b) selecting transformed host cells from untransformed host cells; (c) culturing a selected transformed host cell under conditions which allow expression of the SH2-containing inositol-phosphatase; and (d) isolating the SH2-containing inositol-phosphatase.
- 12. A purified and isolated SH2-containing inositol-phosphatase which associates with Shc and exhibits phospholns-5-ptase activity.
- 13. A purified and isolated Shc protein as claimed in claim 12, which has the amino acid sequence as shown in SEQ ID NO:2 or Figure 2(A), or as shown in SEQ ID NO:8 or Figure 11.
 - 14. Antibodies having specificity against an epitope of the SH2-containing inositol-phosphatase as claimed in claim 13.
- 15. A nucleotide probe comprising a sequence encoding at least 6 continuous amino acids from the SH2-containing inositol-phosphatase as shown in SEQ ID. NO. 2 or Figure 2(A), or as shown in SEQ ID. NO. 8 or Figure 11.
 - 16. A method for identifying a substance which is capable of binding to a purified and isolated SH2-containing inositol-phosphatase protein as claimed in claim 12, comprising reacting the protein with at least one substance which potentially can bind with the protein under conditions which permit the formation of complexes between the substance and the protein; and, assaying for complexes, for free substance, for non-complexed protein, or for activation of the protein.
- 17. A method for assaying a medium for the presence of an agonist or antagonist of the interaction of a purified and isolated SH2-containing inositol-phosphatase protein as claimed
 30 in claim 12 and a substance which binds to the protein which comprises reacting the protein

10

15

with a substance which is capable of binding to the protein and a suspected agonist or antagonist substance, under conditions which permit the formation of complexes between the substance and the protein; and, assaying for complexes, for free substance, for non-complexed protein, or for activation of the protein.

- 5 18. A method as claimed in claim 17, wherein the substance is Shc or a part thereof.
 - 19. A method for assaying for the affect of a substance on the phosphoIns-5-ptase activity of a SH2-containing inositol-phosphatase protein as claimed in claim 12 comprising reacting a substrate which is capable of being hydrolyzed by the protein to produce a hydrolysis product, with a substance which is suspected of affecting the phosphoIns-5-ptase activity of the protein, under conditions which permit the hydrolysis of the substrate; determining the amount of hydrolysis product; and, comparing the amount of product obtained with the amount obtained in the absence of the substance to determine the affect of the substance on the phosphoIns-5-ptase activity of the protein.
 - 20. A substance identified in accordance with the method of claim 16, 17, 18 or 19.
 - 21. A pharmaceutical composition comprising a substance identified in accordance with the method of claim 16.

1/27 FIGURE 1

2/27 FIGURE 2

A

I MPAMVPG WNHGNITRSKAEELLSRAGKDGSFLVRASESIPRACALCVLFR
51 NCVYTYRILPNEDDKFTVQASEGVPMRFFTKLDQLIDFYKKENMGLVTHL
101 QYPVP LEEEDAIDEAEEDTESVMSPPELPPRNIPMSAGPSEAKDLPLATE
151 NPRAPEVTRLSLSETLFQRLQSMDTSGLPEEHLKAIQDYLSTQLLLDSDF
201 LKTGSSNLPHLKKLMSLLCKELHGEVIRTLPSLESLQRLFDQQLSPGLRP
251 RPQVPGEASPITMVAKLSQLTSLLSSIEDKVKSLLHEGSESTNRRSLIPP
301 VTFEVKSESLGIPQKMHLKVDVESGKLIVKKSKDGSEDKFYSHKKILQLI
351 KSQKFLNKLVILVETEKEKILRKEYVFADSKKREGFCQLLQQMKNKHSEQ
401 PEPDMITIFIGTWNMGNAPPPKKITSWFLSKGQGKTRDDSADYIPHDIYV
451 IGTQEDPLGEKEWLELLRHSLQEVTSMTFKTVAIHTLWNIRIVVLAKPEH
501 ENRISHICTDNVKTGIANTLGNKGAVGVSFMFNGTSLGFVNSHLTSGSEK
551 KLRRNQNYMNILRFLALGDKKLSPFNITHRFTHLF <u>WLGDLNYR</u> VELPTWE
601 AEAIIQKIKQQQYSDLLAHDQLLLERKDQKVFLHFEEEEITFAPTYRFER
651 LTRDKYAYTKQKATGMKYNLPSWCDRVLWKSYPLVHVVCQSYGSTSDIMT
701 SDHSPVFATFEAGVTSQFVSKNGPGTVDSQGQIEFLACYATLKTKSQTKF
751 YLEFHSSCLESFVKSQEGENEEGSEGEVVRFGETLPKLKPIISDPEYLL
801 DQHILISIKSSDSDESYGEGCIALRLETTEAQHPIYTPLTHHGEMTGHFR
851 GEIKLQTSQGKMREKLYDFVKTERDESSGMKCLKNLTSHDPMRQWEPSGR
901 VPACGVSSLNEMINPNYIGMGPFGQPLHGKSTLSPDQQLTAWSYDQLPKD
951 SSLGPGRGEGPPTPPSQPPLSPKKFSSSTTNRGPCPRVQEARPGDLGKVE
1001 ALLQEDLLLTKPEMFENPLYGSVSSFPKLVPRKEQESPKMLRKEPPPCPD
1051 PGISSPSIVLPKAQEVESVKGTSKQAPVPVLGPTPRIRSFTCSSSAEGRM
1101 TSGDKSQGKPKASASSQAPVPVKRPVKPSRSEMSQQTTPIPAPRPPLPVK
1151 SPAVLOLOHSKGRDYRDNTELPHHGKHROFFGLLGRTAMO

8

WO 97/12039 PCT/CA96/00655

4/27

FIGURE 3

>BASE COUNT 1014 a 1147 c 1054 g 825 | >ORIGIN

1 ccctggtagg agcagcagag gcaattictg agaggcaaca ggcggcaggt ctcagcctag 61 agagggeect gaactacttt getggagtgt eegteetggg agtggetget gaeceagtee 121 aggagaccca tgcctgccat ogtccctggg tggaaccatg gcaacatcac ccgctccaag 181 gcagaggagc tactttccag agccggcaag gacgggagct teettgtgcg tgccagcgag 241 tecateceee gggeetgege actetgegtg etgtteegga attgtgttta caettaeagg 301 attetgeeca atgaggaega taaatteact gitcaggeat eegaaggtgt eeceatgagg 361 ttetteaega agetggaeea geteategae tittacaaga aggaaaaeat ggggetggtg 421 acceaectige agraeceegt geeectiggag gaggaggatg etaitgatga ggetgaggag 481 gacactgasa gigicatgic accaccigag cigeciceca gasacatice tatgicigee 541 gggcccagcg aggccaagga cottootott gcaacagaga acccccgago cootgaggto 601 acceggetga gieteteega gacaetgttt eagegtetae agageatgga taccagtggg 661 cttcccgagg agcacctgaa agccatccag gattatctga gcactcagct cctcctggat 721 tecgactitt tgaaaaeggg etecageaac eteceteace tgaagaaget gatgteactg 781 ctctgcaagg agctccatgg ggaagtcatc aggactctgc catccctgga gtctctgcag 841 aggitigitig accaacagct ctccccaggc cticgcccac gacctcaggt gcccggagag 901 gecagtecea teaceatggt tgecaaacte agecaattga caagtetget gtetteeatt 961 gaagataagg teaagteett getgeaegag ggeteagaat etaecaacag gegtteeett 1021 atccctccgg tcacctttga ggtgaagtca gagtccctgg gcattcctca gaaaatgcat 1081 ctcaaagtgg acgttgagtc tgggaaactg atcgttaaga agtccaagga tggttctgag 1141 gacaagtict acagccacaa aaaaatccig cagcicatta agteccagaa gittictaaac 1201 aagtiggiga titiggigga gacggagaag gagaaaatcc igaggaagga atatgittit 1261 getgaeteta agaaaagaga aggettetgt caacteetge ageagatgaa gaacaageat 1321 teggageage cagageetga catgateace atetteatig geaettggaa catgggtaat 1381 gcacccctc ccaagaagat cacgteetgg titeteteea aggggeaggg aaagacaegg 1441 gacgactotg otgactacat occocatgac atotatgtga ttggcaccca ggaggatecc 1501 cttggagaga aggagtggct ggagctactc aggcactccc tgcaagaagt caccagcatg 1561 acatttaaaa cagttgccat ccacaccctc tggaacattc gcatagtggt gcttgccaag 1621 ccagagcatg agaatcggat cagccatate tgcactgaca acgtgaagac aggcategce 1681 aacaccctgg gaaacaaggg agcagtggga gtgtccttca tgttcaatgg aacctccttg 1741 gggttegtea acagecacti gactictgga agtgaaaaaa ageteaggag aaateaaaac 1801 tatatgaaca teetgeggtt eetggeeetg ggagacaaga agetaageee atttaacate 1861 acceaceget teacceacet ettetggett ggggatetea actacegegt ggagetgece 1921 acttgggagg cagaggccat catccagaag atcaagcaac agcagtatic agacctictg 1981 geccaegace aactgeteet ggagaggaag gaccagaagg tetteetgea etttgaggag 2041 gaagagatca cettegeece cacetatega titgaaagae tgaeeeggga caagtatgea 2101 tacacgaage agaaageaac agggatgaag tacaacttge egteetggtg egaeegagte 2161 ctctggaagt cttacccgct ggtgcatgtg gtctgtcagt cctatggcag taccagtgac 2221 atcatgacga gtgaccacag ccctgtcttt gccacgtttg aagcaggagt cacatctcaa 2281 ttegteteca agaatggtee tggcactgta gatagecaag ggcagatega gtttettgea 2341 tgctacgeca cactgaagae caagteecag actaagttet acttggagtt ceacteage 2401 tgcttagaga gttttgtcaa gagtcaggaa ggagagaatg aagagggaag tgaaggagag 2461 ctggtggtac ggtttggaga gactetteec aagetaaage ceattatete tgaceeegag 2521 tacttactgg accagcatat cctgatcagc attaaatect ctgacagtga cgagtectat 2581 ggtgaagget geattgeect tegettggag accaeagagg eteageatee tatetaeaeg 2641 cctctcaccc accatgggga gatgactggc cacticaggg gagagattaa gctgcagacc 2701 teccagggea agatgaggga gaagetetat gaettigtga agacagageg ggatgaatee 2761 agtggaatga aatgcttgaa gaacctcacc agccatgacc ctatgaggca atgggagcct 2821 totggcaggg tecotgcatg tggtgtotec ageoteaatg agatgateaa tecaaactac 2881 attogratog gocctiting acagececty categopasat caacectyte eccagateag 2941 caactcacag citiggagita tgaccagcia cccaaagact ecteectggg geetgggagg 3001 ggggagggtc ctccaacccc tccctcccaa ccacctctgt cgccaaagaa gttttcatct 3061 tecacaacca accgaggice etgecccagg gigcaagagg caagacetgg ggatetggga 3121 aaggtggaag cictgctcca ggaggaccig cigctgacga agcccgagat gittgagaac 3181 ccactgtatg gateegtgag tteetteect aagetggtge ecaggaaaga geaggagtet 3241 cccaagatgc tgcggaagga gcccccgccc tgtccagacc caggaatete atcacccage 3301 atogtyctcc ccaaagccca agaggtygag agtytcaagg ggacaagcaa acaggccct 3361 gigectigies tiggecesas acceeggate egelectita estigitette tietgetgag 3421 ggcagaatga ccagtgggga caagagccaa gggaagccca aggcctcagc cagttcccaa 3481 gccccagtgc cagtcaagag gcctgtcaag ccttccaggt cagaaatgag ccagcagaca 3541 acacccatec cagetecacy gecacccety ecagteaaga gteetgetgt eetgeagetg 3601 caacatteca aaggeagaga etacegtgac aacacagaac tececcacca tggcaagcac 3661 cgccaagagg aggggetget tggcaggact gccatgcagt gagetgetgg tgateggage 3721 ciggaggaac agcacaaagc agaccigcga ecicicicag gatgectete teaggatgee 3781 tottggagga cotoctgcta gotottottg cotagottca agtoccaggo tgtgtatttt 3841 ttttcaggaa acggecteae ttetetgtgg tecaagaagt gtgetgetgg etgecacaet 3901 gigeggeaga igetaaagei ggatgacaaa egeaegeeat acagacagea gacageggea 3961 ctgggfctca gaacttggat tectgggect tetlecagic geogtittaa agaaaggaac

SHRSTITHTE SHEET (RULE 26)

6/27 FIGURE 5

123456 7

7.5 kb-4.4 kb-

8/27 FIGURE 6 CONT'D

В

PCT/CA96/00655

9/27 **FIGURE 7**

Gene

Locus: SHC1

gil134475: 1..473

Organism

HOMO SAPIENS (HUMAN)

gil134475: 1..473

Sequence

473 aa

1 mnklsggggr rtrveggqlg geewtrhgsf vnkptrgwlh pndkvmgpgv 51 sylvrymgcv evlqsmrald fntrtqvtre aislvceavp gakgatrrrk 101 pcsrplssil grsnlkfagm pitltvstss lnlmaadckq iianhhmqsi 151 sfasggdpdt aeyvayvakd pvnqrachil ecpeglaqdv istigqafel 201 rfkqylrnpp klvtphdrma gfdgsawdee eeeppdhqyy ndfpgkeppl 251 ggvvdmrlre gaapgaarpt apnaqtpshl gatlpvgqpv ggdpevrkqm 301 pppppcpgre lfddpsyvnv qnldkarqav ggagppnpai ngsaprdlfd 351 mkpfedalrv ppppqsvsma eqlrgepwfh gklsrreaea llqlngdflv 401 restttpgqy vltglqsgqp khlllvdpeg vvrtkdhrfe svshlisyhm 451 dnhlpiisag selclqqpve rkl

10/27 FIGURE 8

```
H.sapiens SHC mRNA.
ACCESSION X68148
*FIELD* NID
     g36453
KEYWORDS SHC protein.
           human.
SOURCE
 ORGANISM Homo sapiens
      Eukaryotae; mitochondrial eukaryotes; Metazoa/Eumycota group;
       Metazoa; Eumetazoa; Bilateria; Coelomata; Deuterostomia; Chordata;
      Vertebrata; Gnathostomata; Osteichthyes; Sarcopterygii; Choanata;
       Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Archonta; Primates;
       Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 3031)
 AUTHORS Pelicci,P.
 TITLE Direct Submission
 JOURNAL Submitted (10-JUN-1992) to the EMBL/GenBank/DDBJ databases. P.
       Pelicci, Clinica Medica I, Policlinico Monteluce, Perugia 06100
      08854, ITALY
REFERENCE 2 (bases 1 to 3031)
 AUTHORS Pelicci, G., Lanfrancone, L., Grignani, F., McGlade, J., Cavallo, F.,
       Forni, G., Nicoletti, I., Grignani, F., Pawson, T. and Pelicci, P.G.
          A novel transforming protein (SHC) with an SH2 domain is implicated
 TITLE
       in mitogenic signal transduction
 JOURNAL Cell 70 (1), 93-104 (1992)
 MEDLINE 92323554
FEATURES
                   Location/Qualifiers
              1..3031
   source
            /organism="Homo sapiens"
             82..1503
   CDS
           /codon_start=1
            /product="SHC transforming protein"
           /db_xref="PID:g36454"
 /translation="MNKLSGGGGRRTRVEGGQLGGEEWTRHGSFVNKPTRGW
```

LHPNDK

VMGPGVSYLVRYMGCVEVLQSMRALDFNTRTQVTREAISLVCEAVPGAKGATR **RRKPC**

 ${\tt SRPLSSILGRSNLKFAGMPITLTVSTSSLNLMAADCKQIIANHHMQSISFASGGDPD}$ Т

AEYVAYVAKDPVNQRACHILECPEGLAQDVISTIGQAFELRFKQYLRNPPKLVTPH DR

MAGFDGSAWDEEEEEPPDHQYYNDFPGKEPPLGGVVDMRLREGAAPGAARPTAP

11/27 FIGURE 8 CONT'D

NAQT

PSHLGATLPVGQPVGGDPEVRKQMPPPPPCPGRELFDDPSYVNVQNLDKARQAV GGAG

PPNPAINGSAPRDLFDMKPFEDALRVPPPPQSVSMAEQLRGEPWFHGKLSRREAE ALL

QLNGDFLVRESTTTPGQYVLTGLQSGQPKHLLLVDPEGVVRTKDHRFESVSHLISY HM

DNHLPIISAGSELCLQQPVERKL"

BASE COUNT 664 a 855 c 809 g 703 t ORIGIN

1 gcggtaacct aagctggcag tggcgtgatc cggcaccaaa tcggcccgcg gtgcgtgcgg 61 agactccatg aggccctgga catgaacaag ctgagtggag gcggcgggcg caggactcgg 121 gtggaagggg gccagcttgg gggcgaggag tggacccgcc acgggagctt tgtcaataag 181 cccacgcggg gctggctgca tcccaacgac aaagtcatgg gacccggggt ttcctacttg 241 gttcggtaca tgggttgtgt ggaggtcctc cagtcaatgc gtgccctgga cttcaacacc 301 cggactcagg tcaccaggga ggccatcagt ctggtgtgtg aggctgtgcc gggtgctaag 361 ggggcgacaa ggaggagaaa gccctgtagc cgcccgctca gctctatcct ggggaggagt 421 aacctgaaat ttgctggaat gccaatcact ctcaccgtct ccaccagcag cctcaacctc 481 atggccgcag actgcaaaca gatcatcgcc aaccaccaca tgcaatctat ctcatttgca 541 tccggcgggg atccggacac agccgagtat gtcgcctatg ttgccaaaga ccctgtgaat 601 cagagagect gecacattet ggagtgteec gaagggettg eecaggatgt cateageace 661 attggccagg cettegagtt gegetteaaa caatacetea ggaacceace caaactggte 721 acccctcatg acaggatggc tggctttgat ggctcagcat gggatgagga ggaggaagag 781 ccacctgacc atcagtacta taatgacttc ccggggaagg aacccccctt ggggggggtg 841 gtagacatga ggcttcggga aggagccgct ccaggggctg ctcgacccac tgcacccaat 901 gcccagaccc ccagccactt gggagctaca ttgcctgtag gacagcctgt tgggggagat 961 ccagaagtcc gcaaacagat gccacctcca ccaccctgtc caggcagaga gctttttgat 1021 gatccctcct atgtcaacgt ccagaaccta gacaaggccc ggcaagcagt gggtggtgct 1081 gggcccccca atcctgctat caatggcagt gcaccccggg acctgtttga catgaagccc 1141 ttcgaagatg ctcttcgggt gcctccacct ccccagtcgg tgtccatggc tgagcagctc 1201 cgaggggagc cctggttcca tgggaagctg agccggcggg aggctgaggc actgctgcag 1261 ctcaatgggg acttcttggt acgggagagc acgaccacac ctggccagta tgtgctcact 1321 ggcttgcaga gtgggcagcc taagcatttg ctactggtgg accctgaggg tgtggttcgg 1381 actaaggatc accgctttga aagtgtcagt caccttatca gctaccacat ggacaatcac 1441 ttgcccatca tctctgcggg cagcgaactg tgtctacagc aacctgtgga gcggaaactg 1501 tgatctgccc tagcgctctc ttccagaaga tgccctccaa tcctttccac cctattccct 1561 aacteteggg acctegtttg ggagtgttet gtgggettgg cettgtgtea gagetgggag 1621 tagcatggac tctgggtttc atatccagct gagtgagagg gtttgagtca aaagcctggg 1681 tgagaatcct gcctctcccc aaacattaat caccaaagta ttaatgtaca gagtggcccc 1741 tcacctgggc ctttcctgtg ccaacctgat gccccttccc caagaaggtg agtgcttgtc 1801 atggaaaatg teetgtggtg acaggeecag tggaacagte accettetgg geaaggggga 1861 acaaatcaca cctctgggct tcagggtatc ccagacccct ctcaacaccc gccccccca 1921 tgtttaaact ttgtgccttt gaccatctct taggtctaat gatattttat gcaaacagtt

12/27 FIGURE 8 CONT'D

	1981 cttggacccc tgaattette aatgacaggg atgccaacae ettettgget tetgggacet
	2041 gtgttcttgc tgagcaccct ctccggtttg ggttgggata acagaggcag gagtggcagc
	2101 tgtcccctct ccctggggat atgcaaccct tagagattgc cccagagccc cactcccggc
	2161 caggegggag atggaccect ceettgetea gtgceteetg geeggggeee eteaceecaa
	2221 ggggtctgta tatacatttc ataaggcctg ccctcccatg ttgcatgcct atgtactctg
	2281 cgccaaagtg cagcccttcc tcctgaagcc tctgccctgc ctccctttct gggagggcgg
	2341 ggtgggggtg actgaatttg ggcctcttgt acagttaact ctcccaggtg gattttgtgg
	2401 aggtgagaaa aggggcattg agactataaa gcagtagaca atccccacat accatctgta
	2461 gagttggaac tgcattcttt taaagtttta tatgcatata ttttagggct gctagactta
	2521 ctttcctatt ttcttttcca ttgcttattc ttgagcacaa aatgataatc aattattaca
	2581 tttatacatc acctttttga cttttccaag cccttttaca gctcttggca ttttcctcgc
	2641 ctaggcctgt gaggtaactg ggatcgcacc ttttatacca gagacctgag gcagatgaaa
	2701 tttatttcca tctaggacta gaaaaacttg ggtctcttac cgcgagactg agaggcagaa
	2761 gtcagcccga atgcctgtca gtttcatgga ggggaaacgc aaaacctgca gttcctgagt
	2821 accttctaca ggcccggccc agcctaggcc cggggtggcc acaccacagc aagccggccc
	2881 cccctctttt ggccttgtgg ataagggaga gttgaccgtt ttcatcctgg cctccttttg
	2941 ctgtttggat gtttccacgg gtctcactta taccaaaggg aaaactcttc attaaagtcc
	3001 cgtatttctt ctaaaaaaaaa aaaaaaaaaa a
1	<i>'</i>

WO 97/12039 PCT/CA96/00655

13/27 FIGURE 9

```
NCBI gi: 181975
FEATURES
                       Location/Qualifiers
                     1..1109
     source
                     /organism="Homo sapiens"
                     /sequenced_mol="cDNA to mRNA"
                     /tissue_type="brainstem"
                     /tissue_lib=*gt11 human brainstem library*
     CDS
                     79..732
                     /gene="EGFRBP-GRB2"
                     /note="NCBI gi: 181976"
                     /codon_start=1
                     /product="epidermal growth factor receptor-binding protein
                     GRB2 *
                     /translation="MEAIAKYDFKATADDELSFKRGDILKVLNEECDONWYKAELNGK
                     DGFIPKNYIEMKPHPWFFGKIPRAKAEEMLSKQRHDGAFLIRESESAPGDFSLSVKFG
                     NDVQHFKVLRDGAGKYFLWVVKFNSLNELVDYHRSTSVSRNQQIFLRDIEQVPQQPTY
                     VQALFDFDPQEDGELGFRRGDFIHVMDNSDPNWWKGACHGQTGMFPRNYVTPVNRNV*
BASE COUNT
                313 a
                         273 c
                                  262 g
                                           261 t
ORIGIN
        1 gccagtgaat tcgggggctc agccctcctc cctcccttcc ccctgcttca ggctgctgag
       61 cactgagcag cgctcagaat ggaagccatc gccaaatatg acttcaaagc tactgcagac
      121 gacgagetga getteaaaag gggggacate etcaaggttt tgaacgaaga atgtgateag
      181 aactggtaca aggcagaget taatggaaaa gacggettea tteccaagaa etacatagaa
      241 atgaaaccac atccgtggtt ttttggcaaa atccccagag ccaaggcaga agaaatgctt
      301 agcaaacagc ggcacgatgg ggcctttctt atccgagaga gtgagagcgc tcctggggac
      361 ttctccctct ctgtcaagtt tggaaacgat gtgcagcact tcaaggtgct ccgagatgga
      421 gccgggaagt acttcctctg ggtggtgaag ttcaattctt tgaatgagct ggtggattat
      481 cacagateta catetgtete cagaaaceag cagatattee tgegggacat agaacaggtg
      541 ccacagcage egacatacgt ecaggeette tttgaetttg atecceagga ggatggagag
      601 ctgggcttcc gccggggaga ttttatccat gtcatggata actcagaccc caactggtgg
      661 amaggagett gecaegggem gaeeggemig titteeeggem mitatgteme eeeeggame
      721 cggaacgtct aagagtcaag aagcaattat ttaaagaaag tgaaaaatgt aaaacacata
      781 caaaagaatt aaacccacaa gctgcctctg acagcagcct gtgagggagt gcagaacacc
      841 tggccgggtc accetgtgac ceteteactt tggttggaac tttagggggt gggagggggc
      901 gttggattta aaaatgccaa aacttaccta taaattaaga agagttttta ttacaaattt
      961 teactgetge teetetttee ecteettgt ettttttte ateettttt etettetgte
     1021 catcagtgca tgacgtttaa ggccacgtat agtcctagct gacgccaata ataaaaaaca
     1081 agaaaccaaa aaaaaaaaac ccgaattca
11
```

14/27 FIGURE 10

hSHIP cDNA Sequence

5' UNTRANSLATED REGION (1-128)

			RANSLATED RE			
1	GAATTCGCGG	CCGCCTCGAC	CCAAGAGGCA	ACGGGCGCA	GGTTGCAGTG	
51	GAGGGCCTC	CCCTCCCCTC	GCTCCTCTCT	GGCTCCTGGG	GOVERNOR	
101	GGCCCAGCCG	AGGAGGCCCA	CGCCCACCAT	GGTCCCCTGC	TOGARCOATO	STA
151	GCAACATCAC	CCCCTCCAAG	CCCACCACC	TICOTO COLOR	GACAGGGAAG	
201	GACGGGAGCT	TCCTCGTGCG	TECCAGCEAG	TOCAL TOCAL		
251	CONCORCO	CTGTATCGGA	y december 1	MACONICIICE	A CONTINUE C	
301	AMCAAGAMGA	TAAATTCACT	WII I COLLIIN	TUCTING OF	ATTOTOCCCA	
351	WIGHWICH ICH	AGCTGGACCA	GLICKOOCVI.	CCGAAGGCGT	CTCCATGAGG	
401		VCC.I.OOVCEV	GCTCATCGAG	TTTTACAAGA	AGGAAAACAT	
451	GGGGCTGGTG	ACCCATCTGC	AATACCCTGT	GCCGCTGGAG	GAAGAGGACA	
501	CAROCOACOA	CCCTGAGGAG	GAUACAGAAA	GIGICGIGIC	TCCACCCGAG	
	CIGCCCCCAA	GAAACATCCC	GCTGACTGCC	AGCTCCTGTG	AGGCCAAGGA	
551	GGTTCCTTTT	TCAAACGAGA	ATCCCCGAGC	GACCGAGACC	AGCCGGCCGA	
601	GCCTCTCCGA	GACATTGTTC	CAGCGACTGC	AAAGCATGGA	CACCAGTGGG	
651	CTTCCAGAAG	AGCATCTTAA	GGCCATCCAA	GATTATITAA	GCACTCAGCT	
701	CGCCCAGGAC	TCTGAATTTG	TGAAGACAGG	GTCCAGCAGT	CTTCCTCACC	
751	TGAAGAAACT	GACCACACTG	CTCTGCAAGG	AGCTCTATGG	AGAAGTCATC	
801		CATCCCTGGA				
851	CTCCCCGGGC	CTCCGTCCAC	GTCCTCAGGT	TCCTGGTGAG	GCCAATCCCA	
901	TCAACATGGT	GTCCAAGCTC	AGCCAACTGA	CAAGCCTGTT	GTCATCCATT	
951	GAAGACAAGG	TCAAGGCCTT	GCTGCACGAG	GGTCCTGAGT	CTCCGCACCG	
1001	GCCCTCCCTT	ATCCCTCCAG	TCACCTTTGA	GGTGAAGGCA	GAGTCTCTCG	
1051	GGATTCCTCA	GAAAATGCAG	CTCARAGTCG	ACCTUGACTO	TEGGARACTE	
1101	ATCATTAACA	AGTCCAAGGA	TOCOMPONE AC	CYCY FCHAIAL	*CYCCC*C*	
1151	CARACTO	CAGCTCATTA	JCTC JCACAA	THEMSTANCE FOR	* * CONTRACTOR	
1201	OUTUNICCIO	AACAGAGAAG	VOICHCUMUNE	MITTICIONAL PROPERTY	WOLLGGIGN	
1251	COTCACTOCA	AAAAGAGAGA	CAGARGATCE	10CCGGAAGGA	ATAIGITITI	
1301	GCTGACTCCA	AAAAGAGAGA	AGGCTTCTGC	CAGCTCCTGC	AGCAGATGAA	
1351		TCAGAGCAGC				
		CATGGGTAAC				
1401 1451	TTTCTCTCCA	AGGGGCAGGG	AAAGACGCGG	GACGACTCTG	CGGACTACAT	
	CCCCCATGAC	ATTTACGTGA	TCGGCACCCA	AGAGGACCCC	CTGAGTGAGA	
1501	AGGAGTGGCT	GGAGATCCTC	AAACACTCCC	TGCAAGAAAT	CACCAGTGTG	
1551	ACTITIAAAA	CAGTCGCCAT	CCACACGCTC	TGGAACATCC	GCATCGTGGT	
1601	GCTGGCCAAG	CCTGAGCACG	AGAACCGGAT	CAGCCACATC	TGTACTGACA	
1651	ACGTGAAGAC	AGGCATTGCA	AACACACTGG	GGAACAAGGG	AGCCGTGGGG	
1701	GTGTCGTTCA	TCTTCAATGG	AACCTCCTTA	GGGTTCGTCA	ACAGCCACTT	
1751	GACTTCAGGA	AGTGAAAAGA	AACTCAGGCG	AAACCAAAAC	TATATGAACA	
1801	TTCTCCGGTT	CCTGGCCCTG	GGCGACAAGA	AGCTGAGTCC	CTTTAACATC	
1851	ACTCACCGCT	TCACGCACCT	CTTCTGGTTT	GGGGATCTTA	ACTACCGTGT	
1901	GGATCTGCCT	ACCTGGGAGG	CAGAAACCAT	CATCCAAAAA	ATCAAGCAGC	
1951	AGCAGTACGC	AGACCTCCTG	TCCCACGACC	AGCTGCTCAC	AGAGAGGAGG	
2001	GAGCAGAAGG	TCTTCCTACA	CTTCGAGGAG	GAAGAAATCA	CGTTTGCCCC	
2051	AACCTACCGT	TTTGAGAGAC	TGACTCGGGA	CAAATACGCC	TACACCAAGC	
2101	AGAAAGCGAC	AGGGATGAAG	TACAACTTGC	CTTCCTGGTG	TGACCGAGTC	
2151	CTCTGGAAGT	CTTATCCCCT	GGTGCACGTG	GTGTGTCAGT	CTTATGGCAG	
2201	TACCAGCGAC	ATCATGACGA	GTGACCACAG	CCCIGICITI	CCCACATTTIC	
2251	ACCCAGGAGT	CACTTCCCAG	TETGTCTCCA	AGAACGGTCC	CCCCACTCTT	
2301		GACAGATTGA				
2351	CAAGTCCCAG	ACCAAATTCT	*CALCASONAL	CCACACCACC	TO T	
2401		GAGTCAGGAA				
2451		AGTTTGGTGA				
2501	TCRCCCCCACAC	TACCTGCTAG	SCORCORCEM	WARC TOWNS	COSTANICAC	
2551		CGAATCCTAT				
2601	CLCYCYCCGV	CGCAGCTGCC	CAMOUTACECT	ACMINITY CO.	TOUTTANA	
2651		CACTTCCAGG	CUTCTUCUCG		AUDUULAUUA	
2701	PCFCCFCCC;	GAAGCTCTAT	CYCUUUSUS :	ACT COLLEGE		
2751	AGTGGGCCAA	TOTOCOMOS :	GUCLLIGIAN	ACCORAGE CONTRACT	CONTRACTOR	
2801	CACCCS FCWC	POUPCOLONY			ACCURACION A	
2851	P P B WAT WAY	CCCCAACTAC	PACCOLOGICA	COCCICC CALIFOCACC	AGCATCACTG	
	WAY I CTI CAY	TCLLLANCIAC	WIGGERMANN.	WCCCTTTGG	CCCACCAATG	
2901	CLCCTGCALG	TGAAGCAGAC	LTIGICCCT	GACTAGCAGC	CCACAGCCTG	
4771	GAGCTACGAC	CAGCCCCA	AGGACTECEC	GCTGGGGCCC	TGCAGGGGAG	
3001	AAAGTCCTCC	GACACCTCCC	GGCCAGCCGC	CCATATCACC	CAAGAAGTTT	

START CODON

STOP CODON

FIGURE 10 CONT'D

3051	TTACCCTCAA	CAGCAAACCG	GGGTCTCCCT	CCCAGGACAC	AGGAGTCAAG
3101	GCCCAGTGAC	CTGGGGAAGA	ACGCAGGGGA	CACGCTGCCT	CAGGAGGACC
3151	TGCCGCTGAC	GAAGCCCGAG	ATCTTTGAGA	ACCCCCTGTA	TGGGTCCCTG
3201	AGTTCCTTCC	CTAAGCCTGC	TCCCAGGAAG	GACCAGGAAT	CCCCCAAAAT
3251	GCCGCGGAAG	GAACCCCCGC	CCTCCCCGGA	ACCCGGCATC	TTGTCGCCCA
3301	GCATCGTGCT	CACCAAAGCC	CAGGAGGCTG	ATCGCGGGGA	GGGGCCCGGC
3351	AAGCAGGTGC	CCGCGCCCCG	GCTGCGCTCC	TTCACGTGCT	CATCCTCTGC
3401	CGAGGGCAGG	CCGCCCGGCC	GGGACAAGAG	CCAAGGGAAG	CCCAAGACCC
3451	CGGTCAGCTC	CCAGGCCCCG	GTGCCGGCCA	AGAGGCCCAT	CAAGCCTTCC
3501	AGATCGGAAA	TCAACCAGCA	GACCCCGCCC	ACCCCGACGC	CGCGGCCGCC
3551	GCTGCCAGTC	AAGAGCCCGG	CGGTGCTGCA	CCTCCAGCAC	TCCAAGGGCC
3601	GCGACTACCG	CGACAACACC	GACCTCCCGC	ATCACGGCAA	GCACCGGCCG
3651	GAGGAGGGC	CACCAGGGCC	TCTAGGCAGG	ACTGCCATGC	AGTGAAGCCC
3701	TCAGTGAGCT	GCCACTGAGT	CCGGAGCCCA	GAGGAACGGC	GTGAAGCCAC
3751	TGGACCCTCT	CCCGGGACCT	CCTGCTGGCT	CCTCCTGCCC	AGCTTCCTAT
3801	GCAAGGCTTT	GIGTTITCAG	GANAGGGCCT	ACCTTCTGTG	TGGCCCACAG
3851	AGTTCACTGC	CIGIGAGGCT	TAGCACCAAG	TGCTGAGGCT	GGAAGAAAAA
3901	CGCACACCAG	ACGGGCAACA	AACAGTCTGG	GTCCCCAGCT	CCCTCTTGGT
3951	ACTTGGGACC	CCAGTGCCTC	GTTGAGGGCG	CCATTCTGAA	GAAAGGAACT
4001	GCAGCGCCGA	TTTGAGGGTG	GAGATATAGA	TAATAATAAT	ATTAATAATA
4051	ATAATGGCCA	CATGGATCGA	ACACTCATGA	TGTGCCAAGT	GCTGTGCTAA
4101	GTGCTTTACG	AACATTCGTC	ATATCAGGAT	GACCTCGAGA	GCTGAGGCTC
4151	TAGCCACCTA	AAACACGTGC	CCAAACCCAC	CAGTTTAAAA	CCCTCTCTCT
4201	TCGGAGGGGT	GAAAGCATTA	AGAAGCCCAG	TECCCTCCTG	GAGTGAGACA
4251	AGGGCTCGGC	CTTAAGGAGC	TGAAGAGTCT	GGGTAGCTTG	TTTAGGGTAC
4301	AAGAAGCCTG	TTCTGTCCAG	CTTCAGTGAC	ACAAGCTGCT	TTAGCTAAAG
4351	TCCCGCGGGT	TCCGGCATGG	CTAGGCTGAG	AGCAGGGATC	TACCTGGCTT
4401	CTCAGTTCTT	TGGTTGGAAG	GAGCAGGAAA	TCAGCTCCTA	TTCTCCAGTG
4451	GAGAGATCTG	GCCTCAGCTT	GGGCTAGAGA	TOCCAAGGCC	TGTGCCAGGT
4501	TCCCTGTGCC	CICCICCACC	TGGGCAGCCA	TCACCAGCCA	CAGITAAGCC
4551	AAGCCCCCA	ACATGTATTC	CATCGTGCTG	GTAGAAGAGT	CTTTCCTCTT
4601	GCTCCCGAAA	GCCGTGCTCT	CCAGCCTGGC	TGCCAGGGAG	GGTGGGCCTC
4651	TTGGTTCCAG	GCTCTTGAAA	TAGTGCAGCC	TTTTCTTCCT	ATCTCTGTGG
4701	CTTTCAGCTC	TGCTTCCTTG	GTTATTAGGA	GAATAGATGG	GTGATGTCTT
4751	TCCTTATGTT	GCTTTTTCAA	CATAGCAGAA	TTAATGTAGG	GAGCTAAATC
4801	CAGTGGTGTG	TGTGAATGCA	GAAGGGAATG	CACCCCACAT	TCCCATGATG
4851	GAAGTCTGCG	TAACCAATAA	ATTGTGCCTT	TCTTAAAAAT	TCGCGGCCGC
4901	GTCGACGTCG	ACCCGCCCC	GAATTC		

LINTRANSLATED REGION (3695-4925

16/27 **FIGURE 11**

hSHIP Amino Acid Sequence

1	MVPCWNHGNI	TRSKAEELLC	RTGKDGSPLV	RASESIFRAY	ALCVLYRNCV
51	YTYRILPNED	DKFTVQASEG	vshrfftkld	Ori ełakke n	EGLVTHLQ YP
101	VPLEEEDTGD	DPEEDTESVV	SPPELPPRNI	PLTASSCEAK	evp psnen pr
151	ATETSRPSLS	etleorlosm	DISGLPEEHL	KAIQDYLSTQ	LAQDSEFVKT
201	GSSSLPHLKK	LTTLLCKELY	CEVIRTLPSL	ESLQRLFDQQ	LSPGLRPRPQ
251	VPGEANPINM	vsklsqltsl	LSSIEDKVKA	LLHEGPESPH	RPSLIPPVTF
301	EVKAESLGIP	ÖKMÖ LKVDVE	sgrliikksk	DGSEDKFYSH	KKILQLIKSQ
351	KPLNKLVILV	ETEKEKILRK	eyvfadskkr	EGFCQLLQQM	KNKHSEQPEP
401	DMITIFIGTW	NMGNAPPPKK	ITSWPLSKGQ	GRTRDDSADY	IPHDIYVIGT
451	QEDPLSEKEW	LEILKHSLQE	ITSVTPKTVA	IHTLWNIRIV	VLAKPEHENR
501	ISHICTONVK	TGIANTLGNK	GAVÇVSFMFN	GTSLGFVNSH	LTSGSEKKLR
S 51	RNONYMNILR	FLALGDIC KLS	PPNITHR P TH	LFWFGDLNYR	VDLPTWEAET
601	IIQKIKQQQY	ADLLSHDQLL	TERREQUEVEL	HFBEERITFA	PTYRPERLTR
651	DKYAYTKQKA	TGMKYNLPSW	CDRVLWKSYP	LVHVVCQSYG	STSDIMTSDH
701	SPVFATFEAG	VTSQFVSKNG	PGTVDSQGQI	EFLRCYATLK	TKSQTKFYLE
751	PHSSCLESFV	KSQEGENEEG	SEGELVVKFG	etlpklk p ii	SDPEYLLDQH
801	ILISIKSSDS	DESYGEGCIA	LRLEATETQL	PIYTPL THH G	RLTGHPQGEI
851	KLQTSQGKTR	eklydfykte	RDESSCPRTL	KSLTSHOPMK	QWEVTSRAPP
901	CSGSSITEII	npnymcvgpp	GPPMPLHVKQ	TLSPDQQPTA	WSYDQPPKDS
951	PLGPCRGESP	PTPPGQPPIS	PKKPLPSTAN	RGLPPRTQES	RPSDLGRNAG
1001	DTLPQEDLPL	TRPEMPENPL	YGSLSSFPRP	APRKOQESPK	MPRKEPPPCP
1051	EPGILSPSTV	LTKAQEADRG	EGPGKQVPAP	RLRSPTCSSS	AEGRAAGGDK
1101	SQGKPKTPVS	SQAPVPAKRP	IKPSRSEINQ	OTPPTPTPRE	PLPVKSPAVL
1151	HLQHSKGRDY	RDNTELPHHG	KHRPEEGPPG	PLGRTAMQ	

OOF

310

320

habipc VTFEVKAESLGIPORMOLKVDVESGKLIIKKSKDGSEDKFYSHKKILQLIKSOKFLNKLV

330

17/27 FIGURE 12

(Peptide) PASTA of: hahipcom.pep from: 1 to: 1188 April 3, 1996 13:17 TRANSLATE of: hshipcom.com check: 8429 from: 129 to: 3693 generated symbols 1 to: 1188. TO: 145com.pep Sequences: 1 Symbols: 1,303 Word Size: 2 Scoring matrix: GenRunData:fastapep.cmp Variable pamfactor used Gap creation penalty: 12.0 Gap extension penalty: 4.0 The best scores are: init1 initn opt... /gcg/users/patty/145com.pep TRANSLATE of: 145com.com che...4283 4937 5189 hshipcom.pep /gcg/users/patty/145com.pep TRANSLATE of: 145com.con check: 4805 from: 130 to: 4040 generated symbols 1 to: 1303. SCORES Init1: 4283 Initn: 4937 Opt: 5189 87.2% identity in 1194 as overlap 30 40 hshipc MVPCWNHGNITRSKAEELLCRTGKDGSFLVRASESIFRAYALCVLYRNCVYTYRILP 145com MPAMVPGWNHGNITRSKAEELLSRAGKDGSFLVRASESIPRACALCVLFRNCVYTYRILP 10 20 30 40 90 60 80 - 100 habipc NEDDKFTVQASEGVSNRFFTKLDQLIEFYKKENMGLVTHLQYPVPLEEEDTGDDPEEDTE 145com NEDDKFTVQASEGVPMRPPTKLDQLIDFYKKENMGLVTHLQYPVPLEEEDAIDEAEEDTE 80 90 100 110 120 130 140 150 160 habipc Svvsppelpprnipltassceakevpfsnenpratetsrpslsetlforlosmotsglpe 145com SVMSPPBLPPRNIPMSAGPSBAKDLPLATENPRAPEVTRLSLSETLFORIQSMDTSGLPB 130 140 150 160 170 180 190 210 200 220 230 hahipc EHLKAIODYLSTQLAODSEFVKTGSSSLPHLKKLTTLLCKELYGEVIRTLPSLESLORLP 145com BHLKAIQDYLSTQLLLDSDFLKTGSSNLPHLKKIMSLLCKBLHGEVIRTLPSLBSLQRLP 190 200 210 220 230 240 240 270 250 260 280 290 habipc DQQLSPGLRPRPQVPGRAMPINMVSKLSQLTSLLSSIBDKVKALLHEGPESPHRPSLIPP 145com DQQLSPGLRPRPQVPGEASPITMVAKLSQLTSLLSSIEDKVKSLLHEGSESTNRRSLIPP 250 260 270 280 290

18/27 FIGURE 12 CONT'D

19/27 FIGURE 12 CONT'D

PCT/CA96/00655

20/27 FIGURE 13

(Nucleotide) FASTA of: hshipcom.com from: 20 to: 4896 April 3, 1996 13:08

TO: 145com.com Sequences: 4,040 Word Size: 6 1 Symbols: Scoring matrix: GenRunData:fastadna.cmp Constant pamfactor used Gap extension penalty: 4.0 Gap creation penalty: 12.0 init1 initn opt.. The best scores are: /gcg/users/patty/145com.com 8658 10037 10667 hshipcom.con /gcg/users/patty/145com.com Init1: 8658 Initn: 10037 Opt: 10667 SCORES 81.6% identity in 4019 bp overlap CCCAAGAGGCAACGGGCGGCAGGTTGCAG--TGG hshipc 145com CCCTGGTAGGAGCAGCAGGCAATTTCTGAGAGGCAACAGGCGGCAGGTCTCAGCCTAG 145com AGAGGGCCCTGAACTACTTTGCTGGAGTGTCCGTCCTGGGAGTGGCTGACCCAGTCC An habipe AGGAGGCCCACGCCCACGATGGTCCCCTGCTGGAACCATGGCAACATCACCCGCTCCAAG 145com AGGAGACCCATGCCTGCCATGGTCCCTGGGTGGAACCATGGCAACATCACCCGCTCCAAG hehipe TCCATCTTCCGGGCATACGCGCTCTGCGTGCTGTATCGGAATTGCGTTTATACTTACAGA 145com TCCATCCCCGGGCCTGCGCACTCTGCGTGCTGTTCCGGAATTGTGTTTACACTTACAGG hehipe ATTCTGCCCAATGAAGATGATAAATTCACTGTTCAGGCATCCGAAGGCGTCTCCATGAGG

145com ATTCTGCCCAATGAGGACGATAAATTCACTGTTCAGGCATCCGAAGGTGTCCCCATGAGG

5 -5 1		360	370	380	390	400	410
			ACCAGCTCATO	11. [4] [4]	14411314111	1111111111	1111
145com	TICTIC	icgaagetggi ·370	ACCAGCTCATO	GACTTTTACI 390	AGAAGGAAAI 400	CATGGGGCTG	GTG 420
		420	430	440	450	460	470
hahipc	ACCCATO	TGCAATACC	TGTGCCGCTG		ACACAGGGG	CGACCCTGAC	GAG
145com			CGIGCCCCTG	GAGGAGGAG(ATGCTATTG	TGAGGCTGAG	GAG
					460	470	480
hshipc			490 IGTOTOCACO				530 NGCC
145com	GACACTO	Saaagtgtca:	IIII IIIII IGTCACCACCI	 GAGCTGCCT	CCAGARACAT	 MCCTATGTCT	recc
		490	500	510	520	530	540
hahinc	AGCTCC	540 YETGAGGCCAI	550 AGGAGGTTCCT	560	570	580	590
	- []}				11111 11111	1111 1111	1
145¢0m	000000	550	560	570	580	590	600
		600	610	620	630	640	650
•	1 11111		CCGAGACATIC	HI 11111 I	11 11 11111	1111 111111	
145com	ACCCGGG	TGAGTCTCTC	CCGAGACACTY 620	STITCAGCGT(630	TACAGAGCA1	GGATACCAGT	IGGG 660
•		. 660	670	680	690	700	710
hshipc		SAAGAGCATC	TAAGGCCATC				
145com			rgaaagccato 680	CAGGATTAT			
·				690	700	710	720
hshipc	TCTGAAT	720 TIGIGAAGA	730 CAGGGTCCAGG	740 AGICTTCCT	750 ACCTGAAGAI	760 MCTGACCACI	770 CTG
145com	TCCGAC		 CGGGCTCCAG	LAACCTCCCT(ACCTGAAGA:	GCTGATGTCI	VCTG
		730	740	750	760	770	780
hshipc	CTCTGC	VBO NAGGAGCTCTI	790 ATGGAGAAGT(800 CATCCGGACC	810 TCCCATCCC	820 NGBGTCTCTC	830 20ac
_		111111111	 ATGGGGAAGT	HIII	[1 [] [] [] [] [] []	Шини	$\Pi\Pi$
	01010	790	800	810	820	830	840
	3 00000	840	850	860	870	880	890
	11111	11111111	AGCTCTCCCC	11111 11			111
145com	AGGTTG	PTTGACCAAC 850	AGCTCTCCCC 860	AGGCCTTCGC(870	CACGACCTCI 880	NGGTGCC CGGI	900
		900	910	920	930	940	950
	1111	1111111 11		111111111	1111111		1111
145com	GCCAGT	910	TGGTTGCCAA 920	ACTCAGCCAA: 930	TGACAAGTC	PSO	960

Name		960	9 70	980	990	1000	1010
1020	hahipc GAA	GACAAGGTCA	GCCTTGCT	CACGAGGGT	CCTGAGTCTC	CGCACCGGCC	CICCCTT
1020	145com GAA	GATAAGGTCAA	CTCCTTGCT	CACGAGGGC	ICAGAATÇTA	[rcccii
ATCCCTCCGGTCACCTTTGAGGTCAAGGCAGGTCTCTGGGGATTCCTCAGAAAATCCGGG		970	980	990	1000	1010	1020
	hahine ATC		1030	1040	1050	1060	1070
1030 1040 1050 1060 1070 1080 1080 1080 1080 1090 1100 1110 1120 1130 1130 1140 1140 1150 1130 1140 1150 1150 1160 1170 1180 1140 1140 1150 1160 1170 1180 1190 1100 1110 1120 1130 1140 1150 1150 1160 1170 1180 1190 1200 1200 1210 1220 1230 1240 1250 1250 1260 1270 1280 1290 1200 1210 1250 1260 1250 1260 1270 1280 1290 1200 1210 1250 1260 1250 1260 1250 1260 1250 1260 1250 1260 1250 1260 1250 1260 1250 1260 1250 1260 1250 1260 1250 1260 1250 1260 1250 1260 1270 1280 1290 1300 1310 1320 1350 1360 1370 1360	111	14111 11111		1111 1111	[] [[]] [111111111	111111
heatipe CTCARAGTOGACGTTGGGTTGGGARACTGGTTCTAGG	145COR ATC						
hshipc CTCARAGTOGACGTTGACTCTGGGARACTGATCATTARGARGTCCARGGATGGTTCTGAG		1080	1090	1100	1110	1120	1130
1950	hshipe CTC	AAAGTCGACGT	TGAGTCTGG	BARACTGATC	ATTANGAAGT	CCAAGGATGG	TTCTGAG
1140	145com CTC	NAAGTGGACGT	TGAGTCTGG	BARACTGATC	GTTAAGAAGT	CCAAGGATGG	TTCTGAG
145com GACAAGTTCTACAGCCACAAGAAAATCCTGCAGCTCATTAAGTCACAGAAATTTCTGAT		1090	1100	1110	1120	1130	1140
	hahipe GAC					1180 CACAGAAATT	
1200 1210 1220 1230 1240 1250	111	11111111111		[[]]	111111111	1 11111 11	111 11
145com	143COM GAC						
145com			1210	1220	1230	1240	1250
1260 1270 1280 1290 1300 1310 1310 1450 1260 1270 1280 1290 1300 1310 1310 1450 1260 1270 1280 1290 1300 1310 1310 1310 1310 1310 1310 1310 1310 1310 1310 1310 1310 1320 1270 1280 1290 1300 1310 1320 1320 1320 1330 1340 1350 1360 1370 1380 1340 1350 1360 1370 1380 1340 1350 1360 1370 1380 1340 1350 1360 1370 1380 1340 1350 1360 1370 1380 1340 1350 1360 1370 1380 1380 1340 1350 1360 1370 1380 1380 1340 1350 1360 1370 1380 1380 1390 1400 1410 1420 1430 1430 1450 1550	hshipc AAG	TIGGTGATCTT	rggtggaaaci	agagaaggagi 	AAGATCCTGC	GGAAGGAATA 	TGTTTTT
1260 1270 1280 1290 1300 1310 hahipe GCTGACTCCAARAAGAGGAAGGCTTCTGCCAGCTCCTGCAGCAGATGAAGACAAGCAC	145com AAG	TTGGTGATTT	rggtggagact	GGAGAAGGAG:	AAAATCCTGA	GGAAGGAATA	IGITITI
							1260
1320	hahipe GCT	GACTÇCAAAAJ	GAGAGAAGG	CTTCTGCCAG	CTCCTGCAGC	AGATGAAGAA	CAAGCAC
1320	145com GCT				CTCCTGCAGC	 AGATGAAGAA	 CAAGCAT
145com TCGGAGCAGCCAGAGCCTGACATGATCACCATCTTCATTGGCACTTGGAACATGGGTAAT 1330 1340 1350 1360 1370 1380 1380 1390 1400 1410 1420 1430 hshipc GCCCCCCTCCCAAGAAGATCACGTCCTGGTTTCTCTCCCAAGGGGCAGGGAAGACGCGG							
1330 1340 1350 1360 1370 1380 1380 1390 1400 1410 1420 1430 hshipe GCCCCCCCCCAAGAAGATCACGTCCTGGTTTCTCCCAAGGGGCAGGGAAAGACGCGG	11	11111111 []	1111 11114	E	11111 1111	F 11111111	
1380	145com TCG					-	
hshipe GCCCCCCTCCCAAGAAGATCACGTCCTGGTTTCTCTCCAAGGGGCAGGGAAAGACGCGGGGGGGG		1380	1390	1400	1410	1420	
145com GCACCCCTCCCAAGAAGATCACGTCCTGGTTTCTCTCCAAGGGGCAGGGAAAGACACGG 1390 1400 1410 1420 1430 1440 1440 1450 1460 1470 1480 1490 hshipc GACGACTCTGCGGGACTACATCCCCCATGACATTTACGTGATCGGCACCCAAGAGGGACCCC		CCCCCTCCCN	AGAAGATCAC	GICCIGGIII	CTCTCCAAGG	GGCAGGGAAA	
1440			AGAAGATCAC				GACACGG
hshipe GACGACTCTGCGGACTACATCCCCCATGACATTTACGTGATCGGCACCCAAGAGGACCCC		1390	1400	1410	1420	1430	1440
	hshipe GAC				-		
1450 1460 1470 1480 1490 1500 1500 1510 1520 1530 1540 1550 hshipc CTGAGTGAGAAGGAGTGGCTGGAGATCCTCAAACACTCCCTGCAAGAAATCACCAGTGTG	111	111111111111111111111111111111111111111	1333111111		11 11111 1	111111111111	HIII
hehipe CTGAGTGAGAAGGAGTGGCTGGAGATCCTCAAACACTCCCTGCAAGAAATCACCAGTGTG	143COW MAC						
						_	
			agtegetega 		CACTCCCTGC	AAGAAATCAC	
1510 1520 1530 1540 1550 1550 1560	145com CTT			GCTACTCAGG			CAGCATG

Labina b	1560	1570	1580	1590	1600	1610
Ť	CTTTAAACAGT(111111111	11 111111	11111 1111	1 11111111	141111
. 145com <i>A</i> J	CATITAAAACAGT 1570	1580	ACCETETGG 1590	AACATTCGCA' 1600	TAGTGGTGCT 1610	rgccaag 1620
	1620	1630	1640	1650	1660	1670
	CTGAGCACGAGAA(
	CAGAGCATGAGAA: 1630					
••	1680	1690				1730
	ACACACTGGGGAA	CAAGGGAGC	CTGGGGGTG	TCGITCATGT	TCAATGGAAC	CICCITA
	ACACCCTGGGAAA	CAAGGGAGC	GTGGGAGTG	TCCTTCATGT	TCAATGGAAC	CICCIIG
	1690	1700	1710	1720	1730	1740
	1740 GGTTCGTCAACAG		TCAGGAAGT			
	GGTTCGTCAACAG	, , , , , , , , , ,				
	1750	1760	1770	1780	1790	1800
	1800		1820		1840	1850
1	ATATGAACATICT	11111111	11111111	11111111111	1 11 11 11	1111111
145COM 1	ATATGAACATCCT 1810	1820	1830	IBACAAGAAGC 1840	1850	1860
	1860	1870	, 1880	1890	1900	1910
hshipe A	CTCACCGCTTCAC	GCACCTCTT	CTGGTTTGGC	GATCTTAACT	'accgtgtgga 	TCTGCCT
145com A	CCCACCGCTTCAC 1870	CCACCTCTN 1880	CTGGCTTGGC	GATCTCAACT 1900	ACCGCGTGGA 1910	GCTGCCC 1920
	1920	1930		1950	1960	1970
hshipc J	ACCTGGGAGGCAGA	AACCATCAT	CCAAAAAAT	CAAGCAGCAGC	AGTACGCAGA	CCTCCTG
145com J	ACTTGGGAGGCAGA	GGCCATCAT	CCAGAAGATY 1950	AAGCAACAGC	AGTATTCAGA 1970	CCTICIG 1980
hshipc !	1980 PCCCACGACCAGCT		GAGGAGGGA	GCAGAAGGTCT		
145com (CCCACGACCAAC	GCTCCTGGA	GAGGAAGGA		 .	
	1990	2000	2010	2020	2030	2040
hshipc (2040 Caacaaatcacgti	2050 TTGCCCCAAC			2080 ACTCGGGACAA	2090 ATACGCC
_			111 11 11	111 111111	[[11-11
	2050	2060	2070	2080	2090	2100
hehina	2100 TACACCAAGCAGA	2110 AAGCGACAGC		2130 Caacutecer	2140	2150
_	TACACCARGCAGA	1111 11111	1111111111	111111111	111111111111111111111111111111111111111	11111111
143000	2110	2120	2130	2140	2150	2160

hehino		2160 Aberrara	2170	2180 ACGTGGTGTG	2190	2200	2210
	111111		11 1711111	1 11111 11	111111 111	пинин	1 111
TISCOM		2170	2180	ATGTGGTCTG 2190	2200 -	2210	2220
		2220	2230	2240	2250	2260	2270
•	111111	111111111	[[[]]]	TCTTTGCCAC	11111 111	111111111111111111111111111111111111111	1 11
145com		ACGAGTGAC(2230	CACAGCCCTG 2240	TCTTTGCCAC	STITGAAGCA 2260	GGAGTCACAT 2270	2280
		2280	2290	2300	2310	2320	2330
hshipc	TITGIC	TCCAAGAAC	GTCCCGGGA	CIGITGACAG	CCAAGGACAG	ATTGAGTTTC	TCAGG
145com	TICGIC	TCCAAGAAT(2290	GTCCTGGCA 2300	CTGTAGATAG	CAAGGGCAG 2320	ATCGAGTTIC 2330	TTGCA 2340
		2340	2350	2360	2370		
hshipc	TGCTAT	GCCACATTG	AAGACCAAGT	CCCAGACCAA	ATTCTACCTG		
145com	TGCTAC	GCCACACTG	AAGACCAAGT	 CCCAGACTAA	GTTCTACTTG	GAGTTCCACT	
		2350	2360	2370	2380	2390	2400
hshipc		2400 GAGAGTTTT	2410 GTCAAGAGTC	2420 AGGAAGGAGA	2430 Aaatgaagaa	2440 GGAAGTGAGG	2450 GGGAG
	11111	1111111111	[]]]	HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	11111111	133111111 1	1 111
		2410		2430	2440	2450	2460
hehina	CTCCTC	2460 'GTGAAGTTT	2470 GGTGAGACTC	2480 TTCCAAAGCT	2490 GBBGCCCATT	2500	2510 ·
-	111111	11 1111	11 1111111	TTCCCAAGCT	111111111	1111111111	1 111
14 50010	CIGGIG	247 0	2480	2490	2500	2510	2520
		2520	2530	2540		2560	2570
	$\Pi\Pi$	И Шин	11 11111 1	icagcatcaa 		11 11111 1	11111
145com	TACTT	ACTGGACCAG 2530	CATATCCTGA 2540	ITCAGCATTAA 2550	ATCCTCTGAC 2560	AGTGACGAGT 2570	2580
		2580	2590	2600	2610	2620	2630
hshipc			GCCCTTCGGT	TAGAGGCCAC			PACACG
145com	GGTGA	AGGCTGCATT 2590	GCCCTTCGCT 2600	TTGGAGACCAC 2610	AGAGGCTCAG 2620	CATCCTATC	ACACG 2640
		2640	2650	2660	2670	2680	2690
hshipc			GGGGAGTTG	ACAGGCCACTI	CCAGGGGGAG	ATCAAGCTG	
145com				ACTGGCCACTT 2670		· · · · · · · · · · · · · · · · · · ·	AGACC
		2700	2710	2720	2730		2700
hshipo		GGGCAAGACG	AGGGAGAAG	2720 CTCTATGACTI	TGTGAAGAC		2750 SAATCC
145com				CTCTATGACTT 2730			
		A / LU	2120	4130		4 / SU	2760

25/27

	3920	3 9 30	3940	3950	3960	3970		
hishipo	GCAACAAACAC	TCTG-GGTCG	CCAGCTCG	A CARBONAL PARTY		3770		
					TOGGACCCCC	WIGCCICG		
	1 11 1111		1 1 11 7	111 1 11		1 1111		
145com	ACGCCATACAC	SACAGCAGACA	GCGGCACTGG	STCTCAGAAC	II-GGATTCCT	GGGCCTTC		
	3940	3950	3960	3970	3980	3990		
	3980	3990	4000	4010	4020	4030		
hshipc	TIGAGGGCGCC	CATTCTGAAGA	AAGGAACTGC	AGCGCCGATT	TGAGGGTTCCAC	74564445		
	31 1111		11111111		• *	TUTUTU T		
145com TTCCAGTCGCCGTTTTAAAGAAAGGAACTAACGGAGCTGCTCATCCGA								
	4000	4010	4020	4030	4040			

! CPU time used:

Database scan: 0:00:00.8

! Post-scan processing: 0:00:01.4

Total CPU time: 0:00:02.4

| Output File: b.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| BLACK BORDERS
| IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
| FADED TEXT OR DRAWING
| BLURRED OR ILLEGIBLE TEXT OR DRAWING
| SKEWED/SLANTED IMAGES
| COLOR OR BLACK AND WHITE PHOTOGRAPHS
| GRAY SCALE DOCUMENTS
| LINES OR MARKS ON ORIGINAL DOCUMENT
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.