Prediction of the Distribution of Perceived Music Emotions Using Discrete Samples

Raphaël Romero

ENS Paris-Saclay

13/03/2018

Plan

- Reconnaissance automatique d'émotions dans la musique
- Approches existantes
- Modèle présenté dans l'article
- Evaluations

Plan

Reconnaissance automatique d'émotions dans la musique

Reconnaissance automatique des émotions

- Attribut "haut niveau" des morceaux musicaux.
- Problématique étudiée depuis longtemps dans la communauté.
- Plusieurs catégories d'émotions "exprimées", "perçues" et "ressenties".
- Ici il s'agit d'étudier l'émotion "perçue" par une approche machine learning.

Problématique

- Caractéristique fondamentalement subjective.
- Approche "universelle": tous les individus perçoivent la même émotion
- Limites : ne permet pas de faire de la prédiction avec une bonne précision
- Solution proposée : considérer une distribution probabiliste des émotions associée à un morceau donné.

Plan

- Reconnaissance automatique d'émotions dans la musique
- Approches existantes

Approches existantes

- Morceau → Features → Emotion (catégories ou valeurs continues)
- On apprend la fonction f : Features → Emotion sur des valeurs collectées auprès d'anotateurs humains.
- Approche catégorielle : assigner un ou plusieurs label à chaque morceau. ⇒ Classification
- Approche dimensionnelle : une émotion est un vecteur (ex : [Valence(humeur), Arousal(énergie)]) ⇒ Régression

Approches existantes

Thayer's arousal-valence emotion plane.

FIGURE 1 - Plan Valence-Arousal

Plan

- Reconnaissance automatique d'émotions dans la musique
- Approches existantes
- Modèle présenté dans l'article

Modèle présenté

- Morceau (d_s) \longrightarrow features (x_s) \longrightarrow distribution (p) sur le plan VA.
- Quantification : On restreint p à ses valeurs sur une grille uniforme de taille $G \times G$.
- $(i,j) \in [|1,G|]^2 \mapsto (V,A)_{i,j} = ((i-\frac{1}{2})\Delta 1,(j-\frac{1}{2})\Delta 1)$ où $\Delta = \frac{2}{G}$ est le pas de quantification.
- On modélise la sortie comme la distribution discrète $(y_{i,j}^{(s)})$ des émotions associées au clip d_s .

Formulation du problème

On cherche à estimer la fonction

$$f: x_s \mapsto y_s = [y_{1,1}^{(s)}, ..., y_{G,G}^{(s)}]$$

- Sous l'hypothèse que les G^2 valeurs d'émotions sont indépendants, cela revient à estimer les G^2 fonctions $f_{i,j}: x_s \mapsto y_{i,i}^{(s)}$.
- Points à préciser : collecte d'une réalité terrain, algo de régression, features utilisées.

Réalité terrain

- On demande à chaque utilisateur de cliquer un point de l'espace V-A.
- On obtient une liste de U_s points (U_s est le nombre d'utilisateurs) $(q_{su})_{s=1,...,U_s}$ dont les positions ne sont pas forcément sur la grille : $\{p_{i,i}=(i-\frac{1}{2})\Delta-1,(i-\frac{1}{2})\Delta-1\}i,i=1,...,G\}$

Exemples d'annotations

FIGURE 2 - Annotations récoltées par les auteurs

Réalité terrain

• Les poids sont estimés à l'aide d'un noyau gaussien :

$$y_{i,j}^s = rac{1}{U_s} \sum_{u=1}^{U_s} K(p_{i,j} - q_{s,u})$$

- $K(z) = \frac{1}{2\pi|\Sigma|^{\frac{1}{2}}} exp(-\frac{1}{2}z^T\Sigma^{-1}z)$, $\Sigma = diag(h_a, h_v)$.
- Pour chaque point $p_{i,j}$, chaque utilisateur a une contribution au poids $y_{i,j}^s$ à hauteur d'un coefficient qui décroît exponentiellement en $||p_{i,j}-q_{su}||_{\Sigma}^2$.

Réalité terrain

FIGURE 3 – Exemple d'annotations données dans l'article

Régression

- On entraı̂ne G^2 régresseurs.
- Chaque $f_{i,j}$ est entraîné sur la base de donnée $(x_s, y_{i,j}^s)_{s=1,...,N}$, construite précédemment.
- Critère à minimiser :

$$\epsilon = \frac{1}{N} \sum_{s=1}^{N} (y_{i,j}^s - f_{i,j}(x_s))^2$$

(Mean squared-error)

Régression : méthode utilisée

• Support vector regression : f est modélisée par :

$$f(x_s) = m^T \phi(x_s) + b$$

- ullet ϕ est une transformation de l'espace des features dans un espace de redescription.
- Le noyau associé est $K(x_p, x_q) = \phi(x_p)^T \phi(x_q)$.
- On prend généralement $K(x_p, x_q) = exp(-\gamma ||x_p x_q||^2)$ (noyau RBF) en ajustant bien le paramètre γ .
- Les paramètres m et b sont obtenus en résolvant le problème d'optimisation associé au SVM.

Régression : Fusion de régresseurs

- Plusieurs features peuvent être extraites d'un même morceau.
- Chaque représentation explique un aspect de l'émotion perçue.
- Idée : aggréger linéairement les régresseurs obtenus pour chaque clip.

Régression : Fusion de régresseurs

- Les T représentations du morceau d_s sont notées $x_s^t, t = 1, ..., T$
- Pour chaque représentation on entraı̂ne un régresseur f_{ij}^t sur une base de donnée de morceaux annotés $(x_s, y_{i,j}^s)_{s=1,\dots,N}$
- Le régresseur final sera une moyenne pondérée de ces régresseurs :

$$\hat{y_{ij}^s} = \sum_{t=1}^{T} w_{ij}^t f_{ij}^t (x_s^t)$$

.

Régression : Choix des pondérations

Exemple de modèle : EQM gaussienne :

$$||f^* - \hat{f}|| \sim \mathcal{N}(\lambda, \sigma^2)$$

On estime lambda par l'inverse de l'EQM empirique

$$\lambda_{ij}^{t} = \frac{N}{\sum_{s=1}^{N} (y_{i,j}^{s} - f_{i,j}^{t}(x_{s}^{t}))^{2}}$$

- On en déduit les poids $w_{ij}^t = \frac{\lambda_{ij}^t}{\sum_{t'=1}^T \lambda_{ij}^{t'}}$
- Autre possibilité : coefficient de détermination (R²)

Choix des features

Feature Set	#	Features
Melody/ Harmony	10	Salient pitch, chromagram center, key clarity, mode, and harmonic change [60]. Take mean and standard deviation for temporal integration [61].
Spectral	10	32 spectral flatness measures, 32 spectral crest factors [62], and 26 Mel-scale frequency cepstral coefficients [63]. Take the first ten principal components for dimension reduction [47].
Temporal	6	Mean and standard deviation of zero-crossing rate, temporal centroid, and log attack time [64].
Rhythmic	10	60-bin rhythm histogram and average tempo [65]. Take the first ten principal components.
Lyrics	10	Probability distribution over ten latent topics [66].

FIGURE 4 – Tableau récapitulatif des features utilisées

Evaluation

- Plusieurs mesures de performances :
- Coefficient de détermination : indique à quel point le modèle explique la variance des observations. $\leftarrow R^2 \approx 0.54$ enmoyenne
- Distance entre distribution prédite et réalité terrain.

Commentaires

- On aurait pu comparer le SVR avec d'autres régresseurs.
- Un certain nombre de paramètres sont à adapter empiriquement dans le modèle.
- Approche "spécifique" au genre considéré (pop anglaise).

Conclusion

- Première méthode modélisant l'émotion comme une distribution.
- Les résultats sont relativement proches de la réalité-terrain.
- Répond en partie au problème de subjectivité en reconnaissance d'émotions.

Merci de votre attention