Deducción en Lógica de Primer Orden (LPO)

Formas normales y cláusulas

Una cláusula en LPO es

Subfórmulas de una fórmula F:

- si *F* es un átomo entonces *F* es su única subfórmula
- si F es de la forma $\neg G$ o $\forall xG$ o $\exists xG$, entonces las subfórmulas de F son F y las subfórmulas de G
- si F es de la forma $(G \wedge H)$ o $(G \vee H)$, etonces las subfórmulas de F son F y las subfórmulas de G y G

Transformación a forma clausal

1. **Movimiento de negaciones hacia dentro:** Aplicamos esta regla exhaustivamente hasta que todas las negaciones se apliquen directamente a los átomos.

Ejemplo:
$$\neg \exists xF \implies \forall x \neg F \text{ o } \neg \forall xF \implies \exists x \neg F$$

2. **Eliminación de conflictos de nombre:** Por ejemplo $\forall x P(x) \land \forall x \neg Q(x)$ se puede convertir a la fórmula equivalente $\forall x P(x) \land \forall y \neg Q(y)$.

Es necesario empezar el reemplazamiento de nombre por las fórmulas más internas.

3. **[OPCIONAL] Movimiento de cuantificadores hacia dentro:** Este paso no es imprescindible pero nos ayudará para la *Skolemización*.

Por ejemplo
$$\forall x(F \vee G) \implies \forall xF \vee G \quad \text{si } x \text{ no aparece en } G$$

- 4. **Skolemización:** consiste en reemplazar una subfórmula $\exists yG$ por otra G' sin la variable y. Reemplazamos y por un término t donde:
 - $\circ t$ es una constante fresca c_y , si y no se encuentra en el ámbito de ninguna variable universalmente cuantificada

Ejemplo:
$$\exists y \forall x \ p(x,y)$$
 pasa a ser $\forall x \ p(x,c_y)$

• t es $f_y(x_1, \ldots, x_n)$, donde f_y es un símbolo de función fresco, si $\{x_1, \ldots, x_n\}$ es el conjunto no-vacío de las variables universalmente cuantificadas en cuyo ámbito se encuentra y.

```
Ejemplo: \forall x \exists y \ p(x,y) pasa a ser \forall x \ p(x,f_y(x))
```

5. **Movimiento de cuantificadores universales hacia fuera:** Después de aplicar esta regla exhaustivamente, la fórmula tendra todos los cuantificadores universales al principio.

Por ejemplo:
$$(\forall xF) \lor G \implies \forall x(F \lor G)$$

6. **Distribución de** \land **sobre** \lor : Por ejemplo $(F \land G) \lor H \implies (F \lor H) \land (G \lor H)$

Siguiendo todos estos pasos, tendremos una expresión de la forma:

$$\forall x_1 \ldots \forall x_k \ ((l_{11} \lor \ldots \lor l_{1n_1}) \land \ldots \land (l_{m1} \lor \ldots \lor l_{mn_m}))$$

Habitualmente no pondremos los cuantificadores universales pues se sabe y se asume que en una cláusula todas las variables están universalmente cuantificadas.