Оставшееся время 2:28:20

Вопрос 1

Пока нет ответа

Балл: 0,32

Иногда приходится иметь дело с трехмерными поверхностями, т.е. результатом табулирования функции от двух переменных z = f(x, y). Сейчас, как правило, с восприятием таких графиков нет никаких проблем - есть много способов создать интерактивный трехмерный график, который можно вертеть и масштабировать как угодно. Но если мы говорим о статичной картинке, то с пониманием графика возникают некоторые трудности. Выход нашли ещё до появления компьютеров, при издании карт местности, который заключается в том, что строят не трехмерный график, а его отображение на плоскости. Это отображение получают по следующим правилам: берут заданное количество плоскостей, параллельных плоскости ху, и выделяют место пересечения поверхности с каждой из этих плоскостей - контуры, затем проецируют данные контуры на плоскость ху и всё - график готов.

Каждому контуру соответствует определенное значение величины z, его подписывают рядом с контуром.

Перед нами стоит задача минимизировать некоторую функцию потерь, contour plot которой изображен ниже.

Выберите все верные утверждения:

- ✓ На картинке есть как области локальных минимумов, так и области локальных максимумов
- □ В точке (x,y)=(16,20) значение функции близко к своему минимальному значению.
- □ По графику можно точно определить минимальное значение функции, оно равно 15
- Функция имеет несколько локальных экстремумов

На картинке нарисованы графики плотности распределения (pdf) и функции распределения (cdf) некоторой случайной величины.

Выберите верный вариант ответа:

- Оранжевый график не может быть плотностью
- Оранжевый график это функция распределения, синий плотность
- Мода случайной величины равна примерно 1.8
- Оранжевый график это плотность, синий - функция распределения

Очистить мой выбор

Вопрос **3** Пока нет ответа Балл: 0,32

Аналитик Вася с утра просыпается с головной болью и попадает по нужной клавише на клавиатуре с вероятностью 0.7. Найдите математическое ожидание количества правильно нажатых клавиш в предложении из 40 символов.

Ответ: 28

Вопрос 4

Пока нет ответа

Балл: 0,32

Инженер данных Сергей построил пайплайн для сбора и хранения данных. Сергей утверждает, что в его алгоритме данные теряются с вероятностью 2%. Затем пришел инженер данных Виталий и, проверяя гипотезу Сергея, заявил, что такая маленькая потеря данных невозможна. Сергей обиделся и протестировал свой алгоритм многократными проверками, при этом каждый раз только 2% данных терялось.

Выберите верное утверждение:

- Виталий не совершил ошибку, ошибку совершил Сергей - но какого рода, неизвестно
- Виталий совершил ошибку первого рода
- Виталий совершил ошибку второго рода

Очистить мой выбор

Вопрос 5 Пока нет ответа Балл: 0,32

Предположим, вы проводите исследование благосостояния граждан по странам. Имеющиеся у вас данные включают в себя уровень дохода, среднегодовую температуру в месте проживания респондента, степень удовлетворенности жизнью, ВВП на душу населения, возраст респондента, его рост и другие характеристики для 100 тысяч граждан 100 государств. Хотим построить модель, которая будет по данным для человека предсказывать уровень благосостояния - любое число на отрезке от 1 до 100 (где 1 низкий уровень, а 100 - высокий уровень). Ответ может быть любым числом из отрезка [1; 100], в том числе и нецелым. Выберите все верные утверждения (их

два):

- □ Имеем дело с задачей классификации
- ✓ Объектом является гражданин страны
- Будем работать над решением задачи регрессии
- □ Объектом в этой задаче является страна

Вопрос 6

Пока нет ответа

Балл: 0,32

Цель банка - найти мошенников при совершении банковских операций (мошеннических транзакций на несколько порядков меньше, чем не мошеннических). Пусть при обучении классификации для выявления мошеннических транзакций в банке ассигасу на тренировочных данных получилось равным 0.9, а на тестовых - 0.85. О чем может говорить эта ситуация?

Для решения задачи использовали логистическую регрессию с Lassoрегуляризацией.

Выберите наиболее подходящий вариант ответа.

- Модель недообучилась, так как качество на трейне низкое
- Модель обучилась как надо (нет ни недообучения, ни переобучения)
- Неизвестно, переобучилась или недообучилась модель, так как выбрана плохая метрика для данной задачи
- Модель переобучилась, так как качество на тесте ниже, чем на трейне.

Очистить мой выбор

Вопрос	:7	
Пока нет ответа		
Балл: С),32	
	текст: "Но не каждый хочет что-то равлять :("	
	ле некоторой обработки училось:	
_	но', ' ', 'не', ' ', 'каждый', ' ', 'хотеть', ' ', -то', ' ' , 'исправлять', ':(\n']	
	берите все шаги, которые были ланы с исходным текстом:	
	Стемминг (stemming)	
✓	Токенизация (tokenization)	
	Векторизация (vectorization)	
~	Лемматизация (lemmatization)	
Вопрос Пока н Балл: 0	ет ответа	
опр пац Мы назі здо такх 854	решаем задачу классификации - еделения по МРТ-снимкам, болен иент некоторой болезнью или нет. не хотим часто ошибаться, то есть ывать больных здоровыми, но и ровых называть больными мы же не хотим. В обучающих данных 3 пациента, из которых 4100 ьных, а остальные здоровые.	
	ие метрики можно использовать измерения качества модели в	

этой задаче?

Accuracy

✓ F1-score☐ MAPE

error)

Recall кривой)

✓ AUC-PR (площадь под Precision-

☐ MSLE (mean squared logarithmic

https://edu.hse.ru/mod/quiz/attempt.php?attempt=4826076&cmid=1177751

Вопрос 9	
Пока нет ответа	
Балл: 0,32	

Выберите два корректных утверждения про градиентный спуск:

- На каждом шаге алгоритма считается градиент от одного, случайно выбранного элемента.
- Если сделать длину шага градиентного спуска недостаточно маленькой, то алгоритм может разойтись.
- □ Градиентный спуск применяется для нахождения максимума функции потерь
- ✓ Правильный подбор шага градиентного спуска позволяет уменьшить количество шагов, необходимых для поиска минимума

Балл: 0,32

Вопрос 10 Пока нет ответа

Напомним, что существует формула для разложения ошибки модели на шум, смещение и разброс:

[Математическая ошибка]

[Математическая ошибка] - смещение модели, [Математическая ошибка] - разброс, [Математическая ошибка] - шум в данных.

На некоторых данных обучили линейную регрессию. Как изменятся компоненты [Математическая ошибка] и [Математическая ошибки линейной регрессии, если добавить в данные для обучения модели полиномиальные признаки степени 2? Среди перечисленных ниже два ответа верные.

- ✓ [Математическая ошибка] увеличится
- [Математическая ошибка]уменьшится
- ✓ [Математическая ошибка] не изменится
- [Математическая ошибка]уменьшится
- [Математическая ошибка] увеличится
- □ [Математическая ошибка] не изменится

Вопрос 11

Пока нет ответа

Балл: 0,32

На рисунке ниже изображен некоторый алгоритм кластеризации. А какой?

- DBSCAN
- O K-means
- О Спектральная кластеризация
- Аггломеративная (иерархическая) кластеризация

Очистить мой выбор

🕲 Служба поддержки сайта

Вы зашли под именем Татауров Матвей Никитич (Выход)