SHRI RAMDEOBABA COLLEGE OF ENGINNERING AND MANAGEMENT, NAGPUR

NAME:TINA BORUNDIA

BATCH:C3

ROLL NO:65

Experiment:1

Aim:To Use Sage as a AdvancedCalculator

```
In [1]: 222+1
Out[1]: 223
In [2]: 25/5
Out[2]: 5
In [3]: 11*8
Out[3]: 88
In [4]: 999/11
Out[4]: 999/11
In [5]: 111-11
Out[5]: 100
In [6]: | 999/11.n()
Out[6]: 90.81818181818
In [7]: 999/11.0
Out[7]: 90.81818181818
In [8]: cos(45)
Out[8]: cos(45)
```

```
In [10]: cos(45).n()
Out[10]: 0.525321988817730
In [11]: sin(pi).n()
Out[11]: 0.000000000000000
In [12]: pi.n(digits=3)
Out[12]: 3.14
In [17]: | pi/2.n(digits=6)
Out[17]: 0.500000*pi
In [18]: | show(asin(1))
In [19]: log(3)
Out[19]: log(3)
In [20]: ln(3.0)
Out[20]: 1.09861228866811
In [21]: \log(3.0,2)
Out[21]: 1.58496250072116
In [22]: exp(1.0)
Out[22]: 2.71828182845905
In [23]: e^1.0
Out[23]: 2.71828182845905
In [26]: factorial(99.0)
Out[26]: 9.33262154439442e155
In [27]: a=1+4
Out[27]: 5
In [28]: a=99<sup>3</sup>
```

```
In [29]: a
Out[29]: 970299
In [31]: a.digits()
Out[31]: [9, 9, 2, 0, 7, 9]
In [32]: | a.factor()
Out[32]: 3^6 * 11^3
In [35]: a.is_prime()
Out[35]: False
In [36]: gcd(2,4)
Out[36]: 2
In [37]: lcm(13,11)
Out[37]: 143
In [38]: list(primes(1,100))
Out[38]: [2,
          3,
           5,
           7,
          11,
          13,
          17,
          19,
           23,
          29,
          31,
           37,
          41,
          43,
          47,
          53,
          59,
          61,
          67,
          71,
          73,
          79,
          83,
          89,
          97]
```

defining a function

$f(x)=\sin(x^2)e^{-x}+3x+1$

```
In [41]: f=\sin(x^2)*e^(-x)+3*x+1
           show (f)
          e^{(-x)}\sin\bigl(x^2\bigr)+3\,x+1
In [42]: f(2.0)
Out[42]: 6.89757791994333
In [43]: f(3).n()
Out[43]: 10.0205181712004
In [44]: show(diff(f,x))
          2\,x\cos(x^2)e^{(-x)}-e^{(-x)}\sin(x^2)+3
In [53]: def R(a,b,c):
               x1=(-b+sqrt(b^2-4*a*c))/(2*a)
               x2=(-b-sqrt(b^2-4*a*c))/(2*a)
               return(x1,x2)
In [54]: show(R(2,1,3))
           \left(rac{1}{4}\sqrt{-23}-rac{1}{4},-rac{1}{4}\sqrt{-23}-rac{1}{4}
ight)
In [55]: def A(b,h):
               s=(1/2)*b*h
               return(s)
In [56]: show(A(2,3))
           3
In [58]: def H(a,b,c):
               s=(a+b+c)/2
               T=sqrt(s*(s-a)*(s-b)*(s-c))
               return(T)
           show(H(1,2,3))
           0
```

```
In [65]:
         k=0
         for i in range (1,51) :
             k=k+i
Out[65]: 1275
In [66]: k=0
         for i in range (1,6) :
             k=k+i
         k
Out[66]: 15
In [67]: def S(n):
             a=n*(n+1)/2
             return (a)
In [68]: S(50)
Out[68]: 1275
In [69]: show(S(51))
         1326
```

Exercise Problem

1. Find the roots of $x^3-2x^2-5x+6=0$.

```
In [71]: solve([x^3-2*x^2-5*x+6],x)
Out[71]: [x == 3, x == -2, x == 1]
```

2. Solve the system of non linear equations $x^2+y^2=4$ and $y=x^2-2$ for x and y.

```
In [78]: var('x,y')
solve([x^2+y^2-4,x^2-y-2],x,y)
Out[78]: [[x == -sqrt(3), y == 1], [x == sqrt(3), y == 1], [x == 0, y == -2]]
```

3. Find the number digits in 1050! and how many zeros are there in 1050!

```
In [81]: a=factorial(1050)
```

4. Find the factors of sum of digits of 1275!.

```
In [1]: r=factorial(1275)
    sum(r.digits())

Out[1]: 13608

In [2]: factor(13608)

Out[2]: 2^3 * 3^5 * 7
```

5. Evaluate int {cos(x)}/{sqrt{sin(x)+1}}dx

6. Find the fifth order derivative of $f(x) = ln(x) + 3x^3 + cos(2x)$

7. Suppose an investment is made to a bank by an indivisual. The bank gives an annual interest at the rate 4%. Return is calculated by using compound interest. Create an user defined function to input the investment amount, the number of years for which investment is made, and print the returns.

What you Learn:

I learned to do basic calculations, integration, differentiation, and many other things using Sagemath.

```
In [ ]:
```