1. Considerati i due insiemi $A = \{a, b, c\}$ e $B = \{1, 2, 3, 4\}$, dire quali tra le seguenti relazioni $h_i \subseteq A \times B$ sono applicazioni:

$$h_1 = \{(a, 1), (b, 2)\}\$$

$$h_2 = \{(a, 2), (b, 3), (c, 4)\}\$$

$$h_3 = \{(a, 2), (b, 2), (c, 3)\}\$$

$$h_4 = \{(a, 1), (b, 2), (c, 3), (c, 2)\}\$$

$$h_5 = \{(a, 3), (b, 1), (c, 2)\}\$$

2. Dire quali tra le seguenti relazioni binarie sono riflessive, simmetriche, transitive:

```
\forall x, y \in \mathbb{Q}, \quad xh_1y \Leftrightarrow x+y \in \mathbb{Z}

\forall x, y \in \mathbb{Q}, \quad xh_2y \Leftrightarrow x-y \in \mathbb{Z}

\forall x, y \in \mathbb{N}, \quad xh_3y \Leftrightarrow y \text{ è un multiplo di } x \text{ (ossia, esiste } n \in \mathbb{N} \text{ tale che } y = nx).
```

3. Dire quali tra le seguenti applicazioni sono iniettive, suriettive, biettive:

$$\begin{split} f: x \in \mathbb{Z} &\to 2x + x^2 \in \mathbb{Z} \\ g: x \in \mathbb{Z} &\to (x-1,2) \in \mathbb{Z} \times \mathbb{Z} \\ h: x \in \mathbb{N}^* &\to 2x-1 \in \mathbb{N}^* \\ p: x \in \mathbb{N}^* &\to x-1 \in \mathbb{N} \end{split}$$

4. Determinare le classi di equivalenza della relazione di equivalenza $\mathcal R$ su $\mathbb N$ tale che

$$x\mathcal{R}y \Leftrightarrow x+y$$
è pari.

5. Di quale delle seguenti equazioni lineari la quaterna $(1, 2, -1, 1) \in \mathbb{R}^4$ è una soluzione? (a) $x_1 + x_2 - x_3 + 2x_4 + 3x_5 = 1$; (b) $-2x_1 + x_2 + x_3 + x_4 = 0$; (c) $x_1 - 2x_2 - x_3 + x_4 = 2$. Quale delle seguenti *n*-uple di numeri reali è soluzione dell'equazione $2x_1 + x_2 + x_3 + 2x_4 = 1$? (a) (0, 3, 0, -1); (b) (1, -2, 0); (c) (1, 0, 1, 0); (d) (1, 2, 4, 1, 1).

- **6.** Si consideri l'insieme \mathbb{Q} dei numeri razionali con l'operazione $\star: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$ tale che per ogni $x,y \in \mathbb{Q}$ si ha $x \star y = x + y + |xy|$, dove il simbolo + indica l'addizione usuale tra numeri razionali. Dopo avere osservato che l'elemento nullo 0 è elemento neutro, far vedere che -2 è simmetrico sia di se stesso sia dell'elemento $\frac{2}{3}$. Infatti, questa operazione non è associativa.
- 7. Siano A un insieme non vuoto e $\mathcal{P}(A)$ l'insieme delle sue parti. Osservare che l'unione e l'intersezione sono delle operazioni interne su $\mathcal{P}(A)$. Quali proprietà sono soddisfatte da queste operazioni?
- 8. Cosa è un gruppo abeliano? Quali esempi di gruppo abeliano e di gruppo non abeliano conosci? Cosa è un campo? Quali esempi di campo conosci?

- 1. Cosa è uno spazio vettoriale su un campo? Quali esempi di spazio vettoriale conosci?
- 2. Rappresentare il vettore somma dei due seguenti vettori liberi:

Rappresentare il vettore libero che si ottiene moltiplicando per -2 quello già disegnato:

- 3. Dato l'insieme \mathbb{R}^2 delle coppie di numeri reali,
 - (i) dimostrare che $(\mathbb{R}^2, \oplus, \circ)$ è uno spazio vettoriale sul campo \mathbb{R} con le seguenti operazioni: $(x,y) \oplus (x',y') = (x+x'-2,y+y')$, per ogni $(x,y),(x',y') \in \mathbb{R}^2$ $h \circ (x,y) = (hx+2-2h,hy)$, per ogni $h \in \mathbb{R}$, per ogni $(x,y) \in \mathbb{R}^2$;
 - (ii) dimostrare che $(\mathbb{R}^2, \emptyset, *)$ non è uno spazio vettoriale su \mathbb{R} con le seguenti operazioni: $(x,y) \otimes (x',y') = (x+y',x'+y)$, per ogni $(x,y),(x',y') \in \mathbb{R}^2$ h*(x,y) = (hx,hy), per ogni $h \in \mathbb{R}$, per ogni $(x,y) \in \mathbb{R}^2$.

Si osservi che $(\mathbb{R}^2, \oplus, \circ)$ è uno spazio vettoriale diverso dallo spazio vettoriale numerico con lo stesso sostegno \mathbb{R}^2 .

4. Quali dei seguenti sottoinsiemi dello spazio vettoriale numerico \mathbb{R}^3 è linearmente chiuso rispetto alle operazioni definite su \mathbb{R}^3 ?

$$\begin{split} X &= \{\alpha(2,1,-1) + (1,0,1) \mid \alpha \in \mathbb{R}\} \subseteq \mathbb{R}^3, \\ Y &= \{(a,b,c) \in \mathbb{R}^3 \mid a+b=1\} \subseteq \mathbb{R}^3, \\ W &= \{\alpha(1,-1,2) + \beta(2,1,1) \mid \alpha,\beta \in \mathbb{R}\} \subseteq \mathbb{R}^3. \end{split}$$

5. Quali dei seguenti sottoinsiemi del sostegno $\mathbb{R}[x]$ dello spazio vettoriale dei polinomi in una variabile x a coefficienti in \mathbb{R} è linearmente chiuso rispetto alle operazioni definite su $\mathbb{R}[x]$?

$$Z = \{ax + a^2x^2 \mid a \in \mathbb{R}\}, \quad T = \{a + (a+b)x + bx^2 \mid a, b \in \mathbb{R}\}.$$

6. Quali dei seguenti sottoinsiemi del sostegno $\mathcal{M}_{2\times 2}(\mathbb{R})$ dello spazio vettoriale delle matrici su \mathbb{R} di tipo 2×2 è linearmente chiuso rispetto alle operazioni definite su $\mathcal{M}_{2\times 2}(\mathbb{R})$?

$$H = \left\{ \left(\begin{array}{cc} ab & b \\ a-b & 0 \end{array} \right) \mid a,b \in \mathbb{R} \right\}, \quad K = \left\{ \left(\begin{array}{cc} a+b & b \\ a-b & a \end{array} \right) \mid a,b \in \mathbb{R} \right\}.$$

- 7. Dato uno spazio vettoriale $(V, +, \cdot)$ su un campo K, cosa è un sottospazio vettoriale di V?
- 8. Dati t vettori v_1, \ldots, v_t di uno spazio vettoriale $(V, +, \cdot)$ su un campo K, cosa vuol dire che un vettore v è combinazione lineare dei vettori assegnati?
- **9.** Dato uno spazio vettoriale $(V, +, \cdot)$ su un campo K, cosa è un sistema di generatori di V? Cosa vuol dire che V è finitamente generato?
- 10. Quali dei seguenti sottoinsiemi sono sottospazi vettoriali?

$$Y = \{a_0 + a_1 x + a_0 a_1 x^2 \mid a_0, a_1 \in \mathbb{R}\} \subset \mathbb{R}[x];$$

$$T = \{(0, \alpha + \beta, \beta) \mid \alpha, \beta \in \mathbb{R}\} \subset \mathbb{R}^3;$$

$$W = \left\{\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \mid a, b \in \mathbb{R}\right\} \subset \mathcal{M}_{2 \times 2}(\mathbb{R}); \quad X = \left\{\begin{pmatrix} ab & b \\ a & 0 \end{pmatrix} \mid a, b \in \mathbb{R}\right\} \subset \mathcal{M}_{2 \times 2}(\mathbb{R});$$

$$Z = \{a(1, 0, 1) + b(0, 1, 1) + c(1, 1, 2) \mid a, b, c \in \mathbb{R}\} \subset \mathbb{R}^3.$$

- **1.** Dato uno spazio vettoriale $(V, +, \cdot)$ su un campo K e un insieme $S = \{v_1, \dots, v_t\}$ di vettori di V, cosa vuol dire che S è linearmente indipendente? Cosa vuol dire che S è linearmente dipendente?
- **2.** Si considerino i vettori $v_1 = (1, 2, 0)$, $v_2 = (0, 1, 1)$, $v_3 = (1, 0, -2)$ dello spazio vettoriale numerico $(\mathbb{R}^3, +, \cdot)$ e si ponga $S = \{v_1, v_2, v_3\}$.
 - (i) Osservare che il vettore v_3 è combinazione lineare di v_1 e v_2 .
 - (ii) Dire se S è linearmente indipendente oppure è linearmente dipendente. In quanti modi il vettore nullo si può scrivere come combinazione lineare dei vettori v_1, v_2, v_3 ?
 - (iii) È vero che il vettore w = (0,0,1) è combinazione lineare dei vettori di S? In quanti modi il vettore nullo si può scrivere come combinazione lineare dei vettori v_1, v_2, w ?
 - (iv) Qual è lo spazio L(S) generato da S? Il sistema S è un sistema di generatori di $(\mathbb{R}^3, +, \cdot)$?
- 3. Nello spazio vettoriale \mathcal{V} su \mathbb{R} dei vettori liberi dello spazio delle geometria elementare, siano u_1 e u_2 due vettori linearmente indipendenti entrambi di lunghezza 1.
 - (i) Posto $w = u_1 2u_2$, dire se il sistema $\{u_1, u_2, w\}$ è linearmente indipendente.
 - (ii) Esibire un vettore libero che abbia lunghezza 3.
 - (iii) I vettori u_1 e u_2 possono essere paralleli?
- 4. Enunciare il Lemma di Steinitz e il teorema di equipotenza delle basi. Spiegare cosa è la dimensione di uno spazio vettoriale finitamente generato su un campo K.
- **5.** Determinare la dimensione e una base di ciascuno dei seguenti sottospazi vettoriali di \mathbb{R}^5 : L((1,2,0,-1,1),(1,1,0,-1,0),(1,0,0,-1,-1),(1,1,1,1)); L((0,1,0,0,0),(1,0,1,1,0),(1,1,1,1,0)).
- **6.** Determinare una base e la dimensione di quelli tra i seguenti sottoinsiemi che risultano essere sottospazi (si conviene che il vuoto sia una base dello spazio vettoriale nullo $\{\underline{0}\}$):

$$T = \{(1, 1, 1), (0, 0, 0), (2, 2, 2)\} \subseteq \mathbb{R}^3$$

$$U = L(\{(1, 1, 0, -1), (0, 2, -3, 1), (-2, 0, -3, 3), (0, 0, 0, 0)\}) \subseteq \mathbb{R}^4$$

$$Z = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 0\} \subseteq \mathbb{R}^2$$

- 7. Nello spazio vettoriale V su \mathbb{R} con base $\mathcal{B} = \{e_1, e_2, e_3, e_4\}$, si determini:
 - (i) un insieme di tre vettori che sia linearmente indipendente;
 - (ii) un insieme di tre vettori che sia linearmente dipendente.;
 - (iii) un sottospazio vettoriale di V che abbia dimensione 2;
 - (iv) una base di V che contenga i vettori $u = e_1 + 2e_3$ e $v = e_2 e_3$.

Vedere se l'insieme $S = \{2e_1 - e_3, e_2 + 2e_4, e_2, e_2 + e_1\} \subseteq V$ è una base di V.

- 1. Fissato una base ordinata \mathcal{B} di uno spazio vettoriale V finitamente generato, dire cosa sono le componenti di un vettore $u \in V$ in \mathcal{B} .
- 2. Sia $\mathcal{R} = (u, v, w)$ una base ordinata dello spazio vettoriale V dei vettori liberi della geometria elementare.
 - (i) Dire se ci sono vettori paralleli tra a = 3u v + 2w, b = 2u 2v + 4w e c = -u + v 2w e perché. Quali sono le componenti di a in \mathbb{R} ? E di b in \mathbb{R} ? E di c in \mathbb{R} ?
 - (ii) Spiegare perché è vero che tre vettori liberi sono complanari se e solo se sono linearmente dipendenti.
- 3. Determinare le componenti di ciascuno dei seguenti vettori nelle basi ordinate fissate:
 - (i) $(34, -56) \in \mathbb{R}^2$ in $\mathcal{B} = ((1, 0), (0, 1))$;

 - (ii) $(1, -2, -1) \in \mathbb{R}^3$ in $\mathcal{B} = ((1, 0, 1), (0, 1, 1), 0, 1, 0)$. (iii) $3 2x + x^2 x^4 \in \mathbb{R}[x]_{\leq 4}$ in $\mathcal{B} = (1 + x, 1 2x, 1 + x^2, x + x^3, x^3 x^4)$.
- 4. Completare in una base dello spazio ambiente gli insiemi che tra i seguenti risultano essere linearmente indipendenti:
 - (i) $\{(1,0,0,1),(0,1,1,0),(0,1,2,0)\}\subseteq \mathbb{R}^4$
 - (ii) $\{(0,1,0,1), (1,1,0,1), (2,1,0,1)\}\subseteq \mathbb{R}^4$
 - (iii) $\{x^2 + x, x + 1, 3 + x\} \subseteq \mathbb{R}[x]_{<4}$

 - (v) $\{(1,1,0),(1,0,1),(0,1,1)\}\subseteq \mathbb{R}^3$.

- 1. Dati p sottospazi vettoriali W_1, \ldots, W_p di uno spazio vettoriale V su un campo K, dire cosa è il loro sottospazio intersezione e cosa è il loro sottospazio somma. Cosa vuol dire che un sottospazio somma è una somma diretta?
- 2. Nello spazio vettoriale numerico \mathbb{R}^4 si considerino i seguenti sottospazi vettoriali:

```
W_1 = \mathcal{L}((1,2,0,1),(0,1,-1,1),(1,-1,0,1)),
```

$$W_2 = \mathcal{L}((0,0,1,1),(1,0,1,1)).$$

Determinare i sottospazi $W_1 \cap W_2$ e $W_1 + W_2$.

- 3. Sia $(V, +, \cdot)$ uno spazio vettoriale di dimensione 5 su un campo \mathbb{K} e siano H e W due suoi sottospazi vettoriali tali che dim(H) = 3 e dim(W) = 4. Dire quali valori può assumere $dim(H \cap W)$.
- 4. Dati due spazi vettoriali V e V' su uno stesso campo K, dire cosa è un'applicazione lineare f di V in V'. Quali proprietà delle applicazioni lineari hai studiato?
- 5. Sia $f: \mathbb{R}^2 \to \mathbb{R}^3$ un'applicazione tale che f(1,1) = (0,0,2) e f(2,2) = (1,0,1). Spiegare perché f non è un'applicazione lineare.
- 6. Spiegare quali delle seguenti applicazioni sono lineari:

$$f:(a,b) \in \mathbb{R}^2 \to (a+2b,a-b+1) \in \mathbb{R}^2$$

$$g: a_0 + a_1 x + a_2 x^2 \in \mathbb{R}[x]_{\leq 2} \to (a_0 - 2a_1, 2a_2 + a_0, a_1 + a_2) \in \mathbb{R}^3$$

$$h: (a_1, a_2, a_3) \in \mathbb{R}^3 \to (a_1 + a_3, a_2 + a_3) \in \mathbb{R}^2$$

$$k: (a_1, a_2) \in \mathbb{R}^2 \to (2a_2, a_1^2 + a_2) \in \mathbb{R}^2.$$

$$h: (a_1, a_2, a_3) \in \mathbb{R}^3 \to (a_1 + a_3, a_2 + a_3) \in \mathbb{R}^2$$

$$k: (a_1, a_2) \in \mathbb{R}^2 \to (2a_2, a_1^2 + a_2) \in \mathbb{R}^2.$$

7. Sapendo che f è un'applicazione lineare di \mathbb{R}^3 in \mathbb{R}^3 tale che f(1,0,1)=(1,2,0), f(1,1,2) = (0,1,1) e f(0,0,1) = (0,1,1), si può determinare f(0,1,2)? Si può determinare $f((x_1, x_2, x_3))$, per ogni vettore (x_1, x_2, x_3) di \mathbb{R}^3 ? Esiste qualche vettore u di \mathbb{R}^3 diverso dal vettore nullo tale che $f(u) = \underline{0}_{\mathbb{R}^3}$?

(Suggerimento: ricorda che le applicazioni lineari conservano le combinazioni lineari)

- 1. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare tale che $f((x_1, x_2, x_3)) = (2x_1 x_3, x_1 + x_2 x_3, x_1 x_2)$. Determinare Imf. Il vettore (1, 0, 1) appartiene a Imf? In caso di risposta affermativa, determinare un vettore (x_1, x_2, x_3) tale che $f((x_1, x_2, x_3)) = (1, 0, 1)$.
- **2.** Sia f l'applicazione lineare di \mathbb{R}^3 in \mathbb{R}^4 tale che f((1,0,1))=(0,1,1,1), f((0,1,-1))=(2,-1,0,0), f((1,1,-1))=(0,0,0,0).
 - (i) Dimostrare che il sistema di vettori $S = \{(1,0,1), (0,1,-1), (1,1,-1)\}$ è una base di \mathbb{R}^3 e determinare l'immagine del vettore u = (3,-4,1).
 - (ii) Determinare l'immagine del generico vettore (x, y, z).
 - (iii) Determinare una base di Im f.
 - (iv) Dire se f è iniettiva e suriettiva.
- **3.** Sia $f: \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione lineare tale che f((x,y,z,t)) = (x+y-z-t, -x+z, 2y-2t). Determinare $\operatorname{Ker}(f)$ e $\operatorname{Im}(f)$ e dire se il vettore (1,2,-2) appartiene a $\operatorname{Ker}(f)$.
- **4.** Siano $u_1 = (-1, 1, 1)$, $u_2 = (1, 0, 1)$ e $u_3 = (0, 1, 2)$ vettori di \mathbb{R}^3 . Dimostrare che non esiste un'applicazione lineare $f : \mathbb{R}^3 \to \mathbb{R}^3$ tale che f((-1, 1, 1)) = (1, 0, 0), f((1, 0, 1)) = (0, 1, 1) e f((0, 1, 2)) = (0, 0, 1).
- **5.** Determinare una applicazione lineare $T: \mathbb{R}^2 \to \mathbb{R}^2$ tale che u = (2, -5) appartenga al nucleo di T e v = (-2, 3) appartenga all'immagine di T.
- 6. Cosa vuol dire che una matrice A su un campo K è ridotta a gradini? Descrivi il metodo di Gauss per ridurre una matrice a gradini con l'uso delle trasformazioni elementari.
- 7. Cosa è il rango di una matrice A su un campo K? Qual è il rango di una matrice ridotta a gradini? Ripeti la dimostrazione che le operazioni elementari (sulle righe) non cambiano lo spazio generato dalle righe della matrice e, quindi, non cambiano il rango.
- 8. Determinare l'isomorfismo associato alla base ordinata $\mathcal{B} = (1+2x, 1-x, 1-x^2)$ dello spazio vettoriale $\mathbb{R}^2[x]$. Usare questo isomorfismo per studiare la lineare indipendenza dell'insieme $S = \{1-x+x^2, 2+x+2x^2, 3x\}$ mediante i vettori delle componenti in \mathcal{B} .
- 9. Ridurre a gradini ciascuna delle seguenti matrici e calcolarne il rango:

$$(a) \begin{pmatrix} 1 & 0 & 0 & -1 \\ 2 & 3 & 4 & 7 \\ -3 & 4 & 5 & 9 \\ -4 & -5 & 6 & 1 \end{pmatrix}; \quad (b) \begin{pmatrix} 3 & -1 & 5 & 2 \\ 2 & 0 & 7 & 0 \\ -3 & 1 & 2 & 0 \\ 5 & -4 & 1 & 2 \end{pmatrix}; \quad (c) \begin{pmatrix} 4 & 0 & 0 & 0 & 3 \\ -6 & 0 & 1 & 0 & 8 \\ 5 & 0 & 0 & 0 & 4 \\ 1 & 8 & -2 & -9 & 3 \end{pmatrix}$$

- 10. Come si definisce il prodotto righe per colonne tra matrici? Quali proprietà di questa operazione conosci?
- 11. Si considerino le seguenti matrici su \mathbb{R} :

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & 3 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 \\ 1 & -3 \\ -2 & 1 \end{pmatrix}, C = \begin{pmatrix} 0 & 1 & -2 \\ 4 & 0 & 1 \\ -3 & 5 & 2 \end{pmatrix}, D = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, E = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$$

- (i) Determinare il rango di ciascuna delle matrici assegnate.
- (ii) Calcolare i prodotti AB, BA, AC, BD, BE, CB, CC, DE, ED, (AB)D, A(BD).
- **12.** Dato il sottospazio vettoriale $W = \mathcal{L}((2,1,2,-1),(1,1,1,1),(0,-1,0,3))$ di \mathbb{R}^4 , determinare un sottospazio vettoriale U tale che $W + U = W \oplus U = \mathbb{R}^4$.
- 13. Osservare che gli spazi vettoriali $\mathcal{M}_2(\mathbb{R})$ e $\mathbb{R}^3[x]$ sul campo dei numeri reali \mathbb{R} hanno entrambi dimensione 4 ed esibire un isomorfismo tra essi.

1

- 1. Sia Σ un sistema di m equazioni lineari su un campo K in n incognite.
 - (i) Cosa è una soluzione di Σ ?
 - (ii) Cosa vuol dire che Σ è compatibile?
 - (iii) Conosce un criterio che caratterizza la compatibilità di Σ ?
 - (iv) Se Σ' è un altro sistema di equazioni lineari su K nello stesso numero n di incognite, cosa vuol dire che Σ e Σ' sono equivalenti?
 - (v) Dimostrare che, se Σ è omogeneo, l'insieme delle sue soluzioni è un sottospazio vettoriale di K^n .
- 2. Risolvere i seguenti sistemi di equazioni lineari:

$$\begin{cases} y + 2z = -1 \\ 2x - y - z = 1 \\ y + 3z = -1 \end{cases} \begin{cases} x_1 + 2x_2 - 2x_3 + x_4 = 1 \\ 2x_1 - x_2 + x_3 - x_4 = -1 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - 2x_3 + x_4 = 0 \\ x_1 - 3x_2 + 3x_3 - 2x_4 = 0 \\ 2x_1 - x_2 + x_3 - x_4 = 0 \end{cases} \begin{cases} x_1 - x_2 + x_3 - x_5 = 0 \\ -x_1 + x_2 - x_3 + x_5 = 0 \\ x_1 - x_2 + x_3 = 0 \end{cases}$$

$$\begin{cases} x_1 - x_2 + x_3 = 0 \\ x_1 + x_2 - x_3 = 0 \\ x_1 + x_2 - x_3 = 0 \end{cases} \begin{cases} x_2 - 2x_3 = 1 \\ 2x_1 - x_2 = -1 \\ 2x_1 - x_2 = 2 \end{cases}$$

$$\begin{cases} -2x_1 + x_2 - 2x_3 = 0 \\ x_1 - 3x_2 + 3x_3 = 0 \\ 2x_1 + x_2 + x_3 = 0 \end{cases} \begin{cases} x_1 - x_2 + x_3 - x_5 = 0 \\ -x_1 - x_2 + x_3 - x_5 = 0 \\ x_1 - x_2 + x_3 - x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 - x_2 + x_3 - x_5 = 0 \\ x_1 - x_2 - x_3 - x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 - x_2 + x_3 - x_5 = 0 \\ x_1 - x_2 - x_3 - x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 - x_2 - 2x_3 - x_3 - x_5 = 0 \\ x_1 - x_2 - x_3 - x_3 - x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 - x_2 - 2x_3 - x_3 - x_5 - x_5 = 0 \\ -x_1 - x_2 - x_3 - x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 - x_2 - 2x_3 - x_3 - x_5 - x_5 = 0 \\ -x_1 - x_2 - x_3 - x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 - x_2 - x_3 - x_3 - x_5 - x_5 - x_5 - x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 - x_2 - 2x_3 - x_3 - x_5 - x_5$$

- **3.** Cosa è il determinante di una matrice quadrata su un campo K? Quali proprietà dei determinanti conosci?
- 4. Calcolare il determinante delle seguenti matrici:

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 2 \\ 1 & 1 & 3 & 1 \\ 1 & 2 & 1 & 4 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 0 & 1 \\ 3 & 2 & 1 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 5 & 6 \\ 5 & 6 & 7 & 8 \\ 31 & 0 & 0 & 0 \end{pmatrix},$$

$$D = \begin{pmatrix} 1 & 2 & 0 \\ 3 & -1 & 0 \\ 1 & 1 & 2 \end{pmatrix}, E = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 2 & 1 \\ 1 & 1 & 3 & 1 & 1 \\ 1 & 2 & 1 & 4 & 1 \\ 1 & 1 & 1 & 5 \end{pmatrix}, F = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 & 0 \\ 1 & 6 & 0 & 0 & 0 \\ 1 & 0 & 10 & 5 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{pmatrix}.$$

5. Cosa vuol dire che una matrice quadrata A su un campo \mathbb{K} è invertibile? Calcolare l'inversa di ciascuna delle seguenti matrici che risulta essere invertibile:

$$\left(\begin{array}{ccc} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right), \quad \left(\begin{array}{ccc} 1 & 2 \\ 2 & 3 \end{array}\right), \quad \left(\begin{array}{ccc} 1 & -1 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 2 \end{array}\right).$$

1. Studiare le applicazioni lineari di \mathbb{R}^n in \mathbb{R}^m determinate dalle seguenti matrici di $\mathcal{M}_{m \times n}(\mathbb{R})$, dicendo se sono iniettive o suriettive e calcolandone l'immagine e il nucleo.

$$(a) \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 3 & 4 & 2 \\ -3 & -2 & 6 & 1 \end{pmatrix}; \quad (b) \begin{pmatrix} 3 & -1 & 2 \\ 2 & 1 & 4 \\ -1 & 2 & 2 \end{pmatrix}; \quad (c) \begin{pmatrix} 5 & 3 & 1 & 0 \\ 0 & -2 & 3 & 0 \\ 0 & 0 & -2 & 5 \\ 0 & 0 & 0 & 1 \end{pmatrix};$$
$$(d) \begin{pmatrix} 2 & 1 \\ 1 & 0 \\ -1 & 3 \end{pmatrix}; \qquad (e) \begin{pmatrix} 0 & 1 & -1 \\ 2 & 1 & 2 \\ 1 & 0 & 0 \end{pmatrix}; \qquad (f) \begin{pmatrix} 1 & 0 & 2 \\ 3 & -1 & 4 \end{pmatrix}.$$

- 2. Data un'applicazione lineare T tra spazi vettoriali finitamente generati, dire cosa è la matrice associata a T in riferimenti fissati e dire di quali proprietà questa matrice gode.
- 3. Determinare le matrici associate alle seguenti applicazioni lineari nei riferimenti fissati:

$$f_{1}: a_{0} + a_{1}x + a_{2}x^{2} \in \mathbb{R}^{2}[x] \to \begin{pmatrix} a_{0} & a_{1} - a_{2} \\ a_{2} & 0 \end{pmatrix} \in \mathbb{R}_{2,2}$$

$$\mathcal{R} = (1, 1 + x, x + x^{2}), \qquad \mathcal{R}' = \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix});$$

$$f_{2}: a_{0} + a_{1}x + a_{2}x^{2} \to \mathbb{R}^{2}[x] \to (a_{1} + a_{0})x + (a_{2} - a_{0})x^{2} \in \mathbb{R}^{2}[x], \qquad \mathcal{R} = (1, x, x^{2}), \quad \mathcal{R}' = \mathcal{R};$$

$$f_{3}: (a, b, c) \in \mathbb{R}^{3} \to (2a, 0, c - b) \in \mathbb{R}^{3}$$

$$\mathcal{R} = ((1, 0, 0), (0, 1, 0), (0, 0, 1)), \qquad \mathcal{R}' = ((0, 1, 1), (1, 0, 1), (0, 1, 0)).$$

- **4.** Sapendo che f è un'applicazione lineare di \mathbb{R}^3 in $\mathbb{R}[x]_{\leq 3}$ tale che $f((1,0,1)) = -1 + 2x x^2 + x^3$, $f((1,1,2)) = 4x + x^3$ e $f((0,0,1)) = 2x x^2$, dire perché e come si può determinare $f((a_1,a_2,a_3))$, per ogni vettore (a_1,a_2,a_3) di \mathbb{R}^3 . Inoltre:
 - (a) determinare l'immagine $\operatorname{Im} f$ e il nucleo $\operatorname{Ker} f$ di f;
 - (b) dire se l'applicazione f è iniettiva o suriettiva e perché;
 - (c) scrivere la matrice associata a f nelle basi ordinate $\mathcal{B} = ((1,0,1),(0,0,1),(0,1,1))$ e $\mathcal{B}' = (1,1+x,-x^2,x+x^3)$.
- **5.** Date le basi ordinate $\mathcal{B} = ((1,0,0),(0,1,1),(1,-1,1))$ e $\bar{\mathcal{B}} = ((0,1,0),(0,0,1),(1,0,0))$ di \mathbb{R}^3 ,
 - (a) determinare la matrice P di passaggio da \mathcal{B} a $\bar{\mathcal{B}}$ e la matrice Q di passaggio da $\bar{\mathcal{B}}$ a \mathcal{B} . A cosa è uguale il prodotto PQ? E QP?
 - (b) Dato l'endomorfismo $f:(x_1,x_2,x_3) \in \mathbb{R}^3 \to (2x_1,x_2-x_3,-x_3) \in \mathbb{R}^3$, determinare la matrice associata a f fissando nel dominio e nel codominio la stessa base ordinata \mathcal{B} e quella associata a f fissando nel dominio e nel codominio la stessa base ordinata $\bar{\mathcal{B}}$. Che relazione sussiste tra queste due matrici?
- **6.** Date le basi ordinate $\mathcal{B}=((1,0,1),(0,2,1),(0,0,1))$ e $\bar{\mathcal{B}}=((0,-1,1),(0,1,1),(1,2,0))$ di \mathbb{R}^3 , determinare la matrice P di passaggio da \mathcal{B} a $\bar{\mathcal{B}}$ e quella Q da $\bar{\mathcal{B}}$ a \mathcal{B} . Dato l'endomorfismo f di \mathbb{R}^3 tale che f((x,y,z))=(x+2y,y+z,x+y+z), determinare la matrice A associata a f fissando nel dominio e nel codominio la stessa base ordinata $\mathcal{B}=\mathcal{B}'$ e quella \bar{A} associata a f fissando nel dominio e nel codominio la stessa base ordinata $\bar{\mathcal{B}}=\bar{\mathcal{B}}'$. Osservare che $Q=P^{-1}$ e ovviamente $P=Q^{-1}$. Inoltre si ha che $\bar{A}=Q^{-1}AQ$ e $A=P^{-1}\bar{A}P$.
- 7. Risolvere i seguenti sistemi di equazioni lineari al variare del parametro $\lambda \in \mathbb{R}$:

$$\begin{cases} x + y - z = 1 \\ x + \lambda z = 0 \\ \lambda x + y + 2z = -1 \end{cases} \begin{cases} x - y + z = 1 \\ \lambda x + y - z = 0 \\ x - y + \lambda z = \lambda. \end{cases}$$

8. Per ciascuno dei seguenti sottospazi vettoriali di uno spazio vettoriale numerico su \mathbb{R} determinare un sistema di equazioni lineari di cui il sottospazio è l'insieme delle soluzioni:

1

$$H = \mathcal{L}((2,1,2,3),(0,1,2,2))) \subseteq \mathbb{R}^4$$

$$U = \mathcal{L}((1,1,-1,1,0),(-1,-1,1,-1,0),(0,2,1,1,1)) \subseteq \mathbb{R}^5$$

$$X = \mathcal{L}((1,2,0,1),(2,1,-1,1),(-1,4,2,1)) \subseteq \mathbb{R}^4$$

$$Y = \mathcal{L}((2,-3,1,0),(-1,2,1,0)) \subseteq \mathbb{R}^4.$$

9. Determinare il sottospazio intersezione dei seguenti sottospazi vettoriali di \mathbb{R}^4 :

$$W_1 = \mathcal{L}((2,1,1,2),(0,1,0,1),(1,2,0,-1)), \quad W_2 : \begin{cases} x_1 & -x_2 + 2x_3 & -x_4 = 0 \\ 2x_1 & -2x_2 & +3x_3 & +x_4 = 0 \end{cases}$$

- 1. Cosa è uno spazio vettoriale euclideo?
- 2. Spiegare quali delle seguenti applicazioni da $\mathbb{R}^2 \times \mathbb{R}^2$ in \mathbb{R} sono un prodotto scalare su \mathbb{R}^2 :
 - (i) $\forall (a_1, a_2), (b_1, b_2) \in \mathbb{R}^2, \langle (a_1, a_2), (b_1, b_2) \rangle = a_1b_1 + a_1b_2 + a_2b_1 + a_2b_2$
 - (ii) $\forall (a_1, a_2), (b_1, b_2) \in \mathbb{R}^2, \langle (a_1, a_2), (b_1, b_2) \rangle = 2a_1b_1 + a_1b_2 + a_2b_1 + 3a_2b_2$
 - (iii) $\forall (a_1, a_2), (b_1, b_2) \in \mathbb{R}^2, \langle (a_1, a_2), (b_1, b_2) \rangle = -2a_1b_1 + a_1b_2 + a_2b_1 + a_2b_2$
- 3. Dato il prodotto scalare su \mathbb{R}^3 definito da

$$\forall (a_1, a_2, a_3), (b_1, b_2, b_3) \in \mathbb{R}^3, \ \langle (a_1, a_2, a_3), (b_1, b_2, b_3) \rangle = 2a_1b_1 + a_1b_2 + a_2b_1 + a_2b_2 + a_3b_3$$

- (i) determinare una base di \mathbb{R}^3 che sia ortonormale rispetto al prodotto scalare dato;
- (ii) determinare almeno due vettori che siano ortogonali al vettore (1, -1, 2).
- 4. Si consideri \mathbb{R}^4 con il prodotto scalare numerico. Determinare il complemento ortogonale di ciascuno dei seguenti sottospazi vettoriali:

$$W = \mathcal{L}((2, -1, 1, 0), (1, 0, 2, -1))$$

$$U = \mathcal{L}((3, 4, 2, -1))$$

$$Z = \mathcal{L}((2, 1, 0, 1), (2, 0, 1, 1), (0, 0, 1, 2))$$

- 5. Spiegare cosa è uno spazio vettoriale euclideo orientato. In uno spazio vettoriale euclideo orientato di dimensione 3, spiegare cosa è il prodotto vettoriale tra due vettori dati.
- **6.** Dire cosa è uno spazio euclideo (rispettivamente, affine) e quali proprietà conosci. Quali esempi conosci?
- 7. Dato uno spazio euclideo (rispettivamente, affine) di dimensione finita su un campo K, cosa è un suo riferimento cartesiano? Cosa sono le coordinate di un punto di uno spazio affine in un riferimento cartesiano fissato?

- 1. Dato uno spazio euclideo di dimensione finita e un suo riferimento cartesiano, spiegare come si rappresenta un suo sottospazio euclideo nel riferimento cartesiano fissato.
- **2.** Fissato un riferimento cartesiano di uno spazio euclideo di dimensione 3, si considerino i punti A(1,-1,2), B(2,1,-1), C(0,1,2). Tenendo conto del fatto che due vettori sono paralleli se formano un insieme linearmente dipendente,
 - (i) determinare un punto D tale che il vettore \overrightarrow{CD} sia parallelo al vettore \overrightarrow{AB} .
 - (ii) Determinare il punto E tale che il vettore \overrightarrow{CE} sia uguale al vettore \overrightarrow{AB} .
- **3.** Fissato un riferimento cartesiano di uno spazio euclideo di dimensione 3, si consideri la retta r passante per il punto P(2,1,0) e con giacitura $\overrightarrow{r} = \mathcal{L}(u)$, dove u è il vettore di componenti (3,-2,1).
 - (i) Determinare la giacitura di un piano che sia parallelo a r.
 - (ii) Determinare la giacitura di un piano che non sia parallelo a r.
- **4.** Fissato un riferimento cartesiano di un piano euclideo, si considerino i punti A(1,-1), B(-1,-3) e C(1,1). Determinare le componenti del vettore \overrightarrow{AB} e quelle del vettore \overrightarrow{BC} . Dire se A, B e C sono allineati (tre punti si dicono allineati se appartengono a una stessa retta).
- **5.** Fissato un riferimento cartesiano di uno spazio euclideo di dimensione 2, si considerino i punti A(1,1), B(2,2), C(0,0), D(3,-2).
 - (1) Dire se tra i punti dati ce ne sono tre allineati (ossia, che sono contenuti in una stessa retta) e, in tal caso, scrivere la retta che contiene i tre punti.
 - (2) Rappresentare la retta r per $B \in D$.
 - (3) Rappresentare la retta s per C di vettore direzionale $\mathbf{v}(0,1)$ (ossia, la sua giacitura è generata da \mathbf{v}).
 - (4) Rappresentare la retta per D con stessa giacitura della retta s.
- 6. Fissato un riferimento cartesiano in uno spazio euclideo di dimensione 3:
 - (1) rappresentare la retta passante per P(1,3,-2) e con giacitura $\mathcal{L}(v(2,0,1);$
 - (2) rappresentare il piano (sottospazio di dimensione 2) per il punto Q(2,1,1) e giacitura $\mathcal{L}(u(3,1,2),u'(1,1,1))$; dimostrare che la giacitura della retta considerata nel punto (1) è contenuta nella giacitura di questo piano;
 - (3) rappresentare la retta s per C(2,1,0) e con giacitura $\mathcal{L}(v(2,3,1);$ determinare l'intersezione di questa retta con il piano considerato al punto (2).
- 7. Fissato un riferimento cartesiano di uno spazio euclideo di dimensione 3, si considerino la retta $s: \left\{ \begin{array}{ccc} x+z+2 &=& 0 \\ -x+2y+1 &=& 0 \end{array} \right.$ e il punto B(1,0,1).
 - (a) Calcolare un vettore direzionale di s.
 - (b) Dire se la retta s': $\begin{cases} x = 1+t \\ y = 2t \\ z = 1+2t \end{cases}$ è incidente, parallela o sghemba con s (due t)
 - rette sono sghembe se non sono incidenti e non sono parallele).
 - (c) Determinare il piano per B contenente s. Questo piano è parallelo a s'?
 - (d) Determinare una retta r passante per B e incidente s. Rappresentare il piano che contiene r ed s.

- 1. Fissato un riferimento cartesiano di uno spazio euclideo di dimensione 3, si considerino i punti A(1,1,3) e B(1,1,2). Determinare un punto C tale che il triangolo di vertici A, B e C sia rettangolo in B.
- **2.** Fissato un riferimento cartesiano di un piano euclideo, le rette r: 3x y + 2 = 0, r': x + 2y 1 = 0 e s: x 5y + 4 = 0 hanno un punto in comune? Determinare la retta ortogonale a s passante per il punto A(1,2) e la retta parallela a s passante per A(1,2). Le due rette determinate sono ortogonali?
- 3. Dato un riferimento cartesiano di uno spazio euclideo di dimensione 3, si considerino le rette

$$s: \begin{cases} x+z+2 &= 0 \\ -x+2y+1 &= 0 \end{cases}$$
 e $s': \begin{cases} x &= 1+t \\ y &= 2t \text{ e il punto } B(1,0,1). \\ z &= 1+2t \end{cases}$

- (a) Calcolare un vettore direzionale di s.
- (b) Dire se s e s' sono incidenti, parallele o sghembe e determinare la distanza tra s e s'
- (c) Determinare il piano per B contenente s. Questo piano è parallelo a s'?
- (d) Determinare una retta r passante per B e incidente s. Rappresentare il piano che contiene r ed s.
- **4.** Fissato un riferimento cartesiano di uno spazio euclideo di dimensione 3, si considerino i punti A(1,0,1), B(2,2,-1), C(1,1,-1). Dire se i vettori AB e AC sono ortogonali. In caso di risposta negativa, determinare le coordinate di un punto D tale che AD sia ortogonale a AB.
- **5.** Fissato un riferimento cartesiano di uno spazio euclideo di dimensione 3, si consideri il piano $\pi: -x + y + 2z 1 = 0$ e il punto A(1, -1, 0).
 - (1) Determinare il piano per A parallelo a π .
 - (2) Determinare la retta ortogonale a π e passante per P(-1,0,0).
 - (3) Determinare un qualsiasi piano ortogonale a π .
 - (4) Determinare un piano ortogonale a π e passante per A.
- **6.** Fissato un riferimento cartesiano di un piano euclideo, si considerino la retta r: x-y+4=0 e il punto A(0,2).
 - (i) Determinare la retta ortogonale a r e passante per A.
 - (ii) Determinare una retta che abbia distanza 2 da r.
- 7. Fissato un riferimento cartesiano di uno spazio euclideo di dimensione 3, si considerino

la retta
$$s:$$

$$\begin{cases} x-y+2z &= 1\\ x+y+z &= -1 \end{cases}$$
 e il punto $P(1,-1,0)$.

- (a) Determinare il piano α ortogonale a s e passante per P.
- (b) Determinare la distanza tra $s \in P$.
- (c) Determinare una retta r incidente s e una retta ortogonale sia a r sia a s.
- (d) La retta r': (x, y, z) = (1, 0, 1) + (1, 2, 2)t è sghemba con s? Determinare la distanza tra r' e s. Determinare un piano parallelo sia a r' sia a s.
- 8. Fissato un riferimento cartesiano di uno spazio euclideo di dimensione 3, determinare due rette sghembe e calcolarne la distanza.
- **9.** Fissato un riferimento cartesiano di uno spazio euclideo di dimensione 3, si considerino i punti P(2, -3, 2) e Q(0, 1, 1) e sia r la retta passante per P e Q.
 - (i) Rappresentare la retta r.
 - (ii) Rappresentare l'asse del segmento di estremi $P \in Q$.
 - (iii) Rappresentare un piano parallelo alla retta r.
 - (iv) Rappresentare una retta ortogonale a r e passante per Q.
 - (v) Rappresentare il piano passante per P, Q e l'origine del riferimento.

ESERCIZI 12-1

- 1. Cosa sono gli autovalori e gli autovettori di un endomorfismo T? Che relazione c'è con gli autovalori e gli autovettori di una matrice associata a T in un riferimento fissato? Come si calcolano?
- **2.** Data l'applicazione lineare $f: \mathbb{R}[x]_{\leq 2} \to \mathbb{R}[x]_{\leq 2}$ con matrice associata $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ nel riferimento $\mathcal{R} = (1, 1 + x, x + x^2)$, calcolarne autovalori e autospazi.
- **3.** Determinare la matrice associata all'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^2$ tale che f((x,y,z)) = (2y+z,x-y+z), nei riferimenti $\mathcal{R} = ((0,0,1),(0,1,0),(1,0,0))$ e $\mathcal{R}' = ((1,2),(-1,0))$.
- **4.** Se $\mathcal{B} = (u, v, w)$ è una base di V di uno spazio vettoriale V su \mathbb{R} e $f: V \to V$ è l'endomorfismo di V tale che f(u) = u + w, f(v) = -u + v + w e f(w) = v + 2w,
 - (i) spiegare perché il vettore u + v w è autovettore di f;
 - (ii) spiegare perché f non è iniettiva;
- (iii) scrivere la matrice A associata a f nella base ordinata \mathcal{B} .
- **5.** Determinare la matrice A associata all'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che f((x, y, z)) = (4x + 3y 3z, 6x + y 3z, 12x + 6y 8z) nel riferimento $\mathcal{R} = ((1, 0, 1), (0, 1, 0), (0, 0, 1))$. Calcolare autovalori e autospazi dell'endomorfismo f.

ESERCIZI 12-II

- 1. Cosa vuol dire che un endomorfismo è diagonalizzabile? Cosa vuol dire che una matrice quadrata è diagonalizzabile? Cosa è una base spettrale per un endomorfismo?
- 2. Le seguenti matrici sono diagonalizzabili?

$$\begin{pmatrix} 3 & 1 \\ 4 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & k \\ 0 & k & 1 \end{pmatrix}, \text{per ogni } k \in \mathbb{R}.$$

In caso di risposta affermativa determinare una base spettrale e una matrice che diagonalizza.

3. Determinare autovalori e autospazi della matrice $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ e dire se A è diagonalizzabile.

In caso di risposta affermativa determinare una base spettrale e una matrice che diagonalizza.

- **4.** Sia F_A l'endomorfismo di $\mathbb{R}^3 \to \mathbb{R}^3$ determinato dalla matrice $A = \begin{pmatrix} 1 & 1 & -2 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$.
 - (i) Dire se F_A è iniettiva e suriettiva.
 - (ii) Determinare gli autovalori e gli autovettori di F_A .
 - (iii) La matrice A è diagonalizzabile? In caso di risposta affermativa determinare una base spettrale e una matrice che diagonalizza.