ESTATÍSTICA

Michelle Hanne Soares de Andrade

michellehanne.andrade@gmail.com

Teorema do Limite Central

Teorema do Limite Central - Resumo

Distribuição de X Distribuição de \overline{X}

Tamanho de amostra

 $N(\mu; \sigma)$

 $N(\mu; \sigma/\sqrt{n})$

n qualquer

n > 30

Qualquer

aproximadamente $N(\mu; \sigma/\sqrt{n})$

(em geral)

Exemplo Binomial

Corolário 5.3. Seja X uma v.a. com distribuição Binomial de parâmetros n e p. Se $n \ge 30$ e p tal que np > 5 e n(1-p) > 5, então:

$$X \stackrel{a}{\sim} N(np, np(1-p)).$$

Exemplo 5.4. Considere-se a v.a. $X \sim Bin(100, 0.1)$. Calculemos P(X = 10) Como $n = 100 \ge 30$, $np = 100 \times 0.1 = 10 > 5$ e $n(1 - p) = 100 \times 0.9 = 90$,

$$P(X = 10) = P(X \le 10) - P(X \le 9) \approx \Phi(\frac{10-10}{3}) - \Phi(\frac{9-10}{3}) = \Phi(0) - \Phi(-0.33) =$$

= 0.5 - 0.3707 = 0.1293.

Nota: O valor exacto é $P(X = 10) = \binom{100}{10} 0.1^{10} 0.9^{90} = 0.1319.$

$$\mathsf{E}(X_n) = np$$
 $\sigma = \mathsf{DP}(X) = \sqrt{np(1-p)}$

Exemplo - Poisson

Corolário 5.5. Seja X uma v.a. com distribuição Poisson de parâmetro λ . Se $\lambda > 5$, então:

$$X \stackrel{a}{\sim} N(\lambda, \lambda).$$

Exemplo 5.6. Considere $X \sim P(230)$. Calculemos um valor aproximado de P(X = 241).

$$P(X = 241) = P(X \le 241) - P(X \le 240) \approx P\left(Z \le \frac{241 - 230}{\sqrt{230}}\right) - P\left(Z \le \frac{240 - 230}{\sqrt{230}}\right) =$$

= $\Phi(0.73) - \Phi(0.66) = 0.7673 - 0.7454 = 0.0219$

Nota: O valor exacto é $P(X = 241) = e^{-230} \cdot \frac{230^{241}}{241!} = 0.0198$.

- Valor esperado $\mu = E(X) = \lambda$
- Variância $\sigma^2 = \operatorname{Var}(X) = \lambda$, $P(X = X) = \frac{e^{-\lambda} \lambda^X}{|X|}$,

Distribuição Amostral de uma Proporção

 \hat{p} é uma média de variáveis aleatórias $X_i \sim \text{Binomial } (m=1; p)$.

Assim,
$$\mu = E[X_i] = p$$
 e $\sigma = \sqrt{Var[X_i]} = \sqrt{p(1-p)}$

Pelo Teorema Central do Limite, a distribuição amostral de \hat{p} pode ser aproximada por uma Normal com média p e desvio-padrão $\sqrt{p(1-p)}$ quando $np \ge 5$ e $n(1-p) \ge 5$.

Ou seja,
$$Z = \frac{\hat{p} - p}{\sqrt{p(1-p)/n}}$$
 aproximadamente $N(0,1)$

Distribuição Amostral de uma Proporção

Ilustração: o que acontece com a distribuição dos valores de $Z = \frac{\hat{p} - 0.50}{\sqrt{0.50(1 - 0.50)/n}}$ quando n cresce?

Exemplo - Distribuição Amostral de uma Proporção

Um biólogo está estudando a preferência de uma espécie de aranha (espécie A) quanto ao local de confecção de sua teia em árvores: perto do tronco ou ao final dos galhos.

Em 40 teias de aranha da espécie A, ele observou que 22 delas foram tecidas perto do tronco, ou seja, $\hat{p}=22/40=0.55$.

Para aranhas de uma espécie B, estudos mostram que a proporção das que preferem fazer teias perto do tronco é igual a 0.75.

Supondo que a proporção populacional das aranhas da espécie A que fazem teias perto do tronco também seja p=0.75, qual é a probabilidade de o resultado amostral ter ocorrido?

Exemplo - Distribuição Amostral de uma Proporção

Como a proporção amostral é uma variável aleatória contínua, já sabemos que o cálculo de $P[\hat{p}=0.55]$ não faz sentido.

Assim, vamos calcular a probabilidade de amostras com proporções ainda mais extremas do que a obtida. Ou seja,

$$P[\hat{p} < 0.55] = P\left[\frac{\hat{p} - p}{\sqrt{p(1-p)/n}} < \frac{0.55 - 0.75}{\sqrt{0.75(1 - 0.75)/40}}\right]$$

$$= P[Z < -2.92]$$

$$= 0.0017$$

$$0.0017$$

Exemplo - Distribuição Amostral de uma Proporção

Sob a hipótese de que a proporção populacional das aranhas da espécie A que fazem teias perto do tronco também seja p=0.75, a amostra coletada é pouco verossímil (probabilidade de 0.0017).

Sendo assim, a hipótese de que as duas espécies têm a mesma proporção de aranhas que tecem suas teias perto do tronco deve ser revista.

- A distribuição qui-quadrado é obtida diretamente das variáveis aleatórias independentes normais.
- padrões. Sejam Z_i , i 1,2, ..., n variáveis aleatórias independentes, cada uma distribuída como normal padrão. Defina uma nova variável aleatória como a soma dos quadrados de Z_i :

$$X = \sum_{i=1}^{n} Z_i^2.$$

- A fdp de uma distribuição qui-quadrado com diversos graus de liberdade é mostrada na próxima Figura.
- Uma variável aleatória qui-quadrada é sempre não-negativa, e que, diferentemente da distribuição normal, a distribuição qui-quadrado não é simétrica em torno de qualquer ponto.

Então, X terá o que é conhecido como **distribuição qui-quadrado** com n **graus de liberdade** (ou gl abreviadamente). Escrevemos isso como $X \sim {X_n}^2$. Os gl em uma distribuição qui-quadrado correspondem ao número de termos na fórmula anterior.

Representação gráfica

Figura 1.6 - Gráfico da distribuição χ² (Qui-Quadrado) para os gl de 1, 2 e 3

Definição 9.1: Uma variável aleatória contínua X tem distribuição qui-quadrado com n graus de liberdade, denotada por χ_n^2 , se sua função densidade for dada por:

$$f(x) = \frac{1}{2^{n/2}\Gamma(n/2)}x^{n/2-1}e^{-x/2}, \quad x > 0, \quad n > 0$$

Sendo,
$$\Gamma(w) = \int_0^\infty x^{w-1} e^{-x} dx$$
, $w > 0$.

IDEIA Graus de liberdade: Considere um conjunto de dados qualquer. Graus de liberdade é o número de valores deste conjunto de dados que podem variar após terem sido impostas certas restrições a todos os valores.

Devido a sua importância a distribuição qui-quadrado está tabulada para diferentes valores do parâmetro *n*.

Assim, poderemos achar na tabela o valor χ_{α}^2 que satisfaça $P(X \le \chi_{\alpha}^2) = \alpha$ ou $P(X \ge \chi_{\alpha}^2) = \alpha$, dependendo da tabela.

O que é tabelado é a função inversa, em relação a área à direita ou à esquerda de cada curva. Isto é, dado um valor de área na cauda direita, a tabela retorna um valor χ^2_{α} tal que $P(X \ge \chi^2_{\alpha}) = \alpha$ e dado um valor de área na cauda esquerda a tabela retorna um valor χ^2_{α} tal que $P(X \le \chi^2_{\alpha}) = \alpha$.

Tabela Qui-Quadrado

 $P(X^2_{(2)} \ge 0.2107) = 0.90$

2 0,0201 0,1026 0,2107 1, 3 0,1148 0,3518 0,5844 2, 4 0,2971 0,7107 1,0636 3, 5 0,5543 1,1455 1,6103 4, 6 0,8721 1,6354 2,2041 5, 7 1,2390 2,1673 2,8331 6, 8 1,6465 2,7326 3,4895 7, 9 2,0879 3,3251 4,1682 8, 10 2,5582 3,9403 4,8652 9, 11 3,0535 4,5748 5,5778 10, 12 3,5706 5,2260 6,3038 11, 13 4,1069 5,8919 7,0415 12, 14 4,6604 6,5706 7,7895 13, 15 5,2294 7,2609 8,5468 14, 16 5,8122 7,9616 9,3122 15, 17 6,4077 8,6718 10,0852 16, 18 7,0149 9,3904 10,8649 17, 19 7,6327 10,1170 11,6509 18, 20 8,2604 10,8508 12,4426 19, 21 8,8972 11,5913 13,2396 20, 22 9,5425 12,3380 14,0415 21, 23 10,1957 13,0905 14,8480 22, 24 10,8563 13,8484 15,6587 23, 25 11,5240 14,6114 16,4734 24, 26 12,1982 15,3792 17,2919 25,	,500 0,100	0,050	0,025	0,010	0,005
3	1549 2,7055			6,6349	7,8794
4 0,2971 0,7107 1,0636 3, 5 0,5543 1,1455 1,61D3 4, 6 0,8721 1,6354 2,2041 5, 7 1,2390 2,1673 2,8331 6, 8 1,6465 2,7326 3,4895 7, 9 2,0879 3,3251 4,1682 8, 10 2,5582 3,9403 4,8652 9, 11 3,0535 4,5748 5,5778 10, 12 3,5706 5,2260 6,3038 11, 13 4,1069 5,8919 7,0415 12, 14 4,6604 6,5706 7,7895 13, 15 5,2294 7,2609 8,5468 14, 16 5,8122 7,9616 9,3122 15, 17 6,4077 8,6718 10,0852 16, 18 7,0149 9,3904 10,8649 17, 19 7,6327 10,1170 11,6509 18, 20 8,2604 10,8508 12,4426 19, 21 8,8972 11,5913 13,2396 20, 22 9,5425 12,3380 14,0415 21, 23 10,1957 13,0905 14,8480 22, 24 10,8563 13,8484 15,6587 23, 25 11,5240 14,6114 16,4734 24, 26 12,1982 15,3792 17,2919 25,	3863 4,6052				10,5965
5 0,5543 1,1455 1,6103 4, 6 0,8721 1,6354 2,2041 5, 7 1,2390 2,1673 2,8331 6, 8 1,6465 2,7326 3,4895 7, 9 2,0879 3,3251 4,1682 8, 10 2,5582 3,9403 4,8652 9, 11 3,0535 4,5748 5,5778 10, 12 3,5706 5,2260 6,3038 11, 13 4,1069 5,8919 7,0415 12, 14 4,6604 6,5706 7,7895 13, 15 5,2294 7,2609 8,5468 14, 16 5,8122 7,9616 9,3122 15, 17 6,4077 8,6718 10,0852 16, 18 7,0149 9,3904 10,8649 17, 19 7,6327 10,1170 11,6509 18, 20 8,2604 10,850	3660 6,2514				12,8381
6 0,8721 1,6354 2,2041 5, 7 1,2390 2,1673 2,8331 6, 8 1,6465 2,7326 3,4895 7, 9 2,0879 3,3251 4,1682 8, 10 2,5582 3,9403 4,8652 9, 11 3,0535 4,5748 5,5778 10, 12 3,5706 5,2260 6,3038 11, 13 4,1069 5,8919 7,0415 12, 14 4,6604 6,5706 7,7895 13, 15 5,2294 7,2609 8,5468 14, 16 5,8122 7,9616 9,3122 15, 17 6,4077 8,6718 10,0852 16, 18 7,0149 9,3904 10,8649 17, 19 7,6327 10,1170 11,6509 18, 20 8,2604 10,8508 12,4426 19, 21 8,8972 11,5913 13,2396 20, 22 9,5425 12,3380 14,0415 21, 23 10,1957 13,0905 14,8480 22, 24 10,8563 13,8484 15,6587 23, 25 11,5240 14,6114 16,4734 24, 26 12,1982 15,3792 17,2919 25,	3567 7,7794				14,8602
7 1,2390 2,1673 2,8331 6, 8 1,6465 2,7326 3,4895 7, 9 2,0879 3,3251 4,1682 8, 10 2,5582 3,9403 4,8652 9, 11 3,0535 4,5748 5,5778 10, 12 3,5706 5,2260 6,3038 11, 13 4,1069 5,8919 7,0415 12, 14 4,6604 6,5706 7,7895 13, 15 5,2294 7,2609 8,5468 14, 16 5,8122 7,9616 9,3122 15, 17 6,4077 8,6718 10,0852 16, 18 7,0149 9,3904 10,8649 17, 19 7,6327 10,1170 11,6509 18, 20 8,2604 10,8508 12,4426 19, 21 8,8972 11,5913 13,2396 20, 22 9,5425 12,3380 14,0415 21, 23 10,1957 13,0905 14,8480 22, 24 10,8563 13,8484 15,6587 23, 25 11,5240 14,6114 16,4734 24, 26 12,1982 15,3792 17,2919 25,					16,7496
8 1,6465 2,7326 3,4895 7, 9 2,0879 3,3251 4,1682 8, 10 2,5582 3,9403 4,8652 9, 11 3,0535 4,5748 5,5778 10, 12 3,5706 5,2260 6,3038 11, 13 4,1069 5,8919 7,0415 12, 14 4,6604 6,5706 7,7895 13, 15 5,2294 7,2609 8,5468 14, 16 5,8122 7,9616 9,3122 15, 17 6,4077 8,6718 10,0852 16, 18 7,0149 9,3904 10,8649 17, 19 7,6327 10,1170 11,6509 18, 20 8,2604 10,8508 12,4426 19, 21 8,8972 11,5913 13,2396 20, 22 9,5425 12,3380 14,0415 21, 23 10,1957 13,0905 14,8480 22, 24 10,8563 13,8484 15,6587 23, 25 11,5240 14,6114 16,4734 24, 26 12,1982 15,3792 17,2919 25,					18,5475
9 2,0879 3,3251 4,1682 8, 10 2,5582 3,9403 4,8652 9, 11 3,0535 4,5748 5,5778 10, 12 3,5706 5,2260 6,3038 11, 13 4,1069 5,8919 7,0415 12, 14 4,6604 6,5706 7,7895 13, 15 5,2294 7,2609 8,5468 14, 16 5,8122 7,9616 9,3122 15, 17 6,4077 8,6718 10,0852 16, 18 7,0149 9,3904 10,8649 17, 19 7,6327 10,1170 11,6509 18, 20 8,2604 10,8508 12,4426 19, 21 8,8972 11,5913 13,2396 20, 22 9,5425 12,3380 14,0415 21, 23 10,1957 13,0905 14,8480 22, 24 10,8563 13,8484 15,6587 23, 25 11,5240 14,6114 16,4734 24, 26 12,1982 15,3792 17,2919 25,		14,0671 1			20,2777
10 2,5582 3,9403 4,8652 9, 11 3,0535 4,5748 5,5778 10, 12 3,5706 5,2260 6,3038 11, 13 4,1069 5,8919 7,0415 12, 14 4,6604 6,5706 7,7895 13, 15 5,2294 7,2609 8,5468 14, 16 5,8122 7,9616 9,3122 15, 17 6,4077 8,6718 10,0852 16, 18 7,0149 9,3904 10,8649 17, 19 7,6327 10,1170 11,6509 18, 20 8,2604 10,8508 12,4426 19, 21 8,8972 11,5913 13,2396 20, 22 9,5425 12,3380 14,0415 21, 23 10,1957 13,0905 14,8480 22, 24 10,8563 13,8484 15,6587 23, 25 11,5240<					21,9549
11 3,0535 4,5748 5,5778 10, 12 3,5706 5,2260 6,3038 11, 13 4,1069 5,8919 7,0415 12, 14 4,6604 6,5706 7,7895 13, 15 5,2294 7,2609 8,5468 14, 16 5,8122 7,9616 9,3122 15, 17 6,4077 8,6718 10,0852 16, 18 7,0149 9,3904 10,8649 17, 19 7,6327 10,1170 11,6509 18, 20 8,2604 10,8508 12,4426 19, 21 8,8972 11,5913 13,2396 20, 22 9,5425 12,3380 14,0415 21, 23 10,1957 13,0905 14,8480 22, 24 10,8563 13,8484 15,6587 23, 25 11,5240 14,6114 16,4734 24, 26 12,1982 15,3792 17,2919 25,					23,5893
12 3,5706 5,2260 6,3038 11, 13 4,1069 5,8919 7,0415 12, 14 4,6604 6,5706 7,7895 13, 15 5,2294 7,2609 8,5468 14, 16 5,8122 7,9616 9,3122 15, 17 6,4077 8,6718 10,0852 16, 18 7,0149 9,3904 10,8649 17, 19 7,6327 10,1170 11,6509 18, 20 8,2604 10,8508 12,4426 19, 21 8,8972 11,5913 13,2396 20, 22 9,5425 12,3380 14,0415 21, 23 10,1957 13,0905 14,8480 22, 24 10,8563 13,8484 15,6587 23, 25 11,5240 14,6114 16,4734 24, 26 12,1982 15,3792 17,2919 25,					25,1881
13 4,1069 5,8919 7,0415 12, 14 4,6604 6,5706 7,7895 13, 15 5,2294 7,2609 8,5468 14, 16 5,8122 7,9616 9,3122 15, 17 6,4077 8,6718 10,0852 16, 18 7,0149 9,3904 10,8649 17, 19 7,6327 10,1170 11,6509 18, 20 8,2604 10,8508 12,4426 19, 21 8,8972 11,5913 13,2396 20, 22 9,5425 12,3380 14,0415 21, 23 10,1957 13,0905 14,8480 22, 24 10,8563 13,8484 15,6587 23, 25 11,5240 14,6114 16,4734 24, 26 12,1982 15,3792 17,2919 25,					26,7569
14 4,6604 6,5706 7,7895 13, 15 5,2294 7,2609 8,5468 14, 16 5,8122 7,9616 9,3122 15, 17 6,4077 8,6718 10,0852 16, 18 7,0149 9,3904 10,8649 17, 19 7,6327 10,1170 11,6509 18, 20 8,2604 10,8508 12,4426 19, 21 8,8972 11,5913 13,2396 20, 22 9,5425 12,3380 14,0415 21, 23 10,1957 13,0905 14,8480 22, 24 10,8563 13,8484 15,6587 23, 25 11,5240 14,6114 16,4734 24, 26 12,1982 15,3792 17,2919 25,			3,3367 2		28,2997
15 5,2294 7,2609 8,5468 14, 16 5,8122 7,9616 9,3122 15, 17 6,4077 8,6718 10,0852 16, 18 7,0149 9,3904 10,8649 17, 19 7,6327 10,1170 11,6509 18, 20 8,2604 10,8508 12,4426 19, 21 8,8972 11,5913 13,2396 20, 22 9,5425 12,3380 14,0415 21, 23 10,1957 13,0905 14,8480 22, 24 10,8563 13,8484 15,6587 23, 25 11,5240 14,6114 16,4734 24, 26 12,1982 15,3792 17,2919 25,					29,8193
16 5,8122 7,9616 9,3122 15, 17 6,4077 8,6718 10,0852 16, 18 7,0149 9,3904 10,8649 17, 19 7,6327 10,1170 11,6509 18, 20 8,2604 10,8508 12,4426 19, 21 8,8972 11,5913 13,2396 20, 22 9,5425 12,3380 14,0415 21, 23 10,1957 13,0905 14,8480 22, 24 10,8563 13,8484 15,6587 23, 25 11,5240 14,6114 16,4734 24, 26 12,1982 15,3792 17,2919 25,					31,3194
17 6,4077 8,6718 10,0852 16, 18 7,0149 9,3904 10,8649 17, 19 7,6327 10,1170 11,6509 18, 20 8,2604 10,8508 12,4426 19, 21 8,8972 11,5913 13,2396 20, 22 9,5425 12,3380 14,0415 21, 23 10,1957 13,0905 14,8480 22, 24 10,8563 13,8484 15,6587 23, 25 11,5240 14,6114 16,4734 24, 26 12,1982 15,3792 17,2919 25,					32,8015
18 7,0149 9,3904 10,8649 17, 19 7,6327 10,1170 11,6509 18, 20 8,2604 10,8508 12,4426 19, 21 8,8972 11,5913 13,2396 20, 22 9,5425 12,3380 14,0415 21, 23 10,1957 13,0905 14,8480 22, 24 10,8563 13,8484 15,6587 23, 25 11,5240 14,6114 16,4734 24, 26 12,1982 15,3792 17,2919 25,	3385 23,5418 2	26,2962 2	8,8453 3		34,2671
19 7,6327 10,1170 11,6509 18, 20 8,2604 10,8508 12,4426 19, 21 8,8972 11,5913 13,2396 20, 22 9,5425 12,3380 14,0415 21, 23 10,1957 13,0905 14,8480 22, 24 10,8563 13,8484 15,6587 23, 25 11,5240 14,6114 16,4734 24, 26 12,1982 15,3792 17,2919 25,				3,4087	35,7184
20 8,2604 10,8508 12,4426 19, 21 8,8972 11,5913 13,2396 20, 22 9,5425 12,3380 14,0415 21, 23 10,1957 13,0905 14,8480 22, 24 10,8563 13,8484 15,6587 23, 25 11,5240 14,6114 16,4734 24, 26 12,1982 15,3792 17,2919 25,					37,1564
21 8,8972 11,5913 13,2396 20, 22 9,5425 12,3380 14,0415 21, 23 10,1957 13,0905 14,8480 22, 24 10,8563 13,8484 15,6587 23, 25 11,5240 14,6114 16,4734 24, 26 12,1982 15,3792 17,2919 25,					38,5821
22 9,5425 12,3380 14,0415 21, 23 10,1957 13,0905 14,8480 22, 24 10,8563 13,8484 15,6587 23, 25 11,5240 14,6114 16,4734 24, 26 12,1982 15,3792 17,2919 25,					39,9969
23 10,1957 13,0905 14,8480 22, 24 10,8563 13,8484 15,6587 23, 25 11,5240 14,6114 16,4734 24, 26 12,1982 15,3792 17,2919 25,					41,4009
24 10,8563 13,8484 15,6587 23, 25 11,5240 14,6114 16,4734 24, 26 12,1982 15,3792 17,2919 25,					42,7957
25 11,5240 14,6114 16,4734 24, 26 12,1982 15,3792 17,2919 25,					44,1814
26 12,1982 15,3792 17,2919 25,					45,5584
					46,9280
27 12 0705 16 1514 10 1120 26					48,2898
					49,6450
					50,9936
29 14,2564 17,7084 19,7677 28,	3361 39,0875 4	42,5569 4	5,7223 4	9,5878	52,3355

Propriedades do Qui-Quadrado

Propriedades

$$E(X) = n$$

$$Var(X) = 2n$$

Aplicação – Teste de Hipótese

Se um dado não viciado for jogado 6 vezes, espera-se obter 1 vez cada face (1, 2, 3, 4, 5 e 6) já que a probabilidade de cair qualquer face é 1/6.

Supondo que um dado foi jogado 186 vezes e se obteve:

Face 1	Face 2	Face 3	Face 4	Face 5	Face 6
34	29	30	32	28	33

- a. Qual será o valor de χ²?
- b. Como se pode interpretar esse valor?

Aplicação – Teste de Hipótese

Como calcular

Karl Pearson propôs a seguinte fórmula para medir as possíveis discrepâncias entre proporções observadas e esperadas:

$$\chi^2 = \Sigma [(o - e)^2 / e]$$

em que

- o = frequência observada para cada classe,
- e = frequência esperada para aquela classe.

Note-se que (o - e) = desvio (d), portanto a fórmula também pode ser escrita como

$$\chi^2 = \Sigma(d^2/e)$$

Aplicação – Teste de Hipótese

Resolvendo:

As frequências esperadas em cada classe são calculadas por: p.N. Portanto:

$$E_{\text{(face 1)}} = E_{\text{(face 2)}} = E_{\text{(face 3)}} = E_{\text{(face 4)}} = E_{\text{(face 5)}} = E_{\text{(face 6)}} = p.N = 1/6.186 = 31$$

a. Qual será o valor de χ^2 ?

Assim, os valores parciais são somados: e chega-se ao valor de χ^2 :

observado	34	29	30	32	28	33
esperado	31	31	31	31	31	31
χ² parcial	0,2903	0,1290	0,0322	0,0322	0,2903	0,1290

$$\chi^2$$
 = (0,2903 + 0,1290 + 0,0322 + 0,0322 + 0,2903 + 0,1290) = 0,903

b. Como se pode interpretar esse valor?

Lembrando que G.L. = número de classes -1, como há há 6 classes, G.L. = 5.

Verificando-se a tabela de χ^2 na linha em G.L. = 5 encontra-se χ^2_c igual a 11,070. Como o valor de Qui Quadrado obtido (0,903) foi *menor* que o esperado ao acaso (11,070) admite-se que o dado seja honesto.

Distribuição T - Student

T- Student

■ Padronizar variável aleatória normal requer que o μ e σ sejam conhecidos. Na prática, porém, não podemos calcular $z = (x - \mu)/\sigma$ porque σ é desconhecido. Em vez disso, substituímos σ por s e calculamos a estatística t.

$$t = \frac{x - \mu}{s}$$

Distribuição Amostral da Média e da variância

- Se discrepâncias nas observações sobre a média são aleatórios e independentes, então a distribuição amostral da média tem μ e variância, σ^2/n .
- A quantidade σ^2/n é a variância da média.
- Sua raiz quadrada é chamada o erro padrão da média:

$$\sigma = \frac{\sigma}{\sqrt{n}}$$

A estimativa do erro padrão da média é:

$$s = \frac{s}{\sqrt{n}}$$

- Normalmente, a variância da população, σ^2 não é conhecida e não podemos usar a distribuição normal como a distribuição de referência para a média da amostra. Em vez disso, substituir e usar a distribuição t.
- Se a distribuição de referência é normal e a variância da população é estimado por s², a quantidade:

$$T = \frac{\overline{X} - \mu}{s / \sqrt{n}}$$

• que é conhecido como a média padronizada ou como a estatística t, terá à distribuição com v = n - 1 graus de liberdade.

Exemplo:

Exemplo para a tabela: supõe-se uma distribuição t-student com 5 graus de liberdade e área A (ou probabilidade de valores acima) de 0,1 ou 10%:

Na interseção da coluna v = 5 e A = 0,1000, o valor é t = 1,476. Isso significa que

$$P(t > 1,476) = 0,1000 \text{ OU } P(t \le 1,476) = 1 - 0,1000 = 0,9.$$

Considerando a simetria da distribuição,

 $P(t < -1,476) = 0,1000 e também P(-1,476 \le t \le 1,476) = 1 - 2 \times 0,1 = 0,8.$

v/A	0,2500	0,2000	0,1500	0,1000	0,0500	0,0250	0,0100	0,0050	0,0025	0,0010	0,0005
001	1,000	1,376	1,963	3,078	6,314	12,710	31,820	63,660	127,300	318,300	636,600
002	0,816	1,061	1,386	1,886	2,920	4,303	6,965	9,925	14,090	22,330	31,600
003	0,765	0,978	1,250	1,638	2,353	3,182	4,541	5,841	7,453	10,210	12,920
004	0,741	0,941	1,190	1,533	2,132	2,776	3,747	4,604	5,598	7,173	8,610
005	0,727	0,920	1,156	1,476	2,015	2,571	3,365	4,032	4,773	5,893	6,869
006	0,718	0,906	1,134	1,440	1,943	2,447	3,143	3,707	4,317	5,208	5,959
007	0,711	0,896	1,119	1,415	1,895	2,365	2,998	3,499	4,029	4,785	5,408
800	0,706	0,889	1,108	1,397	1,860	2,306	2,896	3,355	3,833	4,501	5,041
009	0,703	0,883	1,100	1,383	1,833	2,262	2,821	3,250	3,690	4,297	4,781
010	0,700	0,879	1,093	1,372	1,812	2,228	2,764	3,169	3,581	4,144	4,587
011	0,697	0,876	1,088	1,363	1,796	2,201	2,718	3,106	3,497	4,025	4,437
012	0,695	0,873	1,083	1,356	1,782	2,179	2,681	3,055	3,428	3,930	4,318
013	0,694	0,870	1,079	1,350	1,771	2,160	2,650	3,012	3,372	3,852	4,221
014	0,692	0,868	1,076	1,345	1,761	2,145	2,624	2,977	3,326	3,787	4,140

Suponhamos que Z tenha uma distribuição normal padrão e que X tenha uma distribuição qui-quadrado com n graus de liberdade. Adicionalmente, suponhamos que Z e X sejam independentes. Então, a variável aleatória terá uma distribuição t com n graus de liberdade.

$$T = \frac{Z}{\sqrt{X/n}}$$

 $T \sim tn$. A distribuição t obtém seus graus de liberdade da variável aleatória qui-quadrada no denominador da equação anterior.

A fdp da distribuição *t* tem uma forma semelhante à da distribuição normal padrão, exceto pelo fato de que ela é mais espalhada e, portanto, tem mais área nos extremos.

O valor esperado de uma variável aleatória com distribuição t é zero (no sentido exato, o valor esperado somente existirá para n > 1).

A variância será n/(n-2) para n>2. Não existe variância de $n\leq 2$ devido à distribuição ser tão espalhada.

Figura 1.5 - Gráfico da distribuição t (de Student) para os gl de 1, 5 e 25

A distribuição t de Student é uma das distribuições mais utilizadas na estatística, com aplicações que vão desde a modelagem estatística até testes de hipóteses.

Definição 9.2: Uma variável aleatória contínua X tem distribuição t de Student com v graus de liberdade, denotada por t_v , se sua função densidade for dada por:

$$f(x) = \frac{1}{\sqrt{v\pi}} \frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)} \left(1 + \frac{x^2}{v}\right)^{-\left(\frac{v+1}{2}\right)}, \quad v = 1, 2, 3, \dots \quad \forall x \in \mathbb{R}$$

A expressão acima é assustadora????

Boa Notícia: Não precisaremos dela para calcular probabilidades.

Mais uma vez, o parâmetro ν , chamado de graus de liberdade, está associado ao número de parcelas independentes em uma soma.

Propriedades

$$E(X) = 0$$
 para $v > 1$

$$Var(X) = \frac{v}{v-2}$$
, para $v > 2$

Ao contrário da distribuição normal, não existe uma relação entre as diferentes distribuições t, assim seria necessária uma tabela para cada valor de v.

É comum que os livros didáticos apresentem tabelas da distribuição t que envolvem os valores críticos.

O motivo para isso é que a maioria das aplicações da distribuição t envolve a construção de intervalos de confiança ou de testes de hipóteses.

Nessas aplicações, nosso interesse está no valor crítico associado a um nível de significância α que, como visto no gráfico a seguir, é o valor da abscissa que deixa probabilidade (área) α acima dela.

 Na tabela t, cada linha corresponde a um número diferente de graus de liberdade e cada coluna corresponde a uma área α na cauda superior. No corpo da tabela temos a abscissa tα que deixa a área α

acima dela

Figura : Ilustração do valor crítico t ν ; α da distribuição t(ν).

	P(t de S	tudent ≥	valor ta	belado)	=α ⇔	Valore	erais		
	0.5000	0.2000	0.1000	0.0500	0.0400	0.0200	0.0100	0.0050	0.0
1	1.000	3.078	6.314	12.706	15.894	31.821	63.656	127.321	636
2	0.816	1.886	2.920	4.303	4.849	6.965	9.925	14.089	31
3	0.765	1.638	2.353	3.182	3.482				12
4	0.741	1.533	2.132	2.776	2.9 F	P(T9 < -2,	262) = 2	,5% ou	8.
5	0.727	1.476	2.015	2.571	2.7	P(To > 2	2,262) = 1	2.5%	6.5
6	0.718	1.440	1.943	2.447	2.61	7 /	discounts of		5.5
7	0.711	1.415	1.895	2.365	2.517/	198	3.499	4.029	5.
8	0.706	1.397	1.860	2.306	10	2.896	3.355	3.833	5.0
9	0.703	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.
0	0,700	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.5
11	0.697	1363	_/	2 201	2 120	2.718	3.106	3.497	4.
12	0.695	1.356	$P(T_9)$	≥ 2,262)	= 5%	2.681	3.055	3.428	4
13	0.694	1.350	1.771	2.100	2.282	2.650	3.012	3.372	4.
4	0.692	1.345	1.761	2.145	2.264	2.624	2.977	3.326	4.1
15	0.691	1.341	1,753	2.131	2.249	2.602	2.947	3.286	4.0