离散数学2

《图论》

北航计算机学院

主要内容

- 1. 图论的基本概念
- 2. 子图和图的运算
- 3. 路径、回路和连通图
- 4. 欧拉图和哈密顿图
- 5. 图的矩阵表示
- 6. 树、有向树和有序树

第五章 图的矩阵表示

图的矩阵表示

目的: 图的各种矩阵表示及性质、图的各种表示之间

的关联性质;

重点: 图的各种矩阵表示、各种表示之间的关联性质;

难点: 图的各种表示之间的关联性质。

■ 图的表示法:

- □ 抽象数学系统: 适于对图进行理论分析,但不直观
- □ 图解表示法: 直观,但不适用于进行严格的论证
- □ 矩阵表示法: 便于用计算机存储和处理

可以利用矩阵代数的运算便于求图的路径、回路以及其它性质

为了用矩阵表示图,首先需要对图的结点和边分别编号,即为它们规定某种顺序。

约定: 事先已为图的结点和边规定好了某种顺序。

主要知识点

关联矩阵

A

(1) 邻接矩阵

定义5.1 设 n 阶图 G 的结点集为 $\{v_1, v_2, ..., v_n\}$, 定义 G 的邻接矩阵 X(G) 为 $n \times n$ 矩阵 (x_{ii}) , 其中, x_{ii} 为分别以 v_i 和 v_i 为起点和终点的边的数目。

$$\begin{array}{c|ccccc} & u_1 & u_2 & u_3 & u_4 \\ u_1 & 0 & 1 & 0 & 0 \\ u_2 & 0 & 0 & 1 & 1 \\ u_3 & 1 & 1 & 0 & 1 \\ u_4 & 1 & 0 & 0 & 0 \end{array}$$

图G的邻接矩阵依赖于G的结点的顺序排序

(1) 邻接矩阵

定义5.1 设 n 阶图 G 的结点集为 $\{v_1, v_2, \dots, v_n\}$, 定义 G 的邻接矩阵 X(G) 为 $n \times n$ 矩阵 (x_{ij}) ,其中, x_{ij} 为分别以 v_i 和 v_j 为起点和终点的边的数目。

 G_1 与 G_2 同构

问题:两个同构的图的邻接矩阵有什么关系?

(1) 邻接矩阵

■ 如果 G_2 和 G_2 是两个同构的图,则首先交换 $X(G_1)$ 的一些行,然后交换相应的列,就可由 $X(G_1)$ 得到 $X(G_2)$;

$$\begin{array}{c|ccccc}
 & u_1 & u_2 & u_3 & u_4 \\
 u_1 & 0 & 1 & 0 & 0 \\
 u_2 & 0 & 0 & 1 & 1 \\
 u_3 & 1 & 1 & 0 & 1 \\
 u_4 & 1 & 0 & 0 & 0
\end{array}$$

$$X(G_1)$$

$$\begin{array}{c|ccccc}
u_1 & u_2 & u_3 & u_4 \\
u_1 & 0 & 1 & 1 & 1 \\
u_2 & 1 & 0 & 0 & 1 \\
u_3 & 0 & 1 & 0 & 0 \\
u_4 & 0 & 0 & 1 & 0
\end{array}$$

$$X(G_2)$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

- 如果 G_2 和 G_2 是两个同构的图,则首先交换 $X(G_1)$ 的一些行,然后交换相应的列,就可由 $X(G_1)$ 得到 $X(G_2)$;
- 邻接矩阵对于同构的图不加区别。

因此,不关心矩阵中结点和边的顺序是合理的。

并选取图G的任何一个邻接矩阵作为它的邻接矩阵。

n阶图 G 和 X(G) 之间的联系

- 1.无向图G的邻接矩阵X(G)是对称的
- 2.图 G 没有平行边 \Leftrightarrow X(G)的元素都是 0和1
- 3.图G有自圈 ⇔ X(G)的对角线有 非零元素
- 4.图G是简单图 $\Leftrightarrow X(G)$ 的元素都是 0和1,并且对角线元素都为 0
- 5.图G是零图 $\Leftrightarrow X(G)$ 是零矩阵 (即所有元素都是 0 的矩阵)。

n阶图 G 和 X(G) 之间的联系

- 6.若图G是无向图, $d_G(v_i) = x_{ii} + \sum_{j=1}^n x_{ij}$ (i=1, 2, ..., n)。
- 7.若图G是有向图, $d_G^+(v_i) = \sum_{j=1}^n x_{ij}$, $d_G^-(v_i) = \sum_{j=1}^n x_{ji}$ $d_G(v_i) = \sum_{j=1}^n (x_{ij} + x_{ji})$
- 8.无向图(有向图)G 有 k 个分支 (弱分支) G_1 , G_2 , ...,
- $G_k \Leftrightarrow 顺序排列 G_1, G_2, ..., G_k$ 的结点可使

$$X(G) = \begin{bmatrix} X(G_1) & & & \\ & X(G_2) & & \\ & & \cdots & \\ & & X(G_k) \end{bmatrix}$$

邻接矩阵的幂

- 对于矩阵 X, $m \in \mathbb{N}$, $\diamondsuit x_{ij}^{(m)}$ 表示 X^m 的第 i 行第 j 列元素。
- 在 X(G) 中,若 $x_{ij} = r$,则说明: 从 v_i 至 v_j 存在 r 条长度为 1 的路径。
- 该结果可推广到X的任意正整数次幂 X^m ,其中:

$$X^0 = I_n, \quad X^{m+1} = X^m X$$

定理 5.1 设 $m \in I_+$, n 阶图G的 $V = \{v_1, v_2, ..., v_n\}$, 若 X 是G的邻接矩阵且 $1 \le i, j \le n$, 则 $x_{ij}^{(m)}$ 等于 G 中从 v_i 至 v_j 的长度为 m 的路径数。

定理 5.1 设 $m \in I_+$, n 阶图G的 $V = \{v_1, v_2, ..., v_n\}$, 若 X 是G的邻接矩阵且 $1 \le i, j \le n$, 则 $x_{ij}^{(m)}$ 等于 G 中从 v_i 至 v_j 的长度为 m 的路径数。

证明:对 m 用第一归纳法:

- (1) 当m=1时,定理显然成立。
- (2) 假设当 m = k ($k \ge 1$) 时,定理成立。

当 m = k + 1时, $X^{k+1} = X^k X$ 。由归纳假设,若 $1 \le l \le n$,则 $x_{il}^{(k)}$ 等于 G 中从 v_i 至 v_l 长度为 k 的路径数, x_{li} 等于从 v_l 至 v_i 长度为 1 的路径数,

$$X^{k+1} = \begin{array}{c} x_{ij}^{(k+1)} \\ \end{array}$$

 v_i 到 v_i 的长度为 k+1的路径数:

$$x_{ij}^{(k+1)} = x_{i1}^{(k)} \cdot x_{1j} + x_{i2}^{(k)} \cdot x_{2j} + \dots + x_{ij}^{(k)} \cdot x_{ij} + \dots + x_{in}^{(k)} \cdot x_{nj}$$

 v_i 到 v_i 的长度为 k+1的路径可能为:

 v_i 到 v_i 的长度为k的路径 + v_i 到 v_j 的边(l=1,2,...,n)

定理 5.1 设 $m \in I_+$, n 阶图G的 $V = \{v_1, v_2, ..., v_n\}$, 若 X 是G的邻接矩阵且 $1 \le i, j \le n$, 则 $x_{ij}^{(m)}$ 等于 G 中从 v_i 至 v_j 的长度为 m 的路径数。

证明:对 m 用第一归纳法:

- (1) 当m=1时,定理显然成立。
- (2) 假设当 m = k ($k \ge 1$) 时,定理成立。

当 m = k + 1时, $X^{k+1} = X^k X$ 。由归纳假设,若 $1 \le l \le n$,则 $x_{il}^{(k)}$ 等于 G 中从 $v_i \cong v_l$ 长度为 k 的路径数,

 x_{li} 等于从 v_{l} 至 v_{i} 长度为1的路径数,

因此, $x_{ii}^{(k)}x_{lj}$ 等于从 v_i 至 v_j 长度为 k+1 且倒数第二个结点为 v_l 的路径数。

所以 $x_{ij}^{(k+1)} = \sum_{l=1}^{n} x_{il}^{(k)} x_{lj}$,即为 G 中从 v_i 至 v_j 长度为 k+1 的路径数。

v₁到v₁的长度为 2 的路径为 2 条:

	2	1	1	2	2	0
	1	4	0	1	3	2
$X^2 =$	1	0	1	1	1	0
	2	1	1	6	2	0
	2	3	1	2	4	2
	0	2	0	0	2	4
	3	7	1	3	7	4
	7	5	4	11	9	2
13	1	4	0	1	3	2
$X^3 =$	3	11	1	3	11	12
	7	9	3	11	11	4
	4	2	2	12	4	0

 v_1 到 v_1 的长度为 2 的路径为 2 条: $v_1e_8v_2e_8v_1 v_1e_6v_5e_6v_1$

	2	1	1	2	2	0
<i>X</i> ² =	1	4	0	1	3	2
	1	0	1	1	1	0
	2	1	1	6	2	0
	2	3	1	2	4	2
	0	2	0	0	2	4
,						
	3	7	1	3	7	4
	7	5	4	11	9	2
<i>X</i> ³ =	1	4	0	1	3	2
	3	11	1	3	11	12
	7	9	3	11	11	4
	4	2	2	12	4	0

0	1	0	0	1	0
1	0	1	1	1	0
0	1	0	0	0	0
0	1	0	0	1	2
1	1	0	1	1	0
0	0	0	2	0	0

 v_1 到 v_1 的长度为 2 的路径为 2 条: $v_1e_8v_2e_8v_1$ $v_1e_6v_5e_6v_1$

问题:列出所有 v_1 到 v_1 的长度为 3 的路径

**	2	1	1	2	2	0
	1	4	0	1	3	2
	1	0	1	1	1	0
$X^2 =$	2	1	1	6	2	0
	2	3	1	2	4	2
	0	2	0	0	2	4

	3	7	1	3	7	4
$X^3 =$	7	5	4	11	9	2
	1	4	0	1	3	2
	3	11	1	3	11	12
	7	9	3	11	11	4
	4	2	2	12	4	0

0	1	0	0	1	0
1	0	1	1	1	0
0	1	0	0	0	0
0	1	0	0	1	2
1	1	0	1	1	0
0	0	0	2	0	0

 v_1 到 v_1 的长度为 2 的路径为 2 条: $v_1 e_8 v_2 e_8 v_1 v_1 e_6 v_5 e_6 v_1$

	3	7	1	3	7	4
	7	5	4	11	9	2
<i>X</i> ³ =	1	4	0	1	3	2
	3	11	1	3	11	12
	7	9	3	11	11	4
	4	2	2	12	4	0

0	1	0	0	1	0
1	0	1	1	1	0
0	I 1	0	0	0	0
0	1	0	0	1	2
1	1	0	1	1	0
0	0	0	2	0	0

 v_1 到 v_1 的长度为 2 的路径为 2 条: $v_1e_8v_2e_8v_1$ $v_1e_6v_5e_6v_1$

问题:列出所有v₁到v₁的长度为3的路径

 v_1 到 v_2 的长度为 2 的路径为 1 条:

 v_2 到 v_1 的长度为1的路径为1条:

	2	1	1	2	2	0	ı
V 2-	1	4	0	1	3	2	
	1	0	1	1	1	0	
$X^2 =$	2	1	1	6	2	0	
	2	3	1	2	4	2	
	0	2	0	0	2	4	
	3	7	1	3	7	4	
	7	5	4	11	9	2	
13	1	4	0	1	3	2	
$X^{3}=$	3	11	1	3	11	12	

3

11

12

0	1	0	0	1	0	
1	0	1	1	1	0	
0	1	0	0	0	0	
0	1	0	0	1	2	
1	1	0	1	1	0	
0	0	0	2	0	0	

 v_1 到 v_1 的长度为 2 的路径为 2 条: $v_1e_8v_2e_8v_1$ $v_1e_6v_5e_6v_1$ 问题:列出所有 v_1 到 v_1 的长度为 3 的路径 v_1 2的长度为 2 的路径为 1 条: $v_1e_6v_5e_7v_2$

	3	7	1	3	7	4
<i>X</i> ³ =	7	5	4	11	9	2
	1	4	0	1	3	2
	3	11	1	3	11	12
	7	9	3	11	11	4
	4	2	2	12	4	0

 v_2 到 v_1 的长度为1的路径为1条: $v_2e_8v_1$

0	1	0	0	1	0
1	0	1	1	1	0
0	1	0	0	0	0
0	1	0	0	1	2
1	1	0	1	1	0
0	0	0	2	0	0

 v_1 到 v_1 的长度为 2 的路径为 2 条: $v_1e_8v_2e_8v_1$ $v_1e_6v_5e_6v_1$

问题:列出所有 v_1 到 v_1 的长度为 3 的路径

 v_1 到 v_2 的长度为 2 的路径为 1 条: $v_1e_6v_5e_7v_2$

 v_2 到 v_1 的长度为1的路径为1条: $v_2e_8v_1$

 v_1 到 v_5 的长度为 2 的路径为 2 条:

 v_5 到 v_1 的长度为1的路径为1条:

	0	1	0	0	1	0
	1	0	1	1	1	0
	0	1	0	0	0	0
Ī	0	1	0	0	1	2
ſ	1	1	0	1	1	0
	0	0	0	2	0	0

X ² =	2	1	1	2	2	0
	1	4	0	1	3	2
	1	0	1	1	1	0
	2	1	1	6	2	0
	2	3	1	2	4	2
	0	2	0	0	2	4

 v_1 到 v_1 的长度为 2 的路径为 2 条: $v_1e_8v_2e_8v_1 v_1e_6v_5e_6v_1$

问题:列出所有v₁到v₁的长度为3的路径

 v_1 到 v_2 的长度为 2 的路径为 1 条: $v_1e_6v_5e_7v_2$

 v_2 到 v_1 的长度为1的路径为1条: $v_2e_8v_1$

 v_1 到 v_5 的长度为 2 的路径为 2 条: $v_1e_8v_2e_7v_5$, $v_1e_6v_5e_4v_5$

 v_5 到 v_1 的长度为1的路径为1条: $v_5e_6v_1$

 v_1 到 v_1 的长度为 3 的路径为3条: $v_1e_6v_5e_7v_2e_8v_1$, $v_1e_8v_2e_7v_5e_6v_1$, $v_1e_6v_5e_4v_5e_6v_1$

$$X^{3} = \begin{bmatrix} 3 & 7 & 1 & 3 & 7 & 4 \\ 7 & 5 & 4 & 11 & 9 & 2 \\ 1 & 4 & 0 & 1 & 3 & 2 \\ 3 & 11 & 1 & 3 & 11 & 12 \\ 7 & 9 & 3 & 11 & 11 & 4 \\ 4 & 2 & 2 & 12 & 4 & 0 \end{bmatrix}$$

(2) 路径矩阵(可达性矩阵)

定义5.2 设 n 阶图 G 的全部结点为 $v_1, v_2, ..., v_n$,定义图 G的 路径矩阵为 $n \times n$ 矩阵 $P = (p_{ij})$,其中

$$p_{ij} = \begin{cases} \mathbf{1} & \mathcal{M}v_i \overline{\mathbf{n}} \dot{\mathbf{b}} v_j \\ \mathbf{0} & \mathcal{M}v_i \overline{\mathbf{n}} \dot{\mathbf{b}} v_j \end{cases}$$

路径矩阵也称为可达性矩阵。

	1	1	1	1	1	1
	1	1	1	1	1	1
	1	1	1	1	1	1 1 1
P(G)=	1	1	1	1	1	1
	1	1	1	1	1	1
	1	1	1	1	1	1

(2) 路径矩阵(可达性矩阵)

定义5.2 设 n 阶图 G 的全部结点为 $v_1, v_2, ..., v_n$,定义图 G的 路径矩阵为 $n \times n$ 矩阵 $P = (p_{ij})$,其中

$$p_{ij} = \begin{cases} \mathbf{1} & \mathcal{M}v_i \overline{\mathbf{n}} \dot{\mathbf{b}} v_j \\ \mathbf{0} & \mathcal{M}v_i \overline{\mathbf{n}} \dot{\mathbf{b}} v_j \end{cases}$$

路径矩阵也称为可达性矩阵。

	1	1	1	1	1	0
	1	1	1	1	1	0
P (G)=	1	1	1	1	1	0
	0	0	0	1	1	0
	0	0	0	0	1	0
	0	0	0	0	1	1

由邻接矩阵求路径矩阵

对于n 阶图 G, 路径矩阵为 $n \times n$ 矩阵 $P = (p_{ii})$,

$$p_{ij} = 1 \Leftrightarrow \mathcal{K} v_i$$
可达 v_j

- \Leftrightarrow 存在从 v_i 到 v_j 的路径
- ⇔ 存在从 v_i 到 v_j 的基本路径(定理3.3)
- \Leftrightarrow 存在从 v_i 到 v_j 长度小于n的路径(定理3.2)

去掉自圈和平行边不会改变结点间的可达性。

不妨只考虑简单图, 其邻接矩阵的元素都是0和1.

- 设G为n 阶<u>简单</u>图,结点集为{ $v_1, v_2, ..., v_n$ }
 - □ 如何判断 v_i 到v_i 可达?
- v_i 可达 v_j ⇔ $\exists k \in \{0, 1, ..., n-1\}$, f_{v_i} 到 v_j 的长度为 k 的路径
 - □ v_i 到 v_i 存在长度为 0 的路径 $\Leftrightarrow i = j$
 - □ v_i 到 v_j 存在长度为 1 的路径 $\Leftrightarrow v_i$ 与 v_j 邻接 $\Leftrightarrow x_{ij}$ = 1
 - □ v_i 到 v_j 存在长度为 2 的路径 $\Leftrightarrow p_{ij}^{(2)} = 1$

							x_{1j}				
	x_{i1}	x_{i2}	• • •	x_{in}			x_{2j}	$X^{(2)} =$		$p_{ij}^{(2)}$	
X=	<u> </u>	<u> </u>			X=		• • •	$X^{(2)} =$			
							x_{nj}				

 $p_{ij}^{(2)} = x_{i1} \wedge x_{1j} \vee x_{i2} \wedge x_{2j} \vee \cdots \vee x_{in} \wedge x_{nj}$

- 设G为n 阶简单图,结点集为 $\{v_1, v_2, ..., v_n\}$
 - □ 如何判断 v_i 到v_i 可达?
- v_i 可达 v_j ⇔ $\exists k \in \{0, 1, ..., n-1\}$, f_{v_i} 到 v_j 的长度为 k 的路径
 - □ v_i 到 v_i 存在长度为 0 的路径 $\Leftrightarrow i = j$
 - □ v_i 到 v_j 存在长度为 1 的路径 $\Leftrightarrow v_i$ 与 v_j 邻接 $\Leftrightarrow x_{ij}$ = 1
 - □ v_i 到 v_j 存在长度为 2 的路径 $\Leftrightarrow p_{ij}^2 = 1$
 - □ v_i 到 v_i 存在长度为 3 的路径 $\Leftrightarrow p_{ij}^3 = 1$

							x_{1j}					
	$p_{i1}^{(2)}$	$p_{i2}^{(2)}$	• • •	$p_{in}^{(2)}$			x_{2j}		V(3) _		$p_{ij}^{(3)}$	
$X^{(2)} =$	- (1			- 111	X=		• • •		X (3) =			
							x_{nj}					
	(0)	(0)			(0			_	0 \			

 $p_{ij}^{(3)} = p_{i1}^{(2)} \land x_{1j} \lor p_{i2}^{(2)} \land x_{2j} \lor \cdots \lor p_{in}^{(2)} \land x_{nj}$

- 设G为n 阶简单图,结点集为{ $v_1, v_2, ..., v_n$ }
 - \Box 如何判断 v_i 到 v_i 可达?
- v_i 可达 v_j ⇔ $\exists k \in \{0, 1, ..., n-1\}$, \overline{q}_{v_i} 到 v_i 的长度为 k 的路径
 - □ v_i 到 v_i 存在长度为 0 的路径 $\Leftrightarrow i = j$
 - □ v_i 到 v_j 存在长度为 1 的路径 $\Leftrightarrow v_i$ 与 v_j 邻接 $\Leftrightarrow x_{ij} = 1$
 - □ v_i 到 v_j 存在长度为 2 的路径 $\Leftrightarrow p_{ij}^{(2)} = 1$

$$= \bigvee_{l=1}^{n} p_{il}^{(k-1)} \wedge x_{li}$$

 v_i 可达 $v_j \Leftrightarrow (i=j) \lor x_{ij} = 1 \lor p_{ii}^{(2)} = 1 \lor p_{ii}^{(3)} = 1 \lor ... \lor p_{ii}^{(n-1)} = 1$

由邻接矩阵求路径矩阵

■ 定义矩阵运算⊗

设 $A=(a_{ij})$ 是 $m \times p$ 矩阵, $B=(b_{ij})$ 为 $p \times n$ 矩阵,且均为0-1矩阵, 定义 $A\otimes B=C=\{c_{ij}\}$,其中 $c_{ij}=\bigvee_{k=1}^{p}(a_{ik}\wedge b_{kj})$

■ 定义矩阵运算 🕀

设 $A=(a_{ij})$ 和 $B=(b_{ij})$ 均为 $n\times m$ 矩阵,且是0-1矩阵。 定义 $A \oplus B=C=(c_{ij})$,其中 $c_{ij}=a_{ij}\vee b_{ij}$

引入符号:
$$\sum_{i=0}^{0} A^{(i)} = A^{(0)}$$
, $\sum_{i=0}^{k+1} A^{(i)} = A^{(k+1)} \oplus \sum_{i=0}^{k} A^{(i)}$ $(k=0,1,2,....)$

由邻接矩阵求路径矩阵

定理 5.2 设 X 和 P 分别是 n 阶简单图 G 的邻接矩阵和路

径矩阵,记
$$X^{(0)} = I_n (I_n \in n)$$
 所单位矩阵)。

$$X^{(k+1)} = X^{(k)} \otimes X \ (k = 0, 1, 2, ..., n)$$

则
$$P = \sum_{k=0}^{n-1} X^{(k)}$$
。

$$(X^{(1)} = X, X^{(k)} = (p_{ij}^{(k)}))$$

- $p_{ij}^{(k+1)} = \bigvee_{l=1}^{n} (p_{il}^{(k)} \wedge x_{lj})$
- $p_{ij} = 1 \iff (i = j) \lor x_{ij} = 1 \lor p_{ij}^{(2)} = 1 \lor p_{ij}^{(3)} = 1 \lor \dots \lor p_{ij}^{(n-1)} = 1$

(3) 距离矩阵

定义5.3 设 n 阶图 G 的全部结点为 v_1 , v_2 , ..., v_n , 称 $n \times n$ 矩阵 $D = (d_{ij})$ 为 G 的 距离矩阵,其中: d_{ij} 为从 v_i 至 v_i 的距离。

■ 由图的邻接矩阵可以求得它的距离矩阵。

定理 5.3 设 $D = (d_{ij})$ 和 $X = (x_{ii})$ 分别是 n 阶图 G 的 距离矩阵和邻接矩阵, 没有从 v_i 到 v_j 的长度为m的路径

$$d_{ij} = \begin{cases} \infty, (\forall m)(m \in N \land m < n \rightarrow x_{ij}^{(m)} = 0) \\ \min \left\{ k \middle| 0 \le k < n \land x_{ij}^{(k)} > 0 \right\}, \end{cases}$$

存在 v_i 到 v_i 的长度为k 的路径

- 图的路径矩阵和距离矩阵不能给出图的全部信息;
- 图的邻接矩阵可以给出图的全部信息;
- 无自圈图的关联矩阵可以给出无自圈图的全部信息。

(4) 关联矩阵

定义 5.4 设无自圈的无向图 G 的结点集和边集分别为 $\{v_1, v_2, ..., v_n\}$ 和 $\{e_1, e_2, ..., e_m\}$,定义 G 的关联矩阵 A(G) 为 $n \times m$ 矩阵 (a_{ii}) ,其中

$$a_{ij} = \begin{cases} 1, & e_j \leq v_i \overset{\cdot}{>} \\ 0, & e_j \leq v_i \overset{\cdot}{>} \end{aligned}$$

(4) 关联矩阵

定义5.5 设无自圈的有向图 G 的结点集和边集分别为

 $\{v_1,v_2,...,v_n\}$ 和 $\{e_1,e_2,...,e_m\}$,定义G的关联矩阵A(G)

为 $n \times m$ 矩阵 (a_{ii}) ,其中

$$a_{ij} = \begin{cases} 1, v_i \neq e_j \text{ 的起点} \\ -1, v_i \neq e_j \text{ 的终点} \\ 0, e_j \neq v_i \end{cases}$$

无自圈有m条边的n阶图G和A(G)之间的联系

- 1. G 是零图 \leftrightarrow A(G) 是空矩阵 (即没有任何元素的矩阵)
- 2. 无向图 G 的关联矩阵 A(G) 的每列元素之和为 2
- 3. 有向图 G 的关联矩阵 A(G) 的每列元素之和为 0
- 4. e_i 和 e_i 是 G 的平行边 \Leftrightarrow A(G)的第 i 列与第 j 列 相同
- 5. 若G是无向图,则 $d_G(v_i) = \sum_{j=1}^m a_{ij} (i=1, 2, ..., n)$

无自圈有m条边的n阶图G和A(G)之间的联系

- 6. 若G是有向图,(i = 1, 2, ..., n): $d_G^+(v_i) \to A(G) \text{ 的第 } i \text{ 行中值为 1 的元素个数,}$ $d_G^-(v_i) \to A(G) \text{ 的第 } i \text{ 行中值为 -1 的元素个数,}$ $d_G(v_i) \to A(G) \text{ 的第 } i \text{ 行中 非零 元素个数,}$
- 7. v_i 是孤立点 $\Leftrightarrow A(G)$ 的第 i 行全为 0
- 8. 无向图 (有向图) G 有k个分支 (弱分支) G_1 , G_2 , ..., G_k ⇔ 顺序排列 G 的结点和边的顺序,可使

$$A(G) = \begin{bmatrix} A(G_1) & & & \\ & A(G_2) & & \\ & & \cdots & \\ & & A(G_k) \end{bmatrix}$$

例:

- 1.如何由邻接矩阵判断图的连通性?
- 2.如何由邻接矩阵判断图是不是非循环?
- 3.如何由邻接矩阵判断有向图是否有有向回路?

主要知识点

关联矩阵

A

