The single most comprehensive and unified source of information about mathematical functions.

Glaisher

View the online version at

Download the

functions.wolfram.com

PDF File

Notations

Traditional name

Glaisher constant

Traditional notation

 \boldsymbol{A}

Mathematica StandardForm notation

Glaisher

Primary definition

02.08.02.0001.01

$$A = \exp\left(\frac{1}{12} - \zeta'(-1)\right)$$

Specific values

02.08.03.0001.01

 $A = 1.28242712910062263687534256886979172776768892732500119206374002174040630885882646112973649\dots$

Above approximate numerical value of A shows 90 decimal digits.

General characteristics

The Glaisher number *A* is a constant. It is a positive real number.

Series representations

02.08.06.0001.01

$$\log(A) = \frac{1}{2} \sum_{k=0}^{\infty} \frac{1}{k+1} \sum_{j=0}^{k} (-1)^{j+1} \binom{k}{j} (j+1)^2 \log(j+1) + \frac{1}{8}$$

Integral representations

On the real axis

Of the direct function

$$A = \frac{2^{7/36}}{\sqrt[6]{\pi}} \exp\left(\frac{2}{3} \int_0^{\frac{1}{2}} \log(\Gamma(t+1)) dt + \frac{1}{3}\right)$$

Product representations

02.08.08.0001.01

$$A = e^{\gamma/12} \sqrt[12]{2 \pi} \left(\prod_{k=1}^{\infty} k^{\frac{1}{k^2}} \right)^{\frac{1}{2\pi^2}}$$

02.08.08.0002.01

$$A = \sqrt[9]{2} e^{\gamma/12} \sqrt[12]{\pi} \left(\prod_{k=1}^{\infty} (2k+1)^{\frac{1}{(2k+1)^2}} \right)^{\frac{2}{3\pi^2}}$$

02.08.08.0003.01

$$A = 2^{9/32} e^{\frac{3\zeta(3)}{64\pi^2} + \zeta'(-1) - 2\zeta^{(1,0)}\left(-2, \frac{1}{4}\right) + \frac{29}{192} + \frac{\gamma}{96}} \sqrt[32]{\pi} \left(\frac{\prod_{k=1}^{\infty} (4k+1)^{\frac{1}{(4k+1)^3}}}{\prod_{j=1}^{\infty} (4j+3)^{\frac{1}{(4j+3)^3}}} \right)^{\frac{1}{\pi^3}}$$

Limit representations

02.08.09.0001.01

$$A = \lim_{n \to \infty} n^{-\frac{n^2}{2} - \frac{n}{2} - \frac{1}{12}} e^{\frac{n^2}{4}} \prod_{k=1}^{n} k^k$$

02.08.09.0002.01

$$A = \lim_{n \to \infty} e^{\frac{n^2}{4}} n^{-\frac{n^2}{2} - \frac{n}{2} - \frac{1}{12}} \Gamma(n+1)^n \prod_{k=1}^n \frac{1}{\Gamma(k)}$$

02.08.09.0003.01

$$A = \lim_{n \to \infty} \exp\left(\frac{1}{12}\log(2\pi) - \frac{1}{2}\log(2\pi)\right)$$

$$\frac{1}{2\pi^{2}} \left(2^{1-\left\lceil n\log_{8}(10)+1\right\rceil} \sum_{j=0}^{2\left\lceil n\log_{8}(10)+1\right\rceil-1} \frac{1}{(j+1)^{2}} \log(2\left(j+1\right)) \left(-1\right)^{j} \left(\sum_{k=0}^{j-\left\lceil n\log_{8}(10)+1\right\rceil} \left(\left\lceil n\log_{8}(10)+1\right\rceil \right) - 2^{\left\lceil n\log_{8}(10)+1\right\rceil} \right) \right) + \frac{\gamma}{12} \right)$$

The above formula is used for the numerical computation of Glaisher's constant in Mathematica.

Complex characteristics

Real part

02.08.19.0001.01

$$Re(A) == A$$

Imaginary part

$$02.08.19.0002.01$$

$$Im(A) == 0$$

Absolute value

$$02.08.19.0003.01$$

$$|A| = A$$

Argument

$$02.08.19.0004.01$$

$$arg(A) == 0$$

Conjugate value

$$02.08.19.0005.01$$
 $\overline{A} == A$

Signum value

$$02.08.19.0006.01$$

$$sgn(A) == 1$$

Differentiation

Low-order differentiation

$$\frac{\partial A}{\partial z} = 0$$

Fractional integro-differentiation

$$\frac{\partial^{\alpha} A}{\partial z^{\alpha}} = \frac{\frac{02.08.20.0002.01}{z^{-\alpha} A}}{\Gamma(1-\alpha)}$$

Integration

Indefinite integration

02.08.21.0001.01
$$\int A \, dz = A z$$
02.08.21.0002.01
$$\int z^{\alpha - 1} A \, dz = \frac{z^{\alpha} A}{\alpha}$$

Integral transforms

Fourier exp transforms

02.08.22.0001.01
$$\mathcal{F}_{t}[A](z) = \sqrt{2\pi} A \delta(z)$$

Inverse Fourier exp transforms

02.08.22.0002.01
$$\mathcal{F}_t^{-1}[A](z) = \sqrt{2\pi} A \delta(z)$$

Fourier cos transforms

02.08.22.0003.01
$$\mathcal{F}c_t[A]\left(z\right) = \sqrt{\frac{\pi}{2}} \; A \; \delta(z)$$

Fourier sin transforms

$$\mathcal{F}s_{t}[A](z) = \sqrt{\frac{2}{\pi}} \frac{A}{z}$$

Laplace transforms

02.08.22.0005.01
$$\mathcal{L}_{t}[A](z) = \frac{A}{z}$$

Inverse Laplace transforms

$$02.08.22.0006.01$$

$$\mathcal{L}_{t}^{-1}[A](z) = A \,\delta(z)$$

Representations through more general functions

Through Meijer G

02.08.26.0002.01
$$A = A G_{0,1}^{1,0}(z \mid 0) + A G_{1,2}^{1,1} \left(z \mid 1, 0\right)$$

Through other functions

$$A = \exp\left(\frac{1}{12} - \zeta'(-1)\right)$$

02.08.26.0003.01

$$A = \exp\left(\frac{96\pi\zeta^{(1,0)}\left(-1, \frac{1}{4}\right) + \pi - 24C}{12\pi}\right)$$

02.08.26.0004.01

$$A = e^{\frac{\gamma}{12} - \frac{\zeta'(2)}{2\pi^2}} \sqrt[12]{2\pi}$$

Inequalities

02.08.29.0001.01

$$\frac{5}{4} < A < \frac{13}{10}$$

History

- -H. Kinkelin (1860)
- -J. W. L. Glaisher (1877-1878)

Copyright

This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see http://functions.wolfram.com/Notations/.

Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example:

http://functions.wolfram.com/Constants/E/

To refer to a particular formula, cite functions.wolfram.com followed by the citation number.

e.g.: http://functions.wolfram.com/01.03.03.0001.01

This document is currently in a preliminary form. If you have comments or suggestions, please email comments@functions.wolfram.com.

© 2001-2008, Wolfram Research, Inc.