Corso di Laurea in Informatica - A.A. 2018 - 2019 Esame di Fisica - 05/02/2020

Esercizio 1

Consideriamo il vettore $\vec{u} = \vec{i} + \sqrt{2}\vec{j}$ ed il vettore \vec{v} che va dall'origine (0,0) al punto $P = (2, 2\sqrt{2})$. Calcolare il modulo di \vec{u} ed il prodotto scalare $\vec{u} \cdot \vec{v}$.

Esercizio 2

Consideriamo il piano xy. Nel punto $A \equiv (a,d)$, con $a > e \ d > 0$, c'è una carica puntiforme q che si muove con velocità costante $\vec{v}_A = u \vec{i}$ e nel punto $B \equiv (a,-d)$ c'è una carica puntiforme Q che si muove con velocità costante $\vec{v}_B = w \vec{i}$. Calcolare:

- a) il campo elettrico $\vec{E}(B)$ generato nel punto B da q
- b) il potenziale V(B) generato nel punto B da q, assumendo potenziale nullo all'infinito

Ricordando che la relazione tra campo elettrico e campo magnetico prodotti in uno stesso punto da una carica puntiforme in moto con velocità \vec{v} è $\vec{B} = \frac{1}{c^2} \vec{v} \times \vec{E}$,

- c) dire se il campo magnetico $\vec{B}(B)$ generato nel punto B da q è nel piano xy
- d) calcolare il campo magnetico $\vec{B}(B)$ generato nel punto B da q
- e) calcolare il contributo alla forza di Lorentz sulla carica Q dovuto al moto della carica q

Esercizio 3

Si consideri il circuito in figura. Determinare:

- a) la corrente i quando X è un corto circuito
- b) la corrente i quando X è un circuito aperto
- c) se X è un resistore, il valore per cui $i=\frac{3V_0}{4R}$
- d) se X è un resistore, il valore per cui la corrente che lo percorre vale $i_x = \frac{V_0}{5R}$
- e) se X è un resistore, il valore per cui la differenza di potenziale ai capi di X vale $V_A V_B = \frac{V_0}{6}$

