From Science to Data Science

Stephane SENECAL – Orange Labs CRI Data Science Club, 31/03/2017

Overview

- Academic background
- Professional background and activities
- Projects
- Working @ Orange Labs
- Machine Learning...

Academic background (1/3)

Pre-PhD:

- MS in mathematics:
 - obtained in 1998 @ Joseph Fourier University, Grenoble, France
 - thesis on holomorphic functions of several complex variables
- MEng/MS in signal processing:
 - obtained in 1999 @ Grenoble INP, France
 - thesis on curvilinear component analysis for model order estimation

Academic background (2/3)

- PhD in statistical signal processsing for telecommunications:
 - obtained from Grenoble INP, France
 - conducted from 1999 to 2002 @ GIPSA-Lab
 - with MESR fellowship support
 - − → Statistical simulation methods:
 - Markov Chain Monte Carlo (MCMC): Hastings-Metropolis,
 Gibbs sampling, reversible jumps MCMC
 - Sequential Monte Carlo/Particle Filtering
 - → Application to Bayesian model estimation problems in:
 - Independent Component Analysis/Blind Source Separation
 - Equalization of nonlinear system for satellite communications

Academic background (3/3)

- Post-PhD: Post-Doc in Computational Statistics
 - conducted @ Institute of Statistical Mathematics/Research
 Organization of Information and Systems (Tokyo, Japan) in 2003-2004
 - thanks to a JSPS fellowship support
 - Design of statistical simulation algorithms/methods/techniques:
 - Block/fixed-lag sampling strategies for Sequential Monte Carlo methods, applications in:
 - optimal filtering for bearing-only target tracking in radar
 - stochastic volatility in econometrics
 - Space alternating data augmentation, application to the estimation of finite mixtures of Gaussian distributions for speaker recognition

Professional background (1/7)

- Research Engineer/Scientist @ Orange Labs since 2005:
 - 2005-2006: Orange Labs Tokyo (Japan)
 - since 2007: Orange Labs Paris (now in Châtillon (92))
- Tackling problems and models/techniques/algorithms/methods in Machine Learning (statistical learning):
 - reinforcement learning
 - supervised learning
 - unsupervised learning
- Applications to telecommunications:
 - design of fixed and mobile networks optimization systems
 - design of traffic data processing systems

Professional background (2/7) Orange Labs Tokyo 2005-2006

- Markov Decision Processes models and Reinforcement Learning techniques:
 - Dynamic programming
 - Temporal Differences (TD-lambda)
 - Q-Learning algorithm and its extensions (SARSA, eligibility traces)
 - Parametric approximation techniques (Policy Gradient, Least Squares Policy Iteration)
- Support Vector Machines (SVM) techniques and related extensions for regression and classification

Reinforcement Learning (1/2)

Reinforcement Learning (2/2)

Reinforcement learning goal: **optimize** rewards by choosing adequately actions for given observations \Rightarrow from **policies**

Professional background (3/7) Orange Labs Tokyo 2005-2006

- Applications for telecommunication systems:
 - Radio Resource Management for mobile networks (via Reinforcement Learning techniques)
 - Automated selection of radio access networks (via Support Vector Machines techniques)

Learning & Control: Reinforcement Learning (1/3)

Learning & Control: Reinforcement Learning (2/3)

Learning & Control: Radio Resource Management for Mobile Networks (3/3)

Professional background (4/7) Orange Labs, since 2007

Reinforcement Learning:

- Partially observed models (POMDP) and dedicated learning techniques (Belief States → Monte Carlo POMDP, 2007-2009)
- Policy Gradient (2011-2013):
 - Application to solution implementation for association problem of users to base stations for a mobile communication network
 - Design of variance reduction algorithms for Policy Gradient type estimation techniques in Reinforcement Learning
- Dynamic Programming (2015):
 - application to joint QoS and energy consumption control for mobile communication networks

Association problem for mobile networks

Joint QoS and energy consumption control

Professional background (5/7) Orange Labs, since 2007

Unsupervised learning:

- Clustering: K-means algorithm and its extensions
- Application to computer networks platforms optimization for handling, managing, processing Internet traffic
- DNS, Internet traffic load balancing, DNSSEC implementation
- 2010-2012

Professional background (6/7) Orange Labs, since 2011

Supervised Learning:

- Methods for implementing traffic traces classification:
 - Kernel Learning (Multiple Kernel Learning, Support Vector Data Description, 2011-2014)
 - Artificial Neural Networks (Extreme Learning Machines, 2013-2014)
 - Decision Trees (with time series as inputs, 2014-2015)
- Application to Internet traffic analysis for network security
 - → Botnets detection

Botnets Detection

Supervised Learning (1/2): Training/Learning Phase

Supervised Learning (2/2): Prediction/Test Phase

Artificial Neural Networks

Decision Trees (1/4): Training Data

Id	Outlook (O)	Temperature (T)	Humidity (H)	Windy (W)	Play
а	overcast	83° <i>F</i>	86%	false	yes
b	overcast	64° <i>F</i>	65%	true	yes
С	overcast	72° <i>F</i>	90%	true	yes
d	overcast	81° <i>F</i>	75%	false	yes
е	rainy	70° <i>F</i>	96%	false	yes
f	rainy	68° <i>F</i>	80%	false	yes
g	rainy	65° <i>F</i>	70%	true	no
h	rainy	75° <i>F</i>	80%	false	yes
i	rainy	71° <i>F</i>	91%	true	no
j	sunny	85° <i>F</i>	85%	false	no
k	sunny	80° <i>F</i>	90%	true	no
Ι	sunny	72° <i>F</i>	95%	false	no
m	sunny	69° <i>F</i>	70%	false	yes
n	sunny	75° <i>F</i>	70%	true	yes

Decision Trees (2/4): Building the Model

Decision Trees (3/4): Building the Model

Decision Trees (4/4): Prediction

Professional background (7/7) Orange Labs, currently

- Deep Reinforcement Learning techniques:
 - understanding of Google DeepMind AlphaGo system, 2016
 - application to resource allocation for mobile networks, 2017
- Markov Chain Monte Carlo (MCMC) simulation methods:
 - Event-Chain based Monte Carlo techniques
 - Nonreversible Markov chains
 - 2016-2017
- Networks metrics data prediction benchmark for autonomic network management:
 - many Machine Learning models and techniques
 - essentially supervised learning
 - 2016-2017

Convolutional Neural Networks: Modeling and Training/Learning (1/3)

Convolutional Neural Networks: Convolutional Kernel (2/3)

Convolutional Neural Networks: Testing/Prediction (3/3)

Samoyed 16; Papillon 5.7; Pomeranian 2.7; Arctic fox 1.0; Eskimo dog 0.6; white wolf 0.4; Siberian husky 0.4

AlphaGo Training/Learning Global Pipeline

Overview

- Academic background
- Professional background and activities
- → Projects
- Working @ Orange Labs
- Machine Learning...

Research activities → Projects

- Daily work organization in Projects, e.g. hosted by the "Applied Maths and Computer Science" Research Group @ Orange Labs:
 - Internal/Orange projects
 - Bilateral projects with Orange ("external research contracts")
 - Collaborative projects:
 - ANR "ECOSCELLS" 2009-2012
 - EU FP7 STREP "HARP" 2012-2015
 - ANR INFRA "NETLEARN" 2013-2017
 - EU H2020 5G-PPP "COGNET" 2015-2017

Research Projects: practical aspects (1/4)

- Working on a research theme in a "fixed-term" mode:
 - Work schedule: Project Management Plan (PMP), including Gantt charts, elaborated and submitted for validation before the launch of the project ("Kick-Off")
 - Costs management:
 - In human resources: People*Day, People*Month or People*Year with monthly follow-up/reporting of consumed resources
 - Financial: elaboration of an initial budget, then management of missions and material costs, with on-the-fly reporting

Research Projects: practical aspects (2/4)

- Organization of the works in "Work Packages" (WP) with specific Tasks with tasks and WPs leaders + 1coordinator (Project Head) and 1 technical coordinator/leader
- Working meetings (Face-to-Face, conf calls) and milestones meetings (plenary = for all partners, Face-to-Face)
- Scientific and technical skills indeed, but also good communication, relational skills, patience, resilience and a good sense of humor!

Research Projects: practical aspects (3/4)

- Valorization of project works → "Deliverables":
 - Internal valorization:
 - Elaboration of technical reports and presentations
 - Reporting:
 - towards Orange: on the fly + semestrial official meetings with points with the hierarchy and with project entities (Project Head, Research Group)
 - towards the sponsor (ANR, EU) officially on a trimestrial, semestrial or annual basis
 - External valorization:
 - Publications in scientific and technical conferences (oral and poster presentations) and in scientific and technical journals/magazines: IEEE, ACM...
 - Organization of Workshops/Seminars in conferences or by ourselves

Research Projects: practical aspects (4/4)

- Valorization of project works → "Deliverables":
 - Patent filling
 - Normalization/standardization activities: 3GPP, IETF, ETSI, ITU...
 - Development of technical solutions and industrialization:
 - internally: simulators et prototypes → development transfert
 → inclusion in the Information System and/or transfert towards technical and operational directions, even towards Business Units (BU)
 - externally: Open Source...

Work valorization example: publications

Conferences:

- 27 papers published (3 invited papers)
- 1 submitted
- 2 in preparation

Journals:

- 6 papers published
- 2 in preparation

Books:

1 chapter in "Data Mining Applications with R", Elsevier, 2013

Working as a team @ Orange Labs (1/2)

- "Department" (Team) "Modeling and Statistical Analysis"
- Activities on networks and traffic modeling for fixed (ADSL and Fiber Internet) et mobile (2G/3G/4G →5G) communications
- Currently 22 people, including:
 - 1 intern
 - 1 apprentice
 - 5 CIFRE PhD students
 - 1 post-doc

Working as a team @ Orange Labs (2/2)

Goals:

- Come up with a better understanding of communication trafic, related to terminals and usage evolution, regarding the very important increase of this trafic
- Estimate and optimize networks infrastructure costs by geographical zones regarding the strategic choices for deploying new generation technologies (optical fiber, 4G mobile networks) with new architectures
- Improve the Quality of Service (QoS) and performance for mobile networks
- Provide analytical models for equipments energy consumption in order to estimate and predict the networks energy consumption

Infos about working @ Orange & contact details

- Opportunities for internships for MS/MEng students :
 - 4 to 6 months duration
 - Schedule: application from November for the forthcoming year
- Opportunities for apprenticeship, PhD programs (CIFRE) and post-docs
- Opportunities for permanent positions: Research Engineer/Scientist
- https://orange.jobs/site/en-home/
- Contact: Stephane SENECAL
 - email: <u>stephane.senecal@orange.com</u>
 - LinkedIn: http://fr.linkedin.com/in/stephanesenecal

More information on Machine Learning (1/2)

- Informal meetings and discussion groups (meet ups) in Paris/IDF:
 - Paris Machine Learning Applications Group:
 - http://www.meetup.com/Paris-Machine-learning-applications-group/
 - 1+ meeting(s) per month
 - + Groups on LinkedIn, Facebook, Google+, Twitter account, Nuit
 Blanche blog (including the meet ups archive)...
 - Deep Learning Paris:
 - http://www.meetup.com/Deep-Learning-Paris-Meetup/
 - + Workshops...

More information on Machine Learning (2/2)

- Academic seminar on Machine Learning in Paris:
 - Statistical Machine Learning "SMILE in Paris"
 - https://sites.google.com/site/smileinparis/
 - Organized by ENS and Mines-ParisTech
- Internet Groups/Forums (worldwide audience → in English):
 - Google Group: Machine Learning News
 - CFP, job offers, ...
 - https://groups.google.com/forum/#!forum/ML-news

Thank you!@ Questions?

Appendix

Bayesian Estimation

Information on (x, θ) : distribution of probability

$$p(x, \theta|y, F, prior) \propto p(y|x, \theta, F, prior) \times p(x, \theta|prior)$$

 $\Rightarrow \text{ Estimates } (\widehat{x}, \widehat{\theta})$

Bayesian Estimates

• Maximum a posteriori (MAP)

$$(\widehat{x}, \widehat{\theta}) = \arg \max_{x, \theta} p(x, \theta | y, prior)$$

• Expectation: posterior mean $E\{x, \theta | y, prior\}$

$$E_{p(.|y,prior)} \{f(x,\theta)\} = \int f(x,\theta)p(x,\theta|y,prior)d(x,\theta)$$

Computation: asymptotic, numerical, stochastic methods

 \Rightarrow Monte Carlo simulation methods

Monte Carlo Estimates

$$x_1, \dots, x_N \sim \pi$$

$$\Rightarrow \widehat{\pi}_N = \frac{1}{N} \sum_{n=1}^N \delta_{x_n}$$

$$\widehat{S}_N(f) = \frac{1}{N} \sum_{n=1}^N f(x_n) \longrightarrow \int f(x) \pi(x) dx = \mathbf{E}_{\pi} \{ f \}$$

$$\widehat{x}_{max} = \arg \max_{x_n} \widehat{\pi}_N$$
 approximates $x_{max} = \arg \max_{x} \pi(x)$

 \Rightarrow generate samples $x_{\ell} \sim \pi$?

→ Markov chain and sequential Monte Carlo

Simulation Techniques

- Classical distributions : cumulated density function
 - \rightarrow transformation of uniform random variable
- Non-standard distributions, \mathbb{R}^n , known up to a normalizing constant \rightarrow usage of instrumental distribution:

Accept-reject, importance sampling \rightarrow sequential/recursive

- ⇒ SMC aka particle filtering, condensation algorithm
- \Rightarrow MCMC : distribution = fixed point of an operator

$$\pi = K\pi$$

 \rightarrow simulation schemes with Markov chain: Hastings-Metropolis, Gibbs sampling

Markov Chain

Definition:

$$X_n | X_{n-1}, X_{n-2}, \dots, X_0 \stackrel{d}{=} X_n | X_{n-1}$$

homogeneity: $X_n | X_{n-1}$ independent of n

Realization:

$$X_0 \sim \pi_0(x_0)$$

p.d.f. of $X_n|X_{n-1} = \text{transition kernel } K(x_n|x_{n-1})$

Simulation of a Markov Chain

Convergence: $X_n \sim \pi$ asymptotically?

$$\pi\text{-invariance}: \pi(.) = K\pi(.)$$

$$\int_{A} \pi(x) dx = \int_{y \in A} \int K(y|x)\pi(x) dx dy$$

$$\Leftarrow \pi\text{-reversibility}: Pr(A \to B) = Pr(B \to A)$$

$$\int_{y \in B} \int_{x \in A} K(y|x)\pi(x) dx dy = \int_{y \in A} \int_{x \in B} K(y|x)\pi(x) dx dy$$

Construct kernels K(.|.) such that the chain is π -invariant

- Hastings-Metropolis algorithm
- Gibbs sampling

Hastings-Metropolis algorithm (1/2): scheme

Draw \boldsymbol{x} from $\pi(.)$

- 1. initialize $oldsymbol{x}_0 \sim \pi_0(oldsymbol{x})$
- 2. Iteration ℓ
 - ullet propose candidate $oldsymbol{x}^{\star}$ for $oldsymbol{x}_{\ell+1} \longrightarrow oldsymbol{x}^{\star} \sim q(oldsymbol{x}|oldsymbol{x}_{\ell})$
 - accept it with prob $\alpha = \min\{1, r\}$
- 3. $\ell \leftarrow \ell + 1$ and go to (2)

$$r = \frac{\pi(\boldsymbol{x}^{\star})q(\boldsymbol{x}_{\ell}|\boldsymbol{x}^{\star})}{q(\boldsymbol{x}^{\star}|\boldsymbol{x}_{\ell})\pi(\boldsymbol{x}_{\ell})} \to \pi(x)K(y|x) = \pi(y)K(x|y)$$

$$\pi(x)q(y|x)\min\left\{1, \frac{\pi(y)q(x|y)}{q(y|x)\pi(x)}\right\} = \min\left\{\pi(x)q(y|x), \pi(y)q(x|y)\right\}$$

$$q(\boldsymbol{x}^{\star}|\boldsymbol{x}_{\ell}) = q(\boldsymbol{x}^{\star}) \quad q(\boldsymbol{x}^{\star}|\boldsymbol{x}_{\ell}) = q(|\boldsymbol{x}^{\star} - \boldsymbol{x}_{\ell}|)$$

Hastings-Metropolis algorithm (2/2): example

sample
$$x \sim p(x) \propto \frac{1}{1+x^2}$$

20,000 iterations

$$x^{\star} \sim \mathcal{N}(x_{\ell}, 0.1^2)$$

$$x^{\star} \sim \mathcal{U}_{[a,b]}$$

acc. rate = 97%

acc. rate = 26%

Gibbs Sampling algorithm (1/2): scheme

Sample
$$x = (x_1, ... x_p) \sim \pi(x_1, ... x_p)$$

- 1. initialize $oldsymbol{x}^{(0)} \sim \pi_0(oldsymbol{x})$, $\ell=0$
- 2. iteration ℓ : Sample

$$x_{1}^{(\ell+1)} \sim \pi_{1}(x_{1}|x_{2}^{(\ell)}, \dots, x_{p}^{(\ell)})$$

$$x_{2}^{(\ell+1)} \sim \pi_{2}(x_{2}|x_{1}^{(\ell+1)}, x_{3}^{(\ell)}, \dots, x_{p}^{(\ell)})$$

$$\vdots$$

$$x_{p}^{(\ell+1)} \sim \pi_{p}(x_{p}|x_{1}^{(\ell+1)}, \dots, x_{p-1}^{(\ell+1)})$$

3. $\ell \leftarrow \ell + 1$ and go to (2)

 \rightarrow no rejection, reversible kernel

Gibbs Sampling algorithm (2/2): example

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \end{pmatrix}$$
$$x_1^{(\ell+1)} | x_2^{(\ell)} \sim \mathcal{N} \left(\rho x_2^{(\ell)}, 1 - \rho^2 \right)$$
$$x_2^{(\ell+1)} | x_1^{(\ell+1)} \sim \mathcal{N} \left(\rho x_1^{(\ell+1)}, 1 - \rho^2 \right)$$

5,000 samples, ρ =0.5

histograms (x_1^{ℓ}, x_2^{ℓ})

Improving convergence of simulation techniques

How to obtain fast converging simulation scheme?

\rightarrow Missing Data, Data Augmentation, Latent Variables

Idea: extend sampling space $x \to (x, z)$ and distribution $\pi(x) \to \widetilde{\pi}(x, z)$ with constraint

$$\int \widetilde{\pi}(x,z)dz = \pi(x)$$

such that Markov chain $(x^{(i)}, z^{(i)}) \sim \widetilde{\pi}$ faster

- Optimization : Expectation-Maximization (EM) algorithm
- Simulation: Data Augmentation, Gibbs sampling

Efficient Data Augmentation Schemes

Idea: construct missing data space as less informative as possible

Information introduced in missing data \downarrow : convergence \uparrow

Estimation of State Space Models

$$x_{t} = f_{t}(x_{t-1}, u_{t}) \qquad y_{t} = g_{t}(x_{t}, v_{t})$$

$$p(x_{0:t}|y_{1:t}) \rightarrow p(x_{t}|y_{1:t}) = \int p(x_{0:t}|y_{1:t}) dx_{0:t-1}$$

distribution of $x_{0:t} \Rightarrow \text{computation of estimate } \widehat{x}_{0:t}$:

$$\widehat{x}_{0:t} = \int x_{0:t} p(x_{0:t}|y_{1:t}) dx_{0:t} \to \mathcal{E}_{p(.|y_{1:t})} \{ f(x_{0:t}) \}$$

$$\widehat{x}_{0:t} = \arg \max_{x_{0:t}} p(x_{0:t}|y_{1:t})$$

Computation of the estimates

 $p(x_{0:t}|y_{1:t}) \Rightarrow$ multidimensionnal, non-standard distributions:

 \rightarrow analytical, numerical approximations

 \rightarrow integration, optimisation methods

 \Rightarrow Monte Carlo techniques

Monte Carlo Approach

compute estimates for distribution $\pi(.) \to \text{samples } x_1, \ldots, x_N \sim \pi$

 \Rightarrow distribution $\widehat{\pi}_N = \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$ approximates $\pi(.)$

Monte Carlo Estimates

$$\widehat{S}_N(f) = \frac{1}{N} \sum_{i=1}^N f(x_i) \longrightarrow \int f(x) \pi(x) dx = \mathbf{E}_{\pi} \{ f(x) \}$$

 $\arg \max_{(x_i)_{1 \le i \le N}} \widehat{\pi}_N(x_i)$ approximates $\arg \max_x \pi(x)$

 \Rightarrow sampling $x_i \sim \pi$ difficult

→ importance sampling techniques

Importance Sampling (1/2)

 $x_i \sim \pi \rightarrow \text{candidate/proposal distribution } x_i \sim g$

Importance Sampling (2/2)

 $x_i \sim g \neq \pi \rightarrow (x_i, w_i)$ weighted sample $\pi(x_i)$

$$\Rightarrow$$
 weight $w_i = \frac{\pi(x_i)}{g(x_i)}$

Estimation

importance sampling \to computation of Monte Carlo estimates $e.\ g.$ expectations $\mathcal{E}_{\pi}\{f(x)\}$:

$$\int f(x) \frac{\pi(x)}{g(x)} g(x) dx = \int f(x) \pi(x) dx$$

$$\sum_{i=1}^{N} w_i f(x_i) \to \int f(x) \pi(x) dx = \mathcal{E}_{\pi} \{ f(x) \}$$

dynamic model $(x_t, y_t) \Rightarrow \text{recursive estimation } \widehat{x}_{0:t-1} \to \widehat{x}_{0:t}$ Monte Carlo techniques \Rightarrow sampling sequences $x_{0:t-1}^{(i)} \to x_{0:t}^{(i)}$

Sequential Simulation

sampling sequences $x_{0:t}^{(i)} \sim \pi_t(x_{0:t})$ recursively:

Sequential Simulation: Importance Sampling

samples $x_{0:t}^{(i)} \sim \pi_t(x_{0:t})$ approximated by weighted particles $(x_{0:t}^{(i)}, w_t^{(i)})_{1 \leq i \leq N}$

Sequential Importance Sampling (1/2)

diffusing particles
$$x_{0:t_1}^{(i)} \to x_{0:t_2}^{(i)}$$

$$\Rightarrow$$
 sampling scheme $x_{0:t-1}^{(i)} \rightarrow x_{0:t}^{(i)}$

Sequential Importance Sampling (2/2)

updating weights
$$w_{t_1}^{(i)} \to w_{t_2}^{(i)}$$

$$\Rightarrow$$
 updating rule $w_{t-1}^{(i)} \rightarrow w_{t}^{(i)}$

Sequential Importance Sampling Scheme

$$x_{0:t} \sim \pi_t(x_{0:t}) \Rightarrow (x_{0:t}^{(i)}, w_t^{(i)})_{1 \le i \le N}$$

Simulation scheme $t-1 \rightarrow t$:

- Sampling step $x_t^{(i)} \sim q_t(x_t|x_{0:t-1}^{(i)})$
- Updating weights

$$w_t^{(i)} \propto w_{t-1}^{(i)} \times \underbrace{\frac{\pi_t(x_{0:t-1}^{(i)}, x_t^{(i)})}{\pi_{t-1}(x_{0:t-1}^{(i)})q_t(x_t^{(i)}|x_{0:t-1}^{(i)})}}_{\text{incremental weight (iw)}}$$

normalizing
$$\sum_{i=1}^{N} w_t^{(i)} = 1$$

Sequential Importance Sampling Issue (1/2)

$$x_{0:t} \sim \pi_t(x_{0:t}) \Rightarrow (x_{0:t}^{(i)}, w_t^{(i)})_{1 \le i \le N}$$

proposal + reweighting \rightarrow

Sequential Importance Sampling Issue (2/2)

proposal + reweighting $\rightarrow \text{var}\{(w_t^{(i)})_{1 \leq i \leq N}\} \nearrow \text{with } t$

$$\rightarrow w_t^{(i)} \approx 0$$
 for all i except one

→ Resampling

 \rightarrow draw N particles paths from the set $(x_{0:t}^{(i)})_{1 \leq i \leq N}$ with probability $(w_t^{(i)})_{1 \leq i \leq N}$

Sequential Importance Sampling/Resampling Scheme

Simulation scheme $t-1 \rightarrow t$:

- Sampling step $x_t^{(i)} \sim q_t(x_t|x_{0:t-1}^{(i)})$
- Updating weights $w_t^{(i)} \propto w_{t-1}^{(i)} \times \frac{\pi_t(x_{0:t-1}^{(i)}, x_t^{(i)})}{\pi_{t-1}(x_{0:t-1}^{(i)})q_t(x_t^{(i)}|x_{0:t-1}^{(i)})}$
 - \rightarrow parallel computing
- \Rightarrow Resampling step: sample N paths from $(x_{0:t-1}^{(i)}, x_t^{(i)})_{1 \le i \le N}$
 - \rightarrow particles interacting : computation at least O(N)

Sequential simulation: SISR

Recursive estimation of state space models.

Approximation with particles, importance sampling.

Bootstrap, particle filtering

Gordon et al. 1993, Kitagawa 1996, Doucet et al. 2001

 \rightarrow time series, tracking.

Sequential Importance Sampling Resampling (SISR)

Samples
$$x_{0:t}^{(i)} \sim \pi_t(x_{0:t})$$
 approximated by weighted particles $(x_{0:t}^{(i)}, w_t^{(i)})_{1 \le i \le N}$

Simulation scheme $t-1 \rightarrow t$:

• Sampling step $x_t^{(i)} \sim q_t(x_t^{(i)}|x_{0:t-1}^{(i)})$

• Updating weights
$$w_t^{(i)} \propto w_{t-1}^{(i)} \times \underbrace{\frac{\pi_t(x_{0:t-1}^{(i)}, x_t^{(i)})}{\pi_{t-1}(x_{0:t-1}^{(i)})q_t(x_t^{(i)}|x_{0:t-1}^{(i)})}}_{\text{incremental weight (iw)}}$$

• Resampling step: sample N paths from $(x_{0:t-1}^{(i)}, x_t^{(i)})_{1 \leq i \leq N}$

SISR for Recursive Estimation of State Space Models

$$x_t = f_t(x_{t-1}, u_t) \rightarrow p(x_t | x_{t-1})$$
$$y_t = g_t(x_t, v_t) \rightarrow p(y_t | x_t)$$

Usual SISR: Bootstrap filter (Gordon et al. 93, Kitagawa 96):

- Sampling step $x_t^{(i)} \sim p(x_t|x_{t-1}^{(i)})$
- Updating weights : incremental weight $w_t^{(i)} \propto w_{t-1}^{(i)} \times iw$

$$iw \propto p(y_t|x_t^{(i)})$$

• Stratified/Deterministic resampling

efficient, easy, fast for a wide class of models tracking, time series \rightarrow nonlinear non-Gaussian state spaces

Improving Simulation

Optimal proposal distribution $q_t(x_t|x_{0:t-1}^{(i)})$

 \rightarrow mimimizing variance of incremental weight $(w_t^{(i)} \propto w_{t-1}^{(i)} \times iw)$

$$iw = \frac{\pi_t(x_{0:t-1}^{(i)}, x_t^{(i)})}{\pi_{t-1}(x_{0:t-1}^{(i)})q_t(x_t^{(i)}|x_{0:t-1}^{(i)})}$$

 \Rightarrow 1-step ahead predictive:

$$\pi_t(x_t|x_{0:t-1}) = p(x_t|x_{t-1}, y_t)$$

 \Rightarrow incremental weight:

$$iw \to \frac{\pi_t(x_{0:t-1})}{\pi_{t-1}(x_{0:t-1})} = \frac{p(x_{0:t-1}|y_{1:t})}{p(x_{0:t-1}|y_{1:t-1})}$$

$$\propto p(y_t|x_{t-1}) = \int p(y_t|x_t)p(x_t|x_{t-1})dx_t$$