Weekly Challenge 06: Context-Free Languages

CS 212 Nature of Computation Habib University Ali Muhammad Asad (aa07190)

Fall 2023

1. Closure

Given the following theorem, prove or disprove the given claim.

Theorem 1. The class of context-free languages is not closed under intersection.

Claim 1. The class of context-free languages is not closed under complementation.

Solution: Let L_1 and L_2 be any arbitrary context-free languages (CFLs). By the theorem given above, we know that the intersection for the class of CFLs is not closed under intersection

Then $L_1 \cap L_2$ is not closed. By De Morgan's Law, $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$. If CFLs were closed under both union and complement, then they would be closed under intersection.

Closure under Union

Let C_1 and C_2 be two CFLs recognized by $G_1 = (V_1, \sum, R_1, S_1)$ and $G_2 = (V_2, \sum, R_2, S_2)$ respectively. Assume that $V_1 \cap V_2 = \emptyset$; if this assumption is not true, rename the variables of one of the grammars to make this condition true.

We need to construct a grammar $G = (V, \sum, R, S)$ such that $L(G) = L(G_1) \cup L(G_2)$. We can construct G as follows:

- $V = V_1 \cup V_2 \cup \{S\}$, where $S \notin V_1 \cup V_2$ (and $V_1 \cap V_2 = \emptyset$)
- $R = R_1 \cup R_2 \cup \{S \to S_1 \mid S_2\}$

The above grammar combines the two grammars G_1 and G_2 into a single grammar G, by adding a new start variable S and a new production rule $S \to S_1 \mid S_2$, which allows us to derive strings in $L(G_1) \cup L(G_2)$.

Consider an arbitrary string $w \in L(G)$. Then either $w \in L(G_1)$, or $w \in L(G_2)$ which implies that either $S_1 \stackrel{*}{\Longrightarrow}_G w$ or $S_2 \stackrel{*}{\Longrightarrow}_G w$. Since G has the production $S \to S_1 \mid S_2$, we can derive w from S by using this rule. Hence $S \stackrel{*}{\Longrightarrow}_G w$, which implies that $w \in L(G)$. Hence, if $w \in L(G)$, then $w \in L(G_1) \cup L(G_2)$.

Conversely, we have $S \stackrel{*}{\Longrightarrow}_G w$. Then either $S_1 \stackrel{*}{\Longrightarrow}_G w$ or $S_2 \stackrel{*}{\Longrightarrow}_G w$. Since $V_1 \cap V_2 = \emptyset$, w is either derived from S_1 using R_1 , or from S_2 using R_2 . Therefore, $w \in L_1 \cup L_2$. Hence if $w \in L(G_1) \cup L(G_2)$, then $w \in L(G)$.

Hence proved that CFLs are closed under Union.

Closure under Complementation

We already estbalished that $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$, and that the intersection is not closed. Assume that CFLs were closed under complementation. Then $\overline{L_1}$ and $\overline{L_2}$ are closed. And since CFLs are closed under union, then $\overline{L_1} \cup \overline{L_2}$ is a CFL, which implies that $\overline{\overline{L_1} \cup \overline{L_2}}$ is a CFL.

However, $\overline{L_1} \cup \overline{L_2} = L_1 \cap L_2$, which means that CFLs are closed under intersection, hence we arrive at a contradiction, as by the theorem given above, CFLs are not closed under intersection.

Since CFLs are closed under union, then they must not be closed under complementation. Hence proved.