$Solutions \ MP/MP^* \ Espaces \ euclidiens$

Solution 1.

- 1. Soit $Y \in \mathcal{M}_{n,1}(\mathbb{R})$. $XX^{\mathsf{T}}Y = (X|Y)X$ est la projection orthogonale de Y sur $\mathbb{R}X$. Donc H_X est la matrice de la réflexion par rapport à X^{\perp} .
- 2. C'est une conséquence du théorème de réduction.

Solution 2.

1. $A \in SO_3(\mathbb{R})$ si et seulement si

$$a^{2} + b^{2} + c^{2} = 1,$$

$$ab + ac + bc = 0,$$

$$a^{3} + b^{3} + c^{3} - 3abc = 1,$$
(1)

(vecteurs colonnes unitaires, vecteurs colonnes orthogonaux, déterminant égal à 1). a, b, c racines de $X^3 - X^2 + p$ si et seulement si $X^3 - X^2 + p = (X - a)(X - b)(X - c) = X^3 - X^2(a + b + c) + X(ab + bc + ac) - abc$ si et seulement

$$a + b + c = 1,$$

 $ab + bc + cd = 0,$
 $-abc \in \left[0, \frac{4}{27}\right].$ (2)

Ainsi, si on a (1), on a $(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+ac+bc) = 1$ donc $a+b+c=\pm 1=\varepsilon \in \{-1,1\}$. De plus,

$$(a+b+c)^3 = a^3 + b^3 + c^3 + 3(ab^2 + ba^2 + ac^2 + ca^2 + bc^2 + cb^2) + 6abc,$$
 (3)

$$= 1 + 3abc + 6abc + 3a(1 - a^{2}) + 3b(1 - b^{2}) + 3c(1 - c^{2}),$$
(4)

$$= 1 + 3abc - 3 - 9abc + 3(a+b+c) + 6abc,$$
(5)

$$=3(a+b+c)-2, (6)$$

donc $\varepsilon^2 = 3\varepsilon - 2$ donc $\varepsilon = 1$ et a + b + c = 1.

On a b+c=1-a, bc=-ab-ac=-a(b+c)=a(a-1), et $-abc=a^2(1-a)=\varphi(a)\geqslant 0$, car $a^2+b^2+c^2=1$ donc $a\in [-1,1]$. On a $-abc=\varphi(a)=\varphi(b)=\varphi(c)$, et a+b+c)=1 donc un des trois au moins est positif. Comme φ est comprisentre 0 et $\frac{4}{27}$ sur [0,1], on a $-abc\in \left[0,\frac{4}{27}\right]$.

Si on a (2), on a $(a+b+c)^2 = 1 = a^2 + b^2 + c^2 = 2(ab+bc+ac) = a^2 + b^2 + c^2$. On a $(a+b+c)^3 = 1 = a^3 + b^3 + c^3 - 3(a^3 + b^3 + c^3) + 3(a+b+c) + 6abc$ donc $a^3 + b^3 + c^3 - 3abc = 1$.

2. On a
$$A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = (a+b+c) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 donc l'axe de rotation est $\mathbb{R} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. On a $\text{Tr}(A) = 3a = 1 + 2\cos(\theta)$, donc $\cos(\theta) = \frac{3a-1}{2}$, et $\sin(\theta) = (Af_1|f_2) = [f_3, f_1, Af_2]$

avec
$$f_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 et $f_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ et $f_2 = f_3 \wedge f_1$. On laisse les calculs au lecteur.

Solution 3.

1. $A_n \in S_n(\mathbb{R})$ donc est diagonalisable sur \mathbb{R} .

2. Soit
$$X = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$$
. On a

$$X^{\mathsf{T}} A_n X = \sum_{(i,j) \in \llbracket 1,n \rrbracket^2} \frac{x_i x_j}{\lambda_i + \lambda_j},\tag{7}$$

$$= \int_0^1 \sum_{(i,j) \in [1,n]^2} x_i t^{\lambda_i - \frac{1}{2}} x_j t^{\lambda_j - \frac{1}{2}} dt,$$
 (8)

$$= \int_0^1 \left(\sum_{i=1}^n x_i t^{\lambda_i - \frac{1}{2}} \right)^2 dt \geqslant 0.$$
 (9)

Si $X^{\mathsf{T}}A_nX = 0$, alors pour tout $t \in]0,1]$, $\sum_{i=1}^n x_i t^{\lambda_i - \frac{1}{2}} = 0$ donc pour tout $y \in]-\infty,0]$, $\sum_{i=1}^n x_i \mathrm{e}^{\left(\lambda_i - \frac{1}{2}\right)y} = 0$. Or $\left(y \mapsto \mathrm{e}^{\left(\lambda_i - \frac{1}{2}\right)y}\right)_{1 \leqslant i \leqslant n}$ forme une famille libre comme vecteurs propres de la dérivation. Donc pour tout $i \in [1,n]$, $x_i = 0$ et X = 0.

3. On a $A_n \in S_n^+(\mathbb{R})$ donc d'après l'inégalité d'Hadamard, on a

$$0 \leqslant \det(A_n) \leqslant \prod_{k=1}^n \frac{1}{2k-1} \xrightarrow[n \to +\infty]{} 0, \tag{10}$$

car si $u_n = \prod_{k=1}^n \frac{1}{2k-1}$, on a $\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} 0$ donc $\sum u_n$ converge donc $u_n \xrightarrow[n \to +\infty]{} 0$.

Remarque 1. On rappelle que si A est symétrique complexe, elle n'est pas nécessairement diagonalisable, par exemple $A = \begin{pmatrix} i & 1 \\ 1 & -i \end{pmatrix}$. On a $\chi_A = X^2$ et $A \neq 0$.

Solution 4.

1. On a

$$E_{i,i} = \frac{1}{2} (I_n + \text{diag}(-1, \dots, -1, 1, -1, \dots, -1)) \in \text{Vect}(O_n(\mathbb{R})),$$
 (11)

où le 1 est à l'indice i. De plus, si $i \neq j$, on a

$$E_{i,j} = \frac{1}{2}(A+B),\tag{12}$$

et

avec les changements aux quadrants correspondants aux j-èmes et i-èmes lignes et colonnes. Comme A et B sont des matrices de permutation, on a $E_{i,j} \in \text{Vect}(O_n(\mathbb{R}))$.

2. $O_n(\mathbb{R})$ est compact, et $U \mapsto \operatorname{Tr}(AU)$ est continue sur $O_n(\mathbb{R})$, donc bornée et donc N est bien définie. N vérifie l'homogénéité et l'inégalité triangulaire. Vérifions la séparation : soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que N(A) = 0. Pour tout $U \in O_n(\mathbb{R})$, $\operatorname{Tr}(AU) = 0$. Par combinaison linéaire, on a pour tout $(i,j) \in [1,n]^2$, $\operatorname{Tr}(AE_{i,j}) = a_{i,j} = 0$ donc A = 0. Donc N est bien une norme.

3. Soit

$$\iota: O_n(\mathbb{R}) \to O_n(\mathbb{R})
U \mapsto UV$$
(15)

 ι est bijective car $O_n(\mathbb{R})$ est un groupe. Donc

$$N(VA) = \sup_{U \in O_n(\mathbb{R})} |\text{Tr}(AUV)|, \qquad (16)$$

$$= \sup_{U \in O_n(\mathbb{R})} |\operatorname{Tr}(AU)|, \qquad (17)$$

$$= N(A). (18)$$

4. Soient $\lambda_1, \ldots, \lambda_n$ valeurs propres (positives) de S. Soit $(\varepsilon_1, \ldots, \varepsilon_n)$ une base orthonormée de \mathbb{R}^n telle que pour tout $i \in [1, n]$, $S\varepsilon_i = \lambda_i \varepsilon_i$. Soit $U \in O_n(\mathbb{R})$, on a

$$|\operatorname{Tr}(Su)| = |\operatorname{Tr}(US)|, \tag{19}$$

$$= \left| \sum_{i=1}^{n} (US\varepsilon_i | \varepsilon_i) \right|, \tag{20}$$

$$\leqslant \sum_{i=1}^{n} \lambda_{i} \|U\varepsilon_{i}\| \|\varepsilon_{i}\|, \qquad (21)$$

$$\leqslant \sum_{i=1}^{n} \lambda_i, \tag{22}$$

et la borne supérieur est atteinte pour $U = I_n$. Donc N(S) = Tr(S).

5. Soit $S = \sqrt{AA^{\mathsf{T}}} \in S_n^+(\mathbb{R})$. D'après la décomposition polaire, il existe $O \in O_n(\mathbb{R})$ telle que A = SO. Alors on a $N(A) = N(S) = \text{Tr}(\sqrt{AA^{\mathsf{T}}})$.

Solution 5. A et B sont symétriques réelles donc diagonalisables. Si $Ax = \lambda X$ avec $X \neq 0$, alors $X^{\mathsf{T}}AX = \lambda \|X\|^2 \geqslant 0$ donc $\lambda \geqslant 0$: les valeurs propres de A et B sont positives.

Si $A \not\in GL_n(\mathbb{R})$, $\det(A)=0$ et $\det(B)=\prod_{\mu\in \operatorname{Sp}(B)}\mu\geqslant 0$. Si $A\in GL_n(\mathbb{R})$, on a $A\in S_n^{++}(\mathbb{R})$, d'où

$$A^{-1}B = \sqrt{A^{-1}}\sqrt{A^{-1}}B\sqrt{A^{-1}}\sqrt{A} = \sqrt{A^{-1}}C\sqrt{A},\tag{23}$$

 $\operatorname{car} \sqrt{A^{-1}} = \sqrt{A}^{-1}$ (preuve en diagonalisant). Soit X un vecteur unitaire. On a

$$X^{\mathsf{T}}CX = \underbrace{X^{\mathsf{T}}\sqrt{A^{-1}}}_{Y^{\mathsf{T}}} B \underbrace{\sqrt{A^{-1}}X}_{Y} \geqslant Y^{\mathsf{T}}AY = X^{\mathsf{T}}\sqrt{A^{-1}}A\sqrt{A^{-1}}X = X^{\mathsf{T}}X = 1. \tag{24}$$

Si $\lambda \in \operatorname{Sp}(B)$, soit X unitaire tel que $CX = \lambda X$. Il vient $X^{\mathsf{T}}CX = \lambda \geqslant 1$. Comme $C \in S_n(\mathbb{R})$, on a $\det(C) = \prod_{\lambda \in \operatorname{Sp}(B)} \lambda \geqslant 1$ donc $\det(B) \geqslant \det(A)$.

Remarque 2. Si on a égalité, alors $Sp(C) = \{1\}$, donc $C = I_n$ et A = B.

Solution 6. $SO(\mathbb{R}^3)$ est un groupe donc $r' \in SO(\mathbb{R}^3)$. Si r est la rotation d'axe orienté par f_3 (unitaire) et d'angle θ , alors $r'(s(f_3)) = s(f_3)$ donc r' est une rotation d'axe orienté par $s(f_3)$ d'angle θ' . On a Tr(r') = Tr(r) donc $\theta' = \pm \theta$. Soit $f_1 \in f_3^{\perp}$ unitaire et $f_2 = f_3 \wedge f_1$. On a $\sin(\theta) = (r(f_1)|f_2) = [f_3, f_1, r(f_1)]$. Comme s est une isométrie, $s(f_1)$ est unitaire et orthogonal à $s(f_3)$ donc

$$\sin(\theta') = [s(f_3), s(f_1), \underbrace{s(r(f_1))}_{r'(s(f_1))}] = \underbrace{\det(s)}_{1} \times \underbrace{[f_3, f_1, r(f_1)]}_{\sin(\theta)}, \tag{25}$$

donc $\theta = \theta'$.

Supposons que r et s commutent alors r' = r, donc $s(f_3) \in \text{Vect}(f_3)$ et s est une isométrie donc $s(f_3) \in \{f_3, -f_3\}$. Si $s(f_3) = f_3$, r et s ont même axe. Si $s(f_3) = -f_3$, $-1 \in \text{Sp}(s)$ et s est un retournement et r aussi (car r et s jouent des rôles symétriques), et l'axe de r est perpendiculaire à celui de s.

Réciproquement, si r et s sont de même axe, elles commutent. Si ce sont deux retournements par rapport à deux axes orthogonaux, dans une base orthonormée directe adaptée,

elles ont pour matrice
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 et $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, et donc r et s commutent.

Solution 7.

1. D'après le théorème de réduction, il existe $P \in O_n(\mathbb{R})$ tel que

$$\underbrace{A}_{\in D} = P \operatorname{diag}(R_{\theta_1}, \dots, R_{\theta_r}, 1 \dots, 1) \underbrace{P^{-1}}_{P^{\mathsf{T}}}, \tag{26}$$

car $-1 \notin \operatorname{Sp}_{\mathbb{R}}(A)$, où R_{θ} une matrice de rotation d'angle θ . Donc $\det(A) = 1$ et donc $A \in SO_n(\mathbb{R})$ et $D \subset O_n(\mathbb{R})$.

2. Soit $M \in \mathcal{M}_n(\mathbb{R})$, on a $\varphi(A) = M$ si et seulement si $M(I_n + A) = I_n - A$. Si c'est le cas, en transposant, on a

$$(M(I_n + A))^{\mathsf{T}} = (I_n + A)^{\mathsf{T}} M^{\mathsf{T}}, \tag{27}$$

$$= \left(I_n + A^{-1}\right) M^{\mathsf{T}},\tag{28}$$

$$= (I_n - A)^\mathsf{T}, \tag{29}$$

$$=I_n - A^{-1}, (30)$$

et $A \in GL_n(\mathbb{R})$, donc $(A + I_n)^{\mathsf{T}} M = A - I_n$ donc

$$M^{\mathsf{T}} = (A + I_n)^{-1} (A - I_n) = (A - I_n)(A + I_n)^{-1}, \tag{31}$$

car si BC = CB et C inversible, alors $BC^{-1} = C^{-1}B$.

Ainsi, $M^{\mathsf{T}} = -M$ donc φ est bien définie de D dans D'.

Soit $M \in D'$, on a $M = \varphi(A)$ si et seulement si $M(I_n + A) = I_n - A$ si et seulement si $(M + I_n)A = I_n - M$.

Lemme 1. Si $\lambda \in \operatorname{Sp}_{\mathbb{R}} M$, alors $\lambda = 0$.

Preuve du 1. Soit X vecteur propre associé à λ . On a

$$\underbrace{X^{\mathsf{T}}MX}_{\in\mathbb{R}} = \lambda \underbrace{\|X\|^2}_{>0} = \left(X^{\mathsf{T}}MX\right)^{\mathsf{T}} = X^{\mathsf{T}}M^{\mathsf{T}}X = -X^{\mathsf{T}}MX = -\lambda \underbrace{\|X\|^2}_{>0}, \quad (32)$$

donc
$$\lambda = 0$$
.

On en déduit que $M + I_n$ est inversible, et donc $A = (M + I_n)^{-1}(I_n - M)$. Il vient

$$A^{\mathsf{T}} = (I_n + M)(I_n - M)^{-1},\tag{33}$$

$$= (I_n - M)^{-1}(I_n + M), (34)$$

$$=A^{-1}, (35)$$

et donc A est orthogonale.

Si $I_n + A$ n'est pas inversible, il existe $X \neq 0$ tel que AX = -X et $0 = M(I_n + A)X = (I_n - A)X$ donc AX = X: impossible car $X \neq 0$. Donc $I_n + A$ est inversible.

Solution 8. Soit A inversible, $A \in S_n^{++}(\mathbb{R})$ et $\sqrt{A^{-1}} = \sqrt{A}^{-1}$. Alors

$$A^{-1}B = \sqrt{A^{-1}} \underbrace{\sqrt{A^{-1}}B\sqrt{A^{-1}}}_{C} \sqrt{A}, \tag{36}$$

donc $A^{-1}B$ est semblable à C.

On a
$$X^{\mathsf{T}}CX = \underbrace{X^{\mathsf{T}}\sqrt{A^{-1}}}_{Y^{\mathsf{T}}}B\underbrace{\sqrt{A^{-1}}X}_{Y} \geqslant 0$$
 donc $C \in S_n^+(\mathbb{R})$.

On a l'inégalité de l'énoncé si et seulement si $1 + \sqrt[n]{\det(A^{-1}B)} \leqslant \sqrt[n]{\det(I_n + A^{-1}B)}$ si et seulement si $1 + \sqrt[n]{\det(C)} \leqslant \sqrt[n]{\det(I_n + C)}$. Notons $(\lambda_1, \ldots, \lambda_n) \in \operatorname{Sp}_{\mathbb{R}}(C) \subset \mathbb{R}$. L'inégalité équivaut à

$$1 + \left(\prod_{i=1}^{n} \lambda_i\right)^{\frac{1}{n}} \leqslant \left(\prod_{i=1}^{n} (1 + \lambda_i)\right)^{\frac{1}{n}}.$$
 (37)

S'il existe $i \in [1, n]$ tel que $\lambda_i = 0$, l'inégalité est vraie. Si pour tout $i \in [1, n]$, $\lambda_i > 0$, alors l'inégalité équivaut à

$$\underbrace{\ln\left(1 + \exp\left(\frac{1}{n}\sum_{i=1}^{n}\ln(\lambda_{i})\right)\right)}_{\varphi\left(\frac{1}{n}\sum_{i=1}^{n}\ln(\lambda_{i})\right)} \leqslant \underbrace{\frac{1}{n}\sum_{i=1}^{n}\ln\left(1 + \exp\left(\ln(\lambda_{i})\right)\right)}_{\frac{1}{n}\sum_{i=1}^{n}\varphi(\ln(\lambda_{i}))}.$$
(38)

Comme $\varphi'(x) = \frac{e^x}{1+e^x} = 1 - \frac{1}{1+e^x}$ et $\varphi''(x) = \frac{e^x}{1+e^x} > 0$, φ est strictement convexe d'où l'inégalité.

De plus, si on a égalité, $\lambda_1 = \cdots = \lambda_n$, et C étant diagonalisable, il existe $\lambda \geqslant 0$ tel que $C = \lambda I_n$, d'où $B = \lambda A$.

Si A n'est pas inversible, soit pour $p \ge 1$, $A_p = \frac{1}{p}I_n + A \in S_n^{++}(\mathbb{R})$ car $\operatorname{Sp}(A_p) = \operatorname{Sp}(A) + \frac{1}{p} \subset \mathbb{R}_+^*$. Alors pour tout $p \in \mathbb{N}^*$, on a

$$\sqrt[n]{\det(A_p)} + \sqrt[n]{\det(B)} \leqslant \sqrt[n]{\det(A_p + B)}, \tag{39}$$

et en passant à la limite $p \to +\infty$, on obtient l'inégalité.

Remarque 3. On a $\sqrt[n]{\det\left(\frac{A+B}{2}\right)} = \frac{1}{2}\sqrt[n]{\det(A+B)} \geqslant \frac{1}{2}\left(\sqrt[n]{\det(A)} + \sqrt[n]{\det(B)}\right)$. On peut en déduire (par continuité et dichotomie) que $A \mapsto \sqrt[n]{\det(A)}$ de $S_n^+(\mathbb{R})$ dans \mathbb{R} est concave.

Solution 9.

1. On a $(AX)_i = \sum_{j=1}^n a_{i,j} x_j$ et

$$X^{\mathsf{T}}AX = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j a_{i,j} = \sum_{i=1}^{n} x_i^2 a_{i,i} + \sum_{i \neq j} x_i x_j a_{i,j}. \tag{40}$$

Ainsi, comme $A \in S_n^+(\mathbb{R})$,

$$0 \leqslant |X|^{\mathsf{T}} A |X| = \sum_{i=1}^{n} |x_i|^2 a_{i,i} + \sum_{i \neq j} |x_i| |x_j| a_{i,j}.$$
 (41)

Or, pour $i \neq j$, $|x_i| |x_j| a_{i,j} \leqslant x_i x_j a_{i,j}$. Donc

$$|X|^{\mathsf{T}} A |X| \leqslant X^{\mathsf{T}} A X. \tag{42}$$

2. Si AX = 0, d'après ce qui précède on a $|X|^{\mathsf{T}} A |X| = 0$. Formons

$$\varphi: \mathcal{M}_{n,1}(\mathbb{R})^2 \to \mathbb{R}$$

$$(X,Y) \mapsto Y^{\mathsf{T}} A X$$

$$(43)$$

 φ est une forme bilinéaire symétrique positive de forme quadratique associée q. D'après l'inégalité de Cauchy-Schwarz, on a

$$|\varphi(Y,|X|)| \leqslant \sqrt{q(Y)} \underbrace{\sqrt{q(|X|)}}_{=0} = 0. \tag{44}$$

Donc $Y^{\mathsf{T}}A \, |X| = 0$ pour tout $Y \in \mathbb{R}^n$. Donc $A \, |X| \in (\mathbb{R}^n)^{\perp} = \{0\}$ d'où $A \, |X| = 0$. Pour tout $i \in [\![1,n]\!]$, $\sum_{j=1}^n a_{i,j} \, |x_j| = 0$ donc $\sum_{j \neq i} a_{i,j} \, |x_j| + a_{i,i} \, |x_i| = 0$. Si $|x_i| = 0$, pour tout $j \neq i$, $|x_j| = 0$: impossible. Donc pour tout $i \in [\![1,n]\!]$ $x_i \neq 0$.

- 3. Soit $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in (\ker(A) \setminus \{0\})^2$. Alors $Y \frac{y_1}{x_1}X \in \ker(A)$ et sa première coordonnée est nulle donc $Y = \frac{y_1}{x_1}X$, donc $\dim(\ker(A)) \leqslant A$ et $\operatorname{rg}(A) \geqslant n-1$.
- 4. Soit $A' = A \lambda I_n$. Soit $\lambda_1 \in \operatorname{Sp}(A')$, on a $\operatorname{Sp}(A') = \operatorname{Sp}(A) \lambda$. Or $\lambda = \min \operatorname{Sp}(A)$, donc pour tout $\lambda' \in \operatorname{Sp}(A')$, $\lambda' \geqslant 0$ et donc $A' \in S_n^+(\mathbb{R})$ et vérifie les hypothèses de A. On a $0 < \dim(\ker(A')) \leqslant 1$ et 0 est valeur propre donc $\dim(\ker(A \lambda I_n)) = 1$: λ est une valeur propre simple.

Solution 10. Par récurrence sur $\dim(E) = n$: c'est vrai si $\dim(E) = 1$ car dans ce cas, u = 0. Soit $n \ge 1$, supposons le résultat vrai en dimension n et soit E de dimension n + 1. Soit $(\varepsilon_1, \ldots, \varepsilon_{n+1})$ une base orthonormée de E. On a $\mathrm{Tr}(u) = \sum_{i=1}^n (u(\varepsilon_i)|\varepsilon_i) = 0$. Soit

$$f: S(0,1) \to \mathbb{R}$$

$$x \mapsto (u(x)|x)$$

$$(45)$$

. f est continue et S(0,1) est connexe par arc. Nécessairement, il existe $x \in S(0,1)$ tel que (u(x)|x) = 0. On pose $e_1 = x$, et dans une base orthonormée adaptée à $E = \mathbb{R}_1 \stackrel{\perp}{\oplus} (\mathbb{R}e_1)^{\perp}$,

$$\operatorname{mat}_{B}(u) = \begin{pmatrix} 0 & \star \\ \star & A \end{pmatrix}. \tag{46}$$

 $\operatorname{Tr}(A) = 0$, et par hypothèse de récurrence, il existe B_1 une base orthonormée de $(\mathbb{R}e_1)^{\perp}$ (de dimension n) telle que $\operatorname{mat}(p \circ u, B_1) = \begin{pmatrix} 0 & \star \\ \star & 0 \end{pmatrix}$ où p est la projection orthogonale sur $(\mathbb{R}e_1)^{\perp}$. D'où le résultat.

Solution 11.

- 1. Si u est antisymétrique, avec y=x, on a (u(x)|x)=0. Réciproquement, si pour tout $x \in E$, (u(x)|x)=0, alors pour tout $(x,y)\in E^2$, (u(x+y)|x+y)=0=(u(x)|x)+(u(y)|y)+(u(x)|y)+(u(y)|x), d'où (u(x)|y)=-(x|u-y).
- 2. Soit B une base orthonormée et $A = \operatorname{mat}_B(u)$. u est antisymétrique si et seulement si pour tout $(x,y) \in (\mathbb{R}^n)^2$, $Y^\mathsf{T} A X = -X^\mathsf{T} A Y = -X^\mathsf{T} A^\mathsf{T} X$. Donc, pour X et Y les vecteurs dans la base canonique, on a $A^\mathsf{T} = A$, et la réciproque est vraie.
- 3. Soit $\lambda \in \operatorname{Sp}(u)$ et $x \neq 0$ vecteur propre associé. On a $(u(x)|x) = 0 = \lambda ||x||^2$. Comme $x \neq 0$, on a $\lambda = 0$, donc $\operatorname{Sp}(u) \subset \{0\}$. Si $\dim(E)$ est impair, χ_u est de degré impair, donc admet une racine réelle (par le théorème des valeurs intermédiaires), donc $0 \in \operatorname{Sp}(u)$.
- 4. Par récurrence sur $\dim(E) = n$. Si n = 1, $\operatorname{mat}_B(u) = (0)$. Soit $n \in \mathbb{N}$, supposons le résultat vrai pour $\dim(E) \leqslant n$. Soit E de dimension n + 1 et $u \in \mathcal{L}(E)$ antisymétrique.

Lemme 2. Si F est stable par u, F^{\perp} .

Preuve du 2. Soit
$$x \in F^{\perp}$$
 et $y \in F$. On a $(u(x)|y) = -(\underbrace{x}_{\in F^{\perp}}|\underbrace{u(y)}_{\in F}) = 0$.

Rappelons par ailleurs qu'il existe F stable par u de dimension 1 ou 2, dans une base orthonormée B_1 de F: $\operatorname{mat}_{B_1}(u_{|F}) = (0)$ si $\dim(F) = 1$, et $\operatorname{mat}_{B_2}(u_{|F}) = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$ avec $a \in \mathbb{R}$ si $\dim(F) = 2$. On applique l'hypothèse de récurrence à F^{\perp} .

5. Soit $A \in \mathcal{A}_n(\mathbb{R})$. On a

$$\exp(A)^{\mathsf{T}} = \sum_{k=0}^{+\infty} \frac{\left(A^k\right)^{\mathsf{T}}}{k!} = \sum_{k=1}^{+\infty} \frac{(-A)^k}{k!} = \exp(-A) = \exp(A)^{-1},\tag{47}$$

car $A \mapsto A^{\mathsf{T}}$ est linéaire et $\mathcal{A}_n(\mathbb{R})$ de dimension finie donc continue.

 $\exp(A) \in O_n(\mathbb{R})$, $\det(\exp(A)) = \exp(\operatorname{Tr}(A)) = \exp(0) = 1$ en trigonalisant sur \mathbb{C} . Ainsi, $\exp(A) \in SO_n(\mathbb{R})$.

Soit $M \in SO_n(\mathbb{R})$, il existe $P \in O_n(\mathbb{R})$ et $\sigma_1, \ldots, \sigma_k \in \mathbb{R}^k$, il existe $n_1 \in \mathbb{N}$ tel que

$$M = P \operatorname{diag}(R_{\theta_1}, \dots, R_{\theta_k}, -1, \dots, -1, 1, \dots, 1),$$
 (48)

où -1 apparaît n_1 fois, avec n_1 pair car $\det(M) = 1$, donc

$$M = P \operatorname{diag}(R_{\theta_1}, \dots, R_{\theta_k}, R_{\pi}, \dots, R_{\pi}, 1, \dots, 1),$$
 (49)

où l'on rappelle que mes R_{θ} représente une matrice de rotation d'angle θ en dimension 2. Soit $a \in \mathbb{R}$, on a

$$\begin{pmatrix} 0 & -a \\ a & 0 \end{pmatrix} = aR_{\frac{\pi}{2}}.\tag{50}$$

Comme $R_{\frac{\pi}{2}}^2 = -I_2, R_{\frac{pi}{2}}^3 - R_{\frac{\pi}{2}}$ et $R_{\frac{\pi}{2}}^4 = I_2$, on a pour tout $k \in \mathbb{N}$,

$$\begin{pmatrix} 0 & -a \\ a & 0 \end{pmatrix}^{2k} = (-1)^k a^{2k} I_2, \tag{51}$$

et

$$\begin{pmatrix} 0 & -a \\ a & 0 \end{pmatrix}^{2k+1} = (-1)^k a^{2k+1} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$
 (52)

Donc

$$\exp\begin{pmatrix} 0 & -a \\ a & 0 \end{pmatrix} = \sum_{k=0}^{+\infty} (-1)^k \left(\frac{a^{2k}}{(2k)!} I_2 + \frac{a^{2k+1}}{(2k+1)!} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right), \tag{53}$$

$$=\cos(a)I_2 + \sin(a)\begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} = R_a.$$
 (54)

Ainsi,
$$M = P \exp(\underbrace{\operatorname{diag}(R_{\theta_1}, \dots, \theta_k, R_{\pi}, \dots, R_{\pi}, 0, \dots, 0)}_{A' \in \mathcal{A}_n(\mathbb{R})}) P^{-1} = \exp(\underbrace{PA'P^{-1}}_{\in \mathcal{A}_n(\mathbb{R})}), \operatorname{donc}_{A' \in \mathcal{A}_n(\mathbb{R})}$$

$$M \in \exp(\mathcal{A}_n(\mathbb{R})).$$

Solution 12.

1. Soit $A \in S_n(\mathbb{R})$. Il existe $P \in O_n(\mathbb{R})$ tel que

$$A = P\operatorname{diag}(\lambda_1, \dots, \lambda_n)P^{-1}, \tag{55}$$

d'où

$$\exp(A) = P\operatorname{diag}(e^{\lambda_1}, \dots, e^{\lambda_n})P^{-1} \in S_n^{++}(\mathbb{R}).$$
(56)

Soit $B \in S_n^{++}(\mathbb{R})$, alors il existe $P \in O_n(\mathbb{R})$ tel que

$$B = P\operatorname{diag}(\mu_1, \dots, \mu_n)P^{-1}, \tag{57}$$

avec $\mu_i > 0$ pour tout $i \in [1, n]$. Soit

$$A = P\operatorname{diag}(\ln(\mu_1), \dots, \ln(\mu_n))P^{-1}.$$
 (58)

Alors $\exp(A) = B$.

Soit $(A_1, A_2) \in S_n(\mathbb{R})$ tel que $\exp(A_1) = \exp(A_2) = B$. Soient $(u_1, u_2) \in \mathcal{L}(\mathbb{R}^n)^2$ correspondant à A_1 et A_2 , et $v \in \mathcal{L}(\mathbb{R}^n)$ correspondant à B. On vérifie que les sous-espaces propres de u_1 et u_2 sont ceux de v. Il s'ensuit que $u_1 = u_2$. En effet, si $A \in \operatorname{Sp}(u_1)$, et si $u_1(x) = \lambda_1 x$, alors $\exp(u_1)(x) = v(x) = e^{\lambda} x$ donc $\ker(u_1 - \lambda_i id) \subset \ker(v - e^{\lambda} id)$. u_1 étant diagonalisable, si les valeurs propres distinctes sont $\lambda_1, \ldots, \lambda_r$, alors

$$\mathbb{R}^n = \bigoplus_{i=1}^r \ker(u_i - \lambda_i id) \subset \bigoplus_{i=1}^r \ker(v - e^{\lambda_i} id) \subset \mathbb{R}^n.$$
 (59)

D'où $\ker(u_i - \lambda_i id) = \ker(v - e^{\lambda_i} id)$ pour tout $i \in \{1, \dots, r\}$.

- 2. On a $\exp(A) = \sum_{k=0}^{+\infty} \frac{A^k}{k!}$, c'est la somme d'une série de fonctions continues qui converge normalement sur les compacts.
- 3. On munit $\mathcal{M}_n(\mathbb{R})$ de $||M|| = \sup_{\|X\|=1} ||MX||$. Soit $X \in S(0,1)$, pour tout $k \in \mathbb{N}$, on a

$$|X^{\mathsf{T}} M_k X - X^{\mathsf{T}} M X| = |((M_k - M)(X)|X)|,$$
 (60)

$$\leq \|(M_k - M)(X)\|, \tag{61}$$

$$\leqslant ||M_k - M||. \tag{62}$$

Il existe $k_0 \in \mathbb{N}$ tel que pour tout $k \ge k_0$, $||M_k - M|| \le \min(\frac{\alpha}{2}, 1)$. On a pour tout $k \ge k_0$, $\alpha \le X^\mathsf{T} M X \le \beta$ d'où

$$\alpha - \frac{\alpha}{2} = \frac{\alpha}{2} \leqslant X^{\mathsf{T}} M_k X \leqslant \beta + 1. \tag{63}$$

4.

Lemme 3. Soit $A \in S_n(\mathbb{R})$, on $a \| A \| = \max_{\lambda \in \operatorname{Sp}(A)} |\lambda|$, noté $\rho(A)$.

Preuve du lemme 3. Soit $(\varepsilon_1, \ldots, \varepsilon_n)$ une base orthonormale qui diagonalise A avec $A\varepsilon_i = \lambda_i \varepsilon_i$. Soit $X = \sum_{i=1}^n x_i \varepsilon_i \in S(0,1)$, on a $AX = \sum_{i=1}^n \lambda_i x_i \varepsilon_i$. Alors

$$||AX||^2 = \sum_{i=1}^n (\lambda_i x_i)^2 \leqslant \rho(A)^2 \underbrace{||X||^2}_{=1}, \tag{64}$$

et $||AX||^2 = \rho(A)$ pour X vecteur propre associé à une des valeurs propres de valeur absolue maximale.

D'après ce qui précède, pour tout $k \ge k_0$, $\operatorname{Sp}(\mu_k) \subset \left[\frac{\alpha}{2}, \beta + 1\right]$. Donc

$$\operatorname{Sp}(\ln(M_k)) \subset \left[\ln\left(\frac{\alpha}{2}\right), \ln(\beta+1)\right].$$
 (65)

Alors $\|\ln(M_k)\| \le \max(\left|\ln\left(\frac{\alpha}{2}\right)\right|, \left|\ln\left(\beta+1\right)\right|)$, pour tout $k \ge k_0$.

5. $(\ln(M_k))_{k\in\mathbb{N}}$ est bornée en dimension finie, donc admet une valeur d'adhérence A. Pr, pour tout $k \in \mathbb{N}$, $\ln(M_k) \in S_n(\mathbb{R})$ fermé car sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ en dimension finie. Donc $A \in S_n(\mathbb{R})$. En notant l'extraction σ , on a $\ln(M_{\sigma(k)}) \xrightarrow[k \to +\infty]{} A$ donc $M_{\sigma(k)} \xrightarrow[k \to +\infty]{} \exp(A) = M$ par continuité de l'exponentielle.

De plus, par injectivité, on a bien $A = \ln(M)$. La suite $(\ln(M_k))_{k \in \mathbb{N}}$ admet une unique valeur d'adhérence $\ln(M)$, donc converge vers $\ln(M)$.

Remarque 4. Généralement, soient E et F de dimension finie. Soit A un fermé de E, et $f: A \subset E \to B \subset F$ bijective continue. On suppose que si $(\eta_k)_{k \in \mathbb{N}} \in B^{\mathbb{N}}$ est bornée, alors $(f^{-1}(\eta_k))_{k \in \mathbb{N}} \in A^{\mathbb{N}}$ est bornée. Alors f^{-1} est continue.

Solution 13. $S_F(0,1)$ est compacte, et $X \mapsto (AX|X)$ est continue, donc admet un maximum sur $S_F(0,1)$ et $\Phi(F)$ est bien définie.

Soit $(\varepsilon_1, \ldots, \varepsilon_n)$ une base orthonormée qui diagonalise A: pour tout $i \in [1, n]$, $A\varepsilon_i = \lambda_i \varepsilon_i$.

Soit F un sous-espace vectoriel de \mathbb{R}^n tel que dim(F) = k. Soit X) $\sum_{i=1}^n X_i \varepsilon_i \in S_F(0,1)$. Alors $(AX|X) = \sum_{i=1}^n \lambda_i x_i^2$.

Soit $E_k = \text{Vect}(\varepsilon_k, \dots, \varepsilon_n)$, $\dim(E_k) = n - k + 1$. Nécessairement, $E_k \cap F \neq \{0\}$, car sinon $\dim(E_k + F) = n + 1$.

Soit $x = \sum_{i=k}^{n} x_i \varepsilon_i \in E_k \cap F$ unitaire. Alors

$$(AX|X) = \sum_{i=k}^{n} \lambda_i x_i^2 \geqslant \lambda_k \sum_{i=k}^{n} x_i^2 = \lambda_k.$$
(66)

Donc $\Phi(F) \geqslant \lambda_k$.

Soit $F_k = \text{Vect}(\varepsilon_1, \dots, \varepsilon_k)$ de dimension f. Pour tout $x \in F_k$ unitaire, on a $(AX|X) = \sum_{i=1}^k \lambda_i x_i^2 \leq \lambda_k$.

$$\lambda_k$$
 est atteint pour $x = \varepsilon_k$, d'où $\lambda_k = \min_{\substack{F \text{ sev de } \mathbb{R}^n \\ \dim(F) = k}} \Phi(F)$.

Solution 14. Comme les valeurs propres de A sont $a_{1,1}, \ldots, a_{n,n}$, on a

$$Tr(A^2) = \sum_{i=1}^n a_{i,i}^2 = Tr(A^{\mathsf{T}}A) = \sum_{(i,j)\in\{1,\dots,n\}} a_{i,j}^2,$$
(67)

et donc pour tout $i \neq j$, $a_{i,j} = 0$.

Solution 15. Soit F' un sous-espace vectoriel de dimension k de \mathbb{R}^{n-1} , on lui associe $F = F' \times \{0\}$ de dimension k de \mathbb{R}^n .

Soit
$$X' = \begin{pmatrix} x_1 \\ \vdots \\ x_{n-1} \end{pmatrix} \in F'$$
 et $X = \begin{pmatrix} x_1 \\ \vdots \\ x_{n-1} \\ 0 \end{pmatrix}$. On a
$$(A'X'|X') = \sum_{(i,j)\in\{1,\dots,n-1\}^2} a_{i,j}x_ix_j = (AX|X), \tag{68}$$

et ||X'|| = ||X||.

Donc $\Phi'(F') = \Phi(F) \geqslant \lambda_k$. Ceci est valable pour tout sous-espace vectoriel F' de \mathbb{R}^{n-1} de dimension k, donc $\mu_k \geqslant \lambda_k$.

Soit G un sous-espace vectoriel de dimension k+1 de \mathbb{R}^n .

— Si $G \subset \mathbb{R}^{n-1} \times \{0\}$, on a comme précédemment, en notant

$$G' = \{(x_1, \dots, x_{n-1}) \in \mathbb{R}^{n-1} | (x_1, \dots, x_{n-1}, 0) \in G \},$$
(69)

un sous-espace vectoriel de \mathbb{R}^{n-1} de dimension k+1 et comme précédemment, on a $\Phi(G) = \Phi'(G') \geqslant \mu_{k+1} \geqslant \mu_k$.

— Si $G \not\subset \mathbb{R}^{n-1} \times \{0\}$, on forme

$$G_1 = G \bigcap \mathbb{R}^{n-1} \times \{0\}. \tag{70}$$

On a $\dim(G) + \dim(\mathbb{R}^{n-1} \times \{0\}) - \dim(G_1) = \dim(G + \mathbb{R}^{n-1} \times \{0\}) = n$, donc $\dim(G_1) = k$.

Comme $G_1 \subset G$, on a $\Phi(G) \geqslant \Phi(G_1) \geqslant \mu_k$. Dan tous les cas, $\Phi(G) \geqslant \mu_k$ donc $\lambda_{k+1} \geqslant \mu_k$.

Solution 16.

1. Supposons qu'il existe $(v, w) \in \left(\overline{B_{\|\cdot\|}(0, 1)}\right)^2$ tel que $u = \frac{v+w}{2}$. Pour tout $x \in \mathbb{R}^n$, on a $\|v(x)\| \leq \|x\|$ et $\|w(x)\| \leq \|x\|$, car $\|v\| \leq 1$ et $\|w\| \leq 1$. Donc

$$||u(x)|| = ||x|| \le \left\| \frac{1}{2} \left(v(x) + w(x) \right) \right\| \le \frac{||v(x)|| + ||w(x)||}{2} \le ||x||.$$
 (71)

On a donc ||v(x)|| = ||x|| = ||w(x)|| et il existe $\lambda_x \ge 0$ tel que $v(x) = \lambda_x w(x)$ (égalité dans Minkowski). Donc $\lambda_x = 1$, et ceci étant pour tout $x \in \mathbb{R}^n$, on a v = w = u. Donc u est extrémal.

2. Soit $B = (e_1, ..., e_n)$ une base orthonormée de \mathbb{R}^n et $A = \operatorname{mat}_B(u)$. On pose $S = \sqrt{A^{\mathsf{T}}A} \in S_n^+(\mathbb{R})$. On sait qu'il existe $\theta \in O_n(\mathbb{R})$ tel que $A = \theta \times S$ (décomposition polaire). Pour tout $X \in S(0,1)$, comme $|||A||| \leq 1$, on a $||AX|| \leq 1$. Par ailleurs, pour tout $X \in S(0,1)$, $X^{\mathsf{T}}S^2X = (AX|AX) = ||AX||^2 \leq 1$. Donc $\operatorname{Sp}(S^2) \subset [0,1]$ et $\operatorname{Sp}(S) \subset [0,1]$ car $S \in S_n(\mathbb{R})$. Si $\operatorname{Sp}(S) = \{1\}$, on a $S = I_n$, et $A = \theta \in O_n(\mathbb{R})$ ce qui n'est pas. Donc il existe $\lambda \in \operatorname{Sp}(S)$ tel que $\lambda \in [0,1[$.

Dans une base orthonormée B' qui diagonalise S, on a $A' = \operatorname{mat}_{B'}(u) = \theta' \times \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ avec $\lambda_i \in [0, 1]$ et $\lambda_1 < 1$.

Si $\lambda_1 \neq 0$, soit $\varepsilon = \min(\lambda_1, 1 - \lambda_1)$, on pose $S^+ = \operatorname{diag}(\lambda_1 - \varepsilon, \lambda_2, \dots, \lambda_n)$ et $S^- = \operatorname{diag}(\lambda_1 + \varepsilon, \lambda_2, \dots, \lambda_n)$, $B = \theta' \times S^+$, $C = \theta' \times S^-$, $A' = \frac{B+C}{2}$ et $B \neq C \neq A$. Comme les valeurs propres de S^+ et S^- sont dans [0, 1], on a $||S^+|| \leq 1$, $||S^-|| \leq 1$. Et $||\theta'|| = 1$, d'où $||B|| \leq 1$ et $||C|| \leq 1$. Donc u n'est pas extrémal.

Si $\lambda_1 = 0$, $S^+ = \text{diag}(-1, \lambda_2, \dots, \lambda_n)$ et $S^- = \text{diag}(1, \lambda_2, \dots, \lambda_n)$, et parallèlement, u n'est pas extrémal. Les points extrémaux sont les isométries.

3. Soit $\|\cdot\|_2$ une norme euclidienne. Si $\|X\|_2 < 1$, alors X n'est pas extrémal et il existe $(\lambda,\mu) \in [0,1[^2$ tel que $X = \frac{\lambda X + \mu X}{2}$.

Soit X tel que $||X||_2 = 1$, si $X = \frac{Y+Z}{2}$ avec $||Y||_2 \leqslant 1$ et $||Z||_2 \leqslant 1$. On a

$$||X||_2 = 1 = \left\| \frac{Y+Z}{2} \right\|_2 \leqslant \frac{||Y||_2 + ||Z||_2}{2} \leqslant 1.$$
 (72)

On a égalité partout, comme pour la première question, on a Y=Z=X. Les points extrémaux sont les points de la sphère unité. En prenant $A=\mathrm{diag}(1,0,\ldots,0)$, on a $\|A\|=1$ mais A n'est pas une isométrie pour $n\geqslant 2$. Donc la norme triple n'est pas une norme euclidienne.

Solution 17. Si $A = P \operatorname{diag}(\lambda_1, \dots, \lambda_n) P^{-1}$ alors $A^3 = P \operatorname{diag}(\lambda_1^3, \dots, \lambda_n^3) P^{-1}$. $\sqrt[3]{}$ étant injectif, on a $\operatorname{Sp}_{\mathbb{R}}(A) = \operatorname{Sp}_{\mathbb{R}}(B)$. Soit $\lambda_1, \dots, \lambda_i$ les valeurs propres distinctes de A. Soient u et v canoniquement associés à A et B. u et v sont diagonalisables. Soit $x \in \ker(u - \lambda_i id)$. On a $u(x) = \lambda_i x$, on a $u^3(x) = \lambda_i^3 x$, donc $\ker(u - \lambda_i id) \subset \ker(u^3 - \lambda_i^3 id)$ car les $(\lambda_j^3)_{1 \leqslant j \leqslant i}$ sont distincts. On a

$$\mathbb{R}^n = \bigoplus_{i=1}^r \ker(u - \lambda_i id) \subset \bigoplus_{i=1}^r \ker(u^3 - \lambda_i^3 id) \subset \mathbb{R}^n, \tag{73}$$

donc $\ker(u - \lambda_i id) = \ker(u^3 - \lambda_i^3 id) = \ker(v^3 - \lambda_i^3 id) = \ker(v - \lambda_i id)$. u et v ont les mêmes valeurs propres et même sous-espaces propres, donc sont égaux et A = B.

Solution 18. Soit

$$\varphi: \qquad (\mathbb{R}^{n+1})^2 \to \mathbb{R} \\ (x = (x_0, \dots, x_n), y = (x_0, \dots, y_n)) \mapsto \sum_{(i,j) \in [0,n]^2} \frac{x_i y_i}{i+j+1}$$
 (74)

C'est une forme bilinéaire symétrique. q dérive de φ . Soit $x \in \mathbb{R}^{n+1} \setminus \{0\}$, on a

$$q(x) = \sum_{(i,j) \in [0,n]^2} x_i x_j \int_0^1 t^{i+j} dt,$$
 (75)

$$= \int_0^1 \sum_{(i,j) \in [0,n]^2} x_i x_j t^{i+j} dt, \tag{76}$$

$$= \int_0^1 \left(\sum_{i=0}^n x_i t^i\right)^2 \mathrm{d}t \geqslant 0. \tag{77}$$

Si l'intégrale est nulle, alors $\sum_{i=0}^{n} x_i t^i = 0$ pour tout $t \in [0,1]$. C'est un polynôme en t ayant une infinité de racines sur [0,1], c'est donc le polynôme nul donc pour tout $i \in [0,n]$, $x_i = 0$ donc x = 0.

Solution 19. Pour n = 1, on considère $x_0 = 0$ et $||x_1|| = 1$. Si $c_1 = \frac{x_1 + x_2}{2} = \frac{x_2}{2}$. Alors

$$||c_1 - x_1|| = ||c_1 - x_2|| = \frac{1}{2}.$$
 (78)

Soit pour $n \ge 1$, H_n : « Pour E de dimension n, il existe $(x_1, \ldots, x_{n+1}) \in E^{n+1}$, pour tout $i \ne j$, $||x_i - x_j|| = 1$ et pour $c_n = \frac{(x_1 + \cdots + x_{n+1})}{n+1}$, il existe r_n tel que pour tout $i \in [1, n+1]$, $||x_i - c_n|| = r_n$ ».

Supposons H_n est vraie. Soit E_n de dimension n+1 et soit H un hyperplan de E. Il existe $(x_1, \ldots, x_{n+1}, c_n, r_n)$ vérifiant H_n . Soit u un vecteur unitaire orthogonal à H. Soit D la droite passant par c_n et de vecteur directeur $u:D=\{c_n+tu|t\in\mathbb{R}\}$. Pour tout $i\in[1,n+1]$, pour tout $t\in\mathbb{R}$,

$$||x_i - (x_n + tu)||^2 = ||x_i - c_n||^2 + t^2 = r_n^2 + t^2.$$
(79)

Posons $x_{n+2}=c_n+\sqrt{1-r_n^2}u$. Pour tout $i\in [1,n+1], ||x_{n+2}-x_i||=1$. Soit

$$c_{n+1} = \frac{x_1 + \dots + x_{n+2}}{n+2} = \frac{n+1}{n+2}c_n + \frac{1}{n+2}x_{n+2} = c_n + \frac{\sqrt{1-r_n^2}}{n+2}u.$$
 (80)

Pour $i \in [1, n+1]$, on a

$$\|c_{n+1} - x_i\|^2 = \frac{1 - r_n^2}{(n+2)^2} + r_n^2,$$
 (81)

$$=\frac{1+((n+2)^2-1)r_n^2}{(n+2)^2},$$
(82)

$$=\frac{1+(n+1)(n+3)r_n^2}{(n+2)^2}. (83)$$

On pose $r_{n+1} = \sqrt{\frac{1 + (n+1)(n+3)r_n^2}{(n+2)^2}}$, puis

$$||c_{n+1} - x_{n+2}||^2 = \left(\frac{\sqrt{1 - r_n^2}}{n+2} - \sqrt{1 - r_n^2}\right)^2 = \frac{1 - r_n^2}{(n+2)^2} (n+1)^2.$$
 (84)

On a

$$r_n^2 = \left\| \frac{x_1 + \dots + x_{n+1}}{n+1} - x_1 \right\|^2, \tag{85}$$

$$= \frac{1}{(n+1)^2} \left\| \sum_{i=2}^{n+1} (x_i - x_1) \right\|^2, \tag{86}$$

$$= \frac{1}{(n+2)^2} \times \left(n + 2 \sum_{2 \le i < j \le n+1} (x_i - x_1 | x_j - x_i) \right).$$
 (87)

On a, pour tout $i \neq j \neq 1$,

$$||x_i - x_i||^2 = 1 = ||(x_i - x_1) + (x_1 - x_i)||^2 = 2 + 2(x_i - x_1|x_1 - x_i),$$
(88)

d'où $(x_i - x_1|x_j - x_1) = \frac{1}{2}$, puis

$$r_n^2 = \frac{1}{(n+1)^2} \left(n + \frac{n(n-1)}{2} \right) = \frac{n}{2(n+1)},\tag{89}$$

et

$$r_{n+1}^2 = \frac{1 + \frac{n(n+3)}{2}}{(n+2)^2},\tag{90}$$

$$=\frac{n(n+3)+2}{2(n+2)^2},\tag{91}$$

$$=\frac{n+1}{2(n+2)} \in [0,1[. (92)$$

Et en reportant,

$$||c_{n+1} - x_{n+2}||^2 = \frac{(n+1)^2}{(n+2)^2} (1 - r_n^2),$$
(93)

$$=\frac{(n+1)^2}{(n+2)^2}\left(1-\frac{n}{2(n+1)}\right),\tag{94}$$

$$=\frac{(n+2)(n+1)^2}{(n+2)^22(n+1)},$$
(95)

$$=\frac{n+1}{2(n+2)},$$
(96)

$$=r_{n+1}. (97)$$

Remarque 5 (Méthode directe). Soit E euclidien de dimension n+1. Soit (e_1, \ldots, e_{n+1}) une base orthonormée de E. On a $\frac{\|e_i - e_j\|}{2} = 1$ pour $i \neq j$. Soit

$$H = \{x = x_1 e_1 + \dots + x_{n+1} e_{n+1} \in E | x_1 + \dots + x_{n+1} = 0\},$$
(98)

hyperplan de E. On a dim(E) = n, pour tout $i \in \{1, ..., n+1\}$, soit $y_i = \frac{1}{\sqrt{2}} (e_i - c) \in H$ avec $c = \frac{e_1 + ... + e_{n+1}}{n+1}$ et pour tout $i \neq j$, $||y_i - y_j|| = 1$.

Solution 20. On définit

$$\varphi: \qquad (\mathbb{R}^n)^2 \qquad \to \quad \mathbb{R}$$

$$((x_1, \dots, x_n), (y_1, \dots, y_n)) \qquad \mapsto \quad \sum_{i=1}^n x_i y_i - \alpha \left(\sum_{i=1}^n \alpha_i\right) \left(\sum_{i=1}^n y_i\right)$$

$$(99)$$

Alors $\varphi(x,x)=q(x)$, et d'après l'inégalité de Cauchy-Schwarz pour le produit scalaire canonique de \mathbb{R}^n , pour tout $(x_1, \ldots, x_n) \in \mathbb{R}^n$, on a

$$\left(\sum_{i=1}^{n} x_i\right)^2 \leqslant n \sum_{i=1}^{n} x_i^2, \tag{100}$$

d'où $\sum_{i=1}^n x_i^2 \geqslant \frac{1}{n} \left(\sum_{i=1}^n x_i\right)^2$.

— Si $\alpha < \frac{1}{n}$, on a $q(x_1, \dots, x_n) \geqslant (1 - n\alpha) \sum_{i=1}^n x_i^2 \geqslant 0$ et so $q(x_1, \dots, x_n) = 0$, alors $\sum_{i=1}^n x_i^2 = 0$ donc les x_i sont nuls.

— Si $\alpha \geqslant \frac{1}{n}$, on a $q(1, \dots, 1) = n - \alpha n^2 = n(1 - \alpha n) \leqslant 0$.

Finalement, q est une forme quadratique définie positive si et seulement si $\alpha < \frac{1}{n}$.

Solution 21.

1. Si $\sum_{i=1}^{n} \lambda_i e_i = 0$, on a

$$\left\| \sum_{i=1}^{n} \lambda_{i} e_{i} \right\|^{2} = 0 = \sum_{i=1}^{n} \lambda_{i}^{2} \|e_{i}\|^{2} + \sum_{\substack{i \neq j \\ i=1}}^{n} \lambda_{i} \lambda_{j} (e_{i} | e_{j}).$$
 (101)

On a alors

$$0 \leqslant \left\| \sum_{i=1}^{n} |\lambda_i| e_i \right\|^2 = \sum_{i=1}^{n} \lambda_i^2 \|e_i\|^2 + \sum_{\substack{i \neq j \\ i=1}}^{n} |\lambda_i| |\lambda_j| (e_i|e_j) \leqslant 0, \tag{102}$$

car $|\lambda_i| |\lambda_j| \ge \lambda_i \lambda_j$ et $(e_i|e_j) \le 0$ donc $|\lambda_i| |\lambda_j| (e_i|e_j) \le \lambda_i \lambda_j (e_i|e_j)$. Ainsi,

$$\sum_{i=1}^{n} |\lambda_i| \, e_i = 0.$$

Notons que $\sum_{i\neq j} (|\lambda_i| |\lambda_j| - \lambda_i \lambda_j) (e_i|e_j) = 0$ et chaque terme est négatif, donc pour tout $i \neq j$, $(|\lambda_i| |\lambda_j| - \lambda_i \lambda_j) (e_i|e_j) = 0$. Si $(e_i|e_j) < 0$, λ_i et λ_j sont donc de mêmes signes.

2. On suppose que $\sum_{i=1}^{p} \lambda_i e_i = 0$, alors $\sum_{i=1}^{p} |\lambda_i| e_i = 0$ et

$$(\varepsilon | \sum_{i=1}^{n} |\lambda_i| e_i) = 0 = \sum_{i=1}^{n} |\lambda_i| (\varepsilon | e_i)$$

et chaque terme de la somme est positif, donc pour tout $i \in \{1, ..., p\}$, on a $\lambda_i = 0$ et $(e_1, ..., e_p)$ est libre.

3. On a $(-x|e_i)<0$ donc $(-x,e_1,\ldots,e_p)$ vérifie l'hypothèse. On a

$$1 \times (-x) + \sum_{i=1}^{p} x_i e_i = 0,$$

et d'après ce qui précède, $-x + \sum_{i=1}^{p} |x_i| e_i = 0$ donc $x = \sum_{i=1}^{p} |x_i| e_i = \sum_{i=1}^{p} x_i e_i$ et par unicité, pour tout $i \in \{1, \dots, \}, |x_i| = x_i \geqslant 0$.

Soit $i_0 \in \{1, ..., p\}$ tel que $x_{i_0} = 0$. On a

$$(x|e_{i_0}) = \sum_{\substack{i=1\\i\neq i_0}}^p x_i(e_i|e_{i_0}) > 0,$$
(103)

ce qui est absurde donc pour tout $i \in \{1, ..., p\}, x_i > 0$.

Solution 22. — En dimension 1, soit E = Vect(u) avec u unitaire. Soit $(x_1, \ldots, x_p) \in E^p$, $\dim(E) = 1$ donc pour tout $i [1, p], x_i = \lambda_i u$ avec $\lambda_i \in \mathbb{R}$, et pour $i \neq j \in [1, p]^2$, $(x_i|x_j) = \lambda_i \lambda_j$, d'où $p \leq 2$ si on veut $(x_i|x_j) < 0$ pour tout $i \neq j \in [1, p]^2$. Or (u, -2) est obtusangle donc $r_1 = 2$.

— En dimension 2, on suppose $r_2 = 3$.

Par récurrence, supposons $r_n = n + 1$ pour $n \in \mathbb{N}^*$. Soit E un espace euclidien de dimension n + 1 et soit $(x_1, \ldots, x_p) \in E^p$ une famille obtusangle maximale (avec $p \ge 2$). En particulier, $x_1 \ne 0$. Soit $H = x_1^{\perp}$ de dimension n et pour tout $i \in [2, p]$, $x_i' = p_H(x_i)$. Pour tout $i \in [2, p]$, on a $x_i = x_i' + y_i$ avec $y_i = \lambda_i x_1$ avec $(x_i | x_1) = \lambda_i ||x_1||^2 < 0$ donc $\lambda_i < 0$, et pour tout $i \ne j \in [2, p]^2$, $(x_i | x_j) = (x_i' | x_j') + \underbrace{\lambda_i \lambda_j ||x_1||^2}_{} < 0$, donc $(x_i' | x_j') < 0$.

Par hypothèse de récurrence, on a donc $p-1 \le n+1$ d'où $p \le n+2$ d'où $r_{n+1} \le n+2$. De plus soit H un hyperplan (quelconque) de E. Par hypothèse de récurrence, il existe alors $(x'_2, \ldots, x'_{n+2}) \in H^{n+1}$ obtusangle. Soit x_1 un vecteur orthogonal à H. Soit $\varepsilon > 0$ et pour tout $i \in [2, n+2]$, $x_i = x'_i - \varepsilon x_1$. On a $(x'_i|x_1) < 0$ et $(x_i|x_j) = (x'_i|x'_j) + \varepsilon^2$ pour tout $i \ne j \in [2, n+2]$. Il suffit de prendre

$$\varepsilon = \frac{1}{2} \min_{i \neq j \in [2, n+2]^2} \left(\sqrt{-(x_i'|x_j')} \right) > 0, \tag{104}$$

donc on a bien $r_{n+1} = n + 2$.

Solution 23.

1. En posant $u_0 = 0$ cela revient à trouver $(u_0, \ldots, u_n) \in E^{n+1}$ tel que pour tout $i \neq j$, $||u_i - u_j|| = 1$. On sait que dans \mathbb{R}^{n+1} euclidien, soit la base canonique de (e_1, \ldots, e_{n+1}) on a pour tout $i \neq j$, $\left\|\frac{e_i}{\sqrt{2}} - \frac{e_j}{\sqrt{2}}\right\| = 1$. Soit donc

$$c = \frac{e_1 + \dots + e_{n+1}}{(n+1)\sqrt{2}},\tag{105}$$

et $H = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} | \sum_{i=1}^{n+1} x_i = 0 \}$ hyperplan. Soit $v_i = \frac{e_i}{\sqrt{2}} - c \in H$ et pour tout $i \neq j$, $||v_i - v_j|| = 1$.

On a ainsi n+1 vecteurs dans H (de dimension n) tels que $||v_i - v_j|| = 1$. On pose pour tout $i \in \{1, \ldots, \}, u_i = v_i - v_{n+1}$ unitaires et pour tout $i \neq j \in \{1, \ldots, n\}, ||u_i - u_j|| = 1$.

- 2. Soit $(\lambda_1, ..., \lambda_n) \in \mathbb{R}^n$ tel que $\sum_{i=1}^n \lambda_i u_i = 0$. On a $||u_i u_j||^2 = 1 = ||u_i||^2 2(u_i|u_j) + ||u_j||^2$ donc $(u_i|u_j) = \frac{1}{2}$. Pour $j \in [1, n]$, on a $\sum_{i=1}^n \lambda_i (u_i|u_j) = 0$ donc $\lambda_j + \frac{1}{2} \sum_{\substack{i=1 \ i \neq j}} \lambda_i = 0$. Posons $S = \sum_{i=1}^n \lambda_i$. On a $\lambda_j = -S$, donc $\sum_{j=1}^n \lambda_j = -nS = S$ donc S = 0 et pour tout $j \in [1, n]$, $\lambda_j = 0$. Ainsi, $(u_1, ..., u_n)$ est une base.
- 3. A priori, on peut écrire

$$u_j = \sum_{i=1}^{j-1} b_{i,j} e_i + a_j e_j = \sum_{i=1}^{j-1} (eu_j | e_i) e_i + a_j e_j.$$
 (106)

Soit $i \in [1, n-1]$,, montrons que pour $j \neq k > i$, $(u_j|e_i) = (u_k|e_i)$ si et seulement si $(u_j - u_k|e_i) = 0$. On a $e_i \in \text{Vect}(u_1, \dots, u_i)$ (procédé de Gram-Schmidt) et pour tout $j \in [1, i]$,

$$(u_j - u_k | u_l) = (u_j | u_l) - (u_k | u_l) = \frac{1}{2} - \frac{1}{2} = 0,$$
(107)

car $j \neq l$, $k \neq l$ et $l \leq i < j, k$. Par combinaison linéaire, $(u_j - u_k | e_i) = 0$, d'où le résultat.

Solution 24. S'il existe $u \in O(E)$ tel que pour tout $i \in \{1, ..., p\}$, $y_i = u(x_i)$, alors on a directement

$$(y_i|y_j) = (u(x_i)|u(x_j)) = (x_i|x_j),$$
 (108)

pour tout $(i, j) \in \{1, ..., p\}^2$.

Réciproquement, si pour tout $(i,j) \in [1,p]^2$, $(x_i|x_j) = (y_i|y_j)$, alors soient $F = \text{Vect}(x_i)_{1 \leq i \leq p}$ et (x_1, \ldots, x_n) une base de F (quitte à renuméroter).

Lemme 4. Soit $Gram(z_1, \ldots, z_p) = ((z_i|z_j))_{1 \leq i,j \leq p}$ de colonnes C_1, \ldots, C_n . Soit

$$(\alpha_1,\ldots,\alpha_p)\in\mathbb{C}^p$$
,

alors on a $\alpha_1 C_1 + \cdots + \alpha_p C_p = 0$ si et seulement si $\alpha_1 z_1 + \cdots + \alpha_p z_p = 0$.

Preuve du lemme 4. On a $\alpha_1 C_1 + \cdots + \alpha_p C_p = 0$ si et seulement si

$$\sum_{j=1}^{p} \alpha_j z_j \in \left\{ z_1, \dots, z_p \right\}^{\perp},\,$$

si et seulement si

$$\sum_{j=1}^{p} \alpha_j z_j = 0,$$

$$\operatorname{car} C_j = \begin{pmatrix} (z_1|z_j) \\ \vdots \\ (z_p|z_j) \end{pmatrix} \text{ pour tout } j \in [\![1,p]\!].$$

D'après le lemme, on a ainsi $Gram(y_1, \ldots, y_r) = Gram(x_1, \ldots, x_r) \in GL_r(\mathbb{R})$ donc (y_1, \ldots, y_r) est libre. D'autre part, pour tout $i \in [r+1, p]$, il existe $(\alpha_{1,i}, \ldots, \alpha_{p,i}) \in \mathbb{R}^p$,

$$x_i = \alpha_{1,i} x_1 + \dots + \alpha_{r,i} x_r. \tag{109}$$

D'après le lemme, on a $y_i = \alpha_{1,i}y_1 + \cdots + \alpha_{r,i}y_r$. Soit $(\varepsilon_{r+1}, \dots, \varepsilon_p)$ une base orthonormée de $\text{Vect}(x_1, \dots, x_r)^{\perp} = F^{\perp}$ et (f_{r+1}, \dots, f_n) une base orthonormée de $\text{Vect}(y_1, \dots, y_r)^{\perp}$.

Soit u telle que pour tout $i \in [1, r]$, $u(x_i) = y_i$, et pour tout $i \in [r + 1, n]$, $u(\varepsilon_i) = f_i$, $u \in \mathcal{L}(E)$.

On a bien pour tout $i \in [r+1, p]$, $u(x_i) = y_i$. Soit enfin $x \in E$, avec

$$x = \underbrace{\alpha_1 x_1 + \dots + \alpha_r x_r}_{\in F} + \underbrace{\alpha_{r+1} \varepsilon_{r+1} + \dots + \alpha_n \varepsilon_n}_{\in F^{\perp}}.$$
 (110)

On a alors

$$u(x) = \underbrace{\alpha_1 y_1 + \dots + \alpha_r y_r}_{\in \text{Vect}(y_i)_{1 \le i \le r}} + \underbrace{\alpha_{r+1} f_{r+1} + \dots + \alpha_n f_n}_{\in \text{Vect}(y_i)_{1 \le i \le r}}.$$
 (111)

Enfin,

$$||u(x)||^{2} = ||\alpha_{1}y_{1} + \dots + \alpha_{r}y_{r}||^{2} + ||\alpha_{r+1}f_{r+1} + \dots + \alpha_{n}f_{n}||^{2},$$
(112)

$$= \sum_{(i,j)\in[1,r]^2} \alpha_i \alpha_j \underbrace{(y_i|y_j)}_{(x_i|x_j)} + \sum_{i=r+1}^n \alpha_i^2, \tag{113}$$

$$= \|\alpha_1 x_1 + \dots + \alpha_r x_r\|^2 + \left\| \sum_{i=r+1}^n \alpha_i \varepsilon_i \right\|^2,$$
 (114)

$$= \|x\|^2, \tag{115}$$

donc $u \in O(E)$.

Solution 25.

Lemme 5. S'il existe $M \ge 0$ tel que pour tout $k \in \mathbb{N}$, $|||f^k||| \le M$, alors $E = \ker(f - id) \oplus \operatorname{Im}(f - id)$ et $\left(\frac{id + f + \dots + f^k}{k + 1}\right)_{k \in \mathbb{N}}$ converge vers π , projecteur sur $\ker(f - id)$ parallèlement à $\operatorname{Im}(f - id)$.

Preuve du lemme 5. Soit $x \in E$, on a

$$(id-f)\left(\frac{id+f+\cdots+f^k}{k+1}\right)(x) = \frac{(id-f^{k+1})}{k+1}(x) \xrightarrow[k \to +\infty]{} 0, \tag{116}$$

 $\operatorname{car} \frac{\left\| f^{k+1}(x) \right\|}{k+1} \leqslant \frac{M\|x\|}{k+1} \xrightarrow[k \to +\infty]{} 0.$

Soit $y \in \ker(f - id) \cap \operatorname{Im}(f - id)$, il existe $x \in E$ tel que f(x) - x = y et f(y) = y, donc

$$\frac{(id+f+\cdots+f^k)}{k+1}(y) = y = \left(\frac{id+f+\cdots+f^k}{k+1}\right)(f-id)(x) \xrightarrow[k\to+\infty]{} 0.$$
 (117)

Donc y = 0. Comme on est en dimension finie, on a

$$E = \ker(f - id) \oplus \operatorname{Im}(f - id). \tag{118}$$

Soit $x \in E$, il existe $(y, z) \in \ker(f - id) \times \operatorname{Im}(f - id)$ tel que x = z + y. Il existe $x_1 \in E$ tel que $z = f(x_1) - x_1$. Alors

$$\frac{(id + f \cdots + f^k)}{k+1}(x) = y + \frac{(f^{k+1} - id)}{k+1}(x_1) \xrightarrow[k \to +\infty]{} y.$$
 (119)

20

Ici, on a pour tout $k \in \mathbb{N}$, pour tout $x \in E$, $||f^2(x)|| = ||f \circ f(x)|| \leqslant ||f(x)|| \leqslant ||x||$. Par récurrence, pour tout $k \in \mathbb{N}$, $||f^k(x)|| \leqslant ||x||$. On peut donc appliquer le lemme précédent. De plus, pour tout $k \in \mathbb{N}$, pour tout $x \in E$, $\left\|\frac{id+f+\dots+f^k}{k+1}(x)\right\| \leqslant ||x||$.

Lemme 6. Si $E = F \oplus G$ et F et G ne sont pas orthogonaux. Soit $\Pi_{F/\!\!/ G}$. Alors il existe $x \in E$ tel que $||\Pi(x)|| \ge ||x||$.

Preuve du leùùe 6. Soit $(y, z) \in F \times G$ tel que $(y|z) \neq 0$. Supposons (quitte à remplacer z par -z) (y|z) < 0. Soit $t \in \mathbb{R}$, on a

$$||y + tz||^2 - ||y||^2 = 2t(y|z) + t^2 ||z||^2 \underset{t \to 0^+}{\sim} 2t(y|z) < 0.$$
 (120)

Comme
$$||y||^2 = ||\Pi(y+tz)||^2$$
, il existe $t > 0$ tel que $||y-tz|| \le ||\Pi(y+tz)||$.

D'après le lemme précédent, $\ker(f-id)$ et $\operatorname{Im}(f-id)$ sont orthogonaux.

Solution 26.

1. Soit $y \in C$ et $K = \overline{B(x, \|y - x\|)} \cap C$. K est un compact, car fermé borné en dimension fini, et non vide car $y \in K$. Soit $z \mapsto d(x, z) = \|x - z\|$ de \mathbb{K} dans \mathbb{R} . Elle est continue (car 1-Lipschitzienne) sur un compact donc admet un minimum atteint en z_0 . On a $\|x - z_0\| \le \|x - y\|$. Si $z \in C \setminus K$, on a $\|z - x\| > \|x - y\| \ge \|z_0 - x\|$. Pour l'unicité, soient $z_1, z_2 \in C$ tels que $d(x, C) = \|x - z_1\| = \|x - z_2\|$. On a $\frac{z_1 + z_2}{2} \in C$ par convexité, on a

$$\left(x - \frac{z_1 + z_2}{2}|z_1 - z_2\right) = \frac{1}{2}\left((x - z_1) + (x - z_2)|(x - z_2) - (x - z_1)\right),\tag{121}$$

$$= \frac{1}{2} \left| \|x - z_1\|^2 - \|x - z_2\|^2 \right|, \tag{122}$$

$$=0, (123)$$

donc $z_1 - z_2$ est orthogonal à $x - \frac{z_1 + z_2}{2}$. D'après le théorème de Pythagore, on a

$$||x - z_1||^2 = ||x - \frac{z_1 + z_2}{2}||^2 + ||\frac{z_1 - z_2}{2}||^2 \ge ||x - z_1||^2 + ||\frac{z_1 - z_2}{2}||^2.$$
 (124)

Nécessairement, $z_1 = z_2$

2. Soit $y \in C$. Pour tout $t \in [0, 1]$, on a

$$||tp_C(x) + (1-t)y - x||^2 = ||(1-t)(y - p_C(x)) - (x - p_C(x))||^2 \ge ||x - p_C(x)||^2,$$
(125)

et le terme de gauche vaut

$$||x - p_C(x)||^2 + \underbrace{(1 - t)^2 ||y - p_C(x)||^2 - 2(1 - t) (x - p_C(x)|y - p_C(x))}_{\varphi(t)}.$$
 (126)

On a donc $\varphi(t) \geqslant 0$ pour tout $t \in [0,1]$. Si $(x - p_C(x)|y - p_C(x)) > 0$, on aurait $\varphi(t) \sim -2(1-t)(x - p_C(x)|y - p_C(x)) < 0$: impossible. Donc $(x - p_C(x)|y - p_C(x)) \leqslant 0$.

Soit $z \in C$ tel que pour tout $y \in C$, $(x - z|y - z) \leq 0$, alors pour tout $y \in C$, on a

$$||x - y||^2 = ||x - z||^2 + ||z - y||^2 + 2(x - z|z - y) \geqslant ||x - z||^2, \qquad (127)$$

donc par unicité de $p_C(x)$, $z = p_C(x)$.

3. Soit $x_1, x_2 \in E$. Si $p_C(x_1) = p_C(x_2)$, on a $0 = ||p_C(x_1) + p_C(x_2)|| \le ||x_1 - x_2||$. Si non, soit $H = \text{Vect}(p_C(x_2) - p_C(x_1))^{\perp}$, on a

$$\begin{array}{rcl}
x_1 - p_C(x_1) & = & \lambda_1(p_C(x_1) - p_C(x_2)) + y_1, \\
x_2 - p_C(x_2) & = & \lambda_2(p_C(x_1) - p_C(x_2)) + y_2,
\end{array} (128)$$

avec $y_1, y_2 \in H$. Alors

$$0 \geqslant (x_1 - p_C(x_1)|p_C(x_2) - p_C(x_1)) = \lambda_1 \|p_C(x_2) - p_C(x_1)\|^2, \tag{129}$$

donc $\lambda_1 \leq 0$ et de même, $\lambda_2 \leq 0$. Alors on a

$$||x_1 - x_2|^2 = ||x_1 - p_C(x_1) + p_C(x_1) - p_C(x_2) + p_C(x_2) - x_2||^2,$$
(130)

$$= \|(1 - \lambda_1 - \lambda_2)(p_C(x_1) - p_C(x_2) + y_1 - y_2)\|^2,$$
(131)

$$= \underbrace{|1 - \lambda_1 - \lambda_2|^2}_{\geq 1} \times ||p_C(x_1) - p_C(x_2)||^2 + ||y_1 - y_2||^2, \qquad (132)$$

$$\geqslant \|p_C(x_1) - p_C(x_2)\|^2,$$
 (133)

d'après le théorème de Pythagore. Donc $p_C \colon E \to C$ est 1-Lipschitzienne.

Remarque 6. Dans la question 2), si $x \notin C$, on considère H l'hyperplan passant par $p_C(x)$ et orthogonal à $x - p_C(x)$. C est de l'autre côté de H par rapport à x.

Solution 27.

1. φ est linéaire par rapport à la seconde variable car $G \subset \mathcal{L}(\mathbb{K}^n)$. De plus, on a

$$\varphi(y,x) = \sum_{g \in G} (g(y)|g(x)) = \sum_{g \in G} \overline{(g(x)|g(y))} = \overline{\varphi(x,y)}, \tag{134}$$

et $\varphi(x,x) = \sum_{g \in G} \|g(x)\|^2 \geqslant 0$. Enfin, si $\varphi(x,x) = 0$ alors pour tout $g \in G$, $\|g(x)\| = 0$. En particulier, pour g = id, on a x = 0. Donc φ est un produit scalaire. Soit $g_0 \in G$. Comme $g \mapsto g \circ g_0$ est bijectif de réciproque $g \mapsto g \circ g_0^{-1}$, le résultat en découle.

- 2. Soit B une base de \mathbb{K}^n orthonormée pour φ (existe d'après le procédé de Gram-Schmidt). Soit $f \in G$ et $M = \operatorname{mat}_B(f)$ est orthogonale (si $\mathbb{K} = \mathbb{R}$) ou unitaire (si $\mathbb{K} = \mathbb{C}$). Donc $M^{\mathsf{T}}M = I_n$ (respectivement $\overline{M}^{\mathsf{T}}M = I_n$), d'où $M^{-1} = M^{\mathsf{T}}$ (respectivement $M^{-1} = \overline{M}^{\mathsf{T}}$), donc $\operatorname{Tr}(f^{-1}) = \overline{\operatorname{Tr}(f)}$.
- 3. Soit B base de \mathbb{R}^2 orthonormée pour φ associée à G, P la matrice de passage de la base canonique de \mathbb{R}^2 à B. Pour tout $M \in G$, $P^{-1}MP \in SO_2(\mathbb{R})$ et $G' = \{P^{-1}MP | M \in G\}$ est un sous-groupe fini de $SO_2(\mathbb{R})$. OR $(SO_2(\mathbb{R}), \times)$ est isomorphe à (\mathbb{U}, \times) (via $R_\theta \mapsto e^{i\theta}$)/ Spot M un sous-groupe de cardinal n de (\mathbb{U}, \times) , d'après le théorème de Lagrange, pour tout $z \in H$, $z^n = 1$ donc $H \subset \mathbb{U}_n$ et par isomorphisme, G est cyclique.

Remarque 7. On a aussi, pour tout $f \in G$, $|\det(f)| = 1$ car $\overline{M}^{\mathsf{T}} M = I_n$.

Remarque 8. Il existe des sous-groupes finis de $GL_2(\mathbb{R})$ non commutatifs. Par exemple, le groupe des isométries du triangle (3 rotations, 3 symétries), isomorphe à (σ_3, \circ) non-commutatif.

Solution 28.

1. On a $Sp(A) \subset \mathbb{R}^+$ et A est diagonalisable sur \mathbb{R} donc $\det(A) = \prod_{\lambda \in \operatorname{Sp}(A)} \lambda \geqslant 0$. Si A est inversible, on écrit $A = P^{-1}\operatorname{diag}(\lambda_1, \ldots, \lambda_n)P$ avec P orthogonale, et on pose $\sqrt{A} = P^{-1}\operatorname{diag}(\sqrt{\lambda_1}, \ldots, \sqrt{lambda_n})P$, inversible car A l'est. Alors $A = Gram(\sqrt{A}e_1, \ldots, \sqrt{A}e_n)$ (matrice de Gram). Notons $(\varepsilon_1, \ldots, \varepsilon_n)$ la base orthonormale obtenue par le procédé de Gram-Schmidt à partir de $(\sqrt{A}e_1, \ldots, \sqrt{A}e_n)$, libre car \sqrt{A} est inversible. Soit A la matrice de passage entre ces deux bases (triangulaire supérieure au vu du procédé de Gram-Schmidt), i.e. $Q = (\sqrt{A}e_j|\varepsilon_i) = (\alpha_{i,j})$. Alors $\sum_{k=1}^n \alpha_{k,i}\alpha_{k,j} = a_{i,j}$ (coordonnées dans une base orthonormée). Ainsi, $A = Q^{\mathsf{T}}Q$, et

$$\det(A) = \det(Q)^2 = \prod_{i=1}^n \alpha_{i,i}^2 = \prod_{i=1}^n \left(\sqrt{A}e_i|\varepsilon_i\right)^2 \leqslant \prod_{i=1}^n a_{i,i},$$

d'après l'inégalité de Cauchy-Schwarz. On a égalité si et seulement si pour tout i, $\sqrt{Ae_i} \in \text{Vect}(\varepsilon_i)$ si et seulement si $(\sqrt{Ae_1}, \dots, \sqrt{Ae_n})$ est orthogonale si et seulement si A est diagonale.

- 2. On pose $A = M^{\mathsf{T}}M \in \mathcal{S}_n^+(\mathbb{R})$. On a $\det(M)^2 = \det(A) \leqslant \prod_{i=1}^n \|Me_i\|^2$, d'où l'inégalité. On a égalité si et seulement si les colonnes de M sont orthogonales.
- 3. Soit (e_1, \ldots, e_n) la base orthonormée qui diagonalise $B: Be_i = \mu_i e_i$. Alors on a

$$Tr(AB) = \sum_{i=1}^{n} (ABe_i|e_i) = \sum_{i=1}^{n} \mu_i(Ae_i|e_i) \geqslant n \sqrt[n]{\prod_{i=1}^{n} \mu_i(Ae_i|e_i)},$$

d'après l'inégalité arithmético-géométrique. D'où le résultat car det(B) = 1.