Introducción al entrelazamiento cuántico

Mauricio Gómez Viloria

Laboratoire Charles Fabry – Institut d'optique

COF Alumni USB

Physics Without Frontiers ICTP IBM Qiskit Advocate

Qiskit Fall Fest 2023 – Escuela de Computación Cuántica en Español – 24 octubre

Institut d'optique -Laboratoire Charles Fabry

Palaiseau, France

Fundado 1917

Fundador: Charles Fabry Inventor del interferómetro de Fabry-Perot (1899) Alain Aspect
Premio Nobel 2022
Experimentos de entrelazamiento

Institut d'optique -Laboratoire Charles Fabry

Palaiseau, France

Fundado 1917

Fundador: Charles Fabry Inventor del interferómetro de Fabry-Perot (1899) Alain Aspect
Premio Nobel 2022
Experimentos de entrelazamiento

Guante izquierdo

Guante derecho

Aleatoriamente en dos cajas

¿Cuál de los guantes tiene Bob?

Aleatoriamente en dos cajas

¿Cuál de los guantes tiene Bob?

Aleatoriamente en dos cajas

¿Qué sucede si utilizamos estados

cuánticos?

Einstein discutiendo con Bohr si esto hace alguna diferencia (1935)

Entrelazamiento cuántico

Parte 1

- ¿Qué es el entrelazamiento?
- ¿Cómo generarlo?

Parte 2

Historia

Parte 3

• Ejemplos de telecomunicaciones

Superposición

Base computacional

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Estado en superposición

$$|\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \alpha |0\rangle + \beta |1\rangle$$
$$|\alpha|^2 + |\beta^2| = 1$$

Gato de Schrödinger después de abrir la caja (1935)

Superposición con más de un qubit

Base computacional a dos qubits (4 elementos)

Qubit 0	$ 0\rangle$	11>	$ 0\rangle$	1 >
Qubit 1	 0	 0 	11)	11)
Elemento de la base	00	 01	10>	11)

¡Atención! : el orden es importante, Qiskit usa notación de derecha a izquierda (little endian)

Ejemplo de dos qubits en superposición

Qubit 0
$$|\psi_0\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$

Qubit 1
$$|\psi_1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

Resultado

$$|\Psi\rangle = |\psi_0\rangle \otimes |\psi_1\rangle$$

$$= \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) \otimes \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right)$$

$$= \frac{|0\rangle \otimes |0\rangle + |0\rangle \otimes |1\rangle - |1\rangle \otimes |0\rangle - |1\rangle \otimes |1\rangle}{2}$$

$$|\Psi\rangle = \frac{|00\rangle + |01\rangle - |10\rangle - |11\rangle}{2}$$

Estado a dos qubits (en general)

Estado más general

$$|\Psi\rangle = \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$$
$$|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$$

Estado separable

$$|\Psi\rangle = (\alpha_1|0\rangle + \beta_1|1\rangle) \otimes (\alpha_0|0\rangle + \beta_0|1\rangle)$$

Estado a dos qubits (en general)

Estado más general

$$|\Psi\rangle = \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$$
$$|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$$

Estado separable

$$|\Psi\rangle = (\alpha_1 |0\rangle + \beta_1 |1\rangle) \otimes (\alpha_0 |0\rangle + \beta_0 |1\rangle)$$

Estado entrelazado

$$|\Psi\rangle \neq (\alpha_1|0\rangle + \beta_1|1\rangle) \otimes (\alpha_0|0\rangle + \beta_0|1\rangle$$

Ejemplo de estado separable

Estados de Bell o pares EPR

$$\left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) \otimes \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right)$$

En el caso de 2 qubits existen cuatro estados maximalmente entrelazados

$$|\Psi^{+}\rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}}$$

$$|\Psi^{+}\rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}} \qquad |\Psi^{-}\rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}}$$

$$|\Phi^{+}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

$$|\Phi^{+}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}} \qquad |\Phi^{-}\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}}$$

Tienen la propiedad que al medir un qubit se conoce el estado del otro

¿Cómo obtener estados entrelazados?

$$|\Psi\rangle = \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$$

- Hay más estados entrelazados que estados separables
- Se necesitan operaciones que entrelacen los dos qubits (interacciones)

Ejemplo:Compuerta control-NOT			Control			
Qubit de control	$ 0\rangle$	$ 0\rangle$	1)	1 >	Qubit 0	
Qubit objetivo	 0	1 >	ΙΟ>	1 >	Qubit 1	Objetivo
CNOT	$ 00\rangle$	10>	11)	01>	•	relazantes <mark>no</mark> pueden compuertas de un qub

"Hola mundo" cuántico

Receta para generar un estado de Bell

superposición+compuerta entrelezante

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Preparar qubits
$$\begin{array}{c|c} & & & \\ |0\rangle & -H & \\ \hline & & \\ \hline & & \\ \hline & & \\ \end{array}$$

$$\begin{array}{c} |00\rangle + |11\rangle \\ \hline \hline & \\ \hline \end{array}$$

Más de dos qubits

3 qubits, base de 8 elementos

$$|\Psi\rangle = a_{000}|000\rangle + a_{001}|001\rangle + a_{010}|010\rangle + a_{011}|011\rangle + a_{100}|100\rangle + a_{101}|101\rangle + a_{110}|110\rangle + a_{111}|111\rangle$$

Circuito

Para *n* qubits, necesitamos 2ⁿ elementos de la base

¡Ventaja cuántica!

¿Para qué sirve el entrelazamiento?

- Un estado entrelazado es un estado que no se puede separar
- La mayor cantidad de sistemas cuánticos en interacción están entrelazados (electrones en un átomo)
- Es la base de los algoritmos cuánticos.
- Teorema de Gottesman-Knill: el entrelazamiento es una condición necesaria para la ventaja cuántica ¡pero no es suficiente!
- El entrelazamiento es una herramienta esencial para códigos de telecomunicación cuántica (encriptación y seguridad).

Parte 2: historia del entrelazamiento

La (primera) revolución cuántica

- Comienza en 1900 con Planck
- Einstein, Bohr, Heisenberg, Schrödinger y muchos más crean el formalismo de la cuántica entre 1900–1928
- Einstein y Schrödinger definen entrelazamiento
- Dio origen a transistores, láseres y tecnología moderna

Max Planck

Albert Einstein

Niels Bohr

Werner Heisenberg Erwin Schrödinger

Paradoja EPR (1935)

El argumento es mucho mas complejo de lo que aparece aquí

Boris Podolsky

La mecánica cuántica permite acción a distancia

- El colapso de la función de onda es inmediato
- La mecánica cuántica está incompleta

Nathan Rosen

Paradoja EPR (1935)

El argumento es mucho mas complejo de lo que aparece aquí

Boris Podolsky

- La mecánica cuántica permite acción a distancia
- El colapso de la función de onda es inmediato
- La mecánica cuántica está incompleta

Respuesta de Bohr

 No, todo en orden

Bell entra en escena Después de 30 años

El argumento es mucho mas complejo de lo que aparece aquí

John Stewart Bell

- Existen unas desigualdades sobre las correlaciones entre dos objetos que ninguna teoría clásica puede violar
- Si la mecánica cuántica viola estas desigualdades, no es local
- Esta desigualdad se puede decidir con un experimento

Cuatro décadas de experimentos

John Clauser observa por primera vez una violación de la desigualdad de Bell (1973)

Alain Aspect demuestra violan aún si los detectores están lejos (1982)

Zeilinger hace varios que las desigualdades se experimentos. Demuestra que no hay escapatoria alguna (2015)

Cuatro décadas de experimentos

John Clauser observa por primera vez una violación de la desigualdad de Bell (1973)

Alain Aspect demuestra violan aún si los detectores están lejos (1982)

Zeilinger hace varios que las desigualdades se experimentos. Demuestra que no hay escapatoria alguna (2015)

Premio Nobel (2022)

Propiedades de las correlaciones

	Guantes clásicos	Estado entrelazado
 Los posibles estados están definidos desde el principio 		
 El resultado de Alicia no altera el resultado de Bob 		
 No se puede enviar información más rápido que la luz 		
		$ 0\rangle$, $ 1\rangle$

Propiedades de las correlaciones

	Guantes clásicos	Estado entrelazado
 Los posibles estados están definidos desde el principio 		
 El resultado de Alicia no altera el resultado de Bob 		
 No se puede enviar información más rápido que la luz 		
		0

Propiedades de las correlaciones

	Guantes clásicos	Estado entrelazado
 Los posibles estados están definidos desde el principio 		
 El resultado de Alicia no altera el resultado de Bob 		
 No se puede enviar información más rápido que la luz 		
		$ 0\rangle, 1\rangle$

¿Cómo entender el teorema de Bell?

- No se puede explicar con la analogía de las cajas y guantes
- Analogías mas elaboradas existen: leer dispositivo de David Mermin (1981), o experimento de S. Popescu y D. Rohrlich (1994).
- Demostración del teorema de Bell: libro de M. Nielsen & I. Chuang
- Se le llama nolocalidad cuántica. Los físicos todavía están de acuerdo de lo que esto significa porque depende aún de la interpretación de la mecánica cuántica.
- ¡Aún así el entrelazamiento tiene aplicaciones!

Parte 3: Segunda revolución cuántica

- Entrelazamiento como recurso
- Algunos ejemplos de comunicación cuántica

Codificando con entrelazamiento

Usar la receta para generar estados máximamente entrelazados

$$\begin{vmatrix} |0\rangle & H \end{vmatrix} \longrightarrow \begin{cases} |00\rangle + |11\rangle & |0\rangle & H \end{vmatrix} \longrightarrow \begin{bmatrix} |00\rangle - |11\rangle \\ |0\rangle & 0 \end{cases}$$

Codificación superdensa

Charles Bennet y Stephen Wiesner 1996

- Preparar estado entrelazado
- Seleccionar estado
- Deshacer
 entrelazamiento
- Medir

El mensaje cambia si se intercepta un qubit!

Uno de los qubit se puede enviar con antelación

Alicia mide el

estado y envía el

resultado a Bob

Teleportación cuántica

Verificado experimentalmente en 1997 por Zeilinger

Alicia
tiene un
qubit en
un estado
que no
conoce

están entrelazados

Alicia entrelaza

Bob quiere medirlo

Teleportación cuántica

Verificado experimentalmente en 1997 por Zeilinger

Alicia
tiene un
qubit en
un estado
que no
conoce

Bob quiere

medirlo

estado

Teleportación cuántica

Verificado experimentalmente en 1997 por Zeilinger

Alicia
tiene un
qubit en
un estado
que no
conoce

Bob quiere

medirlo

Alicia mide el estado y envía el resultado a Bob

Envía uno a Bob

Teleportación cuántica

Verificado experimentalmente en 1997 por Zeilinger

Alicia tiene un qubit en un estado que no conoce

Bob quiere

medirlo

Alicia mide el estado y envía el resultado a Bob

Teleportación cuántica

Verificado experimentalmente en 1997 por Zeilinger

Alicia tiene un qubit en un estado que no conoce

Bob quiere

medirlo

Envía uno a Bob

Circuito de teleportación cuántica

¡No se puede teleportar más rápido que la luz!

Alicia debe comunicarle su medición a Bob para recuperar el estado

2012 estado teleportado entre dos Islas Canarias 2017 estado teleportado 1400 metros hacia el espacio

Conclusiones

- Un estado entrelazado de qubits es un estado que no se puede separar en varios estados a un qubit
- El entrelazamiento no se puede explicar en términos clásicos
- Es la base de la computación cuántica y la telecomunicación cuántica (pero no lo es todo)
- No se puede utilizar para enviar mensajes más rápido que la luz

Referencias 1

- A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47, 777 (1935).
- J.S. Bell, Rev. Mod. Phys. 38, 447 (1966).
- S.J. Freedman and J.F. Clauser, Phys. Rev. Lett. 28, 938 (1972)
- A. Aspect, J. Dalibard and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).
- M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-Å. Larsson, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, J. Beyer, T. Gerrits, A. E. Lita, L.K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittmann and A. Zeilinger Phys. Rev. Lett. 115, 250401 (2015).

Referencias 2

- Record de teleportación cuántica en Islas Canarias: https://www.agenciasinc.es/
 Noticias/Record-mundial-de-teleportacion-cuantica-en-Canarias
- Teleportación desde un satélite: https://www.elindependiente.com/futuro/2017/06/15/nuevo-record-de-teletransportacion-cuantica/
- Analogía de Popescu: S. Popescu, Nonlocality beyond quantum mechanics, Nat. Phys. 10 (4) (2014) 264–270.
- Analogía de Mermin: Mermin, N. D. (1981). "Bringing home the atomic world: Quantum mysteries for anybody". *American Journal of Physics*. **49** (10)
- Analogía de Popescu Royal Academy (video en inglés): https://www.youtube.com/ watch?v=5 0o2fJhtSc

Referencias 3

 Nielsen, M. A., Chuang, I. L. (2000). Quantum Computation and Quantum Information. India: Cambridge University Press.