THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA

Department of Electrical and Computer Engineering

ELEC 318 Electromagnetic Fields

Exam #3 Review Problem Answers

1	(-)		T / /
	(a)	Е.	V/m

- (b) **H**, A/m
- (c) **D**, C/m^2
- (d) \mathbf{B} , Wb/m²
- (e) ρ_{ν} , C/m³
- (f) \mathbf{J} , A/m^2
- (g) \mathbf{P} , \mathbf{C}/\mathbf{m}^2
- (h) ε , F/m
- (i) μ , H/m
- (j) *V*, *V*
- (k) *C*, F
- (1) *L*, H
- (m) Ψ, Wb
- 1.26 Wb 2.
- 3. $-50\,\hat{\mathbf{z}}\,\,\mu\text{A/m}$
- 4. 1.66 µWb
- 5. $743 \,\hat{\mathbf{x}} + 382 \,\hat{\mathbf{y}} + 140 \,\hat{\mathbf{z}} \, \text{mA/m}$
- $3.2 \, \mu \text{Wb/m}^2$ 6.
- 7. (a) $28.5 \hat{y} \text{ mA/m}$
 - (b) $-13 \hat{x} + 13 \hat{y} \text{ mA/m}$
 - (c) $-5.1 \hat{\mathbf{x}} + 1.7 \hat{\mathbf{y}} \text{ mA/m}$
 - (d) $5.1 \hat{\mathbf{x}} + 1.7 \hat{\mathbf{y}} \text{ mA/m}$
- 8. (a) $-679 \hat{z} \text{ mA/m}$
 - (b) $199 \hat{z} \text{ mA/m}$
 - (c) $199 \hat{\mathbf{x}} + 199 \hat{\mathbf{y}} \text{ mA/m}$
- 9. $-16\,\hat{\mathbf{z}}\,\mathrm{A/m}$
- 800 mA, clockwise 10.

11. (a)
$$\frac{I_2}{2\pi y_0} \hat{\mathbf{x}} - \frac{I_1 a^2}{2(a^2 + h^2)^{3/2}} \hat{\mathbf{z}} \frac{A}{m}$$

- (b) $31.8 \hat{\mathbf{x}} + 36 \hat{\mathbf{z}} \text{ A/m}$
- 12. (a) $(2k_0/a)\hat{\mathbf{z}}$
 - (b) $(k_0 a/r)\hat{\phi}$
- 13. (a) $\pi a^2 J_0/2$

(b)
$$J_0 r \left(2 - r^2 / a^2\right) \hat{\phi} / 4 \quad r < a$$

$$J_0 a^2 \hat{\phi} / 4r \qquad r > a$$
14.
$$16e^{-2r} \hat{\mathbf{z}} \quad A / m^2$$
15.
$$220 \text{ mA}$$

- 16. $149 \,\hat{\phi} \, \text{A/m}$
- 17. $-8 \hat{\mathbf{z}} \text{ A/m}^2$

18. (a)
$$\begin{cases} 0 & r < a \\ \frac{I}{2\pi r} \cdot \frac{r^2 - a^2}{b^2 - a^2} \hat{\phi} & a \le r \le b \\ \frac{I}{2\pi r} \hat{\phi} & r > b \end{cases}$$

19. (a) $76.4 \hat{\mathbf{z}} \text{ A/m}^2$

(b)
$$\mathbf{H} = \begin{cases} 0 & r < a \\ 38.2(r^2 - .01)/r \ \hat{\mathbf{z}} & a \le r \le b \\ 0.477/r \ \hat{\mathbf{z}} & r > b \end{cases}$$

- $8.37 \times 10^{-20} \text{ J}$ 20.
- 21.
- 22. (a) $4 \hat{\mathbf{x}}$ mN/m (repulsive)
 - (b) $-4 \hat{\mathbf{x}} \text{ mN/m}$ (repulsive)
 - (c) $0.72 \hat{\mathbf{x}} + 0.96 \hat{\mathbf{y}} \text{ mN/m} \text{ (attractive)}$
 - (d) $-3.28 \hat{\mathbf{x}} + 0.96 \hat{\mathbf{y}} \text{ mN/m}$
- 23. (a) $32 \hat{z} \text{ mN}$
 - (b) $-32 \hat{z} \text{ mN}$
 - (c) $-2 \hat{\mathbf{x}} \cdot \mathbf{N} \cdot \mathbf{mm}$
- 24. $1.95 \hat{x} \text{ mN/m}$
- 25. $0.4 \hat{\mathbf{v}} N$
- 26. (a) $(1.43 \,\hat{\mathbf{x}} + 4.29 \,\hat{\mathbf{y}} 2.14 \,\hat{\mathbf{z}}) \cdot 10^{-2} \,\mathbf{A} \cdot \mathbf{m}^2$
 - (b) $(30 \hat{\mathbf{x}} 20 \hat{\mathbf{y}} 20 \hat{\mathbf{z}}) \cdot 10^{-3} \text{ N} \cdot \text{m}$
- 27. $17.5 \hat{\mathbf{x}} + 35.1 \hat{\mathbf{y}} + 87.7 \hat{\mathbf{z}} \quad A \cdot cm^2$
- 28. (a) $\hat{\mathbf{z}}(3.10^{-2})\{2\cos\phi \sin\phi\} \text{ N} \cdot \text{m}$

- (b) 63.4° or -116.6°
- (c) -26.6° or -153.4°
- 29. 49.5°
- 30. $0.05 \hat{\mathbf{x}} + 3 \hat{\mathbf{y}} 1 \hat{\mathbf{z}} \text{ A/m}$
- 31. $-1.05 \hat{\mathbf{x}} + 1.26 \hat{\mathbf{y}} + 2 \hat{\mathbf{z}} \text{ Wb/m}^2$
- 32. (a) 5.83
 - (b) $4.86 \,\hat{\mathbf{x}} 8.64 \,\hat{\mathbf{y}} + 3.95 \,\hat{\mathbf{z}} \,$ A/m
 - (c) $76.3^{\circ}, 77.6^{\circ}$
- 33. (a) $-27.7 \hat{\mathbf{x}} + 49 \hat{\mathbf{y}} 12.6 \hat{\mathbf{z}} \mu \text{Wb/m}^2$
 - (b) 116°, 92.8°
- 34. (a) $2.51\,\hat{\mathbf{x}} + 3.77\,\hat{\mathbf{y}} 0.0037\,\hat{\mathbf{z}}$ mWb/m²
 - (b) 0.047°
- 35. (a) $-5 \hat{\mathbf{r}} + 20 \hat{\boldsymbol{\phi}} + 40 \hat{\mathbf{z}} \text{ A/m}$
 - (b) 6.2°
- 36. 304 pJ
- 37. 6.56 pJ
- 38. (a) 8.04 H/m
 - (b) 1.01 J/m
- 39. 148
- 40. 3.91 cm
- 41. (a) 916 nH
- 42. 13.4 mA_{RMS}
- 43. $0.474 \sin(377t) \text{ V}$
- 44. $31.8 \sin(30\pi t 0.3)$ A
- 45. 2.4 V
- 46. $3\sin(10t) 0.06\cos(20t)$ V
- 47. 6.3 A, counter-clockwise
- 48. (a) 278 A/m^2
 - (b) 77.8 mA
- 49. 600 kHz