Inplementation

evolving quantities					
ne	Lambda	Ppar	Pperp		
\hat{n}_e	Â	\hat{p}_{\parallel}	\hat{p}_{\perp}		
derived quantities					
phi	Vpar	Psi	Tperp	Jpar	gyrophi
$\hat{\phi}_c$	$\hat{u}_{\parallel e}$	$\hat{\psi}$	\hat{T}_{\perp}	$\hat{J}_{\parallel c}$	$\hat{\Phi}_c$
gyrophi_a	gyrophi_b	gyroPsi	gyroPsi_a	gyrone	
$\hat{\Phi}^a_c$	$\hat{\Phi}^b_c$	$\hat{\Psi}$	$\hat{\Psi}^a$	$\hat{ar{n}}_e$	
intermediate quantities					
ns	Ts	$\mathrm{Ts}1$	$\operatorname{gyroVpar}$	gyrophi_as	gyrophi_ai
\hat{n}_s	\hat{T}_s	\hat{T}_{s1}	$\hat{ar{u}}_{\parallel e}$	Φ^a_s	$2\hat{\phi}_c - \hat{\Phi}_s^a$
gyrophi_bs	gyrophi_bs1	gyrophi_bs2	Psi sour	gyroPsi_as	gyroPsi_ai
$\hat{\Phi}_s^b$	$\hat{\Phi}_{s1}^{b}$	$\hat{\Phi}_{s2}^b$	$-\frac{\bar{v}_{th}\bar{\Omega}_e L}{\hat{B}V_{Ae}^2}\hat{n}_{0e}\hat{\bar{u}}_{\parallel e}$	$\hat{\Psi}^a_s$	$2\hat{\psi} - \hat{\Psi}_s^a$
gyroPsi_a	Jpar	phi_sour	phi_i	$\operatorname{Grad2}_{-}\operatorname{ne}$	
$\hat{\Psi}^a_s$	$\hat{J}_{\parallel c}$	$-rac{ au^2}{ au+1}rac{ar ho_e\hat{T}_{e0}}{ar L\hat{n}_{e0}}\hat{ar{n}}_e$	$\frac{\frac{\tau}{\tau+1} \frac{\bar{\rho}_e \hat{T}_{e0}}{\bar{L} \hat{n}_{e0}} \hat{\bar{n}}_e + \hat{\phi}$	$\partial_{\parallel}^2 n_e$	
equilibrium and geometry					
rhoe	omegae	n0	P0	Т0	
$\hat{ ho}_e$	$\hat{\Omega}_e$	\hat{n}_{e0}	\hat{p}_0	\hat{T}_0	
Other parameters					
tau	etae	${f Zion}$	$omegae_bar$	${ m rhoe_bar}$	V_alfven
$\tau = T_{i0}/T_{e0}$	$\hat{\eta}_e = L_n/L_T$	Z	$\bar{\Omega}_e = e\bar{B}/m_e$	$\bar{\rho}_e = m_e \bar{v}_{th} / \bar{B}e$	$V_{Ae} = \bar{B}^2/\mu_0 m_e \bar{N}$
inversion parameters					
gyroa	gyrob	gyroc	gyrod	gyroe	
1.0	$- ho_e^2/2L^2$	2.0	$- ho_e^2/L^2$	$-(\tau+1)\rho_e^2/L^2$	

Inversion function

$$d\nabla_{\perp}^{2}x + \frac{1}{c}\nabla_{\perp}c \cdot \nabla_{\perp}x + ax = b$$

$$x = invert_laplace(\&b, flags, \&a, \&c, \&d)$$

Operators

$$\begin{split} \mathbf{b} \times \hat{\nabla} A \cdot \hat{\nabla} B &= b0xGrad_dot_Grad(A,B) \\ \hat{\partial}_{\parallel} A &= Grad_parP(A) \\ \frac{\mathbf{b} \times \nabla A}{B} \cdot \nabla B &= bracket(A,B,flags) \end{split}$$

For ρ_e , use equilibrium temperature.

• Grids

- cbm18_dens6_nx128ny1024_etg.grid.nc psi: 0.776~0.913, nx132, ny1024, x at 60 flat density
- cbm18_dens6_nx1028ny512_etg.grid.nc psi: 0.4~1.1, nx1028, ny516, x at 654

- 3. Te proportional to density, Te=1000eV option 1
- Resolution
 - In BOUT++, x is radial direction, y is parallel direction, z is bynormal direction. Electron gyroradius is about 0.05mm (B=2T, T0=1.6KeV), radial resolution is 0.
 - $-k_{\perp}\rho_{e} \sim 0.7, k_{\perp} \sim nq/a, a = 1.2m, \rho_{e} \sim 0.05mm, \Rightarrow n \sim 16.8/q \times 10^{3}$
- Cyclone case parameters Radial extension 5mm, nx=132, ny=256 $R_0=4.0m$, a=0.72m, $R_0/L_T=6.9$, $R_0/L_n=2.2$, so we have $R_0/L_p=9.1 \Rightarrow L_p=0.4396$. $q=1.4,\ s=0.1$ normalized domain $x\sim (0.4948,0.5052)$
- q profile

$$q(r) = q_0 + q_1 r^{\alpha}$$

$$s(r) = \frac{r}{q} \frac{dq}{dr} = \frac{\alpha q_1}{q} r^{\alpha}$$

Assume α is fixed, at the simulation postion $r_0 = 0.5 * 0.48 = 0.24$, we have $q(r_0) = q_A$, $s(r_0) = s_A$, then we get

$$q_0 = q_A - q_1 r_0^{\alpha}$$
$$q_1 = \frac{s_A q_A}{\alpha r_0^{\alpha}}$$

In ETG Cyclone case, $q_A = 1.4$, $s_A = 0.1$, we set $\alpha = 2$, so we get

$$q_0 = 1.33$$

 $q_1 = 1.2153$

Transfer to normalized coordinate r = 0.48x

$$q(x) = q_0 + 0.48^2 q_1 x^2$$
$$= 1.319 + 0.273x^2$$

• Pressure profile Length scale

$$\begin{split} \frac{1}{L_n} &= \frac{d \ln n_0}{dr} \\ \frac{1}{L_T} &= \frac{d \ln T_0}{dr} = \frac{d \ln p_0/n_0}{dr} = \frac{1}{L_p} - \frac{1}{L_n} \\ \Rightarrow & L_p = \frac{L_T L_n}{L_T + L_n} \end{split}$$

In ETG Cyclone case, In normalized unit, the length scale is $L_{pn} = L_p/a1$

$$p = \frac{1}{2} \left(1 - \tanh\left(\frac{x - x_0}{\mu_0}\right)\right) \left(1 - \gamma\right) + \gamma$$
$$\frac{1}{L_{pn}} = \left|\frac{d \log p(x)}{dx}\right|$$

 $\gamma = 0.1, x_0 = 0.5$, so we get $\mu_0 = 0.4995$.