Problem 4.1

$$J(\omega) = \frac{1}{2} \sum_{n=1}^{N} \left\{ w \varphi(x_n) - t_n \right\}^2 + \frac{\lambda}{2} w^T w \qquad (6.2)$$

$$\nabla_{\omega} J(\omega) = \frac{1}{2} \sum_{n=1}^{N} 2 \varphi(x_n) - t_n \frac{\lambda}{2} \cdot \varphi(x_n) + \lambda w = 0$$

$$\Rightarrow w = -\frac{1}{N} \sum_{n=1}^{N} \left\{ w \varphi(x_n) - t_n \frac{\lambda}{2} \cdot \varphi(x_n) \right\} = \sum_{n=1}^{N-1} \left(\frac{ew^T \varphi(x_n) - t_n \lambda}{-N} \right) \cdot \varphi(x_n) = \sum_{n=1}^{N-1} \alpha_n \varphi(x_n) = \sum_{n=1}^{N-1} \left(\frac{ew^T \varphi(x_n) - t_n \lambda}{-N} \right) \cdot \varphi(x_n) = \sum_{n=1}^{N-1} \alpha_n \varphi(x_n) = \sum_{n=1}^{N-1} \alpha_n \varphi(x_n) = \sum_{n=1}^{N-1} \alpha_n \varphi(x_n) - \sum_{n=1}^{N-1} \alpha_n \varphi(x_n) = \sum_{n=1}^{N-1} \alpha_n \varphi(x_n) = \sum_{n=1}^{N-1} \alpha_n \varphi(x_n) - \sum_{n=1}^{N-1} \alpha_n \varphi(x_n) = \sum_{n=1}^{N-1} \alpha_n \varphi(x_n) - \sum_{n=1}$$

we now define the Grown matrix $\underline{K} = \underline{\overline{\Psi}} \, \underline{\overline{\Psi}}^T$ where the (4, m) element is $V_{n,m} = \phi(x_n)^{T} \phi(x_m) = \kappa(x_n, x_m)$ (6.6) =) we can rewrite J(a) as $\mathcal{J}(\alpha) = \frac{1}{2} \alpha^{\mathsf{T}} \underbrace{\Phi} \underbrace{\Phi}^{\mathsf{T}} \underbrace{\Phi} \underbrace{\Phi}^{\mathsf{T}} \underbrace{\Phi} \underbrace{\Phi}^{\mathsf{T}} \underbrace{\Phi}^{\mathsf{T$ $=\frac{1}{2}\alpha^{T}KK\alpha-\alpha^{T}Kt+\frac{1}{2}t^{T}t+\frac{\lambda}{2}\alpha^{T}K\alpha$ (6.7) we now compute $\nabla_a J(a)$ and set it equal to 0=> KKa + XKa = Kt (x + y) = f $(K + \lambda I_{N}) = t$ or = $(K + \lambda I^{-1})^{-1}$ (6.8)

We now substitute (6.8) into the linear Regression model given by $y(x) = wT\phi(x)$

towe $w = \overline{\pm}^{T} \alpha$ $= y(x) = w^{T} \phi(x) = \alpha^{T} \overline{\pm} \phi(x) = \kappa(x)^{T} (\kappa + \lambda T_{N}) + (6.9)$

consider the definition of a Kernel given by $\kappa(x,x')=\phi(x)^T\phi(x')$, where $\phi(x)$ - are a non-linear feature spoke mapping. consider $\kappa_{i}(x,x')=\phi_{i}(x)^T\phi_{i}(x')$, a kernel now consider $\kappa_{i}(x,x')=c\cdot\kappa_{i}(x,x')$, if κ is a valid kernel we must be able to find a valid representation using some feature vectors if one tour $\phi(x)=c^{\frac{1}{2}}\phi_{i}(x)$ we can rewrite

$$(x,x') = c^{\frac{1}{2}} \phi_{1}(x)^{T} \cdot c^{\frac{1}{2}} \phi_{1}(x) = c \cdot \phi_{1}(x)^{T} \phi_{1}(x)$$

$$= c \cdot \kappa_{1}(x,x')$$

= $c \cdot \kappa_i(x,x') - is a valid Kernel$

B) Now show that $\kappa(x,x') = f(x) \kappa_1(x,x') f(x')$ is a valid Kernel, where $f(x) \rightarrow any$ function we can rewrite $\kappa(x,x')$ $\kappa(x,x') = f(x) \cdot \phi_1(x)^T \phi_1(x') \cdot f(x')$

if we define $V(x) = \phi_r(x) \cdot f(x)$, we can write

 $K(x,x') = V(x)^{T}V(x')$ => K(x,x') can be written as an scalour product of feature mappings => $K(x,x') = f(x)K_{1}(x,x') f(x')$ is a valid Kernel $K(x,x') = f(x)K_{1}(x,x') f(x')$ is a valid Kernel $K(x,x') = f(x)K_{1}(x,x') f(x')$

suppose $\exists \omega_1, \beta_1$ that satisfy the solution to equation (7.5) and minimize equation (7.3). Our constraint will have the form $\exists (\omega_1, \nabla_1) \in (\omega_1, \nabla_2) \in (\omega_1, \nabla_3) = 1$

then suppose we have a constrount

$$t_n(w^T\phi(x_n)+6) \geq \delta$$
, $\delta \geq 0$

if we rescale our variables such that $w = x w_1$ and $b = x b_1$, we will still minimize (7.3) and our constraint would become

$$t_{h}\left(\omega_{l}^{T}\phi\left(X_{h}\right)+b_{l}\right)\gg1$$

therefore replacing 1 on the r.h.s with \$ >0, does not change the solution for the maximum margin hyperplane