

Analog IC Design

Lecture 16 OTA Frequency Compensation

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Outline

- ☐ Recapping previous key results
- ☐ Frequency compensation
- Compensation of single-stage OTAs
- ☐ Compensation of two-stage OTA
 - Miller compensation
 - The feedforward zero

Outline

- □ Recapping previous key results
- Frequency compensation
- Compensation of single-stage OTAs
- Compensation of two-stage OTA
 - Miller compensation
 - The feedforward zero

MOSFET in Saturation

☐ The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$V_{GD} \leq V_{TH}$$
 or $V_{DS} \geq V_{ov}$

Square-law (long channel MOS)

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

$$V_{SB} \uparrow \Rightarrow V_{TH} \uparrow$$

$$V_{GD} < V_{TH}$$
 $V_{DS} > V_{OI}$

Regions of Operation Summary

High Frequency Small Signal Model

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = \mu C_{ox} \frac{W}{L} V_{ov} = \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_{D}} = \frac{2I_{D}}{V_{ov}}$$

$$g_{mb} = \eta g_{m} \qquad \eta \approx 0.1 - 0.25$$

$$r_{o} = \frac{1}{\partial I_{D}/\partial V_{DS}} = \frac{V_{A}}{I_{D}} = \frac{1}{\lambda I_{D}} \qquad V_{A} \propto L \leftrightarrow \lambda \propto \frac{1}{L} \qquad V_{DS} \uparrow V_{A} \uparrow$$

$$C_{gb} \approx 0 \qquad C_{gs} \gg C_{gd} \qquad C_{sb} > C_{db}$$

Rin/out Shortcuts Summary

Summary of Basic Topologies

	CS	CG	CD (SF)
	R_D $v_{in} \circ V_{out}$ R_S	R_D v_{out} R_S	R_D $v_{in} \circ V_{out}$ R_S
	Voltage & current amplifier	Voltage amplifier Current buffer	Voltage buffer Current amplifier
Rin	∞	$R_S \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$	∞
out	$R_D r_o[1+(g_m+g_{mb})R_S]$	$R_D r_o$	$R_S \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$
Gm	$\frac{-g_m}{1+(g_m+g_{mb})R_S}$	$g_m + g_{mb}$	$\frac{g_m}{1+R_D/r_o}$

Differential Amplifier

	Pseudo Diff Amp	Diff Pair (w/ideal CS)	Diff Pair (w/ R _{SS})
A_{vd}	$-g_m R_D$	$-g_m R_D$	$-g_m R_D$
A_{vCM}	$-g_m R_D$	0	$\frac{-g_m R_D}{1 + 2(g_m + g_{mb})R_{SS}}$
A_{vd}/A_{vCM}	1	∞	$2(g_m + g_{mb})R_{SS} \\ \gg 1$

$$A_{vCM2d} = \frac{v_{od}}{v_{iCM}} \approx \frac{\Delta R_D}{2R_{SS}} + \frac{\Delta g_m R_D}{2g_{m1,2}R_{SS}}$$

$$CMRR = \frac{A_{vd}}{A_{vCM2d}}$$

Op-Amp

- ☐ An op-amp is simply a high gain differential amplifier
 - The gain can be increased by using cascodes and multi-stage amplification
- ☐ The diff amp is a key block in many analog and RF circuits
 - DEEP understanding of diff amp is ESSENTIAL

Op-Amp vs OTA

- In short, an OTA is an op-amp without an output stage (buffer)
- Some designers just use op-amp name and symbol for both

	Op-amp	ОТА	
Rout	LOW	HIGH	
Model	$v_{in} \bigcirc \downarrow i_{in}$ $\downarrow i_{in}$ $\downarrow A_{v}v_{in}$ $\downarrow A_{v}v_{in}$	$v_{in} \bigcirc \downarrow i_{in}$ $R_{in} \bigcirc \downarrow i_{out}$ $R_{out} \bigcirc \downarrow i_{out}$	
Diff input, SE output			
Fully diff			

11 16: OTA Frequency (

V-star (V^*)

lacksquare V-star (V^*) is inspired by V_{ov} but calculated from actual simulation data

$$g_m = \frac{2I_D}{V^*} \leftrightarrow V^* = \frac{2I_D}{g_m} = \frac{2}{g_m/I_D}$$

 \Box Figures-of-merit in terms of V^*

$$g_m r_o = \frac{2I_D}{V^*} \cdot \frac{1}{\lambda I_D} = \frac{2}{\lambda V^*}$$

$$f_T = \frac{g_m}{2\pi C_{gg}} = \frac{1}{2\pi} \cdot \frac{2I_D}{V^*} \cdot \frac{1}{C_{gg}}$$

$$\frac{g_m}{I_D} = \frac{2}{V^*}$$

 \Box The boundary between weak and strong inversion ($n = 1.2 \rightarrow 1.5$)

$$V_{ov}(SI) = V^*(WI) = 2nV_T \approx 60 \rightarrow 80mV$$

Negative Feedback

$$\beta = \frac{R_2}{(R_1 + R_2)}$$

$$A_{CL} = \frac{V_{out}}{V_{in}} = \frac{A_{OL}}{1 + \beta A_{OL}} = \frac{A_{OL}}{1 + \beta A_{OL}} \approx \frac{1}{\beta} = \frac{R_1 + R_2}{R_2} = 1 + \frac{R_1}{R_2}$$

$$\omega_{p,CL} = (1 + \beta A_{OLo})\omega_{P,OL}$$

Outline

- ☐ Recapping previous key results
- ☐ Frequency compensation
- Compensation of single-stage OTAs
- Compensation of two-stage OTA
 - Miller compensation
 - The feedforward zero

Phase Margin and the Ultimate GBW

- \Box If $\omega_{p2}=\omega_{u}$: PM = 45°
 - Typically inadequate (peaking/ringing)
- lacksquare Thus ω_{p2} should be $>\omega_u o \omega_{p1} \ll \omega_u < \omega_{p2}$
 - ω_{p1} defines OL BW and ω_{p2} defines ultimate GBW (max CL BW)

→ noise amplification
 Time domain ringing
 → poor settling time

Frequency Compensation

- ☐ Frequency compensation: Modify the system to achieve a specific PM to control frequency domain peaking and time domain ringing
- $oldsymbol{\square}$ GX < PX is not enough: We actually need $\omega_u < \omega_{p2}$

Frequency Compensation

- lacksquare We need GX < PX (actually $\omega_u < \omega_{p2}$)
 - Push ω_{p2} outwards: lower resistance/capacitance
 - Not always feasible for free

Frequency Compensation

- lacktriangle We need GX < PX (actually $\omega_u < \omega_{p2}$)
 - Push GX / ω_u / ω_{p1} inwards: lower GBW

Compensation of Popular OTA Topologies

- ☐ Single-stage OTAs
 - 5T OTA
 - Telescopic cascode OTA
 - Folded cascode OTA
- ☐ Two-stage OTA
- ☐ Three-stage OTA
- ☐ Gain boosted OTA

Outline

- ☐ Recapping previous key results
- ☐ Frequency compensation
- ☐ Compensation of single-stage OTAs
- ☐ Compensation of two-stage OTA
 - Miller compensation
 - The feedforward zero

5T OTA

- \square $\omega_{p1} \ll \omega_u < \omega_{p2}$
- $lue{}$ The H.I.N. sets BW_{OL}

$$\omega_{p1} = \omega_{pout} \approx \frac{1}{R_{out}C_{out}}$$

- ☐ The first non-dominant pole (mirror node) sets the ultimate GBW
 - Ultimate CL bandwidth (buffer)

$$\omega_{p2} = \omega_{pM} \approx \frac{g_{m3}}{C_M} \sim \frac{\omega_T}{3}$$

☐ LHP zero:

$$\omega_z = 2\omega_{p2}$$

5T OTA

☐ Fully differential?

5T OTA

Fully differential with mismatch?

$$H(s) = \frac{A_o/2}{1 + \frac{s}{\omega_{p1}}} + \frac{A_o/2}{1 + \frac{s}{\omega_{p1} + \Delta\omega}}$$

$$= \frac{A_o \left\{ 1 + \frac{s}{2} \left(\frac{1}{\omega_{p1}} + \frac{1}{\omega_{p1} + \Delta\omega} \right) \right\}}{\left(1 + \frac{s}{\omega_{p1}} \right) \left(1 + \frac{s}{\omega_{p1} + \Delta\omega} \right)}$$

$$= \frac{A_o \left(1 + \frac{s}{\omega_{p1}} \right)}{\left(1 + \frac{s}{\omega_{p1} + \Delta\omega} \right)}$$

Telescopic Cascode

☐ Higher DC gain, but limited swing and additional poles

Telescopic Cascode: Poles

- $\square \quad \omega_{p1} \ll \omega_u < \omega_{p2}$
- $lue{}$ The H.I.N. sets BW_{OL}

$$\omega_{p1} = \omega_{pout} = \frac{1}{R_{out}C_{out}}$$

- \square V_X and V_Y contribute a single pole
- Non-dominant poles considerations:
 - C_{qs} is larger than other caps
 - PMOS contributes larger capacitances (lower ID/W)
- ☐ The first non-dominant pole (mirror node) sets the ultimate GBW

$$\omega_{p2} = \omega_{pM} \approx \frac{g_{m7}}{C_M} \sim \frac{\omega_T}{4}$$

Folded Cascode

- ☐ Two possible implementations for SE output
- ☐ Compared to telescopic cascode:
 - More power (\sim 2x)
 - Lower gain $(r_{o1}||r_{o2})$
 - More nodes/poles
 - More complex
 - But input and output ranges decoupled

Folded Cascode: Poles

- $\square \quad \omega_{p1} \ll \omega_u < \omega_{p2}$
- lacksquare The H.I.N. sets BW_{OL}

$$\omega_{p1} = \omega_{pout} = \frac{1}{R_{out}C_{out}}$$

- ☐ The first non-dominant pole sets the ultimate GBW
 - Mirror node (V_M)

$$\omega_{p2} = \omega_{pM} \approx \frac{g_{m5}}{C_M}$$

• Or folding node (V_F)

$$\omega_{p2} = \omega_{pF} \approx \frac{g_{m3}}{C_F}$$

- \square V_{Fa} and V_{Fb} contribute a single pole
- Considerations:
 - C_{gs} larger than other caps
 - PMOS larger than NMOS
 - M2 has large capacitance (double the current)

Single-Stage OTAs: Compensation

- lacksquare Push GX / ω_u / ω_{p1} inwards: lower GBW
 - Increase C_L
 - Single-stage OTAs are compensated by large load capacitance

Single-Stage OTAs: Compensation

- lacksquare Push GX / ω_u / ω_{p1} inwards: lower GBW
 - Increase C_L
 - Single-stage OTAs are compensated by large load capacitance
- \blacksquare Increasing R_{out} does not affect PM

Outline

- ☐ Recapping previous key results
- Frequency compensation
- Compensation of single-stage OTAs
- ☐ Compensation of two-stage OTA
 - Miller compensation
 - The feedforward zero

Two-Stage OTA

- Isolates the gain and swing requirements
 - But much more power consumption
 - And complicates stability requirements
- Three-stage OTA exists, but quite difficult to stabilize
- First stage can be 5T-OTA or cascode
- Second stage is typically a simple common-source
 - Allows maximum output swing

Two-Stage OTA: Poles

- ☐ Two gain stages → Two H.I.N.s
 - Two dominant poles!
- $\Box \quad \text{Internal pole: } \omega_{p1} = \frac{1}{R_{out1}C_1}$
- \square Output pole: $\omega_{p2} = \frac{1}{R_{out2}C_2}$

Outline

- ☐ Recapping previous key results
- ☐ Frequency compensation
- Compensation of single-stage OTAs
- Compensation of two-stage OTA
 - Miller compensation
 - The feedforward zero

Two-Stage OTA: Miller Compensation

- Exploit Miller capacitance multiplication
- Pole splitting
 - Push ω_{p1} inwards \rightarrow push GX inwards
 - Push ω_{p2} outwards → push PX outwards

CS HFR: Reminder

- ☐ Surprisingly, exact analysis gives a quite complex expression
 - See [Johns & Martin 2012] or [Razavi 2017]
- If dominant pole approximation is applied

$$\omega_{pd} \approx \frac{1}{b_1} = \frac{1}{R'_{sig} [C_{gs} + C_{gd}(1 + g_m R_{out})] + R_{out} (C_{out} + C_{gd})}$$

- Same result as OCTC (both based on same approximation)
- lacktriangle Additionally, dominant pole approx gives an expression for ω_{pnd}

$$\omega_{pnd} \approx \frac{1}{b_2 \omega_{p1}} = \frac{b_1}{b_2} = \frac{g_m C_{gd}}{C_{gd} (C_{gs} + C_{out}) + C_{gs} C_{out}}$$

- If a large cap is connected parallel to C_{gd} : $\omega_{pnd} \approx \frac{g_m}{C_{gs} + C_{out}}$
 - Can be derived intuitively without analysis (how?)

Two-Stage OTA: Miller Compensation

Before compensation

$$\omega_{p1} = \frac{1}{R_{out_1}C_1} \quad \& \quad \omega_{p2} = \frac{1}{R_{out_2}C_2}$$

After compensation: Pole splitting

$$\omega_{p1} \approx \frac{1}{R_{out1}[(G_{m2}R_{out2})C_C + C_1] + R_{out2}(C_2 + C_C)} \approx \frac{1}{R_{out1}(G_{m2}R_{out2})C_C}$$

$$\omega_{p2} \approx \frac{G_{m2}C_C}{C_C(C_1 + C_2) + C_1C_2} \approx \frac{G_{m2}}{C_1 + C_2}$$

Stability Requirement: ω_u and ω_{p2}

$$\omega_{p1} \approx \frac{1}{R_{out1}(G_{m2}R_{out2})C_C}$$

$$\omega_{p2} \approx \frac{G_{m2}}{C_1 + C_2} \approx \frac{G_{m2}}{C_L}$$

$$GBW \approx G_{m1}R_{out1}G_{m2}R_{out2} \cdot \frac{1}{R_{out1}(G_{m2}R_{out2})C_C}$$

$$GBW = \omega_u \approx \frac{G_{m1}}{C_C}$$

 $oldsymbol{\square}$ For critical damped response: $oldsymbol{\zeta}=\mathbf{1}$,

 $extbf{\emph{Q}} = extbf{\emph{0}}.$ 5, and $extbf{\emph{PM}} pprox 76^o$

$$\omega_{p2} \approx 4\omega_u \rightarrow \frac{G_{m2}}{C_L} \approx \frac{4G_{m1}}{C_C}$$

Bias Current in 1st and 2nd Stages

$$\frac{G_{m2}}{C_L} \approx \frac{4G_{m1}}{C_C}$$

 \square Assume $C_L = 4pF$ and $C_C = C_L/2 = 2pF$

$$\frac{G_{m2}}{G_{m1}} = 4 \times \frac{4}{2} = 8$$

- ☐ If both stages use the same gm/ID
 - Note that $I_{B1} = 2 \times I_{D1.2}$

$$\frac{I_{B2}}{I_{B1}} = 4$$

- oxdots 80% of the power is consumed in the second stage to achieve stability
 - 80% of bias current do not contribute (directly) to GBW
 - Miller OTA is very energy inefficient!

Miller OTA: Pole Splitting with $oldsymbol{C_C}$

- \square Too large C_C does not give more pole splitting: just smaller GBW
 - Usually we choose $C_1 < C_C < C_L$
 - Reasonable starting point: $C_C \approx (0.3 \rightarrow 0.5) \times C_L$

Miller OTA: Pole Splitting with G_{m2}

- \square Increasing G_{m2} works even better than increasing C_C
 - But more power consumption in the 2nd stage

Single vs Two-Stage OTA: Sensitivity to $oldsymbol{C}_L$

Outline

- ☐ Recapping previous key results
- ☐ Frequency compensation
- Compensation of single-stage OTAs
- Compensation of two-stage OTA
 - Miller compensation
 - The feedforward zero

The Feedforward Zero: Reminder

- $\square v_{in}sC_F = -G_m v_{in}$

$$s_z = -\frac{G_m}{C_F}$$

- \square LHP zero if G_m is +ve (e.g. CD)
- \square RHP zero if G_m is –ve (e.g. CS)
 - Mag inc and phase drops
 - Very bad for FB loop stability

Miller OTA: The RHP Zero

- ☐ RHP zero is bad for both magnitude and phase
 - Pushes GX outwards and pushes PX inwards
 - Increasing C_C may hurt stability!

$$\omega_z = \frac{g_{m6}}{C_C + C_{gd}} \approx \frac{G_{m2}}{C_C}$$

Handling the RHP Zero

☐ Add a resistance to control the value of the zero (other tricks exist)

$$\frac{v_{out1}}{R_Z + \frac{1}{s_z C_C}} = g_{m6} v_{out1}$$

$$s_z = \frac{1}{C_C \left(\frac{1}{g_{m6}} - R_Z\right)}$$

Miller Zero Placement

 \Box Place the zero at ∞

$$\omega_Z = \frac{1}{C_C\left(\frac{1}{G_{m2}} - R_Z\right)} \rightarrow R_Z = \frac{1}{G_{m2}}$$

Some designers try to move the zero to the LHP to cancel the first non-dominant pole and/or improve the PM

$$\frac{1}{C_C(R_Z - \frac{1}{G_{m2}})} = \frac{G_{m2}}{C_L} \rightarrow R_Z = \frac{C_L + C_C}{G_{m2}C_C}$$

- Practically never achieved due to variations
- Actually does not lead to faster response (why?)
- ☐ Pushing the LHP zero to lower frequencies is even worse
 - Very poor settling time (a.k.a. pole-zero doublet)
 - Noise amplification

Miller OTA Behavioral Model

- ☐ Try three different strategies for Miller zero placement

 - Cancel ω_{p2}
 - At ω_u (this is a designer mistake rather than a valid strategy!)

TB for LG and Step Response

☐ Verify stability, ac response, and transient response in unity-gain buffer configuration.

LG and Step Response

LG and CL Gain

R_Z Implementation

- $oxdot R_Z$ can be implemented as a simple resistor or using a transistor in the linear region
 - Clever biasing can make it track variations (maintain $R_Z \approx \frac{1}{g_{m6}}$)
 - Why R_Z is implemented as PMOS?

Thank you!

References

- ☐ A. Sedra and K. Smith, "Microelectronic Circuits," Oxford University Press, 7th ed., 2015
- ☐ B. Razavi, "Design of Analog CMOS Integrated Circuits," McGraw-Hill, 2nd ed., 2017.
- ☐ W. Sansen, "Analog design essentials," Springer, 2006.
- ☐ T. C. Carusone, D. Johns, and K. W. Martin, "Analog Integrated Circuit Design," 2nd ed.,
 Wiley, 2012.
- ☐ B. Murmann, EE214 Course Reader, Stanford University.