EA772A CIRCUITOS LÓGICOS 18/05/2010 Prova 2A Duração: 100 minutos

Nome: RA:

Questão 1 (2,0) Determinar as **expressões booleanas mínimas** para a saída (a, b, c) do circuito combinacional que tem, para uma entrada octal codificada em binário (x, y, z), o seguinte funcionamento, dependente de uma variável binária w:

w = 1, para entrada > 2, saída = entrada mod 6;

w = 0, para entrada > 3, saída = entrada mod 3.

Para as demais entradas as saídas são irrelevantes.

Questão 2 (2,0) Obter a expressão mínima para a função abaixo, utilizando o método de Quine-McCluskey:

$$F(w, x, y, z) = conjunto-um(2, 3, 6, 7, 8, 11, 12, 15)$$

Questão 3 (2,0) Determinar a **tabela de estados mínima** equivalente à tabela de estados abaixo. Mostrar os passos de sua solução e desenhar o diagrama de estados correspondente à tabela de estados mínima.

EA	Entrada	
	$\mathbf{x} = 0$	x = 1
A	C,0	Н,0
В	A,1	В,0
С	A,1	C,0
D	D,1	E,1
Е	В,0	F,0
F	F,1	A,0
G	C,0	F,0
Н	F,1	A,0
	PE, saída	

Questão 4 (2,0) Obter os diagramas de estados reduzidos para um detector do padrão 0110 **com** sobreposição e **sem** sobreposição. Por que podemos afirmar que os diagramas de estados obtidos são mínimos?

Questão 5 (2,0) Seja a especificação de alto nível de um sistema sequencial

Entrada: $x(t) \in \{a, b, c, d\};$ Saída: $z(t) \in \{0, 1\};$

Estados: $s(t) \in \{S_0, S_1, S_2, S_3\};$

Estado inicial: $s(0) = S_0$

e as funções de transição de estado e de saída definidas pela tabela

EA	Entrada			
	$\mathbf{x} = \mathbf{a}$	$\mathbf{x} = \mathbf{b}$	$\mathbf{x} = \mathbf{c}$	x = d
S_0	$S_{0},0$	$S_{2},0$	$S_{1},0$	$S_{3},0$
S_1	S ₁ ,0	$S_{1},1$	$S_{0},0$	$S_0, 1$
S_2	S ₂ ,0	$S_{0},0$	$S_{2},0$	$S_{0},0$
S_3	S ₃ ,0	$S_{3},1$	$S_{3},0$	$S_{3},1$
	PE, Saída			

Usar as seguintes especificações binárias para a entrada e os estados:

- a(00), b(01), c(10), $d(11) (x_1, x_0)$;
- S_0 (00), S_1 (01), S_2 (10), S_3 (11) (Q_1 , Q_0)
- a) Determinar a tabela de estados correspondente em código binário e o número mínimo de *flip-flops* necessários para implementar o sistema.
- b) Determinar as funções de excitação para cada *flip-flop* $T(T_i)$ que resultem nas transições especificadas. Mostrar os passos da solução.
- c) Determinar as funções de excitação para cada *flip-flop* SR (S_iR_i) que resultem nas transições especificadas. Mostrar os passos da solução.
- d) Determinar a função de saída z(t).

Tabela de excitação do *flip-flop* SR

Q	Q+	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

Tabela de excitação do flip-flop T

Q	Q+	T
0	0	0
0	1	1
1	0	1
1	1	0