

SEQUENCE LISTING

IAP20 Recd 12 DEC 2005 18 DEC 2005

<110> The Scripps Research Institute
 Deiters, Alexander
 Cropp, T Ashton
 Chin, Jason W
 Anderson, J Christopher
 Schultz, Peter G

<120> UNNATURAL REACTIVE AMINO ACID GENETIC CODE ADDITIONS

<130> 54-000250US/PC

<160> 104

<170> PatentIn version 3.3

<210> 1

<211> 1275

<212> DNA

<213> Escherichia coli

<400> 1

atggcaagca	gtaacttgat	taaacaaattg	caagagcggg	ggctggtagc	ccaggtgacg	60
gacgaggaag	cgttagcaga	gcgactggcg	caaggcccg	tgcgcgtcta	ttgcggcttc	120
gatcctaccg	ctgacagctt	gcatttgggg	catcttggtc	cattgttatg	cctgaaacgc	180
ttccagcagg	cgggccacaa	gccgggttgcg	ctggtaggcg	gcgcgacggg	tctgattggc	240
gaccggagct	tcaaagctgc	cgagcgtaag	ctgaacacccg	aagaaaactgt	tcaggagtgg	300
gtggacaaaa	tccgtaagca	ggttgccccg	ttcctcgatt	tcgactgtgg	agaaaaactct	360
gctatcgccg	cgaacaacta	tgactggttc	ggcaatatga	atgtgctgac	cttcctgcgc	420
gatattggca	aacacttctc	cgttaaccag	atgatcaaca	aagaagcggt	taagcagcgt	480
ctcaaccgtg	aagatcaggg	gatttcgttc	actgagttt	cctacaacct	gttgcagggt	540
tatgacttcg	cctgtctgaa	caaacagtac	ggtgtggtc	tgcaaattgg	tggttctgac	600
cagtgggtta	acatcacttc	tggtatcgac	ctgaccgcgc	gtctgcatca	gaatcaggtg	660
tttggcctga	ccgttccgct	gatcactaaa	gcagatggca	ccaaatttgg	taaaaactgaa	720
ggcggcgcag	tctggttgga	tccgaagaaa	accagccgt	acaaaattcta	ccagttctgg	780
atcaacactg	cggatgccga	cgtttaccgc	ttcctgaagt	tcttcacctt	tatgagcatt	840
gaagagatca	acgcccctgga	agaagaagat	aaaaacagcg	gtaaaggcacc	gcgcgcccag	900
tatgtactgg	cggagcaggt	gactcgtctg	gttcacggtg	aagaaggttt	acaggcggca	960
aaacgttatta	ccgaatgcct	gttcagcgggt	tctttgagtg	cgctgagtga	agcggacttc	1020
gaacagctgg	cgcaggacgg	cgtaccgatg	gtttagatgg	aaaagggcgc	agacctgatg	1080
cagggactgg	tcgattctga	actgcaacct	tcccgtggtc	aggcacgtaa	aactatcgcc	1140
tccaatgcca	tcaccattaa	cggtaaaaaa	cagtccgatc	ctgaataactt	ctttaaagaa	1200
gaagatcgtc	tgtttggtcg	ttttacctta	ctgcgtcgcg	gtaaaaagaa	ttactgtctg	1260

atttgctgga aataaa

1275

<210> 2
<211> 424
<212> PRT
<213> Escherichia coli

<400> 2

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Tyr Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Asp Phe Ala Cys Leu Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
 225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
 245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
 260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
 275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
 290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
 305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
 340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
 420

<210> 3

<211> 1275

<212> DNA

<213> Artificial

<220>

<223> artificial synthetase

<400> 3

atggcaagca gtaacttgat taaacaattg caagagcggg ggctggtagc ccaggtgacg 60

gacgaggaag cgtagcaga gcgactggcg caaggccoga tcgcactcgt gtgtggcttc 120

gatcctaccg ctgacagctt gcattttgggg catcttggtc cattgttatg cctgaaacgc	180
ttccagcagg cgggccacaa gccgggttgcg ctggtaggcg gcgacggg tctgattggc	240
gaccggagct tcaaagctgc cgagcgtaag ctgaacacccg aagaaaactgt tcaggagtgg	300
gtggacaaaaa tccgtaagca gggttccccg ttccctcgatt tcgactgtgg agaaaactct	360
gctatcgccg ccaataatta tgactggttc ggcaaatatga atgtgctgac cttcctgcgc	420
gatattggca aacacttctc cgttaaccag atgatcaaca aagaagcggt taagcagcgt	480
ctcaaccgtg aagatcaggg gatttcgttc actgagttt cctacaacct gctgcagggt	540
tatagtatgg cctgtttgaa caaacagttac ggtgtggtgc tgcaaattgg tggttctgac	600
cagtgggtta acatcacttc tggtatcgac ctgaccgcgc gtctgcacca gaatcaggtg	660
tttggcctga ccgttccgct gatcaactaaa gcagatggca ccaaatttgg taaaactgaa	720
ggcggcgcag tctgggttggaa tccgaagaaa accagccgt acaaattcta ccagttctgg	780
atcaacactg cggatgccga cggttaccgc ttccctgaagt tcttcacccct tatgagcatt	840
gaagagatca acgcccctgga agaagaagat aaaaacacgcg gtaaaagcacc ggcgcgcgcag	900
tatgtactgg cggagcaggt gactcgtctg gttcacgggt aagaaggttt acaggcggca	960
aaacgttatta ccgaatgcct gttcagcggt tctttgagtg cgctgagtgta agcggacttc	1020
gaacagctgg cgcaggacgg cgtaccgatg gttgagatgg aaaagggcgc agacctgatg	1080
caggcaactgg tcgattctga actgcaacct tcccgtggtc aggacacgtaa aactatcgcc	1140
tccaaatgcca tcaccattaa cggtaaaaaa cagtccgatc ctgaataactt cttaaagaa	1200
gaagatcgctc tggttgggtcg ttttacctta ctgcgtcgcg gtaaaaagaa ttactgtctg	1260
atttgctgga aataa	1275

<210> 4

<211> 1275

<212> DNA

<213> artificial

<220>

<223> artificial synthetase

<400> 4

atggcaagca gtaacttgat taaacaatttgc caagagcggg ggctggtagc ccaggtgacg	60
gacgaggaag cgtagcaga gcgactggcg caaggcccgta tcgcactcac ttgtggcttc	120
gatcctaccg ctgacagctt gcattttgggg catcttggtc cattgttatg cctgaaacgc	180
ttccagcagg cgggccacaa gccgggttgcg ctggtaggcg gcgacggg tctgattggc	240
gaccggagct tcaaagctgc cgagcgtaag ctgaacacccg aagaaaactgt tcaggagtgg	300
gtggacaaaaa tccgtaagca gggttccccg ttccctcgatt tcgactgtgg agaaaactct	360
gctatcgccg ccaataatta tgactggttc agcaaatatga atgtgctgac cttcctgcgc	420

gatattggca aacacttctc cgtaaccag atgatcaaca aagaagcggt taagcagcgt	480
ctcaaccgtg aagatcaggg gatttcgttc actgagttt cctacaacct gctgcagggt	540
tatacgtatg cctgtctgaa caaacagtac ggtgtggtgc tgcaaattgg tggttctgac	600
cagtgggta acatcacttc tggtatcgac ctgaccgcgt gtctgcatca gaatcaggtg	660
tttggcctga ccgttccgct gatcaactaa gcagatggca ccaaatttg taaaactgaa	720
ggcggcgcag tctgggttgg a cccggcgt acaaattcta ccagttctgg	780
atcaacactg cggatgccga cgtttaccgc ttccctgaagt tcttcacctt tatgagcatt	840
gaagagatca acgcccctgga agaagaagat aaaaacagcg gtaaaggcacc gcgcgcccag	900
tatgtactgg cggagcaggt gactcgtctg gttcacgggt aagaaggttt acaggcggca	960
aaacgtatta ccgaatgcct gttcagcggt tctttgagtg cgctgagtga agcggacttc	1020
gaacagctgg cgcaggacgg cgtaccgatg gttgagatgg aaaagggcgc agacctgatg	1080
caggcactgg tcgattctga actgcaacct tcccgtggc aggacacgtaa aactatcgcc	1140
tccaatgcca tcaccattaa cggtaaaaaa cagtccgatc ctgaataactt cttaaagaa	1200
gaagatcgtc tgtttggtgc ttacctta ctgcgtcggt gtaaaaagaa ttactgtctg	1260
atttgctgga aataa	1275

<210> 5
<211> 1275
<212> DNA
<213> artificial

<220>
<223> artificial synthetase

<400> 5 atggcaagca gtaacttgat taaacaattt caagagcggg ggctggtagc ccaggtgacg	60
gacgaggaag cgtagcaga gcgactggcg caaggccga tcgcactcgt gtgtgggttc	120
gatcctaccg ctgacagctt gcatttgggg catcttggc cattgttatg cctgaaacgc	180
ttcccaggcagg cggccacaa gccgggttgcg ctggtaggcg ggcgcacggg tctgattggc	240
gaccggagct tcaaagctgc cgagcgtaa ctgaacacccg aagaaactgt tcaggagtgg	300
gtggacaaaa tccgtaagca gtttcccccg ttcctcgatt tcgactgtgg agaaaaactct	360
gctatcgccg ccaataattha tgactgggttgc ggcaatatga atgtgctgac cttccctgcgc	420
gatattggca aacacttctc cgtaaccag atgatcaaca aagaagcggt taagcagcgt	480
ctcaaccgtg aagatcaggg gatttcgttc actgagttt cctacaacct gctgcagggt	540
tatagtatgg cctgtttgaa caaacagtac ggtgtggtgc tgcaaattgg tggttctgac	600
cagtgggta acatcacttc tggtatcgac ctgaccgcgt gtctgcatca gaatcaggtg	660
tttggcctga ccgttccgct gatcaactaa gcagatggca ccaaatttg taaaactgaa	720
ggcggcgcag tctgggttgg a cccggcgt acaaattcta ccagttctgg	780

atcaacactg	cggatgccga	cgttaccgc	ttcctgaagt	tcttcacctt	tatgagcatt	840
gaagagatca	acgcctgga	agaagaagat	aaaaacagcg	gtaaagcacc	gcgcgcccag	900
tatgtactgg	cggagcaggt	gactcgtctg	gttcacggtg	aagaaggaaa	acaggcggca	960
aaacgtatta	ccgaatgcct	gttcagcggt	tctttgagtg	cgctgagtga	agcggacttc	1020
gaacagctgg	cgcaggacgg	cgtaccgatg	gttgagatgg	aaaagggcgc	agacctgatg	1080
caggcactgg	tcgattctga	actgcaacct	tcccgtggtc	aggcacgtaa	aactatcgcc	1140
tccaatgcca	tcaccattaa	cggtaaaaaa	cagtccgatc	ctgaataactt	ctttaaagaa	1200
gaagatcgtc	tgtttggtcg	ttttaccta	ctgcgtcgcg	gtaaaaagaa	ttactgtctg	1260
atttgctgga	aataa					1275

<210> 6
<211> 1275
<212> DNA
<213> artificial

<220>
<223> artificial synthetase

<400> 6						
atggcaagca	gtaacttgat	taaacaattg	caagagcgaa	ggctggtagc	ccaggtgacg	60
gacgaggaag	cgttagcaga	gcgactggcg	caaggccccaa	tcgcactcgt	gtgtggcttc	120
gatcctaccg	ctgacagctt	gcattttgggg	catcttggtc	cattttatg	cctgaaacgc	180
ttccagcagg	cgggcccacaa	gccgggttgcg	ctggtaggcg	gcgcgacggg	tctgattggc	240
gaccggagct	tcaaagctgc	cgagcgtaag	ctgaacacccg	aagaaactgt	tcaggagtgg	300
gtggacaaaa	tccgtaagca	ggttgccccg	ttcctcgatt	tcgactgtgg	agaaaaactct	360
gctatcgccg	ccaataatta	tgactggttc	ggcaatatga	atgtgctgac	cttcctgcgc	420
gatattggca	aacacttctc	cgttaaccag	atgatcaaca	aagaagcggt	taagcagcgt	480
ctcaaccgtg	aagatcaggg	gatccgttc	actgagttt	cctacaacct	gctgcagggt	540
tatagtatgg	cctgtttgaa	caaacagtac	ggtgtggtgc	tgcaaattgg	tggttctgac	600
cagtggggta	acatcacttc	tggtatcgac	ctgaccgcgc	gtctgcatca	aatcaggtg	660
tttggcctga	ccgttccgat	gatcactaaa	gcagatggca	ccaaattttgg	taaaactgaa	720
ggcggcgcag	tctgggttggaa	tccgaagaaa	accagccgt	acaaattcta	ccagttctgg	780
atcaacactg	cggatgccga	cgttaccgc	ttcctgaagt	tcttcacctt	tatgagcatt	840
gaagagatca	acgcctgga	agaagaagat	aaaaacagcg	gtaaagcacc	gcgcgcccag	900
tatgtactgg	cggagcaggt	gactcgtctg	gttcacggtg	aagaaggaaa	acaggcggca	960
aaacgtatta	ccgaatgcct	gttcagcggt	tctttgagtg	cgctgagtga	agcggacttc	1020
gaacagctgg	cgcaggacgg	cgtaccgatg	gttgagatgg	aaaagggcgc	agacctgatg	1080

caggcactgg tcgattctga actgcaacct tcccgtggtc aggcacgtaa aactatcgcc	1140
tccaatgcca tcaccattaa cggtaaaaaa cagtccgatc ctgaatactt ctttaaagaa	1200
gaagatcgta tgtttggtcg tttaccta ctgcgtcgcg gtaaaaagaa ttactgtctg	1260
atttgctgga aataa	1275

<210> 7
<211> 1275
<212> DNA
<213> artificial

<220>
<223> artificial synthetase

<400> 7

atggcaagca gtaacttgat taaacaattt caagagcggg ggctggtagc ccaggtgacg	60
gacgaggaag cgtagcaga gcgactggcg caaggccga tcgcactcac gtgtggcttc	120
gatcctaccg ctgacagctt gcatttgggg catcttggc cattgttatg cctgaaacgc	180
ttccagcagg cggccacaa gccgggtgcg ctggtaggcg ggcgcacggg tctgattggc	240
gaccggagct tcaaagctgc cgagcgtaag ctgaacacccg aagaaaactgt tcaggagtgg	300
gtggacaaaa tccgtaagca gtttcccccg ttcctcgatt tcgactgtgg agaaaaactct	360
gctatcgccg ccaataatta tgactggttc ggcaatatga atgtgtgtac cttcctgcgc	420
gatattggca aacacttctc cgttaaccag atgatcaaca aagaagcggg taagcagcgt	480
ctcaaccgtg aagatcaggg gatttcgttc actgagttt cctacagcct gctgcagggt	540
tatacgatgg cctgtctgaa caaacagttt ggtgtggc tgcaaattgg tggttctgac	600
cagtgggttta acatcacttc tggtatcgac ctgaccggc gtctgcatca gaatcaggtg	660
tttggcctgaa ccgttccgct gatcactaaa gcagatggca ccaaatttttgg taaaactgaa	720
ggcggcgcag tctgggttggaa tccgaagaaaa accagccgtt acaaaattctta ccagttctgg	780
atcaacactg cggatgccga cgtttaccgc ttccctgaagt tcttcacctt tatgagcatt	840
gaagagatca acgcccgttga agaagaagat aaaaacagcg gttaaggcacc ggcgcggccag	900
tatgtactgg cggagcaggt gactcgatcg gttcacgggt aagaagggtt acaggcggca	960
aaacgttata ccgaatgcct gttcagcggt tctttgagtg cgctgagtga agcggacttc	1020
gaacagctgg cgcaggacgg cgtaccgtt gttgagatgg aaaagggcgc agacctgtatg	1080
caggcactgg tcgattctga actgcaacct tcccgtggtc aggcacgtaa aactatcgcc	1140
tccaatgcca tcaccattaa cggtaaaaaa cagtccgatc ctgaatactt ctttaaagaa	1200
gaagatcgta tgtttggtcg tttaccta ctgcgtcgcg gtaaaaagaa ttactgtctg	1260
atttgctgga aataa	1275

<210> 8
<211> 540

<212> DNA
<213> artificial

<220>
<223> artificial synthetase

<400> 8

cgggggctgg tagcccaggt gacggacgag gaagcgtag cagagcgact ggccgaaggc 60
ccgatcgac tcacttgtgg ctgcgtatc accgctgaca gcttcattt gggcatctt 120
gttccattgt tatgcctgaa acgcttccag caggcggcc acaagccgt tgccgtggta 180
ggcggcgcga cgggtctgat tggcgacccg agttcaaag ctgccgagcg taagctgaac 240
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc 300
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcagcaat 360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc 420
aacaaagaag cggtaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag 480
tttcctaca acctgctgca gggttatacg tatgcctgtc tgaacaaaca gtacgggttg 540

<210> 9

<211> 540

<212> DNA

<213> artificial

<220>
<223> artificial synthetase

<400> 9

cgggggctgg taccccaggt gacggacgag gaagcgtag cagagcgact ggccgaaggc 60
ccgatcgac tcacttgtgg ctgcgtatc accgctgaca gcttcattt gggcatctt 120
gttccattgt tatgcctgaa acgcttccag caggcggcc acaagccgt tgccgtggta 180
ggcggcgcga cgggtctgat tggcgacccg agttcaaag ctgccgagcg taagctgaac 240
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc 300
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcagcaat 360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc 420
aacaaagaag cggtaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag 480
tttcctaca acctgctgca gggttatacg tatgcctgtc tgaacaaaca gtacgggttg 540

<210> 10

<211> 540

<212> DNA

<213> artificial

<220>
<223> artificial synthetase

<400> 10

cgggggctgg tagcccaggt gacggacgag gaagcgtag cagagcgact ggccgaaggc 60

ccgatcgac tcacttgtgg cttcgatcct accgctgaca gcttcattt gggcatctt 120
 gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgctggta 180
 ggcggcgcga cgggtctgat tggcgaccgg agcttcaaag ctgcccagcg taagctgaac 240
 accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc 300
 gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcagcaat 360
 atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc 420
 aacaagaag cggtaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag 480
 tttctaca acctgctgca gggttatacg tatgcctgtc tgaacaaaca gtacgggttg 540

<210> 11
 <211> 540
 <212> DNA
 <213> artificial

<220>
 <223> artificial synthetase

<400> 11
 cgggggctgg tagcccgagg gacggacgag gaagcgtag cagagcgact ggcgcaaggc 60
 ccgatcgac tcacttgtgg cttcgatcct accgctgaca gcttcattt gggcatctt 120
 gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgctggta 180
 ggcggcgcga cgggtctgat tggcgaccgg agcttcaaag ctgcccagcg taagctgaac 240
 accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc 300
 gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat 360
 atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc 420
 aacaagaag cggtaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag 480
 tttctaca acctgctgca gggttattcg tatgcctgtc cgaacaaaca gtacgggttg 540

<210> 12
 <211> 540
 <212> DNA
 <213> artificial

<220>
 <223> artificial synthetase

<400> 12
 cgggggctgg tagcccgagg gacggacgag gaagcgtag cagagcgact ggcgcaaggc 60
 ccgatcgac tcacttgtgg cttcgatcct accgctgaca gcttcattt gggcatctt 120
 gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgctggta 180
 ggcggcgcga cgggtctgat tggcgaccgg agcttcaaag ctgcccagcg taagctgaac 240
 accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc 300
 gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcagcaat 360

atgaatgtgc tgaccttcct gcgcgatatt ggcaaacaact tctccgttaa ccagatgatc 420
 aacaaagaag cggtaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag 480
 tttcctaca acctgctgca gggttatacg tatgcctgtc tgaacaaaca gtacggtgt 540

<210> 13
 <211> 540
 <212> DNA
 <213> artificial

<220>
 <223> artificial synthetase

<400> 13
 cgggggctgg taccccagggt gacggacgag gaagcgtagt cagagcgact ggcgcaaggc 60
 ccgatcgac tcctttgtgg ctgcgtatc accgctgaca gcttcattt gggcatctt 120
 gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgtggta 180
 ggccggcgcga cgggtctgat tggcgaccgg agcttcaaag ctggcgagcg taagctgaac 240
 accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc 300
 gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat 360
 atgaatgtgc tgaccttcct gcgcgatatt ggcaaacaact tctccgttaa ccagatgatc 420
 aacaaagaag cggtaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag 480
 tttcctaca acctgctgca gggttattct attgcctgtt cgaacaaaca gtacggtgt 540

<210> 14
 <211> 540
 <212> DNA
 <213> artificial

<220>
 <223> artificial synthetase

<400> 14
 cgggggctgg tagcccagggt gacggacgag gaagcgtagt cagagcgact ggcgcaaggc 60
 ccgatcgac tcgtgtgtgg ctgcgtatc accgctgaca gcttcattt gggcatctt 120
 gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgtggta 180
 ggccggcgcga cgggtctgat tggcgaccgg agcttcaaag ctggcgagcg taagctgaac 240
 accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc 300
 gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat 360
 atgaatgtgc tgaccttcct gcgcgatatt ggcaaacaact tctccgttaa ccagatgatc 420
 aacaaagaag cggtaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag 480
 tttcctaca acctgctgca gggttatagt attgcctgtt tgaacaaaca gtacggtgt 540

<210> 15

<211> 540
<212> DNA
<213> artificial

<220>
<223> artificial synthetase

<400> 15
cgggggctgg taccggcagg gacggacgag gaagcgtag cagagcgact ggcgcaaggc . 60
ccgatcgac tcgtgtgtgg ctgcgtatcc accgctgaca gcttcattt gggcatctt 120
gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgccgtggta 180
ggcggcgcga cgggtctgat tggcgaccgg agcttcaaag ctggcgagcg taagctgaac 240
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttctc 300
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat 360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc 420
aacaaagaag cggttaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag 480
tttcctaca acctgctgca gggttatagt attgcctgtt tgaacaaaca gtacggtgt 540

<210> 16
<211> 540
<212> DNA
<213> artificial

<220>
<223> artificial synthetase

<400> 16
cgggggctgg tagcccagg gacggacgag gaagcgtag cagagcgact ggcgcaaggc 60
ccgatcgac tctgggtgtgg ctgcgtatcc accgctgaca gcttcattt gggcatctt 120
gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgccgtggta 180
ggcggcgcga cgggtctgat tggcgaccgg agcttcaaagg ctggcgagcg taagctgaac 240
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttctc 300
gatttcgact gtggagaaaa ctctgctatc gcggccaatt gttatgactg gttcggcaat 360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc 420
aacaaagaag cggttaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag 480
tttcctaca acctgctgca gggttatatg cgtgcctgtg agaacaaaca gtacggtgt 540

<210> 17
<211> 624
<212> DNA
<213> artificial

<220>
<223> artificial synthetase

<400> 17
cgggggctgg tagcccagg gacggacgag gaagcgtag cagagcgact ggcgcaaggc 60

ccgatgcac tcatttgtgg cttcgatcct accgctgaca gcttcattt gggcatctt 120
 gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgctggta 180
 ggcggcgcga cgggtctgat tggcaccgg agcttcaaag ctgccgagcg taagctgaac 240
 accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc 300
 gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat 360
 atgaatgtgc tgaccttcct ggcgatatt ggcaaacact tctccgttaa ccagatgatc 420
 aacaaagaag cggttaagca gcgtctcaac cgtgaaggtc aggggatttc gttcactgag 480
 tttcctaca acctgctgca gggtatggt atggcctgtg ctaacaaaca gtacggtgt 540
 gtgctgcaaa ttgggtgttc tgaccaatgg ggtaacatca cttctggtat cgacctgacc 600
 cgtcgtctgc atcagaatca ggtg 624

<210> 18
 <211> 609
 <212> DNA
 <213> artificial

<220>
 <223> artificial synthetase

<400> 18
 caggtgacgg acgaggaagc gtttagcagag cgactggcgc aaggcccgt cgcaactcggt 60
 tgtggcttcg atcctaccgc tgacagcttg catttggggc atcttgttcc attgttatgc 120
 ctgaaacgct tccagcagggc gggccacaag ccggttgcgc tggtaggcgg cgcgacgggt 180
 ctgattggcg acccgagctt caaagctgcc gagcgttaagc tgaacaccga agaaaactgtt 240
 caggagtggg tggacaaaat ccgtaagcag gttgccccgt tcctcgattt cgactgtgga 300
 gaaaactctg ctatcgccgc caataattat gactggttcg gcaatatgaa tgtgctgacc 360
 ttcctgcgcg atattggcaa acacttctcc gttaccaga tgatcaacaa agaagcggtt 420
 aagcagcgtc tcaaccgtga agatcagggg atttcggtca ctgagtttc ctacaacctg 480
 ctgcagggtt atggtttgc ctgttgaac aaacagtacg gtgtgggtct gcaaattgg 540
 gttctgacc agtggggtaa catcaattct ggtatcgacc tgaccgtcg tctgcattcag 600
 aatcaggtg 609

<210> 19
 <211> 591
 <212> DNA
 <213> artificial

<220>
 <223> artificial synthetase

<400> 19
 gcgttagcag agcgactggc gcaaggcccg atcgactcg ggtgtggctt cgatcctacc 60

gctgacagct tgcatttggg gcatcttgtt ccattgttat gcctgaaacg cttccagcag 120
 gcgggccaca agccggttgc gctggtaggc ggccgcacgg gtctgattgg cgaccggcgc 180
 ttcaaagctg ccgagcgtaa gctgaacacc gaagaaaactg ttcaggagtg ggtggacaaa 240
 atccgtaagc aggttgc(cc) gttcctcgat ttcgactgtg gagaaaaactc tgctatcg 300
 gccaataatt atgactggtt cggcaatatg aatgtgctga cttcctgcg cgatattggc 360
 aaacacttct ccgttaacca gatgatcaac aaagaagcgg ttaagcagcg tctcaaccgt 420
 gaagatcagg ggatttcgtt cactgagtt tcctacaacc tgctgcaggg ttatggttat 480
 gcctgtatga acaaacagta cggtgtggtg ctgcaaattg gtggttctga ccagtgggt 540
 aacatcactt ctggtatcga cctgaccgt cgtctgcac 591

<210> 20
 <211> 621
 <212> DNA
 <213> artificial

<220>
 <223> artificial synthetase

<220>
 <221> misc_feature
 <222> (26)..(26)
 <223> n is a, c, g, or t

<220>
 <221> misc_feature
 <222> (612)..(612)
 <223> n is a, c, g, or t

<220>
 <221> misc_feature
 <222> (618)..(618)
 <223> n is a, c, g, or t

<400> 20
 gggctggtag cccaggtgac ggacgnagaa gcgttagcag agcgactggc gcaaggccc 60
 atcgcactcc tttgtggctt cgatcctacc gctgacagct tgcatttggg gcatcttgtt 120
 ccattgttat gcctgaaacg cttccagcag gcgggccaca agccggttgc gctggtaggc 180
 ggccgcacgg gtctgattgg cgaccggcgc ttcaaagctg ccgagcgtaa gctgaacacc 240
 gaagaaaactg ttcaggagtg ggtggacaaa atccgtaagc aggttgc(cc) gttcctcgat 300
 ttcgactgtg gagaaaaactc tgctatcg 360
 gccaataatt atgactggtt cggcaatatg aatgtgctga cttcctgcg cgatattggc 420
 aaagaagcgg ttaagcagcg tctcaaccgt gaagatcagg ggatttcgtt cactgagtt 480
 tcctacaacc tgctgcaggg ttattctatg gcctgtgcga acaaacagta cggtgtggtg 540
 ctgcaaattg gtggttctga ccagtgggt aacatcactt ctggtatcga cctgaccgt 600
 cgtctgcac anaatcangt g 621

<210> 21
<211> 588
<212> DNA
<213> artificial

<220>
<223> artificial synthetase

<400> 21
ttagcagagc gactggcgca aggcccgtac gcactcgttt gtggcttcga tcctaccgct 60
gacagcttgc atttggggca tcttgttcca ttgttatgcc tgaaacgctt ccagcaggcg 120
ggccacaaggc cggttgcgct ggttaggcggc gcgacgggtc tgattggcgta cccgagcttc 180
aaagctgccc agcgtaagct gaacaccgaa gaaactgttc aggagtgggt ggacaaaatc 240
cgtaaggcagg ttgccccgtt cctcgatttc gactgtggag aaaactctgc tatcgccggcc 300
aataattatg actgggttcgg caatatgaat gtgctgacct tcctgcgcga tattggcaaa 360
cacttctccg ttaaccagat gatcaacaaa gaagcggtta agcagcgtct caaccgtgaa 420
gatcagggga ttgcgttac tgagtttcc tacaacctgc tgcagggtta ttctgcggcc 480
tgtgcgaaca aacagtacgg tgtggtgctg caaattggtg gttctgacca gtggggtaac 540
atcacttctg gtatcgacct gaccgtcgt ctgcattcaga atcaggtg 588

<210> 22
<211> 600
<212> DNA
<213> artificial

<220>
<223> artificial synthetase

<220>
<221> misc_feature
<222> (403)..(403)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (513)..(513)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (515)..(515)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (518)..(518)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (531)..(531)
<223> n is a, c, g, or t

<400> 22
gacgaggaag cgtagcaga gcgactggcg caaggcccga tcgcactcct gtgtggctc 60
gatcctaccg ctgacagctt gcattttggg catcttggc cattgttatg cctgaaacgc 120
ttccagcagg cgggccacaa gccgggtgcg ctggtaggcg gcgcgacggg tctgattggc 180
gaccggagct tcaaagctgc cgagcgtaag ctgaacacccg aagaaaactgt tcaggagtgg 240
gtggacaaaa tccgttaagca gggttccccg ttccctcgatt tcgactgtgg agaaaaactct 300
gctatcgccg ccaataatta tgactggttc ggcaatatga atgtgctgac cttcctgcgc 360
gatattggca aacacttctc cgtaaccag atgatcaaca aanaagcggt taagcagcgt 420
ctcaaccgtg aagatcaggg gatttcgttc actgagttt cctacaacct gctgcagggt 480
tattcggctg cctgtgcgaa caaacagtac ggnngngnc tgcaaattgg nggttctgac 540
caggggggta acatcacttc tggtatcgac ctgaccgcgt gtctgcacaa aaatcaggtg 600

<210> 23
<211> 591
<212> DNA
<213> artificial

<220>
<223> artificial synthetase

<220>
<221> misc_feature
<222> (588)..(588)
<223> n is a, c, g, or t

<400> 23
gcgttagcag agcgactggc gcaaggcccgc atcgactcg tttgtggctt cgatcctacc 60
gctgacagct tgcattttggg gcattttgtt ccattgttgt gcctgaaacgc cttccagcag 120
gcggggccaca agccgggtgc gctggtaggc ggccgcacgg gtcgtattgg cgaccggcgt 180
ttcaaaagctg ccgagcgtaa gctgaacacc gaagaaaactg ttcaggagtg ggtggacaaa 240
atccgtaagc aggttcccc gttccctcgat ttgcactgtg gagaaaaactc tgctatcg 300
gccaataatt atgactggtt cggcaatatg aatgtgctga cttcctgcgc cgatattggc 360
aaacacttct ccgttaacca gatgatcaac aaagaagcggt ttaagcagcg tctcaaccgt 420
gaagatcagg ggatttcgtt cactgagttt tcctacaacc tgctgcagggt ttatagtg 480
gcctgtgtta acaaacagta cgggtgtggc ctgcaaattg gtggttctga ccagtggggt 540
aacatcactt ctggtatcgac cttgaccgt cgtctgcacaa agaatcangt g 591

<210> 24
<211> 600
<212> DNA
<213> artificial

<220>

<223> artificial synthetase

<400> 24

gacgaggaag	cgttagcaga	gcgactggcg	caaggcccga	tcgcactcat	ttgtggcttc	60
gatccctaccg	ctgacagcgtt	gcatttgggg	catcttgttc	cattgttatg	cctgaaacgc	120
ttccagcagg	cgggccacaa	gccgggtgcg	ctggtaggcg	gcgcgacggg	tctgattggc	180
gaccggagct	tcaaagctgc	cgagcgtaag	ctgaacacccg	aagaaaactgt	tcaggagtgg	240
gtggacaaaa	tccgtaagca	ggttgccccg	ttcctcgatt	tcgactgtgg	agaaaactct	300
gctatcgccg	ccaatgatta	tgactggttc	ggcaatatga	atgtgctgac	cttcctgcgc	360
gatattggca	aacacttctc	cgttaaccag	atgatcaaca	aagaagcggt	taagcagcgt	420
ctcaaccgtg	aagatcaggg	gattcgttc	actgagttt	cctacaacct	gctgcagggt	480
tataattttg	cctgtgtgaa	caaacagtac	ggtgtggtgc	tgcaaattgg	tggttctgac	540
cagtgggta	acatcacttc	tggtatcgac	ctgaccggtc	gtctgcatca	aatcaggtg	600

<210> 25

<211> 579

<212> DNA

<213> artificial

<220>

<223> artificial synthetase

<400> 25

cgactggcgc	aaggcccgat	cgcactcacg	tgtggctcg	atccctaccgc	tgacagcttg	60
catttggggc	atcttgttcc	atttttatgc	ctgaaaacgct	tccaggaggc	gggccacaag	120
ccgggttgcgc	tggtaggcgg	cgcgacgggt	ctgattggcg	acccgagctt	caaagctgcc	180
gagcgtaagc	tgaacacccg	agaaaactgtt	caggagtggg	tggacaaaat	ccgtaagcag	240
gttgccccgt	tcctcgattt	cgactgtgga	gaaaactctg	ctatcgccgc	caataattat	300
gactggttcg	gcaatatgaa	tgtgctgacc	ttcctgcgcg	atattggcaa	acacttctcc	360
gttaaccaga	tgatcaacaa	agaagcggtt	aagcagcgtc	tcaaccgtga	agatcagggg	420
atttcgttca	ctgagttttc	ctacaatctg	ctgcagggtt	attcggctgc	ctgtcttaac	480
aaacagtacg	gtgtggtgct	gcaaattgg	ggttctgacc	agtggggtaa	catcacttct	540
ggtatcgacc	tgaccggtc	tctgcatcag	aatcaggtg			579

<210> 26

<211> 624

<212> DNA

<213> artificial

<220>

<223> artificial synthetase

<220>

<221> misc_feature

<222> (13)..(13)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (599)..(599)

<223> n is a, c, g, or t

<400> 26

cgggggctgg tancccaggt gacggacgag gaagcgtag cagagcgact ggcgcaaggc	60
ccgatcgac tcgggtgtgg ctgcgtatcct accgctgaca gcttcattt gggcatctt	120
gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgctgtggta	180
ggcggcgcga cgggtctgat tggcgaccgg agcttcaaag ctgcccggcg taagctgaac	240
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc	300
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat	360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacaact tctccgttaa ccagatgatc	420
aacaaagaag cggttaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag	480
ttttcctaca acctgctgca gggatttct atggcctgtt tgaacaaaca gtacggtgtg	540
gtgctgcaaa ttggtggttc tgaccagtgg ggtAACATCA cttctggtat cgacctganc	600
cgtcgctgc atcagaatca ggtg	624

<210> 27

<211> 625

<212> DNA

<213> artificial

<220>

<223> artificial synthetase

<220>

<221> misc_feature

<222> (600)..(600)

<223> n is a, c, g, or t

<400> 27

cgggggctgg tagcccaggt gacggacgag gaagcgtag cagagcgact ggcgcaaggc	60
ccgategcac tcacgtgtgg ctgcgtatcct accgctgaca gcttcattt gggcatctt	120
gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgctgtggta	180
ggcggcgcga cgggtctgat tggcgaccgg agcttcaaag ctgcccggcg taagctgaac	240
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc	300
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat	360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacaact tctccgttaa ccagatgatc	420
aacaaagaag cggttaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag	480
ttttcctaca atctgctgca gggatttct gctgcctgtc ttaacaaaca gtacggtgtg	540

tgctgcaaa ttgggggttc tgaccagtgg ggtaacatca cttctggtat cgacctgan	600
ccgtcgctcg catcaaaaatc aagtg	625

<210> 28
<211> 624
<212> DNA
<213> artificial

<220>
<223> artificial synthetase

<400> 28	
cgggggctgg taccctaagt gacggacgag gaaacgttag cagagcgact ggcccaaggc	60
ccgatcgac tctcttgtgg ctgcgtcct accgctgaca gcttgcattt gggcatctt	120
gttccattgt tatgcctgaa acgcttccag caggcaggcc acaagccggt tgccgtggta	180
ggccggcgca cgggtctgat tggcgacccg agcttcaaag ctgccgagcg taagctgaac	240
accgaagaaa ctgttcagga gtgggtggac aaaatccgt agcaggttgc cccgttccctc	300
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat	360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc	420
aacaaagaag cggtaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag	480
ttttcctaca acctgctgca gggttatacg atggcctgtg tgaacaaaca gtacggtgt	540
tgctgcaaa ttgggggttc tgaccagtgg ggtaacatca cttctggtat cgacctgacc	600
cgtcgctcg atcagaatca ggtg	624

<210> 29
<211> 624
<212> DNA
<213> artificial

<220>
<223> artificial synthetase

<400> 29	
cgggggctgg tagcccagg gacggacgag gaagcgtag cagagcgact ggcccaaggc	60
ccgatcgac tcgcgtcggt ctgcgtcct accgctgaca gcttgcattt gggcatctt	120
gttccattgt tatgcctgaa acgcttccag caggcggcc acaagccggt tgccgtggta	180
ggccggcgca cgggtctgat tggcgacccg agcttcaagg ctgccgagcg taagctgaac	240
accgaagaaa ctgttcagga gtgggtggac aaaatccgt agcaggttgc cccgttccctc	300
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat	360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc	420
aacaaagaag cggtaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag	480
ttttcctaca acctgctgca gggatttct tatgcctgtc ttaacaaaca gtacggtgt	540
tgctgcaaa ttgggggttc tgaccagtgg ggtaacatca cttctggtat cgacctgacc	600

cgtcgtctgc atcagaatca ggtg

624

<210> 30
<211> 624
<212> DNA
<213> artificial

<220>
<223> artificial synthetase

<400> 30
cgggggctgg tagcccaggt gacggacgag gaagcgtag cagagcgact ggccgaaggc 60
ccgatcgac tcgcgtgtgg ctgcgtgtgg accgctgaca gcttcattt gggcatctt 120
gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgccgtggta 180
ggcggcgcga cgggtctgat tggcgaccgg agcttcaaag ctgcccggcg taagctgaac 240
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc 300
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat 360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc 420
aacaagaag cggtaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag 480
tttcctaca acctgctgca gggttatacg atggcctgtt gtaacaaaca gtacgggttg 540
gtgctgcaaa ttggtggttc tgaccagtgg ggtaacatca cttctggtat cgacctgacc 600
cgtcgtctgc atcagaatca ggtg 624

<210> 31
<211> 624
<212> DNA
<213> artificial

<220>
<223> artificial synthetase

<400> 31
cgggggctgg taccccaagt gacggacgag gaagcgtag cagagcgact ggccgaaggc 60
ccgatcgac tcacgtgtgg ctgcgtgtgg accgctgaca gcttcattt gggcatctt 120
gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgccgtggta 180
ggcggcgcga cgggtctgat tggcgaccgg agcttcaaag ctgcccggcg taagctgaac 240
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc 300
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat 360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc 420
aacaagaag cggtaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag 480
tttcctaca acctgctgca gggttatacg tttgcctgtt gtaacaaaca gtacgggttg 540
gtgctgcaaa ttggtggttc tgaccagtgg ggtaacatca cttctggtat cgacctgacc 600

cgtcgctgc atcagaatca ggtg

624

<210> 32
<211> 606
<212> DNA
<213> artificial

<220>
<223> artificial synthetase

<400> 32
gtgacggacg aggaagcggtt agcagagcga ctggcgcaag gcccgatcgc actcacgtgt 60
ggcttcgatc ctaccgctga cagcttgcatttttggggcatc ttgttccattt gttatgcctg 120
aaacgcttcc agcaggcggg ccacaagccg gttgcgctgg taggcggcgc gacgggtctg 180
attggcgacc cgagcttcaa agctgccag cgtaagctga acaccgaaga aactgttcag 240
gagtgggtgg acaaaaatccg taagcagggtt gccccgttcc tcgatttcga ctgtggagaa 300
aactctgcta tcgcggccaa taattatgac tggttcggca atatgaatgt gctgaccc 360
ctgcgcgata ttggcaaaca cttctccgtt aaccagatga tcaacaaaga agcggtaag 420
cagcgtctca accgtgaaga tcaggggatt tcgttcactg agtttccta caatctgctg 480
cagggttattt cggctgcctg tcttaacaaa cagtacggtg tggtgctgca aattgggtgt 540
tctgaccagt gggtaacat cacttctggatcgcacctga cccgtcgtct gcacatcagaat 600
caggtg 606

<210> 33
<211> 624
<212> DNA
<213> artificial

<220>
<223> artificial synthetase

<400> 33
cgggggctgg tagcccaggt gacggacgag gaagcgtagt cagagcgact ggcccaaggc 60
ccgatcgac tcgtttgtgg cttcgatcctt accgctgaca gcttgcattt gggcatctt 120
gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccgt tgccgtggta 180
ggcggcgcga cgggtctgat tggcgacccg agcttcaaag ctgccgagcg taagctgaac 240
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc 300
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttccggcaat 360
atgaatgtgc tgaccttcctt ggcgcataattt ggccaaacact tctccgttaa ccagatgatc 420
aacaaagaag cggtaagca gcgtctcaac cgtgaagatc aggggatttc gttcaactgag 480
ttttccatca acctgctgca gggttattcg atggcctgta cgaacaaaca gtacgggtgt 540
gtgctgcaaa ttgggtggttc tgaccagtgg ggttaacatca cttctggatc cgacctgacc 600
cgtcgctgc atcagaatca ggtg 624

<210> 34
<211> 624
<212> DNA
<213> artificial

<220>
<223> artificial synthetase

<220>
<221> misc_feature
<222> (13)..(13)
<223> n is a, c, g, or t

<400> 34
cgggggctgg tancccaagt gacggacggg gaagcgtag cagagcgact ggcgcaaggc 60
ccgatcgac tcagttgtgg ctgcgtatcc accgctgaca gcttcattt gggcatctt 120
gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgctgtggta 180
ggcggcgcga cgggtctgat tggcgaccgg agcttcaaag ctgcccagcg taagctgaac 240
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc 300
gatctcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat 360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaactt tctccgttaa ccagatgatc 420
aacaaagaag cggtaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag 480
tttcctaca acctgctgca gggttatagt tttgcctgtc tgaacaaaca gtacgggttg 540
gtgctgcaaa ttgggtggttc tgaccagtgg ggtAACatca cttctggtat cgacctgacc 600
cgtcgtctgc atcagaatca ggtg 624

<210> 35
<211> 624
<212> DNA
<213> artificial

<220>
<223> artificial synthetase

<400> 35
cgggggctgg tagccagggt gacggacggag gaagcgtag cagagcgact ggcgcaaggc 60
ccgatcgac tcacgtgtgg ctgcgtatcc accgctgaca gcttcattt gggcatctt 120
gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgctgtggta 180
ggcggcgcga cgggtctgat tggcgaccgg agcttcaaag ctgcccagcg taagctgaac 240
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc 300
gatctcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat 360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaactt tctccgttaa ccagatgatc 420
aacaaagaag cggtaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag 480

tttcctaca acctgctgca gggttatacg tttgcctgta ctaacaaaca gtacggtgtg 540
 gtgctgcaaa ttggtggttc tgaccagtgg ggtaacatca cttctggtat cgacctgacc 600
 cgtcgtctgc atcagaatca ggtg 624

<210> 36
 <211> 424
 <212> PRT
 <213> artificial

<220>
 <223> artificial synthetase

<400> 36

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
 1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
 20 25 30

Pro Ile Ala Leu Val Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
 115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
 130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
 145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
 165 170 175

Leu Leu Gln Gly Tyr Ser Tyr Ala Cys Leu Asn Lys Gln Tyr Gly Val
 180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
420

<210> 37
<211> 424
<212> PRT
<213> artificial

<220>

<223> artificial synthetase

<400> 37

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Ile Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Ser Met Ala Cys Leu Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
420

<210> 38
<211> 424
<212> PRT
<213> artificial

<220>
<223> artificial synthetase

<400> 38

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Val Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Ser Met Ala Cys Ala Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
 290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Gly Leu Gln Ala Ala
 305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
 340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
 420

<210> 39
<211> 424
<212> PRT
<213> artificial

<220>
<223> artificial synthetase

<400> 39

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
 1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
 20 25 30

Pro Ile Ala Leu Val Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Ser Met Ala Cys Leu Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

WO 2005/003294

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
 340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
 420

<210> 40

<211> 424

<212> PRT

<213> artificial

<220>
<223> artificial synthetase

<400> 40

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
 1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
 20 25 30

Pro Ile Ala Leu Thr Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
 115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Thr Met Ala Cys Leu Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
420

<210> 41
<211> 424
<212> PRT
<213> artificial

<220>
<223> artificial synthetase

<400> 41

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Thr Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Thr Tyr Ala Cys Leu Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
420

<210> 42
<211> 424
<212> PRT
<213> artificial

<220>
<223> artificial synthetase

<400> 42

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Leu Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Ser Met Ala Cys Ser Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
420

<210> 43
<211> 424
<212> PRT
<213> artificial

<220>
<223> artificial synthetase

<400> 43

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Leu Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Ser Met Ala Cys Ala Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
420

<210> 44
<211> 424
<212> PRT
<213> artificial

<220>
<223> artificial synthetase

<400> 44

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Thr Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
 130 135 140

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
 165 170 175

Leu Leu Gln Gly Tyr Arg Met Ala Cys Leu Asn Lys Gln Tyr Gly Val
 180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
 185 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
 210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
 245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
 250 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
 275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
 340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
 420

<210> 45
 <211> 424
 <212> PRT
 <213> artificial

<220>
 <223> artificial synthetase

<400> 45

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
 1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
 20 25 30

Pro Ile Ala Leu Ile Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Gly Met Ala Cys Ala Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
420

<210> 46
<211> 424
<212> PRT
<213> artificial

<220>
<223> artificial synthetase

<400> 46

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Gly Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Gly Phe Ala Cys Ala Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
420

<210> 47
<211> 424
<212> PRT
<213> artificial

<220>
<223> artificial synthetase

<400> 47

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Gly Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Gly Tyr Ala Cys Met Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
 210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
 225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
 245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
 260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
 275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
 290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
 305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
 340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
 420

<210> 48
<211> 424
<212> PRT
<213> artificial

<220>
<223> artificial synthetase

<400> 48

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Leu Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Ser Met Ala Cys Ala Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
420

<210> 49
<211> 424
<212> PRT
<213> artificial

<220>
<223> artificial synthetase

<400> 49

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Val Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
Page 45

35

40

45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Ser Ala Ala Cys Ala Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
420

<210> 50
<211> 424
<212> PRT
<213> artificial

<220>
<223> artificial synthetase

<400> 50

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Leu Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
Page 47

85

90

95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Ser Ala Ala Cys Ala Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
420

<210> 51
<211> 424
<212> PRT
<213> artificial

<220>
<223> artificial synthetase

<400> 51

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Val Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
Page 49

130

135

140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Ser Ala Ala Cys Val Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
420

<210> 52
<211> 424
<212> PRT
<213> artificial

<220>
<223> artificial synthetase

<400> 52

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Ile Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asp Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Asn Phe Ala Cys Val Asn Lys Gln Tyr Gly Val
Page 51

180

185

190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
420

<210> 53
<211> 424

<212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 53

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Thr Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Ser Ala Ala Cys Leu Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
Page 53

225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
420

<210> 54

<211> 424

<212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 54

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Gly Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Ser Met Ala Cys Leu Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
Page 55

275

280

285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
420

<210> 55
<211> 424
<212> PRT
<213> artificial

<220>
<223> artificial synthetase

<400> 55

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Thr Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Ser Ala Ala Cys Leu Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
Page 57

325

330

335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
420

<210> 56
<211> 424
<212> PRT
<213> artificial

<220>
<223> artificial synthetase

<400> 56

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Ser Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Thr Met Ala Cys Val Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
Page 59

370

375

380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
420

<210> 57
<211> 424
<212> PRT
<213> artificial

<220>
<223> artificial synthetase

<400> 57

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Ala Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Ser Tyr Ala Cys Leu Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys

420

<210> 58
<211> 424
<212> PRT
<213> artificial

<220>
<223> artificial synthetase

<400> 58

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Ala Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Thr Met Ala Cys Cys Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
 210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
 225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
 245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
 260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
 275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
 290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
 305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
 340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
 420

<210> 59
<211> 424
<212> PRT
<213> artificial

<220>
<223> artificial synthetase

<400> 59

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Thr Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Thr Phe Ala Cys Met Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
 260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
 275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
 290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
 305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
 340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
 420

<210> 60
 <211> 424
 <212> PRT
 <213> artificial

<220>
 <223> artificial synthetase

<400> 60

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
 1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
 20 25 30

Pro Ile Ala Leu Thr Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Ser Val Ala Cys Leu Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Gly Leu Gln Ala Ala
 305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
 340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
 420

<210> 61
 <211> 424
 <212> PRT
 <213> artificial.

<220>
 <223> artificial synthetase

<400> 61

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
 1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
 20 25 30

Pro Ile Ala Leu Val Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu

100

105

110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Ser Met Ala Cys Thr Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
420

<210> 62
<211> 424
<212> PRT
<213> artificial

<220>
<223> artificial synthetase

<400> 62

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Ser Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Glu Gin Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
 130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Ser Phe Ala Cys Leu Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
 420

<210> 63
 <211> 424
 <212> PRT
 <213> artificial

<220>
 <223> artificial synthetase

<400> 63

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
 1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
 20 25 30

Pro Ile Ala Leu Thr Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
 115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
 130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
 145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
 165 170 175

Leu Leu Gln Gly Tyr Thr Phe Ala Cys Thr Asn Lys Gln Tyr Gly Val
 180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
420

<210> 64
<211> 129
<212> DNA
<213> Escherichia coli

<400> 64
agcttcccga taaggagca ggccagtaaa aagcattacc ccgtggtggg gttcccgagc 60
ggccaaaggg agcagactct aaatctgccg tcatcgacct cgaaggttcg aatccccc 120
ccaccacca 129

<210> 65
<211> 129
<212> RNA
<213> Escherichia coli

<400> 65
agcuucccga uaaggagca ggccaguaaa aagcauuacc ccgugguggg guucccgagc 60
ggccaaaggg agcagacucu aaaucugccg ucaucgaccu cgaagguucg aauccuucc 120
ccaccacca 129

<210> 66
<211> 34
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 66
atgaagtagc tgttttat cgaacaagca tgcg 34

<210> 67
<211> 34
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 67
cgaacaagca tgcgattagt gccgacttaa aaag 34

<210> 68
<211> 33
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 68
cgctactctc ccaaataaaaa aaggctcccg ctg 33

<210> 69
<211> 32
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 69
ctggAACAGC tATAGCTACT gATTTTCCT CG

32

<210> 70
<211> 34
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 70
GCCGTCACAG ATTAGTTGGC TTCAGTGGAG ACTG

34

<210> 71
<211> 33
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 71
GATTGGCTTC ATAGGAGACT GATATGCTCT AAC

33

<210> 72
<211> 33
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 72
GCCTCTATAG TTGAGACAGC ATAGAATAAT GCG

33

<210> 73
<211> 35
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 73
GAGACAGCAT AGATAGAGTG CGACATCATC ATCGG

35

<210> 74
<211> 37
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 74
GAATAAGTGC GACATAGTCA TCGGAAGAGA GTAGTAG

37

<210> 75
<211> 35
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 75
ggtcaaagac agttttaggt atcgattgac tcggc

35

<210> 76
<211> 34
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 76
cgctactctc cccaaattta aaaggtctcc gctg

34

<210> 77
<211> 34
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 77
cgctactctc cccaaatata aaaggtctcc gctg

34

<210> 78
<211> 34
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 78
cgctactctc cccaaatgga aaaggtctcc gctg

34

<210> 79
<211> 34
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 79
cgctactctc cccaaagata aaaggtctcc gctg

34

<210> 80
<211> 34
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 80
cgctactctc cccaaaaaaaaaa aaagggtctcc gctg

34

<210> 81
<211> 34
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 81
gccgtcacag attttttggc ttcagtggag actg

34

<210> 82
<211> 34
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 82
gccgtcacag attatttggc ttcagtggag actg

34

<210> 83
<211> 34
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 83
gccgtcacag attggttggc ttcagtggag actg

34

<210> 84
<211> 34
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 84
gccgtcacag atgatttggc ttcagtggag actg

34

<210> 85
<211> 34
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 85
gccgtcacag ataaaattggc ttcagtggag actg

34

<210> 86
<211> 424
<212> PRT
<213> artificial

<220>
<223> artificial synthetase

<400> 86

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val
1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Ile Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His
35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala
50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly
65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr
85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu
100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp
115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Gly Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn
165 170 175

Leu Leu Gln Gly Tyr Gly Met Ala Cys Ala Asn Lys Gln Tyr Gly Val
180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr
Page 77

210

215

220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu
225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe
245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu
260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu
275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala
290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala
305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser
325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu
340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu
355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile
370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu
385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys
420

<210> 87

<211> 6

<212> PRT

<213> artificial

<220>

<223> tryptic peptide including unnatural amino acids

<220>

<221> MISC_FEATURE
<222> (2)..(2)
<223> X is an unnatural amino acid (p-acetyl-L-phenylalanine,
p-benzoyl-L-phenylalanine, p-azido-L-phenylalanine,
O-methyl-L-tyrosine, or p-iodo-L-phenylalanine) or tryptophan,
tyrosine, or leucine

<400> 87

Val Xaa Gly Ser Ile Lys
1 5

<210> 88
<211> 11
<212> DNA
<213> artificial

<220>
<223> B box

<220>
<221> misc_feature
<222> (8)..(8)
<223> n is a, c, g, or t

<400> 88
ggttcgantc c

11

<210> 89
<211> 82
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 89
gggggggaccg gtggggggac cggttaagctt cccgataagg gagcaggcca gtaaaaagca

60

ttaccccggtg gtgggttccc ga

82

<210> 90
<211> 90
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 90
ggcggcgcta gcaagcttcc cgataaggga gcaggccagt aaaaaggaa gttcaggac

60

ttttgaaaaa aatggtggtg ggggaaggat

90

<210> 91
<211> 68
<212> DNA
<213> artificial

<220>

<223> oligonucleotide primer

<220>
<221> misc_feature
<222> (1)..(1)
<223> n=I

<220>
<221> misc_feature
<222> (14)..(14)
<223> n=I

<400> 91
nggggggacc ggtngggggg acccggtcggg atcgaagaaa tcatggtaaa tgaaatagga 60
aatcaagg 68

<210> 92
<211> 62
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 92
ggggggaaat tcagttgatt gtatgcttgg tatacgcttga aatattgtgc agaaaaaagaa 60
ac 62

<210> 93
<211> 86
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 93
tcataaacgag aattccggga tcgaagaaat gatggtaaat gaaataggaa atctcataac 60
gagaattcat ggcaaggcgt aacttg 86

<210> 94
<211> 72
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 94
ttactacgtg cggccgcattt gcaaggcgtt acttgcgttact acgtgcggcc gcttatttcc 60
agcaaattcag ac 72

<210> 95
<211> 28
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 95
ccgatcgccc tcgcggcgg cttcgatc

28

<210> 96
<211> 27
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 96
atcgccggcga acgcctatga ctgggttc

27

<210> 97
<211> 40
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 97
gttgcagggt tatgccgccc cctgtgcgaa caaacagtag

40

<210> 98
<211> 26
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 98
gccgcgttgc tatcaagtat aaatag

26

<210> 99
<211> 21
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 99
caagccgaca accttgattg g

21

<210> 100
<211> 60
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 100

ggggacaagt ttgtacaaaa aaggcaggcta cgccaaatttt aatcaaagtg ggaatattgc 60

<210> 101
<211> 60
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 101
ggggacaagt ttgtacaaaa aaggcaggcta ggccaaatttt aatcaaagtg ggaatattgc 60

<210> 102
<211> 58
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 102
ggggaccact ttgtacaaga aagctgggtt actctttttt tgggtttgtt ggggtatc 58

<210> 103
<211> 22
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 103
aagctataacc aagcataacaa tc 22

<210> 104
<211> 49
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 104
acaaggcctt gcttagcttac tcttttttg ggtttgggtgg ggttatcttc 49