

一、主要内容

1. 基本概念

- (1) 多元函数极限 (5) 方向导数

(2) 连续

(6) 梯度

(3) 偏导数

(7) 极值

(4) 全微分

3. 多元函数微分法

- (1) 复合函数求导法
- (2) 隐函数(组)求导法
- (3) 全微分形式不变性

(1) 复合函数求导法

全导数

函数关系	结构图	求导公式
$z = f(u,v)$ $u = \varphi(x)$ $v = \psi(x)$	$z < \frac{u}{v} > x$	$ \frac{dz}{dx} = \frac{\partial z}{\partial u} \cdot \frac{du}{dx} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dx} $
$z = f(u)$ $u = \varphi(x, y)$	$z-u < x \\ y$	$\frac{\partial z}{\partial x} = \frac{dz}{du} \frac{\partial u}{\partial x}$ $\frac{\partial z}{\partial y} = \frac{dz}{du} \frac{\partial u}{\partial y}$

1)
$$F(x,y) = 0$$

隐函数存在定理 1 设函数F(x,y)在点 $P(x_0,y_0)$ 的某一邻域内具有连续的偏导数,且

$$F(x_0, y_0) = 0, F_y(x_0, y_0) \neq 0$$

则方程F(x,y)=0在某 U(P)内恒能唯一确定一个单值连续且具有连续导数的函数y=f(x),它

满足条件:
$$y_0 = f(x_0)$$
,

并有
$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

隐函数的求导公式

(2.1)

2) F(x,y,z) = 0

隐函数存在定理 2 设函数F(x,y,z)在点 $P(x_0, y_0, z_0)$ 的某一邻域内有连续的偏导数 且 $F(x_0, y_0, z_0) = 0$, $F_z(x_0, y_0, z_0) \neq 0$, 则方程F(x,y,z) = 0在点 $P(x_0,y_0,z_0)$ 的某 一邻域内恒能唯一确定一个单值连续且具 有连续偏导数的函数z = f(x,y),它满足 条件 $z_0 = f(x_0, y_0)$, 并有 $\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$, $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$.

3) 方程组的情形
$$\begin{cases} F(x,y,u,v) = 0 \\ G(x,y,u,v) = 0 \end{cases}$$

隐函数存在定理 3 设F(x,y,u,v), G(x,y,u,v)

在点 $P(x_0, y_0, u_0, v_0)$ 的某一邻域内有对各个

 \longrightarrow 变量的连续偏导数,又 $F(x_0, y_0, u_0, v_0) = 0$,

$$G(x_0, y_0, u_0, v_0) = 0$$

且偏导数所组成的函数行列式(或称雅可比式)

偏导数所组成的函数行列式(或称雅可比较
$$J = \frac{\partial (F,G)}{\partial (u,v)} \Big|_{P} = \begin{vmatrix} \frac{\partial F}{\partial u} & \frac{\partial F}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} \end{vmatrix}_{P} \neq 0$$

则方程组 F(x,y,u,v)=0 G(x,y,u,v)=0

在点 $P(x_0, y_0, u_0, v_0)$ 的某一邻域内恒能唯一确定一组单值连续且具有连续偏导数的函数u = u(x, y), v = v(x, y), 它们满足条件: $u_0 = u(x_0, y_0)$, $v_0 = v(x_0, y_0)$, 并有

$$\frac{\partial u}{\partial x} = -\frac{1}{J} \frac{\partial (F, G)}{\partial (x, v)} = -\frac{\begin{vmatrix} F_{x} & F_{v} \\ G_{x} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}}, \quad (2.3)$$

$$\frac{\partial v}{\partial x} = -\frac{1}{J} \frac{\partial (F,G)}{\partial (u,x)} = -\frac{\begin{vmatrix} F_u & F_x \\ G_u & G_x \end{vmatrix}}{\begin{vmatrix} G_u & G_v \end{vmatrix}}$$

$$\frac{\partial u}{\partial y} = -\frac{1}{J} \frac{\partial (F,G)}{\partial (y,v)} = - \begin{vmatrix} F_y & F_v \\ G_y & G_v \end{vmatrix} / \begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix},$$

$$\frac{\partial v}{\partial y} = -\frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = - \begin{vmatrix} F_u & F_y \\ G_u & G_y \end{vmatrix} / \begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}.$$

注 情形3的特例:

$$\begin{cases} F(x,u,v) = 0 \\ G(x,u,v) = 0 \end{cases} \longrightarrow \begin{cases} u = u(x) \\ v = v(x) \end{cases}$$

$$\begin{cases} F(x,u(x),v(x)) \equiv 0 \\ G(x,u(x),v(x)) \equiv 0 \end{cases}$$

$$\begin{cases} F_x + F_u \cdot \frac{du}{dx} + F_v \cdot \frac{dv}{dx} = 0 \\ G_x + G_u \cdot \frac{du}{dx} + G_v \cdot \frac{dv}{dx} = 0 \end{cases}$$

$$\begin{cases} F_{u} \cdot \frac{du}{dx} + F_{v} \cdot \frac{dv}{dx} = -F_{x} \\ G_{u} \cdot \frac{du}{dx} + G_{v} \cdot \frac{dv}{dx} = -G_{x} \end{cases}$$

$$\frac{du}{dx} = \frac{\begin{vmatrix} -F_{x} & F_{v} \\ -G_{x} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}} = -\frac{1}{J} \begin{vmatrix} F_{x} & F_{v} \\ G_{x} & G_{v} \end{vmatrix}$$

$$= -\frac{1}{J} \frac{\partial (F, G)}{\partial (x, v)}, \quad \frac{\partial v}{\partial x} = -\frac{1}{J} \frac{\partial (F, G)}{\partial (u, x)}$$

(3) 全微分形式不变性

设函数z = f(u,v)具有连续偏导数,则有全微分

$$dz = \frac{\partial z}{\partial u}du + \frac{\partial z}{\partial v}dv;$$

当 $u = \phi(x,y)$ 、 $v = \psi(x,y)$ 时,有

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy.$$

全微分形式不变形的实质:

无论z 是自变量u、v的函数还是中间变量u、v的函数,它的全微分形式是一样的.

4. 应用

- (1) 方向导数、梯度、散度与旋度
- (2) 切线、法平面
- (3) 切平面、法线
- (5) 最值

(1) 空间曲线的切线与法平面

1) 曲线方程为参数方程的情形

$$\Gamma$$
: $x = \varphi(t), y = \psi(t), z = \omega(t)$.

曲线 Γ 的切向量:

$$\overrightarrow{T} = (\varphi'(t_0), \psi'(t_0), \omega'(t_0))$$

切线方程为
$$\frac{x-x_0}{\varphi'(t_0)} = \frac{y-y_0}{\psi'(t_0)} = \frac{z-z_0}{\omega'(t_0)}$$
.

法平面方程为

$$\varphi'(t_0)(x-x_0)+\psi'(t_0)(y-y_0)+\omega'(t_0)(z-z_0)=0.$$

2) 曲线方程为一般方程的情形

求曲线 Γ 的切向量:

(方法1) 由
$$\begin{cases} F(x,\varphi(x),\psi(x)) \equiv 0 \\ G(x,\varphi(x),\psi(x)) \equiv 0 \end{cases}$$
 有

$$\begin{cases} F_x + F_y \cdot \varphi'(x) + F_z \cdot \psi'(x) = 0 \\ G_x + G_y \cdot \varphi'(x) + G_z \cdot \psi'(x) = 0 \end{cases}$$

$$\begin{cases} F_x + F_y \cdot \varphi'(x) + F_z \cdot \psi'(x) = 0 \\ G_x + G_y \cdot \varphi'(x) + G_z \cdot \psi'(x) = 0 \end{cases}$$

可求得曲线在 $M(x_0, y_0, z_0)$ 处的切向量:

$$\vec{T} = \left\{1, \varphi'(x_0), \psi'(x_0)\right\}$$
切向量求法之一

$$= \left\{ 1, -\frac{1}{J} \begin{vmatrix} F_x & F_z \\ G_x & G_z \end{vmatrix}, -\frac{1}{J} \begin{vmatrix} F_y & F_x \\ G_y & G_x \end{vmatrix} \right\}_M$$

$$= \frac{1}{J} \left\{ J, \begin{vmatrix} F_z & F_x \\ G_z & G_x \end{vmatrix}, \begin{vmatrix} F_x & F_y \\ G_x & G_y \end{vmatrix} \right\}_M, \quad \sharp \mapsto \quad J = \begin{vmatrix} F_y & F_z \\ G_y & G_z \end{vmatrix}.$$

$$\vec{T} \perp \vec{n}_1, \quad \vec{T} \perp \vec{n}_2$$

$$\vec{n}_1 = (F_x(x_0, y_0, z_0), F_y(x_0, y_0, z_0), F_z(x_0, y_0, z_0))$$

$$\vec{n}_2 = (G_x(x_0, y_0, z_0), G_y(x_0, y_0, z_0), G_z(x_0, y_0, z_0))$$

∴ 曲线 Γ 在点 M_0 处的切向量:

$$\overrightarrow{T} = \overrightarrow{n_1} \times \overrightarrow{n_2} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ F_x & F_y & F_z \\ G_x & G_y & G_z \end{vmatrix}_{M_0}$$

切向量求法之二

$$(\vec{n}_1 \times \vec{n}_2)$$

(2) 曲面的切平面与法线

 π : F(x,y,z) = 0.

切平面方程为:

$$F_{x}(x_{0}, y_{0}, z_{0})(x - x_{0}) + F_{y}(x_{0}, y_{0}, z_{0})(y - y_{0})$$
$$+ F_{z}(x_{0}, y_{0}, z_{0})(z - z_{0}) = 0$$

法线方程为:

$$\frac{x-x_0}{F_x(x_0,y_0,z_0)} = \frac{y-y_0}{F_y(x_0,y_0,z_0)} = \frac{z-z_0}{F_z(x_0,y_0,z_0)}.$$

(3) 多元函数的极值

1) 无条件极值

定理1(必要条件)

设函数z = f(x,y)在点 (x_0,y_0) 具有偏导数,且在点 (x_0,y_0) 处有极值,则它在该点的偏导数必然为

零: $f_x(x_0, y_0) = 0$, $f_y(x_0, y_0) = 0$.

定义 一阶偏导数同时为零的点,均称为多元函数的驻点.

注意 驻点 ➡ 极值点

定理2(充分条件)

设函数z = f(x,y)在点 (x_0,y_0) 的某邻域内有一阶及二阶连续偏导数。

则有

Δ		$f(x_0, y_0)$	
	> 0	A > 0, 极小值 是极值	
		A < 0,极大值	定似但
< 0		非极值	
= 0	-0 不定(需用其他方法确定		方法确定)

求函数z = f(x, y)极值的一般步骤:

- 1° 求极值可疑点: 驻点、偏导数不存在的点;
- 2°判断
 - (1) 利用极值的充分判定法,
 - (2) 若充分条件不满足,则利用极值的定义.

2) 条件极值:对自变量有附加条件的极值.

拉格朗日乘数法

要找函数z = f(x,y)在条件 $\varphi(x,y) = 0$ 下的可能极值点,

先构造函数 $F(x,y) = f(x,y) + \lambda \varphi(x,y)$,

其中 λ 为某一常数,可由

$$\begin{cases} f_x(x,y) + \lambda \varphi_x(x,y) = 0, \\ f_y(x,y) + \lambda \varphi_y(x,y) = 0, \\ \varphi(x,y) = 0. \end{cases}$$

解出 x,y,λ , 其中x,y就是可能的极值点的坐标.

二、典型例题

1. 偏导数与全微分

(1) 基本概念

例1 已知
$$f(x,y) = e^{\sqrt{x^2+y^4}}$$
, 求 $f'_x(0,0), f'_y(0,0)$.

解
$$f(x,0) = e^{|x|}, f(0,y) = e^{y^2},$$

$$\lim_{x \to 0^{-}} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0^{-}} \frac{e^{|x|} - 1}{x}$$

$$= \lim_{x \to 0^{-}} \frac{e^{-x} - 1}{x} = -1$$

$$= \lim_{x \to 0^{-}} \frac{e^{-x} - 1}{x} = -1$$

$$\lim_{x \to 0^{+}} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0^{+}} \frac{e^{|x|} - 1}{x} = \lim_{x \to 0^{+}} \frac{e^{x} - 1}{x} = 1$$

$$\therefore \lim_{x \to 0^{+}} \frac{f(x,0) - f(0,0)}{x} \neq \lim_{x \to 0^{-}} \frac{f(x,0) - f(0,0)}{x}$$

∴
$$f'_{x}(0,0)$$
不存在.

$$f_y'(0,0) = \frac{d f(0,y)}{d y}\Big|_{y=0} = 2y e^{y^2}\Big|_{y=0} = 0.$$

注 1°何时必须用偏导数定义求偏导数?

当 $x = x_0$ 是 $f(x, y_0)$ 的分段点时, 求 $f_x(x_0, y_0)$

须用偏导数定义.

2°在某些情形下,用偏导数定义求偏导数 较简单.

如:
$$f(x,y) = \frac{(\sin xy)(\cos \sqrt{y+2}) - (y-1)\cos x}{1 + \sin x + \sin(y-1)}$$
,则 $f_y(0,1) = \underline{-1}$.

解 此题用求导法很繁,而用偏导数定义

$$f_{y}(0,1) = \lim_{y \to 1} \frac{f(0,y) - f(0,1)}{y - 1} = \lim_{y \to 1} \frac{-\frac{(y-1)}{1 + \sin(y-1)} - 0}{y - 1} = -1.$$

例2 设连续函数 z = f(x,y) 满足:

2012考研

$$\lim_{\substack{x \to 0 \\ y \to 1}} \frac{f(x,y) - 2x + y - 2}{\sqrt{x^2 + (y - 1)^2}} = 0$$

则
$$dz|_{(0,1)} = 2dx-dy$$

解 依题设条件,知

$$\lim_{\substack{x \to 0 \\ y \to 1}} [f(x,y) - 2x + y - 2] = 0$$

$$f(0,1) = \lim_{\substack{x \to 0 \ y \to 1}} f(x,y) = 1$$
 $(f(x,y))$ $(f(x,y))$

曲
$$\lim_{x\to 0} \frac{f(x,1)-2x-1}{|x|} = 0$$
 (沿 y = 1)

知
$$\lim_{x\to 0} \left[\frac{f(x,1)-1}{x} - 2 \right]$$
 还努力

无穷小与有界 函数的乘积仍 为无穷小

$$= \lim_{x \to 0} \left[\frac{f(x,1) - 2x - 1}{|x|} \right] \cdot \frac{|x|}{x}$$

$$= 0$$

$$\begin{array}{c|c}
 & y \\
\hline
 & (0,1) \\
\hline
 & o \\
\end{array}$$

从而
$$f'_x(0,1) = 2$$

$$\lim_{\substack{x \to 0 \\ y \to 1}} \frac{f(x,y) - 2x + y - 2}{\sqrt{x^2 + (y - 1)^2}} = 0$$

曲
$$\lim_{y\to 1} \frac{f(0,y)+y-2}{|y-1|} = 0$$
 (沿 x = 0)

知
$$\lim_{y \to 1} \left[\frac{f(0,y)-1}{y-1} + 1 \right]$$

$$= \lim_{y \to 1} \left[\frac{f(0,y)+y-2}{|y-1|} \right] \cdot \frac{|y-1|}{y-1}$$

$$= 0,$$

从而
$$f'_y(0,1) = -1$$

$$\lim_{\substack{x \to 0 \\ y \to 1}} \frac{f(x,y) - 2x + y - 2}{\sqrt{x^2 + (y - 1)^2}} = 0$$

$$\therefore \lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{\Delta z - [f'_x(0,1)\Delta x + f'_y(0,1)\Delta y]}{\rho}$$

$$= \lim_{\substack{x \to 0 \\ y \to 1}} \frac{[f(x,y) - f(0,1)] - [2x + (-1)(y-1)]}{\sqrt{x^2 + (y-1)^2}}$$

$$= \lim_{\substack{x \to 0 \\ y \to 1}} \frac{f(x,y) - 2x + y - 2}{\sqrt{x^2 + (y - 1)^2}} = 0$$

$$z = f(x,y)$$
在(0,1)处可微,且

$$dz|_{(01)} = f'_x(0,1)dx + f'_y(0,1)dy = 2dx - dy$$

类似题 二元函数 f(x,y) 在点(0,0)处可微的一个

充分条件是(C).

(A)
$$\lim_{(x,y)\to(0,0)} [f(x,y)-f(0,0)] = 0$$
 的关系

(B)
$$\lim_{x\to 0} \frac{f(x,0)-f(0,0)}{x} = 0 \coprod \lim_{y\to 0} \frac{f(0,y)-f(0,0)}{y} = 0.$$

(C)
$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}} = 0$$

(D)
$$\lim_{x\to 0} [f_x(x,0) - f_x(0,0)] = 0$$
 \exists
 $\lim_{y\to 0} [f_y(0,y) - f_y(0,0)] = 0.$

(2) 求导法

题型1 已知函数或偏导数的一些特殊关系, 求偏导数或微分.

例3 设 $z = g(xy) + yf(2x - y, \sin y)$, 其中g二阶

可导,f 具有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial x \partial y}$.

解
$$\frac{\partial z}{\partial x} = g'(xy) \cdot y + y \cdot f_1' \cdot 2$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left[g'(xy) \cdot y + 2y \cdot f_1'(2x - y, \sin y) \right]$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left[g'(xy) \cdot y + 2y \cdot f_1'(2x - y, \sin y) \right]$$

$$= g'(xy) + y \frac{\partial}{\partial y} [g'(xy)] + 2(1 \cdot f_1' + y \frac{\partial f_1'}{\partial y})$$

$$= g'(xy) + yg''(xy) \cdot x$$

$$+2\{f_1'+y[f_{11}''\cdot(-1)+f_{12}''\cdot\cos y]\}$$

$$=g'+xyg''+2f_1'-2yf_{11}''+2y(\cos y)f_{12}''.$$

例4 设 z = f(x,y) 有二阶连续偏导数,令

$$u = xy$$
, $v = \frac{x}{y}$, 试将方程:

$$x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} = 0$$

化为关于 u,v的方程.

解
$$z = f(x, y) = f(\sqrt{uv}, \sqrt{\frac{u}{v}})$$

= $F(u, v)$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} = \frac{\partial z}{\partial u} \cdot y + \frac{\partial z}{\partial v} \cdot \frac{1}{y}$$

$$\frac{\partial z}{\partial x} = y \frac{\partial z}{\partial u} + \frac{1}{y} \frac{\partial z}{\partial v}$$

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial x} \left(y \frac{\partial z}{\partial u} + \frac{1}{y} \frac{\partial z}{\partial v} \right)$$

$$\frac{\partial z}{\partial v} < v < v < x$$

$$= y \cdot \frac{\partial}{\partial x} (\frac{\partial z}{\partial u}) + \frac{1}{y} \cdot \frac{\partial}{\partial x} (\frac{\partial z}{\partial v}) = y \cdot \left[\frac{\partial}{\partial u} (\frac{\partial z}{\partial u}) \cdot \frac{\partial u}{\partial x} + \frac{\partial}{\partial v} (\frac{\partial z}{\partial u}) \cdot \frac{\partial v}{\partial x} \right]$$

$$+\frac{1}{y} \cdot \left[\frac{\partial}{\partial u} \left(\frac{\partial z}{\partial v} \right) \cdot \frac{\partial u}{\partial x} + \frac{\partial}{\partial v} \left(\frac{\partial z}{\partial v} \right) \cdot \frac{\partial v}{\partial x} \right]$$

$$\frac{\partial u}{\partial x} = y, \quad \frac{\partial v}{\partial x} = \frac{1}{y}$$

$$= y \cdot (\frac{\partial^2 z}{\partial u^2} \cdot y + \frac{\partial^2 z}{\partial u \partial v} \cdot \frac{1}{y}) + \frac{1}{y} \cdot (\frac{\partial^2 z}{\partial v \partial u} \cdot y + \frac{\partial^2 z}{\partial v^2} \cdot \frac{1}{y})$$

$$\therefore \frac{\partial^2 z}{\partial x^2} = y^2 \frac{\partial^2 z}{\partial u^2} + 2 \frac{\partial^2 z}{\partial u \partial v} + \frac{1}{y^2} \frac{\partial^2 z}{\partial v^2}$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= x \frac{\partial z}{\partial u} - \frac{x}{y^2} \frac{\partial z}{\partial v}$$

$$\frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial}{\partial y} \left(x \frac{\partial z}{\partial u} - \frac{x}{y^2} \frac{\partial z}{\partial v} \right) \qquad \frac{\partial u}{\partial y} = x, \quad \frac{\partial v}{\partial y} = -\frac{x}{y^2}$$

$$= x \frac{\partial}{\partial y} (\frac{\partial z}{\partial u}) - x \frac{\partial}{\partial y} (\frac{1}{y^2} \frac{\partial z}{\partial v})$$

$$z < v < x \\ v < x$$

$$u = xy, \ v = \frac{x}{y}$$
$$\frac{\partial u}{\partial y} = x, \ \frac{\partial v}{\partial y} = -\frac{x}{y^2}$$

$$= x \frac{\partial}{\partial y} (\frac{\partial z}{\partial u}) - x \frac{\partial}{\partial y} (\frac{1}{y^2} \frac{\partial z}{\partial v})$$

$$=x\left[\frac{\partial}{\partial u}\left(\frac{\partial z}{\partial u}\right)\cdot\frac{\partial u}{\partial y}+\frac{\partial}{\partial v}\left(\frac{\partial z}{\partial u}\right)\cdot\frac{\partial v}{\partial y}\right]$$

$$-x\left[-\frac{2}{y^3}\frac{\partial z}{\partial v}+\frac{1}{y^2}\frac{\partial}{\partial y}(\frac{\partial z}{\partial v})\right]$$

$$=x\left[\frac{\partial^2 z}{\partial u^2}\cdot x + \frac{\partial^2 z}{\partial u \partial v}\cdot (-\frac{x}{y^2})\right] + \frac{2x}{y^3}\frac{\partial z}{\partial v}$$

$$-\frac{x}{y^2} \left[\frac{\partial}{\partial u} \left(\frac{\partial z}{\partial v} \right) \cdot \frac{\partial u}{\partial y} + \frac{\partial}{\partial v} \left(\frac{\partial z}{\partial v} \right) \cdot \frac{\partial v}{\partial y} \right]$$

$\frac{\partial^2 z}{\partial y^2} = x^2 \frac{\partial^2 z}{\partial u^2} - \frac{x^2}{y^2} \frac{\partial^2 z}{\partial u \partial v} + \frac{2x}{y^3} \frac{\partial z}{\partial v}$ $- \frac{x}{y^2} \left[\frac{\partial^2 z}{\partial v \partial u} \cdot x + \frac{\partial^2 z}{\partial v^2} \right]$ $= x^2 \frac{\partial^2 z}{\partial u^2} - \frac{2x^2}{y^2} \frac{\partial^2 z}{\partial u \partial v} + \frac{x^2}{y^4} \frac{\partial^2 z}{\partial v}$ $\frac{\partial^2 z}{\partial x^2} = y^2 \frac{\partial^2 z}{\partial u^2} + 2 \frac{\partial^2 z}{\partial u \partial v} + \frac{1}{y^2} \frac{\partial^2 z}{\partial v^2}$ $-\frac{x}{y^2} \left[\frac{\partial^2 z}{\partial v \partial u} \cdot x + \frac{\partial^2 z}{\partial v^2} \cdot \left(-\frac{x}{v^2} \right) \right]$ $\therefore z_{uv} = z_{vu}$

$$= x^{2} \frac{\partial^{2} z}{\partial u^{2}} - \frac{2x^{2}}{y^{2}} \frac{\partial^{2} z}{\partial u \partial v} + \frac{x^{2}}{y^{4}} \frac{\partial^{2} z}{\partial v^{2}} + \frac{2x}{y^{3}} \frac{\partial z}{\partial v}$$

$$\frac{\partial^2 z}{\partial x^2} = y^2 \frac{\partial^2 z}{\partial u^2} + 2 \frac{\partial^2 z}{\partial u \partial v} + \frac{1}{y^2} \frac{\partial^2 z}{\partial v^2}$$

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} - y^{2} \frac{\partial^{2} z}{\partial y^{2}} = 4x^{2} \frac{\partial^{2} z}{\partial u \partial v} - \frac{2x}{y} \frac{\partial z}{\partial v}$$

: z有二阶 连续偏导数

$$\therefore z_{uv} = z_{vu}$$

$$x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2}$$

$$=4x^2\frac{\partial^2 z}{\partial u\partial v}-\frac{2x}{y}\frac{\partial z}{\partial v}$$

$$= 4uv \frac{\partial^2 z}{\partial u \partial v} - 2v \frac{\partial z}{\partial v}$$

$$u = xy, \ v = \frac{x}{y}$$
$$x^2 = uv,$$

$$2u\frac{\partial^2 z}{\partial u\partial v} - \frac{\partial z}{\partial v} = 0$$

题型2 已知函数偏导数,求函数.

例5 设 f(u)在 $(0,+\infty)$ 内具有二阶导数,且

$$z = f(\sqrt{x^2 + y^2})$$
满足等式

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$

复合函数 求(偏)导、 微分方程

求解

(1) 验证
$$f''(u) + \frac{f'(u)}{u} = 0$$
;

(2) 若
$$f(1) = 0$$
, $f'(1) = 1$, 求 $f(u)$ 的表达式.

$$\mathbf{i}\mathbb{E}(1)\frac{\partial z}{\partial x} = f'(u) \cdot \frac{\partial u}{\partial x}$$
$$= f'(u) \cdot \frac{x}{\sqrt{x^2 + y^2}}$$

$$z = f(u)$$
$$u\sqrt{x^2 + y^2}$$

$$= f'(u) \cdot \frac{x}{\sqrt{x^2 + y^2}}$$

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x}\right) = \frac{\partial}{\partial x} \left[f'(u) \frac{x}{\sqrt{x^2 + y^2}} \right]$$

$$= \frac{\partial f'(u)}{\partial x} \cdot \frac{x}{\sqrt{x^2 + y^2}} + f'(u) \cdot \frac{\partial}{\partial x} \left(\frac{x}{\sqrt{x^2 + y^2}}\right)$$

$$= f''(u) \cdot \left(\frac{x}{\sqrt{x^2 + y^2}}\right)^2 + f'(u) \cdot \frac{y^2}{(x^2 + y^2)^{\frac{3}{2}}}$$

$$\frac{\partial^2 z}{\partial x^2} = f''(u) \cdot \left(\frac{x}{\sqrt{x^2 + y^2}}\right)^2 + f'(u) \cdot \frac{y^2}{(x^2 + y^2)^{\frac{3}{2}}}$$

由x,y的轮换对称性,知

$$\frac{\partial^2 z}{\partial y^2} = f''(u) \cdot \left(\frac{y}{\sqrt{x^2 + y^2}}\right)^2 + f'(u) \cdot \frac{x^2}{(x^2 + y^2)^{\frac{3}{2}}}$$

于是
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = f''(u) + f'(u) \cdot \frac{1}{(x^2 + y^2)^{\frac{1}{2}}} = 0$$

$$f''(u) + \frac{1}{u}f'(u) = 0$$

(2) 若 f(1) = 0, f'(1) = 1, 求 f(u) 的表达式.

解
$$f''(u) + \frac{1}{u}f'(u) = 0$$
 属于 $y'' = f(x, y')$ 型,

$$\int \frac{\mathrm{d} p}{p} = \int -\frac{1}{u} \mathrm{d} u, \quad \ln p = -\ln u + \ln C_1$$

:.
$$f'(u) = \frac{1}{u}$$
, $f(u) = \ln u + C_2$,

由
$$f(1) = 0$$
, 得 $C_2 = 0$. $\therefore f(u) = \ln u$.

题型3 利用公式求全微分.

例6 设
$$f(u)$$
可微,且 $f'(0) = \frac{1}{2}$,则

$$z = f(4x^2 - y^2)$$
在点(1,2)处的全微分

$$\left. \mathrm{d} z \right|_{(1,2)} = \frac{4 \mathrm{d} x - 2 \mathrm{d} y}{2}.$$

解
$$\mathbf{d}z|_{(1,2)} = \left(\frac{\partial z}{\partial x}\mathbf{d}x + \frac{\partial z}{\partial y}\mathbf{d}y\right)|_{(1,2)}$$

$$\stackrel{\stackrel{\stackrel{\scriptstyle \bowtie}}{=}}{=} \left. d f (4x^2 - y^2) \right|_{(1,2)}$$

$$= f'(4x^2 - y^2)\Big|_{(1,2)} \cdot d(4x^2 - y^2)\Big|_{(1,2)}$$
$$= f'(0) \cdot (8x dx - 2y dy)\Big|_{(1,2)}$$

$$=\frac{1}{2}\cdot(8dx-4dy)$$

$$=4dx-2dy.$$

题型4 隐函数求导.

 $^{\bullet}$ 例7 设 z = z(x,y) 由方程:

$$x - az = f(y - bz) \tag{1}$$

(a,b为非零常数)所确定,证明:

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = 1$$
, 且求 $\frac{\partial^2 z}{\partial x^2}$.

证法1 (公式法)

$$\Leftrightarrow F(x,y,z) = f(y-bz) - x + az$$

则
$$(1) \Leftrightarrow F(x,y,z) = 0$$

$$F_x = -1$$
, $F_y = f'$, $F_z = f' \cdot (-b) + a$,

$$\therefore \frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(-1)}{-bf' + a}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{f'}{-bf' + a}$$

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = \frac{a}{-bf' + a} + \frac{b \cdot (-f')}{-bf' + a} = 1$$

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{1}{a - bf'} \right)$$

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{1}{a - bf'} \right)$$

$$= \frac{-1}{(a - bf')^2} \cdot \left[-bf'' \cdot \frac{\partial}{\partial x} (y - bz) \right]$$

$$= \frac{-1}{(a - bf')^2} \cdot \left[-bf'' \cdot (-b\frac{\partial z}{\partial x}) \right]$$

$$= -\frac{b^2 f''}{(a - bf')^3}.$$

证法2 (复合函数链导法)

$$x - az(x, y) \equiv f[y - bz(x, y)]$$

"
$$\frac{\partial}{\partial x}$$
": $1-a\frac{\partial z}{\partial x}=f'\cdot(-b\frac{\partial z}{\partial x})$

$$\therefore \frac{\partial z}{\partial x} = \frac{1}{a - bf'}$$

类似地,可求得
$$\frac{\partial z}{\partial x} = \frac{-f'}{a - bf'}.$$

证法3 (全微分形式不变性)

$$x - az = f(y - bz)$$

$$d(x-az) = df(y-bz)$$

$$dx - adz = f' \cdot d(y-bz)$$

$$= f' \cdot (dy-bdz)$$

$$(a - bf')dz = dx - f'dy$$

$$dz = \frac{1}{a - bf'} dx - \frac{f'}{a - bf'} dy$$

$$\frac{\partial z}{\partial x} \qquad \frac{\partial z}{\partial y}$$

类似题

设
$$z = z(x,y)$$
是由方程
$$x^2 + y^2 - z = \varphi(x + y + z)$$

所确定的函数,其中 φ 具有二阶导数,且 $\varphi' \neq -1$.

(1)求dz;

2. 方向导数、梯度、散度与旋度

$$u = u(x, y, z)$$

$$gradu = \frac{\partial u}{\partial x}\vec{i} + \frac{\partial u}{\partial y}\vec{j} + \frac{\partial u}{\partial z}\vec{k} \qquad \vec{A} = (P, Q, R)$$

$$\vec{A} = (P, Q, R)$$

散度

$$div\vec{A} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

$$\frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\partial}{\partial z} \\
\frac{\partial}{\partial x} \frac{\partial}{\partial z} \frac{\partial}{\partial z}$$

旋度

$$rot\vec{A} = (\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z})\vec{i} + (\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x})\vec{j} + (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})\vec{k}$$

例8 设
$$u(x,y,z) = 1 + \frac{x^2}{6} + \frac{y^2}{12} + \frac{z^2}{18}$$

单位向量
$$\vec{n} = \frac{1}{\sqrt{3}}(1,1,1)$$
,则 $\frac{\partial u}{\partial n}\Big|_{(1,2,3)} = \frac{1}{\sqrt{3}}$.

解
$$\frac{\partial u}{\partial x} = \frac{x}{3}$$
, $\frac{\partial u}{\partial y} = \frac{y}{6}$, $\frac{\partial u}{\partial z} = \frac{z}{9}$.

$$|\operatorname{grad} u|_{(1,2,3)} = \left(\frac{x}{3}, \frac{y}{6}, \frac{z}{9}\right)_{(1,2,3)} = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

$$\therefore \frac{\partial u}{\partial n}\Big|_{(1,2,3)} = \operatorname{grad} u \cdot \vec{n}\Big|_{(1,2,3)} = \frac{1}{\sqrt{3}} \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3}\right) = \frac{1}{\sqrt{3}}.$$

3. 几何应用

例9曲线 $\begin{cases} x^2 + y^2 + z^2 = 6 \\ \text{在点}(2,1,1) \text{处的切线} \\ x^2 + y^2 - z^2 = 4 \\ \text{与y轴的夹角余弦是} \\ \frac{\pm \sqrt{5}}{\sqrt{5}}. \end{cases}$

解 切向量:

$$ec{T} = \pm egin{array}{cccc} ec{i} & ec{j} & ec{k} \ 2x & 2y & 2z \ = \pm 8(-1, 2, 0) \ 2x & 2y - 2z \ (2,1,1) \ \ ec{e}_{ec{T}} = \pm ig(-rac{1}{\sqrt{5}}, rac{2}{\sqrt{5}}, 0 ig) \end{array}$$

例10 曲面 $z = x^2 + y^2$ 与平面 2x + 4y + z = 0 平行 的切平面的方程是 2x + 4y + z + 5 = 0.

解 曲面 $z = x^2 + y^2$ 的法向量: $\vec{n} = (2x, 2y, -1)$

$$F(x,y,z) = 0$$

的法向量:

$$\vec{n} = (F_x, F_y, F_z)$$

所给平面的法向量: $\vec{n}_1 = (2,4,1)$

依题设,知 $\vec{n}//\vec{n}_1$, 且 $z = x^2 + y^2$

$$\therefore \frac{2x}{2} = \frac{2y}{4} = \frac{-1}{1} \quad \text{if } z = x^2 + y^2$$

:. 切点为(-1,-2,5),切平面方程为:

$$2(x+1)+4(y+2)+1\cdot(z-5)=0$$

例11 过直线 L: $\begin{cases} 10x + 2y - 2z = 27 \\ x + y - z = 0 \end{cases}$

作曲面Σ: $3x^2 + y^2 - z^2 = 27$ 的切平面,求此切平面

解 Σ 上点 $P(x_0,y_0,z_0)$ 处的法向量:

$$\vec{n} = (F_x, F_y, F_z)_P = (6x, 2y, -2z)_P$$

= $2(3x_0, y_0, -z_0)$

∴ Σ上点 P处的切平面:

$$3x_0(x-x_0) + y_0(y-y_0) - z_0(z-z_0) = 0$$

$$P \in \Sigma$$
, $3x_0^2 + y_0^2 - z_0^2 = 27$

$$3x_0x + y_0y - z_0z = 27 \tag{1}$$

另一方面,过直线L的平面束:

$$(10x + 2y - 2z - 27) + \lambda(x + y - z) = 0$$

即
$$(10+\lambda)x + (2+\lambda)y - (2+\lambda)z = 27$$
 (2)

由于平面(1)是(2)中的某个平面,故

$$\begin{cases} 10 + \lambda = 3x_0 \\ 2 + \lambda = y_0 \\ -(2 + \lambda) = -z_0 \end{cases}, \quad \exists \quad \begin{cases} x_0 = \frac{\lambda + 10}{3} \\ y_0 = 2 + \lambda \\ z_0 = 2 + \lambda \end{cases},$$

代入Σ的方程,得

$$3(\frac{\lambda+10}{3})^2 + (2+\lambda)^2 - (2+\lambda)^2 = 27$$

$$\lambda_1 = -1, \ \lambda_2 = -19$$

代入(2), 得所求切平面:

$$9x + y - z - 27 = 0$$

及
$$9x+17y-17z+27=0$$
.

例12设 Σ 为椭球面 $\frac{x^2}{2} + \frac{y^2}{2} + z^2 = 1$ 的上半部分, $\triangle P(x,y,z) \in \Sigma, \pi$ 为 Σ 在 $\triangle P(x,y,z)$ 为 $\triangle P(x,y,z)$

$$I = \iint_{\Sigma} \frac{z}{\rho(x, y, z)} dS.$$

解 设(X,Y,Z)为切平面 π 上任意一点,则 π 的方程:

$$\frac{xX}{2} + \frac{yY}{2} + zZ = 1$$

$$\therefore \rho = \frac{|0-1|}{\sqrt{\frac{x^2}{4} + \frac{y^2}{4} + z^2}} = (\frac{x^2}{4} + \frac{y^2}{4} + z^2)^{-\frac{1}{2}}$$

由
$$z = \sqrt{1 - (\frac{x^2}{2} + \frac{y^2}{2})}$$
, 得

$$dS = \sqrt{1 + z_x^2 + z_y^2} \, dx dy = \frac{\sqrt{4 - x^2 - y^2}}{2z} dx dy$$

$$\therefore I = \iint_{\Sigma} \frac{z}{\rho(x, y, z)} dS$$

$$= \iint_{D_{xy}} \sqrt{\frac{x^2}{4} + \frac{y^2}{4} + (1 - \frac{x^2}{2} - \frac{y^2}{2})} \cdot \frac{\sqrt{4 - x^2 - y^2}}{2} dxdy$$

$$= \frac{1}{4} \iint_{D} (4 - x^{2} - y^{2}) dx dy = \frac{1}{4} \int_{0}^{2\pi} d\theta \int_{0}^{\sqrt{2}} (4 - \rho^{2}) \rho d\rho$$

$$=\frac{3\pi}{2}$$
.

例13 选择题

设 f(x,y) 在点(0,0)的某邻域内有定义,

且
$$f_x(0,0) = 3$$
, $f_y(0,0) = 1$,则(C).

A.
$$dz|_{(0,0)} = 3dx + dy$$

$$B$$
.曲面 $z = f(x,y)$ 在点(0,0, $f(0,0)$)处的法向量为(3,1,1)

$$C.$$
曲线
$$z = f(x,y)$$
 在点(0,0,f(0,0))处的切向
$$y = 0$$

量为(1,0,3)

D.曲线
$$z = f(x,y)$$
 在点(0,0,f(0,0))处的切向
$$y = 0$$

量为(3,0,1)

解 1° 可导 \Rightarrow 可微, A不可取.

$$2^{\circ}$$
 $\Sigma : F(x, y, z) = f(x, y) - z = 0,$

法向量:
$$\vec{n} = (F_x, F_y, F)_{(0,0,f(0,0))}$$

$$=(f_x,f_y,-1)_{(0,0,f(0,0))}$$
 ∴ B 错

$$=(3,1,-1)$$

$$= (3,1,-1)$$

$$3^{\circ} 曲线 \begin{cases} z = f(x,y) \\ y = 0 \end{cases} \Leftrightarrow \begin{cases} x = x \\ y = 0 \\ z = f(x,0) \end{cases}$$
 ... 选*C*.

切向量:
$$\vec{T} = (\varphi'(x), \psi'(x), \omega'(x))_{(0,0,f(0,0))}$$

= $(1,0,f_x(x,0))_{(0,0,f(0,0))} = (1,0,3)$

4. 极值、最值

题型1 显函数的极值

例14 求
$$z = x^3 + y^3 - 3axy$$
 (a为常数)的极值.

解 1° 求驻点
$$\begin{cases} z_x = 3x^2 - 3ay = 0 & \text{①} \\ z_y = 3y^2 - 3ax = 0 & \text{②} \end{cases}$$

当
$$a \neq 0$$
 时,

①
$$-$$
②:
 $(x^2 - y^2) + a(x - y) = 0$
 $(x - y)(x + y + a) = 0$

$$x + y + a \neq 0$$

否则
$$x+y+a=0$$

$$z_x = 3[x^2 + a(x+a)]$$

$$=3(x^2+ax+a^2)>0$$

$$\therefore x = y \quad 代入①,$$

$$x=0, \quad x=a$$

$$z_{y} = 3x^{2} - 3ay$$
, $z_{y} = 3y^{2} - 3ax$

$$A=z_{xx}=6x,$$

$$B=z_{xy}=-3a,$$

$$C=z_{vv}=6y,$$

$$\Delta = AC - B^2 = 36xy - 9a^2$$

(1) 当 $a \neq 0$ 时,

驻点	(0,0)	(a,	<i>a</i>)
Δ	$-9a^2<0$	$27a^2 > 0$	
$m{A}$		6 <i>a</i>	
		(a>0)	(a<0)
z(x,y)	非极值	极小值	极大值

即当
$$a \neq 0$$
时, $z = x^3 + y^3 - 3axy$ 在(0,0)不取得极值.

当
$$a > 0$$
时, $z = x^3 + y^3 - 3axy$ 在 (a,a) 取

得极小值:
$$z(a,a) = -a^3$$
;

当a < 0时, $z = x^3 + y^3 - 3axy$ 在(a,a)取得极大值: $z(a,a) = -a^3$.

$$(2)$$
 当 $a = 0$ 时,在唯一驻点 $(0,0)$ 处,

$$\Delta = AC - B^2 = (36xy - 9a^2)\Big|_{(0,0)} = 0$$

充分判别法失效!

此时,
$$z = x^3 + y^3$$
, $z(0,0) = 0$

当
$$x > 0$$
时, $z(x,0) = x^3 > 0 = z(0,0)$

当
$$x < 0$$
时, $z(x,0) = x^3 < 0 = z(0,0)$

$$\therefore$$
 (0,0)不是 $z = x^3 + y^3$ 的极值点.

当
$$a = 0$$
 时。 $z = x^3 + y^3 - 3axy$ 无极值.

类似题

2012考研

求函数
$$f(x,y) = xe^{-\frac{x^2+y^2}{2}}$$
 的极值.

解 1° 求驻点
$$\begin{cases} f_x = (1-x^2)e^{-\frac{x^2+y^2}{2}} = 0 \\ f_y = -xye^{-\frac{x^2+y^2}{2}} = 0 \end{cases}$$

至点: (1,0), (-1,0)
$$2^{\circ}$$
 判断 $A = f_{xx} = x(x^2 - 3)e^{-\frac{x^2 + y^2}{2}}$,

$$B = f_{xy} = y(x^2 - 1)e^{-\frac{x^2 + y^2}{2}},$$

$$C = f_{yy} = x(y^2 - 1)e^{-\frac{x^2 + y^2}{2}},$$

驻点	(1,0)	(-1,0)
Δ	$2e^{-1} > 0$	$2e^{-1} > 0$
$oldsymbol{A}$	$-2e^{-\frac{1}{2}} < 0$	$2e^{-\frac{1}{2}} > 0$
f(x,y)	极大值 $e^{-\frac{1}{2}}$	极小值 $-\mathbf{e}^{-\frac{1}{2}}$

$$A = f_{xx} = x(x^{2} - 3)e^{-\frac{x^{2} + y^{2}}{2}},$$

$$A = f_{xx} = x(x^{2} - 3)e^{-\frac{x^{2} + y^{2}}{2}},$$

$$B = f_{xy} = y(x^{2} - 1)e^{-\frac{x^{2} + y^{2}}{2}},$$

$$C = f_{yy} = x(y^{2} - 1)e^{-\frac{x^{2} + y^{2}}{2}},$$

例15 若 $f(x,y) = 2x^2 + ax + xy^2 + 2y$ 在点(1,-1)处取得极值,则常数 a = -5.

解 由可导函数取得极值的 必要条件,得

$$\begin{cases} f_x(1,-1) = (4x + a + y^2)_{(1,-1)} \\ = 5 + a = 0 \\ f_y(1,-1) = (2xy + 2)_{(1,-1)} = 0 \end{cases}$$

$$\therefore a = -5$$

题型2 隐函数的极值

例16 求由方程 $x^2 + y^2 + z^2 - 2x + 2y - 4z - 10 = 0$

确定的函数 z = f(x,y)的极值.

解 将方程两边分别对x,y求偏导

$$\begin{cases} 2x + 2z \cdot z_{x} - 2 - 4z_{x} = 0 \\ 2y + 2z \cdot z_{y} + 2 - 4z_{y} = 0 \end{cases}$$

隐函数求极值问题

即驻点为P(1,-1),

将上方程组再分别对x,y求偏导数,

$$A = z_{xx} |_{P} = \frac{1}{2-z},$$

$$B=z_{xy}\mid_{P}=0,$$

$$C = z_{yy} |_{P} = \frac{1}{2-z},$$

函数在P有极值·

将
$$P(1,-1)$$
代入原方程, 有 $z_1 = -2$, $z_2 = 6$,

当
$$z_1 = -2$$
时, $A = z_{xx}|_{(1,-1,-2)} = \frac{1}{2-z}|_{z=-2} = \frac{1}{4} > 0$

所以
$$z = f(1,-1) = -2$$
为极小值;

当
$$z_2 = 6$$
时, $A = -\frac{1}{4} < 0$,

所以
$$z = f(1,-1) = 6$$
为极大值.

题型3 条件极值

例17 求函数 $u = x^2 + y^2 + z^2$ 在约束条件:

$$z = x^2 + y^2 \pi x + y + z = 4$$

下的最大值与最小值.

解 作拉格朗日函数:

$$F(x,y,z,\lambda,\mu) = x^2 + y^2 + z^2 + \lambda(x^2 + y^2 - z) + \mu(x + y + z - 4)$$

解方程组得

$$(x_1, y_1, z_1) = (1,1,2), (x_2, y_2, z_2) = (-2,-2,8)$$

故所求最大值:
$$u_{\text{max}} = u(-2,-2,8) = 72;$$

最小值:
$$u_{\min} = u(1,1,2) = 6$$
.

题型4 f(x,y)在有界闭区域上的最值.

例18 求函数
$$f(x,y) = x^2 + 2y^2 - x^2y^2$$
在区域
$$D = \{(x,y) | x^2 + y^2 \le 4, y \ge 0 \}$$

上的最大值和最小值.

解 1° 先求 f(x,y) 在D内的驻点

得D内驻点为: $(-\sqrt{2},1),(\sqrt{2},1),$

且
$$f(\pm\sqrt{2},1)=2$$
.

2° 再求 f(x,y) 在D边界上的最值

• 在边界
$$L_1: y = 0 (-2 \le x \le 2)$$
上,记

$$g(x) = f(x,0) = x^2$$

在 L_1 上, f(x, y) 的最大值

为
$$g(\pm 2)=f(\pm 2,0)=4$$
,

最小值为

$$g(0)=f(0,0)=0.$$

构造函数

$$F(x,y,\lambda) = x^2 + 2y^2 - x^2y^2 + \lambda(x^2 + y^2 - 4),$$

$F(x,y,\lambda) = x^2 + 2y^2 - x^2y^2 + \lambda(x^2 + y^2 - 4),$

$$\begin{cases}
F_x = 2x - 2xy^2 + 2\lambda x = 0 \\
F_y = 4y - 2x^2y + 2\lambda y = 0 \\
F_{\lambda} = x^2 + y^2 - 4 = 0
\end{cases}$$

解得极值可疑点: $\begin{cases} x = \pm \sqrt{\frac{5}{2}} \\ y = \sqrt{\frac{3}{2}} \end{cases}$

$$f(\pm\sqrt{\frac{5}{2}},\sqrt{\frac{3}{2}}) = \frac{7}{4}, \quad f(0,2) = 8$$

综上, f(x, y) 在D上的最大值为8, 最小值为0.

题型5 二重极限与极值

例19 已知函数 f(x,y) 在点(0,0)的某邻域内连续,

$$\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)-xy}{(x^2+y^2)^2} = 1, \quad \text{II}(A).$$

- (A) 点(0,0)不是f(x,y)的极值点;
- (B) 点(0,0)是f(x,y)的极大值点;
- (C)点(0,0)是f(x,y)的极小值点;
- (D) 根据所给条件无法判断 点(0,0) 是否是f(x,y)的极值点.

解 由
$$\lim_{\substack{x \to 0 \ y \to 0}} \frac{f(x,y) - xy}{(x^2 + y^2)^2} = 1$$
,
及 $f(x,y)$ 在 $(0,0)$ 处连续,得

$$\lim_{\substack{x \to 0 \ y \to 0}} [f(x,y) - xy] = 0$$
,
 $\lim_{\substack{x \to 0 \ y \to 0}} f(x,y) = 0$,
 $\lim_{\substack{x \to 0 \ y \to 0}} f(x,y) = 0$,
其中 $\lim_{\substack{x \to 0 \ y \to 0}} \alpha = 0$.

$$f(x,y) = xy + (1+\alpha)(x^2 + y^2)^2,$$
其中 $\lim_{\substack{x \to 0 \\ y \to 0}} \alpha = 0.$

$$f(x,x) = x^2 + (1+\alpha) \cdot 4x^4$$

$$= x^2 + o(x^2)$$

$$f(x,-x) = -x^2 + o(x^2)$$

$$\therefore \exists \delta > 0, \exists x \in U(0,\delta)$$

$$f(x,x) = x^2 + o(x^2) > 0 = f(0,0)$$

$$f(x,-x) = -x^2 + o(x^2) < 0 = f(0,0)$$

题型6 应用题

例20 已知曲线
$$C: \begin{cases} x^2 + y^2 - 2z^2 = 0 \\ x + y + 3z = 5 \end{cases}$$

求C上距离xOy面最远的点和最近的点.

解 点(x,y,z)到xOy面的距离为:

$$d = |z|$$

故求C上距离xOy面最远点和最近点等价于:

求
$$H = d^2 = z^2$$
 在条件 $x^2 + y^2 - 2z^2 = 0$ 与

$$x + y + 3z = 5$$
下的最大值点和最小值点.

从而
$$\begin{cases} 2x^2 - 2z^2 = 0 \\ 2x + 3z = 5 \end{cases}$$
 解得
$$\begin{cases} x = -5 \\ y = -5 \end{cases}$$
 或
$$\begin{cases} x = 1 \\ z = 5 \end{cases}$$

根据几何意义,曲线C上一定存在距离xOy面最远的点和最近的点,故所求点依次为

(-5-5,5) 和 (1,1,1).

例21 试求在圆锥面 $Rz = h\sqrt{x^2 + y^2}$ 和平面 z = h所 围锥体内作出的底面平 行于xOy面的最大长方体体积(R > 0, h > 0).

解 设长方体位于第一卦限内的一个顶点的坐标为(x, y, z),则长方体的长,宽,高分别为 2x, 2y, h-z. 故长方体的体积:

$$V = 2x \cdot 2y \cdot (h-z) = 4xy \quad (h-z), \begin{pmatrix} 0 < x, y < R \\ 0 < z < h \end{pmatrix}$$

约束条件:
$$h\sqrt{x^2+y^2}-Rz=0$$
.

目标函数

$$F(x,y,z,\lambda) = xy(h-z) + \lambda(h\sqrt{x^2+y^2}-Rz),$$

$$\int F_x = y(h-z) + \lambda \frac{hx}{\sqrt{x^2 + y^2}} = 0,$$
 (1)

$$\begin{cases} F_{y} = x(h-z) + \lambda \frac{hy}{\sqrt{x^{2} + y^{2}}} = 0, & 2 \end{cases}$$

$$F_z = -xy - \lambda R = 0,$$

$$F_{\lambda} = h \sqrt{x^2 + y^2} - Rz = 0.$$

① · y - ② · x, 得 y = x,

这种解法具有一般性

代入④得
$$z = \frac{\sqrt{2}h}{R}x$$
,代入③得 $\lambda = -\frac{x^2}{R}$.

进一步可解得
$$x = y = \frac{\sqrt{2}}{3}R, z = \frac{2}{3}h.$$

由实际问题存在最大值,及可疑的极值点唯一,有

$$V_{\text{max}} = 4xy \ (h-z) = 4 \cdot \left(\frac{\sqrt{2}}{3}R\right)^2 \cdot \frac{1}{3}h = \frac{8}{27}R^2h.$$

例22 在第一卦限内作椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 的切平面,使切平面与三个坐标面所围成的四面体体积最小,求切点坐标.

解 设 $P(x_0, y_0, z_0)$ 为椭球面上一点,

$$|| F_x ||_P = \frac{2x_0}{a^2}, \quad |F_y||_P = \frac{2y_0}{b^2}, \quad |F_z||_P = \frac{2z_0}{c^2}$$

过 $P(x_0,y_0,z_0)$ 的切平面方程为

化简为
$$\frac{x \cdot x_0}{a^2} + \frac{y \cdot y_0}{b^2} + \frac{z \cdot z_0}{c^2} = 1$$
,

该切平面在三个轴上的截距各为

$$x = \frac{a^2}{x_0}, \quad y = \frac{b^2}{y_0}, \quad z = \frac{c^2}{z_0},$$

所围四面体的体积
$$V = \frac{1}{6}xyz = \frac{a^2b^2c^2}{6x_0y_0z_0}$$
,

在条件 $\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} + \frac{z_0^2}{c^2} = 1$ 下求 V 的最小值, $V = \frac{a^2b^2c^2}{6x_0y_0z_0}$ 最小

$$\Leftrightarrow u = \ln x_0 + \ln y_0 + \ln z_0,$$

$$G(x_0,y_0,z_0)$$

$$V = \frac{a^2b^2c^2}{6x_0y_0z_0}$$
最小

⇔ ln V最小

=
$$\ln x_0 + \ln y_0 + \ln z_0 + \lambda \left(\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} + \frac{z_0^2}{c^2} - 1\right)$$
,

即
$$\begin{cases} \frac{1}{x_0} + \frac{2\lambda x_0}{a^2} = 0 \\ \frac{1}{y_0} + \frac{2\lambda y_0}{b^2} = 0 \end{cases} \qquad \text{可得} \begin{cases} x_0 = \frac{a}{\sqrt{3}} \\ y_0 = \frac{b}{\sqrt{3}}, \\ z_0 = \frac{c}{\sqrt{3}} \end{cases}$$

$$\frac{1}{z_0} + \frac{2\lambda z_0}{c^2} = 0 \qquad \qquad \text{当切点坐标为}$$

$$\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} + \frac{z_0^2}{c^2} - 1 = 0 \qquad \text{当切点坐标为}$$

$$(\frac{a}{\sqrt{3}}, \frac{b}{\sqrt{3}}, \frac{c}{\sqrt{3}}) \text{时},$$

例23 已知力场 $\vec{F} = yz \vec{i} + zx \vec{j} + xy \vec{k}$,问质点

从原点沿直线移到曲面
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

的第一卦限部分上的哪一点作功最大? 并求

第二类曲线

出最大功.

解 目标函数:

功 $W = \int_{L} yz \, dx + zx \, dy + xy \, dz$

先求W的表达式:

(方法1) 直接法

直线段的参数方程:

$$\begin{cases} x = x_0 t \\ y = y_0 t \\ z = z_0 t \end{cases} t : 0 \mapsto 1$$

$$W = \int_{L} yz \, dx + zx \, dy + xy \, dz = \int_{0}^{1} (x_{0}y_{0}z_{0}) \cdot 3t^{2} \, dt$$
$$= (x_{0}y_{0}z_{0}) t^{3} \Big|_{0}^{1} = x_{0}y_{0}z_{0}$$

(方法2) 原函数法

$$\therefore$$
 $yz d x + zx d y + xy dz = d(xyz)$

$$\therefore W = \int_{L} yz \, dx + zx \, dy + xy \, dz$$
$$= xyz \Big|_{(0,0,0)}^{(x_0,y_0,z_0)} = x_0 y_0 z_0$$

再求W= xyz 在条件:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
下的极值.

$$F(x,y,z) = xyz + \lambda(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1)$$

$$(x \ge 0, y \ge 0, z \ge 0)$$

$$F_{x} = yz + \frac{2x}{a^{2}}\lambda = 0$$

$$F_{y} = xz + \frac{2y}{b^{2}}\lambda = 0$$

$$F_{z} = xy + \frac{2z}{c^{2}}\lambda = 0$$

$$F_{z} = \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} - 1 = 0$$

由于实际问题最大值一定存在,所以

$$W_{\max} = \frac{\sqrt{3}}{9}abc.$$

题型7 不等式证明

例24 当 x > 0, y > 0, z > 0 时,求函数

$$u = \ln x + 2\ln y + 3\ln z$$

在球面 $x^2 + y^2 + z^2 = 6r^2$ 上的最大值,并证明:

对于任何正数 a,b,c,有

$$ab^2c^3 \leq 108(\frac{a+b+c}{6})^6.$$

解(1) 作

$$F(x,y,z) = \ln x + 2\ln y + \ln z + \lambda(x^2 + y^2 + z^2 - 6r^2)$$

$$\int F_x = \frac{1}{x} + 2x\lambda = 0 \tag{1}$$

$$\int_{-\infty}^{\infty} F_y = \frac{x}{y} + 2y\lambda = 0 \qquad (2)$$

$$\begin{cases} F_z = \frac{3}{z} + 2z\lambda = 0 \end{cases} \tag{3}$$

$$F_{\lambda} = x^2 + y^2 + z^2 - 6r^2 = 0 \tag{4}$$

(1) × y - (2) × x:
$$y^2 = 2x^2$$

$$\therefore x > 0, y > 0 \qquad \therefore y = \sqrt{2}x$$

$$(2)\times z - (3)\times y: \quad z = \sqrt{3}x$$

$$y = \sqrt{2}x$$

代入(4), 得
$$x=r$$
.

$$u = \ln x + 2\ln y + 3\ln z$$

故有惟一极值可疑点: $(r,\sqrt{2}r,\sqrt{3}r)$

$$\lim_{x\to 0^+} u = -\infty, \quad \lim_{y\to 0^+} u = -\infty, \quad \lim_{z\to 0^+} u = -\infty$$

而 u 在x > 0, y > 0, z > 0 内可微

• :
$$u$$
 在条件 $x^2 + y^2 + z^2 = 6r^2(x > 0, y > 0, z > 0)$

下的最大值为:

$$M = u(r, \sqrt{2}r, \sqrt{3}r) = \ln(6\sqrt{3}r^6)$$

$$u = \ln x + 2\ln y + 3\ln z$$

当
$$x^2 + y^2 + z^2 = 6r^2(x > 0, y > 0, z > 0)$$
时,有
$$u(x, y, z) \le M = u(r, \sqrt{2}r, \sqrt{3}r)$$

 $\exists \ln xy^2z^3 \leq \ln(6\sqrt{3}r^6)$

亦即
$$xy^2z^3 \le 6\sqrt{3}r^6 = 6\sqrt{3} \cdot (\frac{x^2 + y^2 + z^2}{6})^3$$

两边平方,得

$$x^2y^4z^6 \le (6\sqrt{3})^2 \cdot (\frac{x^2 + y^2 + z^2}{6})^6$$

$$|| x^2 \cdot (y^2)^2 (z^2)^3 \le 108 \cdot (\frac{x^2 + y^2 + z^2}{6})^6$$

$\therefore \quad \forall \ a > 0, b > 0, c > 0, \quad \diamondsuit$

$$x = \sqrt{a}, y = \sqrt{b}, z = \sqrt{c}$$

代入

$$(x^2 \cdot (y^2)^2 (z^2)^3 \le 108 \cdot (\frac{x^2 + y^2 + z^2}{6})^6$$

便得

$$ab^2c^3 \leq 108(\frac{a+b+c}{6})^6.$$

类似题

利用条件极值的方法证明:对于任何正数 a,b,c下列不等式成立:

$$abc^3 \leq 27(\frac{a+b+c}{5})^5.$$

分析 $\forall a>0,b>0,c>0, \Leftrightarrow d=a+b+c$

若能证明: 在条件

$$x + y + z = d \quad (x, y, z > 0)$$

下,有
$$f(x,y,z) = xyz^3 \le f(\frac{d}{5},\frac{d}{5},\frac{3d}{5}) = 27(\frac{d}{5})^5$$

则由于 a+b+c=d, 特别地, 应有

$$f(a,b,c) = abc^{3}$$

$$\leq f(\frac{d}{5}, \frac{d}{5}, \frac{3d}{5}) = 27(\frac{d}{5})^{5} = 27(\frac{a+b+c}{5})^{5}.$$

从而原不等式成立.

$$i\hspace{-.1cm} \text{i}\hspace{-.1cm} E \qquad \forall \ a>0,b>0,c>0, \quad \diamondsuit$$

$$d = a + b + c$$

考虑
$$f(x,y,z) = xyz^3$$

在条件:
$$x+y+z=d$$
 $(x,y,z>0)$

下的极值问题.

作 $F(x,y,z) = xyz^3 + \lambda(x+y+z-d)$

由
$$\begin{cases} F_x = yz^3 + \lambda = 0 \\ F_y = xz^3 + \lambda = 0 \\ F_z = 3xyz^2 + \lambda = 0 \end{cases}$$
解得
$$\begin{cases} x + y + z = d \end{cases}$$

唯一极值可疑点:
$$x = y = \frac{d}{5}, z = \frac{3d}{5}$$
.

$$f(\frac{d}{5}, \frac{d}{5}, \frac{3d}{5}) = \frac{d}{5} \cdot \frac{d}{5} \cdot (\frac{3d}{5})^3 = 27(\frac{d}{5})^5$$

 $:: f(x,y,z) = xyz^3$ 在有界闭集**D**:

$$x + y + z = d \quad (x, y, z \ge 0)$$

上连续,

f(x,y,z)必在D上取得最大值.

又: 在
$$D$$
的边界上, $f=0$

$$\therefore M = \max_{(x,y,z)\in D} f(x,y,z)$$

$$= f(\frac{d}{5}, \frac{d}{5}, \frac{3d}{5}) = 27(\frac{d}{5})^5$$

$$\therefore f(a,b,c) \leq M = 27(\frac{d}{5})^5$$

即
$$abc^3 \leq 27(\frac{a+b+c}{5})^5$$
.