数理逻辑 第三周作业 3月3日 周二

PB18151866 龚小航

1、先根据定义直接证明: 【练习 4 P25】 $\vdash (x_1 \to (x_1 \to x_2)) \to (x_1 \to x_2)$ 再依据演绎定理证明它。

解: 直接证明:

$$(2) \left(x_1 \to \left((x_1 \to x_2) \to x_1 \right) \right) \to \left(\left(x_1 \to (x_1 \to x_2) \right) \to (x_1 \to x_1) \right) \cdots L2$$

$$(4) (x_1 \rightarrow (x_1 \rightarrow x_2)) \rightarrow ((x_1 \rightarrow x_1) \rightarrow (x_1 \rightarrow x_2)) \cdots L2$$

$$(5) \left(\left(x_1 \to (x_1 \to x_2) \right) \to \left((x_1 \to x_1) \to (x_1 \to x_2) \right) \right) \to$$

$$\left(\left(\left(x_1 \to (x_1 \to x_2)\right) \to (x_1 \to x_1)\right) \to \left(\left(x_1 \to (x_1 \to x_2)\right) \to (x_1 \to x_2)\right)\right) \cdots L2$$

利用演绎定理和简化证明:将 $x_1 \rightarrow (x_1 \rightarrow x_2)$ 作为前提集

$$(1) (x_1 \rightarrow (x_1 \rightarrow x_2)) \rightarrow ((x_1 \rightarrow x_1) \rightarrow (x_1 \rightarrow x_2)) \cdots L2$$

②
$$x_1 \rightarrow (x_1 \rightarrow x_2)$$
 … 前提

$$(3) (x_1 \rightarrow x_1) \rightarrow (x_1 \rightarrow x_2) \cdots MP 1,2$$

$$(5)$$
 $r_{\perp} \rightarrow r_{\perp}$ $MP 3 4$

⑥
$$\{x_1 \to (x_1 \to x_2)\} \vdash (x_1 \to x_2) \Leftrightarrow (x_1 \to (x_1 \to x_2)) \to (x_1 \to x_2) \cdots$$
 演绎定理

- 1、直接证明下列命题 (可以使用 HS 规则),之后简化证明它们: 【练习 5 P28】
 - $(3) \vdash \neg(p \rightarrow q) \rightarrow \neg q$
 - $(4) \vdash \neg (p \rightarrow q) \rightarrow p$
 - 解:由于直接证明较为冗长,分为几个部分证明:完整的直接证明将各个部分替换进证明就可以得到。因此证明依据写为黑色带圈数字表示将某部分替换进去的简写,占一行。
 - ① 证明双否律 $\neg \neg p \rightarrow p$:

$$\underbrace{ \left(\left(\neg \neg \neg \neg p \rightarrow \neg \neg p \right) \rightarrow \left(\neg p \rightarrow \neg \neg \neg p \right) \right) \rightarrow \left(\neg \neg p \rightarrow \left(\left(\neg \neg \neg p \rightarrow \neg \neg p \right) \rightarrow \left(\neg p \rightarrow \neg \neg \neg p \right) \right) \right) \cdots L1 }$$

$$\textcircled{2} \left(\neg \neg p \rightarrow \left((\neg \neg \neg \neg p \rightarrow \neg \neg p) \rightarrow (\neg p \rightarrow \neg \neg \neg p) \right) \right) \rightarrow$$

$$\left(\left(\neg\neg p\to (\neg\neg\neg\neg p\to \neg\neg p)\right)\to \left(\neg\neg p\to (\neg p\to \neg\neg\neg p)\right)\right)\cdots\cdots\cdots$$
L2

$$\left(\left(\neg\neg p\rightarrow(\neg\neg\neg\neg p\rightarrow\neg\neg p)\right)\rightarrow\left(\neg\neg p\rightarrow(\neg p\rightarrow\neg\neg\neg p)\right)\right)\cdots\cdots\cdots HS\ 1.2$$

$$\textcircled{4} \ (\neg\neg\neg\neg p \rightarrow \neg\neg p) \rightarrow (\neg p \rightarrow \neg\neg\neg p) \cdots L3$$

$$(5) (\neg \neg p \rightarrow (\neg \neg \neg \neg p \rightarrow \neg \neg p)) \rightarrow (\neg \neg p \rightarrow (\neg p \rightarrow \neg \neg \neg p)) \cdots MP 3,4$$

$$(6) \neg \neg p \rightarrow (\neg \neg \neg \neg p \rightarrow \neg \neg p) \cdots L1$$

$$(8) (\neg p \rightarrow \neg \neg \neg p) \rightarrow (\neg \neg p \rightarrow p) \cdots L3$$

$$(10) \left(\neg \neg p \rightarrow (\neg \neg p \rightarrow p) \right) \rightarrow \left((\neg \neg p \rightarrow \neg \neg p) \rightarrow (\neg \neg p \rightarrow p) \right) \cdots L2$$

$$(1) (\neg \neg p \rightarrow \neg \neg p) \rightarrow (\neg \neg p \rightarrow p) \cdots MP 9,10$$

接下来只要证明同一律 $p \rightarrow p$:

$$\textcircled{12} \neg \neg p \rightarrow \big((\neg \neg p \rightarrow \neg \neg p) \rightarrow \neg \neg p \big) \cdots L1$$

$$(3) \left(\neg \neg p \rightarrow \left((\neg \neg p \rightarrow \neg \neg p) \rightarrow \neg \neg p \right) \right) \rightarrow \left(\left(\neg \neg p \rightarrow (\neg \neg p \rightarrow \neg \neg p) \right) \rightarrow (\neg \neg p \rightarrow \neg \neg p) \right) \cdots \cdots \cdots L2$$

$$(4)(\neg\neg p \rightarrow (\neg\neg p \rightarrow \neg\neg p)) \rightarrow (\neg\neg p \rightarrow \neg\neg p) \cdots MP 12,13$$

$$\text{(15)} \neg \neg p \rightarrow (\neg \neg p \rightarrow \neg \neg p) \cdots L1$$

综上两部分证明,可以得到双否律:

至此, 1全部由直接证明完毕

② 证明换位律 $(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$:
$ (1) (p \to q) \to (\neg \neg p \to (p \to q)) \cdots L1 $
$ (2) (\neg \neg p \rightarrow (p \rightarrow q)) \rightarrow ((\neg \neg p \rightarrow p) \rightarrow (\neg \neg p \rightarrow q)) \cdots L2 $
$ (3) (p \rightarrow q) \rightarrow ((\neg \neg p \rightarrow p) \rightarrow (\neg \neg p \rightarrow q)) \cdots HS 1,2 $
$\textcircled{4} \left((p \to q) \to \left((\neg \neg p \to p) \to (\neg \neg p \to q) \right) \right) \to$
$\left(\left((p \to q) \to (\neg \neg p \to p)\right) \to \left((p \to q) \to (\neg \neg p \to q)\right)\right) \dots \dots L2$
$ (5) ((p \rightarrow q) \rightarrow (\neg \neg p \rightarrow p)) \rightarrow ((p \rightarrow q) \rightarrow (\neg \neg p \rightarrow q)) \cdots MP 3,4 $
之后证明该公式前件成立:
$ (\neg \neg p \rightarrow p) \rightarrow \big((p \rightarrow q) \rightarrow (\neg \neg p \rightarrow p) \big) \cdots L1 $
$ (8) (p \rightarrow q) \rightarrow (\neg \neg p \rightarrow p) \cdots MP 6,7 $
所以,接下来的任务是证明 $(\neg\neg p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$,
$ (9) (p \rightarrow q) \rightarrow (\neg \neg p \rightarrow q) \cdots MP 5,8 $
$\textcircled{10} \neg \neg \neg q \rightarrow \neg q \cdots $
$ (1) (\neg \neg \neg q \rightarrow \neg q) \rightarrow (q \rightarrow \neg \neg q) \cdots L3 $
$\textcircled{12} \ q \rightarrow \neg \neg q \ \cdots \ MP \ 10,11$
$ (3) (q \rightarrow \neg \neg q) \rightarrow (\neg \neg p \rightarrow (q \rightarrow \neg \neg q)) \cdots L1 $
$\textcircled{14} \neg \neg p \rightarrow (q \rightarrow \neg \neg q) \cdots MP 12,13$
$(15) \left(\neg \neg p \to (q \to \neg \neg q) \right) \to \left((\neg \neg p \to q) \to (\neg \neg p \to \neg \neg q) \right) \dots L2$
$\textcircled{16} \ (\neg\neg p \rightarrow q) \rightarrow (\neg\neg p \rightarrow \neg\neg q) \cdots MP \ 14,15$
$ (17) (\neg \neg p \rightarrow \neg \neg q) \rightarrow (\neg q \rightarrow \neg p) \cdots L3 $
(18) $(\neg \neg p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$
再利用 HS 可得换位律:
(9) $(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$
至此, ②全部由直接证明完毕

由此,直接证明题目中的公式: (3) $\vdash \neg (p \rightarrow q) \rightarrow \neg q$: $(2) (q \rightarrow (p \rightarrow q)) \rightarrow (\neg (p \rightarrow q) \rightarrow \neg q) \cdots$ $(3) \neg (p \rightarrow q) \rightarrow \neg q \cdots MP 1,$ $(4) \vdash \neg (p \rightarrow q) \rightarrow p$: $\widehat{(1)} \ (\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q) \cdots L3$ $(2) ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q)) \rightarrow (\neg p \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q))) \cdots L1$ $(3) \neg p \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q)) \cdots MP 1,2$ $(4) \left(\neg p \rightarrow \left((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q) \right) \right) \rightarrow \left(\left(\neg p \rightarrow (\neg q \rightarrow \neg p) \right) \rightarrow \left(\neg p \rightarrow (p \rightarrow q) \right) \right) \cdots L2$ $(5) (\neg p \rightarrow (\neg q \rightarrow \neg p)) \rightarrow (\neg p \rightarrow (p \rightarrow q)) \cdots MP 3,4$ $(8) (\neg p \rightarrow (p \rightarrow q)) \rightarrow (\neg (p \rightarrow q) \rightarrow \neg \neg p) \cdots 2$ $9 \neg (p \rightarrow q) \rightarrow \neg \neg p \cdots MP 7.8$ $(1) \neg (p \rightarrow q) \rightarrow p \cdots HS 9,10$ 再对这两个公式做简化证明: $(3) \vdash \neg(p \rightarrow q) \rightarrow \neg q$: $(1) q \rightarrow (p \rightarrow q) \cdots L1$ $(4) \vdash \neg(p \rightarrow q) \rightarrow p$:

④¬¬p→p双重否定律

 \colongraphisms \colongrap

数理逻辑 第三周作业 3月5日 周四

PB18151866 龚小航

1、列出以下复合命题的真值表: 【练习1 P13】

(2)
$$\neg ((p \rightarrow q) \rightarrow (\neg (q \rightarrow p)))$$

$$(7) (\neg p \land q) \rightarrow (\neg q \rightarrow r)$$

(8)
$$(p \rightarrow q) \rightarrow (p \rightarrow r)$$

解: (2) 该命题的真值表是:

	((p	\rightarrow	q)	\rightarrow	(¬(q	\rightarrow	<i>p</i>)))
1	0	1	0	0	0 1	0	1	0
0	0	1	1	1	1	1	0	0
0	1	0	0 1	1	0	0	1	1
1	1	1	1	0	0	1	1	1

(7) 该命题的真值表是:

(¬	p	٨	q)	\rightarrow	(¬	q	\rightarrow	r)
1	0	0	0	1	1	0	0	0
1	0	1	1	1	0	1	1	0
0	1	0	0	1	1	0	0	0
0	1	0	1	1	0	1	1	0
1	0	0	0	1	1	0	1	1
1	0	1	1	1	0	1	1	1
0	1	0	0	1	1	0	1	1
0	1	0	1	1	0	1	1	1

(8) 该命题的真值表是:

(<i>p</i>	\rightarrow	q)	\rightarrow	(<i>p</i>	\rightarrow	r)
0	1	0	1	0	1	0
0	1	0	1	0	1	1
0	1	1	1	0	1	0
0	1	1	1	0	1	1
1	0	0	1	1	0	0
1	0	0	1	1	1	1
1	1	1	0	1	0	0
1	1	1	1	1	1	1