

Группа Р3110	Дата и время измерений <u>07.12.2020 22:00</u>
Студент Бавыкин Роман Алексеевич	Работа выполнена
Преподаватель Коробков Максим Петрович	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 1.07V

Маятник Максвелла

- 1. Цель работы.
 - 1) Изучение динамики плоского движения твердого тела на примере маятника Максвелла
 - 2) Проверка выполнения закона сохранения энергии маятника с учетом потерь на отражение и трение
 - 3) Определение центрального осевого момента инерции маятника Максвелла
- 2. Задачи, решаемые при выполнении работы.
 - 1) Измерение, с помощью виртуальной установки, интервалов времени необходимые для прохождения различных промежутков расстояния
 - 2) Нахождение величины $\frac{1}{2}$ g(t)² , построение графика зависимости $\frac{1}{2}$ g(t)² от Δ h и нахождение коэффициента данной зависимости (α)
 - 3) Нахождение центрального момента инерции и сравнение полученного значения с теоретическим
 - 4)Найти кинетическую и полную энергию в моменты трех прохождений одной из заранее установленных точек и построить графики зависимости кинетической и полной энергии от высоты положения маятника относительно стола для трех моментов времени
- 3. Объект исслелования.

Маятник Максвелла

4. Метод экспериментального исследования.

Многократные прямые измерения, построение графиков зависимостей и сравнение полученных величин с теоретическими значениями.

5. Рабочие формулы и исходные данные.

$$I_{c} = mr^{2} \left(\frac{g}{a} - 1\right); \ h = \frac{at^{2}}{2}; \ \vartheta = \frac{2h}{t}; E_{\text{KMH}} = \frac{1}{2} m \left(\frac{I_{c}}{mr^{2}}\right) \cdot \vartheta^{2}; E_{\text{ПОТ}} = mgH; \ E_{\text{KMH}} = E_{\text{KMH}} + E_{\text{ПОТ}}$$

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора	
1	Цифровой счетчик	Измерительный прибор	0 – 10000мс	0,1мс	
2	Линейка	Mepa	0-100см	0,5 мм	

7. Схема установки (перечень схем, которые составляют Приложение 1).

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1

h ₀ =см	h _i						
10	20	30	40	50	60	70	80
t ₁	2612.2	3717.5	4558.6	5273.3	5897.7	6454.2	6979.1
t ₂	2616.1	3712.5	4563.3	5266.6	5896.5	6452.3	6981.5
t ₃	2611.9	3713.1	4557.3	5268.7	5888.9	6459.3	6979.1
t ₄	2611.9	3716.1	4562.8	5263.8	5893	6459.3	6981
t ₅	2615.7	3716.1	4561.9	5272.6	5894.5	6453.2	6971.9
Δh _i	10	20	30	40	50	60	70
t _{cp}	2613.56	3715.06	4560.78	5269	5894.12	6455.66	6978.52
$\frac{1}{2}g(t)^2$	33.53871674	67.7662	102.1315	136.3132	170.5766	204.6269	239.1157

$$t_{cp}=rac{1}{N}\sum_{i=1}^{N}t_{i}$$
; $\Delta \mathbf{h}_{\mathrm{i}}=\mathbf{h}_{\mathrm{i}}-\mathbf{h}_{\mathrm{0}}$
Таблица 2

h ₀ =cм	h _i						
10	20	30	40	50	60	70	80
t ₁	53	37.4	30.6	26.3	23.7	21.5	19.9
t ₂	80.7	43.9	33.7	28.5	24.9	22.4	20.8
t ₃	81.7	44.1	33.9	28.6	25.1	22.8	20.7
ϑ_1	0.094339623	0.13369	0.163399	0.190114	0.21097	0.232558	0.251256
ϑ_2	0.061957869	0.113895	0.148368	0.175439	0.200803	0.223214	0.240385
ϑ_3	0.06119951	0.113379	0.147493	0.174825	0.199203	0.219298	0.241546

$$\theta_{i} = \frac{2r}{t_{i}}$$

9. Расчет результатов косвенных измерений (*таблицы, примеры расчетов*)
$$\alpha = \frac{\sum_{i=1}^N Y_i X_i}{\sum_{i=1}^N X_i^2} = \frac{\sum_{i=1}^7 \frac{1}{2} g \langle t \rangle_i^2 \Delta h_i}{\sum_{i=1}^7 \Delta h_i^2} = 341,0$$

$$I_c = (\alpha - 1) mr^2 = 0,001$$

$$I_{reop} = mR^2 = 0,0000029$$

Таблица 3

H _i	0.9	0.8	0.7	0.6	0.5	0.4	0.3
Екин,1	0.713373897	1.432603	2.140061	2.89706	3.567568	4.335029	5.060143
Екин,1	0.307696024	1.039776	1.764449	2.467057	3.231992	3.993677	4.63172
Екин,1	0.300209783	1.030367	1.743691	2.449835	3.180691	3.854777	4.676579
Епот	4.15386	3.69232	3.23078	2.76924	2.3077	1.84616	1.38462
Еполн,1	4.867233897	5.124923	5.370841	5.6663	5.875268	6.181189	6.444763
Еполн,2	4.461556024	4.732096	4.995229	5.236297	5.539692	5.839837	6.01634
Еполн,3	4.454069783	4.722687	4.974471	5.219075	5.488391	5.700937	6.061199

$$\begin{cases} \mathbf{E}_{\text{кин}} = \frac{1}{2}m\left(\frac{\mathbf{I}_{\text{C}}}{\text{mr}^2}\right) \cdot \vartheta^2 \\ \mathbf{E}_{\text{пот}} = mgH \\ \mathbf{E}_{\text{кин}} = \mathbf{E}_{\text{кин}} + \mathbf{E}_{\text{пот}} \end{cases}$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений)

$$\begin{split} \sigma_{\alpha} &= \sqrt{\frac{\sum_{i=1}^{N} (Y_{i} - \alpha X_{i})^{2}}{(N-1) \sum_{i=1}^{N} X_{i}^{2}}} = \sqrt{\frac{\sum_{i=1}^{7} \left(\frac{1}{2} g(t)_{i}^{2} - \alpha \Delta h_{i}\right)^{2}}{(7-1) \sum_{i=1}^{7} \Delta h_{i}^{2}}} = 0,29; \\ \Delta_{\alpha} &= 2\sigma_{\alpha} = 0,5; \; \delta_{\alpha} = \frac{\Delta_{\alpha}}{\alpha} \cdot 100\% = 0,17\% \\ \frac{\Delta_{I_{c}}}{I_{c}} &= \sqrt{\left(\frac{\Delta_{\alpha}}{\alpha}\right)^{2} + \left(\frac{\Delta_{m}}{m}\right)^{2} + \left(2 \cdot \frac{\Delta_{r}}{r}\right)^{2}} = 0,083 \\ \Delta_{I_{c}} &= \frac{\Delta_{I_{c}}}{I_{c}} \cdot I_{c} = 0,00008; \; \delta_{I_{c}} = \frac{\Delta_{I_{c}}}{I_{c}} \cdot 100\% = 8,3\% \end{split}$$

11. Графики (перечень графиков, которые составляют Приложение 2)

- 12. Окончательные результаты.
- 1) $I_c = 0.00100 \pm 0.00008 \text{kg} \cdot \text{m}^2$; $\delta_{I_c} = 8.3\%$;
- 2) $\frac{I_c}{I_{\text{теор}}} = 340$; 3) Графики зависимостей $E_{\text{кин}}(H)$ и $E_{\text{полн}}(H)$ для t_1, t_2 и t_3 .

- 13. Выводы и анализ результатов работы.
 - 1) В результате эксперимента получили значение момента инерции маятника, которое отличается от рассчитанного значения в 340 раз, т.к. в рассчитанном значение предполагается, что вся масса маховика сосредоточена на его внешней поверхности и поэтому не учитывается коэффициент $\alpha = 340$;
 - 2) Независимо от значения H графики, как кинетической, так и полной энергии при t_2 и t_3 отличаются незначительно, в пределах погрешности. График при t_1 выше графиков t_2 и t_3 на определенное постоянное значение, независимо от H.