```
In [1]:
import pandas as pd
import numpy as np
In [2]:
df = pd.read csv('Adops & Data Scientist Sample Data - Q1 Analytics.csv')
In [3]:
df.head()
Out[3]:
                   user_id country_id
                                      site id
0 2019-02-01 00:01:24
                                 TL6 N0OTG
                    LC36FC
1 2019-02-01 00:10:19 LC39B6
                                 TL6 N0OTG
2 2019-02-01 00:21:50 LC3500
                                 TL6 NOOTG
  2019-02-01 00:22:50
                                 TL6 N0OTG
                   LC374F
4 2019-02-01 00:23:44 LCC1C3
                                 TL6 QGO3G
In [4]:
df.shape
Out[4]:
(3553, 4)
In [5]:
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3553 entries, 0 to 3552

3553 non-null object

3553 non-null object 3553 non-null object

3553 non-null object

Data columns (total 4 columns):

ts

user id

site id

country_id

dtypes: object(4)

memory usage: 111.2+ KB

Q1: Consider only the rows with country_id = "BDV" (there are 844 such rows). For each site_id, we can compute the number of unique user_id's found in these 844 rows. Which site_id has the largest number of unique users? And what's the number?

```
In [6]:
df BDV = df[df['country id']=='BDV']
In [7]:
df BDV['site id'].unique()
Out[7]:
array(['NOOTG', '5NPAU', '3POLC'], dtype=object)
In [8]:
df BDV = df BDV[['user id','site id']]
In [10]:
df BDV.groupby('site id')['user id'].nunique().sort values(ascending = False)
Out[10]:
site id
5NPAU
         544
NOOTG
          90
3POLC
Name: user id, dtype: int64
```

Site '5NPAU' has maximum unique users, and number being 544

Q2: Between 2019-02-03 00:00:00 and 2019-02-04 23:59:59, there are four users who visited a certain site more than 10 times. Find these four users & which sites they (each) visited more than 10 times. (Simply provides four triples in the form (user_id, site_id, number of visits) in the box below.)

```
In [11]:

df_ts = df[df['ts'] > '2019-02-03 00:00:00']

In [12]:

df_ts = df_ts[df_ts['ts'] < '2019-02-04 23:59:59']</pre>
```

```
In [14]:
```

```
df_ts.head()
```

Out[14]:

site_id	country_id	user_id	ts	
3POLC	TL6	LC3C7E	2019-02-03 00:02:31	1049
3POLC	TL6	LC3C7E	2019-02-03 00:03:09	1050
3POLC	TL6	LC3C7E	2019-02-03 00:03:46	1051
3POLC	TL6	LC3C7E	2019-02-03 00:04:12	1052
3POLC	TL6	LC3C7E	2019-02-03 00:04:25	1053

In [15]:

```
df_ts_top4Visits = df_ts.groupby(['user_id','site_id']).ts.count().sort_values(a
scending = False)[0:4]
```

In [16]:

```
df_ts_top4Visits
df_ts_top4Visits = pd.DataFrame(df_ts_top4Visits)
df_ts_top4Visits.rename(columns={'ts':'number_of_visits'})
```

Out[16]:

number_of_visits

	site_id	user_id
26	N0OTG	LC3A59
25	N0OTG	LC06C3
17	N0OTG	LC3C9D
15	3POLC	LC3C7E

Q3: For each site, compute the unique number of users whose last visit (found in the original data set) was to that site. For instance, user "LC3561"'s last visit is to "N0OTG" based on timestamp data. Based on this measure, what are top three sites? (hint: site "3POLC" is ranked at 5th with 28 users whose last visit in the data set was to 3POLC; simply provide three pairs in the form (site_id, number of users).)

In [17]:

```
df_visits = pd.read_csv('Adops & Data Scientist Sample Data - Q1 Analytics.csv')
```

```
In [18]:
df_visits['site_id'].nunique() ## number of unique sites = 8
Out[18]:
8
In [19]:
df visits['site id'].unique()
Out[19]:
array(['NOOTG', 'QGO3G', 'GVOFK', '3POLC', '5NPAU', 'RT9Z6', 'JSUUP'
       'EUZ/Q'], dtype=object)
In [21]:
df_site_last = df_visits.groupby(['user_id']).agg({'ts':'max','site_id':'last'})
In [22]:
df_site_last.head(10)
Out[22]:
       ts
                       site id
```

	ıs	Site_iu
user_id		
LC00C3	2019-02-03 18:52:50	5NPAU
LC01C3	2019-02-04 11:35:10	5NPAU
LC05C3	2019-02-02 14:14:44	5NPAU
LC06C3	2019-02-07 01:16:12	N0OTG
LC07C3	2019-02-05 19:06:42	5NPAU
LC08C3	2019-02-05 16:11:30	5NPAU
LC0C32	2019-02-07 01:18:03	N0OTG
LC0C34	2019-02-06 21:01:55	5NPAU
LC0C35	2019-02-01 17:44:39	5NPAU
LC0C3B	2019-02-01 22:02:40	QGO3G

In [23]:

df_visits[df_visits['user_id']=='LC0C3B'] #verify with some users that the ts
and site aggregations computed above is correct

Out[23]:

	ts	user_id	country_id	site_id
505	2019-02-01 22:02:40	LC0C3B	TL6	QGO3G

In [24]:

```
df_site_last.reset_index(inplace=True)
df_site_last
```

Out[24]:

	user_id	ts	site_id
0	LC00C3	2019-02-03 18:52:50	5NPAU
1	LC01C3	2019-02-04 11:35:10	5NPAU
2	LC05C3	2019-02-02 14:14:44	5NPAU
3	LC06C3	2019-02-07 01:16:12	N0OTG
4	LC07C3	2019-02-05 19:06:42	5NPAU
1911	LCFC3B	2019-02-05 04:53:03	N0OTG
1912	LCFC3D	2019-02-01 18:59:50	N0OTG
1913	LCFC3E	2019-02-01 20:49:13	5NPAU
1914	LCFEC3	2019-02-07 06:23:59	3POLC
1915	LCFFC3	2019-02-05 03:31:17	N0OTG

1916 rows × 3 columns

```
In [25]:
df site last.groupby('site id').user id.count().sort values(ascending = False)
Out[25]:
site id
5NPAU
          992
NOOTG
          561
QGO3G
          289
GVOFK
           42
3POLC
           28
RT9Z6
            2
JSUUP
            1
EUZ/Q
            1
Name: user id, dtype: int64
In [26]:
df site last = df site last.groupby('site id').user id.count().sort values(ascen
ding = False)
df top3 = pd.DataFrame(df_site_last[0:3])
df top3.rename(columns={'user id':'number of users'})
Out[26]:
        number of users
 site_id
 5NPAU
                  992
 NOOTG
                  561
QGO3G
                  289
Q4: For each user, determine the first site he/she visited and the last site he/she visited based on the
timestamp data. Compute the number of users whose first/last visits are to the same website. What is
the number?
```

```
df = pd.read_csv('Adops & Data Scientist Sample Data - Q1 Analytics.csv')
In [29]:
df['user_id'].nunique()
Out[29]:
```

In [28]:

1916

Total Unique Users = 1916

```
In [30]:
```

```
df_user_visits = df[['ts','user_id','site_id']]
```

In [31]:

```
df_user_visits.head()
```

Out[31]:

	ts	user_id	site_id
0	2019-02-01 00:01:24	LC36FC	N0OTG
1	2019-02-01 00:10:19	LC39B6	N0OTG
2	2019-02-01 00:21:50	LC3500	N0OTG
3	2019-02-01 00:22:50	LC374F	N0OTG
4	2019-02-01 00:23:44	LCC1C3	QGO3G

In [32]:

```
#compute aggregations for the min/max timestamp (first and last visit for each u
ser), and corresponding site names

df_site_first = df_user_visits.groupby(['user_id']).agg({'ts':['min','max'],'sit
e_id':['first','last'] })
```

In [33]:

df_site_first.head(10)

Out[33]:

	ts		site_id	
	min	max	first	last
user_id				
LC00C3	2019-02-03 18:52:50	2019-02-03 18:52:50	5NPAU	5NPAU
LC01C3	2019-02-04 11:35:10	2019-02-04 11:35:10	5NPAU	5NPAU
LC05C3	2019-02-02 14:14:44	2019-02-02 14:14:44	5NPAU	5NPAU
LC06C3	2019-02-01 22:49:39	2019-02-07 01:16:12	N0OTG	N0OTG
LC07C3	2019-02-05 19:06:42	2019-02-05 19:06:42	5NPAU	5NPAU
LC08C3	2019-02-05 16:11:30	2019-02-05 16:11:30	5NPAU	5NPAU
LC0C32	2019-02-05 22:33:51	2019-02-07 01:18:03	QGO3G	N0OTG
LC0C34	2019-02-06 21:01:55	2019-02-06 21:01:55	5NPAU	5NPAU
LC0C35	2019-02-01 17:44:39	2019-02-01 17:44:39	5NPAU	5NPAU
LC0C3B	2019-02-01 22:02:40	2019-02-01 22:02:40	QGO3G	QGO3G

In [34]:

df[df['user_id']=='LC0C32'] #verify with some users that the ts and site aggrega
tions computed above is correct by eyeballing

Out[34]:

	ts	user_id	country_id	site_id
2526	2019-02-05 22:33:51	LC0C32	TL6	QGO3G
3081	2019-02-07 01:18:03	LC0C32	TL6	N0OTG

In [35]:

```
df_site_first[df_site_first['site_id']['first'] == df_site_first['site_id']['las
t']]
```

Out[35]:

	ts		site_id	
	min	max	first	last
user_id				
LC00C3	2019-02-03 18:52:50	2019-02-03 18:52:50	5NPAU	5NPAU
LC01C3	2019-02-04 11:35:10	2019-02-04 11:35:10	5NPAU	5NPAU
LC05C3	2019-02-02 14:14:44	2019-02-02 14:14:44	5NPAU	5NPAU
LC06C3	2019-02-01 22:49:39	2019-02-07 01:16:12	N0OTG	N0OTG
LC07C3	2019-02-05 19:06:42	2019-02-05 19:06:42	5NPAU	5NPAU
LCFC38	2019-02-02 13:58:18	2019-02-02 13:58:18	5NPAU	5NPAU
LCFC3B	2019-02-05 04:53:03	2019-02-05 04:53:03	N0OTG	N0OTG
LCFC3D	2019-02-01 18:59:50	2019-02-01 18:59:50	N0OTG	N0OTG
LCFC3E	2019-02-01 20:49:08	2019-02-01 20:49:13	5NPAU	5NPAU
LCFFC3	2019-02-02 22:36:23	2019-02-05 03:31:17	N0OTG	N0OTG

1670 rows × 4 columns

Number of Users where first and last site is same: 1670

In [36]:

```
df_site_first[df_site_first['site_id']['first'] != df_site_first['site_id']['las
t']]
```

Out[36]:

	ts		site_id	
	min	max	first	last
user_id				
LC0C32	2019-02-05 22:33:51	2019-02-07 01:18:03	QGO3G	N0OTG
LC1C32	2019-02-04 13:24:34	2019-02-05 01:59:42	5NPAU	QGO3G
LC1C3C	2019-02-01 13:28:31	2019-02-04 18:49:03	N0OTG	5NPAU
LC1EC3	2019-02-04 19:14:01	2019-02-07 20:38:10	5NPAU	N0OTG
LC2C36	2019-02-05 14:54:53	2019-02-06 22:28:21	N0OTG	5NPAU
LCDC36	2019-02-01 19:48:37	2019-02-04 18:50:23	5NPAU	N0OTG
LCEDC3	2019-02-01 12:40:17	2019-02-06 00:42:54	GVOFK	5NPAU
LCF8C3	2019-02-02 20:11:26	2019-02-07 20:34:58	5NPAU	N0OTG
LCFC32	2019-02-04 21:02:40	2019-02-06 02:45:48	5NPAU	N0OTG
LCFEC3	2019-02-02 01:19:49	2019-02-07 06:23:59	N0OTG	3POLC

246 rows × 4 columns

Number of Users where first and last site is NOT same: 246

1670+246 = 1916 ##Numbers add up to unique users

In [37]:

```
df_site_first[df_site_first['site_id']['first'] == df_site_first['site_id']['las
t']].count()[0]
```

Out[37]:

1670

Ans for Q4: 1670

```
In [ ]:
```