Package 'stpphawkes'

August 15, 2023

Type Package				
Title Missing Data for Marked Hawkes Process				
Version 0.2.1				
Date 2023-08-13				
Description Estimation of model parameters for marked Hawkes process. Accounts for missing data in the estimation of the parameters. Technical details found in (Tucker et al., 2019 < DOI:10.1016/j.spasta.2018.12.004>).				
Imports interp, extraDistr, Rcpp				
License MIT + file LICENSE				
Encoding UTF-8				
SystemRequirements GNU GSL				
NeedsCompilation yes				
LinkingTo Rcpp, RcppArmadillo, RcppProgress, RcppGSL				
RoxygenNote 7.2.3				
Author J. Derek Tucker [aut, cre], Lyndsay Shand [aut], Stephen Rowe [aut], John Lewis [aut]				
Maintainer J. Derek Tucker < jdtuck@sandia.gov>				
Repository CRAN				
Date/Publication 2023-08-15 17:10:02 UTC				
R topics documented:				
areapl 2 homog.STPP 2 intensity_temporal 3 mcmc_stpp 4 mcmc_stpp_nonunif 5 mcmc_temporal 6 mcmc_temporal_catmark 7				

2 homog.STPP

	pip	
	simulate_hawkes_stpp	
	simulate_hawkes_stpp_nonunif	
	simulate_temporal	1
	stpp.mle	2
	stpp.mle.nonunif	
	stpphawkes	
	temporal.catmark.mle	3
	temporal.mle	4
Index	1	15

Description

Calculate area of polynomial

Usage

areapl(poly)

Arguments

poly

- matrix describing polynomial

Value

W - area of polynomial

homog.STPP

Simulate a homogenous space-time Poisson process

Description

This function simulates a homogenous space-time Poisson process on W, defined by polygon

intensity_temporal 3

Usage

```
homog.STPP(
   mu,
   poly,
   t.region,
   xfrac = 0.1,
   yfrac = 0.1,
   remove = FALSE,
   checkpoly = TRUE,
   showplot = FALSE
)
```

Arguments

mu - background parameter

poly - matrix defining polygon $(N \times 2)$

t.region - vector of two elements describing time span

xfrac - x fractional increase of polygon to handle boundary effects (default = .1)

yfrac - y fractional increase (default = .1)

remove - remove points outside polygon (default = FALSE)

checkpoly - check if polygon is proper (default = TRUE)

showplot - plot points (default = FALSE)

Value

A DataFrame containing x,y,t

Examples

```
out = homog.STPP(0.5, matrix(c(0,0,1,1,0,1,1,0), ncol=2),c(0,10))
```

intensity_temporal

Calculate intensity function for temporal Hawkes

Description

Calculate intensity function for temporal Hawkes

Usage

```
intensity_temporal(mu, alpha, beta, times, evalpt)
```

4 mcmc_stpp

Arguments

mu - background parameter
alpha - alpha parameter
beta - beta parameter
times - history of previous times
evalpt - point to evaluate

Value

lambda - intensity at evalpt

mcmc_stpp

Bayesian Estimation of Spatio-Temporal Hawkes Model Parameters

Description

This function computes the posterior of a spatio-temporal exponential decay Hawkes model using Metropolis-with-in-Gibbs sampling.

Usage

```
mcmc_stpp(
  data,
  poly,
  t_max = max(data$t),
  t_mis = NULL,
  param_init = NULL,
  mcmc_param = NULL,
  branching = TRUE,
  print = TRUE,
  sp_clip = TRUE
)
```

Arguments

- A DataFrame containing x,y,tdata - matrix defining polygon ($N \times 2$) poly t_max - maximum time value (default = max(times)) t_mis - vector of two elements describing missing time range (default = NULL) - list of parameters of initial guess (default = NULL, will start with MLE) param_init mcmc_param - list of mcmc parameters - using branching structure in estimation (default = TRUE) branching print - print progress (default = TRUE) - when simulating missing data spatial points, clip spatial region back to obsp_clip served region (default = TRUE)

mcmc_stpp_nonunif 5

Details

The default is to estimate the branching structure. The model will also account to missing data if t_mis is provided.

Value

A DataFrame containing the mcmc samples

mcmc_stpp_nonunif Bayesian Estimation of Spatio-Temporal Hawkes Model Parameters with non uniform spatial locations

Description

This function computes the posterior of a spatio-temporal exponential decay Hawkes model using Metropolis-with-in-Gibbs sampling.

Usage

```
mcmc_stpp_nonunif(
  data,
  poly,
  t_max = max(data$t),
  t_mis = NULL,
  param_init = NULL,
  mcmc_param = NULL,
  branching = TRUE,
  print = TRUE,
  sp_clip = TRUE
)
```

Arguments

```
data
                  - A DataFrame containing x,y,t
                  - matrix defining polygon (N \times 2)
poly
                  - maximum time value (default = max(times))
t_max
                  - vector of two elements describing missing time range (default = NULL)
t_mis
param_init
                  - list of parameters of initial guess (default = NULL, will start with MLE)
                  - list of mcmc parameters
mcmc_param
                  - using branching structure in estimation (default = TRUE)
branching
print
                  - print progress (default = TRUE)
                  - when simulating missing data spatial points, clip spatial region back to ob-
sp_clip
                  served region (default = TRUE)
```

6 mcmc_temporal

Details

The default is to estimate the branching structure. The model will also account to missing data if t_m is provided.

Value

A DataFrame containing the mcmc samples

mcmc_temporal

Bayesian Estimation of Temporal Hawkes Model Parameters

Description

This function computes the posterior of the parameters of a temporal exponential decay Hawkes model using Metropolis-with-in-Gibbs sampling.

Usage

```
mcmc_temporal(
   times,
   t_max = max(times),
   t_mis = NULL,
   param_init = NULL,
   mcmc_param = NULL,
   branching = TRUE,
   print = TRUE
)
```

Arguments

```
times - vector of arrival times

t_max - maximum time value (default = max(times))

t_mis - mx2 matrix, mth row contains two elements describing the mth missing time range (default = NULL)

param_init - list of parameters of initial guess (default = NULL, will start with MLE)

mcmc_param - list of mcmc parameters

branching - using branching structure in estimation (default = TRUE)

print - print progress (default = TRUE)
```

Details

The default is to estimate the branching structure which is much more computationally efficient. The model will also account to missing data if t_m is provided.

Branching models specify gamma priors for mu, alpha and beta parameters.

Value

A DataFrame containing the mcmc samples

Examples

```
times = simulate_temporal(.5,.1,.5,c(0,10),numeric())
out = mcmc_temporal(times)
```

mcmc_temporal_catmark Bayesian Estimation of Temporal Hawkes Model Parameters with Categorical Marks

Description

This function computes the posterior of the parameters of a temporal exponential decay Hawkes model using Metropolis-with-in-Gibbs sampling.

Usage

```
mcmc_temporal_catmark(
    times,
    marks,
    t_max = max(times),
    t_mis = NULL,
    param_init = NULL,
    mcmc_param = NULL,
    branching = TRUE,
    print = TRUE
)
```

Arguments

```
times
                  - vector of arrival times
marks
                  - vector of marks
                  - maximum time value (default = max(times))
t_max
                  - mx2 matrix, mth row contains two elements describing the mth missing time
t_mis
                  range (default = NULL)
                  - list of parameters of initial guess (default = NULL, will start with MLE)
param_init
                  - list of mcmc parameters
mcmc_param
                  - using branching structure in estimation (default = TRUE)
branching
                  - print progress (default = TRUE)
print
```

Details

The default is to estimate the branching structure which is much more computationally efficient. The model will also account to missing data if t_mis is provided.

Value

A DataFrame containing the mcmc samples

```
mcmc_temporal_contmark
```

Bayesian Estimation of Temporal Hawkes Model Parameters with Categorical Marks

Description

This function computes the posterior of the parameters of a temporal exponential decay Hawkes model using Metropolis-with-in-Gibbs sampling.

Usage

```
mcmc_temporal_contmark(
   times,
   marks,
   wshape,
   t_max = max(times),
   t_mis = NULL,
   param_init = NULL,
   mcmc_param = NULL,
   branching = TRUE,
   dist = "Weibull",
   print = TRUE
)
```

Arguments

```
times
                  - vector of arrival times
                  - vector of continuous marks
marks
                  - fixed weibull shape parameter
wshape
                  - maximum time value (default = max(times))
t_max
t_mis
                  - mx2 matrix, mth row contains two elements describing the mth missing time
                  range (default = NULL)
param_init
                  - list of parameters of initial guess (default = NULL, will start with MLE)
mcmc_param
                  - list of mcmc parameters
branching
                  - using branching structure in estimation (default = TRUE)
                  - distribution for marks string (default = "Weibull")
dist
                  - print progress (default = TRUE)
print
```

pip 9

Details

The default is to estimate the branching structure which is much more computationally efficient. The model will also account to missing data if t_{mis} is provided.

Value

A DataFrame containing the mcmc samples

pip

Point in polygon

Description

Determines if a point is in a polygon or on a polygon boundary

Usage

```
pip(x, y, poly)
```

Arguments

x - vector of x positionsy - vector of y positions

poly - matrix defining polygon $(N \times 2)$

Value

A list containing the x and y coordinates of the points inside the polygon @export

ptinpoly

Calculate if points are in the polynomial

Description

Calculate if points are in the polynomial

Usage

```
ptinpoly(x, y, xp, yp, bb)
```

Arguments

X	- vector of x coordinates
У	- vector of y coordinates
xp	- vector of x coordinates of polynomial

yp - vector of y coordinates of polynomialbb - matrix of bounding box of polynomial

Value

inout - vector of 1 if point is in polynomial and 0 if not

 ${\tt simulate_hawkes_stpp} \quad \textit{Simulate homogenous spatio-temporal hawkes model}$

Description

Simulate homogenous spatio-temporal hawkes model

Usage

```
simulate_hawkes_stpp(params, poly, t_region, d, history, seed = -1L)
```

Arguments

params - list containing params (μ, a, b, σ) poly - matrix defining polygon $(N \times 2)$

t_region - vector of two elements describing time region (e.g., c(0,10))

d - generate parents on larger polygon by expanded observed polygon by d (default

= R::qnorm(.95, 0, sig, 1, 0))

history - history of process (e.g., numeric())
seed - set random number seed (default=-1)

Value

A DataFrame containing x,y,t

```
simulate_hawkes_stpp_nonunif
```

Simulate inhomogenous spatio-temporal hawkes model

Description

Simulate inhomogenous spatio-temporal hawkes model

Usage

```
simulate_hawkes_stpp_nonunif(params, poly, t_region, d, history, seed = -1L)
```

Arguments

```
params - list containing params (\mu, a, b, \sigma, \mu x, \mu y, \sigma x, \sigma y)
poly - matrix defining polygon (N \times 2)
```

t_region - vector of two elements describing time region (e.g., c(0,10))

d - generate parents on larger polygon by expanded observed polygon by d (default

= R::qnorm(.95, 0, sig, 1, 0))

history - history of process (e.g., numeric())
seed - set random number seed (default=-1)

Value

A DataFrame containing x,y,t

simulate_temporal

Simulates a temporal Hawkes process with an exponential correlation function

Description

Simulates a temporal Hawkes process with an exponential correlation function

Usage

```
simulate_temporal(mu, alpha, beta, tt, times, seed = -1L)
```

Arguments

mu - background parameter

alpha - α parameter beta - β parameter

tt - vector of two elements defining time span (e.g., c(0,10))

 $\hbox{times} \qquad \quad \hbox{-history of previous times (e.g., numeric())}$

- value to seed random number generation (default = -1)

12 stpp.mle.nonunif

Value

```
arrivals - vector of arrival times
```

Examples

```
times = simulate_temporal(.5,.1,.5,c(0,10),numeric())
```

stpp.mle

MLE Estimation of Spatio-Temporal Hawkes Model Parameters

Description

Maximum likelihood estimation of the parameters of a spatio-temporal exponential decay Hawkes model.

Usage

```
stpp.mle(data, poly, t_max = max(data$t), initval = NA, print = TRUE)
```

Arguments

data - A DataFrame containing x,y, and t poly - a matrix defining the polygon

t_max - maximum time value (default = max(times))

initval - vector of two elements describing missing time range (default = NA)

print - print progress (default = TRUE)

Value

A list containing the parameter values and likelihood value

stpp.mle.nonunif MLE Estimation of Nonuniform Spatio-Temporal Hawkes Model Parameters

Description

Maximum likelihood estimation of the parameters of a spatio-temporal exponential decay Hawkes model.

Usage

```
stpp.mle.nonunif(data, poly, t_max = max(data$t), initval = NA, print = TRUE)
```

stpphawkes 13

Arguments

data - A DataFrame containing x,y, and tpoly - a matrix defining the polygon

t_max - maximum time value (default = max(times))

initval - vector of two elements describing missing time range (default = NA)

print - print progress (default = TRUE)

Value

A list containing the parameter values and likelihood value

stpphawkes Marked Hawkes Process with Missing Data

Description

A library for estimation of spatio-temporal Hawkes process parameters with missing data support

References

J. D. Tucker, L. Shand, and J. R. Lewis, "Handling Missing Data in Self-Exciting Point Process Models," Spatial Statistics, vol. 29. pp. 160-176, 2019.

 ${\it temporal.catmark.mle} \quad {\it MLE Estimation of Temporal Hawkes Model Parameters with Categorical Marks}$

Description

Maximum likelihood estimation of the parameters of a temporal exponential decay Hawkes model

Usage

```
temporal.catmark.mle(t, marks, t_max = max(t), initval = NA, print = TRUE)
```

Arguments

marks

t - vector of arrival times

 $t_max \qquad \quad -maximum \ time \ value \ (default = max(times))$

initval - initial parameter values for likelihood optimization

print - print progress (default = TRUE)

- vector of marks

Value

A list containing the parameter values and likelihood value

14 temporal.mle

 ${\tt temporal.mle}$

MLE Estimation of Temporal Hawkes Model Parameters

Description

Maximum likelihood estimation of the parameters of a temporal exponential decay Hawkes model

Usage

```
temporal.mle(t, t_max = max(t), initval = NA, print = TRUE)
```

Arguments

t - vector of arrival times

t_max - maximum time value (default = max(times))

initval - vector of two elements describing missing time range (default = NA)

print - print progress (default = TRUE)

Value

A list containing the parameter values and likelihood value

Index

```
areapl, 2
homog.STPP, 2
intensity_temporal, 3
mcmc_stpp, 4
mcmc_stpp_nonunif, 5
mcmc\_temporal, 6
mcmc_temporal_catmark, 7
{\tt mcmc\_temporal\_contmark, 8}
pip, 9
ptinpoly, 9
simulate_hawkes_stpp, 10
simulate\_hawkes\_stpp\_nonunif, 11
simulate\_temporal, 11
stpp.mle, 12
stpp.mle.nonunif, 12
stpphawkes, 13
stpphawkes-package (stpphawkes), 13
temporal.catmark.mle, 13
temporal.mle, 14
```