Al-Makassed High School

Subject: physics

Class: Gr 12

Date:

Diffraction

Mrs. Hawraa Houmani

Diffraction and interference of light

A laser source emits a monochromatic cylindrical beam of light of wavelength $\lambda = 640$ nm in air.

A – Diffraction

This beam falls normally on a vertical screen (P) having a horizontal slit F_1 of width a. The phenomenon of diffraction is observed on a screen (E) parallel to (P) and situated at a distance D = 4 m from (P).

Consider on (E) a point M so that M coincides with the second dark fringe counted from O, the center of the central bright fringe. OIM = θ (θ is very small) is the angle of diffraction corresponding to the second dark fringe (Fig. 1).

- 1) Write the expression of θ in terms of a and λ .
- 2) Determine the expression of OM = x in terms of a, D and λ .
- 3) Determine the value of a if OM = 1.28 cm.
- 4) We replace the slit F_1 by another slit F'_1 of width 100 times larger than that of F_1 . What do we observe on the screen (E)?

Applications of the diffraction of light

A - Measurement of the width of a slit

A laser beam of light, of wavelength in vacuum $\lambda = 632.8$ nm, falls normally on a vertical slit of width «a». The diffraction pattern is observed on a screen placed perpendicularly to the laser beam at a distance D = 1.5 m from the slit.

Let «L» be the linear width of the central fringe (Fig. 1). The angle of diffraction θ corresponding to a dark fringe of order n is given by $\sin \theta = \frac{n\lambda}{a}$ where $n = \pm 1, \pm 2, \pm 3...$

For small angles, take $\tan \theta \approx \sin \theta \approx \theta$ in radian.

- 1) Describe the aspect of the diffraction pattern observed on the screen.
- **2)** Write the relation among a, θ_1 and λ .
- 3) Establish the relation among a, λ , L and D.
- 4) Knowing that L = 6.3 mm, calculate the width «a» of the used slit.

B - Controlling the thickness of thin wire

A manufacturer of thin wires wishes to control the diameter of his product. He uses the same set-up mentioned in part (A) but he replaces the slit by a thin vertical wire. He observes on the screen the phenomenon of diffraction (figure 2).

For D = 2.60 m, he obtains a central fringe of constant linear width $L_1 = 3.4$ mm.

- Calculate the value of the diameter «a₁» of the wire at the illuminated point.
- 2) The manufacturer illuminates the wire at different positions under the same precedent conditions. Specify the indicator that permits the manufacturer to check that the diameter of the wire is constant.

C - Measurement of the index of water

We place the whole set-up of part (A) in water of index of refraction n_{water} . We obtain a new diffraction pattern.

We find that for D = 1.5 m and a = 0.3 mm, the linear width of the central fringe is $L_2 = 4.7$ mm.

- 1) Calculate the wavelength λ' of the laser light in water.
- 2) a) Determine the relation among λ , λ' and n_{water} .
 - **b**) Deduce the value of n_{water} .