Содержание

1. Слабая сходимость в банаховом пространстве
вательности.
1.2. Слабая сходимость и ограниченные операторы. Слабо ограниченные множе
ства
2. Обратимый оператор. Обратимость
3. Сопряжённый оператор
4. Спектр. Резольвента
5. Самосопряжённые операторы
5.4. Теорема о спектре самосопряжённого оператора: $\sigma(A) \subseteq [m, m_+], r(A) = \ A\ $
6. Компактные операторы
6.1. Свойства компактных операторов
6.2. Свойства собственных значений компактного оператора
6.3. Теорема Фредгольма для компактных самосопряжённых операторов 18
6.4. Теорема Гильберта-Шмидта

Функциональный анализ 2.0.

Disclaymer: доверять этому конспекту или нет выбирайте сами Big thanks for клуб Теха Лекций и Максимову Даниилу в частности.

1. Слабая сходимость в банаховом пространстве

1.1. Изометричность вложения E в E^{**} . Критерий слабой сходимости последовательности.

Теорема 1.1.1 (Хана Банаха, напоминание): Пусть $E - \Pi H \Pi$. $M \subset E - \pi U$ нейное многообразие, f – линейный ограниченный функционал на M. Тогда $\exists \tilde{f} \in E^*$:

1.
$$\tilde{f}|_{M} = f$$

2. $\|\tilde{f}\| = \|f\|$

Следствие 1.1.1.1:

$$\forall x \in E: \|x\| = \sup\nolimits_{f \in E^*, \|f\|_{E^*} = 1} |f(x)|$$

Теорема 1.1.2 (Об изометрии): E изометрично E^{**} , через отображение π : $E \to E^{**}$, где

$$\pi x = F_x \in E^{**}; \quad F_x(f) = f(x)$$

Доказательство: Нужно доказать, что отображение π не меняет норму.

В силу приведённого выше следствия из теоремы Хана-Банаха:

$$\|F_x\|=\sup_{\|f\|=1}|F_x(f)|=\sup_{\|f\|=1}|f(x)|=\|x\|$$

Определение 1.1.1: Пусть E — нормированное пространство. Говорим, что последовательность элементов $\{x_n\}_{n=1}^\infty$ слабо сходится к x: $x_n \overset{w}{\to} x \Leftrightarrow \forall f \in E^*: f(x_n) \to f(x)$

$$x_n \stackrel{w}{\to} x \Leftrightarrow \forall f \stackrel{n-1}{\in} E^* : f(x_n) \to f(x)$$

Теорема 1.1.3 (Критерий поточечной сходимости операторов. Напоминание из прошлого семестра):

Пусть
$$E_1$$
 — банахово, E_2 — ЛНП. Причём $\left\{A_n\right\}_{n=1}^\infty\subset\mathcal{L}(E_1,E_2), A\in\mathcal{L}(E_1,E_2)$. Тогда
$$A_n\overset{\text{поточечно}}{\to} A\Leftrightarrow \begin{cases}\exists M\colon\forall n\colon\|A_n\|\leq M\\\exists S\colon[\langle S\rangle]=E_1\colon\forall s\in S\colon A_ns\to As\end{cases}$$

Теорема 1.1.4 (Критерий слабой сходимости): Пусть $E - \Pi H\Pi$. Тогда по-

Теорема 1.1.4 (Критерий слабой сходимости): Пусть следовательность
$$\{x_n\}_{n=1}^\infty \subset E$$
:
$$x_n \xrightarrow{w} x \Leftrightarrow \begin{cases} \{\|x\|_n\}_{n=1}^\infty \text{ ограничена} \\ \exists S \colon [\langle S \rangle] = E \colon \forall f \in S \colon f(x_n) \to f(x) \end{cases}$$

 Доказательство: Перейдём к рассмотрению операторов $F_{x_n}, F_x \in E^{**}$. Тогда слабая сходимость $x_n \to x$ по определению является поточечной сходимостью $F_{x_n}(f) \to F_x(f)$.

Из условия:

- $E^{**} = \mathcal{L}(E^*, \mathbb{K})$
- Пространство E^* всегда полно
- Нормы $\|F_{x_n}\|=\|x_n\|$ ограничены $\exists S:\ [S]=E^*:\ \forall f\in S:\ F_{x_n}f\to F_xf$

Эти условия позволяют нам применить упомянутый выше критерий поточечной сходимости операторов из предыдущего семестра. А поточечная сходимость оператором во всём пространстве соответствует $x_n \stackrel{w}{\to} x$.

Замечание 1.1.1: В случае рефлексивного банахова пространства E условие для слабой сходимости множно ослабить. Достаточно потребовать не сходимости $f(x_n) \to f(x)$, а существования предела $\lim_{n\to\infty} f(x_n)$ (тем самым, нам не нужно знать конкретный x).

1.2. Слабая сходимость и ограниченные операторы. Слабо ограниченные множества.

Теорема 1.2.1 (Слабая сходимость и ограниченные операторы):

Пусть E_1, E_2 – ЛНП, $\left\{x_n\right\}_{n=1}^\infty \subset E_1, x \in E_1$, причём $x_n \stackrel{w}{\to} x$, а также $A \in \mathcal{L}(E_1, E_2)$. Тогда есть слабая сходимость образов:

$$Ax_n \stackrel{w}{\to} Ax$$

Доказательство: По определению слабой сходимости, выполняется

$$\forall f \in E_1^*: \ f(x_n) \underset{n \to \infty}{\longrightarrow} f(x)$$

 $\forall f\in E_1^*:\ f(x_n)\underset{n\to\infty}{\to} f(x)$ В частности, можно рассмотреть функционал $f=g\circ A$ для любого $g\in$ E_2^* . Тогда

$$\forall g \in E_2^*: g(Ax_n) \underset{n \to \infty}{\longrightarrow} g(Ax)$$

 $\forall g \in E_2^*: \ g(Ax_n) \underset{n \to \infty}{\to} g(Ax)$ Это утверждение в точности совпадает с определением слабой сходимости $Ax_n \stackrel{w}{\to} Ax.$

Определение 1.2.1: Множество $S \subseteq E$ называется **слабо ограниченным**, если

 $\forall f \in E^*: \ f(S)$ - ограниченное множество в $\mathbb K$

Утверждение 1.2.1: Пусть $S \subseteq E$ – ограниченное множество. Тогда S слабо ограничено.

Доказательство: По определению, если $f \in E^*$, то это линейный ограниченный функционал.

Ограниченный функционал переводит ограниченные множества в ограниченные, по определению.

Поэтому слабая ограниченность S тривиальна.

Теорема 1.2.2 (Хана): Пусть $S \subseteq E$ – слабо ограниченное множество. Тогда S ограничено.

 $\exists \{x_n\}_{n=1}^\infty \subset S: \ \forall n \in \mathbb{N}: \ \|x_n\| \geq n^2$ Рассмотрим последовательность $y_n = \frac{x_n}{n}$. В силу слабой ограниченности, мы можем сделать следующую оценку на образ $f(y_n), f \in E^*$ (где K_f – кон-

$$\forall f \in E^*: |f(y_n)| = \frac{|f(x_n)|}{n} \leq \frac{K_f}{n} \rightarrow 0$$

станта, ограничивающая образ f(S)): $\forall f \in E^*: \ |f(y_n)| = \frac{|f(x_n)|}{n} \leq \frac{K_f}{n} \underset{n \to \infty}{\to} 0$ Стало быть, $y_n \overset{w}{\to} 0$. В силу критерия слабой сходимости, $\|y_n\| \leq M$ – есть ограниченность норм. Отсюда

$$\forall n \in \mathbb{N}: \ M \ge \|y_n\| = \frac{\|x_n\|}{n} \ge \frac{n^2}{n} = n$$

Противоречие.

1.3. Замкнутый шар в Гильбертовом пространстве секвенциально компактен (теорема Банаха).

Определение 1.3.1: Множество $S \subseteq E$ называется **слабо секвенциально** компактным (или секвенциально слабо компактным), если из любой последовательности можно выделить слабо сходящуюся подпоследовательность: $\forall \{x_n\}_{n=1}^\infty \subseteq S: \ \exists \{n_k\}_{k=1}^\infty \subseteq \mathbb{N}: \ \exists x \in S: \ x_{n_k} \overset{w}{\to}_{k \to \infty} x$

$$\forall \left\{ x_n \right\}_{n=1}^{\infty} \subseteq S: \ \exists \left\{ n_k \right\}_{k=1}^{\infty} \subseteq \mathbb{N}: \ \exists x \in S: \ x_{n_k} \xrightarrow[]{w}_{k \to \infty} x$$

Теорема 1.3.1 (Банаха): Пусть H – гильбертово пространство. Тогда $\overline{B}(0,R)$ – слабо секвенциально компактное множество.

Доказательство:

- 1. Рассмотрим любую последовательность $\{x_n\}_{n=1}^{\infty}\subseteq \overline{B}(0,R)$. Хотим показать, что в ней выделяется слабо сходящаяся подпоследовательность $\left\{x_{n_k}\right\}_{k=1}^{\infty}$.
- 2. Рассмотрим $L = \left[\left\{ x_n \right\}_{n=1}^{\infty} \right]$. В силу гильбертовости пространства H, мы можем воспользоваться теоремой о проекции. Тогда $H = L \oplus L^{\perp}$.
- 3. Выделим такую подпоследовательность $\{y_k\}_{k=1}^{\infty}\subseteq \{x_n\}_{n=1}^{\infty}$, что есть сходимость для любого скалярного произведения с x_m :

$$\forall m \in \mathbb{N}: \ \exists \lim_{k \to \infty} (x_m, y_k)$$

Тогда, в силу критерия слабой сходимости (смотреть замечание после него), y_k будет слабо сходящейся последовательностью в L.

4. Заметим, что из имеющейся сходимости следует слабая сходимость и во всём пространстве H:

$$H=L\oplus L^\perp\Rightarrow \forall h=l+l^\perp:\ (y_k,h)=(y_k,l)+(y_k,l^\perp)=(y_k,l)$$
 А (y_k,l) сходится в силу результата предыдущего пункта.

Единственная вещь, требующая пояснения – пункт 3, выделение слабо сходящейся последовательности. Воспользуемся диагональным методом Кантора:

- 1. Зафиксируем $x_m.$ Тогда $(x_m,x_n) \leq R^2$ и, получается, $\left\{(x_m,x_n)\right\}_{n=1}^\infty$ является ограниченной последовательностью чисел. По теореме Больцано-Вейерштрасса, из неё можно выделить сходящуюся подпоследовательность x_{n_k} .
- 2. Итерируемся по $m \in \mathbb{N}$ (с началом m=1 и последовательностью x_n) и выделяем новую подпоследовательность из той, что была получена на предыдущем шаге. Обозначаем их как $x_{m,n}$
- 3. Получили искомую последовательность $y_k = x_{k,k}$.

2. Обратимый оператор. Обратимость

2.1. Обратимость линейного, ограниченного снизу, оператоpa

Теорема 2.1.1: Пусть $A \in \mathcal{L}(E)$ – взаимно однозначный оператор $E \to \operatorname{Im} A$. Тогда обратный оператор A^{-1} будет ограничен тогда и только тогда, когда образы A оцениваются снизу:

$$\exists m: \ \forall x \in E: \ \|Ax\| \geq m\|x\|$$

Доказательство: \Rightarrow В силу ограниченности оператора A^{-1} , можно записать следующее:

$$\forall y = Ax: \ \|x\| = \|A^{-1}y\| \le \|A^{-1}\| \|y\| = \|A^{-1}\| \|Ax\|$$
 Отсюда имеем $\|Ax\| \ge \frac{1}{\|A^{-1}\|} \|x\|$.

 \Leftarrow Раз A – биекция, то и $\stackrel{\text{\tiny "-1}}{A}$ тоже. Поэтому вместо x можно подставить соответствующий ему $A^{-1}y, y \in \text{Im } A$:

$$\forall y \in \operatorname{Im} A: \ \left\|AA^{-1}y\right\| \geq m \left\|A^{-1}y\right\| \Leftrightarrow \left\|A^{-1}y\right\| \leq \frac{1}{m}\|y\|$$

А это в точности ограниченность оператора A^{-1} .

2.2. Обратимость возмущённого оператора

Теорема 2.2.1: Пусть E – банахово пространство, $A \in \mathcal{L}(E)$, причём ||A|| <

1. Тогда оператор (I+A) обратим. Более того, справедлива формула $(I+A)^{-1} = \sum_{k=0}^{\infty} {(-1)}^k A^k$

$$(I+A)^{-1} = \sum_{k=0}^{\infty} (-1)^k A^k$$

Замечание 2.2.1: Выписанный ряд называется рядом Неймана.

Доказательство: Нужно доказать, что ряд справа действительно является обратным к оператору (I+A). Обозначим $S_n=\sum_{k=0}^n{(-1)^kA^k}$. 1. Покажем, что S_n сходится к некоторому $S\in\mathcal{L}(E)$. Во-первых, $S_n\in\mathcal{L}(E)$

тривиальным образом, а в силу банаховости \mathcal{E} , достаточно проверить фун-

$$\left\|S_{n+p}-S_{n}\right\|=\left\|\sum_{k=n+1}^{n+p}\left(-1\right)^{k}A^{k}\right\|\leq\sum_{k=n+1}^{n+p}\left\|A\right\|^{k}<\varepsilon$$

даментальность этой последовательности: $\left\|S_{n+p}-S_{n}\right\|=\left\|\sum_{k=n+1}^{n+p}\left(-1\right)^{k}A^{k}\right\|\leq\sum_{k=n+1}^{n+p}\left\|A\right\|^{k}<\varepsilon$ Последнее неравенство выполняется, начиная с некоторого n, так как $||A||, ||A||^2, \dots$ образуют геометрическую прогрессию со знаменателем < 1.

2. Так как многочлены от одного и того же оператора коммутируют, то если мы покажем, что предел

$$\lim\nolimits_{n\to\infty}S_{n(I+A)}=I\Rightarrow S(I+A)=I=(I+A)S$$

и всё доказано.

Раскроем выражение под пределом:
$$S_n(I+A) = S_n + S_n A = \sum_{k=0}^n {(-1)}^k A^k + \sum_{k=1}^{n+1} {(-1)}^{k-1} A^k = A^0 + {(-1)}^n A^{n+1} = I + {(-1)}^n A^{n+1}$$

$$\|(-1)^n A^{n+1}\| \le \|A\|^{n+1} \to 0$$

Теорема 2.2.2: Пусть E – банахово пространство, $A \in \mathcal{L}(E)$ и $A^{-1} \in \mathcal{L}(E)$. Также пусть $\Delta A \in \mathcal{L}(E)$, причём $\|\Delta A\| < \frac{1}{\|A^{-1}\|}$. Тогда $(A + \Delta A)^{-1} \in \mathcal{L}(E)$.

Доказательство: Сведём теорему к предыдущей:

$$A + \Delta A = A(I + A^{-1}\Delta A)$$

Проверим, что норма оператора из скобки удовлетворяет условию на нор-MV:

$$||A^{-1}\Delta A|| \le ||A^{-1}|| \cdot ||\Delta A|| < 1$$

2.3. Формулировка теормы Банаха об обратном операторе. Доказательство в случае гильбертова пространства.

Теорема 2.3.1 (Банаха об обратном операторе): Пусть E_1, E_2 — банаховы пространства, $A \in \mathcal{L}(E_1, E_2)$ — биективный оператор. Тогда $A^{-1} \in \mathcal{L}(E_2, E_1)$.

Доказательство: Случай, когда $E_1=E_2=H$ – гильбертово пространство над полем $\mathbb C.$

Основная идея состоит в том, чтобы доказать утверждение теоремы не для A, а для A^* . Запишем 2 разложения пространства H (тема про сопряжённый оператор и разложение будет далее):

$$[\operatorname{Im} A] \oplus \operatorname{Ker} A^* = H$$
$$[\operatorname{Im} A^*] \oplus \operatorname{Ker} A = H$$

Так как A биективен, то $\operatorname{Ker} A = \{0\}$ и мы сразу получаем $[\operatorname{Im} A^*] = H$. С другой стороны, $[\operatorname{Im} A] = \operatorname{Im} A = H$, а потому $\operatorname{Ker} A^* = \{0\}$.

3. Сопряжённый оператор

3.1. Норма сопряжённого оператора (в ЛНП)

Определение 3.1.1: Пусть $A:E_1\to E_2$. Тогда сопряжённым оператором $A^*:E_2^*\to E_1^*$ называется оператор, удовлетворяющий условию:

$$\forall g \in E_2^* : \forall x \in E_1 : (A^*g)x = g(Ax)$$

Теорема 3.1.1: Пусть $A \in \mathcal{L}(E_1, E_2)$. Тогда $A^* \in \mathcal{L}(E_2^*, E_1^*)$, причём $\|A^*\| = \|A\|$.

Доказательство: Покажем неравенства для норм в 2 стороны:

≤ Верна следующая оценка:

$$\forall g \in E_2^*: \forall x \in E_1: \ |(A^*g)x| = |g(Ax)| \leq \|g\| \|Ax\| \leq \|g\| \|A\| \|x\|$$
 Из последнего имеем $\|A^*g\| \leq \|A\| \|g\|$, что означает $\|A^*\| \leq \|A\|$.

 \geq Так как $A^* \in \mathcal{L}(E_2^*, E_1^*)$, то можно воспользоваться следствием теоремы Хана-Банаха для нормы элемента Ax:

$$\forall x \in E_1: \ \|Ax\| = \sup_{\|g\|=1} |g(Ax)| = \sup_{\|g\|=1} |(A^*g)x|$$
При этом $\|(A^*g)x\| \le \|A^*\| \cdot 1 \cdot \|x\|$, а значит $\|Ax\| \le \|A^*\| \|x\| \Rightarrow \|A\| \le \|A^*\|$.

3.2. Сопряжённые операторы в гильбертовом пространстве. Равенство $H = [\operatorname{Im} A] \oplus \operatorname{Ker} A^*$

Определение 3.2.1: Пусть $E_1=H_1, E_2=H_2$ — гильбертовы пространства, $A\in\mathcal{L}(H_1,H_2)$. Тогда **эрмитово сопряжённым оператором** $A^*:H_2\to H_1$ называется оператор, удовлетворяющий условию:

$$\forall x \in E_1: \forall y \in E_2: \ \left(Ax,y\right)_{H_2} = \left(x,A^*y\right)_{H_1}$$

Теорема 3.2.1: Пусть H – гильбертово пространство, $A \in \mathcal{L}(H)$. Тогда $H = [\operatorname{Im} A] \oplus \operatorname{Ker} A^*$

Доказательство:

1. Покажем, что $(\text{Im }A)^{\perp}=\text{Ker }A^*$. Для этого рассмотрим произвольный элемент ортогонального дополнения:

$$\forall y \in (\operatorname{Im} A)^{\perp} : \forall x \in H : (Ax, y) = 0$$

Стало быть, для любых x, y выше будет $(x, A^*y) = 0$, а в силу гильбертовости пространства это означает, что $A^*y = 0$, что означает $y \in \text{Ker } A^*$.

2. Заметим, что $(\operatorname{Im} A)^{\perp} = [\operatorname{Im} A]^{\perp}$. Так как последнее является подпространством, то по теореме о проекции получаем требуемое разложение:

$$H = [\operatorname{Im} A] \oplus [\operatorname{Im} A]^{\perp} = [\operatorname{Im} A] \oplus \operatorname{Ker} A^*$$

4. Спектр. Резольвента.

4.1. Операторозначные функции комплексного переменного. Аналитичность резольвенты. Спектральный радиус. Основная теорема о спектре

Определение 4.1.1: **Резольвентным множеством** оператора A называется следующее множество:

$$\rho(A) = \left\{\lambda \in \mathbb{C} \ | \ \exists (A - \lambda I)^{-1} \in \mathcal{L}(E) \right\}$$

Все $\lambda \in \mathbb{C}$, попадающие в резольвентное множество, называются **регулярными значениями**.

Определение 4.1.2: **Спектром** оператора A называется дополнение к резольвентному множеству:

$$\sigma(A) = \mathbb{C} \setminus \rho(A)$$

Определение 4.1.3: **Резольвентой** оператора A называется любое отображение следующего вида:

$$R_{\lambda} := R(\lambda) := (A - \lambda I)^{-1}, \lambda \in \rho(A)$$

Утверждение 4.1.1: $R(\lambda)$ является непрерывной функцией от λ .

Доказательство: Положим $B=A-\lambda_0 I$ и $\Delta B=-\Delta \lambda I$.

Как мы уже доказывали выше, мы можем рассмотреть $\Delta\lambda$ с ограничением $|\Delta\lambda|<\frac{1}{\|B^{-1}\|}$ и тогда $B+\Delta B$ будет обратим.

Для непрерывности, нам нужно оценить норму следующей разности при $\Delta\lambda \to 0$:

$$\|R(\lambda_0 + \Delta \lambda) - R(\lambda_0)\| = \|(B + \Delta B)^{-1} - B^{-1}\|$$
 Распишем $(B + \Delta B)^{-1}$ через ряд Неймана следующим образом:
$$(B + \Delta B)^{-1} = (I + B^{-1}\Delta B)^{-1}B^{-1} = \sum_{k=0}^{\infty} (-1)^k (B^{-1}\Delta B)^k B^{-1} = B^{-1} + \sum_{k=1}^{\infty} (-1)^k (B^{-1}\Delta B)^k B^{-1}$$

Отсюда можно вернуться к оценке приращение и уже работать с рядом: $\left\|\left(B+\Delta B\right)^{-1}-B^{-1}\right\|=\left\|\sum_{k=1}^{\infty}\left(-1\right)^{k}\!\left(B^{-1}\Delta B\right)^{k}B^{-1}\right\|\leq$

$$\begin{array}{c} \left\|B^{-1}\right\|\sum_{k=1}^{\infty}\left(\left\|B^{-1}\right\|\left\|\Delta B\right\|\right)^{k} = \left\|B^{-1}\right\| \cdot \frac{\left\|B^{-1}\right\|\left\|\Delta B\right\|}{1-\left\|B^{-1}\right\|\left\|\Delta B\right\|} \underset{\Delta B \to 0}{\longrightarrow} 0$$

Замечание 4.1.1: Далее будет использоваться обозначение

$$A_{\lambda} := A - \lambda I$$

Утверждение 4.1.2: Пусть
$$\lambda_0,\lambda\in\rho(A)$$
. Тогда
$$R_\lambda-R_{\lambda_0}=(\lambda-\lambda_0)R_\lambda R_{\lambda_0}$$

Доказательство:

Рассмотрим следующую тривиальную цепочку равенств:
$$R_{\lambda}-R_{\lambda_0}=R_{\lambda}\underbrace{A_{\lambda_0}R_{\lambda_0}}_{I}-\underbrace{A_{\lambda}R_{\lambda}}_{I}R_{\lambda_0}=$$

$$R_{\lambda\left(A_{\lambda_0}-A_{\lambda}\right)}R_{\lambda_0}=R_{\lambda(\lambda-\lambda_0)}R_{\lambda_0}=(\lambda-\lambda_0)R_{\lambda}R_{\lambda_0}$$

Утверждение 4.1.3: $R(\lambda)$ дифференцируема на $\rho(A)$. Более того: $R'(\lambda_0) = R_{\lambda_0}^2$

$$\mathcal{A}$$
оказательство: Запишем дроби из предела производной:
$$\frac{R_{\lambda}-R_{\lambda_0}}{\lambda-\lambda_0}=\frac{(\lambda-\lambda_0)R_{\lambda}R_{\lambda_0}}{\lambda-\lambda_0}=R_{\lambda}R_{\lambda_0}\xrightarrow[\lambda\to\lambda_0]{}R_{\lambda_0}^2$$

Определение 4.1.4: Спектральным радиусом оператора A называется радиус окружности с центром в нуле, в которую попадают все элементы спектра:

$$r(A) = \sup_{\lambda \in \sigma(A)} |\lambda|$$

Утверждение 4.1.4: Если $|\lambda| > ||A||$, то $\lambda \in \rho(A)$.

 $\ensuremath{\mathcal{A}}$ оказательство: Перепишем A_λ следующим образом:

$$A_{\lambda} = -\lambda \left(I - \frac{1}{\lambda} A \right)$$

 $A_\lambda = -\lambda \big(I - \frac{1}{\lambda}A\big)$ Так как $\left\|\frac{A}{\lambda}\right\| = \frac{1}{|\lambda|}\|A\| < 1$, то применима теорема об обратимости возмущённого оператора и, соответственно, этот оператор обратим. Значит $\lambda \in$ $\rho(A)$ по определению.

Следствие 3.2.1.1: Очевидно следует, что $r(A) \leq ||A||$.

Утверждение 4.1.5: Радиус сходимости ряда Неймана для $R(\lambda)$ равен спектральному радиусу r(A).

Доказательство: \leq Мы можем говорить о ряде Лорана. Если $|\lambda| > ||A||$, то тогда имеет место следующее представление резольвенты: $R(\lambda) = (A - \lambda I)^{-1} = -\frac{1}{\lambda} \Big(I - \frac{A}{\lambda} \Big)^{-1} = -\frac{1}{\lambda} \sum_{k=0}^{\infty} A^k \lambda^{-k}$ При этом, ранее было установлено, что $R(\lambda)$ дифференцируема на $\rho(A)$.

$$R(\lambda) = (A - \lambda I)^{-1} = -\frac{1}{\lambda} \left(I - \frac{A}{\lambda} \right)^{-1} = -\frac{1}{\lambda} \sum_{k=0}^{\infty} A^k \lambda^{-k}$$

В частности, это происходит на круге $|\lambda| > r(A)$.

Так как представление функции в виде ряда Лорана в круге единственно, а мы уже его записали выше для некоторой окрестности бексконечности, то тот же самый вид должен быть и в этом круге.

Значит, радиус сходимости ряда Неймана не превосходит r(A).

 $\geq \Pi$ усть $|\lambda_0| < r(A)$. Тогда, предположим, что ряд сходится в этой точке. Это означает, что ряд будет сходится и при всех $|\lambda| > |\lambda_0|$.

Это также означает обратимость A_{λ} при всех таких λ , но коль скоро $|\lambda_0| < r(A)$, то должен существовать $|\lambda_0| < |\lambda_1| < r(A)$ такой, что $\lambda_1 \in \sigma(A)$ в силу определения спектрального радиуса, а это противоречит определению спектра.

Утверждение 4.1.6: Если $\lambda \in \sigma(A)$, то $\lambda^n \in \sigma(A^n)$.

Доказательство: Предположим противное, то есть $\lambda^n \in \rho(A^n)$ и $\lambda \in \sigma(A)$. Значит $(A^n - \lambda^n I)^{-1} \in \mathcal{L}(E)$. Заметим, что мы также можем записать обращаемый оператор в следующем виде:

$$A^n - \lambda^n I = (A - \lambda I) \underbrace{\left(A^{n-1} + \dots + \lambda^{n-1} I\right)}_{B} \Rightarrow I = (A - \lambda I) B \left(A^n - \lambda^n I\right)^{-1}$$

Так как рассматриваемые операторы — многочлены от степеней A, то они коммутируют. С учётом этого имеем, что A_{λ} обратим, а стало быть $\lambda \in \rho(A)$, противоречие.

Утверждение 4.1.7: Верна формула для с<u>пектр</u>ального радиуса:

$$r(A) = \lim_{n \to \infty} \sqrt[n]{\|A^n\|}$$

Доказательство: Как мы уже знаем, радиус сходимости ряда Неймана для $R(\lambda)$ совпадает с r(A):

$$r(A) = r_{\mathrm{cx}} = \overline{\lim}_{n \to \infty} \sqrt[n]{\|A^n\|}$$

В силу последнего доказанного утверждения, мы можем связать r(A) и $r(A^n)$ следующим образом:

$$r(A^n) = \sup_{\mu \in \sigma(A^n)} |\mu| \ge \sup_{\lambda \in \sigma(A)} |\lambda^n| = r(A)^n$$

Стало быть, $r(A) \leq \sqrt[n]{r(A^n)}$. При этом, знаем, что $r(A^n) \leq ||A^n||$.

Получилось, что верхний предел не превосходит любого элемента последовательности $\sqrt[n]{\|A^n\|}$, а это означает, что он не превосходит их нижнего предела. Такое возможно только тогда, когда существует просто предел.

Теорема 4.1.1 (Основная теорема о спектре): Спектр оператора непуст: $\sigma(A) \neq 0$

Доказательство: Предположим противное. Тогда $\rho(A) = \mathbb{C}$ и, следовательно, $R(\lambda)$ является целой функцией. Оценим норму этого оператора, пользуясь представлением обратного оператора в ряд Неймана:

$$||R(\lambda)|| \le \frac{1}{|\lambda|} \cdot \frac{1}{1 - \frac{1}{|\lambda|}||A||} \underset{\lambda \to \infty}{\to} 0$$

Коль скоро есть предел $\lim_{\lambda\to\infty}\|R(\lambda)\|$, то норма $R(\lambda)$ ограничена. Стало быть, по теореме Лиувилля $R(\lambda)=\mathrm{const.}$ Более того, из-за найденного выше предела $R(\lambda)=0$. Это противоречит обратимости A_λ при каком-либо λ . \square

Определение 4.1.5: Рассмотрим оператор $A \in \mathcal{L}(E)$. Тогда

- $\sigma_{p(A)}\coloneqq \{\lambda\in\sigma(A)\mid {\rm Ker}\ A_\lambda \neq \{0\}\}$ точечный спектр.
- $\sigma_{c(A)}:=\{\lambda\in\sigma(A)\mid {
 m Ker}\ A_\lambda=\{0\}\wedge {
 m Im}\ A_\lambda\ne E\wedge [{
 m Im}\ A_\lambda]=E\}$ непрерывный спектр.
- $\sigma_{r(A)}\coloneqq \{\lambda\in\sigma(A)\mid \mathrm{Ker}\ A_\lambda=\{0\}\wedge[\mathrm{Im}\ A_\lambda]\neq E\}$ остаточный спектр.

5. Самосопряжённые операторы

5.1. Свойства квадратичной формы (Ax, x) и собственных значений самосопряжённого оператора A.

Определение 5.1.1: Пусть $E_1 = E_2 = H$ – гильбертово пространство. Тогда, если $A \in \mathcal{L}(H)$ и $A^* = A$, то оператор A называется **самосопряжённым**: $\forall x,y \in H: \ (Ax,y) = (x,Ay)$

Определение 5.1.2: **Квадратичной формой** оператора A называется функционал, определённый следующим образом:

$$K(x) = (Ax, x)$$

Утверждение 5.1.1: Пусть $A \in \mathcal{L}(H)$ – произвольный оператор. Если $\forall x \in H : K(x) = 0$, то $A \equiv 0$.

Доказательство: Рассмотрим произвольные $x, y \in H$. Тогда $x + y, x + iy \in H$.

Запишем по определению квадратичную форму для этих точек:

$$K(x+y) = (A(x+y), x+y) = \underbrace{K(x)}_{0} + \underbrace{K(y)}_{1} + (Ax,y) + (Ay,x)$$
 $K(x+iy) = (A(x+iy), x+iy) = \underbrace{K(x)}_{0} - \underbrace{K(y)}_{0} - i(Ax,y) + i(Ay,x)$ Отсюда $(Ax,y) = \frac{1}{2}(K(x+y) + iK(x+iy)) = 0$. Если варьировать y по

Отсюда $(Ax,y) = \frac{1}{2}(K(x+y) + iK(x+iy)) = 0$. Если варьировать y по всем возможным значениям, то следствие теоремы Хана-Банаха даст равенство $\forall x \in H : Ax = 0$.

Теорема 5.1.1:

- 1. Оператор A самосопряжён тогда и только тогда, когда $\forall x \in H: K(x) \in \mathbb{R}$.
- 2. Если λ собственное значение самосопряжённого A, то $\lambda \in \mathbb{R}$.
- 3. Если $\lambda_1 \neq \lambda_2$ собственные значения самосопряжённого A, а $e_1, e_2 \in H$ соотстветствующие собственные вектора, то $(e_1, e_2) = 0$.

Доказательство:

- 1. Проведём доказательство в обе стороны.
 - \Rightarrow Скалирное произведение эрмитово, поэтому воспользуемся свойством перестановки аргументов:

$$K(x) = (Ax, x) = (x, Ax) = \overline{(Ax, x)} \Rightarrow K(x) \in \mathbb{R}$$

← Аналогично первому пункту, имеем

$$K(x) = (Ax, x) = \overline{(Ax, x)} = (x, Ax)$$

В то же время, $(Ax, x) = (x, A^*x)$ по определению. Стало быть, квадратичная форма для $A - A^*$ нулевая.

По доказанному утверждению, это возможно лишь в том случае, когда $A-A^*\equiv 0,$ что и требовалось.

2. Пусть $Av = \lambda v$. Тогда

$$K(v) = (Av, v) = \lambda(v, v) \in \mathbb{R} \Leftrightarrow \lambda \in \mathbb{R}$$

3. Заметим следующее соотношение:

$$\lambda_1(e_1,e_2)=(Ae_1,e_2)=(e_1,Ae_2)=\lambda_2(e_1,e_2)$$
 Так как $\lambda_1\neq\lambda_2$, то такое возможно только тогда, когда $(e_1,e_2)=0.$

5.2. Разложение гильбертова пространства $H=[{
m Im}\ A_\lambda]\oplus {
m Ker}\ A_\lambda,$ где A — самосопряжённый оператор.

Теорема 5.2.1: Для самосопряжённого A верно равенство

$$\forall \lambda \in \mathbb{C} : [\operatorname{Im} A_{\lambda}] \oplus \operatorname{Ker} A_{\lambda} = H$$

Доказательство: Воспользуемся обычной теоремой о разложении для сопряжённых операторов. Тогда

$$[{\rm Im}\ A_\lambda] \oplus {\rm Ker}\ A_\lambda^* = H$$
 При этом $A_\lambda^* = A^* - \overline{\lambda}I = A - \overline{\lambda}I.$

Если $\lambda \in \mathbb{R}$, то всё доказано. Иначе $\lambda \neq \mathbb{R}$, но это также значит, что $\lambda \notin \sigma_p(A)$, а это эквивалентно Ker $A_\lambda = \{0\}$. То же самое верно и для $\overline{\lambda}$, откуда тоже получаем тривиальное доказательство.

5.3. Критерий принадлежности числа спектру самосопряжённого оператора. Вещественность спектра самосопряжённого оператора.

Теорема 5.3.1 (Критерий принадлежности спектру самосопряжённого оператора):

- 1. $\lambda \in \rho(A) \Leftrightarrow A_{\lambda}$ ограниченный снизу, то есть $\exists m>0: \forall x \in H: \ \|A_{\lambda}x\| \geq m\|x\|$
- 2. $\lambda \in \sigma(A) \Leftrightarrow \exists \{x_n\}_{n=1}^{\infty} \subset H : ||x_n|| = 1 \land \lim_{n \to \infty} ||A_{\lambda}x_n|| = 0$

Доказательство: Второй пункт – отрицание обеих частей первого. Поэтому доказывать будем только первую эквивалентность.

- \Rightarrow Раз $\lambda \in \rho(A)$, то A_{λ} обратим, а значит биективен. По теоереме об ограниченности снизу обратимого оператора всё доказано.
- \Leftarrow По той же теореме, должны доказать, что A_{λ} биективен. Из ограниченности снизу следует $\operatorname{Ker} A_{\lambda} = \{0\}$ (иначе образом ненулевого элемента был бы ноль, что нарушило бы ограниченность), а в силу разложения пространство имеем следующее:

$$[\operatorname{Im}\, A_\lambda] \oplus \operatorname{Ker}\, A_\lambda = H = [\operatorname{Im}\, A_\lambda]$$

Также по лемме о замыкании образа ограниченного снизу оператора, имеем

$${\rm Im}\ A_{\lambda}=[{\rm Im}\ A_{\lambda}]=H$$

Утверждение 5.3.1: Пусть A – самосопряжённый, а $\lambda = \mu + i\nu, \nu \neq 0$. Тогда $||A_{\lambda}x||^2 \ge ||\nu||^2 ||x||^2$

Доказательство: Заметим, что $A_{\lambda}=A-\lambda I=A-(\mu+i\nu)I=A_{\mu}-i\nu I.$

Так как речь идёт о квадрате нормы, то мы можем расписать её через скалярное произведение:

$$\left\|\boldsymbol{A}_{\lambda}\boldsymbol{x}\right\|^{2} = \left(\boldsymbol{A}_{\lambda}\boldsymbol{x},\boldsymbol{A}_{\lambda}\boldsymbol{x}\right) = \left\|\boldsymbol{A}_{\mu}\boldsymbol{x}\right\|^{2} - i\nu\big(\boldsymbol{x},\boldsymbol{A}_{\mu}\boldsymbol{x}\big) + i\nu\big(\boldsymbol{A}_{\mu}\boldsymbol{x},\boldsymbol{x}\big) + \left\|\boldsymbol{\nu}\right\|^{2}\left\|\boldsymbol{x}\right\|^{2}$$

Так как $\mu \in \mathbb{R}$, то A_{μ} – самосопряжённый оператор. Стало быть, мы можем сократить слагаемые в середине. Тогда:

$$||A_{\lambda}x||^2 = ||A_{\mu}x||^2 + ||\nu||^2 ||x||^2 \ge ||\nu||^2 ||x||^2$$

По доказанной лемме, A_{λ} ограничен снизу. В силу критерия принадлежности спектру, такое возможно лишь в том случае, когда $\lambda \in \rho(A)$.

Следствие 5.3.1.1: Для самосопряжённого оператора A верно:

$$\sigma(A) \subseteq \mathbb{R}$$

5.4. Теорема о спектре самосопряжённого оператора: $\sigma(A) \subseteq$ $[m_{-}, m_{+}], r(A) = ||A||$

Теорема 5.4.1: Обозначим для самосопряжённого $A\colon m_-\coloneqq\inf_{\|x\|=1}(Ax,x)$ и $m_+ \coloneqq \sup_{\|x\|=1} (Ax, x)$. Тогда:

1.
$$\sigma(A)\subseteq [m_-,m_+]$$
, причём $m_-,m_+\in \sigma(A)$

2.
$$||A|| = r(A) = \max(|m_-|, |m_+|)$$

Доказательство:

1. Покажем, что если $\lambda > m_+$, то $\lambda \in \rho(A)$. Будем снова ограничивать $\|A_\lambda x\|$ снизу. С одной стороны, по КБШ:

$$|(A_{\lambda}x,x)| \leq \|A_{\lambda}x\| \|x\| \Rightarrow \|A_{\lambda}x\| \geq \tfrac{1}{\|x\|} |(A_{\lambda}x,x)|$$

С другой стороны, распишем скалярное произведение:

$$|(A_{\lambda}x,x)| = |(Ax,x) - \lambda(x,x)| = \lambda ||x||^2 - (Ax,x) \ge (\lambda - m_+) ||x||^2$$

Последний переход верен, так как
$$m_+ = \sup_{\|x\|=1} (Ax, x) = \sup_{x} \frac{Ax, x}{\|x\|^2} \Rightarrow (Ax, x) \leq m_+ \|x\|^2 < \lambda \|x\|^2$$

Отсюда сразу $\lambda \in \rho(A)$. Теперь докажем, что $m_+ \in \sigma(A)$. Для этого воспользуемся критерием принадлежности спектру. В силу определения m_+ :

$$\exists \left\{ x_n \right\}_{n=1}^{\infty} \subseteq H: \|x_n\| = 1 \wedge \lim_{n \to \infty} (Ax_n, x_n) = m_+$$

 $\exists \{x_n\}_{n=1}^\infty \subseteq H: \|x_n\|=1 \wedge \lim_{n\to\infty} (Ax_n,x_n)=m_+$ Надо показать, что предел $\lim_{n\to\infty} \left\|A_{m_+}x_n\right\|=0.$ Так как норма векторов единична, то текущий предел можно переписать в следующем виде:

$$\lim_{n\to\infty}(Ax_n,x_n)-m_+=0=\lim_{n\to\infty}(Ax_n,x_n)-m_+(x_n,x_n)=\lim_{n\to\infty}\left(A_{m_+}x_n,x_n\right)=0$$

Также из определения m_+ следует, что A_{m_+} – отрицательно полуопределённый оператор.

Так как неравенство КБШ справедливо для скалярных произведений, порождённый положительными полуопределёнными операторами, то перейдём к $B = -A_m$. Чтобы получить требуемое, нам достаточно показать, что $\lim_{n\to\infty} Bx_n = 0.$

Запишем четвёртую! степень нормы следующим образом:
$$\|Bx_n\|^4 = \left|(x_n, Bx_n)_B^2\right| \leq \left|(x_n, x_n)_B\right| \left|(Bx_n, Bx_n)_B\right| = \\ \left|(Bx_n, x_n)\right| \left|(B^2x_n, Bx_n)\right|$$
 Первый множитель стремится к нулю, а второй ограничен:

$$\left|\left(B^{2}x_{n},Bx_{n}\right)\right|\leq\left\|B^{2}x_{n}\right\|\left\|Bx_{n}\right\|\leq\left\|B\right\|^{3}\left\|x_{n}\right\|^{2}=\left\|B\right\|^{3}$$

Требуемый предел установлен. Доказательство для m_{-} аналогично.

2. Из формулы спектрального радиуса

$$r(A) = \lim_{n \to \infty} \sqrt[n]{\|A^n\|}$$

Докажем, что для $n=2^k$ верно равенство $||A^n||=||A||^n$.

Достаточно доказать, что $\|A^2\| = \|A\|^2$.

≤ Воспользуемся неравенством для ограничених операторов:

$$\|A^2x\| = \|A(Ax)\| \le \|A\| \|Ax\| \le \|A\|^2 \|x\| \Rightarrow \|A^2\| \le \|A\|^2$$
 \ge Распишем квадрат нормы $\|Ax\|^2$:

$$\|Ax\|^2 = (Ax, Ax) = (x, A^2x) \le \|x\| \|A^2\| \|x\|$$

Осталось взять супремум от обеих частей неравенства:

$$||A||^2 = \sup_{||x||=1} ||Ax||^2 \le \sup_{||x||=1} ||A^2|| ||x||^2 = ||A^2||$$

Так как предел в формуле спектрального радиуса существует, то достаточно найти любой частичный предел. Будем брать предел по индексам-степеням двойки.

6. Компактные операторы

6.1. Свойства компактных операторов

Определение 6.1.1: Оператор A называется **компактным**, если

$$\forall M\subseteq E_1$$
 - ограниченное $\Rightarrow A(M)\subseteq$

 E_2 - предкомпакт (вполне ограниченное)

Множество компактных операторов обозначается как $\mathcal{K}(E_1, E_2)$.

Утверждение 6.1.1: Имеют место следующие утверждения:

- 1. dim $E_1 < \infty \Rightarrow \mathcal{L}(E_1, E_2) = \mathcal{K}(E_1, E_2)$
- 2. dim $E_2 < \infty \Rightarrow \mathcal{L}(E_1, E_2) = \mathcal{K}(E_1, E_2)$

Доказательство: Достаточно понимать, что в конечномерном пространстве любое ограниченное множество вполне ограниченно.

1. Коль скоро $\dim \operatorname{Im} A \leq \dim E_1 < \infty$, то образ любого ограниченного множества оказывается ограниченным множеством в подпространстве $\operatorname{Im} A$ конечной размерности.

2. Сразу следует из исходного заявления в доказательстве.

Замечание 6.1.1: Пусть R — кольцо, I — подгруппа (R,+). Тогда I называется левосторонним идеалом, если I обладает свойством поглощения слева:

$$\forall r \in R : \forall a \in I : ra \in I$$

Аналогично определяется **правосторонний идеал**. Ну и **двухсторонний идеал**, если он является и левосторонним, и правосторонним.

Утверждение 6.1.2: Пусть $E_1=E_2=E$. Тогда $\mathcal{K}(E)\subseteq\mathcal{L}(E)$ – двухсторонний идеал.

Доказательство:

1. $\mathcal{K}(E)$ является подгруппой по сложению. Пусть $A, B \in \mathcal{K}(E)$. Тогда $A + B \in \mathcal{K}(E) \Leftrightarrow (A+B)(B(0,1))$ – предкомпакт.

Это эквивалентно тому, что из любой ограниченной последовательности в этом множество можно выделить сходящуюся подпоследовательность. Действительно, рассмотрим ограниченную последовательность $\{y_n\}_{n=1}^\infty\subseteq (A+B)(B(0,1)).$ В силу определения, её элементы распишутся так:

$$\forall n \in \mathbb{N}: y_n = Ax_n + Bx_n; \ x_n \in B(0,1)$$

Так как $A \in \mathcal{K}(E),$ то из Ax_n можно выделить сходящуюся подпоследовательность Ax_n .

Аналогично, уже из Bx_{n_k} можно выделить сходящуюся подподпоследовательность Bx_{n_k} , причём предыдущая сходимость никуда не денется.

2. $\mathcal{K}(E)$ поглощает элементы $\mathcal{L}(E)$. Пусть $A \in \mathcal{K}(E)$ и $B \in \mathcal{L}(E)$. Тогда $AB \in \mathcal{K}(E)$ – ибо B(B(0,1)) тоже ограниченной множество.

Для BA сложнее, но мы можем воспользоваться приёмом предыдущего пункта. Рассмотрим ограниченную последовательность $\{y_n\}_{n=1}^{\infty} \subseteq BA(B(0,1))$. Тогда $y_n = BAx_n, x_n \in B(0,1)$. В силу компактности оператора A, можно из Ax_n выделить сходящуюся подпоследовательность Ax_{n_k} . Так как оператор B непрерывен, сходимость в образе сохранится, а значит нужная подпоследовательность $y_{n_k} = BAx_{n_k}$ найдена.

Утверждение 6.1.3: Если $\dim E = \infty$, то тождественный оператор $I \notin \mathcal{K}(E)$.

Доказательство: Действительно, по теореме Рисса мы знаем, что замкнутый единичный шар в таком пространстве не компактен, а значит B(0,1) =I(B(0,1)) не может быть предкомпактом.

Следствие 5.4.1.1: Если dim $E = \infty, A \in \mathcal{K}(E)$, то $A^{-1} \notin \mathcal{L}(E)$.

Доказательство: Предположим противное. Тогда $I = AA^{-1} \in \mathcal{K}(E)$, чего не может быть.

Утверждение 6.1.4: Если $A \in \mathcal{K}(E_1, E_2)$ и $x_n \stackrel{w}{\to} x_0 \in E_1$, то $Ax_n \stackrel{w}{\to} Ax_0$.

Доказательство: Пусть $x_n \stackrel{w}{\to} x_0$. Тогда $\{x_n\}_{n=1}^{\infty}$ – ограниченная, а значит $\{Ax_n\}_{n=1}^{\infty}$ – предкомпакт. Более того, из слабой сходимости аргументов и непрерывности A следует слабая сходимость $Ax_n \stackrel{w}{\to} Ax_0$.

Теорема 6.1.1: Пусть E_2 – банахово пространство, $A_n \in \mathcal{K}(E_1, E_2), A \in$ $\mathcal{L}(E_1,E_2)$, причём $\lim_{n o\infty}A_n=A$. Тогда $A\in\mathcal{K}(E_1,E_2)$.

ot Доказательство: В силу банаховости E_2 для компактности оператора Aдостаточно проверить, что A(B(0,1)) является вполне ограниченным множеством.

Идея состоит в том, чтобы взять достаточно близкий оператор A_n , взять соответствующую ему ε -сеть и заявить, что она подойдёт к A:

- $\begin{array}{ll} \bullet & \forall \varepsilon > 0: \exists n_0 \in \mathbb{N}: \ \left\|A A_{n_0}\right\| < \varepsilon \\ \bullet & \forall \varepsilon > 0: \exists \{y_t\}_{t=1}^T \subseteq E: \forall x \in B(0,1): \exists s: \ \left\|A_{n_0}x y_s\right\| < \varepsilon \end{array}$

Зафиксиоуем $\varepsilon>0, n_0\in\mathbb{N}$ и $\left\{y_t\right\}_{t=1}^T\subseteq E$ согласно утверждениям выше. Тогда:

 $\forall x \in B(0,1): \exists y_s: \ \|Ax-y_s\| \leq \left\|Ax-A_{n_0}x\right\| + \left\|A_{n_0}x-y_s\right\| < 2\varepsilon$ Стало быть, $\left\{y_t\right\}_{t=1}^T$ – это конечная 2ε -сеть для A(B(0,1)), то есть образ вполне ограничен.

6.2. Свойства собственных значений компактного оператора.

Теорема 6.2.1: Пусть $\lambda \in \mathbb{C} \setminus \{0\}$. Тогда dim Ker $A_{\lambda} < \infty$. Где A – компактный, а λ – его СЗ.

Доказательство: Утверждение теоремы эквивалентно тому, что единичная сфера в пространстве $\operatorname{Ker} A_{\lambda}$ компактна.

Это будет доказано, если мы покажем, как выделить из любой последовательности сходящуюся подпоследовательность. Пусть $\{x_n\}_{n=1}^\infty\subseteq S(0,1)\subseteq \mathrm{Ker}\ A_\lambda$. Отсюда $\|x_n\|$ и $Ax_n=\lambda x_n$. Более того, $\{x_n\}_{n=1}^\infty$ — ограниченное множество, а значит $\{Ax_n\}_{n=1}^\infty$ — предкомпакт.

Стало быть, существует сходящаяся подпоследовательность $\lim_{k \to \infty} Ax_{n_k} = y$. В силу того, что мы можем раскрыть образ через x_{n_k} , получим следующее:

$$\lim_{k\to\infty} \lambda x_{n_k} = y \Leftrightarrow \lim_{k\to\infty} x_{n_k} = \frac{y}{\lambda}$$

Однако, это ещё не все. Нам также нужно показать, что $y \in \operatorname{Ker} A_{\lambda}$ – принадлежит рассматриваемому подпространству. Для этого мы применим оператор A к обеим частям предела:

$$\lim_{k\to\infty}Ax_{n_k}=y=\frac{1}{\lambda}Ay\Leftrightarrow Ay=\lambda y\Leftrightarrow y\in \mathrm{Ker}\ A_\lambda$$

Теорема 6.2.2: Для любого $\delta > 0$ вне любого круга $\{|\lambda| \le \delta\}$ может лежать лишь конечное число собственных значений компактного оператора A.

Доказательство: Проведём доказательство в частном случае E = H – гильбертово пространство, и A – компактный самосопряжённый оператор.

Предположим противное. Тогда, должна существовать $\delta_0>0$ и хотя бы счётное число $\left\{\lambda_n\right\}_{n=1}^\infty$ собственных значений вне этого круга.

Пусть e_n — нормированный собственный вектор для значения λ_n . Тогда $\left\{e_n\right\}_{n=1}^{\infty}$ — огрениченное множество, а значит $\left\{Ae_n\right\}_{n=1}^{\infty}$ — предкомпакт.

Однако, в то же время верно неравенство (здесь мы используем ортогональность собственных векторов для теоремы Пифагора, это свойство самосопряжённого оператора):

$$\forall n \neq m : \|Ae_n - Ae_m\|^2 = \|\lambda_n e_n - \lambda_m e_m\|^2 = \lambda_n^2 + \lambda_m^2 > 2\delta_0^2$$
 Получили явное противоречие с вполне ограниченностью.

Утверждение 6.2.1: Если $\lambda \in \sigma(A) \setminus \{0\}$, то $\lambda \in \sigma_{v(A)}$.

Доказательство: По критерию принадлежности спектру, существует нормированная последовательность $\left\{x_n\right\}_{n=1}^{\infty},$ для которой есть предел $\lim_{n \to \infty} A_{\lambda} x_n = 0.$

Так как $\{x_n\}_{n=1}^{\infty}$ — ограниченное множество, то в силу компактности A можно выделить сходящуюся последовательность $\lim_{k\to\infty}Ax_{n_k}=y$. Тогда, мы в то же время имеем равенство

$$\lim\nolimits_{k\to\infty}Ax_{n_k}=\lim\nolimits_{k\to\infty}\lambda x_{n_k}=y$$

В силу непрерывности оператора A, его можно применить к последнему равенсту:

$$\lim_{k\to\infty}\lambda Ax_{n_k}=\lambda y=Ay\Leftrightarrow y\in \mathrm{Ker}\ A_\lambda$$

Важно отметить, что $y \neq 0$. Это следует из упомянутого предела $\lim \lambda x_{n_k} = y$. Стало быть, $\lambda \in \sigma_{p(A)}$.

6.3. Теорема Фредгольма для компактных самосопряжённых операторов

Утверждение 6.3.1 (Лемма об инвариантности): Пусть $M \subseteq H$ – подпространство, инвариантное относительно самосопряжённого оператора A (то есть $AM \subseteq M$). Тогда M^{\perp} тоже инвариантно относительно A.

Доказательство: Пусть $x \in M$. В силу условия, $Ax \in M$. Вопрос состоит в том, чтобы из $y \in M^{\perp}$ показать верность $Ay \in M^{\perp}$. Проверим это явно:

$$\forall x \in M: (x,Ay) = (Ax,y) = 0 \Rightarrow Ay \in M^{\perp}$$

Утверждение 6.3.2: Для компактного самосопряжённого оператора верно: $[{\rm Im}\ A_\lambda]={\rm Im}\ A_\lambda$

Иначе говоря, образ A_{λ} замкнут.

Доказательство: Применим лемму об инвариантности. Заметим, что M = $\operatorname{Ker} A_{\lambda}$ инвариантен относительно A и A_{λ} , а значит и $M^{\perp} = [\operatorname{Im} A_{\lambda}]$ инвариантен относительно тех же операторов.

Если мы докажем, что $A_{\lambda}\mid_{[\operatorname{Im} A_{\lambda}]}$ является сюръективным оператором, то всё будет доказано.

Действительно, получим тогда $[\operatorname{Im} A_{\lambda}] = A_{\lambda([\operatorname{Im} A_{\lambda}])} \subseteq \operatorname{Im} A_{\lambda}$. Обозначим $\tilde{A} \coloneqq A|_{[\operatorname{Im} A_{\lambda}]}$. Это тоже компактный самосопряжённый оператор, действующий из $[\operatorname{Im} A_{\lambda}]$ в само себя. Заметим, как связаны собственные значения \hat{A} с исходными:

$$\tilde{A}_{\lambda} = \tilde{A} - \lambda I = A|_{[\operatorname{Im} A_{\lambda}]} - \lambda I|_{[\operatorname{Im} A_{\lambda}]} = (A - \lambda I)|_{[\operatorname{Im} A_{\lambda}]} = \widetilde{A}_{\lambda}$$

А как мы знаем из теоремы Фредгольма для самосопряжённых операторов, все собственные вектора лежат в другой части прямого разложения.

Раз так, то $\lambda \notin \{0\} \cup \sigma_p(A)$. А по одному из свойств СЗ компактного оператора, может быть верно $\lambda \in \rho(\widetilde{A})$. Значит, оператор $\widetilde{A}_{\lambda} = \widetilde{A}_{\lambda}$ биективен, что включает в себя его сюръективность.

Теорема 6.3.1: Пусть H – гильбертово пространство над \mathbb{C} , A – компактный самосопряжённый оператор и $\lambda \in \mathbb{C} \setminus \{0\}$. Тогда

$$H = \operatorname{Im} A_{\lambda} \oplus \operatorname{Ker} A_{\lambda}$$

Доказательство: Очевидно из комбинации теоремы Фредгольма для самосопряжённых операторов и утверждения о замкнутости образа компактного самосопряжённого оператора. П

6.4. Теорема Гильберта-Шмидта

Утверждение 6.4.1: Если $A \neq 0$, то у этого оператора существует собственное значение $\lambda \neq 0$.

Доказательство: Коль скоро $A \neq 0$ и мы рассматриваем компактный оператор, то $||A|| \neq 0$. Коль скоро A – самосопряжённый оператор, то можно воспользоваться теоремой о норме, по ней $||A|| = \max(|m_-|, |m_+|)$.

Так как $m_-, m_+ \in \sigma(A)$, то хотя бы одно из этих чисел ненулевое и является собственным значением, что и требовалось.

Теорема 6.4.1 (Шильберта - Шмидта): Пусть H — сепарабельное гильбертово пространство над полем \mathbb{C} , A — компактный самосопряжённый оператор. Тогда в H найдётся ортонормированный базис, состоящий из собственных векторов оператора A.

Доказательство: Построим нужный базис явным образом. Для этого упорядочим все собственные значения оператора A по модулю, причём включим в этот ряд компии этих значений столько раз, сколько соответствует размерности их собственного подпространства (в силу теоремы о конечности размерности собственных подпространств, это возможно). Получим ряд:

$$|\lambda_1| \ge |\lambda_2| \ge |\lambda_3| \ge \dots$$

Пусть v_n – нормированный собственный вектор, соответствующий λ_n (для равных СЗ берём ортонормированные вектора базиса подпространства).

Образуем ортонормированную систему $\{e_n\}_{n=1}^{\infty}$, полученную перенумерованием вектором v_n и добавлением собственных векторов, соответствующих $\lambda=0$ (конечно, если оно является СЗ).

Так как мы находимся в сепарабельном пространстве, то для того, чтобы эта система была базисом, достаточно доказать её полноту. Обозначим $M = \left[\langle \{e_n\}_{n=1}^\infty \rangle\right]$. Коль скоро это подпространство, можно применить теорему о проекции:

$$M \oplus M^\perp = H$$

Стало быть, $M = H \Leftrightarrow M^{\perp} = \{0\}$. Покажем, что M^{\perp} инвариантно относительно A.

В силу самосопряжённости A, достаточно это доказать для просто M (лемма об инвариантности).

Введём дополнительное обозначение $L := \langle \{e_n\}_{n=1}^{\infty} \rangle$. Тогда $AL \subseteq L$ тривиальным образом. При этом оператор A компактен, а значит непрерывен, то есть

$$AM = A([L]) \subseteq [AL] \subseteq [L] = M$$

Исследуем $\tilde{A}\coloneqq A|_{M^\perp}.$ Возможно 2 случая:

• $\tilde{A}=0$. Этот факт можно записать следующим образом:

$$\forall x \in M^{\perp}: \ \tilde{A}x = 0 \Rightarrow x \in \operatorname{Ker} \ \tilde{A}$$

Стало быть, $M^\perp\subseteq {\rm Ker}\ \tilde{A}.$ Но так как мы рассмотрели сужение на $M^\perp,$ то по определению M мы оставили $\operatorname{Ker} A \setminus \{0\}$ за бортом, то есть $\operatorname{Ker} \tilde{A} =$ $\{0\}=M^\perp.$ • $\tilde{A}\neq 0$. Предположим противное: $M^\perp_{\ \ \ \sim}\neq \{0\}.$

По доказанной выше лемме, у \tilde{A} существует ненулевое СЗ λ . Обозначим за e – соответствующий нормированный собственный вектор, то есть $Ae = \lambda e$, но ведь тогда и $Ae = \lambda e$. Получили противоречие с определением M.