

Private and Dynamic Time-Series Data Aggregation with Trust Relaxation

I. Leontiadis, K. Elkhiyaoui, R. Molva

Problem

Energy forecasting

Medical data analysis

User Profiling

Overall Transactions

Existing solutions

- Trusted Aggregator
 - Unrealistic
- Secret sharing [ET2012]
 - Increased communication costs
- Differential privacy [JK2012, CSS2012, RN2010]
 - Orthogonal to our goal
- Trusted Dealer [SCRCS2011, JL2013, GMP2014]
 - Strong trust assumption

State of the Art [SCRCS2011]

Setup(k):

- \triangleright \mathbb{G} a cyclic group with a generator g and prime order p
- Trusted Dealer distributes:

 - $sk_0 = -\sum_{i=1}^n sk_i$ to the Aggregator.
 - $\mathcal{F}H():\{0,1\}^* \to \mathbb{G}$

• Encrypt (x_i, t) :

$$\succ c_{i,t} = g^{x_i} H(t)^{sk_i} \in \mathbb{Z}_p$$

Aggregate:

- $V = H(t)^{sk_0} \prod_{i=1}^n c_{i,t} = g^{\sum_{i=1}^n c_{i,t}} g \in \mathbb{Z}_p$
- $\sum_{i=1}^n c_i = \log_g(V)$

- Vulnerable to user failures
- No dynamicity
- Expensive decryption
- Fully trusted dealer

State of the Art contd. [JL2013]

Setup(k):

- > N = pq for primes p, q (l the size of N)
- Trusted Dealer distributes:

 - $sk_0 = -\sum_{i=1}^n sk_i$ to the Aggregator.
 - $\mathfrak{T}H(): \mathbb{Z}_N \to (\mathbb{Z}_N^2)^*$

• Encrypt (x_i, t) :

 $> c_{i,t} = (1 + x_{i,t}N)H(t)^{sk_i} \mod N^2$

Aggregate:

- $ightharpoonup V_t = H(t)^{sk0} \prod_{i=1}^n c_{i,t} = (1 + \sum_{i=1}^n x_{i,t} N) \mod N^2$
- $\sum_{i=1}^{n} x_{i,t} = \frac{V_t 1}{N} \in \mathbb{Z}$

- Vulnerable to user failures
- No dynamicity
- Fully trusted dealer

Drawbacks of previous solutions

Functionality

- No Dynamic group management
- Not resilient to user failures

Privacy

> Fully trusted key dealer

Idea of Solution

- Users generate their secret keys.
- Semi trusted Collector.
- Blinded secret keys.

Privacy Requirements

- Aggregator obliviousness:
 - Aggregator learns nothing but the aggregate.
- Collector obliviousness:
 - Collector learns nothing.

Functionality Enhancements

Dynamicity

Functionality Enhancements

- Dynamicity
- Fault-Tolerance

Tools

- JL encryption.
- Self-generated keys (by users).
- Responsibility splitting mechanism.

Our scheme

$$aux_{i,t} = H(t)^{sk_{A}sk_{i}}$$

$$c_{i,t} = (1 + x_{i,t}N)H(t)^{sk_{i}} mod N^{2}$$

$$sk_{A} \in \{0,1\}^{2l}$$

$$aux_{1,t}$$

$$aux_{1,t}$$

$$c_{1,t}$$

$$aux_{2,t}$$

$$c_{1,t}$$

$$c_{2,t}$$

$$c_{3,t}$$

$$c_{n,t}$$

$$aux_{n,t}$$

2.
$$I_t = \frac{\frac{P_t}{aux_t} - 1}{N}$$

3.
$$\sum_{i=1}^{n} x_{i.t} = I_t \mathbf{s} \mathbf{k}_A^{-1} \bmod \mathbb{Z}_N$$

Dynamicity and Resiliency to failures

Privacy analysis

Aggregator Obliviousness based on:

ightharpoonup DCR in $(\mathbb{Z}/\mathbb{Z}_N^2)^*$,

Collector Obliviousness based on:

- \triangleright DCR in $(\mathbb{Z}/\mathbb{Z}_N^2)^*$,
- \triangleright QR in \mathbb{Z}_N^*
- \triangleright DDH in the subgroup of QR in $(\mathbb{Z}_N)^*$

Evaluation

Theoretical

Entity	Computation	Communication
User	${f 2}$ EXP $+{f 1}$ MULT $+{f 1}$ ADD $+{f 1}$ HASH	4 · 1
Aggregator	2 EXP + 2 DIV + (n - 1) MULT + 1HASH	2 · 1
Collector	$(\mathbf{n-1})MULT$	2 · 1

Experimental (Charm framework on Python 3.2.3, Intel Core i5 CPU
 M 560 @ 2.67GHz 4Cores with 8GB of memory running Ubuntu 12.04 32bit)

Values N	[1-10]	[1-100]	[1-1000]
1024	110.13 μs	$112.23 \mu { m s}$	$114.57 \mu { m s}$
2048	116.50 μs	117.15 μs	118.34 μs
3072	116.99 μs	118.23 μs	$120.83 \mu { m s}$

Encryption time per user

Users	350	700	1000	2500
1024	$0.26\mathrm{s}$	$2.40\mathrm{s}$	$9.65\mathrm{s}$	$49.92\mathrm{s}$
2048	$0.65\mathrm{s}$	$5.82\mathrm{s}$	$24.16\mathrm{s}$	$123.19\mathrm{s}$
3072	$1.01\mathrm{s}$	$9.37\mathrm{s}$	$39.34\mathrm{s}$	$198.12\mathrm{s}$

Aggregation time

Recap

Aggregation of time series data

- > Fast
- Dynamic
- Resilient to user failures
- Relaxed trust assumption

How?

- $> (1 + N)^x = 1 + Nx \mod N^2$ [JL2013].
- Users generate keys independently.
- Responsibility splitting mechanism.
- Untrusted collector.

Looking Ahead

- Advanced aggregate functionalities
- Verifiability
- Collusion resistant (?)

Questions?

Thank you!!!

Iraklis Leontiadis leontiad@eurecom.fr

References

- [GMP2014]: Privacy-Enhanced Participatory Sensing with Collusion Resistance and Data Aggregation <u>CANS2014</u>
- [ET2012]: Private Computation of Spatial and Temporal Power Consumption with Smart Meters. <u>ACNS 2012</u>
- [JK2012]: Fault-Tolerant Privacy-Preserving Statistics. <u>Privacy Enhancing</u> <u>Technologies 2012</u>
- [CSS2012]: Privacy-Preserving Stream Aggregation with Fault Tolerance. <u>Financial Cryptography 2012</u>
- [RN2010]: Differentially private aggregation of distributed time-series with transformation and encryption. <u>SIGMOD Conference 2010</u>
- [SCRCS2011]: Privacy-Preserving Aggregation of Time-Series Data. NDSS 2011
- [JL2013]: A Scalable Scheme for Privacy-Preserving Aggregation of Time-Series Data. <u>Financial Cryptography 2013</u>

