Raspberry Pi

- Running Raspbian on Raspberry Pi and Installing related programs -

Aug. 2019

Ando Ki, Ph.D. adki@future-ds.com

Contents

- Running Raspbian
 - Download Raspbian Buster
 - ► Writing image on the uSD using Etcher
 - ► Insert uSD card and apply +5V power
 - Starting Raspbian
- Running Raspbian without monitor & keyboard
 - Download Raspbian Buster
 - ▶ Writing image on the uSD using Etcher
 - Add 'ssh' file
 - ► Insert uSD card and apply +5V power
 - Starting Raspbian
 - ► Connect Raspbina through SSH
- Enable SSH and VNC
 - ► Install VNC viewer
 - Running VNC viewer on Linux
 - Install and run VNC viewer on Windows

- Change display resolution
- Enlarge swap-file size
- Enable Wireless Connection
- Install OpenCV
- Install OpenMP
- Install Atlas and OpenBLAS
- Install screen capture
- File transfer over SSH
 - Raspberry Pi and Linux
 - Raspberry Pi and Windows
- Backup Raspberry Pi image
- Clone Raspberry Pi image (Raspbian)
- Raspbian on VirtualBox
- ARM cross-compiler on Windows

Ź

- Visit
 - https://www.raspberrypi.org/downloads/raspbian/
- Download
 - "Raspbian <u>Buster</u> with desktop and recommended software"
- Unzip the file
 - 2019-07-10-raspbian-buster-full.img
- Write the image to the uSD card using one of followings
 - ► Etcher
 - ⇒ https://www.balena.io/etcher/
 - Win32 Disk Imager
 - https://sourceforge.net/projects/win32diskimager/

3

Writing image on the uSD using Etcher

Insert uSD card and apply +5V power

Starting Raspbian

To open a command window

• Click this menu icon

• Type 'CTL-ALT t'

Default setting:
user ID: pi
passwd: raspberry

- Visit
 - https://www.raspberrypi.org/downloads/raspbian/
- Download
 - "Raspbian <u>Buster</u> with desktop and recommended software"
- Unzip the file
 - 2019-07-10-raspbian-buster-full.img
- Write the image to the uSD card using one of followings
 - ► Etcher
 - https://www.balena.io/etcher/
 - Win32 Disk Imager
 - https://sourceforge.net/projects/win32diskimager/

ç

Writing image on the uSD using Etcher

IP scan on the host computer

- Now find IP address of the Raspberry Pi
 - use 'nmap'
 - ⇒ \$ nmap -sn 192.168.1.0/24
 - \$ sudo nmap -sP -n 192.168.1.0/24
 - Note that Raspberry Pi uses "b8:27:eb:...." for its MAC HW address
 - use 'arp' (may not detect new IP)
 - Note 'arp' will not detect at the first time.
 - \$ arp -a | grep -i b8:27:eb
 - Note that Raspberry Pi uses "b8:27:eb:...." for its MAC HW address
 - use 'arp-scan'
 - \$ sudo arp-scan --interface=eth0 192.168.1.0/24

- arp-scan
 - \$ sudo apt install arp-scan
- nmap
 - https://nmap.org/download.html
- ipscan
 - requires Java
 - ► Angry IP Scanner (https://angryip.org/)
- Advanced IP scanner
 - http://www.advanced-ip-scanner.com/

Nmap scan report for 192.168.1.214 Host is up (0.00s latency). MAC Address: B8:27:EB:78:52:F1 (Raspberry Pi Foundation) Nmap scan report for 192.168.1.218 Host is up (0.0010s latency). MAC Address: B8:27:EB:AA:CC:14 (Raspberry Pi Foundation)

13

Enable SSH and VNC (1/3)

Connect to the new Raspberry Pi through SSH.

- User name: pi
- Password: raspberry

Contents

- Running Raspbian
 - Download Raspbian Buster
 - ▶ Writing image on the uSD using Etcher
 - Insert uSD card and apply +5V power
 - Starting Raspbian
- Running Raspbian without monitor & keyboard
 - Download Raspbian Buster
 - ▶ Writing image on the uSD using Etcher
 - Add 'ssh' file
 - Insert uSD card and apply +5V power
 - Starting Raspbian
 - ► Connect Raspbina through SSH
- Enable SSH and VNC
 - Install VNC viewer
 - Running VNC viewer on Linux
 - ► Install and run VNC viewer on Windows

- Change display resolution
- Enlarge swap-file size
- Enable Wireless Connection
- Install OpenCV
- Install OpenMP
- Install Atlas and OpenBLAS
- Install screen capture
- File transfer over SSH
 - Raspberry Pi and Linux
 - Raspberry Pi and Windows
- Backup Raspberry Pi image
- Clone Raspberry Pi image (Raspbian)
- Raspbian on VirtualBox
- ARM cross-compiler on Windows

19

Enable SSH and VNC

SSH: Secure Shell / Secure Socket Shell

a network protocol that gives users, particularly system administrators, a secure way to access a computer over an unsecured network.

- VNC: Virtual Network Computing
 - a graphical desktop-sharing system that uses the Remote Frame Buffer protocol (RFB) to remotely control another computer.

Running VNC viewer on Linux (1/3)

192.168.1.214::5900

Running VNC viewer on Linux (2/3)

Default setting: user ID: pi passwd: raspberry

Install and running VNC on Windows (2/2)

ე:

Contents

- Running Raspbian
 - Download Raspbian Buster
 - ▶ Writing image on the uSD using Etcher
 - ► Insert uSD card and apply +5V power
 - Starting Raspbian
- Running Raspbian without monitor & keyboard
 - Download Raspbian Buster
 - Writing image on the uSD using Etcher
 - Add 'ssh' file
 - ► Insert uSD card and apply +5V power
 - Starting Raspbian
 - Connect Raspbina through SSH
- Enable SSH and VNC
 - Install VNC viewer
 - Running VNC viewer on Linux
 - Install and run VNC viewer on Windows

- Change display resolution
- Enlarge swap-file size
- Enable Wireless Connection
- Install OpenCV
- Install OpenMP
- Install Atlas and OpenBLAS
- Install screen capture
- File transfer over SSH
 - Raspberry Pi and Linux
 - Raspberry Pi and Windows
- Backup Raspberry Pi image
- Clone Raspberry Pi image (Raspbian)
- Raspbian on VirtualBox
- ARM cross-compiler on Windows

Change display resolution

- Edit '/boot/config.txt' on the Raspberry Pi.
 - \$ sudo vi /boot/config.txt
- Uncomment following two lines
 - ▶ framebuffer_width=1280
 - ► framebuffer_height=720
- Then reboot
 - ▶ \$ reboot
- After that, reconnect

29

Enlarge swap-file size

- Check swap file size
 - ▶ \$ free -h

- Change value of 'CONF_SWAPSIZE' in '/etc/dphy-swapfile'
 - ▶ \$ sudo vi /etc/dphy-swapfile
 - CONF_SWAPSIZE=100 → CONF_SWAPSIZE=1024
 - It means 100Mbyte to 1Gbyte
- Do as follows
 - \$ sudo /etc/init.d/dphys-swapfile stop
 - \$ sudo /etc/init.d/dphys-swapfile start
 - \$ free -h

Contents

- Running Raspbian
 - Download Raspbian Buster
 - ▶ Writing image on the uSD using Etcher
 - Insert uSD card and apply +5V power
 - Starting Raspbian
- Running Raspbian without monitor & keyboard
 - Download Raspbian Buster
 - Writing image on the uSD using Etcher
 - Add 'ssh' file
 - ► Insert uSD card and apply +5V power
 - Starting Raspbian
 - Connect Raspbina through SSH
- Enable SSH and VNC
 - ► Install VNC viewer
 - Running VNC viewer on Linux
 - ▶ Install and run VNC viewer on Windows

- Change display resolution
- Enlarge swap-file size
- Enable Wireless Connection
- Install OpenCV
- Install OpenMP
- Install Atlas and OpenBLAS
- Install screen capture
- File transfer over SSH
 - Raspberry Pi and Linux
 - Raspberry Pi and Windows
- Backup Raspberry Pi image
- Clone Raspberry Pi image (Raspbian)
- Raspbian on VirtualBox
- ARM cross-compiler on Windows

3:

Install OpenCV (1/6)

- OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library.
 - https://opencv.org
- What OpenCV can do :
 - 1. Read and Write Images.
 - Detection of faces and its features.
 - 3. Detection of shapes like Circle, rectangle etc in a image.
 - 4. Text recognition in images. (number of car license plate)
 - 5. Modifying image quality and colors
 - 6. Developing Augmented reality apps.
 - 7. Controlling camera
- Which Language it supports :
 - ▶ 1. C++
 - 2. Android SDK
 - 3. Java
 - 4. Python
 - 5. C (Not recommended)

Install OpenCV (2/6)

- \$ sudo apt-get update
- \$ sudo rpi-update
- \$ reboot

35

Install OpenCV (3/6)

- \$ sudo apt-get update
- \$ sudo apt-get cmake
- \$ sudo apt-get install build-essential git cmake pkg-config
- \$ sudo apt-get install libjpeg-dev libtiff5-dev libjasper-dev libpng12-dev
- \$ sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev
- \$ sudo apt-get install libxvidcore-dev libx264-dev libeigen3-dev
- \$ sudo apt-get install libgtk2.0-dev
- \$ sudo apt-get -y install libv4l-dev v4l-utils
- \$ sudo apt-get install libatlas-base-dev gfortran
- \$ sudo apt-get install python2.7-dev python3-dev
- \$ sudo apt-get install libgstreamer-plugins-base1.0-dev

Install OpenCV (4/6)

- \$ cd ~/work
- \$ wget -O opencv.zip https://github.com/ltseez/opencv/archive/3.3.0.zip
- \$ unzip opencv.zip
- \$ wget -O opencv_contrib.zip https://github.com/ltseez/opencv_contrib/archive/3.3.0.zip
- \$ unzip opencv_contrib.zip
- \$ cd opency-3.3.0
- \$ mkdir build && cd build
- \$ cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local \
- -D BUILD_WITH_DEBUG_INFO=OFF -D BUILD_DOCS=OFF \
- -D BUILD_EXAMPLES=OFF -D BUILD_TESTS=OFF \
 - -D BUILD_opencv_ts=OFF -D BUILD_PERF_TESTS=OFF \
- -D INSTALL_C_EXAMPLES=OFF -D INSTALL_PYTHON_EXAMPLES=OFF \
 - -D OPENCV_EXTRA_MODULES_PATH=~/work/opencv_contrib-3.3.0/modules \
 - -D ENABLE_NEON=ON -D WITH_LIBV4L=ON \

Install OpenCV (5/6)

- You are in the '~/work/opency-3.3.0/build'
 - \$ make
 - You may have some errors.
 - \$ sudo make install
 - \$ sudo Idconfig
- check installation
 - \$ pkg-config --cflags opencv
 - -l/usr/local/include/opency -l/usr/local/include
- If 'cap ffmpeg impl.hpp' causes error due to 'CODEC_FLAG_GLOBAL_HEADER' not defined.
 - Add following at the top of "opency-3.3.0/modules/videoio/src/cap_ffmpeg_impl. hpp"

#define AV_CODEC_FLAG_GLOBAL_HEADER (1 << 22) #define CODEC_FLAG_GLOBAL_HEADER AV_CODEC_FLAG_GLOBAL_HEADER #define AVFMT_RAWPICTURE 0x0020

- \$ pkg-confg --libs opencv
 - cg-confg --libs opencv
 -L/usr/local/lib -lopencv_stitching -lopencv_superres lopencv_videostab -lopencv_photo -lopencv_aruco lopencv_bideostab -lopencv_bioinspired -lopencv_calib lopencv_dn_modern -lopencv_dm-lopencv_face lopencv_fuzzy -lopencv_hdf -lopencv_img_hash lopencv_fuzzy -lopencv_hdf -lopencv_img_hash lopencv_rgbd -lopencv_stillercy -lopencv_stm lopencv_stereo -lopencv_structured_light lopencv_phase_unwrapping -lopencv_surface_matching lopencv_tracking -lopencv_datasets -lopencv_text lopencv_dnn -lopencv_plot -lopencv_ml-lopencv_stateures2d lopencv_calib3d -lopencv_video -lopencv_ximgproc lopencv_calib3d -lopencv_fatures2d -lopencv_lopencv_lopencv_calib3d -lopencv_fatures2d -lopencv_calib3d -lopencv_fatures2d -lopencv_video -lopencv_ximgproc lopencv_imgcodecs -lopencv_objdetect -lopencv_xxphoto lopencv_imgcodecs -lopencv_core
- If 'cv2.cpp' causes error due to 'invalid conversion from 'const char*' to 'char*'.
 - change as follows of 'opency-3.3.0/modules/python/src2/cv2.cpp'

char* str = PyString_AsString(obj); ==> const char* str = PyString_AsString(obj);I

Install OpenCV (6/6) - testing

- \$ cd ~/work/OpenCV/opencv-3.3.0/samples
- \$ cmake.
- \$ make
- \$ cd cpp
- \$./cpp-example-facedetect ../data/lena.jpg

39

Install OpenMP

- OpenMP (Open Multi-Processing) is an application programming interface (API) that supports multi-platform shared memory multiprocessing programming in C, C++, and Fortran.
- \$ sudo apt-get update
- \$ sudo apt-get install libomp-dev

Install Atlas or OpenBLAS (1/3)

- OpenBLAS
 - Open Basic Linear Algebra Subprograms
 https://github.com/xianyi/OpenBLAS
- ATLAS
 - Automatically Tuned Linear Algebra Software
 https://github.com/math-atlas/math-atlas
- Intel MKL
 - Math Kernel Library

- BLAS
 - Level1: vector-vector operationsC= C + s x V
 - Level2: matrix-vector operationsC = C + A xV
 - ► Level3: matrix-matrix operations
 - \bigcirc C = C + A x B

۸.

Install Atlas or OpenBLAS (2/3)

\$ sudo apt install libatlas-base-dev

Install Atlas or OpenBLAS (3/3)

- From package repository
 - \$ sudo apt-get install libopenblas-dev
- Check include files and libraries
 - \$ pkg-config --cflags openblas
 - -I/usr/include/arm-linux-gnueabihf
 - \$ pkg-config --libs openblas
 - -lopenblas

- From source
 - \$ cd ~/work
 - \$ git clone https://github.com/xianyi/OpenBLAS.git
 - \$ cd OpenBLAS
 - \$ make PREFIX=/opt/OpenBLAS
 - \$ sudo mkdir /opt/OpenBLAS
 - \$ sudo make install

43

Contents

- Running Raspbian
 - Download Raspbian Buster
 - ▶ Writing image on the uSD using Etcher
 - ► Insert uSD card and apply +5V power
 - Starting Raspbian
- Running Raspbian without monitor & keyboard
 - Download Raspbian Buster
 - Writing image on the uSD using Etcher
 - Add 'ssh' file
 - ► Insert uSD card and apply +5V power
 - Starting Raspbian
 - Connect Raspbina through SSH
- Enable SSH and VNC
 - ► Install VNC viewer
 - Running VNC viewer on Linux
 - Install and run VNC viewer on Windows

- Change display resolution
- Enlarge swap-file size
- Enable Wireless Connection
- Install OpenCV
- Install OpenMP
- Install Atlas and OpenBLAS
- Install screen capture
- File transfer over SSH
 - ► Raspberry Pi and Linux
 - Raspberry Pi and Windows
- Backup Raspberry Pi image
- Clone Raspberry Pi image (Raspbian)
- Raspbian on VirtualBox
- ARM cross-compiler on Windows

Install screen capture

- Install GNOME Screenshot
 - \$ sudo apt update
 - \$ sudo apt install gnome-screenshot
- \$ gnome-screenshot --interactive

15

File transfer over SSH

- Raspberry Pi and Linux
 - ▶ use 'scp'
 - ► Linux to Raspberry Pi
 - **⇒** \$ scp file pi@192.168.1.214:/home/pi
 - ⇒ \$ scp pi@192.168.1.214:/home/pi/file .
 - Raspberry Pi to Linux
 - ⇒ \$ scp file <u>user@192.168.1.100:/home/user</u>
 - ⇒ \$ scp <u>user@192.168.1.100:/home/user/file</u> .

- Raspberry Pi and Windows
 - ▶ use 'pscp' a command of PuTTY
 - ► Windows to Raspberry Pi
 - \$ pscp file pi@192.168.1.214:/home/pi
 - ⇒ \$pscp pi@192.168.1.214:/home/pi/file .
 - ► Or use WinSCP
 - https://winscp.net

Backup Raspberry Pi image (1/2)

- Linux
 - Say your uSD is inserted at /dev/sdx
 - Uncompressed way
 - \$ dd if=/dev/sdx of=/path/rpi-backup.img bs=1M
 - \$ dd if=/path/rpi-backup.img of=/dev/sdx bs=1M
 - Compressed way
 - \$ dd if=/dev/sdx bs=1M | gzip > /path/rpi-backup.img.gz
 - \$ gzip -dc /path/rpi-backup.img.gz | dd of=/dev/sdx bs=1M

47

Backup Raspberry Pi image (2/2)

- Windows
 - ▶ Use Win32DiskImager
 - https://sourceforge.net/projects/win32diskimager/
- Read
 - ► Insert uSD card to be read
 - Specify file to store
 - ► Then, 'Read'

- Write
 - Insert uSD card to save (backup)
 - Specify file to read
 - ► Then, 'Write'

Clone Raspberry Pi image (Raspbian)

- Use rpi-clone/rpi-clone-setup on Raspberry Pi
 - ▶ \$ cd ~work
 - ▶ \$ git clone https://github.com/billw2/rpi-clone.git
 - ▶ \$ cd rpi-clone
 - ▶ \$ sudo cp rpi-clone rpi-clone-setup /usr/local/sbin
- Now insert new uSD or USB stick (say '/dev/sda' is the device for new disk)
 - ▶ If there exists file system on the uSD, umout all
 - \$ sudo umount /media/pi/rootfs
 - \$ sudo umount /media/pi/boot
 - ▶ \$ sudo rpi-clone sda ← Backup case
 - 0
 - ► \$ sudo rpi-clone sda -s *rpi2* ← 'rpi2' is new host name 'raspberrypi' as a default.

10

Raspbian on VirtualBox (1/7)

- 1) Windows에 VirtualBox를 설치
 - Installing VirtualBox on Windows host machine.
- 2) VirtualBox에 Raspbian를 설치
 - Installing Raspbian guest Operating System on VirtualBox.
- 3) 필요한 프로그램을 설치
 - Installing user programs and libraries on Raspbian.

Raspbian on VirtualBox (2/7): Install VirtualBox

■ Download VirtualBox install program from https://www.virtualbox.org/wiki/Downloads

51

Raspbian on VirtualBox (3/7): get VDI

■ Get Raspbian VDI (Virtual desktop infrastructure) from https://www.osboxes.org/raspbian/

- Uncompress
 - ► Have a look at '32bit/Raspbian 2018-11-26 (32bit).vdi"

ARM cross compiler on Windows (1/2)

■ Get GCC package for Raspberry from http://gnutoolchains.com/raspberry/

5

ARM cross compiler on Windows (2/2)

Un compress and run it to install

- Use GCC in
 - C:/SysGCC/raspberry/bin
 - C:/SysGCC/raspberry/arm-linux-gnueabihf

㈜퓨쳐디자인시스템 34051 대전광역시 유성구 문지로 193, KAIST 문지캠퍼스, F723호 (042) 864-0211~0212 / contact@future-ds.com / www.future-ds.com

Future Design Systems, Inc.

Faculty Wing F723, KAIST Munji Campus, 193 Munji-ro, Yuseong-gu, Daejeon 34051, Korea +82-042-864-0211~0212 / contact@future-ds.com / www.future-ds.com

