министерство науки и высшего образования Российской Федерации

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

ОТЧЕТ

О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ № 2
«СИНТЕЗ КОМБИНАЦИОННЫХ СХЕМ»

Выполнил

студент группы Б22-В71

Мамлеев А. А.

Логин: B22_V71_05

Пароль: KQ7tI21v

Преподаватели:

Новиков Γ . Γ .

Ядыкин И.М.

Цель: изучить методы синтеза комбинационных схем на логических элементах; получить навыки проектирования комбинационных схем на VHDL; овладеть инструментальными средствами проектирования схем на ПЛИС; приобрести опыт экспериментального исследования синтезируемых схем.

1 Синтез комбинационной схемы

В соответствии с вариантом дана следующая система ФАЛ:

$$\begin{cases}
F_1(x_3, x_2, x_1, x_0) = \sum (1, 3, 5, 7, 8, 10, 12, 14), \\
F_2(x_3, x_2, x_1, x_0) = \sum (1, 2, 3, 5, 7, 9, 15), \\
F_3(x_3, x_2, x_1, x_0) = \sum (1, 3, 5, 7, 8, 9).
\end{cases} \tag{1}$$

Для данных функций составим таблицу истинности (табл. 1).

Таблица 1. Таблица истинности для системы ФАЛ (1)

$N_{\overline{0}}$	x_3	x_2	x_1	x_0	F_1	F_2	F_3
0	0	0	0	0	0	0	0
1	0	0	0	1	1	1	1
2	0	0	1	0	0	1	1
3	0	0	1	1	1	1	1
4	0	1	0	0	0	0	0
5	0	1	0	1	1	1	1
6	0	1	1	0	0	0	0
7	0	1	1	1	1	1	1
8	1	0	0	0	1	0	1
9	1	0	0	1	0	1	1
10	1	0	1	0	1	0	0
11	1	0	1	1	0	0	0
12	1	1	0	0	1	0	0
13	1	1	0	1	0	0	0
14	1	1	1	0	1	0	0
15	1	1	1	1	0	1	0

1.1 Минимизация

Произведем минимизацию функций методом диаграмм Вейча; на рис. 1 представлена эталонная диаграмма, которой далее будем пользоваться.

Рис. 1. Эталонная диаграмма Вейча

Рис. 2. Диаграммы Вейча для заданных функций

Произведя минимизацию при помощи диаграмм Вейча (рис. 2), запишем заданные функции в форме МДНФ:

$$\begin{cases}
F_1(x_3, x_2, x_1, x_0) = x_0 \bar{x}_3 \vee \bar{x}_0 x_3, \\
F_2(x_3, x_2, x_1, x_0) = x_0 \bar{x}_3 \vee x_0 x_1 x_2 \vee x_0 \bar{x}_1 \bar{x}_2 \vee x_1 \bar{x}_2 \bar{x}_3, \\
F_3(x_3, x_2, x_1, x_0) = x_0 \bar{x}_3 \vee \bar{x}_1 \bar{x}_2 x_3.
\end{cases} \tag{2}$$

Таблица 2. Импликантная матрица системы логических функций

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 \$\frac{\bar{\pi}}{\pi_0,\bar{\pi}}\displays,\pi_0,\bar{\pi}}	2	18.08	3		$\frac{5}{5}$	0 8	18	Koj	Конституента 7	уента	8 8 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	9	$\frac{10}{x_0\bar{x}_0x_1\bar{x}_0}$	12	14	15
	- 60	F_2	F_1	$F_2 \mid F_2 \mid F$	F	$\frac{2222}{F_2}$	$\frac{1}{1}$	F	F_2	F_3		F_3	 F_3		_	F_1	F_2
			+	+		-	-										

Найдем все простые импликанты системы логических функций (1), включая и функции $F_1 \cdot F_2, F_1 \cdot F_3, F_2 \cdot F_3, F_1 \cdot F_2 \cdot F_3$. Из диаграмм (рис. 2) нетрудно видеть, что:

$$\begin{cases}
F_1 \cdot F_2 = x_0 \bar{x}_3, \\
F_1 \cdot F_3 = x_0 \bar{x}_3 \vee \bar{x}_0 \bar{x}_1 \bar{x}_2 x_3, \\
F_2 \cdot F_3 = x_0 \bar{x}_3 \vee x_0 \bar{x}_1 \bar{x}_2 x_3, \\
F_1 \cdot F_2 \cdot F_3 = x_0 \bar{x}_3.
\end{cases} \tag{3}$$

Теперь при помощи импликантной матрицы системы функций (табл. 2) определим минимальное представление системы логических функций (2)—(3). Анализ заполненной матрицы показывает, что минимальная совокупность переключательных функций останется в виде (2).

1.2 Комбинационная схема, временная диаграмма

Перейдем в базис штриха Шеффера:

$$\begin{cases}
F_1(x_3, x_2, x_1, x_0) = (x_0|\bar{x}_3)|(\bar{x}_0|x_3), \\
F_2(x_3, x_2, x_1, x_0) = (x_0|\bar{x}_3)|(x_0|x_1|x_2)|(x_0|\bar{x}_1|\bar{x}_2)|(x_1|\bar{x}_2|\bar{x}_3), \\
F_3(x_3, x_2, x_1, x_0) = (x_0|\bar{x}_3)|(\bar{x}_1|\bar{x}_2|x_3).
\end{cases} (4)$$

В соответствии с (4) построим логическую схему (рис. 3).

Произведем ранжирование элементов схемы (рис. 3):

0-й ранг: x_3, x_2, x_1, x_0

1-й ранг: $\bar{x}_3, \bar{x}_2, \bar{x}_1, \bar{x}_0, D_3$

2-й ранг: D_1, D_2, D_4, D_5, D_6

3-й ранг: F_1, F_2, F_3

В соответствии с рангами построим временную диаграмму (рис. 4).

Оценим максимальные задержки переключения сигналов для каждой из функций.

• Функция F_1 : Вычисления производились на 10-м наборе. Схема прохождения сигнала: $x_0 \to \bar{x}_0 \to D_2 \to F_1$. Максимальные величины задержек переключения: $t_{01}=8$ нс, $t_{10}=7$ нс.

Рис. 3. Реализация многовыходной комбинационной схемы

- Функция F_2 : Вычисления производились на 5-м наборе. Схема прохождения сигнала: $x_0 \to D_1 \to F_2$. Максимальные величины задержек переключения: $t_{01} = 6$ нс, $t_{10} = 5$ нс.
- Функция F_2 : Вычисления производились на 8-м и 9-м наборах. Схемы прохождения сигнала: $x_2 \to \bar{x}_2 \to D_6 \to F_3$, $x_1 \to \bar{x}_1 \to D_6 \to F_3$. Максимальные величины задержек переключения: $t_{01} = 8$ нс, $t_{10} = 7$ нс.

Рис. 4. Временная диаграмма работы комбинационной схемы

2 Описание комбинационной схемы на VHDL

Описать комбинационную схему на языке VHDL можно различными способами. Воспользуемся одним из предложенных в лабораторном практикуме, а именно—с использованием параллельного сигнального оператора присваивания, при этом функции будем описывать в виде булевых уравнений (листинг 1). Удобнее всего при этом воспользоваться ранее полученным представлением функций в форме МДНФ (2).

Листинг 1. Описание комбинационной схемы на языке VHDL entity LAB2_KS is port ($x3,\ x2,\ x1,\ x0\colon \textbf{in}\ BIT; \\ F1,\ F1,\ F3\colon \textbf{out}\ BIT); \\ \textbf{end}\ LAB2_KS; \\ \textbf{architecture}\ LAB2_KS_arch\ \textbf{of}\ LAB2_KS\ \textbf{is} \\ \textbf{begin} \\ F1 <= (\textbf{not}\ x3\ \textbf{and}\ x0)\ \textbf{or}\ (x3\ \textbf{and}\ \textbf{not}\ x0); \\ F2 <= (\textbf{not}\ x3\ \textbf{and}\ x0) \\ \textbf{or}\ (x2\ \textbf{and}\ x1\ \textbf{and}\ x0)$

or (not x2 and not x1 and x0)

or (not x3 and not x2 and x1);

or (x3 and not x2 and not x1);

 $F3 \ll (\mathbf{not} \ x3 \ \mathbf{and} \ x0)$