BMWG – Containerized Infrastructure Benchmarking

IETF 116 Hackathon March 25-26, 2023 Yokohama, Japan

Hackathon Plan

- Our hackathon activities provide benchmarking references to support our draft:
 - Draft:
 Considerations for Benchmarking Network Performance in Containerized Infrastructures
 https://tools.ietf.org/html/draft-dcn-bmwg-containerized-infra
 - This draft discusses all possible factors that can affect container network performance:
 - Different networking model based on packet acceleration techniques
 - Different resources configuration settings

Hackathon Plan

Verify and Summarize all the container network performance impact results caused by the mentioned factors in all of our previous hackathon (111-116)

- Networking models
 - ✓ Userspace acceleration (OVS-DPDK, VPP)
 - ✓ SRIOV
 - ✓ eBPF
 - Combined models
- Resources configuration settings
 - ✓ NUMA allocation
 - ✓ CPU, Memory allocation, hugepages
 - Services Function chaining

Different networking models based on packet acceleration techniques

Userspace Acceleration (OVS-DPDK, VPP vSwitch)

SRIOV Acceleration

Different networking models based on packet acceleration techniques

- Different Resources Configuration Settings
 - NUMA allocation (C-VNF, vSwitch, NIC same/different nodes NUMA)

- Number of CPU cores, memory allocation
 - CPU, memory allocation to C-VNF/pod via –request attribute in yaml file
 - CPU cores allocation to vSwitches in their startup configuration
- Service function chaining
 - Impact of number of C-VNFs in a service chain

Benchmarking Configuration

Hardware – Worker Node

СРИ	Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz
	48 CPU cores * 2 NUMA nodes
Memory	256GB: 32GB x 4DIMMs x 2 NUMA nodes @ 2400MHz
NIC	Intel Corporation Ethernet Network Adapter X71-
	40Gbps
Microcode	0x5003102
Intel NIC	0x1572
Device ID	
Intel NIC	
Firmware	6.01 0x800035cf 1.1747.0
version	
BIOS setting	CPU Power and Performance Policy < Performance >
	CPU C-state Disabled
	CPU P-state Disabled
	Intel(R) Hyper-Threading Tech Enabled
	Turbo Boost Disabled

Traffic Generator : T-Rex (v2.92)

Name	T-Rex
Version	2.92
Benchmark	T-Rex Non Drop Rate application (accepted
method	percentage of drop rate is less than 0.1%)

Software

Operating System	Ubuntu 22.04
Linux Kernel Version	5.15
GCC version	gcc version 4.8.5 20150623 (Red Hat 4.8.5-44)
DPDK version	22.11.1
Hugepages	1Gi

What we learned

- Different performance caused by different networking models
 - (OVS-DPDK < VPP < SRIOV)

VPP < Combined VPP-SRIOV (multi-pod)

Combined model performance with impact of different number of C-VNF

IETF Hackathon – BMWG: Containerized Infrastructure Benchmarking

What we learned

- Different performance caused by different CPU Memory allocation to pod
 - Might only affect when using DPDK version 20 or below
 - With higher DPDK version, we witness no impact to network performance when changing resources allocation

Different Pod's CPU cores allocation performances

Different Pod's memory allocation performances

What we learned

- Different performance caused by different NUMA alignment
 - Between Pods vSwitch NIC

NUMA alignment scenarios

IETF Hackathon – BMWG: Containerized Infrastructure Benchmarking

Future Works

- After this benchmarking verification, we finalize our draft and submit for WG draft adoption
- We would like to welcome any questions, comments to the draft

Wrap Up

Team members:

On-site

Younghan Kim (SSU)

Minh Ngoc Tran(SSU)

Jangwon Lee (SSU)

Remote

Van Binh Duong (SSU)

Git repo:

https://github.com/mipearlska/bmwg-container-networking

