Types and λ -calculus

Problem Sheet 7

** 1. Suppose closed term M has a normal form $\lambda x. xx$. Prove that all reducts of M are untypable, i.e. $M >^* N$ implies N untypable.

Solution -

Assume M has normal form $\lambda x.xx$ and suppose $M \rhd^* N$. Then we have $M \rhd^* \lambda x.xx$ and $M \rhd^* N$ so, by Confluence, N and $\lambda x.xx$ have a common reduct. But $\lambda x.xx$ is a normal form, so we must have that $N \rhd^* \lambda x.xx$. We claim that N is therefore untypable. To see why, suppose that N were typable, then by Subject Reduction, so is $\lambda x.xx$. However, we know that this is impossible.

** 2.

(a) Prove the following result by induction on *M*:

Let *B* be a type and *N* a term. For all terms *M*, types *A* and environments Γ : if $\Gamma, x:B \vdash M : A$ and $\Gamma \vdash N : B$ then $\Gamma \vdash M[N/x] : A$.

(b) Prove the missing case in the proof of Lemma 12.2 from the notes: if $\Gamma \vdash (\lambda x. M)N : A$ then $\Gamma \vdash M[N/x] : A$.

Solution -

- (a) Suppose *B* is a type and *N* a term. The rest of the proof is by induction on *M*.
 - When M is a variable y, we proceed as follows. Let A be a type and Γ an environment. Suppose (i) Γ , $x:B \vdash y:A$ and (ii) $\Gamma \vdash N:B$. Now we analyse cases on x=y?

- If x = y then, by definition of substitution, M[N/x] = N and, by inversion on (i), we obtain that B = A. Then our goal is to show $\Gamma \vdash N : A$, which is exactly (ii).
- Otherwise, by definition of substitution, M[N/x] = M. Our goal is to show $\Gamma \vdash M : A$. This follows immediately from (i) by Weakening (see the previous problem sheet).
- When M is a constant c, we proceed as follows. Let A be a type and Γ an environment. Suppose (i) Γ , $x:B \vdash c:A$ and (ii) $\Gamma \vdash N:B$. By definition, c[N/x] = c and so our goal is to show $\Gamma \vdash c:A$, which follows immediately from (i) by Weakening.
- When *M* is of the form *PQ*, we assume the induction hypotheses:
 - **(IH1)** For all A', Γ' : if Γ' , $x:B \vdash P : A'$ and $\Gamma' \vdash N : B$ then $\Gamma' \vdash P[N/x] : A'$
 - **(IH2)** For all A', Γ' : if Γ' , $x:B \vdash Q : A'$ and $\Gamma' \vdash N : B$ then $\Gamma' \vdash Q[N/x] : A'$

Let *A* be a type and Γ an environment, then suppose (i) Γ , $x:B \vdash PQ : A$ and (ii) $\Gamma \vdash N : B$. It follows from inversion on (i) that there is a type *C* such that:

- (a) Γ , $x:B \vdash P:C \rightarrow A$
- (b) Γ , $x:B \vdash Q:C$

Hence, we can obtain from (IH1), with $A' := C \to A$ and $\Gamma' := \Gamma$ that $\Gamma \vdash P[N/x] : C \to A$. From (IH2), with A' := C and $\Gamma' = \Gamma$, we obtain $\Gamma \vdash Q[N/x] : C$. Putting these together with (TApp) we obtain $\Gamma \vdash P[N/x]Q[N/x] : A$, and by definition of substitution, this is just $\Gamma \vdash (PQ)[N/x] : A$, which was our goal.

• When M is of the form $\lambda y. P$, we assume the induction hypothesis: **(IH)** For all A' and Γ' , if Γ' , $x:B \vdash P : A'$ and $\Gamma' \vdash N : B$ then $\Gamma' \vdash P[N/x] : A$.

We may also assume, by the variable convention, that y does not occur freely in N, is not a subject in Γ and is distinct from x (otherwise, we rename y in the abstraction). Let A be a type and Γ an environment and suppose (i) Γ , $x:B \vdash \lambda y.P : A$ and (ii) $\Gamma \vdash N : B$. It follows from (i) by inversion that there are types A_1 and A_2 such that $A = A_1 \to A_2$ and (*) Γ , x:B, $y:A_1 \vdash P:A_2$. Then it follows from this by (IH), with $A' = A_2$ and $\Gamma' = \Gamma \cup \{y:A_1\}$, that Γ , $y:A_1 \vdash P[N/x]:A_2$. From this we can immediately infer $\Gamma \vdash \lambda y.P[N/x]:A_1 \to A_2$ using (TAbs). By definition of substitution (recall we assumed $y \neq x$ and $y \notin FV(N)$) and the identity of A, this is just our goal $\Gamma \vdash (\lambda y.P)[N/x]:A$.

(b) Now suppose $\Gamma \vdash (\lambda x. M)N : A$. By inversion, it follows that there is some type B such that $\Gamma \vdash \lambda x. M : B \rightarrow A$ and $\Gamma \vdash N : B$. By inversion

on the former, we deduce that Γ , $x: B \vdash M: A$. Then the result follows from the previous part.

** 3. Find pure terms that inhabit the following types (no need for justification):

- (a) $(a \rightarrow a \rightarrow b) \rightarrow a \rightarrow b$
- (b) $(a \rightarrow b) \rightarrow (a \rightarrow c) \rightarrow (b \rightarrow c \rightarrow d) \rightarrow a \rightarrow d$
- (c) $(((a \rightarrow a \rightarrow b) \rightarrow a \rightarrow b) \rightarrow c) \rightarrow c$

Solution -

- (a) $\lambda x y. x y y$
- (b) $\lambda wxyz.y(xz)(yz)$
- (c) $\lambda x. x (\lambda yz. yzz)$

** 4.

- (a) Find a *pure* term that inhabits the type $(((a \rightarrow b) \rightarrow b) \rightarrow a \rightarrow b)$.
- (b) Give the corresponding proof of the corresponding formula.

Solution -

- (a) $\lambda x y. x(\lambda z. zy)$
- (b) Suppose $(a \Rightarrow b) \Rightarrow b \Rightarrow b$ (x) and assume a (y). We claim that $(a \Rightarrow b) \Rightarrow b$, the proof is as follows: suppose $a \Rightarrow b$ (z), then applying this to assumption (y) we get b. Returning to our original proof, from this and (x) we obtain b, as required.
- *** 5. The reason that we don't study full PCF in connection with the Curry-Howard correspondence is the presence of fix.
 - (a) Use fix to show that every type is inhabited by some *PCF term* (not necessarily pure).
 - (b) What is the consequence for the Curry-Howard correspondence extended to full PCF?

Solution

(a) Every type *A* is inhabited by the term fix $(\lambda x. x)$. We can construct the following derivation.

$$\frac{\frac{}{x:A\vdash x:A}\text{(TVar)}}{\vdash \text{fix}:(A\to A)\to A}\text{(TFix)} \quad \frac{\frac{}{x:A\vdash x:A}\text{(TVar)}}{\vdash \lambda x.x:A\to A}\text{(TAbs)}}{\vdash \text{(TApp)}}$$

- (b) Hence, by the Curry-Howard correspondence, this would lead to a proof system in which every formula was provable i.e. an inconsistent logic!
- *** 6. The following property is called Subject Invariance:

if
$$M \approx N$$
 and $\Gamma \vdash M : A$ then $\Gamma \vdash N : A$

Is this property true for our type system? Either prove it or give a counterexample.

Solution —

It is not true in our system. To see why, take e.g. $\lambda y. y \approx (\lambda x. (\lambda y. y))(\lambda x. xx)$. We have $\vdash \lambda y. y: a \rightarrow a$ so the hypotheses of the implication are satisfied, but $(\lambda x. (\lambda y. y))(\lambda x. xx)$ is untypable because it includes $\lambda x. xx$ as a subterm.