P127-14

- (1) 是同态映射。kerf₁={1, -1}
- (3) 是同态映射。kerf3={1,-1}
- (6) 不是同态映射。

P127-17

充分性: 设 Φ 是 G 到 G′ 的同态映射,且 φ (a)= b^k 则 $e' = \varphi$ (aⁿ)= b^{nk} ,而 $e' = b^{m}$,∴ $m \mid nk$

必要性: 若 m nk, 则 b^{nk}=e'

对 $\forall n_1, n_2 \in Z$

 φ ($a^{n1}*a^{n2}$) = φ (a^{n1+n2}) = $b^{(n1+n2)k}$ = $b^{n1k}*b^{n2k}$ = φ (a^{n1}) * φ (a^{n2})

 $\mathbb{H} \boldsymbol{\varphi} (a^n) = \boldsymbol{\varphi} (e) = b^{nk} = e'$

故 φ 是同态映射

 $\nabla b^{nk} = b^{mp} = e' = \varphi(e) = \varphi(a^n) = [\varphi(a)]^n$

∴∃ φ =G→G′是同态映射,且 φ (a)=b^k

P127-19

证明: H、K是G的正规子群,易证H∩K仍是G的正规子群

G/H、G/K 是交换群

则 $\forall h \in H, k \in K, g \in G$ 都有 h*g=g*h, k*g=g*k

 $G/H \cap K = \{ (H \cap K) g | g \in G \}$

∀s∈H∩K,必有s∈H、s∈K,故s*g=g*s

∴G/H∩K 是交换群

P128----20

证明: (1) e= e'*e'*e*e ∈ G'

设 h_1 、 $h_2 \in G'$,则 $h_1 * h_2 \in G'$

设 $h_1 = a_1' * b_1' * a_1 * b_1 * a_2' * b_2' * a_2 * b_2 \dots a_n' * b_n' * a_n * b_n \in G'$

则 h₁'= b_n'*a_n'*b_n*a_n*.....b₁'*a₁'*b₁ *a₁∈G'即G'是G的子群

设 g∈G, 又 (g'*a*g) '= g'*a'*g

用 a 表示一个换位元,则 G'的任一元素可表示为 a₁a₂___a_n

 $\cdot \cdot g' *_{a_1} *_{a_2} *_{a_n} *_{g} = (g' *_{a_1} *_{g}) * (g' *_{a_2} *_{g}) *_{\dots} * (g' *_{a_n} *_{g}) \in G'$

即 G′为 G的正规子群

(2) $\forall g_1, g_2 \in G', f_1 g_1' * g_2' * g_1 * g_2 \in G'$

 $:G' = G'(g_1'*g_2'*g_1*g_2)$

:. $G'(g_2'*g_1') = G'(g_1'*g_2')$

∴G/ G′为交换群

- (3) G/N 是交换群

 - $: n_2' * n_1 = g_2 * g_1 * g_2' * g_1' \in N$

又 g₂*g₁*g₂′*g₁′ 为换位元∈G′

∴G′ 是 N 的子群