МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Лабораторная работа №5 по курсу «Методы машинного обучения»

Тема: «Линейные модели SVM и деревья решений»

исполнитель:	<u>Сметанкин К.И</u>
группа ИУ5-22М	ФИО ————————————————————————————————————
ПРЕПОДАВАТЕЛЬ:	""2020 г <u>Гапанюк Ю.Е</u>
	""2020 г.
Москва - 2020	

Задание

- 1. Выберите набор данных (датасет) для решения задачи классификации или регресии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train test split разделите выборку на обучающую и тестовую.
- 4. Обучите следующие модели: одну из линейных моделей; SVM; дерево решений.
- 5. Оцените качество моделей с помощью трех подходящих для задачи метрик. Сравните качество полученных моделей.
- 6. Произведите для каждой модели подбор одного гиперпараметра с использованием GridSearchCV и кросс-валидации.
- 7. Повторите пункт 4 для найденных оптимальных значений гиперпараметров. Сравните качество полученных моделей с качеством моделей, полученных в пункте 4.

In [0]:

```
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer
%matplotlib inline
sns.set(style="ticks")
```

In [0]:

```
url = 'https://raw.githubusercontent.com/Smet1/bmstu_ml/master/lab4/data.csv'
df = pd.read_csv(url, error_bad_lines=False)
```

```
In [50]:
```

```
df.head()
```

Out[50]:

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	С
0	2014- 05-02 00:00:00	313000.0	3.0	1.50	1340	7912	1.5	0	0	
1	2014- 05-02 00:00:00	2384000.0	5.0	2.50	3650	9050	2.0	0	4	
2	2014- 05-02 00:00:00	342000.0	3.0	2.00	1930	11947	1.0	0	0	
3	2014- 05-02 00:00:00	420000.0	3.0	2.25	2000	8030	1.0	0	0	
4	2014- 05-02 00:00:00	550000.0	4.0	2.50	1940	10500	1.0	0	0	

In [51]:

```
row_number = df.shape[0]
column_number = df.shape[1]

print('Данный датасет содержит {} строк и {} столбца.'.format(row_number, column_number))
```

Данный датасет содержит 4600 строк и 18 столбца.

Обработка пропусков в данных

In [0]:

```
for col in df.columns:
    null_count = df[df[col].isnull()].shape[0]
    if null_count > 0:
        column_type = df[col].dtype
        percent = round((null_count / row_number) * 100, 3)
        print('{} - {} - {}. Tun - {}'.format(col, null_count, percent, column_ty pe))
```

```
In [53]:
```

```
for col in df.columns:
    column_type = df[col].dtype
    print('{} - TUN: {}'.format(col, column type))
date - тип: object
price - тип: float64
bedrooms - тип: float64
bathrooms - тип: float64
sqft living - тип: int64
sqft lot - тип: int64
floors - тип: float64
waterfront - тип: int64
view - тип: int64
condition - тип: int64
sqft_above - тип: int64
sqft basement - тип: int64
yr built - тип: int64
yr_renovated - тип: int64
street - тип: object
city - тип: object
statezip - тип: object
country - тип: object
```

Удаление или заполнение пропусков, не требуется, так как в датасете отсутствуют пустые значения

Кодирование категориальных признаков

```
In [54]:
for col in df.columns:
    column_type = df[col].dtype
    if column_type == 'object':
        print(col)
date
street
city
statezip
country
In [55]:
print(len(df['date'].unique()))
print(len(df['street'].unique()))
print(len(df['city'].unique()))
print(len(df['statezip'].unique()))
print(len(df['country'].unique()))
70
4525
44
77
1
```

In [0]:

```
# kodupyem
leDate = LabelEncoder()
df['date'] = leDate.fit_transform(df['date'])

leStreet = LabelEncoder()
df['street'] = leStreet.fit_transform(df['street'])

leCity = LabelEncoder()
df['city'] = leCity.fit_transform(df['city'])

leStatezip = LabelEncoder()
df['statezip'] = leStatezip.fit_transform(df['statezip'])

leCountry = LabelEncoder()
df['country'] = leCountry.fit_transform(df['country'])
```

In [0]:

```
# проверяем остались ли признаки

for col in df.columns:

    column_type = df[col].dtype

    if column_type == 'object':

        print(col)
```

In [58]:

```
df = df.drop('country', axis=1)
df
```

Out[58]:

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view
0	0	3.130000e+05	3.0	1.50	1340	7912	1.5	0	0
1	0	2.384000e+06	5.0	2.50	3650	9050	2.0	0	4
2	0	3.420000e+05	3.0	2.00	1930	11947	1.0	0	0
3	0	4.200000e+05	3.0	2.25	2000	8030	1.0	0	0
4	0	5.500000e+05	4.0	2.50	1940	10500	1.0	0	0
4595	68	3.081667e+05	3.0	1.75	1510	6360	1.0	0	0
4596	68	5.343333e+05	3.0	2.50	1460	7573	2.0	0	0
4597	68	4.169042e+05	3.0	2.50	3010	7014	2.0	0	0
4598	69	2.034000e+05	4.0	2.00	2090	6630	1.0	0	0
4599	69	2.206000e+05	3.0	2.50	1490	8102	2.0	0	0

4600 rows × 17 columns

```
In [0]:
```

```
from sklearn.model_selection import train_test_split

df_x = df.loc[:, df.columns != 'price']

df_y = df['price']

# df_x = df.loc[:, df.columns != 'bedrooms']

# df_y = df['bedrooms']

train_x_df, test_x_df, train_y_df, test_y_df = train_test_split(df_x, df_y, test_size=0.3, random_state=1)
```

In [60]:

```
row_number_train = train_x_df.shape[0]
column_number_train = train_x_df.shape[1]

print('Тренировочный датасет содержит {} строки и {} столбцов.'.format(row_number_train,
column_number_train))
```

Тренировочный датасет содержит 3220 строки и 16 столбцов.

In [61]:

```
row_number_test = test_x_df.shape[0]
column_number_test = test_x_df.shape[1]

print('Тестовый датасет содержит {} строки и {} столбцов.'.format(row_number_test, column_number_test))
```

Тестовый датасет содержит 1380 строки и 16 столбцов.

3. Обучение моделей

3.1 Линейная модель

Матрица корреляции

In [62]:

```
corr_matrix = df.corr()
corr_matrix
```

Out[62]:

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors
date	1.000000	0.033906	0.005762	0.019263	0.029481	-0.020393	0.029607
price	0.033906	1.000000	0.200336	0.327110	0.430410	0.050451	0.151461
bedrooms	0.005762	0.200336	1.000000	0.545920	0.594884	0.068819	0.177895
bathrooms	0.019263	0.327110	0.545920	1.000000	0.761154	0.107837	0.486428
sqft_living	0.029481	0.430410	0.594884	0.761154	1.000000	0.210538	0.344850
sqft_lot	-0.020393	0.050451	0.068819	0.107837	0.210538	1.000000	0.003750
floors	0.029607	0.151461	0.177895	0.486428	0.344850	0.003750	1.000000
waterfront	0.017586	0.135648	-0.003483	0.076232	0.117616	0.017241	0.022024
view	0.005844	0.228504	0.111028	0.211960	0.311009	0.073907	0.031211
condition	0.007853	0.034915	0.025080	-0.119994	-0.062826	0.000558	-0.275013
sqft_above	0.041038	0.367570	0.484705	0.689918	0.876443	0.216455	0.522814
sqft_basement	-0.015050	0.210427	0.334165	0.298020	0.447206	0.034842	-0.255510
yr_built	0.001356	0.021857	0.142461	0.463498	0.287775	0.050706	0.467481
yr_renovated	-0.018437	-0.028774	-0.061082	-0.215886	-0.122817	-0.022730	-0.233996
street	-0.005089	0.029366	-0.035507	0.007175	0.006411	-0.023028	0.056191
city	-0.020325	0.018625	-0.130447	-0.097026	-0.109686	-0.079135	0.078481
statezip	-0.004546	-0.043385	-0.152773	-0.194497	-0.198918	-0.128466	-0.038943

In [63]:

```
corr_matrix['price'].nlargest(4)
```

Out[63]:

price 1.00000
sqft_living 0.43041
sqft_above 0.36757
bathrooms 0.32711
Name: price, dtype: float64

In [64]:

```
import seaborn as sns
sns.set(rc={'figure.figsize':(11.7, 8.27)})
sns.heatmap(corr_matrix)
```

Out[64]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fa8b2f284a8>


```
In [65]:
```

```
import plotly.express as px
fig = px.scatter(df, x='price', y='sqft_living')
fig.show()
```

```
In [66]:
```

```
fig = px.scatter(df, x='price', y='sqft_above')
fig.show()
```

```
In [67]:
```

```
fig = px.scatter(df, x='price', y='bathrooms')
fig.show()
```

Вычисление коэффициентов регрессии матричным способом

```
In [68]:
```

3.1.3 Использование класса LinearRegression библиотеки scikit-learn

Обучение с произвольным гиперпараметром

```
In [69]:
```

```
from sklearn.linear_model import Lasso

reg1 = Lasso(alpha=0.1, tol=0.4).fit(np.array(train_x_df), np.array(train_y_df).
reshape(-1, 1))
B_1 = (reg1.intercept_, reg1.coef_)

B_1
```

Out[69]:

Оценка качества модели

In [0]:

```
predicted_y_reg = reg1.predict(np.array(test_x_df))
```

In [0]:

```
predict_test_df = pd.DataFrame(test_y_df)
predict_test_df['predicted_y'] = predicted_y_reg
```

In [72]:

```
import plotly.graph_objects as go

fig = go.Figure()
fig.add_trace(go.Scatter(x=np.arange(predict_test_df['predicted_y'].shape[0]), y
=predict_test_df['predicted_y'], name='predicted'))

fig.add_trace(go.Scatter(x=np.arange(predict_test_df['predicted_y'].shape[0]), y
=predict_test_df['price'], name='test'))

fig.show()
```

In [73]:

```
from sklearn.metrics import r2_score, mean_absolute_error

r2_reg = round(r2_score(test_y_df, predicted_y_reg), 2)
mae_reg = round(mean_absolute_error(test_y_df, predicted_y_reg), 2)

print('Koэффициент детерминации - %.2f' % r2_reg)
print('Средняя абсолютная ошибка - %.2f' % mae_reg) # ошибка большая, но цены в районе
10^6
```

Коэффициент детерминации – 0.48 Средняя абсолютная ошибка – 166007.08

In [74]:

```
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RepeatedKFold

n_range = np.arange(0.1, 1.2, 0.1)
tuned_parameters = [{'alpha': n_range}]

gs = GridSearchCV(Lasso(tol=0.4), param_grid=tuned_parameters, cv=RepeatedKFold(n_splits=3, n_repeats=2), scoring='r2')
gs.fit(train_x_df, train_y_df)
```

/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/_coordin ate descent.py:476: ConvergenceWarning:

Objective did not converge. You might want to increase the number of iterations. Duality gap: 445792008766754.5, tolerance: 439064360437479.3

/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/_coordin ate descent.py:476: ConvergenceWarning:

Objective did not converge. You might want to increase the number of iterations. Duality gap: 445792170417304.06, tolerance: 439064360437 479.3

/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/_coordin ate descent.py:476: ConvergenceWarning:

Objective did not converge. You might want to increase the number of iterations. Duality gap: 445792338026779.7, tolerance: 439064360437479.3

/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/_coordin ate descent.py:476: ConvergenceWarning:

Objective did not converge. You might want to increase the number of iterations. Duality gap: 445792507248801.75, tolerance: 439064360437 479.3

/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/_coordin ate descent.py:476: ConvergenceWarning:

Objective did not converge. You might want to increase the number of iterations. Duality gap: 445792672814194.4, tolerance: 439064360437479.3

/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/_coordin ate_descent.py:476: ConvergenceWarning:

Objective did not converge. You might want to increase the number of iterations. Duality gap: 445792838895897.4, tolerance: 4390643604374

/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/_coordin ate descent.py:476: ConvergenceWarning:

Objective did not converge. You might want to increase the number of iterations. Duality gap: 445793004881605.4, tolerance: 439064360437479.3

/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/_coordin ate descent.py:476: ConvergenceWarning:

Objective did not converge. You might want to increase the number of iterations. Duality gap: 445793171196408.1, tolerance: 439064360437479.3

/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/_coordin ate descent.py:476: ConvergenceWarning:

Objective did not converge. You might want to increase the number of iterations. Duality gap: 445793337318304.6, tolerance: 4390643604374

/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/_coordin ate_descent.py:476: ConvergenceWarning:

Objective did not converge. You might want to increase the number of iterations. Duality gap: 445793503343588.94, tolerance: 439064360437 479.3

/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/_coordin ate descent.py:476: ConvergenceWarning:

Objective did not converge. You might want to increase the number of iterations. Duality gap: 445793670811147.7, tolerance: 439064360437479.3

Out[74]:

```
GridSearchCV(cv=RepeatedKFold(n repeats=2, n splits=3, random state=
None),
             error score=nan,
             estimator=Lasso(alpha=1.0, copy X=True, fit intercept=T
rue,
                             max iter=1000, normalize=False, positiv
e=False,
                             precompute=False, random state=None,
                             selection='cyclic', tol=0.4, warm start
=False),
             iid='deprecated', n jobs=None,
             param_grid=[{'alpha': array([0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1., 1.1])}],
             pre dispatch='2*n jobs', refit=True, return train score
=False,
             scoring='r2', verbose=0)
```

Обучение с наилучшим гиперпараметром

In [0]:

```
gs.best_estimator_.fit(train_x_df, train_y_df)
predicted_y_best_reg = gs.best_estimator_.predict(test_x_df)
```

In [76]:

```
r2_reg_best = round(r2_score(test_y_df, predicted_y_best_reg), 2)

print('Коэффициент детерминации при случайном гиперпараметре - %.2f' % r2_reg)

print('Коэффициент детерминации при наилучшем гиперпараметре - %.2f' % r2_reg_best)
```

Коэффициент детерминации при случайном гиперпараметре - 0.48 Коэффициент детерминации при наилучшем гиперпараметре - 0.48

SVM

```
In [0]:
from sklearn.svm import SVR
In [0]:
```

```
In [79]:
svr.fit(train_x_df, train_y_df)
Out[79]:
```

```
SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma
='scale',
   kernel='linear', max_iter=-1, shrinking=True, tol=0.001, verbose
=False)
```

svr = SVR(kernel='linear', C=1.0, epsilon=0.2)

```
In [0]:
predicted_y_svr = svr.predict(test_x_df)
```

Оценка качества модели

```
In [81]:

r2 = round(r2_score(test_y_df, predicted_y_svr), 2)

print('Коэффициент детерминации - %.2f' % r2)
```

Коэффициент детерминации - 0.43

Подбор гиперпараметра

```
In [82]:
```

```
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RepeatedKFold

n_range = np.arange(0.1, 1, 0.1)
print(n_range)
tuned_parameters = [{'C': n_range}]

gs = GridSearchCV(SVR(kernel='linear', epsilon=0.2), param_grid=tuned_parameters
, cv=RepeatedKFold(n_splits=3, n_repeats=2), scoring='r2')
```

```
[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]
```

```
In [83]:
gs.fit(train x df, train y df)
Out[83]:
GridSearchCV(cv=RepeatedKFold(n_repeats=2, n_splits=3, random_state=
             error score=nan,
             estimator=SVR(C=1.0, cache size=200, coef0=0.0, degree=
3,
                            epsilon=0.2, gamma='scale', kernel='linea
r',
                            max iter=-1, shrinking=True, tol=0.001,
                            verbose=False),
             iid='deprecated', n_jobs=None,
             param grid=[{'C': array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9])}],
             pre dispatch='2*n jobs', refit=True, return train score
=False,
             scoring='r2', verbose=0)
In [84]:
print('Наилучшее значение параметра с - {}'.format(gs.best params ['C']))
Наилучшее значение параметра с - 0.9
Обучение с наилучшим гиперпараметром
In [0]:
gs.best estimator .fit(train x df, train y df)
predicted y best svr = gs.best estimator .predict(test x df)
r2 best = round(r2 score(test y df, predicted y best svr), 2)
In [86]:
print('Коэффициент детерминации при случайном гиперпараметре - %.2f' % r2)
print('Коэффициент детерминации при наилучшем гиперпараметре - %.2f' % r2 best)
Коэффициент детерминации при случайном гиперпараметре - 0.43
Коэффициент детерминации при наилучшем гиперпараметре - 0.43
Дерево решений
```

Обучение с произвольным гиперпараметром

```
In [0]:
```

```
from sklearn.tree import DecisionTreeRegressor

dtr = DecisionTreeRegressor(random_state=1).fit(train_x_df, train_y_df)
predict_y_dtr = dtr.predict(test_x_df)
```

Оценка качества модели

```
In [88]:
```

```
r2_dtr = round(r2_score(test_y_df, predict_y_dtr), 2)
print('Koэффициент детерминации при случайном гиперпараметре - %.2f' % r2_dtr)
```

Коэффициент детерминации при случайном гиперпараметре - -7.38

Подбор гиперпараметра

In [89]:

```
params = {
    'max_depth': [3, 4, 5, 6],
    'min_samples_leaf': [0.04, 0.06, 0.08],
    'max_features': [0.2, 0.4, 0.6, 0.8]
}
grid = GridSearchCV(estimator=DecisionTreeRegressor(random_state=1), param_grid=
params, scoring='r2', cv=3, n_jobs=-1)
grid.fit(train_x_df, train_y_df)
```

Out[89]:

```
GridSearchCV(cv=3, error score=nan,
             estimator=DecisionTreeRegressor(ccp alpha=0.0, criterio
n='mse',
                                              max depth=None, max fea
tures=None,
                                              max leaf nodes=None,
                                              min impurity decrease=
0.0,
                                              min_impurity_split=Non
e,
                                              min samples leaf=1,
                                              min samples split=2,
                                              min weight fraction lea
f=0.0,
                                              presort='deprecated',
                                              random state=1, splitte
r='best'),
             iid='deprecated', n_jobs=-1,
             param_grid={'max_depth': [3, 4, 5, 6],
                          'max_features': [0.2, 0.4, 0.6, 0.8],
                          'min samples leaf': [0.04, 0.06, 0.08]},
             pre dispatch='2*n jobs', refit=True, return train score
=False,
             scoring='r2', verbose=0)
```

```
In [90]:
```

```
for param in params.keys():
    print('Наилучшее значение параметра %s - ' % param + str(grid.best_params_[param
]))
```

```
Hаилучшее значение параметра max_depth - 6

Наилучшее значение параметра min_samples_leaf - 0.04

Наилучшее значение параметра max_features - 0.6
```

Обучение с наилучшим гиперпараметром

In [0]:

```
grid.best_estimator_.fit(train_x_df, train_y_df)
predicted_y_best_dtr = grid.best_estimator_.predict(test_x_df)
```

In [92]:

```
r2_best_dtr = round(r2_score(test_y_df, predicted_y_best_svr), 2)

print('Koэффициент детерминации при случайном гиперпараметре - %.2f' % r2_dtr)

print('Koэффициент детерминации при наилучшем гиперпараметре - %.2f' % r2_best_dtr)
```

```
Коэффициент детерминации при случайном гиперпараметре - -7.38 Коэффициент детерминации при наилучшем гиперпараметре - 0.43
```

Наиболее важные признаки

```
In [93]:
```

Дерево

In [94]:

/usr/local/lib/python3.6/dist-packages/sklearn/utils/deprecation.py: 144: FutureWarning:

The sklearn.tree.export module is deprecated in version 0.22 and wi ll be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.tree. Anything that cannot b e imported from sklearn.tree is now part of the private API.

In [95]:

```
from IPython.display import Image
from sklearn.externals.six import StringIO
Image(get_png_tree(grid.best_estimator_, train_x_df.columns), height="500")
```

/usr/local/lib/python3.6/dist-packages/sklearn/externals/six.py:31:
FutureWarning:

The module is deprecated in version 0.21 and will be removed in version 0.23 since we've dropped support for Python 2.7. Please rely on the official version of six (https://pypi.org/project/six/).

Out[95]:

