1.

- a) Demostrar la siguiente afirmación: Sea $g \in C^{m+1}[a,b]$, tiene un cero de multiplicidad m en $p \in [a,b]$, existe un método que tiene convergencia cuadrática, para hallar dicha raíz como una raíz simple de una función adecuada.
- b) Usar cuatro iteraciones del método demostrado en a) para hallar la raíz múltiple de $f(x) = x^3 5x^2 + 7x 3$. Trabajar con cuatro decimales y redondeo.

2.

- a) Demostrar la regla de los trapecios compuesta.
- b) Una cuerda vibra adoptando la forma, y = senx entre las abscisas x = 0 y x = 4 en un instante t_0 . Calcular aproximadamente la longitud de la cuerda, utilizando la regla de los trapecios compuesta con N = 8. Trabajar con dos decimales y redondeo.

3. Se sabe que el producto de dos números positivos es 4 y la suma de sus cuadrados es 16.

- a) Plantear el problema como un sistema de ecuaciones no lineales.
- b) Estimar el valor de dichos números tomando como valor inicial $x_0 = (3.7, 1.0)^t$, utilizar dos iteraciones del método de *Newton* para sistemas no lineales. Trabajar con tres decimales y redondeo.

4.

El siguiente sistema de ecuaciones se generó aplicando la ley de malla de corrientes al circuito:

$$\begin{cases} 55I_1 - 25I_4 = -200 \\ -37I_3 - 4I_4 = -250 \\ -25I_1 - 4I_3 + 29I_4 = 100 \end{cases}$$

- a) Usar tres iteraciones del método de Gauss-Seidel para aproximar las soluciones de I_1, I_3 e I_4 . Usar dos decimales y redondeo.
- $b)\,$ Hallar T_{GS} y mostrar que el método converge usando una propiedad conveniente.

5.

- a) Indicar las condiciones que debe cumplir un trazador cúbico para que sea una una Spline cúbica natural que interpole a una función $f \in C^2[a,b]$ en n+1 puntos del intervalo [a,b]; $a=x_0 < x_1 < ... < x_n = b$.
- b) La relación agua-cemento que se debe poner a la mezcla para hacer hormigón nos proporciona la resistencia final que se le requiere al hormigón. Se tienen los siguientes datos:

x = agua/cemento(%)	40	45	50	Encontrar una <i>una Spline cúbica natu</i>	atural para	
$y = resistencia(kg/cm^2)$	390	340	290	Encontrar una una Spline cúbica natur	/ar para	
estimar la resistencia cuando la relación aqua-cemento es del 48 %.) =(0 , €	1