Parcial número 3 Metodo de euler Metodos numericos

Nombre de alumnos:

Rodrigo Jimenez Torres / 736454

Monterrey, Nuevo León. México a de 31 julio del 2025

Método de Euler

De finicion

El metodo de Eulen es un procemiento numérico para aproximar la solución de una ecuación diferencial ordinaria (EDO

Es un método explícito y de primer orden que utiliza la pendiente en el punto actual para estimar el valor de la función en el siguiente ponto.

Antecedentes

·Fue propuesto por Leonhard Euler en el sigle XVII

Es uno de métodos más simples para resolver EDOs, derivando de la fórmula de aproximación lineal de una función

Relacion con otros metodos

Formula

Metodo de taylor

yn+ 1 = yn +h · f (xn · yn)

Metodo de Ronge - Kutta

·Método del tropecio

Algoritmo

· Estable cer las condicioner iniciales Xo, yo paso h, y número do paso N

· Para cada n = 0,1,2,..., N-1:

(alcolar yn+1 = yn+h.f(yn,yn)

Avanzar Kn+j=xn+h+h

· Repetir hasta alcunzar el ponto desendo

Aplicaciones en la vida cotidiana

· Simular el crecimiento de poblaciones.

· Predecir temperaturas en un sistema físico.

· Calcular trayectorias en fisica y astronomia.

· Modelar procesos químicos simples.

Metado de eular Modifical.

Definicion

El metodo de cuter medificado o también llamado método de Punto medio o Heun, es una mejora al metodo de euler. En lugar de usar solo la pendiente al inicio del intervalo, utiliza una pendiente promedio entre el inicio x punto estimado al final

Antecedentes

También atribuido a quancer posteriores a Euler, desarrollando técnicar mas precisas Se considera una forma más precisa que el método de Euler porque aquoxina mejor la curva veal Se relaciona con el método del trapecio y los nétodos Range-Kutta

Formula

y'= yn + h • f (xn, yn)

 $y_{N+1} = y_n + \frac{h}{2} \left[f(x_n, y_n) + f(x_{n+1}, y^2) \right]$

Algoritmo

Establecer las condiciones iniciales xo. x. puso h y número de pusos N

(alcular

 $y_{1}^{1} = y_{1} + \frac{h}{2} \left[f(y_{1}, y_{1}) + f(y_{1} + 1, y^{*}) \right]$

Avanzar Xnty= Xn+h

Repetir hasta alcanzar el ponto desendo

Aplicaciones en la vida cotidia aa

Simulación de circuitos eléctricos

Modelus de propagación de enfermedades

Problemas de dinámica en ingeneria

Cálculos de trayectoria en mecánica y robotica.

Más preciso para problemar doude la pendiente cambia ragidamento

$\frac{\partial x}{\partial x} - 5 \times \lambda_{x}$	Ŋ	Xη	yΛ	f (xn. y.)
P(0,1) $y=(0)=1$	Ò	0	1	0
y (1)= ?	7	0.1	1	-0.1
h = 10	2	0.7	0.48	-0.3841
	}	0.3	0.9715	-0.5379
$\frac{dy}{dx} \approx -2 \times y^2$	4	0,4	0.8883	-0. C 313
$\frac{1}{2} (y_n, y_n) = -2 (y_y)^2$	5		0.8252	
	6		0.7571	
	7		0.6883	
	\Diamond	م م ا	0.(320	
	9	0.9	0.5601	
	10	1	0.5636	

culer mejoral.

Ŋ=1

 $f(x_1, y_1) = -2(0.1)(0.49)^2 = -0.1960$

y* =(0.99)+(0.1) (-0.1960)=0.9704

 $y_2 = 0.49 + \frac{(0.1)}{2} \left[-2(0.1)(0.49)^2 + (-2(0.2)(0.4704)^2 \right] = 0.4614$

N=2

(txx,x)=-1(0))(0.9614), = -03646

y 3 = 0.9614 + (0.1)(-6.3696) = 0.9713

 $y_3 = (0.9671) + \frac{0.1}{2} \left[-2 (0.2) (6.9(14)^2 + (-2)(0.3)(6.924))^2 \right] = 0.4172$