

TrenchP™ **Power MOSFET**

IXTY18P10T IXTA18P10T IXTP18P10T

- 100V - 18A $120 m\Omega$ R_{DS(on)}

P-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$	- 100	V	
V_{DGR}	$T_J = 25^{\circ}C$ to 150°C, $R_{gs} = 1M\Omega$	- 100	V	
V _{GSS}	Continuous	<u>+</u> 15	V	
V _{GSM}	Transient	<u>+</u> 25	V	
I _{D25}	T _C = 25°C	-18	А	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	- 60	Α	
I _A	T _C = 25°C	-18	А	
E _{AS}	$T_{c} = 25^{\circ}C$	200	mJ	
P_{D}	T _C = 25°C	83	W	
T _J		-55 +150	°C	
T _{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
M _d	Mounting Torque (TO-220)	1.13 / 10	Nm/lb.in	
Weight	TO-252	0.35	g	
	TO-263	2.50	g	
	TO-220	3.00	g	

T₁ = 125°C

G = Gate	D	= Drain
S = Source	Tab	= Drain

Features

- International Standard Packages
- Avalanche Rated
- Extended FBSOA
- Fast Intrinsic Diode
- Low R_{DS(ON)} and Q_G

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

±50

- 3 μΑ

120 $m\Omega$

-100

nΑ

μΑ

- High-Side Switching
- Push Pull Amplifiers
- DC Choppers
- Automatic Test Equipment
- Current Regulators
- Battery Charger Applications

 $V_{DS} = V_{DSS}, V_{GS} = 0V$

 $V_{GS} = -10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$

l_{gss}

I_{DSS}

 $\boldsymbol{R}_{DS(\underline{on})}$

Symbo	symbol Test Conditions Chara		Chara	cteristic Values		
(T _J = 25°C, Unless Otherwise Specified)		Min.	Тур.	Max.		
g_{fs}		$V_{DS} = -10V, I_{D} = 0.5 \bullet I_{D25}, \text{ Note 1}$	8	13	S	
C _{iss}	} v			2100	pF	
\mathbf{C}_{oss}		$V_{GS} = 0V, V_{DS} = -25V, f = 1MHz$		185	pF	
\mathbf{C}_{rss}	J			80	pF	
t _{d(on)}	$V_{GS} = -10$	Resistive Switching Times		19	ns	
t _r		_		26	ns	
$\mathbf{t}_{d(off)}$		$V_{GS} = -10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D2S}$ $R_{G} = 10\Omega$ (External)		44	ns	
t,				22	ns	
Q _{g(on)}	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			39	nC	
\mathbf{Q}_{gs}		$V_{GS} = -10V$, $V_{DS} = 0.5 \bullet V_{DSS}$, $I_{D} = 0.5 \bullet I_{D2S}$		17	nC	
\mathbf{Q}_{gd}				9	nC	
R _{thJC}					1.5 °C/W	
$\mathbf{R}_{\mathrm{thCS}}$		TO-220		0.50	°C/W	

Source-Drain Diode

Symbol Test Conditions (T _J = 25°C, Unless Otherwise Specified)		Characteristic Values Min. Typ. Max.			
I _s	$V_{GS} = 0V$			-18	Α
I _{SM}	Repetitive, Pulse Width Limited by T_{JM}			- 72	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			-1.5	V
$\left\{ egin{array}{ll} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight\}$	$I_F = 0.5 \cdot I_{D25}$, -di/dt = -100A/ μ s $V_R = -50V$, $V_{GS} = 0V$		62 164 - 5.3		ns nC A

Note 1: Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

6,404,065B1 6,534,343 6,583,505

6,683,344 6,710,405B2 6,759,692 6,710,463

7,005,734B2 7,157,338B2 7,063,975B2 6,727,585 6,771,478B2 7,071,537

Fig. 2. Extended Output Characteristics @ T_J = 25°C -70 -60 - 9V -50 Ip - Amperes -40 - 6V -20 -10 - 5V 0 -5 -10 -15 -20 -25 -30 V_{DS} - Volts

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

29

28

27

26

25

23

22

21

20

25

35

45

55

65

tr-Nanoseconds

Junction Temperature $R_G = 10\Omega$, $V_{GS} = -10V$ V_{DS} = - 50V $I_D = -18A$

I_D = -9A

85

95

105

Fig. 13. Resistive Turn-on Rise Time vs.

Fig. 14. Resistive Turn-on Rise Time vs.

Fig. 15. Resistive Turn-on Switching Times vs.

75

T_J - Degrees Centigrade

Fig. 16. Resistive Turn-off Switching Times vs.

Fig. 17. Resistive Turn-off Switching Times vs.

Fig. 18. Resistive Turn-off Switching Times vs. **Gate Resistance**

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

