Fondamenti di controlli automatici Un goliardico riassunto

Ollari Dmitri

12 luglio 2023

Indice

1	Il c	ontrollo attivo di un processo	
	1.1	Definizioni	
		1.1.1 Behaviors	
		1.1.2 Linearità	
		1.1.3 Stazioneietà	
	1.2	Controllo ad azione diretta e retroazione	
2	Mo	dellistica ed equazioni differenziali lineari	
	2.1	Cenni modellistica	
		2.1.1 Circuiti elettrici	
	2.2	Sistemi meccanici	
	2.3	Equazioni differenziali lineari	
3	Cenni di analisi complessa		
	3.1	Poli	
		Zeri	
4	La t	trasformata di Laplace	
	4.1	Segnale gradino unitario $1(t)$	
	4.2	Segnale esponenziale e^{at}	
	4.3	Trasformata dell'integrale	
		Trasformata t ⁿ	

Il controllo attivo di un processo

1.1 Definizioni

1.1.1 Behaviors

Insieme di tutte le possibili coppie causa effetto assocaite ad un sistema.

1.1.2 Linearità

Un'insieme si dice lineare quando soddisfa la proprietà di sovrapposizione degli effetti.

1.1.3 Stazioneietà

Un sistema si dice stazionario quando il suo comportamento non cambia nel tempo.

1.2 Controllo ad azione diretta e retroazione

Il controllo attivo di un processo può essere realizzato in due modi:

- azione diretta
- retroazione

Con il controllo ad azione diretta si ha che l'azione di comando dipende da:

- obiettivo
- info sul processo
- ingressi

Con il controllo a retroazione si ha che l'azione di comando dipende da:

- obiettivo
- info sul processo
- ingressi
- variabilli controllate

Modellistica ed equazioni differenziali lineari

2.1 Cenni modellistica

2.1.1 Circuiti elettrici

Resistenza: R [Ohm]

$$V_R = Ri (2.1)$$

Induttanza: L [Henry]

$$V_L = L\frac{di}{dt} = LDi (2.2)$$

Capacità: C [Farad]

$$V_C = \frac{1}{C} \int_{-\infty}^t i(\tau) d\tau \Rightarrow DV_C = \frac{i}{C}$$
 (2.3)

2.2 Sistemi meccanici

Massa: m [kg]

$$MD^2x = f_1(t) - f_2 (2.4)$$

Molla: k [N/m]

$$f(t) = K(x_1(t) - x_2(t)) (2.5)$$

Ammoirtizzatore: b [N s/m]

$$f(t) = B(v_1(t) - v_2(t)) (2.6)$$

$$f(t) = BD(x_1(t) - x_2(t)) (2.7)$$

2.3 Equazioni differenziali lineari

$$\sum_{i=0}^{n} a_i D^i y = \sum_{i=0}^{m} b_i D^i u \tag{2.8}$$

- n ordine dell'equazione differenziale se $n \geq m$
- p = n m ordine relativo $(n \ge m)$

Cenni di analisi complessa

3.1 Poli

$$f(s) = \frac{s(s+6)^3}{(s-2)(s+3)^2(s+5)^4}$$
(3.1)

I poli in questo esempio sono:

- \bullet 2 è un polo di ordine 1
- $\bullet~-3$ è un polo di ordine 2
- $\bullet~-5$ è un polo di ordine 4

3.2 Zeri

$$f(s) = \frac{s(s+6)^3}{(s-2)(s+3)^2(s+5)^4}$$
(3.2)

Gli zeri in questo esempio sono:

- $\bullet \,\,$ 0 è uno zero di ordine 1
- $\bullet~-6$ è uno zero di ordine 3

La trasformata di Laplace

La trasformata di Laplace è un'operazione funionale che si applica ad una funzione f di viariabile reale con codominio $R(o\ C)$.

4.1 Segnale gradino unitario 1(t)

$$\mathcal{L}[1(t)] = \frac{1}{s} \tag{4.1}$$

4.2 Segnale esponenziale e^{at}

$$\mathcal{L}[e^{at}] = \frac{1}{s-a} \tag{4.2}$$

4.3 Trasformata dell'integrale

$$\mathcal{L}\left[\int_0^t f(v)dv\right] = \frac{1}{s}F(s) \tag{4.3}$$

4.4 Trasformata t^n

$$\mathcal{L}[t^n] = \frac{n!}{s^{n+1}} \tag{4.4}$$