ENS Cachan, DPT Maths

Optimisation numérique M1 – TD10 – Optimisation en dimension infinie

Florian De Vuyst, Adrien Le Coënt - CMLA UMR 8536, ENS Cachan

1 Décembre 2016

Non existence de la projection sur un sous-espace vectoriel fermé d'un espace préhilbertien

Soit $E := \mathcal{C}([-1,+1],\mathbb{R})$ structuré en espace préhilbertien réel grâce au produit scalaire $\langle f, g \rangle := \int_{-1}^{1} f(t)g(t)dt$.

Soit
$$V:=\left\{f\in E\mid \int_0^1 f(t)dt=0\right\}$$
.
1. Vérifier que V est un sous-espace vectoriel fermé de E .

- 2. Soit $x: t \in [-1, +1] \mapsto x(t) = 1$. Montrer que x n'a pas de projection dans V.

Approximation éléments finis d'un problème d'optimisation aux dérivées partielles elliptique

Soit Ω un domaine borné de \mathbb{R}^2 à frontière lipschitzienne. On cherche $u \in H_0^1(\Omega)$ solution du problème de minimisation

$$\min_{v \in H_0^1(\Omega)} \quad \frac{1}{2} \int_{\Omega} |\nabla v|^2 \, dx + \frac{\alpha}{2} \int_{\Omega} v^2 \, dx - \int_{\Omega} f v \, dx$$

pour $\alpha > 0$ et $f \in L^2(\Omega)$.

Pour l'approximation numérique de ce problème d'optimisation on définit une triangulation (ou un maillage) \mathcal{T}^h du domaine Ω constituée de triangles notés génériquement K. L'ensemble

$$\Omega^h = \cup_{K \in \mathscr{T}^h} K$$

est une "discrétisation" de Ω . On introduit un espace discret $V^h \subset H^1_0(\Omega)$ dit éléments finis P^1 défini comme

$$V^h = \left\{ v^h \in \mathscr{C}^0(\Omega^h), \ \forall K \in \mathscr{T}^h, \ v^h_{|K} \in P^1(K), v^h = 0 \ \mathrm{sur} \ \partial \Omega^h \right\}.$$

On cherche alors $u^h \in V^h$ solution du problème d'optimisation en dimension finie

$$\min_{v^h \in V^h} \quad \frac{1}{2} \int_{\Omega^h} |\nabla v^h|^2 dx + \frac{\alpha}{2} \int_{\Omega^h} (v^h)^2 dx - \int_{\Omega^h} f v^h dx$$

On introduit des fonctions de bases $w_i(x) \in V^h$ de V^h définies telles que

$$w_i(S_j) = \delta_{ij}$$

pour S_j nœuds du maillage $\mathscr{T}^h,$ et i tel que $S_i \notin \partial \Omega^h.$ On définit la matrice carrée A d'éléments

$$A_{ij} = \int_{\Omega^h} \nabla w_i \cdot \nabla w_j \, dx,$$

pour i,j tels que S_i,S_j nœuds de $\mathcal{T}^h,\,S_i,S_j\notin\partial\Omega^h.$

- 1. Montrer que A est une matrice creuse, symétrique définie positive.
- 2. Pour $K \in \text{Supp}(w_i) \cap \text{Supp}(w_j)$, calculer explicitement la quantité

$$A_{ij}^K = \int_K \nabla w_i \cdot \nabla w_j \, dx.$$

- 3. En déduire un algorithme de calcul numérique de la matrice A.
- 4. Refaire les questions 1. 2. et 3. pour la matrice M d'éléments M_{ij} définis par

$$M_{ij} = \int_{\Omega^h} w_i(x) \, w_j(x) \, dx.$$

5. En cherchant $u^h(x)$ sous la forme

$$u^{h}(x) = \sum_{S_{i} \in \mathscr{T}^{h}, S_{i} \notin \partial \Omega^{h}} u_{i} w_{i}(x),$$

et en notant le vecteur $\mathbf{u} = (u_i)_i$, montrez que l'unique solution du problème discret est solution d'un grand système linéaire creux de la forme

$$(A + \alpha M)\boldsymbol{u} = \boldsymbol{f}$$

(on précisera ce qu'est le vecteur f).