Computational Photography Assignment 3 - Canny Edge Detection

Aloysius Tan

04/20/2024

1. Theory Question

1. Defining the 3×3 mean kernel

Mean Kernel =
$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Now we slide the 3×3 kernel over the matrix and computing the mean for each window we get

2. Generating a 5×5 Gaussian kernel with $\sigma = 2$ and normalize it so that its elements sum to one, we'll use the Gaussian function formula

$$G(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

Where

- \bullet x and y are distances from the center of the kernel.
- σ is the standard deviation.

The normalized 5×5 Gaussian kernel for $\sigma = 2$ will be

0.0232	0.0338	0.0383	0.0338	0.0232
0.0338	0.0492	0.0558	0.0492	0.0338
0.0383	0.0558	0.0632	0.0558	0.0383
	0.0492			
0.0232	0.0338	0.0383	0.0338	0.0232

3. Given

$$\frac{\partial}{\partial x} = \begin{bmatrix} -1/3 & 0 & 1/3 \\ -1/3 & 0 & 1/3 \\ -1/3 & 0 & 1/3 \end{bmatrix}, \quad \frac{\partial}{\partial y} = \begin{bmatrix} -1/3 & -1/3 & -1/3 \\ 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}, \quad I = \begin{bmatrix} 7 & 7 & 6 \\ 3 & 3 & 2 \\ 5 & 4 & 7 \end{bmatrix}$$

Convolving I with the kernels $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$

Magnitude and direction of the gradient at the center pixel

$$G_x = 0$$

$$G_y = -\frac{4}{3}$$

$$|G| = \sqrt{G_x^2 + G_y^2} = \sqrt{-\frac{4^2}{3}} = \boxed{\frac{4}{3}}$$

$$\theta = \arctan(\frac{-\frac{4}{3}}{0}) = \boxed{-\frac{\pi}{2}}$$

4. Given

$$|G| = \begin{bmatrix} 2 & 3 & 4 & 5 & 1 \\ 1 & 0 & 2 & 2 & 1 \\ 4 & 3 & 5 & 1 & 2 \\ 4 & 5 & 4 & 4 & 6 \\ 4 & 4 & 2 & 0 & 2 \\ 2 & 3 & 3 & 0 & 3 \end{bmatrix}$$

a) The binary image will be

$$\begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Where a value of 1 indicates an edge pixel, and a value of 0 indicates a non-edge pixel.

b) The binary images will be

$$\begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

Where a value of 1 indicates an edge pixel, and a value of 0 indicates a non-edge pixel.

2

2. Guassian Smoothing

Original Grayscale Image

Smoothed Image (K = 3, σ = 1.0)

Smoothed Image (K = 5, σ = 1.5)

Smoothed Image (K = 7, σ = 2.0)

Smoothed Image (K = 9, σ = 3.0)

3. Gradients

Kernel Used: Sobel Kernel

Absolute Change in X

Absolute Change in Y

Gradient Magnitude

4. Non-maximum suppression

Gradient Magnitude after Non-Maximum Suppression

5. Hysterisis

Parameter Used:

- Low Threshold: 0.1 of Max Gradient Magnitude
- High Threshold: 0.3 of Max Gradient Magnitude
- ullet Used standard division of 1 when creating Gaussian smoothing kernel

6. Test on another image

Grayscale Image

Smoothed Image

Gradient Magnitude

Gradient Magnitude after Non-Maximum Suppression

Edge Map after Double Thresholding

Final Edge Map

