

Machine Learning

Dr. Mehran Safayani safayani@iut.ac.ir safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/machine_learning_course

Department of Electrical and computer engineering, Isfahan university of technology, Isfahan, Iran

Supervised Learning

- Regression
- Classification

Notation:

m: number of training samples

x: input variable

y: output variable Or target variable

 (x_i, y_i) : i th training sample

number	Size (x variable)	Price (y variable)	
1	100	500	(x_1, y_1)
2	750	2000	(x_2, y_2)
3	852	178	(x_3, y_3)
m	3210	870	(x_m, y_m)

$$h(x) = \theta_0 + \theta_1 x$$

$$parameters = \left\{ \theta_0, \theta_1 \right\}$$

4

$$h(x) = \theta_0 + \theta_1 x$$

parameters=

$$h(x) = 1.5$$

$$\theta_0 = 1.5$$
 $\theta_1 = 0$

$$\theta_1 = 0$$

$$h(x) = 0.5x$$

$$\theta_0 = 0$$
$$\theta_1 = 0.5$$

$$h(x)=0.5x+1$$

$$\theta_0 = 1$$
$$\theta_1 = 0.5$$

Cost Function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x_i) - y_i)^2$$

Mean square error(MSE)

Minimize $J(heta_0$, $heta_1$)

 $heta_0$, $heta_1$

$$J(\theta_0 = 0, \theta_1 = 0.5) = \frac{1}{2m} \sum_{i=1}^{m} (0.5x_i - y_i)^2$$
$$= \frac{1}{2*3} [(0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2]$$
$$= \frac{1}{6} (3.5) = 0.58$$

$$J(\theta_0 = 0, \theta_1 = 1) = \frac{1}{2m} \sum_{i=1}^{m} (x_i - y_i)^2$$
$$= \frac{1}{2*3} [(1-1)^2 + (2-2)^2 + (3-3)^2]$$
$$= \frac{1}{6} (0) = 0$$

θ_1	$J(\theta_1)$
0	14/6
0.5	0.58
1	0
1.5	0.58
2	14/6

- Plotting the cost for each value of $heta_1$
- The minimum point: θ_1 =1
- Using Grid Search to find best values of parameters

Cost Function

•
$$J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} |h(x_i) - y_i|$$

Mean absolute error(MAE)

Better for outliers compared with MSE

Convexity

Function h(u) with $u \in X$ is convex if for any $u, v \in X$ and for any $0 \le \lambda \le 1$ we have:

$$h(\lambda u + (1 - \lambda)v) \leq \lambda h(u) + (1 - \lambda) h(v)$$

$$f$$
 yı̈ ~ ÿ ûḉŸ}ñ åÓÂ' ÉûḉŶ̈} ž { ´"ɬþõS" y}

$$if \ \theta_1 = -1:$$

$$MAE = \frac{1}{3} [|1 - (-1)| + |2 - (-2)| + |3 - (-3)|] = 4$$

$$if \ \theta_1 = 0:$$

$$MAE = \frac{1}{3} [|1 - 0| + |2 - 0| + |3 - 0|] = 2$$

$$if \ \theta_1 = 1:$$

$$MAE = \frac{1}{3} [|1 - 1| + |2 - 2| + |3 - 3|] = 0$$

$$if \ \theta_1 = 2:$$

$$MAE = \frac{1}{3} [|1 - 2| + |2 - 4| + |3 - 6|] = 2$$

MAE is convex

$ heta_1$	$J(\theta_1)$
-1	4
-0.5	3
0	2
0.5	1
1	0
1.5	1
2	2
2.5	3
3	4