SCHOOL OF DISTANCE EDUCATION

M. Sc. MATHEMATICS

MTH3C13: FUNCTIONAL ANALYSIS (Core Course)

THIRD SEMESTER

MCQ's in Functional Analysis

Prepared by:

Dr. Vinod Kumar P.
Associate Professor

P. G.Department of Mathematics

T. M. Government College, Tirur

UNIVERSITY OF CALICUT

M.Sc. MATHEMATICS

MTH3C13: FUNCTIONAL ANALYSIS

SELF LEARNING MATERIAL

Prepared by:

Dr. Vinod Kumar P.

Associate Professor

P. G. Department of Mathematics

T. M. Government College, Tirur

 $Email:\ vinodunical@gmail.com$

Scrutinized by:

Dr. Bijumon R.

Associate Professor and Head

P. G. Department of Mathematics

M. G. College, Iritty

Keezhur P.O., Kannur Dt.

Published by:

SCHOOL OF DISTANCE EDUCATION

UNIVERSITY OF CALICUT

October, 2021

Copy Right Reserved

Multiple Choice Questions

1.	The	linear span of empty set equals:
	(a)	Empty set
	(b)	Zero subspace
	(c)	The whole space
	(d)	None of these
		Answer: (b)
2.	Whi	ch of the following is not a linear space over \mathbb{R} ?
	(a)	$\mathbb C$
	(b)	\mathbb{R}
	(c)	$\mathbb Q$
	(d)	None of these
		Answer: (c)
3.	Whi	ch of the following is not a linear space?
	(a)	\mathbb{C} over \mathbb{R}
	(b)	\mathbb{Q} over \mathbb{R}

(c) \mathbb{R} over \mathbb{Q}
(d) \mathbb{C} over \mathbb{Q}
Answer : (b)
4. Dimension of \mathbb{C}^n as a linear space over \mathbb{C} is :
(a) n
(b) $n+1$
(c) n^2
(d) $2n$
Answer: (a)
5. Dimension of \mathbb{C}^n as a linear space over \mathbb{R} is :
(a) n
(b) $n+1$
(c) $2(n+1)$
(d) $2n$
$\mathbf{Answer}: (\mathbf{d})$
6. If E_1 and E_2 are subspaces of a linear space E , then which of the following is false?

- (a) $E_1 \cap E_2$ is always a subspace of E.
- (b) $E_1 + E_2$ is always a subspace of E.
- (c) $E_1 \cup E_2$ is always a subspace of E.
- (d) $E_1 \cup E_2$ is never a subspace of E.

- 7. If E is finite dimensional linear space of dimension n, and F is a subset of E with m elements, where m < n, then which of the following is true?
 - (a) F can span E.
 - (b) F is linearly independent in E.
 - (c) F is linearly dependent in E.
 - (d) F can not be a basis of E.

- 8. Which of the following is not a linear space over \mathbb{C} ?
 - (a) The set of all convergent sequences in \mathbb{C} .
 - (b) The set of all bounded sequences in \mathbb{C} .
 - (c) The set of all sequences in \mathbb{C} that converges to 0.

(d) The set of all sequences in \mathbb{C} that converges to a real number.

Answer: (d)

- 9. Which of the following linear space is infinite dimensional?
 - (a) \mathbb{R} over \mathbb{Q}
 - (b) \mathbb{Q} over \mathbb{Q}
 - (c) \mathbb{C} over \mathbb{C}
 - (d) \mathbb{C} over \mathbb{R}

Answer: (a)

- 10. Pick the incorrect statement:
 - (a) If S spans the linear space E and if $S \subset T$, then T also spans E.
 - (b) Any single vector in E is linearly independent.
 - (c) Any set of vectors in E that includes the zero vector is linearly dependent.
 - (d) If S is a linearly independent set in a linear space E and if $T \subset S$, then T is also linearly independent.

- 11. Consider $f: \mathbb{R} \to \mathbb{R}$. Which of the following is not a linear map?
 - (a) f(x) = x
 - (b) $f(x) = x^2$
 - (c) f(x) = 3x
 - (d) f(x) = 0

- 12. A linear map $A: E_1 \to E_2$ between two linear spaces is an isomorphism if:
 - (a) $\ker A = \{0\}$ and $\operatorname{Im} A = E_2$.
 - (b) $\ker A \neq \{0\}$ and $\operatorname{Im} A = E_2$.
 - (c) $\ker A = \operatorname{Im} A$.
 - (d) $\ker A = E_1$ and $\operatorname{Im} A = E_2$.

- 13. Which of the following denotes the space of all bounded scalar sequences?
 - (a) c

- (b) ℓ_{∞}
- (c) ℓ_p
- (d) s

- 14. Which of the following is not a property of norm in general?
 - (a) $||x|| \ge 0$
 - (b) $||x + y|| \le ||x|| + ||y||$
 - (c) ||kx|| = k||x||
 - (d) ||x|| = 0 iff x = 0

Answer: (c)

- 15. If $\|\cdot\|_1$ and $\|\cdot\|_2$ are two norms on a linear space E, then $\|\cdot\|_1$ is stronger than $\|\cdot\|_2$ if and only if:
 - (a) $\exists C > 0$ such that $||x||_2 \leq C||x||_1$, for all $x \in E$.
 - (b) $\exists C > 0$ such that $||x||_1 \leq C||x||_2$, for all $x \in E$.
 - (c) $\exists 0 < C < 1 \text{ such that } ||x||_2 \le C||x||_1, \text{ for all } x \in E.$
 - (d) $\exists \ 0 < C < 1 \text{ such that } ||x||_1 \le C||x||_2, \text{ for all } x \in E.$

- 16. The Minkowski's inequality for scalar sequences $a = (a_i)$ and $b = (b_i)$ states that:
 - (a) $||ab|| \le ||a|| ||b||$
 - (b) $||ab|| \ge ||a|| ||b||$
 - (c) $||a+b|| \ge ||a|| + ||b||$
 - (d) $||a+b|| \le ||a|| + ||b||$

- 17. Let $(E, \|\cdot\|)$ be a normed space and let d be the metric induced by the norm on E. If $x, y \in E$ and if d(x, y) = r, then which of the following is false?
 - (a) d(x+z, y+z) = r, for any $z \in E$.
 - (b) $d(rx, ry) = r^2$
 - (c) d(ax, ay) = |a|r, for any scalar a.
 - (d) d(rx + y, ry + x) = (r 1)r.

Answer: (d)

18. Let C[a, b] be the space of all complex valued continuous functions on [a, b]. Under which of the following norms, C[a, b] is a Banach space?

- (a) $||f|| = (\int_a^b |f(t)|^2 dt)^{1/2}$
- (b) $||f|| = \int_a^b |f(t)| dt$
- (c) $||f|| = (\int_a^b |f(t)|^3 dt)^{1/3}$
- (d) None of these.

- 19. A complete normed space is known as a:
 - (a) Hilbert space
 - (b) Compact space
 - (c) Banach space
 - (d) Euclidean space

- 20. Which of the following is a Banach space?
 - (a) Space of all polynomial functions on [a, b] with the supremum norm
 - (b) Space of all continuous functions on [a, b] with the supremum norm
 - (c) Space of all polynomial functions on [a, b] with the p-norm

(d) Space of all continuous functions on [a, b] with the p-norm

Answer: (b)

- 21. The term Hilbert space stands for a:
 - (a) Complete inner product space
 - (b) Compact linear space
 - (c) Complete normed space
 - (d) Complete metric space

Answer: (a)

- 22. Consider the statements.
 - (i) Every finite dimensional normed linear space is a Banach space.
 - (ii) Every Banach space is finite dimensional linear space.
 - (a) Only (i) is true
 - (b) Only (ii) is true
 - (c) Both (i) and (ii) are true
 - (d) Neither (i) nor (ii) is true.

- 23. Let H be a Hilbert space and L be a subspace of H. Then which of the following is false?
 - (a) L^{\perp} is a subspace of H.
 - (b) L^{\perp} is a closed subspace of H.
 - (c) $L \cap L^{\perp} = \{0\}$
 - (d) $L \cap L^{\perp} = \phi$

- 24. Which of the following subspaces of ℓ_{∞} is not a Banach space?
 - (a) c
 - (b) c_0
 - (c) s^*
 - (d) ℓ_p

- 25. Let $X = C([0,1], \mathbb{R})$ be equipped with the supremum norm. Let Y be the subspace of polynomial functions, then:
 - (a) Y is a dense subspace of X.

- (b) Y is a closed subspace of X.
- (c) Y is an open subspace of X.
- (d) None of these.

- 26. Which of the following is not a Banach space?
 - (a) Linear space of all n-tuples $x = (a_1, a_2, ..., a_n)$ with $||x|| = \max_i |a_i|$.
 - (b) Linear space of all 2-summable sequences $x = (a_1, a_2, ...)$ with $||x|| = (\sum_{i=1}^{\infty} |a_i|^2)^{1/2}$.
 - (c) Linear space of all bounded sequences $x = (a_1, a_2, ...)$ with $||x|| = \sup_{i} |a_i|$.
 - (d) Linear space of all continuous functions on [0,1] with $||f|| = \int_0^1 |f(t)| dt$.

- 27. The distance between any two orthonormal vectors in an inner product space is:
 - (a) 1

(b)	$\sqrt{2}$	
(c)	1	
(d)	2	

28. Pick the INCORRECT statement:

- (a) Every Hilbert space is a normed space
- (b) Every Banach space is a topological space
- (c) Every normed space is a metric space
- (d) Every Banach space is a Hilbert space Answer: (d)
- 29. Which of the following is a Banach space?
 - (a) P[a, b] with supremum norm
 - (b) C[a, b] with supremum norm
 - (c) s^* with supremum norm
 - (d) C[a, b] with p-norm **Answer**: (b)

- 30. Consider the statements:
 - (i) Every normed space is complete.
 - (ii) Every normed space can be identified as a dense subspace of a complete normed space.
 - (a) Only (i) is true
 - (b) Only (ii) is true
 - (c) Both (i) and (ii) are true
 - (d) Neither (i) nor (ii) are true.

- 31. Which of the following is true in a normed space?
 - (a) Union of any family of open sets is open.
 - (b) Intersection of any family of open sets is open.
 - (c) Union of any family of closed sets is closed.
 - (d) Intersection of any family of closed sets is open.

- 32. If $p \ge q \ge 1$, which of the following is true?
 - (a) $\ell_p \subset \ell_q$

- (b) $\ell_p \supset \ell_q$
- (c) $\ell_p = \ell_q$
- (d) None of these.

- 33. Which of the following is Cauchy-Schwartz inequality?
 - (a) $|\langle x, y \rangle| < \langle x, x \rangle^{1/2} \cdot \langle y, y \rangle^{1/2}$
 - (b) $|\langle x, y \rangle| \ge \langle x, x \rangle^{1/2} \cdot \langle y, y \rangle^{1/2}$
 - (c) $|\langle x, y \rangle| \le \langle x, y \rangle^{1/2} \cdot \langle y, x \rangle^{1/2}$
 - (d) $|\langle x, y \rangle| \le \langle x, x \rangle \cdot \langle y, y \rangle$

Answer: (a)

- 34. Which of the following is known as the parallelogram law?
 - (a) $||x + y||^2 = 2||x||^2 + 2||y||^2$
 - (b) $||x + y||^2 + ||x y||^2 = 2||x||^2 + ||y||^2$
 - (c) $||x + y||^2 + ||x y||^2 = 2(||x||^2 + ||y||^2)$
 - (d) $||x+y||^2 ||x-y||^2 = 2||x||^2 + ||y||^2$

35.	Two	vectors	x, y	in an	inner	$\operatorname{product}$	space	are	orthogo	nal
	if:									

- (a) $\langle x, y \rangle = 0$
- (b) ||x|| = ||y|| = 1
- (c) $\langle x, y \rangle \neq 0$
- (d) None of these.

36. If two vectors x, y in an inner product space are orthogonal, then:

- (a) $||x + y||^2 = 2||x||^2 + 2||y||^2$
- (b) $||x + y||^2 = ||x||^2 + ||y||^2$
- (c) ||x + y|| = 0
- (d) None of these.

Answer: (b)

37. If $\{f_i\}$ is a complete system in a Hilbert space H and if $x \perp f_i$ for all i, then:

(a)
$$||x|| = 1$$

- (b) $\{x\}$ is linearly independent.
- (c) x = 0
- (d) None of these.

- 38. Consider the following statements about a Hilbert space H:
 - (i) H is separable if it has a countable dense subset.
 - (ii) H is separable if it has a complete orthonormal system.
 - (a) Only (i) is true
 - (b) Only (ii) is true
 - (c) Both (i) and (ii) are true
 - (d) Neither (i) nor (ii) are true.

- 39. If L_1 and L_2 are two subspaces of a Hilbert space H, then which of the following is true?
 - (a) $(L_1 + L_2)^{\perp} = L_1^{\perp} \cap L_2^{\perp}$
 - (b) $(L_1 + L_2)^{\perp} = L_1^{\perp} + L_2^{\perp}$
 - (c) $(L_1 \cap L_2)^{\perp} = L_1^{\perp} + L_2^{\perp}$

(d)
$$(L_1 + L_2)^{\perp} = L_1^{\perp} \cup L_2^{\perp}$$

Answer: (a)

- 40. If L is a closed subspace of a Hilbert space H, then which of the following is true?
 - (a) $L \oplus L^{\perp} \neq H$
 - (b) $L \cup L^{\perp} = H$
 - (c) $L \oplus L^{\perp} = H$
 - (d) $(L^{\perp})^{\perp} = L^{\perp}$ Answer: (c)
- 41. If E is a closed subspace of a Hilbert space H and $\operatorname{codim} E = 1$, then which of the following is true?
 - (a) $\dim E^{\perp} = 1$
 - (b) $\operatorname{codim} E^{\perp} = 1$
 - (c) $E^{\perp} = \{0\}$
 - (d) None of these

42. If X, Y are normed spaces and if $A: X \to Y$ is a bijective, bounded linear map, then:

- (a) A is always an open map.
- (b) A is an open map if X is a Banach space.
- (c) A is an open map if Y is a Banach space.
- (d) A is an open map if both X and Y are Banach spaces. **Answer**: (d)
- 43. Which of the following is true?
 - (a) If A, B are invertible linear operators on X, then A + B is invertible.
 - (b) If A, B are invertible linear operators on X, then A B is invertible.
 - (c) If A, B are invertible linear operators on X, then AB is invertible.
 - (d) If A is invertible linear operator on X, and k is any scalar, then kA is invertible.

- 44. If X and Y are normed spaces, then the space of bounded linear operators L(X,Y) is a Banach space if and only if:
 - (a) X is a Banach space.

- (b) Y is a Banach space.
- (c) Both X and Y are Banach spaces.
- (d) Both X and Y are finite dimensional spaces. **Answer** : (b)
- 45. If X and Y are normed spaces, and if $T: X \to Y$ is a linear operator, then T is bounded if and only if:
 - (a) T maps bounded subsets of X into bounded subsets of Y.
 - (b) T maps open subsets of X into open subsets of Y.
 - (c) T maps closed subsets of X into closed subsets of Y.
 - (d) T is invertible.

- 46. If $A: H \to H$ is a bounded linear operators on a Hilbert space H, then:
 - (a) $||A|| = \sup\{\langle Ax, y \rangle; ||x|| \le 1, ||y|| \le 1\}$
 - (b) $||A|| = \sup\{|\langle Ax, y \rangle|; ||x|| \le 1, ||y|| \le 1\}$
 - (c) $||A|| = \sup\{\langle Ax, y \rangle; x, y \in H\}$

(d)
$$||A|| = \inf\{|\langle Ax, y \rangle|; ||x|| \le 1, ||y|| \le 1\}$$

Answer: (b)

- 47. For any bounded linear operator $A: X \to Y$, ker A is:
 - (a) a closed subspace of Y.
 - (b) an open subspace of Y.
 - (c) a closed subspace of X.
 - (d) an open subspace of X. **Answer**: (c)
- 48. For any normed space X, the dual space X^* is:
 - (a) Always a Banach space.
 - (b) Always a compact set.
 - (c) Always finite dimensional.
 - (d) Always an infinite dimensional.Answer: (a)

49. If T is the shift operator on ℓ_2 , then:

(a)
$$||T|| = \frac{1}{\sqrt{2}}$$

- (b) $||T|| = \sqrt{2}$
- (c) ||T|| = 1
- (d) $||T|| = \infty$

- 50. Any bounded subset in \mathbb{R}^n is :
 - (a) compact
 - (b) relatively compact
 - (c) open
 - (d) closed

Answer: (b)

- 51. Consider the statements:
 - (i) Every compact operator is bounded.
 - (ii) Every bounded operator is compact. Then:
 - (a) Only (i) is true.
 - (b) Only (ii) is true.
 - (c) Both (i) and (ii) are true.
 - (d) Neither (i) nor (ii) is true.

- 52. $M \subset C[a, b]$ is relatively compact if and only if :
 - (a) M is uniformly bounded.
 - (b) M is equicontinuous.
 - (c) M is closed and bounded.
 - (d) M is uniformly bounded and equicontinuous.

 Answer: (d)
- 53. If $A: X \to Y$ is a bounded operator, then:
 - (a) $A^*: Y^* \to X^*$ is bounded.
 - (b) $A^*: X^* \to Y^*$ is bounded.
 - (c) $A^*:Y^*\to X^*$ is linear, but need not be bounded.
 - (d) $A^*: X^* \to Y^*$ is linear, but need not be bounded. Answer: (a)
- 54. If $A: X \to Y$, $x \in X$ and $f \in Y^*$, then $\langle Ax, f \rangle$ equals:
 - (a) $\langle A^*x, f \rangle$
 - (b) $\langle x, A^*f \rangle$
 - (c) $\langle A^*f, x \rangle$

(d)	$\langle A^*x,A^*f\rangle$
	Answer: (b)

- 55. Every bounded operator of finite rank is :
 - (a) compact
 - (b) open
 - (c) has a non zero adjoint.
 - (d) None of these.

- 56. Rank of a linear operator A equals:
 - (a) $\dim(\ker A)$
 - (b) $\dim(\operatorname{Im} A)$
 - (c) $\dim(\operatorname{Im} A^*)$
 - (d) $\dim(\ker A^*)$

- 57. Norm convergence is also known as:
 - (a) Uniform convergence

((b)	Strong	convergence
١	U)	Durong	Convergence

- (c) Weak convergence
- (d) None of these.

58. Consider the statements:

- (i) Strong convergence is weaker than norm convergence.
- (ii) Weak convergence is weaker than strong convergence. Then:
 - (a) Only (i) is true.
 - (b) Only (ii) is true.
 - (c) Both (i) and (ii) are true.
 - (d) Neither (i) nor (ii) is true.

Answer: (c)

59. If T is the right shift operator in ℓ_2 , then:

- (a) T is one to one.
- (b) T is onto.
- (c) T is invertible.

		Answer: (a)
60.	If \mathcal{U}	is the left shift operator in ℓ_2 , then :
	(a)	$\mathcal U$ is one to one.
	(b)	\mathcal{U} is onto.
	(c)	$\mathcal U$ is invertible.
	(d)	None of these.
		Answer: (b)
61.		is the right shift operator and \mathcal{U} is the left shift oper in ℓ_2 , then :
	(a)	UT = Id.
	(b)	$T\mathcal{U} = id.$
	(c)	$T\mathcal{U} = \mathcal{U}T.$
	(d)	None of these.
		Answer: (a)
62.		is the right shift operator and \mathcal{U} is the left shift oper in ℓ_2 , then which of the following is false?

(d) None of these.

- (a) $\mathcal{U}T = Id$.
- (b) $T\mathcal{U} \neq id$.
- (c) $ker TU \neq 0$.
- (d) $\ker \mathcal{U}T \neq 0$.

- 63. A bijective map $A: X \to Y$ is open if and only if :
 - (a) $A: X \to Y$ is invertible.
 - (b) $A: X \to Y$ is bounded.
 - (c) $A^{-1}: Y \to X$ is bounded.
 - (d) $A^{-1}: Y \to X$ is open.

Answer: (c)

- 64. If $\{A_n\}$ is a sequence of operators on a normed space X, then $A_n \to A$ strongly if and only if:
 - (a) $A_n x \to Ax$ for all $x \in X$.
 - (b) $||A_n A|| \to 0$ as $n \in \infty$.
 - (c) $f(A_n x) \to f(A x)$ for all $x \in X$ and for all $f \in X^*$.
 - (d) None of these.

65. If T is a bounded linear operator, then:

- (a) $||Tx|| \le ||T|| \cdot ||x||$
- (b) $||Tx|| \ge ||T|| \cdot ||x||$
- (c) $||Tx|| = ||T|| \cdot ||x||$
- (d) None of these.

Answer: (a)

- 66. Which of the following function do not define a norm in \mathbb{R}^2 ?
 - (a) $f(x,y) = \sup\{|x|, |y|\}$
 - (b) $f(x,y) = (|x|^2 + |y|^2)^{1/2}$
 - (c) f(x,y) = |x| + |y|
 - (d) $f(x,y) = (|x|^{1/2} + |y|^{1/2})^2$

- 67. Which of the following is not a complete normed space?
 - (a) ℓ_{∞}/c_0
 - (b) ℓ_{∞}/c
 - (c) ℓ_{∞}/s^*

(d)	ℓ_{∞}/Y , where	$Y = \operatorname{span}$	$\{(1,1,1,\ldots)\}.$
	Answer: ((c)	

- 68. Every complete subspace of a normed space is:
 - (a) closed.
 - (b) open
 - (c) finite
 - (d) None of these.

- 69. Let X be the normed space of all continuous functions on [0,1] with the norm $||f||=\int_0^1|f(t)|dt$. Then:
 - (a) X is a proper closed subspace of $L_1[0,1]$.
 - (b) X is a proper dense subspace of $L_1[0,1]$.
 - (c) X is a Banach space.
 - (d) None of these.

Answer: (b)

70. For x, y in a normed space X, which of the following is not necessarily true?

- (a) $||x + y|| \le ||x|| + ||y||$
- (b) $|||x|| ||y||| \le ||x y||$
- (c) $|||x|| ||y||| \le ||x|| + ||y||$
- (d) $||x y|| \le ||x|| ||y||$ Answer: (d)
- 71. Let M be a closed subspace of a normed space N. Then the quotient space N/M is a Banach space if and only if:
 - (a) M is a Banach space.
 - (b) N is a Banach space.
 - (c) N = M
 - (d) None of these.

- 72. Which of the following normed space is not separable?
 - (a) $(\ell_{\infty}, \|\cdot\|_{\infty})$
 - (b) $(\ell_p, \|\cdot\|_p), 1 \le p < \infty$
 - (c) $(\mathbb{C}^n, \|\cdot\|_p), 1 \leq p < \infty$
 - (d) $(\mathbb{C}^n, \|\cdot\|_{\infty})$

	is a normed space and if d is the metric induced by norm, then for any scalar k , $d(kx, ky)$ equals:
(a)	d(x,y)
(b)	k d(x,y)
(c)	kd(x,y)
(d)	$k^2d(x,y)$
	Answer: (b)
Let	$e = (1, 1, 1,) \in \ell_{\infty}$, then $c_0 + \text{span}\{e\}$ equals:
(a)	c_0
(b)	c
(c)	ℓ_{∞}
(d)	None of these.
	Answer: (b)
For a	$x, y \text{ in a normed space } X, x+y - x-y \le \dots$
(a)	$2\ y\ $
(b)	$2(\ x\ + \ y\)$
(c)	$2\ x\ $
	(a) (b) (c) (d) Let (a) (b) (c) (d) For: (a) (b)

(d)	x + y		
	Answer:	(a)

- 76. Let $X = (\ell_{\infty}, |\cdot||_{\infty})$ and Y be a finite dimensional subspace of X. Then which of the following is not a Banach space?
 - (a) X/c
 - (b) X/Y
 - (c) X/c_0
 - (d) X/s^*

- 77. Pick the incorrect statement:
 - (a) Every linear subspace of a normed space is convex.
 - (b) Every ball in a normed space is convex.
 - (c) Intersection of two convex sets is convex.
 - (d) Union of two convex sets is convex.

Answer: (d)

78. Which of the following is non-separable normed space?

- (a) $L_1[0,1]$
- (b) $L_{\infty}[0,1]$
- (c) $L_2[0,1]$
- (d) C[0,1]

- 79. Let X be the space of differentiable functions on [0,1], Y = C[0,1] both with the supremum norm and $A: X \to Y$ be the map defined by Af = f', the derivative of f. Then A is:
 - (a) Linear and bounded.
 - (b) Bounded but not linear.
 - (c) Linear and continuous.
 - (d) Linear but not continuous.

- 80. Let X be a normed space and f be a bounded, non-zero linear functional on X. Then, which of the following is not true?
 - (a) f is onto.

((b)	f	is	continuous.
---	-----	---	----	-------------

- (c) $\ker f$ is a closed subspace of X.
- (d) f is an open map.

- 81. If f is a linear functional on a normed space X, then $\ker f$ is:
 - (a) closed in X.
 - (b) dense in X.
 - (c) either closed or dense in X.
 - (d) None of these.

Answer: (c)

- 82. Which of the following is true?
 - (a) Every metric space is a normed space.
 - (b) Every complete normed space is finite dimensional.
 - (c) Every finite dimensional normed space has a unique norm.
 - (d) The dual space of a normed space is a complete normed space.

_	
83.	Let x, y be elements of a Hilbert space H , such that $ x =$
	3, y = 4 and $ x + y = 7$. Then $ x - y $ equals:
	(a) 1
	(b) 2
	(c) 3

- (d) $\sqrt{2}$
- Answer: (a)
- 84. Pick out the correct statement.
 - (a) ℓ_1 is not reflexive.
 - (b) ℓ_1 is not separable.
 - (c) ℓ_2 is not reflexive.
 - (d) ℓ_2 is not separable.

- 85. Dual space of $(\ell_2, \|\cdot\|_2)$ is:
 - (a) $(\ell_2, \|\cdot\|_1)$
 - (b) $(\ell_{\infty}, \|\cdot\|_{\infty})$
 - (c) $(\ell_2, \|\cdot\|_2)$

(d)
$$(\ell_2, \|\cdot\|_{\infty})$$

Answer: (c)

86. Which of the following is not a normed space?

- (a) ℓ_{∞} with $||x|| = \sup |x_i|$.
- (b) c with $||x|| = \sup |x_i|$.
- (c) c_0 with $||x|| = \sup |x_i|$.
- (d) c with $||x|| = \lim_{i \to \infty} |x_i|$. **Answer**: (d)

87. Dual space of $(c_0, \|\cdot\|_{\infty})$ is:

- (a) $(c_0, \|\cdot\|_1)$
- (b) $(c_0, \|\cdot\|_{\infty})$
- (c) $(\ell_1, \|\cdot\|_1)$
- (d) $(\ell_{\infty}, \|\cdot\|_{\infty})$ Answer : (c)

()

- 88. In a normed space E, which of the following need not true?
 - (a) The mapping $(x, y) \to x + y$ is continuous.

- (b) The mapping $(k,y) \to k \cdot x$ is continuous.
- (c) The mapping $x \to ||x||$ is continuous.
- (d) None of these.

- 89. With the usual inner product on \mathbb{R}^3 , the vectors x, y, z forms an orthonormal basis. If $x = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), y = (0, 0, 1)$, then z can choose to be:
 - (a) (0,1,0)
 - (b) $(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$
 - (c) (0,0,1)
 - (d) $(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0)$

- 90. Let E be a normed space and let d be the metric induced by the norm. Then for $x,y\in E,\ d(x-y,0)$ equals:
 - (a) d(x,0) d(y,0)
 - (b) d(x, x y)
 - (c) d(x,y)

(d)	None of these.		
	Answer: (c)		

- 91. Which of the following is not true?
 - (a) The space c_0 is a closed subspace of ℓ_{∞} .
 - (b) The space s^* is a closed subspace of ℓ_{∞} .
 - (c) The space c is a closed subspace of ℓ_{∞} .
 - (d) The space P[0,1] is not closed in C[0,1]. Answer: (b)
- 92. Let X be an inner product space. Then the orthogonal complement of $\{0\}$ is:
 - (a) *X*
 - (b) $\{0\}$
 - (c) $X \setminus \{0\}$
 - (d) X^{\perp}

93. Let $X = \mathbb{R}^2$ with usual inner product, and $A: X \to X$ be defined by A(x,y) = (x,x). Then $A^*(x,y)$ equals:

- (a) (y, y)
- (b) (x, -x)
- (c) (x+y,0)
- (d) (0, x + y)

- 94. Let φ be the bounded linear functional on \mathbb{R}^2 defined by $\varphi(x,y)=2x$. Then the unique element of \mathbb{R}^2 representing φ given by the Riesz representation theorem is:
 - (a) (0,1)
 - (b) (2,0)
 - (c) (1,0)
 - (d) (0,2)

- 95. Let $H = L_2[-\pi, \pi]$ and $x, y \in H$ be defined as $x(t) = e^{i5t}$ and $y(t) = e^{i10t}$. Then ||x + y|| equals:
 - (a) $2\sqrt{\pi}$
 - (b) $\sqrt{2}$
 - (c) $\sqrt{2\pi}$

(d) $\pi\sqrt{2}$ Answer: (a)

- 96. In a Hilbert space, which of the following may not be true?
 - (a) $||x + y||^2 + ||x y||^2 = 2||x||^2 + 2||y||^2$
 - (b) $|\langle x, y \rangle| \le ||x|| \cdot ||y||$
 - (c) If $x_n \to x, y_n \to y$, then $\langle x_n, y_n \rangle \to \langle x, y \rangle$.
 - (d) None of these.

Answer: (d)

- 97. Let E be a normed space and A, B be bounded linear operators on E. Then which of the following is true?
 - (a) $||AB|| \le ||A|| \cdot ||B||$
 - (b) $||AB|| \ge ||A|| \cdot ||B||$
 - (c) $||AB|| = ||A|| \cdot ||B||$
 - (d) None of these.

Answer: (a)

98. Let M be a nonempty subset of an inner product space X. Which of the following is not true?

((a)	M^{\perp}	$=M^{\perp\perp\perp}$
---	-----	-------------	------------------------

- (b) $M \subset M^{\perp \perp}$
- (c) $M = M^{\perp \perp}$
- (d) If $\overline{M} = X$, then $M^{\perp} = \{0\}$ Answer: (c)

99. Let H be a Hilbert space over $\mathbb R$ and $x,y\in H,$ be such that $\|x\|=4,\|y\|=3,$ and $\|x-y\|=3.$ Then $\langle x,y\rangle$ equals:

- (a) 6
- (b) 8
- (c) 10
- (d) None of these.

Answer: (b)

100. Let $x \in \ell_{\infty}$ be defined by $x = (x_n)$, where $x_n = \sin(\pi/n)$. Then $||x||_{\infty}$ equals:

- (a) 2
- (b) 0
- (c) 1

(d)
$$\frac{1}{\sqrt{2}}$$
 Answer : (c)
