CH 6 Complex Numbers

mrevanishere

October 21, 2020

1 Intro

i is $i^2 = -1$.

A complex number is z = a + bi, where the real part is a = Re(z) and the imaginary part is b = Im(z)

Addition and multiplication is defined for complex nums (39)

$$\frac{1-i}{1+i} = -i$$

 \mathbb{C} is the set of all complex numbers

 $\mathbb{R} \subseteq C$

for quadratics:

if $b^2 \ge 4ac$ then $\in \mathbb{R}$,

if $b^2 \leq 4ac$ then $\in \mathbb{C}$

2 Geometry

Complex conjugate of z = a + bi is defined as:

 $\overline{z} = a - bi$ (reflected over real axis)

Modulus of z is distance from the origin to z (—z—) $z\overline{z} = |z|^2$

Argument of z is the angle θ

Polar form of z: $z = r(\cos \theta + i \sin \theta)$

where $a = r \cos \theta$ and $b = r \sin \theta$ and |z| = r

Principal argument is in $-\pi < \theta \le \pi$ written as arg(z), because multiples of 2pi are same angle

Ex $arg(1-i) = -\frac{\pi}{4}$

3 De Moivre's Theorem

Complex plane or argand diagram

If $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ and If $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$ Then z_1z_2 has mmodulus r_1r_2 and arugment $\theta_1\theta_2$

Says: mult a C z by $\cos\theta+i\sin\theta$ ROTATES z counterclockwise through the angle θ Ex: multiplication by i rotates $\frac{pi}{2}$

3.1 Prop 6.1

Let $z = r(\cos \theta + i \sin \theta)$ and let n be a pos int:

$$(i)z^{n} = r^{n}(\cos n\theta + i\sin n\theta)$$
$$(ii)z^{-n} = r^{-n}(\cos n\theta - i\sin n\theta)$$

4 The $e^{i\theta}$ Notation

 $e^{i\theta} = \cos\theta + i\sin\theta$

Common:

$$e^{2\pi i} = 1$$
 $e^{\pi i} = -1$
 $e^{\frac{pi}{2}i} = i$
 $e^{\frac{pi}{4}i} = \frac{1}{\sqrt{2}}(1+i)e^{i\theta}$
 $= e^{i(\theta+2k\pi)}$

all $e^{i\theta}$ has modulus 1 (unit circle)

 $z = re^{i\theta}$ where r = |z| and $\theta = arg(z)$

$$e^{i\theta}e^{i\phi} = e^{i(\theta+\phi)}$$

 $(e^{i\theta})n = e^{in\theta}$

5 Roots of Unity

cube roots of unity are each $\frac{2\pi}{3}$ away from each other nth Roots of unity: if n is a pos int, then the complex nums that satisfy the equation are:

$$z^n = 1$$

5.1 Prop 6.3

Let n be a pos int and $w:=e^{\frac{2\pi i}{n}}$ Then the nth roots of unity are the n complex nums:

$$1, w, w^2, ..., w^{n-1}$$

and are evenly spaced around the unit circle