1 Введение

- «Теорема Абеля в задачах и решениях», Алексеев
- По алгебраической геометрии: Харцкорн, Шафаревич.

Лекция 1. Теорема Абеля-Руфини

2 Полиномиальные уравнения, многозначные функции

Задача обращения: $f:\mathbb{C}\to\mathbb{C},$ найти $g:\mathbb{C}\to\mathbb{C}, f(g(y))=y,$ притом функция многозначная.

Если f — многочлен, то знаем формулу для $\deg f \leqslant 4$.

Определение 1 (Многозначная функция). Многозначная функция f — неявная функция $\mathbb{C} \to \mathbb{C}$, заданная полиномиальным уравнением $\{F=0\}, F: \mathbb{C}^2 \to \mathbb{C}$.

Либо $f=\{x\in\mathbb{C}^2\mid F(x)=0\},$ либо $f:\mathbb{C}\to 2^\mathbb{C}, f(x)=\{y\in\mathbb{C}\mid F(x,y)=0\}.$

Если f,g — многозначные, то можно определить композицию $h=g\circ f=\{(x,z)\mid \exists y: F(x,y)=G(y,z)=0\}$. Определение пока что некорректно, нужно как-то перейти к одному уравнению.

Определение 2 (Афинное алгебраическое многообразие). Афинное (в смысле не проективное) алгебраическое многообразие $X \subset \mathbb{C}^n$ — это множество, заданное системой полиномиальных уравнений.

$$X = \{x \in \mathbb{C}^n \mid F_j(x) = 0, j = 1, \dots, k\}, F_j : \mathbb{C}^n \to \mathbb{C}$$
 — многочлены.

Проблема: если взять афинное алгераическое многообразие, заданное двумя уравнениями в \mathbb{C}^3 , то его проекция на (x,z) одним уравнением может и не задаваться.

Теорема 1 (О проекции афинного алгебраического многообразия). *Пусть* отображение $H: \mathbb{C}^n \to \mathbb{C}^n$ полиномиальное. Тогда $H(X) \subset \mathbb{C}^m$ — афинное алгебраическое многообразие.

Пример. Многообразие $X = \{xy = yz = xz = 0\}$ имеет коразмерность 2, хочется задать его двумя уравнениями, но можно показать, что это невозможно.

Теорема 2. Любое алгебраическое многообразие размерности n-1 в \mathbb{C}^n можно задать одним уравнением.

В этом свете наша композиция определена корректна.

Определение 3 (Сумма, произведение многозначных функций). Если $l: \mathbb{C}^2 \to \mathbb{C}$, то $l(f,g) = \{(x,l(y_1,y_2) \mid F(x,y_1) = F(x,y_2) = 0\}$. В чатности, так можно определить сложение и умножение.

Так как это проекция многооразия $\{(x,y_1,y_2,z)\mid F(x,y_1)=F(x,y_2)=z-l(y_1,y_2)=0\}$, то полученный объект — это многозначная функция.

3 Теорема Абеля

Определение 4 (Выразимость в радикалах). Функция $f: \mathbb{C} \to \mathbb{C}$ выражена в радикалах, если:

- $f(x) = c, f(x) = \sqrt[n]{x} (F(x, y) = x^n y).$
- Композиция функций, выраженных в радикалах.
- l(f, g), где l многочлен, f, g выражены в радикалах.

Определение 5 (Разрешимость в радикалах). $f: \mathbb{C} \to \mathbb{C}$ — разрешима в радикалах, если существует g — многозанчная $\mathbb{C} \to \mathbb{C}$, выраженная в радикалах, такая что $g(y) \supset f^{-1}(y)$.

3амечание. $g(y) = f^{-1}(y)$ не получается, например, в случае формулы Кардано 6 корней. Однако, нас в принципе не очень смущает наличие побочных корней.

Если мы можем выразить корни уравнения формулой в радикалах, то можно разрешить в радикалах соответсвующий многочлен, просто подставив $c_0 - y$ вместо свободного члена c_0 .

Теорема 3 (Теорема Абеля). *Многочлен* f общего положения $\deg f \geqslant 5$ неразрешим в радикалах.

Говоря про общее положение подразумеваем, что это неверно лишь на нигде не плотном множестве. Более того, в нашем случае это нигде не плотное множество будет алгебраическим многообразием меньшей размерности.

4 Топологическая теория Галуа

Определение 6 (Накрытие). Накрытие $\pi: E \to B$ — это непрерывное отображение топологических пространств, такое, что существует F — дискретное топологическое пространство, такое что $\forall x \in B \to \exists U = U(x): \exists \varphi_x: \pi^{-1}(U) \to U \times F$, такое что оно осуществляет гомеоморфизм, а также $p_u(\varphi_x(e)) = \pi(e)$, где $p: F \times U$ — проектор на U.

Замечание. Если просто попросить, что $\pi^{-1}(U) \cong U \times F$, то накрытием будет отображение из интервала в интервал, которое левую треть отображает в левую половину линейно, правую в правую, а середину склеивает в одну точку.

 $|f^{-1}(y)|=\deg f$, кроме некоторых точек, а именно тех, где f(x)=y,f'(x)=0, то есть это верно для всех y кроме так называемых критических значений многочлена B'.

Утверждение 1. Пусть $B'=\{y\mid \exists x: f'(x)=0, y=f(x)\}.$ Тогда отображение $f\mid_{\mathbb{C}\backslash f^{-1}(B')}$ является накрытием над $\mathbb{C}\setminus B'.$

Доказательство. Нужно взять окрестность некоторой точки $x \in \mathbb{C} \setminus B'$, взять все её прообразы, взять у них по окрестности, пересечь их образы, позаботиться о том, чтобы они не пересекались и не содержали плохих точек и применить теорему об обратной функции.