This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Союз Советских Социалистических Республик

Государственный комитет СССР по делам изобретений и открытий

ОПИСАНИЕ (11)894169 ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву ---

(22 дывлено 25.12.79 (21) 2858041/22-03

с присоединением заявки № ---

(23) Приоритет —

Опубликовано 30.12.81. Бюллетень № 48

Дата опубликования описания 05.01.82

(51) M. Ka.³

TE 21 B 7/28

(53) УДК 622.248. .4 (088.8)

(72) Автор изобретения А. В. Иванов

(71) Заявитель

Всесоюзный научно-исследовательский институт по креплению скважин и буровым растворам

(54) РАСШИРИТЕЛЬ

1

Изобретение относится к креплению скважин и используется при изоляции проницаемых пластов в необсаженных скважинах и ремонте обсадных колоин.

Известен расширитель для установки расширяемых хвостовиков в скважинах, содержащий штангу с коническим элементом и опирающимися на него секторами [1].

Недостатком этого расширителя является необходимость точного измерения внутреннего диаметра обсадной колонны в месте ремонта для установки регулирующей конической втулки, так как допуск на изготовление обсадных труб значительно превышает упругий прогиб секторов. Неточность измерения приводит к неправильной установке регулирующей конической втулки, что вызывает неплотное прилегание расширяемого хвестовика к стенке обсадной колонны или поломку секторов.

Наиболее близким к предлагаемому по технической супности и достигаемому результату является расширитель для установки расширяемых хвостовиков в скважинах, включающий штангу с подвижным конусным пуансоном, секторы, опорный элемент и выс2

Недостатком, этого устройства является возможность заклинивания при встрече меньшего эпутреннего диаметра обсадной колония.

Цель изобретения повышение надежности работы расширителя путем уменьшения возможности заклишивания.

Указанная цель достигается тем, что в расширителе, включающем штангу с подвижным конусным пуансоном, секторы, взаимодействующие с опорным элементом, и выстушы, опорный элемент жестко закрешлен на конусном пуансоне, а выступы - на опорном элементе, установленном с возможностью взаимодействия выступов с секторами.

На фиг. 1 изображен расширитель для установки расширяемых хвостовиков в скважинах, общий вид; на фиг. 2 транспортное положение расширителя; на фиг. 3 разрез А-А на фиг. 2; на фиг. 4 разрез Б-Б на фиг. 1.

Расширитель имеет штангу 1, выполненную в верхней части с поддерживающим хвостовиком 2 конусным пуансоном 3, а в пижней части с резьбой, подвижный конусный пуансон 4, имеющий выступы 5, взаи-

10

20

рающимися на тайку 7 и удерживаемыми разрезным кольном 8, возвратную пружину 9, упирающуюся в гайку 10, упор 11, ограничивающий расхождение секторов.

Расширитель работаёт следующим обра-30M.

При втягивании расширителя в хвостовик 2 (фиг. 1) поддерживаемый конусным пуансоном 3 кижний торец расширяемого хвостовика, перемещая подвижный к: ""чый пуансои с выступами 5, переводит расширитель в рабочее положение, раздвигая секторы 6 до упора в стенку обсадной колонны 12 и сжи-

мая возвратную пружину 9.

Расширение хвостовика осуществляется последовательно поддерживающим конусным пуансоном 3, подвижным конусным пуан- 15 соном 4 и упругими секторами 6. После расширения всего хвостовика и выхода из него расширителя возвратная пружина 9 переводит расширитель в транспортное положение (фиг. 2), возвращая подвижный конусный пуансон 4 и упругие секторы 6 в первоначальное положение,

При расширении хвостовика в необсаженной скважине необходимо упор 11 установить в положение, соответствующее требуемому диаметру расширения хвостовика.

Использование предлагаемого расширителя для установки хвостовиков в скважинах позволяет исключить необходимость измерения виутреннего диаметра обсадной колонны перед ремонтом, повысить надежность работы при установке расширяемых хвостови-

Формула изобретения

Расширитель, включающий штангу с подпуансоном, секторы, вижным конусным взаимодействующье с опорным элементом, и выступы, отличающийся тем, что, с целью по вышения надежности работы расширителя путем уменьшения возможности заклинивания, опорный элемент жестко закреплен на конусном пуансоне, а выступы -- на опорном элементе, установленном с возможностью взаимодействия выступов с секторами. Источники информации,

принятые во внимание при экспертизе 1. Авторское свидетельство СССР

по заявке 2513231, кл Е 21 В 29/00, 1978. 2. Авторское свидетельство СССР

по заявке № 2611448, кл. Е 21 В 18/00, 1978 (прототип).

Составитель Л. Черепенкина Техрел А. Бойкас Кој

 Редактор М. Ткач
 Техред А. Б

 Заказ 11417/51
 Тираж 630

Корректор Л. Шеньо Подписное

ВНИИПИ Государственного комитета СССР по делам изобретений и открытий 113035, Москва, Ж-35, Раушская наб. д. 4/5 Филиал ППП «Патент», г. Ужгород, ул. Проектиая, 4

Союз Советских Социалистических Республик

Государ-твенный комитет
СССР
по делам изобретений
и открытий

ОПИСАНИЕ 899850

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву --

(22) Заявлено 17.08.79 (21) 2809152/22-03

с присоединением заявки № -

(23) Приоритет —

Опубликовано 23.01.82. Бюллетень № 3

Дата опубликования описания 28.02.82

(51) M. Ka. 3

E 21 B 33/00

(53) УДК 622.248. 13 (088.8)

(72) Авторы изобретения

В. И. Крылов, А. Н. Фурманов и С. Ф. Петров

(71) Заявитель

Всесоюзный научно-исследовательский институт по креплению скважин и буровым растворам

(54) УСТРОЙСТВО ДЛЯ УСТАНОВКИ РАСШИРЯЕМОГО ХВОСТОВИКА В СКВАЖИНЕ

Изобретение относится к креплению скважин и предназначено к использованию при изоляции проницаемых пластов в необсаженных скважинах и ремонте обсадных ко-

лонн.

Известно устройство для установки расширяемого хвостовика в скважине, включающее закрепленную верхней частью на трубах для спуска устройства в скважину полую штангу с поршнем в нижней части и охватывающий поршень пилиндр с расширителем, установленный на штанге с возможностью перемешения [1].

В этом устройстве хвостовик размещен над цилиндром с расширителем, что в аварийных ситуациях может осложнить ликвидацию аварий из за оставления в скважине

массивного цилиндра.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является устройство для установки расширяемого хвостовика в скважине, включающее присоединенный к колонне труб цилиндр и размещенный в его полости поршень со штоком в верхней части и расширителем со штангой — в нижней части [2].

2

Нелостатком известного устройства является сложность технологии закрепления хвостовика, что связано с необходимостью создания в трубах избыточного давления (120—150 кгс/см²) для расширения хвостовика, что повышает опасность работ и требует использование наземного источника давления (цементировочного агрегата или бурового насоса).

Цель изобретения — упрощение технологни закрепления хвостовика.

эта цель достигается тем, что цилиндр выполнен с каналами для сообщения подпоршневой полости с затрубным пространством, а поршень снабжен механизмом для фиксацин его в цилиндре, выполненном в виде подпружиненного в осевом направлении штока с радиально подвижными шарами, размещенными в кольцевых проточках поршня и цилиндра.

На чертеже изображен общий вид устройства в разрезе перед началом закрепления хвостовика:

Устройство включает цилиндр 1 с каналами 2 и 3 и поршень 4 с подпружиненным штоком 5, штангой 6 и расширителем 7.

Цилиндр 1 в нижней части выполнен с кольцевой проточкой 8 на внутренней поверхности, а поршень 4 имеет радиально подвижные Онксаторы, например шары 9, взаимодействующие с кольцевой проточкой 8 цилиндра 1 и штоком 5, выполненным с кольцевой канавкой 10 и выступом 11. Канал 3 выполнен в виде седла 12, а расширитель 7 снабжен клапаном 13.

Между цилиндром 1 и расширителем 7 размещен хвостовик 14. Гозиция 15 обозначает сбрасываемый в трубы груз для расфиксации горшия 4 со штангой 6 и расширителем 7. Для облегчения движения в поршне 4 шток 5 выполнен с каналами 16.

Пля герметизаций штока 5 и поршия 4 предусмотрены уплотнительные элементы 17. Надпоршневая полость 18 шилиндра 1 собишена с трубным, а подпоршневая полость 19 через каналы 3 и 2 — с затрубным пространством.

Устройство работает следующим обра-

В поршень 4 вдавливают шток 5 и фиксируют его шарами 9 в нижнем положении. После этого поршень 4 вставляют в цианиду 1 до совмещения шаров 9 с кольцевой канаввыненный выправния подпружиненный шток 5 своим выступом 11 выдавливает шары 9 в кольшевую канавку 8 и тем самым поршень 4 фиксируется относительно цилиндра 1. При спуске устройства в скважину трубы не заполняют жидкостью или же заполняют частично. В результате этого давление в подпоршневой полости 19 растет и равно гидростатическому давлению затрубного столба жизкости. При достижении глубины установки увостовика в трубы сбрасывают груз 15, который вызвлинает шток 5 в поршень 4. При этом кольпеная канавка 16щтока совмешается с фиксаторами 9, вталкиваемыми пилинатом 1 в поршень 4, после чего поршень 4 под действием разности давлений в подпоршневой 19 и надпоршневой 18 полостях цилинара 1 лижется вверх с протягиванием расширителя 7 через хвостовик 14. Поршень 4 со штангой 6 и расширитене сялет в седло 12 канала 3. Этим достигается належьое разобщение трубного и затрубного пространства на случай повреждения уплотнительных элементов 17 между цилинаром 1 и поршнем 4 и между поршнем 4 и штоком 5. На этом заканчивается расширение хвостовика 14 с упором его в цилиндр 1 и устройство поднимают из скважины с протягиванием расширителя 7 через оставшуюся часть хвостовика 14

Предложенное устройство для установки расширяемых хвостовиков в скважинах позволит за счет упрощения технологии путем исключения использования наземных источников давления, например цементировочных агрегатов, и повышения уровня техники безопасности работ на устье повысить эффективность изоляции скважин.

Формула изобретения

1. Устройство для установки расширяемого хвостовика в скважине. включающее присоединенный к колонне труб цилиндр и размещенный в его полости поршень со штоком
в верхней части и расширителем со штангой — в нижней части, отличающееся тем,
что, с целью упрощения технологии закрепления хвостовика, цилиндр выполнен с каналами для сообщения подпоршненой полости с затрубным пристранством, а поршень
снабжен чеханизмом для фиксанаи его в цилиндре.

2. Устройство по п. 1, отличиющееся тем, что механиям фиксация поршия выполнен в виде подпружиненного ч осевом направлении штока с радиально подвижными шарами, размещенными в кольценых проточках порш-

ня и пилендра.

Источники информации, принятые во внимание при экспертизе 1. Патент США № 3179168, кл. 166—14, опублик. 1965.

2. «Oil Week», т. 17. № 11, с. 23—32 (прототип).