Cours de MP3 Mathématique

G. ROUSSEL ronéo de la classe scanné par Maxime D. tapé par Charlotte T.

4 mars 2022

Table des matières

1	Cor	overgence simple et convergence uniforme	5
	1.1	Convergence simple d'une suite d'application	5
	1.2	Convergence uniforme d'une suite d'application	
		1.2.1 Convergence uniforme et transfert de la continuité	8
		1.2.2 Étude pratique de la CVU	9
		1.2.3 Convergence simple et uniforme d'une série d'application	10
	1.3	Convergence absolue et convergence normale d'une suite d'application	13
	1.4	Approximations polynomiales et en escalier	13
2	Ray	on de convergence d'une suite complexe	15
	2.1	Une caractérisation du rayon de convergence via les séries numériques	18
3	Sér	ies entières : premier contact	2 3
	3.1	Séries entières de la variable complexe	23
	3.2	Rayon de convergence d'une série entière	23
	3.3	Somme d'une série entière	25
	3.4	Opération sur les séries entières	28
	3.5	Sommes de quelques séries entières classiques	28
	3.6	Série entières de la variable réelle	30
		3.6.1 Rayon de convergence, intervalle de convergence, ensemble de convergence	31
4	Intá	égrale généralisée	33
4	4.1	Intégrale généralisée sur un intervalle semi-ouvert de la forme $[a, \infty[$.	33
	4.1	4.1.1 Introduction	33
	4.2	Intégrale généralisée sur un intervalle semi-ouvert de la forme [a,b[35
	4.2	4.2.1 Introduction	35
		4.2.2 Exemples	38
	4.3	Intégrale généralisée sur un intervalle semi-ouvert de la forme [a,b]	39
	4.0	4.3.1 Introduction	
			39 41
	1 1	1	41
	4.4	Intégrale généralisée sur un intervalle ouvert [a,b[41

		4.4.1 Introduction	41
	4.5	Intégrale généralisée sur un intervalle semi-ouvert ou ouvert	44
		4.5.1 Introduction	44
		4.5.2 Exercice	45
5	Inté	égration sur un intervalle quelconque des fonctions à valeurs	
	réel	les ou complexes	47
	5.1	Notion d'application intégrable sur l'intervalle I	47
		5.1.1 Définition	47
		5.1.2 Exemples de références	49
	5.2	Intégrale d'une application $\mathcal{L}^1(I,\mathbb{K})$	50
		5.2.1 Définition	
		5.2.2 Calcul	50
		5.2.3 Propriétés fondamentales	53
		5.2.4 EV des application C^O et intégrable sur I	54
		5.2.5 Relation de Chasle	55
	5.3	Critère de comparaison pour les fonctions à valeurs positives	56
	5.4	Intégration des relations de comparaison pour les fonctions à valeurs	
		positives	58

Chapitre 1

Convergence simple et convergence uniforme

1.1 Convergence simple d'une suite d'application

Soit
$$(f_n) \in \mathbb{K}^D$$
, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}

Définition 1.1.1 On dit que (f_n) converge simplement sur A vers f si il existe $f: A \to \mathbb{K}$ telle que $\forall x \in A, \lim_{n \to \infty} f_n(x) = f(x)$

Proposition 1.1.1 Supposons que (f_n) converge simplement sur A vers g et h avec $g, h: A \to \mathbb{K}$ Montrons que g = h

Démonstration. Soit
$$x \in A$$
, $g(x) = \lim_{n \to \infty} f_n(x) = h(x)$ donc $g = h$

Proposition 1.1.2 Supposons que (f_n) converge simplement sur A vers $f: A \to \mathbb{K}$

1. Supposons que $\forall n \in \mathbb{N} \ (f_n)$ croît sur A. Montrons que f croît sur A

Démonstration. Soient $(x, y) \in A^2$ tels que $x < y \ \forall n \in \mathbb{N}, f_n(x) \le f_n(y)$ (croissance de f_n) Donc par passage à la limite lorsque $n \to \infty$ $f(x) \le f(y)$ Donc f croît sur A

2. Supposons que A soit un intervalle de \mathbb{R} et que $\forall n \in \mathbb{N}$ Montrons que f est convexe sur A

Démonstration. f_n est convexe sur A Soient $(x,y) \in A^2$ et $\lambda \in [0;1] \ \forall n \in \mathbb{N}$, $f_n((1-\lambda)x+\lambda y) \leq (1-\lambda)f_n(x)+\lambda f_n(y)$ Donc par passage à la limite lorsque $n \to \infty$ $f((1-\lambda)x+\lambda y) \leq (1-\lambda)f(x)+\lambda f(y)$ Or $(1-\lambda)x+\lambda y \in A$ car A est un intervalle donc f est convexe sur A

Exemples

1.1.1 · Soit
$$f_n : [0;1] \to \mathbb{R}$$
 définie par $\forall x \in [0;1] : f(x) = x^n$
· Soit $x \in [0;1] : \lim_{n \to \infty} x^n =$

$$\begin{cases} 0 & \text{si } x \in [0;1[\text{ Donc } (f_n) \text{ converge simplement sur } [0;1] \text{ vers } f : [0;1] \to \mathbb{R} \\ 1 & \text{si } x = 1 \end{cases}$$
définie par $f(x) = \begin{cases} 0 & \text{si } x \in [0;1] \\ 1 & \text{si } x = 1 \end{cases}$

1.1.2 Soit
$$f_n(x) = \begin{cases} n^2 x & \text{si } |x| \le \frac{1}{n} \\ \frac{1}{x} & \text{sinon} \end{cases}$$
 On a $(f_n)_{n \le 1} \in \mathbb{R}^{\mathbb{N}^*}$ On a $(f_n)_{n \le 1}$ converge

simplement sur \mathbb{R} vers $f \colon \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \begin{cases} \frac{1}{x} & \text{si } x = 0 \\ 0 & \text{sinon} \end{cases}$

EF 1.1.1 Soit
$$x \in \mathbb{R}^*$$
, $\exists N \in \mathbb{N}$, $\forall n \geq N$, $\frac{1}{n} < |x|$ cela car $\lim_{n \to \infty} \frac{1}{n}$ et $|x| > 0$ $f_n(x) = \frac{1}{x}$ pour $n \leq N$ donc $\lim_{n \to \infty} f_n(x) = \frac{1}{x}$ Pour $n \in \mathbb{N}$, $f_n(0) = 0$ d'où $\lim_{n \to \infty} f_n(0) = 0$ **FEF**

- **1.1.3** Soit $f_n : \mathbb{C} \to \mathbb{C}$ définie par $f_n(z) = z^n$
- o Soit $z \in \mathbb{C}$ si |z| < 1 alors $\lim_{n \to \infty} f_n(z) = 0$
- o Si |z| > 1 alors la suite $(f_n(z))$ diverge dans \mathbb{C}
- o Si $z \in \mathbb{U} \setminus \{1\}$ alors la suite $(f_n(z))$ diverge dans \mathbb{C}
- o Si z=1 alors $\lim_{n\to\infty} f_n(z)=1$ Donc (f_n) converge simplement sur D' vers f définie

par
$$D' = D \cup \{1\}$$
 avec $f : D' \to \mathbb{C}$ et $f(z) = \begin{cases} 0 & \text{si } z \neq 1 \\ 1 & \text{sinon} \end{cases}$

1.1.4 Soit
$$f_n : \mathbb{R}^2 \to \mathbb{R}$$
 définie par $f_n(x,y) = \sqrt[n]{x^2 + y^2}$

- \circ Pour $(x,y) \in \mathbb{R}^2$: $x^2 + y^2 \ge 0$
- Pour $n \ge 1$: $\sqrt[n]{x^2 + y^2} = (x^2 + y^2)^{\frac{1}{n}} = e^{\frac{1}{n}\log(x^2 + y^2)}$ pour $(x, y) \ne 0_{\mathbb{R}^2}$
- \circ Pour (x,y) = (0,0): f(0,0) = 0

○ Soit
$$(x,y) \in \mathbb{R}^2$$
, si $(x,y) \neq 0$ alors $\lim_{n \to \infty} f_n(x,y) = \lim_{n \to \infty} e^{\frac{1}{n} \log(x^2 + y^2)} = e^0 = 1$ et $\lim_{n \to \infty} f_n(0,0) = 0$
○ Donc $(f_n)_{n \geq 1}$ converge simplement sur \mathbb{R}^2 vers f avec $f : \mathbb{R}^2 \to \mathbb{R}$ et $f(x,y) = \begin{cases} 1 & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$

1.2 Convergence uniforme d'une suite d'application

Proposition 1.2.1

$$(f_n)$$
 CVS sur A vers $f \Leftrightarrow \lim_{n \to \infty} f_n(x) = f(x)$
 $\Leftrightarrow \forall x \in A, \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, |f_n(x) - f(x)| \leq \varepsilon$
 $\Leftrightarrow \forall \varepsilon > 0, \forall x \in A, \exists N_x \in \mathbb{N}, \forall n \geq N_x, |f_n(x) - f(x)| \leq \varepsilon$

Le N_x dépend de x le but est de changer l'ordre des quantificateur pour établir la définition de la convergence uniforme

Définition 1.2.1

$$(f_n)$$
converge uniformément sur A vers $f \Leftrightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, \forall x \in A, |f_n(x) - f(x)|| \leq \varepsilon$

Proposition 1.2.2 1. Soient $B \subset A \subset D$, $f_n \colon D \to \mathbb{K}$, $f \colon A \to \mathbb{K}$, et $f|_B \colon B \to \mathbb{K}$ Montrons que (f_n) converge uniformément sur B vers f

Démonstration. Supposons que (f_n) converge uniformément sur A vers f.

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall x \in A, |f_n(x) - f(x)| \le \varepsilon$$

 $\forall x \in B, |f_n(x) - f(x)| \le \varepsilon$

donc (f_n) converge uniformément sur B vers f.

2. Si (f_n) converge uniformément sur A vers f alors (f_n) converge simplement sur

A vers f

Démonstration. Conséquence de la définition

3. Supposons (f_n) converge uniformément sur A vers f.

$$(f_n) \text{ CVU sur A vers } f \Leftrightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, \forall x \in A,$$

$$|f_n(x) - f(x)| \leq \varepsilon$$

$$\Leftrightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, ||f_n - f||_{\infty}^A \leq \varepsilon$$

$$\Leftrightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, \left| ||f_n - f||_{\infty}^A \right| \leq \varepsilon$$

$$\Leftrightarrow \lim_{n \to \infty} ||f_n - f||_{\infty}^A = 0$$

4. Supposons que f_n converge uniformément sur A vers g et h alors f_n converge simplement sur A vers g et h puis g = h

1.2.1 Convergence uniforme et transfert de la continuité

Théorème 1.2.1 Soient $A \subset \mathbb{R}$ et $a \in A$

1. Supposons $f|_A$ est C^0 au point a pour tout $n \in \mathbb{N}$ et (f_n) converge uniformément sur A vers f, montrons que f est continue au point a

Démonstration.

$$\begin{split} f \ C^0 \ \text{au point} \ a &\Leftrightarrow \lim_a f = f(a) \\ &\Leftrightarrow \lim_a f\big|_A(a) = f(a) \ \text{car} \ f \colon A \to \mathbb{K} \\ &\Leftrightarrow \forall \varepsilon > 0, \exists \alpha > 0, \forall x \in A, |x-a| \leq \alpha \Rightarrow |f(x) - f(a)| \leq \varepsilon \end{split}$$

Soient $\varepsilon > 0$ et $x \in A$

$$|f(x) - f(a)| = |(f(x) - f_n(x)) + (f_n(x) - f_n(a) + (f_n(a) - f(a)))|$$

$$\leq |f(x) - f_n(x)| + |f_n(x) - f_n(a)| + |f_n(a) - f(a)|$$

$$\leq ||f_n - f||_{\infty}^A + |f_n(x) - f_n(a)| + ||f_n - f||_{\infty}^A$$

et cela $\forall n \in \mathbb{N}$

(f_n) converge uniformément sur A vers f donc $\lim_{n\to\infty} \|f_n - f\|_{\infty}^A = 0$ Donc, $\exists N \in \mathbb{N}, \forall n \geq N, \|f_n - f\|_{\infty}^A \leq \frac{\varepsilon}{12}$ Alors, $|f(x) - f(a)| \leq 2 \|f_n - f\|_{\infty}^A + |f_N x - f_N(a)| \leq \frac{2\varepsilon}{12} + |f_N (x) - f_N(a)|$ Or, $f_N|_A$ est C^0 au point a donc $\exists \alpha > 0, \forall x \in A, |x - a| \leq \alpha \Rightarrow |f_N|_A(x) - f_N|_A(a)| \leq \frac{\varepsilon}{12}$ On suppose $|x - a| \leq \alpha$ Alors $|f(x) - f(a)| \leq \frac{2\varepsilon}{12} + |f_N(x) - f_N(a)| \leq \frac{2\varepsilon}{12} + \frac{\varepsilon}{12} \leq \varepsilon$ Enfin on a $\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in A, |x - a| \leq \alpha \Rightarrow |f(x) - f(a)| \leq \varepsilon$ Donc f est C^0 en a.

- 2. $f C^0$ sur $A \Leftrightarrow f C^0$ en tout point de A donc 2) est une conséquence de 1)
- 3. Corollaire: on suppose que A = I est un intervalle de \mathbb{R} , et on suppose $f_n|_I C^0$ sur I et (f_n) CVU sur tout segment contenue dans I vers f

Alors f est C^0 sur I

EF 1.2.1 Soit $a \in I$, on considère $S_a \subset I$ un segment contenant a, alors pour tout $n \in \mathbb{N}$, $f_n|_{S_a}$ est C^0 sur S_a

D'autre part (f_n) converge uniformément sur S_a vers f, $f_n|_{S_a}$ est C^0 sur S_a , donc en a, puis f est C^0 au point a car S_a est un voisinage de a.

1.2.2 Étude pratique de la CVU

Proposition 1.2.3 Soit $f_n: D \to \mathbb{K}$ et $f: A \to \mathbb{K}$, on pose $\delta_n(x) = |f_n(x) - f(x)|$

1. Supposons $\exists (\varepsilon_n) \in (\mathbb{R}^+)^{\mathbb{N}}, \forall x \in A, |f_n(x) - f(x)| \leq \varepsilon_n$ Montrons que (f_n) converge uniformément sur A vers f

Démonstration. Ainsi, $\forall n \in \mathbb{N}, 0 \leq \|f_n - f\|_{\infty}^A \leq \varepsilon_n$ par propriété des BS Par encadrement, $\lim_{n \to \infty} \|f_n - f\|_{\infty}^A = 0$ donc (f_n) converge uniformément sur A vers f.

2. Supposons $\exists (a_n) \in A^{\mathbb{N}}, (\delta_n(a_n))$ ne tende pas vers O alors (f_n) ne converge pas uniformément sur A vers f

Démonstration. Supposons (f_n) CVU sur A vers f, on a $\lim_{n\to\infty} ||f_n - f||_{\infty}^A = 0$ donc, $0 \le \delta_n(a_n) \le ||f_n - f||_{\infty}^A$ donc par encadrement, $\lim_{n\to\infty} \delta_n(a_n) = 0$ ce qui n'est pas

Exemples

1.2.1 Soit $f_n: [0,1] \to \mathbb{R}$ définie par $f_n(x) = x^n$ on a montré que (f_n) converge simplement sur [0,1] vers f avec $f: [0,1] \to \mathbb{R}$ et $f(x) = \begin{cases} 0 & \text{si } x \in [0,1[\\ 1 & \text{sinon} \end{cases}$ cependant (f_n) ne converge pas uniformément sur [0,1]

EF 1.2.2 Supposons (f_n) converge uniformément sur [0,1] vers f, comme $\forall n \in \mathbb{N}, f_n \text{ est } C^0 \text{ sur } [0,1] \text{ il vient que } f \text{ est } C^0 \text{ sur } [0,1] \text{ ce qui n'est pas } \mathbf{FEF}$

$$\mathbf{1.2.2} \quad \text{Soit } f_n(x) = \begin{cases} n^2 x & \text{si } |x| \le \frac{1}{n} \\ \frac{1}{x} & \text{si } |x| > \frac{1}{n} \end{cases} \text{ On a } (f_n) \text{ CVS sur } [0, 1] \text{ mais } (f_n) \text{ n'est}$$

$$\text{pas CVU sur } [0, 1] \text{ vers } f$$

EF 1.2.3 Supposons (f_n) CVU sur [0,1] vers f, alors $\forall n \in \mathbb{N}, f_n$ est C^0 sur [0,1] donc (TC) f est C^0 sur [0,1] ce qui n'est pas car $\lim_{0^+} f = \infty \neq f(0)$ **FEF**

Cherchons une CVU sur]0,1] on a $(f_n)_{n\geq 1}$ CVS sur]0,1] vers $f|_{[0,1]}$

$$\left| f_n(\frac{1}{n^2}) - f(\frac{1}{n^2}) \right| \le \|f_n - f\|_{\infty}^{[0,1]}$$
$$\left| 1 - n^2 \right| \le \|f_n - f\|_{\infty}^{[0,1]}$$
$$n^2 - 1 \le \|f_n - f\|_{\infty}^{[0,1]}$$

pour $n \ge 1$

Or $||f_n - f||_{\infty}^{[0,1]}$ ne tends pas vers 0 car $\lim_{n \to \infty} n^2 - 1 = \infty$ donc (f_n) ne converge pas uniformément vers f sur [0,1]

1.2.3 Convergence simple et uniforme d'une série d'application

Introduction Soit
$$f_n: D \to \mathbb{K}$$
 et $S_n = \sum_{k=0}^n : D \to \mathbb{K}$ On a $S_n \in (\mathbb{K}^D)^{\mathbb{N}}$

Définition 1.2.2 La suite d'application (S_n) est notée $\sum f_n$ et est appelée série de terme générale f_n

Proposition 1.2.4 Montrons que $\sum f_n$ CVS sur $A \Leftrightarrow \sum f_n(x)$ convergente

Démonstration.

$$\sum f_n \text{ CVS sur} A \Leftrightarrow (S_n) \text{ C VS sur} A$$

$$\Leftrightarrow \forall x \in A, \exists l \in \mathbb{K}, \lim_{n \to \infty} S_n(x) = l$$

$$\Leftrightarrow \forall x \in A, \exists l \in \mathbb{K}, \lim_{n \to \infty} \sum_{k=0}^n f_k = l$$

$$\Leftrightarrow \sum f_n(x) \text{ converge}$$

Définition 1.2.3 On suppose $\sum f_n$ CVS sur A

1. On a la somme de la série est une application de A dans \mathbb{K} définie par $\left(\sum_{k=1}^{\infty} f_k\right)(x) = \sum_{k=1}^{\infty} f_k(x)$

2. Et le reste de la série est une application de A dans \mathbb{K} définie par $R_n(x) = \sum_{k=1}^{\infty} f_k(x)$

Proposition 1.2.5 Soit $\sum f_n$ CVS (resp CVU) sur A alors (f_n) CVS (resp CVU) sur A vers $0_{\mathbb{K}^A}$

Démonstration. \circ On suppose $\sum f_n$ CVS sur A alors (S_n) CVS sur A vers S avec $\forall x \in A, S(x) = \sum_{k=0}^{\infty} f_k(x)$ Alors, $\forall x \in A, \sum f_k(x)$ CV donc $\lim_{n \to \infty} f_n(x) = 0$ puis (f_n) CVS sur A vers 0

o On suppose $\sum f_n$ CVU sur A alors (S_n) CVU sur A vers $S = \sum_{k=0}^{\infty} f_k$

$$||f_n - 0_{\mathbb{K}^A}||_{\infty}^A = ||f_n||_{\infty}^A$$

$$= ||(S_n - S) + (S - S_{n-1})||_{\infty}^A$$

$$\leq ||S_n - S||_{\infty}^A + ||S - S_{n-1}||_{\infty}^A$$

Comme (S_n) CVU sur A vers S on a par encadrement $\lim_{n\to\infty} ||f_n||_{\infty}^A = 0$ puis (f_n) CVU sur A vers $0_{\mathbb{K}^A}$

Théorème 1.2.2 On suppose $\sum f_n$ CVS sur A on dispose donc de S et R_n , montrons que $\sum f_n$ CVU sur $A \Leftrightarrow (R_n)$ CVU sur A vers $0_{\mathbb{K}^A}$

EF 1.2.4

$$\sum f_n \text{ CVU sur } A \Leftrightarrow \sum f_n \text{ CVU sur } A \text{ vers } S$$

$$\Leftrightarrow (S_n) \text{ CVU sur } A \text{ vers } S$$

$$\Leftrightarrow \lim_{n \to \infty} \|S_n - S\|_{\infty}^A$$

$$\Leftrightarrow \lim_{n \to \infty} \|R_n\|_{\infty}^A = 0$$

Car $S-S_n: A \to \mathbb{K}$, soit $x \in A$, $(S-S_n)(x) = S(x)-S_n(x) = \sum_{k=n+1}^{\infty} f_k(x) = R_n(x)$ donc $R_n = S - S_n$ donc (R_n) CVU sur A vers $0_{\mathbb{K}^A}$

Théorème 1.2.3 – Transfert de la continuité 1. On suppose que $\forall n \in \mathbb{N} |f_n|_A$ est C^0 en $a \in A$ et $\sum f_n$ CVU sur A alors S est C^0 en a

- 2. On suppose que pour tout $n \in \mathbb{N}$ $f_n|_A$ est C^0 sur A et $\sum f_n$ CVU sur A alors S est C^0 sur A
- 3. Soit I un intervalle de \mathbb{R} , on suppose que pour tout $n \in \mathbb{N}$ $f_n|_I$ est C^0 sur tous les segment contenus dans I alors S est C^0 sur I

Directe par Théorème de Transfert pour les suites d'applications

1.3 Convergence absolue et convergence normale d'une suite d'application

Introduction Soit $f_n : D \to \mathbb{K}$

Définition 1.3.1 $\sum f_n$ converge absolument (CVA) en tout point de A si $\forall x \in A, \sum |f_n(x)|$ est convergente

Définition 1.3.2 $\sum f_n$ converge normalement (CVN) sur A si $\sum \|f_n\|_{\infty}^A$ est convergente

Proposition 1.3.1 1. On suppose $\sum f_n$ CVA en tout point de A, alors $\sum f_n$ CVS sur A

EF 1.3.1 $\forall x \in A, \sum |f_n(x)|$ CV alors $\forall x \in A \sum f_n(x)$ converge absolument donc converge puis $\sum f_n$ CVS sur A

2. On suppose $\sum f_n$ CVN sur A, alors $\sum f_n$ CVS sur A et CVA en tout point de A

EF 1.3.2 $\forall x \in A, 0 \leq |f_n(x)| \leq ||f_n||_{\infty}^A \sum f_n \text{ CVN sur } A \text{ donc}$ $\sum_{\text{sur } A} |f_n(x)| \text{ CV donc } \sum f_n \text{ CV, et ce pour tout } x \in A \text{ donc } \sum f_n \text{ CVS}$

On dispose de R_n ; $||R_n - 0|| \le \sum_{k=n+1}^{\infty} ||f_k||_{\infty}^A$ donc (R_n) CVU sur A vers

O donc $\sum f_n$ CVU sur A. **FEF**

1.4 Approximations polynomiales et en escalier

Définitions Déjà vues

Théorème 1.4.1 Si $f \in M^0([a,b],\mathbb{K})$ alors $\exists (f_n)$ suite d'application en escalier CVU sur [a,b] vers f

Démonstration. MPSI

$14CHAPITRE\ 1.\ \ CONVERGENCE\ SIMPLE\ ET\ CONVERGENCE\ UNIFORME$

Théorème 1.4.2–Théorème de Weierstrass Si $f \in C^0([a,b],\mathbb{K})$ alors $\exists (P_n)$ une suite de fonctions polynomiales CVS sur [a,b] vers f

Démonstration. cf DL07

Chapitre 2

Rayon de convergence d'une suite complexe

Définition 2.0.1 On note $l^{\infty}\left(\mathbb{C}\right)$ l'ensemble des suites complexes bornées

Définition 2.0.2 Soit $a=(a_n)$ une suite complexe on pose $I_a=\{r\in\mathbb{R}^+|(a_nr^n)\in l^\infty(\mathbb{C})\}$ Le rayon de convergence R_a de la suite a est l'élement de $[0,+\infty]$ définie par $R_a=\sup_{[0,+\infty]}I_a$

Proposition 2.0.1 Soit $a = (a_n)$ une suite complexe et $r \in \mathbb{R}^+$

- 1. Si $r < R_a$ alors la suite $(a_n r^n)$ est bornée et si $(a_n r^n)$ est bornée alors $r \le R_a$
- 2. Si $r > R_a$ alors la suite $(a_n r^n)$ n'est pas bornée et si $(a_n r^n)$ n'est pas bornée alors $r \ge R_a$

Démonstration. Déjà vue

Proposition 2.0.2 1. Le rayon de convergence de la suite nulle est égal à $+\infty$

2. Le rayon de convergence d'une suite constante non nulle est égal à 1 Déjà vue

Proposition 2.0.3 1. Si $(a_n) \in l^{\infty}(\mathbb{C})$ alors $R_a \geq 1$

- 2. Si (a_n) converge et $\lim_{n\to\infty} a_n \neq 0$ alors $R_a = 1$
- 3. Si $\lim_{n \to \infty} a_n = 0$ alors $R_a \le 1$ Déjà vue

Proposition 2.0.4 Soient $a = (a_n)$ et $b = (b_n)$ deux suites complexes

1. Si il existe $N \in \mathbb{N}$ tel que $\forall n \geq N, |a_n| \leq |b_n|$ alors $R_a \geq R_b$

Démonstration. On suppose $N \in \mathbb{N}$ tel que $\forall n \geq N, |a_n| \leq |b_n|$, montrons que $R_a \geq R_b$.

EF 2.0.1 Soit $r \in [0, R_b[$, $r < R_b \text{ donc } (b_n r^n) \in l^{\infty}(\mathbb{C})$, $\exists M \in \mathbb{R}^+, \forall n \in \mathbb{N}$, $|b_n r^n| \le M$ Pour $n \in \mathbb{N}$ $|a_n r^n| = |a_n| r^n \le |b_n| r^n \le M$ donc $\forall r \in [0, R_b[$, $(a_n r^n) \in l^{\infty}(\mathbb{C})$ donc $r \in R_a$ PPL quand $r \to R_b$ on a $R_b \le R_a$

2. Si $a_n = \mathcal{O}(b_n)$ alors $R_a \geq R_b$ et si $a_n \equiv b_n$ alors $R_a = R_b$

Démonstration. On suppose que $a_n = \mathcal{O}(b_n)$ on a $\exists M \in R^{+*}, \forall n \in \mathbb{N} \left| \frac{a_n}{b_n} \right| \leq M^*$ puis $|a_n| \leq |Mb_n|$ ainsi $R_a \geq R_{Mb}$ mais $R_{Mb} = R_b$ puis $R_b \leq R_a$ On suppose que $a_n \equiv b_n$ on a alors $a_n = \mathcal{O}(b_n)$ et $b_n = \mathcal{O}(a_n)$ par double inégalité $R_a = R_b$

Proposition 2.0.5 Soient $a = (a_n)$ et $b = (b_n)$ des suites complexes et $\alpha \in \mathbb{C}$

1. $R_{a+b} \ge \min(R_a, R_b)$ et si $R_a \ne R_b$ alors $R_{a+b} = \min(R_a, R_b)$

Démonstration. On note $R = \min(R_a, R_b)$, soit $r \in [0, R[, r \leq R \text{ donc } r \leq R_a \text{ donc } (a_n r^n) \in l^{\infty}(\mathbb{C}) \text{ de même } (b^n r^n) \in l^{\infty}(\mathbb{C}) \text{ donc } (a_n r^n + b_n r^n) \in l^{\infty}(\mathbb{C}) \text{ donc } r < R_{a+b} \text{ PPL quand } \lim_{r \to R} \text{ on a } R_{a+b} \geq \min(R_a, R_b)$

2. $R_{\alpha a} = \begin{cases} R_a & \text{si } \alpha \neq 0 \\ \infty & \text{sinon} \end{cases}$

Démonstration. On suppose $R_a \neq R_b$, $R_a < R_b$ on a $R = R_a \leq R_{a+b}$. Supposons $R \neq R_{a+b}$ on a $R_a < R_b$ et $R_a < R_{a+b}$ donc $R_a < \min(R_b, R_{a+b})$. Soit $r \in]R_a, R'[$ avec $R' = R_{a+b}$, $R_a < r$ donc $(a_n r^n) \notin l^{\infty}(\mathbb{C})$. $r < R' < R_b$ donc $(b_n r^n) \in l^{\infty}(\mathbb{C})$ et $((a_n + b_n)r^n) \in l^{\infty}(\mathbb{C})$. ainsi par CL $(a^n r^n) = ((a_n + b_n)r^n - b_n r^n) \in l^{\infty}(\mathbb{C})$ ce qui est absurde Ainsi $R = R_{a+b}$ le reste est acquis

Proposition 2.0.6 Soit $a = (a_n)$ une suite complexe

1. D(a) définie par $\forall n \in \mathbb{N}, D(a)_n = (n+1)a_{n+1}$ a le même rayon de convergence que (a_n) que (a_n)

Remarque 2.0.1 Soit
$$P \in \mathbb{C}[X]$$
, $P = \sum_{k \in \mathbb{N}} \alpha_k X^k$ avec $(a_k) \in \mathbb{C}^{(\mathbb{N})}$

$$P' = \sum_{k \in \mathbb{N}^*} k \alpha_k X^{k-1} = \sum_{k \in \mathbb{N}} (k+1) \alpha_{k+1} X^k = \sum_{k \in \mathbb{N}} O(\alpha)_k X^k Q = \sum_{k \in \mathbb{N}} \alpha_k \frac{X^{k-1}}{k+1} = \sum_{k \in \mathbb{N}} \alpha_k X^{k-1} = \sum_{k \in \mathbb{N}} \alpha_k X^{k-$$

— Montrons que $R_{D(a)} \leq R_a$

Démonstration. Soit $r \in [0, R_{D(a)}[, r < R_{D(a)} \text{ donc } (D(a)_n r^n) \in l^{\infty}(\mathbb{C})$

$$|a_{n+1}r^{n+1}| = |a_{n+1}|r^{n+1} \le (n+1)|a_{n+1}|r^{n+1}$$

$$\le |(D(a)_n r^n) \cdot r|$$

$$< M_r$$

cela $\forall n \in \mathbb{N}$

 $\forall k \in \mathbb{N}^*, \left| a_k r^k \right| \leq M_r \text{ donc } (a_k r^k) \in l^{\infty}(\mathbb{C}) \text{ et } r \leq R_a \text{ cela } \forall r \in [0, R_{D(a)}]$ donc PPL quand $n \to R_{D(a)}^-$ il vient $R_{D(a)} \leq R_a$

— Montrons que $R_a \leq R_{D(a)}$

Démonstration. Soit $r \in]0, R_a[, r < R_a \text{ donc } \exists M \in R^{+*}, \forall n \in \mathbb{N}, |a^n r^n| \le M$ $|D(a)_n r^n| = (n+1)|a_{n+1}|r^n \ \forall h \in R^{+*}, \forall p \in \mathbb{N}, (r+h)^{p+1} \ge (p+1)r^p h$

$$\mathbf{EF} \ \ \mathbf{2.0.2} \quad (n+h)^{p+1} \ = \ \sum_{k=0}^{p+1} \binom{p+1}{k} r^k h^{p+1-k} \ \ge \ \binom{p+1}{p} r^p h \ = \ \binom{p-1}{1} r^p h = (p+1) r^p h \ \mathbf{FEF}$$

 $r < R_a \text{ donc } \exists h_a \in \mathbb{R}^{+*}, r < r + h_a < R_a$ $\text{donc } (a_n(r+h)^n) \in l^{\infty}(\mathbb{C}) \text{ et } \exists M \in R^+, \forall n \in \mathbb{N}, |a_n(r+h_a)^n| \leq M$ $\text{donc } |D(a)_n r^n| h_a = (n+1)|a_{n+1}| r^n h_a \leq M \text{ d'où } |D(a)_n r^n| \leq \frac{M}{h_a} \text{ d'où}$ $(D(a)_n r^n) \in l^{\infty}(\mathbb{C}) \text{ et } r \leq R_{D(a)} \text{ PPL quand } r \to R_a^- \text{ on a } R_a \leq R_{D(a)}$ par double inégalite $R_a = R_{D(a)}$ 2. I(a) définie par $I(a)_0 = 0$ et $\forall n \in \mathbb{N}^*, I(a)_n = \frac{a_{n-1}}{n}$ a le même rayon de convergence

 $D\acute{e}monstration. \ D(I(a)) = a$

EF 2.0.3
$$D(I(a))_n = (n+1)I(a)_{n+1} = (n+1)\frac{a_n}{n+1} = a_n$$
 FEF

$$Donc R_{I(a)} = R_{D(a)} = R_a$$

Proposition 2.0.7 Corollaire

Soit $a = (a_n)$ une suite complexe alors les rayons de convergences de (a_n) , (na_n) et $\left(\frac{a_n}{n}\right)_{n \ge 1}$ sont égaux

Soit $a = (a_n) \in \mathbb{C}^{\mathbb{N}}$ pour $n \in \mathbb{N}$ on a

$$a_n = a_n$$

$$b_n = na_n$$

$$c_n \begin{cases} \frac{a_n}{n} & \text{si } n \le 1\\ 0 & \text{sinon} \end{cases}$$

$$R_b = R_{(b_{n+1})} = R_{D(a)} = R_a$$
 et $R_{I(a)} = R_{(I(a)_{n+1})}$ on a $I(a)_{n+1} = \frac{a_n}{n+1} \equiv \frac{a_n}{n} = C_n$ donc $R_{I(a)} = R_c$

2.1 Une caractérisation du rayon de convergence via les séries numériques

Théorème 2.1.1 Soit $a = (a_n)$ une suite complexe. Le rayon R_a de la suite est l'unique élément de $[0, +\infty]$ qui possède les deux caractéristiques suivantes

- 1. Pour tout complexe z vérifiant $|z| < R_a$ la série $\sum a_n z^n$ est ACV
- 2. Pour tout complexe z vérifiant $|z| > R_a$ la série $\sum a_n z^n$ est grossièrement divergente (GDV)

Démonstration. Soit $z \in \mathbb{C}$,

1. Supposons que $|z| < R_a$ or $R_a = \sup(I_a)$ donc |z| ne majore pas I_a ainsi, $\exists r \in I_a, |z| < r, r \neq 0$ mais $r \in I_a$ ainsi $(a_n r^n) \in l^{\infty}(\mathbb{C})$ et $\exists M \in \mathbb{R}^+, \forall n \in \mathbb{R}^+$

 $\mathbb{N}, |a_n r^n| \leq M, \text{ On a}$

$$0 \le |a^n z^n| = |a^n r^n| \cdot \left| \frac{z}{n} \right|^n \le M \cdot \left| \frac{z}{n} \right|^n$$

Or $\left|\frac{z}{n}\right| < 1$ donc $\sum \left(\frac{z}{n}\right)^n$ CV puis $\sum |a^n r^n|$ CV donc $\sum a_n r^n$ ACV

2. Supposons que $|z| > R_a$ on a $(a_n|z|^n) \in l^{\infty}(\mathbb{C})$ et $(|a_nz|^n) \notin l^{\infty}(\mathbb{C})$ donc (a_nz^n) ne tends pas vers 0 donc $\sum a_nz^n$ est GDV

 R_a est l'unique nombre qui vérifie les propriétés.

EF 2.1.1 Soit $R \in [0, +\infty]$ vérifiant 1) et 2) donc la première étape. On suppose $R \neq R_a$ avec sans perte de généralité $R < R_a$ on considère $r \in]R, R_a[$ R < r < |r| donc $\sum a_n r^n$ est GDV donc DV $r < R_a$ donc $|r| < R_a$ donc $\sum a_n r^n$ ACV donc CV C'est absurde donc $R = R_a$ **FEF**

Proposition 2.1.1 Corollaire

Si $|z_0| > R_a$ alors $\sum a_n z^n$ GDV Si $|z_0| < R_a$ alors $\sum a_n z^n$ ACV

Proposition 2.1.2 Règle d'Alembert (Super HP) Supposons que $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$ avec $L \in [0, +\infty]$ Montrons que $R_a = \frac{1}{L}$ Soit $z \in \mathbb{C}$

Démonstration: Supposons que $|z| < \frac{1}{L}$ donc $L \neq \infty$ puis $L \cdot |z| < 1$

- · Posons $u_n = a_n |z|^n$ si z = 0 alors $u_n = 0$ à per donc $\sum u_n$ est ACV si $z \neq 0$ on a $\forall n \in \mathbb{N}, u_n \neq 0$ donc $\frac{|u_{n+1}|}{|u_n|} = |z| \cdot \frac{|a_{n+1}|}{|a_n|}$ et on a $L \cdot |z| < 1$ donc $\sum u_n$ ACV donc $\sum a_n z^n ACV$
- · Supposons que $|z| > \frac{1}{L}$ donc $L \neq 0$ et $z \neq 0$ on pose $u_n = a_n z^n$ on a $\forall n \in \mathbb{N}, u_n \neq 0$ donc $\frac{|u_{n+1}|}{|u_n|} = |z| \cdot \frac{|a_{n+1}|}{|a_n|}$ donc $\sum u_n$ GDV

· Par unicité,
$$R_a = \frac{1}{L}$$

Proposition 2.1.3 Si $a \in \mathbb{C}^*$ alors le rayon de convergence de (a^n) est égal à $\frac{1}{|a|}$

Proposition 2.1.4 Si F est une fraction rationelle non nulle à coefficient dans \mathbb{C} n'ayant pas de pôle dans \mathbb{N} alors $R_{(F(n))} = 1$

Démonstration. Soit $F \in \mathbb{C}(X)$ qui va bien $\mathcal{P}(F) \in \mathbb{N} = \emptyset$ avec $\mathcal{P}(F)$ l'ensemble des pôles de F on a donc $\forall n \in \mathbb{N}, Q(n) \neq 0$ donc $\forall n \in \mathbb{N}, F(n) \in \mathbb{C}$ on a $F(n) = 0 \Leftrightarrow P(n) = 0$ or $P \in \mathbb{C}[X]$ donc $\mathcal{R}_{\mathbb{C}}(P)$ est fini et $\exists N \in \mathbb{N}, \forall n \geq N, P(n) \neq 0$ donc $\forall n \geq N, F(n) \neq 0$ puis $\frac{F(n+1)}{F(n)} \to 1$

EF 2.1.2 On se muni de l'écriture polynomiale de P et Q on a $F(n) \equiv \frac{a_p n^p}{b_q n^q}$ puis $\frac{F(n+1)}{F(n)} \equiv \left(\frac{n}{n+1}\right)^q \cdot \left(\frac{n+1}{n}\right)^p \equiv 1$ **FEF**

donc
$$\lim_{n\to\infty} \left| \frac{F(n+1)}{F(n)} \right| = 1$$
 d'où $R_{(F(n))} = \frac{1}{1} = 1$

Proposition 2.1.5 Soit c le produit de convolution des suites a et b alors $R_c \ge \min(R_a, R_b)$

Démonstration. Soit $a = (a_n)$ et $b = (b_n)$ des suites complexes alors $c = (c_n)$ avec $c_n = \sum_{k=0}^{n} a_k b_{n-k}$ Montrons que $R_c \ge \min(R_a, R_b)$

- · Soit $r \in [0, R[$ avec $R = \min(R_a, R_b)$ on a $r = |r| < R \le R_a$ donc $\sum a_n r^n$ est ACV
- · on a $r = |r| < R \le R_b$ donc $\sum b_n r^n$ est ACV ainsi $\sum U_n$ est ACV avec $U_n = \sum_{k=0}^n (a_k r^k)(b_{n-k} r^{n-k})$

$$U_n = \left(\sum_{k=0}^n a_k b_{n-k}\right) r^n = c_n r^n$$

2.1. UNE CARACTÉRISATION DU RAYON DE CONVERGENCE VIA LES SÉRIES NUI

· ainsi $\sum_{R \leq R_c} c_n r^n$ est ACV donc $\forall r \in [0, R[, r \leq R_c \text{ PPL quand } r \rightarrow R^- \text{ on a}]$

Chapitre 3

Séries entières : premier contact

3.1 Séries entières de la variable complexe

Définition 3.1.1 Soit (f_a) une suite d'application de \mathbb{C} dans \mathbb{C} On dit que la série d'application $\sum f_a$ est une série entière de la variable complexe si et seulement si il existe une suite complexe (a_n) telle que $\forall n \in \mathbb{N}, \forall z \in \mathbb{C}, f_n(z) = a_n z^n$

Remarque 3.1.1 — Une série entière est donc une série d'application d'un type particulier

- Soit (a_n) une suite complexe. On lui associe la série d'application $\sum f_n$ définie par $\forall n \in \mathbb{N}, \forall z \in \mathbb{C}, f_n(z) = a_n z^n$. La série d'application $\sum f_n$ est une série de la variable complexe est dite associée à la suite (a_n) . Elle est abusivement notée $\sum a_n z^n$
- Via l'abus de notation précédent, le symbole $\sum a_n z^n$ peut désormais s'interpreter de deux manières. Il peut soit désigner la série numérique de terme général $a_n z^n$ ou bien désigner la série d'application $\sum f_n$ où $f_n \in \mathbb{C}^{\mathbb{C}}$ définie par $f_n(z) = a_n z^n$

3.2 Rayon de convergence d'une série entière

Définition 3.2.1 Soit $\sum a_n z^n$ la série entière associée à la suite complexe $a = (a_n)$. Le rayon de convergence de la série entière $\sum a_n z^n$ est le rayon de convergence R_a de la suite (a_n) Il est aussi noté $R\left(\sum a_n z^n\right)$ on a donc par

définition
$$R\left(\sum a_n z^n\right) = R_a$$

Théorème 3.2.1 Soit $\sum a_n z^n$ une SE de rayon de convergence R_a R_a est l'unique élément de $\overline{\mathbb{R}^+}$ qui possède les deux propriétés suivantes

- 1. Pout tout complexe z vérifiant $|z| < R_a$ la série $\sum a_n z^n$ est ACV
- 2. Pour tout complexe z vérifiant $|z| > R_a$ la série $\sum a_n z^n$ est GDV

Démonstration. C'est acquis cf chap précédent

Proposition 3.2.1 – Corollaire Soit $\sum a_n z^n$ une SE de rayon de convergence R_a et $z_0 \in \mathbb{C}$

- 1. Si la série $\sum a_n z_0^n$ CV alors $|z_0| \le R_a$
- 2. Si la série $\sum a_n z_0^n$ DV alors $|z_0| \ge R_a$

Démonstration. C'est acquis cf chap précédent

Proposition 3.2.2 Soit $\sum a_n z^n$ une SE.

$$1.\forall \lambda \in \mathbb{C}^*, R\left(\sum \lambda z^n\right) = 1$$

$$2.\forall \lambda \in \mathbb{C}^*, R\left(\sum \lambda a_n z^n\right) = R\left(\sum a_n z^n\right)$$

$$3.\forall p \in \mathbb{N}, R\left(\sum a_{n+p} z^n\right) = R\left(\sum a_n z^n\right)$$

$$4.R\left(\sum |a_n| z^n\right) = R\left(\sum a_n z^n\right)$$

$$5.R\left(\sum a_n z^n\right) = R\left(\sum n a_n z^{n-1}\right)$$

$$6.R\left(\sum a_n z^n\right) = R\left(\sum \frac{a_n}{n+1} z^{n+1}\right)$$

Démonstration. 1. $R_{(\lambda)} = 1$

- $2. \ R_{(\lambda_a)} = a$
- 3. $R_{(a_{n+p})} = R_{(a_n)}$
- 4. $R_{(|a_n|)} = R_{(a_n)}$
- 5. $R_a = R_{\alpha a}$

6.
$$R_a = R_{I(a)}$$

Proposition 3.2.3 Soient $\sum a_n z^n$ et $\sum b_n z^n$ des SE de rayon de convergence R_a et R_b

- 1. Si $\exists N \in \mathbb{N}$ tel que $\forall n \geq N, |a_n| \leq |b_n|$
- 2. Si $a_n = \mathcal{O}(b_n)$ alors $R_a \geq R_b$
- 3. Si $a_n \equiv b_n$ alors $R_a = R_b$

Démonstration. Déjà fait cf chap précédent

Proposition 3.2.4–**Règle d'Alembert** Soit $\sum a_n z^n$ une SE telle que $\forall n \in \mathbb{N}, a_n \neq 0$

$$\circ$$
 si $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L$ avec $L \in \overline{R^+}$ alors $R_a = L^{-1}$

Démonstration. déjà fait cf chap précédent

Proposition 3.2.5 Si $a \in \mathbb{C}^*$ alors le rayon de convergence de la SE $\sum a_n z^n$ est égal à $|a|^{-1}$ Si F est une fraction rationelle à coefficient dans \mathbb{C} n'ayant pas de pôle entier alors le rayon de convergence de la SE $\sum F(n)z^n$ est égal à 1.

Démonstration. déjà fait cf chap précédent

3.3 Somme d'une série entière

Définition 3.3.1 Soit $\sum a_n z^n$ une SE de rayon de convergence R_a

- o l'ensemble E_a des nombre $z \in \mathbb{C}$ pour laquelle la série $\sum a_n z^n$ est convergente est appelée ensemble de convergence de la SE $\sum a_n z^n$
- o L'ensemble $D_a = \{z \in \mathbb{C}, |z| < R_a\}$ est appelé disque ouvert de convergence de $\sum a_n z^n$
- o L'ensemble $C_a=\{z\in\mathbb{C},|z|=R_a\}$ est appelé cercle d'incertitude de la SE $\sum a_nz^n$

Remarque 3.3.1
$$D_a \cup C_a = \{z \in \mathbb{C}, |z| \leq R_a\}$$
. Si $R_a = 0$ alors $D_a = \emptyset$ et $C_a = \{0\}$. Si $R_a = \infty$ alors $D_a = \mathbb{C}$ et $C_a = \emptyset$

Proposition 3.3.1 Soit $\sum a_n z^n$ une SE de rayon de convergence R_a .

- 1. $0 \in E_a$ et en particulier $E_a \neq \emptyset$
- $2. \ \overline{D_a \subset E_a \subset (D_a \cup C_a)}$

Démonstration.
$$E_a = \{z \in \mathbb{C}, \sum a_n z^n \text{CV}\} = \{z \in \mathbb{C}, \sum_{k=0}^{\infty} a_n z^n \text{ existe dans } \mathbb{C}\}$$

· On dispose de $R_a \in \overline{\mathbb{R}^+}$ Si $z \in D_a$ alors $\sum a_n z^n$ est ACV donc CV donc $z \in E_a$ d'où $D_a \subset E_a$

$$D_a \cup C_a = \{z \in \mathbb{C}, |z| \le R_a\} = \mathcal{D}(0, R_a) = \mathcal{B}(0, R_a)$$

- · Soit $z \in \mathbb{C} \setminus (D_a \cup C_a)$ alors $|z| > R_a$ et $\sum a_n z^n$ GDV donc DV et $z \notin E_a$.
- $z \notin (D_a \cup C_a) \Rightarrow z \notin E_a$ d'où $z \in E_a \Rightarrow z \in (D_a \cup C_a)$ par contraposition d'où $E_a \subset (D_a \cup C_a)$ et donc $D_a \subset E_a \subset (D_a \cup C_a)$ puis $\sum a^n O^n$ CV donc $O \in E_a$

Définition 3.3.2 On appelle somme de la série entière $\sum a_n z^n$ l'application $S_a \colon E_a \subset \mathbb{C} \to \mathbb{C}$ définie par $\forall z \in E_a, S_a(z) = \sum_{n=0}^{\infty} a_n z^n$.

Remarque 3.3.2 Il est à noté que S_a n'est rien d'autre que l'application somme de la série d'application $\sum f_n$ où $f_n \colon \mathbb{C} \to \mathbb{C}$ est définie par $f_n(z) = a_n z^n$.

Proposition 3.3.2 Soit $\sum a_n z^n$ une SE.

- 1. La somme S_a de la SE $\sum a_n z^n$ est définie au moins sur D_a avec $S_a(0) = a_0$.
- 2. La somme S_a de la SE $\sum a_n z^n$ n'est définie en aucun point de $\mathbb{C} \setminus (D_a \cup C_a)$

Démonstration. conséquence de la proposition précédente et
$$S_a(0) = \sum_{k=0}^{\infty} a_k 0^k = a_0 + 0 = a_0$$

Théorème 3.3.1 Soit $\sum a_n z^n$ une SE

- 1. La série entière $\sum a_n z^n$ ACV en tout point de son disque ouvert de convergence
- 2. $\forall r \in [0, R_a[$ la SE $\sum a_n z^n$ converge normalement et donc uniformément sur le disque fermé $D_r = \{z \in \mathbb{C}, |z| < r\}$. Autrement dit la SE $\sum a_n z^n$ CV normalement et donc uniformément sur tout disque fermé contenu dans son disque ouvert de convergence D_a

Démonstration. 1. Acquis

2. Soit $r \in [0, R_a[$, $\forall z \in D_r, |f_n(z)| = |a_n z^n| = |a_n||z|^n \le |a_n|r^n$ or $0 \le ||f_n||_{\infty}^{D_r} \le |a_n|r^n$ par propriété des BN et $|a_n|r^n = |a^nr^n|$ et $\sum a_n r^n$ est ACV par $r = |r| \le R_a$ d'où $\sum |a_n r^n|$ CV puis $\sum ||f_n||_{\infty}^{D_r}$ CV donc enfin $\sum f_n$ converge normalement (CVN) sur D_r ainsi $\forall r \in [0, R_a[$, $\sum f_n$ CVU sur D_r cependant $\sum f_n$ n'est pas nécessairement CVU sur $\sum_{r \in [0, R_a[} D_r = D_a]$

Remarque 3.3.3 La SE $\sum a_n z^n$ n'est pas nécessairement CVU sur D_a

 $D\acute{e}monstration$. Soit a=(1) la suite unité, on a $R_a=1$

$$\circ R\left(\sum z^n\right) = R_a = 1, f_n \colon \mathbb{C} \to \mathbb{C}, f_n(z) = z^n$$

Supposons que $\sum f_n$ CVU sur D_a

o Ainsi (R_n) CVU sur D_a vers 0, pour $z \in D_a$, $\sum f_n$ CVU sur D_a donc CVS sur D_a et $R_n(z)$ existe. On a $R_n(z) = \sum_{k=n+1}^{\infty} z^k = z^{n+1} \sum_{k=0}^{\infty} z^k = z^{n+1} \frac{1}{1-z}$ car |z| < 1 on pose $\alpha_n = 1 - \frac{1}{n+1}$ on a $R_n(\alpha_n) = \left(1 - \frac{1}{n+1}\right)^{n+1}$ (n+1) donc $\lim R_n(\alpha_n) = \infty$ et $R_n(\alpha_n) = |R_n(\alpha_n)| \le ||R_n||_{\infty}$ puis $\lim_{n \to \infty} ||R_n||_{\infty} = \infty$ o et il y a contradiction car par hypothèse $\lim_{n \to \infty} ||R_n||_{\infty}^{D_a} = 0$

3.4 Opération sur les séries entières

Définition 3.4.1 Soient $\sum a_n z^n$ et $\sum b_n z^n$ des séries entières et $\alpha \in \mathbb{C}$

- \circ La sommes des SE $\sum a_n z^n$ et $\sum b_n z^n$ est la SE $\sum (a_n + b_n) z^n$.

Proposition 3.4.1 Soient $\alpha \in \mathbb{C}$ et $\sum a_n z^n$, $\sum b_n z^n$ des SE de rayon R_a et R_b

- 1. $R_{\alpha a} = \infty$ si $\alpha = 0$ et $R_{\alpha a} \neq R_a$ si $\alpha \neq 0$ et $\forall z \in \mathbb{C}$ vérifiant $|z| < R_a$ on a $\sum_{n=0}^{\infty} \alpha a_n z^n = \alpha \sum_{n=0}^{\infty} a_n z^n$
- 2. $R_{a+b} \leq \min(R_a, R_b)$ et $R_{a+b} = \min(R_a, R_b)$ si $R_a \neq R_b$ et $\forall z \in \mathbb{C}$ vérifiant $|z| < \min(R_a, R_b)$ on a $\sum_{n=0}^{\infty} (a_n + b_n) z^n = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=0}^{\infty} b_n z^n$
- 3. $R_c \ge \min(R_a, R_b)$ et $\forall z \in \mathbb{C}$ vérifiant $|z| < \min(R_a, R_b)$ on a $\sum_{n=0}^{\infty} (c_n) z^n = \left(\sum_{n=0}^{\infty} a_n z^n\right) \cdot \left(\sum_{n=0}^{\infty} b_n z^n\right)$

Démonstration. Déjà prouvée cf chap précédent

3.5 Sommes de quelques séries entières classiques

Proposition 3.5.1 On considère $z \in \mathbb{C}$ et $p \in \mathbb{N}^*$

1. Si
$$|z| < 1$$
 alors $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$

2. Si
$$|z| < 1$$
 alors $\sum_{n=p}^{\infty} n(n-1) \cdots (n-(p-1)) z^{n-p} = \frac{p!}{(1-z)^{p+1}}$

3. Si
$$|z| < 1$$
 alors $\sum_{n=0}^{\infty} \binom{n+p}{p} z^n = \frac{1}{(1-z)^{p+1}}$

Démonstration.
$$\cdot$$
 3. Soit $z \in \mathbb{C}$, $|z| < 1$ on a $\mathcal{P}(p) \Leftrightarrow \sum_{n=0}^{\infty} \binom{n+p}{p} z^n = \frac{1}{(1-z)^{p+1}}$ et $\binom{n}{0} = 1$ et $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z} = \frac{1}{(1-z)^{(0+1)}}$ donc $\mathcal{P}(0)$ est vrai

· On suppose
$$P(n-1)$$
 $z \neq 1$ donc $(1-z)$ $\sum_{n=0}^{\infty} \binom{n+p}{p} z^n = \left(\sum_{n=0}^{\infty} a_n z^n\right) \cdot \left(\sum_{n=0}^{\infty} b_n z^n\right)$
avec $a_0 = 1, a_1 = 1, et \forall n \geq 2, a_n = 0$ et $b_n = \binom{n+p}{p}$

Remarque 3.5.1
$$b_n = \frac{(n+p)!}{n!p!} = F(n)$$
 avec $F = \frac{(X+p)\cdots(X+1)}{p!}$ on a $R_b = 1$ et $|z| < R_b$ donc $\sum b_n z^n$ est ACV

$$\sum_{n=0}^{\infty} a_n z^n \text{ et } \sum_{n=0}^{\infty} b_n z^n \text{ sont ACV donc } (1-z) \sum_{n=0}^{\infty} \binom{n+p}{p} z^n = \sum_{n=0}^{\infty} c_n z^n \text{ avec}$$

$$c_n = \sum_{k=0}^{n} a_k b_{n-k} = a_0 b_n + a_1 b_{n-1} + b_n - b_{n-1} \text{ donc } c_n = \binom{n+p}{p} - \binom{n+p-1}{p} =$$

$$\binom{n+p-1}{p-1} \text{ donc } (1-z) \sum_{n=0}^{\infty} \binom{n+p}{p} z^n = \sum_{n=0}^{\infty} \binom{n+p-1}{p-1} z^n = \frac{1}{((1-z)^p)} \text{ par}$$

$$(\text{HR) puis donc } \sum_{n=0}^{\infty} \binom{n+p}{p} z^n = \frac{1}{(1-z)^{p+1}}$$

$$\cdot 2. \binom{n+p}{p} = \frac{(n+p)\cdots(n+1)}{p!} \text{ et on a } \frac{1}{(1-z)^{p+1}} = \sum_{n=0}^{\infty} \binom{n+p}{p} z^n = \sum_{n=0}^{\infty} \frac{(n+p)\cdots(n+p)}{p!} z^n = \sum_{n=0}^{\infty} \frac{(n+p)\cdots(n+$$

$$\sum_{n=p}^{\infty} n(n-1)\cdots(n-(p-1))z^n = \frac{p!}{(1-z)^{p+1}}$$

Remarque 3.5.2 – Moyen mnémotechnique de dérivation
$$\frac{1}{1-z}$$
 =

$$\sum_{n=0}^{\infty} z^n \text{ et } \frac{1}{(1-z)^2} = \sum_{n=1}^{\infty} nz^{n-1} \text{ donc } \frac{2}{(1-z)^3} = \sum_{n=2}^{\infty} n(n-1)z^{n-2} \text{ puis } \frac{3 \cdot 2}{(1-z)^4} = \sum_{n=0}^{\infty} n(n-1)z^{n-2} = \sum_{n=0}^{\infty} n(n-1)z^{n-2}$$

$$\sum_{n=3}^{\infty} n(n-1)(n-2)z^{n-2} \text{ et enfin } \frac{p!}{(1-z)(p+1)} = \sum_{n=p}^{\infty} n(n-1)\cdots(n-(p-1))z^{n-2}$$

 $1))z^{n-p}$

Proposition 3.5.2 Pour tout $z \in \mathbb{C}$ on a

$$1. \sum_{n=0}^{\infty} \frac{z^n}{n!} = e^z$$

2.
$$\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} = \cos z \text{ et } \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!} = \operatorname{ch} z$$

3.
$$\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = \sin z \text{ et } \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!} = \sin z$$

3.6 Série entières de la variable réelle

Définition 3.6.1 Soit (f_n) une suite d'application de $\mathbb{R}^{\mathbb{C}}$ On dit que la série d'application $\sum f_n$ est uen SE de la variable réelle si et seulement si il existe $(a_n) \in \mathbb{C}^{\mathbb{N}}, \forall n \in \mathbb{N}, \forall t \in \mathbb{R}, f_n(t) = a_n t^n$

Remarque 3.6.1 Soit (a_n) une suite complexe. On lui associe la série d'application $\sum f_n$ définie par $\forall n \in \mathbb{N}, \forall t \in \mathbb{R}, f_n(t) = a_n t^n$. La série d'application $\sum f_n$ est une SE de la variable réelle. Elle est dites associée à la suite complexe (a_n) et notée $\sum a_n t^n$ Le symbole $\sum a_n t^n$ peut désigner la série de TG $a_n t^n$ ou la série d'application $\sum f_n$ avec $f_n \in \mathbb{C}^{\mathbb{R}}, f_n(t) = a_n t^n$.

3.6.1 Rayon de convergence, intervalle de convergence, ensemble de convergence

Introduction

Soit $\sum a_n t^n$ la SER de (a_n) , on a $R\left(\sum a_n t^n\right) = R_a$. Ce qui a été fait pour les SEC restent vrais pour les rayons de convergence. On appelle $]-R_a,R_a[$ l'intervalle ouvert de convergence de la SER $\sum a_n t^n$

Proposition 3.6.1 On a
$$]-R_a,R_a[\subset E_a\subset [-R_a,R_a]$$

$$D\acute{e}monstration. \ \forall r \in]-R_a, R_a[=D_a, \sum r_n z^n \ \mathrm{CV} \ \mathrm{donc} \ D_a \in E_a \ , \ \mathrm{et} \ \forall r \in \mathbb{R}, |r| > R_a \Rightarrow \sum r_n z^n \ \mathrm{GDV} \ \mathrm{donc} \ E_a \in [-R_a, R_a]. \ \mathrm{donc} \ D_a \in E_a \in [-R_a, R_a]$$

Exemple

3.6.1 Soit
$$(a_n) = 1$$
 on a $S_a(t) = \sum_{n=0}^{\infty} t^n$ on a $]-1,1[\subset D_{S_a} \subset [-1,1]]$ or $\sum 1^n$ et $\sum (-1)^n$ GDV donc DV donc $-1 \notin D_{S_a}$ et $1 \notin D_{S_a}$ donc $D_{S_a} =]-1,1[$ et $\forall t \in D_{S_a}, S_a(t) = \frac{1}{1-t}$

3.6.2 Soit
$$\forall n \in N^*, a_n = \frac{1}{n}$$
 et $a_0 = 0$ on a $a_n = F(n)$ avec $F = \frac{1}{X} R_a = 1$ $S_a(t) = \sum_{n=1}^{\infty} \infty \frac{t^n}{n}$ on a $]-1,1[\subset D_{S_a}, \text{ ensuite } \sum \frac{1}{n} \text{ DV donc } 1 \notin D_{S_a} \text{ et } \sum \frac{(-1)^n}{n} \text{ CV (CSSA) donc } -1 \in D_{S_a} \text{ donc } D_{S_a} = [-1,1[$

3.6.3
$$a_0 = 0$$
 et $\forall n \in \mathbb{N}^*, a_n = \frac{1}{n^2}$ on a $a_n = F(n)$ avec $F = \frac{1}{X}$ donc $R_a = 1$ on a ensuite $S_a(t) = \sum_{n=0}^{\infty} a_n t^n$ donc $] - 1, 1[\in D_{S_a}$ on a que $\sum \frac{1}{n^2}$ CV (Riemann) donc $\sum \frac{(-1)^n}{n^2}$ est ACV donc CV donc $D_{S_a} = [-1, 1]$

Théorème 3.6.1 Soit $\sum a_n t^n$ une SER de rayon $R_a > 0$ et de somme S_a

1. La SE
$$\sum a_n t^n$$
 ACV sur $]-R_a, R_a[$

- 2. La SE $\sum a_n t^n$ CVN sur tout segment contenu dans] $-R_a, R_a$ [
- 3. $S_a \text{ est } C^0 \text{ sur }] R_a, R_a[$

Démonstration. 1. $\sum f_n$ CVA en tout point de $]-R_a, R_a[$ car $\forall t \in]-R_a, R_a[$, $|t| < R_a$ et $\sum f_n(t)$ est ACV.

- 2. Soit S un segment de $]-R_a, R_a[$ On a $\exists r \in [0, R_a[, S \subset [-r, r], \forall t \in [-r, r], \forall n \in \mathbb{N}, |f_n(t)| = |a_n t^n| = |a_n| |t^n| \le |a_n| r^n \text{ donc } 0 \le ||f_n||_{\infty}^{[-r,r]} \le |a_n r^n| \text{ or } r < R_a \text{ donc } \sum a_n r^n \text{ est ACV donc } \sum ||f_n||_{\infty}^{[-r,r]} CV \text{ donc } \sum f_n \text{ CVN (donc CVU)} \text{ sur S.}$
- 3. $S_a = \sum_{n=0}^{\infty} f_n \ \forall n \in \mathbb{N}, f_n \text{ est } C^0 \text{ sur }] R_a, R_a[, \text{ on a } \sum f_n \text{ CVU sur tout }]$

segment S de] $-R_a, R_a$ [donc par le (TC) $S_a = \sum_{n=0}^{\infty} f_n$ est C^0 sur] $-R_a, R_a$ [

Chapitre 4

Intégrale généralisée

4.1 Intégrale généralisée sur un intervalle semiouvert de la forme $[a, \infty[$

4.1.1 Introduction

On fixe $a \in \mathbb{R}$

Définition 4.1.1 On considère $f: [a, \infty[\to \mathbb{K}M^0 \text{ sur cet intervalle, on lui associe l'application } F: [a, \infty[\to \mathbb{K} \text{ définie par } F(x) = \int_a^x f$

- 1. On dit que l'intégrale de f sur $[a,\infty[$ est CV si et seulement si l'application admet une limite dans \mathbb{K} en $+\infty$ on pose alors $\int_a^\infty f = \lim_{x\to\infty} \int_a^x f$. On appelle alors le scalaire $\int_a^\infty f$ intégrale généralisée de f sur $[a,\infty[$
- 2. Pour exprimer que l'intégrale de f sur $[a, \infty[$ n'est pas convergente on dit qu'elle est divergente.

Remarque 4.1.1 — Préciser la nature de l'intégrale de f sur $[a, \infty[$ revient à statuer sur l'existence de la limite de la quantité $\int_a^x f$ quand $x \to \infty$

- Si $\mathbb{K} = \mathbb{R}$ alors l'intégrale de f sur $[a, \infty[$ peut être divergente si la limite n'existe pas ou si elle vaut ∞ en module.
- On appelle aussi une intégrale généralisée une intégrale impropre.

Théorème 4.1.1 On considère $\varphi \colon [a, \infty[\to \mathbb{R}^+ \ M^0 \text{ et positive sur } [a, \infty[\text{ on lui associe l'application } \Phi \colon [a, \infty[\to \mathbb{R}^* \text{ définie par } \Phi(x) = \int_a^x \varphi$

- 1. Φ croît sur $[a, \infty[$
- 2. L'intégrale de φ sur $[a, \infty[$ CV si et seulement si Φ est majorée sur $[a, \infty[$

Démonstration. 1. Soit $(x,y) \in [a, \infty[^2, x < y \text{ on a } \Phi(y) - \Phi(x)] = \int_a^y \varphi - \int_a^x \varphi = \int_x^y \varphi \le 0 \text{ car } \varphi \text{ est positive et } x < y \text{ donc } \Phi \text{ croît sur } [a, \infty[$

2. $\int_a^\infty f \, \text{CV} \Leftrightarrow \lim_\infty \Phi \text{ existe dans } \mathbb{R} \Leftrightarrow \Phi \text{ majorée sur } [a, \infty[\, (\text{TLM})$

Proposition 4.1.1 Soient $f: [a, \infty[\to \mathbb{K} \ M^0 \ \text{sur} \ [a, \infty[\ \text{et} \ c \in [a, \infty[$

- 1. L'intégrale de f sur $[a, \infty[$ est de même nature que l'intégrale de f sur $[c, \infty[$ et en cas de CV on a $\int_a^\infty = \int_a^c f + \int_c^\infty f$
- 2. L'intégrale de f sur $[a, \infty[$ CV ssi les intégrales de Re f et Im f CV et en cas de CV on a $\int_a^\infty f = \int_a^\infty \operatorname{Re} f + i \int_a^\infty \operatorname{Im} f$ Avec $\int_a^\infty \operatorname{Re} f = \operatorname{Re} \left(\int_a^\infty f \right)$

Démonstration. 1. Vrai par propriété des limites.

2. Soit $x \in [a, \infty[$ on a $\int_a^x f = \int_a^x (\operatorname{Re} f + i \operatorname{Im} f) = \int_a^x \operatorname{Re} f + i \int_a^x \operatorname{Im} f$ on a donc $\int_a^\infty f \operatorname{CV} \Leftrightarrow \int_a^\infty \operatorname{Re} f \operatorname{CV}$ et $\int_a^\infty \operatorname{Im} f \operatorname{CV}$.

Proposition 4.1.2 Soit $f, g: [a, \infty[\to \mathbb{K} M^0 \text{ sur } [a, \infty[\text{ et } (\alpha, \beta) \in \mathbb{K}^2$

- 1. . Si les intégrales de f et g CV alors l'intégrale de $\alpha f + \beta g$ CV et $\int_a^\infty \alpha f + \beta g = \alpha \int_a^\infty f + \beta \int_a^\infty g$
- 2. Si $f \leq 0$ et si l'intégrale de f sur $[a, \infty[$ CV alors $\int_a^\infty f \leq 0$ et si $f \leq g$ et les intégrales de f, g CV sur $[a, \infty[$ alors $\int_a^\infty f \leq \int_a^\infty g$

Démonstration. 1. Soit $x \in [a, \infty[$ on a $\int_a^x \alpha f + \beta g = \alpha \int_a^x f + \beta \int_a^x g$ les limites existent car f, g CV donc PPL quand $x \to \infty$ on a la proposition.

2. Supposons $f \leq 0$ on a pour $x \in [a, \infty[, \int_a^x f \leq 0 \text{ PPL on a la proposition Si}]$ $f \leq g$ on a $\forall x \in [a, \infty[, \int_a^x f \leq \int_a^x g \text{ PPL on a la proposition.}]$

Théorème 4.1.2 \circ Soit $f: [a, \infty[\to \mathbb{K} M^0 \text{ sur } [a, \infty[\text{ on suppose que l'intégrale de } f \text{ sur } [a, \infty[\text{ CV}.$

• Soit
$$R: [a, \infty[\to \mathbb{K} \text{ définie par } R(x) = \int_x^\infty f$$

$$\forall x \in [a, \infty[, R(x) = \int_a^\infty f - \int_a^x f \text{ et } \lim_{x \to \infty} R(x) = 0$$

2. Si f est C^0 sur $[a, \infty[$ alors R est de classe C^1 sur $[a, \infty[$ et R' = -f

Remarque 4.1.2 La quantité R(x) est alors appelée reste d'ordre x de l'intégrale généralisée de f sur $[a,\infty[$

On suppose l'énoncé. alors
$$\forall x \in [a, \infty[, \int_x^\infty x \text{ CV et } \int_a^\infty f = \int_a^x f + \int_x^\infty f$$
$$D \text{\'emonstration}. \ R(x) = \int_a^\infty f - \int_a^x f \xrightarrow[x \to \infty]{} \int_a^\infty f - \int_a^\infty f = 0$$

2. Supposons que f soit C^0 sur $[a, \infty[$

$$R(x) = \int_a^\infty f - F(x)$$
 avec $F(x) = \int_a^x f$; f est C^0 sur $[a, \infty[$ donc F est dérivable sur $[a, \infty[$ et $F' = f$

Donc R est dérivable sur $[a, \infty[$ et R' = 0 - f = -f donc R' est C^0 sur $[a, \infty[$ car f est C^0 donc R est C^1 sur $[a, \infty[$ et R' = -f

4.2 Intégrale généralisée sur un intervalle semiouvert de la forme [a,b[

4.2.1 Introduction

On fixe $(a, b) \in \mathbb{R}^2$ tel que a < b

Définition 4.2.1 On considère $f:[a,b[\to \mathbb{K}\ M^0\ \mathrm{sur}\ [a,b[\ \mathrm{et\ on\ lui\ associe}\ l'application\ F:[a,b[\to \mathbb{K}\ \mathrm{définie\ par}\ F(x)=\int_a^x f$

1. On dit que l'intégrale de f sur [a, b] CV si et seulement si l'application admet une limite dans \mathbb{K} au point b on note alors $\int_a^b f = \lim_{x \to b} \int_a^x f$

Remarque 4.2.1 Le scalaire $\int_a^b f$ est alors appelé intégrale généralisée de f sur [a,b[

2. Pour exprimer que l'intégrale de f sur [a,b[n'est pas convergente on dit qu'elle est divergente

Théorème 4.2.1 Soit $\varphi \colon [a, b[\to \mathbb{R}^+ \ M^0 \text{ et positive sur } [a, b[\text{ on lui associe l'application } \Phi \colon [a, b[\to \mathbb{R}^+ \text{ définie par } \Phi(x) = \int_a^x \varphi$

- 1. Φ est croissante sur [a, b[
- 2. L'intégrale de φ sur [a,b[CV ssi Φ est majorée sur [a,b[

Démonstration. cf partie précédente (demo identique)

Proposition 4.2.1 Soient $f: [a, b[\to \mathbb{K} \ M^0 \ \text{sur} \ [a, b[\ \text{et} \ c \in [a, b[$

- 1. L'intégrale de f sur [a, b[est de même nature que l'intégrale de f sur [c, b[et si CV on a $\int_a^b f = \int_a^c f + \int_c^b f$
- 2. L'intégrale de f sur [a, b] CV ssi les intégrales de Re f et Im f CV sur [a, b] en cas de CV on a $\int_a^b f = \int_a^b \operatorname{Re} f + i \int_a^b \operatorname{Im} f$. Avec $\int_a^b \operatorname{Re} f = \operatorname{Re} \left(\int_a^b f \right)$ et $\int_a^b \operatorname{Im} f = \operatorname{Im} \left(\int_a^b f \right)$

Démonstration. cf partie précédente (demo identique)

Proposition 4.2.2 Soient $f, g: [a, b] \to \mathbb{K}$ M^0 sur [a, b] et $(\alpha, \beta) \in \mathbb{K}^2$

- 1. Si les intégrales de f et de g CV sur [a, b[alors l'intégrale de $\alpha f + \beta g$ sur [a, b[CV et $\int_a^b \alpha f + \beta g = \alpha \int_a^b f + \beta \int_a^b g$
- 2. Si $f \ge 0$ et l'intégrale de f sur [a, b[CV alors $\int_a^b f \ge 0$ et si $f \le g$ et intégrales

de
$$f, g$$
 sur $[a, b]$ CV alors $\int_a^b f \le \int_a^b g$

Démonstration. cf partie précédente (demo identique)

Théorème 4.2.2 Soit $f: [a, b[\to \mathbb{K} \ M^0 \ \text{sur} \ [a, b[\ \text{et l'intégrale de } f \ \text{sur} \ [a, b[\ \text{CV}.$ Soit $R: [a, b[\to \mathbb{K} \ \text{définie par} \ R(x) = \int_x^b f$

1.
$$\forall x \in [a, b], R(x) = \int_a^b f - \int_a^x f \text{ et } \lim_{x \to b} R(x) = 0$$

2. Si f est C^0 sur [a, b[alors R est C^1 sur [a, b[avec R' = -f]

Remarque 4.2.2 $R(x) = \int_x^b f$ est alors appelée reste d'ordre x de l'intégrale généralisée de f sur [a,b[

Démonstration. cf partie précédente (demo identique)

Théorème 4.2.3 Si $f: [a, b[\to \mathbb{K} \text{ est } M^0 \text{ sur } [a, b] \text{ alors l'intégrale de } f \text{ sur } [a, b[$ CV et $\int_a^b = \int_{[a,b]} f$

Démonstration. On suppose l'énoncé, $f|_{[a,b[}$ est M^0 montrons que $\int_a^b f$ CV et que

$$\int_{a}^{b} f = \int_{[a,b]} f$$

o Soit
$$x \in [a, b[, \int_{[a,b]} \int_{MPSI}^{b} f = \int_{MPSI}^{a} f + \int_{MPSI}^{b} f \text{ et } \int_{a}^{x} f = \int_{[a,b]} - \int_{x}^{b} f$$

$$\circ \text{ On a } \lim_{x \to b^-} \int_x^b f = 0$$

EF 4.2.1
$$\left| \int_{x}^{b} f \right| \leq \int_{x}^{b} |f|$$
 ensuite f est M^{0} sur $[a, b]$ donc f est bornée sur $[a, b]$ et $\|f\|_{\infty}^{[a,b]} < \infty$.

puis $|f| < \|f\|_{\infty}^{[a,b]}$ donc $\int_{x}^{b} |f| \leq \int_{x}^{b} \|f\|_{\infty}^{[a,b]} = (b-x)\|f\|_{\infty}^{[a,b]}$; Donc $0 \leq \left| \int_{x}^{b} f \right| \leq (b-x)\|f\|_{\infty}^{[a,b]}$ donc par encadrement $\lim_{x \to b^{-}} f = 0$ **FEF**

donc
$$\lim_{x \to b^{-}} \int_{a}^{x} = \int_{[a,b]} f - 0 = \int_{[a,b]} f \text{ donc } \int_{a}^{b} f = \int_{[a,b]} f = \int_{MPSI}^{b} f$$

4.2.2 Exemples

4.2.1
$$f(t) = \frac{1}{1 - t^2} f \text{ est } C^0 \text{ sur } [0, 1[$$

Pour $x \in [0, 1[, \int_0^x f = \int_0^x \frac{\mathfrak{d}t}{1 - t^2} = \left[\frac{1}{2} \log \frac{1 + t}{1 - t}\right]_0^x = \frac{1}{2} \log \left|\frac{1 + x}{1 - x}\right| - 0$

EF 4.2.2

$$\int_0^x \frac{\mathfrak{d}t}{1 - t^2} = \frac{1}{2} \int_0^x \frac{(1 + t) + (1 - t)}{(1 + t)(1 - t)} \mathfrak{d}t$$

$$= \frac{1}{2} \int_0^x \left(\frac{1}{1 - t} + \frac{1}{1 + t} \right) \mathfrak{d}t$$

$$= \frac{1}{2} \left[-\log|1 - t| + \log|1 + t| \right]$$

$$= \frac{1}{2} \log\left| \frac{1 + x}{1 - x} \right|$$

FEF

ensuite
$$\int_0^x f = \frac{1}{2} \log \left| \frac{1+x}{1-x} \right| \xrightarrow[x \to 1^-]{} \infty$$
 Donc $\int_0^1 \frac{\mathfrak{d}t}{1-t^2}$ DV et $\int_0^1 \frac{\mathfrak{d}t}{1-t^2}$ n'existe pas.

4.2.2
$$g(t) = \frac{1}{\sqrt{1-t^2}}$$
 on a g est C^0 sur $[0,1[$

4.3. INTÉGRALE GÉNÉRALISÉE SUR UN INTERVALLE SEMI-OUVERT DE LA FORM

Soit
$$x \in [0, 1[$$

$$\int_0^x \frac{\mathfrak{d}t}{\sqrt{1 - t^2}} = [a\sin(t)]_0^x = a\sin(x) - 0 \xrightarrow[x \to 1^-]{} a\sin(1) = \frac{\pi}{2}.$$
Donc $\int_0^1 g \text{ CV et } \int_0^1 = \frac{\pi}{2}$

4.2.3
$$h(t) = \frac{\log t}{t-1}$$
 on a h est C^0 sur $[\frac{1}{2}, 1[$ $\lim_{1^-} h = 1$ car $\frac{\log t}{t-1} \equiv \frac{t-1}{t-1} = 1$ on pose $h(1) = 1$ Dès lors h est C^0 sur $\left[\frac{1}{2}, 1\right]$ donc d'après le cours l'intégrale généralisée de h sur $[0, 1[$ converge et vaut $\int_{MPSI}^1 h$

4.3 Intégrale généralisée sur un intervalle semiouvert de la forme [a,b]

4.3.1 Introduction

On considère $(a, b) \in \overline{\mathbb{R}}^2$ avec $b < \infty$

Définition 4.3.1 On considère $f: [a,b] \to \mathbb{K}$ M^0 sur [a,b] et on lui associe l'application $F: [a,b] \to \mathbb{K}$ définie par $F(x) = \int_x^a f$

1. On dit que l'intégrale de f sur]a,b] CV si et seulement si l'application admet une limite dans \mathbb{K} au point a on note alors $\int_a^b f = \lim_{x \to a} \int_x^b f$

Remarque 4.3.1 Le scalaire $\int_a^b f$ est alors appelé intégrale généralisée de f sur]a,b]

2. Pour exprimer que l'intégrale de f sur]a,b] n'est pas convergente on dit qu'elle est divergente

Théorème 4.3.1 Soit $\varphi:]a,b] \to \mathbb{R}^+$ M^0 et positive sur]a,b] on lui associe l'application $\Phi:]a,b] \to \mathbb{R}^+$ définie par $\Phi(x) = \int_x^b \varphi$

- 1. Φ est croissante sur [a, b]
- 2. L'intégrale de φ sur [a,b] CV ssi Φ est majorée sur [a,b]

Démonstration. cf partie précédente (demo identique)

Proposition 4.3.1 Soient $f: [a,b] \to \mathbb{K}$ M^0 sur [a,b] et $c \in [a,b]$

- 1. L'intégrale de f sur]a,b] est de même nature que l'intégrale de f sur [c,b] et si CV on a $\int_a^b f = \int_a^c f + \int_c^b f$
- 2. L'intégrale de f sur]a,b] CV ssi les intégrales de Re f et Im f CV sur]a,b] en cas de CV on a $\int_a^b f = \int_a^b \operatorname{Re} f + i \int_a^b \operatorname{Im} f$. Avec $\int_a^b \operatorname{Re} f = \operatorname{Re} \left(\int_a^b f \right)$ et $\int_a^b \operatorname{Im} f = \operatorname{Im} \left(\int_a^b f \right)$

Démonstration. cf partie précédente (demo identique)

Proposition 4.3.2 Soient $f, g: [a, b] \to \mathbb{K}$ M^0 sur [a, b] et $(\alpha, \beta) \in \mathbb{K}^2$

- 1. Si les intégrales de f et de g CV sur]a,b] alors l'intégrale de $\alpha f + \beta g$ sur]a,b] CV et $\int_a^b \alpha f + \beta g = \alpha \int_a^b f + \beta \int_a^b g$
- 2. 2. Si $f \ge 0$ et l'intégrale de f sur]a,b] CV alors $\int_a^b f \ge 0$ et si $f \le g$ et intégrales de f,g sur]a,b] CV alors $\int_a^b f \le \int_a^b g$

Démonstration. cf partie précédente (demo identique)

Théorème 4.3.2 Soit $f: [a,b] \to \mathbb{K}$ M^0 sur [a,b] et l'intégrale de f sur [a,b] CV. Soit $R: [a,b] \to \mathbb{K}$ définie par $R(x) = \int_a^x f$

- 1. $\forall x \in]a, b], R(x) = \int_a^b f \int_x^b f \text{ et } \lim_{x \to a} R(x) = 0$
- 2. Si f est C^0 sur [a, b] alors R est C^1 sur [a, b] avec R' = -f

Remarque 4.3.2 $R(x) = \int_a^x f$ est alors appelée reste d'ordre x de l'intégrale généralisée de f sur]a,b]

Démonstration. cf partie précédente (demo identique)

Théorème 4.3.3 Si $f: [a, b] \to \mathbb{K}$ est \overline{M}^0 sur [a, b] alors l'intégrale de f sur [a, b] CV et $\int_a^b = \int_{[a,b]} f$

Démonstration. cf partie précédente

4.3.2 Exemples

4.3.1
$$e_1$$
 est C^0 sur \mathbb{R} donc sur R^-
Pour $x \in \mathbb{R}^-$, $\int_x^0 e^t \mathfrak{d}t = \left[e^t\right]_x^0 = 1 - e^x \xrightarrow[x \to -\infty]{} 1$. Donc $\int_{-\infty}^0 e_1$ CV et $\int_{-\infty}^0 = 1$

4.3.2 log est
$$C^0$$
 sur $]0,1]$
Pour $x \in]0,1], \int_x^1 \log = [t \log t - t]_x^1 = -1 - x \log x + x \xrightarrow[x \to 0^+]{} -1$ Donc $\int_0^1 \log CV$ et $\int_0^1 \log t = -1$

4.3.3 Soit
$$s_c(t) = \begin{cases} \frac{\sin t}{t} & \text{si } t \in \mathbb{R}^+ \\ 1 & \text{sinon} \end{cases}$$

$$s_c \text{ est } C^0 \text{ sur } \mathbb{R} \text{ donc sur } [0, 1] \text{ donc d'après le théorème du cours on a } \int_0^1 s_c(t) \mathfrak{d}t$$

$$\text{CV et } \int_0^1 s_c = \int_{[0, 1]} s_c$$

4.4 Intégrale généralisée sur un intervalle ouvert]a,b[

4.4.1 Introduction

On prend $(a, b) \in \overline{R}^2$

Théorème 4.4.1 – Lemme Soit $f: [a, b] \to \mathbb{K}$ M^0 sur [a, b]

— Si $\exists c \in]a, b[$ tel que l'intégrale de f sur]a, c[et l'intégrale de f sur [c, b[convergent alors $\forall d \in]a, b[$ l'intégrale de f sur]a, d et l'intégrale de f sur [d, b[convergent et on a $\int_a^c f + \int_b^b f = \int_a^d f + \int_d^b f$

Démonstration. Supposons $c \in]a,b[$ comme dans l'énoncé. Soit $d \in]a,b[$ avec par exemple $d \le c$ on a $\int_a^c f$ CV donc \int_a^d CV et $\int_a^c f = \int_a^d f + \int_d^c f$ Soit $x \in [d,b[$. $\int_d^b f = \int_d^c f + \int_c^x f \xrightarrow[x \to b^-]{} \int_d^c f + \int_a^b f \operatorname{car} \int_a^b f \operatorname{CV} \operatorname{Ainsi} \int_d^b \operatorname{CV} \operatorname{Ainsi} \int_d^b f \operatorname{CV} \operatorname{Ainsi} f \operatorname{Ain} \int_d^b f \operatorname{CV} \operatorname{Ainsi} f \operatorname{Ain} f \operatorname{$

et
$$\int_{d}^{b} f = \int_{d}^{c} f + \int_{c}^{b} f$$
 On a donc le résultat.

Définition 4.4.1 On considère $f: [a, b] \to \mathbb{K}$ M^0 sur [a, b]

1. On dit que l'intégrale de f sur]a,b] CV si et seulement si il existe $c \in]a,b[$ tel que l'intégrale de f sur]a,c] et l'intégrale de f sur [c,b[sont convergente. On pose alors $\int_a^b f = \int_a^c f + \int_c^b f$

Remarque 4.4.1 Le scalaire $\int_a^b f$ est alors appelé intégrale généralisée de f sur]a,b[et avec le lemme précédent il est indépendant de c

2. Pour exprimer que l'intégrale de f sur]a,b] n'est pas convergente on dit qu'elle est divergente

Proposition 4.4.1 Soit $f:]a, b[\to \mathbb{K} \ M^0 \ \text{sur} \]a, b[$. L'intégrale de $f \ \text{sur} \]a, b[$ DV ssi $\exists c \in]a, b[$ tel que l'intégrale de $f \ \text{sur} \]a, c]$ DV ou l'intégrale de $f \ \text{sur} \ [c, b[$ DV

Démonstration. conséquence de la définition.

Proposition 4.4.2 Soient $f:]a, b[\to \mathbb{K} \ M^0 \ \text{sur} \]a, b[\ \text{et} \ c \in]a, b[$

— L'intégrale de f sur]a,b[CV ssi les intégrales de Re f et Im f CV sur]a,b[en cas de CV on a $\int_a^b f = \int_a^b \operatorname{Re} f + i \int_a^b \operatorname{Im} f.$ Avec $\int_a^b \operatorname{Re} f = \operatorname{Re} \left(\int_a^b f \right)$ et $\int_a^b \operatorname{Im} f = \operatorname{Im} \left(\int_a^b f \right)$

Démonstration. cf partie précédente (demo identique)

Proposition 4.4.3 Soient $f, g:]a, b[\to \mathbb{K} \ M^0 \ \text{sur} \]a, b[\ \text{et} \ (\alpha, \beta) \in \mathbb{K}^2$

- 1. 1. Si les intégrales de f et de g CV sur]a,b[alors l'intégrale de $\alpha f + \beta g$ sur]a,b[CV et $\int_a^b \alpha f + \beta g = \alpha \int_a^b f + \beta \int_a^b g$
- 2. 2. Si $f \ge 0$ et l'intégrale de f sur]a,b[CV alors $\int_a^b f \ge 0$ et si $f \le g$ et intégrales de f,g sur]a,b[CV alors $\int_a^b f \le \int_a^b g$

Démonstration. cf partie précédente (demo identique)

- **Théorème 4.4.2** 1. Si $f: [a,b[\to \mathbb{K} \text{ est } M^0 \text{ sur } [a,b[\text{ et si l'intégrale de } f \text{ sur } [a,b[\text{ est convergente alors l'intégrale de } f \text{ sur }]a,b[\text{ CV et les IG resultantes sont égales. (d'où la notation identique)}$
 - 2. Si $f: [a, b] \to \mathbb{K}$ est M^0 sur [a, b] et si l'intégrale de f sur [a, b] CV alors l'intégrale de f sur [a, b] CV et les IG résultantes sont égales cf les deux parties précédentes.

Théorème 4.4.3–Changement de variable Soit $(a,b) \in \mathbb{R}^2$ et $(\alpha,\beta) \in \mathbb{R}^2$ si $\varphi \colon]\alpha,\beta[\to]a,b[$ est une bijection strictement monotone de classe dans $C^1(]\alpha,\beta[,]a,b[)$ et si $f \colon]a,b[\to \mathbb{K}$ est C^0 alors les intégrales $\int_a^b f$ et $\int_\alpha^\beta (f\circ\varphi)\cdot\varphi'$ sont de même nature et en cas de convergence on a

$$\int_{a}^{b} f(x)\mathfrak{d}x = \int_{\alpha}^{\beta} f(\varphi(t))|\varphi'(t)|\mathfrak{d}t$$

 $D\acute{e}monstration.$ Conséquence du théorème de changement de variable de MPSI par PPL

Théorème 4.4.4–Intégration Par Parties Soit $(a,b) \in \overline{\mathbb{R}}^2$. Soit $u,v:]a,b[\to \mathbb{K}$ de classe C^1 sur]a,b[admettant des limites dans \mathbb{K} en a et en b alors les intégrales $\int_a^b u'v$ et $\int_a^b uv'$ sont de même nature et on a en cas de convergence

$$\int_{a}^{b} u'v = [uv]_{a}^{b} - \int_{a}^{b} uv'; [uv']_{a}^{b} = \lim_{b} uv - \lim_{a} uv$$

Démonstration. Conséquence du théorème d'IPP MPSI par PPL

4.5 Intégrale généralisée sur un intervalle semiouvert ou ouvert

4.5.1 Introduction

Soit I un intervalle semi-ouvert ou ouvert on a $I \neq \emptyset$ de la forme]a,b[ou [a,b[ou encore]a,b[Dans tous les cas on a $f\colon I\to \mathbb{K}$ M^0 sur I et on a la notion de l'intégrale de f sur I et en cas de convergence de l'intégrale généralisée de f sur I notée $\int_a^b f$

Définition 4.5.1 Soit $f: I \to \mathbb{K}$ M^0

- \circ L'intégrale de f sur I est dites absolument convergente si l'intégrale de |f| sur I est convergente.
- \circ L'intégrale de f sur I est dite semi-convergente si l'intégrale de f sur I CV mais n'est pas ACV.

Théorème 4.5.1 Soit $\varphi, \psi \colon I \to R^+ M^0$ sur I et $0 \le \varphi \le \psi$

- 1. Si l'intégrale de ψ sur I CV alors l'intégrale de φ sur I CV et on a $0 \le \int_a^b \varphi \le \int_a^b \psi$
- 2. Si l'intégrale de φ sur I DV alors l'intégrale de ψ sur I DV.

Démonstration. On prouve le cas $I = [a, \infty[$.

- 1. On suppose que $\int_a^\infty \psi$ CV donc Ψ majorée, On a $\Phi, \Psi \colon I \to \mathbb{R}$ on a $0 \le \varphi \le \psi$ donc $\forall x \in [a, \infty[, 0 \le \Phi(x) \le Psi(x)]$ donc Φ est majorée sur $[a, \infty[]$ donc comme $\varphi \ge 0$ on a $\int_a^\infty \phi$ CV
- 2. Supposons que $\int_a^\infty \varphi$ DV, Φ n'est pas majorée (TLM) or $\Psi \leq \Phi$ donc Ψ n'est pas majorée donc $\int_a^\infty \psi$ DV.

Théorème 4.5.2 Soit $f: I \to \mathbb{K}$ M^0 sur I. Si l'intégrale de f sur I ACV alors l'intégrale de f sur I CV et $\left| \int_a^b f \right| \le \int_a^b |f|$

Démonstration. On suppose $\int_{a}^{\infty} |f| \text{ CV}$

1. Cas $\mathbb{K} = \mathbb{R}$ on a $f = f^+ - f^-$ et $|f| = f^+ + f^-$ avec $f^+ = \max(f, 0)$ et $f^- = \max(-f, 0)$ par suite f^+ et f^- sont M^0 dans I et $f^+ \ge 0$ et $f^- \ge 0$ puis $0 \le f^+ \le |f|$ et $0 \le f^- \le |f|$ donc $\int_a^{\infty} f$ CV donc $\int_a^{\infty} f^+$ et $\int_a^{\infty} f^-$ CV.

Pour $x \in [a, \infty[, \int_a^x f = \int_a^x f^+ - \int_a^x f^- \xrightarrow[x \to \infty]{} \int_a^\infty f^+ - \int_a^\infty f^- \operatorname{donc} \int_a^\infty f \operatorname{CV}]$ et $\int_a^\infty f = \lim_{x \to \infty} \int_a^x f = \int_a^\infty f^+ - \int_a^\infty f^- \operatorname{d'autre}$ part on dispose de $\int_a^\infty |f| = \int_a^\infty f^+ + \int_a^\infty f^-$. et on a $\forall x \in [a, \infty[, \left| \int_a^x f \right| \le \int_a^x |f| \operatorname{donc} \operatorname{PPL} \operatorname{quand} x \to \infty, \left| \int_a^\infty f \right| \le \int_a^\infty |f|$

2. Cas $\mathbb{K} = \mathbb{C}$ On a $f = \operatorname{Re} f + i \operatorname{Im} f$, et $0 \le |\operatorname{Re} f| \le |f|$ et $0 \le |\operatorname{Im} f| \le |f|$ or $\int_a^{\infty} |f| \operatorname{CV} \operatorname{donc} \int_a^{\infty} |\operatorname{Re} f| \operatorname{et} \int_a^{\infty} |\operatorname{Im} f| \operatorname{CV} \operatorname{donc} \operatorname{d'après} 1$. $\int_a^{\infty} \operatorname{Re} f \operatorname{et} \int_a^{\infty} |f| \operatorname{CV} \operatorname{de} \operatorname{même} \operatorname{que} \operatorname{le} \operatorname{cas} 1$. $\int_a^{\infty} f \operatorname{CV} \operatorname{et} \left| \int_a^{\infty} f \right| \le \int_a^{\infty} |f|$

4.5.2 Exercice

Exercice 4.5.1 8.1

Chapitre 5

Intégration sur un intervalle quelconque des fonctions à valeurs réelles ou complexes

Introduction Dans le chapitre $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et I est un intervalle non vide de \mathbb{R}

5.1 Notion d'application intégrable sur l'intervalle I

5.1.1 Définition

Introduction

Soit $f: I \to \mathbb{K}$ M^0 sur I. I est soit un segment ou I est un semi ouvert, ou I est un ouvert. Donc $I = [a, b[\stackrel{ou}{=}]a, b] \stackrel{ou}{=} [a, b[\stackrel{ou}{=}]a, b]$

Si I=[a,b] on dispose de l'intégrale MPSI $\int_a^b f$ sinon en cas de convergence on dispose de l'intégrale généralisée de f sur I $\int_a^b f$

Définition 5.1.1 Une application $f: I \to \mathbb{K}$ est intégrable sur I ssi si elle est M^0 et ou bien I est un segment ou bien l'intégrale de f sur I est ACV. On note l'ensemble des fonctions intégrables de I dans \mathbb{K} $\mathcal{L}^1(I,\mathbb{K})$

Proposition 5.1.1 Soient $f: I \to \mathbb{K}$ et $\varphi: I \to \mathbb{R}^+$ M^0 sur I 1. Si $|f| \le \varphi$ et si $\varphi \in \mathcal{L}^1(I, \mathbb{K})$ alors $f \in \mathcal{L}^1(I, \mathbb{K})$

- 2. $f \in \mathcal{L}^1(I, \mathbb{K})$ ssi l'application $|f| \in \mathcal{L}^1(I, \mathbb{K})$
- 3. $f \in L$ ssi les applications Re f et Im $f \in \mathcal{L}^1(I, \mathbb{K})$

Démonstration. On suppose l'énoncé.

- 1. Soit $|f| \leq \varphi$ et $\varphi \in \mathcal{L}^1(I, \mathbb{K})$ Si I est un segment alors f est intégration sur I (def) Sinon I = |a, b| avec a, bQVB. $\int_a^b |\varphi| \text{ CV donc } \int_a^b \varphi \text{ CV ainsi } \int_a^b |f| \text{ CV donc } f \in \mathcal{L}^1(I, \mathbb{K})$
- 2. Si I est un segment alors CLF. Sinon

$$|f| \in L \Leftrightarrow \int_a^b ||f|| \text{ CV}$$

 $\Leftrightarrow \int_a^b |f| \text{ CV}$
 $\Leftrightarrow f \in \mathcal{L}^1(I, \mathbb{K})$

3. $f = \operatorname{Re} f + i \operatorname{Im} f$ donc si $f M^0$ alors $\operatorname{Re} f$ et $\operatorname{Im} f$ aussi

$$0 \le |\operatorname{Re} f| \le |f| 0 \le |\operatorname{Im} f| \le |f| \tag{5.1}$$

Si I est un segment alors CLF Sinon I=|a,b| a,b QVB Si $f\in\mathcal{L}^1(I,\mathbb{K})$ alors $|f|\in\mathcal{L}^1(I,\mathbb{K})$ puis avec (1) Re $f\in\mathcal{L}^1(I,\mathbb{K})$ et Im $f\in\mathcal{L}^1(I,\mathbb{K})$

Si
$$(\operatorname{Re} f, \operatorname{Im} f) \in \mathcal{L}^1(I, \mathbb{K})^2$$
 alors $\int_a^b |\operatorname{Re} f|$ et $\int_a^b |\operatorname{Im}| f$ CV puis $|f| \leq |\operatorname{Re} f| + |\operatorname{Re} f|$ et $\int_a^b |f|$ CV donc $f \in \mathcal{L}^1(I, \mathbb{K})$

Théorème 5.1.1 $\mathcal{L}^1(I,\mathbb{K})$ est un \mathbb{K} -ev

Démonstration. $\mathcal{L}^1(I,\mathbb{K}) \subset M^0(I,\mathbb{K})$ qui est un \mathbb{K} -ev.

- $\circ \mathcal{L}^1(I, \mathbb{K}) \neq \emptyset \text{ car } 0 \in \mathcal{L}^1(I, \mathbb{K})$
- o Soient $(f,g) \in \mathcal{L}^1(I,\mathbb{K})^2$ et $(\alpha,\beta) \in \mathbb{K}^2$, $|\alpha f + \beta g| \leq |\alpha||f| + |\beta||g|$. Si I est un segment alors CLF, sinon I = |a,b| et $\int_a^b |f|, \int_a^b |g|$ CV ainsi $\int_a^b |\alpha||f| + |\beta||g|$

et
$$|\alpha||f| + |\beta||g| \ge 0$$
 ainsi $(\alpha f + \beta g) \in \mathcal{L}^1(I, \mathbb{K})$
Donc $\mathcal{L}^1(I, \mathbb{K})$ est un sev de $M^0(I, \mathbb{K})$

5.1.2 Exemples de références

Théorème 5.1.2 Soient $\alpha \in \mathbb{R}$ et a > 0.

- 1. L'application $\left(t\mapsto \frac{1}{t^{\alpha}}\right)$ est intégrable sur]0,a] ssi $\alpha<1$
- 2. L'application $\left(t\mapsto \frac{1}{t^{\alpha}}\right)$ est intégrable sur $[a,\infty[$ ssi $\alpha>1$
- 3. L'application précédente n'est pas intégrable sur R^{+*}

Démonstration. $f_{\alpha}(t) = e^{-\alpha \log t}$, f_{α} est M^{0} sur]0, a] et sur $[a, \infty[$

1. $f_{\alpha} \in \mathcal{L}^{1}(]0, a], \mathbb{K}) \Leftrightarrow \int_{0}^{a} |f_{\alpha}| \text{ CV} \Leftrightarrow \int_{0}^{a} f_{\alpha} \Leftrightarrow \lim_{x \to 0^{+}} \int_{x}^{a} f_{\alpha} \text{ existe dans } \mathbb{R}.$ Soit $x \in]0, a]$

$$\int_{x}^{a} f_{\alpha} = \begin{cases} \left[\frac{t^{-\alpha+1}}{1-\alpha} \right] = \frac{1}{1-\alpha} \cdot \left(\frac{1}{a^{\alpha-1}} - \frac{1}{x^{\alpha-1}} \right) & \text{si } \alpha \neq 1\\ \log a - \log x & \text{sinon} \end{cases}$$

d'où
$$\lim_{x \to O^+} \int_x^a f_\alpha = \begin{cases} \infty & \text{si } \alpha \ge 1 \\ \frac{a^{1-\alpha}}{1-\alpha} & \text{si } \alpha < 1 \end{cases}$$

Donc $f \in \mathcal{L}^1(]0, a, \mathbb{K}) \Leftrightarrow \alpha < 1$

- 2. par le même raisonement on obtient $f \in \mathcal{L}^1([a,\infty[,\mathbb{K}) \Leftrightarrow \alpha > 1$
- 3. On s'apperçoit vite que $\alpha > 1$ et $\alpha < 1$ ne sont pas satisfiable en même temps

Théorème 5.1.3 Soient $\alpha \in \mathbb{R}$ et $(a, b) \in \mathbb{R}^2$ tel que a < b

- 1. L'application $\left(t\mapsto \frac{1}{(b-t)^{\alpha}}\right)$ est intégrable sur [a,b[ssi $\alpha<1.$
- 2. L'application $\left(t \mapsto \frac{1}{(t-a)^{\alpha}}\right)$ est intégrable sur [a,b] ssi $\alpha < 1$.

Démonstration. 1. On répète le raisonnement du théorème précédent

2. idem

Exemple

- **5.1.1** 1. On a $f(t) = \frac{1}{\sqrt{1+t}}$ donc f est C^0 sur [0,1[et $\frac{1}{2} < 1$ donc f est intégrable sur [0,1[
- 2. de même f est intégrable sur]1,2]

5.2 Intégrale d'une application $\mathcal{L}^1(I,\mathbb{K})$

5.2.1 Définition

Définition 5.2.1 Soit $f: I \to \mathbb{K} \in \mathcal{L}^1(I, \mathbb{K})$

$$\circ$$
 Si $I = [a, b]$ alors on pose $\int_I f = \int_{a}^b f$

o Si
$$I$$
 est semi ouvert ou ouvert on pose $\int_I f = \int_{IG}^b f$

Dans tous les cas on appelle $\int_I f$ intégrale de f sur I

5.2.2 Calcul

Théorème 5.2.1 1. Si $-\infty < a < b \le +\infty$ et si $f \in \mathcal{L}^1([a,b[,\mathbb{K}) \text{ alors } \lim_{x\to b} \int_a^x f$ existe dans \mathbb{K} et $\int_{[a,b[} f = \lim_{x\to b} \int_a^x f f f f]$

2. Si
$$-\infty \le a < b < +\infty$$
 et si $f \in \mathcal{L}^1(]a, b], \mathbb{K})$ alors $\lim_{x \to a} \int_x^b f$ existe dans \mathbb{K} et
$$\int_{[a,b]} f = \lim_{x \to a} \int_x^b$$

3. Si
$$-\infty \le a < b \le +\infty$$
 et si $f \in \mathcal{L}^1(]a, b[, \mathbb{K})$ alors $\forall c \in]a, b[\lim_{x \to a} \int_x^c f \text{ et } \lim_{y \to b} \int_c^y f$ existent dans \mathbb{K} et $\int_{[a,b[} f = \lim_{x \to a} \int_x^c + \lim_{y \to b} \int_c^y f$

Conséquence des définitions.

Proposition 5.2.1 Soit $f M^0$ de [a, b] dans \mathbb{K}

- o Si $f \ge 0$ alors f est intégrable sur [a, b[ssi $\lim_{x\to b} \int_a^x f$ existe dans $\mathbb K$ si f n'est pas positive on a pas la réciproque.
- \circ C'est aussi vrai sur [a, b]

5.2.1 Exemple fondamental Soit $s_c(t) = \begin{cases} \frac{\sin t}{t} & \text{si } t \neq 0 \\ 0 & \text{sinon} \end{cases}$ on a $s_c C^0 \operatorname{sur} \mathbb{R}$

Remarque 5.2.1 Lemme 1
$$\int_{1}^{\infty} s_c \text{ CV}$$
.

 s_c est C^0 donc M^0 sur $[1, \infty[$ donc $\int_1^\infty s_c$ CV $\Leftrightarrow \lim_{x \to \infty} \int_1^x s_c$ existe dans \mathbb{R}

Pour $x \in [1, \infty[$, $\int_{1}^{x} s_{c} = \int_{1}^{x} \frac{\sin t}{t} dt$ $= \int_{1}^{x} \frac{1}{t} \sin t dt$ $= \left[-\cos t \times t^{-1} \right]_{1}^{x} - \int_{1}^{x} \frac{\cos t}{t^{2}} dt (*)$ $Donc, \int_{1}^{x} s_{c} = -\frac{\cos x}{x} + \frac{\cos 1}{1} - \int_{1}^{x} \frac{\cos t}{t^{2}} dt$

· Or
$$0 \le \left| \frac{\cos t}{t^2} \right| \le \frac{1}{t^2}$$
 et $2 > 1$ donc $\left(t \mapsto \frac{1}{t^2} \right) \in \mathcal{L}^1([1, \infty[, \mathbb{K})])$ et $\left(\frac{\cos t}{t^2} \right) \in \mathcal{L}^1([1, \infty[, \mathbb{K})])$

· Ainsi
$$\int_1^\infty \frac{\cos t}{t^2} \mathfrak{d}t$$
 ACV donc $\lim_{x \to \infty} \int_1^x \frac{\cos t}{t^2} \mathfrak{d}t$ existe dans $\mathbb R$

· par encadrement
$$\lim_{x \to \infty} \frac{\cos x}{x} = 0$$

· Donc d'après (*) on a
$$\lim_{x \to \infty} \int_1^x s_c = 0 + \cos 1 + \int_1^\infty \frac{\cos t}{t} \mathfrak{d}t \, \operatorname{donc} \int_1^\infty s_c$$

CV et $\int_1^\infty s_c = \cos 1 - \int_{[1,\infty[} \frac{\cos t}{t} \mathfrak{d}t$

Nous allons voir que $\int_{[1,\infty[} s_c \text{ n'existe pas}$

Remarque 5.2.2 Lemme $2 \ s_c \notin \mathcal{L}^1([1, \infty[, \mathbb{K})])$ Supposons que $s_c \in \mathcal{L}^1([1, \infty], \mathbb{K})$

- $\int_{1}^{\infty} |s_{c}| \text{ CV posons } S(x) = \int_{1}^{x} |s_{c}| \text{ pour } x \in [1, \infty[|s_{c}| \leq 0 \text{ donc } S \text{ est }]$ majorée sur $[1, \infty[\text{ donc } \exists M \in \mathbb{R}^{+}, \forall x \in [1, \infty[, |S(x)| \leq M]$
- · Donc $\forall n \in \mathbb{N}, S((n+1)\pi) \leq M$

.

$$S((n+1)\pi) = \int_{1}^{(n+1)\pi} \left| \frac{\sin t}{t} \right| \mathfrak{d}t$$

$$= \int_{1}^{\pi} |s_{c}| + \sum_{k=1}^{n} \int_{k\pi}^{(k+1)\pi} |s_{c}(t)| \mathfrak{d}t$$

$$\geq \int_{1}^{\pi} |s_{c}| + \sum_{k=1}^{n} I_{k}$$

$$I_k = \int_{k\pi}^{(k+1)\pi} \frac{|sint|}{t} \mathfrak{d}t$$

$$S((n+1)\pi) \ge \int_1^{\pi} |s_c| + \sum_{k=1}^n \frac{2}{(k+1)\pi}$$
$$= \int_1^{\pi} |s_c| + \frac{2}{\pi} (H_{n+1} - 1)$$
$$\xrightarrow[n \to \infty]{} + \infty$$

· Donc $\lim_{n\to 1} S((n+1)\pi) = +\infty$ absurde donc $s_c \notin \mathcal{L}^1([1,\infty[,\mathbb{K})$

avec

EF 5.2.1

$$I_k = \frac{1}{(k+1)\pi} \int_{k\pi}^{(k+1)\pi} |\sin t| \mathfrak{d}t$$
$$= \frac{1}{(k+1)\pi} \int_0^{\pi} |\sin u + k\pi| \mathfrak{d}u$$

$$t = u + k\pi = \varphi(u) \in C^1, dt = du$$

$$= \frac{1}{(k+1)\pi} \int_0^{\pi} \left| \sin u \cos k\pi + \sin k\pi \cos u \right| \mathfrak{d}u$$

$$= \frac{1}{(k+1)\pi} \int_0^{\pi} \left| (-1)^k \right| \left| \sin u \right| \mathfrak{d}u$$

$$= \frac{1}{(k+1)\pi} \int_0^{\pi} \sin u \mathfrak{d}u$$

$$= \frac{2}{(k+1)\pi}$$

FEF

Par le lemme 1 et 2 on a $s_c \notin \mathcal{L}^1([1,\infty[,\mathbb{K}) \text{ mais } \int_1^{s_c} s_c \text{ CV}$

5.2.3 Propriétés fondamentales

Théorème 5.2.2 Soient f, g intégrables sur I à valeurs dans K, soient $(\alpha, \beta) \in \mathbb{K}^2$

1.
$$\alpha f + \beta g$$
 est intégrable sur I et $\int_I \alpha f + \beta g = \alpha \int_I f + \beta \int_I g$

2.
$$|f|$$
 est intégrable sur I et $\left| \int_I f \right| \leq \int_I |f|$

3.
$$\overline{f}$$
 est intégrable sur I et $\int_{I} \overline{f} = \overline{\int_{I} f}$

4. Si
$$f, g$$
 sont à valeur dans \mathbb{R} et $f \leq g$ alors $\int_I f \leq int_I g$

Démonstration. conséquence de la definition

Théorème 5.2.3 Si $\stackrel{\circ}{I} \neq \emptyset$ si $\varphi \colon I \to \mathbb{R}$ est C^0 positive et intégrable sur I et $\int_I \varphi = 0$ alors $\varphi = O_{\mathbb{R}^I}$

Démonstration. On suppose l'énoncé.

- \cdot Si I est un segment CLF
- · Si I n'est pas un segment, par exemple $I = [a, \infty[$ avec $a \in \mathbb{R}$
- · Soit $x \in \mathbb{R}$, $\int_a^\infty \varphi = \lim_{x \to \infty} \int_a^x \varphi = \lim_{x \to \infty} \Phi(x) \Phi$ est croissante sur $[a, \infty[$ donc $\Phi(x) \le \lim_{t \to \infty} \Phi(t) = 0$ or $\Phi(x) \ge 0$ donc $0 \le \Phi(x) \le 0$
- · donc $\forall x \in [a, \infty[, \Phi(x) = 0 = \int_{[a,x]} \varphi$
- · φ est C^0 positive sur [a,x] donc $\forall t \in [a,x], \varphi(t) = 0$, soit $t \in [a,\infty[,t \in [a,t],\varphi(t)=0$

· donc $\forall t \in [a, \infty[, \varphi(t) = 0 \text{ donc } \varphi = 0]$

Proposition 5.2.2 Additivité

Si $-\infty < a < b \le +\infty$ si $f \in M^0([a, b[, \mathbb{K}) \text{ et si } c \in]a, b[\text{ alors } f \text{ est intégrable}$ sur $[a, b[\text{ ssi } f \text{ est intégrable } \text{sur } [c, b[\text{ et } \int_{[a, b[} f = \int_{[a, c]} f + \int_{[c, b[} f$

- **2.** idem avec [a, b]
- 3. idem avec a, b

Conséquence des définitions

Proposition 5.2.3 Négligabilité

Si $-\inf < a < b \le +\inf$ et si $f \in LI[a, b[$ alors $f \in LI]a, b[$ et $\int_{[a,b[} f = \int_{[a,b[} f] f = \int_$

- **2.** idem avec]a, b]
- 3. Si $(a,b) \in \mathbb{R}^2$ avec $a \leq b$ alors f est intégrable sur [a,b], [a,b[,]a,b[] et $\int_{[a,b]} f = \int_{[a,b]} f = \int_{]a,b[} f = \int_{]a,b[} f$

Conséquence des définition

5.2.4 EV des application C^O et intégrable sur I

Définition 5.2.2 On suppose que l'intérieur de I est on vide, on note $\mathcal{L}_c^1(I, \mathbb{K})$ l'ensemble des application intégrables et continues sur I. On a $\mathcal{L}_c^1(I, \mathbb{K}) = \mathcal{L}^1(I, \mathbb{K}) \cap \mathcal{C}^0(I, \mathbb{K})$ par intersection c'est un sev de $\mathcal{L}^1(I, \mathbb{K})$ et si I est un segment alors $\mathcal{L}_c^1 = \mathcal{C}^0$

Proposition 5.2.4 Pour $f \in \mathcal{L}^1(I, \mathbb{K})$ on pose $||f||_1 = \int_I f$

- 1. $\|\cdot\|_1$ est une seminorme sur $\mathcal{L}^1(I,\mathbb{K})$ et $(\mathcal{L}^1(I,\mathbb{K}),\|\cdot\|_1)$ est un ev semi normé
- 2. $\|\cdot\|_1$ est une norme sur \mathcal{L}_c^1 et $(\mathcal{L}_c^1(I,\mathbb{K}),\|\cdot\|_1)$ est un evn

Démonstration. Soit $f \in \mathcal{L}^1(I, \mathbb{K})$ a $\|\cdot\|_1$

- 1. sur $\mathcal{L}^1(I,\mathbb{K})$
 - $\|\cdot\|_1 \colon \mathcal{L}_c^1 \to \mathbb{R}^+$ est une application à valeur positive car $f \in \mathcal{L}^1(I, \mathbb{K}) \Leftrightarrow |f| \in \mathcal{L}^1(I, \mathbb{K})$
 - · Soit f, g dans $\mathcal{L}^1(I, \mathbb{K})$ et $\lambda \in \mathbb{K}$ on a

$$\|\lambda f\|_1 = \int_I |\lambda f| = |\lambda| \int_I f = |\lambda| \|f\|_1 \, \|f + g\|_1 = \int_I |f + g| \le \int_I f + \int_I g = \|f\|_1 + \|g\|_1$$

- · Donc $\|\cdot\|_1$ est bine une semi norme sur $\mathcal{L}^1(I,\mathbb{K})$
- 2. sur \mathcal{L}_c^1
 - On suppose que $||f||_1 = 0$, |f| étant continue positive intégrable sur I donc |f| = 0 puis f = 0
 - $-\|\cdot\|_1$ est bien une norme sur \mathcal{L}_c^1

5.2.5 Relation de Chasle

Définition 5.2.3 Soit $f \in \mathcal{L}^1(I, \mathbb{K})$ et $(a, b) \in \mathbb{R}^2$ tel que $]\min(a, b), \max(a, b)[\subset I \text{ Si } -\infty \leq a < b \leq \infty \text{ alors } f \in \mathcal{L}^1(]a, b[, \mathbb{K}) \text{ et on pose } \int_a^b f = \int_{]a, b[} f. \text{ Si } -\infty \leq b < a \leq \infty \text{ alors } f \in \mathcal{L}^1(]b, a[, \mathbb{K}) \text{ et on pose } \int_a^b f = -\int_{]b, a[} f. \text{ Et si } -\infty \leq a \leq \infty \text{ on pose } \int_a^a f = 0$

Proposition 5.2.5 Soient $f \in \mathcal{L}^1(I, \mathbb{K})$ et $(a, b, c) \in \mathbb{R}^3$ tel que $]\min(a, b, c), \max(a, b, c)[\subset I \text{ on a } \int_a^b f = \int_a^c f + \int_c^b f$

Démonstration. juste une histoire de vérification

5.3 Critère de comparaison pour les fonctions à valeurs positives

Théorème 5.3.1 Soient $\varphi, \psi \colon I \to R^+ M^0$ et positive sur I

- Si $0 \le \varphi \le \psi$ et si ψ est intégrable sur I alors φ l'est aussi et on a $0 \le \int_I \varphi \le \int_I \psi$
- o Si $0 \ \leq \varphi \leq \psi$ et si φ n'est pas intégrable sur I alors ψ ne l'est pas non plus.

Démonstration. analogue aux séries numériques

Proposition 5.3.1 Soient a, b dans $\overline{\mathbb{R}}$ tels que $-\inf < a < b \le +\inf$ et φ, ψ dans $M^0([a, b], \mathbb{R}^+)$

- 1. Si $\varphi = \mathfrak{O}(\psi)$ et si ψ intégrable alors φ est intégrable, et si φ non intégrable alors ψ non intégrable
- 2. Si $\varphi = \mathfrak{o}(\psi)$ et si ψ intégrable alors φ intégrable, de même si φ n'est pas intégrable alors ψ ne l'est pas

3. Si $\varphi \equiv \psi$ alors φ est intégrable ssi ψ l'est

Démonstration. analogues aux séries numériques

Proposition 5.3.2 Soient a, b dans $\overline{\mathbb{R}}$ tels que $-\inf \leq a < b < +\inf$ et φ, ψ dans $M^0(]a, b], \mathbb{R}^+)$

- 1. Si $\varphi = \mathfrak{D}(\psi)$ et si ψ intégrable alors φ est intégrable, et si φ non intégrable alors ψ non intégrable
- 2. Si $\varphi = \mathfrak{o}(\psi)$ et si ψ intégrable alors φ intégrable, de même si φ n'est pas intégrable alors ψ ne l'est pas
- 3. Si $\varphi \equiv \psi$ alors φ est intégrable ssi ψ l'est

Démonstration. analogues aux séries numériques

Théorème 5.3.2 Règle de Riemann - HP

Soient $a \in \mathbb{R}^{+*}et\varphi$: $[0,a] \to \mathbb{R}^+$ M^0 et positive.

- 4. Si il existe $\alpha < 1$ tel que $\lim_{t\to 0^+} t^{\alpha} \varphi(t) = 0$ alors $\varphi(t) = \mathfrak{o}\left(\frac{1}{t^{\alpha}}\right)$ et φ est intégrable
- Si il existe $\alpha > 1$ tel que $\lim_{t \to 0^+} t^{\alpha} \varphi(t) = \infty$ alors $\frac{1}{t^{\alpha}} = \mathfrak{o}(\varphi(t))$ et φ n'est pas intégrable
- 2. Soient $a \in \mathbb{R}$ et $\varphi \colon [a, \infty[\to R^+ M^0]$ et positive
 - Si il existe $\alpha < 1$ tel que $\lim_{t \to \infty} t^{\alpha} \varphi(t) = 0$ alors $\varphi(t) = \mathfrak{o}\left(\frac{1}{t^{\alpha}}\right)$ et φ est intégrable
 - Si il existe $\alpha > 1$ tel que $\lim_{t \to \infty} t^{\alpha} \varphi(t) = \infty$ alors $\frac{1}{t^{\alpha}} = \mathfrak{o}(\varphi(t))$ et φ n'est pas intégrable

On suppose l'énoncé, on suppose $\exists \alpha < 1, \lim_{t \to O^+} t^{\alpha} \varphi(t) = 0$ et $\varphi(t) = \wr (t^{-\alpha})$ alors on

a
$$\alpha < 1$$
 donc $\left(t \mapsto \frac{1}{t^{\alpha}}\right) \in \mathcal{L}^1(]0, a], \mathbb{R}$) le reste est du même tonneau

Utile lorsqu'on gère des exponentielles/logarithmes

Théorème 5.3.3 Comparaison Série/IG Soient $p \in \mathbb{N}$ et $\varphi \colon [p, \infty[\to \mathbb{R} \ M^0]$ positive et décroissante

La série $\sum_{n \geq p} \varphi(n)$ est de même nature que l'IG $\int_{p}^{\infty} \varphi$

2. La série
$$\sum_{n\geq p} \left(\varphi(n) - \int_n^{n+1} \varphi\right)$$
 est CV

 $\int_{p}^{\infty} \varphi \, \text{CV} \Leftrightarrow \lim_{x \to \infty} \int_{p}^{x} \varphi \, \text{existe dans } \mathbb{R} \, \varphi \ge 0 \, \text{donc } \Phi \, \text{est croissante sur } [p, \infty[\, \text{avec} \,]$

$$\Psi(x) = \int_{p}^{x} \varphi \text{ Supposons que } \sum_{n \geq p} \varphi(n) \text{ CV ainsi } (I_n) \text{ CV dans } \mathbb{R} \int_{p}^{\infty} \varphi \text{ CV} \Leftrightarrow \lim_{\infty} \Phi$$

existe dans $\mathbb R$ or Φ est croissante donc d'après le TLM $\lim_{\infty} \Phi$ existe dans $\overline{\mathbb R}$ $\lim n = \infty$

donc
$$\lim \Phi(n) = \lim \Phi \in \mathbb{R}$$
 i.e $\lim I_n \in \mathbb{R}$ et $\lim \Phi = \lim I_n \in \mathbb{R}$ donc $\int_p^\infty \varphi$ CV.

Supposons que $\int_{p}^{\infty} \varphi$ CV on a $\lim \Phi \in \mathbb{R}$ et $\lim n = \infty$ donc $\lim \Phi(n) = \lim \Phi \in \mathbb{R}$ la suite (I_n) converge et ainsi $\sum_{n \geq p} \varphi(n)$ CV la suite est acquise

Remarque 5.3.1 Le théorème est une conséquence de l'inégalité $\varphi(k+1) \leq \int_k^{k+1} \varphi \leq \varphi(k)$ valable pour tout entier $k \geq p$. L'idée est d'encadrer l'intégrale.

5.4 Intégration des relations de comparaison pour les fonctions à valeurs positives

Théorème 5.4.1 Intégration des comparaison : le cas non intégrable Soient (a,b) dans $\overline{\mathbb{R}}$ tel que $-\infty < a < b \le \infty$ et $\varphi, \psi \colon [a,b[\to \mathbb{R} \ M^0$ et positives. on suppose ψ non intégrable.

Si
$$\varphi = \mathfrak{O}(\psi)$$
 alors $\int_a^x \varphi = \mathfrak{O}\left(\int_a^x \psi\right)$

2. Si
$$\varphi = \mathfrak{o}(\psi)$$
 alors $\int_a^x \varphi = \mathfrak{o}\left(\int_a^x \psi\right)$

3. Si
$$\varphi \equiv \psi$$
 alors $\int_a^x \varphi \equiv \int_a^x \psi$

Comme pour les séries numériques

Théorème 5.4.2 Intégration des comparaison : cas intégrable Soient (a, b) dans \mathbb{R} tel que $-\infty < a < b \le \infty$ et $\varphi, \psi \colon [a, b] \to \mathbb{R}$ M^0 et positives, on suppose ψ intégrable Si $\varphi = \mathfrak{O}(\psi)$ alors φ est intégrable et $\int_a^x \varphi = \mathfrak{O}\left(\int_a^x \psi\right)$

2. Si
$$\varphi = \mathfrak{o}(\psi)$$
 alors φ est intégrable et $\int_a^x \varphi = \mathfrak{o}\left(\int_a^x \psi\right)$

3. Si
$$\varphi \equiv \psi$$
 alors φ est intégrable et $\int_a^x \varphi \equiv \int_a^x \psi$

Comme pour les séries numériques