Topic: P104 Curve Sketching

Subtopic:

Curve of Rational Functions

Curve Sketching in General

Terminology in curve sketching:

- (a) asymptote
- (b) stationary point / turning point
- (c) increasing and decreasing function
- (d) intercepts.

<u>Asymptote</u>

An asymptote of a curve is a line such that the distance between the curve and the line approaches zero as they tend to infinity.

KFC

Asymptotes can be obtained by setting

(a)
$$x \to a^+$$
 and $x \to a^-$ (vertical asymptotes)

(b)
$$x \to +\infty$$
 and $x \to -\infty$ (horizontal asymptotes

& oblique asymptotes)

Vertical Asymptote

Definition:

$$x = a$$
 is a vertical asymptote of $y = f(x)$ if
$$\lim_{x \to a^{+}} f(x) = \pm \infty \text{ OR } \lim_{x \to a^{-}} f(x) = \pm \infty.$$

In other words, x = a is the value such that f(a) is undefined.

$$x \to a^{-}, y \to +\infty$$

$$x \to a^{-}, y \to +\infty$$

$$x \to a^{-}, y \to -\infty$$

$$x \to a^{-}, y \to -\infty$$

$$x \to a^{+}, y \to -\infty$$

KFC

Asymptotes

Find and sketch the vertical asymptote(s) of

(a)
$$y = \frac{1}{x-2}$$
 (b) $y = \frac{2}{2x-1}$

(c)
$$y = 3 + \frac{4}{1-x}$$
 (d) $y = -4 + \frac{1}{x-5}$

Find and sketch the vertical asymptote(s) of the curves

(a)
$$y = \frac{1}{x(x+2)}$$
 (b) $y = \frac{x^2 - x - 2}{(x-1)(x+2)}$

(c)
$$y = \frac{1}{2x-3} - \frac{1}{3x+2}$$
 (d) $y = \frac{1}{(x+1)^2} + \frac{1}{1-2x}$

State the vertical asymptotes of the following curves:

(a)
$$y = \frac{1}{x^2 + 1}$$
 (b) $y = \frac{x - 1}{x^2 + x + 1}$

Horizontal Asymptote

Definition:

y = b is a horizontal asymptote of y = f(x)if $\lim_{x \to -\infty} f(x) = b$ OR $\lim_{x \to +\infty} f(x) = b$.

In other words, y = b is the value when $x \to -\infty$ and $x \to \infty$.

(a)
$$y = \frac{1}{x-2}$$
 (b) $y = \frac{2}{1-2x}$

(c)
$$y = 3 + \frac{4}{x-1}$$
 (d) $y = -4 + \frac{1}{2-x}$

(a)
$$y = \frac{1+x}{x}$$
 (b) $y = \frac{2+x}{1-x}$

(c)
$$y = \frac{2+3x}{2+x}$$
 (d) $y = \frac{1-x}{3-x}$

(a)
$$y = \frac{1}{x^2 + 2x + 2}$$
 (b) $y = \frac{1}{(2-x)(x+1)}$

(c)
$$y = \frac{x}{x^2 + 1}$$
 (d) $y = \frac{x}{(x-1)^2}$

(a)
$$y = \frac{x^2 + 2}{x^2 + 2x - 3}$$
 (b) $y = \frac{2x^2 - 1}{x^2 - 2x + 1}$

(c)
$$y = \frac{x^2 + 1}{1 - 2x^2}$$
 (d) $y = \frac{-x^2 + 7x - 6}{-x^2 - 1}$

Oblique Asymptote

Definition:

$$y = mx + n$$
 is an oblique asymptote of $y = f(x)$ if
$$\lim_{x \to -\infty} [f(x) - (mx + n)] = 0 \text{ OR } \lim_{x \to +\infty} [f(x) - (mx + n)] = 0$$

In other words, $y \to mx + n$ when $x \to \pm \infty$.

$$y = mx + n$$

$$x \to +\infty, y \to (mx + n)^{+}/x \to +\infty, y \to (mx + n)^{-}$$

$$x \to -\infty, y \to (mx + n)^{+}/x \to -\infty, y \to (mx + n)^{-}$$

Find and sketch all the asymptote(s) of the curves:

(a)
$$y = x + \frac{1}{x}$$
 (b) $y = 1 - x + \frac{1}{1 - x}$

(c)
$$y = x^2 + \frac{1}{x-1}$$
 (d) $y = x^2 + \frac{1}{2-x} + \frac{1}{3+x}$

Find and sketch all the asymptote(s) of the curves:

(a)
$$y = \frac{4x^2 + 6x + 1}{2x}$$
 (b) $y = \frac{2x^2 - 3x}{1 - 2x}$

(c)
$$y = \frac{x^2 - 3x + 3}{x - 2}$$
 (d) $y = \frac{x^3 + 2x^2 + x + 1}{(x - 1)^2}$

Homework

Please attempt all the questions in the following slides.

Questions are to be discussed on the next day of the instruction.

Find and sketch all the asymptotes of the curves

(a)
$$y = \frac{3}{x+2}$$
 (b) $y = 4 + \frac{1}{2x-1}$

(c)
$$y = \frac{2-x}{1-x}$$
 (c) $y = \frac{2+3x}{2+x}$

Find and sketch all the asymptotes of the curves

(a)
$$y = 3 + 2x + \frac{1}{2x}$$
 (b) $y = (x-1)^2 + \frac{1}{3-x}$

(c)
$$y = \frac{2x^2}{2x-1}$$
 (d) $y = \frac{x^3 + 4x^2 + x + 5}{x+4}$

Find and sketch all the asymptotes of the curves:

(a)
$$y = \frac{1-x}{(x+1)^2}$$
 (b) $y = \frac{x+1}{x^2+2x+2}$

(c)
$$y = 2 - \frac{1}{(2-x)^2}$$
 (d) $y = x + \frac{1}{x+3} + \frac{2}{x-2}$

Find and sketch all the asymptotes of the curves:

(a)
$$y = \frac{x^2 - x - 2}{x^2 - 4x + 3}$$
 (b) $y = \frac{x^2 - 7x + 6}{x^2 + 1}$

(c)
$$y = \frac{4x^3 - 8x^2 + 3x + 2}{(3 - 2x)(1 - 2x)}$$

Find and sketch the vertical asymptote(s) of $y = \tan \theta, -\pi \le \theta \le \pi$.