Math 140C: Homework 1

Merrick Qiu

Problem 1

1. (\Longrightarrow) Since $\mathbf{y} \in \operatorname{span}(E)$, we can write $\mathbf{y} = c_1 \mathbf{v_1} + \cdots + c_r \mathbf{v_r}$ for some $c_i \in \mathbb{R}$. Thus we have that

$$c_1 \mathbf{v_1} + \dots + c_r \mathbf{v_r} - \mathbf{y} = 0$$

which implies that $E \cup \{y\}$ is linearly dependent.

(\Leftarrow) Since $E \cup \{y\}$ is linearly dependent, we can write $c_1v_1 + \cdots + c_rv_r + c_{r+1}y = 0$ for some $c_i \in \mathbb{R}$. Thus

$$\boldsymbol{y} = -\frac{c_1}{c_{r+1}} \boldsymbol{v_1} - \dots - \frac{c_r}{c_{r+1}} \boldsymbol{v_r}$$

which implies that $y \in \text{span}(E)$.

2. If $\mathbf{x} \in \operatorname{span}(E)$ then $\mathbf{x} = a_1 \mathbf{v_1} + \cdots + a_r \mathbf{v_r}$ for some $a_i \in \mathbb{R}$. It is also true that $\mathbf{x} = a_1 \mathbf{v_1} + \cdots + a_r \mathbf{v_r} + 0 \mathbf{y}$ so $\mathbf{x} \in \operatorname{span}(E \cup \{\mathbf{y}\})$.

If $\mathbf{x} \in \operatorname{span}(E \cup \{\mathbf{y}\})$ then $\mathbf{x} = a_1 \mathbf{v_1} + \cdots + a_r \mathbf{v_r} + a_{r+1} \mathbf{y}$ for some $a_i \in \mathbb{R}$. Since $E \cup \{\mathbf{y}\}$ is linearly dependent, $\mathbf{y} \in \operatorname{span}(E)$ so $\mathbf{y} = c_1 \mathbf{v_1} + \cdots + c_r \mathbf{v_r}$ for some $c_i \in \mathbb{R}$. Thus

$$\mathbf{x} = (a_1 + a_{r+1}c_1)\mathbf{v_1} + \dots + (a_r + a_{r+1}c_r)\mathbf{v_r}$$

so $x \in \text{span}(E)$

If $x \in \text{span}(S)$ and $y \in \text{span } S$ then for some set of $v_1, \dots, v_n \in S$ and constants $a_i, b_i \in \mathbb{R}$, we can write

$$oldsymbol{x} = \sum_{i=1}^n a_i oldsymbol{v_i} \qquad oldsymbol{y} = \sum_{i=1}^n b_i oldsymbol{v_i}$$

 $\mathrm{span}(S)$ is a vector space since for all $c\in\mathbb{R}$ and $\boldsymbol{x},\boldsymbol{y}\in\mathrm{span}(S),$

$$c\boldsymbol{x} = \sum_{i=1}^{n} ca_{i}\boldsymbol{v_{i}} \in \operatorname{span}(S)$$

$$x + y = \sum_{i=1}^{n} (a_i + b_i) v_i \in \operatorname{span}(S).$$

If A and B are linear transformations in X then for all $x, v_1, v_2 \in X$

$$BA(v_1 + v_2) = B(A(v_1 + v_2))$$

= $B(Av_1 + Av_2)$
= $BAv_1 + BAv_2$

$$BA(c\mathbf{x}) = B(cA\mathbf{x}) = cBA\mathbf{x}$$

Thus BA is also a linear transformation.

If A is one-to-one from X onto X then for all $x, v_1, v_2 \in X$ we can write

$$x = Ay$$
 $v_1 = Av_1$ $v_2 = Av_2$

for some vectors $y, v_1, v_2 \in X$. A^{-1} is a linear operator since

$$\begin{split} A^{-1}(\boldsymbol{v_1} + \boldsymbol{v_1}) &= A^{-1}(A\boldsymbol{v_1} + A\boldsymbol{v_2}) \\ &= A^{-1}A(\boldsymbol{v_1} + \boldsymbol{v_2}) \\ &= \boldsymbol{v_1} + \boldsymbol{v_2} \\ &= A^{-1}\boldsymbol{v_1} + A^{-1}\boldsymbol{v_1} \end{split}$$

$$A^{-1}(c\mathbf{x}) = A^{-1}(cA\mathbf{y}) = A^{-1}A(c\mathbf{y}) = c\mathbf{y} = cA^{-1}\mathbf{x}.$$

The inverse of A^{-1} is A since

$$A(A^{-1}\boldsymbol{x}) = A(A^{-1}A\boldsymbol{y}) = A\boldsymbol{y} = \boldsymbol{x}$$

Suppose A is not 1-1. Then for some $y \in Y$, there exists distinct $v, w \in X$ such that Av = y and Aw = y. Subtracting these two equations implies that

$$A(\boldsymbol{v} - \boldsymbol{w}) = 0$$

which contradicts our assumption that Ax = 0 only when x = 0.

Let $A \in L(X,Y)$ be a linear transformation Let $\boldsymbol{x},\boldsymbol{y} \in \mathcal{N}(A)$. $\mathcal{N}(A)$ is a vector space since

$$A(\boldsymbol{x} + \boldsymbol{y}) = A\boldsymbol{x} + A\boldsymbol{y} = \boldsymbol{0}$$

$$A(c\boldsymbol{x}) = cA\boldsymbol{x} = \boldsymbol{0}$$

Let $x, y \in \mathcal{R}(A)$. We can write x = Ap and y = Aq for some $p, q \in X$. By the linearity of A,

$$x + y = Ap + Aq = A(p + q) \in \mathcal{R}(A)$$

$$c\mathbf{x} = cA\mathbf{p} = A(c\mathbf{p}) \in \mathcal{R}(A)$$

Let $x = x_1 e_1 + \cdots x_n e_n$ for the standard basis vectors e_i . If we let $y \in \mathbb{R}^n$ with $y_i = Ae_i$ then

$$A\mathbf{x} = A(\mathbf{x}_1\mathbf{e}_1 + \cdots + \mathbf{x}_n\mathbf{e}_n) = c_1\mathbf{y}_1 + \cdots + c_n\mathbf{y}_n = \mathbf{x} \cdot \mathbf{y}.$$

It is unique since if there was z such that $Ax = x \cdot z$, then

$$|y-z|^2 = y \cdot y - y \cdot z - z \cdot y - z \cdot z = A(y) - A(y) - A(z) + A(z).$$

By the Schwarz inequality,

$$||A|| = \sup |A\boldsymbol{x}| = \sup |\boldsymbol{x} \cdot \boldsymbol{y}| \le \sup |\boldsymbol{x}||\boldsymbol{y}|.$$

which implies that $||A|| \le |y|$. Also note that $A\left(\frac{y}{|y|}\right) = \frac{y}{|y|} \cdot y = |y|$ so $||A|| \ge |y|$.