Status på prosjektoppgave 5. Oktober

Gustav Kollstrøm

Forrige gang

2.

3.
$$N_{n,k+1} = N_{n,k}^2 + 2k+1+B_n$$

Delay i referansepunkt/element (origo, n = 0, k = 0)

Delay i neste transducer element for punkt k=0, iterativt uttrykt vha forrige element

Delay i neste scanpunkt for element n, iterativt uttrykt vha forrige element

4. Repetér for neste vinkel

Alle verdier konstante utenom $cos(\theta)$

flipp v_s og f_s

Løsning på kvadratrotproblemet

Delay i transducer element n+1, i punkt k = 0

Delay i transducer element n, i punkt k = k+1

Løsning på kvadratrotproblemet

Løsning på kvadratrotproblemet

- Unngår kvadratrot fullstendig
- Unngår beregninger med N^2

Resultater i MATLAB

Modell med komparatorimplementasjon

Modell med sqrt()funksjonen i MATLAB

Resultater i MATLAB: Presisjon

Delay for hvert element i referansepunkt:

>> delay-delay_reference

ans =											
Columns 1 through 12											
0.1821	0.0511	-0.0882	-0.2361	-0.3932	-0.5602	0.2622	0.0734	-0.1275	-0.3413	-0.5690	0.1884
Columns 13 through 24											
-0.0703	-0.3464	-0.6413	0.0435	-0.2936	-0.6547	-0.0417	-0.4571	0.0965	-0.3836	0.0991	-0.4589
Columns 25	5 through	36									
-0.0617	-0.7138	-0.4205	-0.1874	-0.0211	0.0712	0.0813	-0.0000	0.8172	0.5215	1.1003	0.5399
Columns 37 through 48											
0.8255	0.9410	0.8697	0.5943	0.0975	0.3626	0.3742	0.1191	0.5869	0.7709	0.6683	0.2806
Columns 49 through 60											
-0.3864	-0.3234	-0.5179	-0.9551	-0.6185	-0.4909	-0.5551	-0.7940	-1.1914	-0.7321	-0.4021	-1.1884
Columns 61 through 64											
-1.0793	-1.0644	-1.1342	-1.2802								

Spørsmål og veien videre

- Hvor presist må systemet være?
 - +/- 1 sample frekvens syklus for mye?
 - Komparatorkretsen kan nok justeres/endres for ytterligere presisjon
- Hvordan vil sekvensen av input-verdier for R_0 og θ se ut?
 - Hvor lang tid mellom hver input?
 - Ligger en input sekvens klar eller er den vilkårlig styrt av bruker?
 - Har jeg neste R₀ tilgjengelig før forrige kalkulasjon er ferdig?
- Justering av modellen for ytterligere presisjon
- Implementasjon