

2- Function large scale

Marc Robinson-Rechavi
SIB course Biodiversity bioinformatics 2023

Evolution of gene expression

Discussion

Describe in 2 words what you expect of the evolution of gene expression

Gene expression is a quantitative trait

- Expression level
- Tissue-specificity
- Ratio of expression between conditions, e.g., male/female

Evolution of gene expression in mammals

Gene expression clusters by homologous organ, not by species

Evolution of gene expression in mammals

Sex-biased gene expression

Drosophila melanogaster

Timema californicum

Convergent evolution of gene expression in venom glands

Gene expression is informative for organismal evolution

"Ortholog conjecture"

Poll

To transfer annotations to a non model organism, you trust most:

- 1. protein domains
- 2. orthologous genes
- 3. genes with a Blast hit

Orthology and function

No Ortholog conjecture

Phylogenetic view

GO similarity of orthologs and paralogs: Surprise!

Human-mouse
(A) Biological Process ontology, (B) Molecular Function ontology

GO similarity of orthologs and paralogs: Bias...

Dataset	Same- Species Paralogs	Different- Species Paralogs	1:1 Orthologs	Other Orthologs
Same Publications Different Publications, Same Authors No Common Author All Experimental Annotations	1573 613 2492 3312	18 382 20719 20766 /	154 874 13149 13309	44 434 11296 11371
47%	, , 0	1%		

Expression similarity of orthologs and paralogs

Nehrt et al https://doi.org/10.1371/journal.pcbi.1002073

Chen & Zhang 2012 https://doi.org/10.1371/journal.pcbi.1002784

Pairwise correlation of tissue-specificity of expression of orthologs and paralogs

Correlation of tissue specificity with phylogenetic distance

Phylogenetic contrast of tissue-specificity of expression of orthologs and paralogs (1)

0.01

0.03

1250

Phylogenetic contrast of tissue-specificity of expression of orthologs and paralogs (2)

restricted to trees passing diagnostic tests for phylogenetic independence

after branch length standardization

randomized trees have similar results to the first phylogenetic tests (and to old paralogs in trees passing diagnostic tests)

Humanization of yeast genes: functional divergence between paralogs

Phylogenomics of function is hard

Evidence gene A	Evidence gene A'	Apparent conclusion	Relevance
Experiment X: function x	Homology transfer: function x	Conserved function	No: circular reasoning
Experiment X: function x	Experiment Y: function y	Different function	No: experiments cannot be compared
Experiment X: function x	Experiment X: function x	Conserved function	Yes: evolutionary conservation
Experiment X: function x	Experiment X: function x'	Different function	Yes: evolutionary change

Poll

Do you believe the ortholog conjecture?

Gene list enrichment

Discussion

One scenario where you need the function of a list of genes

General principle of gene list enrichment

Biologically relevant terms = GO terms

List of interesting genes

Associations gene – term = GO annotations

Are the genes in the list more associated to certain GO terms than expected by chance?

Over-representation test

Reference gene list

Genes annotated with a given GO term Genes not annotated with a given GO term

Your gene list of interest

Is the given annotation class over- or under- represented compared to a reference?

Over (under) representation test example

Displaying only results with P<0.05; click here to display all results Homo sapiens (REF) upload 1 (▼ Hierarchy NEW! ③) GO biological process complete expected Fold Enrichment +/-P value ganglioside catabolic process 9 .06 > 100 2.01E-13 # in the reference list 13 4ceramide catabolic process 9 .13 68.29 1.99E-10 sphingolipid catabolic process 21 10 .21 46.97 2.83E-10 17 4-sphingolipid metabolic process 1.41 12.06 1.16E-09 # observed 21 186 4membrane lipid metabolic process 1.89 11.14 6.73E-12 929 9.42 3.50 3.54E-06 cellular lipid metabolic process 11.89 blipid metabolic process #expected 3.20 1.89E-06 91.04 8981 1.59 4.74E-10 └organic substance metabolic process 6.62E-11 4metabolic process 1.55 Fold enrichment 1.53 9.92E-07 primary metabolic process 4451 45.12 2.48 4-single-organism metabolic process 112 5.40E-20 Overrepresent (+) or under-2.30E-22 4-single-organism process 12867 representation (-) 8449 7.10E-09 cellular metabolic process 146.37 1.37 3.04E-17 4cellular process 14439 201 6.15E-20 11573 117 32 158 4single-organism cellular process P value 1.33E-18 1828 4organonitrogen compound metabolic process 1.71 2.43E-05 introgen compound metabolic process 5539 96 56.15 24 10 .24 41.10 1.05E-09 4-membrane lipid catabolic process 13 4cellular lipid catabolic process 151 1.53 8.49 5.91E-05 13 Hipid catabolic process 250 2.53 5.13 1.73E-02 49 15.59 4.67E-09 organic substance catabolic process 1538 3.14

TopAnat

GO-like enrichment of expression in anatomy

For each anatomical structure:

	Gene list	Other genes			
Expressed	n_1	n ₃			
Not expressed	n ₂	n ₄			

Fisher / Hypergeometric test

Deconvolution of ontology graph (topGO)

Anat Entity Id	Anat Entity Name	Annotated	Significant	Expected	Fold Enric	P Value	Fdr
UBERON:0000151	pectoral fin	1124	53	7.43	7.13	1.91e-32	1.41e-29
UBERON:0004357	paired limb/fin bud	337	34	2.23	15.25	1.36e-31	5.01e-29
UBERON:0003051	ear vesicle	816	35	5.39	6.49	5.6e-20	1.37e-17
UBERON:0002539	pharyngeal arch	1140	45	7.53	5.98	1.43e-16	2.62e-14
UBERON:2000040	median fin fold	128	15	0.85	17.65	4.58e-15	6.72e-13
UBERON:0004185	endodermal part of digestive tract	976	32	6.45	4.96	7.95e-15	9.73e-13
UBERON:0003933	cranial cartilage	95	12	0.53	22.64	1.46e-13	8.22e-11
UBERON:0010312	immature eye	1366	35	9.03	3.88	4.63e-13	4.86e-11
UBERON:0000151	pectoral fin	462	20	2.56	7.81	6.43e-13	1.81e-10

Pitfalls of enrichment analyses

- Background is critical
- Multiple testing
- Non independence of terms

Function provides insight into genome & species evolution