1

Assignment 1

Vaddamani Saketh - CS20BTECH11054

Download all python codes from

https://github.com/CS20BTECH11054/AI1103/blob/main/Assignment_2/codes/Assignment_2.py

and latex-tikz codes from

https://github.com/CS20BTECH11054/AI1103/blob/main/Assignment_2/Assignment_2.tex

1 Problem

(Prob, 5.30) Find the variance of the number obtained on a throw of an unbiased die

2 Solution

Let $X \in \{1, 2, 3, 4, 5, 6\}$, be the random variable representing outcome of the die. The probability mass function(pmf) can be expressed as

$$p_X(n) = P(X = n) = \begin{cases} \frac{1}{6} & 1 \le n \le 6\\ 0 & otherwise \end{cases}$$
 (2.0.1)

The variance (Var(X)) of this distribution can be found by definition,

$$Var(X) = E(X^2) - (E(X))^2$$
 (2.0.2)

where,

$$E(X) = \sum_{k=1}^{k=6} k p_X(k)$$
 (2.0.3)

$$E(X) = \frac{1}{6} \sum_{k=1}^{k=6} k$$
 (2.0.4)

$$E(X) = \frac{1}{6} \times \frac{6 \times 7}{2}$$
 (2.0.5)

$$E(X) = \frac{7}{2} \tag{2.0.6}$$

$$E(X^2) = \sum_{k=1}^{k=6} k^2 p_X(k)$$
 (2.0.7)

$$E(X^2) = \frac{1}{6} \sum_{k=1}^{k=6} k^2$$
 (2.0.8)

$$E(X^2) = \frac{1}{6} \times \frac{6 \times 7 \times 13}{6}$$
 (2.0.9)

$$E(x^2) = \frac{91}{6} \tag{2.0.10}$$

Therefore, substituting values from Eq.(2.0.6) and Eq.(2.0.10), we get

$$Var(X) = E(X^2) - (E(X))^2$$
 (2.0.11)

$$Var(X) = \frac{91}{6} - \frac{49}{4} \tag{2.0.12}$$

$$Var(X) = \frac{70}{12} \tag{2.0.13}$$

$$Var(X) = 2.9167$$
 (2.0.14)

Therefore, the variance of the number obtained on a throw of an unbiased die is **2.9167**.

