Engineering Optics Lecture 22

09/05/2023

Debolina Misra

Assistant Professor Department of Physics IIITDM Kancheepuram, Chennai, India

DOUBLE REFRACTION

when an unpolarized beam enters an anisotropic crystal, it splits up into two linearly polarized beams, each has a certain state of polarization, different velocities, and different refractive indices.

The beam which travels undeviated is known as the ordinary ray (O-ray) obeys Snell's laws of Refraction

the second beam, does not obey Snell's laws, is known as the extraordinary ray (E-ray).

Anisotropic crystals: Calcite, Quartz etc.

Dichroic crystal: Tourmaline

Optic axis, E-ray and O-ray

extraordinary ray

Unpolarized beam

Ordinary ray

Calcite

we rotate the crystal about NN,' then the e-ray will rotate about NN'.

- $v_{ro} \rightarrow same in all direction$
- $v_{re} \rightarrow different$
- Both same along one direction in anisotrpic
 crystal → optic axis
- Calcite → v_{ro}= v_{re} along 1 direction → optic axis → Uniaxial crystal

E-ray and O-ray continued

$$v_{ro} = \frac{c}{n_o}$$

$$\frac{1}{1 - \frac{\sin^2 \theta}{(c/n_0)^2}} + \frac{\cos^2 \theta}{(c/n_0)^2}$$
 extraordinary ray

$$\frac{z^2}{a^2} + \frac{x^2}{b^2} = 1 \quad \text{OR} \quad \frac{1}{\rho^2} = \frac{\cos^2 \theta}{a^2} + \frac{\sin^2 \theta}{b^2}$$
$$z = \rho \cos \theta \quad x = \rho \sin \theta$$

ordinary ray

 n_o and n_e are constants of the crystal and θ is the angle that the ray makes with the optic axis (z) with the optic axis as the axis of revolution

- plot v_{re} as a function of θ
- plot v_{ro} as a function of θ

Which one is correct:

- 1. Sphere inside or
- 2. Ellipse inside ??

Optics, Ghatak

Positive and negative crystals

X

Negative crystal

(a)

Along the optic axis
$$v_{ro} = v_{re} = \frac{c}{n_o}$$

Along a direction perpendicular to optic axis ??

For a negative crystal $n_e \le n_o$

(Optic axis)

$$v_{re}\left(\theta = \frac{\pi}{2}\right) = \frac{c}{n_e} > v_{ro}$$

calcite CaCO₃, ruby Al₂O₃

(a) In a negative crystal, the ellipsoid of revolution (which corresponds to the extra ordinary ray) lies outside the sphere; the sphere corresponds to the ordinary ray. (b) In a positive crystal, the ellipsoid of revolution (which corresponds to the extraordinary ray) lies inside the sphere.

Fast axis and slow axis

On the other hand, for a positive crystal $n_e > n_o$

$$v_{re}\left(\theta = \frac{\pi}{2}\right) = \frac{c}{n_e} > v_{ro}$$
 $v_{re}\left(\theta = \frac{\pi}{2}\right) = \frac{c}{n_e} < v_{ro}$

quartz SiO₂, rutile TiO₂ (Optic axis)

Positive crystal

(b)

Optics, Ghatak

Thank You