Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Московский государственный технический университет имени Н.Э. Баумана

Факультет: Информатика и системы управления

Кафедра: Теоретическая информатика и компьютерные технологии

Лабораторная работа №3 по курсу «Численные методы» «Интерполяция функции кубическим сплайном»

Выполнила:

студентка группы ИУ9-

62Б

Самохвалова П. С.

Проверила:

Домрачева А. Б.

Цель:

Анализ метода интерполяции функции, основанного на построении кубического сплайна.

Постановка задачи:

Дано:

Вариант 21

$$y(x) = \frac{1}{x + x^2}$$
$$a = 0.25$$
$$b = 2$$
$$h = \frac{b - a}{32}$$

X	у		
0.25	3.2		
0.3046875	2.5155842161830186		
0.359375	2.046976511744128		
0.4140625	1.7079120191806525		
0.46875	1.4524822695035462		
0.5234375	1.2540375047837735		
0.578125	1.096066363393096		
0.6328125	0.9678067221926872		
0.6875	0.8619528619528619		
0.7421875	0.773377389662497		
0.796875	0.6983802216538789		
0.8515625	0.6342275384198506		
0.90625	0.5788581119276427		
0.9609375	0.5306902471415152		
1.015625	0.4884913536076327		
1.0703125	0.4512877014185374		
1.125	0.41830065359477125		
1.1796875	0.38890075719812955		
1.234375	0.36257413472603345		
1.2890625	0.3388975074981901		
1.34375	0.31751937984496126		
1.3984375	0.2981456881334959		
1.453125	0.28052873090884184		
1.5078125	0.2644585411521637		
1.5625	0.2497560975609756		
1.6171875	0.23626793568389934		

X	у
1.671875	0.22386183527354211
1.7265625	0.21242334271156116
1.78125	0.20185294697417702
1.8359375	0.19206377117402262
1.890625	0.1829796738887648
1.9453125	0.17453367848050025
2.0	0.1666666666666666

Найти:

- 1. Кубический сплайн $S^3(x)$.
- 2. Значения сплайна в узлах интерполяции, абсолютную погрешность.
- 3. Значения сплайна в точках между узлами интерполяции, абсолютную погрешность.

Описание алгоритма:

$$S_i(x) = a_i + b_i(x - x_{i-1}) + c_i(x - x_{i-1})^2 + d_i(x - x_{i-1})^3, x \in [x_{i-1}, x_i]$$
$$h = \frac{x_n - x_0}{n}$$

$$\begin{cases}
c_1 = 0 \\
4c_2 + c_3 = \frac{3}{h^2}(y_2 - 2y_1 + y_0) \\
c_i + 4c_{i+1} + c_{i+2} = \frac{3}{h^2}(y_{i+1} - 2y_i + y_{i-1}), i = 2, , n - 2 \\
c_{n-1} + 4c_n = \frac{3}{h^2}(y_n - 2y_{n-1} + y_{n-2}) \\
c_{n+1} = 0
\end{cases}$$

Эту систему можно решить методом прогонки. Остальные коэффициенты сплайна можно найти по следующим формулам:

$$a_{i} = y_{i-1}$$

$$b_{i} = \frac{y_{i} - y_{i-1}}{h} - \frac{h}{3}(c_{i+1} + 2c_{i})$$

$$d_{i} = \frac{c_{i+1} - c_{i}}{3h}$$

Листинг 1. Интерполяция функции кубическим сплайном

def f(x):

```
n = 32
a = 0.25
b = 2
h = (b - a) / n
y = [0] * (n + 1)
x = [0] * (n + 1)
for i in range(n + 1):
    x[i] = a + h * i
    y[i] = f(x[i])
nm = n - 1
am = [0] + [1] * (nm - 1)
bm = [0] + [4] * nm
cm = [0] + [1] * (nm - 1)
dm = [0] * (nm + 1)
k = 3 / h ** 2
for i in range(1, nm + 1):
    dm[i] = k * (y[i + 1] - 2 * y[i] + y[i - 1])
alpha = [0] * nm
beta = [0] * nm
for i in range(1, nm):
    alpha[i] = -cm[i] / (am[i - 1] * alpha[i - 1] + bm[i])
    beta[i] = (dm[i] - am[i - 1] * beta[i - 1]) / (am[i - 1] *
                                                     alpha[i - 1] + bm[i])
xr = [0] * (nm + 1)
xr[nm] = (dm[nm] - am[nm - 1] * beta[nm - 1]) / (am[nm - 1] *
                                                   alpha[nm - 1] + bm[nm])
for i in range (nm -1, 0, -1):
```

```
xr[i] = alpha[i] * xr[i + 1] + beta[i]
ci = [0, 0] + xr[1:] + [0]
ai = [0] * (n + 1)
bi = [0] * (n + 1)
di = [0] * (n + 1)
for i in range(1, n + 1):
    ai[i] = y[i - 1]
    bi[i] = (y[i] - y[i - 1]) / h - h * (ci[i + 1] + 2 * ci[i]) / 3
    di[i] = (ci[i + 1] - ci[i]) / (3 * h)
for i in range(1, n + 1):
    print("a[" + str(i) + "] = " + str(ai[i]) + ", b[" + str(i) + "] = "
          + str(bi[i]) + ", c[" + str(i) + "] = " + str(ci[i]) +
          ", d[" + str(i) + "] =", di[i])
print()
for i in range(n + 1):
    if i == 0:
        sr = ai[1]
        print("x[0] = " + str(x[0]))
        print("y(" + str(x[0]) + ") = " + str(y[0]))
        print("S1(" + str(x[0]) + ") = " + str(sr))
        print("e = " + str(abs(y[0] - sr)))
        print()
    else:
        sr1 = ai[i] + bi[i] * (h / 2) + ci[i] * ((h / 2) ** 2) + 
              di[i] * ((h / 2) ** 3)
        print("x[" + str(i) + "] - " + str(h / 2) + " = " +
              str(x[i] - h / 2))
        print("y(" + str(x[i] - h / 2) + ") = " + str(f(x[i] - h / 2) + ")
                                                         h / 2)))
        print("S" + str(i) + "(" + str(x[i] - h / 2) + ") = " +
              str(sr1))
        print("e = " + str(abs(f(x[i] - h / 2) - sr1)))
        print()
```

```
sr = ai[i] + bi[i] * h + ci[i] * (h ** 2) + di[i] * (h ** 3)
print("x[" + str(i) + "] = " + str(x[i]))
print("y(" + str(x[i]) + ") = " + str(y[i]))
print("S" + str(i) + "(" + str(x[i]) + ") = " + str(sr))
print("e = " + str(abs(y[i] - sr)))
print()
```

Результаты работы:

Значения сплайна в узлах интерполяции и в точках между узлами интерполяции, абсолютная погрешность:

7.		$S^3(x)$	
X	у	` /	ε
0.25	3.2	3.2	0.0
0.27734375	2.8227591850798985	2.8390845668900253	0.01632538181012677
0.3046875	2.5155842161830186	2.5155842161830186	0.0
0.33203125	2.261031568052441	2.2564749578012413	0.0045566102511998
0.359375	2.046976511744128	2.046976511744128	0.0
0.38671875	1.8647318252952056	1.8658666970931368	0.0011348717979311473
0.4140625	1.7079120191806525	1.7079120191806525	0.0
0.44140625	1.57171978799434	1.571371090945776	0.0003486970485639951
0.46875	1.4524822695035462	1.452482269503546	2.220446049250313e-16
0.49609375	1.3473407207911021	1.3474092711568177	6.8550365715625e-05
0.5234375	1.2540375047837735	1.2540375047837735	0.0
0.55078125	1.1707665648391303	1.1707334733247152	3.3091514415106715e-05
0.578125	1.096066363393096	1.0960663633930963	2.220446049250313e-16
0.60546875	1.028741856997096	1.0287415805148503	2.764822457645977e-07
0.6328125	0.9678067221926872	0.9678067221926872	0.0
0.66015625	0.9124399582318135	0.9124341215170898	5.836714723650438e-06
0.6875	0.8619528619528619	0.861952861952862	1.1102230246251565e-16
0.71484375	0.8157635958524715	0.8157612069671932	2.3888852782594228e-06
0.7421875	0.773377389662497	0.773377389662497	0.0
0.76953125	0.73437097298327	0.7343688919891151	2.080994154884941e-06
0.796875	0.6983802216538789	0.6983802216538788	1.1102230246251565e-16
0.82421875	0.6650902706597521	0.6650889076575162	1.363002235965638e-06
0.8515625	0.6342275384198506	0.6342275384198505	1.1102230246251565e-16
0.87890625	0.6055532455532455	0.6055522252915599	1.020261685580337e-06
0.90625	0.5788581119276427	0.5788581119276427	0.0
0.93359375	0.5539579899412536	0.5539572445247115	7.454165420472947e-07
0.9609375	0.5306902471415152	0.5306902471415151	1.1102230246251565e-16

X	y	$S^3(x)$	arepsilon
0.98828125	0.5089107526965219	0.5089101904368587	5.622596631615906e-07
1.015625	0.4884913536076327	0.4884913536076327	0.0
1.04296875	0.46931775051739816	0.4693173225499263	4.2796747184992157e-07
1.0703125	0.4512877014185374	0.4512877014185374	0.0
1.09765625	0.4343094958812965	0.43430916515571094	3.30725585584446e-07
1.125	0.41830065359477125	0.41830065359477125	0.0
1.15234375	0.4031868098065151	0.4031865513412127	2.584653024384487e-07
1.1796875	0.38890075719812955	0.38890075719812955	0.0
1.20703125	0.3753816192685511	0.3753814150270995	2.042414516401081e-07
1.234375	0.36257413472603345	0.3625741347260335	5.551115123125783e-17
1.26171875	0.3504280359539507	0.350427872968978	1.6298497274025436e-07
1.2890625	0.3388975074981901	0.3388975074981901	0.0
1.31640625	0.32794071286672904	0.3279405816220175	1.3124471154313255e-07
1.34375	0.31751937984496126	0.31751937984496126	0.0
1.37109375	0.3075984360992598	0.3075983295119532	1.0658730659196536e-07
1.3984375	0.2981456881334959	0.2981456881334959	0.0
1.42578125	0.2891315377318951	0.28913145056911294	8.716278215858964e-08
1.453125	0.28052873090884184	0.28052873090884184	0.0
1.48046875	0.2723121351255895	0.27231206308295663	7.204263285931489e-08
1.5078125	0.2644585411521637	0.26445854115216366	5.551115123125783e-17
1.53515625	0.2569464864716514	0.2569464274862605	5.8985390904986446e-08
1.5625	0.2497560975609756	0.24975609756097558	2.7755575615628914e-17
1.58984375	0.2428689487513017	0.24286889659636968	5.215493201204957e-08
1.6171875	0.23626793568389934	0.23626793568389934	0.0
1.64453125	0.22993716164298972	0.2299371287604896	3.288250011168614e-08
1.671875	0.22386183527354211	0.22386183527354211	0.0
1.69921875	0.21802817838548164	0.2180281098983832	6.848709843687573e-08
1.7265625	0.21242334271156116	0.21242334271156116	0.0
1.75390625	0.20703533462856782	0.20703542868540906	9.405684123220404e-08
1.78125	0.20185294697417702	0.20185294697417702	0.0
1.80859375	0.1968656971976317	0.19686520901242352	4.881852081750626e-07
1.8359375	0.19206377117402262	0.19206377117402265	2.7755575615628914e-17
1.86328125	0.18743797209137372	0.1874396770160116	1.7049246378852967e-06
1.890625	0.1829796738887648	0.1829796738887648	0.0
1.91796875	0.17868077878383867	0.1786743156608785	6.463122960181922e-06
1.9453125	0.17453367848050025	0.17453367848050025	0.0
1.97265625	0.17053121869348564	0.1705552531321976	2.403443871196176e-05
2.0	0.1666666666666666666666666666666666666	0.1666666666666666	2.7755575615628914e-17

Выводы:

В результате выполнения лабораторной работы был изучен метод интерполяции функции, основанный на построении кубического сплайна, была написала реализация данного метода на языке программирования руthon. Были вычислены значения сплайна в узлах интерполяции. Погрешность сплайна в узлах интерполяции составляет от 0 до 2.220446049250313e-16. Она не является методологической, а является вычислительной, обусловленной использованием чисел с плавающей запятой. Также были вычислены значения сплайна в точках между узлами интерполяции. Они являются приближенными значениями функции в этих точках. Погрешность сплайна в точках между узлами интерполяции составляет от 3.288250011168614e-08 до 0.01632538181012677.