

Digital Integrated Circuits A Design Perspective

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

The Devices

July 30, 2002

Goal of this chapter

- Present intuitive understanding of device operation
- Introduction of basic device equations
- Introduction of models for manual analysis
- Introduction of models for SPICE simulation
- Analysis of secondary and deep-submicron effects
- □ Future trends

The Diode

Cross-section of *pn*-junction in an IC process

Mostly occurring as parasitic element in Digital ICs

Depletion Region

Diode Current

$$I_D = I_S \left(e^{V_D / \phi_T} - 1 \right)$$

Forward Bias

Typically avoided in Digital ICs

Reverse Bias

The Dominant Operation Mode

Models for Manual Analysis

(b) First-order diode model

Junction Capacitance

$$C_j = \frac{C_{j0}}{(1 - V_D I \phi_0)^m}$$
 m = 0.5: abrupt junction m = 0.33: linear junction

Diffusion Capacitance

$$C_d = \frac{\mathbf{d}Q_D}{\mathbf{d}V_D} = \tau_T \frac{\mathbf{d}I_D}{\mathbf{d}V_D} \approx \frac{\tau_T I_D}{\phi_T}$$

Secondary Effects

Avalanche Breakdown

Diode Model

SPICE Parameters

Parameter Name	Symbol	SPICE Name	Units	Default Value
Saturation current	I_S	IS	A	1.0 E-14
Emission coefficient	n	N	-	1
Series resistance	R_{S}	RS	Ω	0
Transit time	τ_T	TT	sec	0
Zero-bias junction capacitance	C_{j0}	CJ0	F	0
Grading coefficient	m	М	-	0.5
Junction potential	φ _O	VJ	V	1

First Order SPICE diode model parameters.

What is a Transistor?

A Switch!

An MOS Transistor

The MOS Transistor

MOS Transistors - Types and Symbols

NMOS Enhancement NI

NMOS Depletion

PMOS Enhancement

NMOS with Bulk Contact

Threshold Voltage: Concept

The Threshold Voltage

$$V_T = \phi_{mS} - 2\phi_F - \frac{Q_B}{C_{OX}} - \frac{Q_{SS}}{C_{OX}} - \frac{Q_I}{C_{OX}}$$

$$\text{Workfunction}$$

$$\text{Difference}$$

$$\int_{\text{Surface Charge}}^{\uparrow} \text{Implants}$$

$$\text{Depletion Layer Charge}$$

$$V_T = V_{T0} + \gamma (\sqrt{\left|-2\,\phi_F + V_{SB}\right|} - \sqrt{\left|-2\,\phi_F\right|})$$
 with
$$V_{T0} = \phi_{mS} - 2\,\phi_F - \frac{\mathcal{Q}_{B0}}{C_{ox}} - \frac{\mathcal{Q}_{SS}}{C_{ox}} - \frac{\mathcal{Q}_I}{C_{ox}}$$
 and
$$\gamma = \frac{\sqrt{2\,q\,\epsilon_{Si}\,N_A}}{C_{ox}}$$

The Body Effect

Current-Voltage Relations A good ol' transistor

Transistor in Linear

MOS transistor and its bias conditions

Transistor in Saturation

Current-Voltage Relations Long-Channel Device

Linear Region: $V_{DS} \leq V_{GS} - V_{T}$

$$I_D = k_n^\prime \frac{W}{L} \Big((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^\prime 2}{2} \Big)$$

with

$$k'_n = \mu_n C_{OX} = \frac{\mu_n \varepsilon_{OX}}{t_{OX}}$$
 Process Transconductance Parameter

Saturation Mode:
$$V_{DS} \ge V_{GS} - V_{T}$$
 Channel Length Modulation
$$I_D = \frac{k'_n W}{2 L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$$

A model for manual analysis

$$\begin{split} V_{DS} &> V_{GS} - V_T \\ I_D &= \frac{\kappa'_n \underline{W}}{2} (V_{GS} - V_T)^2 (1 + \lambda V_{DS}) \end{split}$$

$$\begin{split} V_{DS} &< V_{GS} - V_T \\ I_D &= k_n' \frac{W}{L} \Big((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \Big) \end{split}$$

with

$$V_T = V_{T0} + \gamma (\sqrt{-2\phi_F + V_{SB}} - \sqrt{-2\phi_F})$$

Current-Voltage Relations The Deep-Submicron Era

Velocity Saturation

Perspective

I_D versus V_{GS}

Long Channel

Short Channel

I_D versus V_{DS}

Long Channel

Short Channel

A unified model for manual analysis

$$I_{D} = 0 \text{ for } V_{GT} \le 0$$

$$I_{D} = k' \frac{W}{L} \left(V_{GT} V_{min} - \frac{V_{min}^{2}}{2} \right) (1 + \lambda V_{DS}) \text{ for } V_{GT} \ge 0$$

$$\text{with } V_{min} = \min(V_{GT}, V_{DS}, V_{DSAT}),$$

$$V_{GT} = V_{GS} - V_{T},$$

$$\text{and } V_{T} = V_{T0} + \gamma (\sqrt{|-2\phi_{E}|} + V_{SR}| - \sqrt{|-2\phi_{E}|})$$

Simple Model versus SPICE

A PMOS Transistor

Transistor Model for Manual Analysis

Table 3.2 Parameters for manual model of generic 0.25 μm CMOS process (minimum length device).

	V _{T0} (V)	γ (V ^{0.5})	V_{DSAT} (V)	k' (A/V ²)	λ (V ⁻¹)
NMOS	0.43	0.4	0.63	115×10^{-6}	0.06
PMOS	-0.4	-0.4	-1	-30×10^{-6}	-0.1

The Transistor as a Switch

The Transistor as a Switch

The Transistor as a Switch

Table 3.3 Equivalent resistance R_{eq} (*WIL*= 1) of NMOS and PMOS transistors in 0.25 μ m CMOS process (with $L = L_{min}$). For larger devices, divide R_{eq} by *WIL*.

V_{DD} (V)	1	1.5	2	2.5
NMOS (kΩ)	35	19	15	13
PMOS (kΩ)	115	55	38	31

MOS Capacitances Dynamic Behavior

Dynamic Behavior of MOS Transistor

The Gate Capacitance

$$C_{gate} = \frac{\varepsilon_{ox}}{t_{ox}} WL$$

Top view

Cross section

Gate Capacitance

Operation Region	C_{gb}	C_{gs}	C_{gd}
Cutoff	$C_{ox}WL_{eff}$	0	0
Triode	0	$C_{ox}WL_{eff}/2$	$C_{ox}WL_{eff}/2$
Saturation	0	$(2/3)C_{ox}WL_{eff}$	0

Most important regions in digital design: saturation and cut-off

Gate Capacitance

Capacitance as a function of VGSapacitance as a function of the (with VDS = 0) degree of saturation

Measuring the Gate Cap

Diffusion Capacitance

$$\begin{split} C_{diff} &= C_{bottom} + C_{sw} = C_{j} \times AREA + C_{jsw} \times PERIMETER \\ &= C_{j}L_{S}W + C_{jsw}(2L_{S} + W) \end{split}$$

Junction Capacitance

$$C_j = \frac{C_{j0}}{(1 - V_D I \phi_0)^m}$$
 m = 0.5: abrupt junction m = 0.33: linear junction

Linearizing the Junction Capacitance

Replace non-linear capacitance by large-signal equivalent linear capacitance which displaces equal charge over voltage swing of interest

$$C_{eq} = \frac{\Delta Q_j}{\Delta V_D} = \frac{Q_j(V_{high}) - Q_j(V_{low})}{V_{high} - V_{low}} = K_{eq}C_{j0}$$

$$K_{eq} = \frac{-\phi_0^m}{(V_{high} - V_{low})(1-m)} [(\phi_0 - V_{high})^{1-m} - (\phi_0 - V_{low})^{1-m}]$$

Capacitances in 0.25 µm CMOS process

	$C_{\rm ox}$ (fF/ μ m ²)	C _O (fF/μm)	$\frac{C_j}{(ext{fF}/ ext{ ext{m}}^2)}$	m_{j}	$\phi_b \ (V)$	$rac{C_{j_{SW}}}{(ext{fF}/ ext{\mu m})}$	m_{jsw}	$egin{array}{c} oldsymbol{\phi}_{bsw} \ (V) \end{array}$
NMOS	6	0.31	2	0.5	0.9	0.28	0.44	0.9
PMOS	6	0.27	1.9	0.48	0.9	0.22	0.32	0.9

The Sub-Micron MOS Transistor

- Threshold Variations
- Subthreshold Conduction
- Parasitic Resistances

Threshold Variations

Threshold as a function of the length (for low V_{DS})

Drain-induced barrier lowering (for low L)

Sub-Threshold Conduction

The Slope Factor

S is ΔV_{GS} for $I_{D2}/I_{D1} = 10$

$$S = n \left(\frac{kT}{q}\right) \ln(10)$$

Typical values for S: 60 .. 100 mV/decade

Sub-Threshold I_D vs V_{GS}

Sub-Threshold I_D vs V_{DS}

Summary of MOSFET Operating Regions

- □ Strong Inversion $V_{GS} > V_T$
 - Linear (Resistive) $V_{DS} < V_{DSAT}$
 - Saturated (Constant Current) $V_{DS} \ge V_{DSAT}$
- □ Weak Inversion (Sub-Threshold) $V_{GS} \leq V_T$
 - Exponential in V_{GS} with linear V_{DS} dependence

Parasitic Resistances

Latch-up

(a) Origin of latchup.

(b) Equivalent circuit

Future Perspectives

25 nm FINFET MOS transistor