Arrays and Vectors

Victor Eijkhout and Carrie Arnold and Charlie Dey

Fall 2017

Fortran dimension

```
real(8), dimension(100) :: x,y
integer :: i(10,20)
```

Static, obey scope.

1-based Indexing

```
integer,parameter :: N=8
real(4),dimension(N) :: x
do i=1,N
    ... x(i) ...
```


Lower bound

```
real,dimension(-1:7) :: x
do i=-1,7
    ... x(i) ...
```


Array initialization

```
real,dimension(5) :: real5 = [ 1.1, 2.2, 3.3, 4.4, 5.5 ]

/* ... */

real5 = [ (1.01*i,i=1,size(real5,1)) ]

/* ... */

real5 = (/ 0.1, 0.2, 0.3, 0.4, 0.5 /)
```


Array sections

Use the colon notation to indicate ranges:

```
real(4),dimension(5) :: x x(2:5) = x(1:4)
```


Use of sections

Strided sections

Code:			Output:
<pre>integer,dimension(5)</pre>	::	&	
y = [0,0,0,0,0]			3
<pre>integer,dimension(3)</pre>	::	&	0
z = [3,3,3]			3
y(1:5:2) = z(1:3)			0
print '(i3)',v			3

Index arrays

```
integer, dimension(4) :: i = [2,4,6,8] real(4), dimension(10) :: x print *,x(i)
```


Multi-dimension arrays

```
real(8), dimension(20,30) :: array array(i,j) = 5./2
```


Array layout

Sometimes you have to take into account how a higher rank array is laid out in (linear) memory:

Fortran column major

Physical:

Query functions

```
Bounds: lbound, uboundsize
```

```
integer :: x(8), y(5,4)
size(x)
size(y,2)
```


Pass array to subroutine

```
real(8) function arraysum(x)
    implicit none
    real(8),intent(in),dimension(:) :: x
  /* ... */
    do i=1.size(x)
       tmp = tmp + x(i)
    end do
  /* ... */
Program ArrayComputations1D
    use ArrayFunction
    implicit none
    real(8), dimension(:) :: x(N)
  /* ... */
    print *, "Sum of one-based array: ", arraysum(x)
```


Array allocation

```
real(8), dimension(:), allocatable :: x,y
n = 100
allocate(x(n), y(n))
```

You can deallocate the array when you don't need the space anymore.

Array slicing in multi-D

```
real(8),dimension(10) :: a,b
a(1:9) = b(2:10)

or

logical,dimension(25,3) :: a
logical,dimension(25) :: b
a(:,2) = b
```

You can also use strides.

Exercise 1

Code
$$\forall_i : y_i = (x_i + x_{i+1})/2$$
:

- First with a do loop; then
- in a single array assignment statement by using sections.

Initialize the array x with values that allow you to check the correctness of your code.

Array intrinsics

- MaxVal finds the maximum value in an array.
- MinVal finds the minimum value in an array.
- Sum returns the sum of all elements.
- Product return the product of all elements.
- MaxLoc returns the index of the maximum element.

```
i = MAXLOC( array [, mask ] )
```

- MinLoc returns the index of the minimum element.
- MatMul returns the matrix product of two matrices.
- Dot_Product returns the dot product of two arrays.
- Transpose returns the transpose of a matrix.
- Cshift rotates elements through an array.

Exercise 2

The 1-norm of a matrix is defined as the maximum sum of absolute values in any column:

$$||A||_1 = \max_j \sum_i |A_{ij}|$$

while the infinity-norm is defined as the maximum row sum:

$$||A||_{\infty} = \max_{i} \sum_{i} |A_{ij}|$$

Implement these functions using array intrinsics.

Exercise 3

Compare implementations of the matrix-matrix product.

- 1. Write the regular i,j,k implementation, and store it as reference.
- 2. Use the DOT_PRODUCT function, which eliminates the k index. How does the timing change? Print the maximum absolute distance between this and the reference result.
- 3. Use the MATMUL function. Same questions.
- 4. Bonus question: investigate the j,k,i and i,k,j variants. Write them both with array sections and individual array elements. Is there a difference in timing?

Does the optimization level make a difference in timing?

Timer routines

```
integer :: clockrate,clock_start,clock_end
call system_clock(count_rate=clockrate)
/* ... */
call system_clock(clock_start)
/* ... */
call system_clock(clock_end)
print *,"time:",(clock_end-clock_start)/REAL(clockrate)
```

