PCA

PCA is "an orthogonal linear transformation that transfers the data to a new coordinate system such that the greatest variance by any projection of the data comes to lie on the first coordinate (*first principal component*), the second greatest variance lies on the second coordinate (*second principal component*), and so on."

Background for PCA

- Suppose attributes are A_1 and A_2 , and we have n training examples. x's denote values of A_1 and y's denote values of A_2 over the training examples.
- Variance of an attribute:

$$var(A_1) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{(n-1)}$$

• Covariance of two attributes:

$$cov(A_1, A_2) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{(n-1)}$$

• If covariance is positive, both dimensions increase together. If negative, as one increases, the other decreases. Zero: independent of each other.

- Covariance matrix
 - Suppose we have *n* attributes, $A_1, ..., A_n$.
 - Covariance matrix:

$$C^{n \times n} = (c_{i,j})$$
, where $c_{i,j} = \text{cov}(A_i, A_j)$

	Hours(H)	Mark(M)
Data	9	39
	1.5	56
	25	93
	14	61
	10	50
	18	75
	0	32
	16	85
	5	42
	19	70
	16	66
	20	80
Totals	167	749
Averages	13.92	62.42

Covariance:

H	M	$(H_i - H)$	$(M_t - M)$	$(H_i - H)(M_i - M)$
9	39	-4.92	-23.42	115.23
1.5	56	1.08	-6.42	-6.93
25	93	11.08	30.58	338.83
14	61	0.08	-1.42	-0.11
10	50	-3.92	-12.42	48.69
18	7.5	4.08	12.58	51.33
0	32	-13.92	-30.42	423.45
16	85	2.08	22.58	46.97
5	42	-8.92	-20.42	182.15
19	70	5.08	7.58	38.51
16	66	2.08	3.58	7.45
20	80	6.08	17.58	106.89
Total				1149.89
Average				104.54

$$\begin{pmatrix} \operatorname{cov}(H,H) & \operatorname{cov}(H,M) \\ \operatorname{cov}(M,H) & \operatorname{cov}(M,M) \end{pmatrix}$$

$$= \begin{pmatrix} var(H) & 104.5 \\ 104.5 & var(M) \end{pmatrix}$$

$$= \begin{pmatrix} 47.7 & 104.5 \\ 104.5 & 370 \end{pmatrix}$$

Covariance matrix

- Eigenvectors:
 - Let **M** be an $n \times n$ matrix.
 - v is an *eigenvector* of M if $M \times v = \lambda v$
 - λ is called the *eigenvalue* associated with v
 - For any eigenvector v of M and scalar a,
 - Thus you can always choose eigenvectors of length 1: $\mathbf{M} \times a\mathbf{v} = \lambda a\mathbf{v}$

$$\mathbf{M} \times a\mathbf{v} = \lambda a\mathbf{v}$$

- If **M** has any eigenvectors, it has *n* of them, and they are orthogonal to one another.
- Thus eigenvectors can be used as a flew basis for a n-dimensional vector space.

PCA

1. Given original data set $S = \{x^1, ..., x^k\}$, produce new set by subtracting the mean of attribute A_i from each x_i .

	\boldsymbol{x}	y		\boldsymbol{x}	у
0. 2. 1. Data 3. 2. 2. 1.	2.5	2.4		.69	.49
	0.5	0.7		-1.31	-1.21
	2.2	2.9		.39	.99
	1.9	2.2		.09	.29
	3.1	3.0	DataAdjust	1.29	1.09
	2.3	2.7		.49	.79
	2	1.6		.19	31
	1	1.1		81	81
	1.5	1.6		31	31
	1.1	0.9		71	-1.01
Mear	n: 1.81	1.91	Mean	: 0	0

2. Calculate the covariance matrix:

X

$$cov \stackrel{\mathbf{x}}{\Rightarrow} \begin{pmatrix} .616555556 & .615444444 \\ .615444444 & .716555556 \end{pmatrix}$$

3. Calculate the (unit) eigenvectors and eigenvalues of the covariance matrix:

$$eigenvalues = \begin{pmatrix} .0490833989 \\ 1.28402771 \end{pmatrix}$$

$$eigenvectors = \begin{pmatrix} -.735178656 & -.677873399 \\ .677873399 & -.735178656 \end{pmatrix}$$

Figure 3.2: A plot of the normalised data (mean subtracted) with the eigenvectors of the covariance matrix overlayed on top.

Order eigenvectors by eigenvalue, highest to lowest.

$$\mathbf{v}_1 = \begin{pmatrix} -.677873399 \\ -.735178956 \end{pmatrix} \quad \lambda = 1.28402771$$

$$\mathbf{v}_2 = \begin{pmatrix} -.735178956 \\ .677873399 \end{pmatrix} \quad \lambda = .0490833989$$

In general, you get *n* components. To reduce dimensionality to *p*,

ignore n–p components at the bottom of the list.

Construct new feature vector.

Feature vector = $(\mathbf{v}_1, \mathbf{v}_2, ... \mathbf{v}_p)$

$$FeatureVector1 = \begin{pmatrix} -.677873399 & -.735178956 \\ -.735178956 & .677873399 \end{pmatrix}$$

or reduced dimension feature vector:

$$Feature Vector 2 = \begin{pmatrix} -.677873399 \\ -.735178956 \end{pmatrix}$$

5. Derive the new data set.

 $TransformedData = RowFeatureVector \times RowDataAdjust$

$$RowFeatureVector1 = \begin{pmatrix} -.677873399 & -.735178956 \\ -.735178956 & .677873399 \end{pmatrix}$$

$$RowFeatureVector2 = (-.677873399 -.735178956)$$

This gives original data in terms of chosen components (eigenvectors)—that is, along these axes.

$$RowDataAdjust = \begin{pmatrix} .69 & -1.31 & .39 & .09 & 1.29 & .49 & .19 & -.81 & -.31 & -.71 \\ .49 & -1.21 & .99 & .29 & 1.09 & .79 & -.31 & -.81 & -.31 & -1.01 \end{pmatrix}$$

Figure 3.3: The table of data by applying the PCA analysis using both eigenvectors, and a plot of the new data points.

Transformed Data (Single eigenvector)

.827970186 1 77758033 -.992197494 -.274210416 -1 67580142 -.912949103 .0991094375 1.14457216 .438046137 1 22382056

Reconstructing the original data

We did:

 $TransformedData = RowFeatureVector \times RowDataAdjust$

so we can do

 $RowDataAdjust = RowFeatureVector^{-1} \times TransformedData$

 $= RowFeatureVector T \times TransformedData$

and

RowDataOriginal = RowDataAdjust + OriginalMean

