Tema 3 - Variables Aleatorias discretas multidimensionales

Probabilidad con R y python

06 mayo, 2023

- 1 Variables aleatorias bidimensionales discretas
- 2 Distribuciones marginales
- 3 Esperanzas de funciones de v.a. discretas bidimensionales. Covarianza y correlación
- 4 Covarianza y correlación
- **5** Distribuciones multidimensionales

"

Lección 1

Variables aleatorias bidimensionales discretas

Variables aleatorias bidimensionales discretas. Introducción

Definición de variable aleatoria bidimensional.

Sea Ω es espacio muestral de un experimento. Diremos que (X,Y) es una **variable aleatoria** bidimensional cuando tanto X como Y toman valores reales para cada elemento del espacio Ω .

Diremos que es **discreta** cuando su conjunto de valores en \mathbb{R}^2 , $(X,Y)(\Omega)$ es un conjunto finito o numerable.

Diremos que es **continua** cuando su conjunto de valores en \mathbb{R}^2 , $(X,Y)(\Omega)$ es un producto de intervalos.

Diremos que es **heterogénea** cuando X e Y no compartan ser continuas o discretas.

Función de probabilidad conjunta

Definición de función de probabilidad conjunta: Dada una variable aleatoria bidimensional discreta (X,Y)

definimos la función de probabilidad discreta bidimensional como

$$P_{XY}: \mathbb{R}^2 \longrightarrow [0,1]$$

 $(x,y) \longrightarrow P_{XY}(x,y) = P(X=x, Y=y).$

Llamaremos dominio de la variable conjunta a

$$D_{XY} = \{(x, y) \in \mathbb{R}^2 | P_{XY}(x, y) = P(X = x, Y = y) > 0\}.$$

Es decir es el conjunto de valores posibles que toma la v.a. (X, Y).

Función de probabilidad conjunta

Por tanto, de cara a calcular P_{XY} basta calcular $P_{XY}(x_i, y_j)$ para $(x_i, y_j) \in D_{XY}$:

X/Y	<i>y</i> ₁	<i>y</i> ₂		УN
x_1	$P_{XY}(x_1,y_1)$	$P_{XY}(x_1,y_2)$		$P_{XY}(x_1,y_N)$
<i>X</i> ₂	$P_{XY}(x_2,y_1)$	$P_{XY}(x_2,y_2)$		$P_{XY}(x_2,y_N)$
:	:	:	:	:
x_M	$P_{XY}(x_M,y_1)$	$P_{XY}(x_M,y_2)$		$P_{XY}(x_M,y_N)$

Propiedades de la función de probabilidad conjunta

Sea (X, Y) una variable aleatoria bidimensional discreta con dominio $D_{XY} = \{(x_i, y_j) | i = 1, 2, ..., j = 1, 2, ...\}.$

Su función de probabilidad conjunta verifica las siguientes propiedades:

La suma de todos los valores de la **función de probabilidad conjunta** sobre el conjunto de valores siempre vale 1:

$$\sum_{i}\sum_{j}P_{XY}(x_{i},y_{j})=1.$$

Propiedades de la función de probabilidad conjunta

Sea B un subconjunto cualquiera del dominio D_{XY} . El valor de la probabilidad $P((X,Y) \in B)$ se puede calcular de la forma siguiente:

$$P((X,Y)\in B)=\sum_{(x_i,y_i)\in B}P_{XY}(x_i,y_j).$$

Es decir, la probabilidad de que la variable bidimensional tome valores en B es igual a la suma de todos aquellos valores de la función de probabilidad conjunta que están en B.

Función de distribución acumulada

Definición función de distribución conjunta

La función de distribución acumulada conjunto o simplemente distribución conjunta se define como

$$F_{XY}(x,y)=P(X\leq x,\,Y\leq y).$$

Propiedad

La función de distribución conjunta se puede obtener conociendo la función de probabilidad conjunta

$$F_{XY}(x,y) = \sum_{x_i \leq x, y_j \leq y} P_{XY}(x_i, y_j).$$

Lección 2

Distribuciones marginales

Variables aleatorias marginales y su distribución

Consideremos una variable aleatoria bidimensional discreta (X, Y) con función de probabilidad conjunta $P_{XY}(x_i, y_j)$, para cada $(x_i, y_j) \in D_{XY}$.

La tabla de la **función de probabilidad conjunta** contiene suficiente información para obtener las **funciones de probabilidad** de las variables $X \in Y$.

Dichas variables X e Y se denominan variables marginales Y sus correspondientes funciones de probabilidad, funciones de probabilidad marginales Y de la variable Y de la variable Y.

Veamos cómo obtener P_X y P_Y a partir de la tabla P_{XY} .

Funciones de probabilidad marginales

Proposición. Cálculo de las funciones de probabilidad marginales.

Sea (X, Y) una variable aleatoria bidimensional discreta con función de probabilidad conjunta $P_{XY}(x_i, y_j)$, con $(x_i, y_j) \in D_{XY}$.

Las **funciones de probabilidad marginales** $P_X(x_i)$ y $P_Y(y_j)$ se calculan usando las expresiones siguientes:

$$P_X(x_i) = \sum_j P_{XY}(x_i, y_j), i = 1, 2, ...,$$

 $P_Y(y_j) = \sum_i P_{XY}(x_i, y_j), j = 1, 2, ...$

Variables aleatorias marginales

valores de la variable Y ($y_1, y_2, ...$) y en la primera columna están los valores de la variable X ($x_1, x_2, ...$)

Para obtener la **función de probabilidad marginal** de la variable X en el valor x_i

• Podemos representar P_{XY} como una tabla bidimensional en la primera fila están los

- Para obtener la función de probabilidad marginal de la variable X en el valor x_i , $P_X(x_i)$, hay que sumar todos los valores de $P_{XY}(x_i, y_j)$ correspondientes a la fila i-ésima
- De forma análoga para obtener la **función de probabilidad marginal** de la variable Y en el valor y_j , $P_Y(y_j)$, hay que sumar todos los valores de $P_{XY}(x_i, y_j)$ correspondientes a la columna j-ésima.

Variables aleatorias marginales

$X \setminus Y$	<i>y</i> 1	<i>y</i> 2		УN	$P_X(x_i) = \sum_j P_{XY}(x_i, y_j)$
<i>x</i> ₁	$P_{XY}(x_1,y_1)$	$P_{XY}(x_1,y_2)$		$P_{XY}(x_1,y_N)$	$P_X(x_1)$
<i>x</i> ₂	$P_{XY}(x_2,y_1)$	$P_{XY}(x_2,y_2)$		$P_{XY}(x_2,y_N)$	$P_X(x_2)$
:	:	:	:	:	
x_{M}	$P_{XY}(x_M,y_1)$	$P_{XY}(x_M, y_2)$		$P_{XY}(x_M, y_N)$	$P_X(x_M)$
$P_Y(y_j) =$	$P_Y(y_1)$	$P_Y(y_2)$		$P_Y(y_N)$	1
$\sum_{i} P_{XY}(x_i, y_j)$;)				

Independencia de variables aleatorias discretas

Recordemos que dos sucesos A y B son independientes si

$$P(A \cap B) = P(A) \cdot P(B).$$

¿Cómo trasladar dicho concepto al caso de variables aleatorias?

Dada una variable aleatoria bidimensional discreta (X, Y) con

$$D_{XY} = \{(x_i, y_j), i = 1, 2, ..., j = 1, 2, ...\}$$

Así que al menos todos los sucesos de la forma $\{X = x_i, Y = y_j\}$ deberán ser independientes.

Independencia de variables aleatorias discretas

Definición de independencia para variables aleatorias bidimensionales discretas.

Dada (X, Y) una variable aleatoria bidimensional discreta con función de probabilidad P_{XY} y funciones de probabilidad marginales P_X y P_Y .

Diremos que X e Y son independientes si:

$$P_{XY}(x_i, y_j) = P_X(x_i) \cdot P_Y(y_j), i = 1, 2, ..., j = 1, 2, ...$$

o dicho de otra forma:

$$P(X = x_i, Y = y_j) = P(X = x_i) \cdot P(Y = y_j), i = 1, 2, ..., j = 1, 2, ...$$

Propiedad

Las v.a. $X \in Y$ son independientes si y solo si $F_{XY}(x,y) = F_X(x) \cdot F_Y(y)$.

Esperanza y varianza de las distribuciones marginales

•
$$E(X) = \sum_{x \in D_X} x \cdot P_X(x) = \sum_{x \in D_X} x \cdot P(X = x).$$

• $E(Y) = \sum_{x \in D_X} y \cdot P_X(y) = \sum_{x \in D_X} y \cdot P(Y = y).$

•
$$E(Y) = \sum_{y \in D_Y} y \cdot P_Y(y) = \sum_{y \in D_Y} y \cdot P(Y = y).$$

•
$$\sigma_X^2 = Var(X) = E(X - E(X)) = E(X) - E(X)^2$$
.
• $\sigma_Y^2 = Var(Y) = E(Y - E(Y)) = E(Y) - E(Y)^2$.

•
$$\sigma_Y^2 = Var(Y) = E(Y - E(Y)) = E(Y) - E(Y)^2$$
.

Distibuciones condicionales

• Dado un valor fijo $y \in D_Y$ definimos la distribución condicional de la v.a. X condicionada a que Y = y como

$$P(X = x | Y = y) = \frac{P_{XY}(x, y)}{P_{Y}(y)} = \frac{P(X = x, Y = y)}{P(Y = y)}, \text{ para todo } x \in D_X.$$

• Dado un valor fijo $y \in D_Y$ definimos la distribución condicional de la v.a. Y condicionada a que X = x como

$$P(Y = y | X = x) = \frac{P_{XY}(x, y)}{P_{X}(x)} = \frac{P(X = x, Y = y)}{P(X = x)}$$
, para todo $y \in D_{Y}$.

Distibuciones condicionales e independencia

Propiedad

Si las variables X e Y son independientes se cumple que

$$P(X = x | Y = y) = P(X = x)$$

②
$$P(Y = y | X = x) = P(Y = y)$$
.

Esperanzas condicionales

$$E(X|Y=y) = \sum_{x \in D_X} x \cdot P(X=x|Y=y)$$

$$E(Y|X=x) = \sum_{y \in D_Y} y \cdot P(Y=y|X=x)$$

Propiedad

Si las variables X e Y son independientes se cumple que

- **2** E(Y|X=x) = E(Y)

Lección 3

Esperanzas de funciones de v.a. discretas bidimensionales. Covarianza y correlación

Esperanzas de funciones de v.a. discretas bidimensionales

Definición:

Sea (X,Y) una variable aleatoria bidimensional discreta y g(X,Y) una función de esa variable bidimensional entonces $E(g(X,Y)) = \sum_i \sum_j g(x_i,y_j) \cdot P(X=x_i,Y=y_j)$.

En particular:

•
$$E(X + Y) = \sum_{i} \sum_{j} (x_i + y_j) \cdot P(X = x_i, Y = y_j) = \mu_X + \mu_Y$$
.

$$Var(X + Y) = E((X + Y - E(X + Y))^2) = \sum_{i} \sum_{j} (x_i + y_j - (\mu_X + \mu_Y))^2 \cdot P(X = x_i, Y = y_j).$$

Esperanzas de funciones de v.a. discretas bidimensionales

Propiedad: Sea (X, Y) una variable aleatoria bidimensional entonces se cumple que:

- $E(X + Y) = E(X) + E(Y) = \mu_X + \mu_Y$
- Si X e Y son independientes entonces $E(X \cdot Y) = E(X) \cdot E(Y) = \mu_X \cdot \mu_Y$
- Si X e Y son independientes entonces $Var(X + Y) = Var(X) + Var(Y) = \sigma_X^2 + \sigma_y^2$

Lección 4

Covarianza y correlación

Medida de la variación conjunta: covarianza

El momento conjunto centrado en las medias para k = 1 y l = 1 se denomina covarianza entre las variables X e Y:

$$\sigma_{XY} = Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y)).$$

La covarianza puede calcularse también con:

$$Cov(X, Y) = E(X \cdot Y) - E(X) \cdot E(Y) = E(X \cdot Y) - \mu_X \cdot \mu_Y$$

Propiedad. Si las variables X e Y son **independientes**, entonces Cov(X,Y) = 0.

Es una consecuencia de que si X e Y son independientes entonces que vimos que $E(X \cdot Y) = E(X) \cdot E(Y) = \mu_X \cdot \mu_Y$.

Covarianza entre las variables

La **covarianza** es una medida de lo relacionadas están las variables X e Y:

- Si cuando $X \ge \mu_X$, también ocurre que $Y \ge \mu_Y$ o viceversa, cuando $X \le \mu_X$, también ocurre que $Y \le \mu_Y$, el valor $(X \mu_X)(Y \mu_Y)$ será positivo y la **covarianza** será positiva.
- Si por el contrario, cuando $X \ge \mu_X$, también ocurre que $Y \le \mu_Y$ o viceversa, cuando $X \le \mu_X$, también ocurre que $Y \ge \mu_Y$, el valor $(X \mu_X)(Y \mu_Y)$ será negativo y la **covarianza** será negativa.
- En cambio, si a veces ocurre una cosa y a veces ocurre otra, la **covarianza** va cambiando de signo y puede tener un valor cercano a 0.

Propiedades de la covarianza

• Sea (X, Y) una variable aleatoria bidimensional. Entonces la **varianza de la suma/resta** se calcula usando la expresión siguiente:

$$Var(X \pm Y) = Var(X) + Var(Y) \pm 2 \cdot Cov(X, Y).$$

• Sea (X, Y) una variable aleatoria bidimensional donde las variables X e Y son **independientes**. Entonces:

$$Var(X + Y) = Var(X) + Var(Y).$$

Coeficiente de correlación

La **covarianza** depende de las unidades en las que se midan las variables X e Y ya que si a > 0 y b > 0, entonces:

$$Cov(a \cdot X, b \cdot Y) = a \cdot b \cdot Cov(X, Y).$$

Por tanto, si queremos "medir" la relación que existe entre las variables X e Y tendremos que "normalizar" la **covarianza** definiendo el **coeficiente de correlación** entre las variables X e Y:

Coeficiente de correlación entre las variables

Definición del coeficiente de correlación. Sea (X, Y) una variable aleatoria bidimensional. Se define el **coeficiente de correlación** entre las variables X e Y como:

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{Var(X)} \cdot \sqrt{Var(Y)}} = \frac{E(X \cdot Y) - \mu_X \cdot \mu_Y}{\sqrt{E(X^2) - \mu_X^2} \cdot \sqrt{E(Y^2) - \mu_Y^2}}.$$

Coeficiente de correlación entre las variables

Observación. Si las variables X e Y son independientes, su coeficiente de correlación $\rho_{XY}=0$ es nulo ya que su covarianza lo es.

Notemos también que la correlación no tiene unidades y es invariante a cambios de escala.

Además, la covarianza de las variables tipificadas $\frac{X-\mu_X}{\sigma_X}$ y $\frac{Y-\mu_Y}{\sigma_Y}$ coincide con la correlación de X e Y.

El **coeficiente de correlación** es un valor normalizado ya que siempre está entre -1 y 1: $-1 \le \rho_{XY} \le 1$.

Coeficiente de correlación entre las variables

Observación. Si las variables X e Y tiene dependencia lineal, por ejemplo si $Y = a \cdot X + b$ para algunas constantes $a,b \in \mathbb{R}$, entonces su **coeficiente de correlación** $\rho_{XY} = \pm 1$, es decir toma el valor 1 si la pendiente a > 0 y -1 si a < 0.

De forma similar:

- si Cor(X, Y) = +1 X e Y tienen relación lineal con pendiente positiva.
- si Cor(X, Y) = -1 X e Y tienen relación lineal con pendiente negativa.

Matriz de varianzas-covarianzas y matriz de correlaciones

Sea (X, Y) una variable bidimensional Notemos que

- $Cov(X,X) = \sigma_{XX} = \sigma_X^2$. $Cov(Y,Y) = \sigma_{YY} = \sigma_Y^2$.
- $\sigma_{XY} = Cov(X, Y) = Cov(Y, X) = \sigma_{YX}$.

Se denomina matriz de varianzas-covarianzas y se suele denotar como Σ a

$$\Sigma = \begin{pmatrix} Cov(X,X) & Cov(X,Y) \\ Cov(Y,X) & Cov(Y,Y) \end{pmatrix} = \begin{pmatrix} \sigma_{XX} & \sigma_{XY} \\ \sigma_{YX} & \sigma_{YY} \end{pmatrix} = \begin{pmatrix} \sigma_{X}^2 & \sigma_{XY} \\ \sigma_{YX} & \sigma_{Y}^2 \end{pmatrix}$$

Matriz de varianzas-covarianzas y matriz de correlaciones

Sea (X, Y) una variable bidimensional Notemos que

- $Cor(X, X) = \rho_{XX} = 1$.
- $Cor(Y, Y) = \rho_{YY} = 1$.
- $\rho_{XY} = Cor(X, Y) = Cor(Y, X) = \rho_{YX}$.

Se denomina matriz de correlaciones a

$$R = \begin{pmatrix} Cor(X,X) & Cor(X,Y) \\ Cor(Y,X) & Cor(Y,Y) \end{pmatrix} = \begin{pmatrix} 1 & \rho_{XY} \\ \rho_{YX} & 1 \end{pmatrix} = \begin{pmatrix} 1 & \rho_{XY} \\ \rho_{XY} & 1 \end{pmatrix}.$$

Lección 5

Distribuciones multidimensionales

Conceptos básicos. Función de probabilidad y de distribución.

Consideremos un vector compuesto de n variables aleatorias discretas $(X_1, X_2, ..., X_n)$ Su función de probabilidad es

$$P_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = P((X_1,X_2,...,X_n) = (x_1,x_2,...,x_n))$$

= $P(X_1 = x_1, X_2 = x_2,...,X_n = x_n).$

Su función de distribución de probabilidad es

$$F_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = P(X_1 \le x_1,X_2 \le x_2,...,X_n \le x_n).$$

Independencia

Definición independencia

Diremos que la variables X_1, X_2, \dots, X_n son **INDEPENDIENTES** cuando

$$P_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = P_{X_1}(x_1) \cdot P_{X_2}(x_2) \cdot ... \cdot P_{X_n}(x_n).$$

Propiedad

Las variables X_1, X_2, \dots, X_n son **INDEPENDIENTES** si y solo si

$$F_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = F_{X_1}(x_1) \cdot F_{X_2}(x_2) \cdot ... \cdot F_{X_n}(x_n).$$

Conceptos básicos

Vector de medias

Si denotamos $E(X_i) = \mu_i$ para i = 1, 2, ..., n el **vector de medias** es

$$E(X_1, X_2, ..., X_n) = (E(X_1), E(X_2), ..., E(X_n)) = (\mu_1, \mu_2, ..., \mu_n).$$

Covarianza y varianzas

Si denotamos $\sigma_{ij} = Cov(X_i, X_j)$ para todo i, j en $1, 2, \dots n$ entonces tenemos que

- $\sigma_{ii} = Cov(X_i, X_i) = \sigma_{ii} = \sigma_i^2$.
- $\sigma_{ij} = Cov(X_i, X_j) = Cov(X_j, X_i) = \sigma_{ji}$.

Conceptos básicos

Si denotamos $\rho_{ij} = Cor(X_i, X_j)$ para todo i, j en $1, 2, \dots n$ entonces tenemos que

- $\rho_{ii} = Cor(X_i, X_i) = 1.$
- $\rho_{ij} = Cor(X_i, X_j) = Cor(X_j, X_i) = \rho_{ji}$.

Matrices de varianzas-covarianzas y de correlaciones

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1n} \\ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \dots & \sigma_n^2 \end{pmatrix}, \qquad R = \begin{pmatrix} 1 & \rho_{12} & \dots & \rho_{1n} \\ \rho_{21} & 1 & \dots & \rho_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{n1} & \rho_{n2} & \dots & 1 \end{pmatrix}.$$