FCC SAR Test Report

APPLICANT : Essential Products Inc.

EQUIPMENT : Smartphone

BRAND NAME : Essential Products Inc

MODEL NAME : A11

FCC ID : 2ALBB-A11

STANDARD : FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2013

We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Eric Huang / Manager

ENc huans

Approved by: Jones Tsai / Manager

Report No. : FA740822

SPORTON INTERNATIONAL INC.

No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Taoyuan City, Taiwan (R.O.C.)

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

FCC ID: 2ALBB-A11

Issued Date: Jun. 26, 2017 Page 1 of 109

Form version.: 170509

Table of Contents

1. Statement of Compliance	
2. Administration Data	
3. Guidance Applied	5
4. Equipment Under Test (EUT) Information	6
4.1 General Information	6
4.2 General LTE SAR Test and Reporting Considerations	7
5. RF Exposure Limits	10
5.1 Uncontrolled Environment	
5.2 Controlled Environment	10
6. Specific Absorption Rate (SAR)	11
6.1 Introduction	11
6.2 SAR Definition	11
7. System Description and Setup	12
7.1 E-Field Probe	
7.2 Data Acquisition Electronics (DAE)	13
7.3 Phantom	
7.4 Device Holder	
8. Measurement Procedures	
8.1 Spatial Peak SAR Evaluation	
8.2 Power Reference Measurement	
8.3 Area Scan	
8.4 Zoom Scan	
8.5 Volume Scan Procedures	
8.6 Power Drift Monitoring	
9. Test Equipment List	19
10. System Verification	20
10.1 Tissue Simulating Liquids	
10.3 System Performance Check Results	
11. RF Exposure Positions	
11.1 Ear and handset reference point	
11.2 Definition of the cheek position	
11.3 Definition of the tilt position	
11.4 Body Worn Accessory	
12. Conducted RF Output Power (Unit: dBm)	
13. Antenna Location	
14. SAR Test Results	
14.1 Head SAR	
14.2 Hotspot SAR	
14.3 Body Worn Accessory SAR	
15. Simultaneous Transmission Analysis	99
15.1 Head Exposure Conditions	
15.2 Hotspot Exposure Conditions	
15.3 Body-Worn Accessory Exposure Conditions	105
16. Uncertainty Assessment	105
17. References	
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix C. DAST Campiation Certificate	

Revision History

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA740822	Rev. 02	Initial issue of report	Jun. 15, 2017
FA740822	Rev. 01	Revised typo on page 99	Jun. 26, 2017

Page 3 of 109

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

FCC ID: 2ALBB-A11

Issued Date: Jun. 26, 2017 Form version.: 170509

Report No. : FA740822

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Essential Products Inc., Smartphone, A11, are as follows.

Report No.: FA740822

		ŀ	Highest		
Equipment Class	Frequency Band	Head (Separation 0mm)	Body-worn (Separation 10mm)	Hotspot (Separation 10mm)	Simultaneous Transmission
			1g SAR (W/kg)		1g SAR (W/kg)
	GSM850	0.27	0.35	0.35	
	GSM1900	0.14	0.38	0.40	
	WCDMA II	0.25	0.61	0.63	
	WCDMA IV	0.16	0.55	0.56	
	WCDMA V	0.22	0.40	0.47	
	CDMA BC0	0.14	0.24	0.38	
	CDMA BC1	0.28	0.61	0.56	
Licensed	CDMA BC10	0.15	0.27	0.42	0.92
Licensed	LTE Band 7	0.14	0.76	0.63	0.92
	LTE Band 12 / 17	0.17	0.27	0.27	
	LTE Band 13	0.19	0.34	0.41	
	LTE Band 2 / 25	0.20	0.59	0.64	
	LTE Band 5 / 26	0.22	0.31	0.39	
	LTE Band 30	0.10	0.27	0.32	
	LTE Band 38 / 41	0.21	0.70	0.70	
	LTE Band 4 / 66	0.22	0.53	0.53	
DTS	2.4GHz WLAN	0.14	0.07	0.08	0.92
NII	5GHz WLAN	0.11	0.05	0.05	0.89
DSS	Bluetooth	0.05			0.92
Date of	Testing:		2017/5/13 ~	2017/6/12	

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications

2. Administration Data

Testing Laboratory							
Test Site	SPORTON INTERNATIONAL INC.						
Test Site Location	No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978						

Report No. : FA740822

Applicant Applicant						
Company Name	Essential Products Inc.					
Address	380 Portage Ave., Palo Alto, CA 94306					

Manufacturer Manufacturer						
Company Name FIH Mobile Limited						
Address	No.4, Mingsheng St., Tu-Cheng Dist., New Taipei City 23679, Taiwan					

3. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB 941225 D01 3G SAR Procedures v03r01
- FCC KDB 941225 D05 SAR for LTE Devices v02r05
- FCC KDB 941225 D05A Rel.10 LTE SAR Test Guidance v01r02
- FCC KDB 941225 D06 Hotspot Mode SAR v02r01

4. Equipment Under Test (EUT) Information

4.1 General Information

	Product Feature & Specification
Equipment Name	Smartphone
Brand Name	Essential Products Inc
Model Name	A11
FCC ID	2ALBB-A11
IMEI Code	001064000162524
Wireless Technology and Frequency Range	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz WCDMA Band IV: 1712.4 MHz ~ 1752.6 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz CDMA2000 BC0: 824.7 MHz ~ 848.31 MHz CDMA 2000 BC1: 1851.25 MHz ~ 1908.75 MHz CDMA 2000 BC10: 817.9 MHz ~ 823.1 MHz LTE Band 2: 1850.7 MHz ~ 1909.3 MHz LTE Band 4: 1710.7 MHz ~ 1754.3 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 7: 2502.5 MHz ~ 2567.5 MHz LTE Band 12: 699.7 MHz ~ 715.3 MHz LTE Band 13: 779.5 MHz ~ 715.3 MHz LTE Band 13: 779.5 MHz ~ 713.5 MHz LTE Band 25: 1850.7 MHz ~ 848.3 MHz LTE Band 26: 184.7 MHz ~ 848.3 MHz LTE Band 66: 1710.7 MHz ~ 1914.3 MHz LTE Band 66: 1710.7 MHz ~ 2312.5 MHz LTE Band 66: 1710.7 MHz ~ 24687.5 MHz LTE Band 66: 1710.7 MHz ~ 2687.5 MHz LTE Band 66: 1710.7 MHz ~ 2779.3 MHz WLAN 2.4GHz Band: 5180 MHz ~ 2262 MHz WLAN 5.5GHz Band: 5500 MHz ~ 5320 MHz WLAN 5.5GHz Band: 5500 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz
Mode HW Version	GSM/GPRS/EGPRS/DTM RMC/AMR 12.2Kbps HSDPA HSUPA DC-HSDPA HSPA+ (16QAM uplink) CDMA2000: 1xRTT/1xEv-Do(Rev.0)/1xEv-Do(Rev.A) LTE: QPSK, 16QAM, 64QAM WLAN 2.4GHz: 802.11b/g/n HT20/HT40 WLAN 5GHz: 802.11a/n/ac HT20/HT40/VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE NFC:ASK DVT
SW Version	NMF26X 99
GSM / (E)GPRS Dual Transfer mode	Class A – EUT can support Packet Switched and Circuit Switched Network simultaneously.
EUT Stage	Identical Prototype
Remark :) MHz ~ 5650 MHz is notched.

Report No.: FA740822

FCC ID : 2ALBB-A11 Page 6 of 109 Form version. : 170509

4.2 General LTE SAR Test and Reporting Considerations

Summarize	d necessary item	ns address	ed in KD	B 94122	5 D05 v0	2r05		
FCC ID	2ALBB-A11							
Equipment Name	Smartphone							
Operating Frequency Range of each LTE transmission band	LTE Band 2: 185 LTE Band 4: 171 LTE Band 5: 824 LTE Band 7: 250 LTE Band 12: 69 LTE Band 17: 70 LTE Band 25: 18 LTE Band 25: 18 LTE Band 30: 23 LTE Band 30: 23 LTE Band 41: 24 LTE Band 66: 17	0.7 MHz ~ .7 MHz ~ 8 2.5 MHz ~ 9.7 MHz ~ 9.5 MHz ~ 6.5 MHz ~ 50.7 MHz ~ 4.7 MHz ~ 07.5 MHz ~ 98.5 MHz ~	1754.3 M 48.3 MHz 2567.5 M 715.3 MH 784.5 MH 713.5 MH - 1914.3 M 848.3 MH - 2312.5 M - 2687.5 M	Hz Hz z z z MHz z MHz MHz				
Channel Bandwidth	LTE Band 02:1.4 LTE Band 04:1.4 LTE Band 05:1.4 LTE Band 07: 5M LTE Band 12:1.4 LTE Band 13: 5M LTE Band 17: 5M LTE Band 25:1.4 LTE Band 26:1.4 LTE Band 30: 5M LTE Band 41: 5M LTE Band 66:1.4	MHz, 3MH: MHz, 3MH: MHz, 10MH: MHz, 10MH: IHz, 10MH: IHz, 10MH: MHz, 3MH: MHz, 3MH: IHz, 10MH:	z, 5MHz, z, 5MHz, z, 5MHz, z, 15MHz, z, 5MHz, z z z, 5MHz, z, 5MHz, z, 5MHz,	10MHz, 10MHz, 10MHz 20MHz 10MHz 10MHz, 10MHz,	15MHz, 2 15MHz, 2 15MHz	0MHz 0MHz		
uplink modulations used	QPSK / 16QAM /	64QAM						
LTE Voice / Data requirements	Voice and Data							
LTE MPR permanently built-in by design	Modulation OPSK 16 QAM 16 QAM	1.4 MHz > 5 ≤ 5 > 5	3.0 MHz > 4 ≤ 4 > 4	5 MHz > 8 ≤ 8 > 8	10 MHz > 12 ≤ 12 > 12	15 MHz > 16 ≤ 16 > 16	20 MHz > 18 ≤ 18 > 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2
	Modulation	Channe	bandwidti		RB]	awiath conf	iguration	MPK (db)
		1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
	64 QAM	MH2 ≤5	MH2 ≤4	≤8	≤ 12	¥16	≤ 18	≤ 2
	64 QAM	> 5	>4	> 8	> 12	> 16	> 18	≤ 3
LTE A-MPR	In the base statio A-MPR during S (Maximum TTI)	AR testing	and the	LTE SA	AR tests	was trans	mitting or	all TTI frames
Spectrum plots for RB configuration	A properly configured base station simulator was used for the SAR and power measurement; therefore, spectrum plots for each RB allocation and offset configuration are not included in the SAR report.							
LTE Carrier Aggregation Combinations	Inter-Band and Intra-Band possible combinations and the detail power verification please referred to section 12, page65.							
LTE Carrier Aggregation Additional Information	of 3 carriers in th Specifications. U features are not	his device does not support full CA features on 3GPP Release 10. It supports a maximum 3 carriers in the downlink only. All uplink communications are identical to the Release 8 pecifications. Uplink communications are done on the PCC. The following LTE Release atures are not supported: Relay, HetNet, Enhanced MIMO, elCl, WiFi Offloading, MDH, MBMA, Cross-Carrier Scheduling, Enhanced SC-FDMA.						

Report No.: FA740822

FCC ID : 2ALBB-A11 Page 7 of 109 Form version. : 170509

FCC SAR	Test R	eport
---------	--------	-------

			Transm	ission (H, I	M, L) cł		ers and frec	quenci	es in	each LTE	band		
	Bandwidtl	h 1 4 MH:	Randwid	th 3 MHz	Rand	width 5 MHz		Bandwidth 10 MHz Bandwidt			h 15 MHz Bandwidth 20 MHz		th 20 MHz
	Ch. #	Freq.	Ch. #	Freq.	Ch.	Freq.	Ch. #	Fre	eq.	Ch. #	Freq.	Ch. #	Freq.
	18607	(MHz) 1850.7	18615	(MHz) 1851.5	1862	(IVIHZ)		(MF		18675	(MHz) 1857.5	18700	(MHz) 1860
M	18900	1880	18900	1880	1890		18900	188		18900	1880	18900	1880
Н	19193	1909.3	19185	1908.5	1917			190		19125	1902.5	19100	1900
						LTE E	Band 4						
	Bandwidtl	h 1.4 MHz	Bandwid	th 3 MHz	Band	width 5 MHz	Bandwidt	th 10 N	ИΗz	Bandwidt	h 15 MHz	Bandwid	th 20 MHz
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. i	Freq. (MHz)	Ch. #	Fre (MF		Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)
L	19957	1710.7	19965	1711.5	1997	5 1712.5	20000	171	15	20025	1717.5	20050	1720
М	20175	1732.5	20175	1732.5	2017			173		20175	1732.5	20175	1732.5
Н	20393	1754.3	20385	1753.5	2037			175	50	20325	1747.5	20300	1745
		alia dalah a	4 8 41 1-		and a Malaka		Band 5		L = N	11.1-	D	aladalah 40	NAL I—
	Вап Сh. #	dwidth 1.4	reg. (MHz)	Ch. #	ndwidth	Freq. (MHz)	Ва Сh. #	ndwidt +		inz eq. (MHz)	Ch. #	ndwidth 10	eq. (MHz)
	20407		824.7	20415		825.5	2042			826.5	20450		829
M	20525		836.5	20525		836.5	2052	_		836.5	20525		836.5
Н	20643	3	848.3	20635	5	847.5	2062	5		846.5	20600)	844
						LTE E	Band 7						
	Bai	ndwidth 5	MHz	Ban	dwidth	10 MHz	Bar	ndwidth	n 15 N	ЛНz	Ban	ndwidth 20	MHz
	Ch. #	F	req. (MHz)	Ch. #		Freq. (MHz)	Ch. #	#	Fre	q. (MHz)	Ch. #	Fr	eq. (MHz)
L	20775	5	2502.5	20800)	2505	2082	5		2507.5	20850)	2510
М	21100		2535	21100		2535	21100		2535		21100		2535
Н	21425	5	2567.5	21400)	2565	2137	5	2562.5		21350		2560
	Pon	dwidth 1.4	1 MU-	Por	ndwidth		and 12	ndwidt	h E N	111-	Por	ndwidth 10	MUZ
	Ch. #		req. (MHz)	Ch. #		Freq. (MHz)	Ch. #			inz eq. (MHz)	Ch. #		eq. (MHz)
L	23017		699.7	23025		700.5	2303			701.5	23060		704
M	23095		707.5	23095		707.5	2309			707.5	23095		707.5
Н	23173	3	715.3	23165	5	714.5	2315	55 713.5		23130)	711	
						LTE B	and 13						
	Bandwidth 5 MHz Bandwidth 10 MHz												
		Channel	#		Freq.(N	Hz)		Channel #			Freq.(MHz)		
L		23205			779.	5							
M		23230			782	_		23230				782	
Н		23255			784.		and 17						
			Bandwid	th 5 MHz		LIED	aliu 17			Bandwidt	h 10 MHz		
		Channel			Frea.(N	Hz)		Chani	nel #	Danawia		Freg. (MHz	7)
L		23755	··		706.5		23780			709			
М		23790			710			237	'90			710	
Н		23825			713.5			238	300			711	
						LTE B	and 25						
	Bandwidtl		Bandwid	th 3 MHz	Band	width 5 MHz	Bandwidt			Bandwidt	h 15 MHz	Bandwid	th 20 MHz
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. i	Freq. (MHz)	Ch. #	Fre (MF		Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)
L	26047	1850.7	26055	1851.5	2606	5 1852.5	26090	185	55	26115	1857.5	26140	1860
М	26340	1880	26340	1880	2634		26340	188		26340	1880	26340	1880
Н	26683	1914.3	26675	1913.5	2666	5 1912.5	26640	191	10	26615	1907.5	26590	1905

Report No. : FA740822

FCC ID : 2ALBB-A11 Page 8 of 109 Form version. : 170509

SPORTON LAB. FCC SAR Test Report

						LTE Ba	and 26						
	Bandwidt	th 1.4 MHz	Ва	Bandwidth 3 MHz Bandw		Bandwi	dth 5 MHz	lth 5 MHz Bandwidth 10 M			Hz Bandwidth 15 MHz		
	Ch. #	Freq. (MHz)	Ch.	# Fr	eq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz) Ch. #	Freq. (MHz)		
L	26697	814.7	267	05	815.5	26715	816.5	26740	819	26765	821.5		
М	26865	831.5	268	65	831.5	26865	831.5	26865	831.5	26865	831.5		
Н	27033	848.3	270	25	847.5	27015	846.5	26990	844	26965	841.5		
	LTE Band 30												
		Ва	h 5 MHz				Ва	andwidth 10	MHz				
	C	Channel # Freq.(MHz)				Hz)	С	hannel #		Freq.	(MHz)		
L		27685			2307.	5							
М		27710			2310			27710			2310		
Н		27735			2312.								
						LTE Ba	and 41						
	Band	Bandwidth 5 MHz Bandwidth 10 MHz Bandwi				vidth 15 MHz		Bandwidt	h 20 MHz				
	Ch. #	Freq. (N	1Hz)	Ch.	#	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)		
L	39675	2498.	.5	3970	00	2501	39725	2503	3.5	39750	2506		
L M	40148	2545.	.8	40160		2547	40173	2548	3.3	40185	2549.5		
М	40620	2593	3	40620		2593	40620	259	3	40620	2593		
H	41093	2640.	.3	4108	30	2639	41068	2637	2637.8 41055		2636.5		
Н	41565	2687.	.5	4154	10	2685	41515	2682	2.5	41490	2680		

Report No. : FA740822

5. RF Exposure Limits

5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA740822

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles		
0.4	8.0	20.0		

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles		
0.08	1.6	4.0		

1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 26, 2017 FCC ID: 2ALBB-A11 Page 10 of 109 Form version.: 170509

6. Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Report No.: FA740822

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

7. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

Report No.: FA740822

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing,
 AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

7.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<ES3DV3 Probe>

Construction	Symmetric design with triangular core	
	Interleaved sensors	
	Built-in shielding against static charges	
	PEEK enclosure material (resistant to organic	
	solvents, e.g., DGBE)	
Frequency	10 MHz – 4 GHz;	
	Linearity: ±0.2 dB (30 MHz – 4 GHz)	
Directivity	±0.2 dB in TSL (rotation around probe axis)	
	±0.3 dB in TSL (rotation normal to probe axis)	
Dynamic Range	5 μW/g – >100 mW/g;	
	Linearity: ±0.2 dB	
Dimensions	Overall length: 337 mm (tip: 20 mm)	
	Tip diameter: 3.9 mm (body: 12 mm)	
	Distance from probe tip to dipole centers: 3.0 mm	

Report No. : FA740822

<EX3DV4 Probe>

Construction	Symmetric design with triangular core
	Built-in shielding against static charges
	PEEK enclosure material (resistant to organic
	solvents, e.g., DGBE)
Frequency	10 MHz – >6 GHz
	Linearity: ±0.2 dB (30 MHz – 6 GHz)
Directivity	±0.3 dB in TSL (rotation around probe axis)
	±0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g – >100 mW/g
	Linearity: ±0.2 dB (noise: typically <1 µW/g)
Dimensions	Overall length: 337 mm (tip: 20 mm)
	Tip diameter: 2.5 mm (body: 12 mm)
	Typical distance from probe tip to dipole centers: 1
	mm

7.2 <u>Data Acquisition Electronics (DAE)</u>

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Fig 5.1 Photo of DAE

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version.: 170509 FCC ID: 2ALBB-A11 Page 13 of 109

7.3 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	*
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	7 5
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

Report No. : FA740822

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI Phantom>

VEET I Halltonia		
Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

SPORTON INTERNATIONAL INC.

7.4 Device Holder

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Mounting Device for Hand-Held Transmitters

Mounting Device Adaptor for Wide-Phones

Report No. : FA740822

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 26, 2017 Form version.: 170509

FCC ID: 2ALBB-A11 Page 15 of 109

8. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: FA740822

- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

8.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

8.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No.: FA740822

8.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°		
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.			

SPORTON INTERNATIONAL INC.

8.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No.: FA740822

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

			≤ 3 GHz	> 3 GHz
Maximum zoom scan s	spatial reso	lution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
Maximum zoom scan spatial resolution, normal to phantom surface	uniform	grid: $\Delta z_{Zoom}(n)$	≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
	graded grid	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
		Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{\text{Zoom}}(n-1)$	
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

8.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9. Test Equipment List

Manufacture	Name of Employment	T. 110 0 /04 0 1 0 1	Carial Name	Calib	ration
Manufacturer	Name of Equipment Type/Model Serial Nu		Serial Number	Last Cal.	Due Date
SPEAG	750MHz System Validation Kit	D750V3	1078	Jun. 22, 2016	Jun. 21, 2017
SPEAG	835MHz System Validation Kit	D835V2	499	Mar. 21, 2017	Mar. 20, 2018
SPEAG	1750MHz System Validation Kit	D1750V2	1068	Nov. 16, 2016	Nov. 15, 2017
SPEAG	1900MHz System Validation Kit	D1900V2	5d210	Aug. 25, 2016	Aug. 24, 2017
SPEAG	2300MHz System Validation Kit	D2300V2	1006	Jan. 25, 2017	Jan. 24, 2018
SPEAG	2450MHz System Validation Kit	D2450V2	926	Jul. 25, 2016	Jul. 24, 2017
SPEAG	2600MHz System Validation Kit	D2600V2	1008	Aug. 30, 2016	Aug. 29, 2017
SPEAG	5GHz System Validation Kit	D5GHzV2	1006	Sep. 27, 2016	Sep. 26, 2017
SPEAG	Data Acquisition Electronics	DAE4	916	Dec. 15, 2016	Dec. 14, 2017
SPEAG	Data Acquisition Electronics	DAE3	577	Sep. 28, 2016	Sep. 27, 2017
SPEAG	Data Acquisition Electronics	DAE4	853	Jul. 11, 2017	Jul. 10, 2018
SPEAG	Dosimetric E-Field Probe	ES3DV3	3270	Aug. 26, 2016	Aug. 25, 2017
SPEAG	Dosimetric E-Field Probe	EX3DV4	3931	Oct. 03, 2016	Oct. 02, 2017
SPEAG	Dosimetric E-Field Probe	ES3DV3	3169	May. 11, 2017	May. 10, 2018
WonDer	Thermometer	WD-5015	TM685	Oct. 12, 2016	Oct. 11, 2017
WonDer	Thermometer	WD-5015	TM642	Oct. 12, 2016	Oct. 11, 2017
WonDer	Thermometer	WD-5015	TM281	Oct. 12, 2016	Oct. 11, 2017
Anritsu	Radio Communication Analyzer	MT8820C	6201341950	Dec. 14, 2016	Dec. 13, 2017
Agilent	Wireless Communication Test Set	E5515C	GB46311322	Mar. 13, 2017	Mar. 12, 2018
R&S	BT Base Station	CBT32	100522	Mar. 14, 2017	Mar. 13, 2018
SPEAG	Device Holder	N/A	N/A	N/A	N/A
Anritsu	Signal Generator	MG3710A	6201502524	Dec. 09, 2016	Dec. 08, 2017
Agilent	ENA Network Analyzer	E5071C	MY46316648	Jan. 04, 2017	Jan. 03, 2018
SPEAG	Dielectric Probe Kit	DAK-3.5	1126	Jul. 19, 2016	Jul. 18, 2017
LINE SEIKI	Digital Thermometer	LKMelectronic	DTM3000SPEZIAL	Sep. 05, 2016	Sep. 04, 2017
Anritsu	Power Meter	ML2495A	1438002	Dec. 06, 2016	Dec. 05, 2017
Anritsu	Power Sensor	MA2411B	1339195	Dec. 06, 2016	Dec. 05, 2017
Agilent	Spectrum Analyzer	E4408B	MY44211028	Aug. 22, 2016	Aug. 21, 2017
Mini-Circuits	Power Amplifier	ZVE-8G+	D120604	Mar. 09, 2017	Mar. 08, 2018
Mini-Circuits	Power Amplifier	ZHL-42W+	QA1344002	Mar. 09, 2017	Mar. 08, 2018
ATM	Dual Directional Coupler	C122H-10	P610410z-02	No	te 1
Woken	Attenuator 1	WK0602-XX	N/A	No	te 1
PE	Attenuator 2	PE7005-10	N/A	No	te 1
PE	Attenuator 3	PE7005- 3	N/A	No	te 1

Report No.: FA740822

General Note:

1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.

SPORTON INTERNATIONAL INC.

FCC ID : 2ALBB-A11 Page 19 of 109 Form version. : 170509

10. System Verification

10.1 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.2.

Report No. : FA740822

Fig 10.2 Photo of Liquid Height for Body SAR

10.2 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Report No. : FA740822

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)			
	For Head										
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9			
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5			
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5			
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0			
2450	55.0	0	0	0	0	45.0	1.80	39.2			
2600	54.8	0	0	0.1	0	45.1	1.96	39.0			
				For Body							
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5			
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2			
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0			
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3			
2450	68.6	0	0	0	0	31.4	1.95	52.7			
2600	68.1	0	0	0.1	0	31.8	2.16	52.5			

Simulating Liquid for 5GHz, Manufactured by SPEAG

Ingredients	(% by weight)			
Water	64~78%			
Mineral oil	11~18%			
Emulsifiers	9~15%			
Additives and Salt	2~3%			

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
750	HSL	22.2	0.891	42.518	0.89	41.90	0.11	1.47	±5	2017/5/25
750	MSL	22.3	0.976	55.496	0.96	55.50	1.67	-0.01	±5	2017/5/24
835	HSL	22.5	0.894	41.646	0.90	41.50	-0.67	0.35	±5	2017/5/26
835	MSL	22.6	0.967	56.912	0.97	55.20	-0.31	3.10	±5	2017/5/22
1750	HSL	22.6	1.383	41.193	1.37	40.10	0.95	2.73	±5	2017/5/25
1750	HSL	22.6	1.383	41.193	1.37	40.10	0.95	2.73	±5	2017/5/25
1750	MSL	22.5	1.460	54.922	1.49	53.40	-2.01	2.85	±5	2017/5/16
1900	HSL	22.8	1.404	41.766	1.40	40.00	0.29	4.42	±5	2017/5/24
1900	MSL	22.7	1.565	54.297	1.52	53.30	2.96	1.87	±5	2017/5/15
2300	HSL	22.9	1.609	40.796	1.67	39.50	-3.65	3.28	±5	2017/5/14
2300	MSL	22.6	1.765	53.692	1.81	52.90	-2.49	1.50	±5	2017/5/14
2450	HSL	22.2	1.807	39.489	1.80	39.20	0.39	0.74	±5	2017/6/12
2450	MSL	22.2	2.002	54.626	1.95	52.70	2.67	3.65	±5	2017/6/12
2600	HSL	22.9	1.953	39.680	1.96	39.00	-0.36	1.74	±5	2017/5/14
2600	MSL	22.6	2.127	53.404	2.16	52.50	-1.53	1.72	±5	2017/5/13
2600	MSL	22.7	2.157	53.481	2.16	52.50	-0.14	1.87	±5	2017/6/1
5250	HSL	22.3	4.605	35.204	4.71	35.95	-2.23	-2.08	±5	2017/6/11
5250	MSL	22.2	5.448	46.827	5.36	48.95	1.64	-4.34	±5	2017/6/12
5600	HSL	22.3	4.945	34.709	5.07	35.50	-2.47	-2.23	±5	2017/6/11
5600	MSL	22.2	5.906	46.222	5.77	48.50	2.36	-4.70	±5	2017/6/12
5750	HSL	22.3	5.095	34.511	5.22	35.35	-2.39	-2.37	±5	2017/6/11
5750	MSL	22.2	6.109	45.992	5.94	48.28	2.85	-4.74	±5	2017/6/12

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 26, 2017

FCC ID : 2ALBB-A11 Page 21 of 109 Form version. : 170509

10.3 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
2017/5/25	750	HSL	250	D750V3-1078	ES3DV3 - SN3169	DAE4 Sn853	2.15	8.18	8.60	5.13
2017/5/24	750	MSL	250	D750V3-1078	EX3DV4 - SN3931	DAE3 Sn577	2.30	8.63	9.20	6.60
2017/5/26	835	HSL	250	D835V2-499	ES3DV3 - SN3169	DAE4 Sn853	2.36	9.45	9.44	-0.11
2017/5/22	835	MSL	250	D835V2-499	EX3DV4 - SN3931	DAE3 Sn577	2.49	9.67	9.96	3.00
2017/5/25	1750	HSL	250	D1750V2-1068	EX3DV4 - SN3931	DAE3 Sn577	9.47	36.60	37.88	3.50
2017/5/25	1750	HSL	250	D1750V2-1068	ES3DV3 - SN3169	DAE4 Sn853	9.11	36.60	36.44	-0.44
2017/5/16	1750	MSL	250	D1750V2-1068	EX3DV4 - SN3931	DAE3 Sn577	8.39	36.20	33.56	-7.29
2017/5/24	1900	HSL	250	D1900V2-5d210	EX3DV4 - SN3931	DAE3 Sn577	10.70	39.90	42.80	7.27
2017/5/15	1900	MSL	250	D1900V2-5d210	EX3DV4 - SN3931	DAE3 Sn577	10.70	40.30	42.80	6.20
2017/5/14	2300	HSL	250	D2300V2-1006	EX3DV4 - SN3931	DAE3 Sn577	12.00	49.00	48.00	-2.04
2017/5/14	2300	MSL	250	D2300V2-1006	EX3DV4 - SN3931	DAE3 Sn577	12.10	47.90	48.40	1.04
2017/6/12	2450	HSL	250	D2450V2-926	EX3DV4 - SN3931	DAE3 Sn577	12.60	52.80	50.40	-4.55
2017/6/12	2450	MSL	250	D2450V2-926	EX3DV4 - SN3931	DAE3 Sn577	12.50	51.20	50.00	-2.34
2017/5/14	2600	HSL	250	D2600V2-1008	EX3DV4 - SN3931	DAE3 Sn577	13.70	56.80	54.80	-3.52
2017/5/13	2600	MSL	250	D2600V2-1008	EX3DV4 - SN3931	DAE3 Sn577	14.20	55.20	56.80	2.90
2017/6/1	2600	MSL	250	D2600V2-1008	ES3DV3 - SN3270	DAE4 Sn916	14.30	55.20	57.20	3.62
2017/6/11	5250	HSL	100	D5GHzV2-1006-5250	EX3DV4 - SN3931	DAE3 Sn577	7.91	80.60	79.10	-1.86
2017/6/12	5250	MSL	100	D5GHzV2-1006-5250	EX3DV4 - SN3931	DAE3 Sn577	7.50	75.50	75.00	-0.66
2017/6/11	5600	HSL	100	D5GHzV2-1006-5600	EX3DV4 - SN3931	DAE3 Sn577	8.83	83.80	88.30	5.37
2017/6/12	5600	MSL	100	D5GHzV2-1006-5600	EX3DV4 - SN3931	DAE3 Sn577	8.34	78.60	83.40	6.11
2017/6/11	5750	HSL	100	D5GHzV2-1006-5750	EX3DV4 - SN3931	DAE3 Sn577	8.07	80.50	80.70	0.25
2017/6/12	5750	MSL	100	D5GHzV2-1006-5750	EX3DV4 - SN3931	DAE3 Sn577	7.67	74.60	76.70	2.82

Report No. : FA740822

Fig 8.3.2 Setup Photo

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 FCC ID: 2ALBB-A11 Form version.: 170509 Page 22 of 109

11. RF Exposure Positions

11.1 Ear and handset reference point

Figure 9.1.1 shows the front, back, and side views of the SAM phantom. The center-of-mouth reference point is labeled "M," the left ear reference point (ERP) is marked "LE," and the right ERP is marked "RE." Each ERP is 15 mm along the B-M (back-mouth) line behind the entrance-to-ear-canal (EEC) point, as shown in Figure 9.1.2 The Reference Plane is defined as passing through the two ear reference points and point M. The line N-F (neck-front), also called the reference pivoting line, is normal to the Reference Plane and perpendicular to both a line passing through RE and LE and the B-M line (see Figure 9.1.3). Both N-F and B-M lines should be marked on the exterior of the phantom shell to facilitate handset positioning. Posterior to the N-F line the ear shape is a flat surface with 6 mm thickness at each ERP, and forward of the N-F line the ear is truncated, as illustrated in Figure 9.1.2. The ear truncation is introduced to preclude the ear lobe from interfering with handset tilt, which could lead to unstable positioning at the cheek.

Fig 9.1.1 Front, back, and side views of SAM twin phantom

Fig 9.1.2 Close-up side view of phantom showing the ear region.

Report No.: FA740822

Fig 9.1.3 Side view of the phantom showing relevant markings and seven cross-sectional plane locations

FCC ID : 2ALBB-A11 Page 23 of 109 Form version. : 170509

SPORTON LAB. FCC SAR Test Report

11.2 Definition of the cheek position

- Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
- Define two imaginary lines on the handset—the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset—the midpoint of the width wt of the handset at the level of the acoustic output (point A in Figure 9.2.1 and Figure 9.2.2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 9.2.1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output: however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 9.2.2), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets.
- Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 9.2.3), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.
- Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP.
- 5. While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane.
- Rotate the handset around the vertical centerline until the handset (horizontal line) is parallel to the N-F line. 6.
- While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. See Figure 9.2.3. The actual rotation angles should be documented in the test report.

Fig 9.2.1 Handset vertical and horizontal reference lines—"fixed case

Fig 9.2.2 Handset vertical and horizontal reference lines-"clam-shell case"

vertical

center line

acoustic output

Report No.: FA740822

Fig 9.2.3 cheek or touch position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which establish the Reference Plane for handset positioning, are indicated.

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 26, 2017 Form version. : 170509 Page 24 of 109

FCC ID: 2ALBB-A11

11.3 Definition of the tilt position

Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.

Report No. : FA740822

- While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°.
- Rotate the handset around the horizontal line by 15°.
- 4. While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure 9.3.1. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point

Fig 9.3.1 Tilt position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which define the Reference Plane for handset positioning, are indicated.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 26, 2017 Form version.: 170509 FCC ID: 2ALBB-A11 Page 25 of 109

11.4 Body Worn Accessory

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 9.4). Per KDB648474 D04v01r03, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Report No.: FA740822

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Fig 9.4 Body Worn Position

11.5 Wireless Router

Some battery-operated handsets have the capability to transmit and receive user through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v02r01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10mm from the front, back and edges of the device containing transmitting antennas within 2.5cm of their edges, determined form general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 26, 2017 FCC ID: 2ALBB-A11 Page 26 of 109 Form version.: 170509

12. Conducted RF Output Power (Unit: dBm)

<GSM Conducted Power>

1. For DTM multi-slot class mode, the device was linked with base station simulator (Agilent E5515C) and transmit maximum power on maximum number of TX slots, i.e. one CS timeslot, and additional PS timeslots (1 for DTM class 5 and 9, 2 for DTM class 11) in one TDMA frame.

Report No.: FA740822

2. Agilent E5515C was used to setup the device operated under DTM mode for power measurement and SAR testing. For conducted power, the power of the burst for voice and the power of the bursts for data was reported separately in the table above, and the frame-average power is derived below to determine SAR testing.

DTM frame average power (dBm) = $10*log [\sum (power of each slot, in mW)/8]$

- 3. Per KDB 447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR test reduction.
- 4. Per KDB 941225 D01v03r01, for SAR test reduction for GSM / GPRS / EDGE / DTM modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the GPRS (3Tx slots) for GSM850/GSM1900 is considered as the primary mode.
- 5. Other configurations of GSM / GPRS / EDGE / DTM are considered as secondary modes. The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode, SAR measurement is not required for the secondary mode

	GSM850	Burst Av	verage Powe	er (dBm)	Tune-up	Frame-A	verage Pow	er (dBm)	Tune-up
Т	X Channel	128	189	251	Limit	128	189	251	Limit
Fred	quency (MHz)	824.2	836.4	848.8	(dBm)	824.2	836.4	848.8	(dBm)
GS	SM 1 Tx slot	33.22	33.45	33.45	33.50	24.22	24.45	24.45	24.50
GP	RS 1 Tx slot	33.21	33.49	33.48	33.50	24.21	24.49	24.48	24.50
GPI	RS 2 Tx slots	31.69	31.61	31.92	32.00	25.69	25.61	25.92	26.00
GPI	RS 3 Tx slots	30.26	30.16	30.03	30.50	26.00	25.90	25.77	26.24
GPRS 4 Tx slots		28.32	28.64	28.50	29.00	25.32	25.64	25.50	26.00
EDGE 1 Tx slot		26.70	26.66	26.61	27.00	17.70	17.66	17.61	18.00
EDO	GE 2 Tx slots	24.90	24.84	24.77	25.00	18.90	18.84	18.77	19.00
EDO	GE 3 Tx slots	23.60	23.57	23.55	24.00	19.34	19.31	19.29	19.74
EDO	GE 4 Tx slots	22.45	22.40	22.33	23.00	19.45	19.40	19.33	20.00
DTM Multi-slot	GSM 1 Tx slot	31.55	31.55	31.86	32.00	25.49	25.48	25.79	25.98
class 5	GPRS 1 Tx slot	31.48	31.46	31.77	32.00	25.49	25.46	25.79	25.96
DTM Multi-slot	GSM 1 Tx slot	31.87	31.81	31.88	32.00	25.80	25.75	25.81	25.98
class 9	GPRS 1 Tx slot	31.78	31.74	31.79	32.00	25.60	25.75	25.61	25.96
DTM Multi-slot	GSM 1 Tx slot	30.04	29.94	30.27	30.50	25.73	25.61	25.92	26.24
class 11	GPRS 2 Tx slots	29.96	29.84	30.14	30.50	25.75	25.01	25.92	20.24
DTM Multi-slot	GSM 1 Tx slot	31.58	31.56	31.81	32.00	23.39	23.35	23.55	23.76
class 5	EDGE 1 Tx slot	24.88	24.73	24.70	25.00	23.39	23.33	23.55	23.76
DTM Multi-slot	GSM 1 Tx slot	31.52	31.48	31.79	32.00	23.33	23.27	23.53	23.76
class 9	EDGE 1 Tx slot	24.80	24.68	24.69	25.00	23.33	23.21	23.03	23.70
DTM Multi-slot	GSM 1 Tx slot	30.19	30.06	29.94	30.50	22.72	22.63	22.53	23.08
class 11	EDGE 2 Tx slots	23.54	23.55	23.47	24.00	22.12	22.03	22.00	23.00

 SPORTON INTERNATIONAL INC.

 TEL: 886-3-327-3456 / FAX: 886-3-328-4978
 Issued Date: Jun. 26, 2017

FCC ID : 2ALBB-A11 Page 27 of 109 Form version. : 170509

SPORTON LAB. FCC SAR Test Report

(9SM1900	Burst Av	erage Pow	er (dBm)	Tune-up	Frame-A	verage Pov	ver (dBm)	Tune-up
T	X Channel	512	661	810	Limit	512	661	810	Limit
Freq	uency (MHz)	1850.2	1880	1909.8	(dBm)	1850.2	1880	1909.8	(dBm)
GS	SM 1 Tx slot	29.84	29.71	29.56	30.00	20.84	20.71	20.56	21.00
GPRS 1 Tx slot		29.87	29.76	29.56	30.00	20.87	20.76	20.56	21.00
GPF	RS 2 Tx slots	28.27	28.18	28.49	28.50	22.27	22.18	22.49	22.50
GPF	RS 3 Tx slots	26.98	26.85	26.83	27.00	22.72	22.59	22.57	22.74
GPF	RS 4 Tx slots	25.39	25.26	25.40	25.50	22.39	22.26	22.40	22.50
ED	GE 1 Tx slot	25.73	25.71	25.79	26.00	16.73	16.71	16.79	17.00
EDG	GE 2 Tx slots	23.96	23.96	24.11	24.50	17.96	17.96	18.11	18.50
EDG	GE 3 Tx slots	22.85	22.82	22.93	23.00	18.59	18.56	18.67	18.74
EDG	GE 4 Tx slots	21.68	21.69	21.80	22.00	18.68	18.69	18.80	19.00
DTM Multi-slot	GSM 1 Tx slot	28.09	28.35	28.30	28.50	22.00	22.26	22.21	22.48
class 5	GPRS 1 Tx slot	27.95	28.21	28.17	28.50	22.00	22.20		22.40
DTM Multi-slot	GSM 1 Tx slot	28.07	28.30	28.23	28.50	21.98	22.21	22.15	22.48
class 9	GPRS 1 Tx slot	27.93	28.17	28.11	28.50	21.96	22.21	22.15	22.40
DTM Multi-slot	GSM 1 Tx slot	26.73	26.63	26.91	27.00	22.37	22.27	22.56	22.74
class 11	GPRS 2 Tx slots	26.58	26.48	26.77	27.00	22.31	22.21	22.30	22.74
DTM Multi-slot	GSM 1 Tx slot	28.10	28.45	28.33	28.50	20.46	20.71	20.69	20.92
class 5	EDGE 1 Tx slot	23.86	23.85	24.09	24.50	20.46	20.71	20.09	20.92
DTM Multi-slot	GSM 1 Tx slot	28.22	28.50	28.35	28.50	20.52	20.74	20.65	20.02
class 9	EDGE 1 Tx slot	23.82	23.80	23.88	24.50	20.53	20.74	20.65	20.92
DTM Multi-slot	GSM 1 Tx slot	26.82	26.79	27.00	27.00	20.28	20.26	20.43	20.51
class 11	EDGE 2 Tx slots	22.71	22.70	22.81	23.00	20.20	20.26	20.43	20.51

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 28 of 109

<WCDMA Conducted Power>

- 1. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification.
- 2. The procedures in KDB 941225 D01v03r01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode(s) to determine SAR test exclusion.

Report No.: FA740822

3. For DC-HSDPA, the device was configured according to the H-Set 12, Fixed Reference Channel (FRC) configuration in Table C.8.1.12 of 3GPP TS 34.121-1, with the primary and the secondary serving HS-DSCH Cell enabled during the power measurement.

A summary of these settings are illustrated below:

HSDPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- The RF path losses were compensated into the measurements. b.
- A call was established between EUT and Base Station with following setting:
 - Set Gain Factors (βc and βd) and parameters were set according to each
 - Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - Set RMC 12.2Kbps + HSDPA mode.
 - Set Cell Power = -86 dBm
 - Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - Set CQI Repetition Factor to 2 х.
 - Power Ctrl Mode = All Up bits
- The transmitted maximum output power was recorded. d.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βο	βd	βd (SF)	βс/βа	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

- Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$. Note 1:
- For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Note 2: Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle ACK and \triangle NACK = 30/15 with β_{hs} = 30/15 * β_c , and \triangle CQI = 24/15 with $\beta_{hs} = 24/15 * \beta_c$.
- CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS-Note 3: DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.
- Note 4: For subtest 2 the β_o/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15

Setup Configuration

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 26, 2017 Form version.: 170509 FCC ID: 2ALBB-A11 Page 29 of 109

SPORTON INTERNATIONAL INC.

FCC SAR Test Report

HSUPA Setup Configuration:

SPORTON INTERNATIONAL INC.

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- The RF path losses were compensated into the measurements.
- A call was established between EUT and Base Station with following setting *:
 - Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121

Report No.: FA740822

- Set Cell Power = -86 dBm
- iv. Set Channel Type = 12.2k + HSPA
- Set UE Target Power ٧.
- vi. Power Ctrl Mode= Alternating bits
- vii. Set and observe the E-TFCI
- viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βα	βd	βd (SF)	βс/βа	βнs (Note1)	Вес	β _{ed} (Note 4) (Note 5)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2) (Note 6)	AG Index (Note 5)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15	0	-	-	5/15	5/15	47/15	4	1	1.0	0.0	12	67

- For sub-test 1 to 4, Δ_{ACK} , Δ_{NACK} and Δ_{COI} = 30/15 with β_{hs} = 30/15 * β_c . For sub-test 5, Δ_{ACK} , Δ_{NACK} and Δ_{COI} = 5/15 with $\beta_{hs} = 5/15 * \beta_{c}$.
- CM = 1 for β_c/β_d =12/15, β_{he}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH Note 2: and E-DPCCH the MPR is based on the relative CM difference.
- For subtest 1 the $\beta d\beta d$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by Note 3: setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.
- In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to Note 4: TS25.306 Table 5.1g.
- Bed can not be set directly; it is set by Absolute Grant Value. Note 5:
- Note 6: For subtests 2, 3 and 4, UE may perform E-DPDCH power scaling at max power which could results in slightly smaller MPR values.

Setup Configuration

Form version.: 170509 FCC ID: 2ALBB-A11 Page 30 of 109

FCC SAR Test Report

DC-HSDPA 3GPP release 8 Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration below
- The RF path losses were compensated into the measurements.
- A call was established between EUT and Base Station with following setting:
 - Set RMC 12.2Kbps + HSDPA mode.
 - ii.
 - Set Cell Power = -25 dBm
 Set HS-DSCH Configuration Type to FRC (H-set 12, QPSK) iii.
 - Select HSDPA Uplink Parameters
 - Set Gain Factors (β_c and β_d) and parameters were set according to each Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121

Report No.: FA740822

- a). Subtest 1: $\beta_c/\beta_d=2/15$
- b). Subtest 2: $\beta_c/\beta_d=12/15$ c). Subtest 3: $\beta_c/\beta_d=15/8$

- d). Subtest 4: $\beta_c/\beta_d=15/4$ Set Delta ACK, Delta NACK and Delta CQI = 8
- Set Ack-Nack Repetition Factor to 3 vii.
- Set CQI Feedback Cycle (k) to 4 ms viii.
- ix. Set CQI Repetition Factor to 2
- Power Ctrl Mode = All Up bits
- The transmitted maximum output power was recorded.

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings are illustrated below:

C.8.1.12 Fixed Reference Channel Definition H-Set 12

Table C.8.1.12: Fixed Reference Channel H-Set 12

	Parameter	Unit	Value						
Nominal	Avg. Inf. Bit Rate	kbps	60						
Inter-TTI	Distance	TTI's	1						
Number	of HARQ Processes	Proces	6						
		ses							
Informati	on Bit Payload (N_{INF})	Bits	120						
Number	Code Blocks	Blocks	1						
Binary C	hannel Bits Per TTI	Bits	960						
Total Ava	ailable SML's in UE	SML's	19200						
Number	of SML's per HARQ Proc.	SML's	3200						
Coding F	Rate		0.15						
Number	of Physical Channel Codes	Codes	1						
Modulation	on		QPSK						
Note 1:	The RMC is intended to be used f	or DC-HSD	PA						
	mode and both cells shall transmi	t with ident	cal						
	parameters as listed in the table.								
Note 2:	Maximum number of transmission	is limited t	o 1, i.e.,						
	retransmission is not allowed. The redundancy and constellation version 0 shall be used								

Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK)

Setup Configuration

Form version.: 170509 FCC ID: 2ALBB-A11 Page 31 of 109

<WCDMA Conducted Power>

General Note:

1. Per KDB 941225 D01v03r01, for SAR testing is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".

Report No. : FA740822

2. Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. The maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA is ≤ ¼ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA, and according to the following RF output power, the output power results of the secondary modes (HSUPA, HSDPA, DC-HSDPA) are less than ¼ dB higher than the primary modes; therefore, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA.

	Band	W	/CDMA	II		W	/CDMA I	IV		V	VCDMA	V	
T	X Channel	9262	9400	9538	Tune-up Limit	1312	1413	1513	Tune-up Limit	4132	4182	4233	Tune-up Limit
R	Rx Channel	9662	9800	9938	(dBm)	1537	1638	1738	(dBm)	4357	4407	4458	(dBm)
Fred	quency (MHz)	1852.4	1880	1907.6	, ,	1712.4	1732.6	1752.6	, ,	826.4	836.4	846.6	
3GPP Rel 99	AMR 12.2Kbps	24.72	24.86	24.88	25.00	24.62	24.54	24.60	25.00	24.29	24.37	24.40	25.00
3GPP Rel 99	RMC 12.2Kbps	24.74	24.90	24.91	25.00	24.66	24.59	24.62	25.00	24.31	24.41	24.42	25.00
3GPP Rel 6	HSDPA Subtest-1	23.87	23.96	23.94	24.00	23.84	23.74	23.55	24.00	23.40	23.48	23.53	24.00
3GPP Rel 6	HSDPA Subtest-2	23.90	23.97	23.95	24.00	23.88	23.72	23.54	24.00	23.46	23.57	23.54	24.00
3GPP Rel 6	HSDPA Subtest-3	23.38	23.48	23.43	23.50	23.35	23.26	23.07	23.50	22.83	23.05	23.09	23.50
3GPP Rel 6	HSDPA Subtest-4	23.40	23.48	23.43	23.50	23.40	23.24	23.05	23.50	22.82	23.03	23.05	23.50
3GPP Rel 8	DC-HSDPA Subtest-1	23.81	23.93	23.89	24.00	23.82	23.64	23.47	24.00	23.37	23.40	23.49	24.00
3GPP Rel 8	DC-HSDPA Subtest-2	23.86	23.91	23.92	24.00	23.87	23.69	23.50	24.00	23.38	23.56	23.49	24.00
3GPP Rel 8	DC-HSDPA Subtest-3	23.32	23.37	23.40	23.50	23.30	23.19	23.06	23.50	22.73	22.95	23.05	23.50
3GPP Rel 8	DC-HSDPA Subtest-4	23.39	23.39	23.32	23.50	23.31	23.14	22.94	23.50	22.72	23.00	22.98	23.50
3GPP Rel 6	HSUPA Subtest-1	23.72	24.00	23.91	24.00	23.80	23.68	23.72	24.00	23.30	23.51	23.45	24.00
3GPP Rel 6	HSUPA Subtest-2	21.71	21.97	22.00	22.00	21.67	21.59	21.60	22.00	21.32	21.36	21.54	22.00
3GPP Rel 6	HSUPA Subtest-3	22.76	22.96	22.89	23.00	22.65	22.60	22.55	23.00	22.29	22.26	22.45	23.00
3GPP Rel 6	HSUPA Subtest-4	21.77	21.98	21.87	22.00	21.69	21.42	21.52	22.00	21.31	21.46	21.33	22.00
3GPP Rel 6	HSUPA Subtest-5	23.70	24.00	23.90	24.00	23.60	23.67	23.58	24.00	23.30	23.40	23.40	24.00

SPORTON LAB. FCC SAR Test Report

<CDMA2000 Conducted Power>

General Note:

 Per KDB 941225 D01v03r01, SAR for head exposure is measured in RC3 with the handset configured to transmit at full rate in SO55.

Report No. : FA740822

- 2. Per KDB 941225 D01v03r01, in Hotspot mode EUT is treated as data device and SAR is tested with Ev-Do Rev 0 (RTAP 153.6kbps) as the primary mode.
- 3. Per KDB 941225 D01v03r01, for Body-worn accessory SAR is measured in RC3 with the handset configured in TDSO/SO32 to transmit at full rate on FCH only with all other code channels disabled. The body-worn accessory procedures in KDB Publication 447498 are applied. The 3G SAR test reduction procedure is applied to the multiple code channel configuration (FCH+SCH), with FCH only as the primary mode.

Band	(CDMA BO	C0	Tune-up	CI	DMA B	C1	Tune-up	C	DMA BC	10	Tune-up
TX Channel	1013	384	777	Limit	25	600	1175	Limit	476	580	684	Limit
Frequency (MHz)	824.7	836.52	848.31	(dBm)	1851.25	1880	1908.75	(dBm)	817.9	820.5	823.1	(dBm)
RC1 SO55	24.84	24.83	24.54	25.00	24.64	24.55	24.47	25.00	24.19	24.48	24.54	25.00
RC3 SO55	24.72	24.87	24.53	25.00	24.65	24.66	24.52	25.00	24.27	24.57	24.63	25.00
RC3 SO32 (F+SCH)	24.75	24.85	24.54	25.00	24.64	24.65	24.52	25.00	24.28	24.57	24.62	25.00
RC3 SO32 (+SCH)	24.73	24.84	24.52	25.00	24.63	24.63	24.50	25.00	24.27	24.56	24.62	25.00
RTAP 153.6Kbps	24.76	24.86	24.54	25.00	24.65	24.65	24.50	25.00	24.37	24.56	24.62	25.00
RETAP 4096Bits	24.59	24.68	24.37	25.00	24.49	24.51	24.33	25.00	24.21	24.38	24.45	25.00

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 26, 2017 FCC ID: 2ALBB-A11 Page 33 of 109 Form version.: 170509

<LTE Conducted Power>

General Note:

- Anritsu MT8820C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing.
- 2. Per KDB 941225 D05v02r05, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required.
- 3. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 4. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 5. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 6. Per KDB 941225 D05v02r05, 16QAM / 64QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM / 64QAM SAR testing is not required.
- 7. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.
- 8. For LTE B4 / B26 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.
- 9. LTE band 2 / 4 / 5 / 17 / 38 SAR test was covered by Band 25 / 66 / 26 / 12 / 41; according to April 2015 TCB workshop, SAR test for overlapping LTE bands can be reduced if
 - a. the maximum output power, including tolerance, for the smaller band is ≤ the larger band to qualify for the SAR test exclusion
 - b. the channel bandwidth and other operating parameters for the smaller band are fully supported by the larger band
- 10. According to 2017 TCB workshop, for 64 QAM and 16 QAM should be verified by checking the signal constellation with a call box to avoid incorrect maximum power levels due to MPR and other requirements associated with signal modulation, and the following figure is taken from the "Fundamental Measurement >> Modulation Analysis >> constellation" mode of the device connect to the MT8821C base station, therefore, the device 64QAM and 16QAM signal modulation are correct.

Report No.: FA740822

SPORTON INTERNATIONAL INC.

SPORTON LAB. FCC SAR Test Report

<LTE Band 2>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freg.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		18700	18900	19100	(dBm)	(dB)
	Frequen			1860	1880	1900		
20	QPSK	1	0	24.31	24.32	24.23		
20	QPSK	1	49	23.96	23.90	24.08	24.5	0
20	QPSK	1	99	24.04	23.96	24.08		
20	QPSK	50	0	23.12	23.08	23.25		
20	QPSK	50	24	23.04	22.98	23.16	-	
20	QPSK	50	50	22.99	22.91	23.13	23.5	1
20	QPSK	100	0	23.05	23.00	23.19	1	
20	16QAM	1	0	23.50	23.46	23.47		
20	16QAM	1	49	23.23	23.17	23.34	23.5	1
20	16QAM	1	99	23.33	23.27	23.38	-0.0	•
20	16QAM	50	0	22.15	22.10	22.26		
20	16QAM	50	24	22.06	22.10	22.20		
20	16QAM	50	50	22.00	21.94	22.17	22.5	2
20	16QAM	100	0	22.02	22.01	22.17		
20	64QAM	1	0	22.33	22.38	22.28		
20	64QAM	1	49	22.01	21.97	22.13	22.5	2
20	64QAM	1	99	22.06	22.04	22.13		_
20	64QAM	50	0	20.99	20.98	21.12		
20	64QAM	50	24	20.99	20.88	21.12	-	
		50			1		21.5	3
20	64QAM 64QAM		50	20.83	20.81	21.00 21.05	-	
20	64QAIVI Cha	100	0	18675	20.88 18900	19125	- "	
	Frequen			1857.5	1880	19125	Tune-up limit (dBm)	MPR (dB)
15	QPSK	Cy (IVI⊓2 <i>)</i> 1	0	24.09	24.10	24.26	(dBIII)	(GD)
15	QPSK	1	37				24.5	0
15		1	74	23.92 23.90	23.88	24.06 24.11	24.5	0
15	QPSK QPSK	36	0	23.90	23.87	23.22		
	QPSK		-	23.00	23.04		-	
15		36	20		22.99	23.16	23.5	1
15	QPSK	36	39	22.95	22.91	23.12	_	
15	QPSK	75	0	23.01	22.98	23.16		
15	16QAM	1	0	23.37	23.39	23.50	22.5	4
15	16QAM	1	37	23.19	23.18	23.35	23.5	1
15	16QAM	1	74	23.19	23.15	23.41		
15	16QAM	36	0	22.06	22.07	22.23		
15	16QAM	36	20	22.02	21.99	22.19	22.5	2
15	16QAM	36	39	21.96	21.92	22.15		
15	16QAM	75	0	22.02	22.00	22.18		
15	64QAM	1	0	22.17	22.19	22.30		
15	64QAM	1	37	22.00	21.97	22.11	22.5	2
15	64QAM	1	74	21.96	21.93	22.15		
15	64QAM	36	0	20.97	20.97	21.09		
15	64QAM	36	20	20.92	20.90	21.05	21.5	3
15	64QAM	36	39	20.86	20.83	21.00		Ŭ
15	64QAM	75	0	20.88	20.86	21.02		

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 35 of 109

SPORTON LAB. FCC SAR Test Report

RTON LAB. F	CC SAR T	est Repor	<u>t </u>				Report l	No. : FA740
	Cha	nnel		18650	18900	19150	Tune-up limit	MPR
	Frequen	cy (MHz)		1855	1880	1905	(dBm)	(dB)
10	QPSK	1	0	24.22	24.22	24.17		
10	QPSK	1	25	23.93	23.90	24.09	24.5	0
10	QPSK	1	49	24.10	24.05	24.09		
10	QPSK	25	0	23.02	23.00	23.16		
10	QPSK	25	12	22.98	22.96	23.12	00.5	4
10	QPSK	25	25	22.95	22.91	23.11	23.5	1
10	QPSK	50	0	22.99	22.96	23.14		
10	16QAM	1	0	23.49	23.48	23.41		
10	16QAM	1	25	23.21	23.18	23.38	23.5	1
10	16QAM	1	49	23.36	23.33	23.35		
10	16QAM	25	0	22.02	22.02	22.16		
10	16QAM	25	12	22.02	21.99	22.16	20.5	0
10	16QAM	25	25	21.95	21.90	22.13	22.5	2
10	16QAM	50	0	22.01	21.96	22.14		
10	64QAM	1	0	22.28	22.27	22.18		
10	64QAM	1	25	21.99	21.94	22.10	22.5	2
10	64QAM	1	49	22.11	22.11	22.08		
10	64QAM	25	0	20.89	20.89	21.01		
10	64QAM	25	12	20.85	20.85	21.00	_	
10	64QAM	25	25	20.83	20.81	20.95	21.5	3
10	64QAM	50	0	20.86	20.85	21.01	_	
	Cha	nnel		18625	18900	19175	Tune-up limit	MPR
	Frequen			1852.5	1880	1907.5	(dBm)	(dB)
5	QPSK	1	0	23.91	23.93	24.09		
5	QPSK	1	12	23.86	23.85	24.05	24.5	0
5	QPSK	1	24	23.86	23.85	24.06	_	
5	QPSK	12	0	22.91	22.93	23.11		
5	QPSK	12	7	22.91	22.93	23.10	_	
5	QPSK	12	13	22.88	22.89	23.05	23.5	1
5	QPSK	25	0	22.87	22.88	23.08		
5	16QAM	1	0	23.18	23.19	23.35		
5	16QAM	1	12	23.13	23.15	23.34	23.5	1
5	16QAM	1	24	23.14	23.13	23.33		
5	16QAM	12	0	21.94	21.93	22.12		
5	16QAM	12	7	21.93	21.92	22.13		
5	16QAM	12	13	21.89	21.88	22.09	22.5	2
5	16QAM	25	0	21.90	21.90	22.08		
5	64QAM	1	0	22.06	22.04	22.18		
5	64QAM	1	12	21.97	21.93	22.10	22.5	2
5	64QAM	1	24	21.97	21.95	22.12		_
5	64QAM	12	0	20.90	20.90	21.03		
5	64QAM	12	7	20.91	20.88	21.05		
	OTQ/NIVI					1	21.5	3
5	64QAM	12	13	20.87	20.83	21.01		

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 36 of 109

		est Repor					Report	No. : FA740
	Cha	nnel		18615	18900	19185	Tune-up limit	MPR
	Frequenc	cy (MHz)		1851.5	1880	1908.5	(dBm)	(dB)
3	QPSK	1	0	23.86	23.86	24.04		
3	QPSK	1	8	23.83	23.83	24.03	24.5	0
3	QPSK	1	14	23.83	23.82	24.01		
3	QPSK	8	0	22.86	22.86	23.04		1 1 2 2 2 3 MPR (dB) 0
3	QPSK	8	4	22.88	22.88	23.10	00.5	4
3	QPSK	8	7	22.85	22.86	23.05	23.5	1
3	QPSK	15	0	22.84	22.88	23.05		
3	16QAM	1	0	23.09	23.11	23.30		
3	16QAM	1	8	23.10	23.13	23.33	23.5	1
3	16QAM	1	14	23.07	23.09	23.29		
3	16QAM	8	0	21.94	21.94	22.12		
3	16QAM	8	4	21.95	21.94	22.16	00.5	0
3	16QAM	8	7	21.92	21.92	22.11	22.5	2
3	16QAM	15	0	21.88	21.92	22.09		
3	64QAM	1	0	21.98	21.99	22.11		
3	64QAM	1	8	21.96	21.96	22.13	22.5	2
3	64QAM	1	14	21.95	21.93	22.09		
3	64QAM	8	0	20.87	20.86	21.00		
3	64QAM	8	4	20.88	20.89	21.02		
3	64QAM	8	7	20.84	20.83	21.00	21.5	3
3	64QAM	15	0	20.83	20.83	20.97		
	Cha			18607	18900	19193	Tune-up limit	MPR
	Frequenc			1850.7	1880	1909.3	(dBm)	
1.4	QPSK	1	0	23.79	23.79	23.98		, ,
1.4	QPSK	1	3	23.86	23.86	24.05		
1.4	QPSK	1	5	23.78	23.77	23.99		
1.4	QPSK	3	0	23.84	23.83	24.04	24.5	0
1.4	QPSK	3	1	23.88	23.87	24.08		
1.4	QPSK	3	3	23.84	23.84	24.02		
1.4	QPSK	6	0	22.80	22.82	22.97	23.5	1
1.4	16QAM	<u></u>	0	23.05	23.06	23.28	20.0	
1.4	16QAM	<u> </u>	3	23.14	23.15	23.32	_	
1.4	16QAM	1	5	23.03	23.04	23.25	_	
1.4	16QAM	3	0	22.86	22.86	23.03	23.5	1
1.4	16QAM	3	1	22.90	22.89	23.07		
1.4	16QAM	3	3	22.84	22.83	22.99		
1.4	16QAM	6	0	21.88	21.90	22.99	22.5	2
1.4	64QAM	1	0	21.00	21.90	22.03	22.0	
1.4	64QAM	<u>'</u> 1	3	22.01	21.95	22.13		
		<u>'</u> 1				22.13		
1.4	64QAM 64QAM	3	5	21.89 21.88	21.89 21.90	22.05	22.5	2
	04QAW		0					2
1.4	640414	2	4	24.02	21 0 1	22.00		
1.4 1.4 1.4	64QAM 64QAM	3	3	21.93 21.89	21.94 21.88	22.08 22.03	_	

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 37 of 109

<LTE Band 4>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low	Power Middle	Power High		
	- Woddiation	ND Size	- KB Oliset	Ch. / Freq.	Ch. / Freq.	Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		20050	20175	20300	(dBm)	(dB)
	Frequenc	cy (MHz)		1720	1732.5	1745		
20	QPSK	1	0	23.85	23.90	23.84		
20	QPSK	1	49	23.61	23.59	23.66	24.5	0
20	QPSK	1	99	23.56	23.59	23.66	1	
20	QPSK	50	0	22.79	22.76	22.85		
20	QPSK	50	24	22.71	22.70	22.75	1	
20	QPSK	50	50	22.66	22.70	22.75	23.5	1
20	QPSK	100	0	22.73	22.68	22.78	1	
20	16QAM	1	0	23.09	23.09	23.11		
20	16QAM	1	49	22.87	22.84	22.88	23.5	1
20	16QAM	1	99	22.78	22.87	22.92	1	
20	16QAM	50	0	21.82	21.80	21.90		
20	16QAM	50	24	21.74	21.69	21.77		
20	16QAM	50	50	21.69	21.70	21.78	22.5	2
20	16QAM	100	0	21.71	21.67	21.74		
20	64QAM	1	0	21.93	21.97	21.94		
20	64QAM	1	49	21.69	21.68	21.74	22.5	2
20	64QAM	1	99	21.60	21.67	21.73	=	
20	64QAM	50	0	20.68	20.69	20.75		
20	64QAM	50	24	20.60	20.60	20.66		
20	64QAM	50	50	20.54	20.60	20.66	21.5	3
20	64QAM	100	0	20.58	20.58	20.65		
	Cha			20025	20175	20325	Tune-up limit	MPR
	Frequence			1717.5	1732.5	1747.5	(dBm)	(dB)
15	QPSK	1	0	23.79	23.82	23.85		
15	QPSK	1	37	23.61	23.57	23.62	24.5	0
15	QPSK	1	74	23.61	23.66	23.69		
15	QPSK	36	0	22.74	22.72	22.83		
15	QPSK	36	20	22.69	22.69	22.75	1	
15	QPSK	36	39	22.64	22.63	22.75	23.5	1
15	QPSK	75	0	22.69	22.68	22.72		
15	16QAM	1	0	23.06	23.08	23.17		
15	16QAM	1	37	22.86	22.84	22.88	23.5	1
15	16QAM	1	74	22.88	22.92	22.95		
15	16QAM	36	0	21.77	21.76	21.82		
15	16QAM	36	20	21.73	21.70	21.75	00.5	_
15	16QAM	36	39	21.65	21.62	21.75	22.5	2
15	16QAM	75	0	21.69	21.68	21.73		
15	64QAM	1	0	21.88	21.90	21.97		
15	64QAM	1	37	21.68	21.66	21.70	22.5	2
15	64QAM	1	74	21.65	21.71	21.75		
15	64QAM	36	0	20.65	20.68	20.74		
15	64QAM	36	20	20.62	20.61	20.66	04.5	_
		36	39	20.54	20.52	20.67	21.5	3
15	64QAM	30	39	20.54	20.02	20.01		3

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 38 of 109

	CC SAR Te						-	No. : FA74
	Cha -			20000	20175	20350	Tune-up limit	MPR
	Frequen		1	1715	1732.5	1750	(dBm)	(dB)
10	QPSK	1	0	23.72	23.72	23.79		
10	QPSK	1	25	23.62	23.60	23.75	24.5	0
10	QPSK	1	49	23.59	23.64	23.66		
10	QPSK	25	0	22.70	22.70	22.76		
10	QPSK	25	12	22.65	22.64	22.80	23.5	1
10	QPSK	25	25	22.62	22.62	22.73		·
10	QPSK	50	0	22.65	22.67	22.79		
10	16QAM	1	0	22.97	22.99	23.05		
10	16QAM	1	25	22.90	22.87	23.02	23.5	1
10	16QAM	1	49	22.85	22.90	22.95		
10	16QAM	25	0	21.70	21.70	21.73		
10	16QAM	25	12	21.68	21.68	21.81	22.5	2
10	16QAM	25	25	21.65	21.62	21.73	22.5	2
10	16QAM	50	0	21.70	21.66	21.80		
10	64QAM	1	0	21.80	21.81	21.84		
10	64QAM	1	25	21.71	21.68	21.78	22.5	2
10	64QAM	1	49	21.66	21.72	21.73		
10	64QAM	25	0	20.65	20.62	20.63		
10	64QAM	25	12	20.63	20.60	20.70	24.5	3
10	64QAM	25	25	20.57	20.54	20.61	21.5	
10	64QAM	50	0	20.61	20.59	20.69		
	Cha	nnel		19975	20175	20375	Tune-up limit	MPR
	Frequenc	cy (MHz)		1712.5	1732.5	1752.5	(dBm)	(dB)
5	QPSK	1	0	23.69	23.65	23.73		
5	QPSK	1	12	23.61	23.58	23.67	24.5	0
5	QPSK	1	24	23.60	23.55	23.65		
5	QPSK	12	0	22.68	22.62	22.74		
5	QPSK	12	7	22.68	22.64	22.71	22.5	4
5	QPSK	12	13	22.62	22.59	22.66	23.5	1
5	QPSK	25	0	22.66	22.62	22.70		
5	16QAM	1	0	22.92	22.89	23.00		
5	16QAM	1	12	22.87	22.86	22.94	23.5	1
5	16QAM	1	24	22.87	22.83	22.94		
5	16QAM	12	0	21.71	21.66	21.77		
5	16QAM	12	7	21.70	21.67	21.75	00.5	_
5	16QAM	12	13	21.65	21.60	21.70	22.5	2
5	16QAM	25	0	21.67	21.65	21.72		
5	64QAM	1	0	21.78	21.76	21.87		
5	64QAM	1	12	21.71	21.70	21.80	22.5	2
5	64QAM	1	24	21.71	21.68	21.74		_
5	64QAM	12	0	20.64	20.64	20.72		
				20.68	20.62	20.70		
	64QAM	12		20.00				3
5	64QAM 64QAM	12 12	7 13	20.62	20.59	20.66	21.5	

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 39 of 109

	CC SAR Te			10000	224	2000		No. : FA740
		nnel		19965	20175	20385	Tune-up limit	MPR
	Frequen			1711.5	1732.5	1753.5	(dBm)	(dB)
3	QPSK	1	0	23.57	23.57	23.69		
3	QPSK	1	8	23.55	23.52	23.67	24.5	0
3	QPSK	1	14	23.53	23.51	23.62		
3	QPSK	8	0	22.59	22.61	22.72		
3	QPSK	8	4	22.60	22.61	22.69	23.5	1
3	QPSK	8	7	22.58	22.56	22.69		·
3	QPSK	15	0	22.57	22.59	22.69		
3	16QAM	1	0	22.81	22.76	22.93		
3	16QAM	1	8	22.82	22.83	22.93	23.5	1
3	16QAM	1	14	22.80	22.75	22.88		
3	16QAM	8	0	21.64	21.65	21.79		
3	16QAM	8	4	21.69	21.66	21.78	22.5	2
3	16QAM	8	7	21.64	21.61	21.73	22.0	_
3	16QAM	15	0	21.61	21.60	21.72		
3	64QAM	1	0	21.70	21.69	21.79		
3	64QAM	1	8	21.67	21.66	21.77	22.5	2
3	64QAM	1	14	21.65	21.64	21.75		
3	64QAM	8	0	20.59	20.58	20.68		
3	64QAM	8	4	20.61	20.59	20.70	21.5	2
3	64QAM	8	7	20.57	20.56	20.68	21.5	3
3	64QAM	15	0	20.55	20.54	20.64		
	Cha	nnel		19957	20175	20393	Tune-up limit	MPR
	Frequen	cy (MHz)		1710.7	1732.5	1754.3	(dBm)	(dB)
1.4	QPSK	1	0	23.47	23.48	23.61		
1.4	QPSK	1	3	23.55	23.56	23.68		
1.4	QPSK	1	5	23.47	23.48	23.61	24.5	0
1.4	QPSK	3	0	23.52	23.51	23.66	24.5	0
1.4	QPSK	3	1	23.57	23.55	23.69		
1.4	QPSK	3	3	23.52	23.50	23.64		
1.4	QPSK	6	0	22.52	22.52	22.64	23.5	1
1.4	16QAM	1	0	22.76	22.75	22.89		
1.4	16QAM	1	3	22.83	22.84	22.97		
1.4	16QAM	1	5	22.74	22.74	22.87	22.5	
1.4	16QAM	3	0	22.55	22.56	22.67	23.5	1
1.4	16QAM	3	1	22.59	22.58	22.71		
1.4	16QAM	3	3	22.52	22.52	22.65		
1.4	16QAM	6	0	21.61	21.59	21.71	22.5	2
1.4	64QAM	1	0	21.62	21.60	21.70		
1.4	64QAM	1	3	21.67	21.69	21.79		
1.4	64QAM	1	5	21.61	21.58	21.69		
1.4	64QAM	3	0	21.60	21.58	21.68	22.5	2
1.4	64QAM	3	1	21.63	21.61	21.74		
1.4	64QAM	3	3	21.59	21.58	21.68		

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 40 of 109

<LTE Band 5>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	ınnel	1	20450	20525	20600	(dBm)	(dB)
	Frequen	cy (MHz)		829	836.5	844		
10	QPSK	1	0	24.28	24.31	24.21		
10	QPSK	1	25	24.29	24.30	24.20	24.5	0
10	QPSK	1	49	24.21	24.22	24.04	1	
10	QPSK	25	0	23.26	23.37	23.21		
10	QPSK	25	12	23.33	23.34	23.28	1	
10	QPSK	25	25	23.28	23.27	23.17	23.5	1
10	QPSK	50	0	23.24	23.33	23.16	1	
10	16QAM	1	0	23.46	23.50	23.50		
10	16QAM	1	25	23.48	23.46	23.47	23.5	1
10	16QAM	1	49	23.45	23.47	23.32	-	
10	16QAM	25	0	22.25	22.37	22.21		
10	16QAM	25	12	22.36	22.35	22.29		
10	16QAM	25	25	22.29	22.27	22.21	22.5	2
10	16QAM	50	0	22.22	22.33	22.25		
10	64QAM	1	0	22.37	22.41	22.32		
10	64QAM	1	25	22.37	22.43	22.34	22.5	2
10	64QAM	1	49	22.28	22.33	22.24		_
10	64QAM	25	0	21.18	21.31	21.13		
10	64QAM	25	12	21.28	21.28	21.23		
10	64QAM	25	25	21.22	21.19	21.13	21.5	3
10	64QAM	50	0	21.13	21.26	21.19	1	
10		innel	Ü	20425	20525	20625	Tune-up limit	MPR
		cy (MHz)		826.5	836.5	846.5	(dBm)	(dB)
5	QPSK	1	0	24.23	24.30	24.20	,	()
5	QPSK	1	12	24.17	24.25	24.15	24.5	0
5	QPSK	1	24	24.25	24.24	24.01		Ŭ
5	QPSK	12	0	23.24	23.32	23.22		
5	QPSK	12	7	23.22	23.30	23.21	1	
5	QPSK	12	13	23.29	23.27	23.16	23.5	1
5	QPSK	25	0	23.23	23.29	23.12		
5	16QAM	1	0	23.48	23.50	23.45		
5	16QAM	1	12	23.43	23.49	23.39	23.5	1
5	16QAM	1	24	23.48	23.50	23.30		
5	16QAM	12	0	22.25	22.32	22.22		
5	16QAM	12	7	22.23	22.32	22.23		
5	16QAM	12	13	22.32	22.26	22.18	22.5	2
5	16QAM	25	0	22.22	22.32	22.21		
5	64QAM	1	0	22.39	22.46	22.36		
5	64QAM	1	12	22.34	22.40	22.31	22.5	2
5	64QAM	1	24	22.38	22.36	22.25		_
5	64QAM	12	0	21.21	21.34	21.19		
5	64QAM	12	7	21.24	21.30	21.19		
5	64QAM	12	13	21.29	21.25	21.17	21.5	3
5	64QAM	25	0	21.29	21.23	21.17		
J	04QAW	ZO	U	21.17	21.23	21.10		

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 41 of 109

	Chan	inel		20415	20525	20635	Tune-up limit	MPR
	Frequency	y (MHz)		825.5	836.5	847.5	(dBm)	(dB)
3	QPSK	1	0	24.22	24.27	24.17		
3	QPSK	1	8	24.19	24.25	24.11	24.5	0
3	QPSK	1	14	24.08	24.26	24.06		
3	QPSK	8	0	23.23	23.30	23.19		
3	QPSK	8	4	23.23	23.28	23.21	00.5	4
3	QPSK	8	7	23.19	23.26	23.12	23.5	1
3	QPSK	15	0	23.21	23.26	23.16		
3	16QAM	1	0	23.48	23.49	23.41		
3	16QAM	1	8	23.45	23.48	23.41	23.5	1
3	16QAM	1	14	23.39	23.49	23.31		
3	16QAM	8	0	22.28	22.35	22.24		
3	16QAM	8	4	22.30	22.37	22.27	22.5	2
3	16QAM	8	7	22.25	22.33	22.23	22.5	2
3	16QAM	15	0	22.25	22.32	22.21		
3	64QAM	1	0	22.36	22.39	22.30		
3	64QAM	1	8	22.33	22.40	22.29	22.5	2
3	64QAM	1	14	22.29	22.39	22.26		
3	64QAM	8	0	21.19	21.28	21.16		
3	64QAM	8	4	21.20	21.28	21.17	04.5	3
3	64QAM	8	7	21.17	21.26	21.16	21.5	
3	64QAM	15	0	21.15	21.24	21.14		
	Chan	inel		20407	20525	20643	Tune-up limit	MPR
	Frequency	y (MHz)		824.7	836.5	848.3	(dBm)	(dB)
1.4	QPSK	1	0	24.13	24.20	24.06		
1.4	QPSK	1	3	24.21	24.27	24.11		
1.4	QPSK	1	5	24.12	24.18	23.87	24.5	0
1.4	QPSK	3	0	24.20	24.26	24.10	24.5	U
1.4	QPSK	3	1	24.24	24.30	24.16		
1.4	QPSK	3	3	24.19	24.25	23.97		
1.4	QPSK	6	0	23.15	23.23	23.09	23.5	1
1.4	16QAM	1	0	23.42	23.47	23.33		
1.4	16QAM	1	3	23.48	23.50	23.32		
1.4	16QAM	1	5	23.38	23.45	23.25	23.5	1
1.4	16QAM	3	0	23.21	23.25	23.05	23.5	'
1.4	16QAM	3	1	23.24	23.29	23.08		
1.4	16QAM	3	3	23.19	23.24	22.99		
1.4	16QAM	6	0	22.24	22.29	22.17	22.5	2
1.4	64QAM	1	0	22.29	22.33	22.24		
1.4	64QAM	1	3	22.29	22.40	22.25		
1.4	64QAM	1	5	22.24	22.35	22.20	22.5	2
1.4	64QAM	3	0	22.25	22.30	22.18	22.5	2
1.4	64QAM	3	1	22.30	22.34	22.22		
	64QAM	3	3	22.24	22.30	22.14		
1.4	J . S. 1111							

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 42 of 109

<LTE Band 7>

<lie band<="" th=""><th></th><th></th><th></th><th>Power</th><th>Power</th><th>Power</th><th></th><th></th></lie>				Power	Power	Power		
BW [MHz]	Modulation	RB Size	RB Offset	Low	Middle	High		
				Ch. / Freq.	Ch. / Freq.	Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		20850	21100	21350	(dBm)	(dB)
	Frequen	cy (MHz)		2510	2535	2560		
20	QPSK	1	0	24.23	24.33	24.18		
20	QPSK	1	49	24.11	24.21	24.08	25	0
20	QPSK	1	99	24.17	24.16	23.86		
20	QPSK	50	0	23.23	23.31	23.15		
20	QPSK	50	24	23.18	23.28	23.14	24	1
20	QPSK	50	50	23.22	23.22	23.12	2-7	'
20	QPSK	100	0	23.19	23.28	23.15		
20	16QAM	1	0	23.48	23.56	23.37		
20	16QAM	1	49	23.35	23.47	23.34	24	1
20	16QAM	1	99	23.46	23.43	23.10		
20	16QAM	50	0	22.25	22.35	22.18		
20	16QAM	50	24	22.22	22.32	22.19	23	2
20	16QAM	50	50	22.25	22.24	22.13	23	2
20	16QAM	100	0	22.18	22.26	22.14		
20	64QAM	1	0	22.53	22.58	22.46		
20	64QAM	1	49	22.38	22.49	22.35	23	2
20	64QAM	1	99	22.48	22.43	22.36		
20	64QAM	50	0	21.33	21.43	21.25		
20	64QAM	50	24	21.32	21.39	21.24	22	2
20	64QAM	50	50	21.35	21.33	21.22	22	3
20	64QAM	100	0	21.29	21.38	21.22		
	Cha	nnel		20825	21100	21375	Tune-up limit	MPR
	Frequen	cy (MHz)		2507.5	2535	2562.5	(dBm)	(dB)
15	QPSK	1	0	24.20	24.31	24.15		
15	QPSK	1	37	24.08	24.19	24.07	25	0
15	QPSK	1	74	24.20	24.16	23.88		
15	QPSK	36	0	23.21	23.33	23.15		
15	QPSK	36	20	23.22	23.26	23.18	24	1
15	QPSK	36	39	23.17	23.22	23.14	24	'
15	QPSK	75	0	23.20	23.26	23.15		
15	16QAM	1	0	23.46	23.62	23.43		
15	16QAM	1	37	23.34	23.48	23.31	24	1
15	16QAM	1	74	23.46	23.44	23.28		
15	16QAM	36	0	22.24	22.31	22.17		
15	16QAM	36	20	22.22	22.29	22.17	23	2
15	16QAM	36	39	22.28	22.24	22.14		
15	16QAM	75	0	22.20	22.26	22.15		
15	64QAM	1	0	22.50	22.64	22.45		
15	64QAM	1	37	22.39	22.45	22.34	23	2
15	64QAM	1	74	22.48	22.43	22.37		
15	64QAM	36	0	21.31	21.42	21.25		
15	64QAM	36	20	21.31	21.39	21.25	22	3
15	64QAM	36	39	21.35	21.32	21.23	22	3
15	64QAM	75	0	21.25	21.34	21.22		

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 43 of 109

							•	
	Cha	innel		20800	21100	21400	Tune-up limit	MPR
	Frequen	cy (MHz)		2505	2535	2565	(dBm)	(dB)
10	QPSK	1	0	24.17	24.32	24.26		
10	QPSK	1	25	23.99	24.31	24.16	25	0
10	QPSK	1	49	23.95	24.21	23.88		
10	QPSK	25	0	23.19	23.31	23.13		
10	QPSK	25	12	23.19	23.37	23.16	i	
10	QPSK	25	25	23.16	23.33	23.14	24	1
10	QPSK	50	0	23.15	23.38	23.14	1	
10	16QAM	1	0	23.43	23.64	23.40		
10	16QAM	1	25	23.37	23.59	23.37	24	1
10	16QAM	1	49	23.32	23.52	23.28	1 -	·
10	16QAM	25	0	22.17	22.36	22.14		
10	16QAM	25	12	22.20	22.41	22.17	1	
10	16QAM	25	25	22.14	22.32	22.14	23	2
10	16QAM	50	0	22.17	22.38	22.24		
10	64QAM	1	0	22.41	22.54	22.39		
10	64QAM	1	25	22.40	22.48	22.37	23	2
10	64QAM	1	49	22.36	22.43	22.34	-	_
10	64QAM	25	0	21.24	21.34	21.21		
10	64QAM	25	12	21.25	21.35	21.23	1	
10	64QAM	25	25	21.22	21.28	21.21	22	3
10	64QAM	50	0	21.23	21.32	21.20	-	
10	<u> </u>	innel		20775	21100	21425	Tune-up limit	MPR
		cy (MHz)		2502.5	2535	2567.5	(dBm)	(dB)
5	QPSK	1		_000	_000		,	` '
5		1	0	24.21	24.30	24.16		
		1	0 12	24.21	24.30 24.27	24.16 24.10	25	0
	QPSK	1	12	24.22	24.27	24.10	25	0
5	QPSK QPSK	1	12 24	24.22 24.17	24.27 24.24	24.10 23.84	25	0
5 5	QPSK QPSK QPSK	1 1 12	12 24 0	24.22 24.17 23.24	24.27 24.24 23.32	24.10 23.84 23.21	25	0
5 5 5	QPSK QPSK QPSK QPSK	1 1 12 12	12 24 0 7	24.22 24.17 23.24 23.27	24.27 24.24 23.32 23.33	24.10 23.84 23.21 23.24	25	0
5 5 5 5	QPSK QPSK QPSK QPSK QPSK	1 1 12 12 12	12 24 0 7 13	24.22 24.17 23.24 23.27 23.23	24.27 24.24 23.32 23.33 23.30	24.10 23.84 23.21 23.24 23.19		
5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK	1 1 12 12 12 12 25	12 24 0 7 13	24.22 24.17 23.24 23.27 23.23 23.23	24.27 24.24 23.32 23.33 23.30 23.31	24.10 23.84 23.21 23.24 23.19 23.22		
5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1 1 12 12 12 12 25 1	12 24 0 7 13 0	24.22 24.17 23.24 23.27 23.23 23.23 23.45	24.27 24.24 23.32 23.33 23.30 23.31 23.57	24.10 23.84 23.21 23.24 23.19 23.22 23.40	24	1
5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16QAM	1 1 12 12 12 12 25 1	12 24 0 7 13 0 0	24.22 24.17 23.24 23.27 23.23 23.23 23.45 23.44	24.27 24.24 23.32 23.33 23.30 23.31 23.57 23.56	24.10 23.84 23.21 23.24 23.19 23.22 23.40 23.38		
5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM	1 1 12 12 12 12 25 1 1	12 24 0 7 13 0 0 12 24	24.22 24.17 23.24 23.27 23.23 23.23 23.45 23.44 23.39	24.27 24.24 23.32 23.33 23.30 23.31 23.57 23.56 23.51	24.10 23.84 23.21 23.24 23.19 23.22 23.40 23.38 23.31	24	1
5 5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM	1 1 12 12 12 12 25 1 1 1 1	12 24 0 7 13 0 0 12 24	24.22 24.17 23.24 23.27 23.23 23.23 23.45 23.44 23.39 22.28	24.27 24.24 23.32 23.33 23.30 23.31 23.57 23.56 23.51 22.32	24.10 23.84 23.21 23.24 23.19 23.22 23.40 23.38 23.31 22.21	24	1
5 5 5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM	1 1 12 12 12 25 1 1 1 1 12	12 24 0 7 13 0 0 12 24 0	24.22 24.17 23.24 23.27 23.23 23.23 23.45 23.44 23.39 22.28 22.29	24.27 24.24 23.32 23.33 23.30 23.31 23.57 23.56 23.51 22.32 22.36	24.10 23.84 23.21 23.24 23.19 23.22 23.40 23.38 23.31 22.21 22.24	24	1
5 5 5 5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM 16QAM	1 1 12 12 12 25 1 1 1 1 12 12	12 24 0 7 13 0 0 12 24 0 7	24.22 24.17 23.24 23.27 23.23 23.23 23.45 23.44 23.39 22.28 22.29 22.24	24.27 24.24 23.32 23.33 23.30 23.31 23.57 23.56 23.51 22.32 22.36 22.30	24.10 23.84 23.21 23.24 23.19 23.22 23.40 23.38 23.31 22.21 22.24 22.20	24	1
5 5 5 5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM	1 1 12 12 12 25 1 1 1 1 12 12 12 12 25	12 24 0 7 13 0 0 0 12 24 0 7 13	24.22 24.17 23.24 23.27 23.23 23.23 23.45 23.44 23.39 22.28 22.29 22.24 22.25	24.27 24.24 23.32 23.33 23.30 23.31 23.57 23.56 23.51 22.32 22.36 22.30 22.35	24.10 23.84 23.21 23.24 23.19 23.22 23.40 23.38 23.31 22.21 22.24 22.20 22.21	24	1
5 5 5 5 5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM	1 1 12 12 12 25 1 1 1 1 12 12 12 25 1	12 24 0 7 13 0 0 12 24 0 7 13 0	24.22 24.17 23.24 23.27 23.23 23.23 23.45 23.44 23.39 22.28 22.29 22.24 22.25 22.39	24.27 24.24 23.32 23.33 23.30 23.31 23.57 23.56 23.51 22.32 22.36 22.30 22.35 22.49	24.10 23.84 23.21 23.24 23.19 23.22 23.40 23.38 23.31 22.21 22.24 22.20 22.21 22.38	24 24 23	1 2
5 5 5 5 5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM	1 1 12 12 12 12 25 1 1 1 1 12 12 12 25 1 1	12 24 0 7 13 0 0 12 24 0 7 13 0 0	24.22 24.17 23.24 23.27 23.23 23.23 23.45 23.44 23.39 22.28 22.29 22.24 22.25 22.39 22.37	24.27 24.24 23.32 23.33 23.30 23.31 23.57 23.56 23.51 22.32 22.36 22.30 22.35 22.49 22.47	24.10 23.84 23.21 23.24 23.19 23.22 23.40 23.38 23.31 22.21 22.24 22.20 22.21 22.38 22.37	24	1
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM	1 1 12 12 12 25 1 1 1 1 12 12 12 12 25 1 1 1 1	12 24 0 7 13 0 0 12 24 0 7 13 0 0	24.22 24.17 23.24 23.27 23.23 23.23 23.45 23.44 23.39 22.28 22.29 22.24 22.25 22.39 22.37 22.36	24.27 24.24 23.32 23.33 23.30 23.31 23.57 23.56 23.51 22.32 22.36 22.30 22.35 22.49 22.47 22.41	24.10 23.84 23.21 23.24 23.19 23.22 23.40 23.38 23.31 22.21 22.24 22.20 22.21 22.38 22.37 22.33	24 24 23	1 2
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM	1 1 12 12 12 25 1 1 1 1 12 12 12 25 1 1 1 1	12 24 0 7 13 0 0 12 24 0 7 13 0 0 12 24 0	24.22 24.17 23.24 23.27 23.23 23.23 23.45 23.44 23.39 22.28 22.29 22.24 22.25 22.39 22.37 22.36 21.28	24.27 24.24 23.32 23.33 23.30 23.31 23.57 23.56 23.51 22.32 22.36 22.30 22.35 22.49 22.47 22.41 21.38	24.10 23.84 23.21 23.24 23.19 23.22 23.40 23.38 23.31 22.21 22.24 22.20 22.21 22.38 22.37 22.33 21.25	24 24 23	1 2
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM	1 1 12 12 12 25 1 1 1 1 12 12 25 12 12 25 1 1 1 1	12 24 0 7 13 0 0 12 24 0 7 13 0 0 0 12 24 0 7	24.22 24.17 23.24 23.27 23.23 23.23 23.45 23.44 23.39 22.28 22.29 22.24 22.25 22.39 22.37 22.36 21.28 21.31	24.27 24.24 23.32 23.33 23.30 23.31 23.57 23.56 23.51 22.32 22.36 22.30 22.35 22.49 22.47 22.41 21.38 21.39	24.10 23.84 23.21 23.24 23.19 23.22 23.40 23.38 23.31 22.21 22.24 22.20 22.21 22.38 22.37 22.33 21.25 21.29	24 24 23	1 2
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM	1 1 12 12 12 25 1 1 1 1 12 12 12 25 1 1 1 1	12 24 0 7 13 0 0 12 24 0 7 13 0 0 12 24 0	24.22 24.17 23.24 23.27 23.23 23.23 23.45 23.44 23.39 22.28 22.29 22.24 22.25 22.39 22.37 22.36 21.28	24.27 24.24 23.32 23.33 23.30 23.31 23.57 23.56 23.51 22.32 22.36 22.30 22.35 22.49 22.47 22.41 21.38	24.10 23.84 23.21 23.24 23.19 23.22 23.40 23.38 23.31 22.21 22.24 22.20 22.21 22.38 22.37 22.33 21.25	24 24 23 23	1 2 2

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 44 of 109

<LTE Band 12>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		23060	23095	23130	(dBm)	(dB)
	Frequence			704	707.5	711		
10	QPSK	1	0	23.95	24.09	24.15		
10	QPSK	1	25	24.04	24.21	24.13	25	0
10	QPSK	1	49	24.08	24.23	24.15		
10	QPSK	25	0	22.97	23.25	23.19		
10	QPSK	25	12	23.11	23.26	23.18		
10	QPSK	25	25	23.15	23.22	23.29	24	1
10	QPSK	50	0	23.09	23.23	23.19		
10	16QAM	1	0	23.22	23.38	23.42		
10	16QAM	1	25	23.31	23.45	23.42	24	1
10	16QAM	1	49	23.36	23.50	23.39		
10	16QAM	25	0	22.00	22.24	22.19		
10	16QAM	25	12	22.12	22.25	22.22		
10	16QAM	25	25	22.17	22.21	22.28	23	2
10	16QAM	50	0	22.08	22.24	22.21		
10	64QAM	1	0	22.08	22.23	22.27		
10	64QAM	1	25	22.16	22.31	22.29	23	2
10	64QAM	1	49	22.19	22.36	22.31		
10	64QAM	25	0	20.94	21.21	21.16		
10	64QAM	25	12	21.08	21.21	21.18		
10	64QAM	25	25	21.10	21.17	21.24	- 22	3
10	64QAM	50	0	21.04	21.20	21.16		
	Cha	nnel		23035	23095	23155	Tune-up limit	MPR
	Frequenc	cy (MHz)		701.5	707.5	713.5	(dBm)	(dB)
5	QPSK	1	0	23.93	24.05	24.13		
5	QPSK	1	12	23.92	24.16	24.18	25	0
5	QPSK	1	24	24.04	24.15	24.03		
5	QPSK	12	0	22.99	23.23	23.23		
5	QPSK	12	7	23.02	23.23	23.26	24	4
5	QPSK	12	13	23.08	23.21	23.21	24	1
5	QPSK	25	0	22.96	23.20	23.26		
5	16QAM	1	0	23.21	23.32	23.38		
5	16QAM	1	12	23.21	23.40	23.45	24	1
5	16QAM	1	24	23.27	23.40	23.30		
5	16QAM	12	0	22.01	22.23	22.26		
5	16QAM	12	7	22.05	22.24	22.28	22	2
5	16QAM	12	13	22.10	22.19	22.23	23	2
5	16QAM	25	0	22.01	22.23	22.26		
5	64QAM	1	0	22.10	22.23	22.27		
5	64QAM	1	12	22.05	22.29	22.33	23	2
5	64QAM	1	24	22.16	22.29	22.31		
5	64QAM	12	0	21.00	21.26	21.29		
5	64QAM	12	7	21.01	21.24	21.30	20	2
5	64QAM	12	13	21.07	21.20	21.27	22	3
					21.16		-	

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 45 of 109

	JU JAK 16	est Repor	ι				Report	No. : FA740
	Cha	nnel		23025	23095	23165	Tune-up limit	MPR
	Frequenc	cy (MHz)		700.5	707.5	714.5	(dBm)	(dB)
3	QPSK	1	0	23.90	24.14	24.13		
3	QPSK	1	8	23.88	24.11	24.12	25	0
3	QPSK	1	14	24.00	24.11	24.03		
3	QPSK	8	0	22.92	23.16	23.20		
3	QPSK	8	4	22.97	23.19	23.23		
3	QPSK	8	7	22.93	23.17	23.20	24	1
3	QPSK	15	0	22.96	23.15	23.19		
3	16QAM	1	0	23.14	23.37	23.38		
3	16QAM	1	8	23.16	23.38	23.38	24	1
3	16QAM	1	14	23.23	23.36	23.29		
3	16QAM	8	0	22.00	22.22	22.24		
3	16QAM	8	4	22.03	22.25	22.28		
3	16QAM	8	7	22.01	22.24	22.26	- 23	2
3	16QAM	15	0	22.00	22.21	22.20		
3	64QAM	1	0	22.06	22.30	22.31		
3	64QAM	1	8	22.06	22.29	22.30	23	2
3	64QAM	1	14	22.16	22.27	22.30		
3	64QAM	8	0	20.97	21.21	21.24		
3	64QAM	8	4	21.02	21.23	21.28		
3	64QAM	8	7	20.97	21.23	21.24	22	3
3	64QAM	15	0	20.95	21.18	21.23		
-	Cha			23017	23095	23173	Tune-up limit	MPR
	Frequenc			699.7	707.5	715.3	(dBm)	(dB)
1.4	QPSK	1	0	23.85	24.03	24.02		, ,
1.4	QPSK	1	3	23.90	24.10	24.09		
1.4	QPSK	1	5	23.82	24.03	23.93		
1.4	QPSK	3	0	23.85	24.09	24.09	25	0
1.4	QPSK	3	1	23.92	24.13	24.14	1	
1.4	QPSK	3	3	23.86	24.08	24.03	-	
1.4	QPSK	6	0	22.90	23.08	23.10	24	1
1.4	16QAM	1	0	23.10	23.28	23.27	2-7	,
1.4	16QAM	1	3	23.17	23.35	23.32		
1.4	16QAM	1	5	23.10	23.28	23.18		
1.4	16QAM	3	0	22.88	23.10	23.10	24	1
1.4	16QAM	3	1	22.94	23.14	23.13		
1.4	16QAM	3	3	22.88	23.14	23.13		
1.4	16QAM	6	0	21.97	22.17	22.20	23	2
1.4	64QAM	1	0	22.03	22.17	22.23	20	2
1.4	64QAM	1	3	22.06	22.23	22.28		
1.4	64QAM	1	5	22.00	22.20	22.20		
	64QAM	3	0	22.00	22.21	22.20	23	2
		<u> </u>		21.97	22.10	22.20		2
1.4		2		22.02	22.24	22.24		
	64QAM 64QAM	3	1 3	22.02 21.96	22.24 22.19	22.24 22.20		

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 46 of 109

<LTE Band 13>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		Cii. / Freq.	23230	On. / Heq.	(dBm)	(dB)
	Frequen				782			
10	QPSK	1	0		23.00			
10	QPSK	1	25		24.26		25	0
10	QPSK	1	49		24.15		1	
10	QPSK	25	0		23.24			
10	QPSK	25	12		23.33			
10	QPSK	25	25		23.26		24	1
10	QPSK	50	0		23.31			
10	16QAM	1	0		22.25			
10	16QAM	1	25		23.51		24	1
10	16QAM	1	49		23.41			
10	16QAM	25	0		22.26			
10	16QAM	25	12		22.35		22	0
10	16QAM	25	25		22.27		23	2
10	16QAM	50	0		22.33]	
10	64QAM	1	0		21.27			
10	64QAM	1	25		22.38		23	2
10	64QAM	1	49		22.25]	
10	64QAM	25	0		21.18			
10	64QAM	25	12		21.27			
10	64QAM	25	25		21.19		22	3
10	64QAM	50	0		21.25]	
	Cha	nnel		23205	23230	23255	Tune-up limit	MPR
	Frequen	cy (MHz)		779.5	782	784.5	(dBm)	(dB)
5	QPSK	1	0	23.00	24.09	24.25		
5	QPSK	1	12	24.13	24.23	24.19	25	0
5	QPSK	1	24	24.21	24.21	24.14		
5	QPSK	12	0	22.00	23.32	23.26		
5	QPSK	12	7	23.06	23.32	23.26	24	1
5	QPSK	12	13	23.28	23.26	23.21	24	'
5	QPSK	25	0	23.16	23.28	23.24		
5	16QAM	1	0	22.00	23.35	23.51		
5	16QAM	1	12	23.35	23.50	23.46	24	1
5	16QAM	1	24	23.47	23.45	23.39		
5	16QAM	12	0	21.98	22.33	22.31		
5	16QAM	12	7	22.21	22.34	22.28	23	2
5	16QAM	12	13	22.28	22.27	22.23		2
5	16QAM	25	0	22.22	22.29	22.24		
5	64QAM	1	0	21.00	22.27	22.36		
5	64QAM	1	12	22.28	22.35	22.32	23	2
5	64QAM	1	24	22.36	22.30	22.25		
5	64QAM	12	0	21.18	21.30	21.26		
5	64QAM	12	7	21.22	21.31	21.26	22	3
5	64QAM	12	13	21.27	21.25	21.22		3
5	64QAM	25	0	21.18	21.24	21.19		

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 47 of 109

<LTE Band 17>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		23780	23790	23800	(dBm)	(dB)
	Frequen	cy (MHz)		709	710	711	1	
10	QPSK	1	0	24.29	24.13	24.11		
10	QPSK	1	25	24.33	24.22	24.20	25	0
10	QPSK	1	49	24.39	24.26	23.96		
10	QPSK	25	0	23.30	23.17	23.24		
10	QPSK	25	12	23.40	23.28	23.27	i	
10	QPSK	25	25	23.39	23.37	23.35	24	1
10	QPSK	50	0	23.40	23.27	23.26		
10	16QAM	1	0	23.49	23.36	23.34		
10	16QAM	1	25	23.57	23.45	23.44	24	1
10	16QAM	1	49	23.64	23.49	23.30		
10	16QAM	25	0	22.31	22.16	22.27		
10	16QAM	25	12	22.41	22.30	22.28		
10	16QAM	25	25	22.38	22.36	22.34	23	2
10	16QAM	50	0	22.40	22.27	22.27		
10	64QAM	1	0	22.39	22.26	22.25		
10	64QAM	1	25	22.46	22.35	22.34	23	2
10	64QAM	1	49	22.52	22.37	22.36		
10	64QAM	25	0	21.26	21.14	21.23		
10	64QAM	25	12	21.38	21.27	21.26		
10	64QAM	25	25	21.30	21.31	21.30	- 22	3
10	64QAM	50	0	21.34	21.23	21.24		
	Cha			23755	23790	23825	Tune-up limit	MPR
	Frequen			706.5	710	713.5	(dBm)	(dB)
5	QPSK	1	0	24.25	24.08	24.16		
5	QPSK	1	12	24.23	24.18	24.24	25	0
5	QPSK	1	24	24.32	24.27	23.84		
5	QPSK	12	0	23.27	23.26	23.30		
5	QPSK	12	7	23.30	23.29	23.33		
5	QPSK	12	13	23.29	23.22	23.29	24	1
5	QPSK	25	0	23.28	23.25	23.32		
5	16QAM	1	0	23.48	23.35	23.41		
5	16QAM	1	12	23.46	23.45	23.50	24	1
5	16QAM	1	24	23.54	23.52	23.15		
5	16QAM	12	0	22.32	22.29	22.33		
5	16QAM	12	7	22.31	22.29	22.34		
5	16QAM	12	13	22.29	22.27	22.29	23	2
5	16QAM	25	0	22.29	22.25	22.31		
5	64QAM	1	0	22.39	22.23	22.33		
5	64QAM	1	12	22.35	22.31	22.38	23	2
5	64QAM	1	24	22.45	22.41	22.20		
5	64QAM	12	0	21.33	21.26	21.32		
5	64QAM	12	7	21.35	21.30	21.36	1	_
5	64QAM	12	13	21.31	21.27	21.33	22	3
J								3

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 48 of 109

<LTE Band 25>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low	Power Middle	Power High		
				Ch. / Freq.	Ch. / Freq.	Ch. / Freq.	Tune-up limit (dBm)	MPR
	Cha			26140	26340	26590	(ubiii)	(dB)
	Frequen	cy (MHz)		1860	1880	1905		
20	QPSK	1	0	24.26	24.34	24.48		
20	QPSK	1	49	23.95	24.02	24.25	24.5	0
20	QPSK	1	99	24.15	24.12	24.26		
20	QPSK	50	0	24.07	24.19	24.33		
20	QPSK	50	24	24.06	24.11	24.18	24.5	0
20	QPSK	50	50	23.97	24.07	24.32	24.5	U
20	QPSK	100	0	24.03	24.12	24.35		
20	16QAM	1	0	24.32	24.40	24.47		
20	16QAM	1	49	24.23	24.28	24.41	24.5	0
20	16QAM	1	99	24.43	24.38	24.24		
20	16QAM	50	0	23.71	23.90	23.48		
20	16QAM	50	24	23.65	23.93	23.32]	
20	16QAM	50	50	23.55	24.02	23.86	24.5	0
20	16QAM	100	0	23.48	23.54	23.85	1	
20	64QAM	1	0	23.55	23.40	23.83		
20	64QAM	1	49	23.95	23.65	23.29	24.5	0
20	64QAM	1	99	23.44	24.08	22.91	1	·
20	64QAM	50	0	22.67	22.43	22.32		
20	64QAM	50	24	22.80	22.63	22.37	1	
20	64QAM	50	50	22.61	22.96	22.55	23.5	1
20	64QAM	100	0	22.43	22.54	22.82	-	
20	Cha		U	26115	26340	26615	Torres our Parit	MDD
	Frequenc			1857.5	1880	1907.5	Tune-up limit (dBm)	MPR (dB)
15	QPSK	1	0	23.95	24.08	24.19	(aBm)	(42)
15	QPSK	1	37	23.77	23.85	24.19	24.5	0
15	QPSK	1	74	23.77	23.79	23.94	24.5	U
15	QPSK	36	0	23.92	24.02	24.07	_	
15	QPSK	36	20	23.87	23.96	24.12	24.5	0
15	QPSK	36	39	23.84	23.86	24.02	4	
15	QPSK	75	0	23.86	23.96	24.12		
15	16QAM	1	0	24.20	24.27	24.25		
15	16QAM	1	37	24.08	24.11	24.29	24.5	0
15	16QAM	1	74	24.02	24.05	23.63		
15	16QAM	36	0	23.60	23.41	23.23		
15	16QAM	36	20	23.82	23.68	23.68	24.5	0
15	16QAM	36	39	23.74	23.86	23.45		J
15	16QAM	75	0	23.59	23.59	23.67		
15	64QAM	1	0	23.60	23.45	23.40		
15	64QAM	1	37	23.91	23.66	23.59	24.5	0
15	64QAM	1	74	23.84	24.00	22.79		
15	64QAM	36	0	22.63	22.47	22.28		
15	64QAM	36	20	22.89	22.71	22.59	22.5	4
15	64QAM	36	39	22.83	22.95	22.53	23.5	1
15	64QAM	75	0	22.58	22.54	22.35		

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 49 of 109

	Cha	nnel		26090	26340	26640	Tune-up limit	MPR
		cy (MHz)		1855	1880	1910	(dBm)	(dB)
10	QPSK	1	0	24.09	24.21	24.13	("	(- /
10	QPSK	1	25	23.78	23.87	24.05	24.5	0
10	QPSK	1	49	23.96	24.02	23.96		·
10	QPSK	25	0	23.88	23.98	24.14		
10	QPSK	25	12	23.87	23.94	24.12		
10	QPSK	25	25	23.83	23.87	23.98	24.5	0
10	QPSK	50	0	23.85	23.94	24.11		
10	16QAM	1	0	24.33	24.33	24.34		
10	16QAM	1	25	24.07	24.14	24.30	24.5	0
10	16QAM	1	49	24.23	24.29	23.59	24.5	U
10	16QAM	25	0	23.50	23.41	23.73		
10	16QAM	25	12	23.71	23.63	23.79	-	
10	16QAM	25	25	23.80	23.86	23.25	24.5	0
10	16QAM	50	0	23.68	23.76	23.53	-	
10	64QAM	1	0	23.50	23.45	23.42		
10	64QAM	1	25	23.78	23.43	23.97	24.5	0
10	64QAM	1	49	23.78	24.13	22.67	24.5	U
10	64QAM	25	0	22.52	22.43	22.66		
10	64QAM	25	12	22.70	22.43	22.81	-	
	64QAM	25 25					23.5	1
10		50	25 0	22.78	22.85	22.40	-	
10	64QAM		0	22.70	22.66	22.51	- 0.0	MDD
	Cha			26065	26340	26665	Tune-up limit (dBm)	MPR (dB)
_	Frequen		1 0	1852.5	1880	1912.5	(ubiii)	(ub)
5 5	QPSK	1	0	23.85	23.93	24.11	24.5	0
	QPSK	1	12	23.78	23.88	24.04	24.5	0
5	QPSK		24	23.77	23.86	23.97		
5	QPSK	12	0	23.87	23.98	24.11	_	
5	QPSK	12	7	23.86	23.96	23.99	24.5	0
5	QPSK	12	13	23.82	23.90	23.60	_	
5	QPSK	25	0	23.84	23.93	23.88		
5	16QAM	1	0	24.08	24.18	24.33	04.5	0
5	16QAM	1	12	24.03	24.12	24.11	24.5	0
5	16QAM	1	24	24.05	24.12	23.65		
5	16QAM	12	0	23.37	23.47	23.58	_	
5	16QAM	12	7	23.50	23.65	23.18	24.5	0
5	16QAM	12	13	23.59	23.75	22.80		
5	16QAM	25	0	23.43	23.61	23.15		
5	64QAM	1	0	23.49	23.55	23.95		
5	64QAM	1	12	23.54	23.68	23.40	24.5	0
5	64QAM	1	24	23.78	23.96	22.64		
5	64QAM	12	0	22.45	22.56	22.73		
5	64QAM	12	7	22.54	22.71	22.41	23.5	1
5	64QAM	12	13	22.64	22.81	22.00		•
5	64QAM	25	0	22.46	22.61	22.33		

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 50 of 109

ON LAB.	CC SAR Te	est Repor	<u> </u>				Report	No. : FA740
	Chai	nnel		26055	26340	26675	Tune-up limit	MPR
	Frequenc	cy (MHz)		1851.5	1880	1913.5	(dBm)	(dB)
3	QPSK	1	0	23.81	23.90	24.05		
3	QPSK	1	8	23.76	23.88	24.00	24.5	0
3	QPSK	1	14	23.76	23.86	23.98		
3	QPSK	8	0	23.85	23.92	23.89		
3	QPSK	8	4	23.84	23.95	23.64	04.5	0
3	QPSK	8	7	23.79	23.88	23.47	24.5	0
3	QPSK	15	0	23.84	23.92	23.60		
3	16QAM	1	0	24.05	24.10	24.17		
3	16QAM	1	8	24.01	24.13	23.73	24.5	0
3	16QAM	1	14	24.00	24.09	23.64		
3	16QAM	8	0	23.42	23.56	23.05		
3	16QAM	8	4	23.46	23.69	22.89	24.5	0
3	16QAM	8	7	23.44	23.71	22.68	24.5	0
3	16QAM	15	0	23.38	23.61	22.88		
3	64QAM	1	0	23.50	23.62	23.49		
3	64QAM	1	8	23.51	23.76	22.89	24.5	0
3	64QAM	1	14	23.66	23.92	22.68		
3	64QAM	8	0	22.42	22.59	22.27		
3	64QAM	8	4	22.47	22.70	22.03		
3	64QAM	8	7	22.46	22.74	21.84	23.5	1
3	64QAM	15	0	22.41	22.64	22.09		
	Chai	nnel		26047	26340	26683	Tune-up limit	MPR
	Frequenc			1850.7	1880	1914.3	(dBm)	(dB)
1.4	QPSK	1	0	23.71	23.82	23.90		
1.4	QPSK	1	3	23.79	23.87	23.97		
1.4	QPSK	1	5	23.71	23.77	23.87	i	_
1.4	QPSK	3	0	23.74	23.86	23.97	24.5	0
1.4	QPSK	3	1	23.79	23.91	24.02		
1.4	QPSK	3	3	23.74	23.85	23.97		
1.4	QPSK	6	0	23.75	23.85	23.37	24.5	0
1.4	16QAM	1	0	23.95	24.06	23.53		
1.4	16QAM	<u>·</u> 1	3	24.04	24.12	23.47		
1.4	16QAM	<u> </u>	5	23.97	24.04	23.51		
1.4	16QAM	3	0	23.77	23.85	23.30	24.5	0
1.4	16QAM	3	1	23.83	23.90	23.28		
1.4	16QAM	3	3	23.76	23.84	23.25		
1.4	16QAM	6	0	23.30	23.57	22.53	24.5	0
1.4	64QAM	<u></u>	0	23.39	23.57	22.75		
1.4	64QAM	<u>·</u> 1	3	23.42	23.70	22.50		
1.4	64QAM	1	5	23.39	23.72	22.55		
1.4	64QAM	3	0	23.40	23.62	22.66	24.5	0
1.4	64QAM	3	1	23.43	23.66	22.69		
	64QAM	3	3	23.37	23.68	22.55		
1.4	n4(JAW							

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 51 of 109

<LTE Band 26>

Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
Cha	nnel		26765	26865	26965	(dBm)	(dB)
Frequenc	cy (MHz)		821.5	831.5	841.5		
QPSK	1	0	23.64	23.76	23.80		
QPSK	1	37	23.73	23.87	23.87	25	0
QPSK	1	74	23.73	23.88	23.90		
QPSK	36	0	23.78	23.80	23.96		
QPSK	36	20	23.82	23.94	23.97	25	0
QPSK	36	39	23.82	23.89	24.01	25	0
QPSK	75	0	23.74	23.89	23.94		
16QAM	1	0	23.88	24.04	24.08		
16QAM	1	37	24.02	24.12	24.18	25	0
16QAM	1	74	24.01	24.22	24.17		
16QAM	36	0	23.76	23.82	23.97		
16QAM	36	20	23.81	23.90	24.00	25	0
16QAM	36	39	23.83	23.86	24.03	25	0
16QAM	75	0	23.76	23.87	23.97		
64QAM	1	0	23.54	24.01	24.02		
64QAM	1	37	23.92	24.02	24.01	25	0
64QAM	1	74	23.85	23.93	23.92		
64QAM	36	0	22.69	23.23	23.62		
64QAM	36	20	23.13	23.22	23.41	1	
64QAM	36	39	23.19			24	1
64QAM	75	0	23.01		23.22	1	
Cha	nnel		26740		26990	Tune-up limit	MPR
			819		844	(dBm)	(dB)
	1	0	23.82	23.77	23.83		
QPSK	1	25	23.83	23.78	23.77	25	0
QPSK	1	49	23.84	23.79	23.76		
QPSK	25	0	23.83	23.87	23.86		
QPSK	25	12	23.89	23.84	23.85	i	_
QPSK	25	25	23.81	23.81	23.87	25	0
QPSK	50	0	23.87	23.81	23.91		
16QAM	1	0	24.03	24.04	24.11		
16QAM	1	25	24.09	24.06	24.01	25	0
16QAM	1	49	24.12	24.04	24.05		
16QAM	25	0	23.31	23.81	23.84		
16QAM	25	12	23.41	23.86	23.80		•
16QAM	25	25	23.82	23.78	23.82	25	0
16QAM	50	0	23.42	23.75	23.89		
64QAM	1	0		23.77	24.01		
64QAM	1	25	23.76	23.94	23.93	25	0
64QAM	1	49		23.93			
64QAM			22.50		23.36		
64QAM	25	12					
						24	1
	Cha Frequent QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 16QAM 64QAM	Channel Frequency (MHz) QPSK 1 QPSK 1 QPSK 36 QPSK 36 QPSK 36 QPSK 36 QPSK 75 16QAM 1 16QAM 1 16QAM 36 16QAM 36 16QAM 36 16QAM 36 16QAM 1 64QAM 1 64QAM 36 64QAM 75 Channel Frequency (MHz)	Channel Frequency (MHz) QPSK 1 0 QPSK 1 74 QPSK 36 0 QPSK 36 20 QPSK 36 39 QPSK 36 39 QPSK 75 0 16QAM 1 0 16QAM 1 37 16QAM 1 74 16QAM 36 20 16QAM 36 39 16QAM 36 39 16QAM 1 0 64QAM 1 0 64QAM 1 0 64QAM 1 74 64QAM 36 20 64QAM 36 20 64QAM 36 39 64QAM 36 39 64QAM 36 39 64QAM 75 0 Channel <t< td=""><td>Modulation RB Size RB Offset Low Ch. / Freq. Channel 26765 Frequency (MHz) 821.5 QPSK 1 0 23.64 QPSK 1 74 23.73 QPSK 36 0 23.78 QPSK 36 20 23.82 QPSK 36 39 23.82 QPSK 36 39 23.82 QPSK 36 39 23.82 QPSK 75 0 23.74 16QAM 1 0 23.88 16QAM 1 74 24.02 16QAM 1 74 24.01 16QAM 36 0 23.76 16QAM 36 39 23.83 16QAM 36 39 23.83 16QAM 75 0 23.76 64QAM 1 74 23.85 64QAM 1 74 23.</td><td>Modulation RB Size RB Offset Ch. / Freq. Ch. / Freq. 26765 Low Ch. / Freq. 26865 Middle Ch. / Freq. 26865 Ch. / Freq. 26865 Ch. / Freq. 26865 Ese85 Frequency (MHz) 821.5 831</td><td> Modulation RB Size RB Offset Low Ch. / Freq. 26765 26865 26965 E76quency (MHz) 821.5 831.5 841.5 RS 1.5 RS 1.5</td><td> Modulation</td></t<>	Modulation RB Size RB Offset Low Ch. / Freq. Channel 26765 Frequency (MHz) 821.5 QPSK 1 0 23.64 QPSK 1 74 23.73 QPSK 36 0 23.78 QPSK 36 20 23.82 QPSK 36 39 23.82 QPSK 36 39 23.82 QPSK 36 39 23.82 QPSK 75 0 23.74 16QAM 1 0 23.88 16QAM 1 74 24.02 16QAM 1 74 24.01 16QAM 36 0 23.76 16QAM 36 39 23.83 16QAM 36 39 23.83 16QAM 75 0 23.76 64QAM 1 74 23.85 64QAM 1 74 23.	Modulation RB Size RB Offset Ch. / Freq. Ch. / Freq. 26765 Low Ch. / Freq. 26865 Middle Ch. / Freq. 26865 Ch. / Freq. 26865 Ch. / Freq. 26865 Ese85 Frequency (MHz) 821.5 831	Modulation RB Size RB Offset Low Ch. / Freq. 26765 26865 26965 E76quency (MHz) 821.5 831.5 841.5 RS 1.5 RS 1.5	Modulation

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 52 of 109

Channel 26715 26865 27015 Tune-up Frequency (MHz) 816.5 831.5 846.5 (dBm	
	(dB)
5 0000 0000 0007	(GD)
5 QPSK 1 0 23.80 23.82 23.87	
5 QPSK 1 12 23.75 23.77 23.82 25	0
5 QPSK 1 24 23.83 23.74 23.79	
5 QPSK 12 0 23.85 23.90	
5 OPSK 12 7 23.83 23.85 23.91	
5 QPSK 12 13 23.87 23.79 23.86 25	0
5 QPSK 25 0 23.82 23.91	
5 16QAM 1 0 24.01 24.08 24.18	
5 16QAM 1 12 23.98 24.07 24.14 25	0
5 16QAM 1 24 24.05 24.09	
5 16QAM 12 0 23.22 23.86 23.90	
5 16OAM 12 7 23.22 23.85 23.87	
5 16QAM 12 13 23.22 23.81 23.76 25	0
5 16QAM 25 0 23.23 23.83 23.81	
5 64QAM 1 0 23.45 24.02 24.06	
5 64QAM 1 12 23.45 23.97 23.96 25	0
5 64QAM 1 24 23.57 23.92 23.80	
5 64QAM 12 0 22.36 23.24 23.07	
5 64QAM 12 7 22.42 23.13 23.03	
5 64QAM 12 13 22.47 23.14 22.92 24	1
5 64QAM 25 0 22.45 23.17 22.99	
	l'arit MDD
Channel 26705 26865 27025 Tune-up Frequency (MHz) 815.5 831.5 847.5 (dBm	
3 QPSK 1 0 23.78 23.85) (GB)
3 QPSK 1 8 23.76 23.85 23.81 25	0
	0
3 QPSK 8 0 23.84 23.88	
3 QPSK 8 4 23.84 23.85 23.90 25	0
3 QPSK 8 7 23.80 23.82 23.86	
3 QPSK 15 0 23.81 23.86	
3 16QAM 1 0 23.96 24.05 24.12	_
3 16QAM 1 8 23.97 24.04 24.11 25	0
3 16QAM 1 14 23.93 24.00 24.05	
3 16QAM 8 0 23.25 23.84 23.84	
3 16QAM 8 4 23.25 23.90 23.88 25	0
3 16QAM 8 7 23.15 23.86 23.77	
3 16QAM 15 0 23.20 23.83 23.79	
3 64QAM 1 0 23.43 23.99 24.02	
3 64QAM 1 8 23.47 23.96 23.95 25	0
3 64QAM 1 14 23.49 23.93 23.74	
3 64QAM 8 0 22.39 23.16 23.09	
3 64QAM 8 4 22.43 23.18 23.00 24	1
24	
3 64QAM 8 7 22.42 23.16 22.90 24 3 64QAM 15 0 22.33 23.07 22.88	

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 53 of 109

ON LAB. F	CC SAR Te	est Repor	t				Report	No. : FA7408
	Cha	nnel		26697	26865	27033	Tune-up limit	MPR
	Frequenc	cy (MHz)		814.7	831.5	848.3	(dBm)	(dB)
1.4	QPSK	1	0	23.71	23.71	23.74		
1.4	QPSK	1	3	23.76	23.75	23.79		
1.4	QPSK	1	5	23.67	23.69	23.70	05	0
1.4	QPSK	3	0	23.73	23.75	23.75	25	0
1.4	QPSK	3	1	23.78	23.77	23.80		
1.4	QPSK	3	3	23.73	23.74	23.75		
1.4	QPSK	6	0	23.73	23.74	23.78	25	0
1.4	16QAM	1	0	23.89	23.95	24.00		0
1.4	16QAM	1	3	23.94	24.02	24.07		
1.4	16QAM	1	5	23.86	23.95	23.99	0.5	
1.4	16QAM	3	0	23.73	23.76	23.82	25	0
1.4	16QAM	3	1	23.77	23.80	23.86		
1.4	16QAM	3	3	23.70	23.73	23.79		
1.4	16QAM	6	0	23.11	23.80	23.65	25	0
1.4	64QAM	1	0	23.39	23.89	23.88		
1.4	64QAM	1	3	23.30	23.96	23.75		
1.4	64QAM	1	5	23.42	23.89	23.74	05	0
1.4	64QAM	3	0	23.28	23.86	23.84	25	0
1.4	64QAM	3	1	23.24	23.86	23.82		
1.4	64QAM	3	3	23.11	23.83	23.75		
1.4	64QAM	6	0	22.20	22.97	22.81	24	1

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 54 of 109

Report No. : FA740822

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		Cn. / Freq.	27710	Cn. / Freq.	(dBm)	(dB)
	Frequence				2310			
10	QPSK	1	0		24.20			
10	QPSK	1	25		24.29		25	0
10	QPSK	1	49		24.19		- 20	Ü
10	QPSK	25	0		23.38			
10	QPSK	25	12		23.34		1	
10	QPSK	25	25		23.27		24	1
10	QPSK	50	0		23.33		1	
10	16QAM	1	0		23.44			
10	16QAM	1	25		23.52		24	1
10	16QAM	1	49		23.44			·
10	16QAM	25	0		22.38			
10	16QAM	25	12		22.35			
10	16QAM	25	25		22.29		23	2
10	16QAM	50	0		22.36		1	
10	64QAM	1	0		22.60			
10	64QAM	1	25		22.60		23	2
10	64QAM	1	49		22.53			_
10	64QAM	25	0		21.56			
10	64QAM	25	12		21.52		1	
10	64QAM	25	25		21.44		22	3
10	64QAM	50	0		21.52		1	
	Cha			27685	27710	27735	Tune-up limit	MPR
	Frequence			2307.5	2310	2312.5	(dBm)	(dB)
5	QPSK	1	0	24.14	24.20	24.22		
5	QPSK	1	12	24.28	24.28	24.27	25	0
5	QPSK	1	24	24.28	24.26	24.23		
5	QPSK	12	0	23.34	23.35	23.34		
5	QPSK	12	7	23.36	23.34	23.31	1	
5	QPSK	12	13	23.29	23.27	23.28	24	1
5	QPSK	25	0	23.32	23.31	23.31		
5	16QAM	1	0	23.39	23.58	23.60		
5	16QAM	1	12	23.53	23.53	23.52	24	1
5	16QAM	1	24	23.51	23.49	23.48		
5	16QAM	12	0	22.39	22.36	22.35		
	100 111				22.34	22.34		
5	16QAM	12	7	22.37	22.54	22.54	22	2
5 5	16QAM 16QAM	12 12	7 13	22.37 22.32	22.31	22.29	23	2
							23	2
5	16QAM	12	13	22.32	22.31	22.29	23	2
5 5	16QAM 16QAM	12 25	13 0	22.32 22.34	22.31 22.33	22.29 22.32	23	2
5 5 5	16QAM 16QAM 64QAM	12 25 1	13 0 0	22.32 22.34 22.57	22.31 22.33 22.69	22.29 22.32 22.68		
5 5 5 5	16QAM 16QAM 64QAM 64QAM	12 25 1 1	13 0 0 12	22.32 22.34 22.57 22.62	22.31 22.33 22.69 22.60	22.29 22.32 22.68 22.58		
5 5 5 5 5	16QAM 16QAM 64QAM 64QAM 64QAM	12 25 1 1 1	13 0 0 12 24	22.32 22.34 22.57 22.62 22.60	22.31 22.33 22.69 22.60 22.58	22.29 22.32 22.68 22.58 22.56	23	2
5 5 5 5 5	16QAM 16QAM 64QAM 64QAM 64QAM 64QAM	12 25 1 1 1 1	13 0 0 12 24 0	22.32 22.34 22.57 22.62 22.60 21.56	22.31 22.33 22.69 22.60 22.58 21.56	22.29 22.32 22.68 22.58 22.56 21.54		

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 55 of 109

Report No.: FA740822

LIE Danie	1 00>							
BW [MHz]	Modulation	RB Size	RB Offset	Power Low	Power Middle	Power High		
D * * [*	Modulation	ND 0120	TED CHOCK	Ch. / Freq.	Ch. / Freq.	Ch. / Freq.	Tune-up limit	MPR
	Cha	innel		132072	132322	132572	(dBm)	(dB)
	Frequen	cy (MHz)		1720	1745	1770		
20	QPSK	1	0	23.87	23.88	23.75		
20	QPSK	1	49	23.66	23.60	23.63	24.5	0
20	QPSK	1	99	23.68	23.56	23.51		
20	QPSK	50	0	22.84	22.78	22.68		
20	QPSK	50	24	22.76	22.70	22.65	22.5	4
20	QPSK	50	50	22.67	22.59	22.59	23.5	1
20	QPSK	100	0	22.76	22.66	22.67		
20	16QAM	1	0	23.13	23.04	22.98		
20	16QAM	1	49	22.87	22.71	22.81	23.5	1
20	16QAM	1	99	22.93	22.70	22.73		
20	16QAM	50	0	21.84	21.73	21.70		
20	16QAM	50	24	21.77	21.63	21.72	00.5	0
20	16QAM	50	50	21.69	21.52	21.60	22.5	2
20	16QAM	100	0	21.74	21.61	21.67		
20	64QAM	1	0	22.07	22.04	21.95		
20	64QAM	1	49	21.84	21.67	21.78	22.5	2
20	64QAM	1	99	21.89	21.66	21.67		
20	64QAM	50	0	20.83	20.72	20.70		
20	64QAM	50	24	20.77	20.63	20.71	04.5	
20	64QAM	50	50	20.72	20.52	20.61	21.5	3
20	64QAM	100	0	20.78	20.59	20.69		
	Cha	nnel		132047	132322	132597	Tune-up limit	MPR
	Frequen	cy (MHz)		1717.5	1745	1772.5	(dBm)	(dB)
15	QPSK	1	0	23.87	23.73	23.75		
15	QPSK	1	37	23.68	23.46	23.63	24.5	0
15	QPSK	1	74	23.57	23.39	23.61		
15	QPSK	36	0	22.72	22.64	22.72		
15	QPSK	36	20	22.68	22.59	22.76		_
15	QPSK	36	39	22.61	22.47	22.64	23.5	1
15	QPSK	75	0	22.68	22.60	22.64		
15	16QAM	1	0	23.03	23.01	22.93		
15	16QAM	1	37	22.77	22.69	22.78	23.5	1
15	16QAM	1	74	22.81	22.67	22.80		
15	16QAM	36	0	21.75	21.71	21.64		
15	16QAM	36	20	21.67	21.59	21.65	1	
15	16QAM	36	39	21.59	21.48	21.58	22.5	2
15	16QAM	75	0	21.67	21.61	21.65		
15	64QAM	1	0	21.94	21.93	21.90		
15	64QAM	1	37	21.77	21.68	21.73	22.5	2
								_

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

64QAM

64QAM

64QAM

64QAM

64QAM

36

36

36

75

15

15

15

15

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 56 of 109

21.73

20.75

20.68

20.63

20.65

21.58

20.70

20.60

20.52

20.60

21.71

20.67

20.68

20.60

20.63

21.5

3

74

0

20

39

0

	CC SAR Te			132022	132322	132622	Tune-up limit	No. : FA74
	Frequence			1715	1745	1775	(dBm)	(dB)
10	QPSK	1	0	23.71	23.71	23.60	(32)	(32)
10	QPSK	1	25	23.60	23.56	23.46	24.5	0
10	QPSK	1	49	23.58	23.49	23.41	- 24.0	Ü
10	QPSK	25	0	22.72	22.66	22.56		
10	QPSK	25	12	22.66	22.66	22.53	_	
10	QPSK	25	25	22.65	22.56	22.49	23.5	1
10	QPSK	50	0	22.66	22.49	22.53	_	
10	16QAM	1	0	23.00	22.49	22.86		
10	16QAM	1	25	22.88	22.73	22.71	23.5	1
10	16QAM	1	49	22.79	22.63	22.71	23.5	'
	16QAM			21.73				
10		25	0		21.57	21.57	_	
10	16QAM	25	12	21.68	21.56	21.52	22.5	2
10	16QAM	25	25	21.64	21.47	21.48		
10	16QAM	50	0	21.67	21.54	21.51		
10	64QAM	1	0	21.88	21.75	21.77		
10	64QAM	1	25	21.78	21.63	21.64	22.5	2
10	64QAM	1	49	21.74	21.54	21.59		
10	64QAM	25	0	20.73	20.58	20.54	_	
10	64QAM	25	12	20.71	20.57	20.56	21.5	3
10	64QAM	25	25	20.66	20.49	20.48	_	
10	64QAM	50	0	20.72	20.56	20.56		
	Cha			131997	132322	132647	Tune-up limit	MPR
	Frequenc	,		1712.5	1745	1777.5	(dBm)	(dB)
5	QPSK	1	0	23.59	23.55	23.71	_	
5	QPSK	1	12	23.51	23.44	23.64	24.5	0
5	QPSK	1	24	23.53	23.43	23.62		
5	QPSK	12	0	22.63	22.51	22.70		
5	QPSK	12	7	22.59	22.52	22.68	23.5	1
5	QPSK	12	13	22.54	22.48	22.66		·
5	QPSK	25	0	22.59	22.48	22.68		
5	16QAM	1	0	22.86	22.79	22.95		
5	16QAM	1	12	22.79	22.71	22.90	23.5	1
	160 111	1	24	22.78	22.67	22.81		
5	16QAM							
	16QAM	12	0	21.64	21.56	21.63		
5 5 5		12	7	21.64 21.61	21.56 21.56	21.63 21.62	22.5	2
5 5 5 5	16QAM						22.5	2
5 5 5	16QAM 16QAM	12	7	21.61	21.56	21.62	22.5	2
5 5 5 5	16QAM 16QAM 16QAM	12 12	7 13	21.61 21.56	21.56 21.51	21.62 21.58	22.5	2
5 5 5 5	16QAM 16QAM 16QAM 16QAM	12 12 25	7 13 0	21.61 21.56 21.61	21.56 21.51 21.50	21.62 21.58 21.60	22.5	2
5 5 5 5 5 5	16QAM 16QAM 16QAM 16QAM 64QAM	12 12 25 1	7 13 0 0	21.61 21.56 21.61 21.81	21.56 21.51 21.50 21.71	21.62 21.58 21.60 21.81		
5 5 5 5 5 5	16QAM 16QAM 16QAM 16QAM 64QAM	12 12 25 1	7 13 0 0 12	21.61 21.56 21.61 21.81 21.72	21.56 21.51 21.50 21.71 21.66	21.62 21.58 21.60 21.81 21.73		
5 5 5 5 5 5 5 5	16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM	12 12 25 1 1	7 13 0 0 12 24	21.61 21.56 21.61 21.81 21.72 21.72	21.56 21.51 21.50 21.71 21.66 21.59	21.62 21.58 21.60 21.81 21.73 21.71	22.5	2
5 5 5 5 5 5 5 5 5	16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM	12 12 25 1 1 1 1	7 13 0 0 12 24	21.61 21.56 21.61 21.81 21.72 21.72 20.68	21.56 21.51 21.50 21.71 21.66 21.59 20.60	21.62 21.58 21.60 21.81 21.73 21.71 20.64		

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 57 of 109

HIUN LAB. I	CC SAR Te	est Repor	τ				Report	No. : FA740
	Cha	nnel		131987	132322	132657	Tune-up limit	MPR
	Frequenc	cy (MHz)		1711.5	1745	1778.5	(dBm)	(dB)
3	QPSK	1	0	23.54	23.45	23.55		
3	QPSK	1	8	23.52	23.44	23.52	24.5	0
3	QPSK	1	14	23.48	23.39	23.49		
3	QPSK	8	0	22.58	22.47	22.56		
3	QPSK	8	4	22.58	22.48	22.59	00.5	4
3	QPSK	8	7	22.55	22.46	22.54	23.5	1
3	QPSK	15	0	22.56	22.47	22.54		
3	16QAM	1	0	22.78	22.73	22.79		
3	16QAM	1	8	22.82	22.72	22.79	23.5	1
3	16QAM	1	14	22.74	22.66	22.75		
3	16QAM	8	0	21.63	21.54	21.63		
3	16QAM	8	4	21.63	21.56	21.66	20.5	2
3	16QAM	8	7	21.59	21.52	21.61	22.5	2
3	16QAM	15	0	21.60	21.50	21.60		
3	64QAM	1	0	21.70	21.63	21.72		
3	64QAM	1	8	21.70	21.62	21.72	22.5	2
3	64QAM	1	14	21.67	21.58	21.67		
3	64QAM	8	0	20.64	20.55	20.64		
3	64QAM	8	4	20.63	20.56	20.64		
3	64QAM	8	7	20.59	20.50	20.59	21.5	3
3	64QAM	15	0	20.58	20.50	20.58		
	Chai			131979	132322	132665	Tune-up limit	MPR
1	Frequenc			1710.7	1745	1779.3	(dBm)	(dB)
1.4	QPSK	1	0	23.45	23.34	23.47		
1.4	QPSK	1	3	23.51	23.42	23.54		
1.4	QPSK	1	5	23.43	23.35	23.47		
1.4	QPSK	3	0	23.47	23.40	23.50	24.5	0
1.4	QPSK	3	1	23.50	23.44	23.55		
1.4	QPSK	3	3	23.47	23.40	23.49		
1.4	QPSK	6	0	22.48	22.42	22.51	23.5	1
1.4	16QAM	1	0	22.69	22.64	22.70		•
1.4	16QAM	<u> </u>	3	22.78	22.69	22.80		
1.4	16QAM	1	5	22.66	22.59	22.69		
1.4	16QAM	3	0	22.50	22.43	22.51	23.5	1
1.4	16QAM	3	1	22.55	22.48	22.58		
	16QAM	3	3	22.47	22.41	22.50		
	TO G(/ TIVI			21.59	21.51	21.57	22.5	2
1.4		6	()		21.01	21.01	22.0	_
1.4 1.4	16QAM	6 1	0		21 73	21 71		
1.4 1.4 1.4	16QAM 64QAM	1	0	21.77	21.73	21.71		
1.4 1.4 1.4 1.4	16QAM 64QAM 64QAM	1 1	0 3	21.77 21.81	21.74	21.69		
1.4 1.4 1.4 1.4 1.4	16QAM 64QAM 64QAM 64QAM	1 1 1	0 3 5	21.77 21.81 21.73	21.74 21.68	21.69 21.62	- 22.5	2
1.4 1.4 1.4 1.4 1.4 1.4	16QAM 64QAM 64QAM 64QAM 64QAM	1 1 1 3	0 3 5 0	21.77 21.81 21.73 21.71	21.74 21.68 21.66	21.69 21.62 21.59	- 22.5	2
1.4 1.4 1.4 1.4 1.4	16QAM 64QAM 64QAM 64QAM	1 1 1	0 3 5	21.77 21.81 21.73	21.74 21.68	21.69 21.62	22.5	2

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 58 of 109

FCC SAR Test Report

<TDD LTE SAR Measurement>

TDD LTE configuration setup for SAR measurement

SAR was tested with a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by 3GPP.

- a. 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplink-downlink configurations
- b. "special subframe S" contains both uplink and downlink transmissions, it has been taken into consideration to determine the transmission duty factor according to the worst case uplink and downlink cyclic prefix requirements for UpPTS

Report No. : FA740822

c. Establishing connections with base station simulators ensure a consistent means for testing SAR and recommended for evaluating SAR. The Anritsu MT8820C (firmware: #22.52#004) was used for LTE output power measurements and SAR testing.

Figure 4.2-1: Frame structure type 2 (for 5 ms switch-point periodicity).

Table 4.2-2: Uplink-downlink configurations.

Uplink-downlink	Downlink-to-Uplink	Subframe number										
configuration	Switch-point periodicity	0	1	2	3	4	5	6	7	8	9	
0	5 ms	D	S	U	U	U	D	S	U	U	U	
1	5 ms	D	S	U	U	D	D	S	U	U	D	
2	5 ms	D	S	U	D	D	D	S	U	D	D	
3	10 ms	D	S	U	U	U	D	D	D	D	D	
4	10 ms	D	S	U	U	D	D	D	D	D	D	
5	10 ms	О	S	U	D	D	D	О	D	D	D	
6	5 ms	D	S	U	U	U	D	S	U	U	D	

Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS).

Special subframe	Norma	l cyclic prefix i	n downlink	Exte	nded cyclic prefix	in downlink
configuration	DwPTS	Up	PTS	DwPTS	Up	PTS
		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink
0	6592 ⋅ T _s			7680 · T _s		
1	19760 · T _s			20480 · T _s	2192 · T _e	2560 · T _s
2	21952 · T _s	$2192 \cdot T_s$	$2560 \cdot T_s$	23040 · T _s	2192·1 ₈	2500·1 _s
3	24144 · T _s			25600 · T _s		
4	26336· <i>T</i> _s			7680 · T _s		
5	6592 · T _s			20480 · T _s	4384 · T _c	5120 · T _e
6	19760 ⋅ <i>T</i> _s			23040 · T _s	4364.1 _s	3120.1 _s
7	21952 · T _s	$4384 \cdot T_s$	5120 ⋅ <i>T</i> _s	12800 · T _s		
8	24144 · T _s			-	-	-
9	13168 · T _s			-	-	-

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 26, 2017

FCC ID : 2ALBB-A11 Page 59 of 109 Form version. : 170509

Specia	Special subframe (30720□T _s): Normal cyclic prefix in downlink (UpPTS)								
	Special subframe configuration	Normal cyclic prefix in uplink	Extended cyclic prefix in uplink						
Uplink duty factor in one	0~4	7.13%	8.33%						
special subframe	5~9	14.3%	16.7%						

Report No.: FA740822

Special	subframe(30720□T₅): Extend	ed cyclic prefix in downlink	(UpPTS)
	Special subframe configuration	Normal cyclic prefix in uplink	Extended cyclic prefix in uplink
Uplink duty factor in one	0~3	7.13%	8.33%
special subframe	4~7	14.3%	16.7%

The highest duty factor is resulted from:

- i. Uplink-downlink configuration: 0. In a half-frame consisted of 5 subfames, uplink operation is in 3 uplink subframes and 1 special subframe.
- ii. special subframe configuration: 5-9 for normal cyclic prefix in downlink, 4-7 for extended cyclic prefix in downlink
- iii. for special subframe with extended cyclic prefix in uplink, the total uplink duty factor in one half-frame is: (3+0.167)/5 = 63.3%
- iv. for special subframe with normal cyclic prefix in uplink, the total uplink duty factor in one half-frame is: (3+0.143)/5 = 62.9%
- v. For TDD LTE SAR measurement, the duty cycle 1:1.59 (62.9 %) was used perform testing and considering the theoretical duty cycle of 63.3% for extended cyclic prefix in the uplink, and the theoretical duty cycle of 62.9% for normal cyclic prefix in uplink, a scaling factor of extended cyclic prefix 63.3%/62.9% = 1.006 is applied to scale-up the measured SAR result. The scaled TDD LTE SAR = measured SAR (W/kg)* Tune-up Scaling Factor* scaling factor for extended cyclic prefix.

<LTE Band 38>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		37850	38000	38150	(dBm)	(dB)
		cy (MHz)		2580	2595	2610	1	
20	QPSK	1	0	24.65	24.62	24.54		
20	QPSK	1	49	24.54	24.47	24.27	25	0
20	QPSK	1	99	24.53	24.43	23.72	1 1	
20	QPSK	50	0	23.66	23.63	23.38		
20	QPSK	50	24	23.62	23.57	23.22	1	
20	QPSK	50	50	23.60	23.52	22.93	24	1
20	QPSK	100	0	23.63	23.58	22.97	-	
20	16QAM	1	0	23.73	23.70	23.61		
20	16QAM	1	49	23.59	23.54	23.49	24	1
20	16QAM	1	99	23.56	23.48	22.85	1 -	
20	16QAM	50	0	22.68	22.64	22.56		
20	16QAM	50	24	22.67	22.61	22.37		
20	16QAM	50	50	22.61	22.56	22.11	23	2
20	16QAM	100	0	22.63	22.59	22.04		
20	64QAM	1	0	22.58	22.71	22.64		
20	64QAM	1	49	22.56	22.51	22.58	23	2
20	64QAM	1	99	22.50	22.50	22.17		_
20	64QAM	50	0	21.61	22.00	21.56		
20	64QAM	50	24	21.58	21.53	21.58	1	
20	64QAM	50	50	21.55	21.50	21.37	22	3
20	64QAM	100	0	21.62	21.55	21.36	1	
20	-	nnel	0	37825	38000	38175	Tune-up limit	MPR
		cy (MHz)		2577.5	2595	2612.5	(dBm)	(dB)
15	QPSK	1	0	24.62	24.57	24.43	,	,
15	QPSK	1	37	24.52	24.46	24.00	25	0
15	QPSK	1	74	24.54	24.44	23.71		ŭ
15	QPSK	36	0	23.63	23.58	23.22		
15	QPSK	36	20	23.61	23.56	23.09	1	
15	QPSK	36	39	23.58	23.53	22.85	24	1
15	QPSK	75	0	23.63	23.55	22.95		
	~							
15	16QAM					23.56		
15 15	16QAM 16QAM	1	0	23.69	23.65	23.56 23.48	24	1
15	16QAM	1	0 37	23.69 23.62	23.65 23.57	23.48	24	1
15 15	16QAM 16QAM	1 1 1	0 37 74	23.69 23.62 23.59	23.65 23.57 23.53	23.48 22.82	24	1
15 15 15	16QAM 16QAM 16QAM	1 1 1 36	0 37 74 0	23.69 23.62 23.59 22.62	23.65 23.57 23.53 22.56	23.48 22.82 22.32		
15 15 15 15	16QAM 16QAM 16QAM 16QAM	1 1 1 36 36	0 37 74 0 20	23.69 23.62 23.59 22.62 22.58	23.65 23.57 23.53 22.56 22.54	23.48 22.82 22.32 22.14	24	2
15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM	1 1 1 36 36 36	0 37 74 0 20 39	23.69 23.62 23.59 22.62 22.58 22.56	23.65 23.57 23.53 22.56 22.54 22.50	23.48 22.82 22.32 22.14 21.83		
15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 16QAM	1 1 1 36 36 36 36 75	0 37 74 0 20 39	23.69 23.62 23.59 22.62 22.58 22.56 22.63	23.65 23.57 23.53 22.56 22.54 22.50 22.58	23.48 22.82 22.32 22.14 21.83 22.13		
15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 16QAM 64QAM	1 1 1 36 36 36 36 75	0 37 74 0 20 39 0	23.69 23.62 23.59 22.62 22.58 22.56 22.63 22.78	23.65 23.57 23.53 22.56 22.54 22.50 22.58 22.66	23.48 22.82 22.32 22.14 21.83 22.13 22.63	23	2
15 15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM	1 1 1 36 36 36 36 75 1	0 37 74 0 20 39 0 0 37	23.69 23.62 23.59 22.62 22.58 22.56 22.63 22.78 22.70	23.65 23.57 23.53 22.56 22.54 22.50 22.58 22.66 22.53	23.48 22.82 22.32 22.14 21.83 22.13 22.63 22.58		
15 15 15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM	1 1 1 36 36 36 36 75 1 1	0 37 74 0 20 39 0 0 37 74	23.69 23.62 23.59 22.62 22.58 22.56 22.63 22.78 22.70 22.64	23.65 23.57 23.53 22.56 22.54 22.50 22.58 22.66 22.53 22.53	23.48 22.82 22.32 22.14 21.83 22.13 22.63 22.58 22.10	23	2
15 15 15 15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM	1 1 1 36 36 36 36 75 1 1 1 36	0 37 74 0 20 39 0 0 37 74	23.69 23.62 23.59 22.62 22.58 22.56 22.63 22.78 22.70 22.64 21.61	23.65 23.57 23.53 22.56 22.54 22.50 22.58 22.66 22.53 22.53 21.56	23.48 22.82 22.32 22.14 21.83 22.13 22.63 22.58 22.10 21.53	23	2
15 15 15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM	1 1 1 36 36 36 36 75 1 1	0 37 74 0 20 39 0 0 37 74	23.69 23.62 23.59 22.62 22.58 22.56 22.63 22.78 22.70 22.64	23.65 23.57 23.53 22.56 22.54 22.50 22.58 22.66 22.53 22.53	23.48 22.82 22.32 22.14 21.83 22.13 22.63 22.58 22.10	23	2

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11

	Report N	20200	20000	27000				
MPR (dB)	Tune-up limit (dBm)	38200	38000	37800			Chai	
(ub)	(UDIII)	2615	2595	2575	0		Frequenc	40
0	05	24.04	24.52	24.59	0	1	QPSK	10
0	25	24.06	24.51	24.59	25	1	QPSK	10
		23.69	24.47	24.56	49	1	QPSK	10
		23.00	23.56	23.62	0	25	QPSK	10
1	24	22.92	23.57	23.62	12	25	QPSK	10
		22.77	23.52	23.58	25	25	QPSK	10
		22.64	23.55	23.59	0	50	QPSK	10
		23.21	23.62	23.65	0	1	16QAM	10
1	24	23.11	23.59	23.64	25	1	16QAM	10
		22.79	23.52	23.57	49	1	16QAM	10
		22.16	22.58	22.62	0	25	16QAM	10
2	23	22.09	22.59	22.65	12	25	16QAM	10
_	23	21.92	22.51	22.60	25	25	16QAM	10
		21.87	22.59	22.64	0	50	16QAM	10
		22.51	22.57	22.62	0	1	64QAM	10
2	23	22.41	22.55	22.57	25	1	64QAM	10
		22.04	22.49	22.50	49	1	64QAM	10
		21.46	21.59	21.62	0	25	64QAM	10
		21.33	21.61	21.62	12	25	64QAM	10
3	22	21.20	21.54	21.59	25	25	64QAM	10
		21.13	21.54	21.58	0	50	64QAM	10
MPR	Tune-up limit	38225	38000	37775		nnel	Chai	
(dB)	(dBm)	2617.5	2595	2572.5		cy (MHz)	Frequenc	
		23.80	24.53	24.56	0	1	QPSK	5
0	25	23.92	24.49	24.54	12	1	QPSK	5
		23.61	24.42	24.49	24	1	QPSK	5
		22.88	23.54	23.61	0	12	QPSK	5
		22.83	23.57	23.62	7	12	QPSK	5
1	24	22.74	23.54	23.58	13	12	QPSK	5
		22.74	23.53	23.62	0	25	QPSK	5
		22.97	23.54	23.60	0	1	16QAM	5
1	24	22.97	23.58	23.53	12	1	16QAM	5
		22.77				4	16QAM	5
		22.11	23.53	23.59	24	1	10QAIVI	
,		21.94	23.53	23.59	0	12	16QAM	5
	9.5				0	12	16QAM	
2	23	21.94 21.95	22.54 22.54	22.58 22.61	0 7	12 12	16QAM 16QAM	5
	23	21.94 21.95 21.82	22.54 22.54 22.51	22.58 22.61 22.57	0 7 13	12 12 12	16QAM 16QAM 16QAM	5 5
	23	21.94 21.95 21.82 21.86	22.54 22.54 22.51 22.56	22.58 22.61 22.57 22.61	0 7 13 0	12 12 12 25	16QAM 16QAM 16QAM 16QAM	5 5 5
2		21.94 21.95 21.82 21.86 22.28	22.54 22.54 22.51 22.56 22.55	22.58 22.61 22.57 22.61 22.58	0 7 13 0	12 12 12 25 1	16QAM 16QAM 16QAM 16QAM 64QAM	5 5 5 5
	23	21.94 21.95 21.82 21.86 22.28 22.22	22.54 22.54 22.51 22.56 22.55 22.52	22.58 22.61 22.57 22.61 22.58 22.58	0 7 13 0 0	12 12 12 25 1	16QAM 16QAM 16QAM 16QAM 64QAM	5 5 5 5 5
2		21.94 21.95 21.82 21.86 22.28 22.22 22.04	22.54 22.54 22.51 22.56 22.55 22.52 22.52	22.58 22.61 22.57 22.61 22.58 22.58 22.55	0 7 13 0 0 12 24	12 12 12 25 1 1	16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM	5 5 5 5 5 5
2	23	21.94 21.95 21.82 21.86 22.28 22.22 22.04 21.23	22.54 22.54 22.51 22.56 22.55 22.52 22.52 21.59	22.58 22.61 22.57 22.61 22.58 22.58 22.55 21.58	0 7 13 0 0 12 24	12 12 12 25 1 1 1 1	16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM	5 5 5 5 5 5 5
2		21.94 21.95 21.82 21.86 22.28 22.22 22.04	22.54 22.54 22.51 22.56 22.55 22.52 22.52	22.58 22.61 22.57 22.61 22.58 22.58 22.55	0 7 13 0 0 12 24	12 12 12 25 1 1	16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM	5 5 5 5 5 5

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 62 of 109

Report No. : FA740822

<LTE Band 41>

	<u>10 41></u>	55.61	DD 0"	Power	Power	Power	Power High	Power		
BW [MHz]	Modulation	RB Size	RB Offset	Low Ch. / Freq.	Low Middle Ch. / Freq.	Middle Ch. / Freq.	Middle Ch. / Freq.	High Ch. / Freq.	Tune-up limit	MPR (dB)
	Chai	nnel		39750	40185	40620	41055	41490	(dBm)	
	Frequenc	cy (MHz)		2506	2549.5	2593	2636.5	2680		
20	QPSK	1	0	25.48	25.64	25.69	24.99	24.26		
20	QPSK	1	49	25.34	25.52	25.52	24.87	24.25	26	0
20	QPSK	1	99	25.43	25.58	25.60	24.97	24.03		
20	QPSK	50	0	24.48	24.61	24.63	23.63	23.85		
20	QPSK	50	24	24.43	24.49	24.60	23.60	23.91	25	1
20	QPSK	50	50	24.45	24.53	24.53	23.51	23.90	25	'
20	QPSK	100	0	24.42	24.58	24.54	23.64	23.86		
20	16QAM	1	0	24.54	24.71	24.76	24.06	23.30		
20	16QAM	1	49	24.39	24.60	24.58	24.19	24.34	25	1
20	16QAM	1	99	24.44	24.63	24.66	24.00	23.39		
20	16QAM	50	0	23.46	23.62	23.64	22.57	23.09		
20	16QAM	50	24	23.46	23.61	23.62	22.64	23.17	24	0
20	16QAM	50	50	23.48	23.55	23.53	22.60	22.98	24	2
20	16QAM	100	0	23.45	23.59	23.61	22.30	22.65		
20	64QAM	1	0	23.49	23.65	23.67	23.63	23.28		
20	64QAM	1	49	23.35	23.49	23.54	23.61	23.13	24	2
20	64QAM	1	99	23.42	23.49	23.61	23.46	23.63		
20	64QAM	50	0	22.38	22.57	22.59	22.51	22.34		
20	64QAM	50	24	22.31	22.54	22.53	22.38	22.18		
20	64QAM	50	50	22.41	22.48	22.52	22.20	22.34	23	3
20	64QAM	100	0	22.28	22.45	22.53	22.16	22.34		
	Chai	nnel		39725	40173	40620	41068	41515	Tune-up	MPR
	Frequenc	cy (MHz)		2503.5	2548.3	2593	2637.8	2682.5	limit (dBm)	(dB)
15	QPSK	1	0	25.43	25.59	25.61	24.92	25.37		
15	QPSK	1	37	25.29	25.46	25.47	25.30	25.33	26	0
15	QPSK	1	74	25.27	25.46	25.48	25.06	25.19		
15	QPSK	36	0	24.43	24.55	24.59	23.41	24.06		
15	QPSK	36	20	24.40	24.55	24.56	23.52	23.87	25	1
15	QPSK	36	39	24.38	24.51	24.53	23.46	23.91	23	'
15	QPSK	75	0	24.40	24.54	24.57	23.59	24.09		
15	16QAM	1	0	24.49	24.66	24.72	23.88	24.45		
15	16QAM	1	37	24.43	24.59	24.63	23.81	24.43	25	1
15	16QAM	1	74	24.38	24.54	24.50	24.03	24.26		
15	16QAM	36	0	23.40	23.53	23.56	22.67	23.23		
15	16QAM	36	20	23.40	23.53	23.55	22.63	23.30	24	2
15	16QAM	36	39	23.32	23.48	23.48	22.51	23.07	24	2
15	16QAM	75	0	23.42	23.56	23.59	22.55	22.97		
15	64QAM	1	0	23.48	23.62	23.69	23.55	23.32		
15	64QAM	1	37	23.38	23.52	23.54	23.28	23.24	24	2
15	64QAM	1	74	23.36	23.49	23.54	23.55	23.10		
15	64QAM	36	0	22.33	22.51	22.55	22.43	22.18		
15	64QAM	36	20	22.31	22.50	22.56	22.37	22.25	00	_
15	64QAM	36	39	22.26	22.45	22.48	22.38	22.12	23	3
15	64QAM	75	0	22.31	22.51	22.52	22.23	22.23		

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 63 of 109

N LAB.	FCC SAF	R Test R	report						Report No). : FA74(
	Chai	nnel		39700	40160	40620	41080	41540	Tune-up	MPR
	Frequenc	cy (MHz)		2501	2547	2593	2639	2685	limit (dBm)	(dB)
10	QPSK	1	0	25.40	25.58	25.51	24.58	25.14	(dDIII)	
10	QPSK	1	25	25.36	25.56	25.56	24.56	25.25	26	0
10	QPSK	1	49	25.34	25.53	25.55	24.70	24.98	1	
10	QPSK	25	0	24.41	24.55	24.60	23.49	24.28		
10	QPSK	25	12	24.41	24.59	24.62	23.50	24.34	1	
10	QPSK	25	25	24.38	24.54	24.57	23.49	24.21	25	1
10	QPSK	50	0	24.43	24.56	24.58	23.14	24.22	1	
10	16QAM	1	0	24.49	24.63	24.68	23.82	24.22		
10	16QAM	1	25	24.47	24.61	24.64	23.87	24.34	25	1
10	16QAM	1	49	24.36	24.55	24.58	23.90	24.04		
10	16QAM	25	0	23.41	23.58	23.60	22.69	23.30		
10	16QAM	25	12	23.45	23.60	23.61	22.65	23.36		
10	16QAM	25	25	23.39	23.44	23.56	22.57	23.22	24	2
10	16QAM	50	0	23.44	23.57	23.62	22.38	23.24		
10	64QAM	1	0	23.41	23.56	23.63	23.41	23.65		
10	64QAM	1	25	23.37	23.52	23.56	23.29	23.27	24	2
10	64QAM	1	49	23.30	23.45	23.51	23.47	23.51	1 -	
10	64QAM	25	0	22.37	22.57	22.58	22.52	22.43		
10	64QAM	25	12	22.38	22.59	22.59	22.52	22.29		
10	64QAM	25	25	22.33	22.53	22.55	22.53	22.36	23	3
10	64QAM	50	0	22.32	22.51	22.54	22.37	22.33		
	Chai			39675	40148	40620	41093	41565	Tune-up	MPR
	Frequenc	cy (MHz)		2498.5	2545.8	2593	2640.30	2687.5	limit (dBm)	(dB)
5	QPSK	1	0	25.39	25.55	25.58	24.70	25.13	(ubiii)	
5	QPSK	1	12	25.37	25.53	25.46	25.18	25.67	26	0
5	QPSK	1	24	25.28	25.47	25.47	24.81	25.33	1 1	
5	QPSK	12	0	24.42	24.55	24.58	23.53	24.05		
5	QPSK	12	7	24.44	24.56	24.61	23.65	24.10	1	
5	QPSK	12	13	24.37	24.54	24.56	23.52	23.95	25	1
5	QPSK	25	0	24.41	24.54	24.59	23.40	23.83		
	16QAM	1	0	24.42	24.58	24.62	23.78	24.33		
5		1	12	24.47	24.61	24.64	23.99	24.51	25	1
5 5	16QAM							24.28		
	16QAM 16QAM	1	24	24.40	24.57	24.58	24.00	_ :0		
5		1 12	24 0	24.40 23.41	24.57 23.54	24.58 23.57	22.60	23.09		
5 5	16QAM								-	
5 5 5	16QAM 16QAM	12	0	23.41	23.54	23.57	22.60	23.09	- 24	2
5 5 5 5	16QAM 16QAM 16QAM	12 12	0 7	23.41 23.40	23.54 23.56	23.57 23.59	22.60 22.69	23.09 23.23	- 24	2
5 5 5 5 5	16QAM 16QAM 16QAM 16QAM	12 12 12	0 7 13	23.41 23.40 23.38	23.54 23.56 23.52	23.57 23.59 23.54	22.60 22.69 22.66	23.09 23.23 23.07	24	2
5 5 5 5 5	16QAM 16QAM 16QAM 16QAM 16QAM	12 12 12 25	0 7 13 0	23.41 23.40 23.38 23.44	23.54 23.56 23.52 23.56	23.57 23.59 23.54 23.58	22.60 22.69 22.66 22.65	23.09 23.23 23.07 23.09	24	2
5 5 5 5 5 5 5	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM	12 12 12 25 1	0 7 13 0	23.41 23.40 23.38 23.44 23.37	23.54 23.56 23.52 23.56 23.54	23.57 23.59 23.54 23.58 23.60	22.60 22.69 22.66 22.65 23.40	23.09 23.23 23.07 23.09 23.79		
5 5 5 5 5 5 5 5	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM	12 12 12 25 1	0 7 13 0 0	23.41 23.40 23.38 23.44 23.37 23.34	23.54 23.56 23.52 23.56 23.54 23.49	23.57 23.59 23.54 23.58 23.60 23.61	22.60 22.69 22.66 22.65 23.40 23.77	23.09 23.23 23.07 23.09 23.79 23.71		
5 5 5 5 5 5 5 5	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM	12 12 12 25 1 1	0 7 13 0 0 12 24	23.41 23.40 23.38 23.44 23.37 23.34 23.32	23.54 23.56 23.52 23.56 23.54 23.49 23.48	23.57 23.59 23.54 23.58 23.60 23.61 23.57	22.60 22.69 22.66 22.65 23.40 23.77 23.74	23.09 23.23 23.07 23.09 23.79 23.71 23.66	24	2
5 5 5 5 5 5 5 5 5	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM	12 12 12 25 1 1 1 1	0 7 13 0 0 12 24	23.41 23.40 23.38 23.44 23.37 23.34 23.32 22.31	23.54 23.56 23.52 23.56 23.54 23.49 23.48 22.53	23.57 23.59 23.54 23.58 23.60 23.61 23.57 22.55	22.60 22.69 22.66 22.65 23.40 23.77 23.74 22.54	23.09 23.23 23.07 23.09 23.79 23.71 23.66 22.72		

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 64 of 109

<LTE Carrier Aggregation Combination>

General Note:

1. This device supports Carrier Aggregation on downlink only for inter and intra band, Uplink CA is not supported. For the device supports bands and bandwidths and configurations are provided as follow table was according to 3GPP.

Report No.: FA740822

- 2. All permutations exist. No restrictions on Pcell & Scell combinations. Only LTE Band 29A is limited to Scell.
- 3. This device supported inter-band up to 3 DL carrier aggregation for intra-band supported non-contiguous and contiguous configuration.

<Inter-Band Combination>

		E-UT	RA CA con	figuration /	Bandwidtl	h combinat	ion set		
E-UTRA CA Configuration	E- UTRA Bands	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Maximum aggregated bandwidth [MHz]	Bandwidth combination set
	2	Yes	Yes	Yes	Yes	Yes	Yes	40	0
	4			Yes	Yes	Yes	Yes	40	U
CA_2A-4A	2			Yes	Yes			20	1
CA_2A-4A	4			Yes	Yes			20	l
	2			Yes	Yes	Yes	Yes	40	2
	4			Yes	Yes	Yes	Yes	40	2
CA_2A-5A	2			Yes	Yes	Yes	Yes	30	0
CA_ZA-SA	5			Yes	Yes			30	U
	2			Yes	Yes	Yes	Yes	30	0
CA_2A-12A	12			Yes	Yes			30	U
CA_2A-12A	2			Yes	Yes	Yes	Yes	30	1
	12		Yes	Yes	Yes			30	l
	2			Yes	Yes	Yes	Yes	30	0
CA_2A-13A	13				Yes			30	U
UA_2A-13A	2			Yes	Yes			20	1
	13				Yes			20	l
CA_2A-17A	2			Yes	Yes			20	0
0A_2A-17A	17			Yes	Yes			20	U
	2			Yes	Yes			20	0
	29		Yes	Yes	Yes			20	U
CA_2A-29A	2			Yes	Yes			20	1
CA_2A-29A	29			Yes	Yes			20	l
	2			Yes	Yes	Yes	Yes	30	2
	29			Yes	Yes			30	2
CA_2A-30A	2			Yes	Yes	Yes	Yes	30	0
CA_2A-30A	30			Yes	Yes			30	U
	4			Yes	Yes			20	0
CA_4A-5A	5			Yes	Yes			20	U
CA_4A-5A	4			Yes	Yes	Yes	Yes	30	1
	5			Yes	Yes			30	1
CA_4A-7A	4			Yes	Yes			30	0
CA_4A-7A	7			Yes	Yes	Yes	Yes	30	U

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 26, 2017

FCC ID : 2ALBB-A11 Page 65 of 109 Form version. : 170509

		E-UT	RA CA con	figuration	/ Bandwidtl	h combinat	ion set		
E-UTRA CA Configuration	E- UTRA Bands	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Maximum aggregated bandwidth [MHz]	Bandwidth combination set
	4	Yes	Yes	Yes	Yes				0
	12			Yes	Yes			20	0
	4	Yes	Yes	Yes	Yes	Yes	Yes	- 30	1
	12			Yes	Yes			30	ľ
	4			Yes	Yes	Yes	Yes	30	2
CA_4A-12A	12		Yes	Yes	Yes			30	2
CA_4A-12A	4			Yes	Yes			20	3
	12			Yes	Yes			20	3
	4			Yes	Yes	Yes	Yes	30	4
	12			Yes	Yes			30	4
	4			Yes	Yes	Yes		20	5
	12			Yes				20	3
	4			Yes	Yes	Yes	Yes	30	0
CA_4A-13A	13				Yes			30	U
CA_4A-13A	4			Yes	Yes			20	1
	13				Yes			20	l
CA_4A-17A	4			Yes	Yes			20	0
CA_4A-17A	17			Yes	Yes			20	U
	4			Yes	Yes			20	0
	29		Yes	Yes	Yes			20	U
CA_4A-29A	4			Yes	Yes			20	1
CA_4A-29A	29			Yes	Yes			20	ľ
	4			Yes	Yes	Yes	Yes	30	2
	29			Yes	Yes			30	2
	5	Yes	Yes	Yes	Yes			30	0
CA_5A-7A	7				Yes	Yes	Yes	30	O
ON_ON TA	5			Yes	Yes			30	1
	7				Yes	Yes	Yes	30	•
CA_5A-30A	5			Yes	Yes			20	0
0A_0A 00A	30			Yes	Yes			20	Ů
CA_12A-30A	12			Yes	Yes			20	0
071_1271 0071	30			Yes	Yes			20	ŭ
	25		Yes	Yes	Yes	Yes	Yes	35	0
	26	Yes	Yes	Yes	Yes	Yes		00	Ů
CA_25A-26A	25		Yes	Yes	Yes			20	1
	26		Yes	Yes	Yes				•
	25			Yes	Yes			20	2
	26			Yes	Yes				-
CA_25A-41A	25			Yes	Yes	Yes	Yes	40	0
	41			Yes	Yes	Yes	Yes		
CA_26A-41A	26			Yes	Yes	Yes		35	0
	41			Yes	Yes	Yes	Yes	55	Ü
CA_29A-30A	29			Yes	Yes			20	0
	30			Yes	Yes				

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 66 of 109

		E-UT	RA CA con	figuration <i>i</i>	Bandwidtl	n combinat	ion set	Maximum	
E-UTRA CA Configuration	E- UTRA Bands	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	aggregated bandwidth [MHz]	Bandwidth combination set
CA_2A-2A-	2	See CA_2	2A-2A Band	dwidth Comb	ination Set	0 in Table 5	5.4.2A.1-3		0
13A	13				Yes			50	0
CA 2A 4A 4A	2			Yes	Yes	Yes	Yes	60	0
CA_2A-4A-4A	4	See CA_4	4A-4A Band	dwidth Comb	oination Set	0 in Table 5	5.4.2A.1-3	60	0
	2			Yes	Yes	Yes	Yes		
CA_2A-4A-5A	4			Yes	Yes	Yes	Yes	50	0
	5			Yes	Yes				
	2			Yes	Yes	Yes	Yes		
CA_2A-4A-12A	4			Yes	Yes	Yes	Yes	50	0
	12			Yes	Yes				
	2			Yes	Yes	Yes	Yes		
CA_2A-4A-29A	4			Yes	Yes	Yes	Yes	50	0
	29			Yes	Yes				
	2			Yes	Yes	Yes	Yes		
CA_2A-5A-29A	5			Yes	Yes			40	0
	29			Yes	Yes				
	2			Yes	Yes	Yes	Yes		
CA_2A-5A-30A	5			Yes	Yes			40	0
	30			Yes	Yes			- 40	
	2			Yes	Yes	Yes	Yes		
CA_2A-12A- 30A	12			Yes	Yes			40	0
30A _	30			Yes	Yes				
	2			Yes	Yes	Yes	Yes		
CA_2A-29A-	29			Yes	Yes			40	0
30A	30			Yes	Yes				
	4	See CA	4A-4A Ban	dwidth Com	bination Set	t 0 in table 5	5.4.2A.1-3		
CA_4A-4A-5A	5			Yes	Yes			50	0
	4			Yes	Yes				
	4			Yes	Yes			40	0
_	7			Yes	Yes	Yes	Yes		
CA_4A-4A-7A	4			Yes	Yes	Yes	Yes		
	4			Yes	Yes	Yes	Yes	60	1
_	7			Yes	Yes	Yes	Yes		
CA_4A-4A-	4	See CA	IA-4A Band	dwidth Comb					
13A	13	000 0,1_			Yes			50	0
	4			Yes	Yes				
	7			Yes	Yes	Yes	Yes	40	0
	12			Yes	Yes	100	100		
CA_4A-7A-12A	4			Yes	Yes	Yes	Yes		
	7			Yes	Yes	Yes	Yes	50	1
	12			Yes	Yes	103	100	00	•
CA 44	4	See CA	1Δ-4Δ Rand	dwidth Comb		∩ in Table F	5 4 2Δ 1-3		
CA_4A-4A- 12A	12	OCG OA_	TA Dall	Yes	Yes	O III TADIO	7.4.ZA.1-0	50	0
	12			165	168				

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 67 of 109

			ı	figuration /		1		Maximum	T
E-UTRA CA Configuration	E- UTRA Bands	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Maximum aggregated bandwidth [MHz]	Bandwidth combination se
	4			Yes	Yes	Yes	Yes		
CA_4A-5A-30A	5			Yes	Yes			40	0
	30			Yes	Yes			40	
	4			Yes	Yes	Yes	Yes		
CA_4A-12A- 30A	12			Yes	Yes			40	0
00/1	30			Yes	Yes				
	4			Yes	Yes	Yes	Yes		
CA_4A-29A- 30A	29			Yes	Yes			40	0
00/1	30			Yes	Yes				
CA 25A 44C	25			Yes	Yes	Yes	Yes	60	0
CA_25A-41C	41	See CA	_41C Band	width Combi	nation Set	1 in Table 5.	4.2A.1-1	60	0
CA 200 440	26			Yes	Yes	Yes		55	0
CA_26A-41C	41	See CA	41C Bandy	width Combi	nation Set	1 in Table 5	4.2A.1-1	55	0

Report No. : FA740822

<Intra-Band Combination>

	E-UTRA C	A configuration / Bandv	vidth combination set		
E-UTRA CA	Component carrie	rs in order of increasing	carrier frequency	Maximum	Bandwidth
configuration	Channel bandwidths for carrier [MHz]	Channel bandwidths for carrier [MHz]	Channel bandwidths for carrier [MHz]	aggregated bandwidth [MHz]	combination set
	5	20			
CA_2C	10	15, 20		40	0
CA_2C	15	10, 15, 20		40	0
	20	5, 10, 15, 20			
CA_2A-2A	5, 10, 15, 20	5, 10, 15, 20		40	0
	5	15			
CA 7A 7A	10	10, 15		40	0
CA_7A-7A	15	15, 20		40	0
	20	20			
CA 25A 25A	5, 10	5, 10		20	0
CA_25A-25A	5, 10, 15, 20	5, 10, 15, 20		40	1
	10	20			
	15	15, 20		40	0
	20	10, 15, 20			
	5, 10	20			
	15	15, 20		40	1
CA_41C	20	5, 10, 15, 20			
	10	15, 20			
	15	10, 15, 20		40	2
	20	10, 15, 20			
	10	20		40	2
	20	20		40	3

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 68 of 109

	E-UTRA C	A configuration / Bandw	vidth combination set		
E-UTRA CA	Component carrie	carrier frequency	Maximum	Bandwidth	
configuration	Channel bandwidths for carrier [MHz]	Channel bandwidths for carrier [MHz]	Channel bandwidths for carrier [MHz]	aggregated bandwidth [MHz]	combination set
	10	20	15		
	10	15, 20	20		
CA 41D	15	20	10, 15	60	0
CA_41D	15	10, 15, 20	20	60	U
	20	15, 20	10		
	20	10, 15, 20	15, 20		
CA 41A-41A	10, 15, 20	10, 15, 20		40	0
CA_41A-41A	5, 10, 15, 20	5, 10, 15, 20		40	1
CA 41A-41C	5, 10, 15, 20	See CA_41C Bandwidt Table 5.	h Combination Set 1 in 4.2A.1-1	60	0
CA_41A-41C	See CA_41C Bandwidt Table 5.		5, 10, 15, 20	00	U

TEL: 886-3-327-3456 / FAX: 886-3-328-4978
FCC ID: 2ALBB-A11 Page 69 of 109

Issued Date : Jun. 26, 2017 Form version. : 170509

Report No. : FA740822

<LTE Carrier Aggregation Conducted Power>

General Note:

According to KDB941225 D05A v01r02, Uplink maximum output power measurement with downlink carrier aggregation active should be measured, using the highest output channel measured without downlink carrier aggregation, to confirm that uplink maximum output power with downlink carrier aggregation active remains within the specified tune-up tolerance limits and not more than ¼ dB higher than the maximum output measured without downlink carrier aggregation active.

Report No.: FA740822

- ii. Uplink maximum output power with downlink carrier aggregation active does not show more than 1/4 dB higher than the maximum output power without downlink carrier aggregation active, therefore SAR evaluation with downlink carrier aggregation active can be excluded.
- iii. The device supports downlink carrier aggregation only. Uplink carrier aggregation is not supported. For power measurement were control and acknowledge data is sent on uplink channels that operate identical to specifications when downlink carrier aggregation is inactive.
- Selected highest measured power when downlink carrier aggregation is inactive for conducted power comparison with i٧. downlink carrier aggregation is active, to confirm that when downlink carrier aggregation is active uplink maximum output power remains within the specified tune-up tolerance limits and not more than 1/4 dB higher than the maximum output power measured when downlink carrier aggregation inactive.
- For non-contiguous intra-band CA, the SCC selected to provide maximum separation from the PCC and must remain fully V. within the downlink transmission band.
- For inter-band CA, the SCC selected highest bandwidth and near the middle of its transmission band. vi.
- vii. For Intra-band, contiguous CA, the downlink channels selected to perform the uplink power measurement must satisfy 3GPP channel spacing (5.4.1A of 3GPP TS 36.521 or equivalent) and channel bandwidth (5.4.2A) requirements.

<Maximum output power for Two Carrier power verification>

				PCC			S	Power					
Configure	LTE Band	BW (MHz)	UL Freq. (MHz)	UL Channel	Mod.	UL# RB	UL RB Offset	LTE Band	BW (MHz)	DL Freq. (MHz)	DL Channel	With CA Tx.Power (dBm)	W/O CA Tx.Power (dBm)
	Band 2	20	1880	18900	QPSK	1	0	Band 4	20	2132.5	2175	24.30	24.32
	Band 4	20	1732.5	20175	QPSK	1	0	Band 2	20	1960	900	23.88	23.90
	Band 2	20	1880	18900	QPSK	1	0	Band 5	10	881.5	2525	23.29	24.32
	Band 5	10	836.5	20525	QPSK	1	0	Band 2	20	1960	900	24.31	24.31
	Band 2	20	1880	18900	QPSK	1	0	Band 12	10	737.5	5095	24.28	24.32
	Band 12	10	707.5	23095	QPSK	1	49	Band 2	20	1960	900	24.22	24.23
	Band 2	20	1880	18900	QPSK	1	0	Band 13	10	751	5230	24.29	24.32
	Ban 13	10	782	23230	QPSK	1	25	Band 2	20	1960	900	24.25	24.26
Inter-Band	Band 2	10	1880	18900	QPSK	1	0	Band 17	10	740	5790	24.20	24.22
	Ban 17	10	709	23780	QPSK	1	49	Band 2	10	1960	900	24.38	24.39
	Band 2	20	1880	18900	QPSK	1	0	Band 29	10	722.5	9715	24.31	24.32
	Band 2	20	1880	18900	QPSK	1	0	Band 30	10	2355	9820	24.31	24.32
	Band 30	10	2310	27710	QPSK	1	25	Band 2	20	1960	900	24.28	24.29
	Band 4	20	1732.5	20175	QPSK	1	0	Band 5	10	881.5	2525	23.88	23.90
	Band 5	10	836.5	20525	QPSK	1	0	Band 4	20	2132.5	2175	24.30	24.31
	Band 4	10	1750	20350	QPSK	1	0	Band 7	20	2655	3100	23.79	23.79
	Band 7	20	2535	21100	QPSK	1	0	Band 4	10	2132.5	2175	24.32	24.33

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 26, 2017

Form version.: 170509 FCC ID: 2ALBB-A11 Page 70 of 109

					PCC			S	Power					
Configure	figure	LTE Band	BW (MHz)	UL Freq. (MHz)	UL Channel	Mod.	UL# RB	UL RB Offset	LTE Band	BW (MHz)	DL Freq. (MHz)	DL Channel	With CA Tx.Power (dBm)	W/O CA Tx.Power (dBm)
		Band 4	20	1732.5	20175	QPSK	1	0	Band 12	10	737.5	5095	23.88	23.90
		Band 12	10	707.5	23095	QPSK	1	49	Band 4	20	2132.5	2175	24.21	24.23
		Band 4	20	1732.5	20175	QPSK	1	0	Band 13	10	751	5230	23.89	23.90
		Band 13	10	782	23230	QPSK	1	25	Band 4	20	2132.5	2175	24.25	24.26
		Band 4	10	1750	20350	QPSK	1	0	Band 17	10	740	5790	23.77	23.79
		Band 17	10	709	23780	QPSK	1	49	Band 4	10	2132.5	2175	24.37	24.39
		Band 4	20	1732.5	20175	QPSK	1	0	Band 29	10	722.5	9715	23.89	23.90
		Band 4	20	1732.5	20175	QPSK	1	0	Band 30	10	2355	9820	23.88	23.90
		Band 30	10	2310	27710	QPSK	1	0	Band 4	20	2132.5	2175	24.26	24.29
	Band 5	10	836.5	20525	QPSK	1	0	Band 7	20	2655	3100	24.29	24.31	
latan	David	Band 7	20	2535	21100	QPSK	1	0	Band 5	10	881.5	2525	24.30	24.33
Inter-Band	Band 5	10	836.5	20525	QPSK	1	0	Band 30	10	2355	9820	24.28	24.31	
		Band 30	10	2310	27710	QPSK	1	0	Band 5	10	881.5	2525	24.26	24.29
		Band 12	10	707.5	23095	QPSK	1	49	Band 30	10	2355	9820	24.22	24.23
		Band 30	10	2310	27710	QPSK	1	0	Band 12	10	737.5	5095	24.28	24.29
		Band 25	20	1905	26590	QPSK	1	0	Band 26	15	876.5	8865	24.47	24.48
		Band 26	15	831.5	26865	16QAM	1	74	Band 25	20	1960	8340	24.20	24.22
		Band 25	20	1905	26590	QPSK	1	0	Band 41	20	2593	40620	24.45	24.48
		Band 41	20	2593	40620	QPSK	1	0	Band 25	20	1960	8340	25.67	25.69
		Band 26	15	831.5	26865	16QAM	1	74	Band 41	20	2593	40620	24.21	24.22
		Band 41	20	2593	40620	QPSK	1	0	Band 26	15	876.5	8865	25.68	25.69
		Band 30	10	2310	27710	QPSK	1	0	Band 29	10	722.5	9715	24.28	24.29
		Band 2	20	1880	18900	QPSK	1	0	Band 2	5	1987.5	1175	24.31	24.32
Intra-Band	Non- Contiguous	Band 7	20	2535	21100	QPSK	1	0	Band 7	15	2682.5	3375	24.33	24.33
		Band 25	20	1905	26590	QPSK	1	0	Band 25	5	1992.5	8665	24.47	24.48
		Band 41	20	2593	40620	QPSK	1	0	Band 41	5	2687.5	41565	25.65	25.69
	Contiguous	Band 2	20	1880	18900	QPSK	1	0	Band 2	20	1979.8	1098	24.31	24.32
		Band 41	20	2593	40620	QPSK	1	0	Band 41	20	2612.8	40818	25.68	25.69

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 71 of 109

Report No. : FA740822 <Maximum output power for Three Carrier power verification>

<maximum carrier="" for="" output="" power="" three="" verification=""></maximum>																	
	PCC								SCC				SC	Power			
Configure	LTE Band	BW (MHz)	UL Freq. (MHz)	UL Channel	Mod.	UL# RB	UL RB Offset	LTE Band	BW (MHz)	DL Freq. (MHz)	DL Ch.	LTE Band	BW (MHz)	DL Freq. (MHz)	DL Ch.	With CA Tx.Power (dBm)	W/O CA Tx.Power (dBm)
	Band 2	20	1880	18900	QPSK	1	0	Band 4	20	2132.5	2175	Band 5	10	881.5	2525	24.30	24.32
	Band 4	20	1732.5	20175	QPSK	1	0	Band 2	20	1960	900	Band 5	10	881.5	2525	23.87	23.90
	Band 5	10	836.5	20525	QPSK	1	0	Band 2	20	1960	900	Band 4	20	2132.5	2175	24.31	24.31
	Band 2	20	1880	18900	QPSK	1	0	Band 4	20	2132.5	2175	Band 12	10	737.5	5095	24.32	24.32
	Band 4	20	1732.5	20175	QPSK	1	0	Band 2	20	1960	900	Band 12	10	737.5	5095	23.89	23.90
	Band 12	10	707.5	23095	QPSK	1	49	Band 2	20	1960	900	Band 4	20	2132.5	2175	24.22	24.23
	Band 2	20	1880	18900	QPSK	1	0	Band 4	20	2132.5	2175	Band 29	10	722.5	9715	24.29	24.32
	Band 4	20	1732.5	20175	QPSK	1	0	Band 2	20	1960	900	Band 29	10	722.5	9715	23.88	23.90
	Band 2	20	1880	18900	QPSK	1	0	Band 5	10	881.5	2525	Band 30	10	2355	9820	24.30	24.32
	Band 5	10	836.5	20525	QPSK	1	0	Band 2	20	1960	900	Band 30	10	2355	9820	24.29	24.31
	Band 30	10	2310	27710	QPSK	1	0	Band 2	20	1960	900	Band 5	10	881.5	2525	24.25	24.29
	Band 2	20	1880	18900	QPSK	1	0	Band 12	10	737.5	5095	Band 30	10	2355	9820	24.31	24.32
	Band 12	10	707.5	23095	QPSK	1	49	Band 2	20	1960	900	Band 30	10	2355	9820	24.22	24.23
	Band 30	10	2310	27710	QPSK	1	0	Band 2	20	1960	900	Band 12	10	737.5	5095	24.28	24.29
	Band 2	20	1880	18900	QPSK	1	0	Band 29	10	722.5	9715	Band 30	10	2355	9820	24.32	24.32
	Band 30	10	2310	27710	QPSK	1	0	Band 2	20	1960	900	Band 29	10	722.5	9715	24.29	24.29
	Band 4	20	1732.5	20175	QPSK	1	0	Band 5	10	881.5	2525	Band 30	10	2355	9820	23.88	23.90
	Band 5	10	836.5	20525	QPSK	1	0	Band 4	20	2132.5	2175	Band 30	10	2355	9820	24.30	24.31
Inter-Band	Band 30	10	2310	27710	QPSK	1	0	Band 4	20	2132.5	2175	Band 5	10	881.5	2525	24.28	24.29
	Band 4	20	1732.5	20175	QPSK	1	0	Band 7	20	2655	3100	Band 12	10	737.5	5095	23.88	23.90
	Band 7	20	2535	21100	QPSK	1	0	Band 4	20	2132.5	2175	Band 12	10	737.5	5095	24.32	24.33
	Band 12	10	707.5	23095	QPSK	1	49	Band 4	20	2132.5	2175	Band 7	20	2655	3100	24.22	24.23
	Band 4	20	1732.5	20175	QPSK	1	0	Band 12	10	737.5	5095	Band 30	10	2355	9820	23.89	23.90
	Band 12	10	707.5	23095	QPSK	1	49	Band 4	20	2132.5	2175	Band 30	10	2355	9820	24.21	24.23
	Band 30	10	2310	27710	QPSK	1	0	Band 4	20	2132.5	2175	Band 12	10	737.5	5095	24.28	24.29
	Band 4	20	1732.5	20175	QPSK	1	0	Band 29	10	722.5	9715	Band 30	10	2355	9820	23.87	23.90
	Band 30	10	2310	27710	QPSK	1	0	Band 4	20	2132.5	2175	Band 29	10	722.5	9715	24.28	24.29
	Band 2	20	1880	18900	QPSK	1	0	Band 2	5	1987.5	1175	Band 13	10	751	5230	23.29	24.32
	Band 13	10	782	23230	QPSK	1	25	Band 2	20	1960	900	Band 2	5	1987.5	1175	24.26	24.26
	Band 2	20	1880	18900	QPSK	1	0	Band 2	5	1987.5	1175	Band 4	20	2132.5	2175	23.30	24.32
	Band 4	20	1732.5	20175	QPSK	1	0	Band 2	20	1960	900	Band 2	5	1987.5	1175	23.88	23.90
	Band 4	20	1732.5	20175	QPSK	1	0	Band 4	5	2152.5	2375	Band 7	20	2655	3100	23.85	23.90
	Band 7	20	2535	21100	QPSK	1	0	Band 4	20	2132.5	2175	Band 4	5	2152.5	2375	24.32	24.33
	Band 4	20	1732.5	20175	QPSK	1	0	Band 4	5	2152.5	2375	Band 5	10	881.5	2525	23.86	23.90
	Band 5	10	836.5	20525	QPSK	1	0	Band 4	20	2132.5	2175	Band 4	5	2152.5	2375	24.30	24.31
	Band 4	20	1732.5	20175	QPSK	1	0	Band 4	5	2152.5	2375	Band 12	10	737.5	5095	23.85	23.90
	Band 12	10	707.5	23095	QPSK	1	49	Band 4	20	2132.5	2175	Band 4	5	2152.5	2375	24.20	24.23
	Band 4	20	1732.5	20175	QPSK	1	0	Band 4	5	2152.5	2375	Band 13	10	751	5230	23.90	23.90
	Band 13	10	782	23230	QPSK	1	25	Band 4	20	2132.5	2175	Band 4	5	2152.5	2375	24.25	24.26
	Band 25	20	1905	26590	QPSK	1	0	Band 41	20	2593	40620	Band 41	20	2612.8	40818	24.47	24.48
	Band 41	20	2593	40620	QPSK	1	0	Band 41	20	2612.8	40818	Band 25	20	1960	8340	26.68	25.69
	Band 26	15	831.5	26865	16QAM	1	74	Band 41	20	2593	40620	Band 41	20	2612.8	40818	24.20	24.22
	Band 41	20	2593	40620	QPSK	1	0	Band 41	20	2612.8	40818	Band 26	15	876.5	8865	25.68	25.69
Non-	Band 41	20	2593	40620	QPSK	1	0	Band 41	5	2687.5	41565	Band 41	20	2675.8	41448	25.68	25.69
Intro o e	Band 41	20	2593	40620	QPSK	1	0	Band 41	20	2612.8	40818	Band 41	5	2687.5	41565	25.66	25.69
Contiguous	Band 41	20	2593	40620	QPSK	1	0	Band 41	20	2612.8	40818	Band 41	20	2632.6	41016	25.67	25.69

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 72 of 109

<WLAN Conducted Power>

General Note:

4. For each antenna, transmit power in SISO operation is larger than (or equal to) the power in MIMO operation, RF exposure compliance of MIMO mode can be deduced from the compliance simultaneous transmission of antennas operating in SISO mode.

Report No.: FA740822

- 5. Per KDB 248227 D01v02r02, the simultaneous SAR provisions in KDB publication 447498 should be applied to determine simultaneous transmission SAR test exclusion for WiFi MIMO. If the sum of 1g single transmission chain SAR measurements is < 1.6W/kg and SAR peak to location ratio ≤ 0.04, no additional SAR measurements for MIMO.
- 6. Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions.
- 7. For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s).
- 8. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band.
- 9. DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following:
 - a. When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band.
 - b. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
 - c. For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

FCC ID : 2ALBB-A11 Page 73 of 109 Form version. : 170509

<2.4GHz WLAN ANT 1>

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		1	2412	14.45	14.50	
	802.11b 1Mbps	6	2437	14.44	14.50	100.00
		11	2462	12.98	13.00	
		1	2412	8.45	8.50	
2.4GHz WLAN	802.11g 6Mbps	6	2437	8.43	8.50	95.39
		11	2462	7.26	7.50	
		1	2412	8.46	8.50	
	802.11n-HT20 MCS0	6	2437	8.44	8.50	95.88
West	11	2462	7.29	7.50		
		3	2422	8.48	8.50	
	802.11n-HT40 MCS0	6	2437	8.46	8.50	91.95
	550	9	2452	7.31	7.50	

Report No. : FA740822

<2.4GHz WLAN ANT 2>

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		1	2412	15.49	15.50	
	802.11b 1Mbps	6	2437	15.25	15.50	100.00
		11	2462	15.23	15.50	
		1	2412	11.35	11.50	
2.4GHz WLAN	802.11g 6Mbps	6	2437	11.26	11.50	95.42
		11	2462	11.11	11.50	
	000 44 11700	1	2412	11.36	11.50	
	802.11n-HT20 MCS0	6	2437	11.28	11.50	95.21
Wieed	11	2462	11.16	11.50		
	000 44 11740	3	2422	11.48	11.50	
	802.11n-HT40 MCS0	6	2437	11.33	11.50	90.91
		9	2452	11.31	11.50	

FCC ID : 2ALBB-A11 Page 74 of 109 Form version. : 170509

<2.4GHz WLAN ANT 1+2>

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		1	2412	18.37	18.50	
	802.11b 1Mbps	6	2437	17.73	18.50	100.00
		11	2462	18.09	18.50	
	2.4GHz WLAN 802.11g 6Mbps	1	2412	14.45	14.50	
2.4GHz WLAN		6	2437	14.21	14.50	96.15
		11	2462	14.16	14.50	
		1	2412	14.49	14.50	
	802.11n-HT20 MCS0	6	2437	14.28	14.50	96.21
IMOG0	11	2462	14.18	14.50		
		3	2422	14.30	14.50	
	802.11n-HT40 MCS0	6	2437	14.26	14.50	91.95
	300	9	2452	14.24	14.50	

Report No. : FA740822

<5GHz WLAN ANT1>

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		36	5180	11.45	11.50	
	902 44a 6Mbaa	40	5200	11.45	11.50	04.50
	802.11a 6Mbps	44	5220	11.43	11.50	94.52
		48	5240	11.44	11.50	
		36	5180	11.49	11.50	
	802.11n-HT20 MCS0	40	5200	11.48	11.50	94.15
		44	5220	11.48	11.50	
5.2GHz WLAN		48	5240	11.46	11.50	
	802.11n-HT40	38	5190	11.49	11.50	89.77
	MCS0	46	5230	11.38	11.50	69.77
		36	5180	9.48	95	
	802.11ac-VHT20	40	5200	9.41	95	04.10
	MCS0	44	5220	9.37	95	94.18
		48	5240	9.41	95	
	802.11ac-VHT40	38	5190	9.48	95	00.77
	MCS0	46	5230	9.37	95	89.77
	802.11ac-VHT80 MCS0	42	5210	9.30	95	87.20

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 75 of 109

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		52	5260	11.42	11.50	
	802.11a 6Mbps	56	5280	11.42	11.50	94.52
	602.11a 61VIDPS	60	5300	11.44	11.50	94.52
		64	5320	11.45	11.50	
		52	5260	11.44	11.50	
	802.11n-HT20	56	5280	11.45	11.50	94.15
	MCS0	60	5300	11.45	11.50	
5.3GHz WLAN		64	5320	11.46	11.50	
	802.11n-HT40 MCS0	54	5270	11.42	11.50	89.77
		62	5310	11.44	11.50	69.77
		52	5260	9.38	95	
	802.11ac-VHT20	56	5280	9.42	95	0.4.40
	MCS0	60	5300	9.47	95	94.18
80		64	5320	9.49	95	
	802.11ac-VHT40	54	5270	9.37	95	00.77
	MCS0	62	5310	9.41	95	89.77
	802.11ac-VHT80 MCS0	58	5290	9.26	95	87.20

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		100	5500	11.39	11.50	
	000 11a 6Mbna	116	5580	11.38	11.50	94.52
	802.11a 6Mbps	132	5660	11.38	11.50	94.52
		140	5700	11.38	11.50	
		100	5500	11.48	11.50	
	802.11n-HT20	116	5580	11.46	11.50	94.15
	MCS0	132	5660	11.45	11.50	94.15
		140	5700	11.45	11.50	
5.5GHz WLAN	802.11n-HT40 MCS0	102	5510	11.48	11.50	89.77
		110	5550	11.47	11.50	
		134	5670	11.47	11.50	
		100	5500	9.49	95	
	802.11ac-VHT20	116	5580	9.46	95	94.18
	MCS0	132	5660	9.47	95	94.10
		140	5700	9.47	95	
802		102	5510	9.49	95	
	802.11ac-VHT40 MCS0	110	5550	9.46	95	89.77
	550	134	5670	9.47	95	
	802.11ac-VHT80 MCS0	106	5530	9.27	95	87.20

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 76 of 109

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		149	5745	11.32	11.50	
	802.11a MCS0	157	5785	11.28	11.50	94.52
		165	5825	11.27	11.50	
		149	5745	11.49	11.50	
	802.11n-HT20 MCS0	157	5785	11.48	11.50	94.15
5.8GHz WLAN		165	5825	11.28	11.50	
	802.11n-HT40 MCS0	151	5755	11.48	11.50	89.77
		159	5795	11.16	11.50	
		149	5745	9.47	95	94.18
	802.11ac-VHT20 MCS0	157	5785	9.46	95	
	iii oo	165	5825	9.24	95	
80	802.11ac-VHT40	151	5755	9.49	95	89.77
	MCS0	159	5795	9.47	95	
	802.11ac-VHT80 MCS0	155	5775	9.23	95	87.20

<5GHz WLAN ANT2>

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		36	5180	9.33	10.50	
	900 44a 6Mhna	40	5200	9.31	10.50	94.52
	802.11a 6Mbps	44	5220	9.24	10.50	94.52
		48	5240	9.31	10.50	
		36	5180	9.49	10.50	
	802.11n-HT20 MCS0	40	5200	9.47	10.50	94.15
		44	5220	9.47	10.50	
5.2GHz WLAN		48	5240	9.48	10.50	
	802.11n-HT40	38	5190	9.49	10.50	90.29
	MCS0	46	5230	9.45	10.50	90.29
		36	5180	7.48	8.50	
	802.11ac-VHT20	40	5200	7.42	8.50	94.18
	MCS0	44	5220	7.37	8.50	94.10
		48	5240	7.34	8.50	
	802.11ac-VHT40	38	5190	7.49	8.50	89.27
	MCS0	46	5230	7.40	8.50	
	802.11ac-VHT80 MCS0	42	5210	7.40	8.50	86.59

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 77 of 109

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		52	5260	9.29	10.50	
	802.11a 6Mbps	56	5280	9.30	10.50	94.52
	602.11a 61VIDPS	60	5300	9.30	10.50	94.52
		64	5320	9.32	10.50	
		52	5260	9.35	10.50	
	802.11n-HT20	56	5280	9.35	10.50	94.15
	MCS0	60	5300	9.36	10.50	
5.3GHz WLAN		64	5320	9.47	10.50	
	802.11n-HT40 MCS0	54	5270	9.38	10.50	90.29
		62	5310	9.43	10.50	
		52	5260	7.40	8.50	
	802.11ac-VHT20	56	5280	7.41	8.50	04.40
	MCS0	60	5300	7.45	8.50	94.18
80		64	5320	7.47	8.50	
	802.11ac-VHT40	54	5270	7.38	8.50	89.27
	MCS0	62	5310	7.45	8.50	
	802.11ac-VHT80 MCS0	58	5290	7.34	8.50	86.59

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		100	5500	9.43	10.50	
	000 11a 6Mbna	116	5580	9.36	10.50	94.52
	802.11a 6Mbps	132	5660	9.36	10.50	94.52
		140	5700	9.35	10.50	
		100	5500	9.44	10.50	
	802.11n-HT20	116	5580	9.38	10.50	04.15
	MCS0	132	5660	9.36	10.50	94.15
		140	5700	9.36	10.50	
5.5GHz WLAN	802.11n-HT40 MCS0	102	5510	9.41	10.50	90.29
		110	5550	9.40	10.50	
		134	5670	9.37	10.50	
		100	5500	7.49	8.50	
	802.11ac-VHT20	116	5580	7.33	8.50	94.18
	MCS0	132	5660	7.30	8.50	94.10
		140	5700	7.29	8.50	
		102	5510	7.46	8.50	
	802.11ac-VHT40 MCS0	110	5550	7.34	8.50	89.27
	550	134	5670	7.38	8.50	
	802.11ac-VHT80 MCS0	106	5530	7.32	8.50	86.59

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 78 of 109

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		149	5745	9.41	10.50	
	802.11a MCS0	157	5785	9.30	10.50	94.52
		165	5825	9.29	10.50	
	802.11n-HT20 MCS0	149	5745	9.49	10.50	94.15
		157	5785	9.37	10.50	
5.8GHz WLAN		165	5825	9.47	10.50	
	802.11n-HT40	151	5755	9.46	10.50	00.20
	MCS0	159	5795	9.43	10.50	90.29
		149	5745	7.49	8.50	
	802.11ac-VHT20 MCS0	157	5785	7.42	8.50	94.18
	500	165	5825	7.16	8.50	
	802.11ac-VHT40	151	5755	7.49	8.50	89 27

5795

5775

7.42

7.20

8.50

8.50

Report No.: FA740822

89.27

86.59

<5GHz WLAN ANT1+2>

MCS0

802.11ac-VHT80

MCS0

159

155

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		36	5180	14.39	14.50	
	000 44 - 014	40	5200	14.38	14.50	04.50
	802.11a 6Mbps	44	5220	14.25	14.50	94.52
		48	5240	14.28	14.50	
		36	5180	14.42	14.50	
	802.11n-HT20	40	5200	14.35	14.50	94.15
	MCS0	44	5220	14.26	14.50	94.15
5.2GHz WLAN		48	5240	14.37	14.50	
	802.11n-HT40 MCS0	38	5190	14.13	14.50	88.76
		46	5230	14.05	14.50	00.70
		36	5180	12.49	12.50	
	802.11ac-VHT20	40	5200	12.48	12.50	94.18
	MCS0	44	5220	12.46	12.50	94.16
		48	5240	12.44	12.50	
	802.11ac-VHT40	38	5190	12.49	12.50	89.27
	MCS0	46	5230	12.47	12.50	09.27
	802.11ac-VHT80 MCS0	42	5210	12.42	12.50	87.20

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 79 of 109

Report	No.:	FA740822
--------	------	----------

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		52	5260	14.31	14.50	
	802.11a 6Mbps	56	5280	14.33	14.50	94.52
	602.11a 61VIDPS	60	5300	14.36	14.50	94.52
		64	5320	14.38	14.50	
		52	5260	14.32	14.50	
	802.11n-HT20	56	5280	14.34	14.50	94.15
	MCS0	60	5300	14.37	14.50	94.15
5.3GHz WLAN		64	5320	14.42	14.50	
	802.11n-HT40	54	5270	14.09	14.50	88.76
	MCS0	62	5310	14.12	14.50	00.70
		52	5260	12.42	12.50	
	802.11ac-VHT20	56	5280	12.36	12.50	04.40
	MCS0	60	5300	12.35	12.50	94.18
		64	5320	12.48	12.50	
	802.11ac-VHT40	54	5270	12.19	12.50	89.27
	MCS0	62	5310	12.35	12.50	09.27
	802.11ac-VHT80 MCS0	58	5290	12.19	12.50	87.20

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		100	5500	14.39	14.50	
	000 44 - 014	116	5580	14.37	14.50	94.52
	802.11a 6Mbps	132	5660	14.37	14.50	94.52
		140	5700	14.37	14.50	
		100	5500	14.40	14.50	
	802.11n-HT20	116	5580	14.39	14.50	94.15
	MCS0	132	5660	14.38	14.50	94.15
		140	5700	14.38	14.50	
5.5GHz WLAN		102	5510	14.11	14.50	
	802.11n-HT40 MCS0	110	5550	14.05	14.50	88.76
		134	5670	14.04	14.50	
		100	5500	12.49	12.50	
	802.11ac-VHT20	116	5580	12.48	12.50	94.18
	MCS0	132	5660	12.46	12.50	94.10
		140	5700	12.46	12.50	
		102	5510	12.42	12.50	
	802.11ac-VHT40 MCS0	110	5550	12.21	12.50	89.27
	550	134	5670	12.38	12.50	
	802.11ac-VHT80 MCS0	106	5530	12.17	12.50	87.20

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 80 of 109

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		149	5745	14.38	14.50	
	802.11a MCS0	157	5785	14.27	14.50	94.52
		165	5825	14.09	14.50	
		149	5745	14.41	14.50	
	802.11n-HT20 MCS0	157	5785	14.28	14.50	94.15
5.8GHz WLAN		165	5825	14.30	14.50	
	802.11n-HT40 MCS0	151	5755	14.46	14.50	88.76
		159	5795	14.36	14.50	00.70
		149	5745	12.30	12.50	
	802.11ac-VHT20 MCS0	157	5785	12.14	12.50	94.18
	mees	165	5825	12.28	12.50	
	802.11ac-VHT40	151	5755	12.47	12.50	89.27
	MCS0	159	5795	12.46	12.50	09.27
	802.11ac-VHT80 MCS0	155	5775	12.46	12.50	87.20

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 81 of 109

<2.4GHz Bluetooth>

Mode	Channel	Frequency	Average power (dBm)					
Mode	Channel	(MHz)	1Mbps	2Mbps	3Mbps			
	CH 00	2402	7.57	5.21	5.17			
BR / EDR	CH 39	2441	7.51	4.50	4.42			
	CH 78	2480	6.26	4.07	4.07			
	Tune-up Limit		8	5.5	5.5			

Report No. : FA740822

Mode	Channel	Frequency	Average power (dBm)
Mode	Chainei	(MHz)	GFSK
	CH 00	2402	-3.20
LE	CH 19 2440		-3.72
	CH 39	2480	-4.33
	Tune-up Limit		-3

General Note:

- 1. For 2.4GHz Bluetooth SAR testing was selected 1Mbps, due to its highest average power.
- 2. The Bluetooth duty cycle is 77.13 % as following figure, according to 2016 Oct. TCB workshop for Bluetooth SAR scaling need further consideration and the theoretical duty cycle is 83.3%, therefore the actual duty cycle will be scaled up to the theoretical value of Bluetooth reported SAR calculation

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version.: 170509 FCC ID: 2ALBB-A11 Page 82 of 109

13. Antenna Location

Report No.: FA740822

Distance of the Antenna to the EUT surface/edge												
Antennas Back Front Top Side Bottom Side Right Side Left Side												
WWAN	≤ 25mm	≤ 25mm	>25mm	≤ 25mm	≤ 25mm	≤ 25mm						
2.4GHz WLAN Ant 1+2	≤ 25mm	≤ 25mm	≤ 25mm	≤ 25mm	> 25mm	≤ 25mm						
5GHz WLAN Ant 1+2	≤ 25mm											

Positions for SAR tests; Hotspot mode												
Antennas Back Front Top Side Bottom Side Right Side Left Side												
WWAN	Yes	Yes	No	Yes	Yes	Yes						
2.4GHz WLAN Ant 1+2	Yes	Yes	Yes	Yes	No	Yes						
5GHz WLAN Ant 1+2	Yes	Yes	Yes	Yes	Yes	Yes						

General Note:

 Referring to KDB 941225 D06 v02r01, when the overall device length and width are ≥ 9cm*5cm, the test distance is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 26, 2017

FCC ID : 2ALBB-A11 Page 83 of 109 Form version. : 170509

14. SAR Test Results

General Note:

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Report No.: FA740822

- b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
- c. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- d. For WLAN/BT: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
- 2. For TDD LTE SAR measurement, the duty cycle 1:1.59 (62.9 %) was used perform testing and considering the theoretical duty cycle of 63.3% for extended cyclic prefix in the uplink, and the theoretical duty cycle of 62.9% for normal cyclic prefix in uplink, a scaling factor of extended cyclic prefix 63.3%/62.9% = 1.006 is applied to scale-up the measured SAR result. The Reported TDD LTE SAR = measured SAR (W/kg)* Tune-up Scaling Factor* scaling factor for extended cyclic prefix.
- Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - □ ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - □ ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 4. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- 5. Per KDB 648474 D04v01r03, when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤ 1.2 W/kg, SAR testing with a headset connected to the handset is not required.

GSM Note:

- 1. Per KDB 941225 D01v03r01, for SAR test reduction for GSM / GPRS / EDGE / DTM modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the GPRS (3Tx slots) for GSM850/GSM1900 is considered as the primary mode.
- Other configurations of GSM / GPRS / EDGE / DTM are considered as secondary modes. The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode, SAR measurement is not required for the secondary mode.

UMTS Note:

- 1. Per KDB 941225 D01v03r01, for SAR testing is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".
- Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. The maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA is ≤ ¼ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA, and according to the following RF output power, the output power results of the secondary modes (HSUPA, HSDPA, DC-HSDPA) are less than 1/4 dB higher than the primary modes; therefore, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA.

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 26, 2017 Page 84 of 109 Form version.: 170509

FCC ID: 2ALBB-A11

CDMA Note:

 Per KDB 941225 D01v03r01, SAR for next to the ear head exposure is measured in RC3 with the handset configured to transmit at full rate in SO55.

Report No.: FA740822

- 2. Per KDB 941225 D01v03r01, in Hotspot mode EUT is treated as data device and SAR is tested with Ev-Do Rev 0 (RTAP 153.6kbps) as the primary mode.
- 3. Per KDB 941225 D01v03r01, for Body-worn accessory SAR is measured in RC3 with the handset configured in TDSO/SO32 to transmit at full rate on FCH only with all other code channels disabled. The body-worn accessory procedures in KDB Publication 447498 are applied. The 3G SAR test reduction procedure is applied to the multiple code channel configuration (FCH+SCH), with FCH only as the primary mode.

LTE Note:

- Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 2. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 3. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 4. Per KDB 941225 D05v02r05, 16QAM / 64QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM / 64QAM SAR testing is not required.
- 5. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.
- 6. For LTE B12 / B26 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.
- LTE band 2 / 4 / 5 / 17 / 38 SAR test was covered by Band 25 / 66 / 26 / 12 / 41; according to TCB workshop, SAR test for overlapping LTE bands can be reduced if
 - a. The maximum output power, including tolerance, for the smaller band is ≤ the larger band to qualify for the SAR test exclusion.
 - b. The channel bandwidth and other operating parameters for the smaller band are fully supported by the larger band.

WLAN Note:

- 1. Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. Per KDB 248227 D01v02r02, U-NII-1 Head and Body-worn SAR testing is not required when the U-NII-2A band highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band.
- 3. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
- 4. For all positions / configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.
- 5. For WLAN SAR testing was performed on single antenna RF power in SISO mode is larger or equal to the single antenna RF power in MIMO mode, and for RF exposure assessment of MIMO mode simultaneous transmission exclusion analysis was performed with SAR test results of each antenna in SISO mode.
- 6. Per KDB 248227 D01v02r02, the simultaneous SAR provisions in KDB publication 447498 should be applied to determine simultaneous transmission SAR test exclusion for WiFi MIMO. If the sum of 1g single transmission chain SAR measurements is < 1.6W/kg and SAR peak to location ratio ≤ 0.04, no additional SAR measurements for MIMO.</p>
- 7. This device WLAN 2.4GHz / 5.2GHz / 5.8GHz supports Hotspot operation and Bluetooth support tethering applications.
- 8. During SAR testing the WLAN transmission was verified using a spectrum analyzer.

SPORTON INTERNATIONAL INC.TEL: 886-3-327-3456 / FAX: 886-3-328-4978

14.1 <u>Head SAR</u>

<GSM SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	GSM850	GPRS (3 Tx slots)	Right Cheek	0mm	128	824.2	30.26	30.50	1.057	-0.06	0.173	0.183
	GSM850	GPRS (3 Tx slots)	Right Tilted	0mm	128	824.2	30.26	30.50	1.057	0.14	0.123	0.130
	GSM850	GPRS (3 Tx slots)	Left Cheek	0mm	128	824.2	30.26	30.50	1.057	-0.05	0.177	0.187
	GSM850	GPRS (3 Tx slots)	Left Cheek	0mm	189	836.4	30.16	30.50	1.081	0.01	0.210	0.227
01	GSM850	GPRS (3 Tx slots)	Left Cheek	0mm	251	848.8	30.03	30.50	1.114	0.1	0.245	0.273
	GSM850	GPRS (3 Tx slots)	Left Tilted	0mm	128	824.2	30.26	30.50	1.057	-0.04	0.122	0.129
	GSM1900	GPRS (3 Tx slots)	Right Cheek	0mm	512	1850.2	26.98	27.00	1.005	-0.01	0.129	0.130
	GSM1900	GPRS (3 Tx slots)	Right Cheek	0mm	661	1880	26.85	27.00	1.035	0.03	0.131	0.136
02	GSM1900	GPRS (3 Tx slots)	Right Cheek	0mm	810	1909.8	26.83	27.00	1.040	-0.13	0.135	0.140
	GSM1900	GPRS (3 Tx slots)	Right Tilted	0mm	512	1850.2	26.98	27.00	1.005	0.18	0.071	0.071
	GSM1900	GPRS (3 Tx slots)	Left Cheek	0mm	512	1850.2	26.98	27.00	1.005	0.18	0.078	0.078
	GSM1900	GPRS (3 Tx slots)	Left Tilted	0mm	512	1850.2	26.98	27.00	1.005	-0.04	0.052	0.052

Report No. : FA740822

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WCDMA II	RMC 12.2Kbps	Right Cheek	0mm	9538	1907.6	24.91	25.00	1.021	-0.06	0.214	0.218
03	WCDMA II	RMC 12.2Kbps	Right Cheek	0mm	9262	1852.4	24.74	25.00	1.062	-0.07	0.234	0.248
	WCDMA II	RMC 12.2Kbps	Right Cheek	0mm	9400	1880	24.90	25.00	1.023	-0.04	0.236	0.241
	WCDMA II	RMC 12.2Kbps	Right Tilted	0mm	9538	1907.6	24.91	25.00	1.021	0.19	0.130	0.133
	WCDMA II	RMC 12.2Kbps	Left Cheek	0mm	9538	1907.6	24.91	25.00	1.021	0.19	0.149	0.152
	WCDMA II	RMC 12.2Kbps	Left Tilted	0mm	9538	1907.6	24.91	25.00	1.021	-0.18	0.104	0.106
	WCDMA IV	RMC 12.2Kbps	Right Cheek	0mm	1312	1712.4	24.66	25.00	1.081	-0.1	0.073	0.079
	WCDMA IV	RMC 12.2Kbps	Right Tilted	0mm	1312	1712.4	24.66	25.00	1.081	0.16	0.049	0.053
	WCDMA IV	RMC 12.2Kbps	Left Cheek	0mm	1312	1712.4	24.66	25.00	1.081	-0.11	0.131	0.142
04	WCDMA IV	RMC 12.2Kbps	Left Cheek	0mm	1413	1732.6	24.59	25.00	1.099	0.04	0.147	0.162
	WCDMA IV	RMC 12.2Kbps	Left Cheek	0mm	1513	1752.6	24.62	25.00	1.091	0.12	0.082	0.089
	WCDMA IV	RMC 12.2Kbps	Left Tilted	0mm	1312	1712.4	24.66	25.00	1.081	-0.16	0.048	0.052
	WCDMA V	RMC 12.2Kbps	Right Cheek	0mm	4233	846.6	24.42	25.00	1.143	0	0.152	0.174
	WCDMA V	RMC 12.2Kbps	Right Tilted	0mm	4233	846.6	24.42	25.00	1.143	-0.03	0.104	0.119
05	WCDMA V	RMC 12.2Kbps	Left Cheek	0mm	4233	846.6	24.42	25.00	1.143	0	0.191	0.218
	WCDMA V	RMC 12.2Kbps	Left Cheek	0mm	4132	826.4	24.31	25.00	1.172	0.04	0.176	0.206
	WCDMA V	RMC 12.2Kbps	Left Cheek	0mm	4182	836.4	24.41	25.00	1.146	0.01	0.176	0.202
	WCDMA V	RMC 12.2Kbps	Left Tilted	0mm	4233	846.6	24.42	25.00	1.143	0.04	0.129	0.147

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 26, 2017

FCC ID : 2ALBB-A11 Page 86 of 109 Form version. : 170509

<CDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	CDMA BC0	1xRTT RC3 SO55	Right Cheek	0mm	384	836.52	24.87	25.00	1.030	-0.07	0.103	0.106
	CDMA BC0	1xRTT RC3 SO55	Right Tilted	0mm	384	836.52	24.87	25.00	1.030	0.07	0.072	0.074
	CDMA BC0	1xRTT RC3 SO55	Left Cheek	0mm	384	836.52	24.87	25.00	1.030	0.04	0.124	0.128
06	CDMA BC0	1xRTT RC3 SO55	Left Cheek	0mm	1013	824.7	24.72	25.00	1.067	0.19	0.128	0.137
	CDMA BC0	1xRTT RC3 SO55	Left Cheek	0mm	777	848.31	24.53	25.00	1.114	0.03	0.112	0.125
	CDMA BC0	1xRTT RC3 SO55	Left Tilted	0mm	384	836.52	24.87	25.00	1.030	-0.01	0.090	0.093
	CDMA BC1	1xRTT RC3 SO55	Right Cheek	0mm	600	1880	24.66	25.00	1.081	0.05	0.226	0.244
	CDMA BC1	1xRTT RC3 SO55	Right Cheek	0mm	25	1851.25	24.65	25.00	1.084	-0.01	0.179	0.194
07	CDMA BC1	1xRTT RC3 SO55	Right Cheek	0mm	1175	1908.75	24.52	25.00	1.117	-0.15	0.251	0.280
	CDMA BC1	1xRTT RC3 SO55	Right Tilted	0mm	600	1880	24.66	25.00	1.081	0.14	0.104	0.112
	CDMA BC1	1xRTT RC3 SO55	Left Cheek	0mm	600	1880	24.66	25.00	1.081	0.15	0.105	0.114
	CDMA BC1	1xRTT RC3 SO55	Left Tilted	0mm	600	1880	24.66	25.00	1.081	-0.11	0.076	0.082
	CDMA BC10	1xRTT RC3 SO55	Right Cheek	0mm	580	820.5	24.57	25.00	1.104	0.02	0.117	0.129
	CDMA BC10	1xRTT RC3 SO55	Right Tilted	0mm	580	820.5	24.57	25.00	1.104	0.01	0.087	0.096
80	CDMA BC10	1xRTT RC3 SO55	Left Cheek	0mm	580	820.5	24.57	25.00	1.104	0	0.135	0.149
	CDMA BC10	1xRTT RC3 SO55	Left Tilted	0mm	580	820.5	24.57	25.00	1.104	0.05	0.099	0.109

<FDD LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 7	20M	QPSK	1	0	Right Cheek	0mm	21100	2535	24.33	25.00	1.167	-0.03	0.081	0.095
	LTE Band 7	20M	QPSK	1	0	Right Cheek	0mm	20850	2510	24.23	25.00	1.194	-0.05	0.060	0.072
09	LTE Band 7	20M	QPSK	1	0	Right Cheek	0mm	21350	2560	24.18	25.00	1.208	-0.19	0.117	0.141
	LTE Band 7	20M	QPSK	50	0	Right Cheek	0mm	21100	2535	23.31	24.00	1.172	-0.13	0.067	0.079
	LTE Band 7	20M	QPSK	1	0	Right Tilted	0mm	21100	2535	24.33	25.00	1.167	-0.17	0.028	0.033
	LTE Band 7	20M	QPSK	50	0	Right Tilted	0mm	21100	2535	23.31	24.00	1.172	-0.12	0.023	0.027
	LTE Band 7	20M	QPSK	1	0	Left Cheek	0mm	21100	2535	24.33	25.00	1.167	0.11	0.076	0.089
	LTE Band 7	20M	QPSK	50	0	Left Cheek	0mm	21100	2535	23.31	24.00	1.172	0.17	0.056	0.066
	LTE Band 7	20M	QPSK	1	0	Left Tilted	0mm	21100	2535	24.33	25.00	1.167	-0.14	0.048	0.056
	LTE Band 7	20M	QPSK	50	0	Left Tilted	0mm	21100	2535	23.31	24.00	1.172	0.17	0.045	0.053
	LTE Band 12	10M	QPSK	1	49	Right Cheek	0mm	23095	707.5	24.23	25.00	1.194	0	0.130	0.155
	LTE Band 12	10M	QPSK	25	25	Right Cheek	0mm	23095	707.5	23.22	24.00	1.197	-0.03	0.103	0.123
	LTE Band 12	10M	QPSK	1	49	Right Tilted	0mm	23095	707.5	24.23	25.00	1.194	0.07	0.089	0.106
	LTE Band 12	10M	QPSK	25	25	Right Tilted	0mm	23095	707.5	23.22	24.00	1.197	0.02	0.069	0.083
10	LTE Band 12	10M	QPSK	1	49	Left Cheek	0mm	23095	707.5	24.23	25.00	1.194	0.02	0.143	0.171
	LTE Band 12	10M	QPSK	25	25	Left Cheek	0mm	23095	707.5	23.22	24.00	1.197	-0.01	0.113	0.135
	LTE Band 12	10M	QPSK	1	49	Left Tilted	0mm	23095	707.5	24.23	25.00	1.194	0	0.069	0.082
	LTE Band 12	10M	QPSK	25	25	Left Tilted	0mm	23095	707.5	23.22	24.00	1.197	0.01	0.054	0.065
	LTE Band 13	10M	QPSK	1	25	Right Cheek	0mm	23230	782	24.26	25.00	1.186	-0.01	0.138	0.164
	LTE Band 13	10M	QPSK	25	12	Right Cheek	0mm	23230	782	23.33	24.00	1.167	0	0.111	0.130
	LTE Band 13	10M	QPSK	1	25	Right Tilted	0mm	23230	782	24.26	25.00	1.186	0.05	0.112	0.133
	LTE Band 13	10M	QPSK	25	12	Right Tilted	0mm	23230	782	23.33	24.00	1.167	-0.12	0.089	0.104
11	LTE Band 13	10M	QPSK	1	25	Left Cheek	0mm	23230	782	24.26	25.00	1.186	0	0.157	0.186
	LTE Band 13	10M	QPSK	25	12	Left Cheek	0mm	23230	782	23.33	24.00	1.167	-0.19	0.125	0.146
	LTE Band 13	10M	QPSK	1	25	Left Tilted	0mm	23230	782	24.26	25.00	1.186	0.02	0.095	0.113
	LTE Band 13	10M	QPSK	25	12	Left Tilted	0mm	23230	782	23.33	24.00	1.167	0.02	0.076	0.089

TEL: 886-3-327-3456 / FAX: 886-3-328-4978
FCC ID: 2ALBB-A11 Page 87 of 109

Issued Date: Jun. 26, 2017 Form version.: 170509

Report No. : FA740822

Plot		BW		RB	RB	Test	Gap		Frea.		Tune-Up			Measured	
No.	Band	(MHz)	Modulation	Size		Position	(mm)	Ch.	(MHz)	Power (dBm)	Limit (dBm)	Scaling Factor	Drift (dB)	1g SAR (W/kg)	1g SAR (W/kg)
	LTE Band 25	20M	QPSK	1	0	Right Cheek	0mm	26590	1905	24.48	24.50	1.005	-0.07	0.193	0.194
12	LTE Band 25	20M	QPSK	1	0	Right Cheek	0mm	26140	1860	24.26	24.50	1.057	-0.04	0.190	0.201
	LTE Band 25	20M	QPSK	1	0	Right Cheek	0mm	26340	1880	24.34	24.50	1.038	-0.14	0.187	0.194
	LTE Band 25	20M	QPSK	50	0	Right Cheek	0mm	26590	1905	24.33	24.50	1.040	-0.13	0.138	0.144
	LTE Band 25	20M	QPSK	1	0	Right Tilted	0mm	26590	1905	24.48	24.50	1.005	0.07	0.103	0.103
	LTE Band 25	20M	QPSK	50	0	Right Tilted	0mm	26590	1905	24.26	24.50	1.057	0.08	0.086	0.091
	LTE Band 25	20M	QPSK	1	0	Left Cheek	0mm	26590	1905	24.48	24.50	1.005	0.09	0.138	0.139
	LTE Band 25	20M	QPSK	50	0	Left Cheek	0mm	26590	1905	24.26	24.50	1.057	0.12	0.108	0.114
	LTE Band 25	20M	QPSK	1	0	Left Tilted	0mm	26590	1905	24.48	24.50	1.005	-0.02	0.112	0.113
	LTE Band 25	20M	QPSK	50	0	Left Tilted	0mm	26590	1905	24.26	24.50	1.057	-0.08	0.077	0.081
	LTE Band 26	15M	QPSK	1	74	Right Cheek	0mm	26865	831.5	23.88	25.00	1.294	0.05	0.148	0.192
	LTE Band 26	15M	QPSK	36	39	Right Cheek	0mm	26865	831.5	23.89	25.00	1.291	-0.02	0.112	0.145
	LTE Band 26	15M	QPSK	1	74	Right Tilted	0mm	26865	831.5	23.88	25.00	1.294	0.06	0.089	0.115
	LTE Band 26	15M	QPSK	36	39	Right Tilted	0mm	26865	831.5	23.89	25.00	1.291	0.07	0.068	0.088
13	LTE Band 26	15M	QPSK	1	74	Left Cheek	0mm	26865	831.5	23.88	25.00	1.294	0.01	0.171	0.221
	LTE Band 26	15M	QPSK	36	39	Left Cheek	0mm	26865	831.5	23.89	25.00	1.291	0.02	0.131	0.169
	LTE Band 26	15M	QPSK	1	74	Left Tilted	0mm	26865	831.5	23.88	25.00	1.294	-0.09	0.106	0.137
	LTE Band 26	15M	QPSK	36	39	Left Tilted	0mm	26865	831.5	23.89	25.00	1.291	0.03	0.104	0.134
	LTE Band 30	10M	QPSK	1	25	Right Cheek	0mm	27710	2310	24.29	25.00	1.178	-0.11	0.066	0.078
	LTE Band 30	10M	QPSK	25	0	Right Cheek	0mm	27710	2310	23.38	24.00	1.153	0.1	0.040	0.046
	LTE Band 30	10M	QPSK	1	25	Right Tilted	0mm	27710	2310	24.29	25.00	1.178	0.18	0.068	0.080
	LTE Band 30	10M	QPSK	25	0	Right Tilted	0mm	27710	2310	23.38	24.00	1.153	0.05	0.055	0.063
14	LTE Band 30	10M	QPSK	1	25	Left Cheek	0mm	27710	2310	24.29	25.00	1.178	-0.17	0.083	0.098
	LTE Band 30	10M	QPSK	25	0	Left Cheek	0mm	27710	2310	23.38	24.00	1.153	-0.18	0.066	0.076
	LTE Band 30	10M	QPSK	1	25	Left Tilted	0mm	27710	2310	24.29	25.00	1.178	-0.1	0.051	0.060
	LTE Band 30	10M	QPSK	25	0	Left Tilted	0mm	27710	2310	23.38	24.00	1.153	-0.06	0.041	0.047
15	LTE Band 66	20M	QPSK	1	0	Right Cheek	0mm	132322	1745	23.88	24.50	1.153	0.02	0.188	0.217
	LTE Band 66	20M	QPSK	1	0	Right Cheek	0mm	132072	1720	23.87	24.50	1.156	-0.14	0.172	0.199
	LTE Band 66	20M	QPSK	1	0	Right Cheek	0mm	132572	1770	23.75	24.50	1.189	-0.12	0.168	0.200
	LTE Band 66	20M	QPSK	50	0	Right Cheek	0mm	132072	1720	22.84	23.50	1.164	-0.1	0.133	0.155
	LTE Band 66	20M	QPSK	1	0	Right Tilted	0mm	132322	1745	23.88	24.50	1.153	-0.11	0.117	0.135
	LTE Band 66	20M	QPSK	50	0	Right Tilted	0mm	132072	1720	22.84	23.50	1.164	-0.15	0.092	0.107
	LTE Band 66	20M	QPSK	1	0	Left Cheek	0mm	132322	1745	23.88	24.50	1.153	0.11	0.137	0.158
	LTE Band 66	20M	QPSK	50	0	Left Cheek	0mm	132072	1720	22.84	23.50	1.164	0.16	0.107	0.125
	LTE Band 66	20M	QPSK	1	0	Left Tilted	0mm	132322	1745	23.88	24.50	1.153	-0.02	0.121	0.140
	LTE Band 66	20M	QPSK	50	0	Left Tilted	0mm	132072	1720	22.84	23.50	1.164	0.14	0.089	0.104

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 88 of 109

<TDD LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Cuolo	Duty Cycle Scaling Factor	Duiss	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 41	20M	QPSK	1	0	Right Cheek	0mm	40620	2593	25.69	26.00	1.074	62.9	1.006	0.07	0.112	0.121
	LTE Band 41	20M	QPSK	1	0	Right Cheek	0mm	39750	2506	25.48	26.00	1.127	62.9	1.006	0.16	0.031	0.035
	LTE Band 41	20M	QPSK	1	0	Right Cheek	0mm	40185	2549.5	25.64	26.00	1.086	62.9	1.006	-0.16	0.076	0.083
	LTE Band 41	20M	QPSK	1	0	Right Cheek	0mm	41055	2636.5	24.99	26.00	1.262	62.9	1.006	-0.17	0.140	0.178
16	LTE Band 41	20M	QPSK	1	0	Right Cheek	0mm	41490	2680	24.26	26.00	1.493	62.9	1.006	-0.15	0.137	0.206
	LTE Band 41	20M	QPSK	50	0	Right Cheek	0mm	40620	2593	24.63	25.00	1.089	62.9	1.006	-0.18	0.080	0.088
	LTE Band 41	20M	QPSK	1	0	Right Tilted	0mm	40620	2593	25.69	26.00	1.074	62.9	1.006	0.07	0.035	0.038
	LTE Band 41	20M	QPSK	50	0	Right Tilted	0mm	40620	2593	24.63	25.00	1.089	62.9	1.006	0.17	0.028	0.031
	LTE Band 41	20M	QPSK	1	0	Left Cheek	0mm	40620	2593	25.69	26.00	1.074	62.9	1.006	0.18	0.075	0.081
	LTE Band 41	20M	QPSK	50	0	Left Cheek	0mm	40620	2593	24.63	25.00	1.089	62.9	1.006	-0.19	0.046	0.050
	LTE Band 41	20M	QPSK	1	0	Left Tilted	0mm	40620	2593	25.69	26.00	1.074	62.9	1.006	0.16	0.061	0.066
	LTE Band 41	20M	QPSK	50	0	Left Tilted	0mm	40620	2593	24.63	25.00	1.089	62.9	1.006	0.17	0.047	0.051

Report No. : FA740822

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	O	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WLAN2.4GHz	802.11b 1Mbps	Right Cheek	0mm	Ant 1	1	2412	14.45	14.50	1.012	100	1.000	0.14	0.133	0.135
	WLAN2.4GHz	802.11b 1Mbps	Right Tilted	0mm	Ant 1	1	2412	14.45	14.50	1.012	100	1.000	0.14	0.117	0.118
	WLAN2.4GHz	802.11b 1Mbps	Left Cheek	0mm	Ant 1	1	2412	14.45	14.50	1.012	100	1.000	0.12	0.113	0.114
17	WLAN2.4GHz	802.11b 1Mbps	Left Tilted	0mm	Ant 1	1	2412	14.45	14.50	1.012	100	1.000	0.17	0.138	0.140
	WLAN2.4GHz	802.11b 1Mbps	Left Tilted	0mm	Ant 1	6	2412	14.44	14.50	1.014	100	1.000	0.01	0.134	0.136
	WLAN2.4GHz	802.11b 1Mbps	Left Tilted	0mm	Ant 1	11	2462	12.98	13.00	1.005	100	1.000	0.04	0.083	0.083
	WLAN2.4GHz	802.11b 1Mbps	Right Cheek	0mm	Ant 2	1	2412	15.49	15.50	1.002	100	1.000	0.13	0.001	0.001
	WLAN2.4GHz	802.11b 1Mbps	Right Tilted	0mm	Ant 2	1	2412	15.49	15.50	1.002	100	1.000	0	0.001	0.001
	WLAN2.4GHz	802.11b 1Mbps	Left Cheek	0mm	Ant 2	1	2412	15.49	15.50	1.002	100	1.000	0.18	0.003	0.003
	WLAN2.4GHz	802.11b 1Mbps	Left Tilted	0mm	Ant 2	1	2412	15.49	15.50	1.002	100	1.000	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Right Cheek	0mm	Ant 1	62	5310	11.44	11.50	1.014	89.77	1.114	0.11	0.015	0.017
	WLAN5GHz	802.11n-HT40 MCS0	Right Tilted	0mm	Ant 1	62	5310	11.44	11.50	1.014	89.77	1.114	0.17	0.012	0.014
18	WLAN5GHz	802.11n-HT40 MCS0	Left Cheek	0mm	Ant 1	62	5310	11.44	11.50	1.014	89.77	1.114	0.19	0.068	0.077
	WLAN5GHz	802.11n-HT40 MCS0	Left Cheek	0mm	Ant 1	54	5270	11.42	11.50	1.019	89.77	1.114	0.1	0.055	0.062
	WLAN5GHz	802.11n-HT40 MCS0	Left Tilted	0mm	Ant 1	62	5310	11.44	11.50	1.014	89.77	1.114	0.1	0.030	0.034
	WLAN5GHz	802.11n-HT40 MCS0	Right Cheek	0mm	Ant 2	62	5310	9.43	10.50	1.278	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Right Tilted	0mm	Ant 2	62	5310	9.43	10.50	1.278	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Left Cheek	0mm	Ant 2	62	5310	9.43	10.50	1.278	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Left Tilted	0mm	Ant 2	62	5310	9.43	10.50	1.278	90.29	1.108	0	0.001	0.001

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 89 of 109

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor		Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WLAN5GHz	802.11n-HT40 MCS0	Right Cheek	0mm	Ant 1	102	5510	11.48	11.50	1.005	89.7	1.115	0.19	0.016	0.018
	WLAN5GHz	802.11n-HT40 MCS0	Right Tilted	0mm	Ant 1	102	5510	11.48	11.50	1.005	89.7	1.115	-0.15	0.017	0.019
	WLAN5GHz	802.11n-HT40 MCS0	Left Cheek	0mm	Ant 1	102	5510	11.48	11.50	1.005	89.7	1.115	0.19	0.057	0.064
19	WLAN5GHz	802.11n-HT40 MCS0	Left Cheek	0mm	Ant 1	110	5550	11.47	11.50	1.007	89.7	1.115	0.07	0.064	0.072
	WLAN5GHz	802.11n-HT40 MCS0	Left Cheek	0mm	Ant 1	134	5670	11.47	11.50	1.007	89.7	1.115	0.14	0.039	0.044
	WLAN5GHz	802.11n-HT40 MCS0	Left Tilted	0mm	Ant 1	102	5510	11.48	11.50	1.005	89.7	1.115	0.13	0.034	0.038
	WLAN5GHz	802.11n-HT40 MCS0	Right Cheek	0mm	Ant 2	102	5510	9.41	10.50	1.284	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Right Tilted	0mm	Ant 2	102	5510	9.41	10.50	1.284	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Left Cheek	0mm	Ant 2	102	5510	9.41	10.50	1.284	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Left Tilted	0mm	Ant 2	102	5510	9.41	10.50	1.284	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Right Cheek	0mm	Ant 1	151	5755	11.48	11.50	1.005	89.7	1.115	0.14	0.026	0.029
	WLAN5GHz	802.11n-HT40 MCS0	Right Tilted	0mm	Ant 1	151	5755	11.48	11.50	1.005	89.7	1.115	-0.13	0.037	0.041
	WLAN5GHz	802.11n-HT40 MCS0	Left Cheek	0mm	Ant 1	151	5755	11.48	11.50	1.005	89.7	1.115	0.11	0.060	0.067
20	WLAN5GHz	802.11n-HT40 MCS0	Left Tilted	0mm	Ant 1	151	5755	11.48	11.50	1.005	89.7	1.115	0.11	0.095	0.106
	WLAN5GHz	802.11n-HT40 MCS0	Left Tilted	0mm	Ant 1	159	5795	11.16	11.50	1.082	89.7	1.115	0.1	0.060	0.072
	WLAN5GHz	802.11n-HT40 MCS0	Right Cheek	0mm	Ant 2	151	5755	9.46	10.50	1.270	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Right Tilted	0mm	Ant 2	151	5755	9.46	10.50	1.270	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Left Cheek	0mm	Ant 2	151	5755	9.46	10.50	1.270	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Left Tilted	0mm	Ant 2	151	5755	9.46	10.50	1.270	90.29	1.108	0	0.001	0.001

Report No. : FA740822

<Bluetooth SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	Bluetooth	1Mbps	Right Cheek	0mm	00	2402	7.57	8.00	1.104	77.13	1.080	0.07	0.035	0.042
	Bluetooth	1Mbps	Right Tilted	0mm	00	2402	7.57	8.00	1.104	77.13	1.080	-0.13	0.042	0.050
	Bluetooth	1Mbps	Left Cheek	0mm	00	2402	7.57	8.00	1.104	77.13	1.080	0.19	0.033	0.039
21	Bluetooth	1Mbps	Left Tilted	0mm	00	2402	7.57	8.00	1.104	77.13	1.080	0.18	0.043	0.051
	Bluetooth	1Mbps	Left Tilted	0mm	39	2441	7.51	8.00	1.119	77.13	1.080	0.18	0.032	0.039
	Bluetooth	1Mbps	Left Tilted	0mm	78	2480	6.26	8.00	1.493	77.13	1.080	0.01	0.012	0.019

FCC ID : 2ALBB-A11 Page 90 of 109 Form version. : 170509

14.2 Hotspot SAR

<GSM SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	GSM850	GPRS (3 Tx slots)	Front	10mm	128	824.2	30.26	30.50	1.057	0.14	0.274	0.290
	GSM850	GPRS (3 Tx slots)	Back	10mm	128	824.2	30.26	30.50	1.057	-0.01	0.318	0.336
	GSM850	GPRS (3 Tx slots)	Back	10mm	189	836.4	30.16	30.50	1.081	0.03	0.321	0.347
22	GSM850	GPRS (3 Tx slots)	Back	10mm	251	848.8	30.03	30.50	1.114	0.02	0.316	0.352
	GSM850	GPRS (3 Tx slots)	Left Side	10mm	128	824.2	30.26	30.50	1.057	0.04	0.307	0.324
	GSM850	GPRS (3 Tx slots)	Right Side	10mm	128	824.2	30.26	30.50	1.057	-0.04	0.202	0.213
	GSM850	GPRS (3 Tx slots)	Bottom Side	10mm	128	824.2	30.26	30.50	1.057	-0.11	0.036	0.038
	GSM1900	GPRS (3 Tx slots)	Front	10mm	512	1850.2	26.98	27.00	1.005	-0.11	0.137	0.138
	GSM1900	GPRS (3 Tx slots)	Back	10mm	512	1850.2	26.98	27.00	1.005	-0.07	0.288	0.289
	GSM1900	GPRS (3 Tx slots)	Left Side	10mm	512	1850.2	26.98	27.00	1.005	0.03	0.054	0.054
	GSM1900	GPRS (3 Tx slots)	Right Side	10mm	512	1850.2	26.98	27.00	1.005	0.01	0.163	0.164
	GSM1900	GPRS (3 Tx slots)	Bottom Side	10mm	512	1850.2	26.98	27.00	1.005	-0.14	0.333	0.335
	GSM1900	GPRS (3 Tx slots)	Bottom Side	10mm	661	1880	26.85	27.00	1.035	-0.13	0.373	0.386
23	GSM1900	GPRS (3 Tx slots)	Bottom Side	10mm	810	1909.8	26.83	27.00	1.040	-0.14	0.388	0.403

Report No. : FA740822

<WCDMA SAR>

									-			
Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WCDMA II	RMC 12.2Kbps	Front	10mm	9538	1907.6	24.91	25.00	1.021	-0.05	0.317	0.324
	WCDMA II	RMC 12.2Kbps	Back	10mm	9538	1907.6	24.91	25.00	1.021	-0.16	0.579	0.591
	WCDMA II	RMC 12.2Kbps	Left Side	10mm	9538	1907.6	24.91	25.00	1.021	0.07	0.225	0.230
	WCDMA II	RMC 12.2Kbps	Right Side	10mm	9538	1907.6	24.91	25.00	1.021	0.01	0.381	0.389
	WCDMA II	RMC 12.2Kbps	Bottom Side	10mm	9538	1907.6	24.91	25.00	1.021	-0.12	0.593	0.605
	WCDMA II	RMC 12.2Kbps	Bottom Side	10mm	9262	1852.4	24.74	25.00	1.062	-0.19	0.563	0.598
24	WCDMA II	RMC 12.2Kbps	Bottom Side	10mm	9400	1880	24.90	25.00	1.023	-0.11	0.612	0.626
	WCDMA IV	RMC 12.2Kbps	Front	10mm	1312	1712.4	24.66	25.00	1.081	-0.15	0.119	0.129
	WCDMA IV	RMC 12.2Kbps	Back	10mm	1312	1712.4	24.66	25.00	1.081	-0.13	0.203	0.220
	WCDMA IV	RMC 12.2Kbps	Left Side	10mm	1312	1712.4	24.66	25.00	1.081	-0.01	0.088	0.095
	WCDMA IV	RMC 12.2Kbps	Right Side	10mm	1312	1712.4	24.66	25.00	1.081	0	0.111	0.120
	WCDMA IV	RMC 12.2Kbps	Bottom Side	10mm	1312	1712.4	24.66	25.00	1.081	-0.17	0.441	0.477
25	WCDMA IV	RMC 12.2Kbps	Bottom Side	10mm	1413	1732.6	24.59	25.00	1.099	-0.1	0.508	0.558
	WCDMA IV	RMC 12.2Kbps	Bottom Side	10mm	1513	1752.6	24.62	25.00	1.091	-0.11	0.250	0.273
	WCDMA V	RMC 12.2Kbps	Front	10mm	4233	846.6	24.42	25.00	1.143	-0.02	0.238	0.272
	WCDMA V	RMC 12.2Kbps	Back	10mm	4233	846.6	24.42	25.00	1.143	-0.03	0.302	0.345
	WCDMA V	RMC 12.2Kbps	Left Side	10mm	4233	846.6	24.42	25.00	1.143	-0.02	0.366	0.418
26	WCDMA V	RMC 12.2Kbps	Left Side	10mm	4132	826.4	24.31	25.00	1.172	0.03	0.398	0.467
	WCDMA V	RMC 12.2Kbps	Left Side	10mm	4182	836.4	24.41	25.00	1.146	0	0.338	0.387
	WCDMA V	RMC 12.2Kbps	Right Side	10mm	4233	846.6	24.42	25.00	1.143	-0.01	0.243	0.278
	WCDMA V	RMC 12.2Kbps	Bottom Side	10mm	4233	846.6	24.42	25.00	1.143	-0.13	0.037	0.042

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 26, 2017

FCC ID : 2ALBB-A11 Page 91 of 109 Form version. : 170509

<CDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	CDMA BC0	RTAP 153.6Kbps	Front	10mm	384	836.52	24.86	25.00	1.033	-0.07	0.155	0.160
	CDMA BC0	RTAP 153.6Kbps	Back	10mm	384	836.52	24.86	25.00	1.033	-0.15	0.204	0.211
	CDMA BC0	RTAP 153.6Kbps	Left Side	10mm	384	836.52	24.86	25.00	1.033	-0.03	0.319	0.329
27	CDMA BC0	RTAP 153.6Kbps	Left Side	10mm	1013	824.7	24.76	25.00	1.057	0	0.357	0.377
	CDMA BC0	RTAP 153.6Kbps	Left Side	10mm	777	848.31	24.54	25.00	1.112	-0.05	0.284	0.316
	CDMA BC0	RTAP 153.6Kbps	Right Side	10mm	384	836.52	24.86	25.00	1.033	-0.07	0.171	0.177
	CDMA BC0	RTAP 153.6Kbps	Bottom Side	10mm	384	836.52	24.86	25.00	1.033	-0.04	0.073	0.075
	CDMA BC1	RTAP 153.6Kbps	Front	10mm	600	1880	24.65	25.00	1.084	-0.04	0.183	0.198
	CDMA BC1	RTAP 153.6Kbps	Back	10mm	600	1880	24.65	25.00	1.084	-0.12	0.358	0.388
	CDMA BC1	RTAP 153.6Kbps	Left Side	10mm	600	1880	24.65	25.00	1.084	0.09	0.072	0.078
	CDMA BC1	RTAP 153.6Kbps	Right Side	10mm	600	1880	24.65	25.00	1.084	-0.05	0.254	0.275
	CDMA BC1	RTAP 153.6Kbps	Bottom Side	10mm	600	1880	24.65	25.00	1.084	-0.12	0.394	0.427
	CDMA BC1	RTAP 153.6Kbps	Bottom Side	10mm	25	1851.25	24.65	25.00	1.084	-0.13	0.340	0.369
28	CDMA BC1	RTAP 153.6Kbps	Bottom Side	10mm	1175	1908.75	24.50	25.00	1.122	-0.13	0.501	0.562
	CDMA BC10	RTAP 153.6Kbps	Front	10mm	580	820.5	24.56	25.00	1.107	0.02	0.186	0.206
	CDMA BC10	RTAP 153.6Kbps	Back	10mm	580	820.5	24.56	25.00	1.107	-0.02	0.249	0.276
29	CDMA BC10	RTAP 153.6Kbps	Left Side	10mm	580	820.5	24.56	25.00	1.107	0.13	0.383	0.424
	CDMA BC10	RTAP 153.6Kbps	Right Side	10mm	580	820.5	24.56	25.00	1.107	-0.01	0.217	0.240
	CDMA BC10	RTAP 153.6Kbps	Bottom Side	10mm	580	820.5	24.56	25.00	1.107	0	0.075	0.083

Report No. : FA740822

<FDD LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 7	20M	QPSK	1	0	Front	10mm	21100	2535	24.33	25.00	1.167	0.01	0.263	0.307
	LTE Band 7	20M	QPSK	50	0	Front	10mm	21100	2535	23.31	24.00	1.172	0.16	0.200	0.234
	LTE Band 7	20M	QPSK	1	0	Back	10mm	21100	2535	24.33	25.00	1.167	0.11	0.502	0.586
	LTE Band 7	20M	QPSK	50	0	Back	10mm	21100	2535	23.31	24.00	1.172	0.02	0.390	0.457
	LTE Band 7	20M	QPSK	1	0	Left Side	10mm	21100	2535	24.33	25.00	1.167	-0.01	0.244	0.285
	LTE Band 7	20M	QPSK	50	0	Left Side	10mm	21100	2535	23.31	24.00	1.172	-0.05	0.189	0.222
	LTE Band 7	20M	QPSK	1	0	Right Side	10mm	21100	2535	24.33	25.00	1.167	-0.06	0.036	0.042
	LTE Band 7	20M	QPSK	50	0	Right Side	10mm	21100	2535	23.31	24.00	1.172	-0.02	0.030	0.035
	LTE Band 7	20M	QPSK	1	0	Bottom Side	10mm	21100	2535	24.33	25.00	1.167	-0.16	0.521	0.608
30	LTE Band 7	20M	QPSK	1	0	Bottom Side	10mm	20850	2510	24.23	25.00	1.194	0.05	0.531	0.634
	LTE Band 7	20M	QPSK	1	0	Bottom Side	10mm	21350	2560	24.18	25.00	1.208	-0.04	0.429	0.518
	LTE Band 7	20M	QPSK	50	0	Bottom Side	10mm	21100	2535	23.31	24.00	1.172	-0.17	0.398	0.467
	LTE Band 12	10M	QPSK	1	49	Front	10mm	23095	707.5	24.23	25.00	1.194	-0.05	0.157	0.187
	LTE Band 12	10M	QPSK	25	25	Front	10mm	23095	707.5	23.22	24.00	1.197	-0.02	0.135	0.162
31	LTE Band 12	10M	QPSK	1	49	Back	10mm	23095	707.5	24.23	25.00	1.194	0.02	0.228	0.272
	LTE Band 12	10M	QPSK	25	25	Back	10mm	23095	707.5	23.22	24.00	1.197	-0.02	0.176	0.211
	LTE Band 12	10M	QPSK	1	49	Left Side	10mm	23095	707.5	24.23	25.00	1.194	-0.11	0.192	0.229
	LTE Band 12	10M	QPSK	25	25	Left Side	10mm	23095	707.5	23.22	24.00	1.197	-0.12	0.151	0.181
	LTE Band 12	10M	QPSK	1	49	Right Side	10mm	23095	707.5	24.23	25.00	1.194	0.09	0.136	0.162
	LTE Band 12	10M	QPSK	25	25	Right Side	10mm	23095	707.5	23.22	24.00	1.197	0.07	0.106	0.127
	LTE Band 12	10M	QPSK	1	49	Bottom Side	10mm	23095	707.5	24.23	25.00	1.194	-0.14	0.040	0.048
	LTE Band 12	10M	QPSK	25	25	Bottom Side	10mm	23095	707.5	23.22	24.00	1.197	-0.19	0.031	0.037

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 92 of 109

												_			
Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power	Limit	Tune-up Scaling	Drift	1g SAR	1g SAR
	LTE Band 13	10M	QPSK	1	25	Front	10mm	23230	782	(dBm) 24.26	(dBm) 25.00	Factor 1.186	(dB) 0	(W/kg) 0.226	(W/kg) 0.268
	LTE Band 13	10M	QPSK	25	12	Front	10mm		782	23.33	24.00	1.167	0.01	0.180	0.210
	LTE Band 13	10M	QPSK	1	25	Back	10mm	23230	782	24.26	25.00	1.186	-0.09	0.290	0.344
	LTE Band 13	10M	QPSK	25	12	Back	10mm	23230	782	23.33	24.00	1.167	-0.03	0.231	0.270
32	LTE Band 13	10M	QPSK	1	25	Left Side	10mm		782	24.26	25.00	1.186	-0.11	0.342	0.406
	LTE Band 13	10M	QPSK	25	12	Left Side	10mm	23230	782	23.33	24.00	1.167	-0.1	0.273	0.319
	LTE Band 13	10M	QPSK	1	25	Right Side	10mm	23230	782	24.26	25.00	1.186	0.02	0.205	0.243
	LTE Band 13	10M	QPSK	25	12	Right Side	10mm	23230	782	23.33	24.00	1.167	0.01	0.164	0.191
	LTE Band 13	10M	QPSK	1	25	Bottom Side	10mm	23230	782	24.26	25.00	1.186	-0.18	0.050	0.059
	LTE Band 13	10M	QPSK	25	12	Bottom Side	10mm	23230	782	23.33	24.00	1.167	-0.16	0.039	0.046
	LTE Band 25	20M	QPSK	1	0	Front	10mm	26590	1905	24.48	24.50	1.005	-0.04	0.319	0.320
	LTE Band 25	20M	QPSK	50	0	Front	10mm	26590	1905	24.33	24.50	1.040	0	0.242	0.252
	LTE Band 25	20M	QPSK	1	0	Back	10mm	26590	1905	24.48	24.50	1.005	-0.13	0.584	0.587
	LTE Band 25	20M	QPSK	50	0	Back	10mm	26590	1905	24.33	24.50	1.040	-0.13	0.449	0.467
	LTE Band 25	20M	QPSK	1	0	Left Side	10mm	26590	1905	24.48	24.50	1.005	-0.13	0.138	0.139
	LTE Band 25	20M	QPSK	50	0	Left Side	10mm	26590	1905	24.33	24.50	1.040	-0.07	0.132	0.137
	LTE Band 25	20M	QPSK	1	0	Right Side	10mm	26590	1905	24.48	24.50	1.005	0.02	0.329	0.331
	LTE Band 25	20M	QPSK	50	0	Right Side	10mm	26590	1905	24.33	24.50	1.040	-0.07	0.313	0.325
	LTE Band 25	20M	QPSK	1	0	Bottom Side	10mm	26590	1905	24.48	24.50	1.005	-0.11	0.623	0.626
33	LTE Band 25	20M	QPSK	1	0	Bottom Side	10mm	26140	1860	24.26	24.50	1.057	-0.12	0.604	0.638
	LTE Band 25	20M	QPSK	1	0	Bottom Side	10mm	26340	1880	24.34	24.50	1.038	-0.11	0.614	0.637
	LTE Band 25	20M	QPSK	50	0	Bottom Side	10mm	26590	1905	24.33	24.50	1.040	-0.19	0.475	0.494
	LTE Band 26	15M	QPSK	1	74	Front	10mm	26865	831.5	23.88	25.00	1.294	-0.14	0.199	0.258
	LTE Band 26	15M	QPSK	36	39	Front	10mm	26865	831.5	23.89	25.00	1.291	0.15	0.171	0.221
	LTE Band 26	15M	QPSK	1	74	Back	10mm	26865	831.5	23.88	25.00	1.294	-0.07	0.239	0.309
	LTE Band 26	15M	QPSK	36	39	Back	10mm	26865	831.5	23.89	25.00	1.291	-0.15	0.213	0.275
34	LTE Band 26	15M	QPSK	1	74	Left Side	10mm	26865	831.5	23.88	25.00	1.294	-0.12	0.299	0.387
	LTE Band 26	15M	QPSK	36	39	Left Side	10mm	26865	831.5	23.89	25.00	1.291	0	0.223	0.288
	LTE Band 26	15M	QPSK	1	74	Right Side	10mm	26865	831.5	23.88	25.00	1.294	-0.11	0.191	0.247
	LTE Band 26	15M	QPSK	36	39	Right Side	10mm	26865	831.5	23.89	25.00	1.291	-0.06	0.163	0.210
	LTE Band 26	10M	QPSK	1	74	Bottom Side	10mm	26865	831.5	23.88	25.00	1.294	-0.14	0.031	0.040
	LTE Band 26	10M	QPSK	36	39	Bottom Side	10mm	26865	831.5	23.89	25.00	1.291	-0.1	0.026	0.034

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 93 of 109

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 30	10M	QPSK	1	25	Front	10mm	27710	2310	24.29	25.00	1.178	0.01	0.145	0.171
	LTE Band 30	10M	QPSK	25	0	Front	10mm	27710	2310	23.38	24.00	1.153	-0.09	0.115	0.133
	LTE Band 30	10M	QPSK	1	25	Back	10mm	27710	2310	24.29	25.00	1.178	-0.03	0.226	0.266
	LTE Band 30	10M	QPSK	25	0	Back	10mm	27710	2310	23.38	24.00	1.153	0.14	0.209	0.241
	LTE Band 30	10M	QPSK	1	25	Left Side	10mm	27710	2310	24.29	25.00	1.178	-0.14	0.128	0.151
	LTE Band 30	10M	QPSK	25	0	Left Side	10mm	27710	2310	23.38	24.00	1.153	0.08	0.108	0.125
	LTE Band 30	10M	QPSK	1	25	Right Side	10mm	27710	2310	24.29	25.00	1.178	-0.02	0.092	0.108
	LTE Band 30	10M	QPSK	25	0	Right Side	10mm	27710	2310	23.38	24.00	1.153	0.02	0.074	0.085
35	LTE Band 30	10M	QPSK	1	25	Bottom Side	10mm	27710	2310	24.29	25.00	1.178	-0.13	0.275	0.324
	LTE Band 30	10M	QPSK	25	0	Bottom Side	10mm	27710	2310	23.38	24.00	1.153	0.14	0.229	0.264
	LTE Band 66	20M	QPSK	1	0	Front	10mm	132322	1745	23.88	24.50	1.153	-0.08	0.226	0.261
	LTE Band 66	20M	QPSK	50	0	Front	10mm	132072	1720	22.84	23.50	1.164	-0.07	0.164	0.191
	LTE Band 66	20M	QPSK	1	0	Back	10mm	132322	1745	23.88	24.50	1.153	-0.13	0.416	0.480
	LTE Band 66	20M	QPSK	1	0	Back	10mm	132072	1720	23.87	24.50	1.156	-0.12	0.388	0.449
36	LTE Band 66	20M	QPSK	1	0	Back	10mm	132572	1770	23.75	24.50	1.189	-0.14	0.449	0.534
	LTE Band 66	20M	QPSK	50	0	Back	10mm	132072	1720	22.84	23.50	1.164	-0.06	0.316	0.368
	LTE Band 66	20M	QPSK	1	0	Left Side	10mm	132322	1745	23.88	24.50	1.153	0.01	0.191	0.220
	LTE Band 66	20M	QPSK	50	0	Left Side	10mm	132072	1720	22.84	23.50	1.164	-0.16	0.110	0.128
	LTE Band 66	20M	QPSK	1	0	Right Side	10mm	132322	1745	23.88	24.50	1.153	-0.07	0.220	0.254
	LTE Band 66	20M	QPSK	50	0	Right Side	10mm	132072	1720	22.84	23.50	1.164	-0.04	0.153	0.178
	LTE Band 66	20M	QPSK	1	0	Bottom Side	10mm	132322	1720	23.88	24.50	1.153	0.11	0.415	0.479
	LTE Band 66	20M	QPSK	50	0	Bottom Side	10mm	132072	1720	22.84	23.50	1.164	0.09	0.319	0.371

Report No. : FA740822

<TDD LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor		Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 41	20M	QPSK	1	0	Front	10mm	40620	2593	25.69	26.00	1.074	62.9	1.006	0.11	0.247	0.267
	LTE Band 41	20M	QPSK	50	0	Front	10mm	40620	2593	24.63	25.00	1.089	62.9	1.006	0.04	0.200	0.219
	LTE Band 41	20M	QPSK	1	0	Back	10mm	40620	2593	25.69	26.00	1.074	62.9	1.006	0.03	0.459	0.496
	LTE Band 41	20M	QPSK	1	0	Back	10mm	39750	2506	25.48	26.00	1.127	62.9	1.006	0.01	0.401	0.455
	LTE Band 41	20M	QPSK	1	0	Back	10mm	40185	2549.5	25.64	26.00	1.086	62.9	1.006	-0.03	0.406	0.444
37	LTE Band 41	20M	QPSK	1	0	Back	10mm	41055	2636.5	24.99	26.00	1.262	62.9	1.006	-0.01	0.548	0.696
	LTE Band 41	20M	QPSK	1	0	Back	10mm	41490	2680	24.26	26.00	1.493	62.9	1.006	0.04	0.449	0.674
	LTE Band 41	20M	QPSK	50	0	Back	10mm	40620	2593	24.63	25.00	1.089	62.9	1.006	0.01	0.371	0.406
	LTE Band 41	20M	QPSK	100	0	Back	10mm	40185	2549.5	24.58	25.00	1.102	62.9	1.006	0.02	0.316	0.350
	LTE Band 41	20M	QPSK	1	0	Left Side	10mm	40620	2593	25.69	26.00	1.074	62.9	1.006	0.15	0.185	0.200
	LTE Band 41	20M	QPSK	50	0	Left Side	10mm	40620	2593	24.63	25.00	1.089	62.9	1.006	0.15	0.145	0.159
	LTE Band 41	20M	QPSK	1	0	Right Side	10mm	40620	2593	25.69	26.00	1.074	62.9	1.006	0.05	0.075	0.081
	LTE Band 41	20M	QPSK	50	0	Right Side	10mm	40620	2593	24.63	25.00	1.089	62.9	1.006	0.03	0.061	0.067
	LTE Band 41	20M	QPSK	1	0	Bottom Side	10mm	40620	2593	25.69	26.00	1.074	62.9	1.006	-0.02	0.378	0.408
	LTE Band 41	20M	QPSK	50	0	Bottom Side	10mm	40620	2593	24.63	25.00	1.089	62.9	1.006	-0.06	0.294	0.322

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 94 of 109

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Drift	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WLAN2.4GHz	802.11b 1Mbps	Front	10mm	Ant 1	1	2412	14.45	14.50	1.012	100	1.000	-0.15	0.034	0.034
	WLAN2.4GHz	802.11b 1Mbps	Back	10mm	Ant 1	1	2412	14.45	14.50	1.012	100	1.000	0.11	0.071	0.072
	WLAN2.4GHz	802.11b 1Mbps	Left Side	10mm	Ant 1	1	2412	14.45	14.50	1.012	100	1.000	0.11	0.016	0.016
38	WLAN2.4GHz	802.11b 1Mbps	Top Side	10mm	Ant 1	1	2412	14.45	14.50	1.012	100	1.000	0.04	0.078	0.079
	WLAN2.4GHz	802.11b 1Mbps	Top Side	10mm	Ant 1	6	2437	14.44	14.50	1.014	100	1.000	0.19	0.070	0.071
	WLAN2.4GHz	802.11b 1Mbps	Top Side	10mm	Ant 1	11	2462	12.98	13.00	1.005	100	1.000	0.15	0.048	0.048
	WLAN2.4GHz	802.11b 1Mbps	Bottom Side	10mm	Ant 1	1	2412	14.45	14.50	1.012	100	1.000	0.06	0.001	0.001
	WLAN2.4GHz	802.11b 1Mbps	Front	10mm	Ant 2	1	2412	15.49	15.50	1.002	100	1.000	-0.19	0.013	0.013
	WLAN2.4GHz	802.11b 1Mbps	Back	10mm	Ant 2	1	2412	15.49	15.50	1.002	100	1.000	-0.16	0.026	0.026
	WLAN2.4GHz	802.11b 1Mbps	Left Side	10mm	Ant 2	1	2412	15.49	15.50	1.002	100	1.000	0.1	0.011	0.011
	WLAN2.4GHz	802.11b 1Mbps	Top Side	10mm	Ant 2	1	2412	15.49	15.50	1.002	100	1.000	0.14	0.001	0.001
	WLAN2.4GHz	802.11b 1Mbps	Bottom Side	10mm	Ant 2	1	2412	15.49	15.50	1.002	100	1.000	0.18	0.010	0.010
	WLAN5GHz	802.11n-HT40 MCS0	Front	10mm	Ant 1	38	5190	11.49	11.50	1.003	89.77	1.114	-0.19	0.005	0.006
39	WLAN5GHz	802.11n-HT40 MCS0	Back	10mm	Ant 1	38	5190	11.49	11.50	1.003	89.77	1.114	-0.14	0.016	0.018
	WLAN5GHz	802.11n-HT40 MCS0	Back	10mm	Ant 1	46	5230	11.38	11.50	1.028	89.77	1.114	0.16	0.014	0.016
	WLAN5GHz	802.11n-HT40 MCS0	Left Side	10mm	Ant 1	38	5190	11.49	11.50	1.003	89.77	1.114	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Right Side	10mm	Ant 1	38	5190	11.49	11.50	1.003	89.77	1.114	0.16	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Top Side	10mm	Ant 1	38	5190	11.49	11.50	1.003	89.77	1.114	0.05	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Bottom Side	10mm	Ant 1	38	5190	11.49	11.50	1.003	89.77	1.114	-0.19	0.008	0.009
	WLAN5GHz	802.11n-HT40 MCS0	Front	10mm	Ant 2	38	5200	9.49	10.50	1.261	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Back	10mm	Ant 2	38	5190	9.49	10.50	1.261	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Left Side	10mm	Ant 2	38	5190	9.49	10.50	1.261	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Right Side	10mm	Ant 2	38	5190	9.49	10.50	1.261	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Top Side	10mm	Ant 2	38	5190	9.49	10.50	1.261	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Bottom Side	10mm	Ant 2	38	5190	9.49	10.50	1.261	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Front	10mm	Ant 1	151	5755	11.48	11.50	1.005	89.77	1.114	-0.1	0.002	0.002
40	WLAN5GHz	802.11n-HT40 MCS0	Back	10mm	Ant 1	151	5755	11.48	11.50	1.005	89.77	1.114	-0.16	0.042	0.047
	WLAN5GHz	802.11n-HT40 MCS0	Back	10mm	Ant 1	159	5795	11.16	11.50	1.082	89.77	1.114	-0.11	0.035	0.042
	WLAN5GHz	802.11n-HT40 MCS0	Left Side	10mm	Ant 1	151	5755	11.48	11.50	1.005	89.77	1.114	-0.11	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Right Side	10mm	Ant 1	151	5755	11.48	11.50	1.005	89.77	1.114	0.19	0.042	0.047
	WLAN5GHz	802.11n-HT40 MCS0	Top Side	10mm	Ant 1	151	5755	11.48	11.50	1.005	89.77	1.114	-0.14	0.014	0.016
	WLAN5GHz	802.11n-HT40 MCS0	Bottom Side	10mm	Ant 1	151	5755	11.48	11.50	1.005	89.77	1.114	0.06	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Front	10mm	Ant 2	151	5755	9.46	10.50	1.270	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Back	10mm	Ant 2	151	5755	9.46	10.50	1.270	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Left Side	10mm	Ant 2	151	5755	9.46	10.50	1.270	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Right Side	10mm	Ant 2	151	5755	9.46	10.50	1.270	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Top Side	10mm	Ant 2	151	5755	9.46	10.50	1.270	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Bottom Side	10mm	Ant 2	151	5755	9.46	10.50	1.270	90.29	1.108	0	0.001	0.001

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 95 of 109

14.3 Body Worn Accessory SAR

<GSM SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	GSM850	GPRS (3 Tx slots)	Front	10mm	128	824.2	30.26	30.50	1.057	0.14	0.274	0.290
	GSM850	GPRS (3 Tx slots)	Back	10mm	128	824.2	30.26	30.50	1.057	-0.01	0.318	0.336
	GSM850	GPRS (3 Tx slots)	Back	10mm	189	836.4	30.16	30.50	1.081	0.03	0.321	0.347
41	GSM850	GPRS (3 Tx slots)	Back	10mm	251	848.8	30.03	30.50	1.114	0.02	0.316	0.352
	GSM1900	GPRS (3 Tx slots)	Front	10mm	512	1850.2	26.98	27.00	1.005	-0.11	0.137	0.138
	GSM1900	GPRS (3 Tx slots)	Back	10mm	512	1850.2	26.98	27.00	1.005	-0.07	0.288	0.289
	GSM1900	GPRS (3 Tx slots)	Back	10mm	661	1880	26.85	27.00	1.035	-0.09	0.344	0.356
42	GSM1900	GPRS (3 Tx slots)	Back	10mm	810	1909.8	26.83	27.00	1.040	-0.15	0.369	0.384

Report No.: FA740822

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WCDMA II	RMC 12.2Kbps	Front	10mm	9538	1907.6	24.91	25.00	1.021	-0.05	0.317	0.324
	WCDMA II	RMC 12.2Kbps	Back	10mm	9538	1907.6	24.91	25.00	1.021	-0.16	0.579	0.591
	WCDMA II	RMC 12.2Kbps	Back	10mm	9262	1852.4	24.74	25.00	1.062	0.07	0.522	0.554
43	WCDMA II	RMC 12.2Kbps	Back	10mm	9400	1880	24.90	25.00	1.023	-0.07	0.597	0.611
	WCDMA IV	RMC 12.2Kbps	Front	10mm	1312	1712.4	24.66	25.00	1.081	-0.15	0.119	0.129
	WCDMA IV	RMC 12.2Kbps	Back	10mm	1312	1712.4	24.66	25.00	1.081	-0.13	0.203	0.220
44	WCDMA IV	RMC 12.2Kbps	Back	10mm	1413	1732.6	24.59	25.00	1.099	-0.18	0.500	0.550
	WCDMA IV	RMC 12.2Kbps	Back	10mm	1513	1752.6	24.62	25.00	1.091	0.1	0.225	0.246
	WCDMA V	RMC 12.2Kbps	Front	10mm	4233	846.6	24.42	25.00	1.143	-0.02	0.238	0.272
	WCDMA V	RMC 12.2Kbps	Back	10mm	4233	846.6	24.42	25.00	1.143	-0.03	0.302	0.345
45	WCDMA V	RMC 12.2Kbps	Back	10mm	4132	826.4	24.31	25.00	1.172	-0.04	0.342	0.401
	WCDMA V	RMC 12.2Kbps	Back	10mm	4182	836.4	24.41	25.00	1.146	-0.04	0.297	0.340

<CDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	CDMA BC0	1xRTT RC3 SO32	Front	10mm	384	836.52	24.85	25.00	1.035	-0.09	0.160	0.166
	CDMA BC0	1xRTT RC3 SO32	Back	10mm	384	836.52	24.85	25.00	1.035	0.01	0.209	0.216
46	CDMA BC0	1xRTT RC3 SO32	Back	10mm	1013	824.7	24.75	25.00	1.059	-0.11	0.229	0.243
	CDMA BC0	1xRTT RC3 SO32	Back	10mm	777	848.31	24.54	25.00	1.112	-0.12	0.182	0.202
	CDMA BC1	1xRTT RC3 SO32	Front	10mm	600	1880	24.65	25.00	1.084	0.08	0.250	0.271
	CDMA BC1	1xRTT RC3 SO32	Back	10mm	600	1880	24.65	25.00	1.084	0.17	0.433	0.469
	CDMA BC1	1xRTT RC3 SO32	Back	10mm	25	1851.25	24.65	25.00	1.084	-0.11	0.316	0.343
47	CDMA BC1	1xRTT RC3 SO32	Back	10mm	1175	1908.75	24.52	25.00	1.117	-0.09	0.544	0.608
	CDMA BC10	1xRTT RC3 SO32	Front	10mm	580	820.5	24.57	25.00	1.104	-0.06	0.184	0.203
48	CDMA BC10	1xRTT RC3 SO32	Back	10mm	580	820.5	24.57	25.00	1.104	-0.04	0.246	0.272

SPORTON INTERNATIONAL INC.

FCC ID : 2ALBB-A11 Page 96 of 109 Form version. : 170509

<FDD LTE SAR>

							_		_	Average	Tune-Up	Tune-up	Power	Measured	Reported
Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Power	Limit	Scaling	Drift	1g SAR	1g SAR
140.		` ,		3126	Oliset	FOSILIOII	(111111)		(1411 12)	(dBm)	(dBm)	Factor	(dB)	(W/kg)	(W/kg)
	LTE Band 7	20M	QPSK	1	0	Front	10mm	21100	2535	24.33	25.00	1.167	0.01	0.263	0.307
	LTE Band 7	20M	QPSK	50	0	Front	10mm	21100	2535	23.31	24.00	1.172	0.16	0.200	0.234
	LTE Band 7	20M	QPSK	1	0	Back	10mm	21100	2535	24.33	25.00	1.167	0.11	0.502	0.586
49	LTE Band 7	20M	QPSK	1	0	Back	10mm	20850	2510	24.23	25.00	1.194	-0.04	0.640	0.764
	LTE Band 7	20M	QPSK	1	0	Back	10mm	21350	2560	24.18	25.00	1.208	0.07	0.561	0.678
	LTE Band 7	20M	QPSK	50	0	Back	10mm	21100	2535	23.31	24.00	1.172	0.02	0.390	0.457
	LTE Band 12	10M	QPSK	1	49	Front	10mm	23095	707.5	24.23	25.00	1.194	-0.05	0.157	0.187
	LTE Band 12	10M	QPSK	25	25	Front	10mm	23095	707.5	23.22	24.00	1.197	-0.02	0.135	0.162
50	LTE Band 12	10M	QPSK	1	49	Back	10mm	23095	707.5	24.23	25.00	1.194	0.02	0.228	0.272
	LTE Band 12	10M	QPSK	25	25	Back	10mm	23095	707.5	23.22	24.00	1.197	-0.02	0.176	0.211
	LTE Band 13	10M	QPSK	1	25	Front	10mm	23230	782	24.26	25.00	1.186	0	0.226	0.268
	LTE Band 13	10M	QPSK	25	12	Front	10mm	23230	782	23.33	24.00	1.167	0.01	0.180	0.210
51	LTE Band 13	10M	QPSK	1	25	Back	10mm	23230	782	24.26	25.00	1.186	-0.09	0.290	0.344
	LTE Band 13	10M	QPSK	25	12	Back	10mm	23230	782	23.33	24.00	1.167	-0.03	0.231	0.270
	LTE Band 25	20M	QPSK	1	0	Front	10mm	26590	1905	24.48	24.50	1.005	-0.04	0.319	0.320
	LTE Band 25	20M	QPSK	50	0	Front	10mm	26590	1905	24.33	24.50	1.040	0	0.242	0.252
52	LTE Band 25	20M	QPSK	1	0	Back	10mm	26590	1905	24.48	24.50	1.005	-0.13	0.584	0.587
	LTE Band 25	20M	QPSK	1	0	Back	10mm	26140	1860	24.26	24.50	1.057	-0.14	0.522	0.552
	LTE Band 25	20M	QPSK	1	0	Back	10mm	26340	1880	24.34	24.50	1.038	-0.1	0.563	0.584
	LTE Band 25	20M	QPSK	50	0	Back	10mm	26590	1905	24.33	24.50	1.040	-0.13	0.449	0.467
	LTE Band 26	15M	QPSK	1	74	Front	10mm	26865	831.5	23.88	25.00	1.294	-0.14	0.199	0.258
	LTE Band 26	15M	QPSK	36	39	Front	10mm	26865	831.5	23.89	25.00	1.291	0.15	0.171	0.221
53	LTE Band 26	15M	QPSK	1	74	Back	10mm	26865	831.5	23.88	25.00	1.294	-0.07	0.239	0.309
	LTE Band 26	15M	QPSK	36	39	Back	10mm	26865	831.5	23.89	25.00	1.291	-0.15	0.213	0.275
	LTE Band 30	10M	QPSK	1	25	Front	10mm	27710	2310	24.29	25.00	1.178	0.01	0.145	0.171
	LTE Band 30	10M	QPSK	25	0	Front	10mm	27710	2310	23.38	24.00	1.153	-0.09	0.115	0.133
54	LTE Band 30	10M	QPSK	1	25	Back	10mm	27710	2310	24.29	25.00	1.178	-0.03	0.226	0.266
	LTE Band 30	10M	QPSK	25	0	Back	10mm	27710	2310	23.38	24.00	1.153	0.14	0.209	0.241
	LTE Band 66	20M	QPSK	1	0	Front	10mm	132322	1745	23.88	24.50	1.153	-0.08	0.226	0.261
İ	LTE Band 66	20M	QPSK	50	0	Front	10mm	132072	1720	22.84	23.50	1.164	-0.07	0.164	0.191
İ	LTE Band 66	20M	QPSK	1	0	Back	10mm	132322	1745	23.88	24.50	1.153	-0.13	0.416	0.480
	LTE Band 66	20M	QPSK	1	0	Back	10mm	132072	1720	23.87	24.50	1.156	-0.12	0.388	0.449
55	LTE Band 66	20M	QPSK	1	0	Back	10mm	132572	1770	23.75	24.50	1.189	-0.14	0.449	0.534
	LTE Band 66	20M	QPSK	50	0	Back	10mm	132072	1720	22.84	23.50	1.164	-0.06	0.316	0.368

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 97 of 109

<TDD LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Cycle %	Duty Cycle Scaling Factor	Drift	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 41	20M	QPSK	1	0	Front	10mm	40620	2593	25.69	26.00	1.074	62.9	1.006	0.11	0.247	0.267
	LTE Band 41	20M	QPSK	50	0	Front	10mm	40620	2593	24.63	25.00	1.089	62.9	1.006	0.04	0.200	0.219
	LTE Band 41	20M	QPSK	1	0	Back	10mm	40620	2593	25.69	26.00	1.074	62.9	1.006	0.03	0.459	0.496
	LTE Band 41	20M	QPSK	1	0	Back	10mm	39750	2506	25.48	26.00	1.127	62.9	1.006	0.01	0.401	0.455
	LTE Band 41	20M	QPSK	1	0	Back	10mm	40185	2549.5	25.64	26.00	1.086	62.9	1.006	-0.03	0.406	0.444
56	LTE Band 41	20M	QPSK	1	0	Back	10mm	41055	2636.5	24.99	26.00	1.262	62.9	1.006	-0.01	0.548	0.696
	LTE Band 41	20M	QPSK	1	0	Back	10mm	41490	2680	24.26	26.00	1.493	62.9	1.006	0.04	0.449	0.674
	LTE Band 41	20M	QPSK	50	0	Back	10mm	40620	2593	24.63	25.00	1.089	62.9	1.006	0.01	0.371	0.406
	LTE Band 41	20M	QPSK	100	0	Back	10mm	40185	2549.5	24.58	25.00	1.102	62.9	1.006	0.02	0.316	0.350

Report No. : FA740822

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WLAN2.4GHz	802.11b 1Mbps	Front	10mm	Ant 1	1	2412	14.45	14.50	1.012	100	1.000	-0.15	0.034	0.034
57	WLAN2.4GHz	802.11b 1Mbps	Back	10mm	Ant 1	1	2412	14.45	14.50	1.012	100	1.000	0.11	0.071	0.072
	WLAN2.4GHz	802.11b 1Mbps	Back	10mm	Ant 1	6	2437	14.44	14.50	1.014	100	1.000	-0.18	0.062	0.063
	WLAN2.4GHz	802.11b 1Mbps	Back	10mm	Ant 1	11	2462	12.98	13.00	1.005	100	1.000	-0.11	0.035	0.035
	WLAN2.4GHz	802.11b 1Mbps	Front	10mm	Ant 2	1	2412	15.49	15.50	1.002	100	1.000	-0.19	0.013	0.013
	WLAN2.4GHz	802.11b 1Mbps	Back	10mm	Ant 2	1	2412	15.49	15.50	1.002	100	1.000	-0.16	0.026	0.026
	WLAN5GHz	802.11n-HT40 MCS0	Front	10mm	Ant 1	62	5310	11.44	11.50	1.014	89.77	1.114	-0.13	0.006	0.007
58	WLAN5GHz	802.11n-HT40 MCS0	Back	10mm	Ant 1	62	5310	11.44	11.50	1.014	89.77	1.114	-0.06	0.017	0.019
	WLAN5GHz	802.11n-HT40 MCS0	Back	10mm	Ant 1	54	5270	11.42	11.50	1.019	89.77	1.114	0.16	0.015	0.017
	WLAN5GHz	802.11n-HT40 MCS0	Front	10mm	Ant 2	62	5310	9.43	10.50	1.278	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Back	10mm	Ant 2	62	5310	9.43	10.50	1.278	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Front	10mm	Ant 1	102	5510	11.48	11.50	1.005	89.77	1.114	0.17	0.005	0.006
59	WLAN5GHz	802.11n-HT40 MCS0	Back	10mm	Ant 1	102	5510	11.48	11.50	1.005	89.77	1.114	0.15	0.046	0.051
	WLAN5GHz	802.11n-HT40 MCS0	Back	10mm	Ant 1	110	5550	11.47	11.50	1.007	89.77	1.114	-0.09	0.037	0.042
	WLAN5GHz	802.11n-HT40 MCS0	Back	10mm	Ant 1	134	5670	11.47	11.50	1.007	89.77	1.114	0.1	0.037	0.042
	WLAN5GHz	802.11n-HT40 MCS0	Front	10mm	Ant 2	102	5510	9.41	10.50	1.284	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Back	10mm	Ant 2	102	5510	9.41	10.50	1.284	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Front	10mm	Ant 1	151	5755	11.48	11.50	1.005	89.77	1.114	-0.1	0.002	0.002
60	WLAN5GHz	802.11n-HT40 MCS0	Back	10mm	Ant 1	151	5755	11.48	11.50	1.005	89.77	1.114	-0.16	0.042	0.047
	WLAN5GHz	802.11n-HT40 MCS0	Back	10mm	Ant 1	159	5795	11.16	11.50	1.082	89.77	1.114	-0.11	0.035	0.042
	WLAN5GHz	802.11n-HT40 MCS0	Front	10mm	Ant 2	151	5755	9.46	10.50	1.270	90.29	1.108	0	0.001	0.001
	WLAN5GHz	802.11n-HT40 MCS0	Back	10mm	Ant 2	151	5755	9.46	10.50	1.270	90.29	1.108	0	0.001	0.001

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 98 of 109

15. Simultaneous Transmission Analysis

N.O.	0: 1: 0 5 1:		Portable Handset	t
NO.	Simultaneous Transmission Configurations	Head	Body-worn	Hotspot
1.	GSM Voice + WLAN2.4GHz	Yes	Yes	
2.	GPRS/EDGE + WLAN2.4GHz	Yes	Yes	Yes
3.	WCDMA + WLAN2.4GHz	Yes	Yes	Yes
4.	LTE + WLAN2.4GHz	Yes	Yes	Yes
5.	GSM Voice + Bluetooth	Yes	Yes	
6.	GPRS/EDGE + Bluetooth	Yes	Yes	Yes
7.	WCDMA+ Bluetooth	Yes	Yes	Yes
8.	LTE + Bluetooth	Yes	Yes	Yes
9.	GSM Voice + WLAN5GHz	Yes	Yes	
10.	GPRS/EDGE + WLAN5GHz	Yes	Yes	Yes
11.	WCDMA + WLAN5GHz	Yes	Yes	Yes
12.	LTE + WLAN5GHz	Yes	Yes	Yes
13.	GSM Voice + WLAN2.4GHz Ant 2 + Bluetooth Ant 1	Yes	Yes	
14.	GPRS/EDGE + + WLAN2.4GHz Ant 2 + Bluetooth Ant 1	Yes	Yes	Yes
15.	WCDMA + WLAN2.4GHz Ant 2 + Bluetooth Ant 1	Yes	Yes	Yes
16.	LTE + WLAN2.4GHz Ant 2 + Bluetooth Ant 1	Yes	Yes	Yes
17.	GSM Voice + WLAN5GHz Ant 2 + Bluetooth Ant 1	Yes	Yes	
18.	GPRS/EDGE + + WLAN5GHz Ant 2 + Bluetooth Ant 1	Yes	Yes	Yes
19.	WCDMA + WLAN5GHz Ant 2 + Bluetooth Ant 1	Yes	Yes	Yes
20.	LTE + WLAN5GHz Ant 2 + Bluetooth Ant 1	Yes	Yes	Yes

Report No.: FA740822

General Note:

- 1. This device supported VoIP in EGPRS, WCDMA, LTE (e.g. 3rd party VoIP).
- 2. This device WLAN 2.4GHz / 5.2GHz / 5.8GHz supports Hotspot operation and Bluetooth support tethering applications.
- 3. The worst case WLAN reported SAR for each configuration was used for SAR summation. Therefore, the following summations represent the absolute worst cases for simultaneous transmission with 5 GHz WLAN.
- 4. WLAN and Bluetooth share the same antenna 1, and cannot transmit simultaneously.
- 5. EUT will choose either WLAN 2.4GHz or WLAN 5GHz according to the network signal condition; therefore, 2.4GHz WLAN and 5GHz WLAN will not operate simultaneously at any moment.
- 6. The Scaled SAR summation is calculated based on the same configuration and test position.
- 7. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if,
 - i) Scalar SAR summation < 1.6W/kg.
 - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
 - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary.
 - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg.
- For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v06 based on the formula below.
 - i) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
 - ii) When the minimum separation distance is < 5mm, the distance is used 5mm to determine SAR test exclusion.
 - iii) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

Bluetooth	Exposure Position	Hotspot	Body worn
Max Power	Test separation	10 mm	10 mm
8.0 dBm	Estimated SAR (W/kg)	0.126 W/kg	0.126 W/kg

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 26, 2017

FCC ID : 2ALBB-A11 Page 99 of 109 Form version. : 170509

15.1 Head Exposure Conditions

			1	2	3	4	5	6				
WWAI	N Band	Exposure Position	WWAN 1g SAR	2.4GHz WLAN Ant 1 1g SAR	2.4GHz WLAN Ant 2 1g SAR	5GHz WLAN Ant 1 1g SAR	5GHz WLAN Ant 2 1g SAR	Bluetooth Ant 1	1+2+3 Summed 1g SAR (W/kg)	1+3+6 Summed 1g SAR (W/kg)	1+4+5 Summed 1g SAR (W/kg)	1+5+6 Summed 1g SAR (W/kg)
			(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	`	` "	` "	` "
		Right Cheek	0.183	0.135	0.001	0.029	0.001	0.042	0.319	0.226	0.213	0.226
	GSM850	Right Tilted	0.130	0.118	0.001	0.041	0.001	0.050	0.249	0.181	0.172	0.181
	COMOSO	Left Cheek	0.273	0.114	0.003	0.077	0.001	0.039	0.390	0.315	0.351	0.313
GSM		Left Tilted	0.129	0.140	0.001	0.106	0.001	0.051	0.270	0.181	0.236	0.181
GOW		Right Cheek	0.140	0.135	0.001	0.029	0.001	0.042	0.276	0.183	0.170	0.183
	GSM1900	Right Tilted	0.071	0.118	0.001	0.041	0.001	0.050	0.190	0.122	0.113	0.122
	G5W1300	Left Cheek	0.078	0.114	0.003	0.077	0.001	0.039	0.195	0.120	0.156	0.118
		Left Tilted	0.052	0.140	0.001	0.106	0.001	0.051	0.193	0.104	0.159	0.104
		Right Cheek	0.248	0.135	0.001	0.029	0.001	0.042	0.384	0.291	0.278	0.291
	WCDMA II	Right Tilted	0.133	0.118	0.001	0.041	0.001	0.050	0.252	0.184	0.175	0.184
	WCDIVIA II	Left Cheek	0.152	0.114	0.003	0.077	0.001	0.039	0.269	0.194	0.230	0.192
		Left Tilted	0.106	0.140	0.001	0.106	0.001	0.051	0.247	0.158	0.213	0.158
		Right Cheek	0.079	0.135	0.001	0.029	0.001	0.042	0.215	0.122	0.109	0.122
WCDMA	WCDMA IV	Right Tilted	0.053	0.118	0.001	0.041	0.001	0.050	0.172	0.104	0.095	0.104
VVCDIVIA	WCDIVIA IV	Left Cheek	0.162	0.114	0.003	0.077	0.001	0.039	0.279	0.204	0.240	0.202
		Left Tilted	0.052	0.140	0.001	0.106	0.001	0.051	0.193	0.104	0.159	0.104
		Right Cheek	0.174	0.135	0.001	0.029	0.001	0.042	0.310	0.217	0.204	0.217
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Right Tilted	0.119	0.118	0.001	0.041	0.001	0.050	0.238	0.170	0.161	0.170
	WCDMA V	Left Cheek	0.218	0.114	0.003	0.077	0.001	0.039	0.335	0.260	0.296	0.258
		Left Tilted	0.147	0.140	0.001	0.106	0.001	0.051	0.288	0.199	0.254	0.199
		Right Cheek	0.106	0.135	0.001	0.029	0.001	0.042	0.242	0.149	0.136	0.149
	ODMA BOO	Right Tilted	0.074	0.118	0.001	0.041	0.001	0.050	0.193	0.125	0.116	0.125
	CDMA BC0	Left Cheek	0.137	0.114	0.003	0.077	0.001	0.039	0.254	0.179	0.215	0.177
		Left Tilted	0.093	0.140	0.001	0.106	0.001	0.051	0.234	0.145	0.200	0.145
		Right Cheek	0.280	0.135	0.001	0.029	0.001	0.042	0.416	0.323	0.310	0.323
CDMA	ODMA DOL	Right Tilted	0.112	0.118	0.001	0.041	0.001	0.050	0.231	0.163	0.154	0.163
CDMA	CDMA BC1	Left Cheek	0.114	0.114	0.003	0.077	0.001	0.039	0.231	0.156	0.192	0.154
		Left Tilted	0.082	0.140	0.001	0.106	0.001	0.051	0.223	0.134	0.189	0.134
		Right Cheek	0.129	0.135	0.001	0.029	0.001	0.042	0.265	0.172	0.159	0.172
	CDMA	Right Tilted	0.096	0.118	0.001	0.041	0.001	0.050	0.215	0.147	0.138	0.147
	BC10	Left Cheek	0.149	0.114	0.003	0.077	0.001	0.039	0.266	0.191	0.227	0.189
		Left Tilted	0.109	0.140	0.001	0.106	0.001	0.051	0.250	0.161	0.216	0.161

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 100 of 109

			1	2	3	4	5	6				
WWA	N Band	Exposure Position	WWAN	2.4GHz WLAN Ant 1	2.4GHz WLAN Ant 2	5GHz WLAN Ant 1	5GHz WLAN Ant 2	Bluetooth Ant 1	1+2+3 Summed 1g SAR (W/kg)	1+3+6 Summed 1g SAR (W/kg)	1+4+5 Summed 1g SAR (W/kg)	1+5+6 Summed 1g SAR (W/kg)
			1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	(VV/Kg)	(VV/Kg)	(VV/Ng)	(W/Kg)
		Right Cheek	0.141	0.135	0.001	0.029	0.001	0.042	0.277	0.184	0.171	0.184
	LTE Band 7	Right Tilted	0.033	0.118	0.001	0.041	0.001	0.050	0.152	0.084	0.075	0.084
	LIE Band /	Left Cheek	0.089	0.114	0.003	0.077	0.001	0.039	0.206	0.131	0.167	0.129
		Left Tilted	0.056	0.140	0.001	0.106	0.001	0.051	0.197	0.108	0.163	0.108
		Right Cheek	0.155	0.135	0.001	0.029	0.001	0.042	0.291	0.198	0.185	0.198
	LTE Band	Right Tilted	0.106	0.118	0.001	0.041	0.001	0.050	0.225	0.157	0.148	0.157
	12	Left Cheek	0.171	0.114	0.003	0.077	0.001	0.039	0.288	0.213	0.249	0.211
		Left Tilted	0.082	0.140	0.001	0.106	0.001	0.051	0.223	0.134	0.189	0.134
		Right Cheek	0.164	0.135	0.001	0.029	0.001	0.042	0.300	0.207	0.194	0.207
	LTE Band	Right Tilted	0.133	0.118	0.001	0.041	0.001	0.050	0.252	0.184	0.175	0.184
	13	Left Cheek	0.186	0.114	0.003	0.077	0.001	0.039	0.303	0.228	0.264	0.226
		Left Tilted	0.113	0.140	0.001	0.106	0.001	0.051	0.254	0.165	0.220	0.165
		Right Cheek	0.201	0.135	0.001	0.029	0.001	0.042	0.337	0.244	0.231	0.244
	LTE Band	Right Tilted	0.103	0.118	0.001	0.041	0.001	0.050	0.222	0.154	0.145	0.154
	25	Left Cheek	0.139	0.114	0.003	0.077	0.001	0.039	0.256	0.181	0.217	0.179
LTE		Left Tilted	0.113	0.140	0.001	0.106	0.001	0.051	0.254	0.165	0.220	0.165
LIE		Right Cheek	0.192	0.135	0.001	0.029	0.001	0.042	0.328	0.235	0.222	0.235
	LTE Band	Right Tilted	0.115	0.118	0.001	0.041	0.001	0.050	0.234	0.166	0.157	0.166
	26	Left Cheek	0.221	0.114	0.003	0.077	0.001	0.039	0.338	0.263	0.299	0.261
		Left Tilted	0.137	0.140	0.001	0.106	0.001	0.051	0.278	0.189	0.244	0.189
		Right Cheek	0.078	0.135	0.001	0.029	0.001	0.042	0.214	0.121	0.108	0.121
	LTE Band	Right Tilted	0.080	0.118	0.001	0.041	0.001	0.050	0.199	0.131	0.122	0.131
	30	Left Cheek	0.098	0.114	0.003	0.077	0.001	0.039	0.215	0.140	0.176	0.138
		Left Tilted	0.060	0.140	0.001	0.106	0.001	0.051	0.201	0.112	0.167	0.112
		Right Cheek	0.206	0.135	0.001	0.029	0.001	0.042	0.342	0.249	0.236	0.249
	LTE Band	Right Tilted	0.038	0.118	0.001	0.041	0.001	0.050	0.157	0.089	0.080	0.089
	41	Left Cheek	0.081	0.114	0.003	0.077	0.001	0.039	0.198	0.123	0.159	0.121
		Left Tilted	0.066	0.140	0.001	0.106	0.001	0.051	0.207	0.118	0.173	0.118
		Right Cheek	0.217	0.135	0.001	0.029	0.001	0.042	0.353	0.260	0.247	0.260
	LTE Band	Right Tilted	0.135	0.118	0.001	0.041	0.001	0.050	0.254	0.186	0.177	0.186
	66	Left Cheek	0.158	0.114	0.003	0.077	0.001	0.039	0.275	0.200	0.236	0.198
		Left Tilted	0.140	0.140	0.001	0.106	0.001	0.051	0.281	0.192	0.247	0.192

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 101 of 109

15.2 Hotspot Exposure Conditions

WWAN Band			1	2	3	4	5	6				
		Exposure Position	WWAN	2.4GHz WLAN Ant 1	2.4GHz WLAN Ant 2	5GHz WLAN Ant 1	5GHz WLAN Ant 2	Bluetooth Ant 1	1+2+3 Summed 1g SAR	Summed Summed 1g SAR 1g SAR	1+3+4 Summed 1g SAR	1+2+5 Summed 1g SAR
			1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	Estimated 1g SAR (W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
		Front	0.290	0.034	0.013	0.006	0.001	0.126	0.337	0.429	0.297	0.417
		Back	0.352	0.072	0.026	0.047	0.001	0.126	0.450	0.504	0.400	0.479
	GSM850	Left side	0.324	0.016	0.011	0.001	0.001	0.126	0.351	0.461	0.326	0.451
	G31V1030	Right side	0.213			0.047	0.001	0.126	0.213	0.339	0.261	0.340
		Top side		0.079	0.001	0.016	0.001	0.126	0.080	0.127	0.017	0.127
GSM		Bottom side	0.038	0.001	0.010	0.009	0.001	0.126	0.049	0.174	0.048	0.165
GSIVI		Front	0.138	0.034	0.013	0.006	0.001	0.126	0.185	0.277	0.145	0.265
		Back	0.289	0.072	0.026	0.047	0.001	0.126	0.387	0.441	0.337	0.416
	GSM1900	Left side	0.054	0.016	0.011	0.001	0.001	0.126	0.081	0.191	0.056	0.181
	G2M1900	Right side	0.164			0.047	0.001	0.126	0.164	0.290	0.212	0.291
		Top side		0.079	0.001	0.016	0.001	0.126	0.080	0.127	0.017	0.127
		Bottom side	0.403	0.001	0.010	0.009	0.001	0.126	0.414	0.539	0.413	0.530
	WCDMA II	Front	0.324	0.034	0.013	0.006	0.001	0.126	0.371	0.463	0.331	0.451
		Back	0.591	0.072	0.026	0.047	0.001	0.126	0.689	0.743	0.639	0.718
		Left side	0.230	0.016	0.011	0.001	0.001	0.126	0.257	0.367	0.232	0.357
	WCDIVIA II	Right side	0.389			0.047	0.001	0.126	0.389	0.515	0.437	0.516
		Top side		0.079	0.001	0.016	0.001	0.126	0.080	0.127	0.017	0.127
		Bottom side	0.626	0.001	0.010	0.009	0.001	0.126	0.637	0.762	0.636	0.753
		Front	0.129	0.034	0.013	0.006	0.001	0.126	0.176	0.268	0.136	0.256
		Back	0.220	0.072	0.026	0.047	0.001	0.126	0.318	0.372	0.268	0.347
MCDMA	MCDMA IV	Left side	0.095	0.016	0.011	0.001	0.001	0.126	0.122	0.232	0.097	0.222
WCDMA	WCDMA IV	Right side	0.120			0.047	0.001	0.126	0.120	0.246	0.168	0.247
		Top side		0.079	0.001	0.016	0.001	0.126	0.080	0.127	0.017	0.127
		Bottom side	0.558	0.001	0.010	0.009	0.001	0.126	0.569	0.694	0.568	0.685
		Front	0.272	0.034	0.013	0.006	0.001	0.126	0.319	0.411	0.279	0.399
		Back	0.345	0.072	0.026	0.047	0.001	0.126	0.443	0.497	0.393	0.472
	MODMAN.	Left side	0.467	0.016	0.011	0.001	0.001	0.126	0.494	0.604	0.469	0.594
	WCDMA V	Right side	0.278			0.047	0.001	0.126	0.278	0.404	0.326	0.405
		Top side		0.079	0.001	0.016	0.001	0.126	0.080	0.127	0.017	0.127
		Bottom side	0.042	0.001	0.010	0.009	0.001	0.126	0.053	0.178	0.052	0.169

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 102 of 109

			1	2	3	4	5	6				
WWA	N Band	Exposure Position	WWAN	2.4GHz WLAN Ant 1	2.4GHz WLAN Ant 2	5GHz WLAN Ant 1	5GHz WLAN Ant 2	Bluetooth Ant 1	1+2+3 Summed 1g SAR	1+3+6 Summed 1g SAR	1+3+4 Summed 1g SAR	1+2+5 Summed 1g SAR
			1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	Estimated 1g SAR (W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
		Front	0.160	0.034	0.013	0.006	0.001	0.126	0.207	0.299	0.167	0.287
		Back	0.211	0.072	0.026	0.047	0.001	0.126	0.309	0.363	0.259	0.338
	CDMA BC0	Left side	0.377	0.016	0.011	0.001	0.001	0.126	0.404	0.514	0.379	0.504
		Right side	0.177			0.047	0.001	0.126	0.177	0.303	0.225	0.304
		Top side		0.079	0.001	0.016	0.001	0.126	0.080	0.127	0.017	0.127
		Bottom side	0.075	0.001	0.010	0.009	0.001	0.126	0.086	0.211	0.085	0.202
		Front	0.198	0.034	0.013	0.006	0.001	0.126	0.245	0.337	0.205	0.325
		Back	0.388	0.072	0.026	0.047	0.001	0.126	0.486	0.540	0.436	0.515
CDMA	CDMA BC1	Left side	0.078	0.016	0.011	0.001	0.001	0.126	0.105	0.215	0.080	0.205
		Right side	0.275			0.047	0.001	0.126	0.275	0.401	0.323	0.402
		Top side		0.079	0.001	0.016	0.001	0.126	0.080	0.127	0.017	0.127
		Bottom side	0.562	0.001	0.010	0.009	0.001	0.126	0.573	0.698	0.572	0.689
		Front	0.206	0.034	0.013	0.006	0.001	0.126	0.253	0.345	0.213	0.333
	CDMA BC10	Back	0.276	0.072	0.026	0.047	0.001	0.126	0.374	0.428	0.324	0.403
		Left side	0.424	0.016	0.011	0.001	0.001	0.126	0.451	0.561	0.426	0.551
		Right side	0.240			0.047	0.001	0.126	0.240	0.366	0.288	0.367
		Top side		0.079	0.001	0.016	0.001	0.126	0.080	0.127	0.017	0.127
		Bottom side	0.083	0.001	0.010	0.009	0.001	0.126	0.094	0.219	0.093	0.210
	LTE Band 7	Front	0.307	0.034	0.013	0.006	0.001	0.126	0.354	0.446	0.314	0.434
		Back	0.586	0.072	0.026	0.047	0.001	0.126	0.684	0.738	0.634	0.713
		Left side	0.285	0.016	0.011	0.001	0.001	0.126	0.312	0.422	0.287	0.412
		Right side	0.042			0.047	0.001	0.126	0.042	0.168	0.090	0.169
		Top side		0.079	0.001	0.016	0.001	0.126	0.080	0.127	0.017	0.127
		Bottom side	0.634	0.001	0.010	0.009	0.001	0.126	0.645	0.770	0.644	0.761
		Front	0.187	0.034	0.013	0.006	0.001	0.126	0.234	0.326	0.194	0.314
		Back	0.272	0.072	0.026	0.047	0.001	0.126	0.370	0.424	0.320	0.399
	LTE Band	Left side	0.229	0.016	0.011	0.001	0.001	0.126	0.256	0.366	0.231	0.356
	12	Right side	0.162			0.047	0.001	0.126	0.162	0.288	0.210	0.289
		Top side		0.079	0.001	0.016	0.001	0.126	0.080	0.127	0.017	0.127
LTE		Bottom side	0.048	0.001	0.010	0.009	0.001	0.126	0.059	0.184	0.058	0.175
		Front	0.268	0.034	0.013	0.006	0.001	0.126	0.315	0.407	0.275	0.395
		Back	0.344	0.072	0.026	0.047	0.001	0.126	0.442	0.496	0.392	0.471
	LTE Band	Left side	0.406	0.016	0.011	0.001	0.001	0.126	0.433	0.543	0.408	0.533
	13	Right side	0.243			0.047	0.001	0.126	0.243	0.369	0.291	0.370
		Top side		0.079	0.001	0.016	0.001	0.126	0.080	0.127	0.017	0.127
		Bottom side	0.059	0.001	0.010	0.009	0.001	0.126	0.070	0.195	0.069	0.186
		Front	0.320	0.034	0.013	0.006	0.001	0.126	0.367	0.459	0.327	0.447
		Back	0.587	0.072	0.026	0.047	0.001	0.126	0.685	0.739	0.635	0.714
	LTE Band	Left side	0.139	0.016	0.011	0.001	0.001	0.126	0.166	0.276	0.141	0.266
	25	Right side	0.331			0.047	0.001	0.126	0.331	0.457	0.379	0.458
		Top side		0.079	0.001	0.016	0.001	0.126	0.080	0.127	0.017	0.127
		Bottom side	0.638	0.001	0.010	0.009	0.001	0.126	0.649	0.774	0.648	0.765

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11

			1	2	3	4	5	6				
1AWW	N Band	Exposure Position	WWAN	2.4GHz WLAN Ant 1	2.4GHz WLAN Ant 2	5GHz WLAN Ant 1	5GHz WLAN Ant 2	Bluetooth Ant 1	1+2+3 Summed 1g SAR	1+3+6 Summed 1g SAR	1+3+4 Summed 1g SAR	1+2+5 Summed 1g SAR
			1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	Estimated 1g SAR (W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
		Front	0.258	0.034	0.013	0.006	0.001	0.126	0.305	0.397	0.265	0.385
		Back	0.309	0.072	0.026	0.047	0.001	0.126	0.407	0.461	0.357	0.436
	LTE Band	Left side	0.387	0.016	0.011	0.001	0.001	0.126	0.414	0.524	0.389	0.514
	26	Right side	0.247			0.047	0.001	0.126	0.247	0.373	0.295	0.374
		Top side		0.079	0.001	0.016	0.001	0.126	0.080	0.127	0.017	0.127
		Bottom side	0.040	0.001	0.010	0.009	0.001	0.126	0.051	0.176	0.050	0.167
		Front	0.171	0.034	0.013	0.006	0.001	0.126	0.218	0.310	0.178	0.298
		Back	0.266	0.072	0.026	0.047	0.001	0.126	0.364	0.418	0.314	0.393
	LTE Band	Left side	0.151	0.016	0.011	0.001	0.001	0.126	0.178	0.288	0.153	0.278
	30	Right side	0.108			0.047	0.001	0.126	0.108	0.234	0.156	0.235
		Top side		0.079	0.001	0.016	0.001	0.126	0.080	0.127	0.017	0.127
		Bottom side	0.324	0.001	0.010	0.009	0.001	0.126	0.335	0.460	0.334	0.451
		Front	0.267	0.034	0.013	0.006	0.001	0.126	0.314	0.406	0.274	0.394
		Back	0.696	0.072	0.026	0.047	0.001	0.126	0.794	0.848	0.744	0.823
	LTE Band	Left side	0.200	0.016	0.011	0.001	0.001	0.126	0.227	0.337	0.202	0.327
	41	Right side	0.081			0.047	0.001	0.126	0.081	0.207	0.129	0.208
		Top side		0.079	0.001	0.016	0.001	0.126	0.080	0.127	0.017	0.127
		Bottom side	0.408	0.001	0.010	0.009	0.001	0.126	0.419	0.544	0.418	0.535
		Front	0.261	0.034	0.013	0.006	0.001	0.126	0.308	0.400	0.268	0.388
		Back	0.534	0.072	0.026	0.047	0.001	0.126	0.632	0.686	0.582	0.661
	LTE Band	Left side	0.220	0.016	0.011	0.001	0.001	0.126	0.247	0.357	0.222	0.347
	66	Right side	0.254			0.047	0.001	0.126	0.254	0.380	0.302	0.381
		Top side		0.079	0.001	0.016	0.001	0.126	0.080	0.127	0.017	0.127
		Bottom side	0.479	0.001	0.010	0.009	0.001	0.126	0.490	0.615	0.489	0.606

Report No. : FA740822

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 104 of 109

15.3 <u>Body-Worn Accessory Exposure Conditions</u>

WWAN Band			1	2	3	4	5	6				
		Exposure Position	WWAN	2.4GHz WLAN Ant 1	2.4GHz WLAN Ant 2	5GHz WLAN Ant 1	5GHz WLAN Ant 2	Bluetooth Ant 1	1+2+3 Summed 1g SAR	1+4+5 Summed 1g SAR	1+3+4 Summed 1g SAR	1+2+5 Summed 1g SAR
			1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	Estimated 1g SAR (W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
	GSM850	Front	0.290	0.034	0.013	0.007	0.001	0.126	0.337	0.429	0.298	0.417
GSM	GSIVIOSO	Back	0.352	0.072	0.026	0.051	0.001	0.126	0.450	0.504	0.404	0.479
GSIVI	GSM1900	Front	0.138	0.034	0.013	0.007	0.001	0.126	0.185	0.277	0.146	0.265
	G3W1900	Back	0.384	0.072	0.026	0.051	0.001	0.126	0.482	0.536	0.436	0.511
	WCDMA II	Front	0.324	0.034	0.013	0.007	0.001	0.126	0.371	0.463	0.332	0.451
	WCDIVIA II	Back	0.611	0.072	0.026	0.051	0.001	0.126	0.709	0.763	0.663	0.738
WCDMA	WCDMA	Front	0.129	0.034	0.013	0.007	0.001	0.126	0.176	0.268	0.137	0.256
WCDIVIA	IV	Back	0.550	0.072	0.026	0.051	0.001	0.126	0.648	0.702	0.602	0.677
	WCDMA V	Front	0.272	0.034	0.013	0.007	0.001	0.126	0.319	0.411	0.280	0.399
	WCDMA V	Back	0.401	0.072	0.026	0.051	0.001	0.126	0.499	0.553	0.453	0.528
	CDMA	Front	0.166	0.034	0.013	0.007	0.001	0.126	0.213	0.305	0.174	0.293
	BC0	Back	0.243	0.072	0.026	0.051	0.001	0.126	0.341	0.395	0.295	0.370
CDMA	CDMA	Front	0.271	0.034	0.013	0.007	0.001	0.126	0.318	0.410	0.279	0.398
CDMA	BC1	Back	0.608	0.072	0.026	0.051	0.001	0.126	0.706	0.760	0.660	0.735
	CDMA	Front	0.203	0.034	0.013	0.007	0.001	0.126	0.250	0.342	0.211	0.330
	BC10	Back	0.272	0.072	0.026	0.051	0.001	0.126	0.370	0.424	0.324	0.399
	LTE Band	Front	0.307	0.034	0.013	0.007	0.001	0.126	0.354	0.446	0.315	0.434
	7	Back	0.764	0.072	0.026	0.051	0.001	0.126	0.862	0.916	0.816	0.891
	LTE Band	Front	0.187	0.034	0.013	0.007	0.001	0.126	0.234	0.326	0.195	0.314
	12	Back	0.272	0.072	0.026	0.051	0.001	0.126	0.370	0.424	0.324	0.399
	LTE Band	Front	0.268	0.034	0.013	0.007	0.001	0.126	0.315	0.407	0.276	0.395
	13	Back	0.344	0.072	0.026	0.051	0.001	0.126	0.442	0.496	0.396	0.471
	LTE Band	Front	0.320	0.034	0.013	0.007	0.001	0.126	0.367	0.459	0.328	0.447
	25	Back	0.587	0.072	0.026	0.051	0.001	0.126	0.685	0.739	0.639	0.714
LTE	LTE Band	Front	0.258	0.034	0.013	0.007	0.001	0.126	0.305	0.397	0.266	0.385
	26	Back	0.309	0.072	0.026	0.051	0.001	0.126	0.407	0.461	0.361	0.436
	LTE Band	Front	0.171	0.034	0.013	0.007	0.001	0.126	0.218	0.310	0.179	0.298
	30	Back	0.266	0.072	0.026	0.051	0.001	0.126	0.364	0.418	0.318	0.393
	LTE Band	Front	0.267	0.034	0.013	0.007	0.001	0.126	0.314	0.406	0.275	0.394
	41	Back	0.696	0.072	0.026	0.051	0.001	0.126	0.794	0.848	0.748	0.823
	LTE Band	Front	0.261	0.034	0.013	0.007	0.001	0.126	0.308	0.400	0.269	0.388
	66	Back	0.534	0.072	0.026	0.051	0.001	0.126	0.632	0.686	0.586	0.661

Report No.: FA740822

Test Engineer: Rusty Cho Wilson Lin Mood Huang Galen Zhang Iran Wang San Lin and Ken Li

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 26, 2017 Form version. : 170509 FCC ID: 2ALBB-A11 Page 105 of 109

16. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

Report No.: FA740822

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Table 16.1. Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 26, 2017 FCC ID: 2ALBB-A11 Page 106 of 109 Form version.: 170509

Error Description	Uncertainty Value (±%)	Probability	Divisor	(Ci) 1g	(Ci) 10g	Standard Uncertainty (1g) (±%)	Standard Uncertainty (10g) (±%)
Measurement System							
Probe Calibration	6.00	N	1	1	1	6.0	6.0
Axial Isotropy	4.70	R	1.732	0.7	0.7	1.9	1.9
Hemispherical Isotropy	9.60	R	1.732	0.7	0.7	3.9	3.9
Boundary Effects	1.00	R	1.732	1	1	0.6	0.6
Linearity	4.70	R	1.732	1	1	2.7	2.7
System Detection Limits	1.00	R	1.732	1	1	0.6	0.6
Modulation Response	4.68	R	1.732	1	1	2.7	2.7
Readout Electronics	0.30	N	1	1	1	0.3	0.3
Response Time	0.00	R	1.732	1	1	0.0	0.0
Integration Time	2.60	R	1.732	1	1	1.5	1.5
RF Ambient Noise	3.00	R	1.732	1	1	1.7	1.7
RF Ambient Reflections	3.00	R	1.732	1	1	1.7	1.7
Probe Positioner	0.40	R	1.732	1	1	0.2	0.2
Probe Positioning	2.90	R	1.732	1	1	1.7	1.7
Max. SAR Eval.	2.00	R	1.732	1	1	1.2	1.2
Test Sample Related							
Device Positioning	3.03	N	1	1	1	3.0	3.0
Device Holder	3.60	N	1	1	1	3.6	3.6
Power Drift	5.00	R	1.732	1	1	2.9	2.9
Power Scaling	0.00	R	1.732	1	1	0.0	0.0
Phantom and Setup							
Phantom Uncertainty	6.10	R	1.732	1	1	3.5	3.5
SAR correction	0.00	R	1.732	1	0.84	0.0	0.0
Liquid Conductivity Repeatability	0.03	N	1	0.78	0.71	0.0	0.0
Liquid Conductivity (target)	5.00	R	1.732	0.78	0.71	2.3	2.0
Liquid Conductivity (mea.)	2.50	R	1.732	0.78	0.71	1.1	1.0
Temp. unc Conductivity	3.68	R	1.732	0.78	0.71	1.7	1.5
Liquid Permittivity Repeatability	0.02	N	1	0.23	0.26	0.0	0.0
Liquid Permittivity (target)	5.00	R	1.732	0.23	0.26	0.7	0.8
Liquid Permittivity (mea.)	2.50	R	1.732	0.23	0.26	0.3	0.4
Temp. unc Permittivity	0.84	R	1.732	0.23	0.26	0.1	0.1
Cor	nbined Std. Ur	ncertainty				11.6%	11.6%

Table 16.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz

K=2

23.2%

K=2

23.1%

Coverage Factor for 95 %

Expanded STD Uncertainty

Error Description	Uncertainty Value (±%)	Probability	Divisor	(Ci) 1g	(Ci) 10g	Standard Uncertainty (1g) (±%)	Standard Uncertainty (10g) (±%)
Measurement System							
Probe Calibration	6.55	N	1	1	1	6.6	6.6
Axial Isotropy	4.70	R	1.732	0.7	0.7	1.9	1.9
Hemispherical Isotropy	9.60	R	1.732	0.7	0.7	3.9	3.9
Boundary Effects	2.00	R	1.732	1	1	1.2	1.2
Linearity	4.70	R	1.732	1	1	2.7	2.7
System Detection Limits	1.00	R	1.732	1	1	0.6	0.6
Modulation Response	4.68	R	1.732	1	1	2.7	2.7
Readout Electronics	0.30	N	1	1	1	0.3	0.3
Response Time	0.00	R	1.732	1	1	0.0	0.0
Integration Time	2.60	R	1.732	1	1	1.5	1.5
RF Ambient Noise	3.00	R	1.732	1	1	1.7	1.7
RF Ambient Reflections	3.00	R	1.732	1	1	1.7	1.7
Probe Positioner	0.40	R	1.732	1	1	0.2	0.2
Probe Positioning	6.70	R	1.732	1	1	3.9	3.9
Max. SAR Eval.	4.00	R	1.732	1	1	2.3	2.3
Test Sample Related							
Device Positioning	3.03	N	1	1	1	3.0	3.0
Device Holder	3.60	N	1	1	1	3.6	3.6
Power Drift	5.00	R	1.732	1	1	2.9	2.9
Power Scaling	0.00	R	1.732	1	1	0.0	0.0
Phantom and Setup							
Phantom Uncertainty	6.60	R	1.732	1	1	3.8	3.8
SAR correction	0.00	R	1.732	1	0.84	0.0	0.0
Liquid Conductivity Repeatability	0.03	N	1	0.78	0.71	0.0	0.0
Liquid Conductivity (target)	5.00	R	1.732	0.78	0.71	2.3	2.0
Liquid Conductivity (mea.)	2.50	R	1.732	0.78	0.71	1.1	1.0
Temp. unc Conductivity	3.68	R	1.732	0.78	0.71	1.7	1.5
Liquid Permittivity Repeatability	0.02	N	1	0.23	0.26	0.0	0.0
Liquid Permittivity (target)	5.00	R	1.732	0.23	0.26	0.7	0.8
Liquid Permittivity (mea.)	2.50	R	1.732	0.23	0.26	0.3	0.4
Temp. unc Permittivity	0.84	R	1.732	0.23	0.26	0.1	0.1
Cor	12.7%	12.6%					
Co	verage Factor	for 95 %				K=2	K=2
Ехр	25.4%	25.3%					

Table 16.3. Uncertainty Budget for frequency range 3 GHz to 6 GHz

FCC ID : 2ALBB-A11 Page 108 of 109 Form version. : 170509

17. References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"

Report No.: FA740822

- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [6] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [7] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015.
- [8] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015
- [9] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015
- [10] FCC KDB 941225 D05A v01r02, "Rel. 10 LTE SAR Test Guidance and KDB Inquiries", Oct 2015
- [11] FCC KDB 941225 D06 v02r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", Oct 2015.
- [12] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [13] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 26, 2017 FCC ID: 2ALBB-A11 Page 109 of 109 Form version: : 170509