Formula Sheet

Constants

$$\mu_0 = 4\pi \times 10^{-7} \ {\rm H/m} \qquad \qquad \varepsilon_0 = 8.85 \times 10^{-12} F/m \qquad \quad c = 3 \times 10^8 \ {\rm m/s}$$

Magnetics

magnetization $\mathbf{M} = \kappa \mathbf{H}$

magnetic permeability $\mathbf{B} = \mu \mathbf{H} = \mu_0 (1 + \kappa) \mathbf{H}$

dipole moment $\mathbf{m} = \mathbf{M} \times Vol.$

depth half-width relationship monopole: $z \sim \frac{1}{2}x_{1/2}$, dipole: $z \sim x_{1/2}$

magnetic charge density $\tau = \vec{M} \cdot \hat{n}$

magnetic field from a dipole $\mathbf{B} = \frac{\mu_0 \mathbf{m}}{4\pi r^3} [2cos(\theta) \hat{\mathbf{r}} + sin(\theta) \hat{\boldsymbol{\theta}}]$

Figure 1: Magnetic field due to vertical magnetic dipole

Seismic

$$v_p = \sqrt{\frac{K+4/3\mu}{\rho}} \qquad v_s = \sqrt{\frac{\mu}{\rho}}$$
 general
$$Z = \rho v \qquad R = \frac{Z_2 - Z_1}{Z_2 + Z_1} \qquad T = \frac{2Z_1}{Z_2 + Z_1}$$
 general
$$d = vt \qquad \lambda = vT = \frac{v}{f}$$
 Vertical resolution
$$L = \frac{\lambda}{4}$$
 Refraction arrivals
$$t = \frac{x}{v_2} + 2z\frac{\sqrt{v_2^2 - v_1^2}}{v_1v_2} = \frac{x}{v_2} + t_i$$
 Cross-over distance
$$x_{cross} = \left(\frac{v_1v_2}{v_2 - v_1}\right)t_i = 2z\sqrt{\frac{v_2 + v_1}{v_2 - v_1}}$$
 Refraction Angles
$$\frac{\sin\theta_1}{v_1} = \frac{\sin\theta_2}{v_2}$$
 Refraction Angles (for three layers)
$$\frac{\sin\theta_1}{v_1} = \frac{\sin\theta_2}{v_2} = \frac{\sin\theta_3}{v_3}$$

 $t(x)^2 = t_0^2 + \frac{x^2}{v^2}$

x=distance from Tx to Rx

GPR

Refraction Angles (for three layers)

Reflection hyperbola

Reflection coefficient:
$$R = \frac{\sqrt{\varepsilon_1} - \sqrt{\varepsilon_2}}{\sqrt{\varepsilon_1} + \sqrt{\varepsilon_2}}$$
 Transmission coefficient:
$$T = \frac{2\sqrt{\varepsilon_2}}{\sqrt{\varepsilon_1} + \sqrt{\varepsilon_2}}$$
 Pulse length (Δt) and central frequency (f_c) of wavelet:
$$V \approx \frac{c}{\sqrt{\varepsilon_r}}$$
 GPR signal velocity:
$$V \approx \frac{c}{\sqrt{\varepsilon_r}}$$
 GPR wavelength:
$$V \approx \frac{V}{f_c}$$
 Vertical resolution limit:
$$V \approx \frac{V}{4} = \frac{V}{4f_c}$$
 Horizontal resolution limit:
$$V \approx \frac{V}{2f_c}$$
 Refraction Angles
$$\frac{\sin \theta_1}{v_1} = \frac{\sin \theta_2}{v_2}$$

$$\delta = 503 \sqrt{\frac{1}{\sigma f}}$$

$$\delta = \frac{0.0053\sqrt{\varepsilon_r}}{\sigma}$$

Velocity of light

c = 0.3m/ns or $3 \times 10^8 m/s$

DC

$$R = \frac{\rho L}{A}$$

Electric Potential for a homogeneous earth:

$$V = \frac{\rho_0 I}{2\pi r}$$

$$\Delta V = \frac{\rho_0 I}{2\pi} \left(\frac{1}{r_{AM}} - \frac{1}{r_{BM}} - \frac{1}{r_{AN}} + \frac{1}{r_{BN}} \right)$$

Apparent Resistivity:

$$V = \frac{\rho_a I}{2\pi r}$$

$$\rho_{a} = \frac{2\pi\Delta V}{I} \left(\frac{1}{r_{AM}} - \frac{1}{r_{BM}} - \frac{1}{r_{AN}} + \frac{1}{r_{BN}} \right)^{-1}$$

$$\rho_a = \frac{2\pi a \Delta V}{I}$$

IP

$$\eta = \frac{V_s}{V_0}$$

$$d^{IP} = \frac{V_s(t)}{V_0}$$

\mathbf{EM}

skin depth
$$\delta = 500 \sqrt{\frac{\rho}{f}}$$
 angular frequency
$$\omega = 2\pi f$$
 apparent conductivity for EM31 $(s \ll \delta)$
$$\sigma_a = \frac{4}{\omega \mu_0 s^2} Im \left(\frac{H_s}{H_p}\right)$$
 Expansion of $H_s \cos(\omega t - \psi)$
$$H_s \cos(\omega t - \psi) = H_s [\cos(\omega t) \cos(\psi) + \sin(\omega t) \sin(\psi)]$$

Figure 2: Frequency EM: Response function curve