4181 - R Practice Questions

Choose one:

- Three Intermediate Level Questions;
- Two Slightly Harder Questions.

Intermediate Questions

Intermediate 1

- · Create four different variables.
 - First one should contain all even integers from 1 to 10.
 - Second one should contain five characters named "DC", "DE", "MD", "PA" and "VA".
 - Third variable should be the same as the second one, except it should be a factor
 - Fourth variable should be a logical vector that contains 3 TRUE s and 2 FALSE s.
- What kind of error messages do you expect to see (if any) when you multiply each of those four variables by 2 (if x is your variable, x*2)? Make a guess and check it in R.

Intermediate 2

• Load the iris data set (just use data(iris), and model the Sepal.Length of flowers using simple regression with Sepal.Width as your covariate (a.k.a. independent variable, predictor).

Intermediate 3

• Write a simple for loop that calculates the Nth Fibonacci number for a given N (Fibonacci numbers are defined by the recurrence relation:

$$F(n) = F(n-1) + F(n-2),$$

with
$$F(0) = 0$$
, $F(1) = 1$.

Intermediate 4

• Find an online dataset and load it into R (this could be a dataset from a package).

Provide some exploratory plots.

Intermediate 5&6 (counts as two questions)

· Create two random vectors with

```
xVec <- sample(0:999, 250, replace=T)
yVec <- sample(0:999, 250, replace=T)
```

- Pick out the values in yVec which are > 600.
- What are the index positions in yVec of the values which are > 600?
- What proportion of yVec are larger than xVec? Over repeated samples what would you expect this proportion to converge to?

Slightly Harder Questions (SHQ)

SHQ₁

• Randomly sample 100 points from a ten-dimensional multivariate Gaussian matrix with mean zero and covariance matrix Σ , where

$$\Sigma_{i,i} = 0.9^{(|i-j|)}$$
.

That is,

$$\Sigma_{1,1} = 0.9^0 = 1,$$

and that's true for all $\Sigma_{i,i}$.

And, for all other terms,

$$\Sigma_{3,5} = 0.9^{(2)} = 0.81.$$

The terms of $\Sigma_{i,j}$ decay as they move away from the diagonal.

SHQ₂

• Load the pscl package, and the prussian dataset Using ggplot2, plot the number of kicks in each corp for each year.

SHQ₃

• Load the dataset in http://staff.elena.aut.ac.nz/Paul-

Cowpertwait/ts/global.dat to R. Create a ts variable with a start date of (1856,1) and ending date of (2005,12). Frequency should be in months.

SHQ4

• Load the car package and the Hartnagel dataset. Estimate the effect of the fertility rate (tfr) on the female indictable-offense conviction rate (fconvict) by using multiple linear regression. Include proper model diagnostics.