Report for Week 8

I. Summary

- 1. I trained a NB Classifier on the **Twitter set** from Ken Benoit.
- 2. I built the 3 classes of features discussed.
- 3. I trained 3 XGB classifiers on **Reddit dataset**, for the 3 classes of features.

II. Actions performed

1. NB Classifier of Twitter Data

I followed exactly the methodology presented by Ken Benoit, in his paper. Please see the Final Report PDF, section 4.3, subsection "Data Preparation" for the steps involved in processing the data (exactly the steps followed by KB). I end up by having 11277 aggregated user texts.

I build the leave index, for each user, as No. Of Leave Hashtags – No Of Remain Hashtags and sort the users according to this index. I take the first 10% as Leave Labeled Training data and the last 10% of the users as Remain Labeled Training Data. Together, they form a total of 2200 documents, used for training the classifier.

I perform standard preprocessing (remove stopwords, @mentions, #hashtags), I perform stemming and keep only words that have at least 5 times. Important! I remove hashtags, so that the trained classifier will perform equally well on Reddit dataset.

I build a DTM, having 2200 documents and ASDAS features. I split this dataset in 80% training and 20% testing set. I train the Naive Bayes Classifier on the training set and test it on the new, never seen test set. **The accuracy obtained on the test set is about 93%** (very similar to Ken Bonoit accuracy reported in the paper).

This classifier will be used to generate ground truth labels on Reddit Dataset.

2. Reddit Dataset

I used the classifier trained on the Twitter Dataset on Reddit. To build the 3 classes of features, I consider the initial splitting in 15 timeframes. For every consequent timeframes, I consider the common authors. Thus, at every timeframe t, I have information about the current class of the author (position about the Brexit – Against, Brexit, Neutral) and his position in the following timeframe t+1. Usint this methodology, I collect all the common authors between every 2 consequent timeframes and their positions about brexit. Then, I build different features, taking into account the discussed situations: F1, F2, F3.

3. XGBoosting on Reddit Dataset

a. F1 Features -

As we previously discussed, I built the first set of features comprising: the number of initial posts in period t, number of comments in period t, the 5 quantiles obtained from the number of comments / posts in period t. I changed a bit the specification that we discussed by turning the classes c1, c2, c3 ... c9. I consider the current class as a feature (current position at period t: **A, B, N**) and I consider the next class (the position in the next time-frame t+1) as the unknown variable.

replies ‡	submissions ÷	N1 [‡]	N2 [‡]	ИЗ ≑	N4 [‡]	N5 [‡]	CurrentLabel [‡]	NextLabel [‡]
3	5	0	0.00	1.0	8.00	8	2	1
3	0	0	0.00	0.0	0.00	0	2	2
1	1	4	4.00	4.0	4.00	4	2	1
4	0	0	0.00	0.0	0.00	0	2	0
0	2	0	0.00	0.0	0.00	0	2	0

In previous figure, there is a snippet of the dataset using F1. I split the dataset in 2 parts, training respectively test set: ratio 75% - 25%. I use a XGBoost algorithm and 10-fold Cross Validation methodology. The dataset is very imbalanced (more neutral than A and B). Following a vignette online from the package, for imbalanced, multiclass classfication problems it is suitable to use: objective function multi-class softmax probability and the evaluation metric is multi- logloss. I have 10 fold validation, with 100 repteats.

In the following figure, I plotted the features that influenced the most the learning process (Gini index)

Confusion Matrix and Statistics	Confusion Matrix and Statistics	Confusion Matrix and Statistics				
Reference Prediction 0 1 2 0 61 1 359 1 0 37 308 2 2 0 4743	Reference Prediction 0 1 2 0 19 1 401 1 0 1 344 2 22 10 4713	Reference Prediction 0 1 2 0 25 0 133 1 1 6 106 2 4 1 1561				
Overall Statistics	Overall Statistics	Overall Statistics				
Accuracy : 0.8784 95% CI : (0.8695, 0.8869) No Information Rate : 0.9817 P-Value [Acc > NIR] : 1	Accuracy : 0.8588 95% CI : (0.8494, 0.8679) No Information Rate : 0.9904 P-Value [Acc > NIR] : 1	Accuracy : 0.8666 95% CI : (0.8502, 0.8819) No Information Rate : 0.9799 P-Value [Acc > NIR] : 1				
Kappa : 0.2078	Kappa : 0.0368	Kappa : 0.1821				
Mcnemar's Test P-Value : <2e-16	Mcnemar's Test P-Value : <2e-16	Mcnemar's Test P-Value : <2e-16				
Statistics by Class:	Statistics by Class:	Statistics by Class:				
Class: 0 Class: 1 Class: Sensitivity 0.96825 0.973684 0.87 Specificity 0.93392 0.943724 0.98 Pos Pred Value 0.14489 0.107246 0.99 Neg Pred Value 0.99961 0.999806 0.12 Precision 0.14489 0.107246 0.99 Recall 0.96825 0.973684 0.87 F1 0.25207 0.193211 0.93 Prevalence 0.01143 0.006899 0.98 Detection Rate 0.01107 0.006714 0.86 Detection Prevalence 0.07639 0.062602 0.86 Balanced Accuracy 0.95109 0.958704 0.92	67 Sensitivity 0.463415 0.0833333 0.86350 02 Specificity 0.926508 0.9374432 0.39623 96 Pos Pred Value 0.045131 0.0028986 0.99326 92 Neg Pred Value 0.995678 0.9978707 0.02742 96 Precision 0.045131 0.0028986 0.99326 67 Recall 0.463415 0.0833333 0.86350 41 F1 0.082251 0.0056022 0.92385 17 Prevalence 0.007440 0.0021775 0.99038 06 Detection Rate 0.003448 0.0001815 0.85520 10 Detection Prevalence 0.076393 0.0626021 0.86101	Class: 0 Class: 1 Class: 2 Sensitivity 0.83333 0.857143 0.8672 Specificity 0.92640 0.941530 0.8649 Pos Pred Value 0.15823 0.053097 0.9968 Neg Pred Value 0.99702 0.999420 0.1181 Precision 0.15823 0.053097 0.9968 Recall 0.83333 0.857143 0.8672 F1 0.26596 0.100000 0.9275 Prevalence 0.01633 0.003811 0.9799 Detection Rate 0.01361 0.003266 0.8498 Detection Prevalence 0.08601 0.061513 0.8525 Balanced Accuracy 0.87987 0.899336 0.8660				

F1 – Training Statistics (after doing CV, I test the classifier on the test data) F1 - CV - Statistics (the stats on the hold out fold, during CV process) F1 - Test - Statistics (stats on the test, unseen data)

b. F2 - Features

We have again the number of initial posts, comments and now we split the number of replies per post in 3 categories – From A, from B and from N. Basically, I take every post of a user (initial or intermediate comment) and I count for it how many replies (posts that have as parent the analyzed post) of each kind it has. I built the quantiles for Against, Neutral and Brexit.

Confusion Matrix and Statistics			Confusion Matrix and	Statistics		Confusion Matrix and Statistics						
Reference				Reference			Reference					
Prediction 0 1 2				Prediction 0 1	2		Prediction 0 1 2					
0 101 0	307			0 26 0	382		0 19 0	123				
1 0 66 288				1 1 3	350		1 1 13 89					
2 5 0 4744				2 29 9	4711		2 4 1 1587					
Overall Statistics				Overall Statistics			Overall Statistics					
Accura	Accuracy : 0.8911				Accuracy : 0.8601			Accuracy : 0.8813				
	•	3826, 0.89	92)		CI: (0.8507, 0.869	2)	95% CI : (0.8657, 0.8958)					
No Information Ra	ate : 0.96	888		No Information R			No Information Rate : 0.9793					
P-Value [Acc > N]	[R] : 1			P-Value [Acc > N	IR] : 1		P-Value [Acc > NIR] : 1					
Кар	Kappa : 0.3319				Kappa : 0.0548			Kappa : 0.2081				
Mcnemar's Test P-Val	Mcnemar's Test P-Value : NA			Mcnemar's Test P-Value : <2e-16			Mcnemar's Test P-Value : <2e-16					
Statistics by Class:	Statistics by Class:			Statistics by Class:			Statistics by Class:					
	Class: 0	Class: 1	Class: 2		Class: 0 Class: 1	Class: 2		Class: 0 Class: 1 (Class: 2			
Sensitivity	0.95283	1.00000	0.8886	Sensitivity	0.464286 0.2500000	0.86552	Sensitivity	0.79167 0.928571	0.8822			
Specificity	0.94320	0.94711	0.9709	Specificity	0.929973 0.9361702	0.44118	Specificity	0.93216 0.950631	0.8684			
Pos Pred Value	0.24755	0.18644	0.9989	Pos Pred Value	0.063725 0.0084746	0.99200	Pos Pred Value	0.13380 0.126214	0.9969			
Neg Pred Value		1.00000		Neg Pred Value	0.994121 0.9982548	0.03937	Neg Pred Value	0.99705 0.999423	0.1347			
Precision		0.18644		Precision	0.063725 0.0084746	0.99200	Precision	0.13380 0.126214	0.9969			
Recall		1.00000		Recall	0.464286 0.2500000		Recall	0.79167 0.928571	0.8822			
F1		0.31429	0.9405		0.112069 0.0163934		F1	0.22892 0.222222	0.9360			
Prevalence		0.01198		Prevalence	0.010161 0.0021775		Prevalence	0.01306 0.007621	0.9793			
Detection Rate		0.01198		Detection Rate	0.004718 0.0005444		Detection Rate	0.01034 0.007077	0.8639			
Detection Prevalence				Detection Prevalence			Detection Prevalence	0.07730 0.056070	0.8666			
Balanced Accuracy	0.94802	0.97355	0.9297	Balanced Accuracy	0.697129 0.5930851	0.65335	Balanced Accuracy	0.86191 0.939601	0.8753			

c. F3 - Features

F2 - Training Stats

Now, we have no more number of posts and comments and we remove also the number of replies. Now, for each common author, between two consequive periods, I take all the diffusions that he started (he wrote the first message) and I compute the percentage of posts pro and against brexit. I built the quantiles for Brexit percentages and for Neutral.

F2 - Test Stats

F2 - CV Stats

Andrei Maruaie 4 J. Jun. 2019

100				Reference	Reference						
Reference Prediction 0 1 2				1 2		Prediction 0 78		2 45			
0 319 0	115				1 414		1 1	-	62		
					3 332		2 7		1579		
2 5 5	4728			2 58 3	9 4641		2 /	,	1377		
Overall Statistics				Overall Statistics		Overall Statistics					
Accuracy : 0.9614				Accu	Accuracy : 0.9347						
	95% CI : (0.9559, 0.9663)			959	95% CI : (0.9224, 0.9455)						
No Information Ra			,,,	No Information I	Rate : 0.9775	No Information Rate : 0.9178					
P-Value [Acc > NIR] : < 2.2e-16				P-Value [Acc > I	NIR] : 1	P-Value [Acc > NIR] : 0.003842					
Kappa : 0.827				K	appa : 0.0259	Kappa : 0.6727					
Mcnemar's Test P-Value : < 2.2e-16				Mcnemar's Test P-V	alue : <2e-16	Mcnemar's Test P-Value : < 2.2e-16					
Statistics by Class:				Statistics by Class	Statistics by Class:						
,	Class: 0	Class: 1 (Class: 2		Class: 0 Class: 1	Class: 2			Class: 0	Class: 1	Class: 2
Sensitivity	0.98154	0.98047	0.9590	Sensitivity	0.234568 0.0697674	0.86152	Sensitivity		0.90698	0.92308	0.9365
Specificity	0.97782	0.98325	0.9828	Specificity	0.923573 0.9385516	0.21774	Specificity		0.97430	0.96445	0.9205
Pos Pred Value	0.73502		0.9979	Pos Pred Value	0.043779 0.0088496	0.97953	Pos Pred Value		0.63415	0.48780	0.9925
Neg Pred Value		0.99903	0.7387	Neg Pred Value	0.987788 0.9922660		-		0.99533	0.99708	0.5650
Precision	0.73502		0.9979	Precision	0.043779 0.0088496		Precision		0.63415	0.48780	0.9925
Recall	0.98154		0.9590	Recall	0.234568 0.0697674				0.90698	0.92308	0.9365
F1 Prevalence	0.84058 0.05897		0.9781 0.8946	F1	0.073786 0.0157068	0.91674	· -		0.74641	0.63830	0.9637
Detection Rate	0.05788		0.8579	Prevalence	0.014698 0.0078026		Prevalence		0.04682	0.03538	0.9178
Detection Rate Detection Prevalence			0.8597	Detection Rate	0.003448 0.0005444		Detection Rate		0.04246	0.03266	0.8596
Balanced Accuracy		0.98186	0.9709		e 0.078752 0.0615133		Detection Preva			0.06696	0.8661
,				Balanced Accuracy	0.579070 0.5041595	0.55563	Balanced Accura	су	0.94064	0.94376	0.9285
F3 – Training Stat				F3 -	F3 – Testing Stat						

Confusion Matrix and Statistics

Confusion Matrix and Statistics

Confusion Matrix and Statistics

In conclusion, F3 – Features have the best F1 score on the testing set (data is imbalanced so we don't count on Accuracy).