Arbeitsblatt

Stromkreise, 1

Würde man die 12 abgebildeten Schaltkreise aufbauen, dann würden nicht alle Lämpchen leuchten. Bei manchen Schaltungen gäbe es sogar einen Kurzschluss.

Male die Lämpchen, die leuchten, bunt an. Kennzeichne Kurzschlüsse durch

Arbeitsblatt

Stromkreise, 2

Welche Schalter muss man schließen, damit alle Lampen leuchten, wenn auch nicht gleich hell (und kein Kurzschluss entsteht)?

Zeichne den Stromverlauf ein (mehrere Lösungen möglich).

Schalter, die geschlossen werden sollen, hier ankreuzen:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Dom · Bader SEK I Lehrermaterialien Kopiervorlage © Schroedel Verlag, Hanno

Arbeitsblatt-Lösung

Geladene Kugeln

Eine leitende, aber ungeladene Kugel wird zwischen zwei geladene Kugeln gehängt und dann nach links angestoßen. Zeichne die Ladungsverhältnisse auf der aufgehängten Kugel und die Entwicklung der Ladungsverhältnisse auf den großen Kugeln zu den unterschiedlichen Zeitpunkten ein.

Arbeitsblatt-Lösung

Influenz

Trage die Ladungsverteilung bzw. deren Veränderung (durch Hinzufügen, Streichen oder Verschieben der Ladungsvorzeichen) ein.

1) Ohne Berührung, rechte Kugel neutral

3) Die rechten Kugeln sind neutral und berühren sich.

4) Beide Kugeln sind positiv geladen.

5) Die mittlere Kugel ist neutral und berührt nicht.

6) Ohne Berührung

7) Mit Berührung

Trainingsblatt

Ohmsches Gesetz

Hier siehst du verschiedene Kurven im Stromstärke-Spannung-Diagramm. Welche davon gehören zum ohmschen Gesetz?

In unten stehender Tabelle gehört jeweils eine Zeile zusammen. Bestimme fehlende Größen.

Wiederhole zunächst die Gleichung zur Berechnung des Widerstands: $R = \bigcup$ Vorsilben für dezimale Vielfache und Teile von Einheiten:

 μ ... [Mikro-, bedeutet ein Millionstel = 10^{-6}]

m ... [Milli-, bedeutet ein Tausendstel = 10^{-3}]

k ... [Kilo-, bedeutet Tausend = 10³]

M ... [Mega-, bedeutet Million = 106]

246 V 7 V 5 V 14,4 mV	300 mA 300 mA 300 mA 1,25 m A 2,5 A 6 µA	$\frac{246}{0.3}\Omega = 820\Omega$ $5.6 k\Omega$ 2Ω $\frac{14.4 mV}{6.0064} = 2400 \Omega$			
5 V	2,5 A	2 Ω			
	2,5 A	S SANDARA			
14,4 mV	6 μΑ	14,4 mV = 14,4 V 6,4 A = 0,006 A = 2400 S			
		= 2,46,52			
333 V=11987V	333 μΑ	39 ΜΩ			
. 240 V	0,24	1,2 kΩ .			
126 mV	7 A	0,018 St = 18m St			
a 6114-611-V	13 mA	47 Ω			
0,011V-011MV		11 Ω			
	0,611 V = 611 mV				

1

Arbeitsblatt-Lösung

Kirchhoff, 1

In den unten aufgezeichneten Schaltbildern sind jeweils nur die Strommessgeräte A bis Z eingezeichnet und die Verbraucher der Einfachheit halber nicht gezeichnet. Berechne die Stromstärke, die die einzelnen Messgeräte anzeigen.

		2 A	1A	0,54	OSA	ets A	0.4	OAA	7.1.	2 A	2,54	25A	0,5 A	
Messger	rät	A	В	С	D	Е	F	G	Н	J	K	L	M	
Stromstärke		1 A	0,3 A	0,6 A	0,1 A	0,9 A	80 mA	20 mA	5 A	2,5 A	2 A	0,5 A	0,5 A	
	24	5A	SA	14	34	1A	G,9A	100mA	0,5A	2,5 A	1500 A	85.Ge A		
	N	0	· P	Q	R	Ś	Т	U.	V	W	X	Y	Z	2
	1,5 A	2,5 A	3 A	2 A	0,7 A	0,3 A	1,6 A	0,4 A	0,6 A	0,1 A	0,1 A	0,2 A	0.2 A	

Arbeitsblatt

Kirchhoff, 2

Bestimme die fehlenden Stromstärken und Widerstandswerte. Der Widerstand der Strommessgeräte ist zu vernachlässigen. U=R-1=200.9 God A=2V

Trainingsblatt

Schaltung von Widerständen, 1

Jeder der unten abgebildeten Widerstände hat den Wert 24 Ω . Berechne den Ersatzwiderstand der Schaltung.

1)

2)

3)

Lösung: Vor dem Kopieren bitte abdecken! 1) 96Ω , 2) 60Ω , 3) 32Ω , 4) 6Ω , 5) 24Ω , 6) 1

1) 96 $\Omega,$ 2) 60 $\Omega,$ 3) 32 $\Omega,$ 4) 6 $\Omega,$ 5) 24 $\Omega,$ 6) 14,4 $\Omega,$ 7) 40 Ω

1/3 Ω

LEKTRIK

Trainingsblatt

Schaltung von Widerständen, 2

Berechne den Ersatzwiderstand folgender Schaltungen.

6Ω 1) 2Ω 3Ω

8Ω

 $4,5 \Omega$

Lösung: Vor dem Kopieren bitte abdecken!

1) 1,8 Ω , 2) 1,2 Ω , 3) 8 Ω

