- ¹ Facebook AI Research, Paris, France
- Miles Team, LAMSADE, Université Paris-Dauphine, Paris, France
- 3 CREST, ENSAE, Paris, France
- ⁴ Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

* Equal contribution

A Motivating Example

- On left and in the middle: the classifier is deterministic. The adversarial risk is 3/4.
- On right: The classifier is randomized. The adversarial risk is 1/2.

The best attack is also randomized; if the attacker takes a deterministic decision. the classifier can play a deterministic strategy to counter him.

There exists a Mixed Nash equilibrium in this game. Can we generalize it?

Setting

- •Classification problem on $X \times Y$. P is a Borel probability distribution over $X \times Y$.
- $\cdot \Theta$ is a set of classifiers.
- •A loss $l: \Theta \times (X \times Y) \to \mathbb{R}$ (possibly the 0/1 loss).

Adversarial deterministic risk:

$$R_{adv}^{e}(\theta) := \mathbb{E}_{(x,y) \sim P} \left[\sup_{x' \in \mathcal{X}, \ d(x,x') \le e} l(\theta, (x',y)) \right].$$

Adversarial randomized risk:

$$R_{adv}^{e}(\mu) := \mathbb{E}_{(x,y) \sim P} \left[\sup_{x \in \mathcal{X}, d(x,x) \le e} \mathbb{E}_{\theta \sim \mu} \left[l(\theta, (x',y)) \right] \right].$$

Risk minimization problems:

$$V^{\varepsilon}_{rand} := \inf_{\mu \in \mathcal{M}^1_+(\Theta)} R^{\varepsilon}_{adv}(\mu), \ V^{\varepsilon}_{det} := \inf_{\theta \in \Theta} R^{\varepsilon}_{adv}(\theta)$$

Remark: $V_{rand}^0 = V_{det}^0 \le V_{rand}^\varepsilon \le V_{det}^\varepsilon$

Adversarial distributions/randomized adversaries:

$$\mathscr{A}_{\varepsilon}(P) := \left\{ Q \mid \exists \gamma, d(x, x') \leq \varepsilon, \ y = y' \quad \gamma \text{-a.s., } \Pi_{1\sharp} \gamma = P, \ \Pi_{2\sharp} \gamma = Q \right\}$$

Such an attacker can map any point randomly in the ball of radius ε . It is a Wasserstein ball for a well chosen cost.

Proposition: For a given classifier μ , the adversarial randomized risk equals:

$$R_{adv}^{\varepsilon}(\mu) = \sup_{O \in \mathcal{A}_{\varepsilon}(P)} \mathbb{E}_{(x',y') \sim Q, \theta \sim \mu} \left[l(\theta, (x',y')) \right].$$

The supremum is attained and the optimum might be attained with a deterministic

Adversarial Examples Game

<u>Primal game:</u> $\inf_{\mu \in \mathcal{M}^1_+(\Theta)} \sup_{O \in \mathcal{A}_-(P)} \mathbb{E}_{Q,\mu} \left[l(\theta,(x,y)) \right]$. Classifier goal: be robust to every attacks.

Denoting by D^{ε} the value of the dual formulation, we have:

$$D^{\varepsilon} \le V_{rand}^{\varepsilon} \le V_{det}^{\varepsilon}$$
.

Is there always equality of the left terms? Does there exist Nash equilibria in this game?

Theorem: Strong duality always holds in the randomized setting

$$\inf_{\mu \in \mathcal{M}_{1}^{+}(\Theta)} \max_{Q \in \mathcal{A}_{\ell}(P)} \mathbb{E}_{\theta \sim \mu, (x, y) \sim Q} \left[l(\theta, (x, y)) \right] = \max_{Q \in \mathcal{A}_{\ell}(P)} \inf_{\mu \in \mathcal{M}_{1}^{+}(\Theta)} \mathbb{E}_{\theta \sim \mu, (x, y) \sim Q} \left[l(\theta, (x, y)) \right]$$

Interpretations:

- ·Always exist approximate Mixed Nash Equilibria in the adversarial examples game.
- ·If the infimum is attained, there exist Mixed Nash Equilibria.

Entropic Regularization and Algorithms

Given empirical distribution $P_n = \sum_{i=1}^n \delta_{(x_i,y_i)}$ and a finite set of classifiers $\{\theta_1,...,\theta_L\}$. Can we

learn the optimal randomized classifier over this finite set of classifiers, i.e. optimize the weights of the probability that θ_i appears?

Entropic Relaxation:

$$\inf_{\mu \in \mathcal{M}_{i}^{*}(\Theta)} \sum_{i=1}^{N} \sup_{\mathcal{Q} \in \Gamma_{Lx}} \mathbb{E}_{Q_{i}\mu} \left[l(\theta,(x,y)) \right] - \alpha_{i} \mathsf{KL} \left(\mathcal{Q}_{i} \, \middle| \, \frac{1}{N} \mathbb{U}_{(\mathbf{x},\mathbf{y}_{i})} \right) = \inf_{\mu \in \mathcal{M}_{i}^{*}(\Theta)} \sum_{i=1}^{N} \frac{\alpha_{i}}{N} \log \left(\int \exp \frac{\mathbb{E}_{\mu} \left[l(\theta,(x,y)) \right]}{\alpha_{i}} d\mathbb{U}_{(\mathbf{x},\mathbf{y}_{i})} \right). \\ 0.0 \quad 0.0$$

- Approximates well the adversarial risk.
- •Convex and smooth objective: Algorithm with rate of convergence in $O(T^{-2})$.

Oracle-Based Algorithm:

- •Inspired by robust optimization and subgradient methods (Danskin Theorem).
- •Rate of convergence of order $O(\delta + T^{-1/2})$ where δ denotes the quality of the gradient estimation.

Experiments

Algorithm 2 Adversarial Training for Mixtures

L: number of models, T: number of iterations. T_{θ} : number of updates for the models θ . T_{λ} : number of updates for the mixture λ , $\lambda_0 = (\lambda_0^1, \dots \lambda_0^L), \ \boldsymbol{\theta}_0 = (\theta_0^1, \dots \theta_0^L)$ for $t = 1, \ldots, T$ do Let B_t be a batch of data. if $t \mod (T_{\theta}L + 1) \neq 0$ then k sampled uniformly in $\{1, \ldots, L\}$ $\tilde{B}_t \leftarrow \text{Attack of images in } B_t \text{ for the model } (\lambda_t, \theta_t)$ $\theta_k^t \leftarrow \text{Update } \theta_k^{t-1} \text{ with } \tilde{B}_t \text{ for fixed } \lambda_t \text{ with a SGD step}$ $\lambda_t \leftarrow \text{Update } \lambda_{t-1} \text{ on } B_t \text{ for fixed } \theta_t \text{ with oracle-based}$ or regularized algorithm with T_{λ} iterations. end end

Proposed heuristic algorithm for deep learning

Models

Acc.

81.9%

81.7%

82.6%

81.9%

APGDCE

49.0%

49.0%

49.7%

APGDDLR

49.6%

49.3%

49.8%

Rob. Acc.

47.0%

47.2%

_		Ep	ochs p	er moc	iel		
.5 -		page (Mill)					
.4	A STATE OF THE PARTY OF THE PAR	~~~	-WM				
.3 -							
1.2							models
.1						 2	models models
							models

Models	Acc.	APGD _{CE}	$APGD_{DLR}$	Rob. Acc
1	79.6%	50.9%	48.9%	48.3%
2	80.3%	52.3%	51.2%	50.2%
3	80.7%	52.8%	51.7%	50.7%
4	80.9%	53.0 %	$\boldsymbol{51.8\%}$	$\boldsymbol{50.8\%}$

Accuracy under PGD attack on a ResNet18 model for CIFAR10 dataset using TRADES loss

Take a photo to learn more

