

2017-2018 AVDC MSc Individual Research Project:

Domain Specific Language for Drone Swarm Evasive Manoeuvring

Overview

17th July 2018

Supervisors: Prof Rafał Żbikowski and Dr Al Savvaris

Presentation outline

dSMOL

Drone Swarm Modelling and Optimisation Language

- 1. Project objectives
- 2. Methodology
- 3. Overall progress
- 4. Current features
 - a) Why Racket?
- 5. Sample project
- 6. Conclusions
- 7. Next steps and demo project

Source: http://www.tandemnsi.com/2017/01/darpa-wants-help-building-swarm-drone-test-bed/

Project objectives

- Create a Domain Specific Language (DSL) capable of:
 - a. Modelling evasive manoeuvres
 - b. Decentralised decision making algorithms implementation
 - Imposing different types of constraints
 - d. Drone path generation
- 2. Implement standard search techniques (e.g. simulated annealing)
- 3. Optimise drone paths in the presence of threats and obstacles

Methodology evaluation

<u>Transition</u>

- ★ T1 syntactic quality
- ✓ T3 pragmatics evaluation
 - √ T3.1 comprehension, creation, and modification
 - √ T3.2 support for use cases
- ✓ T4 organisational evaluation

- T2 semantics evaluation
 - T2.1 feature model satisfiability
 - T2.2 relevant API usages
- ✓ T2.3 mapping definitions
- T2.4 implementation of code queries and transformations

Methodology update

Framework for Qualitative Assessment of DSLs

Priority

Mandatory

- Desirable
- Nice to have

Support

- No support
- Some support
- Strong support
- Full support

Success level

- Incomplete
- Satisfactory
- Effective

Kahraman, G. and Bilgen, S. (2015) 'A framework for qualitative assessment of domain-specific languages', *Software & Systems Modeling*. Springer Berlin Heidelberg, 14(4), pp. 1505–1526. doi: 10.1007/s10270-013-0387-8

Progress - value & use cases

Added value

- 1. Provide drone swarm path generation utility
- 2. Enable modelling of threats and obstacles
- 3. Ease the process of simulation and optimisation

Able to simulate any type of vehicle, not only flying.

Use cases

1. Manoeuvre modelling (MM)

2. Decentralised decision making (DDM)

3. Constraints specification (CS)

4. Modular synthesis (MS)

Features – types of objects

Features – layered control

Why Racket?

Racket is a general-purpose programming language as well as the world's first ecosystem for developing and deploying new languages.

- 1. Racket is about creating new programming languages quickly.
- 2. Racket provides building blocks for strong protection mechanisms.
- 3. Racket turns extra-linguistic mechanisms into linguistic constructs.

Source: Felleisen et al. 'The Racket Manifesto'

Most useful feature - metaobject system

Features - constraints

Motion constraints

Interaction constraints

Simulation area constraints

Sample project – overview

Drone 1 (blue):

- Desired velocity: 3 m/s
- Desired heading: 45°
- Desired altitude: 1.5 m
- Dynamic model in Matlab
- Autopilot in dSMOL

Car 1 (yellow):

- Velocity: 5 m/s
- Heading: 180°
- Altitude: 0 m
- Kinematic model in dSMOL
- Structure: Renault Megane RS

Drone 2 (red):

- Desired velocity: 5 m/s
- Desired heading: -45°
- Desired altitude: 1.5 m
- Dynamic model in Matlab
- Autopilot in dSMOL

Initial conditions:

- Velocity: 0 m/s
- Heading: 0°
- Altitude: 0 m
- Structure: IRIS+

Sample project – simulation

Conclusions

Next steps

Gantt chart

Risk register

Project Number	Project name	Date			
IRP 9	Domain Soecific Language for Dr	13/07/2018			
Student		End user		Project type	
Marcin Biczyski		Programmer - simulation specialist		Small	
Project supervisor			Project sponsor		
Prof. Rafał Żbikowski			MASS		

Number	Status	Category	Risk event	Probability	Impact	Priority	Risk response	Owner
1	Closed	Project management	DSL is developed in a language new to the student. If the programming ability is not sufficient at the start of implementation, other activities may be delayed.	Medium	Medium	Medium	Avoidance - consultations with experts, study based on well-respected sources	Marcin Biczyski
2	Open	Implementation	The first iteration is designed to be very basic. If the work involved is too high, not all proposed features may get implemented in future iterations, making the final DSL not versatile enough for general use.	Low	High	Medium	Mitigation - components' priority analysis, modular approach - outsourcing components	Marcin Biczyski
3	Open	Security	LISP allows for free access to the source code. If not enough care is taken, the DSL may become prone to user errors	Medium	Low	Low	Acceptance - feature not necessary for achieving performance	Marcin Biczyski
4	Open	Delivery	The demo project is complicated. There may not be enough ready-made components or a too much changes may be needed to be able to finish it in time.	Medium	Medium	Medium	Mitigation - Simplification of demo project based on available resources	Marcin Biczyski
5	Open	Delivery	Due to modular nature of the system, invoking specific modules may require a lot of time durning runtime thus slowing down the simulation process. This may result in the optimisation process taking too much time.	High	Medium	Medium	Acceptance - only the proof that the process works as expected is required, not the complete solution	•

Thank you!