Task 2 Report: Predictive Modeling and Performance Evaluation

Objective:

To build binary classification models predicting whether Apple stock's closing price will increase the next day, using engineered technical indicators as features.

Methodology:

- Created a binary target variable:
 - o 1 if next day's closing price is higher than current day's, else 0.
- Selected 10 features from Task 1 technical indicators and returns:
 - o SMA_20, EMA_20, RSI, MACD variants, ATR, OBV, Daily_Return, Log_Return.
- Split data into train (80%) and test (20%) sets, preserving time order (no shuffling).
- Trained two tree-based classifiers:
 - Random Forest (100 trees, max depth 5)
 - XGBoost (100 trees, learning rate 0.05, max depth 5)
- Evaluated using metrics:

Accuracy, Precision, Recall, F1 Score, ROC AUC, Confusion Matrix, ROC Curve.

Results Summary:

Metric	Random Forest	XGBoost
Accuracy	48.97%	48.28%
Precision	72.73%	58.33%
Recall	10.13%	17.72%
F1 Score	17.78%	27.18%
ROC AUC	0.6020	0.4665
CV Accuracy	51.24%	50.40%

- Random Forest achieves higher precision but very low recall, indicating it is conservative in predicting upward movement, missing many positive cases.
- XGBoost shows slightly better recall and F1 score but lower precision and ROC AUC.
- Both models have **accuracy close to 50%**, indicating near-random performance.

Interpretation:

- The predictive performance is weak, suggesting the features and model settings are insufficient for reliable next-day price movement prediction.
- Imbalanced precision and recall highlight a trade-off:

- RF favors fewer false positives (high precision) but misses many true positives (low recall).
- XGB captures more positives but at the cost of false positives.

Recommendations for Improvement:

1. Feature Engineering:

- Incorporate additional features, such as more lagged indicators, volume spikes, or fundamental data.
- Use feature importance analysis to refine feature set.

2. Model Complexity and Hyperparameter Tuning:

- Perform extensive hyperparameter tuning (e.g., grid search or Bayesian optimization).
- Experiment with deeper trees, more estimators, or alternative boosting parameters.

3. Address Class Imbalance:

• Use oversampling (SMOTE) or class-weight adjustments to improve recall.

4. Temporal Validation:

 Implement walk-forward cross-validation to better simulate real trading environment.

5. Alternative Models:

 Explore advanced models like Recurrent Neural Networks (LSTM) to capture temporal dependencies.

6. Predicting Returns Instead of Direction:

Consider regression approaches predicting return magnitude, not just direction.

Visual Results:

