Multivariate Control Charts

Megha Chowdhury

Statistical Quality Control

July 2025

Why Multivariate?

X-bar Chart for X1

X-bar Chart for X2

- Univariate charts monitor each variable separately.
- X2 flags one out-of-control point, but overall, the process seems stable.

Real-World Motivation: Baking Cookies

Scenario: In a bakery, quality control checks:

- Size of cookies (diameter in cm)
- Color (brownness index)
- Moisture content

The Problem:

- These traits are often correlated.
- For example, overbaking reduces size and moisture, but increases color.
- Univariate charts might miss these subtle joint effects.

Solution: A Multivariate Control Chart:

- Looks at all three traits together.
- Catches when all variables are slightly off in the same batch.
- Helps bakers fix oven settings early before batches go to waste.

What Is a Multivariate Control Chart?

The Hotelling T² chart jointly monitors correlated quality variables. **Result:** Subgroups 10 and 20 are out-of-control — missed by univariate charts!

Hotelling's T² Chart

Core Formula

$$T^2 = n(\bar{\mathbf{x}} - \boldsymbol{\mu})' \mathbf{\Sigma}^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu})$$

- x̄: sample mean vector.
- μ : in-control mean vector.
- Σ: in-control covariance matrix.

Visualizing T^2 : The Control Ellipse

- The ellipse shows the joint control region for X1 and X2.
- Points 10 and 20 lie outside the 95% confidence ellipse.
- These would be hard to detect using univariate monitoring.

After Removing Outliers

- Subgroups 10 and 20 were removed from the Phase I analysis.
- New T² chart shows most points in control only subgroup 6 remains a concern.

Limitations of Hotelling's T^2

- Less sensitive to small or gradual shifts.
- Hard to identify which variable triggered the alarm.
- Need complementary methods for early detection.

Solutions to Limitations

- Bonferroni-adjusted confidence intervals.
- Principal Component Control Charts.
- T² Decomposition:

$$d_i = T^2 - T_{(-i)}^2$$

MEWMA: Detecting Small Shifts

- Multivariate Exponentially Weighted Moving Average (MEWMA):
- Uses weighted history: $\mathbf{Z}_i = \lambda \mathbf{X}_i + (1 \lambda) \mathbf{Z}_{i-1}$
- Sensitive to small drifts, ideal for Phase II monitoring.

Control Limit

$$UCL = \chi^2_{1-\alpha,p} \approx 9.21 \ (p = 2, \alpha = 0.01)$$

MEWMA vs. T²: Example

- Simulated 30 observations, small mean shift after observation 15.
- Hotelling's T²: detects large shifts but misses small drifts.
- MEWMA: detects the shift promptly.

Quick Quiz:

Which chart would you choose to detect small drifts in a process?

- A) Hotelling's T²
- B) MEWMA

Conclusion

- Multivariate control charts extend SPC to correlated variables.
- Hotelling's T² for large shifts.
- MEWMA for small, gradual shifts.
- Together, they form a robust monitoring toolkit for modern processes.

Questions

Thank you for your attention! Questions or clarifications?