Fitting mathematical models to biological data using least-squares minimization

Samraat Pawar

Department of Life Sciences (Silwood Park)

Imperial College London

October 28, 2019

OUTLINE

- Why Non-Linear Least Squares regression / fitting?
- The NLLS fitting method
- NLLS in R
- Practicals overview

• These are all good Linear Models (really?!)

- These are all good Linear Models (really?!)
- The data can be modelled (aka "fitted to a mathematical model") as a *linear combination* of *variables* and *coefficients*

- These are all good Linear Models (really?!)
- The data can be modelled (aka "fitted to a mathematical model") as a *linear combination* of *variables* and *coefficients*
- Easily fitted using Ordinary Least Squares (OLS) regression

- These are all good Linear Models (really?!)
- The data can be modelled (aka "fitted to a mathematical model") as a *linear combination* of *variables* and *coefficients*
- Easily fitted using Ordinary Least Squares (OLS) regression
- Linear models can *include curved responses* (e.g. polynomial regression)

- These are all good Linear Models (really?!)
- The data can be modelled (aka "fitted to a mathematical model") as a *linear combination* of *variables* and *coefficients*
- Easily fitted using Ordinary Least Squares (OLS) regression
- Linear models can *include curved responses* (e.g. polynomial regression)
- OK, so then why Non-Linear Least Squares (NLLS) fitting?

• OLS can be used to fit both linear and nonlinear *equations* that *intrinsically linear*, e.g.,

- OLS can be used to fit both linear and nonlinear *equations* that *intrinsically linear*, e.g.,
 - Straight line: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$

- OLS can be used to fit both linear and nonlinear *equations* that *intrinsically linear*, e.g.,
 - Straight line: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
 - Polynomial: $y_i = \exp(\beta_0) + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i$

- OLS can be used to fit both linear and nonlinear *equations* that *intrinsically linear*, e.g.,
 - Straight line: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
 - Polynomial: $y_i = \exp(\beta_0) + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i$
- Indeed, for OLS to work, we need *intrinsic linearity* i.e., the equation to be fitted (model) should be *linear in the parameters*

- OLS can be used to fit both linear and nonlinear *equations* that *intrinsically linear*, e.g.,
 - Straight line: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
 - Polynomial: $y_i = \exp(\beta_0) + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i$
- Indeed, for OLS to work, we need *intrinsic linearity* i.e., the equation to be fitted (model) should be *linear in the parameters*
- Are these models linear in their parameters?

- OLS can be used to fit both linear and nonlinear *equations* that *intrinsically linear*, e.g.,
 - Straight line: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
 - Polynomial: $y_i = \exp(\beta_0) + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i$
- Indeed, for OLS to work, we need *intrinsic linearity* i.e., the equation to be fitted (model) should be *linear in the parameters*
- Are these models linear in their parameters?
 - $\bullet \ y_i = \beta_0 + \beta_1 x_i^{\beta_2} + \varepsilon_i$

- OLS can be used to fit both linear and nonlinear *equations* that *intrinsically linear*, e.g.,
 - Straight line: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
 - Polynomial: $y_i = \exp(\beta_0) + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i$
- Indeed, for OLS to work, we need *intrinsic linearity* i.e., the equation to be fitted (model) should be *linear in the parameters*
- Are these models linear in their parameters?
 - $\bullet \ y_i = \beta_0 + \beta_1 x_i^{\beta_2} + \varepsilon_i$
 - $\bullet \ y_i = \beta_0 e^{\beta_2 x_i} + \varepsilon_i$

- OLS can be used to fit both linear and nonlinear *equations* that *intrinsically linear*, e.g.,
 - Straight line: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
 - Polynomial: $y_i = \exp(\beta_0) + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i$
- Indeed, for OLS to work, we need *intrinsic linearity* i.e., the equation to be fitted (model) should be *linear in the parameters*
- Are these models linear in their parameters?
 - $\bullet \ y_i = \beta_0 + \beta_1 x_i^{\beta_2} + \varepsilon_i$
 - $\bullet \ y_i = \beta_0 e^{\beta_2 x_i} + \varepsilon_i$

- OLS can be used to fit both linear and nonlinear *equations* that *intrinsically linear*, e.g.,
 - Straight line: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
 - Polynomial: $y_i = \exp(\beta_0) + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i$
- Indeed, for OLS to work, we need *intrinsic linearity* i.e., the equation to be fitted (model) should be *linear in the parameters*
- Are these models linear in their parameters?
 - $\bullet \ y_i = \beta_0 + \beta_1 x_i^{\beta_2} + \varepsilon_i$
 - $\bullet \ y_i = \beta_0 e^{\beta_2 x_i} + \varepsilon_i$

NO!

SO WHAT — WHY IS INTRINSIC NON-LINEARITY A PROBLEM?

Recall what the Least Squares method does:

• Consider a predictor *x*, data *y*, *n* observations, and a model that we want to fit to the data:

$$f(x_i, \boldsymbol{\beta}) + \varepsilon_i$$
 where $\boldsymbol{\beta} = (\beta_1, \beta_2, \dots, \beta_k)$ are the model's k parameters

SO WHAT — WHY IS INTRINSIC NON-LINEARITY A PROBLEM?

Recall what the Least Squares method does:

• Consider a predictor *x*, data *y*, *n* observations, and a model that we want to fit to the data:

$$f(x_i, \boldsymbol{\beta}) + \varepsilon_i$$
 where $\boldsymbol{\beta} = (\beta_1, \beta_2, \dots, \beta_k)$ are the model's k parameters

• The objective is to find estimates of values of the k parameters $(\hat{\beta}_j)$ that minimize the sum (S) of squared residuals (r_i) (AKA RSS): $S = \sum_{i=1}^{n} [y_i - f(x_i, \beta)]^2 = \sum_{i=1}^{n} r_i^2$

THE LEAST-SQUARES SOLUTION

OLS minimizes the *sum* of the *squared* residuals

IF THE MODEL IS LINEAR, THE SOLUTION IS EASY USING ALGEBRA

$$y_1 = \beta_0 + \beta_1 x_1 + \frac{\varepsilon_i}{\varepsilon_i}$$

$$9.50 = 5 + 4 \times 1 + 0.50$$

 $11.00 = 5 + 4 \times 2 - 2.00$
 $19.58 = 5 + 4 \times 3 + 2.58$
 $20.00 = 5 + 4 \times 4 - 1.00$

$$\beta_0 = 5; \beta_1 = 4$$

INTRINSIC NON-LINEARITY DOES NOT ALLOW A ALGEBRAIC SOLUTION

• So, then, in an intrinsically non-linear model such as $y_i = \beta_0 e^{\beta_2 x_i} + \varepsilon_i$ the derivatives $\frac{\partial r_i}{\partial \beta_i}$ are naughty

INTRINSIC NON-LINEARITY DOES NOT ALLOW A ALGEBRAIC SOLUTION

- So, then, in an intrinsically non-linear model such as $y_i = \beta_0 e^{\beta_2 x_i} + \varepsilon_i$ the derivatives $\frac{\partial r_i}{\partial \beta_i}$ are naughty
- That is, they are functions of both x and the parameters β_j , so the gradient equations do not have a solution like the OLS case

INTRINSIC NON-LINEARITY DOES NOT ALLOW A ALGEBRAIC SOLUTION

- So, then, in an intrinsically non-linear model such as $y_i = \beta_0 e^{\beta_2 x_i} + \varepsilon_i$ the derivatives $\frac{\partial r_i}{\partial \beta_i}$ are naughty
- That is, they are functions of both x and the parameters β_j , so the gradient equations do not have a solution like the OLS case
- ullet So the nice trick of solving Y=Xeta+arepsilon is impossible *mathematically*

But we can use brute-force computation to find close-to-optimal least squares minimization!

• Choose initial values for the parameters we want to estimate (β_i 's)

But we can use brute-force computation to find close-to-optimal least squares minimization!

- ullet Choose initial values for the parameters we want to estimate (eta_j 's)
- Then, "refine" the parameters *iteratively* by calculating $\frac{\partial r_i}{\partial \beta_j}$ approximately this approximation is the *Jacobian* (the gradient), which is a matrix of the $\frac{\partial r_i}{\partial \beta_i}$'s

But we can use brute-force computation to find close-to-optimal least squares minimization!

- Choose initial values for the parameters we want to estimate (β_i 's)
- Then, "refine" the parameters *iteratively* by calculating $\frac{\partial r_i}{\partial \beta_j}$ approximately this approximation is the *Jacobian* (the gradient), which is a matrix of the $\frac{\partial r_i}{\partial \beta_i}$'s
- Whether a refinement has taken place in any step of the iteration is determined by re-calculating the residuals at that step

But we can use brute-force computation to find close-to-optimal least squares minimization!

- ullet Choose initial values for the parameters we want to estimate (eta_j 's)
- Then, "refine" the parameters *iteratively* by calculating $\frac{\partial r_i}{\partial \beta_j}$ approximately this approximation is the *Jacobian* (the gradient), which is a matrix of the $\frac{\partial r_i}{\partial \beta_i}$'s
- Whether a refinement has taken place in any step of the iteration is determined by re-calculating the residuals at that step
- Eventually, if it all goes well, we find a combination of β_j 's that is *very close* to the desired solution $\frac{\partial S}{\partial \beta_i} = 0, j = 0, 1, 2, \dots, k$

 Many observations in biology are just not well-fitted by a linear model

- Many observations in biology are just not well-fitted by a linear model
- That is, the underlying biological phenomena/phenomenon are not well-described by a linear equation

- Many observations in biology are just not well-fitted by a linear model
- That is, the underlying biological phenomena/phenomenon are not well-described by a linear equation
- Examples:

- Many observations in biology are just not well-fitted by a linear model
- That is, the underlying biological phenomena/phenomenon are not well-described by a linear equation
- Examples:
 - Logistic population growth

- Many observations in biology are just not well-fitted by a linear model
- That is, the underlying biological phenomena/phenomenon are not well-described by a linear equation
- Examples:
 - Logistic population growth
 - Allometric growth

- Many observations in biology are just *not* well-fitted by a linear model
- That is, the underlying biological phenomena/phenomenon are not well-described by a linear equation
- Examples:
 - Logistic population growth
 - Allometric growth
 - Michaelis-Menten biochemical kinetics (two parameters V_{\max} and K_m : $v = \frac{V_{\max}[S]}{K_m + [S]}$

- Many observations in biology are just *not* well-fitted by a linear model
- That is, the underlying biological phenomena/phenomenon are not well-described by a linear equation
- Examples:
 - Logistic population growth
 - Allometric growth
 - Michaelis-Menten biochemical kinetics (two parameters V_{\max} and K_m : $v = \frac{V_{\max}[S]}{K_m + |S|}$
 - Responses of metabolic rates to changing temperature

- Many observations in biology are just not well-fitted by a linear model
- That is, the underlying biological phenomena/phenomenon are not well-described by a linear equation
- Examples:
 - Logistic population growth
 - Allometric growth
 - Michaelis-Menten biochemical kinetics (two parameters V_{\max} and K_m : $v = \frac{V_{\max}[S]}{K_m + |S|}$
 - Responses of metabolic rates to changing temperature
 - Consumer-Resource (e.g., predator-prey) functional responses

- Many observations in biology are just not well-fitted by a linear model
- That is, the underlying biological phenomena/phenomenon are not well-described by a linear equation
- Examples:
 - Logistic population growth
 - Allometric growth
 - Michaelis-Menten biochemical kinetics (two parameters V_{\max} and K_m : $v = \frac{V_{\max}[S]}{K_m + |S|}$
 - Responses of metabolic rates to changing temperature
 - Consumer-Resource (e.g., predator-prey) functional responses
 - Time-series data (e.g., fitting a sinusoidal function)

- Many observations in biology are just not well-fitted by a linear model
- That is, the underlying biological phenomena/phenomenon are not well-described by a linear equation
- Examples:
 - Logistic population growth
 - Allometric growth
 - Michaelis-Menten biochemical kinetics (two parameters V_{\max} and K_m : $v = \frac{V_{\max}[S]}{K_m + |S|}$
 - Responses of metabolic rates to changing temperature
 - Consumer-Resource (e.g., predator-prey) functional responses
 - Time-series data (e.g., fitting a sinusoidal function)
- Can you think of some examples?

$$B = B_0 e^{-\frac{E}{kT}} f(T, T_{pk}, E_D)$$

T = temperature(K)

 $k = \text{Boltzmann constant (eV K}^{-1})$

E = Activation energy (eV)

 T_{pk} = Temperature of peak performance

 E_D = Deactivation energy (eV)

(J H vant Hoff 1884, S Arrhenius 1889)

$$B = B_0 e^{-\frac{E}{kT}} f(T, T_{pk}, E_D)$$

T = temperature (K)

 $k = \text{Boltzmann constant (eV K}^{-1})$

E = Activation energy (eV)

 T_{pk} = Temperature of peak performance

 \vec{E}_D = Deactivation energy (eV)

(J H vant Hoff 1884, S Arrhenius 1889)

- Surely there is more to thermal responses?
 - Oxygen limitation
 - Complexity of metabolic network
 - Hormonal regulation

$$B = B_0 e^{-\frac{E}{kT}} f(T, T_{pk}, E_D)$$

T = temperature(K)

 $k = \text{Boltzmann constant (eV K}^{-1})$

E = Activation energy (eV)

 T_{pk} = Temperature of peak performance

 \vec{E}_D = Deactivation energy (eV)

(J H vant Hoff 1884, S Arrhenius 1889)

- Surely there is more to thermal responses?
 - Oxygen limitation
 - Complexity of metabolic network
 - Hormonal regulation
- What about alternative models?

EXAMPLE: FUNCTIONAL RESPONSES

$$f(x_R) = rac{ax_R^{q+1}}{1+hax_R^{q+1}}$$
 (Holling, 1959)

 x_R = Resource density (Mass / Area or Volume)

a = Search rate (Area or Volume / Time)

h = Handling time

q =Shape parameter (dimensionless)

Note that:

- NLLS fitting can yield h < 0, q < 0, or both
- h < 0 is biologically impossible but indicates an upward curving response
- q < 0 is biologically unlikely as it indicates a decline in search rate with resource density (but is useful as a measure of deviation away from a type III response)

So the general procedure is:

• Start with an initial value for each parameter in the model

- Start with an initial value for each parameter in the model
- Generate the curve defined by the initial values

- Start with an initial value for each parameter in the model
- Generate the curve defined by the initial values
- Ocalculate the residual sum-of-squares (rss)

- Start with an initial value for each parameter in the model
- Generate the curve defined by the initial values
- Calculate the residual sum-of-squares (rss)
- Adjust the parameters to make the curve come closer to the data points. This the tricky part — more on this in the next slide

- Start with an initial value for each parameter in the model
- Generate the curve defined by the initial values
- Calculate the residual sum-of-squares (rss)
- Adjust the parameters to make the curve come closer to the data points. This the tricky part — more on this in the next slide
- Adjust the parameters again so that the curve comes even closer to the points (rss decreases)

- Start with an initial value for each parameter in the model
- Generate the curve defined by the initial values
- Calculate the residual sum-of-squares (rss)
- Adjust the parameters to make the curve come closer to the data points. This the tricky part — more on this in the next slide
- Adjust the parameters again so that the curve comes even closer to the points (rss decreases)
- Repeat 4–5

- Start with an initial value for each parameter in the model
- Generate the curve defined by the initial values
- Calculate the residual sum-of-squares (rss)
- Adjust the parameters to make the curve come closer to the data points. This the tricky part — more on this in the next slide
- Adjust the parameters again so that the curve comes even closer to the points (rss decreases)
- **6** Repeat 4–5
- Stop simulations when the adjustments make virtually no difference to the rss

The tricky part — adjust parameters to make curve come closer to the data points (step 4) has two main algorithms that you can choose between:

• The Gauss-Newton algorithm is the default in the nls package (part of the stats base package) — good in many cases, but doesn't work very well if the model is mathematically weird (the optimization landscape is difficult) and the starting values for parameters are far-off-optimal

The tricky part — adjust parameters to make curve come closer to the data points (step 4) has two main algorithms that you can choose between:

- The Gauss-Newton algorithm is the default in the nls package (part of the stats base package) — good in many cases, but doesn't work very well if the model is mathematically weird (the optimization landscape is difficult) and the starting values for parameters are far-off-optimal
- The Levenberg-Marquardt (LM) switches switches between Gauss-Newton and "gradient descent" and is more robust against starting values that are far-off-optimal available in R through the the minpack.lm package

http://cran.r-project.org/web/packages/minpack.lm

The tricky part — adjust parameters to make curve come closer to the data points (step 4) has two main algorithms that you can choose between:

- The Gauss-Newton algorithm is the default in the nls package (part of the stats base package) — good in many cases, but doesn't work very well if the model is mathematically weird (the optimization landscape is difficult) and the starting values for parameters are far-off-optimal
- The Levenberg-Marquardt (LM) switches switches between Gauss-Newton and "gradient descent" and is more robust against starting values that are far-off-optimal available in R through the the minpack.lm package
 - http://cran.r-project.org/web/packages/minpack.lm
- The command is nlsLM

 Once the algorithm as converged (hopefully – but you may be surprised how well it usually works), you need to get the goodness of fit measures

- Once the algorithm as converged (hopefully but you may be surprised how well it usually works), you need to get the goodness of fit measures
- First, of course, examine the fits visually

- Once the algorithm as converged (hopefully but you may be surprised how well it usually works), you need to get the goodness of fit measures
- First, of course, examine the fits visually
- Also, report the best-fit results, including:

- Once the algorithm as converged (hopefully but you may be surprised how well it usually works), you need to get the goodness of fit measures
- First, of course, examine the fits visually
- Also, report the best-fit results, including:
 - Sums of deviations of the data points from the final model fit (final RSS)

- Once the algorithm as converged (hopefully but you may be surprised how well it usually works), you need to get the goodness of fit measures
- First, of course, examine the fits visually
- Also, report the best-fit results, including:
 - Sums of deviations of the data points from the final model fit (final RSS)
 - R²

- Once the algorithm as converged (hopefully but you may be surprised how well it usually works), you need to get the goodness of fit measures
- First, of course, examine the fits visually
- Also, report the best-fit results, including:
 - Sums of deviations of the data points from the final model fit (final RSS)
 - R²
 - Estimated coefficients

- Once the algorithm as converged (hopefully but you may be surprised how well it usually works), you need to get the goodness of fit measures
- First, of course, examine the fits visually
- Also, report the best-fit results, including:
 - Sums of deviations of the data points from the final model fit (final RSS)
 - R²
 - Estimated coefficients
 - For each coefficient, standard error (can be used for CI's), t-statistic and corresponding (two-sided) p-value

- Once the algorithm as converged (hopefully but you may be surprised how well it usually works), you need to get the goodness of fit measures
- First, of course, examine the fits visually
- Also, report the best-fit results, including:
 - Sums of deviations of the data points from the final model fit (final RSS)
 - R²
 - Estimated coefficients
 - For each coefficient, standard error (can be used for CI's), t-statistic and corresponding (two-sided) p-value
- The function summary.nls will give you all these measures

- Once the algorithm as converged (hopefully but you may be surprised how well it usually works), you need to get the goodness of fit measures
- First, of course, examine the fits visually
- Also, report the best-fit results, including:
 - Sums of deviations of the data points from the final model fit (final RSS)
 - R²
 - Estimated coefficients
 - For each coefficient, standard error (can be used for CI's), t-statistic and corresponding (two-sided) p-value
- The function summary.nls will give you all these measures
- Remember, the precise parameter values you obtain will depend in part on the initial values chosen and the convergence criteria

- Once the algorithm as converged (hopefully but you may be surprised how well it usually works), you need to get the goodness of fit measures
- First, of course, examine the fits visually
- Also, report the best-fit results, including:
 - Sums of deviations of the data points from the final model fit (final RSS)
 - R²
 - Estimated coefficients
 - For each coefficient, standard error (can be used for CI's), t-statistic and corresponding (two-sided) p-value
- The function summary.nls will give you all these measures
- Remember, the precise parameter values you obtain will depend in part on the initial values chosen and the convergence criteria
- You may also want to compare multiple models.

NLLS-regression has all the assumptions of OLS-regression:

• No (in practice, minimal) measurement error in explanatory variable (*x*-axis variable)

NLLS-regression has all the assumptions of OLS-regression:

- No (in practice, minimal) measurement error in explanatory variable (*x*-axis variable)
- Data have constant normal variance errors in the *y*-axis are homogeneously distributed over the *x*-axis range

NLLS-regression has all the assumptions of OLS-regression:

- No (in practice, minimal) measurement error in explanatory variable (*x*-axis variable)
- Data have constant normal variance errors in the *y*-axis are homogeneously distributed over the *x*-axis range
- The measurement/observation error distribution is Gaussian for example, what would the error distribution of this non-linear model be: $y_i = \beta_0 e^{\beta_2 x_i} + \varepsilon_i$

NLLS-regression has all the assumptions of OLS-regression:

- No (in practice, minimal) measurement error in explanatory variable (*x*-axis variable)
- Data have constant normal variance errors in the *y*-axis are homogeneously distributed over the *x*-axis range
- The measurement/observation error distribution is Gaussian for example, what would the error distribution of this non-linear model be: $y_i = \beta_0 e^{\beta_2 x_i} + \varepsilon_i$
- What if the errors are not normal? use Maximum Likelihood or Bayesian methods instead.

MORE NLLS TIPS

• You can use mixed-effects modelling with NLLS in R; the package is nlme https://stat.ethz.ch/R-manual/R-devel/library/nlme/html/nlme.html (You are probably stuck with the Gauss-Newton algorithm with nlme though)

MORE NLLS TIPS

- You can use mixed-effects modelling with NLLS in R; the package is nlme https://stat.ethz.ch/R-manual/R-devel/library/nlme/html/nlme.html (You are probably stuck with the Gauss-Newton algorithm with nlme though)
- You can also use Python look up lmfit https://lmfit.github.io/lmfit-py/index.html. python seems to have a better Levenberg-Marqualdt implementation than R

READINGS AND RESOURCES

- Motulsky, Harvey, and Arthur Christopoulos. Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. OUP USA, 2004.
- Johnson, J. B. & Omland, K. S. 2004 Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108.

• Our model is $f(x_i, \beta) + \varepsilon_i$

- Our model is $f(x_i, \beta) + \varepsilon_i$
- We want to find estimates of values of the parameters $(\hat{\beta}_j)$ that *minimize* the sum (*S*) of squared residuals (r_i) (AKA "RSS") $S = \sum_{i=1}^{n} [y_i f(x_i, \beta)]^2 = \sum_{i=1}^{n} r_i^2$

- Our model is $f(x_i, \beta) + \varepsilon_i$
- We want to find estimates of values of the parameters $(\hat{\beta}_j)$ that *minimize* the sum (*S*) of squared residuals (r_i) (AKA "RSS") $S = \sum_{i=1}^{n} [y_i f(x_i, \beta)]^2 = \sum_{i=1}^{n} r_i^2$
- For this we can solve $\frac{\partial S}{\partial \beta_j} = 0, j = 0, 1, 2, \dots, k$ to find the *minimum*

- Our model is $f(x_i, \beta) + \varepsilon_i$
- We want to find estimates of values of the parameters $(\hat{\beta}_j)$ that *minimize* the sum (*S*) of squared residuals (r_i) (AKA "RSS") $S = \sum_{i=1}^{n} |y_i f(x_i, \beta)|^2 = \sum_{i=1}^{n} r_i^2$
- For this we can solve $\frac{\partial S}{\partial \beta_i} = 0, j = 0, 1, 2, \dots, k$ to find the *minimum*
- That is, we need to solve $\frac{\partial \sum_{i=1}^{n} r_i^2}{\partial \beta_i} = 0$

- Our model is $f(x_i, \beta) + \varepsilon_i$
- We want to find estimates of values of the parameters $(\hat{\beta}_j)$ that *minimize* the sum (*S*) of squared residuals (r_i) (AKA "RSS") $S = \sum_{i=1}^{n} [y_i f(x_i, \beta)]^2 = \sum_{i=1}^{n} r_i^2$
- For this we can solve $\frac{\partial S}{\partial \beta_i} = 0, j = 0, 1, 2, \dots, k$ to find the *minimum*
- That is, we need to solve $\frac{\partial \sum_{i=1}^{n} r_i^2}{\partial \beta_i} = 0$
- Or, $2\sum_{i=1}^{n} r_i \frac{\partial r_i}{\partial \beta_j} = 0$

• Thus, solving $2\sum_{i=1}^{n} r_i \frac{\partial r_i}{\partial \beta_j} = 0$ boils down to finding the "gradient" $\frac{\partial r_i}{\partial \beta_i}$

- Thus, solving $2\sum_{i=1}^{n} r_i \frac{\partial r_i}{\partial \beta_i} = 0$ boils down to finding the "gradient" $\frac{\partial r_i}{\partial \beta_i}$
- This is not a problem in linear models, because this gradient is fully solvable as the equation is *intrinsically linear*

- Thus, solving $2\sum_{i=1}^{n} r_i \frac{\partial r_i}{\partial \beta_i} = 0$ boils down to finding the "gradient" $\frac{\partial r_i}{\partial \beta_i}$
- This is not a problem in linear models, because this gradient is fully solvable as the equation is *intrinsically linear*
- That is, the solution of $\frac{\partial r_i}{\partial \beta_j}$ is simple (enough)

• For example, if $f(x_i, \beta) + \varepsilon_i = \beta_0 + \beta_1 x_i + \varepsilon_i$

- For example, if $f(x_i, \beta) + \varepsilon_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
- That is, our model is $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ (Linear Regression)

- For example, if $f(x_i, \beta) + \varepsilon_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
- That is, our model is $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ (Linear Regression)
- Then we want to solve $\frac{\partial S}{\partial \beta_0} = \sum_{i=1}^n \frac{\partial [y_i - (\beta_0 + \beta_1 x_i)]^2}{\partial \beta_0} = 0$

$$\frac{\partial S}{\partial \beta_1} = \sum_{i=1}^n \frac{\partial [y_i - (\beta_0 + \beta_1 x_i)]^2}{\partial \beta_1} = 0$$

• And, solving

$$\frac{\partial S}{\partial \beta_0} = \sum_{i=1}^n \frac{\partial [y_i - (\beta_0 + \beta_1 x_i)]^2}{\partial \beta_0} = 0$$
$$\frac{\partial S}{\partial \beta_1} = \sum_{i=1}^n \frac{\partial [y_i - (\beta_0 + \beta_1 x_i)]^2}{\partial \beta_1} = 0$$

just boils down to solving two simultaneous equations because $\frac{\partial r_i}{\partial \beta_i}$ is simple *because* the model is intrinsically linear:

$$-n\beta_0 + \sum_{i=1}^n y_i + \beta_1 \sum_{i=1}^n x_i = 0$$

$$\sum_{i=1}^n x_i y_i - \beta_0 \sum_{i=1}^n x_i + \beta_1 \sum_{i=1}^n x_i^2 = 0$$

• And, solving

$$\frac{\partial S}{\partial \beta_0} = \sum_{i=1}^n \frac{\partial [y_i - (\beta_0 + \beta_1 x_i)]^2}{\partial \beta_0} = 0$$
$$\frac{\partial S}{\partial \beta_1} = \sum_{i=1}^n \frac{\partial [y_i - (\beta_0 + \beta_1 x_i)]^2}{\partial \beta_1} = 0$$

just boils down to solving two simultaneous equations because $\frac{\partial r_i}{\partial \beta_i}$ is simple *because* the model is intrinsically linear:

$$-n\beta_0 + \sum_{i=1}^n y_i + \beta_1 \sum_{i=1}^n x_i = 0$$

$$\sum_{i=1}^n x_i y_i - \beta_0 \sum_{i=1}^n x_i + \beta_1 \sum_{i=1}^n x_i^2 = 0$$

• That is, we need to solve $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ (this is what R solves when you use lm())