

SÍLABO SISTEMAS DE GESTIÓN DE VUELO FMS

ÁREA CURRICULAR: GESTIÓN AERONÁUTICA

CICLO: V ELECTIVOS CERTIFICACIÓN

SEMESTRE ACADÉMICO: 2017-I

I. CÓDIGO DEL CURSO : 091372E1030

II. CRÉDITOS : 03

III. REQUÍSITOS : 09135704040 Operaciones de Piloto Comercial

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

Este curso enseña la teoría y los principios que rigen el vuelo con piloto automático y vuelo con sistemas de gestión (FMC). Los estudiantes aplicarán la teoría y los principios mediante la demostración de buenas decisiones y criterio en los procesos con piloto automático y simuladores FMS / PC. Las siguientes unidades I) Programación del garmin 1000 FMS & MFD, II) Multi crew enviroment, III) boeing mode control pannel (mcp) & airbus flight control unit (fcu), IV) boeing flight management computer (fmc) & airbus multi function control display unit (mcdu)

VI.FUENTES DE CONSULTA:

Bibliográficas

- · Airbus Industries Manuales 2014
- · FMS Pegasus Manual, by Boeing 2013
- · Electronic Flight Management Systems, by Beneight T. 2015

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: PROGRAMACION DEL GARMIN 1000 FMS & MFD

OBJETIVOS DE APRENDIZAJE:

Aprender el uso y programación del G-1000

PRIMERA SEMANA

Primera sesión:

Garmin 1000 Sistema de Gestión de Vuelo (FMS), Pantalla de Funciones Múltiples (MFD).

Segunda session:

Waypoints, Air Spaces, Direct-to-Navigation.

SEGUNDA SEMANA

Primera sesión:

Planeamiento de Vuelo, creación y edición.

Segunda sesión:

Navegación Vertical, Procedimientos, Operaciones Anormales

UNIDAD II: MULTI CREW ENVIROMENT

OBJETIVOS DE APRENDIZAJE:

 Aprender los conocimientos y fundamentos del ambiente de cabina con tripulación múltiple así como el uso de flujos y checklists

TERCERA SEMANA

Primera sesión:

Checklists, Áreas de Responsabilidad.

Segunda sesión:

Flujos, Perfiles

UNIDAD III: BOEING MODE CONTROL PANNEL (MCP) & AIRBUS FLIGHT CONTROL UNIT (FCU)

OBJETIVOS DE APRENDIZAJE:

• Teoría del sistema automático de vuelo de los Boeing y Airbus, y de los diferentes modos de operación del MCP de Boeing y el FCU de Airbus.

CUARTA SEMANA

Primera sesión:

Auto Flight Sistem, Boeing & Airbus

Segunda sesión:

Boeing Mode Control Panel - Flight Mode Annunciations (MCP-FMA)

QUINTA SEMANA

Primera sesión:

Autopilot- LNAV-Thrust Management Computers

Segunda sesion:

Autopilot-VNAV- Autoland

SEXTA SEMANA

Primera sesión:

Autopilot/Autothrottle/MCP/FMA Review

Segunda sesión:

Airbus Flight Control Unit - Flight Mode Annunciations (FCU-FMA)

SÉPTIMA SEMANA

Primera sesión:

Autopilot- LNAV-Thrust Management Computers

Segunda sesión

Autopilot-VNAV- Autoland

OCTAVA SEMANA

Exámen parcial

UNIDAD IV: BOEING FLIGHT MANAGEMENT COMPUTER (FMC) & AIRBUS MULTI FUNCTION CONTROL DISPLAY UNIT (MCDU)

OBJETIVOS DE APRENDIZAJE:

- Teoría y fundamentos del FMS de Boeing y MCDU de Airbus, así como el uso de los diferentes modos de operación.
- Conocer cada una de las características operativas o de los 2 tipos de aviones comerciales producidas por los 2 fabricantes de aviones más grandes del mundo.

NOVENA SEMANA

Primera sesión:

Intro to Flight Management Computers

Segunda session:

Flight Plans/ Ident/Position Initialization

DÉCIMA SEMANA

Primera sesión:

Route Page-Departure/Arrivals

Segunda sesión:

Performance /VNAV/ Winds

UNDÉCIMA SEMANA

Primera sesión:

Progress Page/RNP

Segunda session:

FMS Preflight and Departures

DUODÉCIMA SEMANA

Primera sesión:

LNAV Route Changes/ Waypoints

Segunda session:

LNAV and VNAV changes

DÉCIMOTERCERA SEMANA

Primera sesión:

Autopilot/Autothrottle/FCU/FMA Review

Segunda sesión:

Airbus Differences

DÉCIMOCUARTA SEMANA

Primera sesión:

Boeing Differences

Segunda sesión:

Boeing Differences

DÉCIMAQUINTA SEMANA

Primera sesión:

Runway Incursion Avoidance

Segunda sesión:

Runway IncursionAvoidance

DÉCIMASEXTA SEMANA

Exámen final

DECIMASEPTIMA SEMANA

Entrega promedios finales y el acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL:

a) Matemática y Ciencias Básicas
b) Tópicos de Ciencias Aeronáuticas
c) Educación General

IX. PROCEDIMIENTOS DIDÁCTICOS:

- Método Expositivo Interactivo. Disertación docente, exposición del estudiante. trabajo de investigación.
- **Método de Discusión Guiada**. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- **Método de Demostración Ejecución**. Se utiliza para ejecutar, demostrar, practicar y retroalimentar lo expuesto.

X. MEDIOS Y MATERIALES:

• Equipos: micrófono, multimedia, ecran.

• **Materiales:** texto base, separatas, revistas especializadas, textos complementarios, direcciones electrónicas, pizarra, tiza y plumones.

XI. EVALUACIÓN:

El promedio final se obtiene del modo siguiente:

PF = (2*PE+EP+EF)/4 PE = ((P1+P2+P3+P4-MN)/3 + W1) /2

EP = Examen Parcial

EF = Examen Final

PE = Promedio de evaluaciones

P1...P4 = Prácticas Calificadas

MN = Menor nota de prácticas calificadas

W1 = Nota de Trabajo Final

XII. HORAS, SESIONES, DURACIÓN:

a) Horas de clase:

Teoría	Práctica	Laboratorio
3	0	0

- b) Sesiones por semana: dos sesiones por semana.
- c) **Duración**: 3 horas académicas de 45 minutos

XIII. INSTRUCCIÓN A CARGO:

Prof. Gabriel Díaz Tejada

XIV. FECHA

La Molina, marzo de 2017.