Aufgabe 1

- a) Das Kristallsystem ist ein hcp-Gitter.
- b) Eine Fehlstelle befindet sich bei $\vec{x}=(2,0,2)^T$. Die neuen Koordinaten in der Basis $\{\vec{a}_1,\vec{a}_2,\vec{a}_3\}$ sollen ohne Matrix Inversion gefunden werden. Das Problem lässt sich als Lineares Gleichungssystem darstellen in der Form $A \cdot \vec{x}' = \vec{x}$.

Die Matrix $A = \{\vec{a}_1, \vec{a}_2, \vec{a}_3\}$ lässt sich in dafür in eine obere und untere Dreiecksmatrix aufteilen. Die obere Dreiecksmatrix U ergibt sich somit zu

$$U = \begin{pmatrix} 0.866025 & 0.866025 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Die dazugehörige untere Dreiecksmatrix L ist dann

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 0.57735 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Die Pivoting Matrix P ergibt sich zu

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Die Matrix Alässt sich daraus mit dem Formalismus $A = P^{-1} \cdot L \cdot R$ rekonstruieren zu

$$A = \begin{pmatrix} 0.5 & -0.5 & 0 \\ 0.866025 & 0.866025 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Der resultierende neue Vektor \vec{x}' ergibt sich mit der LU-Zerlegung zu $\vec{x}' = \begin{pmatrix} 2 \\ -2 \\ 2 \end{pmatrix}$.

c) Eine weitere Fehlstelle liegt bei $\vec{y} = (1, 2\sqrt{3}, 3)^T$. Um die Koordinate in das neue System zu transformieren muss nicht alles erneut berechnet werden. Die Matrizen L, U und P sind genau die gleichen und nur der Vektor x muss ersetzt werden. $P \cdot \vec{y} = \vec{y'}$ ist eine $\mathcal{O}(n)$ Operation, denn es ist nur ein Umsortieren. Es wird $U \cdot \vec{x} = \vec{c}$ definiert. Es gilt $L \cdot \vec{c} = \vec{b'}$. Damit bekommen wir durch die untere Dreiecksmatrixform von L die Rekursionsgleichung

$$c_j = b_j' - \sum_{i=1}^{j-1} (L_{j,i} \cdot c_i)$$

1

mit $L_{i,i}=1$. Damit ergibt sich für jedes c_j eine Komplexität von $\mathcal{O}(j)$, das heißt für alle c_j ergibt sich dann $\mathcal{O}(n^2)$. Analog zum eben beschriebenen Gleichungssystem muss nun das System $U \cdot \vec{x} = \vec{c}$ unter Ausnutzung, dass U eine obere Dreiecksmatrix ist, gelöst werden. Dafür ergibt sich eine Rekursionsformel mit einer Komplexität von $\mathcal{O}(n^2)$.

Insgesamt ergibt sich eine Komplexität von $\mathcal{O}(n^2)$ für das Vorwärts- und Rückwärtseinsetzen. Im Vergleich dazu hat das Gauß-Verfahren eine Komplexität von $\mathcal{O}(n^3)$.

Der resultierende neue Vektor \vec{y}' ergibt sich mit der LU-Zerlegung zu $\vec{y}' = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix}$.

d) Die Resultate sind dieselben. Der Unterschied liegt nur in den Matrizen P, L und U. Die sind permutiert. Die neuen Matrizen ergeben sich zu

$$P = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, L = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -0.577\,35 & 1 \end{pmatrix}, U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.866\,025 & 0.866\,025 \\ 0 & 0 & 1 \end{pmatrix}.$$

e) Wären die primitiven Gittervektoren paarweise orthogonal, wäre die Invertierung nur eine Transponierung und die Berechnung würde sich auf ein lineares Problem $\mathcal{O}(n)$ reduzieren.

Aufgabe 2

a) Es ist

$$\begin{split} R &= \sum_i (mx_i + n - y_i)^2 = \begin{pmatrix} mx_0 + n - y_0 \\ mx_1 + n - y_1 \\ \vdots \\ mx_n + n - y_n \end{pmatrix}^2 = \left(\underbrace{\begin{pmatrix} x_0 & 1 \\ x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix}}_{\tilde{M}} \cdot \underbrace{\begin{pmatrix} m \\ n \end{pmatrix}}_{\tilde{a}} - \underbrace{\begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}}_{\tilde{y}} \right)^2 \\ &= (\tilde{M}\vec{a} - \vec{y})^2 = (\tilde{M}\vec{a} - \vec{y})^T \cdot (\tilde{M}\vec{a} - \vec{y}). \end{split}$$

Der Vektor \vec{a} soll nun so eingestellt werden, dass R minimal wird. Liegen die Punkte genau auf einer Geraden, so kann da Problem exakt gelöst werden und die Lösung des überbestimmten Gleichungssystems ist $\tilde{M}\vec{a} - \vec{y}$, wobei R = 0 ist.

b) Ist das überbestimmte Problem nicht zu lösen, so lässt sich jedoch R durch die Lösung eines quadratischen Gleichungssystems minimieren, dazu muss:

$$\begin{split} \frac{\partial R}{\partial \vec{a}} &= 2(\tilde{M}\vec{a} - \vec{y})^T \tilde{M} = 2(\tilde{M}^T \tilde{M}\vec{a} - \tilde{M}^T \vec{y})^T \stackrel{!}{=} 0 \\ &\Rightarrow \tilde{M}^T \tilde{M}\vec{a} - \tilde{M}^T \vec{y} = 0 \Leftrightarrow \underbrace{\tilde{M}^T \tilde{M}\vec{a} = \tilde{M}^T \vec{y}}_{\text{Quadr. LGS}} \end{split}$$

Dieses System kann nun numerisch gelöst werden.

c) Das Problem wird numerisch analog zu Aufgabe 1 gelöst. Der Lösungsvektor ergibt sich zu

$$\vec{a} = \begin{pmatrix} 0.96 \\ 2.66 \end{pmatrix}.$$

d) Die Datenpunkte und die Ausgleichsgerade sind in Abb. 1 graphisch dargestellt.

Abbildung 1: Das Ergebnis der Ausgleichsrechnung.