Database Systems Relational Model

Prof. Dr. Agnès Voisard Muhammed-Ugur Karagülle

Institute of Computer Science, Databases and Information Systems Group

Fraunhofer FOKUS

2025

Notes

Introduction Concents Constraints FR and Relational Model Remarks Questions

Notes

Introduction Concents Constraints FR and Relational Model Remarks Questions

- 1 Introduction
- 2 Concepts
- 3 Constraints
- 4 ER and Relational Model
- **5** Remarks
- **6** Questions

The relational model

Introduction Concepts Constraints ER and Relational Model Remarks Questions

- Introduced by Codd in 1970
- Based on a simple concept: relation
- Solid theoretical foundations
- ▶ Supports powerful yet simple and declarative query languages

Concepts

HOE

Introduction Concepts Constraints ER and Relational Model Remarks Questions

Database: collection of relations

Relation: resembles a table

Example:

IO I IODD I IOIGIOII			
зву	PersonName	Age	HobbyName
	Jane	24	Fly fishing
	Melony	25	Singing
	Brian	29	Tennis
	Brian	29	Jogging
	Charlie	31	Dancing
	Steve	24	Singing

- ► Row: **tuple**; order of attributes matters
- Header: attribute. Has a certain type. All values in a column have a certain type.
- Data type describing the types of values of each column: domain.

Definition:

- A domain D is a set of atomic values.
- ▶ Atomic value: An indivisible unit within a domain.

Examples of Domains:

- \blacktriangleright $\{0,1\}$: Binary digits.
- N: Set of natural numbers.
- Strings: General set of strings, set of strings of length 12.
- ▶ Names: Set of names of individuals.
- Hobbies: Set of hobbies.
- Social Security Numbers: Set of 9-digit U.S. social security numbers.
- Employee Ages: Range of possible ages for employees, typically between 16 and 80.
- ► Academic Departments: Specific fields such as Linguistics, Mathematics, Economics, Physics, Computer Science.

Data type or format associated with a domain.

Example:

Data type for Employee-ages: integer number between 16 and 80.

For Academic-departments: set of all character strings representing valid departments, etc.

=> Domain: name, data type

Example:

FamilyName, string(20)

Attribute A_i

- ► Takes its values in a domain called domain of A_i, denoted by dom(A_i).
- Several attributes can have the same domain.

A relation schema R

- Denoted by R(A₁, A₂, ... Aₙ)
 R: relation name and A₁, A₂, ... Aₙ: list of attributes.
- Used to describe a relation.
- Degree (arity) of a relation: number of attributes of its relation schema.

2 relation schemas:

HOBBY(PersonName, Age, HobbyName)
dom(PersonName) = Names

STUDENT (Name, SSN, HomePhone, Address, OfficePhone, Age, AverageGrade)

dom(Name) = Names,
dom(SSN) = Social-security-numbers, ...

Relation (or **relation instance**) r of the relation schema $R(A_1, A_2, ..., A_n)$ denoted by r(R):

set of *n*-tuples
$$r = \{t_1, t_2, ..., t_m\}$$
.

Each *n*-tuple: ordered list of values $t = \langle v_1, v_2, \dots, v_n \rangle$, where each value v_i is an element of $dom(A_i)$ or a special null value.

Relation (cont'd)

Introduction Concepts Constraints ER and Relational Model Remarks Questions

Relation intension: schema R

Relation extension (state): relation instance r(R)

$$R(A_1:D_1,A_2:D_2,\ldots A_n:D_n)$$
, where $D_i=dom(A_i)$
 $\equiv R(A_1,A_2,\ldots A_n)$

 $t[A_i]$ = value a_i in t for attribute A_i .

Example:

HOBBY(PersonName: FamilyName, Age: integer, Hobby-Name: Hobbies)

If $t = \langle Melony, 25, Singing \rangle$ in the HOBBY relation,

t[Age] = <25>

 $t[\mathit{Name}, \mathit{Age}] = < \mathit{Melony}, 25 >.$

Definition:

- A relation is a set of tuples.
- Tuples must be distinct.
- Impossible for two tuples to have the same combination of all their attributes.

Superkey:

- ▶ A **superkey** (*SK*) is a subset of attributes of a relation schema *R*, such that no two tuples have the same value for these attributes.
- ightharpoonup Examples in a relation instance r(R):
 - ▶ Consider tuples t_1 and t_2 .
 - ▶ If $t_1[SK] \neq t_2[SK]$, then SK is a superkey.
- Every relation has at least one superkey.

A **key** K of R is a superkey of R such that if any attribute A from K is removed, the set of attribute K' (which is left) is not a superkey of R.

Example:

Relation *STUDENT* (Name, SSN, HomePhone, Address, Age, AverageGrade).

The attribute set {SSN} is a key of STUDENT because no two students tuples can have the the same value for SSN.

Any set of attributes that includes SSN is a superkey (e.g., {SSN, Name, Age}).

The value of a key uniquely identifies a tuple in a relation.

Key determined from the meaning of the attributes in the relation schema, not by the instances.

Relation schema has more than one key: candidate keys.

One is the **primary key**, used to identify tuples in a relation. (underlined).

Foreign key

Introduction Concepts Constraints ER and Relational Model Remarks Questions

Relation schema R_1 .

Relation schema R_2 with primary key attributes PK.

A set of attributes FK in relation schema R_1 is a **foreign key** of R_1 if it satisfies:

- ▶ The attributes of *FK* have the same domain as the ones in *PK*.
- A value of FK in t₁ in R₁:
 - ▶ either occurs as a value of *PK* for t_2 in R_2 i.e., $t_1[FK] = t_2[PK]$
 - or is null.

Example:

R₁: EMPLOYEE(Name, Address, DName), FK: DName

R₂: DEPARTMENT (<u>DName</u>, Manager, NumberOfEmployees),

PK: DName

<u>DName</u> is a foreign key of *EMPLOYEE* (from DEPARTMENT).

Relational database schema S: set of relation schemas.

$$\textbf{S} = \{\textbf{R}_1, \textbf{R}_2, \dots, \textbf{R}_{\textbf{m}}\}$$

and a set of integrity constraints IC.

Simplest type of integrity constraints: data type of each data item.

In the *STUDENT* relation, value of AverageGrade must be an integer between 0 and 5. The value of Name must be a string of no more than 30 characters.

+ semantics aspects under the database designer's responsibility.

Relational database instance *DB* of *S* is a set of relation instances

 r_i

 $\textit{DB} = \{\textit{r}_1, \textit{r}_2, \dots, \textit{r}_m\}$ such that

- ▶ each r_i is an instance of R_i
- ▶ each *r_i* satisfies the integrity constraints defined in *IC*.

From ER to relational

Introduction Concepts Constraints ER and Relational Model Remarks Questions

- ► Each entity type E with attributes $A_1, ..., A_n$: relation schema R_E with attributes $A_1, ..., A_n$.
- ▶ Each relationship R between $E_1, E_2, ..., E_n$: Relation schema R_R whose attributes are the key of $E_1, E_2, ..., E_n$.

RR

Entity-relationship diagram:

Relational database schema:

EMPLOYEE(EName, Salary)

MANAGER(EName)

WORKS-IN(EName, DName)

MANAGES(EName, DName)

DEPARTMENT(DName, NumDept)

 $\textit{SUPPLIER}(\underline{SName}, \, SAddress)$

ITEM(IName, NumItem)

CARRIES(IName, DName)

ORDER(NumOrder, Date)

CUSTOMER(CName, CAddress, Balance)

SUPPLIES(SName, IName, Price)

PLACED-BY(NumOrder, CName)

INCLUDES(NumOrder, IName, Quantity)

- ▶ Relations are sets: no duplicates
- Tuples identified through the value of attributes: relational model value-oriented
- No notion of order within a relation: no first, no last, etc.
- Attribute values are atomic.

- 1 DDL (for defining relation schemas):
 - creation, deletion of:
 - a relation schema
 - a database
 - ▶ Addition, deletion of an attribute

Operations on a relational database (cont'd)

Introduction Concepts Constraints ER and Relational Model Remarks Questions

- **2 DML** (fixed schema):
 - input of tuples
 - display of a relation
 - modification of a relation:
 - ▶ insertion, suppression, update
 - queries
 - consultation of a relation
 - computation of a new relation
- **3** Transaction management
- 4 View management

Questions?

Questions

- 1 Welcome to Database Systems
- 2 Introduction to Database Systems
- 3 Entity Relationship Design Diagram (ERM)
- 4 Relational Model
- 5 Relational Algebra
- 6 Structured Query Language (SQL)
- 7 Relational Database Design Functional Dependencies
- 8 Relational Database Design Normalization
- 9 Online Analytical Processing + Embedded SQL
- 10 Data Mining
- 11 Physical Representation Storage and File Structure
- 12 Physical Representation Indexing and Hashing
- 13 Transactions
- 14 Concurrency Control Techniques
- 15 Recovery Techniques
- 16 Query Processing and Optimization

