Intégrales à paramètres

1 Théorèmes fondamentaux

Théorème 1. (Théorème de convergence dominée) Soit $E \subseteq \mathbb{R}^d$ un ensemble mesurable, et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions mesurables. Supposons que

- 1. $f_n(x) \rightarrow f(x)$ p.p. $x \in E$;
- 2. Il existe une fonction mesurable, positive et intégrable $g: E \to \mathbb{R}_{\geq 0}$, appelée une majoration, t.q. pour tout $n \in \mathbb{N}$, on ait $|f_n(x)| \leq g(x)$ p.p. $x \in E$.

Alors f et f_n sont intégrables pour tout $n \in \mathbb{N}$, et

$$\int_{E} f = \lim_{n \to \infty} \int_{E} f_n$$

De plus $\lim_{n\to\infty} \int_E |f_n - f| = 0$.

Théorème 2. (Continuité) Soient $E \subseteq \mathbb{R}^d$ un ensemble mesurable, $\Lambda \subseteq \mathbb{R}^n$ un ouvert, et $f: E \times \Lambda \to \mathbb{C}$ une fonction t.q. pour tout $t \in \Lambda$, la fonction $E \to \mathbb{C}, x \mapsto f(x,t)$ est mesurable. Supposons que

- 1. La fonction $\Lambda \to \mathbb{C}$, $t \mapsto f(x,t)$ est continue p.p. $x \in E$;
- 2. Il existe une fonction mesurable, positive et intégrable $g: E \to \mathbb{R}_{\geq 0}$ t.q. pour tout $t \in \Lambda$, on ait $|f(x,t)| \leq g(x)$ p.p. $x \in E$.

Alors la fonction $E \to \mathbb{C}, x \mapsto f(x,t)$ est intégrable pour tout $t \in \Lambda$, et la fonction

$$\Lambda \longrightarrow \mathbb{C}$$

$$t \longmapsto \int_{E} f(x,t) \, \mathrm{d}x$$

est continue.

Théorème 3. (Dérivabilité) Soient $E \subseteq \mathbb{R}^d$ un ensemble mesurable, $\Lambda \subseteq \mathbb{R}$ un intervalle ouvert, et $f: E \times \Lambda \to \mathbb{C}$ une fonction t.q. pour tout $t \in \Lambda$, la fonction $E \to \mathbb{C}, x \mapsto f(x,t)$ est mesurable. Supposons que

- 1. La fonction $\Lambda \to \mathbb{C}, t \mapsto f(x,t)$ est dérivable p.p. $x \in E$;
- 2. Il existe une fonction mesurable, positive et intégrable $g: E \to \mathbb{R}_{\geq 0}$ t.q. pour tout $t \in \Lambda$, on ait $|\partial_t f(x,t)| \leq g(x)$ p.p. $x \in E$.

De plus, si on suppose qu'il **existe** $t_0 \in \Lambda$ t.q. la fonction $E \to \mathbb{C}, x \mapsto f(x, t_0)$ est intégrable. Alors la fonction $E \to \mathbb{C}, x \mapsto f(x, t)$ est intégrable pour tout $t \in \Lambda$, et la fonction

$$\begin{array}{ccc} \Lambda & \longrightarrow & \mathbb{C} \\ t & \longmapsto & \int_E \! f(x,t) \, \mathrm{d}x \end{array}$$

est dérivable, et on a

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{E} f(x,t) \, \mathrm{d}x = \int_{E} \frac{\partial f}{\partial t}(x,t) \, \mathrm{d}x$$

Démonstration. Pour tout $t \in \Lambda$, on a $|f(x,t) - f(x,t_0)| \le |t - t_0| \sup_{\xi \in \Lambda} |\partial_t f(x,\xi)| \le |t - t_0| g(x)$ donc $x \mapsto f(x,t) - f(x,t_0)$ est intégrable. Comme $x \mapsto f(x,t_0)$ est intégrable, $x \mapsto f(x,t)$ l'est aussi. Le reste se trouve dans le polycopié.

Les énoncés sont reorganisés pour afficher la similarité.

2 Section 2

2 Stratégie pour étudier les intégrales à paramètres

Poursuivre les étapes suivantes pour étudier la fonction $\Lambda \to \mathbb{C}, t \mapsto \int_E f(x,t) dx$

- 1. (Facultatif) Montrer que pour tout $t \in \Lambda$, la fonction $E \to \mathbb{C}, x \mapsto f(x,t)$ est intégrable.
- 2. (Continuité) Quand $\Lambda \to \mathbb{C}, t \mapsto f(x,t)$ est continue p.p. $x \in E$,
 - a. (Majoration globale) Trouver une fonction $g: E \to \mathbb{C}$ t.q. pour tout $t \in \Lambda$, on ait $|f(x,t)| \leq g(x)$ p.p. $x \in E$. Un choix «universel» mais pas nécessairement le plus simple: $g(x) := \sup_{t \in \Lambda} |f(x,t)|$.
 - b. (Majoration locale) S'il n'y a pas de majoration globale, pour tout intervalle compact $I \subseteq \Lambda$, trouver une fonction $g_I : E \to \mathbb{C}$ t.q. pour tout $t \in I$, on ait $|f(x, t)| \leq g_I(x)$ p.p. $x \in E$. Un choix «universel»: $g_I(x) := \sup_{t \in I} |f(x, t)|$.

Si l'on trouve une majoration globale g ou des majorations locales $(g_I)_{I\subseteq\Lambda}$, on peut en déduire que la fonction $\Lambda \to \mathbb{C}, t\mapsto \int_E f(x,t)\,\mathrm{d}x$ est continue.

- 3. (**Dérivabilité**) Quand $\Lambda \to \mathbb{C}, t \mapsto f(x,t)$ est dérivable p.p. $x \in E$, si la fonction $\Lambda \to \mathbb{C}, t \mapsto \int_E f(x,t) dx$ est continue,
 - a. (Majoration globale) Trouver une fonction $h: E \to \mathbb{C}$ t.q. pour tout $t \in \Lambda$, on ait $|\partial_t f(x,t)| \le h(x)$ p.p. $x \in E$. Un choix « universel » mais pas nécessairement le plus simple: $h(x) := \sup_{t \in \Lambda} |\partial_t f(x,t)|$.
 - b. (Majoration locale) S'il n'y a pas de majoration globale, pour tout intervalle **compact** $I \subseteq \Lambda$, trouver une fonction $h_I : E \to \mathbb{C}$ t.q. pour tout $t \in I$, on ait $|\partial_t f(x, t)| \le h_I(x)$ p.p. $x \in E$. Un choix «universel»: $h_I(x) := \sup_{t \in I} |\partial_t f(x, t)|$.

Si l'on trouve une majoration globale g ou des majorations locales $(g_I)_{I\subseteq\Lambda}$, on peut en déduire que la fonction $\Lambda\to\mathbb{C}, t\mapsto \int_E f(x,t)\,\mathrm{d}x$ est dérivable, dont la dérivée est $\Lambda\to\mathbb{C}, t\mapsto \int_E \frac{\partial f}{\partial t}(x,t)\,\mathrm{d}x$.