BDD200NAA - Project 02

Ran Arino

1. Functional dependencies

The following steps show the normalization step, in other words, how I changed one large table into normalized tables.

First Normal Form(1NF) Dependency Diagram

Table Name: E_LEARNING

(<u>Course_Id</u>, <u>Material_Id</u>, <u>User_Id</u>, <u>Instructor_Id</u>, Course_Name, Course_Level, Course_Description, Material_Name, Material_Description, User_Fname, User_Lname, User_Age, User_Language, User_Timezone, User_Email, User_Passoword, Instructor_Fname, Instructor_Lname, Instructor_Contract, Category_Id, Category_Name, Organization_Id, Organization_Name)

Partial Dependencies

 (Course_Id --> Course_Name, Course_Level, Course_Description, Category_Id, Category_Name, Organization_Id, Organization_Name)

- (Material_Id --> Material_Name, Material_Description)
- (User_Id --> User_Fname, User_Lname, User_Age, User_Language, User_Timezone, User_Email, User_Passoword, Category_id, Category_name)
- (Instructor_Id --> Instructor_Fname, Instructor_Lname, Instructor_Contract, Organization_Id,
 Organization_Name)

Transitive Dependencies

- (Category_Id --> Category_Name)
- (Organization_Id --> Organization_Name)

Second Normal Form(2NF) Dependency Diagram

Table Name: COURSE

4	Α	В	С	D	Е	F	G	Н
1	COURSE_ID	COURSE_NAME	COURSE_LEVEL	COURSE_DESCRIPTION	CATEGORY_ID	CATEGORY_NAME	ORGANIZATION_ID	ORGANIZATION_NAME
2	1	Google Data Science	Beginner	The course, Google Data Sci	1	Data Science	1	Google
3	2	Data Science on Goog	Advanced	The course, Data Science on	1	Data Science	1	Google
4	3	How to Use Google Cl	Intermediate	The course, How to Use Goo	2	Business	1	Google
5	4	Business Strategies	Advanced	The course, Business Strateg	2	Business	1	Google
5	5	Introduction to Progra	Beginner	The course, Introduction to	3	Computer Science	1	Google
7	6	IBM Data Science	Beginner	The course, IBM Data Science	1	Data Science	2	IBM
3	7	Applied Data Science	Intermediate	The course, Applied Data Sc	1	Data Science	2	IBM
9	8	Introduction to Busin	Beginner	The course, Introduction to	2	Business	2	IBM
0	9	Business Analytics	Advanced	The course, Business Analyt	2	Business	2	IBM
1	10	Computer Science	Intermediate	The course, Computer Scien	3	Computer Science	2	IBM
2	11	Microsoft Data Science	Beginner	The course, Microsoft Data	1	Data Science	3	Microsoft
3	12	How to use Excel for I	Beginner	The course, How to use Exce	1	Data Science	3	Microsoft
4	13	Business Managemen	Intermediate	The course, Business Manag	2	Business	3	Microsoft
5	14	Business Analytics	Advanced	The course, Business Analyt	2	Business	3	Microsoft
6	15	Introduction to Comp	Beginner	The course, Introduction to	3	Computer Science	3	Microsoft
7	16	Machine Learning Me	Intermediate	The course, Machine Learni	1	Data Science	4	University of Toronto
8	17	How to launch New B	Advanced	The course, How to launch N	2	Business	4	University of Toronto
9	18	Coding: C and C++	Intermediate	The course, Coding: C and C	3	Computer Science	4	University of Toronto
0	19	Introduction to Linear	Beginner	The course, Introduction to	4	Math	4	University of Toronto
1	20	Mathematics for Mac	Intermediate	The course, Mathematics fo	4	Math	4	University of Toronto
2	21	Introduction to Data !	Beginner	The course, Introduction to	1	Data Science	5	University of Michigan

- Cell A is unique and determines Cell B, C, and D.
- "Cell E & F" and "Cell G & H" are repeated, and they have a determinant-dependence relationship. It means that both have a transitive dependency.

COURSE (<u>Course_Id</u>, Course_Name, Course_Level, Course_Description, Category_Id, Category_Name, Organization_Id, Organization_Name)

Transitive Dependency

- (Category_Id --> Category_Name)
- (Organization_Id --> Organization_Name)

Table Name: MATERIAL

	Α	В	С
1	MATERIAL	MATERIAL_NAME	MATERIAL_DESCRIPTION
2	1	Google Data Science - Step 1	This is the first part of the Google Data Sc
3	2	Google Data Science - Step 2	This is the second part of the Google Data
4	3	Google Data Science - Step 3	This is the third part of the Google Data S
5	4	Data Science on Google Cloud - Part 1	This is the first part of the Data Science o
6	5	Data Science on Google Cloud - Part 2	This is the second part of the Data Scienc
7	6	Data Science on Google Cloud - Part 3	This is the third part of the Data Science
8	7	How to Use Google Cloud on Business - Step 1	This is the first part of the How to Use Gc
9	8	How to Use Google Cloud on Business - Step 2	This is the second part of the How to Use
10	9	How to Use Google Cloud on Business - Step 3	This is the third part of the How to Use G
11	10	Business Strategies - First Part	This is the first part of the Business Strate
12	11	Business Strategies - Second Part	This is the second part of the Business Sti
13	12	Business Strategies - Third Part	This is the third part of the Business Strat
14	13	Introduction to Programming Languages - Class 1	This is the first part of the Introduction to
15	14	Introduction to Programming Languages - Class 2	This is the second part of the Introductio
16	15	Introduction to Programming Languages - Class 3	This is the third part of the Introduction 1
17	16	Introduction to Programming Languages - Class 4	This is the forth part of the Introduction
18	17	IBM Data Science - Class 01	This is the first part of the IBM Data Scien
19	18	IBM Data Science - Class 02	This is the second part of the IBM Data Sc
20	19	IBM Data Science - Class 03	This is the third part of the IBM Data Scie

- Cell A (MATERIAL_ID) is obviously unique and determines Cell B and C.
- There are no transitive dependencies. It means that this table has already been converted into 3NF.

MATERIAL (Material Id, Material_Name, Material_Desscription)

Table Name: USERS

1	Α	В	C	D	E	F	G	Н	1	J
1	USER_ID	USER_FNAME	USER_LNAME	USER_AGE	USER_LANGUAGE	USER_TIMEZONE	USER_EMAIL	USER_PASSWORD	CATEGORY_ID	CATEGORY_NAM
2	1	Kyle	Schneider	27	English	Anchorage (AKDT)	kyle.schneider	gEWLVSYcfWg2.79	2	Business
3	2	Kyle	Martin	18	English	Phoenix (MST)	kyle.martin@e	cWnZcL2+5w/szwS	4	Math
4	3	Meg	Derek	33	English	Honolulu (HST)	meg.derek@fli	,GGPt3+Ktq*TqEE	4	Math
5	4	Shelley	Peckinpah	38	English	Chicago (CDT)	shelley.pecking	uugjxAHZoeh(,Jq	1	Data Science
6	5	Prem	Garcia	32	English	Los Angeles (PDT)	prem.garcia@j	q/+@s1yWGjX2Q3A	2	Business
7	6	Во	Hitchcock	41	English	Chicago (CDT)	bo.hitchcock@	DgJv?p/p95xVvzn	3	Computer Science
8	7	Bob	McCarthy	25	English	Denver (MDT)	bob.mccarthy(6EIB+(pUme@Ytb9	5	Health
9	8	Dom	McQueen	28	English	Chicago (CDT)	dom.mcqueen	ciJMX7w5gLfNBzB	3	Computer Science
10	9	Dom	Hoskins	24	English	Honolulu (HST)	dom.hoskins@	QMAH4ekUA*KA)dG	1	Data Science
11	10	Don	Siegel	37	English	Honolulu (HST)	don.siegel@bi)Z-v3H.)k48?Bxr	1	Data Science
12	11	Scott	Jordan	29	Hindi	Chicago (CDT)	scott.jordan@	qRNO51Qo@tFqYmB	1	Data Science
13	12	Shammi	Pacino	31	Hindi	Honolulu (HST)	shammi.pacine	E+CSi7APP3bXyXN	2	Business
14	13	Sharmila	Kazan	32	Hindi	Phoenix (MST)	sharmila.kazar	*uq8h)mSxOWxybB	1	Data Science
15	14	Sharmila	Fonda	34	Hindi	Chicago (CDT)	sharmila.fonda	piN@A6WPVzGYuI5	4	Math
16	15	Shelley	Taylor	31	Hindi	Honolulu (HST)	shelley.taylor@	YLEp6r?)9.UliS,	1	Data Science
17	16	Shyam	Plummer	29	Hindi	Denver (MDT)	shyam.plumm	S5?ctk4ZIEOk+@*	3	Computer Science
18	17	Silk	Kurosawa	24	Hindi	Honolulu (HST)	silk.kurosawa@	273bpo1@fd7G2Mw	1	Data Science
19	18	Sivaji	Gielgud	21	Hindi	Denver (MDT)	sivaji.gielgud@	n.FwcN1Y-zqpbe6	3	Computer Science
20	19	M. Emmet	Stockwell	34	Italian	Denver (MDT)	m.emmet.stoc	72ZL/2I4XbzMn5d	2	Business
21	20	M. Emmet	Olin	38	Italian	Central European	m.emmet.olin	uC52Jixm,vm.KoP	3	Computer Science
22	21	Malcolm	Field	21	Italian	Honolulu (HST)	malcolm.field@	m1OzRYZPP-)J7ud	3	Computer Science
23	22	Mammutti	Sutherland	26	Italian	Chicago (CDT)	mammutti.sut	i4+6BGiVJkY1QsT	4	Math
24	23	Mani	Kazan	41	Italian	Central European	mani.kazan@t	LYwlEDrQ9A-92jn	4	Math
25	24	Mani report (2)	Ruckley (+)	35	Italian	Los Angeles (PDT)	mani hucklevič	QLIVer InTPRIMA*	Δ.	Math

- Cell A is not duplicated and determines Cell B-H.
- Cell I determines Cell J, so they are transitive dependencies.

USERS (<u>User_Id</u>, User_Fname, User_Lname, User_Age, User_Language, User_Timezone, User_Email, User_Passoword, Category_Id, Category_Name)

Transitive Dependency

- (Category_Id --> Category_Name)

However, the two columns, USER_LANGUAGE and USER_TIMEZONE, repeat the same variable name many times. In addition, their name is likely to change, so it may cause an update error. More specifically, suppose an organization decides to change the name of a certain time zone globally, such as "Japanese Standard Time (JST)" --> "Tokyo Standard Time (TST)". In that case, it will consume a considerable amount of time to apply this change to the E-Learning database (USERS table). It is because we need to change its name one by one. Also, the column "COURSE_LEVEL" repeats the same variable name many times, but it's not likely to happen the update anomalies. It is because the names (like "Advanced") are arbitrary variables. In other words, these names are defined by the database developers, so developers don't need to change their names broadly, such as "Advanced" --> "Advance".

To sum up, in order to avoid the possible update anomalies against the USER_LANGUAGE and USER_TIMEZONE, I decided to rewrite the 2NF and update the table structure like below.

Table Name: USERS (revised version)

As we can see, Cell *G-H*, Cell *I-J*, and Cell *K-L* are a determine-dependent relationship. For example, LANGUAGE_ID = '1' corresponds with LANGUAGE_NAME = 'English'. It means that they are transitive dependencies.

USERS (<u>User_Id</u>, User_Fname, User_Lname, User_Age, User_Email, User_Passoword, Language_Id, Language_Name, Timezone_Id, Timezone_Name, Category_Id, Category_Name)

Transitive Dependency

- (Language_Id --> Language_Name)
- (Timezone_Id --> Timezone_Name)
- (Category_Id --> Category_Name)

Table Name: INSTRUCTOR

1	A	В	C	D	E	F
1	INSTRUCTOR_ID	INSTRUCTOR_FNAME	INSTRUCTOR_LNAME	INSTRUCTOR_CONTACT	ORGANIZATION_ID	ORGANIZATION_NAM
2	1	Bryan	Dvrrie	bryan.dvrrie@redpoll.co	1	Google
3	2	Ajay	Sen	ajay.sen@trogon.com	1	Google
4	3	Carol	Jordan	carol.jordan@turnstone	1	Google
5	4	Carol	Bradford	carol.bradford@verdin.d	1	Google
6	5	Cary	Stockwell	cary.stockwell@vireo.co	1	Google
7	6	Cary	Olin	cary.olin@waterthrush.o	1	Google
8	7	Clara	Krige	clara.krige@whimbrel.co	1	Google
9	8	Clara	Ganesan	clara.ganesan@wigeon.d	1	Google
0	9	Ajay	Andrews	ajay.andrews@yellowth	2	IBM
1	10	Kathy	Prashant	kathy.prashant@ani.con	2	IBM
2	11	Graham	Neeson	graham.neeson@auklet.	2	IBM
13	12	lan	Chapman	ian.chapman@avocet.co	2	IBM
4	13	Danny	Wright	danny.wright@bittern.co	2	IBM
5	14	Danny	Rourke	danny.rourke@brant.co	2	IBM
6	15	Donald	Hunter	donald.hunter@chachal	2	IBM
7	16	Graham	Spielberg	graham.spielberg@chuk	2	IBM
8	17	Dan	Roberts	dan.roberts@nuthatch.c	3	Microsoft
9	18	Edward	Oates	edward.oates@ovenbird	3	Microsoft
0.0	19	Edward	Julius	edward.julius@parula.co	3	Microsoft
1	20	Farrah	Quinlan	farrah.quinlan@phainop	3	Microsoft
22	21	Farrah	Lange	farrah.lange@phalarope	3	Microsoft
23	22	Hal	Stockwell	hal.stockwell@phoebe.c	3	Microsoft
4	23	Malcolm	Kanth	malcolm.kanth@pipit.co	3	Microsoft
25	> report	Malcolm	Rroderick	malcolm broderick@nlos		Microsoft

- Cell A determines Cell B, C, and D. Also, the id is uniquely identifiable.
- Cell E determines Cell F. Also, they are duplicated many times in a table. Thus, these are transitive dependencies.

INSTRUCTOR (<u>Instructor_Id</u>, Instructor_Fname, Instructor_Lname, Instructor_Contract, Organization_Id, Organization_Name)

Transitive Dependency

- (Organization_Id --> Organization_Name)

Third Normal Form(3NF) Dependency Diagram

Table Name: COURSE

Considering the above table, we can confirm that there is only one determinant (COURSE_ID), and there are no dependencies. Thus, the table COURSE is 3NF.

COURSE (Course Id, Course Name, Course Level, Course Description, Category id, Organization Id)

Table Name: MATERIAL

I had already proven that the table MATERIAL is 3NF in the previous section.

MATERIAL (Material Id, Material Name, Material Desscription)

Table Name: USERS

Considering the above database, we can confirm that there is only one determinant (USER_ID), and there are no other dependencies. Thus, the table USERS is 3NF.

USERS (<u>User_Id</u>, User_Fname, User_Lname, User_Age, User_Email, User_Passoword, Language_Id, Timezone_Id, Category_Id)

Table Name: INSTRUCTOR

Considering the above database, we can confirm that there is only one determinant (INSTRUCTOR_ID), and there are no other dependencies. Thus, the table INSTRUCTOR is 3NF.

INSTRUCTOR (Instructor Id, Instructor_Fname, Instructor_Lname, Instructor_Contract, Organization_Id)

Table Name: CATEGORY

This table is composed of only two attributes: its id (primary key) and its name. Thus, obviously it's 3NF.

CATEGORY (Category Id, Category Name)

Table Name: ORGANIZATION

This table is composed of only two attributes: its id (primary key) and its name. Thus, obviously it's 3NF.

ORGANIZATION (Organization_Id, Organization_Name)

Table Name: LANGUAGE

This table is composed of only two attributes: its id (primary key) and its name. Thus, obviously it's 3NF.

LANGUAGE (Language_Id, Language_Name)

Table Name: TIMEZONE

This table is composed of only two attributes: its id (primary key) and its name. Thus, obviously it's 3NF.

TIMEZONE (Timezone_Id, Timezone_Name)

2. Add FDs and Change it to the 3rd Normal form

(1) USERS table: adding their school or company info

The following table and diagram are the new USERS database added their school or company information.

4	A	В	C	D	E	F	G	Н	1	J	K
	USER_ID	USER_FNAME	USER_LNAME	USER_AGE	USER_EMAIL	USER_PASSWORD	CATEGORY_ID	LANGUAGE_ID	TIMEZONE_ID	ORGANIZATION_ID	ORGANIZATION_NAME
	1	Kyle	Schneider	27	kyle.schneide	rgEWLVSYcfWg2.?9	2	1	. 4	3	Microsoft
	2	Kyle	Martin	18	kyle.martin@	cWnZcL2+5w/szwS	4		. 2	12	Durham College
1	4	Shelley	Peckinpah	38	shelley.peckin	uugjxAHZoeh(,Jq	1		. 3	8	Seneca College
5	5	Prem	Garcia	32	prem.garcia@	q/+@s1yWGjX2Q3	2	1	. 1	9	Humber College
	6	Во	Hitchcock	41	bo.hitchcock@	DgJv?p/p95xVvzn	3	1	. 2	2	Stanford University
1/3	7	Bob	McCarthy	25	bob.mccarthy	6EIB+(pUme@Ytb9	5	1	. 2	9	Humber College
	8	Dom	McQueen	28	dom.mcqueei	r ciJMX7w5gLfNBzB	3	1	. 2	12	Durham College
	10	Don	Siegel	37	don.siegel@b	i)Z-v3H.)k48?Bxr	1		. 4	12	Durham College
0	12	Shammi	Pacino	31	shammi.pacin	E+CSi7APP3bXyXN	2	1	. 2	12	Durham College
1	14	Sharmila	Fonda	34	sharmila.fond	piN@A6WPVzGYul	4		. 2	10	George Brown College
2	15	Shelley	Taylor	31	shelley.taylor	(YLEp6r?)9.UliS,	1		: 6	9	Humber College
3	16	Shyam	Plummer	29	shyam.plumn	S5?ctk4ZIEOk+@*	3		: 6	8	Seneca College
4	17	Silk	Kurosawa	24	silk.kurosawa	273bpo1@fd7G2N	1	1	. 3	9	Humber College
5	18	Sivaji	Gielgud	21	sivaji.gielgud@	n.FwcN1Y-zqpbe6	3		. 3	5	University of Michigan
6	19	M. Emmet	Stockwell	34	m.emmet.sto	c72ZL/2I4XbzMn5d	2		3	3	IBM
7	20	M. Emmet	Olin	38	m.emmet.olir	uC52Jixm,vm.KoP	3	3	2	2	Seneca College
8	22	Mammutti	Sutherland	26	mammutti.su	ti4+6BGiVJkY1QsT	4		5	9	Humber College
9	23	Mani	Kazan	41	mani.kazan@	LYwlEDrQ9A-92jn	4		6	11	Centennial College
0	24	Mani	Buckley	35	mani.buckley	@9UVsc.JuTP8tMq*	4		7	8	Seneca College
1	25	Margaret	Ustinov	41	margaret.usti	r.UECb*p(,TzFCz@	4		4	8	Seneca College
2	26	Margaux	Krige	25	margaux.krige	WeHDRdOVcRVxd	2		1	. 8	Seneca College
3	27	Margaux	Capshaw	24	margaux.caps	JgU5XJI-fh8auyn	3	3	(8	Seneca College
4	28	Kevin	Goodman	20	kevin.goodma	nBxSw+LQQDi.rlE	4		7	10	George Brown College
5	29	Kevin	Cleveland	35	kevin clevelar	5XM/nwfK KDI linY/	Δ		1	11	Centennial College

Table Name: **USERS**

(<u>User_Id</u>, User_Fname, User_Lname, User_Age, User_Email, User_Password, Language_Id, Timezone_Id, Category_Id, Organization_Id, Organization_Name)

The above diagram is the 2nd dependency diagram. It is because organization_id determines organization_name It means that the diagram(table) has a transitive dependency (Organization_Id --> Organization_Name).

In order to convert it into the 3NF, we will split it into two tables: one is the USERS table, and the other is the ORGANIZATION table. However, in this case, I already have created the ORGANIZATION table. Thus, I can connect the USERS table and the existing ORGANIZATION table, rather than creating a new table to store the school or company that each user belongs to.

The converted diagram into 3NF is shown below (Note that the ORGANIZATION table has already been created in the previous section). Obviously, both two tables have no transitive dependencies as well as no partial dependencies.

(2) USERS table: adding their completed course info and its score

The following table and diagram are the new USERS database added their completed course information and its score.

Given this database, the new USERS table will be converted to 1NF (the previous USERS table was 3NF). The reason is that partial dependencies exist in that table. In this table, primary keys are defined by two pairs, USER ID and COURSE ID. It is because the column "SCORE" depended on both attributes, not

either one. Thus, considering the existence of multiple primary keys, the new USERS table has partial dependencies. For example, a part of the primary key (COURSE_ID) determines its name, level, and description. On the other hand, the table does not have transitive dependencies. It is because no other attributes except primary keys become determinants. The following diagram shows us a clearer structure of the USERS table about normalization form. (Note: In order to classify the completed course information, I added "Completed_" statement before each name about the completed course information tentatively.)

Partial dependencies:

- (User_Id --> User_Fname, User_Lname, User_Age, User_Email, User_Password, Language_Id, Timezone_Id, Category_Id, Organization_Id)
- (Complete_Course_Id --> Complete_Course_Name, Complete_Course_Level, Complete_Course_Description)

In order to convert 1NF to 2NF (in this case, 3NF due to no transitive dependencies), we will create new tables about the completed course information. The E-learning database already has the COURSE entity, so I decided to reuse it. Thus, I will not create a new table like COMPLETE_COURSE. However, I must create a table (defined GRADE) to store the users' scores for each course. Therefore, the 1NF diagram can be changed to the following.

As I mentioned, this diagram doesn't have transitive dependencies. Thus, the new USERS table with completed course info can be converted to 3NF.

3. Demonstration of GUI using Oracle APEX

My database application link:

https://apex.oracle.com/pls/apex/database_seneca/r/e-learning-database/home?session=104487439283802

- Username: rarino@myseneca.ca

- Password: Arashi_Seneca

Home Page:

Grade table:

Timezone Table:

Language Table:

Teach Table:

Enroll Table:

Instructor Table:

Users Table:

Material Table:

Course Table:

Category Table:

Organization Table:

Note: Each table's primary key is hidden. This is the default setting of Oracle APEX.

Statistics (Dashboard):

4. Demonstration of GUI using Oracle APEX

Proof 3NF:

I have already proven that my database is 3NF concurrently in section 2 and 3.

SQL code:

Attached to it in a different file.

Design Experiences:

Through the BDD200 project 1 and 2, I created the E-learning database (model: Coursera). The core entity of this database is the COURSE entity. This entity is connected to all other entities directly and indirectly. More specifically, the COURSE has a weak relationship with MATERIAL, CATEGORY, and ORGANIZATION. And the COURSE is connected USERS and INSTRUCTOR through ENROLL and TEACH, respectively. Also, the GRADE table has a strong relationship with COURSE and USERS.

Thus, the purpose of this database is to execute the analysis of the course(s). For example, people can analyze the users' tendencies who are interested in a specific category(field). Suppose 100 users are interested in the Data Analysis field and taking a couple of courses related to its field. These users' information may help to develop the recommendation system for other users. In other words, if new users are also interested in the Data Analysis, analysts will utilize the data that can be obtained from those 100 users. In that phase, the E-learning database will help to create the ideal table to analyze the users' tendencies or trends. It is because the COURSE entity relates to the USERS entity, and each user has their interest field if they have already registered it. Also, if we focus on a specific course, we can obtain how many and what kinds of users are enrolling in this course. Making use of this data can also help to analyze the latest trend in terms of age.

All in all, each entity of the E-Learning database connects to each other, so it will support sophisticated and complicated data analysis.