Filière : MP

ROBOT « ROBY»

PRESENTATION FONCTIONNELLE ET STRUCTURELLE

Le ROBOT ROBY est utilisé par des entreprises œuvrant dans le secteur économique du **B**âtiment et des **T**ravaux **P**ublics (**BTP**) et plus particulièrement dans les chantiers de construction des bâtiments. Il réalise ainsi des opérations automatisées de perçage ou de ponçage des sols, murs et plafonds sur un chantier.

Il est constitué (voir figure1):

- d'un chariot mobile ;
- d'une plate-forme élévatrice ;
- d'un manipulateur Kuka à six axes;
- d'un outil (une perceuse ou une ponceuse).

Un aspirateur peut être utilisé en option, pour pouvoir évacuer les poussières lors d'un travail de ponçage.

L'interface homme-machine du système est de type écran tactile, l'opérateur peut choisir via cet écran de commander ROBY en mode *semi-automatique* ou *automatique*.

En mode *semi-automatique*, l'opérateur commande ROBY à l'aide d'un joystick. Ce mode permet : Le déplacement de ROBY d'un lieu de travail à un autre en gérant les mouvements du chariot.

La réalisation des opérations de ponçage ou de perçage.

En mode *automatique*, (Voir **figure 2**) l'opérateur introduit les données suivantes :

- la consigne de distance **d** entre ROBY et le mur;
- la consigne **x** de déplacement à effectuer par ROBY entre deux zones de travail;
- la position du mur par rapport au robot (gauche ou droite);
- la consigne d'utilisation des stabilisateurs si c'est nécessaire (figure 3 page 2).

Dans les deux modes, le périmètre de la zone à poncer ou les coordonnées, dans le repère lié au mur des n trous à réaliser, sont envoyés par un opérateur superviseur à l'automate qui gère le manipulateur Kuka via une liaison WIFI.

Session: 2017

Figure 1: ROBOT ROBY

Pendant le déplacement d'une zone de travail à la suivante, le ROBOT ROBY est alimenté en énergie par des batteries embarquées. Une fois sur la zone de travail, il est raccordé par un câble ombilical au réseau de distribution du chantier. Les batteries peuvent alors être rechargées à l'aide du chargeur embarqué.

Des scrutateurs, situés à l'avant et à l'arrière du chariot, permettent de détecter la présence d'un obstacle ou d'une personne dans un périmètre proche de ROBY. La présence d'un obstacle entraîne l'arrêt de ROBY et fait retentir une alarme. Le système repart lorsqu'il n'y a plus d'obstacle et après un réarmement par l'opérateur.

Pour <u>certains travaux</u>, deux stabilisateurs latéraux situés à l'arrière du chariot sont déployés. On renforce ainsi l'appui entre le chariot et le sol.

Figure 4: Localisation de la zone de travail

Un détecteur de couleur fixé sur l'outil, repère un trait bleu tracé sur le mur (cordex) et permet ainsi de localiser la zone de travail. Dans le cas du perçage, un télémètre, qui détecte la position de trous réalisés lors du précédent cycle, permet de localiser précisément le lieu du nouveau trou à percer.

On donne ci-après le diagramme des exigences du système.

I- ANALYSE DU FONCTIONNEMENT

Le **document Annexe 1** décrit le diagramme d'états du ROBOT ROBY dans le cas du mode de fonctionnement automatique. La **figure 2a** du **document Annexe 2** représente le chronogramme décrivant l'évolution partielle du diagramme d'états lorsque ROBY est en fonctionnement et dans le sous-état « Plateforme en mouvement de montée » puis soudain un obstacle se présente dans son voisinage.

Question 1: Compléter les chronogrammes du document réponse DR1 décrivant les deux possibilités d'évolutions partielles du diagramme d'états lorsque ROBY est en fonctionnement et l'opérateur appuie sur le bouton arrêt d'urgence.

II- ETUDE DU DISPOSITIF DE MISE EN MOUVEMENT DE LA PLATE-FOME

On s'intéresse dans cette partie à l'étude du dispositif de mise en mouvement et de maintien en position de la plate-forme à la hauteur souhaitée. On donne ci-après le diagramme des exigences relatif au dispositif de mise en mouvement de la plate-forme :

La **figure 2b du document Annexe 2** décrit les constituants du dispositif de mise en mouvement vertical de la plate-forme.

II-1 Etude de l'exigence « Déplacement vertical »

Le robot ROBY est représenté par le schéma cinématique de la **figure 5 page suivante**. On considère qu'il est constitué des solides indéformables suivants :

- **(S₁)** = {chariot, les 2 colonnes(31), stator du moteur(36), parties fixes du réducteur(37), parties fixes du frein(35)};
- (S₅) = {arbre moteur, arbre d'entrée du réducteur(37)};
- (S₆) = {arbre de sortie du réducteur(37), poulie dentée(38)};
- (S₇) = {vis à billes(34), parties mobiles du frein(35), poulie dentée(39)};
- $(S_8) = \{ \text{plate-forme}(33), \text{ tablier}(32), \text{ manipulateur Kuka} \}.$

L'étude se fera pendant la phase de montée de la plate-forme, le frein (35) n'intervient pas dans cette phase, ses parties fixes ne sont donc pas représentées. Le manipulateur Kuka est plié (ses constituants sont fixes).

 (S_6)

ĄŽ₁

, Ž₁

O₈

Courroie (40)

 (S_7)

Figure 5

Réducteur (37)

Données, Hypothèses et Paramétrage:

• Chariot (S₁): <u>Fixe</u> par rapport au sol; Repère lié $R_1(O_1, \vec{x}_1, \vec{y}_1, \vec{z}_1)$ supposé Galiléen, le vecteur accélération de pesanteur est $\vec{g} = -g\vec{z}_1$. On prendra $g = 10 \text{ m/s}^2$.

• Solide (S₅):

 $L(S_5/S_1)$ = pivot d'axe (H_3, \vec{z}_1) ; Moment d'inertie par rapport à son axe de rotation : J_m ;

Vecteur rotation $\overrightarrow{\Omega}(S_5/S_1) = \omega_m \vec{z}_1$;

L'action mécanique du moteur sur (S_5) est représentée par un torseur couple de moment $C_m \vec{z}_1$

• Solide (S₆):

 $L(S_6/S_1)$ = pivot d'axe (H_3, \vec{z}_1) ; Moment d'inertie par rapport à son axe de rotation : J_r ; Vecteur rotation $\overrightarrow{\Omega}(S_6/S_1) = \omega_r \vec{z}_1$.

• Solide (S₇):

 $L(S_7/S_1)$ = pivot d'axe (O_1, \vec{z}_1) ; $L(S_7/S_8)$ = hélicoïdale d'axe (O_8, \vec{z}_1) ,

hélice à droite, pas p = 10mm;

Moment d'inertie par rapport à son axe de rotation : J_7 ;

vecteur rotation $\overrightarrow{\Omega}(S_7/S_1) = \omega_7 \vec{z}_1$.

• Solide (S₈):

Repère lié $R_8(O_8, \vec{x}_1, \vec{y}_1, \vec{z}_1)$;

 $L_1(S_8/S_1)$ = pivot glissant (H_1, \vec{z}_1) ;

 $L_2(S_8/S_1)$ = pivot glissant(H_2, \vec{z}_1);

Masse M_8 , centre d'inertie G_8 tel que $\overline{O_8G_8} = a_8\vec{x}_1 + b_8\vec{z}_1$ (a_8 , b_8 constantes); On note le vecteur vitesse: $\overrightarrow{V(O_8} \in S_8/S_1) = V_8\vec{z}_1$.

Filière: MP

Manipulateur

Kuka plié

- Le rapport de réduction du réducteur (37) est $n = \omega_r / \omega_m = -0.1$;
- Les deux poulies dentées (38) et (39) ont mêmes rayons primitifs : $R_{38} = R_{39}$;
- Toutes les liaisons seront considérées **parfaites**, les solides tournants sont équilibrés dynamiquement et la courroie (40) est supposée de masse négligeable et inextensible.
- Les autres parties tournantes du réducteur (37) notées APTR seront considérées de masses négligées.

On donne ci-contre la loi de vitesse V_8 de **(S₈)** pendant la phase de montée de la plate-forme. A l'instant t=0 la plate-forme est en position la plus basse, à t= t₂+t₁ elle est en position la plus haute. On rappelle que $V_{8 \text{ Max}} = 0.05 \text{ m/s}$.

Question 2 :

- a) Calculer la valeur minimale de l'instant t₂ pour satisfaire l'exigence d'identité 1.3.1 en termes de course de levage.
- b) Etablir la relation entre V_8 et ω_m .
- c) Déterminer L'énergie cinétique de l'ensemble (E)={ S_5 , APTR, S_6 , Courroie(40), S_7 , S_8 } dans son mouvement par rapport à (S_1) en fonction de J_m , J_r , J_7 , n, p, M_8 et ω_m .
- d) En déduire le moment d'inertie $J_{\rm \acute{e}q}$ de l'ensemble des éléments de (E) ramené à l'arbre moteur.

Duestion 3:

- a) Appliquer le théorème de l'énergie cinétique à l'ensemble (E) dans son mouvement par rapport à (S1). En déduire C_m en fonction de $J_{\rm \acute{e}q}$, M_8 , g , n , p et $\dot{\omega}_m$.
- b) Déterminer en fonction de V_{8 Max} et des données du problème l'expression du couple moteur C_m maximal noté C_{m Max}.
- c) Sachant que $J_{\text{\'eq}}$ = 10^{-4} Kg.m² Calculer la valeur de $C_{m \text{ Max}}$.

II-2 Etude de l'exigence « Maintien en position » de la plate-forme

Le robot ROBY est représenté par le schéma cinématique de la figure 6 ci-contre. On considère qu'il est constitué des solides indéformables (S₁), (S_7) et (S_8) précédemment définis à la page 3. L'étude se fera dans la phase de travail de l'outil, la plate-forme est fixe, le frein (35) est en action. Le moteur, le réducteur et le système poulies-courroie n'interviennent pas dans cette phase, ils ne sont donc pas représentés. On se place dans le cas le plus défavorable tel que l'outil effectue un travail de ponçage d'une zone située au plafond. Le manipulateur Kuka est déployé verticalement ses constituants sont quasiment fixes.

Pour les données et le paramétrage voir page 4, sauf pour le **solide (S**₈) on prendra :

$$\overrightarrow{O_8G_8} = c_8 \vec{x}_1 + d_8 \vec{z}_1$$
 (c₈, d₈ constantes)

* Le torseur de l'action mécanique de liaison de (S₇) sur (S₈) sera noté:

$$\left\{\tau(S_7 \to S_8)\right\} = \left\{ \begin{matrix} X_{78} \, \vec{x}_1 + Y_{78} \, \vec{y}_1 + Z_{78} \, \vec{z}_1 \\ L_{78} \, \vec{x}_1 + M_{78} \, \vec{y}_1 + N_{78} \, \vec{z}_1 \end{matrix} \right\}_{O8} \; . \label{eq:tau_spectrum}$$

- * L'action mécanique du **frein (35)** sur le solide **(S**₇**)** est représentée par un torseur couple de moment $-C_f \vec{z}_1$.
- * L'action mécanique du **plafond** sur le solide (S₈) au point M est représentée par le torseur:

$$\{\tau(\text{plafond} \rightarrow S_8)\} = \left\{\frac{X\vec{x}_1 + Y\vec{y}_1 - F\vec{z}_1}{M_M(\text{plafond} \rightarrow S_8)}\right\}_M \text{ avec } F = 300 \text{ N}.$$

On néglige les effets d'inertie dus au mouvement de l'outil de ponçage et des constituants du bras manipulateur Kuka. Les liaisons seront considérées parfaites sauf au niveau du frein (35).

Ouestion 4:

- a) Déterminer l'équation scalaire issue de l'application du théorème de la résultante statique au solide (S₈) en projection sur \vec{z}_1 . (On établira le bilan des résultantes correctement)
- b) Déterminer l'équation scalaire issue de l'application du théorème du moment statique au point O_8 au solide (S₇) en projection sur \vec{z}_1 . (On établira le bilan des moments correctement)
- c) Déterminer alors le couple de freinage C_f en fonction de M₈, g, F et p.
- d) Calculer C_f puis vérifier si le cahier des charges est satisfait.

III- ETUDE DE L'EXIGENCE « Maintien de l'appui chariot-sol »

La solution retenue pour limiter les risques de basculement de ROBY dans le cas de certains travaux particuliers est d'intégrer deux stabilisateurs latéraux à l'arrière du chariot (revoir la figure 3 page 2). Ces stabilisateurs sont déployés à l'aide de vérins électriques réversibles et permettent chacun de remplacer le contact roue arrière-sol par un contact patin-sol. L'ensemble du dispositif doit pouvoir être logé derrière

une trappe à l'intérieur du chariot pour ne pas modifier l'encombrement du ROBOT ROBY lors des déplacements. On donne ci-après le diagramme des exigences des stabilisateurs.

III-1 Etude cinématique d'un stabilisateur:

Pendant la sortie ou la rentrée du bras (8) du stabilisateur (figure 7 page suivante) celui-ci est guidé par deux rainures symétriques réalisées sur le rail (5): Un cylindre faisant partie de (8) glisse à l'intérieure des deux rainures. On adoptera le schéma cinématique plan du document réponse DR2. On s'intéresse dans un premier temps à l'étude cinématique du stabilisateur quand le bras (8) est dans une position intermédiaire pendant la phase de sortie.

Le vérin électrique **(10)** est modélisé simplement par deux pièces : Le corps **(10a)** et la tige **(10b)**. Les liaisons sont listées ainsi :

```
L(10b/10a): pivot glissant (E,\vec{x}_{10}); L(10a/5): pivot (E,\vec{x}_{5}); L(10b/8): pivot (D,\vec{x}_{5}); L(8/5): ponctuelle au point H; L(8/7): pivot (B,\vec{x}_{5}); L(7/5): pivot (A,\vec{x}_{5}). On donne \overline{V(D \in 10b/10a)} = 60 \ \vec{x}_{10} \ (mm/s)
```

- Question 5 : On répondra directement sur le document réponse DR2.
 - a) Quelle est la direction de $V(B \in 8/5)$? Justifier votre réponse.
 - b) Déterminer graphiquement le centre instantané de rotation noté I_{85} du mouvement de (8) par rapport à (5).
 - c) En déduire la direction de $V(D \in 8/5)$.
- Question 6: On répondra directement sur le document réponse DR2.
 - a) Déterminer graphiquement les vecteurs vitesses $\overline{V(D \in 8/5)}$ et $\overline{V(D \in 10a/5)}$.
 - b) Déterminer graphiquement $V(K \in 8/5)$. Indiquer sa norme.

<u>Validation de l'exigence «Sortie-rentrée</u> <u>stabilisateur»</u>: Voir document réponse DR3

Le stabilisateur est représenté dans la position telle que le bras **(8)** du stabilisateur est complètement sorti. Les points K, D, B et C du **document réponse DR2** occupent alors respectivement les positions K₁, D₁, B₁ et C₁.

- Question 7 : On répondra directement sur le document réponse DR3.
- a) Définir puis tracer la trajectoire du point B du solide (8) dans (5).
- b) Déterminer alors graphiquement les positions des points B et D notées respectivement B_0 et D_0 quand le point K est en position K_0 c'est-à-dire le bras (8) du stabilisateur est complètement rentré.
- c) En déduire la course du vérin (10)=(10a,10b). Vérifier si le cahier des charges est respecté.

III-2 Etude statique d'un stabilisateur : Exigence « Adhérence »

L'objet de cette étude est de déterminer le coefficient de frottement minimal entre le bras **(8)** du stabilisateur et le rail **(5)** pour garantir l'exigence d'identité « 1.2 .1.5 » **(voir diagramme des exigences page 6)**. Pour respecter des contraintes de sécurité et limiter la consommation énergétique, la solution retenue doit assurer que le stabilisateur, une fois déployé, remplit sa fonction d'appui sur le sol sans que soit mis à contribution l'effort de sortie de la tige du vérin. Le stabilisateur est représenté par le schéma cinématique plan du **document réponse DR4** en position complètement sorti. Le vérin **(10)** d'après ce qui précède n'intervient pas pendant cette phase, il n'est donc pas représenté.

Le problème est supposé plan donc le torseur d'action mécanique dans une liaison pivot parfaite (M_{ii}, \vec{x}_5)

entre deux solides (i) et (j) sera noté :
$$\left\{\tau(i \to j)\right\} = \left\{\overrightarrow{R(i \to j)}\right\}_{M_{ij}}.$$

Toutes les liaisons sont parfaites sauf la liaison ponctuelle au point H entre **(8)** et **(5)**. On néglige l'action de pesanteur sur l'ensemble des pièces du stabilisateur. On note f le coefficient de frottement entre **(8)** et **(5)**.

- > Question 8: On répondra directement sur le document réponse DR4.
 - a) Quelles sont les informations qu'on obtient en étudiant l'équilibre de la biellette (7)?
 - b) Etudier graphiquement l'équilibre de l'ensemble Σ ={8, 9}. En déduire la direction de $\overrightarrow{R}(5 \rightarrow 8)$.
 - c) Quelle est alors la valeur du coefficient de frottement minimal f_{min} entre (8) et (5) pour garantir le non glissement de (8) par rapport à (5) ?

IV- ETUDE DYNAMIQUE DU ROBOT ROBY: EXIGENCE «Limitation des effets d'inertie»

On considère dans un premier temps que le manipulateur Kuka est en cours de déploiement tel que seuls les axes A1 et A3 sont actionnés (figure 3a document Annexe 3). Le chariot et la plate-forme élévatrice sont à l'arrêt. Tenant compte des constituants du manipulateur Kuka (figure 3a document Annexe 3), On adopte le schéma cinématique simplifié de la figure 8 page suivante en considérant que le ROBOT ROBY est constitué des solides indéformables suivants :

- $(S_1) = \{Chariot\};$ $(S_2) = \{Embase (42) + Plate-forme élévatrice\};$
- (S_3) ={Colonne de rotation (43) + Epaule (44)}; (S_4) ={Bras (45) + Poignet (46) + Outil de travail}.

Données et Paramétrage:

Sol	Supposé parfaitement horizontal, repère lié $R_0(0)$	$(x_0, \vec{x}_0, \vec{y}_0, \vec{z}_0)$ supposé Galiléen ,
(S_0)	L'accélération de pesanteur est $\vec{\mathbf{g}} = -\mathbf{g} \vec{\mathbf{z}}_0$.	
(S ₁)	Fixe par rapport au sol (S ₀), Li (S ₁ /S ₀): ponctuelle avec frottement de normale (I_i , \vec{z}_0) (i=1,2,3) $I_1 = O_0$, $\vec{I_1}\vec{I}_2 = c_1\vec{x}_0 - d_1\vec{y}_0$, $\vec{I_1}\vec{I}_3 = c_1\vec{x}_0 + d_1\vec{y}_0$, (c ₁ , d ₁ constantes), \vec{u} vecteur unitaire orientant la	Masse m_1 , centre d'inertie G_1 tel que $\overline{I_1G_1} = a_1 \vec{x}_0 + b_1 \vec{z}_0$ (a_1 , b_1 constantes)
(2.)	droite (I_1I_3), $\alpha_0 = (\vec{x}_0, \vec{u})$ avec α_0 angle constant .	
(S ₂)	Fixe par rapport au chariot (S ₁). $L(S_2/S_1)$: glissière bloquée, $\overline{I_1O_2} = L_1 \vec{x}_0 + z_1 \vec{z}_0$ (L ₁ , z ₁ constantes).	Masse m_2 , centre d'inertie G_2 tel que $\overrightarrow{O_2G_2} = a_2 \vec{x}_0 + b_2 \vec{z}_0$ (a_2 , b_2 constantes)
(S ₃)	$\begin{split} &L(S_3/S_2): \text{pivot parfaite d'axe } (O_3,\vec{z}_0),\\ &\text{repère lié } R_3(O_3,\vec{x}_3,\vec{y}_3,\vec{z}_0),\\ &\theta\!=\!(\vec{x}_0,\vec{x}_3)\!=\!(\vec{y}_0,\vec{y}_3)\\ &\overline{O_2O}_3\!=\!c_2\vec{x}_0+d_2\vec{z}_0(c_2,d_2\text{constantes}) \end{split}$	Masse m_3 , centre d'inertie G_3 tel que $\overline{O_3G}_3 = L_3 \vec{x}_3 (L_3 \text{ constante}), \text{ matrice d'inertie}$ $\begin{bmatrix} I_{03}(S_3) \end{bmatrix} = \begin{pmatrix} A_3 & -F_3 & -E_3 \\ -F_3 & B_3 & -D_3 \\ -E_3 & -D_3 & C_3 \end{pmatrix}_{\left(\vec{X}_3, \vec{y}_3, \vec{z}_0\right)}$
(S ₄)	$\begin{split} L(S_4/S_3) : & \text{ pivot parfaite d'axe } (A, \vec{y}_3) \text{ ,} \\ & \text{ repère lié } R_4(A, \vec{x}_4 \vec{y}_3, \vec{z}_4), \\ & \beta \!=\! (\vec{x}_3, \vec{x}_4) \!=\! (\vec{z}_0, \vec{z}_4) \\ & \overline{O_3 A} \!=\! a_3 \vec{x}_3 \text{ (a_3 constante)} \end{split}$	Masse m ₄ , centre d'inertie G ₄ tel que $\overline{AG}_4 = L_4 \vec{x}_4 (L_4 constante) , matrice d'inertie \\ \begin{bmatrix} I_A(S_4) \end{bmatrix} = \begin{pmatrix} A_4 & 0 & 0 \\ 0 & B_4 & 0 \\ 0 & 0 & C_4 \end{pmatrix}_{\left(\vec{x}_4, \vec{y}_3, \vec{z}_4\right)}$

Un moteur (M_{23}) est monté entre (S_2) et (S_3) , (M_{23}) applique sur (S_3) une action mécanique représentée par un torseur couple de moment C_{m23} \vec{z}_0 . Un moteur (M_{34}) est monté entre (S_3) et (S_4) , (M_{34}) applique sur (S_4) une action mécanique représentée par un torseur couple de moment C_{m34} \vec{y}_3 .

Les données de masse et d'inertie de (M_{23}) sont inclues dans ceux des solides (S_2) et (S_3) de même pour (M_{34}) dans ceux des solides (S_3) et (S_4) .

Ouestion 9 :

- a) Sachant que $(O_3, \vec{x}_3, \vec{z}_0)$ est un plan de symétrie matérielle du solide (S₃), simplifier la forme de sa matrice d'inertie $[I_{O3}(S_3)]$.
- b) Déterminer le moment cinétique au point A du solide (S₄) dans son mouvement par rapport à (S₀): $\overrightarrow{\sigma_A}(S_4/S_0)$.

Question 10:

- a) Déterminer en fonction de θ , β , leurs dérivées et des données du problème le couple C_{m34} .
- b) Sans effectuer aucun calcul, indiquer le système à isoler et <u>l'unique</u> équation scalaire issue des théorèmes généraux de la dynamique à appliquer pour déterminer le couple C_{m23} .

On s'intéresse par la suite à l'étude de l'exigence d'identité « 1.2.2 » (**Diagrammes des exigences page 2**) visant à éviter le basculement de ROBY qui peut être dû aux effets d'inertie pendant le déploiement du manipulateur Kuka.

La position la plus favorable de basculement est quand le manipulateur Kuka est complètement déployé suivant l'horizontale ($\vec{x}_3 = \vec{x}_4$) et que \vec{x}_3 est **orthogonal** à \vec{u} (**voir figure 3b document Annexe 3**). Le basculement peut alors se produire autour de la droite (I_1I_3) (perte de contact au point I_2).

L'étude dynamique qui suit se fera à **l'instant** ou le manipulateur Kuka est dans **cette position particulière**, le système est représenté par les deux schémas cinématiques spatial et plan du **document Annexe 4** de plus on prendra $\dot{\theta} = \underline{\text{constante}}$. Le but de l'étude est de **déterminer l'expression de la vitesse angulaire limite de lacet** $\dot{\theta}_{\text{Max}}$, qui provoque le **basculement** de ROBY autour de la droite (I_1I_3). Les deux solides (S_3) et (S_4) forment un même **solide** noté (S_{34})={ S_3 , S_4 }. On note m_{34} la masse de (S_{34}), G_{34} son centre d'inertie tel que $O_3G_{34} = L_{34}\vec{x}_3$ et $O_3G_3G_3$

$$\begin{bmatrix} I_{03}(S_{34}) \end{bmatrix} = \begin{pmatrix} A_{34} & 0 & -E_{34} \\ 0 & B_{34} & 0 \\ -E_{34} & 0 & C_{34} \end{pmatrix}_{ (\vec{x}_3, \vec{y}_3, \vec{z}_0)} .$$

- **Question 11:** Déterminer le moment cinétique au point I_1 du solide (S_{34}) dans son mouvement par rapport à (S_0): $\overrightarrow{\sigma_{I_1}}(S_{34}/S_0)$.
- **Ouestion 12:**
 - a) Indiquer à l'instant de l'étude la relation entre \vec{u} et \vec{y}_3 .
 - b) En appliquant Le théorème du moment dynamique au système (S)={S₁, S₂, M₂₃, S₃₄, M₃₄} dans son mouvement par rapport à (S₀) au point I₁, en projection sur \vec{u} , déterminer $\vec{u}.\overline{M(I_1,S_0} \xrightarrow{L2} S_1)$ en fonction de θ , $\dot{\theta}$ et des données du problème.

On donnera le résultat sous la forme : $\vec{u} \cdot \overline{M(I_1)} \cdot S_0 \xrightarrow{L2} S_1 = K_1 \dot{\theta}^2 + K_2 \cos(\theta) + K_3$

- Ouestion 13:
 - a) A l'instant de l'étude, donner θ en fonction de α_0 , en déduire $\cos(\theta)$ en fonction de c_1 et d_1 .
 - b) Sachant qu'à l'instant de l'étude $|K_2\cos(\theta)| > K_3$, donner en fonction des données du problème l'expression de la vitesse angulaire $\dot{\theta}$ limite notée $\dot{\theta}_{Max}$ qui provoque le basculement de ROBY.

V- ETUDE DE L'EXIGENCE « Déplacement de ROBY »

Le chariot est mis en mouvement est dirigé en même temps par la roue avant. On donne ci-après le diagramme des exigences relatif au chariot.

On s'intéresse dans cette partie à l'étude de l'exigence d'identité «1.1.2.1 » concernant l'asservissement de position du chariot du robot ROBY. Le principe retenu pour cet asservissement est représenté par la **figure 9 page suivante**.

Session: 2017

x_c: consigne de position du chariot.

u_c: tension consigne.

u_r: tension de mesure de la position angulaire de la roue, fournie par un potentiomètre de gain K_r.

F_r: Effort perturbateur.

 $u_m(t)$: tension de commande du moteur;

 ω_m : vitesse angulaire du moteur.

 ω_r : vitesse angulaire de la roue.

 $N = \omega_r / \omega_m$: rapport de réduction du réducteur.

 θ_r : position angulaire de la roue.

D: diamètre de la roue.

x : position réelle du chariot.

V-1 Modélisation du moteur électrique à courant continue:

Le moteur électrique est représenté par le schéma blocs de la figure 10 suivante.

k : constante de couplage ; f : coefficient de frottement visqueux équivalent R : résistance de l'induit : J_e: moment d'inertie équivalent ramené au moteur. ramené au moteur;

Le schéma blocs du moteur (figure 10) peut se simplifier sous la forme représentée ci-contre,

avec:
$$G_m(p) = \frac{K_m}{1 + T_m p}$$
 et $G_F(p) = K_F$

Ouestion 14:

a) Déterminer Les expressions de K_m , T_m et K_F .

La figure r5a du document réponse DR5 représente la réponse du moteur à un échelon de tension d'amplitude $10 \text{ V} (u_m(t)=10 \text{ u}(t))$ tel que l'effort perturbateur $F_r=0$. Répondre directement sur DR5.

b) Déterminer les valeurs numériques de K_m et T_m. Indiquer les unités.

V-2 Etude de l'asservissement de position du chariot:

Tenant compte de la modélisation retenue précédemment pour le moteur électrique, l'asservissement de position du chariot décrit par le schéma blocs de la figure 9 est détaillé ainsi :

Ouestion 15:

- a) Que doit être la relation entre K_a , K_r et D pour avoir un asservissement correcte?
- b) Tenant compte de ce résultat et sachant que $K_a=1$ V.m⁻¹, le schéma blocs de l'asservissement peut se mettre sous la forme ci-dessous (figure 11). Indiquer l'expression de $G_s(p)$.

On prendra par la suite $G_s(p) = \frac{K_s}{p}$ et on laissera apparaître K_m et T_m sans les remplacer par leurs valeurs

numériques trouvées à la question 14 b.

On vous propose de plus deux stratégies pour vérifier le cahier des charges, une synthèse vers la fin de l'étude vous sera proposée pour les comparer.

Première stratégie:

On considère dans un premier temps un correcteur proportionnel de gain K_x : $C_x(p) = K_x$

Ouestion 16:

- a) Donner l'expression de la fonction de transfert en boucle ouverte (FTBO) notée $H_{BO1}(p) = X(p) / \mathcal{E}(p)$ de l'asservissement de position (prendre $F_r(p) = 0$). Indiquer son ordre, son gain K_{BO1} , et sa classe.
- b) En supposant l'effort perturbateur nul (Fr(p)=0), quelle est l'erreur en régime permanent $\epsilon_{c\,\infty}$ à une consigne de position en échelon unitaire ($x_c(t)=u(t)$) ? Justifier votre réponse.
- c) En supposant la consigne de position nulle ($X_c(p)=0$), exprimer l'écart $\epsilon(p)$ noté $\epsilon_{per}(p)$ en fonction de $F_r(p)$, K_F , $G_m(p)$, $G_s(p)$ et $C_x(p)$.
- d) En déduire l'expression de l'erreur en régime permanent $\epsilon_{per \, \infty}$ à un effort perturbateur en échelon d'amplitude F_0 ($F_r(t) = F_0 \, u(t)$) .Conclure.

La **figure r5b** du **document réponse DR5** représente la réponse de l'asservissement à une consigne en échelon unitaire ($x_c(t)=x_0$ u(t) =u(t); $x_0=1$ m) et un effort perturbateur en échelon en retard de 30 sec ($F_r(t)=F_0$ u(t - 30) avec $F_0=31$ N) pour $K_x=10$. **Répondre directement sur le document réponse DR5**.

- e) Indiquer graphiquement sur la figure les deux erreurs $\epsilon_{c\ \infty}$ et $\epsilon_{per\ \infty}$ puis relever leurs valeurs. En déduire la valeur numérique de K_F .
- f) Indiquer le temps de réponse à 5% uniquement à la consigne $x_c(t)$ (en supposant l'effort perturbateur F_r non appliqué).

Le **document réponse DR6** représente les diagrammes de Bode de la fonction de transfert en boucle ouverte $H_{BO1}(p)$ du système pour $K_x = 1$.

- > <u>Ouestion 17:</u> On répondra directement sur le document réponse DR6.
 - a) -Indiquer graphiquement sur le document la marge de phase du système notée MP₁ puis donner sa valeur.
 - -Quelle est la marge du gain MG du système?
 - b) Déterminer la valeur numérique de K_x qui permet de satisfaire le critère de rapidité (avoir la pulsation de coupure à 0_{dB} ω_c = ω_{c2} = 4 rad/s). Que devient la marge de phase notée MP₂ ? Indiquer graphiquement K_{xdB} et MP₂ sur le document.
 - c) Conclure quant à l'aptitude du correcteur proportionnel $C_x(p)$ à satisfaire les critères de stabilité et rapidité.

On choisit par la suite un correcteur proportionnel intégral : $C_x(p) = C_1(p) = \frac{1 + T_i p}{T_i p}$, avec $T_i = T_m$ pour compenser le pôle de la fonction de transfert en boucle ouverte $H_{BO1}(p)$. On prendra de plus $K_{s.}K_m/T_m = 0.03$

Ouestion 18:

- a) Pour quelle raison ce correcteur a été choisi?
- b) Sur votre copie tracer les diagrammes de Bode de la nouvelle fonction de transfert en boucle ouverte du système notée $H_{BO2}(p) = X(p) / \varepsilon(p)$.
- c) Conclure quant à l'influence du correcteur $C_1(p)$ sur la stabilité du système.

Pour concilier la stabilité, la rapidité et la précision on associe au correcteur $C_1(p)$ un correcteur à avance de phase : $C_2(p) = K_d \left(\frac{1 + T_d p}{1 + a.T_d p} \right)$ avec a < 1. On aura donc $C_x(p) = C_1(p).C_2(p)$.

La nouvelle fonction de transfert en boucle ouverte du système devient : $H_{B03}(p) = C_2(p)$. $H_{B02}(p)$. La **figure 5a du document Annexe 5** représente les diagrammes de Bode du correcteur à avance de phase $C_2(p)$.

Ouestion 19:

Déterminer les valeurs numériques de a , T_d et K_d pour régler la pulsation de coupure à 0_{dB} de la nouvelle FTBO $H_{BO3}(p)$ à $\omega_c = \omega_{c2} = 4 \text{ rad/s}$ et la marge de phase à MP=MP₃=83°.

Deuxième stratégie :

On introduit dans le système un asservissement de vitesse du moteur, le capteur permettant de mesurer la vitesse angulaire du moteur est une génératrice tachymétrique de gain $K_{\rm g}$. Après avoir transformé le schéma blocs de l'asservissement de vitesse pour le rendre à retour unitaire le schéma blocs de la **figure 11 page 12** devient :

Pour l'asservissement de vitesse on choisira un correcteur proportionnel intégral : $C_{\omega}(p) = K_i \left(\frac{1+T_ip}{T_ip}\right)$ et on prendra de même $T_i = T_m$. Par contre pour l'asservissement de position on prendra un correcteur proportionnel de gain K_x : $C_x(p) = K_x$, et on rappelle que $G_s(p) = \frac{K_s}{p}$.

Question 20:

- a) Déterminer à nouveau, sous forme canonique, l'expression de la fonction de transfert en boucle ouverte de l'asservissement de position notée $H_{BO4}(p) = X(p) / \mathcal{E}(p)$.
- b) En considérant l'effort perturbateur nul ($F_r(p)=0$), déterminer, en fonction de K_g , K_s , K_m et T_m le rapport K_i/K_x pour que la réponse indicielle (à un échelon unitaire : x_c (t)=u(t)) de l'asservissement de position soit la plus rapide possible.
- c) En utilisant l'abaque de la figure 5b du document Annexe 5, déterminer alors les expressions de K_x et K_i pour avoir un temps de réponse à 5% de la réponse indicielle $t_{r5\%} = 0.5~sec.$

Le schéma blocs de la figure 12 page 13 peut se transformer ainsi :

Question 21:

- a) Indiquer les expressions de $H_1(p)$ et $H_2(p)$.
- b) En supposant la consigne de position nulle ($X_c(p)=0$), que vaut l'erreur statique $\epsilon_{per\,\infty}$ à un effort perturbateur en échelon d'amplitude F_0 ($F_r(t)=F_0$ u(t)) ? Justifier votre réponse. Conclure.

Tenant compte de ce qui précède, la nouvelle fonction de transfert en boucle ouverte de l'asservissement de position est : $H_{B04}(p) = \frac{X(p)}{E(p)} = \frac{4.285}{p\left(1 + \frac{p}{9.4}\right)}$

Ouestion 22:

- a) Sur la figure r7a du document réponse DR7 tracer les diagrammes de Bode de la fonction de transfert H_{BO4}(p) (diagrammes asymptotiques et courbes réelles).
- b) En exploitant le diagramme asymptotique de gain, <u>calculer</u> la marge de phase notée MP₄ du système.

Conclure quant au respect du cahier des charges en termes de rapidité et stabilité.

Les figures 6a et 6b du document Annexe 6 représentent les réponses indicielles de l'asservissement de position pour les deux stratégies étudiées.

c) Sur la figure r7b du document réponse DR7 compléter le tableau en cochant les réponses adéquates. Quelle stratégie jugez-vous meilleure?

Fin de l'énoncé.

Filière: MP

> Ouestion 1:

Echelle des vitesses : $1 \text{ cm} \rightarrow 20 \text{ mm/s}$

 $\stackrel{\text{!`}}{\pmb{\vee}} \vec{\textbf{X}}_{10}$

Question 5	:
-	

(5)

a)	

c)	

\triangleright	Question	6:
a)		

•••	• • •	• • •	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	• • •	• • •	• •	• • •	•••	•••	• • •	•••	• •	• • •	• • •	• •	• • •	• • •	•••	••	•••	•••	•••	•••	•••	• • •	• • •	• • •	• • •	• • •	• •	• •	•••	• • •	•••	•••	•••	•••	•••	٠.
•••	•••	• • •	• • •						•••		•••	•••	•••	•••			• •				•••	•••	•••			• •				•••	•••	•••	•••	••	•••	•••					• •				•••					••
•••	•••	• • •	• • •					•••	•••	• • •	• • •	•••	•••	••	• • •		• •			•••	•••	• • •	••			• •		• • •		•••	• • •	•••	• • •	••	• • •	• • •					• •				•••					٠.
•••																																																		
•••																																																		
•••																																																		
•••	•••	•••	•••	••••	••••	•••	•••	•••	•••	• • •	•••	•••	•••	•••	• • •	• • •	• •	• • •	•••	•••	•••	•••	••	• • •		• •	• • •	• • •	•••	••	•••	•••	•••	••	•••	•••	• • •	• • •	• • •	• • •	• •	• •	• • •	• • •	•••	•••	•••	•••	• • •	• •

b)																																						
	••••	• • • •	• • • •	• • • • •	• • • •	• • • • •	• • • •	• • • •	• • • •	• • • •	•••	• • • •	•••	•••	• • • •	• • •	• • • •	•••	••••	•••	• • • •	• • •	• • •	• • • •	•••	• • • •	•••	• • • •	• • • •	• • • •	• • • •	•••	•••	• • • •	• • •	 • • • •	•••	• • •
	••••	••••		• • • • •				••••	• • • •	• • • •	•••	• • • •	•••	•••	••••	• • •		•••	••••	•••	• • • •	• • •	• • • •		•••	• • • •	•••	• • • •	• • • •	• • • •	• • • •	•••	•••	• • • •	• • •	 • • • •	•••	•••

\triangleright	Question	<u>7:</u>

-	
	 ••
b)	
•	••
a)	
Cj	••
	 • •

1	Λ		1	-
	1 11116	estio	n i	ı /:
,	<u> </u>			

-	marge de pnase MP ₁ = Marge de gain MG =
,	K _x =
	La marge de phase devient $MP_2 = \dots$
c)	Conclusion:

Question 22 : c)

Critère de comparaison Première Stratégie Deuxième stratégie Cahier des charges satisfait satisfait non satisfait non satisfait Convergence de l'asservissement de rapide rapide position vers la valeur finale moins rapide moins rapide Insensibilité de l'asservissement de robuste robuste position à l'effort perturbateur moins robuste moins robuste

Figure r7b

La stratégie que vous jugez meilleure :.....