Similarity measurements

- Is there any other day that had similar weather?
 - What was the sales rate on that day?
- What two days have the most similar weather?
- What is the most common weaher?

2010-01-08:21.9:42.1:0.05:0.0:0.0:8.95:240:23.04:230:33.11;Yes:No;Yes:Yes:No;No;No;No;No;No;No;No;No;No;No;No

Euclidean distance

$$d(x,y) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

Figure 2: Euclidean distance [6]

Euclidean distance

There is a notion of average

"Absolute" location in space

Non euclidean distance is based on properties of points

But no concept of location in space

Cosine similarity

$$cos(x,y) = \frac{(x \bullet y)}{||x||||y||}$$

Figure 4: Cosine similarity [6]

Cosine similarity

Inner product (dot product)

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^{\mathrm{T}} \mathbf{b}$$

$$= \left(egin{array}{cccc} a_1 & a_2 & \cdots & a_n \end{array}
ight) \left(egin{array}{c} b_1 \ b_2 \ dots \ b_n \end{array}
ight)$$

$$=a_1b_1+a_2b_2+\cdots+a_nb_n$$

L1-Norm

- Manhattan norm
- Taxicab norm

$$\|oldsymbol{x}\|_1 := \sum_{i=1}^{n} |x_i|$$

n

Manhattan distance

P-Norm

$$\left\|\mathbf{x}
ight\|_p := igg(\sum |x_i|^pigg)^n$$

Pearson correlation

Linear relationship between x and y

$$Pearson(x,y) = \frac{\Sigma(x,y)}{\sigma_x \times \sigma_y}$$

Figure 5: Pearson correlation [6]

Covariance

Covariance =
$$\frac{\sum (x_i - x_{avg})(y_i - y_{avg})}{n-1}$$

COVARIANCE

Standard deviation

Standard deviation

$$S = \sqrt{\frac{1}{N-1}} \sum_{i=1}^{N} |A_i - \mu|^2$$

$$\mu = \frac{1}{N} \sum_{i=1}^{N} A_i.$$

Jaccard coefficient

$$JC = \frac{M11}{M01 + M10 + M11}$$

M11 = Nr of items in both sets

M10 = Nr of items in set A

M01 = Nr of items in set B

Jaccard coefficient

Minkowski distance

$$d(x,y) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{\frac{1}{r}}$$

Figure 3: Minkowski distance [6]

Minkowski distance

- r = 1 this is exactly the same as the euclidean distance.
- r = 2 we are measuring the manhattan distance
- $r \rightarrow \infty$ this corresponds to measuring the maximum difference between any dimension of x and y.