

Figure 1 (A)

<u>GGATCGTCTCAGGTCA<u>GGAGGG</u></u>	25
SL33	
<u>GGAGACTT<u>A<u>TAGACCTATCCAGTCT</u></u></u>	50
TCAAGGTGCTCCAGAAAGCAGGAGT	75
TGAAGACCTGGGTGTGAGGGACACA	100
TACATCCTAAAAGCACACAGCAGA	125
GGAGGCCAGGCAGTGCCAGGAGTC	150
AAGGTTCCCAGAACAAACCCCT	175
AGGAAGACAGGCGACCTGTGAGGCC	200
<u>CTAGAGCACCA<u>CCAC<u>TTAAGAGAAGAA</u></u></u>	225
SL34	
GAGCTGTAAGCCGGCTTGTCAGA	250
GCCATCATGGGGACAAGGATATGC	275
CTACTGCTGGATGCCGAGTCTTCT	300
CCAGAGTTCTCTGAGAGTCCTCAG	325
AGTTGTCTGAGGGGGAGGACTCCC	350
AGTCTCCTCTCCAGATTCCCCAGAG	375
TTCTCCTGAGAGCGACGACACCCTG	400
TATCCTCTCCAGAGTCCTCAGAGTC	425
GTTCTGAGGGGGAGGACTCCTCGGA	450
TCCTCTCCAGAGACCTCCTGAGGGG	475
AAGGACTCCCAGTCTCCTCTCCAGA	500
TTCCCCAGAGTTCTCCTGAGGGCGA	525
CGACACCCAGTCTCCTCTCCAGAAT	550
TCTCAGAGTTCTCCTGAGGGGAAGG	575
ACTCCCTGTCTCCTCTAGAGATTTC	600
TCAGAGCCCTCCTGAGGGTGAGGAT	625
GTCCAGTCTCCTCTGCAGAACCTG	650
CGAGTTCTTCTCTCCTCTGCTTT	675
ATTGAGTATTTCCAGAGTTCCCCT	700

Figure 1(B)

GAGAGAACTCAGAGTACTTTGAGG	725
GTTTCCCCAGTCTCCTCTCCAGAT	750
TCCTGTGAGCTCCTCCTCCTCCTCC	775
ACTTTATTGAGTCTTCCAGAGTT	800
CCCCTGAGAGAACTCAGAGTACTTT	825
TGAGGGTTTCCCCAGTCTCTTCTC	850
CAGATT CCTATGACCTCCTCCTTCT	875
CCTCTACTTATTGAGTATTTCCA	900
GAGTTCTCCTGAGAGTGCTCAAAGT	925
ACTTTGAGGGTTTCCCCAGTCTC	950
CTCTCCAGATT CCTGGGAGCCCCTC	975
CTTCTCCTCCACTTACTGAGTCTT	1000
TTCCAGAGTTCCCCTGAGAGAACTC	1025
ACAGTACTTTGAGGGTTTCCCCA	1050
GTCTCCTCTCCAGATT CCTATGACC	1075
TCCTCCTCTCCTCTACTTATTGA	1100
GTATTTCCAGAGTTCTCCTGAGAG	1125
TGCTCAAAGTACTTTGAGGGTTT	1150
CCCCAGTCTCCTCTCCAGATT CCTG	1175
GGAGCCCTCCTCTCCTCCACTTT	1200
ACTGAGTCTTCCAGAGTTCCCCT	1225
GAGAGAACTCACAGTACTTTGAGG	1250
GTTTCCCCAGTCTCCTCTCCAGAT	1275
TCCTATGACCTCCTCCTCTCCTCT	1300
ACTTTATTGAGTATTTACAGAGTT	1325
CTCCTGAGAGTGCTCAAAGTGCTT	1350
TGAGGGTTTCCCCAGTCTCCTCTC	1375
CAGATT CCTGTGAGCTCCTCTTCT	1400

Figure 1 (C)

CCTACACTTATTGAGTCTTTCCA	1425
GAGTTCCCTGAGAGAACTCAGAGT	1450
ACTTTGAGGGTTTCCCCAGTCTC	1475
CTCTCCAGATT CCTGTGAGCTCCTC	1500
CTCCTCCTCCTCCACTTATTGAGT	1525
CTTTCCAGAGTTCCCCTGAGTGTA	1550
CTCAAAGTACTTTGAGGGTTTCC	1575
CCAGTCTCCTCTCCAGATT CTCAG	1600
AGTCCTCCTGAAGGGGAGAATACCC	1625
ATTCTCCTCTCCAGATT GTTCCAAG	1650
TCTTCCTGAGTGGGAGGACTCCCTG	1675
TCTCCTCACTACTTCCTCAGAGCC	1700
CTCCTCAGGGGGAGGACTCCCTATC	1725
TCCTCACTACTTCCTCAGAGCCCT	1750
CCTCAGGGGGAGGACTCCCTGTCTC	1775
CTCACTACTTCCTCAGAGCCCTCA	1800
GGGGGAGGACTCCCTGTCTCCTCAC	1825
TACTTCCTCAGAGCCCTCCTCAGG	1850
GGGAGGACTCCATGTCTCCTCTCA	1875
CTTCCTCAGAGTCCTCTCAGGGG	1900
GAGGAATTCCAGTCTCTCTCCAGA	1925
GCCCTGTGAGCATCTGCTCCTCCTC	1950
CACTCCATCCAGTCTCCCCAGAGT	1975
TTCCCTGAGAGTTCTCAGAGTCCTC	2000
CTGAGGGGCCTGCCAGTCTCCTCT	2025
CCATAGTCCTCAGAGCCCTCCTGAG	2050
GGGATGCACTCCCAATCTCCTCTCC	2075
AGAGTCCTGAGAGTGCTCCTGAGGG	2100

Figure 1 (D)

GGAGGATTCCCTGTCTCCTCTCCAA	2125
ATTCCTCAGAGTCCTCTTGAGGGAG	2150
AGGACTCCCTGTCTTCTCTCCATT	2175
TCCTCAGAGTCCTCCTGAGTGGGAG	2200
GACTCCCTCTCTCCTCTCCACTTTC	2225
CTCAGTTCCCTCCTCAGGGGGAGGA	2250
CTTCCAGTCTTCTCTCCAGAGTCCT	2275
GTGAGTATCTGCTCCTCCTCCACTT	2300
CTTGAGTCTTCCCCAGAGTTCCC	2325
TGAGAGTCCTCAGAGTCCTCTGAG	2350
GGGCCTGCTCAGTCTCCTCTCCAGA	2375
GACCTGTCAGCTCCTTCTCTCCTA	2400
CACTTAGCGAGTCTTCTCCAAAGT	2425
TCCCAGAGAGTCCTCAGAGTCCTC	2450
CTGAGGGGCCTGCCAGTCTCCTCT	2475
CCAGAGTCCTGTGAGCTCCTCCCC	2500
TCCTCCACTTCATCGAGTCTTCCC	2525
AGAGTTCTCCTGTGAGCTCCTCCC	2550
CTCCTCCACTTCATCGAGTCTTCC	2575
AAGAGTTCCCCTGAGAGTCCTCTCC	2600
AGAGTCCTGTGATCTCCTCTCCTC	2625
CTCCACTTCATTGAGCCCATTCACT	2650
<u>GAAGAGTCCAGCAGCCCAGTAGATG</u>	2675
SL26	
<u>AATATAACAAGTCCTCAGACACCTT</u>	2700
GCTAGAGAGTGATTCTTGACAGAC	2725
AGCGAGTCCTTGATAGAGAGCGAGC	2750
CCTTGTTCACTTATACACTGGATGA	2775
AAAGGTGGACGAGTTGGCGCGGTTT	2800

Figure 1 (E)

CTTCTCCTCAAATATCAAGTGAAGC 2825
SL27
AGCCTATCACAAAGGCAGAGATGCT 2850
GACGAATGTCATCAGCAGGTACACG 2875
GGCTACTTCCTGTGATCTTCAGGA 2900
AAGCCC GTGAGTTCATAGAGATACT 2925
TTTG GCATTCCCTGAGAGAAGTG 2950
GACCCTGATGACTCCTATGTCTTG 2975
TAAACACATTAGACCTCACCTCTGA 3000
GGGGTGTCTGAGT GATGAGCAGGGC 3025
ATGTCCCAGAACCGCCTCCTGATTC 3050
TTATTCTGAGTATCATCTTCATAAA 3075
GGGCACCTATGCCTCTGAGGAGGTC 3100
ATCTGGGATGTGCTGAGT GGAATAG 3125
GGGTGCGTGCTGGGAGGGAGCACTT 3150
TGCCTTGGGGAGCCCAGGGAGCTC 3175
CTCACTAAAGTTGGGTGCAGGAAC 3200
ATTACCTAGAGTACCGGGAGGTGCC 3225
CAACTCTCCTCCTCGTTACGAA 3250
TTCCTGTGGGTCCAAGAGCTCATT 3275
CAGAAGTCATTAAGAGGAAAGTAGT 3300
AGAGTTTTGGCCATGCTAAAGAAT 3325
ACCGTCCCTATTACCTTCCATCCT 3350
CTTACAAGGATGCTT GAAAGATGT 3375
GGAAGAGAGAGCCCAGGCCATAATT 3400
GACACCACAGATGATTGACTGCCA 3425
CAGAAAGTGCAAGCTCCAGTGTCA T 3450
GTCCCCCAGCTCTCTGAGTGA 3475
AGTCTAGGGCAGATTCTCCCTCTG 3500

Figure 1(F)

AGTTTGAAGGGGGCAGTCGAGTTTC	3525
TACGTGGTGGAGGGCCTGGTGAGG	3550
CTGGAGAGAACACAGTGCTATTGC	3575
ATTTCTGTTCCATATGGGTAGTTAT	3600
GGGGTTTACCTGTTTACTTTGGG	3625
TATTTTCAAATGCTTTCTATTAA	3650
ATAACAGGTTAAATAGCTTCAGAA	3675
TCCTAGTTATGCACATGAGTCGCA	3700
CATGTATTGCTGTTTCTGGTTA	3725
AGAGTAACAGTTGATATTTGTAA	3750
AAACAAAAACACACCCAAACACACC	3775
ACATTGGGAAAACCTTCTGCCTCAT	3800
TTTGTGATGTGTCACAGGTTAATGT	3825
GGTGTACTGTAGGAATTTCTTGA	3850
AACTGTGAAGGAACTCTGCAGTTAA	3875
ATAGTGGAATAAAGTAAAGGATTGT	3900
TAATGTTGCATTCCCTCAGGTCT	3925
TTAGTCTGTTGTTCTGAAAACCTAA	3950
AGATACATACCTGGTTGCTTGGCT	3975
TACGTAAGAAAGTAGAAGAAAGTAA	4000
ACTGTAATAAATAAAAAAAAAAAAAAA	4025
AAAAAAA	4031

FIG. 2(B)

A1
C1 tccccctcgccctgtttttttccatcctcatc ctcctctgtgcgtt ctccaggGGGACAAGGATATG CCTACTGCTGGATGCCGAG 294
exon IV
intron III D K D M P T A G M P S 13

A1
C1 TCTTCTCCAGAGTTCTCTG AGAGTCCTCAGAGTTGTCT GAGGGGGAGACTCCCAGTC TCCTCTCCAGATTCCCCAGA GTTCTCTGAGGGGACCGAC 394
L L Q S S S E S P Q S Y P E G E D S Q S P L Q I P Q S S P E S D D 46

A1
C1 ACCCTGTATCCTCCAGAG TCCTCAGAGTCGTTCTGAGG GGGAGGACTCTCGGATCCT CTCCAGAGACCTCCTGAGGG GAAGGACTCCCAGTCTCCCTC 494
T L Y P L Q S P J Q S R S E G E D S S D P L Q R J P P E G K D S Q S P L 80

A1
C1 TCCAGATTCCCAGAGTCT CCGAGGGGACACCCA GTCTCCTCTCAGAATTCTC AGAGTCTCTGAGGGGAAG GACTCCCTGTCCTCTAGA 594
Q I P | Q S S P E G D D T Q S P L Q N S ; Q S S P E G K D S L S P L E 113

A1
C1 GATTTCAGAGCCCTCTG AGGGGTGAGGGATCCAGTCT CCTCTGAGAACCTGCGAG TTCCCTCTCTGAGG TATTGAGTATTTCAGAGT 694
I S ; Q S P P E G E D V Q S P L Q N P [A _ S _ S _ F _ S _ S _ A _ L _ L _ S _ I _ F _ Q _ S _ . 146

A1
C1 TCCCTGTAGAGTATTCAAAG TCCTTTGAGGGTTTCCCC AGTCTGTCTCAGATTCT GTGAGGCCGCCCTCTCTCACTTAGTGAGTATTCC 794
S P E S I Q | S P F E G F P Q S V L Q I P [Y _ S _ A _ A _ S _ S _ S _ T _ L _ V _ S _ I _ F _ Q 180

A1
C1 AGAGTTCCCCTGAGAGTCT CAAAGTCTTGTAGGGTT TCCCGAGTCTCCACTCCAGA TTCCCTGTAGGCCGCTCTC TCCTCCACTTATTGAGTAT 894
— S S P E S T — Q | S P F E G F P Q S P L Q I P [Y _ S _ R _ S _ F _ S _ S _ T _ L _ L _ S _ I 213

A1
C1 TTTCCAGAGTTCCTCTGAGA GAAGTCAGAGAACTTGTGAG GGTTTGACAGTCTCTCT CCAGATTCTGTGAGCTCT CCTCGTCCTCACTTACTG 994
F Q S S P E R — S Q | R T S E G F A Q S P L Q I P [Y _ S _ S _ S _ S _ S _ S _ T _ L _ L _ 246

FIG. 2(C)

A1 AGTCTTTCCAGAGTCCCC TGAGAGAACTCAGAGTACTT TTGAGGGTTCCCCAGCT CCACCTCCAGATTCTGTGAG CCGCTCCTTCTCCTCCACCT 1094
 C1 S L F Q S S P E R T Q]|S T F E G F P Q S P L Q I P] [V S R S F S S T L 280

A1 TATTGAGTATTCCAGAGT TCCCCTGAGAGAACTCAGAG TACTTTGAGGGTTGCC AGTCTCCCTCAGATTCT GTGAGCTCCTCCTCCCTC 1194
 C1 L S I F Q S S P E R T Q]|S T F E G F A Q S P L Q I P] [V S S S S S S 313

A1 CACTTTATTGAGTCTTCC AGAGTCCCCCTGAGAGAACT CAGAGTA CTTGAGGGTT TCCCAGTCTCTCCAGA TTCCATGACCCTCCTC 1294
 C1 T L L S L F Q S S P E R T Q]|S T F E G F P Q S L L Q I P] [M T S S F 346

A1 TCCTCTACTTTATTGAGGAT TTCCAGAGTCTCTGAGA GTGCTCAAAGTACTTTGAG GGTTTCCCCAGTCTCT CCAGATT CCTGGAGCCCT 1394
 C1 S S T L L S I F Q S S P E S A Q]|S T F E G F P Q S P L Q I P] [G S P S 380

A1 CCTCTCTCTCACTTACTG AGTCTTTCCAGAGTCCCC TGAGAGAACTCACAGTACTT TTGAGGGTTCCCCAGCT CCTCTCCAGATTGAC 1494
 C1 F S S T L L S L F Q S S P E R T H]|S T F E G F P Q S P L Q I P] [M T S 413

A1 CTCTCTCTCTACTT TATTGAGTATTACAGAGT TCTCTGAGAGTGCTCAAAG TGTTTGAGGGTTCCCC AGTCTCTCTCAGATTCTC 1594
 C1 S S F S S T L L S I L Q S S P E S A Q]|S A F E G F P Q S P L Q I P] 446

A1 GTGAGCTCTCTCTCA CACTTTATTGAGTCTTCC AGAGTCCCCCTGAGAGAACT CAGAGTA CTTGAGGGTT TCCCAGTCTCTCCAGA 1694
 C1 V S S S F S Y T L L S L F Q S S P E R T Q]|S T F E G F P Q S P L Q I 480

A1 TTCTCTGTGAGGCTCTCC TCCCTCCACTTATTGAG TCTTTCCAGAGTCCCCCTG AGTGTACTCAAAGTACTTT GAGGGTTCCCCAGTCTCC 1794
 C1 P [V S S S S S S S T L L S L F Q S S P E C T Q]|S T F E G F P Q S P L Q I 513

FIG. 2(D)

A1	C1	TCTCCAGATTCTCAGAGTC	CTCCTGAAGGGAGAATACC	CATTCTCCTCCAGATTGT	TCAGTCTTCTGAGTGGG	AGGACTCCCTGTCCTCAC	1894
		L Q I P] Q S P P E G E N T H S P L Q I V] P S L P E W D S L S P H					546
A1	C1	TACTTCCAGAGCCCTCC	TCAGGGGAGACTCCAT	CTCCTCACTACTTCCAG	AGCCCTCTAGGGGGAGGA	CTCCCTGTCCTCACT	1994
		Y F P] Q S P P Q G E D S L S P H Y F P] Q S P P Q G E D S L S P H Y F					580
A1	C1	TTCCCTCAGAGCCCTCAGGGG	GAGGACTCCCTGTCCTCA	CTACTTCCAGAGCCCTC	CTAGGGGAGGACTCCATG	TCTCCTCTACTTCCCTCA	2094
		P] Q S P Q G E D S L S P H Y F P] Q S P P Q G E D S M S P L Y F P] Q					613
A1	C1	GAGTCCTTCAGGGGAGG	AATTCCAGTCTCTCCAG	AGCCCTGAGCATCTGCIC	CTCCTCCACTCCATCCAGTC	TTCCCGAGAGTTCCCTGAG	2194
		S P L Q G E E F Q S S L Q S P] V S I C S S T P S S L P Q S F P E					646
A1	C1	AGTTCTCAGAGTCTCTGA	GGGGCCTGTCAGTCCTC	TCCATAGTCTCAGAGCCCT	CCTGAGGGGATGCACTCCA	ATCCCTCTCAGAGTCCTG	2294
		S S Q] S P P E G P V Q S P L H S P] Q S P P E G M H S Q S P L Q S P E					680
A1	C1	AGAGTCTCCTGAGGGGAG	GATTCCCTGTCCTCTCCA	AATTCCCTCAGAGTCCTCTTG	AGGGAGAGGACTCCCTGCT	TCTCTCCATTTCCTCAGAG	2394
		S A P E G E D S L S P L Q I P] Q S P L E G E D S L S S L H F P] Q S					713
A1	C1	TCCTCTCAGTGGGAGGACT	CCCTCTCTCTCCACTT	CCTCAGTTCTCTCAGGG	GGAGGACTCCAGTCCTCTC	TCCAGAGTCCTGAGTATC	2494
		P P E W E D S L S P L H F P] Q F P Q G E D F Q S S L Q S P] V S I					746
A1	C1	TGCTCCTCCACCTCTT	GAGTCTCCCAGAGTTCC	CTGAGAGTCCTCAGAGCCT	CCTGAGGGCTGCTCAGTC	TCCCTCCAGAGACCTGTC	2594
		C S S T S L S L P Q S F P E S P Q] S P P E G P A Q S P L Q R P] V S					780
A1	C1	GCTCCTCTCTTACACT	TTAGCGAGTCTCTCAAAG	TCAGTCTTCTGAGGAGAATACC	AGTCTCTCTCAGAGTC	TCAGTCTTCTGAGGAGAATACC	2694
		S F S Y T L A S L Q S S H E S P Q] S P P E G P A Q S P L Q S P					813

FIG. 2(E)

A1	TGTGAGCTCTTCCCTCTTCCACTTC	CAACTCATCGAGCTTCC	CAGAGTTCTCTGTGAGCTC	CTTCCCCTCTCCACTTCAT	CGAGCTTCCAAGAGTTCC	2794
C1	CCTGAGAGTCTCTCCAGAG	TCCTGTGATCTCCTCTCT	CCTCCACTTCATTGAGCCC	TTCAGTGAAAGGTGCCAG	CCGTGAAGAGGGGGCAA	468
	P E S P L Q S P]	V _ I S F S S S T S L S P _ S]	S E S S T S S]	S L S K S S		846
	T S C I L - - - - -	E S L F R A V I T K K V A				
A1	GCACCTCTGTATCCTG...	GAGTCCTTGTCCGAGCA	GTAACTACTAAGAGGTGC	523		
C1	GTTCCTCAGACACCTGCTA	GAGAGTGTCCCTGACAGA	GCGAGCCTTGTCACTTAT	ACACTGGATGAAAAGGTGGA	2994	
	S S D T L L E S D S L T D S E S L I E S E P L F T Y T L D E K V D					913
	D L V G F L L L K Y R A R E P V T K A E M L E S V I K N Y K H C F					140
A1	TGATTTGGTGGTTCTGC	TCCTCAAATATCGAGCCAGG	GAGCCAGTCACAAAGGCAGA	AATGCTGGAGAGGTGTCATCA	AAAATTACAAGCACTGTTT	623
C1	CGAGTTGGCCGGTTCTC	TCCTCAAATATCGAGCCAGG	CAGGCTATCACAAAGGCAGA	GATGCTGACGAATGTCA	GCAGGTACACGGCTACTTT	3094
	E L A R F L L L K Y Q V K Q P I T K A E M L T N V I S R Y T G Y F					946
	P E I F G K A S E S L Q L V F G I D V K E A D P T G H S Y V L V T C					174
A1	CCTGAGATCTCGGCAAGC	CTCTGAGTCCTGCAGCTGG	TCTTGGCATTCGACTGAAG	GAAGCAGACCCACCGGCCA	CTCCATGCCCCGTCACT	723
C1	CCTGTCATCTCAGGAAAGC	CCGTGAGTTCATAGAGATC	TTTTGGCATTCCCTGAGA	GAAGTGGACCCCT...GATGA	CTCCATGCTTGTAAACA	3191
	P V I F R K A R E F I E I L F G I S L R E V D P . D D S Y V F V N T					979
	L G L S Y D G L L G D N Q I M P K T G F L I I V L V M I A M E G G					
A1	GCTTAGGTCTCTCTATGAT	GGCCTGCTGGGTATAATCA	GATCATGCCAACAGACAGGCT	TCCTGATAATTGTCCTGGTC	ATGATTGCAATGGAGGGCGG	823
C1	CATTAGACCTCACCTCTGAG	GGGTGCTGAGTGATGAGCA	GGGATGTCAGAACCGCC	TCCTGATTCTTCTGAGT	ATCATCTCATAAAGGGCAC	3291
	L D L T S E G C L S D E Q G M S Q N R L L I L I L S I I F I K G T					1012
	H A P E E E I W E E L S F M E V Y D G R E H S A Y G E P R K L L T					207
A1	CCATGCTCTGAGGGAAA	TCTGGGAGGGCTGAGTGTG	ATGGAGGTGTATGAGGG	GGAGCACAGTCCTATGGGG	AGCCAGGAAGCTGCTCACC	923
C1	CTATGCCTCTGAGGGTCA	TCTGGGATGTGCTGAGTGA	ATAGGGGTGCGGCTGGGAG	GGAGCACTTGCCCTGGGG	AGCCCAGGGAGCTCCTCACT	3391
	Y A S E E V I W D V L S G I G V R A G R E H F A F G E P R E L L T					1045

FIG. 2(F)

	S	Y	V	K	V	L	E	Y	V	I	K	V	S	A	R	V	R	F	F	P	S	L	R	E	A	A	L	R	E	E	E	307		
A1	CCAGCTATGTGAAAGTCCT	GAGTATGTGATCAAGTCAG	TGCCAGAGTCGCTTTCT	TCGCATCCCTGCCTGAAGCA	GCTTGAGAGAGGGAGAAGA	1123																												
C1	TCATTAAAGAGGAAGTAGTA	GAGTTTGCCCATGCTAA	GAATACGTCCCTATTACCT	TTCATCCTTACAAGGAT	GCTTGAAAGATGTGGAAGA	3591																												
	I	K	R	K	V	V	E	F	L	A	M	L	K	N	T	V	P	I	T	F	P	S	S	Y	K	D	A	L	K	D	V	E	E	1112
	G V OPA																								309									
A1	GGGAGCTCTGAGCATGAGTTG	CAGCCAAAGGCCAGTGGGAGG	GGGACTGGGCCAGTGCACCT	TCCAGGCCGCCAGCAG	CTTCCCCTGCCTCGTGTGAC	1223																												
C1	GAGAGCCCAGGCCATAATTG	ACACCCACAGATGATTGACCT	GCCACAGAAAGTCAAGCTC	CA GTGTCATGCCCCAGCT	TCTCTCTGAGTGAAAGTCTA	3691																												
	R	A	Q	A	I	I	D	T	T	D	D	S	T	A	T	E	S	S	S	V	M	S	P	S	F	S	S	E	OPA	1142				
A1	...ATGAGGCCATTCTCA	CTCTGAAAGAGAGGGTCAGT	GTTCCTCAGTAGTA	GTTC	1279		
C1	GGGCAGATTCTCCCTCTGA	GTTGAAAGGGGCCAGTCGAG	TTCTACGTGGAGGGCC	TGGTGGGGCTGGAGAGAAC	ACAGTGTATTGCATTCT	3791																												
A1	TGTTCTATTGGGTGACTTGG	AGATTATCTTGTCTCTT	TTGGAAATTGTCAAATGTT	TT-TTTAAGGGATGGTT	AATGAACTTCAGCATCCAAG	1377																												
C1	GTTCCATATGGTAGTTAG	GGGTTTACCTGTTACTTT	TGGGTATTTCAAATGCT	TTCTATTAAACAGGTT	AAATAGCTCAGAATCCTAG	3891																												
A1	TTTATGAATGACAGCAGT-C	ACACAGTTCTGTATATAG	TTAAGGTAAGAGTCTGT	TTTTATTCAAGTGGAA	TCCATTCTATTGTGAATT	1476																												
C1	TTTATGCACATGGTCGCAC	ATGTATTGCTGTTTCTGG	TTAAGAGTAACAGTTGAT	ATTTGAAAACAAAAACA	CACCCAAACACACACATTG	3991																												
A1	GGGATAATAACAGCAGTGA	ATAAGTACTTAGAATGTGA	AAAATGAGCA GTAAATAGA	TGAGATAAAGAACTAAAGAA	ATTAAGAGATAGTCATCT	1576																												
C1	GGAAAACCTCTGCCTCATT	TTGTGATGTGTCACAGGT	ATGTGGTGTACTGTAGGAA	TTTCTGAAACTGTGAAGG	AACTCTGCAGTTAAATAGTG	4091																												
A1	TGCCTTACCTCAGTCTAT	TCTGAAATTAAAGAT	ATATGCATACCTGGATTCC	TTGGCTTCTTGAGAATGTA	AGAGAAATAACTGAATA	1676																												
C1	GAATAAAGTAAGGATTGT	AATGTTGCA TTCTCAGG	TCCTTTAGTCTGTGTCT	GAAA ACTAAGATA CATACC	TGGTTGCTGGCTTACGTA	4191																												
A1	AAGAATTCTCCTGT-----	1691																											
C1	AGAAAGTAGAAGAAAGTAA	CTGTAATAATAAA	4225																											

FIG. 3

FIG. 4

**Figure 5 Nucleotide sequence of gene MAGE-C3
(SEQ ID NO: 21)**

The sequence corresponds to nucleotides 3761 to 4801 of PAC clone 232G24 (GenBank accession number AL022152). It has been renumbered in this figure, taking as nucleotide number 1 the first nucleotide of the start codon.

Primers SL164 and SL165 that were used in the RT-PCR assay are indicated.

ATGCCTCTTTCCAAACCTCACGCCTCAGCTTGAGGAAGACTCCA	50
GAACCCGAGTGTGACAGAGGACTGGTAGATGCACAGGATTCCATAGATG	100
AGGAGGAGGAGGATGCCTCCTCACTCCTCTTCCTTTCACTTTTA	150
TTCCCCCTCCTCCTCTTCTTGTCC <u>CATCCTCACCC</u> TTGTCC <u>CACCC</u> TT	200
SL164	
ACCCTCTACTCTCATTCTGGGTGTTCCAGAAGATGAGGATATGCCTGCTG	250
CTGGGATGCCACCTCTCCCCAGAGTCCTCCTGAGATTCCCTCCCCAGGGT	300
CCTCCCAAGATCTCTCCCCAGGGTCCTCCGCAGAGTCCTCCCCAGAGTC	350
TCTAGACTCCTGCTCATCCCCCTTTGTGGACCCGATTGGATGAGGAGT	400
CCAGCAGTGAAGAGGAGGATAACAGCTACTTGGCATGCCTGCCAGAAAGT	450
GAATCCTTGCCTCAGGTATGCCCTGGATGAAAAGGTGGCTGAGTTGGTGCA	500
GTTTCTTCTCCTCAAATATCAAACAAAAGAGCCTGTCACAAAGGCAGAGA	550
TGCTGACGACTGTCATCAAGAAGTATAAGGACTATTTCCATGATCTC	600
GGGAAAGCCCAGTTGAGTCATAGAGCTAATTTGGCATTGCCCTGACTGA	650
TATGGACCCCGACAACCACTCCTATTCTTGAAGACACATTAGACCTCA	700
CCTATGAGGG <u>AAGCCTGATTGATGACCAGGG</u> CATGCCAAGAACTGTCTC	750
SL165	
CTGATTCTATTCTCAGTATGATCTCATAAAGGGCAGCTGTGTCCCCGA	800
GGAGGTCATCTGGGAAGTGTGAGTGCAATAGGGGTGTGCTGGGAGGG	850
AGCACTTTATATGGGGATCCCAGAAAGCTGCTCACTATACATTGGGTG	900
CAGAGAAAGTACCTGGAGTACCGGGAGGTGCCAACAGTGCTCCTCCACG	950
TTATGAATTTGTGGGTCCAAGAGCCCATTAGAGGCCAGCAAGAGAA	1000
GTCTTAGAGTTTATCCAAGCTATCCAGTATCATCCCTAG	1041

Figure 6 Amino-acid sequence of the putative MAGE-C3 protein (SEQ ID NO: 22)

MPLFPNLPRLSFEEDFQNPSVTEDLVDAQDSIDEEDASSTSSSFHFL	50
FPSSSSLSSSPLSSPLPSTLILGVPEDEDMPAAGMPPLPQSPPEIPPQG	100
PPKISPQGPPQSPPQSPLDSCSSPLLWTRLDEESSSEEEDTATWHALPES	150
ESLPRYALDEKVAELVQFLLLKYQTKEPVTKAEMLTTVIKKYKDYFPMIF	200
GKAHEFIELIFGIALTMDPDNHSYFFEDTLDDLTYEGLSLIDDQGMPKNCL	250
LILILSMIFIKGSCVPEEVIVEWLSAIGVCAGREHFIYGDPRKLLTIHWV	300
QRKYLEYREVPSNSAPPRYEFLWGPRAHSEASKRSLRVFIQAIQYHP	346

**Figure 7 Nucleotide sequence of gene MAGE-B5
(SEQ ID NO: 23)**

This sequence is the antiparallel sequence corresponding to nucleotides 123358 to 124185 of BAC clone 466O4 (GenBank accession number AC005297). The sequence has been renumbered in this figure, taking the first nucleotide of the start codon as nucleotide number 1.

Primers SL189 and SL190 that were used in the RT-PCR assay are indicated.

ATGACTTCTGCAGGTTTTAATGCAGGATCTGACGAAAGGGCTAACAG	50
TAGAGATGAGGAGTACCCATGTCCTCAGAGGTCTCACCTCCACTGAGA	100
GTTCATGCAGCAATTTCATAAAATATTAAGGTGGTTGTTGGAGCAGTTC	150
CTGCTCTACAAGTTCAAAATGAAACAGCGTATTTGAAGGAAGATATGCT	200
GAAGATTGTCAACCCAAGATACCAAAACCAGTTGCTGAGATTACAGAA	250
GAGCTTCTGAGCACATTGAGGTTGTCTTGAGTTGACTTGAAGGAAGTC	300
AACCCAAC TTGTCACTTATATGACCTTGTCAAGCTGAAACTCCCCAA	350
CAATGGGAGGATTCATGTT <u>GGCAAAGT</u> GTACCCAAAGACTGGTCTCCTCA	400
SL189	
TGACTTTCTGGTTGTGATCTTCTGAAAGGCAACTGTGCCAACAGGAA	450
GATACTGGAAATTCTGGATATGATGCAAATATATGATGGAAAGAAGTA	500
CTACATCTATGGAGAGCCCAGGAAGCTCATCACTCAGGATTCGTGAGGC	550
TAACGTACCTGGAGTACCACCAAGGTGCCCTGCAGTTATCCTGCACACTAT	600
CAATTCTTGGGTCCAAGAGCCTATACTGAAACCAGCAAGATGAAAGT	650
CCTGGAATATTGGCCAAGGTCAATGATATT <u>GCTCCAGGTGCCTCTCAT</u>	700
SL190	
<u>CACAA</u> ATATGAAGAGGCTTGCAAGATGAGGAAGAGAGGCCAAGCCAGAGA	750
TGCAGCCGAAACTGGCACTACTGCAGTGGCCAAGACTGTCTCAGGGCGAA	800
GTTCAAGCAGCTTCTCAACCCTATTGA	828

Figure 8 Amino-acid sequence of the putative MAGE-B5 protein (SEQ ID NO: 24)

MTSAGVFNAGSDERANSRDEEYPCSSEVSPSTESSCSNFINIKVGLLEQF	50
LLYKFKMKQRILKEDMLKIVNPRYQNQFAEIHRRASEHIEVVFAVDLKEV	100
NPTCHLYDLVSKLKLPPNNGRIHVGKVLPKTGLLMTFLVVIFLGNCANKE	150
DTWKFLDMMQIYDGKKYYIYGEPRKLITQDFVRLTYLEYHQVPCSYPAHY	200
QFLWGPRAYTETSKMKVLEYLAKVNDIAPGAFSSQYEEALQDEEEPSQR	250
CSRNWYHCGQDCLRAKFSSFSQPY	275

**Figure 9 Nucleotide sequence of gene MAGE-B6
(SEQ ID NO: 25)**

This sequence is the antiparallel sequence corresponding to nucleotides 146417 to 147640 of BAC clone 466O4 (GenBank accession number AC005297). The sequence has been renumbered in this figure, taking the first nucleotide of the start codon as nucleotide number 1.

Primers SL191 and SL192 that were used in the RT-PCR assay are indicated.

ATGCCTCGGGTCACAAGAGTAAGCTCCGTACCTGTGAGAAACGCCAAGA	50
GACCAATGGTCAGCCACAGGGTCTCACGGTCCCCAGGCCACTGCAGAGA	100
AGCAGGAAGAG <u>TCCC</u> ACT <u>CTT</u> CCTCAT <u>CC</u> CT <u>CT</u> CGCGCTGTCTGGGT	150
<u>SL191</u>	
GATTGTCGTAGGT <u>CTT</u> CTGATGCC <u>CT</u> CCATT <u>CT</u> CAGGAGT <u>CT</u> CAGGGAGT	200
GTCACCCACTGGGTCTCCTGATGCAGTTGTT <u>CT</u> ATTCAA <u>AA</u> ATCCGATG	250
TGGCTGCCAACGGCAAGATGAGAAAAGTCCAAGC <u>AC</u> CTCCGT <u>AT</u> GCC	300
TCCGTT <u>CT</u> TCAGGAGT <u>CT</u> CAGGGAG <u>CT</u> TCACCCACTGG <u>CT</u> CT <u>CT</u> GAT <u>GC</u>	350
AGGTGTT <u>TC</u> AGG <u>CT</u> CAA <u>AA</u> AT <u>AT</u> GAT <u>GT</u> GG <u>CT</u> GCC <u>AA</u> CGG <u>CA</u> AG <u>AT</u> GAGA	400
AAAGTCCAAG <u>CA</u> CT <u>CC</u> CATGAT <u>GT</u> CT <u>CC</u> G <u>TT</u> <u>CT</u> CAGGAG <u>CT</u> CAGGG <u>A</u>	450
GCTTCACCCACTGG <u>CT</u> CG <u>CT</u> GAT <u>GC</u> CAG <u>GT</u> G <u>TT</u> CAGG <u>CT</u> CAA <u>AA</u> AT <u>GA</u>	500
TGTGG <u>CT</u> GCC <u>GG</u> G <u>GT</u> GA <u>AG</u> AT <u>G</u> AG <u>GA</u> AA <u>AG</u> T <u>G</u> T <u>A</u> AG <u>CG</u> <u>CT</u> CAC <u>AG</u> AA <u>AG</u>	550
<u>SL192</u>	
CCATCATT <u>TT</u> TAAG <u>CG</u> <u>CT</u> TAAG <u>CA</u> AG <u>AT</u> G <u>CT</u> G <u>T</u> AA <u>AG</u> A <u>AG</u> A <u>AG</u> GC <u>GT</u> <u>GC</u>	600
ACGTTGG <u>CG</u> <u>CA</u> ATT <u>CC</u> <u>CT</u> G <u>CA</u> GA <u>AG</u> A <u>AG</u> TT <u>T</u> G <u>AG</u> A <u>AG</u> A <u>AG</u> A <u>AG</u> <u>GT</u> <u>CC</u> ATT <u>TT</u>	650
GAAGGCAGACATG <u>CT</u> GA <u>AG</u> T <u>GT</u> GT <u>CC</u> G <u>CA</u> G <u>AG</u> A <u>AG</u> T <u>AC</u> A <u>AG</u> <u>CC</u> <u>CT</u> ACT <u>TT</u> <u>CC</u>	700
CT <u>CA</u> GAT <u>CC</u> <u>CT</u> CA <u>AC</u> A <u>GA</u> AC <u>CT</u> <u>CC</u> AA <u>AC</u> ATT <u>GG</u> <u>GT</u> GG <u>CC</u> TT <u>GG</u> <u>CG</u> <u>TT</u>	750
GAATT <u>GA</u> A <u>AG</u> AA <u>AT</u> GG <u>AT</u> CC <u>AG</u> <u>CG</u> <u>CG</u> <u>AG</u> <u>TC</u> <u>CT</u> <u>AC</u> <u>AC</u> <u>CC</u> <u>TT</u> <u>GT</u> <u>C</u> <u>AG</u> <u>CA</u>	800
GCT <u>AG</u> <u>GC</u> <u>CT</u> <u>CC</u> <u>CC</u> <u>AG</u> <u>T</u> <u>G</u> <u>A</u> <u>GG</u> <u>A</u> <u>TT</u> <u>T</u> <u>G</u> <u>A</u> <u>G</u> <u>T</u> <u>GG</u> <u>T</u> <u>G</u> <u>A</u> <u>T</u> <u>G</u> <u>C</u> <u>G</u> <u>T</u> <u>G</u> <u>CC</u> <u>GA</u>	850
AGTC <u>GG</u> <u>GT</u> <u>CT</u> <u>CT</u> <u>G</u> <u>A</u> <u>T</u> <u>G</u> <u>T</u> <u>C</u> <u>G</u> <u>C</u> <u>T</u> <u>GG</u> <u>T</u> <u>G</u> <u>A</u> <u>T</u> <u>T</u> <u>C</u> <u>AT</u> <u>G</u> <u>A</u> <u>C</u> <u>GG</u> <u>CA</u> <u>AC</u>	900
TGTGCC <u>AC</u> <u>T</u> <u>G</u> <u>A</u> <u>AG</u> <u>AG</u> <u>GG</u> <u>GT</u> <u>CT</u> <u>GG</u> <u>G</u> <u>AT</u> <u>TC</u> <u>CT</u> <u>GG</u> <u>GT</u> <u>CT</u> <u>GT</u> <u>GG</u> <u>GG</u> <u>AT</u> <u>A</u> <u>T</u>	950
T <u>G</u> <u>A</u> <u>T</u> <u>T</u> <u>GG</u> <u>GT</u> <u>CA</u> <u>AG</u> <u>A</u> <u>T</u> <u>A</u> <u>G</u> <u>T</u> <u>A</u> <u>C</u> <u>G</u> <u>T</u> <u>GG</u> <u>T</u> <u>T</u> <u>A</u> <u>C</u> <u>CC</u> <u>AG</u> <u>T</u>	1000
GAT <u>CC</u> <u>CT</u> <u>CC</u> <u>AT</u> <u>G</u> <u>CT</u> <u>AT</u> <u>G</u> <u>AG</u> <u>T</u> <u>TC</u> <u>CT</u> <u>GT</u> <u>GG</u> <u>GT</u> <u>CC</u> <u>AC</u> <u>G</u> <u>AG</u> <u>CC</u> <u>CT</u> <u>AT</u> <u>G</u> <u>CT</u> <u>G</u> <u>AA</u> <u>AC</u>	1050
CACCA <u>AG</u> <u>AT</u> <u>G</u> <u>AG</u> <u>AG</u> <u>T</u> <u>C</u> <u>CT</u> <u>GC</u> <u>GT</u> <u>TT</u> <u>GG</u> <u>CC</u> <u>GA</u> <u>C</u> <u>AG</u> <u>C</u> <u>AG</u> <u>T</u> <u>A</u> <u>C</u> <u>AC</u> <u>CC</u> <u>AG</u> <u>TC</u>	1100
CCGG <u>TT</u> <u>TA</u> <u>CC</u> <u>CA</u> <u>C</u> <u>AT</u> <u>T</u> <u>G</u> <u>T</u> <u>A</u> <u>T</u> <u>G</u> <u>A</u> <u>AG</u> <u>A</u> <u>CG</u> <u>CT</u> <u>TT</u> <u>G</u> <u>A</u> <u>T</u> <u>A</u> <u>G</u> <u>T</u> <u>G</u> <u>AG</u> <u>GT</u> <u>AG</u> <u>AG</u>	1150
AGAGCATT <u>G</u> <u>A</u> <u>G</u> <u>ACT</u> <u>G</u> <u>A</u> <u>G</u> <u>AG</u> <u>CT</u> <u>TA</u>	1200
	1224

Figure 10 Amino-acid sequence of the putative MAGE-B6 protein (SEQ ID NO: 26)

MPRGHKSCLRCEKQETNGQPQGLTGPQATAEKQEESHSSSSRACLG	
DCRRSSDASIPQESQGVSPTGSPDAVVSYSKSDVAANGQDEKSPSTS	RDA 100
SVPQESQGASPTGSPDAGVSGSKYDVAANGQDEKSPSTS	HDVSPQESQG 150
ASPTGSPDAGVSGSKYDVAAEGEDEESVSASQKAIIFKRLSKDAVKKAC	200
TLAQFLQKKFEKKESILKADMLKCVRREYKPYFPQILNRTSQHLVVAFGV	250
ELKEMDSSGESYTLVSKLGLPSEGILSGDNALPKSGLLMSLLVVIFMNGN	300
CATEEEVWEFLGLLGIYDGILHSIYGDARKIITEDLVQDKYVVYRQVCNS	350
DPPCYEFLWGPRAYAETTKMRVLRVLADSSNTSPGLYPHYEDALIDEVE	400
RALRLRA	407