BE530 – Medical Deep Learning

- Representative CNNs -

Byoung-Dai Lee

Division of Al Computer Science and Engineering

Kyonggi University

VGGNet (1)

- 2nd place in ILSVRC
 - 7.3% top 5 error in ILSVRC 2014

- Small filters & deep networks
 - Only 3×3 filters with stride 1, pad 1

VGG16

VGGNet (2)

- Why use smaller filters? (3×3 conv)
 - One 7×7 conv layer vs. Stack of three 3×3 conv (stride 1) layers
 - The same effective receptive field
 - But, deeper, more non-linearities
 - Fewer parameters: 3×(3×3×C) vs. 7×7×C

VGGNet (3)

KYONGGI UNIVERSITY

Memory & Parameters for VGG16

```
(not counting biases)
INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
                                                                                         Note:
CONV3-64: [224x224x64] memory: 224*224*64=3.2M arams: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
                                                                                         Most memory is in
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
                                                                                         early CONV
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
                                                                                         Most params are
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
                                                                                         in late FC
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4.096.000
TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters
```

/

GoogLeNet (1)

- As DNN goes deeper
 - The number of parameters increases ⇒ possibility of overfitting ↑
 - The amount of computations increases
 - Not suitable for mobile devices or embedded systems
- Key features of GoogLeNet
 - Inception Module
 - <u>같은 Layer에서 서로 다른 크기의 filter 적용 ⇒ 다른 scale의 feature 추출</u>
 - 1×1 convolution ⇒ dimension reducton
 - 망의 깊이는 훨씬 깊으나 AlexNet 대비 parameters의 수는 ½

(a) Inception module, naïve version

(b) Inception module with dimension reductions

GoogLeNet (2)

- Conventional convolutional layer
 - Local receptive field에서 feature 추출 능력은 우수
 - <u>filter의 특징이 linear하기 때문에 non-linear한 성질을 갖는 feature를 추출하기 위해 feature map의 개수를 늘려야 하는 문제 발생</u>
 - Filter 개수 증가 ⇒연산량 증가
- NIN (Network In Network)
 - Convolution을 수행하기 위해 filter 대신 MLP(Multi-Layer Perceptron)을 사용하여 Feature 추출

• Convolution kernel보다 <u>non-linear한</u> 성질을 잘 활용할 수 있기 때문에 feature

추출 능력이 우수

Non linear mapping introduced by mlpconv layer consisting of multiple fully connected layers with non linear activation function.

GoogLeNet (3)

NIN vs. CNN

- NIN에서는 CNN의 최종단에서 흔히 사용되는 fully connected network이 없음
- 앞 단에서 효과적으로 feature vector를 추출했기 때문에 pooling만으로도 충분히 classification이 가능하다고 주장
- FCN 대신 최종단에 global average pooling 사용
 - Average pooling만으로 classifier 역할 수행
 - 파라메터 수 감소 → 연산량 감소 & overfitting 회피

GoogLeNet (4)

- 1×1 convolution
 - For <u>dimension reduction</u>
 - 여러 개의 feature map으로부터 비슷한 성질(the same location)을 갖는 것들을 묶을 수 있음

- 학습을 통해 얻어진 learned parameter를 통해 4개의 입력 feature map이 2개의 출력 feature map으로 결정됨
- Neuron에는 활성화 함수로 ReLU를 사용함으로써 추가로 non-linearity를 얻을 수 있음

GoogLeNet (5)

- Inception

- → 1×1 convolution을 통해 feature map의 차원 축소
- → <u>다양한 scale의 feature 추출과 동시에 연산량의 균형을 맞출 수 있음</u>

Previous

layer

3x3 convolution

5x5 convolution

3x3 max-pooling

Filter

Concatenate

GoogLeNet (6)

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

GoogLeNet (7)

Auxiliary Classifier

- Backpropagation시에 X4 위치에서는 Auxiliary Classifier와 최종 출력으로부터 정상적인 Backpropagation 결과를 결합
 - Auxiliary Classifier의 Backpropagation 결과가 더해지기 때문에 X4 위치에서 Gradient가 작아지는 문제 해결

- Auxiliary Classifier의 위치
 - 초기 10~50번 정도의 Iteration을 통해 Gradient가 어떻게 움직이는지 확인하고 그 위치에 Auxiliary Classifier를 붙이는 것이 좋음
- 학습된 DNN을 사용할 때는 Auxiliary Classifier를 삭제 후 사용

GoogLeNet (8)

■ Training 방법

- 영상의 가로/세로 비율을 [3/4, 4/3]의 범위를 유지하면서 원본 영상의 8%에서 100%까지 포함할 수 있도록 다양한 크기의 patch를 학습에 사용 (Data augmentation)
- Photometric distortion을 이용한 학습 데이터 생성 (Data augmentation)

■ Test 방법

- Test 영상을 256×256 1개의 scale만을 사용하는 것이 아니라 256, 288, 320, 352로 총 4개의 scale로 만들고, 각각의 scale로부터 3장의 정사각형 이미지를 선택함
- 선택된 이미지로부터 4개의 코너 및 중앙 2개의 취해 총 6장의 224×224 크기 영상을 취하고 각각을 좌우 반전시켜 총 144개의 Test 영상 생성 후 CNN에 입력으로 제공
- 144개 softmax값의 평균값 또는 Voting을 이용하여 최종 class 결정

GoogLeNet (9)

- Factorizing Convolutions
 - <u>큰 필터를 복수개의 작은 필터로 인수분해 ⇒ Parameter의 수를 감소시키면</u> 서 <u>망은 깊어지는 효과 발휘</u>
 - 1개의 5×5 filter vs. 2개의 3×3 filter
 - 5×5 convolution은 3×3 convolution에 비해 넓은 영역에 걸쳐 있는 특징을 1 번에 추출 가능
 - Free parameter: (9+9)/25 = 72 → 28% 절감 효과

GoogLeNet (10)

- Asymmetric Factorizing
 - n×n convolution을 1×n convolution과 n×1 convolution으로 분해
 - Example
 - 3×3 convolution을 1×3 convolution과 3×1 convolution으로 분해
 - Parameter: (3+3)/9 = 66.6 → 33% 절감

GoogLeNet (11)

Reduction of grid size

- 35×35×320 feature map에 pooling을 적용하여 크기를 반으로 줄인 후 Inception을 적용하여 feature 추출
 - → 연산량 관점에서는 효율적
 - → Pooling 단계를 거치면서 원본 feature map에 숨어 있는 정보가 사라지게 될 가능성이 높음
- Inception을 먼저 적용하여 640개의 feature map을 얻은 후 pooling을 적용하여 크기 축소
 - → 연산량 관점에서는 4배 증가
 - → feature map의 크기를 줄이기 전에 Inception을 적용했기 때문에 숨은 특징을 더 잘 찾아낼 수 있음

GoogLeNet (12)

Inception-V4

GoogLeNet (13)

Inception-V4 (cont.)

ResNet (1)

■ 망이 깊어질수록 학습시키기가 어려워짐

- Vanishing/Exploding gradients
 - Solutions: normalized initialization, normalization layers, ...
- Overfitting
 - 망이 깊어지면 parameter 수가 비례적으로 증가 → overfitting & error ↑
- Degradation problem
 - ResNet에서 해결하고자 하는 문제
 - Different from overfitting
 - Adding more layers
 higher training error

30 34-layer

plain-18 18-layer

20 10 20 30 40 50 iter (1e4)

망이 깊은 경우 (56-layer) 성능이 더 나쁨

PlainNet: 망이 깊은 경우 (34-layer) 성능이 더 나쁨 ResNet: 망이 깊은 경우 (34-layer) 성능이 더 좋음

ResNet (2)

Residual Learning

- Depth가 깊어지더라도 degradation 문제가 발생하지 않도록 하기 위함
- Key idea
 - Learning the residual function (e.g., H(x)-x), instead of the actual function (e.g., H(x))

ResNet (3)

Network architecture

- Output feature map의 크기가 같은 경우 해당 모든 layer는 동일한 filter수를 가짐
- Feature map의 크기가 절반으로 작아지는 경우 연산량의 균형을 맞추기 위해 filter 채널 수를 2배로 증가
 - Feature map의 크기를 줄일 때는 pooling을 사용하는 대신 convolution을 수행할 때 stride=2로 설정
- 연산량을 줄이기 위해 max-pooling (1곳 제외), hidden fc, drop-out 제거

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer			
convl	112×112	7×7, 64, stride 2							
		3×3 max pool, stride 2							
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	\[\begin{align*} 3 \times 3, 64 \ 3 \times 3, 64 \end{align*} \] \times 3	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	1×1, 64 3×3, 64 1×1, 256	1×1, 64 3×3, 64 1×1, 256			
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	3×3, 128 3×3, 128 ×4	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	1×1, 128 3×3, 128 1×1, 512 ×4	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$			
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	\[\begin{align*} 3 \times 3, 256 \\ 3 \times 3, 256 \end{align*} \times 6 \]	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \times 6	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \times 23 \]	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$			
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	[3×3, 512]×3	\[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \times 3	\[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \] \times 3	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$			
	1×1	average pool, 1000-d fc, softmax							
FL	OPs	1.8×10 ⁹	3.6×10 ⁹	3.8×10 ⁹	7.6×10 ⁹	11.3×10 ⁹			

ResNet (4)

Building block

Bottleneck Building block

1×1 convolution을 통해 차원 축소 후 3×3 convolution을 수행. 마지막으로 1×1 convolution을 통해 차원 확대

→ 3×3 convolution을 곧바로 연결시킨 구조보다 연산량 감소

ResNet (5)

- Identity skip connection
 - Short-cut connection의 구성에 따른 성능 비교

(b)에서 (f)까지는 x_i의 정보가 변경 없이 "clean" 상태로 전달되는 것이 아니라 곱셈에 의한 변형된 형태로 전달되기 때문에 최적화 문제 발생 가능

→(a)는 short-cut connection에 어떤 것도 추가하지 않고 identity connection으로 연결시킨 경우로 성능이 가장 우수함

ResNet (6)

KYONGGI

Inception-ResNet

ResNet (7)

- Inception-ResNet (cont.)
 - 기존 ResNet 모듈 변경
 - 1×1 convolution을 통한 차원 감소 → 연산량 감소

Residual connections as introduced in He et al. [5]

Optimized version of ResNet connections by [5] to shield computation.

ResNet (8)

Inception-ResNet (cont.)

ResNet (9)

Inception-ResNet (cont.)

Inception-V4

DenseNet (1)

ConvNet vs. ResNet vs. DenseNet

Dense Connectivity

$$\mathbf{x}_{\ell} = H_{\ell}([\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{\ell-1}])$$

$$H_{\ell}(\cdot)$$
 = 1. Batch normalization (BN) 2. Rectified linear unit (ReLU) 3. 3*3 convolution

Advantages

- They alleviate the vanishing-gradient problem
- Strengthen feature propagation
- Encourage feature reuse
- Substantially reduce the number of parameters (less complexity)
- Reduce overfitting on tasks with smaller training set sizes.

DenseNet (2)

Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264		
Convolution	112 × 112	7×7 conv, stride 2					
Pooling	56 × 56	3×3 max pool, stride 2					
Dense Block	56 × 56	[1 × 1 conv]	1 × 1 conv	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 6 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 6 \end{bmatrix}$		
(1)	30 × 30	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6 \begin{bmatrix} 3 \times 3$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$		
Transition Layer	56 × 56	$1 \times 1 \text{ conv}$					
(1)	28×28	2 × 2 average pool, stride 2					
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$		
(2)	20 X 20	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 12$		
Transition Layer	28×28	1×1 conv					
(2)	14 × 14	2 × 2 average pool, stride 2					
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 24$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 48 \end{bmatrix} \times 48$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 64$		
(3)	14 × 14	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 24$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 46$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 64$		
Transition Layer	14 × 14	1×1 conv					
(3)	7 × 7	2 × 2 average pool, stride 2					
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 16 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 48 \end{bmatrix} \times 48$		
(4)	/ × /	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 16}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 46$		
Classification	1 × 1	7 × 7 global average pool					
Layer		1000D fully-connected, softmax					
	•	•					

Attentions (1)

- DNN의 깊이를 더 깊게 구성함으로써 표현 능력 향상
 - Inception 모듈, Residual 모듈, Dense 모듈 등
- 최근에는 쓸모없는 정보는 제거하고 중요한 특징은 더욱 부각시키는 방법 적용 → Attention

Attentions (2)

- Squeeze-and-Excitation Network
 - 기존의 Conv 연산은 filter 크기가 H×W×C 형태이기 때문에 입력 feature map의 channel간 상관 관계를 암묵적으로 활용한다고 볼 수 있음
 - 그러나 filter의 spatial resolution이 H×W이기 때문에 해당 영역의 channel 상관 관계만을 고려하기 때문에 channel간 상관 관계에 대한 global information을 사용한다고 볼 수 없음
 - 각 channel간의 global한 상관 관계를 추출해내기 위한 SE block 제안
 - 입력 feature map이 주어졌을 때, SE block을 통과시킴으로써 입력 feature 를 구성하는 channel 중 중요한 feature를 포함하는 channel은 더욱 부각시키고 그렇지 않은 channel은 상대적으로 억제시킴
 - Early layer에서는 class-agnostic한 특징들이 부각되는 반면, later layer로 갈수록 class-specific한 특징들이 부각됨

Attentions (3)

SE block architecture

- Squeeze giopai information empedding
 - 채널 기반의 global 정보 추출을 위해 Global Average pooling 사용

$$\mathbf{z} \in \mathbb{R}^{C}$$

$$z_{c} = \mathbf{F}_{sq}(\mathbf{u}_{c}) = \frac{1}{H \times W} \sum_{i=1}^{H} \sum_{j=1}^{W} u_{c}(i, j).$$

- Excitation adaptive recalibration
 - Input-specific descriptor z를 channel-specific weights로 변경
 - 2개의 Fully Connected Layer 사용

$$\mathbf{s} = \mathbf{F}_{ex}(\mathbf{z}, \mathbf{W}) = \sigma(g(\mathbf{z}, \mathbf{W})) = \sigma(\mathbf{W}_2 \delta(\mathbf{W}_1 \mathbf{z})), \qquad \mathbf{W}_1 \in \mathbb{R}^{\frac{C}{r} \times C}$$
$$\widetilde{\mathbf{x}}_c = \mathbf{F}_{scale}(\mathbf{u}_c, s_c) = s_c \cdot \mathbf{u}_c. \qquad \mathbf{W}_2 \in \mathbb{R}^{C \times \frac{C}{r}}$$

Attentions (4)

SE block instantiations

Attentions (5)

Performance Comparision

Single-crop error rates (%) of state-of-the-art CNNs on ImageNet validation set with crop sizes 224×224 and 320×320 / 299×299 .

	224×224		$320 \times 320 /$	
			$299 \times$	299
	top-1	top-5	top-1	top-5
	err.	err.	err.	err.
ResNet-152 [13]	23.0	6.7	21.3	5.5
ResNet-200 [14]	21.7	5.8	20.1	4.8
Inception-v3 [20]	-	-	21.2	5.6
Inception-v4 [21]	-	-	20.0	5.0
Inception-ResNet-v2 [21]	-	-	19.9	4.9
ResNeXt-101 (64 \times 4d) [19]	20.4	5.3	19.1	4.4
DenseNet-264 [17]	22.15	6.12	-	-
Attention-92 58	-	-	19.5	4.8
PyramidNet-200 [77]	20.1	5.4	19.2	4.7
DPN-131 [16]	19.93	5.12	18.55	4.16
SENet-154	18.68	4.47	17.28	3.79

Single-crop error rates (%) on ImageNet and parameter sizes for SE-ResNet-50 at different reduction ratios. Here, *original* refers to ResNet-50.

Ratio r	top-1 err.	top-5 err.	Params
2	22.29	6.00	45.7M
4	22.25	6.09	35.7M
8	22.26	5.99	30.7M
16	22.28	6.03	28.1M
32	22.72	6.20	26.9M
original	23.30	6.55	25.6M

Attentions (6)

SE block integration design

(b) Standard SE block

(c) SE-PRE block

Design	top-1 err.	top-5 err.
SE	22.28	6.03
SE-PRE	22.23	6.00
SE-POST	22.78	6.35
SE-Identity	22.20	6.15

(a) Residual block

(e) SE-Identity block

(d) SE-POST block

References

- Very Deep Convolutional Networks for Large-Scale Image Recognition, https://arxiv.org/pdf/1409.1556.pdf
- Going Deeper with Convolutions, https://www.cv-
 foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf
- Deep Residual Learning for Image Recognition, https://arxiv.org/pdf/1512.03385.pdf
- Densely Connected Convolutional Networks, https://arxiv.org/pdf/1608.06993.pdf
- Squeeze-and-Excitation Networks, https://arxiv.org/pdf/1709.01507.pdf
- CS231n: Convolutional Neural Networks for Visual Recognition, http://cs231n.stanford.edu/
- 라온피플 머신러닝 아카데미, https://laonple.blog.me/

