

# 딥러닝팀

### 1팀

정승민 변석주 이정환 송승현 최용원

### CONTENTS

1. 이미지 데이터의 특징

2. CNN

3. CNN의 발전과정

4. 컴퓨터 비전

1

이미지 데이터의 특징

#### 컴퓨터에서의 이미지 데이터





| 157 | 153 | 174 | 168 | 150 | 152 | 129 | 151 | 172 | 161 | 156 | 156 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 156 | 182 | 163 | 74  | 75  | 62  | 33  | 17  | 110 | 210 | 180 | 154 |
| 180 | 180 | 50  | 14  | 34  | 6   | 10  | 33  | 48  | 106 | 159 | 181 |
| 206 | 109 | 5   | 124 | 131 | 111 | 120 | 204 | 166 | 15  | 56  | 180 |
| 194 | 68  | 137 | 251 | 237 | 239 | 239 | 228 | 227 | 87  | n   | 201 |
| 172 | 106 | 207 | 233 | 233 | 214 | 220 | 239 | 228 | 98  | 74  | 206 |
| 188 | 88  | 179 | 209 | 185 | 215 | 211 | 158 | 139 | 75  | 20  | 169 |
| 189 | 97  | 166 | 84  | 10  | 168 | 134 | 11  | 31  | 62  | 22  | 148 |
| 199 | 168 | 191 | 193 | 158 | 227 | 178 | 143 | 182 | 106 | 36  | 190 |
| 206 | 174 | 155 | 252 | 236 | 231 | 149 | 178 | 228 | 43  | 96  | 234 |
| 190 | 216 | 116 | 149 | 236 | 187 | 86  | 150 | 79  | 38  | 218 | 241 |
| 190 | 224 | 147 | 108 | 227 | 210 | 127 | 102 | 36  | 101 | 255 | 224 |
| 190 | 214 | 173 | 66  | 103 | 143 | 96  | 50  | 2   | 109 | 249 | 215 |
| 187 | 196 | 235 | 75  | 1   | 81  | 47  | 0   | 6   | 217 | 255 | 211 |
| 183 | 202 | 237 | 145 | 0   | 0   | 12  | 108 | 200 | 138 | 243 | 236 |
| 196 | 206 | 123 | 207 | 177 | 121 | 123 | 200 | 175 | 13  | 96  | 218 |

모든 이미지는 <mark>픽셀</mark>이라는 사각형의 점으로 구성됨 각 픽셀에는 값이 저장되어 있고, <mark>색</mark>을 나타냄

#### 컴퓨터에서의 이미지 데이터



FHD는 1920×1080, QHD는 2560×1440개의 픽셀로 구성 픽셀이 많을수록 화질이 더 좋아짐

#### 채널

Channel



컬러 이미지는 빛의 3원색인 R, G, B 3개의 채널로 이루어짐 각 채널에서 0~255의 값으로 색의 선명도 표현

### 채널



행렬 3개로 모든 이미지 표현 가능 Pytorch에서 (Channel, Height, Width)로 표현

# 2

## CNN

### 기존 신경망의 문제

#### 기존 신경망은 1차원 벡터를 input으로 사용



임베딩: 고차원 데이터를 저차원으로 변환하는 기

2차원 이상의 데이터 사용 시 1차원으로 임베딩 해야함





공간 정보 손실 발생!

### 기존 신경망의 문제

#### 기존 신경망은 1차원 벡터를 input으로 사용



#### 2차원 이상의 데이터 사용 시 1차원으로 임베딩 해야함







공간 정보 손실 발생!

### 기존 신경망의 문제

#### 기존 신경망은 1차원 벡터를 input으로 사용



#### 2차원 이상의 데이터 사용 시 1차원으로 임베딩 해야함







공간 정보 손실 발생!

### CNN

Convolution Neural Network



#### 공간 정보의 보존

검정색 상자가 변환은 되나, 다음 층에서 남아있는 것을 확인!

Layers of CNN



Convolution Layer

Pooling Layer

Fully Connected Layer

#### Convolution

1차원 합성곱



1차원 합성곱 정의 
$$(f*g)[n] = \sum_{k=-\infty}^{\infty} f[k]g[n-k]$$
 input 커널

#### Convolution

1차원 합성곱



두 눈의 합이 10이 되는 경우

$$P(X + Y = 10) = P(X = 4)P(Y = 6)$$
$$+P(X = 5)P(Y = 5) + P(X = 6)P(Y = 4)$$

#### Convolution

1차원 합성곱



#### 시그마를 이용하여 정리

$$P(X + Y = 10) = \sum_{k=4}^{6} P(X = k)P(Y = 10 - k)$$
$$= \sum_{k=-\infty}^{6} P(X = k)P(Y = 10 - k)$$

















### 2차원 합성곱

| 1/100 |   | 1/100 |                  |
|-------|---|-------|------------------|
|       |   |       |                  |
| 1/100 | : | 1/100 | $(10 \times 10)$ |

#### Convolution





주변 픽셀의 평균값으로 이미지가 <u>흐려지는</u> 효과 부여



### 2차원 합성곱

| 1/100 | <br>1/100 |    |
|-------|-----------|----|
|       | <br>      |    |
| 1/100 | <br>1/100 | (1 |

 $(10 \times 10)$ 

#### Convolution



주변 픽셀의 평균값으로 이미지가 <mark>흐려지는 효과</mark> 부여



| 3 | 1 | 4 |
|---|---|---|
| 1 | 5 | 9 |
| 2 | 6 | 5 |



| 1 | 2 |
|---|---|
| 3 | 2 |



| 16 | 33 |
|----|----|
| 27 | 54 |

2차원에도 커널이 뒤집혀져 계산됨

#### 2차원 합성곱 정의

$$S(i,j) = (I * K)(i,j) = \sum \sum I(m,n) K(i-m,j-n)$$

I: 이미지

*K*: 커널

2

CNN

2차원 합성곱





## 여러 라이브러리에서 <sup>2차2</sup>같은 위치의 성분끼리 곱하는 <mark>교차상관</mark> 사용!

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n) K(i-m,j-n)$$

*K*: 커널

| 3 | 1 | 4 |
|---|---|---|
| 1 | 5 | 9 |
| 2 | 6 | 5 |



| 1 | 2 |
|---|---|
| 3 | 2 |



| 18 | 42 |
|----|----|
| 35 | 51 |

#### 2차원 교차상관 정의

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n)$$

*i, j*에 대한 덧셈으로 변화 커널의 인덱스 고정

### Convolution Layer

특징



입력 데이터의 공간 정보 보존, 특징 추출

#### Convolution Layer

특징



$$i_{00}w_{11} + i_{10}w_{01} + i_{01}w_{10} + i_{11}w_{00} = c_{00}$$

필터

커널의 다른 이름 입력 데이터와 합성곱되어 결과 반환

### Convolution Layer

작동원리



Stride

필터가 입력데이터를 따라 얼마나 이동할지 결정하는 하이퍼 파라미터

#### Convolution Layer



#### 희소 상호작용

기존 신경망은 <mark>완전 연결</mark>(Fully Connected)인 반면 Convolution Layer는 하나의 입력데이터에 일부의 가중치만 곱해짐

완전 연결에서 연결하지 않는 부분의 가중치를 전부 0으로 처리

### Convolution Layer



 $w_{00}$ 를 네 개의 픽셀이 공유

#### 매개변수 공유

하나의 가중치가 여러 입력데이터에 동일하게 곱해짐

**Convolution Layer** 





메모리 사용량 감소 ▼

매개변수 공유 통계적 효율성 증가 하나의 가용하여 합복하여 동일하게 곱해짐

### Convolution Layer

Feature Map

| 하이퍼 파라미터       | Pytorch      | Tensorflow 표현 | 역할                         |
|----------------|--------------|---------------|----------------------------|
| Input Channel  | in_channels  | 미리 지정         | 입력 데이터의 채널 개수 지정           |
| Output Channel | out_channels | filters       | 출력의 채널 개수 지정               |
| 필터 사이즈         | kernel_size  | kernel_size   | 필터의 크기 지정                  |
| Stride         | stride       | strides       | 필터의 이동 간격 지정               |
| Padding        | padding      | padding       | 입력 데이터 주변에 붙일 padding 수 지정 |

하이퍼 파라미터로 Feature Map이 구성됨

#### Convolution layer에서 반환된 결과

### Convolution Layer

Input channel | Output Channel

Input Channel

입력 데이터의 채널 개수

컬러 이미지 데이터: R, G, B

3개의 채널

흑백 이미지 데이터: 1개의 채널

**Output Channel** 

convolution layer가

반환하는 채널 개수

Convolution layer의 필터의 개수와 동일

### Convolution Layer

필터의 사이즈

2x2필터



4x4 feature map



3x3필터





3x3 feature map



### Convolution Layer

필터의 사이즈



필터의 크기가 클수록 feature map의 크기가 작아짐 일반적으로 <mark>홀수</mark>의 필터 사이즈 사용

### Convolution Layer

Stride



stride가 큼 → 입력 데이터의 연산 감소

→ feature map의 크기 작아짐

#### CNN

# Convolution Layer padding



padding = 1



가장자리 입력 데이터는 중심부에 비해 필터에 통과되는 횟수가 적음



원본 데이터 주변 테두리에 새로운 값 추가해 가장자리의 값들도 필터를 여러 번 통과

#### CNN

# Convolution Layer padding



padding = 1



중심부 입력 데이터는 가장자리에 비해 필터에 통과되는 횟수가 많음 ....

#### zero padding



: 가장자리에 모두 0을 대입하는 방법

원본 데이터 주변 테두리에 새로운 값 추가해 가장자리의 값들도 핔터를 여러 번 통과

padding

유효한 (valid) 합성곱

zero padding을 사용하지 않음

출력 이미지가 급격하게 작아짐

동일 (same) 합성곱

출력과 입력이 같은 크기로 나오게 함

가장자리 픽셀들이 모델에 덜 반영됨

완전 (full) 합성곱

padding

유효한 (valid) 합성곱

zero padding을 사용하지 않음

출력 이미지가 급격하게 작아짐

#### 동일 (same) 합성곱

출력과 입력이 같은 크기로 나오게 함

가장자리 픽셀들이 모델에 덜 반영됨

완전 (full) 합성곱

#### CNN

# Convolution Layer

padding

유효한 (valid) 합성곱

zero padding을 사용하지 않음

출력 이미지가 급격하게 작아짐

동일 (same) 합성곱

출력과 입력이 같은 크기로 나오게 함

가장자리 픽셀들이 모델에 덜 반영됨

완전 (full) 합성곱

padding

유효한 (valid) 합성곱



zero padding을 사용하지 않음

출력-어마자가급격하게 작아짐---

동일 (same) 합성곱

주로 유효한 합성곱과 동일 합성곱 사이의 개수 사용

가장자리 픽셀들이 모델에 덜 반영됨

완전 (full) 합성곱

Feature Map의 크기 계산

$$O_n = \frac{I_n + 2P - F}{S} + 1$$

$$O_n = 출력의 가로 길이$$

$$I_n =$$
입력의 가로 길이

$$F = 필터의 크기$$

$$S = \text{stride의 크기}$$



$$\frac{32 + 2 - 4}{2} + 1 = 16$$

Feature Map의 크기 계산

$$O_n = \frac{I_n + 2P - F}{S} + 1$$

$$O_n = 출력의 가로 길이$$

$$I_n =$$
입력의 가로 길이

$$F = 필터의 크기$$

$$S = \text{stride의 크기}$$



$$\frac{32 + 2 - 4}{2} + 1 = 16$$

Feature Map의 크기 계산

$$O_n = \frac{I_n + 2P - F}{S} + 1$$

 $O_n = 출력의 가로 길이$ 

 $I_n =$ 입력의 가로 길이

P = padding의 크기

F = 필터의 크기

S = stride의 크기

(3, 32, 32)의 입력 데이터 (4,4) 의 필터 10개 적용 stride = 2, padding = 1





= 32 + 2 - 4 (10, 16, 16)  $\cong$  feature map

2 CNN

# Pooling Layer

#### 입력 이미지의 중요한 특징 추출

#### **Convolution Layer**

여러 개의 필터 활용 필터 사이즈만큼의 가중치 존재 가중치와 입력의 연산을 통해 중요한 특징 추출 Pooling Layer

데이터의 크기를 줄임 가중치 사용하지 않음 중요한 특징 더욱 강조 2 CNN

# Pooling Layer

#### 입력 이미지의 중요한 특징 추출

**Convolution Layer** 

여러 개의 필터 활용 필터 사이즈만큼의 가중치 존재 가중치와 입력의 연산을 통해 중요한 특징 추출 Pooling Layer

데이터의 크기를 줄임 가중치 사용하지 않음 중요한 특징 더욱 강조

## Pooling Layer

Pooling의 종류



**Features** 

Average Pooling

0 1

Output

**Average Pooling** 

필터가 덮고 있는 값의 평균 출력

# Pooling Layer

Pooling의 종류



**Features** 

#### Min Pooling



Output

Min Pooling

필터가 덮고 있는 값 중 가장 작은 값 출력

0을 반환할 가능성이 높기 때문에 잘 사용하지 않음

#### Pooling Layer

Pooling의 종류



**Features** 





Output

**Max Pooling** 

필터가 덮고 있는 값 중 가장 큰 값 출력

위치에 따라 결과값이 불변하여 주로 사용

2 CNN

# Fully Connected Layer



hidden layer 1 hidden layer 2

FC Layer



최종 단계에서 라벨 예측을 진행하는 층 여러 개의 퍼셉트론이 겹쳐 있는 형태

# 3

# CNN의 발전과정

#### LeNet-5



CNN의 태동과 같은 모델 2개의 FC Layer를 통과시켜 손글씨를 분류하는 모델

## LeNet-5

| Layer  |                    | Feature<br>Map | Size  | Kernel<br>Size | Stride | Activation      |
|--------|--------------------|----------------|-------|----------------|--------|-----------------|
| Input  | Image              | 1              | 32x32 |                | :#:    | 활성화 함수로 tanh 사용 |
| 1      | Convolution        | 6              | 28x28 | 5x5            | 1      | tanh            |
| 2      | Average<br>Pooling | 6              | 14x14 | 2x2            | 2      | tanh            |
| 3      | Convolution        | 16             | 10x10 | 5x5            | 1      | tanh I          |
| 4      | Average<br>Pooling | 16             | 5x5   | 2x2            | 2      | tanh            |
| 5      | Convolution        | 120            | 1x1   | 5x5            | 1      | tanh            |
| 6      | FC                 | -              | 84    | -              | -      | tanh            |
| Output | FC                 |                | 10    | -              |        | softmax         |

(1, 32, 32)의 입력 이미지가 120으로 축소됨 Average pooling 사용

#### AlexNet



GPU의 한계로 병렬적 구조의 데이터 컬러 이미지로 채널과 픽셀 수 증가 → 학습의 연산량 증가

#### AlexNet

|                  | LeNet-5         | AlexNet     |  |
|------------------|-----------------|-------------|--|
| 활성화<br>함수        | tanh            | ReLU        |  |
| Pooling<br>layer | Average pooling | Max pooling |  |



ReLU 와 Max Pooling 사용

→ 연산 획기적으로 감소, 이미지 특징 효과적 추출

1주차 클린업 내용 참고!

## AlexNet

|                  | LeNet-5         | AlexNet     |  |
|------------------|-----------------|-------------|--|
| 활성화<br>함수        | tanh            | ReLU        |  |
| Pooling<br>layer | Average pooling | Max pooling |  |



Local Response Normalization : 측면억제

Local Response Normalization과 Dropout 기법 사용

→ 성능 향상

**AlexNet** 

Data Augmentation (데이터 증강 기법)

Original



Rotation



Flip



Scaling



Brightness



**Data Augmentation** 

하나의 이미지를 사용해 여러 비슷한 이미지를 만들어내는 기법

#### **AlexNet**

Data Augmentation (데이터 증강 기법)





데이터를 좌우반전시키거나, 입력 이미지 크기보다 큰 이미지를 서로 다르게 잘라서 여러 장 만듦 → 과적합 방지

#### VGGNet



간단한 구조임에도 좋은 결과를 보인 모델 CNN에서 layer를 <mark>더 깊게 많이</mark> 쌓을 수 있다면 성능 향상이 가능함을 보여줌

VGGNet



#### VGGNet







Max pooling만 사용

**VGGNet** 



어떻게 더 많은 layer를 사용할 수 있었을까?ooling만 사용



Convolution layer의 작은 필터 사이즈

처음부터 끝까지 사용





#### VGGNet

#### 둘 다 (5,5) 데이터를 (1,1)로 변환



3x3 convolutions

Convolution layer 2번 통과

→ 비선형성 2번 추가



5x5 convolution

Convolution layer 1번 통과

→ 비선형성 1번 추가

#### VGGNet

#### 둘 다 (5,5) 데이터를 (1,1)로 변환



two successive 3x3 convolutions

Convolution layer 2번 통과 **파라미터 개수: 2x3x3xC** → 비선형성 2번 추가



5x5 convolution

Convolution layer 1번 통과 파라미터 개수: 5x5xC -> 비선형성 1번 추가

#### **VGGNet**

둘 다 (5,5) 데이터를 (1,1)로 변환

파라미터 개수: 2x3x3xC

파라미터 개수: 5x5xC



더 적은 파라미터로 좋은 성능 발휘

Convolution layer 2번 통과
→ 비선형성 2번 추가

Convolution layer 1번 통과
→ 비선형성 1번 추가

#### **VGGNet**



two successive 3x3 convolutions

5x5 convolution

Convolution layer 2번 통과 **파라미터 개수: 3x3xC** → 비선형성 2번 추가 Convolution layer 1번 통과 파라미터 개수: 5x5xC → 비서형성 1번 추가



#### ResNet

Residual Learning



# 기존의 CNN Input w (이전의 결과) Convolution Layer 통과 새로운 Feature Map H(x) 반환

#### ResNet

Residual Learning

ResNet

이전 layer의 결과(x)를

그대로 출력층으로 전달

x를 입력으로

Convolution Layer에 통과 (F(x))

최종 Feature Map

$$H(x) = F(x) + x$$

학습하지 못한 추가 정보 학습



**Residual learning** 

#### ResNet

Residual Learning

ResNet

이전 layer의 결과(x)를

그대로 출력층으로 전달

stacked la X를 입력으로 Telu

Convolution Layer에 통과 (F(x))

최종 Feature Map

$$H(x) = F(x) + x$$

학습하지 못한 추가 정보 학습



Residual learning

#### ResNet

Residual Learning

ResNet

이전 layer의 결과(x)를

그대로 출력층으로 전달

x를 입력으로

Convolution Layer에 통과 (F(x))

최종 Feature Map

$$H(x) = F(x) + x$$

학습하지 못한 추가 정보 학습



**Residual learning** 

#### ResNet

Residual Learning

ResNet



# Residual Learning의 역할

이전 Layer의 출력을 그대로 가져가되,

부가적으로 특징들을 학습

학습하지 못한 추가 정보 학습

Residual learning

relu

weight layer

identit

#### ResNet

Residual Learning

ResNet

$$H(x) = F(x) + x$$
 $F(x) = H(x) - x$ 
 $F(x) = 부가적으로 필요한 정보$ 
 $= 학습의 대상$ 
 $e = y - \hat{y}$ 

Residual의 형태

이름이 ResNet인 이유!



**Residual learning** 

#### ResNet

Residual Learning

#### 역전파시 미분값

$$\frac{\partial H(x)}{\partial x} = (F(x) + x)' = F'(x) + 1$$



이전 Feature Map에서 학습되지 못한 F(x)을 최적화하는 방향으로 학습이 진행

#### ResNet

Residual Learning

#### 역전파시 미분값

$$\frac{\partial H(x)}{\partial x} = (F(x) + x)' = F'(x) + 1$$



기존 x의 미분 값 = 1, Gradient Vanishing 예방



더 깊은 층 형성 가능

#### **SENet**

SE Block



채널 간 상호작용을 통한 성능 향상
SE Block을 사용해 다양한 CNN 모델에 적용 가능
획기적인 성능 향상에 비해 연산이 많지 않음

#### **SENet**

SE Block



Convolution 통해 크기 U의 Feature map으로 변환

## SENet

SE Block

# Squeeze $\mathbf{F}_{sq}(\cdot)$ $\mathbf{F}_{rr}$ $\mathbf{F}_{rr}$

Squeeze!

각 채널을 1차원의 scalar로 변환

#### **SENet**

SE Block



<sup>7, 및 자고</sup> 활성화 작업 시작

> 1x1xC의 벡터를 정규화해 가중치를 부여

#### **SENet**

SE Block



FC1

1x1xC의 벡터를 입력받아 C개의 채널을 C/r개의 채널로 축소

연산량 제한과 일반화 효과

r:하이퍼 파라미터 값

#### SENet

SE Block



ReLU

1x1xC/r의 벡터를 ReLU로전달

#### **SENet**

SE Block



FC2

FC2를 통과하며 1x1xC/r의 벡터의 채널 수를 다시 C로 되돌림

**SE-ResNet Module** 

#### **SENet**

SE Block



Sigmoid

Sigmoid를 통과하며 0 ~ 1 사이의 값 반환

#### **SENet**

SE Block





Sigmoid를 통과한 값은

각 <mark>채널 사이의 중요도를</mark> 의미

#### **SENet**

SE Block



반환된 중요도를
Feature Map과 곱해
Feature Map 채널에 가중치 부여

전달





# 4

# 컴퓨터 비전



## 컴퓨터 비전



컴퓨터가 시각적인 체계를 이해하고 해석할 수 있도록 컴퓨터를 학습시키는 인공지능의 연구 분야

#### Object Detection

객체 탐지

여러 객체가 존재할 때도 분류할 수 있어야 함

이미지가 주어졌을 때, 어떤 물체가 어디에 있는지 탐지하는 것

#### Localization

객체가 존재하는 범위 탐지

#### Classification

탐지된 개체에 대한 분류 담당

#### Object Detection

객체 탐지

여러 객체가 존재할 때도 분류할 수 있어야 함

이미지가 주어졌을 때, 어떤 물체가 어디에 있는지 탐지하는 것

#### Localization

객체가 존재하는 범위 탐지



#### Classification

탐지된 개체에 대한 분류 담당



# Object Detection

Bounding Box (bbox)

객체의 위치를 표시하는 경계 상자



#### **Object Detection**

종류

이미지가 주어졌을 때, 어떤 물체가 어디에 있는지 탐지하는 것

#### 1-Stage Detector — — —

Localization과

Classification 문제를

동시에 해결

빠른 수행 속도 상대적으로 떨어지는 정확도

#### 2-Stage Detector —

Localization으로

객체의 위치 탐지 후

Classification을 통해 대상 분류

상대적으로 느린 속도

높은 정확도

#### **RCNN**

Regions with Convolutional Neuron Networks features



2-Stage Detector 모델의 가장 기본적인 형태

#### **RCNN**

작동 알고리즘

Rol(Region of Interest): 이미지에서 객체가 존재할 것으로 예상되는 위치

#### Region Proposal

이미지에서 ROI 생성 Selective Search 사용

#### Selective Search

작고 랜덤한 bbox를 많이 생성해, 계층적 그룹핑 알고리즘을 통해 조금씩 합치며 ROI 생성



#### **RCNN**

작동 알고리즘

ROI를 CNN에 통과시켜 Feature map을 반환해 회귀와 분류 작업 진행



#### **RCNN**

작동 알고리즘

SVM을 통해 각 ROI의 라벨 예측 CNN feature를 이용해 localization 에러 감소를 위해 bbox regression model 수정



#### **RCNN**

작동 알고리즘





4

RCNN 작동 알고리즘



# RCNN의 단점

여러 CNN 모델을 사용해 많은 시간 소요
CNN, SVM, bbox regression이 한 번에 학습되지 않아
결과가 CNN을 업데이트 시키지 못함
회귀와 분류를 모두 진행해 최적화가 어려움

## YOLO

You Only Look Once

1-Stage Detector 모델의 가장 기본적인 형태



#### YOLO

You Only Look Once

이미지 전체에 하나의 모델이 한 번의 연산을 통해 bbox와 객체의 라벨 확률을 동시에 반환

#### CNN

이미지를 여러 장으로 분할해 해석

#### YOLO

이미지 전체를 한 번만 보고 객체의 위치와 그 객체를 예측

# YOLO

작동 알고리즘



Step 1. 원본 이미지를 동일한 그리드로 분할

#### YOLO

작동 알고리즘



Step 2. 각 그리드별로 Bbox와 Confidence score 계산 동시에 가장 높은 확률의 클래스 선별

# YOLO

작동 알고리즘



Step 3. 일정 확률 이상의 셀을 연결해 bbox와 라벨을 반환

YOLO

특징

장점



모델이 통합되어 있어 간단 기존의 모델보다 빠른 계산 시간

단점



2-Stage Detector 모델에 비해 떨어지는 정확도 작은 개체의 탐지가 어려움

#### Image Segmentation

정확한 위치를 요구하므로, Object Detection보다 더 복잡한 계산을 요구

픽셀 단위로 이미지의 Classification을 계산

**INSTANCE SEGMENTATION** 

**SEMANTIC SEGMENTATION** 



#### **Image Segmentation**

#### 픽셀 단위로 이미지의 Classification을 계산

Semantic Segmentation

물체가 어디에 속하는지에 대해서만 분류를 진행

#### **SEMANTIC SEGMENTATION**



## Image Segmentation

#### 픽셀 단위로 이미지의 Classification을 계산

#### INSTANCE SEGMENTATION



Instance Segmentation

같은 class 내에서도 더 세부적으로 분류 진행

겹쳐 있는 물체에 대해서도 세밀한 분류가 가능

## Image Segmentation

# 입력된 이미지의 각 픽셀별로 class에 대한 출력을 반환 입력 이미지 크기 = 출력 이미지 크기

입력



segmented

- 1: Person
- 2: Purse
- 3: Plants/Grass
- 4: Sidewalk
- 5: Building/Structures

출력

 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3

Segmentation map

## **Image Segmentation**

CNN: 층을 거치면서 이미지의 크기 감소해

Image Segmentation을 그대로 사용할 수 없음



## **Image Segmentation**



Convolution과 pooling을 역으로 연산해 이미지의 크기를 키우는 방법 사용!



# Image Generation

비지도 학습 딥러닝 모델 등장

주어진 이미지를 바탕으로 새로운 이미지 생성



#### GAN

Generative Adversarial Network



Generator와 Discriminator를 통해, 진짜 같은 가짜 이미지 생성

#### GAN

Generative Adversarial Network



#### Generator

Discriminator를 속일 수 있는 가짜 이미지 생성 Discriminator 실제 이미지와 가짜 이미지를 구별 90

**GAN** 

Generative Adversarial Netwo



Generator

가짜 이미지 생성

Discriminator 실제 이미지와

가짜 이미지를 구별

# Style Transfer



Style 이미지의 특징을 추출해 Content 이미지에 적용하여 새로운 이미지 생성

## Style Transfer





입력 (content)

Style reference



특징 추출

#### Combination image



이미지 생성

#### 손실함수

Content Difference

Output 이미지와 Content 이미지의 차이,
Output 이미지와 Style 이미지의 차이를
모두 줄이는 것이 목표



# THANK YOU