3.3 半导体中载流子charge carriers in semiconductors

载流子: 载运电流的粒子

如何计算载流子的浓度?

- 1. 计算单位体积下能带中单位能量所包含的能级(量子态)数目(态密度函数);
- 2. 计算每个能级(量子态)被电子占据的概率;
- 3. 对整个能带积分从而得到电子的浓度。

3.3.1 态密度函数density of states function

态密度函数:单位体积、单位能量允许电子占据的量子态数目 金属、半导体导带中允许电子相对运动,但被限制在晶体中

E(k)曲线在导带底与价带顶接近自由电子的抛物线关系

回顾:一维无限深势阱中的电子

$$\Psi(x) = \sqrt{2/a}\sin(kx)$$

$$k = \frac{n\pi}{a}$$

$$k^2 = \frac{2mE}{\hbar^2}$$

晶体: 边长为a的立方体晶体

势阱:

$$U(x,y,z) = \begin{cases} 0 < x < a \\ 0, \quad 0 < y < a \\ 0 < z < a \\ \infty, \quad 其它$$

$$k^{2}=2mE/\hbar^{2}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2}$$

 $k_{i}=n_{i}\pi/a, \quad i=x,y,z$

在k空间,两个量子态的间距为 π/a ,考虑到泡利不相容原理,一个自旋量子态的体积为 $0.5(\pi/a)^3$

二维k空间量子态阵列 k空间第一1/8球体

 $k_x, k_y, k_z \ge 0$ 考虑k空间第一1/8球体

微分球壳体积为 $(1/8)4\pi k^2 dk = (1/2)\pi k^2 dk$

k空间量子态密度 $g_k(k)$

 $g_k(k)dk = (1/2)\pi k^2 dk/[(1/2)(\pi/a)^3] = (k^2 a^3/\pi^2)dk$ 量子态数量

$$k^2 = \frac{2mE}{\hbar^2}$$

$$dk = (1/\hbar)[m/(2E)]^{1/2}dE$$

 $g_{\rm E}(E) dE = (4\pi a^3/h^3)(2m)^{3/2}E^{1/2}dE$

能量量子态密度函数g(E)

$$g(E) = g_E(E)/a^3 = 4\pi (2m/h^2)^{3/2} E^{1/2}$$

单位体积、单位能量允许电子占据的量子态数目

对于半导体用有效质量代替实际质量:

自由电子: $E = \hbar^2 k^2 / 2m$

导带底:

$$E \approx E_c + \frac{dE}{dk} k + \frac{d^2E}{dk^2} k^2$$

$$E \approx E_{\rm c} + \hbar^2 k^2 / (2m_{\rm n}^*)$$

导带底电子认为是带有效质量的"自由"电子

价带顶:

$$E \approx E_{\rm V} - \hbar^2 k^2 / (2m_{\rm p}^*)$$

自由电子: $E = \hbar^2 k^2 / 2m$ $g(E) = g_E(E)/a^3 = 4\pi (2m/h^2)^{3/2} E^{1/2}$

导带底:

$$E \approx E_{c} + \hbar^{2}k^{2}/(2m_{n}^{*})$$

$$g_{c}(E) = \frac{4\pi(2m_{n}^{*})^{3/2}}{\hbar^{3}} \sqrt{E - E_{c}}$$

禁带中: $g_g(E) = 0$

价带顶:

$$E \approx E_{V} - \hbar^{2}k^{2}/(2m_{p}^{*})$$

$$g_{V} = \frac{4\pi (2m_{p}^{*})^{3/2}}{h^{3}} \sqrt{E_{V} - E}$$

3.3.2 费米分布函数与费米能级 Fermi-Dirac distribution function and Fermi energy 统计物理:

- 研究大量粒子的集合,宏观运动规律的科学
- 起源于19世纪的气体分子运动研究
 - ▶ 气体分子大小为亚纳米数量级(10⁻¹⁰ m)
 - > 气体分子间距为纳米数量级(10-9 m)
 - ▶ 气体分子平均自由程约100个分子间距(10-7 m)
 - > 气体分子平均速率约400 m/s (超音速)
 - > 每个气体分子的运动状态是无规的
 - > 大量气体分子的运动是有规律的—统计规律性

玻耳兹曼分布:

● 初始基础: 克劳修斯统计概念

(运动速度与绝对温度的平方根成正比)

● 进一步基础: 麦克斯韦速度分布

(速度的方均根与绝对温度成正比)

● 玻耳兹曼能量分布 (麦克斯韦--玻耳兹曼分布函数):

 $f \sim \exp[-E/(k_{\rm B}T)], k_{\rm B}$ 为玻尔兹曼常数

麦克斯韦--玻耳兹曼分布

容器中低压气体粒子:

- 粒子可以一一区别
- 每个能态所能容纳的粒子数没有限制
- 麦克斯韦--玻耳兹曼统计分布
- f(E, T) ~ $\exp[-E/(k_B T)], k_B$ 为玻尔兹曼常数

全同粒子

静质量、电荷、自旋等固有性质完全相同的微观粒子。

经典理论中粒子的可区分性

经典理论中,全同粒子是可以区分的。因为经典粒子运动具有确定的轨道,在任何时刻有确定的位置和速度。

追随粒子的运动, 可在任何 时刻根据轨道区分粒子。

量子理论中微观粒子的不可区分性

量子力学中,微观粒子用波函数描述。若粒子的波函数存在重叠,则对粒子无法加以区分。波函数完全不重叠,才可区分。

玻色--爱因斯坦统计

玻色子:

- 自旋为ħ的整数倍(0, ħ, 2ħ, 3ħ, ...)
- 粒子不可区分
- 没有泡利不相容原理
- 波函数具有交换对称性
- 多个玻色子可以挤进同一能态
- 光子、π介子等无质量粒子
- 玻色--爱因斯坦统计

周杰伦在杭州黄龙体育中心表演

Fans观众们(题号)纷纷向舞台靠近

不可分照地<u>挤满</u>(日图)

舞台前(同一問題)

费米子:

- 自旋为 \hbar 的半整数倍($\pm \frac{1}{2}\hbar$, $\pm \frac{3}{2}\hbar$, $\pm \frac{5}{2}\hbar$,...)
- 电子、质子、中子等"材料"粒子
- 满足泡利不相容原理
- 费米--狄拉克统计

费米-狄拉克分布:

$$f(E) = \frac{g_{i}}{1 + \exp\left(\frac{E - E_{F}}{k_{B}T}\right)}, \quad k_{B} = 1.381 \times 10^{-23} \text{J/K}$$

莫扎特囹陋冏❷在北京国家大剧院音乐厅表演

每个人(「个镫子):

只坐(昌韶)各自的1个座位(1个量号冠)

并且从最想要的好座位(爲認)开始占据座位

少数空位(容認):

留在了后面的座位(高能認)

费米-狄拉克几率函数(费米函数):

$$f(E) = \frac{1}{1 + \exp\left(\frac{E - E_{F}}{k_{B}T}\right)}, \quad k_{B} = 1.381 \times 10^{-23} \text{J/K}$$

玻尔兹曼常数

不同温度下的费米几率函数:

不同温度下的量子态示意:

- 费米能级 $E_{\rm F}$: 描述电子统计分布的物理量,量纲为 ${
 m eV}$
- T = 0 K:

费米能级是动态的物理量!

$$E > E_{\rm F}, \ f(E) = 0, \ 完全没有电子$$

 $E < E_{\rm F}, \ f(E) = 1, \ 完全由电子占据$

• T > 0 K:

$$E > E_{\rm F}, \ f(E) < 1/2$$

 $E < E_{\rm F}, \ f(E) > 1/2$
 $E = E_{\rm F}, \ f(E) = 1/2$

$$f(E) = \frac{1}{1 + \exp\left(\frac{E - E_{F}}{k_{B}T}\right)}$$

- 在k空间,自由电子的等能面为球面, $E = E_F$ 的等能面为 费米面
- $E_{\rm F} = k_{\rm B}T_{\rm F}$, $T_{\rm F}$ 为费米温度

$$f(E) = \frac{1}{1 + \exp\left(\frac{E - E_{F}}{k_{B}T}\right)}$$

• 对于本征半导体, E_F 位于禁带中部:

$$E_{\rm F} - E_{\rm V} \sim E_{\rm C} - E_{\rm F} \sim 0.5 E_{\rm g}$$

- $E_{\rm g}$: 1.6 ~ 7 eV
- 半导体的费米温度 $T_{\rm F}$: $10^4 \sim 10^5 \, {
 m K}$
- 室温: T = 300 K, $k_B T = 4.142*10^{-21} \text{ J} = 0.0259 \text{ eV}$
- 价带顶: $\exp(*) = e^{-30} \sim e^{-135}$, $f(E) \sim 1$,价带主要由电子充满
- 导带底: $\exp(*) = e^{30} \sim e^{135}$, $f(E) \sim 0$, 导带电子很少

- · f_F(E)为粒子占据能态的几率(导带能级被电子占据的几率)
- · 1-f_F(E)为能态空占的几率(价带能级被空穴占据的几率)
- $f_{\mathrm{F}}(E)$ 和1- $f_{\mathrm{F}}(E)$ 以 E_{F} 为对称

对于本征半导体,从导带底部开始计算 $(E-E_{\rm F})/(k_{\rm B}T) >> 1$

$$f(E) = \frac{1}{1 + \exp\left(\frac{E - E_{\mathrm{F}}}{k_{\mathrm{B}}T}\right)} \exp\left[\frac{(E - E_{\mathrm{F}})/(k_{\mathrm{B}}T)}{(E - E_{\mathrm{F}})/(k_{\mathrm{B}}T)}\right] >> 1$$

$$f(E) = \exp\left(-\frac{E - E_{\mathrm{F}}}{k_{\mathrm{B}}T}\right)$$

费米分布函数Fermi-Dirac distribution function 玻尔兹曼分布函数(Maxwell-)Boltzmann approximation $f(E,T) \sim \exp[-E/(k_{\rm B}T)]$

3.3.3 半导体中的载流子charge carriers in semiconductors

1. (本征半导体)电子和空穴浓度

非掺杂的纯半导体(本征半导体)

$$T=0 \mathrm{K}$$

价带为满带、导带为空带

价带、导带都不导电

价带电子进入导带

热激发

价带、导带都导电

k空间能带结构:

Conduction-band energy 字 带 $E_{C}(k)$

抛物线近似:

$$E_{\rm C}(k) = E_{\rm C0} + \hbar^2 k^2 / (2m_{\rm n}^*), \quad m_{\rm n}^* > 0$$

valence-band energy价带 $E_{
m V}(k)$

抛物线近似:

$$E_{\rm V}(k) = E_{\rm V0} - \hbar^2 k^2 / (2m_{\rm p}^*), \quad m_{\rm p}^* > 0$$

导带电子统计分布 $g(E) = 4\pi(2m/h^2)^{3/2}E^{1/2}$ (金属自由电子)

$$(E-E_{\rm F0})/(k_{\rm B}T)>>1$$
 类比

玻尔兹曼近似

半导体导带电子单位体积能态密度

$$f(E) = \exp\left(-\frac{E - E_{\text{F0}}}{k_{\text{B}}T}\right)$$

$$g_{\rm n}(E) = 4\pi \left(\frac{2m_{\rm n}^*}{h^2}\right)^{3/2} \sqrt{E - E_{\rm co}}$$

单位体积电子数(电子浓度):
$$n_0 = \int_{E_{C0}}^{E_{C1}} f(E)g_n(E)dE$$

thermal-equilibrium electron concentration 导带电子浓度:

effective density of states function in the 导带有效态密度函数: conduction band

$$n_0 = N_C \exp\left(-\frac{E_{C0} - E_{F0}}{k_B T}\right)$$

 $\int_0^\infty x^{1/2} \exp(-x) dx = \sqrt{\pi}/2$

$$N_{\rm C} = 2 \left(\frac{m_{\rm n}^* k_{\rm B} T}{2\pi\hbar^2} \right)^{3/2}$$

价带空穴统计分布

玻尔兹曼近似

$$f_{p}(E)=1-f(E)=\exp\left(\frac{E-E_{F0}}{k_{B}T}\right)$$

价带空穴能态密度

$$f_{p}(E)=1-f(E)=\exp\left(\frac{E-E_{F0}}{k_{B}T}\right)$$

$$g_{p}(E)=4\pi\left(\frac{2m_{p}^{*}}{h^{2}}\right)^{3/2}\sqrt{E_{V0}-E}$$

thermal-equilibrium hole concentration

价带空穴浓

effective density of states function in the valence band 价带有效态密度函

$$p_0 = \int_{E_{v1}}^{E_{v0}} f_p(E) g_p(E) dE = N_V \exp \left(-\frac{E_{F0} - E_{V0}}{k_B T} \right)$$

$$N_{\rm V} = 2 \left(\frac{m_{\rm p}^* k_{\rm B} T}{2\pi\hbar^2} \right)^{3/2}$$

材料	硅(Si)	砷化镓 (GaAs)	绪 (Ge)
<i>N</i> c (cm ⁻³)	2.8*10 ¹⁹	4.7*10 ¹⁷	$1.04*10^{19}$
<i>N</i> v (cm ⁻³)	1.04*10 ¹⁹	7.0*10 ¹⁸	6.0*10 ¹⁸
$m_{\rm n}^{*}/m_{0}$	1.08	0.067	0.55
$m_{\mathrm{p}}^{*}/m_{\mathrm{0}}$	0.56	0.48	0.37
$n_{\rm i}$ (cm ⁻³)	1.5*10 ¹⁰	1.8*10 ⁶	2.4*10 ¹³

$$n_0 = N_{\rm C} \exp \left(-\frac{E_{\rm C0} - E_{\rm F0}}{k_{\rm B}T}\right)$$

$$E_{\rm E0} - E_{\rm V0}$$

本征半导体热激发,使价带电子进入导带

$$n_{0} = N_{C} \exp \left[-\frac{E_{C0} - E_{F0}}{k_{B}T} \right]$$

$$p_{0} = N_{V} \exp \left[-\frac{E_{F0} - E_{V0}}{k_{B}T} \right]$$

$$N_{C} = 2 \left[\frac{m_{n}^{*} k_{B}T}{2\pi\hbar^{2}} \right]^{3/2}, \quad N_{V} = 2 \left[\frac{m_{p}^{*} k_{B}T}{2\pi\hbar^{2}} \right]^{3/2}$$

$$E \implies A = A + A \implies E$$

导带电子完全由价带提供: $n_0 = p_0 = (n_0 p_0)^{1/2}$

intrinsic carrier concentration 本征半导体平衡载流子浓度:

$$n_{\rm i} = n_0 = p_0 = \sqrt{N_{\rm C} N_{\rm V}} \exp\left(-\frac{E_{\rm g}}{2k_{\rm B}T}\right)$$

$$= 2\left(\frac{k_{\rm B}T}{2\pi\hbar^2}\right)^{3/2} (m_{\rm n}^* m_{\rm p}^*)^{3/4} \exp\left(-\frac{E_{\rm g}}{2k_{\rm B}T}\right)$$

$$E_{\rm g} = E_{\rm C0} - E_{\rm V0} (禁 * 策度)$$

T=0 K, 本征半导体 费米能级在禁带中部

 $T \neq 0$ K,要認能級 企為器等中部附近

本征半导体平衡载流子浓度与温度、禁带 宽度bandgap energy有关,与费米能级无关

玻尔兹曼分布函数

 $f(E) = \exp \left| -\frac{E - E_{\rm F}}{k_{-}T} \right|$

几个重要的公式:

导带电子浓度
$$n_0 \neq N_0 \exp\left(-\frac{E_{C0} - E_{F0}}{k_B T}\right)$$

$$E_{\mathrm{F0}}$$
 — — — —

导带底有效态密度 导带底能级被电子占据的概率

 $E_{
m v0}$

价带空穴浓度
$$p_0 = N_{\text{W}} \exp\left(-\frac{E_{\text{F0}} - E_{\text{V0}}}{k_{\text{B}}T}\right)$$

价带顶有效态密度

价带顶能级被空穴占据的概率

$$n_0 = p_0 = n_{\rm i} = \sqrt{N_{\rm C} N_{\rm V}} \exp \left[-\frac{E_{\rm g}}{2k_{\rm B}T} \right]$$

本征半导体: $n_0 = p_0 = n_i = \sqrt{N_c N_v} \exp \left[-\frac{E_g}{2k_B T} \right]$ 本征半导体平衡载流子浓度与温度、禁带宽度有关,与费米能级无

非本征热平衡半导体: $n_0 \neq p_0 \neq n_1$, 但 $n_0 p_0 = n_i^2$ 依然成立。

2. 杂质半导体extrinsic semiconductors

本征半导体intrinsic semiconductors: $n_0 = p_0 = n_i$

施主杂质(五族元素) 提供导带电子

接受价带电子(提供价带空

$$n = n_0 + \Delta n >> n_0$$

n型半导体:

p型半导体:

浅能级杂质:

- 浅能级施主/受主杂质的能级离导带底/价带顶很近
- 浅能级施主原子很容易电离、施主离子很难俘获电子
- 浅能级受主原子很容易电离、受主离子很难俘获空穴
- 浅能级杂质的电离能可以用类氢原子模型近似分析

$$E = \frac{-m^* e^4}{2(n\hbar)^2 (4\pi\varepsilon)^2}$$

> 库仑势对电子的束缚能(电离能)远小于氢的电离能

Si:
$$E_{\rm d} = E_{\rm d0}/342 << E_{\rm d0}$$

深能级杂质:

- 深能级施主/受主杂质的能级离导带底/价带顶都很远
- 深能级杂质原子很难电离,很难为导带或价带提供载流子
- 深能级杂质的电离能不可以用类氢原子模型

杂质的ionization energy电离能(eV):

九氏	方材料	基片材料		
杂 质	1 11 11	硅Si	绪Ge	砷化镓GaAs
施主	舜P	0.045	0.012	
	种As	0.05	0.0127	
	硒Se			0.0059
	碲Te			0.0058
	硅Si			0.0025
	锗Ge			0.0061
受主	硼B	0.045	0.0104	
	铝Al	0.06	0.0102	
	彼Be			0.028
	锌Zn			0.0307
	镉Cd			0.0347
	硅Si			0.0345
	锗Ge			0.0404

室温: T = 300 K, $k_{\text{B}}T = 4.142*10^{-21} \text{ J}$ = 0.0259 eV

空温艇子平均置 量:

0.0259 e♥

施主原子电离成 "+"离子

大量提供导带电子 少量仍被电子占据

总效应: 大量提供导带电子

p型半导体

T > 0 K

受主原子电离成 "-"离子

大量提供价带空穴

少量仍被空穴占据

总效应: 大量提供价带空穴

施主原子密度 $N_{\rm D}$

$f(E) = \frac{1}{1 + \exp\left(\frac{E - E_{\rm F}}{k_{\rm B}T}\right)}$

Density of electrons

$$n_{\rm d} = \frac{N_{\rm D}}{1 + \frac{1}{g} \exp\left(\frac{E_{\rm D} - E_{\rm F}}{k_{\rm B}T}\right)} = N_{\rm D} - N_{\rm d}^{+}$$

$$(E_{\rm D} - E_{\rm F})/(k_{\rm B}T) >> 1$$

$$n_{\rm d} \approx g N_{\rm D} \exp \left(-\frac{E_{\rm D} - E_{\rm F}}{k_{\rm B}T}\right)$$

受主原子密度NA

concentration of holes

$$p_{a} = \frac{N_{A}}{1 + \frac{1}{g} \exp\left(\frac{E_{F} - E_{A}}{k_{B}T}\right)} = N_{A} - N_{a}^{-}$$

N_a-为离化离子浓度
concentration of ionized
acceptors

g为简并度,一般g=2

$$(E_{\rm F} - E_{\rm A})/(k_{\rm B}T) >> 1$$

$$p_{\rm a} \approx g N_{\rm A} \exp \left(-\frac{E_{\rm F} - E_{\rm A}}{k_{\rm B} T}\right)$$

$$T = 0 \text{ K}$$
:

$$n_{\rm d} = \frac{N_{\rm D}}{1 + \frac{1}{g} \exp\left(\frac{E_{\rm D} - E_{\rm F}}{k_{\rm B}T}\right)} = N_{\rm D} - N_{\rm d}^{+}$$

$$p_{\rm a} = \frac{N_{\rm A}}{1 + \frac{1}{g} \exp\left(\frac{E_{\rm F} - E_{\rm A}}{k_{\rm B} T}\right)} = N_{\rm A} - N_{\rm a}^{-}$$

在室温下,施主和受主完全离化(参考书中计算3.3.9 3.3.10):

补偿半导体compensated semiconductor:

既掺施主杂质, 也掺受主杂质

 $N_{\rm D} > N_{\rm A}$,为n型半导体 $N_{\rm D} < N_{\rm A}$,为p型半导体

热平衡时,半导体晶体为电中性charge-neutrality condition:

"-":
$$n_0 + N_a$$
-","+": $p_0 + N_d$ + $n_0 + N_a$ -= $p_0 + N_d$ + 完全离化: N_a -= N_A , N_d += N_D 本征载流子浓度: $n_i = (n_0 p_0)^{1/2}$

$$n_{0} + N_{A} = p_{0} + N_{D}$$
 $n_{i} = \sqrt{n_{0}p_{0}}$
 $n_{i} = \sqrt{N_{C}N_{V}} \exp\left(\frac{E_{g}}{2k_{B}T}\right)$

$$n_{0} = \frac{N_{D} - N_{A}}{2} + \sqrt{\frac{N_{D} - N_{A}}{2}^{2} + n_{i}^{2}} + n_{i}^{2}$$

$$p_{0} = \frac{N_{A} - N_{D}}{2} + \sqrt{\frac{N_{A} - N_{D}}{2}^{2} + n_{i}^{2}}$$

3.3.4 费米能级的位置

费米能级的位置与温度有关

- 低温弱电离区
- 中间电离区
- 强电离区
- 过渡区
- 高温本征激发区

低温弱电离区

- 大部分的施主杂质能级仍为电子占据,少量电离;
- 本征激发到导带的电子可以忽略不计;
- 导带电子由电离施主杂质提供

电中性条件
$$N_c \exp(-\frac{E_{c0} - E_F}{k_B T}) = \frac{N_D e 离施主}{1 + 2 \exp(-\frac{E_D - E_F}{k_B T})}$$
 导带电子

玻尔兹曼近似
$$E_{\rm F}(T) = \frac{1}{2}(E_{\rm CO} + E_{\rm D}) + \frac{1}{2}k_{\rm B}T\ln\left(\frac{N_{\rm D}}{2N_{\rm C}}\right)$$
 $n = \sqrt{N_{\rm C}N_{\rm D}/2}\exp\left(-\frac{E_{\rm d}}{2k_{\rm B}T}\right)$

$$n = \sqrt{N_{\rm C}N_{\rm D}/2} \exp \left[-\frac{E_{\rm d}}{2k_{\rm B}T}\right]$$

$$E_{\rm F}(T=0) = \frac{1}{2}(E_{\rm CO} + E_{\rm D})$$

- $\bullet E_{\mathrm{F}}$ 一般在导带底与施主杂质能级之间;
- T = 0 K, $E_{\rm F}$ 在导带底与施主杂质能级的中部;
- T > 0 K, $E_{\rm F}$ 先上升后下降

 $N_{\rm C} \propto T^{3/2}$