End-to-End Object Detection with Transformers

https://arxiv.org/abs/2005.12872

0. Introduction

- 객체 검출은 이미지 안의 물체 위치와 종류를 찾아내는 핵심 비전 과제임.
- 기존 방법(Faster R-CNN 등)은 앵커(anchor) 설계, NMS(비최대 억제) 같은 복잡한 후처리가 필수였음.
- 이 논문(DETR)은 그런 복잡한 구성 없이 Transformer 기반 단일 모델로 객체 검출을 수행하려는 시도임.
- 핵심 아이디어는 "객체 검출을 집합(set) 예측 문제로 바꾸자"는 것.
- 즉, 모델이 미리 정한 개수의 예측을 내고, 실제 객체와 일대일로 매칭하는 방식으로 단순화함.
- 결과적으로 후처리 없는 엔드투엔드 객체 검출기를 제시했고, 기존 R-CNN 계열과 비슷한 성능을 달성함.

1. Overview

- DETR은 CNN 백본으로 특징을 뽑고, Transformer 인코더-디코더 구조로 각 객체를 직접 예측함.
- 디코더의 "object queries"가 각각 하나의 객체를 담당하며, 예측 결과는 클래스와 박 스 좌표로 구성됨.
- 예측된 객체들과 실제 객체는 Hungarian 매칭 알고리즘으로 일대일 대응시켜 loss 계산함.
- 후처리(NMS)나 앵커 설정 없이, 학습만으로 중복 없는 예측을 학습할 수 있음.
- COCO 데이터셋에서 기존 검출기 수준의 성능을 보이며, 구조가 단순하고 깔끔한 게 가장 큰 장점임.

2. Challenges

- 수렴 속도: Transformer 구조 특성상 훈련 초기 수렴이 느림
- 소형 객체 검출 성능: 저해상도 또는 작은 객체에 대해서는 기존 방법 대비 약점 존재
- 고정 예측 수의 한계: N이 너무 크면 불필요한 연산, 너무 작으면 객체 누락 가능성
- 연산 복잡도: Transformer self-attention의 쿼리/키 매칭 연산 비용 증가
- 위치 인코딩의 한계: Transformer가 공간 정보를 잃지 않도록 위치 인코딩 설계 민감
- 추가 후처리 제거로 인한 유연성 저하 가능성: NMS 등 알고리즘이 없기 때문에 중복 예측 제어나 예외 경우 처리 어려움
- 기존 방법들과의 비교: 기존 앵커 기반 접근, NMS 후처리 방식 등이 가진 강점을 포기 하면서 얻는 손실 위험

3. Method

- 모델 아키텍처
- 백본 + 피처 맵 생성
 - ∘ ResNet (50 또는 101) 사용, 마지막 레이어의 피처 맵을 추출
 - 。 채널 축소를 위한 1x1 컨볼루션 적용
 - 。 공간 → 시퀀스 변환 (H×W → HW 길이 시퀀스)
 - 위치 인코딩 추가 (sine/cosine 방식)
- Transformer 인코더
 - o self-attention + feed-forward 레이어 반복
 - 。 입력은 피처 + 위치 인코딩
 - 。 공간 간 전역 문맥 관계 학습
- Transformer 디코더
 - Object queries (학습 가능한 임베딩)의 입력
 - o self-attention, cross-attention, feed-forward 계층
 - cross-attention을 통해 인코더의 피처와 연관
 - 쿼리별로 객체 특성 추출
- 출력 헤드 (Prediction heads)
 - 。 각 디코더 출력(query)에 대해
 - 클래스 소프트맥스 (C+1 클래스, + "no object")
 - 박스 좌표 예측 (center_x, center_y, width, height) 정규화된 값
 - 박스 loss는 L1 + generalized loU 조합 적용
- 매칭 및 Loss 계산

- Hungarian algorithm으로 예측 집합과 실제 객체 집합 간 최적 매칭
- 。 매칭된 쌍에만 loss 부여
- unmatched 예측은 클래스 "no object"로 처리하여 classification loss만 적용
- 학습 세부 사항
 - 백본(ResNet)는 낮은 학습률 사용
 - o Dropout, weight decay, augmentation 적용
 - ∘ 예측 개수 N (예: 100) 고정
 - o gradient clipping 사용
 - 학습 에폭 수 조정 등 하이퍼파라미터 실험 포함

4. Experiments

- 데이터셋 및 설정
 - ∘ 사용 데이터셋: COCO 2017 (train / val)
 - 。 평가 지표: mAP (mean Average Precision), AP50, AP75 등
 - 。 비교 대상: Faster R-CNN 계열 등
 - 。 백본: ResNet-50, ResNet-101
 - 예측 수 N = 100 (기본)
 - Ablation study: 쿼리 수 변화, 레이어 수 변화, loss 구성 변화 등
- 주요 실험 및 결과
 - DETR (ResNet-50) → COCO 기준 42 AP 수준 (Faster R-CNN 대비 경쟁력 있음)
 - 。 다양한 구성 실험
 - 디코더 레이어 개수, 쿼리 수 변화
 - 위치 인코딩 방식 변경
 - loss 요소별 제거 실험
 - 。 시각화 결과: 객체 예측 샘플 제공
 - 한계 분석: 작은 객체나 복잡한 장면에서 오류 빈도 증가

- 일반화 가능성 실험: panoptic segmentation 확장 모듈 제안 (추가 헤드)
- 。 비교: DETR은 복잡한 후처리 없이 단순 구조로 동등한 성능을 보인다는 점 강조

5. Results

Model	GFLOPS/FPS	#params	AP	AP ₅₀	AP ₇₅	$\mathrm{AP_S}$	AP_{M}	$\overline{\mathrm{AP_L}}$
Faster RCNN-DC5	320/16	166M	39.0	60.5	42.3	21.4	43.5	52.5
Faster RCNN-FPN	180/26	42M	40.2	61.0	43.8	24.2	43.5	52.0
Faster RCNN-R101-FPN	246/20	60M	42.0	62.5	45.9	25.2	45.6	54.6
Faster RCNN-DC5+	320/16	166M	41.1	61.4	44.3	22.9	45.9	55.0
Faster RCNN-FPN+	180/26	42M	42.0	62.1	45.5	26.6	45.4	53.4
Faster RCNN-R101-FPN+	246/20	60M	44.0	63.9	47.8	27.2	48.1	56.0
DETR	86/28	41M	42.0	62.4	44.2	20.5	45.8	61.1
DETR-DC5	187/12	41M	43.3	63.1	45.9	22.5	47.3	61.1
DETR-R101	152/20	60M	43.5	63.8	46.4	21.9	48.0	61.8
DETR-DC5-R101	253/10	60M	44.9	64.7	47.7	23.7	49.5	62.3

#layers	GFLOPS/FPS	#params	AP	AP_{50}	$\mathrm{AP_S}$	AP_{M}	$\mathrm{AP_{L}}$
0	76/28	33.4M	36.7	57.4	16.8	39.6	54.2
3	81/25	37.4M	40.1	60.6	18.5	43.8	58.6
6	86/23	41.3M	40.6	61.6	19.9	44.3	60.2
12	95/20	49.2M	41.6	62.1	19.8	44.9	61.9

Model	Backbone	PQ	$_{ m SQ}$	RQ	$ PQ^{th} $	$\mathrm{SQ}^{\mathrm{th}}$	$\mathrm{RQ}^{\mathrm{th}}$	PQ^{st}	$\mathrm{SQ}^{\mathrm{st}}$	$\mathrm{RQ}^{\mathrm{st}}$	AP
PanopticFPN++ UPSnet UPSnet-M PanopticFPN++ DETR	R50 R50 R50	42.4 42.5 43.0 44.1	79.3 78.0 79.1 79.5	51.6 52.5 52.8 53.3	49.2 48.6 48.9 51.0	82.4 79.4 79.7 83.2	58.8 59.6 59.7 60.6 59.5	32.3 33.4 34.1 33.6	74.8 75.9 78.2 74.0	40.6 41.7 42.3 42.1	37.7 34.3 34.3 39.7
DETR-DC5 DETR-R101	R50 R101						60.6 61.7				1

- 정량적 성능: Faster R-CNN 대비 유사한 mAP 수준
- Ablation 결과: 각 요소의 중요도 확인
 - 예: generalized IoU loss가 성능 향상에 기여 큰 것으로 나타남 Medium+2arXiv+2
 - 쿼리 수, 레이어 수 조정 시 성능 변화 있음

- 작은 객체에 대한 성능은 여전히 기존 방법보다 낮음
- 수렴에 시간 소요됨
- 구조 단순성, 직관성, 후처리 제거 등의 장점 강조
- panoptic segmentation 확장에서는 경쟁력 있는 성능 확보

6. Insight

- 이 논문은 객체 검출 문제에 Transformer + 집합 예측(set prediction)이라는 관점을 처음 도입했다는 점에서 매우 중요한 전환점
- 복잡한 수작업 설계 (앵커, NMS 등)를 제거하고 모델을 단순하게 유지하는 접근은 후속 연구에 강한 영향 미침
- 단점인 수렴 속도, 작은 객체 성능은 이후 연구 (예: Deformable DETR, Dynamic DETR 등)에서 개선 시도됨
- 실무 적용 시 고려할 점: 연산 비용, 실시간 요구, 작은 객체 비율이 높은 환경 등