

UNIVERSIDAD INTERNACIONAL DE VALENCIA

Magister Inteligencia Artificial

Trabajo - AG1- Actividad Guiada 2

Docente - Raúl Reyero Díez

Cátedra - 03MIAR_10_A_2024-25_Algoritmos de Optimización

Alumno: Eduardo Osorio Venegas

- github:
 - https://github.com/eosovngas/VIU_MUIA_AP_102024/tree/main/EOSORIO_AG2_AlgoritmosOptimizacion
- notebook:
 EOSORIO_AG2_AlgoritmosOptimizacion/EOSORIO_AG2_AlgoritmosOptimizacion.ipynb
- colab:

https://colab.research.google.com/github/eosovngas/VIU_MUIA_AP_102024/blob/main/EOSORIO_AG2_AlgoritmosOptimizacion/EOSORIO_AG2_AlgoritmosOptimizacion.ipynb

Problema: Torres de Hanoy (divide y venceras)

Torres de Hanoi - Divide y venceras

Resolver(Total_fichas=4, Desde=1, Hasta=3) es valido con:

- Resolver(Total_fichas=3, Desde=1, Hasta=2)
- Mover(Desde=1, Hasta=3)
- Resolver(Total_fichas=3, Desde=2, Hasta=3)


```
def mueve_ficha(desde, hasta):
```

Mueve una ficha de una torre a otra.

:param desde: Torre origen
:param hasta: Torre destino

.....

print(f"Lleva la ficha desde {desde} hasta {hasta}")

def resuelve_hanoi(n, desde, auxiliar, hasta):

```
Resuelve el problema de las Torres de Hanoi aplicando divide y vencerás con llam
    :param n: Número de fichas
    :param desde: Torre origen
    :param auxiliar: Torre auxiliar
    :param hasta: Torre destino
    .....
    if n == 0:
        return # Caso base: no hay fichas que mover
    # Paso 1: Mover las n-1 fichas al auxiliar
    resuelve_hanoi(n - 1, desde, hasta, auxiliar)
   # Paso 2: Mover la ficha más grande al destino
   mueve ficha(desde, hasta)
    # Paso 3: Mover las n-1 fichas desde el auxiliar al destino
    resuelve hanoi(n - 1, auxiliar, desde, hasta)
def torres hanoi(n):
    Función principal para resolver el problema de las Torres de Hanoi.
    :param n: Número total de fichas
    resuelve hanoi(n, 1, 2, 3) # 1: Torre origen, 2: Torre auxiliar, 3: Torre desti
# Ejemplo: Resolver las Torres de Hanoi con 4 discos
torres_hanoi()
→ Lleva la ficha desde 1 hasta 2
    Lleva la ficha desde 1 hasta 3
    Lleva la ficha desde 2 hasta 3
    Lleva la ficha desde 1 hasta 2
    Lleva la ficha desde 3 hasta 1
    Lleva la ficha desde 3 hasta 2
    Lleva la ficha desde 1 hasta 2
    Lleva la ficha desde 1 hasta 3
    Lleva la ficha desde 2 hasta 3
    Lleva la ficha desde 2 hasta 1
    Lleva la ficha desde 3 hasta 1
    Lleva la ficha desde 2 hasta 3
    Lleva la ficha desde 1 hasta 2
    Lleva la ficha desde 1 hasta 3
    Lleva la ficha desde 2 hasta 3
```

Cómo Funciona

Divide el problema:

- La función resuelve_hanoi toma el número de discos (n),
- El poste de origen, el auxiliar y el destino. Divide el problema en tres partes:
 - 1. Mover *n*-1 discos al auxiliar.
 - 2. Mover el disco más grande al destino.
 - 3. Mover los n-1 discos del auxiliar al destino.
- Caso Base: Si n = 0, no hace nada se asegura que la recursión termina.
- Combina las soluciones:
 - 1. Llama recursivamente a resuelve_hanoi para resolver los subproblemas.
 - 2. Usa la función mueve_ficha para imprimir el movimiento de los discos.
- Torre Inicial y Final: la función **torres_hanoi** actúa como una interfaz para configurar la torre origen (1), la auxiliar (2) y la torre destino (3).

```
def inicializar torres(n):
    Inicializa las torres con las fichas en la primera torre.
    :param n: Número de fichas
    :return: Lista de tres torres (listas)
    return [list(range(n, 0, -1)), [], []]
def mostrar torres(torres):
   Muestra el estado actual de las torres.
    :param torres: Lista de tres torres (listas)
    print("\nEstado actual:")
    niveles = max(len(torre) for torre in torres) # Altura máxima
    for i in range(niveles, 0, -1):
        for torre in torres:
            if len(torre) >= i:
                print(f"{torre[i-1]:^5}", end=" ")
                print(" | ", end=" ")
        print()
                         3 ") # Etiquetas de las torres
    print(" 1
    print("-" * 20)
def mueve_ficha_visual(torres, desde, hasta):
   Mueve una ficha de una torre a otra y muestra el estado.
    :param torres: Lista de tres torres (listas)
    :param desde: Índice de la torre origen (0, 1, 2)
    :param hasta: Índice de la torre destino (0, 1, 2)
```

```
ficha = torres[desde].pop()
    torres[hasta].append(ficha)
    print(f"\nMover ficha desde {desde + 1} hasta {hasta + 1}")
    mostrar_torres(torres)
def resuelve_hanoi_visual(n, desde, auxiliar, hasta, torres):
    Resuelve el problema de las Torres de Hanoi con visualización gráfica.
    :param n: Número de fichas
    :param desde: Torre origen
    :param auxiliar: Torre auxiliar
    :param hasta: Torre destino
    :param torres: Lista de tres torres (listas)
    if n == 0:
        return # Caso base
    # Paso 1: Mover las n-1 fichas al auxiliar
    resuelve_hanoi_visual(n - 1, desde, hasta, auxiliar, torres)
   # Paso 2: Mover la ficha más grande al destino
   mueve ficha visual(torres, desde, hasta)
    # Paso 3: Mover las n-1 fichas desde el auxiliar al destino
    resuelve_hanoi_visual(n - 1, auxiliar, desde, hasta, torres)
def torres_hanoi_visual(n):
    Función principal para resolver el problema de las Torres de Hanoi con visualiza
    :param n: Número total de fichas
    .....
    torres = inicializar_torres(n) # Inicializar las torres con las fichas en la pr
    mostrar torres(torres) # Mostrar estado inicial
    resuelve_hanoi_visual(n, 0, 1, 2, torres) # Resolver el problema
# Ejecutar con 4 discos
torres hanoi visual(4)
→
    Estado actual:
      1
      2
      3
      4
      1
            2
                  3
```

Mover ficha desde 1 hasta 2

Estado	actu	al:	
2			
3			
4	1		
1	2	3	

Mover ficha desde 1 hasta 3

Estado actual:

3		
4	1	2
1	2	3

Mover ficha desde 2 hasta 3

Estado actual:

3		1	
4		2	
1	2	3	

Mover ficha desde 1 hasta 2

Estado actual:

		1	
4	3	2	
1	2	3	

Mover ficha desde 3 hasta 1

Estado actual:

1			
4	3	2	
1	2	3	

Mover ficha desde 3 hasta 2

Estado actual:

1	2		
4	3		
1	2	3	

Como funciona:

• Iniciar: La función inicializar_torres crea una lista de tres sublistas. La primera contiene las fichas ordenadas de mayor a menor.

- Visualización: La función mostrar_torres imprime el estado actual de las torres, utilizando caracteres ASCII para representar las fichas y las torres.
- Movimiento de fichas: La función mueve_ficha_visual realiza el movimiento de una ficha entre torres y actualiza el estado visual.
- Resolución: La función resuelve_hanoi_visual aplica el mismo algoritmo recursivo que antes, pero ahora incluye llamadas a mueve_ficha_visual para mostrar el movimiento.
- Ejecución: La función principal **torres_hanoi_visual** se encarga de inicializar las torres, mostrar el estado inicial y resolver el problema.

```
#Torres de Hanoi - Divide y venceras
def Torres Hanoi(N, desde, hasta):
 #N − Nº de fichas
 #desde - torre inicial
 #hasta - torre fina
 if N==1:
   print("Lleva la ficha desde " + str(desde) + " hasta " + str(hasta))
 else:
   Torres_Hanoi(N-1, desde, 6-desde-hasta)
   print("Lleva la ficha desde " + str(desde) + " hasta " + str(hasta))
   Torres_Hanoi(N-1, 6-desde-hasta, hasta)
Torres_Hanoi(4, 1, 3)
→ Lleva la ficha desde 1 hasta 2
   Lleva la ficha desde 1 hasta 3
   Lleva la ficha desde 2 hasta 3
   Lleva la ficha desde 1 hasta 2
   Lleva la ficha desde 3 hasta 1
   Lleva la ficha desde 3 hasta 2
   Lleva la ficha desde 1 hasta 2
   Lleva la ficha desde 1 hasta 3
   Lleva la ficha desde 2 hasta 3
   Lleva la ficha desde 2 hasta 1
   Lleva la ficha desde 3 hasta 1
   Lleva la ficha desde 2 hasta 3
   Lleva la ficha desde 1 hasta 2
   Lleva la ficha desde 1 hasta 3
   Lleva la ficha desde 2 hasta 3
```

> Cambio de monedas - Técnica voraz

▶ 1 celda oculta

¿Qué ocurre con otros sistemas monetarios?

```
def cambio monedas(cantidad, sistema):
    Algoritmo voraz para el problema del cambio de monedas.
    solucion = [0] * len(sistema)
    valor acumulado = 0
    for i, valor in enumerate(sistema):
        monedas = (cantidad - valor_acumulado) // valor
        solucion[i] = monedas
        valor acumulado += monedas * valor
        if valor_acumulado == cantidad:
            return solucion
    return solucion
def validar_solucion_optima(cantidad, sistema):
    Verifica si el algoritmo voraz da una solución óptima comparando con fuerza brut
    # Solución voraz
    solucion voraz = cambio monedas(cantidad, sistema)
    monedas voraz = sum(solucion voraz)
    # Fuerza bruta: probar todas las combinaciones
    from itertools import product
    mejor solucion = None
    min monedas = float('inf')
    for combinacion in product(range(cantidad // sistema[-1] + 1), repeat=len(sistem
        valor = sum(c * s for c, s in zip(combinacion, sistema))
        if valor == cantidad:
            num monedas = sum(combinacion)
            if num monedas < min monedas:</pre>
                min monedas = num monedas
                mejor_solucion = combinacion
    return {
        "solucion_voraz": solucion_voraz,
        "monedas_voraz": monedas_voraz,
        "mejor_solucion": mejor_solucion,
        "monedas optimas": min monedas,
        "es_optimo": monedas_voraz == min_monedas
    }
```

```
# Ejemplo de validación
sistemas = {
    "Canónico": [25, 10, 5, 1],
    "No Canónico": [10, 7, 1]
}
cantidad = 14

for nombre, sistema in sistemas.items():
    resultado = validar_solucion_optima(cantidad, sistema)
    print(f"\nSistema: {nombre} -> {sistema}")
    print(f"Cantidad: {cantidad}")
    print(f"Solución Voraz: {resultado['solucion_voraz']} ({resultado['monedas_voraz print(f"Mejor Solución: {resultado['mejor_solucion']} ({resultado['monedas_optim print(f"¿Es Óptimo?: {'Sí' if resultado['es_optimo'] else 'No'}")
Sistema: Canónico -> [25, 10, 5, 1]
```

Sistema: Canónico -> [25, 10, 5, 1]
Cantidad: 14
Solución Voraz: [0, 1, 0, 4] (5 monedas)
Mejor Solución: (0, 1, 0, 4) (5 monedas)
¿Es Óptimo?: Sí

Sistema: No Canónico -> [10, 7, 1]
Cantidad: 14
Solución Voraz: [1, 0, 4] (5 monedas)
Mejor Solución: (0, 2, 0) (2 monedas)
¿Es Óptimo?: No

- ¿Cuándo funciona bien y cuándo no? Funciona bien cuando el sistema es un sistema canónico: es decir, cuando las monedas mayores son múltiplos de las menores. Ejemplo: [25, 10, 5, 1].
- No funciona bien cuando no es canónico. Ejemplo: [10, 7, 1].

print("No es posible encontrar solucion")
cambio_monedas(15,SISTEMA)

 \rightarrow [1, 0, 4]

N Reinas - Vuelta Atrás(Backtracking)


```
#N Reinas - Vuelta Atrás()
#Verifica que en la solución parcial no hay amenzas entre reinas
def es_prometedora(SOLUCION,etapa):
#print(SOLUCION)
 #Si la solución tiene dos valores iguales no es valida => Dos reinas en la misma f
 for i in range(etapa+1):
  #print("El valor " + str(SOLUCION[i]) + " está " + str(SOLUCION.count(SOLUCION[
  if SOLUCION.count(SOLUCION[i]) > 1:
    return False
  #Verifica las diagonales
  for j in range(i+1, etapa +1):
    #print("Comprobando diagonal de " + str(i) + " y " + str(j))
    if abs(i-j) == abs(SOLUCION[i]-SOLUCION[j]) : return False
 return True
```

#Traduce la solución al tablero

```
def escribe solucion(S):
n = len(S)
 for x in range(n):
   print("")
   for i in range(n):
    if S[i] == x+1:
      print(" X " , end="")
    else:
      print(" - ", end="")
#Proceso principal de N-Reinas
def reinas(N, solucion=[],etapa=0):
### ....
                         # [0,0,0...]
 if len(solucion) == 0:
   solucion = [0 for i in range(N) ]
 for i in range(1, N+1):
   solucion[etapa] = i
   if es_prometedora(solucion, etapa):
    if etapa == N-1:
      print(solucion)
      reinas(N, solucion, etapa+1)
   else:
    None
 solucion[etapa] = 0
reinas(5, solucion=[], etapa=0)
\rightarrow [1, 3, 5, 2, 4]
   [1, 4, 2, 5, 3]
   [2, 4, 1, 3, 5]
   [2, 5, 3, 1, 4]
   [3, 1, 4, 2, 5]
   [3, 5, 2, 4, 1]
   [4, 1, 3, 5, 2]
   [4, 2, 5, 3, 1]
   [5, 2, 4, 1, 3]
   [5, 3, 1, 4, 2]
escribe_solucion([1, 5, 8, 6, 3, 7, 2, 4])
→
    Χ
```

Practica individual

Practica individual Problema: Encontrar los dos puntos más cercanos Dado un conjunto de puntos se trata de encontrar los dos puntos más cercanos Guía para aprendizaje: Suponer en 1D, o sea, una lista de números: [3403, 4537, 9089, 9746, 7259, Primer intento: Fuerza bruta Calcular la complejidad. ¿Se puede mejorar? Segundo intento. Aplicar Divide y Vencerás Calcular la complejidad. ¿Se puede mejorar? Extender el algoritmo a 2D: [(1122, 6175), (135, 4076), (7296, 2741).... Vul Universidad Vul Universidad

Comienza a programar o <u>generar</u> con IA.

Comienza a programar o generar con IA.

Implementación Fuerza Bruta en Python (1D)

- Lista acotada de numeros
- Lista random con numeros duplicados
- · Lista random sin numeros duplicados

```
def encontrar_puntos_cercanos_bruto(puntos):
    n = len(puntos)
    min_distancia = float('inf') # Inicializar con un valor muy grande
```

```
puntos cercanos = None
    # Comparar todos los pares posibles
    for i in range(n):
        for j in range(i + 1, n):
            distancia = abs(puntos[i] - puntos[j]) # Distancia en 1D
            if distancia < min distancia:</pre>
                min distancia = distancia
                puntos_cercanos = (puntos[i], puntos[j])
    return puntos cercanos, min distancia
# Lista de puntos en 1D, Lista acotada de numeros
puntos_1d = [3403, 4537, 9089, 9746, 7259]
puntos cercanos, distancia = encontrar puntos cercanos bruto(puntos 1d)
print(f"Los dos puntos más cercanos en 1D son {puntos cercanos} con una distancia de
Los dos puntos más cercanos en 1D son (9089, 9746) con una distancia de 657
import random
# Generar datos aleatorios en 1D
LISTA_1D = [random.randrange(1, 10000) for _ in range(1000)]
def encontrar_puntos_cercanos_bruto(puntos):
    n = len(puntos)
    min_distancia = float('inf') # Inicializar con un valor muy grande
    puntos cercanos = None
    # Comparar todos los pares posibles
    for i in range(n):
        for j in range(i + 1, n):
            distancia = abs(puntos[i] - puntos[j]) # Distancia en 1D
            if distancia < min distancia:
                min distancia = distancia
                puntos cercanos = (puntos[i], puntos[j])
    return puntos cercanos, min distancia
# Encontrar los puntos más cercanos, Lista random con numeros duplicados
puntos cercanos, distancia = encontrar puntos cercanos bruto(LISTA 1D)
print(f"Los dos puntos más cercanos en 1D son {puntos_cercanos} con una distancia de
→ Los dos puntos más cercanos en 1D son (6233, 6233) con una distancia de 0
import random
# Generar datos aleatorios únicos en 1D, Lista random sin numeros duplicados
LISTA_1D = list(set(random.randrange(1, 10000) for _ in range(1000)))
```

```
def encontrar puntos cercanos bruto(puntos):
    n = len(puntos)
    min distancia = float('inf') # Inicializar con un valor muy grande
    puntos_cercanos = None
    # Comparar todos los pares posibles
    for i in range(n):
        for j in range(i + 1, n):
            distancia = abs(puntos[i] - puntos[j]) # Distancia en 1D
            if distancia < min distancia:</pre>
                min distancia = distancia
                puntos_cercanos = (puntos[i], puntos[j])
    return puntos_cercanos, min_distancia
# Encontrar los puntos más cercanos
puntos_cercanos, distancia = encontrar_puntos_cercanos_bruto(LISTA_1D)
print(f"Los dos puntos más cercanos en 1D son {puntos cercanos} con una distancia de
→ Los dos puntos más cercanos en 1D son (8194, 8195) con una distancia de 1
```

Implementación divide y venceras en Python (1D)

```
# Generar datos aleatorios únicos en 1D, Lista random sin numeros duplicados
LISTA 1D = list(set(random.randrange(1, 10000) for in range(1000)))
def encontrar puntos cercanos divide(puntos):
    def dividir_y_encontrar(puntos_ordenados):
        # Si solo hay 2 o menos puntos, se hace una comparación directa
        n = len(puntos_ordenados)
        if n <= 3:
            return encontrar puntos cercanos bruto(puntos ordenados)
        # Dividir el conjunto en dos mitades
        mitad = n // 2
        izquierda = puntos_ordenados[:mitad]
        derecha = puntos ordenados[mitad:]
        # Recursivamente encontrar el par más cercano en las dos mitades
        (puntos_izq, dist_izq) = dividir_y_encontrar(izquierda)
        (puntos_der, dist_der) = dividir_y_encontrar(derecha)
        # Obtener la distancia mínima entre los dos grupos
        min distancia = min(dist izq, dist der)
        puntos_cercanos = puntos_izq if dist_izq < dist_der else puntos_der</pre>
        return puntos cercanos, min distancia
```

```
# Ordenar los puntos para aplicar Divide y Vencerás
puntos_ordenados = sorted(puntos)
return dividir_y_encontrar(puntos_ordenados)
```

```
# Encontrar los puntos más cercanos en 1D usando Divide y Vencerás
puntos_cercanos, distancia = encontrar_puntos_cercanos_divide(LISTA_1D)
print(f"Los dos puntos más cercanos en 1D (Divide y Vencerás) son {puntos_cercanos}
```

Los dos puntos más cercanos en 1D (Divide y Vencerás) son (9493, 9494) con una d

Comparación de Complejidad Computacional

		Ventaja
		Fácil de implementar, pero ineficiente para grandes conjuntos de datos.
		Más eficiente para grandes conjuntos de datos, aunque más complejo de implementar.

Detalles de la Complejidad

Fuerza Bruta:

- Compara todos los pares posibles de puntos.
- La cantidad de comparaciones es (\binom{n}{2} = \frac{n(n-1)}{2}).
- Esto lleva a una complejidad cuadrática, (O(n^2)).

Divide y Vencerás:

- Divide el conjunto en dos mitades recursivamente.
- Ordena los puntos al inicio, lo cual tiene un costo de (O(n \log n)).
- En cada nivel de recursión combina los resultados con un costo lineal, (O(n)).
- La relación de recurrencia es (T(n) = 2T(n/2) + O(n)), resolviendo a (O(n \log n)).

Conclusión:

 El enfoque de Divide y Vencerás es más eficiente que el de Fuerza Bruta para grandes conjuntos de puntos.

Implementación Fuerza Bruta en Python (2D)

```
# Generar datos aleatorios en 2D
LISTA_2D = [(random.randrange(1, 10000), random.randrange(1, 10000)) for _ in range(
import math

def distancia_euclidiana(p1, p2):
    return math.sqrt((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)
```

```
def encontrar_puntos_cercanos_bruto_2d(puntos):
    n = len(puntos)
    min_distancia = float('inf')
    puntos_cercanos = None
    # Comparar todos los pares posibles
    for i in range(n):
        for j in range(i + 1, n):
            dist = distancia_euclidiana(puntos[i], puntos[j])
            if dist < min distancia:</pre>
                min distancia = dist
                puntos_cercanos = (puntos[i], puntos[j])
    return puntos_cercanos, min_distancia
# Encontrar los puntos más cercanos
puntos cercanos, distancia = encontrar puntos cercanos bruto 2d(LISTA 2D)
print(f"Los dos puntos más cercanos en 2D son {puntos_cercanos} con una distancia de
\rightarrow Los dos puntos más cercanos en 2D son ((8214, 8982), (8226, 8988)) con una dista
```

Implementación divide y venceras en Python (2D)

```
import random
import math
# Generar datos aleatorios en 2D
LISTA_2D = [(random.randrange(1, 10000), random.randrange(1, 10000)) for _ in range(
def distancia_2d(p1, p2):
    """Calcula la distancia euclidiana entre dos puntos en 2D."""
    return math.sqrt((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)
def encontrar_puntos_cercanos_divide_2d(puntos):
    def dividir_y_encontrar(puntos_ordenados_x, puntos_ordenados_y):
        n = len(puntos ordenados x)
        # Si hay 3 o menos puntos, resolver usando fuerza bruta
        if n <= 3:
            return encontrar_puntos_cercanos_bruto_2d(puntos_ordenados_x)
        # Dividir los puntos en dos mitades
        mitad = n // 2
        izquierda_x = puntos_ordenados_x[:mitad]
        derecha_x = puntos_ordenados_x[mitad:]
        # Crear listas ordenadas por Y para cada mitad
```

```
punto mitad = puntos ordenados x[mitad][0]
        izquierda_y = [p for p in puntos_ordenados_y if p[0] <= punto_mitad]</pre>
        derecha y = [p \text{ for } p \text{ in puntos ordenados } y \text{ if } p[0] > punto mitad]
        # Resolver recursivamente para las dos mitades
        (puntos_izq, dist_izq) = dividir_y_encontrar(izquierda_x, izquierda_y)
        (puntos_der, dist_der) = dividir_y_encontrar(derecha_x, derecha_y)
        # Obtener la distancia mínima
        min distancia = min(dist izq, dist der)
        puntos cercanos = puntos izq if dist izq < dist der else puntos der
        # Considerar puntos cercanos al plano de división
        franja_cercana = [p for p in puntos_ordenados_y if abs(p[0] - punto_mitad) <</pre>
        for i in range(len(franja cercana)):
            for j in range(i + 1, min(i + 7, len(franja_cercana))): # Revisar hasta
                distancia = distancia 2d(franja cercana[i], franja cercana[j])
                if distancia < min_distancia:</pre>
                    min distancia = distancia
                    puntos cercanos = (franja cercana[i], franja cercana[j])
        return puntos cercanos, min distancia
    # Ordenar puntos por X y Y
    puntos ordenados x = sorted(puntos, key=lambda x: x[0])
    puntos_ordenados_y = sorted(puntos, key=lambda x: x[1])
    return dividir_y_encontrar(puntos_ordenados_x, puntos_ordenados_y)
# Encontrar los puntos más cercanos en 2D usando Divide y Vencerás
puntos_cercanos, distancia = encontrar_puntos_cercanos_divide_2d(LISTA_2D)
print(f"Los dos puntos más cercanos en 2D (Divide y Vencerás) son {puntos cercanos}
Los dos puntos más cercanos en 2D (Divide y Vencerás) son ((2287, 9556), (2287,
```

Implementación Fuerza Bruta en Python 3D

```
import random
import math

# Generar datos aleatorios en 3D
LISTA_3D = [(random.randrange(1, 10000), random.randrange(1, 10000), random.randrang

def distancia_3d(p1, p2):
    """Calcula la distancia euclidiana entre dos puntos en 3D."""
    return math.sqrt((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2 + (p1[2] - p2[2])**2)
```

```
def encontrar puntos cercanos bruto 3d(puntos):
    """Encuentra los puntos más cercanos en un conjunto de puntos 3D usando fuerza b
    n = len(puntos)
    min_distancia = float('inf')
    puntos cercanos = None
    for i in range(n):
        for j in range(i + 1, n):
            distancia = distancia_3d(puntos[i], puntos[j])
            if distancia < min distancia:</pre>
                min_distancia = distancia
                puntos_cercanos = (puntos[i], puntos[j])
    return puntos_cercanos, min_distancia
# Encontrar los puntos más cercanos en 3D
puntos_cercanos, distancia = encontrar_puntos_cercanos_bruto_3d(LISTA_3D)
print(f"Los dos puntos más cercanos en 3D son {puntos cercanos} con una distancia de
\rightarrow Los dos puntos más cercanos en 3D son ((962, 8121, 1714), (978, 8121, 1761)) con
def encontrar puntos cercanos divide 3d(puntos):
    def dividir y encontrar(puntos ordenados x, puntos ordenados y, puntos ordenados
        n = len(puntos_ordenados_x)
        if n <= 3:
            return encontrar_puntos_cercanos_bruto_3d(puntos_ordenados_x)
        # Dividir los puntos en dos mitades
        mitad = n // 2
        izquierda x = puntos ordenados x[:mitad]
        derecha_x = puntos_ordenados_x[mitad:]
        # Crear listas ordenadas por Y y Z para cada lado
        izquierda_y = [p for p in puntos_ordenados_y if p in izquierda_x]
        derecha y = [p for p in puntos ordenados y if p in derecha x]
        izquierda_z = [p for p in puntos_ordenados_z if p in izquierda_x]
        derecha_z = [p for p in puntos_ordenados_z if p in derecha_x]
        # Resolver recursivamente para las dos mitades
        (puntos izq, dist izq) = dividir y encontrar(izquierda x, izquierda y, izqui
        (puntos_der, dist_der) = dividir_y_encontrar(derecha_x, derecha_y, derecha_z
        # Combinar resultados
        min_distancia = min(dist_izq, dist_der)
        puntos cercanos = puntos izq if dist izq < dist der else puntos der
        # Considerar puntos cercanos al plano de división
        plano_cercano = [p for p in puntos_ordenados_y if abs(p[0] - puntos_ordenado
        for i in range(len(plano cercano)):
```

```
for j in range(i + 1, len(plano_cercano)):
                if abs(plano_cercano[j][1] - plano_cercano[i][1]) >= min_distancia:
                    break
                distancia = distancia_3d(plano_cercano[i], plano_cercano[j])
                if distancia < min distancia:
                    min distancia = distancia
                    puntos_cercanos = (plano_cercano[i], plano_cercano[j])
        return puntos_cercanos, min_distancia
    # Ordenar los puntos por cada coordenada
    puntos_ordenados_x = sorted(puntos, key=lambda x: x[0])
    puntos_ordenados_y = sorted(puntos, key=lambda x: x[1])
    puntos_ordenados_z = sorted(puntos, key=lambda x: x[2])
    return dividir_y_encontrar(puntos_ordenados_x, puntos_ordenados_y, puntos_ordena
# Encontrar los puntos más cercanos en 3D usando Divide y Vencerás
puntos_cercanos, distancia = encontrar_puntos_cercanos_divide_3d(LISTA_3D)
print(f"Los dos puntos más cercanos en 3D (Divide y Vencerás) son {puntos_cercanos}
Los dos puntos más cercanos en 3D (Divide y Vencerás) son ((962, 8121, 1714), (9
```

Análisis de Complejidad Computacional para el Problema de los Puntos Más Cercanos

1D - Fuerza Bruta: (O(n^2))

- El algoritmo compara todos los pares de puntos posibles en una lista de (n) elementos.
- El número de pares posibles es: [\text{Número de comparaciones} = \binom{n}{2} = \frac{n(n-1)}{2}]
- Esto lleva a una complejidad asintótica de (O(n^2)).

1D - Divide y Vencerás: (O(n \log n))

- **División**: Se divide la lista en dos mitades en cada nivel de la recursión. El número de niveles de recursión es (\log n) porque en cada paso se reduce el problema a la mitad.
- Conquista:
 - Se resuelve el problema de forma recursiva en ambas mitades, y luego se combina la solución.

- La combinación (comparar puntos cercanos al plano de separación) es (O(n)) porque se revisan solo los puntos cercanos al corte.
- En total, el tiempo se modela como: [T(n) = 2T\left(\frac{n}{2}\right) + O(n)]
- Resolviendo esta recurrencia, se obtiene (O(n \log n)).

2D - Fuerza Bruta: (O(n^2))

- Similar al caso 1D, se comparan todos los pares de puntos posibles en un conjunto de (n) puntos.
- La distancia euclidiana en 2D requiere calcular: [d = \ $\sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$] pero esto no afecta la complejidad asintótica, que sigue siendo ($O(n^2)$).

2D - Divide y Vencerás: (O(n \log n))

- **División**: El conjunto de puntos se divide en dos mitades según la coordenada (x).
- Conquista:
 - Se resuelve el problema recursivamente en ambas mitades.
 - La combinación considera solo puntos cercanos al plano de división (con una ventana de anchura proporcional a la distancia mínima encontrada).
 - En 2D, hay como máximo 7 puntos que deben compararse por cada punto en la franja (según el teorema geométrico). Esto mantiene la combinación en (O(n)).
- Resolviendo la recurrencia: [T(n) = 2T\left(\frac{n}{2}\right) + O(n)] El tiempo total es (O(n \log n)).

3D - Fuerza Bruta: (O(n^2))

- Igual que en 1D y 2D, se comparan todos los pares posibles.
- La distancia en 3D requiere calcular: [d = \sqrt{ $(x_1 x_2)^2 + (y_1 y_2)^2 + (z_1 z_2)^2$ }] pero la complejidad sigue siendo (O(n^2)).

3D - Divide y Vencerás: (O(n \log^2 n))

- División: Similar al caso 2D, el conjunto se divide en mitades según una coordenada.
- Conquista:
 - El problema se resuelve en ambas mitades recursivamente.
 - Para combinar, los puntos cercanos al plano de división (en una franja tridimensional)
 deben analizarse.

- En 3D, la cantidad de puntos en la franja y las comparaciones necesarias aumentan ligeramente, dando una complejidad de combinación (O(n \log n)) en lugar de (O(n)).
- La recurrencia se modela como: $[T(n) = 2T\left(\frac{n}{2}\right) + O(n \log n)]$ Resolviendo, obtenemos $(O(n \log^2 n))$.

Resumen de Complejidades

Dimensión	Método	Complejidad
1D	Fuerza Bruta	(O(n^2))
1D	Divide y Vencerás	$(O(n \setminus log n))$
2D	Fuerza Bruta	(O(n^2))
2D	Divide y Vencerás	$(O(n \setminus log n))$
3D	Fuerza Bruta	(O(n^2))
3D	Divide y Vencerás	(O(n \log^2 n))

Comienza a programar o generar con IA.