CESAR HENRIQUE COMIN

• Novamente, temos a transformação

$$g(x,y) = T[f(x,y)]$$

- Mas agora, a transformação de um pixel depende dos valores na vizinhança do pixel
- Um filtro espacial é definido pela:
 - 1) Vizinhança utilizada
 - 2) Operação a ser aplicada nos pixels da vizinhança

Imagem original

4	1	43	1	7	64	47
0	10	23	68	45	3	94
19	36	66	35	3	51	5
0	57	6	11	34	36	65
27	0	62	27	45	76	38
58	38	37	63	1	0	45
8	65	83	35	12	4	6

Imagem transformada

6	1	2	1	4	4	4
0	4	4	10	1	3	6
8	4	5	5	3	8	5
0	0	3	7	4	3	1
2	0	6	1	6	3	8
7	4	3	1	1	0	6
8	4	7	9	2	4	6

- Filtragem espacial pode ser dividida em duas classes
 - Filtragem linear:
 - Algoritmos eficientes
 - Fácil de se obter resultados analíticos que melhoram a performance do filtro
 - Filtragem não-linear:
 - Usualmente possuem alto custo computacional
 - Poucos resultados analíticos
 - Em alguns casos pode proporcionar resultados muito melhores do que filtros lineares

- Dada uma imagem f(x, y) e um filtro w(s, t).
- Filtragem espacial linear corresponde a uma combinação linear dos valores na vizinhança de cada pixel, com coeficientes dados pelo filtro.
- Cada pixel (x, y) da imagem resultante da transformação, g(x, y), possui valor dado pela equação

$$g(x,y) = \sum_{s=0}^{a} \sum_{t=0}^{b} w(s,t) f(x+s-\frac{a}{2},y+t-\frac{b}{2})$$

x e y indicam a linha e coluna do pixel sendo analisado s e t indicam a linha e coluna do filtro a é o número de linhas do filtro menos 1 b é o número de colunas do filtro menos 1

Exemplo de aplicação de um filtro em um único pixel da imagem:

Imagem original f(x, y)

4	1	1	2	3	4	2
0	2	3	1	6	5	5
7	2	1	5	3	1	3
0	3	2	1	3	3	2
2	0	2	3	1	2	2
3	7	5	3	10	3	1
3	5	2	4	2	4	5

Imagem transformada g(x, y)

Filtro w(s, t)

1	2	1
2	4	1
0	1	1

$$a = 2$$

 $b = 2$

$$g(x,y) = \sum_{s=0}^{a} \sum_{t=0}^{b} w(s,t) f(x+s-\frac{a}{2},y+t-\frac{b}{2})$$

Exemplo de aplicação de um filtro em um único pixel da imagem:

Imagem original f(x, y)

4	1	1	2	3	4	2
0	2	3	1	6	5	5
7	2	1	5	3	1	3
0	3	2	1	3	3	2
2	0	2	3	1	2	2
3	7	5	3	10	3	1
3	5	2	4	2	4	5

Imagem transformada g(x, y)

Pixel (2,3)

Filtro w(s, t)

1	2	1
2	4	1
0	1	1

$$a = 2$$

 $b = 2$

$$g(x,y) = \sum_{s=0}^{a} \sum_{t=0}^{b} w(s,t) f(x+s-\frac{a}{2},y+t-\frac{b}{2})$$

Exemplo de aplicação de um filtro em um único pixel da imagem:

Imagem original f(x, y)

4	1	1	2	3	4	2
0	2	3	1	6	5	5
7	2	1	5	3	1	3
0	3	2	1	3	3	2
2	0	2	3	1	2	2
3	7	5	3	10	3	1
3	5	2	4	2	4	5

Filtro w(s,t)

1	2	1
2	4	1
0	1	1

$$a = 2$$
$$b = 2$$

Imagem transformada g(x, y)

Pixel (2,3)

$$g(2,3) = \sum_{s=0}^{2} \sum_{t=0}^{2} w(s,t) f(2+s-1,3+t-1)$$

$$g(x,y) = \sum_{s=0}^{a} \sum_{t=0}^{b} w(s,t) f(x+s-\frac{a}{2},y+t-\frac{b}{2})$$

Exemplo de aplicação de um filtro em um único pixel da imagem:

Imagem original f(x, y)

4	1	1	2	3	4	2
0	2	3	1	6	5	5
7	2	1	5	3	1	3
0	3	2	1	3	3	2
2	0	2	3	1	2	2
3	7	5	3	10	3	1
3	5	2	4	2	4	5

Filtro w(s,t)

1	2	1
2	4	1
0	1	1

$$a = 2$$

 $b = 2$

Imagem transformada g(x, y)

$$g(2,3) = \sum_{s=0}^{2} \sum_{t=0}^{2} w(s,t) f(2+s-1,3+t-1)$$

$$g(2,3) = \sum_{s=0}^{2} w(s,0)f(2+s-1,2) + w(s,1)f(2+s-1,3) + w(s,2)f(2+s-1,4)$$

Exemplo de aplicação de um filtro em um único pixel da imagem:

Imagem original f(x, y)

4	1	1	2	3	4	2
0	2	3	1	6	5	5
7	2	1	5	3	1	3
0	3	2	1	3	3	2
2	0	2	3	1	2	2
3	7	5	3	10	3	1
3	5	2	4	2	4	5

Imagem transformada g(x, y)

Filtro
$$w(s,t)$$

1	2	1
2	4	1
0	1	1

$$a = 2$$

$$g(2,3) = \sum_{s=0}^{2} \sum_{t=0}^{2} w(s,t) f(2+s-1,3+t-1)$$

$$\begin{split} g(2,3) &= w(0,0)f(1,2) + w(0,1)f(1,3) + w(0,2)f(1,4) + w(1,0)f(2,2) \\ &+ w(1,1)f(2,3) + w(1,2)f(2,4) + w(2,0)f(3,2) + w(2,1)f(3,3) \\ &+ w(2,2)f(3,4) \end{split}$$

Exemplo de aplicação de um filtro em um único pixel da imagem:

Imagem original f(x, y)

4	1	1	2	3	4	2
0	2	3	1	6	5	5
7	2	1	5	3	1	3
0	3	2	1	3	3	2
2	0	2	3	1	2	2
3	7	5	3	10	3	1
3	5	2	4	2	4	5

Imagem transformada g(x, y)

Filtro w(s,t)

1	2	1
2	4	1
0	1	1

$$a = 2$$

 $b = 2$

$$g(2,3) = \sum_{s=0}^{2} \sum_{t=0}^{2} w(s,t) f(2+s-1,3+t-1)$$

$$g(2,3) = 1 * 3 + w(0,1)f(1,3) + w(0,2)f(1,4) + w(1,0)f(2,2) + w(1,1)f(2,3) + w(1,2)f(2,4) + w(2,0)f(3,2) + w(2,1)f(3,3) + w(2,2)f(3,4)$$

Exemplo de aplicação de um filtro em um único pixel da imagem:

Imagem original f(x, y)

4	1	1	2	3	4	2
0	2	3	1	6	5	5
7	2	1	5	3	1	3
0	3	2	1	3	3	2
2	0	2	3	1	2	2
3	7	5	3	10	3	1
3	5	2	4	2	4	5

Imagem transformada g(x, y)

Filtro w(s,t)

1	2	1
2	4	1
0	1	1

$$g(2,3) = \sum_{s=0}^{2} \sum_{t=0}^{2} w(s,t) f(2+s-1,3+t-1)$$

$$g(2,3) = 1 * 3 + 2 * 1 + 1 * 6 + 2 * 1 + 4 * 5 + 1 * 3 + 0 * 2 + 1 * 1 + 1 * 1$$

$$a = 2$$

 $b = 2$

Exemplo de aplicação de um filtro em um único pixel da imagem:

Imagem original f(x, y)

4	1	1	2	3	4	2
0	2	3	1	6	5	5
7	2	1	5	3	1	3
0	3	2	1	3	3	2
2	0	2	3	1	2	2
3	7	5	3	10	3	1
3	5	2	4	2	4	5

Imagem transformada g(x, y)

Filtro w(s,t)

1	2	1
2	4	1
0	1	1

$$g(2,3) = \sum_{s=0}^{2} \sum_{t=0}^{2} w(s,t) f(2+s-1,3+t-1)$$

$$g(2,3) = 1 * 3 + 2 * 1 + 1 * 6 + 2 * 1 + 4 * 5 + 1 * 3 + 0 * 2 + 1 * 1 + 1 * 1$$

$$g(2,3) = 38$$

$$a = 2$$

 $b = 2$

Exemplo de aplicação de um filtro em um único pixel da imagem:

Imagem original f(x, y)

4	1	1	2	3	4	2
0	2	3	1	6	5	5
7	2	1	5	3	1	3
0	3	2	1	3	3	2
2	0	2	3	1	2	2
3	7	5	3	10	3	1
3	5	2	4	2	4	5

Imagem transformada g(x, y)

Filtro w(s,t)

1	2	1
2	4	1
0	1	1

Para aplicarmos a transformação na imagem toda, o mesmo procedimento é aplicado para cada pixel da imagem

$$a = 2$$

$$b=2$$

E se quisermos aplicar o filtro em um pixel na borda da imagem?

0	0	0	0	0	0	0	0	0
0	4	1	1	2	3	4	2	0
0	0	2	3	1	6	5	5	0
0	7	2	1	5	3	1	3	0
0	0	З	2	1	3	З	2	0
0	2	0	2	3	1	2	2	0
0	3	7	5	3	10	3	1	0
0	3	5	2	4	2	4	5	0
0	0	0	0	0	0	0	0	0

Imagem original f(x, y)

E se quisermos aplicar o filtro em um pixel na borda da imagem? Uma possível estratégia é adicionar zeros ao redor da imagem!

 A transformação é uma combinação linear dos valores na vizinhança de cada pixel, com coeficientes dados pelo filtro

$$f(x,y) \circ w(x,y) = \sum_{s=0}^{a} \sum_{t=0}^{b} w(s,t) f(x+s-\frac{a}{2},y+t-\frac{b}{2})$$

• Esta equação define a chamada correlação cruzada entre a imagem f e o filtro, ou máscara, w.

 A transformação é uma combinação linear dos valores na vizinhança de cada pixel, com coeficientes dados pelo filtro

$$f(x,y) \circ w(x,y) = \sum_{s=0}^{a} \sum_{t=0}^{b} w(s,t) f(x+s-\frac{a}{2},y+t-\frac{b}{2})$$

- Esta equação define a chamada correlação cruzada entre a imagem f e o filtro, ou máscara, w.
- Para uma imagem de tamanho $N \times N$ e um filtro de tamanho $R \times R$, a correlação necessita de $\approx N^2 R^2$ operações.

 A transformação é uma combinação linear dos valores na vizinhança de cada pixel, com coeficientes dados pelo filtro

$$f(x,y) \circ w(x,y) = \sum_{s=0}^{a} \sum_{t=0}^{b} w(s,t) f(x+s-\frac{a}{2},y+t-\frac{b}{2})$$

- Esta equação define a chamada correlação cruzada entre a imagem f e o filtro, ou máscara, w.
- Para uma imagem de tamanho $N \times N$ e um filtro de tamanho $R \times R$, a correlação necessita de $\approx N^2 R^2$ operações.

Nota: essa equação as vezes é escrita como:

$$f \circ w = g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Convolução

Similar à correlação:

$$f(x,y) \star w(x,y) = \sum_{s=0}^{a} \sum_{t=0}^{b} w(s,t) f(x-s+\frac{a}{2},y-t+\frac{b}{2})$$

O que muda em relação à correlação são apenas os sinais. Porque?

Correlação

Exemplo de correlação:

- (d) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 2 3 2 8
 Posição após um deslocamento
- (f) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 Posição final $\stackrel{1}{\longrightarrow}$

Resultado da correlação completa

Resultado da correlação após recorte

Convolução

Exemplo de

convolução:

Resultado da convolução após recorte

Convolução

Convolução é comutativa:

$$f(x,y) \star w(x,y) = w(x,y) \star f(x,y)$$

Correlação não é

$$f(x,y) \circ w(x,y) = f(-x,-y) \circ w(-x,-y)$$

 Para uma imagem e um filtro possuindo valores reais (o que é muito comum), se o filtro for simétrico, convolução e correlação dão o mesmo resultado.

Exemplo de correlação 2D:

Exemplo de convolução 2D:

									f	pre	enc	hid	la c	om	zer	os									
									0	0	0	0	0	0	0	0	0								
									0	0	0	0	0	0	0	0	0								
									0	0	0	0	0	0	0	0	0								
Origem $f(x,y)$ 0 0 0 0 0 0 0												0	0												
0	0	0	0	0					0	0	0	0	1	0	0	0	0								
0	0	0	0	0		u)(x,	y)	0	0	0	0	0	0	0	0	0								
0	0	1	0	0		1	2	3	0	0	0	0	0	0	0	0	0								
0	0	0	0	0		4	5	6	0	0	0	0	0	0	0	0	0								
0	0	0	0	0		7	8	9	0	0	0	0	0	0	0	0	0								
				(a))								(b))											
	— w rotacionado Resultado da convolução completa Resultado da convolução após recorte																								
- ı	v ro	tac	ion	ado	9			Re	sulta	do d	a co	nvol	ução	cor	nple	ta	Re	sulta	do d	la co	nvolu	ıção a	pós r	ecorte	
$\frac{1}{8}$	v ro 7!	tac	ion	ado	0	0	0	Re O	sulta ()	do d	a co	nvol	ução	cor	nple	ta O	Re ()	sulta ()	do d	la co	nvolu	ıção a	pós r	ecorte	
1			on 0 0	0 0		0	0		sulta () ()	do d ()	a co	nvol () ()	ução O	0 0	nple () ()				0 2			ıção a	pós r	ecorte	
\ 8	7	0	0	0	0		_	0	0	do d 0 0 0	0 0 0	0	0	0	0	0	0	0	0	0	0	ıção a	pós r	ecorte	
1 8 5	7	0	0	0	0	0	0	0	0	do d 0 0 0 0	0 0 0 0 0	0	0	0	0	0	0	0 1	0 2	0 3	0	ıção a	pós r	ecorte	
8 5 _2	7 4 1	0 0 0	0 0 0	0 0 0	0 0 0	0	0	0 0 0	0 0	0 0 0	0 0	0 0 0	0 0	0 0	0 0	0 0 0	0 0 0	0 1 4	0 2 5	0 3 6	0 0 0	ıção a	pós r	ecorte	
8 5 _2	7 4 1 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0	0 0	0 0 0	0 0	0 0 0	0 0 0 1	0 0 0 2	0 0 0 3	0 0 0	0 0 0 0	0 0 0	0 0 0	0 1 4 7	0 2 5 8	0 3 6 9	0 0 0 0	ıção a	pós r	ecorte	
8 5 _2	7 4 1 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 1 4	0 0 0 2 5	0 0 0 3 6	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 1 4 7	0 2 5 8	0 3 6 9	0 0 0 0	ıção a	pós r	ecorte	
8 5 _2	7 4 1 0 0 0	0 0 0 0 0	0 0 0 0 1	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 1 4 7	0 0 2 5 8	0 0 0 3 6 9	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0	0 1 4 7	0 2 5 8	0 3 6 9	0 0 0 0	ıção a	pós r	ecorte	
8 5 _2	7 4 1 0 0 0 0	0 0 0 0 0 0	0 0 0 0 1 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 1 4 7	0 0 2 5 8	0 0 0 3 6 9	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0	0 1 4 7	0 2 5 8	0 3 6 9	0 0 0 0	ıção a	pós r	ecorte	

Implementação da correlação e convolução

Notebook "*Correlação e Convolução*"

- Usos comuns de filtragem espacial:
 - Suavização de imagem
 - Remoção de ruído
 - Realce de imagens
 - Detecção de formas
- Focaremos em dois tipos de filtros:
 - Suavização (filtros lineares e não-lineares)
 - Derivada

- Principais aplicações:
 - Corrigir imperfeições na imagem (tornar objetos mais uniformes)

- Principais aplicações:
 - Corrigir imperfeições na imagem (tornar objetos mais uniformes)
 - Remoção de ruído

- Principais aplicações:
 - Corrigir imperfeições na imagem (tornar objetos mais uniformes)
 - Remoção de ruído
 - Selecionar uma escala apropriada para processamento adicional

- Seja S_{xy} o conjunto de pixels na imagem f que estão na vizinhança do pixel (x,y):
- O filtro de média simples é calculado utilizando a equação

$$\hat{f}(x,y) = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} f(s,t)$$

- Seja S_{xy} o conjunto de pixels na imagem f que estão na vizinhança do pixel (x,y):
- O filtro de média simples é calculado utilizando a equação

$$\hat{f}(x,y) = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} f(s,t)$$

Exemplo, os pixels marcados em vermelho pertencem ao conjunto S_{21} (linha 1 e coluna 2)

4	1	43	1	7	64	47
0	10	23	68	45	3	94
19	36	66	35	3	51	5
0	57	6	11	34	36	65
27	0	62	27	45	76	38
58	38	37	63	1	0	45
8	65	83	35	12	4	6

- Seja S_{xy} o conjunto de pixels na imagem f que estão na vizinhança do pixel (x,y):
- O filtro de média simples é calculado utilizando a equação

$$\hat{f}(x,y) = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} f(s,t)$$

• Esta operação é equivalente a definir o filtro

• E calcular a correlação entre w e f

• Naturalmente, podemos definir filtros maiores. Por exemplo

	1	1	1	1	1
	1	1	1	1	1
$w = \frac{1}{25} \times$	1	1	1	1	1
_5	1	1	1	1	1
	1	1	1	1	1

1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25

Exemplo de filtro de média utilizando diferentes tamanhos de filtro

- Vantagens do filtro de média uniforme:
 - Pode ser implementado de forma muito eficiente (utilizando uma técnica chamada soma corrente)
 - Os resultados para filtros maiores podem ser calculados utilizando os resultados obtidos de filtros menores, o que permite a rápida aplicação deste filtro para diferentes tamanhos.

- Vantagens do filtro de média uniforme:
 - Pode ser implementado de forma muito eficiente (utilizando uma técnica chamada soma corrente)
 - Os resultados para filtros maiores podem ser calculados utilizando os resultados obtidos de filtros menores, o que permite a rápida aplicação deste filtro para diferentes tamanhos.
- A grande desvantagem do filtro de média uniforme é que pixels próximos e distantes do pixel de referência possuem o mesmo peso no cálculo da média.
 - Pode causar efeitos indesejados

- Vantagens do filtro de média uniforme:
 - Pode ser implementado de forma muito eficiente (utilizando uma técnica chamada soma corrente)
 - Os resultados para filtros maiores podem ser calculados utilizando os resultados obtidos de filtros menores, o que permite a rápida aplicação deste filtro para diferentes tamanhos.
- A grande desvantagem do filtro de média uniforme é que pixels próximos e distantes do pixel de referência possuem o mesmo peso no cálculo da média.
 - Pode causar efeitos indesejados
- Solução: dar maior peso para pixels próximos!

- Filtro gaussiano
 - De longe o filtro de suavização mais comum
 - Os pesos são baseados na função gaussiana:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

- Filtro gaussiano
 - De longe o filtro de suavização mais comum
 - Os pesos são baseados na função gaussiana:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

 A construção do filtro gaussiano consiste em amostrar uma função gaussiana 2D

$\frac{1}{273} \times$	1	4	7	4	1
	4	16	26	16	4
	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

- Filtro gaussiano
 - De longe o filtro de suavização mais comum
 - Os pesos são baseados na função gaussiana:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

- A construção do filtro gaussiano consiste em amostrar uma função gaussiana 2D
- A máscara 3 × 3 é dada por

$\frac{1}{16} \times$	1	2	1
	2	4	2
	1	2	1

$\frac{1}{273} \times$	1	4	7	4	1	
	4	1 16 2		16	4	
	7	7 26		26	7	
	4	16	26	16	4	
	1	4	7	4	1	

Suavização gaussiana

- O parâmetro σ ajusta o grau de suavização
- Cuidado! O tamanho da máscara deve levar em conta o valor de σ
- Como regra prática, utilizar um filtro de tamanho 6σ

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

Detalhe importante – Borda das imagens

• Quando o filtro estiver na borda da imagem, vimos que uma estratégia é adicionar o valor 0 ao redor da imagem.

Detalhe importante – Borda das imagens

• Quando o filtro estiver na borda da imagem, vimos que uma estratégia é adicionar o valor 0 ao redor da imagem.

• Se os valores próximos à borda não forem pretos, temos um artefato no resultado: pixels próximos à borda ficam mais escuros.

Algumas estratégias de preenchimento

Estratégia		Valo cion		Valor na imagem				Valor adicionado						
Constante	0	0	0	1	2	3	4	5	6	7	8	0	0	0
Valor na borda	1	1	1	1	2	3	4	5	6	7	8	8	8	8
Espelhado	4	3	2	1	2	3	4	5	6	7	8	7	6	5
Refletido	3	2	1	1	2	3	4	5	6	7	8	8	7	6
Wraparound	6	7	8	1	2	3	4	5	6	7	8	1	2	3

- Podemos também definir filtros de suavização de imagens não-lineares
- Para filtros não-lineares, não podemos utilizar convolução para calcular o resultado

Filtros de suavização não-lineares:

Média geométrica

$$\hat{f}(x,y) = \left[\prod_{(s,t) \in S_{xy}} f(s,t) \right]^{\frac{1}{mn}}$$

 Em alguns casos, preserva melhor detalhes na imagem

Média harmônica

$$\frac{1}{\hat{f}(x,y)} = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} \frac{1}{f(s,t)}$$

 Útil para alguns tipos de ruídos

• Filtro mediana

$$\hat{f}(x,y) = \underset{(s,t) \in S_{xy}}{\text{mediana}}[f(s,t)]$$

• Filtro mediana

$$\hat{f}(x,y) = \underset{(s,t) \in S_{xy}}{\text{mediana}}[f(s,t)]$$

• Excelentes resultados para ruído impulsivo (sal e pimenta)

Ruído impulsivo

Imagem filtrada

- Filtros mais elaborados podem ser desenvolvidos.
- Um conjunto de heurísticas é utilizado para definir se o valor de um pixel foi causado por ruído.
- Essas heurísticas são aplicadas para cada pixel na imagem.

Filtragem espacial linear

Página web com uma interessante visualização sobre filtragem de imagens:

http://setosa.io/ev/image-kernels/

Notebook "Suavizacao"