Recap

- Attribute theory
- Generalized Euclidean distance
- Distance-based similarity
- Cosine-based similarity
- Visualizing and reasoning about highdimensional spaces

Semantic spaces

Word spaces

Topic spaces

Topics

gene 0.04 dna 0.02 genetic 0.01

life 0.02 evolve 0.01 organism 0.01

brain 0.04 neuron 0.02 nerve 0.01

data 0.02 number 0.02 computer 0.01

Documents

Topic proportions and assignments

Other language models

- Psychological experiments; e.g. word association spaces (WAS; Steyvers et al., 2005)
- Detailed hand-labeled models; e.g. Princeton WordNet (Miller, 1998)
- Deep learning models

Brain spaces

- Record from people's brains during an experiment
- Summarize their brain patterns (feature vectors!)
- Idea: if our thoughts come from our brains, then similarities in brain patterns should reflect similarities in thoughts

functional Magnetic Resonance Imaging (fMRI)

functional Magnetic Resonance Imaging (fMRI)

People watching Indiana Jones

People listening to a story

Other types of spaces

- Colors and images (pixel RGB values)
- Physical measurements (weather, geometry, velocity, voltage, etc.)
- Qualitative or quantitative properties of anything...

Laying the groundwork...

- How can we (formally) represent complex thoughts?
- Extensions of strength theory

What was "wrong" with strength theory?

- Similarity
 – no notion of which items are similar or how similarity affects memory
- Context— no notion of context or time
- Where does the idea of "strength" even come from?

The multiple trace hypothesis

$$M = \begin{pmatrix} m_1(1) & m_2(1) & m_3(1) \\ m_1(2) & m_2(2) & m_3(2) \\ m_1(3) & m_2(3) & m_3(3) \\ \vdots & \vdots & \vdots \\ m_1(N) & m_2(N) & m_3(N) \end{pmatrix} = \begin{pmatrix} \mathbf{m}_1 & \mathbf{m}_2 & \mathbf{m}_3 \end{pmatrix}$$

The multiple trace hypothesis

- Studied items get converted into vectors and stored in memory
- Test items get converted into vectors
- We can compare the test item's vector to each of the studied item's vectors
 - Remember from Chapter 2: serial search, parallel search
- Can people actually do this?

Experiment: study 2500 items

- "Visual long-term memory has a massive storage capacity for object details" – Brady et al. (2008)
- Examine capacity and fidelity of visual long-term memory
- Participants study a loooong list of items, looking for repeats (of any previously studied item)
- Then they get a series of recognition tests

- This lasts for 5 grueling hours...
- Then participants take a 10 minute break...
- And then it's time for their memory test!

People can do this well!

Fig. 2. Memory performance for each of the three test conditions (novel, exemplar, and state) is shown above. Error bars represent SEM. The dashed line indicates chance performance.

- Huntsman and Block (1971)
- Two lists separated by a 5 minute break
- Each list has 104 words
 - Half are presented twice; half are presented 5 times (spaced repetitions)
- Unexpected JOF test: rate how many times you saw each item (on each list)

- People store multiple "copies" of each item (one per presentation?)
- Some attributes are related to the context (list?) in which the item was encoded
- We can gain access to this information

Summed similarity

Compute the distance between the probe and the studied items (Pythagorean theorem)

Following study of the list, the matrix M represents the list in memory

$$M = \begin{pmatrix} \mathbf{m}_1 & \mathbf{m}_2 & \mathbf{m}_3 & \dots & \mathbf{m}_L \end{pmatrix}$$

g denotes a test item, either a target or a lure.

Similarity between \mathbf{g} and \mathbf{m}_{i} =

$$e^{-\tau ||\mathbf{g} - \mathbf{m}_i||} = e^{-\tau} \sqrt{\sum_{j=1}^{N} (g(j) - m_i(j))^2}$$

 τ determines the steepness of the exponential function.

$$P(yes) = P\left(\sum_{i=1}^{L} e^{-\tau \sqrt{\sum_{j=1}^{N} (g(j) - m_i(j))^2}} > C\right)$$

The probability of saying "yes" to a probe is equal to the probability that its summed similarity (to the items) exceeds a criterion threshold, C

Example Problem (tau=1)

stimulus	Dimension		
	Х	У	Z
1	3	2	3
2	1	2	3
3	3	2	3
4	2	2	2
5	1	1	2
Example Lure	3	3	3
Example Target	1	2	3

Distance to:		
Lure	Target	
1	2	
2.236	0	
1	2	
1.732	1.414	
3	1.414	

Similarity to:		
Lure	Target	
0.37	0.14	
0.11	1	
0.37	. 14	
0.18	0.24	
0.05	0.24	

Summed	Lure	Target
Similarity	1.07	1.76

stimulus	Dimension		
	X	У	Z
1	3	2	3
2	1	2	3
3	თ	2	3
4	2	2	2
5	1	1	2
Example Lure	3	3	3
Example Target	1	2	3

Distance to:		
Lure	Target	
1	2	
2.236	0	
1	2	
1.732	1.414	
3	1.414	

Similarity to:		
Lure	Target	
0.37	0.14	
0.11	1	
0.37	. 14	
0.18	0.24	
0.05	0.24	

Summed Similarity	Lure	Target
	1.07	1.76