MOwNiT - Laboratorium 1: Arytmetyka komputerowa

Wojciech Dąbek

5 marca 2024

1 Treści zadań

- 1. Znaleźć "maszynowe epsilon", czyli najmniejszą liczbę a, taką że a+1>1.
- 2. Rozważamy problem ewaluacji funkcji sin(x), m.in. propagację błędu danych wejściowych, tj. błąd wartości funkcji ze względu na zakłócenie h w argumencie x:
 - Ocenić błąd bezwzględny przy ewaluacji sin(x).
 - \bullet Ocenić błąd względny przy ewaluacji sin(x)
 - Ocenić uwarunkowanie dla tego problemu
 - Dla jakich wartości argumentu x problem jest bardzo czuły?
- 3. Funkcja sinus zadana jest nieskończonym ciągiem:

$$sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

- Jakie są błędy progresywny i wsteczny jeśli przybliżamy funkcję sinus biorąc tylko pierwszy człon rozwinięcia, tj. $sin(x) \approx x$, dla x = 0.1, 0.5 i 1.0?
- Jakie są błędy progresywny i wsteczny jeśli przybliżamy funkcję sinus biorąc pierwsze dwa człony rozwinięcia, tj. $sin(x) \approx x \frac{x^3}{6}$, dla x = 0.1, 0.5 i 1.0?
- 4. Zakładamy że mamy znormalizowany system zmiennoprzecinkowy z $\beta = 10, p = 3, L = -98.$
 - Jaka jest wartość poziomu UFL (underflow) dla takiego systemu?
 - Jeśli $x=6.87\cdot 10^{-97}$ i $y=6.81\cdot 10^{-97}$, jaki jest wynik operacji x-y?

2 Rozwiązania

2.1

Przyjmując definicję maszynowego epsilonu z polecenia będzie on równy wartości "jednostki ostatniego miejsca" względem 1, czyli wartości przyjmowanej, gdy mantysa jest równa 1 (najmniejsza), a wykładnik taki jak dla 1. Zatem:

$$\varepsilon = b^{1-p}$$

gdzie b jest podstawą systemu liczbowego, a p precyzją.

Przykładowo dla wartości typu double w języku C++ stosowana jest podstawa 2 i precyzja 53, więc $\varepsilon=2^{-52}\approx 2,22\cdot 10^{-16}$.

2.2

• Błąd bezwzględny:

$$\Delta \sin x = |\sin x - \sin(x(1+\varepsilon))|$$

• Błąd względny:

$$\frac{\Delta \sin x}{\sin x} = \frac{|\sin x - \sin(x(1+\varepsilon))|}{\sin x}$$

• Uwarunkowanie:

$$\operatorname{cond}(\sin x) = \left| \frac{x \sin' x}{\sin x} \right| = \left| \frac{x \cos x}{\sin x} \right| = |x \operatorname{ctg} x|$$

Rysunek 1: $y = \operatorname{cond}(\sin x) = |x \operatorname{ctg} x|$

• Jak widać na wykresie funkcji uwarunkowania, problem jest bardzo czuły w parzystych wielokrotnościach π oprócz zera, gdyż funkcja ucieka tam do $+\infty$.

Wnioski: Sinus jest funkcją najgorzej uwarunkowaną w otoczeniu swoich miejsc zerowych, a najlepiej w otoczeniu swoich ekstremów lokalnych. Wynika to z "przeplatania się" miejsc zerowych i ekstremów funkcji $\sin x$ i jej pochodnej $\cos x$.

2.3

Dla funkcji y=f(x) błąd progresywny określamy jako $|\hat{y}-y|$, a błąd wsteczny jako $|\hat{x}-x|$. Tutaj rozważamy funkcję $sin(x)=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\dots$

• Tylko pierwszy człon rozwiniecia

x	$y = \sin x$	$\hat{y} \approx x$	$ \hat{y} - y $	$\hat{x} = \arcsin \hat{y}$	$ \hat{x} - x $
0,1	0,09983341664	0,1	0,00016658336	0,100167421	0,000167421
0,5	0,4794255386	0,5	0,0205744614	0,523598776	0,023598776
1	0,8414709848	1	0,1585290152	1,57079633	0,57079633

Tabela 1: Wartości dla przybliżenia $\sin x \approx x$

• Dwa pierwsze człony rozwinięcia

x	$y = \sin x$	$\hat{y} \approx x - \frac{x^3}{6}$	$ \hat{y} - y $	$\hat{x} = \arcsin \hat{y}$	$ \hat{x} - x $
0,1	0,09983341664	0,0998(3)	0,0000000833	0,0999999163	0,0000000837
0,5	0,4794255386	0,4791(6)	0,0002588719	0.499705041	0.000294959
1	0,8414709848	0,8(3)	0.00813765147	0,985110783	0.014889217

Tabela 2: Wartości dla przybliżenia $\sin x \approx x - \frac{x^3}{6}$

Wnioski: Można zauważyć ogromne zmniejszenie obu rodzajów błędów przy zastosowaniu większej ilości wyrazów, nawet dodając tylko jeden. Wzrost błędów wraz z argumentem funkcji zgadza się z wnioskami z poprzedniego zadania ze względu na uwarunkowanie sinusa.

2.4

 Wartość poziomu UFL (underflow) jest najmniejszą dodatnią liczbą możliwą do zapisania w danym systemie, a więc z mantysą 1 i możliwie najmniejszym wykładnikiem.

Dla systemu z polecenia otrzymujemy więc:

$$UFL = \beta^L = 10^{-98}$$

• Licząc matematycznie $x-y=6,87\cdot 10^{-97}-6,81\cdot 10^{-97}=6\cdot 10^{-99}$. Jest to liczba mniejsza od UFL, przez co w tym systemie wynikiem tej operacji będzie 0.

Wnioski: Skoro UFL stanowi miarę dokładności (co widać również z powyższej analizy), to system służący do bardzo dokładnych obliczeń powinien mieć jak najmniejszy parametr L (dolną granicę zakresu wykładnika).

3 Bibliografia

 $\label{lem:wyklad} Wykład prof. Heatha \textit{Scientific Computing} \\ \text{https://en.wikipedia.org/wiki/Machine_epsilon} \\ \text{https://en.wikipedia.org/wiki/Condition_number} \\$