Breathing and Exchange of Gases

SHORT NOTES

Breathing/Respiration

* Atmospheric oxygen $\stackrel{\angle Exchange}{\longrightarrow} CO_2$ produced by cells.

RESPIRATORY ORGANS (Based on: Level of Organisation and Habitats)		
Organisms	Mechanism	
Sponges, coelenterates flatworms	Simple diffusion	
Earthworms, frogs	Moist skin (Cutaneous)	
Insects	Tracheal tubes	
Aquatic arthropods, molluscs, fishes	Branchial/gills	
Amphibians, reptiles, mammals	Pulmonary/lungs	

Human Respiratory System

Any change in the volume of the thoracic cavity will be reflected in the lung (pulmonary) cavity.

Mechanism of Breathing

Inspiration	Expiration
Diaphragm contracts (Flat-shape)	Diaphragm relaxed Dome shape
External intercostal muscles contract	External intercostal muscle relax
Ribs and sternum moves outward and inward	Ribs and sternum moves downward and inward
Volume inside increase and pressure decrease	Volume inside decrease and pressure increase
Active process	Passive process

Exchange of Gases

- * Partial pressure drives respiration.
- * Site of exchange:
 - + Alveoli (primary)
 - + Between blood and tissues

Diffusion membrane comprises of 3 layers

Thin squamous epithelium of alveoli

Endothelium of capillaries

Basement substance in between

Respiratory gas	Atmos- pheric air	Alveoli	Blood (Deoxygenated)	Blood (Oxygenated)	Tissue
O ₂	159	104	40	95	40
CO ₂	0.3	40	45	40	45

Respiratory Volumes and Capacities

- Instrument Spirometer
- * Significance Clinical assessment of pulmonary functions.
- Residual volume cannot be measured by spirometer.

Standard volumes	Value in ml	Standard capacities	
1. Tidal volume (TV)/ air inhaled or ex- haled per breath.	500	IC = TV + IRV	7 + RV
2. Inspiratory reserve volume (IRV)/ forceful inhalation.	2500-3000	VC = TV + IRV + ERV	$\frac{1RV + ERV}{C + RV}$
3. Expiratory reserve volume (ERV)/ forceful exhalation.	1000-1100	FRC = ERV + RV	= TV + VC
4. Residual volume (RV)/air left in lungs after forceful exhalation.	1100-1200	EC = TV + ERV	TLC

• Minute volume: TV × respiratory rate i.e. $500 \times 12 = 6000 - 8000 \text{ ml}$

Transport of Gases

$$\left(\text{Lungs}\underset{CO_2}{\overset{O_2}{\longleftarrow}}\text{Blood}\underset{CO_2}{\overset{O_2}{\longleftarrow}}\text{Tissues}\right)$$

Haemoglobin

- * Comprises globin and heme.
- ❖ Globin Protein molecule
- ❖ Heme Prosthetic group
 - Imparts red colour
- ❖ Fe²⁺ present in the centre of each heme.

Oxygen	Carbon dioxide
5 ml of O ₂ is delivered to the tissues by 100 ml of oxygenated blood	4 ml of O ₂ is delivered to alveoli by 100 ml of deoxygenated blood
3% dissolved in plasma	7% dissolved in plasma
97% as oxyhaemoglobin	20-25% as carbamino Hb, 70% as bicarbonate
Binding of O ₂ with Hb is primarily related to pO ₂	Binding of CO ₂ with Hb is related to pCO ₂ as well as pO ₂

* Asthma, Emphysema, Occupational Respiratory disorders (eg. silicosis, asbestosis)

