GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA

Ingeniería de Sistemas

CIOLO	1	
CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Séptimo Semestre	40701	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al alumno el conocimiento sobre diferentes tipos de modelado de sistemas, para aplicarlos en el diseño de sistemas hardware-software y una metodología para su desarrollo.

TEMAS Y SUBTEMAS

- Sistemas Electrónicos.
- Diagrama general de un sistema electrónico 1.1.
- Tipos de sistemas electrónicos 1.2.
- Sistemas de tiempo real 1.3.
- 1.4. Sistemas tolerantes a fallos
- 1.5. Sistemas empotrados
- 1.6. Desarrollo de software para un sistema electrónico
- 2. Metodologías de desarrollo.
- Sistemas digitales 2.1.
- Sistemas empotrados 2.2.
- Sistemas electrónicos de potencia 2.3.
- 2.4. Sistemas de control
- Sistemas de comunicaciones 2.5.
- Ciclo de vida del desarrollo de un sistema electrónico (Diseño de un sistema electrónico). 3.
- 3.1. Introducción
- Especificación de los requerimientos 3.2.
- Proceso de selección y ambientes de desarrollo 3.3.
- Diseño conceptual (modelado) del sistema 3.4.
- 3.5. Evaluación de viabilidad del sistema
- 3.6. Partición hardware/software
- 3.7. Integración del sistema
- 3.8. Mantenimiento
- 4. Desarrollo de proyectos.
- Definición y delimitación 4.1
- Diseño, justificación e integración 4.2
- 4.3 Documentación

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor, en donde presente conceptos y resuelva ejercicios. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como la computadora y los proyectores.

Revisión bibliográfica del tema en libros y artículos científicos por los alumnos.

Discusión de los diferentes temas en seminarios.

Prácticas de laboratorio.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

La evaluación del curso comprenderá tres calificaciones parciales y una calificación final.

Para cada calificación parcial se deberá considerar un examen oral o escrito, tareas y prácticas de laboratorio. La calificación final deberá incluir un examen oral o escrito y un proyecto final de aplicación o de investigación,

Los porcentajes correspondientes, en los aspectos considerados para las calificaciones parciales y la final, se definirán el primer día de clases, con la participación de los alumnos.

BIBLIOGRAFÍA

Libros básicos:

- Embedded Systems Design, An Introduction to Processes, Tools, & Techniques. Arnold S. Berger.
- Programming Emdedded Systems in C and C++. Michael Barr. O'Reilly & Associates, Inc. 1999.
- Doing Hard Time, Developing Real-Time Systems with UML, Objects, Frameworks, and Patterns. Bruce Powell Douglass. Addison-Wesley. 1999.
- Robust Electronic Design Reference Book. John R. Barnes. Springer, 2003.

Libros de consulta:

- VHDL Lenguaje para síntesis y modelado de circuitos. Fernando Pardo. RA-MA, 2004.
- The Art of Designing Embedded Systems. Jack G. Ganssle. Butterworth-Heinemann, 2008.
- Aprenda UML en 24 horas. Joseph Schmuller. Prentice Hall, 2000

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero en Electrónica con Maestría o Doctorado en Electrónica.

