

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková
Název operačního programu:	organizace, Praskova 399/8, Opava, 746 01 OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20 vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	MEC IIIa
Popis sady vzdělávacích materiálů:	Mechanika III – dynamika a hydrostatika, 3. ročník.
Sada číslo:	G-20
Pořadové číslo vzdělávacího materiálu:	01
Označení vzdělávacího materiálu: (pro záznam v třídní knize)	VY_32_INOVACE_G-20-01
Název vzdělávacího materiálu:	Úvod, plán učiva, opakování kinematiky
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Karel Procházka

Úvod

Plán učiva

- Úvod, základní pojmy.
- Opakování kinematiky.
- Dynamika.
 - Úvod, pohybové zákony (zákon setrvačnosti, zákon síly, zákon akce a reakce, impuls síly a hybnost tělesa, odstředivá a dostředivá síla);
 - o mechanická práce, energie, výkon, příkon, účinnost;
 - o dynamika posuvného pohybu tělesa, otáčivého a složeného pohybu;
 - o vyvažování, ráz těles.
- Hydromechanika.
 - Úvod, základní pojmy;
 - fyzikální vlastnosti tekutin;
 - hydrostatika;
 - o hydrodynamika.
- Termomechanika.
 - Úvod, základní pojmy;
 - o plyny;
 - o páry;

- tepelné oběhy;
- o vlhký vzduch;
- sdílení tepla;
- o proudění plynů a par.
- Na konci roku před uzavřením známek kontrola všech sešitů, sešity musí být v absolutním pořádku, se všemi nakreslenými obrázky, se vším dopsaným učivem, s okraji tuší.

Pomůcky

- Kniha Mechanika III Dynamika pro SPŠ strojnické, M. Julina, V. Venclík, J. Kovář, SNTL.
- Kniha Mechanika IV Mechanika tekutin a termomechanika pro SPŠ strojnické, V. Vondráček,
 I. Středa, V. Mamula, M. Hlinka, SNTL.
- Kniha Mechanika Sbírka úloh, I. Turek, O. Skala, J Haluška, SNTL.
- Kniha Strojnické tabulky, Jan Leinveber a Pavel Vávra, ALBRA.
- Čtverečkovaný sešit A4 tlustý, okraje tuší 3 cm od vnější strany.
- Domácí sešit A4 jakýkoliv bez okrajů.
- Pero a pentelka 0,5 mm.
- Guma na gumování.
- Trojúhelníkové pravítko s ryskou.
- Kalkulačka s goniometrickými funkcemi.

Opakování kinematiky

Základní veličiny

dráha – s [m], ϕ [rad];

rychlost – v [m/s], ω [rad/s];

zrychlení – a [m/s⁻²], ε [rad/s⁻²];

čas – t [s].

Základní pohyby

Přímočarý pohyb: Dráha je přímková

- Rovnoměrný pohyb.
 - \circ v = konst.
 - o a = konst.
- Pohyb rovnoměrně zrychlený či zpožděný pohyb.
 - o v ≠ konst.
 - o a = konst.
- Obecný pohyb.

• **Diagram v – t**: Plocha pod křivkou odpovídá dráze.

$$s = v \cdot t$$

$$s = \frac{v_0 + v}{2} \cdot t$$

$$\mathsf{pro}\;\mathsf{v_0} = \mathsf{0}\;\mathsf{plati:}\; s = \frac{1}{2} \cdot v \cdot t$$

• **Diagram a – t:** Plocha pod křivkou odpovídá rychlosti.

$$a = \frac{\Delta v}{\Delta t} = \frac{v}{t}$$

$$a = \frac{v - v_0}{t}$$

pro
$$v_0 = 0$$
 platí: $s = \frac{1}{2}v \cdot t = \frac{1}{2}a \cdot t^2$ (v = a · t)

$$s = v_0 \cdot t + \frac{1}{2} \cdot (v - v_0) \cdot t = \frac{v_0 + v}{2} t$$

• Volný pád: Rovnoměrně zrychlený pohyb:

$$a = g = 9.81 \frac{m}{s^2}$$

$$s = h = \frac{1}{2}v \cdot t = \frac{1}{2}g \cdot t^2$$

$$(v = a \cdot t = g \cdot t)$$

• Svislý vrh: Rovnoměrně zpožděný pohyb:

$$a = g = 9.81 \frac{m}{s^2}$$

výška vrhu:

$$h = \frac{1}{2}v_0 \cdot t = \frac{1}{2} \cdot \frac{v_0^2}{g} \quad (v = a \cdot t = g \cdot t \Rightarrow t = \frac{v}{g})$$

Seznam použité literatury:

- MRŇÁK L. DRDLA A.: MECHANIKA Pružnost a pevnost pro střední průmyslové školy strojnické.
 Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA II Kinematika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA III Dynamika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA IV Mechanika tekutin a termomechanika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- TUREK, I., SKALA, O., HALUŠKA J.: MECHANIKA Sbírkα úloh. Praha: SNTL, 1982.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 5. doplněné vydání. Praha: Albra, 2011. ISBN 80-7361-033-7.