Neural Networks

Project 3

Stanisław Kaźmierczak

Faculty of Mathematics and Information Science, Warsaw University of Technology

2021

Overview and timetable

- 30 points for the project
- groups of 2 people
- starting each new week of delay results in minus 5 points (max. 2 weeks delay)
- timetable

1.	18.05	Project Presentation	
2.	25.05	Tutorial hours	
3.	01.06	Initial presentation of the first part	
4.	08.06	Project I (first part) deadline	
5.	15.06	Project I (second part) deadline	

Rules

- tutorial hours are optional
- other classes are obligatory
- absence from mandatory classes results in -2 points
- let me know a day before if you plan to attend tutorial hours later than 15 minutes from the beginning
- if I don't receive such information and there is no one present, I consider such classes as completed
- source code and report should be sent before the beginning of the class
- you can utilize code from external sources (books, articles, blogs) provided that:
 - reference is cited in the report
 - some modifications to the original solution are applied
- violation of the above or any other kind of plagiarism results in a failing grade

Reports

The report should include:

- description of the research problem, understandable to the person who didn't see the content of the task
- instruction of the application (containing information on how to reproduce results)
- theoretical introduction
- description of the conducted experiments
- statistically processed results (presented clearly)
- conclusions, presumed reasons for successes/failures and further research proposals

Reports

Some additional remarks:

- if the experiment isn't described in the report it is regarded as not conducted
- the report is an official document, so please take care of its formal form (table of contents, bibliography, captions under figures, tables, etc.)
- results should be commented
- to obtain statistically significant results, each experiment ought to be repeated multiple times
- in addition to the mean, standard deviation should also be calculated (in some scenarios worse mean with low variance may be a more desirable result than a better mean with high variance)

Topic: Multilayer perceptron (MLP) employing backpropagation algorithm

Dataset for the first part of the project will be provided during the first class.

Dataset for the second part: MNIST https://www.kaggle.com/c/digit-recognizer

General guidelines

- take care of reproducibility by initializing a random number generator with a constant seed
- training models on other datasets than mentioned in the task description is not allowed

- low-level implementation is required; you can use only some basic packages like NumPy, pandas, etc.
- MLP parameters are:
 - number of hidden layers and number of neurons in hidden layers
 - activation function
 - bias presence
 - batch size
 - number of iterations
 - learning rate
 - momentum
 - problem type: classification or regression
- during the project presentation, you will be asked to train and test your network on new (unseen before) datasets
- take care of reproducibility by initializing a random number generator with a constant seed

- elements to analyze:
 - how does activation function affect the model's accuracy? Experiment with sigmoid and two
 other activation functions. The activation function in an output layer should be chosen
 accordingly to the problem;
 - how does the number of hidden layers and number of neurons in hidden layers impact the model's accuracy? Analyze different architectures;
 - how does the loss function affect the model's accuracy? Consider two different loss functions for both classification and regression.
- the application should plot training and test error
- user should be able to track learning process iteration by iteration (visualization of edges' weights) as well as a propagated error (visualization of an error on each edge)
- visualization of a training set and classification/regression result (as a background)

Assessment: source code, report

A	Α	В	С	D
1	x,y,cls			
2	-0.0029254	1551045596	6,0.722530	109807849,1
3	0.5045706	18271828,-	0.78926135	1339519,2
4	0.8941317	38692522,-	0.72043252	24569333,1
5	0.2202069	81524825,0	.12407802	278176,2
6	0.2678153	29600126,0	.92533626	9196123,1
7	-0.2734072	21199289,0	.479693677	7276373,1
8	-0.2873464	173895013,	-0.9727351	19983554,2
9	0.4677183	73052776,0	.81061793	724075,1
10	ก ออวากวล	כרורנאדד	N 101/12/17/	12640704 1

A	Α	В
1	x,y	
2	-5,-1253	
3	-4.99,-124	7.368296
4	-4.98,-124	1.753168
5	-4.97,-123	6.154592
6	-4.96,-123	0.572544
7	-4.95,-122	5.007
8	-4.94,-121	9.457936
9	-4.93,-121	3.925328
10	-4.92,-120	8.409152
11	-4.91,-120	2.909384
12	-4.9,-1197	.426
13	-4.89,-119	1.958976
14	-4.88,-118	6.508288
15	-4.87118	1.073912

- The second part of the project consists in fitting the implemented model to the deep learning Hello world dataset - MNIST
- The achieved score should be registered in Kaggle platform

Assessment: source code, extended report (or supplement to the report)