Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. There are many approaches to the Software development process. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" – a series of pasteboard cards with holes punched in them. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. It is usually easier to code in "high-level" languages than in "low-level" ones. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. It is very difficult to determine what are the most popular modern programming languages. Ideally, the programming language best suited for the task at hand will be selected. It is very difficult to determine what are the most popular modern programming languages. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Programmable devices have existed for centuries. Compilers harnessed the power of computers to make programming easier by allowing programmers to specify calculations by entering a formula using infix notation. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. It affects the aspects of quality above, including portability, usability and most importantly maintainability. Programs were mostly entered using punched cards or paper tape. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. Also, specific user environment and usage history can make it difficult to reproduce the problem. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. While these are sometimes considered programming, often the term software development is used for this larger overall process with the terms programming, implementation, and coding reserved for the writing and editing of code per se.