#### Regressão Linear Múltipla

Prof. Dr. Leandro Balby Marinho



Aprendizagem de Máquina

#### Roteiro

1. Regressão Múltipla com uma Entrada

2. Regressão Múltipla com Múltiplas Entradas

3. Estimando Parâmetros

#### Modelo: Como assumimos que o mundo funciona



Modelo de Regressão:  $y_i = f(x_i) + \epsilon_i$ , tal que  $E[\epsilon] = 0$ 









# Tarefa 2: Dado f(x), como estimar $\hat{f}(x)$ dos dados?



# Tarefa 2: Dado f(x), como estimar $\hat{f}(x)$ dos dados?



# Tarefa 2: Dado f(x), como estimar $\hat{f}(x)$ dos dados?



# Regressão Polinomial

Regressão Múltipla

Em muitos casos o grafo de dispersão sugere uma relação não linear entre x e y.



A equação do modelo quadrático, por exemplo, é dada por

$$y_i = w_0 + w_1 x_i + w_2 x_i^2 + \epsilon_i$$

# Regressão Polinomial

Em muitos casos o grafo de dispersão sugere uma relação não linear entre x e y.



A equação do modelo quadrático, por exemplo, é dada por

$$y_i = w_0 + w_1 x_i + w_2 x_i^2 + \epsilon_i$$

# Regressão Polinomial

#### Modelo:

$$y_i = w_0 + w_1 x_i + w_2 x_i^2 + \ldots + w_p x_i^p + \epsilon_i$$

$$ightharpoonup$$
 atributo  $1 = 1$  (constante)

▶ atributo 
$$2 = x$$

▶ atributo 
$$3 = x^2$$

▶ atributo 
$$p + 1 = x^p$$

parâmetro 
$$1 = w_0$$

parâmetro 
$$2 = w_1$$

parâmetro 
$$3 = w_2$$

parâmetro 
$$p+1=w_d$$

# Atributos como funções

#### Modelo:

$$y_{i} = w_{0}h_{0}(x_{i}) + w_{1}h_{1}(x_{i}) + w_{2}h_{2}(x_{i}) + \ldots + w_{p}h_{p}(x_{i})^{p} + \epsilon_{i}$$

$$= \sum_{j=0}^{D} w_{j}h_{j}(x_{i}) + \epsilon_{i}$$

- ▶ atributo  $1 = h_0(x)$  ... geralmente 1 (constante)
- ► atributo  $2 = h_1(x) \dots e.g., x$
- ► atributo  $3 = h_2(x) \dots e.g., x^2$
- ▶ ...
- ▶ atributo  $p+1 = h_p(x) \dots e.g., x^p$

# Atributos como funções



#### Roteiro

1. Regressão Múltipla com uma Entrada

2. Regressão Múltipla com Múltiplas Entradas

3. Estimando Parâmetros

# Regressão Múltipla

Como usar as outras variáveis disponíveis no modelo de regressão?



# Notação

Saída: y (escalar)

Entradas:  $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_d) \in \mathbb{R}^d$ 

- $\mathbf{x}^{(i)} = i$ -ésima observação (vetor)
- $\mathbf{x}_{i}^{(i)} = j$ -ésima entrada da *i*-ésima observação (escalar)
- ▶  $h_j(\mathbf{x}) = j$ -ésimo atributo (escalar)
- ▶ # observações (x, y): N
- # entradas  $x_j$ : d
- # atributos  $h_j(\mathbf{x})$ : D

# Regressão Linear Múltipla

#### Modelo:

$$y^{(i)} = w_0 + w_1 \mathbf{x}_1^{(i)} + w_2 \mathbf{x}_2^{(i)} + \ldots + w_d \mathbf{x}_d^{(i)} + \epsilon_i$$

- ▶ variável 1 = 1
- ▶ variável  $2 = x_1 \dots e.g.$ , investimento em TV
- ▶ variável 3 = x<sub>2</sub> ... e.g., investimento em Rádio
- ▶ ...
- ▶ variável  $d + 1 = x_d \dots e.g.$ , investimento em redes sociais

# Modelo de Regressão como Hiperplano



# Modelo de Regressão como uma Curva D-dimensional

#### Modelo:

$$y^{(i)} = w_0 + w_1 h_0(\mathbf{x}^{(i)}) + w_2 h_1(\mathbf{x}^{(i)}) + \dots + w_D h_D(\mathbf{x}^{(i)}) + \epsilon_i$$
  
=  $\sum_{j=0}^{D} w_j h_j(\mathbf{x}^{(i)}) + \epsilon_i$ 

- ▶ atributo  $1 = h_0(x) \dots e.g.$ , 1
- ▶ atributo  $2 = h_1(x) \dots e.g.$ ,  $x_1 = investimento em TV$
- ▶ atributo  $3 = h_2(x) \dots e.g.$ ,  $\log (x_2)x_1$
- ▶ ...
- ▶ atributo  $D + 1 = h_D(x) \dots$  alguma outra função de  $x_1, \dots, x_D$

# Regressão Múltipla Regressão Múltipla

### Interpretando os coeficientes: dois atributos



Fixando  $x_1$  a intepretação é a mesma da regressão linear simples.

#### Interpretando os coeficientes: dois atributos



Fixando  $x_1$  a intepretação é a mesma da regressão linear simples.

### Interpretando os coeficientes: múltiplos atributos

$$\hat{y} = \hat{w}_0 + \hat{w}_1 \mathbf{x}_1 + \ldots + \hat{w}_i \mathbf{x}_i + \ldots + \hat{w}_d \mathbf{x}_d$$

Fixando todas as variáveis menos uma a intepretação é a mesma da regressão linear simples.

#### Roteiro

1. Regressão Múltipla com uma Entrada

2. Regressão Múltipla com Múltiplas Entradas

3. Estimando Parâmetros

## Usando notação de vetores: uma observação

Para a observação i

$$y^{(i)} = \sum_{j=0}^{D} w_j h_j(\mathbf{x}^{(i)}) + \epsilon^{(i)}$$
$$= \mathbf{w}^T \mathbf{h}(\mathbf{x}^{(i)}) + \epsilon^{(i)}$$



# Usando notação de matrizes: todas as observações



$$\mathbf{y} = \mathbf{H}\mathbf{w} + \boldsymbol{\epsilon}$$

#### Custo de uma curva D-dimensional

$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (y_i - \mathbf{h}(\mathbf{x}^{(i)})^T \mathbf{w})^2$$
$$= (\mathbf{y} - \mathbf{H}\mathbf{w})^T (\mathbf{y} - \mathbf{H}\mathbf{w})$$



#### Gradiente do RSS

$$\nabla$$
RSS(w) =  $\nabla$ [(y - Hw)<sup>T</sup>(y - Hw)]  
= -2H<sup>T</sup>(y - Hw)



# Calculando parâmetros de forma fechada

$$\nabla$$
RSS(w) =  $-2H^T(y - Hw) = 0$ 

Resolvendo para w:

$$-2\mathbf{H}^{T}\mathbf{y} + 2\mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} = 0$$

$$-\mathbf{H}^{T}\mathbf{y} + \mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} = 0 \quad \text{(divide ambos os lados por 2)}$$

$$\mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} = \mathbf{H}^{T}\mathbf{y}$$

$$(\mathbf{H}^{T}\mathbf{H})^{-1}\mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} = (\mathbf{H}^{T}\mathbf{H})^{-1}\mathbf{H}^{T}\mathbf{y}$$

$$\hat{\mathbf{w}} = (\mathbf{H}^{T}\mathbf{H})^{-1}\mathbf{H}^{T}\mathbf{y}$$

Custo da inversão de matrizes (quando inversível):  $O(D^3)$ 

# Equações Normais como Sistemas de Equações Lineares

► As equação normais podem ser dadas por:

$$\mathbf{H}^T \mathbf{H} \hat{\mathbf{w}} = \mathbf{H}^T \mathbf{y}$$

► A equação acima pode ser representada por um sistema de equações lineares da forma:

$$\underbrace{\mathbf{H}^{T}\mathbf{H}}_{A}\underbrace{\mathbf{w}}_{X} = \underbrace{\mathbf{H}^{T}\mathbf{y}}_{b}$$

Vários métodos de resolução:

- Eliminação Gaussiana
- ► Fatoração de Cholesky
- ▶ Fatoração QR

#### Regressão Múltipla

Exemplo 1

Use um modelo de regressão linear múltipla para estimar o valor de y para  $x_1 = 3$  e  $x_2 = 4$  considerando os dados abaixo.

| $x_1$ | <i>X</i> 2 | У |
|-------|------------|---|
| 1     | 2          | 3 |
| 2     | 3          | 2 |
| 4     | 1          | 7 |
| 5     | 5          | 1 |

### Exemplo 1 cont.

Modelo regressão múltipla:

$$y_i = w_0 + w_1 x_1 + w_2 x_2 + \epsilon_i$$

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 4 & 1 \\ 1 & 5 & 5 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 3 \\ 2 \\ 7 \\ 1 \end{bmatrix}$$

$$\mathbf{H}^{T}\mathbf{H} = \begin{bmatrix} 4 & 12 & 11 \\ 12 & 46 & 37 \\ 11 & 37 & 39 \end{bmatrix}, \quad \mathbf{H}^{T}\mathbf{y} = \begin{bmatrix} 13 \\ 40 \\ 24 \end{bmatrix}$$

#### Exemplo 1 cont.

Estimando os parâmetros por Eliminação Gaussiana:

$$\begin{bmatrix} 4 & 12 & 11 & 13 \\ 12 & 46 & 37 & 40 \\ 11 & 37 & 39 & 24 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 2.75 & 3.25 \\ 0 & 10 & 4 & 1 \\ 0 & 4 & 8.75 & -11.75 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 4 & 12 & 11 & 13 \\ 0 & 1 & 0.4 & 0.1 \\ 0 & 0 & 7.15 & -12.15 \end{bmatrix}$$

$$\mathbf{w} \approx \begin{bmatrix} 5.583 \\ 0.779 \\ -1.699 \end{bmatrix}$$

### Exemplo 1 cont.

$$\hat{y}(x_1 = 3, x_2 = 4) = 5.583 + 0.779x_1 - 1.699x_2 = 1.124$$



#### Gradiente Descendente



#### Gradient-Descent

1 **while** not converged

2 
$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \alpha \underbrace{\nabla \mathsf{RSS}(\mathbf{w}^{(t)})}_{-2\mathbf{H}^{\mathsf{T}}(\mathbf{y} - \mathbf{Hw})}$$

#### Gradiente Descendente

#### Gradient-Descent

1 while not converged

2 
$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + 2\alpha \mathbf{H}^{T} (\mathbf{y} - \underbrace{\mathbf{H} \mathbf{w}^{(t)}}_{\hat{\mathbf{y}}})$$

# Derivada parcial de um parâmetro

$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (y_i - \mathbf{h}(\mathbf{x}^{(i)})^T \mathbf{w})^2$$
$$= \sum_{i=1}^{N} (y^{(i)} - w_0 h_0(\mathbf{x}^{(i)}) - w_1 h_1(\mathbf{x}^{(i)}) - \dots - w_D h_D(\mathbf{x}^{(i)}))$$

Derivada parcial em relação a wi

$$= \sum_{i=1}^{N} 2(y^{(i)} - w_0 h_0(\mathbf{x}^{(i)}) - w_1 h_1(\mathbf{x}^{(i)}) - \dots - w_D h_D(\mathbf{x}^{(i)})(-h_j(\mathbf{x}^{(i)}))$$

$$= -2 \sum_{i=1}^{N} \mathbf{h}(\mathbf{x}^{(i)})(y^{(i)} - \mathbf{h}(\mathbf{x}^{(i)})^T \mathbf{w})$$

# Algoritmo do Gradiente Descendente

```
GradientDescent(\alpha, \epsilon)

1 initialize \mathbf{w}, t = 1

2 while ||\nabla RSS(\mathbf{w}^{(t)})|| \ge \epsilon

3 for j = 0, ..., D

4 partial[j] = -2 \sum_{i=1}^{N} h_j(\mathbf{x}^{(i)})(y^{(i)} - \mathbf{h}(\mathbf{x}^{(i)})^T \mathbf{w})

5 \mathbf{w}_j^{(t+1)} = \mathbf{w}_j^{(t)} - \alpha \cdot \text{partial}[j]

6 t = t+1

7 return \mathbf{w}
```

# Gradiente Descendente vs. Equações Normais

- ▶ Gradiente Descendente
  - ightharpoonup Precisa escolher  $\alpha$ .
  - Pode precisar de muitas iterações.
  - ► Relativamente eficiente para *D* grande.
- Equações Normais
  - ▶ Não precisa escolher  $\alpha$ .
  - Não precisa iterar.
  - ▶ Métodos de resolução de sistemas de equações lineare podem ser caros (e.g. fatoração de Cholesky  $\in O(D^3)$ ).
  - ► Lento para *D* muito grande.

#### Referências

- Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. An Introduction to Statistical Learning with Applications in R. Springer, 2013.
- Emily Fox and Carlos Guestrin. Machine Learning Specialization. Curso online disponível em https://www.coursera.org/specializations/machine-learning. Último acesso: 04/09/2017.