Design and Implementation of VLSI Systems Lecture 03

CMOS fabrication

Lecture 03: CMOS fabrication

http://www.appliedmaterials.com/HTMAC/animated.html

FIG 2.6 Transistor dimensions

Fabricating one transistor **UV** light Mask oxygen exposed photoresist photoresist Silicon dioxide Silicon substrate **Exposed Photoresist** Oxidation **Photoresist** Mask-Wafer **Photoresist** Develop (Field oxide) Coating Alignment and Exposure Dopant gas Ionized CCI₄ gas Ionized oxygen gas Ionized CF₄ gas Silane gas oxýgen photoresist _texicle -exide polysilicon gate oxide Oxide Oxidation Polysilicon Polysilicon **Photoresist Deposition** Mask and Etch Etch Remove (Gate oxide) Scanning ion beam Contact-Metal silicon nitride holes contacts top nitride Metal **Nitride** Contact Ion Active Deposition and Deposition Etch **Implantation** Regions Etch

Top view

Wafer preparation

Start with P substrate

1. Spin Resist Coating

2. Expose N Well Mask

3. Develop resist

4. Implant N Well

5. Remove Resist

Anneal wafer to diffuses N well (heal lattice) and grow new oxide layer

Remove oxide from anneal

1. Spin Resist

2. Expose resist with active diffusion mask

3. Develop resist

4. Grow oxide on exposed surface

5. Strip resist

Grown thin oxide over silicon surfaces

1. Deposit poly using Chemical Vapor Deposition (CVD)

2. Spin resist 3. expose resist using the GATE mask 4. develop resist 5. etch poly

Remove thin oxide layer where exposed

Spin resist 2. expose with P implant mask develop resist 4. implant P 5. strip resist

Spin resist 2. expose with N implant mask develop resist 4. implant N 5. strip resist

Remove resist – anneal wafer – oxide etch

Grow oxide 1. spin resist 2. expose Contact mask 3. develop resist 4. etch contacts 5. strip resist

1. Deposit metal L1 2. spin resist 3. expose metal L1 mask 4. develop resist 5. etch metal 6. strip resist

Rest of metal layers follow similarly

Printing masks

The printer

Photolithography is used to print desired patterns on the wafer

The feature size directly depends on the wavelength of your lithographic system

Cross section of a 7-metal layer IC

Next time:

How to print different gates?