CRYPTOGRAPHY

МЕТОДИ ТА ЗАСОБИ КРИПТОГРАФІЧНОГО ЗАХИСТУ ІНФОРМАЦІЇ

АБСТРАКТНАЯ АЛГЕБРА

Раздел математики, изучающий алгебраические системы (алгебраические структуры), такие как:

- группы,
- кольца,
- поля,

модули, решётки, а также отображения между такими структурами.

Группа

G Множество **S**, Операция

- 1. Замкнутость
- 2. Ассоциативность
- 3. Существование нейтрального элемента
- 4. Существование инверсии

АБЕЛЕВА 5. Коммутативность

Бинарная операция

Бинарная операция \circ — это некоторая функция $f: S \circ S \to S$

3десь S - некоторое множество.

$$S = \mathbb{R} \to f1(x, y) = x + y; f2(x, y) = x * y$$
 Просто пишем $z = x + y; z = x * y$

$$S=\mathbb{Z}_n o f\mathbf{1}(x,y)=(x+y)mod\ n$$
 $S=\mathbb{Z}_n o f\mathbf{2}(x,y)=(x*y)mod\ n$ Просто пишем $z=x+y;z=x*y$

Символы операций *произвольны, можно* использовать любой! НО ТАК ПРИНЯТО!

Аддитивная бинарная операция

Бинарная операция +, Множество **S**.

Если удовлетворяет свойствам:

1. Замкнутости

$$\forall a, b \in S$$
,: $(a + b) \in S$

2. Ассоциативности

$$\forall a, b, c \in S: a + (b + c) = (a + b) + c$$

3. Существования нейтрального элемента 0

$$e = 0$$
: $a + 0 = 0 + a = a$

4. Существование инверсии

$$\forall a \in S, : \exists b \in S: a+b=e, b=-a$$

- обратный (противоположенный) элемент.
- 5. Коммутативности

$$\forall a, b \in S: (a+b) = (b+a)$$

То это аддитивная бинарная операция.

Мультипликативная бинарная операция

Бинарная операция × . Множество *S* .

Если удовлетворяет свойствам:

1. Замкнутости

$$\forall a, b \in S$$
,: $(a \times b) \in S$

2. Ассоциативности

$$\forall a, b, c \in S: a \times (b \times c) = (a \times b) \times c$$

3. Существования нейтрального элемента 1

$$e = 1$$
: $a \times 1 = 1 \times a = a$

4. Существование инверсии

$$\forall a \in S$$
, $\exists b \in S : a \times b = e$, $b = a^{-1}$

- обратный (противоположенный) элемент.
- 5. Коммутативности

$$\forall a, b \in S: (a \times b) = (b \times a)$$

То - мультипликативная бинарная операция.

Операция возведения в степень

Множество **S** . Операция • - ассоциативна! Возведение в степень

$$a \in S$$
,: $(a \circ a \circ a \circ a \circ a \circ \cdots \circ a) \in S$
n pas !!

Аддитивная операция

$$(a+a+a+a+\cdots+a)=na$$

Мультипликативная операция

$$(a \times a \times a \times a \times \cdots \times a) = a^n$$

Свойства
 $a^n \circ a^m = a^{n+m}$ $a^{nm} = a^{n*m}$

Группа

Группа G есть пара (S, \circ) , состоящая из множества S (элементов группы) и \circ - бинарной операции, удовлетворяющая условиям

1. Замкнутость

$$\forall a, b \in S$$
,: $(a \circ b) \in S$

2. Ассоциативность

$$\forall a, b, c \in S: a \circ (b \circ c) = (a \circ b) \circ c$$

3. Существование нейтрального элемента (обладает единицей, единичный элемент)

$$\exists e \in S : \forall a \in S : a \circ e = e \circ a = a$$

4. Существование инверсии

$$\forall a \in S$$
, $\exists a^{-1} \in S : a \circ a^{-1} = e$

5. Коммутативность (абелева группа)

$$\forall a, b \in S: (a \circ b) = (\overline{b} \circ a)$$

Группа

Группа *G* называется конечной, если множество *S* состоит из конечного числа элементов. В противном случае группа *G* называется бесконечной.

Порядок конечной группы G - количество элементов S. Обозначается |G|.

Аддитивная группа $\langle S, + \rangle$. Мультипликативная группа $\langle S, \times \rangle$. Группа с операцией $\otimes \langle S, \otimes \rangle$. Группа с некоторой операцией $: \langle S, : \rangle$.

$$G = \langle \mathbb{Z}, + \rangle$$
. Это группа? $\mathbb{Z} = \{... - 2, -1, 0, 1, 2, ...\}$. Пусть $x, y, z \in \mathbb{Z}$.

1. Замкнутость

$$(x + y) \in \mathbb{Z}$$

2. Ассоциативность

$$[x + (y + z)] = [(x + y) + z]$$

3. Существование нейтрального элемента

$$e = 0 \in S$$
, $x + 0 = 0 + x = x$

4. Существование инверсии (аддитивная!)

$$x + (-x) = e = 0$$

5. Коммутативность

$$(x+y)=(y+x)$$

Аддитивная бесконечная абелева группа!

$$G = \langle \mathbb{Z}_n, + \rangle$$
. Это группа? $\mathbb{Z}_n = \{0, 1, 2, ..., (n-1)\}.$ Пусть $x, y, z \in \mathbb{Z}_n$.

1. Замкнутость

$$(x + y) mod n \in \mathbb{Z}_n$$

2. Ассоциативность

$$[x + (y + z)] mod n = [(x + y) + z] mod n,$$

3. Существование нейтрального элемента

$$e = 0 \in S$$
, $x + 0 = 0 + x = x$

4. Существование инверсии (аддитивная!)

$$x + (-x) = e = 0$$

5. Коммутативность

$$(x + y) mod n = (y + x) mod n$$

Аддитивная конечная абелева группа, |*G*|=*n*

$$G = \langle \mathbb{Z}_n, \times \rangle$$
. А это группа? $\mathbb{Z}_n = \{0, 1, 2, ..., (n-1)\}$. Пусть $x, y, z \in \mathbb{Z}_n$. 1. Замкнутость $(x \times y) mod \ n \in \mathbb{Z}_n$

2. Ассоциативность

$$[\mathbf{x} \times (\mathbf{y} \times \mathbf{z})] \bmod \mathbf{n} = [(\mathbf{x} \times \mathbf{y}) \times \mathbf{z}] \bmod \mathbf{n},$$

3. Существование нейтрального элемента

$$e = 0 \in S$$
, $x \times 0 = 0 \times x = x$!! HET

$$e = 1 \in S$$
, $x \times 1 = 1 \times x = x !! ДА$

4. Существование инверсии (мультипликативной)

$$x \times (x^{-1}) = e = 1$$
 !!!! не для всех n

5. Коммутативность

$$(\mathbf{x} \times \mathbf{y}) \mod \mathbf{n} = (\mathbf{y} \times \mathbf{x}) \mod \mathbf{n}$$

Мультипликативная конечная абелева группа, только когда *n* - простое число!!!

Пусть $S = \{F, T\}$. Группа $B = \langle \{F, T\}, \oplus \rangle$. Операция

задана как

	F	Т
F	F	Т
T	Т	F

Это группа??? Какая?

1. Замкнутость

$$(x \oplus y) \in S$$

2. Ассоциативность

$$[x \oplus (y \oplus z)] = [(x \oplus y) \oplus z]$$

3. Существование нейтрального элемента $e = F \in S$, $x \oplus F = F \oplus x = x$

$$e = F \in S$$
, $x \oplus F = F \oplus x = x$

4. Существование инверсии
$$x = F, x^{-1} = T, \quad x = T, x^{-1} = F$$
5. Коммутативность

5. Коммутативность

$$(x \oplus y) = (y \oplus x)$$

Конечная абелева группа!

Пусть $S = \{F, T\}$. Группа $B = \langle \{F, T\}, \oplus \rangle$.

	F	Т
F	F	Т
Т	Т	F

ТАБЛИЦА кэли

Операция «ИСКЛЮЧАЮЩАЯ ИЛИ»

1. Замкнутость

$$(x \oplus y) \in S$$

2. Ассоциативность

$$[x \oplus (y \oplus z)] = [(x \oplus y) \oplus z]$$

3. Существование нейтрального элемента $e = F \in S$, $x \oplus F = F \oplus x = x$

$$e = F \in S$$
, $x \oplus F = F \oplus x = x$

$$e = F \in S$$
, $x \oplus F = F \oplus x = x$
4. Существование инверсии $x = F, x^{-1} = T, x = T, x^{-1} = F$
5. Коммутативность

5. Коммутативность

$$(x \oplus y) = (y \oplus x)$$

Конечная абелева группа!

Пусть $S = \{A, B, C, D\}$ Операция • задана как

	A	В	С	D
A	Α	В	C	D
В	В	C	D	A
C	C	D	A	В
D	D	A	В	C

Это группа???

Пусть $S = \{A, B, C, D\}$ Операция • задана как

_				
	A	В	C	D
A	Α	В	C	D
В	В	C	D	Α
C	C	D	Α	В
D	D	Α	В	C

1. Замкнутость

$$(x \circ y) \in S$$

2. Ассоциативность

$$[A \circ (B \circ C)] = [(A \circ B) \circ C], \dots$$

3. Существование нейтрального элемента $e = A \in S$, $x \oplus A = A \oplus x = x$

$$e = A \in S$$
, $x \oplus A = A \oplus x = x$

4. Существование инверсии
$$x = A$$
, $x^{-1} = A$, $x = B$, $x^{-1} = D$, $x = C$, $x^{-1} = C$ 5. Коммутативность

5. Коммутативность

$$(x \oplus y) = (y \oplus x)$$

Конечная абелева группа!

Группа перестановок. Пример

Пусть $S = \{[1 \ 2 \ 3], [1 \ 3 \ 2], [2 \ 1 \ 3], [2 \ 3 \ 1], [3 \ 1 \ 2], [3 \ 2 \ 1]\}$

Элементы множества есть перестановки.

Операция • есть « композиция ». Например

Группа перестановок

Пусть $S = \{[1 \ 2 \ 3], [1 \ 3 \ 2], [2 \ 1 \ 3], [2 \ 3 \ 1], [3 \ 1 \ 2], [3 \ 2 \ 1], \}$

Операция • задана как:

				+			первая перестановка
	123	132	213	231	3 1 2	321	
123	123	132	213	2 3 1	312	3 2 1	
132	132	123	231	213	321	3 1 2	
213	213	312	123	3 2 1	132	231	
231	2 3 1	321	132	3 1 2	123	213	
312	3 1 2	213	321	123	231	132	
321	3 2 1	231	312	132	213	123	
1							

Вторая перестановка

Результат операции композиции

Это группа?

Порядок Группы

Порядок Ord(G) группы $G = \langle S, \circ \rangle$ — мощность множества S группы. То есть Ord(G) = ||S||. Для конечного S порядок группы есть количество элементов множества S: Ord(G) = |S|.

Порядок Элемента

Порядок ord(a) элемента a в группе G наименьшее целое положительное число n>0, такое что $a^n=e$, если такое существует. Тогда ord(a)=n. Если такое n не существует $ord(a)=\infty$.

Порядок элемента → характеризует «*расстояние*» элемента от нейтрального элемента.

Порядок элемента

```
Пример G = (\mathbb{Z}_n, +). \mathbb{Z}_6 = \{0,1,2,3,4,5\}.
Ord(G) = 6
a=0: 0^{0} \mod 6 = 0 \rightarrow H_{0} = \langle \{0\}, + \rangle
a=1: 1^0 \mod 6 = 0, 1^1 \mod 6 = 1, 1^2 \mod 6 = 2, 1^3 \mod 6 = 3,
1^4 mod 6 = 4, 1^5 mod 6 = 5 \rightarrow H_1 = \langle \{0, 1, 2, 3, 4, 5\}, + \rangle = G
a=2: 2^{0} \mod 6 = 0, 2^{1} \mod 6 = 2, 2^{2} \mod 6 = 2
                                 \rightarrow H_2 = \langle \{0, 2, 4\}, + \rangle
a=3: 3^{0} mod 6 = 0, 3^{1} mod 6 = 3 \rightarrow H_{3} = \langle \{0, 3\}, + \rangle
a=4: 4^{0} \mod 6 = 0, 4^{1} \mod 6 = 4, 4^{2} \mod 6 = 2 \rightarrow H_{4} = \langle \{0, 2, 4\}, + \rangle
a=5: 5^0 mod 6 = 0, 5^1 mod 6 = 5, 5^2 mod 4 = 2, 5^3 mod 6 = 3,
5^4 mod \ 6 = 2, \ 5^5 mod \ 6 = 1 \rightarrow H_4 = \langle \{0, 1, 2, 3, 4, 5\}, + \rangle
ord(0) = 1, ord(1) = 6, ord(2) = 3
```

Порядок элемента суть порядок группы, которую он генерирует.

ord(3) = 2, ord(4) = 3, ord(5) = 6

Кольцо

Кольцо R есть тройка $\langle S, \circ, ... \rangle$, состоящая из множества S (элементов группы) и ДВУХ операций:

- - бинарная, удовлетворяющая условиям замкнутости, ассоциативности, существования нейтрального элемента, существования инверсии, коммутативности (относительно - абелева группа). Нейтральный элемент относительно \rightarrow 0.
- ∴ бинарная, удовлетворяющая условиям замкнутости, ассоциативности, коммутативности. Нейтральный элемент относительно ∴ → 1, причем 1 не есть 0.
 Существование инверсии не требуется!

Кольцо

Кроме того:

3. Коммутативность

$$\forall a, b \in S: (a : b) = (b : a)$$

4. Дистрибутивность

$$\forall a, b, c \in S: (a : (b \circ c)) = (a : b) \circ (a : c)$$

Такие кольца называются коммутативными.

Кольцо. Пример

Пусть $S = \{F, T\}$. Кольцо $B = \langle \{F, T\}, \oplus, \otimes \rangle$. Операция : Операция (🗙 :

	F	Т
F	F	Т
Т	Т	F

_		
	F	T
F	F	F
Т	F	Т

Это Кольцо???

1. Замкнутость

$$(x \otimes y) \in S$$

2. Ассоциативность

$$[x \otimes (y \otimes z)] = [(x \otimes y) \otimes z]$$

 $[x \otimes (y \otimes z)] = [(x \otimes y) \otimes z]$ 3. Существование нейтрального элемента $1 = T \in S, \quad x \otimes T = T \otimes x = x$

$$\mathbf{1} = \mathbf{T} \in \mathbf{S}$$
, $\mathbf{x} \otimes \mathbf{T} = \mathbf{T} \otimes \mathbf{x} = \mathbf{x}$

- 4. Существование инверсии
- 5. Коммутативность

$$(x \otimes y) = (y \otimes x)$$

6. Дистрибутивность

$$x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z)$$

Кольно!

Поле

Поле F это коммутативное кольцо R если ненулевые элементы кольца образуют группу относительно операции : .

Или — вторя операция удовлетворяет всем 5 свойствам, определенным для первой операции, за исключением того, что нейтральный элемент первой операции не имеет инверсии относительно второй операции.

Сравнение структур

Алгебраическая	Операции	Наборы целых
структура		целых
Группа	(+ -) или (× ÷)	\mathbb{Z}_n или \mathbb{Z}_n^*
Кольцо	(+ -) и (×)	Z
Поле	$(+ -) $ и $(\times \div)$	$\mathbb{Z}_{m{p}}$

Поле Галуа

В криптографии: поле Галуа *GF*(*p*ⁿ)

- конечное поле с p^n элементами, где p - простое число, $n \in \mathbb{Z}_n \backslash 0$.

ЛИТЕРАТУРА

Нечаев В.И. Элементы криптографии (Основы теории защиты информации).- Учеб. пособие. — М.:, ВШ., 1999.- 109 с.

Введение в криптографию. **Под общ. ред. В.В.Ященко.** — 4-е изд., доп. М.: МЦНМО, 2012 — 348 с. ISBN 978-5-4439-0026-1

ЛИТЕРАТУРА

Венбо Мао. Современная криптография: теория и практика.—М.: Издательский дом «Вильямс», 2005.—768 с.: ил. ISSN 5-8459-0847-7 (рус.)

Шнайер Б. Прикладная криптография. Протоколы, алгоритмы и исходный код на Си. – Москва: Вильямс, 2016. 1024 с.

ЛИТЕРАТУРА

Francisco Rodriguez-Henriquez, N.A. Saqib, A. Diaz-Perez, Cetin Kaya Koc.

Cryptographic Algorithms on Reconfigurable Hardware. - Springer, 2006.

A. Menezes, P. van Oorschot, S. Vanstone.

Handbook of Applied Cryptography.- CRC Press, 1996.

END # 11