O способах выделения сигнала на основе критерия Monte Carlo SSA

Потешкин Е.П., СПбГУ, Санкт-Петербург egor.poteshkin@yandex.ru, Голяндина Н.Э., СПбГУ, Санкт-Петербург n.golyandina@spbu.ru

Аннотация

Рассматриваются методы анализа сингулярного спектра (SSA) и Monte Carlo SSA (MC-SSA) для решения задач обнаружения и выделения сигналов во временных рядах. Предложены три подхода к восстановлению сигнала: адаптивный, полуадаптивный и метод с фиксированной проекцией. Для оценки частоты сигнала используется метод MC-SSA. Проведен численный эксперимент, сравнивающий точность восстановления при различных уровнях шума, типах сигнала и значениях параметра δ , определяющего длину частотного интервала при отборе компонент. Результаты показывают, что полуадаптивный вариант является универсальным выбором, наиболее устойчивым к наличию умеренной амплитудной модуляции.

Введение

Рассмотрим следующую модель: X = S + R, где X — наблюдаемый временной ряд, S — сигнал, R — шум, т.е. реализация некоторого стационарного процесса. В работе рассматривается две проблемы: проблема обнаружения сигнала S и проблема выделения сигнала при его наличии.

Для решения первой проблемы используется метод Monte Carlo SSA (MC-SSA) [1], проверяющий гипотезу $H_0: S=0$, а для решения второй — метод анализа сингулярного спектра (singular spectrum analysis, SSA) [2, 3]. Один из шагов SSA подразумевает визуальный анализ для определения компонент сигнала, поэтому возникает потребность в автоматизации этого шага, этой проблеме посвящены, например, работы [4, 5, 6, 7]. Целью работы является определение подходов к автоматическому выделению слабых сигналов, обнаруживаемых критерием MC-SSA, и их сравнение по точности их выделения.

Метод SSA

Базовый алгоритм

Пусть $\mathsf{X}=(x_1,\dots,x_N),\,x_i\in\mathbb{R},$ — временной ряд длины N. Зафиксируем параметр L,1< L< N, называемый длиной окна и построим так называемую траекторную матрицу $\mathbf{X}=[X_1:\dots:X_K],$ состоящую из K=N-L+1 векторов вложения $X_i=(x_i,\dots,x_{i+L-1})^{\mathrm{T}}\in\mathbb{R}^L.$

Следующий шаг — разложение в сумму матриц единичного ранга $\mathbf{X} = \sum_{i=1}^d \mathbf{X}_i$. В базовом SSA используется сингулярное разложение матрицы \mathbf{X} , где столбцы \mathbf{X}_i состоят из проекций столбцов матрицы \mathbf{X} на порождаемые ею самой левые сингулярные векторы.

Далее компоненты полученного матричного разложения группируются на основе свойств левых сингулярных векторов, и каждая сгруппированная матрица преобразуется во временной ряд. Таким образом, результатом SSA является разложение временного ряда.

SSA с проекцией

Метод SSA использует адаптивный базис, но существует возможность зафиксировать некоторые компоненты разложения. Пусть $\mathbf{D} \in \mathbb{R}^{L \times m}$ — матрица, проекцию на столбцы которой мы хотим зафиксировать в разложении \mathbf{X} . Тогда SSA с проекцией отличается от базового алгоритма только шагом разложения:

- 1. В случае, если столбцы матрицы **D** не ортонормированны, **D** приводится к нужному виду путем ортогонализации Грамма-Шмидта.
- 2. Вычисляется матрица $\mathbf{C} = \mathbf{D}\mathbf{D}^{\mathrm{T}}\mathbf{X}$.
- 3. Вычисляется матрица $\mathbf{X}^{\star} = \mathbf{X} \mathbf{C}$.
- 4. Матрица X^* раскладывается в сумму матриц ранга 1.

Метод Monte Carlo SSA

Рассмотрим задачу поиска сигнала во временном ряде. Модель временного ряда имеет вид

$$X = S + \xi$$

где S — сигнал, ξ — стационарный процесс с нулевым средним. Тогда нулевая гипотеза $H_0: S = 0$ и альтернатива $H_1: S \neq 0$.

Зафиксируем длину окна L и обозначим траекторную матрицу ряда $\pmb{\xi}$ как $\pmb{\Xi}$. Рассмотрим вектор $W\in\mathbb{R}^L$ единичной длины, называемый проекционным вектором. Введем величину

$$p = \left\| \mathbf{\Xi}^{\mathrm{T}} W \right\|^2.$$

Статистикой критерия является величина

$$\widehat{p} = \left\| \mathbf{X}^{\mathrm{T}} W \right\|^2.$$

Распределение статистики критерия оценивается с помощью моделирования согласно нулевой гипотезе, отсюда и название метода.

Если вектор W — синусоида с частотой ω , то \widehat{p} отражает вклад частоты ω в исходный ряд. Так как частота ожидаемого сигнала неизвестна, то необходимо рассматривать несколько векторов W_k , $k=1,\ldots,H$. Решение возникающей при этом проблемы множественного тестирования рассматривается в [8]. Гипотеза об отсутствии сигнала отвергается, если хотя бы для одного вектора $W=W_k$ значение \widehat{p} оказывается значимым.

Важной частью метода MC-SSA является способ выбора векторов W_k . В данной работе в качестве векторов для проекции берутся косинусы с равноотстоящими частотами $\omega_k=k/(2L),\ k=1,\ldots,L$. В этом случае можно говорить о значимых частотах, присутствующих в сигнале.

Подходы к выделению сигнала

Для ряда X длины N и $0\leqslant\omega_1\leqslant\omega_2\leqslant0.5$ определим меру, следуя [4]

$$T(\mathsf{X};\omega_1,\omega_2) = \frac{1}{\|\mathsf{X}\|^2} \sum_{k:\omega_1 \leqslant k/N \leqslant \omega_2} I_N(k/N),$$

где I_N — периодограмма ряда X. Величину $T(\mathsf{X},\omega_1,\omega_2)$ можно рассматривать как долю вклада частот, содержащегося в интервале $[\omega_1,\omega_2]$.

В данной работе будем считать, что сигнал представляет из себя экспоненциально-модулированную гармонику:

$$S = \left\{ Ae^{\alpha n} \cos(2\pi\omega n) \right\}_{n=1}^{N},$$

где $\omega \in (0, 0.5)$. Пусть $\hat{\omega}$ — оценка ω . Обозначим

$$D_1 = \begin{pmatrix} \cos(2\pi\hat{\omega}1) \\ \dots \\ \cos(2\pi\hat{\omega}L) \end{pmatrix}, D_2 = \begin{pmatrix} \sin(2\pi\hat{\omega}1) \\ \dots \\ \sin(2\pi\hat{\omega}L) \end{pmatrix} \in \mathbb{R}^L.$$

Рассмотрим следующие варианты выделения сигнала S по частоте $\hat{\omega}$:

- 1. «аdaptive»: применить SSA и выбрать первые две компоненты разложения, у которых мера T на интервале $[\hat{\omega} \delta, \hat{\omega} + \delta], \, \delta > 0$, больше некоторого порога $T_0 \in [0,1];$
- 2. «semi-adaptive»: применить SSA с проекцией с $\mathbf{D} = D_1 \in \mathbb{R}^{L \times 1}$ и выбрать, помимо компоненты, соответствующей вектору D_1 , первую компоненту разложения, у которой мера T на интервале $[\hat{\omega} \delta, \hat{\omega} + \delta], \delta > 0$, больше некоторого порога $T_0 \in [0,1]$;
- 3. «fixed»: применить SSA с проекцией с $\mathbf{D} = [D_1:D_2] \in \mathbb{R}^{L \times 2}$ и выбрать компоненты разложения, соответсвующие векторам D_1, D_2 .

Оценивать частоту ω будем с помощью MC-SSA:

- 1. Найти индекс наиболее значимой частоты, т.е. $k = \operatorname{argmax}_i(\widehat{p}_i c_i)$, где c_i верхняя граница доверительного интервала для \widehat{p}_i ;
- 2. Вычислить значение $\hat{\omega}$ как взвешенное среднее частот $\omega_{k-1}, \omega_k, \omega_{k+1}$ с весами $w_i = \max(0, \widehat{p}_i c_i)$;

Такой способ оценки позволяет получить более точную оценку ω в случае, когда она не попадает в решетку k/(2L).

Численное сравнение подходов

Проведем численный эксперимент с целью понять, какой из предложенных способов восстановления сигнала наиболее точен. Пусть N=99, процесс $\pmb{\xi}$ — модель AR(1) с параметрами $\phi=0.7,\,\sigma^2\in\{0.2,0.4,0.6,0.8,1\}$. Для SSA L=50, для MC-SSA $L=\widetilde{L}=40$ (выводы устойчивы к выбору длины окна). В вариантах «adaptive» и «semi-adaptive» $\delta=0.025$ и $T_0=0.5$. Рассмотрим два типа сигнала S, один из которых является частным случаем другого:

1. $\alpha = 0, A = 1$ — гармоника с постоянной амплитудой.

2. $\alpha = 0.05$, A = 0.025 — экспоненциально-модулированная гармоника.

Возьмем $\omega=0.115$. Заметим, что при таком выборе частоты сигнала $\widetilde{L}\omega$ не целое, а значит ω не попадает в решетку $k/(2\widetilde{L})$.

На рис. 1 изображена зависимость MSE восстановления сигнала от дисперсии белого шума σ^2 . По графикам видно, что в случае постоянной амлитуды ($\alpha=0$) выигрывает вариант «fixed», однако в случае непостоянной амплитуды фиксированный базис оказывается наихудшим. Полуадаптивный базис, являясь неким компромиссом между адаптивным и фиксированным базисами, оказывается вторым по точности в случае $\alpha=0$ и сравнимым с адаптивным в рассмотренном случае $\alpha\neq0$. При увеличении $|\alpha|$, начиная с какого-то момента, фиксированная половина базиса ухудшает восстановление сигнала.

Теперь посмотрим, как будут изменяться ошибки при уменьшении/увеличении δ для фиксированного \widetilde{L} . На рис. 2 δ уменьшена, а на рис. 3 увеличена в два раза ($\delta=0.0125$ и 0.05 соответственно). Из этих графиков видно, что слишком маленькое δ приводит к ухудшению точности адаптивного и полуадаптивного вариантов в случае $\alpha \neq 0$. Связано это с тем, что частота экспоненциально-модулированной гармоники, в отличие от гармоники с постоянной амплитудой, всегда растекается по спектру и чем больше абсолютное значение показателя экспоненты α , тем сильнее это растекание. Увеличение δ в два раза не привело к значительному изменению точности методов, однако, если и дальше увеличивать δ , ошибки, как и в случае слишком маленького δ , опять возрастут.

Рис. 1: MSE восстановления сигнала ($\delta = 0.025$)

Рис. 2: MSE восстановления сигнала ($\delta = 0.0125$)

Рис. 3: MSE восстановления сигнала ($\delta = 0.05$)

Заключение

В статье рассмотрены три подхода к автоматическому выделению сигнала во временных рядах с использованием критерия MC-SSA и метода анализа сингулярного спектра. Исследование показало, что полуадаптивный вариант может быть использован в качестве базового в ситуации, когда неизвестно наличие или отсутствие амплитудной модуляции, при этом модуляция не очень сильная. Для выбора параметра δ нужно делать предположения о силе модуляции. Заметим, что при выборе длины окна для MC-SSA нужно учитывать сочетание мощности критерия и точности оценивания частоты.

Список литературы

- [1] Allen M., Smith L. Monte Carlo SSA: detecting irregular oscillations in the presence of coloured noise // Journal of Climate. 1996. Vol. 9. P. 3373–3404.
- [2] Broomhead D., King G. Extracting qualitative dynamics from experimental data // Physica D: Nonlinear Phenomena. 1986. Vol. 20, no. 2–3. P. 217–236.
- [3] Golyandina N., Nekrutkin V., Zhigljavsky A. Analysis of Time Series Structure: SSA and Related Techniques. Chapman and Hall/CRC, 2001.
- [4] Александров Ф., Голяндина Н. Автоматизация выделения трендовых и периодических составляющих временного ряда в рамках метода «Гусеница»-SSA // Exponenta Pro (Математика в приложениях). 2004. Vol. 7-80. P. 54–61.
- [5] Kalantari M., Hassani. H. Automatic grouping in singular spectrum analysis // Forecasting. 2019. Vol. 1, no 1. P. 189–204.
- [6] Bogalo J., Poncela P., Senra E. Circulant singular spectrum analysis: A new automated procedure for signal extraction // Signal Processing. — 2021. — Vol. 179.
- [7] Golyandina N., Dudnik P., Shlemov A. Intelligent Identification of Trend Components in Singular Spectrum Analysis // Algorithms. — 2023. — Vol. 16. — ID 353.
- [8] Golyandina N. Detection of signals by Monte Carlo singular spectrum analysis: multiple testing // Statistics and Its Interface. 2023. Vol. 16. no 1. P. 147–157.