Lecture-44 **Tutorial**

Lecture delivered by:

Objectives

At the end of this lecture, student will be able to:

• Solve the problems on Synchronous Generators

Problem 1:

A 8 pole, alternator runs at 750 rpm and supplies power to a 6-pole induction motor which has a full-load slip of 3 %. Find the full load slip of the motor and the frequency of the rotor e.m.f.

Problem 2:

Develop a table showing the speed of magnetic field rotation in ac machines of 2, 4, 6, 8, 10, 12, and 14 poles operating at frequencies of 50, 60, and 400 Hz.

Problem 3:

A motor generates set used for providing variable frequency ac supply consists of a 3- φ synchronous and 24 pole 3 φ synchronous generator. The motor generate set is fed from 25hz, 3 - φ ac supply. A 6 pole 3 φ induction motor is electrically connected to the terminals of the synchronous generator and runs at a slip of 5%. Find

- i) The frequency of generated voltage of synchronous generator
- ii) the speed at which induction motor is running

Problem 4:

In an alternator with 8 poles is to generate power at 50 Hz frequency, what should be its synchronous speed.

Problem 5:

A 6 pole alternator is driven at a speed of 500 rpm. What is the frequency of its generated e.m.f?

Problem 6:

A 12 pole, 500 rpm, star connected alternator has 60 slots, with 20 conductors per slot. The flux per pole is 0.02 wb and is distributed sinusoidally. The winding factor is 0.93. calculate

- a) Frequency
- b) Phase e.m.f

c) Line e.m.f