

FUNDAMENTOS DA DISPERSÃO ATMOSFÉRICA Prof. Bruno Furieri – 2024/1

EXERCÍCIO 3 EQUAÇÕES GOVERNANTES - MOMENTUM E ENERGIA

Tópico:

Perfil vertical de velocidade e temperatura na camada limite superficial

Exercício 1:

- a) Utilizando os argumentos do item 16.4.1 do capítulo 16 do livro *Atmospheric Chemistry and Physics* de Seinfeld e Pandis, explique a hipótese de tensão de cisalhamento constante na camada superficial.
- b) Dado o perfil vertical de velocidades obtido em experimentos realizados sobre superfície uniforme de vegetação baixa e sob condição *quasi*-neutra de estabilidade atmosférica apresentado na Tabela 1, b.1) determine o parâmetro de rugosidade e a tensão de cisalhamento e b.2) estime a difusividade turbulenta de *momentum* em 5 m e em 50 m. Assuma a massa específica igual a 1,25 kg m⁻³.

Tabela 1. Dados experimentais obtidos em Wangara, na Austrália em condições neutras e superfície com vegetação baixa.

z (m)	0,5	1	2	4	8	16
U (m/s)	4,91	5,44	6,06	6,64	7,17	7,71

- c) Prove a equação (11.4) do capítulo 11 do livro *Introduction to Meteorology* do Paul S Arya utilizando as equações (11.1) e (11.2) da mesma referência.
- d) A partir dos dados experimentais fornecidos na Tabela 2 em que são apresentadas as médias horárias da velocidade do vento e da temperatura num ambiente rural com ocupação uniforme do terreno, usando o método gradiente apresentado no item 11.5.5 do capítulo 11 do livro *Introduction to Meteorology* do Paul S Arya, estime: d.1) a velocidade e a temperatura potencial a 4 m de altura; d.2) o número de Richardson gradiente a 4 m e o comprimento de Monin-Obukov e d.3) a velocidade de fricção a temperatura potencial referencial (*temperature scale*) e d.4) o fluxo de calor turbulento na superfície.

Tabela 2. Dados experimentais médios horários obtidos em área rural com ocupação homogênea.

z (m)	U (m/s)	T (°C)
2	3,34	29,04
8	3,98	28,10

e) A partir dos dados apresentados na Tabela 3 e usando a relações de similaridade de Monin-Obukov para a camada superficial instável, calcule: e.1) o número de Richardson como uma função da altura; e.2) o comprimento de Monin-Obukov a partir do gráfico do item anterior; e e.3) a tensão de cisalhamento e o fluxo de calor na superfície usando o método o gradiente apresentado no item 11.5.5 do capítulo 11 do livro *Introduction to Meteorology* com os dados de 2 m e 4 m da Tabela 3. Assuma a massa específica do ar igual a 1,2 kg m⁻³ e o calor específico a pressão constante do ar igual a 103 J kg⁻¹K⁻¹

Tabela 3. Dados experimentais obtidos a aproximadamente meio-dia durante o ano de 1968 em Kansas nos EUA.

z (m)	2	4	8	16	32
U (m/s)	5,81	6,7	7,49	8,14	8,66
θ (K)	307,20	306,65	306,28	305,88	305,62

Material referencial:

Seinfeld, J. H. e Pandis S. N. Atmospheric Chemistry and Physics – From Air Pollution to Climate Change. A Wiley Interscience Publication, John Wiley & Sons, Inc. 2ª edição, 2006. 1203 p. (Capítulo 16 – Micrometeorology)

Arya P. S. Introduction to Meteorology, Academic Press, 2^a edição, 2001. 420 p. (Capítulos 11 e 12)