ICADEMO

Computação Evolucionária 1^a Lista de Exercícios

Prof. Marco Aurélio C. Pacheco

O objetivo desta lista é estimular a curiosidade sobre o funcionamento de Algoritmos Genéticos. O problema a ser otimizado é a Função Binária f₆, a mesma usada no curso (L. Davis, *Handbook of Genetic Algorithms*, VNR, 1991). O software ICADEMO está disponível em www.ica.ele.puc-rio.br

1) Reproduzindo Resultados

Execute o Algoritmo Genético com os parâmetros indicados abaixo de modo a tentar reproduzir os resultados do livro texto apresentados em aula. Os parâmetros usados no livro se encontram na tabela abaixo. Compare as curvas referentes à média de 20 rodadas de cada GA com as curvas do livro (fig. 2.1). Entregar apenas dois gráficos: um com GA1-1, GA2-1 e GA2-2 e outro com GA 2-3 e GA2-4.

GA	Populaçã	Total.Ind.	Crossover	Mutação	NormLinear	Elitismo	Stead-State
	0						
1-1	100	4000	65%	0.8%	NÃO	NÃO	NÃO
2-1	100	4000	65%	0.8%	Max=100/Min=1	NÃO	NÃO
2-2	100	4000	65%	0.8%	Max=100/Min=1	SIM	NÃO
2-3	100	4000	65%	0.8%	Max=100/Min=1	NÃO	C/Duplicados
2-4	100	4000	65%	0.8%	Max=100/Min=1	NÃO	S/Duplicados

Obs:

- 1) Nestes experimentos utilize somente one-point-crossover.
- 2) Para os GAs que utilizam steady-state, determine o GAP (número de indivíduos substituídos a cada ciclo) para o qual o ICADEMO consegue resultados próximos. Para isso, use um incremento de 5 indivíduos a cada tentativa, começando com um GAP=5. Não entregue os gráficos referentes aos testes de GAP.

Figure 2.1: Performance Graphs for GA 1-1, GA 2-1, GA 2-2, GA 2-3, GA 2-4, and GA 2-5

2) Taxas de Crossover e Mutação

Verifique o que acontece, em média, quando você roda o GA2-1 20 vezes com taxa de crossover muito baixa (pouca recombinação) e alta taxa de mutação (muitas mudanças aleatórias). Salve o resultado (<u>um gráfico</u>), compare com o resultado do GA2-1 obtido no item 1 e explique brevemente o que acontece.

3) Tamanho da População

Analise o efeito do tamanho da população, obtendo as curvas de desempenho do GA2-2 (20 rodadas) para vários tamanhos de população (ex: 20, 50, 100, 150) e sempre com o mesmo número de gerações (total de indivíduos variável). Salve <u>apenas a curva para pop=150</u> e tire breves conclusões sobre o efeito do tamanho da população no desempenho do algoritmo genético.

4) Convergência

Repita o GA2-1 e o GA2-2 (20 rodadas cada) modificando apenas o total de indivíduos criados para 10000. Salve as curvas em <u>apenas um gráfico</u> e verifique se é vantajoso todo esse esforço computacional. Em outras palavras, determine o número de indivíduos para o qual cada algoritmo converge.

5) Crossover

Compare o efeito dos 3 tipos de crossover disponíveis na ferramenta, executando o GA2-1 (s/ elitismo) e o GA2-2 (c/ elitismo) com apenas 2500 indivíduos (20 rodadas) para cada tipo de crossover, usando taxa de crossover 80%. Salve as curvas em <u>apenas um gráfico</u> e tire breves conclusões a respeito da característica conservadora/destrutiva de cada crossover.

6) Normalização Linear

Repita o GA2-3 para vários valores de máximo. Verifique o que acontece quando o valor de máximo aumenta e diminui. Salve as curvas em apenas um gráfico e tire breves conclusões.

7) Gerais

Fazendo variações nos parâmetros e técnicas disponíveis no ICADEMO, estude livremente o efeito de cada um destes no desempenho de algoritmos genéticos. **Destaque e explique qualquer constatação que julgar importante.**

Envie a sua lista (arquivo doc) para marco@ele.puc-rio.br