Листок 10. Вероятность..

DM-ML 1. В классе учатся n мальчиков и n девочек, каждому мальчику нравится несколько девочек из класса (возможно, что двум мальчикам нравится одна и та же девочка). Злая учительница рассадила детей за парты мальчик-девочка случайным образом (все варианты рассадки равновероятны). Чему равняется математическое ожидание числа мальчиков, которые сидят с нравившейся ему девочкой за одной партой?

DM-ML 2. Каждый из k человек в лифте, который стоит на первом этаже выбирает случайный этаж равновероятно из оставшихся n этажей. Чему равняется математическое ожидание числа остановок, которые сделает лифт?

DM-ML 3. Покажите, что существует такая формула ϕ в 3-КНФ, в каждом дизъюнкте которой входят ровно три различных переменных, для которой не существует набора, который выполнит больше, чем $\frac{7}{8}m$ дизъюнктов, где m — это число дизъюнктов в ϕ .

DM-ML 4. Покажите, что для формулы в КНФ, состоящей из m дизъюнктов, в которой любые три дизъюнкта можно одновременно выполнить, существует набор значений переменных, который выполняет как минимум $\frac{2}{3}m$ дизъюнктов.

DM-ML 5.

- (а) Докажите, что в любом турнире есть гамильтонов путь.
- (б) Докажите, что в сильно связном турнире есть гамильтонов цикл (простой цикл, проходящий по всем вершинам).

DM-ML 6. Докажите, что элементы множества [n] можно покрасить в два цвета так, чтобы ни одна арифметическая прогрессия длины $\lceil 2 \log n \rceil$ не была покрашена в один цвет.

DM-ML 7. Доминирующее множество в графе — это такое множество, что для каждой вершины, либо она сама лежит в этом множестве, либо она соединена ребром с вершиной из этого множества. В графе G минимальная степень вершины равняется d>1. Докажите, что в G есть доминирующее множество размера не больше $n\frac{1+\ln(d+1)}{d+1}$. Подсказка: рассмотрите случайное подмножество вершин, в которое каждая вершина включается с вероятностью $p=\frac{\ln(d+1)}{d+1}$.

DM-ML 9.1. Докажите, что если $\binom{n}{k}(1-2^{-k})^{n-k} < 1$, то n команд могут так сыграть в волейбол, чтобы для любых k команд нашлась бы команда, которая выиграла бы у них всех.

DM-ML 9.2. В школе в каждом кружке учится $n \ge 4$ человек, число кружков не превосходит $\frac{4^{n-1}}{3^n}$. Докажите, что можно всем школьникам выставить оценки по поведению (четыре оценки: от 2 до 5), что в каждом кружке будут представлены все 4 оценки.

DM-ML 9.3. Пусть Ω — конечное пространство элементарных событий, P — вероятностная мера на Ω . Докажите формулу включений-исключений: Для любых событий $A_1, A_2, \ldots, A_n \subseteq \Omega$ выполняется

$$P(\cup_i A_i) = \sum_i P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k) - \dots$$

DM-ML 9.4. Пусть \mathcal{F} — такое семейство подмножеств [n], что для любых двух $A, B \in \mathcal{F}$ выполняется $A \cap B \neq \emptyset$. Покажите, что $|\mathcal{F}| \leq 2^{n-1}$.

DM-ML 9.5. Множество событий $A_1, A_2, \ldots, A_n \subseteq \Omega$ называются независимыми, если $P(\bigcap_i A_i) = \prod_i P(A_i)$. Приведите пример конечного вероятностного пространства и трех событий A, B, C, что любые два из них являются независимыми, но в совокупности они не являются независимыми.

DM-ML 9.6. Для двух строк $x, y \in \{0,1\}^n$ обозначим их скалярное произведение по модулю два: $\langle x, y \rangle = \sum_{i=1}^n x_i y_i \mod 2$. Чему равняется вероятность события $\langle x, y \rangle = 1$, если строка y выбирается случайно (и все варианты равновероятны), а строка x фиксирована?

DM-ML 9.7. Докажите, что если вершины неориентированного графа имеют степень не больше, чем k, то его вершины можно покрасить в k+1 цвет так, чтобы концы любого ребра были покрашены в разные цвета.

DM-ML 9.8. Докажите, что если вершины графа имеют степень не больше, чем k, то его вершины можно покрасить в $\lfloor k/2 \rfloor + 1$ цвет так, чтобы для каждой вершины не более одного ребра исходило в вершины того же цвета ($\lfloor x \rfloor$ обозначает целую часть числа x).

DM-ML 9.9. В сильно связном ориентированном графе (из каждой вершины можно добраться в каждую) у каждой вершины входящая степень равна исходящей. Докажите, что существует цикл, проходящий по каждому ребру ровно 1 раз.

DM-ML 8.8. В связном графе есть остовное дерево, в котором k висячих вершин и есть остовное дерево, в котором m висячих вершин. Докажите, что для любого числа ℓ между k и m в этом графе найдется остовное дерево, в котором ℓ висячих вершин.