HBS86H Hybrid Stepper Servo Drive Manual

Contents

1.	Overview 4-
2.	Features - 4 -
3.1	Ports Introduction5-
	3.1 ALM and PEND signal output ports 5-
	3.2 Control Signal Input Ports 5-
	3.3 Encoder Feedback Signal Input Ports6-
	3.4PowerInterfacePorts7-
4.	Technological Index 8-
	Connections to Control Signal9-
	5.1ConnectionstoCommonAnode9-
	5.2ConnectionstoCommonCathode10-
	5.3 Connections to Differential Signal11-
	5.4Connectionsto232SerialCommunicationInterface12-
	5.5 Sequence Chart of Control Signals 12-
6.]	DIP Switch Setting 13-
	6.1ActivateEdgeSetting13-
	6.2 Running Direction Setting 14-
	6.3Micro steps Setting 14-
7.	FaultsalarmandLEDflickerfrequency15-
8.	Appearance and InstallationDimensions 16 -
9.	Typical Connection 16-
10	Parameter Setting 17-
11.	ProcessingMethodstoCommonProblemsandFaults22-
	11.1 Power on power light off 22
	11.2Poweronredalarmlighton22-
	11.3 Redalarmlightonafterthemotorrunningasmallangle22-
	11.4 Afterinputpulsesignalbutthemotornotrunning23-

1. Overview

The HBS86H hybrid stepper servo drive system integrates the servo control technology into the digital stepper drive perfectly. And this product adopts an optical encoder with high speed position sampling feedback of 50 μ s, once the position deviation appears, it will be fixed immediately. This product is compatible the advantages of the stepper drive and the servo drive, such as lower heat, less vibration, fast acceleration, and so on. This kind of servo drive also has an excellent costperformance.

2. Features

- ◆ Without losing step, High accuracy inpositioning
- ◆ 100% rated outputtorque
- ◆ Variable current control technology, High currentefficiency
- ◆ Small vibration, Smooth and reliable moving at lowspeed
- ◆ Accelerate and decelerate control inside, Great improvement in smoothness of starting or stopping themotor
- ◆ User-defined microsteps
- ◆ Compatible with 1000 and 2500 linesencoder
- ◆ No adjustment in general applications
- Over current, over voltage and over position errorprotection
- Green light means running while red light means protection or offline

3. Ports Introduction

3.1 ALM and PEND signal outputports

Port	Symbol	Name	Remark
1	PEND+	In position signal output +	
2	PEND-	In position signal output -	★★ \$ k
3	ALM+	Alarm output +	<u>-</u>
4	ALM-	Alarm output -	

3.2 Control Signal InputPorts

Port	Symbol	Name	Remark	
1	PLS+	Pulse signal +	Compatible with	
2	PLS-	Pulse signal -	5V or 24V	
3	DIR+	Direction signal+	Compatible with	
4	DIR-	Direction signal-	1- 5V or 24V	
5	ENA+	Enable signal +	Compatible with	
6	ENA-	Enable signal -	5V or 24V	

3.3 Encoder Feedback Signal InputPorts

Port	Symbol	Name	Wiring color
1	PB+	Encoder phase B +	Blue
2	PB-	Encoder phase B -	White
3	PA+	Encoder phase A +	Yellow
4	PA-	Encoder phase A - Green	
5	VCC	Input power	Red
6	GND	Input power ground Black	

3.4 Power InterfacePorts

Port	Identification	Symbol	Name	Remark
1		A+	Phase A+ (Red)	Motor Phase A
2	Motor Phase	A-	Phase A- (Blue)	Wiotor Fliase A
3	Wire InputPorts	B+	Phase B+ (Green)	Motor Phase B
4		В-	Phase B- (Black)	Wiotor Fliase B
5	Power Input	VCC	Input Power +	AC24V-70V
6	Ports	GND	Input Power-	DC30V-100V

4. Technological Index

Input Voltage		24~70VAC or	
		30~100VDC	
Output Current		6A 20KHz PWM	
Pulse Frequ	uency max	200K	
Communic	cation rate	57.6Kbps	
		• Over current peak value12A±10%	
Prote	ction	 Over voltage value130V 	
		• The over position error range can be	
		set through theHISU	
Overall Dimensions (mm)		150×97.5×53	
Weight		Approximate 580g	
	Environment	Avoid dust, oil fog and corrosive gases	
	Operating	70℃ Max	
Environment	Temperature		
	Storage	-20°C∼+65°C	
Specifications Temperature			
	Humidity	40~90%RH	
	Cooling	Natural cooling or forced air cooling	
	method		

5. Connections to ControlSignal

5.1 Connections to Common Anode

Remark:

VCC is compatible with 5V or 24V;

R(3~5K) must be connected to control signal terminal.

-8-

5.2 Connections to CommonCathode

Remark:

VCC is compatible with 5V or 24V;

R(3~5K) must be connected to control signal terminal.

5.3 Connections to DifferentialSignal

Remark:

VCC is compatible with 5V or 24V;

R(3~5K) must be connected to control signal terminal.

5.4 Connections to 232 Serial CommunicationInterface

Crystal Head	Definition	Remark
foot		
1	TXD	Transmit Data
2	RXD	Receive Data
4	+5V	Power Supply to HISU
6	GND	Power Ground

5.5 Sequence Chart of ControlSignals

In order to avoid some fault operations and deviations, PUL, DIR and ENA should abide by some rules, shown as following diagram:

Remark:

- a. t1: ENA must be ahead of DIR by at least 5μ s. Usually, ENA+ and ENA- are NC (notconnected).
- b. t2: DIR must be ahead of PUL active edge by 6μ s to ensure correct direction;
- c. t3: Pulse width not less than 2.5µs;
- d. t4: Low level width not less than 2.5µs.

6. DIP SwitchSetting

6.1 Activate EdgeSetting

SW1 is used for setting the activate edge of the input signal, "off" means the activate edge is the rising edge, while "on" is the falling edge.

6.2 Running DirectionSetting

SW2 is used for setting the running direction, "off" means CCW, while "on" means CW.

6.3 Micro stepsSetting

The micro steps setting is in the following table, while SW3 $\,^{\circ}$ SW4 $\,^{\circ}$ SW5 $\,^{\circ}$ SW6 are all on, the internal default micro steps inside is activate, this ratio can be setting through the HISU.

Dial switch	SW3	SW4	SW5	SW6
Micro steps				
Default	on	on	on	on
800	off	on	on	on
1600	on	off	on	on
3200	off	off	on	on
6400	on	on	off	on
12800	off	on	off	on
25600	on	off	off	on
51200	off	off	off	on
1000	on	on	on	off
2000	off	on	on	off
4000	on	off	on	off
5000	off	off	on	off

8000	on	on	off	off
10000	off	on	off	off
20000	on	off	off	off
40000	off	off	off	off

7. Faults alarm and LED flickerfrequency

Flicker	Description to the Faults	
Frequency		
1	Error occurs when the motor coil current exceeds	
	the drive's current limit.	
2	Voltage reference error in the drive	
3	Parameters upload error in the drive	
4	Error occurs when the input voltage exceeds the	
	drive's voltage limit.	
5	Error occurs when the actual position following	
	error exceeds the limit which is set by the position	
	error limit.	

8. Appearance and Installation Dimensions

9. Typical Connection

This drive can provide the encoder with a power supply of +5v, maximum current 80mA. It adopts a quadruplicated-frequency counting method, and the resolution ratio of the encoder multiply 4 are the pulses per rotate of the servo motor. Here is the typical connection of

2HSS86H-KH

10. Parameter Setting

The parameter setting method of 2HSS86H-KH drive is to use a HISU adjuster through the 232 serial communication ports, only in this way can we setting the parameters we want. There are a set of best defaultparameterstothecorrespondingmotorwhicharecarefully

adjusted by our engineers, users only need refer to the following table, specific condition and set the correct parameters.

Actual value = Set value \times the corresponding dimension

Mode	Definition	Range	Dime-	Drive	Default
			nsion	Restart	Value
P1	Current loop Kp	0—4000	1	N	1000
P2	Current loop Ki	0—1000	1	N	100
Р3	Damping coefficient	0—1000	1	N	100
P4	Position loop Kp	0-4000	1	N	1300
P5	Position loop Ki	0—1000	1	N	250
P6	Speed loop Kp	0-3000	1	N	50
P7	Position loop Ki	0—1000	1	N	10
P8	Open loop current	0—60	0.1	N	45
P9	Close loop current	0—40	0.1	N	20
P10	Alarm level	0—1	1	N	0
P11	Reserved				
P12	Stop lock enable	0—1	1	N	0
P13	Enable signal level	0—1	1	N	0
P14	Arrival level	0—1	1	N	1
P15	Encoder line number	0—1	1	Y	0
P16	Position error limit	0-3000	10	N	1000
P17	Reserved				
P18	Motor type	0—5	0	Y	4
P19	Speed smoothness	0—10	1	N	0
P20	User-defined p/r	4-1000	50	Y	8

There are total 20 parameter configurations, use the HISU to download the configured parameters to the drive, the detail descriptions to every parameter configuration are as follows:

Item	Description	
Current loop Kp	Increase Kp to make current rise fast. Proportional	
	Gain determines the response of the drive to setting	
	command. Low Proportional Gain provides a stable	
	system (doesn't oscillate), has low stiffness, and the	
	current error, causing poor performances in tracking	
	current setting command in each step. Too large	
	proportional gain values will cause oscillations and	
	unstable system.	
Current loop Ki	Adjust Ki to reduce the steady error. Integral Gain	
	helps the drive to overcome static current errors. A	
	low or zero value for Integral Gain may have current	
	errors at rest. Increasing the integral gain can reduce	
	the error. If the Integral Gain is too large, the system	
	may "hunt" (oscillate) around the desired position.	
Damping	This parameter is used to change the damping	
coefficient	coefficient in case of the desired operating state is	
	under resonance frequency.	
Position loop Kp	The PI parameters of the position loop. The default	
Position loop Ki	values are suitable for most of the application, you	
	don't need to change them. Contact us if you have	
	any question.	

Speed loop Kp	The PI parameters of the speed loop. The default			
Speed loop Ki	values are suitable for most of the application, you			
	don't need to change them. Contact us if you have			
	any question.			
Open loop				
	This parameter affects the static torque of the motor.			
current				
Close loop	This parameter affects the dynamic torque of the			
current	motor. (The actual current = open loop current +			
	close loop current)			
Alarm Control	This parameter is set to control the Alarm			
	optocoupler output transistor. 0 means the transistor			
	is cut off when the system is in normal working, but			
	when it comes to fault of the drive, the transistor			
	becomes conductive. 1 means opposite to 0.			
Stop lock enable	This parameter is set to enable the stop clock of the			
	drive. 1 means enable this function while 0 means			
	disable it.			
Enable Control	This parameter is set to control the Enable input			
	signal level, 0 means low, while 1 means high.			
Arrival Control	This parameter is set to control the Arrival			
	optocoupler output transistor. 0 means the transistor			
	is cut off when the drive satisfies thearrival			

Encoder

command, but when it comes to not, the transistor becomes conductive. 1 means opposite to 0.

This drive provides two choices of the number of lines of the encoder. 0 means 1000 lines, while 1 means 2500 lines.

Position error

The limit of the position following error. When the actual position error exceeds this value, the drive willgointoerrormodeandthefaultoutputwillbe activated. (The actual value = the set value× 10)

Motor typeselection

Parameter	1	2	3	4	5
Туре	86J18	86J18	86J18	86J18	86J18
	65EC	80EC	95EC	118EC	156EC

Speed smoothness.

This parameter is set to control the smoothness of the speed of the motor while acceleration or deceleration, the larger the value, the smoother the speed in acceleration ordeceleration.

User-defined p/r	This parameter is set of user-defined pulse per		
	revolution,theinternaldefaultmicrostepsinsideis		
	activatewhileSW3、SW4、SW5、SW6areallon, users can also set the micro steps by the outer DIP		
	switches.(Theactualmicrosteps= the setvalue		
	× 50)		

11. Processing Methods to Common Problems and

Faults

11.1 Power on power lightoff

No power input, please check the power supply circuit. The voltage is toolow.

11.2 Power on red alarm lighton

- Please check the motor feedback signal and if the motor is connected with thedrive.
- The stepper servo drive is over voltage or under voltage. Please lower or increase the inputvoltage.

11.3 Red alarm light on after the motor running asmall angle

Please check the motor phase wires if they are connected correctly, if not, please refer to the 3.4 Power Ports.

- Please check the parameter in the drive if the poles of the motor and the encoder lines are corresponding with the real parameters, if not, set themcorrectly.
- Please check if the frequency of the pulse signal is too fast, thus the motor may be out of it rated speed, and lead to positionerror.

11.4 After input pulse signal but the motor notrunning

- Please check the input pulse signal wires are connected in reliable way.
- Please make sure the input pulse mode is corresponding with the real input mode.