Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/001168

International filing date: 21 January 2005 (21.01.2005)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number: 2004-19235

Filing date: 28 January 2004 (28.01.2004)

Date of receipt at the International Bureau: 10 March 2005 (10.03.2005)

Priority document submitted or transmitted to the International Bureau in Remark:

compliance with Rule 17.1(a) or (b)

日本国特許庁 21.01.2005 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年 1月28日

出 願 番 号
Application Number:

特願2004-019235

[ST. 10/C]:

[JP2004-019235]

出願人

キッセイ薬品工業株式会社

Applicant(s):

,

2005年 2月25日

) (

特許庁長官 Commissioner, Japan Patent Office

特許願 【書類名】 JP-A0404-0 【整理番号】 特許庁長官殿 【あて先】 CO7D307/82 【国際特許分類】 【発明者】 【住所又は居所】 【氏名】 【発明者】 【住所又は居所】 【氏名】 【発明者】 【住所又は居所】 【氏名】

長野県南安曇郡穂高町大字柏原4365-1 キッセイ薬品工業 株式会社中央研究所内

中村 哲也

長野県南安曇郡穂高町大字柏原4365-1 キッセイ薬品工業 株式会社中央研究所内

塩原 寛明

長野県南安曇郡穂高町大字柏原4365-1 キッセイ薬品工業

株式会社中央研究所内

寺尾 嘉洋

【発明者】 長野県南安曇郡穂高町大字柏原4365-1 キッセイ薬品工業 【住所又は居所】

株式会社中央研究所内

宮澤 敬治 【氏名】 【発明者】

長野県南安曇郡穂高町大字柏原4365-1 キッセイ薬品工業 【住所又は居所】

株式会社中央研究所内

大野田 秀樹 【氏名】

【特許出願人】 000104560 【識別番号】

キッセイ薬品工業株式会社 【氏名又は名称】

神澤 陸雄 【代表者】 0263-25-9081 【電話番号】

【手数料の表示】

066017 【予納台帳番号】 21,000円 【納付金額】

【提出物件の目録】

特許請求の範囲 1 【物件名】

明細書 1 【物件名】 要約書 1 【物件名】

【曹類名】特許請求の範囲

【請求項1】

一般式(I):

【化1】

$$R^4$$
 R^3
 R^2
 R^5
 R^5
 $CONHR^1$
 R^6

〔式中、

R¹は、水素原子または低級アルキル基であり;

R²は、以下のa)~k):

- a) シクロアルキル基、
- b) ヘテロシクロアルキル基、
- c)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で置換されるアリール基、
- d)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアラルキル基、
- e)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアリールアルケニル基、
 - f) 低級アルコキシ低級アルキル基、
- g)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアリールオキシ低級アルキル基、
- h)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアラルキルオキシ低級アルキル基、
- i)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアリールスルファニル低級アルキル基、
- j)非置換もしくは X^6 、 X^7 および X^8 からなる群から選択される $1\sim3$ 個の基で環が置換されるヘテロアリール基、または
- k)非置換もしくは X^6 、 X^7 および X^8 からなる群から選択される $1\sim3$ 個の基で環が置換されるヘテロアリール低級アルキル基であり;

 X^1 、 X^2 、 X^3 、 X^4 および X^5 は、それぞれ独立して、以下のa) \sim r):

- a) ハロゲン原子、
- b) 低級アルキル基、
- c) ハロ低級アルキル基、
- d) 低級アルコキシ基、
- e) ハロ低級アルコキシ基、
- f)水酸基、
- g) カルボキシ基、
- h) 低級アルコキシカルボニル基、
- i) 低級アシル基、
- i) ペンゾイル基、
- k) ニトロ基、
- 1) シアノ基、
- m) $-A^{1} NR^{2} R^{2}$,
- $n) A^2 S R^{2}$.

- o) $-SO_2NR^{2} R^{2}$,
- $p) NHSO_2 R^{2}$
- q) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の基で置換されるフェニル基、または
- r) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の基で環が置換されるフェノキシ基を表すか、

あるいは X^1 、 X^2 、 X^3 、 X^4 および X^5 のうち2つが隣接する場合、それらが一緒になって X^4 になって X^5 のうち2つが隣接する場合、それらが一緒になって X^5 のうち2つが

 R^{20} および R^{21} は、それぞれ独立して、水素原子、低級アルキル基、低級アシル基、低級アルコキシカルボニル基またはシクロアルキル基を表すか、あるいは R^{20} および R^{21} が一緒になって $-C(O)-(CH_2)_q-C(O)$ - で表される基を形成するか、または R^{20} および R^{21} が、それらが結合している 窒素原子と一緒になって 環状アミノ基を形成し;

A¹は、結合またはCı-3アルキレン基を表し;

 A^2 は、結合または C_{1-3} アルキレン基を表し;

R²²は、以下のa)~d):

- a) 低級アルキル基、
- b) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の基で置換されるフェニル基、
- c) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の基で置換されるヘテロアリール基、または
 - d) ジ低級アルキルアミノ低級アルキル基であり;
- R^{23} および R^{24} は、それぞれ独立して水素原子または低級 アルキル基を表すか、あるいは R^{23} および R^{24} が、それらが結合している 窒素原子と一緒になって 環状 アミノ 基を形成し;

R²⁵は、以下のa)~c):

- a) 低級アルキル基、
- b) ハロ低級アルキル基、または
- c) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の基で置換されるフェニル基であり;

mは、1または2であり;

- nは、2または3であり;
- pは、3または4であり;
- qは、2または3であり;
- X^6 、 X^7 および X^8 は、それぞれ独立して、以下のa) \sim i):
- a) ハロゲン原子、
- b) 低級アルキル基、
- c) ハロ低級アルキル基、
- d) 低級アルコキシ基、
- e) ハロ低級アルコキシ基、
- $f) A^{1} N R^{2} R^{2}$.
- g) $-A^2 SR^{2}$,
- h) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の

基で環が置換されるフェニル基、または

i)非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキ ル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の 基で環が置換されるフェノキシ基であり:

R³、R⁴、R⁵ およびR⁶ は、それぞれ独立して、以下のa)~n):

- a)水素原子、
- b)ハロゲン原子、
- c)低級アルキル基、
- d) ハロ低級アルキル基、
- e) 低級アルコキシ基、
- f) ハロ低級アルコキシ基、
- g)水酸基、
- h) シアノ基、
- i)非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキ ル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の 基で環が置換されるアリール基、
- j)非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキ ル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の 基で環が置換されるアラルキルオキシ基、
 - k) ジ低級アルキルアミノ基、
 - 1) 低級アルキルスルファニル基、
- m) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキ ル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の 基で環が置換されるアリールスルファニル基、または
- n) ニトロ基を表すか、あるいはR³、R⁴、R⁵およびR⁶のうち2つが隣接する場 合、それらが一緒になって-CH=CH-CH=CH-で表される基を形成し、但し、R 3、R4、R5 およびR6 の少なくとも一つは、水素原子以外である;

但し、3ーベンゾイルアミノー5ークロロベンゾフランー2ーカルボキサミドおよび1 -ベンゾイルアミノナフト[2,1-b]フラン-2-カルボキサミドを除く〕で表される化合 物またはそのプロドラッグ、あるいは薬理学的に許容される塩。

【請求項2】

R¹が、水素原子である、請求項1に記載の化合物またはその薬理学的に許容される塩。

【請求項3】

R³が、水素原子、ハロゲン原子または水酸基である、請求項2に記載の化合物またはそ の薬理学的に許容される塩。

【請求項4】

R²が、以下のa)~f):

- a) シクロアルキル基、
- b) 非置換もしくはX¹、X²、X³、X⁴ およびX⁵ からなる群から選択される1~ 5個の基で置換されるアリール基、
 - c) 低級アルコキシ低級アルキル基、
- d) 非置換もしくはX¹、X²、X³、X⁴ およびX⁵ からなる群から選択される1~ 5個の基で環が置換されるアリールオキシ低級アルキル基、
- e) 非置換もしくはX¹、X²、X³、X⁴ およびX⁵ からなる群から選択される1~ 5個の基で環が置換されるアラルキルオキシ低級アルキル基、または
- f) 非置換もしくは X^6 、 X^7 および X^8 からなる群から選択される $1 \sim 3$ 個の基で環 が置換されるヘテロアリール基であり、
- X^1 、 X^2 、 X^3 、 X^4 および X^5 が、請求項1に記載した通りである、請求項2に記 載の化合物またはその薬理学的に許容される塩。

【請求項5】

【請求項6】

請求項1~4のいずれか一項に記載の化合物またはその薬理学的に許容される塩を有効成分として含有する、アデノシンA2A 受容体関連疾患の治療または予防剤。

【請求項7】

前記アデノシンA2A 受容体関連疾患が、運動機能障害である、請求項6に記載の治療または予防剤。

【請求項8】

前記運動機能障害が、パーキンソン病、ハンチントン病またはウィルソン病である、請求 項7に記載の治療または予防剤。

【請求項9】

前記アデノシンA2A 受容体関連疾患が、うつ病である、請求項6に記載の治療または予防剤。

【請求項10】

前記アデノシンA2A 受容体関連疾患が、認知機能障害である、請求項6に記載の治療または予防剤。

【請求項11】

前記アデノシンA2A 受容体関連疾患が、脳虚血性障害である、請求項6に記載の治療または予防剤。

【請求項12】

請求項1~4のいずれか一項に記載の化合物またはその薬理学的に許容される塩と、アデノシンA2A 受容体拮抗剤以外のパーキンソン病治療薬、抗うつ剤、認知機能障害治療薬および脳虚血性障害治療薬から選択される少なくとも1種とを組み合わせてなる医薬。

【書類名】明細書

【発明の名称】新規なベンゾフラン誘導体、それを含有する医薬組成物およびそれらの用 途

【技術分野】

[0001]

本発明は、アデノシンA2A 受容体拮抗作用を有する新規なベンゾフラン誘導体、それ を含有する医薬組成物およびそれらの用途に関する。

【背景技術】

[0002]

アデノシンは、プリンヌクレオシドの一つであり、生体内において種々の調節機能、生 理活性を有している。アデノシン受容体として、4つのサブタイプ(A1、A2A、A2 B およびA3 受容体)が知られている。アデノシンが示す作用は、G蛋白共役型受容体フ ァミリーに属するこれらの膜受容体とアデノシンとの相互作用により媒介されることが知 られている。

中枢神経系におけるアデノシンA2A受容体の分布および機能についてはよく認識され ており、アデノシンA2A 受容体はコリン作動性、GABA作動性、グルタミン酸作動性ニュ ーロンの調整に関与していることが明らかとされている。また、アデノシンA2A受容体 はドパミンD2 受容体とも機能的に関連しており、アデノシンA2A 受容体を拮抗するこ とによりドパミンD2 受容体に対するドパミンの結合能が増加することが知られている(例えば、非特許文献1参照)。ドパミンニューロンの異常に起因する疾患としてパーキン ソン病が知られている。パーキンソン病は中高年齢者に好発する進行性の神経変性疾患で あり、安静時振戦、固縮、無動、姿勢反射障害などの協調性運動機能障害を主症状とする 。その病因は中脳黒質ドパミン性神経細胞の変性による線条体ドパミンの欠乏に起因する と考えられている。アデノシンA2A受容体は、協調性運動機能の調節に重要な役割を果 たしている線条体に豊富に存在し、上述のようにアデノシンA2A 受容体とドパミンD2 受容体とは相反性の関係にあることから、アデノシンA2A受容体を選択的に拮抗する薬 剤はパーキンソン病、ハンチントン病、ウィルソン病などの運動機能障害の治療薬として 有用であると考えられている(例えば、非特許文献 2 ~ 4 参照)。また、アデノシンA 2 A 受容体の拮抗により、抗うつ作用および神経保護作用が認められることから、アデノシ ンA2A 受容体拮抗剤はうつ病、認知機能障害(例えば、アルツハイマー病など)の治療 薬として有用であると期待されている(例えば、非特許文献5および6参照)。またアデ ノシンA2A 受容体の拮抗は脳虚血後の障害を軽減し、脳梗塞量を低下させることが知ら れており、アデノシンA2A受容体拮抗剤は脳虚血性障害(例えば、脳卒中、脳血管攣縮 後の脳障害など)の治療薬として有用であると期待されている(例えば、非特許文献7参 照)。

[0003]

Sangapure S.S.およびAgasimundin Y.S.らは、ベンゾフロ[3,2-d]ピリミジン誘導体を 合成するための中間体として下記一般式:

[0004] 【化2】

(式中、RAは非置換もしくはハロゲン、低級アルキル、低級アルコキシまたはカルボキ シ基で置換されるフェニル基、ベンジル基または低級アルキル基であり、R^B は水素原子 または低級アルキルを表す)で表されるベンゾフラン誘導体を開示している(例えば、非特許文献8~11参照)。しかしながら、これらのベンゾフラン誘導体の生理活性については何ら記載されていない。

[0005]

Basavaraj P.らは、抗菌剤、駆除剤、抗炎症薬として有用である 4-オキソナフト[2,1-b] フロ[3,2-d] ピリミジン誘導体を製造するための中間体として、1-ベンゾイルアミノナフト[2,1-b] フランー 2-カルボキサミドを開示している(例えば、非特許文献 <math>12 参照)。しかしながら、このナフト[2,1-b] フラン誘導体の生理活性については何ら記載されていない。

[0006]

3-ベンゾイルアミノー5-クロロベンゾフラン-2-カルボキサミドは、ケミカルアプストラクトに記載された公知の化合物であるが、この化合物の生理活性については何ら知られていない(例えば、非特許文献13参照)。

[0007]

Oota T. らは、サイクリック GMP特異的ホスホジエステラーゼ阻害剤として有用であるベンゾフロ[3,2-d]ピリミジンー4ーオン誘導体を製造するための中間体として下記一般式:

【0008】

$$NO_2$$
 $HN \longrightarrow OR^C$
 OR^C
 $CONH_2$

(式中、R^C は低級アルキル基を表す)で表されるベンゾフラン誘導体を開示している (例えば、特許文献 1 参照)。しかしながら、これらのベンゾフラン誘導体の生理活性については何ら記載されていない。

【非特許文献 1】 Ferre S.ら, 「Proc. Natl. Acad. Sci. U.S.A.」, 1991年, 88巻, p.7238-7241

【非特許文献 2】 Ferre S.ら, 「Neurosci. Lett.」, 1991年, 130巻, p.162-164 【非特許文献 3】 Mandhane S.N.ら, 「Eur. J. Pharmacol.」, 1997年, 328巻, p.13 5-141

【非特許文献 4】 Varani K.ら, 「The FASEB Journal」, 2003年, 17巻, p.2148-215

【非特許文献 5】 EL. Yacoubi M. ら, 「British J. Pharmacol.」, 2001年, 134巻, p. 68-77

【非特許文献 6】 Dall'Igna O.ら、「British J. Pharmacol.」, 2003年, 138巻, p. 1207-1209

【非特許文献7】Phillis J.W.ら, 「Brain Res.」, 1995年, 705巻, p.79-84

【非特許文献 8】 Sangapure S.S.ら, 「Indian J. Chem.」, 1978年, 16B巻, p.627-629

【非特許文献 9】 Agasimundin Y.S.ら, 「Indian J. Chem.」, 1981年, 20B巻, p.114-117

【非特許文献 1 0】 Agasimundin Y.S.ら, 「Indian J. Chem.」, 1993年, 32B巻, p. 965-968

【非特許文献 1 1】Agasimundin Y.S.ら、「Indian J. Heterocyclic Chem.」、1994年、3巻、p.247-252

【非特許文献 1 2】 Basavaraj P.ら,「Indian J. Heterocyclic Chem.」, 2002年, 12巻, p.89-94

【非特許文献13】「ケミカルアブストラクト」, Registry Number 340017-67-6 【特許文献1】特開平7-267961号公報

【発明の開示】

【発明が解決しようとする課題】

[0009]

本発明の目的は、アデノシン A_{2A} 受容体拮抗作用を有する新規な化合物およびそれらの用途を提供することである。

【課題を解決するための手段】

[0010]

本発明者らは、上記課題を解決すべく鋭意研究を重ねたところ、驚くべきことに、一般式 (I) で表されるベンゾフラン誘導体が極めて強力なアデノシン A_2 A 受容体拮抗作用を有し、さらにはアデノシン A_2 A 受容体関連疾患の治療または予防剤として有用であることを見出し、本発明を完成するに至った。

[0011]

すなわち、本発明は、一般式(I):

【0012】

〔式中、

R¹は、水素原子または低級アルキル基であり;

R² は、以下のa)~k):

- a) シクロアルキル基、
- b) ヘテロシクロアルキル基、
- c)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で置換されるアリール基、
- d) 非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアラルキル基、
- e) 非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアリールアルケニル基、
 - f) 低級アルコキシ低級アルキル基、
- g) 非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアリールオキシ低級アルキル基、
- h) 非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアラルキルオキシ低級アルキル基、
- i)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアリールスルファニル低級アルキル基、

- j)非置換もしくは X^6 、 X^7 および X^8 からなる群から選択される $1\sim3$ 個の基で環が置換されるヘテロアリール基、または
- k) 非置換もしくは X^6 、 X^7 および X^8 からなる群から選択される $1\sim 3$ 個の基で環が置換されるヘテロアリール低級アルキル基であり;

 X^{1} 、 X^{2} 、 X^{3} 、 X^{4} および X^{5} は、それぞれ独立して、以下のa) \sim r):

- a) ハロゲン原子、
- b)低級アルキル基、
- c) ハロ低級アルキル基、
- d) 低級アルコキシ基、
- e) ハロ低級アルコキシ基、
- f) 水酸基、
- g) カルボキシ基、
- h) 低級アルコキシカルボニル基、
- i) 低級アシル基、
- j) ベンゾイル基、
- k)ニトロ基、
- 1)シアノ基、
- m) $-A^{1} NR^{2} R^{2}$,
- $n) A^2 SR^{2}$.
- $o) SO_2 NR^{2} R^{2}$
- p) -NHSO₂R²,
- q) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の基で置換されるフェニル基、または
- r) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の基で環が置換されるフェノキシ基を表すか、

あるいは X^1 、 X^2 、 X^3 、 X^4 および X^5 のうち2つが隣接する場合、それらが一緒になって X^4 になって X^5 のうち2つが隣接する場合、それらが一緒になって X^5 のうち2つが

 R^{20} および R^{21} は、それぞれ独立して、水素原子、低級アルキル基、低級アシル基、低級アルコキシカルボニル基またはシクロアルキル基を表すか、あるいは R^{20} および R^{21} が一緒になって $-C(O)-(CH_2)_q-C(O)$ ーで表される基を形成するか、または R^{20} および R^{21} が、それらが結合している 窒素原子と一緒になって 環状アミノ基を形成し;

A¹は、結合またはC₁₋₃アルキレン基を表し;

 A^2 は、結合または C_{1-3} アルキレン基を表し;

R²²は、以下のa)~d):

- a) 低級アルキル基、
- b) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の基で置換されるフェニル基、
- c) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の基で置換されるヘテロアリール基、または
 - d) ジ低級アルキルアミノ低級アルキル基であり;

 R^{23} および R^{24} は、それぞれ独立して水素原子または低級アルキル基を表すか、あるいは R^{23} および R^{24} が、それらが結合している 窒素原子と一緒になって 環状 アミノ 基を形成し;

R²⁵は、以下のa)~c):

- a) 低級アルキル基、
- b) ハロ低級アルキル基、または
- c) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の基で置換されるフェニル基であり;
 - mは、1または2であり;
 - nは、2または3であり;
 - pは、3または4であり;
 - qは、2または3であり;
 - X^6 、 X^7 および X^8 は、それぞれ独立して、以下のa)~i):
 - a) ハロゲン原子、
 - b) 低級アルキル基、
 - c) ハロ低級アルキル基、
 - d) 低級アルコキシ基、
 - e) ハロ低級アルコキシ基、
 - $f) A^{1} N R^{2} R^{2}$.
 - $g) A^2 SR^{2}$,
- h) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の基で環が置換されるフェニル基、または
- i) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の基で環が置換されるフェノキシ基であり;
 - R³、R⁴、R⁵ およびR⁶ は、それぞれ独立して、以下のa)~n):
 - a) 水素原子、
 - b)ハロゲン原子、
 - c) 低級アルキル基、
 - d) ハロ低級アルキル基、
 - e) 低級アルコキシ基、
 - f) ハロ低級アルコキシ基、
 - g)水酸基、
 - h)シアノ基、
- i) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の基で環が置換されるアリール基、
- j) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の基で環が置換されるアラルキルオキシ基、
 - k) ジ低級アルキルアミノ基、
 - 1) 低級アルキルスルファニル基、
- m) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の基で環が置換されるアリールスルファニル基、または
- n) ニトロ基を表すか、あるいは R^3 、 R^4 、 R^5 および R^6 のうち 2 つが 隣接する場合、それらが一緒になって-CH=CH-CH=CH-で表される基を形成し、但し、 R^3 、 R^4 、 R^5 および R^6 の少なくとも一つは、水素原子以外である;
- 但し、3-ベンゾイルアミノ-5-クロロベンゾフラン-2-カルボキサミドおよび1-ベンゾイルアミノナフト[2,1-b]フラン-2-カルボキサミドを除く]で表される化合物またはそのプロドラッグ、あるいは薬理学的に許容される塩に関する。

[0013]

また、本発明は、一般式(I)で表される化合物またはその薬理学的に許容される塩を有効成分として含有する医薬組成物に関する。

[0014]

また、本発明は、一般式 (I) で表される化合物またはその薬理学的に許容される塩を有効成分として含有する、アデノシンA2A受容体関連疾患の治療または予防剤に関する

[0015]

さらに本発明は、一般式 (I) で表される化合物またはその薬理学的に許容される塩と、アデノシンA2A 受容体拮抗剤以外のパーキンソン病治療薬、抗うつ剤、認知機能障害治療薬および脳虚血性障害治療薬から選択される少なくとも1種とを組み合わせてなる医薬に関する。

[0016]

一般式(I)で表される化合物において、下記の用語は、特に断らない限り、以下の意味を有する。

[0017]

「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子またはヨウ素原子を表し、 X^1 、 X^2 、 X^3 、 X^4 および X^5 においては、フッ素原子、塩素原子または臭素原子が好適であり、さらに好適にはフッ素原子または塩素原子であり、最も好適にはフッ素原子であり、アッ素原子は塩素原子が好適であり、スクターのであり、 X^6 、 X^7 および X^8 においては、フッ素原子、塩素原子または臭素原子が好適であり、最も好適には塩素原子であり; X^3 においては、フッ素原子が好適であり; X^4 においては、塩素原子またはフッ素原子が好適である。

[0018]

「低級アルキル基」とは、直鎖または分岐鎖状の炭素数1~6のアルキル基を意味し、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、secーブチル基、tertーブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tertーペンチル基、1ーメチルブチル基、2ーメチルブチル基、1,2ージメチルプロピル基、ヘキシル基、イソヘキシル基などが挙げられる。

[0019]

「シクロアルキル基」とは、 $3\sim7$ 員の飽和環状炭化水素を意味し、例えば、シクロプロピル基、シクロプチル基、シクロペンチル基、シクロヘキシル基およびシクロヘプチル基が挙げられ、 R^2 においては、シクロプロピル基が好適である。

[0020]

「ヘテロシクロアルキル基」とは、環内に-NH-、-O-または-S-を含有する4~7員の飽和複素環基を意味し、例えば、テトラヒドロフリル基、テトラヒドロチエニル基、テトラヒドロピラニル基、ピロリジン-2-イル基、ピロリジン-3-イル基、ピペリジン-4-イル基などが挙げられる。

[0021]

「アルケニル基」とは、少なくとも1個の二重結合を有する、直鎖または分岐鎖状の炭素数2~6個の不飽和炭化水素を意味し、例えば、ビニル基、アリル基などが挙げられる

[0022]

「アリール基」とは、炭素数6~10個の芳香族炭化水素を意味し、フェニル基、1-ナフチル基、2-ナフチル基が挙げられ、好適にはフェニル基である。

[0023]

「アラルキル基」とは、アリール基で置換された低級アルキル基を意味し、ベンジル基、フェネチル基、1-フェニルエチル基、3-フェニルプロピル基、ナフチルメチル基などが挙げられ、好適にはベンジル基またはフェネチル基である。

[0024]

「アリールアルケニル基」とは、アリール基で置換されたアルケニル基を意味し、例えば、スチリル基、シンナミル基などが挙げられる。

[0025]

「アリールオキシ基」とは、(アリール) - O - で表される基を意味し、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基などが挙げられ、好適にはフェノキシ基である。

[0026]

「アラルキルオキシ基」とは、(アラルキル) - O - で表される基を意味し、例えば、ベンジルオキシ基、フェネチルオキシ基、1-フェニルエトキシ基、3-フェニルプロポキシ基などが挙げられ、好適にはベンジルオキシ基である。

[0027]

「アリールオキシ低級アルキル基」とは、アリールオキシ基で置換された低級アルキル基を意味し、例えば、フェノキシメチル基、1-フェノキシエチル基、2-フェノキシエチル基、1-メチルー1-フェノキシエチル基、3-フェノキシプロピル基、ナフチルオキシメチル基などが挙げられ、好適にはフェノキシメチル基または2-フェノキシエチル基である。

[0028]

「アラルキルオキシ低級アルキル基」とは、アラルキルオキシ基で置換された低級アルキル基を意味し、例えば、ベンジルオキシメチル基、2ーベンジルオキシエチル基、フェネチルオキシメチル基、ナフチルメチルオキシメチル基などが挙げられ、好適にはベンジルオキシメチル基またはフェネチルオキシメチル基である。

[0029]

「低級アルキルスルファニル基」とは、(低級アルキル)-S-で表される基を意味し、例えば、メチルスルファニル基、エチルスルファニル基、プロピルスルファニル基、イソプロピルスルファニル基、ブチルスルファニル基などが挙げられる。

[0030]

「アリールスルファニル基」とは、(アリール)-S-で表される基を意味し、例えば、フェニルスルファニル基、1-ナフチルスルファニル基、2-ナフチルスルファニル基などが挙げられ、好適にはフェニルスルファニル基である。

[0031]

「アリールスルファニル低級アルキル基」とは、アリールスルファニル基で置換された低級アルキル基を意味し、例えば、フェニルスルファニルメチル基、1-フェニルスルファニルエチル基、2-フェニルスルファニルエチル基、1-メチル-1-フェニルスルファニルエチル基、3-フェニルスルファニルプロピル基、ナフチルスルファニルメチル基などが挙げられ、好適にはフェニルスルファニルメチル基である。

[0032]

「ハロ低級アルキル基」とは、1~3個の同種または異種のハロゲン原子で置換された低級アルキル基を意味し、例えば、フルオロメチル基、クロロメチル基、プロモメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2ートリフルオロエチル基などが挙げられ、好適にはクロロメチル基またはトリフルオロメチル基である。

[0033]

「低級アルコキシ基」とは、直鎖または分岐鎖状の炭素数 1~6のアルコキシ基を意味し、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソプトキシ基、secープトキシ基、tertーブトキシ基、ペンチルオキシ基、ヘキシルオキシ基などが挙げられる。

[0034]

「ハロ低級アルコキシ基」とは、1~3個の同種または異種のハロゲン原子で置換された低級アルコキシ基を意味し、例えば、ジフルオロメトキシ基、トリフルオロメトキシ基、2,2,2-トリフルオロエトキシ基などが挙げられる。

[0035]

「低級アルコキシ低級アルキル基」とは、低級アルコキシ基で置換された低級アルキル基を意味し、例えば、メトキシメチル基、2-メトキシエチル基、エトキシメチル基などが挙げられる。

[0036]

「低級アシル基」とは、H-CO-もしくは(低級アルキル)-CO-で表される基を意味し、例えば、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基などが挙げられる。

[0037]

「低級アルコキシカルボニル基」とは、(低級アルコキシ)-CO-で表される基を意味し、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシルオキシカルボニル基などが挙げられる。

[0038]

「ジ低級アルキルアミノ基」とは、低級アルキル基で二置換されたアミノ基を意味し、 例えば、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジイソプロピルア ミノ基などが挙げられる。

[0039]

「ジ低級アルキルアミノ低級アルキル基」とは、ジ低級アルキルアミノ基で置換された低級アルキル基を意味し、例えば、ジメチルアミノメチル基、2ージメチルアミノエチル基、3ージメチルアミノプロピル基、ジエチルアミノメチル基、2ージエチルアミノエチル基などが挙げられる。

[0040]

「環状アミノ基」とは、環内に-NH-、-O-または-S-を含んでもよい、 $5\sim7$ 員の環状アミンを意味し、例えば、1-ピロリジル基、ピペリジノ基、ピペラジノ基、エルホリノ基、チオモルホリノ基、アゼパン-1-イル基などが挙げられ、好適にはピロリジル基またはピペラジノ基である。当該環状アミノ基は、必要に応じて $1\sim2$ 個の低級アルキル基、低級アルコキシカルボニル基、低級アシル基、または非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルキシ基から独立して選択される $1\sim3$ 個の基で置換されるフェニル基での投されてもよく、このような置換環状アミノ基として、例えば、3, 5-ジメチルピペリジノ基、4-エトキシカルボニルピペラジノ基、4-アセチルピペラジノ基、4-フェニルピペラジノ基などが挙げられる。また当該環状アミノ基は、必要に応じて隣接する環の炭素原子がベンゼン環と縮合されてもよく、このようなベンゾ縮合環状アミノ基として、例えば、インドリン-1-イル基、1, 2, 3, 4-テトラヒドロキノリン-1-イル基などが挙げられる。

[0041]

「ヘテロアリール基」とは、 $1\sim 5$ 個の炭素原子ならびにO、N およびS 原子からなる群から独立して選択される $1\sim 4$ 個のヘテロ原子を含有する $5\sim 6$ 員の単環式芳香族複素環、あるいは $1\sim 9$ 個の炭素原子ならびにO、N およびS 原子からなる群から独立して限いる $1\sim 4$ 個のヘテロ原子を含有する1 の 員の二環式芳香族複素環を意味し、にれらの環は、隣接する酸素原子および/または硫黄原子を含まない。 単環式芳香族複素環としては、例えば、ピロリル、フリル、チエニル、イミダゾリル、ピラゾリル、チャゾリル、イソキサゾリル、1, 2, 4- オキサジアブリル、ピリジル、ピラジルル、ピリミジルおよびピリダジニルなどが挙げられ、好適にはフリルまたはピリジルである。 二環式芳香族複素環としては、例えば、インドリル、インダゾリル、ベンゾフラニル、ベンゾチエニル、ベンゾチアブリル、キノリル、インダゾリル、ベンズスイミダブリルなどが挙げられ、好適にはベンブフリルである。 これらの複素環の全ての位置異性体が考えられる(例えば、2- ピリジル、3- ピリジル、4- ピリジルなど)。

[0042]

「ヘテロアリール低級アルキル基」とは、ヘテロアリール基で置換された低級アルキル 基を意味し、例えば、2-フリルメチル基、3-フリルメチル基、2-チエニルメチル基 、3-チエニルメチル基、3-ピリジルメチル基、3-ピリジルエチル基、3-ベンゾフ リルメチル基、3-ベンゾチエニルメチル基などが挙げられる。

[0043]

「Cı-3アルキレン基」とは、炭素数1~3の2価の直鎖飽和炭化水素鎖を意味し、 当該炭化水素鎖は必要に応じて1~3個のメチル基で置換されてもよい。当該C1-3ア ルキレン基の具体例として、例えば、一CH2-、-CH2CH2-、-CH(CH3) -, -CH (CH3) CH2-, -CH2 CH (CH3) -, -C (CH3) 2-, -C (CH₃)₂CH₂-,-CH₂C (CH₃)₂-,-CH₂CH₂CH₂-,-C (C H3) 2 CH2 CH2 -、-C (CH3) 2 CH2 CH (CH3) -などの基が挙げられ 、好適には-CH2-、-CH2CH2-または-CH2CH2CH2-である。

[0044]

一般式(Ⅰ)で表される化合物において1つまたはそれ以上の不斉炭素原子が存在する 場合、本発明は各々の不斉炭素原子がR配置の化合物、S配置の化合物、およびそれらの 任意の組み合せの化合物のいずれも包含する。またそれらのラセミ化合物、ラセミ混合物 、単一のエナンチオマー、ジアステレオマー混合物が本発明の範囲に含まれる。本発明の 前記一般式(I)で表される化合物において幾何学異性が存在する場合、本発明はcis異 性体、trans異性体、およびそれらの混合物のいずれも包含する。さらに一般式(I)で 表される化合物には、水和物やエタノール等の医薬品として許容される溶媒との溶媒和物 も含まれる。

[0045]

一般式(I)で表される化合物は、塩の形態で存在することができる。このような塩と しては、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸などの鉱酸との付加塩、 ギ酸、酢酸、トリフルオロ酢酸、メタンスルホン酸、ベンゼンスルホン酸、pートルエン スルホン酸、プロピオン酸、クエン酸、コハク酸、酒石酸、フマル酸、酪酸、シュウ酸、 マロン酸、マレイン酸、乳酸、リンゴ酸、炭酸、グルタミン酸、アスパラギン酸等の有機 酸との付加塩、ナトリウム塩、カリウム塩、カルシウム塩等の無機塩基との塩、トリエチ ルアミン、ピペリジン、モルホリン、リジン等の有機塩基との塩を挙げることができる。

[0046]

本発明において「プロドラッグ」とは生体内において前記一般式(I)に変換される化 合物を意味し、このようなプロドラッグはまた本発明の範囲内である。プロドラッグの様 々な形態が当該分野で周知である。

[0047]

例えば、前記一般式(I)で表される化合物がカルボン酸官能基を有する場合、プロド ラッグとして、当該カルボン酸基の水素原子と、以下のような基:低級アルキル基、低級 アルカノイルオキシメチル、1-(低級アルカノイルオキシ)エチル、1-メチル-1-(低級アルカノイルオキシ)エチル、低級アルコキシカルボニルオキシメチル、1-(低級ア ルコキシカルボニルオキシ)エチル、1ーメチルー1ー (低級アルコキシカルボニルオキ シ) エチル、N- (低級アルコキシカルボニル) アミノメチル、1- (N- (低級アルコ キシカルボニル)アミノ)エチル、3ーフタリジル、4ークロトノラクトニル、ガンマー プチロラクトンー 4 ーイル、N , N ージ低級アルキルアミノー低級アルキル (例えば β ー ジメチルアミノエチル)、カルバモイルー低級アルキル、N, N-ジ低級アルキルカルバ モイルー低級アルキル、あるいはピペリジノー、ピロリジノーまたはモルホリノ低級アル キルとの置換により形成されるエステルが挙げられる。また前記一般式(I)で表される 化合物が、水酸基を有する場合、プロドラッグとして、当該水酸基の水素原子と、以下の ような基:低級アシル基(例えば、アセチル基、プロピオニル基、ブチリル基、イソブチ リル基、ピバロイル基など);低級アルコキシカルボニル基(例えば、メトキシカルボニ ル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、

tert-ブトキシカルボニル基など);またはスクシノイル基との置換により形成される化合物が挙げられる。また前記一般式(I)で表される化合物が、-NHまたは $-NH_2$ のようなアミノ基を有する場合、プロドラッグとして、当該アミノ基の水素原子と、以下のような基:低級アシル基(例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基など);または低級アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、tert-ブトキシカルボニル基など)との置換により形成される化合物が挙げられる。これらのプロドラッグ化合物は、公知の方法、例えば、T.W.GreenおよびP.G.H.Wuts,「Protective Groups in Organic Synthesis」第3版、およびそこに記載された参考文献に従って化合物(I)から製造することができる。

[0048]

一般式(I)で表される化合物において、

 R^1 は、好ましくは水素原子であり;

 R^2 は、好ましくは、以下のa) $\sim f$):

- a) シクロアルキル基、
- b)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で置換されるアリール基、
 - c) 低級アルコキシ低級アルキル基、
- d)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアリールオキシ低級アルキル基、
- e) 非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアラルキルオキシ低級アルキル基、または
- f)非置換もしくは X^6 、 X^7 および X^8 からなる群から選択される $1\sim3$ 個の基で環が置換されるヘテロアリール基であり;

R³は、好ましくは水素原子、ハロゲン原子または水酸基であり;

 R^4 、 R^5 および R^6 は、それぞれ独立して、好ましくは以下の a) \sim i):

- a)水素原子、
- b) ハロゲン原子、
- c) 低級アルキル基、
- d) ハロ低級アルキル基、
- e) 低級アルコキシ基、
- f)水酸基、
- g) シアノ基、
- h) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の基で環が置換されるアラルキルオキシ基、または
 - i) ジ低級アルキルアミノ基である。

[0049]

一般式(I)で表される化合物は、スキーム1~3に示す方法に従って製造することができる。

[0050]

スキーム 1
$$R^4 \longrightarrow CN$$

$$R^5 \longrightarrow CN$$

$$R^6 \longrightarrow CN$$

$$R^7 \longrightarrow R^8$$

$$R^8 \longrightarrow R^8$$

(式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 および R^6 は上記と同義であり、 L^1 は塩素原子、臭素原子、ヨウ素原子、メタンスルホニルオキシ基、p-hルエンスルホニルオキシ基などの脱離基を表す。)

[0051]

工程1-1

2-ヒドロキシベンゾニトリル誘導体(X)を、不活性溶媒中、塩基の存在下に化合物(XI)と縮合させることにより、化合物(XII)が得られる。この縮合反応に用いられる溶媒としては、例えば、エタノール、アセトニトリル、N,Nージメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラン、<math>1-メチル-2-ピロリドンおよびそれらの混合溶媒等が挙げられる。塩基としては、例えば、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、トリエチルアミン、N,Nージイソプロピルエチルアミンなどが挙げられる。その反応温度は通常、<math>0 \mathbb{C} \sim 室温であり、反応時間は使用する原料物質や溶媒、反応温度等により異なるが、通常、1 時間 \sim 2 4 時間である。

[0052]

工程1-2

続いて化合物(XII)を不活性溶媒中、塩基の存在下に閉環させることにより、化合物(XIII)が得られる。当該反応に用いられる溶媒としては、例えば、エタノール、アセトニトリル、N, Nージメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラン、1ーメチルー2ーピロリドンおよびそれらの混合溶媒等が挙げられる。塩基としては、例えば、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、トリエチルアミン、N, Nージイソプロピルエチルアミンなどが挙げられる。その反応温度は通常、室温~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度等により異なるが、通常、1時間~24時間である。

また、化合物 (XIII) は、工程1-1で得られる化合物 (XII) を単離することなく、工程1-2を行うことによっても製造することが出来る。

[0053]

工程1-3

次いで化合物 (XIII) を、不活性溶媒中、縮合剤 (例えば、ジシクロヘキシルカルボジイミド、1-(3-ジメチルアミノプロピル) -3-エチルカルボジイミド塩酸塩、シアノリン酸エチル、アジ化ジフェニルホスホリルなど) の存在下にカルボン酸 (XIV) と縮合させることにより、化合物 (I) が得られる。

また、化合物 (I) は、カルボン酸 (XIV) を常法に従ってその反応性誘導体 (例えば、酸ハライド、酸無水物、混合酸無水物、4-ニトロフェニルエステル、2, 5-ジオキサ

ピロリジンエステルなど)に変換後、塩基の存在下または非存在下に化合物(XIII)と縮 合させることによっても得ることができる。この縮合反応に用いられる溶媒としては、例 えば、アセトニトリル、N, N-ジメチルホルムアミド、テトラヒドロフラン、塩化メチ レン、およびそれらの混合溶媒等が挙げられる。塩基としては、例えば、炭酸カリウム、 トリエチルアミン、N, Nージイソプロピルエチルアミン、ピリジン、Nーメチルモルホ リン等などが挙げられる。その反応温度は通常−20℃~還流温度であり、反応時間は使 用する原料物質や溶媒、反応温度等により異なるが、通常、15分~24時間である。

[0054]

一般式 (I) で表される化合物のうち、一般式 (Ia) で表される化合物は、スキーム 2 に示す方法に従って製造することができる。

[0055]

【化6】

スキーム2

$$R^{5}$$
 R^{6} R^{3} R^{4} R^{3} R^{5} R^{5} R^{6} R^{5} $R^$

(式中、 R^1 、 R^3 、 R^4 、 R^5 および R^6 は上記と同義であり、 A^{10} は C_{1-3} アル キレン基を表し、Arはアリール基またはヘテロアリール基を表し、L²は塩素原子、臭 素原子、ヨウ素原子、メタンスルホニルオキシ基、pートルエンスルホニルオキシ基など の脱離基を表し、Yは $-N(R^{20})$ -または-S-であり、Yが $-N(R^{20})$ -であ る場合、R³⁰ はR²¹ と同義であり、Yが-S-である場合、R³⁰ はR²² と同義で ある。)

[0056]

工程 2-1

化合物(XIII)と化合物(XV)とを、工程1-3と同様にして縮合させることにより、 化合物(XVI)が得られる。

[0057]

工程 2 - 2

続いて、化合物 (XVI) を、不活性溶媒中、塩基の存在下または非存在下に化合物 (XVI I) と反応させることにより、化合物 (Ia) が得られる。この反応に用いられる溶媒とし ては、例えば、エタノール、イソプロパノール、アセトニトリル、N, Nージメチルホル ムアミド、テトラヒドロフラン、塩化メチレン、1ーメチルー2ーピロリドンおよびそれ らの混合溶媒等が挙げられる。塩基としては、例えば、炭酸カリウム、トリエチルアミン 、N,Nージイソプロピルエチルアミン、ピリジン、N-メチルモルホリン等などが挙げ られる。その反応温度は通常−20℃~還流温度であり、反応時間は使用する原料物質や 溶媒、反応温度等により異なるが、通常、15分~24時間である。

[0058]

一般式(I)で表される化合物のうち、一般式(Ib)で表される化合物は、スキーム 3に示す方法に従って製造することができる。

[0059]

【化7】

スキーム3

$$R^4$$
 R^3 L^2 CO_2H R^4 R^3 A^{20} L^2 R^5 R^5 R^6 $(XIII)$ R^6 $(XIII)$ R^6 $(XIII)$ R^6 (XIX)

$$R^{4}$$
 R^{3} R^{4} R^{3} R^{4} R^{3} R^{4} R^{5} R^{5} R^{5} R^{6} R^{6} R^{6} R^{6} R^{6} R^{6} R^{6} R^{6} R^{6} R^{6}

(式中、R¹、R³、R⁴、R⁵、R⁶ およびL² は上記と同義であり、A²⁰ はC₁- $_6$ アルキレン基を表し、R 4 0 は非置換もしくは X 1 、 X 2 、 X 3 、 X 4 および X 5 から なる群から選択される $1\sim 5$ 個の基で置換されるアリール基を表し、 X^1 、 X^2 、 X^3 、 X⁴およびX⁵は上記と同義である。)

[0060]

工程 3 - 1

化合物(XIII)と化合物(XVIII)とを、工程1-3と同様にして縮合させることによ り、化合物(XIX)が得られる。

[0061]

工程3-2

続いて、化合物 (XIX) を、不活性溶媒中、塩基の存在下に化合物 (XX) と反応させる ことにより、化合物(Ib)が得られる。この反応に用いられる溶媒としては、例えば、エ タノール、イソプロパノール、アセトニトリル、N, Nージメチルホルムアミド、テトラ ヒドロフラン、塩化メチレン、1ーメチルー2ーピロリドンおよびそれらの混合溶媒等が 挙げられる。塩基としては、例えば、炭酸カリウム、トリエチルアミン、N, Nージイソ プロピルエチルアミン、ピリジン、Nーメチルモルホリン等などが挙げられる。その反応 温度は通常−20℃~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度等 により異なるが、通常、15分~24時間である。

[0062]

スキーム1において用いられる出発原料のうち、化合物 (X) は以下のスキーム4また は5に示す方法に従って製造することができる。

[0063]

【化8】

スキーム4

$$R^3$$
 工程4-1 R^3 CHO 工程4-2 R^4 CN R^5 OH R^5 R^6 (XXII) (XXIII) R^4 R^3 CN R^5 R^6 (XXII) R^6 (XXII) R^6 R^7 R^8 $R^$

(式中、R³、R⁴、R⁵ およびR⁶ は上記と同義である。)

[0064]

工程 4-1

フェノール誘導体 (XXI) とヘキサメチレンテトラミンとを、トリフルオロ酢酸溶媒中で縮合させることにより、イミン化合物が得られる。続いて、このイミン化合物を酸加水分解することにより、化合物 (XXII) が得られる。この縮合反応の温度は、通常、室温から還流温度であり、反応時間は使用する原料物質、反応温度によっても異なるが、通常、1~144時間である。加水分解に用いられる酸としては、例えば、硫酸水溶液などが挙げられる。加水分解反応の温度は、室温から還流温度であり、反応時間は15分から12時間である。

また、化合物(XXII)は、フェノール誘導体(XXI)とパラホルムアルデヒドとを、不活性溶媒(例えば、アセトニトリルなど)中、塩化マグネシウムおよび塩基の存在下に縮合させることによっても得られる。本反応に用いられる塩基としては、例えば、トリエチルアミン、N, Nージイソプロピルエチルアミンなどが挙げられる。この縮合反応の温度は、通常、室温から還流温度であり、反応時間は使用する原料物質、反応温度によっても異なるが、通常、0.5~48時間である。

[0065]

工程 4-2

続いて、化合物(XXII)とヒドロキシアミン塩酸塩とを、不活性溶媒(例えば、1-メチルー2-ピロリドンなど)中で反応させることにより、化合物(X)が得られる。その反応温度は、通常、室温~還流温度であり、反応時間は使用する原料物質、溶媒、反応温度によっても異なるが、通常、 $1\sim144$ 時間である。

[0066]

【化9】

スキーム5

(式中、 R^3 、 R^4 、 R^5 および R^6 は上記と同義であり、Yは塩素原子または臭素原子を表す。)

[0067]

工程 5-1

ーーまた化合物(X)は、フェノール誘導体(XXI)を、不活性溶媒中、ルイス酸の存在下にメチルチオシアン酸と反応させることによっても得られる。当該反応に用いられる溶媒としては、例えば、ジクロロメタン、1,2-ジクロロエタンなどが挙げられる。ルイス酸としては、三ハロホウ素(例えば、三塩化ホウ素または三臭化ホウ素)/塩化アルミニウ

ムなどが挙げられる。その反応温度は、通常、0℃~還流温度であり、反応時間は使用する原料物質、溶媒、反応温度によっても異なるが、通常、1~24時間である。

[0068]

上記に示したスキームは、一般式(I)で表される化合物またはその製造中間体を製造するための方法のいくつかの例示であり、当業者には容易に理解され得るようにこれらのスキームの様々な改変が可能である。

[0069]

一般式(I)で表される化合物、および当該化合物を製造するために使用される中間体は、必要に応じて、当該分野の当業者には周知の単離・精製手段である溶媒抽出、結晶化、再結晶、クロマトグラフィー、分取高速液体クロマトグラフィーなどの操作を行うことにより、単離・精製することができる。

[0070]

このようにして製造される一般式(I)で表される化合物は、優れたアデノシン A_2A 受容体拮抗作用を有するのでアデノシン A_2A 受容体関連疾患、例えば、運動機能障害(例えば、パーキンソン病、ハンチントン病、ウィルソン病など)、うつ病、認知機能障害(例えば、アルツハイマー病など)、脳虚血性障害(脳卒中、脳血管攣縮後の脳障害など)などの治療または予防薬として有用である。

[0071]

また、一般式 (I) で表される化合物は、必要に応じて、アデノシンA2A 受容体拮抗 剤以外のパーキンソン病治療薬、抗うつ剤、認知機能障害治療薬または脳虚血性障害治療 薬と組み合わせて使用することができる。このような一般式(I)で表される化合物と組 み合わせて使用できるパーキンソン病治療薬として、例えば、レボドパ、レボドパ/カル ビドパ合剤、レボドパ/ベンセラジド合剤、ドロキシドパ、メレボドパ、スレオドプス; ドパミンD2 受容体アゴニスト (例えば、カベルゴリン、メシル酸プロモクリプチン、テ ルグリド、塩酸タリペキソール、塩酸ロピニロール、メシル酸ペルゴリド、塩酸プラミペ キソール、ロチゴチンなど);抗コリン剤(例えば、プロフェナミン、塩酸トリヘキシフ ェニジル、塩酸マザチコール、ピペリデン、塩酸ピロヘプチン、塩酸メチキセンなど); COMT (catechol 0-methyl transferase) 阻害剤 (例えば、トルカポン、エンタカポ ンなど); NMDA拮抗剤(例えば、ブジピン、など);モノアミンオキシダーゼB阻害 剤(例えば、塩酸セレギリン、メシル酸ラサギリンなど);ゾニサミド;塩酸アマンタジ ンなどが挙げられる。一般式(I)で表される化合物と組み合わせて使用できる抗うつ剤 として、例えば、選択的セロトニン再取り込み阻害剤(例えば、塩酸フルオキセチン、塩 酸セルトラリン、塩酸パロキセチン、臭化水素酸シタロプラム、マレイン酸フルボキサミ ンなど);選択的ノルアドレナリン再取り込み阻害剤(例えば、塩酸デシプラミン、塩酸 アミトリプチリン、塩酸ノルトリプチリン、レボキセチンなど);セロトニン/ノルアド レナリン混合型再取り込み阻害剤(例えば、塩酸ベンラファキシン、塩酸ブプロプリオン 、塩酸ネファゾドン、塩酸ミルナシプランなど)などが挙げられる。一般式(I)で表さ れる化合物と組み合わせて使用できる認知機能障害治療薬として、例えば、アセチルコリ ンエステラーゼ阻害剤(例えば、タクリン、塩酸ドネペジル、酒石酸リバスチグミン、メ トリフォネート、臭化水素酸ガランタミンなど);塩酸メマンチン;アリピプラゾール; S-8510;AC-3933などが挙げられる。一般式(I)で表される化合物と組み 合わせて使用できる脳虚血性障害治療薬として、血栓溶解剤(例えば、t-PA(tissue plasminogen activator)、ウロキナーゼなど);トロンビン阻害剤(例えば、アルガト ロバンなど); TXA2 合成酵素阻害剤(例えば、オザグレルナトリウムなど); ラジカ ル消去剤(例えば、エブセレン、エダラボン、ニカラベンなど);5-HT1Aアゴニス ト (例えば、SUN-N4057、BAYx3702など);NMDA拮抗剤(例えば、 塩酸アプチガネルなど) ; AMPA拮抗剤 (例えば、S-1746など) ; Rho kinase阻 害剤(例えば、ファスジルなど); src阻害剤などが挙げられる。

[0072]

一般式 (I) で表される化合物またはその薬理学的に許容される塩を有効成分として含出証特2005-3015101

有する医薬組成物は、用法に応じ種々の剤型のものが使用される。このような剤型としては例えば、散剤、顆粒剤、細粒剤、ドライシロップ剤、錠剤、カプセル剤、注射剤、液剤、軟膏剤、坐剤、貼付剤などを挙げることができ、経口または非経口的に投与される。

これらの医薬組成物は、その剤型に応じ製剤学的に公知の手法により、適切な賦形剤、 崩壊剤、結合剤、滑沢剤、希釈剤、緩衝剤、等張化剤、防腐剤、湿潤剤、乳化剤、分散剤 、安定化剤、溶解補助剤などの医薬品添加物と適宜混合または希釈・溶解することにより 製剤化することができる。

[0073]

一般式(I)で表される化合物またはその薬理学的に許容される塩の投与量は患者の年齢、性別、体重、疾患および治療の程度等により適宜決定されるが、経口投与の場合成人1日当たり約1mg~約500mgの範囲で、非経口投与の場合は、成人1日当たり約0.1mg~約500mgの範囲で、一回または数回に分けて適宜投与することができる

[0074]

一般式(I)で表される化合物またはその薬理学的に許容される塩と、アデノシンA 2 A 受容体拮抗剤以外のパーキンソン病治療薬、抗うつ剤および認知機能障害治療薬から選択される少なくとも 1 種とを組み合わせてなる医薬は、これらの有効成分を一緒に含有する製剤、またはこれらの有効成分の各々を別々に製剤化した製剤として投与することができる。 別々に製剤化した場合、それらの製剤を別々にまたは同時に投与することができる。 また、別々に製剤化した場合、それらの製剤を使用時に希釈剤などを用いて混合し、同時に投与することができる。

[0075]

一般式(I)で表される化合物またはその薬理学的に許容される塩と、アデノシンA 2 A 受容体拮抗剤以外のパーキンソン病治療薬、抗うつ剤および認知機能障害治療薬から選択される少なくとも 1 種とを組み合わせてなる医薬において、薬剤の投与量は、患者の年齢、性別、および体重、症状、投与時間、剤形、投与方法、薬剤の組み合わせなどにより、適宜選択することができる。

【発明の効果】

[0076]

本発明の一般式 (I) で表される化合物は、アデノシンA2A 受容体に対して強力な阻害作用を有する。さらに本発明の好ましい化合物は、アデノシンA2A 受容体に対して選択的な阻害作用を有する。従って、本発明の化合物は、アデノシンA2A 受容体関連疾患、例えば、運動機能障害、うつ病、認知機能障害、脳虚血性障害などの治療または予防剤として有用であり、特にパーキンソン病の治療または予防剤として好適である。

【発明を実施するための最良の形態】

[0077]

本発明の内容を以下の参考例、実施例および試験例でさらに詳細に説明するが、本発明はこれらの内容に限定されるものではない。

【実施例】

[0078]

参考例 1-1

3ープロモー5ーフルオロー2ーヒドロキシベンズアルデヒド

2-ブロモー4-フルオロフェノール(2g)のトリフルオロ酢酸(10mL)溶液に、ヘキサメチレンテトラミン(2.94g)を室温にて加え、更に20時間加熱還流した。反応混合物に50%硫酸を加え、室温にて更に4時間撹拌した。酢酸エチルを加えて抽出を行い、水、1mol/L塩酸、飽和食塩水にて洗浄した後、無水硫酸マグネシウムにて乾燥した。有機溶媒を減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、表題化合物(1.93g)を得た。

¹ H-NMR (CDCl₃) δ ppm: 7.25-7.30 (1H, m), 7.56-7.61 (1H, m), 9.83 (1H, s), 11. 35 (1H, s)

```
[0079]
参考例 1-2
2-プロモー4-フルオロフェノールの代わりに2,4-ジフルオロフェノールを用い、
参考例1-1と同様の方法により、3,5-ジフルオロ-2-ヒドロキシベンズアルデヒ
ドを合成した。
<sup>1</sup> H-NMR (CDCl<sub>3</sub>) \delta ppm: 7.08-7.20 (2H, m), 9.88 (1H, d, J=1.9Hz), 10.72 (1H, s)
  [0080]
参考例 2-1
2-フルオロー6-ヒドロキシベンゾニトリル
  2-フルオロー6-ヒドロキシベンズアルデヒド(1g)の1-メチルー2-ピロリドン(
10mL)溶液中、ヒドロキシアミン塩酸塩(0.60g)を加えた後、120℃にて2日間加熱撹拌
した。酢酸エチルにて抽出を行い、水、飽和食塩水で洗浄した後、無水硫酸マグネシウム
にて乾燥した。減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにて
精製し、表題化合物(0.35g)を得た。
<sup>1</sup> H-NMR (CDCl<sub>3</sub>) δ ppm: 6.30-6.86 (3H, m), 7.36-7.50 (1H, m)
  [0081]
  2-フルオロー6-ヒドロキシベンズアルデヒドの代わりに対応する2-ヒドロキシベ
ンズアルデヒドを用い、参考例2-1と同様の方法により、参考例2-2~2-14を合
成した。
   [0082]
参考例 2-2
 5-フルオロー2-ヒドロキシベンゾニトリル
<sup>1</sup> H-NMR (CDCl<sub>3</sub>) δ ppm: 6.95-7.05 (1H, m), 7.30-7.45 (1H, m), 7.50-7.65 (1H, m)
, 11.05 (1H, s)
   [0083]
 参考例 2-3
 4-フルオロー2-ヒドロキシベンゾニトリル
 <sup>1</sup> H-NMR (CDCl<sub>3</sub>) δ ppm: 6.20-6.35 (1H, m), 6.65-6.80 (2H, m), 7.45-7.60 (1H, m)
   [0084]
 参考例 2-4
 3, 5-ジフルオロー2-ヒドロキシベンゾニトリル
 <sup>1</sup> H-NMR (CDCl<sub>3</sub>) δ ppm: 7.46-7.74 (2H, m), 11.42 (1H, brs)
   [0085]
 参考例 2-5
 3-プロモー5-フルオロー2-ヒドロキシベンゾニトリル
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 7.69-7.76 (1H, m), 7.89-7.96 (1H, m), 11.01(1H, brs)
   [0086]
 参考例 2 - 6
 2-ヒドロキシ-5-メチルベンゾニトリル
 <sup>1</sup> H-NMR (CDCl<sub>3</sub>) δ ppm: 2.29 (3H, s), 6.89 (1H, d, J=8.4Hz), 7.24-7.32 (2H, m)
   [0087]
 参考例 2-7
 2-ヒドロキシー3-メチルベンゾニトリル
 ^{1} H-NMR (CDC1<sub>3</sub>) \delta ppm: 2.28 (3H, s), 5.87 (1H, brs), 6.86-6.94 (1H, m), 7.30-7
 .40 (2H, m)
    [0088]
 参考例 2-8
  1-ヒドロキシナフタレン-2-カルボニトリル
  ^{1} H-NMR (CDCl<sub>3</sub>) \delta ppm: 7.35-7.85 (5H, m), 8.21-8.38 (1H, m)
    [0089]
```

```
参考例 2-9
2-ヒドロキシー5-メトキシベンゾニトリル
^{1} H-NMR (CDCl<sub>3</sub>) \delta ppm: 3.78 (3H, s), 5.77 (1H, brs), 6.88-6.98 (2H, m), 7.02-7
.08 (1H, m)
   [0090]
参考例 2-10
2-ヒドロキシー4-メトキシベンゾニトリル
<sup>1</sup> H-NMR (CDCl<sub>3</sub>) δ ppm: 3.94 (3H, s), 6.27 (1H, brs), 6.86-7.16 (3H, m)
   [0091]
参考例 2-11
4 - ベンジルオキシー 2 - ヒドロキシベンゾニトリル
<sup>1</sup> H-NMR (CDCl<sub>3</sub>) δ ppm: 5.08 (2H, s), 6.54-6.64 (2H, m), 7.30-7.48 (6H, m)
   [0092]
参考例 2-12
 2-ヒドロキシー3-メトキシベンゾニトリル
<sup>1</sup> H-NMR (CDCl<sub>3</sub>) \delta ppm: 3.83 (3H, s), 6.46-6.58 (2H, m), 7.40 (1H, d, J=8.8Hz)
   [0093]
参考例 2-13
 3-エトキシー2-ヒドロキシベンゾニトリル
<sup>1</sup> H-NMR (CDCl<sub>3</sub>) \delta ppm: 1.48 (3H, t, J=6.9Hz), 4.15 (2H, q, J=6.9Hz), 6.27 (1H,
  s), 6.80-7.15 (3H, m)
    [0094]
 参考例 2-14
 4-ジエチルアミノー2-ヒドロキシベンゾニトリル
```

, 7.25 (1H, d, J=8.8Hz), 10.35 (1H, s)

参考例 3-1

[0095]

4-クロロ-2-ヒドロキシベンゾニトリル

氷冷下、3-クロロフェノール(2.86ml)をジクロロエタン(48mL)溶液中、塩化アルミニ ウム(4.00g)、三臭化ホウ素(3.39mL)を加えた後、更にメチルチオシアン酸(2.46mL)を加 えて、塩化アルミニウムが溶解するまで室温にて撹拌した。更に120℃にて20時間加 熱撹拌した。放冷した後、反応混合物に4mol/L 水酸化ナトリウム水溶液(99mL)を加え、 約80℃にて30分間撹拌した。得られた溶液をジクロロメタンにて洗浄し、得られた水 層に6mol/L塩酸75mLを加えて酸性とし、ジエチルエーテルにて抽出した。得られた有機 層を飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥した。有機溶媒を減圧下濃縮 し、得られた残渣をヘキサンにて縣濁、濾取することにより表題化合物(2.5g)を得た。 1 H-NMR (CDCl₃) δ ppm: 6.99 (1H, dd, J=1.8, 8.5Hz), 7.03 (1H, d, J=1.8Hz), 7.4 4(1H, d, J=8.5Hz)

¹ H-NMR (CDCl₃) δ ppm: 1.06-1.13 (6H, m), 3.28-3.37 (4H, m), 6.13-6.26 (2H, m)

[0096]

参考例 3-2

3-クロロフェノールの代わりに3-ヒドロキシビフェニルを用い、参考例3-1と同 様の方法により、3-ヒドロキシビフェニルー4-カルボニトリルを合成した。 ¹ H-NMR (CDCl₃) δ ppm: 6.10 (1H, brs), 7.18-7.28 (2H, m), 7.39-7.50 (3H, m), 7.54-7.60 (3H, m)

[0097]

参考例 4-1

3ーアミノー4ーフルオロベンゾフランー2ーカルボキサミド

2-フルオロー6-ヒドロキシベンゾニトリル (0.35g)をエタノール(20mL)に溶かし、 炭酸カリウム(0.54g)を加えた後、室温にてプロモアセトアミド(0.43g)を加え、2時間加

熱還流した。更に水酸化カリウム(0.29g)を加え、12時間加熱還流した。水を加えて反応を停止し、有機溶媒を減圧濃縮し、析出した結晶を濾取、水で洗浄した後、真空デシケーターにて乾燥し、表題化合物(0.25g)を得た。

¹ H-NMR (CDCl₃) δ ppm: 5.24 (2H, brs), 5.81 (2H, brs), 6.80-6.96 (1H, m), 7.10 -7.42 (2H, m)

[0098]

2-フルオロー6-ヒドロキシベンゾニトリルの代わりに対応する2-ヒドロキシベンゾニトリルを用い、参考例4と同様の方法により、参考例4-2~4-18を合成した。これらを表1に示した。

[0099]

【表1】

参考例	構造式	参考例	構造式
4-1	F NH ₂ O NH ₂	4-10	NH ₂ ONH ₂
4-2	F O NH ₂	4-11	NH ₂ ONH ₂
4-3	NH ₂ ONH ₂	4-12	NH ₂ ONH ₂
4-4	CI NH ₂ O NH ₂	4-13	NH ₂ O NH ₂
4-5	NH ₂ O NH ₂ O NH ₂	4-14	NH ₂ O NH ₂
4 · 6	F O NH ₂	4-15	NH ₂ O NH ₂
4-7	F NH ₂ O NH ₂ Br	4-16	NH ₂ O NH ₂
4-8	NH ₂ ONH ₂	4-17	NH ₂ NH ₂
4-9	NH ₂ O NH ₂	4-18	O-N-ONH ₂

【0100】 参考例4-2~4-18の物性値を以下に示した。 【0101】

```
参考例 4-2
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 5.97 (2H, s), 7.08-7.72 (5H, m)
   [0102]
参考例 4-3
<sup>1</sup> H-NMR (CDCl<sub>3</sub>) δ ppm: 5.03 (2H, brs), 5.71 (2H, brs), 6.96-7.14 (2H, m), 7.44
-7.54 (1H, m)
   [0103]
参考例4-4
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 6.02 (2H, s), 7.12-7.50 (4H, m), 7.94-8.00 (1H, m)
   [0104]
参考例 4-5
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 6.07 (2H, brs), 7.10-7.36 (3H, m), 7.48-7.58 (1H, m),
7.80-7.92 (1H, m)
    [0105]
参考例 4 - 6
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 6.07 (2H, brs), 7.15-7.65 (4H, m)
    [0106]
参考例 4 - 7
 <sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 6.06 (2H, brs), 7.29 (2H, s), 7.62-7.78 (2H, m)
    [0107]
参考例 4 - 8
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 2.39 (3H, s), 5.92 (2H, s), 7.04-7.32 (4H, m), 7.57-7
 .65 (1H, m)
    [0108]
 参考例 4 - 9
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 2.44 (3H, s), 5.93 (2H, brs), 7.06-7.28 (4H, m), 7.63
  (1H, d, J=7.6Hz)
    [0109]
 参考例 4-10
 <sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 6.05 (2H, brs), 7.22 (2H, brs), 7.35-7.80 (7H, m), 7.
 92 (1H, d, J=8.2Hz)
     [0110]
 参考例 4-11
 <sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 6.05 (2H, brs), 7.30 (2H, brs), 7.52-8.40 (6H, m)
     [0111]
 参考例 4-12
 <sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.79 (3H, s), 5.90 (2H, s), 7.02 (1H, dd, J=2.7, 9.0H
 z), 7.17 (2H, brs), 7.31 (1H, d, J=9.0Hz), 7.40 (1H, d, J=2.7Hz)
     [0112]
  参考例 4-13
  ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.93 (3H, s), 5.98 (2H, s), 6.97-7.44 (5H, m)
     [0113]
  参考例 4-14
  <sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 3.81 (3H, s), 5.97 (2H, s), 6.83-6.95 (2H, m), 7.04 (
  2H, brs), 7.71 (1H, d, J=8.7Hz)
     [0114]
  参考例 4-15
  ^{1} H-NMR (CDCl<sub>3</sub>) \delta ppm: 1.52 (3H, t, J=6.9Hz), 4.24 (2H, q, J=6.9Hz), 4.99 (2H,
   brs), 6.85-7.00 (1H, m), 7.05-7.20 (2H, m)
     [0115]
```

参考例 4-16

¹ H-NMR (DMSO-d₆) δ ppm: 5.18 (2H, s), 5.99 (2H, s), 6.91-7.02 (2H, m), 7.08 (2H, brs), 7.30-7.52 (5H, m), 7.73 (1H, d, J=8.7Hz)

[0116]

参考例 4-17

¹ H-NMR (DMSO-d₆) δ ppm: 1.05-1.18 (6H, m), 3.28-3.52 (4H, m), 5.87 (2H, brs), 6.47 (1H, s), 6.60-6.72 (1H, m), 6.84 (2H, brs), 7.55 (1H, d, J=8.9Hz)

[0117]

参考例 4-18

¹ H-NMR (DMSO-d₆) δ ppm: 6.21 (2H, s), 7.51 (2H, brs), 8.08-8.26 (3H, m)

[0118]

参考例 5-1

4-フェノキシベンゾイルクロリド

4-フェノキシ安息香酸(1.4g)を塩化メチレン(<math>15mL)に懸濁した後、N,Nージメチルホルムアミド (0.05mL)を加え、氷冷下にオキサリルクロリド (1.2mL) を滴下した。室温にて1時間撹拌した後、反応混合物を減圧濃縮し、表題化合物(1.5 4g)を得た。

¹ H-NMR (CDCl₃) δ ppm: 6.95-7.15 (4H, m), 7.20-7.30 (1H, m), 7.40-7.50 (2H, m) , 8.05-8.15 (2H, m)

[0119]

4-フェノキシ安息香酸の代わりに対応するカルボン酸を用い、参考例5-1と同様の 方法により、参考例5-2~5-3を合成した。

[0120]

参考例 5-2

5-エチルフラン-2-カルボニルクロリド

 1 H-NMR (CDCl₃) δ ppm: 1.30 (3H, t, J=7.5Hz), 2.76 (2H, q, J=7.5Hz), 6.20-6.30 (1H, m), 7.40-7.45 (1H, m)

[0121]

参考例 5 - 3

3-プロモー4-フルオロベンゾイルクロリド

¹ H-NMR (CDCl₃) δ ppm: 7.20-7.30 (1H, m), 8.05-8.15 (1H, m), 8.30-8.40 (1H, m) [0122]

実施例1

3ーシクロプロパンカルボニルアミノー5ーフルオロベンゾフランー2ーカルボキサミド・ (化合物 6-1)

3-アミノー5-フルオロベンゾフラン-2-カルボキサミド (0.1g)をテトラヒドロ フラン(3mL)にとかし0℃に冷却、トリエチルアミン(0.144mL)を加えた後、シクロプロパ ンカルボニルクロリド(0.051mL)を加え、室温にて18時間撹拌した。水(6mL)を加えて反応 を停止し、更に1時間撹拌した。析出した結晶を濾取し、表題化合物(0.063g)を得た。 ¹ H-NMR (DMSO-d₆) δ ppm: 0.80-0.98 (4H, m), 1.91-2.06 (1H, m), 7.28-7.40 (1H, m), 7.55-7.70 (2H, m), 7.89 (1H, brs), 8.13 (1H, brs), 10.34 (1H, brs)

[0123]

実施例 2

3ーシクロプロパンカルボニルアミノー5ークロロベンゾフランー2ーカルボキサミド (化合物 6-2)

シクロプロパンカルボン酸(0.018g)とトリホスゲン(0.032g)をテトラヒド ロフラン (1.5 mL) に溶かし、室温にてN-メチルモルホリン (0.047 mL) を加 えた後、15分撹拌した。3-アミノー5-クロロベンゾフラン-2-カルボキサミド(0 . 042g) のテトラヒドロフラン溶液 (1.5mL) を加えて14時間撹拌した。ジエチ ルエーテルにて抽出し、10%水酸化ナトリウム水溶液、飽和食塩水にて洗浄した後、有機

溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/テトラヒドロフラン= 7/3)により精製して、表題目的物(0.013g)を得た。 1 H-NMR (DMSO-d₆) δ ppm:0.80-0.95 (4H, m), 1.95-2.05 (1H, m), 7.45-7.65 (2H, m), 7.92 (1H, brs), 7.95-8.00 (1H, m), 8.15 (1H, brs), 10.37 (1H, brs)

【0124】 3-アミノ-5-フルオロベンゾフラン-2-カルボキサミドおよびシクロプロパンカルボニルクロリドの代わりに対応する<math>3-アミノベンゾフラン-2-カルボキサミドおよび対応する酸クロリドまたはカルボン酸を用い、実施例<math>1または2と同様の方法により、化合物 $6-3\sim6-15$ 1を合成した。これらを表2に示した。

[0125]

【表2】

化合物 No.	構造式	化合物 No.	構造式
6-1	OH O	6-9	F H P F F F F F F F F F F F F F F F F F
6-2	O=NH ₂ H O CI	6-10	F H O Br
6-3	OHNO HNO CI	6-11	F H O
6-4	NH ₂ H O	6-12	F H Q
6-5	F H O F	6-13	F H O N O
6-6		6-14	F H O
6-7	F H Q CI	6-15	F H Q
6-8	F—NH ₂ H—O CI	6-16	0=NH ₂ H 0

表 2	(続き)	

表 2 (続き)				
化合物	構造式	化合物 No.	構造式	
No.	F H O	6-25		
6-18		6-26		
6-19	F H Q	6-27	CI NH,	
6-20	F H Q	6-28		
6-21	F H O	6-29	Br NH ₂	
6-22	CI NH2 CI N F	6-30	Br. N	
6-23		6-31	F N F	
6-24	CI NH2 CI CI CI	6-32	F NH ₂ H O	

表	9	(総	去)
エて	_	しまりし	\subseteq	"

表 2 (続き)					
化合物 No.	構造式	化合物 No.	構造式		
6 33		6-41	NH ₂ H TO		
6-34		6-42	O=NH ₂ H O F		
6-35	CI H O	6-43	H PO NO CI		
6-36	OH OF F	6-44	NH ₂ H PO		
6-37	NH ₂ H N F	6-45	NH ₂ H O		
6-38	OH NH2 H OCI	6-46	H TO		
6-39	O=NH ₂ H Q N	6-47	NH ₂ H O		
6-40	O=NH ₂ H O	6-48	FF H OF F		

表	2	(続	き)

表 2 (続き)				
化合物 No.	構造式	化合物 No.	構造式	
6-49	FF H-70	6-57	CI NH2	
6-50	CI OF	6-58		
6-51	CI N H O F	6-59	CI NH2	
6-52	CI NH2 CI CI	6-60	FF H OF	
6-53		6-61	FF H O	
6-54	CI O CI	6-62	N, H, O	
6-55	CI NH ₂ OH NHO	6-63	O=NH ₂ O=NH ₂ O=NH ₂ F	
6-56	CI————————————————————————————————————	6-64	OH NH2 OH NO	

表2(続き)
化合物 No.	構造式
665	OH NH2 H OF F

化合物 No.	構造式	化合物 No.	構造式
665	0=NH ₂ H -0 N -0 F	6-73	-0 NH ₂ H -0
6-66	O=NH ₂ H O	6-74	O=NH ₂ H O
6-67	NH ₂ O H N O CI	6-75	F O NH ₂ H O N F
6-68	0=NH ₂ H 0 N F	6-76	FF N N F
6-69	O=NH ₂ H O F	6-77	F O NH ₂ H O N
6-70	O=NH ₂ H O CI	6-78	FF N
6-71	0=NH ₂ H 79	6-79	F O NH ₂ O NH
6-72	O=NH ₂ H O	6-80	NH ₂ H O

え2 (続き)				
化合物 No.	構造式	化合物 /	構造式	
6-81	O=NH ₂	6-89	O=NH ₂ H O	
6-82	OHNO HNO CI	6-90	O=NH ₂ O=NH ₂ O=NH ₂ F	
6-83	NH ₂ OH N F	6-91	O=NH ₂ H PO N F	
6-84	NH ₂ OHN OHN OHN	6-92	O=NH ₂ O=NH ₂ O=NH ₂ O=CI	
6-85	OH NH2 H O	6-93	OH NH2 OH	
6-86	O NH ₂ H V	6-94	O NH ₂ H O O	
6-87	O NH ₂ O H O F	6-95	O=NH ₂ H O CI	
6 88	N-SI O CI	6-96	OH NH ₂ OH NO CI	

表2(続き))	U. Alba	
化合物 No.	構造式	化合物 No.	構造式
6-97	OH O H O CI	6-105	OH O
6-98	O=NH ₂ H O CI	6-106	O=NH ₂ H O
6-99	0=NH ₂ H 0 N N O=O	6-107	NH ₂ H O
6-100	S-NH ₂ H-Q S-N-Q	6-108	OHNO HNO CI
6-101	OHNO HNO CI	6-109	O=NH ₂ O=NH ₂ F
6-102		6-110	NH ₂ OH N
6-103	NH ₂ OHN OHN OCI	6-111	NH ₂ H O
6-104	OH O	6-112	O=NH ₂ H - Q N - Q

2 (続き) 化合物 No.	構造式	化介物 No.	構造式
6 113	O NH ₂ H O	6-121	O=NH ₂
6-114	O NH ₂ O NH ₂ O NH ₂ O N O O O	6-122	O=NH ₂
6-115	O=NH _z H O	6-123	ONH ₂ OH OCI
6-116	O NH ₂ O N O F	6-124	O= NH ₂ O= N O
6-117		6-125	O=NH ₂ O=NF F
6-118	O=NH ₂ O=NH ₂ O=NH ₂ CI	6-126	NH ₂ H TO
6-119	OH NH2 H OF F	6-127	NH ₂ OH N
6-120	O=NH ₂ H O	6-128	O H O O

長2(続き)			
化合物 No.	構造式	化合物 No.	構造式
6 129	CI H O	6-137	OH NH2 OH NO F
6-130	O=NH ₂	6-138	O=NH ₂ H O
6-131	O NH ₂ O N CI	6-139	O= NH ₂ H
6-132	NH ₂ OHN F	6-140	OH NH2 OH OCI
6-133		6-141	0= NH ₂ H 70 N 0
6-134	O NH ₂ H O CI	6-142	O=NH ₂
6-135	OH O	6-143	OH NH2 H ON N CI
6-136	O=NH ₂ H -O N O N O O O O O O O O O O O O O O O O	6-144	NH ₂

	_	مه مقاره	
ぶ	•	(続き	•
~X	ے	Capic C	,

次と(称さ)	/		
化合物 No.	構造式	化合物 No.	
6-145		6-149	
6-146		6-150	OH OF F
6-147	NH ₂ OHN O	6-151	OH ONH2 OH ON OH CI
6-148			

[0126]

化合物 6-3-6-151 の物性値を以下に示した。

[0127]

化合物 6-3

¹ H-NMR (CDCl₃) δ ppm: 1.65-2.45 (4H, m), 3.95-4.10 (1H, m), 4.15-4.25 (1H, m), 4.50-4.65 (1H, m), 6.47 (1H, brs), 6.70 (1H, brs), 7.30-7.50 (2H, m), 8.55-8.6 (1H, m), 10.89 (1H, brs)

[0128]

化合物 6-4

 1 H-NMR (DMSO-d₆) & ppm: 3.87 (3H, s), 7.00 (1H, dd, J=2.2, 8.8Hz), 7.10 (1H, d, J=2.2Hz), 7.55-7.75 (3H, m), 7.76-8.20 (4H, m), 8.26 (1H, d, J=8.8Hz), 11.18 (1H, s)

[0129]

化合物 6-5

¹ H-NMR (DMSO-d₆) δ ppm: 7.36-7.95 (7H, m), 8.01 (1H, brs), 8.28 (1H, brs), 10.98 (1H, s)

[0130]

化合物 6-6

 1 H-NMR (DMSO-d₆) δ ppm: 7.20-7.35 (1H, m), 7.40-7.50 (2H, m), 7.55 (1H, dd, J = 2.2, 9.1Hz), 7.95 (1H, brs), 8.00-8.13 (2H, m), 8.15-8.30 (2H, m), 11.03 (1H, s)

[0131]

化合物 6-7

1 H-NMR (DMSO-d6) & ppm: 7.38-7.90 (6H, m), 7.99 (1H, brs), 8.15-8.32 (2H, m), 出証特2005-3015101

```
11.03 (1H, s)
  [0132]
化合物 6 - 8
^{1} H-NMR (MeOD-d<sub>4</sub> ) \delta ppm : 7.20-7.35 (2H, m), 7.40-7.55 (2H, m), 8.05-8.15 (2H, m
), 8.45-8.55 (1H, m)
   [0133]
化合物 6 - 9
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 7.45-7.95 (6H, m), 8.06 (1H, brs), 8.33 (1H, brs), 10
.94 (1H, s)
   [0134]
化合物 6-10
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 7.48-7.94 (6H, m), 8.07 (1H, brs), 8.18 (1H, brs), 10
.91 (1H, s)
   [0135]
化合物 6-11
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 2.43 (3H, s), 7.30-7.58 (3H, m), 7.62-7.96 (5H, m), 8
 .19 (1H, brs), 10.95 (1H, s)
    [0136]
 化合物 6-12
 <sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 2.54 (3H, s), 7.20-7.38 (2H, m), 7.48-7.72 (2H, m), 7
 .76-8.00 (4H, m), 8.17 (1H, brs), 10.94 (1H, s)
    [0137]
 化合物 6-13
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 7.50-7.93 (4H, m), 8.10-8.50 (5H, m), 10.96 (1H, s)
    [0138]
 化合物 6-14
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.81 (3H, s), 7.09-7.19 (1H, m), 7.45-7.72 (4H, m), 7
  .77-8.00 (3H, m), 8.18 (1H, brs), 10.94 (1H, s)
    [0139]
 化合物 6-15
  ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.99 (3H, s), 7.08-7.32 (2H, m), 7.48-7.72 (3H, m), 7
  .76-8.00 (3H, m), 8.13 (1H, brs), 10.93 (1H, s)
     [0140]
 化合物 6-16
  ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.99 (3H, s), 7.13 (1H, d, J=7.9Hz), 7.20-7.30 (1H, m
 ), 7.35-7.50 (2H, m), 7.70 (1H, d, J=7.9Hz), 7.89 (1H, brs), 8.00-8.20 (3H, m),
  10.91 (1H, s)
     [0141]
  化合物 6-17
  ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.87 (3H, s), 6.92-7.20 (2H, m), 7.45-8.28 (7H, m), 1
  1.14 (1H, s)
     [0142]
  化合物 6-18
  ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 1.43 (3H, t, J=6.9Hz), 4.30 (2H, q, J=6.9Hz), 7.05-7.
  15 (1H, m), 7.20-7.30 (1H, m), 7.35-7.50 (2H, m), 7.66 (1H, dd, J=0.9, 8.2Hz), 7
  .90 (1H, brs), 8.00-8.20 (3H, m), 10.89 (1H, s)
     [0143]
  化合物 6-19
  <sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 5.24 (2H, s), 7.00-7.20 (2H, m), 7.30-7.95 (10H, m),
  8.11 (1H, brs), 8.17 (1H, d, J=9.0Hz), 11.14 (1H, s)
```

```
[0144]
化合物 6-20
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 7.49-8.24 (10H, m), 8.37 (1H, brs), 8.50 (1H, d, J=8.
2Hz), 11.03 (1H, s)
   [0145]
化合物 6-21
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 1.14 (6H, t, J=7.1Hz), 3.43 (4H, q, J=7.1Hz), 6.58-6.
64 (1H, m), 6.76-6.86 (1H, m), 7.48-7.92 (6H, m), 8.11 (1H, d, J=9.2Hz), 11.27 (
1H, s)
   [0146]
化合物 6-22
^{1} H-NMR (CDCl<sub>3</sub>) \delta ppm: 5.64 (1H, brs), 6.43 (1H, brs), 7.20-7.65 (4H, m), 7.85
-7.95 (1H, m), 8.00-8.10 (1H, m), 8.30-8.40 (1H, m), 10.88 (1H, brs)
   [0147]
化合物 6-23
 <sup>1</sup> H-NMR (CDCl<sub>3</sub>) δ ppm: 5.99 (1H, brs), 6.52 (1H, brs), 7.15-7.30 (1H, m), 7.35
-7.55 (3H, m), 7.95-8.05 (2H, m), 8.30-8.40 (1H, m), 10.93 (1H, brs)
   [0148]
化合物 6-24
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 7.57 (1H, dd, J=2.2, 8.8Hz), 7.60-7.70 (2H, m), 7.72-
7.80 (1H, m), 7.90-8.10 (3H, m), 8.19 (1H, d, J=2.2Hz), 8.27 (1H, brs), 10.99 (1
 H, s)
    [0149]
 化合物 6-25
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 7.36-7.48 (1H, m), 7.64-7.80 (3H, m), 7.92-8.08 (3H,
 m), 8.16-8.32 (2H, m), 11.04 (1H, s)
    [0150]
 化合物 6-26
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 7.52-7.80 (4H, m), 7.96-8.12 (3H, m), 8.33 (1H, brs),
  10.95 (1H, s)
    [0151]
 化合物 6-27
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.87 (3H, s), 6.95-7.05 (1H, m), 7.07-7.15 (1H, m), 7
 .55-8.25 (7H, m), 11.13 (1H, s)
     [0152]
 化合物 6-28
  ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.87 (3H, s), 7.00 (1H, dd, J=2.2, 8.8Hz), 7.11 (1H,
 d, J=2.2Hz), 7.65-7.75 (2H, m), 7.76-8.25 (5H, m), 11.15 (1H, s)
     [0153]
  化合物 6-29
  <sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 7.35-7.45 (1H, m), 7.50-7.75 (2H, m), 7.80-8.05 (4H,
  m), 8.15-8.30 (2H, m), 10.96 (1H, s)
     [0154]
  化合物 6-30
  ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.87 (3H, s), 7.00 (1H, dd, J=2.2, 8.8Hz), 7.11 (1H,
  d, J=2.2Hz), 7.50-7.65 (1H, m), 7.75-8.25 (6H, m), 11.12 (1H, s)
     [0155]
  化合物 6 - 3 1
  ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 7.35-7.45 (1H, m), 7.60-7.75 (2H, m), 7.80-8.10 (4H,
  m), 8.24 (1H, brs), 10.91 (1H, s)
```

```
[0156]
化合物 6-32
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.87 (3H, s), 6.99 (1H, dd, J=2.2, 8.8Hz), 7.11 (1H,
d, J=2.2Hz), 7.60-8.20 (6H, m), 11.06 (1H, s)
   [0157]
化合物 6 - 3 3
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 7.35-7.45 (1H, m), 7.60-7.70 (2H, m), 7.75-7.85 (1H,
m), 7.96 (1H, brs), 8.00-8.10 (1H, m), 8.15-8.30 (2H, m), 10.90 (1H, brs)
   [0158]
化合物 6-34
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 7.40-7.45 (1H, m), 7.60-7.70 (1H, m), 7.75-7.80 (1H,
m), 7.97 (1H, brs), 8.00-8.30 (4H, m), 10.95 (1H, brs)
   [0159]
化合物 6-35
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.87 (3H, s), 6.95-7.05 (1H, m), 7.10-7.15 (1H, m),
7.60-7.70 (1H, m), 7.85 (1H, brs), 7.95-8.25 (4H, m), 11.06 (1H, brs)
   [0160]
化合物 6 - 3 6
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 2.43 (3H, s), 7.35-7.55 (3H, m), 7.60-7.70 (1H, m), 7
.75-7.90 (2H, m), 7.95-8.10 (2H, m), 8.27 (1H, brs), 11.00 (1H, s)
   [0161]
化合物 6 - 3 7
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 2.42 (3H, s), 7.35-7.45 (3H, m), 7.66 (1H, m), 7.91 (
2H, d, J=8.2Hz), 7.95-8.10 (2H, m), 8.27 (1H, brs), 11.01 (1H, s)
    [0162]
化合物 6-38
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 2.42 (3H, s), 7.35-7.70 (4H, m), 7.85-8.00 (2H, m), 8
 .03 (1H, brs), 8.30-8.40 (1H, m), 8.32 (1H, brs), 11.04 (1H, brs)
    [0163]
 化合物 6-39
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 2.42 (3H, s), 3.87 (3H, s), 7.00 (1H, dd, J=2.2, 9.1H
 z), 7.10 (1H, d, J=2.2Hz), 7.45-7.55 (2H, m), 7.74-8.20 (4H, m), 8.25 (1H, d, J=2.2Hz)
 8.8Hz), 11.15 (1H, s)
    [0164]
 化合物 6-40
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 2.41 (3H, s), 3.87 (3H, s), 6.99 (1H, dd, J=2.5, 9.1H
 z), 7.10 (1H, d, J=2.2Hz), 7.41 (2H, d, J=7.9Hz), 7.70-8.20 (4H, m), 8.27 (1H, d
 J=9.1Hz, 11.15 (1H, s)
    [0165]
 化合物 6-41
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 1.43 (3H, t, J=6.9Hz), 2.42 (3H, s), 4.29 (2H, d, J=7)
 .3Hz), 7.10-7.15 (1H, m), 7.20-7.30 (1H, m), 7.40-7.55 (2H, m), 7.73 (1H, dd, J=
 0.9, 8.2Hz), 7.76-7.85 (2H, m), 7.90 (1H, brs), 8.08 (1H, brs), 10.93 (1H, s)
    [0166]
 化合物 6-42
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 1.23 (3H, t, J=7.6Hz), 2.72 (2H, q, J=7.6Hz), 7.35-7.
 50 (3H, m), 7.66 (1H, m), 7.85-8.10 (4H, m), 8.27 (1H, brs), 11.01 (1H, s)
    [0167]
 化合物 6-43
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 1.23 (3H, t, J=7.6Hz), 2.72 (2H, q, J=7.6Hz), 7.45 (2
                                                    出証特2005-3015101
```

```
H, d, J=8.2Hz), 7.57 (1H, dd, J=2.5, 9.1Hz), 7.67 (1H, d, J=8.8Hz), 7.93 (2H, d,
 J=8.2Hz), 8.02 (1H, brs), 8.29 (1H, brs), 8.35 (1H, d, J=2.2Hz), 11.03 (1H, s)
   [0168]
化合物 6 - 4 4
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 1.23 (3H, t, J=7.6Hz), 2.71 (2H, q, J=7.6Hz), 3.87 (3
H, s), 6.99 (1H, dd, J=2.2, 9.1Hz), 7.10 (1H, d, J=2.2Hz), 7.44 (2H, d, J=8.2Hz)
, 7.70-8.20 (4H, m), 8.27 (1H, d, J=8.8Hz), 11.15 (1H, s)
   [0169]
化合物 6 - 4 5
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 0.92 (3H, t, J=7.3Hz), 1.55-1.75 (2H, m), 2.66 (2H, t
, J=7.3Hz), 7.35-7.50 (3H, m), 7.66 (1H, dd, J=4.1, 9.1Hz), 7.85-8.10 (4H, m), 8
.27 (1H, brs), 11.00 (1H, s)
   [0170]
化合物 6 - 4 6
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 0.92 (3H, t, J=7.3Hz), 1.55-1.70 (2H, m), 2.66 (2H, t
, J=7.3Hz), 3.87 (3H, s), 6.99 (1H, dd, J=2.2, 8.8Hz), 7.10 (1H, d, J=2.2Hz), 7.
42 (2H, d, J=8.2Hz), 7.70-8.20 (4H, m), 8.27 (1H, d, J=8.8Hz), 11.14 (1H, s)
    [0171]
化合物 6 - 4 7
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 0.91 (3H, t, J=7.3Hz), 1.25-1.40 (2H, m), 1.55-1.65 (
2H, m), 2.69 (2H, t, J=7.6Hz), 7.35-7.50 (3H, m), 7.60-7.70 (1H, m), 7.85-8.10 (
4H, m), 8.26 (1H, brs), 11.00 (1H, s)
    [0172]
化合物 6-48
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 7.35-7.45 (1H, m), 7.60-7.75 (1H, m), 7.80-7.90 (2H,
m), 7.95-8.10 (2H, m), 8.20-8.40 (3H, m), 11.07 (1H, s)
    [0173]
 化合物 6-49
 ^{1} H-NMR (DMSO-d6) \delta ppm: 3.87 (3H, s), 7.00 (1H, dd, J=2.2, 8.8Hz), 7.12 (1H, d
 , J=2.2Hz), 7.70-8.20 (5H, m), 8.25-8.35 (2H, m), 11.23 (1H, s)
    [0174]
 化合物 6 - 5 0
 <sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 4.87 (2H, s), 7.30-7.50 (1H, m), 7.60-7.75 (3H, m), 7
 .90-8.10 (4H, m), 8.27 (1H, brs), 11.02 (1H, s)
    [0175]
 化合物 6-51
 <sup>1</sup> H-NMR (CDCl<sub>3</sub>) δ ppm: 4.68 (2H, s), 5.61 (1H, brs), 6.41 (1H, brs), 7.20-7.30
  (1H, m), 7.35-7.45 (1H, m), 7.50-7.70 (2H, m), 7.95-8.10 (2H, m), 8.35-8.45 (1H, m)
 , m), 10.89 (1H, brs)
    [0176]
 化合物 6-52
 <sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 4.87 (2H, s), 7.40-7.50 (1H, m), 7.60-7.80 (3H, m), 7
 .95-8.05 (3H, m), 8.20-8.30 (2H, m), 11.05 (1H, brs)
    [0177]
 化合物 6-53
 <sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 4.89 (2H, s), 7.40-7.50 (1H, m), 7.60-7.65 (1H, m), 7
 .70-7.80 (2H, m), 7.95-8.15 (3H, m), 8.20-8.30 (2H, m), 11.06 (1H, brs)
     [0178]
 化合物 6-54
  <sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 4.87 (2H, s), 7.57 (1H, dd, J=2.2, 8.8Hz), 7.60-7.75
                                                     出証特2005-3015101
```

```
(3H, m), 7.95-8.10 (3H, m), 8.25-8.35 (2H, m), 11.04 (1H, s)
   [0179]
化合物 6-55
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 2.44 (3H, s), 4.87 (2H, s), 7.30-7.40 (1H, m), 7.45-7
.55 (1H, m), 7.60-7.70 (2H, m), 7.90 (1H, brs), 7.95-8.05 (3H, m), 8.17 (1H, brs
), 10.98 (1H, brs)
   [0180]
化合物 6-56
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 2.44 (3H, s), 4.89 (2H, s), 7.30-7.40 (1H, m), 7.45-7
.80 (3H, m), 7.90 (1H, brs), 7.95-8.15 (3H, m), 8.17 (1H, brs), 10.97 (1H, brs)
   [0181]
化合物 6-57
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.87 (3H, s), 4.89 (2H, s), 7.00 (1H, dd, J=2.2, 8.8H
z), 7.11 (1H, d, J=2.2Hz), 7.55-8.15 (6H, m), 8.21 (1H, d, J=8.8Hz), 11.17 (1H,
s)
化合物 6-58
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.87 (3H, s), 4.87 (2H, s), 7.00 (1H, dd, J=2.2, 9.1H
z), 7.11 (1H, d, J=2.2Hz), 7.66 (2H, d, J=8.5Hz), 7.75-8.15 (4H, m), 8.24 (1H, d
J=8.8Hz, 11.17 (1H, s)
    [0182]
化合物 6-59
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 1.43 (3H, t, J=6.9Hz), 4.30 (2H, q, J=6.9Hz), 4.89 (2
H, s), 7.10-7.15 (1H, m), 7.20-7.30 (1H, m), 7.55-7.75 (3H, m), 7.91 (1H, brs),
 7.95-8.00 (1H, m), 8.05-8.15 (2H, m), 10.95 (1H, s)
    [0183]
 化合物 6 - 6 0
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 7.35-7.45 (1H, m), 7.60-7.85 (3H, m), 7.97 (1H, brs),
  8.23 (1H, brs), 8.30-8.45 (2H, m), 11.01 (1H, s)
    [0184]
 化合物 6 - 6 1
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.87 (3H, s), 7.00 (1H, dd, J=2.2, 8.8Hz), 7.12 (1H,
 d, J=2.2Hz), 7.70-7.95 (2H, m), 8.05 (2H, d, J=8.8Hz), 8.30-8.45 (2H, m), 11.15
 (1H, s)
    [0185]
 化合物 6 - 6 2
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.87 (3H, s), 7.00 (1H, dd, J=2.2, 8.8Hz), 7.12 (1H,
 d, J=2.2Hz), 7.75-8.20 (5H, m), 8.29 (1H, d, J=8.2Hz), 8.42 (1H, s), 11.11 (1H,
 s)
    [0186]
 化合物 6 - 6 3
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 2.83 (4H, s), 7.35-7.45 (1H, m), 7.55-7.60 (1H, m), 7
 .65-7.80 (2H, m), 7.90-8.10 (4H, m), 8.27 (1H, brs), 11.02 (1H, s)
    [0187]
 化合物 6-64
 ^{1} H-NMR (DMSO-d<sub>6</sub>) _{\delta} ppm: 2.70-2.95 (4H, m), 3.87 (3H, s), 6.90-7.30 (2H, m), 7
 .40-8.30 (7H, m), 11.16 (1H, s)
     [0188]
 化合物 6 - 6 5
  <sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 2.23 (3H, s), 2.45 (4H, t, J=4.7Hz), 3.25-3.40 (4H, m
 ), 7.08 (2H, d, J=8.8Hz), 7.20-7.30 (1H, m), 7.52 (1H, dd, J=2.2, 8.8Hz), 7.84 (
```

```
2H, d, J=8.8Hz), 7.94 (1H, brs), 8.21 (1H, brs), 8.35-8.45 (1H, m), 10.99 (1H, s
   [0189]
化合物 6 - 6 6
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.20-3.40 (4H, m), 3.65-3.85 (4H, m), 7.10 (2H, d, J=
9.1Hz), 7.20-7.30 (1H, m), 7.53 (1H, dd, J=2.2, 8.8Hz), 7.80-8.00 (3H, m), 8.22
(1H, brs), 8.35-8.45 (1H, m), 11.00 (1H, s)
   [0190]
化合物 6 - 6 7
<sup>1</sup> H-NMR (CDCl<sub>3</sub>) δ ppm: 1.40-1.55 (9H, m), 4.35-4.50 (2H, m), 4.98 (1H, brs), 5
.92 (1H, brs), 6.43 (1H, brs), 7.30-7.50 (4H, m), 7.95-8.05 (2H, m), 8.65-8.75 (
1H, m), 10.85 (1H, brs)
   [0191]
化合物 6 - 6 8
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.86 (3H, s), 7.20-7.30 (1H, m), 7.35-7.45 (1H, m), 7
.48-7.60 (3H, m), 7.67 (1H, dd, J=4.4, 9.1Hz), 7.90-8.10 (2H, m), 8.27 (1H, brs)
, 11.02 (1H, s)
   [0192]
化合物 6 - 6 9
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.87 (3H, s), 7.10-7.20 (2H, m), 7.35-7.45 (1H, m), 7
.65 (1H, dd, J=4.1, 9.1Hz), 7.90-8.10 (4H, m), 8.26 (1H, brs), 10.95 (1H, s)
    [0193]
化合物 6 - 7 0
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.86 (3H, s), 7.24 (1H, dd, J=2.5, 7.9Hz), 7.43 (1H,
 dd, J=1.9, 8.8Hz), 7.48-7.60 (3H, m), 7.76 (1H, d, J=1.6Hz), 8.02 (1H, brs), 8.2
 0-8.35 (2H, m), 11.06 (1H, s)
    [0194]
 化合物 6 - 7 1
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.86 (3H, s), 3.87 (3H, s), 6.99 (1H, dd, J=2.2, 8.8H)
 z), 7.10 (1H, d, J=2.2Hz), 7.20-7.30 (1H, m), 7.45-7.60 (3H, m), 7.87 (1H, brs),
  8.06 (1H, brs), 8.25 (1H, d, J=9.1Hz), 11.17 (1H, s)
    [0195]
 化合物 6 - 7 2
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.863 (3H, s), 3.866 (3H, s), 6.98 (1H, dd, J=2.2, 8.
 8Hz), 7.09 (1H, d, J=2.2Hz), 7.15-7.20 (2H, m), 7.75-8.15 (4H, m), 8.27 (1H, d,
 J=8.8Hz), 11.09 (1H, s)
    [0196]
 化合物 6 - 7 3
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 1.43 (3H, t, J=6.9Hz), 3.86 (3H, s), 4.30 (2H, q, J=6)
 .9Hz), 7.12 (1H, d, J=7.9Hz), 7.20-7.30 (2H, m), 7.45-7.65 (3H, m), 7.73 (1H, d,
  J=8.2Hz), 7.92 (1H, brs), 8.09 (1H, brs), 10.95 (1H, s)
    [0197]
 化合物 6-74
  ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.87 (3H, s), 7.10-7.20 (2H, m), 7.35-7.60 (3H, m), 7
 .69 (1H, dd, J=1.6, 8.5Hz), 7.75-7.85 (3H, m), 7.90-8.05 (3H, m), 8.21 (1H, brs)
 , 8.39 (1H, d, J=8.5Hz), 11.03 (1H, s)
     [0198]
 化合物 6-75
  ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 7.35-7.45 (1H, m), 7.60-7.80 (3H, m), 7.85-8.10 (4H,
 m), 8.26 (1H, brs), 11.03 (1H, s)
```

```
[0199]
化合物 6 - 7 6
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 7.35-7.45 (1H, m), 7.61 (2H, d, J=7.9Hz), 7.67 (1H, d
d, J=4.1, 9.1Hz), 7.85-8.05 (2H, m), 8.10-8.35 (3H, m), 11.00 (1H, s)
   [0200]
化合物 6 - 7 7
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.87 (3H, s), 7.00 (1H, dd, J=2.2, 8.8Hz), 7.12 (1H,
d, J=2.2Hz), 7.60-8.25 (7H, m), 11.20 (1H, s)
   [0201]
化合物 6 - 7 8
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.87 (3H, s), 7.00 (1H, dd, J=2.2, 8.8Hz), 7.11 (1H,
d, J=2.2Hz), 7.61 (2H, d, J=8.5Hz), 7.70-8.30 (5H, m), 11.15 (1H, s)
   [0202]
化合物 6 - 7 9
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 1.43 (3H, t, J=7.3Hz), 4.30 (2H, q, J=7.3Hz), 7.12 (1
H, d, J=7.3Hz), 7.20-7.30 (1H, m), 7.62 (1H, dd, J=0.9, 8.2Hz), 7.68 (1H, d, J=8)
.2Hz), 7.72-7.80 (1H, m), 7.91 (1H, brs), 7.95 (1H, brs), 8.00-8.15 (2H, m), 10.
97 (1H, s)
   [0203]
化合物 6 - 8 0
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 7.05-7.50 (7H, m), 7.55-7.80 (4H, m), 7.90-7.95 (1H,
m), 7.98 (1H, brs), 8.26 (1H, brs), 11.00 (1H, brs)
    [0204]
化合物 6-81
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 7.05-7.30 (5H, m), 7.35-7.55 (3H, m), 7.60-7.70 (1H,
m), 7.90-8.10 (4H, m), 8.26 (1H, brs), 10.96 (1H, s)
    [0205]
化合物 6 - 8 2
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 7.05-7.35 (4H, m), 7.40-7.80 (7H, m), 8.01 (1H, brs),
 8.20-8.30 (1H, m), 8.28 (1H, brs), 11.02 (1H, brs)
    [0206]
化合物 6 - 8 3
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 7.05-7.35 (4H, m), 7.40-7.65 (5H, m), 7.70-7.80 (2H,
m), 8.05 (1H, brs), 8.33 (1H, brs), 10.95 (1H, brs)
    [0207]
化合物 6 - 8 4
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 2.42 (3H, s), 7.05-7.65 (10H, m), 7.75-7.80 (1H, m),
 7.88 (1H, brs), 7.90-8.00 (1H, m), 8.16 (1H, brs), 10.97 (1H, brs)
    [0208]
 化合物 6 - 8 5
 <sup>1</sup> H-NMR (CDCl<sub>3</sub>) δ ppm: 3.88 (3H, s), 5.69 (1H, brs), 6.26 (1H, brs), 6.85-7.50
  (9H, m), 7.65-7.80 (2H, m), 8.50-8.60 (1H, m), 10.95 (1H, brs)
    [0209]
 化合物 6-86
 ^{1} H-NMR (DMSO-d<sub>6</sub>) ^{\circ} ppm: 7.10-7.30 (5H, m), 7.35-7.55 (5H, m), 7.65-7.85 (4H,
 m), 7.97 (1H, brs), 8.00-8.10 (2H, m), 8.22 (1H, brs), 8.35 (1H, d, J=8.2Hz), 11
 .04 (1H, s)
    [0210]
 化合物 6-87
 <sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 7.35-7.60 (4H, m), 7.65-7.85 (4H, m), 7.90-8.10 (4H,
                                                     出証特2005-3015101
```

```
m), 8.20-8.35 (2H, m), 11.11 (1H, s)
   [0211]
化合物 6 - 8 8
<sup>1</sup> H-NMR (CDCl<sub>3</sub> +MeOD-d<sub>4</sub>) \delta ppm: 1.60-1.90 (4H, m), 3.00-3.50 (4H, m), 7.25-7.5
0 (2H, m), 7.80-8.20 (4H, m), 8.45-8.60 (1H, m)
   [0212]
化合物 6 - 8 9
^{1} H-NMR (DMSO-d<sub>6</sub>) ^{3} ppm: 0.75-0.95 (6H, m), 1.40-1.60 (4H, m), 3.00-3.15 (4H,
m), 3.87 (3H, s), 7.00 (1H, dd, J=2.5, 9.1Hz), 7.12 (1H, d, J=2.2Hz), 7.87 (1H,
brs), 7.95-8.25 (6H, m), 11.21 (1H, s)
   [0213]
化合物 6 - 9 0
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 6.17 (2H, s), 7.12 (1H, d, J=8.2Hz), 7.35-7.45 (1H, m
), 7.50 (1H, d, J=1.9Hz), 7.55-7.70 (2H, m), 7.90-8.05 (2H, m), 8.25 (1H, brs),
10.87 (1H, s)
   [0214]
化合物 6 - 9 1
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 6.17 (2H, s), 7.12 (1H, d, J=8.2Hz), 7.20-7.30 (1H, m
), 7.49 (1H, d, J=1.6Hz), 7.50-7.60 (1H, m), 7.59 (1H, dd, J=1.6, 8.2Hz), 7.94 (
1H, brs), 8.20 (1H, brs), 8.25-8.35 (1H, m), 10.94 (1H, s)
    [0215]
化合物 6 - 9 2
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 6.18 (2H, s), 7.10-7.15 (1H, m), 7.45-7.70 (4H, m), 8
.02 (1H, brs), 8.25-8.30 (1H, m), 8.30 (1H, brs), 10.89 (1H, brs)
    [0216]
化合物 6 - 9 3
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.87 (3H, s), 6.17 (2H, s), 6.90-7.20 (3H, m), 7.40-7
 .65 (2H, m), 7.84 (1H, brs), 8.03 (1H, brs), 8.15-8.30 (1H, m), 11.02 (1H, s)
    [0217]
化合物 6-94
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 1.43 (3H, t, J=6.9Hz), 4.29 (2H, q, J=6.9Hz), 6.16 (2
H, s), 7.05-7.25 (3H, m), 7.50 (1H, d, J=1.6Hz), 7.59 (1H, dd, J=1.9, 8.2Hz), 7.59
 69 (1H, dd, J=0.9, 7.9Hz), 7.89 (1H, brs), 8.06 (1H, brs), 10.79 (1H, s)
    [0218]
 化合物 6 - 9 5
 <sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.25-3.35 (2H, m), 4.60-4.70 (2H, m), 6.90-7.00 (1H,
 m), 7.50-7.70 (2H, m), 7.75-7.95 (2H, m), 8.01 (1H, brs), 8.30 (1H, brs), 8.30-8
 .40 (1H, m), 10.93 (1H, brs)
    [0219]
 化合物 6 - 9 6
 <sup>1</sup> H-NMR (CDCl<sub>3</sub>) \delta ppm: 2.05-2.25 (2H, m), 2.90-3.10 (4H, m), 7.30-7.50 (3H, m)
 , 7.75-7.95 (2H, m), 8.65-8.75 (1H, m)
    [0220]
 化合物 6 - 9 7
 <sup>1</sup> H-NMR (CDCl<sub>3</sub>) δ ppm: 3.82 (2H, s),6.11 (1H, brs), 6.46 (1H, brs), 7.10-7.50
 (6H, m), 7.55-7.60 (1H, m), 8.50-8.55 (1H, m), 9.94 (1H, brs)
    [0221]
 化合物 6-98
 ^{1} H-NMR (CDCl<sub>3</sub>) \delta ppm: 2.82 (2H, t, J=7.9Hz), 3.11 (2H, t, J=7.9Hz), 5.68 (1H,
  brs), 6.35 (1H, brs), 7.15-7.55 (7H, m), 8.45-8.55 (1H, m), 9.82 (1H, brs)
```

```
[0222]
化合物 6 - 9 9
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.81 (3H, s), 3.84 (3H, s), 3.86 (3H, s), 6.90-7.10 (
4H, m), 7.20-7.30 (1H, m), 7.35-7.40 (1H, m), 7.55-7.65 (1H, m), 7.76 (1H, brs),
7.94 (1H, brs), 8.05-8.15 (1H, m), 10.26 (1H, brs)
   [0223]
化合物 6-100
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.84 (3H, s), 4.05 (2H, s), 6.93 (1H, dd, J=2.5, 9.1H
z), 6.98-7.15 (3H, m), 7.43 (1H, dd, J=1.3, 5.0Hz), 7.74 (1H, brs), 7.90 (1H, br
s), 7.93 (1H, d, J=8.8Hz), 10.34 (1H, s)
   [0224]
化合物 6-101
^{1} H-NMR (CDCl<sub>3</sub> +MeOD-d<sub>4</sub>) \delta ppm: 6.75-6.90 (1H, m), 7.25-7.75 (4H, m), 7.85-8.0
0 (1H, m), 8.20-8.30 (1H, m), 8.50-8.65 (1H, m)
   [0225]
化合物 6-102
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 7.35-7.45 (1H, m), 7.50-7.90 (6H, m), 8.08 (1H, brs),
 8.38 (1H, brs), 8.40-8.45 (1H, m), 11.36 (1H, brs)
   [0226]
化合物 6-103
 <sup>1</sup> H-NMR (CDCl<sub>3</sub> +MeOD-d<sub>4</sub>) δ ppm: 2.74 (3H, s), 7.25-7.50 (2H, m), 8.30-8.70 (2H
, m)
    [0227]
化合物 6-104
 <sup>1</sup> H-NMR (CDCl<sub>3</sub>) δ ppm: 5.64 (1H, brs), 6.41 (1H, brs), 7.10-7.20 (1H, m), 7.35
-7.50 (2H, m), 7.60-7.70 (1H, m), 7.75-7.85 (1H, m), 8.65-8.75 (1H, m), 10.84 (1
H, brs)
    [0228]
 化合物 6 - 1 0 5
 <sup>1</sup> H-NMR (CDCl<sub>3</sub>) δ ppm: 5.64 (1H, brs), 6.40 (1H, brs), 6.80-6.90 (1H, m), 7.30
 -7.55 (3H, m), 8.10-8.20 (1H, m), 8.65-8.75 (1H, m), 10.54 (1H, brs)
    [0229]
 化合物 6-106
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 1.14 (6H, t, J=7.1Hz), 3.43 (4H, q, J=7.1Hz), 6.56-6.
 62 (1H, m), 6.72-6.84 (2H, m), 7.30-7.35 (1H, m), 7.50-8.03 (3H, m), 8.19 (1H, d
 J=9.1Hz, 11.21 (1H, s)
    [0230]
 化合物 6-107
 <sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 6.74-6.82 (1H, m), 7.34-7.47 (2H, m), 7.62-7.70 (1H,
 m), 7.96-8.12 (3H, m), 8.31 (1H, brs), 11.04 (1H, s)
    [0231]
 化合物 6-108
 <sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 6.72-6.84 (1H, m), 7.32-7.72 (3H, m), 7.96-8.11 (2H,
 m), 8.31 (1H, brs), 8.37-8.47 (1H, m), 11.04 (1H, s)
     [0232]
 化合物 6-109
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 6.70-6.90 (1H, m), 7.30-7.70 (2H, m), 7.85-8.20 (3H,
 m), 8.36 (1H, brs), 10.99 (1H, s)
    [0233]
 化合物 6-110
```

```
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 2.43 (3H, s), 6.75-6.80 (1H, m), 7.32-7.39 (2H, m), 7
.49 (1H, d, J=8.5Hz), 7.92 (1H, brs), 8.00-8.12 (2H, m), 8.21 (1H, brs), 10.99 (
1H, s)
   [0234]
化合物 6-111
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.81 (3H, s), 6.70-6.85 (1H, m), 7.05-7.60 (3H, m), 7
.74-8.10 (3H, m), 8.20 (1H, brs), 11.02 (1H, s)
   [0235]
化合物 6-112
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 3.98 (3H, s), 6.72-6.82 (1H, m), 7.08-7.40 (3H, m), 7
.78-8.24 (4H, m), 10.98 (1H, s)
   [0236]
化合物 6 - 1 1 3
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.86 (3H, s), 6.72-7.40 (4H, m), 7.86 (1H, brs), 7.96
-8.35 (3H, m), 11.14 (1H, s)
   [0237]
化合物 6-114
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 5.24 (2H, s), 6.72-6.83 (1H, m), 7.00-7.58 (8H, m), 7
.85 (1H, brs), 7.97-8.20 (2H, m), 8.30 (1H, d, J=9.0Hz), 11.14 (1H, s)
   [0238]
化合物 6-115
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 2.40 (3H, s), 6.30-6.40 (1H, m), 7.05-7.20 (1H, m), 7
.28 (1H, d, J=3.2Hz), 7.45-7.55 (2H, m), 7.86 (1H, brs), 8.06 (1H, brs), 9.98 (1
H, s)
    [0239]
化合物 6-116
<sup>1</sup> H-NMR (CDCl<sub>3</sub>) δ ppm: 2.45 (3H, s), 5.59 (1H, brs), 6.15-6.25 (1H, m), 6.39 (
1H, brs), 7.15-7.25 (2H, m), 7.35-7.45 (1H, m), 8.35-8.40 (1H, m), 10.72 (1H, br
s)
    [0240]
化合物 6-117
 ^{1} H-NMR (CDCl<sub>3</sub>) \delta ppm: 2.45 (3H, s), 5.59 (1H, brs), 6.15-6.25 (1H, m), 6.38 (
1H, brs), 7.15-7.25 (1H, m), 7.35-7.45 (2H, m), 8.65-8.75 (1H, m), 10.73 (1H, br
s)
    [0241]
化合物 6-118
 <sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 2.41 (3H, s), 6.32-6.47 (1H, m), 7.20-7.48 (2H, m), 7
 .70-7.80 (1H, m), 7.97 (1H, brs), 8.24 (1H, brs), 8.36 (1H, d, J=8.7Hz), 10.99 (
 1H, s)
    [0242]
 化合物 6-119
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 2.41 (3H, s), 6.35-6.47 (1H, m), 7.22-7.33 (1H, m), 7
 .54-7.64 (1H, m), 7.88-7.96 (1H, m), 8.05 (1H, brs), 8.35 (1H, brs), 10.93 (1H,
 s)
    [0243]
 化合物 6-120
 <sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 2.41 (3H, s), 3.30 (3H, s), 6.35-6.45 (1H, m), 6.95-7
 .00 (1H, m), 7.05-7.10 (1H, m), 7.20-7.25 (1H, m), 7.82 (1H, brs), 8.03 (1H, brs
 ), 8.25-8.35 (1H, m), 11.07 (1H, brs)
    [0244]
```

化合物 6-121 ¹ H-NMR (DMSO-d₆) δ ppm: 1.27 (3H, t, J=7.6Hz), 2.76 (2H, q, J=7.6Hz), 6.40-6. 45 (1H, m), 7.25-7.30 (1H, m), 7.35-7.45 (1H, m), 7.60-7.70 (1H, m), 8.00 (1H, b) rs), 8.10-8.15 (1H, m), 8.27 (1H, brs), 11.06 (1H, brs) [0245]化合物 6-122 ¹ H-NMR (DMSO-d₆) δ ppm: 1.27 (3H, t, J=7.6Hz), 2.75 (2H, q, J=7.6Hz), 6.35-6. 45 (1H, m), 7.20-7.30 (2H, m), 7.53 (1H, dd, J=2.2, 9.1Hz), 7.95 (1H, brs), 8.21 (1H, brs), 8.35-8.50 (1H, m), 11.12 (1H, s) [0246] 化合物 6-123 ¹ H-NMR (DMSO-d₆) δ ppm: 1.27 (3H, t, J=7.6Hz), 2.76 (2H, q, J=7.6Hz), 6.40-6. 45 (1H, m), 7.25-7.30 (1H, m), 7.50-7.70 (2H, m), 8.02 (1H, brs), 8.29 (1H, brs) , 8.40-8.50 (1H, m), 11.08 (1H, brs) [0247] 化合物 6-124 ¹ H-NMR (DMSO-d₆) δ ppm: 1.26 (3H, t, J=7.5Hz), 2.75 (2H, q, J=7.5Hz), 6.40-6. 45 (1H, m), 7.20-7.30 (1H, m), 7.35-7.45 (1H, m), 7.70-7.80 (1H, m), 7.99 (1H, b) rs), 8.25 (1H, brs), 8.35-8.45 (1H, m), 11.09 (1H, brs) [0248]化合物 6-125 1 H-NMR (DMSO-d₆) δ ppm: 1.26 (3H, t, J=7.8Hz), 2.76 (2H, q, J=7.8Hz), 6.40-6. 45 (1H, m), 7.25-7.30 (1H, m), 7.55-7.65 (1H, m), 7.90-8.00 (1H, m), 8.08 (1H, b) rs), 8.35 (1H, brs), 11.03 (1H, brs) [0249]化合物 6-126 ¹ H-NMR (DMSO-d₆) δ ppm: 1.27 (3H, t, J=7.6Hz), 2.43 (3H, s), 2.75 (2H, q, J=7) .6Hz), 6.40-6.45 (1H, m), 7.20-7.40 (2H, m), 7.45-7.50 (1H, m), 7.90 (1H, brs), 8.10-8.20 (1H, m), 8.17 (1H, brs), 11.01 (1H, brs) [0250]化合物 6-127 ¹ H-NMR (DMSO-d₆) δ ppm: 1.26 (3H, t, J=7.6Hz), 2.75 (2H, q, J=7.6Hz), 3.86 (3 H, s), 6.35-6.45 (1H, m), 6.95-7.00 (1H, m), 7.05-7.10 (1H, m), 7.20-7.30 (1H, m), 7.85 (1H, brs), 8.03 (1H, brs), 8.25-8.35 (1H, m), 11.17 (1H, brs) [0251]化合物 6-128 ¹ H-NMR (DMSO-d₆) δ ppm: 1.26 (3H, t, J=7.6Hz), 1.42 (3H, t, J=6.9Hz), 2.75 (2 H, q, J=7.6Hz), 4.29 (2H, q, J=6.9Hz), 6.41 (1H, d, J=3.5Hz), 7.12 (1H, d, J=8.2) Hz), 7.15-7.30 (2H, m), 7.85 (1H, dd, J=0.9, 8.2Hz), 7.92 (1H, brs), 8.09 (1H, b rs), 11.00 (1H, s) [0252]化合物 6-129 ¹ H-NMR (DMSO-d₆) δ ppm: 3.86 (3H, s), 4.93 (2H, s), 6.75-6.85 (1H, m), 6.95-7 .15 (2H, m), 7.25-7.35 (1H, m), 7.86 (1H, brs), 8.06 (1H, brs), 8.15-8.30 (1H, m), 11.16 (1H, brs) [0253]化合物 6-130 ¹ H-NMR (DMSO-d₆) δ ppm: 7.25-7.30 (1H, m), 7.40-7.70 (6H, m), 7.90-8.00 (2H, m), 8.15-8.25 (1H, m), 8.16 (1H, brs), 8.36 (1H, brs), 11.48 (1H, brs)

[0254]

```
化合物 6-131
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 7.20-7.30 (1H, m), 7.35-7.55 (5H, m), 7.70-7.80 (1H,
m), 7.90-8.00 (2H, m), 8.15 (1H, brs), 8.34 (1H, brs), 8.45-8.55 (1H, m), 11.50
(1H, brs)
   [0255]
化合物 6-132
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 7.25-7.65 (6H, m), 7.85-8.10 (3H, m), 8.23 (1H, brs),
 8.44 (1H, brs), 11.42 (1H, brs)
   [0256]
化合物 6-133
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.87 (3H, s), 6.95-7.15 (2H, m), 7.20-7.30 (1H, m), 7
.35-7.55 (4H, m), 7.85-8.15 (4H, m), 8.35-8.45 (1H, m), 11.55 (1H, brs)
   [0257]
化合物 6-134
^{1} H-NMR (CDCl<sub>3</sub> +MeOD-d<sub>4</sub>) \delta ppm: 7.20-7.60 (3H, m), 7.80-8.00 (1H, m), 8.15-8.4
0 (1H, m), 8.60-8.80 (2H, m)
   [0258]
化合物 6-135
<sup>1</sup> H-NMR (CDCl<sub>3</sub> +MeOD-d<sub>4</sub>) \delta ppm: 7.30-7.60 (3H, m), 8.20-8.80 (3H, m), 9.10-9.3
0 (1H, m)
   [0259]
化合物 6-136
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 3.87 (3H, s), 7.00 (1H, dd, J=2.2, 8.8Hz), 7.12 (1H,
d, J=2.2Hz), 7.74-8.20 (4H, m), 8.38 (1H, dd, J=2.5, 8.2Hz), 8.99 (1H, d, J=2.2Hz)
z), 11.12 (1H, s)
   [0260]
化合物 6-137
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 7.15-7.33 (4H, m), 7.35-7.55 (3H, m), 7.67 (1H, dd, J
=4.1, 9.1Hz), 7.88 (1H, dd, J=2.8, 9.5Hz), 7.98 (1H, brs), 8.24 (1H, brs), 8.40
(1H, dd, J=2.5, 8.5Hz), 8.78 (1H, d, J=2.5Hz), 10.90 (1H, s)
   [0 2 6 1]
化合物 6-138
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 7.15-7.35 (4H, m), 7.40-7.60 (4H, m), 7.95 (1H, brs),
 8.10-8.30 (2H, m), 8.39 (1H, dd, J=2.5, 8.5Hz), 8.77 (1H, d, J=2.5Hz), 10.97 (1
H, s)
   [0262]
化合物 6-139
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.45 (3H, s), 4.10 (2H, s), 7.35-7.45 (1H, m), 7.55-7
.70 (1H, m), 7.91 (1H, brs), 8.05-8.15 (1H, m), 8.20 (1H, brs), 10.76 (1H, s)
    [0263]
化合物 6-140
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.45 (3H, s), 4.11 (2H, s), 7.54 (1H, dd, J=2.2, 8.8H)
z), 7.63 (1H, d, J=8.8Hz), 7.93 (1H, brs), 8.22 (1H, brs), 8.40 (1H, d, J=2.2Hz)
, 10.76 (1H, s)
    [0264]
化合物 6-141
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 3.45 (3H, s), 3.96 (3H, s), 4.09 (2H, s), 7.08-7.15 (
1H, d, J=7.9Hz), 7.18-7.25 (1H, m), 7.75-7.95 (2H, d, J=8.2Hz), 8.07 (1H, brs),
10.73 (1H, s)
    [0265]
```

```
化合物 6-142
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 4.82 (2H, s), 6.95-7.15 (3H, m), 7.30-7.45 (3H, m), 7
.60-7.70 (1H, m), 8.00 (1H, brs), 8.10-8.20 (1H, m), 8.24 (1H, brs), 11.16 (1H,
brs)
   [0266]
化合物 6-143
<sup>1</sup> H-NMR (CDCl<sub>3</sub>) \delta ppm: 4.70 (2H, s), 6.90-7.15 (5H, m), 7.30-7.50 (4H, m), 8.5
5-8.65 (1H, m), 11.17 (1H, brs)
   [0267]
化合物 6-144
<sup>1</sup> H-NMR (CDCl<sub>3</sub>) δ ppm: 3.88 (3H, s), 4.69 (2H, s), 5.63 (1H, brs), 6.24 (1H, b
rs), 6.85-7.15 (5H, m), 7.30-7.40 (2H, m), 8.45-8.55 (1H, m), 11.11 (1H, brs)
   [0268]
化合物 6-145
<sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 4.83 (2H, s), 7.05-7.15 (2H, m), 7.35-7.45 (3H, m), 7
.60-7.70 (1H, m), 8.00 (1H, brs), 8.05-8.15 (1H, m), 8.25 (1H, brs), 11.13 (1H,
brs)
   [0269]
化合物 6-146
^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 4.84 (2H, s), 7.10-7.15 (2H, m), 7.35-7.45 (2H, m), 7
.50-7.70 (2H, m), 8.02 (1H, brs), 8.27 (1H, brs), 8.40-8.45 (1H, m), 11.13 (1H,
brs)
   [0270]
化合物 6-147
<sup>1</sup> H-NMR (CDCl<sub>3</sub>) δ ppm: 3.88 (3H, s), 4.66 (2H, s), 5.54 (1H, brs), 6.26 (1H, b
rs), 6.80-7.10 (4H, m), 7.20-7.40 (2H, m), 8.45-8.55 (1H, m), 11.09 (1H, brs)
   [0271]
化合物 6-148
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 1.58 (6H, s), 7.05-7.20 (2H, m), 7.30-7.45 (3H, m), 7
.60-7.70 (1H, m), 7.95 (1H, brs), 8.05-8.15 (1H, m), 8.22 (1H, brs), 11.24 (1H,
brs)
   [0272]
化合物 6-149
 <sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 1.58 (6H, s), 7.05-7.20 (2H, m), 7.30-7.45 (2H, m), 7
 .50-7.70 (2H, m), 7.97 (1H, brs), 8.24 (1H, brs), 8.40-8.50 (1H, m), 11.28 (1H,
brs)
    [0273]
 化合物 6-150
 <sup>1</sup> H-NMR (DMSO-d<sub>6</sub>) δ ppm: 4.23 (2H, s), 4.70 (2H, s), 7.25-7.45 (4H, m), 7.49 (
 2H, d, J=7.3Hz), 7.60-7.65 (1H, m), 7.98 (1H, brs), 8.05-8.15 (1H, m), 8.22 (1H,
 brs), 10.90 (1H, s)
    [0274]
 化合物 6-151
 ^{1} H-NMR (DMSO-d<sub>6</sub>) \delta ppm: 4.23 (2H, s), 4.70 (2H, s), 7.25-7.45 (3H, m), 7.49 (
 2H, d, J=7.3Hz), 7.55 (1H, dd, J=2.2, 8.8Hz), 7.63 (1H, d, J=8.8Hz), 8.00 (1H, b)
 rs), 8.24 (1H, brs), 8.41 (1H, d, J=2.5Hz), 10.90 (1H, s)
    [0275]
 実施例3
 6-メトキシ-3-[3-(4-フェニルピペラジン-1-イルメチル) ベンゾイルアミ
 ノ] ベンゾフランー2ーカルボキサミド(化合物7-1)
```

[0276]

3-(3-クロロメチルベンゾイルアミノ) -6-メトキシベンゾフラン-2-カルボキサミドおよび4-フェニルピペラジンの代わりに対応するベンジルハライドまたは2-クロロメチルフラン、およびアミンもしくはチオールを用い、実施例3と同様の方法により、化合物7-2~7-10を合成した。これらを表3に示した。

【0277】 【表3】

化合物 No.	構造式	化合物 No.	構造式
7-1	0=NH ₂ 0=NH ₂ 0=NH ₂	7-6	O=NH ₂ H O
7-2	N- NH2 N- N- O	7–7	NH ₂ H O N N O N O N O O O O O O O O O O O O
7-3	N- H O	7-8	N N O N O N
7-4	H O NH ₂ H O NH ₂	7-9	NHz NHZ HHZ NHZ OHA NHZ OHA OHA OHA OHA OHA OHA OHA OHA
75	F—S O	7-10	FONH ₂ OH O

[0278]

化合物7-2~7-10の物性値を以下に示した。

[0279]

化合物 7-2

¹ H-NMR (DMSO-d₆) δ ppm: 1.65-1.75 (4H, m), 2.40-2.50 (4H, m), 3.68 (2H, s), 3.87 (3H, s), 6.95-7.15 (2H, m), 7.50-7.65 (2H, m), 7.80-7.95 (3H, m), 8.06 (1H,

brs), 8.20-8.30 (1H, m), 11.18 (1H, brs)

[0280]

化合物7-3

¹ H-NMR (DMSO-d₆) δ ppm: 0.85 (6H, d, J=6.6Hz), 1.30-1.40 (2H, m), 1.64 (1H, h eptet, J=6.6Hz), 2.08 (1H, brs), 2.45-2.55 (2H, m), 3.78 (2H, s), 3.87 (3H, s), 6.95-7.15 (2H, m), 7.50-7.65 (2H, m), 7.80-8.15 (4H, m), 8.20-8.30 (1H, m), 11.1 4 (1H, brs)

[0281]

化合物7-4

¹ H-NMR (DMSO-d₆) δ ppm: 1.00-1.25 (5H, m), 1.50-2.05 (6H, m), 2.30-2.45 (1H, m), 3.82 (2H, s), 3.87 (3H, s), 6.95-7.15 (2H, m), 7.45-7.70 (2H, m), 7.80-8.10 (3H, m), 8.05 (1H, brs), 8.20-8.30 (1H, m), 11.14 (1H, brs)

[0282]

化合物 7 - 5

¹ H-NMR (DMSO-d₆) δ ppm: 3.86 (3H, s), 4.30 (2H, s), 6.90-7.25 (4H, m), 7.35-7 (5.55 (4H, m), 7.80-7.95 (3H, m), 8.04 (1H, brs), 8.15-8.25 (1H, m), 11.11 (1H, brs)

[0283]

化合物7-6

¹ H-NMR (DMSO-d₆) δ ppm: 3.87 (3H, s), 4.32 (2H, s), 6.90-7.20 (4H, m), 7.40-7 .50 (2H, m), 7.80-7.95 (3H, m), 8.05 (1H, brs), 8.20-8.30 (1H, m), 11.11 (1H, brs), 12.25 (1H, brs)

[0284]

化合物7-7

¹ H-NMR (DMSO-d₆) δ ppm: 3.39 (3H, s), 3.87 (3H, s), 4.27 (2H, s), 6.95-7.15 (3H, m), 7.20-7.25 (1H, m), 7.35-7.45 (2H, m), 7.80-7.90 (3H, m), 8.05 (1H, brs), 8.20-8.30 (1H, m), 11.13 (1H, brs)

[0285]

化合物 7 - 8

 1 H-NMR (DMSO-d₆) δ ppm: 2.55-2.70 (4H, m), 3.05-3.25 (4H, m), 3.70 (2H, s), 3.86 (3H, s), 6.60-6.65 (1H, m), 6.70-6.80 (1H, m), 6.85-7.25 (6H, m), 7.30-7.35 (1H, m), 7.88 (1H, brs), 8.08 (1H, brs), 8.25-8.30 (1H, m), 11.13 (1H, brs)

[0286]

化合物 7 - 9

¹ H-NMR (DMSO-d₆) δ ppm: 2.10-2.25 (6H, m), 2.65-2.75 (2H, m), 3.80-3.95 (5H, m), 6.55-6.65 (1H, m), 6.95-7.15 (2H, m), 7.25-7.40 (1H, m), 7.86 (1H, brs), 8.20-8.30 (1H, m), 11.11 (1H, brs)

[0287]

化合物 7-10

¹ H-NMR (DMSO-d₆) δ ppm: 3.86 (3H, s), 4.35 (2H, s), 6.40-6.50 (1H, m), 6.90-7 .25 (5H, m), 7.40-7.55 (2H, m), 7.89 (1H, brs), 8.08 (1H, brs), 8.20-8.30 (1H, m), 11.08 (1H, brs)

[0288]

試験例1

ヒトアデノシンA2A 受容体阻害作用試験

1) ヒトアデノシンA2A 受容体発現細胞の作成

対数増殖期のCHO-K1細胞をトリプシン処理し、10%ウシ胎仔血清(三光純薬社製)を含むD-MEM/F-12培地(インビトロジェン社製)で浮遊状態にした。これにOPTI-MEM I (インビトロジェン社製)で調整したヒトアデノシン A_2 A 受容体発現用のプラスミドとトランスフェクション試薬Lipofectamine 200

0(インビトロジェン社製)の混合液を加えた。この細胞懸濁液をポリーDーリジンコートの96ウェルプレートへ細胞 5×10^4 個/wellでまき、37℃、5%CO2の条件下で24~30時間培養後、試験に使用した。

[0289]

2) ヒトアデノシンA2A 受容体阻害活性の測定

試験化合物をまずジメチルスルホキシドで溶解した後、細胞由来のリガンドであるアデノシンを不活化するアデノシンデアミナーゼ2. 5 ユニット/m L (カルビオケム社製) およびホスホジエステラーゼ阻害剤であるRolipram (シグマ社製) 30 μ Mを含むD-MEM/F-12培地で調整した。

細胞をD-MEM/F-12培地 150μ L/wellで2回洗浄し、試験化合物を 50μ lずつ加えた。37C、 $5%CO_2$ 下で10分間培養後、アデノシンデアミナーゼおよびRolipramを含むD-MEM/F-12培地で調整した1.2nMo5'-N-2+ルカルボキシアミドアデノシン(NECA;シグマ社製)を 50μ Lずつ加え、37C、 $5%CO_2$ 下で25分間培養した。この反応の停止およびそれ以降のcAMPの測定は、アプライドバイオシステムズ社製のcAMPエンザイムイムノアッセイキットを用いて行った。化学発光の検出はMicroplate Luminometer TR717(アプライドバイオシステムズ社製)を使用した。

NECA刺激 c AMP産生に対する試験化合物の阻害率およびKiを以下の式に従って 算出した。

阻害率 (%) = [1-|(NECAと試験化合物共存下でのcAMP量―アデノシンデアミナーゼおよびRolipramを含むD-MEM/F-12培地のみのcAMP量) / (NECA単独刺激のcAMP量―アデノシンデアミナーゼおよびRolipramを含むD-MEM/F-12培地のみのcAMP量) | x100

また試験化合物と同一プレートで測定、算出したNECAに対するKmを用い、阻害定数Kiを、以下の式に従って算出した。

 $Ki = IC_{50} / \{1 + (6 \times 10^{10} / Km)\}$

その結果を下記の表4に示した。

[0290]

【表4】

化合物番号	Ki値 (nM)
6-2	4.1
6-15	6.5
6-36	6.4
6-91	6.5
6-108	9.3
6-109	2.7
6-133	3.2
6-138	4.5
6-141	9.3
6-150	2.2
7-1	8.0
7–7	8.6

[0291]

試験例2

ハロペリドール誘発カタレプシーに対する作用

本発明の化合物のパーキンソン病治療薬としての有用性は、以下の薬物誘発パーキンソンモデルを用いて評価することができる。

パーキンソン病は、黒質から線条体に投射するドパミン神経細胞の変性・脱落を伴い、 線条体のドパミン量が著明に減少することによって引き起こされる運動機能障害である。 ラットにドパミンD2受容体遮断作用のあるハロペリドールを投与すると、ドパミン性神 経伝達を遮断するためパーキンソン様症状の一つであるカタレプシーを起こす。

雄性ラット(Crj:CD(SD)IGS、体重200-250g、日本チャールズ・リバー株式会社)、1群6-8匹に、ドパミンD2拮抗薬ハロペリドール(セレネース注射液、大日本製薬株式会社)0.25mg/kgを腹腔内投与し、その4時間後にカタレプシー症状を水平棒試験(Morelliand Chiara, Eur.J.Pharmacol.117:179-185(1985))を用いて測定した。被験化合物(<math>30mg/kg)は、0.3% Tween80含有蒸留水に緊濁しカタレプシー症状観察の2時間前に腹腔内投与した。また対照群として、0.3% Tween80含有蒸留水を同様に腹腔内投与した。ラットの両前肢を高さ13-14cmに設定した棒(直径3mm)に懸け静止したときから両前肢が棒から落ちるまでの時間を測定し、カタレプシー持続時間とした。

その結果、本発明の化合物は、優れたカタレプシー改善作用を示し、パーキンソン病治療薬としての有用性が確認された。

【産業上の利用可能性】

[0292]

一般式 (I) で表される化合物は、優れたアデノシンA2A 受容体拮抗作用を有するのでアデノシンA2A 受容体が媒介する疾患、例えば、運動機能障害、うつ病、認知機能障害、脳虚血性障害などの治療または予防剤として有用である。

【曹類名】要約曹

【要約】

【課題】 アデノシンA2A受容体拮抗作用を有する新規な化合物を提供する。

【解決手段】 一般式(I):

【化1】

$$R^4$$
 R^3
 R^2
 R^5
 $CONHR^1$
 R^6

[式中、 R^1 は水素または低級アルキルであり; R^2 はシクロアルキル、アリール、アラルキル、アリールアルケニル、低級アルコキシ低級アルキル、アリールオキシ低級アルキル、ヘテロアリール、ヘテロアリール低級アルキル等であり; R^3 、 R^4 、 R^5 および R^6 はそれぞれ水素、ハロゲン、シアノ、低級アルキル、ハロ低級アルキル、低級アルコキシ、水酸基、アリール等であり;但し、 R^3 、 R^4 、 R^5 および R^6 の少なくとも一つは水素以外である〕で表される化合物またはそのプロドラッグ、あるいは薬理学的に許容される塩。本発明の化合物は、優れたアデノシン A_2 A 受容体関連疾患、特に運動機能障害、うつ病、認知機能障害、脳虚血性障害などの治療または予防剤として有用である。

【選択図】 なし

ページ: 1/E

認定 · 付加情報

特許出願の番号

特願2004-019235

受付番号

5 0 4 0 0 1 3 6 5 2 2

書類名

特許願

担当官

第五担当上席

0 0 9 4

作成日

平成16年 1月29日

<認定情報・付加情報>

【提出日】

平成16年 1月28日

特願2004-019235

出願人履歷情報

識別番号

[000104560]

1. 変更年月日 [変更理由] 住 所 氏 名 1990年 8月31日 新規登録 長野県松本市芳野19番48号 キッセイ薬品工業株式会社