

Predicting Cab Booking Cancellations

Agenda

- ✓ Problem Statement
- ✓ Data Source and Features
- ✓ Feature Engineering and Exploratory Data Analysis
- ✓ Machine learning
- ✓ Inference

Problem Statement

Customers can cancel the booking up to the last minute of pick up at no cost to them

Cancelled booking dents the revenue of the company and adds operational overheads

Use the Data collected over time to predict the probability of booking cancellation

Problem Analysis

Classification Task – Classify the Cancellation feature into:

√ '0' (Not Cancelled)

or

√ '1' (Cancelled)

Agenda

- ✓ Problem Statement
- ✓ Data Source and Features
- ✓ Feature Engineering and Exploratory Data Analysis
- ✓ Machine learning
- ✓ Inference

Dataset

Training Data-

- ✓ 43 K records
- √ 18 Features

Uneven Classes

✓ Approx 7% of the total bookings are actually Cancelled(Training Data)

Source:- https://inclass.kaggle.com/c/predicting-cab-booking-cancellations/data

Features at a Glance

Features set includes:

✓ Vehicle attributes

- ✓ Booking attributes including-
 - Online
 - GPS data
 - Mobile
 - Travel Type
 - Source
 - Destination

Features at a Glance(Contd..)

Agenda

- ✓ Problem Statement
- ✓ Data Source and Features
- ✓ Feature Engineering and Exploratory Data Analysis
- ✓ Machine learning
- ✓ Inference

(GPS Data)

Booking Coordinates (Latitude ,longitude of source & Destination) New feature 'Distance'

Implementation

- df['distance'] = 6367 * 2 * np.arcsin(np.sqrt(np.sin(np.radians(df['to_lat']) math.radians(37.2175900)/2)**2 + math.cos(math.radians(37.2175900)) * np.cos(np.radians(df['to_lat']) * np.sin(np.radians(df['from_long']) math.radians(-56.7213600)/2)**2)))
- df['distance']=df.distance/1000
- df.distance = df.distance.apply(replace_null)

(Area information)

- Data set has features from_area_id and to_area_id that depicts the location of the origin and destination
- 599 unique values for feature- 'Area_id'

- Majority of the bookings cater to a few of the areas as is evident from the density function
- New feature 'Popular_Pickup'=0 if area_id of the booking is not from the popular_area and 1 otherwise
- New feature 'Popular_Drop'=0 if area_id of the booking is not from the popular_area and 1 otherwise

(Fleet Analysis)

- Creating new_feature- vehicle_category
- cat_1 = vehicle_cat_df.vehicle_count.max()
- cat_2 = round(vehicle_cat_df.vehicle_count.quantile(.75))
- cat_3 = round(vehicle_cat_df.vehicle_count.quantile(.5))
- cat_4 = round(vehicle_cat_df.vehicle_count.quantile(.25))

(User segmentation)

Distribution of User_id

User_id - Id of the user requesting the service

New Feature – is_frequent

- ✓ Is_frequent = 1 (returning user)
- ✓ Is_frequent = 0 (one time user)

(Summary)

Stratified Sampling

- Uneven Data Set-less than 7% of the booking are cancelled
- Creating a balanced data set with equal distribution of dependent variable
- y_0 = df[df.Car_Cancellation == 0]
- y_1 = df[df.Car_Cancellation == 1]
- n = min([len(y_0), len(y_1)])
- y 0 = y 0.sample(n = n, random state = 0)
- y_1 = y_1.sample(n = n, random_state = 0)df_strat = pd.concat([y_0, y_1])
- X_strat = df_strat[['online_booking','distance','mobile_site_booking','vehicle_type','frequent_user','Req_start_Month','Creation_Month','Popular_Pickup']]y_strat = df_strat.Car_Cancellation

Agenda

- ✓ Problem Statement
- ✓ Data Source and Features
- ✓ Feature Engineering and Exploratory Data Analysis
- ✓ Machine learning
- ✓ Inference

Modelling-Stats Model

(Kitchen Sink Strategy)

Output of Stats Model

	coef	std err	z	P> z	[95.0% Conf. Int.]
const	-908.5756	4799.228	-0.189	0.850	-1.03e+04 8497.738
online_booking	1.2302	0.047	26.333	0.000	1.139 1.322
distance	63.2429	2.440	25.923	0.000	58.461 68.024
mobile_site_booking	1.3237	0.080	16.562	0.000	1.167 1.480
vehicle_type	-0.8444	0.056	-15.117	0.000	-0.954 -0.735
travel_type_id	12.8902	2399.554	0.005	0.996	-4690.149 4715.929
frequent_user	-0.7271	0.043	-16.901	0.000	-0.811 -0.643
Req_start_Month	0.7830	0.077	10.134	0.000	0.632 0.934
Creation_Month	-0.5925	0.078	-7.583	0.000	-0.746 -0.439
Popular_Pickup	-0.3916	0.049	-7.946	0.000	-0.488 -0.295
Popular_Drop	-0.1377	0.048	-2.867	0.004	-0.232 -0.044

- Kitchen Sink strategy on the Data set further reduces the features
- Travel_type_id gets eliminated from further analysis due to the higher p value

(Logistic Regression)

• 69% Accuracy on the Training Data

Cross Validation

• 69% mean Accuracy on the CV Data(10 folds)

Test Data

model.score(test_X_strat,test_y_strat)

0.6999999999999996

(Decision Trees)

Training

model_tree.score(train_X_strat, train_y_strat)

0.96877189424135701

97 % Accuracy on the Training Data

68.2% mean Accuracy on the CV Data(10 folds)

Test Data

model_tree.score(test_X_strat , test_y_strat)

-0.20076622358025387

0.67927927927922

(Random Forests - no of trees=10000)

Training

model_forest.score(train_X_strat, train_y_strat)

0.98626126126126124

• 98 % Accuracy on the Training Data

Cross Validation

• 79% mean Accuracy on the CV Data(10 folds)

Conclusion

- High Accuracy on Training Data
- Huge gap exists between Training Score and Validation Score

Tuning the Model

(Random Forests - no of trees=10000)

Cross validation on max-depth

	CV_score	Depth	Train_Score
0	0.736044	1.0	0.741441
1	0.745497	2.0	0.749324
2	0.752485	3.0	0.755631
3	0.754732	4.0	0.762838
4	0.761492	5.0	0.774099
5	0.764422	6.0	0.788288
6	0.765992	7.0	0.801577
7	0.766674	8.0	0.815991
8	0.762393	9.0	0.837613

Cross Validation score on forests with trees of depth 6 seems to provide the best score with minimum complexity

Selecting the best Model

(Random Forests - no of trees=10000)

Model Comparison

<u>Un-tuned Model(Default Parameters)</u>

Training Score	CV Score	Test Score
98.7 %	79 %	70 %

Tuned Model(on Max_depth = 6)

Training Score	CV Score	Test Score
80.1 %	76.6 %	74.3%

(Random Forests-Feature Importance)

Feature	%age
distance	30.32
Creation_Month	19.60
online_booking	16.6
Req_start_Month	16.18
frequent_user	7.6
vehicle_type	4.5
mobile_site_booking	3.8
Popular_Pickup	1.1
Total	99.7

- Random forest seems to be the best amongst all the models
- Random forest also seem to cut off the nose and make the best decision on the important features
- Chance of over -fitting is less as compared to Decision trees(which is most likely to have overfit – Training score of 97%)

Agenda

- ✓ Problem Statement
- ✓ Data Source and Features
- ✓ Feature Engineering and Exploratory Data Analysis
- ✓ Machine learning
- ✓ Inference

Model Accuracy (Random Forest on Test set)

Appears that the Maximum number of misclassifications are occurring in Apr, May

Interpretation

- Appears that the chances for the cancellation is maximum in Jul when the mean travel distance is between 13 -14 KMs
- Cancellations increases a lot between Jun-Aug and then follow the same pattern as rest of the year

Next Steps

(integration ideas with Ride sharing Apps)

Push Notifications- For booking that have a high chance of cancellations send a push notification to customer ,seeking reconfirmation

Fleet reduction- For those months that have a high chance of cancellations consider reducing the fleet size

Decline the Booking- if the distance is less and booking has a high probability for cancellation- Don't Accecpt the booking

Note- This can hamper customer satisfaction and can turn away users

References

Technical Reference and Source code can be downloaded from: Git Hub

(https://github.com/deveshkhandelwal/Modeling)

Questions/Feedback

