Week 2

- Day 2
 - Counting Techniques
 - Permutation
 - Distinct Permutation
 - Repeating Permutation
 - Example
 - Circular Permutation
 - Example
 - Combination
 - Example
 - Probability
 - Uniform Probability Model
 - Conditional Probability
 - Dependent Events
 - Independent Events
- Day 3
 - Probability Distribution
 - Example
 - Probability Distribution Function (pdf) $p_X(k)$
 - Probability Distribution Table
 - Cumulative Distribution $F_X(k)$
 - Mean or Expected Value
 - Standard Deviation and Variance
 - Binomial Distribution
 - Example
 - Probability Distribution Function
 - Mean, Variance, Standard Deviation
 - Excel
 - Probability Distribution Continuous Variable
 - Probability Density Function $f_X(x)$
 - Cumulative Distribution Function $F_X(x)$
 - Normal Distribution
 - Gaussian Curve
 - Standardization

Day 2

Counting Techniques

(The mn Rule [Fundamental Counting Principle])

- First stage = m & Second stage = n
- ullet mn ways to accomplish an experiment

(Extended mn Rule)

- ullet stages with n_1 ways for the first stage, n_2 ways for the second stage, and n_k ways to for the k^{th} stage
- $\prod_{x=1}^k n_x$

Permutation

Distinct Permutation

- Permutation of n objects is n!
- ullet Permutation of n objects r at a time

$$P(n,r) = rac{n!}{(n-1)!}
otag
o$$

• Note that P(n,n) = n!

Repeating Permutation

ullet Permutation of n objects with k types

$$\frac{n!}{n_1!n_2!\cdots n_k!}$$

Example

How many ways can 9 beads (3 red, 2 yellow, 4 blue) lined up

$$\frac{9!}{3!2!4!} = 1260$$

Circular Permutation

• Permutation in a circle with one fixed object is (n-1)!

Example

6 different colored beads (r b y p bl g) into a bracelet if red, blue, yellow are together, and purple, black must not be adjacent

$$3!(4-1)! = 36$$
 rby together $3!2!(3-1)! = 24$ rby together and pbl together $36-24=12$ rby together, pbl not

Combination

• Counting without arrangement

$$C(n,r)=rac{n!}{r!(n-r)!}$$

Example

Possible combinations in 7 balls drawn from a set of 42 numbered balls

$$C(42,7) = inom{42}{7} \ = rac{42!}{7!(42-7)!} \ = 26\,978\,328$$

Probability

Uniform Probability Model

$$P(A) = rac{ ext{no. of simple events in } A}{ ext{no. of simple events in } S} \ = rac{|A|}{|S|}$$

• In cases where out comes are not equally likely to occur:

$$P(A) = P(A_1) + P(A_2) + \cdots + P(A_n)$$

Note that:

1.
$$0 \leq P(A) \leq 1$$

2.
$$P(\varnothing) = 0$$

$$3. P(S) = 1$$

• Union and Intersection

$$P(A \cup B) = rac{|A \cup B|}{|S|} = P(A) + P(B)$$

$$P(A\cap B)=rac{|A\cap B|}{|S|}$$

• Note the Addition Rule

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

• Compliment $\longrightarrow P(A^C) = 1 - P(A)$

Conditional Probability

Dependent Events

- An event occurring affects the probability of the following event
- ullet Probability of A given event B has occurred

$$P(A|B) = rac{P(A\cap B)}{P(B)}$$

Note the Multiplication Rule

$$P(A \cap B) = P(A|B) \cdot P(B)$$
$$= P(B|A) \cdot P(A)$$

Independent Events

- Probability of one does not affect the other
- Independent if

$$P(A|B) = P(A)$$
 or $P(B|A) = P(B)$

$$P(A \cap B) = P(A) \cdot P(B)$$

- Mutual Independence
 - Events A_1,A_2,\cdots,A_n are mutually independent if each pair of events A_i and A_j are independent.

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1) \cdot P(A_2) \cdot \cdots \cdot P(A_n)$$

Day 3

Probability Distribution

- A formula, table, or graph that gives all the possible values k of the discrete random variable X, and the probability $p_X(k)=P(X=k)$ associated with each value
- $p_X(k) \geq 0$
- $ullet \sum_{ ext{all } k} p_x(k) = 1$

Example

Toss two fair coins and let X\$ be the number of heads observed. Find the probability distribution for X\$.

Simple Event	Coin 1	Coin 2	Probability of Simple Event	Number of Heads Observed	
			$P(E_i)$	X	
E_1	Н	Н	$\frac{1}{4}$	2	
E_2	Н	Т	$\frac{1}{4}$	1	
E_3	Т	Н	$\frac{1}{4}$	1	
E_4	Т	Т	$\frac{1}{4}$	0	

Probability Distribution Function (pdf) $p_X(k)$

$$p_X(k) = egin{cases} rac{1}{4} ext{ if } k=0 \ rac{1}{2} ext{ if } k=1 \ rac{1}{4} ext{ if } k=2 \end{cases}$$

Probability Distribution Table

k	$p_X(k)$
0	$\frac{1}{4}$
1	$\frac{1}{2}$
2	$\frac{1}{4}$

Cumulative Distribution $F_X(k)$

• formula, table or graph that gives all the possible values k and $F_X(k)=P(X\leq k)$, the probability that X is at most k

k	$F_X(k)$
0	$p_X(0)=rac{1}{4}$
1	$p_X(0)+p_X(1)=rac{1}{4}+rac{1}{2}=rac{3}{4}$
2	$p_X(0) + p_X(1) + p_X(2) = rac{1}{4} + rac{1}{2} + rac{1}{4} = 1$

Mean or Expected Value

ullet The average value of X in the population

$$\mu = E(X) = \sum_{ ext{all } k} k \cdot p_X(k)$$

Standard Deviation and Variance

- Standard Deviation
 - Measures the spread or variability of the random variable

$$egin{aligned} \sigma &= \sqrt{E((X-\mu)^2)} \ &= \sqrt{\sum_{ ext{all } k} (k-\mu)^2 \cdot p_X(k)} \end{aligned}$$

Variance

$$egin{aligned} \sigma^2 &= E((X-\mu)^2) \ &= \sum_{ ext{all } k} (k-\mu)^2 \cdot p_X(k) \end{aligned}$$

Binomial Distribution

- Experiment consists of n identical trials
- Each trial results in one of two outcomes
- The probability of success on a single trial is equal to p and remains from trial to trial. Failure, q=1-p
- Trials are independent
- Each trial is called a Bernoulli Trial

Example

33 distinguishable biased coins \longrightarrow 0.60 heads.

Coin 1	Coin 2	Coin 3	Number of Heads	Probability
Н	Н	Н	3	0.216
Н	Н	Т	2	0.144
Н	Т	Н	2	0.144
Н	Т	Т	1	0.096
Т	Н	Н	2	0.144
Т	Н	Т	1	0.096
Т	Т	Н	1	0.096
Т	Т	Т	0	0.064

Probability Distribution Function

• If p is the probability of success in n Bernoulli Trials, then the probability of k successes:

$$p_X(k) = P(X=k) = nCp \cdot p^k \cdot (1-p)^{n-k}$$
 for $k=0,1,\cdots,n$ aka. $X \sim B(n,p)$

Mean, Variance, Standard Deviation

$$\mu=np$$
 $\sigma^2=np(1-p)$ $\sigma=\sqrt{np(1-p)}$

Excel

Probability Dist Func

=BINOM.DIST(X,N,p,FALSE)

• Cumulative Dist Func

=BINOM.DIST(X,N,p,TRUE)

Examples

6 chips (N Total), 2 defective (D Defective). X = defective = 0, 1, 2. Find probability distribution

1.
$$\binom{D}{k} o$$
 ways to choose k defective chips

1.
$$\binom{D}{k} \to \text{ways to choose k defective chips}$$
 2. $\binom{N-D}{n-k} \to \text{ways to choose the rest } (n-k)$

3.
$$\binom{N}{n}$$
 \rightarrow total number of possible ways to choose any n chips

$$\frac{\binom{2}{k}\binom{4}{3-k}}{\binom{6}{3}}$$

k	0	1	2
$p_X(k)$	$\frac{1}{5}$	$\frac{3}{5}$	$\frac{1}{5}$

4 laptops, probability distribution

k	0	1	2	3	4	5
$p_X(k)$	0.1	0.4	0.2	0.15	0.1	0.05

Find mean, variance, standard deviation

$$egin{aligned} \mu &= \sum_{k=0}^5 k \cdot p_X(k) \ &= 0(0.10) + 1(0.40) + 2(0.20) + 3(0.15) + 4(0.10) + 5(0.05) \ &= 1.90 \end{aligned}$$

$$egin{aligned} \sigma^2 &= \sum_{k=0}^5 (k-1.90)^2 px(k) \ &= (0-1.90)^2 (0.10) + (1-1.90)^2 (0.40) + \cdots + (5-1.90)^2 (0.05) \ &= 1.79 \ \sigma &= \sqrt{1.79} \ pprox 1.34 \end{aligned}$$

5000 tickets @ Php 100 each. Jackpot = Php 25,00. Expected gain of 4 tickets?

$$egin{aligned} \mu &= E(X) = \sum_{k \in \{-400,\, 24\, 600\}} k \cdot p_X(k) \ &= (-400) \cdot rac{4\, 996}{5\, 000} + 24\, 600 \cdot rac{4}{5\, 000} \ &= -380 \end{aligned}$$

Probability Distribution Continuous Variable

Probability Density Function $f_X(x)$

- ullet For all values x of X
 - $f_X(x) \ge 0$
 - $ullet \int_{-\infty}^{\infty} f_X(x) \; dx = 1 \quad ext{(the total area under the curve)}$
- ullet Integration is actually done over all values x that X can assume

$$P(a \leq X \leq b) = \int_a^b f_X(x) \; dx$$

- Rule Satisfaction
 - P(X = a) = 0
 - $P(X \ge a) = P(X > a)$
 - $P(X \le a) = P(X < a)$
 - $P(X > a) = 1 F_X(a)$
 - $ullet \lim_{x o\infty}F_X(x)=1$
 - $ullet \lim_{x o -\infty} F_X(x) = 0$

Cumulative Distribution Function $F_X(x)$

$$egin{align} F_X(x) &= P(X \leq x) = \int_{-\infty}^x f_X(t) \; dt \ & \mu = E(X) = \int_{-\infty}^\infty x \cdot f_X(x) \; dx \ & \sigma = \sqrt{E((X-\mu)^2)} = \sqrt{\int_{-\infty}^\infty (x-\mu)^2 \cdot f_X(x) \; dx} \ & \sigma^2 = \mathrm{Var}(X) = E((X-\mu)^2) = \int_{-\infty}^\infty (x-\mu)^2 \cdot f_X(x) \; dx \ & \sigma^2 = \mathrm{Var}(X) = E((X-\mu)^2) = \int_{-\infty}^\infty (x-\mu)^2 \cdot f_X(x) \; dx \ & \sigma^2 = \mathrm{Var}(X) = E((X-\mu)^2) = \int_{-\infty}^\infty (x-\mu)^2 \cdot f_X(x) \; dx \ & \sigma^2 = \mathrm{Var}(X) = E((X-\mu)^2) = \int_{-\infty}^\infty (x-\mu)^2 \cdot f_X(x) \; dx \ & \sigma^2 = \mathrm{Var}(X) = E((X-\mu)^2) = \int_{-\infty}^\infty (x-\mu)^2 \cdot f_X(x) \; dx \ & \sigma^2 = \mathrm{Var}(X) = E((X-\mu)^2) = \int_{-\infty}^\infty (x-\mu)^2 \cdot f_X(x) \; dx \ & \sigma^2 = \mathrm{Var}(X) = E((X-\mu)^2) = \int_{-\infty}^\infty (x-\mu)^2 \cdot f_X(x) \; dx \ & \sigma^2 = \mathrm{Var}(X) = E((X-\mu)^2) = \int_{-\infty}^\infty (x-\mu)^2 \cdot f_X(x) \; dx \ & \sigma^2 = \mathrm{Var}(X) = E((X-\mu)^2) = \int_{-\infty}^\infty (x-\mu)^2 \cdot f_X(x) \; dx \ & \sigma^2 = \mathrm{Var}(X) = E((X-\mu)^2) = \int_{-\infty}^\infty (x-\mu)^2 \cdot f_X(x) \; dx \ & \sigma^2 = \mathrm{Var}(X) = E((X-\mu)^2) = \int_{-\infty}^\infty (x-\mu)^2 \cdot f_X(x) \; dx \ & \sigma^2 = \mathrm{Var}(X) = E((X-\mu)^2) = \int_{-\infty}^\infty (x-\mu)^2 \cdot f_X(x) \; dx \ & \sigma^2 = \mathrm{Var}(X) = E((X-\mu)^2) = \int_{-\infty}^\infty (x-\mu)^2 \cdot f_X(x) \; dx \ & \sigma^2 = \mathrm{Var}(X) = E((X-\mu)^2) = \int_{-\infty}^\infty (x-\mu)^2 \cdot f_X(x) \; dx \ & \sigma^2 = \mathrm{Var}(X) = E((X-\mu)^2) = \int_{-\infty}^\infty (x-\mu)^2 \cdot f_X(x) \; dx \ & \sigma^2 = \mathrm{Var}(X) = E((X-\mu)^2) = E((X-\mu)^$$

Normal Distribution

$$f_X(x) = rac{1}{\sigma \sqrt{2\pi}} \cdot e^{\displaystylerac{-(x-\mu)^2}{2\sigma^2}}\,, \ -\infty < x < \infty$$

- \bullet Large values of σ reduce the height of the curve and increase the spread
- $X \sim N \; (\mu, \sigma)$

Gaussian Curve

$$X \sim N(0,1)$$

or

$$f_X(x) = rac{1}{\sqrt{2\pi}}e^{\displaystylerac{-x^2}{2}}, \quad -\infty < x < \infty$$

- $P(\mu \sigma \le X \le \mu + \sigma) \approx 0.6827$
- $P(\mu-2\sigma \leq X \leq \mu+2\sigma) pprox 0.9545$
- $P(\mu 3\sigma \le X \le \mu + 3\sigma) \approx 0.9973$

Standardization

ullet Expressing a normal random variable $X\sim N\;(\mu,\sigma)$ as the number of standard deviations it lies to the left or the right of its mean

$$Z=rac{X-\mu}{\sigma}\sim N\;(0,1)$$