3. VSEPR Model

<u>Valence Shell Electron Pair Repulsion Theory</u>

Electron pairs will tend to stay as far apart as possible to minimize repulsions

- 1.) Bonding Pairs B
- 2.) Lone Pairs E
- 3.) Central Atom A

For $A B_x E_y$ which is the general notation

$$X = \# \text{ of B pairs } y = \# \text{ of Lone Pairs}$$

4. Occupancy factor = x + yTotal number of electron pairs

Repulsions increase in the order:

Bonding Pair – Bonding Pair Bonding Pair – Lone Pair Lone Pair – Lone Pair

Q. Why?

A. Bonding Pair electrons are diffused through orbitals of A-B

AB_xE_y :

$\underline{x+y}$	Basic Geometry	Hybridization
2	Linear	sp
3	Triangular	sp^2
4	Tetrahedral	sp^3 , sd^3 dsp^2
	Square planar	dsp^2
5	Square pyramid	$al dsp^3$
	Trigonal bypyramic	
6	octahedral	d^2sp^3

86

Figure 3-7 Idealized geometries for structures having the formulas AB, E, where atom, B are peripheral atoms, and E are lone pairs residing on A

scription of the multiple bonds, and VSEPR adjusti tries.

For every basic geometry type, there are different ways to achieve same occupancy factor x + y in the AB_xE_y formulae

occupancy of 2:

AB₂

$$x = 2$$
 $y = 0$
 $\lim_{\longrightarrow} Be_{\longrightarrow} H$
 $\lim_{\longrightarrow} C_{\longrightarrow} O$
 $\lim_{\longrightarrow} C_{\longrightarrow} O$

occupancy of 3:

occupancy of 4:

$$\begin{array}{c} \textbf{AB_4} \\ \textbf{x} = 4 \\ \textbf{y} = 0 \\ \underline{\textbf{tetrahedral}} \\ \textbf{H_3C} \\ & \begin{matrix} \textbf{CH_3} \\ \textbf{+} \\ \textbf{CH_3} \end{matrix} \quad \text{sp}^3 \text{ hybridized N} \\ & \angle \textbf{C-N-C} = 109^{\circ} \\ & \textbf{CH_3} \\ \end{array}$$

$$AB_3E$$

$$x = 3$$

$$y = 1$$

$$\underline{trigonal}$$

$$\underline{pyramid}$$

$$^{\circ}$$
CH₃ sp³ hybridized P
 \angle C-P-C = 99°

AB_2E_2

$$x = 2$$

$$y = 2$$

bent

sp³ hybridized O \angle H-O-H = 104°

ABE_3

$$x = 1$$

 $y = 3$
linear

presumably, sp³
 hybridized O,
 although with lone pairs it is hard to know where they really are in space!

occupancy of 5:

*note that tbp is the most common AB₅ basic geometry

occupancy of 6:

d²sp³ hybridized S

AB_5E

$$x = 5$$

$$y = 1$$
square
pyramid

 d^2sp^3 hybridized Br

AB_4E_2

$$x = 4$$

 $y = 2$
square
planar

d²sp³ hybridized I

Summary of main types of Hybridization & shapes of orbitals

- 1) sp-linear
- 2) $sp_3^2 trigonal planar$
- 3) sp³tetrahedral
- 4) sd^3
- 5) dsp²
 6) dsp³
- - a) $dz^2sp^3 \rightarrow trigonal bipyramidal$ b) $dx^2-y^2sp^3 \rightarrow square pyramid$
- 7) d²sp³ octahedral

Occupancies for:

$$sp = 2$$

 $sp^2 = 3$
 $sp^3 = 4$
 $sd^3 = 4$
 $sd^3 = 4$
 $dsp^2 = 4$
 $dsp^3 = 4$
 $d^2sp^3 = 4$

dsp² = 4<math display="block">dsp³ = 5d²sp³ = 6 Occupancy how many orbitals you Occupancy is orbitals you are using

Main Point:

Armed With:

- 1) An understanding of how to draw Lewis structures
- 2) How to determine occupancies of a molecule (bonding + lone pairs)

We can use (1) and (2) to predict structures by both the Hybridization and the VSEPR methods & correlate them

Process of applying Lewis structures VSEPR and Hybridization:

- (1) Determine the Lewis Structure Diagram
- (2) Determine occupancy factor x+y

- (3) Determine how many hybrid orbitals you will need (same as x+y) and choose type of hybridization.
 - a) use only s, p orbitals for elements in rows 1,2 (elements below Ne which is #10)
 - b) s,p and d orbitals are all available after row 2
 - c) note that multiple bonds can be made from unhybridized orbitals
- (4) from the occupancy factor (x+y) determine a basic geometry type. After arranging the Bonding Pairs and Lone Pairs, determine the actual geometry of the molecule.

Example 1: SF₄

(1) Lewis Structure

A: $S = 6e^{-} = 6e^{-}$ B: $F = 7e^{-} \times 4 = 28e^{-}$ $34e^{-} : F:$ $\vdots F = -F:$

- (2) AB_4E occupancy = 5
- (3) for an occupancy of 5, with d orbitals available we have dsp³ hybridization.

(5) for an occupancy of 5, AB₄E, one can either a trigonal bipyramid or square pyramidal Tbp is, by far, the most common.

so the <u>Basic Geometry</u>, but saw-horse is actual structure with the atoms

angle is < 120° because of l.p.-b.p. repulsion being greater than b.p.-b.p.