Name:	
4-digit code:	

- Write your name and the last 4 digits of your SSN in the space provided above.
- The test has five (5) pages, including this one.
- You have fifty (50) minutes to complete the exam.
- Enter your answer in the box(es) provided.
- You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given in parentheses at the right of the problem number.
- No books, notes or calculators may be used on this test.

Page	Max. points	Your points
2	30	
3	20	
4	20	
5	30	
Total	100	

Problem 1 (30 pts). Sketch the graph of the function $f(x) = \frac{x}{x-2}$. Make sure to indicate clearly:

- Zeros of the function.
- Domain and Range
- Vertical and horizontal asymptotes.
- Extreme values and inflection points.
- Intervals of increase/decrease.
- Intervals of concavity.

Problem 2 (10 pts). Verify that the function $f(x) = x^3 - x^2 - 12x + 4$ satisfies the three hypotheses of Rolle's Theorem on the interval [0,4]. Find all numbers c that satisfy the conclusion of Rolle's Theorem.

Exam#3.

Problem 3 (10). If f(1) = 7 and $f'(x) \ge 3$ for $1 \le x \le 6$, how small can f(6) possibly be?

Problem 4 (10 pts). Find the critical values of the function $h(x) = \frac{x-2}{x^2+1}$. You **do not** have to indicate whether they are local maxima, local minima, or neither.

Problem 5 (10pts). Find the absolute maximum and absolute minimum values of the function $f(x) = 2x^3 - 6x^2 - 48x + 5$ on the interval [-3, 5].

Problem 6. Compute the following limits:

(5pts)
$$\lim_{x \to \infty} \frac{1}{5x + 7}$$

(5pts)
$$\lim_{x \to \infty} \frac{1 - x - x^2}{5x^2 - 9}$$

(10pts)
$$\lim_{x \to \infty} \left(1 - \frac{3}{x}\right)^{4x}$$

(10pts)
$$\lim_{x \to \infty} x^{1/x}$$