Developing a Toy Model for Quantum Chaos Theory: Entanglement Entropy of Bipartite System Under Random Real Hamiltonians

Yash Anand¹

Mentor
Michael H. Winer¹

¹Physics Department, University of Maryland

- Calculating Entropy and Entanglement
- 2 Qubit Subsystem
- 3 High Temperature Approximations
- Wishart Ensemble
- 5 Low Temperature Approximation
- 6 Next Step and Applications

Thermal Density Matrix

- Density matrix
 - Matrix used to represent the probability of a system being in each possible state

$$\begin{bmatrix} P\Big(|0\rangle\Big) & v_1 \\ v_1 * & P\Big(|1\rangle\Big) \end{bmatrix} \longrightarrow \begin{bmatrix} P\Big(|00\rangle\Big) & \dots & \dots & \dots \\ \dots & P\Big(|01\rangle\Big) & \dots & \dots \\ \dots & \dots & P\Big(|10\rangle\Big) & \dots & \dots \\ \dots & \dots & \dots & P\Big(|11\rangle\Big) \end{bmatrix} \\ & & & & & & & & & & & & & \\ \rho_B = \operatorname{Tr}_A(\rho) = \begin{bmatrix} P\Big(|00\rangle\Big) + P\Big(|10\rangle\Big) & \dots \\ \dots & P\Big(|10\rangle\Big) + P\Big(|11\rangle\Big) \end{bmatrix}$$

- Constructed a $N^2 \times N^2$ Hermitian matrix whose elements were drawn from a real Gaussian Distribution.
 - $\mu = 0$ and $\sigma = 1/3$
- Used Thermal Density Matrix:

$$\rho = \frac{\mathrm{e}^{-\beta H}}{\mathsf{Tr}(\mathrm{e}^{-\beta H})}$$

Calculating Entanglement Entropy

Entropy: $S(\rho) = -\operatorname{Tr}(\rho \ln(\rho))$ or $S(\lambda) = -\sum (\lambda \ln(\lambda))$

• where λ are the eigenvalues of the density matrix (ρ)

Mutual information (Entanglement) = $\frac{S(\rho_A) + S(\rho_B) - S(\rho_{AB})}{2}$

- ρ_A is the partial trace over subsystem A (density matrix of subsystem B)
- ρ_B is the partial trace over subsystem B (density matrix of subsystem A)

- Calculating Entropy and Entanglement
- 2 Qubit Subsystem
- 3 High Temperature Approximations
- Wishart Ensemble
- 5 Low Temperature Approximation
- 6 Next Step and Applications

2 Qubit (N=2) Subsystems: High Temperature

As $T \to \infty$, system become maximally mixed (all states are equally likely)

2 Qubit (N=2) Subsystems: Low Temperature

As $T \to 0$, system become almost pure (100% probability of being in ground state)

- Calculating Entropy and Entanglement
- 2 Qubit Subsystem
- 3 High Temperature Approximations
- 4 Wishart Ensemble
- 5 Low Temperature Approximation
- 6 Next Step and Applications

2 Qunit Approximation: High Temperature

- Used $S(\rho) = \sum (-\lambda \ln(\lambda))$ for the approximation
- Also Taylor Expanding the density matrix, we get:

$$\rho(\beta) \approx \frac{1}{4} - \frac{H}{4}\beta + \frac{\text{Tr}(H)}{16}\beta + \frac{H^2}{8}\beta^2 - \frac{\text{Tr}(H^2)}{32}\beta^2 + \frac{(\text{Tr}(H))^2}{64}\beta^2 - \frac{H\,\text{Tr}(H)}{16}\beta^2$$

Some important equations used to find entanglement entropy:

$$\begin{split} H &\to N^2 \times N^2 & \operatorname{Tr}_B(H) \to N \times N \\ &\langle \operatorname{Tr}(H) \rangle = 0 & \langle \operatorname{Tr}(H^2) \rangle = N^4 J^2 \\ &\langle (\operatorname{Tr}(H))^2 \rangle = N^2 J^2 & \langle \operatorname{Tr}_A((\operatorname{Tr}_B(H))^2) \rangle = N^3 J^2 \\ &\langle S(\rho) \rangle = \ln(N^2) - \frac{\beta^2}{2} (N^2 J^2 - \frac{J^2}{N^2}) & \langle S(\operatorname{Tr}_B(\rho)) \rangle = \ln(N) - \frac{\beta^2 J^2}{2} + \frac{\beta^2 J^2}{2N^2} \end{split}$$

2 Qunit Approximation: High Temperature

Final result:

$$\langle S_E \rangle = \Big(-\frac{J^2}{2} + \frac{J^2}{2N^2} + \frac{N^2 J^2}{4} - \frac{J^2}{4N^2} \Big) \beta^2$$

- $J \rightarrow \mathsf{Standard}$ deviation of the Hamiltonion
- N o Size of the subsystem

- Calculating Entropy and Entanglement
- 2 Qubit Subsystem
- 3 High Temperature Approximations
- Wishart Ensemble
- 5 Low Temperature Approximation
- Mext Step and Applications

Wishart Ensemble

Definition

A Wishart Ensemble is the set of all W such that:

$$W = HH^{\dagger}$$

where H is a matrix with dimensions $N \times M(M \ge N)$ whose elements are drawn from a Gaussian Distribution.

- Wishart Matrices are positive semi-definite (N non-negative eigenvalues).
- The spectral density of the Wishart Ensemble gives us the probability distribution of the eigenvalues of all Wishart Matrices.

What's So Special About Wishart Matrices?

Theorem

All subsystem density matrices for which the system is in a random pure state are in the Wishart Ensemble.

Proof.

- ullet Ground state eigenvector is a random real unit vector in N^2
- Elements of the density matrix are i.i.d. random variables
- ullet Ψ_0 represent the system's pure random state
- Ψ is just Ψ_0 reshaped
- $\Psi \simeq \Psi_{ij} \simeq \Psi_{kl}$
- Tracing over subsystem A is basically j = l
- So $\rho_{ijkj} = \rho_B = \sum (\Psi_{ij}^* \Psi_{kj}) = \Psi \Psi^{\dagger}$

- Calculating Entropy and Entanglement
- 2 Qubit Subsystem
- 3 High Temperature Approximations
- Wishart Ensemble
- 5 Low Temperature Approximation
- Mext Step and Applications

2 Qunit Approximation: Low Temperature

- As T → 0, the elements of the system's density matrix all become 0, except for the diagonal element corresponding to the ground state.
- Ground state corresponds to where the system has the lowest energy
- ullet The entropy of the whole system is 0 $(\lambda_{groundstate}=1)$
- The subsystems have entropy
- Therefore the expected value for the Entanglement Entropy is thus given by:

$$\langle S \rangle = N \int_0^L (\lambda \ln(\lambda) f(\lambda)) d\lambda$$

• $f(\lambda)$ is the spectral density of a Wishart Ensemble

Spectral Density of a Wishart Ensemble

In general, for large N, the spectral density is given as follows:

$$f(\lambda) = \frac{1}{\beta N} \rho_{MP} \Big(\frac{\lambda}{\beta N} \Big)$$

where $\rho_{MP}(\frac{\lambda}{\beta N})$ is the Marčenko-Pastur scaling function.

$$\rho_{MP}\left(\frac{\lambda}{\beta N}\right) = \frac{\beta N}{2\pi\lambda} \sqrt{\left(\frac{\lambda}{\beta N} - \zeta_{-}\right) \left(\zeta_{+} - \frac{\lambda}{\beta N}\right)}$$

where $\zeta_{\pm} = (1 \pm (\frac{N}{M})^{-1/2})^2$.

Spectral Density in Our Case

• In our case since M=N, c=1. So, $\zeta_-=0$ and $\zeta_+=4$:

$$\rho_{MP}\left(\frac{\lambda}{\beta N}\right) = \frac{\beta N}{2\pi\lambda} \sqrt{\left(\frac{\lambda}{\beta N}\right)\left(4 - \frac{\lambda}{\beta N}\right)}$$

- Here β is the Dyson Index and in our case $\beta = 1$.
- This is still not normalized for our work.

2 Qunit Approximation: Zero Temperature

• Normalized spectral density:

$$f(\lambda) = \frac{N\sqrt{(\frac{4}{N} - \lambda)(\lambda)}}{2\lambda\pi}$$

Solving the integral:

$$\langle S \rangle = \int_0^{\frac{4}{N}} \frac{-N^2 \ln(\lambda) \sqrt{(\frac{4}{N} - \lambda)(\lambda)}}{2\pi} d\lambda$$

• Final result:

$$\langle S \rangle = \ln(N) - \frac{1}{2}$$

- Calculating Entropy and Entanglement
- 2 Qubit Subsystem
- 3 High Temperature Approximations
- Wishart Ensemble
- 5 Low Temperature Approximation
- 6 Next Step and Applications

Next Steps and Applications

Next Steps:

- Expand for Low Temperature (currently working on)
- Construct a dynamic multi-body model

Applications:

Quantum Computers