Team Note of 저희 팀 이름 머함

진짜 이걸로 해요?, ㅇㅇ, 팀원 이름 추천 받음

Compiled on July 22, 2022

Co	ntents			4.9 Power Tower	17
	DataStructure	2		4.10 Discrete Log / Sqrt	17
1	1.1 Bipartite Union Find	2 2		4.11 De Bruijn Sequence	18
1	.3 Convex Hull Trick .4 Persistent Segment Tree .5 Splay Tree, Link-Cut Tree	$\begin{bmatrix} 2\\2\\3 \end{bmatrix}$		4.12 Simplex / LP Duality	18
				4.13 FFT, NTT, FWHT, Multipoint Evaluation, Interpolation	19
2 2	Geometry 2.1 Rotating Calipers	4 4 4 4		4.14 Matroid Intersection	20
	2.4 K-D Tree	5 5	5	String	21
2 2 2	2.5 Dual Graph	5 6 6		5.1 KMP, Hash, Manacher, Z	21
2	2.8 Delaunay Triangulation	6		5.2 Aho-Corasick	21
	Graph 3.1 Euler Tour	7		5.3 $O(N \log N)$ SA + LCP	22
	3.2 SCC + 2-SAT	7		5.4 Bitset LCS	22
3	3.3 BCC 3.4 Maximum Clique 3.5 Bipartite Matching	8 8		5.5 Lyndon Factorization, Minimum Rotation	23
3	3.6 Push Relabel	9			
ა 3	8.8 Hungarian Method	$\begin{array}{c c} 9 & \epsilon \end{array}$	6	Misc	23
3	3.9 $O(V^3)$ Global Min Cut	10 10		6.1 Ternary Search	23
	3.11 Rectlinear MST	10 10		6.2 Aliens Trick	23
3	3.13 $O(N^2)$ Stable Marriage Problem 3.14 $O(VE)$ Vizing Theorem	11 11		6.3 Slope Trick	23
	3.15 $O(E \log V)$ Directed MST	11 12		6.4 Random, PBDS, Bit Trick	24
	3.10 Chordai Graph, Tree Decomposition			6.5 Fast I/O, Fast Div/Mod, Hilbert Mo's	24
	Math	14		6.6 DP Opt, Tree Opt, Well-Known Ideas	24
	I.1 Extend GCD, CRT, Combination	$\begin{vmatrix} 14 \\ 15 \end{vmatrix}$		6.7 Catalan, Burnside, Grundy, Pick, Hall, Simpson, Kirchhoff, Area of Quadrangle	24
	1.3 FloorSum	15		0.7 Catalan, Burnside, Grundy, Fick, Itan, Shipson, Kirchion, Area of Quadrangle	24
	1.4 XOR Basis(XOR Maximization)	15		6.8 inclusive and exclusive, Stirling Number, Bell Number	25
4	1.5 Gauss Jordan Elimination	16		6.9 About Graph Matching(Graph with $ V \le 500$)	25
	1.7 Miller Rabin + Pollard Rho			6.10 Checklist	25

1 DataStructure

1.1 Bipartite Union Find

Usage: Union-Find with friend, enemy relations

```
int P[_Sz], E[_Sz]; // Parent, Enemy
void clear(){ iota(P, P+_Sz, 0); memset(E, -1, sizeof E); }
int find(int v){}
bool merge(int u, int v){}
int set_friend(int u, int v){ return merge(u, v); }
int set_enemy(int u, int v){
  int ret = 0;
  if(E[u] == -1) E[u] = v;
  else ret += merge(E[u], v);
  if(E[v] == -1) E[v] = u;
  else ret += merge(u, E[v]);
  return ret;
}
```

1.2 Erasable Priority Queue

```
template<typename T, T inf>
struct pq_set{
    priority_queue<T, vector<T>, greater<T>> in, out; // min heap, inf = 1e18
    // priority_queue<T> in, out; // max heap, inf = -1e18
    pq_set(){ in.push(inf); }
    void insert(T v){ in.push(v); }
    void erase(T v){ out.push(v); }
    T top(){
        while(out.size() && in.top() == out.top()) in.pop(), out.pop();
        return in.top();
    }
    bool empty(){
        while(out.size() && in.top() == out.top()) in.pop(), out.pop();
        return in.top() == inf;
    }
};
```

1.3 Convex Hull Trick

```
Usage: call init() before use

struct Line{
    ll a, b, c; // y = ax + b, c = line index
    Line(ll a, ll b, ll c) : a(a), b(b), c(c) {}
    ll f(ll x){ return a * x + b; }
};

vector<Line> v; int pv;

void init(){ v.clear(); pv = 0; }

int chk(const Line &a, const Line &b, const Line &c) const {
    return (__int128_t)(a.b - b.b) * (b.a - c.a) <= (__int128_t)(c.b - b.b) * (b.a - a.a);
}

void insert(Line l){
    if(v.size() > pv && v.back().a == l.a){
        if(l.b < v.back().b) l = v.back(); v.pop_back();
    }

while(v.size() >= pv+2 && chk(v[v.size()-2], v.back(), l)) v.pop_back();
```

```
v.push_back(1);
p query(11 x){ // if min query, then v[pv].f(x) >= v[pv+1].f(x)
  while(pv+1 < v.size() && v[pv].f(x) \le v[pv+1].f(x)) pv++;
 return {v[pv].f(x), v[pv].c};
//// line container start (max query) ////
struct Line {
 mutable ll k, m, p;
 bool operator < (const Line& o) const { return k < o.k; }
 bool operator<(ll x) const { return p < x; }</pre>
\}; // (for doubles, use inf = 1/.0, div(a,b) = a/b)
struct LineContainer : multiset<Line. less<>>> {
 static const 11 inf = LLONG MAX:
 11 div(11 a, 11 b) { return a / b - ((a ^ b) < 0 && a % b); } // floor
 bool isect(iterator x, iterator y) {
   if (v == end()) return x \rightarrow p = inf, 0;
   if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
   else x->p = div(y->m - x->m, x->k - y->k);
   return x->p >= y->p;
  void add(ll k, ll m) {
   auto z = insert(\{k, m, 0\}), y = z++, x = y;
   while (isect(y, z)) z = erase(z);
   if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
    while ((y = x) != begin() && (--x)->p >= y->p) isect(x, erase(y));
 11 query(11 x) { assert(!empty());
    auto 1 = *lower bound(x):
   return 1.k * x + 1.m;
 }
};
1.4 Persistent Segment Tree
  Usage: call init(root[0], s, e) before use
struct PSTNode{
 PSTNode *1. *r: int v:
 PSTNode(){ 1 = r = nullptr; v = 0; }
PSTNode *root[101010];
PST(){ memset(root, 0, sizeof root); } // constructor
void init(PSTNode *node, int s, int e){
 if(s == e) return;
 int m = s + e >> 1:
 node->1 = new PSTNode; node->r = new PSTNode;
 init(node->1, s, m); init(node->r, m+1, e);
void update(PSTNode *prv, PSTNode *now, int s, int e, int x){
 if(s == e){ now->v = prv ? prv->v + 1 : 1; return; }
 int m = s + e >> 1:
 if(x \le m){
   now->1 = new PSTNode; now->r = prv->r;
    update(prv->1, now->1, s, m, x);
 }
  else{
    now->r = new PSTNode; now->l = prv->l;
```

```
update(prv->r, now->r, m+1, e, x);
  int t1 = now->1 ? now->1->v : 0:
  int t2 = now->r ? now->r->v : 0;
  now->v = t1 + t2:
int kth(PSTNode *prv, PSTNode *now, int s, int e, int k){
  if(s == e) return s;
  int m = s + e \gg 1, diff = now->l->v - prv->l->v;
  if(k <= diff) return kth(prv->1, now->1, s, m, k);
  else return kth(prv->r, now->r, m+1, e, k-diff);
}
      Splay Tree, Link-Cut Tree
struct Node{
  Node *1, *r, *p;
  bool flip; int sz;
  T now, sum, lz:
  Node(){ 1 = r = p = nullptr; sz = 1; flip = false; now = sum = lz = 0; }
  bool IsLeft() const { return p && this == p->1; }
  bool IsRoot() const { return !p || (this != p->1 && this != p->r); }
  friend int GetSize(const Node *x){ return x ? x->sz : 0; }
  friend T GetSum(const Node *x){ return x ? x->sum : 0; }
  void Rotate(){
    p->Push(); Push();
    if(IsLeft()) r && (r->p = p), p->l = r, r = p;
    else 1 && (1-p = p), p-r = 1, 1 = p;
    if(!p->IsRoot()) (p->IsLeft() ? p->p->1 : p->p->r) = this;
    auto t = p; p = t \rightarrow p; t \rightarrow p = this;
    t->Update(); Update();
  void Update(){
    sz = 1 + GetSize(1) + GetSize(r);
    sum = now + GetSum(1) + GetSum(r);
  void Update(const T &val){ now = val; Update(); }
  void Push(){
    Update(now + lz); if(flip) swap(l, r);
    for(auto c : \{1, r\}) if(c) c->flip ^= flip, c->lz += lz;
    lz = 0; flip = false;
 }
};
Node* rt;
Node* Splay(Node *x, Node *g=nullptr){
  for(g || (rt=x); x->p!=g; x->Rotate()){
    if(!x->p->IsRoot()) x->p->p->Push(); x->p->Push();
    if(x-p-p) = g) (x-sleft() x-p-sleft() x : x-p)-sleft();
  x->Push(); return x;
Node* Kth(int k){
  for(auto x=rt; ; x=x->r){
    for(; x->Push(), x->1 && x->1->sz > k; x=x->1);
    if(x->1) k -= x->1->sz;
    if(!k--) return Splay(x);
  }
```

```
Node* Gather(int s, int e){
 auto t = Kth(e+1); return Splay(t, Kth(s-1))->1;
Node* Flip(int s, int e){
 auto x = Gather(s, e); x->flip ^= 1; return x;
Node* Shift(int s, int e, int k){
 if(k >= 0){
   k \% = e-s+1;
   if(k) Flip(s, e), Flip(s, s+k-1), Flip(s+k, e);
 else{
   k = -k; k \% = e-s+1;
   if(k) Flip(s, e), Flip(s, e-k), Flip(e-k+1, e);
 return Gather(s, e);
int Idx(Node *x){ return x->l->sz; }
//////// Link Cut Tree Start ////////
Node* Splay(Node *x){
 for(; !x->IsRoot(); x->Rotate()){
   if(!x->p->IsRoot()) x->p->p->Push(); x->p->Push();
   if(!x->p->IsRoot()) (x->IsLeft() ^ x->p->IsLeft() ? x : x->p)->Rotate();
 x->Push(); return x;
void Access(Node *x){
 Splay(x); x->r = nullptr; x->Update();
 for(auto y=x; x->p; Splay(x)){
   y = x-p; Splay(y); y-r = x; y-Update();
int GetDepth(Node *x){
 Access(x): x->Push():
 return GetSize(x->1);
Node* GetRoot(Node *x){
 Access(x); for(x->Push(); x->1; x->Push()) x = x->1;
 return Splay(x);
Node* GetPar(Node *x){
 Access(x); x->Push(); if(!x->1) return nullptr;
 x = x->1; for(x->Push(); x->r; x->Push()) x = x->r;
 return Splay(x);
void Link(Node *p, Node *c){
 Access(c); Access(p);
 c->1 = p; p->p = c; c->Update();
void Cut(Node *c){
 Access(c);
 c->l->p = nullptr; c->l = nullptr; c->Update();
Node* GetLCA(Node *x, Node *y){
 Access(x); Access(y); Splay(x);
 return x->p ? x->p : x;
```

```
Node* Ancestor(Node *x, int k){
 k = GetDepth(x) - k; assert(k >= 0);
  for(;;x->Push()){
    int s = GetSize(x->1):
    if(s == k) return Access(x), x:
    if(s < k) k = s + 1, x = x -> r;
    else x = x \rightarrow 1:
}
void MakeRoot(Node *x){ Access(x); Splay(x); x->flip ^= 1; }
bool IsConnect(Node *x, Node *y){ return GetRoot(x) == GetRoot(y); }
void PathUpdate(Node *x, Node *y, T val){
  Node *root = GetRoot(x); // original root
  MakeRoot(x); Access(y); // make x to root, tie with y
  Splay(x); x->lz += val; x->Push();
  MakeRoot(root); // Revert
  Node *lca = GetLCA(x, y);
  Access(lca); Splay(lca); lca->Push();
  lca->Update(lca->now - val);
T VertexQuery(Node *x, Node *y){
  Node *1 = GetLCA(x, y);
 T ret = 1->now:
  Access(x); Splay(1);
  if(1->r) ret = ret + 1->r->sum;
  Access(y); Splay(1);
  if(1->r) ret = ret + 1->r->sum;
  return ret:
Node* GetQueryResultNode(Node *u, Node *v){
  if(GetRoot(u) != GetRoot(v)) return 0;
  MakeRoot(u); Access(v);
  auto ret = v->1:
  while(ret->mx != ret->v){
    if (ret->1 && ret->mx == ret->1->mx) ret = ret->1;
    else ret = ret->r;
  Access(ret);
  return ret:
}
2 Geometry
      Rotating Calipers
```

```
pair<Point, Point> RotatingCalipers(const vector<Point> &H){
    l1 mx = 0; Point a, b;
    for(int i=0, j=0; i<H.size(); i++){
        while(j+1 < H.size() && CCW(0, H[i+1]-H[i], H[j+1]-H[j]) >= 0){
            if(l1 now = D2(H[i], H[j]); mx < now) mx = now, a = H[i], b = H[j];
            j++;
        }
        if(l1 now = D2(H[i], H[j]); mx < now) mx = now, a = H[i], b = H[j];
    }
    return {a, b};
}</pre>
```

```
2.2 Point in Convex Polygon
bool Check(const vector<Point> &v, const Point &pt){
 if(CCW(v[0], v[1], pt) < 0) return false;</pre>
 int l = 1, r = v.size() - 1;
 while(1 < r){}
   int m = 1 + r + 1 >> 1;
   if(CCW(v[0], v[m], pt) >= 0) 1 = m;
 }
 if(1 == v.size() - 1) return CCW(v[0], v.back(), pt) == 0 && v[0] <= pt && pt <= v.back();
 return CCW(v[0], v[1], pt) >= 0 && CCW(v[1], v[1+1], pt) >= 0 && CCW(v[1+1], v[0], pt) >= 0;
2.3 Half Plane Intersection, Tangent of Convex Hull
 Usage: Line : ax + by + c = 0
double CCW(Point p1, Point p2, Point p3){
 return (p2.x-p1.x) * (p3.y-p2.y) - (p3.x-p2.x) * (p2.y-p1.y);
bool same(double a, double b){ return abs(a - b) < eps; }</pre>
const Point o = Point(0, 0);
struct Line{
 double a. b. c:
 Line() : Line(0, 0, 0) {}
 Line(double a, double b, double c): a(a), b(b), c(c) {}
 bool operator < (const Line &1) const {</pre>
   bool f1 = Point(a, b) > o, f2 = Point(1.a, 1.b) > o;
   if(f1 != f2) return f1 > f2;
   double cw = CCW(o, Point(a, b), Point(l.a, l.b));
   return same(cw, 0) ? c * hypot(1.a, 1.b) < 1.c * hypot(a, b) : cw > 0;
 Point slope() const { return Point(a, b); }
Point LineIntersect(Line a, Line b){
 double det = a.a*b.b - b.a*a.b, x = (a.c*b.b - a.b*b.c) / det, y = (a.a*b.c - a.c*b.a) / det;
 return Point(x, v):
bool CheckHPI(Line a, Line b, Line c){
 if(CCW(o, a.slope(), b.slope()) <= 0) return 0;</pre>
 Point v = LineIntersect(a, b); return v.x*c.a + v.y*c.b >= c.c;
vector<Point> HPI(vector<Line> v){
 sort(v.begin(), v.end());
 deque<Line> dq; vector<Point> ret;
 for(auto &i : v){
   if(dq.size() && same(CCW(o, dq.back().slope(), i.slope()), 0)) continue;
   while(dq.size() >= 2 && CheckHPI(dq[dq.size()-2], dq.back(), i)) dq.pop_back();
   while(dq.size() >= 2 && CheckHPI(i, dq[0], dq[1])) dq.pop_front();
   dq.push_back(i);
 while(dq.size() > 2 && CheckHPI(dq[dq.size()-2], dq.back(), dq[0])) dq.pop_back();
 while(dq.size() > 2 && CheckHPI(dq.back(), dq[0], dq[1])) dq.pop_front();
```

for(int i=0: i<da.size(): i++){</pre>

Line now = dq[i], nxt = dq[(i+1)%dq.size()];

ret.push_back(LineIntersect(now, nxt));

if(CCW(o, now.slope(), nxt.slope()) <= eps) return vector<Point>();

```
for(auto &[x,y] : ret) x = -x, y = -y;
  return ret:
Point GetMaximumPoint(const vector<Point> &up, double dy, double dx){
  if(up.size() == 1) return up.front();
  if(dx < 0) dx = -dx, dy = -dy;
  if(dx == 0) return dy > 0 ? up.front() : up.back();
  if((up[1].y - up[0].y) * dx < (up[1].x - up[0].x) * dy) return up.front();
  int l = 1, r = up.size() - 1;
  while(1 < r)
    int m = 1 + r + 1 >> 1;
    if((up[m].y - up[m-1].y) * dx >= (up[m].x - up[m-1].x) * dy) 1 = m;
    else r = m - 1:
 }
  return up[1];
Point GetMinimumPoint(const vector<Point> &lo, double dy, double dx){
  if(lo.size() == 1) return lo.front();
  if(dx < 0) dx = -dx, dy = -dy;
  if(dx == 0) return dy > 0 ? lo.back() : lo.front();
  if((lo[1].y - lo[0].y) * dx > (lo[1].x - lo[0].x) * dy) return lo.front();
  int 1 = 1, r = lo.size() - 1;
  while(1 < r)
    int m = 1 + r + 1 >> 1:
    if((lo[m].y - lo[m-1].y) * dx <= (lo[m].x - lo[m-1].x) * dy) l = m;
    else r = m - 1:
 }
  return lo[1]:
      K-D Tree
T GetDist(const P &a, const P &b) { return (a.x-b.x) * (a.x-b.x) + (a.y-b.y) * (a.y-b.y); }
struct Node{
 P p; int idx;
 T x1, y1, x2, y2;
  Node(const P &p, const int idx): p(p), idx(idx), x1(1e9), y1(1e9), x2(-1e9), y2(-1e9) {}
  bool contain(const P &pt)const{ return x1 <= pt.x && pt.x <= x2 && y1 <= pt.y && pt.y <= y2; }
  T dist(const P &pt) const { return idx == -1 ? INF : GetDist(p, pt); }
  T dist_to_border(const P &pt) const {
    const auto [x,y] = pt;
    if (x1 \le x \&\& x \le x2) return min((y-y1)*(y-y1), (y2-y)*(y2-y));
    if(y1 \le y \&\& y \le y2) return min((x-x1)*(x-x1), (x2-x)*(x2-x));
    T t11 = GetDist(pt, \{x1,y1\}), t12 = GetDist(pt, \{x1,y2\});
    T t21 = GetDist(pt, \{x2,y1\}), t22 = GetDist(pt, \{x2,y2\});
    return min({t11, t12, t21, t22});
 }
};
template<bool IsFirst = 1> struct Cmp {
 bool operator() (const Node &a. const Node &b) const {
    return IsFirst ? a.p.x < b.p.x : a.p.y < b.p.y;</pre>
 }
};
struct KDTree { // Warning : no duplicate
  constexpr static size_t NAIVE_THRESHOLD = 16;
  vector<Node> tree;
```

```
KDTree() = default;
  explicit KDTree(const vector<P> &v) {
   for(int i=0; i<v.size(); i++) tree.emplace_back(v[i], i); Build(0, v.size());</pre>
 template<bool IsFirst = 1>
 void Build(int 1, int r) {
   if(r - 1 <= NAIVE_THRESHOLD) return;</pre>
   const int m = (1 + r) \gg 1;
   nth_element(tree.begin()+1, tree.begin()+m, tree.begin()+r, Cmp<IsFirst>{});
   for(int i=1; i<r; i++){</pre>
     tree[m].x1 = min(tree[m].x1, tree[i].p.x); tree[m].y1 = min(tree[m].y1, tree[i].p.y);
     tree[m].x2 = max(tree[m].x2, tree[i].p.x); tree[m].y2 = max(tree[m].y2, tree[i].p.y);
   Build<!IsFirst>(1, m); Build<!IsFirst>(m + 1, r);
 }
 template<bool IsFirst = 1>
 void Query(const P &p, int 1, int r, Node &res) const {
   if(r - 1 <= NAIVE_THRESHOLD){</pre>
     for(int i=1; i<r; i++) if(p != tree[i].p && res.dist(p) > tree[i].dist(p)) res = tree[i];
   }
   else{
      const int m = (1 + r) \gg 1:
     const T t = IsFirst ? p.x - tree[m].p.x : p.y - tree[m].p.y;
     if(p != tree[m].p && res.dist(p) > tree[m].dist(p)) res = tree[m];
     if(!tree[m].contain(p) && tree[m].dist_to_border(p) >= res.dist(p)) return;
     if(t < 0){
       Query<!IsFirst>(p, 1, m, res);
       if(t*t < res.dist(p)) Query<!IsFirst>(p, m+1, r, res);
      else{
        Query<!IsFirst>(p, m+1, r, res);
        if(t*t < res.dist(p)) Query<!IsFirst>(p, 1, m, res);
   }
 }
 int Query(const P& p) const {
   Node ret(make_pair<T>(1e9, 1e9), -1); Query(p, 0, tree.size(), ret); return ret.idx;
 }
};
2.5 Dual Graph
constexpr int quadrant_id(const Point p){
 constexpr int arr[9] = \{ 5, 4, 3, 6, -1, 2, 7, 0, 1 \};
 return arr[sign(p.x)*3+sign(p.y)+4];
pair<vector<int>, int> dual_graph(const vector<Point> &points, const vector<pair<int,int>>
&edges){
 int n = points.size(), m = edges.size();
 vector<int> uf(2*m); iota(uf.begin(), uf.end(), 0);
 function<int(int)> find = [\&](int v){ return v == uf[v] ? v : uf[v] = find(uf[v]): }:
 function<bool(int,int)> merge = [&](int u, int v){ return find(u) != find(v) &&
 (uf[uf[u]]=uf[v], true); };
 vector<vector<pair<int,int>>> g(n);
 for(int i=0; i<m; i++){</pre>
   g[edges[i].first].emplace_back(edges[i].second, i);
```

g[edges[i].second].emplace_back(edges[i].first, i);

```
for(int i=0; i<n; i++){
    const auto base = points[i];
    sort(g[i].begin(), g[i].end(), [&](auto a, auto b){
      auto p1 = points[a.first] - base, p2 = points[b.first] - base;
      return quadrant_id(p1) != quadrant_id(p2) ? quadrant_id(p1) < quadrant_id(p2) :</pre>
      p1.cross(p2) > 0;
    });
    for(int j=0; j<g[i].size(); j++){</pre>
      int k = j ? j - 1 : g[i].size() - 1;
      int u = g[i][k].second << 1, v = g[i][j].second << 1 | 1;
      auto p1 = points[g[i][k].first], p2 = points[g[i][j].first];
      if(p1 < base) u = 1; if(p2 < base) v = 1;
      merge(u, v);
    }
  vector<int> res(2*m);
  for(int i=0; i<2*m; i++) res[i] = find(i);
  auto comp = res; compress(comp);
  for(auto &i : res) i = IDX(comp, i);
  int mx_idx = max_element(points.begin(), points.end()) - points.begin();
  return {res, res[g[mx_idx].back().second << 1 | 1]};</pre>
}
      Bulldozer Trick (Rotating Sweep Line)
struct Line{
  ll i, j, dx, dy; // dx >= 0
  Line(int i, int j, const Point &pi, const Point &pj)
    : i(i), j(j), dx(pj.x-pi.x), dy(pj.y-pi.y) {}
  bool operator < (const Line &1) const {</pre>
    return make_tuple(dy*1.dx, i, j) < make_tuple(1.dy*dx, 1.i, 1.j);
  bool operator == (const Line &1) const {
    return dv * 1.dx == 1.dv * dx;
};
void Solve(){
  sort(A+1, A+N+1); iota(P+1, P+N+1, 1);
  vector<Line> V; V.reserve(N*(N-1)/2);
  for(int i=1; i<=N; i++) for(int j=i+1; j<=N; j++) V.emplace_back(i, j, A[i], A[j]);
  sort(V.begin(), V.end());
  for(int i=0, j=0; i<V.size(); i=j){</pre>
    while(j < V.size() && V[i] == V[j]) j++;</pre>
    for(int k=i; k<j; k++){</pre>
      int u = V[k].i, v = V[k].j; // point id, index -> Pos[id]
      swap(Pos[u], Pos[v]); swap(A[Pos[u]], A[Pos[v]]);
      if(Pos[u] > Pos[v]) swap(u, v);
      // @TODO
    }
```

2.7 Smallest Enclosing Circle

```
pt getCenter(pt a, pt b){ return pt((a.x+b.x)/2, (a.y+b.y)/2); }
pt getCenter(pt a, pt b, pt c){
```

```
pt aa = b - a, bb = c - a;
  auto c1 = aa*aa * 0.5, c2 = bb*bb * 0.5, d = aa / bb;
  auto x = a.x + (c1 * bb.y - c2 * aa.y) / d;
  auto y = a.y + (c2 * aa.x - c1 * bb.x) / d;
  return pt(x, y);
Circle solve(vector<pt> v){
  pt p = \{0, 0\};
  double r = 0; int n = v.size();
  for(int i=0; i<n; i++) if(dst(p, v[i]) > r + EPS){
    p = v[i]; r = 0;
    for(int j=0; j<i; j++) if(dst(p, v[j]) > r + EPS){
      p = getCenter(v[i], v[j]); r = dst(p, v[i]);
      for(int k=0; k<j; k++) if(dst(p, v[k]) > r + EPS){
        p = getCenter(v[i], v[j], v[k]); r = dst(v[k], p);
    }
 }
 return {p, r};
     Delaunay Triangulation
using lll = __int128; // using T = ll; (if coords are < 2e4)
// return true if p strictly within circumcircle(a,b,c)
bool inCircle(P p, P a, P b, P c) {
    a = p, b = p, c = p; // assert(cross(a,b,c)>0);
    111 x = (111) norm(a) * cross(b,c) + (111) norm(b) * cross(c,a) + (111) norm(c) * cross(a,b);
    return x*(ccw(a,b,c)>0?1:-1) > 0;
} using Q = struct Quad*;
P arb(LLONG_MAX,LLONG_MAX); // not equal to any other point
struct Quad {
    bool mark; Q o, rot; P p;
    P F() { return r()->p; } Q r() { return rot->rot; }
    Q prev() { return rot->o->rot; } Q next() { return r()->prev(); }
};
Q makeEdge(P orig, P dest) {
     Q q[]{new Quad{0,0,0,orig}, new Quad{0,0,0,arb}, new Quad{0,0,0,dest}, new Quad{0,0,0,arb}}; 
    FOR(i,4) q[i] \rightarrow o = q[-i \& 3], q[i] \rightarrow rot = q[(i+1) \& 3]; return *q;
void splice(Q a, Q b) { swap(a->o->rot->o, b->o->rot->o); swap(a->o, b->o); }
Q connect(Q a, Q b) {
    Q = makeEdge(a->F(), b->p); splice(q, a->next()); splice(q->r(), b);
pair<Q,Q> rec(const vP& s) {
    if (sz(s) \le 3) \{
        Q = makeEdge(s[0], s[1]), b = makeEdge(s[1], s.bk);
        if (sz(s) == 2) return { a, a->r() };
        splice(a->r(), b);
        auto side = cross(s[0], s[1], s[2]): Q c = side ? connect(b, a) : 0:
        return {side < 0 ? c->r() : a, side < 0 ? c : b->r() };
   }
#define H(e) e \rightarrow F(), e \rightarrow p
#define valid(e) (cross(e->F(),H(base)) > 0)
    Q A. B. ra. rb:
    int half = sz(s) / 2;
```

void DFS(int v){

void Get(){

}

Path.push_back(v);

for(int i=1; i<=pv; i++) while(G[v][i]) G[v][i]--, DFS(i);</pre>

for(int i=1; i<=pv; i++) if(In[i] < Out[i]){ DFS(i); return; }
for(int i=1; i<=pv; i++) if(Out[i]){ DFS(i); return; }</pre>

```
tie(ra, A) = rec({all(s)-half}); tie(B, rb) = rec({sz(s)-half+all(s)});
           while ((cross(B->p,H(A)) < 0 && (A = A->next())) || (cross(A->p,H(B)) > 0 && (B = A->next())) || (cross(B->p,H(B)) > 0 && (B = A->next()) || (cross(B->p,H(B)) > 0 &&
           B \rightarrow r() \rightarrow o))):
          Q base = connect(B->r(), A);
           if (A->p == ra->p) ra = base->r();
           if (B->p == rb->p) rb = base;
 #define DEL(e, init, dir) Q e = init->dir; if (valid(e)) \
           while (inCircle(e->dir->F(), H(base), e->F())) { \
                     Q t = e->dir; splice(e, e->prev()); \
                     splice(e->r(), e->r()->prev()); e = t; \
          while (1) {
                    DEL(LC, base->r(), o); DEL(RC, base, prev());
                    if (!valid(LC) && !valid(RC)) break;
                    if (!valid(LC) || (valid(RC) && inCircle(H(RC), H(LC)))) base = connect(RC, base->r());
                     else base = connect(base->r(), LC->r());
          }
          return {ra, rb};
}
V<AR<P,3>> triangulate(vP pts) {
           sor(pts); assert(unique(all(pts)) == end(pts)); // no duplicates
           if (sz(pts) < 2) return {};
           Q = rec(pts).f; V<Q> q = {e};
           while (cross(e->o->F(), e->F(), e->p) < 0) e = e->o;
  #define ADD { Q c = e; do { c\rightarrow mark = 1; pts.pb(c\rightarrow p); \
      q.pb(c->r()); c = c->next(); } while (c != e); }
           ADD; pts.clear();
           int qi = 0; while (qi < sz(q)) if (!(e = q[qi++])->mark) ADD;
           V<AR<P,3>> ret(sz(pts)/3); FOR(i,sz(pts)) ret[i/3][i%3] = pts[i];
           return ret;
}
  3 Graph
  3.1 Euler Tour
 // Not Directed / Cycle
  constexpr int SZ = 1010;
 int N, G[SZ][SZ], Deg[SZ], Work[SZ];
 void DFS(int v){
    for(int &i=Work[v]; i<=N; i++) while(G[v][i])</pre>
          G[v][i]--, G[i][v]--, DFS(i);
     cout << v << " ";
}
 // Directed / Path
```

$3.2 \quad SCC + 2-SAT$

```
Usage: CNF: (A or B) / alwaysTrue: A = ; B / setValue / mostOne / exactlyOne
inline int True(int x){ return x << 1; }</pre>
inline int False(int x){ return x << 1 | 1; }</pre>
inline int Inv(int x) { return x ^ 1: }
struct TwoSat{
 int n:
 vector<vector<int>> g;
 vector<int> result;
 TwoSat(int n, int m = 0) : n(n), g(n+n) { if(!m) g.reserve(m+m); }
 int addVar(){ g.emplace_back(); g.emplace_back(); return n++; }
  void addEdge(int s, int e){ g[s].push_back(e); }
  void addCNF(int a, int b){ addEdge(Inv(a), b); addEdge(Inv(b), a); } // (A or B)
  void setValue(int x){ addCNF(x, x); } // (A or A)
  void addAlwaysTrue(int a, int b){ addEdge(a, b): addEdge(Inv(b), Inv(a)): } // A => B
 void addMostOne(const vector<int> &li){
   if(li.empty()) return; int t;
   for(int i=0; i<li.size(); i++){</pre>
     t = addVar();
     addAlwaysTrue(li[i], True(t));
     if(!i) continue;
      addAlwaysTrue(True(t-1), True(t));
      addAlwaysTrue(True(t-1), Inv(li[i]));
 }
 void addExactlyOne(const vector<int> &li){
   if(li.empty()) return; int t;
   for(int i=0; i<li.size(); i++){</pre>
     t = addVar():
     addAlwaysTrue(li[i], True(t));
     if(!i) continue:
      addAlwaysTrue(True(t-1), True(t));
      addAlwaysTrue(True(t-1), Inv(li[i]));
   }
   setValue(True(t));
 vector<int> val. comp. z: int pv = 0:
 int dfs(int i){
   int low = val[i] = ++pv, x; z.push_back(i);
   for(int e : g[i]) if(!comp[e]) low = min(low, val[e] ?: dfs(e));
   if(low == val[i]){
     dof
       x = z.back(); z.pop_back();
        comp[x] = low:
        if (result[x>>1] == -1) result[x>>1] = ~x&1:
     }while(x != i);
   }
   return val[i] = low;
 bool sat(){
   result.assign(n, -1);
   val.assign(2*n, 0); comp = val;
   for(int i=0; i<n+n; i++) if(!comp[i]) dfs(i);</pre>
   for(int i=0; i<n; i++) if(comp[2*i] == comp[2*i+1]) return 0;
   return 1:
```

```
vector<int> getValue(){ return move(result); }
};
3.3 BCC
  Usage: call tarjan() before use
vector<int> G[MAX_V];
int In[MAX_V], Low[MAX_V], P[MAX_V];
void addEdge(int s, int e){
 G[s].push_back(e); G[e].push_back(s);
void tarjan(int n){ /// Pre-Process
 int pv = 0;
  function<void(int,int)> dfs = [&pv,&dfs](int v, int b){
    In[v] = Low[v] = ++pv; P[v] = b;
    for(auto i : G[v]){
      if(i == b) continue;
      if(!In[i]) dfs(i, v), Low[v] = min(Low[v], Low[i]);
      else Low[v] = min(Low[v], In[i]):
 };
  for(int i=1; i<=n; i++) if(!In[i]) dfs(i, -1);
vector<int> cutVertex(int n){
  vector<int> res;
  array<char,MAX_V> isCut; isCut.fill(0);
  function<void(int)> dfs = [&dfs.&isCut](int v){
    int ch = 0:
    for(auto i : G[v]){
      if(P[i] != v) continue; dfs(i); ch++;
      if(P[v] == -1 \&\& ch > 1) isCut[v] = 1;
      else if(P[v] != -1 \&\& Low[i] >= In[v]) isCut[v] = 1:
 };
  for(int i=1; i<=n; i++) if(P[i] == -1) dfs(i);
  for(int i=1; i<=n; i++) if(isCut[i]) res.push_back(i);</pre>
  return move(res):
vector<PII> cutEdge(int n){
  vector<PII> res:
  function<void(int)> dfs = [&dfs,&res](int v){
    for(int t=0; t<G[v].size(); t++){</pre>
      int i = G[v][t]; if (t != 0 \&\& G[v][t-1] == G[v][t]) continue;
      if(P[i] != v) continue; dfs(i);
      if((t+1 == G[v].size() \mid | i != G[v][t+1]) \&\& Low[i] > In[v]) res.emplace_back(min(v,i),
      max(v,i));
    }
  };
  for(int i=1; i<=n; i++) sort(G[i].begin(), G[i].end()); // multi edge -> sort
  for(int i=1; i<=n; i++) if(P[i] == -1) dfs(i);
  return move(res): // sort(all(res)):
vector<int> BCC[MAX_V]; // BCC[v] = components which contains v
void vertexDisjointBCC(int n){ // allow multi edge, not allow self loop
  array<char,MAX_V> vis; vis.fill(0);
  function<void(int,int)> dfs = [&dfs,&vis,&cnt](int v, int c){
```

```
if(c > 0) BCC[v].push_back(c);
   vis[v] = 1;
   for(auto i : G[v]){
     if(vis[i]) continue;
     if(In[v] <= Low[i]) BCC[v].push_back(++cnt), dfs(i, cnt);</pre>
     else dfs(i, c):
   }
 };
 for(int i=1; i<=n; i++) if(!vis[i]) dfs(i, 0);
 for(int i=1; i<=n; i++) if(BCC[i].empty()) BCC[i].push_back(++cnt);</pre>
void edgeDisjointBCC(int n){} // remove cut edge, do flood fill
3.4 Maximum Clique
int N, M; ull G[40], MX, Clique; // 0-index, adj list with bitset, O(3^{N/3})
void get_clique(int R = 0, ull P = (1ULL<<N)-1, ull X = 0, ull V=0){</pre>
 if((P|X) == 0){if(R > MX) MX = R, Clique = V; return;}
 int u = __builtin_ctzll(P|X); ll c = P&~G[u];
 while(c){
   int v = __builtin_ctzll(c);
   get\_clique(R + 1, P&G[v], X&G[v], V | 1ULL << v);
   P ^= 1ULL << v: X |= 1ULL << v: c ^= 1ULL << v:
 }
3.5 Bipartite Matching
vector<int> G[SzL]; void AddEdge(int s, int e){ G[s].push_back(e); }
int D[SzL], L[SzL], R[SzR]:
bitset<SzL> Visit; bitset<SzL+SzR> Track;
void clear(){ for(int i=0; i<SzL; i++) G[i].clear(); Track.reset(); }</pre>
bool BFS(int N){
 bool ret = false;
 queue<int> Q; memset(D, 0, sizeof D);
 for(int i=1; i<=N; i++) if(L[i] == -1 \&\& !D[i]) Q.push(i), D[i] = 1;
 while(Q.size()){
   int v = Q.front(); Q.pop();
   for(const auto &i : G[v]){
     if(R[i] == -1) ret = true;
     else if(!D[R[i]]) D[R[i]] = D[v] + 1, Q.push(R[i]);
   }
 }
 return ret;
bool DFS(int v){
 if(Visit[v]) return false; Visit[v] = true;
 for(const auto &i : G[v]){
   if(R[i] == -1 \mid | !Visit[R[i]] \&\& D[R[i]] == D[v] + 1 \&\& DFS(R[i])) \{ L[v] = i; R[i] = v; \}
   return true; }
 }
 return false;
int Match(int N){
 int ret = 0; memset(L, -1, sizeof L); memset(R, -1, sizeof R);
 while(BFS(N)){
   Visit.reset(); for(int i=1; i<=N; i++) if(L[i] == -1 && DFS(i)) ret++;
```

```
return ret;
void DFS2(int v, int N){
 if(Track[v]) return; Track[v] = true;
 for(const auto &i : G[v]) Track[i+N] = true, DFS2(R[i], N);
pair<vector<int>, vector<int>> MinVertexCover(int N, int M){
 Match(N); for(int i=1; i<=N; i++) if(L[i] == -1) DFS2(i, N);
 vector<int> a, b;
 for(int i=1; i<=N; i++) if(!Track[i]) a.push_back(i);</pre>
 for(int i=N+1; i<=N+M; i++) if(Track[i]) b.push_back(i-N);</pre>
 return make_pair(a, b);
     Push Relabel
template<typename flow_t> struct Edge {
 int u, v, r; flow_t c, f;
 Edge() = default;
 Edge(int u, int v, flow_t c, int r) : u(u), v(v), r(r), c(c), f(0) {}
template<typename flow_t, size_t _Sz> struct PushRelabel {
 using edge_t = Edge<flow_t>;
 int n, b, dist[_Sz], count[_Sz+1];
 flow_t excess[_Sz]; bool active[_Sz];
 vector<edge_t> g[_Sz]; vector<int> bucket[_Sz];
 void clear(){ for(int i=0; i<_Sz; i++) g[i].clear(); }</pre>
 void addEdge(int s, int e, flow_t x){
   g[s].emplace_back(s, e, x, (int)g[e].size());
   if(s == e) g[s].back().r++;
   g[e].emplace_back(e, s, 0, (int)g[s].size()-1);
 void enqueue(int v){
   if(!active[v] && excess[v] > 0 && dist[v] < n){
      active[v] = true; bucket[dist[v]].push_back(v); b = max(b, dist[v]);
 }
 void push(edge_t &e){
   flow_t fl = min(excess[e.u], e.c - e.f);
   if(dist[e.u] == dist[e.v] + 1 && fl > flow_t(0)){
      e.f += fl; g[e.v][e.r].f -= fl; excess[e.u] -= fl; excess[e.v] += fl; excess[e.v]
   }
 void gap(int k){
   for(int i=0: i<n: i++){
     if(dist[i] >= k) count[dist[i]]--, dist[i] = max(dist[i], n), count[dist[i]]++;
      enqueue(i);
   }
 void relabel(int v){
   count[dist[v]]--; dist[v] = n;
   for(const auto &e : g[v]) if(e.c - e.f > 0) dist[v] = min(dist[v], dist[e.v] + 1);
   count[dist[v]]++; enqueue(v);
 void discharge(int v){
   for(auto &e : g[v]) if(excess[v] > 0) push(e); else break;
```

```
if(excess[v] > 0) if(count[dist[v]] == 1) gap(dist[v]); else relabel(v);
 }
 flow t maximumFlow(int n. int s. int t){
   memset(dist, 0, sizeof dist); memset(excess, 0, sizeof excess);
   memset(count, 0, sizeof count); memset(active, 0, sizeof active);
   n = n: b = 0:
   for(auto &e : g[s]) excess[s] += e.c;
   count[s] = n; enqueue(s); active[t] = true;
   while(b >= 0){
     if(bucket[b].empty()) b--;
     else{
       int v = bucket[b].back(); bucket[b].pop_back();
       active[v] = false: discharge(v):
   }
   return excess[t];
};
3.7 LR Flow
addEdge(t, s, inf) // 기존 싱크 -> 기존 소스 inf
addEdge(s. nt. 1) // s -> 새로운 싱크 1
addEdge(ns, e, 1) // 새로운 소스 -> e 1
addEdge(a, b, r-1) // s -> e (r-1)
// ns -> nt의 max flow == 1들의 합 확인
// maxflow : s -> t 플로우 찾을 수 있을 때까지 반복
3.8 Hungarian Method
// 1-based, only for minimum matching, maximum matching may get TLE
template<typename cost_t=int, cost_t _INF=0x3f3f3f3f>
struct Hungarian{
 int n;
 vector<vector<cost_t>> mat;
 Hungarian(int n) : n(n), mat(n+1, vector<cost_t>(n+1, _INF)) {}
 void addEdge(int s, int e, cost_t x){ mat[s][e] = min(mat[s][e], x); }
 pair<cost t. vector<int>> run(){
   vector < cost_t > u(n+1), v(n+1), m(n+1);
   vector<int> p(n+1), w(n+1), c(n+1);
   for(int i=1,a,b; i<=n; i++){
     p[0] = i; b = 0;
     fill(m.begin(), m.end(), _INF);
     fill(c.begin(), c.end(), 0);
        int nxt; cost_t delta = _INF;
        c[b] = 1; a = p[b];
       for(int j=1; j<=n; j++){
         if(c[i]) continue;
         cost_t t = mat[a][j] - u[a] - v[j];
         if(t < m[i]) m[i] = t, w[i] = b:
         if(m[j] < delta) delta = m[j], nxt = j;</pre>
       for(int j=0; j<=n; j++){</pre>
         if(c[i]) u[p[i]] += delta, v[i] -= delta;
         else m[j] -= delta;
```

```
b = nxt;
      }while(p[b] != 0);
        int nxt = w[b]; p[b] = p[nxt]; b = nxt;
      }while(b != 0):
    vector<int> assign(n+1); for(int i=1; i<=n; i++) assign[p[i]] = i;</pre>
    return {-v[0], assign};
};
      O(V^3) Global Min Cut
int vertex, g[S][S], dst[S], chk[S], del[S];
void init(){
  memset(g, 0, sizeof g); memset(del, 0, sizeof del);
void addEdge(int s, int e, int x){ g[s][e] = g[e][s] = x; }
int minCutPhase(int &s, int &t){
  memset(dst, 0, sizeof dst);
  memset(chk, 0, sizeof chk);
  int mincut = 0:
  for(int i=1; i<=vertex; i++){</pre>
    int k = -1, mx = -1:
    for(int j=1; j<=vertex; j++) if(!del[j] && !chk[j])</pre>
      if(dst[j] > mx) k = j, mx = dst[j];
    if(k == -1) return mincut:
    s = t, t = k;
    mincut = mx, chk[k] = 1;
    for(int j=1; j<=vertex; j++){</pre>
      if(!del[j] && !chk[j]) dst[j] += g[k][j];
    }
  }
  return mincut;
int getMinCut(int n){
  vertex = n; int mincut = 1e9+7;
  for(int i=1; i<vertex; i++){</pre>
    int s, t;
    int now = minCutPhase(s, t);
    mincut = min(mincut, now): del[t] = 1:
    if(mincut == 0) return 0;
    for(int j=1; j<=vertex; j++){</pre>
      if(!del[j]) g[s][j] = (g[j][s] += g[j][t]);
    }
  }
  return mincut;
       Gomory-Hu Tree
// O-based, S-T cut in graph == S-T cut in gomory-hu tree (path minimum)
vector<Edge> GomoryHuTree(int n, const vector<Edge> &e){
    Dinic<int.100> Flow:
    vector<Edge> res(n-1); vector<int> pr(n);
    for(int i=1; i<n; i++, Flow.clear()){</pre>
        for(const auto &[s,e,x] : e) Flow.AddEdge(s, e, x); // bi-directed
```

```
int fl = Flow.MaxFlow(pr[i], i);
        for(int j=i+1; j<n; j++){
            if(!Flow.Level[i] == !Flow.Level[j] && pr[i] == pr[j]) pr[j] = i;
        res[i-1] = Edge(pr[i], i, fl);
   }
    return res;
3.11 Rectlinear MST
template < class T > vector < tuple < T, int, int >>
rectilinear_minimum_spanning_tree(vector<point<T>> a){
 int n = a.size():
 vector<int> ind(n);
 iota(ind.begin(), ind.end(), 0);
 vector<tuple<T, int, int>> edge;
 for(int k=0: k<4: k++){
   sort(ind.begin(), ind.end(), [\&](int i,int j){return a[i].x-a[j].x < a[j].y-a[i].y;});
   map<T, int> mp:
   for(auto i: ind){
     for(auto it=mp.lower_bound(-a[i].y); it!=mp.end(); it=mp.erase(it)){
        int j = it->second; point<T> d = a[i] - a[j];
        if(d.v > d.x) break;
        edge.push_back({d.x + d.y, i, j});
      mp.insert({-a[i].y, i});
   for(auto &p: a) if(k & 1) p.x = -p.x; else swap(p.x, p.y);
 sort(edge.begin(), edge.end());
 disjoint_set dsu(n);
 vector<tuple<T, int, int>> res;
 for(auto [x, i, j]: edge) if(dsu.merge(i, j)) res.push_back({x, i, j});
 return res;
3.12 O((V+E)\log V) Dominator Tree
vector<int> DominatorTree(const vector<vector<int>> &g, int src){ // // 0-based
 int n = g.size();
 vector<vector<int>> rg(n), buf(n);
 vector < int > r(n), val(n), idom(n, -1), sdom(n, -1), o, p(n), u(n);
 iota(all(r), 0); iota(all(val), 0);
 for(int i=0; i<n; i++) for(auto j : g[i]) rg[j].push_back(i);</pre>
 function<int(int)> find = [&](int v){
   if(v == r[v]) return v;
   int ret = find(r[v]);
   if(sdom[val[v]] > sdom[val[r[v]]]) val[v] = val[r[v]];
   return r[v] = ret;
 }:
 function<void(int)> dfs = [&](int v){
   sdom[v] = o.size(); o.push_back(v);
   for(auto i : g[v]) if(sdom[i] == -1) p[i] = v, dfs(i);
 dfs(src); reverse(all(o));
 for(auto &i : o){
```

};

```
if(sdom[i] == -1) continue;
   for(auto j : rg[i]){
     if(sdom[j] == -1) continue;
     int x = val[find(j), j];
     if(sdom[i] > sdom[x]) sdom[i] = sdom[x];
   buf[o[o.size() - sdom[i] - 1]].push_back(i);
   for(auto j : buf[p[i]]) u[j] = val[find(j), j];
   buf[p[i]].clear();
   r[i] = p[i];
 reverse(all(o)); idom[src] = src;
 for(auto i : o){ // WARNING : if different, takes idom
   if(i != src) idom[i] = sdom[i] == sdom[u[i]] ? sdom[i] : idom[u[i]];
 for(auto i : o) if(i != src) idom[i] = o[idom[i]];
 return idom; // unreachable -> ret[i] = -1
      O(N^2) Stable Marriage Problem
// man : 1~n, woman : n+1~2n
struct StableMarriage{
 int n;
 vector<vector<int>> g;
 StableMarriage(int n) : n(n), g(2*n+1) {
   for(int i=1; i<=n+n; i++) g[i].reserve(n);</pre>
 void addEdge(int u, int v){ // insert in decreasing order of preference.
   g[u].push_back(v);
 vector<int> run(){
   queue<int> q;
   vector\langle int \rangle match(2*n+1), ptr(2*n+1);
   for(int i=1; i<=n; i++) q.push(i);</pre>
    while(q.size()){
     int i = q.front(); q.pop();
     for(int &p=ptr[i]; p<g[i].size(); p++){</pre>
        int j = g[i][p];
       if(!match[j]){ match[i] = j; match[j] = i; break; }
        int m = match[j], u = -1, v = -1;
        for(int k=0; k<g[j].size(); k++){</pre>
         if(g[j][k] == i) u = k;
         if(g[j][k] == m) v = k;
        if(u < v){
         match[m] = 0; q.push(m);
         match[i] = j; match[j] = i;
          break:
       }
     }
   }
   return match;
```

```
3.14 O(VE) Vizing Theorem
// Graph coloring with (max-degree)+1 colors, O(N^2)
int C[MX][MX] = {}, G[MX][MX] = {}; // MX ~= 2500
void solve(vector<pii> &E, int N, int M){
 int X[MX] = \{\}, a, b;
 auto update = [\&] (int u) { for(X[u] = 1; C[u][X[u]]; X[u]++); };
 auto color = [&](int u, int v, int c){
   int p = G[u][v];
   G[u][v] = G[v][u] = c:
   C[u][c] = v; C[v][c] = u;
   C[u][p] = C[v][p] = 0;
   if(p) X[u] = X[v] = p;
   else update(u), update(v);
   return p; }; // end of function : color
  auto flip = [&](int u, int c1, int c2){
   int p = C[u][c1], q = C[u][c2];
   swap(C[u][c1], C[u][c2]);
   if(p) G[u][p] = G[p][u] = c2;
   if( !C[u][c1] ) X[u] = c1;
   if( !C[u][c2] ) X[u] = c2;
   return p; }; // end of function : flip
 for(int i = 1; i <= N; i++) X[i] = 1;
 for(int t = 0; t < E.size(); t++){</pre>
   int u = E[t].first, v0 = E[t].second, v = v0, c0 = X[u], c = c0, d;
   vector<pii> L:
   int vst[MX] = {};
   while(!G[u][v0]){
     L.emplace_back(v, d = X[v]);
     if(!C[v][c]) for(a = (int)L.size()-1; a >= 0; a--) c = color(u, L[a].first, c);
     else if(!C[u][d])for(a=(int)L.size()-1;a>=0;a--)color(u,L[a].first,L[a].second);
     else if( vst[d] ) break;
      else vst[d] = 1, v = C[u][d];
   if( !G[u][v0] ){
     for(;v; v = flip(v, c, d), swap(c, d));
     if(C[u][c0]){
       for (a = (int)L.size()-2; a >= 0 && L[a].second != c; a--);
        for(: a >= 0: a--) color(u, L[a].first, L[a].second):
     } else t--;
 }
3.15 O(E \log V) Directed MST
struct Edge{
 int s, e; cost_t x;
 Edge() = default;
 Edge(int s, int e, cost_t x) : s(s), e(e), x(x) {}
 bool operator < (const Edge &t) const { return x < t.x; }</pre>
struct UnionFind{
 vector<int> P, S;
 vector<pair<int, int>> stk;
 UnionFind(int n) : P(n), S(n, 1) { iota(P.begin(), P.end(), 0); }
 int find(int v) const { return v == P[v] ? v : find(P[v]); }
 int time() const { return stk.size(); }
```

```
void rollback(int t){
    while(stk.size() > t){
      auto [u,v] = stk.back(); stk.pop_back();
      P[u] = u; S[v] -= S[u];
    }
  bool merge(int u, int v){
    u = find(u); v = find(v);
    if(u == v) return false;
    if(S[u] > S[v]) swap(u, v);
    stk.emplace_back(u, v);
    S[v] += S[u]; P[u] = v;
    return true:
};
struct Node{
  Edge kev;
  Node *1, *r;
  cost_t lz;
  Node() : Node(Edge()) {}
  Node(const Edge &edge) : key(edge), 1(nullptr), r(nullptr), lz(0) {}
  void push(){
    key.x += lz;
    if(1) 1->1z += 1z:
    if(r) r->lz += lz;
    1z = 0;
  Edge top(){ push(); return key; }
};
Node* merge(Node *a, Node *b){
  if(!a | | !b) return a ? a : b;
  a->push(); b->push();
  if(b->key < a->key) swap(a, b);
  swap(a->1, (a->r = merge(b, a->r)));
  return a:
void pop(Node* &a){ a->push(); a = merge(a->1, a->r); }
pair<cost_t, vector<int>> DirectMST(int n, int rt, vector<Edge> &edges){
  vector<Node*> heap(n);
  UnionFind uf(n);
  for(const auto &i : edges) heap[i.e] = merge(heap[i.e], new Node(i));
  cost_t res = 0;
  vector<int> seen(n, -1), path(n), par(n);
  seen[rt] = rt:
  vector<Edge> Q(n), in(n, \{-1,-1, 0\}), comp;
  deque<tuple<int, int, vector<Edge>>> cyc;
  for(int s=0; s<n; s++){</pre>
    int u = s, qi = 0, w;
    while(seen[u] < 0){
      if(!heap[u]) return {-1, {}};
      Edge e = heap[u]->top();
      heap[u]->lz -= e.x; pop(heap[u]);
      Q[qi] = e; path[qi++] = u; seen[u] = s;
      res += e.x; u = uf.find(e.s);
      if(seen[u] == s){ // found cycle, contract
```

```
Node* nd = 0;
        int end = qi, time = uf.time();
        do nd = merge(nd, heap[w = path[--qi]]); while(uf.merge(u, w));
        u = uf.find(u); heap[u] = nd; seen[u] = -1;
        cyc.emplace_front(u, time, vector<Edge>{&Q[qi], &Q[end]});
   }
   for(int i=0; i<qi; i++) in[uf.find(Q[i].e)] = Q[i];</pre>
 for(auto& [u,t,comp] : cyc){
   uf.rollback(t):
   Edge inEdge = in[u];
   for (auto& e : comp) in[uf.find(e.e)] = e;
   in[uf.find(inEdge.e)] = inEdge;
 }
 for(int i=0; i<n; i++) par[i] = in[i].s;</pre>
 return {res, par};
       Chordal Graph, Tree Decomposition
struct Set {
 list<int> L; int last;
 Set() { last = 0; }
};
struct PEO {
 int N:
 vector<vector<int> > g;
 vector<int> vis, res;
 list<Set> L;
 vector<list<Set>::iterator> ptr;
 vector<list<int>::iterator> ptr2;
 PEO(int n, vector<vector<int> > _g) {
   N = n; g = g;
   for (int i = 1; i <= N; i++) sort(g[i].begin(), g[i].end());</pre>
   vis.resize(N + 1); ptr.resize(N + 1); ptr2.resize(N + 1);
   L.push_back(Set());
   for (int i = 1; i <= N; i++) {
     L.back().L.push_back(i);
      ptr[i] = L.begin(); ptr2[i] = prev(L.back().L.end());
 pair<bool, vector<int>> Run() {
   // lexicographic BFS
   int time = 0:
   while (!L.empty()) {
     if (L.front().L.empty()) { L.pop_front(); continue; }
     auto it = L.begin();
      int n = it->L.front(); it->L.pop_front();
     vis[n] = ++time;
     res.push back(n):
     for (int next : g[n]) {
        if (vis[next]) continue;
        if (ptr[next]->last != time) {
          L.insert(ptr[next], Set()); ptr[next]->last = time;
        ptr[next]->L.erase(ptr2[next]); ptr[next]--;
```

```
ptr[next] ->L.push_back(next);
        ptr2[next] = prev(ptr[next]->L.end());
    // PEO existence check
    for (int n = 1: n \le N: n++) {
      int mx = 0;
      for (int next : g[n]) if (vis[n] > vis[next]) mx = max(mx, vis[next]);
      if (mx == 0) continue;
      int w = res[mx - 1];
      for (int next : g[n]) {
        if (vis[w] > vis[next] && !binary_search(g[w].begin(), g[w].end(), next)){
          vector<int> chk(N+1), par(N+1, -1); // w와 next가 이어져 있지 않다면 not chordal
          deque<int> dq{next}; chk[next] = 1;
          while (!dq.empty()) {
            int x = dq.front(); dq.pop_front();
           for (auto v : g[x]) {
              if (chk[y] \mid | y == n \mid | y != w \&\& binary_search(g[n].begin(), g[n].end(), y))
              dq.push_back(y); chk[y] = 1; par[y] = x;
           }
          }
          vector<int> cycle{next, n};
          for (int x=w; x!=next; x=par[x]) cycle.push_back(x);
          return {false, cycle};
      }
    reverse(res.begin(), res.end());
    return {true, res};
};
bool vis[200201]; // 배열 크기 알아서 수정하자.
int p[200201], ord[200201], P = 0; // P=정점 개수
vector<int> V[200201], G[200201]; // V=bags, G=edges
void tree_decomposition(int N, vector<vector<int> > g) {
  for(int i=1; i<=N; i++) sort(g[i].begin(), g[i].end());</pre>
  vector<int> peo = PEO(N, g).Run(), rpeo = peo;
  reverse(rpeo.begin(), rpeo.end());
  for(int i=0; i<peo.size(); i++) ord[peo[i]] = i;</pre>
  for(int n : rpeo) { // tree decomposition
    vis[n] = true;
    if (n == rpeo[0]) { // 처음
      P++; V[P].push_back(n); p[n] = P; continue;
    int mn = INF, idx = -1:
    for(int next : g[n]) if (vis[next] && mn > ord[next]) mn = ord[next], idx = next;
    assert(idx != -1): idx = p[idx]:
    // 두 set인 V[idx]와 g[n](visited ver)가 같나?
    // V[idx]의 모든 원소가 g[n]에서 나타나는지 판별로 충분하다.
    int die = 0:
    for(int x : V[idx]) {
      if (!binary_search(g[n].begin(), g[n].end(), x)) { die = 1; break; }
    if (!die) { V[idx].push_back(n), p[n] = idx; } // 기존 집합에 추가
    else { // 새로운 집합을 자식으로 추가
      P++;
```

```
G[idx].push_back(P); // 자식으로만 단방향으로 잇자.
      V[P].push_back(n);
      for(int next : g[n]) if (vis[next]) V[P].push_back(next);
      p[n] = P;
    }
  for(int i=1; i<=P; i++) sort(V[i].begin(), V[i].end());</pre>
3.17 O(V^3) Weighted General Matching
struct edge{ int u,v,w; };
constexpr int N = 514, INF = 0x3f3f3f3f3f;
edge g[N*2][N*2];
int n, n_x, match[N*2], slack[N*2], st[N*2], pa[N*2];
int lab[N*2], flo from[N*2][N+1], S[N*2], vis[N*2];
vector<int> flo[N*2]; queue<int> q;
int e_delta(const edge &e){ return lab[e.u] + lab[e.v] - g[e.u][e.v].w * 2; }
void update_slack(int u, int x){
    if(!slack[x] || e_delta(g[u][x]) < e_delta(g[slack[x]][x])) slack[x] = u;</pre>
void set_slack(int x){
    slack[x] = 0:
    for (int u=1; u<=n; u++) if (g[u][x].w > 0 && st[u] != x && S[st[u]] == 0) update_slack(u,x);
void q_push(int x){
    if(x <= n) q.push(x); else for(int i=0; i<flo[x].size(); i++) q_push(flo[x][i]);</pre>
void set_st(int x, int b){
    st[x] = b; if(x > n) for(int i=0; i<flo[x].size(); i++) set_st(flo[x][i], b);
int get_pr(int b, int xr){
    int pr=find(all(flo[b]), xr) - flo[b].begin();
    if(pr & 1){ reverse(1 + all(flo[b])); return flo[b].size() - pr; }
    else return pr;
void set match(int u. int v){
    edge e = g[u][v]; match[u] = g[u][v].v; if(u <= n) return;
    int xr = flo_from[u][e.u], pr = get_pr(u, xr);
    for(int i=0; i<pr; i++) set_match(flo[u][i], flo[u][i^1]);</pre>
    set_match(xr, v); rotate(flo[u].begin(), pr+all(flo[u]));
void augment(int u, int v){
    while(true){
        int xnv = st[match[u]]; set_match(u, v); if(!xnv) return;
        set_match(xnv, st[pa[xnv]]); u = st[pa[xnv]]; v = xnv;
    }
int get_lca(int u, int v){
    static int t = 0;
    for(++t: u || v: swap(u.v)){
        if(u == 0) continue; if(vis[u] == t) return u;
        vis[u] = t; u = st[match[u]]; if(u) u = st[pa[u]];
    }
    return 0;
void add_blossom(int u, int lca, int v){
```

```
int b = n+1; while(b <= n_x \&\& st[b]) ++b;
    if(b > n_x) ++n_x; // new blossom
    lab[b] = 0; S[b]=0; match[b] = match[lca]; flo[b] = vector<int>{lca};
    for(int x=u,y; x!=lca; x=st[pa[y]])
        flo[b].push_back(x), flo[b].push_back(y=st[match[x]]), q_push(y);
    reverse(1 + all(flo[b])):
    for(int x=v,y; x!=lca; x=st[pa[y]])
        flo[b].push_back(x), flo[b].push_back(y=st[match[x]]), q_push(y);
    set_st(b, b);
    for(int x=1; x<=n_x; x++) g[b][x].w = g[x][b].w = 0;
    for(int x=1; x<=n; x++) flo_from[b][x] = 0;</pre>
    for(int i=0; i<flo[b].size(); i++){</pre>
        int xs=flo[b][i]:
        for(int x=1; x<=n_x; x++) if(g[b][x].w==0 || e_delta(g[xs][x]) < e_delta(g[b][x]))
                g[b][x] = g[xs][x], g[x][b] = g[x][xs];
        for(int x=1: x<=n: x++) if(flo from[xs][x]) flo from[b][x] = xs:
    }
    set_slack(b);
}
void expand_blossom(int b){
    for(int i=0; i<flo[b].size(); i++) set_st(flo[b][i], flo[b][i]);</pre>
    int xr = flo_from[b][g[b][pa[b]].u], pr = get_pr(b, xr);
    for(int i=0; i<pr; i+=2){</pre>
        int xs = flo[b][i]. xns = flo[b][i+1]:
        pa[xs] = g[xns][xs].u; S[xs]=1; S[xns]=0;
        slack[xs]=0; set_slack(xns); q_push(xns);
    S[xr]=1; pa[xr]=pa[b];
    for(int i=pr+1: i<flo[b].size(): i++) S[flo[b][i]] = -1. set slack(flo[b][i]):</pre>
    st[b] = 0:
bool on_found_edge(const edge &e){
    int u = st[e.u], v = st[e.v];
    if(S[v] == -1){
        int nu = st[match[v]]: pa[v] = e.u: S[v] = 1:
        slack[v] = slack[nu] = S[nu] = 0; S[nu]=0; q_push(nu);
    }else if(S[v] == 0){
        int lca = get_lca(u, v);
        if(!lca) return augment(u, v), augment(v, u), true;
        else add_blossom(u, lca, v);
    }
    return false;
}
bool matching(){
    memset(S+1, -1, sizeof(int)*n_x);
    memset(slack+1, 0, sizeof(int)*n x):
    q=queue<int>();
    for(int x=1: x<=n x: x++) if(st[x] == x && !match[x]) pa[x]=0. S[x]=0. g push(x):
    if(q.empty()) return false;
    while(true){
        while(q.size()){
            int u = q.front(); q.pop(); if(S[st[u]] == 1) continue;
            for(int v=1; v<=n; v++) if(g[u][v].w > 0 && st[u] != st[v]){
                    if(e_delta(g[u][v]) == 0){ if(on_found_edge(g[u][v])) return true; }
                     else update_slack(u,st[v]);
        }
```

```
int d = INF:
        for(int b=n+1; b<=n_x; b++) if(st[b] == b && S[b] == 1) d = min(d, lab[b]/2);
        for(int x=1: x<=n x: x++) if(st[x] == x && slack[x]){
                if(S[x] == -1) d = min(d, e_delta(g[slack[x]][x]));
                else if(S[x] == 0) d = min(d, e_delta(g[slack[x]][x])/2);
           }
        for(int u=1; u<=n; u++){</pre>
            if(S[st[u]] == 0){ if(lab[u] <= d) return 0; lab[u] -= d; }</pre>
            else if(S[st[u]] == 1) lab[u] += d;
        for(int b=n+1: b<=n x: b++) if(st[b] == b){
                if(S[st[b]] == 0) lab[b] += d*2;
                else if(S[st[b]] == 1) lab[b] -= d*2:
           }
        q=queue<int>();
        for(int x=1: x<=n x: x++)
            if(st[x] == x \&\& slack[x] \&\& st[slack[x]] != x \&\& e_delta(g[slack[x]][x]) == 0)
                if(on_found_edge(g[slack[x]][x])) return true;
        for(int b=n+1; b<=n_x; b++)</pre>
            if(st[b] == b\&\& S[b] == 1 \&\& lab[b] == 0) expand_blossom(b);
   }
   return false:
pair<long long,int> solve(){
   memset(match+1, 0, sizeof(int)*n);
   n_x = n; int n_matches = 0, w_max = 0; long long tot_weight = 0;
   for(int u=0; u<=n; u++) st[u] = u, flo[u].clear();</pre>
   for(int u=1; u<=n; u++) for(int v=1; v<=n; v++)
            flo from [u][v] = u==v ? u : 0. w max = max(w max. g[u][v].w):
   for(int u=1; u<=n; u++) lab[u] = w_max;</pre>
   while(matching()) ++n_matches;
   for(int u=1; u<=n; u++) if(match[u] && match[u] < u) tot_weight += g[u][match[u]].w;
   return make_pair(tot_weight, n_matches);
void add edge(int u, int v, int w){ g[u][v].w = g[v][u].w = w: }
void init(int _n){
   n = n:
   for(int u=1; u<=n; u++) for(int v=1; v<=n; v++) g[u][v] = \{u, v, 0\};
4 Math
4.1 Extend GCD, CRT, Combination
// ll gcd(ll a, ll b), ll lcm(ll a, ll b), ll mod(ll a, ll b)
tuple < ll, ll, ll > ext_gcd(ll a, ll b) { // return [g,x,y] s.t. ax+by=gcd(a,b)=g}
 if(b == 0) return {a, 1, 0};
 auto [g,x,y] = ext_gcd(b, a \% b);
 return \{g, y, x - a/b * y\};
ll inv(ll a. ll m){ //return x when ax mod m = 1. fail -> -1
 auto [g,x,y] = ext_gcd(a, m);
 return g == 1 ? mod(x, m) : -1;
pair<11,11> crt(11 a1, 11 m1, 11 a2, 11 m2){
 11 g = gcd(m1, m2), m = m1 / g * m2;
 if((a2 - a1) % g) return {-1, -1};
```

```
11 md = m2/g, s = mod((a2-a1)/g, m2/g);
 11 t = mod(get<1>(ext_gcd(m1/g%md, m2/g)), md);
  return { a1 + s * t % md * m1. m }:
pair<ll, ll> crt(const vector<ll> &a, const vector<ll> &m){
 ll ra = a[0]. rm = m[0]:
  for(int i=1: i<m.size(): i++){</pre>
    auto [aa,mm] = crt(ra, rm, a[i], m[i]);
    if (mm == -1) return \{-1, -1\}; else tie(ra,rm) = tie(aa,mm);
 return {ra, rm}:
struct Lucas{ // init : O(P), query : O(log P)
  const size_t P;
  vector<ll> fac, inv;
  11 Pow(11 a, 11 b){
    11 \text{ ret} = 1;
    for(; b; b>>=1, a=a*a%P) if(b&1) ret=ret*a%P;
    return ret;
Lucas(size_t P) : P(P), fac(P), inv(P) {
    fac[0] = 1:
    for(int i=1; i<P; i++) fac[i] = fac[i-1] * i % P;</pre>
    inv[P-1] = Pow(fac[P-1], P-2):
    for(int i=P-2; ~i; i--) inv[i] = inv[i+1] * (i+1) % P;
 11 small(ll n, ll r) const {
    if(n < r) return 0;</pre>
    return fac[n] * inv[r] % P * inv[n-r] % P:
  11 calc(ll n, ll r) const {
    if (n < r || n < 0 || r < 0) return 0;
    if(!n || !r || n == r) return 1;
    return small(n%P, r%P) * calc(n/P, r/P) % P;
template<11 p, 11 e> struct CombinationPrimePower{ // init : O(p^e), query : O(log p)
  vector<ll> val: 11 m:
  CombinationPrimePower(){
    m = 1; for(int i=0; i<e; i++) m *= p; val.resize(m); val[0] = 1;
    for(int i=1; i<m; i++) val[i] = val[i-1] * (i % p ? i : 1) % m;
  pair<ll,ll> factorial(int n){
    if (n < p) return \{0, val[n]\};
    int k = n / p; auto v = factorial(k);
    int cnt = v.first + k, kp = n / m, rp = n % m;
    ll ret = v.second * Pow(val[m-1], kp % 2, m) % m * val[rp] % m;
    return {cnt. ret}:
  11 calc(int n, int r){
    if (n < 0 \mid | r < 0 \mid | n < r) return 0:
    auto v1 = factorial(n), v2 = factorial(r), v3 = factorial(n-r);
    11 cnt = v1.first - v2.first - v3.first:
    ll ret = v1.second * inv(v2.second, m) % m * inv(v3.second, m) % m;
    if(cnt >= e) return 0:
    for(int i=1; i<=cnt; i++) ret = ret * p % m;</pre>
    return ret;
```

```
}
};
4.2 Partition Number
for(int j=1; j*(3*j-1)/2 <= i; j++) P[i] += (j\%2?1:-1)*P[i-j*(3*j-1)/2], <math>P[i] \% = MOD;
for(int j=1; j*(3*j+1)/2 \le i; j++) P[i] += (j/(2?1:-1)*P[i-j*(3*j+1)/2], P[i] %= MOD;
4.3 FloorSum
// sum of floor((A*i+B)/M) over 0 <= i < N in O(log(N+M+A+B))
11 FloorSum(11 N, 11 M, 11 A, 11 B){ // 1 <= N,M <= 1e9, 0 <= A,B < M
 11 R = 0:
 if(A >= M) R += N * (N - 1) / 2 * (A / M), A %= M;
 if(B >= M) R += B / M * N, B %= M;
 11 Y = (A * N + B) / M, X = Y * M - B;
 if(Y == 0) return R:
 R += (N - (X + A - 1) / A) * Y;
 R += FloorSum(Y, A, M, (A - X % A) % A);
 return R;
4.4 XOR Basis(XOR Maximization)
// can use greedy maximize
//((staircase basis, basis coefficient), selected basis indices)
// staircase basis: has some good property
// basis coefficient and selected basis indices: for reconstruct
pair<vector<pair<11.11>>. vector<11>> xor basis(const vector<11> &a) {
 vector<pair<11,11>> r(64, {-1, -1}); // descending
 vector<ll> bi:
 for(int i = 0: i < a.size(): i++) {
   11 x = a[i], xc = 0;
   for(auto [b, bc] : r)
     if("b and x > (x ^b)) x ^= b, xc ^= bc;
   if(x) r[63 - _1g(x)] = {x, xc (111 << bi.size())}, bi.push_back(i);
 return {move(r), move(bi)};
} // for(auto i : r) mx = max(mx, mx ^ i.first);
4.5 Gauss Jordan Elimination
template<typename T> // return {rref, rank, det, inv}
tuple<vector<vector<T>>, T, T, vector<vector<T>>> Gauss(vector<vector<T>>> a, bool square=true){
 int n = a.size(), m = a[0].size(), rank = 0;
 vector<vector<T>> out(n, vector<T>(m, 0)); T det = T(1);
 for(int i=0; i<n; i++) if(square) out[i][i] = T(1);</pre>
 for(int i=0; i<m; i++){</pre>
   if(rank == n) break:
   if(IsZero(a[rank][i])){
     T mx = T(0); int idx = -1; // fucking precision error
     for(int j=rank+1; j<n; j++) if(mx < abs(a[j][i])) mx = abs(a[j][i]), idx = j;
     if(idx == -1 || IsZero(a[idx][i])){ det = 0; continue; }
     for(int k=0; k<m; k++){</pre>
       a[rank][k] = Add(a[rank][k], a[idx][k]):
       if(square) out[rank][k] = Add(out[rank][k], out[idx][k]);
```

}

```
det = Mul(det, a[rank][i]);
   T coeff = Div(T(1), a[rank][i]);
    for(int j=0; j<m; j++) a[rank][j] = Mul(a[rank][j], coeff);</pre>
    for(int j=0; j<m; j++) if(square) out[rank][j] = Mul(out[rank][j], coeff);</pre>
    for(int j=0; j<n; j++){</pre>
      if(rank == i) continue:
     T t = a[j][i]; // Warning: [j][k], [rank][k]
      for(int k=0; k<m; k++) a[j][k] = Sub(a[j][k], Mul(a[rank][k], t));</pre>
      for(int k=0; k<m; k++) if(square) out[j][k] = Sub(out[j][k], Mul(out[rank][k], t));</pre>
    rank++:
 return {a. rank. det. out}:
4.6 Berlekamp + Kitamasa
  Time Complexity: O(NK + N \log mod), O(N^2 \log X)
const int mod = 1e9+7:
11 pw(11 a, 11 b){
 ll ret = 1: a %= mod:
  while(b){
   if(b & 1) ret = ret * a % mod;
   b >>= 1: a = a * a \% mod:
 }
 return ret;
vector<int> berlekamp_massey(vector<int> x){
 vector<int> ls, cur;
  int lf. ld:
  for(int i=0; i<x.size(); i++){</pre>
    for(int j=0; j<cur.size(); j++) t = (t + 111 * x[i-j-1] * cur[j]) % mod;
    if((t - x[i]) \% mod == 0) continue;
    if(cur.empty()){
      cur.resize(i+1);
     lf = i; ld = (t - x[i]) \% mod;
      continue:
   11 k = -(x[i] - t) * pw(1d, mod - 2) % mod;
    vector<int> c(i-lf-1); c.push_back(k);
    for(auto &j : ls) c.push_back(-j * k % mod);
    if(c.size() < cur.size()) c.resize(cur.size());</pre>
    for(int j=0; j<cur.size(); j++) c[j] = (c[j] + cur[j]) % mod;</pre>
    if(i-lf+(int)ls.size()>=(int)cur.size()){
      tie(ls, lf, ld) = make_tuple(cur, i, (t - x[i]) \% mod);
   }
    cur = c:
  for(auto &i : cur) i = (i % mod + mod) % mod;
  return cur:
int get_nth(vector<int> rec, vector<int> dp, ll n){
 int m = rec.size(): vector<int> s(m), t(m);
 s[0] = 1;
 if(m != 1) t[1] = 1:
  else t[0] = rec[0];
```

```
auto mul = [&rec](vector<int> v, vector<int> w){
   int m = v.size();
   vector<int> t(2 * m);
   for(int j=0; j < m; j++) for(int k=0; k < m; k++){
     t[j+k] += 111 * v[j] * w[k] % mod;
     if(t[i+k] >= mod) t[i+k] -= mod:
   for(int j=2*m-1; j>=m; j--) for(int k=1; k<=m; k++){
     t[j-k] += 111 * t[j] * rec[k-1] % mod;
     if(t[j-k] >= mod) t[j-k] -= mod;
   t.resize(m);
   return t:
 }:
 while(n){
   if(n \& 1) s = mul(s, t);
   t = mul(t, t); n >>= 1;
 }
 ll ret = 0:
 for(int i=0; i<m; i++) ret += 111 * s[i] * dp[i] % mod;
 return ret % mod:
int guess_nth_term(vector<int> x, ll n){
 if(n < x.size()) return x[n]:
 vector<int> v = berlekamp_massey(x);
 if(v.empty()) return 0;
 return get_nth(v, x, n);
4.7 Miller Rabin + Pollard Rho
constexpr int SZ = 10 000 000; bool PrimeCheck[SZ+1]; vector<int> Primes;
void Sieve(){
 memset(PrimeCheck, true, sizeof PrimeCheck);
 PrimeCheck[0] = PrimeCheck[1] = false;
 for(int i=2; i<=SZ; i++){</pre>
   if(PrimeCheck[i]) Primes.push_back(i);
   for(auto i : Primes){
     if(i*j > SZ) break;
     PrimeCheck[i*j] = false;
     if(i % j == 0) break;
 }
ull MulMod(ull a, ull b, ull c) { return ( uint128 t)a * b % c: }
// 32bit : 2, 7, 61
// 64bit : 2, 325, 9375, 28178, 450775, 9780504, 1795265022
bool MillerRabin(ull n, ull a){
 if(a % n == 0) return true;
 int cnt = __builtin_ctzll(n - 1);
 ull p = PowMod(a, n >> cnt, n):
 if(p == 1 || p == n - 1) return true;
 while(cnt--) if((p=MulMod(p,p,n)) == n - 1) return true;
 return false:
bool IsPrime(ll n){
```

if(n <= SZ) return PrimeCheck[n];</pre>

break;

```
if(n \le 2) return n == 2;
  if(n % 2 == 0 || n % 3 == 0 || n % 5 == 0 || n % 7 == 0 || n % 11 == 0) return false;
  for(int p: {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) if(!MillerRabin(n, p)) return
                                                                                                   }
                                                                                                 }
  return true:
}
11 Rho(11 n){
  while(true){
    11 \times = rand() \% (n - 2) + 2, y = x, c = rand() \% (n - 1) + 1;
    while(true){
      x = (MulMod(x, x, n) + c) \% n; y = (MulMod(y, y, n) + c) \% n; y = (MulMod(y, y, n) + c) \%
      11 d = \_gcd(abs(x - y), n);
      if(d == 1) continue:
      if(IsPrime(d)) return d;
      else{ n = d: break: }
                                                                                                   }
 }
}
vector<pair<11,11>> Factorize(11 n){
  vector<pair<11,11>> v;
  int two = builtin ctzll(n):
  if(two > 0) v.emplace_back(2, two), n >>= two;
  if(n == 1) return v:
  while(!IsPrime(n)){
    11 d = Rho(n), cnt = 0;
    while(n \% d == 0) cnt++, n /= d;
    v.emplace_back(d, cnt);
    if(n == 1) break:
  if(n != 1) v.emplace_back(n, 1);
  return v;
}
      Linear Sieve
// sp : 최소 소인수, 소수라면 0
// tau : 약수 개수, sigma : 약수 합
// phi : n 이하 자연수 중 n과 서로소인 개수
// mu : non square free이면 0, 그렇지 않다면 (-1)^(소인수 종류)
// e[i] : 소인수분해에서 i의 지수
vector<int> prime;
int sp[sz], e[sz], phi[sz], mu[sz], tau[sz], sigma[sz];
phi[1] = mu[1] = tau[1] = sigma[1] = 1;
for(int i=2: i<=n: i++){
 if(!sp[i]){
    prime.push_back(i);
    e[i] = 1; phi[i] = i-1; mu[i] = -1; tau[i] = 2; sigma[i] = i+1;
                                                                                                     }
  for(auto j : prime){
    if(i*i >= sz) break:
    sp[i*j] = j;
    if(i \% j == 0){
      e[i*j] = e[i]+1; phi[i*j] = phi[i]*j; mu[i*j] = 0;
      tau[i*j] = tau[i]/e[i*j]*(e[i*j]+1);
      sigma[i*j] = sigma[i]*(j-1)/(pw(j, e[i*j])-1)*(pw(j, e[i*j]+1)-1)/(j-1);//overflow
```

```
e[i*j] = 1; phi[i*j] = phi[i] * phi[j]; mu[i*j] = mu[i] * mu[j];
   tau[i*j] = tau[i] * tau[j]; sigma[i*j] = sigma[i] * sigma[j];
4.9 Power Tower
bool PowOverflow(ll a, ll b, ll c){
  __int128_t res = 1;
 bool flag = false;
 for(; b; b >>= 1, a = a * a){
   if(a >= c) flag = true, a %= c;
   if(b & 1){
     res *= a;
     if(flag || res >= c) return true;
 return false;
11 Recursion(int idx, 11 mod, const vector<11> &vec){
 if(mod == 1) return 1:
 if(idx + 1 == vec.size()) return vec[idx];
 11 nxt = Recursion(idx+1, phi[mod], vec);
 if(PowOverflow(vec[idx], nxt, mod)) return Pow(vec[idx], nxt, mod) + mod;
 else return Pow(vec[idx], nxt, mod);
11 PowerTower(const vector<11> &vec, 11 mod){ // vec[0]^(vec[1]^(vec[2]^(...)))
 if(vec.size() == 1) return vec[0] % mod;
 else return Pow(vec[0], Recursion(1, phi[mod], vec), mod);
4.10 Discrete Log / Sqrt
  Time Complexity: Log : O(\sqrt{P}\log P), O(\sqrt{P}) with hash set
Sqrt : O(\log^2 P), O(\log P) in random data
// Given A, B, P, solve A^x === B mod P
ll DiscreteLog(ll A. 11 B. 11 P){
  __gnu_pbds::gp_hash_table<ll,__gnu_pbds::null_type> st;
 11 t = ceil(sqrt(P)), k = 1; // use binary search?
 for(int i=0; i<t; i++) st.insert(k), k = k * A % P;</pre>
 ll inv = Pow(k, P-2, P);
 for(int i=0, k=1; i<t; i++, k=k*inv%P){</pre>
   11 x = B * k \% P;
   if(st.find(x) == st.end()) continue;
   for(int j=0, k=1; j<t; j++, k=k*A%P){
     if(k == x) return i * t + j;
 return -1;
// Given A, P, solve X^2 === A mod P
11 DiscreteSqrt(11 A, 11 P){
 if(A == 0) return 0:
 if (Pow(A, (P-1)/2, P) != 1) return -1;
 if (P \% 4 == 3) return Pow(A, (P+1)/4, P);
 11 s = P - 1, n = 2, r = 0, m;
```

for(auto& j:a[i])j=-j;

for(auto& i:obj)i=-i;

template < class T=f64, int M>

tuple<T,Arr<T>,Arr<T>> simplex(Arr<Arr<T>& a,Arr<T>& b,Arr<T>& obj){

b[i]=-b[i];

```
while(s \& 1) r++, s >>= 1;
  while (Pow(n, (P-1)/2, P) != P-1) n++;
  11 x = Pow(A, (s+1)/2, P), b = Pow(A, s, P), g = Pow(n, s, P);
  for(;; r=m){
   11 t = b:
    for(m=0; m<r && t!=1; m++) t = t * t % P;
    if(!m) return x;
   11 \text{ gs} = Pow(g, 1LL << (r-m-1), P);
    g = gs * gs % P;
   x = x * gs % P;
    b = b * g % P;
}
4.11 De Bruijn Sequence
// Create cyclic string of length k^n that contains every length n string as substring. alphabet
= [0, k - 1]
int res[10000000], aux[10000000]; // >= k^n
int de_bruijn(int k, int n) { // Returns size (k^n)
  if(k == 1) { res[0] = 0; return 1; }
  for(int i = 0; i < k * n; i++) aux[i] = 0;
  int sz = 0:
  function<void(int, int)> db = [&](int t, int p) {
   if(t > n)  {
      if(n % p == 0) for(int i = 1; i <= p; i++) res[sz++] = aux[i];</pre>
   }
    else {
      aux[t] = aux[t - p]; db(t + 1, p);
      for(int i = aux[t - p] + 1; i < k; i++) aux[t] = i, db(t + 1, t);
  };
  db(1, 1);
  return sz;
      Simplex / LP Duality
//입력: Ax<=b, obj
//출력: maximize obj*x
//numeric stability is sensitive by M
//디버깅 노트
//1. T=f64 해보기(정수값만 나오는거같아도 중간에 유리수나올때 있음)
//2. M값 조절(답의 상한정도의 크기가 적절)
//듀얼후 리덕션한 결과값 primal로 복원하기
template < class T=f64, int M>
void dualize(Arr<Arr<T>> &a,Arr<T> &b,Arr<T>& obj){
  int m=sz(a), n=sz(a[0]);
  transpose(a),swap(b,obj);
  for(int i=0;i<n;i++){</pre>
```

```
//return {maxval,argmax,dual_argmin}
int m=sz(a), n=sz(a[0]), s=0;
if(m>n){
  dualize<T,M>(a,b,obj);
  auto&& [x,y,z]=simplex<T,M>(a,b,obj);
  x*=-1:
  swap(y,z);
  return {move(x),move(y),move(z)};
func(void,elim,int r1,int r2,int c){//elim r2
  if(r1==r2){T x=a[r1][c]; for(auto& i:a[r1])i/=x;}
    T = a[r2][c]/a[r1][c]; if(-eps<x&&x<eps)return;
    for(int i=0;i<n+s+m+2;i++)</pre>
      a[r2][i]-=x*a[r1][i];
  }
};
//make all b>=0
Arr<char> geq(m);
for(int i=0;i<m;i++)</pre>
  if(b[i]<0){
    for(auto& j:a[i])j=-j;
    for(auto& r:a)r.emplb(0);
    a[i][-1]=-1,b[i]=-b[i],geq[i]=true,s++;
//n vars, s slacks(-1), m slacks(1), 1 z, 1 b_value
Arr<int> p(m);//행의 기본변수
obj.resize(n+s+m+2);
for(int i=0;i<m;i++)</pre>
  a[i].resize(n+s+m+2),a[i][p[i]=n+s+i]=1,a[i][-1]=b[i],obj[p[i]]=geq[i]?-M:0;
//z=f(x) == z-f(x)=0
for(auto &i:obi)i=-i:
obj[-2]=1;
a.emplb(obj);
for(int i=0;i<m;i++)</pre>
  elim(i,m,p[i]);
//now shape of a = (m+1)*(n+s+m+2)
while(true){
  int ev=0, lvi=-1;
  for(int i=0;i<n+s+m;i++)</pre>
    ev=a[-1][ev]>a[-1][i]?i:ev;
  if(a[-1][ev]>-eps)break;
  for(int i=0:i<m:i++)
    if(a[i][ev]>eps and (!~lvi or a[i][-1]/a[i][ev]<a[lvi][-1]/a[lvi][ev]))
      lvi=i;
  if(!~lvi) throw "unbounded";
  for(int i=0;i<m+1;i++)elim(lvi,i,ev);</pre>
  p[lvi]=ev;
}
//if(?) throw "infeasible"
Arr<T> ans(n+s+m+2):
for(int i=0;i<m;i++)</pre>
```

```
ans[p[i]]=a[i][-1];
  Arr<T> dual(m);
  for(int i=0:i<m:i++)</pre>
     dual[i]=a[-1][n+s+i]+(geq[i]?+M:0);
  return {a[-1][-1],ans,dual};
}
Simplex Example
Maximize p = 6x + 14y + 13z
Constraints
-0.5x + 2y + z < 24
-x + 2y + 4z < 60
Coding
-n = 2, m = 3, a = \begin{pmatrix} 0.5 & 2 & 1 \\ 1 & 2 & 4 \end{pmatrix}, b = \begin{pmatrix} 24 \\ 60 \end{pmatrix}, c = [6, 14, 13]
LP Duality & Example
tableu를 대각선으로 뒤집고 음수 부호를 붙인 답 = -(원 문제의 답)
- Primal : n = 2, m = 3, a = \begin{pmatrix} 0.5 & 2 & 1 \\ 1 & 2 & 4 \end{pmatrix}, b = \begin{pmatrix} 24 \\ 60 \end{pmatrix}, c = [6, 14, 13]
- Dual: n = 3, m = 2, a = \begin{pmatrix} -0.5 & -1 \\ -2 & -2 \\ -1 & -4 \end{pmatrix}, b = \begin{pmatrix} -6 \\ -14 \\ -13 \end{pmatrix}, c = [-24, -60]
- Primal: \max_{x} c^{T}x. Constraints Ax < b, x > 0
- Dual : \min_{y} b^T y, Constraints A^T y > c, y > 0
       FFT, NTT, FWHT, Multipoint Evaluation, Interpolation
// 104,857,601 = 25 * 2^22 + 1, w = 3 | 998,244,353 = 119 * 2^23 + 1, w = 3
// 2,281,701,377 = 17 * 2^27 + 1, w = 3 | 2,483,027,969 = 37 * 2^26 + 1, w = 3
// 2,113,929,217 = 63 * 2^25 + 1, w = 5 | 1,092,616,193 = 521 * 2^21 + 1, w = 3
using real_t = double; using cpx = complex<real_t>;
void FFT(vector<cpx> &a, bool inv_fft=false){
  int N = a.size(); vector<cpx> root(N/2);
  for(int i=1, j=0; i<N; i++){</pre>
    int bit = N / 2;
    while(j >= bit) j -= bit, bit >>= 1;
    if(i < (i += bit)) swap(a[i], a[i]):
  real_t ang = 2 * acos(-1) / N * (inv_fft ? -1 : 1);
  for(int i=0; i<N/2; i++) root[i] = cpx(cos(ang * i), sin(ang * i));
  NTT: ang = pow(w, (mod-1)/n) \% mod, inv_fft \rightarrow ang^{-1}, root[i] = root[i-1] * ang
  XOR Convolution: set roots[*] = 1, a[j+k] = u+v, a[j+k+i/2] = u-v
   OR Convolution : set roots[*] = 1. a[i+k+i/2] += inv fft ? -u : u:
   AND Convolution : set roots[*] = 1, a[j+k ] += inv_fft ? -v : v;
  for(int i=2; i<=N; i<<=1){</pre>
    int step = N / i;
    for(int j=0; j<N; j+=i) for(int k=0; k<i/2; k++){
         cpx u = a[i+k], v = a[i+k+i/2] * root[step * k]:
         a[j+k] = u+v; a[j+k+i/2] = u-v;
```

if(inv_fft) for(int i=0; i<N; i++) a[i] /= N; // skip for AND/OR convolution.

vector<ll> multiply(const vector<ll> &_a, const vector<ll> &_b){

```
vector<cpx> a(all(_a)), b(all(_b));
 int N = 2; while (N < a.size() + b.size()) N <<= 1;
 a.resize(N); b.resize(N); FFT(a); FFT(b);
 for(int i=0; i<N; i++) a[i] *= b[i];</pre>
 vector<ll> ret(N); FFT(a, 1); // NTT : just return a
 for(int i=0: i<N: i++) ret[i] = llround(a[i].real()):</pre>
 return ret:
vector<11> multiply_mod(const vector<11> &a, const vector<11> &b, const ull mod){
 int N = 2; while (N < a.size() + b.size()) N <<= 1;
 vector<cpx> v1(N), v2(N), r1(N), r2(N);
 for(int i=0; i<a.size(); i++) v1[i] = cpx(a[i] >> 15, a[i] & 32767);
 for(int i=0; i<b.size(); i++) v2[i] = cpx(b[i] >> 15, b[i] & 32767);
 FFT(v1): FFT(v2):
 for(int i=0; i<N; i++){</pre>
   int j = i ? N-i : i;
   cpx ans1 = (v1[i] + conj(v1[j])) * cpx(0.5, 0);
   cpx ans2 = (v1[i] - conj(v1[j])) * cpx(0, -0.5);
   cpx ans3 = (v2[i] + conj(v2[j])) * cpx(0.5, 0);
   cpx ans4 = (v2[i] - conj(v2[j])) * cpx(0, -0.5);
   r1[i] = (ans1 * ans3) + (ans1 * ans4) * cpx(0, 1);
   r2[i] = (ans2 * ans3) + (ans2 * ans4) * cpx(0, 1);
 }
 vector<ll> ret(N): FFT(r1, true): FFT(r2, true):
 for(int i=0: i<N: i++){</pre>
   11 av = llround(r1[i].real()) % mod;
   11 bv = ( llround(r1[i].imag()) + llround(r2[i].real()) ) % mod;
   11 cv = llround(r2[i].imag()) % mod;
   ret[i] = (av << 30) + (bv << 15) + cv:
   ret[i] %= mod; ret[i] += mod; ret[i] %= mod;
 }
 return ret;
template<char op> vector<ll> FWHT_Conv(vector<ll> a, vector<ll> b){
 int n = max(\{(int)a.size(), (int)b.size() - 1, 1\}):
 if(__builtin_popcount(n) != 1) n = 1 << (__lg(n) + 1);</pre>
 a.resize(n); b.resize(n); FWHT<op>(a); FWHT<op>(b);
 for(int i=0; i<n; i++) a[i] = a[i] * b[i] % M;
 FWHT<op>(a, true); return a;
vector<11> SubsetConvolution(vector<11> p, vector<11> q){ // N log^2 N
 int n = max(\{(int)p.size(), (int)q.size() - 1, 1\}), w = __lg(n);
 if(\_builtin\_popcount(n) != 1) n = 1 << (w + 1);
 p.resize(n); q.resize(n); vector<ll> res(n);
 vector<vector<ll>>> a(w+1, vector<ll>(n)), b(a);
 for(int i=0; i<n; i++) a[__builtin_popcount(i)][i] = p[i];</pre>
 for(int i=0; i<n; i++) b[__builtin_popcount(i)][i] = q[i];</pre>
 for(int bit=0: bit<=w: bit++) FWHT<'|'>(a[bit]). FWHT<'|'>(b[bit]):
 for(int bit=0; bit<=w; bit++){</pre>
   vector<ll> c(n); // Warning : MOD
   for(int i=0; i<=bit; i++) for(int j=0; j<n; j++) c[j] += a[i][j] * b[bit-i][j] % M;
   for(auto &i : c) i %= M;
   FWHT<'|'>(c, true);
   for(int i=0; i<n; i++) if(__builtin_popcount(i) == bit) res[i] = c[i];</pre>
 return res:
```

```
vector<ll> Trim(vector<ll> a, size_t sz){ a.resize(min(a.size(), sz)); return a; }
vector<ll> Inv(vector<ll> a, size_t sz){
 vector<ll> q(1, Pow(a[0], M-2, M)); // 1/a[0]
 for(int i=1; i<sz; i<<=1){</pre>
   auto p = vector<ll>{2} - Multiply(q, Trim(a, i*2)); // polynomial minus
   a = Trim(Multiply(p, a), i*2);
 return Trim(q, sz);
vector<ll> Division(vector<ll> a, vector<ll> b){
 if(a.size() < b.size()) return {};</pre>
 size_t sz = a.size() - b.size() + 1; auto ra = a, rb = b;
 reverse(ra.begin(), ra.end()): ra = Trim(ra, sz):
 reverse(rb.begin(), rb.end()); rb = Inv(Trim(rb, sz), sz);
 auto res = Trim(Multiply(ra, rb), sz);
 for(int i=sz-(int)a.size(); i>0; i--) res.push_back(0);
 reverse(res.begin(), res.end()); while(!res.empty() && !res.back()) res.pop_back();
 return res;
vector<11> Modular(vector<11> a, vector<11> b){ return a - Multiply(b, Division(a, b)); }
vector<vector<ll>>> PolynomialTree(const vector<ll> &x){
 int n = x.size(): vector<vector<ll>> tree(n*2-1):
 function<void(int,int,int)> build = [&](int node, int s, int e){
   if(e-s == 1){ tree[node] = vector<ll>{-x[s], 1}; return; }
   int m = s + (e-s)/2, v = node + (m-s)*2;
   build(node+1, s, m); build(v, m, e);
   tree[node] = Multiply(tree[node+1], tree[v]);
 }; build(0, 0, n); return tree;
vector<ll> MultipointEvaluation(const vector<ll> &a, const vector<ll> &x){ // n log^2 n
 if(x.empty()) return {}; if(a.empty()) return vector<ll>(x.size(), 0);
 int n = x.size(); auto tree = PolynomialTree(x); vector<ll> res(n);
 function<void(int,int,int,vector<ll>)> eval = [&](int node, int s, int e, vector<ll> f){
   f = Modular(f, tree[node]);
   if(e-s == 1){ res[s] = f[0]: return: }
   if(f.size() < 150){ for(int i=s; i<e; i++) res[i] = Evaluate(f, x[i]); return; }</pre>
   int m = s + (e-s)/2, v = node + (m-s)*2;
   eval(node+1, s, m, f); eval(v, m, e, f);
 }; eval(0, 0, n, a);
 return res:
vector<11> Interpolation(const vector<11> &x, const vector<11> &y){ // n log^2 n
 assert(x.size() == y.size()); if(x.empty()) return {};
 int n = x.size(); auto tree = PolynomialTree(x);
 auto res = MultipointEvaluation(Derivative(tree[0]), x);
 for(int i=0; i<n; i++) res[i] = y[i] * Pow(res[i], M-2, M) % M; // y[i] / res[i]
 function<vector<ll>(int,int,int)> calc = [&](int node, int s, int e){
   if(e-s == 1) return vector<ll>{res[s]}:
   int m = s + (e-s)/2, v = node + (m-s)*2;
   return Multiply(calc(node+1, s, m), tree[v]) + Multiply(calc(v, m, e), tree[node+1]);
 }:
 return calc(0, 0, n);
```

4.14 Matroid Intersection

```
struct Matroid{
 virtual bool check(int i) = 0; // O(R^2N), O(R^2N)
 virtual void insert(int i) = 0; // O(R^3), O(R^2N)
 virtual void clear() = 0; // O(R^2), O(RN)
}:
template<typename cost_t>
vector<cost t> MI(const vector<cost t> &cost, Matroid *m1, Matroid *m2){
 int n = cost.size();
 vector<pair<cost_t, int>> dist(n+1);
 vector<vector<pair<int, cost_t>>> adj(n+1);
 vector<int> pv(n+1), inq(n+1), flag(n); deque<int> dq;
  auto augment = [&]() -> bool {
   fill(dist.begin(), dist.end(), pair(numeric_limits<cost_t>::max()/2, 0));
   fill(adj.begin(), adj.end(), vector<pair<int, cost_t>>());
   fill(pv.begin(), pv.end(), -1):
   fill(inq.begin(), inq.end(), 0);
   dq.clear(); m1->clear(); m2->clear();
   for(int i=0; i<n; i++) if(flag[i]) m1->insert(i), m2->insert(i);
   for(int i=0; i<n; i++){</pre>
     if(flag[i]) continue;
     if(m1->check(i)) dist[pv[i]=i] = {cost[i], 0}, dq.push_back(i), inq[i] = 1;
     if(m2->check(i)) adj[i].emplace_back(n, 0);
   for(int i=0; i<n; i++){</pre>
     if(!flag[i]) continue;
     m1->clear(): m2->clear():
     for(int j=0; j<n; j++) if(i != j && flag[j]) m1->insert(j), m2->insert(j);
     for(int j=0; j<n; j++){
        if(flag[j]) continue;
        if(m1->check(j)) adj[i].emplace_back(j, cost[j]);
        if(m2->check(j)) adj[j].emplace_back(i, -cost[i]);
   }
   while(dq.size()){
      int v = dq.front(); dq.pop_front(); inq[v] = 0;
     for(const auto &[i,w] : adj[v]){
        pair<cost t. int> nxt{dist[v].first+w. dist[v].second+1}:
        if(nxt < dist[i]){</pre>
          dist[i] = nxt; pv[i] = v;
          if(!inq[i]) dq.push_back(i), inq[i] = 1;
     }
   if(pv[n] == -1) return false:
   for(int i=pv[n]; ; i=pv[i]){
     flag[i] ^= 1; if(i == pv[i]) break;
   }
   return true;
 }:
 vector<int> res:
 while(augment()){
   int now = 0:
   for(int i=0; i<n; i++) if(flag[i]) now += cost[i];</pre>
   res.push_back(now);
 }
 return res;
```

5 String

}

5.1 KMP, Hash, Manacher, Z

vector<int> getFail(const container &pat){

```
vector<int> fail(pat.size());
    // match: pat[0..j] and pat[j-i..i] is equivalent
    // ins/del: manipulate corresponding range to pattern starts at 0
             (insert/delete pat[i], manage pat[j-i..i])
    function<bool(int, int)> match = [&](int i, int j){ };
    function<void(int)> ins = [&](int i){ };
    function<void(int)> del = [&](int i){ };
    for(int i=1, j=0; i<pat.size(); i++){</pre>
        while(j && !match(i, j)){
            for(int s=i-j; s<i-fail[j-1]; s++) del(s);</pre>
            j = fail[j-1];
        if(match(i, j)) ins(i), fail[i] = ++j;
    }
    return fail;
}
vector<int> doKMP(const container &str, const container &pat){
    vector<int> ret, fail = getFail(pat);
    // match: pat[0..j] and str[j-i..i] is equivalent
    // ins/del: manipulate corresponding range to pattern starts at 0
             (insert/delete str[i], manage str[j-i..i])
    function<bool(int, int)> match = [&](int i, int j){ };
    function<void(int)> ins = [&](int i){ };
    function<void(int)> del = [&](int i){ };
    for(int i=0, j=0; i<str.size(); i++){</pre>
        while(j && !match(i, j)){
            for(int s=i-j; s<i-fail[j-1]; s++) del(s);</pre>
            j = fail[j-1];
        if(match(i, j)){
            if(j+1 == pat.size()){
                 ret.push_back(i-j);
                 for(int s=i-j; s<i-fail[j]+1; s++) del(s);</pre>
                 j = fail[i];
            }
            else ++j;
             ins(i);
    }
    return ret;
// 1e5+3, 1e5+13, 131'071, 524'287, 1'299'709, 1'301'021
// 1e9-63, 1e9+7, 1e9+9, 1e9+103
template<11 P. 11 M> struct Hashing {
    vector<11> H, B;
    void Build(const string &S){
        H.resize(S.size()+1);
        B.resize(S.size()+1);
        B[0] = 1:
        for(int i=1; i<=S.size(); i++) H[i] = (H[i-1] * P + S[i-1]) % M;</pre>
```

```
for(int i=1; i<=S.size(); i++) B[i] = B[i-1] * P % M;</pre>
   }
   ll sub(int s, int e){
        ll res = (H[e] - H[s-1] * B[e-s+1]) % M;
        return res < 0 ? res + M : res:
   }
// # a # b # a # a # b # a #
// 0 1 0 3 0 1 6 1 0 3 0 1 0
vector<int> Manacher(const string &inp){
   int n = inp.size() * 2 + 1;
   vector<int> ret(n);
   string s = "#":
   for(auto i : inp) s += i, s += "#";
   for(int i=0, p=-1, r=-1; i<n; i++){
        ret[i] = i \le r ? min(r-i, ret[2*p-i]) : 0;
        while(i-ret[i]-1 >= 0 && i+ret[i]+1 < n && s[i-ret[i]-1] == s[i+ret[i]+1]) ret[i]++;
        if(i+ret[i] > r) r = i+ret[i], p = i;
   }
   return ret;
// input: manacher array, 1-based hashing structure
// output: set of pair(hash_val, length)
set<pair<hash_t,int>> UniquePalindrome(const vector<int> &dp, const Hashing &hashing){
    set<pair<hash_t,int>> st;
   for(int i=0,s,e; i<dp.size(); i++){</pre>
        if(!dp[i]) continue;
        if(i \& 1) s = i/2 - dp[i]/2 + 1, e = i/2 + dp[i]/2 + 1;
        else s = (i-1)/2 - dp[i]/2 + 2, e = (i+1)/2 + dp[i]/2;
        for(int l=s, r=e; l<=r; l++, r--){
            auto now = hashing.get(1, r);
            auto [iter,flag] = st.emplace(now, r-l+1);
            if(!flag) break;
        }
   }
   return st;
//z[i]=match length of s[0,n-1] and s[i,n-1]
vector<int> Z(const string &s){
   int n = s.size();
   vector<int> z(n);
   z[0] = n:
   for(int i=1, l=0, r=0; i<n; i++){
        if(i < r) z[i] = min(r-i-1, z[i-1]);
        while(i+z[i] < n && s[i+z[i]] == s[z[i]]) z[i]++;
        if(i+z[i] > r) r = i+z[i], l = i;
   }
   return z;
5.2 Aho-Corasick
struct Node{
 map<char, Node*> ch; int terminal;
 Node(): terminal(-1) {}
 ~Node(){
```

```
for(auto &i : ch) delete i.second;
    ch.clear();
  void insert(const char *key, int num){
    if(*key == 0){ terminal = num; return; }
    if(!ch[*kev]) ch[*kev] = new Node();
    ch[*key]->insert(key+1, num);
  Node *fail; vector<int> out;
};
void aho_getFail(Node *root){
  queue<Node*> q; q.push(root);
  root->fail = root:
  while(q.size()){
    Node *now = q.front(); q.pop();
    for(auto &i : now->ch){
      Node *ch = i.second;
      if(!ch) continue;
      if(root == now) ch->fail = root;
      elsef
        Node *t = now->fail:
        while(t != root && !t->ch[i.first]) t = t->fail:
        if(t->ch[i.first]) t = t->ch[i.first];
        ch \rightarrow fail = t:
      }
      ch->out = ch->fail->out;
      if(ch->terminal != -1) ch->out.push_back(ch->terminal);
      q.push(ch);
 }
vector aho_find(const string &s, Node *root){
  vector ret; auto state = root;
  for(int i=0; i<s.size(); i++){</pre>
    while(state != root && !state->ch[s[i]]) state = state->fail:
    if(state->ch[s[i]]) state = state->ch[s[i]];
    for(int j=0; j<state->out.size(); j++){
      ret.emplace_back(i, state->out[j]);
    }
  }
  return ret;
      O(N \log N) SA + LCP
// O(N \setminus log N) + O(N)
// 서로 다른 부분 문자열의 개수 : n(n+1)/2 - sum(lcp)
// LCS : A+#+B, then do
/* int result = 0, pos = 0, B = N - A;
   for(int i=0; i<N-1; i++) if((sa[i] >= A) != (sa[i+1] >= A)){
   int t = \min(lcp[i], A-1 - \min(sa[i], sa[i+1])):
   if(t > res) res = t, pos = sa[i]; } */
vector<int> GetSA(const string &S){
  int N = S.size(), SZ = 256:
  vector\langle int \rangle SA(N), C(max(N, SZ) + 1), X(N), Pos(N);
  for(int i=0; i<N; i++) Pos[i] = S[i];</pre>
  for(int i=0; i<N; i++) C[Pos[i]]++;</pre>
```

```
for(int i=1; i<=SZ; i++) C[i] += C[i - 1];
    for(int i=N-1; ~i; i--) SA[--C[Pos[i]]] = i;
   for(int j=1; ; j<<=1){
       int p = 0; for(int i=N-j; i<N; i++) X[p++] = i;</pre>
       for(int i=0; i<N; i++) if(SA[i] >= j) X[p++] = SA[i] - j;
       fill(C.begin(), C.end(), 0); for(int i=0; i<N; i++) C[Pos[i]]++;
        partial_sum(C.begin(), C.end(), C.begin());
       for(int i=N-1; ~i; i--) SA[--C[Pos[X[i]]]] = X[i];
       X[SA[0]] = 0;
        for(int i=1; i<N; i++){</pre>
           X[SA[i]] = X[SA[i-1]];
            if(SA[i-1]+j < N \&\& SA[i]+j < N \&\& Pos[SA[i-1]] == Pos[SA[i]] \&\& Pos[SA[i-1]+j] == Pos[SA[i]] &\& Pos[SA[i-1]+j] == Pos[SA[i]] &\& Pos[SA[i-1]+j] == Pos[SA[i]] &\& Pos[SA[i]+j] == Pos[SA[i]+j] &\& Pos[SA[i]+j] == Pos[SA[i]+j] &\& Pos[SA[i]+j] == Pos[SA[i]+j] &\& Pos[SA[i]+j]+j &\& Pos[A[i]+j]+j 
           Pos[SA[i]+i]) continue:
           X[SA[i]]++;
       }
        for(int i=0: i<N: i++) Pos[i] = X[i]:
        SZ = Pos[SA[N-1]]; if(SZ == N-1) break;
   return move(SA);
vector<int> GetLCP(const string &S, const vector<int> &SA){
   int N = S.size():
   vector<int> Pos(N), LCP(N);
    for(int i=0; i<N; i++) Pos[SA[i]] = i;</pre>
   for(int i=0, j=0; i<N; i++, j=max(j-1, 0)){
       if(Pos[i] == 0) continue;
         \text{while}(SA[Pos[i]-1]+j < N \&\& SA[Pos[i]]+j < N \&\& S[SA[Pos[i]-1]+j] == S[SA[Pos[i]]+j]) \ j++; 
        LCP[Pos[i]] = j;
   return move(LCP);
void Build(string A, string B){ // X=A.size(), Y=B.size()
   string S = A + "#" + B; vector<int> SA, LCP(X, 0);
   LCP = GetLCP(S, SA = GetSA(S));
   for(int i=0, len=X: i<N: i++){</pre>
       if(SA[i] >= X) len = X;
        else len = min(len, LCP[i]), Len[SA[i]] = max(Len[SA[i]], len);
   for(int i=N-1, len=X; i>=0; i--){
       if(SA[i] >= X) len = X:
        else len = min(len, LCP[i+1]), Len[SA[i]] = max(Len[SA[i]], len);
} // SA[i] < X, SA[i]+1 ~ SA+Len[SA[i]]</pre>
5.4 Bitset LCS
#include <x86intrin.h>
template<size_t _Nw> void _M_do_sub(_Base_bitset<_Nw> &A, const _Base_bitset<_Nw> &B){
   for(int i=0, c=0; i<_Nw; i++) c = _subborrow_u64(c, A._M_w[i], B._M_w[i], (ull*)&A._M_w[i]);
void M do sub( Base bitset<1> &A. const Base bitset<1> &B){ A. M w -= B. M w: }
template<size_t _Nb> bitset<_Nb>& operator-=(bitset<_Nb> &A, const bitset<_Nb> &B){
   _M_do_sub(A, B); return A;
template<size_t _Nb> inline bitset<_Nb> operator-(const bitset<_Nb> &A, const bitset<_Nb> &B){
   bitset<_Nb> C(A); return C -= B;
```

else l = m + 1;

```
char s[50050], t[50050];
int lcs(){ // O(NM/64)}
  bitset<50050> dp, ch[26];
  int n = strlen(s), m = strlen(t);
  for(int i=0; i<m; i++) ch[t[i]-'A'].set(i);</pre>
  for(int i=0; i<n; i++){ auto x = dp \mid ch[s[i]-'A']; dp = dp - (dp ^ x) & x; }
  return dp.count();
5.5 Lyndon Factorization, Minimum Rotation
// factorize string into w1 \ge w2 \ge ... \ge wk, wi is smallest cyclic shift of suffix.
vector<string> Lyndon(const string &s){ // O(N)
  int n = s.size(), i = 0, j, k;
  vector<string> res;
  while(i < n){
    for(j=i+1, k=i; i \le k \le k] \le [i]; j++) k = s[k] \le s[j] ? i : k + 1;
    for(; i<=k; i+=j-k) res.push_back(s.substr(i, j-k));</pre>
  return res:
// rotate(v.begin(), v.begin()+min_rotation(v), v.end());
template<typename T> int min_rotation(T s){ // O(N)
  int a = 0, N = s.size();
  for(int i=0; i<N; i++) s.push_back(s[i]);</pre>
  for(int b=0; b<N; b++) for(int k=0; k<N; k++){</pre>
    if(a+k == b | | s[a+k] < s[b+k]) \{ b += max(0, k-1) : break: \}
    if(s[a+k] > s[b+k]){a = b: break:}
 }
  return a;
6 Misc
6.1 Ternary Search
// get minimum / when multiple answer, find minimum `s`
while(s + 3 \le e){
 T 1 = (s + s + e) / 3, r = (s + e + e) / 3;
  if(Check(1) > Check(r)) s = 1:
  else e = r;
T mn = INF, idx = s;
for(T i=s: i<=e: i++){
 T now = Check(i):
  if(now < mn) mn = now, idx = i;
6.2 Aliens Trick
// 점화식에 min이 들어가는 경우: 구간을 쪼갤 때마다 +lambda
while(1 \le r){
 11 m = 1 + r >> 1:
  [dp.cnt] = Solve(m):
  res = max(res, dp - k*m);
  if(cnt \le k) r = m - 1:
```

```
// 점화식에 max가 들어가는 경우: 구간을 쪼갤 때마다 +lambda
while(1 \le r){
 11 m = 1 + r >> 1;
  [dp,cnt] = Solve(m);
 res = min(res. dp - k*m):
 if(cnt \le k) 1 = m + 1;
 else r = m - 1:
6.3 Slope Trick
//NOTE: f(x)=min\{f(x+i),i<a\}+|x-k|+m \rightarrow pf(k)sf(k)ab(-a,m)
//NOTE: sf_inc에 답구하는게 들어있어서, 반드시 한 연산에 대해 pf_dec->sf_inc순서로 호출
struct LeftHull{
 void pf_dec(int x){pq.empl(x-bias);}//x이하의 기울기들 -1
  int sf_inc(int x){//x이상의 기울기들 +1, pop된 원소 반환(Right Hull관리에 사용됨)
   if(pq.empty() or argmin()<=x)return x;</pre>
   ans+=argmin()-x;//이 경우 최솟값이 증가함
   pg.empl(x-bias);//x 이하 -1
   int r=argmin();pq.pop();//전체 +1
   return r;
  void add_bias(int x,int y){bias+=x;ans+=y;}//그래프 x축 평행이동
  int minval(){return ans;}//최소값
  int argmin(){return pq.empty()?-inf<int>():pq.top()+bias;}//최소값 x좌표
  void operator+=(LeftHull& a){
   ans+=a.ans;
   while(sz(a.pq))pf_dec(a.argmin()), a.pq.pop();
 }
 int size()const{return sz(pq);}
// private:
 PQMax<int> pq;
 int ans=0,bias=0;
//NOTE: f(x)=min\{f(x+i),a<i<b\}+|x-k|+m->pf(k)sf(k)ab(-a,b,m)
struct SlopeTrick{
 void pf dec(int x){1.pf dec(-r.sf inc(-x));}
  void sf_inc(int x){r.pf_dec(-1.sf_inc(x));}
  void add_bias(int lx,int rx,int y){1.add_bias(lx,0),r.add_bias(-rx,0),ans+=y;}
  int minval(){return ans+1.minval()+r.minval();}
  pint argmin(){return {l.argmin(),-r.argmin()};}
  void operator+=(SlopeTrick& a){
   while(sz(a.l.pq)) pf_dec(a.l.argmin()),a.l.pq.pop();
   1.ans+=a.l.ans:
   while(sz(a.r.pq)) sf_inc(-a.r.argmin()),a.r.pq.pop();
   r.ans+=a.r.ans;
   ans+=a.ans:
 int size()const{return l.size()+r.size();}
// private:
 LeftHull l,r;
 int ans=0:
//LeftHull 역추적 방법: 스텝i의 argmin값을 am(i)라고 하자. 스텝n부터 스텝1까지
ans[i]=min(ans[i+1],am(i))하면 된다. 아래는 증명..은 아니고 간략한 이유
//am(i)<=ans[i+1]일때: ans[i]=am(i)
```

```
//x[i]>ans[i+1]일때: ans[i]=ans[i+1] 왜냐하면 f(i,a)는 a<x[i]에서 감소함수이므로 가능한 최대로
오른쪽으로 붙은 ans[i+1]이 최적
//스텝i에서 add_bias(k,0)한다면 간격제한k가 있는것이므로 ans[i]=min(ans[i+1]-k,x[i])으로 수정.
//LR Hull 역추적은 케이스나눠서 위 방법을 확장하면 될듯
      Random, PBDS, Bit Trick
mt19937 rd((unsigned)chrono::steady_clock::now().time_since_epoch().count());
uniform_int_distribution<int> rnd_int(1, r); // rnd_int(rd)
uniform_real_distribution<double> rnd_real(0, 1); // rnd_real(rd)
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/rope>
using namespace __gnu_pbds; //ordered_set : find_by_order(order), order_of_key(key)
using namespace __gnu_cxx; //crope : append(str), substr(s, e), at(idx)
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
int __builtin_clz(int x);// number of leading zero
int __builtin_ctz(int x);// number of trailing zero
int __builtin_popcount(int x);// number of 1-bits in x
lsb(n): (n & -n); // last bit (smallest)
floor(log2(n)): 31 - __builtin_clz(n | 1);
floor(log2(n)): 63 - __builtin_clzll(n | 1);
long long next_perm(long long v){
 long long t = v \mid (v-1);
  return (t + 1) \mid (((^t \& -^t) - 1) >> (_builtin_ctz(v) + 1));
int main2(){ return 0; }
int main(){
  size_t sz = 1<<29; // 512MB
  void* newstack = malloc(sz):
  void* sp_dest = newstack + sz - sizeof(void*);
  asm __volatile__("movq %0, %%rax\n\t"
            "movq %%rsp , (%%rax)\n\t"
            "movq %0, %%rsp\n\t": : "r"(sp_dest): );
  main2():
  asm __volatile__("pop %rsp\n\t");
  return 0;
}
      Fast I/O, Fast Div/Mod, Hilbert Mo's
static char buf[1 << 19]; // size : any number geq than 1024
static int idx = 0, bytes = 0;
static inline int _read() {
  if (!bytes || idx == bytes) {
    bytes = (int)fread(buf, sizeof(buf[0]), sizeof(buf), stdin);
    idx = 0:
  return buf[idx++];
static inline int readInt() {
 int x = 0, s = 1, c = _{read()};
  while (c \le 32) c = read();
  if (c == '-') s = -1, c = _read();
```

while $(c > 32) x = 10 * x + (c - '0'), c = _read();$

if (s < 0) x = -x; return x;

```
typedef __uint128_t L;
struct FastMod{
 ull b, m;
 FastMod(ull b) : b(b), m(ull((L(1) << 64) / b)) {}
 ull reduce(ull a){
   ull q = (ull)((L(m) * a) >> 64), r = a - q * b; // can be proven that 0 \le r \le 2*b
   return r \ge b? r - b: r:
 }
};
inline int64_t hilbertOrder(int x, int y, int pow, int rotate) {
 if(pow == 0) return 0;
 int hpow = 1 \ll (pow-1);
 int seg = (x < hpow) ? ((y < hpow) ? 0 : 3) : ((y < hpow) ? 1 : 2);
 seg = (seg + rotate) & 3;
  const int rotateDelta[4] = \{3, 0, 0, 1\};
  int nx = x & (x ^ hpow), ny = y & (y ^ hpow);
  int nrot = (rotate + rotateDelta[seg]) & 3;
  int64_t subSquareSize = int64_t(1) << (2*pow - 2);</pre>
 int64_t ans = seg * subSquareSize;
 int64_t add = hilbertOrder(nx, ny, pow-1, nrot);
 ans += (seg == 1 || seg == 2) ? add : (subSquareSize - add - 1);
 return ans;
struct Query{
 int s, e, x; ll order;
 void init(){ order = hilbertOrder(s, e, 21, 0); }
 bool operator < (const Query &t) const { return order < t.order; }</pre>
}:
6.6 DP Opt, Tree Opt, Well-Known Ideas
// Quadrangle Inequality : C(a, c)+C(b, d) \le C(a, d)+C(b, c)
// Monotonicity : C(b, c) \le C(a, d)
// CHT, DnC Opt(Quadrangle), Knuth(Quadrangle and Monotonicity)
// 크기가 A, B인 두 서브트리의 결과를 합칠 때 O(AB)이면 O(N^3)이 아니라 O(N^2)
// 각 정점마다 sum(2 ~ C번째로 높이가 작은 정점의 높이)에 결과를 구할 수 있으면 D(N^2)이 아니라 D(N)
// IOI 16 Alien(Lagrange Multiplier), IOI 11 Elephant(sqrt batch process)
// IOI 09 Region
// 서로소 합집합의 크기가 적당히 bound 되어 있을 때 사용
// 쿼리 메모이제이션 / 쿼리 하나에 D(A log B), 전체 D(N√Q log N)
6.7 Catalan, Burnside, Grundy, Pick, Hall, Simpson, Kirchhoff, Area of Quad-
     rangle
 • 카탈란 수
   1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012,742900
   C_n = binomial(n * 2, n)/(n + 1);
   - 길이가 2n인 올바른 괄호 수식의 수
   - n + 1개의 리프를 가진 풀 바이너리 트리의 수
   - n + 2각형을 n개의 삼각형으로 나누는 방법의 수
  • Burnside's Lemma
       G=(X,A): 집합X와 액션A로 정의되는 군G에 대해, |A||X/A| = sum(|Fixed points of a|, for all a in A)
```

X/A 는 Action으로 서로 변형가능한 X의 원소들을 동치로 묶었을때 동치류(파티션) 집합

- 풀어쓰기
 orbit: 그룹에 대해 두 원소 a,b와 액션f에 대해 f(a)=b인거에 간선연결한 컴포넌트(연결집합)
 orbit개수 = sum(각 액션 g에 대해 f(x)=x인 x(고정점)개수)/액션개수
- 자유도 치트시트 회전 n개: 회전i의 고정점 자유도=gcd(n,i)
 임의뒤집기 n=홀수: n개 원소중심축(자유도 (n+1)/2)
 임의뒤집기 n=짝수: n/2개 원소중심축(자유도 n/2+1) + n/2개 원소안지나는축(자유도 n/2)
- 알고리즘 게임
- Nim Game의 해법 : 각 더미의 돌의 개수를 모두 XOR했을 때 0 이 아니면 첫번째, 0 이면 두번째 플레이어가 승리.
- Grundy Number : 어떤 상황의 Grundy Number는, 가능한 다음 상황들의 Grundy Number를 모두 모은 다음, 그 집합에 포함 되지 않는 가장 작은 수가 현재 state의 Grundy Number가 된다. 만약 다음 state가 독립된 여러개의 state들로 나뉠 경우, 각각의 state의 Grundy Number의 XOR 합을 생각한다.
- Subtraction Game : 한 번에 k 개까지의 돌만 가져갈 수 있는 경우, 각 더미의 돌의 개수를 k + 1로 나눈 나머지를 XOR 합하여 판단한다.
- Index-k Nim : 한 번에 최대 k개의 더미를 골라 각각의 더미에서 아무렇게나 돌을 제거할 수 있을 때, 각 binary digit에 대하여 합을 k + 1로 나눈 나머지를 계산한다. 만약 이 나머지가 모든 digit에 대하여 0이라면 두번째, 하나라도 0이 아니라면 첫번째 플레이어가 승리.
- Pick's Theorem

격자점으로 구성된 simple polygon이 주어짐. I 는 polygon 내부의 격자점 수, B 는 polygon 선분 위 격자점 수, A는 polygon의 넓이라고 할 때, 다음과 같은 식이 성립한다. A=I+B/2-1

- 홀의 결혼 정리 : 이분그래프(L-R)에서, 모든 L을 매칭하는 필요충분 조건 = L에서 임의의 부분집합 S를 골랐을 때, 반드시 (S의 크기) <= (S와 연결되어있는 모든 R의 크기)이다.
- Simpson 공식 (적분): Simpson 공식, $S_n(f) = \frac{h}{3}[f(x_0) + f(x_n) + 4\sum f(x_{2i+1}) + 2\sum f(x_{2i})]$
- $M=\max|f^4(x)|$ 이라고 하면 오차 범위는 최대 $E_n \leq \frac{M(b-a)}{180}h^4$
- Kirchhoff's Theorem : 그래프의 스패닝 트리 개수
- m[i][j] := -(i-j 간선 개수) (i ≠ j)
- m[i][i] := 정점 i의 degree
- res = (m의 첫 번째 행과 첫 번째 열을 없앤 (n-1) by (n-1) matrix의 행렬식)
- Tutte Matrix : 그래프의 최대 매칭
- m[i][j] := 간선 (i, j)가 없으면 0, 있으면 i < j?r : -r, r은 [0, P) 구간의 임의의 정수
- rank(m)/2가 높은 확률로 최대 매칭
- 브라마굽타 : 원에 내접하는 사각형의 각 선분의 길이가 a,b,c,d일 때 사각형의 넓이 $S=\sqrt{(s-a)(s-b)(s-c)(s-d)}, \ s=(a+b+c+d)/2$
- 브레치나이더 : 임의의 사각형의 각 변의 길이를 a,b,c,d라고 하고, 마주보는 두 각의 합을 2로 나눈 값을 θ 라 하면, $S=\sqrt{(s-a)(s-b)(s-c)(s-d)-abcd\times cos^2\theta}$
- $q^0 + q^1 + q^2 + \cdots + q^{p-2} \equiv -1 \pmod{p}$ iff q = 1, otherwise 0.

6.8 inclusive and exclusive, Stirling Number, Bell Number

- ullet 공 구별 X, 상자 구별 O, 전사함수 : 포함배제 $\sum_{i=1}^k (-1)^{k-i} imes kCi imes i^n$
- 공 구별 O, 상자 구별 X, 전사함수 : 제 2종 스털링 수 $S(n,k)=k\times S(n-1,k)+S(n-1,k-1)$ 포함배제하면 $O(K\log N),\ S(n,k)=1/k!\times\sum_{i=1}^k(-1)^{k-i}\times kCi\times i^n$
- 공 구별 O, 상자 구별 X, 제약없음 : 벨 수 $B(n,k) = \sum_{i=0}^k S(n,i)$ 몇 개의 상자를 버릴지 다 돌아보기 수식 정리하면 $O(\min(N,K)\log N)$ 에 됨. $B(n,n) = \sum_{i=0}^{n-1} (n-1)Ci \times B(i,i)$ $B(n,k) = \sum_{j=0}^k S(n,j) = \sum_{j=0}^k 1/j! \sum_{i=0}^j (-1)^{j-i} jCi \times i^n = \sum_{j=0}^k \sum_{i=0}^j \frac{(-1)^{j-i}}{i!(j-i)!} i^n = \sum_{i=0}^k \sum_{j=0}^k \frac{(-1)^{j-i}}{i!(j-i)!} i^n = \sum_{i=0}^k \sum_{j=0}^k \frac{i^n}{i!} \sum_{j=0}^{k-i} \frac{(-1)^j}{j!}$

6.9 About Graph Matching(Graph with $|V| \le 500$)

- Game on a Graph : s에 토큰이 있음. 플레이어는 각자의 턴마다 토큰을 인접한 정점으로 옮기고 못 옮기면 짐. s를 포함하지 않는 최대 매칭이 존재함 \leftrightarrow 후곳이 이김
- Chinese Postman Problem : 모든 간선을 방문하는 최소 가중치 Walk를 구하는 문제. Floyd를 돌린 다음, 홀수 정점들을 모아서 최소 가중치 매칭 (홀수 정점은 짝수 개 존재)
- Unweighted Edge Cover : 모든 정점을 덮는 가장 작은(minimum cardinality/weight) 간선 집합을 구하는 문제

|V| - |M|, 길이 3짜리 경로 없음, star graph 여러 개로 구성

- Weighted Edge Cover : $sum_{v \in V}(w(v)) sum_{(u,v) \in M}(w(u) + w(v) d(u,v)), w(x)$ 는 x와 인접한 간선의 최소 가중치
- NEERC'18 B: 각 기계마다 2명의 노동자가 다뤄야 하는 문제. 기계마다 두 개의 정점을 만들고 간선으로 연결하면 정답은 |M| - |기계|임. 정답에 1/2씩 기여한다는 점을 생각해 보면 좋음.
- Min Disjoint Cycle Cover : 정점이 중복되지 않으면서 모든 정점을 덮는 길이 3 이상의 사이클 집합을 찾는 문제.

모든 정점은 2개의 서로 다른 간선, 일부 간선은 양쪽 끝점과 매칭되어야 하므로 플로우를 생각할 수 있지만 용량 2짜리 간선에 유량을 1만큼 흘릴 수 있으므로 플로우는 불가능.

각 정점과 간선을 2개씩((v,v'), $(e_{i,u},e_{i,v})$)로 복사하자. 모든 간선 e=(u,v)에 대해 e_u 와 e_v 를 잇는 가중치 w짜리 간선을 만들고(like NEERC18), $(u,e_{i,u})$, $(u',e_{i,u})$, $(v,e_{i,v})$, $(v',e_{i,v})$ 를 연결하는 가중치 0짜리 간선을 만들자. Perfect 매칭이 존재함 \leftrightarrow Disjoint Cycle Cover 존재. 최대 가중치 매칭 찾은 뒤 모든 간선 가중치 합에서 매칭 빼면 됨.

• Two Matching : 각 정점이 최대 2개의 간선과 인접할 수 있는 최대 가중치 매칭 문제. 각 컴포넌트는 정점 하나/경로/사이클이 되어야 함. 모든 서로 다른 정점 쌍에 대해 가중치 0짜리 간선 만들고, 가중치 0짜리 (v,v') 간선 만들면 Disjoing Cycle Cover 문제가 됨. 정점 하나만 있는 컴포넌트는 self-loop, 경로 형태의 컴포넌트는 양쪽 끝점을 연결한다고 생각하면 편함.

6.10 Checklist

- 비슷한 문제를 풀어본 적이 있던가?
- 단순한 방법에서 시작할 수 있을까? (Brute Force)
- 내가 문제를 푸는 과정을 수식화할 수 있을까? (예제를 직접 해결해보면서)
- 문제를 단순화할 수 없을까?
- 그릮으로 그려볼 수 있을까?
- 수식으로 표현할 수 있을까?
- 문제를 분해할 수 있을까?
- 뒤에서부터 생각해서 풀 수 있을까?
- 순서를 강제할 수 있을까?
- 특정 형태의 답만을 고려할 수 있을까? (정규화)
- 구간을 통째로 가져간다 : 플로우 + 적당한 자료구조 (i, i+1, k, 0), (s, e, 1, w), (N, T, k, 0)
- a = b : a만 움직이기, b만 움직이기, 두 개 동시에 움직이기, 반대로 움직이기
- 말도 안 되는 것들을 한 번은 생각해보기 / "당연하다고 생각한 것" 다시 생각해보기
- Directed MST / Dominator Tree
- 일정 비율 충족 or 2 3개로 모두 커버 : 랜덤
- 확률 : DP. 이분 탐색(NYPC 2019 Finals C)
- 최대/최소 : 이분 탐색, 그리디(Prefix 고정, Exchange Argument), DP(순서 고정)