HOMEWORK NOVEMBER 11

- 1. Define the notion of the dimension of a vector space without mentioning vectors.
- 2. Let V and W be finite-dimensional vector space of the same dimension. Let B be a basis for V and let C be a basis for W. Let $T:V\to W$ be a bijective linear transformation. Let $T^{-1}:W\to V$ be the inverse linear transformation. Let $[T]_{C,B}$ be the matrix of T relative to B and C. Let $[T^{-1}]_{B,C}$ be the matrix of T^{-1} relative to C and B. Prove that $[T^{-1}]_{B,C}$ is the inverse matrix of $[T]_{C,B}$.
- 3. Let V be a vector space. Let $V^* = \operatorname{Hom}(V, \mathbb{R})$ be the dual vector space, i.e., V^* is the vector space of all linear transformations from V to \mathbb{R} . We have a natural linear transformation

$$E: V \to (V^*)^*$$
$$v \mapsto (h \mapsto h(v), \forall h \in V^*)$$

- (a) Prove that E is injective.
- (b) Prove that E is surjective when V is finite-dimensional.
- (c) Prove that E is not surjective when V is infinite-dimensional.
- 4. Let V and W be finite-dimensional vector spaces. Let $T: V \to W$ be a linear transformation. We have a dual linear transformation

$$T^*: W^* \to V^*$$
$$h \mapsto h \circ T$$

Prove the following statements using definitions (instead of using matrices):

- (a) T is injective if and only if T^* is surjective.
- (b) T is surjective if and only if T^* is injective.
- (c) $\operatorname{rank}(T) = \operatorname{rank}(T^*)$.
- 5. Let V be a finite-dimensional vector space. Let $\{v_1, v_2, \ldots, v_n\}$ be a basis for V. For each $i = 1, 2, \ldots, n$, we define a linear transformation $\alpha_i : V \to \mathbb{R}$ by the condition that

$$\alpha_i(v_i) = 1, \qquad \alpha_i(v_j) = 0 (j \neq i)$$

Prove that $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ is a basis for V^* . This basis is called the dual basis of $\{v_1, v_2, \dots, v_n\}$.

6. Let $T: V \to W$ be a linear transformation between two finite-dimensional vector spaces. Let B be a basis for V. Let B^* be its dual basis for V^* . Let C be a basis for W. Let C^* be its dual basis for W^* . Let $[T]_{C,B}$ be the matrix of T relative to B and C. Let $[T^*]_{B^*,C^*}$ be the matrix of T^* relative to C^* and D^* . Prove that $[T^*]_{B^*,C^*}$ is the transpose of $[T]_{C,B}$.