Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

Name	Tejas Jadhav
UID No.	2022301006
Class	COMPS A (B batch)
Experiment No.	01 A

Aim: To implement the various functions e.g., linear, non-linear, quadratic, exponential etc.

Algorithm:

1)
$$f(n) = n$$

Algorithm:

F(n): Return n

$$2) \ f(n) = log(n)$$

Algorithm:

F(n): Return log 2(n)

$$3) \ f(n) = log \ (log \ n)$$

Algorithm:

F(n): Return log2(log2(n))

THUTE OF THE ONLY STATE OF THE

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

```
4) f(n) = n \log n
Algorithm:
F(n):
if n = 0
   Error
else return n * log2(n)
5) f(n) = (\log n)^{\log(n)}
Algorithm:
F(n):
If n = 0 Error Else Return pow(log (n), log (n))
6) f(n) = \sqrt{\log 2(n)}
Algorithm:
F(n): If n = 0 Error else Return sqrt(log2(n))
7) f(n) = 2^{\log(n)}
Algorithm:
F(n): If n = 0 Error else Return pow(2, log 2(n))
8) f(n) = (\log n)!
LogFactorial(n):
   If n \le 0
          Error // as log of 0 does not exist
Else
```

TITUTE OF TECHN

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

```
fact = 1
for i from 1 to ceil(log n) do
  fact = fact * i
Return fact

9) f(n) = (\sqrt{2})^{\log n}
Algorithm:
F(n): If n = 0 Error else Return pow(sqrt(2), log n)

10) f(n) = n^3
Algorithm:
F(n): Return n * n * n
```

Code:

```
#include <math.h>
#include <stdio.h>
int fn_01(int n) {
    return n;
}

double fn_02(int n) {
    if (n <= 0) return -1.0;
    return log2(n);
}

double fn_03(int n) {
    if (n <= 0) return -1.0;
    if (log2(n) == 0) return -1.0;
    return log2(log2(n));
}

double fn_04(int n) {
    if (n <= 0) return -1.0;
    return n * log2(n);
}</pre>
```


Sardar Patel Institute of Technology

```
double fn_05(int n) {
    if (n <= 0) return -1.0;
    return pow(log2(n), log2(n));
double fn_06(int n) {
    if (n <= 0) return -1.0;
    return sqrt(log2(n));
double fn_07(int n) {
    if (n <= 0) return -1.0;
    return pow(2, log2(n));
// (lg n)!
double fn_08(int n) {
    if (n <= 0) return -1.0;
    double fact = 1;
    for (int i = 1; i <= ceil(log2(n)); i++) {
        fact *= i;
    return fact;
double fn_09(int n) {
    if (n <= 0) return -1.0;
    return pow(sqrt(2), log2(n));
double fn_10(int n) {
    return n * n * n;
double fact(int n) {
    if (n == 0) return 1;
    double f = 1.0;
    for (int i = 1; i <= n; i++) {
        f = f * i;
    return f;
int main() {
    FILE *fptr;
    // fptr = fopen("D://Tejas//College//sem4//daa//data.csv", "w");
    fptr = fopen("../csv/functions.csv", "w");
```


Sardar Patel Institute of Technology

```
fprintf(fptr, "i,n,lg n,lg(lg n),n*lg n,(lg n)^(lg n),sqrt(lg n),2^lg n,(lg
n)!,sqrt(2)^lg n,n^3,n!\n");
   for (int i = 0; i <= 100; i++) {
printf("%3d | %3d %5.2f %8.2f %8.2f %10.2f %10.2f %6.0f %7.0f
%8.2f %10.0f\n", i, fn_01(i), fn_02(i), fn_03(i), fn_04(i), fn_05(i),
fn_06(i), fn_07(i), fn_08(i), fn_09(i), fn_10(i));
       fprintf(fptr, "%d,%d,%f,%f,%f,%f,%f,%.0f,%.0f,%f,%.0f", i, fn_01(i),
fn_02(i), fn_03(i), fn_04(i), fn_05(i), fn_06(i), fn_07(i), fn_08(i), fn_09(i),
fn_10(i));
       if (i <= 20) {
           fprintf(fptr, ",%0.f\n", fact(i));
       } else {
           fprintf(fptr, ",-\n");
   fclose(fptr);
   printf("\n\nFactorials: \n");
   for (int i = 0; i <= 20; i++) {
       printf("%2d! = %.0f\n", i, fact(i));
   return 0;
```

YHAN WALLAND ON THE CHANGE OF THE CHANGE OF

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

Output:

i	n	lg n	lg(lg n)	n*lg n ((lg n)^(lg n)	sqrt(lg n)	2^lg n	(lg n)!	sqrt(2)^lg n	n^3
Θ	l 0	-1.00	-1.00	-1.00	-1.00	-1.00	-1	-1	-1.00	Θ
1	1	0.00	-1.00	0.00	1.00	0.00	1	1	1.00	1
2	2	1.00	0.00	2.00	1.00	1.00	2	1	1.41	8
3	3	1.58	0.66	4.75	2.08	1.26	3	2	1.73	27
4	4	2.00	1.00	8.00	4.00	1.41	4	2	2.00	64
5	5	2.32	1.22	11.61	7.07	1.52	5	6	2.24	125
6	6	2.58	1.37	15.51	11.65	1.61	6	6	2.45	216
7	7	2.81	1.49	19.65	18.14	1.68	7	6	2.65	343
8	8	3.00	1.58	24.00	27.00	1.73	8	6	2.83	512
9	9	3.17	1.66	28.53	38.75	1.78	9	24	3.00	729
10	10	3.32	1.73	33.22	53.95	1.82	10	24	3.16	1000
11	11	3.46	1.79	38.05	73.22	1.86	11	24	3.32	1331
12	12	3.58	1.84	43.02	97.23	1.89	12	24	3.46	1728
13	13	3.70	1.89	48.11	126.70	1.92	13	24	3.61	2197
14	14	3.81	1.93	53.30	162.42	1.95	14	24	3.74	2744
15	15	3.91	1.97	58.60	205.22	1.98	15	24	3.87	3375
16	16	4.00	2.00	64.00	256.00	2.00	16	24	4.00	4096
17	17	4.09	2.03	69.49	315.71	2.02	17	120	4.12	4913
18	18	4.17	2.06	75.06	385.38	2.04	18	120	4.24	5832
19	19	4.25	2.09	80.71	466.07	2.06	19	120	4.36	6859
20	20	4.32	2.11	86.44	558.92	2.08	20	120	4.47	8000
21	21	4.39	2.13	92.24	665.14	2.10	21	120	4.58	9261
22	22	4.46	2.16	98.11	785.99	2.11	22	120	4.69	10648
23	23	4.52	2.18	104.04	922.80	2.13	23	120	4.80	12167
24	24	4.58	2.20	110.04	1076.96	2.14	24	120	4.90	13824
25	25	4.64	2.22	116.10	1249.94	2.15	25	120	5.00	15625
26	26	4.70	2.23	122.21	1443.27	2.17	26	120	5.10	17576
27	27	4.75	2.25	128.38	1658.54	2.18	27	120	5.20	19683
28	28	4.81	2.27	134.61	1897.43	2.19	28	120	5.29	21952
29	29	4.86	2.28	140.88	2161.67	2.20	29	120	5.39	24389
30	30	4.91	2.29	147.21	2453.08	2.22	30	120	5.48	27000
31	31	4.95	2.31	153.58	2773.54	2.23	31	120	5.57	29791
32	32	5.00	2.32	160.00	3125.00	2.24	32	120	5.66	32768
33	33	5.04	2.33	166.47	3509.50	2.25	33	720	5.74	35937
34	34	5.09	2.35	172.97	3929.15	2.26	34	720	5.83	39304
35	35	5.13	2.36	179.52	4386.13	2.26	35	720	5.92	42875
36	36	5.17	2.37	186.12	4882.70	2.27	36	720	6.00	46656
37	37	5.21	2.38	192.75	5421.20	2.28	37	720	6.08	50653
38	38	5.25	2.39	199.42	6004.04	2.29	38	720	6.16	54872
39	39	5.29	2.40	206.13	6633.74	2.30	39	720	6.24	59319
40 41	40 41	5.32	2.41	212.88	7312.86 8044.06	2.31	40	720	6.32	64000
41	41	5.36 5.39	2.42	219.66		2.31	41 42	720	6.40	68921 74088
42			2.43 2.44	226.48	8830.10	2.32		720	6.48	79507
43	43 44	5.43 5.46	2.44	233.33 240.21	9673.79 10578.06	2.33 2.34	43 44	720 720	6.56 6.63	85184
45	44 45	5.46	2.45	240.21	11545.89	2.34	44 45		6.63	
45 46	:							720		91125
	46	5.52	2.47	254.08	12580.38	2.35	46	720 720	6.78	97336 103823
47 48	47 48	5.55 5.58	2.47 2.48	261.07	13684.70 14862.10	2.36	47 48	720	6.86	110592
48	48 49	5.61	2.48	268.08 275.12	16115.93	2.36 2.37	48 49	720 720	6.93 7.00	117649
50	50	5.64	2.49	282.19	17449.64			720		125000
20	50	5.64	2.50	202.19	1/449.04	2.38	50	720	7.07	123000

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous College Affiliated to University of Mumbai)

51	51	5.67	2.50	289.29	18866.75	2.38	51	720	7.14	132651
52	52	5.70	2.51	296.42	20370.89	2.39	52	720	7.21	140608
53	53	5.73	2.52	303.58	21965.77	2.39	53	720	7.28	148877
54	54	5.75	2.52	310.76	23655.19	2.40	54	720	7.35	157464
55	55	5.78	2.53	317.97	25443.07	2.40	55	720	7.42	166375
56	56	5.81	2.54	325.21	27333.39	2.41	56	720	7.48	175616
57	57	5.83	2.54	332.47	29330.26	2.42	57	720	7.55	185193
58	58	5.86	2.55	339.76	31437.86	2.42	58	720	7.62	195112
59	59	5.88	2.56	347.08	33660.48	2.43	59	720	7.68	205379
60	60	5.91	2.56	354.41	36002.51	2.43	60	720	7.75	216000
61	61	5.93	2.57	361.77	38468.44	2.44	61	720	7.81	226981
62	62	5.95	2.57	369.16	41062.85	2.44	62	720	7.87	238328
63	63	5.98	2.58	376.57	43790.44	2.44	63	720	7.94	250047
64	64	6.00	2.58	384.00	46656.00	2.45	64	720	8.00	262144
65	65	6.02	2.59	391.45	49664.42	2.45	65	5040	8.06	274625
66	66	6.04	2.60	398.93	52820.70	2.46	66	5040	8.12	287496
67	67	6.07	2.60	406.43	56129.94	2.46	67	5040	8.19	300763
68	68	6.09	2.61	413.95	59597.35	2.47	68	5040	8.25	314432
69	69	6.11	2.61	421.49	63228.26	2.47	69	5040	8.31	328509
70	70	6.13	2.62	429.05	67028.08	2.48	70	5040	8.37	343000
71	71	6.15	2.62	436.63	71002.34	2.48	71	5040	8.43	357911
72	72	6.17	2.63	444.23	75156.69	2.48	72	5040	8.49	373248
73	73	6.19	2.63	451.86	79496.87	2.49	73	5040	8.54	389017
74	74	6.21	2.63	459.50	84028.75	2.49	74	5040	8.60	405224
75	75	6.23	2.64	467.16	88758.31	2.50	75	5040	8.66	421875
76	76	6.25	2.64	474.84	93691.62	2.50	76	5040	8.72	438976
77	77	6.27	2.65	482.54	98834.89	2.50	77	5040	8.77	456533
78	78	6.29	2.65	490.26	104194.42	2.51	78	5040	8.83	474552
79	79	6.30	2.66	498.00	109776.66	2.51	79	5040	8.89	493039
80	80	6.32	2.66	505.75	115588.14	2.51	80	5040	8.94	512000
81	81	6.34	2.66	513.53	121635.53	2.52	81	5040	9.00	531441
82	82	6.36	2.67	521.32	127925.60	2.52	82	5040	9.06	551368
83	83	6.38	2.67	529.13	134465.25	2.52	83	5040	9.11	571787
84	84	6.39	2.68	536.95	141261.49	2.53	84	5040	9.17	592704
85	85	6.41	2.68	544.80	148321.48	2.53	85	5040	9.22	614125
86	86	6.43	2.68	552.66	155652.45	2.54	86	5040	9.27	636056
87	87	6.44	2.69	560.54	163261.80	2.54	87	5040	9.33	658503
88	88	6.46	2.69	568.43	171157.02	2.54	88	5040	9.38	681472
89	89	6.48	2.70	576.34	179345.74	2.54	89	5040	9.43	704969
90	90	6.49	2.70	584.27	187835.71	2.55	90	5040	9.49	729000
91	91	6.51	2.70	592.21	196634.80	2.55	91	5040	9.54	753571
92	92	6.52	2.71	600.17	205751.02	2.55	92	5040	9.59	778688
93 94	93	6.54	2.71	608.14	215192.49	2.56	93	5040	9.64	804357
94 95	94 95	6.55	2.71 2.72	616.13	224967.48 235084.35	2.56 2.56	94 95	5040 5040	9.70 9.75	830584 857375
95 96	95 96	6.57 6.58	2.72	624.14 632.16	235084.35	2.56	95 96	5040 5040	9.75	
96 97	96 97	6.60	2.72	640.19	256377.96	2.57	96 97	5040	9.85	884736 912673
98	98	6.61	2.72	648.24	267572.12	2.57	98	5040	9.65	941192
98	98	6.63	2.73	656.31	279143.00	2.57	98	5040	9.90	941192
100	100	6.64	2.73	664.39	291099.66	2.58	100	5040	10.00	1000000
100	1 100	0.04	2.73	004.55	231033.00	2.00	100	3040	10.00	1000000

STITUTE OF SECHAL

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

```
Factorials:
 0! = 1
 1! = 1
 2! = 2
 3! = 6
 4! = 24
 5! = 120
 6! = 720
 7! = 5040
 8! = 40320
 9! = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 6227020800
14! = 87178291200
15! = 1307674368000
16! = 20922789888000
17! = 355687428096000
18! = 6402373705728000
19! = 121645100408832000
20! = 2432902008176640000
```

Chart:

THUTE OF TECHNOLOGY

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous College Affiliated to University of Mumbai)

Observations:

Sr	Function $f(n)$	Observation					
1	n	1) Linear graph					
		2) Value increases equally with the input <i>n</i>					
		3) Slope of the graph is 1					
		4) Steady increase in value					
2	100(10)						
	log(n)	 Logarithmic graph Value increases but slowly 					
		· · · · · · · · · · · · · · · · · · ·					
		3) Slope of graph is $\frac{1}{x \log(2)}$ meaning, for greater value of					
		n the slope becomes smaller and smaller					
		4) The function is undefined for 0					
3	log (log n)	1) Logarithmic graph					
		2) Value increases even slower compared to <i>log n</i>					
		3) Slope is $\frac{1}{x^2 (\log n)^2}$ meaning, for greater values of n,					
		the slope even smaller compared to $log n$.					
		4) The function is undefined for n=0 and n=1					
4	n log n	1) Not exactly linear but not exponential					
		2) Value keeps on increasing faster compared to <i>n</i>					
		3) Slope is $log n + 1$, implying that it keeps on					
		increasing					
		4) Undefined at n = 0					
5	$(\log n)^{\log(n)}$	1) Exponential graph					
		2) Initially, the rate of increase is low as compared to					
		$n \log n$, but eventually, it becomes larger and the					
		function completely explodes					
		3) The slope keeps on increasing					
	<i>r</i> ——	4) Undefined at n = 0					
6	$\sqrt{\log(n)}$	1) Logarithmic graph					
		2) As slow as $log (log n)$					
		3) Slope becomes smaller and smaller with increasing					
		values of n 4) Undefined at n = 0					
		4) Undefined at $n = 0$					

TIVA MARION OF SECHAL

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

	-1 ()	1 ()					
7	$2^{log(n)}$	1) From the property of logarithms, $2^{\log(n)} = n$					
		2) Hence this function is essentially the same as $f(n) = n$					
		Therefore, we see a linear graph with slope 1					
		4) Completely coincides with $f(n) = n$					
8	(log n)!) Factorial can only be taken of whole numbers, hence					
		only the ceil of log n is considered					
		2) We get the same ceil value for a range of log n values.					
		Therefore, we observe a step like behavior in graph					
		3) The slope is 0 for sometime, then suddenly when					
		ceil(log n) jumps to its next value, the slope becomes					
		infinite and graph jumps on the next level					
9	$(\sqrt{2})^{\log n}$	1) Its growth is slightly greater than log n					
	(.)	2) Grows really slowly for an exponential function					
		3) Slope slowly keeps on increasing					
		4) Not defined on $n = 0$					
10	n^3	1) Cubic graph					
		2) Grows extremely fast					
		3) Slope is $3n^2$					
11	n!	1) Grows the fastest among the above 10 functions					
		2) Goes out of bounds immediately					
		3) Slope grows extremely fast					

Conclusion:

Through this experiment, I have understood how different functions grow with growing input. I have observed their graph and comparatively studied it. I have understood how the composition of function affects the overall output and how functions compare to each other.