Corrigé TD n°8 - Oscillateurs libres

5 Energie d'un oscillateur harmonique

1. a) On commence par rappeler le type de solutions pour l'oscillateur harmonique :

$$X(t) = X_m \cos(\omega_0 t + \varphi)$$

qui permet bien de retrouver l'équation d'évolution canonique de l'oscillateur harmonique :

$$\ddot{X} = -\omega_0^2 X = -\omega_0^2 X_m \cos(\omega_0 t + \varphi)$$

La norme maximale de l'accélération est alors $\left| \ddot{X}_m = \omega_0^2 X_m \right|$:

soit
$$\omega_0 = \sqrt{\frac{\ddot{X}_m}{X_m}}$$
 A.N.: $\omega_0 = 2, 0.10^3 \text{ rad.s}^{-1}$ et $T_0 = 3, 1.10^{-3} \text{ s}$

b) La vitesse maximale de la particule est obtenue toujours à partir de la définition de X(t):

$$\dot{X}_m = \omega_0 X_m$$
 A.N.: $\dot{X}_m = 4,0 \text{ m.s}^{-1}$

c) Lorsque la vitesse du mobile est maximale, son énergie cinétique l'est aussi et par conséquent son énergie potentielle est nulle. On a donc :

$$E_m = \frac{1}{2}m\dot{X}_m^2$$
 soit A.N.: $E_m = 8.10^{-2} \text{ J}$

2. a) Lorsque l'élongation est maximale, l'accélération est minimale et la norme de l'accélération est maximale. L'application de la seconde loi de Newton permet alors d'écrire :

$$\|\overrightarrow{T}\| = m\ddot{X}_m = m(\omega_0^2 X_m)$$
 A.N.: $|\overrightarrow{T}|| = 80 \text{ N}$

b) De même on aura $|\overrightarrow{T}|| = 80 \text{ N}$.

9 Pendule électrostatique

1. En appliquant le principe fondamental de la dynamique à la charge q de masse m dans le référentiel terrestre assimilé à un référentiel galiléen

$$m\vec{a} = \overrightarrow{P} + \overrightarrow{T} + \overrightarrow{F}_{elec}$$

En projection sur l'axe orthoradial des coordonnées cylindriques, on obtient :

$$m\ell\ddot{\theta} = -mgsin\theta + qEcos\theta$$

Cette équation peut être réécrite sous sa forme canonique :

$$\ddot{\theta} + \frac{g}{\ell}\sin\theta - \frac{qE}{m\ell}\cos\theta = 0$$

- 2. La position d'équilibre θ_{eq} est définie par $\theta_{eq}^{"}=0$, soit $\frac{g}{\ell}\sin\theta_{eq}=\frac{qE}{m\ell}\cos\theta_{eq}$, soit θ_{eq} tel que $\tan\theta_{eq}=\frac{qE}{mq}$.
- 3. Dans le cadre de petites oscillations autour de la position d'équilibre, on pose $\theta = \theta_{eq} + \delta\theta$, et sachant que $\delta\theta$ est petit de sorte que $sin\delta\theta \simeq 0$ et $\cos\delta\theta \simeq 1$. Donc $sin\theta \simeq sin\theta_{eq} + \delta\theta cos\theta_{eq}$ et $cos\theta \simeq cos\theta_{eq} \delta\theta sin\theta_{eq}$.

En remplaçant ces expressions dans l'équation différentielle, on obtient la nouvelle équation différentielle portant sur $\delta\theta$:

$$\label{eq:energy_equation} \boxed{\ddot{\delta\theta} + \left[\frac{g}{\ell}cos\theta_{eq} + \frac{qE}{m\ell}sin\theta_{eq}\right]\delta\theta = 0}$$

C'est une équation différentielle harmonique avec $\omega_0 = \sqrt{\frac{g}{\ell}} \sqrt{\cos\theta_{eq} + \frac{qE}{mg} \sin\theta_{eq}}$. En utilisant $\tan\theta_{eq} = \frac{qE}{mg}$ et $\cos\theta = \frac{1}{\sqrt{1+\tan^2\theta}}$, on obtient : $\omega_0 = \sqrt{\frac{q}{\ell}} \left[1 + \left(\frac{qE}{mg} \right)^2 \right]^{\frac{1}{4}}$. Finalement : $T_0 = 2\pi \sqrt{\frac{\ell}{g}} \left[1 + \left(\frac{qE}{mg} \right)^2 \right]^{-\frac{1}{4}}$.

11 Régime transitoire d'un ressort vertical

- 1. Lorsque l'équilibre est atteint, seuls le poids et la force de rappel s'exercent sur la masse m. Le principe fondamental appliqué à la masse dans le référentiel terrestre assimilé à un référentiel galiléen s'écrit : $\overrightarrow{P} + \overrightarrow{F} = \overrightarrow{0}$. En projection sur l'axe z vertical descendant : $mg kz_{eq} = 0$, sachant qu'à l'instant initial, le ressort a sa longueur à vide, et que son extrémité est en z = 0. On en déduit : $z_{eq} = \frac{mg}{k}$. On vérifie bien que $z_{eq} > 0$ avec les notations de l'énoncé.
- 2. Au cours du mouvement, la projection du principe fondamental sur l'axe z s'écrit :

$$m\ddot{z} = mg - kz - \alpha \dot{z}$$

On peut la réécrire :

$$\ddot{z} + \frac{\alpha}{m}\dot{z} + \frac{k}{m}\left(z - \frac{mg}{k}\right) = 0$$

Finalement, avec les notations de l'énoncé:

$$\ddot{z} + 2\lambda \dot{z} + \omega_0^2 \left(z - z_{eq} \right) = 0$$

- 3. L'équation différentielle précédente admet des régimes différents suivants le signe du discriminant de son équation caractéristique : $\Delta = 4(\lambda^2 \omega_0^2)$.
 - Si $\lambda > \omega_0$, $\Delta > 0$, et les solutions sont réelles. C'est un régime apériodique.
 - Si $\lambda < \omega_0$, $\Delta < 0$, et les solutions sont complexes. C'est un régime pseudo-périodique.
 - Si $\lambda = \omega_0$, $\Delta = 0$, et la solution double est réelle. C'est un régime critique.

L'allure des courbes est donnée dans le cours.

4. Dans ce cas, pour lequel $\lambda \ll \omega_0$ les solutions de l'équation caractéristique s'écrivent : $r=-\lambda \pm j\omega_0$. Les solutions s'écrivent sous la forme : $z(t)=z_{eq}+e^{-\lambda t}\left[Acos\omega_0t+Bsin\omega_0t\right]$, où z_{eq} correspond à la solution particulière. Or à $t=0,\ z=0=z_{eq}+A,\ donc\ A=-z_{eq}$. De plus, v=0 à $t=0,\ donc\ 0=-A\lambda+B\omega_0$, et $B=\frac{A\lambda}{\omega_0}=-z_{eq}\frac{\lambda}{\omega_0}$. Finalement :

$$z(t) = z_{eq} \left[1 - e^{-\lambda t} \left(\cos \omega_0 t + \frac{\lambda}{\omega_0} \sin \omega_0 t \right) \right]$$

C'est un mouvement oscillant faiblement amorti.