

RNN 소개

RNN은 순환 신경망으로, 시계열 데이터 처리에 탁월하여 이전 정보를 기억하 고 현재 정보를 처리하여 예측, 분류, 생성 등 다양한 작업을 수행

작성자: sanggoo cho

RNN은 시계열 데이터의 패턴을 학습할 수 있습니다. 따라서 주식 시장 예측, 음성 인식, 자연어 처리 등 다양한 분야에서 활용됩니다.

1 시계열 데이터

- 텍스트와 같이 입력의 크기가 변화하는 경우(Variable-Length Inputs)
- (Time-Series) 시간 순서대로 발생하는 데이터(주가, 언어, 노래 등)를 분석하는 데 적합

기 패턴 학습

• 과거 데이터를 기반으로 미래를 예측(Past Recurrent Event)

3 다양한 분야

- LSTM, GRU, Attention, Transformer(BERT, ChatGPT)등을 이해하는데 필수
- 주식 시장 예측, 음성 인식, 자연어 처리 등 다양한 분야에서 활용

RNN의 필요성

❖ 시간적 종속성 처리:

❖ RNN은 이전 단계의 정보를 기억하고 다음 단계에서 활용하여 시퀀스 간의 시간적 연관성을 반영할 수 있습니다. 반면 FNN은 이를 처리하지 못합니다.

❖ 가변적 입력 길이 처리:

❖ RNN은 내부 상태를 이용해 가변적인 길이의 입력 시퀀스를 처리할 수 있어 다양한 길이의 데이터에 유연하게 대응합니다.

❖ 연속적 데이터 처리:

❖ RNN은 시계열 데이터나 이벤트 스트림처럼 순차적으로 변화하는 데이터를 다루는 데 강점을 가지며, FNN은 이러한 연속적 데이터를 효과적으로 처리하지 못합니다.


```
array([ 0.17640523, 0.23868505, 0.48729214, 0.78873179, 0.90411189, 0.7437432 , 1.02704793, 0.97031401, 0.98925172, 1.01490748, 0.92370178, 0.95392375, 0.75156695, 0.52766887, 0.37937447, 0.17448744, 0.09103376, -0.27605693, -0.41121367, -0.69726746])
```



```
[[0.17640523 0.23868505 0.48729214 0.78873179 0.90411189]
[0.23868505 0.48729214 0.78873179 0.90411189 0.7437432 ]
[0.48729214 0.78873179 0.90411189 0.7437432 1.02704793]
[0.78873179 0.90411189 0.7437432 1.02704793 0.97031401]
[0.90411189 0.7437432 1.02704793 0.97031401 0.98925172]]
```

```
y [0.7437432 1.02704793 0.97031401 0.98925172 1.01490748]
```

RNN 모델

- ❖ 입력 시퀀스의 길이(과거 5개 시계열자료)와 특징의 개수(1개, 1 tensor)를 지정
- ❖ RNN Hidden Layer 1개, 노드(unit)는 3개 뉴런으로 구성
- ❖ 출력층1개, 출력층 뉴런 1개

RNN모델의 파라미터

RNN 모델의 파라미터 개수는 입력 크기, 은닉층 크기(뉴런), 출력 크기 등에 의해 결정

RNN 모델의 파라미터

RNN 모델의 파라미터 개수는 입력 크기, 은닉층 크기(뉴런), 출력 크기 등에 의해 결정

SimpleRNN 레이어의 파라미터:

- 1.입력 가중치 (W_xh): 크기 (1, 2)
 - 1. 입력에서 은닉 상태로 가는 가중치 행렬
 - 2. 총 가중치 수는 2개
- 2.은닉 가중치 (W_hh): 크기 (2, 2)
 - 1. 이전 은닉 상태에서 현재 은닉 상태로 가는 가중치 행렬
 - 2. 총 가중치 수는 4개
- 3.편향 (b_h): 크기 (2,)
 - 1. 각 은닉 유닛마다 하나의 편향이 존재
 - 2. 총 편향 수는 2개

SimpleRNN 레이어의 총 파라미터 수: 2 (W_xh) + 4 (W_hh) + 2 (b_h) = 8개

Dense 레이어의 파라미터:

- 1.가중치 (W): 크기 (2, 1)
 - 1. 은닉 유닛에서 출력으로 가는 가중치 행렬
 - 2. 총 가중치 수는 2개
- 2.편향 (b): 크기 (1,)
 - 1. 출력 유닛마다 하나의 편향이 존재
 - 2. 총 편향 수는 1개

Dense 레이어의 총 파라미터 수: 2 (W) + 1 (b) = 3개

RNN의아키텍처타입

☐ **Applications of RNNs** — RNN models are mostly used in the fields of natural language processing and speech recognition. The different applications are summed up in the table below:

Type of RNN	Illustration	Example
One-to-one $T_x=T_y=1$	$ \begin{array}{c} \hat{y} \\ \uparrow \\ a^{<0>} \rightarrow \\ \uparrow \\ x \end{array} $	Traditional neural network
One-to-many $T_x=1,T_y>1$	$ \begin{array}{c} \hat{y}^{<1>} \\ \uparrow \\ \downarrow \\ x \end{array} $ $ \begin{array}{c} \hat{y}^{<2>} \\ \uparrow \\ \downarrow \\ x \end{array} $ $ \begin{array}{c} \hat{y}^{} \\ \uparrow \\ \downarrow \\ \downarrow$	Music generation
Many-to-one $T_x>1, T_y=1$	$ \begin{array}{c} \hat{y} \\ \uparrow \\ \downarrow \\ \downarrow$	Sentiment classification

RNN의아키텍처타입

RNN 설명

- Weight와 Bias는 변하지 않으며 Time sequence에 유연하게 RNN 모델에 입력자료 투입이 가능
- Time Sequence의 Length 크기와 동일하게 Recurrence

https://www.youtube.com/watch?v=AsNTP8Kwu80

RNN 계열

RNN 아키텍처에는 다양한 종류가 있으며 각 아키텍처는 장단점이 다르며 특정 작업에 더 적합

Vanilla RNN

기본적인 RNN 모델로, 간단하고 빠르지 만 장기 의존성을 학습하는 데 어려움때 문에 거의 사용 안함

(Gradient Vanishing Problem)

LSTM

장기 의존성을 학습하는 데 뛰어나지만 계산량이 많음

GRU

LSTM보다 간단하고 효율적이며 장기 의 존성을 학습하는 데 유용.

RNN모델훈련과정

RNN 모델은 훈련 데이터를 입력하여 가중치(Weights)와 편향(Bias)을 학습하며 손실 함수(Loss Function)를 최소화하는 방향(Optimization)으로 파라미터를 업데이트

훈련 데이터를 입력하여 모델의 파라미터를 학습

Loss Function:
$$L(y, \hat{y}) \quad L(y, \hat{y}) = -y \ln(\hat{y}) \quad - \quad (1 - y) \ln(1 - \hat{y})$$

Deep learning Terminology

활성화함수(Activation Function)

2 Softmax Function

Loss Fucntion : log loss

경사하강알고리즘(Stochastic Gradient Descent)

Simulate and Understand Deep Learning

RNN RNN

Fired France	Augury Postissag	Acorcoy Pranitan		Fupera
	98X0	310.500 349. <i>1</i> 10		31.200 240400
	9209 4400	068.026 088.0E6		340.00 340.00
	3910	34D,710 30R,410		340.00 940.00
	9249	340.770 340.110		340.00 040.00
	9844	222,419 989,410		340.00 400.00
	693D 653D	328.210 080.210		344.00 400.00
	9790 9790	327.210 337.210		349:00
	0330 0330	3 Q D. 200		240.00
		20	90	200.00

RNN모델성능평가

RNN 모델의 성능은 정확도, 정밀도, 재현율, F1 점수 등 다양한 지표로 평가하며 모델의 목표에 따라 적절한 지표를 선택

지표	설명
정확도	모델이 정확하게 예측한 비율
정밀도	모델이 예측한 결과 중 실제로 맞 는 비율
재현율	실제로 맞는 결과 중 모델이 예측 한 비율
F1 점수	정밀도와 재현율의 조화 평균

RNN의 응용 분야와 향후 전망

RNN은 자연어 처리, 음성 인식, 기계 번역, 이미지 캡셔닝 등 다양한 분야에서 활용 앞으로 더욱 발전하여 더욱 정교하고 효율적인 인공 지능 시스템을 구축하는 데 기여

ΑŻ

(6.6)

자연어 처리

챗봇, 감정 분석, 기계 번역 등 다 음성을 텍스트로 변환하는 음성 양한 자연어 처리 작업에 활용

음성 인식

인식 시스템 개발에 활용

로봇 제어

로봇의 움직임을 제어하고 환경 을 인식하는 데 활용

뇌과학

뇌 활동 패턴을 분석하고 예측하 는 데 활용

