Logical minimisation of metarules in meta-interpretive learning

Andrew Cropper and Stephen Muggleton

Outline

- Meta-interpretive learning
- minimisation of metarules
 - motivation
 - method
 - experiments
- related work
- conclusions and future work

Meta-interpretive learning

```
Prolog meta-interpreter
                             MIL meta-interpreter
prove(true).
                             prove([],G,G).
prove((Atom, Atoms)):-
                             prove([Atom|Atoms],G1,G2):-
 prove(Atom),
                              call(Atom),
 prove(Atoms).
                              prove(Atoms, G1, G2).
prove(Atom):-
                             prove([Atom|Atoms],G1,G2):-
 clause(Atom, Body),
                              metarule(Name, Sub, (Atom: -Body)),
 prove(Body).
                              abduce(Name, Sub, G1, G3),
                              prove(Body, G3, G4).
                              prove(Atoms, G4, G2).
```

Metarules

Name	Metarule	Instantiation
identity	$P(X,Y) \leftarrow Q(X,Y)$	loves(X,Y) ← married(X,Y)
inverse	$P(X,Y) \leftarrow Q(Y,X)$	child(X,Y) ← parent(Y,X)
chain	$P(X,Y) \leftarrow Q(X,Z), R(Z,Y)$	$aunt(X,Y) \leftarrow sister(X,Z), parent(Z,Y)$

P,Q,R are **existentially** quantified **higher-order** variables X, Y,Z are **universally** quantified **first-order** variables

Chain metarule example

program

proof outline

background

parent(ann, andrew) ← sister(dorothy, ann) ←

substitution

 $\theta = \{P/aunt, Q/sister, R/parent\}$

goal

aunt(dorothy, andrew) ←

abduction store

chain(aunt, sister, parent) ←

metarule

 $P(X,Y) \leftarrow Q(X,Z),R(Z,Y)$

clause

 $aunt(X,Y) \leftarrow sister(X,Z), parent(Z,Y)$

Definitions

- Logic programs without function symbols are called **Datalog** programs
- H²₂ is a fragment of Datalog where each clause has at most two literals in the body and each literal is at most dyadic
- H²_{2 chained} is a fragment of Datalog where each clause has at most two literals in the body, each literal is dyadic, and every variable appears in exactly two literals

Motivation

Completeness

Incomplete without correct set of metarules, e.g. restricted to H^{1} with the metarule $P(X) \leftarrow Q(X)$

Efficiency

Number of programs in H^{2}_{2} of size n with p primitives and m metarules is $O(p^{3n}m^{n})$

Encapsulation

Definition. **Atomic encapsulation**. Let A be higher-order or first-order atom of the form $P(t_1, ..., t_n)$. We say that $enc(A) = m(P, t_1, ..., t_n)$ is an encapsulation of A

Name	Metarule	Encapsulation
identity	$P(X,Y) \leftarrow Q(X,Y)$	$m(P,X,Y) \leftarrow m(Q,X,Y)$
inverse	$P(X,Y) \leftarrow Q(Y,X)$	$m(P,X,Y) \leftarrow m(Q,Y,X)$
chain	$P(X,Y) \leftarrow Q(X,Z), R(Z,Y)$	$m(P,X,Y) \leftarrow m(Q,X,Z), m(R,Z,Y)$

Minimisation of metarules in H²_{2 chained}

Maximal set		
$P(X,Y) \leftarrow Q(X,Y)$		
$P(X,Y) \leftarrow Q(Y,X)$		
$P(X,Y) \leftarrow Q(X,Z), R(Y,Z)$		
$P(X,Y) \leftarrow Q(X,Z), R(Z,Y)$		
$P(X,Y) \leftarrow Q(Y,X), R(X,Y)$		
$P(X,Y) \leftarrow Q(Y,X), R(Y,X)$		
$P(X,Y) \leftarrow Q(Y,Z), R(X,Z)$		
$P(X,Y) \leftarrow Q(Y,Z), R(Z,X)$		
$P(X,Y) \leftarrow Q(Z,X), R(Y,Z)$		
$P(X,Y) \leftarrow Q(Z,X), R(Z,Y)$		
$P(X,Y) \leftarrow Q(Z,Y), R(X,Z)$		
$P(X,Y) \leftarrow Q(Z,Y), R(Z,X)$		

Plotkin's reduction algorithm

Identity metarule from minimal set

$$C = P(X,Y) \leftarrow Q(Y,X)$$

$$Q(Y,X) \qquad C' = P'(X',Y') \leftarrow Q'(Y',X')$$

$$Q = \{P/Q', X/Y',Y/X'\}$$

$$Q'(Y',X') \leftarrow Q(X',Y')$$

Left Euclidean metarule from minimal set

Minimisation of metarules in H²_{3 chained}

Maximal set
$$P(X,Y) \leftarrow Q(X,Z), R(Z,Y)$$

$$P(X,Y) \leftarrow Q(X,Z1), R(Z1,Z2), S(Z2,Y)$$

$$P(X,Y) \leftarrow Q(X,Z1), R(Z1,Z2), S(Z2,Z3), T(Z3,Y)$$

Plotkin's reduction algorithm

Minimal set

$$P(X,Y) \leftarrow Q(Y,X)$$
 (inverse)

$$P(X,Y) \leftarrow Q(X,Z), R(Z,Y)$$
 (H22 chain)

H²₃ chain metarule from minimal set

$$C = P(X,Y) \leftarrow Q(X,Z), R(Z,Y) \qquad C' = P'(X',Y') \leftarrow Q'(X',Z'), R'(Z',Y')$$

$$\theta = \{P/Q', X/X',Y/Z'\}$$

$$P'(X',Y') \leftarrow Q(X',Z), R(Z,Z'), R'(Z',Y')$$

$$(H^{\rho_3} chain)$$

Identity metarule instantiation via predicate invention

Identity metarule instantiation via predicate invention

H²₃ chain metarule instantiation

$$P(X,Y) \leftarrow Q(X,Z), R(Z,Y)$$
($H^2_2 chain$)

H²₃ chain metarule instantiation

greatgrandparent(X,Y) \leftarrow parent(X,Z1), parent(Z1,Z2), parent(Z2,Y)

Kinship experiments - varying training data

Kinship experiments - varying background relations

Kinship experiments - varying metarules

Related work

Meta-interpretive learning

- Meta-interpretive learning: application to grammatical inference [Muggleton et al, 2014]
- Meta-interpretive learning of higher-order dyadic datalog: Predicate invention [Muggleton & Lin, 2013]
- Bias reformulation for one-shot function induction [Lin et al, 2014]

ILP search

- Probabilistic search techniques: A study of two probabilistic methods for searching large spaces with ILP [Srinivasan, 2000]
- Query packs: Improving the efficiency of inductive logic programming through the use of query packs [Blockeel, et al, 2002]
- Special purpose hardware: Scalable acceleration of inductive logic programs [Muggleton, et al, 2001]

Refinement operators

- Algorithmic program debugging [Shapiro, 1983]
- Foundations of Inductive Logic Programming [Nienhuys-Cheng & Wolf, 1997]

Declarative bias

- Modes: Inverse entailment and Progol [Muggleton, 1995], The ALEPH manual [Srinivasan, 2001]
- Grammars: Grammatically biased learning: learning logic programs using an explicit antecedent description language [Cohen, 1994]

Conclusions and further work

Conclusions

- two metarules are complete and sufficient for generating all hypotheses in H²_m*
- minimal set of metarules achieves higher predictive accuracies and lower learning times than the maximal set

Further work

- investigate the broader class of H²_m
- minimise the metarules with respect to background clauses

Thank you

a.cropper13@imperial.ac.uk

s.muggleton@imperial.ac.uk