

Screw connecting system for pipelines - has profiled cutting ring whose end side displaces pipe wall material to form seal during tightening.

Patent number: DE4238877
Publication date: 1994-05-26
Inventor: LEHMANN KLAUS (DE)
Applicant: LEHMANN KLAUS (DE)
Classification:
- International: F16L19/08
- European: F16L19/08C
Application number: DE19924238877 19921119
Priority number(s): DE19924238877 19921119

Abstract of DE4238877

The end face (4.2) of the profiled ring (4) running outwards from the front cutting edge (4.1) of the ring is shaped so that the pipe wall material of the pipe is pressed towards the screw body (1). The transition between the end face and adjoining conical outer area of the ring is pref. rounded.

After deformation through the front part of the ring the pipe wall material is used as the sealing material. The screw body can be a standard part with 24 deg. inner cone. When the sealing force increases as the inner pressure rises the axial tensile force on the pipe becomes greater.

USE/ADVANTAGE - Screw connecting system for pipelines incorporates metal seals with reduced risk of corrosion and good sealing action.

Data supplied from the **esp@cenet** database - Worldwide

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑯ Offenlegungsschrift
⑯ DE 42 38 877 A 1

⑯ Int. Cl. 5:
F 16 L 19/08

DE 42 38 877 A 1

⑯ Aktenzeichen: P 42 38 877.5
⑯ Anmeldetag: 19. 11. 92
⑯ Offenlegungstag: 28. 5. 94

⑯ Anmelder:
Lehmann, Klaus, 76689 Karlsdorf-Neuthard, DE

⑯ Erfinder:
gleich Anmelder

⑯ Verbindungssystem für Rohrleitungen

⑯ Zur Verbesserung der Dicht- und Haltekraft eines Rohres in einem Verbindungssystem, zur Reduzierung der Anzugsmomente und zur Erhöhung der Korrosionsbeständigkeit der Verbindungsstelle ist die außerhalb der vordersten Schneidkante eines Profilringes vorhandene Stirnseite so ausgeformt, daß beim Anzugsvorgang Rohrwandungsmaterial nach außen zum Verschraubungskörper hin bewegt und als Dichtmaterial benutzt wird.

DE 42 38 877 A 1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

BUNDESDRUCKEREI 03. 94 408 021/43

6/34

Beschreibung

Die Erfindung betrifft ein Verbindungssystem nach dem Oberbegriff des Anspruchs 1.

Es sind Verbindungssysteme bekannt, bei denen sogenannte Schneid- bzw. Profilringe mit Hilfe einer als Überwurfmutter ausgebildeten Spannmutter in einen Verschraubungskörper mit einem Innenkonus eingepreßt werden und durch ihre Verformung zum Zentrum hin in das sich dort befindliche Rohr einschneiden und dieses somit halten und gleichzeitig die Verbindung abdichten sollen (vgl. hierzu Kataloge, z. B. der Firmen Exmar GmbH und Parker Ermeko). Die Schwierigkeit liegt darin, daß der Schneidring aufgrund seiner relativ hohen Härte zum Verschraubungskörper hin schlecht abdichtet, zum Teil auch dadurch bedingt, daß der Schneid- bzw. Profilring während des Einpreßvorganges in den Innenkonus des Verschraubungskörpers in diesen Riefen zieht, auf denen er dann abdichten soll. Bei der bisher bekannten Art der einteiligen Schneidringe ist außerdem, z. T. bedingt durch die Form der Schneidkante, das Anzugsmoment sehr hoch. Weiterhin ergeben sich, besonders im Bereich der Edelstahlverschraubungen für die chemische Industrie, Korrosionsprobleme bei den Schneidringen. Durch den Härtevorgang läßt die Korrosionsbeständigkeit nach, und die Verbindung ist nur eingeschränkt einsetzbar.

Hinzu kommt der Umstand, daß es bei steigendem Innendruck zu einer Dehnung des gesamten Verbindungssystems kommt, wodurch insbesondere die Dichtwirkung des harten Schneidringes am Innenkonus des Verschraubungskörpers verschlechtert werden kann. Der Einsatz elastischer, zusätzlicher Dichtelemente (vgl. DE 40 41 677) bringt auch wiederum eine Verwendungseinschränkung, insbesondere für Hochdrucksauerstoffleitungen.

Der Erfindung liegt die Aufgabe zugrunde, ein Verbindungssystem so auszubilden, daß es bei rein metallischer Abdichtung über verbesserte Dichtegenschaften verfügt und der Schneid- bzw. Profilring nicht mit dem die Rohrleitung durchströmenden Medium in Berührung kommt und somit auch nicht dem Korrosionsangriff ausgesetzt ist, auch nicht bei steigendem Innendruck.

Die Aufgabe wird erfundungsgemäß durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere in der universellen und somit mediumunabhängigen Einsetzbarkeit und einer verbesserten Dichtqualität und auch Haltekraft, insbesondere bei einer steigenden Belastung des Rohres durch Innendruck und einer Verringerung der erforderlichen Anzugsmomente.

Weitere Merkmale und Vorteile ergeben sich aus den nachfolgenden Zeichnungen.

Es zeigen

Fig. 1 einen Verschraubungskörper (1) mit einem Innenkonus (1.1), eine als Überwurfmutter ausgebildete Spannmutter (2), ein abzudichtendes und zu haltendes Rohrende (3) und einen Profilring (4) im lose zusammengefügten Zustand und

Fig. 2 dieselben Bauteile im festgezogenen Zustand.

Fig. 3 die Darstellung einer üblichen Schneidring-Rohrverschraubung.

In Fig. 1 ist erkennbar, daß der Profilring (4) vorn innen über zumindest eine Schneidkante verfügt, wobei sich an die vorderste (4.1) eine nach außen radial- bzw. kegelförmig verlaufende Stirnfläche (4.2) anschließt.

Diese Stirnfläche verläuft zumindest im ersten Bereich von der Schneidkante weg mit einer Schrägen des dargestellten Winkelmaßes (a).

Zieht man nun die Spannmutter (2) an, wird der Profilring (4) in den sich verjüngenden Innenkonus (1.1) des Verschraubungskörpers (1) hineingepreßt, und die Schneidkante(n) gräbt sich in die Außenwand des Rohres (3) ein. Bedingt durch den Winkel der Profilring-Stirnfläche (4.2) wird das weichere Rohrmaterial im Bereich (3.1) nach außen und somit fest und dichtend gegen die Innenkonuswand des Verschraubungskörpers (1) gepreßt (vgl. Fig. 2). Bei übermäßigem Anzug der Spannmutter (2), insbesondere bei sehr weichem Rohr, sitzt die radial verlaufende Anschlagfläche (4.3) auf dem Verschraubungskörper (1) auf. Die Abdichtung erfolgt also nicht, wie herkömmlich, an zwei Umfangsstellen, nämlich

1. zwischen Rohr (3) und Profilring (4)

2. zwischen Profilring (4) und Verschraubungsinnenkonus (4.1), sondern nur noch zwischen Rohraußendurchmesser im Bereich (3.1) und der Innenfläche der Verschraubung (1). Dadurch ergeben sich zunächst drei wichtige Vorteile:

1. Mit dem Innenmedium des Rohres (3) kommen nur der Verschraubungskörper (1) und das Rohr (3) in Kontakt. Dabei bestehen beide Teile üblicherweise, ohne Einschränkung auf Härtbarkeit, aus korrosionsbeständigen Materialien.

2. Die Abdichtforderung ist nur noch auf eine Stelle begrenzt.

3. Die Abdichtung wird viel leichter durch die Verformung des relativ weichen Rohrmaterials mit sehr hoher spezifischer Flächenpressung im Bereich (3.1) erzielt, als zwischen dem üblicherweise recht großflächig im Verschraubungsinnenkonus (1.1) liegenden harten Profilring (4) und dem Innenkonus (1.1) selbst, zumal genau an dieser Stelle häufig durch den harten Ring (4) während der Schiebebewegung Riefen in die Konusoberfläche gezogen wurden.

Betrachtet man nun beide Situationen unter steigendem Innendruck, so wird der Unterschied gravierend.

Zunächst die Wirkungsbereiche des Innendrucks: Grundsätzlich werden alle Bauteile aufgrund ihrer Elastizität – eingeschränkter beim harten Profil- bzw. Schneidring (4) – in radialem Richtung, also vergrößernd nach außen, verformt. Auf das Rohr (3) und die Spannmutter (2) wirkt zusätzlich eine Zugkraft in axialer Richtung, welche in gleicher Größe und Richtung den Ring (4) als Druckkraft belastet. Es kommt also zu einer Aufweitung des gesamten Systems. Dabei ist ein wichtiger Faktor, daß die Aufweitung des Rohres nur ab dem Punkt der Abdichtung nach oben stattfindet – in Fig. 2 z. B. ab Bereich (3.1) – und nicht darunter, denn dort herrscht an der Rohraußenseite der gleiche Druck. Da das Rohr (3) nun bei wirtschaftlicher Dimensionierung mehr nachgibt als der dickwandigere Verschraubungskörper (1), kommt es im Bereich (3.1) zunächst zu einer vorteilhaften Erhöhung der Anpreßkraft des dichtenden, relativ weichen Rohrmaterials an den Innenkonus (1.1).

Bei mit dem Innendruck weiter steigender erforderlicher Dichtkraft wird nun auch die axiale Zugkraft auf das Rohr größer, dieses insbesondere bei größeren Durchmessern, da die Kraft mit Zunahme des Durchmessers quadratisch ansteigt. Eine Erhöhung der Kraft

bringt im Bereich (3.1) in Fig. 2 durch die erfindungsge-
mäße Ausbildung der Stirnfläche (4.2) eine höhere Ein-
schnittkraft des Profilringes (4) mit Kante (4.1) in das
Rohr und somit

1. eine größere Haltekraft und
2. einen die Dichtwirkung erhöhenden Rohrwand-
ungsmaterialfluß zum Bereich (3.1) bzw. zur In-
nenkonusfläche (1.1).

Bei einer üblichen Ausführung nach Fig. 3 ist dieses nicht gegeben bzw. sogar teilweise eine gegenteilige Wirkung vorhanden.

Für die Beurteilung ist es wichtig, daß sich die beschriebenen Vorgänge zwar alle in kleinsten Wegbereichen abspielen, welche jedoch aufgrund der relativen Materialfestigkeiten und -härte hohen Einfluß auf die Dichtwirkung haben. Am extremsten sind dabei natürlich die Anforderungen bei Gasleitungen bzw. auch, wenn höhere Betriebs- oder Umgebungstemperaturen mit Einfluß auf die Materialausdehnung vorhanden sind.

Grundsätzlich ist es sinnvoll, den Winkel (a) und/oder die Zahl und Form der zusätzlichen Schneidkanten so zu wählen, daß das Rohr (3) durch die Kante (4.1) nicht zu tief eingeschnitten wird.

Patentansprüche

1. Verbindungssystem für Rohrleitungen, geeignet für Vakuum bis hin zu Höchstdrücken, bestehend aus einem Verschraubungskörper (1) mit einer konischen Innenfläche (1.1), einer Spannmutter (2) und einem Profilring (4), dadurch gekennzeichnet, daß die von der vorderen Schneidkante (4.1) nach außen verlaufende Stirnfläche (4.2) so ausgestaltet ist, daß das Rohrwandungsmaterial des Rohres (3) zum Verschraubungskörper (1) hin gepreßt wird.
2. Verbindungssystem nach Anspruch 1, dadurch gekennzeichnet, daß der Verlauf der Stirnfläche (4.2) mit dem Winkel (a) $> \geq 0^\circ$ beginnt.
3. Verbindungssystem nach Anspruch 1, dadurch gekennzeichnet, daß der Übergang der Stirnfläche (4.2) zum daran anschließenden konischen Außenbereich des Profilringes gerundet ist.
4. Verbindungssystem nach Anspruch 1, dadurch gekennzeichnet, daß das Rohrwandungsmaterial nach Verformung durch das Profilringvorderteil als Dichtungsmaterial verwendet wird.
5. Verbindungssystem nach Anspruch 1, dadurch gekennzeichnet, daß die Abdichtung zur Umgebung hin direkt zwischen Rohrwandungsmaterial und Verschraubungskörper (1) erfolgt.
6. Verbindungssystem nach Anspruch 1, dadurch gekennzeichnet, daß bei erhöhter Axialkraft des Rohres (3) eine erhöhte Materialfließkraft auf das Rohrwandungsmaterial im Bereich (3.1) auf die Innenseite des Verschraubungskörpers (1) hin wirkt.
7. Verbindungssystem nach Anspruch 1, dadurch gekennzeichnet, daß der Verschraubungskörper (1) ein Normteil mit 24°-Innenkonus sein kann.
8. Verbindungssystem nach Anspruch 1, dadurch gekennzeichnet, daß die Spannmutter (2) ein Normteil sein kann.

Fig. 1

Fig.2

Fig.3

