Group 21: Zeljko Antunovic (s233025), Alex Belai (s233423), Lukas Samuel Czekalla (s233561), Filip Penzar (s232452), Nándor Takács (s232458)

Origin of the data:

- Subset of ImageNet-Dataset
- HOTDOG = chilidog & hotdog classes
- *NO-HOTDOG* = pets, furniture, people, food & frankfurter classes

Initial data transformation:

- Resizing to $256 \times 256 px$
- Normalization w.r.t. ImageNet mean & std

Data Composition:

Training-data		Test-data	
hotdog	no-hotdog	hotdog	no-hotdog
1075	972	895	967

Small amount of images = risk of overfitting

Baseline setup

- One output neuron with sigmoid
- Loss Function = Binary Cross Entropy
- Optimizer = Adam with $l_r = 10^{-4}$
- No X-Val. Or 3rd validation set
- Training for 25 epochs
- Comparison of different architectures

Regularization

Modification of BaseCNN architecture

	J. 2000	1.0
Method	Test-Acc.	
Dropout $p = 0.05$	75.4%	0.9 -
Dropout $p = 0.2$	76.6%	≥ 0.8 -
Batchnorm	74.8%	Accuracy Acc
$WD w = 10^{-3}$	74.0%	0.7 - MoreDropoutCNN train MoreDropoutCNN test DropoutCNN test acc DropoutCNN train acc BatchNormCNN train a
$WD W = 10^{-4}$	74.0%	BatchNormCNN test ac BaseCNN wd=1e-5 test BaseCNN wd=1e-3 trai BaseCNN wd=1e-3 trai BaseCNN wd=1e-3 test
$WD W = 10^{-5}$	75.1%	BaseCNN wd=1e-4 trai BaseCNN wd=1e-4 trai BaseCNN wd=1e-4 tesi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Epoch

Data Augmentation

➤ Dropout is promising

Using BaseCNN architecture & randomness

ſ	N 4 - 1	Table Asse
	Method	Test-Acc.
	Horizontal Flip	73.2%
	Rotation	78.5%
	Perspective	78.4%
	Color Jitter	72.8%
d	Gaussian Blur	74.7%
	Random Erasing	77.2%

Transfer Learning

- Pretrained classifiers on ImageNet-data
- Convolutional layers are frozen
- Retraining of fully-connected layers

		1.0 -
Model	Test-Acc.	0.9 - /
VGG11	91.6%	Curacy
ResNet18	88.6%	0.7 - FrozenPretrainedVGG11 train acc FrozenPretrainedVGG11 test acc
DenseNet121	90.3%	0.6 - FrozenPretrainedDenseNet121 train a FrozenPretrainedDenseNet121 test ac FrozenPretrainedResNet18 train acc FrozenPretrainedResNet18 test acc
		0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

- ResNet & DenseNet don't show overfitting Increase depth of model
- BaseCNN with $2 \times$ amount of conv. layers

Method	Test-Acc.	1.0 - DeepDropoutCNN train acc DeepDropoutCNN test acc DeepCNN train acc DeepCNN test acc
$2 \times \text{conv. layers}$	72.1%	0.9
2 × conv. layers + dropout	73.0%	0.7 -
Stronger ove	0.6	

Smoothgrad Saliency Map

Stronger overnitting

Archite

Fina

Final CNN Architecture

Architecture Considerations

- Convolutional layers increasing channels \times 2
- Kernel size in conv. layers: 5×5 and 3×3
- Max-Pooling (2×2) reduces spatial dim. by $\times 2$
- Dropout (0.1) & weight-decay (10^{-5}) against overfitting
- One fully-connected layer

Re Ø

Training results of final arch. - Marining Marining | Train-Acc.: Test-Acc.:

768

189

Hotdog

Predicted Label

127

778

No Hotdog

Top 3 misclassified images with highest loss Loss: 7.04

Images classified as hotdog

Tar: Hotdog, Pred:No Hotdog

Tar: Hotdog, Pred:No Hotdog