10. Prove the principle of mathematical induction with the well-ordering principle.

Proof.

Note that the set of natural numbers has a least member by the well-ordering principle. Thus let n_0 be the minimum natural number for which a property $A(n_0)$ holds, and suppose A(k) in implies A(k+1) for some natural number $k \geq n_0$. Then by Proposition 9, it follows that A(n) for all natural numbers $n \geq n_0$. In other words, we can prove that the property A(n) holds for all natural numbers $n \geq n_0$ by proving that $A(n_0)$, and that A(n) implies A(n+1).