PAHJJ|f|

Problem 1. Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that $f(0) \neq 0$ and $f(x+y)^2 = 2f(x)f(y) + \max\{f(x^2) + f(y^2), f(x^2+y^2)\}$ for all $x, y \in \mathbb{R}$.

 $\binom{n}{3}$

Solution. We claim:

Remark 1.1. $u \leqslant T \Longrightarrow T$

Remark 1.1. T

Crap Answer

This is another Put x = y = 0, we have $f(0)^2 = 2f(0)^2 + \max\{2f(0), f(0)\}$. If f(0) > 0, then $-f(0)^2 = 2f(0)$, but that is a contradiction. If f(0) < 0, then $-f(0)^2 = f(0)$ implies f(0) = -1.

HELLO HELLO Abc

Put x = y = 0, we have $f(0)^2 = 2f(0)^2 + \max\{2f(0), f(0)\}$. If f(0) > 0, then $-f(0)^2 = 2f(0)$, but that is a contradiction. If f(0) < 0, then $-f(0)^2 = f(0)$ implies f(0) = -1.

If we put y = 0, $f(x)^2 = -2f(x) + \max\{f(x^2) - 1, f(x^2)\} = -2f(x) + f(x^2)$. This is equivalent to $(f(x) + 1)^2 = f(x^2) + 1$.

- Case 1. dlkfj ldj fl dkfjldjf Put x = y = 0, we have $f(0)^2 = 2f(0)^2 + \max\{2f(0), f(0)\}$. If f(0) > 0, then $-f(0)^2 = 2f(0)$, but that is a contradiction. If f(0) < 0, then $-f(0)^2 = f(0)$ implies f(0) = -1.
- Case 2. dfd

1