interrupt

목차

1.폴링

2.인터럽트

3.인터럽트 처리과정

4.인터럽트 벡터 테이블

5.인터럽트 레지스터

6.FND

7.트랜지스터

8.회로도

9.문제

10.구동영상

폴링

인터럽트

상태 변화가 발생하면 CPU에게 알리는 방식
CPU가 다른 일을 할 수 있기 때문에 효율성이 높음
인터럽트 신호가 입력되면 즉각적으로 하던 동작을 멈추고 인터럽트 서비스루틴을 실행

인터럽트 처리과정

- 인터럽트 신호가 입력
- 인터럽트 요청 허용 여부 판단
- CPU는 스택공간에 실행 중이던 주소번지를 저장
- 인터럽트 벡터 주소로 점프
- 인터럽트 서비스 루틴 실행
- 스택에 저장한 주소번지로 복귀

인터럽트 벡터 테이블

Vector No.	Program Address ⁽²⁾	Source	Interrupt Definition
1	0x0000 ⁽¹⁾	RESET	External Pin, Power-on Reset, Brown-out Reset, and Watchdog Reset
2	0x0002	INT0	External Interrupt Request 0
3	0x0004	INT1	External Interrupt Request 1
4	0x0006	INT2	External Interrupt Request 2
5	0x0008	INT3	External Interrupt Request 3
6	0x000A	INT4	External Interrupt Request 4
7	0x000C	INT5	External Interrupt Request 5
8	0x000E	INT6	External Interrupt Request 6
9	0x0010	INT7	External Interrupt Request 7
10	0x0012	TIMER2 COMP	Timer/Counter2 Compare Match
11	0x0014	TIMER2 OVF	Timer/Counter2 Overflow
12	0x0016	TIMER1 CAPT	Timer/Counter1 Capture Event
13	0x0018	TIMER1 COMPA	Timer/Counter1 Compare Match A
14	0x001A	TIMER1 COMPB	Timer/Counter1 Compare Match B
15	0x001C	TIMER1 OVF	Timer/Counter1 Overflow
16	0x001E	TIMER0 COMP	Timer/Counter0 Compare Match
17	0x0020	TIMER0 OVF	Timer/Counter0 Overflow
18	0x0022	SPI, STC	SPI Serial Transfer Complete
19	0x0024	USARTO, RX	USART0, Rx Complete
20	0x0026	USARTO, UDRE	USART0 Data Register Empty
21	0x0028	USARTO, TX	USART0, Tx Complete
22	0x002A	ADC	ADC Conversion Complete
23	0x002C	EE READY	EEPROM Ready
24	0x002E	ANALOG COMP	Analog Comparator
25	0x0030 ⁽³⁾	TIMER1 COMPC	Timer/Counter1 Compare Match C
26	0x0032 ⁽³⁾	TIMER3 CAPT	Timer/Counter3 Capture Even
27	0x0034 ⁽³⁾	TIMER3 COMPA	Timer/Counter3 Compare Match A
28	0x0036 ⁽³⁾	TIMER3 COMPB	Timer/Counter3 Compare Match B
29	0x0038 ⁽³⁾	TIMER3 COMPC	Timer/Counter3 Compare Match C
30	0x003A(3)	TIMER3 OVF	Timer/Counter3 Overflow
31	0x003C(3)	USART1, RX	USART1, Rx Complete
32	0x003E ⁽³⁾	USART1, UDRE	USART1 Data Register Empty
33	0x0040 ⁽³⁾	USART1, TX	USART1, Tx Complete
34	0x0042 ⁽³⁾	TWI	Two-wire Serial Interface
35	0x0044 ⁽³⁾	SPM READY	Store Program Memory Ready

- 인터럽트 벡터는 여러 종류의 인터럽트에 대한 ISR의 시작 주소
- 인터럽트 벡터는 인터럽트 요청이 발생하였을 때, CPU는 인터럽트 소스가 무엇인지 그리고 해당 인터럽트 ISR이 메모리 어디에 적재되어 있는지 확인하는 용도로 사용
- 인터럽트 벡터 테이블은 인터럽트 벡터가 저장되는 공간
- 여러 개의 인터럽트 신호가 동시에 발생하면 인터럽트 벡터의 순번에 따라서 순차적으로 실행

상태 레지스터(SREG)

SREG.I 세트

sei(); //전체 인터럽트 허용

SREG.I 리셋

cli(); //전체 인터럽트 금지

외부 인터럽트 마스크 레지스터(EIMSK)

Bit	7	6	5	4	3	2	1	0	_
	INT7	INT6	INT5	INT4	INT3	INT2	INT1	IINT0	EIMSK
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	

개별적인 인터럽트 허용/금지 설정 (INT0~INT7)

ex) EIMSK = 0x81;

외부 인터럽트 제어 레지스터 A(EICRA)

Bit	7	6	5	4	3	2	1	0	_
	ISC31	ISC30	ISC21	ISC20	ISC11	ISC10	ISC01	ISC00	EICRA
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	

ISCn1	ISCn0	설명
0	0	INTn이 LOW level일 때 인터럽트 요구
0	1	x
1	0	INTn이 Falling edge일 때 인터럽트 요구(비동기)
1	1	INTn이 Rising edge일 때 인터럽트 요구(비동기)

인터럽트 신호 감지 방법 설정 레지스터(INT0~3) 2비트당 하나의 핀 설정

외부 인터럽트 제어 레지스터 B(EICRB)

Bit	7	6	5	4	3	2	1	0	_
	ISC71	ISC70	ISC61	ISC60	ISC51	ISC50	ISC41	ISC40	EICRB
Read/Write	R/W	•							
Initial Value	0	0	0	0	0	0	0	0	

ISCn1	ISCn0	설명
0	0	INTn이 LOW level일 때 인터럽트 요구
0	1	INTn에서 논리적인 변화가 일어날 때 인터럽트 요구
1	0	INTn이 Falling edge일 때 인터럽트 요구
1	1	INTn이 Rising edge일 때 인터럽트 요구

인터럽트 신호 감지 방법 설정 레지스터(INT4~7) 2비트당 하나의 핀 설정

외부 인터럽트 플래그 레지스터(EIFR)

Bit	7	6	5	4	3	2	1	0	_
	INTF7	INTF6	INTF5	INTF4	INTF3	INTF2	INTF1	IINTF0	EIFR
Read/Write	R/W	•							
Initial Value	0	0	0	0	0	0	0	0	

외부 인터럽트 발생시 CPU에서 자동으로 값을 저장

외부 인터럽트 발생시 해당비트에 세트 ISR에 들어가는 순간 자동으로 0초기화

FND 내부구조

공통 anode 타입

-모든 다이오드의 한쪽 끝이 VCC로 연결

-VCC핀에 HIGH가 입력

-원하는 핀에 LOW를 입력시 LED가 ON

공통 cathode 타입

-모든 다이오드의 한쪽 끝이 Gnd로 연결

-VCC핀에 LOW가 입력

-원하는 핀에 HIGH를 입력시 LED가 ON

FND 데이터 시트

PACKAGE DIMENSION UNIT: mm(inch) * Note: Tolerance + 0.15 rm (0.006 inch)

* Actual size

	Device No.	R-105X*	G-105X*	SR-105X*	Y-105X*	UR-105X*
	Materials	GaP/GaP	GaP/GaP	GaAsP/GaP	GaAsP/GaP	GaAlAs
CHIP	color	RED	GREEN	ORANGE	YELLOW	ULTRA RED
	λP	700	568	630	589	660
PD	TOTAL	320	320	320	320	320
(mW)	SEG.	40	40	40	40	40
VF	Typ (V)	2.25	2.25	1.80	2.10	1.80
(IF: 20mA)	Max (V)	2.60	2.60	2.10	2.60	2.00
In	Max (µA)	10	10	10	10	10
IR	VR (V)	5	5	อี	5	5
Iv	Min (μcd)	700	800	4,000	1,000	10,000
(IF: 10mA)	Typ (µcd)	1,000	1,300	6,000	1,500	12,000

PD(최대소비전력) : 1세그먼트당 40mw

VF(순방향 전압): 2.25~2.6V

IF(순방향 전류): 20mA IR(역방향 전류): 10uA

트랜지스터

NPN transistor Switch Function

R1

SW1

Transistor

LOAD

스위치역할, 증폭역할 두가지 기능

회로도

구동영상

SW0	 누르면 1씩 증가 유지 - 99가 되었을 시 00으로 초기화 (영상에는 증가되는 것만 담고 초기화 시키는 거는 영상으로 담지 말것!! 소스 상으로 초기화 부분 유/무 보겠음) - 증가하는 시간은 명시하지 않으나 증가하는 것이 눈에 잘 보이게끔 해주기 바람.
SW1	[SW0 상태에서] SW1을 <mark>누르는 동안</mark> 1씩 감소 유지 [SW0 상태에서] SW1을 <mark>누르는 것을 떼었을 시</mark> 다시 1씩 증가 유지
SW2	SW3을 눌러서 00으로 리셋을 시킨 후 눌렀다 뗼 때마다 FND 5씩 증가 - 95 -> 100으로 넘어갈 시 00으로 초기화 - 눌를 때마다 정확히 5씩 증가해야 하며, 한번 눌렀을 때 10, 15, 20 등등 여러 번 증가하면 안됌!!
SW3	0으로 reset

