

CHEMISTRY

53rd and 54th Class, 22-11-2021

Dr. K. Ananthanarayanan
Associate Professor (Research)
Department of Chemistry
Room No 319, 3rd Floor, Raman Research Park

Email: ananthak@srmist.edu.in

Phone: 9840154665

22-11-2021

Last class..

☐ Absolute configuration – CIP rules

Last class	SRM NITHTE OF SUINCE A TEXTOROGOUS Bloomed as in Claimerada with of Side Ass., and
☐ Organic reactions	
☐ Reactions of alkyl halides, S _N 2 reaction	
22-11-2021 3	

In this class.. Elimination reactions – E1 and E2 Predicting the reaction pathway

Secondary halide

(two R groups)

Tertiary halide

(three R groups)

Primary halide

(one R group)

Methyl halide

Mechanism of S_N1 reaction

The only reactant that is undergoing <u>change in the first (rate-determining) step is the alkyl halide</u>, so we expect such reactions would be <u>unimolecular</u> and follow a first-order rate equation. Hence the name $S_N 1$

2-11-2021

Mechanism

- ☐ The energy required to break this bond comes from random collisions with the solvent without the solvent reacting.
- ☐ The <u>activation energy for the first step is higher</u> than for the second step.
- □ Once a molecule is through the first step, it can react rapidly in the second step. We call the step which is slowest the "rate determining step." Notice that the rate determining step for this reaction doesn't involve the nucleophile.
- ☐ That means that changing the concentration of the nucleophile doesn't affect the rate.
- ☐ First order reaction, and the rate law includes only one reactant: Rate = k[RX]

Mechanism of S_N1 Reaction, rates

The rate of reaction depends on the concentrations of the alkyl halide only.

When the <u>methyl groups of 1-bromo-1,1-dimethylethane</u> are <u>replaced with hydrogens</u> the reaction rate slow down.

The reaction of an alkyl halide in which the halogen is bonded to an assymetric center leads to the formation of two stereoisomers

Alkyl halide	Relative rate
H H ^{uu} H	≈ 0 *
H ₃ C H H	≈ 0 *
H ₃ C Br	12
H ₃ C H ₃ C Br	1 200 000

22-11-2021

Stability of Carbocation

$${\rm CH_3X} \ < {\rm CH_3CH_2X} \, (1^{\rm o}) \le \, ({\rm CH_3)_2CHX} \, (2^{\rm o}) < \, ({\rm CH_3)_3CX} \, (3^{\rm o})$$

Order of Reactivity of alkyl halide towards $S_{\rm N}1$

- □ Since the rate of reaction depends on the ionization of C-X (carbon halogen) bond in alkyl halide to form carbocation.
- ☐ More <u>stable the carbocation formed, faster is the reaction</u>.

22-11-2021

14

Effect of solvent

- □ Polar protic solvents <u>speed up the rate</u> of the unimolecular substitution reaction because the <u>large dipole moment of the solvent helps to stabilize the transition state.</u>
- ☐ The highly positive and highly negative parts interact with the substrate to **lower the energy of the transition state**.
- ☐ Since the <u>carbocation is unstable</u>, anything that can stabilize this even a little will speed up the reaction.
- ☐ Examples of **polar protic solvents** are: acetic acid, isopropanol, ethanol, methanol, formic acid, water, etc.

◯SRM Effect of leaving group \square S_N1 reaction speeds up with a good • TsO Excellent leaving group. This is because the • NHa leaving group is involved in the rate-determining step. • H₂O ☐ A good leaving group wants to • Br leave so it breaks the C-Leaving group bond faster. • Cl-☐ Once the **bond breaks**, the carbocation is formed and the • Ffaster the carbocation is formed, the faster the nucleophile can

Factors affecting S_N1 reaction

• 0H

• NH2"

22-11-2021

come in and the faster the

reaction will be completed.

Two factors affect the rate of a S_N1 reaction:

- The ease with which the <u>leaving group dissociate</u> from the carbon
- The stability of the carbocation

The <u>more substituted the carbocation</u> is the <u>more stable</u> it is and therefore the easier it is to form.

The <u>reactivity of the nucleophile has no effect on the rate</u> <u>of a S_N1 reaction</u>

The <u>weaker base is the leaving group</u>, the less tightly it is bonded to the carbon and the easier it is to break the bond.

Substitution Reaction with Halides

methylbromide

If concentration of (1) is doubled, the rate of the reaction is doubled.

If concentration of (2) is doubled, the rate of the reaction is doubled.

If concentration of (1) and (2) is doubled, the rate of the reaction quadruples.

methanol

22-11-2021

Substitution Reaction with Halides

bromomethane

Rate law:

rate = k [bromoethane][OH-]

this reaction is an example of a S_N2 reaction.

S stands for substitution

N stands for nucleophilic

2 stands for bimolecular

1-2021

Mechanism

- Energy required to reach the transition state comes from the energy with which the nucleophile and the alkyl halide collide.
- The requirement for a collision also means that the frequency with which the nucleophile and the alkyl halide collide is important. This frequency is primarily controlled by concentration.
- Overall, the <u>rate depends on the concentration of both</u> <u>reactants</u>, and the reaction is said to be second order. This can be summarized in the rate equation or rate law.

Rate = $k[RX][Nu^{-}]$

Mechanism of S_N2 Reaction

Hughes and Ingold proposed the following mechanism:

$$HO^- + H_3C$$
 $HO^- + C^-Br$
 $HO^- + H^-C^-Br$
 $HO^- + Br^-$

Transition state

Increasing the concentration of either of the reactant makes their collision more probable.

22-11-2021

Mechanism of S_N 2 Reaction

A consequence of the concerted, bimolecular nature of the S_N2 reaction is that the <u>nucleophile must attack from the side of the molecule opposite to the leaving group</u>. This geometry of reaction is called back side attack.

-11-2021 2

Mechanism of S_N2 Reaction

- Breaking of the C-X bond and the formation of the new bond (often denoted C-Y or C-Nu) occur simultaneously
- ☐ Transition state in which a carbon under nucleophilic attack is pentacoordinate, and approximately.sp2 hybridised
- ☐ The nucleophile <u>attacks the carbon at 180°</u> to the leaving group, since this provides the <u>best overlap between the nucleophile's lone pair and the C–X σ* antibonding orbital</u>
- ☐ The leaving group is then pushed off the opposite side and the product is formed with inversion of the tetrahedral geometry at the central atom

-11-2021

Mechanism of S_N2 Reaction

$$\begin{bmatrix} R_1 \\ X \\ R_3 \end{bmatrix} = \begin{bmatrix} R_1 \\ X \\ R_3 \end{bmatrix} \times \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} \times \begin{bmatrix} R_1 \\ R_3 \end{bmatrix} \times \begin{bmatrix} R_$$

- ☐ The result of this backside attack is that the <u>stereochemical</u> <u>configuration at the central carbon inverts</u> as the reaction proceeds. In a sense, the molecule is turned inside out.
- ☐ At the transition state, the electrophilic carbon and the three 'R' substituents all lie on the same plane.

Mechanism of S_N2 Reaction

nucleophilic attack is blocked from the front side . . .

. . .so attack occurs from the back side

- ☐ The nucleophile, being an electron-rich species, must attack the electrophilic carbon from the back side relative to the location of the leaving group.
- □ Approach from the front side simply doesn't work: the leaving group which is also an <u>electron-rich group blocks the way</u>.

2-11-2021

27

Mechanism of S_N2 Reaction

$$HO^-$$
 + CH_3 $C-Br$ $HO-CM_3$ CH_3 CH_2CH_3

(R)-2-bromobutane

(S)-2-butanol

Inversion of configuration

Substrate under nucleophilic attack is chiral, then this often leads to inversion of configuration (stereochemistry), called a <u>Walden inversion</u>

22-11-2021

20

Mechanism

 \square Predict the structure of the product in this $S_N 2$ reaction. Be sure to specify stereochemistry.

The leaving group (I) was <u>pointing out of the plane</u> of the page, while the nucleophile (CH_3S^-) <u>attacks from behind</u>, and ends up <u>pointing into the plane of the page</u>.

22-11-2021

Mechanism of S_N2 Reaction, rates

The rate of reaction depends on the concentrations of both reactants.

When the hydrogens of bromomethane are replaced with methyl groups the reaction rate slow down.

The reaction of an alkyl halide in which the halogen is bonded to an asymmetric centre leads to the formation of only one stereoisomer

Alkyl halide	Relative rate
H H Br	1200
H ₃ C H ^m Br	40
H ₃ C Br	1
H ₃ C H ₃ C Br	≈ 0

Factors affecting S_N2 reactions

The leaving group

relative rates of reaction $HO^{-} + RCH_{2}I \longrightarrow RCH_{2}OH + I^{-}$ 30 000 $HO^- + RCH_2Br \longrightarrow RCH_2OH + Br^-$ 10 000 HO + RCH₂Cl → RCH₂OH + Cl 200 $HO^{-} + RCH_{2}F \longrightarrow RCH_{2}OH + F^{-}$ 1

The nucleophile

In general, for halogen substitution the stronger the base the better the nucleophile.

22-11-2021

Factors Affecting S_N2 Reactions, Solvent SRM

The use of **protic solvents** (those, such as water or alcohols, with hydrogen-bond donating capability) decreases the power of the nucleophile, because of strong hydrogen-bond interactions between solvent protons and the reactive lone pairs on the nucleophile.

No reaction – Why?

□ Nucleophilic substitutions as a rule occur at sp³-hybridized carbons, and not where the leaving group is attached to an sp²-hybridized carbon::

22-11-2021

- Bonds on sp²-hybridized carbons are inherently shorter and stronger than bonds on sp³-hybridized carbons, meaning that it is <u>harder to break the C-X bond in these substrates</u>.
- \Box In addition, <u>sp² carbons are more electronegative</u>, and <u>therefore less electrophilic (δ+) than sp³ carbons</u>.
- □ S_N2 reactions of this type are unlikely also because the (hypothetical) <u>electrophilic carbon is protected</u> from nucleophilic attack by <u>electron density in the pi bond</u>.
- □ S_N1 reactions are highly unlikely, because the resulting carbocation intermediate, which would be <u>sp-hybridized</u>, <u>would be very unstable</u>.

22-11-2021

40

Summary, Comparison $S_N 1 \& S_N 2$

S _N 1	S _N 2	
A two-step mechanism	A one-step mechanism	
A unimolecular rate- determining step	A bimolecular rate- determining step	
Products have both retained and inverted configuration relative to the reactant	Product has inverted configuration relative to the reactant	
Reactivity order: 3° > 2° > 1° > methyl	Reactivity order: methyl > 1° > 2° > 3°	

22-11-2021

Elimination Reaction

- \Box Elimination reactions involve the <u>loss of elements</u> from the starting material to form a <u>new π bond</u> in the product
- ☐ Removal of the elements **HX** is called dehydrohalogenation
- \Box **Dehydrohalogenation** is an example of β elimination
- ☐ Generalized mechanism is shown

Mechanisms of Elimination

- \Box There are two mechanisms of elimination—E2 and E1, just as there are two mechanisms of substitution, S_N2 and S_N1
- ☐ E2 mechanism—bimolecular elimination
- ☐ E1 mechanism—unimolecular elimination
- The E2 and E1 mechanisms <u>differ in the timing of bond</u> <u>cleavage and bond formation</u>, analogous to the S_N2 and S_N1 mechanisms
- \square E2 and S_N2 reactions have some features in common, as do E1 and S_N1 reactions

22-11-2021

E2 reaction, mechanism

- The base "OH removes a proton from the β carbon, forming H₂O (a by-product).
- The electron pair in the β C-H bond forms the new π bond.
- The leaving group Br comes off with the electron pair in the C-Br bond.

E2 reaction, mechanism

- ☐ The most common mechanism for dehydrohalogenation is the E2 mechanism
- ☐ It exhibits **second-order kinetics**, and both the alkyl halide and the base appear in the rate equation, i.e.,

rate =
$$k[(CH_3)_3CBr][-OH]$$

☐ The reaction is **concerted**—all bonds are broken and formed in a single step

22-11-2021 4

E2 reaction, rate dependence on base
☐ There are <u>close parallels between E2 and S_N2</u> mechanisms in how the identity of the base, the leaving group and the solvent affect the rate
☐ The base appears in the rate equation, so the rate of the E2 reaction increases as the strength of the base increases
□ E2 reactions are generally run with strong, negatively charged bases like OH and OR.
22-11-2021 49

E2 reaction, order of reactivity

• The $S_N 2$ and E2 mechanisms differ in how the R group affects the reaction rate

As the number of R groups on the carbon with the leaving group increases, the rate
of the E2 reaction increases.

22-11-2021

E2 reaction, order of reactivity

- ☐ The increase in E2 reaction rate with increasing alkyl substitution can be rationalized in terms of <u>transition state stability</u>.
- \square In the transition state, the double bond is partially formed. Thus, increasing the stability of the double bond with alkyl substituents stabilizes the transition state (i.e., lowers E_a , which increases the rate of the reaction.

Transition state for an E2 reaction with an alkoxide OR as base

The double bond is partially formed.

22 11 2021

E2 reaction, order of reactivity

- ☐ Increasing the number of R groups on the carbon with the leaving group forms more highly substituted, more stable alkenes in E2 reactions.
- ☐ In the reactions below, since the disubstituted alkene is more stable, the 3° alkyl halide reacts faster than the 1° alkyl halide.

22-11-2021

Alkene stability

- Saytzeff's Rule: The more highly substituted an alkene is, the more stable it is. In other words, alkyl groups attached to the double bonded carbons stabilize the alkene.
- □ The two probable factors responsible for the stabilizing effect of alkyl groups to the double bond are the contribution of electron density to the pi bond by the alkyl groups, and the increased separation of bulky groups from one another (120° bond angle) in alkenes.
- ☐ In general, <u>trans isomers are more stable than cis</u> isomers because of decreased steric interactions.

The Zaitsev (Saytzeff) Rule

- \square Recall that when alkyl halides have two or more different β carbons, more than one alkene product is formed
- ☐ When this happens, one of the products usually predominates
- ☐ The major product is the more stable product—the one with the more substituted double bond
- ☐ This phenomenon is called the Zaitsev rule

$$\begin{array}{c} \beta_1 \\ CH_3 \\ T-iodo-1-methylcyclohexane \\ This starting material has two different \\ \beta \ carbons, \ labeled \ \beta_1 \ and \ \beta_2. \end{array} + \begin{array}{c} CH_2 \\ A \\ major \ product \\ trisubstituted \ alkene \end{array}$$

22-11-2021

- $\hfill\Box$ The Zaitsev rule: the major product in β elimination has the more substituted double bond
- ☐ A reaction is <u>regioselective</u> when it yields <u>predominantly or</u> <u>exclusively one constitutional isomer</u> when more than one is possible. Thus, the E2 reaction is regioselective

- ☐ When a mixture of stereoisomers is possible from a dehydrohalogenation, the major product is the more stable stereoisomer
- ☐ A reaction is <u>stereoselective</u> when it forms <u>predominantly or</u> <u>exclusively one stereoisomer</u> when two or more are possible.
- ☐ The E2 reaction is stereoselective because one stereoisomer is formed preferentially

22-11-2021

Characteristics of E2 Elimination

Kinetics • Second order

Mechanism • One step

Identity of R
 More substituted halides react fastest

Rate: R₃CX > R₂CHX > RCH₂X

Base • Favored by strong bases

Leaving group

■ Better leaving group

¬→ faster reaction

Solvent • Favored by polar aprotic solvents

22-11-2021 58

Mechanisms of Elimination—E1

Step [1] The C-I bond is broken.

Step [2] A C-H bond is cleaved and the π bond is formed.

- Heterolysis of the C-I bond forms an intermediate carbocation. This is the same first step as the S_N1 mechanism. It is responsible for the first-order kinetics because it is rate-determining.
- A base (such as H_2O or Γ) removes a proton from a carbon adjacent to the carbocation (a β carbon). The electron pair in the C-H bond is used to form the new π bond.

22-11-2021

Mechanisms of Elimination—E1

- \square The dehydrohalogenation of (CH₃)₃CI with H₂O to form (CH₃)₂C=CH₂ can be used to illustrate the second general mechanism of elimination, the E1 mechanism.
- ☐ An E1 reaction exhibits first-order kinetics:

rate =
$$k[(CH_3)_3CI]$$

□ The E1 reaction proceeds via a two-step mechanism: the bond to the leaving group breaks first before the π bond is formed. The slow step is <u>unimolecular</u>, involving only the alkyl halide.

- ☐ E1 reactions are regioselective, favoring formation of the more substituted, more stable alkene.
- ☐ Zaitsev's rule applies to E1 reactions also.

22-11-2021

Characteristics of E1 Elimination

KineticsFirst orderMechanismTwo steps

Identity of R

• More substituted halides react fastest

Rate: R₃CX > R₂CHX > RCH₂X

Favored by weaker bases such as H₂O and ROH

• A better leaving group makes the reaction faster because the bond to the leaving group is partially broken in the rate-determining step.

• Polar protic solvents that solvate the ionic intermediates are needed.

22-11-2021 64

Mechanisms of Elimination—E1

- ☐ The E1 and E2 mechanisms both <u>involve the same</u> number of bonds broken and formed.
- □ The only difference is timing. In an E1, the leaving group comes off before the β proton is removed, and the reaction occurs in two steps.
- \Box In an E2 reaction, <u>the leaving group comes off as the β</u> proton is removed, and the reaction occurs in one step.

22-11-2021 6

When is the Mechanism E1 or E2?

 The <u>strength of the base</u> is the most important factor in determining the mechanism for elimination. Strong bases favor the E2 mechanism. Weak bases favor the E1 mechanism.

Convright @ The McGraw	-Hill Companies In	nc. Permission required	for reproduction or display.

E2 mechanism	Much more common and useful.
	Favored by strong, negatively charged bases, especially "OH and "OR. The second strong and the second strong strong and the second strong stron
	 The reaction occurs with 1°, 2°, and 3° alkyl halides. Order of reactivity R₃CX > R₂CHX > RCH₂X.
E1 mechanism	\bullet Much less useful because a mixture of $S_{\text{N}}1$ and E1 products usually results.
	 Favored by weaker, neutral bases, such as H₂O and ROH.
	 This mechanism does not occur with 1° RX because they form highly unstable 1° carbocations.

2-11-2021

S_N1 and E1 Reactions

 S_N1 and E1 reactions have exactly the same first step—formation of a carbocation. They differ in what happens to the carbocation.

- In an $S_N 1$ reaction, a nucleophile attacks the carbocation, forming a substitution product.
- In an E1 reaction, a base removes a proton, forming a new π bond.
- Because E1 reactions often occur with a competing $S_{\rm N}1$ reaction, E1 reactions of alkyl halides are much less useful than E2 reactions.

Predicting the Mechanism from the Reactants— S_N1 , S_N2 , E1 or E2.

• <u>Good nucleophiles that are weak bases favor substitution over elimination</u>—Certain anions generally give products of substitution because they are good nucleophiles but weak bases. These include I⁻, Br⁻, HS⁻, -CN, and CH₃COO⁻.

22-11-2021

SRM

ISSUITATION SQUARE A TELENOLOGY

Gineral in the University with 1 of 10% Co. 1 Phil

• Bulky nonnucleophilic bases favor elimination over substitution—KOC(CH₃)₃, is too sterically hindered to attack tetravalent carbon, but are able to remove a small proton, favoring elimination over substitution.

General rules

- \square For <u>Primary Carbons</u>, rule Out The <u>S_N1 and E1</u>. For <u>Tertiary Carbons</u>, rule out The <u>S_N2</u>
- ☐ If you see a <u>charged nucleophile/base</u>, you can <u>rule out carbocation</u> <u>formation (i.e. rule out $S_N1/E1$)</u>. In other words, the reaction will be $S_N2/E2$.
- ☐ If you don't see a charged species present, you're likely looking at a reaction that will go through a carbocation (i.e. an S_N 1 or E1).
- \square Polar protic solvents tend to favor elimination (E2) over substitution (SN2). Polar aprotic solvents tend to favor substitution (S_N2) relative to elimination (E2)
- \square When <u>carbocations</u> are formed, at <u>low temperatures, the S_N1 pathway</u> will dominate over the E1 pathway. At <u>higher temperatures</u>, <u>more E1</u> products will be formed.

22-11-2021

Examples

Which will undergo faster reaction? Br NaCN DMSO Br NaCN CN CH₃OH S_N2 reactions are faster in polar aprotic solvents like DMSO

Examples

For the above dibromo alkane determine which position will react faster (be more reactive) under $S_N 1$ and $S_N 2$ conditions. Explain your answer.

 $\frac{3^{\circ} \ fastest \ under \ S_{\underline{N}} 1 \ because \ carbocation}{1^{\circ} \ fastest \ under \ S_{\underline{N}} 2 \ because \ unhindered}$

22/11/2021 70

Thank you all for your attention

Information presented here were collected from various sources – textbooks, articles, manuscripts, internet and newsletters. All the researchers and authors of the above mentioned sources are greatly acknowledged.

2264-2021J-Chemistry

Page 78