LABORATORIO

OP-AMP AMPLIFICATION INVERSOR

OBJETIVOS:

Estudio de circuitos con amplificadores operacionales (Op-Amp). Específicamente, la configuración del amplificador inversor.

En este laboratorio el estudiante desarrollará las siguientes destrezas:

- Análisis y diseño del circuito de un amplificador inversor.
- Selección de los resistores apropiados para satisfacer la ganancia de voltaje esperada.
- Simulación de circuitos y su comparación con los resultados calculados.
- Implementación experimental del circuito del amplificador y comparación de su desempeño con los resultados teóricos y simulados.

MATERIALES:

- 1 Op-Amp 741 y su hoja de especificaciones (data-sheet)
- 1 placa de pruebas (Protoboard or Breadboard)
- Resistores
- Multímetro
- Alambres para conexiones
- 1 generador de funciones (function generator)
- 1 osciloscopio (oscilloscope)
- 3 fuentes de voltaje DC (también puede usar fuentes duales)

PARTE I: DISEÑO Y ANÁLISIS

Diseñe dos versiones del circuito mostrado en la figura L.1.1: uno que provea una ganancia de voltaje $A_{\rm v}=-10\,$ y otro que provea $A_{\rm v}=-50\,$. Asuma una pequeña señal de entrada $v_{\rm in}=200\,{\rm mV_{pk-pk}}$, cuya máxima corriente está limitada a $50\,\mu{\rm A}$. Los valores de las fuentes de polarización DC $\,{\rm V}^+\,$ y $\,{\rm V}^-\,$ son $\,+15\,{\rm V}\,$ y $\,-15\,{\rm V}$, respectivamente.

Figura L1.1: Circuito de un amplificador inversor con un Op-Amp 741

1.1	1 Deduzca la ecuación de ganancia de voltaje para un amplificador inversor (muestre los cálculos en el informe).					
	$A_{v} = $	·				
1.2	Calcule simbó	licamente la resiste	encia de entrada de	el circuito $R_{{\scriptscriptstyle \mathrm{in}}}.$		
	$R_{in} = \underline{\hspace{1cm}}$					
1.3	¿Qué valores	de R ₁ (rango) deb	en usarse para sat	isfacer el límite de corriente	de 50 μA?	
	$R_1 \ge \underline{\hspace{1cm}}$					
1.4	Escoja R ₁ y de	etermine los valore	es de R ₂ para logra	ar las dos ganancias de volta	aje requeridas.	
				$R_2 = \underline{\hspace{1cm}}$		
	$A_v = -50$	$R_1 = $		$R_2 = \underline{\hspace{1cm}}$	_	
1.5	Vuelva a dibuj	ar el circuito e incl	uya los valores cald	culados (para ambos casos).		
PARTE :	2· MONTA.IF DE	EL CIRCUITO Y MEI	DICIONES			
				R_2 hasta tres cifras significat	tivas	
		-		-		
2.2					_	
 2.2 Arme el circuito con A_v = -10 sobre el protoboard. 2.3 Conecte la entrada del circuito a tierra (no a v_{in}). Con el multímetro digital mida los voltajes en la la salida y las terminales 2 y 3. 						
	V ₂ =	,	V ₃ =	$V_6 =$		
2.4	Conecte la entrada del circuito al generador de funciones para crear la pequeña señal de voltaje senoidal $v_{\rm in}$ con frecuencia de $1{\rm kHz}$ y amplitud de $200{\rm mV_{pk-pk}}$. Con el osciloscopio observe y capture la señal de voltaje de salida v_o .					
2.5	•	ancia de voltaje co el experimental.	on las mediciones. I	Explique cualquier discrepar	icia entre el	
	$A_{\nu(medido)} = \underline{\hspace{1cm}}$					
2.6	salida correspo	ondiente a los ranç	gos de voltaje de er	te DC. Anote cada valor de valor de valor de valor de V $_{ m IN}=-1V ightarrow -0.2V$ ga una gráfica de $V_{ m IN}$ vs. $V_{ m c}$	у	
2.7			obre el protoboard.			

2.8	Conecte la entrada del circuito al generador de funciones para crear la pequeña señal de
	voltaje senoidal $v_{\rm in}$ con frecuencia de $1kHz$ y amplitud de $200mV_{pk-pk}$. Con el osciloscopio
	observe y capture la señal de voltaje de salida v_o .

2.9	Calcule la ganancia d	le voltaje con	las mediciones.	Explique	cualquier	discrepancia	entre el
	valor teórico y el expe	erimental.					

A		
$A_{v(medido)} =$		

- 2.10Reemplace el generador de funciones por una fuente DC. Anote cada valor de voltaje de salida correspondiente a los rangos de voltaje de entrada $V_{\rm IN} = \left(-0.240\,\mathrm{V} \to -0.180\,\mathrm{V}\right)$ y $V_{\rm IN} = \left(+0.180\,\mathrm{V} \to +0.240\,\mathrm{V}\right)$ en incrementos de $0.01\,\mathrm{V}$. Haga una gráfica de $V_{\rm IN}$ vs. $V_{\rm o}$.
- 2.11Presente un análisis de las dos gráficas $V_{\rm IN}$ vs. $V_{\rm o}$ obtenidas en los pasos 2.6 y 2.10.
- 2.12Recalcule las ganancias teóricas de ambos circuitos utilizando los valores medidos de las resistencias. ¿Se aproximan más estos nuevos valores a las ganancias experimentales?

 \ .º	IDEAL	EXPERIMENTAL	RECALCULADO
1	$A_{v} = -10$	$A_{\nu(medido)} = $	$A_{\nu(recalculado)} = $
2	$A_{v} = -50$	$A_{\nu \text{(medido)}} = \underline{\hspace{1cm}}$	$A_{\nu(recalculado)} = $

PARTE 3: SATURACIÓN Y ANCHO DE BANDA

3.1	Para cualquiera de los dos circuitos inversores, incremente gradualmente la amplitud de v_{ii}
	hasta que la señal voltaje de salida se distorsione. Anote la amplitud a la que esto ocurre.
	Explique cómo se llama este fenómeno y por qué ocurre.

CIRCUITO UTILIZADO	N.º 1	N.º 2
$v_{in(pk)} = $		

3.2 Utilizando cualquiera de los dos circuitos inversores, incremente gradualmente la frecuencia de ν_{in} hasta que la amplitud del voltaje de salida sea aproximadamente 70% de lo que era a $1\,\mathrm{kHz}$. Esto representa una atenuación de $3\,\mathrm{dB}$. Indique la frecuencia la frecuencia a la que esto ocurre.

CIRCUITO UTILIZADO		N.º 1	N.º 2
Fracuancia -	$\mathbf{u}_{\mathbf{z}}$		

PARTE 4: SIMULACIÓN (PARA INCLUIR EN EL INFORME)

- 4.1 Simule ambos circuitos con los valores calculados de las resistencias. Asuma de que la fuente de voltaje v_{in} tiene una resistencia en serie de $50\,\Omega$.
- 4.2 Capture el voltaje de salida y el de entrada.
- 4.3 ¿Cuál es el voltaje DC en la terminal de entrada inversora del Op-Amp?
- 4.4 Calcule las ganancias simuladas. ¿Cómo se comparan a las teóricas y a las experimentales?