Homework 1

谢铮 15338200

Mar 1, 2019

1-2 Ex.2

Let $\alpha(t)$ be a parametrized curve which does not pass through the origin. If $\alpha(t_0)$ is a point of the trace of α closest to the origin and $\alpha'(t_0) \neq 0$, show that the position vector $\alpha(t_0)$ is orthogonal to $\alpha'(t_0)$.

Solution

Let $s(t) = |\alpha(t)|$, t_0 is the minimum point of s(t) since $\alpha(t_0)$ is the closest point to the origin on the trace of α . We know that $\alpha(t) = (x(t), y(t), z(t))$ is differentiable and doesn't pass through the origin, so

$$s(t) = |\alpha(t)| = \sqrt{x^2(t) + y^2(t) + z^2(t)} > 0$$

is also differentiable. Then we have

$$\begin{split} s'(t) &= \frac{d}{dt} \sqrt{x^2(t) + y^2(t) + z^2(t)} \\ &= \frac{x(t)x'(t) + y(t)y'(t) + z(t)z'(t)}{\sqrt{x^2(t) + y^2(t) + z^2(t)}} \\ &= \frac{\alpha(t) \cdot \alpha'(t)}{s(t)} \end{split}$$

Noticed that t_0 is the minimum point of s(t), It follows

$$s'(t_0) = \frac{\alpha(t_0) \cdot \alpha'(t_0)}{s(t_0)} = 0$$

which implies $\alpha(t_0) \cdot \alpha'(t_0) = 0$, i.e. $\alpha(t_0)$ is orthogonal to $\alpha'(t_0)$.

1-2 Ex.4

Let $\alpha(t): I \to \mathbb{R}^3$ be a parametrized curve and let $v \in \mathbb{R}^3$ be a fixed vector. Assumed that $\alpha'(t)$ is orthogonal to v for all $t \in I$ and that $\alpha(0)$ is also orthogonal to v. Prove that $\alpha(t)$ is also orthogonal to v for all $t \in I$.

Solution

Suppose $I = (a, b), 0 \in (a, b)$, then $\alpha(t)$ can be written as

$$\alpha(t) = \int_{a}^{t} \alpha'(s)ds, \quad a < t < b$$

Thus we have

$$(\alpha(t) - \alpha(0)) \cdot v = \int_0^t \alpha'(s) ds \cdot v = \int_0^t \alpha'(s) \cdot v ds$$

It follows

$$\alpha(t) \cdot v = \alpha(0) \cdot v + \int_0^t \alpha'(s) \cdot v ds = 0 + \int_0^t 0 ds = 0 \quad \Box$$

1-3 Ex.4

Let $\alpha:(0,\pi)\to\mathbb{R}^2$ be given by

$$\alpha(t) = (\sin t, \cos t + \log \tan \frac{t}{2})$$

where t is the angle that the y axis makes with the vector $\alpha'(t)$. The trace of α is called the tractrix. Show that

a. α is a differentiable parametrized curve, regular except at $t = \frac{\pi}{2}$.

b. The length of the segment of the tangent of the tractrix between the point of tangency and the y axis is constantly equal to 1.

Solution.

a. Since $x(t) = \sin t$ and $y(t) = \cos t + \log \tan \frac{t}{2}$ are both differentiable in $(0, \pi)$, $\alpha(t)$ is a differentiable map from $(0, \pi)$ to \mathbb{R}^2 , so α is a differentiable parametrized curve. Note that

$$\alpha'(t) = (\cos t, -\sin t + \frac{1}{\sin t})$$

Let $|\alpha'(t_0)| = 0$, it follows $\cos t_0 = 0$, $\sin t_0 = \frac{1}{\sin t_0}$ and we have $t_0 = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$. So $t_0 = \frac{\pi}{2}$ is the only solution in $(0, \pi)$. Therefore, α is regular in $(0, \pi)$ except at $t = \frac{\pi}{2}$.

b. Let (x(t), y(t)) denote the point of tangency. Since we know that t is the angle that the y axis makes with the vector $\alpha'(t)$, the segment length can be calculated by

$$l(t) = \frac{x(t)}{\sin t} = \frac{\sin t}{\sin t} = 1$$

1-3 Ex.10

(Straight Lines as Shortest) Let $\alpha: I \to \mathbb{R}^3$ be a parametrized curve. Let $[a,b] \subset I$ and set $\alpha(a) = p$, $\alpha(b) = q$. **a.** Show that, for any constant vector \mathbf{v} , $|\mathbf{v}| = 1$,

$$(q-p) \cdot v = \int_a^b \alpha'(t) \cdot v dt \le \int_a^b |\alpha'(t)| dt$$

b. Set

$$v = \frac{q - p}{|q - p|}$$

and show that

$$|\alpha(b) - \alpha(a)| \le \int_a^b |\alpha'(t)| dt$$

That is, the curve of shortest length from $\alpha(a)$ to $\alpha(b)$ is the straight line joining these points.

Solution.

a. Since α is differentiable,

$$q - p = \alpha(b) - \alpha(a) = \int_{a}^{b} \alpha'(t)dt$$

Thus.

$$(q-p)\cdot v = \int_a^b \alpha'(t)dt \cdot v = \int_a^b \alpha'(t) \cdot vdt$$

For each $t \in (a, b)$, $\alpha'(t) \cdot v \leq |\alpha'(t)||v| = |\alpha'(t)|$, so

$$\int_{a}^{b} \alpha'(t) \cdot v dt \le \int_{a}^{b} |\alpha'(t)| dt \quad \Box$$

b. According to the conclusion above, take $v = \frac{q-p}{|q-p|}$ and it follows immediately that

$$|\alpha(b) - \alpha(a)| = |q - p| = (q - p) \cdot v \le \int_a^b |\alpha'(t)| dt \quad \Box$$