Proposition de corrigée de l'épreuve de chimie

Filière : MP

Partie I : Atomistique (5pts/40) :

I-1)	détails	total
22Ti: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ² 22Ti ²⁺ : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ⁰ 3d ²	l pt	7
$_{22}\text{Ti}^{2+}: 1\text{s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2 3\text{p}^6 4\text{s}^0 3\text{d}^2$	l pt	2 pts
I-2)		
Le titane appartient à :		
La 4ème ligne car le nombre quantique principal le plus grand est n=4.	1 pt	2 pts
La 4 ^{ème} colonne car le nombre d'électrons de valences est 4.	l pt	
I-3)		
Le titane est un élément de transition car l'orbital « d » n'est pas saturé.	1 pt	1 pt

Partie II: Cristallegraphie (12pts/40)

П-1)			détails	total
↑ h	Ou bien	(2/3,1/3,1/2) b	1 pt	l pt
II-2) Les plans compacts sont perpen	diculaires à l'a	axe C ou bien l'axe (Oz).	0.5 pt	0,5 pt
+1/2 +1/2 +1/2 +1/2 +1/2 projection sur le plan (002)	Ou bien	±1/2 ±1/2 ±1/2 ±1/2	1,5 pt	1,5 pt
II-4) Dans une maille h.c., les atomes sont	tangenta miss	ent Porêto « a » .		
$a_{\alpha} = 2 \times r_{\alpha} \Rightarrow r_{\alpha} = \frac{a_{\alpha}}{2}$	tangents surv	ant I arcie « a » .	0,5 pt	
Application numérique : $r_{\alpha} = \frac{2,95}{2} = 1,48 \text{ Å}$			0,5 pt	1 pt

II-5)	· 40 - 30	9' a 187 3 94 w a - 1975 a - 1	détails	total
Par définition, la masse volumique s'écri			25	
$\rho_{na} = \frac{n_{atom}(Ti) \times M_{Ti}}{n_{atom}}$		0,5 pt		
$\rho_{Ti^a} = \frac{n_{atom}(Ti) \times M_{Ti}}{N_A \times V_{maille}}$		1		
$V_{maille} = 3 \times \alpha_{\alpha}^{2} \times c \times \sin\left(\frac{2\pi}{3}\right)$ $V_{maille} = 3 \times \alpha_{\alpha}^{2} \times c_{\alpha} \times \frac{\sqrt{3}}{2}$	Ou bien	$V_{maille} = a_{\alpha}^{2} \times c \times \sin\left(\frac{2\pi}{3}\right)$ $V_{maille} = a_{\alpha}^{2} \times c_{\alpha} \times \frac{\sqrt{3}}{2}$	0,5 pt	
$V_{maille} = 3 \times u_{\alpha} \times c_{\alpha} \times \frac{1}{2}$		$V_{maille} = u_{\alpha} \times c_{\alpha} \times \frac{1}{2}$		
$c_{\alpha} = \frac{n_{atom}(Ti) \times M_{Ti}}{N_{A} \times 3 \times a_{\alpha}^{2} \times \rho_{Ti^{\alpha}} \times \frac{\sqrt{3}}{2}}$		$c_{\alpha} = \frac{n_{atom}(Ti) \times M_{Ti}}{N_{A} \times a_{\alpha}^{2} \times \rho_{Ti}^{\alpha} \times \frac{\sqrt{3}}{2}}$	0,5 pt	2 pts
$n_{atom}(Ti) = 12 \times \frac{1}{6} + 2 \times \frac{1}{2} + 3 = 6$	Ou bien	$n_{atom}(Ti) = 8 \times \frac{1}{8} + 1 = 2$		
Application numérique :	00	Application numérique :		
$c_{\alpha} = \frac{6 \times 47,90}{6,023 \times 10^{23} \times 3 \times \left(2,95 \times 10^{-8}\right)^{2} \times 4,5 \times \frac{\sqrt{3}}{2}}$		$c_{\alpha} = \frac{2 \times 47,90}{6,023 \times 10^{23} \times \left(2,95 \times 10^{-8}\right)^{2} \times 4,5 \times \frac{\sqrt{3}}{2}}$	0,5 pt	
$c_a = 4,69 \times 10^{-8} cm$		$c_{\alpha} = 4,69 \times 10^{-8} cm$		
II-6)			T	
Un atome sur chaque sommet et centre d'	un cub	e.	0,5 pt	0,5 p
I-7-a)		ĽO	T DC .	0.5
Chaque atome est entouré de huit voisins	: coord	imence-8.	0,5 pt	0,5 pt
II-7-b)	· (TE)	1/6 /		
Sur chaque face on peut compter quatre sites (T) déformés. nombre de site(T) = $6 \times \frac{1}{2} \times 4 = 12$ sites (T)			l pt	1 pt
II-8)			-	
0;1 0-0-1/2 0;1 1/4;3/4 0 0;1 0;1 0-0-1/2	○ 0;1 1/2 ○ 0;1 :1 ○ 0;1 :1 ○ 0	0;1 0 1/2 0 1/4;3/4 0 1/2 0;1	1,5 pt	1,5 pt
I-9)				
Dans une maille cubique centrée les atomo $a_{\beta} \times \sqrt{3} = 4 \times r_{Ti^{\beta}} \Rightarrow r_{Ti^{\beta}} = \frac{a_{\beta} \times \sqrt{3}}{4}$	es sont	tangents suivant la grande diagonale :	0,5 pt	**
application numérique :				
$r_{Ti^{B}} = \frac{3,32 \times \sqrt{3}}{4} = 1,44 \text{ Å}$		0,5 pt	1,5 pt	
$r_{ri}^{a} > r_{ri}^{b}$ On constate que le rayon atomiq e l'environnement des atomes.	ue n'es	t pas une valeur constante, il dépend	0,5 pt	

II-10)		
$\rho_{Ti^{\beta}} = \frac{n_{atom}(Ti) \times M_{Ti}}{N_A \times a_{\beta}^3}$	0,5 pt	
Application numérique :		1
$n_{alcm}(Ti) = 8 \times \frac{1}{8} + 1 = 2$	0.5 pt	1 pt
$\rho_{Ti^{\theta}} = \frac{2 \times 19,90}{6,023 \times 10^{23} \times \left(3,32 \times 10^{-8}\right)^{3}} = 4,35 \text{ g.cm}^{-3}$	υ,υ ρι	

Partie III : Diagramme unaire (14pts/40)

III-1)	détails	total
Au point triple, on écrit l'égalité des pressions de vapeur de Ti^{β} et du titane liquide $10,20 - \frac{24275}{T_{pt}} = 9,12 - \frac{22110}{T_{pt}}$ $T_{pt} = \frac{\left(24275 - 22110\right)}{10,20 - 9,12} = 2005K$	0,5 pt	1 pt
$\log_{10}(P_{pt}) = 9,12 - \frac{22110}{T_{pt}} = 9,12 - \frac{22110}{2005} = -1,91$ $P_{pt} = 10^{-1.91} = 0,012 \text{ mmHg}$	0,5 pt	

III-2)	détails	total
La relation de Clapeyron appliquée à l'équilibre liquide-vapeur est :		
$\left(\frac{dP}{dP}\right) = \frac{\Delta_{vap}H}{dP}$		-
$\left(\frac{dP}{dT}\right)_{vap} = \frac{\Delta_{vap}H}{T \times \left(v^{gax} - v^{liq}\right)}$		
Hypothèses:		-
• $\Delta_{vap}H = cte$		
• $v^{gaz} >> v^{liq} \Rightarrow v^{gaz} - v^{liq} \approx v^{gaz}$		
• Gaz parfait : $v^{gaz} = \frac{R \times T}{P}$		
$\left(\frac{dP}{dT}\right)_{vap} = \frac{\Delta_{vap}H}{R \times T^2} \times P$		
$\left(\frac{dP}{P}\right) = \frac{\Delta_{vap}H}{R} \times \frac{dT}{T^2}$	l pt	
$\frac{d\left(Ln(P)\right)}{dT} = \frac{\Delta_{vap}H}{R \times T^2} \tag{*}$	·	·
Or $Ln(P) = Ln(10) \times \left(10, 20 - \frac{24275}{T}\right)$		
En dérivant par rapport à T, on obtient : $\frac{d(Ln(P))}{dT} = Ln(10) \times \left(\frac{24275}{T^2}\right) $ (**)	•	
Par identification des deux relations (*) et (**):		
$\frac{\Delta_{vap}H}{R} = Ln(10) \times 24275$		4 pts
$\Delta_{vap}H = Ln(10) \times 24275 \times R$		
Application numérique : $\Delta_{vap}H = Ln(10) \times 24275 \times 8,314 = 464713,14 \text{ J.mol}^{-1}$	0,5 pt	
De même pour la sublimation :		
$\frac{d(Ln(P))}{dT} = \frac{\Delta_{sub}H}{R \times T^2} \tag{***}$		
Or		
$Ln(P) = Ln(10) \times \left(9, 21 - \frac{22110}{T}\right)$	<i>:</i>	
En dérivant par rapport à T, on obtient :	l pt	
$\frac{d\left(Ln(P)\right)}{dT} = Ln(10) \times \left(\frac{22110}{T^2}\right) \tag{****}$		
Par identification des deux relations (***) et (****):		-
$\frac{\Delta_{sub}H}{R} = Ln(10) \times 22110$		
$\Delta_{sub}H = Ln(10) \times 22110 \times R$		
Application numérique :	ης _~ +	e i experimente e
$\Delta_{sub}H = Ln(10) \times 22110 \times 8,314 = 423267,04 \text{ J.mol}^{-1}$	0.5 pt	
A la température du point triple : $\Delta_{flus}H = \Delta_{sub}H - \Delta_{wap}H$	0,5 pt	
Application numérique :	0,5 pt	
$\Delta_{fus}H = 464713, 14 - 423267, 04 = 41446, 10 \text{ J.mol}^{-1}$	-/- F,	

·	Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs Session : Juin 2005	9	
III-3)		détails	total
La température	d'ébullition standard est obtenue pour P=760 mmHg.		
$\log_{10}(760) = 9$	$12 - \frac{22110}{T_{vap}^0}$ $\frac{2110}{50) - 9,12} = 3544K$		
	T_{vap}^0	ipt	1 pt
-22	2110		
$I_{vap} = \frac{1}{(\log_{10}(76))}$	$\frac{1}{60-9.12} = 3544K$		
III-4)	(3) 2,12)		
111-4)			
1000	1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600		
2,88		- 1	
[·· ·			
2,00	liquide		
1,00	Domaine (III) Courbe (c)		
0.00	Courte (b)		
0,00			
-1,00			
1:1::	Ti ^β (solide)		
-2,00			
-3,00	Domaine (II)		
(BH wm/d)01800 -5,00	vapeur	Courbe (a)	
₫ -4,00		0,5 pt	
-5,00		Courbe (b)	
018	Comaine (1)	0,5 pt	1,5 pt
-6,00	Courte (a)	Courbe (c)	
7.00		0,5 pt	
-7,00		U.D. pt	
-8,00			
	/		
-9,00		Taran Taran	
-10,00		2	
	V		
-11,00			
-12,00		- 11	
,	Température /K		
	remperature/Ax		
a courbe de fusio	on passe par le point triple et la le point donnant la température de fusion		
$tandard$ $(T^{\circ}_{fus}(Ti)$	=1670+273=1943K)		
∐-4-a)			
Courbe (a) : subl	imation	0,25 pt	
Courbe (b): fusion		0,25 pt	
Courbe (c): vaporisation		0,25 pt	
omaine (I): var		0,25 pt	1,5 pt
omaine (II): Ti	β solide	0,25 pt	
omaine (III): li	quide	0.25 pt	

III-4-b)	détails	total
D'après le diagramme la pente de la courbe de fusion est négative. $\left(\frac{dP}{dT}\right)_{\text{fits}} = \frac{\Delta_{\text{fits}}H}{T \times \left(v^{\text{liq}} - v^{\text{sd}}\right)} < 0$	0,5 pt	
Avec $\Delta_{fus}H > 0$ donc $v^{liq} - v^{sd} < 0 \Rightarrow v^{liq} < v^{sd} \Rightarrow \frac{1}{v^{liq}} > \frac{1}{v^{sd}} \Rightarrow \frac{M}{v^{liq}} > \frac{M}{v^{sd}}$ D'où $\rho^{liq} > \rho^{sd}$	0,5 pt	2 pts
Le titane liquide est plus dense que le titane β solide.	l pt	
III-5-a) D'après la règle des phases on a : $\varpi = C + 2 - \varphi - k - r$	0,25 pt	
Avec C est le nombre de constituants : 1 φ est le nombre de phases : 2 k est le nombre d'équilibres chimiques : 0 r est le nombre de relations imposées par l'expérimentateur : 0 $\varpi = 1 + 2 - 2 - 0 - 0 = 1$	0,25 pt	1 pt
Non, on ne peut pas choisir à la fois T et P, car on a le droit de choisir une seule variable intensive.	0,5 pt	
III-5-b) Comme $\frac{\partial A}{\partial P} = -\Delta_r v$ (A : affinité chimique) et d'après la question II-4-b) on a : $\rho^{liq} > \rho^{sd} \implies v^{liq} < v^{sd} \implies v^{liq} - v^{sd} < 0 \implies \Delta_r v < 0$	l pt	2 pts
$\frac{\partial A}{\partial P} = -\Delta_{r} v > 0 \implies \text{ on favorise le passage de Ti}_{(\beta)} \ \hat{a} \ \text{Ti}_{(\text{liq})}$	1 pt	

Partic IV : Diagramme d'Ellingham (9pts/40)

IV-1)	détails	total
$Ti_{(sd)} + O_{2(g)} = TiO_{2(sd)} $ (1)		0,5 pt
IV-2)		
L'approximation d'Ellingham consiste à supposer que $\Delta_r H_1^0$ et $\Delta_r S_1^0$ sont		
indépendantes de la température en dehors des changements d'état. $\Delta_r G_1^0$ est une	l pt	1 pt
fonction affine de T.	-	
IV-3)		
$\Delta_r G_1^0 = \Delta_r H_1^0 - T \times \Delta_r S_1^0$	0.25 pt	
D'après la loi de Hess :		
$\Delta_r H_1^0 = \Delta_f H_{TiO_2(sd)}^0 - \Delta_f H_{O_2(g)}^0 - \Delta_f H_{Ti(sd)}^0$	0.00	
Application numérique :	0,25 pt	
$\Delta_r H_1^0 = -942, 5 - 0, 0 - 0, 0 = -942, 5 \text{ kJ.mol}^{-1}$		
De même, l'entropie standard de réaction est :		1 pt
$\Delta_r S_1^0 = S_{TiO_2(sd)}^0 - S_{O_2(g)}^0 - S_{Ti(sd)}^0$	D. D.C.	
Application numérique :	0.25 pt	
$\Delta_r S_1^0 = 50, 2 - 205, 0 - 30, 5 = -185, 3 \text{ J.K}^{-1} \cdot \text{mol}^{-1}$		
On a donc :	n nr .	
$\Delta_r G_1^0 = -942, 5 + 0,185 \times T$ (kJ.mol ⁻¹) (Pour T<1500 K)	0.25 pt	

Concours Nationaux d'Entrée aux Cycle	es de Formation d'Ingénieurs Session : Juin 2005
	TOTTING TO THE TOTAL TO CONTROL TO CONT

IV-4)	détails	total
La constante d'équilibre de la réaction d'équation bilan (1): $K_T^0 = \left(\frac{P^0}{P_{O_2}}\right)_{eq}$		
On a: $\Delta_r G_1^0 = -R \times T \times Ln(K_T^0)$		
On a: $\Delta_r G_1^0 = -R \times T \times Ln(K_T^0)$ D'où: $\Delta_r G_1^0 = -R \times T \times Ln\left(\frac{P^0}{P_{O_2}}\right)_{eq}$		
Considérons la droite $y = R \times T \times Ln\left(\frac{p_{o_2}}{p^0}\right)$		
L'affinité chimique du système : $A = R \times T \times Ln \left(\frac{P_{O_2}}{\left(P_{O_2}\right)_{eq}} \right)$		3 pts
• Sur la droite $y = \Delta_r G_1^0$, on a $P_{O_2} = (P_{O_2})_{eq}$ soit A=0. Le système est donc à	! pt	
l'équilibre et les trois constituants coexistent.		
• Dans le domaine $y > \Delta_r G_1^0$, on a $P_{O_2} > (P_{O_2})_{eq}$ soit $A > 0$. Le système n'est pas à		
l'équilibre et la réaction se fait dans le sens direct, c'est-à-dire, dans le sens de production de TiO _{2(sd)} jusqu'à épuisement de Ti _(sd) . Ce domaine est donc le domaine d'existence de TiO _{2(sd)} .	l pt	
• Dans le domaine $y < \Delta_r G_1^0$, on a $P_{O_2} < (P_{O_2})_{eq}$ soit A<0. Le système n'est donc pas		
à l'équilibre et la réaction se fait dans le sens inverse, c'est-à-dire, dans le sens de la production de Ti _(sd) jusqu'à épuisement de TiO _{2(sd)} . Ce domaine est le domaine d'existence de Ti _(sd) .	1 pt	
IV-5-a)		
La température T=933K est la température de fusion de l'aluminium. A cette	n c	BC
température il y a changement de pente de la courbe correspondante à $\Delta_r G_2^0$.	0,5 pt	0,5 pt

300 400 50 -600 -650 -700 -750 -750 -800 -900 -950 -1000 -1050	0 600 700 800 900 1000 1100 1200 1300 1400 1500 TiG _{2(ed)} Al ₂ O _{3(ed)} Al _{6(ed)}	Echelle et unités 0,25 pt Point A à 923K: 0,25 pt Branches des courbes 3×0,25 pt (0,75 pt) Indexation 3×0,25 pt (0,75 pt)	2 pts
-1100	Tempétarure / K		
IV-5-c)	and the description of the second sec		
signifie que TiO ₂ et Al ne pe Le domaine de l'aluminium réducteur.	étant en dessous de celui de TiO_2 , Al joue le rôle de $t: 3.TiO_2 + 2.Al \longrightarrow 3.Ti + 2.Al_2O_3$	l pt	1 pt