Robot Autonomy

Lecture 5: Planning Problems and Configuration Spaces

Oliver Kroemer

An Incomplete Taxonomy of Motion Planning

Plan Types

Discrete

- Discrete sets of states and actions
- STanford Research Institute Problem Solver

Continuous

- Piano movers' problem
- Grasp planning

Hybrid

- Attributes of both discrete and continuous planning
- Which skills to perform and how to perform them

Environment Types

Immovable

Fixed obstacles

Movable

Objects can be moved through interactions

Moving

Objects move on their own

Interaction Types

Non-contact interactions

Avoid contact with objects, obstacles, environment

Contact interactions

Grasping, climbing, pushing, hanging, etc.

State Uncertainty Types

None

S

Probabilistic

Bounded

$$s \in S$$

Unknown

$$s = ????$$

Robot Motion Types

Kinematic

Find a path

$$s = \left[\begin{array}{c} q \end{array} \right]$$

$$\tau:[0,1]\to\mathbb{S}$$

$$\tau(1) = q_g$$

$$\tau(0) = q_i$$

- Dynamic
 - Find a trajectory

$$s = \left[\begin{array}{c} q \\ \dot{q} \end{array} \right]$$

$$\tau:[0,T]\to\mathbb{S}$$
 \\Time

$$\tau(0) = \left[\begin{array}{c} q_i \\ \dot{q}_i \end{array} \right]$$

$$\tau(T) = \left[\begin{array}{c} q_g \\ \dot{q}_g \end{array} \right]$$

Constraint Types

Holonomic

Can be expressed as a function of the system's configuration

$$f(q,t) = 0$$

- Non-Holonomic
 - Cannot be defined/reduced to the above holonomic form

- Constraints on moving through the configuration space
 - Manipulating different objects

$$f(q, \dot{q}, t) = 0$$

Driving a car

Zoo of Robot

Unified Configuration Representation

- Do not want to create robot-specific algorithms
- Define a space in which all robots are defined as a point

Workspace

The workspace is defined as the world in which the robot exists and occupies space

3D workspace θ_1

3-parameter specification: (x,y,θ)

6-parameter specification: $(x,y,z,\alpha,\beta,\gamma)$

A configuration q is the sufficient and complete specification of the position of every point on the physical system

Workspace

Configuration Space (C-Space)

A configuration q is the sufficient and complete specification of the position of every point on the physical system

Workspace

Configuration Space (C-Space)

A configuration q is the sufficient and complete specification of the position of every point on the physical system

Workspace

Configuration Space (C-Space)

A configuration q is the sufficient and complete specification of the position of every point on the physical system

Workspace

Configuration Space (C-Space)

A configuration q is the sufficient and complete specification of the position of every point on the physical system

Workspace

Configuration Space (C-Space)

A configuration q is the sufficient and complete specification of the position of every point on the physical system

The configuration space C is the set of all possible configurations such that

$$q \in C$$

The mapping from c-space to the world space is given by

$$A(q):C\to W$$

C-Space Topologies

Configuration spaces do not need to be Cartesian

Shortest distance to a point may involve wrap around!

Motion Planning

Motion planning problem:

Find a collision-free path in the c-space C

from the initial configuration $q_i \in C$

to the goal configuration $q_g \in C$

Motion Planning

Motion planning problem:

Find a collision-free path in the c-space $\ C$

from the initial configuration $q_i \in C$

to the goal configuration $q_g \in C$

The robot needs to avoid the obstacle region $O \subset W$ What do the obstacles look like in the c-space?

Obstacles

Obstacles

Obstacles

Minkowski Sum and Difference

We define the obstacle in the configuration space with the Minkowski difference if the robot is rigid and $C = \mathbb{R}^n, n = 1, 2, 3$

Minkowski sum:

$$A \oplus B = \{a+b \mid a \in A, b \in B\}$$

Minkowski difference:

$$A \oplus B = \{a - b \mid a \in A, b \in B\}$$

Minkowski Sum

$$A \oplus B = \{a+b \mid a \in A, b \in B\}$$

Minkowski Sum

$$A \oplus B = \{a+b \mid a \in A, b \in B\}$$

$$A \ominus B = \{a - b \mid a \in A, b \in B\}$$

$$A \ominus B = \{a - b \mid a \in A, b \in B\}$$

$$A \ominus B = \{a - b \mid a \in A, b \in B\}$$

$$A \ominus B = \{a - b \mid a \in A, b \in B\}$$

Sweeps reflected shape of B

$$A \ominus B = \{a - b \mid a \in A, b \in B\}$$

- 2D workspace and only translation
- Robot and obstacles are convex polygons

- C-space obstacle C_{obs} is also convex
- How to efficiently compute shape of c-space obstacle?

- Sides of C_{obs} correspond to sides of obstacle and robot
- In which order are the sides arranged though?

- Sides are arranged according to their normals as shown
 - Robot normals point inwards, obstacle normals point outwards

Convex c-space obstacle represented by half-planes

Two types of contacts:

Vertex-Edge

Edge-Vertex

Two types of contacts:

Vertex-Edge

Edge-Vertex

- Contact corresponds to $n^T v(x,y) = 0$ line in c-space
- Half-plane defined by $H = \{(x,y)|n^Tv(x,y) \le 0\}$

Consider the following piano movers' problem

The path is blocked when using the current orientation

A very conservative naive approach would cover all angles

Need to consider different obstacles for individual angles

Need to consider different obstacles for individual angles

Note how the c-space obstacles change with orientation

Need to consider different obstacles for individual angles

Need to consider different obstacles for individual angles

Note how the c-space obstacles change with orientation

Non-Convex Obstacles

- Not all obstacles O will be convex, as we have assumed
- Compute C_{obs} as union of of convex components of O

Articulated Robots

- Articulated robots consist of multiple links
- Links can collide with each other leading to self-collision
- Consider each link independently

$$A_{2}$$

$$\theta_{3}$$

$$A_{1}$$

$$\theta_{1}$$

$$A_{3}$$

$$A = \{A_{1}, A_{2}, ..., A_{m}\}$$

$$C_{obs} = \left(\bigcup_{i=1}^{m} \{q \in C \mid A_i(q) \cap O \neq \emptyset\}\right) \cup \left(\bigcup_{[i,j] \in P} \{q \in C \mid A_i(q) \cap A_j(q) \neq \emptyset\}\right)$$

Collision pairs: $(i,j) \in P \forall i \neq j$

Example of Obstacle for Articulated Robot

Example of Obstacle for Articulated Robot

Questions?