

Projet de robotique mobile

- 10 séances de 4h + 1 séance de rendu
- . En binôme
- 3 pioneers et 5 Mini-Labs à disposition

Implémenter un SLAM autonome avec un retour à la base de chargement

Avancement prévisionnel

1	16/11/18	Introduction ROS + installation + tuto Turtlesim
2	23/11/18	Package de téléop + SLAM
3	30/11/18	Implémentation algo. path finding
4	07/12/18	Implémentation algo. path finding
5	14/12/18	Implémentation algo. path finding
6	20/12/18	Chemin exprimé dans le monde et non dans l'image
7	09/01/19	Suivi de chemin
8	16/01/19	Suivi de chemin
9	17/01/19	Retour à la base de chargement
10	18/01/19	Bonus : Exploration autonome avec évitement d'obstacles
11	28/01/19	Présentation + Vidéo + Démo

Rendu: Présentation et vidéo

- Téléopération
- SLAM
- Algorithme de path finding
- Suivi de chemin
- Résultats

- Résultats réels ou en simulation
- Construction d'un arbre

Rendu: Démo réel ou simu

- Création de carte (exploration autonome ou téleopérée)
- Path finding dans une carte réelle ou fictive
- Suivi du chemin trouvé
- (Démo complète sur le robot où tout s'enchaîne sans aucune intervention)

Démarrage robot Pioneer

- Allumer le robot (interrupteur robot + interrupteur PC, attention symbole inversé)
- Se connecter en Wifi au réseau pioneer* (*=1, 2 ou 3)
- L'adresse du robot doit être 192.168.0.2*, l'adresse de la workstation doit être 192.168.0.3* (à fixer dans les paramètres Ipv4 du réseau de la workstation)
- Se connecter en ssh au robot en tapant : \$ ssh etudiant@192.168.0.2*
- Démarrer variateur, lidar et robot_model en lançant sur le robot :
 - \$ roslaunch pioneer_launch pioneer.launch
- Configurer la workstation pour communiquer avec le robot sous ROS : ajouter dans le .bashrc

export ROS_MASTER_URI=http://192.168.0.2*:11311

Démarrage robot Mini-lab

- · Allumer le robot (interrupteur robot), avec câble vert débrancher
- Se connecter en Wifi au réseau ML-201412-00* (*=1, 2, ..., ou 6)
- Brancher le câble vert

Se connecter en ssh au robot en tapant :

\$ ssh user@192.168.0.20*

(mdp: #user)

- Si nécessaire synchroniser le robot avec la workstation : \$ sudo ntpdate 192.168.0.100
- Démarrer variateur, lidar et robot_model en lançant sur le robot :

\$ roslaunch minilab_launch minilab_driver_hokuyo.launch

Configurer la workstation pour communiquer avec le robot sous ROS : ajouter dans le .bashrc

export ROS_MASTER_URI=http://192.168.0.20*:11311

export ROS_IP=192.168.0.100

Barème

Résultats	Pts
Téléopération (live)	1
SLAM (live)	1
Résultat du path finding	5
Résultat du suivi de chemin pour retour à la base de chargement (live)	4
Bonne répartition du travail au sein du binôme	1
Qualité vidéo	1
Contenu vidéo	2
Qualité présentation	1
Contenu présentation	4
Total :	20
Démo complète sans intervention	+1
Exploration autonome	+1
Evitement d'obstacles	+1