Criptografia RSA - Dia 1

Priscilla Pereira de Souza

Dia 1 - Tipos de Criptografia

- Código de César
- Código em Blocos
- Chave Privada x Chave Pública
- Criptografia em Matrizes

Definição

A criptografia é o estudo de métodos e técnicas para transformar um texto legível em algo ilegível, podendo reverter o processo e obter o texto original.

Definição

A criptografia é o estudo de métodos e técnicas para transformar um texto legível em algo ilegível, podendo reverter o processo e obter o texto original.

Exemplo

 $Bianca\ deseja\ enviar\ uma\ mensagem\ m{m}\ para\ Jo\~ao$

Exemplo

 $Bianca\ deseja\ enviar\ uma\ mensagem\ m{m}\ para\ Jo\~ao$

• Eles combinam entre si qual será a chave de criptação e de decodificação.

Exemplo

 $Bianca\ deseja\ enviar\ uma\ mensagem\ m{m}\ para\ Jo\~ao$

- Eles combinam entre si qual será a chave de criptação e de decodificação.
- c(m): função de criptação

Exemplo

Bianca deseja enviar uma mensagem **m** para João

- Eles combinam entre si qual será a chave de criptação e de decodificação.
- c(m): função de criptação
- d(m): função de decodificação

Exemplo

 $Bianca\ deseja\ enviar\ uma\ mensagem\ m{m}\ para\ Jo\~ao$

- Eles combinam entre si qual será a chave de criptação e de decodificação.
- c(m): função de criptação
- d(m): função de decodificação

A criptografia não é usada apenas para mensagens escritas.

A criptografia não é usada apenas para mensagens escritas.

• Bitcoin

A criptografia não é usada apenas para mensagens escritas.

Bitcoin

A criptografia não é usada apenas para mensagens escritas.

Bitcoin

Código Morse

A criptografia não é usada apenas para mensagens escritas.

• Bitcoin

Código Morse

Definição

A técnica de substituição ou transposição de letras é chamada de **cifra**.

Fato histórico: Em 50 a.C. na cidade de Roma, Júlio César usou uma cifra de substituição para proteger comunicações governamentais. Método conhecido como *Código de César*.

Método: Desviar todas as letras, de uma mensagem, em três posições para a frente no alfabeto.

Método: Desviar todas as letras, de uma mensagem, em três posições para a frente no alfabeto.

A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	Н	Ι	J	K	\mathbf{L}	\mathbf{M}
D	E	F	G	Н	I	J	K	L	M	N	О	P
N	О	P	Q	R	S	\mathbf{T}	U	V	W	X	Y	\mathbf{Z}
Q	R	S	Т	U	V	W	X	Y	Z	A	В	С

Método: Desviar todas as letras, de uma mensagem, em três posições para a frente no alfabeto.

A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	Н	Ι	J	K	\mathbf{L}	M
D	E	F	G	Н	I	J	K	L	M	N	О	P
N	О	P	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}	U	\mathbf{V}	W	X	Y	\mathbf{Z}
Q	R	S	Т	U	V	W	X	Y	Z	A	В	С

Exemplo: MATEMATICA

Método: Desviar todas as letras, de uma mensagem, em três posições para a frente no alfabeto.

A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	Н	Ι	J	K	\mathbf{L}	M
D	E	F	G	Н	I	J	K	L	M	N	О	P
N	О	P	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}	U	\mathbf{V}	W	X	Y	\mathbf{Z}
Q	R	S	Т	U	V	W	X	Y	Z	A	В	С

Exemplo: MATEMATICA \rightarrow PDWHPDWLFD.

Método: Desviar todas as letras, de uma mensagem, em três posições para a frente no alfabeto.

A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	Н	Ι	J	K	\mathbf{L}	\mathbf{M}
D	E	F	G	Н	I	J	K	L	Μ	N	О	P
N	О	P	Q	R	S	\mathbf{T}	U	\mathbf{V}	W	X	Y	\mathbf{Z}
Q	R	S	Т	U	V	W	X	Y	Z	A	В	С

Exemplo: MATEMATICA \rightarrow PDWHPDWLFD.

Fato histórico: O Código de César foi utilizado por muito tempo, e juntamente com alguns truques, permaneceu indecifrável por séculos.

Pergunta:

Pergunta: Como decifrar o código?

Pergunta: Como decifrar o código?

Pergunta: Como decifrar o código?

Estudo da frequência das letras em textos

• 1º Passo: Pegue um texto qualquer

Pergunta: Como decifrar o código?

- 1º Passo: Pegue um texto qualquer
- 2º Passo: Tabele a frequência de cada letra nele

Pergunta: Como decifrar o código?

- 1º Passo: Pegue um texto qualquer
- 2º Passo: Tabele a frequência de cada letra nele
- 3º Passo: Tabele a frequência de cada letra do texto codificado

Pergunta: Como decifrar o código?

- 1º Passo: Pegue um texto qualquer
- 2º Passo: Tabele a frequência de cada letra nele
- 3º Passo: Tabele a frequência de cada letra do texto codificado
- 4º Passo: Associe as letras de mesma frequência dos passos 2 e 3.

Código César

Passos 1 e 2:

A	В	C	D	\mathbf{E}	F	G	H	I
14.63	1.04	3.88	4.99	12.57	1.02	1.30	1.28	6.18
J	K	L	\mathbf{M}	N	О	P	Q	\mathbf{R}
0.40	0.02	2.78	4.74	5.05	10.73	2.52	1.20	6.53
S	T	U	V	W	X	Y	Z	
1.81	4.74	4.63	1.67	0.01	0.21	0.01	0.47	

Exemplo

Decifre a mensagem a seguir usando análise de frequência.

VHMD EHP YLQGR D VHPDQD DFDGHPLFD

Exemplo

Decifre a mensagem a seguir usando análise de frequência.

 $VHMD\ EHP\ YLQGR\ D\ VHPDQD\ DFDGHPLFD$

1º Passo:

Exemplo

Decifre a mensagem a seguir usando análise de frequência.

 $VHMD\ EHP\ YLQGR\ D\ VHPDQD\ DFDGHPLFD$

1º Passo: Feito

Exemplo

Decifre a mensagem a seguir usando análise de frequência.

 $VHMD\ EHP\ YLQGR\ D\ VHPDQD\ DFDGHPLFD$

1º Passo: Feito

2º Passo:

Exemplo

Decifre a mensagem a seguir usando análise de frequência.

VHMD EHP YLQGR D VHPDQD DFDGHPLFD

1º Passo: Feito

2º Passo: Temos 28 caractéres.

Exemplo

Decifre a mensagem a seguir usando análise de frequência.

VHMD EHP YLQGR D VHPDQD DFDGHPLFD

1º Passo: Feito

2º Passo: Temos 28 caractéres.

 3^o Passo: E a frequência de cada letra do texto codificado é

dada pela tabela:

Exemplo

Decifre a mensagem a seguir usando análise de frequência.

VHMD EHP YLQGR D VHPDQD DFDGHPLFD

1º Passo: Feito

2º Passo: Temos 28 caractéres.

 3^o Passo: E a frequência de cada letra do texto codificado é

dada pela tabela:

A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	Н	Ι	J	K	\mathbf{L}	\mathbf{M}
0	0	0	7	1	1	2	4	0	0	0	2	1
N	О	P	Q	R	S	\mathbf{T}	U	V	W	X	Y	\mathbf{Z}
0	Ω	3	2	1	0	0	0	2	0	n	1	n

• As letras D e H aparecem com uma frequência de 7 e 4 vezes, respectivamente.

• As letras D e H aparecem com uma frequência de 7 e 4 vezes, respectivamente.

$$\implies a,\,e,\,i,\,o\ ,\,u$$

• As letras D e H aparecem com uma frequência de 7 e 4 vezes, respectivamente.

$$\implies$$
 a, e, i, o , u

• Tome
$$\begin{cases} D = a \\ H = e \end{cases}$$

• As letras D e H aparecem com uma frequência de 7 e 4 vezes, respectivamente.

$$\implies$$
 a, e, i, o, u

• Tome
$$\begin{cases} D = a \\ H = e \end{cases}$$

• Substituindo na mensagem:

• As letras D e H aparecem com uma frequência de 7 e 4 vezes, respectivamente.

$$\implies$$
 a, e, i, o, u

- Tome $\begin{cases} D = a \\ H = e \end{cases}$
- Substituindo na mensagem:

VeMa EeP YLQGR a VePaQa aFaGePLFa

• As letras D e H aparecem com uma frequência de 7 e 4 vezes, respectivamente.

$$\implies$$
 a, e, i, o, u

• Tome
$$\begin{cases} D = a \\ H = e \end{cases}$$

• Substituindo na mensagem:

VeMa EeP YLQGR a VePaQa aFaGePLFa

EeP

• As letras D e H aparecem com uma frequência de 7 e 4 vezes, respectivamente.

$$\implies$$
 a, e, i, o, u

• Tome
$$\begin{cases} D = a \\ H = e \end{cases}$$

• Substituindo na mensagem:

VeMa EeP YLQGR a VePaQa aFaGePLFa

• EeP

$$\implies$$
 P = m ou P = r

• As letras D e H aparecem com uma frequência de 7 e 4 vezes, respectivamente.

$$\implies$$
 a, e, i, o , u

• Tome
$$\begin{cases} D = a \\ H = e \end{cases}$$

• Substituindo na mensagem:

VeMa EeP YLQGR a VePaQa aFaGePLFa

- EeP
 - \implies P = m ou P = r
- \bullet Tomando P = m

• As letras D e H aparecem com uma frequência de 7 e 4 vezes, respectivamente.

$$\implies$$
 a, e, i, o, u

• Tome
$$\begin{cases} D = a \\ H = e \end{cases}$$

• Substituindo na mensagem:

VeMa EeP YLQGR a VePaQa aFaGePLFa

- EeP
 - \implies P = m ou P = r
- Tomando P = m

VeMa Eem YLQGR a VemaQa aFaGemLFa

• VemaQa

 \bullet VemaQa = semana

$$\text{VemaQa} = \text{semana}$$

$$\Longrightarrow \begin{cases} V = s \\ Q = n \end{cases}$$

• VemaQa = semana

$$\implies \begin{cases} V = s \\ Q = n \end{cases}$$

• Substituindo na mensagem:

• VemaQa = semana

$$\implies \begin{cases} V = s \\ Q = n \end{cases}$$

• Substituindo na mensagem:

seMa Eem YLQGR a semana aFaGemLFa

• VemaQa = semana

$$\implies \begin{cases} V = s \\ Q = n \end{cases}$$

• Substituindo na mensagem:

se Ma Eem YLQGR a semana a
Fa Gem
LFa

• É fácil ver que:

• VemaQa = semana

$$\implies \begin{cases} V = s \\ Q = n \end{cases}$$

• Substituindo na mensagem:

seMa Eem YLQGR a semana aFaGemLFa

• É fácil ver que:

seja bem YLQGR a semana aFaGemLFa

• VemaQa = semana

$$\implies \begin{cases} V = s \\ Q = n \end{cases}$$

• Substituindo na mensagem:

seMa Eem YLQGR a semana aFaGemLFa

• É fácil ver que:

seja bem YLQGR a semana aFaGemLFa

$$\bullet \implies \begin{cases} Y = v \\ L = i \\ C = d \\ R = o \\ M = j \end{cases}$$

seja bem vindo a semana aFaGemiFa

seja bem vindo a semana aFaGemiFa

• Mensagem descriptograda:

Seja bem vindo a semana acadêmica

Definição

Esse método consiste em dividirmos a mensagem em blocos e embaralharmos suas letras. Daí o nome **Código em Bloco** para este processo.

Definição

Esse método consiste em dividirmos a mensagem em blocos e embaralharmos suas letras. Daí o nome **Código em Bloco** para este processo.

Exemplo

Criptografe a mensagem AMO A SEMANA DA MATEMÁTICA

Definição

Esse método consiste em dividirmos a mensagem em blocos e embaralharmos suas letras. Daí o nome **Código em Bloco** para este processo.

Exemplo

Criptografe a mensagem AMO A SEMANA DA MATEMÁTICA

1º Passo: Retire os espaços entre as palavras e adicione um A no final caso haja um número ímpar de letras

Definição

Esse método consiste em dividirmos a mensagem em blocos e embaralharmos suas letras. Daí o nome **Código em Bloco** para este processo.

Exemplo

Criptografe a mensagem AMO A SEMANA DA MATEMÁTICA

1º Passo: Retire os espaços entre as palavras e adicione um A no final caso haja um número ímpar de letras

2º Passo: Divida a frase em blocos de duas letras.

Definição

Esse método consiste em dividirmos a mensagem em blocos e embaralharmos suas letras. Daí o nome **Código em Bloco** para este processo.

Exemplo

Criptografe a mensagem AMO A SEMANA DA MATEMÁTICA

1º Passo: Retire os espaços entre as palavras e adicione um A no final caso haja um número ímpar de letras

2º Passo: Divida a frase em blocos de duas letras.

3º Passo: Em cada bloco, permute as letras de lugar.

Exemplo

4º Passo: Troque as posições dos blocos "ímpares" da seguinte forma: - primeiro com o último - terceiro com o antepenúltimo

:

e assim por diante, deixando os blocos "pares" parados.

Exemplo

1º Passo:

Exemplo

1º Passo:

AMOASEMANADAMATEMATICA

Exemplo

1º Passo:

AMOASEMANADAMATEMATICA

2º Passo:

Exemplo

1º Passo:

AMOASEMANADAMATEMATICA

2º Passo:

AM OA SE MA NA DA MA TE MA TI CA

Exemplo

1º Passo:

AMOASEMANADAMATEMATICA

2º Passo:

AM OA SE MA NA DA MA TE MA TI CA

3º Passo:

Exemplo

1º Passo:

AMOASEMANADAMATEMATICA

2º Passo:

AM OA SE MA NA DA MA TE MA TI CA

3º Passo:

MA AO ES AM AN AD AM ET AM IT AC

Exemplo

1º Passo:

AMOASEMANADAMATEMATICA

2º Passo:

AM OA SE MA NA DA MA TE MA TI CA

3º Passo:

MA AO ES AM AN AD AM ET AM IT AC

4º Passo:

Exemplo

1º Passo:

AMOASEMANADAMATEMATICA

2º Passo:

AM OA SE MA NA DA MA TE MA TI CA

3º Passo:

MA AO ES AM AN AD AM ET AM IT AC

4º Passo:

AC AO AM AM AM AD AN ET ES IT MA

Exemplo

Justapondo os blocos novamente, temos a seguinte mensagem criptografada:

Exemplo

Justapondo os blocos novamente, temos a seguinte mensagem criptografada:

ACAOAMAMAMADANETESITMA

Exemplo

Justapondo os blocos novamente, temos a seguinte mensagem criptografada:

ACAOAMAMAMADANETESITMA

Observação. O código em bloco é um exemplo de criptografia de chave privada.

Pergunta.

Código em Blocos

Exemplo

Justapondo os blocos novamente, temos a seguinte mensagem criptografada:

ACAOAMAMAMADANETESITMA

Observação. O código em bloco é um exemplo de criptografia de chave privada.

Pergunta. Mas o que é chave privada?

A criptografia de **chave privada** utiliza apenas uma chave. A mensagem é criptografada com essa chave pelo emissor, e descriptografada com a mesma, pelo receptor.

A criptografia de **chave privada** utiliza apenas uma chave. A mensagem é criptografada com essa chave pelo emissor, e descriptografada com a mesma, pelo receptor.

Observação. Durante o processo de envio da mensagem, um terceiro pode interceptá-la e descobrir a chave, já que é apenas uma.

Observação. Durante o processo de envio da mensagem, um terceiro pode interceptá-la e descobrir a chave, já que é apenas uma.

Solução. Chave Pública.

Observação. Durante o processo de envio da mensagem, um terceiro pode interceptá-la e descobrir a chave, já que é apenas uma.

Solução. Chave Pública.

Exemplo

Digamos que Bianca e João desejam se comunicar secretamente. Para tal, Bianca possui um cadeado \boldsymbol{B} , e para abri-lo, uma chave \boldsymbol{b} . Analogamente, João possui um cadeado \boldsymbol{J} e uma chave \boldsymbol{j} .

Observação. Durante o processo de envio da mensagem, um terceiro pode interceptá-la e descobrir a chave, já que é apenas uma.

Solução. Chave Pública.

Exemplo

Digamos que Bianca e João desejam se comunicar secretamente. Para tal, Bianca possui um cadeado B, e para abri-lo, uma chave b. Analogamente, João possui um cadeado Je uma chave j.

Bianca

Um outro método de criptografia é via matrizes.

Um outro método de **criptografia é via matrizes**. **Chave.** Uma *matriz quadrada* invertível.

Um outro método de **criptografia é via matrizes**. **Chave.** Uma *matriz quadrada* invertível.

Ме́торо:

Um outro método de **criptografia é via matrizes**.

Chave. Uma matriz quadrada invertível.

Ме́торо:

1º Passo: Converter cada letra em um número, e separá-los em vetores coluna.

Um outro método de **criptografia é via matrizes**.

Chave. Uma matriz quadrada invertível.

MÉTODO:

1º Passo: Converter cada letra em um número, e separá-los em vetores coluna.

 2^{o} Passo: Para criptografar a mensagem, faremos o produto da matriz chave por cada vetor, afim de encontrar um novo vetor coluna.

Um outro método de **criptografia é via matrizes**.

Chave. Uma matriz quadrada invertível.

Ме́торо:

1º Passo: Converter cada letra em um número, e separá-los em vetores coluna.

2º Passo: Para criptografar a mensagem, faremos o produto da matriz chave por cada vetor, afim de encontrar um novo vetor coluna.

3º Passo: Por fim, converteremos novamente cada número na letra correspondente na tabela de conversão, e encontraremos a mensagem criptografada.

Exemplo

 $Considere\ a\ mensagem:$

AMO MATEMÁTICA

Exemplo

Considere a mensagem:

AMO MATEMÁTICA

Iremos usar a seguinte tabela de conversão:

A	В	С	D	E	F	G	Н	I	J	K	L	M
1	2	3	4	5	6	7	8	9	10	11	12	13
N	О	P	Q	R	S	Т	U	V	W	X	Y	Z
14	15	16	17	18	19	20	21	22	23	24	25	26

1º Passo:

 $1^o\ Passo:$ Cada letra será associada ao número de sua posição no alfabeto

 $1^o\ Passo:$ Cada letra será associada ao número de sua posição no alfabeto

AMO MATEMATICA

 $1^o\ Passo:$ Cada letra será associada ao número de sua posição no alfabeto

AMO MATEMATICA

 $A\ M\ O\ M\ A\ T\ E\ M\ A\ T\ I\ C\ A$

 $1^o\ Passo:$ Cada letra será associada ao número de sua posição no alfabeto

AMO MATEMATICA

 $A\ M\ O\ M\ A\ T\ E\ M\ A\ T\ I\ C\ A$

1 13 15 13 1 20 5 13 1 20 9 3 1

1º Passo: Cada letra será associada ao número de sua posição no alfabeto

AMO MATEMATICA

 $A\ M\ O\ M\ A\ T\ E\ M\ A\ T\ I\ C\ A$

1 13 15 13 1 20 5 13 1 20 9 3 1

 2^{o} Passo: Escolhemos a seguinte matriz:

 2^{o} Passo: Escolhemos a seguinte matriz:

$$C = \left(\begin{array}{cc} 1 & 2 \\ 2 & 3 \end{array}\right)$$

 2^{o} Passo: Escolhemos a seguinte matriz:

$$C = \left(\begin{array}{cc} 1 & 2 \\ 2 & 3 \end{array}\right) \implies det(C)$$

2º Passo: Escolhemos a seguinte matriz:

$$C = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \implies det(C) = 3 \cdot 1 - 2 \cdot 2$$

2º Passo: Escolhemos a seguinte matriz:

$$C = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \implies det(C) = 3 \cdot 1 - 2 \cdot 2 = -1$$

2º Passo: Escolhemos a seguinte matriz:

$$C = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \implies det(C) = 3 \cdot 1 - 2 \cdot 2 = -1 \neq 0$$

 2^{o} Passo: Escolhemos a seguinte matriz:

$$C = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \implies det(C) = 3 \cdot 1 - 2 \cdot 2 = -1 \neq 0$$

2º Passo: Escolhemos a seguinte matriz:

$$C = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \implies det(C) = 3 \cdot 1 - 2 \cdot 2 = -1 \neq 0$$

$$C \cdot v_1 = \left(\begin{array}{c} 27 \\ 41 \end{array} \right)$$

2º Passo: Escolhemos a seguinte matriz:

$$C = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \implies det(C) = 3 \cdot 1 - 2 \cdot 2 = -1 \neq 0$$

$$C \cdot v_1 = \left(\begin{array}{c} 27 \\ 41 \end{array} \right) C \cdot v_2 = \left(\begin{array}{c} 41 \\ 69 \end{array} \right)$$

2º Passo: Escolhemos a seguinte matriz:

$$C = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \implies det(C) = 3 \cdot 1 - 2 \cdot 2 = -1 \neq 0$$

$$C \cdot v_1 = \left(\begin{array}{c} 27 \\ 41 \end{array} \right) C \cdot v_2 = \left(\begin{array}{c} 41 \\ 69 \end{array} \right) C \cdot v_3 = \left(\begin{array}{c} 41 \\ 62 \end{array} \right)$$

2º Passo: Escolhemos a seguinte matriz:

$$C = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \implies det(C) = 3 \cdot 1 - 2 \cdot 2 = -1 \neq 0$$

$$C \cdot v_1 = \left(\begin{array}{c} 27 \\ 41 \end{array} \right) C \cdot v_2 = \left(\begin{array}{c} 41 \\ 69 \end{array} \right) C \cdot v_3 = \left(\begin{array}{c} 41 \\ 62 \end{array} \right) C \cdot v_4 = \left(\begin{array}{c} 31 \\ 49 \end{array} \right)$$

2º Passo: Escolhemos a seguinte matriz:

$$C = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \implies det(C) = 3 \cdot 1 - 2 \cdot 2 = -1 \neq 0$$

$$C \cdot v_1 = \begin{pmatrix} 27 \\ 41 \end{pmatrix} C \cdot v_2 = \begin{pmatrix} 41 \\ 69 \end{pmatrix} C \cdot v_3 = \begin{pmatrix} 41 \\ 62 \end{pmatrix} C \cdot v_4 = \begin{pmatrix} 31 \\ 49 \end{pmatrix}$$
$$C \cdot v_5 = \begin{pmatrix} 41 \\ 62 \end{pmatrix}$$

2º Passo: Escolhemos a seguinte matriz:

$$C = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \implies det(C) = 3 \cdot 1 - 2 \cdot 2 = -1 \neq 0$$

$$C \cdot v_1 = \begin{pmatrix} 27 \\ 41 \end{pmatrix} C \cdot v_2 = \begin{pmatrix} 41 \\ 69 \end{pmatrix} C \cdot v_3 = \begin{pmatrix} 41 \\ 62 \end{pmatrix} C \cdot v_4 = \begin{pmatrix} 31 \\ 49 \end{pmatrix}$$
$$C \cdot v_5 = \begin{pmatrix} 41 \\ 62 \end{pmatrix} C \cdot v_6 = \begin{pmatrix} 15 \\ 27 \end{pmatrix}$$

2º Passo: Escolhemos a seguinte matriz:

$$C = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \implies det(C) = 3 \cdot 1 - 2 \cdot 2 = -1 \neq 0$$

Tendo escolhida nossa chave, multiplicaremos a mesma por cada vetor coluna, resultando em:

$$C \cdot v_1 = \begin{pmatrix} 27 \\ 41 \end{pmatrix} C \cdot v_2 = \begin{pmatrix} 41 \\ 69 \end{pmatrix} C \cdot v_3 = \begin{pmatrix} 41 \\ 62 \end{pmatrix} C \cdot v_4 = \begin{pmatrix} 31 \\ 49 \end{pmatrix}$$
$$C \cdot v_5 = \begin{pmatrix} 41 \\ 62 \end{pmatrix} C \cdot v_6 = \begin{pmatrix} 15 \\ 27 \end{pmatrix} C \cdot v_7 = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

$$C \cdot v_1 = \begin{pmatrix} 27 \\ 41 \end{pmatrix} C \cdot v_2 = \begin{pmatrix} 41 \\ 69 \end{pmatrix} C \cdot v_3 = \begin{pmatrix} 41 \\ 62 \end{pmatrix} C \cdot v_4 = \begin{pmatrix} 31 \\ 49 \end{pmatrix}$$
$$C \cdot v_5 = \begin{pmatrix} 41 \\ 62 \end{pmatrix} C \cdot v_6 = \begin{pmatrix} 15 \\ 27 \end{pmatrix} C \cdot v_7 = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

$$C \cdot v_1 = \begin{pmatrix} 27 \\ 41 \end{pmatrix} C \cdot v_2 = \begin{pmatrix} 41 \\ 69 \end{pmatrix} C \cdot v_3 = \begin{pmatrix} 41 \\ 62 \end{pmatrix} C \cdot v_4 = \begin{pmatrix} 31 \\ 49 \end{pmatrix}$$
$$C \cdot v_5 = \begin{pmatrix} 41 \\ 62 \end{pmatrix} C \cdot v_6 = \begin{pmatrix} 15 \\ 27 \end{pmatrix} C \cdot v_7 = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

$$27 = 26 + 1 = A$$

$$C \cdot v_1 = \begin{pmatrix} 27 \\ 41 \end{pmatrix} C \cdot v_2 = \begin{pmatrix} 41 \\ 69 \end{pmatrix} C \cdot v_3 = \begin{pmatrix} 41 \\ 62 \end{pmatrix} C \cdot v_4 = \begin{pmatrix} 31 \\ 49 \end{pmatrix}$$
$$C \cdot v_5 = \begin{pmatrix} 41 \\ 62 \end{pmatrix} C \cdot v_6 = \begin{pmatrix} 15 \\ 27 \end{pmatrix} C \cdot v_7 = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

- 27 = 26 + 1 = A
- 41 = 26 + 15 = O

$$C \cdot v_1 = \begin{pmatrix} 27 \\ 41 \end{pmatrix} C \cdot v_2 = \begin{pmatrix} 41 \\ 69 \end{pmatrix} C \cdot v_3 = \begin{pmatrix} 41 \\ 62 \end{pmatrix} C \cdot v_4 = \begin{pmatrix} 31 \\ 49 \end{pmatrix}$$
$$C \cdot v_5 = \begin{pmatrix} 41 \\ 62 \end{pmatrix} C \cdot v_6 = \begin{pmatrix} 15 \\ 27 \end{pmatrix} C \cdot v_7 = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

- 27 = 26 + 1 = A
- 41 = 26 + 15 = 0
- 41 = 26 + 15 = 0

$$C \cdot v_1 = \begin{pmatrix} 27 \\ 41 \end{pmatrix} C \cdot v_2 = \begin{pmatrix} 41 \\ 69 \end{pmatrix} C \cdot v_3 = \begin{pmatrix} 41 \\ 62 \end{pmatrix} C \cdot v_4 = \begin{pmatrix} 31 \\ 49 \end{pmatrix}$$
$$C \cdot v_5 = \begin{pmatrix} 41 \\ 62 \end{pmatrix} C \cdot v_6 = \begin{pmatrix} 15 \\ 27 \end{pmatrix} C \cdot v_7 = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

- 27 = 26 + 1 = A
- 41 = 26 + 15 = 0
- 41 = 26 + 15 = 0
- \bullet 69 = 26 · 2 + 17 = Q

$$C \cdot v_1 = \begin{pmatrix} 27 \\ 41 \end{pmatrix} C \cdot v_2 = \begin{pmatrix} 41 \\ 69 \end{pmatrix} C \cdot v_3 = \begin{pmatrix} 41 \\ 62 \end{pmatrix} C \cdot v_4 = \begin{pmatrix} 31 \\ 49 \end{pmatrix}$$
$$C \cdot v_5 = \begin{pmatrix} 41 \\ 62 \end{pmatrix} C \cdot v_6 = \begin{pmatrix} 15 \\ 27 \end{pmatrix} C \cdot v_7 = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

- 27 = 26 + 1 = A
- 41 = 26 + 15 = 0
- 41 = 26 + 15 = 0
- \bullet 69 = 26 · 2 + **17** = Q
- 41 = 26 + 15 = 0

$$C \cdot v_1 = \begin{pmatrix} 27 \\ 41 \end{pmatrix} C \cdot v_2 = \begin{pmatrix} 41 \\ 69 \end{pmatrix} C \cdot v_3 = \begin{pmatrix} 41 \\ 62 \end{pmatrix} C \cdot v_4 = \begin{pmatrix} 31 \\ 49 \end{pmatrix}$$
$$C \cdot v_5 = \begin{pmatrix} 41 \\ 62 \end{pmatrix} C \cdot v_6 = \begin{pmatrix} 15 \\ 27 \end{pmatrix} C \cdot v_7 = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

•
$$27 = 26 + 1 = A$$

•
$$41 = 26 + 15 = 0$$

•
$$41 = 26 + 15 = 0$$

$$\bullet$$
 69 = 26 · 2 + 17 = Q

•
$$41 = 26 + 15 = 0$$

•
$$62 = 26 \cdot 2 + \mathbf{10} = J$$

$$C \cdot v_1 = \begin{pmatrix} 27 \\ 41 \end{pmatrix} C \cdot v_2 = \begin{pmatrix} 41 \\ 69 \end{pmatrix} C \cdot v_3 = \begin{pmatrix} 41 \\ 62 \end{pmatrix} C \cdot v_4 = \begin{pmatrix} 31 \\ 49 \end{pmatrix}$$
$$C \cdot v_5 = \begin{pmatrix} 41 \\ 62 \end{pmatrix} C \cdot v_6 = \begin{pmatrix} 15 \\ 27 \end{pmatrix} C \cdot v_7 = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

•
$$27 = 26 + 1 = A$$

•
$$41 = 26 + 15 = 0$$

•
$$41 = 26 + 15 = 0$$

$$\bullet$$
 69 = 26 · 2 + 17 = Q

•
$$41 = 26 + 15 = 0$$

•
$$62 = 26 \cdot 2 + \mathbf{10} = J$$

•
$$31 = 26 + \mathbf{5} = E$$

- 49 = 26 + 23 = W
- 41 = 26 + 15 = O

- 49 = 26 + 23 = W
- 41 = 26 + 15 = 0
- $62 = 26 \cdot 2 + \mathbf{10} = J$

- 49 = 26 + 23 = W
- 41 = 26 + 15 = 0
- $62 = 26 \cdot 2 + \mathbf{10} = J$
- **15** = *O*

•
$$49 = 26 + 23 = W$$

•
$$41 = 26 + 15 = 0$$

•
$$62 = 26 \cdot 2 + \mathbf{10} = J$$

•
$$27 = 26 + 1 = A$$

•
$$49 = 26 + 23 = W$$

•
$$41 = 26 + 15 = 0$$

•
$$62 = 26 \cdot 2 + \mathbf{10} = J$$

•
$$27 = 26 + 1 = A$$

•
$$3 = C$$

•
$$49 = 26 + 23 = W$$

•
$$41 = 26 + 15 = 0$$

•
$$62 = 26 \cdot 2 + \mathbf{10} = J$$

•
$$15 = 0$$

$$27 = 26 + 1 = A$$

•
$$3 = C$$

•
$$5 = E$$

Assim a mensagem criptograda é:

•
$$49 = 26 + 23 = W$$

•
$$41 = 26 + 15 = 0$$

•
$$62 = 26 \cdot 2 + \mathbf{10} = J$$

•
$$27 = 26 + 1 = A$$

•
$$3 = C$$

•
$$5 = E$$

Assim a mensagem criptograda é:

AOOQOJEWOJOACE

• Descriptografando a mensagem

AOOQOJEWOJOACE

• Descriptografando a mensagem

AOOQOJEWOJOACE

$$C = \left(\begin{array}{cc} 1 & 2 \\ 2 & 3 \end{array}\right)$$

• Descriptografando a mensagem

AOOQOJEWOJOACE

$$C = \left(\begin{array}{cc} 1 & 2 \\ 2 & 3 \end{array}\right)$$

$$C^{-1} = \frac{1}{(3\cdot 1) - (2\cdot 2)} \cdot \begin{pmatrix} 3 & -2 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} -3 & 2 \\ 2 & -1 \end{pmatrix}$$

$$2 C^{-1} \cdot \begin{pmatrix} 27 \\ 41 \end{pmatrix} = \begin{pmatrix} 1 \\ 13 \end{pmatrix}$$

$$2 C^{-1} \cdot \begin{pmatrix} 27 \\ 41 \end{pmatrix} = \begin{pmatrix} 1 \\ 13 \end{pmatrix}$$
$$C^{-1} \cdot \begin{pmatrix} 41 \\ 69 \end{pmatrix} = \begin{pmatrix} 15 \\ 13 \end{pmatrix}$$

$$2 C^{-1} \cdot \begin{pmatrix} 27 \\ 41 \end{pmatrix} = \begin{pmatrix} 1 \\ 13 \end{pmatrix}$$
$$C^{-1} \cdot \begin{pmatrix} 41 \\ 69 \end{pmatrix} = \begin{pmatrix} 15 \\ 13 \end{pmatrix}$$
$$C^{-1} \cdot \begin{pmatrix} 41 \\ 62 \end{pmatrix} = \begin{pmatrix} 1 \\ 20 \end{pmatrix}$$

$$2 C^{-1} \cdot \begin{pmatrix} 27 \\ 41 \end{pmatrix} = \begin{pmatrix} 1 \\ 13 \end{pmatrix}$$

$$C^{-1} \cdot \begin{pmatrix} 41 \\ 69 \end{pmatrix} = \begin{pmatrix} 15 \\ 13 \end{pmatrix}$$

$$C^{-1} \cdot \begin{pmatrix} 41 \\ 62 \end{pmatrix} = \begin{pmatrix} 1 \\ 20 \end{pmatrix}$$

$$C^{-1} \cdot \begin{pmatrix} 31 \\ 49 \end{pmatrix} = \begin{pmatrix} 5 \\ 13 \end{pmatrix}$$

$$C^{-1} \cdot \begin{pmatrix} 41 \\ 62 \end{pmatrix} = \begin{pmatrix} 1 \\ 20 \end{pmatrix}$$

$$C^{-1} \cdot \begin{pmatrix} 15 \\ 27 \end{pmatrix} = \begin{pmatrix} 9 \\ 3 \end{pmatrix}$$

$$C^{-1} \cdot \begin{pmatrix} 3 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Voltando a tabela, encontramos as letras da codificação, voltando a mensagem original.

1 13 15 13 1 20 5 13 1 20 9 13 1 1 A M O M A T E M A T I C A A

Exercícios

- Cifre o seu nome completo.
- Use a cifra de substituição com -8 posições para cifrar a mensagem: "O Naruto pode ser um pouco duro às vezes".
- Use a cifra de César para criptografar a mensagem "Aprender Matemática fica mais fácil quando gostamos dela".
- Utilizando o algoritmo de criptografia em blocos, decifre a mensagem abaixo:

AHIUSLIVOANEANASHECIQA

Exercícios

• Verifique se as matrizes abaixo poderiam ser utilizadas como chave para codificar mensagens:

$$\mathbf{a)} \ A = \left(\begin{array}{cc} -1 & 3 \\ 2 & 2 \end{array} \right)$$

$$\mathbf{b)} \ B = \left(\begin{array}{cc} -3 & 5 \\ -1 & 2 \end{array} \right)$$

$$\mathbf{c)} \ C = \left(\begin{array}{cc} 3 & 6 \\ 1 & 2 \end{array} \right)$$

$$\mathbf{d)} \ D = \left(\begin{array}{cc} 8 & 4 \\ 2 & 1 \end{array} \right)$$

• Utilizando a chave $C = \begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix}$ e a tabela de conversão apresentada no capítulo, codifique a mensagem FIBONACCI.

Muito Obrigada!

Referências

COUTINHO, S.C. **Números Inteiros e Criptografia RSA**. Rio de Janeiro, IMPA/SBM, 1997.

.