Introdução ao 'Machine Learning" e Análise de Sentimento

Instrutor: Antonio Luis Amadeu

Carga horária: 8 à 10 horas.

Bio:

- Formado em Ciências da Computação
 - Atualmente cursa Matemática Aplicada e Computacional
- Atuou em várias Multinacionais:
 - Unilever
 - TE Connectivity
 - Microsoft
 - Samsung
 - Allianz

• Há mais de 5 anos como cientista de dados e especialista em IoT.

Programa do Curso:

- Machine Learning
 - Tipos
 - Supervisionada
 - Não Supervisionada
 - Características
 - Regressão
 - Classificação
 - Agrupamento
 - Preparação dos dados
- Deep Learning
- Time Series
- Análise de Sentimento

Referências

Uma breve introdução ao termo: "Machine Learning"

O termo foi criado por Arthur Samuel em 1959

O nome correto estatísticamente é "Predictive Modelling"

- O que mudou desde então:
 - Poderio computacional
 - Preço do armazenamento (RAM, HD´s, etc.)
 - Disponibilidade dos dados

Tipos de "Machine Learning"

Qual o "truque" para ser um bom cientista de dados?

Qual o "truque" para ser um bom cientista de dados?

- Intuição
- Viés e Variância
- Erro de treino e erro de teste
- Validação cruzada

Machine Learning

- Intuição
- Viés e Variância
- Erro de treino e erro de teste
- Validação cruzada

Machine Learning – Supervised Learning

Machine Learning – Unsupervised Learning

Machine Learning – Regressão

Machine Learning – Regressão

Machine Learning – Classificação

Machine Learning – Agrupamento

Machine Learning – Agrupamento - Prática

Machine Learning – Underfitting e Overfitting

Preparação dos dados

- Missing Data
 - o Remover as linhas
 - Acrescentar valores médios
 - o Recorrer à regressão linear
- Outliers
 - o Remover as linhas
 - Média
- Variáveis categóricas
 - One Hot Encoding *
- Normalização
 - Colocar todos os valores entre determinada faixa de valores, por exemplo, idade e altura*

Preparação dos dados – Variáveis categóricas - One Hot Encoding

Temos as seguintes features:

['color','size','price'] onde temos como 'color': [Azul',Verde',Vermelho']

Transformando a 'feature categórica 'color' para One Hot Encoding:

```
[Azul, Verde, Vermelho] – Headers
```

```
[ 1 , 0 , 0 ] – Azul
[ 0 , 1 , 0 ] - Verde
[ 0 , 0 , 1 ] - Vermelho
```

Preparação dos dados – Variáveis categóricas - One Hot Encoding

```
from numpy import array
         from numpy import argmax
         from sklearn.preprocessing import LabelEncoder
         from sklearn.preprocessing import OneHotEncoder
5
         # define example
         data = ['cold', 'cold', 'warm', 'cold', 'hot', 'hot', 'warm', 'cold', 'warm', 'hot']
6
         values = array(data)
         print(values)
         # integer encode
9
10
         label encoder = LabelEncoder()
11
         integer encoded = label encoder.fit transform(values)
         print(integer encoded)
12
         # binary encode
13
14
         onehot encoder = OneHotEncoder(sparse=False)
15
         integer_encoded = integer_encoded.reshape(len(integer_encoded), 1)
16
         onehot encoded = onehot encoder.fit transform(integer encoded)
17
         print(onehot encoded)
18
         # invert first example
19
         inverted = label encoder.inverse transform([argmax(onehot encoded[0, :])])
20
         print(inverted)
```

Preparação dos dados - Normalização

A técnica estatística mais comum e mais usada é:

$$z = \frac{x - \mu}{\sigma}$$

Onde: z = Valor normalizado

x = Valor não normalizado

 μ = Média dos valores

 σ = Desvio Padrão

```
Desvio Padrão: \sigma = \sqrt{rac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2} Variância
```

- # Normalize the data attributes for the Iris dataset.
- 3 from sklearn.datasets import load_iris
- 4 from sklearn import preprocessing
- 5 # load the iris dataset
- 6 iris = load iris()
- 7 print(iris.data.shape)
- 8 # separate the data from the target attributes
- 9 X = iris.data
- y = iris.target
- # normalize the data attributes

normalized_X = preprocessing.normalize(X)

Preparação dos dados - Definir features importantes - Correlação

Preparação dos dados - Definir features importantes - Histograma

Preparação dos dados – Definir features importantes

• PCA - https://www.dezyre.com/data-science-in-python-tutorial/principal-component-analysis-tutorial

Correlações absurdas:

http://tylervigen.com/old-version.html

Preparação dos dados - Definir features importantes

Preparação dos dados - Definir features importantes

Deep Learning

Deep Learning

Bibliotecas Python para Deep Learning:

- Keras
- Tensorflow

Antonio L. Amadeu

Deep Learning

Deep Learning

https://medium.com/pilotorobo/pythonjogapong-parte-1-capturando-a-tela-e-extraindo-informa%C3%A7%C3%B5es-334135880144

https://github.com/pilotorobo/pongplay/blob/master/screen_features.py

Machine Learning x Deep Learning

Deep Learning – Convolutional Neural Network

Operation	Kernel ω	Image result g(x,y)	1120100000	[0 -1 0]	-
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$		Sharpen	$\begin{bmatrix} -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	Ser.
			Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$				
	$\begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$		Gaussian blur 3 × 3 (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	6
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$		Gaussian blur 5 × 5 (approximation)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$		Unsharp masking 5 × 5 Based on Gaussian blur with amount as 1 and threshold as 0 (with no image mask)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Antonio L. Amadeu

Input						
7	3	5	2		Output	
8	7	1	6	maxpool	8	6
4	9	3	9		9	9
0	8	4	5			

Deep Learning

Arquiteturas de Deep Learning:

- Restricted Boltzmann Machines (RBM)
 - Classificação de imagens
 - Reconhecimento de fala
- Autoencoders
 - Fraudes
 - o Análise de comportamento
- Convolutional Neural Networks (CNN)
 - Classificação de imagens
- Recurrent Neural Networks (RNN)
 - Classificação de sentimento
 - Geração de texto
 - Predição de preço de ações
- Generative Adversarial Networks (GANs)
 - Geração de imagem, audio, video, etc.
 - https://thispersondoesnotexist.com/

Meus heróis:

Deep Learning

Peter Norvig – Diretor de pesquisa no Google

Geoffrey E. Hinton – Google Brain e Universidade de Toronto

Yoshua Bengio – Universidade de Montreal

Yann LeCun – Facebook e Courant Institute

Time Series

Seasonality and Stationarity (constant media and variance)

Análise de Sentimento

Leitura sugerida:

http://www.akitaonrails.com/2014/05/02/off-topic-carreira-em-programacao-codificar-nao-e-programar#.U2hY5PldUvz

Várias técnicas e maneiras, também, várias bibliotecas

Bibliotecas para a lingua portuguesa:

- SentiLex-PT02
- propbankbr_v1_26112011
- oplexicon_v3.0
- ...

Análise de sentimento - Tradutor

```
import nltk.corpus
from textblob import TextBlob as tb
frase = tb("Este é um teste de textblob")
type(frase)
frase.tokens
# Lê o texto e quebra em sentenças
sent_tokenizer=nltk.data.load('tokenizers/punkt/portuguese.pickle')
rt = open("D:/Netbiis/Curso_AS/noticia1.txt", "r")
raw_text = rt.read()
sentences = sent tokenizer.tokenize(raw text)
# Mostra as sentenças em português
for sent in sentences:
  print(",,", sent , ">>")
# Traduz as sentenças para o inglês
for sent en in sentences:
  fi = tb(sent_en)
  se = fi.translate(from_lang ="pt", to = "en")
  print(",,", se , ">>")
```

Análise de Sentimento – Análise das palavras de uma frase - SentiLex

Análise de Sentimento – Análise de frases com Naive Bayes e Random Forest

Perguntas ???

Obrigado!!!