In this document we reproduce the results presented in the slides and illustrate some further calculations. We start with the pancreatic cancer example of slide 2 (and onwards). The data are available in the file coffeedata_2.xls.

```
require(readxl)
data_coffee_2 <- read_excel("coffeedata_2.xls")</pre>
data_coffee_2
## # A tibble: 8 x 4
##
     cases controls coffee
                                 sex
##
     <dbl>
                <dbl>
                        <dbl> <dbl>
                            3
## 1
         60
                   82
## 2
         53
                   74
                            2
                                   0
## 3
         94
                  119
                            1
                                   0
                            0
## 4
          9
                   32
                                   0
## 5
         28
                   48
                            3
                                   1
                            2
## 6
         53
                   80
                                   1
## 7
         59
                  152
                            1
                                   1
## 8
         11
                   56
                            0
                                   1
```

Note that in the coffee column, 0 denotes no coffee consumption, 1 denotes 1-2 cups of coffee per day, 2 denotes 3-4 cups of coffee per day and 3 denotes 5 or more cups coffee/day. In turn, in the column sex, 1 stands for a female subject and 0 for a male. I will start by coding these variables as factors and relabelling them so that they a have a more intuitive meaning (at least, to me!).

```
## # A tibble: 8 x 4
##
     cases controls coffee sex
##
     <dbl>
               <dbl> <fct>
                             <fct>
## 1
        60
                  82 5+
                             Male
## 2
        53
                  74 3-4
                             Male
## 3
        94
                 119 1-2
                             Male
         9
                  32 0
## 4
                             Male
## 5
        28
                  48 5+
                             Female
## 6
        53
                  80 3-4
                             Female
## 7
                 152 1-2
                             Female
        59
## 8
        11
                  56 0
                             Female
```

Note that the data are grouped (or in *binomial* format), i.e., for each coffee consumption and gender levels combination, it is listed the number of cases and the number of controls (or, more generally, the number of successes and failures). This a popular way of presenting the data when all exposure variables are discrete. We then need to pass the number of cases and controls for each exposure variables combination to the glm function.

```
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.2434
                            0.2597 -4.788 1.68e-06 ***
## coffee1-2
                 0.8668
                            0.2687
                                      3.226 0.001256 **
## coffee3-4
                 1.0726
                            0.2791
                                      3.843 0.000122 ***
## coffee5+
                 0.9900
                            0.2862
                                      3.459 0.000543 ***
## sexFemale
                -0.4035
                            0.1347 -2.996 0.002733 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 33.469 on 7 degrees of freedom
## Residual deviance: 4.268 on 3 degrees of freedom
## AIC: 54.219
##
## Number of Fisher Scoring iterations: 3
exp(res_binom$coefficient)[2:5]
## coffee1-2 coffee3-4 coffee5+ sexFemale
## 2.3793677 2.9228382 2.6911641 0.6679681
exp(confint.default(res_binom, level = 0.95))[2:5,]
##
                 2.5 %
                          97.5 %
## coffee1-2 1.4051677 4.0289788
## coffee3-4 1.6913090 5.0511070
## coffee5+ 1.5356496 4.7161569
## sexFemale 0.5130039 0.8697426
You may see as well in the literature, the following use of the glm function with grouped/binomial data:
instead of using the pairs of cases and controls, one passes to the function the proportion of cases and in
this case the argument weights need to be specified as well (corresponding to the total of observations per
category).
res_binom_alt <- glm(cases/(cases + controls) ~ coffee + sex, family = "binomial",
                     weights = cases + controls, data = data_coffee_2)
summary(res_binom_alt)
##
## Call:
## glm(formula = cases/(cases + controls) ~ coffee + sex, family = "binomial",
##
       data = data_coffee_2, weights = cases + controls)
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.2434
                            0.2597 -4.788 1.68e-06 ***
                 0.8668
                            0.2687
                                      3.226 0.001256 **
## coffee1-2
## coffee3-4
                 1.0726
                            0.2791
                                      3.843 0.000122 ***
## coffee5+
                 0.9900
                            0.2862
                                      3.459 0.000543 ***
## sexFemale
                -0.4035
                            0.1347 -2.996 0.002733 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
```

```
##
## Null deviance: 33.469 on 7 degrees of freedom
## Residual deviance: 4.268 on 3 degrees of freedom
## AIC: 54.219
##
## Number of Fisher Scoring iterations: 3
```

All output is obviously the same. Alternatively, we can rearrange the data in an ungrouped (or bernoulli) form and each individual is listed separately (i.e., observations that form say, an exposure class, with the same gender and coffee consumption, are not grouped). The data is stored in this format in the file coffeedata_1.xls.

```
## # A tibble: 6 x 3
##
     cancer_status coffee sex
##
              <dbl> <fct>
                           <fct>
                  0 5+
## 1
                            Male
## 2
                  0 5+
                            Male
## 3
                  0 5+
                            Male
                  0 5+
                            Male
## 4
## 5
                  0 5+
                            Male
## 6
                  0 5+
                            Male
```

We can now use the function glm just passing the response variable, cancer_status in this case, which is either a 1 (for a case) or a 0 (for a control).

```
##
## Call:
## glm(formula = cancer_status ~ coffee + sex, family = "binomial",
       data = data_coffee_1)
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -1.2434
                            0.2597
                                    -4.788 1.68e-06 ***
## coffee1-2
                 0.8668
                            0.2687
                                     3.226 0.001256 **
## coffee3-4
                 1.0726
                            0.2791
                                     3.843 0.000122 ***
## coffee5+
                 0.9900
                            0.2862
                                     3.459 0.000543 ***
## sexFemale
                -0.4035
                            0.1347 -2.996 0.002733 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1323.8 on 1009
                                       degrees of freedom
## Residual deviance: 1294.6 on 1005 degrees of freedom
## AIC: 1304.6
```

```
##
## Number of Fisher Scoring iterations: 4
```

We see that all results but the deviances and AIC are the same. Still, the difference between the null and the residual deviances are the same under the two models. With respect

```
## [1] 54.21942
AIC(res_bern)
```

```
## [1] 1304.567
```

The AIC as we will see later in the lecture slides is given by $-2 \log \text{likelihood}(\widehat{\beta}) + (k+1)$, where k+1 is the total number of parameters in the model (k regression coefficients and the intercept). The difference between the AIC comes from the difference between the bernoulli and binomial likelihoods. In particular, the AIC for the binomial case is just equal to the AIC of the bernoulli model plus the following term: $-2\sum_{k=1}^{8}\log\binom{n_k}{y_k}$, where n_k is the number of subjects (cases + controls) in category (as formed by the gender and coffee consumption levels combination) k, whereas y_k is the number of cases (at category k).

```
AIC(res_bern) -2*(log(choose(60 + 82, 60)) + log(choose(53 + 74, 53)) + log(choose(94 + 119, 94)) + log(choose(9 + 32, 9)) + log(choose(28 + 48, 28)) + log(choose(53 + 80, 53)) + log(choose(59 + 152, 59)) + log(choose(11 + 56, 11)))
```

[1] 54.21942

##

Let us now illustrate the likelihood ratio method using the CHD example we have analysed before. Just for the sake of illustration, we will be discretizing the weight variable in five categories.

```
data_wchs <- read_excel("wcgsdata.xls")</pre>
names(data wchs)
    [1] "Id"
                              "Height0" "Weight0" "Sbp0"
                   "Age0"
                                                                          "Chol0"
                                                               "Dbp0"
    [8] "Behpat0" "Ncigs0"
                              "Dibpat0" "Chd69"
                                                    "Typechd" "Time169" "Arcus0"
head(data_wchs)
## # A tibble: 6 x 14
##
        Id AgeO HeightO WeightO SbpO DbpO CholO BehpatO NcigsO DibpatO Chd69
                                                                          <dbl> <dbl>
##
     <dbl> <dbl>
                    <dbl>
                             <dbl> <dbl> <dbl> <chr>
                                                         <dbl>
                                                                 <dbl>
                                      110
## 1
      2001
               49
                       73
                               150
                                             76 225
                                                             2
                                                                    25
                                                                              1
                                                                                    0
                                                             2
## 2
      2002
               42
                       70
                               160
                                      154
                                             84 177
                                                                    20
                                                                              1
                                                                                    0
## 3
                                                             3
                                                                                    0
      2003
               42
                       69
                               160
                                      110
                                             78 181
                                                                     0
                                                                              0
## 4
      2004
               41
                        68
                               152
                                      124
                                             78 132
                                                              4
                                                                    20
                                                                              0
                                                                                    0
## 5
      2005
               59
                        70
                               150
                                      144
                                             86 255
                                                             3
                                                                    20
                                                                              0
                                                                                    1
    2006
               44
                        72
                               204
                                      150
                                             90 182
                                                              4
                                                                     0
                                                                                    0
## # i 3 more variables: Typechd <dbl>, Time169 <dbl>, Arcus0 <chr>
require(readxl)
data_wchs <- read_excel("wcgsdata.xls")</pre>
names(data_wchs)
                   "Age0"
                              "Height0" "Weight0"
                                                                          "Chol0"
                                                    "Sbp0"
                                                               "Dbp0"
    [8] "Behpat0" "Ncigs0"
                              "Dibpat0" "Chd69"
                                                    "Typechd" "Time169" "Arcus0"
head(data_wchs)
## # A tibble: 6 x 14
```

Id AgeO HeightO WeightO SbpO DbpO CholO BehpatO NcigsO DibpatO Chd69

```
<dbl> <dbl>
                    <dbl>
                            <dbl> <dbl> <dbl> <chr>
                                                        <dbl>
                                                               <dbl>
                                                                       <dbl> <dbl>
##
## 1
      2001
                                                                  25
              49
                       73
                              150
                                    110
                                            76 225
                                                            2
                                                                            1
                                                                                  0
      2002
## 2
              42
                       70
                              160
                                    154
                                            84 177
                                                            2
                                                                  20
                                                                            1
                                                                                  0
                       69
## 3
      2003
              42
                              160
                                                            3
                                                                   0
                                                                            0
                                                                                  0
                                    110
                                            78 181
## 4
      2004
              41
                       68
                              152
                                    124
                                            78 132
                                                            4
                                                                  20
                                                                            0
                                                                                  0
                       70
                                                            3
                                                                  20
                                                                            0
## 5
      2005
              59
                              150
                                    144
                                            86 255
                                                                                  1
                       72
                                                                                  0
## 6 2006
              44
                              204
                                    150
                                            90 182
                                                                   0
## # i 3 more variables: Typechd <dbl>, Time169 <dbl>, Arcus0 <chr>
n <- nrow(data wchs)
data_wchs$weight_cat <- numeric(n)</pre>
for(i in 1:n){
data_wchs$weight_cat[i] <- ifelse(data_wchs$Weight0[i] <= 150, 1,</pre>
       ifelse(data_wchs$Weight0[i] > 150 & data_wchs$Weight0[i] <= 160, 2,
              ifelse(data_wchs$Weight0[i] > 160 & data_wchs$Weight0[i] <= 170, 3,
                      ifelse(data_wchs$Weight0[i] > 170 & data_wchs$Weight0[i] <= 180, 4, 5))))
}
data_wchs$weight_cat <- factor(data_wchs$weight_cat, levels = c(1, 2, 3, 4, 5),
                                labels = c("<150", "150-160", "160-170",
                                            "170-180", ">180"))
res_weight_cat <- glm(Chd69 ~ weight_cat, family = "binomial",</pre>
                       data = data wchs)
summary(res_weight_cat)
##
## Call:
## glm(formula = Chd69 ~ weight_cat, family = "binomial", data = data_wchs)
##
## Coefficients:
##
                      Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                      -2.85862
                                  0.18177 -15.727 < 2e-16 ***
## weight_cat150-160
                       0.06805
                                  0.25938
                                             0.262 0.793041
## weight_cat160-170
                       0.38377
                                  0.23393
                                             1.641 0.100899
## weight_cat170-180
                       0.83167
                                  0.22403
                                             3.712 0.000205 ***
## weight_cat>180
                                  0.21729
                                             2.807 0.004993 **
                       0.61003
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1781.2 on 3153
                                         degrees of freedom
## Residual deviance: 1759.8 on 3149 degrees of freedom
## AIC: 1769.8
##
## Number of Fisher Scoring iterations: 5
```

We now test the hypothesis $H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$. From the slides, we know that all we need is the deviance from the model only containing β_0 and the deviance from the model containing all five parameters. The deviance of the model only containing the intercept is always given in the output of the glm function in the null deviance. The residual deviance is the deviance of the model we have fitted (in this case, the model containing the five parameters).

```
dif_deviance <- res_weight_cat$null.deviance - res_weight_cat$deviance
dif_deviance</pre>
```

[1] 21.39813

The values of the χ_1^2 distribution can then be used to determine the probability of observing a value as large or larger than this difference of deviances, assuming the null hypothesis H_0 to be true. This probability is known as the p-value, associated with the null hypothesis H_0 , generated by the observed data. As mentioned, the p-value is the right hand tail area of the χ_1^2 distribution, greater than the observed value of the test statistic.

```
pchisq(dif_deviance, df = 4, lower = FALSE)

## [1] 0.0002640013
1 - pchisq(dif_deviance, df = 4, lower = TRUE)
```

[1] 0.0002640013

At any significance level commonly used (e.g., 0.01, 0.05, 0.1) we reject the null hypothesis, i.e., we reject that all four coefficients are zero.

The Wald test statistic, z_{β_j} as in the slides, is available in the **z** value column of the output. The corresponding p-value is given in the next (to the right) column. We do not need but we know how to obtain those p-values. For instance, for β_1

```
pchisq(0.262^2, df = 1, lower = FALSE)
```

```
## [1] 0.7933214
```

The AIC is provided as part of the output of the glm function. There are also the functions AIC and BIC.

```
#Below 5 is the number of parameters.
BIC(res_weight_cat)
```

```
## [1] 1800.128
```

```
res_weight_cat$deviance + 5*log(dim(data_wchs)[1])
```

```
## [1] 1800.128
```

```
AIC(res_weight_cat)
```

```
## [1] 1769.846
```

```
res_weight_cat$deviance + 5*2
```

[1] 1769.846