Encryption

Todays topics

Hey, check out these slides...

- ▶ What is *encryption*
- ▶ What is a *cryptosystem*
- Types of encryption
 - Symmetric encryption
 - Asymmetric encryption
- Public and Private keys
- Key Exchanges

What is Encryption

Encryption is the process of *encoding* information with a purpose (typically for security security). This process converts the original representation of the information, known as *plaintext*, into an alternative form known as *ciphertext*.

This process, combined with its reverse *decryption*, and all of the data/algorithms necessary to encrypt and decrypt messages form a *cryptosystem*.

-Wikipedia

Encoding and Encrpytion

Figure 1: Scytale

What is Encryption (continued)

Some points:

- ► Encryption is reversible (with a key)
- Encryption is everywhere
- Encryption does NOT need a computer (but good encryption probably does...)

Cryptosystem

Five-tuple (sequence) of the following elements:

Element	description
E	the set of Encryption algorithms
D	the set of <i>Decryption</i> algorithms
M	the set of plaintext <i>Messages</i>
K	the set of <i>Keys</i>
C	the set of encrypted messages or ${\it Ciphertexts}$

$$E = f(K,M) -> C$$

 $D = f(K,C) -> M$

Scytale Cryptosystem

Element	description
E D	wrap around scytale & write message wrap around scytale & read message
M K	the message
C	strip or paper with letters

Caesar Cipher

AKA rotational cipher, shift cipher, probably more. Simple encryption via substitution.

Figure 2: caesar cipher

Lets get Math-y

Element	description
М	? ?? ????
C	F XJ EBOB
E	C [n]=(M [n] - 3) Mod 26
D	M[n] = (C[n] + 3) Mod 26
K	What is the key?

M[n] = ABCDEFGHIJKLMNOPQRSTUVWXYZ
C[n] = XYZABCDEFGHIJKLMNOPQRSTUVW

Two types of Encryption

Symmetric

Same key for both encrypting and decrypting

Asymmetric

Different keys for encrypting and decrypting

Symmetric Encryption

Figure 3: symmetric key encryption

Keys are identical for encryption and decryption.

Asymmetric Encryption

Figure 4: public key encryption

Keys are different but mathematically related.

Differences

Symmetric	Asymmetric
* One key	* Multiple keys
* Fast	* Slow
* Used to encrypt various	* Used to authenticate and
amounts of data	initiate symmetric encryption
* Key must be secured	* only private key needs
	securing
* Needs more keys to establish	* Needs fewer keys to establish
secure communications within a	secure communication in a
group	group

Apples and Oranges

Although the end goal is the same (end up with *encrypted* data in the form of a cipher text), asymmetric and symmetric encryption work very differently.

	Asymmetric (RSA 2048)	Symmetric (AES 128)
Encrypt spd	1.5 MB/s	100 MB/s
Decrypt spd	0.4 MB/s	100 MB/s

Public and Private Key pairs

- Public key is public information, can be shared with anyone.
- Assume everyone has your public key
- Private key must be kept private
- Public and Private key pairs share a unique mathematical relation:
 - Anything encrypted with the public key can only be decrypted with the private key
 - Anything encrypted with the private key can only be decrypted with the public key

Key Pairs continued

If we trust this relationship, and we trust that recorded knowledge of who has what keys:

- We can check Authenticity by asking them to encrypt something with their private key
- We can recieve (one way) secure communications (ask someone else to first encrypt with your public key)
- ▶ If we send something encrypted with our private key who can read it???

Diffie-Hellman Key Exchange

Solves the problem of securely exchanging cryptographic keys over a public channel.

The internet is public and filled with many potential eavsdroppers (*Eve's*)

► How to establish a *secure* communication channel across an insecure one?

Diffie-Hellmen

Diffie-Hellman w/colors

Diffie-Hellman usage

HTTPS://

Figure 7: TCP Handshake