

Veröffentlichungsnummer:

0 333 131

(12)

EUROPÄISCHE PATENTANMELDUNG

21) Anmeldenummer: 89104500.7

(1) Int. Cl.4: A01N 25/32 , C07D 231/14

2 Anmeldetag: 14.03.89

Patentanspruch für folgenden Vertragsstaat:ES

3 Priorität: 17.03.88 DE 3808896

Veröffentlichungstag der Anmeldung: 20.09.89 Patentblatt 89/38

Benannte Vertragsstaaten:
AT BE CH DE ES FR GB GR IT LI NL SE

7) Anmelder: HOECHST AKTIENGESELLSCHAFT Postfach 80 03 20 D-6230 Frankfurt am Main 80(DE) @ Erfinder: Sohn, Erich, Dr.

Lange Gasse 4

D-8900 Augsburg(DE)

Erfinder: Mildenberger, Hilmar, Dr.

Fasanenstrasse 24

D-6233 Kelkheim (Taunus)(DE)

Erfinder: Bauer, Klaus Dr. Doorner Strasse 53d D-6450 Hanau(DE)

Erfinder: Bleringer, Hermann, Dr.

Eichenweg 26

D-6239 Eppstein/Taunus(DE)

Pflanzenschützende Mittel auf Basis von Pyrazolcarbonsäurederivaten.

Gegenstand der vorliegenden Erfindung sind Mittel zum Schutz von Kulturpflanzen gegen phytotoxische Nebenwirkungen von Herbiziden, dadurch gekennzeichnet, daß sie eine Verbindung der Formel I

worin
Y C-H oder N,
R₁ unabhängig voneinander Alkyl, Haloalkyl, Alkoxy, Haloalkoxy oder Halogen,
R₂ Alkyl oder Cycloalkyl
X COOR₃, CON(R₄)₂, COSR₃, CN,

R₃ Alkali- oder Erdalkalimetall, Wasserstoff, Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Phenylalkyl, wobei Phenyl durch Halogen substituiert sein kann, Trisalkylsilylalkyl, Alkoxyalkyl R₄ unabhängig voneinander H, Alkyl, Cycloalkyl, das substituiert sein kann, oder 2 Reste R₄ bilden zusammen mit dem sie verknüpfenden N-Atom einen 4- bis 7-gliedrigen heterocyclischen Ring und

n 1 bis 3 bedeuten, in Kombination mit einem Herbizid enthalten.

Pflanzenschützende Mittel auf Basis von Pyrazolcarbonsäurederivaten

Gegenstand der vorliegenden Erfindung sind Mittel zum Schutz von Kulturpflanzen gegen phytotoxische Nebenwirkungen von Herbiziden, dadurch gekennzeichnet, daß sie eine Verbindung der Formel I

worin

5

Y C-H oder N,

R₁ unabhängig voneinander (C₁-C₄)-Alkyl, (C₁-C₄)-Haloalkyl, (C₁-C₄)-Alkoxy, (C₁-C₄)-Haloalkoxy oder Halogen,

R₂ (C₁-C₁₂)-Alkyl oder (C₃-C₇)-Cycloalkyl,

X COOR3, CON(R4)2, COSR3, CN,

25 R₃ Alkali- oder Erdalkalimetali, Wasserstoff, (C₁-C₁₀)-Alkyl, (C₃-C₂₀)-Alkenyl, (C₃-C₁₀)-Alkinyl, (C₃-C₇)-Cycloalkyl, Phenyl-(C₁-C₄)-Alkyl, wobel Phenyl durch Halogen substituiert sein kann, Tris-(C₁-C₄)-Alkyl-Silyl-(C₁-C₄)-Alkyl, (C₁-C₄)-Alkoxy-(C₁-C₄)-Alkyl

R₄ unabhängig voneinander H, (C₁-C₁₀)-Alkyl, (C₃-C₇)-Cycloalkyl, das substituiert sein kann, oder 2 Reste R₄ bilden zusammen mit dem sie verknüpfenden N-Atom einen 4- bis 7-gliedrigen heterocyclischen Ring und

n 1 bis 3

35

40

bedeuten, in Kombination mit einem Herbizid enthalten.

Dabel bedeutet Alkyl geradkettiges oder verzweigtes Alkyl. Im Fall

$$x = \bigcup_{\substack{-c - o - c \\ \parallel}} 0 \bigcup_{\substack{N \\ \parallel}} N - \bigcup_{\substack{N \\ \parallel}} N$$

werden zwei identische Reste einer Verbindung der Formel I miteinander verknüpft. Halogen bedeutet bevorzugt Chlor oder Brom, Alkalimetall bevorzugt Li, Na, K und Erdalkalimetall insbesondere Ca. Bei dem aus den beiden Resten R4 zusammen mit dem N-Atom gebildeten heterocyclischen Ring handelt es sich bevorzugt um Pyrrolidin, Morpholin, 1,2,4-Triazol und Piperidin.

Weiterhin bevorzugt sind die Verbindungen der Formel I, worin Y = CH, $R_1 = Halogen$, $(C_1-C_4)-HaloalkyI$, $R_2 = (C_1-C_6)-AlkyI$, $X = COOR_3$, $R_3 = H$ oder $(C_1-C_6)-AlkyI$ und n = 1 oder 2 bedeuten.

Insbesondere bevorzugt sind die Verbindungen der Formel I, worin Y = CH, R₁ = CI oder Br, CF₃, R₂ = (C₁-C₄)-Alkyl, X = COOR₃, R₃ = (C₁-C₄)-Alkyl und n = 2 bedeuten.

Die Verbindungen der Formel I mit Y = CH, R_1 = 2,4-Cl₂, R_2 = Isopropyl, X = COOR₃ und R_3 = (C₁-C₁₀)-Alkyl sind neu und ebenfalls Gegenstand der vorliegenden Erfindung. Dabel ist für R_2 die 5-Stellung und für X die 3-Stellung bevorzugt. Besondere Bedeutung hat die Verbindung mit Y = CH, R_1 = 2,4-Cl₂, R_2 = 5-Isopropyl und X = 3-COOC₂H₅.

Die Verbindungen der Formel I lassen sich nach literaturbekannten Methoden herstellen (HU-PS 153 762 od. Chem. Abstr. 68, 87293 y (1968)). Zur weiteren Derivatisierung wird der Rest -COOR3 in bekannter

Weise in andere für X genannte Reste umgewandelt, z.B. durch Verseifung, Umesterung, Amidierung, Salzbildung etc., wie dies z.B. in den DE-OS 3 444 918 oder 3 442 690 beschrieben ist.

Bei der Anwendung von Pflanzenbehandlungsmitteln, insbesondere von Herbiziden, können unerwünschte, nicht tolerierbare Schäden an Kulturpflanzen auftreten. Besonders bei der Applikation von Herbiziden nach dem Auflaufen der Kulturpflanzen besteht daher oft das Bedürfnis, das Risiko einer möglichen Phytotoxizität zu vermeiden.

Verschiedene Verbindungen wurden für diese Anwendung bereits beschrieben (z.B. EP-A 152 006).

Überraschenderweise wurde gefunden, daß Verbindungen der Formel I die Eigenschaften haben, phytotoxische Nebenwirkungen von Pflanzenschutzmitteln, insbesondere von Herbiziden, beim Einsatz in Nutzpflanzenkulturen zu vermindern oder ganz auszuschalten. Die Verbindungen der Formel I sind in der Lage, schädliche Nebenwirkungen der Herbizide völlig aufzuheben, ohne die Wirksamkeit dieser Herbizide gegen Schadpflanzen zu schmälern.

Solche Verbindungen, die die Eigenschaften besitzen, Kulturpflanzen gegen phytotoxische Schäden durch Herbizide zu schützen, ohne die eigentliche herbizide Wirkung dieser Mittel zu beeinträchtigen, werden "Antidote" oder "Safener" genannt.

Das Einsatzgebiet herkömmlicher Herbizide kann durch Zugabe der Safenerverbindung der Formel I ganz erheblich vergrößert werden.

Gegenstand der vorliegenden Erfindung ist daher auch ein Verfahren zum Schutz von Kulturpflanzen gegen phytotoxische Nebenwirkungen von Pflanzenschutzmitteln, insbesondere Herbiziden, das dadurch gekennzeichnet ist, daß man die Pflanzen, Pflanzensamen oder Anbauflächen mit einer Verbindung der Formel I vor, nach oder gleichzeitig mit dem Pflanzenschutzmittel behandelt.

Herbizide, deren phytotoxische Nebenwirkungen mittels der Verbindungen der Formel I herabgesetzt werden können, sind z.B. Carbamate, Thiocarbamate, Halogenacetanilide, substituierte Phenoxy-, Naphthoxy- und Phenoxyhenoxy-carbonsäurederivate sowie Heteroaryloxyphenoxycarbonsäurederivate wie Chinolyloxy-, Chinoxalyloxy, Pyridyloxy-, Benzoxazolyloxy-, Benzthiazolyloxy-phenoxy-carbonsäureester und ferner Dimedonoximabkömmlinge. Bevorzugt hiervon sind Phenoxyphenoxy- und Heteroaryloxyphenoxy-carbonsäureester. Als Ester kommen hierbei insbesondere niedere Alkyl-, Alkenyl-und Alkinylester in Frage.

Beispielsweise seien, ohne daß dadurch eine Beschränkung erfolgen soll, folgende Herbizide genannt:

- A) Herbizide vom Typ der Phenoxyphenoxy- und Heteroaryloxyphenoxycarbonsäure- (C_1-C_4) -Alkyl-, (C_2-C_4) -Alkenyl- oder (C_3-C_4) -Alkinylester wie
- 2-(4-(2,4-Dichlorphenoxy)-phenoxy)-propionsäuremethylester,
- 2-(4-(4-Brom-2-chlorphenoxy)-phenoxy)-propionsäuremethylester,
- 2-(4-(4-Trifluormethylphenoxy)-phenoxy)-propionsäuremethylester,
- 35 2-(4-(2-Chlor-4-trifluormethylphenoxy)-phenoxy)-propionsäuremethylester,
 - 2-(4-(2,4-Dichlorbenzyl)-phenoxy)-propionsäuremethylester,
 - 2-Isopropylideneamino-oxyethyl(R)-2-[4-(6-chloroquinoxalin-2-yloxy)-phenoxy]-propionate (Propaquizafop),
 - 4-(4-(4-Trifluormethylphenoxy)-phenoxy)-pent-2-en-säureethylester.
 - 2-(4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy)-propionsäureethylester,
- 40 2-(4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy)-proplonsäurepropargylester,
 - 2-(4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy)-propionsäureethylester,
 - 2-(4-(6-Chlorbenzthiazol-2-yl-oxy)-phenoxy)-propionsäureethylester,
 - 2-(4-(3-Chlor-5-trifluormethyl-2-pyridyloxy)-phenoxy)-propionsäuremethylester,
 - 2-(4-(5-Trifluormethyl-2-pyridyloxy)-phenoxy)-propionsäurebutylester,
- 45 2-(4-(6-Chlor-2-chinoxalyloxy)-phenoxy)- propionsäureethylester,
 - 2-(4-(6-Fluor-2-chinoxalyloxy)-phenoxy)-propionsäureethylester,
 - 2-(4-(5-Chlor-3-fluor-pyridyl-2-oxy)-phenoxy)-proplonsäurepropargylester
 - 2-(4-(6-Chlor-2-chinolyloxy)-phenoxy)-propionsäureethylester.
 - 2-(4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy)-propionsäure-trimethylsilylmethylester,
- 50 2-(4-(3-Chlor-5-trifluormethoxy-2-pyridyloxy)-phenoxy)-propionsäureethylester,
 - B) Chloracetanilid-Herbizide wie
 - N-Methoxymethyl-2.6-diethyl-chloracetanilid,
 - N-(3 -Methoxyprop-2 -yl)-methyl-6-ethyl-chloracetanilid,
 - N-(3-Methyl-1,2,4-oxdiazol-5-yl-methyl)-chloressigsäure-2,6-dimethylanilid,
 - C) Thiocarbamate wie

55

- S-Ethyl-N,N-dipropylthiocarbamat oder
- S-Ethyl-N,N-disobutylthiocarbamat

D) Dimedon-Derivate wie

2-(N-Ethoxybutyrimidoyl)-5-(2-ethylthiopropyl)-3-hydroxy-2-cyclohexen-1-on,

2-(N-Ethoxybutyrimidoyl)-5-(2-phenylthiopropyl)-3-hydroxy-2-cyclohexen-1-on oder

2-(1-Allyloxyiminbutyl)-4-methoxycarbonyl-5,5-dimethyl-3-oxocyclohexenol,

2-(N-Ethoxypropionamidoyl)-5-mesityl-3-hydroxy-2-cyclohexen-1-on,

2-(N-Ethoxybutyrimidoyl)-3-hydroxy-5-(thian-3-yl)-2-cyclohexen-1-on.

2-[1-(Ethoxyimino)-butyl]-3-hydroxy-5-(2H-tetrahydrothiopyran-3-yl)-2-cyclohexen-1-one (BASF 517);

2-[1-(Ethoxyimino)-propyl]-3-hydroxy-5-mesitylcyclohex-2-enone (PP 604 von ICI);

(±)-2-[(E)-3-chloroallyloxyiminopropyl]-5-(2-ethylthiopropyl)-3-hydroxycyclohex-2-enone (Clethodim)

Von den Herbiziden, welche erfindungsgemäß mit den Verbindungen der Formel I kombiniert werden können, sind bevorzugt die unter A) aufgeführten Verbindungen zu nennen, insbesondere 2-(4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy)-propionsäureethylester, 2-(4-(6-Chlorbenzthiazol-2-yl-oxy)-phenoxy)-propionsäureethylester und 2-(4-(5-Chlor-3-fluor-pyridyl-2-oxy)-phenoxy)-propionsäurepropargylester. Von den unter D) genannten Substanzen ist insbesondere 2-(N-Ethoxypropionamidoyl)-5-mesityl-3-hydroxy-2-cyclohexen-1-on von Bedeutung.

Das Mengenverhältnis Safener (Verbindung I): Herbizid kann innerhalb weiter Grenzen zwischen 1:10 und 10:1, insbesondere zwischen 2:1 und 1:10 schwanken.

Die jeweils optimalen Mengen an Herbizid und Safener sind abhängig vom Typ des verwendeten Herbizids oder vom verwendeten Safener sowie von der Art des zu behandelnden Pflanzenbestandes und lassen sich von Fall zu Fall durch entsprechende Versuche ermitteln.

Haupteinsatzgebiete für die Anwendung der Safener sind vor allem Getreidekulturen (Weizen, Roggen, Gerste, Hafer), Reis, Mais, Sorghum aber auch Baumwolle, Zuckerrüben, Zuckerrohr und Sojabohne.

Die Safener können je nach ihren Eigenschaften zur Vorbehandlung des Saatgutes der Kulturpflanze (Beizung der Samen) verwendet werden oder vor der Saat in die Saatfurchen eingebracht werden oder zusammen mit dem Herbizid vor oder nach dem Auflaufen der Pflanzen angewendet werden. Vorauflaufbehandlung schließt sowohl die Behandlung der Anbaufläche vor der Aussaat als auch die Behandlung der angesäten, aber noch nicht bewachsenen Anbauflächen ein.

Bevorzugt ist jedoch die gleichzeitige Anwendung des Antidots mit dem Herbizid in Form von Tankmischungen oder Fertigformulierungen.

Die Verbindungen der Formel I oder deren Kombination mit einem oder mehreren der genannten Herbizide bzw. Herbizidgruppen können auf verschiedene Art formuliert werden, je nachdem wie es durch die biologischen und/oder chemisch-physikalischen Parameter vorgegeben ist. Als Formulierungsmöglichkeiten kommen daher Infrage: Spritzpulver (WP), emulgierbare Konzentrate (EC), wäßrige Lösungen (SC), Emulsionen, versprühbare Lösungen, Dispersionen auf Öl- oder Wasserbasis (SC), Suspoemulsionen (SC), Stäubemittel (DP), Beizmittel, Granulate in Form von Mikro, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG). ULV-Formulierungen, Mikrokapseln oder Wachse.

Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986; van Falkenberg, "Pesticides Formulations", Marcel Dekker N.Y., 2nd Ed. 1972-73; K. Martens, "Spray Drying Handbook", 3rd Ed. 1979, G. Goodwin Ltd. London.

Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J.; H.v.Olphen, "Introduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y.; Marschen, "Solvents Guide", 2nd Ed., Interscience, N.Y. 1950; McCutcheon's, "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1976; Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986.

Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix. Spritzpulver sind in Wasser gleichmäßig disperglerbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs-oder Inertstoff noch Netzmittel, z.B. polyoxethylierte Alkylphenole, polyoxethylierte Fettalkohole, Alkyl-oder Alkylphenolsulfonate und Disperglermittel, z.B. ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleylmethyltaurinsaures Natrium enthalten. Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel, z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen unter Zusatz von einem oder mehreren Emulga-

toren hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calzium-Salze wie Ca-dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester. Alkylaryl-polyglykolether. Fettalkoholpolyglykolether. Propylenoxid-Ethylenoxid-Kondensationsprodukte. Alkylpolyether. Sorbitanfettsäureester, Polyoxyethylensorbitan-Fettsäureester oder Polyoxethylensorbitester. Stäubemittel erhält man durch Vermahlen des Wirkstöffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen wie Kaolin, Bentonit, Pyrophillit oder Diatomeenerde. Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfählges, granuliertes Inertmaterial hergestellt werden oder durch Außringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.

In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen etwa 2 bis 20 Gew.-%. Bei Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden.

Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Lösungsmittel, Füll- oder Trägerstoffe.

Zur Anwendung werden die in handelsüblicher Form vorliegenden Konzentrate gegebenenfalls in üblicher Weise verdünnt, z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersion und teilweise und auch bei Mikrogranulaten mittels Wasser. Staubförmige und granullerte Zubereitungen sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.

Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit, der Art des verwendeten Herbizids u.a. variiert die erforderliche Aufwandmenge der Verbindungen der Formel I. Sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,005 und 10,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,01 und 5 kg/ha.

Folgende Beispiele dienen zur Erläuterung der Erfindung:

A. Formulierungsbeispiele

20

30

35

45

- a) Ein Stäubernittel wird erhalten, indem man 10 Gew.-Teile einer Verbindung der Formel I und 90 Gew.-Teile Talkum oder Inertstoff mischt und in einer Schlagmühle zerkleinert.
- b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird enthalten, indem man 25 Gewichtsteile einer Verbindung der Formel I, 64 Gewichtsteile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile lignigsulfonsaures Kalium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.
- c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gewichtsteile einer Verbindung der Formel I mit 6 Gew.-Teilen Alkylphenolpolyglykolether (®Triton X 207), 3 Gew.-Teilen Isotridecanolpolyglykolether (8AeO) und 71 Gew.-Teilen paraffinischem Mineralöl (Siedebereich z. B. ca. 255 bis über 277°C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.
- d) Ein emulgierbares Konzentrat wird erhalten aus 15 Gew.-Teilen einer Verbindung der Formel I, 75 Gew.-Teilen Cyclohexanon als Lösungsmittel und 10 Gew.-Teilen oxethyliertes Nonylphenol als Emulgator.
- e) Ein in Wasser leicht emulgierbares Konzentrat aus einem Phenoxycarbonsäureester und einem Antidot (10:1) wird erhalten aus:

12,00 Gew.-% 2-(4-(6-Chlorbenoxazol-2-yl-oxy)-phenoxy-propionsäureethylester

1,20 Gew.-% Verbindung der Formel I

69,00 Gew.-% Xylol

7.80 Gew.-% dodecylbenzolsulfonsaurem Calcium

6.00 Gew.-% ethoxyliertem Nonylphenol (10 EO)

4,00 Gew.-% ethoxyliertem Rizinusöl (40 EO)

Die Zubereitung erfolgt wie unter Beispiel a) angegeben.

f) Ein in Wasser leicht emulgierbares Konzentrat aus einem Phenoxycarbonsäureester und einem Antidot (1:10) wird erhalten aus:

4,0 Gew.-% 2-(4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy-propionsäureethylester

40,0 Gew.-% Verbindung der Formel I

30,0 Gew.-% Xyloi

6

Ò

20.0 Gew.-% Cyclohexanon 4.0 Gew.-% dodecylbenzolsulfonsaurem Calcium 2.0 Gew.-% ethoxyliertem Rizinusöl (40 EO)

B. Chemische Beisplele

1. 1-(4-Chlorphenyl)-5(3)-methyl-pyrazol-3(5)-carbonsäureethylester

Zu 15,8 g Acetylbrenztraubensäureethylester I in 100 ml Toluol gibt man 14,3 g 4-Chlorphenylhydrazin II und 0,1 g p-Toluolsulfonsäure unter Rühren hinzu und erhitzt am Wasserabscheider. Nachdem kein Wasser mehr übergeht, läßt man abkühlen, verdünnt mit 100 ml Toluol und wäscht mit 100 ml 3 n Salzsäure, 100 ml Wasser, 100 ml gesättigter NaHCO₃-Lösung und 100 ml Wasser, engt die organische Phase zur Trockne ein und chromatographiert über Kieselgel (Laufmittel Petrolether -> Essigester).

Beisp.Nr.

10

20

25

30

35

40

45

60

55

1 1-(4-Chlorphenyl)-5-methyl-pyrazol-3-carbonsäureethyl ester (Fp. 121-124 °C)

62 1-(4-Chlorphenyl)-3-methyl-pyrazol-5-carbonsäureethylester (ÖI)

Analog werden Pyrazole mit anderem Substitutionsmuster im Aromatenteil und/oder anderem Allylrest hergestellt und gegebenenfalls an der Carbonylfunktion derivatisiert. Die Derivate sind in Table i zusammengestellt.

Tabelle I Alkyl-Aryl-pyrazolcarbonsäurederivate

7

	Y=CH Beisp	иг.(२) _п	R;	x FF/YPTorr (c)	
5	2	4-C1	5-CH3	3-C00CH;	
	. 3		11	3-C00-n-C ₃ H,	
	4	#	er	3-C00-i-C ₃ H,	
10	5	Ħ	".	3-000-n-C.H.	
	6	**	67	3-000-n-0.H	
15	7	•	11	3-C0G-n-C ₆ H ₁₃	
	8	н	11	3-C00-n-C ₈ H ₁₇	
	9	Ħ	n	7 COO - C W	
20	10	n	10	3-c-c-c-(R ₁) n	
	11	#1	n	3-COOH R ₂ 157-160	
	12	*	n	3-C00L1	
25	13	*	•	3-C00Na	
	14	π	**	3-C00K	
	15	41	•	3-C00Ca,/2	
. 30	16 .	Ħ	11	3-C00-c-C.H,	
	17	17	. 11	3-C00-c-C ₆ H ₁₃	
7	18	n		3-C00CH2-C6H5	
35	19	n	T .	3-C00CH ₂ -(2,4-Cl ₂ -C ₆ H ₃)	
	20	,,	ч	3-C00CH2CHCH2	
40	21.	n	**	3-C00C2H_CHCH2	
40	22	n	Ħ	3-C00-n-C:H16CHCH:	
	23	π	11	3-C00CH;CCH	
45	24	v .	11	3-C00-C 2HL-CCH	
•	25	n	11	3-C00-n-C ₅ H ₁₀ CCH	
	26	11	n	3-C00CH2S1(CH3)3	
50	27	n	**	3-C00C:H.OCH,	
	28	11	11	3-C0NH;	
	29	n	11	3-CN	
55	30	**	11	3-CONHCH,	

Y=CH Beisp	NI. (R ₁) _n	R ₂	X ^{Fp/Kp} τσττ (°C)
31	4-C1	5-CH,	3-CONHC,H.
32	••	n	3-CONH-n-C3H,
33	. 60	n .	3-CONH-n-C.H.
34	77	n	3-C0NH-n-CeH13
35	**	۳	3-CONH-n-C:cH:,
36	***	"	3-CONH-i-C;H,
37	••	H	3-CON(CH ₂);
38	**	r	3-CON(CH;)(nC,H;;)
39	**	n	3-CON(C2H2)2
40	**	19	3-CO-N
41	**	*	3-CO-N
42	n	Ħ	3-00-10
43	**	II .	3-CO-N_O
44			3-00-NH-c-C.H. 1
45	tr	a	3-CO-NH-C-C 3 H 5
46	•	н	3-CO-N(CH ₃)(cC ₆ H ₁₁)
47	#	п	3-COSH
48	**	п	3-COSNa
49	17	n ·	3-COSCH,
50	n	n	3-COSC ₂ H ₅
51	eq	п	3-COSCH ₂ C ₆ H ₅
52	#	# ·	3-COS-nC ₈ H ₁₇
53	•	n	3-COSC 2H LOCH 3
54	**	Ħ	3-COSCH: CHCH:
5.5	*	11	3-COSCH; CCH
56	11	11	3-COS-c-CeH; 1
57	•	**	3-COSCH ₂ Si(CH ₃);
5 8	***	Ħ	3-COS-n-C.H.CH(CH,);
5 9	TT	н .	3-CON NO
60	. 11	17	3-COOC:HLCH(CH;):

	Y=CH			
	Beisp.	-Nr.(R ₁) _n	R ₂	X Fp/Kp _{Torr} L°C7
5	61	4-C1	3-CH ₃	5-cocii3
	63	r	11	5-C00nC ₃ H;
	64	**	tr	5-C00-i-C ₃ H,
10	65	••		5-C00-n-C.H,
	66	81	n	5-C00-n-C ₅ H ₁ ,
	67	n	er	5-000-n-C ₆ H
15	68	Ħ	er	5-C00-n-C ₈ H ₁₇
	69	Ħ	π	5-C00-n-C, oH; (R ₁) n
20	70	11	17	5_C-O-C-// `\ _()
20	71	17	tt	5-COOH R ₂
	72	#	н .	5-C00Li
25	73	n	**	5-C00Na
	74	· ·	n	5-COOK .
	75	17	Ħ	5-C00Ca ₁ / ₂
30	76	17	n .	5-C00-c-C.H,
	77	90	**	5-C00-c-C6H11
	78	Ħ	n	5-C00CH;-C6H;
35	79	· 11	IT	5-COOCH ₂ -(2,4-Cl ₂ -C _e H ₃)
	80	11	***	5-COOCH, CHCH,
40	81	11	11	5-COOC 2H4CHCH2
40	82	n		5-000-n-C.H ₁₆ CHCH:
	83	11	*	5-C00-CH; CCH
45 ·	84	**	*	5-C00-C, HCCH
	85	11	17	5-C00-n-C ₅ H, oCCH
	86	н	n	5-COOCH, Si(CH,),
50	87	Ħ	π	5-C00C2H, DCH3
	88	***	**	5-CONH;
	89	n	***	5-CN
55	90	77	99	5-CCNHCH ₃

	Y=CH BeispM	vr. (R ₁)	R:	x Fp/Kp _{Torr} Log
5	91	4-C1	3-CH,	5-CONHC, H,
	92	. •	п	5-CONH-n-C ₃ H,
	- 93	77	n	5-CONH-n-C.H.
10	94		#	5-CONH-n-C _e H ₁₃
	95		Ħ	5-CONH-n-C; oH;
	96	•	,	5-CONH-i-C;H;
15	97	11	п	5-CON(CH ₃) ₂
	. 98 .	**	n	5-CON(CH3)(nC4H13)
	99	Ħ	n	5-CON(C,H,),
20	100	•		5-CO-N
	101	n	Ħ	5-co-n
25	102	n ·	97	5-CO-N O
25	103	17	11	5-ca-n
	104	#	н	5-CO-NH-C-C.H.
30	105	и	Ħ	5-CO-NH-c-C3H:
	106	**	н	5-CO-N(CH3)(CC4H11)
	107	11	17	5-COSH
35	108	n	v	5-COSNa
	109	н	tt.	5-COSCH,
	110	Ħ	n	5-COSC;Hs
40	111	11	n	5-COSCH;C,H,
•	112	Ħ	n	5-COS-nC.H.,
	113	97	19	5-COSC; H. OCH;
45	114	n	n	5-COSCH:CHCH:
	115	*	•	5-COSCH2CCH
	116	11	**	5-COS-c-C.H.,
50	117	17	11	5-COSCH, S1(CH,),
	118	"	n	5-COS-n-C.H.CH(CH;);
	119	n	n	5-CON 3
55	120	n		5-COOC, H. CH(CH,);

	Y=CH Beisp	Nr.(R ₁) _n	R ₂	X Fp/F	PTorr [°C?
5	121	2,4-Ci;	5-CH ₂	3-C00CH3	87-93
	122		10	3-C00C 2Hs	75-61
	123		m.	3-000-n-0;H7	99-100
10	124	. "	••	3-CGC+1-C ₁ H ₇	65-7C
	125	H	**	3-C00-n-C.H.	75-78
	126	**		3-C00-n-C:H;;	
15	127	m	81	3-C00-n-C ₆ H ₁₃	Öl
	128		n	3-C00-n-CgH1+	47-49
	129			3-CCC-n-C, aH:,	(D.)
20	130	çe .	. •	3-E-0-E-47-(O)) 114-117
	131	11	n	3-COOH ²	112-115
25	132	#	•	3-C00Li	>250
	133	**	Ħ	3-C00Na.	7250
	134	**	11	3-C00K	
30	135		*	3-C00Ca ₁ / ₂	197-188
	136	. "	gr .	3-C00-c-C.H,	
	137	11	11	3-C00-c-C ₆ H ₁₁	72-74
35	138	**	49	3-C00CH ₂ -C ₆ H ₅	Öl
	139	11	n	3-C00CH ₂ -(2,4-	Cl;-C _E H ₂)
	140	11	17	3-C00CH;CHCH;	Ö1
40	141	Ħ	* #	3-C00C2H4CHCH;	
	142	n	•	3-000-n-0.H160	HCH:
	143	19	tt	3-C00-CH2CCH	101-102
45	. 144	**	π	3-C00-C;H,-CCH	
	145	•	**	3-000-n-C ₅ H ₁₀ C	СН
	146	11	Ħ	3-C00CH;Si(CH,), 67-73
50	147	11	**	3-C00C;H,OCH;	51
	148	10	#	3-CONH;	161
	149	re	u	3-CN	
55	150	10	#	3-00NHCH3	161-152

	Y=CH BeispNr.(R ₁) _n		R ₂	x	Fp/Kp;crr ∠°⊆7
5	151	2,4-Cl:	5-CH ₃	3-CONHC,H:	.87-90
	152	**	**	3-CONH-n-C3H1	89-92
	153	*	**	3-CONH-n-C.H.	55-60
10	154	•	11	3-CONH-n-C (H.)	68-71
	155	11	m	3-CONH-n-C10H;	•
	156	#	n	3-CONH-i-C3H,	
15	157	н	11	3-CGN(CH ₃) ₂	99-103
	158	. 17	11	3-CON(CH3)(nCeH	13)
	159	n ,	**	3-CON(C;H;);	81
20	160	· 	Ħ	3-CO-N	Harz
	161		H	3-CO-N	
	162	m	11	3-CO-N_O	81
25	16;	m	17	3-CO-N_D	Harz
	164		*	3-CO-NH-C-CeH11	120-122
	165		10	3-CO-NH-C-C 3H;	•
30	166	n	r	3-CO-N(CH ₃)(cC ₄	н.,) 61
	167		n	3-C05H	
•	168	17		3-COSNa	
35	169	Ħ	13	3-COSCH ₃	
	170	n	н	3-COSC zHs	•
	171	11	11	3-COSCH,C6H,	70-73
40	172	n	**	3-005-nC ₈ H ₁₇	
		n		3-COSC2H.OCH3	
	173	• • • • • • • • • • • • • • • • • • • •	e1	3-COSCH, CHCH,	
45	174 175	Ħ	n	3-COSCH:CCH	
		tt	π .	3-COS-C-C6H11	
Δ	. 176	n	11	3-COSCH,Si(CH,)	•
50	177		я	3-C05-n-C.H.CH(
	178	;; 17	tr.	3-CON	
55	179	**	n	3-COOC:H.CH(CH;).
5 5	180	**	- -	J=0000 (11, 011, 011)	• •

	Y=CH BeispNr.(R ₀ n		R ₂	x Fp/KPTorr C°C7
5	181	2,4-01;	3-CH ₃	5-C00CH,
	182	Ħ	n	5-C00C;H: 01
	183	tr	n	5-C00-n-C3H1
10	184	17	m	5-C00-i-C ₃ H,
	185	**	#	5-C00-n-C.H,
	186	**	10	5-C00-n-C:H1,
15	187	89		5-C00-n-C _e H ₁ 3
	188	01	e e	5-C00-n-C8 H,,
	189	n'	Ħ	5-C00-n-C16H21 (R1)n
20	19C	n	н	5-Ê-o-Ê- # Ÿ\\ O
	191	н .	Ħ	5-COOH R2 195-205
	192	ę+ ·		5-COOLi
25	193	tr	la .	5-C00Na
	194		w `	5-C00K
	195	Ħ	*	5-C00Ca,/;
30	196	. 11	11	5-C00-c-C.H,
•	197	**	# ,	5-C00-c-C.H.1
	198	n	Ħ	5-COOCH 2-C6Ht
35	199	**	11	5-COOCH2-(2,4-Cl2-C6H3)
	200	11	Ħ	5-COOCH & CHCH &
40	201	. "	**	5-C00C 2 H . CHCH 2
40	202	11	11	5-C00-n-C.H ₁₆ CHCH.
	203	n	n	5-COO-CH2CCH
45	204	π.	Ħ	5-C00-C 2 H4-CCH
	205	tf	Ħ	5-C00-n-CsH10CCH
	20 6	**	**	5-C00CH ₂ Si(CH ₃) ₃
50	207	n	19	5-C00C 2H.OCH.
	208	**	11	5-CONH:
	209	**	. "	5-CN
55	210	Ħ	11	5-CONHCH ₃

	Y=CH BeiscNr.(R) _n		R,	x .	Fp/Kp _{Torr} (°C)	
5	21 1 ⁻	2,4-01:	3-CH ₃	5-CONHC 2H :		
	212	11	n	5-CONH-D-C3H;	81	
	213	n		5-CONH-n-C.H.		
10	214	p	Ħ	5-CONH-n-CeH13		
	215	**	#	5-CONH-n-C, oH; 1		
	216	11	# ·	5-CONH-i-C ₃ H,		
15	217	**	н .	5-CON(CH ₂) ₂		
	218	H	11	5-CON(CH3)(nC6H	,,)	
	219	Ţ		5-CON(C;H;);		
20	220	. "	**	5-CO-N		
	221		Ħ	5-CO-N		
	222	п		5-CO-N_O		
25	223	rt	11	5-CO-N_O	•	
	224	n	**	5-CO-NH-C-C.H.		
30	225	H	Ħ	5-CO-NH-c-C 3H 5		
30	226	tr .	11	5-CO-N(CH ₂)(cC	н,,)	
	227	Ħ	m	5-COSH		
35	228		· . #	5-COSNa		
	229	11	Ħ	5-COSCH ₃		
	230	W	π	5-COSC ₂ H ₅		
40	231	п	11	5-COSCH, CaH,		
	232	"	11	5-C05-nCaH11		
	233		11	5-COSC:H.OCH;		
45	234	™ . 11	***	5-COSCH; CHCH;		
	235	**	п	5-COSCH:CCH		
	236	n	π	5-COS-c-C.H.,		
50	237	. "	ţı	5-COSCH:Si(CH)	3	
	238		1*	5-COS-n-C.H.CH(Сн,);	
	239	ii ii	н	5-CON NO		
55	240	**	11	5-COOC:H.CH(CH;	,) ,	

	Y=CH				
5	BeiscNr.	(R 1)n	R,	x	Fp/Kp _{Torr} [°c]
	241	2,4-Cl,	5-C,H,	3-C00CH;	
	242	η	н	3-CGOC; H3	48-49
10 _	243	· ee		3-C00-n-C ₃ H,	
	244	n	n /	3-000-1-0 ₃ H ₃	
•	245	*	17	3-000-n-C.H.	
15	246	ч	m ·	3-000-n-C:H:	1
	247	**	11	3-000-n-0 _e H ₁ ;	3
	248	•	11	3-C00-n-C8H,	- 1
20	249	••	11	3-000-n-010H	• •
	25 S		Ħ	3-8-0-8-4-1-	(R ₁) _n
	25 1		n	3-COOH R2	193 – 195
25	25 2	n	n	3-C00Li	
	25 3	•	н	3-C00Na	
	25 4	a	n	3-C00K	
30	25 5	.	п	3-C00Ca ₁ / ₂	
	25 6	n .	n	3-C00-c-C.H,	
	25 7	•	11	3-C00-c-C6H ₁₁	
35	258 .	90	Ħ	_ 3-COOCH 2-C+H	•
	25 9	п .	n	3-C00CH ₂ -(2,4	4-Cl ₂ -C ₆ H ₃)
	26 0	11	N	3-СООСН,СНСН;	•
40	26 1	n	n	3-C00C;H.CHCH	12
	26 2	n	n	3-C00-n-C + H 6	CHCH;
	26 3	te '	п	3-C00-CH;CCH	•
45	26 4	10	11	3-000-C2H4-C0	
	26 5	**	# "	3-000-n-05H1	ссн
	26 6	99	n .	3-000CH;51(CH	١,),
50	26 7	n	H	3-C00C;H,OCH;	, 1
	26 8	90		3-CONH ₂	
	26 9	n	**	3-CN	
55	27 C		11	3-CONHCH,	

Y=CH Beisp	Nr.(R ₁) _n	R;	x Fp/kplorr [°C]
271	2,4-01:	5-C,H,	3-CONHC:H:
272		**	3-CONH-n-C;H,
273	16	ń	3-CONH-n-C.H.
274	* ·	•	3-CONH-n-C.H.;
275	20	8*	3-C0NH-n-C10H:1
276	H ×	11	3-CONH-1-C3H;
277	n	**	3-CON(CH;);
278	11	**	3-CON(CH;)(nC(H;;)
279	и	#	3-CON(C,H,),
280	r	n	3-00-1
281	*1	n	3-C0-N
282	17	п	3-CO-N_O
283	er	11	3-CO-NÇO
284	,		3-00-NH-C-C;H, ;
285	•	•	3-C0-NH-C-C;H,
286	•	10	3-CO-N(CH ₃)(cC ₄ H ₁₁)
287	77	**	3-COSH
288	47	**	3-COSNa
289	17	n	3-COSCH ₃
290	90	H	3-COSC 2H5
291	40	**	3-COSCH,C.H.
292	11	**	3-COS-nC ₀ H ₁ ,
293	n	"	3-COSC ₂ H _c OCH ₃
294	n	**	3-COSCH, CHCH,
295	, "	n	3-COSCH;CCH
296	**	π	3-COS-c-C.H.,
297	17	***	3-COSCH,Si(CH,),
298	, "	17	3-COS-n-C.H ₆ CH(CH ₃);
299		**	3-CON N
300		97	3-COCC:H.CH(CH;):

5	Y=CH BeispNr.	(R.)	R,	×	Fp/KpTorr [°C]
·	301	2,4-Cl;	5-CH(CH ₃);		144
	302	tr	11	3-00002Hs	79-77
10	303	n	17	3-000-n-0 ₃ H	7 01
	304	n	tt .	3-C00-i-C ₃ H	Öl
	305	m		3-000-n-0.H	•
15	306	te	**	3-000-n-0,H	1 1
	307	19	P	3-000-n-C6H	13
	308	99	17	3-000-п-Се н	17
20	309	17	11	3-E00-n-C10	H ₂₁ (P.)
	310	•	Ħ	3-C-0-C-₹	(R ₁) _n
	311	**	**	3-COOH R2 N	195-196
25	312	fr .	tt .	3-C00Li	•
	313	Pr .	n	3-C00Na	>250
	314	н .	or .	3-C00K	
30	315	**	tį.	3-C00Ca,/;	
	316	m	17	3-C00-c-C.H	7
	317	•	m	3-C00-c-C6H	1 1
35	318	, ग	*	3-C00CH2-C6	н,
-	319	п	n .	3-C00CH ₂ -(2	,4-C1 ₂ -C _e H ₃)
	320	n	n	3-C00CH2CHC	н,
40	321	n	Ħ	3-C00C;H.CH	CH ₂
	322	e · · -	*	3-C00-n-C ,H	16 ^{CHCH} ,
	323	17	Ħ	3-C00-CH,CC	4
45	324		п	3-C00-C:H	ССН
	325	19	**	3-C00-n-C,H	, oCCH
	326	n .	11	3-COOCH, Si(CH ₃),
50	327	17	ff	3-C00C,H,OC	Н ₃
	328	τr	**	3-CONH;	
	329	W.	Ħ	3-CN	
55	330	Ħ	•	3-CONHCH;	

Beisp.	-NI. (R.) _n	R:	x	Fp/Kp _{Torr} C
331	2,4-01;	5-CH(CH ₃);	3-CONHC; H,	106-109
332	n	*	3-CONH-n-C;H,	67
333	n	•	3-CONH-n-C.H,	
334	•	m.	3-CONH-n-C (H1)	•
335	**	" .	3-CONH-n-C: 0H: 1	
336	19	**	3-CONH-i-C;H,	
337		н	3-CON(CH;);	
338	п	**	3-CON(CH;)(nCaH;	₃)
3 39	ч	N	3-CON(C;H;);	98-100
340	17	11	3-CO-N	•
341	. #	w	3-C0-N	J
342	**	er .	3-CO-N_0	
343	. 11	11	3-CO-N€	140-142
344	**	**	3-00-NH-0-C+H11	
345		m.	3-CO-NH-C-C3H2	
346	19		3-C0-N(CH,)(cC.H	,,)
347	m	**	3-COSH	
348	•	. #	3-COSNa	
349	n	n	3-COSCH,	
350	n	11	3-COSC:Hs	
351	**	n	3-COSCH, C.H.	
352	**	π	3-005-nC ₈ H ₁₇	
353	P	n	3-C05C2HL0CH3	
354	n	11	3-COSCH2CHCH2	
355	n	Ħ	3-COSCH,CCH	
356	**	π	3-COS-c-C.H.1	
357	**		3-COSCH,Si(CH,),	
358	**	п	3-005-n-C, HaCH(0	н,):
. 359	97	n .	3-CON	
36C	₩ .	M	3-C00C;H,CH(CH;)	2

	Y=CH Beisp	-Nr. (R,) _n	R _z	x	Fp/KpTorr /°C7	
5	361	2,4-01;	5-C(CH;);	3-C00CH ₃	Harz	
	362	•	er .	3-C00C2H5	118-121	
	363	m	. 11	3-C00-n-C ₃ H ₇		
10	364	n	m .	3-C00-i-C ₃ H	1,	
	365	Ħ	n	3-C00-n-C.H	,	
15	366	77	"	3-000-n-0:H	111	
,,	367		- n	3-000-n-C ₆ H	13	
	368	1 *	**	3-000-n-08 H	111	
20	369	*	,	3-C00-n-C10	H ₂₁ (R ₁) n	
20	37G	m		3-C-0-C-		
	371	• п	п	3-C00H R2	* · · · · · · · · · · · · · · · · · · ·	
25	372	#	17 .	3-C00Li		
	373	n	•	3-C00Na		
	374 -	tt	•	3-C00K		
30	375	Ħ		3-C00Ca ₁ / ₂		
	376	17	n ·	3-C00-c-C.H,		
•	377	. 41	H	3-C00-c-C 6 H	11	
35	378	P .	77	3-C00CH ₂ -C ₆	н,	
	379	π ′ .	Ħ	3-C00CH2-(2	,4-C1:-CeH:)	
	38 D	π	Ħ	3-C00CH;CHC	H ₂	
40	38 1	Ħ	#	3-C00C; H, CH	CH ₂	
	38 2	11	Ħ	3-C00-n-C.H	16CHCH 2	
	38 3	m.	Ħ	3-C00-CH2CC	н	
45	38 4	•	Ħ	3-C00-C;H	ссн	
	38 5	**	H	3-000-n-0 ₅ H	1 °CCH	
	38 6	•	71	3-C00CH;51(СН,);	
50	38 7	m	Ħ	3-C00C2H.0C	H ₃	
•	38 8	m	π	3-CONH,		
	38 9	•	n	3-CN		
55	39 0	41	!!	3-CONHCH,		

***	Y=CH Beisp.	-Nr. (R ₁) _n	R,	x	Fp/Kp _{Torr} <u>/</u> *c7
5	391	2,4-Cl ₂	5-C(CH;);	3-CONHC ; H;	161-162
	392	. "	**	3-CONH-n-C,H,	102-103
	393	•	p	3-CONH-n-C.H.	
10	394		U	3-CONH-n-CeH,;	
	395	••	e .	3-CONH-n-C10H21	
	396	#1	n .	3-CONH-i-C,H,	
15	397	Ħ	n .	3-CON(CH ₃) ₂	
•	398	ŢĪ	π	3-CON(CH ₃)(nC ₆ H ₁	3)
	399	***	n	3-CON(C2H5);	
20	400		er ·	3-CO-N	•
	401	n	π	3-CO-N	
	402	. #	π	. 3-CO-N_C	
25	403	41	**	3-C0-N_C	
	404	•	n .	3-C0-NH-c-C+H11	
30	405	•	• "	3-C0-NH-C-C3H,	
	406	Ħ	IT .	3-C0-N(CH3)(cC4H	,,)
	407	#	. "	3-COSH	
35	408	p	**	3-COSNa	
	409	n	Ħ	3-COSCH;	
	410	Ħ	n	3-C05C2H,	
40	411	* #	pt (15)	3-COSCH ₂ C ₄ H ₅	
•	412	п	n	3-COS-nC . H	
	413	Ħ	н	3-C0SC2H40CH3	
45	414	п	**	3-COSCH2CHCH2	
	415	n	r .	3-COSCH;CCH	
	416	7.7	**	3-C05-c-CeH11	
50	417	79	π	3-COSCH ₂ Si(CH ₃) ₃	
	<i>‡</i> 18	п	p	3+COS-n-C.H.CH(C	H ₃):
	419	11	**	3-CON 73	
55	420	••	*	3-C00C:H,CH(CH ₃)	•

	Y=CH Beisp.	-NI. (81)	R;	x Fp/Kp _{Torr} [°C]	
5	421	2,4-01:	5-CH;-CH(CH;);	3-C00CH ₃	
	422	*	19	3-C00C;H: 81	
	423	**	19	3-000-n-C3H7	
10	424	**	**	3-C00-i-C ₃ H,	
	425	•	te :	3-000-n-0.H.	
	426		**	3-000-n-0 ₅ H ₁₁	
15	427		te.	3-C00-n-C ₆ H ₁ 3	
	428	**		3-C00-n-eg H, ,	
	429	н		3-COO-n-C10H21 (R1) n	
50	430	•	11	3-c-o-c-N-Y-	
	431	, e	18	3-COOH R2	
	432	*	11	3-C00Li	
25	433	•	17	3-C00Na	
-	434		71	3-C00K	
•	435	n	17	3-coota,/2	
30	43 6	89	tt .	3-C00-c-C.H,	
	437	я	11	3-C00-C-C6H11	
35	438	n	st	3-C00CH;-C6H5	
•••	43 9	. #	**	3-C00CH ₂ -(2,4-Cl ₂ -C ₆ H ₃)	
	44 0	91	11	3-C00CH; CHCH;	
40	44 1	11	11	3-0000;H_CHCH2	
	44 2	87	**	3-C00-n-C.H16CHCH2	
	44 3	11	Ħ	3-C00-CH2CCH	
45	44 4	17	n.	3-C00-C2H4-CCH	
	44 5	Ħ	п	3-000-n-C; H; oCCH	
	44 6	**	Ħ	3-C00CH;S1(CH;);	
50	447	Ħ	19	3-C00C2H.OCH3	
	44 8	tt	п	3-CONH ₂	
	44 9	17	н	3-CN	
55	4.5 C	11	н .	3-CONHCH;	

					•
	Y=CH BeispN	r. (R.)	R:	×	Fp/KpTorr /ºÇ/
5	451	2,4-Cl;	5-CH,CH	(CH ₃), 3-CONHC; H;	
	452	* .	er	3-C0NH-n-C3H7	
	453	17	n	3-CONH-n-C.H.	
10	454	11	•	3-CONH-n-CeH,	3
	455	n		3-C0NH-n-C:0H	2.1
	456	n		3-C0NH-i-C3H7	
15	457	17	*	3-CON(CH ₃) ₂	
	458	**	ũ	3-CON(CH;)(nC	εH ₁₃)
	459	n	π	3-CON(C;H5);	
20	460		n	3-CO-N	
	461	**		3-C0-N	
	462	11	n	3-CO-N_C	
25	463	n	**	3-CO-N_E	
	464	\$1	m .	3-C0-NH-C-C.H	111
	465	tr	#_	3-C0-NH-C-C;H	
30	466	n	17	3-CO-N(CH;)(c	:CeH11)
	467	17	#	3-COSH	
	468	n	π	3-COSNa	
35	469	tt	**	3-COSCH ₃	
	470	Ħ	n	3-COSC 2H5	
40	471	. 11	#	3-COSCH2C.H.	
40	472	**	n	3-COS-nC . H	
	473	77	n	3-COSC:HLOCH	
45	474	n .	•	3-COSCH, CHCH	2
70	475	31	tt	3-COSCH,CCH	
	476	11	n	3-COS-C-C6H1	1
50	477		11	3-C05CH, Si(C)	н,),
	478	n	m	3-005-n-C_Ha	CH(CH;):
	479	11	Ħ	3-CON P	
55	480	tt	**	3-0000;H;CH(CH ₃) ₂
	-00			·	

	Y=CH Beisp	Nr. (R1)	R ₂	x FP/KPTorr /°C7
5	481	2,4-C1;	5-c-C ₆ H ₁₁	3-C00CH;
	482	**	n	3-C00C2H3 106-198
	483	H	Ħ	3-C00-n-C;H,
10	484	•	n	3-C00-i-C ₃ H,
	485	н	11	3-C00-n-C.H,
15	486	tv		3-000-n-C;H;;
15	487	n	w	3-C00-n-C ₆ H ₁₃
	488	**	19	3-000-n-0 ₈ H,,
20	489	11	*	3-CCC-n-C; oH; (R ₁) n
20	490	π.	in	3-6-0-6 4-4-Q
	491	#	•	3-COOH R ₂ 201-202
25	492	**	11	3-COOL1.
	493	**	•	3-COONa
	494	??	11	3-C00K
30	495		п	3-C00Ca ₁ / ₂
	496	17	•	3-C00-c-C.H,
	497	**	· •	3-C00-c-C ₆ H ₁₁
35	498	Ħ	*	3-C00CH2-C6H5
	499	**	n	3-COOCH;-(2,4-Cl;-C6H;)
	500	m	n	3-C00CH, CHCH,
40	501	**	π .	3-000C:H.CHCH:
	502	W	.	3-000-n-0 ₈ H ₁₅ CHCH ₂
	503	ri .	Ħ	3-C00-CH ₂ CCH
45	504	Ħ	•	3-000-0:H&-00H
	5 05	t v	Ħ	3-000-n-0 ₅ H, oCCH
	506	**	Ħ	3-COOCH;Si(CH;);
50	507	**	pr pr	3-C00C:H.OCH;
	508	**	**	3-CONH:
	509	17	31	3-CN
55	510	11	pr ,	3-соинсн3
			,	

			•
Y≂CH Beisp	Nr. (R,)	R,	x Fp/Kp _{Torr} ζ ⁵ C̄ ⁷
511	2,4-Cl;	5-c-C.H.,	3-CONHC 2H 5 131-132
512	n	п	3-CONH-n-C;H;
513	n	**	3-CONH-n-C.H,
514	#	**	3-CONH-n-CeH1:
515	tt.	19	3-CONH-n-C; oH; ;
516	11	**	3-CONH-1-C;H7
517	••	n	3-CON(CH ₃);
518	•	н	$3 = CON(CH_3)(nC_4H_{13})$
519	**	Ħ	3-CON(C2H5.)2
520	n	n	3-00-1
521	**	10	3-CO-N
522	•	**	3-C0-NC
52 3	**	*	3-00-10-6
524	ŧı	n	3-CO-NH-C-C6H11
52 5	•	m	3-CO-NH-C-C3H:
526	Ħ	**	3-CO-N(CH1)(CC4H11)
527	n	11	3-COSH
528	11	tr	3-COSNa
529		π	3-C05CH ₃
530	77	m	3-C05C2H5
53 1	n	н	3-COSCH ₂ C ₆ H ₅
53 2	11	17	3-COS-nC ₆ H ₁₇
533	, "	п	3-COSC,H.OCH,
53 4	tf	n	3-COSCH;CHCH;
535	**	11	3-COSCH:CCH
53 6	и.	n	3-CO5-c-C ₆ H ₁ ,
53 7	Ħ	n	3-COSCH ₂ Si(CH ₃) ₃
538	n	n	3-COS-n-C.H.CH(CH3);
539	n	н	3-CON ""
54 0	11	**	3-C00C:H*CH(CH*);

	Y=CH BeispNr.(R) _n		R,	x Fp/Kp _{Torr} [°C]/	
5	541	2,4-Br;	5-CH,	3-COSCH;	
	542	**	Ħ	3-C00C2H, 91-100	
	543	•	m	3-C0C-0-C3H7	
10	544	**	н	3-C00-i-C;H;	
	545	. 47	78	3-000-n-C.H ₉	
	546		n .	3-C00-n-C ₅ H ₁ ,	
15	547	"	п	3-C00-n-C.H ₁₃	
	548	. 10	n	3-C00-n-CgH ₁₇	
	549	19	**	3-COC-n-C10H21 (R1) n	
20	550	19	n	3-E-0-E-E-N-	
	551	19	# .	3-C00H XN Y	
	552	H	71	3-C00L1 2	
25	553	19	**	3-C00Na	
,	554	**	" /	3-C00K	
30	555	17	**	3-C00Ca1/2	
30	556	n	17	3-C00-c-C.H,	
	557	n	Ħ	3-C00-c-C ₆ H ₁₁	
35	558	n	77	3-C00CH2-C6H5	
••	559	. n	Ħ	3-C00CH ₂ -(2,4-Cl ₂ -C ₆ H ₃)	
	560	11	n	3-C00CH2CHCH2	
40	561	17	m	3-C00C2H.CHCH2	
•	562	**	n	3-C00-n-C ₈ H ₁₆ CHCH ₂	
	563	n	Ħ	3-C00-CH2CCH	
45	564	**	•	3-000-0:HL-00H	
	565	**	11	3-C00-n-C ₃ H ₁₀ CCH	
	566	•	17	3-C00CH,Si(CH,),	
50	56 7 .	H	11	3-C00C,H.OCH3	
	568	71	n	3-CONH:	
	56 9	· •	77	3-CN	
55	57 C	ŧ	11	3-CONHCH 3	

	Y=CH BeispN	r.(R,)	R:	x Fp/vatorr C°C7
5	571	2,4-Br;	5-CH;	3-CONHC 2H 5
•	572	**	TT .	3-CONH-n-C3HT
	573	ti .	. "	3-CONH-n-CLH,
10	574	**	n	3-CONH-n-CeH13
	575	Ħ	n	3-CONH-n-C, 6H21
	576	11	•	3-CONH-i-C ₁ H ₇
15	577	19 "	,	3-CON(CH ₃) ₂
	578	17	*	3-CON(CH ₃)(nC ₆ H ₁₃)
	579	n	11	3-CON (C2H5)2
20	581.	n .	117	3-c0-N
	581	n	31	3-00-1
05	582	tt	**	3-C0-N-C
25	583	n	81	3-00-100
	584		n	3-C0-NH-C-C.H.,
30	585	10	u .	3-CO-NH-C-C 3 H:
	586	11	Ħ	3-CO-N(CH ₃)(cC ₆ H ₁₁)
	587	п	w	3-COSH
35	588	n ,	**	3-COSNa
	589	11	Ħ	3-COSCH ₃
	590	*1	• н	3-C05C2H3
· 40	591	**	π ,	3-COSCH2C6H3
	592	n	**	3-C05+nC ₈ H ₁₇
	593	ч	•	3-COSC ₂ H ₄ OCH ₃
45 .	594	11	11	3-COSCH;CHCH;
	595	(1	11	3-COSCH2CCH
	5 96	Ħ	n	3-COS-c-C ₆ H ₁₁
50	5 97	. 11	11	3-CDSCH;Si(CH;);
	5 <i>9</i> 8	n	**	3-COS-n-C.H.CH(CH,);
	· 599		17	3-CON (3)
55	600	11	11	3-COOC;H.CH(CH;);

EP 0 333 131 A1

	Y=CH BeispNr.(R ₃) _n		R ₂ ,	x Fp/Kp _{Torr} [° <u>c</u> 7	
5	601 3	-CF ₃	5-CH,	3-COCCH ₃	,
	6C2.	**	ri .	3-000CzH5	7375
	603	99	r	3-000-n-C	эн,
70	604	Ħ	Ħ	3-C00-i-C	"Н,
	605	17	H .	3-000-n-C	ън, 81
	606	11	и	3-000-n-0	5H11
15	607	. #	17	3-000-n-0	€H13
•	608	, n	Ħ	3-000-n-C	8H.,
	609	n	Ħ	3-000-n-0	10H21
20	610	· " · · ·	н	3-C-0-C-	(R ₁) n
	611	H	н .	3-COOH R ₂	≠N ¥— 190~191
or.	612	t	Ħ	3-C00Li	
25	613	n.	tr	3-C00Na	
•	614	39	, tt	3-C00K	
30	615	11	н	3-C00Ca,/	2
••	616	. **		3-C00-c-C	⊾H ₇
	617	п	π .	3-C00-c-C	6H11
35	618	11	Ħ	3-C00CH;-	C ₆ H ₅
	619	n	n	3-C00CH ₂ -	(2,4-Cl ₂ -C ₆ H ₃)
	62€	11	н	3-C00CH2C	нсн,
40	621	11	п	3-C00C2H4	снсн,
	62 2	27	Ħ	3-C00-n-C	HIS CHCH,
	623	" .	н	3-C00-CH2	ссн
45	624	n	n	3-C00-C2H	-CCH
	62 5	11	n	3-000-n-0	sH, oCCH
	626	11	n	3-CODCH,S	i(CH ₃);
50	62 7	n	n	3-C00C2H.	осн,
	628	п	n	3-CONH ₂	
	62 9	11	n	3-CN	
55	630	n	*	3-CONHCH,	·

	Y=CH Beisp	NI.(R,)	R,	X Fρ/κρτοιι Δ°G/
5	631	3-CF ;	5-CH;	3-CONHC, H.
	632		77	3-CONH-n-C,H, 66 72
10	633	н	11	3-CONH-n-C.H.
,,,	634	*	*	3-CONH-n-C ₆ H ₁₃
	635	*	n	3-C0NH-n-C; oH;
15	636			3-CONH-1-C;H,
	637	n	Ħ	3-CON(CH ₂) ₂
	638	₽,	n	3-CON(CH3)(nC4H;3)
20	639	•	**	3-CON(C,H,),
	640	n	n	3-C0-N
•	641	#	. "	3-C0-N
25	642	, п	п	3-00-10
	643	**	n .	3-00-10
	644	r	tt	3-C0-NH-C-C.H.,
30	645	11	TT .	3-C0-NH-c-C ₃ H ₈
	646		r	3-CO-N(CH ₂)(cC ₄ H ₁ ,)
	647	**	#	3-cosh
35	648	Ħ	11	3-COSNa
	649	•	Ħ	3-COSCH ₃
	650	•	17	3-COSC ₂ H ₅
40	651	m	tt	3-COSCH ₂ C ₆ H ₅
	652	Ħ .	n	3-COS-nC.H.;
	653	11	11	3-COSC2H.OCH3
45	654	Ħ	tt	3-COSCH, CHCH,
	655	Ħ	**	3-COSCH;CCH
	656	. **	Ħ	3-COS-c-C.H.,
50	.657	n		3-COSCH:51(CH;);
	658	n	11	3-COS-n-C.H.CH(CH,),
	659	n	ti ·	3-cov(_h
55	660	n	n	3-C00C:H.CH(CH,);

	Y≖CH Beisc.	-NI.(R)	R,	X	Fp/KpTorr 2°C7
5					10112 5
	661	2,4-C1CF;	5-CH,	3-CONHC;H;	
	662	11	Ħ	3-CONH-n-C;H;	109-113
10	663	**	"	3-C0NH-n-C.H.	
	664	**		3-C0NH-n-C ₆ H, 3	
	665	н .	n .	3-CONH-n-C10H21	
15	666	н	t)	3-CONH-i-C ₃ H ₇	
	667	17		3-CON(CH ₃);	
	668	#	*	3-CON(CH ₃)(nC ₆ H	, ,)
20	669	Ħ	п	3-CON(C;H;);	
	670	17	n	3-C0-N	
	671	**	n	3-C0-N	
25	672	97	*	3-C0-NC	·
	673	•	n	3-C0-N_c	
	674	#	m	3-C0-NH-C-C.H.	
30	675	w	**	3-C0-NH-c-C3H5	
	676	41	п	3-00-N(CH3)(CC el	Η,,)
	677	**	m	3-COSH	
35	678	#	n	3-COSNa	
	679	П	n	3-COSCH,	
	680	Ħ	97	3-COSC 2Hs	•
40	681	n	Ħ	3-COSCH, C.H.	
·	682	11	. #	3-005-n0 ₈ H ₁₇	
	683	n	11	3-COSC 2HLOCH3	
45	684	17	п	3-COSCH, CHCH,	•
	685	π	11	3-COSCH2CCH	
	686	**	10	3-COS-c-C.H.,	
50	687	*	п	3-COSCH,Si(CH,)	•
	688	11	Ħ	3-COS-n-C.H.CH((
	. 689	л	n	3-C0N N	
55		n	lt .	3-COOC, H.CH(CH,) ₋
	690			>=0000;n;0n(0n)	/ .

	Y=CH Beisp.	Y=CH BeispNr.(R) _n		×	Fp/Kp _{Torr} /°C/
5	691	2,4-C1CF3	5-CH ₃	. 3-000	och,
	692	44	11	3-000	DC 2 H 5
	693	41	н	3-000) =n=C 3H 7
10	694	n	10	3-000)-i-C ₁ H ₇
	695	11	**	3-000	J-n-C₊H,
	696	11	** ·	3-00	D-n-CsH ₁₁
15	697	"	11	3-C00	0-n-C ₆ H ₁₃
	698	**	11	3-CD	0-n-C ₈ H,,
	699	**	tt	3-00	D-N-C10H21 . (D.)
20	70 0	77		3-C-0	0-C-N-W-(R ₁) n
	701	10	н	3-00	OH Ro
	702	19	**	3-00	OLi
25	703	n	n	3-00	ONa
	704	10	**	3-00	ОК
	705	10 .	11	3-00	OCa,/,
30	706		#	3-C0	0-c-C.H,
	707	Ħ	**	3-CO	0-c-C.H.,
	708	87	H	3-00	OCH 2 - C & H 5
35	709	n	**	3-00	OCH2-(2,4-Cl2-CeH3)
	7 1 G	tt	11	3-C0	OCH;CHCH;
40	711	#	11	3-00	OC:HCHCH:
**.	712		n	. 3-00	0-n-C:H ₁₆ CHCH;
	713	11	n	3-00	o-ch:cch
45	714	11	tt	3-C0	0-C;HL-CCH
	715	11	71	3-C0	0-n-C;H; oCCH
•	716	er .	ш	3-00	OCH;Si(CH;);
50	717	**	1 7	3 - C0	OC 1 H OCH 3
	718	**	**	3-00	inh:
	719	27	r	3-CN	1
55	720	n	**	3-00	ONHCH,

Y=CH BeispNr.(R ₁)		R,	x Fp/Kp _{Torr /°C} 7	
72 1	4,2-C1CF ₃	5-CH ₃	3-COOCH,	
722	Ħ	n	3-COOC2H5 49-51	
723	11	Ħ	3-000-n-03H7	
724	11	н	3-C00-i-C3H7	
725	π .	п	3-C00-n-C.H,	
726	н		3-C00-n-C,H,,	
727		11	3-000-n-C.H13	
728	n	11	3-000-n-0 ₈ H,;	
729	49	н ,	3-C00-n-C, oH; (R ₁) n	
73 C	19	t1	3-COOH R3	
731	, tr	Ħ	3-COOH R	
732	n .	11	3-C00Li	
733	Ħ	17	3-C00Na	
734	п ,	т .	3-C00K	
735	π .	m	3-C00Ca ₁ / ₂	
736	93	tt	3-C00-c-C.H,	
737	Ħ	n ,	3-C00-c-C ₆ H ₁ ,	
738	# .	11	3-C00CH2-C6H5	
739	17	11	$3-CODCH_{2}-(2,4-Cl_{2}-C_{6}H_{3})$	
740	17	n .	3-COOCH, CHCH,	
741	. 19	11	3-COOC 2H CHCH2	
742	n	Ħ	3-000-n-C.H ₁₆ CHCH.	
743	n	n	3-C00-CH; CCH	
744	11	11	3-C00-C2H4-CCH	
745	п	11	3-C00-n-CsH1 0CCH	
746	11	n	3-COOCH, Si(CH,),	
747	Ħ	11	3-C00C;H,OCH;	
748	'n	. 11	3-CONH,	
749	n	10	3-CN	
750	n	11	3-CONHCH ₃	

	y=CH Beisp.	-NI. (R1)n	R.	×	Fp/KpTor: L°S/
5	75 1	4,2-C1CF;	5-CH;	3-CONHC : H:	
	75 2			3-CONH-n-CaH,	
10	75 3	17	Ħ	3-CONH-n-C.H.	•
	75 4	**	#	3-CONH-n-C ₆ H ₁₃	18
	75 5		87	3-CONH-n-C10H21	
	75 6	91	n · .	3-CONH-i-C ₃ H,	
15	75 7	11	**	3-CON(CH3);	
	75 8	11	н	3-CON (CH,) (nC, H	15)
	75 9		11 .	3-CON(C2H5)2	
20	76 0		**	3-00-1	
	76 1	9*	**	3-CO-N	
	76 2	11	11	3-CO-N)	
25	76 3	u .	71	3-CG-NÇ	
,	76 4	10	**	3-00-NH-0-0.H.	
20	76 5	er .	Ħ	3-00-NH-0-03Hs	*.
30	76 6	•	n	3-CO-N(CH ₂)(cC ₆	н,,)
•	76 7	**		3-COSH	
35	76 8	**	tr	3-COSNa	
33	76 9	π	11	3-COSCH,	
	77 0	**	17	3-COSC2H5	
40	77. 1	н	17	3-COSCH, C. H,	
	77 2	п	10	3-COS-nC ₆ H ₁₇	
•	77 3	. "	17	3-COSC:HLOCH;	·
45	77 4	. "	n	3-COSCH, CHCH,	
	77 5	*	n	3-COSCH ₂ CCH	
	77 6	Ħ	*1	3-C05-c-CeH11	
50	77 7	*	11	3-COSCH,51(CH,),
	77 8	77	**	3-C05-n-C.H.CH	(CH ₃);
	77 9	n	11	3-CON	
55	78 D	**	11	3-C00C:H.CH(CH	,) _r

EP 0 333 131 A1

	Y=CH BeispNr.(R ₁) _n		R:	x FP/KPTorr /ºC/	
5	781	2,6,4-C1:CF;	5-CH ₃	3-C00CH ₃	
	782	**	11	3-C00C;H: 138-140	
10	783	**	**	3-C00-n-C ₃ H ₁	
	784	*1	21	3-C00-i-C ₃ H,	
	785	91	۳.	3-C00-n-C_H.	
	786	. 4	11	3-C00-n-C ₅ H,,	
15	787	n (1)	11	3-C00-n-C ₄ H ₁₃	
	-785	. "	н	3-C00-n-C3H11	
20	789	**	m	3-COO-n-C10H21 (R ₁) n	
	790		n	3-C-0-E-/ // -(O)	
	791		. "	3-COOH R ₂	
25	792	TT .	Ħ	3-C00Li	
	793	•	**	3-C00Na	
	79 4	17	n	3-C00K	
3 <i>0</i>	79 5	17		3-C00Ca ₁ / ₂	
	79 6	or .	π _.	3-C00-c-C.H,	
	79 7	••	n	3-C00-c-C ₆ H _{1 1}	
35	79 8	. π	n	3-C00CH2-C6H5	
	79 9.	m	n	3-C00CH ₂ -(2,4-C1 ₂ -C ₆ H ₃)	
	80 0	m	11 ·	3-COOCH, CHCH,	
40	80 1	n	. "	3-C00C2H.CHCH2	
	80 2	71	H	3-C00-n-C.H16CHCH:	
45	80 3	n ·	n	3-C00-CH: CCH	
	80 4	tt	n	3-C00-C2H4-CCH	
	80 5	***	11	3-C00-n-C 5 H 1 0 CCH	
50	80 6	**	11	3-COOCH2Si(CH3)3	
	8C 7	11	**	3-COOC,H.OCH,	
	80 B	n	*	3-CONH;	
	8G 9	19	11	3-CN	
55	81 0	11	n	3-CONHCH,	

Y=CH Beisp	Nr.(R ₁)	R:	×	Fp/KpTorr /ºC/
811	2,6,4-C1;CF;	5-CH ₃	3-CONHC:H:	
812	11	**	3-CONH-n-C;H,	
813	п	n	3-CONH-n-C.H.	
814	**	n	3-CONH-n-CeH13	
815	Ħ	**	3-CONH-n-C:0H;	1
816	•	**	3-CONH-1-C2H,	•
817	**	**	3-CON(CH ₃);	
818	Ħ	п	3-CON(CH;)(nC	Н ₁₃)
819	*1	•	3-CON(C;H;);	-4-
820	Ħ	tr	3-C0-N	
821	π	11	3-CO-N	
822	**	n	3-C0-N_C	
823	п	"	3-C0-N-C	
824	Ħ		3-C0-NH-c-C.H	11
825	· #	n	3-CO-NH-C-C3H	L
8 26	**	**	3-CO-N(CH3)(c0	C ₆ H ₁₁)
827	n	. "	3-COSH	
8 28		•	3-COSNa	
829	11	**	3-C05CH3	
830	п	*	3-005C2H5	•
831	19	n	3-COSCH, C.H.	
. 8 32	10	11	3-C0S-nC ₈ H ₁₇	
8 33	n	n	3-COSC, H. OCH,	
834	•	n	3-COSCH,CHCH,	
835	, "	. "	3-COSCH,CCH	
83	31	. #	3-C05-c-C.H.,	
83	, "	11	3-COSCH, S1 (CH	د (د
838	3 "	11	3-C05-n-C.H.C	H(CH ₃);
. 83	• "	ti	3-CON J	
. 84:	· "	**	3-C00C,H'CH(C	H ₂),

	Y=N BeispNr.(R ₁) _n		R,	x Fp/Kp _{Torr} L [®] ¢J	
5	841	3,5-C1 -CF;	5-CH _a	3-C00CH,	
	842	n	Ħ	3-C00C;H, 55-53	
	843			3-C00-n-C ₃ H ₇	
10	844	17	н	3-C00-1-C ₃ H ₇	
	845		10	3-C00-n-C.H,	
	846	10	*	3-C00-n-C:H:,	
15	847	•	**	3-C00-n-C ₄ H ₁₃	
	848	11	49	3-C00-n-C ₈ H ₁₇	
20	849	11	19	3-C00-n-C10H21 . (R1) n	
	85 C	11	10	3-E-0-E-N-(O)	
	85 1	tt		3-COOH P Y	
25	85 2	**	#	3-C00Li ^{^2}	
	85 3	tt	**	3-C00Na	
	85 4	**	*	3-C00K	
30	85 5	11	11	3-C00Ca ₁ / ₂	
30	85 6	n	n	3-C00-c-C.H,	
	85 7	n	**	3-C00-c-C ₆ H ₁₁	
35	85 8	n	n	3-C00CH2-C6H5	
	859	19		3-C00CH ₂ -(2,4-C1 ₂ -C ₆ H ₃)	
	860	17	•	3-COOCH2CHCH2	
40	861	Ħ	11	3-C00C2H4CHCH2	
	862	π	Ħ	3-COO-n-C.H1SCHCH:	
	863	77	n	3-C00-CH2CCH	
45.	86 4	• я	17	3-C00-C2H4-CCH	
	86 5	п	n	3-000-n-C:H:000H	
	86 6	er	**	3-C00CH ₂ Si(CH ₃),	
50	86 7	11	11 ·	3-C00C2H40CH3	
	868	11	н	3-CONH;	
	86 9	ti	II	3-CN	
55	87 0	н	**	3-CONHCH;	

	Y=N BeispNr	. (R ,)	R.	×	Fr/KpTor: /°C/
5	871 3,5-	ClCF,	5-CH,	3-CONHC;H;	
	87 2	**	17	3-CONH-n-C3H;	
	87 3	m	19	3-CGNH-n-CLH,	
10	87 4	п	**	3-CONH-n-C(H12	
	87 5	**	n	3-CONH-n-C10H21	
	87 6	••	,	3-C0NH-1-C3H,	
15	87 7	n	tt	3-CON(CH ₃);	
	878	gy .	· n	3-CON(CH ₃)(nC ₄ H ₃	₃)
	879	,1*	•	3-CON(C:H:);	•
20	880	11	**	3-CO-N	•
	88 1			3-CO-N	
25	88 2	н .		3-CO-N_0	
26	88 3	n	17	3-CO-N_c	
	85 4	**	**	3-C0-NH-C-C + H 1 1	
30	88 5	**	17	3-C0-NH-c-C3HE	
	886	n	99	3-CO-N(CH ₃)'(cC ₄ H	11)
	887	**	n	3-COSH	
35	888	n	91	3-COSNa	
	889	TT	1 9	3-COSCH,	
	89C	W	*	3-COSC 2H 5	
40	891	41	Ħ	3-C05CH; C6H:	
	892	11	10	3-C05-nC ₈ H ₁₁	
	893	17	n	3-COSC2H4OCH3	
45	894	Ħ		3-COSCH, CHCH,	
	895	17	Ħ	3-COSCH: CCH	•
	896	11	**	3-C05-c-C ₆ H ₁₁	
50	897	**	17	3-COSCH,Si(CH ₃),	
	898	•	Ħ	3-COS-n-C.H.CH(C	H ₃):
	899	11	11	3-CON P	
55	, 900	**	10	3-C00C;H,CH(CH;)	:

	Y=N Beisp.	NI.(R.) _n	R, .	x Fp/Kp _{Torr} /፻፫/
5	901	3,5-C1CF;	3-CH ₃	5-COOCH,
	902		**	5-COOC,H, Öl
	903.	**	11	5-CD0 -n-C3H1
10	904 .	n	n	5-C00-i-C,H,
	905	n	**	5-CCC-n-C.H.
	906	**	. 12	5-C00-n-C,H,,
15	907	17	н	5-000-n-C ₆ H ₁₃
	908		49	5-C00-n-CgH17
	909	**	90	5-C00-n-C10H21 (R1)n
20	910	**	**	5-E-0-E
	911	. "	*	5-COOH R2
25	912	n	r	5-C00Li
	913	r	Ħ	5-C00Na .
	914	••	••	5-C06K
30	915	11	99	5-C00Ca,/;
	916	rr	ri .	5-C00-c-C.H,
	917	#	91	5-C00-c-C6H11
35	918		n	5-C00CH; -C 6H5
	919	**	. **	5-COOCH2-(2,4-Cl2-C6H3)
	920	**	n	5-COOCH2CHCH2
40	921	11	10	5-COOC 2H4CHCH2
	922		18	5-000-n-C : H _{1 5} CHCH 2
	923	n	**	5-C00-CH2CCH
45	924	n	11	5-C00-C2H4-CCH
	925	**	н	5-C00-n-C3H10CCH
	926	r	n	5-COOCH ₂ Si(CH ₃) ₃
50	927	**		5-C00C:H.OCH3
• .	928	Ħ	Ħ	5-CONH z
•	929	ti	11	5-CN
55	93C	19	н	5-CONHCH 3

	Y=N Beisp.	-Nr:(R ₁) _n	- R ₂	x Fp/KpTorr L°S/
5	931	3,5-C1-CF;	3-CH ₃	5-CONHC, H,
	932	•	91	5-CONH-n-C;H,
	933		n	5-CONH-n-C.H.
10	934		11.	5-CONH-D-C+H13
	935	H	n	5-CONH-n-C10H:1
	936	**	•	5-CONH-1-C,H,
15 ,	937	**	**	5-CON(CH ₃) ₂
	938	**	**	5-CON(CH ₃)(nC ₆ H _{1,2})
20 ·	939	**	п ,	5-CON(C2H5)2
20	940	n	" .	5-CO-N
	941	n .	n	5-CO-N
25	942	**	n	5-CO-N_O
29	94 3	99	į)	5-CO-N_O
	944	17	- , n	5-CO-NH-C-C6H11
30	945	**	#	5-CO-NH-C-C 3H3
	946	47	Ħ	5-CO-N(CH3)(cCeH11)
	94 7	17	Ħ	5-COSH
35	948	n	н	5-COSNa
	94 9	π	Ħ	5-COSCH ₃
	95 0	**	Ħ	5-COSC ₂ H ₅
40	95 1	n	11	5-COSCH, C.H.
	95 2	n	11	5-COS-nC ₈ H ₁₇
	95 3	H	11	5-COSC ₂ H ₂ OCH,
45	95 4	99	11	5-COSCH:CHCH;
	95 5	# <u>-</u>	n	5-COSCH:CCH
	95 6)f	**	5-COS-c-C.H.,
50	95 7	Ħ	17	5-COSCH, Si(CH,),
	95 8	n	11	5-COS-n-C.H.CH(CH,);
	, 95 9	19	11	5-CON N
55	96 0	**	n	5-C00C, h. CH(CH ₃):

	Y=CH Beisp.	Y=CH BeispNr.(R,)		x · Fp/KPTorr /°C7	
5	961	2,3-Cl:	5-CH,	3-C00CH ₃	
	962	11	11	3-COOC,H, 77-79	
10	963	н	п	3-000-n-C;H;	
	964	11	Ħ	3-C00-i-C ₃ H;	
	965	. ••	11	3-C00-n-C.H,	
15	966	tt	и .	3-C00-n-C ₁ H ₁₁	
	967	•	n	3-000-n-C ₄ H ₁₃	
	968	H	n	3-C00-n-C ₈ H,,	
20	969	, н	"	3-C00-n-C, oH ₂ , (R ₁) _n	
	970	n	#	3-E-0-EX77-(O)	
	971	n .	Ħ	3-COOH R ₂	
25	972	. 11	Ħ	3-C00Li	
	. 973	tı	19	3-COONa	
	974	n	n	3-C00K	
30	975	Ħ	11	3-C00Ca ₁ / ₂	
	976	**	n	3-C00-c-C.H;	
	977	11	17	3-C00-c-C ₆ H,,	
35	978	**	it	3-C00CH ₂ -C ₆ H ₅	
	979	Ħ	n	3-C00CH ₂ -(2,4-Cl ₂ -C ₆ H ₃)	
	980	Ħ	n	3-COOCH2CHCH2	
40	981	. **	. #	. 3-COOC 2H. CHCH2	
	982	m ,	**	3-C00-n-C ₀ H ₁₅ CHCH;	
	983	n	11	3-C00-CH2CCH	
45	984	n	m	3-C00-C:HCCH	
	985	n	tr	3-C00-n-C5H10CCH	
•	986	99	11	3-C00CH2Si(CH3)3	
50	987	er .	Ħ	3-C00C:H.OCH3	
	988	π	#	3-CONH2	
	989	**	п	3-CN	
55	990	11	#1	3-CONHCH ₃	
				-	

5	Y=CH Beisp	Nr. (R.) _n	R;	X F	P/KPTCTT /°C7
J	991	2,3-01;	5-CH,	3-CONHC;H;	
	992		n	3-CONH-n-C3H7	
10	993		Ħ	3-CONH-n-C.H.	
	994	11	11	3-CONH-n-C.H.;	
	995			3-CONH-n-C; 6H;;	
15	996	•	••	3-CONH-1-C1H7	
	997	17	n	3-CON(CH ₃) ₂	
	998	**	n	3-CON(CH ₃)(nC ₄ H ₁ ,)
20	999	tr	Ħ	3-CON(C,H,),	•
	1000	20	77	3-CO-N	
	1001	. **	ţi.	3-C0-N	
25	. 1002	tr	11	3-CO-N_C .	
	1003	Ħ	11	3-CO-N_¢	
•	1004	91	11	3-CO-NH-C-C ₆ H,,	
30	1005	•	**	3-C0-NH-c-C3H5	
	1006	**	Ħ	3-CO-N(CH ₃)(cC ₆ H,	₁)
	1007	n	11	3-COSH	
35	1008	n .	Ħ	3-COSNa	
	1009	•	n	3-COSCH ₃	
	1010	•	11	3-C05C 2H3	
40	1014	•	**	3-COSCH ₂ C ₆ H ₅	
•	101 2	n	Ħ	3-COS-nC . H.,	
	1013	n	**	3-COSC:H.OCH;	
45	1014	**	π	. 3-COSCH ₂ CHCH ₂	
	1015	••	n	3-COSCH, CCH	
	1016	41	Ħ	3-COS-c-C ₆ H,,	
50	1017	Ħ	17	3-COSCH,Si(CH,),	
	1018	tt	Ħ	3-COS-n-C.H.CH(CH	3)2
	1.01 9	**	**	3-CON NO	
55	1020	n	17	3-C00C;H,CH(CH,);	

	Y=CH BeispNr.(R,)		R ₂	x Fp/KpTorr CC?
5	1021	2,4,5-C1;OCH;	5-CH ₃	3-C00CH ₃
	1022	11	π	3-COOC, Hs 155-159
	1023	**	n	3-C00 -n-C;H;
10	1024	** _	tı	3-C0G-i-C,H,
•	1025	**	n .	3-C0G-n-C.H.
	1026	97	н	3-C00-n-C;H,,
15	1027	17	Ħ	3-C00-n-C ₄ H ₁₃
	1028	¥f	n	3-C00-n-C ₈ H ₁ ,
20	1029	**	Ħ	3-C00-n-C10H21 (R1)n
20	1630	W	n	3-8-0-8-4" (D
	1031	**	11	3-COOH R2
25	103 2	н	n	3-C00Li
	103 3	n	tt	3-COONa
	103 4	Ħ	**	3-C00K
30	103 5	н	•	3-C00Ca ₁ / ₂
	103 6	Ħ	m .	3-C00-c-C ₆ H,
~	103 7	. n	**	3-C00-c-C.H,,
35	103 8	и	•	3-C00CH;-C6H;
	103 9	Ħ	n	3-COOCH2-(2,4-Cl2-CeH3)
	104 0	P7	` "	3-COOCH, CHCH,
40	104 1	Ħ	. "	3-000C:H.CHCH:
	104 2	Ħ	*	3-CDO-n-C ₈ H ₁₆ CHCH:
	104 3	11	n ·	3-000-CH; CCH
45	104 4	Ħ	11	3-C00-C2H4-CCH
	104 5	79	**	3-000-n-C ₃ H ₁₀ CCH
	104 6	pt .	" ,	3-COOCH:Si(CH:);
50	104 7	tr	H	3-COOC, H, DCH,
	104 8	. "	47	3-CONH;
	104 9	n	**	3-CN
55	105 0	n	Ħ	3-CONHCH ₃
				•

	Y=CH Beisp	NT.(R ₁)	Rį	×	Fp/KpTorr ZªCZ/
5	1051	2,4,5-C1:OCH,	5-CH,	3-CONHC:H:	
	1052	Ħ	tt .	3-CONH-n-CaHr	
	1053	•	*	3-CONH-U-C'H	
10	1054	m	n	3-CONH-n-C:H13	
	1055	Ħ	17	3-CONH-n-C10H21	
•	1056	. "	н -	3-CONH-1-C;H,	
15	1057	π	n	3-CON(CH ₃) ₂	
	1058	rı	Ħ	3-CON(CH ₃)(nC _E H	13)
	1059	w		3-CON(C2H5)2	
20	1060	π	n	3-CD-N	
	106 1	Ħ	17	3-CO-N	
	106 2		н	3-CO-NO	,
25	106 3	n	ú	3-CO-NO	
_	106 4		17	3-CO-NH-C-CEH11	÷.
30	106 5	n ′	н	3-CO-NH-C-C3H5	
	106 6	n	n	3-CO-N(CH3)(cCe)	1,,)
	106 7	н	n	3-COSH	•
35	106 8	π	n	3-COSNa	
	106 9		n ·	3-COSCH ₃	
	107 0	. #	π	3-COSC . H.	
40	107 1	Ħ	n	3-COSCH2CaHs	•
	107 2	19	n	3-COS-nCaH,,	
	107 3	11	π	3-COSC,H.OCH,	
45	107 4	ęr	tt	3-COSCH:CHCH:	
	107 5	. "	Ħ	3-COSCH2CCH	
	107 6	78	***	3-COS-c-C.H.1	•
50	107 7	n	n	3-COSCH2S1(CH3)	1
	107 8	17	11	3-C0S-n-C.H.CH((
•	107 9	. 11	17	3-CON N	
55	108 0	**	••	3-C00C:H,CH(CH;) ;

	Y=CH	,		•
	BeispNr.(R ₁)		R:	x Fp/KpTorr / C?
5	108;	2,4,5-C1:0CH:	3-CH ₃	5-C00CH ₃
	108 2	**	ţe.	5-C00C,H. 81
	1083		19	5-C00-n-C ₃ H ₇
10	108.4		10	5-C00-i-C ₃ H ₇
	1085	40	n .	5-C00-n-C.H.
	1086	10	r .	5-C00-n-C:H11
15	1087			5-C00-n-C ₆ H ₁₃
	1088	. 17	**	5-CDC-n-C8H17
	1089	66	**	5-C00-n-C10H21 (R1)n
20	1090		87	5-8-0-8-47-0
	1091	n	**	5-COOH P. T
25	109 2	**	•	5-C00Li
	1093	11	(I	5-C00Na
•	109 4	π	11	5-COOK
30	109 5	Ħ	**	5-C00Ca ₁ / ₂
	109 6	π	π	5-C00-c-C.H;
	109 7.	n	•	5-C00-c-C.H13
35	109 8	*	. 81	5-C00CH2-C6H5
	1099	n	Ħ	5-COOCH2-(2,4-Cl2-C6H3)
	1100	n	**	5-COOCH, CHCH,
40	1101	u	Ħ	5-COOC:H.CHCH:
	1102	17	Ħ	5-COO-n-CaH 6 CHCH2
	1103	n	**	5-COO-CH2CCH
45	1104	11		5-C00-C2H5-CCH
	1105	tt	17	5-C00-n-C ₅ H ₁₀ CCH
	1106	n	17-	5-C00CH; Si(CH ₃);
50	110 7		11	5-COOC 2 H L OCH 3
	110 8	n		5-CONH ₂
	110 9	n	H	5-CN
55	. 111 0	11	**	5-CONHCH ₃

5	Y=CH BeispNr.	(R ,)n	R,	×	Fp/KpTorr /°Ç/
	1111 2,4,5-	C1,OCH,	3-CH ₃	5-CONHC,H,	•
	111 2	n .	**	5-C0NH-n-C,H,	
10	1113	,,	. "	5-CONH-n-C.H.	
	1114	**	17	5-CONH-n-C.H.;	
	1115	•		5-CONH-n-C , oH; ,	
15	1116	π	11	5-CONH-i-C,H,	
	1117	. 	11	5-CON(CH ₃) ₂	
	1118	•	n	5-CDN(CH3)(nC6H1	,)
20	1119	*	17	5-CON(C2H5);	
	1120	H	ii.	5-CO-N	
•	1121	н	n	5-CO-N).	
25	1122	n	**	5-CO-N_O	
	112 3	н .	***	5-CO-N_O	•
•	112 4	n	17	5-CO-NH-C-C.H.,	
30	112 5	n	Ħ	5-CO-NH-C-C,H,	
	112 6	*	**	5-CO-N(CH;)(cC,H	11)
	112 7	n	m .	5-COSH	
35	1128	n	**	5-COSNa	
	1129	n	m	5-COSCH,	
	113 0	11.	Ħ	5-COSC,H,	
40	113 1	. "	Ħ	5-COSCH, C, H,	
	113 2	н .	н	5-C05-nC ₆ H ₁₇	
	113 3	H	**	5-COSC;HLOCH;	
45	113 4	н	11	5-COSCH ₂ CHCH ₂	
	113 5	Ħ	**	5-COSCH, CCH	
	113 6	11	11	5-COS-c-C.H. 1.	
50	113 7	n	**	5-COSCH, 51(CH,),	
	113 8	Ħ	17	5-COS-n-C.H.CH(C	н,):
	113 9	n	, п	5-CON ()	•
55	114 0	H	10	5-C00C;H,CH(CH;)	2

	Y=CH BeispNr.(R.)		R _z	x Fp/Kp _{Torr} [c]
5 .	1141	2,6,3-(C;H;);Cl	5-CH ₃	3-C00CH,
	1142	**		3-C00C,H: 01
	1143	**	27	3-C00-n-C ₃ H,
10	1144	**		3-C00-i-C;H;
	1145	91	11	3-C00-n-C.H.
	1146	99		3-C00-n-C:H;;
15	1147	99	**	3-C00-n-C.H13
	1148	**	n	3-C00-n-C8H ₁₇
	1149	н .	W	3-CCC-n-C10H21 (R1)n
20	1150	n	, n 🦂 😅	3- E-0 E#7 -(O)
	1151	**	**	3-COOH R
	1152	99	n	3-C00Li
25	1153	**	11	3-C00Na
	1154	**	Ħ	3-соок
30	1155	रा		3-C00Ca ₁ / ₂
30	1156	11	H	3-C00-c-C.H.
	1157	₩ .	**	3-C00-c-C.H.1
35	1158	. "	n ,	3-C00CH2-C6H5
	1159	, ,		3-C00CH;-(2,4-C1;-CeH;)
	1160	17	99	3-C00CH; CHCH;
40	1161	**	11	3-00002H&CHCH2
•	1162	11	**	3-C00-n-C. H16CHCH:
	1163	11	11	3-C00-CH; CCH
45	1164	17	**	3-C00-C2H4-CCH
	1165	**	n	3-C00-n-C ₅ H ₁ ,CCH
	1166	17	. 11	3-C00CH ₂ Si(CH ₃);
50	1167	**	H	3-COOC;H_OCH;
	1168	n	**	3-CONH ₂
	1169	18	**	3-CN
55	1176	11	11	3-CONHCH,

	Y=CH Beisp.	NT.(R,)	R:	x Fp/rp tor: $\sqrt{^{\circ}}$ CJ
5	1 1 71	2,6,3-(C,H,),Cl	5-CH ₃	3-CONHC, H,
	1172		**	3-CONH-n-C,H,
	1173	**	87	3-C0NH-n-C.H.
10	1174	n	**	3-CONH-n-C.H.3
	1175	**	•	3-CONH-n-C, oH;
15	1176	n	,	3-CONH-i-C,H,
73	1177	P	TT .	3-CON(CH ₃) ₂
	1178	76	11	3-CON(CH ₃)(nC ₄ H ₁₃)
22	1179	19	IT	3-CON(C2H5)2
•	1180	**	11	3-C0-N
	1181	11	17	3-00-1
25	1182	H	**	3-C0-N_C
	1183	n	57	3-co- \
	1184	**	n	3-60-NH-c-C.H.,
30	1185	**	n	3-C0-NH-c-C ;H:
30	1166	10	n	3-CO-N(CH ₃)(cC ₄ H ₁₁)
	1187	11	11	3-C0SH
35	1188	n	•	3-COSNa
	. 1189	ч	n	3-COSCH;
	1190	. 11	m ·	3-C0SC2H3
40	1191	n	11	3-COSCH ₂ C ₆ H ₃
40	1192	11	n	3-COS-nC ₆ H ₁ ,
•	1193	**		3-COSC:H.OCH;
45	1194	10	10	3-COSCH;CHCH;
	1195	n	31	3-COSCH ₂ CCH
	1196	11	n	3-COS-c-C6H11
50	119 7	11	**	3-COSCH;Si(CH;);
	1198	•	u	3-COS-n-C,H ₀ CH(CH ₃);
	1199	79	17	3-CON N
55	1200	11	99	3-C00C;H,CH(CH;);

5	Y=CH BeispNr.	(R.) _D	R ₃ ·	x Fp/Kp _T	orr <u>[</u> °c <u>7</u>
	1201	3-CF,	3-CH ₃	5-C00H	164-170
10	1202	3,2,6-C1(C ₂ H ₅)	2 **	5-cooc ₂ H ₅	Oel
	1203	4,2-C1-CF ₃ -Phe	: 3-CH ₆	5-C00C ₂ H ₅	Oel
15	1204	3-CF ₃	5-C(CH ₃),	3-C00C2H5	Oel .
•	1205	2,4-Br ₂	5-C(CH ₃) ₃	3-C00C2H5	130-132
	1206	2,3-Cl:	5-C(CH ₃) ₃	3-C00C ₂ H ₅	101-102
20	1207	2,6,4-Cl ₂ -CF ₃	3-CH ₂ CH(CH ₃) ₂	5-cooc ₂ # ₅	Oel
	1208	₩	5-CH2CH(CH3) 2	3-C00C2H5	82-84
25	1209	2,4-01;	3-CH2CH(CH3)2	5-C00C2H3	Oel
	1210	2,4-Br _z	3-1-C ₂ H ₇	5 -CDOC 2H5	
	1211	3-CF,	5-CH2CH(CH3)2	3-00002H5	Oel
30	1212	2,6,4-Cl ₂ -CF ₃	5-CH ₂ CH(CH ₃) ₂	3-соон	191-193
	1213	2,3-Cl ₂ -Phe	5-CH	3-C00C2H5	76-78
35	1214	•	5-CH ₂ CH(CH ₃)	3-C00C2H3	91-92
	1215	2,4-Br ₂	5-CH2CH(CH3)	3-C00Et	Oel
40	1216	2,4-012	5-CH;	3-C00CH2CH(CH3)C	•
	1217	3-CF,	5-CH ₃	3-C00C ₂ H ₅	0el
•	1218 1219	•	5-CH(CH ₃) ₂ 3-CH(CH ₃) ₂	3-C00C ₂ H ₅ 5-C00C ₂ H ₅	72-79 Oel
	1220	7,4-01-013	5-CH(CH ₃) ₂	3-C00C 2H5	58-70
45	1221	2,4-Br ₂	5-CH, CH(CH,);	3-C00C, H ₅	184-187
	1222		5-C(CH ₃),	3-C00C, H ₃	106-107
-à	1223	•	5-CH ₂ CH(CH ₃) ₂		>250
50	1224	2.3-C1,	5-CH ₂ CH(CH ₃);	3-COOH	209-211
	1225		5-CH2CH(CH3)2	3-C00C, Hs	54-58
			•		

EP 0 333 131 A1

	8eispN	r. (R) _n	R ₁	x	Fp/Kp[°c]
5	1226	2,4,5-C1, F-CH ₃ -Phe	5-CH;	3-C00CzHs	109-110
	1227	3,4-C1,-CH ₃ -Phe	5-CH;	3-C00C2Hs	77-80
	1228	2,4-Cl:-Phe	5-CH ₃	3-C00 HN(C2H2CH)3	135-138
10	1229	2,4-Cl:-Phe	5-CH ₃	3-CONHC(CH ₁)(CH(CH ₃) ₂)- CONH ₂	65-69
	1230	2,4-Cl:-Phe	5-CH ₃	3-C(NH _z)NGH	205
15	1231	2,6-(CH ₃);	5-CH ₃	3-C00C 2H 5	Oel
18	1232	4-F-Phe	5-CH,	3-C00C 2H 5	Harz
	1233	4-0CH ₃ -Phe	5-CH,	3-C00C 2H 4	0el
	1234	2,4-C1, CF;-Phe	3-CH ₃	5-C00C 2H 3	Oel
20	1235	2,4-Cl:	5-c-C ₃ H ₅	3-C00C2H5	80
	1236	2,6,4-Cl ₂ , CF ₃ -Phe	5-c-C ₃ H ₅	3-C00C2Hs	105-110

Abkürzungen: n: geradkettig

1: iso (verzweigt)

c: cyclo

30

C. Biologische Beispiele

35

Beispiel 1

Weizen und Gerste wurden im Gewächshaus in Plastiktöpfen bis zum 3 bis 4 Blattstadium herangezogen und dann nacheinander mit den Safener-Verbindungen und den getesteten Herbiziden im Nachauflaufverfahren behandelt. Die Herbizide und die Verbindungen der Formel I wurden dabei in Form wäßriger Suspensionen bzw. Emulsionen mit einer Wasseraufwandmenge von umgerechnet 800 I/ha ausgebracht. 3 bis 4 Wochen nach der Behandlung wurden die Pflanzen visuell auf jede Art von Schädigung durch die ausgebrachten Herbizide bonitiert, wobei insbesondere das Ausmaß der anhaltenden Wachstumshemmung berücksichtigt wurde. Der Grad der Schädigung bzw. die Safenerwirkung von I wurde in % Schädigung bestimmt.

Die Ergebnisse aus Tabelle I veranschaulichen, daß die erfindungsgemäßen Verbindungen starke Herbizidschäden an den Kulturpflanzen effektiv reduzieren können.

Selbst bei starken Überdosierungen des Herbizids werden bei den Kulturpflanzen auftretende schwere Schädigungen deutlich reduziert, geringere Schäden völlig aufgehoben. Mischungen aus Herbiziden und erfindungsgemäßen Verbindungen eignen sich deshalb in vorteilhafter Weise zur selektiven Unkrautbekämpfung in Getreidekulturen.

Tabelle 1: Safenerwirkung der erfindungsgemäßen Verbindungen

2.0 0.2 2.0 + 2.5 0.2 + 2.5	80 - 10	HV - 85
0.2 2.0 + 2.5	-	- 85
0.2 2.0 + 2.5	-	85
2.0 + 2.5	10	
		-
	_	. 20
2.0 + 2.5	50 .	-
	-	40
	40	. -
	-	35
	30	_
0.2 + 2.5	-	35
2.0 + 2.5	20	-
	-	40
2.0 + 2.5	20	-
0.2 + 2.5	-	45
2.0 + 2.5	15	-
0.2 + 2.5	-	45
2.0 + 2.5	20	-
0.2 + 2.5	-	40
2.0 + 2.5	20	-
0.2 + 2.5	-	50
2.0 + 2.5	35	-
0.2 + 2.5	-	50
2.0 + 2.5	35	-
0.2 + 2.5	-	50
2.0 + 2.5	50	-
0.2 + 2.5	-	70
2.0 + 2.5	25	-
0.2 + 2.5	-	40
2.0 + 2.5	25	-
0.2 + 2.5	-	30
2.0 + 2.5	50	
0.2 + 2.5	<u> </u>	55
	0.2 + 2.5 2.0 + 2.5 0.2 + 2.5 2.0 + 2.5 0.2 + 2.5 2.0 + 2.5 0.2 + 2.5 2.0 + 2.5 0.2 + 2.5 2.0 + 2.5 0.2 + 2.5 2.0 + 2.5 0.2 + 2.5 2.0 + 2.5 0.2 + 2.5	0.2 + 2.5

EP 0 333 131 A1

	Kombination Herbizid/Safener	Dosierung (kg a.i./ha)	Safenerwirk TA	ung HV
5	H1 + 71	2.0 + 2.5	50	
		0.2 + 2.5	-	65
_	H1 + 632	2.0 + 2.5	30	-
		0.2 + 2.5	•	85
10	H1 + 605	2.0 + 2.5	70	-
		0.2 + 2.5	-	40
	H1 + 722	2.0 + 2.5	20	-
15		0.2 + 2.5	_	50
	H1 + 152	2.0 + 2.5	40	-
		0.2 + 2.5	-	85
20	H1 + 212	2.0 + 2.5	40	-
		0.2 + 2.5	•	70
	H1 + 302	2.0 + 2.5	60	-
		0.2 + 2.5	-	30
25	H1 + 362	2.0 + 2.5	20	-
	•	0.2 + 2.5	-	20
	H1 + 1204	2.0 + 2.5	60	-
30		0.2 + 2.5	-	× 50
	H1 + 1205	2.0 + 2.5	60	-
,		0.2 + 2.5	, -	50
35	H1 + 1206	2.0 + 2.5	60	-
	•	0.2 + 2.5	•	50
	H1 + 1207	2.0 + 2.5	55	-
		0.2 + 2.5	-	45
40	H1 + 1208	2.0 + 2.5	60	-
		0.2 + 2.5	-	45
•	H1 + 1209	2.0 + 2.5	70	
45	•	0.2 + 2.5	-	45
	H1 + 422	2.0 + 2.5	70	-
		0.2 + 2.5	-	50
50	H1 + 1210	2.0 + 2.5	70	
		0.2 + 2.5	-	55
	H1 + 1211	2.0 + 2.5	60	-
		0.2 + 2.5	-	50
. 55				

EP 0 333 131 A1

5	Kombination Rerbizid/Safener	Dosierung (kg a.i./ha)	Safene TA	rwirkung HV
	H1 + 1212	2.0 + 2.5	70	•
		0.2 + 2.5	-	40
10	H1 + 1213	2.0 + 2.5	40	-
		0.2 + 2.5	-	30
	H1 + 1214	2.0 + 2.5	60	•
	_	0.2 + 2.5	•	10
15	H ₁ + 121	2,0 + 2,5 0,2 + 2,5	25 -	- 40
	H ₁ + 123	11 15	60 ₋	- 40
20	H ₁ + 124	2,0 + 1,25 0,2 + 1,25	20 -	- 30
	H ₁ + 125	2,0 + 2,5 0,2 + 2,5	60 -	- 40
25	H ₁ + 127	61 11	40	- 30
	H ₁ + 128	2,0 + 1,25 0,2 + 1,25	20	- 40
30	H ₁ + 132	2,0 + 2,5 0,2 + 2,5	30	- 30.
	н ₁ + 133	2,0 + 1,25 0,2 + 1,25	20	- 30
35	H ₁ + 135	2,0 + 2,5 0,2 + 2,5	30 -	30
	H ₁ + 137	2,0 + 1,25 0,2 + 1,25	40	- 50
40	.H ₁ + 138	10 33	10	<u>-</u> 20
	H ₁ + 140	U	20	- 40
45	н ₁ + 143	41	15	- 60

EP 0 333 131 A1

	(Herb	Pro pizid	dukt /Safener)	Dosierung (kg a.i./ha)	Safener TA	wirkung HV
5	H ₁	+	146	2,0 + 1,25 0,2 + 1,25	40 -	- 70
	н ₁	+	147	01 88	20 -	20
10	н	+	149	er 44	35 -	40
	н	+	150	:: ::	30	80
15	н	+	153	 a	10	- 30
	н	+	157	n n	50	- 75
20	н	+	159	# #	20 -	- 20
	н	+	160		50 -	- 60
25	н	+	162	" " "	30 -	- 80
	.H ₁	+	164	u u	10	70
30	н	+	171	u u	20 -	- 75
	н	+	242	u u	20	- .
35	н	+	251	 43 44	20	- 20
	Н	+	301	u .	20	- 30
40	H ₁	÷	303	u u	10	- 20
	н ₁	+	311	o 0	30	- 30
	•			n	_	30

EP 0 333 131 A1

	Produkt (Herbizid/Safener)	Dosierung (kg a.i./ha)	Safener TA	wirkung HV
5	H ₁ + 361	2,0 + 1,25 0,2 + 1,25	15	20
	H ₁ + 391	89 89	25	5 0
10	н ₁ + 392	II N	20	- 70
	H ₁ + 482	11 13	20 -	- 40
15	H ₁ + 491	60 28	20 -	- 40
	H ₁ + 511	. ***	30	- 85
20	H ₁ + 692	1) 1)	30	, - 40
	H ₁ + 1022	51 11	30 -	- 70
25	H ₁ + 1218	2,0 + 2,5 0,2 + 2,5	30 -	- 20
	H ₁ + 1219	89 84 ·	35	- 50
30	H ₁ + 1220	* B	30 -	20
	H ₁ + 1221	et 13	30 -	20
35	H ₁ + 1222	u u	15 -	30
	H ₁ + 1223	t i 05	20	60
40	H ₁ + 1224	, tr De	20	60
	H ₁ + 1225	tt D	50 -	- 30

EP 0 333 131 A1

	(Herbi	Produkt zid/Safener)	Dosierung (kg a.i./ha)	Safenerw TA	irkung HV
5	Н	+ 1226	2,0 + 1,25 0,2 + 1,25	30	- 70
	н	+ 1227	11 13	50 -	- 80
10	н ₁ -	+ 1228	54 91	40 -	 70
	н	+ 1229	e 11 <u>.</u>	30 -	- 60
15	H ₁	+ 1230	u a	50 -	- 80
	н	+ 1231	69 63	40 ~	- 75
20	н ₁	+ 1233	n .	40	75
	H ₁ .	+ 1235	H H	20	40
25	н	+ 1236	H H	20 -	60

Abkürzungen: TA = Triticum aestivum (Weizen)

HV = Hordeum vulgare (Gerste)

a.i. = Aktivsubstanz

HI = Fenoxaprop-ethyl

40 Ansprüche

30

35

45

50

1. Mittel zum Schutz von Kulturpflanzen gegen phytotoxische Nebenwirkungen von Herbiziden, dadurch gekennzeichnet, daß sie eine Verbindung der Formel I

worin

Y C-H-oder N,

R₁ unabhängig voneinander (C₁-C₄)-Alkyl, (C₁-C₄)-Haloalkyl, (C₁-C₄)-Alkoxy, (C₁-C₄)-Haloalkoxy oder Halogen.

⁶⁵ R₂ (C₁-C₁₂)-Alkyl oder (C₃-C₇)-Cycloalkyl, X COOR₃, CON(R₄)₂, COSR₃, CN,

R₃ Alkali- oder Erdalkalimetall, Wasserstoff, (C₁-C₁₀)-Alkyl, (C₃-C₂₀)-Alkenyl, (C₃-C₁₀)-Alkinyl, (C₃-C₇)
Cycloalkyl, Phenyl-(C₁-C₄)-Alkyl, wobel Phenyl durch Halogen substituiert sein kann, Tris-(C₁-C₄)-Alkyl
Silvl-(C₁-C₄)-Alkyl, (C₁-C₄)-Alkoxy-(C₁-C₄)-Alkyl

R₄ unabhängig voneinander H, (C₁-C₁₀)-Alkyl, (C₃-C₂)-Cycloalkyl, das substituiert sein kann, oder 2 Reste R₂ bilden zusammen mit dem sie verknüpfenden N-Atom einen 4- bis 7-gliedrigen heterocyclischen Ring und

5 n 1 bis 3

20

bedeuten, in Kombination mit einem Herbizid enthalten.

2. Mittel gemäß Anspruch 1, dadurch gekennzeichnet, daß in Formel I

Y = CH, R₁ = Halogen, (C_1-C_4) Haloalkyl, R₂ = (C_1-C_6) -Alkyl, X = COOR₃, R₃ = H oder (C_1-C_6) -Alkyl und n = 1 oder 2 bedeuten.

3. Mittel gemäß Anspruch 1, dadurch gekennzeichnet, daß Y = CH, R_1 = Cl, R_2 = (C₁-C₄)-Alkyl, X = COOR₃, R_3 = (C₁-C₄)-Alkyl und R_3 = 2 bedeuten.

4. Mittel gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Herbizid eine Verbindung vom Typ der Phenoxyphenoxy- oder Heteroaryloxyphenoxycarbonsäure-(C₁-C₄)-Alkyl-, (C₂-C₄)-Alkenyl- oder (C₃-C₄)-Alkinylester eingesetzt wird.

5. Mittel gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß als Herbizid 2-(4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy)-propionsäureethylester oder 2-(4-(6-Chlorbenzthiazol-2-yl-oxy)-phenoxy)-propionsäureethylester eingesetzt wird.

6. Mittel gemäß einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Verhältnis Safener zu Herbizid 1:10 bis 10:1 beträgt.

7. Mittel gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Verhältnis Safener zu Herbizid 2:1 bis 1:10 beträgt.

8. Verfahren zur Minderung der Phytotoxizität von Herbiziden gegenüber Kulturpflanzen, dadurch gekennzeichnet, daß man die Pflanzen, Pflanzensamen oder Anbauflächen mit einer wirksamen Menge einer Verbindung der Formel I vor, nach oder gleichzeitig mit dem Herbizid behandelt.

9. Verwendung von Verbindungen der Formel I zur Minderung der Phytotoxizität von Herbiziden gegenüber Kulturpflanzen.

10. Mittel gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzelchnet, daß als Herbizid die Verbindung 2-(4-(5-Chlor-3-fluor-pyridyl-2-oxy)-phenoxy)-propionsäurepropargylester eingesetzt wird

11. Mittel gemäß einem oder mehreren der Ansprüche 1 bis 3. dadurch gekennzeichnet, daß als Herbizid die Verbindung 2-(N-Ethoxypropionamidoyl)-5-mesityl-3-hydroxy-2-cyclohexen-1-on eingesetzt wird

12. Verbindungen der Formel I gemäß Anspruch 1, worin Y = CH, R₁ = 2,4-Cl₂, R₂ = Isopropyl, X = COOR₃ und R₃ = (C₁-C₁₀)-Alkyl bedeuten.

13. Verbindung der Formel I gemäß Anspruch 1, worin Y = CH, R₁ = 2,4-Cl₂, R₂ = 5-Isopropyl und X = 3-COOC₂H₅ bedeuten.

Patentansprüche für folgenden Vertragsstaat: ES

1. Verfahren zur Minderung der Phytotoxizität von Herbiziden gegenüber Kulturpflanzen, dadurch gekennzeichnet, daß man die Pflanzen, Pflanzensamen oder Anbauflächen mit einer wirksamen Menge einer Verbindung der Formel I

55

worin

5

Y C-H oder N,

R₁ unabhängig voneinander (C₁-C₄)-Alkyl, (C₁-C₄)-Haloalkyl, (C₁-C₄)-Alkoxy, (C₁-C₄)-Haloalkoxy oder Halogen,

 R_2 (C₁-C₁₂)-Alkyl oder (C₃-C₇)-Cycloalkyl, X COOR₃, CON(R_4)₂, COSR₃, CN,

0 0 (R₁) n

20

15

 R_3 Alkali- oder Erdalkalimetall, Wasserstoff, (C_1 - C_{10})-Alkyl, (C_3 - C_{20})-Alkenyl, (C_3 - C_{10})-Alkinyl, (C_3 - C_7)-Cycloalkyl, Phenyl-(C_1 - C_4)-Alkyl, wobei Phenyl durch Halogen substituiert sein kann, Tris-(C_1 - C_4)-Alkyl-Silyl-(C_1 - C_4)-Alkyl, (C_1 - C_4)-Alkyl, (C_1 - C_4)-Alkyl

R4 unabhängig voneinander H, (C1-C10)-Alkyl, (C3-C7)-Cycloalkyl, das substituiert sein kann, oder 2 Reste R4 bilden zusammen mit dem sie verknüpfenden N-Atomen einen 4- bis 7-gliedrigen heterocyclischen Ring und

n 1 bis 3

bedeuten, vor, nach oder gleichzeitig mit einem Herbizid behandelt.

2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß in Formel I

Y = CH, R_1 = Halogen, (C_1 - C_4)-Haloalkyl, R_2 = (C_1 - C_5)-Alkyl, X = COOR₂, R_3 = H oder (C_1 - C_5)-Alkyl und n = 1 oder 2 bedeuten.

- 3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß Y = CH, R₁ = Cl, Br oder CF₃, R₂ = (C₁-C₄)-Alkyl, X = COOR₃, R₃ = (C₁-C₄)-Alkyl und n = 2 bedeuten.
- 4. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Herbizid eine Verbindung vom Typ der Phenoxyphenoxy- oder Heteroaryloxyphenoxycarbonsäure-(C₁-C₄)-Alkyl-, (C₂-C₄)-Alkenyl- oder (C₃-C₄)-Alkinylester eingesetzt wird.
- 5. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß als Herbizid 2-(4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy)-proplonsäureethylester oder 2-(4-(6-Chlorbenzthiazol-2-yl-oxy)-phenoxy)-propionsäureethylester eingesetzt wird.
- 6. Verfahren gemäß einem oder mehreren oder Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Verhältnis Safener zu Herbizid 1:10 bis 10:1 beträgt.
- 7. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Verhältnis Safener zu Herbizid 2:1 bis 1:10 beträgt.
- 8. Verwendung von Verbindungen der Formel I gemäß Anspruch 1 zur Minderung der Phytotoxizität von Herbiziden gegenüber Kulturpflanzen.
- 9. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Herbizid die Verbindung 2-(4-(5-Chlor-3-fluor-pyrldyl-2-oxy)-phenoxy)propionsäurepropargylester eingesetzt wird.
- 10. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 3. dadurch gekennzeichnet, daß als Herbizid die Verbindung 2-(N-Ethoxypropionamidoyl)-5-mesityl-3-hydroxy-2-cyclohexen-1-on eingesetzt wird.

55

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 89 10 4500

	EINSCHLÄGIGE	DOKUMENTE		
Kategorie	Kennzeichnung des Dokumen der maßgeblich	ts mit Angabe, soweit erforderlich, en Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
D,A	CHEMICAL ABSTRACTS, Mai 1968, Seiten 842 Columbus, Ohio, US; (GYOGYSZERKUTATO INT	& HU-A-153 762	1-13	A 01 N 25/32 C 07 D 231/14
A	EP-A-0 234 119 (MAY * Ansprüche 1,5 *	& BAKER LTD)	1-13	
A	EP-A-0 151 866 (ELI * Anspruch 1 *	LILLY & CO.)	1-13	
A	AU-A- 508 225 (COM SCIENTIFIC AND INDUS ORGANIZATION) * Anspruch 1 *	MONWEALTH TRIAL RESEARCH	1-13	
	·			
				·
			. [RECHERCHIERTE SACHGEBIETE (Int. Cl.4)
	·			A 01 N C 07 D
	}			
	· ·			
	,			
Der v	orliegende Recherchenbericht wurde	e für alle Patentansprüche erstellt		
	Recherchenart	Abschlußdatum der Recherche 21-06-1989		Prilifer ANEL C.M.

- X: von besonderer Bedeutung allein betrachtet Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A: technologischer Hintergrund O: nichtschriftliche Offenbarung P: Zwischen

- nach dem Anmeldedatum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument L : aus andern Gründen angeführtes Dokument
- & : Mitglied der gleichen Patentfamilia, übereinstimmendes Dokument

RPO FORM ISO3 00.82