

Sequential Data II

CMPT 419/726

Mo Chen

SFU Computing Science

9/3/2020

Outline

• Goal: Review filtering, and consider the continuous state case

- Motivational Application: Localization
- Bayes' Filter
- Kalman Filter
- Extended Kalman Filter
- Particle Filter

Outline

• Goal: Review filtering, and consider the continuous state case

- Motivational Application: Localization
- Bayes' Filter
- Kalman Filter
- Extended Kalman Filter
- Particle Filter

- Assume a map is given: $m = \{m_1, m_2, ..., m_N\}$
 - Location based: each m_i represents a specific location and whether it's occupied (eg. Occupancy grid)

• Feature based: each m_i contains the location and properties of a feature (eg. lighthouses, GPS)

Siegwart and Nourbakhshs, 2004

- Assume a map is given: $m = \{m_1, m_2, \dots, m_N\}$
 - Location based: each m_i represents a specific location and whether it's occupied (eg. Occupancy grid)
 - Feature based: each m_i contains the location and properties of a feature (eg. Topological map)
- Robot maintains and updates its belief about where it is with respect to the map
 - Position belief is updated based on sensor data
 - Position belief is a probability distribution

Robot-Environment Interaction: Definitions

- State z_t : includes the environment (eg. objects, features)
 - Assume the state z_t is complete / the Markov property
- Control data a_t
 - Usually decreases robot's knowledge
- Probabilistic model of state evolution
 - Transition probabilities
 - System dynamics
 - $p(z_t|z_{t-1}, a_{t-1})$

Robot-Environment Interaction: Definitions

- Measurement data x_t
 - Increases robot's knowledge
- Measurement equation:
 - $p(x_t|z_t)$

Prediction and Belief Distributions

- Prediction distribution:
 - Robot's prediction of the state before making an observation

$$\overline{\mathrm{bel}}(z_t) \coloneqq p(z_t | x_{1:t-1}, a_{1:t-1})$$

- Belief distribution:
 - Robot's internal knowledge about the state

$$bel(z_t) := p(z_t | x_{1:t}, a_{1:t-1})^{|z_{t-1}|}$$

 $m_i = (m_{i,x}, m_{i,y})$

Outline

• Goal: Review filtering, and consider the continuous state case

- Motivational Application: Localization
- Bayes' Filter
- Kalman Filter
- Extended Kalman Filter
- Particle Filter

- Robot and environment have state z_0
 - Initialize $bel(z_0)$ (eg. to be uniform or dirac distribution)
- From z_0 , choose an action $a_0 \rightarrow$ robot moves to z_1
 - 1. Predict the next state by computing $bel(z_1)$ using dynamics $p(z_t|z_{t-1},a_{t-1})$
 - 2. Make an observation x_1 , and use it to compute $bel(z_1)$
- Repeat for $z_2, z_3, ...$

- Robot and environment have state z_0
 - Initialize $bel(z_0)$ (eg. to be uniform or dirac distribution)
- From z_0 , choose an action $a_0 \rightarrow$ robot moves to z_1
 - 1. Predict the next state by computing $bel(z_1)$ using dynamics $p(z_t|z_{t-1},a_{t-1})$
 - 2. Make an observation x_1 , and use it to compute $bel(z_1)$

• Bayes' filter algorithm:

Input: $bel(z_{t-1}), a_{t-1}, x_t$

Output: $bel(z_t)$

For every z_t ,

Perform prediction:

$$\overline{\operatorname{bel}}(z_t) = \int p(z_t | a_{t-1}, z_{t-1}) \operatorname{bel}(z_{t-1}) dz_{t-1}$$

Perform measurement update:

$$bel(z_t) = \eta p(x_t|z_t) \overline{bel}(z_t)$$

Return $bel(z_t)$

• Repeat for $z_2, z_3, ...$

$$\overline{\operatorname{bel}}(x_t) = p(z_t|x_{1:t-1}, a_{1:t-1})$$

$$= \int p(z_t|z_{t-1}, x_{1:t-1}, a_{1:t-1})p(z_{t-1}|x_{1:t-1}, a_{1:t-1})dz_{t-1} \text{Input: bel}(z_{t-1}), a_{t-1}, x_t$$

$$\text{Theorem of total probability} \qquad \text{Output: bel}(z_t)$$

$$p(y) = \int p(x, y)dx = \int p(y|x)p(x)dx \qquad \text{For every } z_t,$$

$$\text{Perform prediction}$$

Bayes' filter algorithm:

Output: $bel(z_t)$

For every Z_t ,

Perform prediction:

$$\overline{\operatorname{bel}}(z_t) = \int p(z_t | a_{t-1}, z_{t-1}) \operatorname{bel}(z_{t-1}) dz_{t-1}$$

Perform measurement update:

$$bel(z_t) = \eta p(x_t|z_t) \overline{bel}(z_t)$$

$$\overline{\text{bel}}(x_t) = p(z_t|x_{1:t-1}, a_{1:t-1})$$

$$= \int p(z_t|z_{t-1}, x_{1:t-1}, a_{1:t-1}) p(z_{t-1}|x_{1:t-1}, a_{1:t-1}) dz_{t-1} \text{Input: bel}(z_{t-1}), a_{t-1}, x_t$$

$$= \int p(z_t|z_{t-1}, a_{t-1}) p(z_{t-1}|x_{1:t-1}, a_{1:t-1}) dz_{t-1} \text{Output: bel}(z_t)$$

Markov assumption

Bayes' filter algorithm:

Output: $bel(z_t)$

For every Z_t ,

Perform prediction:

$$\overline{\text{bel}}(z_t) = \int p(z_t | a_{t-1}, z_{t-1}) \text{bel}(z_{t-1}) dz_{t-1}$$

Perform measurement update:

$$bel(z_t) = \eta p(x_t|z_t)\overline{bel}(z_t)$$

$$\overline{\text{bel}}(x_t) = p(z_t|x_{1:t-1}, a_{1:t-1})$$

$$= \int p(z_t|z_{t-1}, x_{1:t-1}, a_{1:t-1})p(z_{t-1}|x_{1:t-1}, a_{1:t-1})dz_{t-1} \text{Input: bel}(z_{t-1}), a_{t-1}, x_t$$

$$= \int p(z_t|z_{t-1}, a_{t-1})p(z_{t-1}|x_{1:t-1}, a_{1:t-1})dz_{t-1}$$

$$= \int p(z_t|z_{t-1}, a_{t-1})p(z_{t-1}|x_{1:t-1}, a_{1:t-2})dz_{t-1}$$

$$= \int p(z_t|z_{t-1}, a_{t-1})p(z_{t-1}|x_{1:t-1}, a_{1:t-2})dz_{t-1}$$
Output: bel(z_t)
For every z_t,

 a_{t-1} does not affect probability of z_{t-1}

Bayes' filter algorithm:

Output: $bel(z_t)$

For every Z_t ,

Perform prediction:

$$\overline{\mathrm{bel}}(z_t) = \int p(z_t | a_{t-1}, z_{t-1}) \mathrm{bel}(z_{t-1}) dz_{t-1}$$

Perform measurement update:

$$bel(z_t) = \eta p(x_t|z_t)\overline{bel}(z_t)$$

$$\overline{\text{bel}}(x_t) = p(z_t|x_{1:t-1}, a_{1:t-1})$$

$$= \int p(z_t|z_{t-1}, x_{1:t-1}, a_{1:t-1})p(z_{t-1}|x_{1:t-1}, a_{1:t-1})dz_{t-1} \text{Input: bel}(z_{t-1}), a_{t-1}, x_t$$

$$= \int p(z_t|z_{t-1}, a_{t-1})p(z_{t-1}|x_{1:t-1}, a_{1:t-1})dz_{t-1}$$

$$= \int p(z_t|z_{t-1}, a_{t-1})p(z_{t-1}|x_{1:t-1}, a_{1:t-2})dz_{t-1}$$

$$= \int p(z_t|z_{t-1}, a_{t-1})p(z_{t-1}|x_{1:t-1}, a_{1:t-2})dz_{t-1}$$

$$= \int p(z_t|z_{t-1}, a_{t-1})bel(z_{t-1})dz_{t-1}$$

$$= \int p(z_t|z_{t-1}, a_{t-1})bel(z_{t-1})dz_{t-1}$$
For every z_t ,
$$= \int p(z_t|z_{t-1}, a_{t-1})bel(z_{t-1})dz_{t-1}$$

Bayes' filter algorithm:

Output: $bel(z_t)$

For every Z_t ,

Perform prediction:

$$\overline{\text{bel}}(z_t) = \int p(z_t | a_{t-1}, z_{t-1}) \text{bel}(z_{t-1}) dz_{t-1}$$

Perform measurement update:

$$bel(z_t) = \eta p(x_t|z_t) \overline{bel}(z_t)$$

$$\overline{\text{bel}}(x_t) = p(z_t|x_{1:t-1}, a_{1:t-1})$$

$$= \int p(z_t|z_{t-1}, x_{1:t-1}, a_{1:t-1})p(z_{t-1}|x_{1:t-1}, a_{1:t-1})dz_{t-1} \text{Input: bel}(z_{t-1}), a_{t-1}, x_t$$

$$= \int p(z_t|z_{t-1}, a_{t-1})p(z_{t-1}|x_{1:t-1}, a_{1:t-1})dz_{t-1}$$

$$= \int p(z_t|z_{t-1}, a_{t-1})p(z_{t-1}|x_{1:t-1}, a_{1:t-2})dz_{t-1}$$

$$= \int p(z_t|z_{t-1}, a_{t-1})bel(z_{t-1})dz_{t-1}$$

$$= \int p(z_t|z_{t-1}, a_{t-1})bel(z_{t-1})dz_{t-1}$$
For every z_t ,

$$\begin{aligned} \operatorname{bel}(z_t) &= p(z_t | x_{1:t}, a_{1:t-1}) \\ &= \frac{p(x_t | z_t, x_{1:t-1}, a_{1:t-1}) p(z_t | x_{1:t-1}, a_{1:t-1})}{p(x_t | x_{1:t-1}, a_{1:t-1})} \end{aligned}$$

Bayes' rule

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

Bayes' filter algorithm:

Output: $bel(z_t)$

For every Z_t ,

Perform prediction:

$$\overline{\operatorname{bel}}(z_t) = \int p(z_t | a_{t-1}, z_{t-1}) \operatorname{bel}(z_{t-1}) dz_{t-1}$$

Perform measurement update:

$$bel(z_t) = \eta p(x_t|z_t) \overline{bel}(z_t)$$

$$\overline{bel}(x_t) = p(z_t|x_{1:t-1}, a_{1:t-1})$$

$$= \int p(z_t|z_{t-1}, x_{1:t-1}, a_{1:t-1})p(z_{t-1}|x_{1:t-1}, a_{1:t-1})dz_{t-1} \text{Input: bel}(z_{t-1}), a_{t-1}, x_t$$

$$= \int p(z_t|z_{t-1}, a_{t-1})p(z_{t-1}|x_{1:t-1}, a_{1:t-1})dz_{t-1}$$

$$= \int p(z_t|z_{t-1}, a_{t-1})p(z_{t-1}|x_{1:t-1}, a_{1:t-2})dz_{t-1}$$

$$= \int p(z_t|z_{t-1}, a_{t-1})bel(z_{t-1})dz_{t-1}$$

$$= \int p(z_t|z_{t-1}, a_{t-1})bel(z_{t-1})dz_{t-1}$$
For every z_t ,

$$bel(z_t) = p(z_t|x_{1:t}, a_{1:t-1})$$

$$= \frac{p(x_t|z_t, x_{1:t-1}, a_{1:t-1})p(z_t|x_{1:t-1}, a_{1:t-1})}{p(x_t|x_{1:t-1}, a_{1:t-1})}$$

$$= \eta p(x_t|z_t)p(z_t|x_{1:t-1}, a_{1:t-1})$$

Markov property

Bayes' filter algorithm:

Output: $bel(z_t)$

For every Z_t ,

Perform prediction:

$$\overline{\text{bel}}(z_t) = \int p(z_t | a_{t-1}, z_{t-1}) \text{bel}(z_{t-1}) dz_{t-1}$$

Perform measurement update:

$$bel(z_t) = \eta p(x_t|z_t) \overline{bel}(z_t)$$

$$\overline{\text{bel}}(x_t) = p(z_t|x_{1:t-1}, a_{1:t-1})$$

$$= \int p(z_t|z_{t-1}, x_{1:t-1}, a_{1:t-1})p(z_{t-1}|x_{1:t-1}, a_{1:t-1})dz_{t-1} \text{Input: bel}(z_{t-1}), a_{t-1}, x_t$$

$$= \int p(z_t|z_{t-1}, a_{t-1})p(z_{t-1}|x_{1:t-1}, a_{1:t-1})dz_{t-1}$$

$$= \int p(z_t|z_{t-1}, a_{t-1})p(z_{t-1}|x_{1:t-1}, a_{1:t-2})dz_{t-1}$$

$$= \int p(z_t|z_{t-1}, a_{t-1})bel(z_{t-1})dz_{t-1}$$

$$= \int p(z_t|z_{t-1}, a_{t-1})bel(z_{t-1})dz_{t-1}$$
For every z_t ,

$$bel(z_t) = p(z_t|x_{1:t}, a_{1:t-1})$$

$$= \frac{p(x_t|z_t, x_{1:t-1}, a_{1:t-1})p(z_t|x_{1:t-1}, a_{1:t-1})}{p(x_t|x_{1:t-1}, a_{1:t-1})}$$

$$= \eta p(x_t|z_t)p(z_t|x_{1:t-1}, a_{1:t-1})$$

$$= \eta p(x_t|z_t)\overline{bel}(z_t)$$

Bayes' filter algorithm:

Output: $bel(z_t)$

For every Z_t ,

Perform prediction:

$$\overline{\text{bel}}(z_t) = \int p(z_t|z_{t-1}, a_{t-1}) \text{bel}(z_{t-1}) dz_{t-1}$$

Perform measurement update:

$$bel(z_t) = \eta p(x_t|z_t) \overline{bel}(z_t)$$

Bayes Filter

• Continuous state space: Closed-form $\mathrm{bel}(z_t)$ is unlikely. Need discretization and interpolation

- Can discretize z_t , but still must iterate through every z_t
 - Recall if z_t has K possible values, each prediction and measurement update is $\mathcal{O}(K^2)$
 - Number of states is exponential in state space dimension
 - If there are n state variables (e.g. x-position, y-position, θ heading), and we have M discrete points per variable, then $K = M^n$

Bayes Filter

- Solution: exploit structure and/or make assumptions
- Parametric filters: assume a form for distributions
- Non-parametric filters: represent distributions using samples

Parametric and Non-parametric Filters

- Kalman Filter
 - Parametric filter for linear systems and measurement models
- Extended Kalman Filter
 - Extension to nonlinear systems and measurement models
- Unscented Kalman Filter
 - (Somewhat) non-parametric filter
- Particle Filter
 - Non-parametric filter

Outline

• Goal: Review filtering, and consider the continuous state case

- Motivational Application: Localization
- Bayes' Filter
- Kalman Filter
- Extended Kalman Filter
- Particle Filter

 $m_i = \left(m_{i,x}, m_{i,y}\right)$

 $(x_{t-1}, y_{t-1}, \theta_{t-1}), \Sigma_t$

Kalman Filter

- Bayes filter with additional assumptions
- 1. Initial Gaussian belief
 - bel $(z_0) \sim N(\mu_0, \Sigma_0)$
 - Approximates single-modal distributions well
- 2. Linear system dynamics (transition model) with Gaussian noise
 - $z_t = Az_{t-1} + Ba_{t-1} + \epsilon_t$
 - Noise is independent $\epsilon_t \sim N(0, R_t)$
- 3. Linear measurement model
 - $x_t = C_t z_t + \delta_t, \delta_t \sim N(0, Q_t)$

Linear Systems

Linear Systems

(If flying near hover, and slowly) Bouffard, 2012

Gaussian Distributions

• Probability density function, scalar case:

$$p(x) = (2\pi\sigma^2)^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right) \sim N(\mu, \sigma^2)$$

Probability density function, vector case:

$$p(x) = \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^{\mathsf{T}}\Sigma^{-1}(x-\mu)\right) \sim N(\mu, \Sigma)$$

Key Properties Needed

• If
$$X \sim N(\mu, \Sigma)$$
, and $Y = AX + b$, then $Y \sim N(A\mu + b, A\Sigma A^{T})$

• If
$$X_1 \sim N(\mu_1, \Sigma_1)$$
, $X_2 \sim N(\mu_2, \Sigma_2)$, and $Y = X_1 + X_2$, then $Y \sim N(\mu_1 + \mu_2, \Sigma_1 + \Sigma_2)$

- Product of Gaussian probability distribution functions is also Gaussian
 - More complicated expression/derivation

Result of Assumptions and Gaussian Distribution Properties

1. Gaussian initial belief:

$$bel(z_0) = p(z_0) = det(2\pi\Sigma_0)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(z_0 - \mu_0)^{\mathsf{T}}\Sigma_0^{-1}(z_0 - \mu_0)\right)$$

- 2. Linear dynamics $z_t = Az_{t-1} + Ba_{t-1} + \epsilon_t$, $\epsilon_t \sim N(0, R_t)$ implies $p(z_t|z_{t-1}, a_{t-1}) = \det(2\pi R_t)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(z_t Az_{t-1} Ba_{t-1})^{\mathsf{T}} R_t^{-1}(z_t Az_{t-1} Ba_{t-1})\right)$
- 3. Linear measurement model $x_t = C_t z_t + \delta_t$, $\delta_t \sim N(0, Q_t)$ implies $p(x_t|z_t) = \det(2\pi Q_t)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x_t C_t z_t)^{\mathsf{T}} Q_t^{-1}(x_t C_t z_t)\right)$
- Result: Posterior belief $bel(z_t)$ is Gaussian for all t!
 - Start with bel $(z_0) \sim N(\mu_0, \Sigma_0)$, obtain bel $(z_t) \sim N(\mu_t, \Sigma_t)$ from bel $(z_{t-1}) \sim N(\mu_{t-1}, \Sigma_{t-1})$
 - Only the parameters μ_t and Σ_t need to be updated to capture distribution over all z_t

Kalman Filter

• Bayes' filter algorithm:

Input: $bel(z_{t-1}), a_{t-1}, x_t$

Output: $bel(z_t)$

For every z_t ,

Perform prediction:

$$\overline{\mathrm{bel}}(z_t) = \int p(z_t|z_{t-1}, a_{t-1}) \mathrm{bel}(z_{t-1}) dz_{t-1}$$

Perform measurement update:

$$bel(z_t) = \eta p(x_t|z_t)\overline{bel}(z_t)$$

Return $bel(z_t)$

• Kalman filter algorithm:

Input: μ_{t-1} , Σ_{t-1} , u_{t-1} , x_t

Output: μ_t , Σ_t

Perform prediction:

Perform measurement update:

Return μ_t , Σ_t

Key Properties of Gaussian Distributions

• If
$$X \sim N(\mu, \Sigma)$$
, and $Y = AX + b$, then $Y \sim N(A\mu + b, A\Sigma A^{\mathsf{T}})$

• If
$$X_1 \sim N(\mu_1, \Sigma_1)$$
, $X_2 \sim N(\mu_2, \Sigma_2)$, and $Y = X_1 + X_2$, then $Y \sim N(\mu_1 + \mu_2, \Sigma_1 + \Sigma_2)$

- Linear dynamics: $z_t = Az_{t-1} + Ba_{t-1} + \epsilon_t$, $\epsilon_t \sim N(0, R_t)$
- If $z_{t-1} \sim N(\mu_{t-1}, \Sigma_{t-1})$ then $z_t \sim (\bar{\mu}_t, \bar{\Sigma}_t)$, where
 - $\bar{\mu}_t = A\mu_{t-1} + Ba_{t-1}$
 - $\bar{\Sigma}_t = A\Sigma_{t-1}A^{\mathsf{T}} + R_t$

Kalman Filter

• Bayes' filter algorithm:

Input: $bel(z_{t-1}), a_{t-1}, x_t$

Output: $bel(z_t)$

For every z_t ,

Perform prediction:

$$\overline{\mathrm{bel}}(z_t) = \int p(z_t|z_{t-1}, a_{t-1}) \mathrm{bel}(z_{t-1}) dz_{t-1}$$

Perform measurement update:

$$bel(z_t) = \eta p(x_t|z_t) \overline{bel}(z_t)$$

Return $bel(z_t)$

• Kalmn filter algorithm:

Input: μ_{t-1} , Σ_{t-1} , a_{t-1} , x_t

Output: μ_t , Σ_t

Perform prediction:

$$\bar{\mu}_t = A\mu_{t-1} + Ba_{t-1}$$
$$\bar{\Sigma}_t = A\Sigma_{t-1}A^{\mathsf{T}} + R_t$$

Perform measurement update:

Key Property of Gaussian Distributions

- Product of Gaussian probability distribution functions are also Gaussian random variables
 - More complicated expression/derivation

Linear measurement model

•
$$x_t = C_t z_t + \delta_t, \delta_t \sim N(0, Q_t)$$
 constant $N(Cz_t, Q_t)$

• $x_t = C_t z_t + \delta_t$, $\delta_t \sim N(0, Q_t)$ constant $N(Cz_t, Q_t)$ $N(\bar{\mu}_t, \bar{\Sigma}_t)$ • Measurement update: $\text{bel}(z_t) = \eta p(x_t|z_t) \overline{\text{bel}}(z_t)$

Gaussian
$$N(\mu_t, \Sigma_t)$$

Gaussian

Gaussian

•
$$K_t = \overline{\Sigma}_t C_t^{\mathsf{T}} (C_t \overline{\Sigma}_t C_t^{\mathsf{T}} + Q_t)^{-1}$$

•
$$\mu_t = \bar{\mu}_t + K_t(x_t - C_t \bar{\mu}_t)$$

•
$$\Sigma_t = (I - K_t C_t) \overline{\Sigma}_t$$

Kalman Filter

• Bayes' filter algorithm:

Input: $bel(z_{t-1}), a_{t-1}, x_t$

Output: $bel(z_t)$

For every z_t ,

Perform prediction:

$$\overline{\mathrm{bel}}(z_t) = \int p(z_t|z_{t-1}, a_{t-1}) \mathrm{bel}(z_{t-1}) dz_{t-1}$$

Perform measurement update:

$$bel(z_t) = \eta p(x_t|z_t)\overline{bel}(z_t)$$

Return $bel(z_t)$

Kalmn filter algorithm:

Input: μ_{t-1} , Σ_{t-1} , a_{t-1} , x_t

Output: μ_t , Σ_t

Perform prediction:

$$\bar{\underline{\mu}}_t = A\mu_{t-1} + Ba_{t-1}$$
$$\bar{\Sigma}_t = A\Sigma_{t-1}A^{\mathsf{T}} + R_t$$

Perform measurement update:

$$K_t = \overline{\Sigma}_t C_t^{\mathsf{T}} (C_t \overline{\Sigma}_t C_t^{\mathsf{T}} + Q_t)^{-1}$$

$$\mu_t = \overline{\mu}_t + K_t (x_t - C_t \overline{\mu}_t)$$

$$\Sigma_t = (I - K_t C_t) \overline{\Sigma}_t$$

Kalman Filter: Discussion

- "Kalman gain":
 - $K_t = \overline{\Sigma}_t C_t^{\mathsf{T}} (C_t \overline{\Sigma}_t C_t^{\mathsf{T}} + Q_t)^{-1}$
- Update mean: $\mu_t = \bar{\mu}_t + K_t(x_t C_t\bar{\mu}_t)$
 - $K_t(x_t C_t \bar{\mu}_t)$ term compares actual x_t and predicted measurement $C_t \bar{\mu}_t$
 - $x_t C_t \bar{\mu}_t$ is called "innovation"
 - $K_t \approx 0 \rightarrow$ observation is not useful (eg. $Q_t \rightarrow \infty$ or $\overline{\Sigma}_t = 0$)
 - $K_t \approx C_t^{-1} \rightarrow \text{prediction is not useful (eg. } \overline{\Sigma}_t \rightarrow \infty)$

Kalman Filter: Discussion

Possible advantages

- Only $O(n^2)$ parameters to update
 - μ has O(n) parameters
 - Σ has $O(n^2)$ parameters
 - Bayes filter has $O(M^n)$
- Closed form update formulas
 - Bayes filter requires numerical integration

Possible disadvantages

- Linear system dynamics / transition model
 - Most systems are nonlinear
- Gaussian distribution assumption
 - Only unimodal situations can be considered

Nonlinear Systems

• Almost all systems are nonlinear

Extended Kalman Filter

Addresses the linear dynamics assumption

$$z_t = g(z_{t-1}, a_{t-1}) + \epsilon_t, \epsilon_t \sim N(0, R_t)$$

$$x_t = h(z_t) + \delta_t, \delta_t \sim N(0, Q_t)$$

Linearize the nonlinear maps

$$g(z_{t-1}, a_{t-1}) \approx g(\mu_{t-1}, a_{t-1}) + \nabla g(\mu_{t-1}, a_{t-1})(z_{t-1} - \mu_{t-1})$$
$$h(z_t) \approx h(\bar{\mu}_t) + \nabla h(\bar{\mu}_t)(z_t - \mu_t)$$

- Compatible with non-linear systems and nonlinear measurement models
- Gaussian initial belief implies Gaussian belief for all time

EKF algorithm

• Kalmn filter algorithm:

•
$$z_t = Az_{t-1} + Ba_{t-1} + \epsilon_t, \epsilon_t \sim N(0, R_t)$$

•
$$x_t = C_t z_t + \delta_t, \delta_t \sim N(0, Q_t)$$

Input: μ_{t-1} , Σ_{t-1} , a_{t-1} , x_t

Output: μ_t , Σ_t

Perform prediction:

$$\bar{\underline{\mu}}_t = A\mu_{t-1} + Ba_{t-1}$$
$$\bar{\Sigma}_t = A\Sigma_{t-1}A^{\mathsf{T}} + R_t$$

Perform measurement update:

$$K_t = \overline{\Sigma}_t C_t^{\mathsf{T}} (C_t \overline{\Sigma}_t C_t^{\mathsf{T}} + Q_t)^{-1}$$

$$\mu_t = \overline{\mu}_t + K_t (x_t - C_t \overline{\mu}_t)$$

$$\Sigma_t = (I - K_t C_t) \overline{\Sigma}_t$$

Return μ_t , Σ_t

• Extended Kalman filter algorithm:

•
$$z_t = g(z_{t-1}, u_{t-1}) + \epsilon_t, \epsilon_t \sim N(0, R_t)$$

•
$$x_t = h(z_t) + \delta_t, \delta_t \sim N(0, Q_t)$$

Input: μ_{t-1} , Σ_{t-1} , u_{t-1} , x_t

Output: μ_t , Σ_t

Perform prediction:

Perform measurement update:

EKF Prediction

- Linear dynamics
 - $z_t = Az_{t-1} + Ba_{t-1} + \epsilon_t, \epsilon_t \sim N(0, R_t)$ $z_t = g(z_{t-1}, a_{t-1}) + \epsilon_t, \epsilon_t \sim N(0, R_t)$
- Nonlinear dynamics
 - - Linearized dynamics
 - $z_t \approx g(\mu_{t-1}, a_{t-1}) + G_t(z_{t-1} \mu_{t-1}),$ $G_t \coloneqq \nabla g(\mu_{t-1}, a_{t-1})$

- Kalman filter prediction
 - $\bar{\mu}_t = A\mu_{t-1} + Ba_{t-1}$
 - $\bar{\Sigma}_t = A \Sigma_{t-1} A^{\mathsf{T}} + R_t$

- EFK Prediction
 - $\bar{\mu}_t = g(\mu_{t-1}, a_{t-1})$
 - $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^{\mathsf{T}} + R_t$

EKF algorithm

Kalmn filter algorithm:

•
$$x_t = Ax_{t-1} + Bu_{t-1} + \epsilon_t, \epsilon_t \sim N(0, R_t)$$

•
$$z_t = C_t x_t + \delta_t, \delta_t \sim N(0, Q_t)$$

Input: μ_{t-1} , Σ_{t-1} , u_{t-1} , z_t

Output: μ_t , Σ_t

Perform prediction:

$$\bar{\underline{\mu}}_t = A\mu_{t-1} + Bu_{t-1}$$
$$\bar{\Sigma}_t = A\Sigma_{t-1}A^{\mathsf{T}} + R_t$$

Perform measurement update:

$$K_t = \overline{\Sigma}_t C_t^{\mathsf{T}} (C_t \overline{\Sigma}_t C_t^{\mathsf{T}} + Q_t)^{-1}$$

$$\mu_t = \overline{\mu}_t + K_t (z_t - C_t \overline{\mu}_t)$$

$$\Sigma_t = (I - K_t C_t) \overline{\Sigma}_t$$

Return μ_t , Σ_t

Extended Kalman filter algorithm:

•
$$z_t = g(z_{t-1}, a_{t-1}) + \epsilon_t, \epsilon_t \sim N(0, R_t)$$

•
$$x_t = h(z_t) + \delta_t, \delta_t \sim N(0, Q_t)$$

• Linearization: $G_t = \nabla g(\mu_{t-1}, a_{t-1}), H_t = \nabla h(\bar{\mu}_t)$

Input: μ_{t-1} , Σ_{t-1} , a_{t-1} , x_t

Output: μ_t , Σ_t

Perform prediction:

$$\bar{\underline{\mu}}_t = g(\mu_{t-1}, a_{t-1})$$

$$\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^{\mathsf{T}} + R_t$$

Perform measurement update:

EKF Measurement Updates

- Linear measurement model
 - $x_t = C_t z_t + \delta_t, \delta_t \sim N(0, Q_t)$

Nonlinear measurement model

•
$$x_t = h(z_t) + \delta_t, \delta_t \sim N(0, Q_t)$$

Linearized measurement model

•
$$h(z_t) \approx h(\bar{\mu}_t) + H_t(z_t - \bar{\mu}_t),$$

 $H_t := \nabla h(\bar{\mu}_t)$

• Kalman filter measurement update • EFK measurement update

•
$$K_t = \overline{\Sigma}_t C_t^{\mathsf{T}} (C_t \overline{\Sigma}_t C_t^{\mathsf{T}} + Q_t)^{-1}$$

•
$$\mu_t = \bar{\mu}_t + K_t(x_t - C_t \bar{\mu}_t)$$

•
$$\Sigma_t = (I - K_t C_t) \overline{\Sigma}_t$$

•
$$K_t = \overline{\Sigma}_t H_t^{\mathsf{T}} (H_t \overline{\Sigma}_t H_t^{\mathsf{T}} + Q_t)^{-1}$$

•
$$\mu_t = \bar{\mu}_t + K_t \left(x_t - h(\bar{\mu}_t) \right)$$

•
$$\Sigma_t = (I - K_t H_t) \overline{\Sigma}_t$$

EKF algorithm

• Kalmn filter algorithm:

•
$$z_t = Az_{t-1} + Ba_{t-1} + \epsilon_t, \epsilon_t \sim N(0, R_t)$$

•
$$x_t = C_t z_t + \delta_t, \delta_t \sim N(0, Q_t)$$

Input: μ_{t-1} , Σ_{t-1} , a_{t-1} , x_t

Output: μ_t , Σ_t

Perform prediction:

$$\bar{\Sigma}_t = A\mu_{t-1} + Ba_{t-1}$$
$$\bar{\Sigma}_t = A\Sigma_{t-1}A^{\mathsf{T}} + R_t$$

Perform measurement update:

$$K_t = \overline{\Sigma}_t C_t^{\mathsf{T}} (C_t \overline{\Sigma}_t C_t^{\mathsf{T}} + Q_t)^{-1}$$

$$\mu_t = \overline{\mu}_t + K_t (x_t - C_t \overline{\mu}_t)$$

$$\Sigma_t = (I - K_t C_t) \overline{\Sigma}_t$$

Return μ_t , Σ_t

• Extended Kalman filter algorithm:

•
$$z_t = g(z_{t-1}, a_{t-1}) + \epsilon_t, \epsilon_t \sim N(0, R_t)$$

•
$$x_t = h(z_t) + \delta_t, \delta_t \sim N(0, Q_t)$$

• Linearization: $G_t = \nabla g(\mu_{t-1}, a_{t-1}), H_t = \nabla h(\bar{\mu}_t)$

Input: μ_{t-1} , Σ_{t-1} , a_{t-1} , x_t

Output: μ_t , Σ_t

Perform prediction:

$$\bar{\mu}_t = g(\mu_{t-1}, a_{t-1})$$
 $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^{\mathsf{T}} + R_t$

Perform measurement update:

$$K_t = \overline{\Sigma}_t H_t^{\mathsf{T}} (H_t \overline{\Sigma}_t H_t^{\mathsf{T}} + Q_t)^{-1}$$

$$\mu_t = \overline{\mu}_t + K_t (x_t - h(\overline{\mu}_t))$$

$$\Sigma_t = (I - K_t H_t) \overline{\Sigma}_t$$

Unscented Kalman Filter

- Takes full knowledge of nonlinear dynamics
 - No linearization
 - Represents distributions using "Sigma points"
 - Transforms sigma points using nonlinear dynamics
- Approximates distribution using sigma points
 - Best fit Gaussian distribution given weights

UKF: transforms sigma points and fits Gaussian distributions

Particle Filter

- Non-parametric filter
- Probability distributions $bel(z_{t-1})$ directly represented by samples

$$Z_{t-1} = \left\{ z_{t-1}^{[i]} \right\}_{i=1}^{M}$$

- Prediction step: sample using dynamics
 - $\bar{z}_t^{[i]} \sim p\left(z_t \middle| a_{t-1}, z_{t-1}^{[i]}\right)$
- Measurement update step: weighted resampling based on measurements
 - Select M new particles from $\left\{\bar{z}_t^{[i]}\right\}$ with probability $\propto w_t^{[i]} = p\left(x_t \left| z_t^{[i]} \right.\right)$

Particle Filter

• Bayes' filter algorithm:

Input:
$$bel(z_{t-1}), a_{t-1}, x_t$$

Output: $bel(z_t)$

For every z_t ,

Perform prediction:

$$\overline{\mathrm{bel}}(z_t) = \int p(z_t | a_{t-1}, z_{t-1}) \mathrm{bel}(z_{t-1}) dz_{t-1}$$

Perform measurement update:

$$bel(z_t) = \eta p(x_t|z_t)\overline{bel}(z_t)$$

Return $bel(z_t)$

- Particle filter algorithm:
 - Represent $bel(z_t)$ with M samples

Input: \mathcal{Z}_{t-1} , a_{t-1} , x_t

Output: \mathcal{Z}_t

Perform prediction:

Draw
$$ar{z}_t^{[i]} \sim p\left(z_t \middle| a_{t-1}, z_{t-1}^{[i]}\right)$$
, $i = 1, \dots, M \to \bar{\mathcal{Z}}_t = \left\{z\bar{x}_t^{[i]}\right\}_{i=1}^M$

Perform measurement update:

Compute weights $w_t^{[i]} = p\left(x_t \middle| \bar{z}_t^{[i]}\right)$, i = 1,...,M

Resample M times from $\bar{\mathcal{Z}}_t \to \mathcal{Z}_t$

• Each time, draw $\bar{z}_t^{[i]}$ with probability $\frac{w_t^{[i]}}{\sum_i w_t^{[i]}}$

Return \mathcal{Z}_t