Geometria della programmazione lineare

- poliedri
- punti estremi, vertici, soluzioni di base
- esistenza di punti estremi

rif. Fi 3.1; BT 2.1, 2.2, 2.5

Iperpiani, semispazi, poliedri

Definizione

Sia $\mathbf a$ un vettore non nullo in $\mathbb R^n$ e b uno scalare.

```
l'insieme \{x \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} = b\} è detto iperpiano l'insieme \{x \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} \leq b\} è detto semispazio
```

Osservazione Un semispazio è un insieme chiuso e convesso (per la convessità della funzione $\mathbf{a}^T\mathbf{x}-b$) e un iperpiano coincide con la frontiera del corrispondente semispazio

Definizione

Si definisce *poliedro* ogni insieme che può essere descritto come l'intersezione di un numero finito di semispazi

quindi:

un poliedro è a sua volta un insieme chiuso e convesso la regione ammissibile di un problema di PL è un poliedro

Esercizio

Per ciascuno dei seguenti insiemi, stabilire se è un poliedro:

- (i) $x \in \mathbb{R}$ tale che $x^2 8x + 15 \le 0$
- (ii) l'insieme vuoto

In entrambi i casi la risposta è affermativa:

- (i) la funzione è una parabola di vertice (4,-1) che assume valori ≤ 0 nell'intervallo [3,5]
- (ii) l'insieme vuoto può essere descritto da $\{x: x \leq 0, x \geq 1\}$

Politopi

Definizione

Un insieme $S\subset\mathbb{R}^n$ si dice *limitato* se esiste una costante M tale che il valore assoluto di ogni componente di \mathbf{x} , per ogni $\mathbf{x}\in S$, è minore o uguale a M

Definizione

Un poliedro limitato è detto politopo

Punti estremi

Definizione

Sia P un poliedro. Un vettore $\mathbf{x} \in P$ è un *punto estremo* di P se non esistono due punti di $\mathbf{y}, \mathbf{z} \in P$ diversi da x, ed uno scalare $\lambda \in [0,1]$ tali che $x = \lambda \mathbf{y} + (1-\lambda)\mathbf{z}$

 \boldsymbol{x} punto estremo, \boldsymbol{w} no

Vertici

Definizione

Sia P un poliedro. Un vettore $\mathbf{x} \in P$ è un vertice di P se esiste un qualche \mathbf{c} tale che $\mathbf{c}^T\mathbf{x} < \mathbf{c}^T\mathbf{y}$, per ogni $\mathbf{y} \in P, \mathbf{y} \neq \mathbf{x}$

quindi \mathbf{x} è un vertice di P se e solo se P giace su un lato di un iperpiano $\{\mathbf{y}: \mathbf{c}^T\mathbf{y} = \mathbf{c}^T\mathbf{x}\}$ che interseca P solo in \mathbf{x}

Algebricamente...

Sia $P \subset \mathbb{R}^n$ un poliedro definito da:

$$\mathbf{a}_i^T x \ge b_i, \qquad i \in M_1$$

$$\mathbf{a}_i^T x \le b_i, \qquad i \in M_2$$

$$\mathbf{a}_i^T x = b_i, \qquad i \in M_3$$

Definizione

Se un vettore \mathbf{x}^* soddisfa $\mathbf{a}_{\text{incl}}^T\mathbf{x}=b_i$ per qualche $i\in M_1,M_2,M_3$, il corrispondente vincolo si dice *attivo* in \mathbf{x} .

Teorema

Sia $I=\{i|\mathbf{a}^T\mathbf{x}^*=b_i\}$ l'insieme dei vincoli attivi in \mathbf{x}^* . Allora, esistono n vettori $\{\mathbf{a}_i|i\in I\}$ linearmente indipendenti se e solo se il sistema di equazioni $\mathbf{a}^T\mathbf{x}=b_i, i\in I$ ha un'unica soluzione

Soluzioni di base

Definizione

Il vettore x^* si dice soluzione di base se

- (i) tutti i vincoli di uguaglianza sono attivi (i.e. \mathbf{x}^* è ammissibile risp. ad essi)
- (ii) fra tutti i vincoli attivi in \mathbf{x}^* ce ne sono n (i cui vettori sono) linearmente indipendenti

Una soluzione di base \mathbf{x}^* che soddisfa <u>tutti</u> i vincoli è detta soluzione di base ammissibile (sba)

Osservazione Se il numero m di vincoli che definisce il poliedro P è minore di n non esistono soluzioni di base

Esempio

$$P = \{(x_1, x_2, x_3) | x_1 + x_2 + x_3 = 1, x_1, x_2, x_3 \ge 0\}$$

- ► A, B, C soluzioni di base ammissibili
- ▶ D non è sol. di base (non soddisfa il vincolo =)
- ightharpoonup E è ammissibile ma non sol. di base

Esempio

$$P = \{(x_1, x_2, x_3) | x_1 + x_2 + x_3 \le 1, x_1 + x_2 + x_3 \ge 1, x_1, x_2, x_3 \ge 0\}$$

ightharpoonup in questo caso anche D è soluzione di base.

Quindi, il fatto che un punto sia o no soluzione di base dipende dalla rappresentazione del poliedro

Equivalenza punti estremi-vertici-sba

Teorema

Sia P un poliedro non vuoto e sia $\mathbf{x}^* \in P$. Le tre affermazioni seguenti sono equivalenti:

- (a) \mathbf{x}^* è un vertice
- (b) \mathbf{x}^* è un punto estremo
- (c) \mathbf{x}^* è una soluzione di base ammissibile

Dimostrazione $(a) \implies (b)$

 $\begin{array}{l} (a) \implies \text{ esiste } \mathbf{c} \text{ tale che } \mathbf{c}^T\mathbf{x}^* < \mathbf{c}^T\mathbf{y}, \text{ per ogni } \mathbf{y} \in P, \mathbf{y} \neq \mathbf{x} \\ \text{quindi, presi due punti generici } \mathbf{w}, \mathbf{z} \in P, \text{ entrambi diversi da } \mathbf{x}^*, \\ \text{risulta: } \mathbf{c}^T\mathbf{x}^* < \mathbf{c}^T\mathbf{w}, \ \mathbf{c}^T\mathbf{x}^* < \mathbf{c}^T\mathbf{z}. \text{ Di conseguenza, per ogni} \\ \lambda \in [0,1]: \end{array}$

$$\mathbf{c}^T \mathbf{x}^* < \mathbf{c}^T (\lambda \mathbf{w} + (1 - \lambda) \mathbf{z})$$

cioè,
$$\mathbf{x}^* \neq \lambda \mathbf{w} + (1 - \lambda)\mathbf{z}$$

Dimostrazione (cont.)

Assumiamo che tutti i vincoli di disuguaglianza abbiano la forma $\mathbf{a}_i^T \geq b_i$

$$(b) \implies (c)$$

Supponiamo che \mathbf{x}^* non sia sba e dimostriamo che non è punto estremo.

 \mathbf{x}^* non sba \Longrightarrow non esistono n vettori linearmente indipendenti in $I = \{i | \mathbf{a}_i^T \mathbf{x}^* = b_i\}$. Quindi, i vettori \mathbf{a}_i giacciono in un sottoinsieme proprio di \mathbb{R}^n ed esiste un qualche vettore $\mathbf{d} \in \mathbb{R}^n \setminus 0_n$ tale che $\mathbf{a}^T \mathbf{d} = 0$, per ogni $i \in I$.

Scegliamo un $\epsilon>0$ piccolo e costruiamo i vettori:

$$\mathbf{y} = \mathbf{x}^* + \epsilon \mathbf{d}, \qquad \mathbf{z} = \mathbf{x}^* - \epsilon \mathbf{d}$$

Dimostrazione (cont.)

- ightharpoonup per $i \in I$ si ha: $\mathbf{a}_i^T \mathbf{y} = \mathbf{a}_i^T \mathbf{x}^* + \epsilon \mathbf{a}_i^T \mathbf{d} = \mathbf{a}_i^T \mathbf{x}^* = b_i$
- ▶ per $i \notin I$ risulta $\mathbf{a}_i^T \mathbf{x}^* > b_i$: quindi, se ϵ è sufficientemente piccolo, $\mathbf{a}_i^T \mathbf{y} = \mathbf{a}_i^T \mathbf{x}^* + \epsilon \mathbf{a}_i^T \mathbf{d} > b_i$.

Quindi, se ϵ è sufficientemente piccolo, $\mathbf{y} \in P$. Analogamente si dimostra che $\mathbf{z} \in P$. Ma abbiamo anche che $\mathbf{x}^* = (\mathbf{y} + \mathbf{z})/2$, che implica che \mathbf{x}^* non è punto estremo

$$(c) \implies (a)$$

 \mathbf{x}^* è sba. Poniamo $\mathbf{c} = \sum_{i \in I} \mathbf{a}_i$. Quindi abbiamo:

$$\mathbf{c}^T \mathbf{x}^* = \sum_{i \in I} \mathbf{a}_i \mathbf{x}^* = \sum_{i \in I} b_i$$

Inoltre, per ogni $\mathbf{x} \in P$ ed ogni i risulta $\mathbf{a}_i^T \geq b_i$ e

$$\mathbf{c}^T \mathbf{x} = \sum_{i \in I} \mathbf{a}_i \mathbf{x} \ge \sum_{i \in I} b_i \tag{1}$$

Dimostrazione (cont.)

In sostanza, \mathbf{x}^* è una soluzione ottima per il problema di minimizzare $\mathbf{c}^T\mathbf{x}$ su P.

Si osservi infine che la disequazione (1) è soddisfatta all'uguaglianza se e solo se $\mathbf{a}_i^T\mathbf{x}=b_i$ per ogni $i\in I$.

Dato che x^* è una sba, ci sono n vincoli attivi linearmente indipendenti in \mathbf{x}^* , cioè x^* è l'unica soluzione del sistema $\mathbf{a}_i^T\mathbf{x}=b_i, i\in I$ (teorema precedente).

Segue che \mathbf{x}^* è l'unica soluzione ottima di $\min \mathbf{c}^T \mathbf{x}$ su P, cioè è un vertice di P.

Conseguenza

- ▶ Ogni soluzione di base è definita da *n* vincoli attivi linearmente indipendenti, che definiscono un unico punto
- quindi, diverse soluzioni di base corrispondono a diversi insiemi di n vincoli linearmente indipendenti, da cui:

Corollario

Dato un numero finito m di disuguaglianze lineari, il numero di soluzioni di base o di sba (e quindi di vertici) è finito. In particolare è minore o uguale a $\binom{n}{m}$

Ricapitolando

- dato che la proprietà di essere punto estremo (o vertice) è puramente geometrica, il risultato di equivalenza implica che lo stesso vale per la proprietà di sba
- la proprietà di essere soluzione di base dipende dalla rappresentazione del poliedro

Esistenza di punti estremi

Non tutti i poliedri hanno punti estremi. Ad es, se la matrice \mathbf{A} ha meno di n righe, il poliedro $\mathbf{x} \in \mathbb{R}^n | \mathbf{A} \mathbf{x} \geq \mathbf{b}$ non ha sba.

In generale si ha:

Definizione

Si dice che un poliedro $P\subset\mathbb{R}^n$ contiene una retta se esiste un vettore $\mathbf{x}\in P$ ed un vettore non nullo \mathbf{d} tali che $\mathbf{x}+\lambda\mathbf{d}\in P$ per ogni scalare λ

Teorema

Un poliedro $P\subset\mathbb{R}^n$ ha almeno un punto estremo se e solo se non contiene una retta

Osservazione Un poliedro in forma standard non contiene mai una retta e quindi ha almeno un punto estremo