COMP318 Ontologies and Semantic Web

Dr Valentina Tamma

V.Tamma@liverpool.ac.uk

Aligning ontologies

- Ontology alignment or mapping:
 - The process of determining relationships or correspondences between two or more entities in two or more independent ontologies
 - Use ontologies together by defining a set of "links" (mappings or correspondences)
 - Mappings can be of limited types, i.e. only certain logical relations

Advantages:

- Benefit from knowledge encoded in the other ontologies models
- Enable access from different agents/services and across different collections
- Partial by nature, does not need to cover the entire ontology

Alignment

Ontology alignment: terminology

- Knowledge graph alignment is a type of ontology alignment or ontology matching.
- To match or align or map: the process that produces an alignment or mapping.
- An alignment or mapping set: the final output of matching or aligning.

 A mapping or match: an individual link between related entities (cross reference)

Atomic ontology alignment

- Given two ontologies O and O', an alignment \mathcal{A} is the set of correspondences c between the entities $e \in O$ and $e' \in O'$
 - A correspondence c is the tuple c = <e, e', r, w>
 - $e \in O$ and $e' \in O'$, where e and e' can be classes, properties, individuals
 - $r = \{ \equiv, \perp, \perp \}$ and $w \in [0, ..., 1]$ is the weight

Types of correspondence relation between classes/ properties

	OWL	Example
≡ Equivalence	owl:EquivalentClass	O:Person = O':Person
⊑ Subclass	rdfs:subClassOf rdfs:subPropertyOf	O:Assistant ⊑ O':User
⊥ Disjointness	owl:disjointWith, owl:allDisjointClasses	O:Topic ⊥ O':Person

Types of correspondence relation between classes/ properties

	OWL	Example
= Equivalence	owl:sameAs	O:Florence = O':Firenze
≠ Difference	owl:differentFrom	O:John ≠ O':Ringo
∈ Instance	rdf:type	O:Beatles ∈ O':MusicGroup

Ontology alignment motivation

- An application domain can be modelled with different points of view and purposes
- Ontologies with different naming and modelling conventions exist for the same domain
- Aligning these ontologies will enable interoperability between ontology-based information systems and data migration
- Reusing vocabulary from domain ontologies is a good practice in ontology engineering

The Architect When modelling a bridge, important characteristics

tensile strength weight load etc

include:

The Military

When modelling a bridge, important characteristics include:

what munitions are required to destroy it!

COMP318

Ontology alignment

P. Lambrix and V. Ivanova. A unified approach for debugging is-a structure and mappings in networked taxonomies. Journal of Biomedical Semantics 2013

Knowledge Graph Alignment

S. Hertling and H Paulheim. The Knowledge Graph Track at OAEI: Gold Standards, Baselines, and the Golden Hammer Bias. ESWC 2020.

Knowledge Graph Cross Lingual Alignment

K. Xu, L. Song, Y. Feng, Y. Song, D. Yu. Coordinated Reasoning for Cross-Lingual Knowledge Graph Alignment. AAAI 2020

Alignment approaches

- Different alignment approach are available depending on
 - the expressivity of the two ontologies O and O'
 - The availability of additional inputs to the matching process:
 - Oracles, input alignment and external resources, i.e. Wordnet or BabelNet
 - The entities to match:
 - Only the T-box or schema, i.e. classes and possibly properties
 - Instances
- The majority of current ontology alignment systems align classes, and restrict the relationships to equivalence

Ontology alignment and the matching process

- Alignments are generated through a matching process, a function f
 - Input: two ontologies O and O', and an optional input alignment
 Ainput, set of parameters par, oracles and resources res
 - Output: an alignment A' between O and O'
 - $A' = f(O, O', A_{input}, par, res)$
 - Set of possible correspondences, with the relationships between entities of O and O'
 - Different multiplicities possible

COMP318 Ontologies and Semantic Web

Dr Valentina Tamma

V.Tamma@liverpool.ac.uk