

Socio-economic status and HME relate to children's neural response to digits

Girard C., Bastelica T., Léone, J., Epinat-Duclos, J., Longo L. & Prado, J.

Lyon Neuroscience Research Center, UMR 5292, CNRS & Université de Lyon, France

Background

INTRODUCTION

- Math knowledge in children is characterized by inter-individual differences that persist through most school years.
- ✓ Socio-economic status (SES) and home math environment (HME) contribute to variations in children's math development [1], but little is known about their neural correlates.

The present study

Aims to test whether family environment - indexed by SES and HME - may affect IPS areas supporting the processing of numerical information in 8-year-olds

Participants

√ 47 children and one of their parents (87% mothers)

Materials

Behavioral

Child

- ✓ Standardized Math fluency (WJ III)
- ✓ IQ (NEMI-2)

Parent:

- ✓ Standardized Math fluency (WJ-III)
- ✓ Questionnaire assessing SES, beliefs and expectations towards math, and home math practices (adapted from Lefevre et al. 2009)

METHOD

Procedure

✓ Children and parents tested in the lab during 2 sessions

Neuro-imaging: Adaptation task (from Perrachione et al. 2016)

- ✓ Neural adaptation effect = Activity associated with blocks of different stimuli (no-adaptation) > activity associated with blocks of identical stimuli (adaptation)
- Assesses brain sensitivity to the presentation of numerical (digits) and non-numerical information (words)

ANALYSIS STRATEGY

- Math activities were broken down into (i) basic vs. advanced [2] and (ii) formal (i.e., explicitly didactic activities) vs. informal (i.e., informal opportunities such as cooking or playing board games) [3].
- ✓ For each subject and task, the neural adaptation effect was measured.
- ✓ Math fluency scores were regressed against neural adaptation effects, separately for each task.
- ✓ T-maps were thresholded at a FWE-corrected threshold of p < .05 across the whole brain, using the non-parametric permutation-based TFCE method (Smith & Nichols, 2009)
- ROI analyses examined brain activity associated with SES and HME in bilateral IPS regions related to math fluency scores.

References and funding:

- 1. Elliott, L., & Bachman, H. J. (2018). Child Development Perspectives, 12(1), 16-21.
- 2. Skwarchuk, S.-L. (2009). Early Childhood Education Journal, 37(3), 189-197.
- 3. Sénéchal, M., & LeFevre, J.-A. (2002), Child Development, 73(2), 445-460.

Behavior

RESULTS

- ✓ Children's math fluency was positively related to the frequency of advanced formal practices (r = .30, p = .021), but not SES.
- ✓ This relation was found over and above (i) parental education and income, (ii) parents' math fluency scores, and (iii) children's IQ (all Bs > 13.29, all ps < .044).</p>

Cuildren's math fluency was the first term of th

Advanced formal practices
(Standardized residuals controlled for basic formal practices)

Neuroimaging

Children's math fluency was positively related to digit adaptation effects (but not words) in the left IPS (r = .47, p < .001)</p>

✓ Digit (not word) adaptation effect was related SES and HME in the left IPS (education: r = .39, p = .003; income: r = .33, p = .011; HME: r = .32, p = .013).

✓ The relation between HME and math fluency scores was fully mediated by the digit adaptation effect in the left IPS

CONCLUSION

- ✓ Higher SES and better HME were associated with better math skills in French children from 2nd and 3rd grade ✓ Higher SES and better HME were also associated with enhanced brain sensitivity to numerical information
- ✓ The HME might affect children's math skills by impacting the response to symbolic numerical information in the IPS.