

General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

(NASA-CR-151021) DISPERSION ANALYSIS FOR
BASELINE REFERENCE MISSION 2
(McDonnell-Douglas Technical Services) 28 p
HC \$4.00 CSCL 22A

CSCI 22A

G3/13

Unclass

05743

G3/13 05743

**MCDONNELL DOUGLAS TECHNICAL SERVICES CO.
HOUSTON ASTRONAUTICS DIVISION**

NASA CR-

151021

SPACE SHUTTLE ENGINEERING AND OPERATIONS SUPPORT

DESIGN NOTE NO. 1.4-7-18

DISPERSION ANALYSIS FOR BASELINE REFERENCE MISSION 2

MISSION PLANNING, MISSION ANALYSIS AND SOFTWARE FORMULATION

14 November 1975

This Design Note is Submitted to NASA Under Task Order
No. D0409, Task Assignment C, Contract NAS 9-13970.

•PREPARED BY:

L. S. Snow

L. S. Snow
Associate Engineer
Dept. E904, Ext. 238

APPROVED BY:

A E Kuhn

A. E. Kuhn
Task Manager
Dept. E904, Ext. 238

APPROVED BY -

G.H.Wenglinski
T. H. Wenglinski
Work Package Manager
Dept. E914, Ext. 228

APPROVED BY -

Walter W. Haufle
W. E. Hayes
WBS Manager
Dept. E914, Ext. 266

1.0 INTRODUCTION

A dispersion analysis considering 3σ uncertainties (or perturbations) in platform, vehicle, and environmental parameters has been performed for baseline reference mission (BRM) 2. The dispersion analysis is based on the nominal trajectory for BRM 2 which is described in Reference 1. The analysis has been performed to determine state vector and performance dispersions (or variations) which result from the indicated 3σ uncertainties. The dispersions are determined at major mission events and fixed times from lift-off (time slices). The dispersion results will be used to evaluate the capability of the vehicle to perform the mission within a 3σ level of confidence and to determine flight performance reserves (FPR).

2.0 DISCUSSION

2.1 Groundrules and Assumptions

The groundrules describing the Reference 1 ascent trajectory are used for this dispersion analysis. In addition, the following assumptions are made:

- a. Dispersion analysis simulations are generated using the Space Vehicle Dynamics Simulation (SVDS) program operating in a three-degree-of-freedom flight simulation mode.
- b. Dispersion analysis results are based on the nominal mission for BRM 2.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

- c. First stage steering is defined by vehicle attitude as a function of relative velocity from the nominal profile. This attitude history is used to provide steering commands for all perturbation simulations.
- d. The perturbations considered for evaluation in this dispersion analysis are assumed normally distributed about their statistical mean.
- e. The perturbations are statistically independent.
- f. The perturbations considered include error sources in guidance and propulsion systems, uncertainties in measurements of system properties and perturbations in nominal environmental conditions.

2.2 General

2.2.1 Simulation Techniques

A dispersion analysis is based on a nominal trajectory generated without including the effects of any uncertainties. Performance-optimum first stage steering commands and second stage guidance inputs are then used in simulating trajectories with perturbations since perturbations are unplanned occurrences.

The perturbation simulations in this analysis are determined by independently simulating 3σ values of the indicated uncertainties. That is, a complete trajectory simulation (liftoff to insertion) is developed using only one error source. The dispersion results from these independent simulations are then statistically

correlated by 1) a root-sum-square (RSS) process and 2) determining a covariance matrix indicative of all error sources.

2.2.2 Error Sources, Symbols and Definitions

A list of the error sources used in this study and their 3σ values

- is given in Table I. Included in Table I are symbols used in the RSS data tables to identify dispersions resulting from the error sources.

Figure 1 contains the definition of a local horizontal coordinate system (LHS). The RSS data and covariance matrices of this study indicate state vector dispersions in the LHS. Since the LHS is determined from the nominal state, a different LHS is determined at each instance for which RSS or covariance data is required.

Tables II and III contain symbols used to identify elements of the covariance matrices, a definition of the symbols, and the format of the covariance matrices. Although 3σ values of the error sources are used in the trajectory simulations, state vector dispersions are adjusted to a 1σ level for determining the covariance matrices.

2.2.3 Events and Time Slices for Dispersion Analysis

RSS and covariance matrix data are presented for several events and time slices in this analysis. An event is defined as a fixed occurrence (sensed by attaining a given target value) and

may have a time-from-liftoff dispersion associated with it. A time slice is indicative of a fixed time from liftoff.

The events and time slices for which RSS and covariance matrix data are presented as follows:

- a. Solid Rocket Booster (SRB) Separation (See Table IV-A, IV-B)
- b. Main Engine Cutoff (MECO) (See Tables V-A, V-B)
- c. Time slice defined as nominal MECO time plus 25 seconds, 530.1 seconds from liftoff (See Tables VI-A, VI-B)
- d. Insertion (See Tables VII-A, VII-B)
- e. Time slice defined as nominal insertion time plus 25 seconds, 621.1 seconds from liftoff (See Tables VIII-A, VIII-B).

As previously stated, the LHS in which state vector dispersions (RSS data and covariance matrix data) are calculated is determined by the nominal state at each of the indicated events and time slices. Each event and time slice has its own LHS in which dispersions are presented.

2.3 RSS Data

The RSS technique is the method used in this analysis to statistically combine dispersions in flight parameters to determine the 3-sigma limits in the significant parameters. In actual vehicle flight, there is a 99.73 percent probability that the value of the parameter will be inside the 3-sigma band (the RSS value) if all assumptions required for this method are justified.

Inherent in the RSS method are the assumptions of linearity and normality. These assumptions are as follows:

- a. The perturbations are statistically independent; that is, the occurrence of one perturbation will not affect the probability of a second perturbation.
- b. A perturbation and its associated flight dispersions are linearly related.

RSS data presented in this report includes dispersions in altitude, down range and cross range position, and cross range rate computed in the LHS. Speed, flight-path angle, altitude rate, time and total vehicle weight dispersions are also included in the RSS data. The dispersions presented in the RSS data are computed as:

$$\text{dispersion} = (\text{actual integrated state of perturbed trajectory}) - (\text{nominal trajectory state}).$$

RSS data are presented in Tables IV-A through VIII-A for the major events and time slices defined in Section 2.2.3. Data are included in the tables to indicate parameter dispersions for each individual error source and the RSS combination of the dispersions. As previously stated, this study assumes all error sources to be normally distributed. Consequently, the RSS data indicated in Tables IV-A through VIII-A are computed from the dispersions without regard to signs.

RSS data at SRB separation (Table IV-A) and MECO (Table V-A) contain total vehicle weight dispersions and the resulting penalty in terms of orbiter main engine propellant. The propellant variations will be used to indicate whether the cumulative penalty is within the flight performance reserve (FRP) requirements.

RSS data Tables VI-A through VIII-A contain orbital maneuvering system (OMS) propellant dispersions.

2.4 Covariance Matrix Data

The covariance matrix represents a multivariate normal distribution of a 6 by 1 vector of dispersions in the actual (integrated) state, a 6 by 1 vector of navigated state deviations, and vehicle weight. The navigated state deviations represented in the covariance matrix are computed as:

$$\text{deviation} = (\text{perturbed navigated state}) - (\text{actual integrated state of perturbed trajectory}).$$

Table II defines the parameters presented in the covariance matrices of this paper. The matrices are expressed in the LHS (UVW coordinates) defined by the nominal state vector at each event or time slice. (See Figure 1.) The covariance matrices are indicative of 1 σ perturbations. Each diagonal element of the matrix (Table III) represents the variance of the associated parameter. For example, the element in the second row and second column represents the variance of the actual state in the V (or down-range) direction. Each off-diagonal element represents the covariance between the

diagonal elements directly above and directly to the right of it. For example, the element in the fourth row and second column represents the covariance between the down-range variance and the \hat{U} variance.

The elements of the matrix are symbolically defined in Table III. The matrices are given in Tables IV-B through VIII-B. Since a covariance matrix is symmetrical, only the lower triangle of the matrices is given.

2.5 Exchange Ratios

An exchange ratio is defined to be the ratio of a dispersion in a given variable to the magnitude of the error source causing the dispersion. The use of exchange ratios enables a quick-look assessment of the variations from nominal which may be expected to result from the application of error sources of various magnitudes. To use an exchange ratio, multiply a change in a parameter by its corresponding exchange ratio. This defines the predicted performance variation at the event or time slice for which the ratio has been calculated.

Table IX contains exchange ratios indicating space shuttle main engine (SSME) propellant dispersion at MECO for several performance error sources. The exchange ratios are valid for perturbations only within a specified range. The exchange ratios show a sensitivity to an unplanned anomaly; that is, the trajectory is not optimized for the uncertainties. These exchange ratios may be used to predict SSME propellant variations at MECO.

2.6 RSS Summary Data

Summary tables of the RSS data are given in Tables X and XI.

Table X contains the RSS data of Tables IV-A through VIII-A.

Data are presented for each event and time slice indicated in the tables. The variations indicated by Table X are dispersions of the actual (integrated) perturbed state from the nominal state.

Table XI is the RSS of navigation deviations computed as defined in Section 2.4. Data are presented in Table XI for each event and time slice indicated by Tables IV-B through VIII-B. In considering the data of Tables X and XI, it should be noted that uncertainties in atmospheric winds and SSME thrust tailoff are not simulated. These uncertainties are major contributors to position errors at SRB separation and MECO, respectively.

Results of these error sources will be included in the dispersion analyses at a later date.

3.0 CONCLUSIONS

Data presented in this study are based on the SVDS program which has been verified as a dispersion analysis tool. (See References 2 and 3).

Principal error contributors to the covariance matrix at MECO are listed in Table XII. The dispersion data indicate that the largest position error occurs in the down range component. At MECO the vehicle performance uncertainties are the major contributors to down range error.

Results of the analysis will be used for FPR and fuel bias determination. These will be published at a later date.

4.0 REFERENCES

1. JSC Internal Note No. 73-FM-47, "Space Shuttle System Baseline Reference Missions, Volume II- Mission 2, Revision 2", dated 11 August 1975.
2. Design Note No. 1.4-7-7, "Dispersion Analysis and Linear Error Analysis Capabilities of the Space Vehicle Dynamics Simulation Program", dated 12 May 1975.
3. Design Note No. 1.4-7-14, "Dispersion Analyses Techniques Within the Space Vehicle Dynamics Simulation Program, Revision A", dated 25 September 1975.

TABLE I
ERROR SOURCE DEFINITIONS

ERROR SOURCE SYMBOL*	DEFINITION	INITIAL PLATFORM MISALIGNMENT DESIgnED VALUES	UNITS
PLATfORM ALINE			
DRAfT BIAS	FREE GYRO BIAS	100,000 100,000	ARC SEC ARC SEC
G-SENS IA DRIFT	GYRO INPUT AXIS ACCELERATION SENSITIVE DRIFT	0.045 0.075	DEG/HR DEG/HR/S
G-SENS SA DRIFT	GYRO SPIN AXIS ACCELERATION SENSITIVE DRIFT	0.075	DEG/HR/S
G-SENS OA DRIFT	GYRO OUTPUT AXIS ACCELERATION SENSITIVE DRIFT	0.075	DEG/HR/S
G-SENS-SO DRIFT	GYRO ACCELERATION SQUARED SENSITIVE DRIFT	0.075	DEG/HR/S
ACCEL BIAS	ACCELEROMETER BIAS	150,000	MICRO-G
ACCEL SCALE FAc	ACCELEROMETER SCALE FACTOR	120,000	PPM
ACCEL IA ALINE	ACCELEROMETER INPUT AXIS MISALIGNMENT	45,000	ARC SEC
" TOWARD OA	-TOWARD OUTPUT AXIS		ARC SEC
" TOWARD SA	-TOWARD SPIN AXIS		ARC SEC
S INERT	POS. MFR ACTION TIME	0.710	PERCENT
S ISP	NEG. SRA SPECIFIC IMPULSE	• 500	PERCENT
S prop	NEG. SRA PROPELLANT LOADING	• 210	PERCENT
O INERT	POS. SRA INERT WEIGHT	• 050	PERCENT
O THRST	NEG. ORBITER THRUST	110397,000 12278,230	LB/SEC SEC/SEC LBS
O ISP	NEG. ORBITER SPECIFIc IMPULSE	2,300 1	PERCENT
O INERT	POS. ORBITER INERT WEIGHT	11215,000 1577,0449	PERCENT ILB
O prop	POS. EXTERNAL TANK INERT WEIGHT LOADING	17427,460 1577,0449	PERCENT ILB
Ax FR	POS. AXIAL FORCE		ROCKWELL DOCUMENT NO: SD-72-SH-004-26 JUNF 1974, AERODYNAMIC DESIGN DATA BOOK. VOL. 1
A DRAG	POS. BASF DRAG		ROCKWELL DOCUMENT NO: SD-72-SH-004-26 JUNF 1974, AERODYNAMIC DESIGN DATA BOOK. VOL. 11

* Symbols used in Tables IV-A through VIII-A.

Let \hat{r}_I be the inertial position vector and \hat{v}_I be the inertial velocity vector. The LIS coordinate system is defined by the following three vector equations.

$$\hat{u} = \hat{r}_I / |\hat{r}_I|$$

$$\hat{v} = (\hat{r}_I \times \hat{v}_I) / |\hat{r}_I \times \hat{v}_I|$$

$$\hat{w} = \hat{u} \times \hat{v}$$

Figure 1 - Local Horizontal Coordinate System

TABLE II
Covariance Matrix Parameter Definition

<u>State Vector Component</u>	<u>Definition</u>	<u>Units</u>
U ACT	Actual state vector position component dispersions in the Local Horizontal Coordinate System (LHS)	FT
V ACT		
W ACT		
U-DOT ACT	Actual state vector velocity component dispersions in the LHS	FT/SEC
V-DOT ACT		
W-DOT ACT		
U NAV	Navigated state vector position component deviations in a LHS*	FT
V NAV		
W NAV		
U-DOT NAV	Navigated state vector velocity component deviations in a LHS*	FT/SEC
V-DOT NAV		
W-DOT NAV		
WT	Vehicle weight	LB

* The navigated state has its own LHS developed from the nominal navigated state vectors similar to the actual state LHS development. Navigated state vector deviations are computed as:

$$\text{deviation} = (\text{perturbed navigated state}) - (\text{actual integrated state of perturbed trajectory})$$

TABLE III

Notes:

- a. Unprimed symbols represent actual (integrated) state vector errors.
- b. Primed symbols represent navigation state vector error.
- c. W_t represents total vehicle weight error.

TABLE IV-A
LINEAR ERROR ANALYSIS
RSS DATA AT SRA SEPARATION (EVENT 1)

ALTITUDE		DOWN RANGE		CROSS RANGE		SPEED	FLIGHT PATH	ALTITUDE	CROSS RANGE	TIME	RATE-FPS	SEC	RIGHT-SIDE PROP
	ft		ft		ft	fps	ANGLE-DEG	ft	ft	sec	ft	lb	
'PLATFORM ALINE													
AZIMUTH	0.1	26.	120.	0.1	.001	0.0	0.0	34	0.0	0.0	0.0	0.0	
TILT	0.1	-61.	-17.	0.1	.016	1.0	1.0	-1.3	0.0	0.0	0.0	0.0	
ROLL	0.1	20.	-9.	0.1	-.001	1.0	1.0	-1.6	0.0	0.0	0.0	0.0	
DRIFT BIAS													
X	0.	0.	2.	0.	0.000	0.0	0.0	1	0.0	0.0	0.0	0.0	
Y	0.	0.	-1.	0.	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Z	0.	0.	-3.	0.	0.000	0.0	0.0	0.1	0.0	0.0	0.0	0.0	
G-SENS IA DRIFT													
X	0.	0.	5.	0.	0.000	0.0	0.0	0.2	0.0	0.0	0.0	0.0	
Y	0.	0.	-2.	0.	0.000	0.0	0.0	0.1	0.0	0.0	0.0	0.0	
Z	0.	0.	2.	0.	0.000	0.0	0.0	0.2	0.0	0.0	0.0	0.0	
G-SENS SA DRIFT													
X	0.	0.	2.	0.	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Y	0.	0.	-2.	0.	0.000	0.0	0.0	0.2	0.0	0.0	0.0	0.0	
Z	0.	0.	0.	0.	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
G-SENS-SV DRIFT													
X	0.	0.	0.	0.	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Y	0.	0.	0.	0.	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Z	0.	0.	0.	0.	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ACCEL BIAS													
X	0.12	21.	4.	0.	0.000	0.0	0.0	0.3	0.0	0.0	0.0	0.0	
Y	0.	0.	0.	0.	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Z	0.	0.	-7.	10.	0.	0.000	0.0	-2	0.0	0.0	0.0	0.0	
ACCEL SCALE FAC													
X	0.16	27.	6.	0.	0.000	0.0	0.0	0.4	0.0	0.0	0.0	0.0	
Y	0.	0.	0.	0.	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Z	0.	0.	-3.	3.	0.	0.000	0.0	0.1	0.0	0.0	0.0	0.0	
ACCEL IA ALINE													
-TOWARD OA													
X	0.	0.	0.	0.	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Y	0.	0.	0.	0.	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Z	0.	0.	-17.	22.	0.	0.000	0.0	-5	0.0	0.0	0.0	0.0	
-TOWARD SA													
X	-6.	9.	2.	0.	0.000	0.0	0.0	-2	0.0	0.0	0.0	0.0	
Y	0.	0.	0.	0.	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Z	0.	0.	0.	0.	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PERFORMANCE													
WEIGHT	1541.	8916.	3989.	-26.7	-412	-46.3	6.4	17194.	-17194.	0.0	0.0	0.0	
ISP ACT	1588.	-176.	-387.	-38.7	-6.7	-6.7	0.0	0.0	0.0	0.0	0.0	0.0	
ISP PHOP	232.	-416.	-92.	-10.3	0.11	0.22	0.0	0.0	0.0	0.0	0.0	0.0	
INERTIAL	0101.	-359.	-79.	-9.4	0.10	-2.6	0.0	0.0	0.0	0.0	0.0	0.0	
THRUST	-449.	-605.	-177.	-21.2	0.21	6.6	0.0	0.0	0.0	0.0	0.0	0.0	
O ISP	300.	50.	-11.	-1.9	0.01	1.6	0.0	0.0	0.0	0.0	0.0	0.0	
O INERT	82.	-147.	-32.	-3.9	0.01	-1.2	0.0	0.0	0.0	0.0	0.0	0.0	
ET PROP	39.	-70.	-75.	-1.8	0.02	-1.5	0.0	0.0	0.0	0.0	0.0	0.0	
ET PROP	500.	902.	198.	23.6	-0.026	7.1	5.0	0.0	0.0	0.0	0.0	0.0	
AERODYNAMIC													
AER FR	-303.	-541.	-119.	-11.5	0.020	-2.6	0.0	0.0	0.0	0.0	0.0	0.0	
B DRAG	-388.	-73.	-161.	-14.3	0.035	-2.7	0.0	0.0	0.0	0.0	0.0	0.0	
RSS	2013.	9232.	4027.	62.3	0.424	48.4	12.5	5.6	19238.	0.0	0.0	0.0	

T

TABLE IV-B
COVARIANCE MATRIX
AT SRA SEPARATION

	U ACT	V ACT	W ACT	U-DOT ACT	V-DOT ACT	W-DOT ACT	U NAV
U ACT	4.5040817+05	9+47000180+06	1+8017546+06	2+8015352+02	3+4199322+02	1+7345698+01	
V ACT	-1+8704590+06	-3+8123527+06	-2+8163428+04	-1+3713525+02	-7+2967704+01	-2+4152088+01	
W ACT	-6+0754559+05	-4+4302721+04	-7+8726068+03	-2+5018299+01	-1+183952+01	-4+5021399+02	
U-DOT ACT	-6+365486+03	3+920793+03	1+3649518+03	-2+5984871+00	-1+1653676+00	-1+1245408+01	
V-DOT ACT	5+944635+03	-1+7507678+03	2+195919+02	-2+1652217+00	-1+1652217+00	-1+1247994+01	
W-DOT ACT	1+4592215+03	-4+2865300+02	5+6152215+02	-3+13648712+03	-3+13648712+03	-6+5056291+01	
U NAV	-3+6144192+02	-1+403192+02	-1+4258213+01	-3+17438716+03	-2+1462621+01	-3+17438716+03	
V NAV	-1+5936496+02	-1+59364925+03	-1+59364925+03	-3+13648712+03	-2+1462621+01	-3+13648712+03	
W NAV	-8+134152+00	-8+6826506+00	-1+4561722+01	-1+1274167+01	-1+223501-01	-1+1274167+01	
U-DOT NAV	-4+3006156+00	-1+34074761+01	-1+34074761+01	-3+8068591+02	-2+3005584+01	-2+3005584+01	
V-DOT NAV	-1+4306946+06	-1+4306946+06	-1+4306946+06	-3+8062898+04	-1+16801-03	-1+16801-03	
W-DOT NAV	-3+5766824+06	-1+80170782+07	-1+80170782+07	-7+3707446+06	-8+61631+03	-8+61631+03	
WT							
	V NAV	W NAV	U NAV	U-DOT NAV	V-DOT NAV	W-DOT NAV	WT
V NAV	2+2484960+03	3+6326646+03	3+2684958+01	3+4012459+01	1+4952156+01	1+975215+01	
W NAV	-3+5692010+02	-1+342621+00	-1+342621+00	-2+1524806+01	-1+0121685+01	-2+9602707+02	
U-DOT NAV	-1+3251366+01	-1+3251366+01	-1+3251366+01	-2+1524806+01	-1+0121685+01	-2+9602707+02	
V-DOT NAV	3+27472137+01	-1+0121685+01	-1+0121685+01	-6+2233809+01	-1+3941031+03	-6+7163070+01	
W-DOT NAV	-1+02949436+03	-1+02949436+03	-1+02949436+03	-1+02949436+03	-1+02949436+03	-1+02949436+03	
WT							

TABLE V-A
LINEAR ERROR ANALYSIS
FOR DATA AT MECO (EVENT)

R56 DATA AT HECC (EVENT)

ALTITUDE		DOWN RANGE		CROSS RANGE		SPEED	FLIGHT PATH	ANGLE-DEG	CROSS RANGE	TIME SEC	BRIGHT-SSINE PROB
FT	FT	FT	FT	FT	FT	FPS	RATE-FPS	SEC	SEC	SEC	LB
PLATFORM ALINE											
AZIMUTH	-107.	433.	4024.	-0.7	-0.02	20.0	20.0	-0.7	20.0	7.0	-0.
TILT	1146.	-1189.	-118.	-0.2	-0.11	5.0	5.0	-0.2	5.0	12.	-0.
ROLL	26.	37.	-1064.	-0.1	-0.00	-2.6	-2.6	-0.1	-2.6	0.	-0.
DRIFT BIAS											
X	.6.	.77.	221.	-0.1	-0.00	1.6	1.6	-0.1	1.6	-0.	-0.
Y	20.1	-120.	11.	-0.0	-0.00	-1.6	-1.6	-0.0	-1.6	-1.	-0.
Z	2.3.	3.	-88.	-0.0	-0.00	-1.6	-1.6	-0.0	-1.6	-1.	-0.
G-SENS IA DRIFT											
D.	-10.	-12.	375.	-0.1	-0.00	-1.	-1.	-0.	-1.	0.	-0.
D.	1.	0.	-0.	-0.0	-0.00	-0.	-0.	-0.	-0.	0.	-0.
Y	2.	4.	-123.	-0.0	-0.00	-0.	-0.	-0.	-0.	0.	-0.
D.N. G-SENS SA DRIFT											
NO.	X	163.	-182.	0.	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.
Y	4.	6.	-183.	-0.0	-0.00	-0.0	-0.0	-0.0	-0.0	-0.0	-0.
Z	2.	4.	-183.	-0.0	-0.00	-0.0	-0.0	-0.0	-0.0	-0.0	-0.
G-SENS DA DRIFT											
X	339.	-12.	348.	-0.1	-0.00	2.0	2.0	-0.1	2.0	-0.	-0.
Y	0.	-23.	-0.	-0.0	-0.00	-0.	-0.	-0.	-0.	0.	-0.
Z	0.	0.	-0.	-0.0	-0.00	-0.	-0.	-0.	-0.	0.	-0.
6-SENS-SQ DRIFT											
X	0.	-0.	-0.	-0.0	-0.00	-0.	-0.	-0.	-0.	-0.	-0.
Y	1.	-0.	-0.	-0.0	-0.00	-0.	-0.	-0.	-0.	-0.	-0.
Z	2.	4.	-147.	-0.0	-0.00	-0.	-0.	-0.	-0.	-0.	-0.
Page	ACCEL BIAS										
X	4637.	167.	-10.	-0.5	-0.005	-2.4	-2.4	-0.5	-2.4	30.	-0.
Y	115.	720.	591.	-0.2	-0.009	-2.1	-2.1	-0.2	-2.1	0.	-0.
Z	-145.	-591.	-591.	-0.2	-0.003	-1.9	-1.9	-0.2	-1.9	58.	-0.
16 ACCEL SCALE FAC											
X	482.	170.	78.	-0.3	-0.003	-1.3	-1.3	-0.3	-1.3	26.	-26.
Y	0.	-70.	-0.	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	0.	0.
Z	134.	-771.	-21.	-0.8	-0.003	-0.3	-0.3	-0.8	-0.3	70.	70.
ACCEL IA ALINE											
TOWARD OA	X	25.	-74.	0.	-0.0	0.0	0.0	0.0	0.0	0.	0.
Y	1.	-194.	-466.	0.	-0.0	-0.2	-0.2	-0.0	-0.2	0.	0.
Z	2.	0.	-2.	0.	-0.0	-0.0	-0.0	-0.0	-0.0	0.	0.
TOWARD SA											
X	-1052.	206.	-717.	1.2	-0.012	-5.2	-5.2	1.2	-5.2	42.	-42.
Y	-22.	-27.	796.	-0.1	-0.000	-0.1	-0.1	-0.0	-0.1	0.	0.
Z	0.	-2.	0.	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	0.	0.
PERFORMANCE											
WEACT	-25.	-33967.	0.	-0.1	-0.001	-1.7	-1.7	-0.1	-1.7	3857.	-3857.
SISP	-1.	-6373.	0.	-0.2	-0.002	-1.7	-1.7	-0.2	-1.7	1240.	-1240.
SPROP	-1.	-1612.	0.	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	334.	-334.
SIERT	-1.	-1443.	0.	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	307.	-307.
DTHRST	-1.	-29417.	0.	-0.1	-0.001	-1.7	-1.7	-0.1	-1.7	901.	-901.
DISP	-1.	-6268.	0.	-0.1	-0.002	-1.7	-1.7	-0.1	-1.7	474.	-474.
DIERT	0.	-2293.	0.	-0.1	-0.001	-1.7	-1.7	-0.1	-1.7	45.	-45.
ET INERT	1.	-1092.	0.	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	21.	-21.
ET PROP	-4.	-14069.	0.	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	417.	-417.

TABLE V-B
COVARIANCE MATRIX
AT HFCD

	U ACT	V ACT	W ACT	U-DOT ACT	V-DOT ACT	W-DOT ACT	U NAV
U ACT	3.8275300+05	2.6175254+05	2.1935845+06	3.8731693+02	7.2320805+00	4.4127270+00	5.1180468+01
V ACT	-1.3843754+05	-6.2721896+04	-2.941291+02	-7.2320805+00	-1.6423661+00	-1.689515+02	-3.5189515+02
W ACT	-5.54017A21+04	-3.1454596+03	-3.2941291+02	-7.2320805+00	-1.6423661+00	-1.689515+02	-3.5189515+02
U-DOT ACT	-1.5954650+03	-3.1454596+03	-3.2941291+02	-7.2320805+00	-1.6423661+00	-1.689515+02	-3.5189515+02
V-DOT ACT	-7.1539605+02	-3.1454596+03	-3.2941291+02	-7.2320805+00	-1.6423661+00	-1.689515+02	-3.5189515+02
W-DOT ACT	-2.5379311+02	-3.1454596+03	-3.2941291+02	-7.2320805+00	-1.6423661+00	-1.689515+02	-3.5189515+02
U NAV	-2.5379311+02	-3.1454596+03	-3.2941291+02	-7.2320805+00	-1.6423661+00	-1.689515+02	-3.5189515+02
V NAV	-3.0232017+05	-1.0835492+05	-5.5462927+05	-6.0562664+04	-2.0214087+03	-7.178432+02	-2.097404+05
W NAV	-3.0419417+05	-1.0835492+05	-5.5462927+05	-6.0562664+04	-2.0214087+03	-7.178432+02	-2.097404+05
U-DOT NAV	-5.5531661+04	-6.0835594+04	-6.0835594+04	-2.1954592+06	-2.08740583+02	-3.2975485+02	-5.6604363+04
V-DOT NAV	-2.1541624+03	-1.155604+03	-1.155604+03	-2.9646294+02	-1.1879553+01	-6.6604363+01	-1.3741297+00
W-DOT NAV	-7.2533684+02	-1.1763296+03	-3.4931511+02	-4.396114+00	-9.4101953+00	-1.7660726+00	-2.172594+02
U NAV	-2.6507729+02	-3.1515132+02	-1.1015047+03	-1.3658094+00	-1.7877591+04	-7.0807307+01	-5.4100098+01
V NAV	-1.4880504+07	-1.4880504+07	-1.120551+03	-1.120551+03	-1.120551+03	-1.7877591+04	-1.679527+01
W NAV	3.28527250+03						1.1517070+01
V NAV	3.7027096+05						
W NAV	-6.6614434+04						
U-DOT NAV	-6.3271384+03						
V-DOT NAV	-1.2488370+03						
W-DOT NAV	-3.597166+02						
WT	1.1605165+04						

TABLE VI-A

LINEAR ERROR ANALYSIS

REPRODUCIBILITY OF
ORIGINAL PAGE IS POOR

RSS DATA AT 530.1 SEC IN NOMINAL MECH + 25 SEC

ALTITUDE — DOWN RANGE — CROSS RANGE — SPEED — FLIGHT PATH — ALTITUDE — CROSS RANGE — TIME — WEIGHT — OMS C
FT FT FT FPS RATE-FPS RATE-FPS SEC SEC SEC

PLATFORM ALINE			SPEED			FLIGHT PATH			ALTITUDE			CROSS RANGE			TIME			WEIGHT			
AZIMUTH	ROLL	PITCH	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z	
126.0	-150.0	41.0	4522.0	-0.7	-0.3	-0.002	0.6	0.9	19.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
127.0	-150.0	41.0	-1129.0	-0.1	-0.1	-0.000	-0.9	-0.9	-2.6	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	
Drift Bias																					
X	237.0	-136.0	2.0	260.0	-0.1	-0.000	0.0	0.0	1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Y	237.0	-136.0	2.0	-95.0	-0.1	-0.000	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
Z	237.0	-136.0	2.0	-133.0	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
G-SENS IA DRIFT																					
X	-11.0	-14.0	431.0	-0.1	-0.0	-0.000	-0.1	-0.0	-2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Y	-11.0	-14.0	431.0	-0.4	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
Z	-11.0	-14.0	431.0	-133.0	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
G-SENS SA DRIFT																					
X	435.0	-218.0	0.0	0.0	-0.2	-0.000	0.0	0.0	-0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Y	435.0	-218.0	0.0	-196.0	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
Z	435.0	-218.0	0.0	-159.0	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
G-SENS DA DRIFT																					
X	436.0	-215.0	0.0	0.0	-0.1	-0.000	0.0	0.0	-0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Y	436.0	-215.0	0.0	-20.0	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
Z	436.0	-215.0	0.0	-159.0	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
G-SENS-SQ DRIFT																					
X	437.0	-215.0	0.0	0.0	-0.1	-0.000	0.0	0.0	-0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Y	437.0	-215.0	0.0	-20.0	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
Z	437.0	-215.0	0.0	-159.0	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
ACCEL BIAS																					
X	-69.0	567.0	-11.0	-11.0	-0.4	-0.005	-0.4	-0.0	-2.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Y	-146.0	567.0	-22.0	-650.0	-0.1	-0.000	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
Z	-132.0	567.0	-64.0	-25.0	-0.2	-0.003	-0.2	-0.0	-0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
ACCEL SCALE FAC																					
X	512.0	509.0	-9.0	-9.0	-0.3	-0.003	-0.3	-0.0	-1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Y	161.0	509.0	-10.0	-10.0	-0.3	-0.003	-0.3	-0.0	-1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Z	161.0	509.0	-13.0	-24.0	-0.8	-0.003	-0.8	-0.0	-1.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ACCEL IA ALINE																					
-TOWARD OA																					
X	-117.0	0.0	-70.0	-70.0	-0.1	-0.000	-0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
Y	-22.0	-37.0	113.0	-113.0	-0.2	-0.000	-0.2	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
Z	-22.0	-159.0	-33.0	-33.0	-0.9	-0.003	-0.9	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
-TOWARD SA																					
X	-117.0	77.0	-71.0	-71.0	-0.1	-0.012	-0.1	-0.0	-5.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Y	-25.0	-25.0	84.0	84.0	-0.1	-0.000	-0.1	-0.0	-0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
Z	-25.0	-25.0	0.0	0.0	0.0	-0.000	0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
PERFORMANCE																					
WE ACT	-553.0	8079.0	-0.0	-0.0	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
S ISP	-154.0	8213.4	-0.0	-0.0	-0.0	-0.001	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
S PROP	-138.0	8564.4	-0.0	-0.0	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
S INERT	-93.0	8514.9	-0.0	-0.0	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
O THRST	-91.0	8669.3	-0.0	-0.0	-0.0	-0.002	-0.0	-0.0	-0.2	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
O ISP	164.0	8141.2	-0.0	-0.0	-0.0	-0.001	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
O INERT	-89.0	8696.0	-0.0	-0.0	-0.0	-0.001	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
ET INERT	-40.0	8331.0	-0.0	-0.0	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
ET PROP	439.0	82364.0	-0.0	-0.0	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
AERODYNAMIC																					
AIR FR	-47.0	-6489.0	-0.0	-0.0	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
B DRAG	-54.0	-7948.0	-0.0	-0.0	-0.0	-0.000	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0

D.N. NO.: 1.4-7-18 Page 18

TIME SEC

WEIGHT SEC

OMS C SEC

AIRCRAFT SEC

PROPULSION SEC

INERTIAL SEC

STRUCTURAL SEC

ELECTRICAL SEC

POWER SEC

COMPUTER SEC

AERODYNAMIC SEC

AIRCRAFT SEC

PROPULSION SEC

INERTIAL SEC

STRUCTURAL SEC

ELECTRICAL SEC

POWER SEC

COMPUTER SEC

TABLE VI-B
COVARIANCE MATRIX
AT NOMINAL MECC + 2S SEC

	U ACT	V ACT	W ACT	U-DOT ACT	V-DOT ACT	W-DOT ACT	U-NAV
U ACT	6.2992014+05	-1.5132467+09	-2.7453427+06	-2.212766+03	-4.442950+02	-4.4429164+00	5.0370177+01
V ACT	-1.4243754+07	-1.7046592+04	-1.7426277+04	-3.4426277+04	-3.591709+02	-3.6212165+00	-9.8399066+05
W ACT	-7.522221+04	-9.6707346+02	-9.6707346+02	-3.591709+02	-3.6212165+00	-3.6212165+00	-9.8399066+05
U-DOT ACT	-1.522221+04	-1.7201337+03	-1.7201337+03	-3.591709+02	-3.6212165+00	-3.6212165+00	-9.8399066+05
V-DOT ACT	-8.6730197+02	-1.070697+05	-1.070697+05	-2.468396+03	-2.4901330+03	-2.4901330+03	-7.272324+02
W-DOT ACT	-3.964223+02	-4.67025+05	-4.67025+05	-2.468396+03	-2.4901330+03	-2.4901330+03	-7.272324+02
U NAV	2.593459+05	-2.694246+06	-2.694246+06	1.964165+01	1.964165+01	1.964165+01	-1.2879479+05
V NAV	2.593459+05	-2.694246+06	-2.694246+06	1.964165+01	1.964165+01	1.964165+01	-1.2879479+05
W NAV	-1.3214566+04	-1.1061726+05	-1.1061726+05	-3.421752+02	-3.421752+02	-3.421752+02	-1.4527954+03
U-DOT NAV	-2.4646261+02	-1.9419474+03	-1.9419474+03	-3.4646261+02	-3.4646261+02	-3.4646261+02	-2.4527954+03
V-DOT NAV	-8.0655105+02	-8.0160402+02	-8.0160402+02	-3.4646261+02	-3.4646261+02	-3.4646261+02	-2.4527954+03
W-DOT NAV	-3.152198+02	-5.094123+02	-5.094123+02	-2.275010+04	-2.275010+04	-2.275010+04	-1.08487+02
WT	-1.2076080+04	-3.95544+05	-3.95544+05	-7.605252+02	-7.605252+02	-7.605252+02	-1.0267279+01
				-1.081007+03	-1.081007+03	-1.081007+03	-1.7136765+02
V NAV							
Y NAV	4.5104057+05						
W NAV	-6.3312496+04						
U-DOT NAV	-1.4946969+03						
V-DOT NAV	-1.4229068+03						
W-DOT NAV	-1.9457193+02						
WT	-1.6840067+02						

TABLE VII-A

LINEAR ERROR ANALYSIS
RSS DATA AT INSERTION EVENT

		ALTITUDE	DOWN RANGE	CROSS RANGE	SPEED	FLIGHT PATH	ANGLE-DEG	CROSS RANGE RATE	ALTITUDE RATE	TIME SEC	BRIGHTNESS PROBLEMS	TIME SEC	BRIGHTNESS PROBLEMS
PLATFORM ALING		-101.	-1246.	5807.	-0.5	-0.002	-0.8	19.0	-0.0	-2.	-2.	-2.	
AZIMUTH	1582.	594.	216.	-9.5	0.009	4.3	-0.1	-0.0	-0.0	-0.	-0.	-0.	
TILT	38.	-46.	-1297.	0.1	0.000	-2.5	-0.0	-0.0	-0.0	-0.	-0.	-0.	
ROLL													
DRIFT BIAS													
X	-314.	-482.	361.	-1.1	-0.009	1.0	1.5	-0.0	-0.0	-1.	-1.	-1.	
Y	333.	549.	-111.	0.0	0.000	-1.0	-1.0	-0.3	-0.3	-0.	-0.	-0.	
Z	4.	-673.											
G-SENS TA DRIFT													
X	-16.	-35.	5760.	-1.0	-0.000	-1.0	2.2	0.0	0.0	-0.	-0.	-0.	
Y	0.	-264.	570.	-0.0	0.000	-1.0	-1.0	-0.1	-0.1	0.0	0.0	0.0	
Z	2.	-30.	-15A.	0.0	0.000	-1.0	-1.0	-0.1	-0.1	0.0	0.0	0.0	
G-SENS SA DRIFT													
X	2.	-18.	10.	-1.0	0.000	2.0	-0.0	-0.0	-0.0	-0.	-0.	-0.	
Y	637.	2017.	-231.	-1.0	0.006	2.0	-0.0	-0.0	-0.0	-0.	-0.	-0.	
Z	5.	-2271.											
D.N. NO.: 1.4-7-18													
G-SENS DA DRIFT													
X	519.	-409.	672.	-1.0	-0.000	1.0	-0.0	-0.0	-0.0	-0.	-0.	-0.	
Y	512.	-245.	72.	-1.0	0.000	-1.0	-0.0	-0.0	-0.0	-0.	-0.	-0.	
Z	1.	-208.	1.	-0.0	0.000	-1.0	-0.0	-0.0	-0.0	-0.	-0.	-0.	
G-SENS-SQ DRIFT													
X	1.	7.	1.	-0.0	0.000	0.0	-0.0	-0.0	-0.0	-0.	-0.	-0.	
Y	-0.	-352.	-189.	-0.0	0.000	0.0	-0.0	-0.0	-0.0	-0.	-0.	-0.	
Z	2.	-7.	-1.	-0.0	0.000	0.0	-0.0	-0.0	-0.0	-0.	-0.	-0.	
G-SENS-SQ DRIFT													
X	1.	-0.0	0.0	-0.0	0.000	0.0	-0.0	-0.0	-0.0	-0.	-0.	-0.	
Y	2.	-350.	-3504.	-0.0	0.000	0.0	-0.0	-0.0	-0.0	-0.	-0.	-0.	
Z													
ACCEL BIAS													
X	-865.	61136.	613.	-0.1	0.005	-2.3	2.0	-0.1	-0.1	-2.	-2.	-2.	
Y	-224.	-565.	-59.	-0.1	0.000	-2.0	2.0	-0.1	-0.1	-1.	-1.	-1.	
Z	-350.	-6304.	-31.	-0.1	0.004	-1.6	-2.1	-0.1	-0.1	-1.	-1.	-1.	
ACCEL SCALE FAC													
X	-601.	268.	-9.	-0.0	0.003	-1.3	0.0	-0.0	-0.0	-0.	-0.	-0.	
Y	-221.	-226.	-1.	-0.0	0.000	-1.0	-0.0	-0.1	-0.1	-0.	-0.	-0.	
Z	-291.	-2555.	-30.	-0.0	0.004	-1.7	-0.0	-0.1	-0.1	-0.	-0.	-0.	
ACCEL IA ALINE													
STORARD OA													
X	0.	52.	0.	0.	0.000	0.0	0.0	0.0	0.0	-0.	-0.	-0.	
Y	-546.	-679.	146.	-1.0	0.000	0.0	0.0	0.0	0.0	-0.	-0.	-0.	
Z	-343.	-784.	-34.	-1.0	0.004	-1.0	-0.0	-0.1	-0.1	-0.	-0.	-0.	
TOWARD SA													
X	-1530.	-879.	-25.	1.7	-0.011	-5.0	-1.1	-0.1	-0.1	-2.	-2.	-2.	
Y	-31.	972.	97.	-1.0	0.000	-1.0	-1.0	-0.0	-0.0	-0.	-0.	-0.	
Z	0.	-238.	0.	-0.0	0.000	0.0	-0.0	-0.0	-0.0	-0.	-0.	-0.	
PERFORMANCE													
KFB ACT	-43.	-22063.	211.	-0.1	0.001	-1.5	0.2	-0.1	-0.1	-0.	-0.	-0.	
S ISP	-50.	-123.	15.	-0.1	0.002	-1.6	0.2	-0.1	-0.1	-0.	-0.	-0.	
S PACP	-5.	-738.	75.	-0.1	0.000	-1.2	0.1	-0.1	-0.1	-0.	-0.	-0.	
S INERT	-6.	-753.	75.	-0.1	0.000	-1.3	0.1	-0.1	-0.1	-0.	-0.	-0.	
O THRST	-8.	-27713.	6.	-0.1	0.001	-1.3	0.1	-0.1	-0.1	-0.	-0.	-0.	
O ISP	-5.	-15320.	17.	-0.1	0.002	-1.8	0.2	-0.1	-0.1	-0.	-0.	-0.	
O INERT	-10.	-10894.	19.	-0.1	0.000	-1.5	0.1	-0.1	-0.1	-0.	-0.	-0.	
EY INERT	-7.	-1692.	-5.	-0.1	0.001	-1.2	0.1	-0.1	-0.1	-0.	-0.	-0.	
ET PROP	4.	-15305.	4.	-0.1	0.001	-1.2	0.1	-0.1	-0.1	-0.	-0.	-0.	
AERODYNAMIC													
A1 FR	-12.	-596.	-2.	-0.001	-0.3	-0.1	-0.2	-0.	-0.	-0.	-0.	-0.	
B DRAG	-15.	-1538.	-5.	-0.001	-0.3	-0.1	-0.2	-0.	-0.	-0.	-0.	-0.	
WIND	-10.	-10.	-10.	-0.001	-0.3	-0.1	-0.2	-0.	-0.	-0.	-0.	-0.	
RSS #	2665.	49844.	6330.	6.7	0.019	0.7	0.4	0.0	0.0	1202.	5.0	22	

TABLE VII-B
COVARIANCE MATRIX
AT INSERTION

	U ACT	V ACT	W ACT	U DOT ACT	V DOT ACT	W DOT ACT	U NAV
U ACT	2.8915191+05	2.7635197+06	4.4522329+C4	3.9770191+02	-6.926960+00	5.0979926+00	
V ACT	-1.6118130+06	-9.342938+05	5.096154+C2	-6.926960+00	-1.5973980+00	-1.64048440+00	
W ACT	-1.3717011+05	-3.27847+05	-4.6763274+02	-1.74352+00	-1.16640+03	-1.15431+02	
U DOT ACT	-0.194303+03	-0.27847+05	-4.6763274+02	-1.74352+00	-1.16640+03	-1.15431+02	
V DOT ACT	-1.054020+03	-4.815223+03	-1.6761594+02	-1.309740+03	-1.475349+03	-1.30516+02	
W DOT ACT	-1.204492+02	-2.2022+03	-1.6761594+02	-1.309740+03	-1.475349+03	-1.30516+02	
U NAV	-7.960948+05	-9.373546+05	-1.179723+05	-1.309740+03	-1.475349+03	-1.475349+03	
V NAV	-4.3483416+05	-7.1367129+05	-1.261564+05	-1.84970+03	-5.286679+02	-1.475349+03	
W NAV	-1.3292251+05	-9.846475+05	-4.5430044+04	-4.2409969+02	-5.2409969+02	-5.2409969+02	
U DOT NAV	-1.322272+03	-3.82257+03	-3.82257+03	-4.9592310+02	-5.090237+02	-5.090237+02	
V DOT NAV	-1.2467417+03	-2.257032+03	-2.257032+03	-4.148406+02	-5.148406+02	-5.148406+02	
W DOT NAV	-4.6363934+02	-3.5466356+02	-3.5466356+02	-1.548625+02	-1.548625+02	-1.548625+02	
U NAV	1.436471+06	1.436471+06	1.436471+06	1.593712A+00	1.593712A+00	1.593712A+00	
V NAV	1.9742473+03	1.9742473+03	1.9742473+03	1.82244619+01	1.82244619+01	1.82244619+01	
W NAV	1.9742473+03	1.9742473+03	1.9742473+03	1.707221+01	1.707221+01	1.707221+01	
U NAV							
V NAV							
W NAV							
U DOT NAV							
V DOT NAV							
W DOT NAV							
U NAV							
V NAV							
W NAV							
U DOT NAV							
V DOT NAV							
W DOT NAV							

TABLE VIII-A

LINEAR ERROR ANALYSIS

RSS DATA AT 621.1 SEC NOMINAL INSERTION + 5 SEC)

REPRODUCIBILITY OF
ORIGINAL PAYLOADS

FLIGHT PATH - ALTITUDE - CROSS RANGE - SPEED
ANGLE-DEG FPS FT SEC RATE-FPS SEC

PLATFORM ALINE		DOWN RANGE		CROSS RANGE		SPEED		FLIGHT PATH		ALTITUDE		CROSS RANGE		TIME		STATION		ONS PROP	
1	APIMUTH	-720.1	-0.000	-627.5	-0.000	-0.000	-0.000	-16.0	-0.000	-16.0	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	
1	TILT	16.61	-0.174	-0.143	-0.143	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	
1	ROLL	1.93	-0.135	-0.135	-0.135	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	
2	DRIFT BIAS	-356.1	-0.238	-0.2	-0.120	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
1	X	-1.1	-0.13	-0.13	-0.13	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
2	X	-1.0	-0.13	-0.13	-0.13	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
1	Y	-1.1	-0.13	-0.13	-0.13	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
2	Y	-1.0	-0.13	-0.13	-0.13	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
1	Z	-1.1	-0.13	-0.13	-0.13	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
2	Z	-1.0	-0.13	-0.13	-0.13	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
1	G-SENS IN DRIFT	-1.17	-0.19	-0.19	-0.19	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
2	G-SENS IN DRIFT	-1.0	-0.13	-0.13	-0.13	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
1	D.N.	-6.01	-0.01	-0.01	-0.01	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
2	D.N.	-6.0	-0.01	-0.01	-0.01	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
1	G-SENS ON DRIFT	-1.17	-0.22	-0.22	-0.22	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
2	G-SENS ON DRIFT	-1.0	-0.2	-0.2	-0.2	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
1	G-SENS-SQ DRIFT	-1.17	-0.22	-0.22	-0.22	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
2	G-SENS-SQ DRIFT	-1.0	-0.2	-0.2	-0.2	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
1	ACCEL BIAS	-1.06	-0.22	-0.22	-0.22	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
2	ACCEL BIAS	-1.0	-0.2	-0.2	-0.2	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
1	ACCEL SCALE FACT	-0.91	-0.01	-0.01	-0.01	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
2	ACCEL SCALE FACT	-0.9	-0.01	-0.01	-0.01	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
1	ACCEL TIA ALINE	-1.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
2	ACCEL TIA ALINE	-1.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
1	-TOWARD SA	-1.637	-1.0	-1.0	-0.26	-0.49	-0.49	-0.49	-0.49	-0.49	-0.49	-0.49	-0.49	-0.49	-0.49	-0.49	-0.49	-0.49	-0.49
2	-TOWARD SA	-1.0	-0.5	-0.5	-0.382	-0.32	-0.32	-0.32	-0.32	-0.32	-0.32	-0.32	-0.32	-0.32	-0.32	-0.32	-0.32	-0.32	-0.32
1	PERFORMANCE	6.22	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097
2	PERFORMANCE	6.22	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097	-0.0097
1	AERODYNAMIC	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000
2	AERODYNAMIC	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000

TABLE VIII-8
COVARIANCE MATRIX
AT NOMINAL INSERTION + 25 SEC

TABLE IX
Exchange Ratio at Nominal MECO

Parameter Varied	<u>ΔET Propellant</u>
	Δ Parameter
Web Action Time (constant ISP)	-819. 1b/%
SRB Vacuum ISP (constant \dot{W})	2480. 1b/%
SRB Propellant Loading	1590. 1b/%
SRB Inert Weight	-.10 1b/1b
Orbiter Thrust (constant ISP)	.09 1b/1b*
Orbiter ISP (constant \dot{W})	1111. 1b/sec **
Orbiter Inert Weight	-.95 1b/1b
External Tank Inert Weight	-.95 1b/1b
External Tank Propellant Loading	.06 1b/1b

* Trade factor based on total system thrust variation (LB/3 ENG).

**Trade factor based on total system ISP variation (SEC/3 ENG).

TABLE X
RSS Summary Data (Actual Perturbed State - Nominal State)

	ALTITUDE FT	DOWN RANGE FT	CROSS RANGE FT	SPEED FPS	FLIGHT PATH ANGLE-DEG	ALTITUDE RATE-FPS	CROSS RANGE RATE-FPS	TIME SEC	WEIGHT LB	SSC PROP LB	OMS PROP LB
SRB SEPARATION	2013.	9232.	4027.	62.3	.424	48.4	12.5	5.6	19238.	18959.	-
MECO	1854.	48536.	4443.	6.2	.020	9.0	21.5	4.9	4489.	4666.	-
NOMINAL MECO +25 SEC	2181.	116705.	4971.	6.5	.020	9.0	21.3	.0	1215.	-	0.
INSERTION	2665.	49844.	6330.	6.7	.019	8.7	20.4	6.0	1202.	-	22.
NOMINAL INSERTION +25 SEC	3102.	116923.	6633.	7.0	.019	8.5	20.1	.0	1202.	-	22.

NOTE: These dispersions are indicative of 30 evaluations of the simulated uncertainties.

TABLE XI
RSS Summary Data (Perturbed Navigated State - Actual Perturbed State)

	ALTITUDE FT	DOWN RANGE FT	CROSS RANGE FT	SPEED FPS	FLIGHT PATH ANGLE - DEG	ALTITUDE RATE-IPS	CROSS RANGE RATE-FPS	TIME SEC	WEIGHT LB	SSME PROP LB	OMS PROP LB
SRB SEPARATION	75.	142.	186.	2.0	.023	1.7	4.1	5.6	19238.	18959.	-
MECO	1856.	1825.	4447.	6.3	.021	9.6	22.7	4.9	4189.	4666.	-
NOMINAL MECO											
+2 SEC	2087.	2015.	5004.	6.5	.021	9.5	22.5	.0	1215.	-	0.
INSERTION	2690.	2560.	6459.	6.9	.021	9.5	22.1	5.0	1202.	-	22.
NOMINAL INSERTION											
+25 SEC	2916.	2784.	7005.	7.1	.021	9.4	21.9	.0	1202.	-	22.

NOTE: These dispersions are indicative of 30 evaluations of the simulated uncertainties.

TABLE XII
Principal Error Contributors to Covariance Matrix at MECO

State Vector Component*	Principal Error Sources
u	Platform misalignment (tilt), and accelerometer input axis misalignment toward spin axis (X).
v	Web action time, orbiter thrust and external tank propellant loading.
w	Platform misalignment (azimuth and roll) and accelerometer input axis misalignment toward output axis (Y).
ū	Web action time, orbiter thrust, platform misalignment (tilt) and accelerometer input axis misalignment toward spin axis (X).
ȳ	Platform misalignment (tilt), accelerometer bias (Z), accelerometer scale factor (Z) and accelerometer input axis misalignment toward output axis (Z).
ȫ	Platform misalignment (azimuth).

*Both the actual and navigated state vectors.