

Instituto Superior Técnico

MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

Sistemas Integrados Analógicos

Design de um Amplificador

João Bernardo Sequeira de Sá n.º 68254 Maria Margarida Dias dos Reis n.º 73099 Nuno Miguel Rodrigues Machado n.º 74236

Índice

1	Introdução	1
2	Funcionamento Teórico do Circuito	2
3	Dimensionamento dos Transístores	4
	3.1 Slew-Rate	4
	3.2 Ganho e Largura de Banda	10
	3.3 Margem de Fase	10
4	Conclusões	11

1 Introdução

Pretende-se projectar um amplificador folded cascode CMOS OTA de dois andares de acordo com as especificações da seguinte tabela.

Tabela 1: Características do amplificador a projectar	Tabela 1:	Características	do am	plificador	a pro	iectar.
---	-----------	-----------------	-------	------------	-------	---------

Especificação	Símbolo	Valor
Tensão de Alimentação	Vdd	3.3 V
Ganho para Sinais de Baixa Amplitude	Av	70 dB
Largura de Banda	Bw	60 kHz
Margem de Fase	PM	60°
Capacidade da Carga	CL	0.25 pF
Slew-Rate	SR	200 V/μs
Budget da Corrente	IDD	400 μΑ
Área de <i>Die</i>	/	0.02 mm ²

O circuito de ponto de partida para a realização do projecto é apresentado de seguida.

Figura 1: Circuito do amplificador a projectar.

2 Funcionamento Teórico do Circuito

Analisando o circuito da Figura 1 em pormenor identificam-se 5 blocos, sendo importante analisar a função de cada um, para que melhor se possa compreender o funcionamento e comportamento do circuito na sua totalidade.

introducado teorica do OTA

O Bloco 1 representa o transístor responsável pela polarização do circuito. O Bloco 2 representa um par diferencial PMOS. O Bloco 3 corresponde a um espelho de corrente *cascode* básico do tipo PMOS. O Bloco 4 actua como isolamento. O Bloco 5 funciona como fonte de corrente que "puxa" sempre I (corrente de M_{11}) para o *ground*.

Relativamente ao par diferencial, o circuito pode funcionar de acordo com três situações:

- $v_{in-} = v_{in+} \rightarrow \text{situação } 1$
- $v_{in-} > v_{in+} \rightarrow \text{situação } 2$
- $v_{in-} < v_{in+} \rightarrow \text{situação } 3$

Na situação 1, cada transístor do par diferencial, M_1 e M_2 , tem metade da corrente que passa em M_{11} e o circuito apresenta o seguinte comportamento.

Figura 2: Funcionamento do circuito na situação 1.

Considerando agora o extremo da situação 2, a tensão na gate de M_1 toma o valor máximo da fonte de tensão que polariza esse transístor e a tensão na gate de M_2 é nula. Assim, o circuito apresenta o seguinte comportamento.

Figura 3: Funcionamento do circuito no extremo da situação 2.

Considerando agora o extremo da situação 3, a tensão na gate de M_2 toma o valor máximo da fonte de tensão que polariza esse transístor e a tensão na gate de M_1 é nula. Assim, o circuito apresenta o seguinte comportamento.

Figura 4: Funcionamento do circuito no extremo da situação 3.

3 Dimensionamento dos Transístores

A primeira fase no projecto do amplificador passou por decidir as dimensões dos vários transístores. Sabe-se que a dimensão de um transístor é dada pelos parâmetros W (width - largura) e L (lenght - comprimento).

3.1 Slew-Rate

Para efectuar o primeiro dimensionamento dos transístores teve-se em consideração o critério da slew-rate, onde se pretende atingir um valor de 200 V/ μ s.

O valor de L ficou decidido à partida como sendo 1 μ m para todos os transístores do circuito, isto porque se tem como rule of thumb que, para se evitar o efeito de modulação do comprimento do canal, o valor de L deve ser maior ou igual a 1 μ m. O valor de W pode ser calculado recorrendo à equação que determina a corrente num transístor. Para um transístor do tipo P a corrente é dada por

$$I_D = \frac{1}{2}\mu_n C_{ox} \times \left(\frac{W}{L}\right) \times \left(V_{GS} - V_{TH}^2\right) = k_P \times \left(\frac{W}{L}\right) \times V_{OD}^2,\tag{3.1}$$

sendo que para um transístor do tipo N troca o valor do factor de ganho, em vez de k_P tem-se k_N . Da equação anterior pretende-se determinar o valor de W dos vários transístores, sendo então necessário saber o valor de L (já determinado anteriormente), o valor da corrente que passa nos transístores, I_D , o valor de k e o valor da tensão de overdrive, V_{OD} .

O valor da tensão de overdrive definiu-se como sendo de 0.2 V para todos os transístores. Este valor deriva de outra rule of thumb que indica que se deve escolher para V_{OD} um valor de 0.2V - menos do que isso e fica-se demasiado sensível a V_{TH} e mais do que isso e fica-se com pouca margem de saturação, que é uma medida do quão dentro da saturação se está, sendo calculada por $V_{DS} - V_{OD}$.

O valor de k pode ser obtido com recurso aos process parameters, sendo de referir que o valores que se retiram das datasheets representam apenas $\mu_n C_{ox}$, pelo que têm de ser multiplicados por 1/2 para que se obtenha o factor de ganho final, como se pode ver na próxima equação, para o caso de um transístor do tipo P:

$$k_P = \frac{1}{2}\mu_n C_{ox} = \frac{1}{2} \times KP_P.$$
 (3.2)

Os valores já conhecidos que ajudam a obter o valor de W através da equação (2.1) encontram-se esquematizados na seguinte tabela.

Tabela 2: Valores especificados para algumas das características que definem os transístores.

Especificação	Método de Cálculo	Símbolo	Valor
Comprimento	rule of thumb	L	1 μm
Tensão de Overdrive	rule of thumb	Vod	0.2 V
Factor de Ganho (tipo P) datasheet	process parameters	KPp	58 μA/V²
Factor de Ganho (tipo N) datasheet	process parameters	KPn	175 μA/V²
Factor de ganho (tipo P)	equação (2.2)	kР	29 μA/V²
Factor de ganho (tipo N)	equação (2.2)	kn	87.5 μA/V²

Para determinar os valores das correntes que passam nos vários transístores começou-se por determinar a corrente máxima à saída do circuito. Existe uma relação entre a slew-rate, SR, e a corrente de saída máxima, $I_{out_{max}}$ expressa por

$$SR = \frac{I_{out_{max}}}{C_L},\tag{3.3}$$

que nos permite concluir que quanto maior for a corrente de saída, mais depressa é carregado o condensador que constitui a carga.

Com os valores da Tabela 1 obtém-se:

$$SR = \frac{I_{out_{max}}}{C_L} \leftrightarrow I_{out_{max}} = 200 \times 0.25 \times 10^{-6} \text{ A} = 50 \ \mu\text{A}.$$
 (3.4)

Analisando as Figuras 3 a 4 percebe-se que a corrente $I_{out_{max}}$ corresponde a I/2, pelo que o valor máximo de I corresponde a 100 μ A. O dimensionamento dos transístores foi feito tendo em conta o ponto de funcionamento em repouso (PFR), situação 1, de acordo com

$$W_P = \frac{I_D \times L}{k_P \times V_{QD}^2} \to \text{transistor tipo PMOS};$$
 (3.5)

$$W_N = \frac{I_D \times L}{k_N \times V_{OD}^2} \to \text{transistor tipo NMOS}.$$
 (3.6)

Os valores obtidos para a *width* dos vários transístores apresenta-se na tabela seguinte. De notar que os valores foram arredondados ao inteiro mais próximo.

Tabela 3: Valores de W dos transístores que constituem o circuito, calculados em função do PFR.

Transístor	Tipo	Corrente	Observações	W
M1	PMOS	ID= Imax/2 = 50 μA	/	43 μm
M ₂	PMOS	ID= Imax/2 = 50 μA	/	43 μm
Мз	NMOS	ID= Imax/2 = 50 μA	/	14 μm
M4	NMOS	ID= Imax/2 = 50 μA	/	14 μm
M5	PMOS	ID= Imax/2 = 50 μA	constitui espelho de corrente com M6 com rácio 1:1	43 μm
M6	PMOS	ID= Imax/2 = 50 μA	constitui espelho de corrente com M5 com rácio 1:1	43 μm
M7	PMOS	ID= Imax/2 = 50 μA	constitui espelho de corrente com M8 com rácio 1:1	43 μm
M8	PMOS	ID= Imax/2 = 50 μA	constitui espelho de corrente com M7 com rácio 1:1	43 μm
M9	NMOS	IDmax = Imax = 100 μA	/	29 μm
M10	NMOS	IDmax = Imax = 100 μA	/	29 μm
M ₁₁	PMOS	IDmax = Imax = 100 μA	/	86 µm

De referir que os transístores M_5 e M_6 têm as mesmas dimensões, tal como pretendido, pois formam um espelho de corrente que tem como rácio 1:1. O mesmo se aplica aos transístores M_7 e M_8 .

Com o dimensionamento dos transístores feito procede-se a uma primeira simulação do circuito, com o intuito de verificar o seu funcionamento. Porém, antes de simular o circuito alterou-se a sua polarização, para que em vez de ser feita em tensão seja feita em corrente. Isto é feito porque uma

polarização em corrente permite ter mais controlo, sendo que quando é feita em tensão não se tem garantias dos valores pretendidos.

Assim, o circuito da Figura 1 foi alterado para o apresentado de seguida.

Figura 5: Primeiro circuito de simulação do amplificador.

Na figura anterior pode-se ver o valor de W utilizado nos vários transístores, sendo que para todos o valor de L é de 1 μ m.

Como se pode ver, o transístor M_{11} que é originalmente polarizado em tensão com V_{BIAS} , Bloco 1, foi substituído por um espelho de corrente básico que é polarizado em corrente com I_{BIAS} . A polarização feita com recurso a V_{BIAS_2} e V_{BIAS_3} foi tanbém alterada para passar a ser feita em corrente com I_{BIAS_2} , através de um espelho de corrente cascode low-voltage. O valor de I_{BIAS} e de I_{BIAS_2} é de $100~\mu\text{A}$.

De notar que os transístores M_{11_1} e M_{11_2} têm a mesma dimensão que aquela que foi determinada para M_{11} , uma vez que a corrente que os atravessa é também 100 μ A e são do tipo PMOS. Já os transístores M_{12} e M_{14} têm a mesma dimensão que M_9 e M_{10} , uma vez que a corrente que os atravessa é também 100 μ A e são do tipo NMOS. O transístor M_{13} , de acordo com o funcionamento teórico de um espelho de corrente *cascode low-voltage*, deve ter um W 3 vezes inferior ao de M_{12} , assim como deve funcionar sempre no tríodo, o que implica uma *width* de 9 μ m.

Na Figura 6 encontra-se o schematic criado no Cadence correspondente ao da Figura 5.

Figura 6: Schematic do circuito criado para a primeira simulação.

Com o *schematic* anterior projectou-se um símbolo e criou-se um novo *schematic* de *testbench*, como se pode ver na Figura 7.

Figura 7: Schematic do testbench que permite simular o circuito.

Recorrendo ao circuito da figura anterior efectuou-se uma análise transient durante 2 ms. Para verificar se o circuito funciona como pretendido otpou-se por verificar se todos os transístores do amplificador tem a corrente I_D pretendida, ou seja, de acordo com a Figura 1, e se estão na região de saturação.

Figura 8: Valores do PFR do schematic da Figura 6.

A região de funcionamento dos transístores pode ser vista na secção *region*: 0 implica que o transístor está ao corte, 1 que está no tríodo, 2 que está na zona de saturação e 3 na região de *subthreshold*.

Como se pode ver, todos os transístores do amplificador estão na região 2, tal como pretendido, assim como os que polarizam através de I_{BIAS} . Os transístores M_{12} e M_{14} do espelho de corrente cascode low-voltage estão também saturados e o transístor M_{13} está no tríodo, tal como se queria.

Porém, apesar de os transístores estarem a funcionar na zona correcta, o valor das suas correntes está ligeiramente afastado do pretendio. Os transístores M_3 , M_4 , M_5 , M_6 , M_7 e M_8 deveriam ter um valor de I_D de 50 μ A, sendo, no entanto, o valor registado pela simulação de 42.6 μ A. Para os transístores M_9 e M_{10} esperava-se um valor de I_D de 100 μ A, sendo, no entanto, o valor registado pela simulação de 91.57 μ A. As correntes do espelho de corrente básico estão de acordo com o esperado, sendo que os transístores M_1 e M_2 têm um valor de corrente de 48.97 μ A, um valor próximo do esperado de 50 μ A.

Até agora, para efectuar o dimensionamento dos transístores o critério que se teve em consideração foi a slew-rate. Assim, com recurso à calculadora do Cadence calculou-se o seu valor, sendo este de $170.7 \times 10^6 \text{ V/segundo} \leftrightarrow 170.7 \text{ V/}\mu\text{s}$. O valor pretendido é de $200 \text{ V/}\mu\text{s}$, verificando-se então alguma diferença entre os dois valores.

Relativamente aos valores de V_{GS} para os vários transístores, os valores teóricos esperados foram calculados com base nos process parameters da seguinte forma:

$$V_{TH_P} \approx 0.6V \rightarrow V_{GS} = V_{OD} + V_{TH_N} = 0.2 + 0.6 = 0.8V \rightarrow \text{transistor tipo PMOS};$$
 (3.7)

$$V_{TH_N} \approx 0.5V \rightarrow V_{GS} = V_{OD} + V_{TH_N} = 0.2 + 0.5 = 0.7V \rightarrow \text{transistor tipo NMOS}.$$
 (3.8)

Na Figura 6 pode-se verificar _

Face à ligeira discrepância nos valores obtidos para a corrente nos vários transístores e para a slew-rate, decidiu-se proceder a um ajuste nas dimensões dos transístores para se obter valores mais próximos dos esperados. Este ajuste foi feito ao nível dos transístores M_3 e M_4 pois, ao aumentar as suas dimensões faz-se variar as suas tensões V_{GS} , e como tal V_{BIAS_2} , o que resulta num aumento da tensão V_{DS} de M_9 , que por sua vez faz aumentar a corrente daquele ramo.

O ajuste feito nesses dois transístores passou por aumentar o seu rácio W/L para o dobro, ou seja, o valor de W passou de 14μ m para 28μ m. À primeira vista não parecer ser um ajuste fino, no entanto, está associado à existência de um efeito de segunda-ordem.

De facto, quando se é mais criterioso, a corrente de um transístor não é calculada de acordo com a equação (2.1), mas sim de acordo com

$$I_D = \frac{1}{2}\mu_n C_{ox} \times \left(\frac{W}{L}\right) \times \left(V_{GS} - V_{TH}^2\right) \times \left(1 + \lambda V_{DS}\right) = k_P \times \left(\frac{W}{L}\right) \times V_{OD}^2 \times \left(1 + \lambda V_{DS}\right). \tag{3.9}$$

Como se pode ver, sobre o valor da corrente existe um efeito de segunda-ordem com a introdução da parcela $(1 + \lambda V_{DS})$. Assim se explica que, quando o valor de W de M_3 e M_4 passa para o dobro,

comentario sobre os valores de vgs a corrente nos transístores aumenta em aproximadamente $7\mu A$, conseguindo-se obter o valor desejado de $50\mu A$.

Os transístores M_9 e M_{10} também viram as suas dimensões alteradas e, após um ajuste fino, o seu valor de W passou de $29\mu m$ para $30\mu m$. Fizeram-se mais ajustes finos, sendo que o transístor M_{12} passou para um W de $28\mu m$ e o transístor M_{13} para um W de $7\mu m$.

Na Figura 9 apresenta o circuito com o ajuste nas dimensões dos transístores.

Figura 9: Schematic do circuito com os valores de W ajustados.

Figura 10: Valores do PFR do schematic da Figura 9.

Como se pode ver na figura anterior, o valor da corrente nos transístores M_3 a M_8 passou para $50.39\mu\text{A}$, um valor muito próximo do pretendido de $50\mu\text{A}$. Relativamente aos transístores M_9 e M_{10} , passaram a ter uma corrente de $99.36\mu\text{A}$, um valor também bastante próximo do pretendido de $100\mu\text{A}$.

Face a estes ajustes mediu-se novamente o valor da slew-rate para verificar se o critério já é cumprido. O valor medido foi de $199.9 \times 10^6 \text{ V/segundo} \leftrightarrow 199.9 \text{ V/}\mu\text{s}$, um valor que se considera óptimo.

Assim, o estado actual do circuito é apresentado de seguida. Na tabela da direita pode-se ver as especificações pretendidas e as que se verificam até ao momento, sendo que a verde se assinalam

aquelas que se considera cumpridas e a vermelho aquelas que se pretende melhorar.

Tabela 4: Especificações.

	Valor		
Especificação	Teórico	Experimental	
Ganho para Sinais de Baixa Amplitude	70 dB	70 dB	
Largura de Banda	60 kHz	60 kHz	
Margem de Fase	60°	60°	
Slew-Rate	200 V/μs	200 V/μs	
Budget da Corrente	400 μΑ	298.72 μΑ	
Área de <i>Die</i>	0.02 mm ²	/	

Figura 11: Circuito actual.

3.2 Ganho e Largura de Banda

3.3 Margem de Fase

4 Conclusões