PAPER ID 137

AUTOMATED ICD-9-CM MEDICAL CODING OF DIABETIC PATIENT'S CLINICAL 1)

{kumar64, nmistry2}@illinois.edu

CS 598: Deep Learning for Health, Spring 2022 University of Illinois, Urbana-Champaign

Problem Statement

- All patient data are stored as Electronic Health Record (EHR), which is important for better patient care diagnosis and treatment and contains health data across time
- EHR is used by other health industry players such as insurance for cost reimbursement
- Codes are used in EHR to document various diagnosis and procedures used for patient care and treatment. ICD-9-CM and ICD-10-CM are industry standard coding.
- There are cases where ICD codes needs to be entered for missing codes or corrections needs to be done, based on notes in EHR records
- Manual entry of ICD codes is a cost intensive process and needs to be done by experts. In US, it is estimated to cost approx. 25 Billion USD per year.

Proposal

- The author of the paper «Automated ICD-9-CM Medical Coding of Diabetic Patient's Clinical» proposes to deploy deep learning models to identify ICD-9-CM codes from the EHR notes using multi-label classification
- The solution complements the current process and help health industry achieve higher quality data in EHR together with cost reduction

Training Dataset

- MIMIC III
 - DIAGNOSIS_ICD and NOTEEVENTS tables
- Preprocessing
 - Data for patients with diabetes
 - ICD-9-CM codes regular and rolled up version
 - Tokenization of notes
 - Punctuation characters removal
 - Digits replacement with 'd'
 - Lowercase
 - Tokenization at whitespace
 - Removal of all notes with less than 10 tokens and more than 2199 tokens
 - Replacement of infrequent word with frequent word with closest Levenstein distance

Num. of used records	399623
Num. of regular labels	4103
Num. of rolled up labels	781
Num. of unique tokens	53229
Avg. num. of tokens per report	309.05638814582744

Models

- Bag of Tricks linear model
- Convolutional Neural Network (CNN)
 - Baseline
 - Three parallel convolutional layer
- Implementation is done using keras library

Claims and results

- CNN Baseline has higher Precision, Recall and F1 as compared to BoT Baseline
- 2. CNN 3-Conv1D has higher Precision, Recall and F1 than CNN Baseline
- 3. Precision, Recall and F1 for Rolled up ICD-9-CM code assignment is always higher than Regular ICD-9-CM code assignment

Result 1

	Reprod.	Original
BoT BaseLine Regular	63.79,	66.25,
(Precision, Recall, F1)	5.04,	8.61,
	9.34	15.24
CNN Baseline Regular	72.03,	73.97,
(Precision, Recall, F1)	15.82,	25.88,
	25.94	38.13

Result 2

	Reprod.	Original
CNN Baseline Regular	72.03,	73.97,
(Precision, Recall, F1)	15.82,	25.88,
	25.94	38.13
CNN 3-Conv1D Regu-	75.82,	76.07,
lar (Precision, Recall,	30.71,	31.46,
F1)	43.71	44.51

Result 3

	Reprod.	Original
BoT Baseline Regular	63.79,	66.25,
(Precision, Recall, F1)	5.04,	8.61,
	9.34	15.24
BoT Baseline Rolled	85.67,	75.91,
(Precision, Recall, F1)	10.32,	18.89,
	18.43	30.25
CNN Baseline Regular	72.03,	73.97,
(Precision, Recall, F1)	15.82,	25.88,
	25.94	38.13
CNN Baseline Rolled	77.51,	77.73,
(Precision, Recall, F1)	28.68,	35.13,
	41.87	48.38
CNN 3-Conv1D Regu-	75.82,	76.07,
lar (Precision, Recall,	30.71,	31.46,
F1)	43.71	44.51
CNN 3-Conv1D	79.56,	79.82,
Rolled (Precision,	38.33,	38.26,
Recall, F1)	51.73	51.73

Ablation

 Trainable initial weight in the first layer of CNN models – better result as compared to fix initial weight

		Fixed	Trainable
		Initial	Weight
		Weight.	
CNN Base	eline Regular	72.03,	74.98,
(Precision	, Recall, F1)	15.82,	21.91,
		25.94	33.91
CNN Bas	eline Rolled	77.51,	79.14,
(Precision	, Recall, F1)	28.68,	44.66,
		41.87	57.1
CNN 3-Co	onv1D Regu-	75.82,	75.95,
lar (Precis	sion, Recall,	30.71,	32.44,
F1)		43.71	45.46
CNN	3-Conv1D	79.56,	81.13,
Rolled	(Precision,	38.33,	43.56,
Recall, F1)	51.73	56.68

Challenges

- Pre-processing of MIMIC III data: Time consumed during pre-processing specially in replacing infrequent tokens with frequent ones using Levenstein distance and Word2Vec model training
- Training of models: Computation resource restriction on personal notepad and on Google Colab Pro led us to adapt improvised training approach training with 20% of training data at a time and then saving the intermediate model for next training

Thank you

Although we faced several challenges during the project, it was great learning experience, which required us to think out-of-box to resolve computational resource restriction.

Thank you for the opportunity to work on a research paper experiment and establish the paper baseline.

