

Brainstorm & idea prioritization

Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

- 10 minutes to prepare
- **1 hour** to collaborate
- **2-8 people** recommended

Share template feedback

Before you collaborate

A little bit of preparation goes a long way with this session. Here's what you need to do to get going.

10 minutes

A Team gathering

Define who should participate in the session and send an invite. Share relevant information or pre-work ahead.

Set the goal Think about the problem you'll be focusing on solving in

the brainstorming session.

Use the Facilitation Superpowers to run a happy and productive session.

Open article

Learn how to use the facilitation tools

Define your problem statement

What problem are you trying to solve? Frame your problem as a How Might We statement. This will be the focus of your brainstorm.

• 5 minutes

PROBLEM

Real-time river water quality monitoring and control system

Key rules of brainstorming

To run an smooth and productive session

Brainstorm

Write down any ideas that come to mind that address your problem statement.

10 minutes

GOWTHAM R

Evaluating the effect of substantial nutrient loads on overall water quality	The timeline of the measurements must be recorded.	Each data needs to be in different measures to analyse the quality
The data mining techniques will be used for applying the classification method for water quality application	The data distribution in the testing data should not affect the training data set.	Turbidity sensor can be used.It is a measure of cloudness of water.
Chlorine sensor is designed to measure the amount of chlorine in a solution.		

GOWTHAM S

GOWTHAM S				
Some of the variables can be eliminated due to meaningless analysis	Prediction can also be taken from the historical dataset	Flow sensor: Flow sensor is used to measure the fow of water.		
Massive dataset and strong correlation between parameters will make the best prediction	The variable importance measure must be weighted sums of the absolute regression coefficients.			
Cross-validation can be used to evaluate method for reducing scales of overfitting and increasing accuracy of the model.	Water temperature indicates whether the water is cold or hot. The range of temperature sensor is 5S to +125°C			

ARUNVIKRAM AR

Use of minimal number of parameters with cheap sensors to predict water quality.	The size of training datasets should not be less than the number of training parameters required in the model.	Accurate model can be selected based on the outcome in the model evaluation
General filteration of waste water samples.	Keep the data design	Machinized bulk water purifier with less time consumption.
Water conductivity sensors are used in water-quality applications to measure how well a solution conducts an electrical current		

ARUNPRASHATH K

Stratified sampling strategy is used to mitigate the uneven distribution of training and testing dataset	Using supervised learning algorithm, water quality class can be predicted.	Use of industry with less biproduction of pollutants.
The proposed prediction system will iteratively test the model with training and testing datasets	Network structure selection method is proposed to identify the correlated input parameters	Feature selection helps to simplify the procedure and reduce computational cost of analysis
Oxidation-Reduction Potential (ORP) or redox sensors measure the ability of a solution to act as an oxidizing or reducing agent		

Person 5

Person 6

Person 8

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. In the last 10 minutes, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

1 20 minutes

TIP

Add customizable tags to sticky notes to make it easier to find,

browse, organize, and categorize important ideas as themes within your mural.

Prioritize

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

• 20 minutes

Feasibility

Regardless of their importance, which tasks are more feasible than others? (Cost, time, effort, complexity, etc.)

After you collaborate

You can export the mural as an image or pdf to share with members of your company who might find it helpful.

Quick add-ons

Share the mural **Share a view link** to the mural with stakeholders to keep them in the loop about the outcomes of the session.

Export the mural

Export a copy of the mural as a PNG or PDF to attach to emails, include in slides, or save in your drive.

Keep moving forward

Strategy blueprint

Define the components of a new idea or strategy.

Open the template \rightarrow

Customer experience journey map

Understand customer needs, motivations, and obstacles for an experience.

Open the template >

Strengths, weaknesses, opportunities & threats

Identify strengths, weaknesses, opportunities, and threats (SWOT) to develop a plan.

Open the template >

Share template feedback