# **Decision Tree**

## Decision Tree

#### Decision Tree



| Chest Pain | Good Blood<br>Circulation | Blocked Arteries | Heart Disease |
|------------|---------------------------|------------------|---------------|
| No         | No                        | No               | No            |
| Yes        | Yes                       | Yes              | Yes           |
| Yes        | Yes                       | No               | No            |
| Yes        | No                        | Yes              | Yes           |

• Based on the table on the left, we will decide whether a patient has heart disease or not.

## **Steps**

- First, we will create the decision tree
- Here, for the first table, we have 3 features. F1, F2, F3



- We consider the feature "chest pain" and we have 1 misclassification.
- We need to select the feature where we have the least number of misclassifications.
- We have equations to find this.

## **Impurity**

• We calculate the impurity for each feature by creating a tree like the above and selecting the feature that has the **lowest impurity**.

## **Different Impurities**

• Gini

$$1-\sum\,P(i)^2$$

Entropy

$$-\sum \, P_i \; log_2(p_i)$$

For example, Impurities for the features are as follows:

| F1 | F2 | F3 |
|----|----|----|
| .2 | .8 | .4 |

As F1 has the minimum impurity, we will start the tree based on F1, then we
calculate impurities again, find the minimum, expand the tree for the later
features and so on.

## **Calculating Impurity using Gini**



$$Gini = 1 - \sum P(i)2$$

## **Left Node**

## **Right Node**

$$egin{aligned} P_{Yes} &= rac{2}{3} & P_{No} &= rac{1}{3} & P_{Yes} &= rac{0}{1} & P_{No} &= rac{1}{1} \ Gini &= 1 - (0.66)^2 - (0.33)^2 & Gini &= 1 - 0^2 - 1^2 \ &= 0.455 & = 0 \end{aligned}$$

· Now we will find the weighted sum of the left and right gini

$$egin{aligned} Gini &= W_L * Gini(left) + W_R * Gini(right) \ &= rac{3}{4} * 0.455 + rac{1}{4} * 0 \ &= 0.34125 \end{aligned}$$

# **Calculating Gini for feature "Blocked Arteries"**



## **Left Node**

$$egin{aligned} P_{Yes} &= rac{2}{2} & P_{No} &= rac{0}{2} \ Gini &= 1 - (1)^2 - (0)^2 \ &= 0 \end{aligned}$$

# **Right Node**

$$egin{aligned} P_{Yes} &= rac{0}{2} & P_{No} &= rac{2}{2} \ Gini &= 1 - 0^2 - 1^2 \ &= 0 \end{aligned}$$

$$egin{aligned} Gini &= W_L * Gini(left) + W_R * Gini(right) \ &= rac{2}{4} * 0 + rac{2}{4} * 0 \ &= 0 \end{aligned}$$

- The same way we will do for the Good Blood Circulation feature.
- As the the Blocked Arteries feature has the minimum Gini, we will split starting it.



• Now, for further split, we will use a concept called information gain.

• We will check, based on blocked arteries values, what are the values of chest pain (we are taking chest pain as the next level of the tree).



- Now we will traverse for a decision.
- For test data, we will use this tree to reach to the leaf nodes, where the **prediction stays.**
- In this data, the Gini values are nice, i.e. ideal situation. Not every time this can be the case. Then there might be misclassifications.

#### **Information Gain**

$$IG = Gini(Parent) - Gini(Child)$$

If IG is very close to 0, we don't have to split. If it's much greater than 0. then we split.

 $Decision\ Tree\ for\ numerical\ features$ 

| Weight | <b>Heart Disease</b> |
|--------|----------------------|
| 225    | Yes                  |
| 180    | Yes                  |
| 155    | No                   |
| 220    | Yes                  |
| 190    | No                   |

#### Sort the values

| Weight | Heart Disease |
|--------|---------------|
| 155    | No            |
| 180    | Yes           |
| 190    | No            |
| 220    | Yes           |
| 225    | Yes           |

- Then find the average of each two corresponding rows.
- ⇒ 167.5
- ⇒ 185
- ⇒ 205
- ⇒ 222.5
- Now, based on these avg values, we will build the decision tree.



• Then the same steps as previously discussed.