67	 Totale Häufigkeit n

A -	_	-		
31	67		-	Ereignis-Häufigkeit nA
	- 12	\$6.		

8-	А		(-				
24_	31	67		<u>=</u>			
3 -			1-	=======================================		Relative Häufigkeit,	- 4
A			0,46	1	-	Relative Häufigkeit, Wahrscheinlichkeit	$pA = \frac{nA}{n}$

	А			=======================================		
В	17	-	0	-	-	Ereignis-Häufigkeit $n(A \cap B)$
	31	67	-	-0		
	į.	- 50	6	=8		
pA	<u>v</u>		0,46	1		

	А			8
В	17		*	
	31	67	2000 m	-0
			pA^B	
			0,25	
οA			0,46	1

Multiplikative Wahrscheinlichkeit "
$$p(A \cap B) = \frac{n(A \cap B)}{n}$$

	А		8070	(A)	
В	17		<i>pB A</i> 0,55	-	-
2	31	— 67	1	<u>=</u> §.	
0			<i>pA^B</i> 0,25	=8	
56			0,23	_	
ο.A			0,46	1	

Bedingte Wahrs cheinlichkeit "
$$p(B \mid A) = \frac{n(A \cap B)}{nA}$$

	AI	A2		0.7071271		
				pB A	-	
BI	17			0,55	-	
B2 Σ	14	- 53		0,45		
Σ	31	36	67	1		
				pA^B		
	ķ.	- 8		0,25		
	g	- 8		0,21		
рA				0,46	0,54	1

Zelle nvervo llständigung

	AI	A2			A2	
-				pB A		
BI	17			0,55	0.33	-
B2	14	- 53		0,45	Service	
Σ	31	36	67	1	1	
				$pA^{A}B$		
	ă.	- 3		0,25		
		-		0,21		
pΑ				0,46	0,54	1

Beispiel

subjektive Wahrscheinlichkeit

	Al	A2	pB
479	pB A		-
	0,55	0,33	
! 2	0,45	-	
	1	1	
	pA^B		
J4	0,25	-	0.43
W	0,21		
1	0,46	0,54	1

Berechnung über das Wahrscheinlichkeistfeld

Totale Wahrscheinlichkeit $pB = \sum_{i=1}^{n} {}^{o}p(B \mid A_{i}) \cdot pA_{i}$

AIA2pB|A0,55 12 0,33 BI17 B2 Σ 0,45 36 67 31 *pA^B* 0,25 0,21 0,46 0,54 pA

Berechnung über das Kontingenzfeld

Frequenz $n(A, \cap B) = nA \cdot p(B \mid A)$

			Ai	A2	pB	
	676		pB A		E4997 PE	
BI	00	-00	0,55	0.33		
B2	Ng.	- 53	0,45	A		
			1	1		
	pA B		$pA^{A}B$			
	0.59	1	0,25	-	0.43	~
	94		0,21		i i	
ρA			0,46	0,54	1	

Berechnung über das Wahrscheinlichkeistfeld

Bayes Wahrscheinlichkeit "
$$p(A_i | B) = \frac{p(B | A_i) \cdot pA_i}{\sum\limits_{i=1}^{n} p(B | A_i) \cdot pA_i}$$

AIA2*pB|A* 0,55 12 29 0.33 BIB2 Σ 0,45 36 67 31 pA|BpA^B 0.59 0,25 0,21 0,46 0,54 pA

Berechnung über das Kontingenzfeld

Relative Häufigkeit * $p(A \mid B) = \frac{n(A \cap B)}{nB}$

			AI	A2	pB
	679	200	pB A		54937
BI	000	-40	0,55	0.33	
B2	Na.	33	0,45	ACTION S	
			1	1	
	pA B		$pA^{\prime}B$		
	0.59	1	0,25	0.18	0.43
	94 <u></u>		0,21		ä
pΑ			0.46	0,54	1

Berechnung über das Wahrscheinlichkeistfeld

Multiplikative Wahrscheinlichkeit " $p(A \cap B) = pA$ " $p(B \mid A)$

				pB A	
31	17	12	29	0,55	0.33
32	14	24	38	0,45	
Σ	31	36	67	1	1
	pA B	544		pA'B	
	0.59		1	0,25	
				0,21	
\mathcal{A}				0,46	0,54

				Ai	A2	pB
	679			pB A		FULL TO
BI	00.	- 50		0,55	0,33	
B2	tik.	- 33		0,45	0,67	
				1	1	
	pA B			pA^AB		
	0,59	0,41	1	0,25	0,18	0,43
	0,37	0,63	1	0,21	0,36	0,57
pA				0,46	0,54	1

pB				A2	AI	
	50	pB A		30	7.G	
	0.33	0,55	29	12	17	BI
	0,67	0,45	38	24	14	B2
	1	1	67	36	31	\mathcal{L}
		pA^B			pA B	
0,43	0,18	0,25	1	0,41	0.59	
0,57	0,36	0,21	1	0,63	0,37	
1	0,54	0,46			×	pA

Berechnungsvervollständigung

	AI	A2		AI	A2	pB
	679	24.6		pB A		54056
BI	17	12	29	0,55	0,33	
B2	14	24	38	0,45	0,67	
\mathcal{L}	31	36	67	1	1	
	pA B			$pA^{A}B$		
	0,59	0,41	1	0,25	0,18	0,43
	0,37	0,63	1	0,21	0,36	0,57
pA				0,46	0,54	1

pAvB 0,64 ←

Additive Wahrscheinlichkeit

via Konting enzfeld
$${}^{\bullet}p\left(A \cup B\right) = \frac{nA + nB - n\left(A \cap B\right)}{n} *$$
via Wahrscheinlichkeitsfeld
$${}^{\bullet}p\left(A \cup B\right) = pA + pB - {}^{\bullet}p\left(A \cap B\right)$$
*= (14+17)+(17+12)-17 /67

	AI	A2		AI	A2	pB
	679	200		pB A		91,000 B
BI	17	12	29	0,55	0,33	
B2	14	24	38	0,45	0,67	
\mathcal{L}	31	36	67	1	1	
	pA B			pA^B		
	0,59	0,41	1	0,25	0,18	0,43
	0,37	0,63	1	0,21	0,36	0,57
pA				0,46	0,54	1

pAvB	
0,64	0,79
0,82	0,75

Berechnungsvervollständigung

	AI	A2		AI	A2	pB
	679	200		pB A		54997
BI	17	12	29	0,55	0,33	
B2	14	24	38	0,45	0,67	
\mathcal{L}	31	36	67	1	1	
	pA B			pA^AB		
	0,59	0,41	1	0,25	0,18	0,43
	0,37	0,63	1	0,21	0,36	0,57
pA				0,46	0,54	1

p(pA1^B 1)v(pA1^B2)v(pA2^B 1)

0,64

Additive Wahrs cheinlichkeit

via Kontingenzfeld

$${}_{a}^{*}p\left(\bigcup_{i=1}^{n}A_{i}\right) = \frac{\sum nA}{n}$$

via Wahrscheinlichkeitsfeld

$$\int_{a}^{\infty} p\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} pA_{i}$$

* = 14+17+12 / 67

	AI	A2		AI	A2	pB
	674	200		pB A		A-2000 - 0
BI	17	12	29	0,55	0,33	
B2	14	24	38	0,45	0,67	
\mathcal{L}	31	36	67	1	1	
	pA B			pA^B		
	0,59	0,41	1	0,25	0,18	0,43
	0,37	0,63	1	0,21	0,36	0,57
pA				0,46	0,54	1

*pAvB*0,64 0,79 0,82 0,75

p(pAI^B 1)v(pAI^B2)v(pA2^B 1)	0,64
p(pAI^B 1)v(pA2^B2)v(pA2^B 1)	0,79
p(pA2^B2)v(pA1^B2)v(pA2^B1)	0,75
p(pA1^B 1)v(pA2^B1)v(pA2^B 2)	0,82
p(pA1^B 1)v(pA1^B2)	0,46
p(pA1^B 1)v(pA2^B1)	0,43
p(pA1^B 2)v(pA2^B2)	0,57
p(pA2^B 1)v(pA2^B2)	0,54
p(pA1^B 1)v(pA2^B2)	0,61
p(pAI^B 2)v(pA2^BI)	0,39

Berechnungsvervollständigung