

8.1. Προσδοκώμενα αποτελέσματα

Óả đốôu ôĩ eảoÜeátĩ èá ấi ùnhóảtô ôtô óçì ái ôtêuôảnãò ải ôĩ eÝo ởĩ ở èá ÷nçótì ĩ-ởĩ táhò óả ueá ôá ởnĩ ảnÜì ì áôá óĩ ỡ. T t ải ôĩ eÝo đốô åêönÜæĩ ối ôtô âáóteÝo äĩ ì Ýo ốĩ ở ãĩ ì çì Ýiĩ ở ởnĩ ảnáì ì áôtóì ĩ ý: ôç ãĩ ì Þ ôçò ảðteĩ ãÞò êát ôç ãĩ ì Þ ôçò ảðái Üeçøçò Þ ái áêyêeùóçò uðùò óõ÷í Ü èá ôçí áeĩ yóảtô í á eÝãåôát. Ç åðteĩ ãÞ õeĩ ởĩ táhôát ì ả ôçí ải ôĩ eÞ AN êát ôtô ätÜöï nãò ì ĩ nöÝò ôçò eáèþò êát ì ả ôçí ải ôĩ eÞ EΠΙΛΕΞΕ, ải þ ç åðái Üeçøç ì ả ôtò ải ôĩ eÝò , ΟΣΟ_ΕΠΑΝΑΛΑΒΕ êát MEXPIX OTOY êáèþò êát ì ả ôçí ải ôĩ eÞ ΓΙΑ. Ç óùóôÞ ãi þóç ôçò ÷ñÞóçò áõôþí ôùí ải ôĩ eþí êát ç ãi þóç ôùí ätáoï -ñþí ởĩ ở ðánī ōótÜæï ối, óĩ ổ åðtônÝðĩ õí í á åðteÝãatô ôçí eáôáeeçeuôảnç ātá eÜèả óõãêåêntì Ýiĩ ðñuānáì ì á.

 $\ddot{\text{O}} = \ddot{\text{O}} \ddot{\text{O}}$

Ϊ é eõì Ýí ảò áóê Þó ảẻò ôï ỗ ê ả Ö áeá lì ỗ á ão âi ý, uð ùò ê á ê ôï ỗ ð ñi çãi ýì ả í i ỗ, ð á ñi ỗ ó é Üæï í ô á é ó ôï ð å ñ é â Ü eëi í ôçò é a å á ô Þò á e þó á ð ñi ã ñ á ì á ô é ó lì ý Ã Ε Ù Ó Á ê á è ì å n é ê Ýò á ð ü á δ ô Ýò ð á ñi ỗ ó é Üæï í ô á é o ô á ð ñ á ã ì á ô é ó ô é Ü ð å ñ é â Ü eëi í ô á Basic ê á e Pascal.

8.2. Επιπλέον παραδείγματα

Παράδειγμα 1

Ãtá ôï í ðanti ntóì u ôçò nýðaí óçò óa ðantðôþóató ði ō óçì atþíaôat óçì aí ôtêþ aýîçóç ôùí ôtì þí ôùí nýðùí ÷nçótì i ði ti ýí ôat ôa untá aeðÜeôùí ì Ýônùí.

Ôá uniá á ố ο Ü ở i ố tó \div yĩ ố í ấtá ô c í đản c \div P ô c ò Áè P í á ò ấtá â yĩ á đu ô ĩ ố ò để Y i í ó \div L å ì Öá i từu l å i T δ ò nyð i δ ο O_3 ê át Í T $_2$ ð á n ĩ o ố từu i l ô át ó ô ĩ í ð á ná ê Ü ο b l í á ê á.

Ρύπος	Στάδιο Προειδοποίησης	Στάδιο λήψης μέτρων Α! βαθμίδας	Στάδιο λήψης μέτρων Β! βαθμίδας
NO₂ (μg/m3)	400	500	700
O₃ (μg/m3)	250	300	500

Í á aná cả đồn đồn là ôi i ởi lì a éa â Ü bà é ôi ôi lì $_2$ êa é ôi ố lì $_3$ êa é í á ôō ð þí a é ôi á í ô kôôi é i lì þí ôi á óyì cù í à là ôi ð á ná ê Ü ôù ð kí á ê á.

Κάτω από το στάδιο προειδοποίησης	Στάδιο Προειδοποίησης	Στάδιο λήψης μέτρων Α! βαθμίδας	Στάδιο λήψης μέτρων Β! βαθμίδας
ΡΥΠΟΙ ΜΕΣΑ ΣΤΑ ΟΡΙΑ	ΠΡΟΣΟΧΗ ΥΨΗΛΟΙ ΡΥΠΟΙ	ΠΟΛΥ ΥΨΗΛΟΙ ΡΥΠΟΙ ΕΚΤΑΚΤΑ ΜΕΤΡΑ	ΠΑΡΑ ΠΟΛΥ ΥΨΗΛΟΙ ΡΥΠΟΙ ΑΠΑΓΟΡΕΥΣΗ ΚΥΚΛΟΦΟΡΙΑΣ

ΠΡΟΓΡΑΜΜΑ Ñýỗϊ é ΜΕΤΑΒΛΗΤΕΣ

AKEPAIE Σ : $\tilde{1}\tilde{1}^2$, $\tilde{1}^3$

APXH

```
ΑΛΛΙΩΣ
ΓΡΑΨΕ ' Ñýðï é ì Ýóá óôá üñéá'
ΤΕΛΟΣ_ΑΝ
ΤΕΛΟΣ_ΠΡΟΓΡΑΜΜΑΤΟΣ Ñýðï é
```


Ç åðer āÞ ôr ō åðeðýar ō où í nýðù í ì ðr nål í á ālí åe ì å ðr eer ýo Üeer ōo ônuðr ōo. Ì ðr nr ýí í á ÷nçóer r ðr eçèr yí åi öùeåōì Ýí á Ál Þayr alaor nåoleýo åí or eyo Ál - ÁË-ËEÙÓ_Ál , Ýí á Ál ālá or üær í ê ale Ýí á alayôlan āla or all î ålaer Þaeuì ç ê ale ayr åí or eyo ÅÐÉBÂÎ Å.

 $\ddot{}$ êáeyôản $\ddot{}$ ο ônuð $\ddot{}$ ο eyóçò $\ddot{}$ anôÜôáe áðu $\ddot{}$ ο ðnuâeç $\ddot{}$ a êáe $\ddot{}$ ο áæyô $\ddot{}$ y $\ddot{}$ a í á áð $\ddot{}$ ο $\ddot{}$ ο åæyóc $\ddot{}$ ο äuèçêa $\ddot{}$ a láe $\ddot{}$ ο $\ddot{}$ \ddot

Περιβάλλον προγραμματισμού PASCAL

```
program rypoi;
var
   no2, o3: real;
begi n
   write ('ÄÙÓÅ ÔÇÍ ÔÉÌÇ ÔÏÕ ÄÉÏÎÅÉÄÉÏŐ:'); readIn (no2);
   write('ÄÙÓÅ ÔÇÍ ÔÉÌÇ ÔÏÕ ÏÆÏÍÔÏÓ: '); readIn (o3);
   if (no2 > 700) or (o3 > 500) then
write('ĐÁÑÁ ĐÏ EÕ ÕØÇEÏ É ÑÕĐÏ É ÁĐÁÃÏ ÑÅÕÓÇ ÊÕÊEÏ ÖÏ ÑÉÁÓ')
   else if (no2 > 500) or (o3 > 300) then
write ('ĐÏ EÕ ÕØÇEÏ É ÑÕĐÏ É ÅÊÔÁÊÔÁ Ì ÅÔÑÁ')
   else if (no2 > 400) or (o3 > 250) then
write ('ĐNÏÓÏ×Ç ÕØÇËÏÉ ÑÕĐÏÉ')
   el se
write (' Ñýðïé ì Ýóá óôá üñéá')
   endi f
end.
```

Περιβάλλον προγραμματισμού BASIC

```
' rypoi

I NPUT "NO2=", NO2

I NPUT "O3=", O3

IF NO2 > 700 OR O3 > 500 THEN

PRINT "'ĐÁÑÁ ĐỮ EŌ ΘΦÇΕΤΕ΄ ÑΘĐΤΕ΄ ÁĐÁÃΤΝΑΘΟς ΕΘΕΕΤΟΤΝΕΑΟ"

ELSEIF NO2 > 500 OR O3 > 300 THEN

PRINT "'ĐΤΕΘ ΘΦÇΕΤΕ΄ ÑΘĐΤΕ΄ ΑΕΘΑΕΘΑ΄ Ì ΑΘΝΑ2"

ELSEIF NO2 > 400 OR O3 > 250 THEN

PRINT "'ĐÑΤΘΤ×ς ΘΦÇΕΤΕ΄ ÑΘĐΤΕ"

ELSE

PRINT "'ÑýΘΤΕ΄ Ì ÝΘΑ΄ ΘΘΑ΄ ÜÑΕΔΤ΄ "

END IF
```

Παράδειγμα 2

Ï ëï ãántáóì üò ôï ố í ånï ý ålí át ôntì çí táli ò êát ốðï ëï ālæåôát ì å âÜóç ôçí êáôáí Üëùóç í ånï ý. Ç áî lá ôï ố í ånï ý ốðï ëï ālæåôát áðü ôï í ðánáêÜôù ðlí áêá

Κατανάλωση/μήνα σε κυβικά μέτρα	Τιμή σε δρχ
0-5	117
5-20	178
20-27	514
27-35	720
>35	900

Óộc í áĩ lá ô i ỗ í ản i ý ðn i ơ ố lè ảo á é ô i \ddot{O} Đất (Ý có à 500 an \dot{O}), c á ð i \dot{O} \dot{O} ð i ð i ð í ản i ý, Ü e a à ð là á đưa ný í o ả là \dot{O} ð ê a é \dot{O} \dot{O} ð \dot{O} \dot

Í á anáoák ðnuanái i á ði ö aláa Üæål ôi i í í i á aðað þíði i ôi ö eaðaí á euð þ, ôi í ánée i u ôi ō i åðnçð þí åni ý ôçí eaðaí Üeuð (áí Ü ônkì çí i) ealí á ðði ei akæål ealí á ððð ðþí ål ôi ö ö ö að anéað i ý.

Ç ätá äté á ó fá á é á í å ô á í á é á í å ô á í á é ó í å $\dot{\phi}$ ò a fá ätÜÖÏ ñ í õ ò e á ô á í á ë ù ô Ý ò e á tó å ñ ì á ô c í å fó i ä i ô i ố 0 ù ò á n tè ì ï ý ì å ô n c ô þ.

```
ПРОГРАММА ËÏ ÃÁÑÉÁÓÌ Ï Ó_Í ÅÑÏ Õ
ΣΤΑΘΕΡΕΣ
   ÖÐÁ=0. 18
   ÔÉÌ Ç1=117
   ÔÉÌ Ç2=178
   ÔÉÌ Ç3=514
   ÔÉÌ Ç4=720
   ÔÉÌ Ç5=900
ΜΕΤΑΒΛΗΤΕΣ
   AKEPAIEΣ: Êùäéêüò. ĐÜãéï
   ΠΡΑΓΜΑΤΙΚΕΣ: Êáôáí Üëùóç, Ôéì Þ, Áðï ÷Ýôåõóç, ¢ëëá, Áî βá_ÖĐÁ, Áî βá,
   ÔåëéêÞ_Ôéì Þ
   XAPAKTHPEΣ: ¼í ïìá, Åðþí õì ï
APXH
   ΤΡΑΨΕ 'Äbóå Áñéèìü ôïō ìåôñçôÞ (O ãéá ôÝëïò)'
   ΔΙΑΒΑΣΕ Ì åôñçôÞò
   OΣO Ì ảô nçô Þò <> 0 ΕΠΑΝΑΛΑΒΕ
       ΓΡΑΨΕ 'Äþóå ôï Ïíïìáôåðþíõìï'
       ΔΙΑΒΑΣΕ Åðþí õì ϊ, ¼í ϊì á
       ΓΡΑΨΕ 'Äþóå ôçí Êáôáí Üëùóç'
```

ΔΙΑΒΑΣΕ Êáôáí Üëùóç **ΕΠΙΛΕΣΕ** Êáôáí Üëùóç

```
ΠΕΡΙΠΤΩΣΗ = < 15
          Áî Bá <- Éáôáí Üëùóç*ÔÉÌ Ç1
       ΠΕΡΙΠΤΩΣΗ = < 60 ΟΪΟΑ
          Áî Bá <- 15*ÔÉÌ Ç1+(Êáôáí Üëùóç-15) *ÔÉÌ Ç2
       ΠΕΡΙΠΤΩΣΗ = < 81 ÔΪÔÅ
          Áî Bá <- 15*ÔÉÌ Ç1+ +45*ÔÉÌ Ç2+(Êáôáí Üëùóç-60) *ÔÉÌ Ç3
       ΠΕΡΙΠΤΩΣΗ =< 105 ÔÏ ÔÅ
          Áî Bá <- 15*ÔÉÌ Ç1+ 45*ÔÉÌ Ç2+21*ÔÉÌ Ç3+(Êáôáí Üëùóç-81) *ÔÉÌ Ç4
       ΠΕΡΙΠΤΩΣΗ ΑΛΛΙΩΣ
          Áî Bá <- 15*ÔÉÌ Ç1+ 45*ÔÉÌ Ç2+21*ÔÉÌ Ç3+24*ÔÉÌ Ç4+Êáôáí Üëùóç
                                                           -105) *ÔÉÌ Ç5
       ΤΈΛΟΣ ΕΠΙΛΟΓΏΝ
       Áðï ÷Ýôåõóç <- Áî Bá*0. 4
       ¢ëëá <- Áî ßá*0.01
       Ôéì Þ <- Áî Bá+ Áðï ÷Ýôåõóç+ ¢ëëá
       Áî Bá_ÖĐÁ <- Ôéì Þ* ÖĐÁ
       ÔåëéêP_ôéì P <- Ôéì P + Áî Bá_ÖĐÁ
       ΓΡΑΨΕ 'Ï ëï ãáñéáóì üò ôï õ', Åðþí õì ï,' åβí áé´', ÔåëéêÞ_ôéì Þ
       ΓΡΑΨΕ 'Áî βá í åñï ý: ', Áî βá,
       TPAΨE 'Üëëá:', Áðï÷Ýôåõóç+ ¢ëëá, 'ÖĐÁ:', Áî βá_ÖĐÁ
       граψе 'Äþóå Áñéèìü ôïõ åðüìåíïõ ìåôñçôÞ (О ãéá ôÝëïò)'
       ΔΙΑΒΑΣΕ Ì åôñçôÞò
   ΤΕΛΟΣ ΕΠΑΝΑΛΗΨΗΣ
ΤΕΛΟΣ ΠΡΟΓΡΑΜΜΑΤΟΣ
```

Παράδειγμα 3

Óòi ðáñÜäåtãì á 1 ôi õ ðñi çãi ýì åí i õ êåöáëáßi õ ì å ôçí ì ðÜeá ði õ åeôi î åýåôát óòi í áÝñá ç āùíßá âi ëÞò ì ði ñåß í á ì åôáaÜëëåôát áðü 20 Ýùò 80 ì ï ßñåò óå âÞì áôá ôùí 10 ì ï tínþí . Åðßóçò ç áñ÷téÞ ôá÷ýôçôá ì ði ñåß í á ì åôáaÜëëåôát áðü 10ì /sec Ýùò 40 ì /sec óå âÞì áôá ôùí 10 ì /sec.

Í á ãná öảl ðnuānáì ì á ði ố í á ốði ëi ālæål ôçí i næuí ôlá áðuóôáóç (ôi âåeçí åeÝò) ãlá eÜèå óõí äōáóì ü āùí láò êál án÷leÞò ôá÷ýôçôáò.

Περιβάλλον προγραμματισμού ΓΛΩΣΣΑ

```
VYO <- VO*ÇÌ (È)
Âåëçí åêÝò <- 2*VXO*VYO/G
ΓΡΑΨΕ 'Ôá÷ýôçôá:', VO,'Âåëçí åêÝò:',Âåëçí åêÝò
ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ
ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ
ΤΕΛΟΣ ΠΡΟΓΡΑΜΜΑΤΟΣ Ôñï ÷éÜ_Ì ðÜëáò2
```

Περιβάλλον προγραμματισμού PASCAL

```
program ball_2;
const
   g=9.81;
   pi = 3.14;
var
   v01, a: integer;
   range, akt, v, v0, vx0, vy0: real;
for a: =2 to 8 do
  begi n
   {ì ảôáônï đÞ ôçò ãùí Báò óả áêôBí éá}
   akt: =a*10*pi /180;
   writeln ('ÃÙÍ ÉÁ:', a*10:5);
   for v01: =1 to 4 do
   begi n
    v0: =v01*10;
    vx0: =v0*cos(akt);
    vy0: =v0*sin(akt);
    range: =2*vx0*vy0/g;
    writeln('Ìå ÁÑ×ÉÊÇ ÔÁ×ÕÔÇÔÁ:', v0:5,'ÂÅËÇÍÅÊÅÓ:', range:7:2);
 end;
end:
end.
```

Åðálea $\dot{\phi}$ c Pascal að áð áð lor $\dot{\phi}$ að lor $\dot{\phi}$

¸ ôót áí ôl ç ç ãù í lá âï ëÞò í á ì åôáâ Ü ëëåôát áðü 10 Ýùò 80 ì å âÞì áôá ôù í 10 ì ï thể n þí, ç ì åôáa ëçôÞ a ì åôáa Ü ëëåôát áðü 2 Ýùò 8, áõî áí uì åí ï êáô Ü ì ï í Ü äá óå ê Ü èå åðáí Ü ëçøç êát óôç óõí Ý ÷ åtá ð ï ëëáð ëáót Ü æåôát ì å 10 óôç í ì åôáô n ï ð Þ óå á eôl í tá akt: = a*10*pi/180.

Áí ôlóoî é÷á ãá ôçí áñ÷éèP ôá÷ýôçôá çì åôáâëçôP v01 ðállní åé ôéì Ýò áðü 1 ùò 4 êáé óôç óõí Ý÷åéá ðï ëëáðëáóéÜæåôáé ì å ôï 10 ãéá í á äþóåé ôçí áñ÷éèP ôá÷ýôçôá, v0:=v01*10.

Περιβάλλον προγραμματισμού BASIC

```
' ÔÑÏ ÷ÉÜ Ì ðÜËËÁÒ 2
g=9.81
FOR a = 20 TO 80 STEP 10
akt = a * ATN(1) * 4 / 180
PRINT "ÃùÍ BÁ "; akt
FOR vO = 10 TO 40 STEP 10
vxO = vO * COS(akt)
vyO = vO * SIN(akt)
vel = 2 * vxO * vyO / g
PRINT "ME AÑXIKH TAXYTHTA"; vO
PRINT "ÂÅËÇÍ ÅÊÅÓ = "; vel
NEXT vO
NEXT a
END
```


Ç óõí Üñôçóç ATN åðéóôñÝöåé ôï ôuîï åöáðôïì Ýíçò. Áñá Á $\hat{0}$ Í (1)=ð/4, áöïý åö(ð/4)=1.

8.3. Συμβουλές - υποδείξεις

ÅÖÜÖÏ Í ÜĞÙÒ Ý÷Ï ÕÌ Å Á Í ÁÖÝÑÅÉ Ở Ï ËEÝÒ ÖÏ ÑÝÒ ÊÜÈÅ Ở ÑUĀÑÁÌ Ì À Ì Ở Ï ÑÅ Í Á ÕË Ï Ở Ï ĆÇÈÅB Ì Å ÔÇ ÷ÑÞÓÇ ÔÙÍ ÔÑÉÞÍ ÄÏ Ì ÞÍ ÔÇÒ ÁÊÏ ËÏ ÕÈBÁÒ, ÔÇÒ ÅÐÉËÏ ÃPÒ ÊÁÉ ÔÇÒ ÅÐÁÍ ÜËÇØÇÒ, ÁÍ Ì ÜÈÂÉÒ Í Á ÷ÑÇÓÉÌ Ï Ở Ï ÉÂBÒ ÓÙÓÔÜ ÔÉÒ ÅÍ ÔÏ EÝÒ ÅÐÉËÏ ĀÝÒ ÊÁÉ ÅÐÁÍ ÜËÇØÇÒ, Ì Ở Ï ÑÂBÒ Í Á ÕËÏ Ở Ï ÉPÓÁÉÒ Ó÷ÄÄÜÍ Ï Ở Ï ÉÏ Í ÄPỞ Ï ÔÅ ÁËÄÜÑÉÈÌ Ï . ÓÔÇÍ Ở ÑÁĀÌ ÁÔÉËÜÔÇÔÁ ÜÌ ÙÒ Ì ÜÍ Ï Ç ÅÎ ÜÓÊÇÓÇ ÊÁÉ Ç Ở ÅBÑÁ ÈÁ ÓÏ Ő ÅÎ ÁÓÖÁËBÔÏ ÕÍ ÔÇ ÄÕÍ ÁÔÜÔÇÔÁ Í Á ÓÕÍ ÔÜÓÓÁÉÒ ÁÝÈÏ ËÁ ÊÁÉ ÃÑÞÄÏ ÑÁ ÓÙÓÔÜ Ở ÑI ÃNÜÌ Ì ÁÔÁ. Ï É Ở ÁÑÁÊÜÒÙ ÓÕÌ ÂÏ ÕËÝÒ ÈÁ ÓÅ ÂÏ ÇÈPÓÏ ÕÍ ÓÔÇ ÓÕÃÃÑÁÖÞ ÓÙÓÔÞÍ Ở ÑI ÃÑÀÌ Ì ÜÔÙÍ ÁỞ Ï ÖÁÝÄÏ Í ÔÁÒ Ì ÅNÉÊÜ ÁÖÜ ÔÁ Ở ÖÏ Ö ŎÁÑÏ ÕÓÉÜÆÏ Í ÔÁÉ.

- ¼ôáí ÷ñçótì ï ởï tảkò óýí èảôảo ëï ãtêÝò åêönÜóåtò, í á ởñï óÝ÷åtò ôçí tảñán÷ká ôùí ôåëåóôþí. Åkí át êáëýôåñï í á ÷ñçótì ï ởï tảkò ởÜí ôá ðáñåí èÝóåtò, Ýóôù êát áí äåí åkí át áðáñákôçôï, óå ðñï ööëÜóóåt áðü ðtèáíÜ ëÜèç êát áaëåøkåò, åíþ ôáõôü÷ñï í á êÜí åt ôï ðñüãñáì ì á ðtï åyêï ëï óôçí êáôáí üçóç ôï õ.
- Î ê î âôáâëçô yô ởi ổ åë yã ÷i ối ôçi aðái Üëçøç ôi ổ âñü ÷i ổ Ĭ Ó Î êáê Î Å×ÑÉÓ_Ĭ Ô Î Ó ðñ yð ðå ôði ÷ñ å ù ô ê Ü í á á ë ë Üæï ố i ô ê ì Þ ì yóá ó ôi ó þì á ôi ổ âñü ÷i ổ, á ë e é þò Þ ä á å ê ô å ë å ßô á ði ô ý Þ ó ố i çè yóô å ná ä â i ó ô áì á ô Ü å ê ç å ê ô y ë å ó ç ô i ổ (á ô y ñ ì ù i â ñ ü ÷i ò).
- T é åðáfáëÞøåéò ðï ō ōëï ðï eï ýf ôáé ì å ôçf åfôï ëÞ Ï ÓÏ , ì ðï ñåß fá ì çf åêôåëåoôï ýf ï ýôå ì ßá öï ñÜ, áöï ý ï Ýëåä÷ï ò ãßf åôáé óôçf åßöï äï ôï ō âñü÷ï ō, áfôßèåôá ï é åðáfáëÞøåéò Ì Å×ÑÉÓ_Ï ÔÏ Ō èá ðñáāì áôï ðï éçèï ýf ôï ōëÜ÷éoôï f ì ßá öï ñÜ.

- ightharpoonup Ç åí ôï ëÞ ĀÉÁ ÷ñçóéì ï ởĩ tảbôát ì úí ĩ đưa ởnĩ đá eờ nưới Ýí ĩ ántèì ũ ảðáí áëÞøåùí. Áí ëĩ tởuí î Ýnåtò ôï í ántèì ũ ôù í ảðáí áëÞøåùí Þì ởĩ nåbò í á ôï í õðï ëĩ ãbỏátò, ôuôå í á ÷ñçótì ĩ ởĩ tảbò ôçí åí ôï ëÞ ĀÉÁ.
- Đĩ ôÝ ì ç ÷ nçótì ï ở T tá thờ a fối e Ýò ở Tổ á e ë Üæ Tổ fố c án ÷ tê P ôt P, ô c fố a e tê P ôt P, ô T á Pì á Pô c ì a ô á a e cô p ở Tổ a e Ýa * a to c fá thể Pôt P, ô c fố a e thể Pôt P, ô Tổ a e hì á n tê Pó c ì a ô á a e c fá a c fối Tổ a e thể Pót a e pó c a e thể Pót a e pó c a e thể pó a e thể pó a e thể pót phá b e thể pót a e

8.4. Δραστηριότητες - ασκήσεις

Στην τάξη

ΔΤ1. Áí çì ảôá â eçô Þ Á Ý ÷ å tô cí ô tì Þ 10, çì ảôá â eçô Þ Â Ý ÷ å tô cí ô tì Þ 5 e á tệ cì ảôá a eçô Þ Ã Ý ÷ å tô cí ô tì Þ 3 ở i tảo á ð ii o thể ð a ð ii tảo a ð ii t

A. $I \times E (A > A)$

B. $A > \hat{A} \hat{E} \hat{A} \hat{E} \hat{A} < \tilde{A} \hat{C} \hat{A} = < \hat{A}$

 Γ . A > A EAE $(A < A \subset A = < A)$

 Δ . $\hat{A} = \hat{A} C (\tilde{A} - \hat{A}) < 0$

E. $(A > A \hat{E}AE \tilde{A} < A) \hat{C} (A < > \tilde{A} \hat{E}AE A < \tilde{A})$

ΔΤ2. Í á ãnÜøåéò ôéò åí ôï ëÝò ãéá ôá ðánáêÜôù

- A. Áí ç Âáeì ï ëï āßá (ÂÁÈÌ Ï Ó) åßí át ì åãáëýôåñç áðü ôï í Ì Ýóï üñï (Ì Ï) ôüôå íá ôõðþí åt "Đï ëý êáëÜ", áí åßí át ßóç Þì têñüôåñç ôï ō Ì Ýóï ō üñï ō ì Ý÷ñt êát 2 ì ï í Üäåò íá ôõðþí åt "ÊáëÜ" êát üôáí åßí át ì têñüôåñç ôï ō Ì Ýóï ō üñï ō ðåñtóóüôåñï áðü 2 ì ï í Üäàò íá ôõðþí åt "Ì Ýôñtá".
- Aí ôï ôì Pì á (ÔÌ ÇÌ Á) åßí áể Ã1 êáể ç âáèì ï ëï ãßá (ÂÁÈÌ Ï Ó) åßí áể ì åãáëýôåñç áðü 15 ôüôå í á ôõð þí åể ôï åð þí õì ï (ÅĐÙÍ ÕÌ Ï).
- **r.** Áí ç áð Üí ô có ç (ÁÐÁÍ Ô ÇÓ Ç) ä a í a lá á lá é Í ÞÍ ÞÏ ð ü ô a í á ô ð ð þí a é ô ï ì Þí õ ì á " Ë Ü è ï ò á ð Üí ô có ç ... ".
- **Δ.** Áí ï áñéeì üò × åßí áé áñí çôéeûò Þ ôï HM(X)=0 ôuôå í á ôððþí åôáé ôï ì Þí ōì á "ËÜ-èï ò äåäï ì Ýí á...", áëëéþò í á ððï ëï ãßæåôáé ç ðáñÜóôáóç (×^2+5*×)/(Ô_Ñ(×)* Çì (×)).

 $\Delta T3$. \hat{O} 6 \hat{O} 6 \hat{O} 7 \hat{O} 7 \hat{O} 8 \hat{O} 8 \hat{O} 9 \hat{O} 8 \hat{O} 9 \hat{O}

ΔT4. Åóôù ôï ðáñáêÜôù ôì Þì á ðñï ãñÜì ì áôï ò:

```
Ê <- 0

ÃÉÁ É ÁÐÏ O Ì Å×ÑÉ 100 Ì Å_ÂÇÌ Á 5

Á <- É^3

Ê <- Ê+Á

ÃÑÁØÅ É, Á

ÔÅËÏ Ó_ÅÐÁÍ ÁËÇØÇÓ

ÃÑÁØÅ Ê
```

Đuơảo ở nýo eá a eô a ea o a a nú ÷ i o;

Đĩ éá ç ëå éô ï ỗ nã Bá ô ù í å í ô ï ë þ í ;

ΔΤ5. ÄθÜâáóå ðñï óåêôθeÜ ôá ðáñáeÜôù ôì Þì áôá ðñï ãñÜì ì áôï ò. Đï éá åβí áθ ôá ëÜèç; ÄθüñèùóÝ ôá, þóôå í á ëåθοϊ ōñãï ýí óùóôÜ.

```
A.
ÄÉÁÂÁÓÅ Ì éóèüò
TÓT Ì éóèüò <>0 ÅÐÁÍ ÁËÁÂÅ
   ¢èñï éóì á <- 0
   ÁÍ Ì éóèüò > Ì Ýãéóôïò ÔÏ ÔÅ
       l Ýãéóôïò <- l éóèüò
   ÔÅËÏÓ ÁÍ
   ÁÍ Ì éóèüò < ÅëÜ÷éóôïò ÔÏÔÅ
       ÅëÜ÷éóôïò <- Ìéóèüò
   ÔÅËÏÓ ÁÍ
   ¢èñï éóì á <- ¢èñï éóì á+Ì éóèüò
ÔÅËÏ Ó_ÅÐÁÍ ÁËÇØÇÓ
ÁÑ×Ç ÅÐÁÍ ÁËÇØÇÓ
   ¢èñï éóì á <- 0
   ÁÍ Ì éóèüò > Ì Ýãéóôï ò ÔÏ ÔÅ
       l Ýãéóôï ò <- l éóèüò
   ÔÅËÏ Ó ÁÍ
   ÁÍ Ì éóèüò < ÅëÜ÷éóôïò ÔÏÔÅ
       ÅëÜ÷éóôïò <- Ìéóèüò
   ÔÅËÏ Ó ÁÍ
   ¢èñï éóì á <- ¢èñï éóì á+Ì éóèüò
   ÄÉÁÂÁÓÅ Ì éóèüò
lå×ÑÉÓ_ÏÔÏÕ léóèüò<>0
Γ.
ÃÉÁ É ÁÐÏ 1 Ì Å×ÑÉ 100
   ¢èñï éóì á <- 0
   ÄÉÁÂÁÓÅ Ì éóèüò
```

```
Aſ Ì éóèüò > Ì Ýāéóôï ò ÕÏ ÔÅ
 Ì Ýāéóôï ò <- Ì éóèüò
ÔÅËÏ O_Áſ
 Áſ Ì éóèüò < ÅëÜ÷éóôï ò ŌÏ ÔÅ
 ÅëÜ÷éóôï ò <- Ì éóèüò
ÔÅËÏ O_Áſ
 ¢èñï éóì á <- ¢èñï éóì á+Ì éóèüò
ÔÅËÏ O_ÅÐÁſ ÁËÇØÇÓ
```

ÅêôÝeảoả ảtê T (têÜ ôtò ả ố ở eÝò oố ÷á nổ lê át óç à đầu 1 ả óá á ở r ô ả eÝó 1 áô á ở r ố ð m - êýðô r ố 1. Ì ả á ô cú l ố r í ô nữờ r è á a ả tò ô á ëÜèç ê át ó ôç ó ố 1 Ý ÷ ả tá è á eÜ 1 ả tò ô tò a tr n- è þó ả tò.

WHITE OF THE PARTY OF THE PARTY

Στο εργαστήριο

Στο προγραμματιστικό περιβάλλον του εργαστηρίου του σχολείου σας:

ΔΕ1. [á āñáöåß ðñüāñáì ì á ðï ō í á äéáâÜæåé οι âáèì ü åí üò ì áèçôÞ êáé í á ōðï ëï āßæåé ôçí áí ôßóöï é÷ç áî éï ëüãçόç ôï ō ì å âÜός ôι âáèì ü ôι ō êáé óýì öùíá ì å οι í ðáñáeÜ-οù ðßíáêá:

Ôï Đnuãnaììá (á ãná cảlì à ôï óò á êu eï óèï óò ôn uði óò:

- → Ì å åí ôï ëÝò ÁÍ ... ÔÏ ÔÅ
- → Ì å åí ôï ëÝò ÁÍ ... ÔÏ ÔÅ ... ÁËËÉÙÓ_ÁÍ
- Ì å åì öùëåõì Ýí á ÁÍ.
- Ì å ôçí åí ôï ëÞ ÅÐÉËÅÎ Å

 Δ E2. Óôï eảöÜeáti 2 ôï ỗ âtâëlĩ ỗ ới ỗ ðáñi ỗótÜóôçêả eát óðæçôÞèçêả á í áëỗôtêÜ τ Đĩ ëëáðëáotáoì uò áëëÜ ÑùotêÜ. Í á ẵnÜøåtò ðňuãňáì ì á ði ỗ í á õëi ði tåll ôï í áëäüñtèì i áδοῦ. Ôï ðňuãňáì ì á í á åeôåeåoôål ātá ätÜöï ňá æåýāç ôtì þí.

ΔΕ3. Í á āñáöål ðñüāñáì ì á ôï ï ðï li èá åêôåëål êÜðï tá áðü ôtò âáótêÝò ðñÜî åtò ðñü-óèåóç, áöálñåóç, ðï ëëáðëáótáóì ü êát ätálñåóç áí Üì åóá óå äÿï áêÝñátï δὸ áñtèì ï ýò êát èá åì öáí læåt ôï áðï ôÝëåóì á óôçí ï èüí ç.

 $\hat{0}$ i ðnuānaìì á eá åeÝā÷åoát áðu oi ðánaêÜoùì åíiý åðteïāÞò eát eá óoáì áoÜåt uôát i ÷nÞóoçò åðteÝî åt áðu oi ì åíiý oçí åðteïāÞ Ýîïäï.

1. Đñüóèåóç

- 2. Áöálnåóç
- 3. Đĩ ëëáðëáóéáóì ü
- 4. Äéálnaóç
- 5. îïäïò

Äþóå åðéëï ãÞ:__

 Δ E4. Í á åðåeôålí åéò ôï ðáñÜäåéãì á 1, ôï í õðï ëï ãéóì ü ôçò áôì ï óöáéñéeÞò ñýðáí óçò, Ýôóé þóôå í á ðální åé 6 ôéì Ýò áí Ü þná áðü 5 äéáöï nåôéeï ýò óôáèì ï ýò ì Ýônçóçò ãéá ôï ôò äýï nýðï ôò. Ôï ðnüānáì ì á

- íá ốðï ëï ãkæå ôç ì Ýóç ô PêÜèå nýðï ố áí Ü þñá êá áí Ü óôáèì ü
- íá âñhóêå ôç ì Ýã óôç ì Ýóç ô è P ã á êÜèå ñýðï
- íá åëÝã÷åé ôéò ì Ýãéóôåò áõôÝò ôéì Ýò ì å ôá üñéá ðï õ äüèçêáí

 \hat{O} ĩ đũuãnáì ì á í á åeôåëåóôåß ì å äåäï ì Ýí á ôèò đũaãì áôéeÝò ôtì Ýò nýđù í đĩ ō ì å-ôñÞèçêáí ôç \div èåóéí Þ çì Ýñá. Ï \div ôèì Ýò áōôÝò äßäï í ôát áðü ôï ôì Þì á đĩ tuôçôáò ôçò á-ôì uóöátñáò ôï ō \hat{O} ĐÅ×ÙÄÅ êát âñßóèï í ôát óôç ätåýèõí óç: www.minenv.gr

Óả óảénÜ

$$R = R_1 + R_2 + R_3 + \dots$$
$$c = \frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3} + \dots$$

Óå ðáñáëëçëlá

$$C = C_1 + C_2 + C_3 + \dots$$
$$R = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

 \hat{O} i ðnuānáì ì á eá åëÝā÷åoát áðu ì åí i ý åðtë i ãÞò eát eá ôånì áo‰åoát uôát i ÷ñÞ-óoçò åðtë Ýî i äi .

Στο σπίτι

Στο τετράδιο σας αντιμετωπίστε τα παρακάτω προβλήματα:

 $\Delta \Sigma 1.$ Ç öï ñï ëï ālá åtóï äÞì áôï ò öõótêþí ðñï óþðùí õðï ëï ālæåôát áðü ôtò áñì üätåò õðçñåólåò ôï õ õðï ōñāålli ō ôùí Ï têï í ï ì têþí êëtì áêùôÜ, ì å ôç âï Þèåtá öï ō ðáñáêÜ- ôù ðlí áêá.

Κλιμάκιο εισοδήματος	Φορολογικός συντελεστής	Φόρος κλιμακίου	Σύνολο	
			εισοδήματος	φόρου
1.055.000	0	0	1.055.000	0
1.582.500	5	79.125	2.637.500	79.125
1.582.500	15	237.375	4.220.000	316.500
3.165.000	30	949.500	7.385.000	1.266.000
8.440.000	40	3.376.000	15.825.000	4.642.000
Υπερβάλλον	45			

ΚΛΙΜΑΚΑ ΥΠΟΛΟΓΙΣΜΟΥ ΦΟΡΟΥ ΕΙΣΟΔΗΜΑΤΟΣ ΦΥΣΙΚΩΝ ΠΡΟΣΩΠΩΝ ΟΙΚΟΝ. ΕΤΟΥΣ 1999

Ātá ēÜeā ÖT ÑT ëT āT ýì āTT Tôát ôa đĩ Pò óôT t÷åBá: áñtèì uò ÖT ÑT ëT ātêT ý ì çô而þ-Tổ (ÁÖÌ), uTTì á ÖT ÑT ëT āT ýì āTT ð, ÖT ÑT ëT āçôÝT åtóuäçì á

Í á ãná ö o å l ð n u ãná ì í á ô i i ð i li ð i li :

Í á akáa Üzak ôa óði $(\div a$ ká ôù í öi ñi ëi āi õì Ýí ù í, í á õði ëi ākzak ê ák í á ôōð þí ak ôi öuñi ði õ ôi õò áí ôkóði $(\div a$ k. Ôi ðnuānáì ì á èa akáa Üzak ôá óði $(\div a$ ka ði ëë þí öi ni ëi - ai õì Ýí ù í êák èa ôa ëak þí ak uôáí akáa Üzak āka ÁÖì öi í ánkèì u 0.

 $\Delta \Sigma 2$. \int á anáöåß ðnüanáì ì á ði ō í á ōði ëi ā‰åê ôèò n‰åò ôçò äåōôåni âÜèì éáò åî ßόυ-όçò $d^2 + d^2 + d^2$

 $\Delta \Sigma 3$. Γ á āñáöåß ðñüāñáì ì á ôĩ ĩ ởĩ ßĩ ätáâÜæåt ôĩ üſĩ ì á åſüò ì áèçôÞ, ôĩ õò âáèì ĩ ýò ôĩ õ óå ôñßá ì áèÞì áôá êát ỗởĩ ëĩ ã‰åt êát ôõðþſåt ôĩ ì Ýoï üñï. Ôĩ ðñüāñáì ì á ſá óôáì áôÜåt, üôáſ ātá üſïì à äïèåß ôï eåſü.

 $\Delta \Sigma 4.$ Í á āñÜøåôå ðñüãñáì ì á ðï õ í á ōðï ëï āßæåé ôç óõí Üñôçóç y(x)=x²-3x+2 āéá üëåò ôéò ôéì Ýò ôï ō x áðü -1 Ýùò 3 óå âÞì áôá ôï ō 0.1.

 $\Delta \Sigma 5. \ \ (ao \ onuði \ o \ oði \ ei \ aeo) \ i \ o \ onea \$

$$\eta \mu x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

$$\sigma v x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

Í á $\tilde{a}\tilde{n}\tilde{U} \otimes \tilde{a}\tilde{e}\tilde{o}$ ðnuaná) i á ôi i ði \tilde{b} i í á $\tilde{a}\tilde{e}\tilde{a}\tilde{a}\tilde{u}$ æå $\tilde{e}\tilde{o}$ ç $\tilde{a}\tilde{u}$ í \tilde{b} á x óà i i \tilde{b} nå \tilde{o} è éa \tilde{e} í í \tilde{o} õi \tilde{e} i \tilde{o} i í \tilde{e} á \tilde{e} í \tilde{o} i í \tilde{o} í \tilde{o} í \tilde{o} í í \tilde{o} í

Υπόδειξη: Í á ì ảôáôñÝøåéò áñ÷éêÜ ôç ãùíßá x óå áêôßíéá...

 $\Delta \Sigma 6$. Γ á aná cả lý (á ð nua ná) ì á ôι το lý (á aý ÷ å ô á lý (á a e ý ná e i a née) \ddot{u} e á ε (á ôι (á a e ý å é c a a e í a o i a e á e í a o i í a e ý å e á e í a o i í a o i í a

8.5. Τεστ αυτοαξιολόγησης

Δίνονται οι παρακάτω ομάδες εντολές. Σε κάθε μια από αυτές, να βάλετε τις εντολές στη σωστή σειρά με την οποία θα πρέπει να γράφονται σε ένα πρόγραμμα

- 1.
- Á. ÃÑÁØÅ 'Äåí õðÜñ÷åé ñßæá'
- Â. ÁÍ Á>0 ÔÏ ÔÅ
- Ã. ÔÅËÏ Ó_ÁÍ
- Ä. ÁËËÉÙÓ
- Å. $\tilde{N}\tilde{B}$ $\alpha < -\hat{O}_{\tilde{N}}(A)$
- 2.
- Á. Ì $\mathring{A} \times \widetilde{N} = 0$ $\mathring{O} = 0$
- Â. ÄÉÁÂÁÓÅ ÁÐÜÍ ÔÇÓÇ
- Ã. ÁÑ×Ç_ÅÐÁÍ ÁËÇØÇÓ
- Ä. ÃÑÁØÅ 'Äþóå áðÜí ôçóç :'

Χαρακτήρισε τα παρακάτω σαν σωστό ή λάθος

- 3. Té a í ô ï ë Ýò ở ï ỗ a nho ê ï í ô aé ó a Ýí a a nu ÷ ï TÓ Ï ÅÐÁ Í Á EÁÂÅ a ê ô a ë ï ý í ô a é ô ï ỗ ë Ü ÷ é ó ô ï í ì ha ö ï n Ü.
- 4. Ç ôtì Þ ôï ỗ âÞì áôï ò óôçí ảí ôï ëÞ ÃÉÁ åBí át ỗỗĩ ÷ñåùôtêÞ í á áí áãnÜöåôát.
- 5. ÊÜèå åí ôï ëÞ ÁÍ ðñÝðå íá Ý÷å ôçí áí ôßô ôï é÷ç åí ôï ëÞ ÔÅËÏ Ó_ÁÍ.
- 6. ÊÜeå âñü÷ïò ðïō ōëï ðïéåßòáéì å ôçí åíôïëÞÏÓÏ ÅÐÁÍ ÁËÁÂÅì ðïñåßíá ãñáöåß êáéì å ÷ñÞóç ôçò åíôï ëÞò ÃÉÁ.
- 7. ÁÍ ôï Á Ý÷åt ôçí ôtì Þ 5 êát ôï ôçí ôtì Þ 6 ôüôå ç ëï ãtêÞ Ýêöñáóç Á>5 ¹ Á<3 ÊÁt Â>5 ålí át ØåoäÞò.

Διάλεξε ένα μεταξύ των προτεινόμενων

Đĩ Gĩ đỡu ôá đánaê Üôù ốở T Gĩ được ôĩ Üèn T Gốt á ôù 100 đn bôù 1 đản côb 1 á niệt

Α.

```
B.
   ¢èñï éóì á <- 0
   ÃÉÁ É ÁÐÏ 1 Ì Å×ÑÉ 100 Ì Å_ÂÇÌÁ 2
       ¢èñï éóì á <- ¢èñï éóì á+ É
   ÔÅËÏ Ó_ÅÐÁÍ ÁËÇØÇÓ
Ã.
   ÃÉÁ É ÁÐÏ 1 Ì Å×ÑÉ 100 Ì Å_ÂÇÌÁ 2
       ¢èñï éóì á <- 0
       ¢èñï éóì á <- ¢èñï éóì á+ É
   ÔÅËÏ Ó_ÅÐÁÍ ÁËÇØÇÓ
Ä.
   ÃÉÁ É ÁÐÏ 1 ÌÅ×ÑÉ 100 ÌÅ_ÂÇÌÁ 2
       ¢èñïéóìá <- É
   ÔÅËÏ Ó_ÅÐÁÍ ÁËÇØÇÓ
9. De ea aeood poae or danae Üoù oì pì a dni an Üì ì aor o
Á <- 0
ÃÉÁ É ÁÐÏ 10 Ì Å×ÑÉ 20 Ì Å_ÂÇÌ Á 10
   \dot{A} < - \dot{A} + \dot{E}^2
ÔÅËÏ Ó_ÅÐÁÍ ÁËÇØÇÓ
ÃÑÁØÅ Á
Á. 0
      Â. 100 Ã. 500 Ä. 400
10. Đuoáð ör nýð eá áeðáeáoðál ç ðánáellóù áðáí leçøç
ÁÑ×Ç_ÅÐÁÍ ÁËÇØÇÓ
   Á <- 0
   ÃÉÁ É ÁÐÏ 1 Ì Å×ÑÉ 5
       Á <- Á-1
   ÔÅËÏ Ó_ÅÐÁÍ ÁËÇØÇÓ
Ì Å×ÑÉÓ_Ï ÔÏ Õ Á=0
Á. 10
         Â. 0
                 Ã. 5 Ä. ¢ðåéñåò
11. Äßí ï í ôát ï t ðáñá eÜ où å í oï eÝo
Á <- 1
ÃÉÁ É ÁÐÏ 1 Ì Å×ÑÉ 10 Ì Å_ÂÇÌÁ 2
   Á <- Á*É
ÔÅËÏ Ó_ÅÐÁÍ ÁËÇØÇÓ
```

Đĩ tảo á đũ ôto ả đũ a fảo Tì Üa ảo ả fôi eþi a li Tối có í Ká ôci la tá ôtì Þ

Á. Â. Á <- 1 Á <- 1 É <- 1 É <- 1 ÏÓÏ É<=10 ÅÐÁÍÁËÁÂÅ ÏÓÏ É <=10 ÅÐÁÍÁËÁÂÅ É <- É+2 Á <- Á*É Á <- Á*É É <- É+2 ÔÅËÏ Ó_ÅÐÁÍ ÁËÇØÇÓ ÔÅËÏ Ó_ÅÐÁÍ ÁËÇØÇÓ Ã. Ä. Á <- 1 Á <- 1 É <- 1 É <- 1 ÁÑ×Ç_ÅÐÁÍ ÁËÇØÇÓ ÁÑ×Ç_ÅÐÁÍ ÁËÇØÇÓ Á <- Á*É Á <- Á*É É <- É+2 É <- É+2 Ì Å×ÑÉÓ_Ï ÔÏ Õ É<10 Ì Å×ÑÉÓ_Ï ÔÏ Õ É=10

12. Đuoảo ở nýo eá ả eô ả eả o đất c đá ná e Üô ù ả đá í Ü eç øç

- A. 2 B. 0 Ã. 1 Ä. ¢ðáéñáò
- 13. Đĩ tá ç ë atô i o nã lá ô i o đá ná ê Ü ô ù bì á ô i ò đñ i ã n Üì ì á ô i ò

 <- 10 ÄÉÁÂÁÓÅ A <- Á ÁÍ Á < 0 ÔÏÔÅ B <- -A ÔÅËÏÓ_ÁÍ Á <- 0 ÃÑÁØÅ Â

- A. Tõðþí å é ôï í á né èì ü ði õ ä éÜâáóå
- B. Tốð þí å ô ô cí á ð ü e o ô c ô ê î Þ ô ï ố á n é è ì ï ý ð ï ố ä é Ü â á ó å
- Ã. Tố đợi để đƯ i ôá ôç i ôtì Þ 0
- Ä. Tõðþí å éð Ü í ô á ô ç í ô eì Þ 10