Exercice 1 - Exponentielle et équivalent

Soient f et g deux fonctions définies au voisinage d'un réel a ou de $a=\pm\infty$. Montrer que $e^f \sim_a$ $e^g \iff \lim_a (f-g) = 0$. A-t-on $f \sim_a g \implies e^f \sim_a e^g$?

Exercice 2 - Quotient de DLs

Déterminer les développements limités des fonctions suivantes :

1.
$$\frac{1}{1+x+x^2}$$
 à l'ordre 4 en 0 2. $\tan(x)$ à l'ordre 5 en 0 3. $\frac{\sin x - 1}{\cos x + 1}$ à l'ordre 2 en 0 4. $\frac{\ln(1+x)}{\sin x}$ à l'ordre 3 en 0.

2.
$$tan(x)$$
 à l'ordre 5 en 0

3.
$$\frac{\sin x - 1}{\cos x + 1}$$
 à l'ordre 2 en 0

4.
$$\frac{\ln(1+x)}{\sin x}$$
 à l'ordre 3 en 0.

Exercice 3 - Composition de DLs

Calculer les développements limités suivants :

1.
$$\ln\left(\frac{\sin x}{x}\right)$$
 à l'ordre 4 en 0 2. $\exp(\sin x)$ à l'ordre 4 en 0 3. $(\cos x)^{\sin x}$ à l'ordre 5 en 0 4. $x(\cosh x)^{\frac{1}{x}}$ à l'ordre 4 en 0.

2.
$$\exp(\sin x)$$
 à l'ordre 4 en 0

3.
$$(\cos x)^{\sin x}$$
 à l'ordre 5 en 0

4.
$$x(\cosh x)^{\frac{1}{x}}$$
 à l'ordre 4 en 0

Exercice 4 - Intégration de DLs

Calculer les développements limités suivants :

1.
$$\arccos x$$
 à l'ordre 5 en 0

2.
$$\int_0^x e^{t^2} dt \text{ à l'ordre 5 en 0.}$$

Exercice 5 - DLs pas en 0!

Calculer les développements limités suivants :

$$1.\frac{1}{2}$$
 à l'ordre 3 en 2

$$2. \ln(x)$$
 à l'ordre 3 en 2

$$\mathbf{3}.e^x$$
 à l'ordre 3 en 1

$$\mathbf{1}.\frac{1}{x}$$
 à l'ordre 3 en 2
$$\mathbf{2}.\ln(x)$$
 à l'ordre 3 en 2
$$\mathbf{3}.e^{x}$$
 à l'ordre 3 en 1
$$\mathbf{4}.\cos(x)$$
 à l'ordre 3 en $\frac{\pi}{3}$

$$5.\sqrt{x}$$
 à l'ordre 3 en 2

Exercice 6 - DL en l'infini

Calculer les développements limités suivants :

$$1.\frac{\sqrt{x+2}}{\sqrt{x}}$$
 à l'ordre 3 en $+\infty$

$$1.\frac{\sqrt{x+2}}{\sqrt{x}}$$
 à l'ordre 3 en $+\infty$ $2. \ln\left(x+\sqrt{1+x^2}\right) - \ln x$ à l'ordre 4 en $+\infty$

Exercice 7 - Astucieux!

Calculer, à l'ordre 100, le développement limité en 0 de $\ln \left(\sum_{k=0}^{99} \frac{x^k}{k!} \right)$.

Exercice 8 - Développement limité d'une fonction réciproque

Pour $x \in \mathbb{R}$, on pose $f(x) = x \exp(x^2)$.

- 1. Démontrer que f réalise une bijection de \mathbb{R} sur \mathbb{R} .
- 2. Justifier que f^{-1} admet un développement limité à l'ordre 4 en 0.
- 3. Donner ce développement limité.

Cette feuille d'exercices a été conque à l'aide du site https://www.bibmath.net