THE UNIVERSITY OF TEXAS AT AUSTIN

McCombs School of Business

STA 372.5 Tom Shively

AUTOREGRESSIVE CONDITIONALLY HETEROSCEDASTICITY (ARCH) MODELS PART 1

Example #1

Daily closing value of the Dow Jones Industrial Average:

January 3, 2006 – December 31, 2010

Source: https://research.stlouisfed.org/fred2/series/DJIA/downloaddata

```
# Read and print DJIA data
# data_table <- read.table("DJIA_2006-01-02_through_2010-12-31.dat", header=FALSE)
colnames(data_table) <- c("date", "time", "DJIA")
data_table$log_DJIA <- log(data_table$DJIA)
data_table$diff_log_DJIA[2:1259] <- data_table$log_DJIA[2:1259] - data_table$log_DJIA[1:1258]
data_table$diff_log_DJIA[1] <- NA
head(data_table)
tail(data_table)
```

date time DJIA log DJIA diff log DJIA

Example #2

Monthly return of Intel stock for January, 1973 – December, 2008 (432 months)

Source: Tsay, R. (2010). *Analysis of Financial Time Series*, third edition, John Wiley and Sons, Inc., New Jersey.

Let Y_t represent the continuously compounded return on Intel stock in month t.

```
#
#
   Read and print Intel return data
data_table <- read.table("IntelReturns_Monthly_1973-2008_NoHeader.dat", header=FALSE)
colnames(data_table) <- c("time", "date", "Y")</pre>
head(data_table)
tail(data_table)
        date
 time
  1 19730131 0.009999835
   2 19730228 -0.150012753
   3 19730330 0.067064079
    4 19730430 0.082948635
5
    5 19730531 -0.110348491
   6 19730629 0.125162849
   time
           date
427 427 20080731 0.03251946
428 428 20080829 0.03628757
429 429 20080930 -0.19969928
430 430 20081031 -0.15560173
431 431 20081128 -0.13976219
432 432 20081231 0.06045425
______
#
#
   Compute mean and standard deviation of Y
mean_Y <- mean(data_table$Y)</pre>
stdev_Y <- sd(data_table$Y)</pre>
mean Y
pstdev Y
[1] 0.0138819
[1] 0.1280031
```


Useful information

If η_t iid $N(\mu, \sigma^2)$ then for a constant a

$$E(a\eta_t) = aE(\eta_t)$$

$$= a\mu,$$

$$Var(a\eta_t) = a^2 Var(\eta_t)$$

$$= a^2 \sigma^2$$

$$= (a\sigma)^2,$$

 $\quad \text{and} \quad$

$$a\eta_t$$
 iid $N(a\mu, (a\sigma)^2)$.

Recall that for a random variable Y

$$E(Y) = \mu$$

and

$$Var(Y) = E(Y - \mu)^2.$$

```
#
# Compute ACF of Y
#
ggAcf(data_table$Y)
```


sigma^2 estimated as 0.01638: log likelihood=275.58

AIC=-547.16 AICc=-547.14 BIC=-539.03

6

Estimate of σ is $\sqrt{0.01638} = 0.12798$


```
#
#
    Construct histogram of residuals
#
figure <- ggplot()</pre>
figure <- figure + geom_histogram(aes(x=result$residuals), binwidth=0.01,</pre>
                                    color="black", fill="white")
figure <- figure + ggtitle("Histogram of Residuals")</pre>
figure <- figure + xlab("Residuals") + ylab("Count")</pre>
figure <- figure + xlim(-0.65, 0.65)
figure <- figure + theme(plot.title = element_text(hjust = 0.5))</pre>
figure <- figure + theme(panel.grid.major = element_blank(),</pre>
                           panel.grid.minor = element_blank(),
                           panel.background = element_blank(),
                           axis.line = element_line(colour = "black"))
figure
```


#
Construct a QQ-plot of residuals to check the normality assumption
#
qqnorm(result\$residuals, datax=FALSE)
qqline(result\$residuals)

#
Run Anderson-Darling test on residuals to test the normality assumption
#
ad.test(result\$residuals)

Anderson-Darling normality test

data: result\$residuals
A = 2.3446, p-value = 6.069e-06

```
#
#
    Generate nobs=432 normal random variates with mean = 0 and
#
      standard deviation = standard errors of the residuals
#
nobs <- nrow(data_table)</pre>
set.seed(134769)
data_table$x_normal <- rnorm(nobs, mean=0, sd=sqrt(result$sigma2))</pre>
#
    Construct histogram of x_normal
figure <- ggplot()</pre>
figure <- figure + geom_histogram(aes(x= data_table x_normal), binwidth=0.01,
                                    color="black", fill="white")
figure <- figure + ggtitle("Histogram of normal random variates")
figure <- figure + xlab("X_normal") + ylab("Count")</pre>
figure <- figure + xlim(-0.65, 0.65)
figure <- figure + theme(plot.title = element_text(hjust = 0.5))</pre>
figure <- figure + theme(panel.grid.major = element_blank(),</pre>
                          panel.grid.minor = element_blank(),
                          panel.background = element_blank(),
                          axis.line = element_line(colour = "black"))
figure
```


Histogram of residuals (same histogram as before)

Histogram of normal random variable with mean zero and same standard deviation as for residuals (same histogram as before)

t_3 distribution and a normal distribution with the same mean and variance

Tail of a t_3 distribution and a normal distribution with the same mean and variance

ARCH(1) model for the errors ε_i

An ARCH model for the errors ε_i in a time series model is:

$$Y_t = \mu + \varepsilon_t$$

$$\varepsilon_{t} = \sigma_{t} \eta_{t}$$

where

$$\eta_t$$
 iid $N(0, 1)$

and

$$\sigma_t^2 = \gamma_0 + \gamma_1 \varepsilon_{t-1}^2.$$

This means the conditional variance of ε_t given ε_{t-1} is $\sigma_t^2 = \gamma_0 + \gamma_1 \varepsilon_{t-1}^2$, and the conditional distribution of $\varepsilon_t \mid \varepsilon_{t-1}$ is

$$\varepsilon_t \mid \varepsilon_{t-1} \text{ iid } N(0, \sigma_t^2 = \gamma_0 + \gamma_1 \varepsilon_{t-1}^2),$$

i.e. $\varepsilon_t \mid \varepsilon_{t-1}$ for t = 2, ..., n are conditionally independent.

The random variables ε_{t} and ε_{t-1} are not independent (i.e. there is a relationship between ε_{t} and ε_{t-1} , although not a linear relationship).

ARCH is an acronym for AutoRegressive Conditionally Heteroscedastic

Time series plots of epsilon values simulated from an ARCH(1) process with different γ_0 and γ_1 values

Epsilon values simulated from an ARCH(1) process with $\gamma_0 = 0.04$ and different γ_1 values

An ARCH(1) model gives an AR(1) process for ε_t^2

The defining equations are written as

$$\varepsilon_t^2 = \sigma_t^2 \eta_t^2$$
 since $\varepsilon_t = \sigma_t \eta_t$

$$\gamma_0 + \gamma_1 \varepsilon_{t-1}^2 = \sigma_t^2$$

Subtracting gives

$$\varepsilon_t^2 - (\gamma_0 + \gamma_1 \varepsilon_{t-1}^2) = \sigma_t^2 \eta_t^2 - \sigma_t^2$$

which is equivalent to

$$\varepsilon_t^2 = (\gamma_0 + \gamma_1 \varepsilon_{t-1}^2) + u_t$$

where

$$u_t = \sigma_t^2 \eta_t^2 - \sigma_t^2.$$

It can be shown that u_t is an uncorrelated series and $E(u_t) = 0$ - see Tsay (2010, page 120).

This means ε_t^2 is an AR(1) process.

This is where the term "AutoRegressive" comes from in the ARCH terminology:

AutoRegressive Conditionally Heteroscedastic – ARCH(1) – process

$$\varepsilon_t \mid \varepsilon_{t-1} \text{ iid } N(0, \ \sigma_t^2 = \gamma_0 + \gamma_1 \varepsilon_{t-1}^2)$$
: Conditionally **H**eteroscedastic

 $(\varepsilon_t$ is heteroscedastic when we condition on ε_{t-1})

$$\varepsilon_t^2 = \gamma_0 + \gamma_1 \varepsilon_{t-1}^2 + u_t$$
: ε_t^2 is an **A**uto**R**egressive(1) process

Note that ε_t and ε_{t-1} are not independent because ε_t is directly related to ε_{t-1} :

$$\varepsilon_{\scriptscriptstyle t} = \sqrt{\gamma_{\scriptscriptstyle 0} + \gamma_{\scriptscriptstyle 1} \varepsilon_{\scriptscriptstyle t-1}^2 + u_{\scriptscriptstyle t}} \; .$$

Graphical interpretation of an ARCH(1) process with $\gamma_0=0.011,\ \gamma_1=0.379$ and $\varepsilon_0=0$

Distribution for $\varepsilon_2 \mid \varepsilon_1 \sim N(0, \sigma_2^2 = (0.105)^2)$

Estimate μ , γ_0 and γ_1 in an ARCH(1) process using Solver in Excel

You are not responsible for knowing how to compute the log likelihood on this page

Row	A	В	C	D	E	F	G	Н	I	J
		•								
1	Time	Est_Mu	Y Y	Epsilon $\mathcal{E}_t = Y_t - \mu$	SigmaSq $\sigma_t^2 = \gamma_0 + \gamma_1 \varepsilon_{t-1}^2$	$\log(\operatorname{SigmaSq})$ $\log(\sigma_t^2)$	Intermediate term #2 $\frac{\boldsymbol{\varepsilon}_t^2}{\boldsymbol{\sigma}_t^2}$	Determinant term $-0.5\sum_{t=1}^{n}\log(\sigma_{t}^{2})$	Exponent term $-0.5\sum_{t=1}^{n}\frac{\mathcal{E}_{t}^{2}}{\sigma_{t}^{2}}$	Log_likelihood $-0.5n \log(2\pi)$ $-0.5 \sum_{t=1}^{n} \log(\sigma_{t}^{2})$ $-0.5 \sum_{t=1}^{n} \frac{\varepsilon_{t}^{2}}{\sigma_{t}^{2}}$
2	0	0.013 <i>µ</i>		0.000				901.263	-216.000	288.279
3	1	Est_Gamma0	0.010 Y ₁	-0.003 $\boldsymbol{\mathcal{E}_1}$	$\sigma_1^2 = \gamma_0 + \gamma_1 \varepsilon_0^2$	$\log(\sigma_1^2)$	$\frac{\varepsilon_1^2}{\sigma_1^2}$			
4	2	0.011 %	-0.150 Y ₂	-0.163 $\boldsymbol{\mathcal{E}}_2$	$\sigma_2^2 = \gamma_0 + \gamma_1 \varepsilon_1^2$	$\log(\sigma_2^2)$	$\frac{\varepsilon_2^2}{\sigma_2^2}$			
5	3	Est_Gamma1	0.067	0.054	0.021	-3.846	0.139			
6	4	0.387 	0.083	0.070	0.012	-4.400	0.403			
7	5		-0.110	-0.123	0.013	-4.340	1.160			
8	6		0.125	0.113	0.017	-4.075	0.746			
9	7		0.486	0.473	0.016	-4.133	13.948			
:	:		•	:	<u>:</u>	:	:			
431	429		-0.200	-0.212	0.011	-4.479	3.974			
432	430		-0.156	-0.168	0.029	-3.555	0.990			
433	431		-0.140	-0.152	0.022	-3.813	1.051			
444	432		0.060	0.048	0.020	-3.906	0.114			

Estimate μ , γ_0 and γ_1 using R

```
______
  Estimate parameters using garchFit - See Tsay (2010), Chapter 3
#
result <- garchFit(data_table$Y~garch(1,0), data=data_table$Y, include.constant=T, trace=F)
summary(result)
   GARCH Modelling
  Call:
   garchFit(formula = data_table$Y ~ garch(1, 0), data = data_table$Y,
      trace = F, include.constant = T)
  Mean and Variance Equation:
   data ~ garch(1, 0)
  <environment: 0x000000019e30178>
   [data = data table$Y]
  Conditional Distribution:
   norm
  Coefficient(s):
       mu omega alpha1
   0.012637 0.011195 0.379492
  Std. Errors:
   based on Hessian
  Error Analysis:
         Estimate Std. Error t value Pr(>|t|)
         omega 0.011195
                     0.001239 9.034 < 2e-16 ***
  alpha1 0.379492
                     0.115534 3.285 0.00102 **
  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  Log Likelihood:
   288.0589 normalized: 0.6668031
  Standardised Residuals Tests:
                                  Statistic p-Value
   Jarque-Bera Test R Chi^2 137.919 0
   Shapiro-Wilk Test R W 0.9679248 4.024058e-08
   Ljung-Box Test R Q(10) 12.54002 0.2505382
   Ljung-Box Test
                     R Q(15) 21.33508 0.1264607
   Ljung-Box Test R Q(20) 23.19679 0.2792354
Ljung-Box Test R^2 Q(10) 16.0159 0.09917815
Ljung-Box Test R^2 Q(15) 36.08022 0.001721296
Ljung-Box Test R^2 Q(20) 37.43683 0.01036728
LM Arch Test R TR^2 26.57744 0.008884587
  Information Criterion Statistics:
                 BIC SIC
   -1.319717 -1.291464 -1.319813 -1.308563
```

______ head(result@residuals) tail(result@residuals) ______ $\begin{smallmatrix} 1 \end{smallmatrix} \rbrack \ -0.00263673 \ -0.16264932 \ \ 0.05442751 \ \ \ 0.07031207 \ \ -0.12298506 \ \ \ 0.11252628$ $\begin{smallmatrix} 1 \end{smallmatrix}] \quad 0.01988290 \quad 0.02365101 \quad -0.21233584 \quad -0.16823830 \quad -0.15239876 \quad 0.04781769$ head(result@sigma.t) tail(result@sigma.t)

[1] 0.1319058 0.1058191 0.1457204 0.1109920 0.1143292 0.1301345

[1] 0.1191125 0.1065132 0.1068051 0.1682409 0.1481088 0.1414528

predict(result,5)

	meanForecast	meanError	standardDeviation
1	0.01263656	0.1098306	0.1098306
2	0.01263656	0.1255897	0.1255897
3	0.01263656	0.1310751	0.1310751
4	0.01263656	0.1330976	0.1330976
5	0.01263656	0.1338571	0.1338571

Plot of ε_t and $\sigma_t \mid \varepsilon_{t-1} = \sqrt{\gamma_0 + \gamma_1 \varepsilon_{t-1}^2}$

Spreadsheet to compute the in-sample values $\sigma_{t}^{2} \mid \varepsilon_{t-1} = \gamma_{0} + \gamma_{1} \varepsilon_{t-1}^{2}$ for t = 1, ..., 432 and future values $\sigma_{432+k}^{2} \mid \varepsilon_{432}$ for k = 1, ..., 5 using the estimated values of μ , γ_{0} and γ_{1} from R

Row		A	В	С	D	E	F
		Time	Mu	Y_t	Epsilon	Sigma^2	Sigma
1		t		Y_{t}	$\varepsilon_{t} = Y_{t} - \mu$	$\sigma_t^2 = \gamma_0 + \gamma_1 \varepsilon_{t-1}^2$	$\sigma_t = \sqrt{\sigma_t^2}$
2		1	0.012637	0.010			
4			α	Y_1	$\varepsilon_1 = Y_1 - \mu$		
		2	Gamma0	-0.150	-0.163	0.011	0.106
3				Y_2	$\varepsilon_2 = Y_2 - \mu$	$\sigma_2^2 = \gamma_0 + \gamma_1 \varepsilon_1^2$	$\sigma_2 = \sqrt{\sigma_2^2}$
4		3	0.011195	0.067	0.054	0.021	0.146
			γ ₀				
5		4	Gamma1	0.083	0.070	0.012	0.111
6		5	0.379492 γ_1	-0.110	-0.123	0.013	0.114
7		6		0.125	0.113	0.017	0.130
8		7		0.486	0.473	0.016	0.126
9		8		0.111	0.099	0.096	0.310
10		9		0.211	0.198	0.015	0.122
11		10		0.135	0.122	0.026	0.162
:		:		•••	:	:	:
429		428		0.036	0.024	0.011	0.107
430		429		-0.200	-0.212	0.011	0.107
431		430		-0.156	-0.168	0.028	0.168
432		431		-0.140	-0.152	0.022	0.148
433		432		0.060	0.048	0.020	0.141
42.4						0.012	0.109830
434		433				$\sigma_{433}^2 = \gamma_0 + \gamma_1 \varepsilon_{432}^2$	$\sigma_{433} = \sqrt{\sigma_{433}^2}$
405						0.016	0.125589
435		434				$\sigma_{434}^2 = \gamma_0 + \gamma_1 \sigma_{433}^2$	$\sigma_{434} = \sqrt{\sigma_{434}^2}$
						0.017	0.131075
436		435				$\sigma_{435}^2 = \gamma_0 + \gamma_1 \sigma_{434}^2$	$\sigma_{435} = \sqrt{\sigma_{435}^2}$
407						0.018	0.133097
437		436				$\sigma_{436}^2 = \gamma_0 + \gamma_1 \sigma_{435}^2$	$\sigma_{436} = \sqrt{\sigma_{436}^2}$
4.5.5						0.018	0.133857
438		437				$\sigma_{437}^2 = \gamma_0 + \gamma_1 \sigma_{436}^2$	$\sigma_{437} = \sqrt{\sigma_{437}^2}$

Future σ_t^2 values given information through period t = 432

Recall that if $X \sim N(\mu = 0, \sigma^2)$, then

$$\sigma^2 = Var(X) = E[(X - \mu)^2] = E(X^2).$$

One-period ahead value $\sigma_{432}^2(1) = \sigma_{433}^2 \mid \varepsilon_{432} = Var(\varepsilon_{433} \mid \varepsilon_{432})$

From before, we know that

$$\varepsilon_t^2 = (\gamma_0 + \gamma_1 \varepsilon_{t-1}^2) + u_t$$

where $E(u_t \mid \varepsilon_{t-1}) = 0$.

This means

$$\varepsilon_{433}^2 = \gamma_0 + \gamma_1 \varepsilon_{432}^2 + u_{433}$$

where $E(u_{433} | \varepsilon_{432}) = 0$.

Then

$$\sigma_{432}^{2}(1) = Var(\varepsilon_{433} \mid \varepsilon_{432})$$

$$= E(\varepsilon_{433}^{2} \mid \varepsilon_{432})$$

$$= E(\gamma_{0} + \gamma_{1} \varepsilon_{432}^{2} + u_{433} \mid \varepsilon_{432})$$

$$= \gamma_{0} + \gamma_{1} \varepsilon_{432}^{2} + E(u_{433} \mid \varepsilon_{432})$$

$$= \gamma_{0} + \gamma_{1} \varepsilon_{432}^{2}$$

since $E(u_{433} | \varepsilon_{432}) = 0$.

Therefore,

$$\sigma_{432}^2(1) = Var(\varepsilon_{433} \mid \varepsilon_{432}) = \gamma_0 + \gamma_1 \varepsilon_{432}^2 = 0.0112 + 0.3795(0.048)^2 = (0.1099)^2.$$

Two-period ahead value $\sigma_{432}^2(2) = Var(\varepsilon_{434} \mid \varepsilon_{432})$

From before, we know that

$$\varepsilon_{434}^2 = \gamma_0 + \gamma_1 \varepsilon_{433}^2 + u_{434}$$

where $E(u_{434} | \varepsilon_{432}) = 0$.

Then

$$\begin{split} \sigma_{432}^2(2) &= Var(\varepsilon_{434} \mid \varepsilon_{432}) \\ &= E(\varepsilon_{434}^2 \mid \varepsilon_{432}) \\ &= E(\gamma_0 + \gamma_1 \varepsilon_{433}^2 + u_{434} \mid \varepsilon_{432}) \\ &= \gamma_0 + \gamma_1 E(\varepsilon_{433}^2 \mid \varepsilon_{432}) + E(u_{434} \mid \varepsilon_{432}) \\ &= \gamma_0 + \gamma_1 \sigma_{432}^2(1) \end{split}$$

since $\sigma_{432}^2(1) = E(\varepsilon_{433}^2 \mid \varepsilon_{432})$ and $E(u_{434} \mid \varepsilon_{432}) = 0$.

Therefore,

$$\sigma_{432}^2(2) = Var(\varepsilon_{434} \mid \varepsilon_{432}) = \gamma_0 + \gamma_1 \sigma_{432}^2(1) = 0.0112 + 0.3795(0.1098)^2 = (0.1256)^2.$$

k-period ahead value $\sigma_{432}^2(k) = Var(\varepsilon_{432+k} \mid \varepsilon_{432})$

In general,

$$\varepsilon_{432+k}^2 = \gamma_0 + \gamma_1 \varepsilon_{432+(k-1)}^2 + u_{432+k}$$

where $E(u_{432+k} | \varepsilon_{432}) = 0$.

Then

$$\begin{split} \sigma_{432}^2(k) &= Var(\varepsilon_{432+k} \mid \varepsilon_{432}) \\ &= E(\varepsilon_{432+k}^2 \mid \varepsilon_{432}) \\ &= E(\gamma_0 + \gamma_1 \varepsilon_{432+(k-1)}^2 + u_{432+k} \mid \varepsilon_{432}) \\ &= \gamma_0 + \gamma_1 E(\varepsilon_{432+k-1}^2 \mid \varepsilon_{432}) + E(u_{432+k} \mid \varepsilon_{432}) \\ &= \gamma_0 + \gamma_1 \sigma_{432}^2(k-1) \end{split}$$

since
$$\sigma_{432}^2(k-1) = E(\varepsilon_{432+(k-1)}^2 \mid \varepsilon_{432})$$
 and $E(u_{432+k} \mid \varepsilon_{432}) = 0$.

Therefore,

$$\sigma_{432}^2(k) = Var(\varepsilon_{434} \mid \varepsilon_{432}) = \gamma_0 + \gamma_1 \sigma_{432}^2(k-1) .$$