Model Solutions & Detailed Marking Notes

Note: The model solutions for each question are not intended to be exhaustive – there may be other correct solutions. Any Examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his / her Advising Examiner.

Q1	Model Solution – 25 Marks	Marking Notes
(a)	$(2x + 1)(x^{2} + px + 4)$ $2x^{3} + 2px^{2} + 8x + x^{2} + px + 4$ $8 + p = 2(2p + 1)$ $8 + p = 4p + 2$ $3p = 6$ $p = 2$ Or Coefficient of x is $8 + p$ Coefficient of x^{2} is $2p + 1$ $8 + p = 2(2p + 1)$ $8 + p = 4p + 2$ $3p = 6$ $p = 2$	Scale10D (0, 4, 5, 8, 10) Low Partial Credit: - Any relevant multiplication Mid Partial credit: - Multiplication completed without error(s) - Multiplication completed with errors and correctly identifies (in terms of p) the coefficient of either x² or x - Correctly identifies the coefficient of either x or x² High Partial credit: - Multiplication completed with error(s) but finishes correctly without further errors - Relevant coefficients equated (equation in p) - Multiplication completed and coefficients of x² and x identified but solves incorrect equation in p

$$\frac{3}{2x+1} + \frac{2}{5} = \frac{2}{3x-1}$$
CD: $5(2x+1)(3x-1)$

$$15(3x-1) + (4x+2)(3x-1)$$

$$= 10(2x+1)$$

$$12x^2 + 27x - 27 = 0$$

$$4x^2 + 9x - 9 = 0$$

$$(x+3)(4x-3)=0$$

$$x = -3 \text{ or } x = \frac{3}{4}$$
Or

$$\frac{3}{2x+1} + \frac{2}{5} = \frac{2}{3x-1}$$

$$\frac{15+2(2x+1)}{5(2x+1)} = \frac{2}{3x-1}$$

$$\frac{4x+17}{10x+5} = \frac{2}{3x-1}$$

$$(4x+17)(3x-1) = 2(10x+5)$$

$$12x^2 + 47x - 17 = 20x + 10$$

$$12x^2 + 27x - 27 = 0$$

$$4x^2 + 9x - 9 = 0$$

$$(x+3)(4x-3) = 0$$

$$x = -3 \text{ or } x = \frac{3}{4}$$

Scale 15D (0, 4, 7, 11,15)

Low Partial Credit:

- CD or partial CD identified
- Cross multiply on LHS
- Multiplies one term correctly by one of the denominators
- x = -3 or $x = \frac{3}{4}$ substituted and justified as a solution

Mid Partial Credit:

- Equation without fractions

High Partial Credit:

- Relevant quadratic in the form: $ax^2 + bx + c = 0$

Note: No quadratic ⇒ low partial credit at most, except in the case where the candidate has reached the mid partial stage

Q2	Model Solution – 25 Marks	Marking Notes
(a) (i)	(0, 1) (2, 9) 16 14 12 10 10 10 10 10 11 10 11 12 2 2 2 2 2 2 2 2 2 2	Scale 5C (0, 2, 3, 5) Low Partial Credit: - 1 point on line found High Partial Credit: - 2 points on line found - 1 point found and plotted (apart from (0, 1) and (2, 9)) Full Credit -1: - Freehand graph drawn
(a) (ii)	$g(1.9) = 4(1.9) + 1 = 8.6$ $f(1.9) = 3^{1.9} = 8.06$ $f(x) < g(x)$	Scale 5C (0, 2, 3, 5) Low Partial Credit: - $g(1.9)$ written or found - $f(1.9)$ written or found High Partial Credit: - $g(1.9)$ and $f(1.9)$ found

To Prove: $3^n \ge 4n + 1$ for $n \ge 2$

P(2): $3^2 \ge 4(2) + 1$

 $9 \ge 9$, True

Assume P(n) is true for n = k,

Now prove P(n) is true for n = k + 1

P(k): $3^k \ge 4k + 1$ for $k \ge 2$

$$P(k+1)$$
: $3^{k+1} \ge 4(k+1) + 1$

$$3^{k+1} \ge 4k + 5$$

Proof: $P(k) \times 3$: $3^{k+1} \ge 3(4k+1)$

= 12k + 3

 $\Rightarrow 3^{k+1} \ge 4k + 5$

since 4k + 5 < 12k + 3 for $k \ge 2$

True for

n = k + 1 provided true for n = k

but true for n = 2

 \therefore True for all $n \ge 2$, $n \in \mathbb{N}$.

Scale 15D (0, 4, 7, 11, 15)

Low Partial Credit:

- Step P(2)
- P(k) or P(k+1) with incorrect inequality sign

Mid Partial Credit:

- Any two of P(2), P(k) or P(k+1)

High Partial Credit:

- Uses Step P(k) to prove Step P(k+1)

Full Credit −1:

- Omits conclusion but otherwise correct

<u>Note</u>: Accept Step P(2), Step P(k),

Step P(k+1) in any order

Note: Accept $f(k) \ge g(k)$, $k \ge 2$ for

Step P(k)

Q3	Model Solution – 25 Marks	Marking Notes
(a)	(3x+4)(y-3)	Scale 5B (0, 2, 5) Mid Partial Credit: - Any relevant factorisation
(b)	$3x\ln x - 9x + 4\ln x - 12 =$ $3x(\ln x - 3) + 4(\ln x - 3) =$ $(3x + 4)(\ln x - 3)$ $3x + 4 = 0 \Rightarrow x = -\frac{4}{3} \text{ (not possible)}$ $\ln x - 3 = 0$ $\ln x = 3$ $x = e^{3}$	Scale 10D (0, 4, 5, 8, 10) Low Partial Credit: - Any relevant factorisation of $g(x)$ - Trial and improvement with at least two values tested - Substitutes $20 \le x \le 20 \cdot 1$ - $y = lnx$ Mid Partial Credit - Expression fully factorised High Partial Credit: - $lnx = 3$ Full Credit -1 : - Both solutions presented Note: Accept $x = 20 \cdot 1$ for $x = e^3$ in the last line of the solution Note: If no reference is made to $3x + 4$ in the solution, then award high partial credit at most

(c)
$$g'(x) = 3x \left(\frac{1}{x}\right) + (3)lnx - 9 + 4\left(\frac{1}{x}\right)$$
$$g'(e) = 3(e)\left(\frac{1}{e}\right) + (3)ln(e) - 9 + 4\left(\frac{1}{e}\right)$$
$$g'(e) = 3 + 3 - 9 + \frac{4}{e} = -1.53$$

Scale 10D (0, 4, 5, 8, 10)

Low Partial Credit:

- Any relevant differentiation
- g(e) evaluated correctly to at least 2 decimal places

Mid Partial Credit

- Expression fully differentiated
- Product rule not applied but finishes correctly

High Partial Credit:

- Derivative fully substituted

Q4	Model Solution – 25 Marks	Marking Notes
(a)	$\frac{4x^4}{4} - \frac{6x^2}{2} + 10x + C$ $x^4 - 3x^2 + 10x + C$	Scale 5C (0, 2, 3, 5) Low Partial Credit: - Any relevant integration High Partial Credit: - 3 correct terms
(b) (i)	$\int (6x^2 - 54x + 109) dx$ $= 2x^3 - 27x^2 + 109x + C = f(x)$ $(2,0) \in f(x)$ $2(2)^3 - 27(2)^2 + 109(2) + C = 0$ $2(8) - 27(4) + 218 + C = 0$ $16 - 108 + 218 + C = 0$ $16 + 110 + C = 0$ $126 + C = 0$ $C = -126$ $\therefore f(x) = 2x^3 - 27x^2 + 109x - 126$	Scale 10D (0, 4, 5, 8, 10) Low Partial Credit: - Any relevant integration Mid Partial Credit - 3 correct terms High Partial Credit: - Relevant equation in C Note: Must integrate or indicate integration to gain any credit

(ii)

2 is a root

$$\Rightarrow$$
 $(x-2)$ is a factor

$$2x^3 - 27x^2 + 109x - 126 = 0$$

$$2x^{2}(x-2)-23x(x-2)+63(x-2)$$

$$2x^2 - 23x + 63 = 0$$

$$(2x-9)(x-7) = 0$$

$$x = 4.5 \text{ or } x = 7$$

$$\therefore B(4.5,0)$$
 and $C(7,0)$

Scale 10D (0, 4, 5, 8, 10)

Low Partial Credit:

- 2 identified as root
- 0 given as the *y* co-ordinate
- Sets up equation
- Any integer fully substituted in f(x) fully worked
- (x-2) is a factor
- Sets up the correct equation

Mid Partial Credit

- Division completed with no remainder
- 7 identified as a root
- One coordinate pair found

High Partial Credit:

- x values found from factors

Q5	Model Solution – 25 Marks	Marking Notes
(a)	3-2i = other root $-p = (3+2i) + (3-2i) = 6$ $p = -6$ $q = (3+2i)(3-2i) = 13$ Or	Scale 10C (0, 4, 7, 10) Low Partial Credit: - Second root identified High Partial Credit: - Sum and product of roots formulated into equations for p and q - p or q found correctly
	$(3+2i)^{2} + p(3+2i) + q = 0$ $5+12i + 3p + 2pi + q = 0$ $2p = -12 \Rightarrow p = -6$ $5+3p+q = 0 \Rightarrow q = 13$ Or	 Low Partial Credit: Root substituted into equation Any correct substitution High Partial Credit: Real and imaginary terms formulated into equations for p and for q
	$\frac{-p \pm \sqrt{p^2 - 4q}}{2} = 3 \pm 2i$ $-p \pm \sqrt{p^2 - 4q} = 6 \pm 4i$ $-p = 6$ $\therefore p = -6$ $\sqrt{4q - p^2} = 4$ $4q - p^2 = 16$ $4q - (-6)^2 = 16$ $4q = 52$ $\therefore q = 13$	 Low Partial Credit: Some substitution into quadratic formula High Partial Credit: Finds p Full substitution into quadratic formula and equated to either root.

(i)
$$|v| = \sqrt{4 + 12} = 4$$

 $\theta = 300^{\circ}$
 $v = 4(\cos 300^{\circ} + i \sin 300^{\circ})$

Or

$$|v| = \sqrt{4 + 12} = 4$$

$$\theta = \frac{5\pi}{3}$$

$$v = 4\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right)$$

Scale 5C (0, 2, 3, 5)

Low Partial Credit:

- Correct plot on the Argand diagram
- Some use of Pythagoras to find modulus
- Some use of trigonometry to find argument

High Partial Credit:

Modulus or argument found

Note: Accept
$$4\left(\cos{-\frac{\pi}{3}} + i\sin{-\frac{\pi}{3}}\right)$$
 and $4(\cos{-60}^{\circ} + i\sin{-60}^{\circ})$

(b)

$$w = \pm v^{\frac{1}{2}}$$

 $w = \pm 2(\cos 300 + i \sin 300)^{\frac{1}{2}}$

$$w = \pm 2(\cos 150 + i \sin 150)$$

$$w = \pm (-\sqrt{3} + i)$$

$$w = -\sqrt{3} + i \text{ or } \sqrt{3} - i$$
Or

 $w = [4(\cos(300 + 360n))]$

$$+i\sin(300+360n)]^{\left(\frac{1}{2}\right)}$$

$$w = 4^{\frac{1}{2}} [\cos(150 + 180n) + i\sin(150 + 180n)]$$

$$\underline{n=0}$$

$$w = 2\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = -\sqrt{3} + i$$

$$\frac{n=1}{w=2\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)} = \sqrt{3} - i$$

Scale 10C (0, 4, 7, 10)

Low Partial Credit:

- w written in polar form with index
- Some use of De Moivre's Theorem
- $w = 17\frac{1}{2}$

High Partial Credit:

- De Moivre's theorem applied to w
- One solution found
- Solutions in polar form

Note: Accept candidates answer from (b)(i)

Q6	Model Solution – 25 Marks	Marking Notes
(a) (i)	$x + 5x = \sqrt{128} + \sqrt{32}$ $6x = 8\sqrt{2} + 4\sqrt{2}$ $6x = 12\sqrt{2}$ $x = 2\sqrt{2}$ Or $x - \sqrt{32} = \sqrt{128} - 5x$ $(x - \sqrt{32})^2 = (\sqrt{128} - 5x)^2$ $(x - 4\sqrt{2})^2 = (8\sqrt{2} - 5x)^2$ $x^2 - 8\sqrt{2}x + 32 = 128 - 80\sqrt{2}x + 25x^2$ $x^2 - 3\sqrt{2}x + 4 = 0$ $(x - \sqrt{2})(x - 2\sqrt{2}) = 0$ $x = \sqrt{2} \text{ or } x = 2\sqrt{2}$ Check solutions: $x = \sqrt{2}$ $\sqrt{2} - \sqrt{32} = \sqrt{128} - 5\sqrt{2}$ $-3\sqrt{2} = 3\sqrt{2} \text{ (False)}$ Solution: $x = 2\sqrt{2}$	Scale 10C (0, 4, 7, 10) Low Partial Credit: - Any relevant transposing - $\sqrt{32}$ or $\sqrt{128}$ in the form $a\sqrt{2}$ High Partial Credit - x term isolated in equation Low Partial Credit: - $\sqrt{32}$ or $\sqrt{128}$ in the form $a\sqrt{2}$ - Any relevant multiplication High Partial Credit: - LHS and RHS squared correctly - Solution not in the form $a\sqrt{2}$ Full Credit -1 : - Both solutions presented Note: If $\sqrt{128}$ and $\sqrt{32}$ are converted to decimals, then award low partial credit at most
(a) (ii)	$\sqrt{32k^{2}}, \sqrt{128k^{2}}, \sqrt{98k^{2}}, \sqrt{50k^{2}}$ $4\sqrt{2}k, 8\sqrt{2}k, 7\sqrt{2}k, 5\sqrt{2}k$ $4\sqrt{2}k, 5\sqrt{2}k, 7\sqrt{2}k, 8\sqrt{2}k$ $Mean = \frac{24\sqrt{2}k}{4} = 6\sqrt{2}k$ $Median = 6\sqrt{2}k$	Scale 5C (0, 2, 3, 5) Low Partial Credit: - List in ascending or descending order - Any term written in the form $a\sqrt{2}k$ or in the form $a\sqrt{2}k^2$ High Partial Credit: - Mean or median found - Verified for a particular value of k Note: If decimals are used then award low partial credit at most

Assume $\sqrt{2}$ is rational

i.e. $\sqrt{2} = \frac{p}{q}$ where p and q have

no common factors (simplest form)

$$\Rightarrow 2 = \frac{p^2}{q^2}$$

$$\Rightarrow$$
 2q² = p²

 \Rightarrow p² is even

 \Rightarrow p is even

 \Rightarrow p = 2k for some k $\in \mathbb{Z}$

 $2q^2 = p^2$ becomes $2q^2 = 4k^2$

$$\Rightarrow q^2 = 2k^2$$

 \Rightarrow q² is even

 \Rightarrow q is even

 \Rightarrow q = 2m for some m $\in \mathbb{Z}$

$$\therefore \sqrt{2} = \frac{p}{q} = \frac{2k}{2m}$$

⇒ common factor of 2 (contradiction)

∴ $\sqrt{2}$ cannot be rational.

Scale 10D (0, 4, 5, 8, 10)

Low Partial Credit:

- $\sqrt{2} = \frac{p}{q}$ or similar

Mid Partial Credit

- deduces that p is even or equivalent

- p = 2k or equivalent deduced

- $p^2 = 2q^2$

High Partial Credit:

- q = 2m or equivalent deduced

			Section	В			
Q7	Model Solution – 45 Mark	s		Marking I	Notes		
(a) (i)		A	В	С	D	Е	
(1)	Fraction	$\frac{1}{3}$	<u>2</u> 9	<u>4</u> <u>27</u>	8 81	16 243	
				Low Parti - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	L correct for the correct of the cor	raction givenominat umerator ractions gi	ven in table ect
(a) (ii)	$a = \frac{1}{3} r =$ $S_n = \frac{a(1 - \frac{1}{1 - 1})}{1 - \frac{1}{1 - 1}}$ $S_n = \frac{1}{3} \left(1 - \frac{1}{1 - 1} \right)$ $S_n = 1 - \left(\frac{1}{3} \right)$	$\frac{r^n)}{r}$ $\frac{\left(\frac{2}{3}\right)^n}{\frac{2}{3}}$		- S_n - Co	ial Credit:	correct r	
(a) (iii)	Infinite Geometric Series $S_{\infty} = \frac{a}{1-r} = \frac{\frac{1}{3}}{1-\frac{2}{3}} = 1$ Or $\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \left(\frac{2}{3}\right)^n\right)$	Ü	$=\frac{2}{3}$	- Co High Part - S_{∞} Note: If $ i $	al Credit: a indicated prect a or a ial Credit: a fully subs	correct r stituted en award l	identified ow partial

b) i)	Label	A	В	С	D	Ε	F	Scale 10C (0, 4, 7, 10) Low Partial Credit:
	End-point	$\frac{2}{3}$	2 9	7 9	8 9	7 27	25 27	 1 correct fraction given in table All denominators correct
								High Partial Credit: - 4 correct fractions given in table
b) ii)	$\frac{6}{27}$	18 81	1/27 19/81 Or	Or	$\frac{20}{81}$	$\frac{20}{31}$ $E \frac{7}{27}$ $\frac{21}{81}$		Scale 5B (0, 2, 5) Mid Partial Credit: - Relevant but incomplete reason given - Sum of fractions = $\frac{20}{81}$
b) iii)	$S_{\infty} = \frac{1}{1}$ $\frac{1}{3} + \frac{1}{27}$ $-\left(\frac{1}{9} + \frac{1}{81} + \frac{1}{1}\right)$	$+\frac{1}{24}$	Or 1 43 +	· · · · · = - · · ·) = - · ·) =	$= \frac{1}{1}$ $= \frac{3}{8}$ $= -$ $= -$	$\frac{\frac{1}{3}}{-\frac{1}{9}}$	$\frac{1}{9}$	Scale 10C (0, 4, 7, 10) Low Partial Credit: - S_{∞} indicated - S_{∞} formula with some substitution - Correct a or correct r High Partial Credit: - S_{∞} formula fully substituted

Q8	Model Solution – 50 Marks	Marking Notes
(a)	$r(20) = 22500 \cos\left(\frac{\pi}{26}(20)\right) + 37500$ $= 22500 \cos\left(\frac{20\pi}{26}\right) + 37500$ $= €20658.51$ $≈ €20659$	Scale 10C (0, 4, 7, 10) Low Partial Credit: - Any relevant substitution - r(20) or t = 20 High Partial Credit: - Correct substitution Full Credit -1: - Uses degrees as unit of measurement, giving an answer of €59980
(b)	$22500 \cos\left(\frac{\pi}{26}t\right) + 37500 = 26250$ $22500 \cos\left(\frac{\pi}{26}t\right) = -11250$ $\cos\left(\frac{\pi}{26}t\right) = -\frac{1}{2}$ $\frac{\pi}{26}t = \frac{2\pi}{3} \text{ and } \frac{\pi}{26}t = \frac{4\pi}{3}$ $t = \frac{52}{3} \text{ and } t = \frac{104}{3}$	Scale 10D (0, 4, 5, 8, 10) Low Partial Credit: - Equation formed - Trial and improvement with at least two values tested Mid Partial Credit: - Equation simplified to: $\cos\left(\frac{\pi}{26}t\right) = -\frac{1}{2}$ - Equation simplified to: $\cos\left(\frac{\pi}{26}t\right) = -\frac{11250}{22500}$ High Partial Credit: - 1 correct solution to equation found

(c)	$r'(t) = 22500 \left[-\sin\left(\frac{\pi}{26}t\right) \right] \left(\frac{\pi}{26}\right)$ $= -\frac{11250}{13} \pi \left[\sin\left(\frac{\pi}{26}t\right) \right]$	Scale 5C (0, 2, 3, 5) Low Partial Credit: - Some relevant differentiation High Partial Credit: - Chain rule applied
(d)	$r'(30) = -\frac{11250}{13}\pi \left[\sin(\frac{\pi}{26}(30))\right]$ = 402·164\pi = 1263·44 > 0 \Rightarrow Increasing	Scale 10C (0, 4, 7, 10) Low Partial Credit: - Some relevant substitution into answer from (c) - $r'(t) > 0$ - $\frac{dy}{dx} > 0$ High Partial Credit: - $r'(30)$ found but no conclusion or incorrect conclusion Note: If calculus is not used then award no credit for the solution

$$-\frac{11250}{13}\pi\left[\sin\left(\frac{\pi}{26}t\right)\right] = 0$$

$$\sin\left(\frac{\pi}{26}t\right) = 0$$

$$\frac{\pi}{26}t = 0 \text{ and } \frac{\pi}{26}t = \pi$$

$$t = 0$$
 and $t = 26$

$$r''(t) = -\frac{11250}{13}\pi \left[\cos\left(\frac{\pi}{26}t\right)\right] \left(\frac{\pi}{26}\right)$$

$$t = 0$$
: $r''(t) < 0 \Rightarrow Max$

$$t = 26$$
: $r''(t) > 0 \Rightarrow Min$

Or

Range:

$$[37500 - 22500, 37500 + 22500]$$

$$= [15,000,60,000]$$

$$22500\cos\left(\frac{\pi}{26}t\right) + 37500 = 15000$$

$$22500\cos\left(\frac{\pi}{26}t\right) = 15000 - 37500$$

$$22500 \cos \left(\frac{\pi}{26}t\right) = -22500$$

$$\cos\left(\frac{\pi}{26}t\right) = -1$$

$$\frac{\pi}{26}t = \pi$$

$$\therefore t = 26$$

$$r''(26) = -\frac{11250}{13}\pi \left[\cos\left(\frac{\pi}{26}\right)26\right)\right] \left(\frac{\pi}{26}\right)$$

> 0

 \Rightarrow Min

Scale 15D (0, 4, 7, 11, 15)

Low Partial Credit:

- r'(t) = 0
- $-\frac{dy}{dx} = 0$
- States r''(t) > 0 at minimum value
- t = 26 and no further work

Mid Partial Credit

- t = 0 or t = 26 found with supporting work
- r''(t) found

High Partial Credit:

- t=26 found with supporting work and $r^{\prime\prime}(t)$ found (including use of chain rule)

Q9	Model Solution – 55 Marks	Marking Notes
(a) (i)	$= 2(x) + 2(y) + \frac{1}{2} (2\pi)(x)$ $= 2x + 2y + \pi x$	Scale 5C (0, 2, 3, 5) Low Partial Credit: - Some relevant substitution into perimeter formula - Circumference of circle of radius x found i.e. $2\pi x$ High Partial Credit: - Two of the three terms found
(a) (ii)	$2x + 2y + \pi x = 12$ $2y = 12 - 2x - \pi x$ $y = \frac{12 - 2x - \pi x}{2}$ $y = \frac{12 - (2 + \pi)x}{2}$	Scale 5C (0, 2, 3, 5) Low Partial Credit: - Some relevant substitution into equation High Partial Credit: - y term isolated correctly in equation Note: Accept candidates answer from (a)(i) provided it doesn't oversimplify the work. Note: Must draw a relevant conclusion from incorrect work

(i)

Table and Graph

+

\ /

x	0	$\frac{12}{2+\pi}$
$y = \frac{12 - (2 + \pi)x}{2}$	6	0

Scale 15D (0, 4, 7, 11, 15)

Low Partial Credit:

- One correct table entry
- One correct plot of incorrect point

Mid Partial Credit:

- 2 table entries correct
- 2 incorrect points plotted and joined

High Partial Credit:

 2 correct points plotted but not joined with correct table entries

Full Credit −1:

 Two correct points plotted and joined but the function is not graphed in the stated domain

<u>Note</u>: Accept $2 \cdot 25 \le x \le 2 \cdot 5$ for x-intercept

$$y = \frac{12 - (2 + \pi)x}{2}$$
$$y = 6 - \left(\frac{2 + \pi}{2}\right)x$$

$$y = 6 - \left(\frac{2 + \pi}{2}\right)x$$

$$m = -\left(\frac{2+\pi}{2}\right)$$

$$m = -2.57$$

Or

$$m = \frac{0 - 6}{\frac{12}{2 + \pi} - 0}$$

$$m = -\left(\frac{2+\pi}{2}\right)$$

$$m = -2.57$$

Intepretation:

For each 1m rise in the radius of the semicircle, the height of the rectangle falls by approximately 2.57 m

Scale 5C (0, 2, 3, 5)

Low Partial Credit:

- Some substitution into slope formula
- Slope isolated in the equation of the line formula
- $\frac{dx}{rise}$ with some relevant substitution
- Some effort at differentiation

High Partial Credit:

Slope found

Note: Accept $-2.7 \le \text{slope} \le -2.5 \text{ from}$ relevant work

(c)

(i)

$$a = 2xy + \frac{\pi x^2}{2}$$

$$= \frac{2x[(12 - (2 + \pi)x]]}{2} + \frac{\pi x^2}{2}$$

$$= \frac{24x - 4x^2 - 2\pi x^2}{2} + \frac{\pi x^2}{2}$$

$$= \frac{24x - (\pi + 4)x^2}{2}$$

0.

Scale 5C (0, 2, 3, 5)

Low Partial Credit:

- area of rectangle correct
- area of semi-circle correct

High Partial Credit:

Both areas correct in terms of x and added

$$a(x) = \frac{1}{2}(24x - (\pi + 4)x^2)$$

$$a'(x) = \frac{1}{2}(24 - 2(\pi + 4)x)$$
$$= 12 - (\pi + 4)x$$

Scale 5B (0, 2, 5)

Mid Partial Credit:

Some correct differentiation

(c)

(iii)
$$a'(x) = 0$$

$$12 - (\pi + 4)x = 0$$

$$(\pi + 4)x = 12$$

$$x = \frac{12}{\pi + 4} \ (1.68)$$

$$y = \frac{12 - (2 + \pi)x}{2} \ (= \frac{12 - (5.14) \cdot 1.68}{2} \approx 1.68)$$

$$=\frac{12-(2+\pi)(\frac{12}{\pi+4})}{2}$$

$$=\frac{12(\pi+4)-(2+\pi)(12)}{2(\pi+4)}$$

$$=\frac{12\pi+48-24-12\pi}{2(\pi+4)}$$

$$=\frac{24}{2(\pi+4)}$$

$$=\frac{12}{\pi+4}$$

= x

Area Max when height equals the radius

Scale 15D (0, 4, 7, 11, 15)

Low Partial Credit:

- a'(x) used
- States $\frac{dy}{dx} = 0$

Mid Partial Credit

- Value of x at maximum found

High Partial Credit:

 Value of y at maximum fully substituted