Zadanie 1.

Niech łączna wartość szkód z pewnego ubezpieczenia $W = Y_1 + Y_2 + ... + Y_N$ ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że $\Pr(Y_1 \in \{0,1,2,3,...\}) = 1$. Niech:

• $W(n) = \min\{Y_1, n\} + \min\{Y_2, n\} + ... + \min\{Y_N, n\}$

oznacza łączną wartość szkód z tego ubezpieczenia po wprowadzeniu ograniczenia odpowiedzialności za każdą szkodę do wysokości n, gdzie n jest pewną liczbą naturalną. Jeśli przyjmiemy założenia liczbowe:

- $\lambda = 5$
- $\operatorname{var}[W(n)] = 400$
- $Pr(Y_1 > n) = \frac{1}{3}$
- n = 25

wtedy var[W(n+1)] wynosi:

- (A) 485
- (B) 490
- (C) 495
- (D) 500
- (E) 505

Zadanie 2.

Rozważa się niekiedy następującą formułę składki $\Pi(X)$ za ryzyko X:

•
$$\Pi(X) = E(X) + E\{X - E(X)\}_+$$
,

a więc gdzie narzut na składkę netto ma postać wartości oczekiwanej nadwyżki zmiennej X ponad swoją wartość oczekiwaną.

Rozważmy wskaźnik względnego narzutu bezpieczeństwa w składce:

•
$$\theta(X) := \frac{\Pi(X) - E(X)}{E(X)}$$

dla tej formuły.

Rozważmy też rodzinę rozkładów Pareto z dystrybuantach postaci:

•
$$F_X(x) = 1 - \left(\frac{v}{v+x}\right)^{\alpha}$$
,

gdzie parametry dystrybuant mogą przyjmować dowolne wartości spełniające warunki:

•
$$v > 0$$
 oraz $\alpha > 1$

Kres dolny zbioru wartości wskaźnika $\theta(X)$ dla ryzyk X z tej rodziny wynosi:

- (A) 0
- (B) e^{-1}
- (C) $1-e^{-1}$
- (D) $e^{-1/2}$
- (E) 1

Zadanie 3.

Rozważamy klasyczny model procesu nadwyżki $U(t) = u + ct - S_{N(t)}$, gdzie:

- *u* jest nadwyżką początkową,
- *ct* jest sumą składek zgromadzonych do momentu *t*,
- N(t) jest procesem Poissona z parametrem intensywności λ ,
- $S_n = \sum_{i=1}^n X_i$ jest sumą wypłat z tytułu *n* pierwszych wypadków
- wypłata X_i jest równa łącznej kwocie szkód z jednego wypadku: $X_i = Y_i(1) + ... + Y_i(M_i)$
- kwoty szkód $Y_1(1), Y_1(2), Y_1(3), ..., Y_2(1), Y_2(2), Y_2(3), ..., Y_3(1), Y_3(2), Y_3(3), ...$ oraz liczby szkód przypadających na poszczególne wypadki $M_1, M_2, M_3, ...$ są niezależnymi zmiennymi losowymi.

Jeśli przyjmiemy następujące założenia:

- zmienne $Y_1(1), Y_1(2), Y_1(3), ..., Y_2(1), Y_2(2), Y_2(3), ..., Y_3(1), Y_3(2), Y_3(3), ...$ mają ten sam rozkład wykładniczy o wartości oczekiwanej jeden
- zmienne $M_1, M_2, M_3,...$ mają ten sam rozkład przesunięty geometryczny:

$$Pr(M_i = k) = 2\left(\frac{1}{3}\right)^k$$
 dla $k = 1, 2, ...$

• parametr składki wynosi $c = \lambda \cdot E(X_1) \cdot 120\%$

wtedy współczynnik dopasowania (adjustment coefficient) R wyniesie:

- (A) 1/6
- (B) 1/9
- (C) 1/12
- (D) 1/15
- (E) 1/18

Zadanie 4.

Proces nadwyżki obserwujemy w momencie początkowym:

• $U_0 = u$

oraz w momentach zajścia szkód:

$$\bullet \qquad U_n = U_{n-1} + c \cdot \Delta T_n - Y_n ,$$

Gdzie:

- (T_n, Y_n) oznaczają moment zajścia i wartość n-tej szkody,
- c jest intensywnością napływu składki,
- $\Delta T_1 = T_1$ oraz $\Delta T_n = T_n T_{n-1}$ to czasy oczekiwania.

Zakładamy, że:

- $\Delta T_1, Y_1, \Delta T_2, Y_2, \Delta T_3, Y_3, \dots$ są niezależne,
- $\Delta T_1, \Delta T_2, \Delta T_3,...$ mają ten sam rozkład Gamma o gęstości $f_{\Delta T}(t) = \lambda^2 t \exp(-\lambda t)$
- $Y_1, Y_2, Y_3,...$ mają ten sam rozkład Gamma o gęstości $f_Y(y) = y \exp(-y)$

Współczynnik dopasowania (*adjustment coefficient*), definiujemy jako taką wartość r, przy której proces $V_n = \exp(-rU_n)$ spełnia dla dowolnych liczb naturalnych n,m zależność:

•
$$E[V_{n+m}|V_n] = V_n$$
,

O ile oczywiście taka dodatnia liczba r istnieje.

Jeśli przyjmiemy że intensywność składki wynosi:

•
$$c = \frac{6}{5}\lambda$$
,

to współczynnik dopasowania:

- (A) wynosi 1/6
- (B) wynosi 1/9
- (C) wynosi 1/12
- (D) wynosi 1/18
- (E) nie istnieje

Zadanie 5.

Łączna wartość szkód z całego portfela W równa jest sumie W_1+W_2 , oznaczających odpowiednio łączną wartość szkód z dwóch subportfeli.

Liczba szkód N_1 w pierwszym subportfelu ma rozkład dwumianowy o parametrach (n, 1/4) (n polis, z każdej z nich szkoda z p-stwem 0.25).

Liczba szkód N_2 w drugim subportfelu (niezależna od N_1) ma rozkład ujemny dwumianowy:

•
$$\Pr(N_2 = k) = \frac{\Gamma(r+k)}{\Gamma(r) \cdot k!} \cdot (1-q)^r \cdot q^k$$
 $k = 0,1,...$

W obu subportfelach wartości pojedynczych szkód Y_i są niezależnymi zmiennymi losowymi o identycznym rozkładzie ze skończoną wariancją $var(Y_1)$ (w obu subportfelach jest to ten sam rozkład), niezależnymi także od liczby szkód N_1 i N_2 .

Jeśli wiadomo, że $E(W_1) = E(W_2)$ oraz że $VAR(W) = E(N_1 + N_2) \cdot E(Y_1^2)$, to parametr q rozkładu zmiennej N_2 wynosi:

- (A) 1/2
- (B) 1/3
- (C) 1/4
- (D) 1/5
- (E) 1/6

Zadanie 6.

Rozważamy klasyczny model procesu nadwyżki $U(t) = u + ct - S_{N(t)}$, gdzie:

- *u* jest nadwyżką początkową,
- *ct* jest sumą składek zgromadzonych do momentu *t*,
- N(t) jest procesem Poissona z parametrem intensywności $\lambda = 1$,
- $S_n = \sum_{i=1}^n Y_i$ jest sumą wypłat,
- pojedyncze wypłaty Y_i są zmiennymi losowymi niezależnymi nawzajem i od procesu N(t), o identycznym rozkładzie danym gęstością równą 1/10 na przedziale [0,10]

Niech L oznacza maksymalną stratę, F_L jej dystrybuantę, zaś $\Psi(u)$ prawdopodobieństwo ruiny przy nadwyżce początkowej u. Wtedy dla każdego $u \ge 0$ zachodzi $F_L(u) = 1 - \Psi(u)$.

Niech c^* oznacza najmniejszą z takich wartości parametru intensywności składki c, przy której $E(L) \le 16\frac{2}{3}$. Parametr c^* wynosi:

- (A) 7.5
- (B) 7
- (C) 6.5
- (D) 6
- (E) 5.5

Zadanie 7.

Mamy niepełną informację o rozkładzie zmiennej losowej X. Wiemy mianowicie, że przyjmuje ona wartości nieujemne oraz że dla dowolnego $d \in [1,10]$ wartość oczekiwana nadwyżki tej zmiennej ponad d wynosi:

$$E[(X-d)_{+}] = \frac{(10-d)^{2}}{20}$$
.

Zbiór wszystkich dopuszczalnych (w świetle posiadanej informacji) wartości dla E(X) to przedział:

- (A) [5.00; 5.05]
- (B) [4.95; 5.00]
- (C) [4.90; 5.00]
- (D) [4.90; 5.05]
- (E) [4.95; 5.05]

Zadanie 8.

Parametr ryzyka Λ ma w populacji ubezpieczonych rozkład Gamma z wartością oczekiwaną 1/4 i wariancją 1/40. Proces pojawiania się szkód dla ubezpieczonego z tej populacji, który charakteryzuje się wartością parametru ryzyka Λ równą λ , jest procesem Poissona z oczekiwaną liczbą szkód w ciągu roku równą λ .

Obserwujemy pewnego losowo wybranego z tej populacji ubezpieczonego. Dokładnie pół roku po rozpoczęciu obserwacji doszło do pierwszej szkody. Oczekiwana liczba szkód (warunkowa, pod ww. warunkiem), do których jeszcze ewentualnie dojdzie w ciągu następnego okresu półrocznego wynosi:

- (A) 1/5
- (B) 7/40
- (C) 1/6
- (D) 1/8
- (E) 5/42

Zadanie 9.

W pewnym portfelu ubezpieczeń występuje tendencja do dłuższego czasu likwidacji dużych szkód niż szkód małych. Oto prosty model tego zjawiska:

Y,D to wartość i czas opóźnienia likwidacji losowo wybranej szkody, przy czym rozkład bezwarunkowy zmiennej D określamy następująco:

- D = 0 jeśli szkodę likwiduje się w tym samym roku, kiedy do niej doszło,
- D = 1 jeśli szkodę likwiduje się w następnym roku,
- D = 2 jeśli szkodę likwiduje się jeszcze rok później, itd.,

a zależność wartości szkody i opóźnienia wyraża założenie, że:

•
$$E(Y|D=k) = \mu \cdot (1+w)^k$$
.

Rozkład czasu likwidacji szkody w ujęciu ilościowym dany jest więc ciągiem:

•
$$r_k := \Pr(D = k)$$
,

zaś rozkład czasu likwidacji szkody w ujęciu wartościowym dany jest ciągiem:

•
$$rw_k := \frac{r_k E(Y|D=k)}{E(Y)}$$

Załóżmy, że zachodzi:

•
$$r_k = \binom{4}{k} \cdot \frac{1}{16}, \quad k = 0,1,2,3,4,$$

• oraz:
$$w = \frac{1}{5}$$
.

Wobec tego $\frac{r_2}{rw_2}$ wynosi (w przybliżeniu):

Zadanie 10.

Oznaczmy przez X_t łączną wartość szkód zaistniałych w roku t, przez $X_{t,0}$ tę jej część, która dotyczy szkód zlikwidowanych przed końcem roku t, zaś przez $X_{t,1}$ część pozostałą. Warunkowe momenty tych zmiennych (przy danej wartości parametru ryzyka μ_t) spełniają założenia:

- $\bullet \quad E(X_{t,0}|\mu_t) = \mu_t p$
- $\bullet \quad E(X_{t,1}|\mu_t) = \mu_t(1-p)$
- $Var(X_{t,0}|\mu_t) = \mu_t pb^2$
- $Var(X_{t,1}|\mu_t) = \mu_t(1-p)b^2$
- $Cov(X_{t,0}, X_{t,1}|\mu_t) = 0$,

zaś rozkład parametru ryzyka μ_t spełnia założenia:

- $E(\mu_t) = \mu$
- $Var(\mu_t) = a^2$

Najlepszy nieobciążony liniowy predyktor zmiennej X_t oparty na informacji o zmiennej $X_{t,0}$ oraz znanych wartościach parametrów $\left(p,b^2,\mu,a^2\right)$ jest postaci:

$$\bullet \quad BLUP(X_t | X_{t,0}) = cX_{t,0} + d$$

Stała d występująca w powyższym wzorze jest postaci:

(A)
$$d = \frac{\mu^2 b^2}{\mu b^2 + pa^2}$$

(B)
$$d = \frac{\mu b^2 (1-p)}{\mu b^2 + pa^2}$$

(C)
$$d = \frac{\mu^2 b^2 (1-p)}{\mu b^2 + pa^2}$$

(D)
$$d = \frac{\mu a^2}{\mu b^2 + pa^2}$$

(E)
$$d = \frac{\mu a^2 (1 - p)}{\mu b^2 + pa^2}$$

Egzamin dla Aktuariuszy z 14 maja 2007 r.

Matematyka ubezpieczeń majątkowych

Arkusz odpowiedzi*

Imię i nazwisko K L U C Z	ODPOWIEDZI
Pesel	

Zadanie nr	Odpowiedź	Punktacja⁴
1	A	
2	В	
3	В	
4	A	
5	D	
6	D	
7	Е	
8	С	
9	Е	
10	С	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.