01. 기본- 결정트리(decision tree)

- · Machine Learning with sklearn @ DJ,Lim
- date: 21/07

데이터 셋 다운로드

- UCI: https://www.kaggle.com/uciml/pima-indians-diabetes-database (https://www.kaggle.com/uciml/pima-indians-database (<a href="https://www.kaggle.com/uciml/pima-indians-database (<a href="https://www.kaggle.com/uciml/pima-indians-database (<a href="https://www.kaggle.com/uciml
 - (가) decision tree는 classification(분류)와 regression(회귀) 문제에 널리 사용하는 모델이다.
 - (나) 스무고개 놀이의 질문과 비슷하다.

In [3]: ▶

라이브러리 불러오기 import pandas as pd from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn import metrics

Data Fields

구분	설명
Pregnancies	임신
Glucose	포도당
BloodPressure	혈압
SkinThickness	피부두께
Insulin	인슐린
ВМІ	BMI
Diabetes Pedigree Function	당뇨병혈통기능
Age	나이
Outcome	결과

In [5]: ▶

pima = pd.read_csv("diabetes.csv")

In [6]: ▶

pima.columns

Out[6]:

In [7]: ▶

pima.head()

Out [7]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.35
2	8	183	64	0	0	23.3	0.67:
3	1	89	66	23	94	28.1	0.16
4	0	137	40	35	168	43.1	2.28

Feature Selection

In [8]:

pima.columns

Out[8]:

In [12]: ▶

pima.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64
	(1 104/0) 1 104/7)		

dtypes: float64(2), int64(7) memory usage: 54.1 KB

In [13]:

pima.head(3)

Out[13]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.35
2	8	183	64	0	0	23.3	0.672

In [14]: ▶

데이터 나누기

In [15]:

```
# 데이터 셋 나누기
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) # 70% train
```

```
In [16]:
                                                                                                 H
print(X_test.columns)
print(X_train.columns)
print(y_train.shape)
Index(['Pregnancies', 'Insulin', 'BMI', 'Age', 'Glucose', 'BloodPressure',
       'DiabetesPedigreeFunction'],
      dtype='object')
Index(['Pregnancies', 'Insulin', 'BMI', 'Age', 'Glucose', 'BloodPressure',
       'DiabetesPedigreeFunction'],
      dtype='object')
(537.)
In [17]:
# 의사결정 트리 모델 생성
clf = DecisionTreeClassifier()
# 학습
clf = clf.fit(X_train,y_train)
# 예측
y_pred = clf.predict(X_test)
모델 평가
In [18]:
                                                                                                 И
from sklearn import metrics
In [19]:
                                                                                                 H
# Model Accuracy, 얼마나 정확한가? 정확도
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
Accuracy: 0.670995670995671
In [20]:
from sklearn.tree import export_graphviz
from sklearn.externals.six import String10
from IPython.display import Image
import pydotplus
/usr/local/lib/python3.7/dist-packages/sklearn/externals/six.py:31: FutureWarning: T
he module is deprecated in version 0.21 and will be removed in version 0.23 since w
e've dropped support for Python 2.7. Please rely on the official version of six (htt
ps://pypi.org/project/six/).
  "(https://pypi.org/project/six/).", FutureWarning)
```

In [21]: ▶

Out [21]:

모델 성능 개선

In [23]:

```
# 의사결정트리 모델
clf = DecisionTreeClassifier(criterion="entropy", max_depth=3)
# 학습
clf = clf.fit(X_train,y_train)
# 데이터 셋 예측
y_pred = clf.predict(X_test)
# 정확도 확인
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
```

Accuracy: 0.7705627705627706

In [24]: ▶

Out [24]:

<u>In []:</u>