KIỂM TRA 45 PHÚT – CHƯƠNG 4 – SỐ PHÚC

Ho và tên: Lớp: Lớp:

Mã đề thi 136

(Điền đáp án vào ô dưới số thứ tư câu hỏi)

									Die	Bien dap an vao o anoi so ina in eau noi,															
ĺ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
I																									

Câu 1: Cho số phức z thoả mãn $\frac{5(z+i)}{z+1} = 2-i$. Phần ảo của số phức liên hợp của z là

Câu 2: Cho số phức $z = \left(\frac{1+i}{1-i}\right)^{33} + (1-i)^{10} + (2+3i)(2-3i) + \frac{1}{i}$. Phần thực của số phức z là

A. 13.

C. −13.

D. 32.

Câu 3: Cho số phức z = a + bi. Khi đó số $\frac{1}{2i}(z - \overline{z})$ là

A. Môt số thực.

C. i.

D. Một số thuần ảo.

Câu 4: Cho số phức $z = \frac{i-m}{1-m(m-2i)} (m \in R)$. Giá trị của m để |z| lớn nhất là

A. m = 1.

C. $m = \frac{1}{2}$.

D. m = 0.

Câu 5: Môđun của số phức z thoả mãn $z + (2+i)\overline{z} = 3 + 5i$ là

B. $\sqrt{15}$.

Câu 6: Toạ độ điểm M biểu diễn số phức z=i-2 là

A. M = (2;-1).

B. M = (1, -2).

C. M = (2;1).

Câu 7: Trong tập hợp số phức C, giá trị của biểu thức $S = 1 + i + i^2 + i^3 + ... + i^{2016}$ là

A. 1

D. -2017

Câu 8: Số phức z thoả mãn |z| = 5 và phần thực của z bằng hai lần phần ảo của nó.

A. $\begin{bmatrix} z = 2\sqrt{5} + i\sqrt{5} \\ z = -2\sqrt{5} - i\sqrt{5} \end{bmatrix}$ B. $\begin{bmatrix} z = -2\sqrt{5} + i\sqrt{5} \\ z = 2\sqrt{5} - i\sqrt{5} \end{bmatrix}$ C. $\begin{bmatrix} z = \sqrt{5} + 2\sqrt{5}i \\ z = -\sqrt{5} - 2\sqrt{5}i \end{bmatrix}$ D. $\begin{bmatrix} z = -\sqrt{5} + 2\sqrt{5}i \\ z = \sqrt{5} - 2\sqrt{5}i \end{bmatrix}$

Câu 9: Giả sử A, B theo thứ tự là điểm biểu diễn của các số phức $z_1 = a_1 + b_1 i$ và $z_2 = a_2 + b_2 i$. Khi đó độ dài của vécto AB bằng

A. $|z_2 + z_1|$

B. $|z_1| + |z_2|$ **C.** $|z_1| - |z_2|$ **D.** $|z_2 - z_1|$

Câu 10: Cho số thực k >0 để bình phương của số phức $z = \frac{k+9i}{1-i}$ là số thực. Khi đó $A = \log_{\sqrt[3]{3}} k$ bằng

B. 3

Câu 11: Cho hai số phức z_1, z_2 sao cho $|z_1 + z_2| = 3$; $|z_1| = |z_2| = 2$. Môđun của số phức $z_1 - z_2$ bằng

B. $\sqrt{3}$.

 \mathbf{C} , $\sqrt{7}$.

Câu 12: Trong mặt phẳng Oxy, tập hợp các điểm biểu diễn cho số phức z thoả mãn z² là một số ảo là

A. Trục hoành. **B.** Trục tung. **C.** Hai đường thẳng $y = \pm x$.

D. Đường tròn $x^2 + y^2 = 1$.

Câu 13: Môđun của số phức z thoả mãn $\frac{1-i}{z} = \frac{(2-3i)z}{|z|^2} + 2-i$ bằng

A. 4

D. 5

Câu 14: Biết nghịch đảo của số phức z là liên hợp của nó. Chọn mệnh đề đúng

A. |z| = 2.

B. |z| = 1.

C. z là số thực.

D. z là số thuần ảo.

Câu 15: Trong mặt phẳng phức, gọi A, B, C lần lượt là các điểm biểu diễn của các số phức $z_1 = -1 + 3i$, $z_2 = 1$ +5i, $z_3 = 4 + i$. Số phức z có điểm biểu diễn là điểm D sao cho tứ giác ABCD là một hình bình hành là

A. z = 6 + 3i

B. z = 2 - i

C. z = 2 + i

D. z = 6 - 3i

Câu 16: Môđun của số phức z thoả mãn $\frac{2+i}{1-i}z = \frac{-1+3i}{2+i}$ là

A.
$$\sqrt{5}$$
 .

B.
$$\frac{\sqrt{5}}{5}$$
.

C.
$$\frac{2\sqrt{5}}{5}$$
.

D.
$$\frac{3\sqrt{5}}{5}$$
.

Câu 17: Cho số phức z thỏa mãn |z-1|=|z-2+3i|. Tập hợp các điểm biểu diễn của số phức z là:

- **A.** Đường thẳng có phương trình 2x 6y + 12 = 0. **B.** Đường thẳng có phương trình x 5y 6 = 0.
- C. Đường thẳng có phương trình x 3y 6 = 0.
- **D.** Đường tròn tâm I(1; 2) bán kính R=1.

Câu 18: Số phức nghịch đảo của số phức $z = 1 - \sqrt{3}i$ là:

A.
$$\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

B.
$$1 + \sqrt{3}i$$

C.
$$\frac{1}{4} + \frac{\sqrt{3}}{4}i$$
 D. $-1 + \sqrt{3}i$

D. -1 +
$$\sqrt{3}$$
i

Câu 19: Trên mặt phẳng toạ độ, để tập hợp điểm biểu diễn các số phức z nằm trong phần gạch chéo (kể cả biên) ở hình vẽ bên thì điều kiện của z là:

A. $|z| \le 1$ và phần ảo thuộc đoạn $\left[\frac{-1}{2}; \frac{1}{2}\right]$. **B.** $|z| \le \frac{1}{2}$ và phần ảo thuộc đoạn $\left[\frac{-1}{2}; \frac{1}{2}\right]$.

C. $|z| \le \frac{1}{2}$ và phần thực thuộc đoạn $\left[\frac{-1}{2}; \frac{1}{2} \right]$. D. $|z| \le 1$ và phần thực thuộc đoạn $\left[\frac{-1}{2}; \frac{1}{2} \right]$.

Câu 20: Trong mặt phẳng Oxy, tập hợp các điểm biểu diễn số phức z thoả mãn điều kiện |z-1+2i|=4 là một đường tròn tâm I có toa đô là

A.
$$I(-1;-2)$$
.

B.
$$I(2;-1)$$
.

D.
$$I(1;-2)$$
.

Câu 21: Trong tập số phức C, cho phương trình $z^2 + az + b = 0$ $(a, b \in R)$ nhận số phức z = 1 + i làm nghiệm. Khi đó a.b bằng

Câu 22: Cho số phức z thỏa mãn |z-2-2i|=1. Tập hợp điểm biểu diễn số phức z-i trong mặt phẳng toạ độ là đường tròn có phương trình

A.
$$(x-2)^2 + (y-1)^2 = 1$$
.

B.
$$(x+2)^2 + (y-1)^2 = 1$$
.

C.
$$(x-2)^2 + (y-2)^2 = 1$$
.

D.
$$(x+2)^2 + (y+1)^2 = 1$$
.

Câu 23: Cho số phức z thoả mãn |iz+1|=3. Giá trị nhỏ nhất của |z| là

Câu 24: Trong tập số phức C, chọn phát biểu đúng

A.
$$z + \overline{z}$$
 là số thuần ảo. **B.** $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$. **C.** $z^2 - (\overline{z})^2 = 4ab$. **D.** $|z_1 + z_2| = |z_1| + |z_2|$.

C.
$$z^2 - (\bar{z})^2 = 4ab$$

D.
$$|z_1 + z_2| = |z_1| + |z_2|$$

Câu 25: Gọi z_1, z_2 là hai nghiệm phức của phương trình: $z^2 - z + 2 = 0$. Phần thực của số phức $((i-z_1)(i-z_2))^{2017}$ là

A.
$$-2^{2016}$$
.

B.
$$2^{2016}$$
.

$$C. 2^{1008}$$
.

$$\mathbf{D}. -2^{1008}$$
.