Implémentation d'algorithmes de décision pour la fonctionnalité et la sous-séquentialité de transducteurs finis

Hugo Allard

Université de Mons

07/09/2015

Sommaire

- Automates finis
- 2 Transducteurs finis
- Transducteurs fonctionnels
- Transducteurs sous-séquentiels
- Conclusion

Automates finis

- ullet Accepte des mots sur un alphabet Σ
- ullet Reconnaît un langage $\subseteq \Sigma^*$

Définition

Un automate fini sur l'alphabet Σ est un quintuplet $\mathscr{A}=(\Sigma,Q,I,F,\delta)$ où

- Σ est l'alphabet d'entrée,
- Q est l'ensemble fini des états,
- I est l'ensemble des états initiaux,
- $F \subseteq Q$ est l'ensemble des états finaux,
- $\delta \subseteq Q \times \Sigma \times Q$ est la relation de transition.

$$L(\mathscr{A}) = \{ w \in \Sigma^* \mid \exists \text{ un chemin réussi pour } w \}$$

Automates finis

Non-déterministe (NFA)

Déterministe (DFA)

Automates finis

- Les automates sont clos pour les opérations booléennes
- La plupart des problèmes de décisions sont décidables
- Pour chaque NFA, il existe un DFA équivalent
- Les automates caractérisent les langages rationnels

$$NFA \equiv DFA$$

Sommaire

- Automates finis
- 2 Transducteurs finis
- Transducteurs fonctionnels
- Transducteurs sous-séquentiels
- Conclusion

- Automate augmenté d'un mécanisme de sortie
- ullet Transforme des mots de Σ^* en des mots de Δ^*
- Réalise une transduction $\subseteq \Sigma^* \times \Delta^*$

Définition

Un transducteur fini de Σ à Δ est une paire $\mathscr{T}=(\mathscr{A},\Omega)$ où

- Δ est l'alphabet de sortie,
- $\Omega: \delta \to \Delta$ est le morphisme de sortie.
- Non déterministe (NFT) si A est non déterministe
- Déterministe (DFT) si 🖋 est déterministe

Déterministe (DFT)

Exemple

Retire tous les symboles b d'une entrée sur $\{a, b\}^*$.

- Un seul chemin compatible avec chaque entrée!
 - → Une seule sortie possible pour une entrée

Non-déterministe (NFT)

Exemple

$$R(\mathscr{T}): \begin{cases} ab^n a \mapsto aa \\ ab^n a \mapsto ac^n a \end{cases}$$

- Plusieurs chemins compatibles pour une même entrée!
 - → Plusieurs sorties possibles pour une même entrée

DFT

- Appartenance facilement décidable
- Inclusion/équivalence décidables en PTime
- Moins expressif car réalise forcément une fonction

NFT

- Appartenance nécessite du backtracking
- Inclusion/équivalence indécidables
- Plus expressif

Sommaire

- Automates finis
- 2 Transducteurs finis
- Transducteurs fonctionnels
- Transducteurs sous-séquentiels
- Conclusion

Définition

Une transduction $R \subseteq \Sigma^* \to \Delta^*$ est fonctionnelle si pour tout mot $u \in \Sigma^*$ il existe au plus un mot $v \in \Delta^*$ tel que $(u, v) \in R$.

- Un transducteur est fonctionnel si il réalise une transduction fonctionnelle.
- Un DFT est forcément fonctionnel.
- Un NFT peut être fonctionnel.

Définition

Une transduction $R \subseteq \Sigma^* \to \Delta^*$ est fonctionnelle si pour tout mot $u \in \Sigma^*$ il existe au plus un mot $v \in \Delta^*$ tel que $(u, v) \in R$.

- Un transducteur est fonctionnel si il réalise une transduction fonctionnelle.
- Un DFT est forcément fonctionnel.
- Un NFT peut être fonctionnel.

Théorème

L'inclusion et l'équivalence pour un NFT fonctionnel sont PSpace-C.

NFT fonctionnel 1

Exemple

Remplace les espaces (_) consécutifs par un simple espace et retire les espaces en fin de mot.

1. Exemple d'Emmanuel Filiot

Théorème (Schutzenberger, 1975)

La fonctionnalité est une propriété décidable pour NFT.

Proposition

Soient $u, v, w \in \Sigma^*$

Si u et v sont tous deux préfixes de w alors u et v sont comparables.

Décider la fonctionnalité

Sorties pour abcd : $\begin{cases} c \\ c \end{cases}$

Sorties pour abcd :
$$\begin{cases} dc \\ d \end{cases}$$

Sorties pour abcd :
$$\begin{cases} dcb \\ dcba \end{cases}$$

Sorties pour
$$abcd: \begin{cases} dcba \\ dcba \end{cases}$$

Décider la fonctionnalité

A faire pour chaque paire de chemins réussis sur une même entrée!

Calcul du carré d'un transducteur

Pour un transducteur $\mathscr{T}=(\mathscr{A}=(\Sigma,Q,I,F,\delta),\Omega)$ de Σ à Δ .

- Les états de \mathscr{T}^2 sont l'ensemble $Q \times Q$
- Pour chaque paire de transitions $p \xrightarrow{a/u} q$ et $r \xrightarrow{a/v} s$ on crée une transition $(p,r) \xrightarrow{a/(u,v)} (q,s)$
- ullet Transducteur carré de Σ à $\Delta imes \Delta$
- Crée potentiellement des états inutiles
- Complexité en $O(|Q|^2 + |\delta|^2)$

Dans ${\mathscr T}$:

Dans $\mathscr{T} \times \mathscr{T}$:

$$2,6 \xrightarrow{c/(b,cba)} 3,7$$

 $\mathscr{T} \times \mathscr{T}$:

Définition (retard)

On définit le retard entre u et v comme delay(u, v) = (u', v') tel que

- u = lu',
- v' = lv' et
- I = lcp(u, v)

Exemple: delay(abbc, abc) = (bc, c).

Retard en (1,5) :
$$delay(d,d) = (\varepsilon, \varepsilon)$$

Retard en
$$(2,6)$$
: $delay(c,\varepsilon) = (c,\varepsilon)$

Retard en
$$(3,7)$$
: $delay(cb, cba) = (\varepsilon, a)$

Décider la fonctionnalité

Retard en (4,8): $delay(a, a) = (\varepsilon, \varepsilon)$

- A faire pour chaque chemin réussi de \mathcal{T}^2 !
- ullet Fonctionnel si le retard calculé à chaque état final de \mathscr{T}^2 est (arepsilon,arepsilon)
 - \rightarrow Simple parcours de $\mathcal{T}^2 \Rightarrow$ linéaire en $|Q|^2$.

Sommaire

- Automates finis
- Transducteurs finis
- Transducteurs fonctionnels
- Transducteurs sous-séquentiels
- Conclusion

Définition

Un transducteur sous-séquentiel est une paire $(\mathcal{T}, \Omega_f : F \to \Delta^*)$ où

- T est un transducteur déterministe
- ullet Ω_f associe une sortie à chaque état final, concaténée à la suite du mot produit
- Plus expressif que DFT
- Mêmes propriétés de décision que DFT
- Très intéressant en pratique

Déterminisation : étendre la construction des sous-ensembles

Déterminisation : étendre la construction des sous-ensembles

Définition (Condition de jumelage)

Un transducteur vérifie la condition de jumelage si pour toute situation

On a $delay(v_1, w) = delay(v_1v_2, w_1w_2)$.

Théorème (Choffrut, 1977)

Un transducteur est sous-séquentialisable si et seulement si il vérifie la condition de jumelage.

Sommaire

- Automates finis
- 2 Transducteurs finis
- Transducteurs fonctionnels
- Transducteurs sous-séquentiels
- Conclusion

Conclusion

$$DFT \subsetneq SSNFT \subsetneq FNFT \subsetneq NFT$$

- Implémentation JAVA des transducteurs
- Implémentation de fonctionnalité, sous-séquentialité, déterminisation

Questions

Questions