Versuch 302

Elektrische Brückenschaltungen

Nico Schaffrath Mira Arndt nico.schaffrath@tu-dortmund.de mira.arndt@tu-dortmund.de

Durchführung: 19.11.2019 Abgabe: 26.11.2019

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziel		3
2	The	eorie	3
	2.1	Wheatstonesche Brücke	4
	2.2	Kapazitätsmessbrücke	5
	2.3	Induktivitätsmessbrücke	5
	2.4	Maxwell-Brücke	6
	2.5	Wien-Robinson-Brücke	7
	2.6	Fehlerrechnung	7
3	Dur	chführung	8
	3.1	Wheatstonesche Brücke	8
	3.2	Kapazitätsmessbrücke	8
	3.3	Induktivitätsmessbrücke	8
	3.4	Maxwell-Brücke	8
	3.5	Wien-Robinson-Brücke	9
4	Aus	wertung	9
	4.1	Wheatstonesche Brücke	9
	4.2	Kapazitätsmessbrücke	10
	4.3	Induktivitätsmessbrücke	11
	4.4	Maxwell-Brücke	12
	4.5	Frequenzabhängigkeit der Brückenspannung einer Wien-Robinsson-Brücke	12
	4.6	Klirrfaktormessung	14
5	Disk	kussion	16
Lit	teratı	ur	16

1 Ziel

Bei diesem Versuch sollen zunächst verschiedene elektronische Bauteile durch passende Brückenschaltungen vermessen werden. Außerdem soll die Frequenzabhängigkeit der Brückenspannung einer Wien-Robinson-Brücke und der Klirrfaktor des verwendeten Generators bestimmt werden.

2 Theorie

Brückenschaltungen werden in der Messtechnik eingesetzt um die Auflösung einer Messung zu erhöhen oder eine pysikalische Größe, die sich als elektrischer Widerstand darstellen lässt, zu bestimmen.

Dafür muss eine Abgleichbedingung der Brückenschaltung erfüllt sein. Generell benötigt eine Brückenschaltung eine Speisespannung U_S , den zu ermittelnden elektrischen Widerstand und bekannte elektrische Bauteile um ein Widerstandsverhältnis zu bestimmen. Die Abgleichbedingung besteht darin, dass die Brückenspannung U_{Br} zwischen zwei Punkten verschwindet.

Abbildung 1: Allgemeine Funktionsweise einer Brückenschaltung[1, S. 216]

Ist die Abgleichbedingung erfüllt kann aus dem Widerstandsverhältnis der unbekannte Widerstand bestimmt werden.

Dieses Verhältnis ergibt sich aus den beiden Kirchhoffschen Gesetzen

$$\sum_{k} I_k = 0 \tag{1}$$

$$\sum_{k} U_k = 0, \tag{2}$$

die besagen, dass die Summe aller eingehenden Ströme eienes Knotens gleich der Summe aller ausgehenden Ströme ist und die Summe aller Spannungen in einer Masche immer Null ist. Dadurch lässt sich die Brückenspannung als

$$U_{Br} = \frac{R_2 R_3 - R_1 R_4}{(R_3 + R_4)(R_1 + R_4)} U_S \tag{3}$$

ausdrücken. Sobald ${\cal U}_{Br}$ verschwindet gilt unabhängig von der Speisespannung ${\cal U}_S$

$$R_2 R_3 = R_1 R_4. (4)$$

2.1 Wheatstonesche Brücke

Abbildung 2: Aufbau der Wheatstoneschen Brücke[1, S. 219]

Bei der Wheatstoneschen Brücke sind alle Widerstände Ohmsche Widerstände wobei ${\cal R}_x$ unbekannt ist und sich mit Gleichung 4 durch

$$R_x = R_2 \frac{R_3}{R_4} \tag{5}$$

bestimmen lässt. R_3 und R_4 sind dabei durch ein Potentiometer realisiert, da zur Berechnung nur ihr Verhältnis relevant ist.

2.2 Kapazitätsmessbrücke

Abbildung 3: Aufbau der Kapazitätsmessbrücke[1, S. 220]

Mit der Kapazitätsmessbrücke lässt sich eine unbekannte Kapazität C_x ermitteln. Da es sich bei einer Kapazität um einen komplexen Widerstand handelt muss diese Schaltung mit Wechselstrom betrieben werden Der Innenwiderstand des Kondensators wird durch einen unbekannten Ohmschen Widerstand R_x ausgedrückt. Aus Gleichung 4 ergeben dich die zu ermittelnden Größen als

$$R_X = R_2 \frac{R_3}{R_4} (6)$$

und

$$C_x = C_2 \frac{R_4}{R_3}. (7)$$

2.3 Induktivitätsmessbrücke

Abbildung 4: Aufbau der Induktivitätsmessbrücke[1, S. 221]

Analog zu 2.2 wird wieder Wechselstrom verwendet, da es sich bei der zu bestimmenden unbekannten Induktivität L_x ebenfalls um einen komplexen Widerstand handelt. Auch

hier gibt es einen unbekannten ohmschen Widerstand R_x der den inneren Widerstand der Spule darstellt. Ähnlich wie bei 2.2 lassen sich R_x und L_x mit Glechung 4 durch

$$R_x = R_2 \frac{R_3}{R_4} \tag{8}$$

und

$$L_x = L_2 \frac{R_3}{R_4} \tag{9}$$

berechnen.

2.4 Maxwell-Brücke

Abbildung 5: Aufbau der Maxwell-Brücke[1, S. 222]

Diese Schaltung unterscheidet sich von 2.3 vor allem dadurch, dass zur Bestimmung der Induktivität L_x keine bereits bekannte Induktivität nötig ist, sondern nur eine bekannte Kapazität C_4 . Der Abgleich ist bei diesem Aufbau optimal durchführbar wenn die Wirk- und Blindwiderstände die gleiche Größenordnung besitzen. L_x und R_x können mit Gleichung 4 durch

$$R_x = R_2 \frac{R_3}{R_4} \tag{10}$$

und

$$L_x = R_2 R_3 C_4 \tag{11}$$

berechnen.

2.5 Wien-Robinson-Brücke

Abbildung 6: Aufbau der Wien-Robinson-Brücke[1, S. 223]

Anders als bei den anderen Schaltungen ist die Wien-Robinson-Brücke frequenzabhängig. Bei einer festen Speisespannung U_S hängt das Verhältnis $|\frac{U_{Br}}{U_S}|$ also bei bekannten elektrischen Bauteilen nur von der Frequenz v der Speisespannung ab. Aus Gleichung 3 folgt

$$U_{Br} = \frac{\omega^2 R^2 C^2 - 1}{3(1 - \omega^2 R^2 C^2) + 9i\omega RC} U_S$$
 (12)

$$\iff \left| \frac{U_{Br}}{U_S} \right|^2 = \frac{1}{9} \frac{(\Omega^2 - 1)^2}{(1 - \Omega^2)^2 + 9\Omega^2} \quad \text{mit} \quad \Omega := \frac{\omega}{\omega_0}. \tag{13}$$

Mit Hilfe der Wien-Robinson-Brücke lässt sich außerdem der Klirrfaktor k des verwendeten Generators bestimmen. Der Klirrfaktor ist ein Maß des Oberwellengehalts im Vergleich zur Grundwelle und berechnet sich durch die Formel

$$k := \frac{\sqrt{U_2^2 + U_3^2 + \cdots}}{U_1},\tag{14}$$

wobei U_1 die Amplitude der Grundwelle ist und U_n Die Amplituden der Oberwellen. Mit der vereinfachten Annahme, dass die Summe der Oberwellen nur aus der zweiten Oberwelle besteht wird dies zu

$$k = \frac{U_2}{U_1} \tag{15}$$

2.6 Fehlerrechnung

Bei der Auswertung werden die Mittelwerte der errechneten Größen durch die Formel

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{16}$$

berechnet. Der dazu gehörige Standardfehler des Mittelwerts berechnet sich durch

$$\Delta \bar{x} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (x_i - \bar{x})}.$$
 (17)

«««< HEAD Der Prozentuale Fehler x_p eines Messwertes x_M zum Theoriewert x_T lässt sich durch die Formel

$$x_p = 100 \cdot \left(\frac{x_T - x_M}{x_T}\right) \tag{18}$$

ermitteln. =======

DENK AN DAS MESSHEFT!!!! »»»> 833f6779f77131124c17ef9db2e6ca28e24fca88

3 Durchführung

Die Schaltungen werden jeweils wie auf den Schaltbildern bei 2 aufgebaut. Dabei beträgt die Speisespannung 2,5V. Die Brückenspannung wird mit einem Oszilloskop gemessen.

3.1 Wheatstonesche Brücke

Der unbekannte Widerstand ist der Ohmsche Widerstand Wert 11. Es werden drei Messungen durchgeführt bei denen jeweils Der Widerstand R_2 variiert wird. Das Potentiometer wird so eingestellt, dass die Brückenspannung verschwindet und die Werte für R_3 und R_4 werden zusätzlich zu R_2 festgehalten.

3.2 Kapazitätsmessbrücke

Die unbekannte Kapazität ist teil einer RC-Kombination, bei der direkt auch der unbekannte Ohmsche Widerstand realisiert ist. Bei den ersten beiden Messungen wird die bekannte Kapazität C_2 variiert und bei der dritten Messung eine andere unbekannte Kapazität mit Wert 3 und ein anderer unbekannter ohmscher Widerstand mit Wert 10 gemessen. Auch hier wird wie oben das Potentiometer passend eingestellt und die entsprechenden Werte notiert.

3.3 Induktivitätsmessbrücke

Hier ist die unbekannte Induktivität teil einer LR-Kombination mit Wert 18. Es werden drei Messungen mit jeweils anderen Widerständen R_2 durchgeführt indem wieder das Potentiometer eingestellt und die Werte aufgenommen werden.

3.4 Maxwell-Brücke

Es wird die gleiche LR-Kombination wie bei 3.3 vermessen. Es erfolgen wieder drei Messungen mit variiertem R_2 . Diesmal wird jedoch nur R_3 durch das Potentiometer angepasst bis die Brückenspannung verschwindet und der Wert festgehalten.

3.5 Wien-Robinson-Brücke

Bei diesem Aufbau werden die elektrischen Bauteile nicht ausgewechselt sondern nur die Frequenz am Generator variiert. Zunächst wird die Frequenz v_0 eingestellt bei der die Brückenspannung minimal wird. Um diesem Bereich werden 10 Messungen durchgeführt bei denen die Frequenz jeweils um 10 Hz variiert wird. Weiter entfernt vom Minimum werden weitere 14 Messungen mit Frequenzabständen von 50 Hz vorgenommen.

4 Auswertung

Im Folgenden wurden die baubedingten Fehler sämtlicher Bauteile vernachlässigt und treten somit auch nicht in den Fehlerrechnungen auf. Diese beschränken sich lediglich auf die Berechnung der Mittelwerte, sowie die damit verbundenen Fehler der Standartabweichungen.

4.1 Wheatstonesche Brücke

Mit den verwendeten Widerständen, die in Tabelle 1 aufgeführt wurden, lassen sich durch Gleichung (VERWEIS AUF GLEICHUNG) folgende Werte für den unbekannten Widerstandswert R_{11} berechnen:

$$\begin{split} R_{11,1} &= 491,821\,\Omega\\ R_{11,2} &= 492,794\,\Omega\\ R_{11,3} &= 490,313\,\Omega \end{split}$$

Über die zuvor aufgeführte Gleichungen (VERWEIS AUF GLEICHUNGEN) lässt sich der Mittelwert

$$\bar{R}_{11} = 491,643 \,\Omega,$$

samt zugehörigem Fehler der Standartabweichung

$$\Delta R_{11} = 0,722\,\Omega$$

ermitteln.

Das zusammengefasste Ergebnis für den, mithilfe der Wheatstonesche Brückenspannung, berechneten Widerstandswert lautet demnach

$$R_{11} = (491, 643 \pm 0, 722)\,\Omega.$$

Messung	R_2/Ω	R_3 / Ω	R_4 / Ω
1	332	597	403
2	664	426	574
3	1000	329	671

Tabelle 1: Text

4.2 Kapazitätsmessbrücke

Unter Verwendung der oben ausgeführten Gleichung (BEZUG AUF GLEICHUNG), sowie der aufgenommenen Messwerte aus Tabelle ??, können die Werte

$$\begin{split} R_{15,1} &= 538.899\,\Omega \\ R_{15,2} &= 474.937\,\Omega \end{split}$$

für den ohmschen Widerstand und

$$\begin{split} C_{15,1} &= 491.625\,\mathrm{n}\Omega \\ C_{15,2} &= 629.986\,\mathrm{n}\Omega \end{split}$$

für die Kapazität des Kondensators in der RC-Kombination Nummer 15 ermittelt werden. Mithilfe der Gleichung (VERWEIS AUF GLEICHUNG) lässt sich

$$R_{15} = (506.918 \pm 50.566) \,\Omega$$

und

$$C_{15} = (560.806 \pm 67.181) \,\mathrm{nF}$$

als Mittelwert samt Fehler der Standartabweichung für den ohmschen Widerstand beziehungsweise der Kapazität der RC-Kombination Nummer 15 benennen.

Im Folgenden setzt sich die RC-Kombination aus dem Kondensator Nummer 3 und dem Widerstand Nummer 10 zusammen. Weiterhin können die in Tabelle (VERWEIS AUF TABELLE) aufgeführten Messwerte verwendet werden, um über Gleichung (VERWEIS AUF GLEICHUNG)

$$R_{10.1} = 239.429 \,\Omega$$

als ohmschen Widerstand von Bauteil Nummer 10 und

$$C_{3.1} = 553.267 \,\mathrm{nF}$$

als Kapazität des Bauteils Nummer 3 zu identifizieren. Da nur eine Messung durchgeführt wurde, können lediglich $R_{10,1}$ und $C_{3,1}$ angegeben werden, nicht aber Mittelwerte beziehungsweise Fehler der Standartabweichungen.

Messung	R_2/Ω	R_3 / Ω	R_4 / Ω	C_2 / F
1	664	448	552	$399 \cdot 10^{-9}$
2	664	417	583	$450\cdot10^{-9}$

Tabelle 2: Text2 WERT 15

Messung	R_2/Ω	R_3/Ω	R_4/Ω	C_2 / F
1	332	419	581	$399\cdot10^{-9}$

Tabelle 3: Text2 WERT 3 (C) und WERT 10 (R)

4.3 Induktivitätsmessbrücke

Für diesen Teil des Versuchs können die Werte aus Tabelle (VERWEIS AUF TABEL-LE) und die Gleichung (VERWEIS AUF GLEICHUNG) verwendet werden, sodass die Ergebnisse der Einzelmessungen die Werte

$$\begin{split} R_{18,1} &= 3184.100\,\Omega \\ R_{18,2} &= 1130.555\,\Omega \\ R_{18,3} &= 2114.243\,\Omega \end{split}$$

für den Verlustwiderstand R_{18} und

$$\begin{split} L_{18,1} &= 46.448\,\mathrm{mH} \\ L_{18,2} &= 49.717\,\mathrm{mH} \\ L_{18,3} &= 46.488\,\mathrm{mH} \end{split}$$

für die Induktivität L_{18} der LR-Kombination liefern. Unter der Zuhilfenahme von Gleichung (VERWEIS AUF GLEICHUNG) lassen sich R_{18} und L_{18} durch ihre Mittelwerte und Fehler der Standartabweichungen

$$\begin{split} R_{18} &= (2142.966 \pm 592.981)\,\Omega \\ L_{18} &= (47.564 \pm 1.076)\,\mathrm{H} \end{split}$$

angeben.

Messung	R_2/Ω	R_3 / Ω	R_4/Ω	L_2/H
1	1000	761	239	$14.6 \cdot 10^{-3}$
2	332	773	227	$14,6 \cdot 10^{-3}$
3	664	761	239	$14,6 \cdot 10^{-3}$

Tabelle 4: Text4

4.4 Maxwell-Brücke

Um den Verlustwiderstand R_{18} , sowie die Induktivität L_{18} , der LR-Kombination ein weiteres Mal zu errechnen, sollen nun die Werte aus Tabelle (VERWEIS AUF TABELLE) und die beiden Gleichungen (VERWEIS AUF GLEICHUNGEN) verwendet werden. Somit ergeben sich für R_{18}

$$\begin{split} R_{18,1} &= 208.000\,\Omega \\ R_{18,2} &= 204.000\,\Omega \\ R_{18,3} &= 204.819\,\Omega \end{split}$$

Ein analoges Vorgehen ergibt

$$\begin{split} L_{18,1} &= 51.792\,\mathrm{mH} \\ L_{18,2} &= 50.796\,\mathrm{mH} \\ L_{18,3} &= 51.000\,\mathrm{mH} \end{split}$$

als Werte für L_{18} . Daran geschlossen können die beiden gesuchten Größen unter Verwendung von Gleichung ab (VERWEIS AUF GLEICHUNG) über die Mittelwerte der Messungen, sowie den Fehler der Standartabweichung angegeben werden. Folglich ergibt sich

$$R_{18} = (205.606 \pm 1.220)\,\Omega$$

für den Verlustwiderstand R_{18} und

$$L_{18} = (51.196 \pm 0.304)\,\mathrm{mH}$$

für die Induktivität L_{18} der LR-Kombination.

4.5 Frequenzabhängigkeit der Brückenspannung einer Wien-Robinsson-Brücke

Um den Theoriewert für ν_0 zu erhalten, muss zunächst ω_0 mit

$$\omega_0 = \frac{1}{R \cdot C}$$

Messung	R_2/Ω	R_3 / Ω	R_4/Ω	C_4 / F
1	332	208	332	$750\cdot10^{-9}$
2	664	102	332	$750\cdot 10^{-9}$
3	1000	68	32	$750 \cdot 10^{-9}$

Tabelle 5: Text5

berechnet werden. Durch Einsetzen der Größen, die in der Tabelle (VERWEIS AUF TABELLE) aufgeführt sind, ergibt sich

$$\omega_0 = \frac{1}{1000 \,\Omega \cdot 420 \,\mathrm{nF}} = 2380.952 \,\mathrm{Hz} \tag{19}$$

als Kreisfrequenz. Nach Umrechnung der Kreisfrequenz ω_0 in die Frequenz ν_0 mithilfe von

$$\nu_0 = \frac{\omega_0}{2 \cdot \pi} \tag{20}$$

ergibt sich der Theoriewert

$$\nu_0 = \frac{2380.952 \,\text{Hz}}{2 \cdot \pi} = 378.94 \,\text{Hz} \tag{21}$$

für die Kreisfrequenz, bei der die minimale Brückenspannung U_{Br} gemessen werden kann. In Abbildung (VERWEIS AUF DIE ABBILDUNG) wurden die Messwerte, ebenso wie die mit Gleichung (VERWEIS AUF GLEICHUNG) berechneten Werte für die Theoriekurve, aufgetragen. Auf der x-Achse ist das Verhältnis Ω von ν zu ν_0 logarithmisch aufgetragen, wohingegen die y-Achse das Verhältnis von der Brückenspannung U_{Br} zu der Speisespannung U_S widergibt. Es fällt auf, dass der prozentuale Fehler des gemessenen Wertes für ν_0 mit

$$\Delta_n \nu = 0.2789 \%$$

gering ausfällt. Weiterhin ist zu beobachten, dass die Messwerte um das Frequenzverhältnis $\Omega=1$ herum sehr nah an der Theoriekurve liegen. Allerdings vergrößtert sich die Abweichung von Theoriekurve zu den aufgenommenen Messwerten zunächst, je weiter das Frequenzverhältnis von dem Wert eins abweicht. Für Frequenzverhältnisse, die sich dem Wert Null annähert, ist zu beobachten, das Theoriekurve und Messwerte nicht weiter auseinanderlaufen. Im Gegensatz dazu lässt sich dieses Verhalten für Frequenzverhältnisse $\Omega>0$ nicht beobachten.

Abbildung 7: TITEL

$2R'/\Omega$	R' / Ω	R/Ω	C_4 / F
664	332	1000	$420\cdot 10^{-9}$

Tabelle 6: Text5

4.6 Klirrfaktormessung

Zuletzt soll eine Näherung für den Klirrfaktor k mit Gleichung (VERWEIS AUF GLEICHUNG) ermitteln werden, wobei davon ausgegangen werden soll, dass $U_i=0\,\mathrm{V}$ mit $i\,>\,2$ gilt.

Dafür soll zunächst das Spannungsverhältnis $|\frac{U_{Br}}{U_S}|$ für $\Omega=2$ ermittelt werden. Dieses ergibt sich durch Verwendung von Gleichung (VERWEIS AUF GLEICHUNG) und liefert

$$f(2) = \frac{1}{9} \cdot \frac{(\varOmega^2 - 1)^2}{(1 - \varOmega^2)^2 + 9 \cdot \varOmega^2} = \frac{\sqrt{5}}{15} = \frac{1}{\sqrt{45}}$$

als Wert. Bevor der Klirrfaktor k nun ermittelt werden kann, müssen zunächst die Amplituden U_1 und U_2 berechnet werden. Die Amplitude der Grundwelle U_1 entspricht der Speisespannung U_S , von der bereits der Effektivwert gegeben ist, wohingegen die Amplitude U_2 der Spannung der 2-ten Oberwelle entspricht und für den vorliegenden

U_S / mV	U_{Br}/mV	Ω	ν/H
2500	1320	0.0789	30
2500	1200	0.2105	80
2500	880	0.3221	130
2500	640	0.4737	180
2500	460	0.6053	230
2500	268	0.7368	280
2500	128	0.8684	330
2500	94.4	0.8947	340
2500	70.4	0.9211	350
2500	44.0	0.9474	360
2500	21.6	0.9737	370
2500	13.6	1.0000	380
2500	30	1.0263	390
2500	52	1.0526	400
2500	78	1.0789	410
2500	96	1.1053	420
2500	118	1.1316	430
2500	208	1.2631	480
2500	296	1.3947	530
2500	400	1.5263	580
2500	472	1.6579	630
2500	536	1.7894	680
2500	584	1.9210	730
2500	640	2.0526	780

Tabelle 7: Text5

Versuch mit Gleichung (VERWEIS AUF GLEICHUNG)

$$U_2 = \frac{9.6166\,\mathrm{mV}}{\sqrt{\frac{1}{45}}} = 0.0645\,\mathrm{V}$$

lautet. Der Effektivwert der Spannung wird mit

$$U_{2,eff} = \frac{U_2}{\sqrt{2}} = 0.0456\,\mathrm{V}$$

errechnet. Mit diesen Werten und Gleichung (VERWEIS AUF GLEICHUNG) ergibt sich

$$k = \frac{U_2}{U_1} = \frac{0.0456 \,\mathrm{V}}{2.5 \,\mathrm{V}} = 0.0182$$

für den gesuchten Klirrfaktor k.

5 Diskussion

Literatur

- [1] TU Dortmund. Versuchsanleitung Brückenschaltungen.
- [2] John D. Hunter. "Matplotlib: A 2D Graphics Environment". Version 1.4.3. In: Computing in Science & Engineering 9.3 (2007), S. 90–95. URL: http://matplotlib.org/.
- [3] Eric O. Lebigot. *Uncertainties: a Python package for calculations with uncertainties.* Version 2.4.6.1. URL: http://pythonhosted.org/uncertainties/.
- [4] Travis E. Oliphant. "NumPy: Python for Scientific Computing". Version 1.9.2. In: Computing in Science & Engineering 9.3 (2007), S. 10–20. URL: http://www.numpy.org/.