- **36.** Encuentre la distancia entre la recta paralela a 3x + 4y = -5 y que pasa por el punto (-1, -1), y el punto de intersección de las rectas -7x + 2y = 4 y 2x 8y = -1.
- *37. Pruebe que la distancia entre el punto (x_1, y_1) y la recta ax + by = c está dada por

$$d = \frac{|ax_1 + by_1 - c|}{\sqrt{a^2 + b^2}}$$

- 38. Suponga que $a_{11}a_{22} a_{12}a_{21} = 0$. Demuestre que las rectas dadas en el sistema de ecuaciones (1.1.1) son paralelas. Suponga que $a_{11} \neq 0$ o $a_{12} \neq 0$ y $a_{21} \neq 0$ o $a_{22} \neq 0$.
- 39. Si existe una solución única al sistema (1.1.1) muestre que $a_{11}a_{22} a_{12}a_{21} \neq 0$.
- **40.** Si $a_{11}a_{22} a_{12}a_{21} \neq 0$ demuestre que el sistema (1.1.1) tiene una solución única.
- **41.** En un zoológico hay aves (de dos patas) y bestias (de cuatro patas). Si el zoológico contiene 60 cabezas y 200 patas, ¿cuántas aves y bestias viven en él?
- 42. Una tienda de helados vende sólo helados con soda y malteadas. Se pone 1 onza de jarabe y 4 onzas de helado en un helado con soda, y 1 onza de jarabe y 3 onzas de helado en una malteada. Si la tienda usa 4 galones de helado y 5 cuartos de jarabe en un día, ¿cuántos helados con soda y cuántas malteadas vende? [Sugerencia: 1 cuarto = 32 onzas, 1 galón = 4 cuartos.]
- 43. La compañía Sunrise Porcelain fabrica tazas y platos de cerámica. Para cada taza o plato un trabajador mide una cantidad fija de material y la pone en la máquina que los forma, de donde pasa al vidriado y secado automático. En promedio, un trabajador necesita tres minutos para iniciar el proceso de una taza y dos minutos para el de un plato. El material para una taza cuesta \$25 y el material para un plato cuesta \$20. Si se asignan \$44 diarios para la producción de tazas y platos, ¿cuántos deben fabricarse de cada uno en un día de trabajo de 8 horas, si un trabajador se encuentra trabajando cada minuto y se gastan exactamente \$44 en materiales?
- **44.** Conteste la pregunta del problema 43 si los materiales para una taza y un plato cuestan ¢15 y ¢10, respectivamente, y se gastan \$24 en 8 horas de trabajo.
- 45. Conteste la pregunta del problema 44 si se gastan \$25 en 8 horas de trabajo.

1.2 *m* ecuaciones con *n* incógnitas: eliminación de Gauss-Jordan y gaussiana

En esta sección se describe un método para encontrar todas las soluciones (si es que existen) de un sistema de m ecuaciones lineales con n incógnitas. Al hacerlo se verá que, igual que en el caso de 2×2 , estos sistemas o bien no tienen solución, tienen una solución única o tienen un número infinito de soluciones. Antes de llegar al método general se verán algunos ejemplos sencillos. Como variables, se usarán x_1, x_2, x_3 , etc., en lugar de x, y, z, \ldots porque la generalización es más sencilla si se usa la notación con subíndices.

Solución de un sistema de tres ecuaciones con tres incógnitas: solución única

Resuelva el sistema

$$2x_1 + 4x_2 + 6x_3 = 18$$

 $4x_1 + 5x_2 + 6x_3 = 24$
 $3x_1 + x_2 - 2x_3 = 4$ (1.2.1)