

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

Fig. 18

FIG. 19

FIG. 20

18/96

FIG. 21

FIG. 22

FIG. 23

FIG. 24

FIG. 25

FIG. 26

FIG. 27

FIG. 28

FIG. 29

FIG. 30a

FIG. 30b

FIG. 30c

FIG. 31

FIG. 32a

FIG. 32b

FIG. 33

FIG. 34a

Fig. 34b

Fig. 34c

FIG. 35a

FIG. 35b

FIG. 36a

Fig. 36b

Fig. 36c

FIG. 37a

Fig. 37b

Fig. 37c

FIG. 38a

Fig. 38b

Fig. 38c

FIGURE 39

FIGURE 40

Parameters Required for Formability Evaluation

- Stress-Strain Properties → 4102
- Optimum combination of the strength & elongation → 4104
- Charpy V-notch impact value → 4106
- Impact tests on notched specimens are used to predict the likelihood of brittle fracture
- Stress Rupture (burst, collapse) → 4106
- Higher strength is better but decreased ductility/toughness
- With increased susceptibility to environmental cracking
- Strain-hardening exponent (n -value) → 4108
- Material with higher strain-hardening exponent can avoid failure during tube expansion
- Plastic strain ratio (r or Lankford - Value) → 4110
- The ratio of the strains occurring in the width and thickness directions. In case greater than 1.0 will be more resistant to thinning and better suited to tubular expansion

FIGURE 41

ENVIRONMENT
SET. THE Standard

EGT Super Pipe Requirements

Absorbed energy
(mln) at -4°F (-20°C)
Longitudinal direction 80 ft-lb
Transverse direction 60 ft-lb Mechanical expansion
Transverse weld area 60 ft-lb

Flare expansion	45% min
Crack-free	
Regular	
Mechanical expansion	
Expansion forces	
Tensile strength	60-120 ksi
Yield strength	40-100 ksi
Y/T ratio	50/85 %max
Elongation	35% min
Width reduction	40% min
Thickness reduction	30% min
Anisotropy	1.5 min

Proprietary/Confidential

FIGURE 42

4200

EGT Pipe Requirements

Absorbed energy (min) at -4°F (-20°C)	45% min
Longitudinal direction	Crack-free, Regular expansion forces
Transverse direction	60 ft-lb
Transverse weld area	60 ft-lb
Flare expansion	Mechanical expansion
Tensile strength	80-100 ksi
Yield strength	60-90 ksi
Y/T ratio	85 %max
Elongation	22% min
Width reduction	30% min
Thickness reduction	35% min
Anisotropy	0.8 min
Defects	4400

ENVIRONMENT
SET. The Standard.

FIGURE 44

EGT Super Pipe Requirements

Absorbed energy (min) at -4°F (-20°C)	Flare expansion	75% min
Longitudinal direction	Crack-free	
Transverse direction	Regular	
Transverse weld area	Mechanical expansion expansion forces	60 ft-lb
		60 ft-lb
	Tensile strength	60-120 ksi
	Yield strength	40-100 ksi
	Y/T ratio	50/85 %max
	Elongation	35% min
	Width reduction	40% min
	Thickness reduction	30% min
	Anisotropy	1.5 min
	Defects	
	Inclusions	
	Phosphor	
	Sulfur	
	Carbon	
	4500	
	ENVVENTURE	
	SET. The Standard.	

Privileged/confidential

FIGURE 45

**Yield Strength Transformation during Expansion
for Dual Phase or TRIP Steel Application**

4602 4608

ENVIRONMENT
SET. The Standard™

FIGURE 46

Privileged/confidential

"History" Pipe Performance (High speed tube welding and optimum reducing technology)

- New metallurgy
- Warm-reducing new manufacturing process
- High strength & excellent formability
- 20 % higher elongation
- High r-value (=strain in different directions)

	Yield kN/mm ²	Tensile kN/mm ²	Elongation %
"History" pipe	76.8	82.8	32
ERW pipe	64.8	85.0	18

Ax⁰⁰

ENVENTURE
SET. The Standard.

FIGURE A7

FIGURE 48

FIGURE 49

Engineering Stress vs. Strain Curve

Hypothetical prediction

ENVVENTURE
SET. the Standard!

FIGURE 50a

Engineering Stress vs. Strain Curve

Hypothetical prediction 5000

WO 2005/017303

PCT/US2004/026345

ENVVENTURE
SET. The Standard.

FIGURE 50b

FIGURE 51

Collapse Improvement Estimation

60°

Friction	Expansion force	Wall thickness	D/t after	Collapse ksi
Current 6" x .305 BSFL lube	0.125	145,900	0.305	237.9
Brighton lube Application	0.075	143,000	0.350	324.3
Best Brighton With grease	0.02	149,900	0.450	5,837
Best lube with 55 ksi steel	0.02	125,800	0.500	5,359
Best lube and steel with 55 ksi yield before and 100 ksi after pipe expansion	0.02	126,800	0.500	844.3

5200

5202

5204

5206

5208

FIGURE 52

Pipe Compositions

Sample	C	Mn	P	S	Si	Cr	Ni	Cr	V	Mo	Nb	Ti
JFE-A	.065	1.44	.01	.002	.24	.01	.01	.02	.04	.01	.03	.01
JFE-B	.18	1.28	.017	.004	.29	.01	.01	.03	.03	.03	.01	.01
6302X52x0.37	.08	.82	.006	.003	.30	.16	.05	.05	.06	.01	.03	.01
6302X52x0.52	.03	.48	.014	.002	.16	.02	.01	.02	.01	.01	.03	.01

6302
6304
6306
6308

FIGURE 53

Tensile Characteristics before and after Mechanical Expansion

5400
5404

**NT 55HE Pipe, 16 %
5408
5410
5412**

Yield KSI	Elongation %	Width reduction %	Wall thickness reduction, %	Anisotropy %	
				Before	After
61.5	62	17	47	.46	.44
74.7	77	14	54	14.5	7.7
21.4	24	28	-18	-4.4	-4.4
Change			%		

FIGURE 54

*Tensile Characteristics before and after
Mechanical Expansion*

5500

JFE "History" Pipe, 15.6 %

	Yield ksi	Yield Yield Elongation % Reduction %	Width Reduction %	Wall Thickness Reduction %	Anisotropy %
Before	61.9	.6	12	15	1.24
After	105	.75	4	13	.94

Change %	-70	.25	-67	27.8	75

Tensile Characteristics before and after Mechanical Expansion

VM 50, 24 %

5606 5608 5610 5612

		VM 50, 24 %			
		5604			
		Before	After	Change	%
Yield	Yield	78	80	10.2	2.6
Elongation	Elongation	20	14	-6	-30
Wall thickness reduction	Wall thickness reduction	47	59	12	+13
Anisotropy	Anisotropy	.72	.60	-.12	-16.7

5606

FIGURE 56

**Tensile Characteristics before and after
Mechanical Expansion**

JFE option A

Yield ksi	Yield ratio	Elongation %	Width reduction %	Wall thickness reduction %	Anisotropy %
57.02	57.64	57.56	57.9	57.12	.93
Before	46.9	.69	52	55	
16 %	65.9	.83	17	51	.78
24 %	68.5	.83	42	54	.76
Change %	46	-20	91	15	2
					18

FIGURE 57

6x100

**Tensile Characteristics before and after
Mechanical Expansion**

WO 2005/017303

PCT/US2004/026345

JFE, option A (#1) 16 %

5802 5804 5806 5808 5810 5812

		Before		After		Change %	
		Yield ksi	Yield ratio	Elongation %	Width reduction %	Wall thickness reduction %	Anisotropy %
Before	47.7	6.9	23	46	53	51	0.81
After	65.9	8.3	17	42	44	49	0.78

5800

FIGURE 58

**Tensile Characteristics before and after
Mechanical Expansion**

JFE, option A (#1) 24 %
 5904 5908 5906 5902

	Yield yield ratio ksi	Elongation elongation %	Width reduction %	Wall thickness reduction %	Anisotropy %
Before	47.7	6.9	23	46	0.81
After	62.3	7.1	12	53	.71
Change	31	14	13	48	12

5900

FIGURE 59

**Tensile Characteristics before and after
Mechanical Expansion**

JFE option B

	Yield ksi	Yield ratio σ_{y2}/σ_{y1}	Elongation% $\delta_{0.2}$	Width reduction %	Wall thickness reduction %	Anisotropy % G_{12}/G_{22}	
Before	57.8	.71	44	43	.93	.87	
16 % Expans.				46		.81	
24 % Expans.			16	38	.86	.81	
Changes %			38	9	-21	13	

6000

FIGURE 60

*Tensile Characteristics before and after
Mechanical Expansion*

6100

JFE, option B (#2) 16 %

6104
6106
6108
6110
6112

Yield ksi	Yield Elongation ratio	Width reduction %	Wall thickness reduction, %	Anisotropy %	
Before	56.4	20	-39	-45	.83
After	74.8	14	33	41	.75
Change	33	26	70	15	10

FIGURE 61

Tensile Characteristics before and after Mechanical Expansion

JFE, option B (#2) 24 %
62,06 62,08
62,04 62,02
62,02 62,02

		Antisotropy	
		Wall thickness reduction, %	Width reduction, %
		Elongation ratio	Yield ratio
		%	%
Before	After	20	-39
56.4	66	45	83
79.6	84	31	79
41	27	21	16
Change	%	40	5

100

FIGURE 62

FIGURE 63

Engineering Stress VS. Strain Curve

6400

L406 JFE - A (#1)

FIGURE 64

Engineering Stress vs. Strain Curve

JFE - B (#2)

6504

FIGURE 65

FIGURE 66

Engineering Stress vs. Strain Curve
Incoloy 825 material

FIGURE 67

Engineering Stress vs. Strain Curve
“History” pipe

FIGURE 68a

6802

Engineering Stress vs. Strain Curve “History” pipe *6804*

FIGURE *686*

FIGURE 69

7000

Yield and Tensile Strength for JFE A pipe vs Quenching Temperature (°C) (water)

Recommended quenching temperature

FIGURE 70

X100 Yield and Tensile Strength for JFE-B pipe
vs Quenching Temperature (°C) (water)

Recommended quenching temperature

FIGURE 71

FIGURE 72

7300

**Yield and Tensile Strength for JFE A pipe
vs Quenching Temperature (°C) (oil)**

Recommended quenching temperature

FIGURE 73

7400
↓
7402

Yield and Tensile Strength for JFE-B pipe vs Quenching Temperature (°C) (oil)

Recommended quenching temperature

FIGURE 74

**Stress-Strain Property of the Target vs.
Quench & Temper N Steel Pipes***

Material	Yield Yield ksi 1500	Tensile Tensile Ratio 528	Elongation Longitudinal % 75.0	Width thickness Reduction % 75.12	Wall thickness Reduction % 75.14
target	80.48	0.857	14.75*	38.3	43.0
7502 Quench & temper pipe-1	81.25	0.829	14.88*	37.8	43.25
7504 Quench & temper pipe-2	78.77	0.822	15.90*	44.0	43.33

*An average from 4 measurements

* 5 " base line

FIGURE 75

Stress-Strain Property of the Target v/s. Quench & Temper Nippon Steel Pipes*

Material	Yield Yield Tensile Tensile ratio ksi	Elongation Width Longitudinal Reduction % 7504	Wall thickness Reduction % 7516	Anisotropy 7514
target	80.18	0.857	14.75*	38.3
Quench & temper pipe	80.19	0.826	15.25*	43.0
				0.868

*An average from 4 (target) and 8 (quench & temper measurements)

*5 " base line

FIGURE 76

Engineering Stress vs. Strain Curve

Strain Global Technology LLC. Proprietary Information

FIGURE 77a

Engineering Stress VS. Strain Curve

7702

Target

Bad pipe

Stress (PSI)

100000
80000
60000
40000
20000
0

ENVVENTURE

SET. The Standard.

100000
80000
60000
50000
40000
30000
0

	Elongation ϵ ; %	Width reduction %	Wall thickness reduction %	Anisotropy
Target	21	35	38	0.89
Bad pipe Necked	14	27	41	0.59

Strain

Envventure Global Technology LLC. Proprietary Information

FIGURE 77-6

Engineering Stress VS. Strain Curve

FIGURE 78 a

ENVVENTURE
SET. THE Standard™

Envventure Global Technology LLC. Proprietary Information

Engineering Stress VS. Strain Curve

WO 2005/017303

PCT/US2004/026345

78027

Quench & temper pipe

Target

FIGURE 78 b

Enventure Global Technology LLC. Proprietary Information

ENVVENTURE
SET THE STANDARD

Engineering Stress V/S. Strain Curve

Enventure Global Technology LLC. Proprietary Information

FIGURE 79a

Engineering Stress vs. Strain Curve

7962

FIGURE 79b

Enventure Global Technology LLC. Proprietary Information

Engineering Stress VS. Strain Curve

(as received pipe vs. heat treated)

Pipe 7 " as is

Pipe 9 5/8 " Quench & temper 9 5/8 " pipe

FIGURE 80 a

Engineering Stress vs. Strain Curve

(as received pipe vs. heat treated)

Pipe 7 " as is
Pipe 9 5/8 " as is

Material	Yield Strength, ksi	Tensile Strength Ratio	Elongation at Break, %		Val. Thickness Reduction, %	Val. Area Reduction, %
			With Heat Treatment	Without Heat Treatment		
Quench & temper 9 5/8" pipe	84.4	0.840	20.5	40.0	41.8	0.935
55 as is	61.5	0.62	16.5	25.5	47	0.46
80 as is	73.7	0.67	13.5	20.4	37.5	0.48

-30000

EMMVENTURE -0000
SET. THE Standard™

FIGURE 80 b

Bone Sample Formation Judgment

WO 2005/017303

PCT/US2004/026345

Sample	Yield	Y/U	Elong	Width	Wall	Thickness	Reduction	Aniso	Technology
8102	/								
40045	80.1	.72	35	35	33	.92		Hot stretch, reduced (1950°)	Rotary straightened
4-100	89.7	.88	25	22	20	1.1		Normalized (1850°), cold drawn, annealed (1050°)	Rotary straightened
8102	5-7.90	.87	16	24	30	.76		Hot stretch, reduced (1950°)	cold drawn, annealed, rotary straightened
40513	47.7	.73	38	43	49	.83		Hot stretch, reduced (1850°)	Rotary straightened
40514	45.5	.69	40	50	53	.93		Hot stretch, reduced (1850°) cold sized,	rotary straightened
40241	52.7	.85	49	49	46	1.1		Hot stretch, reduced (1850°)	Rotary straightened
8106									
8108									
8110									

ENVVENTURE
SET. THE STANDARD®

FIGURE 81

Absorbed Energy and Flare Expansion Testing

material	Absorbed energy [△]	Flare expansion %
target	80	60
Quench & temper 8200	125	59
Quench & temper 8202	145	59
As is, 55 grade	100	40
As is, 80 grade	50	30
		4
		30*

Quench&temper pipe, failure of pipe @
expansion load of 800000 & 1,200000 Lbs
*As received pipe, cracking in weld area
^ Measured at -4° F (-20° C)

FIGURE 82