# **Project Report Format**

| Date         | 18.11.2022                                                             |
|--------------|------------------------------------------------------------------------|
| Team id      | PNT2022TMID49528                                                       |
| Project name | Efficient water quality analysis and prediction using machine learning |

#### 1. <u>INTRODUCTION</u>

#### 1.1 Project Overview

Water is the most significant resource of life, crucial for supporting the life of most existing creatures and human beings. Living organisms need water with enough quality to continue their lives. Water quality has a direct impact on public health and the environment. In this project we are going to implement a water quality prediction using machine learning techniques. In this technique, our model predicts that the water is safe to drink or not using some parameters like Ph value, conductivity, hardness, etc.

#### 1.2 Purpose

The goal is to predict the spatio - temporal water quality in terms of the power of hydrogen (pH), value for the next day based on the historical data of water measurement indices. This model predicts water quality and is used to indicate whether or not it is suitable for drinking based on some parameters

#### 2. LITERATURE SURVEY

#### 2.1 Existing problem

https://www.mdpi.com/2073-4441/11/11/2210

#### 2.2 References

- 1. PCRWR. National Water Quality Monitoring Program, Fifth Monitoring Report (2005–2006); Pakistan Council of Research in Water Resources Islamabad: Islamabad, Pakistan, 2007. Available online:http://www.pcrwr.gov.pk/Publications/Water%20Quality%20Reports/Water%20Quality%20Monitoring%20Report%202005-06.pdf (accessed on 23 August 2019).
- 2. Mehmood, S.; Ahmad, A.; Ahmed, A.; Khalid, N.; Javed, T. Drinking Water Quality in Capital City of Pakistan. Open Access Sci. Rep. 2013, 2. [CrossRef]
- 3. PCRWR. Water Quality of Filtration Plants, Monitoring Report; PCRWR: Islamabad, Pakistan, 2010. Available online:

http://www.pcrwr.gov.pk/Publications/Water%20Quality%20Reports/FILTRTAION%20PLANTS%20REPOT-CDA.pdf (accessed on 23 August 2019).

#### 2.3 Problem Statement Definition

- Deepak is a/an Officer
   Who needs To monitor the purity level of drinking water
   Because He is responsible for people welfare
- 2. Banu is a/an counselor of the area
  Who needs To know about the alternate methods to using a impurity water
  Because she will not know about these alternative methods
- 3. Priya is a/an one of person in this person
  Who needs To know about the alternate methods to using a impurity water
  Because she will not know about these alternative methods

#### 3. <u>IDEATION & PROPOSED SOLUTION</u>

#### **3.1** Empathy Map Canvas



#### 3.2 Ideation & Brainstorming



# **3.3 Proposed Solution**

- . . .

| S.NO | Parameter                                   | Description                                                                                                                                                                                                                                                                                                                                               |
|------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.   | Problem Statement (Problem to<br>be solved) | In a current situation the human beings<br>health in a bad condition. It is the water<br>that is used daily that causes people to<br>formed a diseases.                                                                                                                                                                                                   |
| 2.   | Idea / Solution description                 | Collecting data sets ,Analysing a water<br>quality by comparing the current data set<br>values with previous collected data set<br>values and convey message to the user<br>about the water quality and reusable<br>methods also.                                                                                                                         |
| 3.   | Novelty / Uniqueness                        | <ul> <li>The information is sent to the user very<br/>quickly without any delay.</li> <li>Recycling methods are also reported along<br/>with water quality.</li> </ul>                                                                                                                                                                                    |
| 4.   | Social Impact / Customer<br>satisfaction    | Clean water consumption leads to healthy life.  Learn about ways to reuse water without wasting it.  Medical care, loss of productivity and even death can be avoided                                                                                                                                                                                     |
| 5.   | Business Model (Revenue Model)              | <ul> <li>Through advertisement can sell my project the private organization and public sectors can earn more.</li> <li>In an organization (hospital, school, college etc) we explain our process to them and do water quality analysis and earn income in our business.</li> <li>Water quality is an important factor in economic development.</li> </ul> |

| characteristics of water. | 6. | Scalability of the solution | Obtain quantitative information on the<br>physical, chemical, and biological<br>characteristics of water. |
|---------------------------|----|-----------------------------|-----------------------------------------------------------------------------------------------------------|
|---------------------------|----|-----------------------------|-----------------------------------------------------------------------------------------------------------|

#### 3.4 Problem Solution fit



# 4. REQUIREMENT ANALYSIS

# **4.1 Functional requirement**

| FR No. | Functional                    | Sub Requirement (Story / Sub-Task)                                                                                                                                                                                                                                                                                                    |
|--------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Requirement (Epic)            |                                                                                                                                                                                                                                                                                                                                       |
| FR-1   | User Registration             | To every family we will provide a form when a new user                                                                                                                                                                                                                                                                                |
|        |                               | account is created                                                                                                                                                                                                                                                                                                                    |
| FR-2   | User Confirmation             | The system send an approval message after the user account is activated                                                                                                                                                                                                                                                               |
| FR-3   | Authorization level           | We provide secure water quality monitoring system approved by TNPCB(Tamilnadu pollution control board)                                                                                                                                                                                                                                |
| FR-4   | Transaction processing system | analyse ,send a message about real time water quality and reusable method via online,                                                                                                                                                                                                                                                 |
| FR-5   | Reporting                     | 1.Analysis the real time water quality and send the message to the users.      2.The real time water quality report is collected and the dataset is using to predict the water in upcoming days.                                                                                                                                      |
| FR-6   | business rules                | 1.Any one of the family member fill the appropriate form and provide the current usable mobile number 2.After receiving the verification message user send the confirmation message 3.We will providing our service continuously 4. If any problem occurs register the complaint in our website, we will provide a immediate solution |

# **4.2 Non-Functional requirements**

| FR No. | Non-Functional Requirement | Description                                           |
|--------|----------------------------|-------------------------------------------------------|
| NFR-1  | Usability                  | Allows users to identify specific missing data        |
|        |                            | elements available in the water quality portal data.  |
| NFR-2  | Security                   | To ensure that the access of safe drinking water for  |
|        |                            | all people in a country                               |
| NFR-3  | Reliability                | Above 90% of the operations that are completed        |
|        |                            | correctly.                                            |
| NFR-4  | Performance                | System effectively compare the incoming water         |
|        |                            | quality parameters with the required dataset          |
| NFR-5  | Availability               | This system is available for every family or any part |
|        |                            | of the area people.                                   |
| NFR-6  | Scalability                | High mineral levels are found in water as well as     |
|        |                            | Water Quality Index (WQI) and Water Quality           |
|        |                            | Classification (WQC) are accurately predicted.        |

# 5. PROJECT DESIGN

# **5.1 Data Flow Diagrams**



#### **5.2 Solution & Technical Architecture**

### SOLUTION ARCHITECTURE FIT



#### **5.3 User Stories**

| User Type                                 | Functional<br>Requirement<br>(Epic) | User Story<br>Number | User Story / Task                                                                                         | Acceptance criteria                                 | Priority | Release  |
|-------------------------------------------|-------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------|----------|
| Customer<br>(Mobile user)                 | Registration                        | USN-1                | As a user, I can register for the application by entering my email, password, and confirming my password. | I can access my account/dashboard                   | High     | Sprint-1 |
|                                           |                                     | USN-2                | As a user, I will receive confirmation email once I have registered for the application                   | I can receive confirmation<br>email & click confirm | High     | Sprint-1 |
|                                           |                                     | USN-3                | As a user, I can register through website                                                                 | I can register and access the account with website  | High     | Sprint-1 |
|                                           |                                     | USN-4                | As a user, I can register for the application through Gmail                                               | I can register and access the gmail                 | Medium   | Sprint-1 |
|                                           | Login                               | USN-5                | As a user, I can log into the application by entering email & password                                    | I can successfully login<br>into application        | High     | Sprint-1 |
|                                           | Dashboard                           | USN-6                | As a user,I can access the dashboard                                                                      | I can referred dashboard<br>for certainty           | Medium   | Sprint-1 |
| Customer<br>(Ordinary<br>people,Industry) | Analysis the<br>water quality       | USN-7                | As a user,I can access the water quality analysis in all over india                                       | I can predict the water quality earlier             | High     | Sprint-1 |
| Customer Care<br>Executive                | Customer<br>queries                 | USN-8                | As a user ,I can register the complaint in website                                                        | I can get immediate solution                        | High     | Sprint-1 |
| Administrator                             | Getting value                       | USN-9                | when there is a issuses in getting analysed value                                                         | through administrator getting predicted value       | Low      | Sprint-2 |

# 6. PROJECT PLANNING & SCHEDULING

### **6.1 Sprint Planning & Estimation**

| Sprint   | Functional<br>Requirement (Epic)                   | User Story<br>Number | User Story / Task                                                                                         | Story Points | Priority | Team<br>Members          |
|----------|----------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------|--------------|----------|--------------------------|
| Sprint-1 | Analysing the water<br>quality                     | USN-1                | The man who wants to save our health to do the necessary steps                                            | 2            | High     | L.Aarthy<br>P.Prakashini |
| Sprint-2 | Prevention of drinking polluted water              | USN-2                | The officer worried about the people health because unpurified water causes many health issues            | 2            | High     | P.Prakashini<br>M.Aarthi |
| Sprint-3 | Detect the water quality                           | USN-3                | The socialist can collect the various water parameters to detect the water quality at various environment | 2            | High     | M.Aarthi<br>K.Meenakshi  |
| Sprint-4 | Using hardware<br>kit,cloud and various<br>sensors | USN-4                | The government take more steps to implementing this hardware setup                                        | 2            | Medium   | K.Meenakshi<br>M.Aarthi  |
| Sprint-5 | Training and testing the water quality detection   | USN-4                | The programmer build a model for water quality detection by train the dataset                             | 2            | High     | P.Prakashini<br>L.Aarthy |
| Sprint-6 | Notification                                       | USN-6                | The model can detect the water quality this detected values is notify to the users                        | 2            | High     | L.Aarthy<br>K.Meenakshi  |

### **6.2 Sprint Delivery Schedule**

| Sprint   | Total Story<br>Points | Duration | Sprint Start Date | Sprint End Date<br>(Planned) | Story Points<br>Completed (as on<br>Planned End Date) | Sprint Release Date<br>(Actual) |
|----------|-----------------------|----------|-------------------|------------------------------|-------------------------------------------------------|---------------------------------|
| Sprint-1 | 20                    | 4Days    | 24 Oct 2022       | 27 Oct 2022                  | 20                                                    | 27 Oct 2022                     |
| Sprint-2 | 20                    | 4 Days   | 28 Oct 2022       | 01 Nov 2022                  | 20                                                    | 01 Nov 2022                     |
| Sprint-3 | 20                    | 4 Days   | 02 Nov 2022       | 06 Nov 2022                  | 20                                                    | 06 Nov 2022                     |
| Sprint-4 | 20                    | 4 Days   | 07 Nov 2022       | 10 Nov 2022                  | 20                                                    | 10 Nov 2022                     |
| Sprint-5 | 20                    | 4 Days   | 11 Nov 2022       | 15 Nov 2022                  | 20                                                    | 15 Nov 2022                     |
| Sprint-6 | 20                    | 4 Days   | 16 Nov 2022       | 19 Nov 2022                  | 20                                                    | 19 Nov 2022                     |

# **6.3 Reports from JIRA**



#### 7. CODING & SOLUTIONING

#### **7.1** Connection to html

- 1. A user issues a request for a domain's root URL / to go to its index page
  - 2. app.py maps the URL / to a Python function
  - 3. The Python function finds a web template living in the templates/ folder.
  - 4. A web template will look in the static/folder for any images, CSSfiles it needs as

it renders to HTML

- 5. Rendered HTML is sent back to app.py
- 6. app.py sends the HTML back to the browser

#### 7.2 URL in the browser and backend connection

- 1. First, We imported the Flask class and a function render template.
- 2. Next, we created a new instance of the Flask class.

- 3. We then mapped the URL / to the function index(). Now, when someone visits this URL, the function index() will execute.
- 4. The function index() uses the Flask function render template() to render the index.html template we just created from the templates/ folder to the browser.
- 5. Finally, we use run() to run our app on a local server.
- 6. We'll set the debug flag to true, so we can view any applicable error messages if something goes wrong, and so that the local server automatically reloads after we've made changes to the code.
- 7. When we visited http://127.0.0.1:5000/, app.py had code in it, which mapped the URL / to the Python function index().
- **8.** index() found the web template index.html in the templates/ folder, rendered it to HTML, and sent it back to the browser.

#### 7.3 Index



#### 7.4 Result



**7.5 output** 

#### Predict

# Marginal, The Predicted Value Is47.129999999999995

# 9. TESTING

#### 9.1 Test Cases

| Test case ID         | Feature Type | Componen<br>t | Test Scenario               | Pre-Requisite                           | Steps To Execute                                             | Test Data                                                               | Expected R                                   |
|----------------------|--------------|---------------|-----------------------------|-----------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------|
| LoginPage_TC_OO<br>1 | Functional   | Home Page     | Location Test Case          | Indicate the near by location           | By using GPS                                                 | http://127.0.0.1:5000/                                                  | Display the current lo                       |
| LoginPage_TC_OO<br>2 | UI           | Home Page     | Industrial Test Case        | Know the record of particular industry. | By using Advertisement                                       | http://127.0.0.1:5000/                                                  | Detect the toxic cher                        |
| LoginPage_TC_OO      | Functional   | Home page     | Environment Test Case       | Maintain the good<br>environment        | Provide more information about the surrounding of the river. | Username:<br>chalam@gmail.com<br>password: Testing123                   | Detect the nature of<br>surrounded by the ri |
| LoginPage_TC_OO<br>4 | Functional   | Login page    | pH Test Cases               | Accurate quality of water               | By using pH sensor.                                          | Username: chalam@gmail<br>password: Testing123                          | Detect the water qua                         |
| LoginPage_TC_OO<br>4 | Functional   | Login page    | Purity and Dirty Test Cases | Good water as well as bad<br>water      | By comparing the pH level for good water and bad water.      | Username:<br>chalam@gmail.com<br>password:<br>Testing123678686786876876 | Identify which kind c<br>be drinked          |
| LoginPage_TC_OO      | Functional   | Login page    | Agriculture Test Cases      | Evergreen process                       | By using the different kind of strategy                      | Username: chalam<br>password:<br>Testing123678686786876876              | Better growth in agri                        |

# **9.2** User Acceptance Testing

### - Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT).

#### Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

|                | w siley were re | 200700     |            |            |          |
|----------------|-----------------|------------|------------|------------|----------|
| Resolution     | Severity<br>1   | Severity 2 | Severity 2 | Severity 4 | Subtotal |
| By Design      | 15              | 4          | 3          | 4          | 27       |
| Duplicate      | 97              | 0          | 2          | 0          | 3        |
| External       | 97              | 2          | 0          | 1          | 4        |
| Fixed          | 13              | 3          | 6          | 23         | 45       |
| Not Reproduced | 0               | 9          | 0          | 0          | 3        |
| Skipped        | 0               | 9          | 0          | 1          | 2        |
| Won't Fix      | 0               | 6          | 4          | 1          | 8        |
| Totals         | 30              | 17         | 12         | 30         | 90       |

#### · Test Case Analysis

This report shows the number of test cases that have passed, falled, and untested

| Section             | Total Cases | Not Tested | Fall | Pass |
|---------------------|-------------|------------|------|------|
| Print Engine        | 7           | 0          | 0    | 7    |
| Client Application  | 39          | 0          | ٥    | 39   |
| Security            | 4           | 0          | ٥    | 4    |
| Outsource Shipping  | 3           | 0          | ٥    | 3    |
| Exception Reporting | 8           | 0          | ٥    | 8    |
| Final Report Output | 5           | 0          | ٥    | 5    |
| Version Control     | 3           | 0          | 0    | 3    |

# 10. RESULTS

# **10.1** Performance Metrics

| .No | Parameter                            | Values                                                   | Screenshot                                                                                                                                                                                                                                                                                                    |
|-----|--------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | . Metrics Model Evaluation:<br>MAE : |                                                          | Model Evaluation                                                                                                                                                                                                                                                                                              |
|     |                                      | 1.0140200501253205<br>MSE:<br>5.786707157894741<br>RMSE: | [ ] from sklearm import metrics<br>print("MAE: ",metrics.mean_absolute_error(y_test,y_pred))<br>print("MSE: ",metrics.mean_aquared_error(y_test,y_pred))<br>print("MSE: ",np.sqrt(metrics.mean_squared_error(y_test,y_pred)))<br>MAE: 1.0140200501253205<br>MSE: 5.780707157894741<br>MMSE: 2.406557556554143 |
|     |                                      | 2.405557556554143<br>R2 score :<br>0.9684566685516488    | [ ] metrics-r2_score(y_test, y_pred)  9.9684566685516488                                                                                                                                                                                                                                                      |

| 2. | Tune the<br>Model | Validation Method : Testing Accuracy | Model Evaluation                                                                                                                                                                                                                   |
|----|-------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                   | 0.9684566685516488                   | <pre>[ ] from sklearn import metrics     print('MAE:',metrics.mean_absolute_error(y_test,y_pred))     print('MSE:',metrics.mean_squared_error(y_test,y_pred))     print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test,))</pre> |
|    |                   |                                      | MAE: 1.0140200501253205<br>MSE: 5.786707157894741<br>RMSE: 2.495557556554143                                                                                                                                                       |
|    |                   |                                      | [ ] metrics.r2_score(y_test, y_pred)                                                                                                                                                                                               |
|    |                   |                                      | 0.9684566685516488                                                                                                                                                                                                                 |
|    |                   |                                      |                                                                                                                                                                                                                                    |

# 11. ADVANTAGES

1. In this technique, our model predicts that the water is safe to drink or not using some parameters like Ph value, conductivity, hardness, etc. Access to safe drinking-water is essential to health, a basic human right and a component of effective policy for health protection.

2. During the last years, water quality has been threatened by various pollutants. Therefore, modeling and predicting water quality have become very important in controlling water pollution.

#### 11. DISADVANTAGES

1. The output of an algorithm after it has been trained on a historical dataset and applied to new data when forecasting the likelihood of a particular outcome.

2. Dataset collection is difficult, because more number of dataset is needed for training the model

#### 12. <u>CONCLUSION</u>

If we look at the current situation of water depletion, it is evident that we are in dire need of water prediction. Freshwater is a finite and limited resource on Earth and, increasingly, much of it is polluted, by both pathogenic microbes and chemical contaminants, the water quality index (WQI) is calculated using random forest regression algorithm. The web ui will be created in spyder using flask using python,html,style.css codes.when the user enter the values then the predicted value will be displayed, water quality predicting model have become very important in detect water quality

#### 13. FUTURE SCOPE

Machine learning models fail silently, which means they will make predictions even if the incoming data looks nothing like the data they were trained against. it allow businesses to make highly accurate guesses as to the likely outcomes of a question based on historical datathese historical data is used to build a mathematical model that captures important trends.

#### 14. APPENDIX

**Source Code** 

#### Style.css

\* {

margin: 0;

padding: 0;

box-sizing: border-box;

```
}
body {
  background: #0000;
  background-repeat: no-repeat;
  background-size:cover;
}
/* styling the header */
.row1 img {
  height: 70px;
  position: relative;
  left: 54vw;
}
.row2 h1 {
  position: absolute;
  left: 60vw;
  color: #ffff;
  top: 30px;
```

}

```
main div.column input {
      display: block;
      position: relative;
      margin: 24px 26px;
      left: 60vw;
      border-radius: 35px;
      width: 250px;
      height: 30px;
   }
   input[type="text"] {
      text-align: center;
     font-family: 'Courier New', Courier, monospace;
   }
    main div.last input {
      width: 256px;;
      background: rgb(5, 3, 68);
      background: linear-gradient(90deg, rgba(5, 3, 68, 1) 0%, rgba(0, 12, 36, 1) 0%, rgba(39, 9, 121, 1)
0%, rgba(38, 8, 114, 1) 0%, rgba(94, 0, 255, 1) 45%, rgba(188, 0, 255, 1) 84%);
      font-weight: 600;
      font-family: 'Courier New', Courier, monospace;
```

```
main div.last input:hover {
      background: rgb(188, 0, 255);
      background: linear-gradient(90deg, rgba(188, 0, 255, 1) 23%, rgba(94, 0, 255, 1) 63%, rgba(22, 9,
121, 1) 100%, rgba(5, 3, 68, 1) 100%, rgba(0, 12, 36, 1) 100%, rgba(38, 8, 114, 1) 100%);
   }
    .bor {
      text-align: center;
      margin-left: 60vw;
      color: white
      font-size: 21px;
      border: 2px solid rgb(251, 253, 255);
      width: 358px;
      padding-left: 4px;
   }
    html code
    <!DOCTYPE html>
```

}

```
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <title>DEPLOYMENT</title>
  <link rel="stylesheet" href="../static/css/style.css">
</head>
<body>
  <header>
    <nav>
      <div class="row">
        <div class="row1">
          <img src="../static/logo.jpg" alt="logo">
        </div>
        <div class="row2">
          <h1>Water Quality Prediction</h1>
        </div>
      </div>
    </nav>
```

```
</header>
<main>
  <div class="column">
    <form action="/login" method="post">
      <label for=""></label>
      <input type="text" name="year" id="" placeholder="Enter Year">
      <label for=""></label>
      <input type="text" name="do" id="" placeholder="Enter D.O">
      <label for=""></label>
      <input type="text" name="ph" id="" placeholder="Enter PH">
      <label for=""></label>
      <input type="text" name="co" id="" placeholder="Enter Conductivity">
      <label for=""></label>
      <input type="text" name="bod" id="" placeholder="Enter B.O.D">
      <label for=""></label>
      <input type="text" name="na" id="" placeholder="Enter Nitratenen">
      <label for=""></label>
      <input type="text" name="tc" id="" placeholder="Enter Total Coliform">
      <label for=""></label>
      <div class="last">
        <input type="submit" value="Predict">
      </div>
      <div class="bor">
        {{showcase}}
```

```
</form>
    </div>
  </main>
  </div>
</body>
</html>
app.py
import numpy as np
from flask import
Flask,render_template,request
import pickle
app= Flask(__name__)
file=open('wqi.pkl','rb')
random_Forest=pickle.load(file)
file.close()
app=Flask(__name__, template_folder='template')
```

# Save model

</div>

```
with open('wqi.pkl', 'rb') as model:
     pickle.load(model)
    @app.route('/')
   def home():
    return render_template("index.html")
   @app.route('/login',methods = ['GET','POST'])
    def login():
    year = request.form["year"]
    do = request.form["do"]
    ph = request.form["ph"]
    co = request.form["co"]
    bod = request.form["bod"]
    tc = request.form["tc"]
    na = request.form["na"]
    total = [float(year),float(do),float(ph),float(co),float(bod),float(na),float(tc)]
    res=random_Forest.predict([total])[0]
    y_pred = res
    if(y_pred >= 95 and y_pred<=100):
     return render_template("index.html",showcase = 'Excellent, The Predicted Value Is'+ str(y_pred))
    elif(y_pred >= 89 and y_pred<=94):
     return render_template("index.html",showcase = 'Very Good, The Predicted Value Is'+
str(y_pred))
    elif(y_pred >= 80 and y_pred<=88):
     return render_template("index.html",showcase = 'Good, The Predicted Value Is'+ str(y_pred))
```

```
elif(y_pred >= 65 and y_pred<=79):
    return render_template("index.html",showcase = 'Fair, The Predicted Value Is'+ str(y_pred))
elif(y_pred >= 45 and y_pred<=64):
    return render_template("index.html",showcase = 'Marginal, The Predicted Value Is'+ str(y_pred))
else:
    return render_template("index.html",showcase = 'Poor, The Predicted Value Is'+ str(y_pred))

if __name__ == '__main__':
    app.run(debug=False,port=5000)</pre>
```

#### GitHub & Project Demo Link

 $https://drive.google.com/file/d/1ceDPBP4zZ3ObLyyy5uTSFU4dS6CL58Wn/view?usp=share\_link$