Trapped-ion Quantum Computation introduction

Dingchao Gao

Institute of Software Chinese Academy of Sciences

August 30, 2023

Outline

1. Background

- Quantum numbers
- Cooling techniques
- Ion trapping methods

2. Qubit types

3. Qubit control

- signal qubit gates
- multi qubit gates
- measurement

4. Scaling

Quantum numbers

Principal Quantum Number n = 1, 2, 3, ...

Azimuthal Quantum Number $\ell=0,\ldots,(n-1)$

Magnetic Quantum Number $m_\ell = -1, \dots, I$

Electron Spin Quantum Number $m_s=-{1\over 2}, +{1\over 2}$

Quantum numbers

Figure: copy from¹

important principle

Pauli exclusion principle

Aufbau principle

```
15
25 2p
35 3p 3d
45 4p 4d 4f
55 5p 5d 5f ...
65 6p 6d ... ... ...
```

Figure: copy from²

²https://en.wikipedia.org/wiki/Aufbau principle.

Examples on Quantum numbers

For Rubidium has the atomic number, Z = 37. Electronic Configuration of Rubidium, $1s^22s^22p^63s^23p^63d^{10}4s^24p^65s^1$ Principal Quantum Number n=5

Azimuthal Quantum Number I = 0

Magnetic Quantum Number $m_l = 0$

Spin Quantum Number $m_s = +1/2$

splitting methods

The total angular momentum quantum number: $j = |\ell \pm s|$

$$I = 1/2$$

$$\underline{n = 2, {}^{2}P}$$

$$\underline{n = 2, {}^{2}P}$$

$$\underline{n = 1, {}^{2}S}$$

$$\underline{J = 1/2}$$

$$\underline{J = 1/2}$$

$$\underline{F = 1}$$

$$F = 0$$

Figure: copy from³

³https://en.wikipedia.org/wiki/Hyperfine structure. ← □ → ← ② → ← ○ →

doppler cooling

Figure: copy from⁴

Resolved sideband cooling

Figure: copy from⁵

⁵https://arxiv.org/pdf/2211.08896.pdf.

paul traps

Figure: copy from⁶

⁶https://en.wikipedia.org/wiki/Quadrupole⁻ion⁻trap₄ □ → ← ② → ← ② → ← ② → → ② → ○ ○

penning traps

Figure: copy from⁷

⁷https://en.wikipedia.org/wiki/Penning^{*}trap.

Outline

1. Background

- Quantum numbers
- Cooling techniques
- Ion trapping methods

2. Qubit types

3. Qubit control

- signal qubit gates
- multi qubit gates
- measurement

4. Scaling

Qubit Type Comparison

Figure: copy from⁸

⁸https://arxiv.org/abs/1904.04178.

key factors

Abbe diffraction limit
$$d = \frac{\lambda}{2n\sin\theta} = \frac{\lambda}{2NA}$$

Spontaneous emission rate

Magnetic field fluctuations

Laser technical noise

Outline

1. Background

- Quantum numbers
- Cooling techniques
- Ion trapping methods

2. Qubit types

3. Qubit control

- signal qubit gates
- multi qubit gates
- measurement

4. Scaling

signal qubit gates

TABLE I. Selected state-of-the-art gate demonstrations.

TIBES I percent blace of the art gave demonstrations.					
Gate	Gate	Fidelity	Gate Time	Ion	Ref.
Type	Method		$(\mu \mathrm{s})$	Species	
Single-Qubit					
	Optical	0.99995	5	$^{40}\mathrm{Ca}^{+}$	[28]
	Raman	0.99993	7.5	$^{43}\mathrm{Ca}^{+}$	[27]
	Raman	0.99996	2	$^9\mathrm{Be}^+$	[37]
	Raman	0.99	0.00005	$^{171}{\rm Yb}^{+}$	[163]
	Raman	0.999	8	$^{88}\mathrm{Sr}^{+}$	[113]
	Microwave	0.999999	12	$^{43}\mathrm{Ca}^{+}$	[22]
	Microwave		0.0186	$^{25}\mathrm{Mg}^{+}$	164

Figure: copy from⁹

⁹https://arxiv.org/abs/1904.04178.

Two Qubit Gates

Cirac-Zoller

Mølmer-Sørensen

Cirac-Zoller

initialize
$$\rightarrow (a|g\rangle + b|e\rangle)(c|g\rangle + d|e\rangle)|0\rangle$$
 (1)

$$R_{eg2}^{RSB}(\pi) \rightarrow (a|g\rangle + b|e\rangle)|g\rangle(c|0\rangle + d|1\rangle)$$
 (2)

$$R_{aux1}^{RSB}(2\pi) \rightarrow ac|gg0\rangle + ad|gg1\rangle + bc|eg0\rangle - bd|$$
 (3)

$$R_{eg2}^{RSB}(\pi) \rightarrow [ac|gg\rangle + ad|ge\rangle + bc|eg\rangle - bd|ee\rangle]|0\rangle$$
 (4)

Mølmer-Sørensen

Figure: copy from 10

¹⁰https://www.youtube.com/watch?v=uNTNsfxoKYQ&t=2026s.

two qubit gates

Fidelity	gate time	Ref
99.9%	$30 \mu s$	https://arxiv.org/abs/1604.00032
99.8%	$1.6 \mu s$	https://arxiv.org/abs/1709.06952

average Fidelity > 98% for any two qubits out of 13 qubits, form lonQ news

challenges for gates

Crosstalk

Laser frequency/amplitude stability

Motional heating (two qubit gates)

. . .

Outline

1. Background

- Quantum numbers
- Cooling techniques
- Ion trapping methods

2. Qubit types

3. Qubit control

- signal qubit gates
- multi qubit gates
- measurement

4. Scaling

challenges for Scaling

 $\frac{1}{d^{\alpha}}$: ion-ion coupling strength

errors and Fidelity

gate time (1024-bit \sim 10 days and 2048-bit number \sim 100 days)