Erratum of "Modernizing Markov chains Monte Carlo for Scientific and Bayesian Modeling"

Charles C. Margossian

Updated May 16th 2022.

Posterior draws for latent Gaussian variables

Algorithm 5.5, for generating posterior draws, θ^* , in a latent Gaussian models has an error.

For θ^* , we need to examine the "extended" prior covariance matrix,

$$\mathbf{K} = \begin{bmatrix} K(X,X) & K(X,X^*) \\ K(X,X^*) & K(X^*,X^*) \end{bmatrix}.$$

I'll denote K = K(X, X), $K^* = K(X, X^*)$ and $K^{**} = K(X^*, X^*)$. We can abstract the problem further, with

$$\mathbf{K} = \begin{bmatrix} K & K^* \\ K^* & K^{**} \end{bmatrix}$$

where the different components of K are arbitrarily specified (i.e. they're not the result of one fixed covariance function applied to different X's).

The error is in the specification of the approximate covariance matrix for $\pi_{\mathcal{G}}(\theta^* \mid y, \phi, \eta)$. The correct covariance is

$$\Sigma_{\mathcal{G}}(\theta^* \mid X, y, \phi, X^*) = \Sigma_{\mathcal{G}}(\theta^* \mid y, \phi, \eta, X, X^*) = K^{**} - K^*(K + W^{-1})^{-1}K^*.$$

The thesis incorrectly stipulates that the first term is K^* , rather than K^{**} .

Accordingly, Algorithm 5.5 should be revised to produce the following

Algorithm 1: Posterior draws for latent Gaussian θ^*

```
1 intput: y, \phi, \eta, X, X^*, K(\phi, X, X^*), \pi(y \mid \theta, \eta)
 2 saved input from the Newton solver: \hat{\theta}, W, K, \nabla_{\hat{\theta}} \log \pi(y \mid \hat{\theta}, \eta)
 3 W^{\frac{1}{2}}, L
                                                                                 \Rightarrow B = I + W^{\frac{1}{2}}KW^{\frac{1}{2}}, LL^T = B
                                                                                \Rightarrow B = I + K^{\frac{1}{2}T}WK^{\frac{1}{2}}, LL^T = B
 4 W, K^{\frac{1}{2}}, L
 \mathbf{5} W, L, U
                                                                                            \triangleright B = I + KW, LU = B
 6 K^* \leftarrow K(X, X^*)
 7 K^{**} \leftarrow K(X^*, X^*)
 \mathbf{s} \ \mu^* \leftarrow K^* \nabla_{\hat{\theta}} \log \pi(y \mid \theta, \eta)
 9 if (B = I + W^{\frac{1}{2}}KW^{\frac{1}{2}}) then
      V \leftarrow L \backslash W^{\frac{1}{2}} K^*
          \Sigma^* \leftarrow K^{**} - V^T V
12 else if (B = I + K^{\frac{1}{2}T}WK^{\frac{1}{2}}) then
        D \leftarrow L \backslash K^{\frac{1}{2}}W
        R \leftarrow W - D^T D
      \Sigma^* \leftarrow K^{**} - K^*RK^*
16 else if (B = I + KW) then
      \sum^* = K^{**} - K^*(W - WU \setminus L \setminus KW)K^*
18 end
19 \theta^* \sim \text{Normal}(\mu^*, \Sigma^*)
20 return: \theta^*.
```