#### Master of Science on Computational Science

#### Institute of Computational Science

prof. Dr. Rolf Krause & Dr. Drosos Kourounis

24 Sep 2015, LAB2

### Interpolation in one dimension (1D)



#### Finite Elements in one dimension (1D)



#### 2D and 3D Finite Elements



Sample of some simple element shapes and standard node placement. By convention nodes are numbered anti-clockwise.

#### The 3D case can be very challenging



### Mapping to the reference element 3D



### Mapping to the reference in 2D



### Mapping to the reference in 3D



## The 2D quadrilateral element



## The 2D quadrilateral element . . .

Any unknown field u as well as the coordinates (x,y) may be expressed as functions of  $(\xi,\eta)$  as

$$u = N_1 u_1 + N_2 u_2 + N_3 u_3 + N_4 u_4$$
  

$$x = N_1 x_1 + N_2 x_2 + N_3 x_3 + N_4 x_4$$
  

$$y = N_1 y_1 + N_2 y_2 + N_3 y_3 + N_4 y_4.$$

Now suppose  $f = f(x, y) = f(x(\xi, \eta), y(\xi, \eta))$ . Using the chain rule of differentiation, we have

$$\begin{split} \frac{\partial f}{\partial \xi} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial \xi} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \xi} \\ \frac{\partial f}{\partial \eta} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial \eta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \eta} \end{split}$$

## The 2D quadrilateral element ...

$$\begin{pmatrix} \frac{\partial f}{\partial \xi} \\ \frac{\partial f}{\partial \eta} \end{pmatrix} = J \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}, \quad J = \begin{pmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{pmatrix}$$

$$\begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} = J^{-1} \begin{pmatrix} \frac{\partial f}{\partial \xi} \\ \frac{\partial f}{\partial \eta} \end{pmatrix}, \quad dxdy = |J| \ d\xi d\eta$$

# The 2D quadrilateral element ...

$$J = \begin{pmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{pmatrix}$$

$$J_{11} = \frac{1}{4} \left( -(1 - \eta)x_1 + (1 - \eta)x_2 + (1 + \eta)x_3 - (1 + \eta)x_4 \right)$$

$$J_{12} = \frac{1}{4} \left( -(1 - \eta)y_1 + (1 - \eta)y_2 + (1 + \eta)y_3 - (1 + \eta)y_4 \right)$$

$$J_{21} = \frac{1}{4} \left( -(1 - \xi)x_1 - (1 + \xi)x_2 + (1 + \xi)x_3 + (1 - \xi)x_4 \right)$$

$$J_{22} = \frac{1}{4} \left( -(1 - \xi)y_1 - (1 + \xi)y_2 + (1 + \xi)y_3 + (1 - \xi)y_4 \right)$$

#### 2D integrals

Gaussian quadrature in 1D: n points can integrate exactly a polynomial of degree equal to 2n-1

$$I = \int_{-1}^{1} f(\xi)d\xi$$
$$I \approx \sum_{k=1}^{n} w_k f(\xi_k)$$

Gaussian quadrature in 2D

$$I = \int_{-1}^{1} \int_{-1}^{1} f(\xi, \eta) d\xi d\eta$$
$$I \approx \sum_{k_1=1}^{n} \sum_{k_2=1}^{n} w_{k_1} w_{k_2} f(\xi_{k_1}, \eta_{k_2})$$

#### 2D integrals ...

Integrating the Laplacian on the reference element

$$I = \int_{\Omega} \nabla N_i(x, y) \cdot \nabla N_j(x, y) d\Omega$$

$$I = \int_{\Omega_0} J^{-1} \nabla N_i(\xi, \eta) \cdot J^{-1} \nabla N_j(\xi, \eta) |J| d\Omega_0$$

$$I = \int_{-1}^{1} \int_{-1}^{1} J^{-1} \nabla N_i(\xi, \eta) \cdot J^{-1} \nabla N_j(\xi, \eta) |J| d\xi d\eta$$

$$I \approx \sum_{k_1=1}^{n} \sum_{k_2=1}^{n} w_{k_1} w_{k_2} J_{k_1,k_2}^{-1} \nabla N_i(\xi_{k_1}, \eta_{k_2}) \cdot J_{k_1,k_2}^{-1} \nabla N_j(\xi_{k_1}, \eta_{k_2}) |J_{k_1,k_2}|$$

$$M = \int_{V} N_i N_j dV$$

```
function I = Mass2DSymbolic()
    xi = sym('xi', 'real'); eta = sym('eta', 'real');
    dx = sym('dx', 'real'); dy = sym('dy', 'real');
    c = [-1 \ -1; \ 1 \ -1; \ 1 \ 1; \ -1 \ 1];
    J(1,1) = 0.5*dx; J(2,2) = 0.5*dy;
    for i=1:4
        N(i) = 1/4*(1+c(i,1)*xi)*(1+c(i,2)*eta);
    end
   F = \det(J) * N * N';
    M = int(int(F, 'xi', -1, 1), 'eta', -1, 1);
end
```

$$K = \int_{V} \nabla N_i \cdot \nabla N_j dV$$

```
function I = Laplace2DSymbolic()
   xi = sym('xi', 'real'); eta = sym('eta', 'real');
   dx = sym('dx', 'real'); dy = sym('dy', 'real');
   u1 = sym('u1', 'real'); u2 = sym('u2', 'real');
   u3 = sym('u3', 'real'); u4 = sym('u4', 'real');
   c = [-1 -1; 1 -1; 1 1; -1 1];
   J(1,1) = 0.5*dx; J(2,2) = 0.5*dy;
   for i=1:4
       N(i) = 1/4*(1+c(i,1)*xi)*(1+c(i,2)*eta);
   end
   Nx = diff(N, 'xi'); Ny = diff(N, 'eta');
   dN = [Nx; Ny];
   U = (u1*N(1) + u2*N(2) + u3*N(3) + u4*N(4))^2;
   Jd = inv(J) * dN;
   F = U*\det(J)*Jd'*Jd:
   I = int(int(F, 'xi', -1, 1), 'eta', -1, 1);
   I = simplify(dx*dy*I);
end
```