BÀI TOÁN QUY HOẠCH ĐỘNG (DYNAMIC PROGRAMMING)

Phạm Thế Bảo Khoa Toán – Tin học Trường Đại học Khoa học Tự nhiên Tp.HCM

Nội dung

- Kỹ thuật chia để trị thường dẫn tới giải thuật đệ quy → có giải thuật có thời gian mũ và giải bài toán con nhiều lần.
- Để tránh giải bài toán con nhiều lần → tạo một bảng lưu trữ kết quả các bài toán con để khi cần sẽ sử dụng lại kết quả.
- Lấp đầy kết quả các bài toán con theo quy luật nào đó để có kết quả của bài toán ban đầu > quy hoạch động

Thuật giải

- 1. Tạo bảng bằng cách:
 - a. Gán giá trị một số ô nào đó.
 - b. Gán giá trị cho các ô khác nhờ vào giá trị của các ô trước.
- 2. Tra bảng và xác định kết quả của bài toán ban đầu

Phạm Thế Bảo

Đánh giá

- Ưu điểm
 - Chương trình thực thi nhanh do không tốn thời gian giải lại bài toán con.
 - Vận dụng để giải các bài toán tối ưu, có công thức truy hồi
- Nhược điểm
 - Không tìm được công thức truy hồi.
 - Số lượng bài toán con cần giải và lưu trữ kết quả rất lớn.
 - Việc kết hợp lời giải của các bài toán con chưa chắc cho lời giải của bài toán ban đầu.

Bài toán tính số tổ hợp

• Tính
$$C_n^k$$
 bằng công thức truy hồi.
$$C_n^k = \begin{cases} 0 & \text{nếu k=0 hay k=n} \\ C_{n-1}^{k-1} + C_{n-1}^k & \text{nếu 0$$

Thuật giải:

long Comb(int n, int k){

Phạm Thế Bảo

Đánh giá

• Gọi T(n) là thời gian tính $C_n^{\ k}$, ta có $T(1)=C_1$ và T(n)=giải ta có T(n)=O()

→ bài toán con được giải nhiều lần

Dùng quy hoạch động

 Xây dựng một bảng có (n+1) dòng từ 0 đến n và (n+1) cột từ 0 đến n. Điền các giá trị ô(i,j) theo nguyên tắc sau:

```
\begin{split} &- \, \hat{o}(0,\!0) \! = \! 1 & \qquad \hat{o}(i,\!i) \! = \! 1 \, \, v \acute{o}i \, \, 0 \! < \! i \! \leq \! n \\ &- \, \hat{o}(i,\!0) \! = \! 1 & \qquad \hat{o}(i,\!j) \! = \! \hat{o}(i\!-\!1,\!j\!-\!1) \! + \! \hat{o}(i\!-\!1,\!j) \, \, v \acute{o}i \, \, 0 \! < \! j \! < \! i \! \leq \! n \end{split}
```

• Ví du n=4

Friam The Dat

• Thuật giải mới:

```
\label{eq:combined} \begin{split} &\text{int ** Comb(int n, int k)} \{\\ &C[0,0]{=}1;\\ &\text{for i}{=}1 \text{ to n do}\\ &C[i,0]{=}1;\\ &C[i,i]{=}1;\\ &\text{for j}{=}1 \text{ to i}{-}1 \text{ do}\\ &C[i,j]{=}C[i{-}1,j{-}1]{+}C[i{-}1,j];\\ &\text{endfor}\\ &\text{return C;} \\ \} \end{split}
```

 Vòng lặp for j thực hiện i-1 lần. Vòng lặp i lặp n lần →

Bài toán cái ba lô

- Giả sử X[k,V] là số lượng đồ vật k được chọn, F[k,V] tổng giá trị k đồ vật được chọn và V là trọng lượng còn lại của ba lô, k=1..n và V=1..W.
- Trường hợp đơn giản nhất: chỉ có một đồ vật, ta tính X[1,V] và F[1,V] với V=1..W như sau:
 - $-X[1,V]=V \text{ div } g_1 \text{ và } F[1,V]=X[1,V]*v_1$
 - Với g_1 là trọng lượng đồ vật 1 và v_1 là giá trị đồ vật 1

Phạm Thế Bảo

- Giả sử tính được F[k-1,V], khi có thêm đồ vật thứ k, ta sẽ tính được F[k,V] như sau: nếu chọn x_k đồ vật loại k, thì trọng lượng còn lại của ba lô dành cho k-1 đồ vật từ 1 đến k-1 là U=V-x_k*g_k và tổng giá trị k loại đồ vật đã được chọn là F[k,V]-F[k-1,U]+x_k*v_{k với} x_k từ 0 đến y_k=V div g_k và ta sẽ chọn x_k sao cho F[k,V] lớn nhất.
- Công thức truy hồi:
 - $-X[1,V]=V \text{ div } g_1 \text{ và } F[1,V]=X[1,V]*v_1$
 - $F[k,V]=\max\{F[k-1, V-x_k*g_k]+x_k*v_k\}$ với x_k chạy từ 0 đến $(V \text{ div } g_k)$
 - Sau khi xác định được F[k,V] thì X[k,V] là \boldsymbol{x}_k

- Để lưu các giá trị trung gian trong quá trình tính F[k,V], ta dùng một bảng có n dòng (từ 1 đến n) dòng thứ k ứng với loại đồ vật k, và W+1 cột (từ 0 đến W), cột thứ V ứng với trọng lượng V, mỗi cột Vv gồm 02 cột nhỏ: cột bên trái lưu F[k,V], cột bên phải lưu X[k,V].
- Ví dụ: có 05 lọai đồ vật như bảng, ba lô có trọng lượng W=9.

Đồ vật	Trọng lượng (g_i)	Giá trị(v _i)
1	3	3
2	4	5
3	5	6
4	2	3
5	1	1

Phạm Thế Bảo

	k	0		1 2		2	3		4		5		6		7		8		9		
	1	0	0	0	0	0	0		1	4	1	4	1	8	2		2	8	2	12	3
ĺ																				12	
Ī																				12	
ĺ	4	0	0	0	0	3	1	4	0	6	2	7	1	9	3	10	2	12	4	13	3
Ī	5	0	0	1	1	3	0	4	0	6	0	7	0	9	0	10	0	12	0	13	0

- Cách tính:
 - Dòng thứ nhất, dùng công thức X[1,V]=V div g₁ và F[1,V]=X[1,V]*v₁
 - Từ dòng 2 đến dòng 5 dùng công thức truy hồi $F[k,V]=\max\{F[k-1,V-x_k*g_k]+x_k*v_k\}$ với x_k chạy từ 0 đến (V div g_k).
 - Ví dụ: tính F[2,7],

có $x_k\!\!=\!\!\{0\ div\ 4,\ 1\ div\ 4,\ 2\ div\ 4,\ 3\ div\ 4,\ 4\ div\ 4,\ 5\ div\ 4,\ 6\ div\ 4,\ 7\ div\ 4\}\!\!=\!\{0,\!1\}.$

$$\begin{split} F[2,7] &= Max\{F[2\text{-}1,7\text{-}0\text{*}4] + 0\text{*}5, F[2\text{-}1,7\text{-}1\text{*}4] + 1\text{*}5\} \\ &= Max\{F[1,7], F[1,3] + 5\} = Max\{8,4+5\} \end{split}$$

Vậy X[2,7]=1

- Vấn đề tra bảng như thế nào để có kết quả?
 - − Khởi đầu trọng lượng ba lô V=W.
 - Xét các đồ vật từ n đến 1, mỗi đồ vật k ứng với trọng lượng còn lại V của ba lô, nếu X[k,V]>0 thì chọn X[k,V] đồ vật loại k, tính lại V=V-X[k,V]*g_k.
- Ví du: V=W=9
 - Xét k=5, có X[5,9]=0 → không chọn
 - Xét k=4, có X[4,9]=3 → chọn 3 đồ vật loại 4, tính lại V=9-3*2=3.
 - Xét k=3, có X[3,3]=0 → không chọn
 - Xét k=2, có X[2,3]=0 → không chọn
 - Xét k=1, có X[1,3]=1 → chọn 1 đồ vật loại 1, tính lại V=3-1*3=0
 - Tổng trọng lượng các vật trong ba lô=
 - Tổng giá trị các vật trong ba lô =

Bài tập: cài đặt chương trình

Phạm Thế Bảo

Bài toán người giao hàng

- Chúng ta cũng có thể dùng quy hoạch động để giải quyết:
 - Đặt S={ $x_1, x_2, ..., x_k$ } là tập con các cạnh của đồ thị G=(V,E). Ta nói một đường đi từ v đến w **phủ lên** S nếu P={ $v, x_1, x_2, ..., x_k, w$ }, trong đó x_i xuất hiện ở vị trí bất kỳ, chỉ một lần.
 - Ví dụ: đường đi từ a đến f phủ lên {c,d,e,g}

- Ta định nghĩa d(v,w,S) là tổng độ dài đường đi từ v đến w phủ lên S. Nếu không có đường đi như vậy thì đặt d(v,w,S)=∞.
- Một chu trình Hamilton nhỏ nhất H_{min} của G phải có tổng độ dài là $d(H_{min})=d(o,o,V-\{o\})$, với o là một đỉnh nào đó trong V.
- Ta tìm H_{min} như sau:
 - Nếu |V|=1 (G chỉ có 1 đỉnh) thì d(H_{min})=0
 - Ngược lại:
 - $\circ d(v, w, \{\}) = d(v, w)$
 - o $d(v,w,S)=\min \{d(v,x)+d(x,w,S-\{x\})\}, với mọi <math>x \in S$
 - o d(v,w) là độ dài cạnh nối hai đinh v và w, nếu không tồn tại thì d(v,w)= ∞
 - Bằng cách lưu trữ các đỉnh x theo công thức đệ quy trên, chúng ta sẽ có một chu trình Hamilton tối thiểu.