Commercial Examples (Part 2) Microsemi(Actel) Antifusebased & Flash-based FPGAs

Topics

- Antifuse-based FPGA
 - □ Actel SX-A and Axcelerator (AX) families
- Flash-based FPGA
 - □ Actel ProASIC3 and IGLOO families

- Antifuse-based FPGA
- Metal-to-metal programmable antifuses
- Mux-based logic elements

SX-A Logic Element

- Mix two types of logic modules
 - □ Combinatorial cell (C-cell)
 - can implement more than 4000 different functions of ≤ 5 inputs.
 - □ Register cell (R-cell)
 - contains a flip-flop.

C-Cell

R-Cell

Clusters and Superclusters (1/2)

- C/R cells organized into clusters.
 - ☐ Type 1 cluster: CRC.
 - ☐ Type 2 cluster: CRR.
- Clusters grouped into superclusters.
 - ☐ Type 1: two type 1 clusters.
 - \square Type 2: one type 1, one type 2.
 - ☐ Majority is Type 1 superclusters

Clusters and Superclusters (2/2)

SX-A Routing

Programmable antifuses between the top two

metal layers

Routing Architecture (1/2)

- Local routing resources
 - ☐ DirectConnect is within a supercluster
 - connects C-cell to R-cell neighbor.
 - ☐ FastConnect provides horizontal connections between logic modules
 - within a supercluster.
 - to the supercluster below.
- Generic global wiring in segmented channels.

· - - **>**

DirectConnect

- No Antifuses
- 0.1 ns Maximum Routing Delay

FastConnect

- One Antifuse
- 0.3 ns Maximum Routing Delay

Routing Segments

- Typically Two Antifuses
- Max. Five Antifuses

Axcelerator (AX) Family

- Successor of SX-A
 - ☐ Higher capacity, 7 metal layers, 8 I/O banks, embedded SRAM
 - □ Enhance C-cell with addition of carry-chain logic
 - ☐ Modified R-cell

☐ Use pattern CCR in all clusters

AX Architecture

SuperCluster in AX Architecture

- \square Cluster = CCR + 2 transmit buffers + 2 receive buffers
- \square SuperCluster = 2 clusters + an additional buffer

AX Routing

 CarryConnect for routing carry logic vertically without passing any antifuse

ProASIC3 and IGLOO Overview

■ Flash-based FPGAs

- Each switch has two transistors sharing the floating gate.
- One transistor as programming device and the other as switching device.

Source: Actel Corp.

Logic Cell (1/2)

Logic elementis a 4-input cell

Legend: \longrightarrow Via (hard connection) $\stackrel{|}{\longrightarrow}$ Switch (flash connection) $\stackrel{|}{\longrightarrow}$ Ground

Source: Actel Corp.

^{*} This input can only be connected to the global clock distribution network.

Logic Cell (2/2)

- Each logic cell can be configured as
 - □ any 3-input function
 - □latch
 - □ D-flip-flop with or without enable

LUT-3 Equivalent

D-Flip-Flop with Clear or Set

Enable D-Flip-Flop with Clear or Set

м

Routing Architecture

- Fast local lines
 - ☐ from a tile to eight surrounding tiles
- Long lines
 - \square span 1/2/4 tiles vertically or horizontally
- Very long lines
 - □ span the entire device vertically or horizontally
- Global network
 - □ global trees
 - ☐ for clock and other very high fanout nets

Routing Architecture: Fast Local Lines

21

м

Routing Architecture: Long Lines

Source: Actel Corp.

Routing Architecture: Very Long Lines

High Speed Very Long Line Resouces PAD RING PAD RING I/O RING I/O RING PAD RING

Routing Architecture: Global Network

Appendix: Security

