

Dipartimento di Ingegneria Chimica Mineraria e Tecnologie Ambientali - DICMA

Alma Mater Studiorum Università di Bologna – Bologna, Italy

Fickian and non-Fickian Diffusion in Solid Polymers

From Bologna: diffusion of tortellini

diffusion of mortadella

Alma Mater Studiorum - Università di Bologna, Bologna, ITALY

Diffusion of the university system

UniBO is proud of being the oldest University in western world:

In operation since 1088
In 1988 has celebrated the 9th Centennial of its life

Copernicus, Galilei, Galvani, Malpighi were among
Bologna's Scholars

OUTLINE

- Fickian diffusion
 - non swelling penetrants \Rightarrow no relevant deformations and no stresses
 - swelling penetrants \Rightarrow deformations and stresses are induced
 - *a)* how to measure stress effects
 - b) how to calculate the stress field
- Non-Fickian Transport
 - Effects of swelling and of stresses
 - Structural changes and relaxation
 - Effects of temperature
 - Effects of activity difference
 - Effects of pre-history
 - Effects of sample dimensions

- a) Anomalous diffusion
- b) Two stage sorption
- c) Case II Transport
- *d)* Super-Case II transport

OUTLINE

- Modeling Fickian Transport
 - non swelling penetrants \Rightarrow nothing special
 - swelling penetrants \Rightarrow deformations and stresses must be calculated
 - Elastic (and viscoelastic) case
- Modeling Non-Fickian Transport
 - Lumped models
 - Localized swelling (with & without differential swelling stresses)
 - Viscoelastic diffusive flux
 - General models
 - Based on Mixture theory
 - Based on a proper expression of the chemical potential in glasses
 - Calculate time dependent BC
 - Calculate fluxes depending on concentration and deformation/stress gradients

Acknowledgements

Thanks are due to:

Ruben G. Carbonell-NCSU

Ferruccio Doghieri Marco Giacinti Baschetti Maria Grazia De Angelis Maria-Chiara Ferrari Jacopo Catalano and to the group

Penetrants can generate swelling and stresses

In gases and in liquids diffusion does not build up a stress field In solids in general and in polymeric solids in particular stresses are generated by swelling penetrants

- •Crazes and even cracks can be produced
- Morphological changes are induced

Methanol in PMMA

After Tomas & Windle, Polymer 1982

Effects of swelling and stresses

Swelling and stress fields may affect diffusion

- through morphological changes
- through solubility changes
 - •BC
 - •Final solubility
- diffusivity dependence on stress
- through stress dependence of the flux

The viscoelastic nature of the polymer introduces relaxation times in the response, which affects the transport process

Qualitative interpretation is based on diffusion **Deborah number**, (DEB)D:

$$(DEB)_D = \tau D_{12}/l^2$$

How Can stresses be measured

- birefringence
- bending cantilever

How Can stresses be measured

$$P_{\text{max}} = 8 \text{ bar}$$

 $T_{\text{max}} = 200 ^{\circ}\text{C}$

Deflection measured through an optical micrometer (Keyence LS7030M)

Precision = $\pm 1 \mu m$

Reproducibility=0.15 μm

How can they be described

$$\frac{\partial \mathbf{c}}{\partial \mathbf{t}} = D \frac{\partial^2 c}{\partial z^2}$$

$$c = c_{eq} \qquad \forall P(x, y, z) \in S_f, \quad \forall t$$

$$\nabla c \cdot n = 0 \qquad \forall P(x, y, z) \in S_I, \quad \forall t$$

$$c = 0 \qquad \forall P(x, y, z) \in V_f, \quad t = 0$$

Swelling condition

$$\varepsilon_i^c = \beta(c)c$$

How can they be described

$$\frac{\partial \mathbf{c}}{\partial \mathbf{t}} = D \frac{\partial^2 c}{\partial z^2}$$

$$c = c_{eq} \qquad \forall P(x, y, z) \in S_f, \quad \forall t$$

$$\nabla c \cdot n = 0 \qquad \forall P(x, y, z) \in S_I, \quad \forall t$$

$$c = 0 \qquad \forall P(x, y, z) \in V_f, \quad t = 0$$

Independent measurements

Solubility Isotherms in Glassy Polymers observed behaviors

Swelling condition

$$\varepsilon_i^c = \beta(c)c$$

How it can be described - mechanics

Elastic constitutive equation

$$\varepsilon_{x} - \varepsilon_{x}^{c} = \frac{1}{E} \left[\sigma_{x} - \nu \left(\sigma_{y} + \sigma_{z} \right) \right]$$

$$\varepsilon_{y} - \varepsilon_{y}^{c} = \frac{1}{E} \left[\sigma_{y} - \nu \left(\sigma_{x} + \sigma_{z} \right) \right]$$

$$\varepsilon_{z} - \varepsilon_{z}^{c} = \frac{1}{E} \left[\sigma_{z} - \nu \left(\sigma_{x} + \sigma_{zy} \right) \right]$$

Internal consistency (laminate condition)

$$\left\{ \begin{array}{l}
 \varepsilon_x \\
 \varepsilon_y
 \end{array} \right\} = \left\{ \begin{array}{l}
 \varepsilon_x^0 \\
 \varepsilon_y^0
 \end{array} \right\} + z \cdot \left\{ \begin{array}{l}
 k_x \\
 k_y
 \end{array} \right\}$$

Mechanical equilibrium with external forces and external moments

$$\sigma_z = 0$$

$$N = 0$$

$$M = 0$$

Cantilever deflection:

$$\delta = \frac{1}{2} \cdot k_x \cdot L^2$$

Data: from independent source

Acetonitrile in PC over Al cantilevers

Film thickness		0.0155 mm
Young Modulus	- polymer	2400 MPa
	- substrate	64000 Mpa
Poisson Ratio	- polymer	0.47
	- substrate	0.34
Diffusion kinetic		Fickian diffusion
		$D = 1.9 \cdot 10^{-9} \mathrm{e}^{-28c} ^{(3)}$
Linear swelling		$\beta(C) = 0.175 \cdot c^{(3)}$
(3) This work, c in g/g_{pol} , D in cm^2/s		

Substrate: aluminum cantilever (5 x 1 x 0.275 mm)

Cast film from a solution of PC in CH_2Cl_2

Layers model: parameters sensitivity

Once we know

- i) the mechanical properties (Young modulus and Poisson ratio),
- ii) the diffusion coefficient (D),
- iii) the concentration profile and the dilation-concentration law

we can calculate:

- deflection
- the **stress profile** inside the polymer film.

Layers model: variable D

$$D = 0.9e^{-9} \frac{cm^2}{s}$$

$$D = 1.9e^{-9} \cdot e^{(-C \cdot 28)}$$

Model predictions vs exp. data

Kinetics of polymer dilation for the system acetonitrile–PC at 40°C experimental data and comparisons with different swelling models

Kinetics of deflection of an aluminum cantilever for an integral sorption run of acetonitrile in PC for an activity jump from 0 to 0.3 at 40°C, sample thickness 16 mm.

Evolution of stress profiles during sorption

The stress is:

- compressive
- ≅ 20 ÷ 40 MPa

Yield ≅ 62 MPa

Time evolution of the stress profile inside a PC film of d=18 mm, during an integral sorption run of acetonitrile up to an activity of 0.20 at 40°C.

Deflection relaxation dynamics

Long time experiments reveal a decrease of deflection after a maximum is reached

The phenomena is likely related to a stress relaxation due to the viscoelastic behavior of the polymer.

The constitutive equation of viscoelastic materials is being implemented in the mechanical problem

Plot of M_1/M_2 , vs t for ($\omega 1$ =0.1181), circles, ($\omega 1$ = 0.1308 squares), and ($\omega 1$ = 0.1425 triangles); all three uptake curves show Fickian characteristics (Billovitis et al Macromol 1994)

EB in PS Plot of M/M, vs t for $(\omega l = 0.0276)$, Fickian characteristics (Billovitis et al Macromol 1994)

 $\omega 1 = 0.0600 \text{ delta P (torr): } 4.0-4.9 \text{ glass ; two-stage}$

Plot of Mt/M- vs (t^*) for $\omega 1$ =0.1068, P from 7.0- to 7.1 torr showing the data and the predictions for two Maxwell elements
After Billovitis et al 1994

Differential sorption data33 for polystyrene/ benzene at 25 "C where the initial pressure is at 47.5 **Torr** and the final pressures are 53 (\square), 55 (O), 56 (Δ), 59 (V), and 62 Torr (\Diamond). **Effect of activity jump**

Series of successive sorption kinetic runs on membrane M-59. Absorption: ○; desorption: ●; resorption: @. An absorption-desorption-resorption cycle was performed at each step. After Sanopoulou and Petropoulos, J. Plym. Sci. B 1995

Figure 1 Anomalous Fickian kinetics of n-propyl alcohol absorption in poly(methyl methacrylate) sheets. [Volume fraction or weight ratio, w_1/w_2 , as a function of $t^{1/2}$ (T = 318 K)]. Volume fraction ϕ_1 , \odot ; weight ratio w_1/w_2 , \Box

Figure 2 Case II kinetics of n-propyl, i-propyl and n-butyl alcohol absorption in poly(methyl methacrylate) sheets. [Weight of alcohol per original dry sheet weight, w_1/w_2 , versus t (T = 318 K)) \bigcirc , n-propyl alcohol; \square , isopropyl alcohol; \square , n-butyl alcohol

Effect of temperature

Temperature dependence of n-pentane penetration of polystyrene sheets. A, $T = 30^{\circ}\text{C}$; B, $T = 25^{\circ}\text{C}$

Temperature dependence of n-hexane penetration of polystyrene sheets. A, T = 55°C; B, T = 50°C; C, T = 45°C; D, T = 40 °C; E, T = 35 °C, after Tidone et al., Polymer 1977

Effect of temperature

Relationship between exponent, *n*, in equation and temperature, describing penetration of the nalkane series from pentane through octane in polystyrene sheets. (after Tidone et al. Polymer 1977)

 $S_e = at^n$

Tomas & Windle Polymer 1980

Me-OH in PMMA

Fractional residual core thickness for methanol sorption in PUMA sheets; 1 mm nominal thickness; as-received samples.

After Masoni Sarti J. Membr Sci 1983

Fractional residual core thickness for ethanol sorption in PMMA sheets; 1 mm nominal thickness; as-received samples: 50, 55, 60 °C; and samples annealed 24 hr at IOO °C, penetrated at 50 °C.

Fractional residual core thickness for n-propanol sorption in Fractional residual core thickness for ethanol sorption in PMMA sheets; 1 mm nominal thickness; as-received samples: 50, 55, 60 °C; and samples annealed 24 hr at IOO °C, penetrated at 50°C.

Different behaviors observed

Penetrants can generate swelling and stresses

Effects of prehistory

Comparison of n-hexane sorption in preswollen (\triangle) , 'asreceived' (\Box) , and annealed samples (\bigcirc) at $\rho/\rho^0=0.75$ and 30° C. Sorption-cycle 1, polystyrene, $d=0.534~\mu m$

Comparison of n-hexane sorption in preswollen (\triangle), 'as-received' (\square), and annealed samples (\bigcirc) at $p/p^0=0.10$ and 30° C. Sorption-cycle 1, polystyrene, $d=0.534~\mu m$

Comparison of n-hexane desorption from preswollen (\triangle) , 'as-received' (\square) , and annealed samples (\bigcirc) previously equilibrated at $p/p^0=0.75$ and 30° C. Desorption-cycle 1, polystyrene, $d=0.534~\mu\text{m}$

After Hopfenberg et al Polymer 1980

Effects of prehistory

Comparison of n-hexane resorption in preswollen samples, contacted with n-hexane for various time intervals during the preceding sorption cycle. Resorption was carried out at $p/p^0=0.10$ and 30° C. \odot , sample 1; \Box , sample 2. Sorption-cycling, polystyrene preswollen $d=0.534~\mu m$

Effect of cycling on the apparent equilibrium sorption of n-hexane at p/p^0 = 0.75 and 30°C in preswollen and 'as-received' samples. Sorption-equilibria, polystyrene, d = 0.534 μ m. * Cycle number

Enscore et al Polymer 1980

accelerations

Effects of film thickness!:

Higher δ : no accel Lower δ : larger acceleration

Modeling

Boundary conditions (solubility and its relaxation)
Localized swelling
Flux dependence on stress and history
lumped models
General models

Solubility (BC): from NET-GP

NET GP General Results

• The Helmholtz and Gibbs free energies under asymptotic pseudo-equilibrium conditions are uniquely related to the equilibrium Helmholtz free energy at the same T, V and composition (T, ρ_1, ρ_2) as :

$$\hat{A} \equiv \hat{A}_{NEq} \left(T, p, \rho_1, \rho_2 \right) = \hat{A}_{Eq} \left(T, \rho_1, \rho_2 \right)$$

- polymer density ρ_2 is the non equilibrium value measured in the glass
- •Pressure is not the equilibrium value at the given T, V and composition

$$\mu_{1}^{(GP)} = \left(\frac{\partial m\hat{G}}{\partial m_{1}}\right)_{T,p,m_{2},\rho_{2}} \equiv \left(\frac{\partial \rho\hat{A}_{Eq}}{\partial \rho_{1}}\right)_{T,\rho_{2}}$$

Doghieri & Sarti JMS 1996, Chem. Eng. Sci 1998

Solubility Isotherm from Dilation Data

Assume lattice fluid model (SL):

- •The **SL** Parameters (P^*,T^*,ρ^*) for both penetrant and polymer
- •The density of the polymer during the Sorption (e.g Dilation data)

The NELF gives the Sorption Isotherm

Effect of relaxation processes on gas/vapor solubility in glassy polymers: volume swelling model (VS)

Swelling kinetics of polymeric elements induced by sorption processes Volume dilation modeled through simple Kelvin-Voigt model for bulk rheology:

$$\frac{1}{\rho_{pol}} \frac{\partial \rho_{pol}}{\partial t} = \frac{p^{EXT} - p^{EQ}(\Omega, \rho_{pol})}{\eta}$$

solubility data in sorption processes **driven by volume relaxation** phenomena:

n-hexane in PS @ 40°C sorption process in microspheres $(d \approx 0.5 \mu m)$

Activity jump $0 \rightarrow 0.1$

Exp. data from Enscore et al., Polymer 1980

Fitting parameter = bulk viscosity

Mass transport model for gas sorption in glassy polymeric systems with both diffusion and volume relaxation

$$\frac{\partial \rho_{sol}}{\partial t} = -\underline{\nabla} \bullet \underline{J}$$

$$\underline{J} = -\widehat{D} \rho_{sol} \underline{\nabla} \mu$$

$$\frac{1}{\rho_{pol}} \frac{\partial \rho_{pol}}{\partial t} = \frac{p^{EXT} - p^{EQ}(\Omega, \rho_{pol})}{\eta}$$

Example of simulation results for n-hexane sorption in PS films

T= 40°C

Film thickness = 1 μ m activity jump 0 \rightarrow 0.1

Diffusion coefficient from Vrentas and Duda Free Volume Theory

Bulk viscosity from analysis of relaxation data

Kinetics of CO₂ sorption in PMMA film for sorption step from 12.4 *bar* to 23.4 *bar*. Comparison of experimental values with model results.

Kinetics of CO₂ sorption in PMMA film for sorption step from 25.4 *bar* to 33.1 *bar*. Comparison of experimental values with model results.

Rate-Type (RT) lumped models for viscoelatic diffusion

$$\frac{\partial \rho_{sol}}{\partial t} = -\underline{\nabla} \bullet \underline{J}$$

$$\tau \frac{\partial \underline{J}}{\partial t} + \underline{J} + \mathcal{D} \rho_{sol} \underline{\nabla} \mu = 0$$

$$\frac{1}{\rho_{pol}} \frac{\partial \rho_{pol}}{\partial t} = \frac{p^{EXT} - p^{EQ} (\Omega, \rho_{pol})}{\eta}$$

Hyperbolic problem accounting for

- •a relaxation time τ in the flux
- •relaxation phenomena in volume swelling and in relax in BC

Thermodynamic Analysis for the development of shock concentration waves in the system

Results from the application of 2^{nd} law:

Necessary condition for the formation of shock concentration waves is that:

$$\left(\frac{\partial^2 \mu}{\partial \rho_{sol}^2}\right)_{\rho_{pol}} > 0$$

at least in a concentration range

Example of simulation results for RT sorption model: case of negligible volume swelling

Sorption kinetics for the case of ethanol-PMMA system at 30° C $\rho_{pol} = 1.10 \text{ g/cm}^3 \text{ e}$ diffusivity exponentially increasing function of concentration:

Effect of external solute fugacity

Examples of concentration profiles from simulation of sorption process for ethanol in PMMA (De = 30)

More general models

$$\mathbf{j}_{2}^{1} \equiv \varrho_{1}(\mathbf{v}_{1} - \mathbf{v}_{2}) = \frac{\varrho_{1}\varrho_{2}}{\varrho m_{12}} \left(\frac{1}{\varrho_{1}} \nabla \cdot \mathbf{T}_{1} - \frac{1}{\varrho_{2}} \nabla \cdot \mathbf{T}_{2}\right);$$

Mass balance

+

Mechanical problem with viscoelastic response

e.g. Billovitis, Macromol. 1994

Caruthers & Peppas Chem Eng Sci 1992, 1996 Petropolulos et al Macromol 2002 Doghieri et al. 2004, 2005

