Stetic Querk Model

Gell-Man 1964

Nobel 1969

Zweig

3 quarks fundamental repres. of SU(3)

unitary metrices 3x3 det=1 +=0

Use idjīj

N2-1=8 genretors

N-1 diaponal.

SU(2) 3 Rouli métrices I3, SZ Observeble.

SU(3) 2 diagonal:

I3, Strayeness

$$B = f \frac{1}{3}$$
 Querks.
= $-\frac{1}{3}$ autiquerks.

3⊗3 = 8⊕1 Melour:

octet bringlet

1,13,0

9,92

SEO PH SEI PA

S = O.

$$L = 0 \Leftrightarrow P = (-1)^{2} = -1.$$

$$C = (-1)^{L+S} = (-1)^{O+O} = +1$$

$$S = 1$$
.
 $J = L = S = 1$
 $P = (-1)^{0+1} = -1$
 $C = (-1)^{0+1} = -1$

vector mesous

	L	S	JPC	2s+1L _J	I=1 state
	0	0	0-+	¹ S ₀	π(140)
		1	1	³ S ₁	ρ(770)

physical particles/slates: ar n'in'
Grapthony Sletes: un ida, SS

$$f_{8,1} = \frac{1}{\sqrt{2}} \left(u\bar{u} - d\bar{d} \right)$$

$$f_{8,0} = \frac{1}{\sqrt{6}} \left(u\bar{u} + d\bar{d} - 2s\bar{s} \right)$$

$$f_{1} = \frac{1}{\sqrt{3}} \left(u\bar{u} + d\bar{d} + s\bar{s} \right)$$

$$f' = f_{80} \cos \theta_i - f_1 \sin \theta_i$$

$$f = f_{80} \sin \theta_i + f_1 \cos \theta_i$$

Ops: pseudoscaler mesou mixing on/le

Ov: vector meson mixing angle.

$$f' = \cos\theta; \left(\frac{1}{100}, 0 - \frac{1}{100}, \frac{1}{100}, \frac{1}{100} \right) =$$

=
$$\cos 3i \left[\frac{1}{16} \left[\frac{1}{1$$

$$\pi^{0}(140) \approx \psi_{8,1}^{ps} = (u\bar{u} - d\bar{d})/\sqrt{2}$$

$$\eta(550) = \psi_{8,0}^{ps} \cos\theta_{ps} - \psi_{1}^{ps} \sin\theta_{ps}$$

$$\eta'(960) = \psi_{8,0}^{ps} \sin\theta_{ps} + \psi_{1}^{ps} \cos\theta_{ps}$$

$$T^{0} \qquad U\bar{U} \qquad d\bar{d}$$

$$T^{0} \qquad U\bar{U} \qquad d\bar{d} \qquad (55)$$

$$0 \neq 35$$
 $70 \sim u\bar{u} d\bar{d}$
 $1 \sim u\bar{u} d\bar{d}$ (55)

$$\rho^{0}(770) \approx \psi_{8,1}^{v} = (u\overline{u} - d\overline{d})/\sqrt{2}$$

$$\phi(1020) = \psi_{8,0}^{v} \cos \theta_{v} - \psi_{1}^{v} \sin \theta_{v} \approx s\overline{s}$$

$$\approx (u\overline{u} + d\overline{d})/\sqrt{2}$$

$$\rho^{0}(770) \approx \psi_{8,1}^{v} = (u\overline{u} - d\overline{d})/\sqrt{2}$$

$$\rho^{0} \cong \text{M.d.}$$

$$\rho^{0}$$

about 20 mutiplets of purticles m; of multiplets show diff. => SU(3) Flower not exact

muxmy x ons

Production

P+P -> TTT - DO FTT - TTTT + P+P

S = 2

B
S

$$\pi^{-+}P \longrightarrow P + K^{+}K^{-} + \pi^{-}A^{\circ}$$

$$K^{\circ}K^{-} \qquad \pi^{+}$$

$$\nabla \times |\mathcal{M}|^{2} P(E)$$

$$+ \pi^{-}$$

ation 7 † TI invariant mass of

Decays

conservation laws

Q-vous >, 0

Q-velue = > P Small.

K+K- MP<8mk.

_ EM, strong: strongeness conserved. DS=&

- weak interaction: DS=1 allowed.

PX IMI P(E)

weak: IMI2 ~ GF2

$$\rho^{\circ} \rightarrow \pi^{\circ} \pi^{\circ}$$

Delay.

	Mode	Fraction (Γ_i/Γ)	Confidence level			
Γ ₁ Γ ₂	$\frac{\pi \pi}{K K}$	~ 100	%			
	ho(770)	[±] decays				
Γ_3	$\pi^{\pm}\pi^{0}$	~ 100	%			
Γ_4	$\pi^{\pm}\gamma$	(4.5 ± 0.5	$) \times 10^{-4}$ S=2.2			
Γ_5	$\pi^{\pm}\eta$	< 6	$\times 10^{-3}$ CL=84%			
Γ_6	$\pi^{\pm} \pi^{0}$ $\pi^{\pm} \gamma$ $\pi^{\pm} \eta$ $\pi^{\pm} \pi^{+} \pi^{-} \pi^{0}$	< 2.0	$\times 10^{-3}$ CL=84%			
$ ho$ (770) 0 decays						
Γ_7	$\pi^+\pi^-$	~ 100	%			
Γ ₈	$\pi^+\pi^ \pi^+\pi^-\gamma$	(9.9 ± 1.6	$) \times 10^{-3}$			
Γ_9	$\pi^{0}\gamma$	(4.7 ± 0.8)	$) \times 10^{-4}$ S=1.7			
Γ_{10}	$\eta\gamma$	$(3.00\pm0.21$) × 10 ⁻⁴			
	$\pi^0\pi^0\gamma$	(4.5 ± 0.8	$) \times 10^{-5}$			
Γ ₁₂	$\mu^+\mu^-$	[a] $(4.55\pm0.28$	$) \times 10^{-5}$			

https://pdg.lbl.gov

Page 11

Created: 8/11/2022 09:37

alwy net
$$e^{0} \rightarrow \pi^{0}\pi^{0}$$

() $\int e^{0} = (-1)^{L+S} = (-1)^{L+S}$

MTIFTI

