A

北京航空航天大学 2017-2018 学年 第二学期期末

《 工科数学分析 (2) 》 试 卷 (A)

班 号	学号	姓名
任课教师	考场	成绩

题号	_	1 1	111	四	五.	六	七	总分
成绩								
阅卷人								
校对人								

2018年06月28日

一、选择题(每小题4分,共20分)

1. 设 $D = \{(x,y) | (x-1)^2 + (y-1)^2 = 2\}$, 则 $\iint_{\Sigma} f(x,y) dx dy$ 在 极 坐 标 系 下 为

A.
$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{2(\sin\theta + \cos\theta)} f(r\cos\theta, r\sin\theta) r dr \quad \text{B.} \quad \int_0^{2\pi} d\theta \int_0^{\sqrt{2}} f(r\cos\theta + 1, r\sin\theta + 1) dr$$

C.
$$\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}} d\theta \int_{0}^{2(\sin\theta + \cos\theta)} f(r\cos\theta, r\sin\theta) r dr \quad \text{D.} \quad \int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}} d\theta \int_{0}^{2\sqrt{2}} f(r\cos\theta, r\sin\theta) r dr$$

2. 积分
$$\int_L xy^2 dx + y\varphi(x) dy$$
 与路径无关, 其中 φ 有连续导数, $\varphi(0) = 0$. 则 $\varphi(x) = 0$.

A.
$$x^2$$
 B. $x^2 + C$; C. $2x^2$; D. 0.

$$2x^{2}$$
; D.

3.
$$\Sigma$$
 为椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1(a,b,c>0)$,取外侧. Σ_1 为右半椭球面. 则

A.
$$\iint_{\Sigma} y dS = 2 \iint_{\Sigma_1} y dS;$$

B.
$$\iint_{\Sigma} y dz dx = 2 \iint_{\Sigma} y dz dx$$

A.
$$\iint_{\Sigma} ydS = 2\iint_{\Sigma_{1}} ydS;$$
B.
$$\iint_{\Sigma} ydzdx = 2\iint_{\Sigma_{1}} ydzdx;$$
C.
$$\iint_{\Sigma} y^{2}dzdx = 2\iint_{\Sigma_{1}} y^{2}dzdx;$$
D.
$$\iint_{\Sigma} ydzdx = 0.$$

D.
$$\iint y dz dx = 0.$$

4.
$$\Sigma$$
为球面 $x^2+y^2+z^2=1$,取外侧. Σ_1 为上半球面; Σ_2 为下半球面; Σ_3 为 xOy 平面上的圆盘 $x^2+y^2\leq 1$,取上侧. Γ 为 xOy 平面上的圆周 $x^2+y^2=1$,从 z 轴正向来看为逆时针方向. 则与 $\int_{\Gamma} xydx+yzdy+zxdz$ 不相等的为().

A.
$$-\iint_{\Sigma} y dy dz + z dz dx + x dx dy;$$

A.
$$-\iint_{\Sigma_1} y dy dz + z dz dx + x dx dy;$$
 B. $-\iint_{\Sigma_2} y dy dz + z dz dx + x dx dy;$

C.
$$\iint_{\Sigma_2} y dy dz + z dz dx + x dx dy;$$
 D.
$$-\iint_{\Sigma_2} y dy dz + z dz dx + x dx dy.$$

D.
$$-\iint_{\Sigma_3} y dy dz + z dz dx + x dx dy$$

5. 设
$$u(x,y,z)$$
 为连续函数, Σ 是以 $M(x_0,y_0,z_0)$ 为中心,半径为 R 的球面,极限
$$\lim_{R\to 0^+} \frac{1}{4\pi R^2} \iint_{\Sigma} u(x,y,z) dS = ().$$

A.
$$u(x_0, y_0, z_0)$$
;

B.
$$u(0,0,0)$$
;

A.
$$u(x_0, y_0, z_0)$$
; B. $u(0, 0, 0)$; C. $\frac{4u(x_0, y_0, z_0)}{3}$; D. $\frac{u(x_0, y_0, z_0)}{2}$.

D.
$$\frac{u(x_0, y_0, z_0)}{2}$$

二、计算题(每小题5分,满分30分)

1.. 设向量场 $\vec{F}(x,y,z)=(2x,-4y,8z)$, 求此向量场的旋度.

2. 计算
$$\int_0^1 dx \int_x^1 x \sin(y^3) dy$$

3. 计算
$$\iint_{\Omega} (z+2x+3y) dx dy dz$$
 , 其中 $\Omega = \{(x,y,z) \mid x^2+y^2+z^2 \leq 2z\}$.

4. 计算 $\int_{L}^{\infty} (\frac{3}{10}x^2 + \frac{2}{5}y^2)ds$,其中L为椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$, l是椭圆的周长.

5. 计算 $\int_L 2xydx + x^2dy$, 其中 L 为有向折线 OAB. 这里 O(0,0), A(1,0), B(1,1).

6. 设 Σ 是圆柱面 $x^2 + y^2 = 1$ ($0 \le z \le 1$), 计算 $\iint_{\Sigma} \sqrt{1 - x^2} dS$

A

三、(10 分) 计算第二型曲面积分
$$\iint_\Sigma \cos x dy dz + \sqrt{1-y^2}\,dz dx + z dx dy$$
 ,其中 Σ 为 上 半球面 $z=\sqrt{1-x^2-y^2}$,取上侧.

四、(10分)(利用 Green 公式)

计算 $\int_L \frac{xdy-ydx}{2x^2+3y^2}$, 其中 L 是以(1,1) 为中心, 4 为半径的圆周, 取逆时针方向.

五、(10分) (利用 Gauss 公式)

计算
$$\iint_{\Sigma} x(z-2y+1)dydz + y(x-z+2)dzdx + z(2y-x-1)dxdy$$
, 其中 Σ 是曲面

$$z = \sqrt{x^2 + y^2} (0 \le z \le 1)$$
, 取下侧.

七、(10分)确定函数f(x),g(x)满足f(0)=0,g(0)=1,且使得下面曲线积分与路

径无关:
$$\int_{L} \left[\frac{g(x)}{2} y^2 - 4f(x)y \right] dx + \left[f(x)y + g(x) \right] dy + z dz.$$