MA1101R Cheatsheet 17/18 Sem 1 Finals by Lee Yivuan and Eugene Lim

Matrices

Definition 2.5.2. Let $A = (a_{ij})$ be an $n \times n$ matrix. Let M_{ij} be an $(n-1) \times (n-1)$ matrix obtained from **A** by deleting the *i*th row and the *i*th column. Then the determinant of A is defined as

$$\det(\mathbf{A}) = \begin{cases} a_{11} & \text{if } n = 1\\ a_{11}A_{11} + \dots + a_{1n}A_{1n} & \text{if } n > 1 \end{cases}$$

where

$$A_{ij} = (-1)^{i+j} \det \left(\mathbf{M}_{ij} \right)$$

The number A_{ij} is called the (i, j)-cofactor of \mathbf{A} .

Theorem 2.5.8. The determinant of a triangular matrix is equal to the product of its diagonal entries.

Theorem 2.5.15. Let A be a square matrix.

- 1. If B is obtained from A by multiplying one row of A by a constant k, then $det(\mathbf{B}) = k det(\mathbf{A})$.
- 2. If B is obtained from A by interchanging two rows, then $\det(\boldsymbol{B}) = -\det(\boldsymbol{A}).$
- 3. If B is obtained from A by adding a multiple of one row of \mathbf{A} to another row, then $\det(\mathbf{B}) = \det(\mathbf{A})$.
- 4. Let E be an elementary matrix of the same size as A. Then $\det(\mathbf{E}\mathbf{A}) = \det(\mathbf{E})\det(\mathbf{A}).$

Theorem 2.5.25. If **A** is invertible, then $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$.

Theorem 2.5.27. Suppose Ax = b is a linear system where A is an $n \times n$ matrix. Let A_i be the matrix obtained from A be replacing the *i*th column of A by b. If A is invertible, then the system has only one solution

$$oldsymbol{x} = rac{1}{\det(oldsymbol{A})} egin{pmatrix} \det{(oldsymbol{A_1})} \ \vdots \ \det{(oldsymbol{A_n})} \end{pmatrix}$$

Definition 2.5.24. Let A be a square matrix of order n. Then the (classical) adjoint of A is the $n \times n$ matrix

$$\mathbf{adj}(\mathbf{A}) = (A_{ij})_{n \times n}^{T}$$

where A_{ij} is the (i, j)-cofactor of \mathbf{A} .

Euclidean Spaces

Definition 3.2.3. Let $S = \{u_1, \dots, u_k\}$ be a set of vectors in \mathbb{R}^n . Then the set of all linear combinations of u_1, \ldots, u_k ,

$$\{c_1\boldsymbol{u_1} + \cdots + c_k\boldsymbol{u_k} \mid c_1, \dots, c_k \in \mathbb{R}\}$$

is called the *linear span* of S (or the *linear span* of u_1, \ldots, u_k) and is denoted by $\operatorname{span}(S)$ (or $\operatorname{span}\{u_1,\ldots,u_k\}$).

Theorem 3.2.10. Let $S_1 = \{u_1, \dots, u_k\}$ and $S_2 = \{v_1, \dots, v_m\}$ be subsets of \mathbb{R}^n . Then span $(S_1) \subseteq \text{span}(S_2)$ if and only if each u_i is a linear combination of v_1, \ldots, v_m .

Definition 3.3.2. Let V be a subset of \mathbb{R}^n . Then V is called a subspace of \mathbb{R}^n if V = span(S) where $S = \{u_1, \dots, u_k\}$ for some vectors $u_1, \ldots, u_k \in \mathbb{R}^n$.

More precisely, V is called the subspace spanned by S (or the subspace spanned by u_1, \ldots, u_k). We also say that S spans (or $u_1, \ldots, u_k \ span$) the subspace V.

Remark 3.3.8. Let V be a non-empty subset of \mathbb{R}^n . Then V is a subspace of \mathbb{R}^n if and only if

for all
$$\boldsymbol{u}, \boldsymbol{v} \in V$$
 and $c, d \in \mathbb{R}, c\boldsymbol{u} + d\boldsymbol{v} \in V$

Definition 3.4.2. Let $S = \{u_1, \dots, u_k\}$ be a set of vectors in \mathbb{R}^n . Consider the equation

$$c_1 \boldsymbol{u_1} + \cdots + c_k \boldsymbol{u_k} = \boldsymbol{0}$$

where c_1, \ldots, c_k are variables.

- 1. S is called a linearly dependent set and u_1, \ldots, u_k are said to be linearly independent if the equation has only the trivial solution $c_1 = \cdots = c_k = 0$.
- 2. S is called a linearly independent set and u_1, \ldots, u_k are said to be linearly dependent if the equation has non-trivial solutions.

Definition 3.5.4. Let $S = \{u_1, \dots, u_k\}$ be a subset of a vector space V. Then S is called a basis for V if S is linearly independent and S spans V.

Definition 3.5.8. Let $S = \{u_1, \dots, u_k\}$ be a basis for a vector space V and \boldsymbol{v} a vector in V. By Theorem 3.5.7, \boldsymbol{v} is expressed uniquely as a linear combination

$$v = c_1 \boldsymbol{u_1} + \dots + c_k \boldsymbol{u_k}$$

The coefficients c_1, \ldots, c_k are called the *coordinates* of \boldsymbol{v} relative to the basis S.

The vector $(\mathbf{v})_S = (c_1, \dots, c_k) \in \mathbb{R}^k$ is called the *coordinate vector* of \boldsymbol{v} relative to the basis S.

Theorem 3.6.1. Let V be a vector space which has a basis with k vectors. Then

- 1. any subset of V with more than k vectors is always linearly
- 2. any subset of V with less than k vectors cannot span V.

Definition 3.6.3. The dimension of a vector space V, denoted by $\dim(V)$, is defined to be the number of vectors in a basis for V. In addition, we define the dimension of the zero space to be zero.

Theorem 3.6.7. Let V be a vector space of dimension k and S a subset of V. The following are equivalent:

- 1. S is a basis for V.
- 2. S is linearly independent and |S| = k.
- 3. S spans V and |S| = k.

Definition 3.7.3. Let $S = \{u_1, \dots, u_k\}$ and T be two bases for a solution v. Then the solution set of the system is given by vector space. The square matrix $P = ([u_1]_T \cdots [u_2]_T)$ is called the transition matrix from S to T.

Vector Space of Matrices

Definition 4.1.2. Let $A = (a_{ij})$ be an $m \times n$ matrix. The row space of A is the subspace of \mathbb{R}^n spanned by the rows of A. The column space of A is the subspace of \mathbb{R}^m spanned by the columns of \boldsymbol{A} .

Theorem 4.1.7. Let A and B be row equivalent matrices. Then the row space of A and the row space of B are identical, i.e. elementary row operations preserve the row space of a matrix.

Theorem 4.1.11. Let A and B be row equivalent matrices. Then the following statements hold:

- 1. A given set of columns of A is linearly independent if and only if the set of corresponding columns of B is linearly independent.
- 2. A given set of columns of **A** forms a basis for the column space of A if and only if the set of corresponding columns of B forms a basis for the column space of B.

Theorem 4.2.1. The row space and column space of a matrix have the same dimension.

Definition 4.2.3. The rank of a matrix is the dimension of its row space (or column space). We denote the rank of a matrix Aby $rank(\mathbf{A})$. Note that $rank(\mathbf{A})$ is equal to the number of nonzero rows as well as the number of pivot columns in a row-echelon form of \boldsymbol{A} .

Theorem 4.2.8. Let **A** and **B** be $m \times n$ and $n \times p$ matrices respectively. Then

$$rank(AB) \le min\{rank(A), rank(B)\}$$

Definition 4.3.1. Let **A** be an $m \times n$ matrix. The solution space of the homogeneous system of linear equations Ax = 0 is known as the null space of A.

The dimension of the null space of a matrix A is known as the nullity of **A** and is denoted by nullity (**A**). If **A** is an $m \times n$ matrix, it is clear that $\operatorname{nullity}(\mathbf{A}) \leq n$ since the nullspace is a subspace of \mathbb{R}^n .

Theorem 4.3.4. Let A be a matrix with n columns. Then

$$rank(\mathbf{A}) + nullity(\mathbf{A}) = n$$

Theorem 4.3.6. Suppose the linear equations Ax = b has a

 $M = \{ \boldsymbol{u} + \boldsymbol{v} \mid \boldsymbol{u} \text{ is an element of the nullspace of } \boldsymbol{A} \}$

Orthogonality

Definition 5.2.1.

- 1. Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are called *orthogonal* if $\mathbf{u} \cdot \mathbf{v} = 0$.
- 2. A set S of vectors in \mathbb{R}^n is called *orthogonal* if every pair of distinct vectors in S are orthogonal.
- 3. A set S of vectors in \mathbb{R}^n is called *orthonormal* if S is orthogonal and every vector in S is a unit vector.

Definition 5.2.4.

- A basis S for a vector space is called an orthogonal basis if S is orthogonal.
- 2. A basis S for a vector space is called an *orthonormal basis* if S is orthonormal.

Theorem 5.2.8. If $S = \{u_1, \dots, u_k\}$ is an orthogonal basis for a vector space V, then for any vector w in V,

$$w = rac{w \cdot u_1}{u_1 \cdot u_1} u_1 + \cdots + rac{w \cdot u_k}{u_k \cdot u_k} u_k$$

i.e.
$$(\boldsymbol{w})_S = \left(\frac{\boldsymbol{w} \cdot \boldsymbol{u_1}}{\boldsymbol{u_1} \cdot \boldsymbol{u_1}}, \dots, \frac{\boldsymbol{w} \cdot \boldsymbol{u_k}}{\boldsymbol{u_k} \cdot \boldsymbol{u_k}}\right)$$

Definition 5.2.10. Let V be a subspace of \mathbb{R}^n . A vector $\mathbf{u} \in \mathbb{R}^n$ is said to be *orthogonal* (or *perpendicular*) to V if \mathbf{u} is orthogonal to all vectors in V.

Definition 5.2.13. Let V be a subspace of \mathbb{R}^n . Every vector $u \in \mathbb{R}^n$ can be written uniquely as

$$u = n + p$$

such that n is a vector orthogonal to V and p is a vector in V. The vector p is called the (orthogonal) projection of u onto V.

Theorem 5.2.15. Let V be a subspace of \mathbb{R}^n and \boldsymbol{w} a vector in \mathbb{R}^n . If $\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_k\}$ is an orthogonal basis for V, then

$$\frac{w \cdot u_1}{u_1 \cdot u_1} u_1 + \cdots + \frac{w \cdot u_k}{u_k \cdot u_k} u_k$$

is the projection of \boldsymbol{w} onto V.

Theorem 5.2.19. Let $\{u_1, \ldots, u_k\}$ be a basis for a vector space V. Let

$$egin{aligned} v_1 &= u_1 \ v_2 &= u_2 - rac{u_2 \cdot v_1}{v_1 \cdot v_1} v_1 \ &dots \ v_k &= u_k - rac{u_k \cdot v_1}{v_1 \cdot v_1} v_1 - \dots - rac{u_k \cdot v_{k-1}}{v_{k-1} \cdot v_{k-1}} v_{k-1} \end{aligned}$$

Note that the right side is the projection of the vectors onto the orthogonal basis. To convert it into an orthonormal basis for V, simply divide each v_i by their length.

Theorem 5.3.10. Let Ax = b be a linear system. Then u is a least squares solution to Ax = b if and only if u is a solution to $A^TAx = A^Tb$.

Definition 5.4.3. A square matrix A is called orthogonal if $A^{-1} = A^{T}$.

Eigens and Diagonalization

Definition 6.1.3. Let A be a square matrix of order n. A nonzero column vector u in \mathbb{R}^n is called an *eigenvector* of A if

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$

for some scalar λ . The scalar λ is called an *eigenvalue* of \boldsymbol{A} and \boldsymbol{u} is said to be an eigenvector of \boldsymbol{A} associated with the eigenvalue λ .

Definition 6.1.6. Let \boldsymbol{A} be a square matrix of order n. The equation

$$\det(\lambda \boldsymbol{I} - \boldsymbol{A}) = 0$$

is called the $characteristic\ equation$ of \boldsymbol{A} and the polynomial

$$\det(\lambda \boldsymbol{I} - \boldsymbol{A})$$

is called the *characteristic polynomial* of A.

Theorem 6.1.8. Let A be an $n \times n$ matrix. The following statements are equivalent:

- 1. **A** is invertible.
- 2. The linear system Ax = 0 has only the trivial solution.
- 3. The reduced row-echelon form of A is an identity matrix.
- 4. A can be expressed as a product of elementary matrices.
- 5. $det(\mathbf{A}) \neq 0$
- 6. The rows of **A** form a basis for \mathbb{R}^n .
- 7. The columns of A form a basis for \mathbb{R}^n .
- 8. $rank(\mathbf{A}) = n$
- 9. 0 is not an eigenvalue of \mathbf{A} .

Theorem 6.1.9. If A is a triangular matrix, the eigenvalues of A are the diagonal entries of A.

Definition 6.1.11. Let A be a square matrix of order n and λ an eigenvalue of A. Then the solution space of the linear system $(\lambda I - A)x = 0$ is called the *eigenspace* of A associated with the eigenvalue λ and is denoted by E_{λ} .

Note that if u is a nonzero vector in E_{λ} , then u is an eigenvector of A associated with the eigenvalue λ .

Definition 6.2.1. A square matrix A is called *diagonalizable* if there exists an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix. Here the matrix P is said to *diagonalize* A.

Theorem 6.2.3. Let A be a square matrix of order n. Then A is diagonlizable if and only if A has n linearly independent eigenvectors.

Remark 6.2.5.2. The dimension of an eigenspace E_{λ} of a square matrix \boldsymbol{A} associated with the eigenvalue λ is at most the multiplicity of λ in the characteristic polynomial of \boldsymbol{A} .

Furthermore, A is diagonalizable if and only if the dimension of each eigenspace of A is equal to the multiplicity of its associated eigenvalue.

Theorem 6.2.7. Let A be a square matrix of order n. If A has n distinct eigenvalues, then A is diagonalizable.

Definition 6.3.2. A square matrix A is called *orthogonally diagonalizable* if there exists an orthogonal matrix P such that P^TAP is a diagonal matrix. Here the matrix P is said to *orthogonally diagonalize* A.

Theorem 6.3.4. A square matrix is orthogonally diagonalizable if and only if it is symmetric.

Linear Transformations

Definition 7.1.1. A linear transformation is a mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ of the form

$$T\left(\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}\right) = \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{pmatrix} \text{ for } \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$

where a_{11}, \ldots, a_{mn} are real numbers. In particular, if n = m, T is also called a *linear operator* on \mathbb{R}^n . We can rewrite the formula of T as

$$T\left(\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}\right) = \begin{pmatrix} a_{11} \cdots a_{1n} \\ \vdots \\ a_{m1} \cdots a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

The matrix $(a_{ij})_{m \times n}$ above is called the *standard matrix* for T.

Definition 7.1.10. Let $S: \mathbb{R}^n \to \mathbb{R}^m$ and $T: \mathbb{R}^m \to \mathbb{R}^k$ be linear transformations. The *composition* of T with S, denoted by $T \circ S$, is a mapping from $\mathbb{R}^n \to \mathbb{R}^k$ such that

$$(T \circ S)(\boldsymbol{u}) = T(S(\boldsymbol{u})) \text{ for } \boldsymbol{u} \in \mathbb{R}^n$$

Definition 7.2.1. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. The *range* of T, denoted by R(T), is the set of images of T, i.e.

$$R(T) = \{T(\boldsymbol{u}) \mid \boldsymbol{u} \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$$

Theorem 7.2.4. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and A the standard matrix for T. Then the range of T is defined as:

$$R(T)$$
 = the column space of \boldsymbol{A}

which is a subspace of $\mathbb{R}^m.$ This is also called the range of the linear transformation.

Definition 7.2.5. Let T be a linear transformation. The dimension of R(T) is called the rank of T and is denoted by rank(T).

By Theorem 7.2.4, if \boldsymbol{A} is the standard matrix for T, then $\operatorname{rank}(T) = \operatorname{rank}(\boldsymbol{A})$.

Definition 7.2.7. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. The *kernel* of T, denoted by Ker(T), is the set of vectors in \mathbb{R}^n whose image is the zero vector in \mathbb{R}^m , i.e.

$$\operatorname{Ker}(T) = \{ \boldsymbol{u} \mid T(\boldsymbol{u}) = \boldsymbol{0} \} \subset \mathbb{R}^n$$

This is also called the nullity of T.

Theorem 7.2.9. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and \boldsymbol{A} the standard matrix for T. Then

$$Ker(T) = the nullspace of A$$

Definition 7.2.10. Let T be a linear transformation. The dimension of Ker(T) is called the *nullity* of T and is denoted by nullity(T).

By Theorem 7.2.9, if \boldsymbol{A} is the standard matrix for T, then nullity(T) = nullity(\boldsymbol{A}).

Theorem 7.2.13. If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then

$$rank(T) + nullity(T) = n$$