

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of

Tomohide KASAME et al.

Application No.:

10/763,318

Filed: January 26, 2004

Docket No.:

118451

For:

ELECTRONIC CONTROL UNIT AND ELECTRONIC DRIVING UNIT

CLAIM FOR PRIORITY

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

The benefit of the filing dates of the following prior foreign applications filed in the following foreign country is hereby requested for the above-identified patent application and the priority provided in 35 U.S.C. §119 is hereby claimed:

Japanese Patent Application No. 2003-017861 filed January 27, 2003;

Japanese Patent Application No. 2003-070895 filed March 14, 2003

In support of this claim, certified copies of said original foreign applications:

are filed herewith.

It is requested that the file of this application be marked to indicate that the requirements of 35 U.S.C. §119 have been fulfilled and that the Patent and Trademark Office kindly acknowledge receipt of these documents.

Respectfully submitted,

James A. Oliff

Registration No. 27,075

Thomas J. Pardini

Registration No. 30,411

JAO:TJP/tje

Date: February 17, 2004

OLIFF & BERRIDGE, PLC P.O. Box 19928

Alexandria, Virginia 22320 Telephone: (703) 836-6400

DEPOSIT ACCOUNT USE AUTHORIZATION Please grant any extension necessary for entry; Charge any fee due to our Deposit Account No. 15-0461

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 1月27日

出 願 番 号 Application Number:

特願2003-017861

[ST. 10/C]:

Applicant(s):

[JP2003-017861]

出 願 人

富士通テン株式会社

特許庁長官 Commissioner, Japan Patent Office 2004年 1月30日

今井康

【書類名】

特許願

【整理番号】

FTN02-0167

【提出日】

平成15年 1月27日

【あて先】

特許庁長官殿

【国際特許分類】

F02D 45/00

【発明者】

【住所又は居所】

兵庫県神戸市兵庫区御所通1丁目2番28号 富士通テ

ン株式会社内

【氏名】

笠目 知秀

【発明者】

【住所又は居所】

兵庫県神戸市兵庫区御所通1丁目2番28号 富士通テ

ン株式会社内

【氏名】

小松 和弘

【発明者】

【住所又は居所】

兵庫県神戸市兵庫区御所通1丁目2番28号 富士通テ

ン株式会社内

【氏名】

樋口 崇

【特許出願人】

【識別番号】

000237592

【氏名又は名称】

富士通テン株式会社

【代表者】

槌本 ▲隆▼光

【電話番号】

078-671-5081

【手数料の表示】

【予納台帳番号】

015886

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書

ページ: 2/E

【プルーフの要否】 要

"

【書類名】 明細書

【発明の名称】 電子制御装置

【特許請求の範囲】

5

【請求項1】 入力端子から入力された入力信号を演算処理して制御信号を 出力する電子制御装置であって、

前記演算処理を実行する演算処理手段と、

前記入力信号に対して所定の処理を実行して前記演算処理手段に供給する入力 処理手段と、

前記入力処理手段による入力信号に対する処理の内容を切り替える処理切替手 段と、

を備えたことを特徴とする電子制御装置。

【請求項2】 前記処理切替手段は、前記入力処理手段による入力信号に対する処理の内容を入力処理情報として記憶し、該入力処理情報をもとに前記入力処理手段による処理の内容を切り替えることを特徴とする請求項1に記載の電子制御装置。

【請求項3】 前記処理切替手段は、前記演算処理手段が出力する演算結果をもとに前記入力処理手段による入力信号に対する処理の内容を切り替えることを特徴とする請求項1または2に記載の電子制御装置。

【請求項4】 前記処理切替手段は、前記入力処理手段による入力信号に対する処理の内容を時分割で切り替えることを特徴とする請求項1,2または3に記載の電子制御装置。

【請求項5】 前記入力処理手段は、前記入力信号に対する処理の内容ごとに異なる複数の処理回路と、該複数の処理回路のうちいずれかに前記入力信号を入力する入力スイッチと、を備えることを特徴とする請求項1~4のいずれか一つに記載の電子制御装置。

【請求項6】 前記入力処理手段は、入力信号に対して同一の処理を実行する複数の処理回路を備え、前記処理切替手段は、処理を実行中の処理回路に異常が発生した場合に、同一の処理を実行する他の処理回路に切り替えることを特徴とする請求項5に記載の電子制御装置。

【請求項7】 前記入力処理手段は、プログラマブルICによって前記入力信号に対して所定の処理を実行し、前記処理切替部は、該プログラマブルICを書き換えることで前記入力信号に対する処理の内容を切り替えることを特徴とする請求項1~4のいずれか一つに記載の電子制御装置。

【請求項8】 前記入力処理手段は、前記入力信号をデジタル信号に変換するアナログ/デジタル変換器と、該アナログ/デジタル変換器によって変換されたデジタル信号に対して所定の処理を実行する論理ICと、を備え、前記処理切替手段は、該論理ICが記憶する処理の内容を書き換えることで前記入力信号に対する処理の内容を切り替えることを特徴とする請求項1~4のいずれか一つに記載の電子制御装置。

【請求項9】 前記入力処理手段は、複数の入力端子と前記演算処理部との接続関係をさらに切り替えることを特徴とする請求項1~8のいずれか一つに記載の電子制御装置。

【請求項10】 前記入力処理手段は、複数の入力端子から入力される入力信号に対し、それぞれ独立した処理を実行することを特徴とする請求項9に記載の電子制御装置。

【請求項11】 前記演算処理手段が出力する演算結果に対して所定の処理を実行し、該処理結果を前記制御信号として出力する出力処理手段をさらに備え、前記処理切替手段は、前記出力処理手段による処理の内容をさらに切り替えることを特徴とする請求項1~10のいずれか一つに記載の電子制御装置。

【請求項12】 前記出力処理手段は、前記演算結果に対して所定の駆動電流を与える処理を行うことを特徴とする請求項11に記載の電子制御装置。

【請求項13】 前記出力処理手段は、前記演算結果に与える駆動電流を複数のドライバ回路の組み合わせによって生成することを特徴とする請求項12に記載の電子制御装置。

【請求項14】 前記出力処理手段は、複数の出力端子に対してそれぞれ専用に割り当てた専用ドライバ回路群を備え、該専用ドライバ回路群から駆動電流の生成に用いるドライバ回路、もしくはその組み合わせを選択することを特徴とする請求項13に記載の電子制御装置。

【請求項15】 前記出力処理手段は、複数の出力端子が共用する共用ドライバ回路群を備え、該共用ドライバ回路群から駆動電流の生成に用いるドライバ回路、もしくはその組み合わせを選択することを特徴とする請求項13に記載の電子制御装置。

【請求項16】 前記処理切替手段が処理の内容を切り替える場合に、該切替処理を許可するか否かを管理する切替管理手段をさらに備えたことを特徴とする請求項1~15のいずれか一つに記載の電子制御装置。

【請求項17】 前記切替管理手段は、前記切替処理の内容に対して要求権限を設定したことを特徴とする請求項16に記載の電子制御装置。

【請求項18】 前記切替管理手段は、前記切替処理に際し、前記要求権限を満たす識別信号が入力された場合に当該切替処理を許可することを特徴とする請求項17に記載の電子制御装置。

【請求項19】 前記切替管理手段は、前記切替処理を要求する切替要求が発生し、該切替要求を示すデータ内に前記要求権限を満たす権限情報が含まれる場合に、当該切替要求によって要求された切替処理を許可することを特徴とする請求項17に記載の電子制御装置。

【請求項20】 前記切替管理手段は、位置情報を取得する位置情報取得手段を備え、前記位置情報取得手段が取得した位置情報をもとに切替処理を許可するか否かを決定することを特徴とする請求項16~19のいずれか一つに記載の電子制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この発明は、入力端子から入力された入力信号を演算処理して制御信号を出力する電子制御装置に関し、特に処理内容を変更可能な電子制御装置に関する。

[0002]

【従来の技術】

近年、車両に電子制御機器(ECU)を搭載し、車両の運行時に必要な種々の 処理を電子制御することが行われている。たとえばエンジンの噴射の制御にEC Uを適用し、速度センサや水温センサなどに接続することで、車両の速度やエンジンの冷却水の温度に応じてガソリンの噴射量を制御することができる。

[0003]

このような車載ECUでは、車両の種類や走行する国などによって入出力信号、 や処理動作が異なる場合が多い。そこで車載ECUでは、車両ごとに異なる入力 を受け付け、必要な処理動作を実行できるように設定を変更可能であることが要 望される。

[0004]

この要望に応えるため、従来の車載ECUでは、あらかじめ複数の処理動作を プログラムとして記憶させ、プログラムの切り替えによって設定を変更すること が行われていた(たとえば、特許文献1参照。)。

[0005]

また、開発時点でプログラムの動作を確認するために、CPUに対する入出力信号を切り替える制御装置のシミュレータが考えられている(たとえば、特許文献2参照。)。

[0006]

【特許文献1】

特開平5-171997号公報

【特許文献 2 】

特開平6-161987号公報

[0007]

【発明が解決しようとする課題】

しかしながら、上述した従来のECUでは、プログラムの切り替えによって処理動作を選択できるものの、入出力信号の形式は変更することができなかった。たとえば、設計の変更によって入力される信号の電圧が変化した場合、入力電圧を調整する必要があるが、電圧の変更にはハードウェアの変更が必要であるために、プログラムの切り替えによって対応することはできない。同様に、必要な出力の形式が変更される場合や、端子と入出力信号との接続関係が変更される場合もハードウェアの変更が必要となる。このように、ECU内部のハードウェア要

素の設定変更は、プログラムの切り替えによっては実現できず、ECUの回路構成自体を変更する必要がある。

[0008]

また、上述のシミュレータでは、開発時におけるプログラムの動作確認のために入出力信号を切り替える機能を有するが、確認終了後、実際の製品ではハードウェア構成の変更を行うことができない。しかし、処理内容の変更は、ECUの開発時のみに求められるものではなく、車両への搭載時や修理時においても必要となる場合がある。また特許文献2では入力ポートとその信号の種類(スタータ信号等)を選択できるだけに過ぎない。

[0009]

すなわち、従来のECUでは、開発終了後にハードウェアの変更ができず、処理内容の変更はプログラム部分の変更に限定されるという問題点があった。そのため、ハードウェアの変更が必要となった場合に、ECUの設計および製造をやりなおすこととなり、時間と費用とが必要であった。また、車両の種類ごとに別個にECUを製造する必要があるために、さらにコストが高くなるという問題点があった。

[0010]

この発明は、上述した従来技術による問題点を解消するためになされたものであり、処理内容を変更可能な電子制御装置を提供することを目的とする。

$[0\ 0\ 1\ 1]$

【課題を解決するための手段】

上述した課題を解決し、目的を達成するため、請求項1の発明にかかる電子制御装置は、入力端子から入力された入力信号を演算処理して制御信号を出力する電子制御装置であって、前記演算処理を実行する演算処理手段と、前記入力信号に対して所定の処理を実行して前記演算処理手段に供給する入力処理手段と、前記入力処理手段による入力信号に対する処理の内容を切り替える処理切替手段と、を備えたことを特徴とする。

$[0\ 0\ 1\ 2]$

この請求項1の発明によれば、電子制御装置は、入力端子と演算処理手段との

間に入力処理手段を介在させ、入力処理手段による入力信号に対する処理の内容 を処理切替手段によって切り替えるように構成している。

[0013]

また、請求項2の発明にかかる電子制御装置は、請求項1の発明において、前 記処理切替手段は、前記入力処理手段による入力信号に対する処理の内容を入力 処理情報として記憶し、該入力処理情報をもとに前記入力処理手段による処理の 内容を切り替えることを特徴とする。

$[0\ 0\ 1\ 4]$

この請求項2の発明によれば、電子制御装置は、入力処理情報をもとに入力処理手段の内容を切り替えることで、入力処理手段によって実現する処理の内容を必要に応じて切り替えることができ、さらに入力情報の変更によって切替の内容を変更することができる。

[0015]

また、請求項3の発明にかかる電子制御装置は、請求項1または2の発明において、前記処理切替手段は、前記演算処理手段が出力する演算結果をもとに前記入力処理手段による処理の内容を切り替えることを特徴とする。

$[0\ 0\ 1\ 6]$

この請求項3の発明によれば、電子制御装置は、演算処理手段の演算結果をも とに入力信号に対する処理を変更することで、演算処理の内容に対応して異なる 処理を同一の入力信号に対しておこなうことができる。

$[0\ 0\ 1\ 7]$

また、請求項4の発明にかかる電子制御装置は、請求項1,2または3の発明において、前記処理切替手段は、前記入力処理手段による処理の内容を時分割で切り替えることを特徴とする。

[0018]

この請求項4の発明によれば、電子制御装置は、入力処理手段の処理を時分割で切り替えることで、入力信号に対する処理を演算処理の処理状況に対応して切り替え、また、入力端子が複数ある場合に入力処理手段の処理を共用することができる。

[0019]

また、請求項5の発明にかかる電子制御装置は、請求項1~4のいずれか一つに記載の発明において、前記入力処理手段は、前記入力信号に対する処理の内容ごとに異なる複数の処理回路と、該複数の処理回路のうちいずれかに前記入力信号を入力する入力スイッチと、を備えることを特徴とする。

[0020]

この請求項5の発明によれば、電子制御装置は、入力処理の内容ごとに異なる 複数の処理回路を備え、入力信号をいずれの処理回路に入力するかを切り替える ことで、入力信号に対する処理の内容を変更する。

[0021]

また、請求項6の発明にかかる電子制御装置は、請求項5の発明において、前記入力処理手段は、入力信号に対して同一の処理を実行する複数の処理回路を備え、前記処理切替手段は、処理を実行中の処理回路に異常が発生した場合に、同一の処理を実行する他の処理回路に切り替えることを特徴とする。

[0022]

この請求項6の発明によれば、電子制御装置は、入力信号に対して同一の処理 を実行する処理回路を切り替えることで、使用中の処理回路に異常が発生した場 合に予備の回路を使用して処理を継続することができる。

[0023]

また、請求項7の発明にかかる電子制御装置は、請求項1~4のいずれか一つに記載の発明において、前記入力処理手段は、プログラマブルICによって前記入力信号に対して所定の処理を実行し、前記処理切替手段は、該プログラマブルICを書き換えることで前記入力信号に対する処理の内容を切り替えることを特徴とする。

[0024]

この請求項7の発明によれば、電子制御装置は、処理内容を書き換え可能なプログラマブルICによって入力信号に対する処理を実行し、プログラマブルIC の書き換えによって処理内容を変更することができる。

[0025]

また、請求項8の発明にかかる電子制御装置は、請求項1~4のいずれか一つに記載の発明において、前記入力処理手段は、前記入力信号をデジタル信号に変換するアナログ/デジタル変換器と、該アナログ/デジタル変換器によって変換されたデジタル信号に対して所定の処理を実行する論理ICと、を備え、前記処理切替部は、該論理ICが記憶する処理の内容を書き換えることで前記入力信号に対する処理の内容を切り替えることを特徴とする。

[0026]

この請求項8の発明によれば、電子制御装置は、入力信号をA/D変換した後に、論理ICによって入力信号の処理をおこない、論理IC内に記憶したプログラムの書き換えによって処理の内容を変更することができる。

[0027]

また、請求項9の発明にかかる電子制御装置は、請求項1~8のいずれか一つに記載の発明において、前記入力処理手段は、複数の入力端子と前記演算処理部との接続関係をさらに切り替えることを特徴とする。

[0028]

この請求項9の発明によれば、電子制御装置は、複数の入力端子と演算処理手段の接続関係を切り替えることで、演算処理手段に入力する入力信号を切り替えることができる。

[0029]

また、請求項10の発明にかかる電子制御装置は、請求項9の発明において、前記入力処理手段は、複数の入力端子から入力される入力信号に対し、それぞれ独立した処理を実行することを特徴とする。

[0030]

この請求項10の発明によれば、電子制御装置は、複数の入力端子のそれぞれから入力された入力信号に対し、独立に処理を実行することで、複数の入力信号を並列に処理することができる。

[0031]

また、請求項11の発明にかかる電子制御装置は、請求項1~10のいずれか一つに記載の発明において、前記演算処理手段が出力する演算結果に対して所定

の処理を実行し、該処理結果を前記制御信号として出力する出力処理手段をさら に備え、前記処理切替手段は、前記出力処理手段による処理の内容をさらに切り 替えることを特徴とする。

[0032]

この請求項11の発明によれば、電子制御装置は、演算処理手段と出力端子との間に出力処理手段を介在させ、出力処理手段による処理の内容を処理切替手段によって切り替えるように構成している。

[0033]

また、請求項12の発明にかかる電子制御装置は、請求項11の発明において 、前記出力処理手段は、前記演算結果に対して所定の駆動電流を与える処理を行 うことを特徴とする。

[0034]

この請求項12の発明によれば、電子制御装置は、演算処理部が出力する演算 結果に与える駆動電流を、任意に切り替えることができる。

[0035]

また、請求項13の発明にかかる電子制御装置は、請求項12の発明において、前記出力処理手段は、前記演算結果に与える駆動電流を複数のドライバ回路の組み合わせによって生成することを特徴とする。

[0036]

この請求項13の発明によれば、電子制御装置は、演算処理手段の演算結果に与える駆動電流を、複数のドライバ回路の組み合わせによって生成することで、 選択可能な駆動電流の数を増加させている。

[0037]

また、請求項14の発明にかかる電子制御装置は、請求項13の発明において、前記出力処理手段は、複数の出力端子に対してそれぞれ専用に割り当てた専用ドライバ回路群を備え、該専用ドライバ回路群から駆動電流の生成に用いるドライバ回路、もしくはその組み合わせを選択することを特徴とする。

[0038]

この請求項14の発明によれば、電子制御装置は、複数の出力端子にそれぞれ

専用のドライバ回路を割り当て、このドライバ回路を組み合わせることで、出力端子ごとに異なる駆動回路を与えることができる。

[0039]

また、請求項15の発明にかかる電子制御装置は、請求項13の発明において、前記出力処理手段は、複数の出力端子が共用する共用ドライバ回路群を備え、該共用ドライバ回路群から駆動電流の生成に用いるドライバ回路、もしくはその組み合わせを選択することを特徴とする。

[0040]

この請求項15の発明によれば、電子制御装置は、複数の出力する端子が共用するドライバ回路群から、出力端子ごとに割り当てるドライバ回路を選択することで、出力端子ごとに異なる駆動電流を割り当てることができる。

[0041]

また、請求項16の発明にかかる電子制御装置は、請求項1~15のいずれか一つに記載の発明において、前記処理切替手段が処理の内容を切り替える場合に、該切替処理を許可するか否かを管理する切替管理手段をさらに備えたことを特徴とする。

$[0\ 0\ 4\ 2]$

この請求項16の発明によれば、電子制御装置は、処理内容の切替に際し、切り替えを許可するか否かを管理する切替管理手段を設けることで、処理の切替に制限を持たせている。

$[0\ 0\ 4\ 3]$

また、請求項17の発明にかかる電子制御装置は、請求項16の発明において、前記切替管理手段は、前記切替処理の内容に対して要求権限を設定したことを特徴とする。

[0044]

この請求項17の発明によれば、電子制御装置は、処理内容についてそれぞれ 要求権限を設定することで、切り替えをおこなう処理の内容ごとに切り替えを許 可するか否かを管理することができる。

[0045]

また、請求項18の発明にかかる電子制御装置は、請求項17の発明において、前記切替管理手段は、前記切替処理に際し、前記要求権限を満たす識別信号が入力された場合に当該切替処理を許可することを特徴とする。

[0046]

この請求項18の発明によれば、電子制御装置は、要求権限を満たす識別信号が入力されたか否かによって、切替処理の可否を管理している。

[0047]

また、請求項19の発明にかかる電子制御装置は、請求項17の発明において、前記切替管理手段は、前記切替処理を要求する切替要求が発生し、該切替要求を示すデータ内に前記要求権限を満たす権限情報が含まれる場合に、当該切替要求によって要求された切替処理を許可することを特徴とする。

[0048]

この請求項19の発明によれば、電子制御装置は、切替要求を示すデータ内に、要求権限を満たす権限情報が含まれているか否かによって切替処理の可否を判定する。

[0049]

また、請求項20の発明にかかる電子制御装置は、請求項16~19のいずれか一つに記載の発明において、前記切替管理手段は、位置情報を取得する位置情報取得部を備え、前記位置情報取得部が取得した位置情報をもとに切替処理を許可するか否かを決定することを特徴とする。

[0050]

この請求項20の発明によれば、電子制御装置は、位置情報をもとに切替処理 の可否を判定することで、所定の場所においてのみ切替処理を許可することがで きる。

[0051]

【発明の実施の形態】

以下に添付図面を参照して、この発明に係る電子制御装置(ECU)の好適な 実施の形態について説明する。

[0052]

(実施の形態1)

まず、本実施の形態1にかかるECU1の概要構成について説明する。図1は、本実施の形態1にかかるECU1の概要構成を説明する説明図である。図1においてECU1は、入力端子T1~T3、入力処理回路2、MPU3、出力処理回路4、出力端子T4~T6、切替制御部5および切替情報記憶部6を有する。

[0053]

さらに、入力処理回路 2 は、その内部に切替部 2 1、処理部 2 3 ~ 2 5、切替部 2 2を有する。処理部 2 3 ~ 2 5 は、それぞれ入力信号に対して所定の処理を実行する機能を持ち、切替部 2 1 は、入力端子 T 1 ~ T 3 と処理部 2 3 ~ 2 5 との接続関係を切り替える。また、切替部 2 2 は、処理部 2 3 ~ 2 5 とMP U 3 の入力ポート P 1 ~ P 3 との接続関係を切り替える。

[0054]

したがって、入力端子T1~T3から入力された入力信号は、処理部23~25のいずれかの処理部によって処理された後、入力ポートP1~P3のいずれかに入力されることとなる。この入力端子T1~T3、処理部23~25、入力ポートP1~P3の接続関係を、切替部21および切替部22によって行うことで、入力信号に対する処理の内容と、処理された入力信号をMPU3のいずれのポートに入力するかを任意に設定することができる。

[0055]

MPU3は、その内部にプロセッサやメモリを備えており、内部に記憶したプログラムに基づいて入力ポートP1~P3からの入力信号に対する演算を実行し、演算結果を出力ポートP4~P6から出力する。なお、ここでは演算処理をMPUによって行っているが、所望の演算処理を実行可能であれば、ASICなどを用いてもよい。

[0056]

出力処理回路4は、その内部に切替部41、処理部43~45、切替部42を有する。処理部43~45は、それぞれMPU3の演算結果に対して所定の処理を実行する機能を持ち、切替部41は、出力ポートP4~P6と処理部43~45と出力端5との接続関係を切り替える。また、切替部42は、処理部43~45と出力端

子T1~T3との接続関係を切り替える。

[0057]

したがって、出力ポートP4~P6から出力された演算結果は、処理部43~45のいずれかの処理部によって処理された後、出力端子T4~T6のいずれかから出力されることとなる。この出力ポートP4~P6、処理部43~45、出力端子T4~T6の接続関係を、切替部41および切替部42によって行うことで、MPU3の演算結果に対する処理の内容と、処理された演算結果をいずれの端子から出力するかを任意に設定することができる。

[0058]

切替制御部 5 は、切替部 2 1 , 2 2 に対して切替要求を送信し、入力端子 T 1 ~ T 3 、処理部 2 3 ~ 2 5 、入力ポート P 1 ~ P 3 の接続関係を変更する。また、切替制御部 5 は、切替部 4 1 , 4 2 に対して切替要求を送信することで、出力ポート P 4 ~ P 6 、処理部 4 3 ~ 4 5 、出力端子 T 4 ~ T 6 の接続関係を変更する。

[0059]

切替情報記憶部6は、端子、ポートおよび処理部の接続関係と切替部21,22,41,42の設定とを対応付けた切替情報を記憶している。切替制御部5は、切替情報記憶部6が記憶した切替情報をもとに切替部21,22,41,42に対して切替要求を送信することで、所望の接続関係を実現するように切替部21,22,41,42の設定を変更することができる。

[0060]

さらに、切替情報記憶部6が記憶する切替情報を書き換えることで、端子、ポートおよび処理部の接続関係と切替部の設定との対応関係を変更することができる。

[0061]

つぎに、入力処理回路の具体的な構成例について説明する。図2は、処理部23~24に対応する処理回路をそれぞれ独立に設けた入力処理回路の一例を示す図である。図2において、入力処理回路2aは、処理部23に対応する処理を実現する処理回路23a、処理部24に対応する処理を実現する処理回路24a、

処理部25に対応する処理を実現する処理回路25aをそれぞれ独立に有する。

[0062]

また、切替部 21 a は、スイッチ SW11 ~SW13 およびスイッチ SW21 ~SW23 によって構成する。スイッチ SW11 ~SW13 は、それぞれ入力端子 T1 ~T3 のオン/オフ制御をおこなうスイッチである。また、スイッチ SW23 は、それぞれ処理回路 23 a ~ 25 a のオン/オフ制御をおこなう。したがって、スイッチ SW11 ~SW13 のいずれかをオンにすることで入力端子 T1 ~T3 のいずれかを選択し、スイッチ SW21 ~SW23 のいずれかを をオンにすることで処理回路 23 a ~ 25 a のいずれかを 選択することができる

[0063]

$[0\ 0\ 6\ 4]$

このように処理回路 2 3 a ~ 2 5 a をそれぞれ独立に設け、入力端子、処理回路、入力ポートを選択することで、入力端子と入力ポートの接続関係および入力信号に対する処理の内容を任意に設定することができる。

[0065]

ここで、処理回路 $23a \sim 25a$ は、入力信号の電圧調整や、フィルタリング、信号整形などの処理をおこなう。図 3 に処理回路 $23a \sim 25a$ として使用可能な回路例を示す。図 3 (a) は、抵抗R 1 を用いたプルダウン回路であり、入力信号における低電位を安定させる。また、図 3 (b) は、抵抗R 2 および定電圧V 1 を用いたプルアップ回路であり、入力信号における高電位を安定させる。

[0066]

さらに、図3(c)は、抵抗R3およびコンデンサC1を用いたフィルタ回路であり、抵抗R3およびコンデンサC1によって定まる周波数の除去をおこなう。また、図4(d)は、オペアンプOP1および定電圧V2を用いたコンパレータであり、入力信号の電位と定電圧V2とを比較して比較結果を出力する。

[0067]

これらの回路構成を処理回路 2 3 a ~ 2 5 a として用いる(例えば処理回路 2 3 a をプルダウン回路、処理回路 2 4 a をフィルタ回路、処理回路 2 5 a をコンパレータとする)ことにより、入力信号の電圧調整や、フィルタリング、信号整形を実現することができる。なお、処理回路によって実現する機能はこれらに限られるものではなく、たとえば乗算回路などの他の構成であっても良い。

[0068]

このように、切替部 21a,切替部 23aのスイッチ制御によって処理回路 $23a \sim 25a$ のいずれかを選択する場合、切替情報記憶部 6 は、図 4 に示す接続情報を記憶する。図 4 (a) は、端子、ポートおよび処理部の接続関係を示す図であり、図 4 (b) は、図 4 (a) に対応するスイッチの設定を示す図である。

[0069]

図4(a)では、入力端子T1からの入力信号に対して処理Aを実行し、入力ポートP2に供給することが示されている。同様に、入力端子T2からの入力信号に対しては処理Bを実行して入力ポートP3に供給すること、入力端子T3からの入力信号に対しては処理Cを実行して入力ポートP1に供給すること、が示されている。ここで処理Aは、処理回路23aによって実現される処理であり、処理B, Cはそれぞれ処理回路24a, 25aによって実現される処理とする。

[0070]

この図4(a)に示した接続関係に対応し、図4(b)に示したスイッチの設定では、オン状態とするスイッチが指定される。具体的には、入力端子T1からの入力信号に対しては、スイッチS11, S21, S31, S42 をオン状態とすることが示されている。また、入力端子T2 からの入力信号に対しては、スイッチS12, S22, S32, S43 をオン状態とすることが示され、入力端子

T3からの入力信号に対してはスイッチS13, S23, S33, S41をオン 状態とすることが示されている。

[0071]

このように、所望の接続状態に対応してオン状態とするスイッチを指定することで、各入力端子に対して任意の処理と入力ポートを割り当てることができる。

[0072]

ところで、各入力端子に割り当てる処理や入力ポートを変更する場合、切替情報を書き換えることで変更を実現することができる。たとえば、図5 (a)に示すように、入力端子T1に対する処理を処理Bに変更し、入力端子T2に対する処理を処理Aに変更する場合、図5 (b)に示すスイッチの設定を変更することで、処理の変更を実現できる。具体的には、図5 (b)では、入力端子T1からの入力信号に対して、スイッチS11,S22,S32,S42をオン状態とすること、また、入力端子T2からの入力信号に対し、スイッチS12,S21,S31,S43をオン状態とすることとしている。

[0073]

このように、切替情報を書き換えることで、入力端子に割り当てる処理や入力ポートを変更することができる。この切替情報の書き換えは、外部からの入力によるものであってもよいし、MPU3の演算結果によって書き換えても良い。

また、本実施の形態においては以下のような接続の切替えを行うことができる。すなわち、以上説明した処理回路の切替えは、各々の車種に対応して行われるのが一般的であるが、同じ車種において仕様が変更される場合にも対応可能である。

例えば、車載用においては入力信号としてセンサ信号が採用されるが、このセンサ信号は経年変化により特性が変化することがある。これに対応するために処理回路の特性値を変更するのが望ましい。このような処理回路としてはフィルタ回路が挙げられる。

そこで図3 (b) のようなフィルタ回路 (処理Bと称する) とは別の周波数特性を有するフィルタ回路 (処理Dと称する) を入力処理回路内に予備的に設けておくと共に切替部21 a、22 aもこのフィルタ回路に接続されるようにスイッ

チを構成しておく。

そして、ある車両に搭載されたECUが実際に使用されている途中でセンサ特性が変わってしまった場合には、例えば処理Bに変えて処理Dに切替えるように切り替え情報記憶部の記憶内容を変更する。

これによって、切替部21a、22aが切り替わり、入力端子T2における入力信号が処理Bとは別の処理Dによって処理されることになる。

以上により、ECUのシミュレーション段階やECUが実際に車両に搭載される製造段階だけでなく、車両搭載後であっても経年変化等に対応した処理ができるように仕様を変更することができるという効果を奏する。

[0074]

[0075]

また、切替制御部 5 は、FPGA 5 1内部のスイッチの接続状態を変更することで、入力端子T1~T3と入力ポートP1~P3の接続関係および各入力信号に対する処理の内容を変更することができる。したがって、この構成では切替情報記憶部 6 はFPGA 5 1内部のスイッチの接続関係を記憶することとなる。なお、ここではプログラマブル ICとしてFPGA 5 1をもちいたが、書き換え可能な I Cであれば他の I C、たとえばFPAA (Field Programmable Analog Array)などを用いても良い。

[0076]

つぎに、論理ICによって処理部23~25の機能を実現する入力処理回路の構成例について図7を参照して説明する。同図において、入力処理回路2cは、

切替部21c、アナログ/デジタル変換器(ADC)52および論理IC53を備える。切替部21cは、入力端子T1~T3にそれぞれ対応するスイッチを備え、入力端子T1~T3のいずれか一つから入力された入力信号をADC52に入力する。ADC52は、入力信号をデジタル信号に変換して論理IC53に入力する。論理IC53は、その内部に記憶したプログラムによってデジタル信号を処理し、入力ポートP1~P3のいずれか一つに供給する。

[0077]

この入力処理回路2cでは、ADC52によって入力信号を論理IC53に処理可能なデジタル信号に変換し、論理IC53のプログラム処理によって入力信号に対する処理と入力ポートの選択とを行っている。したがって、切替制御部5は、論理IC53のプログラムを書き換えることで、入力端子と入力ポートとの接続関係および入力信号に対する処理の内容を変更することができる。したがって、この構成では、切替情報記憶部6は論理ICに供給するプログラムを記憶することとなる。

[0078]

ところで、入力端子T1~T3は、そのうちの一つのみが使用されるとは限らず、入力端子T1~T3が同時に使用されることも有り得る。このような場合、切替部21,22,41,42としてセレクタを用いることで、入力端子T1~T3を同時に使用することができる。

[0079]

図8は、切替部21,22,41,42としてセレクタを用いたECU1dの概要構成を説明する図である。同図において、入力処理回路2dは、切替部21に代えてセレクタ21dを有する。同様に、出力処理回路4dは、切替部41に代えてセレクタ41dを、切替部42に代えてセレクタ42dを有する。その他の構成要素は図1に示したECU1と同様であるので、同一の符号を付して説明を省略する。

[0800]

セレクタ21dは、入力端子T1~T3のそれぞれに対して処理部23~25 のいずれかを接続する。また、セレクタ22dは、処理部23~25のそれぞれ に対して入力ポートP1~P3のいずれかを接続する。したがって、入力処理回路2dは、各入力端子に入力された入力信号に対する処理を並列して実行し、入力ポートP1~P3に供給することができる。

[0081]

図8においては、セレクタ21dは、入力端子T1に処理部24を接続し、入力端子T2に対して処理部23を接続し、入力端子T3に処理部25を接続している。また、セレクタ22dは、処理部23に入力ポートP3を接続し、処理部24に入力ポートP1を接続し、処理部25に入力ポートP2を接続している。

[0082]

したがって、入力端子T1から入力された入力信号は、処理部24によって処理された後、入力ポートP1に供給される。同時に、入力端子T2から入力された入力信号は、処理部23によって処理された後、入力ポートP3に供給される。また、入力端子T3から入力された入力信号は、処理部25によって処理された後、入力ポートP2に供給される。

[0083]

同様に、セレクタ41 d は、出力ポートP4~P6のそれぞれに対して処理部43~45のいずれかを接続する。また、セレクタ42 d は、処理部43~45のそれぞれに対して出力端子T4~T6のいずれかを接続する。したがって、出力処理回路4 d は、各出力ポートから供給された演算結果に対する処理を並列して実行し、出力端子T4~T6から出力することができる。

[0084]

図8においては、セレクタ41dは、出力ポートP4に処理部43を接続し、出力ポートP5に処理部45を接続し、出力ポートP6に処理部44を接続している。また、セレクタ42dは、処理部43に出力端子T4を接続し、処理部44に出力端子T5を接続し、処理部45に出力端子T6を接続している。

[0085]

したがって、出力ポートP4から供給された演算結果は、処理部43によって 処理された後、出力端子T4から出力される。同時に、出力ポートT5から供給 された演算結果は、処理部45によって処理された後、出力端子T6から出力さ れる。さらに、出力ポートT6から供給された演算結果は、処理部44によって 処理された後、出力端子T5から出力される。

[0086]

このように、切替部21,22,41,42にセレクタ21d,22d,41d,42dを用いることで、各入力端子、各処理部および各出力端子を同時に使用して並列的に信号処理をおこなうことができる。したがって、たとえばECUの仕様変更によって各入力端子に入力される信号が置き換わったとしても、ハードウェアの変更を行うことなく、セレクタの切り替えによって新規の仕様に対応することができる。

[0087]

ところで、入力端子にそれぞれ処理部を割り当て、各入力信号を並列で処理する場合、各処理部の処理内容をさらに変更可能であることが望ましい。図9に各処理部の処理内容を変更可能な構成例を示す。同図において、処理部23bは、処理回路 $61\sim64$ を備えている。この処理回路 $61\sim64$ のいずれかをスイッチによって選択することで、処理部23bが実行する処理の内容を切り替えることができる。

[0088]

なお、処理部24b,25bも処理部23bと同様に、その内部に複数の処理 回路を備えており、複数の処理回路のいずれかをスイッチによって選択すること で実行する処理の内容を切り替える。処理部23b,24b,25bにおける処 理回路の切り替えは、切替制御部5からの切替要求によっておこなう。したがっ て、この構成では、切替情報記憶部6は、切替情報として各処理部ごとに選択し た処理回路を記憶する。

[0089]

このように、各入力端子に対して処理部を割り当て、さらに各処理部における 処理の内容を選択可能とすることで、各入力端子からの入力信号に対して同時に 処理を実行し、かつその処理内容を任意に変更することができる。

[0090]

一方、ECU1において各入力端子からの入力信号を並列で処理する場合、処

理部23~25を共用し、処理を時分割する構成としても良い。具体的には、MPU3の処理の進行にともなって、切替部21,22,41,42が随時切替処理を実行することで、処理部23~25を共用しつつ、入力端子T1~T3からの入力信号を処理することができる。この時、切替制御部5は、MPU3からの出力を受けて切替部21,22,41,42に対して切替要求を送信する。

[0091]

処理を時分割する場合における動作例を図10に示す。同図に示すように、時分割処理では、ECU1は、まず切替部21,22,41,42の設定によって、入力端子T1を処理部23に接続し、処理部23をMPU3に接続し、MPU3を処理部44に接続し、処理部44を出力端子T4に接続する。

[0092]

つぎに、切替制御部5は、切替部21,22,41,42に切替要求を送信し、入力端子T2を処理部25に接続し、処理部25をMPU3に接続し、MPU3を処理部45に接続し、処理部45を出力端子T5に接続する。

[0093]

つづいて、切替制御部 5 は、切替部 2 1, 2 2, 4 1, 4 2 に切替要求を送信し、入力端子 T 3 を処理部 2 4 に接続し、処理部 2 4 を M P U 3 に接続し、M P U 3 を処理部 4 3 に接続し、処理部 4 3 を出力端子 T 6 に接続する。

[0094]

その後、切替制御部 5 は、再度入力端子T 1 からの入力信号に対する処理を行うよう切替部 2 1 , 2 2 , 4 1 , 4 2 を制御する。このように、切替制御部 5 が MPU 3 の動作に対応し、切替部 2 1 , 2 2 , 4 1 , 4 2 に対して順次切替要求を送信することで、E C U 1 は、複数の入力端子T 1 \sim T 3 からの入力を時分割して処理することができる。

[0095]

図10では各入力端子と処理部23の関係は1対1であるが、この時分割処理では、同一の処理部を複数の入力端子が使用することができる。このように、処理部を複数の入力端子で共用することで、ECU全体の回路構成を小型化することができる。

[0096]

つづいて、入力信号に対する処理の切り替えの利用例について説明する。入力 信号に対する処理内容の変更は、入力信号自体の変更や、仕様の変更があった場 合に限らず、広く用いることができる。

[0097]

具体的には、MPU3が実行するプログラムに応じ、同一の入力信号に対して異なる処理を実行する場合がある。たとえば、処理部としてADCとcMOSバッファ回路とを用意し、通常処理時には入力信号をADCを介してMPU3に入力し、異常検出時にはcMOSバッファ回路を介してMPU3に入力する。この構成では、インピーダンス測定などの詳細なアナログ信号情報が必要な場合、入力信号をADCによってnビットのデジタル信号に変換してMPU3に入力するが、同一の入力信号をcMOSバッファ回路によって2値化してMPU3に入力し、断線検出をおこなうことにより、ECU1に何らかの異常の発生を検出することができる。

[0098]

また、同一内容の処理を実行する処理部を複数用意し、使用中の処理部に異常が発生した場合には、同一内容の処理を実行する他の処理部を用いて処理を続行する構成としても良い。この構成では、MPU3が処理部の異常を検出した場合に、他の処理部を予備回路として使用することで、ECUのシステムの安定性を向上することができる。

[0099]

つぎに、出力処理回路4による処理について説明する。MPU3の演算結果を出力端子T4~T6から出力する場合に、出力信号の電圧や駆動電流などを出力先の装置に合わせる処理が必要となる。出力処理回路4は、MPU3の演算結果に対する処理を出力端子ごとに設定し、必要に応じて変更する。また、出力処理回路は、MPU3の演算結果に対して処理を実行した後、いずれの出力端子から出力するかを選択することができる。

[0100]

図11は、出力処理回路4の構成の一例を示す図である。同図において、出力

処理部43 a は、その内部にドライバ回路71~74およびスイッチを有する。このドライバ回路は、それぞれ所定の駆動電流を生成する。処理部43 a には、切替部41の動作によって出力ポートP4~P6のいずれかから演算結果が入力されるので、使用するドライバ回路を選択することで演算結果に対する駆動電流を決定することができる。ドライバ回路によって駆動電流が与えられた演算結果は、切替部42に入力され、切替部42の設定によって出力端子T4~T6のいずれかから出力される。

[0101]

ここで、ドライバ回路 7 1 ~ 7 4 は、単独で用いても良いし、複数のドライバ回路を組み合わせて用いても良い。例えば、ドライバ回路 7 1 が生成する駆動電流が 0. 1 Aであり、ドライバ回路 7 2 が生成する駆動電流が 0. 2 Aであり、ドライバ回路 7 3 が生成する駆動電流が 0. 4 Aであり、ドライバ回路 7 4 が生成する駆動電流が 0. 8 Aであるとすると、ドライバ回路 7 1~ 7 4 の組み合わせによって、 0. 1 A~ 1. 5 Aの間で 0. 1 A毎に駆動電流を生成することができる。

[0102]

具体的には、必要な駆動電流が 0.2 Aである場合には、ドライバ回路 7 2 のスイッチをオン状態とすれば良く、必要な駆動電流が 1.0 Aである場合には、ドライバ回路 7 2 およびドライバ回路 7 4 をオン状態とすれば良い。また、必要な駆動電流が 1.5 Aである場合、ドライバ回路 7 1 ~ 7 4 を全てオン状態とすることで、 1.5 Aの駆動電流を得ることができる。

[0103]

処理部43 a と同様に、処理部44 a および処理部45 a も、その内部にそれぞれ複数ドライバ回路とスイッチとを備える。したがって、スイッチの切替によって、必要な駆動電流を作成することができる。

[0104]

この出力処理回路4における切替部41,42の切替、および処理部42a~45aにおけるドライバ回路の選択は、切替制御部5によって行い、その処理の内容は切替情報記憶部6に切替情報として記憶しておく。

[0105]

このように、処理部 $43a \sim 45a$ の内部にそれぞれ複数のドライバ回路を設け、出力ポート $P4 \sim P6$ と、出力端子 $T4 \sim T6$ との接続関係に対し、それぞれ処理部 $43a \sim 45a$ のいずれかを割り当てることにより、各出力ポートから出力される演算結果に対して必要な駆動電流をそれぞれ供給し、出力端子 $T4 \sim T6$ から出力することができる。

[0106]

なお、出力処理回路4によって各演算結果に対して駆動電流を割り当てる場合 、必ずしも出力端子ごとに処理部を割り当てる必要は無く、共有のドライバ回路 からそれぞれの出力端子が使用するドライバ回路を選択する構成としても良い。

[0107]

図12に、共有のドライバ回路を用いて各出力端子用の駆動電流を生成する場合における出力処理回路の構成を示す。図12では、切替部41,42に代えてセレクタ41a,42aを設けており、また、処理部43~45に代えてドライバ回路81~90を設けている。

[0108]

セレクタ41 a は、切替制御部5によって制御され、出力ポートP4~P6と、ドライバ回路81~90との接続関係を切り替える。また、セレクタ42 a は、切替制御部5によって制御され、ドライバ回路81~90と出力端子T4~T6との接続関係を切り替える。ドライバ回路81~90は、それぞれ所定の駆動電流を生成するので、このセレクタ41 a, 42 a の切り替えにより、各出力ポートから出力される演算結果に対して所望の駆動電流を与えることができる。

[0109]

具体的には、図12では、出力ポートP4に対してドライバ回路82,83を接続し、出力端子T5から出力している。また、出力ポートP5に対してドライバ回路86,87,89を接続し、出力端子T6から出力している。さらに、出力ポートP6に対してドライバ回路84を接続し、出力端子T4から出力している。

[0110]

このように、複数のドライバ回路を共用し、各出力端子用の駆動電流を共用の ドライバ回路の組み合わせによって生成することで、ドライバ回路の数を抑えつ つ各出力端子に必要な駆動電流を供給することができる。

[0111]

ここで、ドライバ回路 8 1 ~ 9 0 の駆動電流を、0.1 A、0.2 A、0.4 A、0.8 Aと2 倍間隔にすることで、ドライバ回路の組み合わせによって出力端子に供給可能な駆動電流の種類を増加させることができる。また、ここでは複数の入力端子に駆動電流を供給する必要があるため、同一の駆動電流を有するドライバ回路を複数用意しておくことが好ましい。

[0112]

上述してきたように、本実施の形態1では、切替情報記憶部6に記憶した切替情報をもとに切替制御部5が切替部21,22,41,42の接続状態を切り替えることで、入力信号に対する処理内容およびMPU3の演算結果に対する処理内容を変更することができる。

[0113]

また、入力端子T1~T3と、MPU3の入力ポートP1~P3との接続関係を任意に設定し、各入力端子から入力された入力信号に対して実行する処理をそれぞれ独立に選択することが可能となる。

[0114]

さらに、切替制御部5が、入力端子T1~T3、処理部23~25、MPU3、処理部43~45、出力端子T4~T6の接続関係を、MPU3の処理状況に対応して順次切り替えて時分割処理を行うことで、処理部23~25を複数の入力端子で共有し、処理部43~45を複数の出力端子で共有することができ、ECU1を小型化することができる。

[0115]

また、同一の入力信号に対して複数の処理を切り替える構成とすることで、MUP3の処理に対応して、入力信号に対する処理の内容を切り替えることができる。

[0116]

さらに、同一の処理を実行する処理部を複数設けた構成では、実行中の処理部に異常が発生した場合に、他の処理部を予備回路として使用することができるので、ECUのシステム安定性を向上することができる。

(0117)

また、MPU3の出力ポートP4~P6と、出力端子T4~T6との接続関係を任意に設定し、各出力ポートから出力された演算結果に対して実行する処理をそれぞれ独立に選択することができる。

[0118]

さらに、複数のドライバ回路を出力端子 $T4 \sim T6$ で共用し、ドライバ回路を組み合わせて各出力端子に供給する駆動電流を生成することで、ドライバ回路の数を抑制してECU1を小型化することができる。

[0119]

このように、本実施の形態に示した車載ECUでは、開発終了後、たとえば車両への搭載時や修理を行う場合に、必要に応じてハードウェア構成を含む変更が実現でき、仕様変更にともなう時間および費用を大きく軽減することができる。加えて、車種の違いや、使用する国の違いなどから異なる仕様が求められる場合であっても、同一のECUを搭載することが可能となるので、製造コストの低減が実現できる。

[0120]

(実施の形態2)

上記実施の形態1では、必要に応じて処理内容を変更可能なECUについて説明したが、本実施の形態2では、その応用例として処理内容の変更に権限を設定し、処理内容の変更を許可するか否かを権限に基づいて管理する車載ECUについて説明する。

[0121]

図13は、本実施の形態2にかかる車載用ECUの概要構成を説明する説明図である。図13において、ECU1eは、切替管理部7を有する。また、ECU内部の切替制御部5aは、切替管理部7に接続されている。その他の構成および動作は、実施の形態1に示したECU1と同様であり、同一の構成要素には同一

の符号を付して説明を省略する。

[0122]

切替管理部7は、その内部に権限データ7aを有する。権限データ7aは、入力処理回路2および出力処理回路5の処理内容の切替に対して要求権限を設定したデータであり、切替管理部7は、切替制御部5aが入力処理回路2または出力処理回路4に切替要求を送信する際に、この権限データ7aを参照し、切替要求の実行可否を決定する。

[0123]

図14に、権限データ7aの具体例を示す。同図では、処理Aおよび処理Dに対して権限レベル1以上を要求し、処理Bおよび処理Cに対して権限レベル2を要求している。すなわち、権限レベル2では、全ての処理の切替を実行可能であるが、権限レベル1では処理Bおよび処理Cの切替が実行できず、権限レベル0では、処理の切替は実行できない。

[0124]

ここで、処理A〜処理Dは、それぞれ入力処理回路2または出力処理回路4のいずれかの処理部によって実現される処理である。または、権限レベルの設定は、例えば、ECUの開発工場に権限レベル2を与え、車両工場に権限レベル1を与えるようにすればよい。

[0125]

このように設定することで、ECUの開発工場では全ての処理を切り替え可能 とし、車両工場では車両の状態に合わせて切り替える必要のある一部の処理の切り替えを許可し、権限レベル0、すなわち権限レベルを有さないユーザなどによる処理の切り替えを禁止することができる。

[0126]

処理の切り替えをおこなう場合に、切替管理部7に権限レベルを通知する方法としては、たとえば、切り替えの実行前に識別信号の入力を要求するようにすればよい。この構成では切替管理部7 a は、識別信号と権限データ7 a との比較によって、切替処理の実行を許可するか否かを判定することとなる。

[0127]

また、切替を要求する信号自体に権限レベルを付加して通知する構成としても良い。この構成では、切替管理部7 a は、切替要求が発生した場合に、そのデータの内部に権限情報が含まれているか否かを確認し、要求権限を満たす権限情報が含まれている場合にのみ切替処理を許可することとなる。

[0128]

さらに、切替管理部7は、位置情報をもとに切替の実行可否を判定することができる。切替管理部7は、図示しない位置情報取得部を介し、ECU1e外部のナビゲーションシステム9から位置情報を取得する。ナビゲーションシステム9は、GPSアンテナ9aを使用して位置情報を作成することができる。

[0129]

切替管理部7は、所得した位置情報と、予め登録した所定の位置であるか否かによって、切替を許可するか否かを決定する。すなわち、予め車両の生産工場や整備工場の位置を登録しておき、取得した位置情報が登録した生産工場もしくは整備工場の位置と一致した場合に切り替えを許可することで、生産工場と整備工場においてのみ処理の切替を許可し、それ以外の場所では処理の切替を禁止することができる。

[0130]

上述してきたように、本実施の形態2にかかるECU1eでは、処理内容の変更に権限を設定して権限データ7aとして記憶し、切替管理部7が権限データ7aをもとに処理内容の切り替えを許可するか否かを管理するので、処理内容の不正な変更や誤った変更を防止することができる。

[0131]

さらに、位置情報を取得し、取得した位置情報があらかじめ登録された位置情報と一致するか否かによって切り替え可否を判定することで、工場などの特定の場所でのみ切り替えを許可することができる。

[0132]

特に近年、車両にナビゲーションシステムが搭載されることが多く、このナビ ゲーションシステムが作成する位置情報を活用することで、処理内容の切替管理 が実現できる。

[0133]

なお、本実施の形態2では、入力処理回路2および出力処理回路4における切り替え制御において要求権限を設ける場合について説明したが、MPU3のソフトウェアの変更においても同様の要求権限を使用することができる。また、位置情報を利用した書き換え可否の判定についても、MPU3におけるソフトウェアの書き換えを認めるか否かの判定に用いることができる。

[0134]

【発明の効果】

以上説明したように、請求項1の発明によれば、電子制御装置は、入力端子と演算処理部との間に入力処理回路を介在させ、入力処理回路による処理の内容を処理切替部によって切り替えるように構成しているので、ECUの開発中のみならず、車両への搭載時や修理時においてもハードウェア構成の変更を含めた処理内容の変更が可能な電子制御装置が得られるという効果を奏する。

[0135]

また、請求項2の発明によれば、電子制御装置は、入力処理情報をもとに入力 処理回路を切り替えることで、入力処理回路によって実現する処理の内容を必要 に応じて切り替えることができ、さらに入力情報の変更によって切替の内容を変 更することができるので、ハードウェアによる処理を含め、処理内容を簡易に変 更可能な電子制御装置が得られるという効果を奏する。

[0136]

また、請求項3の発明によれば、電子制御装置は、演算処理部の演算結果をも とに入力信号に対する処理を変更することで、演算処理の内容に対応して異なる 処理を同一の入力信号に対しておこなうことができるので、同一の入力信号を、 複数の処理を介して使用可能な電子制御装置が得られるという効果を奏する。

[0137]

また、請求項4の発明によれば、電子制御装置は、入力処理回路の処理を時分割で切り替えることで、入力信号に対する処理を演算処理の処理状況に対応して切り替え、また、入力端子が複数ある場合に入力処理回路の処理を共用することができるので、入力信号に対する処理を状況に応じて切替可能な小型の電子制御

装置を得ることできるという効果を奏する。

[0138]

また、請求項5の発明によれば、電子制御装置は、入力処理の内容ごとに異なる複数の処理回路を備え、入力信号をいずれの処理回路に入力するかを切り替えることで、入力信号に対する処理の内容を変更するので、ハードウェア構成を簡易に切替可能な電子制御装置を得ることができるという効果を奏する。

[0139]

また、請求項6の発明によれば、電子制御装置は、入力信号に対して同一の処理を実行する処理回路を切り替えることで、使用中の処理回路に異常が発生した場合に予備の回路を使用して処理を継続することができるので、ハードウェアに異常が発生した場合においても安定して動作する電子制御装置を得ることができるという効果を奏する。

[0140]

また、請求項7の発明によれば、電子制御装置は、処理内容を書き換え可能な プログラマブルICによって入力信号に対する処理を実行し、プログラマブルI Cの書き換えによって処理内容を変更することができるので、簡易な構成でハー ドウェアを変更可能な電子制御装置を得ることができるという効果を奏する。

[0141]

また、請求項8の発明によれば、電子制御装置は、入力信号をA/D変換した後に、論理ICによって入力信号の処理をおこない、論理IC内に記憶したプログラムの書き換えによって処理の内容を変更することができるので、入力信号に対する処理をデジタル処理に置き換えて実行可能な電子制御装置を得ることができるという効果を奏する。

[0142]

また、請求項9の発明によれば、電子制御装置は、複数の入力端子と演算処理 部の接続関係を切り替えることで、演算処理部に入力する入力信号を切り替える ことができるので、入力端子の接続先を任意に切り替え可能な電子制御装置を得 ることができるという効果を奏する。

[0143]

また、請求項10の発明によれば、電子制御装置は、複数の入力端子のそれぞれから入力された入力信号に対し、独立に処理を実行することで、複数の入力信号を並列に処理することができるので、複数の入力端子を同時に使用し、かつ各入力端子から入力された信号に対する処理を切り替え可能な電子制御装置を得ることできるという効果を奏する。

[0144]

また、請求項11の発明によれば、電子制御装置は、演算処理部と出力端子との間に出力処理回路を介在させ、出力処理回路による処理の内容を処理切替部によって切り替えるように構成しているので、演算結果に対して施す処理の内容を切り替え可能な電子制御装置を得ることができるという効果を奏する。

[0145]

また、請求項12の発明によれば、電子制御装置は、演算処理部が出力する演算結果に与える駆動電流を、任意に切り替えることができるので、演算結果に対して与える駆動電流を変更可能な電子制御装置を得ることができるという効果を奏する。

[0146]

また、請求項13の発明によれば、電子制御装置は、演算処理部の演算結果に与える駆動電流を、複数のドライバ回路の組み合わせによって生成することで、選択可能な駆動電流の数を増加させているので、演算結果に対して与える駆動電流を変更可能な小型の電子制御装置を得ることができるという効果を奏する。

[0147]

また、請求項14の発明によれば、電子制御装置は、複数の出力端子にそれぞれ専用のドライバ回路を割り当て、このドライバ回路を組み合わせることで、出力端子ごとに異なる駆動回路を与えることができるので、複数の出力端子にそれぞれ異なる駆動電流を付与可能な電子制御装置を得ることができるという効果を奏する。

[0148]

また、請求項15の発明によれば、電子制御装置は、複数の出力する端子が共用するドライバ回路群から、出力端子ごとに割り当てるドライバ回路を選択する

ことで、出力端子ごとに異なる駆動電流を割り当てることができるので、複数の 出力端子にそれぞれ異なる駆動電流を付与可能な小型の電子制御装置を得ること ができるという効果を奏する。

[0149]

また、請求項16の発明によれば、電子制御装置は、処理内容の切替に際し、切り替えを許可するか否かを管理する切替管理部を設けることで、処理の切替に制限を持たせているので、誤った処理切替や不正な処理切替を防止することができる電子制御装置を得ることができるという効果を奏する。

[0150]

また、請求項17の発明によれば、電子制御装置は、処理内容についてそれぞれ要求権限を設定することで、切り替えをおこなう処理の内容ごとに切り替えを許可するか否かを管理することができるので、処理の内容に対して詳細に切り替え可否を設定可能な電子制御装置を得ることができるという効果を奏する。

[0151]

また、請求項18の発明によれば、電子制御装置は、要求権限を満たす識別信号が入力されたか否かによって、切替処理の可否を管理しているので、識別信号をもとに切替処理の可否を判断し、誤った処理切替や不正な処理切替を防止可能な電子制御装置を得ることができるという効果を奏する。

[0152]

また、請求項19の発明によれば、電子制御装置は、切替要求を示すデータ内に、要求権限を満たす権限情報が含まれているか否かによって切替処理の可否を判定するので、切替要求自体から切替処理の可否を判断し、誤った処理切替や不正な処理切替を防止可能な電子制御装置を得ることができるという効果を奏する

[0153]

また、請求項20の発明によれば、電子制御装置は、位置情報をもとに切替処理の可否を判定することで、所定の場所においてのみ切替処理を許可することができるので、誤った処理切替や不正な処理切替をさらに厳密に防止可能な電子制御装置を得ることができるという効果を奏する。

【図面の簡単な説明】

図1

本発明の実施の形態1にかかるECUの概要構成を説明する説明図である。

【図2】

図1に示した処理部に対応する処理回路をそれぞれ独立に設けた入力処理回路 の一例を示す図である。

【図3】

図2に示した処理回路の回路例を説明する図である。

【図4】

図1に示した切替情報記憶部が記憶する接続情報を説明する説明図である。

【図5】

図4に示した接続情報の変更について説明する説明図である。

【図6】

図1に示した処理部および切替部をプログラマブルICによって実現した入力 処理回路の一例を示す図である。

【図7】

図1に示した処理部の機能を論理ICによって実現する入力処理回路の構成の 一例を示す図である。

【図8】

図1に示した切替部にセレクタを用いたECUの概要構成を説明する図である。

【図9】

図1に示した各処理部の処理内容をさらに変更可能な構成を説明する説明図である。

【図10】

処理を時分割する場合における動作を説明する説明図である。

【図11】

図1に示した出力処理回路の構成例を説明する説明図である。

【図12】

共有のドライバ回路を用いて各出力端子用の駆動電流を生成する場合における 出力処理回路の構成を説明する図である。

【図13】

本発明の実施の形態2にかかるECUの概要構成を説明する説明図である。

【図14】

図13に示した権限データの内容を説明する説明図である。

【符号の説明】

- 1, 1d ECU
- 2, 2 a, 2 b, 2 c, 2 d 入力処理回路
- 3 MPU
- 4, 4 d 出力処理回路
- 5,5a 切替制御部
- 6 切替情報記憶部
- 7 切替管理部
- 7 a 権限データ
- 9 ナビゲーションシステム
- 9a GPSアンテナ
- 21, 21c, 22, 41, 42 切替部
- 21d, 22d, 41d, 42d セレクタ
- 23a~25a, 61~64 処理回路
- 51 FPGA
- 52 アナログ/デジタル変換器
- 5 3 論理 I C
- 71~74,81~90 ドライバ回路
- T1~T3 入力端子
- T4~T6 出力端子
- P1~P3 入力ポート
- P4~Р6 出力ポート

 $SW11 \sim SW13$, $SW21 \sim SW23$, $SW31 \sim SW33$, SW41

~ S W 4 3 スイッチ

R1~R3 抵抗

C1 コンデンサ

V1, V2 定電圧

OP1 オペアンプ

【書類名】

図面

【図1】

[図2]

【図3】

【図4】

(a)

入力端子T1	処理A	入力ポートP2
入力端子T2	処理B	入力ポートP3
入力端子T3	処理C	入力ポートP1

(b)

入力端子T1	スイッチS11	スイッチS21	スイッチS31	スイッチS42
入力端子T2	スイッチS12	スイッチS22	スイッチS32	スイッチS43
入力端子T3	スイッチS13	スイッチS23	スイッチS33	スイッチS41

【図5】

(a)

入力端子T1	処理B	入力ポートP2
入力端子T2	処理A	入力ポートP3
入力端子T3	処理C	入力ポートP1

(b)

入力端子T1	スイッチS11	スイッチS22	スイッチS32	スイッチS42
入力端子T2	スイッチS12	スイッチS21	スイッチS31	スイッチS43
入力端子T3	スイッチS13	スイッチS23	スイッチS33	スイッチS41

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

₍7a

	処理A	処理B	処理C	処理D	···
権限レベル2	可	可	可	可	
権限レベル1	可	不可	不可	可	
権限レベル0	不可	不可	不可	不可	

【書類名】 要約書

【要約】

【課題】 電子制御装置(ECU)の処理内容を変更可能とすること。

【解決手段】 入力端子T1~T3とMPU3の入力ポートP1~P3との間に入力処理回路2を介在させ、MPU3の出力ポートP4~P6と出力端子T4~T6との間に出力処理回路4を介在させる。入力処理回路2に切替部21,22 および処理部23~25を設け、出力処理回路4に切替部41,42、処理部43~45を設けて、切替情報記憶部6が記憶した切替情報をもとに、切替制御部5が切替部21,22,41,42を切り替えることで、入力端子と入力ポートの接続関係および入力信号に対する処理の内容、出力ポートと入力端子との接続関係および出力信号に対する処理の内容を切り替える。

【選択図】 図1

特願2003-017861

出願人履歴情報

識別番号

[000237592]

1. 変更年月日

1990年 8月29日

[変更理由] 住 所

新規登録

氏 名

兵庫県神戸市兵庫区御所通1丁目2番28号

名 富士通テン株式会社