Concours commun Centrale

MATHÉMATIQUES 1. FILIERE MP

I - Quelques résultats utiles

I.A - Propriétés générales de la loi *

 ${\bf Q}$ 1. Soit $f\in \mathbb{A}.$ Pour $n\in \mathbb{N}^*,$ puisque 1 divise n,

$$\delta * f(n) = \sum_{d \mid n} \delta(d) f\left(\frac{n}{d}\right) = \delta(1) f\left(\frac{n}{1}\right) = f(n)$$

et donc $\delta * f = f$. De même, pour $n \in \mathbb{N}^*$, puisque n divise n,

$$f * \delta(n) = \sum_{d \mid n} f(d) \delta\left(\frac{n}{d}\right) = f(n)\delta\left(\frac{n}{n}\right) = f(n)$$

et donc $f * \delta = f$. On a montré que δ est élément neutre de $\mathbb A$ pour *.

 $\mathbf{Q} \ \mathbf{2.} \ \mathrm{Soit} \ (f,g) \in \mathbb{A}^2. \ \mathrm{Pour} \ n \in \mathbb{N}^*, \ \mathrm{en \ posant} \ d_2 = \frac{d_1}{n}, \ \mathrm{on \ obtient}$

$$f * g(n) = \sum_{\substack{d_1 = 1 \\ d_1 \mid n}}^{n} f(d_1) g\left(\frac{n}{d_1}\right) = \sum_{\substack{(d_1, d_2) \in (\mathbb{N}^*)^2, \ d_1 d_2 = n}} f(d_1) g(d_2) = \sum_{\substack{(d_1, d_2) \in \mathscr{C}_n}} f(d_1) g(d_2).$$

 $\mathbf{Q} \text{ 3. Soit } (f,g) \in \mathbb{A}^2. \text{ Pour } \mathfrak{n} \in \mathbb{N}^*, \text{ en posant } d_1' = d_2 \text{ et } d_2' = d_1 \text{ de sorte que } (d_1,d_2) \text{ décrit } \mathscr{C}_\mathfrak{n} \text{ si et seulement si } (d_1',d_2') \text{ décrit } \mathscr{C}_\mathfrak{n},$

$$f*g(n) = \sum_{(d_1,d_2)\in\mathscr{C}_n} f(d_1) g(d_2) = \sum_{(d_1',d_1')\in\mathscr{C}_n} g(d_1') f(d_2') = g*f(n)$$

et donc f * g = g * f. Donc, * est commutative dans A.

Q 4. Soit $(f, g, h) \in \mathbb{A}^3$. Pour $n \in \mathbb{N}^*$,

$$\begin{split} ((f*g)*h)(n) &= \sum_{(d,d_3) \in (\mathbb{N}^*)^2, \ dd_3 = n} (f*g)(d)h(d_3) = \sum_{(d,d_3) \in (\mathbb{N}^*)^2, \ dd_3 = n} \left(\sum_{(d_1,d_2) \in (\mathbb{N}^*)^2, \ d_1d_2 = d} f(d_1) \, g(d_2) \right) h(d_3) \\ &= \sum_{(d_1,d_2,d_3) \in (\mathbb{N}^*)^3, \ d_1d_2d_3 = n} f(d_1) \, g(d_2) \, h(d_3) = \sum_{(d_1,d_2,d_3) \in \mathscr{C}_n'} f(d_1) \, g(d_2) \, h(d_3) \, . \end{split}$$

Cette égalité étant vraie pour tout $(f, g, h) \in \mathbb{A}^3$ et tout $n \in \mathbb{N}^*$ et la loi * étant commutative, on a aussi

$$\begin{split} (f*(g*h))(n) &= ((g*h)*f)(n) = \sum_{(d_1,d_2,d_3) \in \mathscr{C}'_n} g(d_1) h(d_2) f(d_3) = \sum_{(d'_1,d'_2,d'_3) \in \mathscr{C}'_n} f(d'_1) g(d'_2) h(d'_3) \\ &= ((f*g)*h)(n). \end{split}$$

Ainsi, pour tout $(f, g, h) \in \mathbb{A}^3$, (f * g) * h = f * (g * h). * est associative dans A.

Q 5. On sait que $(\mathbb{A}, +, .)$ est un \mathbb{C} -espace vectoriel. En particulier, $(\mathbb{A}, +)$ est un groupe commutatif. Ensuite, * est une loi interne dans \mathbb{A} , * est associative et possède un élément neutre à savoir δ .

Vérifions que * est distributive sur +. Soit $(f, g, h) \in \mathbb{A}^3$. Pour $n \in \mathbb{N}^*$,

$$\begin{split} ((f+g)*h)(n) &= \sum_{(d_1,d_2) \in \mathscr{C}_n} (f+g) (d_1) \, h \, (d_2) = \sum_{(d_1,d_2) \in \mathscr{C}_n} f \, (d_1) \, h \, (d_2) + \sum_{(d_1,d_2) \in \mathscr{C}_n} g \, (d_1) \, h \, (d_2) \\ &= (f*h+g*h)(n) \end{split}$$

et donc (f+g)*h=f*h+g*h. Puisque * est commutative, cette égalité valable pour tout $(f,g,h)\in\mathbb{A}^3$, suffit pour prouver que * est distributive sur +. Donc, $(\mathbb{A},+,*)$ est un anneau. Enfin, puisque * est commutative, $(\mathbb{A},+,*)$ est un anneau commutatif.

I.B - Groupe des fonctions multiplicatives

Q 6. Soient f et g deux fonctions multiplicatives telles que : $\forall p \in \mathcal{P}, \forall k \in \mathbb{N}^*, f(p^k) = g(p^k)$.

$$1 \wedge 1 = 1$$
 et donc $f(1) = f(1 \times 1) = f(1) \times f(1)$ puis $f(1) = 1$ car $f(1) \neq 0$. De même, $g(1) = 1$ et finalement, $f(1) = g(1) = 1$.

Soit $n \geqslant 2$. D'après le théorème fondamental de l'arithmétique, n s'écrit de manière unique sous la forme $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ où les p_i , $1 \leqslant i \leqslant k$, sont des éléments deux à deux distincts de $\mathscr P$ et les α_i , $1 \leqslant i \leqslant k$, sont des entiers naturels non nuls (décomposition primaire de n). Si $k \geqslant 2$, puisque f est multiplicative et que $\left(p_1^{\alpha_1} \dots p_{k-1}^{\alpha_{k-1}}\right) \wedge p_k^{\alpha_k} = 1$ (car ces deux entiers sont sans facteurs premiers commun), $f\left(p_1^{\alpha_1} \dots p_{k-1}^{\alpha_{k-1}} p_k^{\alpha_k}\right) = f\left(p_1^{\alpha_1} \dots p_{k-1}^{\alpha_{k-1}}\right) f\left(p_k^{\alpha_k}\right)$ puis, par récurrence sur k,

$$f(n) = f(p_1^{\alpha_1} \dots p_k^{\alpha_k}) = \prod_{i=1}^k f(p_i^{\alpha_i})$$

ce qui reste vrai quand k = 1. Mais alors, pour tout $n \ge 2$,

$$f(n) = \prod_{i=1}^k f(p_i^{\alpha_i}) = \prod_{i=1}^k g(p_i^{\alpha_i}) = g(n)$$

et donc f = q. Ainsi, deux fonctions multiplicatives qui coïncident sur l'ensemble des nombres primaires sont égales.

Q 7. Soient n et m deux entiers naturels non nuls et premiers entre eux.

Soit $(d_1,d_2)\in \mathscr{D}_n\times \mathscr{D}_m$. Donc, il existe $(q_1,q_2)\in (\mathbb{N}^*)^2$ tel que $n=q_1d_1$ et $m=q_2d_2$. Mais alors, $nm=(q_1q_2)(d_1d_2)$ avec $(q_1q_2)\in \mathbb{N}^*$. Donc, $d_1d_2\in \mathscr{D}_{nm}$. Ceci montre que π est bien une application de $\mathscr{D}_n\times \mathscr{D}_m$ vers \mathscr{D}_{nm} .

Vérifions que π est injective. Soit $((d_1,d_2),(d_1',d_2')) \in (\mathscr{D}_n \times \mathscr{D}_m)^2$ tel que $\pi(d_1,d_2) = \pi(d_1',d_2')$ ou encore tel que $d_1d_2 = d_1'd_2'$. d_1 divise n, d_2' divise m et n et m sont premiers entre eux. Donc, d_1 et d_2' sont premiers entre eux. Ainsi, d_1 divise $d_1d_2 = d_1'd_2'$ et d_1 est premier à d_2' . D'après le théorème de GAUSS, d_1 divise d_1' . De même, d_1' divise d_1 . Puisque d_1 et d_1' sont des entiers naturels, on en déduit que $d_1 = d_1'$ puis, après simplification, que $d_2 = d_2'$. En résumé, pour tout $((d_1,d_2),(d_1',d_2')) \in (\mathscr{D}_n \times \mathscr{D}_m)^2$, $\pi(d_1,d_2) = \pi(d_1',d_2') \Rightarrow (d_1,d_2) = (d_1',d_2')$. Ceci montre que π est injective.

Vérifions que π est surjective. Soit d un diviseur de nm. Si d=1, alors $d=1\times 1=\pi(1,1)$ où on a bien $(1,1)\in \mathscr{D}_n\times \mathscr{D}_m$. Si n=1, d est un diviseur de m puis $d=\pi(1,d)$ où on a bien $(1,d)\in \mathscr{D}_n\times \mathscr{D}_m$. De même, si m=1, $d=\pi(d,1)$. Dorénavant, $d\geqslant 2$, $n\geqslant 2$ et $m\geqslant 2$. d s'écrit sous la forme $d=\mathfrak{p}_1^{\alpha_1}\dots\mathfrak{p}_k^{\alpha}$ où les \mathfrak{p}_i sont des nombres premiers deux à deux distincts et les α_i sont des entiers naturels non nuls. Chaque nombre premier \mathfrak{p}_i divise $\mathfrak{n}m$ et donc divise \mathfrak{n} ou \mathfrak{m} . Puisque \mathfrak{n} et \mathfrak{m} sont sans facteur premier commun, on peut écrire $[\![1,k]\!]=I\cup J$ où $I=\{i\in [\![1,k]\!]/\mathfrak{p}_i|\mathfrak{n}\}$ et $J=\{i\in [\![1,k]\!]/\mathfrak{p}_i|\mathfrak{m}\}$ avec $I\cap J=\varnothing$ (et $I\ne\varnothing$ et $J\ne\varnothing$). $d_1=\prod_{i\in I}\mathfrak{p}_i^{\alpha_i}$ divise d et donc $\mathfrak{n}m$ et est premier à \mathfrak{m} . Donc, d_1 divise \mathfrak{n} . De même,

 $d_2 = \prod_{i \in J} \mathfrak{p}_i^{\alpha_i} \text{ divise m. Enfin, } d_1 d_2 = d. \text{ Ainsi, pour tout } d \in \mathscr{D}_{nm}, \text{ il existe } (d_1, d_2) \in \mathscr{D}_n \times \mathscr{D}_m \text{ tel que } \pi(d_1, d_2) = d.$

Ceci montre que π est surjective.

Finalement, π est une bijection de $\mathcal{D}_n \times \mathcal{D}_m$ sur \mathcal{D}_{nm} .

Q 8. Soient f et g deux fonctions multiplicatives. $f * g(1) = \sum_{d|1} f(d)g\left(\frac{1}{d}\right) = f(1)g(1) \neq 0$. Soit alors $(n,m) \in (\mathbb{N}^*)^2$ tel que $n \wedge m = 1$.

$$\begin{split} f*g(mn) &= \sum_{(d,d') \in \mathscr{C}_{n\,m}} f(d)\,g\,(d') \\ &= \sum_{\substack{\left((d_1,d_2),\left(d'_1,d'_2\right)\right) \in (\mathscr{D}_n \times \mathscr{D}_m)^2,\\ d_1d_2d'_1d'_2 = n\,m}} f\left(d_1d_2\right)g\left(d'_1d'_2\right) \,\left(\operatorname{car}\,\pi \,\operatorname{est}\,\operatorname{bijective}\right) \\ &= \sum_{\substack{\left((d_1,d_2),\left(d'_1,d'_2\right)\right) \in (\mathscr{D}_n \times \mathscr{D}_m)^2,\\ d_1d_2d'_1d'_2 = n\,m}} f\left(d_1\right)f\left(d_2\right)g\left(d'_1\right)\left(d'_2\right) \,\left(\operatorname{car}\,d_1 \wedge d_2 = 1 \,\operatorname{et}\,d'_1 \wedge d'_2 = 1\right). \end{split}$$

Maintenant, si $d_1d_2d_1'd_2'=nm$, alors d_1d_1' divise nm et est premier à m (car d_1 et d_1' sont des diviseurs de n et $n \wedge m=1$). Donc, d_1d_1' divise n et de même d_2d_2' divise m. En posant $n=d_1d_1'q_1$ et $m=d_2d_2'q_2$ où $(q_1,q_2)\in (\mathbb{N}^*)^2$, on a

$$nm = d_1 d'_1 q_1 d_2 d'_2 q_2 = nmq_1 q_2$$

puis $q_1q_2=1$. On sait que ceci impose $q_1=q_2=1$ et donc $d_1d_1'=n$ et $d_2d_2'=m$. Ainsi,

$$\begin{split} f*g(mn) &= \sum_{\left(\left(d_1,d_1'\right),\left(d_2,d_2'\right)\right) \in \mathscr{C}_n \times \mathscr{C}_m} f\left(d_1\right) f\left(d_2\right) g\left(d_1'\right) \left(d_2'\right) \\ &= \left(\sum_{\left(d_1,d_1'\right) \in \mathscr{C}_n} f\left(d_1\right) g\left(d_1'\right) \right) \left(\sum_{\left(d_2,d_2'\right) \in \mathscr{C}_m} f\left(d_2\right) g\left(d_2'\right) \right) \\ &= \left(\left(f*g\right)(m)\right) \times \left(\left(f*g\right)(n)\right). \end{split}$$

Donc, f * g est multiplicative.

Q 9. Les égalités de l'énoncé définissent par récurrence une fonction g sur l'ensemble des nombres primaires p^k , $p \in \mathscr{P}$, $k \in \mathbb{N}^*$. On pose de plus g(1) = 1 et pour $n \ge 2$, si la décomposition primaire de n s'écrit $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$, on pose

$$g(n) = \prod_{i=1}^{\kappa} g(p_i^{\alpha_i})$$
. On obtient une fonction g de \mathbb{N}^* dans \mathbb{C} .

Soient alors n et m deux entiers naturels premiers entre eux. Si n = 1, $g(nm) = g(1 \times m) = g(m) = g(1)g(m) = g(n)g(m)$. De même, si m = 1, g(nm) = g(n)g(m).

Si $n\geqslant 2$ et $m\geqslant 2$, on peut considérer les décompositions primaires de n et $m:n=\mathfrak{p}_1^{\alpha_1}\dots\mathfrak{p}_k^{\alpha_k}$ et $m=\mathfrak{q}_1^{\beta_1}\dots\mathfrak{q}_l^{\beta_l}$. Puisque n et m sont premiers entre eux, $\{\mathfrak{p}_1,\dots,\mathfrak{p}_k\}\cap\{\mathfrak{q}_1,\dots,\mathfrak{q}_l\}=\varnothing$. Par suite,

$$g(\mathfrak{n}\mathfrak{m}) = g(\mathfrak{p}_1^{\alpha_1}) \dots g(\mathfrak{p}_k^{\alpha_k}) g(\mathfrak{q}_1^{\beta_1}) \dots g(\mathfrak{q}_l^{\beta_l}) = g(\mathfrak{n})g(\mathfrak{m}).$$

La fonction g ainsi définie est multiplicative.

Ensuite, $f*g(1) = \sum_{d \mid 1} f(d)g\left(\frac{d}{1}\right) = f(1)g(1) = 1$. Soit maintenant $p \in \mathscr{P}$. Montrons que pour tout $k \in \mathbb{N}^*$, $(f*g)\left(p^k\right) = 0$.

Soit $k \ge 1$. Les diviseurs de p^k sont les p^i , $0 \le i \le k$. Donc

$$(f * g) (p^{k}) = \sum_{i=0}^{k} f(p^{i}) g(p^{k-i}) = g(p^{k}) + \sum_{i=1}^{k} f(p^{i}) g(p^{k-i})$$
$$= -\sum_{i=1}^{k} f(p^{i}) g(p^{k-i}) + \sum_{i=1}^{k} f(p^{i}) g(p^{k-i}) = 0.$$

On a montré que pour tout $k \in \mathbb{N}^*$, $(f * g)(p^k) = 0 = \delta(p^k)$.

On sait que la fonction f*g est multiplicative d'après la question Q8. Vérifions que δ est multiplicative. On a déjà $\delta(1) = 1$.

Soient n et m deux entiers naturels non nuls. Si $n=m=1,\ \delta(nm)=1=\delta(n)\delta(m)$ et si $n\geqslant 2$ ou $m\geqslant 2$, alors $nm\geqslant 2$ puis $\delta(nm)=0=\delta(n)\delta(m)$. Donc, pour tout $(n,m)\in (\mathbb{N}^*)^2,\ \delta(nm)=\delta(n)\delta(m)$. En particulier, la fonction δ est multiplicative.

Ainsi, f * g et δ sont deux fonctions multiplicatives coïncidant sur l'ensemble des nombres primaires. D'après la question Q6, $f * g = \delta$.

Q 10. La question Q8 montre que * est une loi interne dans \mathbb{M} . Les questions Q2 et Q3 montrent que * est commutative et associative dans \mathbb{M} . Puisque $\delta \in \mathbb{M}$, la question Q1 montre que δ est élément neutre pour * dans \mathbb{M} . Enfin, la question précédente montre que tout élément de \mathbb{M} admet un symétrique pour * dans \mathbb{M} . Finalement, $(\mathbb{M}, *)$ est un groupe commutatif.

I.C - La fonction de Möbius

Q 11. On a déjà $\mu(1) = 1$. Soient π et π deux entiers naturels non nuls et premiers entre eux.

Si n = 1, on a $\mu(nm) = \mu(m) = \mu(n)\mu(m)$. De même, si m = 1, on a $\mu(nm) = \mu(n)\mu(m)$. Si n et m sont tous deux supérieurs ou égaux à 2, on peut considérer les décompositions primaires de n et $m : n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ et $m = q_1^{\beta_1} \dots q_l^{\beta_l}$ avec $\{p_1, \dots, p_k\} \cap \{q_1, \dots, q_l\} = \emptyset$.

Si n et m sont sans facteur carré $(\alpha_1 = \ldots = \alpha_k = \beta_1 = \ldots = \beta_l = 1)$,

$$\mu(mn) = \mu(p_1 \dots p_k q_1 \dots q_l) = (-1)^{k+1} = (-1)^k (-1)^l = \mu(n)\mu(m).$$

Si $\mathfrak n$ ou $\mathfrak m$ contient un facteur carré (l'un des α_i ou l'un des β_j est supérieur ou égal à 2), il en est de même de $\mathfrak n\mathfrak m$ et dans ce cas,

$$\mu(nm) = 0 = \mu(n)\mu(m).$$

On a montré que la fonction μ est multiplicative.

 $\mathbf{Q} \ \mathbf{12.} \ (\mu*1)(1) = \mu(1) = 1. \ \mathrm{Ensuite}, \ \mathrm{pour} \ \mathfrak{n} \geqslant 2, \ \mathrm{en} \ \mathrm{consid\acute{e}rant} \ \mathrm{la} \ \mathrm{d\acute{e}composition} \ \mathrm{primaire} \ \mathrm{de} \ \mathfrak{n} : \mathfrak{n} = \mathfrak{p}_1^{\alpha_1} \dots \mathfrak{p}_k^{\alpha_k}, \\ (\mu*1)(\mathfrak{n}) = \sum_{d \mid \mathfrak{n}} \mu(d). \ \mathrm{Dans} \ \mathrm{cette} \ \mathrm{somme}, \ \mathrm{si} \ d \ \mathrm{contient} \ \mathrm{au} \ \mathrm{moins} \ \mathrm{un} \ \mathrm{facteur} \ \mathrm{carr\acute{e}}, \ \mathrm{le} \ \mathrm{terme} \ \mathrm{correspondant} \ \mathrm{est} \ \mathrm{nul}. \ \mathrm{Il} \ \mathrm{ne}$

reste que les termes $\mu(1)$ et les $\mu(p_{i_1} \dots p_{i_l}) = (-1)^l$ avec $1 \leqslant l \leqslant k$ et $1 \leqslant i_1 < \dots < i_l \leqslant k$. Pour $l \in [\![1,k]\!]$, il y a $\binom{k}{l}$ parties à l éléments de $[\![1,k]\!]$ ou encore $\binom{k}{l}$ l-uplets (i_1,\dots,i_l) tels que $i_1 < \dots < i_l$. Donc, d'après la formule du binôme de Newton,

$$(\mu * 1)(n) = 1 + \sum_{l=1}^{k} {k \choose l} (-1)^{l} = (1-1)^{k} = 0 \text{ (car } k \geqslant 1).$$

On a montré que $\mu * 1 = \delta$. Ceci montre que le symétrique de 1 pour * est μ .

Q 13.

$$\begin{split} \forall n \in \mathbb{N}^*, \; F(n) &= \sum_{d \mid n} f(d) \Leftrightarrow F = f*1 \Leftrightarrow F*\mu = f \; (\mathrm{car} \; (\mathbb{M},*) \; \mathrm{est} \; \mathrm{un} \; \mathrm{groupe}) \\ & \Leftrightarrow \forall n \in \mathbb{N}^*, \; f(n) = \sum_{d \mid n} \mu(d) F\left(\frac{n}{d}\right). \end{split}$$

 $\mathbf{Q} \ \mathbf{14.} \ \mathrm{Pour} \ \mathrm{tout} \ \mathfrak{n} \in \mathbb{N}^*, \ (\phi * 1)(\mathfrak{n}) = \sum_{d \mid \mathfrak{n}} \phi(d) = \mathfrak{n} \ (\mathrm{formule} \ \mathrm{connue}) \ \mathrm{et} \ \mathrm{donc} \ \phi * 1 = \mathrm{I}. \ \mathrm{Mais} \ \mathrm{alors}, \ \phi = \mu * \mathrm{I} \ \mathrm{puisque} \\ (\mathbb{M}, *) \ \mathrm{est} \ \mathrm{un} \ \mathrm{groupe} \ \mathrm{et} \ \mathrm{que} \ \mu \ \mathrm{est} \ \mathrm{le} \ \mathrm{sym\acute{e}trique} \ \mathrm{de} \ 1 \ \mathrm{pour} \ *.$

I.D - Déterminant de Smith

Q 15. Soit $(i,j) \in [\![1,n]\!]^2$. Le coefficient ligne i, colonne j, de $M'D^T$ est

$$\sum_{k=1}^{n} m'_{i,k} d_{j,k} = \sum_{d|i} m'_{i,d}.$$

Dans cette somme, si d ne divise pas i, $m'_{i,d} = 0$ et si i divise d, $m'_{i,d} = g(d)$. Puisque les diviseurs communs aux entiers i et j sont les diviseurs de leur PGCD $i \wedge j$, le coefficient ligne i, colonne j, de $M'D^T$ est

$$\sum_{\mathbf{d}\mid\mathbf{i}\wedge\mathbf{j}}g(\mathbf{d})=(g*1)(\mathbf{i}\wedge\mathbf{j})=f(\mathbf{i}\wedge\mathbf{j})=m_{\mathbf{i},\mathbf{j}},$$

car $g = f * \mu \Leftrightarrow f = g * 1$. On a montré que $M = M'D^T$.

Q 16. Donc, $det(M) = det(M') \times det(D^{\mathsf{T}})$.

 $\det(M') = \sum_{\sigma \in \mathscr{S}_n} \epsilon(\sigma) \mathfrak{m}_{\sigma(1),1} \dots \mathfrak{m}_{\sigma(n),n}. \text{ Dans cette somme, un terme est nul si et seulement si il existe } i \in \llbracket 1,n \rrbracket \text{ tel que le proposition of the seulement of the seulement si il existe } i \in \llbracket 1,n \rrbracket \text{ tel que le proposition of the seulement of the$

i ne divise pas $\sigma(i)$. Il ne reste donc que les termes tels que pour tout $i \in [1, n]$, i divise $\sigma(i)$ et en particulier $i \leq \sigma(i)$. Ceci impose par récurrence descendante sur i que pour tout $i \in [1, n]$, $\sigma(i) = i$ et donc $\sigma = Id_{[1, n]}$. Il reste

$$\det(M') = \epsilon(\text{Id}) m_{1,1} \dots m_{n,n} = \prod_{k=1}^n g(k).$$

Avec le même raisonnement,

$$\det\left(D^{\mathsf{T}}\right) = \det(D) = d_{1,1} \dots d_{n,n} = 1.$$

Finalement,

$$\det(M) = \prod_{k=1}^{n} g(k).$$

I.E - Séries de Dirichlet

 $\mathbf{Q} \ \mathbf{17.} \ \mathrm{Soit} \ s > A_c(f). \ \mathrm{Il} \ \mathrm{existe} \ s' \in \left\{ t \in \mathbb{R} / \ \mathrm{la} \ \mathrm{s\acute{e}rie} \ \sum \frac{f(k)}{k^t} \ \mathrm{converge} \ \mathrm{absolument} \right\} \ \mathrm{tel} \ \mathrm{que} \ A_c(f) \leqslant s' < s. \ \mathrm{Pour} \ \mathrm{tout} \\ k \in \mathbb{N}^*, \ \mathrm{on} \ \mathrm{a} \ k^{s'} \leqslant k^s \ \mathrm{puis}$

$$\left|\frac{f(k)}{k^s}\right| = \frac{|f(k)|}{k^s} \leqslant \frac{|f(k)|}{k^{s'}} = \left|\frac{f(k)}{k^{s'}}\right|.$$

Puisque la série numérique de terme général $\frac{f(k)}{k^{s'}}$, $k \in \mathbb{N}^*$, converge absolument, il en est de même de la série de terme général $\frac{f(k)}{k^{s}}$, $k \in \mathbb{N}^*$.

 $\mathbf{Q} \ \mathbf{18.} \ \mathrm{Posons} \ h = g - f \ \mathrm{de} \ \mathrm{sorte} \ \mathrm{que} \ L_h \ \mathrm{est} \ \mathrm{d\acute{e}finie} \ \mathrm{et} \ \mathrm{nulle} \ \mathrm{sur} \] \\ \mathrm{Max} \left(A_c(f), A_c(g) \right), + \infty [. \ \mathrm{II} \ \mathrm{s'agit} \ \mathrm{de} \ \mathrm{montrer} \ \mathrm{que} \ h \ \mathrm{est} \ \mathrm{nulle} \ \mathrm{sur} \] \\ \mathrm{Max} \left(A_c(f), A_c(g) \right), + \infty [. \ \mathrm{Supposons} \ \mathrm{par} \ l'absurde \ \mathrm{qu'il} \ \mathrm{existe} \ k \in \mathbb{N}^* \ \mathrm{tel} \ \mathrm{que} \ h(k) = f(k) - g(k) \neq 0. \\ \\ \mathrm{Max} \left(A_c(f), A_c(g) \right), + \infty [. \ \mathrm{Supposons} \ \mathrm{par} \ l'absurde \ \mathrm{qu'il} \ \mathrm{existe} \ k \in \mathbb{N}^* \ \mathrm{tel} \ \mathrm{que} \ h(k) = f(k) - g(k) \neq 0. \\ \\ \mathrm{Max} \left(A_c(f), A_c(g) \right), + \infty [. \ \mathrm{Supposons} \ \mathrm{par} \ l'absurde \ \mathrm{qu'il} \ \mathrm{existe} \ k \in \mathbb{N}^* \ \mathrm{tel} \ \mathrm{que} \ h(k) = f(k) - g(k) \neq 0. \\ \\ \mathrm{Max} \left(A_c(f), A_c(g) \right), + \infty [. \ \mathrm{que} \ h(k) + (k) +$

 $\mathrm{Soit}\ k_0 = \mathrm{Min}\{k \in \mathbb{N}^*/\ h(k) \neq 0\}. \ \mathrm{Par}\ \mathrm{definition}\ \mathrm{de}\ k_0, \ \mathrm{pour}\ \mathrm{tout}\ s > \mathrm{Max}\ (A_c(f), A_c(g)), \\ \sum_{k=k_0}^{+\infty} \frac{h(k)}{k^s} = 0 \ \mathrm{puis}\ \sum_{k=k_0}^{+\infty} \frac{h(k)k_0^s}{k^s} = 0 \ \mathrm{p$

$$\lim_{s \to +\infty} \sum_{k=k}^{+\infty} \frac{h(k)k_0^s}{k^s} = 0.$$

 $\begin{aligned} &\mathrm{Soit}\ s_0 > \mathrm{Max}\,(A_c(f),A_c(g)).\ \mathrm{Pour}\ s \geqslant s_0,\ \mathrm{posons}\ u_k(s) = \frac{h(k)k_0^s}{k^s}.\ \mathrm{Chaque}\ \mathrm{fonction}\ u_k,\ k \geqslant k_0,\ \mathrm{a}\ \mathrm{une}\ \mathrm{limite}\ \ell_k\ \mathrm{quand}\ s \\ &\mathrm{tend}\ \mathrm{vers}\ +\infty\ \mathrm{\grave{a}}\ \mathrm{savoir}\ \ell_k = \left\{\begin{array}{l} h(k_0)\ \mathrm{si}\ k = k_0\\ 0\ \mathrm{si}\ k \geqslant k_0 + 1 \end{array}\right..\ \mathrm{Ensuite},\ \mathrm{pour}\ k \geqslant k_0\ \mathrm{et}\ s \geqslant s_0, \end{aligned}$

$$|u_k(s)| = |h(k)| \left| \frac{k_0}{k} \right|^s \leqslant |h(k)| \left| \frac{k_0}{k} \right|^{s_0} = k_0^{s_0} \left| \frac{h(k)}{k^{s_0}} \right|,$$

puis $\|u_k\|_{\infty,[s_0,+\infty[} \leqslant k_0^{s_0} \left| \frac{h(k)}{k^{s_0}} \right|$. La série numérique de terme général $k_0^{s_0} \left| \frac{h(k)}{k^{s_0}} \right|$ converge d'après la question Q17 et donc la série de terme général u_k converge normalement et en particulier uniformément sur $[s_0,+\infty[$.

D'après le théorème d'interversion des limites

- $\bullet \ ({\rm la\ fonction}\ \sum_{k=k_0}^{+\infty} u_k\ {\rm a\ une\ limite}\ \ell\ {\rm en}\ +\infty)$
- (la série numérique de terme général ℓ_k , $k \ge k_0$, converge)

$$\bullet \ \ell = \sum_{k=k_0}^{+\infty} \ell_k,$$

ce qui fournit explicitement

$$0 = \ell = \sum_{k=k_0}^{+\infty} \ell_k = h(k_0).$$

Ceci contredit la définition de k_0 et donc pour tout $k \in \mathbb{N}^*$, f(k) = g(k) puis f = g.

 $\mathbf{Q} \ \mathbf{19.} \ \mathrm{Soit} \ s > \mathrm{Max} \left(A_c(f), A_c(g) \right). \ \mathrm{V\acute{e}rifions} \ \mathrm{que} \ \mathrm{la} \ \mathrm{famille} \ \left(\frac{f\left(\mathfrak{i}\right)g(j)}{\mathfrak{i}^s \mathfrak{j}^s} \right)_{(\mathfrak{i}, \mathfrak{j}) \in (\mathbb{N}^*)^2} = \left(\mathfrak{u}_{\mathfrak{i}, \mathfrak{j}} \right)_{(\mathfrak{i}, \mathfrak{j}) \in \mathbb{N}^*} \ \mathrm{est} \ \mathrm{sommable}.$

• Pour
$$i \in \mathbb{N}^*$$
, $\sum_{j=1}^{+\infty} |u_{i,j}| = \left| \frac{f(i)}{i^s} \right| \sum_{j=1}^{+\infty} \left| \frac{g(j)}{j^s} \right| < +\infty$ puis

$$\bullet \sum_{i=1}^{+\infty} \left(\sum_{j=1}^{+\infty} |u_{i,j}| \right) = \left(\sum_{i=1}^{+\infty} \left| \frac{f(i)}{i^s} \right| \right) \left(\sum_{j=1}^{+\infty} \left| \frac{g(j)}{j^s} \right| \right) < +\infty.$$

Ceci montre que la suite $(u_{i,j})_{(i,j)\in(\mathbb{N}^*)^2}$ est sommable. Maintenant, la famille $(\mathscr{C}_k)_{k\in\mathbb{N}^*}$ est une partition de $(\mathbb{N}^*)^2$ (notation de la question Q1). D'après un cas particulier du théorème de sommation par paquets

$$\begin{split} L_f(s)L_g(s) &= \left(\sum_{i=1}^{+\infty} \frac{f(i)}{i^s}\right) \left(\sum_{j=1}^{+\infty} \frac{g(j)}{j^s}\right) = \sum_{k=1}^{+\infty} \left(\sum_{(i,j)\in\mathscr{C}_k} \frac{f(i)}{i^s} \frac{g(j)}{j^s}\right) = \sum_{k=1}^{+\infty} \left(\sum_{(i,j)\in\mathscr{C}_k} f(i)g(j)\right) \frac{1}{k^s} \\ &= \sum_{k=1}^{+\infty} \frac{(f*g)(k)}{k^s} = L_{f*g}(s). \end{split}$$

On note qu'il n'est pas nécessaire que f et q soient multiplicatives.

II - Matrices et endomorphismes de permutation

II.A - Similitude de deux matrices de permutation

 $\mathbf{Q} \ \mathbf{20.} \ \mathrm{Soit} \ (\rho, \rho') \in (\mathscr{S}_n)^2. \ \mathrm{Posons} \ P_\rho = (\mathfrak{p}_{k,l})_{1 \leqslant k,l \leqslant n} \ \mathrm{et} \ P_{\rho'} = (\mathfrak{p}'_{k,l})_{1 \leqslant k,l \leqslant n}. \ \mathrm{Soit} \ (\mathfrak{i},\mathfrak{j}) \in [\![1,n]\!]^2. \ \mathrm{Le \ coefficient \ ligne} \ \mathfrak{i}, \\ \mathrm{colonne} \ \mathfrak{j}, \ \mathrm{de} \ P_\rho \times P_{\rho'} \ \mathrm{est}$

$$\sum_{k=1}^n p_{\mathfrak{i},k} p'_{k,\mathfrak{j}} = \sum_{k=1}^n \delta_{\mathfrak{i},\rho(k)} \delta_{k,\rho'(\mathfrak{j})} = \delta_{\mathfrak{i},\rho(\rho'(\mathfrak{j}))} \text{ (obtenu pour } k = \rho'(\mathfrak{j})).$$

 $\delta_{\mathfrak{i},\rho\circ\rho'(\mathfrak{j})}$ est aussi le coefficient ligne $\mathfrak{i},$ colonne $\mathfrak{j},$ de $P_{\rho\rho'}$. Ceci étant vrai pour tout $(\mathfrak{i},\mathfrak{j})\in [\![1,n]\!]^2$, on a montré que $P_{\rho\rho'}=P_{\rho}P_{\rho'}$.

En particulier, $P_{\rho}P_{\rho^{-1}} = P_{\rho\rho^{-1}} = P_{\mathrm{Id}_{\llbracket 1,n\rrbracket}} = (\delta_{i,j})_{1 \leq i,j \leq n} = I_n$. Ceci montre que P_{ρ} est inversible, d'inverse $(P_{\rho})^{-1} = P_{\rho^{-1}}$.

Soit $(\sigma,\tau)\in \left(\mathscr{S}_n\right)^2$ tel que σ et τ soient conjuguées. Il existe $\rho\in \mathscr{S}_n$ telle que $\tau=\rho\sigma\rho^{-1}$. Par suite,

$$P_{\tau} = P_{\rho} \times P_{\sigma} \times P_{\rho^{-1}} = P_{\rho} \times P_{\sigma} \times \left(P_{\rho}\right)^{-1} \text{.}$$

Les matrices P_{σ} et P_{τ} sont donc semblables.

Finalement, pour tout $x \in [1,7]$, $\rho \gamma_1 \rho^{-1}(x) = \gamma_2(x)$ et donc $\rho \gamma_1 \rho^{-1} = \gamma_2$.

Q 22. Soit $\gamma = (\alpha_1, \dots, \alpha_\ell)$ et $\gamma' = (\alpha_1', \dots, \alpha_\ell')$ deux cycles de même longueur $\ell \in [2, n]$. Soit ρ un élément de \mathscr{S}_n tel que pour tout $i \in [1, \ell]$, $\rho(\alpha_i) = \alpha_i'$.

Soit $i \in [1, \ell-1]$. $\rho \gamma \rho^{-1}(\alpha_i') = \rho \gamma(\alpha_i) = \rho(\alpha_{i+1}) = \alpha_{i+1}' = \gamma'(\alpha_i)$ et d'autre part $\rho \gamma \rho^{-1}(\alpha_\ell') = \rho \gamma(\alpha_\ell) = \rho(\alpha_1) = \alpha_1' = \gamma'(\alpha_\ell)$.

Enfin, si $x \notin \{\alpha'_1, \ldots, \alpha'_\ell\}$, $\rho^{-1}(x) \notin \{\alpha_1, \ldots, \alpha_\ell\}$ puis $\gamma \rho^{-1}(x) = \rho^{-1}(x)$ puis $\rho \gamma \rho^{-1}(x) = \rho \rho^{-1}(x) = x = \gamma'(x)$. Finalement, $\rho \gamma_1 \rho^{-1} = \gamma_2$.

On a montré que deux cycles de même longueur sont conjugués.

Q 23. Réciproquement, soient γ et γ' deux cycles conjugués de longueur respectives ℓ et ℓ' et soit $\rho \in \mathscr{S}_n$ tel que $\gamma' = \rho \gamma \rho^{-1}$. Le plus petit entier $k \in \mathbb{N}^*$ tel que $\gamma^k = \mathrm{Id}_{\llbracket 1,n \rrbracket}$ (resp. $\gamma'^k = \mathrm{Id}_{\llbracket 1,n \rrbracket}$) est ℓ (resp. ℓ') (l'ordre d'un cycle est sa longueur). De plus, pour tout $k \in \mathbb{N}^*$, $\gamma'^k = \rho \gamma^k \rho^{-1}$ et donc $\gamma^k = \mathrm{Id}_{\llbracket 1,n \rrbracket} \Leftrightarrow \gamma'^k = \mathrm{Id}_{\llbracket 1,n \rrbracket}$. Ceci montre que $\ell = \ell'$. En résumé, deux cycles sont conjugués si et seulement si ils ont même longueur.

Soit maintenant $(\sigma,\tau) \in (\mathscr{S}_n)^2$ tel que $\forall \ell \in [\![1,n]\!]$, $c_\ell(\sigma) = c_\ell(\tau)$. On peut associer de manière bijective chaque cycle de longueur $\ell \geqslant 2$ apparaissant dans la décomposition de σ à un cycle de longueur ℓ dans la décomposition de τ . On commence par définir ρ par ses restrictions aux supports des différents cycles de σ de la même façon que dans la question Q22. Enfin, si a_1, \ldots, a_t sont les éventuels points fixes de σ et a'_1, \ldots, a'_t , ceux de τ (on rappelle que $c_1(\sigma) = c_1(\tau)$), pour chaque i on pose (éventuellement) ρ (a_i) = a'_i . Puisque les supports des différents cycles et les points fixes constituent une partition de $[\![1,n]\!]$, on vient de définir un élément ρ de \mathscr{S}_n .

Si a_i' est un (éventuel) point fixe de τ , $\rho\sigma\rho^{-1}$ $(a_i') = \rho\sigma(a_i) = \rho(a_i) = a_i' = \tau(a_i')$.

Si x n'est pas un point fixe de τ et donc est élément du support d'un et un seul des supports des cycles γ' apparaissant (éventuellement) dans τ , $\rho^{-1}(x)$ n'est modifié que par γ et $\gamma \rho^{-1}(x)$ reste un élément du support de γ . Le calcul de la question Q22 montre que $\rho \sigma \rho^{-1}(x) = \tau(x)$.

Finalement, ρ est un élément de \mathscr{S}_n tel que $\rho\sigma\rho^{-1}=\tau$. Donc, σ et τ sont conjugués.

Inversement, supposons σ et τ conjuguées. Soit $\rho \in \mathscr{S}_n$ tel que $\rho \sigma \rho^{-1} = \tau$. Soit $\gamma = (\alpha'_1, \dots, \alpha'_\ell), \ \ell \geqslant 2$, un (éventuel) cycle de longueur ℓ apparaissant dans τ . Alors, pour tout $i \in [1, \ell-1], \ \rho^{-1} \left(\alpha'_{i+1}\right) = \rho^{-1} \tau \left(\alpha'_i\right) = \sigma \rho^{-1} \left(\alpha'_i\right)$ et de même, $\rho^{-1} \left(\alpha'_1\right) = \sigma \rho^{-1} \left(\alpha'_\ell\right)$. Ceci montre que $\left(\rho^{-1} \left(\alpha'_1\right), \dots, r^{-1} \left(\alpha'_\ell\right)\right)$ est un cycle de longueur ℓ apparaissant dans σ . De même, si χ est un point fixe de τ , alors $\rho^{-1}(\chi)$ est un point fixe de σ et réciproquement.

Ainsi, ρ^{-1} associe de manière bijective chaque cycle de longueur $\ell \geqslant 2$ dans τ à un cycle de longueur ℓ dans σ et chaque point fixe de τ à un point fixe de σ . Ceci montre en particulier que $(c_1(\sigma), \ldots, c_n(\sigma)) = (c_1(\tau), \ldots, c_n(\tau))$.

Q 24. Soient $\ell \in [2, n]$ puis $\gamma \in \mathcal{S}_{\ell}$ un cycle de longueur ℓ de $[1, \ell]$. γ a même longueur que le cycle $\gamma' = (1 \ 2 \ \dots \ \ell)$ et donc P_{γ} est semblable à P'_{γ} puis

$$\chi_{\gamma}(X) = \chi_{\gamma'}(X) = \det (XI_{\ell} - \Gamma_{\ell}) = \left[egin{array}{cccccc} X & 0 & \dots & 0 & -1 \\ -1 & X & \dots & \dots & 0 \\ 0 & -1 & \ddots & \vdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & -1 & X & 0 \\ 0 & \dots & \dots & 0 & -1 & X \end{array} \right].$$

On développe ce déterminant suivant sa première ligne. On obtient $\chi_{\gamma}(X) = X \times \Delta_1 + (-1) \times (-1)^{\ell+1} \Delta_2$ où Δ_1 est un déterminant triangulaire inférieur égal à $X^{\ell-1}$ et Δ_2 est un déterminant triangulaire supérieur égal à $(-1)^{\ell-1}$. Donc,

$$\chi_{Y}(X) = X \times X^{\ell-1} + (-1)^{\ell+2} \times (-1)^{\ell-1} = X^{\ell} + (-1)^{2\ell-1} = X^{\ell} - 1.$$

Q 25. Soit $\sigma \in \mathscr{S}_n$. Soit f l'endomorphisme de \mathbb{C}^n de matrice P_σ dans la base canonique $\mathscr{B} = (e_1, \dots, e_n)$ (donc, pour tout $j \in [\![1,n]\!]$, $f(e_j) = e_{\sigma(j)}$). On réordonne les vecteurs de cette base en mettant en premier les vecteurs dont le numéro est un point fixe de σ puis les vecteurs dont le numéro appartient au support d'un cycle de longueur 2 et ceci pour chaque cycle de longueur 2, puis les vecteurs dont le numéro appartient au support d'un cycle de longueur 3 ... On obtient ainsi une nouvelle base \mathscr{B}' de \mathbb{C}^n (car obtenue par permutation des vecteurs de \mathscr{B}) dans laquelle la matrice de f est diagonale par blocs, les blocs diagonaux étant du type Γ_l , $\ell \geqslant 1$. P_σ est donc semblable à une matrice de ce type.

Le format d'un bloc Γ_{ℓ} , $\ell \geqslant 2$, est la longueur du cycle correspondant. Il y a donc $c_{\ell}(\sigma)$ blocs Γ_{ℓ} où $\ell \geqslant 2$. D'autre part, chaque bloc Γ_1 correspond à un point fixe de σ . Il y a $c_1(\sigma)$ blocs Γ_1 . Puisque $\chi_{\Gamma_1} = X - 1$, un calcul par blocs fournit

$$\chi_{\sigma}(X) = \prod_{\ell=1}^n \left(\det \left(\Gamma_{\ell} \right) \right)^{c_{\ell}(\sigma)} = \prod_{\ell=1}^n \left(X^{\ell} - 1 \right)^{c_{\ell}(\sigma)},$$

 $(\mathrm{avec}\ \mathrm{la}\ \mathrm{convention}\ (\det\left(\Gamma_{\ell}\right))^{c_{\,\ell}(\sigma)} = \left(X^{\ell}-1\right)^{c_{\,\ell}(\sigma)} = 1\ \mathrm{quand}\ c_{\,\ell}(\sigma) = 0).$

Q 26. Soit $q \in [\![1,n]\!]$. Pour $\ell \in [\![1,n]\!]$, le nombre $e^{\frac{2i\pi}{q}}$ est racine de $X^\ell-1$ si et seulement si q divise ℓ . Puisque chaque $X^\ell-1$ est à racines simples dans $\mathbb C$ (car sans racine commune avec sa dérivée), pour $\ell \in [\![1,n]\!]$, le nombre $e^{\frac{2i\pi}{q}}$ est racine de $(X^\ell-1)^{c_\ell(\sigma)}$ d'ordre $c_\ell(\sigma)$ (y compris si $e^{\frac{2i\pi}{q}}$ n'est pas racine de $(X^\ell-1)^{c_\ell(\sigma)}$). Finalement, le nombre $e^{\frac{2i\pi}{q}}$ est racine de χ_σ d'ordre $\sum_{\ell=1}^n c_\ell(\sigma)$. De même, le nombre $e^{\frac{2i\pi}{q}}$ est racine de χ_τ d'ordre $\sum_{\ell=1}^n c_\ell(\tau)$.

Puisque P_{σ} et P_{τ} sont semblables, $\chi_{\sigma} = \chi_{\tau}$ et en particulier, les deux ordres de multiplicité ci-dessus sont les mêmes :

$$\forall q \in \llbracket 1, n \rrbracket, \ \sum_{\substack{\ell=1 \\ q \mid \ell}}^n c_{\ell}(\sigma) = \sum_{\substack{\ell=1 \\ q \mid \ell}}^n c_{\ell}(\tau).$$

Q 27. Soit $q \in [1, n]$. Le q-ème coefficient de $T_{\sigma}D$ est

$$\sum_{\ell=1}^n c_\ell(\sigma) d_{\ell,\,q} = \sum_{1\leqslant \ell\leqslant n,\,\, q\mid \ell}^n c_\ell(\sigma).$$

D'après la question précédente, ce coefficient est aussi le q-ème coefficient de $T_{\tau}D$.

Ainsi, $T_{\sigma}D = T_{\tau}D$. D'après la question Q16, $\det(D) = 1 \neq 0$ et donc D est inversible. On en déduit que $T_{\sigma} = T_{\tau}$ puis que σ et τ sont conjuguées d'après la question Q23. En résumé, σ et τ sont conjuguées si et seulement si P_{σ} et P_{τ} sont semblables.

II.B - Endomorphismes de permutation

Q 28. Soit $\mathfrak u$ un endomorphisme de permutation de E. Il existe une base $\mathscr{B}=(e_1,\ldots,e_n)$ base de E et $\sigma\in\mathscr{S}_n$ telles que $\forall j\in [\![1,n]\!],\ \mathfrak u\left(e_j\right)=e_{\sigma(j)}.$

Pour $(i,j) \in [\![1,n]\!]^2$, le coefficient ligne i, colonne j, de $\mathrm{Mat}_{\mathscr{B}}(u)$ est $\delta_{i,\sigma(j)}$ (symbole de Kronecker) et donc $\mathrm{Mat}_{\mathscr{B}}(f) = P_{\sigma}$. Inversement, s'il existe $\mathscr{B} = (e_1,\ldots,e_n)$ base de E et $\sigma \in \mathscr{S}_n$ telles que $\mathrm{Mat}_{\mathscr{B}}(f) = P_{\sigma}$, alors pour tout $j \in [\![1,n]\!]$, $u(e_j) = e_{\sigma(j)}$ et donc u est un endomorphisme de permutation.

Q 29. Soit $\mathfrak u$ un endomorphisme de permutation de E. Soient $\mathscr B=(e_1,\ldots,e_n)$ base de E et $\sigma\in\mathscr S_n$ telles que $\mathrm{Mat}_\mathscr B(f)=P_\sigma$. Le coefficient ligne $\mathfrak i$, colonne $\mathfrak i$ de P_σ est $\mathfrak i$ si $\sigma(\mathfrak i)=\mathfrak i$ et $\mathfrak 0$ si $\sigma(\mathfrak i)\neq\mathfrak i$. Donc,

$$\operatorname{Tr}(\mathfrak{u}) = \operatorname{Tr}(P_{\sigma}) = c_1(\sigma) \in [0, \mathfrak{n}].$$

Ensuite, P_{σ} est semblable à une matrice diagonale par blocs Γ , chaque bloc étant du type Γ_{ℓ} , $\ell \geqslant 1$. Soit $\ell \geqslant 1$. Le polynôme caractéristique de Γ_{ℓ} , à savoir $\chi_{\Gamma_{\ell}} = X^{\ell} - 1$, est à racines simples dans \mathbb{C} . Donc, chaque bloc Γ_{ℓ} , $\ell \geqslant 1$, est diagonalisable dans $\mathcal{M}_{\ell}(\mathbb{C})$. Un calcul par blocs montre alors que Γ est diagonalisable dans $\mathcal{M}_{n}(\mathbb{C})$ et il en est de même de P_{σ} . Mais alors \mathfrak{u} est diagonalisable.

Q 30. Si A et B sont semblables, on sait que A et B ont même polynôme caractéristique.

Inversement, soient A et B deux matrices ayant même polynôme caractéristique $(X - \lambda_1) \dots (X - \lambda_n)$. Si de plus A et B sont diagonalisables, alors A et B sont toutes deux semblables à D = diag $(\lambda_1, \dots, \lambda_n)$. Par transitivité, A et B sont semblables.

 \mathbf{Q} 31. Si \mathfrak{u} est un endomorphisme de permutation, $\mathrm{Tr}(\mathfrak{u})$ est un entier naturel d'après la question \mathbf{Q} 29.

Inversement, soit $\mathfrak u$ un endomorphisme de E tel que $\mathfrak u^2=Id_E$ et $\mathrm{Tr}(\mathfrak u)\in\mathbb N$. $\mathfrak u$ est une symétrie et donc, il existe une base $\mathscr B$ telle que $\mathrm{Mat}_{\mathscr B}(\mathfrak u)=\mathrm{diag}(\underbrace{1,\dots,1}_p,\underbrace{-1,\dots,-1}_q)$. De plus, $\mathfrak p-\mathfrak q=\mathrm{Tr}(\mathfrak u)\geqslant 0$ et donc $\mathfrak p\geqslant \mathfrak q$. Le polynôme caractéristique de $\mathfrak u$ est donc $(X-1)^p(X+1)^q=(X-1)^{p-q}\left(X^2-1\right)^q$. Maintenant, la matrice Γ diagonale par blocs comportant sur sa

de $\mathfrak u$ est donc $(X-1)^p(X+1)^q=(X-1)^{p-q}\left(X^2-1\right)^q$. Maintenant, la matrice Γ diagonale par blocs comportant sur sa diagonale $\mathfrak p-\mathfrak q$ blocs Γ_1 et $\mathfrak q$ blocs Γ_2 a aussi pour polynôme caractéristique $(X-1)^{p-q}\left(X^2-1\right)^q$ et est diagonalisable. D'après la question précédente, $\operatorname{Mat}_{\mathscr B}(\mathfrak u)$ est semblable à la matrice de permutation Γ et donc il existe une base de E dans laquelle la matrice de $\mathfrak u$ est une matrice de permutation. On en déduit que $\mathfrak u$ est un endomorphisme de permutation de E.

Q 32. Si $\mathfrak u$ est un endomorphisme de permutation de E tel que $\mathfrak u^3=Id_E$, alors comme à la question précédente, $\mathrm{Tr}(\mathfrak u)=c_1(\sigma)\in [\![0,\mathfrak n]\!].$

Réciproquement, soit u un endomorphisme de E tel que $u^3 = Id_E$ et $\mathrm{Tr}(u) \in \mathbb{N}$. Le polynôme $X^3 - 1 = (X-1)(X-j)\left(X-j^2\right)$ est à racines simples dans \mathbb{C} et annulateur de u. Donc, u est diagonalisable. Il existe une base \mathscr{B} de E telle que $\mathrm{Mat}_{\mathscr{B}}(u) = \mathrm{diag}(\underbrace{1,\ldots,1}_p,\underbrace{j,\ldots,j}_q,\underbrace{j^2,\ldots,j^2}_r)$.

Si par exemple q > r, ${\rm Tr}(u) = p + qj + rj^2 = p - r + (q - r)j \notin \mathbb{R}$ (car $j + j^2 = -1$ et $j \notin \mathbb{R}$). De même, q < r est impossible et donc q = r. Par suite, ${\rm Tr}(u) = p + qj + qj^2 = p - q$ et comme à la question précédente, $p \geqslant q$. Ainsi, le polynôme caractéristique de u est $(X-1)^{p-q}(X-1)^q(X-j)^q\left(X-j^2\right)^q = (X-1)^{p-q}\left(X^3-1\right)^q$. Comme à la question précédente, ${\rm Mat}_{\mathscr{B}}(u)$ est semblable à la matrice de permutation Γ , diagonale par blocs comportant sur sa diagonale p-q blocs Γ_1 et q blocs Γ_3 . Donc, u est un endomorphisme de permutation de E.

Soit $\mathfrak u$ l'endomorphisme de $E=\mathbb C^2$ canoniquement associé à la matrice $A=\begin{pmatrix}0&-1\\1&0\end{pmatrix}$. $\chi_A=X^2+1$ puis, d'après le théorème de Cayley-Hamilton, $A^2=-I_2$ puis $A^4=I_2$ puis $\mathfrak u^4=Id_E$. De plus, $\mathrm{Tr}(\mathfrak u)=0\in\mathbb N$.

Il n'existe que deux matrices de permutations de format 2 : $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et $J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. A n'est semblable ni à I (car

alors A = I ce qui est faux), ni à J (car alors $A^2 = I$ ce qui est faux). Donc, $\mathfrak u$ n'est pas un endomorphisme de permutation. Ainsi, la condition $\mathrm{Tr}(\mathfrak u) \in \mathbb N$ n'est pas suffisante pour que $\mathfrak u$ soit un endomorphisme de permutation dans le cas k = 4.

Q 33. Soit $\mathfrak u$ un endomorphisme de permutation de E. Soient $\mathscr B=(e_1,\dots,e_n)$ une base de E et $\sigma\in\mathscr S_n$ telles que pour tout $j\in [\![1,n]\!]$, $\mathfrak u(e_j)=e_{\sigma(j)}$. La permutation σ se décompose en produit de cycles à supports disjoints : $\sigma=\gamma_1\dots\gamma_r$ (on suppose que le résultat de cours rappelé par l'énoncé est vrai également avec $\sigma=\mathrm{Id}$ en prenant conventionnellement r=0 (produit vide)). En notant ℓ_i la longueur de γ_i pour chaque $i\in [\![1,r]\!]$, on a $\gamma_i^{\ell_i}=\mathrm{Id}_{[\![1,n]\!]}$.

Soit $N = \text{PPCM}(\ell_1, \dots, \ell_r)$. Pour chaque $i \in [1, r]$, $\gamma_i^N = \text{Id}_{[1, n]}$ puis, des cycles à supports disjoints commutant deux à deux,

$$\sigma^N = \gamma_1^N \dots \gamma_r^N = Id_{\llbracket 1, n \rrbracket}.$$

 $\text{Mais alors, } \left(P_{\sigma}\right)^n = P_{\sigma^N} = P_{\text{Id}} = I_n \text{ puis } \mathfrak{u}^N = \text{Id}_E. \text{ Donc (b) est vrai. D'autre part, (a) est vrai d'après la question Q25}.$

Réciproquement, soit $\mathfrak u$ un endomorphisme de E tel que (a) et (b) soient vrais. Puisque le polynôme X^N-1 est annulateur de $\mathfrak u$ et à racines simples, $\mathfrak u$ est diagonalisable. D'autre part, si $\mathscr B$ est une base donnée de E et $M=\mathrm{Mat}_{\mathscr B}(\mathfrak u), M$ a le même polynôme caractéristique que la matrice de permutation Γ , diagonale par blocs, ayant sur sa diagonale $\mathfrak c_1$ blocs Γ_1 , $\mathfrak c_2$ blocs $\Gamma_2,\ldots,\mathfrak c_n$ blocs Γ_n . Puisque les matrices M et Γ sont diagonalisables et ont même polynôme caractéristique, ces matrices sont semblables d'après la question Q30 et donc $\mathfrak u$ est un endomorphisme de permutation.

Q 34. Posons $\chi_{\mathfrak{u}} = \prod_{i=1}^{n} (X - \lambda_i)^{\alpha_i}$ où les λ_i sont les valeurs propres deux à deux distinctes de \mathfrak{u} et les α_i sont leurs ordres

de multiplicités respectifs. Posons de même $\chi_{\nu} = \prod_{i=1}^{s} \left(X - \mu_{i}\right)^{\beta_{i}}$ où les μ_{i} sont les valeurs propres deux à deux distinctes de ν et les β_{i} leurs ordres de multiplicités respectifs.

On sait que pour tout $k \in \mathbb{N}$, $Sp\left(u^k\right) = (\underbrace{\lambda_1^k, \ldots, \lambda_1^k}_{\alpha_1}, \ldots, \underbrace{\lambda_r^k, \ldots, \lambda_r^k}_{\alpha_r})$ et donc $Tr\left(u^k\right) = \sum_{i=1}^r \alpha_i \lambda_i^k$. De même, pour tout

$$k\in\mathbb{N},\,\mathrm{Tr}\left(\nu^{k}\right)=\sum_{i=1}^{s}\beta_{i}\mu_{i}^{k}.$$

 $\mathrm{Par}\ \mathrm{hypoth\`ese},\ \mathrm{pour}\ \mathrm{tout}\ k\in\mathbb{N},\ \sum_{i=1}^r\alpha_i\lambda_i^k=\sum_{i=1}^s\beta_i\mu_i^k.\ \mathrm{Soit}\ R\ \mathrm{un}\ \mathrm{r\'eel}\ \mathrm{strictement}\ \mathrm{positif}\ \mathrm{inf\'erieur}\ \mathrm{ou}\ \mathrm{\'egal}\ \mathrm{\grave{a}}\ \mathrm{tous}\ \mathrm{les}\ \bigg|\frac{1}{\lambda}\bigg|,$

 $\lambda \in \operatorname{Sp}(\mathfrak{u}) \setminus \{0\} \text{ et à tous les } \left|\frac{1}{\mu}\right|, \ \mu \in \operatorname{Sp}(\nu) \setminus \{0\} \text{ (s'il existe au moins une valeur propre non nulle et sinon on prend } R = 1$ par exemple). Pour tout $x \in]-R, R[$, chaque série de terme général $(\lambda_i x)^k$ converge et chaque série de terme général $(\mu_i x)^k$

converge (y compris si $\lambda_i=0$ ou $\mu_i=0$). De plus, pour $x\in]-R,R[$ et $i\in [1,r],$

$$\sum_{k=0}^{+\infty} \left(\lambda_i x\right)^k = \frac{1}{1 - \lambda_i x}.$$

On en déduit que pour $x \in]-R, R[$,

$$\sum_{k=2}^{+\infty} \operatorname{Tr}\left(u^{k}\right) x^{k} = \frac{\alpha_{1}}{1-\lambda_{1}x} + \ldots + \frac{\alpha_{r}}{1-\lambda_{r}x}.$$

De même, pour $x\in]-R,R[,\sum_{k=0}^{+\infty}\operatorname{Tr}\left(\nu^{k}\right)x^{k}=\frac{\beta_{1}}{1-\mu_{1}x}+\ldots+\frac{\beta_{s}}{1-\mu_{s}x}.$ On a donc,

$$\forall x \in]-R, R[, \frac{\alpha_1}{1-\lambda_1 x} + \ldots + \frac{\alpha_r}{1-\lambda_r x} = \frac{\beta_1}{1-\mu_1 x} + \ldots + \frac{\beta_s}{1-\mu_s x}.$$

Puisque] -R, R[est infini, on en déduit encore que $\frac{\alpha_1}{1-\lambda_1 X}+\ldots+\frac{\alpha_r}{1-\lambda_r X}=\frac{\beta_1}{1-\mu_1 X}+\ldots+\frac{\mu_s}{1-\beta_s X}$. L'unicité de la décomposition en éléments simples permet alors d'affirmer que r=s puis que u et v ont les mêmes valeurs propres avec même ordre de multiplicité. Finalement, u et v ont même polynôme caractéristique.

Q 35. Si u est un endomorphisme de permutation, on pose $(c_1, \ldots, c_n) = (c_1(\sigma), \ldots, c_n(\sigma))$ où σ est associée à u. Il existe une base de E dans laquelle la matrice Γ de u est une matrice diagonale par blocs, ayant sur sa diagonale c_1 blocs Γ_1 , Γ_2 blocs Γ_2 , Γ_3 , Γ_4 blocs Γ_5 , Γ_6 blocs Γ_7 , Γ_8 blocs Γ_8 , $\Gamma_$

$$\forall k \in \mathbb{N}^*, \; \mathrm{Tr}\left(u^k\right) = \sum_{\ell=1}^n c_\ell \mathrm{Tr}\left(\Gamma_\ell^k\right).$$

Maintenant, pour $\ell \in [1, n]$, si k n'est pas multiple de ℓ , les coefficients diagonaux de Γ_ℓ^k sont nuls et donc $\mathrm{Tr}\left(\Gamma_\ell^k\right) = 0$ et si k est multiple de ℓ , $\Gamma_\ell^k = I_\ell$ et donc $\mathrm{Tr}\left(\Gamma_\ell^k\right) = \ell$. On en déduit que

$$\forall k \in \mathbb{N}^*, \operatorname{Tr}\left(u^k\right) = \sum_{\substack{\ell=1 \ \ell \mid k}}^n \ell c_\ell.$$

Enfin, puisque $\chi_u = \prod_{\ell=1}^n (X^{\ell} - 1)^{c_{\ell}}$, on a

$$\sum_{\ell=1\atop \ell\mid 0}^{n}\ell c_{\ell} = \sum_{\ell=1}^{n}\ell c_{\ell} = \deg\left(\chi_{\mathfrak{u}}\right) = n = \mathrm{Tr}\left(\mathrm{Id}_{E}\right) = \mathrm{Tr}\left(\mathfrak{u}^{0}\right).$$

En résumé, il existe des entiers naturels non nuls c_1, \ldots, c_n , tels que $\forall k \in \mathbb{N}, \operatorname{Tr} \left(u^k \right) = \sum_{\substack{\ell=1 \\ \ell \mid k}}^n c_\ell \operatorname{Tr} \left(\Gamma_\ell^k \right).$

Réciproquement, supposons qu'il existe des entiers naturels non nuls c_1, \ldots, c_n , tels que $\forall k \in \mathbb{N}$, $\mathrm{Tr}\left(u^k\right) = \sum_{\ell=1}^n \ell c_\ell$. Soit

 ν l'endomorphisme de permutation de E dont la matrice dans une certaine base \mathscr{B} est la matrice Γ définie ci-dessus. On a donc : $\forall k \in \mathbb{N}$, $\mathrm{Tr}\left(\mathfrak{u}^{k}\right) = \mathrm{Tr}\left(\nu^{k}\right)$. D'après la question précédente, \mathfrak{u} et ν ont même polynôme caractéristique et donc

$$\chi_{\mathrm{u}} = \prod_{\ell=1}^{n} (X^{\ell} - 1)^{c_{\ell}}$$
 (a).

On en déduit que les valeurs propres de u sont des nombres de la forme $\lambda = e^{\frac{2ik\pi}{\ell}}$, où $\ell \in [\![1,n]\!]$ et $k \in [\![0,\ell-1]\!]$. Soit N=n!. Pour tout $\lambda \in \mathrm{Sp}(\mathfrak{u}), \, \lambda^N=1$ et donc $\mathrm{Sp}\left(\mathfrak{u}^N\right)=(1,\ldots,1)$. Puisque u est diagonalisable, il en est de même de \mathfrak{u}^N et donc il existe une base (e_1,\ldots,e_n) de E telle que, pour tout $\mathfrak{i} \in [\![1,n]\!], \, \mathfrak{u}^N\left(e_{\mathfrak{i}}\right)=e_{\mathfrak{i}}$. Les endomorphismes \mathfrak{u}^N et Id_E coı̈ncident sur une base de E et donc $\mathfrak{u}^N=\mathrm{Id}_E$ (b).

D'après la question Q33, u est un endomorphisme de permutation.

III - Valeurs propres de la matrice de Redheffer

Q 36. La matrice A_n est triangulaire supérieure puis $\det{(A_n)} = \mu(1) \times 1 \times \ldots \times 1 = 1$. Donc,

$$\det(H_n) = \det(A_n) \det(H_n) = \det(A_n H_n) = \det(C_n).$$

$$\mathrm{Posons} \ C_n = (c_{i,j})_{1 \leqslant i,j \leqslant n}. \ c_{1,1} = \sum_{k=1}^n \alpha_{1,k} h_{k,1} = \sum_{k=1}^n \mu(k) = M(n).$$

Ensuite, pour $i \in [2, n]$, $c_{i,1} = \sum_{k=1}^n a_{i,k} h_{k,1} = a_{i,i} = 1$. Ensuite, si $(i,j) \in [2, n]^2$,

$$c_{i,j} = \sum_{k=1}^n \alpha_{i,k} h_{k,j} = \alpha_{i,i} h_{i,j} = \left\{ \begin{array}{l} 1 \ \mathrm{si} \ i|j \\ 0 \ \mathrm{sinon} \end{array} \right..$$

En particulier, si $2 \le j < i \le n$, $c_{i,j} = 0$ et si $2 \le i \le n$, $c_{i,i} = 1$. Enfin, si $j \in [2, n]$,

$$c_{1,j} = \sum_{k=1}^{n} \alpha_{1,k} h_{k,j} = \sum_{\substack{k=1 \ k \mid j}}^{n} \mu(k) = \sum_{\substack{k=1 \ k \mid j}}^{j} \mu(k) = \mu * 1(j) = \delta(j) = 0.$$

En développant $\det(C_n)$ suivant sa première ligne, on obtient $\det(C_n) = M(n) \times \Delta_{n-1}$ où Δ_{n-1} est un déterminant triangulaire supérieur dont les coefficients diagonaux sont égaux à 1 et donc Δ_{n-1} est égal à 1. Finalement,

$$\det\left(H_{n}\right)=M(n)=\sum_{k=1}^{n}\mu(k).$$

Q 37. Le coefficient ligne 1, colonne 1, de $B_n(\lambda)(\lambda I_n - H_n)$ est $(\lambda - 1)b(1) - \sum_{i=2}^n b(i) = (\lambda - 1) - \sum_{i=2}^n b(i)$.

Si $j \ge 2$, le coefficient ligne 1, colonne j, de $B_n(\lambda) (\lambda I_n - H_n)$ est

$$-\sum_{k=1, k\neq j}^{n} b(k)h_{k,j} + b(j) (\lambda - h_{i,i}) = (\lambda - 1)b(j) - \sum_{d|j}^{b} (d) = 0.$$

Ensuite, si $i \ge 2$ et $j \ge 2$, le coefficient ligne i, colonne j, de $B_n(\lambda)(\lambda I_n - H_n)$ est

$$-\sum_{k=1}^{n} b_{i,k} h_{k,j} + b_{i,j} (\lambda - h_{j,j}).$$

Si i = j, cette somme est égale à $-0 + b_{i,i}$ ($\lambda - h_{i,i}$) = $\lambda - 1$. Si $i \neq j$, cette somme est égale à $-b_{i,i}h_{i,j} + 0 = -h_{i,j}$. En particulier, si $2 \le j < i \le n$, ce coefficient est nul et donc le mineur correspondant est triangulaire supérieur. Ce mineur est égal à $(\lambda - 1)^{n-1}$.

En développant $\det (B_n(\lambda)(\lambda I_n - H_n))$ suivant sa première ligne, on obtient

$$\det (B_n(\lambda) (\lambda I_n - H_n)) = \left((\lambda - 1) - \sum_{j=2}^n b(j) \right) (\lambda - 1)^{n-1} = (\lambda - 1)^n - (\lambda - 1)^{n-1} \sum_{j=2}^n b(j).$$

D'autre part, $B_n(\lambda)$ est triangulaire supérieure, à coefficients diagonaux tous égaux à 1 et donc det $(B_n(\lambda)) = 1$. Par suite,

$$\chi_n = \det\left(\lambda I_n - H_n\right) = \det\left(B_n(\lambda)\left(\lambda I_n - H_n\right)\right) = (\lambda - 1)^n - (\lambda - 1)^{n-1}\sum_{i=2}^n b(i).$$

Q 38. $f * b = (1 + w)\delta * b - w1 * b = (1 + w)b - w1 * b$. Ensuite, $w(1 * b)(1) = w \times 1 \times b(1) = w$ et pour $j \ge 2$,

$$w(1*b)(j) = w \sum_{d|j}^{b} (d) = w \sum_{d|j, d \neq j}^{b} (d) + wb(j) = b(j) + wb(j) = (w+1)b(j).$$

Mais alors, $(f * b)(1) = (1 + w) - w = 1 = \delta(1)$ et pour $j \ge 2$, $(f * b)(j) = (1 + w)b(j) - (1 + w)b(j) = 0 = \delta(j)$. Finalement, $f * b = \delta$.

$$\mathbf{Q} \ \mathbf{39.} \ \mathrm{Pour} \ \mathrm{tout} \ \mathrm{r\acute{e}el} \ s, \ L_{\delta}(s) = \sum_{k=1}^{+\infty} \frac{\delta(k)}{k^s} = 1 \ \mathrm{et} \ \mathrm{pour} \ \mathrm{tout} \ s > 1, \ L_1(s) = \sum_{k=1}^{+\infty} \frac{1}{k^s} \ (\mathrm{fonction} \ \zeta \ \mathrm{de} \ \mathrm{Riemann}). \ \mathrm{Donc},$$

$$\forall s > 1, \ L_f(s) = (1+w)L_{\delta}(s) - wL_1(s) = 1 + w - wL_1(s).$$

$$\lfloor \log_2(\mathfrak{m}) \rfloor$$

 $\mathbf{Q} \text{ 40. Soit } g \text{ la fonction arithmétique définie par} : g(1) = 1 \text{ et } \forall \mathfrak{m} \geqslant 2, \ g(\mathfrak{m}) = \sum_{k=1}^{\lfloor \log_2(\mathfrak{m}) \rfloor} w^k D_k(\mathfrak{m}).$

Tout d'abord, pour $m \ge 2$, si il existe $d_1, \ldots, d_k, (k \in \mathbb{N}^*)$, tels que $m = d_1 \ldots d_k$ et $\forall i \in [1, k], d_i \ge 2$, alors $m \ge 2^k$ puis $k \leq \log_2(\mathfrak{m})$ puis $k \leq \lfloor \log_2(\mathfrak{m}) \rfloor$. Donc, si $k > \lfloor \log_2(\mathfrak{m}) \rfloor$, $D_k(\mathfrak{m}) = 0$. Ceci permet d'écrire pour tout $\mathfrak{m} \geq 2$, $g(\mathfrak{m}) = \sum w^k D_k(\mathfrak{m}).$

Pour tout $m \ge 1$, $(f*g)(m) = (1+w)(\delta*g)(m) - w(1*g)(m) = (1+w)g(m) - w(1*g)(m)$. Déjà, (f*g)(1) = 1+w-w = 1. Soit alors $\mathfrak{m} \geqslant 2$.

$$\begin{split} w(1*g)(m) &= w \sum_{d \mid m} g(d) = wg(1) + wg(m) + \sum_{\substack{d \mid m \\ d \neq 1, \ d \neq m}} g(d) = (1+w)g(m) + w \sum_{\substack{d \mid m \\ d \neq 1, \ d \neq m}} g(d) \\ &= w + wg(m) + w \sum_{\substack{d \mid m \\ d \neq 1, \ d \neq m}} \left(\sum_{k=1}^{+\infty} w^k D_k(d) \right) \\ &= w + wg(m) + \sum_{k=1}^{+\infty} w^{k+1} \left(\sum_{\substack{d \mid m \\ d \neq 1, \ d \neq m}} D_k(d) \right) \text{ (toutes les sommes sont finies)}. \end{split}$$

Maintenant, pour $m \geqslant 2$, les décompositions de m en k+1 facteurs supérieurs ou égaux à 2 s'écrivent $m=d_1\dots d_k d_{k+1}=dd_{k+1}$ où d est un diviseur de m distinct de 1 et m. Ces ensembles de décomposition étant deux à deux disjoints, on en déduit que $\sum_{\substack{d\mid m\\d\neq 1,\ d\neq m}} D_k(d) = D_{k+1}(m). \text{ Par suite,}$

$$w(1*g)(m) = (1+w)g(m) + \sum_{k=1}^{+\infty} w^{k+1}D_{k+1}(m) = w + g(m) + \sum_{k=2}^{+\infty} w^kD_k(m) = w + wg(m) + g(m) - wD_1(m)$$

$$= (1+w)g(m),$$

et donc, (f * g)(m) = (1 + w)g(m) - (1 + w)g(m) = 0. Ceci montre que $f * g = \delta$.

On admet la convergence de la série de somme $L_g(s)$ pour s suffisamment grand. D'après la question Q19, pour s suffisamment grand,

$$\begin{aligned} 1 &= L_\delta(s) = L_{f*g}(s) = L_f(s) L_g(s) \\ \text{et donc } \frac{1}{L_f(s)} &= 1 + \sum_{m=2}^{+\infty} \frac{1}{m^s} \left(\sum_{k=1}^{\lfloor \log_2(m) \rfloor} w^k D_k(m) \right). \end{aligned}$$

 $\begin{array}{l} \mathbf{Q} \ \ \mathbf{41.} \ \ \mathbf{On} \ \ \mathrm{a} \ \mathrm{aussi} \ \ f * b = \delta. \ \ \mathbf{On} \ \ \mathrm{admet} \ \ \mathrm{la} \ \ \mathrm{convergence} \ \ \mathrm{de} \ \ \mathrm{la} \ \ \mathrm{série} \ \ \mathrm{de} \ \ \mathrm{somme} \ \ L_b(s) \ \ \mathrm{pour} \ \ s \ \ \mathrm{suffisamment} \ \ \mathrm{grand}. \ \ \mathrm{Pour} \ \ s \ \ \mathrm{suffisamment} \ \ \mathrm{grand}. \ \ \mathrm{Pour} \ \ s \ \ \mathrm{suffisamment} \ \ \mathrm{grand}, \ L_f(s)L_b(s) = L_f(s)L_g(s) \ \ \mathrm{et} \ \ \mathrm{donc} \ \ L_b(s) = L_g(s). \ \ \mathrm{D'après} \ \ \mathrm{la} \ \ \mathrm{question} \ \ \mathrm{Q18}, \ b = g \ \ \mathrm{ou} \ \ \mathrm{encore} \ \ \\ b(1) = 1 \ \ \mathrm{et} \ \ \mathrm{pour} \ \ \mathrm{tout} \ \ m \geqslant 2, \ b(m) = \sum_{k=1}^{\lfloor \log_2(m) \rfloor} w^k D_k(m). \end{array}$

Soit $m \ge 2$.

$$\begin{split} \sum_{m=2}^n b(m) &= \sum_{m=2}^n \left(\sum_{k=1}^{\lfloor \log_2(m) \rfloor} w^k D_k(m) \right) = \sum_{m=2}^n \left(\sum_{k=1}^{\lfloor \log_2(n) \rfloor} w^k D_k(m) \right) \text{ (car, pour } k > \lfloor \log_2(m) \rfloor, \ D_k(m) = 0) \\ &= \sum_{k=1}^{\lfloor \log_2(n) \rfloor} w^k \left(\sum_{m=2}^n D_k(m) \right) = \sum_{k=1}^{\lfloor \log_2(n) \rfloor} w^k S_k(m). \end{split}$$

D'après la question Q37, pour $\lambda \neq 1$,

$$\chi_n(\lambda)=(\lambda-1)^n-(\lambda-1)^{n-1}\sum_{k=1}^{\lfloor\log_2(n)\rfloor}w^kS_k(m)=(\lambda-1)^n-\sum_{k=1}^{\lfloor\log_2(n)\rfloor}(\lambda-1)^{n-k-1}S_k(m).$$

Ainsi, pour tout $\lambda \neq 1$, $\chi_n(\lambda) = (\lambda - 1)^n - \sum_{k=1}^{\lfloor \log_2(n) \rfloor} (\lambda - 1)^{n-k-1} S_k(m)$. Cette égalité reste vraie pour $\lambda = 1$ car deux polynômes qui coïncident en une infinité de valeurs sont égaux.

Q 42. Le résultat est faux quand n = 2 car $H_2 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ et donc $\chi_2 = X(X-2)$. Ensuite, $H_3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ puis en développant suivant la première colonne,

$$\chi_3 = \begin{vmatrix} X-1 & -1 & -1 \\ -1 & X-1 & 0 \\ -1 & 0 & X-1 \end{vmatrix} = (X-1)^3 - (X-1) - (X-1) = (X-1) \left((X-1)^2 - 2 \right).$$

 $\mathrm{Donc},\ 1\ \mathrm{est}\ \mathrm{valeur}\ \mathrm{propre}\ \mathrm{d'ordre}\ 1\ \mathrm{de}\ \mathsf{H}_3.\ \mathrm{Puisque}\ 3-\lfloor\log_2(3)\rfloor-1=3-1-1=1,\ \mathrm{le}\ \mathrm{r\'esultat}\ \mathrm{est}\ \mathrm{vrai}\ \mathrm{quand}\ \mathfrak{n}=3.$

$$\begin{aligned} &\text{Dor\'enavant, } n\geqslant 4. \ \chi_n(\lambda)=(\lambda-1)^{n-\lfloor\log_2(n)\rfloor-1}Q_n(\lambda) \ \text{où} \ Q_n(\lambda)=(\lambda-1)^{\lfloor\log_2(n)\rfloor+1}-\sum_{k=1}^{\lfloor\log_2(n)\rfloor}(\lambda-1)^{\lfloor\log_2(n)\rfloor-k}S_k(n) \\ &\text{de sorte que } Q_n(1)=-S_{\lceil\log_2(n)\rceil}(n). \end{aligned}$$

Pour $k \in \mathbb{N}$, $k = \lfloor \log_2(\mathfrak{n}) \rfloor \Leftrightarrow k \leqslant \log_2(\mathfrak{n}) < k+1 \Leftrightarrow 2^k \leqslant \mathfrak{n} < 2^{k+1}$. Puisque $\mathfrak{n} \geqslant 4$, alors $k \geqslant 2$ puis $2^k = (1+1)^k \geqslant 1+k+\frac{k(k-1)}{2} \geqslant k+2$ puis

$$n - \lfloor \log_2(n) \rfloor - 1 = n - k - 1 \geqslant 1 > 0.$$

Ainsi, pour tout $n \geqslant 3$, $n - \lfloor \log_2(n) \rfloor - 1 > 0$ et donc 1 est effectivement valeur propre de H_n . Ensuite, si $k = \lfloor \log_2(n) \rfloor$, alors $2 \leqslant 2^k \leqslant n$ (car $n \geqslant 4$) et donc

$$-Q_n(1) = S_k(n) = \sum_{m=2}^n D_k(m) \geqslant D_k(2^k) > 0,$$

car l'entier $2^k = 2 \times ... \times 2$ admet au moins une décomposition en produit de k facteurs supérieurs ou égaux à 2. Ainsi, $Q_n(1) \neq 0$ et donc 1 est valeur propre de H_n d'ordre $n - \lfloor \log_2(n) \rfloor - 1$ exactement.