Lecture 1 - AMM Course

Main Topics

- Thermodynamics + Statistical Mechanics
- Monte Carlo methods for statistical sampling
- Molecular Dynamics
- Analysing simulation data
- · Advanced methods

Supplementary Reading

- Understanding Molecular Simulation Daan Frenkel & Berend Smit
- Statistical Physics of Particles Mehran Kardar
- Introduction to Modern Statistical Mechanics David Chandler

Objectives of Materials Modelling

- 1. Understand / rationalising experimental observations.
- 2. Materials discovery / predicting material design / optimisation properties at different length + time scales.
- Atomistic description to understand Macroscopic behaviour.
- Thermodynamic stability
- Mechanical properties
- Phase transitions
- Nanoscale structure

Hierarchy of Materials Modelling

- QM (Quantum Mechanics): Schrödinger / Dirac exact / rigorous.
- Atomistic: Approximate (but systematically improvable).
- Meso Scale
- Continuum: Includes phenomenological, logical models.

The **Partition Function** is a useful tool for connecting atomistic Degrees of Freedom (DOF) (micro) to Thermodynamic observables (macro).

Brief overview of thermodynamics

Zeroth Law

This describes the transitive nature of equilibrium (it came after the I, II, & III laws).

If 2 systems A & B are separately in equilibrium with a third system, C, then they are in equilibrium with one another. (Maxwell: "All heat is of the same kind").

Thermodynamic Variables

These are functions purely of the TD (thermodynamic) state of a system, not of its history / preparation / microstates.

- Intensive variables (don't depend on system size):
 - pressure, p
 - ullet temperature, T
 - chemical potential, μ

• Thermodynamic Potentials:

- ullet internal energy, U
- ullet enthalpy, H=U+pV
- ullet Helmholtz free energy, F=U-TS
- ullet Gibbs free energy, G=U-TS+pV
- ullet Grand potential, $\Phi=U-TS-\mu N$

First law of thermodynamics

The work required to change a state of a system depends only on the initial and final states, not on the means by which the work is performed, nor the path taken. This is a conservation law.

Note: Thermodynamic potentials cannot always be determined in absolute values, only up to a constant shift.

Differential Forms & Maxwell Relations

Internal energy, U:

$$dU = \delta W + \delta Q = -pdV + TdS$$

From this, we can derive:

$$T = \left(\frac{\partial U}{\partial S}\right)_V$$
 and $p = -\left(\frac{\partial U}{\partial V}\right)_S$

(but how to fix entropy in the lab?)

• Enthalpy, H:

$$H = U + pV$$

$$dH = dU + Vdp + pdV = TdS + Vdp$$

• Helmholtz free energy, F:

$$F = U - TS$$

$$dF = -SdT - pdV$$

From this, we get a more useful definition of pressure, as Temperature (T) can be controlled:

$$p = -\left(rac{\partial F}{\partial V}
ight)_T$$

• Gibbs free energy, G:

$$G = U - TS - pV$$

 $dG = -SdT + Vdp$

Summary

Thermodynamics is the foundation to obtain macroscopic properties.