

Drzewa

dr Anna Beata Kwiatkowska, UMK Toruń

Drzewo - ważne pojęcie w teorii grafów

Definicja 4.1

Drzewo jest to graf spójny bez cykli.

Wniosek 4.1

Drzewo jest grafem prostym - nie zawiera pętli własnych ani krawędzi równoległych, bo tworzyłyby one cykle.

Przykładowe drzewo T

Twierdzenie 4.1

Jeśli T jest drzewem to istnieje jedna i tylko jedna droga pomiędzy każdą parą jego wierzchołków.

Dowód:

T jest grafem spójnym, zatem musi istnieć co najmniej jedna droga między każdą parą wierzchołków. Gdyby między dwoma wierzchołkami u i v istniały dwie drogi, tworzyłyby one cykl. Przeczy to definicji drzewa. □

Przykład: Droga między wierzchołkami u i v w drzewie

Twierdzenie 4.2

Jeśli w grafie G istnieje tylko jedna droga między każdą parą wierzchołków, to G jest drzewem.

Dowód:

Skoro istnieje droga między każda parą wierzchołków, to G jest spójny.

Istnienie cyklu w grafie oznaczałoby, że istnieje w nim co najmniej jedna para wierzchołków u i v między którymi są dwie różne drogi.

Ponieważ w G istnieje tylko jedna droga pomiędzy każdą parą wierzchołków, to G nie zawiera cykli.

G jest wiec grafem spójnym bez cykli, czyli jest drzewem.

Definicja 4.2

Wierzchołkiem wiszącym w drzewie nazywamy każdy wierzchołek stopnia 1.

Lemat 4.1.

Każdy graf G o więcej niż jednym wierzchołku, który jest drzewem (czyli jest spójny i nie zawiera cykli), zawiera przynajmniej jeden wierzchołek wiszący.

Dowód

Przypuśćmy, że stopień każdego wierzchołka w grafie G jest przynajmniej 2.

Zaczynamy konstruować drogę: zaczynamy w jakimś wierzchołku v i przechodzimy do jego sąsiada w.

Teraz, ponieważ stopień w jest przynajmniej 2, więc możemy wyjść z w inną krawędzią, niż weszliśmy, dochodzimy do wierzchołka u. itd.

Ponieważ graf jest skończony, więc w pewnym momencie wierzchołki się wyczerpią i trafimy na wierzchołek, który jest już w budowanej drodze. W ten sposób zamkniemy cykl.

Sprzeczność, bo G jako drzewo nie zawiera cyklu.

Twierdzenie 4.3

Jeśli drzewo T ma n wierzchołków, to liczba jego krawędzi jest równa n-1.

Dowód:

Korzystamy z zasady indukcji matematycznej względem liczby wierzchołków w grafie.

Jeśli drzewo ma jeden wierzchołek, liczba krawędzi jest równa zero.

Niech drzewo T ma n wierzchołków i twierdzenie będzie prawdziwe dla drzew o n – 1 wierzchołkach.

Z lematu 4.1 wiemy, że drzewo T zawiera wierzchołek v stopnia 1. Niech T' będzie drzewem utworzonym z T przez usunięcie v. T' jest drzewem (spójny i bez cykli) o n − 1 wierzchołkach, więc z założenia indukcyjnego wynika, że ma n − 2 krawędzie, czyli T ma n − 1 krawędzi. □

Twierdzenie 4.4

Każdy graf spójny o n wierzchołkach i n-1 krawędziach jest drzewem.

Dowód samodzielnie

Definicja 4.3

Graf G jest **minimalnie spójny**, jeśli jest spójny i każda krawędź jest mostem (krawędź, której usunięcie rozspójnia graf).

Przykład: G ma dwa mosty

Twierdzenie 4.5

Graf G jest drzewem wtedy i tylko wtedy, gdy jest minimalnie spójny.

Dowód samodzielnie

Twierdzenie 4.6

Graf G o n wierzchołkach, n-1 krawędziach i bez cykli jest spójny.

Dowód

Przypuśćmy, że istnieje graf G o n wierzchołkach, n-1 krawędziach i bez cykli, który nie jest spójny. G składa się więc z dwóch lub więcej składowych, które nie zawierają cykli, np. G_1 i G_2 . Rozpatrzmy wierzchołek $v_1 \in G_1$ oraz $v_2 \in G_2$ – między nimi nie istnieje droga w grafie G – i połączmy je krawędzią. $G \cup \{v_1, v_2\}$ nie zawiera cyklu i jest grafem spójnym, czyli jest drzewem o n wierzchołkach i n krawędziach, co jest niemożliwe, zgodnie z Tw. 4.3.

Równoważne definicje drzewa

Twierdzenie 4.7

Niech G będzie grafem o n wierzchołkach. Wówczas następujące stwierdzenia są równoważne:

- 1. G jest drzewem
- 2. G nie zawiera cykli i ma n-1 krawędzi
- 3. G jest spójny i zawiera n-1 krawędzi
- 4. G jest minimalnie spójny
- 5. Dowolne dwa wierzchołki grafu G połączone są dokładnie jedną drogą
- 6. G nie zawiera cykli lecz dodanie dowolnej nowej krawędzi tworzy dokładnie jeden cykl.

Dowód

Wynika to z twierdzeń 4.1-4.6 □

Las

Definicja 4.4

Lasem nazywamy graf, który nie ma cykli.

Przykład Graf G, który jest lasem:

Wniosek 4.2

Jeśli G jest lasem o n wierzchołkach i k składowych, to G ma n - k krawędzi.

Dowód:

Stosujemy Twierdzenie 4.3 dla każdej składowej. 🗆

Drzewo spinające grafu i liczba cyklomatyczna

Definicja 4.5

Drzewem spinającym grafu G nazywamy podgraf będący drzewem łączącym wszystkie wierzchołki grafu.

Aby uzyskać drzewo spinające grafu G wybieramy w nim cykl i usuwamy z niego krawędź zachowując spójność grafu. Czynność powtarzamy dopóki w grafie są cykle. Liczbę tak usuniętych krawędzi nazywamy liczbą cyklomatyczną grafu G, ozn. γ(G).

Przykład: Drzewo spinające grafu G w kolorze zielonym i krawędzie, które usunęliśmy w kolorze żółtym.

Liczba cyklomatyczna

Twierdzenie 4.8

Niech G będzie grafem o k składowych. Liczba cyklomatyczna grafu G, γ (G) jest równa m - (n - k).

Dowód

Wynika z wniosku 4.1.

П

Liczba cyklomatyczna drzewa jest równa zero. Liczba cyklomatyczna grafu będącego cyklem prostym jest równa 1 - wystarczy usunąć dowolną krawędź.

Przykład $\gamma(G) = 1$

Odległość w grafie spójnym

Definicja 4.6

W grafie spójnym G **odległością** między dwoma jego wierzchołkami u i v nazywamy długość najkrótszej ścieżki (liczba krawędzi) między nimi, ozn. d(u,v)

Przykład: W poniższym grafie G odległość d(u,v) = 3

Twierdzenie 4.9

Odległość między wierzchołkami grafu spójnego jest metryką.

Dowód:

Spełnione są trzy warunki dla metryki:

- 1. Nieujemność: $d(u,v) \ge 0$, a d(u,v) = 0 wtedy i tylko wtedy, gdy u = v
- 2. **Symetria:** d(u,v) = d(v,u)
- 3. Nierówność trójkąta: $d(u,v) \le d(u,y) + d(y,u)$ dla dowolnego wierzchołka y z G.

Centra w grafie

Definicja 4.7

Ekscentrycznością r(v) wierzchołka v w grafie G jest odległość od v do najdalej od niego położonego wierzchołka u w G:

$$r(v) = max \{ d(v, u): u \in V_G \}.$$

Definicja 4.8

Centrum w grafie G nazywamy wierzchołek w o najmniejszej ekscentryczności, tzn. taki że $r(w) = min \{ r(v) : v \in V_G \}$

W ogólności graf ma wiele centrów. Na przykład w grafie składającym się z cyklu prostego każdy wierzchołek jest centrum.

Ile centrów ma poniższy graf?

$$r(0) = 3$$

$$r(1) = 3$$

$$r(2) = 2$$

$$r(3) = 2$$

$$r(4) = 2$$

$$r(5) = 3$$

Centra w drzewie

Twierdzenie 4.10

Każde drzewo ma jedno, albo dwa centra.

Przykład

Dowód

Iteracyjnie usuwamy jednocześnie wszystkie wierzchołki wiszące z drzewa. Ta operacja nie zmienia położenia centrum w drzewie, bo wartość funkcji r(v) dla każdego wierzchołka malej o 2 (wynika to z obserwacji, że max w realizacji wartości tej funkcji jest osiągnięte w wierzchołku wiszącym). Kontynuując to usuwanie, dochodzimy do drzewa, które jest albo krawędzią – wtedy centrum składa się z pary wierzchołków sąsiednich, albo krawędziami tworzącymi gwiazdę – wtedy po następnej iteracji zostaje nam jeden wierzchołek, centrum drzewa

Zastosowania centrum, promień, średnica drzewa

Zastosowanie centrum drzewa w socjologii:

Kontakty w grupie osób przedstawmy jako graf minimalnie spójny, w którym wszystkie osoby mogą skontaktować się z dowolną osobą bezpośrednio, albo przez innych członków. Graf takich kontaktów jest drzewem. Gdyby bliskość kontaktów uznać za kryterium przywództwa, to przywódcą grupy powinna być osoba stanowiąca centrum.

Definicja 4.9

Promieniem drzewa nazywamy ekscentryczność jego centrum, czyli odległość od centrum drzewa do najdalszego wierzchołka.

Definicja 4.10

Średnicą drzewa T jest długość najdłuższej w nim ścieżki (liczba krawędzi).

Aby porównywać drzewa np. w sprawdzaniu izomorfizmu drzew ukorzeniamy je w wierzchołkach środkowych najdłuższej ścieżki (Patrz wykład 2.).

- Wybieramy dowolny liść drzewa v i przeprowadzamy przeszukiwanie bfs(v) nadając wierzchołkom etykiety będące długością przebytej drogi.
- 2. Od wierzchołka w o maksymalnej etykiecie ponownie wykonujemy bfs(w).

- Wybieramy dowolny liść drzewa v i przeprowadzamy przeszukiwanie bfs(v) nadając wierzchołkom etykiety będące długością przebytej drogi.
- 2. Od wierzchołka w o maksymalnej etykiecie ponownie wykonujemy bfs(w).

- Wybieramy dowolny liść drzewa v i przeprowadzamy przeszukiwanie bfs(v) nadając wierzchołkom etykiety będące długością przebytej drogi.
- 2. Od wierzchołka w o maksymalnej etykiecie ponownie wykonujemy bfs(w).

- Wybieramy dowolny liść drzewa v i przeprowadzamy przeszukiwanie bfs(v) nadając wierzchołkom etykiety będące długością przebytej drogi.
- 2. Od wierzchołka w o maksymalnej etykiecie ponownie wykonujemy bfs(w).

- 1. Wybieramy dowolny liść drzewa v i przeprowadzamy przeszukiwanie bfs(v) nadając wierzchołkom etykiety będące długością przebytej drogi.
- 2. Od wierzchołka w o maksymalnej etykiecie ponownie wykonujemy bfs(w).

- 1. Wybieramy dowolny liść drzewa v i przeprowadzamy przeszukiwanie bfs(v) nadając wierzchołkom etykiety będące długością przebytej drogi.
- 2. Od wierzchołka w o maksymalnej etykiecie ponownie wykonujemy bfs(w).

- Wybieramy dowolny liść drzewa v i przeprowadzamy przeszukiwanie bfs(v) nadając wierzchołkom etykiety będące długością przebytej drogi.
- 2. Od wierzchołka w o maksymalnej etykiecie ponownie wykonujemy bfs(w).

- Wybieramy dowolny liść drzewa v i przeprowadzamy przeszukiwanie bfs(v) nadając wierzchołkom etykiety będące długością przebytej drogi.
- 2. Od wierzchołka w o maksymalnej etykiecie ponownie wykonujemy bfs(w).

- 1. Wybieramy dowolny liść drzewa v i przeprowadzamy przeszukiwanie bfs(v) nadając wierzchołkom etykiety będące długością przebytej drogi.
- 2. Od wierzchołka w o maksymalnej etykiecie ponownie wykonujemy bfs(w).

- 1. Wybieramy dowolny liść drzewa v i przeprowadzamy przeszukiwanie bfs(v) nadając wierzchołkom etykiety będące długością przebytej drogi.
- 2. Od wierzchołka w o maksymalnej etykiecie ponownie wykonujemy bfs(w).

- Wybieramy dowolny liść drzewa v i przeprowadzamy przeszukiwanie bfs(v) nadając wierzchołkom etykiety będące długością przebytej drogi.
- 2. Od wierzchołka w o maksymalnej etykiecie ponownie wykonujemy bfs(w).
- 3. Średnicę drzewa odczytujemy z tablicy ojców dla wierzchołka o największej etykiecie.

Dziękuję z uwagę

dr Anna Beata Kwiatkowska

aba@mat.umk.pl

tel. 602 184 813