Logică computațională Curs 4

Lector dr. Pop Andreea-Diana

Pagina informativă

- Schimbarea parolei
- Schimbarea orarului
- Parțial
- Ore de sport
- E-mail

Sisteme axiomatice

• Axiomele geometriei

• Axiomele aritmeticii

Sistemul axiomatic al calculului propoziţional

- propus de Hilbert; deductiv, formal
- $P=(\sum_{P}, F_{P}, A_{P}, R_{P})$
 - $\sum_{P} = Var_propoz \cup Conective \cup \{(,)\}$
 - $Var_propoz = \{ p, q, r, p_1, p_2, ... \}$
 - Conective = $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$
 - $F_{\rm P}$ = mulţimea formulelor propoziţionale corect construite
 - - $baza: p_i \in F_P, i=1,2,...$
 - - inducția: dacă $U,V \in F_P$ atunci:

$$\neg U \in F_{\mathbf{P}}, U \land V \in F_{\mathbf{P}}, U \lor V \in F_{\mathbf{P}}, U \to V \in F_{\mathbf{P}}, U \leftrightarrow V \in F_{\mathbf{P}}$$

• - \hat{i} nchiderea: toate formulele din F_P se obțin doar prin aplicarea regulilor precedente de un număr finit de ori.

Axiome și reguli de inferență

- $A_P = \{A_1, A_2, A_3\}$ scheme axiomatice
 - $A_1: U \to (V \to U)$
 - A_2 : $(U \rightarrow (V \rightarrow Z)) \rightarrow ((U \rightarrow V) \rightarrow (U \rightarrow Z))$
 - $A_3: (U \to V) \to (\neg V \to \neg U)$
- $R_P = \{m_P\}$ o singură regulă de inferență "modus ponens"
 - $U, U \rightarrow V \vdash V$

"din faptele U și $U \rightarrow V$ se deduce (inferă) V"

Definiția deducției

- Fie formulele $U_1, U_2, ..., U_n$ numite ipoteze şi V formulă propozițională. Spunem că V este deductibilă din $U_1, U_2, ..., U_n$ și notăm $U_1, U_2, ..., U_{n-1}, U_n \vdash V$, dacă există o secvență de formule $(f_1, f_2, ..., f_m)$ astfel încât $f_m = V$ și $\forall i \in \{1, ..., m\}$ avem:
 - $f_i \in A_p$;
 - $f_i \in \{U_1, U_2, ..., U_n\};$
 - f_j , $f_k \vdash_{m_p} f_i$, j < i și k < i
- Secvența $(f_1, f_2, ..., f_m)$ se numește *deducția* lui V din $U_1, U_2, ..., U_n$.

Noțiunea de teoremă

- **Definiția 1.8.** O formulă $U \in F_P$, astfel încât $\varnothing \vdash U$ (sau $\vdash U$) se numește *teoremă*.
- Observație: Teoremele sunt formule care sunt deductibile doar din axiome și folosind regula modus ponens.

Teorema de deducție și inversa sa

• Teorema de deducție

Dacă
$$U_1, U_2, ..., U_{n-1}, U_n \vdash V$$
, atunci $U_1, U_2, ..., U_{n-1} \vdash U_n \rightarrow V$.

• Inversa teoremei de deducție

Dacă
$$U_1, U_2, ..., U_{n-1} \vdash U_n \rightarrow V$$
 atunci $U_1, U_2, ..., U_{n-1}, U_n \vdash V$.

Generalizarea

 $U_1, U_2, ..., U_{n-1}, U_n \mid V$ dacă și numai dacă $U_1, U_2, ..., U_{n-1} \mid U_n \rightarrow V$ dacă și numai dacă $U_1, U_2, ..., U_{n-2} \mid U_{n-1} \rightarrow (U_n \rightarrow V)$ dacă și numai dacă ...

$$U_1 \vdash U_2 \rightarrow (\dots U_{n-1} \rightarrow (U_n \rightarrow V)\dots)$$
 dacă și numai dacă
$$\vdash U_1 \rightarrow (U_2 \rightarrow (\dots U_{n-1} \rightarrow (U_n \rightarrow V)\dots)$$

$$n-1$$

Consecințele teoremei de deducție

- $\bullet \vdash U \to ((U \to V) \to V)$
- $\vdash (U \rightarrow V) \rightarrow ((V \rightarrow Z) \rightarrow (U \rightarrow Z))$ legea silogismului
- $\vdash (U \rightarrow (V \rightarrow Z)) \rightarrow (V \rightarrow (U \rightarrow Z))$ legea permutării premizelor
- $\vdash (U \rightarrow (V \rightarrow Z)) \rightarrow (U \land V \rightarrow Z)$ legea reuniunii premizelor
- $\vdash (U \land V \rightarrow Z) \rightarrow (U \rightarrow (V \rightarrow Z))$ legea separării premizelor

• Temă facultativă – se acordă 10 doar la primul student care demonstrează. În sistemul axiomatic al calcului propozițional, folosind definiția deducției și teorema de deducție:

$$\vdash (U \rightarrow V) \rightarrow ((\neg U \rightarrow V) \rightarrow V)$$

Proprietățile logicii propozițiilor

- Problemele decizionale în logica propozițiilor:
 - "Este o formulă propozițională o teoremă sau nu?"
 - "Este o formulă deductibilă dintr-o mulțime de formule?"
- Teorema de corectitudine

 $Dacă \vdash U$ atunci $\models U$. (Validitatea sintactică implică validitatea semantică)

• Teorema de completitudine

 $Dacă \models U atunci \vdash U$. (Validitatea semantică implică validitatea sintactică)

• Teorema de corectitudine și completitudine

 $\vdash U$ dacă și numai dacă $\models U$.

Consecințele teoremei de corectitudine și completitudine

- 1) Logica propozițiilor este necontradictorie: nu pot avea loc simultan $\vdash U$ și $\vdash \neg U$.
- 2) Logica propozițiilor este coerentă: nu orice formulă propozițională este teoremă.
- 3) Logica propozițiilor este decidabilă: se poate decide dacă o formulă propozițională este sau nu teoremă.