Fall Real Analysis Willie Xie Fall 2021

CONTENTS

Contents

1	Day 1: The Real Number System	3
	1.1 Number Systems	3
	1.2 Real Number System	3
	1.3 Least Upper Bound Property	4
2	Day 2: Fields	5
	2.1 Greatest Upper Bound Property	5
	2.2 Fields	5
	2.3 Ordered Fields	7
3	Day 3: Roots and the Complex Field	9
	3.1 nth Root	9
	3.2 Decimals	10
	3.3 Extended Reals	
	3.4 Complex Numbers	10
4	Day 4: Cauchy-Schwarz and Euclidean Spaces	12
	4.1 Euclidean Spaces	12
	4.2 Cauchy-Schwarz	12
	4.3 Cardinality	13
5	Day 5: Metric Spaces and Set Types	15
	5.1 Set of Sets	15
	5.2 Metric Spaces	17
	5.3	19

1 The Real Number System

1.1 Number Systems

Natural : $\mathbb{N} = \{1, 2, 3, ...\}$ Integer : $\mathbb{Z} = \{-2, -1, 0, 1, 2, ...\}$ Rational : $\mathbb{Q} = \frac{p}{q}$ where $p,q \in \mathbb{N}$

*** \mathbb{Q} is countable, but fails to have the least upper bound property ***

Example 1.1.1

Let $\alpha \in \mathbb{R}$ where $\alpha^2 = 2$. Then α cannot be rational.

Proof

Let $\alpha = \frac{p}{q}$ where p and q cannot both be even.

Let set $A = \{x \in \mathbb{Q} \text{ for } x^2 < 2\}$ where $A \neq \emptyset$ and 2 is an upper bound for A. But, A has no least upper bound in \mathbb{Q} , but A has a least upper bound in \mathbb{R} .

1.2 Real Number System

 $\mathbb R$ is the unique ordered field with the least upper bound property. Also, $\mathbb R$ exists and unique.

Definition 1.2.1: Order

Let S be a set. An order on S is a relation < satisfying two axioms:

• Trichotomy: For all $x,y \in S$, only one holds true:

-x < y-x = y-x > y

• Transitivity: If x < y and y < z, then x < z.

Definition 1.2.2: Ordered Set

An ordered set is a set with an order.

Definition 1.2.3: Bounds

Let S be an ordered set and $E \subset S$.

An upper bound of E is a $\beta \in S$ if $x \leq \beta$ for all $x \in E$.

If such a β exists, then E is bounded from above.

A lower bound of E is a $\alpha \in S$ if $x \ge \alpha$ for all $x \in E$.

If such a α exists, then E is bounded from below.

Definition 1.2.4: Infimum & Supremum

Let S be an ordered set.

Let $E \subset S$ be bounded from above. Least upper bound $\beta \in S$ exists if:

- β is an upper bound for E
- If $\gamma < \beta$, then γ is not an upper bound for E.

Then $\beta = \sup(E)$.

Let $E \subset S$ be bounded from below. Greatest lower bound $\alpha \in S$ exists if:

- α is a lower bound for E
- If $\gamma > \alpha$, then γ is not a lower bound for E.

Then $\alpha = \inf(E)$.

Example 1.2.5

Let $S = (1, 2) \cup [3, 4) \cup (5, 6)$ with the order < from \mathbb{R} . For subsets E of S:

- E = (1,2) is bounded above and $\sup(E) = 3$
- E = (5,6) is not bounded above so $\sup(E) = DNE$
- E = [3,4) is bounded below $\inf(E) = 3$ and $\sup(E) = DNE$

Observations on the Least Upper Bound

If sup(E) exists, it may or may not exists at S.

If $\sup(E)$ exists, then $\sup(E)$ is unique. If $\gamma \neq \alpha$, then $\gamma < \alpha$ or $\gamma > \alpha$.

1.3 Least Upper Bound Property

Theorem 1.3.1: Least Upper Bound Property

An ordered set S has a least upper bound property if:

For every nonempty subset $E \subset S$ that is bounded from above: $\sup(E)$ exists in S.

Example 1.3.2

 \mathbb{Q} doesn't have a least upper bound property. For example, $z=\sqrt{2}$.

Let $z = y - \frac{y^2 - 2}{y + 2} = \frac{2y + 2}{y + 2}$, then take $z^2 - 2 = \frac{2(y^2 - 2)}{(y + 2)^2}$. Let set $A = \{y > 0 \in \mathbb{Q} \text{ where } y^2 < 2\}$ and set $B = \{y > 0 \in \mathbb{Q} \text{ where } y^2 > 2\}$

- If $y^2 2 < 0$, then z > y where $z \in A$. So, y is not a upper bound. Since for any y, there is z > y where $z \in A$, then $\sup(A)$ doesn't exists in \mathbb{Q} .
- If $y^2 2 > 0$, then z < y where $z \in B$. So, y is an upper bound, but not sup(E). Since for any y, there is z < y where $z \in B$, then $\inf(B)$ doesn't exists in \mathbb{Q} .

Thus, \mathbb{Q} doesn't have the least upper bound.

2 Day 2: Fields

2.1 Greatest Upper Bound Property

Theorem 2.1.1: Least Upper Bound + Lower Bound implies Greatest Upper Bound

Let S be a ordered set with the least upper bound property.

Let non-empty $B \subset S$ be bounded below.

Let L be the set of all lower bounds of B.

Then $\alpha = \sup(L)$ exists in S.

Proof

L is non-empty since B is bounded from below.

Thus, by the least upper bound property of S, $\alpha = \sup(L)$ exists in S.

We claim that $\alpha = \inf(B)$.

If $\gamma < \alpha$, then γ is not an upper bound for L so $y \notin B$.

Thus, for every $x \in B$, $\alpha \le x$.

If $\gamma \geq \alpha$, then γ is an upper bound of L so $\gamma \in B$. Thus, $\inf(B) = \alpha$.

Figure 1: Infimum, Supremum, & Bounds

2.2 Fields

Addition Axioms

- If $x,y \in F$, then $x+y \in F$
- x+y = y+x for all $x,y \in F$
- (x+y)+z = x+(y+z) for all $x,y,z \in F$
- There exists $0 \in F$ such that 0+x = x for all $x \in F$
- For every $x \in F$, there is $-x \in F$ where x+(-x) = 0

Multiplicative xioms

- If $x,y \in F$, then $xy \in F$
- yx = xy for all $x,y \in F$
- (xy)z = x(yx) for all $x,y,z \in F$
- There exists $1 \neq 0 \in F$ such that 1x = x for all $x \in F$
- If $x \neq 0 \in F$, there is $\frac{1}{x} \in F$ where $x(\frac{1}{x}) = 1$

Distributive Law

x(y+z) = xy + xz hold for all $x,y,z \in F$.

Propositions 2.2.1

- (a) If x+y = x+z, then y = z $\frac{\text{Proof}}{}$
 - y = 0+y = (-x)+x+y = (-x)+x+z = 0+z = z
- (b) If x+y = x, then y = 0

Proof

From (a), let z = 0.

(c) If x+y = 0, then y = -x

Proof

From (a), let z = -x.

(d) - (-x) = x

Proof

From (c), let x = -x and y = x.

(e) If $x \neq 0$ and xy = xz, then y = z

Proof

$$y = 1y = \frac{1}{x}xy = \frac{1}{x}xz = 1z = z$$

(f) If $x \neq 0$ and xy = x, then y = 1

Proof

From (e), let z = 1.

(g) If $x \neq 0$ and xy = 1, then $y = \frac{1}{x}$

Proof

From (e), let $z = \frac{1}{x}$.

(h) If $x \neq 0$, then $\frac{1}{1/x} = x$

Proof

From (g), let $x = \frac{1}{x}$ and y = x.

(i) 0x = 0

<u>Proof</u>

Since 0x + 0x = (0+0)x = 0x, then 0x = 0.

(j) If $x,y \neq 0$, then $xy \neq 0$

Proof

Suppose xy = 0, then $\frac{1}{y}\frac{1}{x}xy = \frac{1}{y}1y = \frac{1}{y}y = 1$. xy = 0 = 1 is a contradiction.

$$(k) (-x)y = -(xy) = x(-y)$$

Proof

$$xy + (-x)y = (x+(-x))y = 0y = 0.$$

Then by part (c), (-x)y = -(xy).

Similarly,
$$xy + x(-y) = x(y+(-y)) = x0 = 0$$
.

Then by part (c), x(-y) = -(xy).

(1)
$$(-x)(-y) = xy$$

<u>Proof</u>

By part (k), then (-x)(-y) = -[x(-y)] = -[-(xy)].

By part (d), -[-(xy)] = xy.

2.3 Ordered Fields

An ordered field F is a field F which is also an ordered set for all $x,y,z \in F$.

- If y < z, then y+x < z+x
- If x,y > 0, then xy > 0

Definition 2.3.1: \mathbb{Q} and \mathbb{R} are ordered fields

 \mathbb{Q} , \mathbb{R} are ordered fields, but \mathbb{C} is not an ordered field since $i^2 = -1 \geq 1$.

Propositions 2.3.2

Let F be an ordered field. For all $x,y,z \in F$.

(a) If x > 0, -x < 0 and vice versa

Proof

$$-x = (-x) + 0 < (-x) + x = 0$$

(b) If x > 0 and y < z, then xy < xz

Proof

Since z-y > 0, then
$$0 < x(z-y) = xz - xy$$

(c) If x < 0 and y < z, then xy > xz

Proof

Since -x > 0 and z-y > 0, then 0 < -x(z-y) = xy - xz

(d) If $x \neq 0, x^2 > 0$

Proof

If
$$x > 0$$
, then $x^2 = x \cdot x > 0$

If
$$x < 0$$
, then $x^2 = (-x) \cdot (-x) > 0$

(e) If 0 < x < y, then 0 < 1/y < 1/x

Proof

Since
$$(\frac{1}{y})y = 1 > 0$$
, then $(\frac{1}{y}) > 0$

Since
$$x < y$$
, then $\frac{1}{y} = (\frac{1}{y})(\frac{1}{x})x < (\frac{1}{y})(\frac{1}{x})y = \frac{1}{x}$

Theorem 2.3.3: \mathbb{R} is a ordered field with <

There exists a unique ordered field \mathbb{R} with the least upper bound property. Also, $\mathbb{Q} \subset \mathbb{R}$ so \mathbb{Q} is also an ordered field.

Theorem 2.3.4

For all $x,y \in \mathbb{R}$:

• Archimedean Property: If x > 0, there is $n \in \mathbb{Z}$ such that nx > y.

Proof

Fix x > 0. Suppose there is a y such that the property fails.

Let
$$A = \{ nx: n = 1, 2, 3, ... \}.$$

Then, A is nonempty and bounded from above by y.

Then by the least upper bound property by \mathbb{R} , $\alpha = \sup(A)$ exists in \mathbb{R} .

Since
$$x > 0$$
, then $-x < 0$ so $\alpha - x < \alpha - 0 = \alpha$.

So $\alpha - x$ is not an upper bound of A.

So there is a $mx \in A$ such that $mx > \alpha - x$

But then $\alpha < (m+1)x$ where $(m+1)x \in A$ which contradicts α is an upper bound for A.

• \mathbb{Q} is dense in \mathbb{R} : If x < y, there is a $p \in \mathbb{Q}$ such that x .

Proof

Since x < y, then y-x > 0. Then by the Archimedean Property, there exists a $n \in Z$ such that n(y-x) > 1. Thus, ny > nx+1 > nx

By the well-ordering principle, there is a smallest $m \in \mathbb{Z}_+$ such that m > nx.

Then, $m > nx \ge m-1$ so $nx+1 \ge m > nx$.

Since $ny > nx+1 \ge m > nx$, then y > m/n > x.

3 Roots & Complex Field

3.1nth Root

(a) If 0 < t < 1, then $t^n < t$.

Proof

Since t > 0 and t < 1, then $t^2 < t$.

Since $t^2 < t$, then $t^3 < t^2$ so $t^3 < t^2 < t$.

Applying the process n times, then $t^n \leq t$.

(b) If $t \geq 1$, $t^n \geq t$.

Proof

Since 0 < 1 < t, then $t < t^2$.

Since $t < t^2$, then $t^2 < t^3$ so $t < t^2 < t^3$.

Applying the process n times, $t \leq t^n$.

(c) If $0 < s < t, s^n < t^n$.

Proof

$$\underbrace{s \cdot s \cdot \ldots \cdot s}_n < t \cdot s \cdot \ldots \cdot s < t \cdot t \cdot \ldots \cdot s < \ldots < \underbrace{t \cdot \ldots \cdot t}_n$$

Theorem 3.1.1: $y^n = x$ has a unique y

Fix n. For every x > 0, there exists a unique $y \in \mathbb{R}$ such that $y^n = x$.

Proof

Uniqueness:

y is unique since if $y_1 < y_2$, then $x = y_1^n < y_2^n \neq x$.

Existence:

Let set
$$A = \{ t > 0 : t^n < x \}$$

 $A \neq \emptyset$ since let $t_1 = \frac{x}{x+1} < 1$ and < x and thus, $0 < t_1^n < t_1 < x$ so $t_1 \in A$.

A is bounded above since if $t \ge x+1$, then t > 1 so $t^n \ge t \ge x+1 > x$ so $t \notin A$.

So x+1 is an upper bound of A.

Thus by the least upper bound property, $y = \sup(A)$ exists.

For $y^n = x$, show $y^n < x$ and $y^n > x$ cannot hold true.

(Not an upper bound of A if < and not a least upper bound of A if >)

For $0 < \alpha < \beta$:

$$\beta^{n} - \alpha^{n} = (\beta - \alpha) \underbrace{(\beta^{n-1} + \beta^{n-2}\alpha^{1} + \dots + \alpha^{n-1})}_{\beta^{n-1} < \beta^{n-1}} < (\beta - \alpha)n\beta^{n-1}$$

Suppose $y^n < x$. Pick 0 < h < 1 and $h < \frac{x-y^n}{n(y+1)^{n-1}}$.

From inequality, let $\beta = y+h$ and $\alpha = y$

$$(y+h)^n - y^n < hn(y+h)^{n-1} < hn(y+1)^{n-1} < x - y^n$$

Thus, $(y+h)^n < x$ so $y+h \in A$ and thus, not an upper bound of A which is a contradiction since $y = \sup(A)$.

Suppose
$$y^n > x$$
. Pick $0 < k = \frac{y^n - x}{ny^{n-1}} < \frac{y^n}{ny^{n-1}} = \frac{1}{n}y < y$. Consider $t \ge y$ -k, then: $y^n - t^n \le y^n - (y-k)^n < kny^{n-1} = y^n - x$

Thus, $t^n > x$ so $t \notin A$.

Thus, y-k is an upper bound of A which is a contradiction since $y = \sup(A)$. Since $y^n < x$ and $y^n > x$, then $y^n = x$.

3.2 Decimals

Let n_0 be the largest integer such that $n_0 \le x$ for $x > 0 \in \mathbb{R}$.

Then let n_k be the largest integer such that:

$$d_k = n_0 + \frac{n_1}{10} + \dots + \frac{n_k}{10^k} \le x$$

Let E be the set of d_k for $k = 0, 1, ... \infty$. Then, $x = \sup(E)$.

3.3 Extended Reals

The extended real number system consist of \mathbb{R} and $\pm \infty$ such that:

 $-\infty < x < \infty$ for every $x \in \mathbb{R}$ with the properties:

- $x \pm \infty = \pm \infty$
- $x / \pm \infty = 0$
- If x > 0, then $x(\pm \infty) = \pm \infty$
- If x < 0, then $x(\pm \infty) = \mp \infty$

3.4 Complex Numbers

Definition 3.3.1: Complex

A complex number is an ordered pair (a,b) where $a,b \in \mathbb{R}$. For $x,y \in \mathbb{C}$

- x + y = (a,b) + (c,d) = (a + c, b + d)
- xy = (a,b) (c,d) = (ac bd, ad + bc)
- $\frac{1}{x} = (a^2 + b^2)(a,-b)$

Thus, the axioms form a field where (0,0) = 0 and (1,0) = 1 and (0,1) = i.

Definition 3.3.2: Imaginary i

Let
$$i = (0,1)$$
. Then, $i^2 = -1$.

Proof

$$\overline{\mathbf{i}^2 = (0,1)(0,1)} = (0-1,0+0) = (-1,0) = -1$$

Definition 3.3.3: Form a + bi

$$(a,b) = a + bi$$

Proof

$$(a,b) = (a,0) + (0,b) = (a,0) + (b,0)(0,1) = a + bi$$

Definition 3.3.4: Conjugate

Let conjugate: $\bar{z} = a$ - bi where Re(z) = a, Im(z) = b

Let
$$z = (a,b)$$
 and $w = (c,d)$:

(a)
$$\overline{z+w} = \overline{z} + \overline{w}$$

Proof

$$\overline{z+w} = \overline{(a+c,b+d)} = (a+c,-b-d) = (a,-b) + (c,-d) = \overline{z} + \overline{w}$$

(b)
$$\overline{zw} = \overline{z} \overline{w}$$

Proof

$$\overline{zw} = \overline{(ac - bd, ad + bc)} = (ac-bd, -ad-bc) = (a, -b) (c, -d) = \overline{z} \overline{w}$$

(c) $z + \overline{z} = 2 \operatorname{Re}(z)$

$$z$$
 - $\overline{z} = 2i \operatorname{Im}(z)$

Proof

$$z + \overline{z} = (a,b) + (a,-b) = (2a,0) = 2 \text{ Re}(z)$$

 $z - \overline{z} = (a,b) - (a,-b) = (0,2b) = (0,2) b = 2i \text{ Im}(z)$

(d) $z\overline{z} \geq 0$

Proof

$$z\overline{z} = (a,b)(a,-b) = (a^2 + b^2, -ab+ab) = a^2 + b^2 \ge 0$$

Definition 3.3.5: Absolute Value

Let absolute value: $|z| = \sqrt{z\overline{z}}$

Let
$$z = (a,b)$$
 and $w = (c,d)$:

(a) If $z \neq 0$, then |z| > 0.

Proof

$$\sqrt{z\overline{z}} = \sqrt{a^2 + b^2} \ge 0$$
 where $|z| = 0$ only if $a,b = 0$ so only if $z = (0,0)$.

(b) $|\overline{z}| = |z|$

Proof

$$|\bar{z}| = \sqrt{a^2 + (-b)^2} = \sqrt{a^2 + b^2} = |z|$$

(c) | zw | = | z | | w |

Proof

$$| \text{zw} | = | (\text{ac-bd,ad+bc}) | = \sqrt{(ac - bd)^2 + (ad + bc)^2}$$

= $\sqrt{a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2} = \sqrt{(a^2 + b^2)(c^2 + d^2)}$
= $\sqrt{a^2 + b^2} \sqrt{c^2 + d^2} = | \text{z} | | \text{w} |$

(d) $| \text{Re}(z) | \le |z|$

Proof

| Re(z) | = | a | =
$$\sqrt{a^2} \le \sqrt{a^2 + b^2}$$
 = | z |

(e) |z+w| < |z| + |w|

Proof

$$|z+w|^2 = (z+w)\overline{(z+w)} = (z+w)(\overline{z}+\overline{w}) = z\overline{z} + z\overline{w} + w\overline{z} + w\overline{w}$$

$$= |z|^2 + |w|^2 + 2\operatorname{Re}(z\overline{w}) \le |z|^2 + |w|^2 + 2|z\overline{w}| = |z|^2 + |w|^2 + 2|z||w|$$

$$= (|z| + |w|)^2$$

4 Euclidean Spaces

4.1 Euclidean Spaces

For each positive integer k, let \mathbb{R}^k be the set of all ordered k-tuples:

$$\mathbf{x} = (x_1, ..., x_k)$$
 for each $x_i \in \mathbb{R}$

with the properties:

- $x+y = (x_1 + y_1, ..., x_k + y_k) \in \mathbb{R}^k$
- $\operatorname{cx} = (cx_1, ..., cx_k) \in \mathbb{R}^k$

So, \mathbb{R}^n has a vector space structure. Similarly, for \mathbb{C}^n .

Definition 4.1.1: Inner Product for \mathbb{R}^k

$$x \cdot y = x_1 y_1 + \dots + x_k y_k \in \mathbb{R}$$

Definition 4.1.2: Norm

$$|x| = \sqrt{x \cdot x} = \sqrt{\sum_{i=1}^{n} x_i^2}$$

Definition 4.1.3: Extension to \mathbb{C}^k

For $z, w \in \mathbb{C}^n$

- $z \cdot w = z_1 \overline{w_1} + \dots + z_k \overline{w_k}$
- $z \cdot z = z_1 \overline{z_1} + \dots + z_k \overline{z_k} = |z_1|^2 + \dots + |z_n|^2 = |z|^2$

4.2 Cauchy-Schwarz

Theorem 4.2.1: Cauchy-Schwarz

If
$$\alpha_1, ..., \alpha_n \in \mathbb{C}$$
 and $b_1, ..., b_n \in \mathbb{C}$, then:

$$|\sum_{j=1}^n a_j(\overline{b_j})|^2 \leq \sum_{j=1}^n |a_j|^2 \sum_{j=1}^n |b_j|^2$$

Proof

Let
$$A = \sum |a_j|^2$$
 and $B = \sum |b_j|^2$ and $C = \sum a_j(\overline{b_j})$.

If
$$B=0$$
, then $b_1=\ldots=b_n=0$. Thus, $0 \le A(0)$ holds true.

Suppose B > 0. Then:

$$\sum |Ba_{j} - Cb_{j}|^{2} = \sum (Ba_{j} - Cb_{j})\overline{(Ba_{j} - Cb_{j})} = \sum (Ba_{j} - Cb_{j})(\overline{B} \overline{a_{j}} - \overline{C} \overline{b_{j}})$$

$$= \sum (Ba_{j} - Cb_{j})(B\overline{a_{j}} - \overline{C} \overline{b_{j}}) = \sum B^{2}a_{j}\overline{a_{j}} - B\overline{C}a_{j}\overline{b_{j}} - BC\overline{a_{j}}b_{j} + C\overline{C}b_{j}\overline{b_{j}}$$

$$= B^{2} \sum |a_{j}|^{2} - B\overline{C} \sum a_{j}\overline{b_{j}} - BC \sum \overline{a_{j}}b_{j} + |C|^{2} \sum |b_{j}|^{2}$$

$$= B^{2}A - B\overline{C}C - BC\overline{C} + |C|^{2}B = B^{2}A - 2|C|^{2}B + |C|^{2}B = B^{2}A - |C|^{2}B$$

$$= B(AB - |C|^{2})$$

Since $|Ba_j - Cb_j| \ge 0$, then $B(AB - |C|^2) \ge 0$.

Since B > 0, then $AB - |C|^2 \ge 0$ so $AB \ge |C|^2$.

Definition 4.2.2: Consequence of the Cauchy-Schwarz

Since
$$|z_i|^2 = z_i \overline{z_i}$$
, then $\sum z_i \overline{z_i} = \sum |z_i|^2 = |z|^2$. Thus: $|z \cdot w|^2 = |\sum z_i \overline{w_i}|^2 \le \sum |z_i|^2 \sum |w_i|^2 = |z|^2 |w|^2$

Thus, $|z \cdot w| \leq |z||w|$.

Propositions 4.2.3

Let $x, y, z \in \mathbb{R}^k$ where $\alpha \in \mathbb{R}$:

(a) $|x| \ge 0$ where |x| = 0 only if x = 0

Proof

$$|x| = \sqrt{\sum_{i=1}^{k} x_i^2} \ge 0$$
 where $|x| = 0$ only if $x_1 = \dots = x_k = 0$

(b) $|\alpha x| = |\alpha||x|$

Proof

$$|\alpha x| = \sqrt{\sum_{i=1}^{k} (\alpha x_i)^2} = \sqrt{\alpha^2} \sqrt{\sum_{i=1}^{k} x_i^2} = |\alpha||x|$$

(c) $|x+y| \le |x| + |y|$

Proof

$$|x + y|^2 = (x + y) \cdot (x + y) = |x|^2 + 2(x \cdot y) + |y|^2$$

 $\leq |x|^2 + 2|x||y| + |y|^2 = (|x| + |y|)^2$

(d) $|x - y| \le |x - z| + |y - z|$

<u>Proof</u>

$$|x - y| = |x - z + z - y| \le |x - z| + |z - y| = |x - z| + |y - z|$$

4.3 Cardinality

Definition 4.3.1: Onto and 1-1 Mapping

Suppose for every $x \in A$, there is an associated $f(x) \in B$.

Then f maps A into $B = f: A \rightarrow B$.

- If f(A) = B, then f maps A onto B.
- If for each $y \in B$, $f^{-1}(y)$ consist of at most one $x \in A$ where $f^{-1}(y_1) = x_1 \neq x_2 = f^{-1}(y_2)$ for $y_1 \neq y_2$, then f is a 1-1 mapping of A into B.

Figure 2: Unto and 1-1 Mapping

Definition 4.3.2: 1-1 Correspondence

Sets A and B are equivalent (have the same cardinality) if there is a 1-1 onto function f: $A \rightarrow B$. (1-1 correspondence between A and B) Then:

$$A \sim B$$

If f: A \rightarrow B is 1-1 and onto, then there is a f⁻¹: B \rightarrow A that is 1-1 and onto.

Definition 4.3.3: Countability

- A is finite if $A \sim J_n = \{0, 1, ..., n\}$ for some $n \in \mathbb{N}$
- A is infinite if A is not finite
- A is countably infinite if $A \sim \mathbb{Z}_+ = J$
- A is uncountable if A is not finite or countably infinite
- A is at most countable if A is finite or countably infinite.

Example 4.3.4

 \mathbb{Z} is countably infinite

Proof

Let f: $\mathbb{Z}_+ \to \mathbb{Z}$ $f(n) = \begin{cases} \frac{n}{2} & \text{n is even} \\ -\frac{n-1}{2} & \text{n is odd} \end{cases}$ So $1 \mapsto 0$, $2 \mapsto 1$, $3 \mapsto -1$, $4 \mapsto 2$, $5 \mapsto -2$, etc. Thus, $\mathbb{Z} \sim \mathbb{Z}_+$.

Definition 4.3.5: Pigeonhole Principle

If A is finite, A is not equivalent to any proper set of A.

Figure 3: A $\not\sim$ E \subset A

Theorem 4.3.6: Infinite subsets of countable sets are countable

An infinite subset E of a countably infinite set A is countably infinite.

Proof

Let $E \subset A$ be an infinite subset. For every distinct $x_i \in A$, let $x = \{x_1, x_2, ...\}$. Let n_1 be smallest integer such that $x_{n_1} \in E$.

Then let n_2 be the smallest integer where $n_2 > n_1$ such that $x_{n_2} \in E$.

Repeat the process to create sequence $f(k) = \{ x_{n_1}, x_{n_2}, ..., x_{n_k}, ... \}$.

Thus, there is a 1-1 correspondence between E and \mathbb{Z}_+ so E is countably infinite.

Figure 4: Infinite subsets of countable sets are countable

5 Metric Spaces

5.1 Set of Sets

Definition 5.1.1: Union and Intersection

Let sets Ω ,B be such that for each $x \in \Omega$, there is an associated $E_x \subset B$.

- $E = \bigcup_{x=1}^n E_x$ only if for every $x \in E$, $x \in E_x$ for at least one $x \in \Omega$.
- $P = \bigcap_{x=1}^n E_x$ only if for every $x \in P$, $x \in E_x$ for all $x \in \Omega$.

with properties:

(a) $A \cup B = B \cup A$

$$A \cap B = B \cap A$$

(b) $(A \cup B) \cup C = A \cup (B \cup C)$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

(c) $A \subset A \cup B$

$$(A \cap B) \subset A$$

(d) If $A \subset B$, then $A \cup B = B$ and $A \cap B = A$

Proof

If $x \in A \cup B$, then $x \in A$ or/and $x \in B$.

- If $x \in A$, since $A \subset B$, then $x \in B$. Then, $(A \cup B) \subset B$.
- If $x \in B$, then immediately $(A \cup B) \subset B$.

If $x \in B$, then $x \in A \cup B$ so $B \subset (A \cup B)$. Thus, $A \cup B = B$.

If $x \in A \cap B$, then $x \in A$ and $x \in B$. Thus, $(A \cap B) \subset A$.

If $x \in A$, since $A \subset B$, then $x \in B$ so $x \in A \cap B$. Thus, $A \subset (A \cap B)$.

Thus, $A \cap B = A$.

(e) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

<u>Proof</u>

If $x \in A \cap (B \cup C)$, then $x \in A$ and $(x \in B \text{ or/and } x \in C)$.

- If $x \in B$, then $x \in (A \cap B)$ so $x \in (A \cap B) \cup (A \cap C)$.
- If $x \in C$, then $x \in (A \cap C)$ so $x \in (A \cap B) \cup (A \cap C)$.

Thus, $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$.

If $x \in (A \cap B) \cup (A \cap C)$, then $x \in A$ and $(x \in B \text{ or/and } x \in C)$.

Thus, $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$.

Thus, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

(f) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Proof

If $x \in A \cup (B \cap C)$, then $x \in A$ or/and $(x \in B$ and $x \in C)$.

- If $x \in A$, then $x \in (A \cup B)$ and $x \in (A \cup C)$ so $A \cup (B \cap C) \subset$ $(A \cup B) \cap (A \cup C).$
- If $x \in B,C$, then $x \in (A \cup B)$ and $x \in (A \cup C)$ so $A \cup (B \cap C) \subset$ $(A \cup B) \cap (A \cup C).$

If $x \in (A \cup B) \cap (A \cup C)$, then $x \in A$ or/and $(x \in B$ and $x \in C)$.

Thus, $(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)$.

Thus, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Theorem 5.1.2: Union of countably infinite sets is countably infinite

If $E_1, E_2, ...$ are countably infinite sets, then $S = \bigcup_{n=1}^{\infty} E_n$ is countably infinite.

For each E_n , there is a sequence $\{x_{n1}, x_{n2}, ...\}$. Then construct an array as such:

$$\begin{pmatrix} x_{11} & x_{12} & x_{13} & \dots \\ x_{21} & x_{22} & x_{23} & \dots \\ x_{31} & x_{32} & x_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Take elements diagonally, then sequence $S^* = \{ x_{11} ; x_{21}, x_{12} ; x_{31}, x_{32}, x_{33} ; \dots \}$. Since $S^* \sim S$ so S is at most countable and S is infinite since E_1, E_2, \dots are infinite, then S cannot be finite and thus, countably infinite.

<u>Alternative Proof</u> For each E_n , let set $\widetilde{E_n} = E_n - \bigcup_{m=1}^{\infty} E_m$ where $m \neq n$. Thus, $S = \bigcup_{n=1}^{\infty} \widetilde{E_n}$. Since each E_n is countably infinite, there exists a 1-1 mapping δ_n : $E_n \to \mathbb{Z}_+$

Thus, for each E_n , there is a 1-1 mapping $\delta_n : E_n \to A \subset \mathbb{Z}_+$.

Let $p_1, p_2, ...$ be distinct primes.

Since for $s \in S$, there exists a unique $\widetilde{E_i}$ such that $s \in \widetilde{E_i}$, then let $f(s) = p_1^{\delta_1(s)} p_2^{\delta_2(s)} \dots$ where $p_k^{\delta_k(s)} = 1$ if $k \neq i$.

Then, by the Fundamental theorem of arithmetic, f maps s to a unique $z \in \mathbb{Z}_+$ and thus, f is a 1-1 function so S is at most countable.

Since any $E_n \subset S$ is countably infinite, then S cannot be finite and thus, S is countably infinite.

Theorem 5.1.3: The set of countable n-tuples are countable

Let A be a countable set and B_n be the set of all n-tuples $(a_1,...,a_n)$ where a_k \in A. Then B_n is countable.

<u>Proof</u>

The base case B_1 is countable since $B_1 = A$.

Suppose B_{n-1} is countable. Then for every $x \in B$:

$$x = (b,a)$$
 $b \in B_{n-1}$ and $a \in A$

Since for every fixed b, $(b,a) \sim A$ and thus, countably infinite.

Since B is a set of countably infinite sets, then B_n is countably infinite.

Definition 5.1.4: \mathbb{Q} is countably infinite

The set of rational numbers, \mathbb{Q} , is countably infinite.

Proof

Since elements of \mathbb{Q} are of form $\frac{a}{b}$ which is a 2-tuple, then by the theorem 5.1.3, \mathbb{Q} is countably infinite.

Alternative Proof

For every $x \in \mathbb{Q}$, let $x = (-1)^i \frac{p}{q}$ where $p,q \in \mathbb{Z}_+$.

Let $f(x) = 2^i \ 3^p \ 5^q$. Then by the Fundamental theorem of arithmetic, f is a 1-1 mapping of x to $E \subset \mathbb{Z}_+$.

Thus, \mathbb{Q} is at most countable, but since $p,q \in \mathbb{Z}_+$, then \mathbb{Q} cannot be finite and thus, is countably infinite.

Example 5.1.5: Sequences of 0 and 1 are uncountable

Let A be the set of all sequences whose elements are digits 0 and 1. Then A is uncountable.

Proof: Cantor's Diagonalization Proof

Let set E be a countably infinite subset of A which consist of sequences $s_1, s_2, ...$ Then construct a sequence s as follows:

If the n-th digit in s_n is 1, then let the n-th digit of s be 0 and vice versa.

Thus. s differs from every $s_n \in E$ so $s \notin E$.

But, $s \in A$ so E is a proper subset of A.

Thus, every countably infinite subset of A is a proper subset of A.

If A is countably infinite, then A is a proper subset of A which is a contradiction.

5.2 Metric Spaces

Definition 5.2.1: Metric Spaces

A set X is a metric space if for ant $p,q \in X$, there is an associated $d(p,q) \in \mathbb{R}$ such that:

- d(p,q) > 0 if $p \neq q$
- d(p,q) = 0 if and only if p = q
- Symmetry: d(p,q) = d(q,p)
- Triangle Inequality: $d(p,q) \le d(p,r) + d(r,q)$ for any $r \in \mathbb{R}$.

For euclidean spaces \mathbb{R}^k , d(x,y) = |x - y| where $x,y \in \mathbb{R}^k$.

Definition 5.2.2: Types of points and sets

(a) Neighborhood

For $p \in \mathbb{R}^k$ and r > 0, $N_r(p)$ is the set of all q such that d(q,p) < r

(b) Limit Points and Closed Sets

Closed set E contains all p where every $N_r(p)$ contains a $q \neq p \in E$

• Limit Points

For point $p \in X$, every $N_r(p)$ contains a $q \neq p \in E$

• Isolated Points

If $p \in E$ is not a limit point of E

Closed

If every limit point p of E is a $p \in E$

(c) Interior Points and Open Sets

Open set E contains all its p which has a $N_r(p) \subset E$

• Interior Point

For $p \in X$, there is a $N_r(p) \subset E$

Open

If every $p \in E$ is an interior point of E

- (d) More about Sets
 - Bounded

If there is $M \in \mathbb{R}$, $q \in X$ such that d(p,q) < M for all $p \in E$

Complement

From E, E^c is the set of all $p \in X$ such that $p \notin E$

Perfect

If E is closed and if every $p \in E$ is a limit point of E

• Dense

If every $p \in X$ is a limit point of E or/and $p \in E$

Theorem 5.2.3: $N_r(p)$ is open

Every neighborhood is an open set.

Proof

Let $q \in N_r(p)$. Then there is a $h > 0 \in \mathbb{R}$ such that:

$$d(q,p) = r - h$$

Then for any $s \in N_h(q)$:

$$d(s,p) \le d(s,q) + d(q,p) = h + (r - h) = r$$

Thus, for any $q \in N_r(p)$, there exists a $N_h(q) \subset N_r(p)$.

Theorem 5.2.4: If a set has a limit point, there are infinite $q \in E$ in $N_r(p)$

If p is a limit point of set E, then every $N_r(p)$ contains infinitely many $q \in E$. Proof

Suppose there is $N_{r_1}(p)$ which contains finitely many $q = \{ q_1, ..., q_n \}$.

Let $r = \min_{m \in [1,n]} d(p,q_m)$. Then $N_r(p)$ contains no $q \in E$ such that $q \neq p$.

So, p is not a limit point of E which is a contradiction since p is a limit point of E.

Corollary 5.2.5: Limit points do not exist in finite sets

A finite set has no limit points.

Proof

Let p be a limit point of finite set E. By theorem 5.2.4, then any $N_r(p)$ contain infinite $q \in E$ so E is an infinite set which is a contradiction since E is finite. So p cannot be limit point of E and thus, E has no limit points.

Theorem 5.2.6: Complement of union of sets = Intersection of complement of sets

Let $E_1, E_2, ...$ be a collection of sets. Then, $(\cup E_x)^c = \cap (E_x^c)$.

Proof

If $p \in (\cup E_x)^c$, then $p \notin (\cup E_x)$.

Thus, $p \notin E_x$ for any x so $p \in E_x^c$ for all x. Thus, $p \in \cap (E_x^c)$ so $(\cup E_x)^c \subset \cap (E_x^c)$.

If $p \in \cap (E_x^c)$, then $p \in E_x^c$ for all x.

Thus, $p \notin E_x$ for any x so $p \notin U$. Thus, $p \in (U E_x)^c$ so $\cap (E_x^c) \subset (U E_x)^c$.

Thus, $(\cup E_x)^c = \cap (E_x^c)$.

Theorem 5.2.7: Open set \rightarrow Closed complement

A set E is open if and only if E^c is closed.

Proof

Suppose E is open. Let x be a limit point of E^c .

Then for every r > 0, $N_r(x)$ must contain a $p \in E^c$ such that $p \neq x$.

Then, $N_r(x) \not\subset E$ so x is not an interior point of E and thus, $x \not\in E$ so $x \in E^c$.

Since any limit point x of E^c is a $x \in E^c$, then E^c is closed.

Suppose E^c is closed. Let $x \in E$.

Since $x \notin E$, x is not a limit point of E.

Then there exists a r > 0 such that any $p \in N_r(x)$ is not in E.

Thus, every $p \in N_r(x)$ is $p \in E$ so $N_r(x) \subset E$ and thus, x is an interior point of E.

Since any $x \in E$ is an interior point of E, then E is open.

Corollary 5.2.8: Closed set \rightarrow Open complement

A set F is closed if only only if F^c is open.

Proof

From theorem 5.2.7, let $E = F^c$.

5.3

REFERENCES REFERENCES

References