

Department of Computer Science and Engineering M.Tech in Computer Science and Engineering (CSE) Continuous Internal Evaluation (CIE-III)- Question Paper Course Advanced Data Structures and Algorithms Course Code: 22MCE12TL (MCE201I) Sem: 01 15.05.2024 Duration: 90 minutes Max Marks: 50 Staff: RS S1. M L1-**CO Answer all questions No. L6 L3 CO1 Apply Prim's algorithm for the Graph given below and find the minimum spanning tree and its cost. 1a. CO₁ 1b. Differentiate between the working of Naïve and Rabin Karp algorithm. CO2 Apply Rabin Karp algorithm and search for the Pattern in the Text. Discuss the time complexity of the algorithm. 2a. Text: 7896234567897896 Pattern:896 Construct a graphical representation of a trie that contains the CO2 following data with the key being built as you descend down from the root to a leaf. For example, the word, "ape" is built by traversing the "a" 2b. edge, the "p" edge, and the "e" edge. When leaf node is reached, the value 32 is stored at the leaf node. map = { 'ape': 32, 'ball': 2, 'atom': 16, 'ate': 18, 'bait': 5 } CO3 Let's say we have a trie that has the following words in it already. home, house, belated, heated 3a. If we add the following words, how many nodes will be added to the trie? Show the graphical representation of the trie tree. hose, belt, heal L2 CO₄ 3b. List the major applications of Trie.

	Apply Krus		_			aph g	iven be	elow ar	nd find	the	6	L4	CO4
4a.	В	3	7	10		2							
4b.	Comapre Trie datastructure with Hash tables.							4	L4	CO3			
5a.	Consider a Hash Table with 9 slots. Apply suitable hash function and insert the the following keys in the order: 5, 28, 19, 15, 20, 33, 12, 17, 10. Resolve the collisions using chaining technique. Also mention the maximum, minimum and average chain lengths in the Hash tables, respectively.					, 17, n the	6	L4	CO2				
5b.	Consider a list of numbers 34,16, 2, 93, 80, 77, 51 with Hash table size 10. Mention the order of the elements in the Hash table from index 0 to size-1 after applying the hash function (Key%HashtableSize).					4	L3	CO3					
app	Course Outcome ply appropriate de thematics to algor	sign para rithm des	digm and	l algorithr Design, i	n for a s mpleme	pecific p nt and e	roblem. C	O3: Applygorithms	y knowled to solve r	lge of c	omp rld p	uting a roblem	and
	L1 0	L2 2	L3 17	L4 31	L5 0	L6 0	CO1 10	CO2 16	CO3			CO4 8	

WSTITUT	ons				
		Department of Computer M.Tech in Computer Scien Continuous Internal Evaluation	ce and Engineering (CSE)		
Cour	se	Advanced Data Structures and	Course Code: 22MCE12TL	Sem: 01	
Course		Algorithms (MCE201I)			
15.05.2024		Duration: 90 minutes Max Marks: 50			RS
S1. No.		Answer all	questions		M
1a.	its cost.	2 2 4 3 Spannin	1 5 3 1 1 5 3 5 mg Trees 1 5 3 2 6 3 1 1 5 5 might: 14 weight: 14		3
1b.	the Naiv	re algorithm, the Rabin-Karp algorithm we algorithm, the Rabin Karp algorithm h value of the current substring of tem natching individual characters	m matches the hash value of the pat	ttern with	ა

	Apply Rabin Karp algorithm and search for the Pattern in the Text. Discuss the time	7					
2a.	complexity of the algorithm.						
Za.	Text: 7896234567897896						
	Pattern:896						
	Construct a graphical representation of a trie that contains the following data with the key	3					
	being built as you descend down from the root to a leaf. For example, the word, "ape" is						
	built by traversing the "a" edge, the "p" edge, and the "e" edge. When leaf node is reached,						
	the value 32 is stored at the leaf node.						
	map = { 'ape': 32, 'ball': 2, 'atom': 16, 'ate': 18, 'bait': 5 }						
2b.	A B A A B A A L A trie						
	Let's say we have a trie that has the following words in it already.	8					
	home, house, belated, heated If we add the following words, how many nodes will be added to the trie? Show the graphical						
3a.	representation of the trie tree.						
	hose, belt, heal						
	4 nodes will be added to the Trie						
	Applications of Trie	2					
3b.	 Sorting. Lexicographic sorting of a set of string keys can be implemented by building a trie for the given keys and traversing the tree in pre-order fashion; this is also a form of radix sort Full-text search Web search engines Bioinformatics Internet routing 						

The given data,

list of numbers (34, 16, 2, 93, 80, 77, 51) and has a table size is 10.

Element	Hash function	Index
34	34%10 =4	4
16	16%10 =6	6
2	2%10 =2	2
93	93 % 10 = 3	3
80	80 %10 =0	0
77	77% 10= 7	7
51	51 % 10 = 1	1

The hash table is,

index	Value
0	80
1	51
2	2
3	93
4	34
5	
6	16
7	77
8	
9	

The remaining index stores the null values.

Hence the correct answer is 80, 51, 2, 93, 34, null, 16, 77, null, null.