Tooth Growth Analysis

Wiktoria Urantowka 8/20/2017

The goal of this report id to analyze the ToothGrowth data in R in order to investigate the impact of vitamine C on the tooth growth in ginea pigs.

1.Loading the data and basic exploratory analysis

```
data(ToothGrowth)
head(ToothGrowth)
      len supp dose
## 1 4.2
            VC 0.5
## 2 11.5
            VC 0.5
## 3 7.3
            VC 0.5
## 4 5.8
            VC 0.5
## 5 6.4
            VC 0.5
## 6 10.0
            VC 0.5
dim(ToothGrowth)
## [1] 60 3
str(ToothGrowth)
## 'data.frame':
                    60 obs. of 3 variables:
## $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 ...
## $ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
The data consists of 60 observations for 3 variables: Tooth length (numeric), supplement type, VC or OJ
(factor) and the dosage in milligrams of this supplement (numeric)
library(ggplot2)
qplot(supp,len,data=ToothGrowth, facets=~dose, main="Tooth growth by supplement type and dosage (mg)",x
```


One can observe a positive correlation between the dosage and the tooth growth. For lower dosage, the affect of VC seams weaker than OJ, but this difference dissapears with the highest dosage.

2. Hypothesis Testing:

1 Difference of effect between supplements

Ho = no difference in tooth growth when using the supplement OJ and VC (lenOJ == lenVC) Ha = Tooth grow more when using supplement OJ instead of VC. (lenOJ > lenVC)

Assumptions - Variances of tooth growth are different for different supplements and their dosage. - Tooth growth follows normal distribution. -variables are i.i.d.

Procedure: - tooth growth by supplement type from the data

```
OJ = ToothGrowth$len[ToothGrowth$supp == 'OJ']
VC = ToothGrowth$len[ToothGrowth$supp == 'VC']
```

-One-tailed independent t-test with unequal variance.

```
t.test(OJ, VC, alternative = "greater", paired = FALSE, var.equal = FALSE, conf.level = 0.95)

##

## Welch Two Sample t-test

##

## data: OJ and VC

## t = 1.9153, df = 55.309, p-value = 0.03032

## alternative hypothesis: true difference in means is greater than 0

## 95 percent confidence interval:
```

```
## 0.4682687 Inf
## sample estimates:
## mean of x mean of y
## 20.66333 16.96333
```

As the p-value < 0.05 the null hypothesis is rejected. -> Supplement OJ has bigger effect on tooth growth than supplement VC

2 Difference of effects among dosages

2.1(Comparaison between affect of dosage 0.5 and 1) Ho= no difference in tooth growth between dosages. Ha= more tooth growth when the dosage increases.

Procedure: -tooth growth by dosage.

```
doseHalf = ToothGrowth$len[ToothGrowth$dose == 0.5]
doseOne = ToothGrowth$len[ToothGrowth$dose == 1]
doseTwo = ToothGrowth$len[ToothGrowth$dose == 2]
```

-One-tailed independent t-test with unequal variance.

```
##
## Welch Two Sample t-test
##
## data: doseHalf and doseOne
## t = -6.4766, df = 37.986, p-value = 6.342e-08
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
## -Inf -6.753323
## sample estimates:
## mean of x mean of y
## 10.605 19.735
As the purples < 0.05 the pull hypothesis is rejected. (There is a difference in effects on teeth growth for the result of the purples of the pull hypothesis is rejected. (There is a difference in effects on teeth growth for the purples of the purple of the purple of the pull hypothesis is rejected. (There is a difference in effects on teeth growth for the purple of the pull hypothesis is rejected. (There is a difference in effects on teeth growth for the purple of the purple of the purple of the pull hypothesis is rejected. (There is a difference in effects on teeth growth for the pull hypothesis is rejected.)

**There is a difference in effects on teeth growth for the pull hypothesis is rejected. (There is a difference in effects on teeth growth for the pull hypothesis is rejected.)

**There is a difference in effects on teeth growth for the pull hypothesis is rejected. (There is a difference in effects on teeth growth for the pull hypothesis is rejected.)

**There is a difference in effects on teeth growth for the pull hypothesis is rejected. (There is a difference in effects on teeth growth for the pull hypothesis is rejected.)

**There is a difference in effects on the pull hypothesis is rejected. (There is a difference in effects on the pull hypothesis is rejected.)

**There is a difference in effects on the pull hypothesis is rejected.)

**There is a difference in effects on the pull hypothesis is rejected. (There is a difference in effects on the pull hypothesis is rejected.)

**There is a difference in effects on the pull hypothesis is rejected. (There is a difference in effects on the pull hypothesis is rejected.)

**There is a difference in effects of the pull hypothesis is rejected.

**There is a diff
```

As the p-value < 0.05 the null hypothesis is rejected. (There is a difference in effects on tooth growth for dosages 0.5 and 1, dosage 1 having bigger effect)

 $2.2 ({\it Comparaison}$ between affect of dosage 1 and 2)

26.100

19.735

##

```
t.test(doseOne, doseTwo, alternative = "less", paired = FALSE, var.equal = FALSE, conf.level = 0.95)

##

## Welch Two Sample t-test

##

## data: doseOne and doseTwo

## t = -4.9005, df = 37.101, p-value = 9.532e-06

## alternative hypothesis: true difference in means is less than 0

## 95 percent confidence interval:

## -Inf -4.17387

## sample estimates:

## mean of x mean of y
```

As the p-value < 0.05 the null hypothesis is rejected. (There is a difference in effects on tooth growth for dosages 1 and 2, dosage 2 having bigger effect)

-> Dosage matters: The more supplement, the more tooth growth