TỔNG LIÊN ĐOÀN LAO ĐỘNG VIỆT NAM TRƯỜNG ĐẠI HỌC TÔN ĐỨC THẮNG KHOA CÔNG NGHỆ THÔNG TIN

TRÂN NGUYÊN BẢO - 523H0007

BÁO CÁO GIỮA KÌ

GIẢI TÍCH ỨNG DỤNG CHO CÔNG NGHỆ THÔNG TIN

THÀNH PHÓ HỒ CHÍ MINH, NĂM 2023

TỔNG LIÊN ĐOÀN LAO ĐỘNG VIỆT NAM TRƯỜNG ĐẠI HỌC TÔN ĐỨC THẮNG KHOA CÔNG NGHỆ THÔNG TIN

TRÀN NGUYÊN BẢO - 523H0007

BÁO CÁO GIỮA KÌ GIẢI TÍCH ỨNG DỤNG CHO CÔNG NGHỆ THÔNG TIN

Người hướng dẫn GV. Nguyễn Văn Khoa

THÀNH PHỐ HỒ CHÍ MINH, NĂM 2023

MỤC LỤC

DANH MỤC HÌNH VỄ

Hình 01: Kết quả câu a

Hình 02: Kết quả câu b

Hình 03: Kết quả câu c

CHƯƠNG 1: PHƯƠNG PHÁP GIẢI BÀI TẬP

1.1_Câu a:

- -Khởi tạo giá trị A(input).
- -khởi tạo hàm f(x) và g(x).
- -Dùng phương trình hoành độ giao điểm tìm các nghiệm là các giao điểm.
- -In ra màn hình các giao điểm.
- -Vẽ đồ thị cho từng hàm số và giao điểm.

1.2 Câu b:

- -Khởi tạo giá trị A(input).
- -khởi tạo hàm f(x) và tình đạo hàm f(x)
- -In ra phương trình tiếp tuyến T với f(x)
- -In ra màn hình các giao điểm.
- -Cho phương trình tiếp tuyến và f(x) đã dịch chuyển bằng nhau để tìm các giao điểm
- -Vẽ đồ thị cho hàm f(x), f(x) đã dịch chuyển, phương trình tiếp tuyến T và các giao điểm.

1.3_Câu c:

- -Khởi tạo giá trị A(input).
- -khởi tạo hàm f(x) và tình đạo hàm f(x)
- -Tìm các nghiệm
- -In ra các phương trình tiếp tuyến của f(x) qua điểm $(0,-4A^3)$
- -Vẽ đồ thị cho hàm f(x) và các phương trình tiếp tuyến của f(x) và các giao điểm.

CHƯƠNG 2: MÃ NGUÒN VÀ KẾT QUẢ ĐẦU RA

2.1_Câu a:

2.1.1_Code câu a:

```
import numpy as np
import sympy as sp
import math as math
import matplotlib.pyplot as plt
x = sp.symbols('x')
A = 10 #input
def fx(x,A):
   return x**2 -2*A*x - A**2
def qx(x,A):
    return -x**2 + 4*A*x + A**3
equal=fx(x,A) - gx(x,A) \# f(x) = g(x) or f(x) - g(x) = 0
# find roots
root x = sp.solve(equal)
root y1=fx(x,A).subs(x,root x[0])
root y2=fx(x,A).subs(x,root x[1])
#print the Intersaction point
print("Intersaction point 1 is: ", (round(root_x[0],15),
round(root y1,15)))
print("Intersaction point 2 is: ", (round(root x[0],15),
round(root y1,15)))
# x values
x = np.linspace(-100, 100)
fx = fx(x, A)
gx = gx(x, A)
#plot the function
plt.plot(x, fx, label = "f(x)")
plt.plot(x, gx, label = "g(x)")
plt.scatter(root_x[0],root_y1, color='black')
plt.scatter(root x[1],root y2, color='black',label= 'intersaction points')
plt.xlabel('x axis')
plt.ylabel('y axis')
plt.title("Question 1a")
plt.legend()
plt.show()
```

2.1.2_Kết quả câu a:

Intersaction point 1 is: (-12.838821814150110, 321.611781858498904)
Intersaction point 2 is: (-12.838821814150110, 321.611781858498904)

Hình 01

2.2 Câu b:

2.2.1_Code câu b

```
import sympy as sp
import numpy as np
import math as math
import matplotlib.pyplot as plt
A= 40 #input
x = sp.symbols('x')
x0 = 0
y0 = -A**2
units = 4*A**3
def f(x,A):
return x**2 -2*A*x - A**2
dfx = sp.diff(f(x,A),x) # f'(x)
j = dfx.subs(x,x0)
tangent equation = j*(x-x0) + y0
def tangent y(x):
return j*x - (A**2)
#Print the tangent equation
print("Equation of the tangent line to the curve f(x):", tangent equation)
#find roots
def f converted(x, A):
   return x^{**2} -2*A*x - A**2 - units
equal = f converted(x,A) - tangent equation
root x = sp.solve(equal)
root y1 = tangent equation.subs(x, root x[0])
root y2 = tangent equation.subs(x, root x[1])
#print intersection point
print("1b.Intersection point 1 : ", ( round(root x[0],15),
round(root y1,10)))
print("1b.Intersaction point 2 : ", ( round(root x[1],15),
round(root y2,10)))
x = np.linspace(-1000, 1000)
fx = f(x, A)
f down = f converted(x, A)
tangenty = tangent y(x)
```

```
#plot the function
plt.plot(x,fx,label = "f(x)")
plt.plot(x,f_down,color ='red', label = "shifted f(x)")
plt.plot(x,tangenty, label =' tangent line to f(x)')
plt.scatter(root_x[0],root_y1,color = 'black')
plt.scatter(root_x[1],root_y2, color = 'black')
plt.scatter(x0,y0, color = 'purple')
plt.xlabel('x axis')
plt.ylabel('y axis')
plt.title("Question 1b")
plt.legend()
plt.show()
```

2.2.2_Kết quả câu b:

Equation of the tangent line to the curve f(x): -80*x - 1600 lb.Intersection point 1: (-505.964425626940693, 38877.1540501553) lb.Intersaction point 2: (505.964425626940693, -42077.1540501553)

Hình 02

2.3_Câu c:

2.3.1_Code câu c

```
import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
A = 30 \# Use for A
x= sp.symbols('x')
x0 = 0
y0 = -4*A**3
fx = x**2 - 2*A*x - A**2
dfx = sp.diff(fx, x)
k = dfx.subs(x, x0)
y tangentLine = dfx*(x - x0) + y0
rootx =sp.solve(fx - y tangentLine)
rooty1 = fx.subs(x, rootx[0])
rooty2 = fx.subs(x, rootx[1])
dy1=round(dfx.subs(x,rootx[0]),13)
dy2 = round(dfx.subs(x, rootx[1]), 13)
tangent 1 = dy1*(x-x0) + y0
tangent 2 = dy2*(x-x0) + y0
#Print the tangent equation
print("Equation of the tangent line 1 to the curve f(x): ", tangent 1)
print("Equation of the tangent line 2 to the curve f(x): ", tangent 2)
xvalues = np.arange(-1000, 1000)
def fx(x):
    return x**2 - 2 * A * x - A**2
tangent x = lambda x: dy1*(x-x0) + y0
tangent y= lambda x: dy2*(x-x0) + y0
tangentx=list(map(tangent x,xvalues))
tangenty=list(map(tangent y, xvalues))
intersect x=sp.solve(tangent 1-tangent 2)
intersect y=tangent 2.subs(x,intersect x[0])
# Plot the function
plt.plot(xvalues, fx(xvalues), label='f(x)')
```

```
plt.plot(xvalues, tangentx, label='tangent line 1')
plt.plot(xvalues, tangenty, label='tangent line 2')
plt.scatter(intersect_x[0], intersect_y, color='yellow')
plt.scatter(rootx[0], rooty1,color='pink')
plt.scatter(rootx[1], rooty2,color='pink')
plt.ylabel('y')
plt.xlabel('y')
plt.xlabel('x')
plt.title("Question 1c")
plt.legend()
plt.show()
```

2.3.2_Kết quả câu c:

Equation of the tangent line 1 to the curve f(x): -714.5227268781429*x - 108000 Equation of the tangent line 2 to the curve f(x): 594.5227268781429*x - 108000

Hình 03