Цель этого листка — доказать следующую теорему.

ТЕОРЕМА 1. B любом конечном поле F найдётся такой элемент x, что все ненулевые элементы Fимеют вид x^n , где $n \in \mathbb{N}$.

Определение 1. Элементы x из теоремы 1 называют *образующими* или *порождающими элементами*. Положим p = char F, q = |F|. Множество ненулевых элементов поля обозначим через F^* .

Как и в полях \mathbb{Q} , \mathbb{R} , \mathbb{C} , в любом поле F можно рассмотреть многочлены F[x] над данным полем. Все соответствующие определения (сложение, умножение, деление, степень, корни, остатки,) дословно переносятся на F[x]. Многие свойства также сохраняются для многочленов над произвольным полем, в частности, свойства из задачи 1а)б).

Задача 1. а) Докажите, что элемент a — корень многочлена $f(x) \in F[x]$ если и только если f(x)делится на x-a.

- **б)** Докажите, что число различных корней многочлена $f(x) \in F[x]$ не больше $\deg f(x)$.
- в) Докажите, что все элементы F^* являются корнями многочлена $x^{q-1}-1$.
- г) Пусть $d \mid (q-1)$. Докажите, что многочлен x^d-1 имеет ровно d различных корней в F^* .

Определение 2. Для элемента $a \in F^*$ обозначим через d(a) *порядок* элемента a, то есть такое минимальное натуральное k, что $a^k = 1$.

Задача 2. Докажите, что

- а) d(a) определён и не больше q-1.
- **б)** корни многочлена $x^k 1$ в F^* это в точности элементы F^* , у которых порядок делит k.

Задача 3. Найдите порядки элементов из $(\mathbb{Z}/p\mathbb{Z})^*$ при p=2,3,5,7. Какие из этих элементов являются порождающими?

Задача 4. Напомним, что функция Эйлера $\varphi(n)$ определяется, как количество обратимых остатков в $\mathbb{Z}/n\mathbb{Z}$. Докажите тождество:

$$\sum_{d|n} \varphi(d) = n.$$

Указание. Приведите дроби $\frac{1}{n}, \ldots, \frac{n}{n}$ к несократимому виду. Сколько дробей будут иметь знаменатель d (где $d \mid n$)?

Задача 5. Обозначим через $\psi(d)$ количество элементов F^* порядка d. Докажите, что

- а) При $k \mid (q-1)$ выполнено $\sum_{d \mid k} \psi(d) = k;$
- **б)** При $k \mid (q-1)$ выполнено $\psi(k) = \varphi(k)$.
- в) Количество элементов порядка q-1 в F^* равно $\varphi(q-1)\geqslant 1$. Выведите отсюда теорему 1.

Задача 6. Проверьте, что указанное множество вычетов образует поле и найдите там порождающий

элемент: **a)** $\mathbb{F}_2[x]/(x^2+x+1)\mathbb{F}_2[x];$ **b)** $\mathbb{F}_2[x]/(x^3+x+1)\mathbb{F}_2[x];$ **b)** $\mathbb{F}_3[x]/(x^2+x-1)\mathbb{F}_3[x].$ Задача 7. Мы найдём сумму $\sum_{x \in \mathbb{F}^*} x^k$ разными способами. Пусть $a \in F^*$ — порождающий элемент F.

- а) Найдите сумму, используя тот факт, что умножение на а является взаимно-однозначным соответствием F^* на себя.
- **б**) Найдите сумму, используя тот факт, что все элементы F^* являются разными степенями элемента a.
- в) Как найти сумму, не используя Теорему 1?

Теорему 1 можно попробовать обобщить с конечных полей на более общие структуры. К примеру, для каждого целого m можно взять вычеты $\mathbb{Z}/m\mathbb{Z}$ по модулю m и найти порождающий элемент в $(\mathbb{Z}/m\mathbb{Z})^*$ (определение порождающего элемента дайте самостоятельно). Он также называется nepsoобразным корнем по модулю т.

Задача 8. а) Существует ли в $\mathbb{Z}/m\mathbb{Z}$ первообразный корень для m=2,3,4,5,6,7?

б) Существует ли такое m, что не существует первообразных корней в $\mathbb{Z}/m\mathbb{Z}$?

Задача 9. Пусть $\varphi(m) = p_1^{\alpha_1} \cdot \ldots \cdot p_s^{\alpha_s}$ — каноническое разложение числа $\varphi(m)$ на простые сомножители, (g,m)=1. В этом случае g — первообразный корень в $\mathbb{Z}/m\mathbb{Z}$ тогда и только тогда, когда g не является решением ни одного из сравнений $g^{\frac{\varphi(m)}{p_k}} \equiv 1 \pmod m$ при $k=1,\ldots,s$.

Задача 10. Найдите какой-нибудь первообразный корень по модулю а) 11; б) 17.

Задача 11. Докажите критерий Вильсона (листок 23, задача 12), используя существование первообразных корней по простому модулю.

1 a	1 6	1 B	1 г	2 a	2 6	3	4	5 a	5 6	5 B	6 a	6 6	6 B	7 a	7 б	7 B	8 a	8 6	9	10 a	10 б	11