Martin A. Cowell

970.819.1369 • martin.cowell@berkeley.edu • martincowell.com

OBJECTIVES

- Mechanical engineer and electronics designer seeking a position that provides project ownership in renewable energy, and automated transportation.
- · Proficient in sensor design specialized in ultra-low power management
- Comfortable in fast-paced interdisciplinary R&D environment, interfacing with engineers and product managers

EDUCATION

UC Berkeley, Berkeley CA

Expected May 2017 GPA: 3.9/4.0

Ph.D. Mechanical Engineering

GPA: 3.9/4.0

Colorado School of Mines, Golden CO

May 2013

B.S. Mechanical Engineering

GPA: 3.9/4.0

SKILLS

- **Mechanical:** CAD, machine design, injection molding, basic machining including CNC, rapid prototyping including FDM and laser cutting, design for manufacturing and assembly, FEA
- **Electronics:** Eagle PCB design, ultra-low power management, bench top electronics prototyping, BLE communications (basic)
- · Programming: MATLAB, Python, R, EES, LaTeX, Raspberry Pi incl. web server, Arduino
- · Software: SolidWorks (Certified), Autodesk Inventor, Adobe Creative Suite

EXPERIENCE

Graduate Researcher

UC Berkeley

Fall 2013 - Present

Project Lead

Advanced Manufacturing for Energy Lab

- · Led team of 5 researchers developing an energy harvesting sensor using printed electronics
- Designed and built ultra-low power management for wireless sensor. Expected 10+ year life via indoor-light harvesting
- Optimized formulation and manufacturing of lab's supercapacitors; improving capacitance 100x
- Reduced wireless sensor size by 55% via optimization modeling of energy harvesting dynamics

Mechanical Engineer

Persistent Efficiency

March 2015 - April 2016

- Early employee at IoT electric sub-metering startup: excelled in fast-paced research and manufacturing while considering scalability
- Designed injection molded enclosures for custom PCBs: features include live hinge, dual material, snap closure, "location fit" PCB retainer using overmolding, and undercut cams
- · Built testing environment and designed test procedures to validate novel power-flow sensing

Mechanical Engineer

Undergraduate Capstone

August 2012 - May 2013

- Designed and built novel fuel gauge for zero gravity propellant tanks
- · Leveraged finite element analysis to guide vibrational sensing system design
- · 3rd place Colorado School of Mines Engineering & Computer Science Trade Fair 2013

Research Fellow

Los Alamos National Labs

Summer 2012

- · Built a sensory-substitution glove linking the wearer's brain to a distributed sensor network
- Prototyped wearable electronics for human subject testing

Engineering Intern

ABENGOA Solar

May 2011 - May 2012

- Mechanically tested composite aluminum honeycomb panels to validate their structural design for use in concentrated solar power plants
- · Machined steel and aluminum fixtures to facilitate testing parabolic troughs

PUBLICATIONS

- Latimer, Evans, <u>Cowell</u>, Wright (2017) "Modeling of Interdigitated Electrodes and Supercapacitors with Porous Interdigitated Electrodes". Journal of The Electrochemical Society
- Cowell et al. (2016) "Wireless sensor node demonstrating indoor-light energy harvesting and voltage-triggered duty cycling". PowerMEMS
- Munsing, <u>Cowell</u>, Moura, Wright (2016) "Optimal component sizing in a two-reservoir passive energy harvesting system". PowerMEMS
- Lechêne, <u>Cowell</u> et al. (2016) "Organic solar cells and fully printed super-capacitors optimized for indoor light energy harvesting". Nano Energy
- <u>Cowell</u> et al. (2014) "Composite carbon-based ionic liquid supercapacitor for high-current micro devices". Journal of Physics: Conference Series
- Mascareñas et al. (2014) "A Vibro-haptic Human Machine Interface for Structural Health Monitoring." Structural Health Monitoring, Sage Journal.

STUDENT MENTORING

•	Experimental design (printed electronics fabrication). Qian Zhang, lan Lin	2014-16
•	Mathematical modeling. Katherine Latimer, Karthik Gururangan	2015-17

PRESENTATIONS

- Printed Energy Harvesting for the Internet of Things. University of the Philippines. Jan 2016
- Energy Harvesting for Powering Devices in the Internet of Things. Intel Corp. April 2015
- Powering Devices in the Internet of Things. Berkeley Wireless Research Center. Jan 2015
- Expo and Demonstration: Fully Integrated, Printed, Self-Rechargeable Wireless Sensor Node for Engine and Motor Condition Monitoring. FlexTech Conference 2015
- Powering the Industrial Internet. Berkeley Mechanical Engineering Advisory Board. Oct 2014