Handbook on basic analysis

Andriy Zhugayevych October 9, 2011

1	Constants	1
2	sums and products	1
	.1 Series expansion	
	.2 Finite sums and products	4
	.3 Infinite sums and products	2
	.4 Continued fractions	4
3	ntegrals	:
	.1 Indefinite integrals	:
	.2 Definite integrals	
	.3 Multiple integrals	
4	Asymptotic methods	ţ
	.1 Summation	,
	.2 Integration	
	.3 Saddle-point methods	
5	ntegral transforms	(
	.1 Fourier transform	6
	.2 Laplace transform	
6	Discrete transforms	í
	.1 Fourier series	í
	.2 Discrete Fourier transform	
	.3 Generating function	

§1. Constants

 $\begin{array}{l} \pi \approx 3.1416, \quad {\rm e} \approx 2.7183, \quad \ln 10 \approx 2.3026, \quad \lg 2 \approx 0.30103. \\ {\rm Euler's\ constant}\ \gamma = \lim_{n \to \infty} \left(\sum_{k=1}^n k^{-1} - \ln n \right) \approx 0.5772. \end{array}$

§2. Sums and products

2.1. Series expansion

Taylor's formula:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + R_{n}(x),$$

where

$$R_n(x) = \frac{1}{n!} \int_0^x f^{(n+1)}(y)(x-y)^n \, \mathrm{d}y = \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1}, \ 0 < \xi < x.$$

Multidimensional Taylor's formula:

$$f(x_1, \dots, x_d) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{i=1}^{d} x_i \partial_i \right)^n f = \sum_{n_1, \dots, n_d \geqslant 0} f^{(n_1, \dots, n_d)} \frac{x_1^{n_1} \dots x_d^{n_d}}{n_1! \dots n_d!}.$$