Description

Telecom Customer Churn Prediction

Customer Churn is a burning problem for Telecom companies. In this report, we simulate one such case of customer churn where we work on a data of post-paid customers with a contract. The data has information about the customer usage behaviour, contract details and the payment details. The data also indicates which were the customers who cancelled their service. Based on this past data, we shall build a model which can predict whether a customer will cancel their service in the future or not.

DataSet

Variables	Description	Туре
Churn	1 if customer cancelled service, 0 if not	Categorical
	number of weeks customer has had	Continuous
AccountWeeks	active account	_
	1 if customer recently renewed contract, 0	Categorical
ContractRenewal	if not	
DataPlan	1 if customer has data plan, 0 if not	Categorical
DataUsage	gigabytes of monthly data usage	Continuous
CustServCalls	number of calls into customer service	Continuous
DayMins	average daytime minutes per month	Continuous
DayCalls	average number of daytime calls	Continuous
MonthlyCharge	average monthly bill	Continuous
OverageFee	largest overage fee in last 12 months	Continuous
RoamMins	average number of roaming minutes	Continuous

The dataset has 3333 observations with 11 variables. Churn is considered as the Dependent variable and all other attributes as Independent variables.

Assumption

• The data has one dependent variable and other response variables

Hypothesis Formulation

The assignment aim is to identify the predictor variables which are significant for customer Churn.

Null Hypothesis (Ho): No predictor can predict Churn

Alternate Hypothesis (Ha): At least one of the predictors can predict customer Churn

Importing libraries

Analysis of Dataset

1. Check for missing values

Here we do not have null/ missing values

2. Balance of the target variable

14.5% customers have churned and 85.5% has not churned

3. Correlation among all variables

Data Usage and Data Plan are highly corelated. Monthly Charge is also highly correlated with Data Usage, Data Plan and Day Mins. Churn does not seem to be highly corelated with any of the variables. Churn has maximum correlation with Contract Renewal, Customer Service Calls and Day Mins. Contract Renewal, Data Plan and Data usage is negatively correlated to Churn

4. Convert binary variables into factors

Here 3 variables - Churn, ContractRenewal and DataPlan are converted into factors

5. Summary of the dataset

Max. :350.8

Max. :165.0

Churn AccountWeeks ContractRenewal DataPlan DataUsage CustServCalls							
0:2850	Min. :	1.0	0: 323	0:2411	Min. :0.	.0000	Min. :0.000
1: 483	1st Qu.	: 74.0	1:3010	1: 922	1st Qu.:0	0.0000	1st Qu.:1.000
:1.000	Mediar	101.0: ח			Median	:0.000	0 Median
:1.563	Mean	:101.1			Mean	:0.816	5 Mean
Qu.:2.000		.:127.0			3rd Qu	.:1.7800	3rd
:9.000	Max.	:243.0			Max.	:5.4000) Max.
DayMi	ns	DayCalls	MonthlyCharge	Ove	rageFee	Roa	mMins
Min. : 0	0.0	Min. : 0.0	Min. : 14.00	Min.	: 0.00	Min.	: 0.00
1st Qu.:1	143.7	1st Qu.: 87.0	1st Qu.: 45.00	1st Qu	.: 8.33	1st Qu	.: 8.50
Median :	179.4	Median :101.0	Median : 53.50	Median	:10.07 N	ledian :	10.30
Mean :	179.8	Mean :100.4	Mean : 56.31	Mean	:10.05	Mean	:10.24
3rd Qu.:2	216.4	3rd Qu.:114.0	3rd Qu.: 66.20	3rd Qu	.:11.77	3rd Qu	.:12.10

Max. :111.30

Max. :18.19

Max. :20.00

Exploratory Data Analysis

1.Continuous Variables

AccountWeeks

Boxplot

Histogram

Density Plot

Qplot

Data Usage

Boxplot

Density Plot

Qplot

CustServCalls

Boxplot

histogram of Customer Service calls

No. of customer service calls

Qplot

Density Plot

Though this is a numeric variable, from the above figure, we understand that it has specific levels. So, we will explore its influence on Churn using proportion table

prop.table(table(mydata\$CustServCalls,mydata\$Churn),1)*100

0 1

0 86.80057 13.19943

1 89.66977 10.33023

2 88.53755 11.46245

3 89.74359 10.25641

4 48.31461 51.68539

DayMins

Boxplot

Qplot

Density Plot

DayCalls

Boxplot

Qplot

Density Plot

MonthlyCharge

Boxplot

Qplot

Density Plot

OverageFee

Boxplot

Histogram of largest overage fee in last 12 months

Qplot

Density Plot

RoamMins

Boxplot

Histogram of average number of roaming minutes

average number of roaming minutes

Qplot

Density Plot

2. Categorical Variables

ContractRenewal

Contract Renewal Status vs Churn Status

Churn Status No vs Yes

prop.table(table(mydata\$ContractRenewal,mydata\$Churn),1)*100

0 1

0 57.58514 42.41486

1 88.50498 11.49502

table(mydata\$Churn, mydata\$ContractRenewal)

0 1

0 186 2664

1 137 346

DataPlan

Data Plan Status vs Churn Status

Churn Status No vs Yes

prop.table (table (mydata Data Plan, mydata Churn), 1)*100

0 1

0 83.28494 16.71506

1 91.32321 8.67679

table(mydata\$Churn, mydata\$DataPlan)

0 1

0 2008 842

1 403 80

The probability of an account churning is higher if the account has not subscribed to a data plan.

Churn

prop.table(table(mydata\$Churn))*100

0 1

85.50855 14.49145

In the given dataset, customers who has canceled service vs not canceled service is 14.49% and 85.51% respectively

2. Relation between variables

Data Usage & Data Plan

Monthly Charge & Data Plan

Day Mins & Data Plan

Contract Renewal & Data Plan

table(mydata\$ContractRenewal, mydata\$DataPlan)

0 1

0 231 92

1 2180 830

Density plots of all variables:

Data Slicing

Splitting the dataset into train and test dataset dim(testdata)

[1] 999 11

> dim(traindata)

[1] 2334 11

85.48% of train data has not cancelled and 14.52% has cancelled service 85.59% of train data has not cancelled and 14.41% has cancelled service

table(traindata\$Churn)

0 1

1995 339

Logistic Regression

Model 1

Including all the variables:

Call: glm(formula = traindata\$Churn ~ ., family = "binomial", data = traindata)

Coefficients:

(Intercept) AccountWeeks ContractRenewal1 DataPlan1

-6.196e+00 -6.692e-05 -1.865e+00 -1.954e+00

DataUsage CustServCalls DayMins DayCalls

-1.008e+00 5.302e-01 -1.227e-02 2.771e-03

MonthlyCharge OverageFee RoamMins

1.472e-01 -1.094e-01 9.546e-02

Degrees of Freedom: 2333 Total (i.e. Null); 2323 Residual

Null Deviance: 1934

Residual Deviance: 1569 AIC: 1591

glm(formula = traindata\$Churn ~ ., family = "binomial", data = traindata)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.8694 -0.5253 -0.3666 -0.2191 2.9595

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.196e+00 6.774e-01 -9.148 < 2e-16 ***

AccountWeeks -6.692e-05 1.654e-03 -0.040 0.967737

ContractRenewal1 -1.865e+00 1.715e-01 -10.879 < 2e-16 ***

DataPlan1 -1.954e+00 6.789e-01 -2.879 0.003992 **

DataUsage -1.008e+00 4.629e-01 -2.177 0.029498 *

CustServCalls 5.302e-01 5.375e-02 9.865 < 2e-16 ***

DayMins -1.227e-02 7.886e-03 -1.556 0.119610

DayCalls 2.771e-03 3.277e-03 0.846 0.397798

MonthlyCharge 1.472e-01 4.721e-02 3.117 0.001827 **

OverageFee -1.094e-01 8.268e-02 -1.323 0.185827

RoamMins 9.546e-02 2.743e-02 3.480 0.000502 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1934.3 on 2333 degrees of freedom

Residual deviance: 1568.8 on 2323 degrees of freedom

AIC: 1590.8

Number of Fisher Scoring iterations: 5

AccountWeeks, DayMins, DayCalls and OverageFee seems to be less significant

There could be multicollinearity

Odds Ratio of all variables

exp(coef(logmodel)) #Odds ratio

(Intercept) AccountWeeks ContractRenewal1 DataPlan1

DataUsage CustServCalls DayMins DayCalls

MonthlyCharge OverageFee RoamMins

Probability

exp(coef(logmodel))/(1+exp(coef(logmodel))) #Probability

(Intercept) AccountWeeks ContractRenewal1 DataPlan1

0.002032931 0.499983271 0.134089236 0.124069438

DataUsage CustServCalls DayMins DayCalls

MonthlyCharge OverageFee RoamMins

We shall create a null model for comparison with the created model. A null model does not have independent variable coefficients

Call: glm(formula = traindata\$Churn ~ 1, family = "binomial", data = traindata)

Coefficients:

(Intercept)

-1.772

Degrees of Freedom: 2333 Total (i.e. Null); 2333 Residual

Null Deviance: 1934

Residual Deviance: 1934 AIC: 1936

Call:

glm(formula = traindata\$Churn ~ 1, family = "binomial", data = traindata)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.5603 -0.5603 -0.5603 1.9644

Coefficients:

Estimate Std. Error z value Pr(>|z|)

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1934.3 on 2333 degrees of freedom

Residual deviance: 1934.3 on 2333 degrees of freedom

AIC: 1936.3

Number of Fisher Scoring iterations: 4

Likelihood ratio test

```
Model 1: traindata$Churn ~ AccountWeeks + ContractRenewal + DataPlan +
DataUsage + CustServCalls + DayMins + DayCalls + MonthlyCharge +
OverageFee + RoamMins

Model 2: traindata$Churn ~ 1

#Df LogLik Df Chisq Pr(>Chisq)

1 11 -784.39

2 1 -967.14 -10 365.5 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

p value is 2.2e-16. Null hypothesis is rejected. Hence the model is a valid one.

Check for multicollinearity

Heteroscedasticity test

VIF values of the variables:

AccountWeeks	ContractRer	newal DataPI	an	DataUsage	CustServCalls
1.006819	1.055450	17.1582	205	73.345912	1.067725
DayMins	DayCalls	MonthlyCharge	Ove	erageFee	RoamMins
39.739575	1.005319	112.488165	9.2	264825	1.213842

VIF values of DataPlan, DataUsage, DayMins, MonthlyCharge, OverageFee are too high (>5)

Hence there is multicollinearity

Data Usage and Data Plan are highly correlated. Monthly Charge is also highly correlated with Data Usage, Data Plan and Day Mins.

The multicolliniearity has caused the inflated VIF values for correlated variables, making the model unreliable.

Model 2:

We will create a model after dropping DataUsage and Monthly Charge

Call: glm(formula = traindata\$Churn ~ ., family = "binomial", data = traindata[,
-c(5, 9)])

Coefficients:

(Intercept) AccountWeeks ContractRenewal1 DataPlan1

-5.8266021 0.0001276 -1.8544423 -0.8432731

CustServCalls DayMins DayCalls OverageFee

RoamMins

0.1003900

Degrees of Freedom: 2333 Total (i.e. Null); 2325 Residual

Null Deviance: 1934

Residual Deviance: 1581 AIC: 1599

 $glm(formula = traindata \$Churn \sim ., family = "binomial", data = traindata[, -c(5, 9)])$

Deviance Residuals:

Min 1Q Median 3Q Max -1.8573 -0.5273 -0.3674 -0.2249 2.9067

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.8266021 0.6501531 -8.962 < 2e-16 ***

AccountWeeks 0.0001276 0.0016461 0.078 0.938

ContractRenewal1 -1.8544423 0.1704254 -10.881 < 2e-16 ***

DataPlan1 -0.8432731 0.1661374 -5.076 3.86e-07 ***

CustServCalls 0.5187575 0.0533146 9.730 < 2e-16 ***

DayMins 0.0117894 0.0012405 9.504 < 2e-16 ***

DayCalls 0.0024574 0.0032711 0.751 0.453

OverageFee 0.1313893 0.0271639 4.837 1.32e-06 ***

RoamMins 0.1003900 0.0248231 4.044 5.25e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1934.3 on 2333 degrees of freedom

Residual deviance: 1581.4 on 2325 degrees of freedom

AIC: 1599.4

Number of Fisher Scoring iterations: 5

Now AccountWeeks and DayCalls seem to be less significant

Odds Ratio of variable in new model:

exp(coef(logmodel1)) #Odds ratio

(Intercept) AccountWeeks ContractRenewal1 DataPlan1

0.002948077 1.000127631 0.156540222 0.430299819

CustServCalls DayMins DayCalls OverageFee

RoamMins

1.105601987

Probability in new model:

exp(coef(logmodel1))/(1+exp(coef(logmodel1))) #Probability

(Intercept) AccountWeeks ContractRenewal1 DataPlan1

CustServCalls DayMins DayCalls OverageFee

RoamMins

0.525076436

VIF values for the new model:

AccountWeeks ContractRenewal DataPlan CustServCalls DayMins

DayCalls OverageFee RoamMins

1.004381 1.019200 1.013826

The values are less than 5, hence there is no multicollinearity

Print likelihood of the new model

(Intercept) AccountWeeks ContractRenewal1 DataPlan1

CustServCalls DayMins DayCalls OverageFee

RoamMins

1.105601987

If there is 1 unit change in CustServCalls, there is 1.679939003 units change in the odds of Churn being '1'

#Probability=1.679939003/1+1.679939003 = 0.6268572

#If there is 1 unit increase in CustServCalls, probability of customer canceling the service increases by 62.69%

We shall predict on test data:

table(testdata\$Churn,(predictTest>0.16))

Confusion Matrix:

FALSE TRUE

0 665 190

1 35 109

table(testdata\$Churn,(predictTest>0.5))

Confusion Matrix:

FALSE TRUE

0 840 15

1 120 24

Accuracy of the model is 86.48649%.

This predicts well on test data

Test set AUC: 0.8189327

If I build a model on my training dataset & then look at a new set of data, & pick from it random customers who cancelled and not cancelled the service, then 82% of the time, the churned customers will have higher predicted churn and the non-churn customers will have low predicted churn.

Model 3

We will use a stepwise variable reduction function using VIF values. The function works like this:

- It uses the full set of explanatory variables.
- It calculates VIF for each variable.
- It removes the variable with the single highest value,
- It then recalculates all VIF values with the new set of variables,

It removes the variable with the next highest value, and so on, until all values are below the threshold.

Deviance Residuals:

```
Min 1Q Median 3Q Max -1.8852 -0.5313 -0.3680 -0.2266 2.9254
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
```

```
(Intercept) -5.55093 0.51916 -10.692 < 2e-16 ***
```

DataPlan1 -0.84055 0.16602 -5.063 4.13e-07 ***

CustServCalls 0.51838 0.05325 9.735 < 2e-16 ***

DayMins 0.01178 0.00124 9.503 < 2e-16 ***

OverageFee 0.13017 0.02712 4.800 1.59e-06 ***

RoamMins 0.10042 0.02480 4.049 5.15e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1934.3 on 2333 degrees of freedom

Residual deviance: 1581.9 on 2327 degrees of freedom

AIC: 1595.9

Number of Fisher Scoring iterations: 5

Model 4

Model tuning and building model using balanced data using caret function Generalized Linear Model

2334 samples

10 predictor

2 classes: '0', '1'

No pre-processing

Resampling: Cross-Validated (5 fold, repeated 3 times)

Summary of sample sizes: 1867, 1867, 1867, 1867, 1868, 1867, ...

Addtional sampling using up-sampling

Resampling results:

Accuracy Kappa

0.7523568 0.3221023

variable importance

Overall

CustServCalls 100.0000

ContractRenewal1 85.4596

MonthlyCharge 21.6999

DataUsage 18.4421

RoamMins 17.6624

DataPlan1 10.2646

DayMins 7.5541

OverageFee 6.5668

AccountWeeks 0.2107

DayCalls 0.0000

We shall predict on the test data

Confusion Matrix:

0 1

0 643 212

1 30 114

Accuracy of 75.77578

Specificity and Sensitivity also shows that it is a good model

K Nearest Neighbour Algorithm

Model1

Removing correlated variables at k=7 gives better model performance:

Confusion Matrix:

0 1

0 837 18

1 128 16

Overall Accuracy of 85.49%

Model2

Confusion Matrix:

0 1

0 843 12

1 112 32

Overall Acuracy of 87.59%

Model3

Using Caret function

k-Nearest Neighbors

2334 samples

10 predictor

2 classes: '0', '1'

No pre-processing

Resampling: Cross-Validated (5 fold, repeated 3 times)

Summary of sample sizes: 1867, 1867, 1867, 1867, 1868, 1868, ...

Addtional sampling using up-sampling

Resampling results across tuning parameters:

k Accuracy Kappa

5 0.5825456 0.09842483

7 0.5582674 0.09337804

9 0.5534159 0.09000191

Accuracy was used to select the optimal model using the largest value.

The final value used for the model was k = 5.

Model4

After normalising continuous variables

k-Nearest Neighbors

2334 samples

10 predictor

2 classes: '0', '1'

No pre-processing

Resampling: Cross-Validated (3 fold)

Summary of sample sizes: 1556, 1556, 1556

Resampling results across tuning parameters:

- k Accuracy Kappa
- 5 0.8924593 0.4702685
- 7 0.9027421 0.5105868
- 9 0.9010283 0.4892428
- 11 0.9005998 0.4778552
- 13 0.8950300 0.4318318
- 15 0.8971722 0.4283900
- 17 0.8907455 0.3876009
- 19 0.8856041 0.3337831
- 21 0.8834619 0.3136189
- 23 0.8787489 0.2759238

Accuracy was used to select the optimal model using the largest value.

The final value used for the model was k = 7.

Accuracy was used to select the optimal model using the largest value.

We shall now predict on test data

Confusion Matrix and Statistics:

Reference

Prediction 0 1

0 841 89

1 14 55

Accuracy: 0.8969

95% CI: (0.8764, 0.9151)

No Information Rate: 0.8559

P-Value [Acc > NIR]: 7.230e-05

Kappa: 0.4666

Mcnemar's Test P-Value: 3.067e-13

Sensitivity: 0.38194

Specificity: 0.98363

Pos Pred Value: 0.79710

Neg Pred Value: 0.90430

Prevalence: 0.14414

Detection Rate: 0.05506

Detection Prevalence: 0.06907

Balanced Accuracy: 0.68279

'Positive' Class: 1

NAÏVE BAYES

A-priori probabilities:

Υ 0 1 0.8547558 0.1452442 Conditional probabilities: AccountWeeks Y [,1] [,2] 0 100.9248 39.81273 1 102.4189 39.56451 ContractRenewal Y 0 1 0 0.06666667 0.93333333 1 0.26843658 0.73156342 DataPlan Y 0 1 0 0.7082707 0.2917293 1 0.8259587 0.1740413 DataUsage Y [,1] [,2] 0 0.8536341 1.281012 1 0.5861652 1.202507 CustServCalls Y [,1] [,2] 0 1.425063 1.101551 1 2.050147 1.511443

DayMins

Y [,1] [,2]

0 175.7853 50.34229

1 206.1029 68.66804

DayCalls

Y [,1] [,2]

0 100.2581 19.57531

1 100.7876 21.29996

MonthlyCharge

Y [,1] [,2]

0 55.58782 15.93325

1 59.27109 15.74741

OverageFee

Y [,1] [,2]

0 9.960682 2.489379

1 10.612183 2.432404

RoamMins

Y [,1] [,2]

0 10.17840 2.662703

1 10.80029 2.748679

Output gives prior probabilities

Churned customers have 102.4189 number of active account weeks with std deviation of 39.56451,

#0.5861652 gigabytes of monthly data usage with std dev of 1.202507, 2.050147 calls made to customer service with std dev of 1.511443,

#206.1029 average daytime mins/month with std dev of 68.66804,100.7876 average daytime calls with std dev of 21.29996, 59.27109 of monthly charge with std dev of 15.74741,

#10.612183 of largest overage fee in last 12 months with std dev of 2.432404, 10.80029 average roaming mins with std dev of 2.748679

We shall now predict on test data:

Confusion matrix

0 1

0 840 15

1 119 25

Accuracy is 86.58%

Specificity and sensitivity shows that this is a good model

	Accuracy	Sensitivity	Specificity
Logistic	_	•	
Regression	86.2	34.7	94.9
K Nearest			
Neighbors	91.9	46.6	99.6
Naive Bayes	87.6	24.3	98.2

Accuracy and Sensitivity are relatively higher for K Nearest Neighbors