sine basis 08

Statistics: p-values adjusted for search volume

p control of the cont												
set-level					peak-level					mm mm mm		
р с	p_{FWE-c}	<i>g</i> corrFDR-c	orr E	$p_{ m uncorr}$	p_{FWE-c}	g corrFDR-co	<i>T</i> orr	(Z_{\equiv})	p _{uncorr}			
_β c	P _{FWE-0} 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.781 0.781 0.781 0.781 0.781 0.781 0.781 0.781 0.781 0.781	orr E 2 3 11 9 6 6 1 3 14 8 3	0.675 0.598 0.294 0.343 0.442 0.781 0.598 0.237 0.372 0.598	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995	2.80 2.79 2.77 2.77 2.77 2.76 2.76 2.76 2.76 2.76	2.79 2.78 2.76 2.76 2.75 2.75 2.75 2.75 2.75	ρ _{uncorr} 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003	-32 -16 46 -42 -38 -40 14 6 -6 -46	66 -68 -26 -22 -8 -36 -54 -92 -34 -24	-2 -14 24 -18 -40 34 24 -8 16 -2 -12
	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.781 0.781 0.781 0.781 0.781 0.781 0.781 0.781 0.781	7 4 9 9 2 4 2 2 4 2	0.404 0.536 0.343 0.675 0.536 0.675 0.675 0.675 0.536	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995	2.74 2.73 2.72 2.72 2.69 2.69 2.68 2.68 2.68	2.73 2.72 2.72 2.71 2.68 2.68 2.67 2.67 2.66	0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004	-38 22 46 -30 6 34 2 22 -10 24 32	0 -36 -2 -46 -12 -70 -14 -56 -26 10 -42	-28 6 -10 38 20 28 -10 60 -4 54 -46

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 2.33, p = 0.010 (1.00 Ω) egrees of freedom = [1.0, 498.0]

Extent threshold: k = 0 voxels

FWHM = 6.7 6.6 6.8 mm mm mm; 3.3 3.3 3.4 {voxels}

Expected voxels per cluster, $\langle k \rangle = 10.794$ Volume: 1704456 = 213057 voxels = 5261.9 resels

Expected number of clusters, $\langle c \rangle = 222.53$ Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 37.51 voxels)

FWEp: 5.106, FDRp: Inf, FWEc: 217, FDRo2.494.5