Polynômes

Dans le cours, nous avons choisi la notation X pour désigner la fonction $X: \begin{bmatrix} \mathbb{R} & \to & \mathbb{R} \\ t & \mapsto & t \end{bmatrix}$.

En conséquence, l'ensemble des polynômes est noté $\mathbb{R}[X]$. Exemple : $P = 2X^2 - X + 1 \in \mathbb{R}[X]$.

On peut opter pour d'autres notations : si Y désigne la fonction $Y: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ t & \mapsto & t \end{array}$

l'ensemble des polynômes sera noté $\mathbb{R}[Y]$. Exemple : $P = Y^3 - 2Y \in \mathbb{R}[Y]$.

La notation choisie officiellement dans le programme est x, pour désigner la fonction $x: \begin{bmatrix} \mathbb{R} & \to & \mathbb{R} \\ t & \mapsto & t \end{bmatrix}$

On note dans ce cas l'ensemble des polynômes $\mathbb{R}[x]$. Exemple $P = 2x^4 - 2x + 2 \in \mathbb{R}[x]$. (Attention, x ne désigne pas un réel fixé ici!...)

Pour s'habituer un peu à cette notation, on utilisera $\mathbb{R}[x]$ dans certains exercices de cette feuille.

Exercice 1 (Calcul de degré)

Donner, sans aucun calcul, le degré et le coefficient dominant.

(a)
$$P = 1 - \frac{X^2}{3}(X+6)$$

(b)
$$Q = (1+2X)^2 - 4X^2 - 1$$

(c)
$$R = 2(X^6 - \sqrt{2}X + 1)(3X^5 - X + 1)$$

Divisions euclidiennes

Exercice 2 (Divisions à poser)

Donner les divisions euclidiennes de A par B dans les cas suivants :

(a)
$$A = 3X^3 - 2X + 1$$
 et $B = X^2 - 2X + 1$.

(b)
$$A = 2X^5 + X^3 - 4X^2 - 3$$
 et $B = X^2 - X$.

(c)
$$A = X$$
 et $B = X^2 + 2X - 1$.

(d)
$$A = X^2$$
 et $B = X^2 + X + 1$.

(e)
$$A = 3X^4 + 3X^3 - 3X - 3$$
 et $B = X^2 - 1$.

Exercice 3 (Déterminer le reste)

Soit $n \in \mathbb{N}^*$. On travaille dans $\mathbb{R}[x]$.

(a) Déterminer le reste dans la division euclidienne de $x^n - x + 1$ par x - 2.

On écrira $x^n - x + 1 = (x - 2)Q(x) + R(x)$ et on cherchera à identifier les coefficients de R en évaluant en certaines valeurs bien choisies.

(b) De même avec la division euclidienne

de
$$x^n - x + 1$$
 par $(x - 2)(x - 1)$.

(c) De même avec la division euclidienne de $x^n - x + 1$ par $(x - 2)^2$.

Racines et factorisation

Exercice 4 (Dérivées positives)

Soit $P \in \mathbb{R}[X]$ et $a \in \mathbb{R}$.

On suppose que P(a) > 0 et $\forall i \in \mathbb{N}^*, P^{(i)}(a) \ge 0$.

Montrer que P n'a pas de racine dans $[a, +\infty[$.

Exercice 5 (Lien racines/coefficients)

1. Soit $P \in \mathbb{R}[X]$ un polynôme unitaire de degré 3 admettant 3 racines réelles α, β, γ (comptées avec multiplicité, donc pas forcément distinctes) .

Exprimer $\alpha + \beta + \gamma$, $\alpha\beta + \alpha\gamma + \beta\gamma$ et $\alpha\beta\gamma$ en fonction des coefficients de P.

2. Résoudre le système $\begin{cases} x+y+z=4\\ xy+xz+yz=5\\ xyz=2 \end{cases}$

Exercice 6 (Factorisation)

Factoriser les polynômes suivants :

(a)
$$R = 2X^4 - 2X^2 - 4X + 4 \text{ dans } \mathbb{R}[X],$$

(b)
$$Q = x^4 - 2x^3 - 3x^2 + 4x + 4$$
 dans $\mathbb{R}[x]$,

(c)
$$P = (4x^4 - 1)(x^2 + 1)$$
 dans $\mathbb{R}[x]$.

Exercices classiques

Exercice 7 (Équations fonctionnelles classiques)

Déterminer tous les polynômes $P \in \mathbb{R}[X]$

satisfaisant:

(a)
$$P(-X) = P(X)$$
 (polynômes pairs)

(b)
$$P(-X) = -P(X)$$
 (polynômes impairs)

(c) P' = P

(d)
$$P(X^2) = P(X)$$

(e)
$$P(X+1) = P(X)$$

Indication: que vaut P(n) pour $n \in \mathbb{N}$?

Exercice 8 (Une injection)

Soient a_0, a_1, \dots, a_n des réels deux à deux distincts.

Montrer que l'application

$$\varphi: \begin{array}{ccc} \mathbb{R}_n[X] & \to & \mathbb{R}^{n+1} \\ P & \mapsto & (P(a_0), P(a_1), \dots, P(a_n)) \end{array}$$

est injective.

Exercice 9 (Valeurs imposées)

Soit $n \ge 1$. On cherche un polynôme $P \in \mathbb{R}[x]$ tel que $\forall k \in [1, n+1], P(k) = \frac{1}{k}$.

- 1. Existe-t-il un polynôme $P \in \mathbb{R}_{n-1}[x]$ satisfaisant cette propriété? (On introduira Q(x) = xP(x) 1.)
- 2. On veut montrer qu'il existe un polynôme de degré n satisfaisant cette propriété.
- (a) Analyse : supposons qu'il existe bien un tel polynôme P avec $\deg(P)=n.$

On pose $Q(x) = xP(x) - 1 \in \mathbb{R}[x]$.

Montrer qu'alors : $Q(x) = \frac{(-1)^n}{(n+1)!} \prod_{k=1}^{n+1} (x-k)$.

(b) Synthèse : on pose $Q(x) = \frac{(-1)^n}{(n+1)!} \prod_{k=1}^{n+1} (x-k)$.

Justifier que Q+1 est divisible par x dans $\mathbb{R}[x]$ et conclure.

Exercice 10 (Polynôme interpolateur de Lagrange)

Soit $n \in \mathbb{N}$ et x_0, \dots, x_n des réels deux à deux distincts. Pour tout $i \in [0, n]$, on définit le polynôme :

$$L_i(X) = \prod_{j \in [0,n] \setminus \{i\}} \left(\frac{X - x_j}{x_i - x_j} \right) \in \mathbb{R}[X]$$

- 1. (a) Pour tout $i \in [\![0,n]\!]$, déterminer le degré et le coefficient dominant de L_i .
- (b) Pour tout couple $(i, k) \in [0, n] \times [0, n]$, calculer $L_i(x_k)$. (On distinguera les cas i = k et $i \neq k$.)
- 2. Soient y_0, y_1, \dots, y_n des réels (pas forcément distincts). On pose :

$$P(X) = \sum_{i=0}^{n} y_i L_i(X) \in \mathbb{R}[X].$$

- (a) Montrer que:
- $P \in \mathbb{R}_n[X]$
- $\forall k \in [0, n], \ P(x_k) = y_k.$
- (b) Montrer que P est l'unique polynôme de $\mathbb{R}[X]$ satisfaisant ces deux propriétés.

(On introduira un polynôme Q satisfaisant aussi ces propriétés, et on montrera que Q=P)

Trouver tous les polynômes...

On souhaite déterminer tous les polynômes $P \in \mathbb{R}[x]$ non nuls tels que $P(x^2) = (P(x))^2$.

1. Montrer qu'un tel polynôme est nécessairement unitaire.

En déduire qu'on peut l'écrire sous la forme $P = x^n + Q$ avec $Q \in \mathbb{R}_{n-1}[x]$ pour un $n \in \mathbb{N}$.

- 2. En étudiant le degré de Q, montrer que Q=0.
- 3. Conclure.

Trouver tous les polynômes... (oral HEC 2014)

On souhaite déterminer tous les polynômes $P \in \mathbb{R}[x]$ non nuls tels que $(P')^2 = 2PP''$.

- 1. Montrer que si un polynôme non nul vérifie cette relation, son degré est nécessairement égal à 0 ou 2.
- 2. Déterminer tous les polynômes non nuls vérifiant la relation demandée.

Comment s'écrivent-ils sous forme factorisée?