

ОСНОВЫ АНАЛИЗА ДАННЫХ В МЕЖДУНАРОДНЫХ ОТНОШЕНИЯХ

Лекция 2

Маргарита Бурова

Москва, 2018

ЗАДАЧИ МАШИННОГО ОБУЧЕНИЯ

Классификация

Регрессия

Кластеризация

Регрессии

- простые
- множественные

- линейные
- нелинейные

Регрессия – это способ объяснить зависимость переменной через одну или набор других.

Y – это переменная, которую планируют объяснять. Ее называют зависимой.

X₁,..., X_n – это переменные, через которую планируют объяснить Ү. Их называют независимыми/регрессорами/предикторами/факторами

- 1. Объяснить разброс/неоднородность зависимой переменной через независимые
- 2. Предсказать значения зависимой переменной через независимые.

3. Определить вклад каждой из независимых переменных

РЕГРЕССИИ: НЕМНОГО МАТЕМАТИКИ

Объяснить одну переменную набором других = Восстановить функцию.

Т.е. описать их взаимосвязь уравнением:

$$Y = f(X)$$

В простейшем случае взаимосвязь описывается линейным уравнением:

$$Y = a_1 X_1 + a_2 X_2 \dots a_M X_M + b$$

М – число предикторов.

РЕГРЕССИИ:ОДНОМЕРНАЯ МОДЕЛЬ

 $\widehat{Y} = \widehat{a} X_1 + \widehat{b}$ - эмпирические значения по модели

Ошибкой называется разница между действительными значениями и эмпирическими:

$$E = Y - \hat{Y} = \sum_{i=1}^{n} (y_i - \hat{y}_i) = \sum_{i=1}^{n} e$$

Наша цель: минимизировать суммарную квадратичную ошибку

$$\sum_{i=1}^{n} e^2 = \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 = \sum_{i=1}^{n} (aX + b - y_i)^2 \to \min_{a,b}$$

РЕГРЕССИИ:ОДНОМЕРНАЯ МОДЕЛЬ

Goodness-of-fit – оценка того, как хорошо мы смогли описать восстановленной функцией данные.

Для оценки качества регрессии используется статистика, называемая коэффициент детерминации - \mathbb{R}^2 .

 \mathbb{R}^2 показывает, какую долю разброса данных мы объяснили построенной регрессией.

 $R^2 > 0.7$ — приемлемое качество; $R^2 < 0.5$ — неудачное моделирование.

ТЕПЕРЬ ПОВТОРИМ НА КОТИКАХ

ТЕПЕРЬ ПОВТОРИМ НА КОТИКАХ

ТЕПЕРЬ ПОВТОРИМ НА КОТИКАХ

$$\mathbf{b}_1 = \frac{\mathbf{y}}{\mathbf{x}}$$

$$= b_0 + b_{1^{\times}} + b_{2^{\times}} + b_{3^{\times}}$$

ЛИНЕЙНАЯ РЕГРЕССИЯ: ПРИМЕР

Team	Avg. Points Per Game	Number of Wins In Season
Atlanta Falcons	33.8	11
New Orleans Saints	29.3	7
New England Patriots	27.6	14
Green Bay Packers	27	10
Dallas Cowboys	26.3	13
Arizona Cardinals	26.1	7
Oakland Raiders	26	12
Indianapolis Colts	25.7	8
San Diego Chargers	25.6	5
Buffalo Bills	24.9	7
Pittsburgh Steelers	24.9	11
Washington Redskins	24.8	8
Kansas City Cheifs	24.3	12
Tennesee Titans	23.8	9
Carolina Panthers	23.1	6
Philadelphia Eagles	22.9	7
Miami Dolphins	22.7	10
Seattle Seahawks	22.1	10
Tampa Bay Buccaneers	22.1	9
Detroit Lions	21.6	9

ЛИНЕЙНАЯ РЕГРЕССИЯ: ПРИМЕР

ЛИНЕЙНАЯ РЕГРЕССИЯ: ПРИМЕР

Avg Points Per Game vs Number of Wins in a season (Training Set)

Гипотеза- некоторое утверждение относительно изучаемого набора данных

Существует нулевая гипотеза и альтернативная гипотеза

ПРОВЕРКА ГИПОТЕЗ

ПРОВЕРКА ГИПОТЕЗ

- Одновыборочные
- Двухвыборочные
- Парные

ОШИБКИ 1 И 2 РОДА

Truth about the population

Ho true

H_a true

Reject H_0 Decision
based on
sample
Accept H_0

Type I Correct decision

Correct Type II decision error

ОШИБКИ 1 И 2 РОДА

Type I error (false positive)

Type II error

(false negative)

Р-значение (англ. P-value) — величина, используемая при тестировании статистических гипотез. Фактически это вероятность ошибки при отклонении нулевой гипотезы (ошибки первого рода).

- Если добавить новые данные, то p-value может измениться
- Не стоит зацикливаться на значении 0,05

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ