Copia per i rappresentanti depli studenti

Verona, 22 giugno 1999	Algebra lineare	prova scritta
T1	E1	
Votazione:	E2	
T2	E3	

T1) Si dia la definizione di matrice associata ad una applicazione lineare. Si dimostri che, se $f: V \to W$ è un'applicazione lineare, \mathscr{B} è una base ordinata di V, \mathscr{D} è una base ordinata di W e A è la matrice associata a f rispetto a queste basi, allora la dimensione dello spazio nullo N(f) coincide con la nullità di A.

- T2) Sia A una matrice hermitiana. Si provi che gli autovalori di A sono reali.
- E1) Si consideri il sistema lineare

$$\begin{cases} x + y + z = \lambda \\ x + y + \lambda z = 1 \\ x + \lambda y + z = 1 \\ \lambda x + y + z = 1 \end{cases}$$

e si dica per quali valori del parametro complesso λ esso ammette soluzione. Detta A_{λ} la matrice dei coefficienti del sistema, per $\lambda=-1$ si determini una base ortogonale dello spazio delle righe di A_{λ} .

E2) Sia $f: \mathbb{C}^3 \to \mathbb{C}^3$ l'applicazione lineare che ha come matrice associata, rispetto alla base

$$\mathcal{B} = \left\{ \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix} \right\}$$

su dominio e codominio,

$$B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

Si determini la matrice A associata ad f rispetto alla base canonica su dominio e codominio e si dica se la matrice A è diagonalizzabile. L'applicazione f è iniettiva? È suriettiva?

E3) Si consideri la matrice

$$B_{\beta} = \begin{bmatrix} \beta & i\sqrt{2} \\ i\sqrt{2} & i \end{bmatrix}$$

dove $\beta \in \mathbb{C}$. Si dica per quali valori di β la matrice è diagonalizzabile e per quali valori è diagonalizzabile con una matrice unitaria.

