Are Advanced Chips the New Oil?

distracted_franklin: Chi Min Liu, Elian Guessoum, Chia-Min Chiu

October 30th 2025

Agenda	01 Importance of Semiconductor Industry
	02 Global Market Dynamics & Export
	03 Cross-Sector Influence of Semiconductors
	04 Insights from Data

01 Importance of Semiconductor Industry

03 Cross-Sector Influence of Semiconductors

02 Global Market Dynamics & Export

04 Insights from Data

Why Semiconductors Matter

Chips Power Modern Technology

- From smartphones to autonomous driving to AI computing
- Semiconductors form the backbone of today's digital infrastructure.

Chips Are Everywhere

Semiconductors in Everyday Life

The Evolution of Chip Technology

• From vacuum tubes to microchips, the continuous miniaturization and efficiency gains of semiconductors have enabled exponential advances in computing power.

Moore's Law

 The number of transistors on a chip doubles approximately every two years, driving performance improvements and cost reductions.

The Chip Industry Is A Global Industry

Supply Chain of Chip Industry

Source: @Eric Flaningam

01 Importance of Semiconductor Industry

03 Cross-Sector Influence of Semiconductors

02 Global Market Dynamics & Export

04 Insights from Data

The Chip Industry Is A Global Industry

Global Semiconductor Exports Heat Map - 2023

Global Export: Values and Market Shares

Export Race

Who's the market dominator?

Supply Chain Crisis

01 Importance of Semiconductor Industry

03 Cross-Sector Influence of Semiconductors

02 Global Market Dynamics & Export

04 Insights from Data

Data Sources and Variables

- Industry streams
- Financial and market data obtained from Bloomberg (2000–2025)
 - market capitaliza
 - revenue
 - net income
 - R&D
 - expenditures
 - capital
 - expenditure
 - stock price

Methodology

1. Data Cleaning	Removed missing and inconsistent entries	
2. Transformation	Weighted mean and Z-score transformation	
3. Cross-Correlation	Identify temporal link patterns	
4. Granger Causality Tests	Determine directionality of sectoral impacts	

Consumer electronics revenue drives semiconductor demand

Semiconductor IC Design & Consumer Electronics

- Consumer Electronics revenue exhibits strong cyclical fluctuations tied to product launches and demand waves.
- Granger causality indicates Consumer Electronics leads IC Design
 - Lag -4 → p-value = 0.0001 (measures how likely the observed effect is due to chance, p-value < 0.05: statistically significant)
 - Suggests semiconductor revenue typically follows consumer electronics trends by ~4 quarters

Automotive production drives semiconductor demand

Automotive Semiconductors & Automotives (End Applications)

- Both automotive and semiconductor revenue show strong correlated movements.
 - Granger causality indicates automotive revenue leads semiconductors revenue
 - Lag -1 \rightarrow p-value = 0.0004
 - Suggests semiconductor demand typically follows automotive revenue/production trends by ~1 quarters

Consumer electronics expansion stimulates innovation

Consumer Electronics Net Income → Semiconductor Upstream (Equipment & Materials) R&D Expenditure

Significant Granger causality (p < 0.05 at lag 3–4): consumer electronics income growth precedes upstream R&D expansion by
~3–4 quarters. (Innovation investment responds to profitability cycles in downstream consumer markets.)

Summary

Semiconductor Demand and Sectoral Feedback Loops

Causal Direction	Lag / p-value	Interpretation
Consumer Electronics (Revenue) → Semiconductors (Revenue)	lag 4 (p=0.0004)	Consumer electronics revenue drives semiconductor demand
Automotive (Revenue) → Semiconductors (Revenue)	lag 1 (p=0.0001)	Demand feedback from automotive production
Consumer Electronics (Net income) → Semiconductors (R&D)	lag 3 (p=0.02)	Consumer electronics growth leads semiconductor innovation

01 Importance of Semiconductor Industry

03 Cross-Sector Influence of Semiconductors

02 Global Market Dynamics & Export

04 Insights from Data

Semiconductors as the "Digital-Era Oil"

Understanding semiconductor dynamics helps us anticipate future technological and economic transitions.

- **Downstream demand** drives semiconductor growth, with consumer and tech sectors leading innovation cycles. (demand-pull cycle of innovation)
- As industries evolve, semiconductors remain the core catalyst of digital transformation and economic progress.
- Semiconductors act as the "Digital-Era Oil", powering productivity and technological progress.

Thank you

Appendix

Summary of Correlations and Causality Tests

Sector	Factor	Lag	Direction	P-value
Automotives	Revenue	lag = -1	Automotive → Semiconductors	p = 0.0001 (significant)
	R&D	lag = 4	Semiconductors → Automotive	p = 0.03 (significant)
EVs	Revenue	lag = 0	no significant causality	p > 0.05 (not significant)
	R&D	lag = 1	$\text{EVs} \rightarrow \text{Semiconductors}$	p = 0.02 (significant)
Consumer Electronics	Revenue	lag = -4	Consumer Electronics → Semiconductors	p = 0.0004 (significant)
	R&D	lag = 0	no significant causality	p > 0.05 (not significant)
	Net Income → R&D	lag = 3 – 4	Consumer Electronics (Net Income) → Upstream R&D	p≈ 0.01 (significant)
Al/Software/Cloud	Revenue	lag = 0	no significant causality	p > 0.05 (not significant)
	R&D	lag = 1	Al/Software/Cloud → Semiconductors	p = 0.04 (slightly significant)

Chips Export Value with CAGR % (1995-2023)

- Log-log scale chart
- Four Quadrants
 - High Initial, Low Final (Mature)
 - Low Initial, High Final (Stars)
 - Low Initial, Low Final
 - High Initial, High Final

Chips Exported Value & Market Share - Taiwan

Chips Exported Value & Market Share - China

Chips Exported Value & Market Share - South Korea

Chips Exported Value & Market Share - EU

Chips Exported Value & Market Share - USA

Chips Exported Value & Market Share - Japan

Chips Exported Value & Market Share - Germany

