ADAPTIVE MULTIPLE OPTIMAL LEARNING FACTORS FOR NEURAL NETWORK TRAINING

Jeshwanth Challagundla
Supervising Prof: Dr. Michael T. Manry
April 10 2015

Outline

- I. Multilayer perceptron review
- II. Review of neural network training algorithms
- III. Goals
- IV. Proposed algorithm
- V. Simulations
- VI. Conclusions

I. MLP Review

- Widely used for function approximation and pattern recognition
 - In function approximation a function that maps between input and output is approximated
 - In pattern recognition a received signal is assigned to one of a prescribed number of classes
- ■Known for its special properties of approximating Bayes discriminants and universal approximation
- □Function approximation is the focus of this thesis

 $\mathbf{W}_{oi} \rightarrow \text{Input weights}$ $\mathbf{W}_{oi} \rightarrow \text{Bypass weights}$ $\mathbf{W}_{oh} \rightarrow \text{Output to hidden weights}$

$$\mathbf{n}_{\mathbf{p}} = \mathbf{W} \cdot \mathbf{x}_{\mathbf{p}}$$

$$O_p(k) = \frac{1}{1 + e^{-n_p(k)}}$$

$$\mathbf{y}_{p} = \mathbf{W}_{oi} \cdot \mathbf{x}_{p} + \mathbf{W}_{oh} \cdot \mathbf{O}_{p}$$

$$E = \frac{1}{N_{_{v}}} \sum_{p=1}^{N_{_{v}}} \sum_{i=1}^{M} \left[t_{p}(i) - y_{p}(i) \right]^{2} \quad x_{p}(N+1)$$
 Input

II. Review of NN training algorithms

☐ Conjugate Gradient

Let,
$$\mathbf{w} = \text{vec}\{\mathbf{W}, \mathbf{W}_{oi}, \mathbf{W}_{oh}\}$$
, $\mathbf{g} = \text{vec}\{\mathbf{G}, \mathbf{G}_{oi}, \mathbf{G}_{oh}\}$

$$\mathbf{p} = \text{vec}\{\mathbf{P}, \mathbf{P}_{oi}, \mathbf{P}_{oh}\}$$

$$\mathbf{p}_{k+1} = \mathbf{g}_k + \mathbf{B}_1 \cdot \mathbf{p}_k$$

$$\mathbf{B}_1 = \frac{\mathbf{g}_{k+1}^T \mathbf{g}_{k+1}}{\mathbf{g}_k^T \mathbf{g}_k}$$
, $\mathbf{w}_{k+1} = \mathbf{w}_k + \mathbf{z} \cdot \mathbf{p}_k$

- \triangleright Minimizes quadratic error functions of n variables in n steps
- > No Hessian computation is required

☐ Levenberg Marquardt

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{e}$$

$$\mathbf{e} = [\mathbf{H'} + \lambda \mathbf{I}]^{-1} \mathbf{g'}$$

$$\mathbf{h'}(\mathbf{m}, \mathbf{n}) = \frac{\partial^2 \mathbf{E}}{\partial \mathbf{w}(\mathbf{m}) \partial \mathbf{w}(\mathbf{n})} \qquad \mathbf{g'}(\mathbf{m}) = \frac{-\partial \mathbf{E}}{\partial \mathbf{w}(\mathbf{m})}$$

- \triangleright By changing λ the algorithm interpolates between steepest descent and Gauss-Newton methods
- > Computationally very expensive
- Mostly used for small networks

Newton-related improved training

Newton-related algorithms usually converge faster per iteration

Output Weight Optimization

$$\mathbf{R} = \frac{1}{N_v} \sum_{p=1}^{N_v} \mathbf{X}_p \, \mathbf{X}_p^T$$

$$\mathbf{C} = \frac{1}{N_{v}} \sum_{p=1}^{N_{v}} \mathbf{X}_{p} \, \mathbf{t}_{p}^{\mathrm{T}}$$

Augmented input:

$$\mathbf{X}_{\mathbf{p}} = \begin{bmatrix} \mathbf{X}_{\mathbf{p}} \\ \mathbf{O}_{\mathbf{p}} \end{bmatrix}$$

$$\mathbf{W_o}^{\mathrm{T}} = \mathbf{R}^{-1} \cdot \mathbf{C}$$

- > Equivalent to Newton's method for output weights
- Computationally less expensive

OWO-MOLF

In each iteration:

- >Input weights are trained using
 - Learning factor vector \mathbf{z} of size $N_h \times 1$
 - Negative gradient vector **g**
- >Output weights are trained using OWO
- > z_k , k^{th} element of vector \mathbf{z} used to update all the weights connected to hidden unit k

$$y_{p}(i) = \sum_{n=1}^{N+1} w_{oi}(i,n) x_{p}(n) + \sum_{k=1}^{N_{h}} w_{oh}(i,k) f\left(\sum_{n=1}^{N+1} (w(k,n) + z_{k} g(k,n)) x_{p}(n)\right)$$

MOLF demonstration

> Learning factor vector **z** is computed as

$$\mathbf{z} = \mathbf{H}_{\mathbf{molf}}^{-1} \mathbf{g}_{\mathbf{molf}}$$

 \geq Element of matrix $\mathbf{H}_{\mathbf{molf}}$,

$$h_{\text{molf}}(k, j) = \frac{\partial^2 E}{\partial z_k \partial z_j}$$

$$\mathbf{g}_{\mathbf{molf}} = \left[-\partial \mathbf{E} / \partial \mathbf{z}_{1}, -\partial \mathbf{E} / \partial \mathbf{z}_{2}, \dots, -\partial \mathbf{E} / \partial \mathbf{z}_{N_{h}} \right]^{T}$$

> OWO-MOLF trains much faster than BP

□ OWO-Newton

In each iteration:

> Newton's method for input weights

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{e} \qquad \mathbf{w} = \text{vec}\{\mathbf{W}\}$$
$$\mathbf{e} = \mathbf{H}^{-1} \cdot \mathbf{g}$$

- $ightharpoonup \mathbf{H}
 ightharpoonup \mathrm{Hessian}$ of error with respect to input weights in the network
- $ightharpoonup \mathbf{g} \longrightarrow \text{negative input weight gradient vector}$
- > Output weights are solved using OWO

> OWO-Newton has simpler and faster code than LM for similar performance

□ Problems

- Little theoretical justification for using small second order modules in first order algorithms
- > Second order training is computationally very expensive
- Error decrease per iteration is larger in OWO-Newton, number of multiplies per iteration is less for OWO-MOLF

- Lemmas
- Lemma 1: Assume for quadratic $E(\mathbf{w})$, \mathbf{w} is divided into \mathbf{k} partitions \mathbf{w}_k If we minimize E with respect to \mathbf{z} producing an error $E_k = E(\mathbf{w}_1 + z_1\mathbf{g}_1, \mathbf{w}_2 + z_2\mathbf{g}_2, ..., \mathbf{w}_k + z_k\mathbf{g}_k)$ and k increases by splitting an existing partition, then $E_{k+1} \leq E_k$
- > Implications
- More learning factors means more error decrease
- Not guaranteed since E(w) is not quadratic

III. Goals

- Develop a new algorithm that adapts between OWO-MOLF and OWO-Newton
- ☐ Maximize error decrease per multiply
- Simulations

IV. Adaptive Multiple Optimal Learning Factors

In each iteration:

- > Input weights are trained using
 - Learning factor vector **z**
 - Negative gradient vector **g**
- >Output weights are trained using OWO
- \triangleright Size of **z** can vary between N_h and N_h × (N+1) in each iteration

- This algorithm adapts between OWO-MOLF and OWO-Newton
- The input weights connected to each hidden unit are grouped into $N_{\rm g}$ groups
- > An unique learning factor is computed for each of this groups
- \geq $z_{k,C}$ is an element of **z** used to update all the input weights that belong to the group C of hidden unit k.

Adaptive MOLF with N_g=2

Adaptive MOLF with $N_g=3$

- ☐ Grouping of input weights
- \triangleright Grouping is done based on the curvature $\mathbf{H}_{\mathbf{w}}$ of the error function calculated with respect to input weights
- \triangleright The elements of $\mathbf{H}_{\mathbf{w}}$ can be calculated as,

$$h_{w}(k,n) = \frac{\partial^{2} E}{\partial w(k,n)^{2}} = \frac{2}{N_{v}} \sum_{i=1}^{M} w_{oh}(i,k)^{2} \sum_{p=1}^{N_{v}} f'(n_{p}(k))^{2} x_{p}(n)^{2}$$

- ☐ How is the number of groups changed
- > Goal is to vary number of groups so that the error change per multiply is maximized
- Number of groups per hidden unit increases as the error change per multiply (EPM) increases and vice versa.

$$EPM(i_t) = \frac{E(i_t - 1) - E(i_t)}{M(i_t)}$$

- M(i_t) stands for number of multiplies in iteration i_t
- EPM(i_t) is the error per multiply in iteration i_t
- E(i_t) it the error computer in iteration i_t
- i_t is the current iteration number.

☐ Derivation of adaptive MOLF algorithm

$$\begin{aligned} y_{p}(i) &= \sum_{n=1}^{N+1} x_{p}(n) w_{oi}(k,n) + \sum_{k=1}^{N_{h}} w_{oh}(i,k) f\left(\sum_{C=1}^{N_{g}} \sum_{a=R(C-1)+1}^{R(C)} x_{p}(i_{k}(a)) [w(k,i_{k}(a)) + z_{k,C} g(k,i_{k}(a))]\right) \\ R(C) &= C \times Gs(C) \end{aligned}$$

$$Gs(0) &= 0$$

- C is the group index
- Gs is an array of $N_g \times 1$ elements, these elements contains the sizes of all group the belong to a hidden unit
- I_k contains input indices ordered in such a way that the index n of input to which weight w(k,n) with higher curvatures are connected will come first.
- $I_k = [n_1, n_2, n_3, ..., n_{N+1}]$ where $n_1, n_2, n_3, ..., n_{N+1}$ are input indices such that $h_w(k, n_1) \ge h_w(k, n_2) \ge h_w(k, n_3) ... \ge h_w(k, n_{N+1})$

☐ Hessian and negative gradient elements

$$g_{\text{Amolf}}(k,C) = \frac{-\partial E}{\partial z_{k,C}} = \frac{2}{N_v} \sum_{p=1}^{N_v} \sum_{i=1}^{M} (t_p(i) - y_p(i)) \frac{\partial y_p(i)}{\partial z_{k,C}}$$

$$\frac{\partial y_{p}(i)}{\partial z_{k,C}} = w_{oh}(i,k)f(n_{p}(k))\Delta n_{p}(k,C)$$

$$\Delta n_{p}(k,C) = \sum_{a=R(C-1)+1}^{R(C)} x_{p}(i_{k}(a))g(k,i_{k}(a))$$

$$h_{Amolf}(k, C_1, j, C_2) = \frac{2}{N_v} \sum_{i=1}^{M} w_{oh}(i, k) w_{oh}(i, j) \sum_{p=1}^{N_v} f(n_p(k)) f(n_p(j)) \Delta n_p(k, C_1) \Delta n_p(j, C_2)$$

□ The elements of the 2 dimensional Hessian \mathbf{H}_{Amolf} are found from $\mathbf{h}_{Amolf}(\mathbf{k}, \mathbf{C}_1, \mathbf{j}, \mathbf{C}_2)$ as

$$h_{Amolf}((k-1)N_g + C_1, (j-1)N_g + C_2) = h_{Amolf}(k, C_1, j, C_2)$$

■ Elements of negative gradient column vector \mathbf{g}_{Amolf} are calculated from $\mathbf{g}_{Amolf}(\mathbf{k},C)$ as,

$$g_{Amolf}((k-1)N_g+C)=g_{Amolf}(k,C)$$

$$z = H_{Amolf}^{-1} \cdot g_{Amolf}$$

☐ The input weights **W** are updated as follows,

$$w(k,i_k(a)) = w(k,i_k(a)) + z_{k,C}g(k,i_k(a))$$

where,

$$[(C-1) \times Gs(C-1)] + 1 \le a \le [C \times Gs(C)]$$

➤ Lemma 2: $E-E_{MOLF}$ and $E-E_{aMOLF}$ denote the error decrease due to the Newton steps of OWO-MOLF and adaptive MOLF respectively, then $E-E_{MOLF} \le E-E_{aMOLF}$

Lemma 3: OWO-Newton is a limiting case of the adaptive MOLF algorithm as the k groups of adaptive MOLF are split until $k=N_h \cdot (N+1)$

■ Adaptive MOLF Hessian and gradients can be generated from Gauss-Newton Hessian and gradients as follows

$$g_{Amolf}(k,C) = \sum_{a=R(C-1)+1}^{R(C)} g(k,i_k(a))^2$$

$$h_{Amolf}(k, C_1, j, C_2) = \sum_{a=R(C_1-1)+1}^{R(C_1)} \sum_{b=R(C_2-1)+1}^{R(C_2)} h(k, i_k(a), j, i_j(b)) g(k, i_k(a)) g(j, i_j(b))$$

V. Simulations

• Training is done on the entire data set 10 times with 10 different initial networks. The average MSE from this 10-fold training is shown in the plots below.

□ K-fold validation and testing

Data Set		Adaptive MOLF	OWO-MOLF	SCG	LM
Twod.tra	$\mathrm{E}_{\mathrm{trn}}$	0.0888	0.1554	1.0985	0.2038
	E_{tst}	0.1172	0.1731	1.0945	0.2205
Single2.tra	$\mathrm{E}_{\mathrm{trn}}$	0.0042	0.0151	3.5719	0.0083
	E_{tst}	0.2319	0.1689	3.6418	0.0178
Mattrn.tra	$\mathrm{E}_{\mathrm{trn}}$	0.0011	0.0027	4.2400	0.0022
	$\mathrm{E}_{\mathrm{tst}}$	0.0013	0.0032	4.3359	0.0027
Oh7.tra	$\mathrm{E}_{\mathrm{trn}}$	1.2507	1.3205	4.1500	1.1602
	$\mathrm{E}_{\mathrm{tst}}$	1.4738	1.4875	4.1991	1.4373

VI. Conclusions

- ☐ The number of learning factors needed by a training algorithm is addressed and adaptively optimized
- The adaptive MOLF algorithm is superior to the OWO-MOLF algorithm in terms of error decrease per iteration and often in terms of error decrease per multiply
- □ The proposed algorithm interpolates between OWO-MOLF and OWO-Newton

Thank you

Questions