Física Geral I F -128

Aula 13 Rolamento

Plano da Aula

Rolamento

- Rolamento (sem deslizamento)
 - Energia cinética de rolamento
 - Exemplos de rolamento

Rolamento (sem deslizamento)

- ➤ O deslocamento do centro de massa e a rotação estão <u>vinculados</u>:
 - s é o deslocamento do centro de massa do objeto
 - \triangleright θ é o deslocamento angular do objeto em torno de um eixo que passa pelo CM do sistema.

A velocidade do CM é dada por:
$$v_{CM} = \frac{ds}{dt} = R \frac{d\theta}{dt} = R\omega$$

Rolamento (sem deslizamento)

Decomposição do rolamento em rotação + translação

Rotação pura Translação + Rotação

$$v = v_{CM} = R\omega$$

 $v = r\omega$ (acima do centro)

 $v = -r\omega$ (abaixo do centro)

O ponto de contato está sempre em repouso.

Rolamento (sem deslizamento)

Figura da esquerda: o rolamento sem deslizamento pode ser descrito como uma rotação pura com a mesma velocidade angular ω em torno de um eixo que sempre passa pelo ponto P de contacto (eixo instantâneo de rotação).

De fato:
$$v_{p'} = \omega 2R = 2 \omega R = 2v_{CM}$$

<u>Figura da direita:</u> os raios de cima estão menos nítidos que os de baixo porque estão se movendo mais depressa.

Um disco rola em uma superfície lisa, horizontal, sem deslizar. É correto afirmar que força de atrito:

- a) é nula.
- b) aponta no sentido contrário do movimento.
- c) aponta no sentido do movimento.

Um disco rola em uma superfície lisa, horizontal, sem deslizar. É correto afirmar que o torque associado à força de atrito:

- a) é nulo.
- b) aponta no sentido da rotação (mão direita)
- c) aponta no sentido contrário ao da rotação (mão direita)

Energia Cinética de Rolamento

Encarando o rolamento sem deslizamento como uma rotação pura em torno do eixo instantâneo:

$$K = \frac{1}{2} I_P \omega^2$$

Mas $I_P = I_{CM} + M R^2$ (teorema dos eixos paralelos)

Então:

$$K = \frac{1}{2} I_{CM} \omega^2 + \frac{1}{2} M R^2 \omega^2$$

$$K = \frac{1}{2} I_{CM} \omega^2 + \frac{1}{2} M v_{CM}^2$$

Isto é, a energia cinética do corpo rígido é a soma da energia cinética de rotação em torno do CM com a energia cinética associada ao movimento de translação do CM.

Um disco e um anel de mesmo raio descem rolando uma plano inclinado liso, sem deslizar. É correto afirmar que:

- a) o disco chega primeiro.
- b) o anel chega primeiro.
- c) ambos chegam ao mesmo tempo.

Um disco e um anel de mesmo raio descem rolando uma plano inclinado liso, sem deslizar. É correto afirmar que:

- a) o disco chega primeiro.
- b) o anel chega primeiro.
- c) ambos chegam ao mesmo tempo.

Por conservação de energia

$$mgH = \frac{mv^{2}}{2} + \frac{I\omega^{2}}{2} = \frac{m}{2}[1 + I/(mr^{2})]v^{2}$$

$$v = \sqrt{\frac{2gH}{1 + I/(mr^{2})}}$$

Um disco e um anel de mesmo raio e mesma velocidade rolam sem deslizar sobre uma superfície plana. Em um dado momento ambos encontram um plano inclinado, e o sobem, até pararem momentaneamente. É correto afirmar que:

- a) o disco chega mais alto.
- b) o anel chega mais alto.
- c) ambos chegam à mesma altura

Atrito no rolamento

Corpo rolando ladeira

peso.

abaixo devido ao próprio

Transforma energia cinética de translação em rotação Transforma energia cinética de rotação em translação

Roda de um carro girando.

Rolamento sobre um plano inclinado

Na direção y:

$$N - Mg\cos\theta = 0$$

Na direção x:

$$Mgsen \theta - F_a = Ma$$

Torque relativo ao CM:

$$F_a R = I_{CM} \alpha$$

Condição de rolamento sem deslizamento: $a = R\alpha$

Momento de inércia: $I_{CM} = Mk^2$ (k é o raio de giração)

Rolamento sobre um plano inclinado

$$a = \frac{g \sin \theta}{1 + \frac{I_{CM}}{MR^2}}$$

Temos ainda:

$$F_a = Mg \operatorname{sen}\theta \frac{I_{CM}}{I_{CM} + MR^2} \le \mu_e \ N = \mu_e \ Mg \operatorname{cos}\theta :$$

$$tg\theta \le \mu_e \frac{I_{CM} + MR^2}{I_{CM}} \equiv tg \ \theta_r$$

Ângulo máximo (limiar) para que haja rolamento sem deslizamento

Um disco desce rolando uma plano inclinado liso, sem deslizar. É correto afirmar que o atrito:

- a) é nulo.
- b) aponta no sentido do movimento
- c) aponta no sentido contrário ao do movimento

Um carro com tração dianteira acelera. O atrito na roda dianteira aponta na direção:

- a) do movimento.
- b) contrário ao movimento

Um carro com tração dianteira acelera. O atrito na roda traseira aponta na direção:

- a) do movimento.
- b) contrário ao movimento

O iô-iô

Mg

Torque externo relativo ao CM quando o iô-iô desce:

$$Tr = I_{CM}\alpha$$

Dinâmica linear (eixo orientado para baixo)

$$Mg - T = Ma$$

Condição de rolamento: $v = \omega r \Rightarrow a = \alpha r$

$$T = \frac{Mg}{1 + \frac{Mr^2}{I_{CM}}}$$

$$T = \frac{Mg}{1 + \frac{Mr^2}{I_{CM}}} \qquad e \qquad a = \frac{r^2}{I_{CM}}T = \frac{g}{1 + \frac{I_{CM}}{Mr^2}}$$

O iô-iô

Note que se o iô-iô sobe, o torque muda de sinal

$$-Tr = I_{CM}\alpha$$

Por outro lado, o fio se enrola e a condição de rolamento também muda de sinal

$$v = -\omega r \Rightarrow a = -\alpha r$$

Ao final, as equações não mudam!

$$T r = -I_{CM} \alpha = I_{CM} \frac{a}{r} \qquad T = \frac{Mg}{1 + \frac{Mr^2}{I_{CM}}} \quad e \quad a = \frac{r^2}{I_{CM}} T = \frac{g}{1 + \frac{I_{CM}}{Mr^2}}$$

$$Ma = Mg - T$$

O iô-iô

Podemos ainda resolver o mesmo problema usando a conservação de energia:

$$\frac{1}{2}Mv_{CM}^{2} + \frac{1}{2}I_{CM}\omega^{2} = M g z$$

$$v_{CM} = \omega r$$

$$v_{CM} = \pm \sqrt{\frac{2gz}{1 + \frac{I_{CM}}{Mr^2}}} = \pm \sqrt{2az}$$

Sinal (+) para a descida e (–) para a subida.

Equação de Torricelli com aceleração constante dada por

$$a = \frac{g}{1 + \frac{I_{CM}}{M\rho^2}}$$

