Mini Curso MSP 430

Ministrantes:

- Danilo de Santana Pena;
- José Lenival Gomes de França;
- Leonardo Duarte de Albuquerque.

Tópicos a serem abordados:

- Arquitetura e Programação;
- Digital Inputs e Outputs;
- Basic Clock Module;
- Manipulação de Interrupções e Timer;
- Conversor A/D.

Mini Curso MSP 430

- Forma de Abordagem:
 - Aulas expositivas;
 - Implementações práticas*.
- Tempo previsto:
 - ▶ 5 aulas de 3h cada, totalizando 15h*.
- Material a ser Disponível:
 - Slides das aulas;
 - Kit LaunchPad MSP430 TI.

UFRN - Universidade Federal do Rio Grande do Norte

DEE – Departamento de Engenharia Elétrica DCO – Departamento de Comunicações

MSP430 Programação em C

Aula 1 - Arquitetura e Programação

Ministrantes: Danilo de Santana Pena; José Lenival Gomes de França; Leonardo Duarte de Albuquerque.

Conteúdo da Apresentação

- ✓ Entendimentos Básicos;
- Microcontroladores;
- Arquitetura do MSP 430;
- ✓ Linguagem C para o MSP430;
- ✓ Ambiente de Programação;
- ✓ Apresentação do Kit;

Conteúdo da Apresentação

- ✓ Entendimentos Básicos;
- ✓ Microcontroladores;
- ✓ Arquitetura do MSP 430;
- ✓ Linguagem C para o MSP430;
- ✓ Ambiente de Programação;
- ✓ Apresentação do Kit;

Entendimentos Básicos

Computador

Máquina que lê dados, executa operações e fornece resultados.

Microcomputador

É qualquer sistema computacional que possua como unidade central de processamento um microprocessador.

Microprocessador

Qualquer componente que implemente "on chip" as funções de uma unidade central de processamento.

Entendimentos Básicos

Microcontrolador

- É um computador em um chip.
 - Aplicação: Sistemas Embarcados.

DSP

- É qualquer microcontrolador que adicione funções avançadas para condicionamento e processamento digital de sinais.
 - Aplicação: Processamento Digital de Sinais.

CLP

- Controladores Lógicos Programáveis.
 - Aplicação: Controle de equipamentos Industriais.

Conteúdo da Apresentação

- ✓ Entendimentos Básicos;
- Microcontroladores;
- ✓ Arquitetura do MSP 430;
- ✓ Apresentação do Kit;
- ✓ Ambiente de Programação;
- ✓ Linguagem C para o MSP430.

Microcontrolador: Computador em um chip!!!

- Microcontrolador: Computador em um chip!!!
 - Unidade Central de Processamento:
 - ULA;
 - Unidade de Controle;
 - Registradores.

- Microcontrolador: Computador em um chip!!!
 - Unidade Central de Processamento:
 - ULA;
 - Unidade de Controle;
 - Registradores.
 - Memória;

- Microcontrolador: Computador em um chip!!!
 - Unidade Central de Processamento:
 - ULA;
 - Unidade de Controle;
 - Registradores.
 - Memória;
 - Clock;

- Microcontrolador: Computador em um chip!!!
 - Unidade Central de Processamento:
 - ULA;
 - Unidade de Controle;
 - Registradores.
 - Memória;
 - Clock;
 - Timer;

- Microcontrolador: Computador em um chip!!!
 - Unidade Central de Processamento:
 - ULA;
 - Unidade de Controle;
 - Registradores.
 - Memória;
 - Clock;
 - Timer;
 - Interface E/S.

- Topologias dos Computadores
 - Quanto ao Gerenciamento de Memória;
 - Quanto ao número de instruções.

- Quanto ao Gerenciamento de Memória:
- Von-Neumann:
 - Mesmo espaço de memória para Instruções e Dados.

- Quanto ao Gerenciamento de Memória:
- Harvard:
 - Separação da memória de Instrução e Dados.

Quanto a Quantidade de Instruções:

CISC:

- Complex Instruction Set Computer.
 - Ex: PC's.

▶ RISC:

- Reduced Instruction Set Computer.
 - Ex: Microcontroladores.

Escolha do Microcontrolador

- Arquitetura;
- Consumo;
- Periféricos;
- Flexibilidade;
- Tamanho;
- Custo.

- Motivação para o estudo de Microcontroladores
 - Participação dos sistemas embarcados no preço dos produtos no mercado Europeu:

Industry domains	2003	2009
Automotive	52%	56%
Avionics/ Aerospace	52%	54%
Industrial Automation	43%	48%
Telecommunications	56%	58%
Consumer Electronics and Intelligent Homes	60%	62%
Health and Medical Equipment	50%	52%
Weighted average	51%	53%

www.ti.com/430medical

www.ti.com/430metering

Aplicações:

www.ti.com/fram

www.ti.com/motorcontrol

www.ti.com/energyharvesting

www.ti.com/430wireless

www.ti.com/430security www.ti.com/capacitivetouch

Desvantagens

Vantagens

Performance

Expansão

Flexibilidade

Custo

Consumo

Dimensões

Flexibilidade

Conteúdo da Apresentação

- ✓ Entendimentos Básicos;
- ✓ Microcontroladores;
- Arquitetura do MSP 430;
- ✓ Linguagem C para o MSP430;
- ✓ Ambiente de Programação;
- ✓ Apresentação do Kit;

Diagrama em Blocos do MSP430G2231

Note: Memory sizes, supported peripherals, and ports may differ depending on the device.

Organização da Memória

Device Pinout

Modelo: MSP430G2231

- Características da família MSP 430 da Texas Instruments®:
 - Possui CPU RISC de 16 Bits;
 - Otimizado para baixa potência e versatilidade;
 - Arquitetura Moderna de simples programação;
 - Alta otimização do código, desenvolvido para linguagem C;
 - Rica linha de periféricos e combinações destes;
 - Mais de 25 tipos de encapsulamentos.

Conteúdo da Apresentação

- ✓ Entendimentos Básicos;
- ✓ Microcontroladores;
- ✓ Arquitetura do MSP 430;
- ✓ Linguagem C para o MSP430;
- ✓ Ambiente de Programação;
- ✓ Apresentação do Kit;

Programação em Alto Nível

Programação em Baixo Nível

- Programação em Assembly;
- Programação em C.

Programação em Assembly

- Linguagem de mais baixo nível, composta basicamente pelas instruções da máquina;
- Alta performance* e controle total do andamento do programa;
- Maior tempo para desenvolvimento de uma solução;
- Curva de aprendizagem mais lenta.

Programação em C

- Pode utilizar desde baixo nível, até um grau um pouco maior de abstração;
- Boa performance;
- Menor tempo para desenvolvimento de uma solução;
- Curva de aprendizagem mais rápida.

- Programação de Microcontroladores
 - Limitação de Hardware:
 - Tamanho das variáveis;
 - Tempo de execução dos programas.
 - Linguagem "orientada a registros":
 - Configurações do Hardware;
 - Forma de Implementar o Algoritmo.
 - Estudo da Aplicação:
 - Requisitos do Sistema;
 - Consumo de Energia.

Configuração de Registros

"Registro" = "Registro" OR "00001000";

"Registro" = "Registro" | "00001000";

"Registro" |= "00001000";

Temos: 00001000 = BIT3

"Registro" |= BIT3;

Configuração de Registros

"Registro" = "Registro" AND "11111101";

"Registro" = "Registro" & "11111101"; "Registro" &= "11111101";

Temos: 00000010 = BIT2 $11111101 = \sim BIT2$

"Registro" &= ~BIT2;

Configuração de Registros

Setar mais de uma Flag

"Registro" |= BIT7 + BIT2;

Chavear uma Flag

"Registro" $\&= \sim (BIT5 + BIT2);$

"Registro" \(^=\) BIT6;

Resetar mais de uma Flag

Seqüência para Programação:

Obs.: Blocos em azul inseridos dentro da função "main()".

Conteúdo da Apresentação

- ✓ Entendimentos Básicos;
- ✓ Microcontroladores;
- ✓ Arquitetura do MSP 430;
- ✓ Linguagem C para o MSP430;
- ✓ Ambiente de Programação;
- ✓ Apresentação do Kit;

Ambiente de Programação

Coder Composer Studio:

- Code Composer Studio v4.1:
 A single development platform for all TI processors
- Enhancements:
 - Speed
 - Code size improvements
 - Auto-updating
 - License manager
 - Support for all TI MCUs
- Only \$495 for MCU license
- FREE 16KB-limited edition

Conteúdo da Apresentação

- ✓ Entendimentos Básicos;
- ✓ Microcontroladores;
- ✓ Arquitetura do MSP 430;
- ✓ Linguagem C para o MSP430;
- ✓ Ambiente de Programação;
- ✓ Apresentação do Kit;

Apresentação do Kit

Launch Pad development Board:

Obrigado pela Atenção!!!

"- Esquerda, direita, esquerda, direita.. Acabouu, acabouu, acabouu!!! É do Brasil!!!"

Galvão Bueno narrando MMA.