

Interrupted time-series (ITS) regression

Yoonhee Kim, PhD

Department of Global Environmental Health
Graduate School of Medicine
The University of Tokyo

Key references

- Bernal, J. L., et al. (2017). "Interrupted time series regression for the evaluation of public health interventions: a tutorial." Int J Epidemiol **46**(1): 348-355.
- Bernal, J. L., et al. (2021). "Corrigendum to: Interrupted time series regression for the evaluation of public health interventions: a tutorial." Int J Epidemiol **50**(3): 1045-1045.

Interrupted time seires (ITS) design

- Used for evaluating effectiveness of public health interventions at a population level over a specific time period.
- 'interrupted' means an intervention at a known time point
 - e.g., Indoor smoking ban in Jan 2005, Italy
- Evaluation of 'natural experiments'

- Cohort and case-control studies
 - Less useful as intervention studies
- Randomized controlled trials (RCTs)
 - Not always possible at the population level

Hospital admissions for Acute Coronary Events among aged 0-69 years

Counterfacual scenario

- A hypothetical scenario as if the intervention was not implemented and the trend continues unchanged
 - The 'expected' trend, in the absence of the intervention
- Compared with any change occurring in the post-intervention period
 - Many points lie below the counterfactual dotted line
 - A decrease in Acute Coronary Events admissions after the smoking ban?

Introductory guidelines for an ITS analysis

- Step 1: Is an ITS design appropriate?
 - The intervention
 - The outcome
- Step 2: Proposing the impact model
 - Choose the most appropriate impact model as a priori based on literature
- Step 3: Descriptive analysis
- Step 4: Regression analysis
- Step 5: Addressing methodological issues
 - Seasonality, time-varying confounders, over-dispersion, autocorrelation, etc.
- Step 6: Model-checking and sensitivity analysis

Step 1: Is an ITS design appropriate?

The intervention

- Clearly defined time period before and after the intervention
- Possible to know when the intervention began?
- A gradual roll-out → consider a gradual (slope) change

The outcome

- Various forms (e.g., counts, continuous or binary variables)
- Best with short-term outcomes to show the change immediately after an intervention or after clearly defined lag
- ACE vs. lung cancer (less appropriate)

Data requirements

- Sequential outcome measurements before and after an intervention
- Power
 - Accurate and sufficient time points to show underlying trends
 - Equally distributed data points
- Routine data with a long time seires –most appropriate
- Data quality
 - Validity and reliability

Step 2: Selecting the most appropriate impact model

- Decide it *a priori* based on
 - Existing literature
 - Knowledge of the intervention
 - Intervention mechanism on the outcome
- Examples ----->>>>>
 - a) Level change
 - b) Slope change
 - c) Level and slope change
 - d) Slope change following a lag
 - e) Temporary level change
 - f) Temporary slope change leading to a level change

Figure 2 Examples of impact models used in ITS

(a) Level change; (b) Slope change; (c) Level and slope change; (d) Slope change following a lag; (e) Temporary level change; (f) Temporary slope change leading to a level change.

Step 3: Descriptive analysis

- Time series plots
 - Underlying trend to see whether a linear model is appropriate
 - Seasonal patterns to see whether there was a seasonal trend
 - Outliers

- Summary statistics
 - Simple comparisons before and after the intervention
 - Comparisons between outcome and time-varying confounders

Step 4: Regression analysis

$$Y_t = \beta_0 + \beta_1 T + \beta_2 X_t + \beta_3 (T - T_0) X_t + \varepsilon_t$$

T represents the time (e.g., month or year) over the study period

 $T_{\mathbf{0}}$ represents the time at the beginning of the intervention

 X_t represents a dummy variable; coded 0 for the pre-intervention and coded 1 for the post-intervention

 Y_t represents the outcome at time t

(A) Level change

$$Y_t = \beta_0 + \beta_1 T + \beta_2 X_t + \varepsilon_t$$

 β_0 represents the baseline level (i.e., the intercept in pre-intervention, $X_t=0$)

 eta_1 represents the change in outcome associated with a time unit increase (i.e., the slope for the time in pre-intervention and post-intervention)

 β_2 represents the level change following the intervention (i.e., the difference in the two expected means of outcome on the two slopes [pre-intervention and post-intervention for each])

(B) Slope change

$$Y_t = \beta_0 + \beta_1 T + \beta_3 (T - T_0) X_t + \varepsilon_t$$

 β_0 represents the baseline level (i.e., the intercept in pre-intervention, $X_t=0$)

 β_1 represents the change in outcome associated with a time unit increase (i.e., the slope for the time in pre-intervention, $X_t=0$)

 β_3 represents the slope change following the intervention (i.e., the difference in the two estimated slopes for the time between pre-intervention and post-intervention)

(C) Level and slope change

$$Y_t = \beta_0 + \beta_1 T + \beta_2 X_t + \beta_3 (T - T_0) X_t + \varepsilon_t$$

 β_0 represents the baseline level (i.e., the intercept in pre-intervention, $X_t=0$)

 β_1 represents the change in outcome associated with a time unit increase (i.e., the slope for the time in pre-intervention, $X_t=0$)

 β_2 represents the level change following the intervention (i.e., the difference in the two expected means of outcome on the two slopes [pre-intervention and post-intervention for each] at the specific time point, $T=T_0$)

 β_3 represents the slope change following the intervention (i.e., the difference in the two estimated slopes for the time between pre-intervention and post-intervention)

Example data: Indoor smoking ban in Sicily, Italy

- Monthly time-series data
 - from Jan 2002 to Dec 2006 (*t* = 1 ... 59)
- The intervention was implemented in January 2005 (t = 37)
 - Coded 0 for pre-intervention ($t = 0 \dots 36$)
 - Coded 1 for post-intervention ($t = 37 \dots 59$)
- Outcome
 - Monthly hospital admissions for Acute Coronary Events (ACE) among aged 0-69 years
- Age-standardized population as an offset

Example: (A) Level change

```
Y_t = \beta_0 + \beta_1 T + \beta_2 X_t + \varepsilon_t
\log(E(ACE_t)) = \beta_0 + \beta_1 * time + \beta_2 * smokban_t + \log(portion)
```

pp_t td rate $ imes$ 100,000	0 36 100 200 300	000000	0 00000	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	00000		
ه)	-	2002	2003	2004	2005	2006	
a)				Year			

Parameter	exp(Estimate) (95% CI)	Note	How to interpret it
$\exp(\beta_0)$	0.002 (0.002, 0.002)	0.00194 x 10^5 = 194	Indicating the expected ACE when time=0 (i.e., intercept)
$\exp(\beta_1)$	1.005 (1.004, 1.006)	RR for the time	Indicating the ACEs increased by 0.5% per the time unit increase (i.e., month)
$\exp(\beta_2)$	0.894 (0.865, 0.925)	RR for the intervention	Suggesting a strong evidence of a reduction in ACEs following the smoking ban, with a decrease of 10.6%

2004

Year

2005

2006

rate x 100,000

2002

2003

Example: (B) Slope change

```
Y_t = \beta_0 + \beta_1 T + \beta_3 (T - T_0) X_t + \varepsilon_t
\log(E(ACE_t)) = \beta_0 + \beta_1 * time + \beta_3 * timeban_t + \log(p \bar{o} p_t)
```

```
> pre.itv <- tail( data$time[ data$smokban == 0 ], 1)</pre>
> data$timeban <- ifelse(data$smokban == 0, 0, data$time - pre.itv)</pre>
> model.b <- glm(aces ~ offset(log(stdpop)) + time + timeban, family=poisson, data)</pre>
> ci.exp(model.b)
               exp(Est.)
                                2.5%
                                             97.5%
(Intercept) 0.001991694 0.001946777 0.002037648
            1.003068972 1.002119776 1.004019068
time
```

timeban 0.997627792 0.995435598 0.999824814				
Parameter	exp(Estimate) (95% CI)	Note	How to interpret it	
$\exp(\beta_0)$	0.002 (0.002, 0.002)	0.00199 x 10 ⁵ = 199	Indicating the expected ACE when time=0 (i.e., intercept)	
$\exp(\beta_1)$	1.003 (1.002, 1.004)	RR for the time before ban	Indicating the ACEs increased by 0.3% per the time unit increase (i.e., month) in the pre-intervention	
$\exp(\beta_3)$	0.9976 (0.995, 1.000)	Ratio of RRs _{[post-} pre]	Slope change (decreased) following the intervention (p for interaction b/w time and intervention = 0_1034)	

2004

Year

2005

2006

2003

Example: (C) Level and slope change

```
Y_t = \beta_0 + \beta_1 T + \beta_2 X_t + \beta_3 (T - T_0) X_t + \varepsilon_t
```

 $\log(E(ACE_t)) = \beta_0 + \beta_1 * time + \beta_2 * smokban_t + \beta_3 * timeb an_t + \log(pop_t)$

Parameter	exp(Estimate) (95% CI)	Note	How to interpret it
$\exp(\beta_1)$	1.005 (1.004, 1.006)	RR for the time before ban	Indicating the ACEs increased by 0.5% per the time unit increase (i.e., month) in the pre-intervention
$\exp(\beta_2)$	0.892 (0.860, 0.925)	RR for the intervention	Suggesting a strong evidence of a reduction in ACEs following the smoking ban (when time=36 [Dec 2004]), with a decrease of 10.8%
$\exp(\beta_3)$	1.0004 (0.998, 1.003)	Ratio of RRs _[post-pre]	Slope change following the intervention (p for interaction b/w time and intervention = 0.731) 17

Which model we should select?

(A) Level change

$$\log(E(ACE_t)) = \beta_0 + \beta_1 * time + \beta_2 * smokban_t + \log(pop_t)$$

(B) Slope change

$$\log(E(ACE_t)) = \beta_0 + \beta_1 * time + \beta_3 * timeban_t + \log(pop_t)$$

(C) Level and slope change

$$\log(E(ACE_t)) = \beta_0 + \beta_1 * time + \beta_2 * smokban_t + \beta_3 * timeban_t + \log(pop_t)$$

Model	RR (95% CI) for intervention (smokban)	Ratio of RRs (95% CI) for slope (timeban)	p for interaction	AIC
(A) Level change	0.894 (0.865, 0.925)	NA	NA	708.0326
(B) Slope change	NA	0.9976 (0.995, 1.000)	0.034	745.4136
(C) Level and slope change	0.892 (0.860, 0.925)	1.0004 (0.998, 1.003)	0.731	709.9145

Step 5: Addressing methodological issues

- Seasonality
- Time-varying confounders
- Use of controls and other more complex ITS designs
- Over-dispersion
- Autocorrelation

It needs to be addressed to improve the robustness of the analysis.

Seasonality adjustment

- Seasonality can bias/confound the results.
- An uneven distribution of months before and after the intervention
 - E.g., a higher proportion of winter months
- A higher correlation with neighboring months (i.e., autocorrelation)
- Various ways to control for seasonality and long-term trends
 - Stratified by month (and year)
 - Fourier terms (pairs of sine and cosine functions)
 - Spline functions

(A) Level change model, adjusting for seasonality

Adjustment of time-varying confounders

- Seasonality
- Infectious disease outbreaks
- Weather events
- Other events
 - that occur around the same time as the intervention
 - that potentially influence the outcome
 - e.g., other simultaneous interventions targeting the same outcome (a new test implemented)
 - e.g., other simultaneous interventions targeting risk factors of the outcome (a healthy eating intervention)
 - e.g., natural events that could affect the outcome

Seasonality adjustment & Over-dispersion

Model	Seasonality	Dispersion	RR (95% CI) for intervention	Interpretation
(A) Level change	None	1	0.894 (0.865, 0.925)	A reduction in ACEs following the smoking ban, with a decrease of 10.6% (95% CI = -13.5%, -7.5%)
(A)_1 Level change	Fourier	1	0.885 (0.854, 0.917)	with a decrease of 11.5% (95% CI = -14.6%, -8.3%)
(A)_2 Level change	Fourier	2.26	0.885 (0.839, 0.933)	with a decrease of 11.5% (95% CI = -16.1%, -6.7%)

Summary

- The interrupted time-series (ITS) design is useful to evaluate effectiveness of public health interventions at a population level over a specific time period.
- When selecting an impact mode, it is crucial to consider previous knowledge and intervention's mechanism on the outcome.
- Analyses should be carefully planned with adjustment for seasonality and time-varying confounders to draw the plasible conclusions regarding intervention effectiveness. Interpretation should be approached with caution.
- Relying solely on the data-driven model specification is not recommended.
- It is worth considering methodological extensions.

24

Heat-Related Mortality in Japan after the 2011 Fukushima Disaster: An Analysis of Potential Influence of Reduced Electricity Consumption

Yoonhee Kim,¹ Antonio Gasparrini,^{2,3} Masahiro Hashizume,¹ Yasushi Honda,⁴ Chris Fook Sheng Ng,¹ and Ben Armstrong²

⁴Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan

all-cause deaths

mean temperature

Electricity consumption

Date Earthquake -9.85% -9.85% 2009-07-01 2010-07-01 2011-07-01 2011-07-01 2011-07-01

Time-series data in Tokyo metropolitan area

Characteristic	Before	After
Year	2008-2010	2011-2012
# of days (May-Sept)	459	306
All-cause death	256 (24)	270 (19)
Mean	24.1 (4.1)	24.4 (4.3)
Temperature (ºC)		
Electricity consumption	3635.8 (471.1)	3277.7 (386.1)
(kW x 10 ⁴)		

Unit: Daily mean (standard deviation)

¹Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan

²Department of Social and Environmental Health Research, London School of Hygiene and Tropical Medicine, London, UK

³Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK

Relative Risk (RR) and ratio of RR in two big prefectures

- In Tokyo which is the most populous prefecture in the most-affected area,
 - the cumulative relative risks (RR) after the earthquake were lower than those before.
- In Osaka which is the most populous prefecture in the less-affected area,
 - there was little evidence of changes in the cumulative relative risks (RR) before and after.

