Linear Functional Analysis Notes

Yuling Shi

Contents

1 Preliminaries

Theorem 1.1: Suppose that (M, d) is a metric space and $A \subset M$. Then:

- 1. if A is complete then it is closed;
- 2. if M is complete then A is complete if and only if it is closed;
- 3. if A is compact then it is closed and bounded;
- 4. (Bolzano-Weierstrass theorem) every closed, bounded subset of \mathbb{F}^k is compact.

Def 1.1 (counting measure): We define counting measure

$$\mu(A) = \begin{cases} n & \text{if } A \text{ has exactly } n \text{ elements} \\ \infty & \text{otherwise} \end{cases}$$

Def 1.2 (essential supremum): Suppose that f is a measurable function and there exists a number b such that $f(x) \leq ba.e$. Then we can define the **essential supremum** of f to be

$$ess \ sup \ f = \inf\{b : f(x) \le b \ a.e.\}$$

Def 1.3: We define an equivalence relation \equiv on $\mathcal{L}^1(X)$ by

$$f \equiv g \iff f(x) = g(x) \text{ for a.e. } x \in X$$

This relation partitions the set $\mathcal{L}^1(X)$ into a space of equivalence classes, which we will denote by $L^1(X)$.

Def 1.4: Define the spaces

$$\mathcal{L}^p(X) = \left\{ f : f \text{ is measurable and } \left(\int_X |f|^p d\mu \right)^{1/p} < \infty \right\}, \quad 1 \le p < \infty$$

$$\mathcal{L}^\infty(X) = \left\{ f : f \text{ is measurable and ess sup } |f| < \infty \right\}$$

We also define the corresponding sets $L^P(X)$ by identifying functions in $\mathcal{L}^p(X)$ which are a.e. equal. In practice, we simply refer to such \mathcal{L} rather than classes themselves.

Theorem 1.2 (Two useful inequalities): Minkowski's inequality (for $1 \le p < \infty$)

$$\left(\int_X |f+g|^p d\mu \right)^{1/p} \le \left(\int_X |f|^p d\mu \right)^{1/p} + \left(\int_X |g|^p d\mu \right)^{1/p}$$

$$ess \sup |f+g| \le ess \sup |f| + ess \sup |g|$$

Hölder's inequality (for $1 and <math>p^{-1} + q^{-1} = 1$):

$$\int_{X} |fg| d\mu \le \left(\int_{X} |f|^{p} d\mu \right)^{1/p} \left(\int_{X} |g|^{q} d\mu \right)^{1/q}$$
$$\int_{X} |fg| d\mu \le ess \sup |f| \int_{X} |g| d\mu$$

Theorem 1.3: Suppose that $1 \le p \le \infty$. Then the metric space $L^P(X)$ is complete. In particular, the sequence space ℓ^P is complete.

Theorem 1.4: Suppose that [a,b] is a bounded interval and $1 \le p < \infty$. Then the set C[a,b] is dense in $L^p[a,b]$

2 Normed Spaces

2.1 Examples of Normed Spaces

Def 2.1 (Norm): Let X be a vector space over \mathbb{F} . A norm on X is a function $\|\cdot\|: X \to \mathbb{R}$ such that for all $x, y, \in X$ and $\alpha \in \mathbb{F}$

- 1. $||x|| \ge 0$
- 2. ||x|| = 0 if and only if x = 0
- 3. $\|\alpha x\| = \|\alpha\| \|x\|$
- 4. $||x + y|| \le ||x|| + ||y||$

A vector space X on which there is a norm is called a normed vector space or just a normed space. If X is a normed space, a unit vector in X is a vector x such that ||x|| = 1

Lemma 2.1: Let X be a vector space with norm $\|\cdot\|$. If $d: X \times X \to \mathbb{R}$ is defined by $d(x,y) = \|x-y\|$ then (X,d) is a metric space.

Def 2.2 (Metric): If X is a vector space with norm $\|\cdot\|$ and d is the metric defined by $d(x,y) = \|x-y\|$ then d is called the metric associated with $\|\cdot\|$.

Def 2.3 (Convergence): We are trying to define convergence in our normed space. We will have strong convergence as $\lim_{n\to\infty} \|x_n - x\| = 0$ which is also written as $\lim_{n\to\infty} x_n = x$. And we also have weak convergence as $\lim_{n\to\infty} \|x_n\| = \|x\|$.

Theorem 2.2: Let X be a vector space over \mathbb{F} with norm $\|\cdot\|$. Let $\{x_n\}$ and $\{y_n\}$ be sequences in X which converge to x, y in X respectively and let $\{\alpha_n\}$ be a sequence in \mathbb{F} which converges to α in \mathbb{F} . Then:

- 1. $|||x|| ||y||| \le ||x y||$
- 2. $\lim_{n\to\infty} ||x_n|| = ||x||$
- 3. $\lim_{n\to\infty} (x_n + y_n) = x + y$
- 4. $\lim_{n\to\infty} \alpha_n x_n = \alpha x$

2.2 Finite-dimensional Normed Spaces

Def 2.4 (Equivalence): Let X be a vector space and let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on X. The norm $\|\cdot\|_2$ is equivalent to the norm $\|\cdot\|_1$ if there exists M, m > 0 such that for all $x \in X$

$$m||x||_1 \le ||x||_2 \le M||x||_1$$

Lemma 2.3: Let X be a vector space and let $\|\cdot\|_1, \|\cdot\|_2$ and $\|\cdot\|_3$ be three norms on X. Let $\|\cdot\|_2$ be equivalent to $\|\cdot\|_1$ and let $\|\cdot\|_3$ be equivalent to $\|\cdot\|_2$

- 1. $\|\cdot\|_1$ is equivalent to $\|\cdot\|_2$ (exchanging position)
- 2. $\|\cdot\|_3$ is equivalent to $\|\cdot\|_1$ (passing)

Lemma 2.4: Let X be a vector space and let $\|\cdot\|$ and $\|\cdot\|_1$ be norms on X. Let d and d_1 be the metrics defined by $d(x,y) = \|x-y\|$ and $d_1(x,y) = \|x-y\|_1$. Suppose that there exists K > 0 such that $\|x\| \le K \|x\|_1$ for all $x \in X$. Let $\{x_n\}$ be a sequence in X.

- 1. If $\{x_n\}$ converges to x in the metric space (X, d_1) then $\{x_n\}$ converges to x in the metric space (X, d)
- 2. If $\{x_n\}$ is Cauchy in the metric space (X, d_1) then $\{x_n\}$ is Cauchy in the metric space (X, d)

Corollary 2.1: Let X be a vector space and let $\|\cdot\|$ and $\|\cdot\|_1$ be equivalent norms on X. Let d and d_1 be the metrics defined by $d(x,y) = \|x-y\|$ and $d_1(x,y) = \|x-y\|_1$ Let $\{x_n\}$ be a sequence in X.

- 1. $\{x_n\}$ converges to x in the metric space $(X,d) \iff \{x_n\}$ converges to x in the metric space (X,d_1) .
- 2. $\{x_n\}$ is Cauchy in the metric space $(X,d) \iff \{x_n\}$ is Cauchy in the metric space (X,d_1) .
- 3. (X, d) is complete \iff (X, d_1) is complete.

Theorem 2.5: Let X be a finite-dimensional vector space with norm $\|\cdot\|$ and let $\{e_1, e_2, \dots, e_n\}$ be a basis for X. Another norm on X was defined by

$$\left\| \sum_{j=1}^{n} \lambda_j e_j \right\|_1 = \left(\sum_{j=1}^{n} |\lambda_j|^2 \right)^{\frac{1}{2}}$$

The norms $\|\cdot\|$ and $\|\cdot\|_1$ are equivalent.

Corollary 2.2: If $\|\cdot\|$ and $\|\cdot\|_2$ are any two norms on a finite-dimensional vector space X then they are equivalent.

Lemma 2.6: Let X be a finite-dimensional vector space over \mathbb{F} and let $\{e_1, e_2, \dots, e_n\}$ be a basis for X. If $\|\cdot\|_1 : X \to \mathbb{R}$ is the norm on X defined by $\left\|\sum_{j=1}^n \lambda_j e_j\right\|_1 = \left(\sum_{j=1}^n |\lambda_j|^2\right)^{\frac{1}{2}}$ then X is a complete metric space.

Corollary 2.3: If $\|\cdot\|$ is any norm on a finite-dimensional space X then X is a complete metric space.

Corollary 2.4: If Y is a finite-dimensional subspace of a normed vector space X, then Y is closed.

2.3 Banach Spaces

In infinite-dimensional vector space X, many methods we discussed in the last section will expire.

Lemma 2.7: If X is a normed vector space and S is a linear subspace of X then \bar{S} is a linear subspace of X.

Def 2.5: Let X be a normed vector space and let E be any non-empty subset of X. The closed linear span of E, denoted by $\overline{Sp}E$, is the intersection of all the closed linear subspaces of X which contain E.

Lemma 2.8: Let X be a normed space and let E be any non-empty subset of X.

- 1. $\overline{\operatorname{Sp}}E$ is a closed linear subspace of X which contains E.
- 2. $\overline{\mathrm{Sp}}E = \overline{\mathrm{Sp}\,E}$, that is, $\overline{\mathrm{Sp}}E$ is the closure of $\mathrm{Sp}\,E$

Theorem 2.9 (Riesz' Lemma): Suppose that X is a normed vector space, Y is a closed linear subspace of X such that $Y \neq X$ and α is a real number such that $0 < \alpha < 1$. Then there exists $x_{\alpha} \in X$ such that $\|x_{\alpha}\| = 1$ and $\|x_{\alpha} - y\| > \alpha$ for all $y \in Y$

Theorem 2.10: If X is an infinite-dimensional normed vector space then neither $D = \{x \in X : ||x|| \le 1\}$ nor $K = \{x \in X : ||x|| = 1\}$ is compact.

Def 2.6 (Banach Space): A Banach space is a normed vector space which is complete under the metric associated with the norm.