Fractal Geometry

Alex Rutar* University of Waterloo

Winter 2020[†]

^{*}arutar@uwaterloo.ca

[†]Last updated: February 11, 2020

Contents

Chapte	r I	Topics in Fractal Geometry	
1	Dime	nsion Theory	1
	1.1	Constructing Measures in Metric Spaces	1
	1.2	Hausdorff Measure and Dimension	2
	1.3	Box Dimensions	5
	1.4	Potential-Theoretic Methods	9
	1.5	Projections of Fractals	1
2	Iterat	ed Function Systems	3
	2.1	Invariant Sets and Measures	3
	2.2	Dimensional Properties of the Attractor	6

I. Topics in Fractal Geometry

1 Dimension Theory

1.1 Constructing Measures in Metric Spaces

[TODO: fill in proofs and transfer to measure section] Let X be a metric space.

Definition. Given $A, B \subseteq X$, say $d(A, B) = \inf\{d(a, b) : a \in A, b \in B\}$. Say A, B have **positive separation** if d(A, B) > 0.

If A, B are compact and disjoint, then they have positive separation. We say that an outer measure μ^* is a **metric outer measure** if $\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$ when A, B have positive separation.

Example. The Lebesgue outer measure is a metric outer measure. [TODO: prove]

1.1 Theorem. μ^* is a metric outer measure if and only if every Borel set is μ^* -measurable (in the sense of Caratheodory).

PROOF [TODO: prove this (homework), and find a proof of the converse? (may not be true)]

Suppose $A \subseteq B$ are both covers of X containing \emptyset and $C : B \to [0, \infty]$ with $C(\emptyset)$. Let μ_A^* and μ_B^* be the corresponding extensions of C and $C|_A$. Then by definition, $\mu_B^*(E) \le \mu_A^*(E)$ for all $E \in \mathcal{P}(X)$.

Let X be a metric space, \mathcal{A} cover X containing \emptyset . Suppose for each $x \in X$ and $\delta > 0$, there exists $A \in \mathcal{A}$ such that $x \in A$ and diam $A \leq \delta$. Let $\mathcal{C} : \mathcal{A} \to [0, \infty]$ with $\mathcal{C}(\emptyset) = 0$. Set $\mathcal{A}_{\epsilon} = \{A \in \mathcal{A} : \operatorname{diam}(A) \leq \epsilon\}$, and define μ_{ϵ}^* by extending $\mathcal{C}|_{\mathcal{A}_{\epsilon}}$. In particular, as ϵ decreases, μ_{ϵ}^* increases, and define

$$\mu^*(E) = \sup_{\epsilon} \mu_{\epsilon}^*(E) = \lim_{\epsilon \to 0} \mu_{\epsilon}^*(E)$$

1.2 Theorem. As defined above, μ^* is a metric outer measure.

Proof [TODO: prove this, homework]

Example. The Lebesgue measure arises this way; in fact, the μ_{ϵ}^* are all the same outer measure.

Definition. We say that a collection of subsets C is a **semi-algebra** if it contains \emptyset , is closed under finite intersections, and complements are finite disoint unions of sets in C. We then say that μ is a **measure on a semi-algebra** if $\mu: C \to [0, \infty]$ has

- (i) $\mu(\emptyset) = 0$
- (ii) If $E_1, ..., E_n \in \mathcal{C}$ are disjoint and $\bigcup_{i=1}^n E_i \in \mathcal{C}$, then $\mu(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n n\mu(E_i)$.
- (iii) If $\{E_i\}_{i=1}^{\infty} \in \mathcal{C}$ are pairwise disjoint and $\bigcup_{i=1}^{\infty} E_i \in \mathcal{C}$, then $\mu(\bigcup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} \mu(E_i)$

An **algebra** is a semi-algebra which is closed under finite unions and complements. Then a **measure on an algebra** is a map μ satisfying the same above constraints.

1.3 Theorem. A measure μ on a semi-algebra \mathcal{C} has a unique extension to a measure on $\mathcal{A} = \langle \mathcal{C} \rangle$, the algebra generated by \mathcal{C} .

PROOF It is easy to verify that \mathcal{A} is the set of all finite unions of elements in \mathcal{C} . Thus we extend μ to \mathcal{A} where if $A = \bigcup_{i=1}^{n} C_i$, set $\mu(A) = \sum_{i=1}^{n} \mu(C_i)$.

Check: well-defined and a measure

We then appeal to Caratheodory extension theorem to get a measure μ (on a σ -algebra) that extends μ from A.

Let $\Sigma = \{1, ..., k\}$ be our alphabet and let Σ^* denote the set of all words on Σ . We then associate to Σ^* a heirarchy of subsets of \mathbb{R}^n where to each $\sigma \in \Sigma$, get some subset X_{σ} ; set $\mathcal{E} = \{X_{\sigma} : \sigma \in \Sigma^*\}$. We also assume that

$$X_{\sigma} \supseteq \bigcup_{i=1}^{k} X_{\sigma i}$$

disjointly. Suppose $\tilde{\mu}: \mathcal{E} \to [0,\infty]$ has $\mu(X_{\sigma}) = \sum_{i=1}^k \mu(X_{\sigma i})$. We assume that for every infinite sequence (i_1,i_2,\ldots) , with $\sigma_j = (i_1,\ldots,i_j)$, $\lim_{j\to\infty} |X_{\sigma_j}| = 0$ and $\lim_{j\to\infty} \mu(X_{\sigma_j}) = 0$ uniformly with respect to length.

We set $E_k = \bigcup_{\omega \in \Sigma^n} X_{\omega}$ and $E = \bigcap_{i=k}^{\infty} E_k$. Let $\mathcal{C} = \{\emptyset, X_{\omega} \cap E : \omega \in \Sigma^*\}$. Define $\mu : \mathcal{C} \to [0, \infty]$ by $\mu(X_{\omega} \cap E) = \tilde{\mu}(X_{\omega})$ and $\mu(\emptyset) = 0$.

1.4 Proposition. C is a semialgebra and μ is a measure on a semialgebra.

Proof We have closure under finite intersections due to the disjoint / nested property. Moreover,

$$(X_{\omega} \cap E)^{c} = \bigcup_{\substack{\sigma \in \Sigma^{|\omega|} \\ \sigma \neq \omega}} X_{\sigma} \cap E$$

is closed under complementation.

It is left as an exercise to verify that μ is a measure.

Thus μ extends to a measure μ on the σ -algebra generated by \mathcal{C} . Moreover, since diam $X_{\omega} \to 0$ as $|\omega| \to \infty$, μ extends to a metric outer measure and hence the σ -algebra contains the Borel sets.

1.2 Hausdorff Measure and Dimension

For the remainder of this chapter, if X is a metric space and $U \subseteq X$, we denote |U| = diam(U).

Definition. A δ -cover of a set $F \subseteq X$ is any countable collection $\{U_n\}_{n=1}^{\infty}$ such that $\bigcup_{n=1}^{\infty} U_n \supseteq F$ and $|U_n| \le \delta$.

Let $A = \mathcal{P}(X)$, and $A_{\delta} = \{A \subseteq X : |A| \le \delta\}$. For $\delta \ge 0$, put $\mathcal{C}_s(A) = |A|^s$. Then for $s \ge 0$, $\delta > 0$, and $E \subseteq$, we define

$$H_{\delta}^{s}(E) = \inf \left\{ \sum_{n=1}^{\infty} |U_{n}|^{s} : \{U_{n}\} \text{ is a } \delta - \text{cover of } E \right\}$$
$$= \inf \left\{ \sum_{n=1}^{\infty} C_{s}(U_{n}) : \bigcup_{n=1}^{\infty} U_{n} \supseteq E, U_{n} \in \mathcal{A}_{\delta} \right\}$$

This is the outer measure as constructed in $\ref{eq:constructed}$ with covering family A_δ and function C_s . In particular, as $\delta \to 0$, H^s_δ increases; in particular, by Theorem 1.2, $H^s(E) = \sup_\delta H^s_\delta(E)$ is a metric outer measure. Then apply Caratheodory ($\ref{eq:constructed}$) to get the s-dimensional Hausdorff measure, which is a complete Borel measure.

Example. (i) H^0 is the counting measure on any metric space.

(ii) Take $X = \mathbb{R}$ and s = 1. Then H^1 is the Lebesgue measure (on Borel sets). To see this, we have

$$\lambda(E) = \inf \left\{ \sum_{n=1}^{\infty} |I_n| : \bigcup_{n=1}^{\infty} I_n \supseteq E, |I_n| \le \delta \right\}$$

$$\ge H_{\delta}^1(E)$$

for any $\delta > 0$; and conversely, take any δ -cover of E, say $\{U_n\}_{n=1}^{\infty}$ and set $I_n = \overline{\operatorname{conv} U_n}$ so $|I_n| = |U_n| \le \delta$. Thus $\sum_{n=1}^{\infty} |U_n| = \sum_{n=1}^{\infty} |I_n| \ge \lambda(E)$ for any such cover, so $\lambda(E) = H_{\delta}^1(E)$ for any $\delta > 0$. Thus $\lambda(E) = H^1(E)$ for any Borel set E.

(iii) More generally, if $X = \mathbb{R}^n$ and s = n, then $\lambda = \pi_n \cdot H^n$ where π_n is the n-dimensional volume of the ball of diameter 1.

We will verify that $H^n \le m$ where m is n-dimensional Lebesgue measure on \mathbb{R}^n ; the general result is harder and left as an exercise. To see this, we have

$$m(E) = \inf \left\{ \sum_{i=1}^{\infty} \operatorname{vol}(C_i) : C_i \text{ cube,} \bigcup_{i=1}^{\infty} C_i \supseteq E, \text{sides } \le \frac{1}{\sqrt{n}} \delta \right\}$$

$$= \inf \left\{ \sum_{i=1}^{\infty} \left(\frac{1}{\sqrt{n}} \right)^n |C_i|^n : \{C_i\} - \delta \text{-cover of cubes of } E \right\}$$

$$\geq c_n \inf \left\{ \sum_{i=1}^{\infty} |c_i|^n : \text{all } \delta \text{-covers of } E = c_n H_{\delta}^n(E) \right\}$$

where $c_n = (1/\sqrt{n})^n \le 1$.

(iv) If s < t, then $H^s(E) \ge H^t(E)$.

Suppose s < t. Clearly $H^s(E) \ge H^t(E)$, but we can in fact make stronger statements. Suppose we have some U_i where $|U_i| \le \delta$, and

$$\sum_{i=1}^{\infty} |U_i|^t = \sum_{i=1}^{\infty} |U_i|^s |U_i|^{t-s} \le \delta^{t-s} \sum_{i=1}^{\infty} |U_i|^s$$

so that

$$H_{\delta}^{t}(E) \leq \delta^{t-s} \inf \left\{ \sum_{i=1}^{\infty} |U_{i}|^{s} : \{U_{i}\}_{i=1}^{\infty} \delta - \text{cover of } E \right\} = \delta^{t-s} H_{\delta}^{s}(E).$$

In particular, as $\delta \to 0$, $H^t_{\delta}(E) \to H^t(E)$ and $H^s_{\delta}(E) \to H^s(E)$ and $\delta^{t-s} \to 0$ since s < t. Thus if $H^s(E) \neq \infty$, then $H^t(E) = 0$ for all t > s. Similarly, if $H^t(E) > 0$, then $H^s(E) = \infty$ for all s < t. As a result, there exists some unique number $S_0 := \dim_H(E) \geq 0$ such that for all $s < S_0$, $H^s(E) = \infty$, and for all $t > S_0$, $H^t(E) = 0$. We call this value the **Hausdorff dimension** of E. Note that $H^{S_0}(E) \in [0,\infty]$ and all choices are possible.

Example. (i) Since $1 = m([0,1]) = H^1([0,1])$, $\dim_H[0,1] = 1$

- (ii) $\dim_H \mathbb{R} = 1$ but $m(\mathbb{R}) = H^1(\mathbb{R}) = \infty$.
- (iii) It is possible to have $S_0 = 1$ but m(E) = 0.
- (iv) There is a Cantor-like set with Hausdorff-dimension 0.
- (v) If *E* is countable and s > 0, $H^s_{\delta}(E) \le \sum_{x \in E} |\{x\}|^s = 0$. In particular, there exist compact countable sets, and in this case, $\dim_H C = 0$ while $H^0(C) = \infty$.

Here are some basic properties of Hausdorff dimension.

- **1.5 Proposition.** (Properties of Hausdorff Dimension) (i) If $A \subseteq B$, then $\dim_H A \le \dim_H B$.
 - (ii) If $F \subseteq \mathbb{R}^n$, then $\dim_H F \leq n$.
- (iii) If $U \subset \mathbb{R}^n$ is open, then $\dim_H U = n$.
- (iv) If $F = \bigcup_{i=1}^{\infty} F_i$, then $\dim_H(F) = \sup_{i \in \mathbb{N}} \dim_H F_i$.

PROOF (i) If $H^s(B) = 0$, then $H^s(A) = 0$ by monotonicity of measures so $\dim_H A \le \dim_H B$.

(ii) First consider the unit cube $I^n \subset \mathbb{R}^n$. Then

$$H^{s}_{\sqrt{n}\delta}(I^{n}) \le \left(\frac{2}{\delta}\right)^{n} (\sqrt{n}\delta)^{s} = 2^{n}\sqrt{n}^{n}\delta^{s-n}$$

so if s > n, then $\delta^{s-n} \to 0$ as $\delta \to 0$. Thus for all s > n, $H^s(I^n) = \lim_{\delta \to 0} H^s_{\sqrt{n}\delta}(I^n) = 0$ so that $\dim_H(I^n) \le n$. Moreover, \mathbb{R}^n is the countable union of unit cubes, so that $H^s(\mathbb{R}^n) = 0$ and $\dim_H(\mathbb{R}^n) \le n$. Then appeal to (i).

- (iii) Cubes have positive Hausdorff *n*–measure.
- (iv) If $s > \sup\{\dim_H F_i\}$, then $H^s(F_i) = 0$ for all i and by subadditivity $H^s(F) = 0$. Thus $s \ge \dim_H F$. By monotonicity, $\dim_H F \ge \dim_H F_i$ for all j.

Suppose $X = \mathbb{R}^n$, $E \subseteq \mathbb{R}^n$, $\lambda > 0$. Set $\lambda E = \{\lambda e : e \in E\}$: then $H^s(\lambda E) = \lambda^s H^s(E)$ since there is a bijection between δ -covers and $\lambda \delta$ -covers.

Definition. Let X, Y be metric spaces. A function $f: X \to Y$ is called **Lipschitz** if there exists C such that $d(f(x), f(y)) \le Cd(x, y)$.

Certainly if f is Lipschitz, then f is uniformly continuous. Functions $f : \mathbb{R} \to \mathbb{R}$ with bounded derivative are Lipschitz by the mean value theorem.

Definition. A function $f: X \to Y$ is **Hölder continuous** with exponent α if there exists c such that $d(f(x), f(y)) \le cd(x, y)^{\alpha}$.

Example. (i) If $\alpha = 1$, then f is Lipschitz, and if $\alpha = 0$, then f is bounded.

- (ii) If $f: \mathbb{R}^n \to \mathbb{R}^n$ and $\alpha > 0$, then f is constant (by considering derivatives). Thus the most interesting cases occur for $0 < \alpha \le 1$.
 - **1.6 Proposition.** If $f: X \to Y$ is Hölder continuous with exponent α . Then $H^{s/\alpha}(f(E)) \le cH^s(E)$ for some constant c.

PROOF If $\{U_i\}$ are a δ -cover of E, then $\{f(U_i)\}$ cover f(E). Then diam $f(U_i) = \sup\{d(f(x), f(y)) : x, y \in U_i\} \le c \sup\{d(x, y)^\alpha : x, y \in U_i\} = C \cdot (\operatorname{diam} U_i)^\alpha$. Thus if $\{U_i\}$ is a δ -cover of E, then $\{f(U_i)\}$ is a $c\delta^\alpha$ -cover of f(E). Passing through the definition, we get $H^{s/\alpha} \le c^{s/\alpha}H^s(E)$.

We then have the easy corollaries

1.7 Corollary. $\dim_H f(X) \leq \frac{1}{\alpha} \dim_H X$.

1.8 Corollary. If f is an isometry, then $H^s(f(X)) = H^s(X)$.

1.9 Corollary. If $f: X \to Y$ are bi-Lipschitz, then $\dim_H X = \dim_H Y$.

Example. Let C denote the Cantor set. Let's show that $\frac{1}{2} \le H^s(C) \le 1$ for $s = \frac{\log 2}{\log 3}$. In particular, this implies that $\dim_H C = \frac{\log 2}{\log 3}$.

Let $\delta = 3^{-n}$ and cover C with a δ -covering with generation n Cantor intervals. Then $H^s_{\delta}(C) \leq \sum_{I \in C_n} |I|^s = 2^n 3^{-ns} = 1$ by choice of s. Thus $\lim_{\delta \to 0} H^s_{\delta}(C) = \lim_{n \to \infty} H^s_{3^{-n}}(C) \leq 1$.

For the lower bound, take any δ -cover $\{U_i\}$ of C. Without loss of generality, we may assume that the U_i are open intervals. Since C is compact, get some finite subcover U_1,\ldots,U_N . For each i, get $k_i\in\mathbb{N}$ so that $3^{-(k_i+1)}\leq |U_i|<3^{-k_i}$; set $k=\max\{k_1,\ldots,k_N\}$. Since U_i intersects at most 1 interval in C_{k_i} , U_i intersects at most 2^{k-k_i} intervals of C_k . Thus $2^k\leq \sum_{i=1}^N 2^{k-k_i}$ where $2^{k-k_i}=2^k3^{-sk_i}=2^k3^{-s(k_i+1)}\leq 2^k|U_i|^s3^s$. Thus

$$2^k \le \sum_{i=1}^N 2^k |U_i|^s 3^s$$

so $\frac{1}{2} = 3^{-s} \le \sum_{i=1}^{N} |U_i|^s \le \sum_{i=1}^{\infty} |U_i|^s$ so $H_{\delta}^s(C) \ge \frac{1}{2}$ so $H^s(C) \ge \frac{1}{2}$.

1.10 Proposition. Let (X,d) be a metric space. If $\dim_H X < 1$, then X is totally disconnected.

PROOF Let $x \in X$ and define $f: X \to [0, \infty)$ by f(z) = d(z,x). Then f is Lipschitz with constant 1 so $\dim_H f(X) \le \dim_H X < 1$ so m(f(X)) = 0. Then if $y \ne x$, d(y,x) = f(y) > 0 while f(x) = 0. In particular, $(0, f(y)) \not\subset f(X)$ so there exists 0 < r < f(y) such that $r \not\in f(X)$. Then $U_1 = \{z \in X : f(z) < r\}$ and $U_2 = \{z \in X : f(z) > r\}$ are disconnecting sets for X separating x and y.

1.3 Box Dimensions

Definition. Let $E \subseteq \mathbb{R}^n$ be a bounded Borel set, and for each $\delta > 0$, let $N_{\delta}(E)$ be the least number of closed balls of diameter δ . We then define the **upper box dimension** of E

$$\overline{\dim}_B E = \limsup_{\delta \to 0} \frac{\log N_{\delta}(E)}{|\log \delta|}$$

and similarly $\underline{\dim}_B E$ (the **lower box dimension**) with a liminf in place of limsup. If $\dim_B E = \overline{\dim}_B E$, then we define the **box dimension** to be this shared quantity.

If I is any interval, it is easy to see that $\dim_B I = 1$. Note that if $N_{\delta}(E) \sim \delta^{-s}$, then $\dim_B E = S$.

Example. Let's show that the box dimension of $C_{1/3}$ exists, and compute it. Given some $\delta > 0$, let n be so that $3^{-n} \le \delta < 3^{-(n-1)}$. Certainly we can cover $C_{1/3}$ by Cantor intervals of level n, so that $N_{\delta}(C_{1/3}) \le 2^n$. Moreover, the endpoints of Cantor inversals of level n-1 are distance at least $3^{-(n-1)} > \delta$ apart. Thus $N_{\delta}(C_{1/3})$ is at least the number of endpoints of level n-1, i.e. $N_{\delta}(C_{1/3}) \ge 2^n$. Thus $N_{\delta}(C_{1/3}) = 2^n$, so that

$$\frac{\log 2}{\log 3} = \frac{\log 2^n}{\log 3^n} \le \frac{\log N_{\delta}(C_{1/3})}{|\log \delta|} \le \frac{\log 2^n}{\log 3^{n-1}} = \frac{n}{n-1} \cdot \frac{\log 2}{\log 3}$$

and, as $\delta \to 0$, $n \to \infty$ so that the dim_B $C_{1/3} = \frac{\log 2}{\log 3}$.

More generally, using the same technique, we may compute $\dim_B C_r = \frac{\log 2}{\log 1/r}$.

However, the box dimension has poor properties: for example, we may verify $\dim_B\{0, 1, 1/2, 1/3, \ldots\} = \frac{1}{2}$. In particular, the box dimension does not have countable stability (the box dimension of any singleton is 0). But this is very concerning from a measure theoretic perspective, since this is a countable set with larger "dimension" than some uncountable sets (e.g. C_r for small r).

- **1.11 Theorem.** The value of the various box dimensions are equal for all following definitions of $N_{\delta}(E)$:
 - 1. least number of open balls of radius δ that cover E
 - 2. least number of cubes of side length δ
 - 3. the number of δ -mesh cubes that intersect $E: [m_1\delta, (m_1+1)\delta] \times \cdots \times [m_n\delta, (m_n+1)\delta]$ for $(m_1, \dots, m_n) \in \mathbb{Z}^n$.
 - 4. the largest number of disjoint closed balls of radius δ with centers in E.

Proof Throughout, from the logarithms in the definition, it suffices to bound $N_{\delta}^{(i)}(E)$ with respect to $N_{\delta}(E)$ up to some constant factor either with respect to δ or with respect to N_{δ} .

- 1. Exercise.
- 2. Exercise.
- 3. In general, the diameter of a δ -cube in \mathbb{R}^n is $\sqrt{n}\delta$. Let $N_\delta^{(3)}(E)$ denote the number of δ -mesh cubes intersecting E. Then the cubes which intersect E cover E and these have diameter $\sqrt{n}\delta$, so $N_{\sqrt{n}\delta}(E) \leq N_\delta^{(3)}(E)$. Conversely, any set with diameter at most δ is contained in at most 3^n δ -mesh cubes. Thus $N_\delta^{(3)}(E) \leq 3^n N_\delta(E)$.
- Thus $N_{\delta}^{(3)}(E) \leq 3^n N_{\delta}(E)$.

 4. Let $N_{\delta}^{(4)}$ denote the largest number of disjoint balls of radius δ centred in E. Say $B_1, \ldots, B_{N_{\delta}^{(4)}(F)}$ are such balls. If $x \in F$, then $d(x, B_i) \leq \delta$ for some i, else $B(x, \delta)$ would be disjoint from all B_i , contradicting maximality. Thus the balls $B_1^1, \ldots, B_{N_{\delta}^{(4)}(E)}^1$ cover E and have diameter 4δ , so $N_{4\delta}(E) \leq N_{\delta}^{(4)}(E)$.

 Conversely, let $U_1, \ldots, U_{N_{\delta}(E)}$ be any collection of sets of diameter at most δ that cover E. Let B_1, \ldots, B_m be any disjoint balls with radius δ and centres $x_i \in E$. Since the U_j cover E, each $x_i \in U_{j(i)}$ for some j(i) so $U_{j(i)} \subseteq B_i$ and $U_{j(i)} \cap B_k = \emptyset$ for $k \neq i$. Thus $N_{\delta}(E) \geq N_{\delta}^{(4)}(E)$.

Note that, in the box dimension computation, it suffices to verify along a sequence of $(\delta_k)_{k=1}^{\infty} \to 0$ such that $\delta_{k+1} \ge c \cdot \delta_k$ for some c > 0 (i.e. not faster than exponentially).

1.12 Proposition. $\dim_H(E) \leq \underline{\dim}_R(E)$.

Proof Suppose we cover E by $N_{\delta}(E)$ sets of diameter at most δ . Then $\inf\{\sum |U_i|^s:$ $\{U_i\}\delta$ -cover of $E\} \le \delta^s N_\delta(E)$ so that $H^s_\delta(E) \le \delta^s N_\delta(E)$. Suppose $s < \dim_H E$, so $H^s(E) > \lambda$ for some $\lambda > 0$. Then $\delta^s N_{\delta}(E) \ge \lambda$ so that $\frac{\log N_{\delta}(E)}{-\log \delta} \ge s + \frac{\log \lambda}{-\log \delta}$. Then as $\delta \to 0$, $\liminf \frac{\log N_{\delta}(E)}{-\log \delta} \ge s$. Thus $\underline{\dim}_B E \ge \dim_H E$.

- (i) $\dim_B E = \dim_B \overline{E}$ and $\overline{\dim}_B E =$ 1.13 Proposition. (Properties of Box Dimension) $\dim_B \overline{E}$
 - (ii) $\dim_B E = n$ if E is dense in an open set in \mathbb{R}^n .
- (iii) $\dim_B(E \cup F) = \max(\dim_B E, \dim_B F)$. However, $\dim_B E \cup \dim_B F \ge \max\{\dim_B E, \dim_B F\}$ and the inequality can hold strictly.
- (iv) Box dimension is Lipschitz invariant.
- **1.14 Theorem.** (Mass Distribution Principle) Let μ be a finite Borel measure on F with $\mu(F) > 0$. Suppose there exists c > 0 and $\delta_0 > 0$ such that whenever $|U| \le \delta_0$, $\mu(U) \le c|U|^s$. Then $H^s(F) \ge \frac{\mu(F)}{c} > 0$.

PROOF Let $\{U_i\}$ be a δ -cover of F with $\delta \leq \delta_0$. Then $\mu(F) \leq \mu(\bigcup_{i=1}^{\infty} U_i) \leq \sum_{i=1}^{\infty} \mu(U_i) \leq \sum_$ $c\sum_{i=1}^{\infty}|U_i|^s$. Thus $\inf\{\sum_{i=1}^{\infty}|U_i|^s:\{U_i\}\delta\text{-cover of }F\}\geq \frac{\mu(F)}{c}$ and let $\delta\to 0$.

Example. Let C(r) denote the Cantor set with contraction ratio r. Define $\mu(I_{\omega} \cap C) = r^{|\omega|}$, and extend to the uniform r-Cantor measure. We now apply the mass distribution principle. Let U be arbitrary with $r^{k+1} \leq |U| < r^k$. Then U cannot intersect 3 level k intervals (or *U* would have diameter greater than r^k). Thus $\mu(U) = \mu(U \cap C) \le c\mu(I_{\omega}) = 3^s...$ So $\dim_G(C_r) = \frac{\log 2}{|\log r|}$

- **1.15 Proposition.** Suppose μ is a finite Borel measure on \mathbb{R}^n and $F \subseteq \mathbb{R}^n$ is Borel. Let $0 < c < \infty$.

 - (i) If $\limsup_{r\to 0} \frac{\mu(B(x,r))}{r^s} \le c$ for all $x \in F$, then $H^s(F) \ge \frac{\mu(F)}{c}$ (ii) If $\limsup_{r\to 0} \frac{\mu(B(x,r))}{r^s} \ge c$ for all $x \in F$, then $H^s(F) \le \frac{10^s}{c} \mu(\mathbb{R}^n) < \infty$.
- (i) Fix $\epsilon > 0$. For each $\delta > 0$, let $F_{\delta} = \{x \in X : \mu(B(x,r)) \le (c + \epsilon)r^s\}$. By hypothesis, $F \subseteq \bigcup_{\delta > 0} F_{\delta}$; moreover, for $\delta_1 < \delta_2$, $F_{\delta_1} \supseteq F_{\delta_2}$. Fix some δ and take a δ -cover $\{U_i\}_{i=1}^{\infty}$ of F. This is also a δ -cover for F_{δ} . If $x \in F_{\delta}$, $\mu(B(x,|U_i|)) \le (c+\epsilon)|U_i|^s$ as $|U_i| \le \delta$. Since $U_i \subseteq B(x_i,|U_i|)$ for any $x_i \in U_i$, if $U_i \cap F_\delta \ne \emptyset$, then $x_i \in U_i \cap F_{\delta}$, so that $\mu(U_i) \le \mu(B(x_i, |U_i|)) \le (c + \epsilon)|U_i|^s$. Thus

$$F_{\delta} = \bigcup_{U_{i} \cap F_{\delta} \neq \emptyset} (U_{i} \cap F_{\delta})$$

$$\leq \sum_{i=1}^{\infty} (c + \epsilon) |U_{i}|^{s}$$

so that $\mu(F_{\delta}) \le (c+\epsilon)H_{\delta}^{s}(F)$. But $F_{\delta} \to F$ and $H_{\delta}^{s}(F) \to H^{s}(F)$, so that $\mu(F) \le (c+\epsilon)H^{s}(F)$, where $\epsilon > 0$ is arbitrary.

(ii) Fix $\epsilon > 0$ and $\delta > 0$. Let $\mathcal{B} = \{B(x,r) : x \in F, 0 < r \le \delta, \mu(B(x,r)) \ge (x-\epsilon)r^s\}$. By assumption, $F \subseteq \bigcup_{B \in \mathcal{B}} B$. Use the Vitali covering lemma, so there exists disjoint balls $B_1, B_2, \ldots \in \mathcal{B}$ such that B_i' is the ball with the same centre and 5 times the radius, then $\bigcup_{i=1}^{\infty} B_i' \supseteq F$. Since diam B(x,r) = 2r, $|B_i'| \le 10r \le 10\delta$ so the $\{B_i'\}_{i=1}^{\infty}$ are a 10δ -cover of F. Thus

$$H_{10\delta}^{s}(F) \leq \sum_{i=1}^{\infty} |B_{i}'|^{s} = \sum_{i=1}^{\infty} |B_{i}|^{s} 5^{s}$$

$$= \sum_{i=1}^{\infty} (2r_{i})^{s} 5^{s}$$

$$\leq 10^{s} \sum_{i=1}^{\infty} \frac{\mu(B_{i})}{c - \epsilon}$$

$$= \frac{10^{s}}{c - \epsilon} \mu \left(\bigcup_{i=1}^{\infty} B_{i} \right) \leq \frac{10^{s}}{c - \epsilon} \mu(\mathbb{R}^{n})$$

and taking $\delta \to 0$ and noting that $\epsilon > 0$ is arbitrary, we have $H^s(F) \ge \frac{10^s \mu(\mathbb{R}^n)}{c}$.

1.16 Proposition. Suppose F is Borel and $0 < H^s(F) < \infty$. Then there exists c and a compact $E \subseteq F$ such that $H^s(E) > 0$ and $H^s(B(x,r) \cap E) \le cr^s$ for all $x \in E$ and r > 0.

Proof Let

$$F_1 = \left\{ x : \limsup_{r \to 0} \frac{H^s(F \cap B(x, r))}{r^s} > 10^{s+1} \right\}$$

and apply (b) above with $\mu = H^s|_F$ so that

$$H^{s}(F_{1}) \le \frac{10^{s}}{10^{s+1}} \mu(\mathbb{R}^{n}) = \frac{1}{10} H^{s}(F).$$

In particular, $H^s(F \setminus F_1) \ge \frac{9}{10} H^s(F) > 0$. For all $x \in F \setminus F_1$, there exists $r_0(x)$ such that for all $r \le r_0$, then

$$\frac{H^s(F \cap B(x,r))}{r^s} \le 10 \cdot 10^{s+1} = 10^{s+2}.$$

Let

$$E_n = \left\{ x \in F \setminus F_1 : \frac{H^s(F \cap B(x,r))}{r^s} \le 10^{s+2} \text{ for all } r \le \frac{1}{n} \right\}$$

so that $\bigcup_{n=1}^{\infty} E_n = F \setminus F_1$. By continuity of measure, $H^s(E_n) \to H^s(F \setminus F_1) > 0$ so there exists N such that $H^s(E_N) > 0$. Since H^s is inner regular (TODO prove), get $E \subseteq E_N$ compact such that $H^s(E) > 0$. Then if $x \in E$, $x \in E_N$ so $H^s(E \cap B(x,r)) \le H^s(F \cap B(x,r)) \le 10^{s+2} r^s$ if $r \le 1/N$. For any r, $H^s(E \cap B(x,r)) \le H^s(F) = C_0$. If r > 1/N, then $C_0 \le C_0 N^s r^s$. Take $c = \max\{10^{s+2}, C_0 N^s\}$.

Remark. The assumption $H^s(F) < \infty$ can be removed when F is closed.

1.4 Potential-Theoretic Methods

Definition. For $s \ge 0$, the *s*-potential at *x* due to μ is

$$\phi_s(x) = \int_{\mathbb{R}^n} \frac{d\mu(y)}{\|x - y\|^s}$$

and the s-energy of μ

$$I_s(\mu) = \int_{\mathbb{R}^n} \phi_s d\mu = \int_{\mathbb{R}^n \times \mathbb{R}^n} \frac{d\mu(x)d\mu(y)}{\|x - y\|^s}$$

Example. (i) If s = 0, then $\phi_0(x) = \mu(\mathbb{R}^n)$ and $I_0(\mu) = \mu(\mathbb{R}^n)^s < \infty$.

- (ii) If s > 0 and $\mu = \delta_0$, then $I_s(\delta_0) = \phi_s(0) = \infty$
- (iii) If n = 1 and $\mu = m|_{[0,1]}$, s < 1. Then $I_s(\mu) = \int_0^1 \int_0^1 \frac{dxdy}{|x-y|^s} < \infty$.
 - **1.17 Theorem.** Let F be a closed set, s > 0.
 - (i) If there exists a finite, non-zero measure μ supported on F such that $I_s(\mu) < \infty$, then $H^s(F) = \infty$ implies that $\dim_H F \ge s$.
 - (ii) If $H^s(F) > 0$, then there exists a finite non-zero measure μ on F such that $I_t(\mu) < \infty$ for all t < s.

PROOF (i) Suppose $I_s(\mu) < \infty$ for μ a finite measure on F. We will show that $\limsup_{r \to 0} \frac{\mu(B(x,r))}{r^s} = 0$ for μ a.e. $x \in F$. Assuming this, then $H^s(F) \ge \frac{\mu(F \setminus N)}{\epsilon}$ for some μ -null N, but this holds for any $\epsilon > 0$, so $H^s(F) = \infty$.

Let $F_1 = \{x \in F : \limsup_{r \to 0} \frac{\mu(B(x,r))}{r^s} > 0\}$. We want to show that $\mu(F_1) = 0$. We first show that $\phi_s(\mu) = \infty$ on F_1 . If $x \in F_1$, then there exists $\epsilon > 0$ and $\{r_i\}_{i=1}^{\infty}$ converging to 0 such that $(B(x,r_i)) \ge \epsilon r_i^s$. Since $I_s(\mu) < \infty$ for some s > 0, μ is not atomic so by downward continuity of meaure, $\mu(B(x,q)) \to \mu(\{x\}) = 0$ as $q \to 0$. Thus get q_i such that $\mu(B(x,q_i)) < \frac{\epsilon}{2} r_i^s$. Let $A_i = B(x,r_i) \setminus B(x,q_i)$, so that $\mu(A_i) \ge \frac{\epsilon}{2} r_i^s$. Relabelling the r_i if necessary, we may assume that $r_{i+1} < q_i$ so that the annuli are disjoint and nested. In particular,

$$\phi_{s}(x) = \int_{\mathbb{R}^{n}} \frac{d\mu(y)}{\|x - y\|^{s}}$$

$$\geq \sum_{i=1}^{\infty} \int_{A_{i}} \frac{d\mu(y)}{\|x - y\|^{s}}$$

$$\geq \sum_{i=1}^{\infty} \frac{1}{\max_{y \in A_{i}} \|x - y\|^{s}} \mu(A_{i})$$

$$\geq \sum_{i=1}^{\infty} \frac{1}{r_{i}^{s}} \mu(A_{i}) \geq \sum_{i=1}^{\infty} \frac{1}{r_{i}^{s}} \cdot \frac{\epsilon}{2} r_{i}^{s} = \infty$$

But now,

$$\infty > I_s(\mu) = \int_{\mathbb{R}^n} \phi_s d\mu \ge \int_{F_1} \phi_s d\mu$$

so if $\phi_s = +\infty$ on F_1 , then $\mu(F_1) = 0$.

(ii) Suppose $H^s(F) > 0$. By the previous proposition, there exists sompact $E \subseteq F$ with $0 < H^s(E) < \infty$ and $H^s(E \cap B(x,r)) \le cr^s$ for all $x \in E$ and r > 0. Put $\mu = H^s|_E$. Then $\mu(B(x,r)) \le cr^s$ for all $x \in E$. For $x \in E$,

$$\phi_i(x) = \int_{\left\| |x-y| \right\| \le 1} \frac{d \, \mu(y)}{\left\| |x-y^t| \right\|} + \int_{\left\| |x-y| \right\| > 1} \frac{d \, \mu(y)}{\left\| |x-y| \right\|^t}.$$

Certainly the second integral is finite independent of *x*. The first integral is finite since

$$\int_{\|x-y\| \le 1} \frac{d\mu(y)}{\|x-y^t\|} = \sum_{k=0}^{\infty} \int_{B(x,2^{-k}) \setminus B(x,2^{-(k+1)})} \frac{d\mu(y)}{\|x-y\|^t}$$

$$\le \sum_{k=0}^{\infty} \frac{1}{2^{-(k+1)t}} \mu(B(x,2^{-k}))$$

$$\le \sum_{k=0}^{\infty} \frac{c}{2^{-(k+1)t}} \cdot 2^{-ks} < \infty$$

since s > t. Again, this bound does not depend on x. Thus ϕ_t is a bounded function on E, so that $I_t(\mu) < \infty$.

"can't have both the measure and it's fourier transform small"

Suppose f is integrable on \mathbb{R}^n or $\mu \in M(\mathbb{R}^n)$ is a complex measure. We then define the **fourier transform**

$$\hat{f}(z) = \int_{\mathbb{R}^n} f(x)e^{-ix\cdot z} \, dm(x)$$

$$\hat{\mu}(z) = \int_{\mathbb{R}^n} e^{-ix\cdot z} \, d\mu(x)$$

If $f, g \in L^1$, then $f * g \in L^1$ by

$$f * g(x) = \int_{\mathbb{R}^n} f(x - y)g(y) \, dy$$
$$f * \mu(x) = \int_{\mathbb{R}^n} f(x - y) \, d\mu(y)$$

By Fubini, $\|f * g\|_1 \le \|f\|_1 \|g\|_1$ and $\|f * \mu\| \le \|f\|_1 \|\mu\|_{M(\mathbb{R}^n)}$. One reason for doing this is that L^1 is not closed under pointwise multiplication. Importantly, we have

$$(f * g)(z) = \hat{f}(z)\hat{g}(z)$$
$$(f * \mu)(z) = \hat{f}(z)\hat{\mu}(z)$$

in other words that the fourier transform converts convolution to multiplication.

Now consider $g_s(t) = ||t||^{-s}$. Then

$$\phi_s(x) = \int_{\mathbb{R}^n} \frac{\mathrm{d}\mu(y)}{\|x - y\|^s} = \int_{\mathbb{R}^n} g_s(x - y) \,\mathrm{d}\mu(y) = g_s * \mu(x)$$

It is known that $\hat{g}_s(z) = c(n,s) ||z||^{s-n}$ for 0 < s < n. In particular, $\hat{\phi}_s(z) = \hat{g}_s(z) \hat{\mu}(z) = c(n,s) ||z||^{s-n} \hat{\mu}(z)$.

1.18 Theorem. (Parseval) We have

$$\int f \cdot \overline{g} \, \mathrm{d}x = (2\pi)^n \int \hat{f} \cdot \overline{\hat{g}} \, \mathrm{d}z$$

for $f,g \in L^2$ and thus $\int |f|^2 = (2\pi)^n \int |\hat{f}|^2$. When g is "nice",

$$\int g(x) d\mu(x) = (2\pi)^n \int \hat{g}(z) \overline{\hat{\mu}(z)} dz$$

In particular (with some technicalities ...)

$$I_s(\mu) = \int \phi_s(x) \, d\mu(x) = c_n \int \hat{\phi}_s(z) \overline{\hat{\mu}(z)} \, dz$$
$$= c'_n \int ||z||^{s-n} |\hat{\mu}(z)|^2 \, dz$$

Example. If $|\hat{\mu}(z)| \le C ||z||^{-t/z}$, then dim_H supp $\mu \ge t$.

Proof We have since $\hat{\mu}(z)$ is bounded that

$$\begin{split} I_{s}(\mu) &= c \int \|z\|^{s-n} |\hat{\mu}(z)|^{2} dz \\ &= c \left(\int_{\|z\| \le 1} \|z\|^{s-n} |\hat{\mu}(z)|^{2} dz + \int_{\|z\| > 1} \|z\|^{s-n} |\hat{\mu}(z)|^{2} dz \right) \\ &\le c \left(\int_{\|z\| \le 1} C_{0} \|z\|^{s-n} dz + \int_{\|z\| \ge 1} \|z\|^{s-n} \|z\|^{-t} dz \right) \\ &= c \left(c_{1} \int_{0}^{1} r^{s-n} r^{n-1} dr + \int_{1}^{\infty} t^{s-t-1} dr \right) < \infty \end{split}$$

as s < t. Thus $I_s(\mu) < \infty$ for any 0 < s < t, and apply the energy theorem.

1.5 Projections of Fractals

Let $F \subset \mathbb{R}^2$ be a region and consider the (orthogonal) projection onto some line through the origin. Write $\operatorname{proj}_{\theta}(f)$ to denote the projection onto the line L_{θ} . Note that $d(\operatorname{proj}_{\theta}(x),\operatorname{proj}_{\theta}(y)) \leq d_{\mathbb{R}^2}(x,y)$ so $\operatorname{proj}_{\theta}$ is Lipschitz and $\dim_H \operatorname{proj}_{\theta} F \leq \min\{1,\dim_H F\}$.

If L is a line segment, then for all values of θ (except for 2), then the projection has maximal dimension.

- **1.19 Theorem.** Let $F \subseteq \mathbb{R}^2$ be closed.
 - (i) If $\dim_H F \leq 1$, then $\dim_H \operatorname{proj}_{\theta} F = \dim_H F$ for a.e. θ .
 - (ii) If $\dim_H F > 1$, then $m(\operatorname{proj}_{\theta} F) > 0$ for a.e. θ .

PROOF (i) Choose $0 < s < \dim_H F$, so $H^s(F) > 0$. Thus there exists some μ on F such that $I_s(\mu) < \infty$. Write $x.\theta$ to denote the projection of x onto the line L_θ . Then define μ_θ on $\operatorname{proj}_\theta F$ by

$$\int_{-\infty}^{\infty} f(t) d\mu_{\theta}(t) = \int f(x.\theta) d\mu(x)$$

for all $f \in C_c(\mathbb{R})$ (Radon-Markov). Note that $\mu_{\theta}(S) = \mu(\text{proj}_{\theta}^{-1}(S))$. We will show that $\int_0^{\pi} I_s(\mu_{\theta}) d\theta < \infty$, so that $I_s(\mu_{\theta}) < \infty$ for a.e. θ and we will be done. We have since $|x.\theta - y.\theta| = ||x - y|| \cos(\theta - (x - y))$.

$$\begin{split} \int_0^\pi I_s(\mu_\theta) \, \mathrm{d}\theta &= \int_0^\pi \int_F \int_F \frac{\mathrm{d}\mu(x) \, \mathrm{d}\mu(y)}{|x.\theta - y.\theta|^s} \\ &= \int_0^\pi \int_F \int_F \frac{\mathrm{d}\mu(x) \, \mathrm{d}\mu(y)}{\left\|x - y\right\|^s |\cos(\theta - (x - y))|^s} \\ &= \int_F \int_F \left(\int_0^\pi \frac{\mathrm{d}\theta}{|\cos(\theta - (x - y))|^s}\right) \frac{\mathrm{d}\mu(x) \, \mathrm{d}\mu(y)}{\left\|x - y\right\|^s} \\ &= \int_{F \times F} \left(\int_0^\pi \frac{\mathrm{d}\theta}{|\cos\theta|^s}\right) \frac{\mathrm{d}\mu(x) \, \mathrm{d}\mu(y)}{\left\|x - y\right\|^s} \end{split}$$

Note that $\int_0^{\pi} \frac{d\theta}{|\cos\theta|^s} < \infty$, but the remaining term is just the *s*-energy of μ , which is finite.

(ii) Assume $\dim_H F > 1$, so there exists some t > 1 such that $H^t(F) > 0$. Get μ on F such that $I_1(\mu) < \infty$. Define μ_{θ} as above. We will show that μ_{θ} is absolutely continuous with density in L^2 for almost every θ . Then $f_{\theta} \neq 0$ in L^2 since $\mu_{\theta} \neq 0$ so that $m\{x: f_{\theta}(x) \neq 0\} > 0$ where $\{x: f_{\theta}(x) \neq 0\} \subseteq \text{supp } \mu_{\theta}$. Recall that $f \in L^2$ if and only if $\hat{f} \in L^2$. We have

$$|\hat{\mu_{\theta}}(z)|^{2} = \int e^{-ivz} d\mu_{\theta}(v) \overline{\int e^{-izw} d\mu_{\theta}(w)}$$

$$= \int_{\mathbb{R} \times \mathbb{R}} e^{-iz(v-w)} d\mu_{\theta}(v) d\mu_{\theta}(w)$$

$$= \int_{F \times F} e^{-iz(x-y).\theta} d\mu(x) d\mu(y)$$

so that

$$|\hat{\mu_{\theta}}(z)|^{2} + |\hat{\mu_{\theta+\pi}}(z)|^{2} = \int_{F \times F} \left(e^{-iz(x-y).\theta} + e^{-iz(x-y).(-\theta)} \right) d\mu(x) d\mu(y)$$

$$= 2 \int_{F \times F} \cos(z(x-y).\theta) d\mu(x) d\mu(y)$$

First note that

$$\int_{0}^{2\pi} |\hat{\mu_{\theta}}(z)|^{2} d\theta = \int_{0}^{\pi} |\hat{\mu_{\theta}}(z)|^{2} + |\hat{\mu_{\theta+\pi}}(z)|^{2} d\theta$$

$$= 2 \int_{0}^{\pi} \int_{f} \int_{F} \cos(z(x-y).\theta) d\mu(x) d\mu(y) d\theta$$

$$= 2 \int_{0}^{\pi} \int_{f} \int_{F} \cos(z||x-y||\cos(\theta-(x-y))) d\mu(x) d\mu(y) d\theta$$

$$= \int_{F} \int_{F} \left(\int_{0}^{2\pi} \cos(z||x-y||\cos(\theta)) d\theta \right) d\mu(x) d\mu(y)$$

$$= 2\pi \int_{F} \int_{F} J_{0}(z||x-y||) d\mu(x) d\mu(y).$$

We now have (concealing some technicalities in verifying the application of Fubini)

$$\int_{0}^{2\pi} \int_{-\infty}^{\infty} |\hat{\mu_{\theta}}(z)|^{2} dz d\theta < \infty = \int_{-\infty}^{\infty} \int_{0}^{2\pi} |\hat{\mu_{\theta}}(z)|^{2} dz d\theta < \infty$$

$$= 2\pi \int_{-\infty}^{\infty} \int_{F} \int_{F} J_{0}(z ||x - y||) d\mu(x) d\mu(y)$$

$$= 2\pi \int_{F} \int_{F} \left(\int_{-\infty}^{\infty} J_{0}(z ||x - y||) dz \right) d\mu(x) d\mu(y)$$

$$= 2\pi \int_{F} \int_{F} \left(\int_{-\infty}^{\infty} J_{0}(w) dw \right) \frac{d\mu(x) d\mu(y)}{||x - y||} < \infty$$

by the integral of the Bessel function and the fact that $I_1(\mu) < \infty$.

Bessel function: $J_0(\mu) = \frac{1}{2\pi} \int_0^{2\pi} \cos(u \cos \theta) d\theta$.

2 ITERATED FUNCTION SYSTEMS

2.1 Invariant Sets and Measures

Let X be a complete metric space and F_1, \ldots, F_m a family of contractions from X to X (i.e. functions with $0 < r_i < 1$ with $d(F_i(x), F_i(y)) \le r_i d(x, y)$). Then there exists $E \subseteq X$ with E compact such that $E = \bigcup_{i=1}^n F_i(E)$.

Let $\mathcal{K}(X)$ denote the set of non-empty compact subsets of X. For $A \subseteq X$, let $A_r = \{y \in X : d(a,y) < r \text{ for some } a \in A\}$. We then define the **Hausdorff metric** on $\mathcal{K}(X)$ as follows:

$$D(A,B) = \inf\{r > 0 : A \subseteq B_r, B \subseteq A_r\}$$

2.1 Proposition. D, as defined above, is in fact a metric and when X is complete, K(X) is also complete.

PROOF We verify the properties for *D* to be a metric:

- (i) Suppose D(A, B) = 0. Then get a sequence a_n in A converging to any $b \in B$, i.e. $b \in \overline{A} = A$ and $B \subseteq A$. Similarly, $B \subseteq A$.
- (ii) D(A, B) = D(B, A) is clear
- (iii) Fix $A,B,C \in \mathcal{K}(X)$, $d_1 = D(A,C)$, $d_2 = D(C,B)$. Fix $\epsilon > 0$ and let $a \in A$ be arbitrary. Get $c \in C$ so that $D(a,c) < d_1 + \epsilon/2$. Then get $b \in B$ so that $D(c,b) < d_2 + \epsilon/2$. Thus $d(a,b) < d_1 + d_2 + \epsilon$ so $A \subseteq B_{d_1 + d_2 + \epsilon}$ for all $\epsilon > 0$. Similarly, $B \subseteq A_{d_1 + d_2 + \epsilon}$. Thus $D(A,B) \le d_1 + d_2$.

Completeness is left as an exercise.

2.2 Theorem. Let $\{F_1, ..., F_m\}$ be an IFS on X. Then there exists a unique compact set $E \subseteq X$ such that $E = \bigcup_{i=1}^m F_i(E)$.

PROOF Define $F: \mathcal{K}(X) \to \mathcal{K}(X)$ by $F(A) = \bigcup_{i=1}^m F_i(A)$. Let $r = \max\{r_1, \dots, r_m\} < 1$. We will show that $D(F(A), F(B)) \leq rD(A, B)$. Set d = D(A, B); it suffices to show that $F_i(A) \subseteq (F_i(B))_{r(d+\epsilon)}$ for any $\epsilon > 0$. Indeed, take $a \in A$, so there exists $b \in B$ so that $d(a,b) \leq d+\epsilon$. Then $d(F_i(a), F_i(b)) \leq r(d+\epsilon)$.

Then *F* is a contraction map on $\mathcal{K}(X)$, so that $F^{(k)}(A) \to E$ for some unique *E*.

If $F_i(A) \subseteq A$, then $E = \bigcap_{k=0}^{\infty} F^{(k)}(A)$.

2.3 Lemma. If $(A_k)_{k=1}^{\infty} \subset \mathcal{K}(X)$ with $A_1 \supseteq A_2 \supseteq \cdots$, then $A_k \to \bigcap_{i=1}^{\infty} A_i$.

PROOF Let $A_0 = \bigcap_{k=1}^{\infty} A_k$. We want to prove that $D(A_{k_1}, A_0) \to 0$. Certainly $A_0 \subseteq A_k$. Conversely, we must check that for any r > 0, there exists n_r such that $A_k \subseteq (A_0)_r$. Note that $(A_0)_r$ is an open set. Then $\{(A_0)_r, A_n^c : n \in \mathbb{N}\}$ is an open cover for A_1 . Hence there exists a finite subcover $(A_0)_r, A_{n_1}^c, \ldots, A_{n_N}^c$. Thus for any $k > \max\{n_1, \ldots, n_N\}$, $A_k \subseteq (A_0)_r$, as required.

2.4 Theorem. Let $X \subseteq \mathbb{R}^n$ be compact and let $\{F_i\}_{i=1}^m$ be an IFS on X with attractor E. Assume we are given probabilities $\{p_i\}_{i=1}^m$ such that $\sum_{i=1}^m p_i = 1$. Then there exists a unique Borel probability measure μ such that

$$\mu(A) = \sum_{i=1}^{m} p_i \mu(F_i^{-1}(A))$$

for all Borel sets A. Moreover,

- (i) $\int g \, \mathrm{d}\mu = \sum_{i=1}^{m} p_i \int g(F_i(x)) \, \mathrm{d}\mu(x)$
- (ii) $supp(\mu) = E$
- (iii) If the IFS satisfies the strong separation condition, then $\mu(E_{\sigma}) = p_{\sigma}$.

Remark. In the case of an IFS of similarities, μ is called a **self-similar measure**.

PROOF Let $M_1(X)$ denote the set of all Borel probability measures on X. Define a metric on M(X) by

$$d(\mu,\nu) = \sup \left\{ \left| \int g \, \mathrm{d}\mu - \int g \, \mathrm{d}\nu \right| : |g(x) - g(y)| \le \|x - y\| \right\}.$$

Step 1: verify that this in fact a metric which makes M(X) a complete metric space. [TODO: Falconer Techniques Proposition 1.9]

Step 2: Define $H: M(X) \to M(X)$ where $H(v) = H_v$ is the measure that satisfies

$$H_{\nu}(A) = \sum_{i=1}^{m} p_i \nu(F_i^{-1}(A))$$

for all A Borel. Verify that H_{ν} is a Borel probability measure. We have

$$H_{\nu}(A) = \int \mathbf{1}A \, dH_{\nu} = \sum_{i=1}^{m} p_{i} \int \mathbf{1}F_{i}^{-1}(A) \, d\nu$$
$$= \sum_{i=1}^{m} p_{i} \int \mathbf{1}A(F_{i}(x)) \, d\nu(x)$$

and extending by density of simple functions in L^1 , we have

$$\int g \, dH_{\nu} = \sum_{i=1}^{m} p_{i} \int g(F_{i}(x)) \, d\nu(x)$$

Step 3: Check that H_{ν} is a contraction. We have

$$\begin{split} d(H_{\mu}, H_{\nu}) &= \sup \left\{ \left| \int_{g} \mathrm{d}H_{\mu} - \int_{G} \mathrm{d}H_{\nu} \right| : \mathrm{Lip}(g) \leq 1 \right\} \\ &= \sup_{\mathrm{Lip}(g) \leq 1} \left| \sum_{i=1}^{m} \left(\int g(F_{i}(x)) \, \mathrm{d}\mu(x) - \int g(F_{i}(x)) \, \mathrm{d}\nu(x) \right) \right| \\ &\leq \sup_{\mathrm{Lip}(g) \leq 1} \left| \sum_{i=1}^{m} p_{i} r_{i} \left| \int r_{i}^{-1} g(F_{i}(x)) \, \mathrm{d}(\mu - \nu)(x) \right| \end{split}$$

where r_i is the contraction factor of F_i . Moreover, notice that

$$\begin{aligned} \left| r_i^{-1} g(F_i(x)) - r_i^{-1} g(F_i(y)) \right| &\leq r_i^{-1} \left\| F_i(x) - F_i(y) \right\| \\ &\leq \left\| x - y \right\| \end{aligned}$$

so that $r_i^{-1}g \circ F_i$ is Lipschitz with constant at most 1. Thus

$$d(\mu, \nu) \ge \left| \int r_i^{-1} g \circ F_i d(\mu - \nu)(x) \right|$$

so that

$$d(H_{\mu}, H_{\nu}) \le \sum_{i=1}^{m} p_i r_i d(\mu, \nu) \le \max\{r_i : i = 1, ..., m\} d(\mu, \nu)$$

and thus *H* is in fact a contraction map.

Step 4: By the Banach contraction mapping principle, there exists a unique fixed point $\mu \in M_1(X)$. But then

$$\mu(A) = H(\mu)(A) = \sum_{i=1}^{m} p_i \mu(F_i^{-1}(A))$$

for any Borel A.

It remains to show the properties.

- (i) Set $S = \operatorname{supp}(\mu)$. Then $1 = \mu(S) = \sum_{i=1}^m p_i \mu(F_i^{-1}(S))$ which forces $\mu(F_i^{-1}(S)) = 1$. Thus $F_i^{-1}(S) \supseteq S$ since they are of full measure, so $S \supseteq F_i(S)$. If $\mu(A) > 0$, then $\sum_{i=1}^m p_i \mu(F_i^{-1}(A)) > 0$, so there exists i such that $F_i^{-1}(A) \cap S \neq \emptyset$. Thus $A \cap F_i(S) \neq \emptyset$. But $S \setminus \left(\bigcup_{i=1}^m F_i(S)\right) \cap F_j(S) = \emptyset$ for all j, so that $\mu(S \setminus \bigcup_{i=1}^m F_i(S)) = 0$ and thus $\mu(S) = 1$. Thus $S = \bigcup_{i=1}^m F_i(S)$ so that S = E.
- (ii) Assume the SSC. Then

$$\mu(E_{\sigma}) = \sum_{i=1}^{m} p_i \mu(F_i^{-1}(E_{\sigma}))$$

$$\geq p_{\sigma_1} \mu(E_{\sigma_2...\sigma_k})$$

$$= p_{\sigma_1} \left(\sum_{i=1}^{m} p_i \mu(F_i^{-1}(E_{\sigma_2...\sigma_k})) \right)$$

$$\geq \cdots \geq p_{\sigma}$$

On the other hand, since $E = \bigcup_{\sigma \in \Sigma^k} E_{\sigma}$ disjointly,

$$1 = \mu(E) = \sum_{\sigma \in \Sigma^k} \mu(E_{\sigma})$$

$$\geq \sum_{\sigma \in \Sigma^k} p_{\sigma} = \left(\sum_{i=1}^m p_i\right)^k = 1$$

Definition. If the attractor E of an IFS $\{F_1, \ldots, F_m\}$ has the property that the sets $F_i(E)$ are disjoint, we say E satisfies the **strong separation condition**. We say that the IFS satisfies the **open set condition** if there exists a non-empty bounded open V such that $\bigcup_{i=1}^m F_i(U) \subseteq U$.

The strong separation condition implies the open set condition by taking, say, $U = \{x : d(x, E) < \epsilon\}$ where $\epsilon = \frac{1}{2} \min_{i \neq j} (d(F_i(E), F_j(E))) > 0$.

2.2 Dimensional Properties of the Attractor

2.5 Theorem. Let F be the attractor of the IFS $\{F_i\}_{i=1}^m$ with contraction factors $\{r_1,\ldots,r_m\}$. If the IFS satisfies the SSC, then $\dim_H E = s$ where $\sum_{i=1}^m r_i^s = 1$. Moreover, $0 < H^s(E) < \infty$.

PROOF Write $A_{\sigma} = F_{\sigma}(A)$ for each $\sigma \in \Sigma^* = \{1, ..., m\}^*$. Fix $\delta > 0$ and pick k such that $r^k |E| < \delta$. Then the sets $\{E_{\sigma} : \sigma \in \Sigma^k\}$ is a δ -cover of E. Then

$$H_{\delta}^{s}(E) \leq \sum_{\sigma \in \Sigma^{k}} |E_{\sigma}|^{s} = \left(\sum_{\sigma \in \Sigma^{k}} r_{\sigma}^{s}\right) |E|^{s}$$
$$= \left(\sum_{i=1}^{m} r_{j}^{s}\right)^{k} |E|^{s} = |E|^{s}$$

so that $H^s(E) \leq |E|^s < \infty$.

To get a lower bound, intending to use the mass distribution principle, we will construct a measure μ on E such that $\mu(U) \le c|U|^s$ for all open E. Define a measure μ on E by the rule $\mu(E_\sigma) = r_\sigma^s$. Using the subdivision method, one may verify that this is in fact a measure. But then $E_\sigma = \bigcup_{j=1}^m E_{\sigma j}$, so

$$\sum_{j} \mu(E_{\sigma j}) = \sum_{j} (r_{\sigma j})^{s} = r_{\sigma}^{s} \sum_{j} r_{j}^{s} = r_{\sigma}^{s} = \mu(E_{\sigma}).$$

Now consider B(x,r) where $x \in E$. Let $r < d = \min_{i \neq j} d(F_i(E), F_j(E)) > 0$, and get $k \in \mathbb{N}$ such that $r_{\sigma} \cdot d \le r < r_{\sigma} - d$ for $\sigma \in \Sigma^k$. Suppose $\sigma \ne \sigma'$ with $\sigma, \sigma' \in \Sigma^k$, and let j be maximal such that $\sigma | j = \sigma' | j$. Then

$$d(F_{\sigma|j}\circ F_{\sigma'_{j+1}}(E),F_{\sigma|j}\circ F_{\sigma_{j+1}}(E))=r_{\sigma|j}\cdot d\geq r_{\sigma|k-1}\cdot d>r$$

so that $d(E_{\sigma'}, E_{\sigma}) > r$. If $y \in B(x, r) \cap E$, then $y \in E_{\sigma}$ so $B(x, r) \cap E \subseteq E_{\sigma}$. Thus $\mu(B(x, r) \cap E) \le \mu(E_{\sigma}) = r_{\sigma}^{s} \le \frac{r^{s}}{d^{s}} = c(\operatorname{diam} B(x, r))^{s}$.

But given any U such that $U \cap E \neq \emptyset$, we may take $U \subset B(x,|U|)$ for any choice of $x \in E \cap U$.

2.6 Theorem. Suppose E is a compact, non-empty subset of X and let $a, r_0 > 0$. Suppose for all closed balls B with centre in E and radius $r < r_0$, there exists a contraction map $g: E \to E \cap B$ such that $d(g(x), g(y)) \ge ar \cdot d(x, y)$ for all $x, y \in E$. Then if $s = \dim_H E$, then $H^s(E) \le 4^s a^{-s} < \infty$ and $\dim_B(E) = \dim_B(E) = s$.

Example. Let *E* denote the Cantor set under the IFS $\{S_1, S_2\}$, and let *B* be the Cantor interval C_{σ} . Then diam $(B) = r_{\sigma}$, and $g : E \to E \cap B$ is the map S_{σ} . Then $d(g(x), g(y)) = r_{\sigma}d(x, y)$.

PROOF Let $N_r(E)$ denote the maximum number of disjoint closed balls of radius r with centers in E. Assume for contradiction there exists $r < \min\{a^{-1}, r_0\}$ with $N_r(E) > a^{-s}r^{-s}$.

Get some r > s such that $N_r(E) > a^{-t}r^{-t}$, so we may get m disjoint closed balls B_1, \ldots, B_m with centres in E of radius r, and each of them gives rise to a map $g_i : E \to E \cap B_i$ such that $d(g_i(x), g_i(y)) \ge ard(x, y)$ for all x, y in E. Set $d_0 = \min_{i \ne j} d(B_i \cap E, B_j \cap E) > 0$. But then

$$d(g_{i_1} \circ \dots \circ g_{i_k}(x), g_{j_1} \circ \dots \circ g_{j_k}(y)) \ge (ar)^{q-1} d(g_{i_q} \circ \dots \circ g_{i_k}(x), g_{j_q} \circ g_{j_k}(y))$$

$$\ge (ar)^{q-1} d_0 \ge (ar)^k d_0 > 0$$