

$Orthogonality-The\ Gram\text{-}Schmidt\ algorithm$

- 1. Two vectors u and v are orthogonal if $u \cdot v = 0$.
- 2. They are orthonormal if in addition $\|u\| = \|v\| = 1$
- 3. In this case the matrix $oldsymbol{Q} = [oldsymbol{u}, oldsymbol{v}]$ is such

$$Q^TQ = I$$

- ightharpoonup We say that the system $\{u,v\}$ is orthonormal ..
- \blacktriangleright .. and that the matrix Q has orthonormal columns
- \succ .. or that it is orthogonal [Text reserves this term to $n \times n$ case]

14-2 Text: 6.4 – QR

Example: An orthonormal system $\{u,v\}$

$$u=rac{1}{2}egin{pmatrix}1\-1\1\1\end{pmatrix}\quad v=rac{1}{2}egin{pmatrix}1\1\-1\1\end{pmatrix}$$

Generalization:

A system of vectors $\{v_1,\ldots,v_n\}$ is orthogonal if $v_i.v_j=0$ for $i\neq j$; and orthonormal if in addition $||v_i||=1$ for $i=1,\cdots,n$

14-3 Text: 6.4 – QR

- A matrix is orthogonal if its columns are orthonormal
- lacksquare Then: $oldsymbol{V} = [v_1, \ldots, v_n]$ has orthonormal columns

[Note: The term 'orthonormal matrix' is not used. 'orthogonal' is often used for square matrices only (textbook)]

14-4 ______ Text: 6.4 – QR

The Gram-Schmidt algorithm

Problem: Given a set $\{u_1,u_2\}$ how can we generate another set $\{q_1,q_2\}$ from linear combinations of u_1,u_2 so that $\{q_1,q_2\}$ is orthonormal?

- **Step 1** Define first vector: $q_1 = u_1/\|u_1\|$ ('Normalization')
- Step 2: Orthogonalize u_2 against q_1 : $\hat{q} = u_2 (u_2.q_1) q_1$
- Step 3 Normalize to get second vector: $q_2 = \hat{q}/\|\hat{q}\|$
- Result: $\{q_1, q_2\}$ is an orthonormal set of vectors which spans the same space as $\{u_1, u_2\}$.

14-5 ______ Text: 6.4 – QR

The operations in step 2 can be written as

$$\hat{q}:=ORTH(u_2,q_1)$$

ORTH (u_2, q_1) : "orthogonalize u_2 against q_1 "

ightharpoonup ORTH(x,q) denotes the operation of orthogonalizing a vector x against a unit vector q.

Result of z = ORTH(x, q)

14-6 ______ Text: 6.4 – QR

$$u_1=egin{pmatrix}1\-1\1\1\end{pmatrix} \quad u_2=egin{pmatrix}2\0\0\2\end{pmatrix}$$

Step 1:
$$q_1=rac{1}{2}egin{pmatrix}1\\1\\1\end{pmatrix}$$
 Step 2: First compute $u_2.q_1=...=2$. Then:

$$\hat{q} = egin{pmatrix} 2 \ 0 \ 0 \ 2 \end{pmatrix} - 2 imes rac{1}{2} egin{pmatrix} 1 \ -1 \ 1 \ 1 \end{pmatrix} = egin{pmatrix} 1 \ 1 \ 1 \ 1 \end{pmatrix} & q_2 = rac{1}{2} egin{pmatrix} 1 \ 1 \ -1 \ 1 \end{pmatrix}$$

Step 3: Normalize

$$q_2=rac{1}{2}egin{pmatrix}1\1\-1\1\end{pmatrix}$$

Generalization: 3 vectors

- How to generalize to 3 or more vectors?
- \blacktriangleright For 3 vectors : $[u_1,u_2,u_3]$
 - ullet First 2 steps are the same $o q_1, q_2$
 - ullet Then orthogonalize u_3 against q_1 and q_2 :

$$\hat{q} = u_3 - (u_3.q_1)q_1 - (u_3.q_2)q_2$$

Finally, normalize:

$$q_3=\hat{q}/\|\hat{q}\|$$

General problem: Given $U=[u_1,\ldots,u_n]$, compute $Q=[q_1,\ldots,q_n]$ which is orthonormal and s.t. $\mathsf{Col}(Q)=\mathsf{Col}(U)$.

__ Text: 6.4 – QR

ALGORITHM: 1. Classical Gram-Schmidt

```
1. For j=1:n Do:

2. \hat{q}=u_{j}

3. For i=1:j-1

4. \hat{q}:=\hat{q}-(u_{j}.q_{i})q_{i} / set r_{ij}=(u_{j}.q_{i})

5. End

6. q_{j}:=\hat{q}/\|\hat{q}\| / set r_{jj}=\|\hat{q}\|

7. End
```

- ightharpoonup All n steps can be completed iff u_1, u_2, \ldots, u_n are linearly independent.
- Define a matrix $m{R}$ as $m{r_{ij}} = \left\{ egin{array}{ll} m{u_j.q_i} & ext{if} & i < j ext{ (see line 4)} \\ \|\hat{q}\| & ext{if} & i = j ext{ (see line 6)} \\ 0 & ext{if} & i > j ext{ (lower part)} \end{array}
 ight.$

14-9

 \blacktriangleright We have from the algorithm: (For $j=1,2,\cdots,n$)

$$u_j = r_{1j}q_1 + r_{2j}q_2 + \ldots + r_{jj}q_j$$

If $U=[u_1,u_2,\ldots,u_n]$, $Q=[q_1,q_2,\ldots,q_n]$, and if R is the $n\times n$ upper triangular matrix defined above:

$$R = \{r_{ij}\}_{i,j=1,...,n}$$

then the above relation can be written as

$$U = QR$$

 \blacktriangleright This is called the QR factorization of U.

Text: 6.4 – QR

ightharpoonup Q has orthonormal columns. It satisfies:

$$Q^TQ = I$$

- ➤ It is said to be orthogonal
- ightharpoonup R is upper triangular
- Mhat is the inverse of an orthogonal n imes n matrix?
- Mhat is the cost of the factorization when $U \in \mathbb{R}^{m \times n}$?

Text: 6.4 – QR

Another decomposition:

A matrix U, with linearly independent columns, is the product of an orthogonal matrix Q and a upper triangular matrix R.

14-12 Text: 6.4 – QR

Orthonormalize the system of vectors:

$$U = [u_1, u_2, u_3] = egin{pmatrix} 1 & -4 & 3 \ -1 & 2 & -1 \ 1 & 0 & 1 \ 1 & -2 & -1 \end{pmatrix}$$

For this example:

- \triangle 1) what is Q? what is R?
- $ilde{m \omega}$ 2) Verify (matlab) that m U = m Q m R
- $[\Delta]$ 3) Compute Q^TQ . [Result should be the identity matrix]

$Solving\ LS\ systems\ via\ QR\ factorization$

- In practice: not a good idea to solve the system $A^TAx = A^Tb$. Use the QR factorization instead. How?
- Answer in the form of an exercise

Problem: $Ax \approx b$ in least-squares sense

A is an m imes n (full-rank) matrix. Consider the QR factorization of A

$$A = QR$$

- Approach 1: Write the normal equations then 'simplify'
- Approach 2: Write the condition $b Ax \perp \mathsf{Col}(A)$ and recall that A and Q have the same column space.

__ Text: 6.4 – QR