

Data Science & Business Analytics

Machine Learning Models

David Issá davidribeiro.issa@gmail.com

Correspondonde ao processo de selecionar um subconjunto de variáveis relevantes a utilizar na construção do modelo preditivo.

O objetivo é o de reduzir o número de variáveis de entrada para aquelas que se acredita serem mais úteis para o modelo prever a variável-alvo:

- Melhoria do desempenho: redução de overfitting;
- Redução do custo computacional: tempo de treino mais curto;
- Modelos simples são mais <u>fáceis de compreender</u>;
- Evitar <u>redundância de variáveis</u>.

Por vezes, confudem-se os conceitos de Feature Selection, Feature Engineering e Dimensionality Reduction:

- Feature Engineering: criar novas variáveis a partir das originais, com o objetivo de criar modelos mais eficazes e com melhor desempenho.
- Dimensionality Reduction: uso de algoritmos de unsupervised learining para reduzir o número de variáveis num conjunto de dados. Estas técnicas modificam ou transformam as variáveis para um espaço dimensional inferior.
- Feature Selection: permite selecionar variáveis de todas as variáveis disponíveis para criação de melhores modelos e mais eficientes.

1.1 Feature Selection – Métodos Filter

1.1.1 Feature Selection – Métodos Filter Básicos

1.1.1 Feature Selection – Métodos Filter Básicos

Métodos Filter Básicos – Exemplo:

ID	var1	var2	var3	var4	target
1	Female	Yes	Portugal	PT	0
2	Female	Yes	Spain	SP	1
3	Female	Yes	Portugal	PT	1
4	Female	Yes	France	FT	1
5	Female	Yes	Germany	DE	0
6	Female	Yes	Portugal	PT	0
7	Female	No	United Kingdom	UK	0
8	Female	Yes	Spain	SP	1
9	Female	Yes	France	FR	1
	Variável Constantes	Variável Quasi-Constar	Variáv ntes Duplica		

A correlação mede o grau em que duas variáveis se movem uma em relação à outra.

Mas as variáveis correlacionadas são sempre más?

- Se dois preditores estiverem altamente correlacionados, então fornecem informação redundante. Podemos usar apenas uma dessas variáveis.
- MAS se um preditor estiver altamente correlacionado com o alvo, esta deve ser usada no subconjunto final de variáveis escolhidas.

A correlação mede o grau em que duas variáveis se movem uma em relação à outra.

Mas as variáveis correlacionadas são sempre más?

- Se dois preditores estiverem altamente correlacionados, então fornecem informação redundante. Podemos usar apenas uma dessas variáveis.
- MAS se um preditor estiver altamente correlacionado com o alvo, esta deve ser usada no subconjunto final de variáveis escolhidas.

Se a variável A e B estiverem altamente correlacionadas entre si, devemos manter a variável A ou B?

 Devemos utilizar mais técnicas de feature selection para compreender o peso de cada variável no objetivo.

Correlação Pearson (variável independente e variável alvo ambas numéricas)

$$r_{xy} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2} \sqrt{\sum (y_i - \bar{y})^2}}$$

O resultado varia entre 1 e -1:

- Se > 0, então a relação entre as 2 variáveis é positiva;
- Se < 0, então a relação entre as 2 variáveis é negativa;
- Quanto mais perto dos extremos, mais forte é a relação.

Correlação Pearson (variável independente e variável alvo ambas numéricas)

$$r_{xy} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2} \sqrt{\sum (y_i - \bar{y})^2}}$$

ID	х	у	$(x_i - \overline{x})$	$(y_i - \overline{y})$	$(x_i - \overline{x})(y_i - \overline{y})$	$(x_i - \overline{x})^2$	$(y_i - \overline{y})^2$
1	87	241	10	27	270	100	729
2	46	160	-31	-54	1674	961	2916
3	72	210	-5	-4	20	25	16
4	64	195	-13	-19	247	169	361
5	123	285	46	-71	3266	2116	5041
6	97	233	20	19	380	400	361
7	50	174	-27	-40	1080	729	1600
Avg	77	214	NA	NA	NA	NA	NA
Sum	NA	NA	NA	NA	6937	4500	11024

$$r_{xy} = \frac{6937}{\sqrt{4500}\sqrt{11024}} = 0.985$$

Correlação Spearman (variável independente e variável alvo numéricas ou categóricas ordinais)

$$ho=1-rac{6\sum d_i^2}{n(n^2-1)}$$
 d_i corresponde à diferença no ranking entre as 2 variáveis para a observação i .

O resultado varia entre 1 e -1:

- Se > 0, então a relação entre as 2 variáveis é positiva;
- Se < 0, então a relação entre as 2 variáveis é negativa;
- Quanto mais perto dos extremos, mais forte é a relação.
- Ao contrário da correlação pearson, não assumimos que a relação entre as 2 variáveis é linear.

Correlação Spearman (variável independente e variável alvo numéricas ou categóricas ordinais)

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

ID	х	у	Rank x	Rank y	d_i^2
1	87	241	5	6	1
2	46	160	1	1	0
3	72	210	4	4	0
4	64	195	3	3	0
5	123	285	7	7	0
6	97	233	6	5	1
7	50	174	2	2	0
Sum	NA	NA	NA	NA	2

$$\rho = 1 - \frac{6 \times 2}{7(7^2 - 1)} = 0.964$$

Correlação Kendall (variável independente e variável alvo numéricas ou categóricas ordinais)

$$\tau = \frac{2(n_c - n_d)}{n(n-1)}$$

$$n_c \text{ corresponde ao número de pares de observações concordantes, e } n_d \text{ ao número de pares discordantes.}$$

A correlação de Kendall é um coeficiente que representa o grau de concordância entre 2 variáveis:

- Um par de observações é concordante se $(X_i > X_i e Y_i > Y_i)$ ou $(X_i < X_i e Y_i < Y_i)$
- Um par de observações é disconcordante se $(X_i > X_i e Y_i < Y_i)$ ou $(X_i < X_i e Y_i > Y_i)$
- Tal como o Pearson e Spearman, o coeficiente varia entre -1 e 1.

ID	х	у
1	87	210
2	46	160
3	72	241

$$(X_1 > X_2 \in Y_1 > Y_2) \rightarrow$$
 par concordante
 $(X_1 > X_3 \in Y_1 < Y_3) \rightarrow$ par disconcordante
 $(X_2 < X_3 \in Y_2 < Y_3) \rightarrow$ par concordante
 $(X_2 < X_3 \in Y_2 < Y_3) \rightarrow$ par concordante

$$\tau = \frac{2(2-1)}{3(3-1)} = 0.11$$

Teste Chi-Square (variável independente e variável alvo ambas categóricas)

O teste Chi-Square corresponde a um método estatístico utilizado para testar a independência de dois acontecimentos.

Neste caso, pretendemos determinar a relação entre um preditor e a variável alvo:

- Dadas 2 variáveis, podemos obter a contagem observada "O" e a contagem esperada "E", sendo que a contagem esperada é calculada assumindo indendência.
- Quando 2 variáves são independentes, a contagem observada é próxima da contagem esperada, pelo que teremos um valor de Chi-Squared menor.
- Um valor Chi-Squared mais elevado implica que a variável independente é mais dependente do alvo, e pode ser selecionada para o treino do modelo.

Teste Chi-Square (variável independente e variável alvo ambas categóricas)

1º Passo: Definir hipóteses

- Hipótese nula (H0): As duas variáveis são independentes
- Hipótese alternativa (H1): As duas variáveis não são independentes

2º Passo: Definir a tabela de contingência para os valores observados

Gender	Disease
F	Yes
М	No
F	No
М	Yes

			Disease	
		Yes	No	Total
Gender	F	380	1780	2160
	М	440	1400	1840
	Total	820	3180	4000

Degrees of freedom = $(rows - 1) \times (cols - 1) = 1$

Mostra a distribuição de uma variável em linhas e outra em colunas. Utilizada para estudar a relação entre duas variáveis.

Teste Chi-Square (variável independente e variável alvo ambas categóricas)

3º Passo: Calcular os valores esperados usando probabilidades (assumindo independência)

•
$$P(Yes \cap Male) = P(Yes) \times P(Male) = \frac{820}{4000} \times \frac{1840}{4000} = 0.0943 \rightarrow 4000 \times 0.0943 = 377$$

•
$$P(Yes \cap Female) = P(Yes) \times P(Female) = \frac{820}{4000} \times \frac{2160}{4000} = 0.1107 \rightarrow 4000 \times 0.1107 = 443$$

•
$$P(No \cap Male) = P(No) \times P(Male) = \frac{3180}{4000} \times \frac{1840}{4000} = 0.3657 \rightarrow 4000 \times 0.4293 = 1463$$

•
$$P(No \cap Female) = P(No) \times P(Female) = \frac{3180}{4000} \times \frac{2160}{4000} = 0.4293 \rightarrow 4000 \times 0.3657 = 1717$$

Valores esperados

			Disease	
		Yes	No	Total
	F	443	1717	2160
Gender	М	377	1463	1840
	Total	820	3180	4000

Valores observados

			Disease	
		Yes	No	Total
Gender	F	380	1780	2160
	М	440	1400	1840
	Total	820	3180	4000

Teste Chi-Square (variável independente e variável alvo ambas categóricas)

4º Passo: Calcular o valor do teste Chi-Squared

$$\chi^{2} = \sum \frac{(Observed\ Value\ - Expected\ Value)^{2}}{Expected\ Value}$$

Gender, Disease	0	E	(0 – E)	$(0 - \mathbf{E})^2$	$\frac{(\mathbf{O} - \mathbf{E})^2}{\mathbf{E}}$
Male, Yes	440	377	63	3969	10.53
Male, No	1400	1463	-63	3969	2.71
Female, Yes	380	443	-63	3969	8.96
Female, No	1780	1717	63	3969	2.31
Teste Chi-Squared	NA	NA	NA	NA	24.51

Teste Chi-Square (variável independente e variável alvo ambas categóricas)

5º Passo: Aceitar ou rejeitar a hipótese nula

 Testar a hipótese nula de independência com 95% de confiança;

Degrees of freedom (df) = 2.

Conclusão: uma vez que o valor do teste Chi-Square (24.51) é superior ao valor crítico da distribuição Chi-Squared para 95% de confiança e df = 1 (3.81), rejeitamos a hipótese nula e usamos a variável no modelo.

Teste ANOVA (variável independente numérica e variável alvo categórica)

 Método estatístico utilizado para verificar se as médias de uma variável independente para cada categoria da variável alvo são significativamente diferentes entre si.

H0: todas as categorias têm a mesma média

H1: pelo menos 1 das categorias distingue-se das outras

 Se a H0 for rejeitada, isso significa que existe uma variância entre os grupos que indica que a variável indepentente tem impacto na variável alvo, pelo que devemos incluir essa variável no modelo.

Os métodos Wrapper utilizam algoritmos para selecionar as variáveis. Uma estratégia de pesquisa é processada através do espaço de caraterísticas possíveis: cada subconjunto é avaliado com base na qualidade do desempenho de um determinado algoritmo.

Forward / Sequential

Passo 1: Avaliar todas as variáveis individualmente;

Passo 2: Selecionar a que resulta no melhor desempenho do modelo;

Passo 3: Testar todas as combinações possíveis da variáveis selecionada com cada uma das restantes variáveis;

Passo 4: Adicionar a variável cuja combinação produz o melhor desempenho do modelo;

Passo 5: Continuar o ciclo, adicionando uma variável de cada vez em cada iteração até que o critério pré-definido seja atingido.

Backward / Recursive Feature Elimination (RFE)

Passo 1: Começar com todas as variáveis do nosso conjunto de dados;

Passo 2: Avaliar o desempenho do algoritmo;

Passo 3: Remover uma variável de cada vez e avaliar o desempenho do modelo;

Passo 4: Remover permanentemente a variável que menos afeta os resultados do modelo de entre as restantes disponíveis;

Passo 5: Continuar o ciclo, removendo uma variável de cada vez em cada iteração <u>até que o critério pré-definido seja atingido.</u>

Bidirectional / Stepwise

Passo 1: Começar sem variáveis e avaliar todas as caraterísticas individualmente;

Passo 2: Selecionar a que resulta no melhor desempenho do modelo;

Passo 3: Testar todas as combinações possíveis da variáveis selecionada com cada uma das restantes variáveis;

Passo 4: Adicionar a variável cuja combinação produz o melhor desempenho do modelo;

Passo 5: Verificar se a remoção de alguma das variáveis aumenta o desempenho do modelo, ou seja, se a significância de uma variável foi reduzida para um nível de tolerância pré-definido.

Se for encontrada uma variável não significativa, removê-la do modelo e continuar para o passo 3. Caso contrário, passar diretamente para o passo 3. <u>Parar quando o critério pré-definido for atingido.</u>

Exhaustive

Passo 1: Criar todas as combinações de variáveis possíveis;

Passo 2: Para cada subconjunto, construir um modelo;

Passo 3: Selecionar o subconjunto cujo o modelo teve o melhor desempenho;

Apesar da solução deste método ser mais significativo para o nosso trabalho, tem um grande custo computacional, especialmente quando o número de variáveis é elevado.

1.3 Feature Selection – Métodos Embedded

Os métodos Embedded são técnicas utilizadas para selecionar as variáveis adequadas para o nosso modelo durante o treino do modelo.

O tipo mais comum são os métodos de regularização, também designados por métodos de penalização:

- Introduzem restrições adicionais na otimização de um algoritmo de previsão;
- Inclinam o modelo para uma menor complexidade (menos coeficientes);
- Exemplos: Lasso, ElasticNet e Ridge Regression.

Outros algoritmos permitem-nos obter a "feature importance":

- Define quais as variáveis mais importantes para fazer previsões exactas sobre o alvo;
- Exemplo: Decision Trees e Random Forests.

1.3 Feature Selection – Métodos Embedded

Algumas das pricipais vantagens são que:

- Os métodos Embedded tomam em consideração a interação das variáveis como os métodos Wrapper;
- Mais rápidos do que os métodos Wrapper;
- Mais exactos do que os métodos Filter;
- Encontram as variáveis com mais propensão a aumentar o desempenho do algoritmo que está a ser treinado.

1.4 Feature Selection - Conclusão

Como entendemos, existem muitos métodos... Cada um pode apresentar resultados diferentes! Como devemos proceder?

1.4 Feature Selection - Conclusão

Como entendemos, existem muitos métodos... Cada um pode apresentar resultados diferentes! Como devemos proceder?

Uma abordagem para identificar as variáveis a manter no modelo é aplicar diferentes métodos, e combinar os seus resultados:

Variável	Corr. Spearman (Filter)	RFE (Wrapper)	Lasso (Embedded)	Decision Tree (Embedded)	Contagem	Decisão
Variável 1	Sim	Sim	Sim	Sim	4	Manter
Variável 2	Sim	Sim	Sim	Sim	4	Manter
Variável 3	Sim	Sim	Não	Não	2	Testar com e sem
Variável 4	Não	Não	Sim	Não	1	Remover
Variável 5	Não	Não	Não	Não	0	Remover

Obrigado!