

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО «МГТУ «СТАНКИН»)

Институт автоматизации и робототехники

Кафедра электротехники, электроники и автоматики

Дисциплина «Электротехника»

Отчет

По лабораторной работе №1

«Исследование свойств элементов электрических цепей»

Выполнил: студент группы МДБ-17-()4	(подпись)	<u>Мейрам А.</u> (ФИО)
Принял преподаватель:		(подпись)	<u>Чумаева М. В.</u> (ФИО)
	Оценка:		Дата:

<u>Цель работы</u>: исследование свойств двухполюсных элементов электрических цепей.

Исследование резистивных двухполюсных элементов

Рис. 1 Схема виртуального эксперимента для исследования резистивных двухполюсных элементов:

Вольтамперная характеристика резистора R1

Элемент R1=100 Ом	i, A	0,601	0,301	0	-0,301	-0,601
	u, B	60,142	30,071	0	-30,071	-60,142

Табл. 1

Вольтамперная характеристика резисторов R2, R3

Элемент	i, A	0,301	0	-0,301m
R2=200 Ом	u, B	60,142	0	-60,142
Элемент	i, A	0,120	0	-0,120
R3=500 Ом	u, B	60,142	0	-60,142

Табл. 2

Рис 2. BAX 3-х резисторов.

Вывод: резистивный элемент полностью определяется своей вольтамперной характеристикой. Для линейного резистивного элемента ВАХ линейна, описывается законом Ома. Чем выше значение сопротивления на резисторе, тем меньше тангенс угла наклона прямой.

Рис. 3. График с большей амплитудой – Напряжение

Вывод: форма тока I(t) для резистивного элемента совпадает с формой напряжения U(t) в определённом соотношении.

		0	max	min
Элемент R1=100 Ом	t, MC	15	10,024	20,047
K1-100 OM	i, A	0	0,597	-0,594
	u, B	0	59,717	-59,434

Табл. 3

		0	max	min
Элемент R2=200 Ом	t, MC	15	10,024	20,047
K2-200 OM	i, A	0	0,298	-0,297
	u, B	0	59,717	-59,434

Табл. 4

		0	max	min
Элемент	t, MC	15	10,024	20,047
R2=200 Ом	i, A	0	0,298	-0,297
	u, B	0	59,717	-59,434

Табл. 5

I, A	-238,981n	-288,607 n	2,297u	40.453	189.415	604.18

Элемент	U, B	1,002	0,436	496.795 m	929.487m	969.388m	999.4m
D1							

Табл. 4

График ВАХ диода D1

Вывод: для нелинейного резистивного элемента вольтамперная характеристика нелинейна.

Элемент D1		0	Max	Min
	t, mc	15	10,024	20,047
	I, A	0	515	-0.236u
	u, B	0	0,995	-0,990

Табл. 5

График с треугольным сигналом- напряжение

Вывод: для диода, который является нелинейным резистивным элемента форма тока и напряжения не совпадают.

Исследование основных свойств элементов L и C

Схема виртуального эксперимента для исследования индуктивного элемента L и емкостного элемента С

Рис. 6

Временные развертки i(t) и u(t) на индуктивном элементе L1 при гармоническом сигнале

I 1 2	t, мс	100,207	102,689	105,17	107,705	111,401	118,951
L1=2мГн	i, A	0,031	5,953	0,106	-5,953	4,08	-4,205
	u,B	7,481	0,047	-7,48	27,153	5,448	5,296

Табл. 6

линия с большей амплитудой (красная)- напряжение

Вывод: для линейного индуктивного элемента при гармоническом сигнале наблюдается отставание тока от напряжения на $\frac{\pi}{2}$.

Временная разверстка i(t) и u(t) на элементе L1

	t, mc	94,966	99,982	102,727	107,69	100,14	110,647
L1=2мГн	i, A	5,438	-5,477	0,065	0,022	-5,667	-4,889
	u, B	4,8	-4,8	4,8	-4,8	0,038	4,423

Табл. 6

График временной разверстки L1

(Треугольная линия (синяя)—сила тока)

Вывод: для индуктивного элемента форма тока и напряжения не совпадают.

Временная разверстка i(t) и u(t) на элементе C1 при гармоническом сигнале

	t, MC	100,207	105,17	102,689	107,705	101,58	109,764
С1=2иФ	i, A	0,748	-0,747	0,0047	0,0027	0,483	0,720
	u, B	0,314	1,068	59,53	-59,531	45,418	-16,072

Табл. 7

График временной разверстки С1 при гармоническом сигнале

(линия с большей амплитудой (красная) – напряжение)

Вывод: для линейного емкостного элемента при гармоническом сигнале наблюдается отставание напряжения от тока на $\frac{\pi}{2}$.

Временная разверстка i(t) и u(t) на элементе C1

	t, MC	102,727	107,638	104,945	109,961	105,156	110,647
С1=2uФ	i, A	0,479	-0,479	0,48	-0,48	-0,0402	0,442
	u, B	0,657	1,497	53,878	-54,258	56,655	-48,891

Табл. 8

График временной разверстки С1

Рис. 10(треугольная линия- напряжение)

Вывод: для линейного емкостного элемента форма тока и напряжения не совпадает.

Исследование основных свойств идеальных источников сигналов

Схема виртуального эксперимента для исследования идеальных источников сигналов:

Вольтамперная характеристика идеального источника напряжения V1

	R1 %	0%	20%	50%	100%	Беск.
Источник	i, A	599,874	0,3	0,12	0,06	0
напряжения	u, B	59,988	60	60	60	U0=60
Табл. 9						

График ВАХ идеального источника напряжения V1

Вывод: идеальный источник напряжения характеризуется напряжением u(t)=V(t) и не зависит от тока.

Вольтамперная характеристика идеального источника тока I1

	R1 %	0%	20%	50%	100%	Беск.
Источник	i, A	1	1	1	1	1
тока	u, B	0,0001	199,995	499,977	999,834	Беск

Табл. 10

График ВАХ идеального источника тока V1

Рис. 13

Вывод: идеальный источник тока характеризуется током i(t)=I(t) вне зависимости от значения напряжения u(t).

Исследование основных свойств линейного источника напряжения

Схема виртуального эксперимента для исследования линейного источника напряжения:

Вольтамперная характеристика линейного источника постоянного напряжения V1

Линейный источник	R1 %	0%	20%	50%	100%	∞
напряжения	i, A	6	0,286	0,118	0,059	0
	u, B	0,6	57,143	58,823	59,406	$U_0 = 60$

Табл. 11

График ВАХ линейного источника постоянного напряжения V1

Вывод: напряжение u(t) на выводах линейного источника напряжения зависит от тока i(t), протекающего через источник.