станет равным $2I_{0}$. Работа по разнесению колец пойдет на увеличение энергии магнитного поля, поэтому будет равна

$$A = 2\frac{L(2I_0)^2}{2} - \frac{L(2I_0)^2}{2} = 2LI_0^2.$$
 (2)

11.5 Запишем уравнение перового начала термодинамики

$$Q = \Delta U + A. \tag{1}$$

Для адиабатного процесса Q=0, кроме того, для идеального газа внутренняя энергия не зависит от объема газа, поэтому изменение внутренней энергии газа задается формулой $\Delta U = C_{\nu} \Delta T$. Так как в нашем случае теплоемкость газа изменяется, необходимо рассматривать малые интервалы изменения температуры. Традиционное выражение для совершенной газом работы $A = P\Delta V$ необходимо преобразовать с использованием уравнения состояния идеального газа PV = RT. Таким образом, в рассматриваемом случае уравнение (1) принимает вид

$$C_V \Delta T + \frac{RT}{V} \Delta V = 0, \qquad (2)$$

из которого выразим зависимость изменения объема от изменения температуры

$$\Delta V = -V \frac{C_V \Delta T}{RT} = -cV \frac{\Delta T}{T}, \qquad (3)$$

где обозначено $c = \frac{C_{V}}{R}$ - величина, приведенная на графике.

Уравнение (3) необходимо решать численно, разбивая заданный диапазон изменения температуры на небольшие интервалы ΔT . Для увеличения точности расчетов в качестве c и T следует брать средние значения этих величин на выбранном интервале. Если мы пронумеруем точки разбиения диапазона индексом k, то схему расчетов можно представить в виде

$$\Delta V = -\frac{c_k + c_{k+l}}{2} V_k \frac{2\Delta T}{T_k + T_{k+l}} = -V_k \frac{c_k + c_{k+l}}{T_k + T_{k+l}} \Delta T;$$

$$V_{k+l} = V_k + \Delta V; \qquad P_k = \frac{RT_k}{V_k}$$
(4)

В таблице представлены результаты расчетов, проведенные при шаге $\Delta T = -50\,K$. Отрицательное значение этой величины обусловлено начальным условием - объем задан при максимальной температуре. При расчетах на калькуляторе удобнее сначала подсчитать значения всех объемов, а уже затем соответствующие значения давлений.

T,K \overline{c}	<i>V</i> ,л	ΔV , π	P , $(10^5 \Pi a)$
----------------------	-------------	--------------------	----------------------

800	3,16	1,0	0,20	66.5
750	3,14	1,20	0,26	51,9
700	3,12	1,46	0,34	39,8
650	3,10	1,80	0,45	30,0
600	3,07	2,25	0,60	22,2
550	3,03	2,85	0,82	16,0
500	3,00	3,67	1,2	11,3
450	2,95	4,83	1,7	7,74
400	2,90	6,51	2,5	5,10
350	2,85	9,03	3,9	3.22
300		13,0		1,92