Couplage maximum

TP Math – Optimisation Couplage maximum

I. Contexte du projet

De manière générale, l'objectif de ce problème est de trouver un nouveau graphe ou l'on ne regarde que les arrêtes non adjacentes deux à deux.

On peut donc utiliser un graphe A, ou l'on va noté l'adjacence entre les nœuds grâce aux arc entrant et sortant.

II. Contraintes et application

A- Variable:

X est un vecteur de taille N, défini préalablement en constante du problème. Chaque valeur du vecteur est :

0 si l'arc n'est pas prit,

1 si l'arc est prit.

B- Constante

On note A, la matrice représentant le graphe Matrice d'adjacence d'arcs.

Ex: Tableau A, i,i

	1	2	3	4
1	0	1	1	0
2	1	0	0	0
3	0	0	0	1
4	0	1	1	0

A(i,j) est une constante du problème, où i et j sont le numéro de leurs nœuds :

- 0 si deux nœud n'ont pas d'arc entre eux.
- 1 si deux nœud on un arc entre eux.

On note donc X(i,j) la variables des nouveaux arcs, qui vont représenter l'ensemble des arcs.

Couplage maximum Optimisation

C- Fonction objective

La fonction objective est donc de maximiser la somme de 1 contenu dans la matrice diviser par deux pour éviter d'avoir des doublons :

$$\begin{split} Z &= max \; \Sigma(i=0:N) \; \; ^*\Sigma(j=0:N) \; ^*X(i,j) \; / \; 2 \\ \Sigma(i=0:N) \; X(i,j) &\leq 1 \qquad \qquad j=1, \, \dots \, , \, N \\ \Sigma(j=0:N) \; X(i,j) &\leq 1 \qquad \qquad j=1, \, \dots \, , \, N \end{split}$$

D- Contraintes

1^{er} contrainte:

Il faut que le nouveau graphe X, ait les même adjacences que le graphe initial A.

2eme contrainte:

Les arrêtes du graphe X ne doivent pas être adjacentes (on le vérifiera grâce à A).

3eme contrainte :

Les arrêtes du nouveau graphes doivent être inférieur ou égales aux graphe initial.

Ex:

X(i,j)	A(i,j)	Acceptable
1	0	X
1	1	0
0	0	0
0	1	0

$$X(i,j) \leq A(i,j)$$

Couplage maximum Optimisation