Basics of Electronics and Communication Engineering (FCE0106) Srijan Mahajan (2023UCM2326)

Prof. Navneeta

Contents

1	Sign	als and Systems 3
	1.1	Elementary Functions
		1.1.1 Unit Step Function
		1.1.2 Unit Impulse Function
		1.1.3 Discrete Time Unit Impulse Function
		1.1.4 Unit Ramp Function
		1.1.5 Real Exponential Signals
		1.1.6 Complex Exponential Signals
		1.1.7 Signum Function
		1.1.8 Sampling Function
	1.2	Periodic and Aperiodic Signals
	1.3	Energy and Power Signals
	1.4	Even and Odd Signals
	1.5	Convolution
		1.5.1 Continuous Time Convolution
		1.5.2 Discrete Time Convolution
	1.6	Continuous-Time Fourier Series
		1.6.1 Trigonometric Fourier Series
		1.6.2 Exponential Fourier Series
	1.7	Discrete-Time Fourier Series
	1.8	Continuous Time Fourier Transform
		1.8.1 Fourier Transform of Elementary Functions

Chapter 1

Signals and Systems

A signal is defined as any physical quantity that varies with time, space, or any other independent variables. The types of signals are:

- Continuous Time: Represented as x(t).
- Discrete Time: Represented as x[n].

A system is an entity that processes a set of input signals to yield another set of output signals.

1.1 Elementary Functions

1.1.1 Unit Step Function

$$u(t) = \begin{cases} 1 & , t > 0 \\ \frac{1}{2} & , t = 0 \\ 0 & , t < 0 \end{cases}$$

It is continuous for all t, except t = 0.

$$\begin{array}{c|c}
1 & t \\
\hline
 & t \\
\hline
 & 1
\end{array}$$

In discrete time, it is defined as,

$$u(n) = \begin{cases} 1 &, n \ge 0 \\ 0 &, n < 0 \end{cases}$$

1.1.2 Unit Impulse Function

It is also called the Dirac Delta Function.

$$\delta(t) = 0 \ (t \neq 0) \land \int_{-\infty}^{\infty} \delta(t) \, \mathrm{d}t = 1$$

The Delta function has many properties which is useful in analysis of functions.

Theorem 1 (Sifting Property).

$$\int_{-\infty}^{\infty} x(t)\delta(t) dt = x(t) \Big|_{0} = x(0)$$

Proof. Since the function is non-zero only at t = 0, we can say,

$$\int_{-\infty}^{\infty} x(t)\delta(t) dt = \int_{-\infty}^{\infty} x(0)\delta(t) dt = x(0)$$

Theorem 2 (Another form).

$$\int_{t_1}^{t_2} x(t)\delta(t-t_0) dt = \begin{cases} x(t_0) &, t_1 < t_0 < t_2 \\ 0 &, \text{otherwise} \end{cases}$$
$$x(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t-\tau) d\tau$$

Theorem 3 (Scaling Property).

$$\delta(at) = \frac{1}{|a|}\delta(t)$$

From this it follows that δ is an even function.

Theorem 4 (Sampling Property).

$$x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$$

Theorem 5 (Differentiation Property).

$$\int_{-\infty}^{\infty} x(t)\delta'(t) dt = -x'(0)$$

Theorem 6 (Amplitude Reversal).

$$t\delta'(t) = -\delta(t)$$

Theorem 7 (Derivative of Impulse Functions).

$$\frac{\mathrm{d}\delta(t)}{\mathrm{d}t} = \delta'(t) = 0 \ (t \neq 0)$$

Where,

$$\int_{-\infty}^{\infty} \delta'(t) = 0$$

1.1.3 Discrete Time Unit Impulse Function

$$\delta(n) = \begin{cases} 1 & , n = 0 \\ 0 & , n \neq 0 \end{cases}$$

Theorem 8.

$$\delta(kn) = \delta(n)$$

Theorem 9.

$$\delta(n) = u(n) - u(n-1)$$

Or,

$$u(n) = \sum_{k=0}^{\infty} \delta(n-k) = \sum_{k=-\infty}^{\infty} \delta(k)$$

Theorem 10.

$$x(n)\delta(n-k) = x(k)\delta(n-k)$$

1.1.4 Unit Ramp Function

$$r(t) = tu(t) = \begin{cases} t & , t \ge 0 \\ 0 & , t < 0 \end{cases}$$

Theorem 11.

$$\frac{\mathrm{d} u(t)}{\mathrm{d} t} = \delta(t) \ \wedge \ \frac{\mathrm{d} r(t)}{\mathrm{d} t} = u(t)$$

In discrete time it is defined as

$$r(n) = nu(n)$$

1.1.5 Real Exponential Signals

$$x(t) = Ce^{at}$$

Similar results for discrete time exponential signals.

a > 0 and a < 0

1.1.6 Complex Exponential Signals

$$x(t) = e^{j\omega_0 t}$$

It has time period $\frac{2\pi}{|\omega_0|}$.

1.1.7 Signum Function

$$sgn(t) = \begin{cases} 1 & ,t > 0 \\ 0 & ,t = 0 = 2u(t) - 1 \\ -1 & ,t < 0 \end{cases}$$

1.1.8 Sampling Function

$$Sa(t) = \frac{\sin t}{t}$$

To make the function continuous at t = 0, we define Sa(0) = 1.

$$sinc(t) = \frac{\sin \pi t}{\pi t} = Sa(\pi t)$$

1.2 Periodic and Aperiodic Signals

A signal is said to be periodic iff there exits T such that,

$$x(t+T) = x(t) \ \forall t$$

Similarly for a discrete time signal,

$$x(n+N) = x(n) \ \forall n$$

Theorem 12.

$$\int_{a}^{a+T} x(t) dt = \int_{b}^{b+T} x(t) dt \ \forall a, b$$

Theorem 13. A sum of M periodic continuous time signals is periodic iff,

$$\frac{T}{T_i} = n_i \quad 1 \le i \le M \ \land n_i \in \mathbb{Z}$$

1.3 Energy and Power Signals

The energy of a signal is given as,

$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt \text{ OR } \sum_{n=-\infty}^{\infty} |x(n)|^2$$

The power of a signal is given as,

$$P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{T}}^{\frac{T}{2}} |x(t)|^2 dt = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt \text{ OR } \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)|^2$$

A signal is said to be an energy signal if E_x is finite and $P_x = 0$. A signal is said to be a power signal if P_x is finite and $E_x = \infty$.

A signal cannot be an energy signal and power signal at the same time. But it is possible for a signal to be neither an energy signal or a power signal.

¹It is not practically possible to have a true power signal. All finite periodic signals are power signals.

1.4 Even and Odd Signals

A signal is said to even when,

$$x(-t) = x(t)$$

A signal is said to be odd when,

$$x(-t) = -x(t)$$

Any given signal can be broken down into it's even and odd components.

$$x(t) = \mathcal{E}\{x(t)\} + \mathcal{O}\{x(t)\}$$

Where,

$$\mathcal{E}\{x(t)\} = \frac{x(t) + x(-t)}{2} \land \mathcal{O}\{x(t)\} = \frac{x(t) - x(-t)}{2}$$

Theorem 14 (Multiplications).

$$Odd \times Odd = Even$$

$$Odd \times Even = Odd$$

$$Even \times Even = Even$$

Theorem 15 (Derivatives).

$$\frac{d(\text{Even})}{dt} = \text{Odd}$$

$$\frac{d(\text{Even})}{dt} = \text{Odd}$$
$$\frac{d(\text{Odd})}{dt} = \text{Even}$$

1.5 Convolution

1.5.1Continuous Time Convolution

A convolution is an integral that expresses the amount of overlap of one function when it is shifted over another function.

$$y(t) = (x * h)(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau) d\tau$$

It is commutative, associative and distributive.

Theorem 16 (Time Shifting).

$$x(t-t_1) * h(t-t_2) = t(t-t_1-t_2)$$

Theorem 17 (Width Property). If the duration of x and h are finite and equal to W_x and W_h , then the duration of the convolution is $W_x + W_h$.

Theorem 18 (Differentiation Property).

$$\left(\frac{\mathrm{d}}{\mathrm{d}t}x(t)*\right)h(t) = x(t)*\left(\frac{\mathrm{d}}{\mathrm{d}t}h(t)\right) = \frac{\mathrm{d}}{\mathrm{d}t}y(t)$$

Theorem 19 (Time Scaling Property).

$$x(at) * h(at) = \frac{1}{|a|}y(at)$$

Theorem 20 (Even and Odd).

$$Odd * Odd = Even$$

$$\mathrm{Odd} * \mathrm{Even} = \mathrm{Odd}$$

Even * Even = Even

Theorem 21 (Area Property).

$$\int_{-\infty}^{\infty} y(t) dt = \int_{-\infty}^{\infty} x(t) dt \int_{-\infty}^{\infty} h(t) dt$$

1.5.2 Discrete Time Convolution

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

It is also commutative, associative and distributive. Similar properties like Time Shifting, Width Property, Sum Property² are similarly valid.

1.6 Continuous-Time Fourier Series

The Fourier Series allows us to represent any periodic signal as the sum of harmonically related sinusoidal functions. Any periodic signal can be expressed as a Fourier Series if it satisfies the Dirichlet conditions,

- \bullet if it is discontinuous, there are a finite number of discontinuities in the period T
- \bullet it has a finite average value over the period T
- \bullet it has a finite number of positive and negative maxima in the period T

1.6.1 Trigonometric Fourier Series

Any function x satisfying Dirichlet conditions can be expressed as,

$$x(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)$$

Where the coefficients are given as,

$$a_0 = \frac{1}{T} \int_0^T x(t) dt \wedge a_n = \frac{2}{T} \int_0^T x(t) \cos(n\omega_0 t) dt \wedge b_n = \frac{2}{T} \int_0^T x(t) \sin(n\omega_0 t) dt$$

The integral may be carried over any full period.

- For any even function, $b_n = 0$
- For any odd function, $a_0 = 0 \land a_n = 0$

Example. Find the trigonometric Fourier Series for half-wave rectified sine wave.

Solution. Clearly, $T=2\pi \implies \omega_0=1$. Moreover, x can be represented as,

$$x(t) = \begin{cases} \sin t &, 0 < t < \pi \\ 0 &, \pi < t < 2\pi \end{cases}$$

²Analogous to Area Property

Now, calculating the Fourier coefficients,

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} \sin t \, dt = \frac{1}{2\pi} \int_0^{\pi} \sin t \, dt = \frac{1}{\pi}$$

$$a_n = \frac{2}{2\pi} \int_0^{\pi} \sin t \cos(nt) dt$$
$$= \frac{\cos(\pi n) + 1}{\pi (1 - n^2)}$$
$$= \begin{cases} 0 & , n = 3, 5, \dots \\ \frac{2}{\pi (1 - n^2)} & , n = 2, 4, \dots \end{cases}$$

Clearly, at n = 1,

$$\lim_{n \to 1} \frac{\cos(\pi n) + 1}{\pi (1 - n^2)} = 0 \implies a_1 = 0$$

$$b_n = \frac{2}{2\pi} \int_0^{\pi} \sin t \sin(nt) dt$$

$$= \frac{\sin(n\pi)}{\pi (1 - n^2)}$$

$$= 0 \quad n \neq 1$$

Clearly, at n = 1,

$$\lim_{n \to 1} \frac{\sin(n\pi)}{\pi(1 - n^2)} = 0 \implies b_1 = \frac{1}{2}$$

Now, for the line spectrum,

$$c_0 = \frac{1}{\pi} \wedge c_1 = \frac{1}{2} \wedge c_n = |a_n| \ (\forall n \ge 2)$$

1.6.2 Exponential Fourier Series

Any function x satisfying Dirichlet conditions can be expressed as,

$$x(t) = \sum_{n = -\infty}^{\infty} X_n e^{jn\omega_0 t}$$

Where X_n is given by,

$$X_n = \frac{1}{T} \int_0^T x(t)e^{-jn\omega_0 t} dt$$

Relation between Trigonometric Fourier Series and Exponential Fourier Series

$$X_n = \frac{a_n - jb_n}{2} \wedge X_{-n} = \frac{a_n + jb_n}{2}$$

Example. Find the Exponential Fourier Series for half-wave rectified sine wave.

Solution. Clearly, $T=2\pi \implies \omega_0=1$. Moreover, x can be represented as,

$$x(t) = \begin{cases} \sin t &, 0 < t < \pi \\ 0 &, \pi < t < 2\pi \end{cases}$$

Now, calculating the Fourier coefficients,

$$X_n = \frac{1}{2\pi} \int_0^T \sin t e^{-jnt} dt$$

$$= \frac{e^{-jn\pi} + 1}{2\pi(1 - n^2)}$$

$$= \begin{cases} \frac{1}{\pi(1 - n^2)} &, n = 0, \pm 2, \pm 4, \dots \\ 0 &, n = \pm 3, \pm 5, \dots \end{cases}$$

Clearly, at $n = \pm 1$,

$$\lim_{n \to \pm 1} \frac{e^{-jn\pi} + 1}{2\pi(1 - n^2)} = \frac{\mp j}{4}$$

Theorem 22 (Time Shifting).

$$x(t-t_0) \leftrightarrow e^{-jn\omega_0 t_0} X_n$$

Theorem 23 (Frequency Shifting).

$$e^{jm\omega_0 t}x(t) \leftrightarrow X_{n-m}$$

Theorem 24 (Time Reversal).

$$x(-t) \leftrightarrow X_{-n}$$

Theorem 25 (Time Scaling).

$$x(at) \leftrightarrow X_n$$

Theorem 26 (Periodic Convolution). The periodic convolution of two periodic signals with same period is defined by,

$$x(t) \circledast y(t) = \frac{1}{T} \int_{0}^{T} x(\tau)y(t-\tau) d\tau$$

Then, we can say that,

$$x(t) \circledast y(t) \leftrightarrow X_n Y_n$$

Theorem 27 (Multiplication).

$$x(t)y(t) \leftrightarrow \sum_{k=-\infty}^{\infty} X_k Y_{n-k}$$

Theorem 28 (Differentiation).

$$\frac{\mathrm{d}^m x(t)}{\mathrm{d}t^m} \leftrightarrow (jn\omega_0)^m X_n$$

Theorem 29 (Integration).

$$\int_{-\infty}^{t} x(t) dt \leftrightarrow \frac{1}{jn\omega_0} X_n$$

Theorem 30 (Parseval's Theorem for Power Signals). If $x(t) \leftrightarrow X_n$, then,

$$\frac{1}{T} \int_{0}^{T} |x(t)|^{2} dt = \sum_{n=-\infty}^{\infty} |X_{n}|^{2} = X_{0} + 2 \sum_{n=1}^{\infty} |X_{n}|^{2}$$

The theorem states that the total average power in a periodic signal equals the sum of the average powers in all of its harmonic components.

Proof.

$$\frac{1}{T} \int_{0}^{T} |x(t)|^{2} dt = \int_{0}^{T} x(t)x^{*}(t) dt$$

$$= \int_{0}^{T} x(t) \left(\sum_{n=-\infty}^{\infty} X_{n}e^{jn\omega_{0}t}\right)^{*} dt$$

$$= \int_{0}^{T} x(t) \left(\sum_{n=-\infty}^{\infty} X_{n}^{*}e^{-jn\omega_{0}t}\right) dt$$

$$= \sum_{n=-\infty}^{\infty} X_{n}^{*} \left(\frac{1}{T} \int_{0}^{T} x(t)e^{-jn\omega_{0}t} dt\right)$$

$$= \sum_{n=-\infty}^{\infty} X_{n}X_{n}^{*}$$

$$= \sum_{n=-\infty}^{\infty} |X_{n}|^{2}$$

1.7 Discrete-Time Fourier Series

Any function x can be expressed as,

$$x(n) = \sum_{k=k_0}^{k_0+N-1} X_k e^{jk\omega_0 n} = \sum_{k=< N>} X_k e^{jk\omega_0 n}$$

³ Where X_k is given by,

$$X_k = \frac{1}{N} \sum_{n = < N >} x(n) e^{-jk\omega_0 n}$$

Theorem 31 (Time Shifting).

$$x(n-n_0) \leftrightarrow e^{-jk\omega_0 n_0} X_k$$

Theorem 32 (Frequency Shifting).

$$e^{jM\omega_0 n}x(n) \leftrightarrow X_{k-M}$$

Theorem 33 (Time Reversal).

$$x(-n) \leftrightarrow X_{-k}$$

Theorem 34 (Periodic Convolution). The periodic convolution of two periodic signals with same period is defined by,

$$x(n) \circledast y(n) = \sum_{r = \langle N \rangle} x(r)y(n-r)$$

Then, we can say that,

$$x(n) \circledast y(n) \leftrightarrow NX_kY_k$$

Theorem 35 (Multiplication).

$$x(n)y(n) \leftrightarrow \sum_{r=< N>} X_r Y_{k-r}$$

³Here, $\sum_{k=< N>}$ represents sum over any range of consecutive k's of length N.

Theorem 36 (First Difference).

$$x(n) - x(n-1) \leftrightarrow (1 - e^{-jk\omega_0})X_k$$

Theorem 37 (Running Sum/Accumulation).

$$\sum_{k=-\infty}^{n} x(k) \leftrightarrow \frac{X_k}{1 - e^{-jk\omega_0}}$$

Theorem 38 (Parseval's Relation). If $x(n) \leftrightarrow X_k$, then,

$$\frac{1}{N} \sum_{n = < N >} |x(n)|^2 = \sum_{k = < N >} |X_k|^2$$

The theorem states that the total average power in a periodic signal equals the sum of the average powers in all of its harmonic components.

Proof.

$$\begin{split} \frac{1}{N} \sum_{n = < N >} |x(n)|^2 &= \frac{1}{N} \sum_{n = < N >} x(n) x^*(n) \\ &= \frac{1}{N} \sum_{n = < N >} x(n) \left(\sum_{k = < N >} X_k e^{jk\omega_0 n} \right)^* \\ &= \sum_{k = < N >} X_k^* \left(\frac{1}{N} \sum_{n = < N >} x(n) e^{-jk\omega_0 n} \right) \\ &= \sum_{k = < N >} X_k X_k^* \\ &= \sum_{k = < N >} |X_k|^2 \end{split}$$

1.8 Continuous Time Fourier Transform

The Fourier Transform of x is given by,

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$

And the inverse Fourier Transform of X is given by,

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

Theorem 39 (Time Shifting).

$$x(t-t_0) \leftrightarrow e^{-j\omega t_0} X(\omega)$$

Theorem 40 (Frequency Shifting).

$$x(t)e^{j\omega_0t} \leftrightarrow X(\omega-\omega_0)$$

Theorem 41 (Time and Frequency Scaling).

$$x(at) \leftrightarrow \frac{1}{|a|} X\left(\frac{\omega}{a}\right)$$

12

Theorem 42 (Area under x(t)).

$$\int_{-\infty}^{\infty} x(t) \, \mathrm{d}t = X(0)$$

Theorem 43 (Area under $X(\omega)$).

$$\int_{-\infty}^{\infty} X(\omega) \, \mathrm{d}\omega = 2\pi x(0)$$

Theorem 44 (Differentiation in Time Domain).

$$\frac{\mathrm{d}^n x(t)}{\mathrm{d}t^n} \leftrightarrow (j\omega)^n X(\omega)$$

Theorem 45 (Integration in Time Domain).

$$\int_{-\infty}^{t} x(\tau) d\tau \leftrightarrow \frac{X(\omega)}{j\omega} + \pi X(0)\delta(\omega)$$

Theorem 46 (Differentiation in Frequency Domain).

$$t^n x(t) \leftrightarrow j^n \frac{\mathrm{d}^n X(\omega)}{\mathrm{d}\omega^n}$$

Theorem 47 (Convolution Property).

$$x(t)*y(t) \leftrightarrow X(\omega)Y(\omega)$$

Theorem 48.

$$x(t)y(t) \leftrightarrow \frac{1}{2\pi} \left[X(\omega) * Y(\omega) \right]$$

Theorem 49 (Duality).

$$X(t) \leftrightarrow 2\pi x(-\omega)$$

Theorem 50 (Parseval's Relation).

$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$$

1.8.1 Fourier Transform of Elementary Functions

Example (D.C. Value).

$$x(t) = A_0$$

Solution. Let there be a function $X(\omega) = A_0 \delta(\omega)$, which is the Fourier Transform of x(t),

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

$$\therefore x(t) = \frac{A_0}{2\pi}$$

Thus,

$$\mathcal{F}\left\{\frac{A_0}{2\pi}\right\} = A_0\delta(\omega) \implies \mathcal{F}\{A_0\} = 2\pi A_0\delta(\omega)$$

Example (Impulse Function).

$$x(t) = \delta(\omega)$$

Solution.

$$X(\omega) = \int_{-\infty}^{\infty} \delta(t)e^{-j\omega t} dt$$
$$\therefore X(\omega) = 1$$

Thus,

$$\mathcal{F}\left\{\delta(t)\right\} = 1$$

Example (Exponential).

$$x(t) = e^{-at}u(t)$$

Solution.

$$X(\omega) = \int_{0}^{\infty} e^{-at} e^{-j\omega t} dt$$
$$= \frac{1}{a+j\omega}$$

Thus,

$$\mathcal{F}\left\{e^{-at}u(t)\right\} = \frac{1}{a+j\omega}$$

Example (Exponential).

$$x(t) = e^{-a|t|}$$

Solution.

$$X(\omega) = \int_{-\infty}^{0} e^{at} e^{-j\omega t} dt + \int_{0}^{\infty} e^{-at} e^{-j\omega t} dt$$
$$= \frac{1}{a - j\omega} + \frac{1}{a + j\omega}$$
$$= \frac{2a}{a^2 + \omega^2}$$

Thus,

$$\mathcal{F}\left\{e^{-a|t|}\right\} = \frac{2a}{a^2 + \omega^2}$$

Example (Signum Function).

$$x(t) = sgn(t)$$

Solution. Simplifying the function

$$x(t) = u(t) - u(-t) = \lim_{a \to 0} e^{-at} u(t) - e^{at} u(-t)$$
$$X(\omega) = \lim_{a \to 0} \frac{1}{a + j\omega} - \frac{1}{a - j\omega}$$
$$= \frac{2}{j\omega}$$

Thus,

$$\mathcal{F}\left\{sgn(t)\right\} = \frac{2}{i\omega}$$

Example (Unit Step Function).

$$x(t) = u(t)$$

Solution.

$$x(t) = \frac{1}{2} + \frac{sgn(t)}{2}$$

$$X(\omega) = 2\pi \left(\frac{1}{2}\right)\delta(\omega) + \frac{1}{2}\frac{2}{j\omega}$$

$$= \frac{1}{j\omega} + \pi\delta(\omega)$$

Thus,

$$\mathcal{F}\left\{u(t)\right\} = \frac{1}{i\omega} + \pi\delta(\omega)$$

Example (Complex Exponential Signal).

$$x(t) = e^{j\omega_0 t}$$

Solution. Consider the D.C. value 1,

$$\mathcal{F}\{1\} = 2\pi\delta(\omega) \implies \mathcal{F}\{e^{j\omega_0 t}\} = 2\pi\delta(\omega - \omega_0)$$
 (Frequency Shifting)

Example (Cosine Function).

$$x(t) = \cos \omega_0 t$$

Solution.

$$x(t) = \frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2}$$

Thus,

$$\mathcal{F}\left\{\cos\omega_{0}t\right\} = \pi\left[\delta(\omega - \omega_{0}) + \delta(\omega + \omega_{0})\right]$$

Example (Sine Function).

$$x(t) = \cos \omega_0 t$$

Solution.

$$x(t) = \frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2}$$

Thus,

$$\mathcal{F}\left\{\sin\omega_0 t\right\} = \pi \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0)\right]$$

Example (Rectangular Function).

$$x(t) = A \operatorname{rect}\left(\frac{t}{\tau}\right)$$

Solution. Here, we use the method of differentiation,

$$\frac{\mathrm{d}}{\mathrm{d}t}x(t) = A\left[\delta(t + \frac{\tau}{2}) - \delta(t - \frac{\tau}{2})\right]$$

Now using the Differentiation Property,

$$(j\omega)X(\omega) = A\left[e^{j\omega\frac{\tau}{2}} - e^{-j\omega\frac{\tau}{2}}\right] \implies X(\omega) = \frac{A}{\omega}2\sin\left(\omega\frac{\tau}{2}\right)$$

Thus,

$$\mathcal{F}\left\{A\mathrm{rect}\left(\frac{t}{\tau}\right)\right\} = \frac{A}{\omega}2\sin\left(\omega\frac{\tau}{2}\right) = A\tau Sa\left(\omega\frac{\tau}{2}\right)$$

Example (Sampling Function).

$$x(t) = Sa(t) = \frac{\sin t}{t}$$

Solution. Using the Duality Property,

$$\mathcal{F}\left\{Sa(t)\right\} = \frac{\mathrm{rect}\left(\frac{\omega}{2}\right)}{2}$$