

Procesamiento de datos/data mining

Procesamiento de datos/data mining

I. Fundamentos de la astroinformática

II. Data warehouses y surveys; base de datos

III. Algoritmos de minería de datos

IV. Observatorio Virtual

¿Qué es el Procesamiento de Datos?

El procesamiento de datos es el conjunto de operaciones realizadas sobre datos crudos para convertirlos en información útil.

En astronomía, esto implica:

- Recolección de datos: desde telescopios o simulaciones (por ejemplo, GAIA, SDSS, JWST, TNG).
- **Limpieza de datos:** eliminar errores, valores faltantes o inconsistencias.
- **Transformación:** convertir formatos, cambiar unidades, reducir dimensiones.
- Almacenamiento eficiente: bases de datos, Data Warehouses, estructuras indexadas.
- Análisis: aplicar técnicas estadísticas o computacionales para extraer conocimiento.
- Visualización: representar los resultados de forma comprensible (gráficos, mapas, proyecciones celestes).

¿Qué es la Minería de Datos?

Definición

La minería de datos descubre patrones ocultos en grandes conjuntos de datos.

Diferencia

A diferencia del procesamiento, la minería de datos se enfoca en extraer conocimiento.

Tareas

Clasificación, regresión, clustering y asociación son tareas comunes.

Herramientas para el Procesamiento y la Minería de Datos

Python

SQL

Hadoop

Con Pandas y

Para bases de datos.

Plataforma Big Data.

Scikit-learn.

Seleccionar la herramienta adecuada depende del proyecto.

Preparación de Datos: Limpieza y Transformación

Valores Faltantes

Manejo de valores faltantes.

Duplicados

Eliminación de duplicados.

Normalización

Normalización de datos.

La calidad de los datos impacta la calidad de los resultados.

Búsqueda constante del ser humano del conocimiento

Experimentos y mediciones

Teoría analítica

Simulaciones numéricas

Ciencia basada en datos

 Con nuevo desarrollo tecnológico surgen nuevas y mayores necesidades

Surgen nuevas necesidades:

- Almacenamiento
- Acceso y lectura
- Procesamiento y Análisis
- Visualización

 Con nuevo desarrollo tecnológico surgen nuevas y mayores necesidades

Surgen nuevas necesidades:

- Almacenamiento
- Acceso y lectura
- Procesamiento y Análisis
- Visualización

Crecimiento exponencial de los volúmenes de datos y de la información que contienen!

Crecimiento exponencial de los volúmenes de datos y de la información que contienen!

Prefix	Multiple	Symbol	
yotta	10 ²⁴	Y	
zetta	10 ²¹	Z	
exa	1018	E	
peta	1015	P	
tera	1012	T	
giga	109	G	
mega	106	M	
kilo	103	k	

Astroinformática

La astroinformática es una disciplina interdisciplinaria que combina astronomía, ciencia de datos, estadística e informática para procesar, analizar y extraer conocimiento de grandes volúmenes de datos astronómicos.

1990s 2000s 2010s 2020s

10 TB

La astroinformática es una disciplina interdisciplinaria que combina astronomía, ciencia de datos, estadística e informática para procesar, analizar y extraer conocimiento de grandes volúmenes de datos astronómicos.

Astroinformática

1990s

2000s

2010s

2020s

10 TB

Se esperan 40 PB

20 TB por noche En 10 años ~ 10² PB! The SKA project in numbers

€1.3 BILLION

CONSTRUCTION COST (2021 €)

€0.7 BILLION

FIRST 10 YEARS OF OPERATIONS COST (2021 €)

8 YEARS

OF CONSTRUCTION ACTIVITIES

131,072 ANTENNAS

IN WESTERN AUSTRALIA

197 DISHES

IN SOUTH AFRICA (INCLUDING 64 MEERKAT DISHES)

16 COUNTRIES

PARTICIPATING IN 2022

710 PETABYTES

OF SCIENCE DATA DELIVERED TO SCIENCE USERS

1 GLOBAL NETWORK

OF DATA CENTRES TO DELIVER SCIENCE-READY DATA PRODUCTS TO END-USERS

50+ YEARS

OF TRANSFORMA

2020s

Table 1. Big Data 3V characteristics in astronomical sky surveys.

Sky Survey	Volume	Velocity	Variety
SDSS Sloan Digital Sky Survey	50 TB	200 GB per day	images, catalogs, redshits
GAIA	$100~\mathrm{TB}$	$40~\mathrm{GB}$ per day	more then 100 parameters
Pan-STARRS Panoramic Survey Telescope and Rapid Response System	5 PB	5 TB per day	images, catalogs
LSST Large Synoptic Survey Telescope	60 PB	10 TB per day	images, catalogs
SKA Square Kilometer Array	3 ZB	150 TB per day	images, catalog, redshifts

Notes:

The column Volume refers to raw data produced at the end of the experiment.

Values regarding Pan-STARRS, LSST, and SKA surveys refer to expected Volume and Velocity values.

Э.

Como encontramos las grandes cantidades de datos?

- Observaciones con diferentes técnicas (e.g., espectroscopía, imágenes, simulaciones)
- Múltiples fuentes en la muestra o "survey" (e.g., estrellas, galaxias, etc) https://www.tng-project.org/
- Modelos computaciones (e.g., modelos cosmológicos)
- Múltiples parámetros en modelos y observaciones

www.ucentral.cl