

Konu ile ilgili simülasyon için karekodu kullanabilirsiniz.

Seri bağlı dirençlerin uçları arasındaki potansiyel farkların toplamı, üretecin potansiyel farkına eşittir.

Bu durumda

$$V = V_1 + V_2 + V_3$$
 yazılır. (3)

(1) ve (2) denklemleri (3) denkleminde yerine yazıldığında

$$I \cdot R_{es} = I \cdot R_1 + I \cdot R_2 + I \cdot R_3$$
 olur. Buradan

$$R_{es} = R_1 + R_2 + R_3$$
 eşitliğine ulaşılır.

Eşdeğer direncin değeri, devredeki en yüksek direnç değerinden daha büyüktür.

Örnek

Bir öğrenci 2 Ω , 5 Ω ve 7 Ω büyüklüğündeki dirençler ile devre kurarak devrenin eşdeğer direncini ölçmek istemektedir.

Buna göre devrenin eşdeğer direncinin $\underline{\text{en büyük}}$ olacağı devreyi çizerek eşdeğer direncin değerini hesaplayınız.

Çözüm

Dirençler seri olarak bağlandığında tüm dirençler toplanır ve en büyük eşdeğer direnç değerine ulaşılır. Bu durumda devre bağlantısı şekildeki gibi olur. Eşdeğer direncin büyüklüğü

$$R_{es} = R_1 + R_2 + R_3 = 2 + 5 + 7 = 14 \Omega$$
 olarak bulunur.

Eşdeğer direnç yandaki şekilde gösterilmiştir.

3.5. Soru

Özdeş dirençler ile şekildeki gibi 1, 2 ve 3 devreleri kurulmuştur. Bu devrelerin eşdeğer dirençleri sırasıyla R_1 , R_2 ve R_3 olarak verilmiştir.

Buna göre R_1 , R_2 ve R_3 eşdeğer dirençlerini büyükten küçüğe doğru sıralayınız.

Cevap