1

Suppose we are using squared loss $I(y, y-hat) = (y - y-hat)^2$ in a regression problem with a linear prediction model: y-hat = $\mathbf{w}^T \mathbf{x}$.

What is the derivative of the absolute loss w.r.t. \mathbf{w} for a single example with feature vector \mathbf{x} and true label y?

Note: Because the absolute loss is not differentiable at zero, you can assume that y is not equal to y-hat in this problem. Note that the sign function for a real valued input x (where x is not zero) is defined as sign(x) = +1 for x > 0 and sign(x) = -1 for x < 0

- \mathbf{x} (y softmax($\mathbf{w}^{\mathsf{T}}\mathbf{x}$))
- \mathbf{x} (softmax($\mathbf{w}^{\mathsf{T}}\mathbf{x}$) y)
- $x (y w^Tx)$

Multiple Choice 1 point

Suppose in a classification problem, the true label **y** and the predicted label **y**-hat are both hard labels. Which of the following correctly describes the nature of the cross-entropy loss in this special case?

- O It is zero
- It is +infinity
- It is 0 if y is equal to y-hat and +infinity otherwise
- It is 0 if y is equal to y-hat and 1 otherwise

Recall that cross-entropy loss l(y, y-hat) is defined as the sum of $-y_j log(y-hat_j)$ over j. What is the partial derivative of cross-entropy loss w.r.t. $y-hat_j$?

- -y_i / y-hat_i
- softmax(**y**-hat)_j y_j
- -y-hat_j/y_j
- softmax(y)_j y-hat_j

Multiple Choice 1 point

Suppose y-hat = softmax(o) and I send o_1 , the first component of o, off to +infinity (plus infinity) while keeping other components unchanged. What happens to y-hat $_1$, the first component of y-hat?

- It goes to -infinity
- It goes to +infinity
- O It goes to 1
- O It goes to 0

Suppose y-hat = softmax(o) and I send o_1 , the first component of o, off to -infinity (minus infinity) while keeping other components unchanged. What happens to y-hat $_1$, the first component of y-hat?

- It goes to -infinity
- It goes to +infinity
- O It goes to 0
- It goes to 1

Multiple Choice 1 point

Suppose I have a uniform distribution on N outcomes. What is the entropy (in bits) of this distribution?

- $\log_2(1/N)$
- $1/N \log_2(N)$
- 1/N log₂(1/N)

The name "Jupyter" includes a references to 3 major programming languages for a	data
science. Which of the following is one of them?	

0	R
	Java
	JavaScript
	Ruby