Version: v2.0.0 Last Modified: September 28, 2019

Samudrala Group

Department of Biomedical Informatics
Jacobs School of Medicine and Biomedical Sciences
University at Buffalo
77 Goodell St., Suite 540
Buffalo, NY 14203

1 CANDO			1
2 Install			1
3 Test			2
4 Authors			2
5 LICENSE			2
6 Namespace Index			3
6.1 Packages	 •		3
7 Hierarchical Index			3
7.1 Class Hierarchy			3
8 Class Index			4
8.1 Class List			4
9 Namespace Documentation			4
9.1 cando Namespace Reference			4
9.1.1 Function Documentation			5
10 Class Documentation			11
10.1 ADR Class Reference			11
10.1.1 Detailed Description			11
10.1.2 Constructor & Destructor Documentation			12
10.1.3 Member Data Documentation			12
10.2 CANDO Class Reference			13
10.2.1 Detailed Description			16
10.2.2 Constructor & Destructor Documentation			16
10.2.3 Member Function Documentation			17
10.2.4 Member Data Documentation			27
10.3 Compound Class Reference			32
10.3.1 Detailed Description			33
10.3.2 Constructor & Destructor Documentation			33
10.3.3 Member Function Documentation			34
10.3.4 Member Data Documentation			34
10.4 Indication Class Reference			36

1 CANDO 1

10.4.1 Detailed Description	37
10.4.2 Constructor & Destructor Documentation	37
10.4.3 Member Data Documentation	37
10.5 Matrix Class Reference	38
10.5.1 Detailed Description	39
10.5.2 Constructor & Destructor Documentation	39
10.5.3 Member Function Documentation	39
10.5.4 Member Data Documentation	40
10.6 Pathway Class Reference	40
10.6.1 Detailed Description	41
10.6.2 Constructor & Destructor Documentation	41
10.6.3 Member Data Documentation	41
10.7 Protein Class Reference	42
10.7.1 Detailed Description	42
10.7.2 Constructor & Destructor Documentation	42
10.7.3 Member Data Documentation	43

1 CANDO

Computational Analysis of Novel Drug Opportunities

CANDO is a unique computational drug discovery, design, and repurposing platform.

2 Install

You may download the source code via the releases or cloning the git repository. However, we suggest using anaconda to install the CANDO package, as this is the easiest and quickest way to start using our platform!

The CANDO package relies on multiple "conda-forge" dependencies. Therefore, we require that you add "conda-forge" to your anaconda channels:

conda config --add channels conda-forge

Then you can install CANDO using the following command:

conda install -c ram-compbio cando

3 Test

You can test your install by running our script:

test.py

4 Authors

- · William Mangione
- · Zackary Falls
- · James Schuler
- Matt Hudson
- · Liana Bruggemann
- · Ram Samudrala

For general questions, please contact Ram Samudrala (ram@compbio.org). For direct questions about source code for cando.py, please contact William Mangione (wmangion@buffalo.edu) or Zackary Falls (zmfalls@buffalo.edu).

5 LICENSE

Copyright 2019 William Mangione

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "
AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIC LITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6 Namespace Index

6.1 Packages

Here are the packages with brief descriptions (if available):

cando 4

7 Hierarchical Index

7.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

object

ADR	11
CANDO	13
Compound	32
Indication	36
Matrix	38
Pathway	40
Protein	42

8 Class Index

8.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

ADR	
An object to represent an adverse reaction	11
CANDO	
An object to represent all aspects of CANDO (compounds, indications, matrix, etc.)	13
Compound	
An object to represent a compound/drug	32
Indication	
An object to represent an indication (disease)	36
Matrix	
An object to represent a matrix	38
Pathway	
An object to represent a pathway	40
Protein	
An object to represent a protein	42

9 Namespace Documentation

9.1 cando Namespace Reference

Classes

• class ADR

An object to represent an adverse reaction.

• class CANDO

An object to represent all aspects of CANDO (compounds, indications, matrix, etc.)

class Compound

An object to represent a compound/drug.

class Indication

An object to represent an indication (disease)

class Matrix

An object to represent a matrix.

class Pathway

An object to represent a pathway.

class Protein

An object to represent a protein.

Functions

def generate_matrix (cmpd_scores=", prot_scores=", matrix_file='cando_interaction_
 matrix.tsv', ncpus=1)

Generate a CANDO Matrix.

def generate scores (fp="rd ecfp4", cmpd pdb=", out path='.')

Generate the fingerprint for a new compound and calculate the Tanimoto similarities against all binding site ligands.

• def generate_signature (cmpd_scores=", prot_scores=", matrix_file=")

Generate signature.

def get_scores (c, p_scores, c_score)

Get best score for each Compound-Protein interaction.

• def score_fp (fp, cmpd_file, cmpd_id, bs)

Generate the scores for a given Compound against all Protein ligands.

def tanimoto_sparse (str1, str2)

Calculate the tanimoto coefficient for a pair of sparse vectors.

def tanimoto_dense (list1, list2)

Calculate the tanimoto coefficient for a pair of dense vectors.

def get_fp_lig (fp)

Download precompiled binding site ligand fingerprints using the given fingerprint method.

• def get_v2_0 ()

Download CANDO v2.0 data.

def get_tutorial ()

Download data for tutorial.

def get_test ()

Download data for test script.

• def dl dir (url, out, l)

Function to recursively download a directory.

• def dl_file (url, out_file)

Function to download a file.

9.1.1 Function Documentation

9.1.1.1 dl_dir()

```
def cando.dl_dir (
          url,
          out,
           1 )
```

Function to recursively download a directory.

Prints the name of the directory and a progress bar.

Parameters

url	str: URL of the dir to be downloaded
out	str: Path to where the dir will be downloaded
1	list: List of files in dir to be downloaded

9.1.1.2 dl_file()

Function to download a file.

Prints the name of the file and a progress bar.

Parameters

url	str: URL of the file to be downloaded
out_file	str: File path to where the file will be downloaded

9.1.1.3 generate_matrix()

Generate a CANDO Matrix.

Parameters

cmpd_scores	str: File path to tab-separated scores for all Compounds
prot_scores	str: File path to tab-separated scores for all Proteins
matrix_file	str: File path to where the generated Matrix will be written
ncpus	int: Number of cpus to use for parallelization

9.1.1.4 generate_scores()

```
def cando.generate_scores (
    fp = "rd_ecfp4",
    cmpd_pdb = '',
    out_path = '.' )
```

Generate the fingerprint for a new compound and calculate the Tanimoto similarities against all binding site ligands.

Parameters

fp	str: The fingerprinting software and method used, e.g. 'rd_ecfp4', 'ob_fp2'
cmpd_pdb	str: File path to the PDB
out_path	str: Path to where the scores file will be written

9.1.1.5 generate_signature()

Generate signature.

Parameters

cmpd_scores	str: File path to tab-separated scores for all Compounds
prot_scores	str: File path to tab-separated scores for all Proteins
matrix_file	str: File path to where the generated Compounds signature will be written

9.1.1.6 get_fp_lig()

```
\begin{array}{c} \texttt{def cando.get\_fp\_lig (} \\ & \textit{fp )} \end{array}
```

Download precompiled binding site ligand fingerprints using the given fingerprint method.

Parameters

fp str: Fingerprinting method used to compile each binding site ligand fingerprint

9.1.1.7 get_scores()

Get best score for each Compound-Protein interaction.

Parameters

С	int: Compound id
p_scores	df: DataFrame of all Protein ligands
c_score	df: DataFrame of all Compound-ligand scores

9.1.1.8 get_test()

```
def cando.get_test ( )
```

Download data for test script.

This data includes:

- Test Matrix (Approved drugs (2,162) and 64 proteins)
- v2.0 Compound mapping (approved and all)
- v2.0 Indication Compound mapping
- Compound scores file for all approved compounds (fingerprint: rd_ecfp4)

- Test Protein scores file (64 proteins) for all binding site ligands for each Protein (fingerprint: rd_ecfp4)
- Test Compound in PDB format to generate a new fingerprint and vector in the Matrix
- Directory of test Compounds in PDB format to generate multiple new fingerprints and vectors in the Matrix
- · Test Pathways set

9.1.1.9 get tutorial()

```
def cando.get_tutorial ( )
```

Download data for tutorial.

This data includes:

- Example Matrix (Approved drugs (2,162) and 64 proteins)
- v2.0 Compound mapping (approved and all)
- · v2.0 Indication Compound mapping
- Compound scores file for all approved compounds (fingerprint: rd_ecfp4)
- Example Protein scores file (64 proteins) for all binding site ligands for each Protein (fingerprint: rd_ecfp4)
- Example Compound in PDB format to generate a new fingerprint and vector in the Matrix
- Example Pathways set

9.1.1.10 get_v2_0()

```
def cando.get_v2_0 ( )
```

Download CANDO v2.0 data.

This data includes:

- Compound mapping (approved and all)
- Indication-compound mapping
- Scores file for all approved compounds (fingerprint: rd_ecfp4)
- Matrix file for approved drugs (2,162) and all proteins (14,610) (fingerprint: rd_ecfp4)

9.1.1.11 score_fp()

Generate the scores for a given Compound against all Protein ligands.

Parameters

fp	str: Fingerprinting software and method used, e.g., rd_ecfp4
cmpd_file	str: File path to PDB
cmpd_id	int: Number correspodning to the new Compound id
bs	df: DataFrame of all protein ligand fingerprints for the given fingerprinting method (fp)

9.1.1.12 tanimoto_dense()

Calculate the tanimoto coefficient for a pair of dense vectors.

Parameters

list1	list: List of positions that have a 1 in first compound fingerprint
list2	list: List of positions that have a 1 in second compound fingerprint

9.1.1.13 tanimoto_sparse()

```
def cando.tanimoto_sparse ( str1, str2 )
```

Calculate the tanimoto coefficient for a pair of sparse vectors.

Parameters

str1	str: String of 1s and 0s representing the first compound fingerprint
str2	str: String of 1s and 0s representing the second compound fingerprint

10 Class Documentation

10.1 ADR Class Reference

An object to represent an adverse reaction.

Inheritance diagram for ADR:

Public Member Functions

def __init__ (self, id_, name)

Public Attributes

• id_

str: Identification for the given ADR

• name

str: Name of the given ADR

• compounds

list: Compound objects associated with the given ADR

10.1.1 Detailed Description

An object to represent an adverse reaction.

10.1.2	Constructor	& Destructor	Documentation

10.1.3 Member Data Documentation

10.1.3.1 compounds

compounds

list: Compound objects associated with the given ADR

```
10.1.3.2 id_
```

id_

str: Identification for the given ADR

10.1.3.3 name

name

str: Name of the given ADR

10.2 CANDO Class Reference

An object to represent all aspects of CANDO (compounds, indications, matrix, etc.)

Inheritance diagram for CANDO:

Public Member Functions

- def __init__ (self, c_map, i_map, matrix=", compute_distance=False, save_rmsds=", read_rmsds=", pathways=", pathway_quantifier='max', indication_pathways=", indication_proteins=", similarity=False, dist_metric='rmsd', protein_set=", rm_zeros=False, rm_compounds=", adr_map=", ncpus=1)
- def get_compound (self, id_)

Get Compound object from Compound id.

def get_indication (self, ind_id)

Get Indication object from Indication id.

def get_pathway (self, id_)

Get Pathway object from Pathway id.

def get_adr (self, id_)

Get ADR (adverse drug reaction) from ADR id.

def uniprot_set_index (self, prots)

Gather proteins from input matrix that map to UniProt IDs from 'protein_set=' param.

• def generate_similar_sigs (self, cmpd, sort=False, proteins=[], aux=False)

For a given compound, generate the similar compounds using distance of sigs.

def generate_some_similar_sigs (self, cmpds, sort=False, proteins=[], aux=False)

For a given list of compounds, generate the similar compounds based on rmsd of sigs This is pathways/genes for all intents and purposes.

def quantify_pathways (self, indication=None)

Uses the pathway quantifier defined in the CANDO instantiation to make a pathway signature for all pathways in the input file (NOTE: does not compute distances)

def results_analysed (self, f, metrics, effect_type)

Creates the results analysed named file for the benchmarking and computes final avg indication accuracies.

def canbenchmark (self, file_name, indications=[], continuous=False, bottom=False, rank-ing='standard', adrs=False)

Benchmarks the platform based on compound similarity of those approved for the same diseases.

def canbenchmark_associated (self, file_name, indications=[], continuous=False, rank-ing='standard')

Benchmark only the compounds in the indication mapping, aka get rid of "noisy" compounds.

def canbenchmark_bottom (self, file_name, indications=[], ranking='standard')

Benchmark the reverse ranking of similar compounds as a control.

def canbenchmark_cluster (self, n_clusters=5)

Benchmark using k-means clustering.

def ml (self, method='rf', effect=None, benchmark=False, adrs=False, predict=[], seed=42, out=")

create an ML classifier for a specified indication or all inds (to benchmark) predict (used w/ 'effect=' - indication or ADR) is a list of compounds to classify with the trained ML model out=X saves benchmark SUMMARY->SUMMARY_ml_X; raw results->raw_results/raw_results_ml\cup _X (same for RAN) currently supports random forest ('rf'), support vector machine ('svm'), 1-class SVM ('1csvm'), and logistic regression ('log') models are trained with leave-one-out cross validation during benchmarking

This function is used for predicting putative therapeutics for an indication of interest.

 def canpredict_indications (self, new_sig=None, new_name=None, cando_cmpd=None, n=10, topX=10)

This function is the inverse of canpredict compounds.

def similar_compounds (self, new_sig=None, new_name=None, cando_cmpd=None, n=10)

Computes and prints the top n most similar compounds to an input Compound object cando ← cmpd or input novel signature new sig.

def add_cmpd (self, new_sig, new_name)

Add a new Compound object to the platform.

def sigs (self, rm)

Return a list of all signatures, rm is a list of compound ids you do not want in the list.

• def save_rmsds_to_file (self, f)

Write calculated distances of all compounds to all compounds to file.

def fusion (self, cando_objs, out_file=", method='sum')

This function re-ranks the compounds according to the desired comparison specified by 'method' -> currently supports 'min', 'avg', 'mult', and 'sum'.

• def normalize (self)

Normalize the distance scores to between [0,1].

def __str__ (self)

Print stats about the CANDO object.

Public Attributes

• c map

str: File path to the compound mapping file (relative or absolute)

i_map

str: File path to the indication mapping file (relative or absolute)

matrix

str: File path to the cando matrix file (relative or absolute)

• protein set

str: File path to protein subset file (relative or absolute)

pathways

str: File path to pathway file

- · accuracies
- compute_distance

bool: Calculate the distance for each Compound against all other Compounds using chosen distance metric

- · clusters
- rm_zeros

bool: Remove Compounds with all-zero signatures from CANDO object

rm_compounds

list: Compounds to remove from the CANDO object

- rm_cmpds
- save_rmsds

bool: Write the calculated distances to file after computation (set compute_distances=True)

· read rmsds

str: File path to pre-computed distance matrix

similarity

bool: Use similarity instead of distance

· dist_metric

str: Distance metric to be used for computing Compound-Compound distances

• ncpus

int: Numebr of CPUs used for parallelization

pathway_quantifier

str: Method used to quantify a all Pathways

indication pathways

str: File path to Indication-Pathway association file

indication_proteins

str: File path to Indication-Protein association file

adr_map

str: File path to ADR mapping file

· proteins

- protein_id_to_index
- · compounds
- indications
- · indication ids
- · adrs
- · short_matrix_path
- short_read_rmsds
- · short_protein_set
- cmpd_set
- · data name

10.2.1 Detailed Description

An object to represent all aspects of CANDO (compounds, indications, matrix, etc.)

To instantiate you need the compound mapping (c_map), indication mapping file (i_map), and a compound-protein matrix (matrix=) or or precomputed compound-compound distance matrix (read_rmsds=)

10.2.2 Constructor & Destructor Documentation

```
10.2.2.1 __init__()
def __init__ (
            self,
            c_{map}
            i_map,
            matrix = '',
            compute_distance = False,
            save_rmsds = '',
            read_rmsds = '',
            pathways = '',
            pathway_quantifier = 'max',
            indication_pathways = '',
            indication_proteins = '',
            similarity = False,
            dist_metric = 'rmsd',
            protein_set = '',
            rm\_zeros = False,
            rm_compounds = '',
            adr_map = '',
            ncpus = 1)
```

10.2.3 Member Function Documentation

Print stats about the CANDO object.

10.2.3.2 add_cmpd()

Add a new Compound object to the platform.

Parameters

new_sig	str: Path to the tab-separated interaction scores
new_name	str: Name for the new Compound

Returns

cmpd Compound: Compound object

10.2.3.3 canbenchmark()

Benchmarks the platform based on compound similarity of those approved for the same diseases.

Parameters

file_name	str: Name to be used for the various results files (e.g. file_name=test>
	summary_test.tsv)
indications	list: List of Indication ids to be used for this benchmark, otherwise all will be
	used.
continuous	bool: Use the percentile of distances from the similarity matrix as the cutoffs for
	benchmarking
bottom	bool: Reverse the ranking (descending) for the benchmark
ranking	str: What ranking method to use for the compounds. This really only affects
	ties. (standard, modified, and ordinal)
adrs	bool: ADRs are used as the phenotypic effect instead of Indications

10.2.3.4 canbenchmark_associated()

Benchmark only the compounds in the indication mapping, aka get rid of "noisy" compounds.

This function returns the filtered CANDO object in the event that you want to explore further.

Parameters

file_name	str: Name to be used for the variosu results files (e.g. file_name=test> summary_test.tsv)
indications	list: List of Indication ids to be used for this benchmark, otherwise all will be used.
continuous	bool: Use the percentile of distances from the similarity matrix as the cutoffs for benchmarking
ranking	str: What ranking method to use for the compounds. This really only affects ties. (standard, modified, and ordinal)

10.2.3.5 canbenchmark_bottom()

```
\begin{tabular}{ll} $\operatorname{def canbenchmark\_bottom} & ( \\ & self, \end{tabular}
```

```
file_name,
indications = [],
ranking = 'standard' )
```

Benchmark the reverse ranking of similar compounds as a control.

Parameters

file_name	str: Name to be used for the variosu results files (e.g. file_name=test>
	summary_test.tsv)
indications	list: List of Indication ids to be used for this benchmark, otherwise all will be
	used.
ranking	str: What ranking method to use for the compounds. This really only affects
	ties. (standard, modified, and ordinal)

10.2.3.6 canbenchmark_cluster()

```
def canbenchmark_cluster ( self, n\_clusters = 5 )
```

Benchmark using k-means clustering.

Parameters

```
n_clusters int: Number of clusters for k-means
```

10.2.3.7 canpredict_compounds()

This function is used for predicting putative therapeutics for an indication of interest.

Input an ind_id id and for each of the associated compounds, it will generate the similar compounds (based on distance) and add them to a dictionary with a value of how many times it

shows up (enrichment). If a compound not approved for the indication of interest keeps showing up, that means it is similar in signature to the drugs that are ALREADY approved for the indication, so it may be a target for repurposing. Control how many similar compounds to consider with the argument 'n'. Use ind_id=None to find greatest score sum across all proteins (sum_scores must be True)

Parameters

ind_id	str: Indication id
n	int: top number of similar Compounds to be used for each Compound
	associated with the given Indication
topX	int: top number of predicted Compounds to be printed
sum_scores	bool: Sum all ascores across all proteins
keep_approved	bool: Print Compounds that are already approved for the Indication

10.2.3.8 canpredict_indications()

```
def canpredict_indications (
    self,
    new_sig = None,
    new_name = None,
    cando_cmpd = None,
    n = 10,
    topX = 10 )
```

This function is the inverse of canpredict_compounds.

Input a compound of interest cando_cmpd (or a novel protein signature of interest new_sig) and the most similar compounds to it will be computed. The indications associated with the top n most similar compounds to the query compound will be examined to see if any are repeatedly enriched.

Parameters

new_sig	str: Path to the new Compound signature
new_name	str: Name to be used for the new Compound
cando_cmpd	Compound: Compound object to be used
n	int: top number of similar Compounds to be used for prediction
topX	int: top number of predicted Indications to be printed

10.2.3.9 fusion()

This function re-ranks the compounds according to the desired comparison specified by 'method' -> currently supports 'min', 'avg', 'mult', and 'sum'.

Parameters

cando_objs	list: List of CANDO objects
out_file	str: Path to where the result will be written
method	str: Method of fusion to be used (e.g., sum, mult, etc.)

10.2.3.10 generate_similar_sigs()

For a given compound, generate the similar compounds using distance of sigs.

Parameters

cmpd	object: Compound object
sort	bool: Sort the list of similar compounds
proteins	list: Protein objects to identify a subset of the Compound signature
aux	bool: Use an auxiliary signature (default: False)

Returns

Returns list: Similar Compounds to the given Compound

10.2.3.11 generate_some_similar_sigs()

For a given list of compounds, generate the similar compounds based on rmsd of sigs This is pathways/genes for all intents and purposes.

Parameters

cmpds	list: Compound objects
sort	bool: Sort similar compounds for each Compound
proteins	list: Protein objects to identify a subset of the Compound signature
aux	bool: Use an auxiliary signature (default: False)

Returns

Returns list: Similar Compounds to the given Compound

10.2.3.12 get_adr()

```
def get_adr (
     self,
     id_ )
```

Get ADR (adverse drug reaction) from ADR id.

Parameters

Returns

Returns object: ADR object

10.2.3.13 get_compound()

```
def get_compound (
          self,
          id_ )
```

Get Compound object from Compound id.

Parameters

```
id← int: Compound id

-←
```

Returns

Returns object: Compound object

10.2.3.14 get_indication()

Get Indication object from Indication id.

Parameters

```
ind↔ str: Indication id
```

Returns

Returns object: Indication object

10.2.3.15 get_pathway()

```
def get_pathway (
          self,
          id_ )
```

Get Pathway object from Pathway id.

Parameters

```
id← str: Pathway id
```

Returns

Returns object: Pathway object

create an ML classifier for a specified indication or all inds (to benchmark) predict (used w/ 'effect=' - indication or ADR) is a list of compounds to classify with the trained ML model out=X saves benchmark SUMMARY->SUMMARY_ml_X; raw results->raw_results/raw_results_ml_X (same for RAN) currently supports random forest ('rf'), support vector machine ('svm'), 1-class SVM ('1csvm'), and logistic regression ('log') models are trained with leave-one-out cross validation during benchmarking

Parameters

method	str: type of machine learning algorithm to use ('rf', 'svm', '1csvm', and 'log')
effect	list: provide a specific Indication or ADR object to train a classifer
benchmark	bool: benchmark the ML pipeline by training a classifier with LOOCV for each
	Indication or ADR
adrs	bool: if the models are trained with ADRs instead of Indications
predict	list: provide a list of Compound objects to classify with the model (only used in
	combination with effect=Indication/ADR object)
seed	int: choose a seed for reproducibility
out	str: file name extension for the output of benchmark (note: must have
	benchmark=True)

10.2.3.17 normalize()

```
\begin{array}{c} \text{def normalize (} \\ & self \end{array})
```

Normalize the distance scores to between [0,1].

Simply divides all scores by the largest distance between any two compounds.

10.2.3.18 quantify_pathways()

Uses the pathway quantifier defined in the CANDO instantiation to make a pathway signature for all pathways in the input file (NOTE: does not compute distances)

Parameters

```
indication object: Indication object
```

10.2.3.19 results_analysed()

Creates the results analysed named file for the benchmarking and computes final avg indication accuracies.

Parameters

f	str: File path for results analysed named			
metrics	list: Cutoffs used for the benchmarking protocol			
effect_type	str: Defines the effect as either an Indication (disease) or ADR (adverse reaction)			

10.2.3.20 save_rmsds_to_file()

Write calculated distances of all compounds to all compounds to file.

Parameters

File name to save distances

```
10.2.3.21 sigs()
```

```
def sigs (
     self,
     rm )
```

Return a list of all signatures, rm is a list of compound ids you do not want in the list.

Parameters

rm list: List of compound ids to remove from list of signatures

Returns

list: List of all signatures

10.2.3.22 similar_compounds()

Computes and prints the top n most similar compounds to an input Compound object cando_ cmpd or input novel signature new_sig.

Parameters

new_sig	list: List float of novel compound protein interaction signature
new_name	str: Drug name
cando_cmpd	Compound: Compound object
n	int: top number of similar Compounds to be used for prediction

10.2.3.23 uniprot_set_index()

```
def uniprot_set_index (
          self,
          prots )
```

Gather proteins from input matrix that map to UniProt IDs from 'protein_set=' param.

Parameters

prots list	:: UniProt IDs (str)
------------	----------------------

Returns

Returns list: Protein chains (str) matching input UniProt IDs

10.2.4 Member Data Documentation

10.2.4.1 accuracies

accuracies

10.2.4.2 adr_map

 adr_map

str: File path to ADR mapping file

10.2.4.3 adrs
adrs
10.2.4.4 c_map
c_map
str: File path to the compound mapping file (relative or absolute)
10.2.4.5 clusters
clusters
10.2.4.6 cmpd_set cmpd_set
10.2.4.7 compounds
compounds
10.2.4.8 compute_distance
compute_distance
bool: Calculate the distance for each Compound against all other Compounds using chosen distance metric

10.2.4.9 data_name

data_name

10.2.4.10 dist_metric

dist_metric

str: Distance metric to be used for computing Compound-Compound distances

10.2.4.11 i_map

i_map

str: File path to the indication mapping file (relative or absolute)

10.2.4.12 indication_ids

indication_ids

10.2.4.13 indication_pathways

indication_pathways

str: File path to Indication-Pathway association file

10.2.4.14 indication_proteins

indication_proteins

str: File path to Indication-Protein association file

10.2.4.15 indications	
indications	
10.2.4.16 matrix	
matrix	
str: File path to the cando matrix file (relative or absolute)	
10.2.4.17 ncpus	
ncpus	
int: Numebr of CPUs used for parallelization	
10.2.4.18 pathway_quantifier	
pathway_quantifier	
str: Method used to quantify a all Pathways	
10.2.4.19 pathways	
pathways	
str: File path to pathway file	
10.2.4.20 protein_id_to_index	
protein_id_to_index	

10.2.4.21 protein_set protein_set str: File path to protein subset file (relative or absolute) 10.2.4.22 proteins proteins 10.2.4.23 read_rmsds read_rmsds str: File path to pre-computed distance matrix 10.2.4.24 rm_cmpds rm_cmpds 10.2.4.25 rm_compounds rm_compounds list: Compounds to remove from the CANDO object 10.2.4.26 rm_zeros rm_zeros

bool: Remove Compounds with all-zero signatures from CANDO object

CANDO v2.0

10.2.4.27 save_rmsds

save_rmsds

bool: Write the calculated distances to file after computation (set compute_distances=True)

10.2.4.28 short_matrix_path

short_matrix_path

10.2.4.29 short_protein_set

short_protein_set

10.2.4.30 short_read_rmsds

short_read_rmsds

10.2.4.31 similarity

similarity

bool: Use similarity instead of distance

10.3 Compound Class Reference

An object to represent a compound/drug.

Inheritance diagram for Compound:

Public Member Functions

- def __init__ (self, name, id_, index)
- def add_indication (self, ind)

Add an Indication to the list of Indications associated to this Compound.

Public Attributes

name

str: Name of the Compound (e.g., 'caffeine')

id_

int: CANDO id from mapping file (e.g., 1, 10, 100, ...)

index

int: The order in which the Compound appears in the mapping file (e.g, 1, 2, 3, ...)

• sig

list: Signature is essentially a column of the Matrix

aux_sig

list: Potentially temporary signature for things like pathways, where "c.sig" needs to be preserved

indications

list: This is every indication the Compound is associated with from the mapping file

similar

list: This is the ranked list of compounds with the most similar interaction signatures

· similar_computed

bool: Have the distances of all Compounds to the given Compound been computed?

similar_sorted

bool: Have the most similar Compounds to the given Compound been sorted?

· cluster id

int: The cluster id this Compound was assigned from clustering method

adrs

list: List of ADRs associated with this Compound

10.3.1 Detailed Description

An object to represent a compound/drug.

10.3.2 Constructor & Destructor Documentation

```
10.3.2.1 __init__()
```

10.3.3 Member Function Documentation

10.3.3.1 add_indication()

Add an Indication to the list of Indications associated to this Compound.

Parameters

ind object: Indication object to add

10.3.4 Member Data Documentation

10.3.4.1 adrs

adrs

list: List of ADRs associated with this Compound

10.3.4.2 aux_sig

aux_sig

list: Potentially temporary signature for things like pathways, where "c.sig" needs to be preserved

```
10.3.4.3 cluster_id
cluster_id
int: The cluster id this Compound was assigned from clustering method
10.3.4.4 id_
id_
int: CANDO id from mapping file (e.g., 1, 10, 100, ...)
10.3.4.5 index
index
int: The order in which the Compound appears in the mapping file (e.g, 1, 2, 3, ...)
10.3.4.6 indications
indications
list: This is every indication the Compound is associated with from the mapping file
10.3.4.7 name
name
str: Name of the Compound (e.g., 'caffeine')
10.3.4.8 sig
sig
list: Signature is essentially a column of the Matrix
```

10.3.4.9 similar

similar

list: This is the ranked list of compounds with the most similar interaction signatures

10.3.4.10 similar_computed

```
similar_computed
```

bool: Have the distances of all Compounds to the given Compound been computed?

10.3.4.11 similar_sorted

similar_sorted

bool: Have the most similar Compounds to the given Compound been sorted?

10.4 Indication Class Reference

An object to represent an indication (disease)

Inheritance diagram for Indication:

Public Member Functions

• def __init__ (self, ind_id, name)

Public Attributes

id_

str: MeSH or OMIM ID for the indication from the mapping file

• name

str: Name for the indication from the mapping file

compounds

list: Every associated compound object from the mapping file

pathways

list: Every pathway associated to the indication from the mapping file

• proteins

list: Every protein associated to the indication form the mapping file

10.4.1 Detailed Description

An object to represent an indication (disease)

10.4.2 Constructor & Destructor Documentation

10.4.3 Member Data Documentation

10.4.3.1 compounds

compounds

list: Every associated compound object from the mapping file

10.4.3.2 id_ id_ str: MeSH or OMIM ID for the indication from the mapping file 10.4.3.3 name name str: Name for the indication from the mapping file 10.4.3.4 pathways pathways list: Every pathway associated to the indication from the mapping file 10.4.3.5 proteins proteins list: Every protein associated to the indication form the mapping file 10.5 Matrix Class Reference An object to represent a matrix. Inheritance diagram for Matrix: object

Matrix

Public Member Functions

- def __init__ (self, matrix_file, rmsd=False, convert_to_tsv=False)
- def convert (self, out_file)

Convert similarity matrix to distance matrix or vice versa.

Public Attributes

• matrix_file

str: Path to file with interaction scores

rmsd

bool: if the matrix_file is an rmsd file

convert_to_tsv

bool: Convert old matrix format (.fpt) to .tsv

proteins

list: Proteins in the Matrix

values

list: Values in the Matrix

10.5.1 Detailed Description

An object to represent a matrix.

Intended for easier handling of matrices. Convert between fpt and tsv, as well as distance to similarity (and vice versa)

10.5.2 Constructor & Destructor Documentation

10.5.3 Member Function Documentation

10.5.3.1 convert()

```
def convert (
          self,
          out_file )
```

Convert similarity matrix to distance matrix or vice versa.

The first value in the matrix will determine the type of conversion (0.0 means distance to similarity, 1.0 means similarity to distance).

Parameters

out_file | str: File path to which write the converted matrix.

10.5.4 Member Data Documentation

```
10.5.4.1 convert_to_tsv
```

```
convert_to_tsv
```

bool: Convert old matrix format (.fpt) to .tsv

10.5.4.2 matrix_file

```
matrix_file
```

str: Path to file with interaction scores

10.5.4.3 proteins

proteins

list: Proteins in the Matrix

10.5.4.4 rmsd

rmsd

bool: if the matrix_file is an rmsd file

10.5.4.5 values

values

list: Values in the Matrix

10.6 Pathway Class Reference

An object to represent a pathway.

Inheritance diagram for Pathway:

Public Member Functions

def __init__ (self, id_)

Public Attributes

proteins

list: Protein objects associated with the given Pathway

id

str: Identification for the given Pathway

• indications

list: Indication objects associated with the given Pathway

10.6.1 Detailed Description

An object to represent a pathway.

10.6.2 Constructor & Destructor Documentation

```
10.6.2.1 __init__()
```

10.6.3 Member Data Documentation

10.6.3.1 id_

id_

str: Identification for the given Pathway

10.6.3.2 indications

indications

list: Indication objects associated with the given Pathway

10.6.3.3 proteins

proteins

list: Protein objects associated with the given Pathway

10.7 Protein Class Reference

An object to represent a protein.

Inheritance diagram for Protein:

Public Member Functions

```
• def __init__ (self, id_, sig)
```

Public Attributes

- id_
 - PDB or UniProt ID for the given protein.
- sig

List of scores representing each drug interaction with the given protein.

pathways

List of Pathway objects in which the given protein is involved.

10.7.1 Detailed Description

An object to represent a protein.

10.7.2 Constructor & Destructor Documentation

10.7.3	Member	Data	Documenta	tion
--------	--------	------	-----------	------

10.7.3.1 id_

id_

PDB or UniProt ID for the given protein.

10.7.3.2 pathways

pathways

List of Pathway objects in which the given protein is involved.

10.7.3.3 sig

sig

List of scores representing each drug interaction with the given protein.