NFAs and DFAs

Sipser 1.2 (pages 47-63)

Last time...

NFA

- A nondeterministic finite automaton (NFA) is a 5-tuple
 - $(Q, \Sigma, \delta, q_0, F)$, where
 - Q is a finite set called the states
 - $-\Sigma$ is a finite set called the **alphabet**
 - $-\delta: Q \times \Sigma\varepsilon \rightarrow P(Q)$ is the **transition function**
 - $-q_0 = Q$ is the **start state**
 - $-F\subseteq Q$ is a set of **accept states**
- In-class exercise:

NFA computation

- Let $N=(Q, \Sigma, \delta, q_0, F)$ be a NFA and let w be a string over the alphabet Σ
- Then N accepts w if
 - w can be written as $w_1 w_2 w_3 ... w_m$ with each $w_i \in \Sigma \varepsilon$ and
 - There exists a sequence of states $s_0, s_1, s_2, ..., s_m$ exists in Q with the following conditions:
 - 1. $s_0 = q_0$
 - 2. $s_{i+1} = \delta(s_i, w_{i+1})$ for i = 0, ..., m-1
 - 3. $s_m \in F$

One last operation

Kleene star operation

- Let A be a language.
- The Kleene star operation is

$$A^* = \{x_1 x_2 ... x_k \mid k \ge 0 \text{ and each } x_i \in A\}$$

Exercise

- $A = \{w \mid w \text{ is a string of } 0\text{s and } 1\text{s containing an odd number of } 1\text{s}\}$
- $B = \{w \mid w \text{ is a string of } 0\text{s and } 1\text{s containing an even number of } 1\text{s}\}$
- $C = \{0, 1\}$
- What are A^* , B^* , and C^* ?

klay'nee

Kleene pronounced his last name klay'nee. His son, Ken Kleene, wrote: "As far as I am aware this pronunciation is incorrect in all known languages. I believe that this novel pronunciation was invented by my father."

- From http://visualbasic.about.com/od/usevb6/a/RegExVB6.htm

Kleene star

 Theorem: The class of languages recognized by NFAs is closed under the Kleene star operation.

Proof Let A be a la nguage recognized by an NFA 4= (Q, Z, 8, go, F). We construct the NFA N'= (Qués3, E, 8', s, Fues3), where $S'(q, \sigma) = \begin{cases} \{q, 3\} & \text{if } q = S + \sigma = 8 \\ \emptyset & \text{if } q = S + \sigma \neq 8 \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{if } q \in F + \sigma = 8 \\ S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwise} \end{cases}$ $\begin{cases} \{q, 3\} \cup S(q, \sigma) & \text{otherwis$ lang recog. by NFAs is closed under the stor operation. II Q.E.D.

If only...

... somebody would prove that the class of languages recognized by NFAs and the class of languages recognized by DFAs were equal...

Then...

- · We'd have:
 - The class of regular languages is closed under:
 - Concatenation
 - · Kleene star

And...

a cute proof for closure under union!

We can be that somebody!

 Theorem: A language is regular if and only if there exists an NFA that recognizes it.

Proof:

$$(\Rightarrow)$$

Let A be a regular language...

Then there exists a DFA M

- M is a 5-tuple (Q, Σ , δ_M , q_0 , F), where
 - Q is a finite set called the states
 - $-\Sigma$ is a finite set called the **alphabet**
 - $-\delta: Q \times \Sigma \rightarrow Q$ is the **transition function**
 - $-q_0 = Q$ is the **start state**
 - $-F\subseteq Q$ is a set of **accept states**

We need to show there exists an NFA N

- · N is a 5-tuple (Q, Σ , δ_N , q_0 , F), where
 - Q is a finite set called the states
 - $-\Sigma$ is a finite set called the **alphabet**
 - $-\delta: Q \times \Sigma\varepsilon \rightarrow P(Q)$ is the **transition function**
 - $-q_0 = Q$ is the **start state**
 - $-F\subseteq Q$ is a set of **accept states**

Can we define N from M?

Now the other way!

 Theorem: A language is regular if and only if there exists an NFA that recognizes it.

Proof:

$$(\Leftarrow)$$

Let A be a language accepted by NFA

$$N = (Q, \Sigma, \delta, q_0, F)$$

Equivalent machines

· Definition:

Two machines are equivalent if they recognize the same language

· Let's prove...

Theorem:

Every NFA has an equivalent DFA.

A simpler example

Removing choice

Proof:

- Let A be a language accepted by NFA $N = (Q, \Sigma, \delta, q_o, F)$
- We construct a DFA $M=(Q', \Sigma, \delta', q_0', F')$ recognizing A
 - -Q'=P(Q)
 - For $R \subseteq Q'$ and $a \subseteq \Sigma$, define $\delta'(R,a) = \bigcup \delta(r,a)$

$$-q_0' = \{q_0\}$$

 $-F' = \{ R \in Q' \mid R \text{ contains an accept state from } F \}$

Okay, but what about ε arrows?

Modifying our construction

Proof:

- Let A be a language accepted by NFA $N = (Q, \Sigma, \delta, q_o, F)$
- We construct a DFA $M=(Q', \Sigma, \delta', q_0', F')$ recognizing
 - -Q'=P(Q)
 - For $R \in Q'$ and $a \in \Sigma$, define $\delta'(R,a) = \bigcup_{r \in R} E(\delta(r,a))$

where $E(R) = \{q \mid q \text{ can be reached from R} \\ \text{along 0 or more } \varepsilon \text{ arrows} \}$

$$-q_{0}' = E(\{q_{0}\})$$

 $-F' = \{ R \subseteq Q' \mid R \text{ contains an accept state from } F \}$

Modifying our construction

Proof:

- Let A be a language accepted by NFA $N = (Q, \Sigma, \delta, q_o, F)$
- We construct a DFA $M=(Q', \Sigma, \delta', q_0', F')$ recognizing A
 - -Q'=P(Q)
 - For $R \in Q'$ and $a \in \Sigma$, define $\delta'(R,a) = \bigcup_{r \in R} E(\delta(r,a))$

where $E(R) = \{q \mid q \text{ can be reached from R along 0 or more } \varepsilon \}$

$$-q_{0}' = E(\{q_{0}\})$$

 $-F' = \{ R \subseteq Q' \mid R \text{ contains an accept state from } F \}$