

计算机组成原理

第十讲

刘松波

哈尔滨工业大学计算学部 模式识别与智能系统研究中心

第8章 CPU 的结构和功能

- 8.1 CPU 的结构
- 8.2 指令周期
- 8.3 指令流水
- 8.4 中断系统

8.1 CPU 的结构

一、CPU的功能

1. 控制器的功能

取指令

分析指令

执行指令,发出各种操作命令

控制程序输入及结果的输出

总线管理

处理异常情况和特殊请求

运算器的功能
 实现算术运算和逻辑运算

指令控制

操作控制

时间控制

处理中断

数据加工

二、CPU 结构框图

8.1

1. CPU 与系统总线

指令控制 PC IR

操作控制 CU 时序电路

时间控制 丿

数据加工 ALU 寄存器

处理中断 中断系统

8.1

2. CPU 的内部结构

简单CPU模型

三、CPU 的寄存器

8.1

- 1. 用户可见寄存器
 - (1) 通用寄存器 存放操作数

可作某种寻址方式所需的专用寄存器

(2) 数据寄存器 存放操作数(满足各种数据类型) 两个寄存器拼接存放双倍字长数据

(3) 地址寄存器 存放地址,其位数应满足最大的地址范围 用于特殊的寻址方式 段基址 栈指针

(4) 条件码寄存器 存放条件码,可作程序分支的依据 如 正、负、零、溢出、进位等

2. 控制和状态寄存器

8.1

(1) 控制寄存器

 $PC \rightarrow MAR \rightarrow M \rightarrow MDR \rightarrow IR$

控制 CPU 操作

其中 MAR、MDR、IR 用户不可见

PC

用户可见

(2) 状态寄存器

状态寄存器

存放条件码

PSW 寄存器

存放程序状态字

3. 举例

Z8000

8086

MC 68000

X86指令系统举例-- IA-32的寄存器组织

%eax	累加器 (32bits)	% ax (16bits)	%ah(8bits)	%al(8bits)
%есх	计数寄存器	%сх	%ch	%cl
%edx	数据寄存器	%dx	% dh	%dl
%ebx	基址寄存器	%bx	%bh	%bl
% es i	源变址寄存器		%si	
%edi	目标变址寄存器		%di	
%esp	堆栈指针		%sp	
%ebp	基址指针		%bp	
%eip	指令指针		ip	
%eeflags	标志寄存器		flags	

- 8个通用寄存器
- 两个专用寄存器
- 6个段寄存器

CS (代码段) 16bits
SS (堆栈段)
DS (数据段)
ES (附加段)
FS (附加段)
GS (附加段)
·

8.1

四、控制单元 CU 和中断系统

1. CU 产生全部指令的微操作命令序列

组合逻辑设计

硬连线逻辑

微程序设计

存储逻辑

参见第4篇

2. 中断系统

参见 8.4 节

五、ALU

参见第6章

8.2 指令周期

一、指令周期的基本概念

1. 指令周期

取出并执行一条指令所需的全部时间

完成一条指令 { 取指、分析 取指周期 执行 执行 执行周期

8.2

2. 每条指令的指令周期不同

3. 具有间接寻址的指令周期

8.2

4. 带有中断周期的指令周期

5. 指令周期流程

8.2

6. CPU 工作周期的标志

CPU 访存有四种性质

取指令

取指周期

取 地址

间址周期

CPU的

取 操作数

执行周期

4个工作周期

存 程序断点

中断周期

二、指令周期的数据流

1. 取指周期数据流

2. 间址周期数据流

3. 执行周期数据流 不同指令的执行周期数据流不同

4. 中断周期数据流

8.3 指令流水

- 一、如何提高机器速度
 - 1. 提高访存速度

高速芯片 Cache

多体并行

2. 提高 I/O 和主机之间的传送速度

中断

DMA 通道 I/O 处理机

多总线

3. 提高运算器速度

高速芯片 改进算法

快速进位链

• 提高整机处理能力

高速器件 改进系统结构 ,开发系统的并行性

二、系统的并行性

8.3

1. 并行的概念

并行 { 两个或两个以上事件在 同一时间段 发生 同时 两个或两个以上事件在 同一时刻 发生 时间上互相重叠

2. 并行性的等级

过程级(程序、进程) 粗粒度 软件实现

指令级(指令之间) 细粒度 硬件实现 (指令内部)

三、指令流水原理

8.3

1. 指令的串行执行

 取指令1
 执行指令1
 取指令2
 执行指令2
 取指令3
 执行指令3
 …

 取指令
 取指令部件
 完成
 总有一个部件空闲

 执行指令
 执行指令部件
 完成

2. 指令的二级流水

若 取指 和 执行 阶段时间上 完全重叠 指令周期 减半 速度提高 1 倍

3. 影响指令流水效率加倍的因素

8.3

(1) 执行时间 > 取指时间

(2) 条件转移指令 对指令流水的影响

必须等上条 指令执行结束,才能确定下条 指令的地址,

造成时间损失

猜测法

解决办法 ?

4. 指令的六级流水

8.3

完成一条指令

串行执行

六级流水

6个时间单位

 $6 \times 9 = 54$ 个时间单位

14个时间单位

三、影响指令流水线性能的因素

1. 结构相关 不同指令争用同一功能部件产生资源冲突

DI ¦ CO ¦ FO : EI | WO 指令 2 $\mathbf{CO}_{\mathbf{i}}$ FO i 指令 3! FO ! \mathbf{EI} 指令 4¦ CO FO EI WO FO EI WO 指令5 指令 6! 指令 7¦ FO EI | WO | FI | DI | CO | FO | EI | WO | 指令8片 指令9 DI · CO · FO · EI 指令1与指令4

中类 指令1、指令3、指令6冲突指令存储器和数据存储器分开

指令2与指令5次

(适用于访存周期短的情况)

2. 数据相关

不同指令因重叠操作,可能改变操作数的 读/写 访问顺序

•写后读相关(RAW)

SUB
$$R_1$$
, R_2 , R_3

SUB
$$R_1$$
, R_2 , R_3 ; $(R_2) - (R_3) \rightarrow R_1$

ADD
$$R_4$$
, R_5 , R_1

$$; (R_5) + (R_1) \longrightarrow R_4$$

•读后写相关(WAR)

STA
$$M$$
, R_2

$$(R_2) \rightarrow M$$
存储单元

ADD
$$R_2$$
, R_4 , R_5

$$; (R_4) + (R_5) \longrightarrow R_2$$

·写后写相关(WAW)

$$MUL R_3, R_2, R_1$$

MUL
$$R_3$$
, R_2 , R_1 ; $(R_2) \times (R_1) \rightarrow R_3$

SUB
$$R_3$$
, R_4 , R_5

SUB
$$R_3$$
, R_4 , R_5 ; $(R_4) - (R_5) \rightarrow R_3$

2022/9/29 解决办法 • 后推法

• 采用 旁路技术(定向技术)

采用定向技术消除数据相关

3. 控制相关

8.3

由转移指令引起

```
# 0
   LDA
   LDX
         # 0
                    BNE 指令必须等
\mathbf{M}
   ADD
         X, D
                    CPX 指令的结果
   INX
                    才能判断出
   CPX
         # N
                    是转移
   BNE
         M
   DIV
         # N
                    还是顺序执行
   STA
         ANS
```

2022/9/29 27

3. 控制相关

8.3

设指令3是转移指令

四、流水线性能

8.3

1. 吞吐率

单位时间内流水线所完成指令或输出结果的数量设m 段的流水线各段时间为 \(t \)

• 最大吞吐率

$$T_{pmax} = \frac{1}{\Delta t}$$

• 实际吞吐率

连续处理 n 条指令的吞吐率为

$$T_p = \frac{n}{m \cdot \Delta t + (n-1) \cdot \Delta t}$$

2. 加速比 S_p

8.3

m 段的 流水线的速度 与等功能的 非流水线的速度 之比 设流水线各段时间为 ∧ ₁

完成 n 条指令在 m 段流水线上共需

$$T = m \cdot \Delta t + (n-1) \cdot \Delta t$$

完成 n 条指令在等效的非流水线上共需

$$T'=nm \cdot \Delta t$$

则
$$S_p = \frac{nm \cdot \Delta t}{m \cdot \Delta t + (n-1) \cdot \Delta t} = \frac{nm}{m+n-1}$$

3. 效率

8.3

流水线中各功能段的 利用率

由于流水线有 建立时间 和 排空时间 因此各功能段的 设备不可能 一直 处于 工作 状态

3. 效率

8.3

流水线中各功能段的利用率

$$=\frac{mn\Delta t}{m(m+n-1)\Delta t}$$

五、流水线的多发技术

- 1. 超标量技术
 - 每个时钟周期内可并发多条独立指令 配置多个功能部件
 - 不能调整 指令的 执行顺序 通过编译优化技术,把可并行执行的指令搭配起来

2. 超流水线技术

8.3

- 不能调整 指令的 执行顺序 靠编译程序解决优化问题

3. 超长指令字技术

8.3

- 由编译程序挖掘出指令间潜在的并行性,将多条能并行操作的指令组合成一条
 具有多个操作码字段的超长指令字(可达几百位)
- > 采用 多个处理部件

