

ISTE-VIT

Deep Dive Into DL

3 3 3 3 3 3 3 3 3 3 3 3 3 3 モフ**クフフ**フィ**クク**りフフ**ラ**クフフ 9

Image Of The Number 4

1st Month

3rd Month

End of the Journey

Neural Networks

hidden layer 1 $\,$ hidden layer 2 $\,$ hidden layer 3 $\,$

• What a Neural Network actually does?

Linear Regression

You Are A Real Estate Seller!

Area of the House(m^2)	Price of the House(in Lakhs)
5	50
50	100
100	75
150	50
200	110
250	162

Area(m^2) (X)

Area(m^2) (X)

Area(m^2) (X)

Linear Regression:

Linear Regression is a method of finding a straight line that best fits a set of points.

Area(m^2) (X)

Loss:

Loss is a penalty for a bad prediction. That is loss is a number indicating how bad the model's prediction is on a single example. If the model's prediction is perfect the loss is zero, otherwise the loss is greater.

High Loss

Area(m^2) (X)

Area(m^2) (X)

Area(m^2) (X)

Area(m^2) (X)

What Is Training A Model?

Training a model is an art of finding the best values to multiply with input to get an answer.

Gradient Descent

Approach To Find The Best Parameters

Linear Regression With 2 Inputs

Gradient Descent in 2-D

Logistic Regression

Predicting Coin Flips?

- Imagine the problem of predicting probability of Heads for bent coins
- You might use features like angle of bend, coin mass, etc.
- What's the simplest model you could use?
- What could go wrong?

Need for Activation Function

0

Fitting Values between 0 and 1:

$$y'=rac{1}{1+e^{-(w^Tx+b)}}$$

Where:

x: Provides the familiar linear model

 $1 + e^{-(...)}$: Squish through a sigmoid

Loss Function:

$$LogLoss = \sum_{(x,y) \in D} -y \, log(y') - (1-y) \, log(1-y')$$

Logistic Regression In A Nutshell

Why Deep Learning?

Amount of data

<'deep' learning>

Handwritten Digit Classification

Image Of The Number 9

How Image is Represented in Computers?

Colab Notebook Link

Explore More On:

But what is a Neural Network? | Deep learning - YouTube

Deep Learning | Coursera

Intro to optimization in deep learning: Gradient Descent (paperspace.com)

Kaggle: Your Home for Data Science

Foundations of data science - Learn | Microsoft Docs

About Me:

LinkedIn:

https://www.linkedin.com/in/-aman/

ISTE.VIT

ISTE_VIT_VELLORE

in

INDIAN SOCIETY FOR TECHNICAL EDUCATION

ISTE-VIT