

Financial Data Science Group Project

Group member:

Deng Qiuyun, Jeriel Wong, Ma Qiyuan, Qian Yutao, Zeng Taili

Project 1

Data Preview

	Date	Signal	Open	High	Low	Close	Adj Close
0	11/19/2015	13.768540	116.440002	116.650002	115.739998	116.059998	108.281601
1	11/20/2015	13.608819	116.480003	117.360001	116.379997	116.809998	108.981323
2	11/23/2015	12.990589	116.709999	117.889999	116.680000	117.389999	109.522453
3	11/24/2015	12.667435	116.879997	118.419998	116.559998	118.250000	110.324837
4	11/25/2015	13.019910	118.300003	119.320000	118.110001	119.169998	111.183159
1033	12/30/2019	0.000000	165.979996	166.210007	164.570007	165.440002	163.623688
1034	12/31/2019	0.000000	165.080002	166.350006	164.710007	165.669998	163.851135
1035	1/2/2020	0.000000	166.740005	166.750000	164.229996	165.779999	163.959946
1036	1/3/2020	0.000000	163.740005	165.410004	163.699997	165.130005	163.317093
1037	1/6/2020	0.000000	163.850006	165.539993	163.539993	165.350006	163.534668
1037	1/0/2020	0.000000	163.650006	165.559995	103.339993	165.550006	103.334000

Data Preview

Methodology

Rolling Window Sigma Rule

- 1. Set a window, calculate the mean and standard deviation of the window.
- **2.** Determine if the next point is deviated from the mean for a certain times of standard deviation.
- **3.** If so, replace the outlier with a proposed value, for example, use the former value or use linear interpolation.

Signal Result

Close Result

Adj Close Result

Signal-Close OLS and Cointegration Analysis

Signal	Close	Adj Close

Signal	1.000000	0.958261	0.964855
Close	0.958261	1.000000	0.998006
Adj Close	0.964855	0.998006	1.000000

	cointegration result	p-value		
0	-3.520307	0.030637		

ols	Regression	Results
-----	------------	---------

	======	=======	=====	======		=======	
Dep. Variable:		C	lose	R-squ	ared:		0.918
Model:			OLS	Adj.	R-squared:		0.918
Method:	I	east Squ	ares	F-sta	tistic:		1.162e+04
Date:	Tue,	21 Jun	2022	Prob	(F-statistic):		0.00
Time:		16:3	9:36	Log-I	ikelihood:		-3193.9
No. Observations:			1037	AIC:			6392.
Df Residuals:			1035	BIC:			6402.
Df Model:			1				
Covariance Type:		nonro	bust				
	======		=====				
	coef				P> t	[0.025	0.975]
const 33.	 8766				0.000	31.885	35.868
Signal 6.	4080	0.059	107	.795	0.000	6.291	6.525
Omnibus:		·======= 2	===== .438	===== Durbi	.n-Watson:		0.943
Prob(Omnibus):		0	.296	Jarqu	e-Bera (JB):		2.296
Skew:		-0	.100	Prob(JB):		0.317
Kurtosis:		3	.114	Cond.	No.		106.
		.======					

Log Signal-Close OLS and Cointegration Analysis

	Log Signal	Log Close	Log Adj Close
Log Signal	1.000000	0.001980	0.001732
Log Close	0.001980	1.000000	0.986661
Log Adj Close	0.001732	0.986661	1.000000

	cointegration result	p-value
0	-18.965781	0.0

		OLS Regre	ssion Re:	sults 		
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:		Log Close OLS Least Squares 16:40:50 1037 1035 1 nonrobust	Adj. I F-star Prob Log-L: AIC: BIC:	R-squared:):	0.000 -0.001 0.004057 0.949 3272.0 -6540. -6530.
========	coef	std err			[0.025	0.975]
		0.000 0.007	1.064	0.288		
Omnibus: Prob(Omnibus) Skew: Kurtosis:		71.712 0.000 -0.374 4.904	Jarque Prob(d Cond.	No.		1.998 180.788 5.52e-40 21.9

Project 2

Top 5 Stats

Wage Distribution – Across Years (2011 – 2014)

Wage Distribution – Across Years (2015 – 2018)

Wage Distribution – Across Years (2019 – 2022)

Median Salary – Across Cities – Across Years

Median Salary - Cumulative Increment Across Years

Project 3

1. Which company has the highest analyst coverage?

 The company that has the highest analyst coverage is ADS GR Equity, and the number of analysts is 44.

2. Which analyst covers the most companies?

• The analyst that covers the most companies is Antpagna, and the number of companies is 206.

3.1 Similarity Matrix

	NESN SW Equity	ROG SW Equity	NOVN SW Equity	HSBA LN Equity	SAP GR Equity	AZN LN Equity	ASML NA Equity	SAN FP Equity	MC FP Equity	FP FP Equity	
NESN SW Equity	0	0.006173	0.006173	0.064996	0.069851	0.006173	0.011027	0.006173	0.119851	0.011027	
ROG SW Equity	0.006173	0	4.172021	0.006173	0.077601	4.033926	0.106173	2.433926	0.006173	0.106173	
NOVN SW Equity	0.006173	4.172021	0	0.006173	0.077601	3.447129	0.106173	3.176783	0.006173	0.106173	
HSBA LN Equity	0.064996	0.006173	0.006173	0	0.064996	0.006173	0.006173	0.006173	0.064996	0.006173	
SAP GR Equity	0.069851	0.077601	0.077601	0.064996	0	0.006173	0.378884	0.097082	0.069851	0.011027	
TUI LN Equity	0.004854	0	0	0	0.067354	0	0.067354	0	0.004854	0.004854	
GFS LN Equity	0	0	0	0	0	0	0	0	0	0	
LHA GR Equity	0	0	0	0	0.0625	0	0.0625	0	0	0.109649	
BMW3 GR Equity	0	0	0	0	0	0	0	0	0	0	
UHRN SW Equity	0	0	0	0	0	0	0	0	0.111111	0	

- In this similarity Matrix, we consider all the analysts.
- In the next page, we make some restriction on the analysts.

3.2 Restricted to analysts that cover >= 3 companies and <= 20 companies

	NESN SW Equity	UNA NA Equity	ULVR LN Equity	BN FP Equity	GIVN SW Equity	KYG ID Equity	HEN3 GR Equity	SY1 GR Equity	LISN SW Equity	LISP SW Equity	
NESN SW Equity	0	2.874071	1.648674	3.42169	0.502632	0.46765	1.381214	0.302632	0.927356	1.026623	
UNA NA Equity	2.874071	0	1.716135	2.735182	0.135965	0.312888	1.575659	0.135965	0.560689	0.588528	
ULVR LN Equity	1.648674	1.716135	0	1.565341	0.135965	0.384317	1.27169	0.135965	0.417832	0.3171	
BN FP Equity	3.42169	2.735182	1.565341	0	0.302632	0.634317	1.422881	0.302632	0.727356	0.826623	
GIVN SW Equity	0.502632	0.135965	0.135965	0.302632	0	0.894298	0.185965	2.859017	0.283333	0.45	
BLND LN Equity	0	0	0	0	0	0	0	0	0	0	
PRX NA Equity	0	0	0	0	0	0	0	0	0	0	
MNDI LN Equity	0	0	0	0	0	0	0	0	0	0	
SKG ID Equity	0	0	0	0	0	0	0	0	0	0	
RYAAY US Equity	0	0	0	0	0	0	0	0	0	0	

• In this matrix, we can see that some relationships with small similarity are eliminated, since extreme company coverage is avoided, similarity with largest number and smallest number disappear as well.

4. Hierarchical

 Ward method shows the best result, since it considers each factor in the most balance way.

5. Homogeneous and Heterogeneous

	GICS_SECTOR_NAME	Distance
0	Health Care	2.302836
1	Utilities	2.662624
2	Energy	2.708263
3	Real Estate	3.035293
4	Information Technology	4.303414
5	Financials	6.270991
6	Industrials	7.240057
7	Communication Services	7.582258
8	Consumer Staples	7.718867
9	Materials	8.765679
10	Consumer Discretionary	11.228444

Colored by Sectors

Colored by Industry Groups

Thanks for watching!