

LINMA2491 Operational Research

Simon Desmidt Issambre L'Hermite Dumont

Academic year 2024-2025 - Q2

Contents

1	Definitions and notations .1 Reminders on subgradients
2	Modelling 2.1 Introduction
3	Performance 16 3.1 Notations 16 3.2 Expected value of perfect information 16 3.3 The value of the stochastic solution 1 3.4 Basic inequalities 1 3.5 Bounds on EVPI and VSS 1 3.6 Estimations of WS and EEV 1
4	Benders Decomposition143.1 Cutting plane methods143.2 Context and description153.3 Benders Decomposition Algorithm15
5	The L-Shaped Method 5.1 Complete recourse 19 5.2 Value function 19 5.3 Bounds 20 5.4 Final Algorithm 20 5.5 Example 20
6	The Multicut L-Shaped Method 5.1 Optimality cuts 2.5.2 Algorithm 2.5.3 Example 2.5.4 Pros and Cons 2.5.4 Pros and Cons 2.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5
7	Nested Decomposition267.1 Backward Solution of Multistage Stochastic Linear Programs267.2 Nested L-Shaped Decomposition Subproblem267.3 Cuts377.4 Example37

8	Stoc	hastic Dual Dynamic Programming	35
	8.1	Motivation	35
	8.2	SDDP	36
	8.3	Example	39
9	Lagr	range Relaxation	41
	9.1	Introduction	41
	9.2	Subgradient method	41
	9.3	Cutting Plane method	42
	9.4	Bundle Methods	42
	9.5	Level Method	43
	9.6	Alternating Direction Method of Multipliers	43
10		tzig-Wolfe Decomposition	45
	10.1	Problem formulation	45
		Generalisation	48
	10.3	Dantzig-Wolfe in 2-Stage Stochastic Programming	49
		Dantzig-Wolfe in Integer Programming	50
		Relationship to Lagrangian Relaxation	51

Definitions and notations

- Given Ω , a sigma-algebra \mathcal{A} is a set of subsets of Ω , with the elements called events, such that:
 - $-\Omega \in \mathcal{A}$
 - **-** if A ∈ A then also Ω − A ∈ A
 - if A_i ∈ A for i = 1, 2, ... then also $\bigcup_{i=1}^{\infty} A_i \in A$
 - if A_i ∈ A for i = 1, 2, ... then also $\bigcap_{i=1}^{\infty} A_i \in A$
- Consider:

- The state space is the set of all values of the system at each stage.

$$S_0 = \{C\}, \qquad S_1 = \{C_u, C_d\}, \qquad S_2 = \{C_{uu}, C_{ud}, C_{dd}\}$$
 (1.1)

- The sample space is the set of all possible combination of the system.

$$\Omega = S_0 \times S_1 \times S_2 = \{ (C, C_u, C_{uu}), (C, C_u, C_{ud}), (C, C_u, C_{dd}), \dots \}$$
 (1.2)

- The power set of Ω is the set of all of the subsets, denoted $\mathcal{B}(\Omega)$.
- The probability space is the triplet (Ω, \mathcal{A}, P) where P is a probability measure.
 - $-P(\emptyset)=0$
 - $-P(\Omega)=1$
 - $P(\bigcup_{i=1}^{\infty} A_i) = \sum_i P(A_i)$ if A_i are disjoint
- $\forall t$, A_t is the set of events on which we have information at stage t. For example, $A_0 = \{C\}$, $A_1 = \{C, C_u, C_d\}$. Thus is it evident that $t_1 \leq t_2 \Rightarrow A_{t_1} \subseteq A_{t_2}$

• Consider the following problem with $x \in \mathbb{R}^n$ and domain \mathcal{D} :

$$\min f_0(x), \qquad s.t.$$

 $f_i(x) \le 0, i = 1, ..., m$
 $h_j(x) = 0, j = 1, ..., p$ (1.3)

Then the Lagrangian function is defined as $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$:

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{j=1}^{p} \nu_j h_j(x)$$
 (1.4)

• The Lagrange dual function is defined as $g : \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$:

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$
 (1.5)

- The Lagrange dual problem is a lower bound on the optimal value of the primal problem
- Lagrange relaxation of Stochastic Programs, consider the two problems:

$$\min f_{1}(x) + \mathbb{E}_{\omega}[f_{2}(y(\omega), \omega)] \qquad \min f_{1}(x) + \mathbb{E}_{\omega}[f_{2}(y(\omega), \omega)]$$

$$s.t \quad h_{1i}(x) \leq 0, i = 1, \dots, m_{1} \qquad s.t. \quad h_{1i}(x) \leq 0, i = 1, \dots, m_{1}$$

$$h_{2i}(x, y(\omega), \omega) \leq 0, i = 1, \dots, m_{2} \qquad h_{2i}(x(\omega), y(\omega), \omega) \leq 0, i = 1, \dots, m_{2}$$

$$x(\omega) = x \qquad (1.6)$$

The red constraint is the non-anticipativity constraint, it transforms the deterministic variable into a stochastic variable. A VERIFIER

• The dual of a stochastic program is:

$$g(\nu) = g_1(\nu) + \mathbb{E}_{\omega}(g_2(\nu, \omega))$$
where
$$g_1(\nu) = \inf f_1(x) + \left(\sum_{\omega \in \Omega} \nu(\omega)\right)^T x$$

$$s.t. \quad h_{1i}(x) \le 0, i = 1, \dots, m_1$$
and
$$g_2(\nu, \omega) = \inf f_2(y(\omega)\omega) - \nu x(\omega)$$

$$s.t. \quad h_{2i}(x(\omega), y(\omega), \omega) \le 0, i = 1, \dots, m_2$$

$$(1.7)$$

- With p^* the solution of the primal problem and d^* the solution of the dual problem, we have:
 - − Weak duality: $d^* \le p^*$
 - Strong duality: $d^* = p^*$
- The KKT conditions are necessary and sufficient for optimality in convex optimization, there aren't unique. They are:

- Primal constraint: $f_i(x)$ ≤ 0, i = 1, . . . , m, $h_i(x)$ = 0, j = 1, . . . , p
- Dual constraint: $\lambda \geq 0$
- Complementarity slackness: $\lambda_i f_i(x) = 0, i = 1, ..., m$
- Gradient of the Lagrangian: $\nabla_x L(x, \lambda, \nu) = 0$
- An extreme point of a polyhedron P is a point $x \in P$ such that it cannot be expressed as a linear combination of two distinct points in P, i.e. an extreme point is a vertex of the polyhedron.
- An extreme ray of a polyhedron P is $\sigma \in \mathbb{R}^n$ such that for all $x \in P$, for all $\lambda \in [0,1]$,

$$(x + \lambda \sigma) \in P \tag{1.8}$$

i.e. it is a direction in which we can travel infinitely without leaving the polyhedron.

1.1 Reminders on subgradients

 π is a subgradient of the function g at u if

$$g(w) \ge g(u) + \pi^T(w - u) \quad \forall w$$
 (1.9)

If $g = \max\{g_1, g_2\}$ with $g_{1,2}$ convex and differentiable, the subgradient of g at u_0 is

- $\pi = \nabla g_1(u_0)$ if $g_1(u_0) > g_2(u_0)$
- $\pi = \nabla g_2(u_0)$ if $g_2(u_0) > g_1(u_0)$
- The line segment $[\nabla g_1(u_0), \nabla g_2(u_0)]$ if $g_1(u_0) = g_2(u_0)$

The subdifferential of g at u is the set of all subgradients of g at u, denoted $\partial g(u)$. If g is convex, then its subdifferential is nonempty on its domain, and g is differentiable at u if its $\partial g(u) = \{\pi\}$.

1.1.1 Use in duality

Define c(u) as the optimal value of

$$c(u) = \min f_0(x)$$

$$f_i(x) \le u_i \qquad i = 1, \dots, m$$
(1.10)

where $x \in dom f_0$ and f_0 , f_i are convex functions.

- c(u) is convex;
- If strong duality holds, denote λ^* as the maximizer of the dual function

$$\inf_{x \in dom f_0} (f_0(x) - \lambda^T (f(x) - u)) \tag{1.11}$$

for $\lambda \leq 0$. Then, $\lambda^* \in \partial c(u)$. λ_i represents the sensitivity of c(u) to a marginal change in the right-hand side of the *i*-th constraint.

Modelling

2.1 Introduction

- For a certain sequence of events $x \to \omega \to y(\omega)$, where ω is the uncertainty,
 - A first-stage decision is a decision that is made before the uncertainty is revealed (i.e. in x);
 - A second-stage decision is a decision that is made after the uncertainty is revealed (i.e. in $y(\omega)$).
- We can have the following mathematical formulation:

$$\min c^{T}x + \mathbb{E}[q(\omega)^{T}y(\omega)]$$

$$Ax = b$$

$$T(\omega)x + W(\omega)y(\omega) = h(\omega)$$

$$x \ge 0, y(\omega) \ge 0$$
(2.1)

- First-stage decision variable: $x \in \mathbb{R}^{n_1}$
- First-stage parameter: $c \in \mathbb{R}^{n_1}$, $b \in \mathbb{R}^{m_1}$ and $A \in \mathbb{R}^{m_1 \times n_1}$
- Second-stage decision: $y(\omega) \in \mathbb{R}^{n_2}$
- Second-stage data: $q(\omega) \in \mathbb{R}^{n_2}$, $h(\omega) \in \mathbb{R}^{m_2}$ and $T(\omega) \in \mathbb{R}^{m_2 \times n_1}$, $W(\omega) \in \mathbb{R}^{m_2 \times n_2}$

2.2 Representations

2.2.1 Scenario Trees

A scenario tree is a graphical representation of a Markov process $\{\xi_t\}_{t\in\mathbb{Z}}$, where the nodes are the history of realizations $(\xi_{[t]}=(\xi_1,\ldots,\xi_t))$, and the edges are the transitions from $\xi_{[t]}$ to $\xi_{[t+1]}$.

- We denote the root as t = 1;
- An ancestor of a node $\xi_{[t]}$, $A(\xi_{[t]})$ is a unique adjacent node which precedes ξ_t ;
- The children of a node, $C(\xi_{[t]})$ are the nodes that are adjacent to $\xi_{[t]}$ and occur at stage t+1.

2.2.2 Lattice

A lattice is a graphical representation of a Markov process $\{\xi_t\}_{t\in\mathbb{Z}}$, where the nodes are the realizations ξ_t and the edges correspond to the transitions from ξ_t to ξ_{t+1} .

2.2.3 Serial Independence

A process satisfies serial independence if, for every stage t, ξ_t has a probability distribution that does not depend on the history of the process. Thus, the probability measure is

$$\mathbb{P}\left[\xi_t(\omega) = i \left| \xi_{[t-1]}(\omega) \right.\right] = p_t(i) \qquad \forall \, \xi_{[t-1]} \in \Xi_{[t-1]}, i \in \Xi_t$$
 (2.2)

2.3 Multi Stage Stochastic Linear Program

2.3.1 Notation

- Probability space: $(\Omega, 2^{\Omega}, \mathbb{P})$ with filtration $\{A\}_{t \in \{1, ..., H\}}$
- $c_t(\omega) \in \mathbb{R}^{n_t}$: cost coefficients
- $h_t(\omega) \in \mathbb{R}^{m_t}$: right-hand side parameters
- $W_t(\omega) \in \mathbb{R}^{m_t \times n_t}$: coefficients of $x_t(\omega)$
- $T_{t-1}(\omega) \in \mathbb{R}^{m_t \times n_{t-1}}$: coefficients of $x_{t-1}(\omega)$
- $x_t(\omega)$: set of state and action variables in period t

- We implicitly enforce non-anticipativity by requiring that x_t and ξ_t are adapted to filtration $\{A\}_{t \in \{1,...,H\}}$
- $\forall A \in \mathcal{A}_k \setminus \mathcal{A}_{k-1}$, $x_t(\omega_1) = x_t(\omega_2) \forall \omega_1, \omega_2 \in A$
- \rightarrow Note: The filtration A_t represents what is distinguishable at the time of observation; it reveals the incertainty at each time t.

$$\mathcal{A}_t = \mathcal{A}_{t-1} \cup \left\{ \bigcup_{E_i \in \Omega} \left\{ E_i, \Omega \setminus \{E_i\} \right\} \right\} \qquad E_i = \left\{ S_1, \dots, S_{i-1}, s_i, S_{i+1}, \dots, S_H \right\} \quad (2.3)$$
 where s_i is a realisation of the state set S_i .

2.3.2 General formulation of the MSLP

The extended formulation of the MSLP is:

$$\min c_1^T x_1 + \mathbb{E}[c_2(\omega)^T x_2(\omega) + \dots + c_H(\omega)^T x_H(\omega)]$$
s.t. $W_1 x_1 = h_1$

$$T_1(\omega) x_1 + W_2(\omega) x_2(\omega) = h_2(\omega), \omega \in \Omega$$

$$\vdots$$

$$T_{t-1}(\omega) x_{t-1}(\omega) + W_t(\omega) x_t(\omega) = h_t(\omega), \omega \in \Omega$$

$$\vdots$$

$$T_{H-1}(\omega) x_{H-1}(\omega) + W_H(\omega) x_H(\omega) = h_H(\omega), \omega \in \Omega$$

$$x_1 \ge 0, x_t(\omega) \ge 0, t = 2, \dots, H$$

$$(2.4)$$

We can now consider two specific instantiations of the MSLP: the scenario tree (MSLP-ST) and the lattice (MSLP-L). Using these notations:

- $\omega_t \in S_t$: index in the support Ξ_t of random input ξ_t
- $\omega_{[t]} \in S_1 \times \cdots \times S_t$ (interpretation: index in $\Xi_{[t]} = \Xi_1 \times \cdots \times \Xi_t$, which is the history of realizations, up to period t)

2.3.3 Scenario Tree formulation

$$\min c_{1}^{T}x_{1} + \mathbb{E}\left[c_{2}(\omega_{[2]})^{T}x_{2}(\omega_{[2]}) + \dots + c_{H}(\omega_{[H]})^{T}x_{H}(\omega_{[H]})\right]$$
s.t. $W_{1}x_{1} = h_{1}$

$$T_{1}(\omega_{[2]})x_{1} + W_{2}(\omega_{[2]})x_{2}(\omega_{[2]}) = h_{2}(\omega_{[2]}), \omega_{[2]} \in S_{1} \times S_{2}$$

$$\vdots$$

$$T_{t-1}(\omega_{[t]})x_{t-1}(\omega_{[t-1]}) + W_{t}(\omega_{[t]})x_{t}(\omega_{[t]}) = h_{t}(\omega_{[t]}), \omega_{[t]} \in S_{1} \times \dots \times S_{t}$$

$$\vdots$$

$$T_{H-1}(\omega_{[H]})x_{H-1}(\omega_{[H-1]}) + W_{H}(\omega_{[H]})x_{H}(\omega_{[H]}) = h_{H}(\omega_{[H]}), \omega_{[H]} \in S_{1} \times \dots \times S_{H}$$

$$x_{1} \geq 0, x_{t}(\omega_{[t]}) \geq 0, t = 2, \dots, H$$

$$(2.5)$$

2.3.4 Lattice formulation

$$\min c_1^T x_1 + \mathbb{E} \left[c_2(\omega_2)^T x_2(\omega_{[2]}) + \dots + c_H(\omega_H)^T x_H(\omega_{[H]}) \right]
s.t. \quad W_1 x_1 = h_1
T_1(\omega_2) x_1 + W_2(\omega_2) x_2(\omega_{[2]}) = h_2(\omega_2), \omega_{[2]} \in S_1 \times S_2
\vdots
T_{t-1}(\omega_t) x_{t-1}(\omega_{[t-1]}) + W_t(\omega_t) x_t(\omega_{[t]}) = h_t(\omega_t), \omega_{[t]} \in S_1 \times \dots \times S_t
\vdots
T_{H-1}(\omega_H) x_{H-1}(\omega_{[H-1]}) + W_H(\omega_H) x_H(\omega_{[H]}) = h_H(\omega_H), \omega_{[H]} \in S_1 \times \dots \times S_H
x_1 \ge 0, x_t(\omega_{[t]}) \ge 0, t = 2, \dots, H$$
(2.6)

ightarrow Note: There exists some relations to other decision making problems such as statistical decision theory, dynamic programming, online optimization and stochastic control.

Performance

3.1 Notations

Using (2.1), let's define the following:

- $z(x,\xi) = c^T x + Q(x,\xi) + \delta(x|K_1)$
- $Q(x,\xi) = \min_{y} \{q(\omega)^T y \mid W(\omega)y = h(\omega) T(\omega)x\}$
- $K_1 = \{x | Ax = b, x \ge 0\}$ is the set of feasible first-stage decisions
- $K_2(\omega) = \{x \mid \exists y \ge 0 : W(\omega)y = h(\omega) T(\omega)x\}$ is the set of first-stage decisions that have a feasible reaction in the second stage for $\omega \in \Omega$
- It is possible that $z(x,\xi) = +\infty$ (if $x \notin K_1 \cap K_2(\omega)$)
- It is possible that $z(x,\xi) = -\infty$ (unbounded below)

3.2 Expected value of perfect information

There are 2 tactics:

• **wait-and-see** value is the expected value of reacting with perfect foresight (we know everything that will happen) $x^*(\xi)$ to ξ :

$$WS = \mathbb{E}[\min_{x} z(x, \xi)] = \mathbb{E}[z(x^{*}(\xi), \xi)]$$
(3.1)

• **here-and-now** value is the expected value of the recourse problem (remove non-anticipativity constraint):

$$SP = \min_{x} \mathbb{E}[z(x,\xi)]$$
 (3.2)

The **expected value of perfect information** is like the value we give to getting a perfect forecast for the future and is thus defined like this:

$$EVPI = SP - WS (3.3)$$

ightarrow Note: for a maximum, the difference is reversed, and the inequalities that are coming are too.

3.3 The value of the stochastic solution

Here too there are 2 tactics:

• expected value problem

$$EV = \min_{x} z(x, \bar{\xi}) \qquad \bar{\xi} = \mathbb{E}[\xi]$$
 (3.4)

and its **expected value solution** is noted $x^*(\bar{\xi})$.

• expected value of using the EV solution measures the performance of $x^*(\bar{\xi})$:

$$EEV = \mathbb{E}[z(x^*(\bar{\xi}), \xi)] \tag{3.5}$$

The **value of the stochastic solution** is noted like this:

$$VSS = EEV - SP \tag{3.6}$$

3.4 Basic inequalities

3.4.1 Crystal Ball

For every ξ , we have $z(x^*(\xi), \xi) \leq z(x^*, \xi)$ where x^* is the optimal solution to the stochastic program. And if we take the expectation of this inequality, we have $WS \leq SP$, because WS is a relaxation. It explains that we can do better with a crystal ball.

3.4.2 Lazy solution

Knowing that x^* is the optimal solution of $\min_x \mathbb{E}[z(x,\xi)]$ and $x^*(\bar{\xi})$ is a solution but not necessarily optimal then we have $SP \leq EEV$, because:

$$\min_{x} \mathbb{E}[z(x,\xi)] = SP \le EEV = \mathbb{E}[z(x^*(\bar{\xi}),\xi)]$$
(3.7)

3.4.3 Link between all the values

We know that: $VSS \ge 0$

•
$$EVPI > 0$$

•
$$VSS < EEV - EV$$

• $EVPI \le EEV - EV$

• If EEV - EV = 0 then VSS = EVPI = 0

and the inequalities can be summarized in the following diagram:

3.5 Bounds on EVPI and VSS

First let's introduce the pairs subproblem of ξ^r and ξ^k :

$$\min z^{P}(x, \xi^{r}, \xi^{k}) = c^{T}x + p^{r}q^{T}y(\xi^{r}) + (1 - p^{r})q^{T}y(\xi^{k})$$

$$s.t. Ax = b$$

$$Wy(\xi^{r}) = \xi^{r} - Tx$$

$$Wy(\xi^{k}) = \xi^{k} - Tx$$

$$x, y \ge 0$$

$$(3.8)$$

- $(\bar{x}^k, \bar{y}^k, y(\xi^r))$ denotes an optimal solution to the problem and z^k is the optimal objective function value $z^P(\bar{x}^k, \bar{y}^k, y(\xi^k))$
- $z^P(x,\xi^r,\xi^r)$ corresponds to the deterministic optimization against the reference scenario
- if $\xi^r \notin \Xi$, $p^r = 0$ and $z^p(x, \xi^r, \xi^k) = z(x, \xi^k)$

The sum of pairs expected value (SPEV):

$$SPEV = \frac{1}{1 - p^r} \sum_{k=1}^{K} \sum_{k \neq r}^{K} p^k \min z^P(x, \xi^r, \xi^k)$$
 (3.9)

When $\xi^r \notin \Xi$ then SPEV = WS: When $p^r = 0, z^P(x, \xi^r, \xi^k)$ coincides with $z(x, \xi^k)$. Therefore $SPEV = \sum_{k=1}^K p^k \min_x z(x, \xi^k) = WS$. We then know $WS \leq SPEV \leq SP$.

3.5.1 Upper bound on SP: EVRS and EPEV

- The **expected value of the reference scenario** is $EVRS = \mathbb{E}_{\xi}(z(\bar{x}^r, \xi))$, where \bar{x}^r is the optimal solution to $z(x, \xi^r)$.
- The expectation of pairs of expected value is defined as

$$EPEV = \min_{k=1,\dots,K \cup \{r\}} \mathbb{E}_{\xi}(z(\bar{x}^k, \xi))$$

where $(\bar{x}^k, \bar{y}^k, y(\xi^K))$ is the optimal solution to the pairs subproblem of ξ^r and ξ^k .

As SP, EPEV, EVRS are the optimal values of $\min_x \mathbb{E}_{\xi} z(x, \xi)$ over smaller feasible sets:

$$SP < EPEV < EVRS$$
 (3.10)

Because

- *SP*: $x \in K_1 \cap K_2$
- *EPEV*: $x \in K_1 \cap K_2 \cap \{\bar{x}^k, k = 1, \dots, K \cup \{r\}\}$
- $EVRS: x \in \bar{x}^r \cap K_1 \cap K_2$

3.6 Estimations of WS and EEV

An estimation of WS and EEV can be done through a sample mean approximation: from samples $\xi_i = \xi(\omega_i)$ for i = 1, ..., K,

- 1. Compute $x^*(\bar{\xi})$;
- 2. Compute $WS_i = z(x^*(\xi_i), \xi_i)$ and $EEV_i = c^T x^*(\xi_i) + Q(x^*(\bar{\xi}), \xi_i)$;
- 3. Estimate $\overline{WS} = \frac{1}{K} \sum_{i=1}^{K} WS_i$ and $E\overline{EV} = \frac{1}{K} \sum_{i=1}^{K} EEV_i$.

3.6.1 Central Limit Theorem

Suppose $\{X_1, ..., X_K\}$ is a sequence of iid rv with $\mathbb{E}[X_i] = \mu$ and $Var[X_i] = \sigma^2 < \infty$. Then, as n approaches infinity, $\sqrt{n}(S_n - \mu)$ converge in distribution to a normal $\mathcal{N}(0, \sigma^2)$:

$$\sqrt{n}\left(\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)-\mu\right)\xrightarrow{d}\mathcal{N}(0,\sigma^{2})$$
(3.11)

The central limit theorem is useful to decrease the importance of rare but extreme events.

3.6.2 Importance sampling

Suppose we wish to estimate $\mathbb{E}[C(\omega)]$, where ω is distributed according to $f(\omega)$ and estimates $\mathbb{E}[C(\omega)]$ with $\sum_{i=1}^N \frac{1}{N}C(\omega_i)$. A sample average pulls samples ω_i according to the distribution function $f(\omega)$, while the importance sampling pulls the samples ω_i according to the distribution $g(\omega) = \frac{f(\omega)C(\omega)}{\mathbb{E}[C(\omega)]}$, where the $\mathbb{E}[C(\omega)]$ is an approximation of the real expectation. It then estimates $\mathbb{E}[C(\omega)]$ with $\sum_{i=1}^N \frac{1}{N} \frac{f(\omega_i)C(\omega_i)}{g(\omega_i)}$.

Benders Decomposition

4.1 Cutting plane methods

A cutting plane method is an optimisation method based on the idea of iteratively refining the objective function, or a set of feasible constraints of a problem through linear inequalities (see LINMA2450).

4.1.1 Nomenclature

- The benders decomposition is a specific method for obtaining the cutting planes when F(x) is the value function of a second-stage linear program.
- The L-shaped method is a specific instance of Benders decomposition when the second-stage linear program is decomposable into a set of scenarios.
- The multi-cut L-shaped method is an alternative to the L-shaped method which generates multiple cutting planes at step 1 of Kelley's method (see 4.1.2).

4.1.2 Kelley's Cutting Plane Algorithm

This algorithm is designed to solve convex but non-differentiable optimization problems of the form

$$z^* = \min c^T x + F(x)$$
s.t. $x \in X$ (4.1)

where $X \subseteq \mathbb{R}^n$ is convex and compact, $F : \mathbb{R}^n \to \mathbb{R}$ is convex and $c \in \mathbb{R}^n$ is a parameter vector.

Let us define the following for algorithm 1

- $L_k : \mathbb{R}^n \to \mathbb{R}$ a lower bound function of F(x) at iteration k;
- L_k a lower bound of z^* at iteration k;
- U_k an upper bound U_k of z^* at iteration k.

Algorithm 1 Kelley's Cutting plane algorithm

- 1: **Step 0:** Set k=0 and assume $x_1 \in X$ is given. Set $L_0(x)=-\infty$ for all $x \in X$, $U_0=c^Tx_1+F(x_1)$, and $L_0=-\infty$.
- 2: **Step 1:** Set k = k + 1. Find $a_k \in \mathbb{R}$ and $b_k \in \mathbb{R}^n$ such that

$$F(x_k) = a_k + b_k^T x_k$$
$$F(x) \ge a_k + b_k^T x \qquad x \in X$$

3: **Step 2:** Set

$$U_k = \min(U_{k-1}, c^T x_k + F(x_k))$$

and

$$L_k(x) = \max(L_{k-1}(x), a_k + b_k^T x)$$
 $x \in X$

4: Step 3: Compute

$$L_k = \min_{x \in X} L_k(x) + c^T x$$

and denote x_{k+1} as the optimal solution of this problem.

5: **Step 4:** If $U_k - L_k = 0$, stop. Otherwise, go to step 1.

4.2 Context and description

Consider the following optimization problem:

$$z^* = \min c^T x + q^T y$$

$$Ax = b$$

$$Tx + Wy = h$$

$$x, y \ge 0$$
(4.2)

with $x \in \mathbb{R}^{n_1}$, $y \in \mathbb{R}^{n_2}$, $c \in \mathbb{R}^{n_1}$, $q \in \mathbb{R}^{n_2}$, $A \in \mathbb{R}^{m_1 \times n_1}$, $b \in \mathbb{R}^{m_1}$, $T \in \mathbb{R}^{m_2 \times n_1}$, $W \in \mathbb{R}^{m_2 \times n_2}$, $h \in \mathbb{R}^{m_2 1}$.

We use Benders decomposition when the entire problem is difficult to solve, and if the constraint Tx + Wy = h is ignored, the problem becomes easy to solve, or if fixing x simplifies the computation of the solution.

4.2.1 Idea of Benders decomposition

Define the value function $V : \mathbb{R}^{n_1} \to \mathbb{R}$:

$$(S): V(x) = \min_{y} q^{T} y$$

$$Wy = h - Tx$$

$$y \ge 0$$

$$(4.3)$$

¹It is not necessarily a stochastic problem

Or equivalently,

$$\min c^{T}x + V(x)$$

$$Ax = b$$

$$x \in dom(V)$$

$$x \ge 0$$
(4.4)

where $dom(V) = \{x \in \mathbb{R}^{n_1} \mid \exists y \ge 0 : Wy = h - Tx\}.$ The dual of (4.3) is

$$\max_{\pi} \pi^{T} (h - Tx)$$

$$\pi^{T} W \le q^{T}$$
(4.5)

Let us call *E* the set of extreme points of $\pi^T W \leq q^T$ and *R* the set of extreme rays of $\pi^T W \leq q^T$ (see (1.8) for definitions).

We can see that V(x) is a piecewise linear convex function of x and, defining π_0 as the dual optimal multiplier of (4.3) given x_0 , then $\pi_0^T(h-Tx_0)$ is a supporting hyperplane of V(x) at x_0 , because it belongs to the subdifferential of V(x) at x_0 .

From this, we can also express the domain of V as follows:

$$dom(V) = \{ x \mid \sigma^{T}(h - Tx) \le 0, \ \sigma \in R \}$$
(4.6)

where $\sigma \in R$ is the set of extreme rays of $\pi^T W \leq q^T$.

→ Note: when a domain is unbounded in a direction that does not improve the objective value, it is not a problem to its resolution.

4.2.2 Reformulation

The objective of the reformulation is to find a general form for the algorithm. That way, each iteration simply adds constraints of the same form, involving the minimum number of changes to the problem.

$$\min c^{T}x + \theta$$

$$Ax = b$$

$$\sigma_{r}^{T}(h - Tx) \leq 0 \quad \sigma_{r} \in R$$

$$\theta \geq \pi_{e}^{T}(h - Tx) \quad \pi_{e} \in E$$

$$x \geq 0$$

$$(4.7)$$

where θ is a free variable.

The idea is to relax some inequalities that define V(x) and $dom\ V$:

$$(M): z_{k} = \min c^{T}x + \theta$$

$$Ax = b$$

$$\sigma_{r}^{T}(h - Tx) \leq 0 \quad \sigma_{r} \in R_{k} \subseteq R$$

$$\theta \geq \pi_{e}^{T}(h - Tx) \quad \pi_{e} \in E_{k} \subseteq E$$

$$x \geq 0$$

$$(S): V(\bar{x}) = \min_{x,y} q^{T}y$$

$$Wy = h - Tx$$

$$x = \bar{x}$$

$$y \geq 0$$

$$(4.9)$$

The solution of the main problem (M) above provides:

- A lower bound $z_k \leq z^*$;
- A candidate solution x_k ;
- An under-estimator of $V(x_k)$, $\theta_k \leq V(x_k)$.

The solution of the subproblem (S) with input x_k provides:

- An upper bound $c^T x_k + q^T y_{k+1} \ge z^*$;
- A new vertex π_{k+1} or a new extreme ray σ_{k+1} .

In addition to the two problems defined above, we have the dual of (S):

(D) :
$$\max_{\pi,\lambda} \lambda^T x + \pi^T h \quad \pi^T W \le q^T$$

 $\pi^T T + \lambda = 0$ (4.10)

With this, the formulation of the optimality cut becomes

$$\theta \ge \lambda^T (x - \bar{x}) + V(\bar{x}) \tag{4.11}$$

4.3 Benders Decomposition Algorithm

Algorithm 2 Benders Decomposition Algorithm

```
1: Step 0: Set k = 0, E_0 = R_0 = \emptyset;
 2: Step 1: Solve (M);
 3: if (M) is feasible then
        Store x_k;
 5: else
 6:
        break;
 7: end if
 8: Step 2: Solve (S) (or (D)) with x_k as input;
 9: if (S) is infeasible then
        Let R_{k+1} = R_k \cup \{\sigma_{k+1}\};
10:
        k \leftarrow k + 1;
11:
12: else
        Let E_{k+1} = E_k \cup \{\pi_{k+1}\};
13:
        if E_{k+1} = E_k then
14:
            terminate with (x_k, y_{k+1}) as optimal solution;
15:
16:
        else
17:
            Let k \leftarrow k + 1 and back to step 1.
        end if
18:
19: end if
```

 \rightarrow Note: The algorithm takes finite time, as *E* and *R* are finite.

The L-Shaped Method

For this resolution method, we start from the extensive form of the two-stage stochastic linear program:

$$\min c^{T}x + \mathbb{E}_{\omega}[q(\omega)^{T}y(\omega)]$$

$$Ax = b$$

$$T(\omega)x + W(\omega)y(\omega) = h(\omega)$$

$$x \ge 0, y \ge 0$$
(5.1)

5.1 Complete recourse

In order to define the concept of recourse, we need the following sets:

- $K_1 = \{x : Ax = b, x \ge 0\};$
- $K_2(\omega) = \{x : \exists y, T_{\omega}x + W_{\omega}y = h_{\omega}, y \ge 0\};$
- $K_2 = dom(V) \equiv \{x \mid V(x) < \infty\};$
- if Ω is discrete, $K_2 = \bigcap_{\omega \in \Omega} K_2(\omega)$.

Relative complete recourse is when obeying the first-stage constraints (Ax = b) ensures that some feasible second-stage decisions exist, i.e. $K_1 \subseteq K_2$.

Complete recourse is when a feasible second-stage decision exists, regardless of the first-stage decision and realization of uncertainty, i.e.

$$\exists y \ge 0 \text{ s.t. } Wy = t, \ \forall t \in \mathbb{R}^{m_2} \iff posW = \mathbb{R}^{m_2}$$
 (5.2)

5.2 Value function

Here, the second-stage value function and its dual are

$$(S_{\omega}): Q_{\omega}(x) = \min_{y} q_{\omega}^{T} y$$

$$W_{\omega} y = h_{\omega} - T_{\omega} x \qquad (5.3)$$

$$y \ge 0$$

$$(D_{\omega}): \max_{\pi} \pi^{T} (h_{\omega} - T_{\omega} x)$$

$$\pi^{T} W_{\omega} \le q_{\omega}^{T} \qquad (5.4)$$

and thus the expected value function is $V(x) = \sum_{\omega=1}^N p_\omega Q_\omega(x)$, from which we can de-

fine the following problem

$$(S) : \min_{y} \sum_{\omega=1}^{N} p_{\omega} q_{\omega}^{T} y_{\omega}$$

$$Wy = h - Tx$$

$$y \ge 0$$

$$(5.5)$$

where y and h are the vectors of the y_i, h_i , and T, W are the diagonal matrices of the T_{ω}, W_{ω} .

5.2.1 Properties

Given a x_0 , we denote $\pi_{\omega 0}$ the dual optimal multipliers.

- V(x) and $Q_{\omega}(x)$ are piecewise linear convex functions of x;
- $\pi_{\omega 0}^T(h_{\omega}-T_{\omega}x)$ is a supporting hyperplane of $Q_{\omega}(x)$ at x_0 ;
- $\sum_{\omega=1}^{N} p_{\omega} \pi_{\omega 0}^{T} (h_{\omega} T_{\omega} x)$ is a supporting hyperplane of V(x) at x_{0} .

We denote E the set of extreme points of $\{\pi : \pi^T W \leq q^T\}$ and R its set of extreme rays, while E_{ω} is the set of extreme points of $\{\pi : \pi^T W_{\omega} \leq q_{\omega}^T\}$ and R_{ω} its set of extreme rays.

5.2.2 Deterministic version

The original problem (5.1) can be written as a deterministic equivalent program:

$$(M): z_{k} = \min c_{x}^{T} + \theta$$

$$Ax = b$$

$$\sigma^{T}(p \cdot (h - Tx)) \leq 0, \sigma \in R_{k} \subseteq R$$

$$\theta \geq \pi^{T}(p \cdot (h - Tx)), \pi \in E_{k} \subseteq E$$

$$x \geq 0$$

$$(5.6)$$

where $p^T = (p_1 \mathbb{1}_{n_2}^T, \cdot, p_N \mathbb{1}_{n_2}^T)$ and \cdot is the componentwise product. The θ inequality can also be written in the following form:

$$\theta \ge \sum_{\omega=1}^{N} p_{\omega} \pi_{\omega}^{T} (h_{\omega} - T_{\omega} x)$$
 (5.7)

Our main problem to solve is now this deterministic version, where the σ inequalities are feasibility cuts, and the π inequalities are the optimality cuts.

The goal of these cuts are to provide bounds on the solution of problem (5.1).

5.3 Bounds

- The solution of the main problem (5.6) provides the following:
 - A lower bound z_k ≤ z^* ;
 - A candidate solution x_k ;
 - An under-estimator $\theta_k \leq V(x_k)$;
- The solution of all problems (S_{ω}) (5.3) with the input x_k provides the following:
 - An upper bound $c^T x_k + \sum_{\omega=1}^N p_\omega q_\omega^T y_{\omega,k+1} \ge z^*$;
 - A new vertex $\pi_{k+1} = (\pi_{1,k+1}^T, \dots, \pi_{N,k+1}^T)$ or a new extreme ray $\sigma_{k+1} = (0,\dots,\sigma_{\omega}^T,\dots,0)$.

5.4 Final Algorithm

Algorithm 3 The L-Shaped Algorithm

```
1: Step 0: Set k = 0, V_0 = R_0 = \emptyset;
 2: Step 1: Solve (M);
 3: if (M) is feasible then
         Store x_k;
 5: else
         exit: infeasible;
 6:
 7: end if
 8: Step 2: For \omega = 1, ..., N, solve (S_{\omega}) with x_k as input
 9: if (S_{\omega}) is infeasible then
         R_{k+1} := R_k \cup \{\sigma_{k+1}\}, where \sigma_{k+1} is an extreme ray of (S_\omega);
10:
         k := k + 1;
11:
         Go back to Step 1.
12:
13: else
14:
         Store \pi_{\omega,k+1};
15: end if
16: Step 3: E_{k+1} = E_k \cup \{(\pi_{1,k+1}, \dots, \pi_{N,k+1})\};
17: if E_k = E_{k+1} then
         Terminate with (x_k, y_{k+1}) as the optimal solution;
19: else
         k := k + 1 and return to Step 1.
20:
21: end if
```

5.5 Example

Let us do an example to better understand this algorithm. The initial problem is

$$z = \min \mathbb{E}_{\xi}(y_1 + y_2)$$
s.t. $0 \le x \le 10$

$$y_1 - y_2 = \xi - x$$

$$y_1, y_2 \ge 0$$
(5.8)

where we define

$$\xi = \begin{cases} 1 & p_1 = 1/3 \\ 2 & p_2 = 1/3 \\ 4 & p_3 = 1/3 \end{cases}$$
 (5.9)

The ω problems are

$$(S_{\omega}) : \min y_{1} + y_{2} = |\xi - x| \qquad (D_{\omega}) : \max_{\pi} \pi(\xi - x) y_{1} - y_{2} = \xi - x \qquad (5.10) y_{1}, y_{2} \ge 0$$

$$(5.11)$$

The equality in the min can be added thanks to the definition of (D_{ω}) .

5.5.1 Iteration 1

We start the algorithm with $x_1 = 0$. We first have to solve (S_{ω}) (or (D_{ω})), to get the value of π . We decide to solve (D_{ω}) because it is easier and gives us immediately the value of π .

- $\xi = 1 : \pi^{(1)} = 1;$
- $\xi = 2 : \pi^{(2)} = 1$;
- $\xi = 4 : \pi^{(3)} = 1;$

And now we can find the cut using (5.7), where $h_{\omega} - T_{\omega}x = \xi - x$ in this example. This gives as a first cut

$$\theta \ge \frac{1}{3} \cdot 1 \cdot (1 - x) + \frac{1}{3} \cdot 1 \cdot (2 - x) + \frac{1}{3} \cdot 1 \cdot (4 - x) = \frac{7}{3} - x \tag{5.12}$$

To find the next value of x, the one we will use to start iteration 2, we try to minimize V(x) under the constraints that $0 \le x \le 10$ and $V(x) \ge \frac{7}{3} - x$, i.e. the cut. This gives us the new iterate: $x_2 = 10$.

5.5.2 Iteration 2

We work in the same manner as we did in iteration 1, but this time using $x_2 = 10$. Solving once again (D_{ω}) , we have

- $\xi = 1$: $\pi^{(1)} = -1$;
- $\xi = 2$: $\pi^{(2)} = -1$;
- $\xi = 4$: $\pi^{(3)} = -1$

As $h_{\omega} - T_{\omega}x = \xi - x$ still, the cut is now $\theta \ge x - \frac{7}{3}$.

To find x_3 , we minimize V(x) under the previous constraints, adding that $V(x) \ge x - \frac{7}{3}$. We find $x_3 = \frac{7}{3}$.

5.5.3 Iterations 3-4

The two next iterations work in the same manner, and we find the two following cuts:

$$\theta \ge \frac{x+1}{3} \Longrightarrow x_4 = 1.5$$

$$\theta \ge \frac{5-x}{3} \Longrightarrow x_5 = 2$$
(5.13)

5.5.4 Iteration 5

At this iteration, we have $x_5 = 2$. As this value is optimal, no more iteration is needed. How to show optimality? Figure 5.1 illustrates the whole example.

Figure 5.1: L-Shaped Algorithm at each iteration

The Multicut L-Shaped Method

The idea of the multicut L-Shaped method is to do cuts as in the L-Shaped method, but on the $Q_{\omega}(x)$ instead of on the function V(x) directly, and describe V(x) from that. As for the L-Shaped method, let us start from the extensive form of the 2-Stage stochastic linear program:

$$\min_{C} x + \mathbb{E}_{\omega}[\min_{C} q(\omega)^{T} y(\omega)]$$

$$Ax = b$$

$$T(\omega)x + W(\omega)y(\omega) = h(\omega)$$

$$x \ge 0, y \ge 0$$
(6.1)

We know that

$$V(x) = \left\{ \sum_{\omega} p_{\omega} \min q_{\omega}^{T} y_{\omega} | W_{\omega} y_{\omega} = h_{\omega} - T_{\omega} x, y_{\omega} \ge 0 \right\}$$
 (6.2)

$$Q_{\omega}(x) = \left\{ \min q_{\omega}^{T} y | W_{\omega} y = h_{\omega} - T_{\omega} x, y \ge 0 \right\}$$
(6.3)

are piecewise linear functions of x, and the main problem corresponding to each function is the following:

$$z_{k} = \min c^{T}x + \theta$$

$$Ax = b$$

$$\sigma^{T}(h - Tx) \leq 0 \quad \sigma \in R_{k} \subseteq R$$

$$\pi^{T}(h - Tx) \leq \theta \quad \pi \in E_{k} \subseteq E$$

$$w \geq 0$$

$$\min c^{T}x + \sum_{\omega} p_{\omega}\theta_{\omega}$$

$$Ax = b$$

$$\sigma^{T}(h_{\omega} - T_{\omega}x) \leq 0 \quad \sigma \in R_{\omega,k} \subseteq R_{\omega}$$

$$\pi^{T}(h_{\omega} - T_{\omega}x) \leq \theta_{\omega} \quad \pi \in E_{\omega,k} \subseteq E_{\omega}$$

$$x \geq 0$$

$$(6.5)$$

6.1 Optimality cuts

Let us consider a trial first-stage decision x^v , and π_{ω} the simplex multipliers of the second-stage problem (6.3) (what does that mean?).

Then, $\sum_{\omega} p_{\omega} \pi_{\omega}^{T} (h_{\omega} - T_{\omega} x)$ supports V(x) at x^{v} , and $\pi_{\omega}^{T} (h_{\omega} - T_{\omega} x)$ supports $Q_{\omega}(x)$ at x^{v} .

→ Note: The cuts of the multicut method are tigher than the L-Shaped method.

(b) Optimality cut for Multicut L-Shaped Method

6.2 Algorithm

Here is the algorithm for the Multicut L-Shaped method, where the differences with the basic method are highlighted in green.

Algorithm 4 The Multicut L-Shaped Algorithm

```
1: Step 0: Set k = 0, E_{\omega,0} = R_{\omega,0} = \emptyset;
 2: Step 1: Solve (M);
 3: if (M) is feasible then
         Store x_k;
 5: else
         exit: infeasible;
 6:
 7: end if
 8: Step 2: For \omega = 1, ..., N, solve (S_{\omega}) with x_k as input
 9: if (S_{\omega}) is infeasible then
         R_{\omega,k+1} := R_{\omega,k} \cup \{\sigma_{\omega,k+1}\}, where \sigma_{\omega,k+1} is an extreme ray of (S_{\omega});
10:
         k := k + 1;
11:
         Go back to Step 1.
12:
13: else
14:
         Store \pi_{\omega,k+1};
15: end if
16: Step 3: For \omega = 1, ..., N, let E_{\omega,k+1} = E_{\omega,k} \cup \{\pi_{\omega,k+1}\};
17: if E_{\omega,k} = E_{\omega,k+1} for all \omega, then
         Terminate with (x_k, y_{k+1}) as the optimal solution;
18:
19: else
         k := k + 1 and return to Step 1.
20:
21: end if
```

The algorithm is essentially the same as 3, with the difference that we solve a distinct problem for all ω instead of a global one.

6.3 Example

Let us use the same problem as in last section (5.5).

$$z = \min \mathbb{E}_{\xi}(y_1 + y_2)$$
s.t. $0 \le x \le 10$

$$y_1 - y_2 = \xi - x$$

$$y_1, y_2 \ge 0$$
(6.6)

where we define

$$\xi = \begin{cases} 1 & p_1 = 1/3 \\ 2 & p_2 = 1/3 \\ 4 & p_3 = 1/3 \end{cases}$$
 (6.7)

The main problem is

$$(M): \min \sum_{\omega} \frac{1}{3} \theta_{\omega}$$

$$\theta_{\omega} \ge -10^{6}$$

$$0 < x < 10$$

$$(6.8)$$

And the subproblem and its dual are

$$(S_{\omega}) : \min y_{1} + y_{2} = |\xi_{\omega} - x| \qquad (D_{\omega}) : \max_{\pi_{\omega}} \pi_{\omega}(\xi_{\omega} - x) y_{1} - y_{2} = \xi_{\omega} - x \qquad (6.9) y_{1}, y_{2} \ge 0$$

$$(6.10)$$

 \rightarrow Note: the bound $\theta_{\omega} \geq -10^6$ is needed for the first iteration but is not really a restriction.

6.3.1 Iteration 1

At the first iteration, we solve problem (M) for x. The solution is $x_1 = 0$, and this value is used to solve problem (6.10). The solution for π is 1 for each ξ_{ω} and so we add the cuts

$$\theta_{\omega} \ge \xi_{\omega} - x \Longrightarrow \begin{cases} \theta_1 \ge 1 - x \\ \theta_2 \ge 2 - x \\ \theta_3 \ge 4 - x \end{cases}$$
 (6.11)

We add this to the main problem (M) for the next iteration.

6.3.2 Iteration 2

We now have a problem with 5 constraints. The new problem is

$$\min \sum_{\omega} \frac{1}{3} \theta_{\omega}$$

$$\theta_{\omega} \ge -10^{6}$$

$$0 \le x \le 10$$

$$\theta_{\omega} \ge \xi_{\omega} - x \quad \forall \omega = 1, 2, 3$$

$$(6.12)$$

We solve for x and find $x_2 = 10$. We can solve problem (D_{ω}) with this value as input, and the solution is $\pi_{\omega} = -1$ for each value of ω . Once again, we add those constraints to the main problem:

$$\theta_{\omega} \ge x - \xi_{\omega} \Longrightarrow \begin{cases} \theta_1 \ge x - 1 \\ \theta_2 \ge x - 2 \\ \theta_3 \ge x - 3 \end{cases}$$
 (6.13)

6.3.3 Iteration 3

We can now formulate the problem for this next iteration:

$$\min \sum_{\omega} \frac{1}{3} \theta_{\omega}$$

$$\theta_{\omega} \ge -10^{6}$$

$$0 \le x \le 10$$

$$\theta_{\omega} \ge \xi_{\omega} - x$$

$$\theta_{\omega} > x - \xi_{\omega}$$

$$(6.14)$$

Solving for x, $x_3 = 2$. Solving now (D_{ω}) , the constraints to be added are the following:

$$\begin{cases} \pi_1 = -1 \Rightarrow \theta_1 \ge x - 1 \\ \pi_2 = [-1, 1] \Rightarrow \theta_2 \ge x - 2 \\ \pi_3 = 1 \Rightarrow \theta_3 \ge 4 - x \end{cases}$$

$$(6.15)$$

Note that the constraint for θ_2 is arbitrary as π_2 can take any value. However, as we already have the constraints $\theta_2 \ge x - 2$ and $\theta_2 \ge 2 - x$, any value of $\pi_2 \in [-1,1]$ is a linear combination of the two. As we have only added constraints that already existed, we already know that x_4 will have the same value as x_3 , and so we have converged to the optimal solution. The other method to check convergence is to have a lower bound and upper bound with the same value.

6.4 Pros and Cons

The Multicut L-Shaped method has a more detailed description of the value function V(x) thanks to the separation in several terms $Q_{\omega}(x)$, but the main problem is bigger as we add N constraints at each iteration instead of 1. Typically, fewer iterations are required in the Multicut, but each iteration takes more time.

Nested Decomposition

7.1 Backward Solution of Multistage Stochastic Linear Programs

Let us remember the terminology of scenario trees in 2.3. We have already mentionned that we can use dynamic programming to solve the problem in scenario tree formulation. The method consists in computing recursively the values of Q_{ω} and V_{ω} :

$$Q_{t}(x_{t-1}, \xi_{t}) = \min_{x_{t}} c_{t}(\omega_{[t]})^{T} x_{t} + V_{t+1}(x_{t}, \omega_{[t]})$$

$$T_{t-1}(\omega_{[t]}) x_{t-1} + W_{t}(\omega_{[t]}) x_{t} = h_{t}(\omega_{[t]})$$

$$x_{t} \geq 0$$

$$V_{t}(x_{t-1}, \omega_{[t-1]}) = \mathbb{E}_{\xi_{t}}[Q_{t}(x_{t-1}, \xi_{t}) | \omega_{[t-1]}]$$

$$(7.1)$$

We formulate the problems starting from t = H and go back to t = 1, where we can solve with no previous step. From this, we go back increasing t to solve each step. The initial step t = 1 is

$$\min c_1^T x_1$$

$$W_1 x_1 = h_1$$

$$x_1 \ge 0$$

$$(7.2)$$

As usual, $V_{t+1,\omega_{[t]}}$ and $Q_{t+1}(x_t,\xi_{t+1})$ are piecewise linear and convex, and their domain are polyhedral.

7.2 Nested L-Shaped Decomposition Subproblem

We have already seen how to solve a two-stage stochastic program (L-shaped or multicut). For more than 2 stages, we need to decompose the problem.

ightarrow Note: we will use indices. The first index denotes time and the second denotes the scenario.

7.2.1 NLDS

The idea is to decompose into smaller and deterministic linear programs as shown on 7.1.

Figure 7.1: Idea of Nested Decomposition

The building blocks are the Nested L-Shaped Decomposition Subproblems (NLDS(t,k)), the problems at stage t and scenario k. Solving each blocks gives information to the previous and also the next blocks: the algorithm is recursive in both direction.

Figure 7.2: Building block - NLDS(t, k)

where A(t,k) is the ancestor of outcome k in period t, and D(t,k) are the descendants of outcome k at period t.

For each stage t = 1, ..., H - 1 and each scenario $k = 1, ..., |\Xi_{[t]}|$, the problem is

$$NLDS(t,k) : \min_{x,\theta} (c_{t,k})^T x + \theta$$

$$(\pi) \quad W_{t,k} x = h_{t,k} - T_{t-1,k} x_{t-1,A(t,k)}$$

$$(\rho_j) \quad E_{t,k,j} x + \theta \ge e_{t,k,j} \quad j = 1, \dots, r_{t,k} \quad \text{Optimality cut}$$

$$(\sigma_j) \quad D_{t,k,j} x \ge d_{t,k,j} \quad j = 1, \dots, s_{t,k} \quad \text{Feasibility cut}$$

$$x \ge 0$$

$$(7.3)$$

where $\Xi_{[t]}$ is the support of $\xi_{[t]}$, A(t,k) is the ancestor of the realization k at stage t, and $x_{t-1,A(t,k)}$ is the current solution from A(t,k).

7.2.2 Boundary conditions

To be able to finish the recursivity at t = 1 and t = H, we need boundary conditions.

- For t = 1, $h_{t,k} T_{t-1,k}x_{t-1,A(t,k)}$ is replaced by a value b;
- For t = H, θ and the feasibility and optimality constraints are removed.

7.2.3 Dual of NLDS

The dual problem of NLDS(t, k) is

$$\max_{\pi,\rho,\sigma} \pi^{T} (h_{t,k} - T_{t-1,k} x_{t-1,A(t,k)}) + \sum_{j=1}^{s_{t,k}} \sigma_{j}^{T} d_{t,k,j} + \sum_{j=1}^{r_{t,k}} \rho_{j}^{T} e_{t,k}$$

$$\pi^{T} W_{t,k} + \sum_{j=1}^{s_{t,k}} \sigma_{j}^{T} D_{t,k,j} + \sum_{j=1}^{r_{t,k}} \rho_{j}^{T} E_{t,k,j} \leq c_{t,k}^{T}$$

$$\sum_{j=1}^{r_{t,k}} \mathbb{1}^{T} \rho_{j} = 1$$

$$\rho, \sigma \geq 0$$
(7.4)

7.3 Cuts

7.3.1 Feasibility cuts

If NLDS(t,k) is infeasible, the solver returns a set $(\pi, \sigma_1, \dots, \sigma_{s_{t,k}})$ with $\sigma_i \geq 0$ such that

- the blue term in (7.4) is strictly positive;
- the violet term in (7.4) is nonpositive.

This gives the following feasibility cut for NLDS(t - 1, a(k))

$$D_{t-1,A(t,k)}x \le d_{t-1,A(t,k)} \quad \text{where} \quad \begin{cases} D_{t-1,A(t,k)} = \pi^T T_{t-1,k} \\ d_{t-1,A(t,k)} = \pi^T h_{t,k} + \sum_{j=1}^{s_{t,k}} \sigma_j^T d_{t,k,j} \end{cases}$$
(7.5)

7.3.2 Optimality cuts

After solving NLDS(t, k) for all $k \in D_{t-1,j}$, we can compute the cut with the following parameters:

$$E_{t-1,j} = \sum_{k} p_{t}(k|j) \cdot \pi_{t,k}^{T} T_{t-1,k}$$

$$e_{t-1,j} = \sum_{k} \left[p_{t}(k|j) \cdot \left(\pi_{t,k}^{T} h_{t,k} + \sum_{i=1}^{r_{t,k}} \rho_{t,k,i} e_{t,k,i} + \sum_{i=1}^{s_{t,k}} \sigma_{t,k,i}^{T} d_{t,k,i} \right) \right]$$
(7.6)

From which we find an optimality cut for NLDS(t - 1, j):

$$E_{t-1,j}x + \theta \ge e_{t-1,j} \tag{7.7}$$

To what does the set $D_{t-1,i}$ correspond?

 \rightarrow Note: If all sets $\Xi_{[t]}$ are finite and all x have finite upper bounds, then the nested L-shaped method converges to an optimal solution in a finite number of iterations.

7.3.3 Direction of movement

Whenever we solve one NLDS(t, k), some data is generated:

- If the problem is feasible:
 - The trial decision $x_{t,k}$ that can be sent forward;
 - An optimality cut that can be sent backwards;
- If infeasible, a feasibility cut that can be sent backwards.

There exist several ways to move in the algorithm. Here are three of them:

- Fast-forward-fast-back: move in the current direction as far as possible;
- Fast-forward: move forward whenever it is possible;
- Fast-back: move backwards whenever it is possible.

7.4 Example

The problem we want to solve here is the following:

$$\min 10x_1 + \mathbb{E}[15x_2 + 20x_3]
x_1 + x_2 \ge \xi_2
x_2 + x_3 \ge \xi_3
x_i \ge 0$$
(7.8)

where

$$\xi_2 = \begin{cases} 40 \text{ w. p. } 1/2\\ 60 \text{ w. p. } 1/2 \end{cases} \qquad \xi_3 = \begin{cases} 20 \text{ w. p. } 1/2\\ 30 \text{ w. p. } 1/2 \end{cases} \tag{7.9}$$

The sets defining the problems are the following

$$\Omega_{1} = \{I\}
\Omega_{2} = \{40, 60\}
\Omega_{3} = \{20, 30\}
\Omega = \times_{i=1}^{3} \Omega_{i}$$

$$(7.10)$$

$$S_{1} = \{1\}
S_{2} = \{1, 2\}
S_{3} = \{1, 2\}
S_{3} = \{1, 2\}
S_{1} = \{(1, 1), (1, 2)\}
S_{2} = \{(1, 1), (1, 1), (1, 1, 2), ...\}
S_{2} = \{1, 2\}
S_{3} = \{1, 2\}
S_{2} = \{1, 2\}
S_{3} = \{1, 2\}
S_{2} = \{1, 2\}
S_{3} = \{1, 2\}
S_{4}$$

$$S_{1} = \{1\}
S_{2} = \{(1, 1), (1, 2)\}
S_{2} = \{(1, 1), (1, 2), ...\}
S_{2} = \{1, 2\}
S_{3} = \{1, 2\}
S_{4}$$

$$S_{1} = \{1\}
S_{2} = \{1, 2\}
S_{3} = \{1, 2\}
S_{4} = \{1\}
S_{5} = \{1, 2\}
S_{$$

Here is the tree we use to find the solution.

7.4.1 First pass

We decide to use the FFFB method.

1. Solving NLDS(1,1), we get $x_1 = 0$, which we put in each subproblem NLDS(2, ·). The probability to go in each scenario is 1/2.

Continue the explanation when the example is clear. Take notes of someone else.

7.4.2 Algorithm on paper

- 1. Solve the subproblem of stage 1;
- 2. For each stage (t,k), solve the subproblem with the solution of (t-1,a(k)) as inputs;
- 3. Solve the dual of the last stage to find the cut;
- 4. The cut is $\theta \ge e_{t-1,j} E_{t-1,j}x$ for each subproblem j, where ¹

$$E_{t-1,j} = \sum_{k} p_{t}(k|j) \pi_{t,k}^{T} T_{t-1,k}$$

$$e_{t-1,j} = \sum_{k} \left[p_{t}(k|j) \left(\pi_{t,k}^{T} h_{t,k} + \sum_{i} \rho_{i}^{T} e_{t,k} + \sum_{i} \sigma_{i}^{T} p_{t,k,i} \right) \right]$$
(7.13)

¹I don't know what the term in parentheses means in $e_{t-1,j}$ means but it is just $h_{t,k}$ in the first pass.

- 5. Put the cut found in (t,k) in the previous level (t-1,a(k)) and solve the dual of (t-1,a(k)) with all of its new constraints to find a cut for its own ancestor problem;
- 6. Repeat until t = 1;
- 7. Go back to step 1.

Stochastic Dual Dynamic Programming

8.1 Motivation

The nested decomposition requires a huge number of iterations: $\sum_{t=1}^{H-1} \prod_{j=1}^t |S_j|$ for the forward pass and $\sum_{t=2}^H \prod_{j=1}^t |S_j|$ for the backward pass. It is not feasible on practice as it will almost always overload the memory. The stochastic dual dynamic programming (SDDP) solves this issue by,

- in the forward pass, simulating instead of enumerating, i.e. it takes some instead of all sample paths. This gives a probabilistic upper bound.
- in the backward pass, sharing the cuts among the nodes of the same time period.

And this method can be done on a lattice, while the sharing cannot be done on the tree due to the structure (see 8.1).

- (a) Scenario tree without cut sharing.
- (b) Cut sharing in a lattice.

Figure 8.1: The dashed boxes represent the storage of a different value function.

 \rightarrow Note: in case of serial independence (cf. 2.2.3), the values π_i can simply be returned to the parent node of the same scenario as the problem is identical from t onwards, independently of the node k in stage t.

8.2 SDDP

The basic idea is to follow those 2 steps:

- 1. Sampling: generate K samples of random process $\{\xi_{1,i}, \ldots, \xi_{H,i}\}$ for $i = 1, \ldots, K$;
- 2. Optimization: Solve NLDS in order to generate the trial decision variables $\hat{x}_{t,i}$:

min
$$c_{t,k}^{T}x + \theta$$

 $T_{t-1,k}\hat{x}_{t-1,i} + W_{t,k}x = h_{t,k}$
 $E_{t,k}x + \theta \cdot 1 \ge e_{t,k}$
 $x \ge 0$ (8.1)

At each forward pass, we solve H-1 NLDS problems, and so for K samples of $\xi_{[H]}$, we solve $1+K\cdot(H-2)$ linear programs.

For the backward pass, for a given trial sequence $x_{[H]}$, we solve $\sum_{t=2}^{H} |\Xi_t|$ linear programs, and so for K trial sequences, we solve $K\sum_{t=2}^{H} |\Xi_t|$ linear programs.

8.2.1 Algorithm

Algorithm 5 SDDP

```
1: Forward pass:
 2: Solve NLDS(1) and let x_1 be the optimal solution. Initialize \hat{x}_{1,i} = x_1 for all i = x_1
     1, \ldots, K.
 3: for t = 2, ..., H; i = 1, ..., K do
         Sample an outcome \xi_{t,i} from the set \Xi_t;
         Solve NLDS(t, i) with trial decision \hat{x}_{t-1,i};
 5:
         Store the optimal solution as \hat{x}_{t,i}.
 6:
 7: end for
 8: Backward pass:
 9: for t = H, ..., 2 do
         for i = 1, ..., K do
10:
              for k = 1, \ldots, |\Xi_t| do
11:
                  Solve NLDS(t, k) using the trial decision \hat{x}_{t-1,i}
12:
              end for
13:
14:
              for j = 1, ..., |\Xi_{t-1}| do
                  Compute
15:
                               E_{t-1,j,i} = \sum_{k=1}^{|\Xi_t|} p_t(k|j) \cdot \pi_{t,k,i}^T T_{t-1,k}
                                                                                                             (8.2)
                                e_{t-1,i,j} = \sum_{k=1}^{|\Xi_t|} p_t(k|j) \cdot \left( \pi_{t,k,i}^T h_{t,k} + \rho_{t,k,i} e_{t,k} \right)
              end for
16:
              Add this optimality cut to every NLDS(t-1,j) for j=1,\ldots,|\Xi_{t-1}|:
17:
                                             E_{t-1,i,i}x + \theta \geq e_{t-1,i,i}
                                                                                                             (8.3)
         end for
18:
19: end for
20: There's an index problem somewhere i think.
```

 \rightarrow Note: the variables $(\pi_{t,k,i}, \rho_{t,k,i})$ are the dual multipliers generated by the trial i.

We can increase the number *K* of forward samples to get a faster learning of the value function, but this requires to solve more LPs at each forward-backward pass, and the number of NLDS grows faster too.

8.2.2 Stop condition

A good way to determine when to terminate SDDP is through the condition [lower bound] \approx [upper bound].

• The lower bound is found through the objective function value of NLDS(1) since that problem finds an underestimate of $V_2(x)$ on a superset of the domain of $V_2(x)$;

• The upper bound is probabilistic and found with the algorithm.

Upper bound

Suppose that we draw a sample i of $\xi_{[H]}$ and perform a forward pass. This gives a vector $\hat{x}_{t,i}$, t = 1, ..., H, and we can compute the cost $z_i = \sum_{t=1}^{H} c_{t,i} \hat{x}_{t,i}$. Repeating this K times, we get a distribution of i.i.d. costs z_i .

By the Central Limit Theorem, $\bar{z} = \frac{1}{K} \sum_{i=1}^{K} z_i$ converges to a Gaussian with standard deviation estimated by

$$\sigma = \sqrt{\frac{1}{K^2} \sum_{k=1}^{K} (\bar{z} - z_i)^2}$$
 (8.4)

Note that each sequence $\hat{x}_{[H]}$ is feasible, but not necessarily optimal, and so \bar{z} is an estimate of an upper bound.

We usually consider that we can terminate if $\underline{z} \in (\overline{z} - 2\sigma, \overline{z} + 2\sigma)$, which is the 95.4% confidence interval of \overline{z} .

Choosing K

To ensure an optimality gap of 1% with a 95.4% confidence, we need to choose K such that $2\sigma \approx 0.01\bar{z}$. As the mean and variance do not asymptotically depend on K, we can set

$$s = \sqrt{\frac{1}{K} \sum_{i=1}^{K} (s_i - \bar{z})^2} \Rightarrow \sigma = \frac{1}{\sqrt{K}} s$$
 (8.5)

to approximate *K*:

$$K \approx \left(\frac{2s}{0.01\bar{z}}\right)^2 \tag{8.6}$$

Here is the full SDDP algorithm, using the passes from algorithm 5.

Algorithm 6 Full SDDP Algorithm

- 1: Initialization: $\bar{z} = \infty$, $\sigma = 0$;
- 2: **Step 1:** Forward pass, where we store z^{LB} and \bar{z} ;
- 3: **if** $z^{\bar{L}B} \in (\bar{z} 2\sigma, \bar{z} + 2\sigma)$ **then**
- 4: Terminate;
- 5: end if
- 6: **Step 2:** Backward pass;
- 7: **Step 3:** Go back to forward pass.
- \rightarrow Note: we approximate σ with s. This means that we must let the algorithm run for several iterations before checking for termination, as the first approximations are bad.

8.3 Example

Let us use the same example as in chapter 7.4 and take K = 1 for simplicity.

$$\min 10x_1 + \mathbb{E}[15x_2 + 20x_3]
x_1 + x_2 \ge \xi_2
x_2 + x_3 \ge \xi_3
x_i \ge 0$$
(8.7)

where

$$\xi_2 = \begin{cases} 40 \text{ w. p. } 1/2\\ 60 \text{ w. p. } 1/2 \end{cases} \qquad \xi_3 = \begin{cases} 20 \text{ w. p. } 1/2\\ 30 \text{ w. p. } 1/2 \end{cases}$$
(8.8)

The lattice is displayed in figure 8.2.

Figure 8.2: Lattice for our application of SDDP.

8.3.1 Iteration 1 - blue

The initial composition of the lattice does not contain what is in color in the graph. To choose which problem to solve, we roll a dice that says (2,2). This gives the cut $\theta \ge 0$. Now, we compute and solve the dual of (2,2):

$$\max \pi (60 - x_1) \\
0 < \pi < 15$$
(8.9)

This gives the following cut

$$\theta \ge \frac{\pi}{2} [(\xi_{2,1} - x_1) + (\xi_{2,2} - x_1)] \Longrightarrow \theta \ge \frac{15}{2} (100 - 2x_1) \tag{8.10}$$

Now that we have a cut, we add it to the problem (1,1). We have the solution $x_1 = 0$ by solving it, which we can add in stage 2.

Solving (2,2) for x_2 , we find $x_2 = 60$ and add it in stage 3. Solving any of the two dual problems, we only find $\pi = 0$, which gives the cut $\theta \ge 0$. This is not useful and is therefore not added to the problem. We can start the next iteration.

8.3.2 Iteration 2 - magenta

Again using a dice, we start from (2,1). Solving the problem gives us $x_2 = 0$. This is to be added to both problems $(3, \cdot)$. Solving this stage gives $\pi = 20$, and so the cut we find is

$$\theta \ge \frac{\pi}{2} [(\xi_{3,1} - x_2) + (\xi_{3,2} - x_2)] \Rightarrow \theta \ge 20(25 - x_2)$$
(8.11)

Rest is not clear, to be continued...

Lagrange Relaxation

9.1 Introduction

Lagrangian relaxation is usually used to make problems easier when they have complicated constraints. For example, we have an initial problem:

$$p^* = \max f_0(x)$$

$$f(x) \le 0 \qquad [u]$$

$$h(x) = 0 \qquad [v]$$

$$(9.1)$$

The dual function is

$$g(u,v) = \sup_{x \in \mathcal{D}} [f_0(x) - u^T f(x) - v^T h(x)]$$
 (9.2)

If $u \ge 0$, for all $\hat{x} \in \mathcal{D}$, then weak duality holds and $g(u, v) \ge f_0(\hat{x})$, and if the problem is convex, then strong duality holds and

$$\min_{u \ge 0, v} g(u, v) = f_0(x^*) \tag{9.3}$$

 \rightarrow Note: we do not have the constraint $v \ge 0$ as the constraint on h(x) is an equality.

9.1.1 Properties

The idea of dual decomposition is that the dual function g(u,v) is convex regardless of the primal problem, and the computation of g(u,v) and $\pi \in \partial g(u,v)$ is easy. Additionally, we can show that if $u \geq 0$, then, $g(u,v) \geq p^*$. This means that minimizing g(u,v) gives the tightest possible bound to p^* .

• g(u, v) is convex lower-semicontinuous, meaning that if (u, v) is such that (9.2) has optimal solution $x_{u,v}$, then $\begin{bmatrix} -f(x_{u,v}) \\ -h(x_{u,v}) \end{bmatrix}$ is a subgradient of g.

9.2 Subgradient method

The subgradient method is as seen in previous courses. It minimizes a non-differentiable convex function *g* with iterations such that

$$u_{k+1} = u_k - \alpha_k \pi_k \tag{9.4}$$

where we can also take the projection in the case of a constraint problem with convex domain.

- u_k is the k-th iterate;
- π_k is any subgradient of g at u_k ;
- $\alpha_k > 0$ is the *k*-th step size;
- \rightarrow Note: to converge, we need a step such that

$$\sum_{k=1}^{\infty} \alpha_k^2 < \infty \qquad \sum_{k=1}^{\infty} a_k = \infty \tag{9.5}$$

$$\lim_{k \to \infty} \alpha_k = 0 \tag{9.6}$$

9.3 Cutting Plane method

Define $\hat{g}(u) \leq g(u)$ such that

$$\hat{g}(u) = \min \theta$$
 s.t. $\theta \ge g(u_k) + \pi_k^T (u - u_k)$ $k = 1, \dots, K$ (9.7)

Given information $(g(u_k), \pi_k)$, for k = 1, ..., K, the algorithm is

- 1. Solve min $\hat{g}(u)$, and denote u_{K+1} as the optimal solution;
- 2. Add u_{K+1} and $\pi_{K+1} \in \partial g(u_{K+1})$ to bundle;
- 3. Return step 1.

Applying this algorithm, we observe that

- θ_k is increasing;
- $g(u_k)$ is not necessarily increasing;
- We need a confidence region to initialize *u*;
- This method is generally unstable because $\Delta u_k = u_k u_{k-1}$ can be very big.

9.4 Bundle Methods

As the function \hat{g} may be highly inaccurate ($\hat{g} \leq g$), minimizing \hat{g} may result in u_{k+1} being very far from \hat{u} , the stability center. The idea is to add a stabilizing term $||u - \hat{u}||^2$ to the objective function to counter that problem.

$$\min_{(u,\theta) \in \mathbb{R}^{m+1}} \theta + \frac{1}{2t} \|u - \hat{u}\|^2
\theta \ge g(u_k) + \pi_k^T (u - u_k) \qquad k = 1, \dots, K$$
(9.8)

To do the update, we consider the following condition:

$$g(u_{K+1}) \le g(u_K) - \kappa \delta \tag{9.9}$$

where κ is a fixed tolerance. If the condition is met, then the descent step sets $\hat{u} := u_{K+1}$, and if not, then we do not change \hat{u} and update the budnle with $(g(u_{K+1}), \pi_{K+1})$.

Level Method 9.5

Let us consider a level L_k . Then, the level set of \hat{g} is $\{u \in \mathbb{R}^m : \hat{g}(u) \leq L_k\}$. The idea of the level method is to project the iterate u_k on the level set. The advantage of level sets is that it is more stable than the minimizer, and projections are computationnally cheap.

Defining

$$g_k^{best} = \min_{i=1,\dots,K} g(u_i)$$

$$\theta_k^{best} = \max_{i=1,\dots,k} \theta_i^*$$
(9.10)

we consider the following level set of \hat{g} , with parameter λ :

$$L_k = \lambda g_k^{best} + (1 - \lambda)\theta_k^{best}$$
(9.11)

If $\lambda = 0$, the algorithm makes no progress, and if $\lambda = 1$, the algorithm reduces to a cutting plane method.

Algorithm 7 Level method

- 1: k := 0;
- 2: **while** $g_{k+1}^{best} \theta_{k+1}^{best} > \epsilon$ **do**3: Compute u_{k+1} by solving

$$\min \|u - u_k\|^2 \quad \text{s.t.} \quad g(u_i) + \pi_i^T (u - u_i) \ge L_k \quad i = 1, \dots, k \quad (9.12)$$

- Add $(g(u_{k+1}), \pi_{k+1})$ to bundle, where $\pi_{k+1} \in \partial g(u_{k+1})$; Update $\theta_{k+1}^{best}, g_{k+1}^{best}$; $k \leftarrow k+1$; 4:
- 5:
- 7: end while

If we denote L the Lipschitz constant of g, R the diameter of its domain, and c a constant that only depends on λ , then the number of iterations is bounded by

$$M(\epsilon) \le c \left(\frac{LD}{\epsilon}\right) \tag{9.13}$$

Alternating Direction Method of Multipliers 9.6

The problem form we want to solve here is

$$\min f(x) + \phi(z) \qquad \text{s.t.} \qquad Ax + Bz = c \tag{9.14}$$

for two sets of variables (x, z) with separable objective. The augmented Lagrangian is

$$L_{\rho}(x,z,\nu) = f(x) + \phi(z) + \nu^{T}(Ax + Bz - c) + \frac{\rho}{2} ||Ax + Bz - c||^{2}$$
 (9.15)

The iterates are

- $x_{k+1} = \arg\min_{x} L_{\rho}(x, z_k, \nu_k);$
- $z_{k+1} = \operatorname{arg\,min}_z L_{\rho}(x_{k+1}, z, \nu_k);$
- $v_{k+1} = v_k + \rho(Ax_{k+1} + Bz_{k+1} c)$.

Remember that the optimality conditions for a differentiable function are

- Primal feasibility: Ax + bz c = 0;
- Dual feasibility: $\nabla f(x) + A^T \nu = 0$ $\nabla g(z) + B^T \nu = 0$;

The second dual condition is verifies in ADMM because z_{k+1} minimizes $L_{\rho}(x_{k+1}, z, \nu_k)$. ADMM converges if f, g are convex, closed, and proper, and L_0 has a saddle point.

Dantzig-Wolfe Decomposition

As seen on figure 10.1, the L-Shaped method ignores the constraints of the future stages. The idea of Dantzig-Wolfe is to ignore variables rather than constraints by using the dual problem.

Figure 10.1: Comparison of the constraints

10.1 Problem formulation

With two sets of variables x_1 and x_2 , our problem is

$$z^* = \min c_1^T x_1 + c_2^T x_2$$
s.t. $Ax_1 + Bx_2 = b$

$$B_1 x_1 = d_1$$

$$B_2 x_2 = d_2$$

$$x_1, x_2 \ge 0$$
(10.1)

We consider $A_1x_1 + A_2x_2 = b$ to be the complicating constraint due to coupling.

10.1.1 Minkowski's Representation theorem

A convex polyhedron can be characterized by equalities or by its extreme points and rays:

$$\mathcal{P} = \{ x \ge 0 : Bx = d \} \tag{10.2}$$

$$\mathcal{P} = \{ x | \ x = \sum_{j \in J} x_j \lambda_j + \sum_{r \in R} w_r \mu_r, \ \sum_{j \in J} \lambda_j = 1, \ \mu_r, \lambda_j \ge 0 \}$$
 (10.3)

where x_i are the extreme points and w_r are the extreme rays.

10.1.2 Changing the problem with Minkowski

Minkowski's theorem helps us rewrite the whole problem: using

$$x_1 = \sum_{i \in I_1} \lambda_1^j x_1^j + \sum_{r \in R_1} \mu_1^r w_1^r \tag{10.4}$$

and the same for x_2 , we get

$$z = \min \sum_{j \in J_{1}} \lambda_{1}^{j} c_{1}^{T} x_{1}^{j} + \sum_{r \in R_{1}} \mu_{1}^{r} c_{1}^{T} w_{1}^{r} + \sum_{j \in J_{2}} \lambda_{2}^{j} c_{2}^{T} x_{2}^{j} + \sum_{r \in R_{2}} \mu_{2}^{r} c_{2}^{T} w_{2}^{r}$$

$$\sum_{j \in J_{1}} \lambda_{1}^{j} A_{1} x_{1}^{j} + \sum_{r \in R_{1}} \mu_{1}^{r} A_{1} w_{1}^{r} + \sum_{j \in J_{2}} \lambda_{2}^{j} A_{2} x_{2}^{j} + \sum_{r \in R_{2}} \mu_{2}^{r} A_{2} w_{2}^{r} = b \qquad [\pi]$$

$$\sum_{j \in J_{1}} \lambda_{1}^{j} = 1 \qquad [t_{1}] \qquad (10.5)$$

$$\sum_{j \in J_{2}} \lambda_{2}^{j} = 1 \qquad [t_{2}]$$

$$\lambda_{1}^{j}, \lambda_{2}^{j}, \mu_{1}^{r}, \mu_{2}^{r} \ge 0$$

This gives more variables ($|J_1| + |J_2| + |R_1| + |R_2| > n_1 + n_2$), but much less constraints ($m + 2 > m + m_1 + m_2$), where m is the dimension of b, and m_i is the dimension of d_i . The variables here are the weights of the extreme points and rays. In matrix form, the constraints are

$$\sum_{j \in J_1} \lambda_1^j \begin{bmatrix} A_1 x_1^j \\ 1 \\ 0 \end{bmatrix} + \sum_{j \in J_2} \lambda_2^j \begin{bmatrix} A_2 x_2^j \\ 0 \\ 1 \end{bmatrix} + \sum_{r \in R_1} \mu_1^r \begin{bmatrix} A_1 w_1^r \\ 0 \\ 0 \end{bmatrix} + \sum_{r \in R_2} \mu_2^r \begin{bmatrix} A_2 w_2^r \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} b \\ 1 \\ 1 \end{bmatrix} \quad (10.6)$$

The Dantzig-Wolfe decomposition consists in solving with subsets of variables and add some little by little.

10.1.3 Reduced cost

The certificate of optimality tells us that, given a basic feasible solution, all variables have non-negative reduced costs. Given a basis B^1 , recall that it is optimal when

• Feasibility:
$$x_B^* = B^{-1}b \ge 0$$
;

¹Set of variables that are non zero.

• Optimality: $c^T - \pi^T A \ge 0$;

From this, the reduced cost for a basic linear program in standard form is $c^T - c_B^T B^{-1} A$. From this, the reduced costs of our variables are

$$(c_1^T - \pi^T A_1) x_1^j - t_1 \qquad \text{for } \lambda_1^j$$

$$(c_1^T - \pi^T A_1) x_1^j \qquad \text{for } \mu_1^j$$
(10.7)

and same for x_2^j and μ_2^j . As there is an enormous number of variables, we can solve the following problem instead of looking at all reduced costs:

$$z_1 = \min(c_1^T - \pi^T A_1) x_1$$
 s.t. $B_1 x_1 = d_1$ and $x_1 \ge 0$
 $z_2 = \min(c_2^T - \pi^T A_2) x_2$ s.t. $B_2 x_2 = d_2$ and $x_2 \ge 0$ (10.8)

For each subproblem, given their solution, we have 3 possibilities:

- 1. The optimal cost is $-\infty$:
 - Simplex output: extreme ray w_1^r with $(c_1^T \pi^T A_1)w_1^r < 0$;
 - Conclusion: the reduced cost of μ_1^r is negative;
 - Action: We include μ_1^r in the main problem with the column

$$\begin{bmatrix} A_1 w_1^r \\ 0 \\ 0 \end{bmatrix} \tag{10.9}$$

- 2. The optimal cost is finite and less than t_1 :
 - Simplex output: extreme point x_1^j with $(c_1^T \pi^T A_1)x_1^j < t_1$;
 - Conclusion: the reduced cost of λ_1^j is negative;
 - Action: include λ_1^j in the main problem with the column

$$\begin{bmatrix} A_1 x_1^j \\ 0 \\ 0 \end{bmatrix} \tag{10.10}$$

- 3. The optimal cost is finite and bigger than t_1 :
 - Conclusion: $(c_1^T \pi^T A_1) x_1^j \ge t_1$ for all extreme points x_1^j and $(c_1^T \pi^T A_1) w_1^r \ge 0$ for all extreme rays w_1^r ;
 - Action: terminate, we have an optimal basis;

Algorithm 8 Dantzig-Wolfe Decomposition Algorithm

- 1: **Step 1:** Solve the restricted main problem with the initial basic feasible solution, and store (π, t_1, t_2) ;
- 2: **Step 2:** Solve the subproblems 1 and 2;
- 3: **if** $(c_1^T \pi^T A_1)x \ge t_1$ and $(c_2^T \pi^T A_2)x \ge t_2$ **then** Terminate with the optimal solution:

$$x_{1} = \sum_{j \in \tilde{J}_{1}} \lambda_{1}^{j} x_{1}^{j} + \sum_{r \in \tilde{R}_{1}} \mu_{1}^{r} w_{1}^{r}$$

$$x_{2} = \sum_{j \in \tilde{J}_{2}} \lambda_{2}^{j} x_{2}^{j} + \sum_{r \in \tilde{R}_{2}} \mu_{2}^{r} w_{2}^{r}$$
(10.11)

- 4: end if
- 5: **if** Subproblem *i* is unbounded **then** add μ_i^r to the main problem;
- 6: end if
- 7: **if** Subproblem *i* has a bounded optimal cost less than t_i **then** add λ_i^j to the main problem;
- 8: end if
- 9: **Step 3:** Generate the column associated with the entering variable and go back to **Step 1**.

10.2 Generalisation

The method can be generalised to *K* subproblems:

$$\min c_1^T x_1 + c_2^T x_2 + \dots + c_K^T x_K$$
s.t. $A_1 x_1 + A_2 x_2 + \dots + A_K x_K = b$

$$B_i x_i = d_i \qquad i = 1, \dots, K$$

$$x_1, \dots, x_K \ge 0$$
(10.12)

10.2.1 Bounds

We denote the following:

- z_i the optimal objective function value of subproblem i;
- z^* the optimal objective function value of the main problem;
- z the optimal objective function value of the restricted main problem;
- t_i the dual optimal multiplier of the constraint λ_i^j in the restricted main problem;

At each iteration, we have the following bounds:

$$z + \sum_{i=1}^{K} (z_i - t_i) \le z^* \le z \tag{10.13}$$

10.3 Dantzig-Wolfe in 2-Stage Stochastic Programming

For the Dantzig-Wolfe decomposition in stochastic programming, we use the dual problem:

$$\max \rho^T b + \sum_{k=1}^K \pi_k^T h_k$$
s.t.
$$\rho^T A + \sum_{k=1}^K \pi_k T_k = c^T$$

$$\pi_k^T W \le p_k q_k^T$$
(10.14)

where the primal is equation 5.1. Let us consider the feasible region of

$$\begin{bmatrix} \pi_1^T & \dots & \pi_K^T \end{bmatrix} \begin{bmatrix} W & \dots & 0 \\ 0 & \dots & 0 \\ 0 & \dots & W \end{bmatrix} \le \begin{bmatrix} q_1^T & \dots & q_K^T \end{bmatrix}$$
 (10.15)

We denote π^j as the extreme points of the region and w_r as the extreme rays. We define the following quantities:

$$E_{j} = (\pi^{j})^{T} \begin{bmatrix} p_{1}T_{1} \\ \vdots \\ p_{K}T_{K} \end{bmatrix} \qquad e_{j} = (\pi^{j})^{T} \begin{bmatrix} p_{1}h_{1} \\ \vdots \\ p_{K}h_{K} \end{bmatrix}$$

$$D_{r} = (w^{r})^{T} \begin{bmatrix} p_{1}T_{1} \\ \vdots \\ p_{K}T_{K} \end{bmatrix} \qquad d_{r} = (w^{r})^{T} \begin{bmatrix} p_{1}h_{1} \\ \vdots \\ p_{K}h_{K} \end{bmatrix}$$

$$(10.16)$$

10.3.1 Full Main Problem

$$z^* = \max \rho^T b + \sum_{j \in J} \lambda^j e_j + \sum_{r \in R} \mu^r d_r$$
s.t.
$$\rho^T A + \sum_{j \in J} \lambda^j E_j + \sum_{r \in R} \mu^r D_r \le c^T$$

$$\sum_{j \in J} \lambda^j = 1$$

$$\lambda^j, \mu^r > 0$$

$$(10.17)$$

Whose dual is the L-Shaped full main problem.

10.3.2 Second-Stage Subproblems

The second-stage subproblems are

$$z_k = \max_k \pi_k^T (h_k - T_k x)$$
s.t. $\pi_k^T W \le q_k$ (10.18)

10.3.3 A more specific algorithm

Algorithm 9 Dantzig-Wolfe for second-stage stochastic programs

```
    Step 0: |Ĩ| = |Ř| = ν = 0;
    Step 1: ν ← ν + 1 and solve problem (10.17);
    Step 2:
    for k = 1,..., K do solve subproblem (10.18);
    if an extreme ray w<sup>r</sup> is found then set d<sub>|Ř|+1</sub> = (w<sup>ν</sup>)h<sub>k</sub> and D<sub>|Ř|+1</sub> = (w<sup>ν</sup>)T<sub>k</sub>; |Ř| ← |Ř| + 1 and return to Step 1;
    end if
    end for
    if all subproblems are solvable then let
```

$$E_{|\tilde{J}|+1} = \sum_{k=1}^{K} p_k(\pi_k^{\nu})^T T_k \qquad e_{|\tilde{J}|+1} = \sum_{k=1}^{K} p_k(\pi_k^{\nu})^T h_k$$
 (10.19)

```
9: if e_{|\tilde{J}|+1} - E_{|\tilde{J}|+1} x^{\nu} - \theta \le 0 then
10: Stop with (\rho^{\nu}, \lambda^{\nu}, \mu^{\nu}) and (x^{\nu}, \theta^{\nu}) optimal;
11: else
12: Set |\tilde{J}| \leftarrow |\tilde{J}| + 1 and go back to Step 1.
13: end if
14: end if
```

10.3.4 And more specific bounds

$$z \le z^* \le c^T x + \sum_{k=1}^K p_k z_k \tag{10.20}$$

10.4 Dantzig-Wolfe in Integer Programming

10.4.1 Formulation

$$(IP): \min\{c^{T}x : x \in X\}$$

$$X = Y \cap Z$$

$$Y = \{Dx \ge d\}$$

$$Z = \{Bx > b\} \cap \mathbb{Z}^{n}$$

$$(10.21)$$

The idea in this case is to apply Dantzig-Wolfe to (IP) using Minkowski Representation Theorem to represent the convex hull of Z.

10.4.2 Reformulation

If we assume that Z is bounded, we can reformulate the problem as follows:

$$(DWc): z^{DWc} = \min_{\lambda \ge 0} \sum_{j \in J} (c^T x^j) \lambda^j$$

$$\sum_{j \in J} (Dx^j) \lambda^j \ge d$$

$$\sum_{j \in J} \lambda^j = 1$$

$$x = \sum_{j \in J} x^j \lambda^j \in \mathbb{Z}^n$$

$$(10.22)$$

where x^j is the set of extreme points of the convex hull of Z. The linear relaxation of (DWc) is called the Main Linear Program (MLP), and its restricted version (RMLP) restricts the number of extreme points to a subset $\tilde{I} \subseteq I$.

10.4.3 Algorithm

Algorithm 10 Column Generation Algorithm for (MLP)

- 1: **Step 0:** Bounds $UB = +\infty$, $LB = -\infty$ and t = 0;
- 2: while $UB \neq LB$ do
- 3: Solve (RMLP) for x^j , $j \in \tilde{J}^t$, record the primal solution λ^t and the dual solution (π^t, σ^t) ;
- 4: Solve the pricing problem

$$(SP^t): z^t = \min(c^T - (\pi^t)^T D)x$$

$$x \in Z$$
(10.23)

- 5: Let x^t be an optimal solution.
- 6: **if** $z^t \sigma^t = 0$ **then** set $UB = z^{RMLP}$ and stop with optimal solution to (MLP);
- 7: **else**
- 8: Add x^t to \tilde{I}^t in (RMLP);
- 9: end if
- 10: Compute the lower bound $LB = \max\{LB, (\pi^t)^T d + z^t\};$
- 11: $t \leftarrow t + 1$;
- 12: end while

10.5 Relationship to Lagrangian Relaxation

The MLP from equation (10.22) can be derived using a Lagrangian relaxation. Let us relax the constraint $Dx \ge d$ while keeping the remaining constraints $Z = \{x \in \mathbb{Z}_+^n : Bx \ge b\}$, we get

• The dual function:

$$g(\pi) = \min_{x} c^{T} x + \pi^{T} (Dx - d) \qquad \text{s.t. } xBx \ge b, x \in \mathbb{Z}_{+}^{n}$$
 (10.24)

• The dual bound:

$$z_{LD} = \max_{\pi \ge 0} g(\pi) = \max_{\pi \ge 0} \min_{x \in Z} c^{T} x + \pi^{T} (Dx - d)$$
 (10.25)

Equivalently, the dual bound can be written as

$$z_{LD} = \max_{\pi \ge 0} \min_{j \in J} \{ c^T x^j + \pi^T (D x^j - d) \}$$

=
$$\max_{\pi \ge 0, \sigma} \pi^T d + \sigma \qquad \text{s.t. } \sigma \le c^T x_j - \pi^T D x^j \qquad j \in J$$
 (10.26)

And the dual problem of this bound is

$$z_{LD} = \min_{\lambda^{j} \ge 0, j \in J} \sum_{j \in J} (c^{T} x^{j}) \lambda^{j}$$
s.t.
$$\sum_{j \in J} (D x^{j}) \lambda^{j} \ge d$$

$$\sum_{j \in J} \lambda^{j} = 1$$

$$(10.27)$$

which is exactly the MLP from equation (10.22). Therefore, solving both is equivalent and gives the same bound.