6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts

Asu Ozdaglar MIT

February 9, 2010

1

Outline

- Review
- Examples of Pure Strategy Nash Equilibria
- Mixed Strategies and Mixed Strategy Nash Equilibria
- Characterizing Mixed Strategy Nash Equilibria
- Rationalizability
- Reading:
 - Fudenberg and Tirole, Chapters 1 and 2.

Pure Strategy Nash Equilibrium

Definition

(Nash equilibrium) A (pure strategy) Nash Equilibrium of a strategic game $\langle \mathcal{I}, (S_i)_{i \in \mathcal{I}}, (u_i)_{i \in \mathcal{I}} \rangle$ is a strategy profile $s^* \in S$ such that for all $i \in \mathcal{I}$

$$u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*)$$
 for all $s_i \in S_i$.

- Why is this a "reasonable" notion?
- No player can profitably deviate given the strategies of the other players. Thus in Nash equilibrium, "best response correspondences intersect".
- Put differently, the conjectures of the players are *consistent*: each player i chooses s_i^* expecting all other players to choose s_{-i}^* , and each player's conjecture is verified in a Nash equilibrium.

Example: Second Price Auction

- Second Price Auction (with Complete Information) The second price auction game is specified as follows:
- An object to be assigned to a player in $\{1, ..., n\}$.
- Each player has her own valuation of the object. Player i's valuation of the object is denoted v_i . We further assume that $v_1 > v_2 > ... > 0$.
- Note that for now, we assume that everybody knows all the valuations v_1, \ldots, v_n , i.e., this is a complete information game. We will analyze the incomplete information version of this game in later lectures.
 - The assignment process is described as follows:
 - The players simultaneously submit bids, $b_1, ..., b_n$.
 - The object is given to the player with the highest bid (or to a random player among the ones bidding the highest value).
 - The winner pays the second highest bid.
 - The utility function for each of the players is as follows: the winner receives her valuation of the object minus the price she pays, i.e., $v_i - b_i$; everyone else receives 0.

Proposition

In the second price auction, truthful bidding, i.e., $b_i = v_i$ for all i, is a Nash equilibrium.

Proof: We want to show that the strategy profile $(b_1, ..., b_n) = (v_1, ..., v_n)$ is a Nash Equilibrium—a **truthful equilibrium**.

- First note that if indeed everyone plays according to that strategy, then player 1 receives the object and pays a price v_2 .
- This means that her payoff will be $v_1 v_2 > 0$, and all other payoffs will be 0. Now, player 1 has no incentive to deviate, since her utility can only decrease.
- Likewise, for all other players $v_i \neq v_1$, it is the case that in order for v_i to change her payoff from 0 she needs to bid more than v_1 , in which case her payoff will be $v_i v_1 < 0$.
- Thus no incentive to deviate from for any player.

5

- Are There Other Nash Equilibria? In fact, there are also unreasonable Nash equilibria in second price auctions.
- We show that the strategy $(v_1, 0, 0, ..., 0)$ is also a Nash Equilibrium.
- As before, player 1 will receive the object, and will have a payoff of $v_1 0 = v_1$. Using the same argument as before we conclude that none of the players have an incentive to deviate, and the strategy is thus a Nash Equilibrium.
- It can be verified the strategy $(v_2, v_1, 0, 0, ..., 0)$ is also a Nash Equilibrium.
- Why?

- Nevertheless, the truthful equilibrium, where , $b_i = v_i$, is the **Weakly Dominant Nash Equilibrium**
- In particular, truthful bidding, $b_i = v_i$, weakly dominates all other strategies.
- Consider the following picture proof where B^* represents the maximum of all bids excluding player i's bid, i.e.

$$B^* = \max_{j \neq i} b_j,$$

and v^* is player i's valuation and the vertical axis is utility.

7

- The first graph shows the payoff for bidding one's valuation. In the second graph, which represents the case when a player bids lower than their valuation, notice that whenever $b_i \leq B^* \leq v^*$, player i receives utility 0 because she loses the auction to whoever bid B^* .
- If she would have bid her valuation, she would have positive utility in this region (as depicted in the first graph).
- Similar analysis is made for the case when a player bids more than their valuation.
- An immediate implication of this analysis is that other equilibria involve the play of weakly dominated strategies.

Nonexistence of Pure Strategy Nash Equilibria

Example: Matching Pennies.

$$\begin{array}{cccc} \mathsf{Player} \ 1 & \mathsf{Player} \ 2 & \mathsf{heads} & \mathsf{tails} \\ & \mathsf{heads} & (-1,1) & (1,-1) \\ & \mathsf{tails} & (1,-1) & (-1,1) \end{array}$$

- No pure Nash equilibrium.
- How would you play this game?

Nonexistence of Pure Strategy Nash Equilibria

• Example: The Penalty Kick Game.

penalty taker
$$\setminus$$
 goalie left right left $(-1,1)$ $(1,-1)$ right $(1,-1)$ $(-1,1)$

- No pure Nash equilibrium.
- How would you play this game if you were the penalty taker?
 - Suppose you always show up left.
 - Would this be a "good strategy"?
- Empirical and experimental evidence suggests that most penalty takers "randomize" → mixed strategies.

Mixed Strategies

- Let Σ_i denote the set of probability measures over the pure strategy (action) set S_i .
 - For example, if there are two actions, S_i can be thought of simply as a number between 0 and 1, designating the probability that the first action will be played.
- We use $\sigma_i \in \Sigma_i$ to denote the mixed strategy of player i, and $\sigma \in \Sigma = \prod_{i \in \mathcal{I}} \Sigma_i$ to denote a mixed strategy profile.
- Note that this implicitly assumes that players randomize independently.
- We similarly define $\sigma_{-i} \in \Sigma_{-i} = \prod_{i \neq i} \Sigma_i$.
- Following von Neumann-Morgenstern expected utility theory, we extend the payoff functions u_i from S to Σ by

$$u_i(\sigma) = \int_{\mathcal{S}} u_i(s) d\sigma(s).$$

Mixed Strategy Nash Equilibrium

Definition (Mixed Nash Equilibrium)

A mixed strategy profile σ^* is a (mixed strategy) Nash Equilibrium if for each player i,

$$u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(\sigma_i, \sigma_{-i}^*)$$
 for all $\sigma_i \in \Sigma_i$.

 It is sufficient to check only pure strategy "deviations" when determining whether a given profile is a (mixed) Nash equilibrium.

Proposition

A mixed strategy profile σ^* is a (mixed strategy) Nash Equilibrium if and only if for each player i,

$$u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(s_i, \sigma_{-i}^*)$$
 for all $s_i \in S_i$.

Mixed Strategy Nash Equilibria (continued)

 We next present a useful result for characterizing mixed Nash equilibrium.

Proposition

Let $G = \langle \mathcal{I}, (S_i)_{i \in \mathcal{I}}, (u_i)_{i \in \mathcal{I}} \rangle$ be a finite strategic form game. Then, $\sigma^* \in \Sigma$ is a Nash equilibrium if and only if for each player $i \in \mathcal{I}$, every pure strategy in the support of σ_i^* is a best response to σ_{-i}^* .

Proof idea: If a mixed strategy profile is putting positive probability on a strategy that is not a best response, then shifting that probability to other strategies would improve expected utility.

Mixed Strategy Nash Equilibria (continued)

- It follows that every action in the support of any player's equilibrium mixed strategy yields the same payoff. • Note: this characterization result extends to **infinite games**: $\sigma^* \in \Sigma$
- is a Nash equilibrium if and only if for each player $i \in \mathcal{I}$,
 - (i) no action in S_i yields, given σ_{-i}^* , a payoff that exceeds his equilibrium payoff,
 - (ii) the set of actions that yields, given σ_{-i}^* , a payoff less than his equilibrium payoff has σ_i^* -measure zero.

Examples

Example: Matching Pennies.

$$\begin{array}{cccc} \mathsf{Player} \ 1 & \mathsf{Player} \ 2 & \mathsf{heads} & \mathsf{tails} \\ & \mathsf{heads} & (-1,1) & (1,-1) \\ & \mathsf{tails} & (1,-1) & (-1,1) \end{array}$$

 Unique mixed strategy equilibrium where both players randomize with probability 1/2 on heads.

Example: Battle of the Sexes Game.

 This game has two pure Nash equilibria and a mixed Nash equilibrium $\left(\left(\frac{2}{3},\frac{1}{3}\right),\left(\frac{1}{3},\frac{2}{3}\right)\right).$

Strict Dominance by a Mixed Strategy

- Player 1 has no pure strategies that strictly dominate M.
- However, M is strictly dominated by the mixed strategy $(\frac{1}{2}, 0, \frac{1}{2})$.

Definition (Strict Domination by Mixed Strategies)

An action s_i is **strictly dominated** if there exists a mixed strategy $\sigma'_i \in \Sigma_i$ such that $u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i})$, for all $s_{-i} \in S_{-i}$.

Remarks:

- Strictly dominated strategies are never used with positive probability in a mixed strategy Nash Equilibrium.
- However, as we have seen in the Second Price Auction, weakly dominated strategies can be used in a Nash Equilibrium.

Iterative Elimination of Strictly Dominated Strategies— Revisited

- Let $S_i^0 = S_i$ and $\Sigma_i^0 = \Sigma_i$.
- For each player $i \in \mathcal{I}$ and for each $n \geq 1$, we define S_i^n as

$$S_i^n = \{s_i \in S_i^{n-1} \mid \nexists \qquad \sigma_i \in \Sigma_i^{n-1} \text{ such that}$$

 $u_i(\sigma_i, s_{-i}) > u_i(s_i, s_{-i}) \text{ for all } s_{-i} \in S_{-i}^{n-1}\}.$

- Independently mix over S_i^n to get Σ_i^n .
- Let $D_i^{\infty} = \bigcap_{n=1}^{\infty} S_i^n$.
- We refer to the set D_i^{∞} as the set of strategies of player i that survive iterated strict dominance.

Rationalizability

- In the Nash equilibrium concept, each player's action is optimal conditional on the **belief** that the other players also play their Nash equilibrium strategies.
 - The Nash Equilibrium strategy is optimal for a player given his belief about the other players strategies, and this belief is correct.
- We next consider a different solution concept in which a player's belief about the other players' actions is not assumed to be correct, but rather, simply constrained by rationality.

Definition

A belief of player i about the other players' actions is a probability measure $\sigma_{-i} \in \prod_{j \neq i} \Sigma_j$ (recall that Σ_j denotes the set of probability measures over S_j , the set of actions of player j).

Rationality

- Rationality imposes two requirements on strategic behavior:
 - (1) Players maximize with respect to some beliefs about opponent's behavior (i.e., they are rational).
 - (2) Beliefs have to be consistent with other players being rational, and being aware of each other's rationality, and so on (but they need not be correct).
- Rational player i plays a best response to some belief σ_{-i} .
- Since i thinks j is rational, he must be able to rationalize σ_{-i} by thinking every action of j with $\sigma_{-i}(s_i) > 0$ must be a best response to some belief j has.

• Leads to an infinite regress: "I am playing strategy σ_1 because I think player 2 is using σ_2 , which is a reasonable belief because I would play it if I were player 2 and I thought player 1 was using σ'_1 , which is a reasonable thing to expect for player 2 because σ'_1 is a best response to σ'_2, \ldots

Example

Consider the game (from [Bernheim 84]),

	b_1	b_2	b_3	b_4
a_1	0,7	2, 5	7, 0	0, 1
a_2	5, 2	3, 3	5, 2	0, 1
<i>a</i> ₃	7, 0	2, 5	0, 7	0, 1
<i>a</i> ₄	0,0	0, -2	0, 0	10, -1

There is a unique Nash equilibrium (a_2, b_2) in this game, i.e., the strategies a_2 and b_2 rationalize each other. Moreover, the strategies a_1, a_3, b_1, b_3 can also be rationalized:

- Row will play a_1 if Column plays b_3 .
- Column will play b_3 if Row plays a_3 .
- Row will play a_3 if Column plays b_1 .
- Column will play b_1 if Row plays a_1 .

However b_4 cannot be rationalized, and since no rational player will play b_4 , a_4 can not be rationalized

Never-Best Response Strategies

Example

Consider the following game:

$$\begin{array}{c|ccc} & Q & F \\ Q & 4,2 & 0,3 \\ X & 1,1 & 1,0 \\ F & 3,0 & 2,2 \end{array}$$

- It can be seen that F can be rationalized.
 - If player 1 believes that player 2 will play F, then playing F is rational for player 1, etc.
- However, playing X is never a best response, regardless of what strategy is chosen by the other player, since playing F always results in better payoffs.
- A strictly dominated strategy will never be a best response, regardless of a player's beliefs about the other players' actions.

Never-Best Response and Strictly Dominated Strategies

Definition

A pure strategy s_i is a never-best response if for all beliefs σ_{-i} there exists $\sigma_i \in \Sigma_i$ such that

$$u_i(\sigma_i,\sigma_{-i})>u_i(s_i,\sigma_{-i}).$$

- As shown in the preceding example, a strictly dominated strategy is a never-best response.
- Does the converse hold? Is a never-best response strategy strictly dominated?
- The following example illustrates a never-best response strategy which is not strictly dominated.

Example

Consider the following three-player game in which all of the player's payoffs are the same. Player 1 chooses A or B, player 2 chooses C or D and player 3 chooses M_i for i = 1, 2, 3, 4.

	$^{\rm C}$	D	
A	8	0	
В	0	0	
	M_1		

Α	4	0	
В	0	4	
	M_2		

$$\begin{array}{c|cccc}
 & C & D \\
 & 0 & 0 \\
 & 0 & 8 \\
\hline
 & M_3
\end{array}$$

	$^{\mathrm{C}}$	D	
A	3	3	
В	3	3	

- We first show that playing M_2 is never a best response to any mixed strategy of players 1 and 2.
- Let p represent the probability with which player 1 chooses A and let q represent the probability that player 2 chooses C.
- The payoff for player 3 when she plays M_2 is

$$u_3(M_2, p, q) = 4pq + 4(1-p)(1-q) = 8pq + 4 - 4p - 4q$$

Example

 Suppose, by contradiction, that this is a best response for some choice of p, q. This implies the following inequalities:

$$8pq + 4 - 4p - 4q \ge u_3(M_1, p, q) = 8pq$$

 $\ge u_3(M_3, p, q) = 8(1 - p)(1 - q) = 8 + 8pq - 8(p + q)$
 $\ge u_3(M_4, p, q) = 3$

By simplifying the top two relations, we have the following inequalities:

$$p+q \leq 1$$

 $p+q \geq 1$

Thus p + q = 1, and substituting into the third inequality, we have $pq \ge 3/8$. Substituting again, we have $p^2 - p + \frac{3}{8} \le 0$ which has no positive roots since the left side factors into $(p-\frac{1}{2})^2+(\frac{3}{8}-\frac{1}{4})$.

• On the other hand, by inspection, we can see that M_2 is not strictly dominated.

Rationalizable Strategies

Iteratively eliminating never-best response strategies yields rationalizable strategies.

- Start with $\tilde{S}_i^0 = S_i$.
- For each player $i \in \mathcal{I}$ and for each $n \ge 1$,

$$ilde{S}_i^n = \{s_i \in ilde{S}_i^{n-1} \mid \exists \qquad \sigma_{-i} \in \prod_{j \neq i} ilde{\Sigma}_j^{n-1} \text{ such that}$$

$$u_i(s_i, \sigma_{-i}) \geq u_i(s_i', \sigma_{-i}) \quad \text{for all } s_i' \in ilde{S}_i^{n-1}\}.$$

- Independently mix over \tilde{S}_i^n to get $\tilde{\Sigma}_i^n$.
- Let $R_i^{\infty} = \bigcap_{n=1}^{\infty} \tilde{S}_i^n$. We refer to the set R_i^{∞} as the set of rationalizable strategies of player i.

Rationalizable Strategies

- Since the set of strictly dominated strategies is a strict subset of the set of never-best response strategies, set of rationalizable strategies represents a further refinement of the set of strategies that survive iterated strict dominance.
- Let NE_i denote the set of pure strategies of player i used with positive probability in any mixed Nash equilibrium.
- Then, we have

$$NE_i \subseteq R_i^{\infty} \subseteq D_i^{\infty}$$
,

where R_i^{∞} is the set of rationalizable strategies of player i, and D_i^{∞} is the set of strategies of player i that survive iterated strict dominance.

MIT OpenCourseWare http://ocw.mit.edu

6.254 Game Theory with Engineering Applications Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.