Lifting Linear Sketches: Optimal Bounds and Adversarial Robustness

Elena Gribelyuk
Princeton

Honghao Lin CMU

David P. Woodruff CMU

Huacheng Yu Princeton

Samson Zhou Texas A&M

Massive Data Streams

Internet traffics

Sensor networks

Stock markets

Massive Data Streams

Internet traffics

Sensor networks

Stock markets

Challenges

- Large input space (e.g., 2³² IPV4 addresses)
- Long input streams (e.g., 10⁵ queries per second)

$$a_1, a_2, \cdots, a_m \in [n]$$

- There is an underlying frequency vector $x \in \mathbb{Z}^n$
 - Initialized to 0^n
 - Updated in each iteration: $x_{a_t} \leftarrow x_{a_t} + 1$, i.e., "inserting" a_t into the storage
- Output: Evaluation/approximation of f(x) for a given function f
- Goal: Use space sublinear in the input space size n and stream length m

- Examples of function *f* :
 - ℓ_0 Estimation (Distinct Elements): $f(x) = |\{i : x_i \neq 0\}|$
 - ℓ_p Estimation: $f(x) = ||x||_p$
 - ℓ_2 Heavy Hitters: $f(x) = \{i: |x_i| \ge \varepsilon ||x||_2\}$

• x can also represent other types of input, e.g., matrix or graph

Example

• Each update of the stream can only increase a coordinate of the frequency vector $x \in \mathbb{R}^n$

$$15213551 \rightarrow [3, 1, 1, 0, 3] := x$$

$$(a_1, w_1), (a_2, w_2), \cdots, (a_m, w_m)$$

- There is an underlying frequency vector $x \in \mathbb{Z}^n$
 - Initialized to 0^n
 - Updated in each iteration: $x_{a_t} \leftarrow x_{a_t} + w_t$
- Insertion-only stream: when w_t can only be positive
- Insertion-deletion stream : when w_t can be either positive or negative

- Algorithm maintains Ax for a matrix A throughout the stream
 - In the streaming model, the entries of A should be poly(n) bounded integers and efficiently encoded, e.g., using hash function

- Easy to maintain under additive updates to coordinates of x
 - If Δ_t is the vector of update, we then update the sketch by $A\Delta_t$
- The algorithm then outputs g(Ax) for some post-processing function g

A simple example: $(1 \pm \varepsilon)$ -approximation of $||x||_2$

- Let A be an $r \times n$ matrix with i.i.d. entries from $Unif(\{-1,1\})$
- If $r=O(1/\varepsilon^2)$, with high constant probability, $(1-\varepsilon)||x||_2 \leq \frac{1}{\sqrt{r}}||Ax||_2 \leq (1+\varepsilon)||x||_2$

- Algorithm maintains Ax for a matrix A throughout the stream
 - In the streaming model, the entries of A should be poly(n) bounded integers

 All insertion-deletion streaming algorithms on a sufficiently long stream might as well be linear sketches [LNW14, AHLW16]

• Lower bounds: for a given task, how many rows do A need to have?

 Lower bounds are fundamental to our understanding of the hardness of streaming problems

• A popular method is to define two "hard" distributions \mathcal{D}_1 and \mathcal{D}_2 that exhibit a desired gap for the problem of interest

• Then show $d_{TV}(Ax,Ay)$ is small for $x \sim \mathcal{D}_1$ and $y \sim \mathcal{D}_2$ when A has at most r rows

- A simple example: consider the problem of estimating $||x||_2$
- $\mathcal{D}_1 \sim N(0, I_n)$ for a Gaussian distribution with mean zero and identity covariance, and $\mathcal{D}_2 \sim N(0, (1+\varepsilon)I_n)$
- Without loss of generality, assume A has orthonormal rows
- If $x \sim \mathcal{D}_1$, $Ax \sim N(0, I_r)$ while if $y \sim \mathcal{D}_2$, $Ay \sim N(0, (1 + \varepsilon)I_r)$
- Using standard results on the number of samples needed to distinguish two normal distributions: $r = \Omega(\log(1/\delta)/\epsilon^2)$

- These techniques imply lower bounds for:
 - ℓ_p estimation [GW18]
 - Compressed sensing [PW11, PW13]
 - Eigenvalue estimation and PSD testing [NSW22, PW23]
 - Operator norm and Ky Fan norm [LW16]
 - Norm estimation for adversarially robust streaming algorithms [HW13]
- The distributions \mathcal{D}_1 and \mathcal{D}_2 are often chosen to be multivariate Gaussians (or somewhat "near" Gaussian), to utilize rotational invariance

- Drawback of these lower bounds: they require the entries of the input vector x to be real-valued as well
 - This is inherent: if x has entries with finite bit complexity, we could use large enough precision entries in A to exactly recover x from Ax
- The streaming model is defined on a stream of additive updates to \boldsymbol{x} with finite precision
- These issues mean that none of the above lower bounds actually apply to the data stream model

This issue has persisted in the literature for several years

- Most of the known discrete lower bounds were obtained via other approaches (e.g., communication complexity)
 - Transfer to discrete linear sketch dimension lower bound by dividing by an $O(\log n)$ factor
 - Can not get optimal bounds in several cases

 Idea: e.g., one could try to discretize the input distribution to the above problem

- Difficulty: the distribution is no longer rotationally invariant, and a priori it is not clear that information about the input is revealed by truncating low order bits
- Question 1: Is it possible to lift linear sketch lower bounds for continuous inputs to obtain linear sketch lower bounds for discrete inputs?

- Input: Updates to an underlying vector x, which arrive sequentially and *adversarially*
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size m of the input S

- Adversarially Robust: "Future queries may depend on previous queries"
- Motivation: Database queries, adversarial ML

- Input: Updates to an underlying vector x, which arrive sequentially and *adversarially*
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size m of the input S

Algorithm

Attacker

- Input: Updates to an underlying vector x, which arrive sequentially and *adversarially*
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size m of the input S

$$x_1 \leftarrow x_1 + 1$$

Algorithm

Attacker

- Input: Updates to an underlying vector x, which arrive sequentially and *adversarially*
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size m of the input S

$$x_1 \leftarrow x_1 + 1$$

$$x_2 \leftarrow x_2 + 1$$

Algorithm

- Input: Updates to an underlying vector x, which arrive sequentially and *adversarially*
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size m of the input S

$$x_1 \leftarrow x_1 + 1$$

$$x_2 \leftarrow x_2 + 1$$

$$x_3 \leftarrow x_3 + 1$$

3

Algorithm

- Input: Updates to an underlying vector x, which arrive sequentially and *adversarially*
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size m of the input S

$$x_1 \leftarrow x_1 + 1$$

$$x_2 \leftarrow x_2 + 1$$

$$x_3 \leftarrow x_3 + 1$$

$$x_1 \leftarrow x_1 + 1$$

4

Algorithm

- Input: Updates to an underlying vector x, which arrive sequentially and *adversarially*
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size m of the input S

$$x_1 \leftarrow x_1 + 1$$

$$x_2 \leftarrow x_2 + 1$$

$$x_3 \leftarrow x_3 + 1$$

$$x_1 \leftarrow x_1 + 1$$

4

AMS F_2 Algorithm

- Let $s \in \{-1, +1\}^n$ be a random sign vector of length n
- Let $Z = \langle s, f \rangle = s_1 f_1 + \dots + s_n f_n$ and consider Z^2

$$E[Z^{2}] = \sum_{i,j} E[s_{i}s_{j}f_{i}f_{j}] = f_{1}^{2} + \dots + f_{n}^{2}$$

$$Var[Z^{2}] \leq \sum_{i,j} E[s_{i}s_{j}s_{k}s_{l}f_{i}f_{j}f_{k}f_{l}] \leq 6F_{2}^{2}$$

• Take the mean of $O\left(\frac{1}{\varepsilon^2}\right)$ inner products for $(1+\varepsilon)$ -approximation [AMS99]

"Attack" on AMS

- Can learn whether $s_i = s_j$ from $\langle s, e_i + e_j \rangle$
- Let $f_i = 1$ if $s_i = s_1$ and $f_i = -1$ if $s_i \neq s_1$
- $Z=\langle s,f\rangle=s_1f_1+\cdots+s_nf_n=m$ and $Z^2=m^2$ deterministically

What happened? Randomness of algorithm not independent of input

Classic Insertion-Only Algorithms

- Space $O\left(\frac{1}{\varepsilon^2} + \log n\right)$ algorithm for ℓ_0 [KNW10, Blasiok20]
- Space $O\left(\frac{1}{\varepsilon^2}\log n\right)$ algorithm for ℓ_p with $p\in(0,2]$ [BDN17]
- Space $O\left(\frac{1}{\varepsilon^2}n^{1-2/p}\log^2 n\right)$ algorithm for ℓ_p with p>2 [Ganguly11,GW18]
- Space $O\left(\frac{1}{\varepsilon^2}\log n\right)$ algorithm for ℓ_2 -heavy hitters [BCINWW17]

Robust Insertion-Only Algorithms

- Space $\tilde{O}\left(\frac{1}{\varepsilon^2}\log^c n\right)$ algorithm for ℓ_0 [WZ21]
- Space $\tilde{O}\left(\frac{1}{\varepsilon^2}\log^c n\right)$ algorithm for ℓ_p with $p\in(0,2]$ [WZ21]
- Space $\tilde{O}\left(\frac{1}{\varepsilon^2}n^{1-2/p}\right)$ algorithm for ℓ_p with integer p>2 [WZ21]
- Space $\tilde{O}\left(\frac{1}{\varepsilon^2}\log^c n\right)$ algorithm for ℓ_2 -heavy hitters [WZ21]

"No losses* are necessary!"

Robust Insertion-Deletion Streams

For adversarially robust ℓ_p estimation:

- By differential privacy, there exists a linear sketch with r rows that is adversarially robust to $\widetilde{O}(r^2)$ queries [HKMMSZ20]
- Algorithms with space sublinear in stream length m [BEO22, WZ24]

• For poly(n) queries, there is no algorithm for constant-factor approximation in sub-linear space in n

Reconstruction Attack on Linear Sketches

- Linear sketches for ℓ_p (p>0) are not robust to adversarial attacks
 - A linear sketch with r rows can be attacked by poly(r) queries
 - Must use $\Omega(n)$ space to be adversarially robust [HW13]

Algorithm idea [HW13]:

- Iteratively learn sketch matrix A
- Then query in the kernel of A

Reconstruction Attack on Linear Sketches

- Attack randomly generates Gaussian vectors
- Analysis uses rotational invariance of Gaussians

Limitations:

- Attack ONLY works on real-valued inputs
- ONLY against ℓ_p estimation for p > 0

Reconstruction Attack on Linear Sketches

• Recently this was answered for linear sketches for ℓ_0 in a finite precision stream [GLWYZ24], but techniques specific to ℓ_0

• Question 2: Does there exist a sublinear space adversarially robust ℓ_p -estimation linear sketch in a finite precision stream?

We give a technique for lifting linear sketch lower bounds for continuous inputs to achieve linear sketch lower bounds for discrete inputs, thus answering the previous open questions

Upcoming

Pre-processing for lifting framework

Questions?

Discrete Gaussian Distribution

• Let $D(0, S^TS)$ be discrete Gaussian distribution supported on \mathbb{Z}^n , with 0^n mean and covariance S^TS . Then the probability mass function satisfies

$$\Pr_{X \sim D(0, S^T S)} [X = x] \propto \exp(-x^T (2S^T S)^{-1} x)$$

Does not satisfy rotational invariance

Also has a normalizing constant

Our Results (Lifting Framework)

Suppose that

- $X \sim D(0, S^T S)$ and $Y \sim N(0, S^T S)$, Z is an arbitrary integer distribution
- f satisfies $\Pr_{x \sim X + Z, y \sim Y + Z} [f(x) \neq f(y)] \le \frac{\delta}{3}$.
- g(Ax) = f(x) for $x \sim X + Z$ with probability at least $1 \frac{\delta}{3}$
- $A \in \mathbb{Z}^{r \times n}$ has polynomially-bounded integer entries and the singular value of $S^T S$ is sufficiently large

Then there is another sketching matrix $A' \in \mathbb{R}^{4r \times n}$ with function h such that h(A'y) = f(y) w.p. $1 - \delta$ for $y \sim Y + Z$

Example Problem (ℓ_2 Estimation)

$$f(x) = \begin{cases} 0, & ||x||_2 \le (1+\varepsilon)N \\ 1, & ||x||_2 \ge (1+3\varepsilon)N \\ 1, & \text{otherwise} \end{cases}$$

- $X_1 \sim D(0, N^2 I_n)$ and $X_2 \sim D(0, (1 + 4\varepsilon)^2 N^2 I_n)$
- $Y_1 \sim N(0, N^2 I_n)$ and $Y_2 \sim N(0, (1 + 4\varepsilon)^2 N^2 I_n)$
- f satisfies $\Pr_{x \sim X_i, y \sim Y_i} [f(x) \neq f(y)] \le \exp(-cn)$

Example Problem (ℓ_2 Estimation)

• Suppose there exists a g(Ax) that can distinguish X_1 and X_2

• From our theorem, there exists h(A'x) that can distinguish Y_1 and Y_2

Then we can use the lower bound for the continuous case!

Our Results (Applications)

We apply our lifting technique to obtain optimal lower bounds:

	Existing Real-Valued LB	Previous Discrete LB	Our Discrete LB
L_p Estimation, $p \in [1, 2]$	$\Omega\left(\frac{1}{arepsilon^2}\log \frac{1}{\delta}\right)$ [GW18]	$\Omega\left(\frac{1}{arepsilon^2}\log \frac{1}{\delta}\right)$ [JW13]	$\Omega\left(\frac{1}{\varepsilon^2}\log\frac{1}{\delta}\right)$ (Lemma 5.1.2)
L_p Estimation, $p > 2$	$\Omega\left(n^{1-2/p}\log n\right)$ [GW18]	$\Omega\left(n^{1-2/p} ight)$ [LW13, WZ21a]	$\Omega\left(n^{1-2/p}\log n\right)$ (Lemma 5.2.4)
Operator Norm	$\Omega\left(\frac{d^2}{arepsilon^2}\right)$ [LW16]	$\Omega\left(\frac{d}{\log d}\right)$ (folklore)	$\Omega\left(\frac{d^2}{\varepsilon^2}\right)$ (Lemma 5.3.8)
Eigenvalue Estimation	$\Omega\left(\frac{1}{\varepsilon^4}\right)$ [NSW22]	$\Omega\left(\frac{1}{\varepsilon^2 \log d}\right)$ (folklore)	$\Omega\left(\frac{1}{\varepsilon^4}\right)$ (Theorem 5.4.10)
PSD Testing	$\Omega\left(\frac{1}{\varepsilon^4}\right)$ [SW23]	$\Omega\left(\frac{1}{\varepsilon^2 \log d}\right)$ (folklore)	$\Omega\left(\frac{1}{\varepsilon^4}\right)$ (Theorem 5.4.11)
Compressed Sensing	$\Omega\left(\frac{k}{\varepsilon}\log\frac{n}{k}\right)$ [PW11]	$\Omega\left(\frac{k}{\varepsilon}\right)$ (folklore)	$\Omega\left(\frac{k}{\varepsilon}\log\frac{n}{k}\right)$ (Lemma 5.5.13)

Our Results (Adversarial Robustness)

The attack on robust ℓ_p estimation is adaptive across multiple rounds, so we cannot apply our theorem directly

Open the procedure of the attack in [HW13], and use the lifting technique in the analysis to obtain an attack using $poly(r \log n)$ queries to break a discrete sketch

Our Results (Adversarial Robustness)

• Let B > 1 be any fixed desired accuracy parameter

For any integer sketch with r rows, there exists an algorithm that finds an integer-valued vector on which the sketch fails to output a B-approximation to the ℓ_p norm of the query

• The adaptive attack uses poly(r log n) adaptive queries to the integer sketch and has runtime poly(r log n) across r rounds of adaptivity and can be implemented in a polynomially-bounded turnstile stream

Technical Overview

• Let $\mathcal{D}_{L,S}$ denote the discrete Gaussian distribution on support L and with covariance matrix S^TS

• Suppose $x \sim \mathcal{D}_{\mathbb{Z}^n,S}$ and $y \sim \mathcal{D}_{A\mathbb{Z}^n,SA}$

• Similar to the continuous case, we want to show the total variation distance between Ax and y is small

This is not true in general

Example

Consider $x \sim \mathcal{D}_{\mathbb{Z}^2, I_2}$ and $y \sim \mathcal{D}_{A\mathbb{Z}^2, A^T}$, where $A = \begin{bmatrix} 1 & N \end{bmatrix}$

Easy to see $y \sim \mathcal{D}_{\mathbb{Z}^2,1+N^2}$, (since $AA^T = 1 + N^2$)
"Uniformly" distributed around O(N)

$$Ax = x_1 + Nx_2$$

Mass concentrates around multiples of N .
Low mass at $\frac{N}{2}$

For $x \sim \mathcal{D}_{\mathbb{Z}^n,S}$ and $y \sim \mathcal{D}_{A\mathbb{Z}^n,SA}T$:

- There exist some bad cases where Ax and y have a large distributional gap
- Under which conditions are the distributions of Ax and y close?
- We address this using lattice theory techniques

• The *i*-th successive minima $\lambda_i(\mathcal{L})$ of a lattice \mathcal{L} , is defined as the smallest value such that a ball of radius $\lambda_i(\mathcal{L})$ centered at the origin contains at least *i* linearly independent lattice vectors

• Let $\mathcal{L}^{\perp}(A)$ denote the lattice containing integer vectors orthogonal to the rowspan of A

Example

Consider $x \sim \mathcal{D}_{\mathbb{Z}^2, I_2}$ and $y \sim \mathcal{D}_{A\mathbb{Z}^2, A^T}$, where $A = \begin{bmatrix} 1 & N \end{bmatrix}$

We have
$$\mathcal{L}^{\perp}(A) = [-N \ 1]$$
 and $\lambda_1(\mathcal{L}) = \sqrt{1 + N^2}$

Thm. (Sufficient condition for small distributional gap [AR16])

Suppose that
$$\sigma_n(S) > \lambda_{\max}(\mathcal{L}^\perp(A)) \sqrt{\frac{\ln\left(2n\left(1+\frac{1}{\varepsilon}\right)\right)}{\pi}}$$
, then
$$1-2\varepsilon \leq \frac{\rho_{Ax}(z)}{\rho_y(z)} \leq 1+2\varepsilon,$$
 where $\rho(z)$ denotes the PMF, $x \sim \mathcal{D}_{\mathbb{Z}^n,S}$, and $y \sim \mathcal{D}_{A\mathbb{Z}^n,SA^T}$

Thm. (Sufficient condition for small distributional gap [AR16])

Suppose that
$$\sigma_n(S) > \lambda_{\max}(\mathcal{L}^\perp(A)) \sqrt{\frac{\ln\left(2n\left(1+\frac{1}{\varepsilon}\right)\right)}{\pi}}$$
, then $\sigma_n(S)$: The smallest singular value of S where $\rho(z)$ denotes the PMF, $x \sim \mathcal{D}_{\mathbb{Z}^n,S}$, and $y \sim \mathcal{D}_{A\mathbb{Z}^n,SA^T}$

Thm. (Sufficient condition for small distributional gap [AR16])

Suppose that
$$\sigma_n(S) > \lambda_{\max}(\mathcal{L}^\perp(A)) \sqrt{\frac{\ln\left(2n\left(1+\frac{1}{\varepsilon}\right)\right)}{\pi}}$$
, then
$$1-2\varepsilon \leq \frac{\mathcal{L}^\perp(A)}{\text{vectors orthogonal to the rowspan of } A}$$
 where $\rho(z)$ denotes the PMF, $x \sim \mathcal{D}_{\mathbb{Z}^n,S}$, and $y \sim \mathcal{D}_{A\mathbb{Z}^n,SA}^T$

Thm. (Sufficient condition for small distributional gap [AR16])

Suppose that
$$\sigma_n(S) > \lambda_{\max}(\mathcal{L}^{\perp}(A)) \sqrt{\frac{\ln\left(2n\left(1+\frac{1}{\varepsilon}\right)\right)}{\pi}}$$
, then

 λ_{max} : The max successive minima of a lattice

where $\rho(z)$ dend

The max successive minima $\lambda_{max}(L)$ of a lattice L is the smallest radius such that a ball centered at the origin contains a full basis for the lattice

Thm. (Sufficient condition for small distributional gap [AR16])

Suppose that
$$\sigma_n(S) > \lambda_{\max}(\mathcal{L}^\perp(A)) \sqrt{\frac{\ln\left(2n\left(1+\frac{1}{\varepsilon}\right)\right)}{\pi}}$$
, then
$$1-2\varepsilon \leq \frac{\rho_{Ax}(z)}{\rho_y(z)} \leq 1+2\varepsilon,$$

where $\rho(z)$ denotes the PMF, $x \sim \mathcal{D}_{\mathbb{Z}^n,S}$, and $y \sim \mathcal{D}_{A\mathbb{Z}^n,SA}^T$

If $\varepsilon = \frac{1}{poly(n)}$, the sketch matrix A "passes" through to the covariance

• [AR16] requires
$$\sigma_n(S) > \lambda_{\max}(\mathcal{L}^{\perp}(A)) \cdot \sqrt{\frac{\ln(2n(1+\frac{1}{\varepsilon}))}{\pi}}$$

• We can scale S so that $\sigma_n(S) > \text{poly}(n)$

• Hence, we want to upper bound $\lambda_{\max}(\mathcal{L}^{\perp}(A))$ by $\operatorname{poly}(n)$

However, this is not true in general

A Simple Example

$$A = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & -2 & \cdots & \cdots \\ 0 & 0 & 1 \\ \vdots & \ddots & \vdots \\ \dots & -2 & 0 \\ 1 & -2 \end{bmatrix}$$

 $[2^n, 2^{n-1}, ..., 2, 1] \in A^{\perp}$ has exponentially large entries!

• [AR16] requires
$$\sigma_n(S) > \lambda_{\max}(\mathcal{L}^{\perp}(A)) \cdot \sqrt{\frac{\ln\left(2n\left(1+\frac{1}{\varepsilon}\right)\right)}{\pi}}$$
 and we can design S so that $\sigma_n(S) > \operatorname{poly}(n)$

• Key observation: we can add more rows to A, as it only makes the sketching matrix stronger

• What to do next: pre-process A to matrix A' with r' = O(r) rows such that $\lambda_{\max}(\mathcal{L}^{\perp}(A')) \leq \operatorname{poly}(n)$

[Siegel's Lemma]. Let $A \in \mathbb{Z}^{r \times n}$ be a nonzero integer matrix with r < n and entries bounded by M. Then there exists a nonzero vector x of integers bounded by $(nM)^{r/(n-r)}$ such that $Ax = 0^r$

• First idea: iteratively add rows to A using Siegel's Lemma.

• What next to do: pre-process A to matrix A' with $r' \geq r$ rows such that $\lambda_{n-r'}(\mathcal{L}^{\perp}(A')) \leq \operatorname{poly}(n)$

Goal: pre-process A to matrix A' with $r' \geq r$ rows such that $\lambda_{n-r'}(\mathcal{L}^{\perp}(A')) \leq \operatorname{poly}(n)$

- Let $A_0 = A$, and in each time step t, find a vector x_t such that $A_t x_t = 0$ and add x_t to form matrix A_{t+1}
- Repeat 0.49n-r times. From Siegel's Lemma we have the entries of x_t is bounded by nM
- Continue to apply Siegel's Lemma to generate the next 0.51n vectors $y_1, y_2, ..., y_{0.51n}$ (whose entries are un-bounded)
- Add rows $y_1, y_2, \dots, y_{0.51n}$ to A, form the matrix A'

- First idea: iteratively add rows to A using Siegel's Lemma
- What next to do: pre-process A to matrix A' with $r' \geq r$ rows such that $\lambda_{n-r'}(\mathcal{L}^{\perp}(A')) \leq \operatorname{poly}(n)$

- Then A' satisfies the condition for [AR16] for TVD closeness
- However, A' has cn + r rows, which can not obtain optimal lower bound for some cases
- A better analysis is needed

Goal: pre-process A to matrix A' with r' = O(r) rows such that $\lambda_{\max}(\mathcal{L}^{\perp}(A')) \leq \operatorname{poly}(n)$

Full basis of an n-dim space

Goal: pre-process A to matrix A' with r' = O(r) rows such that $\lambda_{\max}(\mathcal{L}^{\perp}(A')) \leq \operatorname{poly}(n)$

Row space of A (r dimensions)

Row space of $\mathcal{L}^{\perp}(A)$ (n-r) dimensions)

Goal: pre-process A to matrix A' with r' = O(r) rows such that $\lambda_{\max}(\mathcal{L}^{\perp}(A')) \leq \operatorname{poly}(n)$

Row space of A (r dimensions)

Construct via a probabilistic argument: n-4r linearly independent integer vectors in $\mathcal{L}^{\perp}(A)$ with entries bounded by poly(n)

Goal: pre-process A to matrix A' with r' = O(r) rows such that $\lambda_{\max}(\mathcal{L}^{\perp}(A')) \leq \operatorname{poly}(n)$

Row space of A (r dimensions)

Construct iteratively:

The remaining 3r integer vectors

Construct via a probabilistic argument: n-4r linearly independent integer vectors in $\mathcal{L}^{\perp}(A)$ with entries bounded by poly(n)

Goal: pre-process A to matrix A' with r' = O(r) rows such that $\lambda_{\max}(\mathcal{L}^{\perp}(A')) \leq \operatorname{poly}(n)$

A'

Row space of A' (4r dimensions)

$$\mathcal{L}^{\perp}(A')$$

Construct via a probabilistic argument: n-4r linearly independent integer vectors in $\mathcal{L}^{\perp}(A)$ with entries bounded by poly(n)

Goal: pre-process A to matrix A' with r' = O(r) rows such that $\lambda_{\max}(\mathcal{L}^{\perp}(A')) \leq \operatorname{poly}(n)$

A'

Row space of A' (4r dimensions)

$$\mathcal{L}^{\perp}(A')$$

```
By definition of successive minima: \lambda_{\max}(\mathcal{L}^{\perp}(A')) \leq \operatorname{poly}(n)
```

• We show that we can generate n - O(r) linearly independent integer vectors in $\mathcal{L}^{\perp}(A)$ with entries bounded by $\operatorname{poly}(n)$

Probabilistic argument: Suppose we have found t such vectors

• Let $B \in \mathbb{R}^{(n-t) \times n}$ denote the matrix whose rows form a basis of the orthogonal complement to the span of these t vectors

Probabilistic Argument for Preprocessing

• Randomly pick $s = n^{O(r)}$ vectors v^i with entries in $\{0, 1, 2, ..., M-1\}$, for sufficiently large M = poly(n)

• Event (i): There exists $1 \le i < j \le s$ such that $Av^i = Av^j$

• Event (i) holds with high probability: the entries of Av^{i} are bounded by poly(n), so use birthday paradox

Probabilistic Argument for Preprocessing

• Randomly pick $s = n^{O(r)}$ vectors v^i with entries in $\{0, 1, 2, ..., M-1\}$, for sufficiently large M = poly(n)

- Event (ii): For all $1 \le i < j \le s$ we have $Bv^i \ne Bv^j$
- Event (ii) holds with high probability: W.L.O.G., we can write **B** in reduced row echelon form
- Then for every v^i , v^j we have $\Pr[B(v^i-v^j)=0] \leq \left(\frac{1}{M}\right)^{n-t}$
- Take a union bound over all i, j

- Randomly pick $s = n^{O(r)}$ vectors v^i with entries in $\{0, 1, 2, ..., M-1\}$, for sufficiently large M = poly(n)
- Conditioning on events (i) and (ii) holding, then $v^i v^j$ is the vector we need
 - It is in kernel of A so in orthogonal lattice
 - It is not in kernel of rows in orthogonal lattice already found

• We can iteratively apply this argument until t = n - O(r)

• Suppose we have chosen these n - O(r) vectors

• Iteratively generate O(r) integer vectors that are orthogonal to both the row span A of and the n-4r integer vectors

• Add these O(r) vectors to rows of A and form a new matrix A' with O(r) rows, which satisfies the requirement

Upcoming

Cell lemma and lifting framework

Questions?

Cell Lemma

Recall $x \sim \mathcal{D}_{\mathbb{Z}^n,S}$, $y \sim \mathcal{D}_{A\mathbb{Z}^n,SA^T}$, and $z \sim N(0,S^TS)$

Can assume $\mathcal{L}^{\perp}(A)$ has bounded successive minima

Let η be a uniform noise in one unit cell of the lattice $A\mathbb{Z}^n$

Goal:

Distribution of $Ax + \eta$

≈ Discrete sketch

Distribution of Az

Continuous sketch

Cell Lemma

Recall $x \sim \mathcal{D}_{\mathbb{Z}^n,S}$, $y \sim \mathcal{D}_{A\mathbb{Z}^n,SA^T}$, and $z \sim N(0,S^TS)$

Can assume $\mathcal{L}^{\perp}(A)$ has bounded successive minima

Let η be a uniform noise in one unit cell of the lattice $A\mathbb{Z}^n$

Cell Lemma

Distribution of $Ax + \eta$

 $\overline{\text{Distribution of } Az}$

≈ Discrete sketch

Continuous sketch

Real discrete sketches take Ax as inputs. Why is the above useful?

Cell Lemma

Distribution of $Ax + \eta$

Distribution of Az

≈ Discrete sketch

Continuous sketch

Real discrete sketches take Ax as inputs. Why is the above useful?

- Ax can be recovered from $Ax + \eta$ by rounding
- The rounding operation can be baked into post-processing:

$$g(Ax) = g \circ \text{round}(Ax + \eta)$$

Cell Lemma

Distribution of $Ax + \eta$

Distribution of Az

≈ Discrete sketch

Continuous sketch

Real discrete sketches take Ax as inputs. Why is the above useful?

- Ax can be recovered from $Ax + \eta$ by rounding
- The rounding operation can be baked into post-processing: $g(Ax) = g \circ \text{round}(Ax + \eta)$
- Thus, we can assume the (discrete) algorithm takes $Ax + \eta$ as inputs
- So it should also work for Az (continuous input)

Our Results (Applications)

We apply our lifting technique to obtain optimal lower bounds:

	Existing Real-Valued LB	Previous Discrete LB	Our Discrete LB
L_p Estimation, $p \in [1, 2]$	$\Omega\left(\frac{1}{arepsilon^2}\log \frac{1}{\delta}\right)$ [GW18]	$\Omega\left(\frac{1}{arepsilon^2}\log \frac{1}{\delta}\right)$ [JW13]	$\Omega\left(\frac{1}{\varepsilon^2}\log\frac{1}{\delta}\right)$ (Lemma 5.1.2)
L_p Estimation, $p > 2$	$\Omega\left(n^{1-2/p}\log n\right)$ [GW18]	$\Omega\left(n^{1-2/p} ight)$ [LW13, WZ21a]	$\Omega\left(n^{1-2/p}\log n\right)$ (Lemma 5.2.4)
Operator Norm	$\Omega\left(\frac{d^2}{arepsilon^2}\right)$ [LW16]	$\Omega\left(\frac{d}{\log d}\right)$ (folklore)	$\Omega\left(\frac{d^2}{\varepsilon^2}\right)$ (Lemma 5.3.8)
Eigenvalue Estimation	$\Omega\left(\frac{1}{\varepsilon^4}\right)$ [NSW22]	$\Omega\left(\frac{1}{\varepsilon^2 \log d}\right)$ (folklore)	$\Omega\left(\frac{1}{\varepsilon^4}\right)$ (Theorem 5.4.10)
PSD Testing	$\Omega\left(\frac{1}{\varepsilon^4}\right)$ [SW23]	$\Omega\left(\frac{1}{\varepsilon^2 \log d}\right)$ (folklore)	$\Omega\left(\frac{1}{\varepsilon^4}\right)$ (Theorem 5.4.11)
Compressed Sensing	$\Omega\left(\frac{k}{\varepsilon}\log\frac{n}{k}\right)$ [PW11]	$\Omega\left(\frac{k}{\varepsilon}\right)$ (folklore)	$\Omega\left(\frac{k}{\varepsilon}\log\frac{n}{k}\right)$ (Lemma 5.5.13)

Application: ℓ_p Norm Estimation, $p \in [1,2]$

•
$$Y_1 \sim N(0, N^2 I_n) \text{ vs. } Y_2 \sim N(0, (1 + 4\varepsilon)^2 N^2 I_n)$$

• With high probability, $\Pr_{x \sim Y_1}[f(x) = 1]$ and $\Pr_{y \sim Y_2}[f(y) = 0]$

Application: ℓ_p Norm Estimation, $p \in [1,2]$

• With high probability, $\Pr_{x \sim Y_1}[f(x) = 1]$ and $\Pr_{y \sim Y_2}[f(y) = 0]$

• However, $d_{TV}(Ax,Ay) \leq 1-\delta$ unless A has sketching dimension $\Omega\left(\frac{1}{\varepsilon^2}\log\frac{1}{\delta}\right)$

Our technique recovers the same bound for integer sketches

Application: ℓ_p Norm Estimation, p>2

- $\mathcal{D}_1 = N(0, N^2 I_n)$
- $\mathcal{D}_2 = N(0, N^2 I_n) + \sum_{i \in [T]} \Theta\left(\frac{\varepsilon^{1/p} N n^{1/p}}{t^{1/p}}\right) e_i$, where T is a random set of $O\left(\log \frac{1}{\delta}\right)$ coordinates of [n]
- With high probability, $\Pr_{x \sim \mathcal{D}_1} [\|x\|_p \le (1+2\varepsilon)N\beta]$ and $\Pr_{y \sim \mathcal{D}_2} [\|y\|_p \ge (1+4\varepsilon)N\beta]$

Application: ℓ_p Norm Estimation, p>2

• With high probability, $\Pr_{x \sim \mathcal{D}_1}[\|x\|_p \le (1+2\varepsilon)N\beta]$ and $\Pr_{y \sim \mathcal{D}_2}[\|y\|_p \ge (1+4\varepsilon)N\beta]$

- However, $d_{TV}(Ax,Ay) \leq 1-\delta$ unless A has sketching dimension $\Omega\left(n^{1-2/p}\frac{1}{\varepsilon^{-2/p}}\log n\log^{2/p}\frac{1}{\delta}\right)$
- Our technique recovers the same bound for integer sketches

Reconstruction Attack on Linear Sketches

- Linear sketches for ℓ_p estimation (p > 0) are "not robust" to adversarial attacks, require $\Omega(n)$ dimension [HW13]
- Approximately learn sketch matrix A, query something in the kernel of A
- Iterative process, start with $V_1 = \emptyset, ..., V_r$
- Correlation finding: Find vectors weakly correlated with A orthogonal to V_{i-1}
- Boosting: Use these vectors to find strongly correlated vector \boldsymbol{v}
- Progress: Set $V_i = \text{span}(V_{i-1}, v)$

Correlation Finding

• Start with a subspace V_i , iterate over small increments of σ^2

• Sample $v_1, \ldots, v_m \sim \mathcal{D}_{\mathbb{Z}^n, \Sigma_{\sigma^2}}$, where Σ_{σ^2} is a covariance matrix that projects onto V_i^{\perp} and scaled by σ^2 , up to some small noise (m = poly(n))

• Let $v'_1, \dots, v'_{m'}$ be the positively labeled samples, i.e., $\mathbb{A}(v'_i) = 1$

Boosting and Progress

• Let $v_{\sigma} = \operatorname{argmax}_{u} \sum \langle u, v_{i}' \rangle^{2}$

• If $\frac{1}{m'} \cdot \sum \langle v_{\sigma}, v_{i}' \rangle^{2} \geq \sigma^{2} + \Delta$ for some gap Δ , add v^{*} to V_{i} , where v^{*} is the part of v_{σ} orthogonal to V_{i}

Input: Oracle \mathcal{A} providing access to a function $f: \mathbb{R}^n \to \{0,1\}$, parameters $B \geq 4$, and sufficiently large $\alpha = \text{poly}(n)$ satisfying $\alpha \geq \ell_{\mathbf{A}}^2 \cdot \frac{\ln(2n(1+1/\varepsilon))}{\pi}$ after pre-processing via Lemma 3.1, for all possible integer matrices $\mathbf{A} \in \mathbb{Z}^{r \times n}$ initially with poly(n)-bounded entries.

Attack: Let $V_0 = \emptyset$, $m = \mathcal{O}\left(B^{13}n^{11}\log^{15}(n)\right)$, $S = [\alpha, \alpha \cdot B] \cap \zeta \mathbb{Z}$ where $\zeta = \frac{1}{20(Bn)^2\log(Bn)}$. For $t \in [r+1]$:

- (1) For each $\sigma^2 \in S$:
 - (a) Sample $\mathbf{x}_1, \dots, \mathbf{x}_m \sim D(V^{\perp}, \sigma^2)$. Query \mathcal{A} on each \mathbf{x}_i and let $a_i = \mathcal{A}(\mathbf{x}_i)$.
 - (b) Let $s(t, \sigma^2) = \frac{1}{m} \sum_{i=1}^m a_i$ denote the fraction of samples that are positively labeled.
 - i. If either (1) $\sigma^2 \ge \alpha \cdot B/2$ and $s(t, \sigma^2) \le 1 \zeta$ or (2) $\sigma^2 \le 2 \cdot \alpha$ and $s(t, \sigma^2) \ge \zeta$, then terminate and return (V_t^{\perp}, σ^2) .
 - ii. Else let $\mathbf{x}'_1, \dots, \mathbf{x}'_{m'}$ be the vectors such that $\mathcal{A}(\mathbf{x}'_i) = 1$ for all $i \in [m']$.
 - (c) If $m' < \frac{m}{100B^2n}$, increment σ^2 . Else, compute $v_{\sigma} = \operatorname{argmax}_{\mathbf{v} \in \mathbb{R}^n} z(\mathbf{v})$ for $z(\mathbf{v}) = \frac{1}{m'} \sum_{i=1}^{m'} \langle \mathbf{v}, \mathbf{x}_i' \rangle^2$
- (2) Let v' represent the first vector \mathbf{v}_{σ} with $z(\mathbf{v}_{\sigma}) \geq \sigma^2 + \frac{\sigma^2}{4} + \frac{1}{14Br}$.
 - (a) If no such \mathbf{v}_{σ} was found, set $V_{t+1} = V_t$ and proceed to the next round.
 - (b) Otherwise, let $\mathbf{v}^* = \mathbf{v}'$. Compute $\mathbf{v}_t = \mathbf{v}^* \frac{\sum_{\mathbf{v} \in V_t} \mathbf{v} \langle \mathbf{v}, \mathbf{v}^* \rangle}{\left\| \sum_{\mathbf{v} \in V_t} \mathbf{v} \langle \mathbf{v}, \mathbf{v}^* \rangle \right\|_2}$ and set $V_{t+1} = V_t \cup \{\mathbf{v}_t\}$.

Fig. 1: Algorithm that creates an adaptive attack using a turnstile data stream.

Conditional Expectation Lemma

• There exists a variance σ^2 and a vector $u \in A \cap V_i^{\perp}$ such that for $x \sim \mathcal{D}_{\mathbb{Z}^n, \Sigma_{\sigma^2}}$,

$$\mathbb{E}[\langle u, x \rangle^2 | \mathbb{A}(x) = 1] \ge \mathbb{E}[\langle u, x \rangle^2] + \Delta$$

 Proof by lifting to continuous version of conditional expectation lemma [HW13]

Summary

 We give a framework for "lifting" lower bound techniques for linear sketches to integer sketches

 Idea is to use discrete Gaussians in place of a continuous Gaussian on "well-behaved" sketches

 Can be used to achieve lower bounds for a range of problems, including adversarial robust norm estimation

Cell Lemma

Future Directions

Lower bounds for streaming beyond integer linear sketches?

Attacks on linear-sketches for ℓ_0 estimation [GLWYZ24]

Attacks on streaming algorithms for ℓ_0 estimation

Attacks on linear-sketches for ℓ_p estimation [This talk]

Attacks on streaming algorithms for ℓ_p estimation