Produit scalaire

1 Définition

Le produit scalaire de deux vecteurs est le nombre réel noté : $\vec{u} \cdot \vec{v}$ Si on connait les coordonnées de $\vec{u}(a;b)$ et $\vec{v}(a';b')$: $\vec{u} \cdot \vec{v} = aa' + bb'$ Si on connait les normes $\|\vec{u}\|$ et $\|\vec{v}\|$ et l'angle orienté $(\widehat{u;v})$: $\vec{u} \cdot \vec{v} = \|\vec{u}\| \cdot \|\vec{v}\| \cdot \cos(\widehat{u;v})$

2 Exemples

3. Sachant que $\vec{u} \cdot \vec{v} = 3\sqrt{3}$, $\|\vec{u}\| = 3$, $\|\vec{v}\| = 2$, calculer une mesure de l'angle orienté $(\widehat{\vec{u};\vec{v}})$.

3 Propriétés

On liste les diverses propriétés

Si
$$\vec{u} = \vec{0}$$
 alors $a = 0$ et $b = 0$ donc $\vec{u} \cdot \vec{v} = 0$

Si
$$\vec{v} = \vec{0}$$
 alors

Si
$$(\widehat{\vec{u}}; \widehat{\vec{v}}) = \frac{\pi}{2} + k\pi$$
 alors

Si
$$\vec{u} \cdot \vec{v} = 0$$
 alors

4 Déterminer l'angle orienté formé par deux vecteurs

Utiliser la calculatrice

5 Applications en physique

Travail mécanique W d'une force \vec{f} sur un déplacement $\vec{D}:W=\vec{f}\cdot\vec{D}$ Une force appliquée sur un point fixe $(\vec{D}=\vec{0})$ ne fournit aucun travail mécanique.

1