### Lecture 2.3

# **Molecular Dating**

# **Evolutionary timescales**



# Dated phylogenetic trees

- Species delimitation
- Diversification rates
- Trait evolution
- Biogeography
- Epidemiology
- Demographic history

## The Molecular Clock







- Rates and times are non-identifiable
- Likelihood only depends on their product
  - Branch lengths in substitutions per site
- To separate rate and time, we need (prior) information about one or the other

## The molecular clock



## The molecular clock



### Sources of error



# A brief history

Emile Zuckerkandl and Linus Pauling

1962 Assumed constant rate among species to estimate timing of globin gene duplications

1965 Introduced the term 'molecular evolutionary clock'





# Testing for clocklike evolution

Relative-rates test (Fitch, 1976)



# Testing for clocklike evolution

Whole-tree methods (e.g., likelihood-ratio test)



- Limitations
  - Cannot identify instances in which all lineages experience simultaneous rate shift
  - Failure to reject clock can be due to lack of power or lack of information

# Departures from the clock

- Rates vary among lineages because of differences in:
  - Exposure to mutagens
  - Metabolic rate
  - Generation time
  - Population size
  - Strength and direction of selection



The assumption of rate constancy can be relaxed

## Molecular-Clock Models

## Molecular-clock models

Strict or 'global' molecular clock



$$k = 1$$

Multi-rate clocks



Relaxed clocks



$$k = n$$

### Multi-rate clocks

- Small number of rates
  - More than 1 rate (i.e., not a strict clock)
  - Fewer than number of branches (i.e., not a relaxed clock)

#### Local clock

Same rate shared by neighbouring branches

#### Discrete clock

· Small number of branch rates, distributed across tree

## User-defined local clock



## Random local clock



Includes possibility of zero rate changes (= strict clock)

## Random local clock



### Relaxed clocks

- We know that life-history characteristics:
  - Have effects on rates of molecular evolution
  - Are usually heritable to some degree
- Treat molecular rate as a heritable trait
- Relaxed clocks generally assume that closely related species share similar rates



## Likelihood-based relaxed clocks

Allow a different rate in each branch



- Allow a different rate in each branch
- Statistical models of rates among branches
- Rates can be autocorrelated or uncorrelated
  - Autocorrelated rates in neighbouring branches are related
  - Uncorrelated rates identically and independently distributed among branches





- In the uncorrelated lognormal relaxed clock, two statistics can be obtained:
  - 1. Coefficient of variation of rates

Measures the rate variation among branches A value of 0 indicates clocklike evolution

#### 2. Covariance of rates

Measures autocorrelation of rates between adjacent branches

#### Autocorrelated rates

- Autocorrelated lognormal
- Autocorrelated gamma
- Autocorrelated exponential
- Ornstein-Uhlenbeck process
- Cox-Ingersoll-Ross

#### Uncorrelated rates

- Uncorrelated lognormal
- Uncorrelated exponential
- Uncorrelated gamma
- White noise

### Rate autocorrelation

- Little evidence of rate autocorrelation in real data
- Uncorrelated relaxed clock probably appropriate in most cases
- Compare estimates from auto- and uncorrelated relaxed clocks



## Useful references

- A practical guide to molecular dating Sauquet (2013) *Comptes Rendus Palevol*, 12: 355–367.
- Bayesian molecular clock dating of species divergences in the genomics era dos Reis, Donoghue, & Yang (2016) Nature Reviews Genetics, 17: 71–80.
- Molecular-clock methods for estimating evolutionary rates and timescales
  Ho & Duchêne (2014) Molecular Ecology, 23: 5947–5965.

