Nombres complexes

2 ème bac science maths 2019 -2020

Exercice 01:

- 1) Pour tout nombre complexe non nul z différent de i on pose : $h(z) = i \left(\frac{z 2i}{z i} \right)$
 - \iff $z^2 2iz 2 = 0$ h(z) = za) Vérifier que :
 - b) Résoudre dans C l'équation : (E): $z^2 - 2iz - 2 = 0$
- 2) le plan complexe est rapporté au repère orthonormé direct $(\mathbf{O}, \mathbf{e}_1, \mathbf{e}_2)$

On désigne par \mathbf{a} et \mathbf{b} les solutions de l'équation (E) tels que $\mathbf{Re}(\mathbf{a}) = \mathbf{1}$

Soit z un nombre complexe différent de i de a et de b et les points M(z), M'(h(z)), A(a) et B(b).

- a) Montrer que : $\frac{\mathbf{h}(\mathbf{z}) \mathbf{a}}{\mathbf{h}(\mathbf{z}) \mathbf{b}} = \frac{\mathbf{z} \mathbf{a}}{\mathbf{z} \mathbf{b}}$. b) En déduire que : $(\overrightarrow{\mathbf{M'B}}, \overrightarrow{\mathbf{M'A}}) \equiv \pi + (\overrightarrow{\mathbf{MB}}, \overrightarrow{\mathbf{MA}}) \left[2\pi\right]$
- 3) a) Montrer que si les points M, A et B sont alignés alors les points M, A et B et M' sont alignés.
 - b) Montrer que si les points M, A et B ne sont pas alignés alors les points M, A et B et M' sont Cocycliques.

Exercice 01:

Soit m un nombre complexe.

Partie I: On considère dans l'ensemble \mathbb{C} l'équation : $(\mathbf{E}_{\mathbf{m}})$: $\mathbf{z}^2 + (\mathbf{im} + 2)\mathbf{z} + \mathbf{im} + 2 - \mathbf{m} = 0$

- 1) a) Vérifier que $\Delta = (im 2i)^2$ est le discriminant de l'équation (E_m)
 - b) Donner, suivant les valeurs de \mathbf{m} , l'ensemble des solutions de l'équation $(\mathbf{E}_{\mathbf{m}})$
- 2) Pour $\mathbf{m} = \mathbf{i}\sqrt{2}$, écrire les deux racines de l'équation $(\mathbf{E}_{\mathbf{m}})$ sous la forme exponentielle.

Partie II: le plan complexe est rapporté au repère orthonormé direct $(\mathbf{O}, \mathbf{u}, \mathbf{v})$

On considère les points A, Ω , M et M' d'affixes respectifs a=-1-i, $\omega=i$, m et m'=-im-1+i.

- 1) Soit R la rotation d'angle $-\frac{\pi}{2}$ qui transforme M en M'.
 - a) Vérifier que Ω est le centre de la rotation R.
 - b) Déterminer l'affixe b de B, où B est le point tel que A = R(B).
- 2) a) Vérifier que : $\mathbf{m'} \mathbf{a} = \frac{\omega \mathbf{a}}{\omega \mathbf{b}} (\mathbf{m} \mathbf{b})$.
 - b) En déduire que les points A, M et M' sont alignés si et seulement si les points A, B, Ω et M sont cocycliques.
 - c) Montrer que l'ensemble des points M tels que les points A, Met M' sont alignés est un cercle dont on déterminera le centre et le rayon.

Exercice 03:

le plan complexe est rapporté au repère orthonormé direct $(\mathbf{O}, \overrightarrow{\mathbf{e}_1}, \overrightarrow{\mathbf{e}_2})$

Soit M le point d'affixe le nombre complexe non nul z et M' le point d'affixe $z' = \frac{1}{2} \left(z + \frac{1}{z} \right)$

- 1) Déterminer le nombre complexe z tel que les deux points M et M'soient confondus.
- 2) On suppose que le point M est différent des deux points A et B d'affixes respectifs 1 et -1.

Montrer que : $\frac{z'+1}{z'-1} = \left(\frac{z+1}{z-1}\right)^2$.

3) Soit (Δ) la médiatrice du segment |AB|.

Montrer que : Si le point M appartient à (Δ) , alors le point M'appartient à (Δ) .

4) Soit (Γ) le cercle dont l'un des diamètres est le segment |AB|.

Montrer que : Si le point M appartient à (Γ) , alors le point M' appartient à (AB).

Nombres complexes

2 ème bac science maths 2019 -2020

Exercice 04:

Soit **m** un nombre complexe non nul.

On considère dans l'ensemble des nombres complexes \mathbb{C} l'équation (\mathbf{E}_m) d'inconnue \mathbf{z} :

(E):
$$2z^2-2(m+1+i)z+m^2+(1+i)m+i=0$$

- 1) Vérifier que le discriminant de l'équation (E_m) est $\Delta = (2im)^2$
- 2) Résoudre dans \mathbb{C} l'équation $(\mathbf{E}_{\mathbf{m}})$.

Partie II:

le plan complexe est rapporté au repère orthonormé direct $(\mathbf{O}, \overrightarrow{\mathbf{e}_1}, \overrightarrow{\mathbf{e}_2})$.

On suppose que $m \in C - \{0,1,i\}$ et on pose : $z_1 = \frac{1+i}{2}(m+1)$ et $z_2 = \frac{1-i}{2}(m+i)$

On considère les points $\, A \,$, $\, B \,$, $\, M \,$, $\, M_1 \,$ et $\, M_2 \,$ d'affixes respectifs $\, 1 \,$, $\, i \,$, $\, m \,$, $\, z_1 \,$ et $\, z_2 \,$

- 1) a) Vérifier que : $\mathbf{z}_1 = \mathbf{i}\mathbf{z}_2 + \mathbf{1}$
 - b) Montrer que M_1 est l'image de M_2 par la rotation de centre Ω d'affixe $\omega = \frac{1+i}{2}$ et d'angle $\frac{\pi}{2}$.
- 2) a) Vérifier que : $\frac{\mathbf{z}_2 \mathbf{m}}{\mathbf{z}_1 \mathbf{m}} = \mathbf{i} \frac{\mathbf{m} \mathbf{l}}{\mathbf{m} \mathbf{i}}$
- 3) a) Montrer que si les points M et M_1 et M_2 sont alignés , alors le point M appartient au cercle (Γ) dont l'un des diamètres est le segment **AB**.
 - b) Déterminer l'ensemble des points M tels que les points Ω , M, M_1 et M_2 sont cocycliques.

(remarquer que :
$$\frac{z_1 - \omega}{z_2 - \omega} = i$$
)

Exercice 05:

On considère dans l'ensemble des nombres complexes $\mathbb C$ l'équation (E) d'inconnue z :

(E):
$$z^2 - (1 + \sqrt{3})(1 + i)z + 4i = 0$$

- 1) a) Vérifier que $D = (\sqrt{3} 1)(1 i)^2$ est le discriminant de l'équation (E)
 - b) Ecrire sous forme exponentielle chacune des solutions de l'équation (E)
- 2) le plan complexe est rapporté au repère orthonormé direct $(\mathbf{O}, \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}})$

On considère les points A et B d'affixes respectifs $a=1+i\sqrt{3}$ et $b=\sqrt{3}+i$.

- a) Montrer que l'ensemble (D) des points M(z) tels que $z = \frac{1}{2}az$ est une droite passant par B.
- b) Soient M et M' deux points d'affixes respectifs \mathbf{z} et \mathbf{z}' tels que $\mathbf{z}' = \mathbf{a}\mathbf{z} \mathbf{b}$ et. Montrer que : $\frac{\mathbf{b}^2}{(\mathbf{z}' \mathbf{b})(\mathbf{z} \mathbf{b})} = \frac{2}{|\mathbf{z} \mathbf{b}|^2}$

Montrer que :
$$\frac{b^2}{(z-b)(z-b)} = \frac{2}{|z-b|^2}$$

c) En déduire que la droite (**D**) est la bissectrice de l'angle (\overrightarrow{BM} , $\overrightarrow{BM'}$)

Exercice 06:

le plan complexe est rapporté au repère orthonormé direct $(\mathbf{O}, \mathbf{u}, \mathbf{v})$

Soient les points $M_1(z_1)$ et $M_2(z_2)$ deux points du plan tels que les points O, M_1 et M_2 sont non alignés et

deux à deux distincts et M(z) le point d'affixe z vérifiant la relation : $z = \frac{2z_1z_2}{z_1 + z_2}$ 1) a) Montrer que : $\frac{z_1 - z}{z_2 - z} \times \frac{z_2}{z_1} = -1$

- - b) En déduire que le point M appartient au cercle circonscrit au triangle OM_1M_2 .
- 2) Montrer que si $\mathbf{z}_2 = \overline{\mathbf{z}_1}$, alors le point M appartient à l'axe des réels.

Nombres complexes

2 ème bac science maths **2019 -2020**

- 3) On suppose que M_2 est l'image de M_1 par la rotation R de centre O et d'angle $\alpha \in]0,\pi[$.
 - a) Calculer \mathbf{z}_2 en fonction de \mathbf{z}_1 et de α .
 - b) En déduire que le point M appartient à la médiatrice du segment $[M_1M_2]$.
- 4) Soit θ un réel donné de l'intervalle $]0,\pi[$.

On suppose que z_1 et z_2 sont les solutions de l'équation : $t \in \mathbb{C}$; $6t^2 - (e^{i\theta} + 1)t + (e^{i\theta} - 1) = 0$.

- a) Sans calculer \mathbf{z}_1 et \mathbf{z}_2 , vérifier que : $\mathbf{z} = 2 \frac{e^{i\theta} 1}{e^{i\theta} + 1}$
- b) Donner l'écriture trigonométrique du nombre complexe z en fonction de θ .

Exercice 07:

On considère dans complexes \mathbb{C} l'équation : (E): $\mathbf{z}^2 - (1+\mathbf{i})\mathbf{z} + 2 + 2\mathbf{i} = \mathbf{0}$

- 1) a) Vérifier que $\Delta = (1-3i)^2$ est le discriminant de l'équation (E)
 - b) Déterminer $\mathbf{z_1}$ et $\mathbf{z_2}$ les solutions de l'équation (E) dans $\mathbb C$ (on prendra $\mathbf{z_1}$ l'imaginaire pur)
 - c) Montrer que $\frac{\mathbf{z}_1}{\mathbf{z}_2} = \sqrt{2 \cdot e^{i\frac{3\pi}{4}}}$.
- 2) le plan complexe est rapporté au repère orthonormé direct $(\mathbf{O}, \mathbf{u}, \mathbf{v})$ On considère les points \mathbf{A} et \mathbf{B} d'affixes respectifs \mathbf{z}_1 et \mathbf{z}_2 .
 - a) Déterminer le nombre complexe e l'affixe du point E, milieu du segment [AB].
 - b) Soit **R** la rotation de centre **A** d'angle $-\frac{\pi}{2}$, on pose **R**(**E**) = **C**. Montrer que : $\mathbf{z}_{C} = -\frac{3}{2} + \frac{3}{2}\mathbf{i}$.
 - c) Soit **D** le point d'affixe $\mathbf{d} = \mathbf{1} + \frac{3}{2}\mathbf{i}$. Montrer que le nombre $\left(\frac{\mathbf{z}_2 \mathbf{d}}{\mathbf{c} \mathbf{d}}\right) \times \left(\frac{\mathbf{c} \mathbf{z}_1}{\mathbf{z}_2 \mathbf{z}_1}\right)$ est réel , puis donner une interprétation géométrique du résultat obtenu .

Exercice 08:

On considère dans l'ensemble \mathbb{C} l'équation : (E): $z^2 - (5 + i\sqrt{3})z + 4 + 4i\sqrt{3} = 0$

- 1) a) Vérifier que $\Delta = (3 i\sqrt{3})^2$ est le discriminant de l'équation (E)
 - b) Déterminer \mathbf{a} et \mathbf{b} les solutions de l'équation (E) dans \mathbb{C} (sachant que $\mathbf{b} \in \mathbf{IR}$)
 - c) Vérifier que $\mathbf{b} = (1 \mathbf{i}\sqrt{3})\mathbf{a}$.
- 2) le plan complexe est rapporté au repère orthonormé direct $(\mathbf{O}, \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}})$

On considère les points A et B d'affixes respectifs a et b.

- a) Déterminer le nombre complexe b_1 l'affixe du point B_1 image du point O par la rotation R de centre A d'angle $\frac{\pi}{2}$.
 - b) Montrer que f B est l'image de $f B_1$ par l'homothétie de centre f A et de rapport $\sqrt{3}$.
 - c) Soit C un point, d'affixe c, appartenant au cercle circonscrit au triangle OAB et différent de et de O et de A. Déterminer l'argument du nombre complexe $\frac{c}{c-a}$.

Exercice 09:

Partie I:

- 1) Résoudre dans l'ensemble \mathbb{C} , l'équation : $\mathbf{z}^2 + \mathbf{i} = \mathbf{0}$ (a est la solution de l'équation telle que $\mathbf{Re}(\mathbf{a}) > \mathbf{0}$)
- 2) a) Déterminer le module et l'argument du nombre complexe 1+a
 - b) En déduire que $\cos\left(\frac{\pi}{8}\right) = \frac{\sqrt{2+\sqrt{2}}}{2}$
 - c) Vérifier que (1+a)(1-a)=1+i, en déduire la forme trigonométrique du nombre complexe 1-a.

Nombres complexes

2 ème bac science maths 2019 -2020

Dans le plan complexe rapporté au repère orthonormé direct $(\mathbf{O}, \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}})$, on considère les points \mathbf{A} , \mathbf{B} , \mathbf{M} et M' d'affixes respectifs \mathbf{a} , $-\mathbf{a}$, \mathbf{z} et \mathbf{z}' tels que $\mathbf{z}\mathbf{z}' + \mathbf{i} = \mathbf{0}$.

- 1) Soit N le point d'affixe \bar{z} , conjugué de z. Montrer que les droites (ON) et (OM) sont perpendiculaires.
- 2) a) Montrer que : $z'-a=i\frac{z-a}{az}$. b) Montrer que si $z\neq -a$, alors : $z'\neq -a$ et $\frac{z'-a}{z'+a}=-\frac{z-a}{z+a}$.
- 3) On suppose que les points **A**, **B**, **M** sont non alignés. Montrer que le point M' appartient au cercle circonscrit au triangle ABM.

Exercice 10:

le plan complexe est rapporté au repère orthonormé direct $(\mathbf{O}, \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}})$.

Soit θ un nombre réel tel que $\theta \in \left[0, \frac{\pi}{2}\right] - \left\{\frac{\pi}{4}\right\}$

- 1) On considère dans \mathbb{C} l'équation (E) d'inconnue z suivante : (E): $z^2 \sqrt{2}e^{i\theta}z + e^{2i\theta} = 0$
 - a) Vérifier que $\Delta = (i\sqrt{2}e^{i\theta})^2$ est le discriminant de l'équation (E)
 - b) Ecrire sous forme trigonométrique les solutions $\mathbf{z_1}$ et $\mathbf{z_2}$ de l'équation (E) dans \mathbb{C} .
- 2) On considère les points I, J, T_1 , T_2 et A d'affixes respectifs 1, -1 $e^{i(\theta + \frac{\pi}{4})}$, $e^{i(\theta + \frac{\pi}{4})}$ et $\sqrt{2}e^{i\theta}$.
 - a) Montrer que les droites (OA)et (T_1T_2) sont perpendiculaires
 - b) Soit K le milieu du segment $[T_1T_2]$, montrer que les points O, K et A sont alignés.
 - c) En déduire que la droite (**OA**) est la médiatrice du segment $[\mathbf{T}_1\mathbf{T}_2]$.
- Soit **R** la rotation de centre T_1 et d'angle $\frac{\pi}{2}$.
 - a) Donner l'expression complexe de la rotation **R**.
 - b) Vérifier que l'affixe du point **B** image du point **I** par la rotation **R** est : $\mathbf{b} = \sqrt{2}\mathbf{e}^{\mathbf{i}\theta} + \mathbf{i}$
 - c) Montrer que les droites (IJ) et (AB) sont perpendiculaires.
- 4) Déterminer l'affixe du point C l'image du point A par la translation de vecteur $-\mathbf{v}$.
- 5) Montrer que le point A est le milieu du segment [BC].

Exercice 11:

Partie I : Soit a un nombre complexe différent de 1.

On considère dans l'ensemble des nombres complexes C l'équation (E) d'inconnue z

(E):
$$2z^2-2(a-1)z+(a-1)^2=0$$

- 1) Montrer que $\mathbf{z}_1 = \frac{(\mathbf{a} \mathbf{1})(\mathbf{1} + \mathbf{i})}{2}$ et $\mathbf{z}_2 = \frac{(\mathbf{a} \mathbf{1})(\mathbf{1} \mathbf{i})}{2}$ sont les solutions de l'équation (E).
- 2) On pose: $a = e^{i\theta}$ tel que $0 < a < \pi$
 - a) Montrer que $a-1=2\sin\left(\frac{\theta}{2}\right)e^{i\left(\frac{\theta-\pi}{2}\right)}$
 - b) En déduire la forme trigonométrique de chacune des solutions \mathbf{z}_1 et \mathbf{z}_2 .

le plan complexe est rapporté au repère orthonormé direct $(\mathbf{O}, \mathbf{u}, \mathbf{v})$

On suppose que Re(a) < 0 et on considère les points A(a), B(-i), C(i) et B'(1).

- 1) Déterminer les affixes de chacun des points J et K milieux respectifs des segment [AC] et [AB] en fonction de a.
- 2) Soit \mathbf{R}_1 la rotation de centre \mathbf{J} et d'angle $\frac{\pi}{2}$ et \mathbf{R}_2 la rotation de centre \mathbf{K} et d'angle $\frac{\pi}{2}$.

On pose : $C' = R_1(C)$ et $A' = R_2(A)$ et soient c' l'affixe de C' et a l'affixe de A.

Montrer que : $\mathbf{a}' = \mathbf{z}_1$ et $\mathbf{c}' = \mathbf{z}_2$.

Nombres complexes

2 ème bac science maths 2019 -2020

3) Calculer $\left(\frac{a'-c}{a-1}\right)$ en déduire que la droite (AB') est une hauteur dans le triangle A'B'C'.

Exercice 12:

Partie I: Soit a un nombre complexe non nul.

On considère dans l'ensemble des nombres complexes C l'équation (E) d'inconnue z

(E):
$$2z^2 - (3 + i\sqrt{3})az + (1 + i\sqrt{3})a^2 = 0$$

- 1) Vérifier que $\Delta = (-1 + i\sqrt{3})^2 a^2$ est le discriminant de l'équation (E)
- 2) Résoudre dans C l'équation (E)

Partie II: le plan complexe est rapporté au repère orthonormé direct $(\mathbf{O}, \mathbf{u}, \mathbf{v})$

On considère les points A, B et M d'affixes respectifs a, $b = ae^{i\pi/3}$ et z.

Soit **R** la rotation de centre **M** et d'angle $\frac{\pi}{3}$. On pose : $\mathbf{A}_1 = \mathbf{R}^{-1}(\mathbf{A})$ et $\mathbf{A}_1 = \mathbf{R}^{-1}(\mathbf{A})$ soient \mathbf{a}_1 et \mathbf{b}_1 les affixes respectifs de \mathbf{A}_1 et \mathbf{B}_1 .

1) Vérifier que le triangle **OAB** est équilatéral.

2) a) Montrer que :
$$a_1 = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)a + \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z$$
 et $a_2 = \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)a + \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)z$

b) Montrer que le quadrilatère OA_1MB_1 est un parallélogramme...

Exercice 13:

Les deux parties I et II sont indépendantes.

le plan complexe est rapporté au repère orthonormé direct $(\mathbf{O}, \mathbf{u}, \mathbf{v})$

Partie I: On considère dans l'ensemble C l'équation: (E): $z^2 - 4\left(1 + \frac{2}{3}i\right)z + \frac{5}{3} + 4i = 0$

- 1) Vérifier que le nombre $z_1 = 1 + \frac{2}{3}i$ est une solution de l'équation (E)
- 2) Montrer que la deuxième solution de l'équation (E) est $z_2 = 3z_1$

Partie II: On considère trois points deux à deux distincts A, B et Ω d'affixes respectifs a, b et ω

Soit **R** la rotation de centre Ω et d'angle $\frac{\pi}{3}$. On pose : P = R(A) et B = R(Q) soient **p** et **q** les affixes respectifs de **P** et **Q**.

- 1) a) Montrer que : $\mathbf{p} = \omega + e^{\frac{i\pi}{3}}(\mathbf{a} \omega)$ et $\mathbf{q} = \omega + e^{\frac{-i\pi}{3}}(\mathbf{b} \omega)$.
 - b) Montrer que : $\frac{1 e^{\frac{i\pi}{3}}}{1 e^{\frac{3}{3}}} = e^{\frac{4i\pi}{3}}$.
 - c) Montrer que : $\frac{\mathbf{p} \mathbf{a}}{\mathbf{q} \mathbf{b}} = \left(\frac{\boldsymbol{\omega} \mathbf{a}}{\boldsymbol{\omega} \mathbf{b}}\right) e^{\frac{4i\pi}{3}}$.
- 2) On suppose que : $\left(\frac{\omega a}{\omega b}\right) = e^{\frac{2i\pi}{3}}$
 - a) Montrer que est un APQR parallélogramme.
 - b) Montrer que $\arg\left(\frac{\mathbf{b}-\mathbf{a}}{\mathbf{p}-\mathbf{b}}\right) \equiv \frac{\pi}{2}[2\pi]$, en déduire que **APQR** est un rectangle.

Nombres complexes

2 ème bac science maths 2019 -2020

Exercice 13:

Les deux parties I et II sont indépendantes.

le plan complexe est rapporté au repère orthonormé direct $(\mathbf{O}, \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}})$

Partie I:

On considère dans \mathbb{C} l'équation : (E): $iz^2 + (2-i)az - (1+i)a^2 = 0$, où a est un complexe non nul.

- 1) Déterminer \mathbf{z}_1 et \mathbf{z}_2 solutions de l'équation (E).
- 2) a) vérifier que : $z_1z_2 = a^2(i-1)$.
 - b) Montrer que : $(\mathbf{z}_1 \mathbf{z}_2 \text{ est un réel}) \iff \arg(\mathbf{a}) = \frac{-3\pi}{8} \left[\frac{\pi}{2} \right]$

Partie II: Soit c un nombre complexe non nul et c un nombre complexe non nul.

- 1) On considère les points A, B, C, D et M d'affixes respectifs : 1, (1+i), c, ic et z.
 - a) Montrer que : $(A, Det M \text{ sont alignés}) \iff (ic+1)z+(ic-1)z=2ic$
 - b) Montrer que : $(AD) \perp (OM) \iff (ic+1)z (ic-1)z \neq 0$
- 2) Soit h1'affixe du point H la projection orthogonale du point O sur la droite (AD)
 - a) Montrer que : $h-(1+i)=\frac{i}{c}(h-c)$
 - b) En déduire que : (BH) ⊥ (CH)

Exercice 14:

Partie I: On considère dans l'ensemble \mathbb{C} l'équation : (E): $z^3 - (1+2i)z^2 + 3(1+i)z - 10(1+i) = 0$

- 1) Montrer que le nombre -2i est une solution de l'équation (E)
- 2) Déterminer les deux nombres complexes α et β tels que :

 $(\forall z \in C)$: $z^3 - (1+2i)z^2 + 3(1+i)z - 10(1+i) = (z+2i)(z^2 + \alpha z + \beta)$

- a) Déterminer les deux racines carrées du nombre complexe (5 12i)
- b) Résoudre dans l'équation (E).

Partie II : le plan complexe est rapporté au repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$

On considère les points deux à deux A, B et C d'affixes respectifs a = -1+3i, b = -2i et c = 2+i.

- 1) Montrer que ABC est un triangle rectangle et isocèle de sommet C
- 2) Soit R_1 la rotation de centre B et d'angle $\frac{\pi}{3}$ et R_2 la rotation de centre A et d'angle $\frac{-2\pi}{3}$.

Soit M un point du plan d'affixe z On pose: $M_1 = R_1(M)$ et $M_2 = R_2(M)$

- a) Vérifier que l'expression analytique de la rotation \mathbf{R}_1 est : $\mathbf{z}_1 = \left(\frac{1+\mathbf{i}\sqrt{3}}{2}\right)\mathbf{z} \sqrt{3} \mathbf{i}$
- b) Déterminer $\mathbf{z_2}$ affixe de $\mathbf{M_1}$ en fonction de \mathbf{z} .
- c) En déduire que I, milieu du segment $[M_1M_2]$ est un point fixe.

Exercice 15:

Les deux parties I et II sont indépendantes.

Partie I: Soit m un nombre complexe non nul.

On considère dans l'ensemble \mathbb{C} l'équation : $(\mathbf{E}_{\mathbf{m}})$: $\mathbf{z}^2 + [(1-\mathbf{i})\mathbf{m} - 4]\mathbf{z} - \mathbf{i}\mathbf{m}^2 - 2(1-\mathbf{i})\mathbf{m} + 4 = 0$

- 1) Vérifier que $\mathbf{z}_1 = 2 \mathbf{m}$ est une solution de l'équation $(\mathbf{E}_{\mathbf{m}})$.
- 2) Soit \mathbf{z}_2 la deuxième solution de 1 équation $(\mathbf{E}_{\mathbf{m}})$.
 - a) Montrer que : $(z_1 z_2 = 1 \iff im^2 + 2(1-i) 3 = 0)$
 - b) Déterminer la valeur de \mathbf{m} tel que $\mathbf{z}_1 \mathbf{z}_2 = \mathbf{1}$

Nombres complexes

2 ème bac science maths 2019 -2020

Partie II

le plan complexe est rapporté au repère orthonormé direct $(\mathbf{O}, \mathbf{u}, \mathbf{v})$

On considère l'application δ qui à tout point \mathbf{M} d'affixe \mathbf{z} associe le point \mathbf{M} d'affixe \mathbf{z} tel que : $\mathbf{z} = -\mathbf{z} + \mathbf{2}$.

Soit la rotation R de centre Ω d'affixe $\omega = 1 + i$ et d'angle $\frac{\pi}{2}$ et z'' l'affixe du point M'' image du point M par la rotation R.

- 1) a) Montrer que l'application δ est la symétrie centrale de centre le point K d'affixe 1.
 - b) Montrer que z'' = iz + 2.
- 2) On suppose que le point M est distinct du point O, origine du repère et soit Ale point d affixe 2.
 - a) Calculer $\frac{z''-2}{z-2}$, en déduire la nature du triangle **AM'M**"
 - b) Déterminer l'ensemble des points M tels que les points A, Ω , et M soient cocycliques.

Exercice 16:

le plan complexe est rapporté au repère orthonormé direct $(\mathbf{O}, \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}})$

- 1) On considère dans l'ensemble \mathbb{C} l'équation : (E): $z^2 4iz 2 + 2i\sqrt{3} = 0$
 - a) Vérifier que le nombre $\mathbf{a} = 1 + \mathbf{i}(2 \sqrt{3})$ est une solution de l'équation (E).
 - b) En déduire b la deuxième solution de l'équation (E)
- 2) a) Montrer que $a^2 = 4(2 \sqrt{3})e^{i\frac{\pi}{6}}$.
 - b) Ecrire a sous forme trigonométrique.
- 3) On considère les points A, B et C d'affixes respectifs a, b et $c = 2i + 2e^{\frac{\pi}{7}}$. Soit le cercle (Γ) dont [AB] est l'un de ses diamètres.
 - a) Déterminer ω l'affixe du point Ω , centre du cercle (Γ)
 - b) Montrer que $\, O \,$ et $\, C \,$ sont deux points du cercle $\, (\Gamma) \,$.
 - c) Montrer que le complexe $\frac{c-a}{c-b}$ est imaginaire pur.

Exercice 17:

le plan complexe est rapporté au repère orthonormé direct $(\mathbf{O}, \mathbf{u}, \mathbf{v})$.

- 1) a) Déterminer les racines carrées du complexe 3+4i
 - b) Résoudre dans (1) équation : (E): $4z^2 10iz 7 i = 0$
- 2) Soient **a** et **b** les deux solutions de l'équation (**E**) tel que **Re**(**a**)=**0** et soient les deux points **A** et **B** d'affixes respectifs **a** et **b**.
 - a) Vérifier que : $\frac{\mathbf{b}}{\mathbf{a}} = \mathbf{1} \mathbf{i}$
 - b) En déduire que le triangle AOB est isocèle rectangle en A.
- 3) Soit C un point d'affixe c différent de A et D l'image du point B par la rotation de centre C et d'angle $\frac{\pi}{2}$

Soit **K** 1'image du point **D** par la translation de vecteur \overrightarrow{AO} .

- a) Déterminer **c** en fonction du nombre complexe **d** affixe du point A.
- b) Déterminer en fonction de c le nombre complexe k affixe du point K.
- c) Déterminer l'écriture algébrique du nombre complexe $\frac{\mathbf{k} \mathbf{c}}{\mathbf{a} \mathbf{c}}$, en déduire la nature du triangle \mathbf{ACK} .

Nombres complexes

2 ème bac science maths

2019 - 2020

Exercice 18:

le plan complexe est rapporté au repère orthonormé direct $(\mathbf{O}, \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}})$.

Soit \mathbf{u} un nombre complexe différent de $(1-\mathbf{i})$

- 1) a) Développer $(iu-1-i)^2$
 - b) Résoudre dans \mathbb{C} l'équation d'inconnue \mathbf{z} : (E): $\mathbf{z}^2 2(\mathbf{u} + \mathbf{1} \mathbf{i})\mathbf{z} + 2\mathbf{u}^2 4\mathbf{i} = \mathbf{0}$
- 2) Soient les points A((1+i)u-2i), B((1-i)u+2), U(u) et $\Omega(2-2i)$.
 - a) Déterminer k l'affixe du point K milieu du segment [AB], puis déterminer le vecteur de la translation qui transforme U en K.
 - b) Soit **R** la rotation de centre Ω et d'angle $-\frac{\pi}{2}$. Montrer que : $\mathbf{R}(\mathbf{A}) = \mathbf{B}$.
 - c) En déduire que les droites (ΩA) et (AB) sont perpendiculaires.
 - d) A partir du point U expliquer une méthode de construction des points A et B.
- 3) On pose $\mathbf{u} = (1+\mathbf{i})\mathbf{a} 2\mathbf{i}$ tel que $\mathbf{a} \in \mathbb{R}$.
 - a) Déterminer les affixes des vecteurs en \overrightarrow{AB} et \overrightarrow{AU} en fonction de \overrightarrow{AU}
 - b) En déduire que les points A, B et U sont alignés.

Exercice 19:

Soit **m** un nombre complexe différent de 1.

<u>Partie I</u>: On considère dans l'ensemble des nombres complexes \mathbb{C} l'équation (\mathbf{E}_m) d'inconnue \mathbf{z} :

(E_m):
$$z^2 - (1-i)(m+1)z - i(m^2+1) = 0$$

- 1) a) Vérifier que $\Delta = [(1+i)(m-1)]^2$ est le discriminant de l'équation (E_m)
 - b) Résoudre l'équation (E_m) .
 - c) Déterminer les deux valeurs de **m** sous forme algébrique pour que le produit des solutions de l'équation (E_m) soit égal à 1.

2) On pose $\mathbf{z}_1 = \mathbf{1} - \mathbf{i}\mathbf{m}$ et $\mathbf{z}_2 = \mathbf{m} - \mathbf{i}$ Dans le cas $\mathbf{m} = \mathbf{e}^{\mathbf{i}\theta}$ et $\frac{\pi}{2} < \theta < \pi$, écrire \mathbf{z}_1 et \mathbf{z}_2 sous forme trigonométrique.

Partie II: le plan complexe est rapporté au repère orthonormé direct $(\mathbf{O}, \mathbf{u}, \mathbf{v})$

On considère les points M, M_1 et M_2 d'affixes respectifs m, $z_1 = 1 - im$ et $z_2 = m - i$.

- 1) Déterminer l'ensemble des points M tels les points M, M₁et M₂ soient alignés.
- 2) a) Démontrer que la transformation \mathbf{R} qui associe à tout point $\mathbf{M}(\mathbf{z})$ le point $\mathbf{M}'(\mathbf{z}')$ tel que : $\mathbf{z}' = \mathbf{1} i\mathbf{z}$ est une rotation dont on déterminera le centre et l'angle.
 - b) Démontrer que le nombre $\frac{z_2 z_1}{z_2 m}$ est imaginaire pur si et seulement si Re(m) + Im(m) = 1.
 - c) En déduire l'ensemble des points \mathbf{M}_{tels} que les points $\mathbf{\Omega}$, \mathbf{M} , \mathbf{M}_1 et \mathbf{M}_2 sont cocycliques.

Exercice 20:

le plan complexe est rapporté au repère orthonormé direct $(\mathbf{O}, \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}})$.

On considère l'application \mathbf{r} qui à tout point $\mathbf{M}(\mathbf{z})$ associe le point $\mathbf{M}_1(\mathbf{z}_1)$ tel que : $\mathbf{z}_1 = \frac{1+i\sqrt{3}}{2}\mathbf{z} + \frac{\sqrt{3}+i}{2}$

Et l'application h qui à tout point M(z) associe le point $M_2(z_2)$ tel que : $z_2 = 2z + 3i$. On pose : F = hor

- 1) Déterminer la nature de chacune des applications r et h.
- 2) On considère les points $\Omega(i)$ et A(a) tel que a est un complexe donné différent de i. On pose : $\mathbf{B} = \mathbf{F}(\mathbf{A})$, $\mathbf{C} = \mathbf{F}(\mathbf{B})$ et $\mathbf{D} = \mathbf{F}(\mathbf{C})$.
 - a) Montrer que si le point $\mathbf{M}'(\mathbf{z}')$ est l'image de $\mathbf{M}(\mathbf{z})$ par l'application \mathbf{F} alors $\mathbf{z}' \mathbf{i} = 2\mathbf{e}^{\mathbf{i}^{4\pi}}(\mathbf{z} \mathbf{i})$.
 - b) Vérifier que Ω est le seul point vérifiant $F(\Omega) = \Omega$

Nombres complexes

2 ème bac science maths 2019 -2020

- 3) a) Déterminer en fonction du nombre complexe a, les nombres complexes b, c et d affixes respectifs des points B, C et D.
 - b) Montrer que les points Ω , A et D sont alignés.
 - c) Montrer que le point Ω est le barycentre du système pondéré $\{(B,4);(C,2);(D,1)\}$
 - d) Déterminer l'ensemble des points **A(a)** pour que le point **D**appartienne à l'axe des réels (des abscisses).

Exercice 21:

Soit a un nombre complexe non nul et a son conjugué.

Partie I : On considère dans l'ensemble des nombres complexes \mathbb{C} l'équation (\mathbf{E}_a) d'inconnue \mathbf{z}

$$(E_a)$$
: $iz^2 + (a + \bar{a} - i)z - \bar{a} - ia\bar{a} = 0$

- 1) a) Vérifier que $\Delta = (\mathbf{a} \mathbf{a} \mathbf{i})^2$ est le discriminant de l'équation $(\mathbf{E}_{\mathbf{a}})$
 - b) Résoudre l'équation $(\mathbf{E}_{\mathbf{a}})$.
- 2) Montrer que \mathbf{a} est solution de l'équation $(\mathbf{E}_{\mathbf{a}})$ si et seulement si $\mathbf{Re}(\mathbf{a}) = \mathbf{Im}(\mathbf{a})$.

Partie II: le plan complexe est rapporté au repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$. On suppose que Re(a) = Im(a)

On considère les points A, B et C d'affixes respectifs \mathbf{a} , \mathbf{ia} et $(1+\mathbf{ia})$.

- 1) On pose : $z = \frac{(1+ia)-a}{ia-a}$.
 - a) Vérifier que : $\overline{z} = \frac{(i-1)\overline{a} i}{i\overline{a} a}$
 - b) Montrer que les points A, B et C sont alignés si et seulement si $Im(a) = \frac{1}{2}$
- 2) On suppose dans cette question que $Im(a) \neq \frac{1}{2}$

Soit \mathbf{R}_1 la rotation de centre \mathbf{A} et d'angle $-\frac{\pi}{2}$ et \mathbf{R}_2 la rotation de centre \mathbf{A} et d'angle $\frac{\pi}{2}$

On pose : $\mathbf{R}_1(\mathbf{B}) = \mathbf{B}'$ et \mathbf{E} le milieu de $[\mathbf{BC}]$.

- a) Déterminer b' et c' les affixes respectifs des points B' et
- b) Montrer que les droites $(AE)_{et} (B'C')$ et que B'C' = 2AE.

Exercice 22:

le plan complexe est rapporté au repère orthonormé direct $(\mathbf{O}, \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}})$.

On considère l'ensemble (H) = $\left\{ M(z) \in (P) / z^2 + \overline{z}^2 - |z|^2 = 1 \right\}$

- 1) a) Déterminer une équation cartésienne de l'ensemble (H).
 - b) Montrer que (H) est une hyperbole et déterminer son centre, ses sommets et ses asymptotes dans le repère $(\mathbf{O}, \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}})$.
 - c) Construire (H).
- 2) M(a) et M(b) sont deux points de (H). On pose $\varphi(a,b) = a\overline{b} + \overline{ab} \overline{ab}$
 - a) Montrer que $M(\phi(a,b)) \in (H)$
 - b) Montrer que $\varphi(a,1)=1$ et que $\varphi(a,a)=1$
- 3) L'ensemble est muni de la loi de composition interne (*) telle que pour tout M(a) et M(b) de (H): $M(a)*M(a)=M(\phi(a,b))$. Montrer que (H),* est un groupe commutatif.

Cours	du	Soir	Dar
,	AI :	fikr	

Nombres complexes

2 ème bac science maths 2019 -2020

Exercice 22:

Soit a un nombre complexe non nul.

Partie I:

1) a) Vérifier que le nombre $\mathbf{u} = \mathbf{a} + \mathbf{i}$ est une solution de l'équation :

(E):
$$z^2 - (1+a)(1+i)z + (1+a^2)i = 0$$

b) Déterminer v la deuxième solution de l'équation (E).

2) On suppose que $|\mathbf{a}| = 1$.

a) Montrer que : $\frac{\mathbf{u}}{\mathbf{v}} \in \mathbf{IR}$.

b) Vérifier que : $\mathbf{u}^2 = \mathbf{a} \left[(\mathbf{a} - \mathbf{a}) + 2\mathbf{i} \right]$

c) En déduire que : $arg(u) = arg(a) + \frac{\pi}{4} [\pi]$

3) Montrer que : $|\mathbf{u}| + |\mathbf{v}| \ge 2$

Partie II: le plan complexe est rapporté au repère orthonormé direct $(\mathbf{O}, \overrightarrow{\mathbf{e}_1}, \overrightarrow{\mathbf{e}_2})$. Soit \mathbf{m} un nombre réel strictement plus grand que $2 \cdot (\mathbf{E}_{\mathbf{m}})$ est l'ensemble des points $\mathbf{M}(\mathbf{a})$ du plan complexe tel que : $|\mathbf{u}| + |\mathbf{v}| = \mathbf{m}$

1) Montrer que l'ensemble est ellipse de centre O origine du repère.

2) On pose : $\mathbf{a} = \mathbf{x} + \mathbf{i}\mathbf{y}$ où \mathbf{x} et \mathbf{y} sont deux nombres réels.

a) Montrer que l'équation cartésienne de l'ellipse (E_m) est : $x^2 + \left(1 - \frac{4}{m^2}\right)y^2 = \frac{m^2}{4} - 1$

b) Construire l'ellipse (\mathbf{E}_4) .

construire l'empse (E_4) .

Soient les points $A(\sqrt{3})$ et B(2i) sommets de l'ellipse (E_4) . Montrer que la droite (AB) est tangente à

l'ellipse $\left(\mathbf{E}_{\frac{8}{\sqrt{7}}}\right)$.