

AsthmaSCELNet: A Lightweight Supervised Contrastive Embedding Learning Framework for Asthma Classification Using Lung Sounds

Arka Roy, Udit Satija Indian Institute of Technology Patna

Motivation

- Asthma is one of the severe chronic respiratory diseases.
- Existing diagnostic modalities (spirometry, peak flow rate) are not either dependent on patient efforts or insensitive to track minor airway obstructions.
- Asthma is often characterized by wheezing events of lung sounds.
- Existing researches only use traditional ML o incapableof extracting accurate representation of the highly varying time-frequency content of lung sound \rightarrow leads to poor classification.

Key contribution

- Supervised contrastive triplet loss-based embedding extraction to provide better classification margin across the healthy and asthmatic sounds.
- Designing a lightweight embedding extraction backbone (LEEB) that exploits the paradigm of lightweight neural network architecture.
- Mel-spectrogram TFR investigation for the first time in asthma classification.

Figure 1: Basic intuition of triplet loss

Proposed AsthmaSCELNet framework for asthma classification

Figure 2: Block diagram of proposed AsthmaSCELNet

- Database used: Chest wall lung sound database (CWLSD) [1]
- AsthmaSCELNet utilizes triplet loss $(\mathcal{L}_{triplet})$ -based training to extract compact embedding from lung sounds using the LEEB module.

$$\mathcal{L}_{triplet} = \max\{\mathbf{0}, \gamma + \mathcal{D}(\mathbf{E}^{\mathbf{Anc}}, \mathbf{E}^{\mathbf{Pos}}) - \mathcal{D}(\mathbf{E}^{\mathbf{Anc}}, \mathbf{E}^{\mathbf{Neg}})\}$$
(1)

 γ , and $\mathcal{D}(\cdot)$ indicate the margin between two classes and the Euclidean distance operator.

• Frozen lightweight embedding extraction module (LEEB) module-based embeddings are employed in downstream asthma categorization.

Table 1: Optimal Simulation Parameters Used to Train LEEB Module and MLP Classifier

		Model Simulation parameters						
	$\mathbf{Margin}\ (\gamma)$	Trainable parameter	Optimizer	Learning rate	Batch size	Epochs	Loss function	
LEEB	0.2	18856	Adam	0.008	64	400	Triplet loss	
MLP classifier	_	1282	Auaiii	0.008	04	100	Binary cross entropy	

Figure 3: Multiscale residual inception mobile block (MSRIMB)

Experimental results

t-SNE based LEEB feature visualization:

Classification performance

Figure 4: 2D t-SNE plot of (a) raw lung sounds, and (b) class, (b) confusion matrix

embeddings extracted from LEEB module.

Figure 6: Activation map of healthy and asthma.

Figure 5: (a) ROC curve for both asthma and healthy

Table 2: Quantitative Performance Comparison of AsthmaSCELNet with **Existing Methodologies**

	0			9			
Defenence	Data type	Results (%)					
Reference	(database)	acc	sen	spe	ICBHI score		
Yadav	Speech	75.4					
et al. [2]	(own)	73.4					
Altan	Lung sound	81 61	85.83	77 11	81.47		
et al. [3]	(own)	04.01	05.05	/ / • 1 1	01.47		
Tripathy	Lung sound	80.35	84.88	75.23	80.05		
et al. [4]	(CWLSD)	00.55					
Proposed	Lung sound	08 54	98.27	98.73	98.5		
rroposeu	(CWLSD)	70.34					

Conclusion

- We establish the efficacy of lung sounds over other modalities for asthma classification.
- Outperforms all the traditional ML approaches and reduces the burden of manual feature extraction.
- Proposed lightweight model is suitable for deployment on a low-resource-embedded processor.

References

- 1. M. Fraiwan et al. "A dataset of lung sounds recorded from the chest wall using an electronic stethoscope," Data in Brief, vol. 35, p. 106913, 2021.
- 2. S. Yadav et al. "Analysis of Acoustic Features for Speech Sound Based Classification of Asthmatic and Healthy Subjects," ICASSP 2020.
- 3. G. Altan et al. "The diagnosis of asthma using hilbert-huang transform and deep learning on lung sounds," Akilli Sistemlerde Yenilikler ve Uygulamalari (ASYU), Antalya, p. 82, 2017.
- 4. R. K. Tripathy et al. "Automated detection of pulmonary diseases from lung sound signals using fixed-boundary-based empirical wavelet transform," IEEE Sensors Letters, vol. 6, no. 5, pp. 1–4, 2022.

Project Webpage:

Code & Dataset & Model

