RV COLLEGE OF ENGINEERING*

(An Autonomous Institution affiliated to VTU)

I Semester B. E. Examinations May-2023

Common to Al / AS/ BT / CH / CS / CY / CD / EE / IM / IS / ME / CV

PRINCIPLES OF ELECTRONICS ENGINEERING (ELECTIVE)

Instructions to candidates:

Time: 03 Hours

Maximum Marks: 100

 Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.

2. Answer FIVE full questions from Part B. Question number 2 is compulsory. Choose any one full question from 3 or 4, 5 or 6, 7 or 8 and 9 or 10.

PART-A

1.1	The output voltage of a regulated <i>DC</i> power supply changes from 20 <i>V</i> to 19.7 <i>V</i> when the load is increased from zero to maximum. Then the	00
1.2		02
1.2	and le as 5044 then the value of le and a are	
	respectively	02
1.3		02
	at $1MHz$. If the input is $3mW$ at $2MHz$, then the output voltage is	02
1.4	In an RC phase shift oscillator using an ideal voltage amplifier the	02
	frequency of oscillation is $2KHz$. If $R = 6.25\Omega$, the value of C is	
1.5	A man investigation 116	01
1.5	A non-inverting amplifier using an op-amp has $R_i = 10K\Omega$ and	
1.6	An anathraph and 1.5 1	01
0.1	An operational amplifier has a differential gain of 100 and a common	
1 7	The energy complement of 0.101.1.	01
	The decimal equivalent of (221)	01
	The minimum number of NOD restances in the property of NOD restanc	01
1.9	The infilling figures of NOR gates required to realize XOR gates is	
1.10	For an AM signal the handwidth is 10kHz and the list of	01
1.10	component present is 705KHz. The corrier fragment and the highest frequency	
	signal is	0.0
1.11		02
	the modulation index is 70% then the peak voltage of the modulation	
	signal is	01
1.12		01
	of modulation is	01
1.13		01
	modulating signal to be sinusoidal, the total power in the amplitude-	
	modulated wave is	01
1.14	i a change in the physical	01
	phenomenon is called	01
	1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13	to 19.7 V when the load is increased from zero to maximum. Then the load regulation is

	The elements which exhibit Piezo-electric qualities are called	
	h measure a magnetic field of	
1.16	A Hall effect transducer is used to measure a magnetic field of $0.5wb/m^2$, Bismuth slab of $2mm$ thickness with a Hall coefficient of $0.5wb/m^2$, Bismuth slab of $2mm$ thickness with a Hall coefficient of $0.5wb/m^2$, Bismuth slab of $2mm$ thickness with a Hall coefficient of $0.5wb/m^2$, Bismuth slab of $2mm$ the $0.5wb/m^2$ is used. Then the	
	$0.5wb/m^2$, Bismuth slab of $2mm$ thickness we are $1*10 \text{ eVm}/(A-wb/m^2)$, and current $3A$ is used. Then the corresponding output voltage is	01

PART-B

2	a	Draw the circuit of a full wave bridge rectifier and describe its	06
2		working with suitable Waveforms.	
	b	working with suitable Waveforms. In a Zener regulator circuit shown in Fig 2b, design the value of R , so that the circuit performs satisfactorily under all given conditions.	
		that the circuit performs satisfactoring	
		$I_{\text{zmin}} = 5mA$, $P_{\text{d(max)}} = 2.5 \text{ W}$ and $Vz = 5.6V$.	
		· s · · · · · · · · · · · · · · · · · ·	
		/ _r + ≥ _	
		V _m 12V to 15V	
		56Ω to 560Ω	
		<u>+</u>	
		Fig 2b	06
		An amplifier having a power gain of $17dB$ delivers a power output of	`
	С	40W to a load of $1K\Omega$. Calculate	
		i) The input power needed	
		ii) The input voltage needed	04
		Assume voltage gain of the amplifier is $38dB$.	04
			-
3	a	Draw the circuit of an integrator using an op-amp and derive the	06
		expression for the output voltage.	00
	b	Calculate the output voltage of a three-input summing amplifier	
		shown in Fig 3b	
		R ₁ =1MΩ	
		R. : 200K	
		V ₁ = -2V	
		V _j = +2V + + +	
		V ₂ = +1V	
		Fig 3b	06
		Mention any four advantages of negative feedback.	04
	С	Mention any four advantages of negative feedback.	
		OR	
4	a	Explain the operation of RC phase shift oscillator with a neat diagram	06
		and also mention the gain equation.	06
	b	Design a scaling adder circuit using an op-amp to obtain an output	
		expression. $V_0 = -(3V_1 + 4V_2 + 5V_3)$ where V_1 , V_2 , V_3 are the inputs.	05
		Assume the value of feedback resistor as $10K\Omega$.	
	С	Draw the circuit of a differentiator using an op-amp. Derive the	05
		expression for the output voltage.	

5	a	Write the truth table for <i>SUM</i> and <i>CARRYOUT</i> of a full adder. From the	
	b	truth table, obtain the logic expressions for the same and then realize the full adder using 2 half adders. Simplify the logic expression and implement the logic circuit using NOR Gate.	05
		$Y = \overline{(A + \overline{B} + C)(\overline{A} + B + C)(A + B)}$	
	С	Simplify the logic expression using K map and implement the logic circuit using $NAND$ Gate.	05
		$F(A,B,C,D) = \Sigma m(0,1,3,5,7,8,9,11,13,15)$	06
		OR	
б	a	Simplify the logic expression and implement the logic circuit using <i>NAND</i> Gate	
	b	$Y = (A + \overline{B} + C)(\overline{A} + B + \overline{C})(A + \overline{B})$ Simplify the logic expression using K map and implement the logic circuit using basic Gates.	06
	С	$F(A,B,C,D) = \Sigma m(0,1,2,5,7,8,9,10,13,15)$ Realize the $EX - NOR$ function using a minimum number of NOR gates	06
		only.	04
7	а	With the help of a neat block diagram explain the working of a	
	b	Superheterodyne receiver. A carrier of 2 <i>MHz</i> has 1 <i>KW</i> of its power amplitude modulated with a sinusoidal signal of 2 <i>KHz</i> . The depth of modulation is 60%. Calculate the sideband frequencies, bandwidth, power in sidebands, total	
	С	power, and efficiency. Write any four differences between Harvard and Von-Neumann CPU	06
		architecture. OR	04
8	а	With the help of a block diagram, explain the working of a digital communication system.	06
	b	For an AM signal $V_{AM} = 10(1 + 0.5sin6280t)sin(62.8 \times 10^6t)$. Calculate the sideband frequencies, bandwidth, amplitude of each sideband	
	С	Total power, and efficiency. List any four differences between RISC and CISC.	06 04
		2137 Mary Tour ameroneou between hibu and thou.	01
9	а	With the help of a neat diagram, discuss the working principle o LVDT.	08
	b	Explain the working principle of ultrasonic sensors and Humidity sensors mentioning their respective applications.	08
		OR	
10	a	Explain the working of a piezo-Electric Transducer with relevan	
	b	equations. Briefly explain the working of capacitive transducers.	06 06
	С	Mention any four differences between active and passive transducers.	04