$12a_{0798} (K12a_{0798})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 2.00309 \times 10^{43} u^{48} - 3.21474 \times 10^{41} u^{47} + \dots + 9.90975 \times 10^{43} b - 9.19958 \times 10^{43}, \\ &- 3.05614 \times 10^{43} u^{48} - 3.56503 \times 10^{41} u^{47} + \dots + 4.95488 \times 10^{43} a + 3.30827 \times 10^{44}, \ u^{49} + u^{48} + \dots + 8u + I_2^u \\ &= \langle 2.20369 \times 10^{113} u^{69} + 5.25148 \times 10^{112} u^{68} + \dots + 2.19562 \times 10^{115} b + 2.18119 \times 10^{115}, \\ &- 5.47739 \times 10^{116} u^{69} + 3.09471 \times 10^{115} u^{68} + \dots + 1.16368 \times 10^{117} a + 1.96706 \times 10^{118}, \\ &- u^{70} + u^{69} + \dots + 434u + 53 \rangle \\ &I_3^u &= \langle 300a^3 + 95a^2 + 2260b + 654a - 1651, \ 25a^4 - 40a^3 - 98a^2 + 64a + 197, \ u + 1 \rangle \\ &I_4^u &= \langle b + u, \ 8a^3 + 12a^2u - 4a^2 - 4au - 2a + u, \ u^2 + 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 132 representations.

 $I_5^u = \langle -a^2 + 8b + 2a + 3, \ a^3 + 3a^2 + 3a + 1, \ u - 1 \rangle$

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle 2.00 \times 10^{43} u^{48} - 3.21 \times 10^{41} u^{47} + \dots + 9.91 \times 10^{43} b - 9.20 \times 10^{43}, \ -3.06 \times 10^{43} u^{48} - 3.57 \times 10^{41} u^{47} + \dots + 4.95 \times 10^{43} a + 3.31 \times 10^{44}, \ u^{49} + u^{48} + \dots + 8u + 1 \rangle$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.616794u^{48} + 0.00719500u^{47} + \dots - 24.9481u - 6.67680 \\ -0.202134u^{48} + 0.00324402u^{47} + \dots + 4.56122u + 0.928336 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2.44394u^{48} + 2.29985u^{47} + \dots + 67.1776u + 6.08652 \\ -0.404222u^{48} - 0.323237u^{47} + \dots - 9.06575u - 0.414661 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.414661u^{48} + 0.0104390u^{47} + \dots - 20.3869u - 5.74847 \\ -0.202134u^{48} + 0.00324402u^{47} + \dots + 4.56122u + 0.928336 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.153794u^{48} - 1.54132u^{47} + \dots + 47.9985u - 3.48227 \\ 0.344085u^{48} + 0.255951u^{47} + \dots + 7.86170u + 0.499407 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1.51259u^{48} - 1.48491u^{47} + \dots - 47.1606u - 3.63014 \\ 0.434697u^{48} + 0.337745u^{47} + \dots + 8.97345u + 0.382603 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.270574u^{48} - 0.255160u^{47} + \dots + 8.97345u + 0.382603 \\ -0.121149u^{48} + 0.0602775u^{47} + \dots + 7.38033u + 1.33256 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.296967u^{48} + 2.72241u^{47} + \dots + 77.5346u + 6.35709 \\ -0.585648u^{48} - 0.423585u^{47} + \dots + 11.3675u - 0.535810 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.858872u^{48} + 1.20916u^{47} + \dots + 51.2976u + 8.24260 \\ -0.477090u^{48} - 0.426611u^{47} + \dots + 51.2976u + 8.24260 \\ -0.477090u^{48} - 0.426611u^{47} + \dots + 51.2976u + 8.24260 \\ -0.477090u^{48} - 0.426611u^{47} + \dots + 51.2976u + 8.24260 \\ -0.477090u^{48} - 0.426611u^{47} + \dots + 51.2976u + 8.24260 \\ -0.477090u^{48} - 0.426611u^{47} + \dots + 51.2976u + 8.24260 \\ -0.477090u^{48} - 0.426611u^{47} + \dots + 51.2976u + 8.24260 \\ -0.477090u^{48} - 0.426611u^{47} + \dots + 51.2976u + 8.24260 \\ -0.477090u^{48} - 0.426611u^{47} + \dots + 51.2976u + 8.24260 \\ -0.477090u^{48} - 0.426611u^{47} + \dots + 51.2976u + 8.24260 \\ -0.477090u^{48} - 0.426611u^{47} + \dots + 51.2976u + 8.24260 \\ -0.477090u^{48} - 0.426611u^{47} + \dots + 51.2976u + 8.24260 \\ -0.477090u^{48} - 0.426611u^{47} + \dots + 51.2976u + 8.24260 \\ -0.477090u^{48} - 0.426611u^{47} + \dots + 51.2976u + 8.24260 \\ -0.477090u^{48} - 0.426611u^{47} + \dots + 51.2976u + 8.24260 \\ -0.477090u^{48} - 0.426611u^{47} + \dots + 51.2976u + 8.24260 \\ -0.477090u^{48} - 0.426611u^{47} + \dots + 51.2976u + 8.24$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-3.15453u^{48} 2.18463u^{47} + \cdots 60.6939u 13.0765$

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{49} + 17u^{48} + \dots - 236u - 100$
c_2, c_8	$u^{49} - 3u^{48} + \dots + 22u + 10$
c_3, c_5, c_9 c_{11}	$u^{49} + u^{48} + \dots + 8u + 1$
c_4, c_{10}	$64(64u^{49} - 128u^{48} + \dots + 20u + 1)$
c_6, c_{12}	$u^{49} + 3u^{48} + \dots + 186u + 50$

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{49} + 33y^{48} + \dots - 115504y - 10000$
c_{2}, c_{8}	$y^{49} + 17y^{48} + \dots - 236y - 100$
c_3, c_5, c_9 c_{11}	$y^{49} - 15y^{48} + \dots - 16y - 1$
c_4, c_{10}	$4096(4096y^{49} + 73728y^{48} + \dots - 62y - 1)$
c_6, c_{12}	$y^{49} + 21y^{48} + \dots - 112004y - 2500$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.981538 + 0.257391I		
a = 1.55206 - 0.93078I	-5.77516 + 2.35068I	-11.35180 + 4.63129I
b = -1.23894 + 0.72248I		
u = 0.981538 - 0.257391I		
a = 1.55206 + 0.93078I	-5.77516 - 2.35068I	-11.35180 - 4.63129I
b = -1.23894 - 0.72248I		
u = -0.810441 + 0.532063I		
a = 2.11896 - 0.39965I	5.03502 + 0.73563I	-5.79688 - 4.57205I
b = -0.643779 + 0.920170I		
u = -0.810441 - 0.532063I		
a = 2.11896 + 0.39965I	5.03502 - 0.73563I	-5.79688 + 4.57205I
b = -0.643779 - 0.920170I		
u = 0.877698 + 0.561491I		
a = -2.08820 - 0.30060I	5.31366 - 7.02170I	-5.51690 + 9.17495I
b = 0.653043 + 0.991957I		
u = 0.877698 - 0.561491I		
a = -2.08820 + 0.30060I	5.31366 + 7.02170I	-5.51690 - 9.17495I
b = 0.653043 - 0.991957I		
u = -0.995699 + 0.372749I		
a = -1.36330 - 0.86812I	-3.06110 + 2.74516I	-8.49807 - 6.15151I
b = 1.104890 + 0.550579I		
u = -0.995699 - 0.372749I		
a = -1.36330 + 0.86812I	-3.06110 - 2.74516I	-8.49807 + 6.15151I
b = 1.104890 - 0.550579I		
u = 0.875340 + 0.605659I		
a = 0.219349 + 0.234083I	5.30349 - 2.15840I	-3.93083 + 3.29725I
b = 0.214791 - 1.396630I		
u = 0.875340 - 0.605659I		
a = 0.219349 - 0.234083I	5.30349 + 2.15840I	-3.93083 - 3.29725I
b = 0.214791 + 1.396630I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.952373 + 0.520378I		
a = -0.168176 + 0.392073I	4.08293 + 7.70387I	-6.80678 - 8.64886I
b = -0.22875 - 1.47692I		
u = -0.952373 - 0.520378I		
a = -0.168176 - 0.392073I	4.08293 - 7.70387I	-6.80678 + 8.64886I
b = -0.22875 + 1.47692I		
u = 0.452697 + 0.787769I		
a = 0.288931 - 0.311418I	3.71295 - 0.68830I	0.52323 + 2.74701I
b = 0.127804 - 1.164260I		
u = 0.452697 - 0.787769I		
a = 0.288931 + 0.311418I	3.71295 + 0.68830I	0.52323 - 2.74701I
b = 0.127804 + 1.164260I		
u = 0.817518 + 0.099039I		
a = -2.07999 - 0.26336I	-4.95390 - 4.13277I	-5.04587 + 8.33177I
b = 1.288930 + 0.381664I		
u = 0.817518 - 0.099039I		
a = -2.07999 + 0.26336I	-4.95390 + 4.13277I	-5.04587 - 8.33177I
b = 1.288930 - 0.381664I		
u = 1.147530 + 0.376229I		
a = 1.35388 - 0.64687I	-8.08094 - 5.83164I	-15.5949 + 6.7506I
b = -1.218000 + 0.378064I		
u = 1.147530 - 0.376229I		
a = 1.35388 + 0.64687I	-8.08094 + 5.83164I	-15.5949 - 6.7506I
b = -1.218000 - 0.378064I		
u = -1.137970 + 0.439927I		
a = 1.72337 - 0.29059I	-3.88494 + 4.95670I	-12.24760 - 4.43222I
b = -0.79502 + 1.21714I		
u = -1.137970 - 0.439927I		
a = 1.72337 + 0.29059I	-3.88494 - 4.95670I	-12.24760 + 4.43222I
b = -0.79502 - 1.21714I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.688687 + 0.308958I		
a = -0.878871 + 0.471910I	-0.16229 + 1.40976I	-9.53355 - 4.57288I
b = 0.07117 - 1.41606I		
u = -0.688687 - 0.308958I		
a = -0.878871 - 0.471910I	-0.16229 - 1.40976I	-9.53355 + 4.57288I
b = 0.07117 + 1.41606I		
u = -0.286451 + 1.239410I		
a = 0.020365 - 0.390591I	1.83503 - 0.92197I	-13.0094 + 8.1328I
b = -0.214987 - 0.936488I		
u = -0.286451 - 1.239410I		
a = 0.020365 + 0.390591I	1.83503 + 0.92197I	-13.0094 - 8.1328I
b = -0.214987 + 0.936488I		
u = 1.156850 + 0.550225I		
a = -1.74873 - 0.14409I	-0.79278 - 9.29438I	-8.00000 + 7.50073I
b = 0.706757 + 1.215220I		
u = 1.156850 - 0.550225I		
a = -1.74873 + 0.14409I	-0.79278 + 9.29438I	-8.00000 - 7.50073I
b = 0.706757 - 1.215220I		
u = -1.163070 + 0.539405I		
a = -1.160470 - 0.653820I	-0.80094 + 6.65775I	-8.00000 + 0.I
b = 1.087680 + 0.283705I		
u = -1.163070 - 0.539405I		
a = -1.160470 + 0.653820I	-0.80094 - 6.65775I	-8.00000 + 0.I
b = 1.087680 - 0.283705I		
u = -0.079925 + 0.692755I		
a = -0.057126 - 1.297370I	4.56105 + 2.90065I	-5.11259 - 3.32387I
b = 0.053644 + 0.267090I		
u = -0.079925 - 0.692755I		
a = -0.057126 + 1.297370I	4.56105 - 2.90065I	-5.11259 + 3.32387I
b = 0.053644 - 0.267090I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.021549 + 1.328260I		
a = 0.023794 - 0.515824I	5.08062 + 2.68757I	-8.00000 + 0.I
b = -0.058851 - 0.693519I		
u = -0.021549 - 1.328260I		
a = 0.023794 + 0.515824I	5.08062 - 2.68757I	-8.00000 + 0.I
b = -0.058851 + 0.693519I		
u = -0.671080		
a = 1.79535	-1.58789	-4.29000
b = -0.940047		
u = 1.220900 + 0.538472I		
a = 1.155260 - 0.596939I	-2.05345 - 12.68030I	0
b = -1.115300 + 0.247129I		
u = 1.220900 - 0.538472I		
a = 1.155260 + 0.596939I	-2.05345 + 12.68030I	0
b = -1.115300 - 0.247129I		
u = 0.627660 + 1.221110I		
a = -0.031390 - 0.235628I	7.31454 - 0.58694I	0
b = 0.331694 - 1.079920I		
u = 0.627660 - 1.221110I		
a = -0.031390 + 0.235628I	7.31454 + 0.58694I	0
b = 0.331694 + 1.079920I		
u = -1.260280 + 0.553994I		
a = 1.62317 - 0.09420I	-5.13578 + 12.53380I	0
b = -0.69242 + 1.27875I		
u = -1.260280 - 0.553994I		
a = 1.62317 + 0.09420I	-5.13578 - 12.53380I	0
b = -0.69242 - 1.27875I		
u = -0.58514 + 1.29446I		
a = 0.057217 - 0.263592I	6.79396 - 5.08385I	0
b = -0.345871 - 1.041880I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.58514 - 1.29446I		
a = 0.057217 + 0.263592I	6.79396 + 5.08385I	0
b = -0.345871 + 1.041880I		
u = 1.25870 + 0.66450I		
a = -1.66771 + 0.03866I	2.30602 - 12.80540I	0
b = 0.63511 + 1.26857I		
u = 1.25870 - 0.66450I		
a = -1.66771 - 0.03866I	2.30602 + 12.80540I	0
b = 0.63511 - 1.26857I		
u = -1.29293 + 0.66685I		
a = 1.62720 + 0.05274I	1.2109 + 18.8792I	0
b = -0.63273 + 1.28478I		
u = -1.29293 - 0.66685I		
a = 1.62720 - 0.05274I	1.2109 - 18.8792I	0
b = -0.63273 - 1.28478I		
u = -0.208725 + 0.263076I		
a = 0.636904 - 0.809965I	-0.386214 + 0.820546I	-8.61529 - 8.26097I
b = -0.176417 + 0.283511I		
u = -0.208725 - 0.263076I		
a = 0.636904 + 0.809965I	-0.386214 - 0.820546I	-8.61529 + 8.26097I
b = -0.176417 - 0.283511I		
u = -0.097656 + 0.221062I		
a = -1.55418 - 4.92473I	4.71535 + 2.88833I	-6.61461 - 3.16484I
b = 0.055569 + 0.876388I		
u = -0.097656 - 0.221062I		
a = -1.55418 + 4.92473I	4.71535 - 2.88833I	-6.61461 + 3.16484I
b = 0.055569 - 0.876388I		

II.
$$I_2^u = \langle 2.20 \times 10^{113} u^{69} + 5.25 \times 10^{112} u^{68} + \dots + 2.20 \times 10^{115} b + 2.18 \times 10^{115}, \ 5.48 \times 10^{116} u^{69} + 3.09 \times 10^{115} u^{68} + \dots + 1.16 \times 10^{117} a + 1.97 \times 10^{118}, \ u^{70} + u^{69} + \dots + 434 u + 53 \rangle$$

(i) Arc colorings

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.470697u^{69} - 0.0265942u^{68} + \dots - 149.260u - 16.9039 \\ -0.0100368u^{69} - 0.00239180u^{68} + \dots - 2.54768u - 0.993431 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -6.01017u^{69} + 0.310008u^{68} + \dots - 2255.61u - 308.627 \\ -0.226244u^{69} + 0.0311423u^{68} + \dots - 77.8654u - 11.1406 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.480734u^{69} - 0.0289860u^{68} + \dots - 151.807u - 17.8973 \\ -0.0100368u^{69} - 0.00239180u^{68} + \dots - 2.54768u - 0.993431 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.155671u^{69} - 0.0389813u^{68} + \dots + 43.7618u + 4.64741 \\ -0.0580571u^{69} - 0.00135076u^{68} + \dots - 19.8965u - 2.18136 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.143997u^{69} - 0.0275353u^{68} + \dots + 38.2166u + 3.85369 \\ -0.0460225u^{69} + 0.0000400031u^{68} + \dots - 16.0263u - 1.74972 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -6.43551u^{69} + 0.0646646u^{68} + \dots - 2338.34u - 323.669 \\ -0.222739u^{69} + 0.0292459u^{68} + \dots - 71.9426u - 10.0199 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.120256u^{69} - 0.0236167u^{68} + \dots + 41.4888u + 9.39135 \\ -0.0209187u^{69} + 0.000811014u^{68} + \dots - 9.03896u - 1.96341 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.363436u^{69} + 0.0187985u^{68} + \dots + 118.612u + 19.4997 \\ 0.00913425u^{69} - 0.000942294u^{68} + \dots + 1.20552u - 0.169703 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.0239601u^{69} 0.00841492u^{68} + \cdots + 18.6490u 3.90520$

Crossings	u-Polynomials at each crossing
c_1, c_7	$(u^{35} + 11u^{34} + \dots - 2u - 1)^2$
c_2, c_8	$(u^{35} + u^{34} + \dots + 2u + 1)^2$
c_3, c_5, c_9 c_{11}	$u^{70} + u^{69} + \dots + 434u + 53$
c_4, c_{10}	$u^{70} + 19u^{69} + \dots + 60600u - 5375$
c_6, c_{12}	$(u^{35} - u^{34} + \dots - 2u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_7	$(y^{35} + 27y^{34} + \dots - 22y - 1)^2$
c_{2}, c_{8}	$(y^{35} + 11y^{34} + \dots - 2y - 1)^2$
c_3, c_5, c_9 c_{11}	$y^{70} - 41y^{69} + \dots - 86596y + 2809$
c_4, c_{10}	$y^{70} - 21y^{69} + \dots - 1096015000y + 28890625$
c_6, c_{12}	$(y^{35} + 19y^{34} + \dots - 2y - 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.119514 + 1.003680I		
a = -0.124946 + 0.339745I	-1.63653 - 7.02473I	-10.39842 + 6.93954I
b = 0.491471 + 1.162520I		
u = -0.119514 - 1.003680I		
a = -0.124946 - 0.339745I	-1.63653 + 7.02473I	-10.39842 - 6.93954I
b = 0.491471 - 1.162520I		
u = 0.967240 + 0.057432I		
a = 2.54114 - 12.61520I	1.36125 + 2.79178I	-2.56555 - 3.12849I
b = 0.030366 - 1.049680I		
u = 0.967240 - 0.057432I		
a = 2.54114 + 12.61520I	1.36125 - 2.79178I	-2.56555 + 3.12849I
b = 0.030366 + 1.049680I		
u = -1.037220 + 0.046542I		
a = -11.49130 - 3.57082I	1.36125 + 2.79178I	-2.56555 - 3.12849I
b = 0.030366 - 1.049680I		
u = -1.037220 - 0.046542I		
a = -11.49130 + 3.57082I	1.36125 - 2.79178I	-2.56555 + 3.12849I
b = 0.030366 + 1.049680I		
u = 0.992816 + 0.307203I		
a = -1.86835 + 0.59825I	-2.90212 - 1.21814I	-7.56786 + 5.43737I
b = 0.274169 + 0.754223I		
u = 0.992816 - 0.307203I		
a = -1.86835 - 0.59825I	-2.90212 + 1.21814I	-7.56786 - 5.43737I
b = 0.274169 - 0.754223I		
u = 0.812668 + 0.700215I		
a = -0.796936 + 1.003470I	-1.67002 - 2.07827I	-8.00000 + 3.40333I
b = 0.475306 + 0.917107I		
u = 0.812668 - 0.700215I		
a = -0.796936 - 1.003470I	-1.67002 + 2.07827I	-8.00000 - 3.40333I
b = 0.475306 - 0.917107I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.041410 + 0.270926I		
a = -1.52455 + 0.29351I	-1.01725 + 1.14078I	-8.93962 + 0.35223I
b = 0.407102 - 1.144230I		
u = -1.041410 - 0.270926I		
a = -1.52455 - 0.29351I	-1.01725 - 1.14078I	-8.93962 - 0.35223I
b = 0.407102 + 1.144230I		
u = 0.133172 + 0.888260I		
a = -0.513616 + 0.654211I	1.19431 + 7.52211I	-8.37393 - 5.45189I
b = 0.817305 + 0.125028I		
u = 0.133172 - 0.888260I		
a = -0.513616 - 0.654211I	1.19431 - 7.52211I	-8.37393 + 5.45189I
b = 0.817305 - 0.125028I		
u = -0.977207 + 0.510227I		
a = 0.223970 - 0.121731I	-2.91461 - 1.90476I	-11.61760 + 3.26312I
b = 0.510838 + 0.446804I		
u = -0.977207 - 0.510227I		
a = 0.223970 + 0.121731I	-2.91461 + 1.90476I	-11.61760 - 3.26312I
b = 0.510838 - 0.446804I		
u = -0.895460		
a = 1.21237	-1.48735	-6.22320
b = -0.714433		
u = -0.744917 + 0.469702I		
a = -0.771318 - 0.328880I	5.25248 + 3.42594I	-3.89028 - 2.22817I
b = 0.386425 + 1.221160I		
u = -0.744917 - 0.469702I		
a = -0.771318 + 0.328880I	5.25248 - 3.42594I	-3.89028 + 2.22817I
b = 0.386425 - 1.221160I		
u = 0.672202 + 0.568802I		
a = 0.588099 - 0.277287I	5.91946 + 2.50696I	-2.73890 - 2.94934I
b = -0.402291 + 1.220240I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.672202 - 0.568802I		
a = 0.588099 + 0.277287I	5.91946 - 2.50696I	-2.73890 + 2.94934I
b = -0.402291 - 1.220240I		
u = 0.657413 + 0.573036I		
a = 1.95056 - 0.17929I	5.91946 - 2.50696I	-2.73890 + 2.94934I
b = -0.402291 - 1.220240I		
u = 0.657413 - 0.573036I		
a = 1.95056 + 0.17929I	5.91946 + 2.50696I	-2.73890 - 2.94934I
b = -0.402291 + 1.220240I		
u = 0.276214 + 0.810444I		
a = 0.0549455 + 0.0810153I	1.83551 + 4.24996I	-3.13542 - 3.77353I
b = -0.453184 + 1.179210I		
u = 0.276214 - 0.810444I		
a = 0.0549455 - 0.0810153I	1.83551 - 4.24996I	-3.13542 + 3.77353I
b = -0.453184 - 1.179210I		
u = -0.223135 + 0.814237I		
a = 0.614394 + 0.692076I	1.97019 - 1.67857I	-6.82266 + 0.36674I
b = -0.812555 + 0.099238I		
u = -0.223135 - 0.814237I		
a = 0.614394 - 0.692076I	1.97019 + 1.67857I	-6.82266 - 0.36674I
b = -0.812555 - 0.099238I		
u = 0.337448 + 1.122360I		
a = 0.279152 + 0.257589I	5.23403 + 6.46046I	0
b = -0.498606 + 1.204550I		
u = 0.337448 - 1.122360I		
a = 0.279152 - 0.257589I	5.23403 - 6.46046I	0
b = -0.498606 - 1.204550I		
u = -1.165920 + 0.188060I		
a = 0.066157 - 1.277360I	-2.90212 - 1.21814I	0
b = 0.274169 + 0.754223I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.165920 - 0.188060I		
a = 0.066157 + 1.277360I	-2.90212 + 1.21814I	0
b = 0.274169 - 0.754223I		
u = 1.068030 + 0.544420I		
a = 1.46092 + 0.01825I	1.83551 - 4.24996I	0
b = -0.453184 - 1.179210I		
u = 1.068030 - 0.544420I		
a = 1.46092 - 0.01825I	1.83551 + 4.24996I	0
b = -0.453184 + 1.179210I		
u = -0.298459 + 1.176530I		
a = -0.284974 + 0.293575I	4.37931 - 12.37660I	0
b = 0.509525 + 1.201690I		
u = -0.298459 - 1.176530I		
a = -0.284974 - 0.293575I	4.37931 + 12.37660I	0
b = 0.509525 - 1.201690I		
u = -1.101900 + 0.519411I		
a = 0.959687 + 0.178430I	1.97019 + 1.67857I	0
b = -0.812555 - 0.099238I		
u = -1.101900 - 0.519411I		
a = 0.959687 - 0.178430I	1.97019 - 1.67857I	0
b = -0.812555 + 0.099238I		
u = 1.205300 + 0.207889I		
a = -1.031590 + 0.049162I	-4.55305 - 2.51214I	0
b = 0.703066 - 0.147767I		
u = 1.205300 - 0.207889I		
a = -1.031590 - 0.049162I	-4.55305 + 2.51214I	0
b = 0.703066 + 0.147767I		
u = -0.931544 + 0.800142I		
a = 0.795980 + 0.807318I	-2.47115 + 7.33485I	0
b = -0.528952 + 0.892872I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.931544 - 0.800142I		
a = 0.795980 - 0.807318I	-2.47115 - 7.33485I	0
b = -0.528952 - 0.892872I		
u = -0.539710 + 0.522535I		
a = -2.20446 - 0.19474I	5.25248 - 3.42594I	-3.89028 + 2.22817I
b = 0.386425 - 1.221160I		
u = -0.539710 - 0.522535I		
a = -2.20446 + 0.19474I	5.25248 + 3.42594I	-3.89028 - 2.22817I
b = 0.386425 + 1.221160I		
u = -1.138700 + 0.596407I		
a = 1.054870 + 0.623315I	-6.72846 + 2.09817I	0
b = -0.511218 + 0.765398I		
u = -1.138700 - 0.596407I		
a = 1.054870 - 0.623315I	-6.72846 - 2.09817I	0
b = -0.511218 - 0.765398I		
u = 1.191760 + 0.514634I		
a = -0.940468 + 0.144170I	1.19431 - 7.52211I	0
b = 0.817305 - 0.125028I		
u = 1.191760 - 0.514634I		
a = -0.940468 - 0.144170I	1.19431 + 7.52211I	0
b = 0.817305 + 0.125028I		
u = 1.187310 + 0.528355I		
a = 0.012010 - 0.274266I	-3.33212 - 3.00440I	0
b = -0.541549 + 0.582168I		
u = 1.187310 - 0.528355I		
a = 0.012010 + 0.274266I	-3.33212 + 3.00440I	0
b = -0.541549 - 0.582168I		
u = 1.315410 + 0.197168I		
a = -1.112060 + 0.162330I	-2.91461 - 1.90476I	0
b = 0.510838 + 0.446804I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.315410 - 0.197168I		
a = -1.112060 - 0.162330I	-2.91461 + 1.90476I	0
b = 0.510838 - 0.446804I		
u = -1.262910 + 0.569858I		
a = -1.279310 + 0.022571I	-1.63653 + 7.02473I	0
b = 0.491471 - 1.162520I		
u = -1.262910 - 0.569858I		
a = -1.279310 - 0.022571I	-1.63653 - 7.02473I	0
b = 0.491471 + 1.162520I		
u = -1.337050 + 0.368711I		
a = 1.090190 + 0.311119I	-3.33212 - 3.00440I	0
b = -0.541549 + 0.582168I		
u = -1.337050 - 0.368711I		
a = 1.090190 - 0.311119I	-3.33212 + 3.00440I	0
b = -0.541549 - 0.582168I		
u = -0.200762 + 0.571555I		
a = 0.028580 + 0.953330I	-4.55305 + 2.51214I	-14.0397 - 3.8785I
b = 0.703066 + 0.147767I		
u = -0.200762 - 0.571555I		
a = 0.028580 - 0.953330I	-4.55305 - 2.51214I	-14.0397 + 3.8785I
b = 0.703066 - 0.147767I		
u = 1.39235 + 0.32069I		
a = 0.337466 - 0.509570I	-6.72846 + 2.09817I	0
b = -0.511218 + 0.765398I		
u = 1.39235 - 0.32069I		
a = 0.337466 + 0.509570I	-6.72846 - 2.09817I	0
b = -0.511218 - 0.765398I		
u = -1.42930 + 0.06709I		
a = -0.754539 - 0.588624I	-1.67002 - 2.07827I	0
b = 0.475306 + 0.917107I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.42930 - 0.06709I		
a = -0.754539 + 0.588624I	-1.67002 + 2.07827I	0
b = 0.475306 - 0.917107I		
u = 1.21033 + 0.76716I		
a = 1.289950 - 0.141681I	5.23403 - 6.46046I	0
b = -0.498606 - 1.204550I		
u = 1.21033 - 0.76716I		
a = 1.289950 + 0.141681I	5.23403 + 6.46046I	0
b = -0.498606 + 1.204550I		
u = -1.26708 + 0.77421I		
a = -1.247750 - 0.134733I	4.37931 + 12.37660I	0
b = 0.509525 - 1.201690I		
u = -1.26708 - 0.77421I		
a = -1.247750 + 0.134733I	4.37931 - 12.37660I	0
b = 0.509525 + 1.201690I		
u = -0.083030 + 0.485962I		
a = 0.907222 - 0.069478I	-1.01725 - 1.14078I	-8.93962 - 0.35223I
b = 0.407102 + 1.144230I		
u = -0.083030 - 0.485962I		
a = 0.907222 + 0.069478I	-1.01725 + 1.14078I	-8.93962 + 0.35223I
b = 0.407102 - 1.144230I		
u = 1.51967 + 0.13036I		
a = 0.649262 - 0.463270I	-2.47115 + 7.33485I	0
b = -0.528952 + 0.892872I		
u = 1.51967 - 0.13036I		
a = 0.649262 + 0.463270I	-2.47115 - 7.33485I	0
b = -0.528952 - 0.892872I		
u = -0.183629		
a = 4.07848	-1.48735	-6.22320
b = -0.714433		

$$I_3^u = \langle 300a^3 + 95a^2 + 2260b + 654a - 1651, \ 25a^4 - 40a^3 - 98a^2 + 64a + 197, \ u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.132743a^{3} - 0.0420354a^{2} - 0.289381a + 0.730531 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.254425a^{3} - 0.190265a^{2} - 1.07035a - 0.0460177 \\ -0.0221239a^{3} + 0.201327a^{2} + 0.201770a - 0.919912 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.132743a^{3} - 0.0420354a^{2} + 0.710619a + 0.730531 \\ -0.132743a^{3} - 0.0420354a^{2} - 0.289381a + 0.730531 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.0221239a^{3} - 0.201327a^{2} - 0.201770a + 0.919912 \\ 0.276549a^{3} + 0.608407a^{2} - 1.27212a - 1.12611 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.254425a^{3} - 0.809735a^{2} + 1.07035a + 2.04602 \\ 0.276549a^{3} + 0.608407a^{2} - 1.27212a - 1.12611 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.121681a^{3} - 0.232301a^{2} - 0.359735a + 0.684513 \\ -0.154867a^{3} + 0.159292a^{2} - 0.0876106a - 0.189381 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.132743a^{3} + 0.0420354a^{2} - 0.710619a - 0.730531 \\ 0.132743a^{3} + 0.0420354a^{2} + 0.289381a - 0.730531 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.265487a^{3} - 0.0840708a^{2} + 1.42124a + 0.461062 \\ 0.652655a^{3} - 0.314159a^{2} - 1.70221a - 0.987611 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$\frac{125}{113}a^3 + \frac{275}{113}a^2 - \frac{575}{113}a - \frac{2769}{113}$$

Crossings	u-Polynomials at each crossing
c_1, c_7	$(u^2 - 2u + 2)^2$
c_2, c_8	$u^4 + 2u^2 + 2$
c_{3}, c_{9}	$(u-1)^4$
c_4, c_{10}	$25(25u^4 - 40u^3 + 12u^2 + 4u + 1)$
c_5, c_{11}	$(u+1)^4$
c_6, c_{12}	$u^4 - 2u^2 + 2$

Crossings	Riley Polynomials at each crossing
c_1, c_7	$(y^2+4)^2$
c_{2}, c_{8}	$(y^2 + 2y + 2)^2$
c_3, c_5, c_9 c_{11}	$(y-1)^4$
c_4, c_{10}	$625(625y^4 - 1000y^3 + 514y^2 + 8y + 1)$
c_6,c_{12}	$(y^2 - 2y + 2)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.229180 + 0.617389I	-5.75727 + 3.66386I	-16.0000 - 4.0000I
b = 1.098680 - 0.455090I		
u = -1.00000		
a = -1.229180 - 0.617389I	-5.75727 - 3.66386I	-16.0000 + 4.0000I
b = 1.098680 + 0.455090I		
u = -1.00000		
a = 2.02918 + 0.21739I	-5.75727 - 3.66386I	-16.0000 + 4.0000I
b = -1.098680 - 0.455090I		
u = -1.00000		
a = 2.02918 - 0.21739I	-5.75727 + 3.66386I	-16.0000 - 4.0000I
b = -1.098680 + 0.455090I		

IV.
$$I_4^u = \langle b+u, 8a^3 + 12a^2u - 4a^2 - 4au - 2a + u, u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} a \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a^{2} + au + 1 \\ -au + 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ 2u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a - u \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -au \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} au - 1 \\ 4au - 3 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a^{2}u \\ a + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2a^{2} + au + 1 \\ -2au + 3 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2a^{2}u + 2a^{2} + 2au + 3a + \frac{1}{2}u \\ -4a^{2}u + 8a + 2u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-16a^2 16au + 8a + 4u 4$

Crossings	u-Polynomials at each crossing
c_1, c_7	$(u^3 - u^2 + 2u - 1)^2$
c_2, c_8	$u^6 + u^4 + 2u^2 + 1$
$c_3, c_5, c_6 \\ c_9, c_{11}, c_{12}$	$(u^2+1)^3$
c_4, c_{10}	$64(64u^6 + 64u^5 + 128u^4 + 80u^3 + 44u^2 + 8u + 1)$

Crossings	Riley Polynomials at each crossing	
c_1, c_7	$(y^3 + 3y^2 + 2y - 1)^2$	
c_2, c_8	$(y^3 + y^2 + 2y + 1)^2$	
$c_3, c_5, c_6 \\ c_9, c_{11}, c_{12}$	$(y+1)^6$	
c_4, c_{10}	$4096(4096y^6 + 12288y^5 + 11776y^4 + 3968y^3 + 912y^2 + 24y + 1)$	

	Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.000000I		
a =	0.107540 - 1.153570I	6.31400 + 2.82812I	-0.49024 - 2.97945I
b =	-1.000000I		
u =	1.000000I		
a =	0.284920 - 0.500000I	2.17641	-7.01951 + 0.I
b =	-1.000000I		
u =	1.000000I		
a =	0.107540 + 0.153571I	6.31400 - 2.82812I	-0.49024 + 2.97945I
b =	-1.000000I		
u =	-1.000000I		
a =	0.107540 + 1.153570I	6.31400 - 2.82812I	-0.49024 + 2.97945I
b =	1.000000I		
u =	-1.000000I		
a =	0.284920 + 0.500000I	2.17641	-7.01951 + 0.I
b =	1.000000I		
u =	-1.000000I		
a =	0.107540 - 0.153571I	6.31400 + 2.82812I	-0.49024 - 2.97945I
b =	1.000000I		

V.
$$I_5^u = \langle -a^2 + 8b + 2a + 3, \ a^3 + 3a^2 + 3a + 1, \ u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} a\\\frac{1}{8}a^{2} - \frac{1}{4}a - \frac{3}{8} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1\\-1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{3}{8}a^{2} + \frac{3}{4}a + \frac{9}{8}\\\frac{3}{8}a^{2} + \frac{1}{4}a - \frac{9}{8} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{8}a^{2} + \frac{3}{4}a - \frac{3}{8}\\\frac{1}{8}a^{2} - \frac{1}{4}a - \frac{3}{8} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{3}{8}a^{2} - \frac{1}{4}a + \frac{9}{8}\\\frac{1}{4}a^{2} + \frac{1}{2}a + \frac{1}{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{5}{8}a^{2} - \frac{3}{4}a + \frac{7}{8}\\\frac{1}{4}a^{2} + \frac{1}{2}a + \frac{1}{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{2}a^{2} - \frac{3}{2}\\-\frac{1}{4}a^{2} - \frac{1}{2}a + \frac{3}{4} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{8}a^{2} + \frac{3}{4}a - \frac{3}{8}\\\frac{1}{8}a^{2} - \frac{1}{4}a - \frac{3}{8} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{4}a^{2} + \frac{3}{2}a + \frac{1}{4}\\\frac{1}{8}a^{2} - \frac{1}{4}a - \frac{3}{8} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $a^2 + 2a 11$

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_8, c_{12}$	u^3
c_3, c_4, c_9 c_{10}	$(u+1)^3$
c_5, c_{11}	$(u-1)^3$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_8, c_{12}$	y^3
c_3, c_4, c_5 c_9, c_{10}, c_{11}	$(y-1)^3$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	-3.28987	-12.0000
b = 0		
u = 1.00000		
a = -1.00000	-3.28987	-12.0000
b = 0		
u = 1.00000		
a = -1.00000	-3.28987	-12.0000
b = 0		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{3}(u^{2} - 2u + 2)^{2}(u^{3} - u^{2} + 2u - 1)^{2}(u^{35} + 11u^{34} + \dots - 2u - 1)^{2}$ $\cdot (u^{49} + 17u^{48} + \dots - 236u - 100)$
c_2,c_8	$u^{3}(u^{4} + 2u^{2} + 2)(u^{6} + u^{4} + 2u^{2} + 1)(u^{35} + u^{34} + \dots + 2u + 1)^{2}$ $\cdot (u^{49} - 3u^{48} + \dots + 22u + 10)$
c_3,c_9	$((u-1)^4)(u+1)^3(u^2+1)^3(u^{49}+u^{48}+\cdots+8u+1)$ $\cdot (u^{70}+u^{69}+\cdots+434u+53)$
c_4, c_{10}	$102400(u+1)^{3}(25u^{4} - 40u^{3} + 12u^{2} + 4u + 1)$ $\cdot (64u^{6} + 64u^{5} + 128u^{4} + 80u^{3} + 44u^{2} + 8u + 1)$ $\cdot (64u^{49} - 128u^{48} + \dots + 20u + 1)(u^{70} + 19u^{69} + \dots + 60600u - 5375)$
c_5,c_{11}	$((u-1)^3)(u+1)^4(u^2+1)^3(u^{49}+u^{48}+\cdots+8u+1)$ $\cdot (u^{70}+u^{69}+\cdots+434u+53)$
c_6, c_{12}	$u^{3}(u^{2}+1)^{3}(u^{4}-2u^{2}+2)(u^{35}-u^{34}+\cdots-2u+1)^{2}$ $\cdot (u^{49}+3u^{48}+\cdots+186u+50)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{3}(y^{2}+4)^{2}(y^{3}+3y^{2}+2y-1)^{2}(y^{35}+27y^{34}+\cdots-22y-1)^{2}$ $\cdot (y^{49}+33y^{48}+\cdots-115504y-10000)$
c_2, c_8	$y^{3}(y^{2} + 2y + 2)^{2}(y^{3} + y^{2} + 2y + 1)^{2}(y^{35} + 11y^{34} + \dots - 2y - 1)^{2}$ $\cdot (y^{49} + 17y^{48} + \dots - 236y - 100)$
c_3, c_5, c_9 c_{11}	$((y-1)^7)(y+1)^6(y^{49}-15y^{48}+\cdots-16y-1)$ $\cdot (y^{70}-41y^{69}+\cdots-86596y+2809)$
c_4, c_{10}	$10485760000(y-1)^{3}(625y^{4} - 1000y^{3} + 514y^{2} + 8y + 1)$ $\cdot (4096y^{6} + 12288y^{5} + 11776y^{4} + 3968y^{3} + 912y^{2} + 24y + 1)$ $\cdot (4096y^{49} + 73728y^{48} + \dots - 62y - 1)$ $\cdot (y^{70} - 21y^{69} + \dots - 1096015000y + 28890625)$
c_6, c_{12}	$y^{3}(y+1)^{6}(y^{2}-2y+2)^{2}(y^{35}+19y^{34}+\cdots-2y-1)^{2}$ $\cdot (y^{49}+21y^{48}+\cdots-112004y-2500)$