Trần Thị Thu Trang MSV:11208164

MACHINE LEARNING

HOMEWORK 1

Ex1:

(a) The marginal distributions P(x) and P(y)

	X1	X2	Х3	X4	X5	Total
Y3	0.1	0.05	0.03	0.05	0.04	0.27
Y2	0.05	0.1	0.05	0.07	0.2	0.47
Y1	0.01	0.02	0.03	0.1	0.1	0.26
Total	0.16	0.17	0.11	0.22	0.34	1

 \diamond Marginal distribution P(x):

$$P(x1) = 0.1 + 0.05 + 0.01 = 0.16$$

$$P(x2) = 0.05 + 0.1 + 0.02 = 0.17$$

$$P(x3) = 0.03 + 0.05 + 0.03 = 0.11$$

$$P(x4) = 0.05 + 0.07 + 0.1 = 0.22$$

$$P(x5) = 0.04 + 0.2 + 0.1 = 0.34$$

❖ Marginal distribution P(y):

$$P(y1) = 0.01 + 0.05 + 0.03 + 0.05 + 0.04 = 0.027$$

$$P(y2) = 0.05 + 0.1 + 0.05 + 0.07 + 0.2 = 0.47$$

$$P(y3) = 0.01 + 0.02 + 0.03 + 0.1 + 0.1 = 0.26$$

(b) The conditional distributions P(x|Y=y1) and P(x|Y=y3)

❖ P(x|Y=y1):

$$P(x=x1 | Y=y1) = \frac{P(x=x1 \text{ and } Y=y1)}{P(Y=y1)} = \frac{0.01}{0.26} = 0.038462$$

$$P(x=x2 \mid Y=y1) = \frac{P(x=x2 \text{ and } Y=y1)}{P(Y=y1)} = \frac{0.02}{0.26} = 0.076923$$

$$P(x=x3 | Y=y1) = \frac{P(x=x3 \text{ and } Y=y1)}{P(Y=y1)} = \frac{0.03}{0.26} = 0.115385$$

$$P(x=x4 | Y=y1) = \frac{P(x=4 \text{ and } Y=y1)}{P(Y=y1)} = \frac{0.1}{0.26} = 0.384615$$

$$P(x=x5 | Y=y1) = \frac{P(x=5 \text{ and } Y=y1)}{P(Y=y1)} = \frac{0.1}{0.26} = 0.384615$$

$$\bullet$$
 P(x|Y=y3):

$$P(x=x1 | Y=y3) = \frac{P(x=1 \text{ and } Y=y3)}{P(Y=y3)} = \frac{0.1}{0.27} = 0.37037$$

$$P(x=x2 \mid Y=y3) = \frac{P(x=2 \text{ and } Y=y3)}{P(Y=y3)} = \frac{0.05}{0.27} = 0.185185$$

$$P(x=x3|Y=y3) = \frac{P(x=3 \text{ and } Y=y3)}{P(Y=y3)} = \frac{0.03}{0.27} = 0.111$$

$$P(x=x4 \mid Y=y3) = \frac{P(x=4 \text{ and } Y=y3)}{P(Y=y3)} = \frac{0.05}{0.27} = 0.185185$$

$$P(x=x5|Y=y3) = \frac{P(x=5 \text{ and } Y=y3)}{P(Y=y3)} = \frac{0.04}{0.27} = 0.148148$$

Ex2: Consider two random variables x, y with joint distribution P(x, y). Show that:

$$E_{x}[X] = E_{Y}[E_{X}[x|y]]$$

Here, $E_x[x|y]$ denotes the expected value of x under the conditional distribution P(x, y)

$$P(x,y) = P(y|x).P(x) \qquad \text{or} \qquad P(x,y) = P(x/y).P(y)$$

$$E_Y[E_X[x|y]] = \int_{-\infty}^{\infty} E_X[x|y]. f_y(y) dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x. \ f_{x|y}(x|y) dx. f_y(y) dy$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} x f_{x,y}(x,y) dx dy$$

$$= \int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f_{x,y}(x,y) dy. dx$$

$$= \int_{-\infty}^{\infty} x. f_X(x) dx$$

$$= E_{x}(X)$$

Hence, it is prove : $E_X[X] = E_Y[E_X[x|y]]$

Ex3:

Đặt A: " người dân trong thành phố dùng sản phẩm X"

B: "người dân trong thành phố dùng sản phẩm Y"

$$P(A) = 0.207$$

$$P(B) = 0.5$$

$$P(A/B) = 0.365$$

a) dùng cả X và Y:

$$P(AB) = P(B) . P(A/B) = 0.5 * 0.365 = 0.1825$$

b) dùng Y , biết rằng không dùng X:

•
$$P(A) + P(\bar{A}) = 1 \Rightarrow P(\bar{A}) = 1 - P(A) = 1 - 0.207 = 0.793$$

•
$$P(\bar{A}/B) = 1 - P(A/B) = 1 - 0.365 = 0.635$$

$$P(B/\bar{A}) = \frac{P(B.\bar{A})}{P(\bar{A})} = \frac{P(B).P(\bar{A}/B)}{P(\bar{A})} = \frac{0.5*0.635}{0.793} = 0.400378$$

Ex4: Prove the relationship: $V_X = E_X[x^2] - (E_X[x])^2$, which relates the standard definition of the variance to the raw-score expression for the variance

The eception: $E_X(x) = \mu$

$$E_X = \sum x f(x)$$

We have:

$$V_X = \sum_{x} (x - \mu)^2 f(x)$$

$$= E_X(x-\mu)^2 = E_X(x^2 - 2x\mu + \mu^2) = E_X(x^2) - 2\mu E_X(x) + E_X.(\mu^2)$$

$$= E_X(x^2) - 2E_X(x)E_X(x) + E_X \cdot (E_X[x])^2 = E_X(x^2) - 2(E_X[x])^2 + (E_X[x])^2$$

$$V_X = E_X(x^2) - (E_X[x])^2$$

Hence it is proved.

Ex5:

Giả sử ta chọn ô cửa số 1 là ô cửa ban đầu

Đặt X : "biến cố chiếc xe ở ô cửa số 1"

Y: " biến cố Monty mở ô cửa số 2"

- Để cả 2 sự kiện xảy ra cùng nhau: P(XY) = P(X/Y).P(Y)

Hoặc
$$P(XY) = P(Y/X) \cdot P(X)$$

- Giả sử chiếc xe ô tô nằm ở cửa số 1 thì xác suất để Monty mở cửa số 2 là $\frac{1}{2}$ vì Monty chỉ có thể mở cửa số 2 và 3. Vậy xác suất để Monty mở cửa số 2 khi chiếc xe ở cửa số 1 là $P(Y/X)=\frac{1}{2}$
- Vì không thể biết chiếc xe ở đâu trong 3 cửa nên => $P(X) = \frac{1}{3}$
- Còn lại 2 của nên xác suất để Monty mở cửa số 2 => P(Y) = $\frac{1}{2}$

$$P(XY) = P(Y/X). P(X) = \frac{1}{2} * \frac{1}{3} = \frac{1}{6}$$

- Xác suất để chiếc xe ở cửa số 1 khi Monty mở cửa số 2 là:

$$P\left(\frac{X}{Y}\right) = \frac{P(XY)}{P(Y)} = \frac{1}{6} : \frac{1}{2} = \frac{1}{3}$$

- Giả sử Z: "biến cố chiếc xe ở cửa số 3"

Trong hai cửa 1 và 3 chắc chắn sẽ có xe nên có thể thấy 2 biến cố X, Z xung khắc nhau \Rightarrow P(X) + P(Z) = 1

$$\Rightarrow$$
 P(Z) = 1-P(X) = 1- $\frac{1}{3}$ = $\frac{2}{3}$ = 66.67%

Vì vậy khi Monty hỏi ta có đổi sang cửa số 3 hay giữ lại cửa số 1 thì tốt nhất ta nên đổi sang cửa số 3 vì điều này sẽ làm cho xác suất trúng xe cao hơn.