CO20-320241

Computer Architecture and Programming Languages

CAPL

Lecture 15

Dr. Kinga Lipskoch

Fall 2019

Real Numbers

- ► Floating point representation
 (-1)^{sign} × fraction × 2^{exponent}
 Still have to fit everything in 32 bits (single precision)

IEEE 754 Floating Point (1)

s	E (exponent)	F (fraction)		
1 bit	8 bit	23 bit		

- ▶ The base (2, not 10) is hardwired in the design of the FPALU
- ▶ More bits in the fraction (F) or the exponent (E) is a trade-off between precision (accuracy of the number) and range (size of the number)
 - ► To simplify sorting FP numbers, E comes before F in the word and E is represented in excess (biased) notation
- ► IEEE 754 floating point standard:
 - single precision:8 bit exponent, 23 bit fraction
 - double precision:11 bit exponent, 52 bit fraction

IEEE 754 Floating Point (2)

- ► Form
 - ► Arbitrary 363.4 * 10³⁴
 - Normalized $3.634 * 10^{36}$
- Binary notation
 - Normalized $1.xxx_{two} * 2^{yy}$
- Standardized format IEEE 754
 - Single precision: 8 bit exp, 23 bit fraction $2 * 10^{-38} \dots 2 * 10^{38}$
 - ▶ Double precision: 11 bit exp, 52 bit fraction
 - $2*10^{-308}\dots 2*10^{308}$
- Both formats are supported by MIPS

IEEE 754 Floating Point Standard

- ▶ Leading "1" bit of fraction is implicit
- Exponent is "biased" to make sorting easier
 - all 0s is smallest exponent all 1s is largest
 - bias of 127 for single precision and 1023 for double precision
 - ▶ summary: $(-1)^{sign} * (1 + fraction) * 2^{exponent-bias}$
- Example:
 - ightharpoonup decimal: $-.75 = -3/4_{ten} = -11_{two}/2_{ten}^2 = -0.11_{two}$
 - ightharpoonup binary: $-.11 = -1.1x2^{-1}$
 - floating point: exponent = 126 = 011111110
 - ► IEEE 754 single precision:

Floating Point Complexities

- Operations are somewhat more complicated
- ▶ In addition to overflow we can have "underflow"
- Accuracy can be a big problem:
 - ▶ IEEE 754 keeps two extra bits, guard and round
 - four rounding modes
 - positive divided by zero yields "infinity"
 - zero divide by zero yields "not a number"
 - other complexities
- Implementing the standard is difficult
- Not using the standard can be even worse
- see text for description of 80x86 and Pentium bug

IEEE 754

- Most computers these days conform to the IEEE 754 floating point standard
- ► Some bit combinations have special meaning

Single Precision		Double Precision		Object Represented
E (8)	F (23)	E (11)	F (52)	
0	0	0	0	true zero (0)
0	nonzero	0	nonzero	± denormalized number
1-254	anything	1-2046	anything	± floating point number
255	0	2047	0	± infinity
255	nonzero	2047	nonzero	not a number (NaN)

IEEE 754 Specialties

- Denormalized numbers
 - exponent is 0, fraction non-zero
 - no implicit 1 in front of floating point
- Example:
 - ▶ 0 00000000 1000000000000000000000
 - ▶ is 5.877472*e* − 39
 - expands range for small numbers
 - reduces risk of underflow

Two Simple Test Programs

C construct union shares memory for different representations

```
1 union ieee754 {
2   float d;
3   unsigned int an_integer;
4 };
```

- Allows to convert from one type to another
 - read float and then test each single bit of the variable an_integer
- ▶ str2float.c
 - converts a binary string to floating point number
- ▶ floating.c
 - shows binary representation of floating point number

How to Compute a Binary Float

Number now needs to be normalized and exponent needs to be determined $\left(127+3\right)$

Result:

0 10000010 000101101000000000000000

- Split number in integral and fractional part
- Compute bit pattern for integral part
- ► For the fractional part multiply by 2
- ► If result has bit set left of decimal point (>= 1.0) generate set bit, otherwise generate zero bit
- Continue with rest until result does not have rest