4.1 Continuity

Theorem 4.1: The 4 equivalent conditions

Suppose that $\exists (M,d), (N,\rho)$ as two metric spaces, $A \subset M$, $f:A \to N$ be a function. Prove that the following properties are equivalent:

- i. f is continuous on A
- ii. \forall convergent sequence $x_k \to x_0 \in A$, we have the image sequence $f(x_k) \to f(x_0)$. This is the same as saying

$$\lim_{k \to \infty} f(x_k) = f\left(\lim_{k \to \infty} (x_k)\right)$$

- iii. $\forall U_i \in N$, the pre-image $f^{-1}(U_i) \subset A$ is open in A. i.e. \exists open set $V \subset M$ such that $f^{-1}(U_i) = V \cap A$.
- iv. \forall closed set $F \subset N$, the pre-image $f^{-1}(F) \subset A$ is closed in A. i.e. \exists closed set $G \subset M$ such that $f^{-1}(F) = G \cap A$.

Strategy: $i \to ii \to iv \to iii \to i$

 $i \to ii$

Proof.

Suppose that $f: A \to N$ is continuous at x_0 ,

Fix a sequence $x_k \to x_0 \in A$. We want to show that $f(x_k) \to f(x_0) \in N$. That is, $\forall \varepsilon > 0, \exists N$ such that $\forall k > N, \rho(f(x_k), f(x_0)) < \varepsilon$.

Fix any $\varepsilon > 0$. By continuity, this guarantees a δ such that $\forall x \in D(x_0, \delta), f(x) \in D_{\rho}(f(x_0), \varepsilon)$. By convergence, $\exists N$ such that $\forall k > N, d(x_n, x_0) < \delta$. Then with the same N, $\forall k > N, \rho(f(x_k), f(x_0)) < \varepsilon$ which completes the proof.

QED

 $ii \rightarrow iv$

Proof.

We start by fixing a closed set $F \subset N$ and its pre-image with sequential compactness. Therefore, we fix $x \in A \cap \operatorname{cl}(f^{-1}(F))$. Since closures are closed sets, $\exists x_k \in \operatorname{cl}(f^{-1}(F))$ such that $x_k \to x$. By ii, we have $f(x_k) \to f(x) \in F$. Then $f(x_k) \in \operatorname{cl}(F) \forall x_k$. Then $f(x) \in \operatorname{cl}(F)$. Since F is closed, $\operatorname{cl}(F) = F$.

Then $f(x) \in F$, $x \in f^{-1}(F)$, which implies $A \cap \operatorname{cl}(f^{-1}(F)) \subset f^{-1}(F)$. By definition, $f^{-1}(F) \subset \operatorname{cl}(f^{-1}(F)) \cap A$. Therefore, $f^{-1}(F) = \operatorname{cl}(f^{-1}(F)) \cap A$ which makes $f^{-1}(F)$ a closed set.

QED

 $iv \rightarrow iii$

Proof.

Fixing $U \subset N$ to be open, then U^C is a closed set in N. By iii), we know that $f^{-1}(U^C) \subset M$ is a closed set. Therefore, $(f^{-1}(U^C))^C = f^{-1}(U)$ should be an open set.

QED

 $iii \rightarrow i$

Fix $x_0 \in A$ and let $U = D_{\rho}(f(x_0), \varepsilon) \subset N$ is open. So $f(x_0) \in U$ which makes $x_0 \in A \cap f^{-1}U$. By iii), $f^{-1}(U)$ is open in A. Then $\exists \delta > 0$ such that $D(x_0, \delta) \subset f^{-1}(U) = f^{-1}(D_{\rho}(f(x_0), \varepsilon))$. This makes the function continuous.

4.2 Images of Compact Set and Connected Set

Theorem 4.2.a

Theorem: Suppose $f: M \to N$ is continuous. If $K \subset M$ connected, then f(K) is connected.

Proof.

Assume to the contrary that f(K) is not connected, then $\exists U, V \in N$ open sets such that they separate f(K).

By Theorem 1, we know that $f^{-1}(U)$ and $f^{-1}(V)$ are open sets.

Claim: $f^{-1}(U)$ and $f^{-1}(V)$ separate K:

We know that $U \cap f(K) \neq \emptyset$, then let $a \in U \cap f(K)$, then $\exists x \in K$ such that f(x) = a, $a \in U$ implies that $x \in f^{-1}(U)$, therefore, $x \in f^{-1}(U) \cap K$, $f^{-1}(U) \cap K \neq \emptyset$.

Similarly, $f^{-1}(V) \cap K \neq \emptyset$.

Also, $U \cap V \cap f^{-1}(K) = \emptyset$. Suppose that $\exists a \in f^{-1}(U) \cap f^{-1}(V) \cap K$, then $\exists f(a) \in U \cap V \cap f(K)$ this is a contradiction. Therefore, $f^{-1}(U) \cap f^{-1}(V) \cap K = \emptyset$.

Thirdly, I want to show that $K \subset f^{-1}(U) \cup f^{-1}(V)$. Let $a \in K$, then $\exists x \in f(K)$ such that f(a) = x. Since $f(K) \subset U \cup V$, then $x \in U \cup V$, which implies that $a \in f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$. Therefore, $K \subset f^{-1}(U) \cup f^{-1}(V)$.

The above three properties make $f^{-1}(U)$ and $f^{-1}(V)$ two open sets that separate K. This is a contradiction to the previous assumption that K is connected. Therefore, f(K) should be connected.

some properties of pre-image that I am not sure if those are correct and can be used directly.

QED

Theorem 4.2.b

Theorem: $B \subset M$ is compact implies that $f(B) \subset N$ is compact.

Proof.

Given a sequence $f(x_n) \in f(B)$ with all $x_n \in B$. Since B is compact, then $\exists x_{n_k} \subset x_n$ such that $x_{n_k} \to x_0 \in B$.

Since f is continuous, and continuous function preserves the convergence of sequence, therefore,

$$f(x_{n_k}) \to f(x_0) \subset f(B)$$

Therefore, f(B) is also a compact set.

QED

4.3 Operations

Operations

Max/Min Value Theorem

Theorem: Let $K \subset M$ be compact, $f: K \to \mathbb{R}$ be continuous, then $\exists x_0, x_1 \in K$ such that

$$f(x_0) \le f(x) \le f(x_1) \qquad \forall x$$

Proof.

By theorem 4.2.b, we know that f(K) is compact in \mathbb{R} . By Bolzano-Weierstrass theorem, f(K) is close and bounded. Therefore by boundedness, $\exists \inf(f(k)), \sup(f(k))$. By f(K) being closed, $\inf(f(k)), \sup(f(k))$ as accumulation points contained in f(K). Therefore, $\exists x_0, x_1 \in K$ such that $f(x_0) = \inf(f(K))$ and $f(x_1) = \sup(f(K))$

QED

Intermediate Value Theorem

Theorem: Let $K \subset M$ be connected and $f: K \to \mathbb{R}$ be continuous, suppose $x, y \in K$, $f(x) < f(y) \in \mathbb{R}$, then \forall intermediate values $f(x) \le c \le f(y)$, $\exists z \in K$ such that f(z) = c.

Proof.

Since K is connected and f is continuous, then f(K) is also connected in \mathbb{R}

Lemma 1: connected sets in \mathbb{R} are intervals:

 \Rightarrow

Suppose $A \subset \mathbb{R}$ is connected and assume to the contrary that A is not an interval, that is, $\exists a,b \in A$ such that $\exists c \in [a,b]$ that is not in A. Then I can construct two open sets $(-\infty,c)$ and (c,∞) such that the two open sets separate A. Therefore, A is no longer connected and this is a contradiction. Therefore, A is connected.

 \Leftarrow

Suppose A = [a, b] and suppose that A is disconnected, then $\exists U, V \subset \mathbb{R}$ that are open sets such that U, V separates A. Then the following three conditions, only two can be true simultaneously:

- 1. $A \cap U \neq \emptyset$, $A \cap V \neq \emptyset$
- 2. $A \cap U \cap V = \emptyset$
- 3. $A \subset U \cup V$

Is this the way to go?

Lemma 2: $A \subset \mathbb{R}$ is an interval iff $\forall a, b \in A, [a, b] \subset A$.

QED

Proof of a function being Continuous with $\varepsilon - \delta$

Statement: Prove that $f:(0,\infty)\to\mathbb{R},$ $f(x)=\frac{1}{x^2}$ is continuous.

Proof.

Fix $c \in (0, \infty)$ and $\varepsilon > 0$. I fix $\delta_1 = \frac{1}{2}c$, then finding an $x \in D(c, \delta_1)$, we have

$$|x - c| < \delta_1$$

$$< \frac{1}{2}c$$

$$\frac{1}{2}c < x < \frac{3}{2}c$$

Consider the expression |f(x) - f(c)|,

$$|f(x) - f(c)| = \left| \frac{1}{x^2} - \frac{1}{c} \right|$$
$$= \left| \frac{c^2 - x^2}{x^2 c^2} \right|$$
$$= \frac{c + x}{x^2 c^2} |c - x|$$

Since x is bounded by $\frac{1}{2}c < x < \frac{3}{2}c$, we have the expression strictly smaller than

$$\frac{c+x}{x^2c^2}|c-x| < \frac{\frac{5}{2}c}{\left(\frac{1}{4}c\right)^2c^2}|c-x| < \frac{12}{c^3}$$

If we would like to have the entire expression bounded by the fixed ε , we have:

$$\frac{12}{c^3}|c-x|<\varepsilon$$

$$|c-x|<\frac{c^3}{12}\varepsilon$$

Therefore, we let $\delta_2 = \frac{c^3}{12}\varepsilon$ so $|c - x| < \delta_2$.

Finally, we have $\delta = \min\{\delta_1, \delta_2\}$

QED

4.6 Uniform Continuity

Proof of a function being UC with $\varepsilon - \delta$

 $f:(1,2)\to\mathbb{R}$, prove that f is u.c.

Proof.

Fix $x, y \in (1, 2)$, consider the expression

$$|f(x) - f(y)| = \left| \frac{1}{x} - \frac{1}{y} \right|$$
$$= \frac{|y - x|}{|xy|}$$
$$= \frac{|y - x|}{xy}$$

Since $x, y \in (1, 2)$, then xy > 1 which implies $\frac{y-x}{xy} < |y-x|$. Therefore, given $\varepsilon > 0$, we can

choose $\delta = \varepsilon$ such that given $|y - x| < \delta$, we have

$$|f(x) - f(y)| < |y - x| < \delta = \varepsilon$$

Therefore, we have f being uniformly continuous.

QED

 $f:(0,1)\to\mathbb{R}$, prove that f is **not u.c.**

consider the expression

$$|f(x) - f(y)| = \frac{|y - x|}{|xy|}$$
$$= \frac{|y - x|}{xy}$$

Suppose y = 2x, then

$$|f(x) - f(y)| = \frac{x}{2x^2}$$
$$= \frac{1}{2x}$$

Choose ε to be anything, we want to show that $\forall \delta, \exists x, y \in A$ such that $d(x,y) < \delta$ but $d(f(x), f(y)) > \varepsilon$

Fix $\varepsilon = 1$, then $\forall \delta > 0$, choose $0 < x < \min\{\delta, 1/2\}, y = 2x$. Therefore, $|y - x| = x < \delta$, but $|f(x) - f(y)| = \frac{1}{2x} > 1 = \varepsilon$

Therefore, f is not uniform continuous on (0,1).

Proof of a function not being UC

Consider the function $f(x) = x \sin(x) : \mathbb{R} \to \mathbb{R}$ is not UC.

The equivalent statement for not UC is:

 $\exists \varepsilon_0 > 0$ such that $\forall \delta_n = 1/n, \exists x_n, y_n \in A$ such that $d(x_n, y_n) < \delta_n$ but $\rho(f(x), f(y)) > \varepsilon_0$.

Proof.

Consider $x_n = 2\pi n, y_n = 2\pi (n + 1/2n)$, then

$$|x_n - y_n| = \frac{1}{2n} < \delta_n$$

However, consider that

$$|f(y) - f(x)| = |(2\pi(n + 1/2n)\sin(2\pi n + \pi/n) - 2\pi n\sin(2\pi n)|$$
$$= |(2\pi(2\pi n + \pi/n)\sin(n + 1/2n)|$$

Let $z_n = \pi/n$, then $\frac{2\pi^2}{z_n} = 2\pi n$. Note that $z_n \to 0$ as $n \to \infty$. We can transform the previous expression into:

$$|(2\pi(n+1/2n)\sin(n+1/2n))| = \left| \left(\frac{2\pi^2}{z_n} + z_n \right) \sin(2\pi n + z_n) \right|$$
$$= \left| \left(\frac{2\pi^2}{z_n} + z_n \right) \sin(z_n) \right|$$
$$= \left| 2\pi^2 \frac{\sin(z_n)}{z_n} + z_n \sin(z_n) \right|$$

For large enough n, we have the difference approaches to $2\pi^2 \neq 0$. Therefore, $\exists 0 < \varepsilon_0 < 2\pi^2$ such that $\forall \delta_n = \frac{1}{n}, d(x_n, y_n) < \delta_n$ but $\rho(f(x), f(y)) > \varepsilon_0$.

QED

Note that this can also be used as a counterexample to argue that with both functions u.c., one being bounded, the product is still u.c.

Both bounded and UC implies the product is UC

Suppose that $f, g: A \to \mathbb{R}$, both are bounded and are uniformly continuous. prove that $f \cdot g$ is also uniformly continuous.

Proof.

We know that both functions are bounded, therefore, $\exists M, N > 0$ such that |f(x)| < M and $|g(x)| < N \ \forall x$. From uniform continuity, we know that fix $\varepsilon, \exists \delta_1$ and δ_2 such that $\forall x, y \in A$, $|x - y| < \delta_1, |x - y| < \delta_2$ implies that

$$|f(x) - f(y)| < \frac{\varepsilon}{2N}$$

$$|g(x) - g(y)| < \frac{\varepsilon}{2M}$$

Let $\delta = \min{\{\delta_1, \delta_2\}}$, observe the product

$$\begin{split} |f(x)g(x)-f(y)g(y)| &= |f(x)g(x)-f(y)g(x)+f(y)g(x)-f(y)g(y)| \\ &\leq |f(x)g(x)-f(y)g(x)|+|f(y)g(x)-f(y)g(y)| \\ &\leq |g(x)|\cdot|f(x)-f(y)|+|f(y)|\cdot|g(x)-g(x)| \\ &< M\cdot\frac{\varepsilon}{2M}+N\cdot\frac{\varepsilon}{2N} \\ &< \varepsilon \end{split}$$

Therefore, given ε , $\exists \delta$ such that $\forall x, y \in A$, the product is uniformly continuous.

QED

Continuous and Compact Domain imply UC

Proof.

Fix ε , need to show that $\exists \delta > 0$ such that $\forall x, y \in A, d(x, y) < \delta$, we have $\rho(f(x), f(y)) < \varepsilon$. Since f is continuous on A. Then fix ε , $\exists \delta_x$ such that $\forall y \in A, d(x, y) < \delta_x$ implies that $\rho(f(x), f(y)) < \frac{\varepsilon}{2}$. Note that $\{D(x, \delta_x) | x \in A\}$ is an open cover for A. Since A is compact, then \exists a finite subcover: $\{D(x_k, \frac{\delta_{x_k}}{2}) | x_k \in A, k = 1, 2, \dots, N\}$. We then construct $\delta = \min\{\frac{\delta_{x_1}}{2}, \frac{\delta_{x_2}}{2}, \dots, \frac{\delta_{x_N}}{2}\}$.

Fix $x \in A$, then $x \in D(x_i, \frac{\delta_{x_i}}{2})$ for some i. Choose $y \in A$ such that $d(x, y) < \delta$. Therefore with the triangular inequality:

$$d(y, x_i) \le d(x, y) + d(x, x_i)$$

$$< \delta + \frac{\delta_{x_i}}{2}$$

$$< \frac{\delta_{x_i}}{2} + \frac{\delta_{x_i}}{2}$$

$$< \delta_{x_i}$$

Therefore $y \in D(x_i, \delta_{x_i})$. By continuity, we know that $d(x, x_i) < \delta_{x_i} \Rightarrow \rho(f(x), f(x_i)) < \frac{\varepsilon}{2}$,

 $d(y,x_i) < \delta_{x_i} \Rightarrow \rho(f(y),f(x_i)) < \frac{\varepsilon}{2}$. Therefore by another triangular inequality:

$$\rho(f(y), f(x)) \le \rho(f(x), f(x_i)) + \rho(f(y), f(x_i))$$

$$< \varepsilon/2 + \varepsilon/2$$

$$< \varepsilon$$

We therefore have δ for the fixed ε such that $\forall x, y \in A, d(x, y) < \delta, \rho(f(x), f(y)) < \varepsilon$. Hence uniformly continuous.

QED

Alternative Proof: Bolzano-Weierstrass

Proof.

The theorem states that $(M, d), (N, \rho)$ are general metric spaces and $A \subset M$, $f : A \to N$, if f is continuous and A is compact, then f is uniformly continuous.

I proceed with the proof by assuming that f is continuous, A compact, but f is not uniformly continuous.

It is proven in the previous question that f is not uniformly continuous iff $\exists \varepsilon$ and two sequences x_n, y_n such that $d(x_n, y_n) < 1/n$ but $\rho(f(x_n), f(y_n)) > \varepsilon$. Since A is a compact set, then \exists converging subsequences $x_{n_k} \subset x_n$, $y_{n_k} \subset y_n$ such that $x_{n_k} \to x_0 \in A$ and $y_{n_k} \to y_0 \in A$.

Since f is continuous and by previous proposition, continuous function preserves convergence, then

$$\lim_{n \to \infty} d(x_{n_k}, y_{n_k}) < \lim_{n \to \infty} 1/n$$
$$d(x_0, y_0) \le 0$$
$$x_0 = y_0$$

But

$$\lim_{n \to \infty} \rho(f(x_{n_k}), f(x_{n_k})) \ge \lim_{n \to \infty} \varepsilon$$

$$\rho(f(\lim_{n \to \infty} x_{n_k}), f(\lim_{n \to \infty} x_{n_k})) \ge \varepsilon$$

$$\rho(f(x_0), f(y_0)) \ge \varepsilon > 0$$

Therefore, with x_{n_k} and x_{n_k} converges together as $x_0 = y_0$, there is still a gap between $f(x_0)$ and $f(y_0)$ larger than ε , which implies that f is not continuous. This is a contradiction to the previous assumption that f is continuous.

f has to be uniformly continuous.

QED

Bounded Continuous Does not Imply UC

Counterexample: $f(x) = \sin(x^2)$.

Proof.

Fix $\varepsilon_0 = 1$, in order to have $|\sin(x^2) - \sin(y^2)| \ge 1$, we can have $x^2 = n\pi$ and $y^2 = n\pi + \frac{1}{2}\pi$, then $x = \sqrt{n\pi}, y = \sqrt{n\pi + \frac{1}{2}\pi}$

$$|y - x| = \left| \sqrt{n\pi + \frac{1}{2}\pi} - \sqrt{n\pi} \right|$$

$$= \frac{n\pi + \frac{1}{2}\pi - n\pi}{\left| \sqrt{n\pi + \frac{1}{2}\pi} + \sqrt{n\pi} \right|}$$

$$< \frac{\pi}{2\left| \sqrt{n\pi + \frac{1}{2}\pi} + \sqrt{n\pi} \right|}$$

$$< \frac{1}{n\pi}$$

Therefore, for large enough n, we can find close enough y, x such that their distance is no less than $\varepsilon_0 = 1$. Therefore, $f(x) = \sin(x^2)$ is not uniformly continuous.

QED

Bounded Slope implies Lipschitz

Suppose that $f:(a,b)\to\mathbb{R}$ is differentiable and $\exists M>0$ such that $|f'(x)|\leq M \ \forall x\in(a,b)$. Then f is Lipschitz and hence UC.

Proof.

By mean value theorem, for any $x, y \in (a, b)$, WLOG, $y > x, \exists c \in [x, y]$ such that f(y) - f(x) = f'(c)(y - x). This implies that

$$|f(y) - f(x)| = |f'(c)| \cdot |y - x| \le M \cdot |y - x|$$

The inequality shows that f is Lipschitz.

QED

4.7 Differentiation

Differentiable implies Continuous

Suppose that $f:[a,b]\to\mathbb{R}$ is differentiable on (a,b), show that f is continuous on (a,b). **Proof.**

$$\lim_{x \to x_0} (f(x) - f(x_0)) = \lim_{x \to x_0} \frac{(f(x) - f(x_0))}{x - x_0} (x - x_0)$$

$$= \lim_{x \to x_0} \frac{(f(x) - f(x_0))}{x - x_0} \lim_{x \to x_0} (x - x_0)$$

$$= f'(x) \cdot 0 = 0$$

Therefore $\lim_{x\to x_0} f(x) = f(x_0)$, the limit exists and equals to the functional value. Therefore f is continuous.

QED

Alternative

Proof.

We know that f being differentiable has the ε_{δ} definition: $\forall |\Delta x| < \delta \Rightarrow |\Delta f - f'(x)\Delta x| < \varepsilon |\Delta x|$ Therefore by triangular inequality:

$$|\Delta f - f'(x)\Delta x| < \varepsilon |\Delta x|$$
$$|\Delta f| < \varepsilon |\Delta x| + |f'(x)\Delta x|$$
$$< |\Delta x|(\varepsilon + |f'(x)|)$$

 $(\varepsilon+|f'(x)|)$ is a constant implies that f is locally Lipschitz, which implies that f is continuous at x.

Chain Rule

Show that $\frac{d}{dx}g(f(x)) = g'(f(x)) \cdot f'(x)$

For notation, let y = g(x), z = g(y), h(x) = g(f(x)).

Need to show that $h'(x) = g'(f(x)) \cdot f'(x)$.

Or: Given $\varepsilon > 0$, $\exists \delta > 0$ such that $|\Delta x| < \delta$ such that

$$|h(x + \Delta x) - h(x) - \Delta x \cdot g'(f(x))f'(x)| < \varepsilon |\Delta x|$$

Proof.

Let
$$h(x + \Delta x) - h(x) = \Delta h$$
, $f(x + \Delta x) - f(x) = \Delta f$

From left hand side: we know that

$$|h(x + \Delta x) - h(x) - \Delta x \cdot g'(f(x))f'(x)|$$

$$= |\Delta h - g'(f(x))\Delta f + g'(f(x))\Delta f - \Delta x \cdot g'(f(x))f'(x)|$$

$$\leq \underbrace{|\Delta h - g'(f(x))\Delta f|}_{I} + \underbrace{|g'(f(x))| \cdot |\Delta f - f'(x)\Delta x|}_{II} \quad \text{Tri-ineq}$$

Idea:

I would make $I, II < \frac{1}{2}\varepsilon$.

Since g is differentiable, we know that ratio between changes in codomain to change in

domain is bounded above by some ε_1 , i.e.

$$|\Delta g - g'(y)\Delta y| \le \varepsilon_1 |\Delta y| = \varepsilon_1 |\Delta f|$$

Similarly, since f is differentiable, we know that (1)

$$|\Delta f - f'(x)\Delta x| \le \varepsilon_2 |\Delta x|$$
$$|\Delta f| \le \varepsilon_2 |\Delta x| + |f'(x)\Delta x|$$
$$\le |\Delta x|(\varepsilon_2 + |f'(x)|)$$

Combining these two conditions, we have

$$|\Delta g - g'(y)\Delta y| \le \varepsilon_1(|\Delta x|(\varepsilon_2 + |f'(x)|))$$

From f differentiable we also know that (2)

$$q'(f(x))|\Delta f - f'(x)\Delta x| < q'(f(x))\varepsilon_2|\Delta x|$$

Coming back to the proof,

Fix ε , choose $\varepsilon_1, \varepsilon_2$ such that

(1):
$$\varepsilon_1(\varepsilon_2 + |f'(x)|) < \frac{1}{2}\varepsilon$$

(2):
$$\varepsilon_2 |g'(f(x))| < \frac{1}{2}\varepsilon$$

Next, choose δ_1 such that

$$|\Delta y| < \delta_1$$

This implies that

$$|\Delta g - g'(y)\Delta y| < \varepsilon_1 |\Delta y|$$

Finally, choose δ such that $|\Delta x| < \delta$, this implies that

$$|\Delta f - f'(x)\Delta x| < \varepsilon_2 |\Delta x|$$

$$|\Delta f| < \varepsilon_2 |\Delta x| + |f'(x)\Delta x| = |\varepsilon_2 + f'(x)| \cdot |\Delta x|$$

$$< |\varepsilon_2 + f'(x)| \cdot \delta$$

Combining the two results, the LHS $\leq I + II$, then

$$LHS \leq I + II$$

$$\leq \varepsilon_1 |\Delta y| + |g'(f(x))| \cdot \varepsilon_2 |\Delta x|$$

$$\leq \varepsilon_1(\varepsilon_2 + |f'(x)|) |\Delta x| + |g'(f(x))| \cdot \varepsilon_2 |\Delta x|$$

$$< \frac{1}{2} \varepsilon |\Delta x| + \frac{1}{2} \varepsilon |\Delta x| = \varepsilon |\Delta x|$$

QED

Rolle's Theorem

Consider the function $f:[a,b]\to\mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). If f(a)=f(b)=0, then $\exists c\in(a,b)$ such that f'(c)=0.

Lemma: If f is differentiable on (a,b) and has max/min at some point $c \in (a,b)$, then f'(c) = 0.

Suppose f has a max $c \in (a,b)$, need to show that $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = 0$. Since c is a max on f, then $\forall x \in (a,b), f(x) \leq f(c)$, therefore when $x < c, f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} < 0$, when $x > c, f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} > 0$. Collectively, f'(c) = 0. Same for min.

Proof.

Rule out the trivial cases that f = 0 everywhere.

Suppose that $f \neq 0$, then by the min/max theorem, [a, b] compact and f continuous implies the existence of a min c_1 and a max $c_2 \in [a, b]$. Since f(a) = f(b) = 0, then either c_1 or c_2 is in (a, b) because $f \neq 0$. Then whichever one in (a, b) will have a derivative 0.

QED

Mean Value Theorem

Statement: For $f:[a,b]\to\mathbb{R}$ be continuous and differentiable on (a,b). $\exists c\in(a,b)$ such that $f'(c)=\frac{f(b)-f(a)}{b-a}$.

Proof.

Construct a new function $\phi(x):[a,b]\to\mathbb{R}$ such that

$$\phi(x) = f(x) - \left[f(a) + \frac{f(b) - f(a)}{b - a} (x - a) \right]$$

Observe that $\phi(a) = 0$ and $\phi(b) = 0$. Recall Rolle's theorem, we know that $\exists c \in [a, b]$ such that $\phi'(c) = 0$

$$\phi'(c) = f'(c) - \left[\frac{f(b) - f(a)}{b - a}\right] = 0$$
$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

QED

Monotonicity

1. $f'(x) \ge 0 \forall x \in (a,b)$ iff f is increasing on [a,b]

 \Rightarrow

Given $x_1, x_2 \in [a, b]$, by mean value theorem, $\exists c \in (x_1, x_2)$ such that $f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$ Then since $f'(c) \ge 0$, then either $f(x_2) \ge f(x_1)$ and $x_2 > x_1$, or $f(x_2) \le f(x_1)$ and $x_2 < x_1$. In either cases, f is increasing.

 \Leftarrow

Given f increasing on [a, b], then fix $x_1, x_2 \in (a, b)$ and WLOG, suppose $x_2 > x_1$. Since f increasing, then $f(x_2) \ge f(x_1)$. This implies that the quotient:

$$\frac{f(x_2) \ge f(x_1)}{x_2 - x_1} \ge 0$$

Therefore $f'(x) \ge 0 \forall x \in (a, b)$.

Inverse function Theorem

Statement: Suppose that either f'(x) > 0 or $f'(x) < 0 \ \forall x$, then f is a bijection thus invertible, f^{-1} exists and $(f^{-1})'(y) = \frac{1}{f'(x)}$ where y = f(x).

Proof.

Suppose that $f:[a,b] \to \mathbb{R}$ such that f'(x) > 0.

Let y = f(x), then $x = f^{-1}(y)$, we have the derivative

$$(f^{-1})'(y) = \lim_{y \to y_0} \frac{(f^{-1})'(y) - (f^{-1})'(y_0)}{y - y_0}$$

$$= \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)}$$

$$= \left(\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}\right)^{-1}$$

$$= 1/f'(x)$$

QED

4.8 Integration

Bounded, Monotonic functions are Integrable

Proof.

Statement: Suppose that $f:[a,b] \to \mathbb{R}$ is bounded and monotonically increases, then f is integrable.

It is sufficient to show that $\forall \varepsilon > 0, \exists$ partition P such that

$$U(f, P) - L(f, P) < \varepsilon$$

Since the domain is compact, by extreme value theorem $\exists \max f = M$ and $\min f = m$. Pick an arbitrary partition $P = \{x_0, \dots, x_n\}$ with $x_0 = a$ and $x_n = b$. Since f monotonically

increases, then $f(x_i) \leq f(x)$ and $f(x_{i+1}) \geq f(x) \ \forall x \in [x_i, x_{i+1}]$. Observe the upper sum and the lower sum.

$$U(f,P) = \sum_{i=0}^{n-1} \sup\{f(x)|x \in [x_i, x_{i+1}]\} \cdot (x_{i+1} - x_i)$$

$$= \sum_{i=0}^{n-1} f(x_{i+1})(x_{i+1} - x_i)$$

$$L(f,P) = \sum_{i=0}^{n-1} \inf\{f(x)|x \in [x_i, x_{i+1}]\} \cdot (x_{i+1} - x_i)$$

$$= \sum_{i=0}^{n-1} f(x_i)(x_{i+1} - x_i)$$

I know that for all differences in the value of f, they are bounded by the difference between the max and min, i.e.

$$f(x_{i+1}) - f(x_i) \le M - m$$

Therefore, for the difference between the upper sum and the lower sum to be bounded by ε , I can find the partition such that each sub-interval is shorter than $\frac{\varepsilon}{n(M-m)}$. Combining all the results Therefore,

$$U(f,P) - L(f,P) = \sum_{i=0}^{n-1} (f(x_{i+1}) - f(x_i))(x_{i+1} - x_i)$$

$$< \sum_{i=0}^{n-1} (M - m) \left(\frac{\varepsilon}{n(M - m)}\right)$$

$$< \varepsilon$$

I conclude that f is integrable.

QED

Bounded, Finite number of discontinuities are integrable

Statement: $f:[a,b] \to \mathbb{R}$ is bounded and continuous at all but <u>but finitely many points</u>, then f is integrable.

Lemma 1: Let f be bounded, if P and P' are 2 partitions of [a,b] and $P \subset P'$ (i.e. P' is called a refinement of P). Then

$$L(f, P) \le L(f, P') \le U(f, P') \le U(f, P)$$

Fix any partition P, Q, then $P \cup Q$ should also be a partition and is a refinement of both P and Q.

Proof needed

When partition gets finer, lower sum increases and upper sum decreases.

We know from lemma 1,

$$L(f, P) \le L(f, P \cup Q) \le U(f, P \cup Q) \le U(f, Q)$$

Then

$$\int f = \sup_{P} L(f, P) \le U(f, Q)$$

The lower integral is a lower bound of $U(f,Q) \, \forall Q$. Therefore, it is smaller than or equal to the greatest lower bound

$$\int f = \sup_{P} L(f, P) \le \inf_{Q} U(f, Q) = \overline{\int} f$$

In order to show that f is integrable, it is equivalent as showing its lower integral equals to the upper integral.

 $\forall P$, we have

$$L(f,P) \le \underline{\int_{a}^{b}} f \le \overline{\int_{a}^{b}} f \le U(f,P)$$

Fix $\varepsilon > 0$, it is sufficient to show that $\exists P$ such that

$$U(f, P) - L(f, P) < \varepsilon$$

Suppose that f is bounded, then $\exists m, M$ such that $m \leq f(x) \leq M \ \forall x$. Also suppose that f

is continuous on [a, b] except at $a_1, a_2, \ldots, a_k \in [a, b]$. Choose P_1 such that each sub-interval that contains some a_i and has length $\leq \frac{\varepsilon}{2} \cdot \frac{1}{2k(M-m)}$.

Let K be the union of the remaining sub-intervals. Then K is compact and f is continuous everywhere on K. By previous theorem, compact domain and continuous function implies uniform continuity. Therefore, $\exists \delta > 0$ such that $\forall x_1, x_2 \in K, |x_1 - x_2| < \delta$ implies that $|f(x_1) - f(x_2)| < \frac{\varepsilon}{2} \frac{1}{b-a}$.

Construct a refinement of P_1

Construct a P such that each sub-interval containing a_i has length that is smaller than δ . I will call each sub-interval $I_j = [x_j, x_{j+1}]$. Define $M_j = \sup_{I_j} f(x)$ and $m_j = \inf_{I_j} f(x)$.

Observation:

- 1. The maximum and minimum according to this partition is still be bounded by m and M, i.e. If $\exists a_i \in I_j$, then $m \leq m_j \leq M_j \leq M$.
- 2. For those I_j that do not contain a_i , then $I_j \subset K$ on which f is uniformly continuous. Therefore, $M_j - m_j = \max - \min < \frac{\varepsilon}{2} \frac{1}{b-a}$.

Finally, we have

$$U(f,P) - L(f,P)$$

$$= \sum_{j} (M_j - m_j)(x_{j+1} - x_j)$$

$$= \sum_{\exists a_i \in I_j} (M_j - m_j)(x_{j+1} - x_j) + \sum_{a_i \notin I_j} (M_j - m_j)(x_{j+1} - x_j)$$

$$\leq (M - m)\frac{\varepsilon}{2} \frac{1}{2k(M - m)} \cdot 2k + \left(\frac{\varepsilon}{2} \cdot \frac{1}{b - a}(b - a)\right)$$

$$< \varepsilon$$

Fundamental Theorem of Calculus

Antiderivative

Let $f:[a,b]\to\mathbb{R}$, F is the antiderivative if $F'(x)=f(x)\forall x\in(a,b)$.

Statement: Let $f:[a,b] \to \mathbb{R}$ be continuous, then $\exists F$ as an antiderivative of f and

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Step 1: Show the existence of F

Proof.

 $\forall x \in [a, b], \text{ Let } F(x) = \int_a^x f(t)dt.$

I claim that F is an antiderivative of f.

Fix $x \in (a, b)$, choose h > 0 such that $[x - h, x + h] \subset (a, b)$. Then for $|\Delta x| < h$, we have:

$$\frac{F(x+\Delta x) - F(x)}{\Delta x} = \frac{\int_a^{x+\Delta x} f(t)dt - \int_a^x f(t)dt}{\Delta x}$$

$$= \frac{1}{\Delta x} \int_x^{x+\Delta x} f(t)dt$$

$$\frac{F(x+\Delta x) - F(x)}{\Delta x} - f(x) = \frac{1}{\Delta x} \int_x^{x+\Delta x} f(t)dt - f(x)$$

$$= \frac{1}{\Delta x} \int_x^{x+\Delta x} f(t)dt - f(x) \left(\frac{1}{\Delta x}(x+\Delta x - x)\right)$$

$$= \frac{1}{\Delta x} \int_x^{x+\Delta x} f(t)dt - \frac{1}{\Delta x} \int_x^{x+\Delta x} f(x)dt$$

$$= \frac{1}{\Delta x} \int_x^{x+\Delta x} (f(t) - f(x))dt$$

With $t \in (x, x + \Delta x)$.

Given $\varepsilon > 0$, f is continuous at x implies $\exists \delta > 0$ such that $|t - x| < \delta$ implies $|f(t) - f(x)| < \varepsilon, \forall t \in (x - \delta, x + \delta)$.

We also know that the absolute value of the integral is less than or equal to the integral of the absolute value:

$$\left| \frac{1}{\Delta x} \int_{x}^{x + \Delta x} (f(t) - f(x)) dt \right| \leq \frac{1}{|\Delta x|} \int_{x}^{x + |\Delta x|} |(f(t) - f(x))| dt$$

$$< \frac{1}{|\Delta x|} \int_{x}^{x + |\Delta x|} \varepsilon dt$$

$$= \varepsilon$$

Therefore,

$$\left| \frac{F(x + \Delta x) - F(x)}{\Delta x} - f(x) \right| < \varepsilon$$

$$\lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x} = f(x)$$

i.e., $F'(x) = f(x) \ \forall x \in (a, b), F$ is an antiderivative of f.

Step 2: Show
$$\int_a^b f(x)dx = F(b) - F(a)$$

$$F(b) = \int_a^b f(t)dt$$
, $F(a) = \int_a^a f(t)dt = 0$. Then

$$F(b) - F(a) = \int_{a}^{b} f(t)dt$$

QED

Proof on the Properties of Integration

Monotonicity

Statement: If $f \leq g$ on [a,b] and are both integrable, then $\int_a^b f dx \leq \int_a^b g dx$.

Statement: In particular, $\forall f$, we have the following

$$-|f| \le f \le |f|$$

Therefore

$$\int_{a}^{b} -|f|dx \le \int_{a}^{b} f dx \le \int_{a}^{b} |f|dx$$
$$\left| \int_{a}^{b} f dx \right| \le \int_{a}^{b} |f|dx$$

Riemann Integrable

7. Let $f: [0, 1] \to \mathbb{R}$, f(x) = 1 if x = 1/n, n an integer, and f(x) = 0 otherwise.

- a. Prove that f is integrable.
- **b.** Show that $\int_0^1 f(x) dx = 0$.

Proof.

It is equivalent as showing that $\forall \varepsilon, \exists$ partition P over [0, 1] such that

$$U(f, P) - L(f, P) < \varepsilon$$

Fix $\varepsilon_0 > 0$. We know that the sequence $\{1/n\} \to 0$ as $n \to \infty$. Therefore, $\exists N$ such that $\forall n > N, x_n < \frac{\varepsilon_0}{N}$. Consider a partition:

$$\mathcal{P} = \{x_1, x_2^1, x_2^2, \cdots, x_i^1, x_i^2, \cdots x_N^1, x_N^2, x_0\}$$

With $x_1 = 1$ and $x_0 = 0$ and $x_i^1 = \frac{1}{i} + \frac{\varepsilon_0}{2N}$ and $x_i^2 = \frac{1}{i} - \frac{\varepsilon_0}{2N}$, $i \in \mathbb{N} \cap [2, N]$.

There are four types of sub-intervals in this partition:

1. $[x_0, x_N^2]$, equivalent as $[0, x_N^2]$. This interval contains infinitely many x = 1/n. Therefore,

$$\sup\{f(x)|x \in [x_0, x_N^2]\} = 1$$

But the interval length is bounded since $x_N^2 = \frac{1}{N} - \frac{\varepsilon_0}{2N} < \frac{1}{N} < \frac{\varepsilon_0}{N}$.

2. $[x_i^2, x_i^1]$ with $i \in \mathbb{N} \cap [2, N]$, equivalent as $[\frac{1}{i} - \frac{\varepsilon_0}{2N}, \frac{1}{i} + \frac{\varepsilon_0}{2N}]$. Observe that $\forall i, \exists ! \, x = \frac{1}{i} \in \mathbb{N}$

 $[x_i^2, x_i^1]$. Therefore,

$$\sup\{f(x)|x \in [x_i^2, x_i^1]\} = 1$$

The interval length as the width is fixed to be $\frac{\varepsilon_0}{N}$.

3. $[x_i^1, x_{i+1}^2]$. The interval lengths vary but all such interval does not contain any x = 1/n. Therefore,

$$\sup\{f(x)|x\in[x_i^1,x_{i+1}^2]\}=0$$

4. $[x_2^1, x_1]$, equivalent as $[\frac{1}{2} + \frac{\varepsilon_0}{2N}, 1]$. This interval does not contain x = 1/n therefore,

$$\sup\{f(x)|x\in[x_2^1,x_1]\}=0$$

To compute the upper sum:

$$U(f,\mathcal{P}) = \sup_{\text{First interval, has } \frac{1}{n}} + \sum_{i=2}^{N} \sup_{\text{Sup}} \{f(x) | x \in [x_{i}^{2}, x_{i}^{1}]\} \cdot (x_{i}^{1} - x_{i}^{2})$$

$$+ \sum_{i=2}^{N} \sup_{\text{Those contain } \frac{1}{n}} + \sum_{i=2}^{N} \sup_{\text{Sup}} \{f(x) | x \in [x_{i}^{1}, x_{i+1}^{2}]\} \cdot (x_{i+1}^{2} - x_{i}^{1})$$

$$+ \sup_{\text{Those do not contain } \frac{1}{n}} + \sup_{\text{Those do not contain } \frac{1}{n}} + \sup_{\text{Last interval}} + \sum_{\text{Last interval}} \left[x_{i}^{2} + x_{i}^{2} \right] \cdot (x_{i}^{2} - x_{i}^{2})$$

$$= 1 \cdot x_{i}^{2} + (N - 1) \cdot 1 \cdot \frac{\varepsilon_{0}}{N} + 0 + 0 \cdot \left(1 - \frac{1}{2} - \frac{\varepsilon_{0}}{2N}\right) + \frac{\varepsilon_{0}}{N} + \frac{N - 1}{N} \varepsilon_{0} = \varepsilon_{0}$$

Claim: $L(f, P) = 0 \ \forall P$.

To show this, fix any partition $P = \{y_1, \dots, y_K\}$. For any sub-interval $[y_k, y_{k+1}]$. As for the lower sum, since $\mathbb{R} \setminus \mathbb{Q}$ is dense on $\mathbb{R} \cap [0, 1]$. Therefore at least one irrational x exists in all sub-intervals. The infimum of f(x) is always 0. Therefore,

$$L(f, \mathcal{P}) = 0$$

And the difference

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) < \varepsilon_0 - 0 = \varepsilon_0$$

Therefore, I have shown that given ε_0 , $\exists \mathcal{P}$ such that $U(f,\mathcal{P}) - L(f,\mathcal{P}) < \varepsilon_0$. f is Riemann integrable.

2nd Mean Value Theorem - Integration

Statement: Let $f, g : [a, b] \to \mathbb{R}, f \ge 0, f$ integrable, g continuous. Then $\exists x_0 \in (a, b)$ such that

$$\int_{a}^{b} f(x)g(x)dx = g(x_0) \int_{a}^{b} f(x)dx$$

Proof.

We know that g is continuous and the domain is compact. Therefore, by the min/max theorem, $\exists x_1, x_2$ such that $g(x_1) = \min\{g(x)\}$ and $g(x_2) = \max\{g(x)\}$. Therefore, we have the following inequality:

$$g(x_1)f(x) \le g(x)f(x) \le g(x_1)f(x)$$

$$g(x_1) \int_a^b f(x)dx \le \int_a^b f(x)g(x)dx \le g(x_2) \int_a^b f(x)dx$$

$$g(x_1) \le \frac{\int_a^b f(x)g(x)dx}{\int_a^b f(x)dx} \le g(x_2)$$

Since g is continuous, by the intermediate value theorem, $\exists x_0$ such that $g(x_0) = \frac{\int_a^b f(x)g(x)dx}{\int_a^b f(x)dx}$. Therefore, we have

$$g(x_0) \int_a^b f(x)dx = \int_a^b f(x)g(x)dx$$

QED