8. Tervezési minták II. (Testek és Lények)

Határidő ápr 15, 23:59 Pont 10 Kérdések 10 Időkorlát Nincs Engedélyezett próbálkozások 5

Kvíz kitöltése újra

Próbálkozások naplója

	Próbálkozás	ldő	Eredmény
MEGTARTOTT	2. próbálkozás	3 perc	5.33 az összesen elérhető 10 pontból
LEGUTOLSÓ	2. próbálkozás	3 perc	5.33 az összesen elérhető 10 pontból
	1. próbálkozás	26 perc	2 az összesen elérhető 10 pontból

(!) A helyes válaszok el vannak rejtve.

Ezen próbálkozás eredménye: 5.33 az összesen elérhető 10 pontból

Beadva ekkor: ápr 15, 13:52

Ez a próbálkozás ennyi időt vett igénybe: 3 perc

Helytelen

0 / 1 pont

Helytelen

Mikor inicializálódnak az osztályszintű adattagok? Amikor az osztályból először példányosítunk egy objektumot. Ezt a feladatot az osztályszintű konstruktor végzi. Az osztályra hivatkozó programrész végrehajtásának kezdetén. Az osztályt tartalmazó program végrehajtásának kezdetén.

Helytelen

3. kérdés

Egy sablon (vagy C# nyelven generikus) osztály metódusainak működése a

sablon paramétereitől függ.

4. kérdés 1 / 1 pont

Milyen célt szolgálhat az alábbi osztálydiagram?

Olyan objektumokat tudunk az A osztályból példányosítani, amelyekre a MűveletA() és a MűveletB() egyaránt hívható.

Olyan A típusú objektumok hozhatók létre, amelyeket a B típusú objektumok használhatnak fel.

Olyan objektumot tudunk az A osztályból példányosítani, amelyek tartalmazza a B osztály egy objektumának hivatkozását, hogy a B osztály metódusait használhassa.

Olyan B típusú objektumok hozhatók létre, amelyek öröklik a MűveletA() metódust.

Helytelen

5. kérdés 0 / 1 pont

Mi a látogató tervezési minta lényege?

Egy objektum reprezentációját (adattagjait) egy másik objektumban definiáljuk, amelyet majd kompozícióval csatolunk az első objektumhoz azért, hogy ez a reprezentáció rugalmasan, akár futási időben is kicserélhető legyen.

Egy ősosztálytól örökölt metódus működését az alosztályban felüldefiniált más (ún. látogató) metódusok működésétől tesszük függővé.

Egy objektum metódusának működése a saját osztályán kívül a neki adott paraméter-objektum osztályától függ, de ez a függőség nem jelenik meg elágazás formájában a kódban.

Egy objektum metódusának egyik paramétere egy olyan objektumra hivatkozik, amely egy közös ősosztályú objektum-készletből választható ki, és ezáltal a metódus működése rugalmasan változtatható lesz.

6. kérdés 1/1 pont

Tekintse az alábbi modellt:

Mit ír ki az alábbi kód?

B b = new B(); A a = b; a.TemplateMethod();

- B1 A2
- A1 A2
- A1 B2
- B1 B2

7. kérdés	1 / 1 pont
-----------	------------

Miért lehet összegzésre visszavezetni azt a feladatot, amelynek célja egy sorozat összeállítása?

Azért, mert egy sorozatot az összefűzés műveletével építhetünk fel, amelyiknek van baloldali neutrális eleme.

Azért, mert két részsorozat összefűzése ugyanúgy kommutatív, mint az összegzés művelete.

Nem lehet. A sorozat előállítása a másolás, a kiválogatás, a szétválogatás, vagy az összefűzés programozási tételével történik.

Ez nem vezethető vissza a tanult hat programozási tétel egyikésre sem.

8. kérdés 1/1 pont

Miért lehet összegzésre visszavezetni azt a feladatot, amelyben n-szer egymás után kell alkalmazni egy $f: \mathbb{N} \times \mathbb{Z} \longrightarrow \mathbb{Z}$ függvényt egy $c_0 \in \mathbb{Z}$ kiinduló értékre: $f(n, \dots f(2, f(1, c_0)) \dots)$?

Segítség: Vezessük be a c_{i+1} =f(i, c_i) (i=1..n-1) jelöléseket, valamint a $\equiv : \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$ műveletet, amely két egész szám közül a másodikat adja vissza, azaz a \equiv b::=b. Ekkor

$$\begin{split} f(n, \, \dots \, f(2, \, f(1, \, c_0)) \, \dots \,) &= f(1, \, c_0) \, \oplus \, f(2, \, f(1, \, c_0)) \, \oplus \, \dots \, \, \oplus \, f(n, \, \dots f(2, \, f(1, \, c_0)) \dots) \\ &= f(1, \, c_0) \, \oplus \, f(2, \, c_1) \, \, \oplus \, \dots \, \, \oplus \, f(n, \, c_{n-1}) \end{split}$$

Nem lehet ö	sszegzésre visszavezetni, mert az összegzés műveletének
kommutatív	ak és asszociatívnak kell lenni, de a ⊜ művelet nem ilyen.
Nem vez	ethető vissza az összegzésre.
_	s műveletétől csak annyit várunk el, hogy legyen baloldali
	me. A ⊜ műveletnek minden egész szám baloldali neutrális
eleme.	

Részleges

9. kérdés 0.33 / 1 pont

a stratégi	t tervezési minta kompozícióval köt egy interfészt a kliens osztályhoz a tervezési mintában ez a kapcsolat lehet aggregáció, vagy akár függőség is.
~	
értékeit (a	t tervezési minta a kliens objektum egy adattagjának lehetséges állapotait) írja le, és metódusokat biztosít ezen értékek ztatásához: a stratégia tervezési minta egymást helyettesítő
értékeit (a megválto algoritmu	
értékeit (a megválto algoritmu Ezen terv	állapotait) írja le, és metódusokat biztosít ezen értékek ztatásához; a stratégia tervezési minta egymást helyettesítő
értékeit (a megválto algoritmu Ezen terv	állapotait) írja le, és metódusokat biztosít ezen értékek ztatásához; a stratégia tervezési minta egymást helyettesítő sokat definiál a kliens számára. ezési minták egyaránt támogatják a SOLID elvek közül a nyitott-zárt,

Kvízeredmény: 5.33 az összesen elérhető 10 pontból