Homework 4

Antonio Zea Jr

November 12, 2022

Problems

0.1 Given implementation-level description of a Turing machine M that decides the language $A = \{\overline{w_1} \sim w_2 | w_1, w_2 \in \{0,1\}^*, w_2 \text{ is bitwise complement of } w_1\}$. For example, M should accept "101 \sim 010" and reject "101 \sim 101". Hint: see the Turing machine M_1 in the book

Scan the across the tape to corresponding positions on either side of the \sim symbol to check whether these positions contain opossite symbols. If they do not, or if no \sim is found, *reject*. Cross off symbols as they are checked to keep track of which symbols correspond.

When all symbols to the left of the \sim have been crossed off, check for any remaining symbols to the right of the \sim . If any symbols remain, *reject*; otherwise, *accept*.

0.2 Give a formal description of M including a state diagram for δ .

$$Q = \{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}, q_{7}, q_{8}, q_{A}, q_{R}\}$$

$$\Sigma = \{0, 1, \sim\}$$

$$\Gamma = \{0, 1, \sim, x, _\}$$

$$q_{0} = q_{1}$$

$$q_{Accept} = q_{A}$$

$$q_{Reject} = q_{R}$$

