# Introducción a la Computación

## Tópicos

- Organización interna de computadoras
  - Partes de una computadora, básicamente:
    - I/O
    - Memoria
    - CPU
  - Conexión de las distintas partes:
    - Conexión de la memoria a la CPU
    - Conexión de dispositivos de I/Os a la CPU
  - Cómo funcionan las computadoras

## Organización Interna de las Computadoras

- CPU
- Memoria
- I/O
  - Entradas
    - Por ejemplo: Teclado, Mouse, Sensores...
  - Salidas
    - Por ejemplo: LCD, impresora, motores, actuadores...

#### Memoria

- Cualquier cosa o medio que puede almacenar, retener y regresar información.
  - Por ejemplo: Disco duro, Disco de estado sólido, una hoja de papel, circuitos integrados, ...

#### Características de la Memoria

- Capacidad
  - Número de bits que puede almacenar.
    - Por ejemplo: 128 Kbits, 256 Mbits
- Organización
  - Cómo se organizan las localidades.
    - Por ejemplo: Memoria de 128 x 4, tiene128 localidades de 4 bits cada una.



- Tiempo de acceso
  - Cuánto se tarda en recuperar un dato de memoria.

## Memorias

Semiconductoras



• No - semiconductoras





#### Memorias Semiconductoras

- ROM
  - Mask ROM
  - PROM (Programmable ROM)
  - EPROM (Erasable PROM)
  - EEPROM (Electronic Erasable PROM)
  - Flash EPROM

RAM •
SRAM (Static RAM –
DRAM (Dynamic RAM) –
NV-RAM (Nonvolatile –
RAM)

## ROM - MASK

Programada por el fabricante.

## PROM (Programmable ROM)

- OTP (One-Time Programmable) Programable una sola vez.
  - El usuario proporciona el código, éste es permanente.

## EPROM (Erasable Programmable ROM)

#### UV-EPROM

- Con radiación ultravioleta se borran
- El tiempo de exposición es de aproximadamente 20 minutos
- Se borra el contenido completo



| Part #   | Capacity | Org.          | Access | Pins | $V_{PP}$    |
|----------|----------|---------------|--------|------|-------------|
| 2716     | 16K      | 2K × 8        | 450 ns | 24   | 25 V        |
| 2732     | 32K      | $4K \times 8$ | 450 ns | 24   | 25 V        |
| 2732A-20 | 32K      | $4K \times 8$ | 200 ns | 24   | 21 V        |
| 27C32-1  | 32K      | $4K \times 8$ | 450 ns | 24   | 12.5 V CMOS |
| 2764-20  | 64K      | $8K \times 8$ | 200 ns | 28   | 21 V        |
| 2764A-20 | 64K      | $8K \times 8$ | 200 ns | 28   | 12.5 V      |
| 27C64-12 | 64K      | $8K \times 8$ | 120 ns | 28   | 12.5 V CMOS |



## EEPROM (Electrically Erasable Program ROM)

- Borrado por medios electrónicos
  - Borrado instantáneo
  - Se puede borrar byte por byte



| Part No.  | Capacity | Org.           | Speed  | Pins | $V_{PP}$ |
|-----------|----------|----------------|--------|------|----------|
| 2816A-25  | 16K      | $2K \times 8$  | 250 ns | 24   | 5 V      |
| 2864A     | 64K      | $8K \times 8$  | 250 ns | 28   | 5 V      |
| 28C64A-25 | 64K      | $8K \times 8$  | 250 ns | 28   | 5 V CMOS |
| 28C256-15 | 256K     | $32K \times 8$ | 150 ns | 28   | 5 V      |
| 28C256-25 | 256K     | 32K × 8        | 250 ns | 28   | 5 V CMOS |

### Flash ROM

- Borrada en un instante
- Se borra toda la memoria, en un bloque

| Part No.  | Capacity | Org.           | Speed  | Pins | V <sub>PP</sub> |
|-----------|----------|----------------|--------|------|-----------------|
|           |          |                |        |      |                 |
| 28F256-20 | 256K     | $32K \times 8$ | 200 ns | 32   | 12 V CMOS       |
| 28F010-15 | 1024K    | 128K × 8       | 150 ns | 32   | 12 V CMOS       |
| 28F020-15 | 2048K    | 256K × 8       | 150 ns | 32   | 12 V CMOS       |

#### Memorias Semiconductoras

- ROM
  - Mask ROM
  - PROM (Programmable ROM)
  - EPROM (Erasable PROM)
  - EEPROM (Electronic Erasable PROM)
  - Flash EPROM

- RAM •
- SRAM (Static RAM)
- DRAM (Dynamic RAM)
- NV-RAM (Nonvolatile RAM)

## SRAM (Static RAM)

- Construida con transistores
- Ventajas:
  - Más rápida
  - No necesita refrescado
- Desventajas:
  - Alto consumo de potencia
  - Relativamente caras



## DRAM (Dynamic RAM)

- Hechas de capacitores
- Ventajas:
  - Consumo de potencia menor
  - Más baratas
  - Alta capacidad de densidad
- Desventajas:
  - Más lentas en su acceso
  - Requieren un refrescado constante

## NV-RAM (Nonvolatile RAM)

- Construidas con SRAM, Baterías y circuitería de control
- Ventajas:
  - Muy rápidas
  - Ciclo de programación / borrado infinitos
  - No volátiles
- Desventajas:
  - Caras

#### PARTES INTERNAS - CPU

- Tareas que se deben ejecutar
  - Se desarrollan a través de la ejecución de instrucciones, procesando datos
    - Se deben seleccionar las instrucciones, una por una, en un orden específico, para ejecutarlas

### Conexión de la Memoria a la CPU

 Distribución de terminales de la Memoria





cs

#### Conexión de I/Os al CPU

¡El CPU debiera tener muchas terminales (pines)!











Keyboard



### Conexión de I/Os al CPU usando un bus



## Conexión de I/Os y Memoria al CPU



#### I/Os conectados al CPU usando bus



## I/Os conectados al CPU usando bus (PIO)



Conectando I/Os y Memoria al CPU usando bus (Memory Mapped I/O)

¿Cómo se puede construir este circuito lógico?



El circuito lógico habilita "**CS**" cuando la dirección está entre 0 y 15

#### Address bus

#### Solución:

- 1. Escribe la dirección en el rango binario
- 2. Separa la parte fija de la dirección
- 3. Usando una compuerta NAND, diseña un circuito lógico, cuya salida se active cuando la parte fja está presente.

De dirección 0 →
Hasta la 15 →





## Otro ejemplo: Decodificador de Direcciones

 Diseñe un decodificador de direcciones para el rango de 300H a 3FFH.



#### Dentro del CPU

- PC (Contador del Programa)
- Decodificador de Instrucciones
- ALU (Unidad Lógica Aritmética)
- Registros











## Trabajo del Decodificador de Instrucciones







| Operation Code | Significado                                        |
|----------------|----------------------------------------------------|
| 000            | A ← x                                              |
| 001            | A ← [x]                                            |
| 010            | A ← A – register (x)                               |
| 011            | A ← A + x                                          |
| 100            | A ← A + register (x)                               |
| 101            | A ← A – x                                          |
| 110            | Register $(x_H) \leftarrow \text{Register } (x_L)$ |
| 111            | [x] ← A                                            |

## Arquitecturas: Von Neumann vs. Harvard



Arquitectura Harvard



Arquitectura Von Neumann