

مشروع مادة المترجمات

مترجم لغة Assembly لمعالج 8 بت

إعداد الطلاب:

محمد يمان قلعه جي عبد الكريم المكتبي عبد الحميد سيد محمد حمزة مشهدي

> تحت إشراف: م.أحمد قاضي

مقدمة عن المشروع:

يهدف المشروع إلى تصميم مترجم لغة Assembly خاصة بالمعالج الذي تم تصميمه في مادة بنية الحاسب. يتعرف المترجم على 27 تعليمة خاصة بالمعالج ، ويقوم بكتابة ملف لغة الآلة (Binary) لتنفيذه مباشرة. يتألف المترجم من الأجزاء الرئيسية التالية:

- . Lexical Analyzer المحلل اللفظي –1
- . Syntactical Analyzer المحلل القواعدي -2
 - . Semantic Analysis المحلل المعنوى -3
 - . Binary Generating توليد شيفرة الآلة

التعليمات التي ينفذها المترجم:

ينفذ المعالج 27 تعليمة أساسية :

الرقم	الترميز (بصيغة HEX)	التعليمة	عمل التعليمة
1	01 02 03 04 06 07 08 90 0B 0C 0D 0E	MOV RX , RX (4 مسجلات و 12 حالة)	نقل محتوی مسجل عام إلى مسجل عام آخر
2	10 11 12 13	MOV ACC , RX (عالات 4)	نقل محتوى مسجل عام إلى المراكم
3	20 24 28 2C	MOV RX , ACC (4 حالات)	نقل محتوى المراكم إلى مسجل عام
4	30	MOV ACC , Immediate	نقل قيمة عددية مباشرة إلى المراكم (يشترط أن تكون القيمة أصغر من 256)
*5	41	MOV ACC , [Memory]	نقل محتوى حجرة ذاكرية إلى المراكم (يشترط أن تكون القيمة أصغر من 251)
**6	42	MOV [Memory] , ACC	نقل محتوى المراكم إلى حجرة ذاكرية (يشترط أن تكون القيمة أصغر من 251 وأكبر من 127)
7	50 51 52 53	ADD ACC , RX (عالات 4	جمع محتوى مسجل عام إلى المراكم
8	60 61 62 63	SUB ACC , RX (عالات 4	طرح محتوى مسجل عام من المراكم
9	70 71 72 73	ADC ACC , RX (عالات 4	جمع محتوى مسجل عام إلى المراكم مع الحمل
10	80 81 82 83	AND ACC , RX (عالات)	تطبيق عملية AND المنطقية بين مسجل عام و المراكم و وضعها في المراكم
11	90 91 92 93	OR ACC , RX (عالات)	تطبيق عملية OR المنطقية بين مسجل عام و المراكم و وضعها في المراكم
12	Α0	NOT	تطبيق عملية NOT المنطقية على المراكم

13	B0 B1 B2 B3	XOR ACC , RX (عالات)	تطبيق عملية XOR المنطقية بين مسجل عام و المراكم و وضعها في المراكم
14	C1	STC	تغيير قيمة Carry Flag إلى واحد منطقي
15	C2	CLC	تغيير قيمة Carry Flag إلى صفر منطقي
16	C4	STZ	تغيير قيمة Zero Flag إلى واحد منطقي
17	C8	CLZ	تغییر قیمة Zero Flag إلى صفر منطقي
*18	D0	JMP Memory	القفز إلى حجرة تعليمة في الذاكرة (يشترط أن تكون القيمة أصغر من 251)
*19	EC	JS Memory	القفز إلى حجرة تعليمة في الذاكرة في حال كان العدد الناتج سالب (يشترط أن تكون القيمة أصغر من 251)
*20	E4	JNS Memory	القفز إلى حجرة تعليمة في الذاكرة في حال كان العدد الناتج موجب (يشترط أن تكون القيمة أصغر من 251)
*21	EA	JZ Memory	القفز إلى حجرة تعليمة في الذاكرة في حال كان العدد الناتج يساوي الصفر (يشترط أن تكون القيمة أصغر من 251)
*22	E2	JNZ Memory	القفز إلى حجرة تعليمة في الذاكرة في حال كان العدد الناتج لا يساوي الصفر (يشترط أن تكون القيمة أصغر من 251)
*23	E9	JC Memory	القفز إلى حجرة تعليمة في الذاكرة في حال وجود حمل (يشترط أن تكون القيمة أصغر من 251)
*24	E1	JNC Memory	القفز إلى حجرة تعليمة في الذاكرة في حال عدم وجود حمل (يشترط أن تكون القيمة أصغر من 251)
*25	F1 FB	CALL Memory	استدعاء تابع فرعي في الذاكرة (يشترط أن تكون القيمة أصغر من 251)
26	F2 FB	RET	العودة إلى مكان الاستدعاء المحفوظ في الحجرة FB
27	FF	HLT	نهاية البرنامج

^{*} يجب أن تكون القيمة أصغر من 251 لأن الحجرات من 252 إلى 256 مستخدمة داخلياً في المعالج.

^{**} يجب أن تكون القيمة أكبر من 127 لأن التصميم الداخلي للمعالج لن يسمح بتفعيل الكتابة في الذاكرة إلا عند القيمة 128 فما أكبر.

*** ملاحظة تشمل كافة القيم :

يجب أن تكون كافة القيم لاتساوي إلى القيمة 10 أو 26 ، لأن المقابل الست عشري لها هو 1A , 1A وهذه المحارف محجوزة من قبل النظام Windows لتعبر عن نهاية الملف المخزن في القرص.

التوابع المستخدمة في المحلل اللفظي:

: substring التابع

يقوم بتقطيع السلسلة النصية عبر تحديد مكان البداية والنهاية وإعادة السلسلة الجديدة.

الكود المصدري للمحلل اللفظي LEX :

التوابع المستخدمة في المحلل القواعدى:

1– التابع writetofile:

دخله عدد ممثل ست عشرياً بشكل مباشر (ذو الشكل 0x00) ، يقوم هذا التابع بكتابة القيمة مباشرة إلى ملف البرنامج program.bin بشكل ثنائى.

-2 التابع strtol:

تابع معرف في لغة ال C ، ويتم استخدامه عبر تضمين الملف الرأسي stdlib.h ، دخله هو سلسلة نصية مرمزة حسب نظام عددي ما (ست عشري في حالتنا) وخرجه هو عدد من النوع Long ، يتم تحويله عبر مفهوم ال Casting الى عدد صحيح Integer ليتم استخدامه في المحلل المعنوي.

: stringtohex التابع _3

دخله هو سلسلة نصية تعبر عن قيمة ست عشرية، وخرجه هو عدد ممثل ست عشرياً بشكل مباشر (ذو الشكل 0x00) ، ويتم إرسال هذا العدد إلى التابع writetofile الذي يقوم بكتابته إلى ملف البرنامج.

4_ التابع main :

التابع الأساسي الذي تتم عملية الترجمة فيه.

: yyerror التابع

التابع المسؤول عن عرض الخطأ الحاصل أثناء عملية الترجمة وتفاصيله.

الكود المصدرى للمحلل القواعدى YACC:

الملفات المرفقة على القرص:

- 1- الأكواد المصدرية Lex و Yacc .
- 2− برنامج Hex Editor Neo لمعاينة ملف الخرج المكتوب بالشكل الثنائي.
 - 3- ملف تصميم المعالج basic.pdsprj على برنامج Proteus الإصدار 8.0
 - . EditPlus برنامج
 - 5_ ملف شرح المشروع Word + PDF .
 - 6- ملفات الإكمال التلقائي على برنامج EditPlus وملفات تلوين السياق.
- 7– الملفات الدفعية (bat) وملفات سكربت Vbs) Visual Basic) المستخدمة لتشغيل وضع المحاكاة.