Machine Learning Model Comparison for Insurance Charges Prediction

Problem Statement

This project aims to predict insurance charges using the <code>insurance.csv</code> dataset (1,338 records) with features like <code>age, BMI, children, sex, smoker, and region</code>. We compare Linear Regression and Random Forest models (untuned, GridSearchCV, RandomizedSearchCV) to find the best model, using Mean Squared Error (MSE) and R² as metrics, with 5-fold cross-validation for robustness. The feature importance of the best model is analyzed to identify key drivers of charges.

Model Comparison

We evaluated six models, with results as follows:

- Linear Regression (Untuned): Test MSE: 33,596,920, Test R²: 0.784, CV MSE: 37,947,891
- Linear Regression (GridSearchCV): Test MSE: 33,596,920, Test R²: 0.784, CV MSE: 37,947,891 (Best Parameters: fit intercept=True)
- Linear Regression (RandomizedSearchCV): Test MSE: 33,596,920, Test R²: 0.784, CV MSE: 37,947,891 (Best Parameters: fit intercept=True)
- Random Forest (Untuned): Test MSE: 20,957,080, Test R²: 0.865, CV MSE: 24,441,731
- Random Forest (GridSearchCV): Test MSE: 20,666,560, Test R²: 0.867, CV MSE: 24,441,731 (Best Parameters: max depth=10, n estimators=200)
- Random Forest (RandomizedSearchCV): Test MSE: 20,846,880, Test R²: 0.866, CV MSE: 24,458,311 (Best Parameters: max_depth=10, n_estimators=100)

Random Forest (GridSearchCV) performed best, with the lowest Test MSE (20,666,560) and highest Test R² (0.867). Tuning slightly improved the Random Forest's Test MSE by \sim 290,520 compared to the untuned model. Linear Regression showed no improvement from tuning, as the default <code>fit_intercept=True</code> was optimal. Random Forest also generalized better, with a CV MSE of \sim 24.4M versus Linear Regression's \sim 37.9M.

Key Insights

- 1. **Model Performance**: Random Forest outperformed Linear Regression (Test R²: 0.867 vs. 0.784), better capturing non-linear relationships in the data.
- 2. **Feature Importance**: For Random Forest (GridSearchCV), smoker_yes was the most important feature (importance 0.619), followed by bmi (0.211) and age (0.133). Features like sex male (0.006) and regional indicators (<0.005) had minimal impact.
- 3. **Practical Implications**: Smoking status is the primary driver of insurance charges, with BMI and age also significant. Insurance pricing models should prioritize these factors over gender or region.

This analysis confirms Random Forest's effectiveness for predicting insurance charges, smoking as the key cost driver.	with