Multimedia Technology

Lecture 11: Recommendation System

Lecturer: Dr. Wan-Lei Zhao

Autumn Semester 2022

Email: wlzhao@xmu.edu.cn, copyrights are fully reserved by the author.

Outline

Collaberative Filtering

Overview about online Recommendation (1)

- We have so far covered about searches
- In this case, users are active
- We are going to talk about another issue
- Where the users are subjective: recommendation

Overview about online Recommendation (2)

- Online shopping
- Online services
- Direct the items to the one who is in need
 - Products
 - 2 Services
 - 8 News
 - 4 Friends
 - **5** ...

Overview on the Recommendation System (1)

- Given a user, we already know he/she is interested in some items (movies, products, etc.)
- Recommend other items that he/she is also likely interested in

Overview on the Recommendation System (2)

- There are many ways to handle this issue
 - 1 Given we know the properties of each item
 - 2 We can recommend similar items that user already shows his interests

Overview on the Recommendation System (3)

- There are many ways to handle this issue
 - 1 Given we know the profile of each user
 - 2 We can recommend the items that fit to the profile of the user

Major Issues in Collaberative Recommendation

- Given the profiles of each user and the properties of each item are missing
- The recommendation is only based on ratings
 - 1 Ratings are incomplete
 - 2 Ratings from lazy user could be completely missing
- Collaberative Filtering comes to fit in this scenario

Example: Predicting Movie Ratings

User rates movie using zero to five stars

Movie	Anna(1)	Jenny(2)	Tom(3)	Jack(4)
Gone with Wind	5	5	0	0
Sound of Music	5	?	?	0
Chinese Odyssey	?	4	0	0
Who Am I	0	0	3	4
Matrix	0	0	5	?

- The problem is
 - 1 How to automatically rate '?' entries
 - With the estimated rates for undefined entries, it is possible to do the recommendation

Example: Predicting Movie Ratings (1)

User rates movie using zero to five stars

Movie	Anna(1)	Jenny(2)	Tom(3)	Jack(4)
Gone with Wind	5	5	0	0
Sound of Music	5	?	?	0
Chinese Odyssey	?	4	0	0
Who Am I	0	0	3	4
Matrix	0	0	5	?

• n_u : number of users

• n_m : number of movies

• r(i,j): if user j rated movie i

• $y^{(i,j)}$: defined iff r(i,j) = 1

Example: Predicting Movie Ratings (2)

- Given we predefined two features to describe the style of movies
- They are action and romance

Movie	Anna (1)	Jenny (2)	Tom (3)	Jack (4)	x ₁ (romance)	x ₂ (action)
Gone with Wind	5	5	0	0	0.90	0.00
Sound of Music	5	?	?	0	1.00	0.01
Chinese Odyssey	?	4	0	0	0.99	0.00
Who Am I	0	0	3	4	0.10	1.00
Matrix	0	0	5	?	0.00	0.90

• $y^{(i,j)}$ is approximated by $\theta_1^{(i)} \cdot x_1^{(i)} + \theta_2^{(i)} \cdot x_2^{(i)} + \theta_0^{(i)}$

Example: Predicting Movie Ratings (3)

- Given we predefined two features to describe the style of movies
- They are action and romance

Movie	Anna	<i>x</i> ₁	<i>x</i> ₂
iviovie	(1)	(romance)	(action)
Gone with Wind	5	0.90	0.00
Sound of Music	5	1.00	0.01
Chinese Odyssey	?	0.99	0.00
Who Am I	0	0.10	1.00
Matrix	0	0.00	0.90

- $y^{(i,1)}$ is approximated by $\theta_1^{(i)} \cdot x_1^{(i)} + \theta_2^{(i)} \cdot x_2^{(i)} + \theta_0^{(i)}$
- It is nothing more than a linear regression problem!!
- For each user, we can do linear regression for them one by one

Example: Predicting Movie Ratings (4)

Given we are going to minimize following error:

$$\underset{\theta}{\operatorname{argmin}} \frac{1}{2} \sum_{r(i,1)=1} (\theta^T x^{(i)} - y^{(i,1)})^2 + \frac{\lambda}{2} \sum_{k=0}^n \theta_k^2$$
 (1)

- The second term $\frac{\lambda}{2} \sum_{k=0}^{n} \theta_k^2$ is for regularization
 - We favor θ with lower energy
- ullet heta can be solved out by gradient descent

If $k \neq 0$:

$$\theta_k = \theta_k - \alpha \cdot (\sum_{i:r(i,1)=1} (\theta^T x^{(i)} - y^{(i,1)}) \cdot x_k^{(i)} + \lambda \theta_k)$$
 (2)

If k = 0:

$$\theta_k = \theta_k - \alpha \cdot (\sum_{i: r(i,1)=1} (\theta^T x^{(i)} - y^{(i,1)}) \cdot x_k^{(i)})$$
 (3)

Example: Predicting Movie Ratings (5)

• The **objective** for a single user

$$\underset{\theta}{\operatorname{argmin}} \frac{1}{2} \sum_{r(i,1)=1} (\theta^T x^{(i)} - y^{(i,1)})^2 + \frac{\lambda}{2} \sum_{k=0}^n \theta_k^2$$
 (4)

• We can do this for all the users, the **objective** for each of the user

$$\underset{\theta^{(1)}, \dots, \theta^{(n_u)}}{\operatorname{argmin}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,1)})^2 + \frac{\lambda}{2} \sum_{k=0}^{n} (\theta_k^{(j)})^2$$
 (5)

Example: Predicting Movie Ratings (6)

$$\underset{\theta^{(1)},\dots,\theta^{(n_u)}}{\operatorname{argmin}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=0}^n (\theta_k^{(j)})^2$$
 (6)

We can have its gradient descent as follows

If $k \neq 0$:

$$\theta_k^{(j)} = \theta_k^{(j)} - \alpha \cdot (\sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) \cdot x_k^{(i)} + \lambda \theta_k^{(j)})$$
(7)

If k=0:

$$\theta_k^{(j)} = \theta_k^{(j)} - \alpha \cdot (\sum_{i=1}^{n_u} \sum_{i: r(i,i)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) \cdot x_k^{(i)})$$
(8)

Example: Predicting Movie Ratings (7)

• Once we work out all the $\theta^{(j)}$, we can calculate the missing rating

$$\hat{y}^{(i,j)} = (\theta^{(j)})^T \cdot x^{(i)} + \theta_0^{(j)}$$
(9)

- In above approach, $x^{(i)}$ s are assumed to be known
- In practice, it is hard to extract features from objects
- That is, $x^{(i)}$ s are not defined explicitly
- What we can do if $x^{(i)}$ s are missing???

Collaborative Filtering: the motivation (1)

• Given $x^{(i)}$ s are missing

Movie	Anna	<i>x</i> ₁	<i>x</i> ₂	
Movie	(1)	(romance)	(action)	
Gone with Wind	5	?	?	
Sound of Music	5	?	?	
Chinese Odyssey	?	?	?	
Who Am I	0	?	?	
Matrix	0	?	?	

- How could we estimate $y^{(3,1)}$?
- It is simply very very HARD if it is not impossible

Collaberative Filtering: the motivation (2)

- Given $x^{(i)}$ s are missing
- What happen if we know more ratings from different users?

Movie	Anna	Jenny	Tom	Jack	<i>x</i> ₁	<i>x</i> ₂
	(1)	(2)	(3)	(4)	(romance)	(action)
Gone with Wind	5	5	0	0	?	?
Sound of Music	5	?	?	0	?	?
Chinese Odyssey	?	4	0	0	?	?
Who Am I	0	0	3	4	?	?
Matrix	0	0	5	?	?	?

- 1 Both Anna and Jenny give high rates to "Gone with Wind"
- 2 Jenny also gives high rate to "Chinese Odyssey"
- 3 Anna might give high rate to "Chinese Odyssey" too

Collaberative Filtering: the motivation (3)

- Given $x^{(i)}$ s are missing
- We are going to learn $x^{(i)}$ s and θ as well

Movie	Anna	Jenny	Tom	Jack	<i>x</i> ₁	<i>x</i> ₂
	(1)	(2)	(3)	(4)	(romance)	(action)
Gone with Wind	5	5	0	0	?	?
Sound of Music	5	?	?	0	?	?
Chinese Odyssey	?	4	0	0	?	?
Who Am I	0	0	3	4	?	?
Matrix	0	0	5	?	?	?

Collaberative Filtering: the approach (1)

• Now, given θ s are known, we try to learn $x^{(i)}$

$$\underset{x^{(i)}}{\operatorname{argmin}} \frac{1}{2} \sum_{r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=1}^n (x_k^{(i)})^2$$
 (10)

• Similarly, we try to learn $x^{(1)}, \dots, x^{(n_m)}$

$$\underset{x^{(1)},\dots,x^{(n_m)}}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^{n} (x_k^{(i)})^2$$
(11)

Collaberative Filtering: the approach (2)

• Given θ s are known, we try to learn $x^{(1)}, \dots, x^{(n_m)}$

$$\underset{x^{(1)},\dots,x^{(n_m)}}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^{n} (x_k^{(i)})^2$$
(12)

• Given $x^{(i)}$ s are known, we try to learn $\theta^{(1)}, \cdots, \theta^{(n_u)}$

$$\underset{\theta^{(1),\dots,\theta^{(n_u)}}}{\operatorname{argmin}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=0}^{n} (\theta_k^{(j)})^2$$
(13)

• Eqn. 12 and Eqn. 13 form an egg-chicken loop, optimize them one after another

$$\theta^{(j)} \Rightarrow x^{(i)} \Rightarrow \theta^{(j)} \Rightarrow \theta^{(j)} \Rightarrow x^{(i)} \cdots$$

Collaberative Filtering: the approach (3)

• We can optimize them simultaneously:

$$J(x^{(i)}, \theta^{(j)}) = \frac{1}{2} \sum_{r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

We try to minimize

$$J(\theta^{(j)}, x^{(i)})$$

Collaberative Filtering: the approach (4)

- 1 Initialize $\theta^{(j)}, x^{(i)}$ to small random numbers
- 2 Minimize $J(\theta^{(j)}, x^{(i)})$ by gradient descent:

$$\bullet \theta_k^{(j)} = \theta_k^{(j)} - \alpha \cdot (\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) \cdot x_k^{(i)}) + \lambda \theta_k^{(j)}$$

- Results:
 - 1 We are now able to estimate the rating for the missing entries
 - 2 We have a vector representation for each movie

Visualize the Problem

- The Optimization on θ and X could be sumarized as following
- Notice that R is a low rank matrix

$$y^{(j,i)} = \theta_{i,*} \times X_{*,j} \tag{14}$$

Solve it by Sochastic Gradient Descent

$$J(\theta^{(j)}, x^{(i)}) = \sum_{r(j,i)=1} L(R_{ji}, \theta_{i,*}, X_{*,j})$$

- Initialize $\theta^{(j)}$ and $x^{(i)}$
- While not converge
 - **1** Select one $\theta^{(j)}, x^{(i)}$ at random

$$\mathbf{2} \quad \bar{\theta}_k^{(j)} = \theta_k^{(j)} - \alpha \cdot \frac{\partial J(\theta^{(j)}, x^{(i)})}{\partial \theta^{(j)}}$$

$$3 x_k^{(i)} = x_k^{(i)} - \alpha \cdot \frac{\partial J(\theta^{(j)}, x^{(i)})}{\partial x^{(i)}}$$

$$\theta_{k}^{(j)} = \bar{\theta}_{k}^{(j)}$$

End-While

Discussion about Collaborative Filtering

- How we can produce matrix **R**?
- How to solve such big matrix?

Q & A