TUGAS KECERDASAN BUATAN

Disusun oleh: Kelompok 3 (RB)

 Sella Dianka Fitri 	(121450043)
2. Putri Intan Kirani	(121450055)
3. Angelica Noviana	(121450064)
4. Syifa Firnanda	(121450094)
5. Della Septiani	(121450109)

PROGRAM STUDI SAINS DATA
FAKULTAS SAINS
INSTITUT TEKNOLOGI SUMATERA
2023

Soal 1:

1. Fungsi ini telah dipakai oleh Chong dan Zak (1996) yaitu sebagai berikut:

$$f(x,y) = 3(1-x)^2 e^{-x^2 - (y+1)^2} - 10\left(\frac{x}{2} - x^3 - y^4\right) e^{-x^2 - y^2} - \frac{e^{-(x+1)^2 - y^2}}{3}$$
$$-3 \le x, y \le 3$$

Populasi awal dibangkitkan secara acak sebagai berikut:

	< Chromosomes >	Decimal_1 Length=16)	Decimal_2 (Length=16)	жl	x2
1)	11010011000010100110110010110110	54026	27830	1.946304	-0.452049
2)	0100000111111111111111100111	16895	48211	-1.453193	1.413916
3)	10010110110000000010000011100100	38592	8420	0.533257	-2.229114
4)	10001110011011010100101100110100	36461	19252	0.338155	-1.237400
5)	10110001000101110110000110000011	45335	24963	1.150607	-0.714534
6)	10010001011011000011101111011001	37228	15321	0.408377	-1.597299
7)	01110101100000010101110101101000	30081	23912	-0.245960	-0.810758
8)	011100100010011011001111111101010	29222	53226	-0.324605	1.873060
9)	110101011010111111110110111011001	54703	60889	2.008286	2.574640
10)	00010010011100011101011001101001	4721	54889	-2.567773	2.025315
11)	00101110001010111010100000101010	11819	43050	-1.917922	0.941405
12)	010111100001011111110001011101001	24087	58089	-0.794736	2.318288
13)	01000101011011100000010000011111	17774	1055	-1.372717	-2.903410
14)	01111001010011000100101000010010	31052	18962	-0.157061	-1.263951
15)	11000010011011110001100101010101	49775	6486	1.557107	-2.406180
16)	100100110010101101011111111011000	37675	24536	0.449302	-0.753628
(7)	10101101000000110101101100000101	44291	23301	1.055024	-0.866697
(8)	01101110111100011110010011110000	28401	58608	-0.399771	2.365805
(9)	111101101010010111111011100110001	63141	63281	2.780819	2.793637
(09	10110111101101000110010001001110	47028	25678	1.305608	-0.649073

Pop.Size = 20; Chrom.Length = 32; Max. Generation = 5; Crossover probability = 0.8800; Mutation probability = 0.1000.

- a. Lakukan evaluasi kromosom
- b. Lakukan prosedur seleksi menggunakan pendekatan roulette wheels untuk mendapatkan populasi baru (calon kromosom induk). Setiap roulette wheels diputar sebanyak lima kali dan setiap putaran dilakukan seleksi yang menghasil sebuah kromosom induk untuk membentuk sebuah populasi baru. Asumsikan bahwa rangkaian lima angka acak dari range [0,1].
- c. Metode crossover yang digunakan adalah penyilangan satu titik (one-point crossover). Dengan metode ini, algoritma genetika akan menyeleksi secara acak satu titik potong dan saling menukarkan bagian dari dua induk untuk menghasilkan keturunan. Bagaimana prosedur penyilangan tersebut?

Jawab:

Formulasi fungsi objektif

Formulasi fungsi objektif yang digunakan adalah

$$f(x,y) = 3(1-x)^2 e^{-x^2 - (y+1)^2} - 10\left(\frac{x}{2} - x^3 - y^4\right) e^{-x^2 - y^2} - \frac{e^{-(x+1)^2 - y^2}}{3}$$

dengan nilai x dan y yang berada pada rentang -3 sampai 3. Berdasarkan data yang diberikan, nilai x adalah x1 dan nilai y adalah x2, dengan tujuan untuk meminimalkan nilai fungsi.

$$\label{eq:Kromosom} \begin{split} & \text{Kromosom}[1] = [\text{x1}, \text{x2}] = [1.946304, -0.452049]; \\ & \text{Kromosom}[2] = [\text{x1}, \text{x2}] = [-1.453193, 1.413916]; \\ & \text{Kromosom}[3] = [\text{x1}, \text{x2}] = [0.533257, -2.229114]; \\ & \text{dan seterusnya sampai dengan} \\ & \text{Kromosom}[20] = [\text{x1}, \text{x2}] = [1.305608, -0.649073]. \end{split}$$

Evaluasi

Kemudian dilakukan evaluasi terhadap fungsi objektif untuk setiap kromosom yang dihasilkan. Karena tujuannya adalah untuk meminimumkan fungsi objektif, maka untuk menghitung nilai fittnes adalah

$$f = \frac{1}{h+a}$$

$$f = \frac{1}{h_1 + h_2 + \dots + h_n + a}$$

$$\mathbf{F_obj}[1] = 3(1 - 1.946304)^2 e^{-1.946304^2 - (-0.452049 + 1)^2} - 10\left(\frac{1.946304}{2} - 1.946304^3 - (-0.452049)^4\right) e^{-1.946304^2 - (-0.452049)^2} - \frac{e^{-(1.946304 + 1)^2 - (-0.452049)^2}}{3} = 807.350640$$

Dan seterusnya sampai $\mathbf{F_{obj}}[20]$ sehingga didapatkan hasil fungsi objektif pada iterasi 1 adalah sebagai berikut.

Kromosom	F_obj iterasi 1
1	807.350640
2	18.900423
3	2.437336
4	6.329219
5	7.087663
6	6.551010
7	7.442597
8	4.123912
9	34.323294
10	145.311208
11	843.488179
12	2.506523
13	3.962049
14	9.151616
15	13.370857
16	0.812477
17	6.685543
18	1.367438
19	534.813803
20	20.002111

Seleksi

Kromosom yang paling fit memiliki kemungkinan lebih tinggi untuk dipilih pada generasi berikutnya. Untuk menghitung probabilitas fitness harus menghitung fitness setiap kromosom. Untuk menghindari masalah pembagian dengan nol, nilai $\mathbf{F_obj}$ ditambah 1.

F_obj ditambah 1.
Fitness[1] =
$$\frac{1}{1+F_obj[1]}$$

= 0.001237

Dan seterusnya sampai Fitness[20] sehingga didapatkan hasil sebagai berikut.

Kromosom	Fitness
1	0.001237
2	0.050250
3	0.290923
4	0.136440
5	0.123645
6	0.132433
7	0.118447
8	0.195163
9	0.028310
10	0.006835
11	0.001184
12	0.285183
13	0.201530
14	0.098506
15	0.069585
16	0.551731
17	0.130114
18	0.422398
19	0.001866
20	0.047614

Nilai **Fitness**[1] sampai **Fitness**[20] memiliki jumlah total keseluruhan sebesar 2.893395 yang akan digunakan untuk menghitung probabilitas setiap kromosom dirumuskan dengan:

$$P[i] = \frac{\text{Fitness}[i]}{\text{Total}}$$
, untuk $i = 1, 2, ..., 20$.

$$\mathbf{\textit{P}}[1] = \frac{0.001237}{2.893395} = 0.000427$$

Dan seterusnya sampai dengan P[20]. Kemudian dihitung pula probabilitas kumulatif yang akan digunakan pada proses seleksi dalam *roulette wheel* sehingga didapatkan hasil sebagai berikut.

Kromosom	probabilitas	prob. Kumulatif C[i]
1	0.000428	0.000428
2	0.017367	0.017795
3	0.100547	0.118342
4	0.047156	0.165498
5	0.042734	0.208231
6	0.045771	0.254002
7	0.040937	0.294939
8	0.067451	0.362390
9	0.009784	0.372175
10	0.002362	0.374537
11	0.000409	0.374946
12	0.098563	0.473509
13	0.069652	0.543161
14	0.034045	0.577206
15	0.024050	0.601256
16	0.190686	0.791943
17	0.044969	0.836912
18	0.145987	0.982899
19	0.000645	0.983544
20	0.016456	1.000000

Berdasarkan fitness dan probabilitas yang didapatkan, diketahui bahwa **Kromosom 16** memiliki nilai fitness yang paling tinggi sehingga kromosom memiliki probabilitas yang paling tinggi untuk dipilih sebagai kromosom generasi berikutnya.

Setelah menghitung probabilitas kumulatif, maka proses seleksi dengan menggunakan *roulette wheel* dapat dilakukan. Prosesnya menghasilkan bilangan acak R pada rentang 0-1. Jika R[i] lebih besar dari C[i] dan lebih kecil dari C[i+1] maka pilih Kromosom[i+1] sebagai kromosom pada populasi baru untuk generasi berikutnya sehingga dihasilkan kromosom baru (*new chromosome*) sebagai berikut.

					new chron	mosom
Kromosom	prob. Kumulatif C[i]	R[i]	C[i] (hasil)	Kromosom	x1	x2
1	0.000428	0.902802	C18	1	-0.399771	2.365805
2	0.017795	0.273457	C7	2	-0.245960	-0.810758
3	0.118342	0.217843	C6	3	0.408377	-1.597299
4	0.165498	0.486700	C13	4	-1.372717	-2.903410
5	0.208231	0.623993	C16	5	0.449302	-0.753628
6	0.254002	0.852065	C18	6	-0.399771	2.365805
7	0.294939	0.367030	C7	7	-0.245960	-0.810758
8	0.362390	0.660033	C16	8	0.449302	-0.753628
9	0.372175	0.527787	C12	9	-0.794736	2.318288
10	0.374537	0.912398	C18	10	-0.399771	2.365805
11	0.374946	0.086419	C3	11	0.533257	-2.229114
12	0.473509	0.194885	C5	12	1.150607	-0.714534
13	0.543161	0.973947	C18	13	-0.399771	2.365805
14	0.577206	0.528430	C13	14	-1.372717	-2.903410
15	0.601256	0.817604	C16	15	0.449302	-0.753628
16	0.791943	0.492621	C13	16	-1.372717	-2.903410
17	0.836912	0.669406	C16	17	0.449302	-0.753628
18	0.982899	0.112932	C3	18	0.533257	-2.229114
19	0.983544	0.745292	C16	19	0.449302	-0.753628
20	1.000000	0.193251	C5	20	1.150607	-0.714534

Crossover

Dalam kasus ini, hanya terdapat satu (1) posisi pada kromosom parents yang kemudian akan saling menukar sub-kromosomnya (gen). Kromosom parents yang akan mate dipilih secara acak dan jumlah kromosom pasangan dikontrol menggunakan parameter crossover_rate (ρc) sebesar 0.8800. Kromosom i akan terpilih sebagai induk jika $R[i] < \rho c$ sehingga nomor Kromosom i akan dipilih untuk persilangan jika nilai yang dihasilkan secara acak untuk Kromosom i di bawah 0.8800.

Kromosom	x1	x2	R[i]
1	-0.399771	2.365805	0.321173
2	-0.245960	-0.810758	0.907749
3	0.408377	-1.597299	0.107353
4	-1.372717	-2.903410	0.891784
5	0.449302	-0.753628	0.695489
6	-0.399771	2.365805	0.965421
7	-0.245960	-0.810758	0.673086
8	0.449302	-0.753628	0.965168
9	-0.794736	2.318288	0.694847
10	-0.399771	2.365805	0.319801
11	0.533257	-2.229114	0.949671
12	1.150607	-0.714534	0.737161
13	-0.399771	2.365805	0.871939
14	-1.372717	-2.903410	0.945240
15	0.449302	-0.753628	0.355196
16	-1.372717	-2.903410	0.613431
17	0.449302	-0.753628	0.902631
18	0.533257	-2.229114	0.910403
19	0.449302	-0.753628	0.009223
20	1.150607	-0.714534	0.883903

Berdasarkan hasil yang didapatkan pada tabel di atas, R[i] > ρc ditandai dengan warna orange sehingga *parents* yang dihasilkan adalah Kromosom[1], Kromosom[3], Kromosom[5], Kromosom[7], Kromosom[9], Kromosom[10], Kromosom[12], Kromosom[15], Kromosom[16], dan Kromosom[19] yang akan dipilih untuk disilangkan. Oleh karena hanya terdapat dua (2) gen, maka persilangan akan dilakukan dengan memasangkan gen nomor 1 dari kromosom pertama dengan gen nomor 2 dari kromosom kedua.

```
Kromosom[1] = Kromosom[1] >< Kromosom[3]
= [-0.399771; 2.365805] >< [0.408377; -0.597299]
= [-0.399771; -0.597299]
```

dan seterusnya sampai **Kromosom[20]** sehingga dihasilkan populasi kromosom setelah mengalami proses crossover sebagai berikut.

Hasil crossover					
Kromosom	x1	x2			
1	-0.399771	-1.597299			
2	-0.245960	-0.810758			
3	0.408377	-0.753628			
4	-1.372717	-2.903410			
5	0.449302	-0.810758			
6	-0.399771	2.365805			
7	-0.245960	2.318288			
8	0.449302	-0.753628			
9	-0.794736	2.365805			
10	-0.399771	-0.714534			
11	0.533257	-2.229114			
12	1.150607	-0.753628			
13	-0.399771	2.365805			
14	-1.372717	-2.903410			
15	0.449302	-2.903410			
16	-1.372717	-0.753628			
17	0.449302	-0.753628			
18	0.533257	-2.229114			
19	0.449302	2.365805			
20	1.150607	-0.714534			

Mutasi

Jumlah kromosom yang mengalami mutasi pada suatu populasi ditentukan oleh parameter **mutasi_rate**, yaitu sebesar 0.1000. Proses mutasi dilakukan dengan mengganti gen pada posisi acak dengan nilai baru. Pertama kita harus menghitung total panjang gen dalam populasi. Dalam hal ini total panjang gen adalah

Proses mutasi dilakukan dengan membangkitkan bilangan bulat acak antara 1 hingga 40. Jika bilangan acak yang dihasilkan lebih kecil dari variabel **mutation_rate**, maka ditandai posisi gen dalam kromosom yang diharapkan 10% (0,1000) dari **total_gen** dalam populasi yang akan dimutasi.

Kemudian, dilakukan generate bilangan acak untuk menentukan gen yang akan dimutasi dan gen-gen tersebut akan digantikan dengan bilangan acak antara -3 sampai 3 dan didapatkan hasil bilangan acak berikut.

gen ke-	diganti dengan
13	2.198449
20	2.558423
38	-2.462696
8	-1.763464

Setelah dilakukan mutasi, maka komposisi kromosom saat ini adalah sebagai berikut.

hasil mutasi generasi 1					
Kromosom	x1	x2			
1	-0.399771	-1.597299			
2	-0.245960	-0.810758			
3	0.408377	-0.753628			
4	-1.372717	-1.763464			
5	0.449302	-0.810758			
6	-0.399771	2.365805			
7	2.198449	2.318288			
8	0.449302	-0.753628			
9	-0.794736	2.365805			
10	-0.399771	2.558423			
11	0.533257	-2.229114			
12	1.150607	-0.753628			
13	-0.399771	2.365805			
14	-1.372717	-2.903410			
15	0.449302	-2.903410			
16	-1.372717	-0.753628			
17	0.449302	-0.753628			
18	0.533257	-2.229114			
19	0.449302	2.198449			
20	1.150607	-0.714534			

Kemudian kita lakukan generasi lagi dengan langkah yang sama seperti sebelumnya sebanyak 5 generasi. Sehingga didapatkan hasil seperti berikut :

Kromosom	F_obj iterasi 1	F_obj iterasi 2	F_obj iterasi 3	F_obj iterasi 4	F_obj iterasi 5
1	807.350640 6.470691		6.000000	6.000000	6.000000
2	18.900423	7.442597	0.912358	3.274483	2.176666
3	2.437336	1.043215	4.629101	3.962049	0.695728
4	6.329219	84.862724	1.043215	0.812503	0.812503
5	7.087663	1.553447	84.862724	3.962049	0.812477
6	6.551010	1.367438	1.553447	2.920964	0.540262
7	7.442597	180.742281	1680.128216	1680.128216	1680.128216
8	4.123912	0.812477	180.742281	3.962049	0.812477
9	34.323294	2.176666	0.812477	84.862724	3.962049
10	145.311208	0.723749	2.176666	0.081742	0.081742
11	843.488179	2.437336	0.723749	1.043215	92.261168
12	2.506523	8.028702	2.437336	0.812503	0.081742
13	3.962049	1.367438	8.028702	0.812477	2.176666
14	9.151616	3.962049	1.367438	2.176666	0.812503
15	13.370857	0.218576	3.962049	3.962049	2.176666
16	0.812477	45.553723	3.311708	1.212208	1.212208
17	6.685543	0.812477	45.553723	0.723749	2.176666
18	1.367438	2.437336	0.812477	0.912358	3.274483
19	534.813803	2.241010	2.437336	1.553447	2.176666
20	20.002111	7.087663	2.241010	2.176666	0.081742

Dari evaluasi Kromosom baru tersebut terlihat bahwa objective function mengalami penurunan, artinya kita mempunyai Kromosom atau solusi yang lebih baik dibandingkan dengan Kromosom generasi sebelumnya. Sehingga solusi ini dapat kita sebut sebagai minimization problem.

Soal 2: Terdapat fungsi *g* sebagai berikut:

$$g(X) = \frac{1}{1 + ex^{1} + h(X) \ln(x_{4}x_{5} - x_{2})}$$

$$h(X) = \sum_{i=1}^{n} e^{xi} - x_{i}$$
dengan
$$X = \{x_{1}, x_{2}, x_{3}, \dots, x_{n}\} \text{ dan } n = 5$$

Fungsi *g* dapat dicari nilai maksimumnya dengan beberapa metode, salah satunyaadalah dengan menggunakan metode PSO.

Dalam problem tersebut, diberikan domain dari Xk sebagai berikut:

i.
$$b \le X_k < c$$

ii. $b = 10$, $c = 100$ untuk $k = 1, 2, 3$
iii. $b = 5$, $c = 50$ untuk $k = 4, 5$
Terdapat populasi PSO sebagai berikut:

<i>x</i> ₁	x ₂	x ₃	X 4	X 5	Fitnes s
4	50	20	67	89	
90	90	90	51	48	
40	46	51	47	61	

- a. Lengkapi tabel tersebut dengan menghitung nilai fitness setiapindividunya.
- b. Jelaskan parameter apa saja yang dibutuhkan dalam metode PSO untuk menyelesaikan masalah tsb!

Jawaban:

a. Perhitungan Nilai Fitness

$$H(X) = \sum_{i=1}^{n} e^{xi} - x_{i}$$

$$g(X) = \frac{1}{1 + e^{x_{1}} + h(X) \ln(x_{4}x_{5} - x_{2})}$$
Fitness = $g(X)$

$$= \frac{1}{1 + e^{x}_{1}} + h(X) \ln(x_{4}x_{5} - x_{2})$$

Individu1

$$h(X) = \sum_{i=1}^{5} e^{xi} - x_{i}$$

$$= (exp(4) - 4) + (exp(50) - 50) + (exp(20) - 20) + (exp(67) - 67) + (exp(89) - 89)$$

$$= 129.3848005717438$$

Perhitungan nilai 'h(X)' bagi individu 1

Xi	$exp(x_i)$	Χi	$exp(x_i) - x_i$	
4	e^4	4	$e^{4}-4$	
50		50	e^{50} – 50	
20	e^{50}	20	e^{20} –20	
	e^{20}		e^{67} –67	
67	e^{67}	67	e^{89} –89	
89	e^{89}	89		
	-	Σ	129.3848005 8	571743

Fitness =
$$\frac{1}{1 + e^4}$$
 + 129.3848005717438 ln(67 * 89 - 5 0)
= 2.208620304432578

$$h(X_1) = \sum_{i=1}^{5} (\exp(x_i) - x_i)$$

$$= (exp(90) - 90) + (exp(90) - 90) + (exp(90) - 90) + (exp(51) - 51)$$

$$+ (exp(48) - 48)$$

$$= 153.53472222163288$$

Tabel 2: Perhitungan nilai 'h(X)' bagi individu 2

Xi	$exp(x_i)$	Xi	$exp(x_i) - x_i$	
90	e^{90}	90	e^{90} – 90	
90	e^{90}	90	e^{90} -90	
90	e^{90}	90	e^{90} -90 e^{51} -51	
51	ρ51	51	e^{48} – 48	
48	e^{48}	48		
		Σ	153.53472222	2163288

Fitness =
$$\frac{1}{1 + e^{90}}$$
 + 153.53472222163288 ln(51 * 48 - 20)
= -0.004035539130438044

• Individu 3

$$h(X_1) = \sum_{i=1}^{5} (\exp(x_i) - x_i)$$

$$= (exp(40) - 40) + (exp(46) - 46) + (exp(51) - 51) + (exp(47) - 47)$$

$$+ (exp(61) - 61)$$

$$= 126.36281185563372$$

Tabel 3: Perhitungan nilai 'h(X)' bagi individu 3

Xi	exp(xi)	Xi	$\exp(x_i) - x_i$	
40	e^{40}	40	e^{40} –40	
46	e^{46}	46	e^{46} -46 e^{51} -51	
51	e ⁵¹	51	$e^{47} - 47$	
47	e^{47}	47	e^{61} –61	
61	e^{61}	61		
		Σ	126.362811855	63372

Fitness =
$$\frac{1}{1 + e^{40}}$$
 + 126.36281185563372 ln(51 * 47 - 20)
= 2.833365673064712

Tabel PSO

<i>X</i> 1	X 2	X 3	<i>X</i> 4	X 5	Fitness				
4	50	20	67	89	2.208620304432578				
90	90	90	51	48	-0.004035539130438044				
40	46	51	47	61	2.833365673064712				

b. Perhitungan Nilai Fitness

Parameter-parameter metode PSO untuk menyelesaikan masalah dalam soal

Paramete r	Nilai
Jumlah partikel (swarm size)	20-100
Dimensi ruang pencarian (search space)	5
Fungsi tujuan (fitness function)	$g(X) = 1_{1 + e_{x_1}} + h(X)$
Awal posisi partikel	Ditentukan secara acak
Awal kecepatan partikel	Ditentukan secara acak
Parameter inertia	0.7-0.9
Parameter pengenalan	1.4-1.6
Parameter sosial	1.2-1.4

Parameter-parameter metode PSO dan pengaruhnya

Parameter	Pengaru h
Jumlah partikel	Semakin banyak partikel, semakin baik kinerja PSO, tetapi
	semakin lama waktu yang dibutuhkan.
Dimensi ruang pencarian	Semakin tinggi dimensi ruang pencarian, semakin sulit PSO untuk menemukan solusi yang optimal.
Fungsi tujuan	Fungsi tujuan yang kompleks dapat membuat PSO lebih su-lit untuk menemukan solusi yang optimal.
Awal posisi partikel	Posisi awal yang baik dapat membantu PSO untuk mene- mukan solusi yang optimal lebih cepat.
Awal kecepatan partikel	Kecepatan awal yang baik dapat membantu PSO untukmenghindari terperangkap dalam lokal optimum.
Parameter inertia	Parameter inertia yang tinggi dapat membuat PSO lebih lambat untuk menyesuaikan diri dengan perubahan ling-kungan.
Parameter pengenalan	Parameter pengenalan yang tinggi dapat membuat PSO le- bih mudah untuk terperangkap dalam lokal optimum.
Parameter sosial	Parameter sosial yang tinggi dapat membuat PSO lebih mu- dah untuk mengikuti partikel-partikel lain.

Soal 3:

Misalkan kita mempunyai masalah <i>TSP</i> dengan 5 kota. Koordinat tiap kota sebagai berikut											
х	81.91	83.16	84.76	75.27	38.1	23.28	77.49	39.22	62.88	36.63	
у	37.47	49.92	40.37	63.61	28.8	95	15.56	22.32	32.6	65.29	

Untuk setiap ruas antar kota diberi nilai feromon awal τ_{ij} yang sama yaitu 1. Tingkat penguapar pheromone 0.5. Dalam hal ini kota M ditetapkan sebagai kota keberangkatan. Kemudian dari kota terakhir yang dikunjungi akan kembali ke kota M. Nilai parameter pengendali feromon (jejak semut) yaitu 1 dan parameter pengendali jarak sebesar 2. (Hasil akhir perhitungan masukkan pada table berikut)

- a. Lakukan perhitungan pada empat iterasi untuk kelima semut.
- b. Lakukan update feromen untuk setiap semut.

Jawaban:

Langkah 1. Menggambar Graf 10 kota

Langkah 2. Menghitung Jarak antar kota (dalam desimal)

	1	2	3	4	5	6	7	8	9	10
1	0	12,512	4,066	26,97	55,659	82,141	22,351	45,298	19,643	53,140
2	12,512	0	9,683	15,8	49,764	74,952	34,834	51,889	26,669	49,002
3	4,066	9,683	0	25,102	48,073	61,548	25,853	48,986	23,218	23,218
4	26,97	15,8	25,109	0	50,924	60,731	48,101	54,813	33,393	38,676
5	44,659	49,764	48,073	50,924	0	67,838	41,555	6,576	25,069	36,51
6	82,141	74,952	61,548	60,731	67,838	0	96,174	74,407	73,904	32,57
7	22,351	34,824	25,853	48,101	41,555	96,174	0	38,862	22,445	64,363
8	45,298	51,889	48,986	54,812	6,576	74,407	38,862	0	25,796	43,04
9	19,643	26,669	23,218	33,393	25,069	73,904	22,445	25,796	0	41,924
10	53,143	49,002	23,218	38,676	36,5196	32,571	64,363	43,047	41,924	(

Langkah 3. Visibilitas Antar Kota

	1	2	3	4	5	6	7	8	9	10	
1	0	0,0799	0,2459	0,0371	0,018	0,0122	0,0447	0,0221	0,0509	0,0188	
2	0,0799	0	0,1033	0,0633	0,0201	0,0133	0,0287	0,0193	0,0375	0,0204	
3	0,2459	0,1033	#DIV/0!	0,0398	0,0208	0,0162	0,0387	0,0204	0,0431	0,0431	
4	0,0371	0,0633	0,0398	#DIV/0!	0,0196	0,0165	0,0208	0,0182	0,0299	0,0259	
5	0,0224	0,0201	0,0208	0,0196	#DIV/0!	0,0147	0,0241	0,1521	0,0399	0,0274	
6	0,0122	0,0133	0,0162	0,0165	0,0147	#DIV/0!	0,0104	0,0134	0,0135	0,0307	
7	0,0447	0,0287	0,0387	0,0208	0,0241	0,0104	#DIV/0!	0,0257	0,0446	0,0155	
8	0,0221	0,0193	0,0204	0,0182	0,1521	0,0134	0,0257	#DIV/0!	0,0388	0,0232	
9	0,0509	0,0375	0,0431	0,0299	0,0399	0,0135	0,0446	0,0388	#DIV/0!	0,0239	
10	0,0188	0,0204	0,0431	0,0259	0,0274	0,0307	0,0155	0,0232	0,0239	#DIV/0!	

Langkah 4. Intensitas jejak semut awal

		_	-		_	_	_	_	_	
	1	2	3	4	5	6	7	8	9	10
1	0	1	1	1	1	1	1	1	1	1
2	1	0	1	1	1	1	1	1	1	1
3	1	1	0	1	1	1	1	1	1	1
4	1	1	1	0	1	1	1	1	1	1
5	1	1	1	1	0	1	1	1	1	1
6	1	1	1	1	1	0	1	1	1	1
7	1	1	1	1	1	1	0	1	1	1
8	1	1	1	1	1	1	1	0	1	1
9	1	1	1	1	1	1	1	1	0	1
10	1	1	1	1	1	1	1	1	1	0

Langkah 5. memasukkan semut ke node secara acak, dengan kota 1 sebagai titik awal semut

m1 (semut 1)	Kota 1
m2 (semut 2)	Kota 2
m3 (semut 3)	Kota 3
m4 (semut 4)	Kota 4
m5 (semut 5)	Kota 5
m6 (semut 6)	Kota 6
m7 (semut 7)	Kota 7
m8 (semut 8)	Kota 8
m9 (semut 9)	Kota 9

Langkah 6. mencari probabilitas tertinggi

Kota 1

Kota1 Kota3

Kota 1	Kota 1	Kota 1	Kota 1	Kota 1	Kota 1	Kota 1	Kota 1	Kota 1
Kota 2	Kota 3	Kota 4	Kota 5	Kota 6	Kota 7	Kota 8	Kota 9	Kota 10
0,006388	0,060487	0,00137	0,000323	0,000148	0,002002	0,000487	0,0025917	0,0003541
		,						

Kota 3

Kota 3		Kota (ω	Kota 3	Kota 3	Kota 3	Ko	ta3	Kota 3	kota 3		kota 3
Kota 4		Kota !	2	Kota 6	Kota 7	Kota 8	Ko	ta 9	Kota 10	kota 1		kota 2
0,0015	87	0,00	0433	0,00026	0,001496	0,0004	117	0,001855	0,001855	0,0604	874	0,0106655
Kota 1	Κo	ta3	kota 2	2								

kota 2

4		_								
	Kota 2	Kota	2	Kota 2	Kota 2	Kota 2	Kota 2	Kota 2	Kota 2	kota 2
	Kota 3	Kota	4	Kota 5	Kota 6	Kota 7	Kota 8	Kota 9	Kota 10	kota 1
	0,01066	35 0,00	04006	0,0004	0,000178	0,00082	4 0,00037	1 0,001406	0,0004165	0,0063877
Ī							,			'
	Kota 1	Kota 3	kota	2 kota 4						

kota 4

Kota 4	Kota 4	Kota 4	Kota 4	Kota 4	Kota 4	Kota 4	Kota 4	Kota 4
Kota 5	Kota 6	Kota 7	Kota 8	Kota 9	Kota 10	Kota 1	Kota 2	Kota 3
0,000386	0,000271	0,00043	0,000333	0,000897	0,000669	0,001375	0,0040058	0,0015861
Kota 1 K	ota 3 kota	2 kota 4	kota 9					

Kota 9

Kota 9	kota 9)	Kota 9	Kota 9	Kota 9	Kota 9	Kota 9	Kota 9	Kota 9
Kota 10	kota 1		kota 2	kota 3	kota 4	kota 5	kota 6	kota 7	kota 8
0,00056	0,00	0354	0,00042	0,001855	0,000669	0,00075	0,000943	0,0002414	0,0005397
Kota 1	Kota 3	kota 2	2 kota 4	kota 9	kota 6				

Kota 6

Kota 6	Kota 6	Kota 6	Kota 6	Kota 6	Kota 6	Kota 6	Kota 6	Kota 6
Kota 7	Kota 8	Kota 9	Kota 10	kota 1	kota 2	kota 3	kota 4	kota 5
0,000108	0,000181	0,00018	0,000943	0,000148	0,000178	0,000264	0,0002711	0,0002173

	17 . 4	17 . 0		1 . 4	1 . 0	1 . 0	1 . 40		
	Kota 1	Kotaj	lkota Z	lkota 4	lkotaJ	l kota b	l kota IU		
_									

kota 10

Kota 10 Kota 1) Kota 10
) Notaliu
Kota1 Kota2 Kota3 Kota4 Kota5 Kota6 Kota7 Kota8	Kota 9
0,000354 0,000416 0,00186 0,000669 0,00075 0,000943 0,000241 0,000	5397 0,000569

Kota 1	Kota 3	kota 2	kota 4	kota 9	kota 6	kota 10	kota 5		
NO(a)	NOGO	KULAZ	KULA 4	KULAJ	KULAU	KULA IU	KULAU	l	

kota 5

4									
	Kota 5	Kota 5	Kota 5	Kota 5	Kota 5	Kota 5	Kota 5	Kota 5	Kota 5
	Kota 6	Kota 7	Kota 8	Kota 9	Kota 10	Kota 1	Kota 2	Kota 3	Kota 4
	0,000217	0,000579	0,02312	0,001591	0,00075	0,000501	0,000404	0,0004327	0,0003856
1									

	Kota 1	Kota 3	kota 2	kota 4	kota 9	kota 6	kota 10	kota 5	kota 8	
-										

kota 8

-1									
	Kota 8	Kota 8	Kota 8	Kota 8	Kota 8	Kota 8	Kota 8	Kota 8	Kota 8
Ι	Kota 9	Kota 10	kota 1	kota 2	kota 3	kota 4	kota 5	kota 6	kota 7
Ι	0,001503	0,00054	0,00049	0,000371	0,000417	0,000333	0,023125	0,0001806	0,0006621

Kota 1	Kota 3	kota 2	kota 4	kota 9	kota 6	kota 10	kota 5	kota 8	kota 7

Sehingga urutan akhir kota-kota tersebut:

K	ota 1	Kota 3	kota 2	kota 4	kota 9	kota 6	kota 10	kota 5	kota 8	kota 7

dengan anggapan kota 1 adalah kota m.

B. Update Feromon dari 9 semut Semut pertama dengan rute

Kota 1	Kota 3	kota 2	kota 4	kota 9	kota 6	kota 10	kota 5	kota 8	kota 7	
							· .	l .		
	1	2	3	4	5	6	7	8	9	10
1	0	1	0,7459	1	1	1	1	1	1	1
2	1	0	0,6033	0,563	1	1	1	1	1	1
3	0,7459	0,6033	0	1	1	1	1	1	1	1
4	1	0,6033	1	0	1	1	1	1	0,529	1
5	1	1	1	1	0	1	1	0,652	1	0,527
6	1	1	1	1	1	0	1	1	0,513	0,53
7	1	1	1	1	1	1	0	0,525	1	1
8	1	1	1	1	0,652	1	0,525	0	1	1
9	1	1	1	0,529	1	0,513	1	1	0	1
10	1	1	1	1	0,527	0,53	1	1	1	0

semut kedua

Kota 1	Kota 2	kota 3	kota 4	kota 9	kota 6	kota 10	kota 5	kota 8	kota 7	
		_	_		_	_	_	_	_	
	1	2	3		5	6	7	8	9	10
	l <u> </u> 0	1	0,7459	1	1	1	1	1	1	1
2	1	0	0,6033	0,563	1	1	1	1	1	1
3	0,7459	0,6033	0	0,539	1	1	1	1	1	1
4	1	0,6033	0,539	1	1	1	1	1	0,529	1
5	1	1	1	1	0	1	1	0,652	1	0,527
6	1	1	1	1	1	0	1	1	0,513	0,53
7	' 1	1	1	1	1	1	0	0,525	1	1
8	1	1	1	1	0,652	1	0,525	0	1	1
9	1	1	1	1	1	0,513	1	1	0	1
10	1	1	1	1	0,527	0,53	1	1	1	0

semut ketiga

Kota 1	Kota 2	kota 3	kota 4	kota 5	kota 6	kota 10	kota 9	kota 8	kota 7	
	T .	1 2	3	4	5	6	7	8	9	10
	1 0) 1	0,7459	1	1	-	1 1	1	1	1
	2	1 0	0,6033	0,563	1	-	1 1	1	1	1
	3 0,7459	0,6033	0	0,539	1	-	1 1	1	1	1
	4	1 0,6033	0,539	1	1	-	1 1	1	1	1
!	5	1 1	1	1	0	0,514	1	0,652	1	0,527
	3	1 1	1	1	0,514	0	1	1	1	0,53
	7	1 1	1	1	1	-	0	0,525	1	1
	3	1 1	1	1	0,652	-	0,525	0	0,538	1
	3	1 1	1	1	1	-	1 1	0,538	0	0,5231
1) .	1 1	1	1	0,527	0,53	1	1	0,5231	0

semut keempat

Kota 1	Kota 2	kota 3	kota 4	kota 5	kota 6	kota 10	kota 9	kota 8	kota 7	1

	1	2	3	4	5	6	7	8	9	10
1	0	1	0,7459	1	1	1	1	1	1	1
2	1	0	0,6033	0,563	1	1	1	1	1	1
3	0,7459	0,6033	0	0,539	1	1	1	1	1	1
4	1	0,6033	0,539	1	1	1	1	1	1	1
5	1	1	1	1	0	0,514	1	0,652	1	0,527
6	1	1	1	1	0,514	0	1	1	1	0,53
7	1	1	1	1	1	1	0	0,525	1	1
8	1	1	1	1	0,652	1	0,525	0	0,538	1
9	1	1	1	1	1	1	1	0,538	0	0,5231
10	1	1	1	1	0,527	0,53	1	1	0,5231	0

semut kelima

	kota 7	kota 8	kota 9	kota 10	kota 6	kota 5	kota 4	kota 3	Kota 2	Kota 1
_										
9 10	9	8	7	6	5	4	3	2	1	
1	1	1	1	1	1	1	0,7459	1	0	1
1	1	1	1	1	1	0,563	0,6033	0	1	2
1	1	1	1	1	1	0,539	0	0,6033	0,7459	3
1 .	1	1	1	1	1	1	0,539	0,6033	1	4
1 0,527	1	0,652	1	0,514	0	1	1	1	1	5
1 0,53	1	1	1	0	0,514	1	1	1	1	6
1	1	0,525	0	1	1	1	1	1	1	7
8 -	0,538	0	0,525	1	0,652	1	1	1	1	8
0 0,523		0,538	1	1	1	1	1	1	1	9
31 0	0,5231	1	1	0,53	0,527	1	1	1	1	10

semut keenam

Kota 1	Kota 2	L-1-2	L-1- 4	Lana E	Lana C	kota 10	l 0	L-1- 0	L-1-7	
Kota I	Kota Z	kota 3	kota 4	kota 5	kota 6	kota IU	kota 9	kota 8	kota 7	
	1	2	3	4	5	6	7	8	9	10
1	0	1	0,7459	1	1	1	1	1	1	
2	1	0	0,6033	0,563	1	1	1	1	1	
3	0,7459	0,6033	0	0,539	1	1	1	1	1	
4	1	0,6033	0,539	1	1	1	1	1	1	
5	1	1	1	1	0	0,514	1	0,652	1	0,527
6	1	1	1	1	0,514	0	1	1	1	0,53
7	1	1	1	1	1	1	0	0,525	1	
8	1	1	1	1	0,652	1	0,525	0	0,538	
9	1	1	1	1	1	1	1	0,538	0	0,523
10	1	1	1	1	0,527	0,53	1	1	0,5231	(

semut ketujuh

Kota 1	Kota 2	kota 3	kota 4	kota 5	kota 6	kota 7	kota 9	kota 8	kota 10	
	1	2	3	4	5	6	7	8	9	10
1	0	1	0,7459		1	1	1	1	1	1
2	1	0	0,6033	0,563	1	1	1	1	1	1
3	0,7459	0,6033	0	0,539	1	1	1	1	1	1
4	1	0,6033	0,539	1	1	1	1	1	1	1
5	1	1	1	1	0	0,514	1	0,652	1	1
6	1	1	1	1	0,514	0	1	1	1	1
7	1	1	1	1	1	1	0	0,525	1	1
8	1	1	1	1	0,652	1	0,525	0	0,538	0,523
9	1	1	1	1	1	1	1	0,538		0,5231
10	1	1	1	1	1	1	1	0,523	0,5231	0

semut kedelapan

Kota 1	Kota 2	kota 3	kota 4	kota 5	kota 6	kota 7	kota 8	kota 9	kota 10
--------	--------	--------	--------	--------	--------	--------	--------	--------	---------

	1	2	3	4	5	6	7	8	9	10
1	0	1	0,7459	1	1	1	1	1	1	-
2	1	0	0,6033	0,563	1	1	1	1	1	1
3	0,7459	0,6033		0,539	1	1	1	1	1	1
4	1	0,6033	0,539	1	1	1	1	1	1	1
5	1	1	1	1	0	0,514	1	1	1	1
6	1	1	1	1	0,514	0	1	1	1	1
7	1	1	1	1	1	1	0	0,525	1	1
8	1	1	1	1	1	1	0,525	0	0,538	
9	1	1	1	1	1	1	1	0,538	0	0,5231
10	1	1	1	1	1	1	1	0,523	0,5231	0

semut kesembilan

	kota 10	kota 9	kota 8	kota 7	kota 6	kota 5	kota 4	kota 3	Kota 2	Kota 1
1	9	8	7	6	5	4	3	2	1	
	1	1	1	1	1	1	0,7459	1	0	1
	1	1	1	1	1	0,563	0,6033	0	1	2
	1	1	1	1	1	0,539	0	0,6033	0,7459	3
	1	1	1	1	1	1	0,539	0,6033	1	4
	1	1	1	0,514	0	1	1	1	1	5
	1	1	1	0	0,514	1	1	1	1	6
	1	0,525	0	1	1	1	1	1	1	7
0,52	0,538	0	0,525	1	1	1	1	1	1	8
0,523	0	0,538	1	1	1	1	1	1	1	9
	0,5231	0,523	1	1	1	1	1	1	1	10

Soal 4:

4. Lakukan clustering menggunakan algoritma SOM pada data-data berikut

Data(x)

-1.113	-0.529-	0.422	-1.273	-0.865	-0.875	1.065	0.690	1.008
-0.655	-0.660	-0.010	0.236	-0.260	-0.537	0.699	-0.933	-0.965
1.418	0.813	-0.456	0.814	0.580	0.525	1.094	0.201	0.131
0.210	-1.25	-0.560	-0.749	0.558	-0.224	0.371	0.328	0.632

Parameter awal

Learning rate	0.5
Penurunan learning rate	0.6
Ukuran cluster	3x1
Epoch	3

Bobot awal (w) [3x9]

0.735	0.465	-0.337	0.651	0.373	0.569	0.747	-0.170	-0.025
0.049	-0.090	0.096	0.150	-0.113	0.035	0.254	-0.178	-0.120
-0.779	-0.483	0.607	-0.709	-0.663	-0.478	-0.707	0.361	-0.192

PENYELESAIAN:

1. Inisialisasi

W	1	2	3	4	5	6	7	8	9
W1	0.735	0.465	-0.337	0.651	0.373	0.569	0.747	-0.170	-0.025
W2	0.049	-0.090	0.096	0.150	-0.113	0.035	0.254	-0.178	-0.120
W3	-0.779	-0.483	0.607	-0.709	-0.663	-0.478	-0.707	0.361	-0.192

2. Iterasi Pelatihan

a. Epoch 1

DATA X1

- Menghitung Jarak Euclidean:

Data X1:

X1=[-1.113,-0.529,0.422,-1.273,-0.865,-0.875,-1.065,0.690,1.008]
Neuron (1,1) =
$$\sqrt{((-1.113 - 0.735)^2 + (-0.529 - 0.465)^2 + (0.422-(-0.337))^2 + (-1.273-0.651)^2 + (-0.865-0.373)^2 + (-0.875-0.569)^2 + (-1.065-0.747)^2 + (0.690-(-0.170))^2 + (1.008 - (-0.025))^2)$$

= $\sqrt{17.917} \approx 4.235$

Neuron
$$(2,1) = \sqrt{((-1.113 - 0.049)^2 + (-0.529 - (-0.090))^2 + (0.422 - 0.096)^2 + (-1.273 - 0.150)^2 + (-0.865 - (-0.113)^2 + (-0.875 - 0.035)^2 + (-1.065 - 0.254)^2 + (0.690 - (-0.178))^2 + (1.008 - (-0.120))^2)$$

$$= \sqrt{7.854} \approx 2.802$$
Neuron $(3,1) = \sqrt{((-1.113 - (-0.779))^2 + (-0.529 - (-0483))^2 + (0.422 - 0.607)^2 + (-1.273 - (-0.709))^2 + (-0.865 - (-0.663)^2 + (-0.875 - (-0.478))^2 + (-1.065 - (-0.707))^2 + (0.690 - 0.361)^2 + (1.008 - (-0.192))^2)$

$$= \sqrt{2.439} \approx 1.562$$

- Pilih Neuron Pemenang

Dari perhitungan jarak Euclidean didapat neuron ketiga (D(3)) merupakan neuron pemenangnya

- Update Bobot

$$W_{ij}^{t+1} = W_{ij}^{t} + \alpha_{\text{epoch 1}}(X_{i} - W_{ij}^{t})$$

$$W_{3,1}^{(2)} = W_{3,1}^{(1)} + 0.5(X_{1,1} - W_{3,1}^{(1)})$$

$$W_{3,2}^{(2)} = W_{3,2}^{(1)} + 0.5(X_{1,2} - W_{3,2}^{(1)})$$

$$\vdots$$

$$W_{3,9}^{(2)} = W_{3,9}^{(1)} + 0.5(X_{1}, 9 - W_{3,9}^{(1)})$$

$$W_{3,1}^{(2)} = -0.779 + 0.5 \cdot (-1.113 - (-0.779)) = 0.946$$

$$W_{3,2}^{(2)} = -0.483 + 0.5 \cdot (-0.529 - (-0.483)) = 0.506$$

$$W_{3,3}^{(2)} = 0.607 + 0.5 \cdot (0.422 - 0.607) = 0.514$$

$$W_{3,4}^{(2)} = -0.709 + 0.5 \cdot (-1.273 - (-0.709)) = 0.991$$

$$W_{3,5}^{(2)} = -0.663 + 0.5 \cdot (-0.865 - (-0.663)) = 0.764$$

$$W_{3,6}^{(2)} = -0.478 + 0.5 \cdot (-0.875 - (-0.478)) = 0.677$$

$$W_{3,7}^{(2)} = -0.707 + 0.5 \cdot (-1.065 - (-0.707)) = 0.886$$

$$W_{3,8}^{(2)} = 0.361 + 0.5 \cdot (0.69 - 0.361) = 0.525$$

$$W_{3,9}^{(2)} = -0.192 + 0.5 \cdot (1.008 - (-0.192)) = 0.408$$

Bobot baru pada neuron 3.1

W	1	2	3	4	5	6	7	8	9
W1	0.735	0.465	-0.337	0.651	0.373	0.569	0.747	-0.170	-0.025
W2	0.049	-0.090	0.096	0.150	-0.113	0.035	0.254	-0.178	-0.120
W3	0,946	0.506	0.514	0.991	0.764	0.677	0.886	0.5255	0.408

- Menghitung jarak euclidean

X2=[-0.655,-0.660,-0.010, 0.236, -0.260, -0.537, 0.699, -0.933, -0.956]
Neuron (1,2) =
$$\sqrt{((-0.655 - 0.735)^2 + (-0.660 - 0.465)^2 + (-0.010 - (-0.337))^2 + (0.236 - 0.651)^2 + (-0.260 - 0.373)^2 + (-0.537 - 0.569)^2 + (0.699 - 0.747)^2 + (-0.933 - (-0.170))^2 + (0.956 - (-0.025))^2)$$
= $\sqrt{6.647644} \approx 2.577$

Neuron (2,2) = $\sqrt{((-0.655 - 0.049)^2 + (-0.660 - (-0.090))^2 + (-0.010 - 0.096)^2 + (0.236 - 0.150)^2 + (-0.260 - (-0.113)^2 + (-0.537 - 0.035)^2 + (0.699 - 0.254)^2 + (-0.933 - (-0.178))^2 + (0.956 - (-0.120))^2)$
= $\sqrt{2.987321} \approx 1.728$

Neuron (3,2) = $\sqrt{((-0.655 - (0.946))^2 + (, -0.660 - 0.506)^2 + (-0.010 - 0.514)^2 + (0.236 - 0.991)^2 + (-0.260 - (0.764)^2 + (-0.537 - 0.677)^2 + (0.699 - 0.886)^2 + (-0.933 - 0.5255)^2 + (0.956 - 0.408)^2)$
= $\sqrt{7.69377325} \approx 2.774$

- Pilih Neuron Pemenang

Dari perhitungan jarak Euclidean didapat neuron ketiga neuron (2,2) merupakan neuron pemenangnya

- Update Bobot

$$\begin{split} W_{ij}^{t+1} &= W_{ij}^{t} + \alpha_{\text{epoch 1}}(X_{i} - W_{ij}^{t}) \\ W_{2,1}^{(2)} &= W_{2,1}^{(1)} + 0.5(X_{2,1} - W_{2,1}^{(1)}) \\ W_{2,2}^{(2)} &= W_{2,2}^{(1)} + 0.5(X_{2,2} - W_{2,2}^{(1)}) \\ & . \\ & . \\ W_{2,9}^{(2)} &= W_{2,9}^{(1)} + 0.5(X_{2,9} - W_{2,9}^{(1)}) \\ \\ W_{2,1}^{(2)} &= 0.049 + 0.5 \cdot (-0.655 - (0.049)) = -0.303 \\ W_{2,2}^{(2)} &= -0.090 + 0.5 \cdot (-0.660 - (-0.090)) = -0.375 \\ W_{2,3}^{(2)} &= 0.096 + 0.5 \cdot (-0.010 - 0.096) = 0.043 \\ W_{2,4}^{(2)} &= 0.150 + 0.5 \cdot (0.236 - 0.150) = 0.193 \\ W_{2,5}^{(2)} &= -0.113 + 0.5 \cdot (-0.260 - (-0.113)) = -0.1865 \\ W_{2,6}^{(2)} &= 0.035 + 0.5 \cdot (-0.537 - 0.035) = 0.251 \\ W_{2,7}^{(2)} &= 0.254 + 0.5 \cdot (0.699 - 0.254) = 0.4765 \\ W_{2,8}^{(2)} &= -0.178 + 0.5 \cdot (-0.933 - (-0.178)) = 0.5555 \\ W_{2,9}^{(2)} &= -0.120 + 0.5 \cdot (-0.956 - (-0.120)) = -0.538 \\ \end{split}$$

W	1	2	3	4	5	6	7	8	9
W1	0.735	0.465	-0.337	0.651	0.373	0.569	0.747	-0.170	-0.025
W2	-0.303	-0.375	0.043	0.193	-0.1865	0.251	0.4765	0.5555	-0.538
W3	0,946	0.506	0.514	0.991	0.764	0.677	0.886	0.5255	0.408

DATA X3

- Menghitung jarak euclidean

X2=[1.418, 0.813, -0.456, 0.814, 0.580, 0.525, 1.094, 0.201, 0.131]
Neuron (1,3) =
$$\sqrt{(0.735 - 1.418)2 + (0.465 - 0.813)2 + (-0.337 - (-0.456))2 + (0.651 - 0.814)2 + (0.373 - 0.580)2 + (0.569 - 0.525)2 + (0.747 - 1.094)2 + (-0.170 - 0.201)2 + (-0.025 - 0.131)2)$$

= $\sqrt{0.932594} \approx 0.966$

Neuron (2,3) =
$$\sqrt{(-0.303 - 1.418)2 + (-0.375 - 0.813)2 + (0.043 - (-0.456))2 + (0.193 - 0.814)2 + (-0.1865 - 0.580)2 + (0.251 - 0.525)2 + (0.4765 - 1.094)2 + (0.5555 - 0.201)2 + (-0.538 - 0.131)2$$

= $\sqrt{5.2227535} \approx 2.284$

Neuron (3,3) =
$$\sqrt{(0.946 - 1.418)2 + (0.506 - 0.813)2 + (0.514 - (-0.456))2 + (0.991 - 0.814)2 + (0.764 - 0.580)2 + (0.677 - 0.525)2 + (0.886 - 1.094)2 + (0.5255 - 0.201)2 + (0.408 - 0.131)2$$

= $\sqrt{1.57399525} \approx 1.256$

- Pilih Neuron Pemenang

Dari perhitungan jarak Euclidean didapat neuron ketiga neuron (1,3) merupakan neuron pemenangnya

- Update Bobot

$$W_{ij}^{t+1} = W_{ij}^{t} + \alpha_{\text{epoch }1}(X_i - W_{ij}^{t})$$

$$W_{1,1}^{(2)} = 0.735 + 0.5 \cdot (1.418 - (0.735)) = 1.0765$$

 $W_{1,2}^{(2)} = 0.465 + 0.5 \cdot (0.813 - (0.465)) = 0.639$
 $W_{1,3}^{(2)} = -0.337 + 0.5 \cdot (-0.456 - 0.337) = -0.3965$
 $W_{1,4}^{(2)} = 0.651 + 0.5 \cdot (0.814 - 0.651) = 0.7325$
 $W_{1,5}^{(2)} = 0.373 + 0.5 \cdot (0.580 - (0.373)) = 0.4765$
 $W_{1,6}^{(2)} = 0.569 + 0.5 \cdot (0.525 - 0.569) = 0.547$
 $W_{1,7}^{(2)} = 0.747 + 0.5 \cdot (1.094 - 0.747) = 0.9205$
 $W_{1,8}^{(2)} = -0.170 + 0.5 \cdot (0.201 - (-0.170)) = 0.0155$
 $W_{1,9}^{(2)} = -0.025 + 0.5 \cdot (0.131 - (-0.025)) = 0.053$

W	1	2	3	4	5	6	7	8	9
W1	1.0765	0.639	-0.3965	0.7325	0.4765	0.547	0.9205	0.0155	0.053
W2	-0.303	-0.375	0.043	0.193	-0.1865	0.251	0.4765	0.5555	-0.538
W3	0,946	0.506	0.514	0.991	0.764	0.677	0.886	0.5255	0.408

DATA X4

- Menghitung jarak euclidean

X4=[0.210,-1.25,-0.560,-0.749,0.558,-0.224,0.371,0.328,0.632]
Neuron (1,3) =
$$\sqrt{(0.210 - 1.0765)2 + (-1.25 - 0.639)2 + (-0.560 - (-0.3965))2 + \cdots + (0.632 - 0.053)2}$$

= $\sqrt{5.000} \approx 2.236$

Neuron (2,3) =
$$\sqrt{(0.210 - (-0.303))2 + (-1.25 - (-0.375))2 + (-0.560 - 0.043)2 + \cdots + (0.632 - (-0.538))2}$$

= $\sqrt{5.072} \approx 2.254$

Neuron (3,3) =
$$\sqrt{((0.210 - 0.946)2 + (-1.25 - 0.506)2 + (-0.560 - 0.514)2 + \cdots + (0.632 - 0.408)2}$$

= $\sqrt{4.539} \approx 2.131$

- Pilih Neuron Pemenang

Dari perhitungan jarak Euclidean didapat neuron ketiga neuron (3,3) merupakan neuron pemenangnya

- Update Bobot

$$W_{ij}^{t+1} = W_{ij}^{t} + \alpha_{\text{epoch 1}}(X_i - W_{ij}^{t})$$

$$W_{3,1}^{(2)} = 0.946 + 0.5 \cdot (0.210 - 0.946) = 0.578$$

 $W_{3,2}^{(2)} = 0.506 + 0.5 \cdot (-1.25 - 0.506) = -0.619$
 $W_{3,3}^{(2)} = 0.514 + 0.5 \cdot (-0.560 - 0.514) = -0.780$
 $W_{3,4}^{(2)} = 0.991 + 0.5 \cdot (-0.749 - 0.991) = -0.8755$
 $W_{3,5}^{(2)} = 0.764 + 0.5 \cdot (0.558 - 0.764) = 0.289$
 $W_{3,6}^{(2)} = 0.677 + 0.5 \cdot (-0.224 - 0.677) = -0.111$
 $W_{3,7}^{(2)} = 0.886 + 0.5 \cdot (0.371 - 0.886) = 0.1905$
 $W_{3,8}^{(2)} = -0.5255 + 0.5 \cdot (0.328 - (-0.5255)) = 0.18975$
 $W_{3,9}^{(2)} = 0.408 + 0.5 \cdot (0.632 - 0.408) = 0.516$

Bobot terbaru setelah epoch 1

W	1	2	3	4	5	6	7	8	9
W1	1.0765	0.639	-0.3965	0.7325	0.4765	0.547	0.9205	0.0155	0.053
W2	-0.303	-0.375	0.043	0.193	-0.1865	0.251	0.4765	0.5555	-0.538
W3	0,578	-0.619	0.780	-0.8755	0.289	0.111	0.1905	0.18975	0.516

b. Epoch 2

$$\alpha_{\text{epoch2}} \approx 0.5 \ x \ \text{exp}^{-2/0.6}$$

$$\alpha_{\text{epoch2}} \approx 0.224110$$

$${W_{ij}}^{\mathsf{t}+1} = {W_{ij}}^{\mathsf{t}} + \alpha_{\mathsf{epoch}\,1}(X_{\mathsf{i}} - {W_{ij}}^{\mathsf{t}})$$

Tahap epoch 2 sama seperti tahap sebelumnya namun menggunakan parameter learning rate $\alpha_{\rm epoch2}$ setelah dilakukan perhitungan sampai data 4 didapatkan lah bobot terbaru dari epoch 2 sebagai berikut

Type equation here.

W	1	2	3	4	5	6	7	8	9
W1	1.0765	0.639	-0.3965	0.7325	0.4765	0.547	0.9205	0.0155	0.053
W2	-0.3536	-0.4388	0.5487	-0.1354	-0.3386	-0.0014	0.6082	0.5856	-0.1919
W3	0,5869	0.3731	-0.2133	0.2833	0.1757	0.2285	0.9528	0.1667	0.2671

c. Epoch 3

$$\alpha_{\rm epoch3} \approx 0.5~x~{\rm exp^{-3/0.6}}$$

$$\alpha_{\mathrm{epoch3}} \approx 0.2707$$

Update bobot epoch 3

$$W_{ij}^{t+1} = W_{ij}^t + \alpha_{\text{epoch 1}}(X_i - W_{ij}^t)$$

Tahap epoch 3 sama seperti tahap sebelumnya namun menggunakan parameter learning rate $\alpha_{\rm epoch3}$ setelah dilakukan perhitungan sampai data 4 didapatkan lah bobot terbaru dari epoch 3 sebagai berikut

W	1	2	3	4	5	6	7	8	9
W1	1.17895	0.6912	-	0.75695	0.50755	0.5404	0.97255	0.07115	0.0764
			0.4143						
W2	-0.1243	-	-	-0.1513	0.1417	-	0.4565	-0.2011	-
		0.6949	0.1749			0.2473			0.0888
W3	1.2219	0.7131	-	0.7672	0.5205	0.5376	0.9944	0.0945	0.0862
			0.4218						

Kesimpulan dari hasil akhir clustering SOM setelah tiga epoch pelatihan pada dataset ini adalah sebagai berikut:

1. Data X1: Tercluster dalam Cluster 0.

2. Data X2: Tercluster dalam Cluster 2.

3. Data X3: Tercluster dalam Cluster 1.

4. Data X4: Tercluster dalam Cluster 1.

Cluster tersebut diperoleh setelah proses pelatihan dengan algoritma SOM, di mana bobot terakhir dari masing-masing neuron pada SOM adalah proses yang menghasilkan pemetaan dari data input ke dalam ruang cluster yang merepresentasikan pola-pola yang ada dalam dataset.