機械学習 ニューラルネットワーク(2)

管理工学科 篠沢佳久

資料の内容

■ ニューラルネットワーク(2)

- 畳み込みニューラルネットワーク
 - □ 空間フィルタリング処理(1年生の復習です)
 - □ 畳み込み層, プーリング層

- 早慶戦により一回休講になってしまったため,講 義できなかった内容です。
- 資料のみ掲載しておきます.

畳み込みニューラルネットワーク

空間フィルタリング処理(情報学基礎の復習) 畳み込み層 プーリング層

空間フィルタリング処理(1)

■ 各画素について、その画素周辺のN×N画素の小領域と、N×Nの空間フィルタとの積和を行なう

■ 入力画像をf, 空間フィルタをhとした場合, 下記の式に基づいて変換後の画素値gを求める

$$g(i,j) = \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} f(i+k,j+l)h(k,l)$$

空間フィルタリング処理②

3×3の空間フィルタ h

以上の処理を全ての画素で行なう

空間フィルタリング処理③

空間フィルタリング処理③

入力画像 *f(x,y)*

2	4	1	3	5
3	2	6	2	8
1	0	3	4	2
6	2	1	7	5
5	3	2	5	6

平滑化フィルタ カ

$$h(k,l) = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

出力画像 g(x,y)

2.44444	2.777778	3.777778
2.666667	3	4.222222
2.55556	3	3.888889

(3+4+2+1+7+ 5+2+5+6)/9

空間フィルタリング処理(4)

元画像

フィルタを指定する

$$h(k,l) = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

GIMPの場合

フィルタリング後の画像

空間フィルタリング処理(5)

フィルタリング後の画像

ニューラルネットワークでの顔画像認識

入力画像

特徴として何を入力すべきか

ニューラルネットワークでの顔画像認識

畳み込み層(Convolution Layer)

入力層

フィルターを結合係数 として学習

畳み込み処理後の出力

認識に利用できる特徴ではないか

入力画像

W ₀₀	W ₀₁	W ₀₂	W ₀₃
W ₁₀	W ₁₁	W ₁₂	W ₁₃
W ₂₀	W ₂₁	W ₂₂	W ₂₃
W ₃₀	W ₃₁	W ₃₂	W ₃₃

畳み込み層

畳み込み層(Convolution Layer)

入力層

W ₀₀	W ₀₁	W ₀₂	W ₀₃
W ₁₀	W ₁₁	W ₁₂	W ₁₃
W ₂₀	W ₂₁	W ₂₂	W ₂₃
W ₃₀	W ₃₁	W ₃₂	W33

フィルター(結合係数)

w(p,q) $p = 0,1,\dots, N-1$ $q = 0,1,\dots, N-1$

入力画像

f(x, y)
$f(x, y)$ $x = 0,1, \dots X - 1$ $y = 0,1, \dots Y - 1$
$y=0,1,\cdots Y-1$

W ₀₀	W ₀₁	W ₀₂	W ₀₃
W ₁₀	W ₁₁	W ₁₂	W ₁₃
W ₂₀	W ₂₁	W ₂₂	W ₂₃
W ₃₀	W ₃₁	W ₃₂	W33

W ₀₀	W ₀₁	W ₀₂	W ₀₃
W ₁₀	W ₁₁	W ₁₂	W ₁₃
W ₂₀	W ₂₁	W ₂₂	W ₂₃
W 30	W ₃₁	W ₃₂	W ₃₃
	w ₁₀	W ₁₀ W ₁₁ W ₂₀ W ₂₁	W ₁₀ W ₁₁ W ₁₂ W ₂₀ W ₂₁ W ₂₂

$$g(x, y) = \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} f(x+p, y+q) w(p, q)$$

パディング

入力画像 *f(x,y)*

1	1	1	1
$h(k,l) = \frac{1}{9}$	1	1	1
9	_1	1	1

出力画像 g(x,y)

2	4	1	3	5
3	2	6	2	8
1	0	3	4	2
6	2	1	7	5
5	3	2	5	6

2.444	2.778	3.778
2.667	3.000	4.222
2.556	3.000	3.889

画像の大きさが小さくなる

周囲を0(ゼロパディング)

(0+0+0+0+2+	-
4+0+3+2)/9	
	L.

0	0	0	0	0	0	0
0	2	4	1	3	5	0
0	3	2	6	2	8	0
0	1	0	3	4	2	0
0	6	2	1	7	5	0
0	5	3	2	5	6	0
0	0	0	0	0	0	0

1.222	2.000	2.000	2.778	2.000
1.333	2.444	2.778	3.778	2.667
1.556	2.667	3.000	4.222	3.111
1.889	2.556	3.000	3.889	3.222
1.778	2.111	2.222	2.889	2.556
0.889	1.111	1.111	1.444	1.222

画像の大きさは変わらない

ストライド(1)

ストライドが1の場合

2	4	1	3	5	2	1
3	2	6	2	8	3	4
1	0	3	4	2	1	2
6	/2	1	7	5	2	4
5	3	2	5	6	1	7
3	4	1	6	7	0	3
1 /	4	0	8	5	2	8

入力画像 *f(x,y)*

0	J	 0		
			$h(k,l) = \frac{1}{0} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$	
			$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$	

2.444	2.778	3.778	3.333	3.111
2.667	3.000	4.222	3.778	3.444
2.556	3.000	3.889	3.667	3.333
3.000	3.444	4.444	4.333	3.889
2.556	3.667	4.444	4.444	4.333

ストライド②

ストライドが1の場合

2	4	1	3	5	2	1
3	2	6	2	8	3	4
1	0	3	4	2	1	2
6	2	/ 1	7	5	2	4
5	3	2	5	6	1	7
3	4	1	6	7	0	3
1	4	0	8	5	2	8

入力画像 *f(x,y)*

2.444	2.778	3.778	3.333	3.111
2.667	3.000	4.222	3.778	3.444
2.556	3.000	3.889	3.667	3.333
3.000	3.444	4.444	4.333	3.889
2.556	3.667	4.444	4.444	4.333

ストライド③

ストライドが2の場合

2	4	1	3	5	2	1
3	2	6	2	8	3	4
1	0	3	4	2	1	2
6	2	1	7	5	2	4
5	3	2	5	6	1	7
3	4	1	6	7	0	3
1	4	0	8	5	2	8

入力画像 *f(x,y)*

2.444	3.778	3.111
2.556	3.889	3.333
2.556	4.444	4.333

ストライド4

ストライドが2の場合

2	4	1	3	5	2	1
3	2	6	2	8	3	4
1	0	3	4	2	1	2
6	2	/	7	5	2	4
5	3	2	5	6	1	7
3	4	/ 1	6	7	0	3
1	4	0	8	5	2	8

入力画像 *f(x,y)*

2.444	3.778	3.111
2.556	3.889	3.333
2.556	4.444	4.333

特徴マップ

19

特徴マップの畳み込み処理(1)

特徴マップの畳み込み処理②

$$u_{ijm} = \sum_{k=1}^{K} \sum_{p=0}^{H-1} \sum_{q=0}^{H-1} z_{i+p,j+q,k}^{(l-1)} h_{pqkm}$$

$$u_{ijm} = \sum_{k=1}^{K} \sum_{p=0}^{H-1} \sum_{q=0}^{H-1} z_{i+p,j+q,k}^{(l-1)} h_{pqkm} + b_{ijm}$$

閾値

第I層の特徴マップ

$$z_{ijm}^{(l)} = f(u_{ijm})$$
活性化関数

量み込みニューラルネットワーク LeNet(Y.LeCun,1989)

量み込みニューラルネットワーク LeNet-5(Y.LeCun,1998)

畳み込み層, プーリング層, 全結合層から構成

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE, Vol.86, No.11, pp.2278-2324, 1998

プーリング層(Pooling Layer)

W/2

W/2

最大プーリング(大きさは2×2, ストライドは2)

22	27	26	68	64	39	38	72
16	84	29	4	10	47	25	3
37	66	7	89	49	72	81	24
83	67	61	70	95	88	43	48
54	70	0	49	54	34	29	92
10	97	25	1	67	43	10	67
61	66	59	16	54	85	58	17
29	32	87	63	37	15	8	44

84	68	64	72
83	89	95	81
97	49	67	92
66	87	85	58

プーリング

$$u_{ijk} = \max_{(p,q) \in P_{ij}} z_{pqk}$$

$$u_{ijk} = \frac{1}{H^2} \sum_{(p,q) \in P_{ij}} z_{pqk}$$

$$u_{ijk} = \left(\frac{1}{H^2} \sum_{(p,q) \in P_{ij}} z_{pqk}^P\right)^{\frac{1}{P}}$$

出力層

回帰の場合

$$O_{pj} = u_{pj}$$

クラス分類の場合

$$O_{pj} = \frac{e^{u_{pj}}}{\sum_{k=1}^{K} e^{u_{pk}}}$$

ソフトマックス関数

$$u_{pj} = \sum_{i=1}^{H} x_{pi} W_{ji} + b_{j}$$

畳み込みニューラルネットワーク(LeNet5)

数字認識

学習方法(誤差逆伝播則)

全結合の場合

ニューロン*j*の誤差

$$\delta_{j} = \left(\sum_{k=1}^{m} \delta_{k} V_{kj}\right) \frac{\partial f(U_{j})}{\partial U_{j}}$$

$$V_{ji} \leftarrow V_{ji} - \alpha \frac{\partial E_p}{\partial V_{ji}} \qquad \frac{\partial E_p}{\partial V_{ji}} = \delta_j I_i$$

畳み込み層の学習方法

畳み込み層の学習方法(誤差逆伝播則)

畳み込み層の場合

$$\mathcal{S}_{j} = \left(\sum_{k=1}^{m} \mathcal{S}_{k} V_{kj}\right) \frac{\partial f(U_{j})}{\partial U_{j}}$$

結合しているニューロンの 誤差のみ逆伝播

ニューロンkの誤差 δ

畳み込み層

畳み込み層

畳み込み層

$$V_{ji} \leftarrow V_{ji} - \alpha \frac{\partial E_p}{\partial V_{ii}} \qquad \frac{\partial E_p}{\partial V_{ii}} = \delta_j I_i$$

^{*}二次元ですが、式は一次元にしたものとして考えます

プーリング層の場合

プーリング層の場合

結合係数の学習はしない

プーリングの結果, jと結合しているニューロンに誤差を伝播させる

誤差逆伝播則の問題点

勾配消失問題問題

33

畳み込みニューラルネットワークの特徴

■ 疎結合

- 勾配消失問題を解消するための手法の導入
 - □正則化
 - □ ドロップアウト
 - □ 活性化関数の改良(ReLU関数)
- 多層化(深層学習)が可能

活性化関数

シグモイド関数

出力値の範囲

$$O_{i1}, O_{i2}, \cdots O_{im} \qquad 0 \leq O_{ij} \leq 1$$

$$0 \le O_{ij} \le 1$$

活性化関数

■ 正規化線形関数(Rectified Linear Unit)

AlexNet (A. Krizhevsky, 2012)

- 8層の畳み込みニューラルネットワーク
 - □ ILSVRC2012において判定エラ―率を25.8%から 16.4%に改善

図: A. Krizhevsky, ImageNet Classification with Deep Convolutional Neural Networks, Advances in neural information processing systems, 2012

VGG (Visual Geometry Group)

- VGG-16(ILSVRC2014)
 - □ 判定エラー率を7.3%に改善

畳み込み層

畳み込み層

畳み込み層

フーリング層量み込み層

畳み込み層

プーリング層

畳み込み層

畳み込み層

プーリング層

畳み込み層

畳み込み層

16層

全結合層層

ーリング層

GoogLeNet (C. Szegedy, 2014)

- GooLeNet(Inception-v3)(ILSVRC2014)
 - □ 判定エラー率を6.7%に改善

ResNet (Microsoft Research Asia, 2015)

- ResNet(Residual Network)
 - □ 判定エラー率を3.57%に改善

大規模化と精度の向上

■ ILSVRCにおけるエラー率の向上

ILSVRC2013:ZFNET ILSVRC2016:CUImage

参考文献

- J.デイホフ: ニューラルネットワークアーキテクチャ 入門, 森北出版(1992)
- P.D.Wasserman: ニューラル・コンピューティング, 理論と実際, 森北出版(1993)
- 岡谷貴之:深層学習,講談社(2015)
- 人工知能学会:深層学習,近代科学社(2015)
- 瀧雅人:これならわかる深層学習入門,講談社(2017)
- 原田達也:画像認識,講談社(2017)