HỘI TOÁN HỌC VIỆT NAM KỲ THI OLYMPIC TOÁN SINH VIÊN VÀ HỌC SINH NĂM 2023

Môn thi: Giải tích Thời gian làm bài: 180 phút

ĐÁP ÁN

Lời giải bài A.1 và B.1

Ý	Bước	Nội dung	Điểm A.1	Điểm B.1
a		Tìm tất cả các số nguyên dương n sao cho $u_n > 5/4$	2,00	2,00
	1	Khẳng định (u_n) đơn điệu tăng	1,00	1,00
		Từ định nghĩa $u_{n+1}=\left(1+\frac{1}{4^1}\right)\cdots\left(1+\frac{1}{4^{n+1}}\right)>\left(1+\frac{1}{4^1}\right)\cdots\left(1+\frac{1}{4^n}\right)=u_n$ với mọi $n\geq 1$. Vậy ta suy ra $u_{n+1}>u_n$ với mọi $n\geq 1$.	1,00	1,00
	2	Khẳng định $u_n > 5/4$ với mọi $n \geq 2$	1,00	1,00
		Do $u_1=5/4$ nên từ tính đơn điệu của (u_n) ta suy ra $u_n>5/4$ khi và chỉ khi $n\geq 2$.	1,00	1,00
ь		Chứng minh rằng $u_n \leq 2023$ với mọi số nguyên dương n	2,00	2,00
	1	Khẳng định ln $u_n < 1$ với mọi $n \geq 1$	1,00	1,00
		Trước tiên ta nhắc lại bất đẳng thức cơ bản sau $\ln(1+x) < x$ với mọi $x>0$. Sử dụng bất đẳng thức trên ta thu được $\ln\left(1+\frac{1}{4^k}\right) < \frac{1}{4^k} \forall k \geq 1.$		
		Vậy ta có đánh giá $\ln u_n < \sum_{k=1}^n \frac{1}{4^k} = \frac{1}{3} \Big(1 - \frac{1}{4^n}\Big) < 1 \forall n \geq 1.$	1,00	1,00
	2	Khẳng định $u_n \leq 2023$ với mọi $n \geq 1$	1,00	1,00
		Ở bước trên ta đã có ln $u_n < 1$ với mọi $n \geq 1$. Vậy $u_n < e < 2023$ với mọi $n \geq 1$.	1,00	1,00
c		Chứng minh rằng dãy số (u_n) hội tụ và tính gần đúng giới hạn	2,00	2,00
		Dãy (u_n) đơn điệu tăng và bị chặn trên nên hội tụ. Ký hiệu L là giới hạn của dãy (u_n) .	1,00	2,00
		Ta nhắc lại bất đẳng thức cơ bản sau $x-x^2/2<\ln(1+x) \forall x>0$. Sử dụng bất đẳng thức trên và bất đẳng thức cơ bản trong ý trước ta thu được $\frac{1}{4^k}-\frac{1}{2}\Big(\frac{1}{4^k}\Big)^2<\ln\Big(1+\frac{1}{4^k}\Big)<\frac{1}{4^k} \forall k\geq 1.$ Từ đó ta có $\sum_{k=1}^n\Big[\frac{1}{4^k}-\frac{1}{2}\Big(\frac{1}{4^k}\Big)^2\Big]<\ln u_n<\sum_{k=1}^n\frac{1}{4^k} \forall n\geq 1.$	1,00	
		Chuyển qua giới hạn khi $n \to +\infty$ ta thu được $\frac{3}{10} = \frac{1/4}{1-1/4} - \frac{1}{2}\frac{1/16}{1-1/16} \le \ln L \le \frac{1/4}{1-1/4} = \frac{1}{3}.$		
		Vậy $e^{3/10} \le L \le e^{1/3}$. Tính gần đúng ta thu được đáp số $1,3$. Ghi chú . Thí sinh có thể dùng máy tính bỏ túi hoặc xấp xỉ Padé $e^x \approx \frac{(x+3)^2+3}{(x-3)^2+3}$ với $ x \le 1/2$ để tính gần đúng $e^{3/10} \approx 1,349$ và $e^{1/3} \approx 1,395$.		

ĐỀ THI OLYMPIC TOÁN SINH VIÊN HỌC SINH NĂM 2023 Môn thi: Giải tích Thời gian làm bài: 180 phút

ĐÁP ÁN

Lời giải bài A.2 và B.2

Ý	Bước	Nội dung	Điểm A.2	Điểm B.2
a		Chứng minh rằng hàm f liên tục tại 0	2,00	2,00
	1	Tính giới hạn của f tại 0	1,00	1,00
		Từ định nghĩa của f ta có $ f(x) =\begin{cases} \frac{ x }{2} & \text{nếu } x\in[-1,1]\cap\mathbb{Q},\\ x & \text{nếu } x\in[-1,1]\setminus\mathbb{Q}. \end{cases}$ Do đó ta luận có $0< f(x) < x $ $\forall x\in[-1,1]$. Theo nguyên lý ken lim $f(x)=0$	1,00	1,00
		Do đó ta luôn có $0 \le f(x) \le x \ \forall x \in [-1,1]$. Theo nguyên lý kẹp $\lim_{x \to 0} f(x) = 0$.	1.00	1.00
	2	Khẳng định tính liên tục của f tại 0	1,00	1,00
		$ \mathring{ {O}}$ bước trước ta đã có $\lim_{x \to 0} f(x) = 0$. Dễ thấy $f(0) = 0$ nên f liên tục tại 0 .	1,00	1,00
b		Hàm f có khả vi tại 0 không?	2,00	2,00
	1	Chuyển về khảo sát giới hạn của $f(x)/x$ khi $x o 0$	1,00	1,00
		Xét sự tồn tại của giới hạn $\lim_{x o 0}rac{f(x+0)-f(0)}{x}=\lim_{x o 0}rac{f(x)}{x}.$	1,00	1,00
	2	Chỉ ra rằng giới hạn của $f(x)/x$ khi $x o 0$ là không tồn tại	1,00	
		Từ định nghĩa của f ta thấy $\lim_{\mathbb{Q}\ni x\to 0}\frac{f(x)}{x}=\lim_{\mathbb{Q}\ni x\to 0}\frac{-x/2}{x}=-\frac{1}{2}, \lim_{\mathbb{Q}\not\ni x\to 0}\frac{f(x)}{x}=\lim_{\mathbb{Q}\not\ni x\to 0}\frac{x}{x}=1.$ Vậy giới hạn $\lim_{x\to 0}\frac{f(x)}{x}$ là không tồn tại. Từ đó ta kết luận hàm f không khả vi tại 0 .	1,00	1,00
С		Hàm f có giá trị lớn nhất/nhỏ nhất trên đoạn $[-1,1]$ không?	2,00	2,00
	1	Hàm f không có giá trị lớn nhất trên $[-1,1]$	2,00	
		Phản chứng giả sử f đạt giá trị lớn nhất M tại điểm $x_0 \in [-1,1]$. Nếu $x_0 \notin \mathbb{Q}$ thì $M = f(x_0) = x_0 \le 1$. Nếu $x_0 \in \mathbb{Q}$ thì $ M = f(x_0) = x_0 /2 \le 1/2$. Vậy ta phải có $M \le 1$. Nếu $M < 1$ thì khi đó bằng cách lấy bất kỳ một số vô tỉ y nằm giữa M và 1 ta thu được $f(y) = y > M$. Điều này trái với giả sử M là giá trị lớn nhất của f trên $[-1,1]$. Vậy ta phải có $M=1$. Tuy nhiên điều này là không xảy ra vì từ lý luận trên ta phải có $x_0 \notin \mathbb{Q}$, và do đó $x_0 = 1$. Nhưng $1 \in \mathbb{Q}$.	2,00	
	2	Hàm $m{f}$ không có giá trị nhỏ nhất trên $[-1,1]$		2,00
		Phản chứng giả sử f đạt giá trị nhỏ nhất m tại điểm $x_0 \in [-1,1]$. Nếu $x_0 \notin \mathbb{Q}$ thì $m = f(x_0) = x_0 \ge -1$. Nếu $x_0 \in \mathbb{Q}$ thì $ m = f(x_0) = x_0 /2 \le 1/2$. Vậy ta phải có $m \ge -1$. Nếu $m > -1$ thì khi đó bằng cách lấy bất kỳ một số vô tỉ y nằm giữa -1 và m ta thu được $f(y) = y < m$. Điều này trái với giả sử m là giá trị bé nhất của f trên $[-1,1]$. Vậy ta phải có $m = -1$. Tuy nhiên điều này là không xảy ra vì từ lý luận trên ta phải có $x_0 \notin \mathbb{Q}$, và do đó $x_0 = -1$. Nhưng $-1 \in \mathbb{Q}$.		2,00
		Ghi chú . Thí sinh có thể chứng minh trực tiếp rằng 1 (tương ứng, -1) là cận trên đúng (tương ứng, cận dưới đúng) trên đoạn $[-1,1]$ của hàm số f , nhưng "cận" này không phải là một giá trị của hàm f .		

Môn thi: Giải tích

Thời gian làm bài: 180 phút

ĐÁP ÁN

Lời giải bài A.3 và B.3

Ý	Bước	Nội dung	Điểm
a		Con thuyền có đến được điểm $(0,0)$ như dự kiến không?	2,00
		Con thuyền đến được điểm $(0,0)$ khi và chỉ khi điểm $(0,0)$ thuộc đồ thị của hàm số $y(x)=rac{x^2-1}{x^3+2}.$	2,00
		Dễ thấy điều này là không xảy ra.	
b		Con thuyền có cập được bờ trái hay không?	2,00
		Con thuyền cập được bờ trái khi và chỉ khi hàm số y xác định (với giá trị hữu hạn) tại 0 . Dễ thấy $y(0)=-\frac{1}{2}$ và do đó con thuyền cập được bờ trái tại vị trí $(0,-\frac{1}{2})$.	2,00
С		Vị trí của con thuyền khi khoảng cách từ nó đến điểm đích $(0,0)$ là ngắn nhất	2,00
		Trong suốt quá trình chuyển động, vị trí của con thuyền được xác định bởi điểm (x,y) trong đó $y=\frac{x^2-1}{x^3+2}$ với $0\leq x\leq 1$. Khoảng cách từ điểm $(0,0)$ đến điểm (x,y) là $\sqrt{x^2+\left(\frac{x^2-1}{x^3+2}\right)^2}.$ Xét hàm số f được xác định bởi	
		$f(x)=x^2+\Big(\frac{x^2-1}{x^3+2}\Big)^2$	2,00
		với $0 \leq x \leq 1$. Trên $[0,1]$ ta có	
		$f'(x) = rac{2x(x^9 + 6x^6 - x^5 + 16x^3 + 4x^2 - 3x + 4)}{(x^3 + 2)^3}.$	
		Để ý rằng	
		$x^9 + 6x^6 - x^5 + 16x^3 + 4x^2 - 3x + 4$ = $x^9 + 6x^6 + x^3(1 - x^2) + 15x^3 + 4x^2 + 3(1 - x) + 1 > 0$	
		nên f đồng biến trên $[0,1]$. Vậy f đạt giá trị nhỏ nhất khi $x=0$ và khoảng cách ngắn nhất cần tìm là $1/2$ tương ứng với vị trí của con thuyền khi nó cập bờ trái.	

ĐỀ THI OLYMPIC TOÁN SINH VIÊN HỌC SINH NĂM 2023 Môn thi: Giải tích

Thời gian làm bài: 180 phút

ĐÁP ÁN

Lời giải bài A.4

Ý	Bước	Nội dung	Điểm
a		Nếu $\int_0^1 f(x) P(x)^m dx = 0$ với mọi $0 \leq m \in \mathbb{Z}$ và đa thức bậc hai P thì $f \equiv 0$	3,00
		Từ tính liên tục của f ta chỉ cần chứng minh $f \equiv 0$ trên $(0,1)$. Giả sử tổn tại $x_0 \in (0,1)$ sao cho $f(x_0) \neq 0$. Tà có thể giả thiết $f(x_0) > 0$. Khi dó ta tim được $0 < x_1 < x_0 < x_2 < 1$ sao cho $f(x) > 0$ với mọi $x \in [x_1, x_2]$. Đặt $c = \frac{x_1 + x_0}{2}, d = \frac{x_0 + x_2}{2}.$ Ta có $x_1 < c < x_0 < d < x_2$. Xét da thức $P(x) = (x - c)(d - x) + 1.$ Dễ thẩy $P \geq 0$ trên $[0,1]$ và $P \geq 1$ trên $[c,d] \subset [x_1,x_2] \subset (0,1)$. Từ tính đơn điệu của P ta thấy $0 \leq P(x) \leq P(x_1) < 1 \forall x \in [0,x_1]$ và $0 \leq P(x) \leq P(x_2) < 1 \forall x \in [x_2,1].$ Với đa thức P ở trên ta có đánh giá $0 = \int_0^1 f(x)P(x)^m dx = \left(\int_0^{x_1} + \int_{x_1}^c + \int_c^d + \int_{x_2}^t \right)f(x)P(x)^m dx$ $\geq \left(\int_0^{x_1} + \int_c^d + \int_{x_2}^1 \right)f(x)P(x)^m dx$ $\geq -P(x_1)^m \int_0^{x_1} f(x) dx + \int_c^d f(x) dx$ $-P(x_2)^m \int_{x_2}^1 f(x) dx.$ Do $0 \leq P(x_1) < 1$ và $0 \leq P(x_2) < 1$ nên qua giới hạn khi $m \to +\infty$ ta phải có $\int_c^d f(x) dx \leq 0.$ Đây là điều vô lý do f liên tục và $f > 0$ trên $[c,d]$.	3,00
b		Khi điều kiện P là đa thức bậc hai được thay bằng điều kiện P là đa thức bậc nhất	3,00
		Do mọi đa thức $P(x)^m$ đều được viết dưới dạng tổ hợp tuyến tính của các lũy thừa nguyên không âm của các đa thức bậc 1 nên kết quả của ý (b) vẫn đúng.	3,00

ĐỀ THI OLYMPIC TOÁN SINH VIÊN HỌC SINH NĂM 2023 Môn thi: Giải tích

Thời gian làm bài: 180 phút

ĐÁP ÁN

Lời giải bài B.4

Ý	Bước	Nội dung	Điểm
a		Nếu $\int_0^1 f(x)g(x)dx=0$ với mọi hàm liên tục g mà $g(0)=g(1)=0$ thì $f\equiv 0$	3,00
		Từ tính liên tục của f ta chỉ cấn chứng minh $f\equiv 0$ trên $(0,1)$. Giả sử tồn tại $x_0\in (0,1)$ sao cho $f(x_0)\neq 0$. Ta có thể giả thiết $f(x_0)>0$. Khi đó ta tìm được $0< x_1< x_0< x_2<1$ sao cho $f(x)>\frac{f(x_0)}{2} \forall x\in [x_1,x_2].$ Xét hàm g trên $[0,1]$ được xác định bởi $g(x)=\begin{cases} 0 & \text{nếu } 0\leq x\leq x_1,\\ \frac{f(x_0)}{x_0-x_1}(x-x_1) & \text{nếu } x_1\leq x\leq x_0,\\ \frac{f(x_0)}{x_2-x_0}(x_2-x) & \text{nếu } x_0\leq x\leq x_2,\\ 0 & \text{nếu } x_2\leq x\leq 1. \end{cases}$ Khi đó $g\geq 0$, liên tục trên $[0,1]$, và có $g(0)=g(1)=0$. Với hàm g đó, ta có $0=\int_0^1 f(x)g(x)dx=\Big(\int_0^{x_1}+\int_{x_1}^{x_2}+\int_{x_2}^1\Big)f(x)g(x)dx\\ =\int_{x_1}^{x_2}f(x)g(x)dx\\ \geq \frac{f(x_0)}{2}\int_{x_1}^{x_2}g(x)dx\\ =\frac{f(x_0)}{2}\int_{x_1}^{x_2}g(x)dx\\ =\frac{f(x_0)}{2}\int_{x_1}^{x_2}g(x)dx$	3,00
b		Kết luận ở ý (b) còn đúng không nếu ta thêm giả thiết $g(1/2)=0$?	3,00
		Kết luận ở ý (b) vẫn đúng vì lần lượt áp dụng các hàm trong lời giải ý (b) cho đoạn $[0, \frac{1}{2}]$ và cho đoạn $[\frac{1}{2}, 1]$ ta thu được $f \equiv 0 \text{ trên } [0, \frac{1}{2}] \text{ và trên } [\frac{1}{2}, 1].$	3,00
		$f\equiv 0$ tiến $[0,rac{1}{2}]$ và tiến $[rac{1}{2},1]$. Vậy $f\equiv 0$ trên $[0,1]$.	

ĐỀ THI OLYMPIC TOÁN SINH VIÊN HỌC SINH NĂM 2023 Môn thi: Giải tích

Thời gian làm bài: 180 phút

ĐÁP ÁN

Lời giải bài A.5

Ý	Bước	Nội dung	Điểm
a		Có tồn tại $d \in (0,1)$ sao cho $ f'(d) \leq ig(f(d)ig)^2$?	2,00
	1	Khẳng định không tồn tại $oldsymbol{d}$ và đưa ra được 1 ví dụ	1,00
		Xét hàm số f được cho bởi	
		$f(x) = x 0 \le x \le 1.$	1,00
		Khi đó f liên tục trên $[0,1]$, khả vi trong $(0,1)$, và có $f(0)=0$.	
	2	Kiểm tra được tính đúng đắn của ví dụ	1,00
		Tính toán ta thấy $ f'(x) =1>x^2=ig(f(x)ig)^2$ với mọi $x\in(0,1).$	1,00
b		Nếu $ f'(x) \leq ig(f(x)ig)^2$ với mọi $x \in (0,1)$ thì $f \equiv 0$ trên $[0,1].$	2,00
		Do tính liên tục của f nên ta chỉ cần chứng minh $f\equiv 0$ trên $(0,1)$ là đủ. Giả sử tồn tại $x_0\in (0,1)$ sao cho $f(x_0) eq 0$. Khi đó tập hợp	
		$E = \{x \in [0,x_0]: f(x) = 0\}$	
		bị chặn (do $E \subset [0,1]$) và không rỗng (do $0 \in E$). Đặt $x_1 = \sup E$. Dễ thấy $x_1 \in E$ do f liên tục. Điều này có nghĩa là $0 \le x_1 < x_0$, $f(x_1) = 0$, và $f(x) \ne 0$ với mọi $x \in (x_1,x_0]$. Từ đó cùng với giả thiết ta thu được	
		$-1 \leq rac{f'(t)}{\left(f(t) ight)^2} \leq 1 orall t \in (x_1,x_0].$	2,00
		Lấy tích phân theo t trên đoạn $[x,x_0]$ ở cả 3 vế của bất đẳng thức kép ta thu được	
		$x-x_0 \leq g(x)-g(x_0) \leq x_0-x,$	
		trong đó g là hàm số được cho bởi $g(x)=-1/f(x)$. Từ đây ta thu được	
		$ g(x)-g(x_0) \leq x_0-x \forall x \in (x_1,x_0].$	
		Cho $x ightarrow {x_1}^+$ ta thu được điều vô lý.	
С		Tồn tại $c \in (0,1)$ sao cho $ig(f(c)ig)^2 \leq f'(c) $	2,00
		Do f liên tục trên $[0,1]$ nên tồn tại $M>0$ sao cho $ f(x) \leq M$ với mọi $x\in[0,1]$. Nếu $f(c)=0$ với $c\in(0,1)$ nào đó thì c chính là điểm cần tìm và do đó ta chỉ cần xét trường hợp $f\neq 0$ trên toàn $(0,1)$. Do tính liên tục nên ta có thể giả thiết $f>0$ trên $(0,1)$. Do $f(0)=0$ nên tồn tại $x_0\in(0,1/2)$ sao cho	
		$\ln f(x_0) - \ln f(\frac{1}{2}) \leq -\frac{M}{2}.$	2,00
		Theo Định lý Lagrange áp dụng cho hàm $\ln f(x)$ ta có	
		$-rac{M}{2} \geq \ln f(x_0) - \ln f(rac{1}{2}) = rac{f'(c)}{f(c)}ig(x_0 - rac{1}{2}ig)$ với $c \in (x_0,rac{1}{2})$ nào đó.	
		Từ đầy ta thu được $\frac{f'(c)}{f(c)} > 0$ và do đó $-\frac{M}{2} \ge -\frac{1}{2}\frac{f'(c)}{f(c)}$. Vậy $\left \frac{f'(c)}{f(c)}\right = \frac{f'(c)}{f(c)} \ge M$.	
		Ghi chú. Thí sinh có thể giải như sau và vẫn được điểm tối đa. Trong trường hợp $f \equiv 0$, ta có thể chọn $c \in (0,1)$ tùy ý. Trong trường hợp còn lại, nếu kết luận là sai, tức là $(f(x))^2 > f'(x) $ với mọi $x \in (0,1)$, thì theo kết luận của ý (b) ta phải có $f \equiv 0$, mâu thuẫn.	

HỘI TOÁN HỌC VIỆT NAM ĐỀ THI OLYMPIC TOÁN SINH VIÊN HỌC SINH NĂM 2023 Môn thi: Giải tích

Thời gian làm bài: 180 phút

ĐÁP ÁN

Lời giải bài B.5

Ý	D. 44.	M4: 1	D. 2
Y	Bước	Nội dung	Điểm
a		Chứng tổ rằng phương trình $f'(x)=0$ có nghiệm trên $(1,+\infty)$	2,00
		Dễ thấy $f(x) = rac{x}{\sqrt{x-1}} = \sqrt{x-1} + rac{1}{\sqrt{x-1}} \geq 2$	2,00
		với mọi $x>1$, và dấu bằng đạt được khi $x=2$. Vậy hàm f đạt được giá trị nhỏ nhất trên $(1,+\infty)$ tại $x=2$. Từ đó ta kết luận phương trình $f'(x)=0$ có nghiệm $x=2$ trên $(1,+\infty)$.	
b		Tìm công thức tính $f'(x)$ theo x	2,00
		Tính toán trực tiếp thu được $f'(x) = rac{x-2}{2(x-1)^{3/2}}.$	2,00
С		Tính diện tích phần mặt phẳng (phần được gạch chéo trên hình)	2,00
	1	Thiết lập công thức tính $\int_2^4 f'(x) dx$	1,00
		Hoành độ giao điểm giữa đồ thị của hàm f' và đường thẳng $y=0$ là $x=2$. Do f đơn điệu tăng (ngặt) trên $(2,+\infty)$ nên $f'\geq 0$ trên $[2,4]$. Vậy ta có công thức tính diện tích cần tìm $\int_2^4 f'(x)dx.$	1,00
	2	Tính tích phân $\int_2^4 f'(x)dx$	1,00
		Theo công thức Newton–Leibniz ta có	
		$\int_2^4 f'(x) dx = f(4) - f(2) = rac{4}{\sqrt{3}} - 2,$	1,00
		và đây là diện tích cần tìm.	