Dérivée et sens de variation d'une fonction

I. Tangente et nombre dérivé

Propriétés

On considère la courbe représentative de la fonction f, définie par $f(x) = x^2 + 2x - 1$; cette courbe est une parabole.

La droite d'équation y = 2x - 1 possède un seul point commun avec la parabole, le point (0;1). La droite est la tangente en 0 de la parabole. La pente de la tangente est 2, c'est le nombre dérivé en 0.

II. Fonction dérivée

Définition

Soit une fonction f. Pour tout x, la fonction dérivée f' est la fonction qui donne le nombre dérivé en x (noté f'(x)).

Une fonction est dérivable en x si et seulement si sa fonction dérivée f' est définie en x.

Exemple

On considère la fonction f définie par

$$f(x) = x^2 + 2x - 1$$

Sa fonction dérivée, est la fonction f' telle que :

$$f'(x) = 2x + 2$$

III. Dérivation d'une fonction

1) Dérivées des fonctions usuelles

Pour dériver une fonction, on utilise les formule du tableau ci dessous :

Fonction	Dérivée	Pour tout x appartenant à
$f(x) = k \ (k \in \mathbb{R})$	f'(x) = 0	$]-\infty ; +\infty[$
f(x) = x	f'(x) = 1	$]-\infty ; +\infty[$
f(x) = ax + b	f'(x) = a	$]-\infty ; +\infty[$
$f(x) = x^2$	f'(x) = 2x	$]-\infty ; +\infty[$
$f(x) = ax^2 + bx + c$	f'(x) = ax + b	$]-\infty ; +\infty[$
$f(x) = x^3$	$f'(x) = 3x^2$	$]-\infty ; +\infty[$
$f(x) = \frac{1}{x}(x \neq 0)$	$f'(x) = -\frac{1}{x^2}$	$]-\infty$; 0[ou]0; $+\infty$ [
$f(x) = \sqrt{x}(x > 0)$	$f'(x) = \frac{1}{2\sqrt{x}}$	$] 0 ; +\infty]$

2) Opérations sur les fonctions dérivables

u et v sont deux fonctions dérivables.

Fonction	Dérivée
f(x) = u + v	f'(x) = u' + v'
f(x) = ku (k constante)	f'(x) = ku'

IV. Utilisation de la dérivée

Activite 1

Exploitation du nombre dérivé:

Pour chacune des fonctions suivantes :

$$f(x) = 2x + 4 (1) i(x) = x^2 - 2x - 2 (4)$$

$$f(x) = 2x + 4 (1) i(x) = x^2 - 2x - 2 (4)$$

$$g(x) = 5 - 4x (2) j(x) = -4x^3 - 8x^2 + 2x + 3 (5)$$

$$h(x) = -3x^2 + 6x - 4 (3) k(x) = 5 (6)$$

- 1 Tracez-la sur votre calculatrice
- 2 Dressez son tableau de variations entre -5 et 5
- 3 Dérivez la.
- 4 Calculez la valeur du nombre dérivé en -2, -1, 0, 1 et 2.
- 5 D'après-vous, y a t il un lien entre le nombre dérivé et les variations d'une fonction?

Propriété

Les variations d'une fonction en un point sont liées au signe du nombre dérivé de la fonction en ce point :

- Si f'(x) > 0, alors la fonction f est croissante en x.
- Si f'(x) = 0, alors la fonction f est constante en x.
- Si f'(x) < 0, alors la fonction f est décroissante en x.

Exemple

On considère la fonction f, définie sur [-2;2] par $f(x) = -3x^2 + 6x - 4$. Sa fonction dérivée f' est définie par f'(x) = -6x + 6. On résous l'inéquation f'(x) > 0.

$$-6x + 6 > 0$$

$$-6x > -6$$

$$x < \frac{-6}{-6}$$

$$x < 1$$

Donc la fonction f est croissante avant 1 et décroissante après. On a donc :

