Integrating and Evaluating Neural Word Embeddings in Information Retrieval

Guido Zuccon¹, Bevan Koopman^{2,1}, Peter Bruza¹, Leif Azzopardi³

Queensland University of Technology (QUT), Brisbane, Australia
 Australian E-Health Research Centre, CSIRO, Brisbane, Australia
 University of Glasgow, Glasgow, United Kingdom

Word Embeddings (and IR)

- recent increased interest in developing word embeddings (WE) and applying them to language tasks
- spark of usage of word embeddings in IR
- the hypothesis of our work is that Word Embeddings can be exploited to search documents - with W.E. addressing the semantic gap problem
 - to suggest/interpret queries [some previous work, e.g. Blanco et al, WSDM'15]
 - to retrieve documents [this work]

What are word embeddings?

 word embedding = a (real-valued) vectorial representation of a word (of smaller dimensionality than original vocabulary)

Information
$$\longrightarrow$$
 $[x_1, x_2, ..., x_i ..., x_n]$
Retrieval \longrightarrow $[y_1, y_2, ..., y_i ..., y_n]$

- mappings from words to vectors are learnt through optimisation of objective function
- focus on Neural LM: representation is learnt by training a neural network LM (a very simple one in this paper)

Skipgrams and CBOW

CBOW:

Skipgrams and CBOW

CBOW:

Skipgram:

Translation Language Models

compute p(w|d) in function of all words u that translate to w, the likelihood of the translation, and their likelihood in the document, p(u|d)

$$p_t(w|d) = \sum_{u \in d} p_t(w|u)p(u|d)$$

Translation Language Models

compute p(w|d) in function of all words u that translate to w, the likelihood of the translation, and their likelihood in the document, p(u|d)

$$p_t(w|d) = \sum_{u \in d} p_t(w|u)p(u|d)$$

exchange p(exchange|d)

p(trading|trading): self-translation probability

market | d)

stock p(stock|d) prices p(prices | d)

Translation Language Models

compute p(w|d) in function of all words u that translate to w, the likelihood of the translation, and their likelihood in the document, p(u|d)

NTLM: Integrating Word Embeddings into TLM

- a word is represented by a vector
- can compute translation probabilities by measuring cosine similarity between word vectors

$$p_{cos}(w|u) = \frac{cos(w,u)}{\sum_{u' \in V} cos(w,u')}$$

TLM-MI

w = insiderw = tradingp(w|u)p(w|u)U U insider 0.050 0.094 trading 0.016 trading 0.023 exchange 0.023 0.014 securities stock 0.015 0.013 fraud market drexel 0.013 0.012 prices burnham 0.013 traders 0.009 lambert 0.012 index 0.009 0.012 0.009 shares stock wall 0.011 stocks 0.009 commission 0.010 0.008

dow

NTLM

w = insider		w = trading	
U	p(w u)	U	p(w u)
insider	0.169	trading	0.164
fraud	0.102	traders	0.103
drexel	0.099	futures	0.099
securities	0.096	stock	0.097
racketeering	0.093	exchang	0.094
bribery	0.091	market	0.093
scandal	0.089	brokers	0.088
criminal	0.088	dealings	0.088
burnham	0.088	mercantil	0.088
scheme	0.085	securities	0.086

TLM-MI

NTLM

w = insider		w = trading	
u	p(w u)	U	p(w u)
insider	0.094	trading	0.050
trading	0.023	exchange	0.016
securities	0.023	stock	0.014
fraud	0.015	market	0.013
drexel	0.013	prices	0.012
burnham	0.013	traders	0.009
lambert	0.012	index	0.009
stock	0.012	shares	0.009
wall	0.011	stocks	0.009
commission	0.010	dow	0.008

w = insider		w = trading	
U	p(w u)	U	p(w u)
insider	0.169	trading	0.164
fraud	0.102	traders	0.103
drexel	0.099	futures	0.099
securities	0.096	stock	0.097
racketeering	0.093	exchang	0.094
bribery	0.091	market	0.093
scandal	0.089	brokers	0.088
criminal	0.088	dealings	0.088
burnham	0.088	mercantil	0.088
scheme	0.085	securities	0.086

NTLM guarantees self-translation prob. are highest translations

TLM-MI doesn't; Axiomatic analysis found this is a requirement [Karimzadehgan&Zhai, ECIR'12]

TLM-MI

NTLM

w = insider		w = trading	
u	p(w u)	U	p(w u)
insider	0.094	trading	0.050
trading	0.023	exchange	0.016
securities	0.023	stock	0.014
fraud	0.015	market	0.013
drexel	0.013	prices	0.012
burnham	0.013	traders	0.009
lambert	0.012	index	0.009
stock	0.012	shares	0.009
wall	0.011	stocks	0.009
commission	0.010	dow	0.008

w = insider		w = trading	
u	p(w u)	U	p(w u)
insider	0.169	trading	0.164
fraud	0.102	traders	0.103
drexel	0.099	futures	0.099
securities	0.096	stock	0.097
racketeering	0.093	exchang	0.094
bribery	0.091	market	0.093
scandal	0.089	brokers	0.088
criminal	0.088	dealings	0.088
burnham	0.088	mercantil	0.088
scheme	0.085	securities	0.086

NTLM has relatively lower self-translation probabilities

Translations may have more effect than for TLM-MI

TLM-MI

NTLM

w = insider		w = trading	
U	p(w u)	U	p(w u)
insider	0.094	trading	0.050
trading	0.023	exchange	0.016
securities	0.023	stock	0.014
fraud	0.015	market	0.013
drexel	0.013	prices	0.012
burnham	0.013	traders	0.009
lambert	0.012	index	0.009
stock	0.012	shares	0.009
wall	0.011	stocks	0.009
commission	0.010	dow	0.008

w = insider		w = trading	
U	p(w u)	U	p(w u)
insider	0.169	trading	0.164
fraud	0.102	traders	0.103
drexel	0.099	futures	0.099
securities	0.096	stock	0.097
racketeering	0.093	exchang	0.094
bribery	0.091	market	0.093
scandal	0.089	brokers	0.088
criminal	0.088	dealings	0.088
burnham	0.088	mercantil	0.088
scheme	0.085	securities	0.086

NTLM gives higher prob. to syntactic variations of query

Performs an implicit stemming

Empirical Validation: Research Questions

- RQ1: Do NTLM provide translation probabilities that lead to improved retrieval effectiveness (compared to other TLMs)
- RQ2: How sensitive is NTLM to differences in word embedding constructions? (embedding dimensionality, window size)
- RQ3: Does the choice of training corpus for embeddings impact NTLM effectiveness? (can we try on a common, general corpus?)

Experiment Settings

- Evaluate on ad-hoc, medical collections
 - adhoc were used in previous evaluation of TLM (AP88-89, WSJ87-92)
 - medical is characterised by semantic gap problem (Medtrack)
- also use **DOTGOV**: TLM never evaluated on larger collections
 - mainly due to processing involved to compute MI

Experiment Settings

- Baseline: Dirichlet LM, tuned per-collection and per-topic set wrt MAP (bpref)
 - same baseline and tuning regime as previous TLM work
- Benchmark: Mutual Information (MI) based TLM [Karimzadehgan&Zhai, SIGIR'10]
 - 3 versions: standard, alpha-MI-TLM, s-MI-TLM; tuned per-collection and per-topic set
- NTLM: control dimensionality, window size, training corpus
 - fix other parameters: negative sampling (20), subsampling, iterations (5)
- For all, only use top 10 translation terms

 modest improvements on large number of queries

 modest improvements on large number of queries

 modest improvements on large number of queries

q="stock market perturbations
attributable to computer initiated trading"

* "video" "chip" as translations of

"video", "chip" as translations of "computer"

What is the Effect of Embedding Dimensionality?

Choice in **dimension** size **not significantly** affect effectiveness

What is the Effect of Window Size?

Choice in **window** size **not significantly** affect effectiveness

What is the Effect of Training Corpus?

AP88-89

WSJ87-92

Wikipedia 1B

What is the Effect of Training Corpus?

Summary of Contributions

- Theory: integration of word embeddings in retrieval model
- Empirical: NTLM better than LM and similar to TLM on small corpora (but faster - not evaluated in this work)
- Understanding of impact of embedding settings:
 - dimensionality: no impact
 - window size: no impact
- Word embeddings could be reused on other data
- Code, results and word embeddings available at https://github.com/ielab/adcs2015-NTLM

Outlook

- embeddings can be used across collections: word embeddings as a service
- word embeddings allow for reasoning via vector operations:
 - compositionality = vector sum
 - analogy:

$$\arg\max_{b^* \in V} \frac{\cos\left(b^*, b\right) \cos\left(b^*, a^*\right)}{\cos\left(b^*, a\right) + \varepsilon}$$

 $(\varepsilon = 0.001 \text{ is used to prevent division by zero})$

can we use word embeddings to define query operations?

