```
In [226]:
```

```
import numpy as np
import matplotlib.pyplot as plt
from imageio import imread
# Laget for illustrasjon, ikke fullt fungerende
# Bedre, og fungerende, implementasjon i løsningshint 12
class Aritmetisk:
   def encode(self, sequence, length of compression, sequences
nr):
        compression = np.zeros(sequences nr)
        for j in range(sequences nr):
            ci = 1
            start = 0
            for i in range(length of compression):
                a i = int(np.round(sequence[j*length of compress
ion + i]))
                start += self.interval[a i]*c i
                c i = self.p[int(a_i)]*c_i
            # Here, a number in the interval should be chosen wi
th the smallest bit-length
            # This code does't do that and is likely therefore d
efunct
            compression[j] = start
            #print(start, start+c i)
        return compression
    def encode(self, sequence, length of compression):
        # We need the number of sequences to be compressed to be
integers
        assert len(sequence)%length of compression == 0
        self.length of compression = length of compression
        sequences nr = int(len(sequence)/length of compression)
        self.p = np.zeros(256)
```

```
for x in sequence:
            self.p[int(np.round(x))] += 1
        self.p = self.p/len(sequence)
        c = np.zeros(256)
        c[0] = 0
        for i in range(len(self.p)):
            c[i] = c[i-1] + self.p[i-1]
        self.interval = {i:c[i] for i in range(len(c)) if self.p
[i] != 0
        #print(self.interval)
        return self. encode(sequence, length of compression, seq
uences nr)
    def decode(self, sequence):
        decompressed = list()
        for numb in sequence:
            start = 0
            ci = 1
            for i in range(self.length of compression):
                ai = 0
                for intens in self.interval:
                    if numb >= start+(self.interval[intens]*c i)
:
                        a i = intens
                start += self.interval[a i]*c i
                c i = self.p[a i]*c i
                decompressed.append(a i)
        return decompressed
a = Aritmetisk()
compressed = a.encode([1,2,3,3,2,6,3,2,5,2],10)
decomp = a.decode(compressed)
print(compressed, decomp)
```

# Litt om forrige forelesning: Kompresjon og koding I

#### Det som skal skje:

- Entropi og redundans
- Huffman
- Shannon-Fano
- Aritmetisk
- JPEG: Oblig 2 parafrase

# Å forstå entropi

Ikke tenk termodynamikk, dette er hentet fra kommunikasjonsteknologi!

# Entropi er et mål på hvor mye informasjon en beskjed faktisk inneholder.

Litt intuitivt kan vi spør: Hvilket bilde inneholder mest informasjon?



Det er forholdsvis lett å se at Einstein 1 har mindre informasjon enn Einstein 2. I bildebehandling kan vi være matematiske i denne oppfatningen, gjennom entropi.

# Og husk: Informasjon er et matematisk begrep som kvantifiserer hvor overraskende / uventet en melding er

Om du scannet bildet piksel for piksel, hvor overrasket blir du over den neste pikselen du ser?

For hver melding / symbol / intensitet i gjelder dette:

$$info_i = \log_2 \frac{1}{p[i]}$$

Informasjon i en melding avhenger av sannsynligheten for at den inntreffer



# Så nå kan vi regne ut gjennomsnittlig informasjon i en melding / tekst / bilde:

p er normalisert histogram.



Informasjonsinnhold av piksel = log2 
$$\frac{1}{p(\blacksquare)}$$

"Gjennomsnittlig informasjon" =

$$p \left( \blacksquare \right) \log 2 \frac{1}{p \left( \blacksquare \right)} + p \left( \blacksquare \right) \log 2 \frac{1}{p \left( \blacksquare \right)} + p \left( \blacksquare \right) \log 2 \frac{1}{p \left( \blacksquare \right)}$$

$$\sum_{x=1}^{\infty} p(x) \log_2 \frac{1}{p(x)} = \text{Entropi av}$$

Og dette kan vi bruke til å uttrykke det vi så i de to bildene helt på starten:

|         | Tegnet-Albert | Albert |
|---------|---------------|--------|
| Entropi | 2.866         | 7.5    |



#### Interessant, men hva skal vi med det?

Entropien vår forteller oss at måten vi representerer den tegnede Albert på er altfor voldsom for hvor lite informasjon den faktisk har i seg. Representasjonen er *redundant*, og vi kan kode symbolene slik at gjennomsnittlig bit-lengde er nærme entropien, UTEN å miste noe informasjon.

## Nytt fagbegrep: Redundans!

Det finnes mange former for redundans, men jeg vil vise 2:

- Intersampel redundans
- Psykovisuell redundans

#### Intersampel redundans:

Hva har disse to bildene til felles?



Det lilla bildet kunne vært representert som bredde, høyde, lilla, og ingen informasjon ville vært tapt.

#### Psykovisuell redundans:

Et av disse bildene er komprimert til en  $\frac{1}{8}$  av den andres størrelse. Kan du se hvilket?



Hva med nå?



JPEG i oblig 2 bruker dette!

# Kompresjonsmetoder

Vi skal snakke om 4 denne gangen:

- Huffman
- Shannon-Fano
- Aritmetisk
- JPEG

Jeg vil også vise at kompresjon ofte er en 3-stegs prosess:



Og jeg vil uttrykke hvilket steg vi er på, og også hvilken redundans vi reduserer.

### **Huffman: Eksempel**

Vi vil redusere *koding redundans*. Alle symbol / intensiteter blir representert med 8 bit i et bilde, men om hele bildet er svart og hvitt, er det overkill å kode det slik.



Huffman spesialiserer på å bruke variabel lengde på symboler / intensiteter.

#### **Eksempel**



#### In [218]:

```
cow = imread("tiny_cow.jpg", as_gray=True)//(2**(8-3))
p = np.zeros(2**3)
for i in cow.ravel():
    p[int(i)] += 1

plt.plot(p)
print(p)
print("Filstørrelse:", np.sum(p*3), "bits")
```

[ 526. 687. 564. 723. 1084. 5892. 2633. 179.] Filstørrelse: 36864.0 bits



## Steg 1: Gro et tre





## Steg 2: Kodebok

| Intensitet | Kode  | Bitlengde |  |
|------------|-------|-----------|--|
| 0          | 10110 | 5         |  |
| 1          | 10000 | 5         |  |
| 2          | 10001 | 5         |  |
| 3          | 1010  | 4         |  |
| 4          | 1001  | 4         |  |
| 5          | 0     | 1         |  |
| 6          | 11    | 2         |  |
| 7          | 10111 | 5         |  |

### **Shannon-Fano**

Veldig likt! Samme kompresjonsteg og reduserer også koding redundans.

#### Steg 1: Gro et tre

Boot





Steg 2: Kodebok

| Intensitet | Kode  | Bitlengde |
|------------|-------|-----------|
| 0          | 11110 | 5         |
| 1          | 1101  | 4         |
| 2          | 1110  | 4         |
| 3          | 1100  | 4         |
| 4          | 101   | 3         |
| 5          | 0     | 1         |
| 6          | 100   | 3         |
| 7          | 11111 | 5         |

#### **Hvem vant?**

Ny kodelengde vil bli histogram[i] \* bit\_lengde\_i for hver intensitet:

|              | Representasjonslengde | Bitlengde |
|--------------|-----------------------|-----------|
| Huffman      | 28166.0 bits          | 2.292155  |
| Shannon-Fano | 28464.0 bits          | 2.316406  |
| Entropi      | 27700.7984439388      | 2.254297  |

# **Aritmetisk koding**



Veldig imponerendee teori: En bit-sekvens kan representeres som *ett* desimaltall. Reduserer definitivt *koding redundans*.

## **Eksempel**

Sekvens:







#### Et tall fra dette intervallet er svaret vårt

#### In [243]:

```
sek = [1,2,3,2,3,3,1,3,1,2]
a = Aritmetisk()
compressed = a.encode(sek, len(sek))
reconstruct = a.decode(compressed)
print("Komprimert:",compressed[0])
print("Rekonstruert:", reconstruct)
```

```
Komprimert: 0.1642017024
Rekonstruert: [1, 2, 3, 2, 3, 3, 1, 3, 1, 2]
```

Under var et eksempel på aritmetisk koding som førte til tap, der årsaken muligens er at et ikke-optimalt tall hadde blitt valgt fra intervallet. Man burde ikke velge et vilkårlig tall, man burde ta et tall med minst mulig bit-representasjon.

#### In [248]:

```
cow_int = cow.astype(int)
compressed = a.encode(cow_int.ravel(), int(cow_int.shape[1]/8))
decomp = a.decode(compressed)

plt.imshow(cow_int, cmap="gray")
plt.title("Original")
plt.figure()
plt.imshow(np.array(decomp).reshape(cow_int.shape), cmap="gray")
plt.title("Decompressed")
None
```





# JPEG: Oblig 2 parafrase

#### Steg 1:

Last inn bilde



#### Steg 2:

Trekk fra 128

#### Steg 3:



Del opp i 8x8 blokker



Påfør 2D DCT på hver blokk:

$$F(u,v) = \frac{1}{4}c(u)c(v)\sum_{x=0}^{7} \sum_{y=0}^{7} f(x,y)\cos\left(\frac{(2x+1)u\pi}{16}\right)\cos\left(\frac{(2y+1)v\pi}{16}\right)$$
$$c(a) = \frac{1}{\sqrt{2}} \text{ if a } == 0 \text{ else } 1$$



$$Blokk(u,v) = \frac{1}{4}c(u)c(v)sum\left(\begin{array}{c} \\ \end{array}\right)$$

#### In [247]:



# Steg 4: Ikke faktisk en del av JPEG-algoritme, men en del av oblig

Rekonstruer med IDCT og +128 Test: Er før og etter lik? Da har du nok gjort det rett

#### Steg 5:



Fjerner: Psykovisuell redundans, i form av høye frekvenser

Del blokkene på qQ og rund av:



#### Steg 6:

Ting dere IKKE skal gjøre, men som er en del av JPEG:

- 1. Indeks 0,0 (DC-komponenten) skal tas ut av hver blokk
- 2. De resterende 63 pikslene i hver blokk skal bli representert mer kompakt
- 3. DC-komponentene skal også transformeres til mer kompakt
- 4. De kompakte representasjonene skal entropi-kodes (Huffman, Aritmetisk)

Det DERE skal: Regn ut

- 1. Entropi
- 2. Lagringsplass basert på entropi
- 3. Kompresjonsrate

#### Steg 7:

Rekonstruer, og lagre til fil.



q = [0.1, 0.5, 2, 8, 32]

Og svar på tekstsvarene!

# Se forelesningen når den kommer ut! Lykke til med oblig :)