	CS 161 HW7
1.	$Pr(\alpha_1,,\alpha_n B) = Pr(\alpha_1 \alpha_2\alpha_n,B) Pr(\alpha_2 \alpha_3,,\alpha_n,B)Pr(\alpha_n B)$
	Base Case
	$\bullet n = 1 Pr(\alpha, \beta) = Pr(\alpha, \beta)$
	· n=2 Pr(a, az B) = Pr(a, az, B) Pr(xz B) [Bayes Conditioning Role]
	Inductive Step
	· Assume Pr(a,, an B) = Pr((a,, an -1), an B) is true
	for all values of n between 1 and n-1
	· This means that Pr(x,, anlB) = Pr(x,, an-1 xn,B) Pr(xnlB) [BCR]
	· Now apply our assumption
	Pr(a,,an-1 an, B) = Pr(a, d2an, B) Pr(a2 d3,, an, B) Pr(an-1 an, B)
	Pr(a,an B) = Pr(a, x2,,an, B) Pr(a2 a3,,an, B) Pr(an B) √
190	We have proved the identify.

2.	Oil = O Gas = G (Paritime) Test = T
	$P(0) = 0.5$ $P(^{7}0) = 0.5$
	P(G) = 0.2 P(7G) = 0.8
	P(7017G)=0.3 P(0VG)=0.7
	P(T O) = 0.9 P(T O) = 0.1
	P(TIG) = 0.3 P(TIG) = 0.7
	P(T17017G) = 0.1 P(T17017G) = 0.9
	Want to Find: P(OIT)
	Use Bayes Rule
	D(017) P(T(0) P(0) D(017) = (0.9)(0.5)
	$P(0 T) = \frac{P(T 0) P(0)}{P(T)} \Longrightarrow P(0 T) = \frac{(0.9)(0.5)}{P(T)}$
	must solve for P(7)
	· perform case analysis for P(7)
	P(T) = P(T10)P(0) + P(T1G)P(G) + P(T170~7G)P(70~7G)
	$=(0.9 \times 0.5) + (0.3 \times 0.2) + (0.1 \times 0.3)$
	= 0.45 + 0.06 + 0.03
	= 0.54
	P(A T) = (0.9)(0.5) = 0.45
	$P(0 T) = \frac{(0.9)(0.5)}{0.54} = \frac{0.45}{0.54}$
	[P(017) = 0.8333 283,34.]

X	Xz	X ₃	Bell	OBERTX, X2, X3		
H	H	H	7			
H	H	H	F	0		
S H	H	June 1	T	0		
H	H	IT	F			
2 H	T	1	T	0		
1 H	T	- Jan	+			
S H	7	T	T	0		
(H	1	7	F			
ST	H	H	T	0		
17	H	H	F	1		
57	H	IT	T	0		
17	Н	T	F			
ST	1	H	form	0	The second second	
171	7	H	F			
ST	7	7	7			
171	The second	T	-	O		
						To the second
						Vi ale

4. a) · I(A,	Ø, BE) · I(E, B, ACDFG)
· I(B,	\emptyset , AC) $I(F, CD, ABE)$
· I(L, 1	A, BOE) · I(G, F, ABCDEH)
· I(0,1	AB, CE) · I(H, FE, ABCDG)
b) Od-sep	paiated(A, F, E)
A ->	D < B Lopen]
D←	$B \to E [open]$
Path	15 open. [FALSE]
3 d-sep	usia ted $(6, 8, E)$
Path 1	-[G, F, D, B, E]
G←	F <- D [open]
FEI	D = B [open]
Del	B->E [closed - B is Known] Blocked
Path 2	- [G, F, H, E]
6 < 1	= >H [open]
Fall	E [closed - His descendant of B, which is known] Blocked
Path 3	-[G, F, C, A, D, B, E]
	atheventually reaches D = B -> E, which we
	ermined was blocked in path 1. This path 3 is Blocked.
	Il possible paths are blocked, we conclude [True]
3dsep (AB, COE, GH)
C, D	, and E are all sequential values. Every possible
path	from AB to GH passes through these sequentral
	es. C, D, and E are all known, meaning these
	e sequentral values are blocked. Thus all paths
	AB to GH are also blocked. [True]

5.	$ A B Pr(A,B) A \Rightarrow B$ $\alpha:A \Rightarrow B$							
	Wo T T 0.3 T							
	w. T F O.Z F							
	Wz F T O.I T							
	W3 F F O.4 T							
	M(x) = {wo, wz, wz}							
5)	Pr(a) = 0.3 + 0.1 + 0.4 = 0.8							
1	$Pr(\alpha) = 0.8$							
c)	Pr(A, B/x)							
	· "Given that X is True" -> anything where N = False becomes O							
	· Normalize the rest by drording by Pr(x)							
	A B & Pr(A, B) &) Wa T T T 0.375 0.3%.8							
	W ₂ F F T 0.125 0.1/0.8 W ₃ F F T 0.5 0.1/0.8							
	> Probabilities add up to 1. V							
4)	Pr(A => 7 p(x)							
	A B A => B Pr(A, B a) -> probability of A and B							
	Wo T T F 0.375 having these valves							
	w. TFT 0 given that x is true							
	$W_2 = T = T = 0.125$							
	W3 F F T 0.5							
	$M(A \Rightarrow {}^{7}B) = \{w_1, w_2, w_3\}$							
	$Pr(A=7^7\beta \alpha) = 0 + 0.125 + 0.5$							
	$Pr(A \Rightarrow 7\beta \alpha) = 0.625$							