Fit Me up!!

조물주 김영민

CV - 10

김진섭, 함수민, 전영주, 김원회, 김의진

INDEX

0. 팀원소개

- 1. 프로젝트 소개
- 2. Model Research
- 3. Product Serving
- 4. Result
- 5. Conclusion

0. 팀원소개

팀원별 역할

	<mark>김원회</mark> @mnee15	- Paper review of HR-VITON for hyperparameter optimization - Train condition generator and image generator - Data Preprocessing(data cleaning, Human parse)
	김의진 @uijinee	- Paper review for ACGPN and HR-VITON - Model training using refocused image - Data Preprocessing(data cleaning, image refocusing, Detectron Densepose)
	<mark>김진섭</mark> @kim-jinseop	- Implement frontend using streamlit - Built and managed the main server using FastAPI
	전영주 @lylajeon	- Paper review & experiment on VITON-HD model - Generated cloth mask image by image background remove tool - Implemented backend code for communication betw. main server and preprocessing server by FastAPI
2 M	함수민 @SuminHam	- Paper review & experiment on VITON-HD model - HR-VITON Image Generator finetuning - Preprocessing raw data of AI-Hub

1. 프로젝트 소개

1.1 프로젝트 개요

1.1 프로젝트 개요

Virtual Try-On

1.2 개발 목표

기존의 가상 피팅 서비스

출처: http://www.fxmirror.net/ko/features

가상의 아바타 생성

1.3 스케쥴링, 협업 툴

팀 목표: 1. model FID 20 이하

2. 실시간 서빙 가능

Time table

1.3 스케쥴링, 협업 툴

2. Model Research

2.1 Dataset

Dataset (train/val)

원천데이터

Jipg

Model-image_f

Model-Pose_f

Jison

Wearing_info_
(train/val).json

2.1 Dataset / Dataset tree

```
-- my_test_pairs.txt
-- my_train_pairs.txt
-- test
    -- Output
    -- agnostic-v3.2
    -- cloth
    -- cloth-mask
    -- image
    -- image-densepose
    -- image-parse-agnostic-v3.2
    -- image-parse-v3
    -- openpose_img
    -- openpose json
  train
    -- agnostic-v3.2
    -- cloth
    -- cloth-mask
    -- image
    -- image-densepose
    -- image-parse-agnostic-v3.2
    -- image-parse-v3
    -- openpose img
    -- openpose_json
```

전처리를 위해 4가지의 모듈 추가적으로 필요

- 1. Pose estimation
- 2. Human parsing
 - 3. Densepose
- 4. Background remove

1. Pose estimation

2. Human Parsing

3. Densepose

4. Cloth mask

5. Clothing-agnostic person image & segmentation map

2.1 Dataset

Train set: 7068 pairs

Test set: 489 pairs

Sampling

Train set: 1308 pairs

Test set: 489 pairs

cloth mask

dense map

parse map

noise data 제거

Dataset v2

Train set: 971 pairs

Test set: 489 pairs

2.2 Model

	ACGPN	VITON-HD	HR-VITON	DOC-VTON	PF-AFN
장점	전처리가 많이 필요하지 않음	ACGPN 보다 더 나은 결과	사용한 모델들 중 가장 좋은 성능	전처리가 많이 필요하지 않음	inference 속도가 매우 빠름
단점	모델의 pose에 따른 성능차이 존재하며 detail한 부분 잘 살리지 못함	여전히 옷의 색상, 질감 등을 잘 살리지 못하는 경우가 많았음음	많은 전처리가 필요, 전처리 과정에 모델 성능이 좌우됨	clothes 사진의 품질이 매우 중요하며 포즈에 따른 성능차이 존재	clothes 사진의 품질이 매우 중요하며 포즈에 따른 성능차이 존재

2.2 Model / Model Architecture

Condition Generator

Image Generator

2.2 Model / Condition Generator

2.2 Model / Image Generator

2.3 Model Research

Dataset v2

Train set: 1308 pairs

Test set: 489 pairs

2.3 Model Research / Challenges

Logo가 잘 표현되지 못함

질감 표현에서 아쉬움 존재

- data cleaning
- 2. refocus model

Cloth mask

boundary 불분명

densepose

손이 제대로 표현되지 않음

human parse

잘못된 labeling

- 1. data cleaning
- 2. refocus image

openpose 결과 이용

정수리부터 무릎 위까지 refocus

2.3 Model Research / Results - data cleaning & refocus

로고 및 질감 표현 우수해짐

2.3 Model Research / Results - data cleaning & refocus

기존보다 나아진 색 표현

Dataset v2

Train set: 971 pairs

Test set: 489 pairs

Dataset v3

Train set: 7068 pairs

Test set: 489 pairs

데이터 증강

2.3 Model Research / Results

최종 결과들

2.3 Model Research / Results - Metrics

	V	72	V3		
	Before Refocus	Refocused-image	Training Step 40000	Training Step 30000	
LPIPS(paired)	0.1034	0.0963	0.111	0.1097	
FID(unpaired)	58.5913	46.69	38.7989	36.1009	

Refocus 하기 이전의 결과는 이 후의 결과들과 비교하는 것은 적절하지 않지만 비교를 위해 명시해 두었음

3. Product Serving

3. Product Serving

Microservice horizontal pattern

3. Product Serving

3.1 Product Serving - Frontend

메인 화면

3.2 Product Serving - Backend

4. Result

4. Result / 시연영상

시연영상

실제로는 inference 약 2분 정도 소요

Target cloth / model

Before Refocus

Refocus model

data cleaning

Increase training set

© NAVER Connect Foundation

But····

목표

최종 FID: 36.1

FID 20 이하

패턴, 로고 등은 정확히 표현하지 못하는 것이 아직 많음

옷의 목, 손 등의 부위가 제대로 생성되지 못함

성능 향상으로 이어지지 못함..

- Occlusion handling

- Down-sampling, Dropout, ...

- Spectral normalization

More data...

Human parsing

Al hub parsing labels HR VITON parsing labels

0.background 0.background

1.hair2.face2.Hair

3.neck 3.Glove

4.outer-torso4.Sunglasses5.outer_R5.UpperClothes

6.outer_L 6.Dress

~~~

aligning 시도하였으나 실패하였음

Parse map을 강화할 수 있었다면 더 좋은 결과가 있었을 듯

# **Product Serving**

#### 사용자 입장

1. 최종 Inference Time: 약2분

결과 도출까지 오래걸림

2. UI 컨텐츠 및 퀄리티 부족

고객 만족도 부분에서 감점요소

#### 개발자 입장

1. DataBase의의 부재

입력 이미지와 생성된 이미지의 관리 부실

2. 완성된 제품에 대한 실험(테스트)이 부족

다수의 사용자가 사용했을 때, 가이드대로 실행하지 않았을 때 등 예외/에러처리 미흡







Sync -> Async

inference time 단축

Cloud Service를 통한 DB 구축

이미지 처리 및 logging 정보 수집

Front-end 라이브러리 활용

컨텐츠 및 품질 향상

# 4. Result / 후속연구 - Google Cloud Storage







Input, Output에 대한 초상권 등의 문제가 발생할 수 있기 때문에 이에 대한 추가 논의는 필요할 것으로 생각됨

# 5. Conclusion

#### 5. Conclusion / Lesson-Learn

#### 명확한 커뮤니케이션의 필요성

분업을 진행하며 의견 충돌이 발생하는 경우가 종종 있었는데, 의견 전달 과정에서 오해가 있었기 때문. 팀 프로젝트에서는 타인에게 요구사항을 명확하게 제시해 주는 것이 중요하다는 것을 느낌

#### 팀워크의 중요성

막연히 파이널 프로젝트라고 부담을 느꼈었는데, 팀으로 하나씩 해나가니까 완성하는 것을 보고 팀워크가 중요하다는 것을 느낌.

#### 팀 내 규칙 세우기

협업 툴 관리, 코딩 스타일 등 여러 사항에서 제대로 된 규칙을 세우기 않아 어려움을 겪었음. 통일된 규칙을 세워 진행하는 것이 중요함을 깨달음.

#### 책임감의 무게

내가 밑은 작은 임무라도 해결하지 못하면 전체에게 피해를 줄 수 있다는 것을 느꼈습니다. 못하더라도 포기하지 않는 마음을 가지는게 가장중요하다 느꼈고, 책임감에 대해 다시한번 생각해보게 됐습니다.

# End of Document Thank You.

