

Atmospheric Transmission Measurements at White Sands Missile Range, August 1978

S. T. HANLEY, J. A. DOWLING, R. F. HORTON, J. A. CURCIO, C. O. GOTT, M. WOYTKO, AND ENS. JOHN STORVICK, U.S.N.

Optical Radiation Branch Optical Sciences Division

October 29, 1980

FIE COPY

SELECTE DEC 4 1980

NAVAL RESEARCH LABORATORY Washington, D.C.

Approved for public release; distribution unlimited.

80 12 01 218

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMEN		READ INSTRUCTIONS BEFORE COMPLETING FORM
NRL Report 8422	AD-A09	0. 3 RECIPIENT'S CATALOG NUMBER
ATMOSPHERIC TRANSMISSION WHITE SANDS MISSILE RANGE	_	5. TYPE OF REPORT & PERIOD COVERED Interim report on a continuing project.
7 AUTHOR(s)		6. PERFORMING ORG. REPORT NUMBER 6. CONTRACT OR GRANT NUMBER(e)
S. T. Hanley, J. A. Dowling, R. F. C. O. Gott, M. A. Woytko, and En		11 ct
9 PERFORMING ORGANIZATION NAME AND Naval Research Laboratory Washington, D.C. 20375	DADDRESS	10. PROGRAM ELEMENT, PROJECT TASK AREA & WORK UNIT NUMBERS Program Element No. 63754N, Project No. S0182-AA, Task No. 1962 Work Unit No. R0531.
CONTROLLING OFFICE NAME AND ADD	N L-	October 29, 1980
	<u> </u>	13 NUMBER OF PAGES 71
19 TO PORING AGENCY NAME & ADDRES	SS(II different from Controlling Office)	15. SECURITY CLASS. (of this report) UNCLASSIFIED 15a. DECLASSIFICATION DOWNGHADING SECREDULE
Approved for public release; distrib	bution unlimited.	
17 DISTRIBUTION STATEMENT (of the abate	raci entered in Block 20, 11 different f	rom Report)
18. SUPPLEMENTARY NOTES		
19 KEY WORDS (Continue on reverse elde if n	ecessary and identify by block number	(r)
Atmospheric transmission Laser propagation High-resolution Fourier-transform spectroscopy		
20 ABSTRACT (Continue on reverse side if ne	ecessery and identify by block number)
Range, New Mexico. Wavelengths Meteorological variables including radiation, and the atmospheric ten mission measurements, at the end;	measured include 0.63 μ m. 1. air temperature, dewpoint, winperature structure parameter points of the propagation path	and speed and direction, solar

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601

CONTENTS

INTRODUCTION	1
PLANS AND RATIONALE FOR THE WSMR EXPERIMENT	1
LASER EXTINCTIONS	2
FOURIER TRANSFORM SPECTROSCOPY	14
PATH SELECTION	27
MICROMETEOROLOGICAL DATA	28
VISIBILITY MEASUREMENTS	28
CONCLUSIONS	65
ACKNOWLEDGMENTS	65
REFERENCES	66

Accessi	on For	
NTIS G		
DTIC TA		ŢŢ,
Unannou		[.]
Justifi	cation	
Ву		
Distrib	utien/	
Availa	b 11114	° ∂es
	20 1 20 10	
Dist	\mathbb{S}_1	
$\boldsymbol{\cap}$,	
H	i	
	•	

ATMOSPHERIC TRANSMISSION MEASUREMENTS AT WHITE SANDS MISSILE RANGE, AUGUST 1978

INTRODUCTION

During August 1978 measurements were taken over a two-week period at White Sands Missile Range (WSMR), New Mexico. The Naval Research Laboratory's (NRL) Infrared Mobile Optical Radiation Laboratory (IMORL) was used to make high-resolution atmospheric transmission measurements over an elevated 6.4-km path in order to assess the effect of the atmosphere on laser transmission. The expected high turbulence at WSMR was a new parameter for the existing IMORL data base [1,2] and restricted operations to midmorning and late afternoon. Detailed surveys of the actual path used, providing beam elevation as well as local ground topography vs range, were carried out in support of this program. Meteorelogical parameters monitored at the endpoints of the path included air temperature, dewpoint, solar radiation, wind speed and direction, and the temperature structure parameter C_T . Laser extinction coefficient measurements were made to a precision of ±0.008 km^{-1*} at HeNe, Nd-Yag, deuterium fluoride (DF), and CO₂ wavelengths. To achieve this precision for the highly transmissive DF wavelengths, a longer path was used than those chosen for previous IMORL operations. New dualscatter-plate beam integrators were employed to reduce pointing errors at the receiver [3]. The turbulence-induced beam spread caused possible overfill of the 1.2-m (4-ft) receiver mirror and limited the path length to the 6.4 km used for successful operation during all but the periods of highest turbulence. Times of day and levels of turbulence for which this limitation became operative will be discussed in the section on laser extinctions.

Extinction measurements of the DF lines are in good agreement with predictions from sea level algorithms simply reduced in total pressure for most lines measured. The $2\rightarrow1$ P_5 DF line shows indications of an H_2O continuum dependence different from the model developed by the Army Atmospheric Sciences Laboratory, WSMR. This discrepancy is in the direction of smaller absorption coefficients for the $2\rightarrow1$ P_5 component of a multi-wavelength beam. The DF laser extinction measurements were used to calibrate Fourier Transform Spectrometer (FTS) data, providing absolute transmission spectra for the first time at the WSMR-MAR site. This information will be of substantial benefit to the future laser propagation programs at WSMR.

PLAN AND RATIONALE FOR THE WSMR EXPERIMENT

The technical objectives of this measurements program were threefold. A primary objective was to characterize the propagation environment at WSMR by measuring long path atmospheric extinction at several near- and mid-IR laser frequencies, together with local meteorological parameters. Second, this work was intended to provide basic experimental atmospheric transmission data at WSMR for systems analysis studies. Third, this measurement program was designed to acquire precise high-resolution atmospheric transmission spectra in-situ at WSMR.

Specific problem areas identified prior to the WSMR field measurements include the nature, composition, and effects of average atmospheric aerosol concentrations occurring in the inland desert

Manuscript submitted April 29, 1980

^{*}This error limit is larger than that reported for previous measurements with the IMORI. [3] because of the high turbulence encountered at WSMR

environment, anticipated new ranges of absolute humidity, and confirmation of the level and variability of HDO/H₂O abundance in the inland environment. Each of these atmospheric properties strongly affects the propagation of DF laser radiation in the atmosphere.

LASER EXTINCTIONS

The laser extinction procedures used at WSMR are described in References [1] and [4]. With use of the basic procedure of a chopped beam and phase-locked ratiometry, an experimental uncertainty of ±0.008 km⁻¹ was achieved in the measured extinction coefficients, with transmissions near 90% over the path. The required precision in the detector hardware was achieved through the use of tandem scatter-plate beam integrators having a deviation of less than 1% of detector-integrator efficiency over the entire 1.2-m (4-ft) collector pupil. This unique design was developed by R. F. Horton of NRL's Optical Radiation Branch [3]. Precision AC voltage regulators were added to the transmitter electronics to maintain uniform source temperatures and amplification characteristics of electronics under the sometimes harsh field environment. A magnetic tape data logger normally used for storage of meteorological parameters was expanded to include the laser extinction numbers from the ratiometer for improved temporal resolution in data analysis. For example, with the high turbulence frequently encountered at WSMR, the distribution of values from the ratiometer will have a larger than normal standard deviation and, if beam spreading nearly fills the 1.2-m receiving aperture, a skewness of the distribution appears that is easily recognized. This skewness flags a loss of validity of the laser extinction measurements and requires a new algorithm that selects an averaged ratio near the distribution edge away from the tail, depending on the degree of mirror fill.

Results of the long path DF extinction measurements are shown in Table 1. The calculated extinction coefficients are obtained from a line-by-line computer calculation commonly referred to as HITRAN, which uses a recent edition of the AFCRL line atlas [5], containing spectroscopic data for the seven principal IR molecular absorbers and their isotopes. All line wing contributions within a range of 25 cm⁻¹ to either side of the wavenumber of interest are included in the calculation as contributions to the absorption coefficient. Midlatitude summer average values scaled to WSMR barometric pressure and air temperature are used for the amounts of all absorbers except H₂O, which is referenced to the measurement of actual dewpoint. A continuum contribution for N₂ and H₂O is included in the HITRAN calculations and is derived from the model used in LOWTRAN 3B [6]. No aerosol contribution is modeled in the numerical calculations, since all experimental conditions exceeded 80 km visibility, indicating a negligible aerosol component. A more detailed description of the visibility measurements will be given in a later section.

For help in assessing the correlations of the DF laser extinctions with atmospheric conditions, Table 2 contains a breakdown of individual contributions to the total molecular absorption coefficient from each molecular absorption component for a midlatitude summer atmosphere scaled to 33° C air temperature, 1172 Pa (8.8 torr) of water vapor, and 88×10^3 Pa (660 torr) total pressure. Absorption of the $2 \rightarrow IP_{10}$ (abbrv. P_210) line, for example, is dominated by the N_2O content of the atmosphere.

The variation of absorption coefficient for each of the DF lines with water vapor partial pressure is shown in Figs. 1 and 2. Included in the figures are previous sea level measurements and a plot of a polynomial algorithm [1] developed by Science Applications, Inc. (SAI). The recent measurements at WSMR are indicated by the W symbols, and the boxes and crosses represent data from Cape Canaveral, Florida, and Capistrano, California, respectively. The solid curve is a least squares fit to the Florida data, and the dashed curve is the polynomial calculation of SAI.

One notable result of the DF laser extinctions is the P_25 line, which indicates a different trend with water vapor than that expected, as shown in Fig. 2. Absorption of this line is dominated by HDO line and H_2O continuum absorptions, and any discrepancies in either species should also show up in some of the well-behaved lines observed, such as the P_27 which is also HDO-line dominated.

Table 1 — DF Extinctions Measured over 6.4-km Path at WSMR and HITRAN Predictions for Corresponding Meteorological Conditions*

	T:		Line	Experimental	Calculated	Experimental
Date	Time	Line ID	Position	Extinction	Absorption	-Calculated
	(local)		(cm ⁻¹)	Coefficient (km ⁻¹)	Coefficient (km ⁻¹)	(km ⁻¹)
11 Aug 78	0900	P ₂ 8	2631.068	0.021	0.023	-0.002
11 Aug 78	0910	P ₁ 8	2717.539	0.120	0.107	+0.013
11 Aug 78	0912	P,7	2742.998	0.030	0.025	+0.005
11 Aug 78	0912	P ₁ 6	2767.968	0.069	0.063	+0.006
11 Aug 78	0915	P ₂ 8	2631.068	0.035	0.023	+0.012
11 Aug 78	0917	P ₂ 10	2580.097	0.092	0.060	+0.032
11 Aug 78	0919	P ₂ 12	2527.391	0.038	0.026	+0.012
11 Aug 78	0924	P ₂ 8	2631.068	0.031	0.023	+0.008
14 Aug 78	0952	P ₂ 8	2631.068	0.012	0.014	-0.002
14 Aug 78	0953	P_27	2655.863	0.041	0.038	+0.003
14 Aug 78	0954	P ₂ 5	2703.999	0.012	0.011	+0.001
14 Aug 78	0955	P ₁ 8	2717.539	0.078	0.057	+0.021
14 Aug 78	0957	P ₁ 7	2742.998	0.014	0.012	+0.002
14 Aug 78	0959	P ₁ 6	2767.968	0.034	0.033	+0.001
14 Aug 78	1001	P ₂ 8	2631.068	0.013	0.014	-0.001
14 Aug 78	1002	P ₂ 10	2580.097	0.059	0.052	+0.007
14 Aug 78	1002	P,12	2527.391	0.027	0.018	+0.009
14 Aug 78	1004	P ₂ 8	2631.068	0.014	0.014	0.000
15 Aug 78	0927	P ₂ 8	2631.068	0.009	0.011	-0.002
15 Aug 78	0929	P.7	2655.863	0.025	0.027	-0.002
15 Aug 78	0930	P ₂ 5	2703.999	0.017	0.008	+0.009
15 Aug 78	0934	P ₁ 8	2717.539	0.038	0.038	0.000
15 Aug 78	0936	P_17	2742.998	0.013	0.009	+0.004
15 Aug 78	0937	P ₁ 6	2767.968	0.026	0.024	+0.002
15 Aug 78	0939	P ₂ 8	2631.068	0.011	0.011	0.000
15 Aug 78	0940	P ₂ 10	2580.097	0.066	0.050	+0.016
15 Aug 78	0943	P ₂ 12	2527.391	0.030	0.016	+0.014
15 Aug 78	0946	P ₂ 8	2631.068	0.012	0.011	+0.001
19 Aug 78	0944	P ₂ 8	2631.068	0.019	0.022	-0.003
19 Aug 78	0945	P ₂ 7	2655.863	0.072	0.067	+0.005
19 Aug 78	0947	P ₂ 5	2703.999	0.023	0.020	+0.003
19 Aug 78	0948	P ₁ 8	2717.539	0.109	0.099	+0.010
19 Aug 78	0949	P ₁ 7	2742.998	0.023	0.023	0.000
19 Aug 78	0951	P ₁ 6	2767.968	0.047	0.058	-0.011
19 Aug 78	0952	P ₂ 8	2631.068	0.025	0.022	+0.003
19 Aug 78	0954	P ₂ 10	2580.097	0.072	0.059	+0.013
19 Aug 78	0956	P ₂ 12	2527.391	0.032	0.025	+0.007
19 Aug 78	0957	P ₂ 8	2631.068	0.021	0.022	~0.001

^{*}See section on micrometeorology

Table 2 — Contributions to Total Molecular Absorption Coefficient (km $^{-1}$) for DF Transitions of Interest for a Midlatitude Summer Atmosphere* Scaled to 33°C Air Temperature, 8.8 Torr H₂O, and 660 Torr Total Pressure Calculated Using HITRAN

Line ID	Total Molecular Absorption	H ₂ O Continuum	N ₂ Continuum	HDO	CH₄	N ₂ O	H ₂ O	CO ₂
2-1P12	0.019	0.009	0.009	0.000	0.001	0.000	0.000	0.000
2-1P10	0.054	0.008	0.002	0.002	0.000	0.041	0.000	0.001
2-1P8	0.017	0.008	0.001	0.002	0.003	0.000	0.003	0.000
2-1P7	0.050	0.008	0.001	0.039	0.002	0.000	0.000	0.000
2-1P5	0.014	0.010	0.000	0.004	0.000	0.000	0.000	0.000
1-OP8	0.076	0.010	0.001	0.065	0.000	0.000	0.000	0.000
1-OP7	0.016	0.011	0.000	0.003	0.002	0.000	0.000	0.000
1-OP6	0.042	0.012	0.000	0.025	0.005	0.000	0.000	0.000

^{*}Contributions due to CO. O_3 and O_2 are not significant for the calculations represented in this table.

HANLEY, DOWLING, HORTON, CURCIO, GOTT, WOYTKO, AND STORVICK

The scatter of the P₂10 line data in Fig. 1 exceeds the 0.008 km⁻¹ uncertainty in the measurement and clearly indicates variations in the amount of the dominant absorbers for those atmospheric absorption lines that do not correlate with atmospheric H₂O. In this case it is the N₂O molecular component that comprises approximately 80% of the total absorption for the P₂10 line (see Table 2). Inaccuracies in isolating the P₂10 line from a neighboring DF line by the operator would tend to give a bimodal slope, depending on which of the two lines was present during measurement, but this is not indicated. The observed variation is present at both coastal measurement sites as well as the recent WSMR location. Software to obtain a ratio of the FTS spectra and numerical predictions will be generated to assess abundances of the IR absorbers along the path. A quantitative measure of the uncertainty caused by atmospheric variations and their influence on the measured absorption coefficient is given by the scatter of the data for the P₂8 line shown in Fig. 1. The water-vapor concentration as integrated along the p₄th will vary with the flux of air masses through the path and is only approximated by the two endpoint meteorological stations. Absorption of the P₂8 line is dominated by H₂O line and H₂O continuum absorptions as shown in Table 2. Consequently, the uncertainties resulting from the use of the endpoint approximation to true-path-integrated H₂O result in a distribution of absolute humidities about the true value and contribute to the scatter seen in Fig. 1.

Within the limits of the scatter shown in Figs. 1 and 2, the molecular algorithms represented by the dashed lines accurately predict the water-vapor partial pressure dependence of DF laser molecular absorption near 30°C air temperature at WSMR.

Additional data were acquired in the 10- μ m region with a CO_2 laser, and the results are shown in Table 3 along with HITRAN predictions for the observed atmospheric conditions. Agreement with predictions is generally not as good as that observed at DF wavelengths. With the exception of the R10-20* line, the differences between experiment and theory change with atmospheric conditions along the path. The precision of the CO_2 extinction experiment is equal to that of the DF results and certainly more than adequate to not give rise to the large discrepancies observed here. Hardware malfunctions of this order would be detected during zero path calibrations, where uncertainties are routinely in the third significant figure.

The R10-20 line absorption coefficient is consistently under that predicted for the observed atmospheric conditions. The dominant absorption process for this line, as shown in Table 4, is a strong H₂O line nearly coincident with the 975.931 cm⁻¹ position of the R10-20 line. The H₂O line position is approximately 976.012 cm⁻¹ and is apparently incorrectly identified in line position or line strength in the AFGL line atlas [5]. For example, were remeasurement to shift the H₂O line position by 0.05 cm⁻¹, agreement would be reached with the observed R10-20 extinction. If the line position is found to be correct, then the line strength must be significantly larger than previously believed. Figure 3 shows a HITRAN calculation using the existing AFGL line atlas behavior in the vicinity of the R10-20 line.

The large absorption effects at 10.6 μ m that appear to vary with time are not modeled correctly by HITRAN. There is no direct correlation with water vapor, since better agreement and lower absorption coefficients were observed during the highest water-vapor conditions encountered, such as the 10 August measurement of 10.8-torr H₂O. Table 4 contains a breakdown of the molecular absorption mechanisms included in the theoretical predictions of HITRAN for conditions on 19 August. It is easy to see from Table 4 that our observations cannot be explained by increases in H₂O and CO₂ along the path, since all of the lines would be affected to some degree, and a characteristic shape for wavenumber dependence of the absorption would occur. Figures 4 through 7 show the comparison of experiment to theory for the range of water vapor conditions encountered. In all cases the upper trace at 975 cm⁻¹ is the measured value. The effect seems to be broadband so as to affect neighboring lines but not so much so as to occur uniformly across the window. Absorption bands induced by airborne silicates are

^{*}The notation R10-20 denotes the R $_{\odot}$ line of the 001 \pm 100 CO $_{\odot}$ hand, the same line in the 001 \pm 020 band would be denoted by R02-20 for example

HANLEY DOWLING, HORION (URGO GOLL WOYLKO AND STORVICK

Table 3 - CO₂ Extinctions (km⁻¹) Measured over 6.4-km Path with HITRAN Predictions for Corresponding Meteorological Conditions*

	Time		Line	Experimental	Calculated	Experimenta
Date	(local)	Line ID	Position		Absorption	-Calculated
		<u> </u>	(cm 1)			(km)
10 Aug 78	1001	P10-20	944.195	0.198	0.208	-0.010
10 Aug 78	1004	P10-26	938.689	0.173	0.181	-0.008
10 Aug 78	1006	P10-30	934.895	0.166	0.168	-0.002
10 Aug 78 1	1008	P10-38	927.009	0.148	0.142	+0.006
10 Aug 78	1010	P10-14	949,480	0.197	0.203	-0.006
10 Aug 78	1016	R10-20	975.931	>1.	0.598	>0.4
10 Aug 78	1021	R10-28	980.914	0.522	0.166	+0.356
10 Aug 78	1024	P02-20	1046.854		0.208	+0.301
10 Aug 78 -		R02-20	1078.591	0.238	0.207	+0.031
11 Aug 78	956	R02-38	1089.001	0.110	0.139	-0.029
11 Aug 78	958	R02-20	1078.591		0.231	-0.020
11 Aug 78		P02-20	1046.854	0.459	0.233	+0.226
11 Aug 78	1005	R10-20	975.931	0.713	0.691	+0.022
11 Aug 78	1010	P10-20	944.195	0.585	0.242	+0.343
14 Aug 78	1028	P10-38	927.009	0.170	0.071	+0.099
14 Aug 78	1030	P10-20	944.195	0.770	0.148	+0.622
14 Aug 78	1035	R10-20	975.931	>1.	0.403	>0.6
14 Aug 78		R02-38	1089.001	0.105	0.071	+0.034
15 Aug 78	1006	P10-20	944.195	0.577	0.121	+0.456
15 Aug 78		P10-38	927.009	0.520	0.048	+0.472
15 Aug 78	1010	R10-20	975.931		0.281	+0.434
15 Aug 78		R10-20			0.281	+0.379
15 Aug 78		P02-20	1046.854	0.179	0.147	+0.032
15 Aug 78			1078.591	0.178	0.149	+0.029
15 Aug 78		R02-38	1089.001	0.618	0.053	+0.565
17 Aug 78		R02-38	1089.001	0.052	0.078	-0.026
17 Aug 78	1914	R02-20	1078.591	0.155	0.186	-0.020 -0.031
17 Aug 78		P02-20	1046.854	0.165	0.183	-0.031 -0.017
17 Aug 78		R10-20	975.931	>1.	0.162	>0.5
17 Aug 78		P10-20	944.195	0.486	0.162	+0.324
17 Aug 78 .		P10-38	927.009	0.602	0.102	
17 Aug 78 :		P10-38	927.009	0.150	A Committee of the Comm	+0.523
18 Aug 78	1010	P10-38	944.195	0.642	0.120 0.197	+0.030
18 Aug 78	1010	R10-20	975.931	>1.	0.589	+0.445
	1013		1046.854			> 0.4
18 Aug 78 ′ 18 Aug 78 ′			1046.834	0.497	0.204 0.205	+0.293
			1078.391	0.228		+0.023
18 Aug 78 :				0.483	0.10 4 0.219	+0.379
19 Aug 78 19 Aug 78			944.195 927.009	0.128		-0.091
		P10-38			0.153	-0.068
19 Aug 78 :		i	975.931		0.633	>0.3
19 Aug 7d			1046.854		0.217	+0.285
19 Aug 78 -	1032	R02-20	1078.591	0.222	0.216	+0.006
19 Aug 78		R02-20		0.219	0.216	+0.003
19 Aug 78 !	1036	R02-38	1089.001	0.130	0.123	+0.007

This first identification notation used is as follows: P10.20 corresponds to the Pisting of the CO (00.1) \pm 10.0 sources for a band P02.20 corresponds to the Pythag of the CO (00.1) \pm 02.0 s benderal band.

Table 4 — Contributions to Total Molecular Absorption Coefficient (km⁻¹) of a Midlatitude Summer Atmosphere Scaled to 25.8°C Air Temperature, 10.8 Torr H₂O and 660 Torr Total Pressure for CO₂ Laser Lines of Interest*

Line ID	Total Molecular Absorption	H ₂ O Continuum	CO ₂	H ₂ O	О:
P10-38	0.153	0.125	0.026	0.002	0.000
P10-20	0.219	0.118	0.093	0.008	0.000
R10-20	0.633	0.106	0.099	0.428	0.000
P02-20	0.217	0.089	0.118	0.001	0.009
R02-20	0.216	0.084	0.0128	0.004	0.000
R02-38	0.123	0.083	0.036	0.003	0.000

*Contributions due to CH4, N2O, HDO, CO, and O2 are not significant for the calculations represented in this table

Fig. 3 = HITRAN transmission prediction over 6.4-km path in vicinity of R10-20 CO₂ line for midlatitude summer atmosphre scaled to 25.8°C air temperature, 1440 Pa. (10.8 torr) $\rm H_3O_3$ and 88×10^3 Pa. (660 torr) total pressure.

Fig. 4 — Top trace at 975 cm $^{-1}$ is measured $\rm CO_2$ absorption coefficient over 6.4-km path. Bottom trace at 975 cm $^{-1}$ HITRAN is the prediction for 534 Pa (4.01 torr) H₂O.

Fig. 5 — Top trace at 975 cm $^{-1}$ is measured absorption coefficient over 6.4-km path. Bottom trace at 975 cm $^{-1}$ is the HITRAN prediction for 903 Pa (6.77 torr) $\rm H_2O$.

Fig. 6 — Top trace at 975 cm $^{-1}$ is measured absorption coefficient over 6.4-km path. Bottom trace at 975 cm $^{-1}$ is the HITRAN prediction for 1265 Pa (9.49 torr) H₂O.

Fig. 7 — Top trace at 975 cm $^{-1}$ is measured absorption coefficient over 6.4-km path Bottom trace at 975 cm $^{-1}$ HITRAN is the prediction for 1440 Pa (10.8 torr) H₂O.

HANLEY DOWLING HORION CURCIO GOLL WOYLKO AND STORNICK

known to coincide with the observed absorptions, but the amount of absorption is higher than that to be expected from airborne silicates. Wind speed and direction are recorded in the section of this report on micrometeorology and may be used to study correlation with this strong absorption mechanism.

FOURIER TRANSFORM SPECTROSCOPY

A scanning Michelson interferometer with 16-cm retardation capability was used to measure relative atmospheric transmission from 2 to 6 μ m and from 3 to 14 μ m, with two separate detector—beamsplitter combinations. For 3 to 14 μ m, the HgCdTe detector and KBr beamsplitter produce a lower signal-to-noise ratio and are more sensitive to background radiance levels than the 2- to 6- μ m InSb detector and CaF₂ beamsplitter combination. The advantage of the extended 3- to 14- μ m wavelength coverage would be more apparent at lower noise levels; this would be achievable with a matched detector—preamplifier combination and a smaller detector chip (noise equivalent power for a detector scales directly with chip area). Currently, the 8- to 14- μ m window fast Fourier transform (FFT) data are presented at low resolution for inclusion in this report. Software is being developed to average noisy spectra and improve the transform process, which will result in higher resolution data in the 8- to 14- μ m region.

Representative spectra for the InSb spectral region are shown in Figs. 8 through 11 for conditions of 1172 Pa (8.8 torr) H₂O and 33°C air temperature. The stronger absorption lines in general appear narrower than those obtained in earlier atmospheric measurements [7]. Figures 12 through 16 are HITRAN predictions for the same atmospheric conditions that have been convolved with a 0.08 cm⁻¹ $(\sin x)/x$ instrument function to match more closely the data presented in Figs. 8 through 11. In the $5-\mu m$ region, we observe stronger continuum absorption features than those currently predicted by HITRAN. Close scrutiny of features reveals minor differences between theory and experiment such as the window between 2020 cm⁻¹ and 2040 cm⁻¹. The AFGL line atlas should be adjusted to match the structure of the peak of transmission and relative intensities of peaks observed in this spectral region important for CO laser propagation. As previously observed [8], in sea level coastal measurements, the 4.3-μm CO₂ band edge near 2400 cm⁻¹ is more rounded than the HITRAN predictions (Fig. 14). This indicates that a different absorption line wing profile is required for the strong CO₂ absorption lines in this region than the Lorentz shape normally used, or else that a greater N₂ continuum absorption exists than is currently modeled in the 4.2-\mu region. The relative strengths of the two HDO lines and the one H₂O line at 2730 cm⁻¹ (Fig. 9) indicate only slightly less than the 0.03% abundance ratio for HDO expected relative to H₂O. Most spectral features are in fairly good agreement with HITRAN predictions in the DF region, as indicated by the DF laser extinction results presented earlier in this report.

High dispersion HITRAN plots for the 1172 Pa (8.8 torr) water-vapor conditions of the spectra shown above are plotted near several DF lines in Figs. 17 and 18. The N_2O dominance of the P_210 line as well as the H_2O and CH_4 dominance of the P_28 are indicated in Fig. 17.

Representative FTS plots for the 8- to 14- μ m region are shown in Fig. 19 for data taken on 17 August 1978. The upper panel in Fig. 19 shows a spectrum resulting from a 200-scan average taken during a 30-min period centered around 1830, and the lower trace is again a 200-scan average taken during a 30-min period centered around 2030. These data correspond to 1.4 cm⁻¹ resolution but can be processed with improved resolution as software is upgraded. During these measurements, the air temperature was 31°C and the water vapor was 1065 Pa (8.0 torr) at the endpoints of the 6.4-km path.

In general it is observed that there is greater continuum absorption in the 12- to 14- μ m region than predicted, but otherwise spectral features appear quite similar to the HITRAN calculations convolved with a 1.4 cm⁻¹ (sin x)/x instrument function shown in Figs. 20 and 21.

Fig. 8 — Measured atmospheric transmission over 6.4-km path for 1173 Pa (8.8 torr) $\rm H_2O$ and 33 C air temperature in the 3- to 5- μ m region

Fig. 9 — Measured atmospheric transmission over 6.4-km path for 1173 Pa (8.8 forr) H_2O and -33 °C air temperature in the 3- to 5- μ m region

Fig. 10 — Measured atmospheric transmission over 6.4-km path for 1173 Pa (8.8 torr) $\rm H_2O$ and $\rm 33~C$ air temperature in the 3- to 5- μ m region

Fig. 11 — Measured atmospheric transmission over 6.4-km path for 1173 Pa (8.8 torr) H₂O and 33 C air temperature in the 3- to $5\mu m$ region

Fig. 12 — HITRAN predictions for atmospheric transmission over 6.4-km path with midlatitude summer conditions scaled to 1173 Pa. (8.8 torr) H₂O₂ 33°C air temperature, and 88×10^3 Pa. (660 torr) total pressure

HANLEY DOWLING HORION CURCIO GOLL WOYLKO AND STORVICK

Fig. 13. HITRAN predictions for atmospheric transmission over 6.4 km path with midlatitude summer conditions scaled to 1173 Pa. (8.8 tor). H₂O. 33. Cair temperature, and 88. • 10³ Pa. (660 tor). total pressure.

Fig. 14 = HITRAN predictions for atmospheric transmission over 6.4-km path with midlatitude summer conditions scaled to 1173 Pa (8.8 torr) H₂O, 33 C air temperature, and 88×10^3 Pa (660 torr) total pressure

Fig. 18. – HITRAN predictions for atmospheric transmission over 6.4-km path with midlatitude summer conditions scaled to 1123 Pa. (8.8 torr) H₂O. 33. C air temperature, and 88.×.103 Pa. (660 torr) total pressure.

Fig. 16 = HITRAN predictions for atmospheric transmission over 6.4-km path with midlatitude summer conditions scaled to 1173 Pa (8.8 torr) H₂O_c 33 C air temperature, and 88 × 10^3 Pa (660 torr) total pressure

Fig. 17 \Rightarrow High-dispersion HITRAN plots for 1173 Pa (8.8 Fort) H₂O₂ 33 C air temperature, and 88 \times 10° Pa (660 fort) total pressure for each DF line of interest

Fig. 18 = High dispersion HTTRAN plots for 1173 Pa (XX Torr) HyO, 33 C air temperature and XX × 107 Pa (660 forr) total pressure for each DF line of interest

Fig. 19 — Measured atmospheric transmission over 6.4-km path for 1067 Pa (8.0 torr) H₂O and 31°C air temperature in the 8- to 14-μm region. Upper panel measurement centered at 1830 on 17 August 1978; lower panel measurement centered at 2030 on the same day.

Fig. 20 \pm HITRAN predictions for two sphere, reismission over 6.4 km path with midlatitude summer conditions scaled to 1967 Pa (8.0 form) H.O. 31. C. as compositione, with a 1.4 km $^{-1}$ (sin ϕ) a instrument function convolution.

Fig. 21 \sim HHRAN predictions for atmospheric transmission over 6.4-km path with midlatitude summer conditions scaled to 1067 Pa (8.0 torr) H₂O, 31 C air temperature, with a 1.4 cm⁻¹ (sin v) v instrument function convolution

PATH SELECTION

Selection of a suitable path for these measurements was subject to several constraints. A major goal was to maintain beam elevation some distance above ground cover. The elevated beam height minimizes sensitivity of results to strong vertical gradients of turbulence and aerosols. Funding limited the size of the earthen berms which could be built for this experiment, and range restrictions ruled out all but a few locations for beam placement. The transmitter position was built at a test site near a location called ARKY. An additional 6.1 m (20 ft) were added to existing high ground in this area, with the top surface bladed flat and compacted. Earthen ramps were constructed and overall dimensions were designed to enable zero path calibrations to be carried out on top of the mound without disturbing transmitter alignment. It was necessary to locate the receiver at 4 to 7 km distance and preferably to utilize existing high ground to obtain maximum effectiveness of existing monies. Range Control at WSMR ruled out the first two receiver sites chosen, but finally relented and agreed to the use of the receiver site at a location called PAT, a distance of 6.4 km from the transmitter as shown in Fig. 22. This 6.4-km path provides a good compromise between the long path needed for precise absorption coefficient measurements and the need for limiting path length so as not to allow turbulence beam spreading to overfill the 1.2-m receiver mirror.

Fig. 22 — Location of the 6.4-km path used for the WSMR extinction measurements of August 1978

Figures 23 and 24 show a detailed survey of the entire 6.4-km path. The zero distance position or receiver site is PAT and the path extends NNW to the transmitter position at a mound built near ARKY. The mounds for the transmitter and receiver sites are evident in the survey data and provide an elevated beam path (indicated by the top trace).

29

MICROMETEOROLOGICAL DATA

Appendix A contains all of the micrometeorological data obtained in support of the WSMR extinction experiment. The data are presented in a tabular format of 10-min averages suitable for correlating with specific events. The tabular data are followed by plots of the atmospheric index structure constant C_s^2 , windspeed, and solar radiation vs time to show more clearly trends in these parameters. For example, one notes the strong correlation of C_s^2 and windspeed with blockage of solar radiation near 1500 on August 11. The afternoon "window" or quiet period of turbulence does not occur until 1930 in August and is approximately 45 min in halfwidth as shown on the 17 August plot.

The micrometeorological towers used for these measurements contained air temperature and dewpoint sensors manufactured by EG&G, a windspeed and direction sensor built by Young Devices. Inc., and sensors to monitor the atmospheric temperature structure constant C_I , solar radiation, and barometric pressure. All tower sensors were sampled at 3-s intervals and were then averaged to provide the 10-min data presented here. Care was taken to locate the towers at beam elevation and upwind of the equipment structures for the predominant wind directions.

Figures A1-A16 contain plots of C_3^2 (m^{-2/3}), solar radiation (W/m²), and windspeed (m/s) monitored at the transmitter and receiver meteorological stations during the experiment.

VISIBILITY MEASUREMENTS

Visibility was determined by the contrast method developed by Koschmieder [9-11] in 1942. Here visibility is defined as the distance from an object that produces a threshold contrast between the object and the background. In these experiments, the target was a shadowed mountainside (Elephant Mountain) 33 km away, and the background was the sky immediately above the mountain.

The contrast formula is

$$\frac{B_X - B_H}{B_H} = e^{-\alpha X} = T_X \text{ (contrast transmittance)},$$

where B_X and B_H are the radiances of the cone of air in front of the target at distance X and the horizon, respectively. Attenuation coefficient α in the visible region can generally be attributed to aerosol scattering. However, in high visibility conditions the molecular component is a significant factor and must be considered in determinations of aerosol effects.

For visibility determination we define γ as the threshold contrast where the target is minimally visible and R as the range at that contrast. For our work we let $\gamma = 0.02$ at a wavelength of $0.55 \,\mu$ m, so that

$$\frac{B_R-B_H}{B_H}=e^{-\alpha R}=0.02.$$

or visibility = $3.92/\alpha$. An optical pyrometer is a convenient instrument to use for the determination of B_R and B_H . With a programmable hand calculator, a visibility observation can be made in about 1 min. Table 5 summarizes the visibility measurements made during the experiment.

Table 5 — Visibilities Measured by Optical Constrast Method

Optical Constrain Method								
Date	Time	$\sigma^{(\mathrm{km}^{-1})}$	Visibility (km)					
3 4 70	0000	0.02/						
3 Aug 78	0900	0.026	148.					
4 Aug 78	1200	0.038	103.					
5 Aug 78	0930	0.048	81.					
	1155	0.039	100.					
8 Aug 78	0810	0.038	103.					
	1000	0.046	85.					
	1300	0.041	95.					
10 Aug 78	0830	0.034	117.					
	0955	0.036	108.					
11 Aug 78	0805	0.039	101.					
	0915	0.035	113.					
	1005	0.033	118					
}	1115	0.033	118					
ļ	1215	0.036	110					
14 Aug 78	0925	0.028	141					
	1055	0.028	140					
15 Aug 78	0925	0.024	163					
	1037	0.025	158					
16 Aug 78	0845	0.037	105					
_	0930	0.036	110					
17 Aug 78	1930	0.0137	285					
18 Aug 78	0830	0.038	105					
19 Aug 78	0950	0.026	149					
21 Aug 78	0845	0.026	150					
	1025	0.027	147					
22 Aug 78	0842	0.029	137					
	1030	0.030	131					
23 Aug 78	0830	0.027	145					

CONCLUSIONS

DF laser extinction was measured for the first time at the inland WSMR location. Extinction did not have a significant aerosol contribution at DF wavelengths during the observation period in August 1978. High winds carrying large aerosols encountered during setup could limit the operation of precision optical systems because of both extinction and damage to external optics. High winds (> 10 m/s) do not occur regularly during August but may affect operations during other months. DF laser absorption coefficients agreed well with previous coastal measurements once aerosol effects were removed. Predictions of DF laser transmission using HITRAN calculations and a Burch [12] water-vapor continuum for the conditions at WSMR show less absorption on the average ($\sim 0.006 \text{ km}^{-1}$) than the experimentally measured values but this small difference is not particularly significant when compared to the experimental uncertainty in the measured extinction values.

ACKNOWLEDGMENTS

The authors wish to thank LCDR Michelle Hughes of Naval Sea Systems Command, PMS-405, for help in support of this project. The technical support provided by the Navy HEL office at WSMR, Frank Tidball of Sachs Freeman Associates, and Claude Acton of NRL's Optical Sciences Division was invaluable and is gratefully appreciated. Many thanks are due Mrs. J. Pinkney and Mrs. R. Reithmeyer for their dedicated typing of this manuscript.

REFERENCES

- J.A. Dowling, et al., "Atmospheric Extinction Measurements at Nd-YAG and DF Laser Wavelengths Performed in Conjunction with the JAN Propagation Tests, June-September 1975," NRL Report 8058, Feb. 1978.
- 2. T.H. Cosden, et al., "Data Compendium for Atmospheric Laser Propagation Studies Conducted at Cape Canaveral, Florida, February—May 1977," NRL Memorandum Report 3611, A. Guttman, ed., Sept. 1977.
- R. F. Horton, "Two-Scatter-Plate Integrator to Reduce Laser Speckle Noise," SPIE Proc. 196, 159, 1979
- J.A. Dowling, et al., "Atmospheric Transmission Measurement Program and Field Test Plan." NRL Report 8059, Nov. 1977.
- 5. R.A. McClatchey, W.S. Benedict, S.A. Clough, D.E. Burch, R.F. Calfee, K. Fox, L.S. Rothman, and J.S. Garing, "Air Force Cambridge Research Laboratories Atmospheric Absorption Line Parameters Compilation," AFCRL-TR-73-0096, Air Force Geophysics Laboratory, Nov. 1973
- 6. J.E.A. Selby, E.P. Shettel, and R.A. McClatchey, "Atmospheric Transmittance From 0.25 to 28.5μm: Supplement Lowtran 3B (1976)," AFGL-TR-0258, Nov. 1976.
- J.A. Dowling, et al., "Atmospheric Transmission Measurements Using IR Lasers, Fourier Transform Spectroscopy and Gas-Filter Correlation Techniques," Report of NRL Progress, pp. 1-14, Mar. 1977.
- 8. J.A. Dowling, R.F. Horton, S.T. Hanley, and K.M. Haught, "High Resolution Field Measurement of Atmospheric Transmission," *SPIE Proc.* 142, 25, 1978.
- 9. W.E.K. Middleton, "Vision Through the Atmosphere," University of Toronto Press, Toronto, 1952.
- 10. J.A. Curcio and G.L. Knestrick, "Atmospheric Transmission Measurements with an Optical Pyrometer" (Abst.), J. Opt. Soc. Amer. 47, 113 (1957).
- 11. J.A. Curcio and K.A. Durbin, "Atmospheric Transmission in the Visible Region," NRL Report 5368, Oct. 1958.
- 12. D.E. Burch, D.A. Gryvnak, and J.D. Pembrook, "Investigation of the Absorption of Infrared Radiation by Atmospheric Gases: Water, Nitrogen, Nitrous Oxide," AFCRL Report (AFCRL-71-0124), 1971.

Appendix A METEOROLOGICAL DATA

During the experiment, meteorological measurements were obtained with two measurement systems, each located at opposite ends of the 6.4-km propagation path. The data are presented here for each measurement site and for each day, tabulated in 10-min averages, followed by plots of solar radiation, windspeed, and C_S^2 vs measurement time. The units of each measured quantity are given in the appropriate column headings, except for C_S^2 , which is given in units of m^{-2/3}.

Figures A1+A16 contain plots of solar radiation, windspeed, and $C_{\rm V}^2$ monitored at the transmitter and receiver meterological stations.

HANLLY DOWLING HORION CURCIO GOLL WOYLKO AND STORVICK

NRL-IMORL TRANSMITTER

WSMR MICROMETERFALAGICAL CATA

TIME	ΑŢ	PPH24 Kn	pΡ	\$~ *	w S	C:W	CNSQ
	(UF6)	(TORP) (%)	(MEAR)	(W/50 M)	(M/S)	(DES)	
920	21.2	0.35 48.5	995.2	i.74	2.5	157.	1.978-14
930	23.4	0.31 47.7	895.1	U • 78	2.7	149.	1.658-14
940	23.9	Γ.35 46.6	895.7	0.43	2.2	123.	1.69F-14
950	24.3	0.29 45.3	895.1	U.87	2.2	127.	1.99E-14
1000	24.9	0.23 43.4	895.1	0.31	1.3	97.	2.33E-14
1013	25.3	f.17 42.1	895.1	1.36	1.8	100.	2.82E-14
1020	25.7	0.05 40.5	895.0	5.34	1.2	173.	3.84E-14
1030	26.9	C•13 38•7	895.3	13	1.5	63.	1.14E-13
1040	26.5	9.93 38.1	895.J	1.07	1.)	139.	8.716-14
1050	26.8	0.02 37.9	895.3	1.10	1.6	127.	3.42F-14
1100	26.7	9.80 37.3	895.0	1.13	1.3	97.	2.608-14
1116	28.6	9.68 34.1	894.8	1.16	1.5	93.	8.37E-14
1120	28.2	9.61 33.6	894.8	1.19	1.2	72.	8.428-14
1130	28.7	9.61 32.5	894.8	1.21	1.3	112.	8-13[-14
1140	28.3	9.56 33.2	894.7	1.24	1.9	92.	4.748-14
1150	28.7	9.49 32.1	894.7	1.26	1.4	167.	7.57E-14
1200	∠ક્ર• મ	9.32 31.4	894.5	1.28	2.5	147.	5.12E-14
1210	29.0	9.28 30.7	894.4	1.29	2.6	203.	6.835-14
1220	29.3	9.13 30.1	894.3	1.31	1.3	207.	9.20E-14
1 2 30	24.5	9.19 29.7	394.3	1.32	1.3	222.	7.10E-14
1240	39.8	9.11 29.0	3 34 . 2	1.32	1.7	174.	8.81E-14
1250	३(• 4	9.12 28.1	893.B	1.33	1.5	229.	1.368-13
1300	30 • 1	9.17 28.6	893.7	1.34	2.4	143.	5.30E-14
1310	30.3	8.94 27.5	893.5	1.34	2.4	168.	6.68E-14
1320	31.5	8.85 27.0	843.5	1.34	2.7	146.	6.36E-14
1330	30.7	8.74 26.4	893.4	1.34	2.)	156.	5.38E-14
1340	31 - 1	8.68 25.5	893.2	1.34	5.)	187.	6.54E-14
1350	32.0	8.47 23.8	893.2	1.32	۷.)	127.	9.21E-14
1400	71.4	R.18 23.9	893.	1.32	2.6	175.	4.756-14
1410	31 + H	8.09 23.0	892.9	1.37	1.7	69.	7.93t-14
1420	32.3	7.90 21.9	892.7	1.29	2.2	110.	8.70E-14
1430	72.1	7.50 26.7	P92.6	1.25	2.1	201.	8.78E-14
1440	33.1	7.76 26.5	892.4	1.26	2.0	235.	8.98F-14
1450	32.4	7.84 20.3	332.2	1.24	3.8	182.	1.16E-13
1500	32.9	7.62 20.6	892.1	1.22	4.3	168.	7.41E-14
1510	32.4	7.57 20.8		1.19	2.9	152.	6.02E-14
1520	73.4	7.55 19.6	871.9	1.17	2.7	152.	8.16E-14
1530	32.7	7.43 19.9	891.5	1.14	2.0	196.	3.23E-14
1540	33.2	7.35 19.4	991.4	1.11	2.8	203.	
1550	3 3 • I	7.34 19.4	891.2	1.3	5.4	143.	

NRL REPORT 8422

NEL-IMORL TRANSMITTER

WSMR MICRUMETEURBLOGICAL DATA

		7	AUGUST	1978			
TIME	AT	ррная вч	8 P	SR*	w S	WD	CNSQ
	(956)	(TORR) (%)	(MBAR)	(W/SQ M)	(M/S)	(DEG)	
1600 1610 1620 1630	32.8 33.4 33.5 32.9	7.37 19.8 7.37 19.2 7.29 18.9 7.24 19.3	891.0 892.9	1.04 1.01 0.97 0.93	3.0 2.9 4.5 2.7	130. 208. 163. 138.	

Fig. V.1 = Solar radiation, windspeed, and $C_{\rm k}^2$ at the optical transmitter meteorological station on 7 August 1978.

HANELY, DOWEING HORTON, CURCIO, GOLL, WOYLKO, AND STORVICK

NEL-IMORE TRANSMITTER

WSMR MTCRAMETEARALAGICAL DATA

R AUGUST 1973

TIME	ΔT	PPH25 PH	5 P	S 2 *	₩S	WO	CNSQ
	(056)	(TORR) (%)	(MbAR)	(W/SQ M)	(M/S)	(DEG)	
910	20.7	2.15 66.5	894.5	0.32	3.1	323.	7.26E-15
920	26.9	2.19 65.8	894.5	1.39	3.7	322.	1.02E-14
930	21 • 3	2.34 65.2	834.5	2.42	2.9	323.	1.29E-14
940	21.4	2.13 63.5	894.5	3.47	3.2	324.	1.138-14
950	21.7	2.3. 63.2	894.5	v • 5 5	2.8	318.	1.45E-14
1000	22.0	2.43 62.4	894.5	1.63	2.7	318.	1.09F-14
1010	22.4	2.65 62.5	894.5	0.45	2.9	324.	1.75E-14
1020	22.7	2.28 59.3	874.5	88. ر	2.7	322•	1.48F-14
1030	23.5	2.25 56.3	894.5	1.07	2.4	316.	2.76E-14
1040	23.9	1.87 53.4	894.5	0.86	2.5	323.	2.30E-14
1050	24.3	1.60 50.3	894.5	6.89	2.1	241.	2.59E-14
1100	24.5	1.27 48.9	894.5	2.76	2.4	281.	1.61E-14
1110	25.2	1.29 46.9	894.5	9.82	j.9	174.	8.01E-14
1120	25.3	0.84 44.7	894.5	û • 9ð	1 • 1	156.	3.50E-14
1130	25 • 3	n.97 45.5	894.5	₩•92	1.2	208.	2.14E-14
1140	25.6	1.30 46.3	894.4	1.12	1.8	558.	5.87E-14
1150	25.7	1.38 45.3	394.1	1 • 1 6	2.1	215.	4.91E-14
1200	26.1	1.41 45.0	894.1	1 • 3 3	2 • 1	219.	5.46E-14
1210	26.2	1.33 44.4	894.1	1.27	1 ⋅ €	201.	4.14E-14
1220	26.5	1.42 43.9	894.)	1.20	1.5	180.	5.235-14
1230	26.3	1.48 43.3	893.9	1.15	1.8	175.	6.95E-14
1240	26.8	1.34 42.3	893.8	1.21	2.2	176.	4.82E-14
1250	27.5	1.43 41.4	893.7	1.21	1.8	221.	9.43E-14
1300	27.4	1.31 41.2	893.4	1.28	2 • 0	226.	7.865-14
1310	27.9	1.22 39.8	893.2	1.24	1.3	257.	1.C2E-13
1320	27.8	0.97 39.2	893.2	1.22	2.5	132.	1.196-13
1330	28.2	C.58 36.9	893.1	1.21	1.9	256.	8.72E-14
1340	28.4	0.41 35.9	892.9	1.25	1.2	256.	8.46E-14
1350	29.2	0.54 34.6	892.7	1.25	1.1	195.	9.54E-14
1400	29.3	0.42 34.2	892.6	1.25	1.5	175.	8.67E-14
1410	29.5	0.44 33.8	892.4	1.25	1.4	272.	1.07E-13
1420	36.1	0.33 32.4	892.2	1.24	1.9	124.	1.04E-13
1430	36.6	6.69 33.6	991.9	1.26	2.6	78.	7.02E-14
1440	29.2	1.76 35.5	891.9	J • 29	2.2	112.	2.76E-14

Fig. A-2 — Solar radiation, windspeed, and $C_{\rm S}^2$ at the optical transmitter meteorological station on 8 August 1978

HANTLY DOWLING HORION CURCIO GOLL WOYLKO AND STORVICK

NRL-IMORL TRANSMITTER

WSMR MICPOMETEGRAL MOTON DATA

13 AUGUST	1374
-----------	------

TIME	ДΤ	PPH25 RA	вP	SR •	WS	w 0	CNSQ
	(1) = (.)	(T8D2) (*)	Z 14 (5 1 1 5 3)				
	(1) (1)	(TORR) (%)	(MHAR)	(MVS) M)	(M/S)	(DEG)	•
900	21.0	1.22 60.1	893.7	(.5)	3 • û	210	
910	21.5	1.13 58.0	893.7	9.63		318.	1.80E-14
920	22.2	C.97 54.5	893.7	0.6 8	2.5 2.4	372.	1.40E-14
930	22.9	1.04 52.3	893.7	5 • 7 2		258.	1.76E-14
940	23.3	N.83 5(5	893.7	1.76	2.4	300.	2.63E-14
950	23.8	0.74 48.4	893.7	0.85		319.	1.88E-14
1000	24.4	0.73 46.8	893.7	0.84	2 • 2	226.	2.75E-14
1010	24.8	0.33 44.1	893.7	0.88	2.3	299.	3.58E-14
1020	25.2	0.05 41.8	893.8	ι.οο ε.91	1.5	171.	3.21E-14
1030	25.4	0.08 41.5	893.9	Ú•93	1.1	127.	6.27E-14
1040	25.5	0.13 41.3	893.8	9.95	1.5	199.	3.92E-14
1050	26.2	9.27 49.3	893.7		1.9	202.	4.79E-14
1100	26.5	0.34 39.8	393.7	1.00	1.2	268.	5.55E-14
1110	27.0	0.22 38.3	893.6	1.03	1.4	106.	8.92E-14
1120	26.9	0.14 38.2	893.5	1.06	1 - 1	80.	1.148-13
1130	27.2	0.01 36.3	893.5	1.10	1.4	262.	5.945-14
1140	27.7	9.75 34.9	893.4	1.13	1.5	221.	7.975-14
1150	28.2	9.68 33.7	893.2	1.16	1.9	259.	9.47E-14
1200	28.6	9.46 32.2	893.1	1.18	1.5	238.	9.35E-14
121C	28.5	9.20 31.6	893.0	1.20	1.9	280.	9.98E-14
1220	28.7	9.19 31.1	892.8	1.25	1.8	178.	7.92E-14
1230	29.2	9.01 29.5	892.7	1.27	1.4	131.	9.37E-14
1240	29.9	8.95 28.4	892.6	1.28	2.0	98.	1.07E-13
1250	28.7	8.39 28.4	892.2	1.24	3 · J	86.	1.16E-13
1300	29.0	8.23 27.3	892.2	1.52	2.3	98.	5.65E-14
1310	29.6	8.34 26.8	892.5	1.31	2.0	208.	8-16E-14
1320	29.9	8.38 26.5	891.7	1.3t 1.29	2.5	243.	8 • 30E - 14
1330	29.8	8.31 26.5	891.6		1.7	246.	1.09E-13
1340	29.7	8.22 26.3	891.4	1.36 1.30	2.8	174.	1.028-13
1350	29.9	8.76 25.5	891.3		2.7	196.	9.208-14
1400	29.9	7.92 25.1	891.2	1.30	2.2	250.	1.14E-13
1410	30.1	7.45 23.2	891.5	1.29	1.6	148.	5.53E-14
1420	30 • 2	7.39 22.3	890.9	1.22	3 • 2	110.	7.29F-14
1430	31 • 1	7.42 23.2	890.7	1.24	2.5	112.	6.30E-14
1440	30.9	7.44 22.2	890.5	1.24	2.4	267.	5-188-14
1450	30.6	7.34 22.3	895.2	1.21		250.	8.35F-14
1500	31.1	7.22 21.4		1.26	3.2	169.	5.93E-14
1510	31.1	7.13 21.1	895.1	1.19	3 • 3	211.	1.586-13
1520	31.3	7.12 2n.3	890.0	1.17			6.945-14
1530	31.7	7.59 21.7	889.9	1.14			7.84E-14
	<i>2</i> ↓ ▼ ↑	1 . 37 . (1 . (889.8	1 - 1 1	1.5	185.	7.785-14

NRI REPORT 8422

NRL-IMORL TRANSMITTER

WSMP MIGROMETE OFFIL TO ICAL DATA

1: AUGUST 1	9	12	(
-------------	---	----	---

TIME	ΑΤ	РРН2 Ч	RH	SP	Sk "	₩S	WD	CNSQ
	(DEG)	(TARE)	(%)	(MBAR)	(W/SQ M)	(4/5)	(DEG)	
1540	31.8	6.97 1	9.R	889.5	1.47	2•2	70.	6.045-14
1550	31.4	6.95 2	(.1	889.3	1.15	1.9	155.	6.45E-14
1600	31.4	6.83 1	9.8	389.3	1.00	1.5	170.	5.30E-14
1610	32.2	6.78 1	8.9	889.2	£.98	3.1	119.	6.97E-14
1620	31.4	6.71 1	9.6	889.5	0.92	3.3	153.	4.22E-14
1630	31.7	6.80 1	9.4	888.7	0.39	2.6	205.	4.43E-14
1640	31.8	6.82 1	9.5	869.6	9.86	4.0	144.	4.55E-14
1650	31.6	6.84 1	9.7	888.6	U . 82	3.3	147.	4.29E-14
1700	31.5	6.79 1	9.7	888.6	C.75	2.6	166.	3.05E-14

Fig. $\sqrt{3}$ = Solar radiation, windspeed, and $C_{\rm X}^2$ at the optical (tansmitter meteorological station on 10 August 1928).

HANLLY, DOWLING, HORTON, CURCIO, GOTT, WOYTKO, AND STORVICK

NOL-IMPRE TRANSMITTER

WSMR MICROMETERROLAGICAL DATA

TIME	ΑΤ	РРН23 КН	вP	SR"	WS	MD	CNSQ
	(DEG)	(TORR) (%)	(MBAR)	(W/SQ M)	(M/S)	(DEG)	
83u	22.2	1.56 57.8	200.7	C.45	3.9	158.	1.06E-14
840	22.4	1.50 56.5		0.50	3.5	160.	1.048-14
85C	22.9	1.52 54.8		3.5 €	4.3	169.	1.755-14
900	23.2	1.62 54.4		0.5	3.9	174.	2.25E-14
910	23.3	1.63 54.3	89).9	2.64	3 • 2	164.	1.898-14
920	23.8	1.74 53.1		0.69	3 • 4	175.	2.955-14
930	24.3	1.79 51.7		0.74	3.3	175.	3.54E-14
940	24.4	1.79 51.3		J.78	3.7	175.	3-11E-14
950	24.7	1.80 50.4		0.81	2.8	179.	3.68E-14
1000	25.1	1.83 49.5		6.85	2.9	164.	4.04E-14
1010	25.3	1.83 48.8	891.1	6.89	3.1	155.	3.70E-14
1020	25.9	1.83 47.1	891.1	ۥ92	2.6	163.	5.225-14
1030	26.3	1.87 46.3	891.5	0.95	3.3	151.	4.36E-14
1040	27.0	1.87 44.5	891.5	U.98	3.4	123.	7.21E-14
1050	26.9	1.70 43.9	890.9	1.02	2 • 9	139.	4.29E-14
1100	27.4	1.51 42.4	395.7	1.25	2.2	163.	5.78E-14
1110	27.5	1.05 40.2	890.4	1.08	3.4	114.	5.42E-14
1120	27.9	1.41 47.6	890.7	1.11	1.5		3.725-14
1130	28.7	1.39 38.7	899.7	1.14	1.6		5.96E-14
1140	29.5	1.13 36.	890.6	1.17	1.9		1.18E-13
1150	29.3	0.84 35.5	895.6	1.19	1.9		4.49E-14
1200	29.7	0.97 35.1		1.21	1.6		5.86E-14
1210	36.3	0.87 33.0	890.4	1.23	1.1		1.29E-13
1220	36.4	0.47 32.2		1.25	2.3		5.97E-14
1230	31.1	0.59 31.3		1.26	1.3		1.718-13
1240	31.3	r.36 3r.2		1.27	3.0		1.356-13
1250	31 - 1	9.96 29.1		1.29	2.1		1.226-13
1300	31.5	9.72 28.1		1.36	9.8		1.04E-13
1310	°1•9	9.75 27.6		1.31	i.9		1.298-13
1320	32.4	9.39 25.0		1.21	1.2		9.93E-14
1330	32.2	9.12 25.		i.86	1.4		5 • 73E -14
1340	32.9	9.25 24.8		1.36	5 • 8		2.31E-13
1350	35.8	9.26 24.0			1.4		1.18E-13
1400	33.3	8.81 23.		1.42	1 • 1		1.26E-13
1410	23.4	8.39 21.			1.8	18.	1.01E-13
1420	33.5	8.38 21.		1.33	1.8	18.	9.34F-14
1430	32.7	8.44 22.		1.30	1.8	18.	4.74E-14
1440	33.7	8.44 21.6		1.29	1.5	18.	
1450	33.7	· •					
1500	33.1	8.18 21.	888.6	1.24	1.8	18.	6.248-14

NRL REPORT 8422

NEL-IMARE TRANSMITTER

WSMR MICROMETEUROLOGICAL DATA

1 1	AUGUST	1978
1	AUGUSI	1910

TIME	ΑT	PPH20	RH	ЬP	SR *	WS	WD	CNSQ
	(DEG)	(TORR)	(3)	(MBAR)	(W/SQ M)	(M/S)	(DEG)	
1510	33.5	8.18	21.1	898.5	1.20	1.9	19.	6.93E-14
1520	34.2	8.29	20.6	988.5	1.18	1.9	19.	1.10E-13
1530	33.5	8.19 2	21.2	888.4	1.19	1.9	19.	7.75E-14
1540	33.6	8.37	21.6	888.6	1.13	2.1	21.	1.095-13
1550	33.5	8.13	21.1	888.1	1.36	1.9	19.	5.88E-14

Fig. $\sqrt{4}$ = Solar radiation, windspeed, and C_s^2 at the optical transmitter meteorological station on 11 August 1978.

HANLEY, DOWLING, HORTON, CURCIO, GOTT, WOYTKO, AND STORVICK

NRL-IMARL TRANSMITTER

WSMR MICROMETEGRALAGICAL DATA

		14	AUGUST	197 á			
TIME	AT	PPH27 RH	6 P	50 •	МS	90	CNSQ
	(DEG)	(TURR) (1)	(MBAR)	(W/SQ M)	(M/S)	(DEG)	
840	25.8	9.00 36.0	890.9	\$. 50	1.4	340.	5.78E-15
85C	26.5	8.95 34.5	890.9	(•35	1 • 3	311.	1.37E-14
900	27.1	8.89 33.0	896.9	0.59	1.0	243.	6.67E-14
910	27.5	8.80 31.9	890.9	6.65	1.5	129.	1.76E-14
920	28.0	8.72 30.8	890.9	(.71	2.5	208.	3.04E-14
930	28.5	8.65 29.6	890.9).76	3.4	311.	3.42E-14
940	28.8	8.58 29.0	390.9	ú•83	3 • 2	332.	3.05E-14
950	29 • 1	8.43 28.0	890.8	6.78	3 • 3	178.	3.36E-14
1000	29.4	8.40 27.4	890.7	0.63	3.4	316.	2.788-14
1010	29.5	8.40 27.2	890.7	0.99	3.5	255.	3.54E-14
1020	29.3	8.46 26.9	894.7	5.97	3.8	312.	4.398-14
1030	36.6	8.43 26.5	890.7	1.32	3.6	276.	4.49E-14
1040	30.1	8.43 26.4		ú•93	3.2	293.	4.28E-14
1050	30.2	8.39 26.1		0.38	2.5	283.	3.61E-14
1100	30.5	8.34 25.5		1.05	3.1	265.	3.95E-14
1110	30.9	8.29 24.8		1.13	3.1	135.	5.79E-14

NRI REPORT 8422

AST-IMMEF RECTOR -

WSMR MICHARITEMENTAL GATA

					-			
TIME	ΓA	PPH2 *	РН	í. p	SR *	wS	w)	CNSQ
	(ufe)	(1380)	(%)	CH (AR)	(W/S) V)	(M/S)	(DEG)	
950	29.4	4.77	15.6		1. 7	. • S	143.	
940	28.7	5.23			1 • • ?	1 • 5	171.	
1000	29.8	4.65			1.13	1.1	182.	
1010	30.7	4.21	7		1.18	_		
1026	36.9	4.03				. 7	² 36 •	
1030	31.7	3.83	1 1 '		1.22	J • 9	225.	
1040	31.7		1. 1. d. v.		1.27	. • 9	121.	
1050	31.8	3.82 1 3.78 1	LL • 1		1.32	1 • 1	141.	
1100	32.6	3.18 1	LE - 3		1.3"	1.4	233.	
	34 • U	3.84	Li •ii		1.36	1.5	202.	
1110 1120	32.6 32.4	3.9L 1	(り• 6		1.43	1.2	143.	
	32.4	4.07	11.2		1.46	1.5	87.	
1130	32.8	4.42	11.6		1.49	1.6	150.	
1140	32.H	4.52	12.1		1.51	2.1	249.	
1150	33.2	4.62	12.2		1.53	1.8	117.	
1200	32.9	4.94 1	13.2		1.65		64.	
1210	33.2	4.75 1	12.5		1.59	1.5	154.	
1220	33.7	4.74 1	12.2		1.59	4 • 2	157.	
1230		4.99 1			1.69	3 • 8	261.	
1240	34.3	5.33 I	12.5		1.5	2.2	200.	
1250	35.2	5.43]	12.3		1.63	5.3	248.	
1300	34.7	5.29 1	2.9		1.63	2 • 8	183.	
1310	35.9	5.43 1	2.4		1.62	5.5	274.	
1320	35.4	5.43 1 5.89 1 5.74 1	3.3		1.63	6 • 9 3 • 2	241.	
1330		7 1 7 1			1.62	3.2	252.	
	2-7-4	5.71 1	٠ ٠٠٠		ع ذ 🐞 🖫	4.5	244.	
1350	54.6	5.97	.3.3		1.62	6.5	243.	
1400	35 • B	5.87 1	3•5		1.51	5 • 8	241.	
1410	30.6	5.93 1	3.7		1.50	r, . 8	238.	
1420	36 • 1	5.97	. 3 • ⁵		1.64	7 • C	216.	
1430	36 • 7	6.35 1	4.2		1.63	5 • 5	210.	
1440	35 2	6.25 1	4.3			5 • 5	258.	
1450	35.€	6.03	4.1		1 - 47	4 • 3	273.	
1500	36.7	6. Cr. 1	3.6		1.63	5.7	232.	
1510	36.1	6.25 1	3.7		1.09	6 • 7	211.	
1520	34.9	6.94 1	3 ⋅ €		1.17	6.3	204.	
1530	35 €		4.0		1-39	5 • 4	192.	
1540		6.23 1	4.		1 4	F • 5	233.	
1550	35.3	6.32 1	+•0		. · 2 h	5.2	235.	
1600	34.4		5.0		1.5	5 • E		
1610	35.7	6.43 1	4.8		J . 7 "	5.5	252.	

HANLEY, DOWLING, HORTON, CURCIO, GOLF, WOYTKO, AND STORVICK

NKL-1409L RESIDENCE

WSMS MICHMETERRYLYSICAL LATA

TIME	ΔΤ	PPH23	RH	î,P	52*	WS	۲.M	CNSQ
	(056)	(TØRA)	(;)	(M. AF)	(WVSD 4)	(*/5)	(055)	
1620	36.4	6.59 1	4.6		1.37	7. ^	3.3.7	
1630	36.4	6.62 1	4.7		1 - 2 3			
1640	36.2	6.45 1	4.5		1.22	5 • 3 7 • 1		
1650	35 • 9	6.42 1	4.5		y. P3			
1700	36.1	6.39 1	4.4		1.59	5.0	236.	
1710	36.2	6.38 1	4.3		1	5.2		
1720	36.2	6.37 1	4.3		$1 \cdot 1$		231.	
	36 • 1	6.22 1	4.2		U • → :	7.5	215.	
1740	35.0	6.37 1	4.5		C.9.	f • 2		
1750	36.0	6.32 1	4.3		i . 84	5.4		
1866	35.6	6.32 1	4-6		2.78	5.3	226.	
1810	35.7	0.22 1	4.3			5.9	216.	
1820	35.7	6.22 1	4.3		6.68	5.9	220.	
1830	35.4	6.19 1	4.4			5.0	213.	
1840	35.2	6.21 1	4.7		J • 57	6.5	220.	
1850	35 + 6	6.14 1	4 . E.		5.51	5.7		
19(6	34.7	6.15 1	5.		u • 38	F • 5	237	
1910		6.14 1			: . 37	6.4		
1920		6.13 1				6.0		
1930		6.11 15			2.33			
		6.05 1			0.37			
	33.3	5.99 1	5.7		5.29	5.6	216.	
2000	32.7				J • 25	5 - 0	215.	
	32.0	5.92 16	3.6		3 • 28			
	31.5				29	-	222.	
2030					i.2)	- •		
2040	3n • 8	5.71 17	7.1		9		214.	
2056	30.3	5.74 17	7.7		6.29		223.	
~ ~ ~ ~ ~	• • C	2.01	1		5.20	3.8	226	
6110	3 ° • 1	⊅•88 18	• 7		0.20	2 • 7	247	
21 20	31 .4	5.03 18	• 6		5		244.	

NRL REPORT 8422

NRL-IMBRE TRANSMITTER

WSMR MICHAMETERSPENGICAL DATA

15 496UST 1978

TIME	дт	PPH25	жч	ď.,	5.4	WS	иU	CNSQ
	(Đ£G)	(TORR)	(%)	(M:43)	CMARD AD	(M/S)	(BEG)	
840	22.1	4.25 2	1.2	891.9	·· • 5 +	6.3	335.	9.128-15
850	22.4	4.32 2	1.2	891.9	0.50	5.2	347.	1.02E-14
90¢	23.1	4.38 2		992.0	₹ • 64	5 . 4	347.	1.315-14
910	23.9		9.7	892.1	2.49	5.6	345.	1.54E-14
920	24.3	4.36 1	8.5	892.2	0.74	5.7	343.	1.39c-14
930	25.7	4.27 1	7.3	342.2	5 • 7 P	5.4	336.	1.54E-14
940	26.3	4.22 1	6.5	392.7	6.32	5.3	332.	1.645-14
950	26.9		5.7	892.2	5. 38	4.8	333.	1.865-14
1000	27.4	4.09 1	5.	812.2	0.91	4.7	340.	3.335-14
1010	27.7	4.05 1	4.5	892.2	6.93	4.1	342.	3.275-14
1020	28.3	4.03 1	3.9	892.3	J. 97	4.0	333.	4.63E-14
1030	23.6	3.87 1	3.2	392.4	1.00	3.9	313.	3.68E-14
1040	28.7		4.7	892.4	1.3	3 • 0	314.	4.36E-14
1056	29.3		3.9	892.4	1.6	2.7	271.	4.33E-14
1100	29.7		3.7	892.4	1.1	2.9	312.	6.415-14
1110	34.6	4.37 1	3.8	892.4	1.13	2.1	243.	4.776-14
1120	30.2		3.8	892.4	1.17	2 • 7	174.	4.26E-14
1130	30.5	4.54 1	3.9	802.4	1.20	2.0	257.	5.915-14
1140	3r.7	4.66 1	4.1	892.4	1.23	2.5	196.	6.83E-14
1150	3n • 9	4.73 1	4.2	892.4	1.25	2.9	124.	6.11E-14
1200	31.1	4.78 1	4.1	892.2	1.25	2.6	188.	6.448-14
1210	31.4		4.2	892.1	1.20	2.8	103.	5.93E-14
1220	31.7		3.9	891.9	1.28	2.2	74.	6.85E-14
1236	32.1		3.6	891.9	1.31	2.2	242.	7.291-14
1240	31.9		3.8	371.7	1.33	2.4	101.	3.98E-14
1250	32.8		3.2	891.6	1 • 34	1.5	144.	7.625-14
1306	33.1		2.9	391.5	1.34	1.8	225.	1.07£~13
1310	32.7		3.3	391.4	1.34	2.1	116.	3.68E-14
1326	33.2		3.0	891.2	1.35	2.4	160.	6.72E-14
1330	33.2		3.	891.2	1 • 35	5.9	174.	5.866-14
1340	33.6		2.7	391.1	1.35	1.9	27.	6.975-14
1350	33.6		2.7	۹)1.	1.53	1.3	242.	7.39E-14
1400	34.4		5.0	89. • 9	1.32	3.2	178.	1.55-13
1410	34.6		3.4	893.7	1.31	3 • 1	222.	1.025-13
1420	35 • 1		3.3	371.6	1 • 31	3.5	187.	1.208-13
1430	34.7		3.9	892.6	1.32	3 • ₹	272.	6.8KE-14
1440	35.4		3.0	346.4	1.27	3.9	201.	1.345-13
1450	3 . 1		4.1	31.02	1 • 2 %	3 • 1	184.	7.25F-14
1500	35.7		5.1	490.0	1.72	6.3	254.	1.258-13
1510	35.03	6.30 1	5. * *	8 - 9 , a	1.2	3.0	265.	1.021-13

HANLEY, DOWLING, HORTON, CURCIO, GOLL, WOYLKO, AND STORVICK

NPL-IMURE TRANSMITTIN

WSMR MICROMATEGROLOGICAL DATA

	ı		A 11	3115	T	1975
--	---	--	------	------	---	------

TIME	AT	PP H2 7	28	r.P	38.7	w'S	CW	CNSQ
	(DEG)	(TORR)	(१)	(M3A%)	(MVS) +)	(M/S)	(626)	
1520	35.7	6.44	14.3	9.656	1 - 1 7	5 • 5	239.	1.39E-13
1536	35.8	5.26	14.3	889.9	1 - 1 4	4.1	244.	1.25F-13
1540	35.3	6.14	14.1	389.7	1 - 11	4.6	249.	1.18E-13
1550	36."	6.76	13.7	889.6	1.28	5.1	253.	9.76E-14
1600	35.9	6.23	13.8	889.6	1.34	5.3	251.	1.05E-13
1610	35.7	6.02	13.3	839.5	$1 \cdot j^{r}$	4.2	245.	9. F7E-14
1620	35.8	5.97	15.7	389.5	97	3 • 2	232.	9.26E-14

Fig. Δ 8 = Solar radiation, windspeed, and C_{λ}^{2} at the optical transmitter meteorological station on 15 August 1978.

SRI REPORT SEC

MAY - IMART LISTANALLIA

WSMR MICHOMETTORBEBOICSE (ATA

2000 33.4	PPH27 E					
2000 33.4	FFIIZ 1 K	4 %P	5,5 *	d 5	WD	(35)
) (TARK) (₹) (M βΔ R)	(4/5) V)	(M/S)	(085)	
2010 33.2 2020 32.8 2030 32.6 2040 32.3 2050 32.6 2100 31.1 2110 31.1 2120 36.8	6.15 16 6.10 16 6.09 16 6.09 16 6.09 17 6.07 17 6.10 18	.2	5.07 5.07 5.37 5.37 5.37 0.07	4.1 4.4 4.3 3.9 3.7 3.6	236. 232. 231. 233. 235. 233. 241. 239.	5. 35-15 8.115-15 8.975-15 9.065-15 1.255-14 1.555-14 1.955-14

CONTRACTOR WITHOUT THE REPORT OF REPORT OF MARKET AND STORY FA

Mary - I Marrier Tack Comment for a

WENE MILLSHETT THAT THE TELL SEL SELECTION

17 49/0451 14/3

TIME	t T	ррчэм ги	þ		a ',	ed to	1450
	(000)	(1848) ()	(M3A2)	(W/S - M)	(4/ ,)	(, ,)	
1120	3	7.35 15.7	271.0	1.1.	5 • .	.> €. = •	1.540-14
1130	44 👡 :	7.14 18.1	391.1	1 . 1 .	4	743.	1.705-14
1140	33.9	7.29 18.5	-91.1	1.00	4.:	278.	4 . 6 F -14
1150	34.5	7.47 13.4	3 16 . 9	1.74	6.7	24.3.	1.00 25 -13
1206	34.7	7.49 18.7	89.0)	1.0	€ • 1	232.	9.911-14
1210	34.5	7.52 18.5	groot 🙀 🤬	1.00	4.2	277.	1.151-43
1220	34.4	7.52 14.6	341.6	4.3	6.5	284.	1.12 -13
1230	34.7	7.45 18.0	44J.E	1.41	4, 4 4)	277.	1.500-13
1240	74.4	7.36 19.1	895.5	l • > :	6.4	288 ·	1.211-13
1250	34.0	7.34 17.3	890.4	1.35	5 • î	384.	1.035-13
1300	34.6	7.31 17.8	591.02	1.55	4.4	273.	1.621-13
1316	35.3	7.35 17.4	995.1	1.5	7. č	263.	1.266-13
1320	35.3	7.39 17.4	S 0 2 . 1	4.51	0.3	267.	1.225-13
1330	35.4	7.54 17.t	339.9	1.34	5.5	260.	1. 44 - 12
1340	34.9	7.50 19.5	889.9	1.32	4.1	212.	9.468-14
1350	35.5	7.46 17.3	889.6	1.26	6.4	231.	1.235-13
1406	36.1	7.23 16.4	349.3	1.31	7.5	278.	1.69F-13
1410	25.7	7.25 16.7	889.3	1.35	6.2	263.	1.135-13
1420	35.5	7.37 17.1	539 . 1	1.3	4.5	259.	1.118-13
1430	36.2	7.36 16.5	338.9	1.27	6.8	286.	1.358-13
144C	36.1	7.27 15.2	568.4	1.26	7.7	767.	1.09=-13
1450	36.1	7.33 16.5	888.6	1.13	6.8	764.	1.526-13
1500	36.3	7.35 16.	838.3	1.20	3.2	256.	1.328-13
1510	36.8	7.07 15.3	889.3	1.27	9.1	263.	1.766-13
1526	37.2	6.99 14.9	368.2	1.58	7.4	251.	1.166-13
1530	36.6	7.11 15.4	янв. ₁	1.21	5.2	23%.	1.166-13
1540	37.1	7.02 15.0	888.	1.21	6.7	248.	1.378-13
1550	37.1	7.01 15.1	387.8	1.15	6.8	224.	1.198-13
1600	37.7	6.99 14.5	887.7	1.13	6.9	242.	1.205-13
1610	36. € 13	7.6. 15.2	887.2	· · 82	4 . A	255.	6.951-14
1620	36.6	7.06 15.5	nd7.8	1.15	7.2	281.	8.371-14
1630	36.€	7.00 15.4	887.7	5.00	7 · 0	276.	7.938-14
1640	36.7	7.69 15.4	837.5	5.91	3.3	260.	7.056-14
1650	36.2	7.65 15.K	427.5	3.51	H. 0	288.	3.855-14
1700	16.6	7.13 15.6	P87.4	75	7.4	262.	4.066-14
1710	36.5	7.16 15.3	437.3	J.71	7 . p	274.	4.6vi-14
1720	16.7	7.95 15.7	9-7-3	5.71	7.5	272.	4.665-14
1730	16,0 t	7.05 16.5	997.3	6.51	3.4	268.	4.111-14
1740	36.1	7.04 15.3	307.3	U . F 3	7.3	253.	3.696-14
1750	16, 4	7.91 15.6	387.º	1.57	4.6	241.	2.988-14

NRURHPORT *400

Section 4-1 TRANSMITTER

WINE WITE THE THE TENTE CATE

			, , ,	, , , , , , ,	, 13 M		
		7	1.16057	1 +7 ~			
TIME	ΑT	+ + + CHOO	. p	5 × *		FI ()	2450
	(·· (·)	(T%) (*)	(M" & m)	Carring	(4/5)	(5), c x	6.653
1800	45.3	7.00 16.0	437. 4				
1810	2	7.25 10.	701.4 707.4	. • 34	7.4	. H4.	•
1820	46, -	7.55 16.2	957.3	. • 4 4 ↓ • ∄ ₩	7.4 7.9	. •	1.77=-14
1830	31.4	7.16 16.7	337.3	14	5.7	299.	1.536-14
1840	34.3	7.67 16.5	887.3		P . 3	277.	1.13E-14 6.6.E-15
1850	5 h • 2	6.87 16.3	547.2		3 4		3.468-15
1900 1916	34.0	6. P. 16.4	337.3	6.17	7.1	293	1.456-15
1920	34.7	6.97 16.7	887.4	0 • 1 4	5.2	247.	5.10t-16
1930	34.7	7.01 17.7 7.26 18.4	987.4	ý • 1 °	5 • 8	282.	9.475-17
1940	35.6	7.33 15.7	857.5	3.54	6.4	275.	6.69E-16
1950	33.2	7.50 19.7	357.6	v • / }	5•3	279.	2.678-15
2000	12.0	7.61 20.5	8.7.8	(•]	5 • 7 4 • 5	278.	3.116-15
201C	33.6	7.73 25 .6	447.0		9 • 5 5 • 5	279. 291.	4.75E-15
2020	32.6	7.71 20. +	3×7.9		4.5	275.	4.976-15 6.215-15
2030	?1.3	7.71 22.7	967.5	6.5.	5.5	270.	6.358-15
2040	32.3	7.71 21.4		J • J **	4.3	255.	6.67E-15
2050	41.6	7.71 22.1	5 ^{7 10} • 1	↓ • • •	3.9	254.	1.558-14
	*						
						~;	
] +2	
		,					
						-	
		•			Σ	$\frac{4}{2} \rightarrow \infty$	
					7	, etc. —	
	1 · ·		, , ,		13	Ś	
					~ •	J + € =	
	-			. •	A HOTHION IN	-	
	•		• 1,	•	Ξ	<u>-</u>	
				1	# : # :		
						Ž	
					4	3	
					3	_ 	

 $(E_{\bf x}, X, t) = S + c \cdot (d(x) + c \cdot X) \text{ of specificand } C_{\bf x} + to copy constraint map : c = 0 + c \cdot (d(x) + c \cdot X) + c \cdot (d(x$

HANATA DOWENG HORION OF ROJOGOTE WOYTKO AND STORNICK

ひしゃてい としゃとりすいがっこ

ATE OF OF CHILD OF CHILD OF A CORE HAND

17 AU 305T 1975

TIME	1 T	PP423 - 64	`t.	× • •	. S.	4.	6 .
	(:::(1:)	(1301) (3)	(*=4=)	(4/5, 4)	(4/5)	(.`F\$)	
1020	30.4	6.41 19.0		6.9%	1.3	111.	
1030	31.5	6.56 19.		1 • 5 to	. 4		
1040	51 • ⁵	6.45 15.		1 • 1 4		₹ ३	
1056	31.4	6.57 19.1		1 • • !	1.5	*	
1100		6.66 13.4		1 • . 7	1.5	9.50.	
1116	33.4	6.54 15.5		1.41	٠	715.	
1120	27.0	6.5% 19.0		1.5	I.5	65.	
1130) L . L	6.64 18.1		1.4	: • 4	175.	
1140		6.77 17.3		1.4	1.9	192•	
1150	3.3 • 1	6.71 17.5		1 • 4 7	4 • 1	147.	
1200		5.54 17.0		1	7.4	133.	
1210		6.83 18.7			1.5	211.	
1220	34.1	7.0 + 17.3		1 • ~ 6	5.3		
1230	33.7	7.27 18.4		1.54	5.6	? 7 ↑.	
1240	34 . (7.15 17.9		1 • • •		, A. A	
125-	· · · · · · ·	7.17 17.7		1.7	* • i	- 4 P •	
1300	:4.	6.98 17.4		1 • • -	८• त	:44.	
1310	34.;	7.09 17.7		1 • • •			
1320	34.	7.25 17.5		1.5	* • 1	234.	
1330	34.7	7.92 17.1		1 • 5 ~	5.9	221.	
1340		7.22 17.4		1 • • •	£ • 7		
1350	34.7	7.23 17.5		1.57	5.3	240.	
1400		7.01 16.3		2 - 5 7	7.5		
1410	35, 2			1 . 52	1.3		
1420	35.1	6.83 16.4		2.5	5 • ¥		
1430	35.4	6.91 16.1		1 • 4 ;	· • 1	253 ·	
1440	35.5	7.0+ 16.4		1.5!	1.9		
1450	35, 5	7.09 16.5		1.0	(•)		
1506	36.2	7.01 15.7		1 • 4 5	7.2	25H.	
1510		6.83 16.1		1.1	6.3		
1520	36.1			1.45	ರ•1	277.	
1530	35.4	6.55 15.4		1.4			
1540		6.79 15.4		1.31	4 • 3	263.	
1550	36 • 11	6.91 15.7		1 • 5 6	7 • 5	-	
1600	36.1	5.75 15.3		1 • 6 •	4		
1610		6.91 15.5		1.5%	· 4		
1620	35.8	6.91 15.3 6.85 15.6		1./*	4.5		
1630				1.1	٠,٠,٥	158 •	
		6.84 15.7		1 - 1 /	9.5		1.7.1-13
1650	26.7	6.77 15.6			٠. د	<i>``</i>	1.251 -13

SREPERMENT +4.

WEF-IA OFF BENIENCE

ATCH MICE THE TERRAL BOLLOL ESTA

TIME	LT	на мунаа	Sρ	Set	WS.	W)	58% 4
	(1116)	(T383) (X)	(41,42)	(4/5, 4)	(4/5)	(050)	
1700	35.3	6.75 15.9		U . 12 m	7.9	⁹ 63.	5.765-14
1710	3 ° • t	6.73 16.2		U . 7 J	4.6	152.	3.931-14
1720	45.0	6.73 15.3			9. i	243.	9.481-14
1730	35.6	6.72 16.		2.70	2.)	261.	4.65F-14
1740	35.4.3	6.75 15.3		6 1	4.4	256.	7.558-14
1750	35.7	6.67 15.7		4	1.3	263.	5.726-14
1800	75.2	6.45 15.3		5.7%	7.1	266.	4.731-14
1810	35.	6.65 15.7		74	8.1	245.	3.668-14
1820	34.9	5.70 16.1		9.69	9.1	257.	2.918-14
1830	34.9	6.72 16.1		3.64	7.5	245.	2.455-14
1840	34.9	6.46 15.5		(.57	7.1	251.	1.816-14
185C	34.6	6.49 15.8		6.54	6.3	253.	1.16:-14
1900	34.4	6.43 15.9		. 49	4.8	254.	4.946-15
1910	34.2	6.43 16.2		6.45	5.2	257.	1.136-15
1920	33.9	6.53 16.5		4 - 4	5.4	258.	2.1vE-16
1930	33.5	6.54 17.5		J. 3+	4.6	٠51 ٠	1.748-15
1940	33.1	6.56 17.4		1.35	5.2	241.	6.465-15
1950	32.1	6.84 18.6		2.32	5.5	256.	9.218-15
2000	32.2	7.50 19.6		5.32	4.3	261.	1.088-14
2010	31.7	7.04 20.1		3 • 3 €	3.6	252.	1.916-14
2020	31.7	6.94 19.9		0.32	4.5	257.	1.786-14
2030	31.7	7.35 21.1		5.32	4.7	266.	1.746-14
2040	31.6	7.48 21.5		J • 3 č	4 . 6	261.	2.03: -14
2050	31.6	7.58 21.8		U . 32	5.4	253.	1.815-14
2100	31.6	7.34 21.2		i • 32	5.7	255.	2.058-14
2126	31.0	7.53 22.1		1.30	5.5	254.	2.358-14
2130	31.1	7.43 22.0		0.32	5.8	254.	1.998-14
2140	21.6	7.34 21.9		6.32	4, . 1	259.	2.453-14
2150	31.1	7.55 22.5		5.32	5.6	259.	2.286-14
2200	36.7	7.6. 23.0		V.32	5.6	253.	2.20=-14
2210	30.1	7.86 24.5		J . 3 =	4.0	249.	2.698-14
2220	30 • 1	8.52 25.1		Ú = 31	5.3	259.	2.49t-14
2230	19.7	8.16 26.1		11	4.4	256.	2.298-14
2240	29.1	8.2. 26.5		₩•31	4.7	265.	2.581-14
2250	29.4	8.55 27.2		5.31	6.1	263.	2.525-14
2300	29.9	8.61 27.3		J . 3 .	4.2	269.	1.801-14
2310	24.8	3.47 27.		6.30	6.5	256.	1.911-14
2320	10.0	8.45 27.1		9.29	4 . 9	255.	1.714
2336	20 • °	8.6, 28.9		29	3 . 6	249.	2.3714
2340	28.7	8.92 30.2			4.4	¿ · 2 .	2.436-14
				• • •	-		

NRE-IMMRE RECIEVER

WSMR MICROMPTEGROLOGICAL DATA

TIME	AT	РРН29	RH	′.p	SR *	жS	GW	CNSQ
	(DEC)	(T 46°)	(°)	(4:40)	(W/SQ M)	(M/S)	(DEG)	
2350	28.5	8.61	30.1		V • 29	4.6	243.	2.465-14

Fig. A-7 — Solar radiation, windspeed, and $C_{\rm V}^2$ at the optical transmitter meteorological station on 17 August 1978 (1610 to 1800 h).

Fig. A-8 — Solar radiation, windspeed, and $C_{\rm V}^2$ at the optical transmitter meteorological station on 17 August 1978 (1800 to 2350 h)

HANLEY, DOWLING, HORTON, CURCIO, GOLT, WOYLKO, AND STORVICK

NEL-THURL TRANSMITTIE

WSMR MICE MARTE MRIL MOTERAL PATA

1 3	AUGUST	1 17	;

TIME	μT	PPH2 = PH	; p	5 % •	ws	μŋ	CNSO
	(0:6)	(TTRP) (")	CMRAKE	(W/5) W)	(4/5)	(DES)	
930 940 950 1000 1010 1020 1030	3' + 2 3' + 1 3' + 4 2' + 8 3' + 7 3' + 3	9.64 31.1 9.68 30.2 9.68 29.8 9.69 29.1 9.68 29.2 9.71 29.1 9.74 28.5	891.4 891.4 391.3 891.2 891.2 891.2	C.76 C.H. U.87 U.37 C.J. C.J4	3 · 3 2 · 8 2 · 3 2 · 9 2 · 5 2 · 5 2 · 4	321. 319. 219. 197. 236. 137. 152.	1.21t-14 1.23t-14 1.48t-14 1.45t-14 1.47t-14 2.57t-14 3.90t-14

NRI REPORT 8422

NEL-IMORE FECTIVE

WSMR MICH IMETEMPAL MOTOR CAL CATA

TIME	ТА	PP42 *	RH	1. p	S 8 *	š 5	WO	CNSQ
	(DEG)	(TBER)	(;)	(MFAR)	(W/S) 4)	(°\/\$)	(556)	
c	28.6	8.64	3 ` . 4		0.23	3.9	235.	3.350-14
10	27.8	8.43	3(. 3		200 C	3.2	239.	3.825-14
20	27.9	3.40	311.1		J • 25	વે.મ	261.	4.74F-14
30	28.1	8.31 2	29.2		0.27	4.3	278.	2.315-14
4 C	27.9	5.23 1	18.4		2.27	4.4	280.	2.215-14
50	27.7	8.25	29.7		27	4.3	295.	2.876-14
100	27.7	8.93	32.5		J.27	4.3	294.	2.565-14
110	27.2	8.89	32.9		2.27	3.2	296.	2.545-14
1 20	26.5		35.3		1.27	2.3	284.	2.335-14
130	26.1	9.12	36.0		V . 24	2.2	222.	2.235-14
146	25.5	8.89	36.2		0.02€	6.6	248.	7.65:-15
150	26.i	9.19	36.2		J. 26	:.7	194.	8.068-15
200	25.9	9.17	36.6		v.26	1.1	94.	2.778-14
210	26.3	9.15	35.6		3.25	1.0	221.	9.405-15
220	26.1	9.39	37.3		26	1.7	263.	5.245-15
230	25.6	9.27	37.7		2.20	3.6	253.	3.635-14
240	26.7	9.11	34.6		y•28	6.5	279.	2.93E-14
250	27.0	8.96	33.5		25	5.8	274.	2.475-14
300	27.2	9.15	33.9		6 • 5 c	7.5	267.	2.235-14
310	27.0	9.49	35.5		t • 25	4.8	263.	1.7°f-14
320	26.8		35.R		v • 25	5.1	269.	2.146-14
330	26.4	9.49	36.8		1.25	5.5	264.	2.172-14
340	26.0	9.57	37.→		L • 25	4.4	272.	1.815-14
350	26.1		38.1		ۥ25	4.3	274.	1.758-14
400	25.3		33.1		J • 25	4.3	269.	1.958-14
410	25.5		39.5		0.25	3.4	253.	2.735-14
420	24.2		42.2		3.25	1.7	2.4.	1.871-14
4 30	23.9		42.5		J. 25	2.2	191.	5.658-14
440	24.4		41.3		v • 2 E	2.5	192.	7.175-14
450	24.5	_	41.4		U • 2 5	1.5	146.	3.22t-14
500	24.7		€0.•6		5.25	J . K	22"·	6.971-15
510	25.1		4		6.24	1.3	265.	7.875-15
520	25.7		37.8		1.24	2.7	278.	2.678-14
5 30	25.4		39.1		24	3.4	263.	4.265-14
540	25.5		39.2		24	વ ₊ 2	273.	3.138-14
550	25.6		38.7		c • 24	3.0	257.	3.865-14
600	22.4		45.5		24	2 • U	125.	1.541-14
610	21.1		46.7		2.24	2.0	1.2.	1.46t-14
620	21.5		46.3		5 • 24	1.5	63.	8.7.26-15
6 30	23.1	9.25	44.1		- • 24	1.1	159.	9.862-15

HANLEY, DOWLING HORTON CLIRCIO GOLL WOYLKO AND STORVICK

MEETINGER MECTIAL

WASTR MICH MMETERFALMGICAL DATE

I S AUGUST 1978

640 21.6 9.28 47.9	TIME	AT	PPH21 R+	}-, P	5.4	us.	#0	DNSQ
650		(CE5)	(198°) (")	(Magar)	(W/S + M)	(4/3)	(neg)	
650	640	21.6	9.28 47.9		5.25		129.	7 - 5 - 5 - 1 4
700	650	22.9	9.45 45.1					
710	700	23.6	9.51 43.6					
720	710	24. ?	9.63 42.2					
730	720	22.6						
740	730							
750 23.7 9.26 41.7	740							
86C 24.8 9.27 40.7 2.9 50. 1.(55-14 810 25.7 9.51 38.4 0.51 1.7 84. 8.315-15 820 27.7 9.92 36.3 0.56 1.9 132. 6.755-15 830 28.3 9.92 34.5 0.71 3.1 326. 9.496-15 840 28.3 9.89 34.7 0.77 2.7 271. 1.235-14 850 29.6 9.84 33.5 0.93 1.9 316. 1.365-14 900 28.9 9.62 32.2 0.68 2.J 318. 2.435-14 910 29.7 9.3 31.1 0.94 2.3 36.5 2.685-14 920 29.3 9.67 29.7 0.93 2.4 30.1 4.075-14 930 29.6 8.99 28.9 1.14 2.9 317. 6.425-14 940 29.0 29.2 29.2 1.00 29.3 316. 7.766-14 950 31.9 9.23 28.6 1.14 2.J 316. 7.766-14 100 30.3 9.21 28.5 1.12 2.3 249. 1.(25-13 1010 31.1 9.39 29.2 1.22 2.7 23J. 6.691-14 1020 36.9 9.37 28.6 1.22 2.7 23J. 6.691-14 1030 31.6 9.39 28.7 1.22 2.7 23J. 6.691-14 1030 31.6 9.39 28.7 1.22 2.7 23J. 6.691-14 1050 31.9 9.37 28.6 1.26 2.2 242. 7.875-14 1050 31.9 9.38 26.4 1.22 2.7 23J. 6.691-14 1050 31.6 9.42 27.9 1.35 1.94 2.9 136. 9.025-14 1050 31.6 9.42 27.9 1.35 1.94 2.9 136. 9.025-14 110 31.7 9.24 26.4 1.25 2.8 104. 1.695-13 1120 32.7 9.41 26.1 1.51 2.J 181. 1.735-13 1150 31.6 9.25 26.7 1.59 1.4 239. 5.215-14 120 32.7 9.41 26.1 1.51 2.J 181. 1.735-13 1150 31.6 9.25 26.7 1.59 1.4 239. 5.215-14 120 32.7 9.41 26.1 1.59 1.4 239. 5.215-14 1210 32.9 9.41 26.1 1.59 1.4 239. 5.215-14 1220 22.9 9.11 24.4 1.64 1.8 227. 1.325-13 1150 32.0 8.97 24.6 1.65 2.7 1.655-13 1230 33.0 8.57 24.6 1.66 1.9 221. 2.77. 1.655-13 1240 33.0 8.57 24.6 1.64 1.9 221. 2.77. 1.655-13 1250 22.9 9.11 24.4 1.16 1.9 221. 2.77. 1.655-13 1250 22.9 8.97 24.6 1.66 1.9 221. 2.726-13 1260 32.7 8.65 23.7 1.667-13 1270 32.7 8.65 23.7 1.67 3.5 294. 6.596-14 1310 32.3 8.65 23.7 1.67 3.5 294. 6.596-14 1310 32.3 8.65 23.7 1.67 3.5 294. 6.596-14 1310 32.3 8.65 23.7 1.67 3.5 294. 6.596-14	750							
810								
820	810	25.7	9.51 38.4					
830	820					-		
840 28.3 9.89 34.2 0.77 2.7 271 1.23E-14 850 26.6 9.84 33.5 0.93 1.9 316. 1.36E-14 900 28.9 9.62 32.2 0.68 2.J 318. 2.43E-14 910 29.0 9.3 31.0 0.99 2.4 30.1 4.07E-14 920 29.3 9.67 28.7 0.99 2.4 30.1 4.07E-14 930 29.6 8.99 28.7 0.99 2.4 30.1 4.07E-14 940 27.9 9.22 29.2 1.00 2.J 316. 7.76E-14 950 31.0 9.23 28.6 1.14 2.1 284. 5.93E-14 1000 30.3 9.21 28.5 1.12 2.3 249. 1.(2E-13 1010 31.1 9.39 29.7 1.22 2.7 23J. 6.69E-14 1020 36.9 9.37 28.6 1.16 2.2 242. 7.87E-14 1030 31.6 9.39 28.1 1.20 2.1 2J.2 1.21E-13 1040 36.4 9.22 23.3 1.34 2.9 136. 9.02E-14 110 31.9 9.33 26.4 1.2E 2.8 104. 1.69E-13 1120 32.2 9.41 26.1 1.51 2.J 181. 1.73E-13 1130 32.4 8.63 22.1 1.57 2.4 259. 2.8E-13 1150 31.6 9.24 26.4 1.2E 2.8 104. 1.69E-13 1120 32.2 9.41 26.1 1.51 2.J 181. 1.73E-13 1130 32.4 8.63 22.1 1.59 2.4 259. 2.8E-13 1150 31.6 9.24 26.4 1.2E 2.8 27. 1.32E-13 1150 31.6 9.24 26.4 1.2E 2.8 2.8 104. 1.69E-13 1120 32.9 8.93 24.6 1.64 1.8 227. 1.32E-13 1130 32.4 8.63 22.1 1.59 2.4 259. 2.8E-13 1200 32.7 9.25 26.0 1.15 1.8 2.4 259. 2.8E-13 1200 32.7 9.25 26.0 1.15 1.2 2.4 259. 2.8E-13 1200 32.7 9.25 26.0 1.15 1.8 2.4 27. 1.32E-13 1210 32.0 8.93 24.6 1.65 2.2 77. 1.65E-13 1220 22.9 9.1. 24.4 1.14 2.4 1.77. 1.43E-13 1230 35.2 8.75 24.6 1.65 2.2 77. 1.65E-13 1240 33.7 8.65 23.7 2.66 3.5 294. 6.59E-14 1250 27.3 8.65 23.7 2.66 3.5 294. 6.59E-14 1260 32.3 8.65 23.7 2.66 3.5 296. 2.25E-13 1270 32.3 8.65 23.7 2.67 3.5 294. 6.59E-14 1210 32.3 8.65 23.7 2.66 3.5 296. 2.25E-13 1250 27.3 8.65 23.7 2.67 3.5 294. 6.59E-14 1210 32.3 8.65 23.7 2.66 3.5 2.66 3.55E-14 1310 32.7 3.86 23.7 2.66 3.5 2.66 3.55E-14								
850								
900 28.9 9.62 32.2 2.68 1.18 2.43i.14 910 29.7 9.3 31.i								
910	90C							
920	-	29.5				2.3		
93C 29.0 8.99 28.7 1.74 2.9 317. 6.42E-14 94C 27.0 9.22 29.2 1.00 2.0 316. 7.76E-14 95U 31.0 9.23 28.6 1.14 2.1 284. 5.93E-14 1000 30.3 9.21 28.5 1.19 2.3 249. 1.(2E-13 1010 31.1 9.39 29.7 1.22 2.7 239. 6.69E-14 102C 37.0 9.37 28.6 1.26 2.2 242. 7.87E-14 103C 31.6 9.39 28.0 1.27 2.1 202. 1.21E-13 1040 36.4 9.22 29.3 1.34 2.9 136. 9.02E-14 11050 31.6 9.40 27.9 1.35 1.8 143. 7.26E-14 1110 31.9 9.33 26.4 1.2E 2.8 164. 1.69E-13 112C 32.2 9.41 26.1 1.51 2.9 181. 1.73E-13 113O 32.4 8.03 22.1 1.57 2.4 259. 2.80E-13 1140 31.7 9.24 26.4 1.64 1.8 227. 1.32E-13 1150 31.6 9.25 26.0 1.15 1.8 245. 9.20E-14 1210 32.0 8.97 24.6 1.65 2.2 77. 1.65E-13 1220 32.1 9.1 24.4 1.14 2.4 2.7 1.65E-13 1230 33.2 6.7 22.3 24.6 1.6 2.9 27. 1.65E-13 1240 33.0 6.75 21.1 0.34 5.2 296. 2.25E-13 1250 70.3 8.60 22.7 0.64 3.5 294. 6.59E-14 131U 32.1 8.65 23.7 0.64 3.5 294. 6.59E-14 131U 32.1 8.65 23.7 0.64 3.6 255. 3.55E-14 131U 32.1 8.65 23.7 0.64 3.6 255. 3.55E-14	920							
940 27.0 9.22 29.2 1.00 2.0 316. 7.766-14 950 31.0 9.23 28.6 1.14 2.1 284. 5.936-14 1000 30.3 9.21 28.5 1.12 2.3 249. 1.026-13 1010 31.1 9.39 29.7 1.22 2.7 239. 6.692-14 1020 36.9 9.37 28.6 1.26 2.2 242. 7.876-14 1030 31.6 9.39 28.0 1.27 2.1 202. 1.216-13 1040 36.4 9.22 23.3 1.34 2.9 136. 9.028-14 1050 31.6 9.40 27.9 1.36 1.8 143. 7.268-14 1110 31.9 9.33 26.4 1.28 2.8 104. 1.698-13 1120 32.2 9.41 26.1 1.51 2.9 181. 1.738-13 1130 32.4 8.03 22.1 1.57 2.4 259. 2.802-13 1140 31.7 9.24 26.4 1.64 1.8 227. 1.328-13 1150 31.6 9.25 26.0 1.59 1.4 23%. 5.218-14 1210 32.9 8.92 24.6 1.65 2.2 77. 1.658-14 1210 32.0 8.92 24.6 1.66 2.2 77. 1.658-13 1220 22.9 9.1. 24.4 1.14 2.4 1.7 1.432-13 1230 33.2 8.57 21.1 0.34 5.2 294. 6.598-14 1210 32.0 8.92 24.6 1.66 2.2 77. 1.658-13 1220 22.9 9.1. 24.4 1.14 2.4 177. 1.432-13 1230 33.0 8.57 21.1 0.34 5.2 296. 2.258-13 1250 22.3 8.65 23.7 0.64 3.6 255. 3.558-14 1316 32.3 8.65 23.7 0.64 3.6 255. 3.558-14								
956 31.0 9.23 28.6 1.14 2.1 284. 5.936-14 1000 30.3 9.21 28.5 1.12 2.3 249. 1.(22-13 1010 31.1 9.39 29.7 1.22 2.7 239. 6.696-14 1020 36.9 9.37 28.6 1.26 2.2 242. 7.876-14 1030 31.6 9.39 28.0 1.27 2.1 252. 1.216-13 1040 36.4 9.22 23.3 1.34 2.9 136. 9.026-14 1050 31.6 9.40 27.9 1.36 1.8 143. 7.266-14 1110 31.9 9.33 26.4 1.26 2.8 164. 1.676-13 1120 32.2 9.41 26.1 1.51 2.9 181. 1.736-13 1130 32.4 8.63 22.1 1.57 2.4 250. 2.807-13 1140 31.7 9.24 26.4 1.64 1.8 227. 1.326-13 1150 31.6 9.25 26.0 1.15 1.8 245. 9.216-14 1210 32.0 8.97 24.6 1.65 2.2 77. 1.656-13 1220 22.9 9.1 24.4 1.16 2.4 177. 1.432-13 1230 33.2 d.76 23.1 1.46 1.9 221. 2.726-13 1240 33.0 d.25 21.1 0.34 5.2 286. 2.256-13 1250 20.0 8.65 23.7 1.64 3.6 255. 3.556-14 1316 32.7 6.47 22.7 1.16 3.5 294. 6.596-14								
1000 30.3 9.21 28.5 1.1° 2.3 249.1.(22-13) 1010 31.1 9.39 29.7 1.22 2.7 23J. 6.69£-14 1020 36.5 9.37 28.6 1.26 2.2 242. 7.87E-14 1030 31.4 9.39 28.7 1.27 2.1 202. 1.21E-13 1040 36.4 9.22 23.3 1.34 2.9 136. 9.02E-14 1050 31.6 9.47 27.9 1.35 1.0 1.0 1.43. 7.26E-14 110 31.9 9.33 26.4 1.26 2.3 181. 1.73E-13 1120 32.7 9.41 26.1 1.51 2.J 181. 1.73E-13 1130 32.4 8.03 22.1 1.57 2.4 250. 2.80.1-13 1140 31.7 9.24 26.4 1.64 1.67 2.4 250. 2.80.1-13 1150 31.6 9.25 26.0 1.5 1.64 1.8 227. 1.32E-13 1200 32.7 9.25 26.0 1.1 1.5 1.8 2.4 250. 9.20E-14 1210 32.0 8.97 24.6 1.6 1.6 2.2 77. 1.65E-13 1220 22.9 9.1 24.6 1.6 1.6 2.2 77. 1.65E-13 1230 35.2 8.7 24.6 1.7 2.1 1.7 0.34 5.2 286. 2.25E-13 1240 33.6 8.7 23.1 1.7 0.34 5.2 286. 2.25E-13 1250 20.7 28.6 23.7 1.7 0.34 5.2 286. 2.25E-13 1250 20.7 28.6 22.7 7 2.6 4.7 22.7 1.6 4.4 2.6 2.5 5. 3.55E-14 1316 32.7 6.47 22.7 1.7 1.6 4.7 22.7 1.1 1.1 1.2 2.15. 5	956							
1010 3t .1 9.39 29.7 1.22 2.7 23y. 6.69t-14 1020 3f. p 9.37 28.6 1.26 2.2 242. 7.87t-14 1030 31.6 9.39 28.7 1.27 2.1 202. 1.21t-13 1040 3f. 4 9.22 23.3 1.34 2.9 136. 9.02t-14 1050 31.6 9.40 27.9 1.35 1.8 143. 7.26t-14 1110 31.9 9.33 26.4 1.2t 2.8 1C4. 1.69t-13 1120 32.2 9.41 26.1 1.51 2.y 18t. 1.73t-13 1130 32.4 8.63 22.1 1.57 2.4 259. 2.8ct-13 1140 31.7 9.24 26.4 1.64 1.8 227. 1.32t-13 1150 31.6 9.26 26.7 1.59 1.4 234. 5.21t-14 1200 32.7 9.23 26.0 1.15 1.8 246. 9.2t-14 1210 32.9 8.97 24.6 1.65 2.2 77. 1.65t-14 1220 22.9 9.1. 24.4 1.14 2.4 177. 1.43t-13 1230 35.2 8.70 24.6 1.65 2.2 77. 1.65t-13 1240 33.6 8.70 23.1 1.46 1.9 221. 2.02t-13 1250 70.3 8.67 23.1 1.46 1.9 221. 2.02t-13 1250 70.3 8.67 23.767 3.5 294. 6.59t-14 1360 32.3 8.67 23.767 3.5 294. 6.59t-14 1310 32.7 6.47 22.7 1.64 3.6 255. 3.55t-14	-							
1020 36.5 9.37 28.6 1.26 2.2 242. 7.87E-14 1030 31.6 9.39 28.0 1.20 2.1 252. 1.21E-13 1040 36.4 9.22 23.3 1.34 2.9 136. 9.02E-14 1050 31.6 9.40 27.9 1.37 1.8 1.8 143. 7.26E-14 1110 31.9 9.33 26.4 1.2E 2.8 16.4 1.69E-13 1120 32.2 9.41 26.1 1.51 2.0 1.81. 1.73E-13 1130 32.4 8.03 22.1 1.57 2.4 259. 2.8cE-13 1140 31.7 9.24 26.4 1.64 1.8 227. 1.32E-13 1150 31.6 9.25 26.0 1.59 1.4 234. 5.21E-14 1200 32.7 9.25 26.0 1.1E 1.8 245. 9.20E-14 1210 32.0 8.90 24.6 1.6E 2.2 77. 1.65E-13 1220 22.9 9.1. 24.4 1.16 2.2 77. 1.65E-13 1220 32.0 8.90 24.6 1.6E 2.2 77. 1.65E-13 1230 33.0 8.90 24.6 1.6E 2.2 77. 1.65E-13 1240 33.0 8.76 23.1 1.46 1.9 221. 2.62E-13 1250 32.0 8.66 23.7 1.46 1.9 221. 2.62E-13 1250 32.0 8.66 23.7 1.66 3.5 294. 6.59E-14 1316 32.7 6.47 22.7 1.66 3.5 294. 6.59E-14								
103C 31.6 9.39 28.7 1.27 2.1 252. 1.21E-13 1040 36.4 9.22 28.3 1.34 2.9 136. 9.02E-14 1050 31.6 9.45 27.9 1.35 1.8 143. 7.26E-14 1110 31.9 9.33 26.4 1.2E 2.8 1C4. 1.69E-13 112C 32.2 9.41 26.1 1.51 2.3 181. 1.73E-13 1130 32.4 8.03 22.1 1.57 2.4 259. 2.85E-13 1140 31.7 9.24 26.4 1.64 1.8 227. 1.32E-13 115C 31.6 9.25 26.7 1.59 1.4 237. 5.21E-14 1200 32.7 9.23 26.0 1.1E 1.8 245. 9.2CE-14 1210 32.9 8.97 24.6 1.6E 2.2 77. 1.65E-13 1220 22.9 9.1 24.4 1.1E 1.8 245. 9.2CE-14 1210 33.0 8.97 24.6 1.6E 2.2 77. 1.65E-13 1220 22.9 9.1 24.4 1.16 0.4 177. 1.43E-13 1230 33.2 8.76 23.1 1.46 1.9 221. 2.C2E-13 1240 33.0 8.76 23.1 1.46 1.9 221. 2.C2E-13 1250 27.3 8.66 23.7 1.67 3.5 294. 6.59E-14 1310 32.7 6.47 22.7 1.64 3.6 255. 3.55E-14 1310 32.7 6.47 22.7 1.1E 1.2 215. 5.48E-14								
1040 36.4 9.22 23.3 1.34 2.9 136. 9.02E-14 1050 31.6 9.42 27.9 1.35 1.8 143. 7.26E-14 1110 31.9 9.33 26.4 1.2E 2.8 164. 1.69E-13 1120 32.2 9.41 26.1 1.51 2.3 181. 1.73E-13 1130 32.4 8.03 22.1 1.57 2.4 259. 2.8c.1-13 1140 31.7 9.24 26.4 1.64 1.8 227. 1.32E-13 1150 31.6 9.25 26.7 1.59 1.4 234. 5.21E-14 1200 32.7 9.23 26.0 1.1E 1.8 245. 9.20F-14 1210 32.3 8.97 24.6 1.6F 2.2 77. 1.65E-13 1220 22.9 9.1 24.4 1.14 0.4 177. 1.43E-13 1230 33.2 d.76 23.1 1.46 1.9 221. 2.62E-13 1240 33.6 d.76 23.1 1.46 1.9 221. 2.62E-13 1250 20.3 8.6 23.7 1.46 1.9 221. 2.62E-13 1250 20.3 8.6 23.7 1.64 3.6 255. 3.55E-14 1310 32.7 6.47 22.7 1.1E 1.2 215. 5.48E-14								
1050 31.6 9.47 27.9 1.35 1.8 143. 7.26£-14 1110 31.9 9.33 26.4 1.28 2.8 1C4. 1.69£-13 112C 37.2 9.41 26.1 1.51 2.3 181. 1.73£-13 1130 32.4 8.03 22.1 1.57 2.4 259. 2.87£-13 1140 31.7 9.24 26.4 1.64 1.8 227. 1.32£-13 115C 31.6 9.25 26.7 1.59 1.4 237. 5.21£-14 1200 32.7 9.23 26.0 1.15 1.8 245. 9.20£-14 1210 32.3 8.97 24.6 1.6£ 2.2 77. 1.65£-13 1220 72.9 9.1. 24.4 1.14 2.4 177. 1.43£-13 1230 33.2 d.76 23.1 1.46 1.9 221. 2.52£-13 1240 33.6 d.76 23.1 1.46 1.9 221. 2.52£-13 1250 72.3 8.6 23.7 1.67 3.5 294. 6.59£-14 1360 32.3 8.6 23.7 1.64 3.6 255. 3.55£-14 1310 32.7 6.47 22.3 1.15 1.2 215. 5.48£-14								
1110 31.9 9.33 26.4 1.28 2.8 1C4. 1.69E-13 112C 32.2 9.41 26.1 1.51 2.3 181. 1.73E-13 113O 32.4 8.03 22.1 1.57 2.4 259. 2.8cI-13 114O 31.7 9.24 26.4 1.64 1.8 227. 1.32E-13 115C 31.6 9.25 26.7 1.59 1.4 234. 5.21E-14 12O 32.7 9.23 26.0 1.15 1.8 245. 9.2UF-14 121O 32.0 8.97 24.6 1.6F 2.2 77. 1.65E-13 122O 22.9 9.1 24.4 1.14 2.4 177. 1.43E-13 123O 33.2 8.76 23.1 1.46 1.9 221. 2.52E-13 124O 33.0 8.55 21.1 0.34 5.2 286. 2.25E-13 125O 27.3 8.6.22.767 3.5 294. 6.59E-14 13CO 32.3 8.65 23.7 1.64 3.6 255. 3.55E-14 131U 32.7 6.47 22.7 1.15 1.2 215. 5.48E-14								
1120 32.2 9.41 26.1 1.51 2.3 181. 1.73£-13 1130 32.4 8.03 22.1 1.47 2.4 250. 2.86.1-13 1140 31.7 9.24 26.4 1.64 1.8 227. 1.32£-13 1150 31.6 9.25 26.7 1.59 1.4 23%. 5.21ē-14 1200 32.7 9.23 26.0 1.15 1.8 245. 9.20f-14 1210 32.3 8.97 24.6 1.65 2.2 77. 1.65E-13 1220 72.9 9.1 24.4 1.16 2.4 177. 1.43E-13 1230 35.2 4.76 23.1 1.46 1.9 221. 2.02E-13 1240 33.6 4.76 23.1 1.46 1.9 221. 2.02E-13 1250 72.3 8.6 27.7 .67 3.5 294. 6.59E-14 1300 32.3 8.6 27.7 .64 3.6 255. 3.55E-14 1316 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>								
1130 32.4 8.03 22.1 1.67 2.4 250. 2.8.1-13 1140 31.7 9.24 26.4 1.64 1.8 227. 1.328-13 1150 31.6 9.25 26.7 1.59 1.4 230. 5.218-14 1200 32.7 9.23 26.0 1.15 1.8 245. 9.218-14 1210 32.0 8.97 24.6 1.68 2.2 77. 1.658-13 1220 72.9 9.1. 24.4 1.16 2.4 177. 1.438-13 1230 33.2 d.76 23.1 1.46 1.9 221. 2.728-13 1240 33.6 d.76 23.1 1.46 1.9 221. 2.728-13 1250 77.3 8.6.27.7 1.67 3.5 294. 6.598-14 1310 32.3 8.55 23.7 1.64 3.6 255. 3.558-14 1310 32.7 6.47 22.7 1.18 1.2 215. 5.488-14								
1140 31.7 9.24 26.4 1.64 1.8 227. 1.328-13 1150 31.6 9.25 26.7 1.59 1.4 237. 5.218-14 1200 32.7 9.23 26.0 1.15 1.8 245. 9.208-14 1210 32.5 8.97 24.6 1.68 2.2 77. 1.658-13 1220 22.9 9.1. 24.4 1.16 2.4 177. 1.432-13 1230 33.2 d.76 23.1 1.46 1.9 221. 2.728-13 1240 32.7 d.28 21.7 0.34 5.2 286. 2.258-13 1250 27.3 8.6. 27.767 3.5 294. 6.598-14 1310 32.7 6.47 22.7 1.18 1.2 215. 5.488-14								
1150 31.6 9.25 26.7 1.59 1.4 234. 5.216-14 1200 32.7 9.25 26.0 1.15 1.8 245. 9.216-14 1210 32.5 8.97 24.6 1.65 2.2 77. 1.656-13 1220 72.9 9.1. 24.4 1.16 0.4 177. 1.432-13 1230 35.2 d.76 23.1 1.46 1.9 221. 2.726-13 1240 32.6 d.76 21.7 0.34 5.2 286. 2.256-13 1250 72.3 8.6.27.767 3.5 294. 6.596-14 1310 32.7 8.67 22.7 1.16 3.6 255. 3.556-14 1311 32.7 6.47 22.7 1.16 1.2 215. 5.486-14								
1200 32.7 9.23 26.0 1.15 1.8 245. 9.216-14 1210 32.5 8.97 24.6 1.6 2.2 77. 1.656-13 1220 72.9 9.1. 24.4 1.16 0.4 177. 1.435-13 1230 33.2 8.76 23.1 1.46 1.9 221. 2.726-13 1240 33.6 8.67 21.7 0.34 5.2 286. 2.256-13 1250 77.3 8.6.27.7 .67 3.5 294. 6.596-14 1300 32.7 8.67 33.7 1.64 3.6 255. 3.556-14 1311 32.7 6.47 22.7 1.16 1.2 215. 5.486-14								
1210 32.5 8.97 24.6 1.66 2.2 77. 1.656-13 1220 22.9 9.1. 24.4 1.16 0.4 177. 1.435-13 1230 33.2 8.76 23.1 1.46 1.9 221. 2.526-13 1240 33.6 8.67 21.7 0.34 5.2 286. 2.256-13 1250 27.3 8.6. 27.7 .67 3.5 294. 6.596-14 1300 32.7 8.67 23.7 .64 3.6 255. 3.556-14 1310 32.7 6.47 22.7 1.16 1.2 215. 5.486-14								
1220 22.9 9.1. 24.4 1.16 0.4 177. 1.435-13 1230 33.2 6.76 23.1 1.46 1.9 221. 2.726-13 1240 33.6 6.25 21.7 0.34 5.2 296. 2.256-13 1250 27.3 8.6.27.7 .67 3.5 294. 6.596-14 1300 32.3 8.65 23.7 .64 3.6 255. 3.556-14 1310 32.7 6.47 22.3 1.16 1.2 215. 5.486-14			- ·· -					
1230 33.2 d.76 23.1 1.46 1.9 221. 2.526-13 1240 33.6 d.25 21.1 0.34 5.2 286. 2.256-13 1250 35.3 8.6.23.767 3.5 294. 6.596-14 1300 32.3 8.6-23.764 3.6 255. 3.556-14 1310 32.7 6.47 22.3 1.16 1.2 215. 5.486-14								
1240 33.0 d.75 21.1 u.34 5.2 286. 2.25E-13 1250 70.3 8.6.23.767 3.5 294. 6.59E-14 1300 32.3 8.65 23.764 3.6 255. 3.55E-14 1310 32.7 6.47 22.1 1.11 1.2 215. 5.48E-14					-			
1250			_			_		
1300 32.7 8.5- 23.7 1.64 3.6 255. 3.556-14 1310 32.7 6.47 22.7 1.15 1.2 215. 5.486-14								
1316 32.7 6.47 22.1 1.15 1.2 215. 5.48E-14								3.556-14

SRI REPORT 8422

NEF-IMMBE BECIEVES

WSMR MICHAMETEDRAL MOTON LATA

TSUQUARE 1	•	7	3
------------	---	---	---

TIME	μT	PPH2: EH49	ъ. р	58.*	4 5	4 0	CNAG
	(5006)	(TMP+) (1)	(MEAR)	(4/50 4)	(4/5)	(1) (1)	
1 3 30	33.4	8.20 21.5		1.55	5.4	231.	2.06F-13
1340	33.2	8.63 22.6		1.71	4.5	258.	1.951-13
1350	33.€	8.83 22.9		1.72	3.1	244.	2.488-13
1400	33.7	9.03 23.1		1.75	5.4	223.	3.976-13
1410	33.6	9.08 23.4		1.35	7.1	177.	1.975-13
1420	34.5	8.95 22.		1.72	5.1	213.	3.96t-1?
1430	34.6	8.61 21.1		1.7 <	7.2	263.	5.971-15
1440	33∙€	8.97 22.5		1.54	4.5	214.	2.756-13
1450	34.1	8.95 22.4		1. 3	3.9	245.	1.756-13
1500	34.1	3.84 22.1		1.51	3.4	213.	2.50f-13
1510	34.4	8.99 22.2		1.67	5 • તે	225.	2.858-13
1520	35.1	8.5. 21.3		1.51	5.9	229.	4.602-13
1530	34.9	8.53 20.5		1.5	5.3	247.	3.671-13
1540	34.9	8.19 19.7		1.	c . 8	246.	2.786-13
1550	34 · ć	8.40 29.7		~ · O ×	ϵ . 1	229.	2.115-13
1600	35.5	8.24 19.5		1.4"	5.2	248.	2.975-13
1610	34.5	8.05 19.7		6.72	r • 2	246.	1.046-13
1626	35.0	8.07 19.4		1.31	7.4	242.	2.646-13
1630	34.7	9.46 21 .5		^ . 7=	5.8	271.	1.151-13
1640	34.9	8.25 19.8		1.56	7.4	276.	1.72c-13
1650	34.7	8.72 19.4		i.il	5.2	283.	1.686-13
1700	34.2	8.31 25.7		J. 76	3.3	265.	8.638-14
1710	34.1	8.51 21.3		4.51	5.3	272.	4.376-14
1720	33.9	8.28 21.3		7.45	3.6	297.	2.475-14
1730	33.1	7.45 14.9		. 4 4	5.6	329.	1.868-14
1740	31.9	9.65 27.3		6.4	5.4	331.	2.13t-14
1750	29.€	7.65 34.3		Ç • 3 ¹ 3	7.3	320.	9.86t-14
1800	31 • 3	0.35 32.1		3.37	3.9	277.	3.678-14
1812	28.4	1.01 38.7		4.3 6	6.2	296.	2.798-14
1822	28.	1.13 39.2		↓ • 3 付	5.4	280.	2.82t-14
1832	28.5	1.64 39.7		2 . 4 K	4.9	264.	4.645-15
1842	29.1	1.12 36.9		1.45	3.4	247.	1.581-15
1852	29.5	0.59 34.5		4.46	3.2	220.	1.765-15
1902	29.2	0.31 34.0		4 • 4 · ·	4 . 4	234.	1.83! -15
1912	24.2	1.03 33.7		 ₹3	7.4	224.	1.316-15
1922	29.3	9.86 32.3		D • 35	5.7	217.	1 • 1 9F - 16
1932	50.3	9.45 36.9		32	5.3	221.	1.215-16
1942	24.5	9.11 29.5		u • 5.	7.3	227.	5.451-18
1952	29.6	8.34 28.4		2.53	4.2	237.	1.766-15
2002	29.6	8.83 28.4		Q + 23 14	3.7	226.	1.745-15

HANTEY DOWLING, HORTON, CURCIO, GOLL, WOYLKO, AND STORVICK

MACHEMORE RECIEV A

WARE MICHARY TERRAPORCE DATA

	75.4.4.5.2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	•	37	4.3
,	AUSUST	- 1	77	•

TIME	AT	pp 42 a	P.4	rγp	55.*	45	ai J	C 45 Q
	(TEG)	(TIJER)	(*)	(MAK)	(4/5) 4)	(4/5)	(056)	
2012 2022 2032 2042 2052 2102 2112 2156 2210 2210 2210 2230 2240 2250 2310 2310 2320 2330	24.4 27.6 27.0 27.0 27.0 20.0 24.0 24.1 24.4 24.4 24.4 24.4 24.4 24.4 24.4 24.4 24.4 24.4 24.4	9.37 9.27 1.63 1.14 1.19 1.84 1.84 2.65 1.84 2.65 1.85 1.70 1.85 1.96	23.3 31.3 31.3 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5		28 20 20 20 20 20 20 20 20 20 20	3.2 3.4 5.1 4.6 4.1 5.2 3.5 2.1 1.8 2.1	173. 73. 73. 65. 74. 61. 71. 65. 70. 186. 74. 221.	1.648-15 1.598-15 1.998-15 4.648-15 1.668-15 3.508-16 3.388-15 3.388-15 5.728-15 1.488-15 4.178-15 1.696-14 8.398-15 5.828-15 9.628-15 8.138-15
2340 2350	23.1 23.1	1.63 5 1.83 5 1.73 5	6.9		0 • 25 0 • 25 1 • 25	2.5 2.2 2.1	190. 276. 197.	1.30 ± -14 2.66 € -14 2.65 € -14

NRL REPORT 8422

Fig. A-9 = Solar radiation, windspeed, and C_s^2 at the optical transmitter meteorological station on 18 August 1978 (0000 to 0600 h).

Fig. A-10 — Solar radiation, windspeed, and $C_{\rm V}^2$ at the optical transmitter meteorological station on 18 August 1978 (0600 to 1200 h)

HANLEY, DOWLING, HORTON, CURCIO, GOTT, WOYTKO, AND STORVICK

Fig. A-11 — Solar radiation, windspeed, and C_s^2 at the optical transmitter meteorological station on 18 August 1978 (1200 to 1800 b)

Fig. A-12 — Solar radiation, windspeed, and $C_{\rm s}^2$ at the optical transmitter meteorological station on 18 August 1978 (1800 to 2400 h)

NRL REPORT 8422

MIL-IMBRL TRANSMITTER

WSME MICRHMITE SERLIGICAL DATA

LA MUSUST 1975

TIME	ΛT	88423 RH	, b	3 × *	in S	W)	ÇNSQ
	(0.00)	(TARK) (")	CMEARS	(W/s) M)	(4/5)	(neg)	
840	21.7	1.73 6'.3	994.2	? 9	1.2	266.	7.638-15
856	27.4	1.62 57.1	894.2	€ 35	3.7	71.	4.298-14
90C	22.3	1.45 54.4	394.2	. 42	0.6	154.	7.758-14
910	23.3	1.34 52.3	444.2	C . 41	3.0	15).	1.155-14
920	22.6	1.39 52.1	834.4	0.41	ıj _e R	232.	4.51E-14
930	24.1	1.42 50.6	894.5	. •76	1.5	236.	4 • 135 - 14
950	12.2	5.89 55.3	295.5	35	2.5	185.	5.738-14
1000	24.4	1.26 49.5	894.5	42	J • 5	134.	1.188-14
1010	25.1	1.13 47.2	394.5	1. 45	3.6	184.	1.168-14
1020	25.5	1.17 46.9	894.5	V • 5.7	1.7	148.	7.635-15
10 30	25.6	1.29 45.0	894.7	98	1.8	177.	2.745-14
1040	26.0€	1.21 44.3	894.7	1.7	2.3	169.	3.76E-14

HANLEY DOWLING, HORTON CURCIO, GOLL, WOYLKO, AND STORVICK

REFINABL ROCKS

45MR MICHAM TOURSLASTERE DATA

to About 10%

TIME	LT	PPH23 P4	1,9	\ 77.*	W/ S	k')	CN5 }
	(6) 6)	(t) (t)	(×0,0%)	(*/5) 4)	(M/5)	(933)	
Ċ	23.	1.55 54.7		2 4	2.0	195.	2.593-14
10	23.4	1.6 54.		J . 28	1.4	263.	1.058 -14
20	23.1	1.4. 53.1		0.25	1.5	242.	6.21/-15
3ε	21.7	1.50 58.9		ء ۾ ر	2.3	263.	1.68:-14
40	21.4	1.56 59.1		V • 35	2.5	253.	9.365-15
50	21.5	1.33 59.9		y • ± [±]	2.5	239.	3.065-14
165	21.7	1.64 54.5		C+26	3.3	252.	3.121-14
110	20.3	1.84 53.7		: . 24	2.1	251.	2.537-14
120	25.6	6.79 52.9		24	1.1	239.	6.788-15
136	21.9	1.69 63.		0.34	1 • 4	24.	1.245-14
140	21.7	1.77 67.4		24	3 • B	219.	1.7.6-15
150	23.4	1.73 51.2		2.24	U.9	315.	1.398-15
200	22.5	1.32 52.1		J . 24	1.5	264.	4 . 75-15
210	24.1	1.97 48.9		:.24	5.5	265.	3.695-15
226	22.3	1.19 53.6		6.24	u • 9	228.	1.85E-14
230	22.5	1.20 55.		1.23	8	159.	6.868-15
246	20.8	1.71 63.7		J.23	1.7	94.	1.665-14
250	25.7	1.79 64.3		1.23	3.3	12".	8-151-15
300	21.1	1.18 59.6		5 • 23	3.4	136.	9.965-15
310	21.1	1.72 58.5		↓. 23	2.4	138.	9.228-15
320	21.6	C.9. 58.6		23	1.3	123.	9.228-15
330	21.8	C.85 58.8		1.23	1.3	132.	4.2.7-15
340	2. •4	1.83 61.2		23	1.4	167.	1.235-14
350	20.0	1.49 58.		J • K 3	J. 4	121.	2.865-15
400	19.2	0.99 65.2		6 • 23	1.7	37.	1.675-14
410	19.3	1.11 66.5		. • ?3	1.2	62.	4.206-15
426	23.2	1.16 62.9		1.23	1.5	193.	1.677-15
436	19.1	6.98 66.3		. • 23	1.8	58.	4.165-15
440	19.7	1.12 64.1			1 • 2	87.	7.928-15
450	18.9	1.13 68.3		1.23	1.4	91.	2.243-14
500	18.0	1.4 / 71.3		v • 23	1.9	54.	2.896-14
516	! R . 2	1. 94 7' . 2		5.63	2.4	88.	3.63E-14
526	18.4	6.85 68.7		v • 2?	2.4	97.	2.946-14
5 3 C	13.2	0.35 70.			2.5	93.	2.688-14
540	18.2	1.98 71.2		0.22	2.4	78.	
550	18.5	7.76 67.4		3.07	3.5	100.	
60¢	18.8	1.55 55.1		(.)	2.4	86.	3.111-14
610	11.00	1.44 64.2		• 1	1.2	95.	1.035-14
620	19.1	1.54 67.5		6.23	. 7	103.	
636	15.7	U.7: 63.2		6.12	1.1	276.	1.91-15

NRUREPORT 8422

AFF-IN OF FEUTING

WSMA MICCOMMET, MEMERS (CLE CATA

L'S AUGUST 1978

				-			
TIME	LT	PPH29 FA	ď.,	58.*	W S	w j	1,50 S. g
	(तिराज्य	(T3P() (t)	(ME DK)	(W/5) M)	(*/5)) (nis))
640	17.5	0.65 69.6				• = .	_
650	18.1	r . 5.4 67 . +		v • ∠ () . • () ⊃	. 7	151.	2.190-15
70 U	18.4	0.47 66.3			1.8	46.	6.57,-15
710	18.3	V.65 67.4		• 2 •	2.5	67.	1.1 * 1 - 14
720	10.5	0.9 63.5		1.25	2.4	54.	1.5914
730	19.0	0.38 66.3		5 - 27	2•	73.	7.666-15
740	19.5	0.73 63.		· • •	1.1	57.	6.145-15
750	19.6	C.88 63.7		· • 1	y • 4	111.	4.75:-15
800	1 1 . 7	C.92 63.5		• 34	₹.3	144.	2.811-15
816	19.9	1.18 64.4		5.4	∵•3	241.	1.500-15
820	2 . 2	1.34 64.1			1.0	293.	1.5' F-15
836	28.8	1.27 61.0		U . 4 K	3.3	503.	3-196-15
846	21.	1.34 59.7		L • 4 7	J • 5	338.	3.495-14
850	21.5	1.48 50.5		1	J . 6	326.	5.9915
900	22.1	1.23 56.5		' • " c	(• O	223.	4.96=-15
910	22.E	1.85 52.7		6.51	4	136.	8 • 19 ~ - 15
926	23.0	1.7. 5. 7		1.05	J • 6	230.	7.235-15
930	23.5	0.77 49.7		4.5	J • 7	". 7.	8.137-15
940	23.5	0.74 49.3		V . 5 . 4	1.2	233.	1.315-14
950	23.4	0.66 48.3		2.54	1 • 7	229.	9.861-15
1000	24.5	3.27 44.6		€ . 5, .	ž • J	225.	2.628-14
1010	24.7	0.61 45.5		J • 7 1	1 • 8	227.	3.7(8-14
1020	25.5	P.43 42.5		3.7	1.3	2.7.	2.125-14
1036	26.1	0.51 41.5		1 • 1 5	1.5	175.	7.866-14
1040	26.4	0.4, 4,.3		1.27	2 • 1	161.	1 • 235 - 13
1050	27.1	0.5. 39.		1.3	2.5	163.	1 • 38 5 ~ 13
1100	27.4	0.4+ 38.2		1•34 1•39	2.4	148.	1.768-13
1110	27.8	9.94 35.4		1.41	2.9	150.	2.575-15
1130	28.1	0.35 38.5		1.47	3 • 1	157.	2.96=-13
1140	28.0	6.24 34.5		1.51	2.6	1.9.	1.895-13
1150	23,2	1.23 33.5		د د ۱۰۶	4 • 9 5 • 2	118.	3.135-13
1200	29.3	1.14 33.1		1.56	5 • 5	127.	3.176-13
1210	29.4	5.66 32.7		1.57	4.7	118.	3.846-13
1220	16.1	9.94 31.1		1.69	4.4	141.	3.285-13
1230	70.1	9.81 31.5		1.63	5.4	141.	3.652-13
1246	29.6	C.01 32.2		1.27	5.3	135.	3.775-13
1250	36.2	0.22 31.4		1.4	4.4	132.	2.295-13
1300	36.4	9.73 29.3		1.4	5.,	132.	2.325-13 4.76-13
1316	31 .2	1.39 32.2		1.56	5.4		2.501-13
1320	30 • 4	0.42 32.1		4.46	₹.6		2.711-13
				- ·	: ()	4 6 4 0	6.001713

M L-IMPL FEGTEVER

WSMR MICHMETEMPSERSICAL DATA

•		٠,	1695	T	1	()	-	
	•		11:11	•		•	1	-
•	•	٠,	0 . , 0	•	•		•	

TIME	ŢΔ	ррч2и рч	SP	Sk*	WS	WO	CYSQ
	(UF6)	CTURRED (1)	(Mmu2)	(2/57 4)	(4/5)	(035)	
1330	At	0.43 32.5		11	5.2	116.	2.546-13
1340	31.7	0.37 31.4		1.33	6.5	113.	3.56E-13
1356	30.4	0.51 32.4		1.5	4.6	130.	1.565-13
1400	30.7	0.45 31.5		1. 1	5.2	116.	2.055-13
1410	3/ . 9	0.45 31.4		J.75	5.4	135.	1.446-13
1426	31.7	0.71 32.3		92	7.3	130.	1.256-13
1430	31.1	1.54 31.4		र ≛े उंछ	7.3	143.	1.116-13
1440	31.1	9-79 24-1			5.7	148-	1-195-13

Fig. A-13 — Solar radiation, windspeed, and C_s^2 at the optical transmitter meteorological station on 19 August 1978 (0000 to 0600 h)

Fig. A-14 — Solar radiation, windspeed, and C_s^2 at the optical transmitter meteorological station on 19 August 1978 (0600 to 1200 h)

Fig. A-15 — Solar radiation, windspeed, and C_k^2 at the optical transmitter meteorological station on 19 August 1978 (1200 to 1440 h)

HANLLY, DOWLING, HORTON, CURCIO, GOLL, WOYLKO, AND STORVICK

TRACHIMORE TRANSMITTED

WSMR MICHAMETERFAL AGICUL DATA

		11	196057	1972			
TIME	ŢΑ	РРИЗЯ Рч	ŧ.P	7. •	43	WD	C.12 *
	(DF6)	(T 484) (3)	(Mays)	(X/37-42	(4/5)	(DES)	
850	20.5	4.87 81.7	895.8	49	1.3	312.	4.315-15
300	21.6	4.79 76.6	895.A	5.5		253.	
910	22.2	4.52 72.3	895.8	6.57	1.5	334.	1.155-14
920	22.9	9.11 91.,	895.8	. 62	1.5	2344 286	7 - 1 35 - 15
930	23.6	6.78442.6	895.8	•66	1.2		9.645-16
946	23.6	4.15 64.6	895.8	0.71		233.	1.471-14
950	23.5	4.44 66.3	895.9		1.6	307.	9.735-15
1000	23.9	4.35 64.6	896.0	₩ • 75 70	1.5	312.	1.(55-14
1010	24.3	4.31 62.9		. 79	1.3	286.	1.3.E-14
1020	24.2	3.82 59.7	396.0	4 • 4 7	1.1	304.	1.325-14
1030	25.7		A45 • C	• લક	1.3	253.	1.716-14
1040		3.25 54.9	396.5	3. 9€	1.1	133.	3.250-14
	25.6	3.67 55.6	996.0	↓ • ∮ 4	1.1	148.	3.322-14
1050	26.1	3.75 54.6	896 👡	U • 17	1.1	190.	3.976-14
1100	25.8	3.35 53.4	836.)	$1 \bullet y$	1.4	231.	1.935-14

NRT REPORT 8422

MAE-IMORE TREASPAILTE

WSMR MICHIMETE 98 8E 10/100E - 21A

21 MIGUST 1979

TIME	A T	РРН2М қ+	υp	3 ? •	W.S	wn.	5.48.3
	(016)	(TARP) (*)	(4 20)	(W/5) 4)	(4/5)	(DEG)	
856	? 5.7	2.93 53.3	892.9	4 -	3.2	36.	4.655-16
900	64.	2.92 57.3	892.3		3 4	E 3.	3.577-15
916	24.4	2.65 54.9	892.9	4.5	3.2	1 = 3.	2.8715
920	24.0	2.67 53.+	832.9	. 73	3	173.	5.69F-15
930	25.1	2.95 54.	892.F	V•51	. · i	59.	1.7114
940	25.6	2.86 54.	892.9	6.6	1.4	97.	1.15 = 14
950	25.4	2.53 51.5	892.0	3.04	3 . 3	121.	1.176-14
1000	25.8	2.38 49.4	892.9	73	1.7	85.	2.305-14
1010	26.1	2.27 48.4	892.0	. • 9 5	2.4	195	2.656-14
1020	22.0	€.14 48.5	890.8	77	3.1	177.	3.655-14
1030	26.2	1.02 43.2	892.9	្ត មួន	2.3	241.	1.3314
1045	26.5	1.22 43.2	892.9	. 77	2.1	295	1.586-14
1050	26.0	1.13 47.5	892.9	1.1	?	154.	2.427-14
1166	26.9	1.39 42.7	392.3	17	2.2	211.	2.37t-14
111C	27.3	1.24 41.3	312.7	1.11	7.9	5.	4.3/6-14
1120	27.5	1.12 46.4	992.7	1.16	1.5	ó.	3.(25-14
1130	27.7	1.1. 39.3	892.7	1.18	1.1	93.	4.185-14
1140	27.7	(.77 38.7	432.7	. 89	2.2	323.	2.305-14
1150	27.9	ਿ•86 3ਲ•5	892.7		1.1	262.	3.815-14
1200	24.4	1.37 39.2	392.7	6.91	1.1	233.	9.256-14
1210	24.7	1.26 39.5	892 .7	 • 3 3	2.1	298.	3.328-14
1220	28.6	1.16 38.7	342.7	1.31	1.3	269.	6.278-14
1230	24.4	1.06 36.9	892.5	1.23	1.5	27).	1.068-13
1240	29.4	1.19 30.5	892.4	1.0%	1 - 1	81.	1.055-13
1250	29.3	1.73 35.1	892.2	1	9	217.	9. F 2r - 14
1300	74.3	1.90 34.7	242.2	1.25	1.2	269.	7.415-14
1310	35 5	0.58 32.4	342.0	1.24	1.1	253.	7.652-14
1320	3′ • 3	1.49 32.5	891.7	1.28	1. 9	6.5.	5.5.24-14
1336	31 . 1	C.30 32.3	391.5	1.2	2.1	210.	4.778-14
1340	3° • 3	5.37 32.1	311.4	1.03	1.5	357.	5.112-14
1350	37.7	0.45 31.5	891.4	1.27	1.4	222.	7.671-14
1461	3:02	5.23 31.1	3 11 . 4	1.00	2.5	224.	1.028-13
1410	31.3	1.21 29.4	891.0	1.00	₹, ₹	265.	d. 555 - 14
1420	31.1	5.01 20.5	691.1	1.25	2.9	75.	8.77F-14
1430	31.3	7.31 21.1	891.	1.04	3.3	223.	1.5 He - 13
1440	31.1	0.24 30.3	8 41 - 1	1.15	3.3	276.	1.005-13
1450	31.5	9.28 27.7	899.4	17	7.5	191.	6.175-14

Fig. A-16 — Solar radiation, windspeed, and $C_{\rm V}^2$ at the optical transmitter meteorological station on 22 August 1978

END

DATE FILMED

DTIC