Lecture Memo Quantum Mechanics of Light and Matters

Yasuyuki Ozeki

Department of Electrical Engineering and Information Systems
The University of Tokyo

July 25, 2020

Contents

1	Introduction					
2	Noi	Noise in optical measurements				
	2.1	_	l measurements	3		
			Direct detection	4		
			Homodyne and heterodyne detection	4		
	2.2		ources	5		
			Shot noise	5		
			Thermal noise	5		
			Optical amplifier noise	5		
	2.3		ary	5		
3	Qua	antum l	narmonic oscillators	7		
	3.1		inger equation	7		
			Wavefunction and energy eigenstates	7		
			Fock representation	7		
			Position representation	7		
			Momentum representation	7		
	3.2		rement of observables	7		
			Expectation value	7		
			Expectation of variance	7		
	3.3		node quantum states	7		
	3.4		ary	7		
4	Qua	antum s	states and their evolution	9		
	4.1	Evoluti	ion of quantum states	9		
		4.1.1	Schorödinger picture	9		
		4.1.2	Heisenberg picture	9		
	4.2		y transformation of quantum states	9		
			Time evolution	9		
			Displacement	9		
			Mode mixing	9		
			Single-mode squeezing	9		
			Two-mode squeezing	9		

4 CONTENTS

5	Quantization of light				
	5.1	Mode decomposition of electromagnetic waves	11		
		5.1.1 Time-frequency mode	11		
		5.1.2 Spatial mode	11		
		5.1.3 Polarization	11		
	5.2	Operator notation of electromagnetic waves	11		
	5.3	Summary	11		
6	Rep	presentative quantum states	13		
	6.1	Number states	13		
	6.2	Superposition states	13		
	6.3	Coherent states	13		
	6.4	Squeezed states	13		
	6.5	Two-mode squeezed states	13		
		6.5.1 EPR state	13		
	6.6	Summary	13		
7	Ligh	nt-matter interaction	15		
	7.1	Mode mixing	15		
		7.1.1 Beamsplitter	15		
		7.1.2 Waveplates	15		
		7.1.3 Optical loss	15		
		7.1.4 Fourier transform	15		
	7.2	Parametric amplification	15		
		7.2.1 Squeezing	15		
		7.2.2 Spontaneous parametric down conversion	15		
		7.2.3 Optical amplification	15		
		7.2.4 Raman scattering	15		
	7.3	Summary	15		
		·			
8		asurement of quantum states	17		
	8.1	Photodetection	17		
	8.2	Homodyne detection	17		
	8.3	Heterodyne detection	17		
	8.4	Quantum teleportation	17		
\mathbf{A}	Appendix				
	A.1	Bra-ket notation	19		
	A.2	Creation and annihilation operators	19		
	A.3	Pure states and mixed states	19		
	A.4	Wigner function	19		

Introduction

Light is regarded as an ensemble of particles called photons. The particle nature of light appears as 'noise' in various applications of light waves such as optical measurement, optical manipulation, and optical communications, leading to the physical limit of the performance or precision achieved by these methods. To enhance

Noise in optical measurements

This chapter introduces various detection methods of light and explains noise appearing in each method. Some explanations are phenomenological but they will be explained by quantum optics in later chapters.

2.1 Optical measurements

Figure 2.1(a) shows the **direct detection**. Photodetectors can convert photons to electrons to measure optical power, which is proportional to the number of photons per unit time.

Fig. 2.1(b) shows the **interferometric detection**, where a beamsplitter (BS) is used to mix the signal light wave to be measured and another light wave called local oscillator (LO) light, and the output light waves of the BS are detected with photodetectors to measure the amplitude of light. When the optical frequencies of signal and LO are the same, the method is called **homodyne**. When they are different, the method is called **heterodyne**.

Furthermore, an optical amplifier is often used before photodetection as shown in Fig. 2.1(c). This is called **preamplificatio**. Although not shown in the figure, it is also possible to conduct interferometric detection after preamplification.

In every case, the output signal of the photodetector contains noise due to various origins such as instability of light sources or optical systems, circuit noise of photodetector(s), and so on. We can somehow reduce these noises, but at last we will see 'quantum noise' that cannot be reduced by classical manner. Only quantum optics can control the quantum noise.

Here, before introducing various noise sources, we introduce direct detection, interferometric detection, and preamplification.

Figure 2.1: Various photodetection methods. (a) Direct detection. (b) Interferometric detection. (c) Optical preamplification with an optical amplifier.

2.1.1 Direct detection

Therefore

$$I = \frac{\eta q P}{\hbar \omega}$$

2.1.2 Homodyne and heterodyne detection

$$a(t) = \alpha e^{-i(\omega + \Delta\omega)t}$$

$$b(t) = \beta e^{-i\omega t}$$
 (2.1)

$$a' = \frac{1}{\sqrt{2}}(a - b)$$

$$b' = \frac{1}{\sqrt{2}}(a + b)$$
(2.2)

$$\begin{pmatrix} a' \\ b' \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$
 (2.3)

$$I_{1} = \frac{q}{\tau} |a'|^{2} = \frac{q}{\tau} \left| \frac{1}{\sqrt{2}} (a - b) \right|^{2}$$

$$I_{2} = \frac{q}{\tau} |b'|^{2} = \frac{q}{\tau} \left| \frac{1}{\sqrt{2}} (a + b) \right|^{2}$$
(2.4)

$$I_{2} - I_{1} = \frac{q}{\tau} (ab^{*} + a^{*}b)$$

$$= 2qB(\alpha\beta^{*}e^{-i\Delta\omega t} + \alpha^{*}\beta e^{i\Delta\omega t})$$

$$= 4qB|\beta| \left\{ \operatorname{Re} (\alpha e^{-i\phi}) \cos \Delta\omega t + \operatorname{Im} (\alpha e^{-i\phi}) \sin \Delta\omega t \right\}$$
(2.5)

Here $B = 1/2\tau$ is the Nyquist frequency, and $\beta = |\beta|e^{i\phi}$.

2.2 Noise sources

2.2.1 Shot noise

$$p(k) = \frac{\lambda^k e^{-\lambda}}{k!} \tag{2.6}$$

$$V[p(k)] = \sum_{k} (k - \lambda)^{2} p(k)$$

$$= \sum_{k} k^{2} p(k) - 2\lambda k p(k) + \lambda^{2} p(k) = \sum_{k} k^{2} p(k) - \lambda^{2}$$

$$= \sum_{k} k \lambda p(k - 1) - \lambda^{2} = \lambda \sum_{k} \{(k - 1)p(k - 1) + p(k - 1)\} - \lambda^{2}$$

$$= \lambda(\lambda + 1) - \lambda^{2} = \lambda$$
(2.7)

$$I_{\rm shot} = q\sqrt{\lambda/\tau} = q\sqrt{\frac{I\tau}{q}}/\tau = \sqrt{\frac{qI}{\tau}}$$
 (2.8)

$$I_{\text{shot}} = \sqrt{2qIB} \tag{2.9}$$

$$SNR = I^2 / I_{shot}^2 = I / 2qB = 2qB|\alpha|^2 / 2qB = |\alpha|^2$$
 (2.10)

where $I = q|\alpha|^2/\tau = 2qB|\alpha|^2$. Since $|\alpha|^2$ corresponds to the number of photons, we can see that the shot-noise limited SNR is equal to the number of photons.

2.2.2 Thermal noise

2.2.3 Optical amplifier noise

2.3 Summary

Quantum harmonic oscillators

- 3.1 Schrödinger equation
- 3.1.1 Wavefunction and energy eigenstates
- 3.1.2 Fock representation
- 3.1.3 Position representation
- 3.1.4 Momentum representation
- 3.2 Measurement of observables
- 3.2.1 Expectation value
- 3.2.2 Expectation of variance
- 3.3 Multimode quantum states
- 3.4 Summary

Quantum states and their evolution

- 4.1 Evolution of quantum states
- 4.1.1 Schorödinger picture
- 4.1.2 Heisenberg picture
- 4.2 Unitary transformation of quantum states
- 4.2.1 Time evolution
- 4.2.2 Displacement
- 4.2.3 Mode mixing
- 4.2.4 Single-mode squeezing
- 4.2.5 Two-mode squeezing

Quantization of light

- 5.1 Mode decomposition of electromagnetic waves
- 5.1.1 Time-frequency mode
- 5.1.2 Spatial mode
- 5.1.3 Polarization
- 5.2 Operator notation of electromagnetic waves
- 5.3 Summary

Representative quantum states

- 6.1 Number states
- 6.2 Superposition states
- 6.3 Coherent states
- 6.4 Squeezed states
- 6.5 Two-mode squeezed states
- 6.5.1 EPR state
- 6.6 Summary

Light-matter interaction

- 7.1 Mode mixing
- 7.1.1 Beamsplitter
- 7.1.2 Waveplates
- 7.1.3 Optical loss
- 7.1.4 Fourier transform
- 7.2 Parametric amplification
- 7.2.1 Squeezing
- 7.2.2 Spontaneous parametric down conversion
- 7.2.3 Optical amplification
- 7.2.4 Raman scattering
- 7.3 Summary

Measurement of quantum states

- 8.1 Photodetection
- 8.2 Homodyne detection
- 8.3 Heterodyne detection
- 8.4 Quantum teleportation

Appendix A

Appendix

- A.1 Bra-ket notation
- A.2 Creation and annihilation operators
- A.3 Pure states and mixed states
- A.4 Wigner function

$$\sum_{k=1}^{\infty} \frac{1}{2^k} = \frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \dots$$

$$= \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

$$= \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1$$
(A.1)

There is a theory which states that if ever anyone discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable. There is another theory which states that this has already happened.

"I always thought something was fundamentally wrong with the universe" [1]

Figure A.1: The Universe

Bibliography

[1] D. Adams. The Hitchhiker's Guide to the Galaxy. San Val, 1995.