Complexité

Informatique commune - TP nº 2.2 - Olivier Reynet

À la fin de ce chapitre, je sais :

- calculer la complexité d'un algorithme simple
- donner les complexités dans le pire des cas des tris comparatifs génériques
- expliquer la différence entre le tri rapide et le tri fusion

A Complexité d'algorithmes simples

A1. Calculer la complexité de l'algorithme 1. Y-a-il un pire et un meilleur des cas?

Algorithme 1 Produit scalaire

```
1: Fonction PRODUIT_SCALAIRE(x, y) \Rightarrow x et y sont des vecteurs à n éléments

2: s \leftarrow 0

3: pour i = 0 à n - 1 répéter

4: s \leftarrow s + x_i y_i \Rightarrow coût?

5: renvoyer s
```

A2. Calculer la complexité de l'algorithme 2 dans le meilleur et dans le pire des cas.

Algorithme 2 Palindrome

```
1: Fonction PALINDROME(w)
        n \leftarrow la taille de la chaîne de caractères w
        i \leftarrow 0
3:
        j \leftarrow n-1
4:
5:
        tant que i < j répéter
6:
            \mathbf{si} \ w[i] = w[j] \mathbf{alors}
                i \leftarrow i + 1
7:
                j \leftarrow j - 1
8:
            sinon
9:
                 renvoyer Faux
        renvoyer Vrai
```

A3. Calculer la complexité de l'algorithme 3. Y-a-t-il un pire et un meilleur des cas? On fait l'hypothèse que la fonction PUISSANCE(a,b) est de complexité constante O(1). Cette hypothèse vous semble-t-elle raisonnable?

Algorithme 3 Évaluation simple d'un polynôme

```
1: Fonction EVAL_POLYNÔME(p, v)

2: d \leftarrow \deg r \in de p

3: r \leftarrow p[0]

4: pour i = 1 à d répéter

5: r \leftarrow r + p[i] \times PUISSANCE(v, i)

6: renvoyer r
```

A4. Utiliser la méthode de Horner (cf. algorithme 4) pour écrire un autre algorithme pour évaluer un polynôme. Quelle complexité pouvez-vous obtenir? Est-ce plus rapide?

Algorithme 4 Évaluation d'un polynôme par la méthode d'Horner

```
1: Fonction HORNER(p, d, v)

2: r \leftarrow p[d]

3: pour i = d - 1 à 0 répéter

4: r \leftarrow r \times v

5: r \leftarrow r + p[i]

6: renvoyer r
```

B Tri fusion

Algorithme 5 Tri fusion

```
1: Fonction TRI_FUSION(t)
2: n \leftarrow \text{taille de t}
3: \sin n < 2 \text{ alors}
4: \text{renvoyer t}
5: \sin n
6: t_1, t_2 \leftarrow \text{DÉCOUPER\_EN\_DEUX(t)}
7: \text{renvoyer FUSION(TRI_FUSION(<math>t_1),TRI_FUSION(t_2))
```

- B1. Programmer le tri fusion en Python.
- B2. Quelle est la complexité de cet algorithme? Y-a-t-il un pire et un meilleur cas?
- B3. Vérifier, en mesurant le temps d'exécution, la justesse de votre calcul précédent.

C Tri rapide

- C1. Programmer le tri rapide en Python.
- C2. Quelle est la complexité de cet algorithme? Y-a-t-il un pire et un meilleur cas?
- C3. Vérifier, en mesurant le temps d'exécution, la justesse de vos calculs précédents.

Algorithme 6 Découper en deux

```
1: Fonction DÉCOUPER_EN_DEUX(t)

2: n \leftarrow \text{taille de t}

3: t_1, t_2 \leftarrow \text{deux listes vides}

4: \text{pour } i = 0 \text{ à } n//2 - 1 \text{ répéter}

5: \text{AJOUTER}(t_1, t[i])

6: \text{pour } j = n//2 \text{ à } n - 1 \text{ répéter}

7: \text{AJOUTER}(t_2, t[i])

8: \text{renvoyer } t_1, t_2
```

Algorithme 7 Fusion de deux sous-tableaux triés

```
1: Fonction FUSION(t_1, t_2)
2:
         n_1 \leftarrow \text{taille de } t_1
         n_2 \leftarrow \text{taille de } t_2
3:
4:
         n \leftarrow n_1 + n_2
         t ← une liste vide
5:
         i_1 \leftarrow 0
6:
7:
         i_2 \leftarrow 0
         pour k de 0 à nd répéter
8:
9:
              si i_1 \geqslant n_1 alors
10:
                  AJOUTER(t, t_2[i_2])
                   i_2 \leftarrow i_2 + 1
11:
              sinon si i_2 \geqslant n_2 alors
12:
                   AJOUTER(t, t_1[i_1])
13:
                   i_1 \leftarrow i_1 + 1
14:
15:
              sinon si t_1[i_1] \leqslant t_2[i_2] alors
16:
                   AJOUTER(t, t_1[i_1])
17:
                   i_1 \leftarrow i_1 + 1
              sinon
18:
                   AJOUTER(t, t_2[i_2])
19:
20:
                   i_2 \leftarrow i_2 + 1
          renvoyer t
21:
```

Algorithme 8 Tri rapide

```
1: Fonction TRI_RAPIDE(t)
2: n ← taille de t
3: si n < 2 alors
4: renvoyer t
5: sinon
6: t<sub>1</sub>, pivot, t<sub>2</sub> ← PARTITION(t)
7: renvoyer CONCATÉNER(TRI_RAPIDE(t<sub>1</sub>), pivot, TRI_RAPIDE(t<sub>2</sub>))
```

Algorithme 9 Partition en deux sous-tableaux

```
1: Fonction PARTITION(t)
2:
       n \leftarrow \text{taille de t}
3:
       pivot \leftarrow 0
       i_pivot ← un nombre au hasard entre 0 et n-1 inclus
4:
        t_1, t_2 deux listes vides
5:
       pour k = 0 à n répéter
6:
           si k = i_pivot alors
7:
               pivot ← t[k]
8:
           sinon si t[k] \leqslant t[i\_pivot] alors
9:
10:
               AJOUTER(t_1, t[k)
           sinon
11:
12:
               AJOUTER(t_2, t[k)
13:
        renvoyer t_1, pivot, t_2
```

D Versions en place des tris

Algorithme 10 Tri fusion

Algorithme 11 Fusion de sous-tableaux triés

```
1: Fonction FUSION(t, g, m, d)
         ng \leftarrow m - g + 1
2:
3:
         nd \leftarrow d - m
         G, D ← deux tableaux de taille ng et nd
4:
         pour k de 0 à ng répéter
5:
             G[k] \leftarrow t[g+k]
6:
7:
         pour k de 0 à nd répéter
8:
             D[k] \leftarrow t[m+1+k]
         i \leftarrow 0
9:
         j ← 0
10:
11:
         k \leftarrow g
12:
         tant que i < ng et j <nd répéter
13:
              si G[i] \leqslant D[j] alors
14:
                  t[k] \leftarrow G[i]
                  i \leftarrow i + 1
15:
              sinon
16:
17:
                  t[k] \leftarrow D[j]
                  j \leftarrow j + 1
18:
              k \leftarrow k + 1
19:
         tant que i < ng répéter
20:
              t[k] \leftarrow G[i]
21:
22:
             i \leftarrow i + 1
              k \leftarrow k + 1
23:
         tant que j < nd répéter
24:
              t[k] \leftarrow D[j]
25:
              j \leftarrow j + 1
26:
              \mathbf{k} \leftarrow \mathbf{k} + 1
27:
```

Algorithme 12 Tri rapide

```
1: Fonction TRI_RAPIDE(t, p, d)
2: si p < d alors
3: i_pivot ← PARTITION(t, p, d)
4: TRI_RAPIDE(t, p, i_pivot -1)
5: TRI_RAPIDE(t, i_pivot+1, d)

> Sinon on n'arrête!
```

Algorithme 13 Partition en deux sous-tableaux

```
1: Fonction PARTITION(t, p, d)
       i_pivot ← un nombre au hasard entre p et d inclus
2:
3:
       pivot \leftarrow t[i\_pivot]
4:
       ÉCHANGER(t,d,i_pivot)
                                                                               ⊳ On met le pivot à la fin du tableau
5:
       i = p - 1
                                                        ⊳ i va pointer sur le dernier élément du premier tableau
       pour j = p à d - 1 répéter
6:
           \textbf{si} \ t[j] \leqslant pivot \ \textbf{alors}
7:
               i \leftarrow i + 1
8:
9:
               ÉCHANGER(t,i,j)
                                                                              > On échange les places de t[i] et t[j]
        t[d] \leftarrow t[i{+}1]
                                                                           ⊳ t[i+1] appartient au tableau de droite
10:
11:
        t[i+1] \leftarrow pivot
                                                                              ▶ Le pivot est entre les deux tableaux
        renvoyer i + 1
                                                                                                 ▶ La place du pivot!
12:
```