FORECASTING BISNIS

PERTEMUAN 5 Model Moving Average

Sri Herawati

Prodi Sistem Informasi Jurusan Teknik Informatika Fakultas Teknik Universitas Trunojoyo Madura 2024

TUJUAN

Tujuan Instruksional Umum (TIU)

Mahasiswa mampu memahami dan mengimplementasikan peramalan bisnis.

Tujuan Instruksional Khusus (TIK)

Mahasiswa mampu menguraikan dan menerapkan berbagai model rata-rata yang dapat digunakan untuk model peramalan bisnis.

TOPIK BAHASAN

- Model Naive
- Model Rata-rata (Moving Average)
 - Simple Average (Rata-rata Sederhana)
 - Moving Average
 - Double Moving Average

METODE NAIVE

• Pendekatan naive adalah teknik peramalan yg mengasumsikan permintaan periode berikutnya sama dengan permintaan pada periode terakhir.

$$Yt+1 = Yt$$

• Dengan kata lain, jika penjualan sebuah produk (mis: Televisi Panasonic) adalah 150 unit pada bulan Maret, maka forecasting penjualan pada bulan April akan sama, yaitu sebanyak 150 unit juga.

METODE NAIVE (NAIF)

1. Model sederhana untuk data stasioner

$$\hat{Y}_{t+1} = Y_t$$

2. Model sederhana untuk data trend

$$\hat{Y}_{t+1} = Y_t + (Y_t - Y_{t-1})$$

3. Model sederhana untuk data musiman

$$\hat{Y}_{t+1} = Y_{(t+1)-s} + \frac{(Y_t - Y_{t-1}) + \dots + (Y_{(t+1)-s} - Y_{t-s})}{s}$$

Data Penjualan

Tahun	Kuartal	t	Penjualan (dlm unit) Y
1981	1	1	80
	2	2	78
	3	3	83
	4	4	85
1982	1	5	84
	2	6	88
	3	7	90
	4	8	89
1983	1	9	86
	2	10	91
	3	11	94
	4	12	96
1984	1	13	90
	2	14	96
	3	15	100
	4	16	97

penjualan (dlm unit) Y

- Karena data time series penjualan tersebut diindikasikan merupakan data stasioner, maka:
 - Peramalan untuk kuartal pertama tahun 1984 adalah $Y_{t+1} = Y_t$ adalah $Y_{13} = Y_{12} = 96$
 - Kesalahan peramalan yang terjadi pada periode ke-13adalah $e_{13}=Y_{13(aktual)}$ $Y_{13(forecasting)}=90$ 96= -6
 - Peramalan untuk kuartal kedua tahun 1984 adalah $Y_{14} = Y_{13} = 90$
 - Kesalahan peramalan yang terjadi pada periode ke-14 adalah $e_{14}=Y_{14(aktual)}$ $Y_{14(forecasting)}=96-90=6$
 - Dst.

- o Jika dilihat dari gambar grafik titik terlihat bahwa data tidak hanya stasioner tetapi mengikuti suatu trend (penjualan meningkat dari waktu ke waktu)
- Sehingga model stasioner perlu dimodifikasi menjadi:

$$Y_{t+1} = Y_t + (Y_t - Y_{t-1})$$

- Diperoleh hasil peramalan:
 - $Y_{13} = Y_{12} + (Y_{12} Y_{11})$
 - $Y_{13} = 96 + (96 94) = 98$
- o Kesalahan peramalan:
 - $ullet e_{13} = Y_{13(aktual)} Y_{13(forecasting)} = 90 98 = -8$

- Bila diamati, data time series penjualan juga terdapat variasi musiman, dimana penjualan pada kuartal keempat umumnya lebih besar dari penjualan pada kuartal-kuartal yang lain.
- Sehingga, diindikasikan juga bahwa terdapat pola musiman, sehingga model dapat disesuaian, yaitu:

$$\hat{Y}_{t+1} = Y_{(t+1)-s} + \frac{(Y_t - Y_{t-1}) + \dots + (Y_{(t+1)-s} - Y_{t-s})}{S}$$

• Diperoleh hasil peramalan:

$$\hat{Y}_{t+1} = Y_{(t+1)-s} + \frac{(Y_t - Y_{t-1}) + \dots + (Y_{(t+1)-s} - Y_{t-s})}{s}$$
 Atau
$$\hat{Y}_{(t+1)} = Y_{(t+1)-s} + \frac{(Y_t - Y_{t-s})}{4}$$

$$\hat{Y}_{13} = Y_9 + \frac{(Y_{12} - Y_{11}) + (Y_{11} - Y_{10}) + (Y_{10} - Y_9) + (Y_9 - Y_8)}{4}$$

$$\hat{Y}_{13} = 86 + \frac{(96 - 94) + (94 - 91) + (91 - 86) + (86 - 89)}{4}$$

$$\hat{Y}_{13} = 86 + \frac{(96 - 89)}{4}$$

$$\hat{Y}_{13} = 86 + 1,75 = 87,75$$

$$Y_{13} = 86 + 1,75 = 87,75$$

• Kesalahan peramalan:

$$\begin{array}{l} \bullet \ \ \mathrm{e_{13}} = \mathrm{Y_{13(Aktual)}} \ \bullet \ Y_{13(Forecasting)} \\ = 90 - 87,75 = 2,25 \end{array}$$

METODE NAIVE

• Pendekatan naif ini merupakan model peramalan objektif yg paling efektif dan efisien dari segi biaya. Paling tidak pen-dekatan naif memberikan titik awal untuk perbandingan dengan model lain yang lebih canggih.

MOVING AVERAGE

- Simple Average (Rata-rata Sederhana)
- Moving Average
- Double Moving Average

SIMPLE AVERAGE

 Keputusan dibuat dengan menggunakan nilai-nilai data pertama sebagai bagian perlambangan dan data lampau sebagai bagian pengujian

$$\hat{Y}_{(t+1)} = \frac{1}{t} \sum_{i=1}^{t} Y_i$$

Deret gabungan dengan jumlah yang besar

$$\hat{Y}_{(t+2)} = \frac{t\hat{Y}_{(t+1)} + Y_{t+1}}{t+1}$$

DATA PENJUALAN

Tahun	Kuartal	t	Penjualan (dlm unit) Y
1981	1	1	80
	2	2	78
	3	3	83
	4	4	85
1982	1	5	84
	2	6	88
	3	7	90
	4	8	89
1983	1	9	86
	2	10	91
	3	11	94
	4	12	96
1984	1	13	90
	2	14	96
	3	15	100
	4	16	97

Peramalan untuk kuartal ke 3 tahun 1984

$$\hat{Y}_{(14+1)} = \frac{1}{14} \sum_{i=1}^{14} Y_i$$

$$\hat{Y}_{15} = \frac{1230}{14} = 87.9$$

$$e_{15} = Y_{15(Aktual)} - Y_{15(Forecasting)}$$

= 100 - 87,9= 12,1

$$\hat{Y}_{(t+2)} = \frac{t\hat{Y}_{(t+1)} + Y_{t+1}}{t+1}$$

$$\hat{Y}_{16} = \frac{14\,\hat{Y}_{15} + Y_{15}}{15}$$

$$\hat{Y}_{16} = \frac{14 * 87,9 + 100}{15} = 88,7$$

$$e_{16} = Y_{16(Aktual)} - Y_{16(Forecasting)}$$

= 97 - 88,7= 8,3

SIMPLE AVERAGE

- Salah satu teknik yang tepat ketika kemampuan runtun untuk menjadi ramalan sudah menjadi stabil, dan lingkungan di dalam runtun pada umumnya tidak berubah.
- Simple Average menggunakan rata-rata (mean) dari semua observasi-observasi pada periodeperiode sebelumnya yang relevan sebagai ramalan pada periode berikutnya.

METODE MOVING AVERAGE (RATA-RATA BERGERAK)

- Metode ini diperoleh melalui penjumlahan dan pencarian nilai rata-rata dari sejumlah periode tertentu, setiap kali menghilangkan nilai terlama dan menambah nilai baru.
- Sebuah moving average dari urutan ke k, MA (k) dihitung dengan

$$\hat{Y}_{(t+1)} = \frac{Y_t + Y_{t-1} + \dots + Y_{t-k+1}}{k}$$

Y(t+1) = nilai peramalan untuk periode selanjutnya

Yt = nilai sebenarnya pada periode t

k = jumlah perlakuan dalam moving average

MOVING AVERAGE

- Model moving averagetidak menangani trend atau musiman dengan sangat baik, walaupun itu lebih baik daripada metode simple average.
- Suatu Moving average order ke k adalah nilai rata-rata dari k observasi yang berurutan.
- Nilai moving average terbaru memberikan peramalan untuk periode selanjutnya.

Tahun	Kuartal	penjualan (dlm unit)	t	Υ	et
1981	1	80	1		70
	2	78	2	-	40 40
	3	83	3	~~ % - 5%	7.0
	4	85	4	** 	<u>+</u>
1982	1	84	5	81,5	2,5
	2	88	6	82,5	5,5
	3	90	7	85,0	5,0
	4	89	8	86,8	2,3
1983	1	86	9	87,8	-1,8
	2	91	10	88,3	2,8
	3	94	11	89,0	5,0
	4	96	12	90,0	6,0
1984	1	90	13	91,8	-1,8
	2	96	14	92,8	3,3
	3	100	15	94,0	6,0
	4	97	16	95,5	1,5

$$\hat{Y}_{17} = \frac{Y_{16} + Y_{15} + Y_{14} + Y_{13}}{4}$$

$$\hat{Y}_{17} = \frac{97 + 100 + 96 + 90}{4} = 95,75$$

MOVING AVERAGE

- Moving average sering digunakan dengan data kuartalan, atau bulanan untuk membantu kelancaraan kompenen dalam deret waktu.
- Untuk data kuartalan, moving average empat kuartalan, MA(4), menghasilkan rata-rata dari emapt penjuru dan untuk data bulanan, moving average 12 bulanan, MA(12), menghilangkan atau rata-rata keluar efek musiman.

DOUBLE MOVING AVERAGE

- Forecasting data time series yang memiliki trend linear.
- Metode ini secra tidak langsung dinamakan set pertama dihitung moving averagenya dan set kedua dihitung sebagai moving average dari set pertama

DOUBLE MOVING AVERAGE

Rumus menghitung moving average dari order ke k

$$M_1 = \hat{Y}_{t+1} = \frac{Y_{t+1} + Y_{t-1} + Y_{t-2} + \dots + Y_{t-k+1}}{k}$$

Rumus menghitung moving average kedua

$$M_1' = \frac{M_1 + M_{t-1} + M_{t-2} + \dots + M_{t-k+1}}{k}$$

menghitung peramalan dengan menambahkan selisih antara moving average pertama dan moving average kedua dengan moving average pertama

$$a_t = M_t + (M_t - M_t') = 2M_t - M_t'$$

DOUBLE MOVING AVERAGE

Faktor penyesuaian tambahan yang mirip dengan kemiringan ukuran yang dapat berubah selama runtun waktu tersebut

$$b_t = \frac{2}{k-1}(M_t - M_t')$$

$$\hat{Y}_{t+p} = a_t + b_t p$$

dengan:

k = jumlah periode dalam moving average

p= jumlah periode peramalan untuk masa mendatang

	Tahun	Kuartal	penjualan (dlm unit) Y	t	Υ	
	1981	1	80	1		
8		2	78	2	-	
		3	83	3	72	
8		4	85	4	-	
	1982	1	84	5	81,50	
3		2	88	6	82,50	
		3	90	7	85,00	1
8		4	89	8	86,75	
	1983	1	86	9	87,75	1
8		2	91	10	88,25	
		3	94	11	89,00	1
8		4	96	12	90,00	1
	1984	1	90	13	91,75	1
8		2	96	14	92,75	
		3	100	15	94,00	
		4	97	16	95,50	
8	1985	1	7/	17	95,75	

moving average untuk kuartalan

$$M_{16} = \overline{Y}_{16+1} = \frac{Y_{16} + Y_{16-1} + Y_{16-2} + Y_{16-4+1}}{4}$$

$$M_{16} = Y_{16+1} = \frac{97 + 100 + 96 + 90}{4}$$

$$M_{16} = \overline{Y}_{17} = 95,75$$

menghitung moving average ganda

$$\overline{M}_{16} = \frac{M_{16} + M_{16-1} + M_{16-2} + M_{16-4+1}}{4}$$

$$\overline{M}_{16} = \frac{95,75 + 95,50 + 94,00 + 92,75}{4} = 94,5$$

Perbedaan kedua moving average

$$\alpha_{16} = 2 M_{16} - \overline{M}_{16}$$

$$\alpha_{16} = 2(95,75) - 94,5 = 97$$

Mengatur kemiringan

$$b_{16} = \frac{2}{4-1} \left(M_{16} - \overline{M}_{16} \right)$$

$$b_{16} = \frac{2}{3} \left(95, 75 - 94, 5 \right)$$

$$b_{16} = 0,83$$

Peramalan satu periode kedepan

$$\frac{\overline{Y}_{16+1} = \alpha_{16} + b_{16} p}{\overline{Y}_{17} = 97 + (0.83 * 1) = 97.83}$$

Double Moving Average

Simple Moving Average of n periods

$$M_{\varepsilon} = \frac{y_{\varepsilon} + y_{\varepsilon-1} + \dots + y_{\varepsilon-n+1}}{n}$$

Double Moving Average of n periods

$$M_{z} = \frac{M_{z} + M_{z-1} + \cdots + M_{z-n+1}}{n}$$

Level at time t

$$a_t = 2M_t - M_t$$

Slope at time t

$$b_t = \frac{2}{n-1} (M_t - M_t)$$

Forecast at time t+m

$$F_{t+m} = a_t + b_t m$$

HASIL PENJUALAN SUATU PERUSAHAAN SELAMA 11 TAHUN TERAKHIR ADALAH SEBAGAI BERIKUT:

Tahun	penjualan
2000	801
2001	820
2002	862
2003	923
2004	1005
2005	1103
2006	1222
2007	1360
2008	1521
2009	1702
2010	1900

- 1. Hitung nilai forecasting untuk tahun 2011 dengan menggunakan :
- a. Metode Simple Average (Rata-rata Sederhana)
- b. Moving Average dan Double Moving Average dengan MA(4), MA(5), dan MA(6)
- 2. Hitung nilai MAPE dari hasil perhitungan pada point 1.b baik yang menggunakan Moving Average dan Double Moving Average?