STA 221: LECTURE 4

KRISHNA BALASUBRAMANIAN

(University of California, Davis)

Principal Component Analysis

WHAT IS PCA

- \triangleright Consider data sample $X^{(i)}in\mathbb{R}^d$.
- ▷ In linear PCA, we try to represent each data sample as linear combination of some fixed basis vector.

$$X^{(i)} = \sum_{j=1}^{p} \mathbf{v}_j \beta_j^{(i)} = \mathbf{V} \beta^{(i)}$$

where $\mathbf{V} \in \mathbb{R}^{d \times p}$ is the matrix with the basis vectors \mathbf{v}_j as its columns and $\beta_j^{(i)}$ denote the j^{th} coordinate of the vector $\beta^{(i)}$.

- Note that the basis vectors are fixed and does not change with *i* and the coefficients change with *i*.
- ightharpoonup The reasoning behind this is that, you want to represent each sample $(X^{(i)} \in \mathbb{R}^d)$ as a different linear combination $(\beta^{(i)} \in \mathbb{R}^p)$ of the same basis vector.

PRINCIPAL COMPONENT ANALYSIS (PCA)

- Data matrix can be big.
- ▷ Example: bag-of-word model
- \triangleright Each document is represented by a *d*-dimensional vector \boldsymbol{x} , where x_i is number of occurrences of word i.

number of features = number of potential words $\approx 10,000$

FEATURE GENERATION FOR DOCUMENTS

 \triangleright Bag of *n*-gram features (n=2):

The International Conference on Machine Learning is the leading international academic conference in machine learning,

(international)	2
(conference)	2
(machine)	2
(train)	0
(learning)	2
(leading)	1
(totoro)	0

(international conference)	1
(machine learning)	2
(leading international)	1
(totoro tiger)	0
(tiger woods)	0
(international academic)	1
(international academic)	1

 $10,000 \text{ words} \Rightarrow 10,000^2 \text{ potential features}$

Data Matrix (document)

▶ Use the bag-of-word matrix or the normalized version (TF-IDF) for a dataset (denoted by D):

$$tfidf(doc, word, D) = tf(doc, word) \cdot idf(word, D)$$

▷ tf(doc, word): term frequency

word count in the document) (total number of terms in the document)

▷ idf(word, Dataset): inverse document frequency

log((Number of documents)
(Number of documents with this word))

DATA MATRIX (DOCUMENT)

	angeles	los	new	post	times	york
d1	0	0	1	0	1	1
d2	0	0	1	1	0	1
d3	1	1	0	0	1	0

tf-idf

	angeles	los	new	post	times	york
d1	0	0	0.584	0	0.584	0.584
d2	0	0	0.584	1.584	0	0.584
d3	1.584	1.584	0	0	0.584	0

PCA: MOTIVATION

- ▶ Data can have huge dimensionality:
 - Reuters text collection (rcv1): 677,399 documents, 47,236 features (words)
 - ▶ Pubmed abstract collection: 8,200,000 documents, 141,043 features (words)
- ▶ Can we find a low-dimensional representation for each document?

 - Sometimes achieve better prediction performance (de-noising)
 - ▷ Visualize the data

PCA: MOTIVATION

- Orthogonal projection of data onto lower-dimensional linear space that:
 - Maximize variance of projected data (preserve as much information as possible)
 - ▶ Minimize reconstruction error

PCA: FORMULATION

ho Given (mean-zero) data $X^{(1)},\cdots,X^{(n)}\in\mathbb{R}^d$, compute the principal vector \mathbf{v}_1 by:

$$\mathbf{v}_1 = \arg\max_{\|\mathbf{v}\|_2 = 1} \frac{1}{n} \sum_{i=1}^n (\mathbf{v}^T X^{(i)})^2 = \arg\max_{\|\mathbf{v}\| = 1} \frac{1}{n} \mathbf{v}^T \widehat{X} \widehat{X}^T \mathbf{v}$$

where each column of \widehat{X} is $X^{(i)}$

 \triangleright The first principal component **w** is the leading eigenvector of $\frac{1}{n}\widehat{X}\widehat{X}^T$ (eigenvector corresponding to the largest eigenvalue)

PCA ON COVARIANCE MATRIX

Algorithm 1 Stochastic/Online Algorithm for PCA

Input: Unit-vector $\mathbf{v}^{(0)} \in \mathbb{R}^d$ (Randomly generated) and step-size β .

for $t=1,\ldots,T$ do

Sample $X^{(t)}$ from the distribution P(X).

Let $\mathbf{v}^{(t)} = \mathbf{v}^{(t-1)} + \beta X^{(t)} X^{(t)^\top} \mathbf{v}^{(t-1)}$ $\mathbf{v}^{(t)} = \frac{\mathbf{v}^{(t)}}{\|\mathbf{v}^{(t)}\|_2}$ end for

ena for

PCA: COMPUTATION

- \triangleright PCA: top-p eigenvectors of $\widehat{X}\widehat{X}^T$
- ▷ Assume $\widehat{X} = U\Sigma V^T$, then principal components are U_p (top-p singular vectors of \widehat{X})
- ▷ Projection of \widehat{X} to U_p :

$$U_p^T \widehat{X} = \Sigma_p V_p^T$$
 (p by n matrix)

Each column is the *p*-dimensional features for an observation

Word Representation

WORD2VEC: MOTIVATION

- □ Given a large text corpus, how to learn low-dimensional features to represent a word?
- ▷ Skip-gram model:

For each word w_i , define the "contexts" of the word as the words surrounding it in an L-sized window:

$$w_{i-L-2}, w_{i-L-1}, \underbrace{w_{i-L}, \cdots, w_{i-1}}_{\text{contexts of } w_i}, \underbrace{w_{i+1}, \cdots, w_{i+L}}_{\text{contexts of } w_i}, w_{i+L+1}, \cdots$$

 \triangleright Get a collection of (word, context) pairs, denoted by D.

SKIP-GRAM MODEL

(Figure from http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/)

Use bag-of-word model

- ▷ Idea 1: Use the bag-of-word model to "describe" each word
- \triangleright Assume we have context words c_1, \dots, c_d in the corpus, compute
 - $\#(w, c_i) :=$ number of times the pair (w, c_i) appears in D
- ▶ For each word w, form a d-dimensional (sparse) vector to describe w

$$\#(w, c_1), \cdots, \#(w, c_d),$$

PMI/PPMI REPRESENTATION

- ▷ Similar to TF-IDF: Need to consider the frequency for each word and each context
- \triangleright Instead of using co-ocurrent count #(w,c), we can define pointwise mutual information:

$$\begin{aligned} \mathsf{PMI}(w,c) &= \log(\frac{\widehat{P}(w,c)}{\widehat{P}(w)\widehat{P}(c)}) = \log\frac{\#(w,c)|D|}{\#(w)\#(c)}, \\ \#(w) &= \sum_c \#(w,c) \text{: number of times word } w \text{ occurred in } D \\ \#(c) &= \sum_w \#(w,c) \text{: number of times context } c \\ \mathsf{occurred in } D \\ |D| \text{: number of pairs in } D \end{aligned}$$

▶ Positive PMI (PPMI) usually achieves better performance:

$$\mathsf{PPMI}(w,c) = \mathsf{max}(\mathsf{PMI}(w,c),0)$$

 $\triangleright M^{\text{PPMI}}$: a n by d word feature matrix, each row is a word and each column is a context

PPMI Matrix

Low-dimensional embedding (Word2vec)

▶ Advantages to extracting low-dimensional dense representations:

> Improve computational efficiency for end applications Better visualization Better performance (?)

▷ Perform PCA/SVD on the sparse feature matrix:

$$M^{\mathsf{PPMI}} \approx U_k \Sigma_k V_k^T$$

Then $W^{\text{SVD}} = U_k \Sigma_k$ is the context representation of each word

(Each row is a k-dimensional feature for a word)

▶ This is one of the word2vec algorithm.

GENERALIZED LOW-RANK EMBEDDING

▷ SVD basis will minimize

$$\min_{W,V} \| M^{\mathsf{PPMI}} - WV^T \|_F^2$$

Extensions (Glove, Google W2V, . . .):

Use different loss function (instead of $\|\cdot\|_F$) Negative sampling (less weights to 0s in M^{PPMI}) Adding bias term:

$$M^{\mathsf{PPMI}} \approx WV^T + \mathbf{b}_w \mathbf{e}^T + \mathbf{e} \mathbf{b}_c^T$$

▶ Details and comparisons:

"Improving Distributional Similarity with Lessons Learned from Word Embeddings", Levy et al., ACL 2015. "Glove: Global Vectors for Word Representation", Pennington et al., EMNLP 2014.

RESULTS

The low-dimensional embeddings are (often) meaningful:

(Figure from https://www.tensorflow.org/tutorials/word2vec)