CSo/CpE 142 - Exam 2

Same

1) Fill in the blanks /Short answer (30 points, 3 points each)

List two primary methods for enhancing instruction-level pseudiclisto.
 L. Respect Publisher.

Multa week Popular

- miss.
- Addit Income is a scheme (policy) in which writes always update both cache and the next lower level of memory hierarchy, ensuring that the data is always consistent between the
- d) Temperal one lines the principle stating that if a data location is referenced, then it will tend to be referenced again soon.
- e) Pipeline 3. is a method of resolving a branch hazard that assumes a given outcome for the branch and proceeds based on that assumption rather than waiting for the actual outcome.
- f) Increasing block Si2. can improve hit ratio due to temporal locality.
- g) In a direct-mapped cache each block has only one word. True or False.)
- i) Consider a 2-bit branch prediction scheme illustrated by the following figure. What is the accuracy of this 2-bit predictor for the following pepeating pattern of branch outcomes assuming the predictor starts in the top left state?

T, NT, NI, NI, NI, NI, NI, T, T, hMbhhhhhhh

- j) List three types of hazards that can degrade the performance of a pipelined datapath.
 - i) Control Wzard ii) Structural hazard
 - iii) Data hazard

CSo/CpE 142 - Exam 2

Name.

Consider the pipelined system shown below. Find the number of cycles required to execute the tollowing MIPS code assuming that branch is taken, Justify your result. (20 points)

SLT \$6, \$8, \$7	E	TD.	Ex	At	134		Till I		7					1
LW \$5, 100(\$6)		TE	ID.	Ex	PA	UB		B					1	0
LW \$7, 100(\$15)		1		130	man-	IM	WE				-		1	
BEQ \$8, \$15, L11		100	1	左岸	TO	世	H	1	364					
SUB \$9, 57, \$4			1	1	1	1		4	ment .				1	
SUB \$20, \$9, \$7		188		100		1	1	٦		=				
LW \$8, 100(59)				117	100	1	6	d			-			
ADD \$11, \$8, \$13		1	+	-	+	12	10	믜	E8	1 D	MB	-		-
SW \$8, 104(\$9)			1	4	-10		13	E	SO	JP	100	M	1000	1
		110				1				13.E	10	E.	15	MB

Norma

3) A computer uses 16-bit addresses, with byte addressable locations. Assume our system cache containing 32 (thirty two). 8-word blocks. Each word is 16 bits long. Show the implementation of the cache assuming 2-way set associativity.

- You need to show how a given 16-bit address is divided into different parts to perform a
 cache reference. Show all necessary components of the cache. Provide the size of each
 component and the widths of its inputs and outputs, if applicable. (15 points)
- Assume the cache is empty. Find the number of misses for the following hexadecimal address sequence: 0, 5, 4, 7, 20, 21, 23, 8, C, FC. (10 points)

Dec	hex 1		1
0	0	miss	
5	5	kit	
4	4	hit	1
7	7	hit	1
32	20	M 155	1
33	21	hit	1
35	23	hit	1
8	8	hi+	1
12	C	hit	1
252	FC	m 155	

why? ,3

3 misses

CSoCpB 142 - Exam 2 4) Consider a hypothetical 16-bit assembly language with only three instructions. these instructions is given below. Design a pipelined CPU which can fetch and execute any of these instructions. Show all necessary components. Label each component (including its ports). Assume that the memory is byte-addressable. The internal design of the control logic is not required. You must use minimum number of components possible. (25 points) Bits (15 - 12) bits (11-8) (7 - 4) bits (3 - D) Instruction Operand 3 operation opcode operand 1 operand 2 Swaps the contents of operand 1 and SWAP Reg 2 Reg 1 not used operan2; Reg 1 - Reg 2 Reg 2 - Reg! 9009 Reg 1 - Reg 3 - Reg 2 coto Reg.2 Rep 3 AD() Reg 1 Reg 3 Reg 1 - Reg 3 - Reg 2 SLD Reg 2 1000 Reg 1 Control Edus RDI RA 202 RAL 603 RAS Tretare 135 desination adole . - 2 MUX Fernandurg manylete -3