Bases de Datos Geográficas

Taller de Sistemas de Información Geográfica

Open Geospatial Consortium (OGC)

- El Open Geospatial Consortium (OGC) es un consorcio internacional que agrupa empresa, universidades y organismos estatales (alrededor de 400) con las siguientes metas fundamentales:
 - Proveer de estándares abiertos, gratuitos y públicos.
 - Liderar la creación de estándares que permitan que el contenido y los servicios geo-espaciales se integren a procesos cívicos y de negocios, la Web Espacial y los Sistemas Empresariales
 - Facilitar la adopción de arquitecturas de referencia abiertas en materia de información espacial.

OGC Simple Features Standard (SFS)

- OGC define un modelo de datos para objetos espaciales conocido como Simple Features Standard (SFS)(Estandar ISO 19115).
- El estándar se divide en dos partes:
 - Arquitectura común (Modelo de Objetos)
 - Implementación en SQL (Permite construir bases de datos geográficas)

Diagrama de Clases UML

- Geometry (abstracta)
 - Es la clase base de la jerarquía.
 - Permite representar geometrías planas (hasta 2 dimensiones) en espacios de coordenadas R2, R3 y R4.
 - Métodos básicos:
 - dimension(): La dimensión inherente a la geometría. Devuelve
 - -1 si geom. vacía
 - 0 si longitud=área=0
 - 1 si longitud ≠ 0, área=0
 - 2 si longitud ≠ 0, área ≠ 0
 - geometryType(): Devuelve el subtipo concreto al que pertenece el objeto (ej. Polygon, MultiLineString, etc.)

- > SRID(): Devuelve el ID del Sistema Espacial de Referencia utilizado para georreferenciar este objeto.
- asText(): Devuelve la representación WKT del objeto.
- asBinary(): Devuelve la representación WKB del objeto.
- isSimple(): Devuelve 1 si el objeto representa una geometría sin propiedades anómalas, como autointersecciones o autotangencia.
- isEmpty(): Devuelve 1 si el objeto representa la geom. vacía (ningún punto). El conjunto vacío es simple.
- > is3D(): Devuelve 1 si el objeto tiene una coordenada z.
- isMeasured(): Devuelve 1 si el objeto tiene una coordenada m.
- boundary(): Devuelve otra geometría con la frontera de este objeto.
- envelope(): Devuelve el mínimo rectángulo delimitador (minimum bounding box, MBR) que contiene a la geometría.

Geometry dimension(): Integer coordinateDimension(): Integer spatialDimension(): Integer geometry Type(): String SRID(): Integer envelope(): Geometry asText(): String asBinary(): Binary isEmpty(): Boolean isSimple(): Boolean is3D(): Boolean isMeasured()(): Boolean boundary(): Geometry query equals(another: Geometry): Boolean disjoint(another : Geometry) : Boolean intersects(another: Geometry): Boolean touches(another: Geometry): Boolean crosses(another : Geometry) : Boolean within(another : Geometry) : Boolean contains(another: Geometry): Boolean overlaps(another: Geometry): Boolean relate(another : Geometry, matrix : String) : Boolean locateAlong(mValue : Double) : Geometry locateBetween(mStart :Double, mEnd :Double) : Geometry analy sis distance(another: Geometry): Distance buffer(distance : Distance) : Geometry convexHull(): Geometry intersection(another: Geometry): Geometry union(another: Geometry): Geometry difference(another: Geometry): Geometry symDifference(another: Geometry): Geometry

Point

- Objeto geométrico 0D (punto).
- Coordenadas x,y (z,m opcionales).
- Su frontera es el conjunto vacío.
- Posee métodos para obtener sus coordenadas

Curve (abstracta)

- Objeto geométrico 1D que representa la curva definida por una secuencia de puntos y la interpolación entre los mismos.
- o Métodos:
 - length(): el largo en su SRS asociado
 - startPoint(), endPoint(): punto inicial y final
 - IsClosed(): devuelve 1 si startPoint=endPoint
 - IsRing(): devuelve 1 si IsClosed()=1 y no pasa mas de una vez por el mismo punto (es simple).

LineString

- Es una curva con interpolación lineal entre los puntos.
- o Métodos:
 - numPoints(): devuelve cantidad de puntos
 - pointN(): devuelve el punto N

Line

- Es un LineString de 2 puntos (un segmento de recta)
- LinearRing
 - En un LineString simple y cerrado (un anillo)

Diferentes tipos de LineString

- Surface (abstracta)
 - Objeto geométrico 2D que representa una superficie.
 - o Métodos:
 - area(): devuelve el área en el SRS correspondiente.
 - centroid(): devuelve el centroide (baricentro) de la superficie (puede ser un punto exterior)
 - pointOnSurface(): devuelve un punto cualquiera perteneciente a la superficie.

Polygon

- Es una superficie plana definida por un LinearRing exterior y 0 o más LinearRings interiores, para permitir polígonos con huecos.
- Los polígonos son objetos simples: no existe intersección entre sus contornos.
- Métodos:
 - exteriorRing(): devuelve el anillo exterior
 - numInteriorRings(): devuelve la cantidad de anillos interiores.
 - interiorRingN(): devuelve el anillo interior N

GeometryCollection

- Colección de geometrías de cualquier tipo
- No existe relación implícita entre sus elementos.
- Todos sus elementos deben estar en el mismo SRS.
- Permite trabajar con un conjunto de geometrías como una unidad que tiene atributos no espaciales comunes.
 - Ej. La red fluvial uruguaya, los territorios del Reino Unido y sus islas, etc.

MultiPoint

- Colección geométrica de puntos.
- Su frontera es el conjunto vacío.
 - Un multipunto es simple si no tiene puntos repetidos.

- MultiLineString
 - Es una MultiCurve cuyos elementos son LineStrings.
- MultiPolygon
 - Es una MultiSurface cuyos elementos son Polygons.

Well-know Binary (WKB)

- Permite representar geometrías mediante un flujo de bytes.
- Ej. un polígono determinado por dos anillos puede representarse de la siguiente manera.

B=1	т=3	NR=	NP=	х1	Y1	X2	¥2	х3	У 3	NP=	х1	Y1	X2	¥2	х3	У З	
-----	-----	-----	-----	----	----	----	----	----	------------	-----	----	----	----	----	----	------------	--

B = orden de bytes

T = tipo de figura (polígono)

NR = numero de anillos (2)

NP = numero de puntos (3 para cada anillo)

Well-know Text (WKT)

- Permite representar geometrías mediante un texto legible por personas.
- Ej. Punto, Línea, Multilínea, Polígono, Multipolígono en WKT.

```
POINT (2572292.2 5631150.7)

LINESTRING (2566006.4 5633207.9, 2566028.6 5633215.1, 2566062.3 5633227.1)

MULTILINESTRING ((2566006.4 5633207.9, 2566028.6 5633215.1), (2566062.3 5633227.1, 2566083 5633234.8))

POLYGON (2568262.1 5635344.1, 2568298.5 5635387.6, 2568261.04 5635276.15, 2568262.1 5635344.1);

MULTIPOLYGON (((2568262.1 5635344.1, 2568298.5 5635387.6, 2568261.04 5635276.15, 2568262.1 5635344.1), (2568194.2 5635136.4, 2568199.6 5635264.2, 2568200.8 5635134.7, 2568194.2 5635136.4)))
```


Relaciones Topológicas

- La topología se define matemáticamente como la rama que estudia las propiedades de los cuerpos o figuras geométricas que se mantienen invariantes bajo una transformación contínua.
- Informalmente, esas propiedades son las no cambian cuando se realiza una deformación "elástica" sobre las figuras.
 - Ej. Dos países limítrofes en un mapa plano en papel deben seguir siéndolo en un globo terráqueo.
- En GIS, se focaliza en las reglas y propiedades que deben cumplir los elementos de una misma capa o de varias para considerarse bien definidos.
 - Ejs. Las líneas que definen un polígono debe ser cerradas; las líneas de una capa de calles deben coincidir con los límites de los polígonos de una capa de manzanas.

Clasificación de Operaciones Espaciales

- Podemos clasificar las operaciones espaciales en 4 grupos:
 - Teoría de conjuntos: Unión, Intersección, Diferencia, etc.
 - Ej. La intersección de dos polígonos produce un polígono, o una línea, o un punto, o vacío.
 - Topológicas: Toca, Superpone, etc.
 - Ej. La frontera de Uruguay toca la frontera de Argentina (Uruguay y Argentina son polígonos)
 - Métricas: Área, Distancia, etc.
 - Ej. La distancia entre Montevideo y Atlántida es de 45 km.
 - Direccionales: Norte, Sur, Sureste, etc.
 - Ej. La ciudad de Rocha se encuentra al Noreste de Punta de Este.

- Equals: las dos figuras son iguales.
- Disjoint: las dos figuras son disjuntas.
- Touches/Meets: las dos figuras tienen al menos un punto común en sus fronteras.
- Crosses: las figuras se cruzan (significado varía según figura)
- Within/Inside: la primera figura está adentro de la segunda
- Contains: la primera figura contiene a la segunda
- Overlaps: al menos un punto común en interiores,

exteriores y fronteras.

- Modelo de las 9 Intersecciones (9IM)
 - Se define una matriz binaria 3x3 para un par de figuras geométricas A y B de la siguiente manera, en base a los conjuntos frontera, interior y exterior

$$\mathfrak{I}_{9}(A,B) = \begin{pmatrix} A \cap B & A \cap \partial B & A \cap B^{-} \\ \partial A \cap B & \partial A \cap \partial B & \partial A \cap B^{-} \\ A^{-} \cap B & A^{-} \cap \partial B & A^{-} \cap B^{-} \end{pmatrix}$$

- Esto nos permite caracterizar las operaciones topológicas según la intersección sea vacía o no.
 - Ej. disjoint=((0 0 1) (0 0 1) (1 1 1))

- Modelo dimensionalmente extendido de las nueve intersecciones (DE-9IM)
 - A veces no alcanza con saber que dos geometrías se intersecan.
 Por ejemplo, queremos saber si dos líneas se intersecan en un punto o en un segmento.
 - Para esto se extiende la matriz anterior con la dimensión de la intersección en lugar de un valor binario.

- Los valores de cada celda pueden ser 0, 1, 2, T,
 F, *. T es cualquier valor en {0,1,2}, F es el conjunto vacío, * es cualquier valor anterior.
- Ej. Dos líneas que se intersecan en un punto ((0 * 1)(* * *)(1 * *))
- Ej. Dos líneas que se intersecan en un segmento ((1 * 1)(* * *)(1 * *))

Equals

Equ	l(b)	B(b)	E(b)
I(a)	Т	*	F
B(a)	*	*	F
E(a)	F	F	*

Disjoint

Dis	l(b)	B(b)	E(b)
I(a)	F	F	*
B(a)	F	F	*
E(a)	*	*	*

Touches

ST_Point/ST_Linestring

ST_MultiPoint/ST_Linestring

ST_MultiPoint/ST_Polygon

ST_Point/ST_Polygon

ST_Linestring/ST_Polygon

Tou1	l(b)	B(b)	E(b)
I(a)	F	Т	*
B(a)	*	*	*
E(a)	*	*	*

Tou2	l(b)	B(b)	E(b)
I(a)	F	*	*
B(a)	Т	*	*
E(a)	*	*	*

Tou3	l(b)	B(b)	E(b)
I(a)	F	*	*
B(a)	*	Т	*
E(a)	*	*	*

Crosses

Cro	l(b)	B(b)	E(b)
I(a)	Т	*	Т
B(a)	*	*	*
E(a)	*	*	*

Cro0	l(b)	B(b)	E(b)
I(a)	0	*	*
B(a)	*	*	*
E(a)	*	*	*

Within

Wit	l(b)	B(b)	E(b)
I(a)	Т	*	F
B(a)	*	*	F
E(a)	*	*	*

Contains

Con	l(b)	B(b)	E(b)
I(a)	Т	*	*
B(a)	*	*	*
E(a)	F	F	*

Overlaps

ST_MultiPoint/ST_MultiPoint

Ove	l(b)	B(b)	E(b)
I(a)	Т	*	Т
B(a)	*	*	*
E(a)	Т	*	*

SFS - SQL

- Se definen 3 tipos de tablas:
 - FEATURE_TABLE: Es toda tabla que almacena un conjunto de features (objetos geográficos). Corresponde al concepto de layer (capa geográfica). Cada fila es un objeto geográfico y cada columna es una propiedad de ese objeto. Una de esas columnas debe corresponder a la geometría de ese objeto (o una FK a la misma).
 - Ej. Una capa de polígonos que representan ciudades la representamos como una feature table Ciudad(nombre, país, población, geometría, gid)

SFS - SQL

- GEOMETRY_TABLE : Es toda tabla que almacena geometrías, en el caso que la feature table correspondiente no las almacene directamente. Cada fila posee un identificador geográfico (GID).
- GEOMETRY_COLUMNS: Tabla de metadatos que posee una fila por cada columna geometría de la base, con los siguientes atributos:
 - > ID de la feature table a la que corresponde la columna geometría
 - El nombre de la columna geometría
 - El SRID de la columna geometría
 - El tipo de geometría (Point, LineString, etc)
 - La dimensión del SRS utilizado (2D, 3D, etc.)
 - El ID de la geometry_table que almacena la geometría (podría ser la misma feature table)

SFS - SQL

- SPATIAL_REF_SYS: Es el diccionario de códigos de sistemas de referencia espaciales (SRS). Solamente es necesaria para hacer operaciones de re-proyección, pero resulta útil para consulta durante el desarrollo. Dentro de esta tabla, interesan particularmente los campos SRID y STEXT.
 - Ej. Queremos obtener el SRID de la proyección que corresponde al datum Yacaré (

```
SELECT srid FROM spatial_ref_sys WHERE srtext LIKE '%Yacare%';
```

srid = 4309

SFS - SQL

Table 4: Geometry type codes

	Table 4: Geometry type	
Code	Geometry type	Coordinates
0	GEOMETRY	// IN X Y
1	POINT	// IN X Y
2	LINESTRING	// IN X Y
3	POLYGON	// IN X Y
4	MULTIPOINT	// IN X Y
5	MULTILINESTRING	// IN X Y
6	MULTIPOLYGON	// IN X Y
7	GEOMCOLLECTION	// IN X Y
13	CURVE	// IN X Y
14	SURFACE	// IN X Y
15	POLYHEDRALSURFACE	// IN X Y
1000	GEOMETRYZ	\\ IN X Y Z
1001	POINTZ	// IN X Y Z
1002	LINESTRINGZ	// IN X Y Z

Couc	ocomeory oype	ooolaliiabeb
	POLYGONZ	
	MULTIPOINTZ	
	MULTILINESTRINGZ	
	MULTIPOLYGONZ	
	GEOMCOLLECTIONZ	
1013		\\ IN X Y M
	SURFACEZ	
	POLYHEDRALSURFACEZ	
1	GEOMETRY	
1	POINTM	
	LINESTRINGM	
2003		\\ IN X Y M
	MULTIPOINTM	
	MULTILINESTRINGM	
	MULTIPOLYGONM	
2007	GEOMCOLLECTIONM	
2013		
		\\ IN X Y M
	POLYHEDRALSURFACEM	
	GEOMETRYZM	
	POINTZM	
3002	LINESTRINGZM	\\ IN X Y Z M

- Utilizaremos las siguientes feature tables:
 - Ciudades(gid, código, nombre, población, geom), capa de polígonos.
 - Calles (gid, código, nombre, geom), capa de líneas.
 - Hoteles (gid, nombre, dirección, estrellas, capacidad, geom) capa de puntos.
 - Rios(gid, nombre, geom), capa de líneas
- Operadores en el SELECT
 - Obtener nombre, código y área de la ciudad de Montevideo: SELECT c.nombre, c.codigo, ST_AREA(c.geom) AS area FROM Ciudades c WHERE c.nombre='Montevideo';

- Obtener nombre y longitud de la calle con codigo=223
 SELECT r.nombre, ST_LENGTH(r.geom) AS longitud
 FROM Calles r WHERE r.codigo=223;
- Listar las nombre y densidad de poblacion de ciudades en orden decreciente de densidad:

SELECT c.nombre, c.poblacion/ST_AREA(c.geom) AS densidad FROM Ciudades c;

ORDER BY densidad DESC;

- Operadores en el WHERE (Join Espacial):
 - Obtener la cantidad de hoteles 4 estrellas en la ciudad de Colonia:
 - SELECT COUNT(h.nombre) FROM Hoteles h, Ciudades c WHERE ST_CONTAINS(c.geom, h.geom)
 - AND c.nombre='Colonia' AND h.estrellas=4
 - Listar todas las ciudades que se encuentren a menos de 100 km del río Uruguay
 - SELECT c.nombre FROM Ciudades c, Rios r
 - WHERE ST_OVERLAPS(c.geom, ST_BUFFER(r.geom, 100))
 - AND r.nombre='Uruguay'

Selecciona las calles que se cruzan con un río en un segmento:

SELECT c.nombre

FROM Calles c, Rios r

WHERE ST_Relate(c.geom, r.geom, '1*1***1**');

Concepto de índice:

- Estructura de datos física de acceso que se define en base a uno o más campos de un archivo. En un DBMS, se definen índices sobre tablas (en lugar de archivos).
- Hacen más eficiente el acceso a registros en operaciones donde intervienen campos indizados.
- Clasificación según campos: índices primarios, índices de agrupamiento, índices secundarios.
- En los DBMS se utilizan comúnmente árboles B y B+.
- Los árboles B son apropiados para tipos de datos que pueden ser ordenados sobre un eje.
 - Ej. 1 < 5 (enteros), 'Brasilia' < 'Montevideo' (strings)</p>
 - Ej. Cómo defino Point(1,0) < Point(0,1)?</p>

Árboles R

- Balanceados
- Cada nodo es un rectángulo
- Nodo hijo dentro de nodo padre (WITHIN)
- Superposición es posible entre rectángulos (OVERLAP)
- Idea: construyo un rectángulo por cada objeto geográfico. El rectángulo es el Minimum Orthogonal Bounding Rectangle (MBR), también llamado Bounding Box o Envelope (Rectángulo Delimitador). Luego construyo rectángulos que contienen completamente a los anteriores y así sucesivamente.

□ Árboles R+

No se permite superposición entre rectángulos del árbol.

- Paradigma Filtrar-Refinar para procesar consultas
 - Filtrar: Encontrar un superconjunto del conjunto solución, más chico que el superconjunto total. Se utilizan operadores y tipos de datos aproximados. (OVERLAP y MBR)
 - Refinar: Encontrar conjunto solución. Se utilizan los operadores y tipos de datos exactos de la consulta.
 - Ej. Seleccionar la línea que cruza la estrella.

- Filtrar: Encuentro líneas L tales que OVERLAP(MBR(E), MBR(L))
- Refinar: Entre los L encontrados, aplico CROSSES(E,L) para llegar a la solución.
- Ventaja de utilizar índices espaciales: En el primer paso, trabajo exclusivamente con geometrías del árbol (rectángulos) y una sola operación. Solamente en el segundo paso leo la geometría exacta del objeto geográfico y aplico la operación espacial exacta.
- Alguna implementaciones de SDBMS utilizan Árboles de Búsqueda Generalizados (Generalized Search Trees, GiST) para implementar Árboles R. Ej. PostGIS.

OGC Geography Markup Language (GML)

- GML es una gramática escrita como XML Schema que permite almacenar y transportar información geoespacial.
 - xmlns:gml="http://www.opengis.net/gml"
- Codificación estándar para modelos OGC (por ejemplo, para SFS).
- Posee un conjunto de esquemas (.xsd) para diferentes aplicaciones (llamados application schemas):
 - Objetos geográficos, Sistemas de Referencia Coordenados (CRS),
 - Topologías, Información Temporal y Objetos Dinámicos, Unidades de Medida, Direcciones, Observaciones, Coberturas, etc.

OGC Geography Markup Language (GML)

Ejs. LinesString y Polygon

```
<gml:LineString>
      <gml:posList> 45.256 -110.45 46.46 -109.48 43.84 -109.86 /gml:posList>
</gml:LineString>
<gml:Polygon>
      <gml:exterior>
           <gml:LinearRing>
           <gml:posList> 45.256 -110.45 46.46 -109.48 43.84 -109.86 45.256 -
110.45 </gml:posList>
           </gml:LinearRing>
      </gml:exterior>
</gml:Polygon>
```


Implementaciones de SFS-SQL

- Libres:
 - PostgreSQL/PostGIS (desde: 2001)
 - MySQL Spatial Extensions (desde: 2003)
- Algunas comerciales:
 - Oracle Spatial (desde: 1998)
 - ESRI ArcSDE (desde: 1996)
 - SQL Server (desde: 2008)

- Extiende el DBMS PostgreSQL.
- Incluye todos los tipos OGC SFS-SQL
- Agrega representación EWKT, EWKB que incluyen SRID en la geometría.
- Agrega algunas geometrías OGC SQL-MM (curvas con interpolación no lineal).
- Agrega tipo Geography: solo coordenadas geográficas. Ventaja: exactitud global (no hay proyecciones). Desventaja: Operaciones complejas (menos performance).
- Utiliza Feature Tables con GID y geometría (No hay Geometry Tables).
- Utiliza índices GiST.

- Creación de una base de datos geográfica
 - Se utiliza el template postgis o se corren los script SQL lwpostgis.sql (crea tipos y funciones geo-espaciales) y spatial_ref_sys.sql (crea la tabla del mismo nombre).
- Creación de una capa geográfica a partir de un shapefile
 - Se utiliza el programa shp2pgsql
 - Ej. shp2pgsql -s 32721 -l departam_shp departamento geodb > "departamento.sql"
 - En este caso se crea la tabla departamento de la base geodb a partir del shapefile departam_shp. Se especifica el SRID 32721 y la creación de índice espacial (sobre el campo geometry).

- Creación de una capa geográfica desde cero
 - Se crea una tabla sin la columna geográfica
 - Se utiliza la función AddGeometryTable que crea la columna y la registra en la tabla Geometry_Columns.

```
CREATE TABLE calles (id integer, nombre varchar);
```

SELECT AddGeometryColumn('calles', 'the_geom', 32721, 'LINESTRING', 2);

CREATE TABLE hoteles (id integer, nombre varchar, lat real, lon real);

SELECT AddGeometryColumn('hoteles', 'the_geom', 32721, 'POINT', 2);

- Insertar una geometría a partir de coordenadas
 - Creamos la geometría de cada registro a partir de los valores de los campos lat y lon de la tabla:

UPDATE hoteles

SET the_geom = GeomFromText('POINT(' || Ion || ' ' || Iat || ')',32721);

- Transformación a GML
 - Función AsGML(Geometry) permite obtener la representación en GML de un objeto geográfico.
 - SELECT AsGML(the_geom) from calles;

Referencias

- Simple Features Standard
 - http://www.opengeospatial.org/standards/sfs
- PostGIS
 - http://postgis.refractions.net/documentation/manual-1.4/
- ArcSDE
 - http://resources.arcgis.com/content/web-based-help
- Curso "Análisis de Datos en SIG". Docente: A. Vaisman

