Final de Lógica 2006

1. Sea $\varphi \in F^{\tau}$ tal que las únicas variables que ocurren normalmente en φ estan en $\{x_1, x_2\}$. Sea $\varphi' =$ resultado de reemplazar cada ocurrencia normal de x_1 en φ por x_3 y cada ocurrencia normal de x_2 en φ por x_4 . Pruebe que

 $V^{\mathbf{A}}(\varphi,(a_1,a_2,a_3,a_4,a_5,a_6,...)) = V^{\mathbf{A}}(\varphi',(a_1,a_2,a_1,a_2,a_5,a_6,...))$ cualesquiera sean la estructura de tipo τ , \mathbf{A} y $(a_1,a_2,a_3,a_4,a_5,a_6,...) \in A^{\mathbf{N}}$.

- 2. V o F, justifique
 - a. Sea $A = \{a, b\}$, con $a \neq b$. Hay exactamente dos estructuras de tipo $\{s^2, i^2\}$ con universo igual a Λ .
 - b. Sca $\tau = (\emptyset, \emptyset, \{r^2\}, a)$. En el algebra de Lindenbaum $\mathcal{A}_{(\emptyset, \tau)}$ se tiene que $[\exists x \forall y \ r(x, y)] < [\forall y \exists x \ r(x, y)]$.
 - c. Sea θ una congruencia del reticulado acotado (L, s, i, 0, 1). Si $(0, 1) \in \theta$, entonces $\theta = L \times L$.
- 3. Para la siguiente formula de tipo $\tau=(\{1\},\{f^2\},\{r^2,h^3\},a)$ encuentre una equivalente en forma normal prenexa

 $(\exists z (f(z, u) \equiv 1) \rightarrow (\forall x \ h(x, u, y) \land \exists y \ r(x, x)))$

Sea τ = (∅, {s², i², f¹}, {≤²}, a) y sea Σ igual al resultado de agregarle a Σ_{ret} los siguientes axiomas:

 $\forall x, y \ x \leq y \to f(x) \leq f(y)$

 $\forall x, y \ f(x) \le f(y) \to x \le y$

 $\forall x \exists y \ x = f(y)$

De una prueba de $(\Sigma, \tau) \vdash \forall x, y \ f(x \mid y) = f(x) \mid f(y)$