EJERCICIOS

Ejercicio 1.

Aplicamos una tensión alterna de 10 V, 50 Hz a una bobina ideal cuyo coeficiente de autoinducción es de 24 mH. Hallar la intensidad resultante.

(1,32 A)

Ejercicio 2.

Hallar la potencia y la intensidad absorbidas por un condensador de 60 µF al conectarlo a una red de 127 V, 60 Hz.

(2,87 A, 364,9 VAr)

Ejercicio 3.

Una reactancia inductiva tiene una potencia eficaz de 1.000 VAr al aplicarle una tensión de 380 V, 50 Hz.

Hallar su intensidad de consumo y su coeficiente de autoinducción.

(2,63 A, 460 mH)

Ejercicio 4.

Hallar la expresión de la intensidad y de la potencia de un condensador que tiene una potencia eficaz de 500 VAr al aplicarle una tensión de 240 V, 100 Hz.

Ejercicio 5.

A una autoinducción de 100 mH le aplicamos una tensión senoidal de 50 V, y 12 Hz.

Hallar la intensidad eficaz y los valores instantáneos de intensidad y potencia a los 30 milisegundos de comenzado el ciclo de tensión.

(6,64 A. 5,91 A. 391,2 W)

Ejercicio 6.

Aplicamos una onda senoidal de tensión máxima 66 V y 300 Hz de frecuencia, a un condensador de 1000 μF.

Hallar las expresiones algebraicas de la intensidad y de la potencia, y sus respectivos valores eficaces.

Hallar los valores instantáneos de ambas, transcurrido I milisegundo del comienzo del ciclo de tensión.

Ejercicio 7.

La reactancia de un condensador a 30 Hz es de 4 Ω .

Hallar la intensidad y la potencia eficaces al aplicarle una tensión alterna de 500 V, 100 Hz.

Hallar la potencia eficaz si la frecuencia fuera de 60 Hz.

(414 A. 207,3 VAr. 124,3 VAr)

Ejercicio 8.

Disponemos de un condensador cuya reactancia a 50 Hz es la mitad que la de una bobina de 30 mH a igual frecuencia.

Le aplicamos una tensión senoidal de 100 V. y consume 4 A.

Hallar la frecuencia de esta tensión y la potencia instantánea cuando se ha realizado 1/3 del recorrido de la onda de tensión.

(9,42 Hz. -33,68 W)