Absolue Continuité d'une mesure par rapport à une autre

Soit (X, \mathcal{B}) un espace mesurable et λ , μ deux mesures finis sur (X, \mathcal{B}) . On suppose que, pour tout $A \in \mathcal{B}$, on a $\lambda(A) = 0 \Longrightarrow \mu(A) = 0$. Démontrer que pour tout $\epsilon > 0$, il existe $\eta > 0$ tel que, $\forall A \in \mathcal{B}$, $\lambda(A) < \eta \Longrightarrow \mu(A) < \epsilon$.

Procédons par absurde en supposant l'existence de $\epsilon>0$ tel que pour tout $\eta>0$ tel qu'il existe $A_\eta\in\mathcal{B},$ $\lambda(A_\eta)<\eta$ et $\mu(A_\eta)\geq\epsilon$. Fixons un tel $\epsilon>0$, et prenant $\eta=2^{-n}$, il existe $A_n\in\mathcal{B}$ tel que $\lambda(A_n)<2^{-n}$ et $\mu(A_n)\geq\epsilon$. Pour tout $n\in\mathbb{N}$, on pose $B_n=\bigcup_{k>n}A_k$. Il est clair que

$$\lambda(B_n) \le \sum_{k \ge n} \lambda(A_k) = \sum_{k \ge n} 2^{-k} = 2^{-n+1}$$

De plus la suite des parties mesurables (B_n) est décroissante, il vient

$$\lambda\bigg(\bigcap_{n\geq 0}B_n\bigg)=\lim_{n\to\infty}B_n=0$$

Mais

$$\mu\bigg(\bigcap_{n\geq 0}B_n\bigg)=\lim_{n\to\infty}B_n\geq\epsilon$$

Et ceci contredit l'hypothèse initiale.