

Keras for Deep Learning Research

Overview

- Quick Review of Previous Topics and NNs
- Convolutional Neural Networks (CNN)
- Hyperparameters of CNN
- Image classification with CNN

Preparing data for w2vec

Deep Learning

- Single Neuron
- We now understand how to perform a calculation in a neuron
 - $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} = \mathbf{z}$
 - $a = \sigma(z)$

Previously we learned: Image classification on MNIST dataset using NN

- Just like the simple perceptron, CNNs also have their origins in biological research.
- Hubel and Wiesel studied the structure of the visual cortex in mammals, winning a Nobel Prize in 1981.

• Their research revealed that neurons in the visual cortex had a small local receptive field.

- This idea then inspired an ANN architecture that would become CNN
- Famously implemented in the 1998 paper by Yann LeCun et al.
- The LeNet-5 architecture was first used to classify the MNIST data set.

There are four main operations in the CNN

- Convolutions and Filters
- Pooling or Sub Sampling
- Non Linearity
- Classification (Fully Connected Layer)

Traditional Neural Network vs. Convolutional Neural Network

Traditional Neural Network vs. Convolutional Neural Network

= *3,000,000,000* features

Traditional Neural Network vs. Convolutional Neural Network

Salient points:

- Spatial relation between features in image is not considered in NN.
- NN is not feasible for large images!
- In order to perform Computer Vision operations on large images, convolution operation plays an important role.
- Thus, CNNs are fundamentally important.

Stages of feature extraction by CNN

Low level features

Edges, curves and colour

Parts of objects

High level features

Complete objects

Vertical Edge Detection

3	0	1	2	7	4
1	5	8	တ	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

*

-1	0	1
-1	0	1
-1	0	1

=

Vertical Edge Detection

3	0 °	1	2	7	4
1 -1	5°	8	9	3	1
2 -1	7 °	2 1	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

*

-1	0	1
-1	0	1
-1	0	1

5		

Vertical Edge Detection

3	0 -1	1 °	2 1	7	4
1	5	8 °	9 1	3	1
2	7	2 °	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

-1 0 1

5 4

Vertical Edge Detection

3	0	1	2 °	7 1	4
1	5	8 -1	9°	3	1
2	7	2 -1	5 °	1 1	3
0	7	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

*

-1	0	1
-1	0	1
-1	0	1

5	4	0	

Vertical Edge Detection

3	0	1	2 -1	7 °	4
1	5	8	9	3 °	1 1
2	7	2	5	1 °	3 1
0	7	თ	7	7	8
4	2	1	6	2	8
2	4	5	2	3	9

*

-1	0	1
-1	0	1
-1	0	1

5	4	0	-8

Vertical Edge Detection

3	0	1	2	7	4
1	5	8	9	3	1
2 -1	7 °	2 1	5	1	3
0 -1	1 °	3 1	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

-1 0 1

 5
 4
 0
 -8

 10
 -8

Vertical Edge Detection

3	0	1	2	7	4
1	5	8 °	9	3	1
2	7 -1	2 °	5 1	1	3
0	1 -1	3 °	1 1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

*

-1	0	1
-1	0	1
-1	0	1

5	4	0	-8
10	2		

Vertical Edge Detection

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2 -1	5°	1 1	3
0	1	3 -1	1 °	7 1	8
4	2	1	6	2	8
2	4	5	2	3	9

-1 0 1

 5
 4
 0
 -8

 10
 2
 2

Vertical Edge Detection

3	0	1	2	7	4
1	5	8	9	3 °	1
2	7	2	5 -1	1 °	3 1
0	1	3	1 -1	7 °	8 1
4	2	1	6	2	8
2	4	5	2	3	9

*

-1	0	1
-1	0	1
-1	0	1

5	4	0	-8
10	2	2	-3

Vertical Edge Detection

3	0	1	2	7	4
1	5	8	9	3	1
2 -1	7 °	2 1	5	1	3
0 -1	1 °	3 1	1	7	8
4 -1	2 °	1 ¹	6	2	8
2	4	5	2	3	9

*

-1	0	1
-1	0	1
-1	0	1

5	4	0	-8
10	2	2	-3
0			

Vertical Edge Detection

3	0	1	2	7	4
1	5	8	9	3	1
2	7 -1	2 °	5 ¹	1	3
0	1 -1	3 °	1 ¹	7	8
4	2 -1	1 °	6 ¹	2	8
2	4	5	2	3	9

*

-1	0	1
-1	0	1
-1	0	1

=

5	4	0	-8
10	2	2	-3
0	2		

Vertical Edge Detection

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2 -1	5°	1 1	3
0	1	3 -1	1 °	7 1	8
4	2	1 -1	6 °	2 1	8
2	4	5	2	3	9

*

-1	0	1
-1	0	1
-1	0	1

5	4	0	-8
10	2	2	-3
0	2	4	

Vertical Edge Detection

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5 -1	1 °	3 1
0	1	3	1 -1	7 °	8 1
4	2	1	6 -1	2 °	8 1
2	4	5	2	3	9

-1 0 1 -1 0 1 -1 0 1

5	4	0	-8
10	2	2	-3
0	2	4	7

Vertical Edge Detection

3	0	1	2	7	4
1	5	8	တ	3	1
2	7	2	5	1	3
0 -1	1 °	3 1	1	7	8
4 -1	2 º	1 1	6	2	8
2 -1	4 º	5 ¹	2	3	9

*

-1	0	1
-1	0	1
-1	0	1

5	4	0	-8
10	2	2	-3
0	2	4	7
3			

Vertical Edge Detection

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1 -1	3 °	1 ¹	7	8
4	2 -1	1 °	6 ¹	2	8
2	4 -1	5°	2 1	3	9

*

-1	0	1	
-1	0	1	
-1	0	1	

5	4	0	-8
10	2	2	-3
0	2	4	7
3	2		

Vertical Edge Detection

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3 -1	1 °	7 1	8
4	2	1 -1	6°	2 1	8
2	4	5 -1	2 º	3 1	9

*

-1	0	1
-1	0	1
-1	0	1

5	4	0	-8
10	2	2	-3
0	2	4	7
3	2	3	

Vertical Edge Detection

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1 -1	7 º	8 1
4	2	1	6 -1	2 º	8 1
2	4	5	2 -1	3 °	9 1

-1 0 1 -1 0 1 -1 0 1
 5
 4
 0
 -8

 10
 2
 2
 -3

 0
 2
 4
 7

 3
 2
 3
 16

Padding

```
Image * Filter = Output Image

6 \times 6 3 \times 3 4 \times 4

n *n f *f nout *nout

using nout = n - f + 1
```

Shortcoming of this technique:

- 1) Output goes on shrinking as the number of layers increase.
- 2) Information from boundary of the image remains unused.

Solution is Zero padding around the edges of the image!

Padding

If Image is 6 x 6

$$nout = n - f + 1$$

= 6 - 3 + 1
= 4

Thus, Output Image = 4×4

Padding

0	0	0	0	0	0	0	0
0							0
0							0
0							0
0							0
0							0
0							0
0	0	0	0	0	0	0	0

If
$$p=1$$

$$nout = n + 2p - f + 1$$

= 6 + (2 *1) - 3 + 1
= 6

Thus, Output Image =
$$6 \times 6$$

Padding

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0							0	0
0	0							0	0
0	0							0	0
0	0							0	0
0	0							0	0
0	0							0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

If
$$p = 2$$

$$nout = n + 2p - f + 1$$

$$= 6 + (2 * 2) - 3 + 1$$

$$= 6 + 4 - 3 + 1$$

$$= 8$$

Thus, Output Image =
$$8 \times 8$$

Padding

How much to pad?

1) Valid = no padding.

Follows the formula nout = n - f + 1.

2) Same = Output dimension is Same as input.

Follows the formula nout = n + 2p - f + 1.

To keep Output size same as input size: n = n + 2p - f + 1

$$p = \frac{(f-1)}{2}$$

Thus, filters are generally odd.

• Strided Convolution: Shifting of filter by spixels during convolution. Here, s = 2.

3	0 °	1 1	2	7	4	2
1 -1	5°	8 1	9	3	1	1
2 -1	7 °	2 1	5	1	3	5
0	1	3	1	7	8	4
4	2	1	6	2	8	3
2	4	5	2	3	9	8
2	3	6	4	2	0	1

-1	0	1
-1	0	1
-1	0	1

3	0	1	2°	7 1	4	2
1	5	8-1	9°	3	1	1
2	7	2 ⁻¹	5°	1 1	3	5
0	1	3	1	7	8	4
4	2	1	6	2	8	3
2	4	5	2	3	9	8
2	3	6	4	2	0	1

-1	0	1
-1	0	1
-1	0	1

5	0	

3	0	1	2	7	4°	2
1	5	8	9	3-1	1°	11
2	7	2	5	1	3°	5 ¹
0	1	3	1	7	8	4
4	2	1	6	2	8	3
2	4	5	2	3	9	8
2	3	6	4	2	0	1

-1	0	1
-1	0	1
-1	0	1

5	0	-3

3	0	1	2	7	4	2
1	5	8	9	3	1	1
2 -1	7 °	2	5	1	3	5
0 -1	1 °	3	1	7	8	4
4	2 °	1	6	2	8	3
2	4	5	2	3	9	8
2	3	6	4	2	0	1

-1	0	1
-1	0	1
-1	0	1

5	0	-3
0		

3	0	1	2	7	4	2
1	5	8	9	3	1	1
2	7	2	5 °	1	3	5
0	1	3	1 °	7	8	4
4	2	1	6	2	8	3
2	4	5	2	3	9	8
2	3	6	4	2	0	1

-1	0	1
-1	0	1
-1	0	1

5	0	-3
0	4	

3	0	1	2	7	4	2
1	5	8	9	3	1	1
2	7	2	5	1	3°	5
0	1	3	1	7	8°	4
4	2	1	6	2	8°	3
2	4	5	2	3	9	8
2	3	6	4	2	0	1

-1	0	1
-1	0	1
-1	0	1

5	0	-3
0	4	2

3	0	1	2	7	4	2
1	5	8	တ	3	1	1
2	7	2	5	1	3	5
0	1	3	1	7	8	4
4 -1	2 °	1 1	6	2	8	3
2 -1	4 °	5 ¹	2	3	9	8
2 -1	3°	6 ¹	4	2	0	1

-1	0	1
-1	0	1
-1	0	1

5	0	-3
0	4	2
4		

3	0	1	2	7	4	2
1	5	8	9	3	1	1
2	7	2	5	1	3	5
0	1	3	1	7	8	4
4	2	1 -1	6°	2 ¹	8	3
2	4	5-1	2°	3¹	9	8
2	3	6-1	4°	21	0	1

-1	0	1
-1	0	1
-1	0	1

5	0	-3
0	4	2
4	-5	

3	0	1	2	7	4	2
1	5	8	9	3	1	1
2	7	2	5	1	3	5
0	1	3	1	7	8	4
4	2	1	6	2-1	8°	3¹
2	4	5	2	3-1	9°	8 ¹
2	3	6	4	2-1	0°	1¹

-1	0	1
-1	0	1
-1	0	1

5	0	-3
0	4	2
4	-5	5

Strided Convolution

3	0	1	2	7	4	2
1	5	8	9	3	1	1
2	7	2	5	1	3	5
0	1	3	1	7	8	4
4	2	1	6	2-1	8°	3 ¹
2	4	5	2	3-1	9°	81
2	3	6	4	2-1	0 °	11

-1	0	1
-1	0	1
-1	0	1

Here, Stride(S)=2,
Thus,
$$nout = \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor = \left\lfloor \frac{7+2*0-3}{2} + 1 \right\rfloor = \left\lfloor \frac{4}{2} + 1 \right\rfloor$$

$$= \left\lfloor \frac{4}{2} + 1 \right\rfloor = 3$$

If input image is 6x6 then Output Image will be

Strided Convolution

3	0	1	2	7	4	2
1	5	8	9	3	1	1
2	7	2	5	1	3	5
0	1	3	1	7	8	4
4	2	1	6	2-1	8°	3 ¹
2	4	5	2	3-1	9°	8 ¹
2	3	6	4	2-1	0 °	1 ¹

-1	0	1
-1	0	1
-1	0	1

Here, Stride(S)=2,
Thus,
$$nout = \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor = \left\lfloor \frac{7+2*0-3}{2} + 1 \right\rfloor = \left\lfloor \frac{4}{2} + 1 \right\rfloor$$

$$= \left\lfloor \frac{4}{2} + 1 \right\rfloor = 3$$

If input image is 6x6 then Output Image will be still 2x2 if all other factors are constant.

• Summary of Convolution

For an n * n image and filter f * f with padding p and a stride of s pixels, Output image dimension is given by:

$$\left| \frac{n+2p-f}{s} + 1 \right| * \left| \frac{n+2p-f}{s} + 1 \right|$$

Pooling Layer

Purpose:

- 1) To reduce the size of the layer to speed up computation.
- 2) To retain robust features.

Types:

- 1) Max Pooling
- 2) Average Pooling

Pooling Layer

1	3	2	1
3	6	8	9
8	3	3	9
4	6	8	2

6	9	
8	9	

Pooling Layer

3.25	5	Average
5.25	5.5	

1	3	2	1
3	6	8	9
8	3	3	9
4	6	8	2

Pooling Layer

Salient features:

- 1) Follows the process of convolution with filters of size f, stride sand padding p (not used much) as the hyperparameters.
- 2) Filters have no weights. So, no trainable parameters.
- 3)Pooling operation is carried out channel-wise. Thus, number of channels remain unchanged.

Why Convolutional?

FC Neural Network

3072 *4704 = 1,44,50,688 parameters

Conv. Neural Network

$$f = 5$$

 $s = 1$
 $p = 0$
6 filters

Why Convolutional?

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1 0 -1 1 0 -1 1 0 -1 0

Why Convolutional?

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

0	30	

Parameter Sharing: A feature detector that is useful in one part of the image may also be useful on another part of the same image.

Why Convolutional?

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

	1	0	-1
*	1	0	-1
	1	0	-1

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Parameter Sharing: A feature detector that is useful in one part of the image may also be useful on another part of the same image.

Sparcity of connections: In each layer, output depends only on small number of inputs

LAYERSIN CNN

Dropout

Training:

- **Each time before updating the parameters**
 - Each neuron has p% to dropout

Dropout

Training:

- **Each time before updating the parameters**
 - Each neuron has p% to dropout
 - The structure of the network is changed.
 - Using the new network for training

Dropout

Testing:

> No dropout

- If the dropout rate at training is p%, all the weights times (1-p)%
- Assume that the dropout rate is 50%. If a weight w = 1 by training, set w = 0.5 for testing.

Dropout - Intuitive Reason

- ➤ When teams up, if everyone expect the partner will do the work, nothing will be done finally.
- ➤ However, if you know your partner will dropout, you will do better.
- When testing, no one dropout actually, soobtaining good results eventually.

Dropout is a kind of ensemble.

Train a bunch of networks with different structures

Dropout is a kind of ensemble.

Ensemble

Dropout is a kind of ensemble.

- ➤ Using one mini-batch to train one network
- Some parameters in the network are shared

Let's try it


```
model = Sequential()
```

model.add(dropout(0.8))

```
model.add( Dense( output_dim=500 ) )
model.add( Activation('sigmoid') )
```

model.add(dropout(0.8))

```
model.add( Dense(output_dim=10 ) )
model.add( Activation('softmax') )
```


A few important terms

- Forward pass: Process of passing the data from input layer to output layer.
- *Cost Function*: Difference between the predicted and true output of a NN.
- **Backpropagation**: The process of updating parameters of a network depending on the cost function (using optimization algorithms viz., Gradient Descent, SGDM, ADAGrad, etc.) to minimize the cost.
- Mini-batch: Number of images passing at once through thenetwork.
- Learning Rate: Speed by which the parameters are updated.
- *Iteration*: A mini-batch performing a forward and a backward pass through the network is an iteration.
- Epoch: When the complete dataset undergoes a forward and a backward pass, an epoch is completed.

Visualize the graph on Tensorboard

```
tbCallBack = keras.callbacks.TensorBoard(log_dir='./Graph', histogram_freq=0, write_graph=True, write_images=True) model.fit(...inputs and parameters..., callbacks=[tbCallBack])
```

If you want to visualize the files created during training, run in your terminal

tensorboard --logdir path_to_current_dir/Graph

Use case: Image classification

Image Classification on Cifar10

Data set: Cifar10

- containing 60.000 different images
- size of all images in this dataset is 32x32x3 (RGB)

Load data set

```
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
y_train = to_categorical(y_train, num_classes)
y_test = to_categorical(y_test, num_classes)
```

$$X_{\text{test}} = 255.0$$

Normalizing the data

Using one hot encoding to transform the output variable into a binary matrix

structure of the model

- We will use a structure with two convolutional layers
- followed by max pooling
- and a flattening out of the network to fully connected layers to make predictions

Our baseline network structure can be summarized as follows:

- Convolutional input layer, 32 feature maps with a size of 3×3, a rectifier activation function and a weight constraint of max norm set to 3.
- Dropout set to 20%.
- Convolutional layer, 32 feature maps with a size of 3×3 , a rectifier activation function and a weight constraint of max norm set to 3.
- Max Pool layer with size 2×2 .
- Flatten layer.
- Fully connected layer with 512 units and a rectifier activation function.
- Dropout set to 50%.
- Fully connected output layer with 10 units and a softmax activation function

Convolutional layer

```
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.3))
```


Flatten layer

```
model.add(Flatten())
model.add(Dense(80))
model.add(Activation('relu'))
model.add(Dropout(0.3))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
```


Fitting model

```
model.compile(loss='categorical crossentropy',
        optimizer=SGD,
        metrics=['accuracy'])
model.fit(x_train, y_train,
      batch size=batch size.
      epochs=epochs,
      validation_split=0.2,
      shuffle=True)
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
model.save('./model' + '.h5')
```

References

- http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
- https://towardsdatascience.com/a-walkthrough-of-convolutional-neural-network-7f474f91d7bd
- http://cs231n.github.io/convolutional-networks/
- https://www.youtube.com/watch?v=AgkfIQ4IGaM
- https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
- https://www.youtube.com/watch?v=YRhxdVk_sIs
- https://www.youtube.com/watch?v=FmpDlaiMleA&t=748s
- https://medium.com/@2017csm1006/forward-and-backpropagationin-convolutional-neural-network-4dfa96d7b37e

