Dpto. Ingeniería Mecánica

TERMODINÁMICA

Nombre	Grupo
	- 1

Problema – 1 (50 %)

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

El esquema adjunto representa una planta de cogeneración basada en un ciclo de Rankine. El vapor llega a la turbina a 60 bar y 450 °C. A 10 bar se realiza una extracción de vapor para un proceso industrial y a 1 bar otra para alimentar el calentador abierto. La salida de la turbina se encuentra a 0,05 bar. El rendimiento isentrópico de la turbina es del 80%, definido entre su entrada (1) y su salida (4), asumiendo que la línea de expansión 1-4 en el diagrama de Mollier es una recta.

A la salida de la turbina el vapor disipa calor al ambiente (foco a 20°C) en el condensador CON, saliendo del mismo como líquido saturado. La bomba del condensador BCON lleva el agua hasta el calentador abierto, donde se mezcla con la extracción de baja presión de la turbina y con un aporte de agua que se toma de un río a 12°C y 1 bar. Finalmente, el agua que sale del calentador abierto es conducida a la caldera CAL por la bomba BAC.

El agua de alimentación a caldera sale del calentador abierto como líquido saturado. Las bombas se consideran adiabáticas reversibles. Se desprecian las pérdidas de presión en intercambiadores y conductos. El aporte de calor en la caldera se modela como procedente de un foco a 1500 °C.

El trabajo específico de la turbina es de 720 kJ por cada kilogramo de vapor que entra en la misma (1). El trabajo neto de la planta es de 46 MW.

Se pide:

a) Flujo de vapor de proceso (kg/s por la sección 2)	3 pt
b) Exergía destruida total	2 pt
c) Eficiencia exergética de la planta	2 pt
d) Diagrama de Sankey cualitativo de la planta, incluyendo todos los componentes	3 pt

Tablas del agua saturada (líquido – vapor)

р	Т	Vf	V _g	h _f	h _g	Sf	Sg
[bar]	[°C]	[m³/kg]	[m ³ /kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
0.01	6.97	0.0010001	129.19	29.303	2513.7	0.10593	8.9749
0.02	17.5	0.0010014	66.990	73.433	2532.9	0.26058	8.7226
0.03	24.1	0.0010028	45.654	100.98	2544.8	0.35430	8.5764
0.04	29.0	0.0010041	34.791	121.39	2553.7	0.42240	8.4734
0.05	32.9	0.0010053	28.185	137.75	2560.7	0.47620	8.3938
0.5	81.3	0.0010299	3.2403	340.54	2645.2	1.0912	7.5930
1	99.6	0.0010432	1.6941	417.51	2675.0	1.3028	7.3589
5	152	0.0010925	0.37483	640.09	2748.1	1.8604	6.8207
25	224	0.0011974	0.079952	961.86	2801.9	2.5542	6.2558
15	198	0.0011539	0.13171	844.54	2791.0	2.3143	6.4430
20	212	0.0011767	0.099587	908.47	2798.3	2.4467	6.3390
25	224	0.0011974	0.079952	961.86	2801.9	2.5542	6.2558
30	234	0.0012166	0.066667	1008.3	2803.2	2.6454	6.1856
35	243	0.0012349	0.057061	1049.7	2802.7	2.7253	6.1244
40	250	0.0012524	0.049779	1087.4	2800.8	2.7966	6.0696
45	257	0.0012695	0.044061	1122.1	2798.0	2.8613	6.0197
50	264	0.0012862	0.039448	1154.5	2794.2	2.9207	5.9737
55	270	0.0013027	0.035643	1184.9	2789.7	2.9759	5.9307
60	276	0.0013190	0.032449	1213.7	2784.6	3.0275	5.8901
65	281	0.0013353	0.029727	1241.2	2778.9	3.0760	5.8516

Nota: Redondear la entalpía a la cincuentena más próxima.

Apellidos: Problema: /
Nombre: Grupo: /

Apellidos:

Grupo:

Problema:

100

Nombre:

Grapo

2

Colentodor aborto:

L = 28, 7548 /3 - 3, 20208

Institut

Apellidos:	Problema:	1
Nombre:	Grupo:	3

$\frac{dSu}{dz} = -\frac{\partial \omega l}{T_{1500}} + \frac{\dot{Q}\omega u}{293} - \dot{u} \dot{x} \dot{\lambda}_{2}$
alcal = in (h, -hg) = 64, 43936 (3300 - 423, 66) =
= 185349, 51 KW
0 cm = in (1-2-3) (hy - Nr) = 64, 43936 (1-0, 3384h-
-0.12313)(2300 - (37.75) = 75021,61 KW
$\frac{dSu}{dz} = \frac{-185349, 51}{1773} + \frac{75021,61}{293} - 21.8086 \times 0.1798 +$
+ 21,8086 x 7 = 300,24541 KW/K
jn = 293 x 300, 24541 = 87 971, 91 KW
Al ser un dispositivo que produe trabajo:
V = winto 46000 + 87971, 91 = 34, 34 9/0]
Ampliación
si se equiere pour en volor et vopor pudride pour el provers se prode también definir le ctiverve exemplier como:

Apellidos:		Problema:	
Nombre:		Grupo: L	

y_ wv	ub + mx (Y2 - Y9)
	Quel (1 - To)
Y2 - 40	= (3000 - 50,393) - 293 (7 - 0,1798) =
	= 951,2984 KJ 1KJ
φ¹	46 ovo + 20746, 49
La prime	u prion le puocle express au
Ψ-	Wheto To wix (49 - 42)
el Marins	mende Aw indice arode en agenteat
	REE - Whole wix (Ng-hz)
En todo volidos t	and, pare et exerción se dans pa

Apellidos:		to till till till till till till till ti	Problema:	1
Nombre:		•	Grupo:	1

TERMODINÁMICA

NT 1	
Nombre	Grupo

Problema – 2 (50 %)

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

La figura adjunta representa una bomba de calor geotérmica que sigue un ciclo transcrítico de CO₂. Toma calor del terreno (foco a 20 °C) y cede 200 kW a una demanda (foco a 60 °C). La bomba emplea un compresor refrigerado contenido en una carcasa (volumen de control limitado por la línea discontinua), de modo que el calor disipado por el compresor (Q_{comp}) es absorbido por el CO₂ en el refrigerador REF, donde no hay caída de presión. El CO₂ entra al compresor por la válvula de láminas (9-1) y sale por la (2-3).

El CO₂ llega a la carcasa (8) a 39,7 bar. Las pérdidas de presión en las válvulas de aspiración e impulsión del compresor son 50 kPa y 1 bar, respectivamente. A la salida de la carcasa (3) el CO₂ se encuentra a 210 °C y 145 bar. El compresor tiene un espacio perjudicial del 5%, un rendimiento mecánico del 85%, gira a 1490 rpm y dispone de 3 cilindros de 211,7 cm³ cada uno.

Las propiedades del CO_2 en la carcasa (interior y secciones de intercambio de masa, puntos 3 y 8 incluidos) se asimilan a las de un gas perfecto ($\gamma = 1,311$; R = 189 J/kg-K). El proceso en el cilindro del compresor 1-2 se considera internamente reversible, respondiendo a una politrópica de índice n = 1,15.

Las condiciones del ambiente, coincidentes con el estado muerto, son 0°C y 95 kPa.

Se pide:

FORMULARIO

$$\eta_{vi} = \mathbf{1} - \alpha \cdot \left[\left(\frac{p_2}{p_1} \right)^{\! 1/n} - \mathbf{1} \right] \qquad ; \qquad w_i = R \cdot T_1 \cdot \left(\frac{n}{n-1} \right) \cdot \left[\left(\frac{p_2}{p_1} \right)^{\! \frac{n-1}{n}} - \mathbf{1} \right]$$

Apellidos: Problema: 2

Nombre: Grupo:

Apellidos: Problema: 2

Nombre: Grupo: 2

 $W_1 = 0,189 + 406.87 \times 0.15 \left(\frac{146}{39.2} \right)^{1.15} - 1 = 110.31 \text{ kg}$ 1m = 0,85 = 110,31 => We = 129,77 KJ/KY wa = ww = 93, 1818 KW] Janp = vi (ha - h8) = vi (p (Tq - Ta) T1= 133,870 (Doup => in ha + wa = in ha + doup donp = in (p (Ta - T3) + via = = 49,62912 KW R = cp - Cv = cp (1- 1) -> cp = 0,79672 V-J/kg-K 49,62912 = 0,71805 × 0,79672 (133,87-18) L = 17, 12°C Tambien: in hg + wa = in hz We = T8 = 47,12°C ~ 13 w (p

Apellidos:			Problema:	2
Nombre:			Grupo:	3

φ _{BC} =	va - İror		= 00
dz -	Ob Old To Tr 2x 106, 80 333 273	8 - 0.23603	= 106, 818 KW
707		4, 4371 KW	
Y _R C	= 93, 1818 - 64, 4	= 50, 8	
1983	wa - 183 wa	43,18,18	2468 = 82,56%
i Aq	+ Spen = ui	λ3 ⇒ Šjen =	0,71805 [0,796]
×L	(210+273) - 0 (47,12+273)	189 [(39,7) = 0,05 95 (KW
183	= To . 2 3 = 1	6, 2 468 KW	

Apellidos: Problema: 2

Nombre: Grupo: 4

Visto como corrientes que intercambian calor:

$$\Psi_1 = A_{Q12} + \Psi_2$$

$$A_{Q12} = I_Q + A_{Q34}$$

$$\Psi_3 + A_{Q34} = \Psi_4$$

Sankey de un intercdambiador de calor de superficie sin pérdidas de carga

 $I_Q = T_0 \cdot Q \cdot \left(\frac{1}{\overline{T}_{34}} - \frac{1}{\overline{T}_{12}}\right)$

$$A_{Q12} = Q \cdot \left(1 - \frac{T_0}{\overline{T}_{12}}\right)$$

$$A_{Q34} = Q \cdot \left(1 - \frac{T_0}{\overline{T}_{34}}\right)$$

$$\varphi = \frac{A_{Q34}}{A_{Q12}}$$

Visto como volumen de control 1-3/2-4:

$$\Psi_1 + \Psi_3 = \Psi_2 + \Psi_4 + I_Q$$
 \Downarrow

$$(\Psi_1 - \Psi_2) = (\Psi_3 - \Psi_4) + I_Q$$

