Due: 1/26/24 (4:00 pm)

Problem 1

Show that the projector $\mathbf{P} \in \mathbb{R}^{n \times n}$ is an orthogonal projector if $\mathbf{P}^T = \mathbf{P}$.

Problem 2

Consider the vector \mathbf{x} and matrix \mathbf{U} given by:

$$\mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}, \qquad \mathbf{U} = \begin{bmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} \end{bmatrix}.$$

- 1. Are the columns of matrix **U** linearly independent? Why?
- 2. Are the columns of matrix U for an orthonormal set of vectors? Why? Show your calculation.
- 3. Compute the orthogonal projector matrix \mathbf{P} that projects any vector in \mathbb{R}^3 onto the span of columns of matrix \mathbf{U} .
- 4. Compute \mathbf{P}^2 and show that $\mathbf{P}^2 = \mathbf{P}$.
- 5. Compute the orthogonal projection of \mathbf{x} onto \mathbf{U} . What is the projection error denoted by \mathbf{e} , where $\mathbf{e} = \mathbf{x} \mathbf{P}\mathbf{x}$. Justify your answer.
- 6. Consider the space spanned by the first two columns of matrix U and denote that matrix with U':

$$\mathbf{U}' = \left[\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right].$$

- (a) Repeat Part 3 and Part 5 with U' as the basis.
- (b) Show that the projection error e is orthogonal to the space spanned by U'.
- (c) Show that the projection error \mathbf{e} is aligned (linearly dependent) with the third column of matrix \mathbf{U} .

Problem 3

Assume $x \in [-1, 1]$.

1. Consider the monomials given by:

$$u_0(x) = 1$$

$$u_1(x) = x$$

$$u_2(x) = x^2$$

$$u_3(x) = x^3$$

Are these functions orthogonal to each other? Are they orthonormal? Show your computation.

Due: 1/26/24 (4:00 pm)

2. Consider the Legendre polynomials given by:

$$u_0(x) = \sqrt{\frac{1}{2}}$$

$$u_1(x) = \sqrt{\frac{3}{2}}x$$

$$u_2(x) = \sqrt{\frac{5}{2}} \cdot \frac{1}{2}(3x^2 - 1)$$

$$u_3(x) = \sqrt{\frac{7}{2}} \cdot \frac{1}{2}(5x^3 - 3x)$$

Are these functions orthogonal to each other? Are they orthonormal? Show your computation.