Practical Machine Learning with R

@MatthewRenze


```
function updatePhotoDescription() [
TE
            if (descriptions.length > (page * %) + (current mage subs
156
 257
                document.getElementByld()
 355
  259
  360
          function updateAllImages() {
   261
                vari = 1;
   262
                while (i < 10) {
    263
                    var elementId = foto + i,
    264
                    var elementldBig = biglmage + i;
     265
                     if (page * 9 + i - 1 < photos.length) {
                        document.getElementByld( elementId ) src =
      266
                         document.getElementByld( elementIdBig ) = = =
      267
       268
                          document.getElementByld( elementId ) src = %
                       } else {
       269
        270
```


Job Postings for Machine Learning

Source: Indeed.com

Average Salary by Job Type (USA)

Source: Stack Overflow 2017

Overview

- 1. Introduction to ML
- 2. Introduction to R
- 3. Classification
- 4. Regression
- 5. Clustering
- 6. ML in Practice

About Me

Data Science Consultant

Education

B.S. in Computer Science

B.A. in Philosophy

Community

Public Speaker

Pluralsight Author

Microsoft MVP

ASPInsider

Open-source Software

IOWA STATE UNIVERSITY

How Does This Apply to Me?

- ☑ Make decisions using data
- ☑ Make predictions using data
- ☑ Make recommendations using data
- ☑ Write code that does all these things

Introduction to Machine Learning

What is Machine Learning?

Dog

Function

Cat

Dog

Supervised Learning

Unsupervised Learning

Semi-supervised Learning

What Can Machine Learning Do?

Introduction to R

What is R?

Open source
Language and environment
Numerical and graphical analysis
Cross platform

What is R?

Active development
Large user community
Modular and extensible
9000+ extensions

Code Demo

Classification

Classification Algorithms

Decision Tree Classifier
Naïve Bayes Classifier
Support Vector Machine
Neural Network

Supervised learning

Supervised learning
Tree of decisions

Supervised learning
Tree of decisions
Easy to understand

Supervised learning
Tree of decisions
Easy to understand
Transparent

Iris Data Set

Iris Data Set

Fisher's Iris Data				
Species	Petal Length	Petal Width	Sepal Length	Sepal Width
setosa	1.1	0.1	4.3	3
setosa	1.4	0.2	4.4	2.9
setosa	1.3	0.2	4.4	3
setosa	1.3	0.2	4.4	3.2
setosa	1.3	0.3	4.5	2.3
•••				

Classification Demo

Goal: Predict species based on petal and sepal measurements

Real-World Examples

- Should we approve this loan?
- Will this customer buy from us?
- Should we replace this part?
- Does this person have cancer?

Regression

Regression Algorithms

Linear Regression
Polynomial Regression
Lasso Regression
ElasticNet Regression

Relationship

Relationship Linear model

Relationship
Linear model
Explanatory variable

Relationship
Linear model
Explanatory variable
Outcome variable

Linear predictor function

Linear predictor function

$$y = m \cdot x + b$$

Linear predictor function

$$y = m \cdot x + b$$

Parameters estimated

Linear predictor function

$$y = m \cdot x + b$$

Parameters estimated

Relies on assumptions

Source: https://en.wikipedia.org/wiki/Anscombe%27s_quartet

Source: https://en.wikipedia.org/wiki/Anscombe%27s_quartet

Regression Demo

Goal: Predict petal width based on petal length

Real-World Examples

- How much profit will we make?
- What will the price be tomorrow?
- How many will this person buy?
- How long until this part fails?

Clustering

Clustering Algorithms

K-means
Hierarchical clustering
Expectation maximization

Unsupervised learning

Unsupervised learning
Specify k (# of clusters)

Unsupervised learning
Specify k (# of clusters)
Algorithm finds centers

Unsupervised learning
Specify k (# of clusters)
Algorithm finds centers
Random restarts

Clustering Demo

Real-world Examples

- Market segmentation
- Document classification
- Recommendation systems
- Market basket analysis

Beyond the Basics

Robust Models

Cleaning and Transforming Data

Data are messy 80% of work R helps a lot Record all steps

Regularization Techniques

Early stopping
Pruning (trees)
Adding noise
Parameter tuning

Where to Go Next

Pluralsight: https://www.pluralsight.com

Coursera: https://www.coursera.org

Data Camp: https://www.datacamp.com

Tensorflow: http://playground.tensorflow.org

My Website

Articles
Presentations
Source Code
Videos
Workshops

www.matthewrenze.com

Data Science with R

★★★★ By Matthew Renze

Data science is becoming more and more valuable to the workplace and to the global economy. Learn how to use the practice of data science and the programming language R to transform your data into actionable insight.

Start free trial now

Play course overview

www.pluralsight.com/authors/matthew-renze

Conclusion

Conclusion

- 1. Introduction to ML
- 2. Introduction to R
- 3. Classification
- 4. Regression
- 5. Clustering
- 6. ML in Practice

Feedback

Very important to me!

What did you like?

What could I improve?

Contact Info

Matthew Renze
Data Science Consultant
Renze Consulting

Twitter: <a>@matthewrenze

Email: <u>matthew@matthewrenze.com</u>

Website: www.matthewrenze.com

Thank You!:)