ZALG cv 8

Sudoku - Backtracking

5 6	ო			7				
6			1	9	5			
	9	8					6	
8				6				3
8			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Strategie a heuristiky

- Forward Checking
- Constraint Propagation

- Minimum Remaining Values (MRV)
- Degree Heuristic
- Least Constraing Value (LCV)

Monte Carlo – Metoda simulovaného žíhání

2	3	1	6	1	2	1	2	3
5	6	7	3	4	7	4	5	9
8	9	4	5	8	9	6	7	8
1	7	2	1	5	2	1	3	4
4	5	3	9	3	6	2	5	6
6	8	9	4	8	7	7	9	8
1	3	4	1	3	5	8	1	3
9	2	8	4	7 6	7	2	4	5
5	6	7	8	9	2	9	6	7

2	3	1	6	1	2	1	2	3
5	6	7	3	4	7	4	5	9
8	9	4	5	8	9	6	7	8
1	7	2	1	5	2	1	3	4
4	5	3	9	3	6	2	5	6
6	8	9	4	8	7	7	9	8
1	3	4	1	8	5	8	1	3
9	2	8	4	6	7	2	4	5
5	6	7	3	9	2	9	6	7

Metoda simulovaného žíhání

• Boltzmannův faktor

arepsilon-energie, T- teplota

Zamítací pravidlo:

$$\frac{e^{(-(E_{new}-E))}}{T} < F$$

kde R je náhodné číslo z (0,1)

Nahrazování rekurze

- Na počátku procedury deklarujeme zásobník jako globální objekt; také ukazatel na vrchol zásobníku bude globální. Tento zásobník bude sloužit k ukládání parametrů, lokálních proměnných, návratových adres a vypočtených hodnot při rekurzivním volání.
- 2. Před první příkaz těla procedury vložíme návěští L_1 . Dále každé rekurzivní volání dané procedury nahradíme následující posloupností příkazů:
- 3. Uložíme na zásobník lokální proměnné a formální parametry.
- 4. Vytvoříme i-té nové návěští L_i , i = 2, ..., a hodnotu i uložíme do zásobníku. Tuto hodnotu později použijeme ke stanovení návratové adresy. Vytvořené návěští umístíme v kroku 7.
- Vyhodnotíme skutečné parametry nového volání a uložíme je do formálních parametrů (nikoli do zásobníku).
- 6. Vložíme nepodmíněný skok na počátek procedury, na návěští L_1 .
- 7. Jestliže takto upravujeme funkci, umístíme návěští, vytvořené ve 4. kroku, k příkazu, kterým vyjmeme hodnotu funkce ze zásobníku, a připojíme kód, který tuto hodnotu v rekurzivní funkci využívá. V proceduře toto návěští připojíme k prvnímu příkazu bezprostředně za skokem, vloženým v 6. kroku.

Na konci procedury provedeme tyto úpravy:

- 8. Je-li zásobník prázdný, skončíme.
- 9. Jinak vezmeme aktuální hodnoty výstupních parametrů a předáme je odpovídajícím proměnným na vrcholu zásobníku (tím vracíme vypočtené hodnoty parametrů do předchozího volání).
- 10. Vložíme kód, který odstraní ze zásobníku index návratové adresy (pokud tam nějaký je) a uložíme jej do nepoužité proměnné.
- Vyjmeme ze zásobníku hodnoty lokálních proměnných a parametrů a přidělíme je odpovídajícím proměnným.
- Je-li to funkce, vložíme instrukce pro vyhodnocení vracené hodnoty a výsledek uložíme na vrchol zásobníku.
- 13. Index návratové adresy použijeme ke skoku na příslušné návěstí L_i .