Homework 12

November 29, 2019

Deadline

Due: December 6, 2019, 23:59. Good luck!

Problem 1

Let $A = \{1, 2, 3, 4, 5\}, B = \{a, b, c, d\}$, and $f_1 : A \to B = \{\langle 1, c \rangle, \langle 2, c \rangle, \langle 3, b \rangle, \langle 4, a \rangle, \langle 5, d \rangle\}$, $f_2 : B \to A = \{\langle a, 2 \rangle, \langle b, 5 \rangle, \langle c, 1 \rangle, \langle d, 3 \rangle\}$. Determine whether f_1, f_2 have left or right inverse. If so, find the left or right inverse for each function.

Problem 2

Let $h \in A_A$, prove that the state "for any $f, g \in A_A$, if $h \circ f = h \circ g$ then we have f = g" is true if and only if h is injective, or:

$$(\forall f)(\forall g)((f \in A_A \land g \in A_A \land h \circ f = h \circ g) \rightarrow f = g) \Leftrightarrow h \text{ is injective}$$

Problem 3

Design a DFA accepting the language $(a|b)^*c^+$ over the alphabeta $\{a,b,c\}$. (Transition table, transition diagram or giving the transition functions are all acceptable). And show how it accepts the string "abaacc" by showing all the changes of states in whole process.

Problem 4

Design a Turing Machine for the language $\{w|w \text{ has an equal number of 0's and 1's}\}$ over input alphabeta $\Sigma = \{0,1\}$. (Transition table, transition diagram or giving the transition functions are all acceptable) And show how it accepts the string 100011 by instantaneous descriptions.