ELEC-H-473 Microprocessor Architectures

 \sim

Short introduction to the labs

Practical discovery of microprocessors

KR580VM80A die shot, CC by http://zeptobars.ru

Practical discovery of microprocessors

KR580VM80A die shot, CC by http://zeptobars.ru

How does it work, for real?

Plan

- Introduction
- 2 The labs
- 3 Handouts
- A RiSC16 introduction

People involved

Dragomir Milojevic

Quentin Delhaye

Amélia Struyf

The labs

Four microprocessor architectures:

- ► RiSC16: Very small RISC, 4 labs
- ▶ dsPIC33: Microcontroller, also RISC, 1 lab
- ► TIS-100. 1 lab
- ▶ x86_64: Standard computer microprocessor (CISC), 3 labs

Ok, fine, where do we start?

- ▶ All handouts are on the UV, ELEC-H-473.
- Form groups of 4 students and enroll in a group on the UV.
- Assignments have to be submitted on the UV. The deadline is one week after the related lab.
- No group, no submission possible. Beyond the deadline, no submission possible.
- ▶ All assignments will be evaluated for 25% of you final exam mark

RiSC 16

- 4 labs (1-4):
 - Discover the RiSC16 and its 8 instructions ISA
 - Adapt the architecture
 - Enhance it with a pipeline
 - ► Finish everything

Assignments:

- ► Tested and verified codes (lab 1-2)
- Codes and Test vectors (lab 3)

Use the "Online Verification Tool" to check your codes

Lab	Topic	Assignment
1	RISC 1-2	×
2	RISC 1-2	~
3	RISC 3	✓
4	RISC 4	×
5	dsPIC	×
6	TIS-100	~
7	SIMD 1	~
8	SIMD 2	~
9	Multithreading	×