

词法分析II

《编译原理和技术(H)》、《编译原理(H)》

张昱

0551-63603804, yuzhang@ustc.edu.cn 中国科学技术大学 计算机科学与技术学院

- □ 词法分析及要解决的问题
 - 向前看(Lookahead)、歧义(Ambiguities)
- □ 词法分析器的自动生成
 - 词法的描述:正规式;词法记号的识别:转换图
 - 有限自动机: NFA、DFA

2.3 有限自动机

□ 描述分析器: NFA、DFA (对转换图的形式定义和分类)

□ 不确定的有限自动机(NFA)

- 一个数学模型,它包括:
 - 1、有限的状态集合S
 - 2、输入符号集合∑
 - 3、转换函数 $move: S \times (\Sigma \cup \{\epsilon\}) \rightarrow P(S)$
 - 4、状态 S_0 是唯一的开始状态
 - 5、F ⊆ S 是接受状态集合

识别语言 (a|b)*ab 的NFA

(nondeterministic finite automaton)

□ NFA的转换表

	输入	符号
	a	b
0	{0, 1}	{0}
1	Ø	{2}
2	Ø	Ø

识别语言 (a|b)*ab 的NFA

《编译原理(H)》词法分析

确定的有限自动机

- □ 确定的有限自动机(DFA)
- 一个数学模型,它包括:
 - 1、有限的状态集合S
 - 2、输入符号集合∑
 - 3、转换函数 $move: S \times \Sigma \rightarrow S$,且可以是部分函数
 - $4、状态<math>s_0$ 是唯一的开始状态
 - 5、F ⊆ S 是接受状态集合

识别语言 (a|b)*ab 的DFA

□ 主要差异在转换函数

■ NFA: $move: S \times (\sum \bigcup \{\epsilon\}) \rightarrow P(S)$

- 效率低
- □ 要识别一个token,需要对多种可能的路径试探+失败回退
- DFA: $move: S \times \Sigma \rightarrow S$, 可以是部分函数
 - □ 对于面临的∑中的符号,状态转换是明确的

快速高效

0-(a)→0-(b)→0-结束符 0←回退b 0←回退a

0-(a)→1-(b)→2-结束(接受状态)

0-(a)→1-(b)→2-结束(接受状态)

但是,由正规式不易构造DFA

构造一个DFA, 它能识别{0,1}上能被5整除的二进制数。

解答

	已读过	尚未读	已读部分的值
某时刻	101	0111000	5
读进0	1010	111000	$5 \times 2 = 10$
读进1	10101	11000	$10 \times 2 + 1 = 21$

引入5个状态即可,分别代表已读部分的值除以5的余数

构造一个DFA, 它能识别{0,1}上能被5整除的二进制数。

解答

构造一个DFA,它能接受0和1的个数都是偶数的字符串。

2.4 从正规式到有限自动机

- □ 分析器的自动构造
 - 正规式→NFA→DFA→化简的DFA 采用语法制导的算法来构造NFA

词法分析器的自动生成技术

- □ 正规式: 描述语言的词法
- □ 有限自动机:刻画词法分析的实现

- □ 词法分析器自动生成的主要过程
 - 正规式→NFA(语法制导的构造算法)
 - NFA→DFA (子集构造法)
 - DFA化简
 - 根据DFA构造词法分析器源码

- □ 语法制导(Syntax-directed): 按正规式的语法结构来指导构造
- □ 首先,构造识别 ε和字母表中一个符号的NFA
 - 重要特点: 仅有一个接受状态, 接受状态没有出边

识别正规式ε的NFA

识别正规式a的NFA

□ 对于带括号的正规式(s), 使用 s 对应的NFA N(s)本身作为(s)的NFA

- □ 构造识别主算符为选择的正规式的NFA
 - 重要特点: 仅一个接受状态, 接受状态没有出边

识别正规式 (s) | (t) 的NFA

- □ 构造识别主算符为连接的正规式的NFA
 - 重要特点: 仅一个接受状态, 接受状态没有出边

识别正规式 (s)(t) 的NFA

- □ 构造识别主算符为闭包的正规式的NFA
 - 重要特点: 仅一个接受状态, 接受状态没有出边

□ 本方法产生的NFA有下列性质

- N(r)的状态数最多是r 中符号和算符总数的两倍
- N(r)只有一个接受状态,接受状态没有向外的转换
- N(r)的每个非接受状态有
 - □ 一个用∑的符号标记指向其它结点的转换,或者
 - □ 最多两个指向其它结点的 ε 转换

语法制导(Syntax-directed): 按正规式的语法结构来指导构造

NFA的手工构造和算法构造

□ $(a|b)^*ab$ 的两个NFA的比较

词法分析器的自动生成技术

- □ 正规式: 描述语言的词法
- □ 有限自动机:刻画词法分析的实现

- □ 词法分析器自动生成的主要过程
 - 正规式→NFA(语法制导的构造算法)
 - NFA→DFA (子集构造法)
 - DFA化简
 - 根据DFA构造词法分析器源码

□ 子集构造法(subset construction)

- 1. DFA的一个状态是NFA的一个状态集合
- 2. DFA的开始状态是包含NFA的开始状态的状态集合
- 3. 读了输入 a_i 后,NFA能到达的所有状态: $s_1, s_2, ..., s_k$,则DFA到达一个状态,对应于NFA的 $\{s_1, s_2, ..., s_k\}$

□ 子集构造法(subset construction)

- 1. ε-闭包 (ε-closure) 状态s 的ε-闭包是 s 经 ε转换所能到达的状态集合
- 2. NFA的初始状态的 ε-闭包对应于DFA的初始状态
- 3. 针对每个DFA 状态 ——NFA状态子集A, 求输入每个 a_i 后能到达的NFA状态的 ϵ -闭包并集, 该集合对应于DFA中的一个已有状态, 或者是一个要新加

正规式 (a|b)*ab 对应的NFA如下, 把它变换为DFA

A =	$\{0, 1, \dots, $, 2, 4,	, 7}	
B =	{1, 2	, <mark>3</mark> , 4,	6, 7,	8

状态	输入符号		
1八心	a	b	
\boldsymbol{A}	B		

A =	{0 ,	1,	2,	4,	7 }	
B =	{1 ,	2,	3,	4,	6,	7, 8 }

状态	输入符号		
1八心	a	\boldsymbol{b}	
$oldsymbol{A}$	B		
В			

$A=\{0,$	1,	2,	4,	7 }	
$B = \{1,$	2,	3,	4,	6,	7, 8 }
$C = \{1,$	2,	4,	5 ,	6,	7 }

状态	输入符号		
1八心	a	b	
\boldsymbol{A}	В	C	
\boldsymbol{B}			

$A = \{0$), 1,	2, 4	l , 7}	
$\boldsymbol{B} = \{1$	l, 2,	3, 4	l , 6,	7, 8 }
$C = \{1$	l, 2,	4, 5	5, 6,	7 }

状态	输入符号		
八心	a	b	
\boldsymbol{A}	В	C	
В			
C			

$A = {$	0,	1,	2,	4,	7 }	
$B = \{$	1,	2,	3,	4,	6,	7, 8 }
$C = \{$	1,	2,	4,	5,	6,	7 }

(4) 	输入符号		
状态	a	b	
$oldsymbol{A}$	В	C	
В	B		
C			

$A = \{0, 1, 2, 4, 7\}$
$B = \{1, 2, 3, 4, 6, 7, 8\}$
$C = \{1, 2, 4, 5, 6, 7\}$
$D = \{1, 2, 4, 5, 6, 7, 9\}$

小大	输入符号		
状态	a	b	
\boldsymbol{A}	В	C	
В	B	D	
C			

$A = \{0, 1, 2, 4, 7\}$
$B = \{1, 2, 3, 4, 6, 7, 8\}$
$C = \{1, 2, 4, 5, 6, 7\}$
$D = \{1, 2, 4, 5, 6, 7, 9\}$

小大	输入符号		
状态	a	b	
\boldsymbol{A}	В	C	
В	\boldsymbol{B}	D	
\boldsymbol{C}			
D			

$A = \{0, 1, 2, 4, 7\}$
$B = \{1, 2, 3, 4, 6, 7, 8\}$
$C = \{1, 2, 4, 5, 6, 7\}$
$D = \{1, 2, 4, 5, 6, 7, 9\}$
$D = \{1, 2, 4, 3, 0, 7, 9\}$

小子	输入符号		
状态	a	b	
\boldsymbol{A}	В	C	
В	\boldsymbol{B}	D	
\boldsymbol{C}	B	C	
D			

$A = \{0, 1, 2, 4, 7\}$	
$B = \{1, 2, 3, 4, 6, 7, 8\}$	
$C = \{1, 2, 4, 5, 6, 7\}$	
$D = \{1, 2, 4, 5, 6, 7, 9\}$	

状态	输入符号		
1八心	a	b	
$oldsymbol{A}$	В	C	
В	В	D	
C	В	C	
D	B	C	

3

词法分析器的自动生成技术

- □ 正规式: 描述语言的词法
- □ 有限自动机:刻画词法分析的实现

- □ 词法分析器自动生成的主要过程
 - 正规式→NFA(语法制导的构造算法)
 - NFA→DFA (子集构造法)
 - DFA化简
 - 根据DFA构造词法分析器源码

□ 该方法用于化简转换函数是全函数的DFA

张昱:《编译原理和技术(H)》词法分析

- □ 该方法用于化简转换函数是全函数的DFA
- □ 死状态 (dead state)
 - 当DFA的转换函数由部分函数改成全函数表示时,要在左图引入死状态E,将 缺失的状态转换都指向该死状态

张昱:《编译原理和技术(H)》词法分析

□ 可区别的状态(distinguishable states) s 和 t

将状态分成不相交的子集(初始按是否为接受状态来划分),

某子集中的状态s、t 可区别是指,存在一个输入符号w,使得它们分别到达的状态落入当前划分中的不同子集。

■ A和B是可区别的状态:

从A出发,读入b后到达非接受状态C;从B出发,读过b后到达接受状态D

■ A和 C 是不可区别的状态: 无任何输入符号可用来区别它们

> 可区别的状态 要分开对待

University of Science and Technology of China

□方法

- 1. 按状态是否接受来划分状态集合 {A, B, C}, {D}
- 考察每个子集(至少含2个状态)的状态转换
 move({A, B, C}, a) = {B}
 move({A, B, C}, b) = {C, D} //面临b,转换到的状态落入不同子集说明{A, C}, {B}是可区别的
- 3. 继续分解, 当前划分为{A, C}, {B}, {D}
- 4. 考察{A, C}, 不可区分, 合并状态
 move({A, C}, a) = {B}
 move({A, C}, b) = {C}

叙述下面的正规式描述的语言,并画出接受该语言的最简DFA的状态 转换图

(1|01)*0*

刚读过的不是0

解答

描述的语言是,所有不含子串001的、由0和1组成的串

张昱:《编译原理和技术(H)》词法分析

连续读过一个0

连续读过 不少于两个0

用状态转换图表示接受如下正规式的DFA

を狭因な小接文如「正观式的DFA (a|b)*a(a|b)(a|b)

解答

张昱:《编译原理和技术(H)》词法分析