Lecture-12 and 13 Methods for Solving 2st Order Linear Ordinary Diff. Equations

Instructor: Dr. J. K. Sahoo

The Method of Undetermined Coefficients

Consider a non homogeneous equation

$$y'' + P(x)y' + Q(x)y = R(x).$$

The general solution of the non homogeneous equation will be of the form

 $y(x) = y_g(x) + y_p(x)$, where $y_g(x)$ is the general of the corresponding homogeneous part.

The Method of Undetermined Coefficients

The method of undetermined coefficient is a procedure of finding $y_p(x)$, when the non homogeneous equation of the form

$$y'' + py' + qy = R(x),$$

where p, q are constants and R(x) is an

Exponential, a Sine or Cosine or a Polynomial,

or some combination of such functions.

When R(x) is Exponential functions

Consider the following equation

$$y'' + py' + qy = e^{ax} (R(x) = e^{ax}) - - - (1)$$

Case-I: (If a is not root of the auxiliary eqn)

We can assume $y_p(x) = Ae^{ax}$ (why), where the

coefficient A to be determined from the equation (1).

Calculation of A:

As
$$y_p = Ae^{ax}$$
 is a solution of $y'' + py' + qy = e^{ax}$

$$\Rightarrow e^{ax}A(a^2+pa+q)=e^{ax} \Rightarrow A=1/(a^2+pa+q).$$

When R(x) is Exponential functions

Case-II: (If *a* is a simple root of the auxiliary eqn)

We can assume $y_p(x) = Axe^{ax}$ (why), where the

coefficient A to be determined from the equation (1).

Calculation of A:

As
$$y_p = Axe^{ax}$$
 is a solution of $y'' + py' + qy = e^{ax}$

$$\Rightarrow e^{ax}Ax(a^2 + pa + q) + Ae^{ax}(p + 2a) = e^{ax}$$

$$\Rightarrow A = \frac{1}{p+2a} \left[\text{simple root means } a^2 + pa + q = 0 \right]$$

When R(x) is Exponential functions

Case-III: (If a is double root of the auxiliary eqn)

$$(a^2 + pa + q = 0 \text{ and } p + 2a = 0)$$

We can assume $y_p(x) = Ax^2e^{ax}$ (why), where the coefficient A to be determined from the equation (1).

Calculation of A:

As
$$y_p = Ax^2e^{ax}$$
 is a solution of $y'' + py' + qy = e^{ax}$

$$\Rightarrow e^{ax}Ax^2(a^2 + pa + q) + Axe^{ax}(p + 2a) + 2Ae^{ax} = e^{ax}$$

$$\Rightarrow A = \frac{1}{2}$$

The Choices for $y_p(x)$

$$R(x) = ke^{ax}$$

$$y_p(x) = Ae^{ax}, A = k/(a^2 + pa + q)$$

provided 'a' is not a root of the auxiliary equation

$$R(x) = ke^{ax}$$

$$y_p(x) = Axe^{ax}, A = k/(p+2a)$$

provided 'a' is a simple root of the auxiliary equation

$$R(x) = ke^{ax}$$

$$y_p(x) = Ax^2 e^{ax}, A = k/2$$

provided 'a' is a double root of the auxiliary equation

Exercise Problems

Ex-1:
$$y'' + 2y' + y = 5e^{2x}$$

Ex-2:
$$4y'' - 4y' + y = 2e^{x/2}$$

Ex-3:
$$y'' - 5y' + 6y = e^{3x}$$

Ans-1:
$$y_p(x) = \frac{1}{2} x e^x$$

Ans-2:
$$y_p(x) = x^2 e^x$$

Ans-3:
$$y_p(x) = xe^x$$

When R(x) is Sine or Cosine functions

If the equation is of the form

$$y'' + p y' + qy = \sin bx \text{ or } \cos bx - - - (2)$$

Then $y_p(x)$ is given in the following table

$R(x) = \sin bx \text{ or } \cos bx$	$y_{p}(x) = A \sin bx + B \cos bx,$ provided 'sin bx, cos bx' are not the part of y _g $y_{p}(x) = x(A \sin bx + B \cos bx)$
$R(x) = \sin bx$ or $\cos bx$	$y_p(x) = x(A\sin bx + B\cos bx),$ provided 'sin bx, cos bx' are part of yg

where *A*, *B* are the undetermined coefficients which should be determined from the equation (2).

When R(x) is a Polynomial

If the equation is of the form

$$y'' + p y' + qy = a_0 + a_1x + + a_nx^n$$

Then $y_p(x)$ is given in the following table

$$R(x) = a_0 + a_1 x + + a_n x^n \qquad y_p = A_0 + A_1 x + + A_n x^n$$

$$provided \ q \neq 0.$$

$$R(x) = a_0 + a_1 x + + a_n x^n \qquad y_p = x (A_0 + A_1 x + + A_n x^n)$$

$$If \ q=0, \ p\neq 0.$$

where A_0 , A_1 , A_n are the undetermined coefficients.

Exercise Problems

Ex-1:
$$y'' + 2y' + y = x^2 + 1$$

Ex-2:
$$4y'' - 4y' = x - 1$$

When R(x) is a combination of these functions

The choice of $y_p(x)$ is given as per the followings:

$$R(x) = xe^{ax}$$
 $y_p(x) = (Ax + B)e^{ax}$ provided e^{ax} is not part of the solution $y_g(x)$

$$R(x) = xe^{ax}$$

$$provided e^{ax} is part of y_g(x) but not xe^{ax}$$

When R(x) is a combination of these functions

The choice of $y_p(x)$ is given as per the followings:

$$R(x) = e^{ax} \sin bx$$

 $y_p(x) = e^{ax} (A \sin bx + B \cos bx)$ provided $e^{ax} \sin bx$ is not part of the solution $y_g(x)$

$$R(x) = e^{ax} \sin bx$$

 $y_p(x) = xe^{ax}(A\cos bx + B\sin bx)$

provided $e^{ax} \sin bx$ is part of y_g

When R(x) is a combination of these functions

The choice of $y_p(x)$ is given as per the followings:

$$R(x) = x \sin bx$$

$$y_p(x) = (Ax + B) \sin bx + (Cx + D) \cos bx$$

$$provided \pm i \text{ is not root of the auxiliary eqn}$$

$$R(x) = xe^{ax} \sin bx$$

$$y_p(x) = (Ax + B)e^{ax} \sin bx + (Cx + D)e^{ax} \cos bx$$

$$provided a \pm ib \text{ is not root of the auxiliary eqn}$$

Note: If R(x) is combination of more functions then take their respective choice and combine them together.

Exercise Problems

Find the general solution of the following problem:

$$(1) y'' - 3y' - 4y = 3e^{2x}$$

(2)
$$y'' + 4y = 3\sin x$$

$$(3) y'' + y' = 10x^4 + 2$$

$$(4) y'' - 4y' - 12y = xe^{4x}$$

$$(5)y'' - 4y = e^{3x} \sin x$$