2023 Onsite Embedded Fun

Brought to you by the letters T and Z

Hardware overview

Two circuit boards

- Generic wemos d1 mini esp8266 development board
 - The esp8266 is a well known wifi capable processor with lots of open source support
 - The d1 mini has an esp8266 module on it with built in antenna
 - This pcb is available on aliexpress.com, Amazon etc.
 - Makes working with the esp8266 easy by adding USB and pin breakout (3.3v io)
 - Cost about \$2 inc shipping
 - You get what you pay for, isn't 100% reliable, may need to try some things more than once to get them to work
- Custom minim m led board
 - Custom led board for this event
 - Has 36 WS2812B leds in a chain
 - Has a small level converter to convert the esp8266 3.3v io into 5v io for the WS2812B

Wemos d1 mini details

We'll be using it with the arduino development environment. This is the pinout you'll need. The led board is connected to VBUS/GND/2. This image shows a USB C connector, we have the micro usb version (was cheaper)

SCL

SDA

LED

LED Board details

Connector has 3 pins, GND/5V/DATA. Can plug directly into the wemos d1 mini or, with soldering, use wires to link them. The LED sequence numbering is on the back. There are 36 WS2812B leds in a single chain.

Plugging the boards together

Connect the boards as shown. Note the USB connector on the d1 mini needs to face down.

Plug in a usb cable for a demo of the board.

The demo is called Pride2015 from the fastled library (more later on this).

A fork in the road?

- The rest of this session is self driven.
- There are two paths to choose between, coding and non-coding
- We encourage everyone to at least try the coding path before the non-coding
- The coding path starts on the next slide
- The non-coding path starts on slide 12

Coding path - getting started

- Follow the instructions at <u>https://support.arduino.cc/hc/en-us/articles/360019833020-Download-and-install-Arduino-IDE</u>
 to install the latest version of the arduino ide on your computer
- Add support for the esp8266 processor to the arduino ide by following the instructions at
 - https://github.com/esp8266/Arduino#installing-with-boards-manager

Coding path - blink an LED

- 1. Connect the board to your computer
- 2. Start the Arduino IDE
- 3. Load the blink example (File menu -> Examples -> 01.Basics -> Blink)
- Select the wemos d1 mini (Tools menu -> Board -> ESP8266 Boards -> LOLIN (WEMOS) d1 mini (clone)
- 5. Select the correct serial port (Tools Menu -> Port -> ?) (ask for help if needed)
- 6. Download and run (Sketch menu -> Upload)
- 7. LED on the d1 mini should blink

Coding path - add the fastled library and test

In the arduino ide

- 1. Sketch Menu -> Include Library -> Manage Libraries
- 2. Type fastled in the search box and click install (any version will do, use the latest)
- 3. Click Close
- 4. File Menu -> Examples -> (scroll right down to) Fastled -> Pride2015
- 5. Change DATA_PIN to 2 (default is 3) (ignore CLOCK_PIN)
- 6. Change NUM_LEDS to 36 (default is 200)
- 7. Change the LED_TYPE to WS2812B (default is WS2811)
- 8. Sketch menu -> Upload

(you should see the example we started with)

Coding path - task

Make your own LED animation

- Arduino is c++ (with the complexity hidden)
- There are other fastled examples to try (fastled blink is a good place to start)
- My lame attempt can be found at <u>https://github.com/Tom-Keddie/2023-onsite-badge/tree/main/software</u>
- Fastled documentation can be found at http://fastled.io/docs/3.1/md r e a d m e.html
- Some ideas
 - o create a static image and play with FastLED.setBrightness to make it pulsate
 - play with colours (see https://fastled.io/docs/3.1/struct_c_r_g_b.html
 - play with different delay() values for animation speed

Coding path - placeholder

THIS PAGE INTENTIONALLY LEFT BLANK

Noncoding path - fun with open source

- There are a huge number of open source applications written for the esp8266 and the ws281* leds
- We're going to install one of them, WLED and use it to control the leds

Noncoding path - WLED intro

- wled is a complex piece of software that I'm not going to cover in great detail.
 In summary it's a wifi based led controller
- It will try to connect to a given ssid, if it fails it will create an ssid to connect to (we will use the latter, please don't connect the device to the minim wifi network)
- The esp8266 is a decent chip but it has its detractors. It works but it's not a
 great idea to use it on your main wifi network (don't you all have a spare 7600
 laying around?)

Noncoding path - WLED installation

- wled binaries can be found at https://drive.google.com/drive/folders/1_zPJ4FdvBNfqKUvcs376SYANr_zlo-9j
 ?usp=sharing
- Your wemos d1 mini has a number on the back. Download the wled binary to your computer that matches that number
- Make sure you have exited the arduino ide
- For windows and mac follow the instructions at https://kno.wled.ge/basics/install-wled-flasher/
- For linux (assumed expert) follow the instructions titled "Flashing method 2: esptool" at

https://kno.wled.ge/basics/install-binary/

Noncoding path - WLED usage

- Using your phone or laptop open the wifi settings and connect to the esp8266 using the ssid named the same as the binary you downloaded
- Password is the same as the ssid
- Connecting to a colleagues ssid and messing with them is within the "rules"
- Play with the gui, there is a lot in there
- There is also a WLED app but I don't think it offers much more than the browser

Noncoding path - going further

There is a wide variety of open source software for the esp8266 some other examples are

- Tasmota https://tasmota.github.io/docs/
- Esphome https://esphome.io/
- Nodemcu https://www.nodemcu.com/index_en.html
- Circuitpython
 https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266

Closing notes

There are WS2812 leds available in lots of configurations. Including strips, circles, squares. They're cheap and fun.

