Formulaire.

•
$$u'u^n \stackrel{primitive}{\longleftrightarrow} \frac{1}{n+1}u^{n+1}$$

•
$$u'e^u \stackrel{primitive}{\longleftrightarrow} e^u$$

•
$$\frac{u'}{u} \stackrel{primitive}{\longleftrightarrow} \ln(|u|)$$

•
$$\frac{u'}{\sqrt{u}} \stackrel{primitive}{\longleftarrow} 2\sqrt{u}$$

•
$$u'\cos(u) \stackrel{primitive}{\longleftrightarrow} \sin(u)$$

•
$$u' \sin(u) \stackrel{primitive}{\longleftarrow} - \cos(u)$$

Exercice 1. /4

Dans chacun des cas suivants, déterminer une primitive des fonctions suivantes sur l'intervalle donné :

1.
$$f_1(x) = 3x \cos(6x^2) \text{ sur } I = \mathbb{R}.$$

2.
$$f_2(x) = \frac{x}{1+x^2} \text{ sur } I = \mathbb{R}^+.$$

3.
$$f_3(x) = -e^{-x} (e^{-x} + 1)^3 \text{ sur } I = \mathbb{R}.$$

4.
$$f_4(x) = \frac{e^x + 1}{\sqrt{e^x + x}} \operatorname{sur} I =]0; +\infty[.$$

Exercice 2.

On s'intéresse à la chute d'une goutte d'eau qui se détache d'un nuage sans vitesse initiale. Un modèle très simplifié permet d'établir que la vitesse instantanée verticale, exprimée en $m.s^{-1}$, de chute de la goutte en fonction de la durée de chute t est donnée par la fonction v définie ainsi :

Pour tout réel positif ou nul t, $v(t) = 9,81 \frac{m}{k} \left(1 - e^{-\frac{k}{m}t}\right)$; la constante m est la masse de la goutte en milligramme et la constante k est un coefficient strictement positif lié au frottement de l'air.

On rappelle que la vitesse instantanée est la dérivée de la position. Les parties A et B sont indépendantes.

Partie A - Cas général

- 1. Déterminer les variations de la vitesse de la goutte d'eau.
- 2. La goutte ralentit -elle au cours de sa chute?
- 3. Montrer que $\lim_{t\to+\infty} v(t) = 9,81\frac{m}{k}$. Cette limite s'appelle vitesse limite de la goutte.
- 4. Un scientifique affirme qu'au bout d'une durée de chute égale à $\frac{5m}{k}$, la vitesse de la goutte dépasse 99 % de sa vitesse limite. Cette affirmation est-elle correcte?

Partie B

Dans cette partie, on prend m = 6 et k = 3, 9.

À un instant donné, la vitesse instantanée de cette goutte est 15 m.s $^{-1}$.

- 1. Depuis combien de temps la goutte s'est -elle détachée de son nuage? Arrondir la réponse au dixième de seconde.
- 2. En déduire la vitesse moyenne de cette goutte entre le moment où elle s'est détachée du nuage et l'instant où on a mesuré sa vitesse. Arrondir la réponse au dixième de m.s⁻¹.

Exercice 3. /10

PARTIE A

On considère la fonction f définie sur l'intervalle]0; $+\infty[$ par

$$f(x) = \ln x - 2 + x.$$

- 1. Déterminer les limites de la fonction f en 0 et en $+\infty$.
- 2. Étudier le sens de variation de la fonction f puis dresser son tableau de variations.
- 3. Montrer que l'équation f(x) = 0 admet une unique solution α dans l'intervalle]0; $+\infty[$. Donner un encadrement du nombre α à 10^{-2} près.

PARTIE B

Le plan est muni d'un repère orthonormal.

On considère sur le graphique ci-dessous, la courbe représentative \mathcal{C} de la fonction ln, ainsi que la droite \mathcal{D} d'équation y=2-x. On note E le point d'intersection de la courbe \mathcal{C} et de la droite \mathcal{D} .

On considère l'aire en unités d'aire, notée \mathcal{A} , de la partie du plan située au dessus de l'axe des abscisses et au dessous de la courbe \mathcal{C} et de la droite \mathcal{D} .

- 1. Déterminer les coordonnées du point E.
- 2. Soit $I = \int_{1}^{\alpha} \ln x \, dx$.
 - (a) Donner une interprétation géométrique de I.
 - (b) Démontrer que la fonction F définie sur]0; $+\infty[$ par $F(x)=x(\ln(x)-1)$ est une primitive de \ln sur]0; $+\infty[$. En déduire la valeur de I, en fonction de α .
 - (c) Montrer que I peut aussi s'écrire $I = -\alpha^2 + \alpha + 1$ sachant que $f(\alpha) = 0$.
- 3. Calculer l'aire \mathcal{A} en fonction de α .

25/03/2021 **2**