

Simple branching algorithm

Algorithm color(G, c)

Input: Graph G = (V, E), number of colors c

Output: yes if G has proper coloring with c colors, no otherwise

- if c=0 and $V\neq\emptyset$ return no
- if c=0 and $V=\emptyset$ return yes
- result \leftarrow no
- for each $U \subseteq V$ // Guess vertices of color c
 - if $(u,v) \in E$ for some $u,v \in U$ // U cannot be colored with one color
 - continue
 - else if $\operatorname{color}(G \setminus U, c-1) = \operatorname{yes}$
 - result \leftarrow yes
- return result

Dynamic programming

We iteratively fill a table D[V', c'] containing yes if G[V'] has a proper c'-coloring and no otherwise.

Branching

- if c=0 and $V\neq\emptyset$ return no
- if c = 0 and $V = \emptyset$ return yes
- result ← no
- for each $U \subseteq V$
 - $\bullet \ \ \text{if} \ (u,v) \in E \ \text{for some} \ u,v \in U$
 - continue
 - else if $\operatorname{color}(G \setminus U, c-1) = \operatorname{yes}$
 - $\bullet \ \ result \ \leftarrow \ yes$
- return result

Dynamic programming

$$D[V', 0] = \text{no for all } V' \neq \emptyset$$

 $D[\emptyset, 0] = \text{yes}$

for each $V' \subseteq V, c' \in \{1, 2, \dots, c\}$ in increasing order

- result \leftarrow no
- for each $U \subseteq V'$
 - if $(u, v) \in E$ for some $u, v \in U$
 - continue
 - else if $D[V' \setminus U, c'-1] = yes$
 - result \leftarrow yes
- $D[V',c'] \leftarrow \text{result}$

return D[V,c]

Dynamic programming

We iteratively fill a table D[V',c'] containing yes if G[V'] has a proper c'-coloring and no otherwise.

Branching

- if c=0 and $V\neq\emptyset$ return no
- if c = 0 and $V = \emptyset$ return yes
- result ← no
- for each $U \subseteq V$
 - $\bullet \ \ \text{if} \ (u,v) \in E \ \text{for some} \ u,v \in U$
 - continue
 - else if $\operatorname{color}(G \setminus U, c-1) = \operatorname{yes}$
 - $\bullet \ \ \mathsf{result} \ \leftarrow \ \mathsf{yes}$
- return result

Dynamic programming

$$D[V', 0] = \text{no for all } V' \neq \emptyset$$

$$D[\emptyset, 0] = yes$$

for each $V' \subseteq V$, $c' \in \{1, 2, ..., c\}$ in increasing order

- result \leftarrow no
- for each $U \subseteq V'$
 - $\bullet \ \ \text{if} \ (u,v) \in E \ \text{for some} \ u,v \in U \\$
 - continue
 - else if $D[V' \setminus U, c'-1] = yes$
 - $\bullet \ \ result \ \leftarrow \ yes$
- $D[V',c'] \leftarrow \text{result}$

return D[V,c]

Running time

 $n^{O(1)} \cdot c \cdot \sum_{V' \subset V} 2^{|V'|} = n^{O(1)} \cdot c \cdot 3^n$ by binomial theorem.