Tutorato 24-04

April 2023

1 Esercizio 1

Due palle da biliardo, con velocità iniziali $v_1=4$ $\frac{m}{s}$ e $v_2=-5$ $\frac{m}{s}$ si scontrano, e dopo l'urto la prima pallina ha velocità $v_1^f=-3$ $\frac{m}{s}$.

2 Esercizio 2

Una palla di cannone di massa m=20kg viene sparate contro la muraglia di un castello, con velocità $v=50~\frac{m}{s}$. Durante l'urto la muraglia si scalda, assorbendo una quantità di calore pari a Q=5~kJ. Determinare la velocità di rimbalzo della palla di cannone.

3 Esercizio 3

Un'oggetto di massa M=2~kg è appeso al soffitto tramite un filo di lunghezza l=1~m. L'oggetto viene rilasciato da un'angolo iniziale $\theta=10^\circ$ e quando raggiunge un'angolo $\alpha=-7^\circ$, colpisce una pallina da biliardo di massa m=0.01~kg. Determinare la velocità acquisita dalla pallina, ipotizzando che l'urto sia elastico.

4 Esercizio 4

Mario, che pesa 70 kg, cade dal tetto di un palazzo alto h=30~m. L'urto con il suolo dura $\Delta t=10^{-5}s$, determinare la forza media a cui è sottoposto Mario durante l'urto.

5 Esercizio 5

L'astronauta Giovanni per sbaglio fa cadere un bullone di massa $m=20\ g$ dalla stazione spaziale internazionale che si trova a 400 km dalla superficie terrestre. Supponendo che il bullone parta da fermo e trascurando l'attrito atmosferico, calcolare la velocità con cui colpisce il suolo terrestre.

6 Esercizio 6

Un neutrone di massa $m=1.7\cdot 10^{-27}~kg$ viene lanciato contro un nucleo di uranio 235 per romperlo. L'energia necessaria a rompere il nucleo è pari a $E=1702~MeV~(1~eV=1.6\cdot 10^{-19}~J)$. Sapendo che nell'urto il neutrone cede il 10% della sua energia cinetica, determinare la velocità con cui deve essere lanciato. Perchè questo risultato non ha senso in fisica?

7 Esercizio 7

Un pendolo di Newton, di lunghezza l=10~cm, è costituito da 5 sferette di ugual massa. La sferetta più a sinistra viene rilasciata da un'angolazione pari a $\theta=5^{\circ}$. Ipotizzando che ad ogni urto venga dissipata il 5% dell'energia cinetica, determinare l'angolo massimo raggiunto dalla pallina tutta a destra.

