Scilab Textbook Companion for Engineering Physics by G. Vijayakumari¹

Created by
Potnuru Sattibabu
B.Tech
Mechanical Engineering
Sastra University
College Teacher
Prof. Chintam Suresh Kumar
Cross-Checked by
Lavitha Pereira

May 25, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Engineering Physics

Author: G. Vijayakumari

Publisher: Vikas Publishing, Noida

Edition: 2

Year: 2007

ISBN: 9788125924098

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Acoustics	5
2	Ultrasonics	15
3	Crystal physics	18
4	Wave optics	36
5	Laser	43
6	Fiber optics	46
7	Conducting materials	50
8	Quantum Physics	62
9	Energy Bands in Solids	72
10	Intrinsic Semiconductors	82
11	Extrinsic Semiconductors	92
12	Superconducting materials	102
13	Dielectrics	107
15	Non Destructive Testing	111

List of Scilab Codes

Exa 1.1	sound intensity level	5
Exa 1.2	Intensity level	5
Exa 1.3	Intensity level of plane	6
Exa 1.4	Intensity of sound in dB	6
Exa 1.5	Intensity level in dB	7
Exa 1.6	Resultant sound level	7
Exa 1.7	Noise level	8
Exa 1.8	Flow of energy	8
Exa 1.9	Reverberation time	9
Exa 1.10	Average absorption coefficient and reverberation time	9
Exa 1.11	Area of interior surfaces	10
Exa 1.12	Total absorption	1
Exa 1.13	New reverberation time	1
Exa 1.14	Reverberation time in sec	12
Exa 1.15	Effect of reverberation time	13
Exa 1.16	Average absorbing power of the surface	13
Exa 2.1	Frequency of vibration	15
Exa 2.2	Frequency of first and second node of vibration 1	16
Exa 2.3	Depth and wavelength	16
Exa 3.1	Miller indices	18
Exa 3.3		19
Exa 3.4	Lattice constant	20
Exa 3.6	Ratio of intercepts	20
Exa 3.7	Interplanar distance	21
Exa 3.8	Interplanar distance	22
Exa 3.9		23
Exa 3.10		24
Eva 3 11	Miller indices	24

Exa 3.12	Miller indices
Exa 3.13	Miller indices
Exa 3.14	Atomic radius
Exa 3.15	Interplanar distance
Exa 3.16	Density
Exa 3.17	Distance
Exa 3.18	Distance
Exa 3.19	Atomic radius
Exa 3.20	Lattice constant
Exa 3.21	Number of atoms
Exa 3.22	Volume of its unit cell
Exa 3.23	Planar distance
Exa 3.24	Lattice constant
Exa 3.25	Volume change in percentage
Exa 3.26	Number of unit cells
Exa 3.27	Volume of the unit cell
Exa 4.1	wavelength of ligth used
Exa 4.2	wavelength of light
Exa 4.3	wavelength of monochromatic source
Exa 4.4	Thickness of the film
Exa 4.5	Refractive index of the material
Exa 4.6	Number of fringes
Exa 4.7	Thickness of a quarter wave plate
Exa 4.8	Thickness of a double refracting crystal
Exa 4.9	Least thickness of a plate
Exa 4.10	Thickness of the Calcite plate
Exa 4.11	Wavelength of half wave plate
Exa 4.12	Thickness of a sheet
Exa 5.1	Ratio of population
Exa 5.2	Band gap
Exa 5.3	wavelength limit
Exa 5.4	Number of photons emitted
Exa 6.1	Critical and acceptance angle and numerical aperture. 4
Exa 6.2	Numerical aperture
Exa 6.3	Critical and acceptance and numerical aperture 4
Exa 6.4	Acceptance angle
Exa 6.5	Refractive index
Exa 7.1	Mobility of the charge carriers

Exa 7.2	Drift velocity of the free electrons
Exa 7.3	Drift velocity of the free electrons
Exa 7.4	Relaxation time
Exa 7.5	Mean free path between collisions of the free electrons
Exa 7.6	Drift velocity of electrons
Exa 7.7	Electrical conductivity of copper
Exa 7.8	Drift velocity of electrons in copper
Exa 7.9	Drift velocity and mobility
Exa 7.10	Mobility and average time collision
Exa 7.11	Electrical resistivity
Exa 7.12	Free electron concentration and mobility and drift ve-
	locity
Exa 7.13	Resistance
Exa 7.14	Thermal conductivity of copper
Exa 7.15	Thermal conductivity and thermal resistance
Exa 7.16	Lorentz number
Exa 7.17	Thermal conductivity of copper
Exa 8.1	Momentum
Exa 8.2	Number of photons
Exa 8.3	Energy density
Exa 8.4	Compton wavelength
Exa 8.5	change in wavelength
Exa 8.6	Wavelength of x rays
Exa 8.7	Wavelength of scattered photons
Exa 8.8	velocity of a moving electron
Exa 8.9	Energy of an electron
Exa 8.10	Lowest energy of a neutron
Exa 8.11	Three permitted energy levels
Exa 8.12	Lowest energy
Exa 8.13	Minimum energy of an electron
Exa 8.14	Energy required
Exa 8.15	Lowest energy
Exa 9.1	Fermi function
Exa 9.2	Fermi function
Exa 9.3	Fermi velocity
Exa 9.4	Fermi energy and temperature
Exa 9.5	Fermi temperature and velocity
Exa 9.6	Temperature

Exa 9.7	Energies
Exa 9.8	Probability of the level
Exa 9.9	Fermi factor
Exa 9.10	Fermi energy
Exa 9.11	Number of free electrons
Exa 9.12	Fermi energy
Exa 9.13	Fermi energy in copper
Exa 10.1	Electron and hole concentrations 82
Exa 10.2	Resistivity
Exa 10.3	Intrinsic carrier density
Exa 10.4	Conductivity
Exa 10.5	Intrinsic carrier concentration and conductivity 84
Exa 10.6	Position of the fermi level
Exa 10.7	Temperature
Exa 10.8	Resistance of an intrinsic Ge rod
Exa 10.9	Ratio between its conductivity
Exa 10.10	Conductivity of Ge
Exa 10.11	Intrinsic career density
Exa 10.12	Band gap
Exa 10.13	Mobility
Exa 10.14	Band gap energy of the semiconductor 91
Exa 11.1	Conductivity
Exa 11.2	Concentration of holes and electrons
Exa 11.3	Electron concentration
Exa 11.4	Position of fermi level
Exa 11.5	Density of impurity atoms
Exa 11.6	Charge carrier density and electron mobility 96
Exa 11.7	Hall coefficient of semiconductor
Exa 11.8	Hall coefficient
Exa 11.9	Density and mobility of the charge carrier 98
Exa 11.10	Charge carrier density and electron mobility 98
Exa 11.11	Hall coefficient
Exa 11.12	Mobility and density of the charge carrier 100
Exa 11.13	Current density
Exa 12.1	Transition temperature
Exa 12.2	Critical field
Exa 12.3	<u>Isotopic mass</u>
Exa 12.4	Critical current

Exa 12.5	Critical field	104
Exa 12.6	Critical current	105
Exa 12.7	Critical temperature	105
Exa 12.8	Frequency of the radiation	106
Exa 13.1	Electronic polarisation	107
Exa 13.2	Effective distance	108
Exa 13.3	Polarisability and relative permittivity	108
Exa 13.4	Static dielectric constant	109
Exa 13.5	Ratio between electronic and ionic polarisability	110
Exa 15.1	Frequency	111

Chapter 1

Acoustics

Scilab code Exa 1.1 sound intensity level

Scilab code Exa 1.2 Intensity level

```
1 clc
2 clear
3 //INPUT DATA
```

```
4 i=4//the intensity of a source is increased 4 times
5
6 //CALCULATION
7 I=(10*(log10(i)))//intensity of sound in dB
8
9 //OUTPUT
10 printf('The sound intensity level is increased by %i dB',I)
```

Scilab code Exa 1.3 Intensity level of plane

```
1 clc
2 clear
3 //INPUT DATA
4 I=1000//sound intensity of plane leaving the runway
    in Wm^-2
5 Io=10^-12//threshold intensity of sound in Wm^-2
6
7 //CALCULATION
8 IL=(10*log10(I/Io))//The intensity level of a plane
    just leaving the runway in dB
9
10 //OUTPUT
11 printf('The intensity level of a plane just leaving
    the runway is %i dB',IL)
```

Scilab code Exa 1.4 Intensity of sound in dB

```
5 Io=10^-12//threshold intensity of sound in Wm^-2
6
7 //CALCULATION
8 IL=(10*log10(I/Io))//The intensity level in dB
9
10 //OUTPUT
11 printf('The intensity level is %i dB',IL)
```

Scilab code Exa 1.5 Intensity level in dB

```
clc
clear
//INPUT DATA
Q=3.56//rate of energy radiates in W
r=15//distance of intensity level in m
lo=100//reference intensity in Wm^-2

//CALCULATION
A=4*3.14*r*r//Area in m^2
I=(Q/A)//sound intensity in Wm^-2
IL=(10*log10(I/Io))//The intensity level in dB
//OUTPUT
//OUTPUT
rintf('The intensity level is %3.3 f dB',IL)
```

Scilab code Exa 1.6 Resultant sound level

```
1 clc
2 clear
3 //INPUT DATA
4 Il1=70//sound in dB
5 Il2=80//sound in dB
```

```
7 //CALCULATION
8 I1=10^(I11/10) // ratio of intensity
9 I2=10^(I12/10) // ratio of intensity
10 I=I1+I2//intensity of sound in dB
11 I1=10*log10(I) // resultant intensity in dB
12
13 //OUTPUT
14 printf('The resultant sound level is %3.2 f dB',I1)
```

Scilab code Exa 1.7 Noise level

```
1 clc
2 clear
3 //INPUT DATA
4 i=4//the intensity of a source when 4 such drills
      are working at the same distance away
5 I1=95//The noise level of sound from a drill in dB
7 //CALCULATION
8 I2=(10*(log10(i)))//intensity of source in dB
9 IL=I1+I2//The noise level at this point when 4 such
      drills are working at the same distance away in
     dB
10
11 //OUTPUT
12 printf('The noise level at this point when 4 such
      drills are working at the same distance away is
     \%3.2\,\mathrm{f}~\mathrm{dB}',IL)
```

Scilab code Exa 1.8 Flow of energy

```
1 clc
2 clear
```

```
//INPUT DATA
f=426//frequency of sound in Hz
a=0.65*10^-2//amplitude of sound wave in m
A=1//area in m^2
v=340//velocity of sound in air in ms^-1
d=1.29//density of air in Kg m^-3

//CALCULATION
I=(2*3.14*3.14*f^2*a^2*d*v)/10^4//The flow of energy across lm^2 per second in Wm^-2*10^4

//OUTPUT
//OUTPUT
rrintf('The flow of energy across lm^2 per second is %3.3f*10^4 Wm^-2',I)
```

Scilab code Exa 1.9 Reverberation time

```
clc
clear
//INPUT DATA
V=1000//volume of hall in m^3
S=400//sound absorbing surface of area in m^2
a=0.2//average absorption coefficient in sabine

//CALCULTION
T=(0.167*V)/(a*S)//The reverberation time of the hall in sec

//OUTPUT
printf('The reverberation time of the hall is %3.2f sec',T)
```

Scilab code Exa 1.10 Average absorption coefficient and reverberation time

```
1 clc
2 clear
3 //INPUT DATA
4 V=1500//volume of room in m<sup>3</sup>
5 a1=0.03//average sound coefficient for wall in
  a2=0.06//average sound coefficient for the ceiling
      in sabine
7 a3=0.8//average sound coefficient for the floor in
      sabine
8 S1=260//The wall area of the room in m<sup>2</sup>
9 S2=140//The floor area of the room in m<sup>2</sup>
10 S3=140//The ceiling area of the room in m<sup>2</sup>
11
12 //CALCULATION
13 a=((a1*S1)+(a2*S2)+(a3*S3))/(S1+S2+S3)//The average
      absorbtion coefficient in O.W.U
14 TS=S1+S2+S3//total area of the room in m^2
15 x=(a*TS)//Total sound absorbtion of the room in O.W.
     U-m^2
16 T = ((0.167*V)/x)//The reverberation time in sec
17
18 //OUTPUT
19 printf ('The average absorbtion coefficient is %3.4 f
     O.W.U \n The reverberation time is \%3.4 f sec', a, T
      )
```

Scilab code Exa 1.11 Area of interior surfaces

```
1 clc
2 clear
3 //INPUT DATA
4 V=12000//volume of auditorium in m^3
5 T=1.5//The reverberation time of the auditorium in sec
```

```
a=0.4//average absorption coefficient in sabine

//CALCULTION
S=(0.167*V)/(a*T)//area of interior surfaces in m^2
//OUTPUT
printf('The area of interior surfaces is %i m^2',S)
```

Scilab code Exa 1.12 Total absorption

```
clc
clear
//INPUT DATA
V=7500//volume of cinema hall in m^3
T=1.5//The reverberation time of the cinema hall in sec

//CALCULATION
TaS=(0.167*V)/(T)//The total absorbtion in the hall in sabine m^2
//OUTPUT
printf('The total absorbtion in the hall is %i sabine m^2', TaS)
```

Scilab code Exa 1.13 New reverberation time

```
1 clc
2 clear
3 //INPUT DATA
4 V=12500//volume of hall in m^3
5 T1=1.5//The reverberation time of the hall in sec
```

```
a a2S2=200//The number of cushioned chairs are
    additionally placed in the hall in sabine-m^2

//CALCULATION
Ta1S1=(0.167*V)/T1//The reverberation time before
    placed cushioned chairs in sabine -m^2
T2=(0.167*V)/(Ta1S1+a2S2)//The new reverberation
    time after placing the cushioned chairs in sec

//OUTPUT
mrintf('The new reverberation time after placing the cushioned chairs is %3.4f sec',T2)
```

Scilab code Exa 1.14 Reverberation time in sec

```
1 clc
2 clear
3 //INPUT DATA
4 V=475//volume of hall in m<sup>3</sup>
5 a1=0.025//absorbtion coefficient for wall in O.W.U
  a2=0.02//absorbtion coefficient for the ceiling in O
      .W.U
  a3=0.55//absorbtion coefficient for the floor in O.W
8 S1=200//The wall area of the room in m<sup>2</sup>
9 S2=100//The floor area of the room in m<sup>2</sup>
10 S3=100//The ceiling area of the room in m<sup>2</sup>
11
12 //CALCULATION
13 TaS=((a1*S1)+(a2*S2)+(a3*S3))//The average
      absorbtion coefficient in O.W.U-m^2
14 T = ((0.167*V)/TaS)//The reverberation time in sec
15
16 //OUTPUT
17 printf ('The reverberation time for the hall is \%3.4 \,\mathrm{f}
```

Scilab code Exa 1.15 Effect of reverberation time

```
1 clc
2 clear
3 //INPUT DATA
4 V=2265//volume of hall in m<sup>3</sup>
5 Ta1S1=94.85//The total absorbtion coefficient in m<sup>2</sup>
6
  //CALCULATION
 T1 = ((0.167*V)/Ta1S1)//The reverberation time in the
      hall without audience in sec
9 Ta2S2=2*Ta1S1//The new absorbtion coefficient in m<sup>2</sup>
10 T2=((0.167*V)/Ta2S2)//The reverberation time in the
      hall with audience in sec
11
12 //OUTPUT
13 printf ('The reverberation time in the hall without
      audience is \%3.3 f sec \n The reverberation time
      in the hall with audience is \%3.3f sec \n Thus,
      the reverberation reduces to half of its initial
      value when the audience fill the hall.',T1,T2)
```

Scilab code Exa 1.16 Average absorbing power of the surface

```
1 clc
2 clear
3 //INPUT DATA
4 V=120000//Volume of the hall in m^3
5 T=1.55//The reverberation time in sec
6 S=26500//The total absorbing surface in m^2
```

```
8 //CALCULATION
9 TaS=(0.167*V)/T//The average absorbtion coefficient
    in sabine—m^2
10 a=(TaS/S)//The average absorbing power of the
        surface in sabine
11
12 //OUTPUT
13 printf('The average absorbing power of the surface
        is %3.4 f sabine',a)
```

Chapter 2

Ultrasonics

Scilab code Exa 2.1 Frequency of vibration

```
1 clc
2 clear
3 //INPUT DATA
4 E=80*10^9//Young's modulus of material of piezo
      electric crystal in Pa
5 d=2654 // Density of material of piezo electric
      crystal in Kg/m<sup>3</sup>
6 t=0.1*10^-2//Thickness of piezo electric crystal in
7 p=1//for fundamental first overtone
9 //CALCULATION
10 f = ((p/(2*t))*(sqrt(E/d)))/10^6//Frequency of
      vibration of first overtone in Hz *10^6
11
12 //OUTPUT
13 printf('The frequency of vibration is %3.4f *10^6.Hz
      ',f)
```

Scilab code Exa 2.2 Frequency of first and second node of vibration

```
1 clc
2 clear
3 //INPUT DATA
4 v=5.5*10^3//Velocity of longitudanal waves in Quartz
       Crystal in m/s
5 t=0.05//Thickness of Quartz Crystal in m
7 //CALCULATION
8 \text{ w=}2*t//\text{wavelength in m}
9 v1=(v/w)/10^4//Frequency in the first mode of
      vibration in Hz *10<sup>4</sup>
10 v2=(2*v1)/(10^-4*10^3)/Frequency in the second mode
       of vibration in Hz *10<sup>3</sup>
11
12 //OUTPUT
13 printf ('Frequency in the first mode of vibration is
      \%3.1\,\mathrm{f} *10^4.Hz \n Frequency in the second mode of
       vibration is \%i *10^3.Hz', v1, v2)
```

Scilab code Exa 2.3 Depth and wavelength

```
1 clc
2 clear
3 //INPUT DATA
4 f=0.09*10^6//Frequency of Ultrasonic source in Hz
5 t=0.55//time in sec
6 v=1800//velocity of sound in water in m/s
7
8 //CALCULATION
9 D=(v*t)/2//Depth of sea in m
10 W=(v/f)//Wavelength of ultrasonic pulse in m
11
12 //OUTPUT
```

13 printf('The depth of sea is %im \n The wavelength of ultrasonic pulse is $\%3.2\,\mathrm{fm}$ ',D,W)

Chapter 3

Crystal physics

Scilab code Exa 3.1 Miller indices

```
1 clc
2 clear
3 //INPUT DATA
4 x1=%inf//intercept of x-axis from figure 3.15(a) on
     page no:57
5 y1=1/2//intercept of y-axis from figure 3.15(b) on
     page no:57
6 z1=%inf//intercept of z-axis from figure 3.15(c) on
     page no:57
7 x2=1//intercept of x-axis from figure 3.15(a) on
     page no:57
8 y2=1/2//intercept of y-axis from figure 3.15(b) on
     page no:57
9 z2=%inf//intercept of z-axis from figure 3.15(c) on
     page no:57
10 x3=1/2//intercept of x-axis from figure 3.15(a) on
     page no:57
11 y3=1/2//intercept of y-axis from figure 3.15(b) on
     page no:57
12 z3=%inf//intercept of z-axis from figure 3.15(c) on
     page no:57
```

```
13
14 //CALCULATION
15 p1=1/x1//The miller indices of x-axis
16 q1=1/y1//The miller indices of y-axis
17 r1=1/z1//The miller indices of z-axis
18 p2=1/x2//The miller indices of x-axis
19 q2=1/y2//The miller indices of y-axis
20 r2=1/z2//The miller indices of z-axis
21 p3=1/x3//The miller indices of x-axis
22 q3=1/y3//The miller indices of y-axis
23 r3=1/z3//The miller indices of z-axis
24
25 //OUTPUT
26 printf ('The miller indices of plane shown in figure
     3.15(a) is (%i %i %i) \n The miller indices of
     plane shown in figure 3.15(b) is (%i %i %i) \n
     The miller indices of plane shown in figure 3.15(
     c) is (%i %i %i) ',p1,q1,r1,p2,q2,r2,p3,q3,r3)
```

Scilab code Exa 3.3 Interplanar distance

```
1 clc
2 clear
3 //INPUT DATA
4 h=3//miller indices with respect to x axis
5 k=1//miller indices with respect to y axis
6 l=1//miller indices with respect to z axis
7 a=2.109*10^-10//lattice constant of plane in a simple cubic lattice in m
8
9 //CALCULATION
10 d=(a/(sqrt(h^2+k^2+l^2)))/10^-11//The interplanar distance in m *10^-11
11
12 //OUTPUT
```

```
13 printf('The interplanar distance is \%3.3\,\mathrm{f}*10^-11\,\mathrm{m}', d)
```

Scilab code Exa 3.4 Lattice constant

```
1 clc
2 clear
3 //INPUT DATA
4 h=1//miller indices with respect to x axis
5 k=1//miller indices with respect to y axis
6 l=0//miller indices with respect to z axis
7 d=2.86*10^-10//the distance between miller indices in m
8
9 //CALCULATION
10 a=(d*(sqrt(h^2+k^2+l^2)))/10^-10//The lattice constant in m *10^-10
11
12 //OUTPUT
13 printf('The lattice constant is %3.3f*10^-10 m',a)
```

Scilab code Exa 3.6 Ratio of intercepts

```
1 clc
2 clear
3 //INPUT DATA
4 h=1//miller indices of x-axis
5 k=1//miller indices of y-axis
6 l=1//miller indices of z-axis
7
8 //CALCULATION
9 p=1/h//intercept on x-axis
10 q=1/k//intercept on y-axis
```

Scilab code Exa 3.7 Interplanar distance

```
1 clc
2 clear
3 //INPUT DATA
4 r=1.246*10^-10//atomic radius of Fcc crystal in m
5 h1=1//miller indices with respect to x axis in 1st
     plane
6 k1=1//miller indices with respect to y axis in 1st
     plane
  11=1//miller indices with respect to z axis in 1st
     plane
8 h2=2//miller indices with respect to x axis in 2nd
     plane
9 k2=0//miller indices with respect to y axis in 2nd
     plane
10 12=0//miller indices with respect to z axis in 2nd
     plane
11 h3=2//miller indices with respect to x axis in 3rd
     plane
12 k3=2//miller indices with respect to y axis in 3rd
13 13=0//miller indices with respect to z axis in 3rd
     plane
14
15 //CALCULATION
16 a=(4*r)/sqrt(2)//The lattice constant in a FCC
     crystal in m
17 d1=(a/(sqrt(h1^2+k1^2+l1^2)))/10^-10//inter planar
     spacing distance in 1st plane in m*10^-10
```

Scilab code Exa 3.8 Interplanar distance

```
1 clc
2 clear
3 //INPUT DATA
4 a=1//the lattice constant of a simple cubic system
     in m
5 h1=1//miller indices with respect to x axis in 1st
     plane
6 k1=0//miller indices with respect to y axis in 1st
     plane
7 11=0//miller indices with respect to z axis in 1st
     plane
8 h2=1//miller indices with respect to x axis in 2nd
     plane
9 k2=1//miller indices with respect to y axis in 2nd
     plane
10 12=0//miller indices with respect to z axis in 2nd
     plane
11 h3=1//miller indices with respect to x axis in 3rd
     plane
12 k3=1//miller indices with respect to y axis in 3rd
     plane
```

```
13 13=1//miller indices with respect to z axis in 3rd
      plane
14
15 //CALCULATION
16 x1 = (sqrt(h1^2+k1^2+l1^2))
17 d100=(a/x1)//inter planar spacing distance in 1st
      plane in m
18 x2=sqrt(h2^2+k2^2+12^2)
19 d110=(a/(x2))//inter planar spacing distance in 2nd
      plane in m
20 \text{ x3} = (\text{sqrt}(\text{h3}^2+\text{k3}^2+\text{13}^2))
21 d111=(a/x3)//inter planar spacing distance in 3rd
      plane in m
22
23 //OUTPUT
24 printf ('The inter planar spacing distance in 1st
      plane is %i m \n The inter planar spacing
      distance in 2nd plane is %3.4 f m \nThe inter
      planar spacing distance in 3rd plane is \%3.3fm \n
       Ratio of interplanar distance of three planes is
       d100: d110: d111 = \%i: \%3.3 f: \%3.3 f', (1/x1), (1/x2), (1/x2)
      x3),d100,d110,d111)
```

Scilab code Exa 3.9 Miller indices of a plane

```
1 clc
2 clear
3 //INPUT DATA
4 p=1//x-intercept of the plane
5 q=1/2//y-intercept of the plane
6 r=3//z-intercept of the plane
7
8 //CALCULATION
9 h=(1/p)*3//miller indices with respect to x axis
10 k=(1/q)*3//miller indices with respect to y axis
```

```
11 l=(1/r)*3//miller indices with respect to z axis
12
13 //OUTPUT
14 printf('The miller indices of the plane is (h k l)=(
%i %i %i)',h,k,l)
```

Scilab code Exa 3.10 Distance

Scilab code Exa 3.11 Miller indices

```
1 clc
2 clear
3 //INPUT DATA
4 OA=0.025//The unit cell makes intercepts on a in nm
5 OB=0.02//The unit cell makes intercepts on b in nm
6 OC=0.01//The unit cell makes intercepts on c in nm
```

Scilab code Exa 3.12 Miller indices

```
1 clc
2 clear
3
4 //INPUT
5 a=0.424; //value of one axial unit
6 b=1;//value of second axial unit
7 c=0.367; //value of third axial unit
8 i1=0.212; // value at x-intercept
9 j1=1; // value at y-intercept
10 k1=0.183; // value at z-intercept
11 i2=0.848; //value at x-intercept
12 j2=1; // value at y-intercept
13 k2=0.732; // value at z-intercept
14 i3=0.424; //value at x-intercept
15 j3=%inf;//value at y-intercept
16 k3=0.123; //value at z-intercept
17
```

```
18 //CALCULATIONS
19 p1=1/(i1/a);//miller indices at x-intercept
20 q1=1/(j1/b);//miller indices at y-intercept
21 r1=1/(k1/c);//miller indices at z-intercept
22 p2=1/(i2/a)*2;//miller indices at x-intercept
23 q2=1/(j2/b)*2;//miller indices at y-intercept
24 r2=1/(k2/c)*2;//miller indices at z-intercept
25 p3=1/(i3/a);//miller indices at x-intercept
26 q3=1/(j3/b);//miller indices at y-intercept
27 r3=1/(k3/c);//miller indices at z-intercept
28
29 //OUTPUT
30 mprintf('The miller indices are (%i %i %i) \n The
     miller indices are (%i %i %i) \n The miller
     indices are (%i %i%3.0f)',p1,q1,r1,p2,q2,r2,p3,q3
     ,r3)
```

Scilab code Exa 3.13 Miller indices

```
1 clc
2 clear
3 //INPUT DATA
4 OB=2//The intercept made by the parrell line ,OB=2b
5 OC=7//The intercept made by the parrell line OC=2c
6 OA=%inf//The intercept made by the parrell line OB
     =2b
7
8 //CALCULATION
9 A=1/OA//miller indice along x-axis
10 B=1/OB//miller indice along y-axis
11 C=1/OC//miller indice along z-axis
12 X = (B*(OC*OB)) / taking L.C.M
13 Y=(C*(OC*OB))/taking L.C.M
14
15
```

```
16  // Output
17  printf('Miller indices are (1/%f 1/%i 1/%i)=(%i %i %i)',OA,OB,OC,A,X,Y)
```

Scilab code Exa 3.14 Atomic radius

```
1 clc
2 clear
3 //INPUT DATA
4 a=3.6//lattice parameter of copper in armstrong
5
6 //CALCULATION
7 r=(a*sqrt(2))/4//The atomic radius of copper in armstrong
8
9 //OUTPUT
10 printf('The atomic radius of copper is %3.3 f armstrong',r)
```

Scilab code Exa 3.15 Interplanar distance

Scilab code Exa 3.16 Density

```
clc
clear
//INPUT DATA
n=4//no.of atoms in FCC structure
A=63.54//Atomic weight of copper
r=1.278*10^-10//atomic radius in m
N=6.023*10^26//Avogadro's Number per Kg mol

//CALCULATION
a=((4*r)/sqrt(2))//The lattice constant in m
d=((A*n)/(N*a*a*a))//The density of copper in Kg/m^3
//OUTPUT
//OUTPUT
rpintf('The density of copper is %i Kg/m^3',d)
```

Scilab code Exa 3.17 Distance

```
1 clc
2 clear
3 //INPUT DATA
4 h1=1//miller indices with respect to x axis in 1st
    plane
5 k1=0//miller indices with respect to y axis in 1st
    plane
6 l1=0//miller indices with respect to z axis in 1st
    plane
```

```
7 h2=1//miller indices with respect to x axis in 2nd
     plane
8 k2=1//miller indices with respect to y axis in 2nd
     plane
  12=0//miller indices with respect to z axis in 2nd
      plane
10 h3=1//miller indices with respect to x axis in 3rd
     plane
11 k3=1//miller indices with respect to y axis in 3rd
     plane
12 13=1//miller indices with respect to z axis in 3rd
     plane
13 a=1//The lattice constant in a in a simple cubic
      lattice in m
14
15 //CALCULATION
16 d100=(a/(sqrt(h1^2+k1^2+l1^2)))//inter planar
      spacing distance in 1st plane in m
17 d110=(a/(sqrt(h2^2+k2^2+12^2)))//inter planar
      spacing distance in 2nd plane in m
18 d111=(a/(sqrt(h3^2+k3^2+13^2)))//inter planar
     spacing distance in 3rd plane in m
19
20 //OUTPUT
21 printf ('The ratio of interplanar distance between
     successive lattice planes in a simple cubic
     lattice is d100:d110:d111=\%i:\%3.3f:\%3.3f', d100,
     d110,d111)
```

Scilab code Exa 3.18 Distance

```
1 clc
2 clear
3 //INPUT DATA
4 x=23//atomic weight of sodium
```

```
5 y=35.45//atomic weight of chloide
6 AW=58.45//atomic weight of sodium chloride (NaCl)
7 n=4//no.of atoms in FCC structure
8 d=2.18*10^6//density of NaCl crystal of FCC
      structure in kg/m<sup>3</sup>
9 N=6.023*10^23//Avogadro's Number per Kg mol
10
11 //CALCULATION
12 a = (((n*AW)/(d*N))^{(1/3)})/10^{-10}//The lattice
      constant in m
13 r=(a/2)/The distance between two adjacent atoms in
     m *10^-10
14
15 //OUTPUT
16 printf ('The distance between two adjacent atoms is
     \%3.2 f*10^-10 m',r)
```

Scilab code Exa 3.19 Atomic radius

```
1 clc
2 clear
3 //INPUT DATA
4 n=2//no.of atoms in BCC structure
5 d=7.86*10^6//density of iron of FCC structure in kg/
    m^3
6 AW=55.85//atomic weight of Fe
7 N=6.023*10^23//Avogadro's Number per Kg mol
8
9 //CALCULATION
10 a=(((n*AW)/(d*N))^(1/3))/10^-10//The lattice
    constant in m
11 r=((a*sqrt(3))/4)//The atomic radius of Fe which has
    BCC structure in armstrong*10^-10
12
13 //OUTPUT
```

```
14 printf('The atomic radius of Fe which has BCC structure is %3.3 f armstrong',r)
```

Scilab code Exa 3.20 Lattice constant

```
clc
clear
//INPUT DATA
n=4//no.of atoms in FCC structure
d=2.7*10^3//density of potassium bromide in Kg/m^3
AW=119//molecular weight of KBr
N=6.023*10^26//Avagadro's number per Kg mol

//CALCULATION
a=(((n*AW)/(d*N))^(1/3))/10^-10//The lattice constant in armstrong *10^-10
//OUTPUT
//OUTPUT
rprintf('The lattice constant is %3.1f Armstrong',a)
```

Scilab code Exa 3.21 Number of atoms

```
1 clc
2 clear
3 //INPUT DATA
4 d=9.6*10^2//density of crystal in Kg/m^3
5 AW=23//molecular weight of the crystal
6 N=6.023*10^26//Avagadro's number per Kg mol
7 a=4.3*10^-10//lattice constant in m
8
9 //CALCULATION
10 n=((d*N*a*a*a)/AW)//Number of atoms per unit cell of a crystal
```

```
11
12 //OUTPUT
13 printf('Number of atoms per unit cell of a crystal
    is %3.2 f \n If n=2, the crystal system is body
    centered cubic.',n)
```

Scilab code Exa 3.22 Volume of its unit cell

```
clc
clear
//INPUT DATA
r=1.2*10^-10//atomic radius of crystal of BCC
structure in m

//CALCULATION
a=((4*r)/sqrt(3))//lattice constant of BCC structure
in m

V=((a*a*a)/10^-29)//The volume of cell in m^3*10^-29
//OUTPUT
printf('The volume of cell is %3.3f*10^-29 m^3',V)
```

Scilab code Exa 3.23 Planar distance

```
1 clc
2 clear
3 //INPUT DATA
4 a=4*10^-7//lattice constant of the crystal in mm
5 h1=1//miller indices with respect to x axis in 1st plane
6 k1=0//miller indices with respect to y axis in 1st plane
```

```
7 11=0//miller indices with respect to z axis in 1st
     plane
8
9 //CALCULATION
10 n=4*(1/4)//Number of atoms contained in a plane per
     unit cell
11 A=a*a//Area of the plane in mm^2
12 d=(n/A)/10^12//The planar atomic density in atoms/mm
     ^2
13
14 //OUTPUT
15 printf('The planar atomic density is %3.2f*10^12
     atoms/mm^2',d)
```

Scilab code Exa 3.24 Lattice constant

```
1 clc
2 clear
3 //INPUT DATA
4 n=4//no.of atoms in Face centered cubic lattice
5 d=6250//density of potassium bromide in Kg/m^3
6 AW=60.2//molecular weight of crysal with face centered cubic lattice
7 N=6.023*10^26//Avagadro's number per Kg mol
8
9 //CALCULATION
10 a=(((n*AW)/(d*N))^(1/3))/10^-10//The lattice constant in armstrong *10^-10
11
12 //OUTPUT
13 printf('The lattice constant is %3.3f*10^-10 Armstrong',a)
```

Scilab code Exa 3.25 Volume change in percentage

```
1 clc
2 clear
3 //INPUT DATA
4 r1=0.1258*10^-9//atomic radii of the iron atom in
     BCC structure in m
5 r2=0.1292*10^-9/atomic radii of the iron atom in
     FCC structure in m
  T=910//metallic iron changes from BCC to FCC in
      centigrade
8 //CALCULATION
9 a1=((4*r1)/sqrt(3))/lattice constant of BCC
      structure in m
10 v1=((a1*a1*a1)/2)/The volume occupied by one BCC
     atom in m<sup>3</sup>
11 a2=((4*r2)/sqrt(2))/lattice constant of FCC
      structure in m
12 v2=((a2*a2*a2)/4)/The volume occupied by one FCC
     atom in m<sup>3</sup>
13 V=((v1-v2)/v1)*100//The change in volume percentage
14
15 //OUTPUT
16 printf ('The change in volume percentage is \%3.5 f', V)
```

Scilab code Exa 3.26 Number of unit cells

```
1 clc
2 clear
3 //INPUT DATA
4 a=0.405*10^-9//lattice constant of unit cell of aluminium which is face centered cubic in m
5 s=25*10^-2//Side of aluminium foil in m
6 t=0.005*10^-2//Thickness of aluminium foil in m
```

```
7
8 //CALCULATION
9 ar=(s*s)//area of aluminium foil in m^2
10 V=(ar*t)//volume of the aluminium foil in m^3
11 v=(a*a*a)//volume of the unit cell in m^3
12 n=(V/v)/10^22//Number of unit cells *10^22
13
14 //OUTPUT
15 printf('The Number of unit cells is %3.4f*10^22',n)
```

Scilab code Exa 3.27 Volume of the unit cell

```
1 clc
2 clear
3 //INPUT DATA
4 r=0.1605*10^-9//radius of magnesium atom which has
     HCP structure in m
6 //CALCULATION
7 a=2*r//lattice constant of magnesium which has HCP
      structure in m
8 c=(a*sqrt(8/3))/height of the HCP structure in m
9 V = ((3*sqrt(3)*a*a*c)/3)/10^{-28}/Volume of the unit
      cell of Magnesium which has HCP structure in m
      ^3*10^-28
10
11 //OUTPUT
12 printf ('The Volume of the unit cell of Magnesium
      which has HCP structure is \%3.4 \, \text{f} * 10^{\circ} - 28 \, \text{m}^{\circ} 3, V)
```

Chapter 4

Wave optics

Scilab code Exa 4.1 wavelength of ligth used

```
1 clc
2 clear
3 //INPUT DATA
4 n=125//number of fingers cross the field of view
5 d=0.04*10^-3//distance of one of mirror moved in m
6
7 //CALCULATION
8 w=((2*d)/n)/10^-9//wavelength of light used in m
9
10 //OUTPUT
11 printf('The wavelength of light used is %i *10^-9.m', w)
```

Scilab code Exa 4.2 wavelength of light

```
1 clc
2 clear
3 //INPUT DATA
```

Scilab code Exa 4.3 wavelength of monochromatic source

```
1 clc
2 clear
3 //INPUT DATA
4 n=200//number of fringes cross the field of view
5 d=0.0589*10^-3//distance of mirror displaced in m
6
7 //CALCULATION
8 w=((2*d)/n)/10^-7//wavelength of the monochromatic source used in m *10^-7
9
10 //OUTPUT
11 printf('The wavelength of the monochromatic source used is %3.2 f *10^-7.in m',w)
```

Scilab code Exa 4.4 Thickness of the film

```
1 clc
2 clear
```

```
3 //INPUT DATA
4 x=1.55//refractive index of transparent film of
    glass
5 w=480*10^-9//wavelength of light in m
6 n=450//number of fringes to sweep across the field
7
8 //CALCULATION
9 t=((n*w)/(2*(x-1)))/10^-4//thickness of the film in
    m *10^-4

10
11 //OUTPUT
12 printf('The thickness of the film is %3.4 f *10^-4.m'
    ,t)
```

Scilab code Exa 4.5 Refractive index of the material

```
clc
clear
//INPUT DATA
t=0.004*10^-2//thickness of transparent sheet in m
d=0.0027*10^-2//distance of mirror displaced in m

//CALCULATION
X=((d/t)+1)//refractive index of the material
//OUTPUT
printf('The refractive index of material is %3.3f', x
)
```

Scilab code Exa 4.6 Number of fringes

```
1 clc
2 clear
```

```
3 //INPUT DATA
4 d=0.03205*10^-3//distance of movable mirror
          displaced in m
5 w=580.9*10^-9//wavelength of light in m
6
7 //CALCULATION
8 n=(2*d)/w//number of fringes shifted across the
          cross wire of eye piece of the telescope
9
10 //OUTPUT
11 printf('The number of fringes shifted across the
          cross wire of eye piece of the telescope is %i',n
         )
```

Scilab code Exa 4.7 Thickness of a quarter wave plate

```
clc
clear
//INPUT DATA
w=5893*10^-10//wavelength of sodium light in m
Re=1.5532//Refractive index of quartz for e ray
Ro=1.5332//Refractive index of quartz for o ray

//CALCULATION
t=((w/(4*(Re-Ro))))/10^-6//thickness of a quarter wave plate of quartz for sodium light in m *10^-6
//OUTPUT
printf('The thickness of a quarter wave plate of quartz for sodium light is %3.4f *10^-6.m',t)
```

Scilab code Exa 4.8 Thickness of a double refracting crystal

Scilab code Exa 4.9 Least thickness of a plate

```
1 clc
2 clear
3 //INPUT DATA
4 w=5*10^-7/wavelength in m
  Re=1.5573//Refractive index for e ray when the
     emergent beam will be plane polarised
6 Ro=1.5442//Refractive index for o ray when the
     emergent beam will be plane polarised
7
8 //CALCULATION
9 t=((w/(4*(Re-Ro))))/10^-6//least thickness of a
     plate in m *10^-6
10
11 //OUTPUT
12 printf ('The least thickness of a plate when the
     emergent beam will be plane polarised is \%3.2 f
```

```
*10^{-6.m}, t)
```

Scilab code Exa 4.10 Thickness of the Calcite plate

```
clc
clear
//INPUT DATA
w=5893*10^-10//wavelength of sodium light in m
Ro=1.658//Refractive index of calcite for o ray
Re=1.486//Refractive index of calcite for e ray

//CALCULATION
t=((w/(2*(Ro-Re))))/10^-7//thickness of the quarter wave plate for calcite in m *10^-7

//OUTPUT
printf('The thickness of the quarter wave plate for calcite is %3.3f *10^-7.m',t)
//Answer given in the book is wrong
```

Scilab code Exa 4.11 Wavelength of half wave plate

```
1 clc
2 clear
3 //INPUT DATA
4 t=30*10^-6//thickness of wave plate in m
5 Ro=1.55//Refractive index of wave plate for o ray
6 Re=1.54//Refractive index of wave plate for e ray
7
8 //CALCULATION
9 w=(2*t*(Ro-Re))/10^-9//wavelength for which it can act as a half wave plate in m *10^-9
```

```
//OUTPUT
printf('The wavelength for which it can act as a half wave plate is %i *10^-9.m',w)
```

Scilab code Exa 4.12 Thickness of a sheet

```
1 clc
2 clear
3 //INPUT DATA
4 w=546.1*10^-9//wavelength of light in m
5 Re=1.592//Refractive index of mica for e ray
6 Ro=1.586//Refractive index of mica for o ray
7
8 //CALCULATION
9 t=((w/(2*(Re-Ro))))/10^-5//thickness of a mica sheet in m *10^-5
10
11 //OUTPUT
12 printf('The thickness of a mica sheet required for making a half wave plate for a light of wavelength w is %3.4 f *10^-5.m',t)
```

Chapter 5

Laser

Scilab code Exa 5.1 Ratio of population

```
1 clc
2 clear
3 //INPUT DATA
4 t=300//temperature in k
5 w=698.3*10^-9/wavelength of photon in m
6 h=6.625*10^-34// Planck's constant in m^2 Kg/sec
7 c=3*10^8/velocity of light in m/s
8 Kb=1.38*10^--23//Boltzmann's constant in m^2 Kg.s^-2
     k^-1
9
10 //CALCULATION
11 Ratio=(\exp((-h*c)/(w*Kb*t)))/10^-30//ratio of
      propulsion of the two states in a laser *10^-30
12
13 //OUTPUT
14 printf('The ratio of propulsion of the two states in
      a laser is \%3.4\,\mathrm{f} *10^-30', Ratio)
```

Scilab code Exa 5.2 Band gap

```
clc
clear
//INPUT DATA
w=1.55*10^-6//wavelength of light emission in m
h=6.625*10^-34// Planck's constant in m^2 Kg/sec
c=3*10^8//velocity of light in m/s
e=1.6*10^-19//charge of electron in coulombs

//CALCULATION
Eg=(h*c)/(w*e)//band gap in eV

//OUTPUT
printf('The band gap for lnp laser diode is %3.4 f eV', Eg)
```

Scilab code Exa 5.3 wavelength limit

```
1 clc
2 clear
3 //INPUT DATA
4 E=0.02*1.6*10^-19//Ionisation energy in J
5 h=6.625*10^-34// Planck's constant in m^2 Kg/sec
6 c=3*10^8//velocity of light in m/s
7
8 //CALCULATION
9 w=((h*c)/E)/10^-5// long wavelength limit of an extrinsic semiconductor in m *10^-5
10
11 //OUTPUT
12 printf('The long wavelength limit of an extrinsic semiconductor is %3.4 f *10^-5.m', w)
```

Scilab code Exa 5.4 Number of photons emitted

```
1 clc
2 clear
3 //INPUT DATA
4 E=3.5*10^-3*60//power output in J/min
5 w=0.621*10^-6//wavelength of light in m
6 h=6.625*10^-34// Planck's constant in m^2 Kg/sec
7 c=3*10^8//velocity of light in m/s

8
9 //CALCULATION
10 e=(h*c)/w//energy emitted by one photon in J
11 n=(E/e)/10^17//The number of photons emitted per minute in photons /minute *10^17

12
13 //OUTPUT
14 printf('The number of photons emitted per minute is %3.3 f *10^17 photons /minute',n)
```

Chapter 6

Fiber optics

Scilab code Exa 6.1 Critical and acceptance angle and numerical aperture

```
1 clc
2 clear
3 //INPUT DATA
4 n1=1.545//refractive index of optical fibre core
5 n2=1.495//refractive index of cladding
6
7 //CALCULATION
8 CA=asind(n2/n1)//critical angle in degree
9 AA=asind(sqrt((n1)^2-(n2)^2))//acceptance angle in
      degree
10 NA=sind(AA)//numerical aperture
11
12 //OUTPUT
13 printf('The critical angle is %3.2f degrees \n The
      acceptance angle is %3.2f degrees \n The
     numerical aperture is \%3.4\,\mathrm{f}, CA, AA, NA)
```

Scilab code Exa 6.2 Numerical aperture

```
1 clc
2 clear
3 //INPUT DATA
4 n1=1.54//refractive index of optical fibre core
5 n2=1.5//refractive index of cladding
6
7 //CALCULATION
8 NA=sqrt((n1)^2-(n2)^2)//numerical aperture
9
10 //OUTPUT
11 printf('The numerical aperture is %3.4f',NA)
```

Scilab code Exa 6.3 Critical and acceptance and numerical aperture

```
1 clc
2 clear
3 //INPUT DATA
4 n1=1.55//refractive index of optical fibre core
5 n2=1.47//refractive index of cladding
6
7 //CALCULATION
8 CA=asind(n2/n1)//critical angle in degree
9 NA=(sqrt((n1)^2-(n2)^2))//acceptance angle in degree
10 AA=asind(NA)//numerical aperture
11
12
13 //OUTPUT
14 printf('The critical angle is \%3.2f degrees \n The
      numerical aperture is %3.4 f \n The acceptance
      angle is %3.2f degrees', CA, NA, AA)
```

Scilab code Exa 6.4 Acceptance angle

```
1 clc
2 clear
3 //INPUT DATA
4 n2=1.55//refractive index of cladding
5 no=1.33//refractive index of water
6 NA=0.20//numerical aperture of optical fibre
7
8 //CALCULATION
9 n1=sqrt((n2)^2+(NA)^2)//refractive index of optical
10 NAW = (sqrt((n1)^2 - (n2)^2)/no)/numerical aperture
      when fibre is in water
  AA=asind(NAW)//Acceptance angle for the fibre in
      water in degrees
12
13 //OUTPUT
14 printf ('The refractive index of optical fibre is \%3
      .4 \,\mathrm{f} \setminus \mathrm{n} The numerical aperture when fibre is in
      water is \%3.4 f\n The Acceptance angle for the
      fibre in water is %3.2 f degrees', n1, NAW, AA)
```

Scilab code Exa 6.5 Refractive index

```
1 clc
2 clear
3 //INPUT DATA
4 NA=0.22//numerical aperture of optical fibre
5 no=0.012//refractive index difference
6
7 //CALCULATION
8 n1=(NA/(sqrt(2*no)))//The refractive index of the core of a fibre
9 n2=n1*(1-no)//The refractive index of the cladding
10
11 //OUTPUT
```

12 printf('The refractive index of the core of a fibre is $\%3.3\,\mathrm{f}$ \n The refractive index of the cladding is $\%3.3\,\mathrm{f}$ ',n1,n2)

Chapter 7

Conducting materials

Scilab code Exa 7.1 Mobility of the charge carriers

```
1 clc
2 clear
3 //INPUT DATA
4 n=5.9*10^28 //electron concentration of conductor in
5 v=0.625//drift velocity of a conductor in ms^-1
6 x=6.22*10^7// electrical conductivity in ohm^-1 m^-1
7 e=1.6*10^-19//charge of electron in coulombs
9 //calculation
10 J=n*e*v/10^9//current density in the conductor
      corresponds to drift velocity in Am<sup>-1</sup> * 10<sup>9</sup>
11 z=(x/(n*e))/10^-3//mobility of the charge in m^2V^-1
      s^-1 * 10^-3
12
13 //OUTPUT
14 printf ('The current density in the conductor
      corresponds to a drift velocity is \%3.1f * 10^9 A
      m^-1 \n Mobility of the charge carries is \%3.3 f
      *10^{-3} \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}, \text{J,z}
```

Scilab code Exa 7.2 Drift velocity of the free electrons

```
1 clc
2 clear
3 //INPUT DATA
4 n=8.5*10^28 //density of free electrons in copper in m^-3
5 A=1.05*10^-6 //sectional area of copper in m^2
6 e=1.6*10^-19//charge of electron in coloumbs
7 I=1 //copper wire carries a current in A
8
9 //CALCULATION
10 V=(1/(A*n*e))/10^-5//drift velocity of free electrons in copper wire in ms^-1 *10^-5
11
12 //OUTPUT
13 printf('The drift velocity of free electron in a copper wire is %3.3 f *10^-5 in ms^-1',V)
```

Scilab code Exa 7.3 Drift velocity of the free electrons

```
10 //OUTPUT
11 printf('The drift velocity of free electrons in copper is %3.2 f*10^-3 in ms^-1',V)
```

Scilab code Exa 7.4 Relaxation time

```
1 clc
2 clear
3 //INPUT DATA
4 n=6.5*10^28 //conduction electron in m^-3
5 r=1.435*10^-8 //metal resistivity in ohm-metre
6 e=1.6*10^-19//charge of electron in coulombs
7 m=9.11*10^-31//mass of a electron in kg

8 //CALCULATION
10 T=(m/(r*n*e^2))/10^-14//relaxation time of conduction electrons in s*10^-14

11 //OUTPUT
13 printf('The relaxation time of conduction electrons is %3.3f*10^-14 s',T)
```

Scilab code Exa 7.5 Mean free path between collisions of the free electrons

```
1 clc
2 clear
3 //INPUT DATA
4 r=1.72*10^-8//resistivity of copper in ohm metre
5 T=293//temperature of copper in k
6 n=8.48*10^28 //density of free electron in m^-3
7 e=1.6*10^-19//charge of electron in coulombs
8 m=9.11*10^-31//mass of a electron in kg
```

Scilab code Exa 7.6 Drift velocity of electrons

```
1 clc
2 clear
3 //INPUT DATA
4 t=1*10^-3/thickness of metal in m
5 V=1//potential difference applied in volts in V
6 T=300//temperature in k
7 m=0.04//mobility in m^2 V^-1 s^-1
8 k=1.38*10^-23/boltzmann constant in m^2 Kg s^-2 k
9 m1=9.11*10^-31/mass of a electron in kg
10
11 //CALCULATION
12 v=(\sqrt{3*k*T})/m1)/10^3 //thermal velocity in ms
      ^{-1} *10^{3}
13 E=V/t//unit potential voltage gradient in V m^-1
14 vd=E*m//drift velocity of electrons in m s^-1
15
16 //OUTPUT
17 printf('The thermal velocity is \%3.2 \,\mathrm{f} *10^3 \,\mathrm{m} \,\mathrm{s}^-1
      n Drift velocity of electrons is %i m s^-1 \n
```

Thus the terminal velocity is high compared to the drift velocity', v, vd)

Scilab code Exa 7.7 Electrical conductivity of copper

```
1 clc
2 clear
3 //INPUT DATA
4 AW=63.5//atomic weight of copper
5 D=8.93*10^3//density of copper in kg m^-3
6 t=2.48*10^-14//relaxation time of copper in s
7 AV=6.023*10^26//avagadro no in mole^-1
8 e=1.6*10^-19//charge of electron in coulombs
9 m=9.11*10^-31/mass of a electron in kg
10
11 //CALCULATION
12 n = (AV*D)/AW//density of electrons per unit volume in
      m^-3
13 EC=((n*e^2*t)/m)/10^7//electrical conductivity of
     copper in Sm^-1 *10^7
14
15 //OUTPUT
16 printf ('The electrical conductivity of copper is \%3
      .2 f *10^7 in S m^-1', EC)
17 //mho=siemens
```

Scilab code Exa 7.8 Drift velocity of electrons in copper

```
1 clc
2 clear
3 //INPUT DATA
4 I=10//current in A
5 r=0.8*10^-2//radius of wire in m
```

```
6 n=8.48*10^28 //density of free electron in m^-3
7 e=1.6*10^-19//charge of electron in coulombs
8
9 //CALCULATION
10 J=(I/(3.14*r^2))/10^4 //current density of copper in Am^-2 *10^4
11 v=(J/(n*e))/(10^-6*10^-4)//drift velocity of copper in ms^-1 *10^-6
12
13 //OUTPUT
14 printf('The drift velocity in copper is %3.4f *10^-6 in ms^-1 \n The current density in copper is %3
.4f *10^4 in Am^-2', v, J)
```

Scilab code Exa 7.9 Drift velocity and mobility

```
1 clc
2 clear
3 //INPUT DATA
4 r=1.54*10^-8//resistivity of silver wire at room
      temperature in ohm metre
5 E=100//Electric field along the wire in V/m
6 n=5.8*10^28//nis assuming of conduction electrons in
      m^-3
  e=1.6*10^-19//charge of electron in coulombs
9 //CALCULATION
10 m=(1/(r*n*e))/10^-3//mobility of charge in m^2 V^-1
      s^-1 *10^-3
11 v=m*E/1000//drift velocity of electrons in m s<sup>-1</sup>
12
13 //OUTPUT
14 printf ('The mobility of charge is \%3.2 \,\mathrm{f} * 10^{-3} in m
      ^2 V^-1 s^-1 \n The drift velocity of electrons
      is \%3.4 \, \text{f} in m.s^-1',m,v)
```

Scilab code Exa 7.10 Mobility and average time collision

```
1 clc
2 clear
3 //INPUT DATA
4 D=8.92*10<sup>3</sup>/density of copper in \text{Kg m}^-3
5 AW=63.5//atomic weight of copper
6 r=1.73*10^-8//resistivity of copper in ohm metre
7 AV = 6.023 * 10^2 6 / avagadro no in mole^{-1}
8 e=1.6*10^-19//charge of electron in coulombs
9 m=9.11*10^-31//mass of a electron in kg
10
11 //CALCULATION
12 n=(AV*D)/AW//density of electrons per unit volume in
13 t=(m/(r*n*(e^2)))/10^-14//average time collision of
      electrons in copper in s *10^-14
14 mo=(1/(r*n*e))/10^-2//mobility of charge in m<sup>2</sup> V<sup>-1</sup>
       s^-1 *10^-2
15
16 //OUTPUT
17 printf ('The relaxation time collision of electrons
      in copper obeying classical laws is \%3.2 \,\mathrm{f} *10^{-14}
       in s \n The mobility charge of copper obeying
      classical laws is \%3.3 \, \text{f} *10^{-2} \, \text{in m}^2 \, \text{V}^{-1} \, \text{s}^{-1},
      t,mo)
```

Scilab code Exa 7.11 Electrical resistivity

```
1 clc
2 clear
```

```
3 //INPUT DATA
4 r=1.85*10^-10/ the radius of sodium atom in m
5 t=3*10^-14//the classic value of mean free time in
     sec
6 temp=0//temperature in centigrade
7 na=2//number of atoms in a unit cell
8 ne=1//number of electrons per unit cell
9 e=1.6*10^-19//charge of electron in coulombs
10 m=9.11*10^-31//mass of a electron in kg
11
12 //CALCULATION
13 a=(4*r)/sqrt(3)/a is one side in bcc structure unit
       cell in m
14 v=a*a*a//volume of bcc structure unit cell in m^3
15 n=(na*ne)/v//density of electrons per unit volume in
16 r = (m/(n*e^2*t))/10^-8//The electrical resistivity in
      ohm metre *10^-8
17
18 //OUTPUT
19 printf ('The electrical resistivity is \%3.2 \, \text{f} *10^-8
     in ohm metre',r)
```

Scilab code Exa 7.12 Free electron concentration and mobility and drift velocity

```
1 clc
2 clear
3 //INPUT DATA
4 r=2.7*10^-8//electrical resistivity of aluminium in ohm metre
5 AW=26.98//atomic weight of aluminium
6 d=2.7*10^3//density of volume in Kg/m^3
7 R=60*10^-3//resistance in W
8 l=5//length of aluminium wire in m
```

```
9 i=15//aluminuim wire carries a current in A
10 fe=3//number of free electrons
11 AV=6.023*10^26//avagadro no in mole-1
12 \text{ e=1.6*10}^--19//\text{charge of electron in coulombs}
13
14 //CALCULATION
15 n=(AV*d*fe)/AW//density of electrons per unit volume
       in electrons/m^-3
z=(1/(n*e*r))/10^{-3}/mobility of the charge in m^2V
      -1S^-1 * 10^-3
17 E=((i*R)/1)// free electron concentration in V/m
18 vd=(z*E)/(10^-4*10^3)//drift velocity in m s^-1 *
      10^{-4}
19
20 //OUTPUT
21 printf ('Free electron concentration in aluminium is
      \%3.2 \,\mathrm{f} in V/m \n Mobility of the charge is \%3.3 \,\mathrm{f}
      *10^{-3} in m^2 V^{-1} S^{-1} \n The drift velocity of
      electrons is \%3.3 \, f*10^-4 in m s<sup>-1</sup>', E, z, vd)
```

Scilab code Exa 7.13 Resistance

```
clc
clear
//INPUT DATA

1=1*10^-2//length of intrinsic Ge rod in m
b=1*10^-3//breadth of intrinsic Ge rod in m
t=1*10^-3//thickness of intrinsic Ge rod in m
temp=300//temperature in k
d=2.5*10^19//intrinsic carrier density in Kg /m^3
z=0.39//mobility of electron in m^2V^-1S^-1
the=0.19//mobility of hole in m^2V^-1S^-1
e=1.6*10^-19//charge of electron in coulombs
//CALCULATION
```

```
14 x=(d*e)*(z+zh)//electrical conductivity in ohm^-1 m
        ^-1
15 r=1/x//electrical resistivity in ohm metre
16 A=b*t//area in m^2
17 R=((r*1)/A)//resistance of an intrinsic Ge rod in ohm
18
19 //OUTPUT
20 printf('The resistance of an intrinsic Ge rod is %i ohm',R)
```

Scilab code Exa 7.14 Thermal conductivity of copper

```
1 clc
2 clear
3 //INPUT DATA
4 d=8.48*10^28//free electron density of copper in m
5 y=2.8138*10^-9//mean free path in m
6 v=1.1536*10^5/velocity of copper in m s^-1
7 t=20 //temperature of copper in c
8 Kb=1.38*10^--23//Boltzmann's constant in m^2 Kg s^-2
      k^{-1}
9
10 //CALCULATION
11 K=1/2*(d*v*y*Kb)//thermal conductivity of copper in
     W m^{-1} K^{-1}
12
13 //OUTPUT
14 printf ('The thermal conductivity of copper is \%3.2 f
     W \text{ m}^- - 1 \text{ K}^- - 1', K)
```

Scilab code Exa 7.15 Thermal conductivity and thermal resistance

```
1 clc
2 clear
3 //INPUT DATA
4 er=50*10^-8//electrical resistivity in ohm metre
5 t=300//temperature in k
6 \text{ r=}13*10^{-3}//\text{radius} of brass in m
7 th=35*10^-3//thickness of brass in m
8 L=2.44*10^-8 // Lorentz number in W ohm K^-2
10 //CALCULATION
11 K=(L*t)/er//thermal conductivity of brass in Wm^-1
12 A=3.14*r*r //area of brass disk in m<sup>2</sup>
13 Rt=th/(K*A)//thermal resistance of brass in KW^-1
14
15 //OUTPUT
16 printf ('The thermal conductivity of brass is %3.2 f W
       m^-1 K^-1 \  The thermal resistance of brass is
      \%3.3 \text{ f } \text{ K W} -1 \text{ ', K, Rt)}
```

Scilab code Exa 7.16 Lorentz number

```
clc
clear
//INPUT DATA

x=5.87*10^7//electrical conductivity in ohm^-1 m^-1
k=380//thermal conductivity of copper in W m-1 K^-1
t=293//temperature of copper in k

//CALCULATION
L=(k/(x*t))/10^-8//Lorentz number in W ohm K^-2
*10^-8

//OUTPUT
printf('Lorentz number is %3.4 f *10^-8 W.ohm.K^-2',L
```

)

Scilab code Exa 7.17 Thermal conductivity of copper

Chapter 8

Quantum Physics

Scilab code Exa 8.1 Momentum

```
1 clc
2 clear
3 //INPUT DATA
4 W=0.1*10^-9//wavelength of photon in m
5 h=6.625*10^-34// Planck's constant in m^2 Kg /sec
6 c=3*10^8//velocity of light in m/s
7 e=1.6*10^-19//charge of electron in coulombs
8
9 //CALCULATION
10 E=((h*c)/(W*e))//energy of photon in eV
11 P=(h/W)/10^-24//momentum of the photon in Kgms^-1
12
13 //OUTPUT
14 printf('The energy of photon is %3.1 f eV \n The momentum of the photon is %3.2 f *10^-24.Kgms^-1', E,P)
```

Scilab code Exa 8.2 Number of photons

```
1 clc
2 clear
3 //INPUT DATA
4 w=5893*10^-10//wavelength of emitted light in m
5 e=100//total energy emitted per sec
6 h=6.625*10^-34// Planck's constant in m^2 Kg /sec
7 c=3*10^8//velocity of light m/s
8
9 //CALCULATION
10 E=((h*c)/w)/(energy) of one photon in J
11 N=(e/E)/10^20/The total number of photons emitted in
       sec
12
13 //OUTPUT
14 printf ('The total number of photons emitted per
      second is \%3.3 \text{ f } *10^20 \text{ per sec', N}
```

Scilab code Exa 8.3 Energy density

```
1 clc
2 clear
3 //INPUT DATA
4 w=4000*10^-10/ wavelength in black body in m
5 t=1500//temperature of black body in k
6 h=6.625*10^-34// Planck's constant m^2 Kg /sec
7 c=3*10^8/velocity of light in m/s
8 Kb=1.38*10^--23//Boltzmann's constant in m^2 Kg s^-2
     k^{-1}
9
10 //CALCULATION
11 Edw=((8*3.14*h*c)/w^5)*(1/(exp((h*c)/(w*Kb*t))-1))/
     The energy density per unit wavelength in a black
      body cavity in J/m<sup>4</sup>
12
13 //OUTPUT
```

14 printf('The energy density per unit wavelength in a black body cavity is %3.5 f J/m⁴',Edw)

Scilab code Exa 8.4 Compton wavelength

```
clc
clear
//INPUT DATA
h=6.625*10^-34//Planck's constant in m^2 Kg /sec
c=3*10^8//velocity of light in m/s
m=9.11*10^-31//mass of electron in Kg

//CALCULATION
w=(h/(c*m))/10^-10//The compton wavelength for an electronin Armstrong

//OUTPUT
printf('The compton wavelength for an electron is %3 .4 f Armstrong', w)
```

Scilab code Exa 8.5 change in wavelength

```
1 clc
2 clear
3 //INPUT DATA
4 x=90//x ray photon scattered at a angle in degrees
5 h=6.625*10^-34//Planck's constant in J-sec
6 c=3*10^8//velocity of light m/s
7 m=9.11*10^-31//mass of electron in Kg
8
9 //CALCULATION
10 w=((h/(c*m))*(1-cosd(x)))/10^-10//The change in wavelength for Xray photon in A*10^-10
```

```
11
12 //OUTPUT
13 printf('The change in wavelength for X ray photon is
%3.4 f A',w)
```

Scilab code Exa 8.6 Wavelength of x rays

```
1 clc
2 clear
3 //INPUT DATA
4 angle=180//x ray carbon scattered at a angle in
      degrees
5 h=6.625*10^-34//Planck's constant in m^2 Kg /sec
6 c=3*10^8/velocity of light in m/s
7 m=9.11*10^-31/mass of electron in Kg
8 v=1.8*10^18//frequency of incident rays in s^-1
10 //CALCULATION
11 w=(c/v)//wavelength in m
12 tw=(h/(c*m))*(1-cosd(angle))/The change wavelength
     for Xray carbon in m
13 NW = (w + tw)/10^{-10}//The wavelength of X-rays carbon in
      Armstrong
14
15 //OUTPUT
16 printf ('The wavelength of X-rays carbon is \%3.2 f
     Armstrong', NW)
```

Scilab code Exa 8.7 Wavelength of scattered photons

```
1 clc
2 clear
3 //INPUT DATA
```

Scilab code Exa 8.8 velocity of a moving electron

```
1 clc
2 clear
3 //INPUT DATA
4 x=4//Total energy increase to 4 times of its initial
    rest energy
5 c=3*10^8//velocity of light in m/sec
6 //CALCULATION
7 v=sqrt(c^2*(1-(1/x^2)))/10^8//The Velocity of moving
    electron in m/sec*10^8
8
9 //OUTPUT
10 printf('The Velocity of moving electron is %3.4f
    *10^8 m/sec',v)
```

Scilab code Exa 8.9 Energy of an electron

1 clc

```
2 clear
3 //INPUT DATA
4 a=0.1*10^-9//width of high potential box in m
5 h=6.625*10^-34//Planck's constant in m^2 Kg /sec
6 m=9.11*10^-31//mass of electron in Kg
7 e=1.6*10^-19//charge of electron in coulombs
8 n=1//take n equal to one
9
10 //CALCULATION
11 E=((n^2*h^2)/(8*m*a^2*e))//The least energy of the particle can be obtained in eV
12
13 //OUTPUT
14 printf('The least energy of the particle can be obtained is %3.2 f eV',E)
```

Scilab code Exa 8.10 Lowest energy of a neutron

```
clc
clear
//INPUT DATA
a=10^-14//length of impenerable box in m
m=1.67*10^-27//mass of neutron in Kg
n=1//for lowest energy
h=6.625*10^-34//Planck's constant in m^2 Kg /sec

//CALCULATION
E=((n^2*h^2)/(8*m*a^2))/10^-13//The least energy of the neutron can be obtained in eV*10^-13
//OUTPUT
//OUTPUT
rrintf('The least energy of the neutron can be obtained is %3.3f*10^-13 eV',E)
```

Scilab code Exa 8.11 Three permitted energy levels

```
1 clc
2 clear
3 //INPUT DATA
4 a=4*10^-10// width of electron box in m
5 h=6.625*10^-34//Planck's constant in m^2 Kg /sec
6 m=9.11*10^-31/mass of electron in Kg
7 e=1.6*10^-19//charge of electron in coulombs
8 n=1//first permitted level
10 //CALCULATION
11 E1=((n^2*h^2)/(8*m*a^2*e))/The first permitted
     energy level by taking n=1 in eV
12 E2=4*E1//The second permitted energy level by taking
      n=2 in eV
13 E3=9*E1//The third permitted energy level by taking
     n=3 in eV
14
15 //OUTPUT
16 printf ('The first permitted energy level by taking n
     =1 is \%3.3\,\mathrm{f} eV \n The second permitted energy
     level by taking n=2 is \%3.3 f eV \n The third
     permitted energy level by taking n=3 is \%3.3 f eV'
      ,E1,E2,E3)
```

Scilab code Exa 8.12 Lowest energy

```
1 clc
2 clear
3 //INPUT DATA
4 a=1.5*10^-10//each side of cubicalbox in m
```

```
5 n1=1//for lowest energy
6 n2=1//for lowest energy
7 n3=1//for lowest energy
8 h=6.625*10^-34//Planck's constant in m^2 Kg /sec
9 m=9.11*10^-31//mass of electron in Kg
10 e=1.6*10^-19//charge of electron in coulombs
11
12 //CALCULATION
13 n=(n1^2+n2^2+n3^2)//total value of n
14 E=((n*h^2)/(8*m*a^2*e))//The lowest energy of electron ina cubical box in eV
15
16 //OUTPUT
17 printf('The lowest energy of electron ina cubical box is %3.2 f in eV',E)
```

Scilab code Exa 8.13 Minimum energy of an electron

```
1 clc
2 clear
3 //INPUT DATA
4 a=4*10^-9//width of potential well in m
5 n=1//For minimum energy n value
6 h=6.625*10^-34//Planck's constant in m^2 Kg/sec
7 m=9.11*10^-31/mass of electron in Kg
8 e=1.6*10^-19//charge of electron in coulombs
9
10 //CALCULATION
11 E=((n^2*h^2)/(8*m*a^2*e))/The lowest energy of
      electron in deep potential well in eV
12
13 //OUTPUT
14 printf('The lowest energy of electron in deep
     potential well is %3.5 f eV', E)
```

Scilab code Exa 8.14 Energy required

```
1 clc
2 clear
3 //INPUT DATA
4 a=0.1*10^-9/length of one dimensional box in m
5 n=1//first permitted level
6 h=6.625*10^-34//Planck's constant in m^2 Kg /sec
7 m=9.11*10^-31/mass of electron in Kg
8 e=1.6*10^-19//charge of electron in coulombs
9
10 //CALCULATION
11 E1=((n^2*h^2)/(8*m*a^2*e))/The ground state of
     electron in an one dimensional box in eV
12 E6=36*E1//The fifth exited state of electron in eV
13 E=E6-E1//The energy required the electron from its
     ground state to the fifth exited state in eV
14
15 //OUTPUT
16 printf ('The energy required the electron from its
     ground state to the fifth exited state is %i eV',
     E)
```

Scilab code Exa 8.15 Lowest energy

```
1 clc
2 clear
3 //INPUT DATA
4 a=0.1*10^-9//length of one dimensional box in m
5 n=1//first permitted level
6 h=6.625*10^-34//Planck's constant in m^2 Kg /sec
7 m=9.11*10^-31//mass of electron in Kg
```

Chapter 9

Energy Bands in Solids

Scilab code Exa 9.1 Fermi function

```
1 clc
2 clear
3 //INPUT DATA
4 //E-EF=KT
5 //K=KB is the boltzmann constant in m^2 Kg s^-2 k^-1
6
7 //CALCULATION
8 f=1/(1+exp(1))//The fermi function for an energy kt above fermi energy
9
10 //OUPUT
11 printf('The fermi function for an energy kt above fermi energy is %3.3 f',f)
```

Scilab code Exa 9.2 Fermi function

```
1 clc
2 clear
```

```
//INPUT DATA
X=0.01*1.6*10^-19//difference between energy and fermi energy in J
T=200//temperature in k
KB=1.38*10^-23//Boltzmann's Constant in J/K
//CALCULATION
f=1/(1+exp(X/(KB*T)))//The fermi function
//OUTPUT
printf('The fermi function is %3.5f',f)
```

Scilab code Exa 9.3 Fermi velocity

```
1 clc
2 clear
3 //INPUT DATA
4 EF=11.63*1.6*10^-19//fermi energy of conducting
      electron in aluminium in J
5 t=7.3*10^-15//relaxation time for electron in sec
6 m=9.11*10^-31/mass of electon in Kg
8 //CALCULATION
9 Vf = (sqrt((2*EF)/m))/10^6//The fermi velocity fo
      conducting electron in aluminium in ms^-1*10^6
10 x=(t*Vf*10^6)/10^-9/mean free path for conducting
      electron of aluminium in nm
11
12 //OUTPUT
13 printf ('The fermi velocity fo conducting electron in
       aluminium is \%3.4 \text{ f}*10^6 \text{ ms}-1 \text{ } \text{n} The mean free
     path for conducting electron of aluminium is \%3.4
      f nm', Vf, x)
```

Scilab code Exa 9.4 Fermi energy and temperature

```
1 clc
2 clear
3 //INPUT DATA
4 Vf=0.86*10^6//The femi energy of electons in the
      metal in m/sec
5 \text{ m=9.11*10^--31//mass} of electon in Kg
6 KB=1.38*10^--23//Boltzmann's Constant in m^2 Kg s^-2
      k^-1
8 //CALCULATION
9 Ef = ((1/2)*m*Vf^2)/10^-19/The fermi energy in a
      metal in J*10^-19
10 Tf=(Ef*10^-19/KB)/10^3//The fermi temperature in a
      metal in K*10<sup>3</sup>
11
12 //OUTPUT
13 printf ('The fermi energy in a metal is \%3.4 \, f*10^-19
      J \n The fermi temperature in a metal is \%3.2f
      *10^3 \text{ K}', \text{Ef,Tf}
```

Scilab code Exa 9.5 Fermi temperature and velocity

```
1 clc
2 clear
3 //INPUT DATA
4 Ef=3.2*1.6*10^-19//The fermi energy in a metal in J
5 m=9.11*10^-31//mass of electon in Kg
6 KB=1.38*10^-23//Boltzmann's Constant in m^2 Kg s^-2 k^-1
```

```
8 //CALCULATION
9 Tf=(Ef/KB)/10^3//The fermi temparature for sodium in
        K*10^6
10 Vf=(sqrt((2*Ef)/m))/10^6//The fermi velocity fo
        conducting electron in aluminium in ms^-1*10^6
11
12 //OUTPUT
13 printf('The fermi temparature for sodium is %3.2 f
        *10^3 K \n The fermi velocity fo conducting
        electron in aluminium is %3.4 f*10^6 ms^-1', Tf, Vf)
```

Scilab code Exa 9.6 Temperature

```
1 clc
2 clear
3 //INPUT DATA
4 E=5.5*1.6*10^--19//energy level in J
5 Ef = 5*1.6*10^-19 / fermi energy level in J
6 \text{ x=0.5*1.6*10^--19//Difference} between energy and
      fermi energy in J
7 f=0.01//fermi function at which there is 1%
      probability that an electron in a solid
  KB=1.38*10^-23/Boltzmann's Constant in m^2 Kg s^-2
     k^-1
9
10 //CALCULATION
11 T=(x/(KB*(log(1-f)-log(f))))/10^3//The temperature
      at which there is 1% probability that an electron
       in a solid in K*10<sup>3</sup>
12
13 //output
14 printf ('The temperature at which there is one
      percentage probability that an electron in a
      solid is \%3.4 \, f *10^3 \, K', T)
```

Scilab code Exa 9.7 Energies

```
1 clc
2 clear
3 //INPUT DATA
4 Ef=2.1*1.6*10^-19//fermi energy level in potassium
5 f1=0.99//fermi factor for 1st
6 f2=0.01//fermi factor for 2nd
7 f3=0.5//fermi factor for 3rd
8 T=300//temperature in K
9 e=1.6*10^-19/charge of electro in C
10 KB=1.38*10^--23//Boltzmann's Constant in m^2 Kg s^-2
     k^-1
11
12 //CALCULATION
13 E1=(Ef+((KB*T)*(\log(1-f1)-\log(f1))))/e//The energy
     for probability of occupancy at 1st at which the
     300k in eV
14 E2=(Ef+((KB*T)*(\log(1-f2)-\log(f2))))/e//The energy
     for 1st at which the probability of occupancy at
     300k in eV
15 E3=(Ef+((KB*T)*(\log(1-f3)-\log(f3))))/e//The energy
     for 1st at which the probability of occupancy at
     300k in eV
16
17 //OUTPUT
18 printf ('The energy for probability of occupancy at 1
      st at which the T is \%3.2 f eV\n The energy for
     probability of occupancy at 2nd at which the T is
      %3.2 f eV\n The energy for probability of
     occupancy at 1st at which the T is \%3.1f eV', E1,
     E2,E3)
```

Scilab code Exa 9.8 Probability of the level

```
1 clc
2 clear
3 //INPUT DATA
4 X=0.1*1.6*10^-19//difference between energy and
        fermi energy in J
5 T=300//temperature in k
6 KB=1.38*10^-23//Boltzmann's Constant in m^2 Kg s^-2
        k^-1
7
8 //CALCULATION
9 f=1-1/(1+exp(X/(KB*T)))//The probability of
        unoccupancy by an electron at room temperature
10
11 //OUTPUT
12 printf('The probability of unoccupancy by an
        electron at room temperature is %3.5 f',f)
```

Scilab code Exa 9.9 Fermi factor

```
1 clc
2 clear
3 //INPUT DATA
4 n=4//number of atoms/unit cell in Aliminium
5 a=4.05*10^-10//lattice constant of Aluminium which
    is FCC crystal in m
6 nf=3//number of free electrons per atom in Aluminium
7 T=300//ambient temperature in K
8 x=0.1*1.6*10^-19//The same difference energy and
    fermi energy but in J
9 m=9.11*10^-31//mass of electon in Kg
```

Scilab code Exa 9.10 Fermi energy

```
1 clc
2 clear
3 //INPUT DATA
4 n=2//number of atoms/unit cell in cesium which is
5 a=6.14*10^-10//lattice constant of cesium which is
     BCC crystal in m
6 nf=1//number of free electrons per atom in cesium
7 m=9.11*10^-31/mass of electon in Kg
8 h=6.625*10^-34//plank's constant in m^2 Kg/sec
9 KB=1.38*10^--23//Boltzmann's Constant in m^2 Kg s^-2
     k^-1
10 e=1.6*10^-19/charge of electro in C
11
12 //CALCULATION
13 nc=(n*nf)/(a*a*a)//number of electrons per unit
14 Ef = (((h*h)/(8*m)*((3*nc)/3.14)^(2/3))/e)//The fermi
```

```
energy for the metal in eV
15
16 //OUTPUT
17 printf('The fermi energy for cesium is %3.3 f eV',Ef)
```

Scilab code Exa 9.11 Number of free electrons

```
1 clc
2 clear
3 //INPUT DATA
4 Ef=2.1*1.6*10^-19/The fermi energy level in
     potassium at a particular temperature in J
5 \text{ m=9.11*10}^{-31}/\text{mass} of electon in Kg
6 h=6.625*10^-34//plank's constant in m^2 Kg/sec
8 //CALCULATION
9 nc = (((8*m)/(h*h)*Ef)^(3/2)*(3.14/3))/10^28//ThE
     Number of free electrons per unit volume in
     potassium at the same temperature in electrons/m
      ^3*10^28
10
11 //OUTPUT
12 printf ('ThE Number of free electrons per unit volume
       in potassium at the same temperature is \%3.3 f
      *10^28 electrons/m<sup>3</sup>',nc)
```

Scilab code Exa 9.12 Fermi energy

```
1 clc
2 clear
3 //INPUT DATA
4 AW=23//atomic weight of sodium in gm/mole
5 d=0.971*10^6//density of sodium in gm/m^3
```

```
6 m=9.11*10^-31//mass of electon in Kg
7 h=6.625*10^-34//plank's constant in m^2 Kg/sec
8 AV=6.02*10^23//Avagadro number in mole^-1
9 e=1.6*10^-19//charge of electro in C
10
11 //CALCULATION
12 nc=(AV*d)/AW//number of electrons per unit volume
13 Ef=(((h*h)/(8*m)*((3*nc)/3.14)^(2/3))/e)//The fermi energy for the sodium in eV
14
15 //OUTPUT
16 printf('The fermi energy for the sodium is %3.3 f eV', Ef)
```

Scilab code Exa 9.13 Fermi energy in copper

```
1 clc
2 clear
3 //INPUT DATA
4 AW=63.5//atomic weight of copper in u
5 M=63.5*1.66*10^-27//mass of one copper atom in Kg
6 d=8.94*10^3/density of sodium in Kg/m^3
7 m=9.11*10^-31//mass of electon in Kg
8 h=6.625*10^-34//plank's constant in m^2 Kg/sec
9 e=1.6*10^-19/charge of electro in C
10
11 //CALCULATION
12 nc=(d)/M//number of electrons per unit volume in
      electrons/m<sup>3</sup>
13 Ef=(((h*h)/(8*m)*((3*nc)/3.14)^(2/3))/e)//The fermi
     energy for the sodium in eV
14
15 //OUTPUT
16 printf ('The fermi energy for the sodium is %3.3 f eV'
     ,Ef)
```

Chapter 10

Intrinsic Semiconductors

Scilab code Exa 10.1 Electron and hole concentrations

```
1 clc
2 clear
3 //INPUT DATA
4 ec=4*10^-4//electrical conductivity of intrinsic
      silicon at room temperature in ohm^-1 m^-1
5 me=0.14//The electron mobility in m^2 V^-1 s^-1
6 mh=0.04//The hole mobility in m^2 V^-1 s^-1
7 e=1.6*10^-19//charge of electron in coulombs
8
9 //CALCULATION
10 ni=(ec/(e*(me+mh)))/10^16//The intrinsic carrier
      concentration at room temperature in m^-3 *10^16
11
12 //OUTPUT
13 printf('The intrinsic carrier concentration at room
      temperature is \%3.3 \text{ f} *10^16.\text{m}-3 \text{ n} Since ne=nh=
      ni from law of mass action the electron and hole
      concentrations are 1.33*10^16.m^3, ni)
```

Scilab code Exa 10.2 Resistivity

```
1 clc
2 clear
3 //INPUT DATA
4 d=2.37*10^19//The intrinsic carrier density at room
        temperature in m^-3
5 me=0.38//The electron mobility in m^2 V^-1 s^-1
6 mh=0.18//The hole mobility in m^2 V^-1 s^-1
7 e=1.6*10^-19//charge of electron in coulombs
8
9 //CALCULATION
10 r=(1/(d*e*(me+mh)))//The resistivity of intrinsic
        carrier in ohm m
11
12 //OUTPUT
13 printf('The resistivity of intrinsic carrier is %3.4
        f ohm m',r)
```

Scilab code Exa 10.3 Intrinsic carrier density

```
1 clc
2 clear
3 //INPUT DATA
4 r=2*10^-4//the resistivity of In-Sb in ohm m
5 me=6//The electron mobility in m^2 V^-1 s^-1
6 mh=0.2//The hole mobility in m^2 V^-1 s^-1
7 e=1.6*10^-19//charge of electron in coulombs
8
9 //CALCULATION
10 d=(1/(r*e*(me+mh)))/10^21//The intrinsic carrier density at room tepmerature in m^-3 *10^21
11
12 //OUTPUT
13 printf('The intrinsic carrier density at room
```

Scilab code Exa 10.4 Conductivity

```
1 clc
2 clear
3 //INPUT DATA
4 Eg=1.1*1.6*10^-19//The energy gap of silicon in J
5 me=0.48//The electron mobility in m^2 V^-1 s^-1
6 mh=0.13//The hole mobility in m^2 V^-1 s^-1
7 h=6.625*10^-34//Planck's constant in m^2 Kg /sec
8 e=1.6*10^-19//charge of electron in coulombs
9 m=9.11*10^{-31}//mass of an electron
10 kb=1.38*10^--23/Boltzmann's constant m^2 \text{ Kg s}^--2 \text{ k}
11 t=300//temperature in k
12
13 //CALCULATION
14 ni=2*((2*3.14*m*kb*t)/h^2)^(3/2)*exp(-Eg/(2*kb*t))//
      intrinsic carrier concentration in m<sup>-3</sup>
15 ec=(ni*e*(me+mh))/10^-3//The electrical conductivity
       at room temperature in ohm^--1 m^--1 *10^--3
16
17 //OUTPUT
18 printf ('The electrical conductivity at room
      temperature is \%3.4 \text{ f } *10^-3 \text{ ohm}^-1 \text{ m}^-1',\text{ec}
```

Scilab code Exa 10.5 Intrinsic carrier concentration and conductivity

```
1 clc
2 clear
3 //INPUT DATA
```

```
4 Eg=1.43*1.6*10^-19//The energy gap of intrinsic GaAs
       in J
5 xe=0.85//The electron mobility in m^2 V^-1 s^-1
6 xh=0.04//The hole mobility in m^2 V^-1 s^-1
7 me=0.068*9.11*10^-31//effective mass of electron in
8 mh=0.5*9.11*10^-31/effective mass of hole in m
9 h=6.625*10^-34//Planck's constant in m^2 Kg /sec
10 e=1.6*10^-19//charge of electron in coulombs
11 m=9.11*10^-31/mass of an electron in Kg
12 kb=1.38*10^-23//Boltzmann's constant m^2 Kg s^-2 k
13 t=300//temperature in k
14
15 //CALCULATION
16 ni = (2*((2*3.14*kb*t)/h^2)^(3/2)*(me*mh)^(3/4)*exp(-
      Eg/(2*kb*t)))/10^12//intrinsic carrier
      concentration in m^-3*10^12
17 ec=(ni*10^12*e*(xe+xh))/10^-7//The electrical
      conductivity at room temperature in ohm^-1 m^-1
      *10^{-7}
18
19 //OUTPUT
20 printf ('The intrinsic carrier concentration is %3.4 f
      *10^12 \text{ m}-3 \text{ } The electrical conductivity at
      room temperature is \%3.4 \, \text{f} *10^{-7} \, \text{ohm}^{-1} \, \text{m}^{-1}, ni,
      ec)
```

Scilab code Exa 10.6 Position of the fermi level

```
1 clc
2 clear
3 //INPUT DATA
4 Eg=1.12*1.6*10^-19//Energy gap of Si semi conductor
    in J
```

Scilab code Exa 10.7 Temperature

```
1 clc
2 clear
3 //INPUT DATA
4 Eg=1*1.6*10^-19//Energy gap in J
5 E=0.1*1.6*10^-19//Fermi level is shifted by 10% in J
6 me=1*9.11*10^--31//The electron mobility in m^2 V^--1
     s^-1
7 mh=4*9.11*10^-31//Effective mass of holes is 4 times
      that of electrons that is the hole mobility in m
      ^{2} V^{-1} s^{-1}
8 m=9.11*10^-31//mass of an electron in Kg
9 kb=1.38*10^-23//Boltzmann's constant m^2 Kg s^-2 k
     ^{^{\hat{}}}-1
10
11 //CALCULATION
12 T=(4*E)/(3*kb*log(4))/The Temperature of the fermi
```

```
level shifted by 10% from the middle of the forbidden energy gap in K

13
14 //OUTPUT
15 printf('The Temperature of the fermi level shifted by 10 percentage from the middle of the forbidden energy gap is %3.2 f K',T)
```

Scilab code Exa 10.8 Resistance of an intrinsic Ge rod

```
1 clc
2 clear
3 //INPUT DATA
4 l=1*10^-2//length of the intrinsic Ge rod in m
5 b=1*10^-3//breadth of the intrinsic Ge rod in m
6 t=1*10^-3//thickness of the intrinsic Ge rod in m
7 T=300//temperature of the intrinsic Ge rod in K
8 me=0.39//The electron mobility in m^2 V^-1 s^-1
9 mh=0.19//The hole mobility in m^2 V^-1 s^-1
10 ni=2.5*10^19//intrinsic carrier conduction in m^3
11 e=1.6*10^-19//charge of electron in coulombs
12
13 //CALCULATION
14 ec=(ni*e*(me+mh))//The electrical conductivity at
     room temperature in ohm^-1 m^-1
15 A=(b*t)/(area in m^2)
16 R=(1/(ec*A))//The resistance of an intrinsic Ge rod
     in ohm
17
18 //OUTPUT
19 printf ('The resistance of an intrinsic Ge rod is %i
     ohm',R)
```

Scilab code Exa 10.9 Ratio between its conductivity

```
1 clc
2 clear
3 //INPUT DATA
4 Eg=1.2*1.6*10^--19//The energy gap of intrinsic
      semiconductor in J
5 T1=600//Temperature in K
6 T2=300//Temperature in K
7 e=1.6*10^-19//charge of electron in coulombs
8 kb=1.38*10^--23//Boltzmann's constant m^2 Kg s^--2 k
      ^{\hat{}}-1
9
10 //CALCULATION
11 x = \exp((-Eg/(2*kb))*((1/T1)-(1/T2)))/10^5//The ratio
      of conductiveness *10<sup>5</sup>
12
13 //OUTPUT
14 printf ('The ratio of conductiveness is \%3.2 \, f*10^5',x
      )
```

Scilab code Exa 10.10 Conductivity of Ge

Scilab code Exa 10.11 Intrinsic career density

```
1 clc
2 clear
3 //INPUT DATA
4 Eg1=0.36//The energy gap of intrinsic semiconductor
     A in eV
5 Eg2=0.72//The energy gap of intrinsic semiconductor
     B in eV
6 T1=300//Temperature of semiconductor A in K
7 T2=300//Temperature of semiconductor B in K
8 m=9.11*10^-31//mass of an electron in Kg
9 KT=0.026 // kt in eV
10
11 //CALCULATION
12 x = (\exp((Eg2 - Eg1)/(2*KT)))/The intrinsic carrier
      density of A to B
13
14 //OUTPUT
15 printf ('The intrinsic carrier density of A to B is
     %i',x)
```

Scilab code Exa 10.12 Band gap

```
1 clc
2 clear
```

```
3 //INPUT DATA
4 T1=293 // Temperature in K
5 T2=373//Temperature in K
6 x1=250//The conductivity of semiconductor at T1 in
     ohm^-1 m^-1
7 x2=1100//The conductivity of semiconductor at T2 in
     ohm^--1 m^--1
8 e=1.6*10^-19//charge of electron in coulombs
9 kb=1.38*10^--23//Boltzmann's constant m^2 Kg s^--2 k
10
11 //CALCULATION
12 Eg=(2*kb*log(x2/x1)*((T1*T2)/(T2-T1)))/10^-20//The
     band gap of semiconductor in J*10^-20
13
14 //OUTPUT
15 printf ('The band gap of semiconductor is %3.4 f
     *10^{-20} J', Eg)
```

Scilab code Exa 10.13 Mobility

```
clc
clear
//INPUT DATA
me=50//The electron mobility of pure semi conductor
    in m^2 V^-1 s^-1
t1=4.2//temp of pure semi conductor in k
t2=300//temp in k

//CALCULATION
m=me*((t2^(-3/2))/(t1^(-3/2)))//mobility of pure
    semi conductor in m^2 V^-1 s^-1
//OUTPUT
printf('mobility of pure semi conductor is %3.6 f m^2
```

Scilab code Exa 10.14 Band gap energy of the semiconductor

```
1 clc
2 clear
3 //INPUT DATA
4 ec1=19.96//The electrical conductivity of an
      intrinsic semi conductor in ohm^-1 m^-1
5 ec2=79.44//The increasing electrical conductivity of
      an intrinsic semi conductor in ohm^-1 m^-1
6 t1=333//temperature of an intrinsic semi conductor
     in k
7 t2=373//increasing temperature of an intrinsic semi
     conductor in k
  kb=1.38*10^-23/Boltzmann's constant in m^2 Kg s^-2
     k^{-1}
9
10 //CALCULATION
11 Eg=(2*kb*(log(ec2/ec1))*((t1*t2)/(t2-t1)))/10^-19//
     The band gap of an intrinsic semi conductor in J
     *10^{-19}
12
13 //OUTPUT
14 printf('The band gap of an intrinsic semi conductor
     is \%3.6 f*10^-19 J', Eg)
```

Chapter 11

Extrinsic Semiconductors

Scilab code Exa 11.1 Conductivity

```
1 clc
2 clear
3 //INPUT DATA
4 ni=2.1*10^19//intrinsic charge carriers in m^-3
5 me=0.4//electron mobility in m^2 V^-1 s^-1
6 mh=0.2//hole mobility in m<sup>2</sup> V^-1 s<sup>-1</sup>
7 d=4.5*10^23/density of boron in m^3-3
8 e=1.6*10^-19//charge of electron in coulombs
9
10 //CALCULATION
11 C=(ni*e)*(me+mh)//conductivity before adding boron
      atoms in ohm^-1 m^-1
12 c=(d*e*mh)/10^4//conductivity after adding boron
      atoms in 0 \text{ hm}^- - 1 \text{ m}^- - 1 * 10^4
13
14 //OUTPUT
15 printf ('Before adding boron atoms, the semiconductor
      is an intrinsic semiconductor \n conductivity
      before adding boron atoms is \%3.3 \,\mathrm{f} ohm<sup>^-1</sup> m<sup>^-1</sup> \n
       Aefore adding boron atoms, the semiconductor
      becomes a P-type semiconductor \n conductivity
```

```
after adding boron atoms is \%3.2\,\mathrm{f}*10^4\,\mathrm{ohm}-1\,\mathrm{m}^-1, C,c)
```

Scilab code Exa 11.2 Concentration of holes and electrons

```
1 clc
2 clear
3 //INPUT DATA
4 ni=1.5*10^16//intrinsic charge carriers in m^-3
5 me=1300*10^-4//electron mobility in m^2 V^-1 s^-1
6 mh = 500*10^{-4} // hole mobility in m^2 V^{-1} s^{-1}
7 c=3*10^4//conductivity of n-tpye silicon in ohm^-1 m
8 e=1.6*10^-19//charge of electron in coulombs
10 //CALCULATION
11 ne=(c/(e*me))/10^24//DensiTy of electrons in n-type
       silicon in electrons/m<sup>3</sup> *10<sup>24</sup>
12 nh = (ni^2/(ne*10^24))/10^8//Density of holes in n-
      type silicon in holes/m<sup>3</sup> *10<sup>8</sup>
13 Ne=(c/(e*mh))/10^24//Density of holes in p-type
       silicon in holes/m<sup>3</sup> *10<sup>24</sup>
14 Nh=(ni^2/(Ne*10^24))/10^7//Density of electrons in p
      -type silicon in holes/m^3 *10^7
15
16 //OUTPUT
17 printf('DensiTy of electrons in n-type silicon is \%3
      .4 \text{ f } *10^24 \text{ electrons/m}^3 \text{ } \text{n} \text{ DensiTy of holes in n}
      -type silicon is \%3.2 \text{ f}*10^8 \text{ holes/m}^3 \text{ n DensiTy}
      of holes in p-type silicon is \%3.2f*10^24 holes/m
      ^3 \n DensiTy of electrons in p-type silicon is
      \%i*10^7 electrons/m<sup>3</sup>', ne, nh, Ne, Nh)
```

Scilab code Exa 11.3 Electron concentration

```
1 clc
2 clear
3 //INPUT DATA
4 ni=2*10^16//intrinsic charge carriers in m^-3
5 Na=5*10^23//density of acceptor concentration of
      silicon with arsenic in atoms
6 Nd=3*10^23//density of donor concentration of
      silicon with arsenic in atoms
8 //CALCULATION
9 nh=(Na-Nd)/density of hole in m^-3
10 ne=(ni^2/(nh))/10^9//The electron concentration that
       is density of electrons in electrons /m<sup>3</sup>*10<sup>9</sup>
11
12 //OUTPUT
13 printf ('The electron concentration that is density
      of electrons is \%i*10^9 electrons /m^3', ne)
```

Scilab code Exa 11.4 Position of fermi level

```
clear
//INPUT DATA
d=5*10^28//density of silicon atom in atoms/m^3
nd=2.5*10^7//donor concentration in 1 atom per si atom
T=300//Temperature in K
Eg=1.1*1.6*10^-19//Eg for silicon in eV
kb=1.38*10^-23//Boltzmann's Constant in m^2 Kg s^-2 k^-1
m=9.11*10^-31//mass of electon in Kg
h=6.625*10^-34//plank's constant in m^2 Kg/sec
```

Scilab code Exa 11.5 Density of impurity atoms

```
1 clc
2 clear
3 //INPUT DATA
4 ni=1.5*10^16//intrinsic charge carriers in m^-3
5 r1=10*10^-2//resistivity of p-type silicon in ohm m
6 r2=10*10^-2//resistivity of n-type silicon in ohm m
7 me=1350*10^-4//The mobility of the charge carrier in
      m^2 V^-1 s^-1
  mh=480*10^-4/The hole charge carrier in m^2 V^-1 s
9 e=1.6*10^-19//charge of electron in coulombs
10
11 //CALCULATION
12 Na=(1/(r1*e*mh))/10^21//The density of the intrinsic
       crystal for p-type in m^-3*10^21
13 ne=((ni^2)/(Na*10^21))/10^11//The minor carrier
      concentration for p-type in electrons/m<sup>3</sup>*10<sup>11</sup>
14 Nd = (1/(r2*e*me))/10^20//The density of the intrinsic
       crystal for n-type in m^3-3*10^20
15 nh=((ni^2)/(Nd*10^20))/10^11//The minor carrier
      concentration for n-type in electrons/m<sup>3</sup>*10<sup>11</sup>
16
17 //OUTPUT
```

18 printf('The density of the intrinsic crystal for p-type is %3.4 f*10^21 m^-3 \n The minor carrier concentration for p-type is %3.3 f*10^11 electrons /m^3 \n The density of the intrinsic crystal for n-type is %3.3 f*10^20 m^-3 \n The minor carrier concentration for n-type is %3.4 f*10^11 holes/m^3', Na, ne, Nd, nh)

Scilab code Exa 11.6 Charge carrier density and electron mobility

```
1 clc
2 clear
3 //INPUT DATA
4 c=112//conductivity of a n-type silicon specimen in
      ohm^-1 m^-1
5 RH=1.25*10^-3//Hall coefficient of a n-type silicon
      specimen in m^3 C<sup>-1</sup>
6 e=1.6*10^-19//charge of electron in coulombs
8 //CALCULATION
9 me=(c*RH)//electron mobility in m^2 V^-1 s^-1
10 ne=(c/(me*e))/10^21//The charge carrier density in
      electrons/m^3*10^21
11
12 //OUTPUT
13 printf ('The electron mobility is \%3.2 \,\mathrm{fm^2}\,\mathrm{V^-}1 \,\mathrm{s^-}1
       \n The charge carrier density is \%3.0 \, f * 10^21
      electrons/m<sup>3</sup>,me,ne)
```

Scilab code Exa 11.7 Hall coefficient of semiconductor

```
1 clc
2 clear
```

```
3 //INPUT DATA
4 l=12*10^-3//length of semi conductor crystal in m
5 b=1*10^-3//breadth of semi conductor crystal in m
6 t=1*10^-3//thickness of semi conductor crystal in m
7 I=20*10^-3/current in A
8 Vh=37*10^-6//voltage measured across the width in V
9 B=0.5//magnetic flux density in Wb/m<sup>2</sup>
10 e=1.6*10^-19//charge of electron in coulombs
11
12 //CALCULATION
13 RH=((Vh*t)/(I*B))/10^-6//Hall coefficient of
      semiconductor in C^-1 \text{ m}^3 *10^-6
14 ne = (1/(RH*10^-6*e))/10^23//The density of the charge
       carrier in electrons/m<sup>3</sup>*10<sup>23</sup>
15
16 //OUTPUT
17 printf ('Hall coefficient of semiconductor is %3.1 f
      *10^{-6} C<sup>-1</sup> m<sup>3</sup>\n The density of the charge
      carrier is \%3.2 \text{ f}*10^23 \text{ electrons/m}^3', RH, ne)
```

Scilab code Exa 11.8 Hall coefficient

```
clear
//INPUT DATA

1=100*10^-3//length of silicon plate in m
b=10*10^-3//breadth of silicon plate in m

t=1*10^-3//thickness of silicon plate in m

I=10^-2//current in A

Vh=1.83*10^-3//voltage measured across the width in
V

B=0.5//magnetic flux density in Wb/m^2

//CALCULATION
RH=((Vh*t)/(I*B))/10^-4//Hall coefficient of silicon
```

```
plate in m^3 C^-1*10^-4

13
14 //OUTPUT
15 printf('Hall coefficient of silicon plate is %3.2f
    *10^-4 m^3 C^-1', RH)
```

Scilab code Exa 11.9 Density and mobility of the charge carrier

```
1 clc
2 clear
3 //INPUT DATA
4 RH=7.35*10^-5//Hall coefficient of silicon specimen
      in m^3 C^-1
  rh=-7.35*10^-5//Hall coefficient of silicon specimen
       in m^3 C^-1
6 c=200//conductivity in ohm<sup>-1</sup> m<sup>-1</sup>
7 e=1.6*10^-19//charge of electron in coulombs
9 //CALCULATION
10 ne=(1/(RH*e))/10^22//The density of the charge
      carrier in electrons/m<sup>3</sup>*10<sup>2</sup>2
11 me=(c*RH)/10^-3/The mobility of the charge carrier
      in m^2 V^-1 s^-1*10^-3
12
13 //OUTPUT
14 printf ('The negative sign of the Hall coefficient
      indicates that the nature of the semiconductor is
       n-type \n The density of the charge carrier is
      \%3.3 f*10^22 electrons/m<sup>3</sup> \n The mobility of the
      charge carrier is \%3.1 \, \text{f} * 10^{-3} \, \text{m}^2 \, \text{V}^{-1} \, \text{s}^{-1}, ne,
      me)
```

Scilab code Exa 11.10 Charge carrier density and electron mobility

```
1 clc
2 clear
3 //INPUT DATA
4 RH=4.16*10^-4//Hall coefficient of n-type
      semiconductor in m<sup>3</sup> C<sup>-1</sup>
5 c=180/(conductivity in ohm^-1 m^-1)
6 e=1.6*10^-19//charge of electron in coulombs
7 x=1.18//correction factor for RH
9 //CALCULATION
10 ne=(x/(RH*e))/10^22//The density of the charge
       carrier in electrons/m<sup>3</sup>*10<sup>2</sup>2
11 me=(c/(ne*10^22*e))/The mobility of the charge
       carrier in m^2 V^-1 s^-1
12
13 //OUTPUT
14 printf ('The density of the charge carrier is \%3.3 f
      *10^22 electrons/m<sup>3</sup> \n The mobility of the
      charge carrier is \%3.5 \,\mathrm{fm^2}\,\mathrm{V^--1}\,\mathrm{s^--1}, ne, me)
```

Scilab code Exa 11.11 Hall coefficient

Scilab code Exa 11.12 Mobility and density of the charge carrier

```
1 clc
2 clear
3 //INPUT DATA
4 RH=3.66*10^-4//Hall coefficient of a doped silicon
     in m^3 C^-1
5 \text{ r=8.93*10}^{-3}/\text{The resistivity in ohm m}
6 e=1.6*10^-19//charge of electron in coulombs
7
8 //CALCULATION
9 n=(1/(RH*e))/10^22//The density of the charge
      carrier in m^-3 *10^22
10 me=(RH/r)//The mobility is \%3.4 \text{ f m}^2 \text{ V}^-1 \text{ s}^-1
11
12 //OUTPUT
13 printf ('The density of the charge carrier is \%3.4 f
      \hat{\phantom{a}}-1',n,me)
```

Scilab code Exa 11.13 Current density

```
1 clc
```

```
2 clear
3 //INPUT DATA
4 RH=0.0125//Hall coefficient of a sample n-type
      semiconductor in m^3 C^-1
5 rh=-0.0125//Hall coefficient of a sample n-type
      semiconductor in m<sup>3</sup> C<sup>-1</sup>
6 me=0.36//electron mobility in m^2 V^-1 s^-1
7 EH=100//electric field in V/m
8 e=1.6*10^-19//charge of electron in coulombs
10 //CALCULATION
11 n=(1/(RH*e))//The density of the charge carrier in m
12 c=(n*e*me)//conductivity of n-type semiconductor in
      ohm^--1 m^--1
13 J=(c*EH)//The current density in A/m<sup>2</sup>
14
15 //OUTPUT
16 printf('The current density is \%i A/m^2', J)
```

Chapter 12

Superconducting materials

Scilab code Exa 12.1 Transition temperature

```
clc
clear
//INPUT DATA
M1=202//mass number of mercury
a=0.50//coefficient of mass number
T1=4.2//temperature in k for mass number 200
M2=200//mass number of mercury

//CALCULATION
T2=((M1/M2)^a)*T1//The transition temperature for the isotope of mercury of mass number 200 in k

//OUTPUT
printf('The transition temperature for the isotope of mercury of mass number200 is %3.4f k',T2)
```

Scilab code Exa 12.2 Critical field

```
1 clc
2 clear
3 //INPUT DATA
4 Tc=9.15//critical temperature of Nb in K
5 t=6//temperature of critical field in K
6 Ho=0.196//The critical field AT 0K in T
7
8 //CALCULATION
9 Hc=(Ho*(1-(t/Tc)^2))//The critical field at 6K in T
10
11 //OUTPUT
12 printf('The critical field at %iK is %3.4f T',t,Hc)
```

Scilab code Exa 12.3 Isotopic mass

```
1 clc
2 clear
3 //INPUT DATA
4 M1=199.5//Isotopic mass of metal
5 T1=4.185//Critical temperature for a metal with
     isotopic mass in k
  T2=4.133//fall of critical temperature for a metal
     with isotopic mass in k
 a=0.50//coefficient of mass
9 //CALCULATION
10 M2=(((M1)^a)*(T1/T2))^2//The Isotopic mass if the
     critical temperature falls to 4.133
11
12 //OUTPUT
13 printf('The Isotopic mass if the critical
     temperature falls to %3.3 fK is %3.2 f', T2, M2)
```

Scilab code Exa 12.4 Critical current

```
clc
clear
//INPUT DATA
Hc=7.2*10^3//The critical magnetic field in A/m
r=0.5*10^-3//radius of long thin superconducting
    wire in m

//CALCULATION
Ic=(2*3.14*Hc*r)//The critical current through a long thin superconductor in A

//OUTPUT
rpintf('The critical current through a long thin superconductor is %3.3 f A', Ic)
```

Scilab code Exa 12.5 Critical field

```
1 clc
2 clear
3 //INPUT DATA
4 Tc=3.7// critical temperature of superconducting Sn in K
5 t=2//temperature of critical field in K
6 Ho=0.0306//The critical field at 0K in T
7
8 //CALCULATION
9 Hc=(Ho*(1-(t/Tc)^2))//The critical field at 6K in T
10
11 //OUTPUT
12 printf('The critical field at %iK is %3.6f tesla',t, Hc)
```

Scilab code Exa 12.6 Critical current

```
1 clc
2 clear
3 //INPUT DATA
4 Ho=6.5*10^4//The critical field at 0K in A/m
5 Tc=7.18//The temperature for lead in K
6 r=0.5*10^-3//radius of superconducting wire of lead
     in m
7 T=4.2//temperature of superconducting wire in K
9 //CALCULATION
10 Hc = (Ho*(1-(T/Tc)^2))//The critical field in KA/m
11 Ic=2*3.14*Hc*r//The critical density for a
     superconducting wire of lead is in A
12
13 //OUTPUT
14 printf ('The critical density for a superconducting
     wire of lead is %3.2 f in A', Ic)
```

Scilab code Exa 12.7 Critical temperature

```
1 clc
2 clear
3 //INPUT DATA
4 Hc=10^5//The critical field for vanadium at 8.58K in A/m
5 Ho=2*10^5//The critical field for vanadium at 0K in A/m
6 T=8.58//temperature for vanadium in K
7
8 //CALCULATION
```

```
9 Tc=(T/(sqrt(1-(Hc/Ho))))//The critical temperature in K

10
11 //OUTPUT
12 printf('The critical temperature is %3.3 f K',Tc)
```

Scilab code Exa 12.8 Frequency of the radiation

```
clc
clear
//INPUT DATA
V=5.9*10^-6//voltage applied across a Josephson
    junction in V

e=1.6*10^-19//charge of electron in coulombs
h=6.62*10^-34//Planck's constant in J-sec

//CALCULATION
v=((2*e*V)/h)/10^9//The frequency of the radiation
    emitted by the junction in Hz

//OUTPUT
printf('The frequency of the radiation emitted by
    the junction is %3.3f*10^9 Hz',v)
```

Chapter 13

Dielectrics

Scilab code Exa 13.1 Electronic polarisation

```
1 clc
2 clear
3 //INPUT DATA
4 a=3.61*10^-10//lattice constant of copper which is
     Fcc crystal in m
5 \text{ x=1*10^--18//average displacement of the electrons}
      relative to the nucleus in m
6 z=29//atomic number of copper
7 n=4//number of atoms per unit cell in FCC crystal
8 e=1.6*10^-19//charge of electron in coulombs
9
10 //CALCULATION
11 ne=((n*z)/(a*a*a))/number of electrons in electrons
12 P=(ne*e*x)/(10^-7)/The electron polarisation in C/m
      ^2 *10^-7
13
14 //OUTPUT
15 printf('The electron polarisation is \%3.3 \, f*10^-7 in
     C/m^2, P)
```

Scilab code Exa 13.2 Effective distance

```
1 clc
2 clear
3 //INPUT DATA
4 rp=11.7//relative permittivity of silicon
5 N=4.82*10^28//number of atoms per unit volume in
     atoms/m<sup>3</sup>
6 ro=8.85*10^-12//permittivity of free space
7 E=10^4//E in Vm^-1
8 e=1.6*10^-19//charge of electron in coulombs
9 Z=14//atomic number of silicon
10
11 //CALCULATION
12 z=((ro*(rp-1))/N)//electronic polarisability in Fm^2
13 y=(z*E)/10^-35/ The dipole moment of each atom in a
      field of 10^4 \text{ Vm}-1 \text{ in } \text{Cm}-3 *10^-35
14 x = ((y*10^-35)/(Z*e))/10^-18//The effective distance
     at this field strength between the centre of the
     electron cloud in each atom and the nucleus in m
     *10^{-18}
15
16 //OUTPUT
17 printf ('The dipole moment of each atom in a field is
      this field strength between the centre of the
     electron cloud in each atom and the nucleus is \%3
     .2 f*10^-18 m', y, x)
```

Scilab code Exa 13.3 Polarisability and relative permittivity

```
1 clc
```

Scilab code Exa 13.4 Static dielectric constant

```
1 clc
2 clear
3 //INPUT DATA
4 z=1.75*10^-40//electronic polarisability in Fm^2
5 d=1.8*10^3//density of argon atom in Kg/m^3
6 Z=39.95//atomic weight of argon
7 NA=6.025*10^26//Avagadro number in mole^-1
8 ro=8.85*10^-12//permittivity of free space
9
10 //CALCULATION
11 N=((NA*d)/Z)//The number of atoms/unit volume in atoms/m^3
12 rp=(((N*z)/ro)+1)//The static dielectric constant of solid argon
13
14 //OUTPUT
```

```
15 printf('The static dielectric constant of solid argon is %3.5f',rp)
```

Scilab code Exa 13.5 Ratio between electronic and ionic polarisability

Chapter 15

Non Destructive Testing

Scilab code Exa 15.1 Frequency

```
1 clc
2 clear
3 //INPUT DATA
4 t=0.1*10^-2//thickness of piezo electric crystal in m
5 E=80*10^9//Young's modulus of crystal in pa
6 d=2654//density of material of crystal in Kgm^-3
7
8 //CALCULATION
9 f=(1/(2*t)*sqrt(E/d))/10^6//The frequency to which a piezo electric oscillator circuit should be turned in Hz
10
11 //OUTPUT
12 printf('The frequency to which a piezo electric oscillator circuit should be turned is %3.4f*10^6 Hz',f)
```