

# Machine Learning for Developers (CIT3C15)

Assignment 2
Joyce Teng Min Li
1907675A
P01

#### Introduction

- **Topic**: Airbnb Price estimator
- **Problem Statement**: Very often, when someone decides to rent out his apartment and list it on the Airbnb they'd be wondering how much to price it at this is one common question that hosts face especially new host.
- Therefore, this machine learning model is catered for Hosts(especially new host) to predict a price estimation for their AirBnB listing based on some features like city, property type etc.



## Data Exploration Dataset

| [2]:                             | id            | listing_url                             | scrape_id      | last_scraped | name                                                      | summary                                                          | space                                                      | description                                                | experiences_offered           | neighborhood_overview                                | instant_bookable | is_business_travel_read |
|----------------------------------|---------------|-----------------------------------------|----------------|--------------|-----------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-------------------------------|------------------------------------------------------|------------------|-------------------------|
|                                  | <b>0</b> 2595 | https://www.airbnb.com/rooms/2595       | 20190806030549 | 43684        | Skylit Midtown<br>Castle                                  | Find your<br>romantic<br>getaway<br>to this<br>beautiful,<br>    | - Spacious<br>(500+ft²),<br>immaculate and<br>nicely fu    | Find your<br>romantic<br>getaway to this<br>beautiful,     | none                          | Centrally located in the heart of Manhattan ju       | f                |                         |
|                                  | <b>1</b> 3647 | https://www.airbnb.com/rooms/3647       | 20190806030549 | 43683        | THE VILLAGE<br>OF<br>HARLEMNEW<br>YORK!                   | NaN                                                              | WELCOME TO<br>OUR<br>INTERNATIONAL<br>URBAN<br>COMMUNITY T | WELCOME TO<br>OUR<br>INTERNATIONAL<br>URBAN<br>COMMUNITY T | none                          | NaN                                                  | f                |                         |
|                                  | <b>2</b> 3831 | https://www.airbnb.com/rooms/3831       | 20190806030549 | 43683        | Cozy Entire<br>Floor of<br>Brownstone                     | Urban<br>retreat:<br>enjoy 500<br>s.f. floor in<br>1899 br       | Greetings! We<br>own a double-<br>duplex<br>brownst        | Urban retreat:<br>enjoy 500 s.f.<br>floor in 1899<br>br    | none                          | Just the right mix of urban center and local n       | f                |                         |
|                                  | <b>3</b> 5022 | https://www.airbnb.com/rooms/5022       | 20190806030549 | 43683        | Entire Apt:<br>Spacious<br>Studio/Loft by<br>central park | NaN                                                              | Loft apartment<br>with high ceiling<br>and wood floo       |                                                            | none                          | NaN                                                  | f                |                         |
| The original dataset had columns |               | 06<br>https://www.airbnb.com/rooms/5099 | 20190806030549 | 43683        | Large Cozy 1<br>BR Apartment<br>In Midtown<br>East        | My large<br>1<br>bedroom<br>apartment<br>is true<br>New York<br> | I have a large 1<br>bedroom<br>apartment<br>centrally I    | My large 1<br>bedroom<br>apartment is<br>true New York     | none                          | My neighborhood in<br>Midtown East is called<br>Murr | f                |                         |
|                                  | 5 rows ×      | : 106 columns of a                      | lataset        |              |                                                           |                                                                  |                                                            | [6]:                                                       | <pre>df.info() df.shape</pre> |                                                      |                  |                         |

5 rows x 106 columns of dataset dataset\_columns = list(df.columns) dataset\_columns = list(df.columns) dataset\_columns | [3]: ['id', 'listing\_url', 'scrape\_id', 'last\_scraped',

'summary',

'description', 'experiences\_offered',

'interaction'

'house\_rules'

'medium\_url',

'picture\_url',

'host\_id',

'host\_url',

'host\_name

'host\_since'

'host location'

'host\_response\_time'

'host\_response\_rate',

'host\_is\_superhost',

'host\_thumbnail\_url'
'host\_picture\_url',
'host\_neighbourhood'

'host\_listings\_count',

'host\_verifications',

'street',
'neighbourhood'

'host\_has\_profile\_pic'

'host\_identity\_verified'

'neighbourhood\_cleansed',
'neighbourhood\_group\_cleansed'

'host\_total\_listings\_count',

'host\_acceptance\_rate',

host about'.

'xl\_picture\_url',

'thumbnail\_url'

'neighborhood\_overview',

'space',

Using the list() to look at all 106 columns and delete all the unnecessary columns

<class 'pandas.core.frame.DataFrame'> RangeIndex: 48864 entries, 0 to 48863 Data columns (total 23 columns): # Column neighbourhood\_group\_cleansed zipcode latitude longitude room\_type accommodates bathrooms 10 bedrooms 12 bed type 13 square feet 14 price guests included availability 365 17 number\_of\_reviews 18 first\_review 19 last\_review 20 review scores rating 21 review scores accuracy 22 cancellation\_policy dtypes: float64(10), int64(6), object(7) memory usage: 8.6+ MB [6]: (48864, 23)

23 columns left after deleting

Non-Null Count Dtype

48864 non-null int64

48864 non-null object

float64

float64

object

object

int64

int64

48802 non-null

48349 non-null

48864 non-null

48864 non-null

48864 non-null

48864 non-null

48864 non-null

48808 non-null

48837 non-null

48822 non-null

48864 non-null

48864 non-null

48864 non-null

48864 non-null int64

48864 non-null int64

38733 non-null float64

38733 non-null float64

37760 non-null float64

37722 non-null float64

48863 non-null object

395 non-null



## Data Exploration Features that attributes to price





#### Room Distribution





## Data Exploration Price Relations to other columns



# use the desribe() to find the mean/avg price in a listing
df.price.describe()

#based on the price avg price per night is 151.453

| count | 48864.000000         |
|-------|----------------------|
| mean  | 151.453176           |
| std   | 236.585525           |
| min   | 0.000000             |
| 25%   | 69.000000            |
| 50%   | 105.000000           |
| 75%   | 175.000000           |
| max   | 10000.000000         |
| Name: | price, dtype: float6 |







Neighbourhood group



## Data Exploration price relation to other columns









#### **Data Preparation**

- Check for missing values
  - Handled Missing Values by using the fillna()
  - For city's missing value did df.dropna(subset=['city']) by doing so it removes the rows that are missing in the city column
  - Correlation Map
  - Used it to determine which features has high correlation with price.
  - Based on the result, performed another round of dropping unnecessary columns
- Drop Duplicated Rows

| id ·                 | - 1    | 0.0012 | 20.057 | 0.017   | 0.036  | 0.0068 | 0.032  | -0.059 | -0.02   | -0.016 | 0.12   | -0.22   | 0.87   | 0.26   | 0.081   | 0.014   |
|----------------------|--------|--------|--------|---------|--------|--------|--------|--------|---------|--------|--------|---------|--------|--------|---------|---------|
| latitude             | 0.0012 | 1      | 0.038  | -0.025  | -0.066 | -0.078 | -0.036 | -0.07  | 0.088   | -0.05  | 0.0072 | -0.03   | 0.0065 | -0.024 | -0.016  | -0.029  |
| longitude            | 0.057  | 0.038  | 1      | -0.045  | 0.04   | 0.044  | 0.0098 | 0.055  | -0.3    | 0.0087 | 0.057  | 0.052   | 0.068  | 0.079  | -0.0250 | 0.00047 |
| accommodates         | 0.017  | -0.025 | -0.045 | 1       | 0.13   | 0.41   |        | 0.27   | 0.44    | 0.41   | 0.094  | 0.1     | 0.011  | 0.11   | -0.041  | -0.027  |
| bathrooms            | 0.036  | -0.066 | 0.04   | 0.13    | 1      | 0.26   | 0.19   | 0.22   | 0.038   | 0.058  | 0.055  | -0.025  | 0.03   | 0.025  | -0.012  | -0.033  |
| bedrooms             | 0.0068 | -0.078 | 0.044  | 0.41    | 0.26   | 1      | 0.51   | 0.32   | 0.19    | 0.24   | 0.058  | 0.036   | 0.007  | 0.067  | 0.0092  | -0.016  |
| beds                 | 0.032  | -0.036 | 0.0098 |         | 0.19   | 0.51   | 1      | 0.22   | 0.3     | 0.35   | 0.12   | 0.068   | 0.026  | 0.11   | -0.042  | -0.038  |
| square_feet          | -0.059 | -0.07  | -0.055 | 0.27    | 0.22   | 0.32   | 0.22   | 1      | 0.31    | 0.27   | -0.054 | -0.029  | -0.028 | -0.064 | 0.095   | 0.062   |
| price                | -0.02  | 0.088  | -0.3   | 0.44    | 0.038  | 0.19   | 0.3    | 0.31   | 1       | 0.24   | 0.048  | -0.026  | -0.035 | 0.012  | 0.064   | 0.045   |
| guests_included      | 0.016  | -0.05  | 0.0087 | 0.41    | 0.058  | 0.24   | 0.35   | 0.27   | 0.24    | 1      | 0.11   | 0.19    | -0.022 | 0.14   | -0.037  | 0.0071  |
| availability_365     | 0.12   | 0.0072 | 20.057 | 0.094   | 0.055  | 0.058  | 0.12   | -0.054 | 0.048   | 0.11   | 1      | 0.18    | 0.067  | 0.33   | -0.11   | -0.081  |
| number_of_reviews    | -0.22  | -0.03  | 0.052  | 0.1     | -0.025 | 0.036  | 0.068  | -0.029 | -0.026  | 0.19   | 0.18   | 1       | -0.25  | 0.36   | -0.16   | 0.02    |
| first_review         | 0.87   | 0.0065 | 0.068  | 0.011   | 0.03   | 0.007  | 0.026  | -0.028 | -0.035  | -0.022 | 0.067  | -0.25   | 1      | 0.27   | 0.099   | 0.019   |
| last_review          | 0.26   | -0.024 | 0.079  | 0.11    | 0.025  | 0.067  | 0.11   | -0.064 | 0.012   | 0.14   | 0.33   | 0.36    | 0.27   | 1      | -0.025  | 0.05    |
| review_scores_rating | 0.081  | -0.016 | -0.025 | -0.041  | -0.012 | 0.0092 | 0.042  | 0.095  | 0.064   | -0.037 | -0.11  | -0.16   | 0.099  | -0.025 | 1       | 0.5     |
| iew_scores_accuracy  | 0.014  | -0.029 | 0.0004 | 70.027  | -0.033 | -0.016 | -0.038 | 0.062  | 0.045   | 0.0071 | -0.081 | 0.02    | 0.019  | 0.05   | 0.5     | 1       |
|                      | Þ      | tude - | tude - | lates - | - smoo | - smoo | peds - | feet - | price - | - papn | -365   | riews - | view - | view - | ating - | ıracy - |



#check for missing values in dataset df.isnull().sum() neighbourhood\_group\_cleansed zipcode latitude longitude property\_type room\_type accommodates 27 bedrooms beds bed type 47314 square feet price guests included availability 365 number of reviews 9648 first review last review 9648 review\_scores\_rating 10594 10631 review scores accuracy cancellation policy dtype: int64

**Before** 

**After** 

df.dropna(inplace=True)
df.isnull().sum()

[25]: neighbourhood\_group\_cleansed city property\_type room\_type accommodates bathrooms bedrooms beds price guests\_included availability\_365 dtype: int64



#### **Feature Selection**

- Drop Duplicated rows
- Used LabelEncoder() to change categorical features to int

```
[26]: df.info()
      <class 'pandas.core.frame.DataFrame'>
      Int64Index: 47636 entries, 0 to 48863
      Data columns (total 11 columns):
           Column
                                         Non-Null Count Dtype
           neighbourhood group cleansed 47636 non-null object
                                         47636 non-null
                                         47636 non-null
           property_type
                                                        object
           room_type
                                         47636 non-null
                                                        object
           accommodates
                                         47636 non-null
           bathrooms
                                         47636 non-null float64
           bedrooms
                                         47636 non-null float64
           beds
                                         47636 non-null float64
                                         47636 non-null int64
           guests_included
                                         47636 non-null int64
          availability 365
                                         47636 non-null int64
      dtypes: float64(3), int64(4), object(4)
      memory usage: 4.4+ MB
```

```
for col in categorical col:
    df[col] = LabelEncoder().fit transform(df[col])
df.dtypes
neighbourhood group cleansed
                                   int32
 city
                                   int32
                                   int32
property_type
                                   int32
room type
                                   int64
 accommodates
 bathrooms
                                 float64
                                 float64
 bedrooms
 beds
                                 float64
 price
                                   int64
guests included
                                   int64
availability 365
                                   int64
dtype: object
```



## Methods and Improvements

```
#models
x=df.drop(columns=['price'])
y=df['price']

#split the data set into training set (70%) and test set(30%)
x_train,x_test,y_train,y_test = train_test_split(x,y , test_size=0.3, random_state=7 )
```

- Algorithms used
  - Linear Regression
  - KneighboursRegression
  - SVR
  - RandomForestRegressor
  - GradientBoostingRegresor
- Improvement
  - Performed a gridsearch for the models and tuned the parameters according to the gridsearch result



## Result and Analysis

17

18

19

R2 Score: The higher the number the better it is Mean Squared Error: The lower the number the better it is





R2 score: 56.77098699048435 RMSE: 57.79218745814706 Training Set Mean Absolute Error: 39.3379 Test Set Mean Absolute Error: 41.2883 Mean Squared Error: 3339.93693119761 Actual Values Predicted Values 243,476457 249 66 89.766032 141.596312 139 96.276625 209.739154 190 300 280.091646 400 210.461498 127.907123 84.913724 125 119.532896 10 146.337734 11 84.120369 12 74.824028 13 169 178.023011 14 61 75.056104 15 200 150.943010 16 127.078668

120

165

95.034202

61.214620

166.191207

After Hyperparameter tuning

GradientBoostingRegressor



### References

- <a href="https://scikit-learn.org/stable/supervised\_learning.html/supervised-learning">https://scikit-learn.org/stable/supervised\_learning.html/supervised-learning</a>
- https://www.kaggle.com/kerneler/starter-ab-ny-august-2019-b8560924-7

