计算机组成课程设计 P5 实验报告

王肇凯

一、 数据通路

1、F 级组合逻辑

- (1)包括PC、IM、ADD4模块,以及功能多选器 MUX PC
- (2) PC: 将下一条指令的 PC 值赋给当前 PC

IM: 读入 code. txt 中的指令,取出下一条指令的操作码

ADD4: 将 PC 值+4

MUX_PC: 根据 npcsel 信号将下一条指令的 NPC 接入 PC

PC 端口定义:

信号名	方向	描述
PC0[31:0]	I	下一条指令的 PC 值
clk	I	时钟信号
reset	I	复位信号
en	I	使能信号
PC[31:0]	О	当前 PC 值

PC 功能定义:

序号	功能名称	功能描述
1	复位	当时钟上升沿到来时,如果复位信号有效,PC 被复位为 0x00003000
2	输出下一个 PC	当时钟上升沿到来时,将 PCO 赋给 PC

IM 端口定义:

信号名	方向	描述
PC[31:0]	I	当前指令的 PC 值
IR[31:0]	О	当前指令的操作码

IM 功能定义:

序号	功能名称	功能描述
1	读入指令	初始化时将 code. txt 中的指令读入到 im 寄存器
2	输出指令操作码	输出下一条指令的操作码 im[PC[11:2]]

ADD4 端口定义:

信号名	方向	描述
PC[31:0]	I	当前指令的 PC 值
PC4[31:0]	0	PC+4 值

ADD4 功能定义:

序号	功能名称	功能描述
1	计算 ADD4	计算 PC+4 并输出

2、D 级组合逻辑

- (1)包括 RF、CMP、EXT、NPC 模块,以及转发多选器 MFCMP1D、MFCMP2D
- (2) RF: 在 D 级为组合逻辑, 根据指令码输出 rs 和 rt 寄存器的值; 在 W 级上, 时钟上升沿到来且写使能信号有效时, 将 WD 写入 A3 寄存器

CMP: beq 指令使用,两输入相等时输出1,否则输出0

EXT: 根据 EXTop 对 16 位立即数扩展

NPC: 根据 npcsel 和 PC 计算出跳转指令的 NPC

MFCMP1D、MFCMP2D: 通过转发使 CMP 的输入端、MUX_PC 能获得正确的值

RF 端口定义:

信号名	方向	描述
A1[4:0]	I	rs 寄存器地址
A2[4:0]	I	rt 寄存器地址
A3[4:0]	I	rt/rd 寄存器地址
RegWrite	I	写使能信号
WD[31:0]	I	写入寄存器的数据
clk	I	时钟信号
reset	I	复位信号
RD1[31:0]	0	使能信号
RD2[31:0]	О	当前 PC 值

RF 功能定义:

序号	功能名称	功能描述
1	读取操作数	将 A1、A2 对应寄存器的值输出到 RD1、RD2
2	回写	当时钟上升沿到来时,若写使能信号有效,将WD写入A3寄存器
3	复位	时钟上升沿到来时,若复位信号有效,则寄存器全部清零

EXT 端口定义:

信号名	方向	描述

imm[15:0]	I	输入的立即数
EXTop[1:0]	Ι	扩展控制信号
EXTout[31:0]	О	扩展后的立即数

EXT 功能定义:

序号	功能名称	功能描述
1 4	扩展	EXTop为`zero_ext时进行无符号扩展,`sign_ext时进行有符号扩展,
		`high_ext 时进行高位扩展

CMP 端口定义:

信号名	方向	描述
D1[31:0]	I	输入数据 1
D2[31:0]	I	输入数据 2
zero	0	比较结果

CMP 功能定义:

序号	功能名称	功能描述				
1	比较	D1=D2 时输出 1, 否则输出 0				

NPC 端口定义:

信号名	方向	描述					
PC4[31:0]	I	前 PC 值					
beq	Ι	c 控制信号					
zero	Ι	连接 CMP 的输出,判断两数据是否相等					
j	I	是否是 j 指令					

jal	I	是否是 jal 指令
imm[25:0]	I	26 位操作数
NPC[31:0]	О	下一条指令的 PC 值

NPC 功能定义:

序号	功能名称	功能描述							
		当 j 或 jal 为 1 时,输出 PC4[31:28] imm 00							
1	计算下一条指令	当 beq 为 1 时,若 zero 为 1,输出 PC4+sign_ext(imm) 00,否则输出 PC4+4							
		否则输出复位值 0x00003000							

3、E 级组合逻辑

- (1)包括 ALU 模块以及功能多选器 MUX_ALU、转发多选器 MFALYAE、MFALUBE
- (2) MFALUE、MFALUBE 根据指令执行进程选择转发值。MUX_ALU 根据 ALUSrc 选择进入 ALUB 的值

ALU 端口定义:

信号名	方向	描述
A[31:0]	I	操作数 1
B[31:0]	I	操作数 2
ALUctr[1:0]	I	运算控制信号
ALUout[31:0]	0	运算结果

ALU 功能定义:

序号	功能名称	功能描述
		当 ALUctr 为`add 时,输出两个操作数相加的结果
1	运算	当 ALUctr 为`sub 时,输出两个操作数相减的结果
		当 ALUctr 为`ori 时,输出两个操作数或运算的结果

4、M 级组合逻辑

- (1) 包括 DM 模块以及 MFDMF 转发多选器
- (2) DM 作为内存, MFDMF 转发输出数据

DM 端口定义:

信号名	方向	描述
Addr[31:0]	I	读写内存地址
DIn[31:0]	I	写入内存的数据
MemWrite	I	运算控制信号
clk	I	时钟信号
reset	I	复位信号
PC4	I	当前的 PC+4
DO[31:0]	0	内存中读出的数据

DM 功能定义:

序号	功能名称	功能描述						
1	写入内存数据	时钟上升沿且写使能信号有效时,将WD写入dm[Addr[11:2]]中						
2	读取内存数据	将 A 代表的地址的数据输出						
3	复位	时钟上升沿且复位信号有效时,将 dm 清零						

5、W 级组合逻辑

W级包含一个功能多选器 MUX_WD,用于选择回写到 RF 的数据

6、MUX

(1) 功能多选器

名称	控制信号	名字
		npcsel 为`ADD4 时,PCO=ADD4
MUX_PC	npcsel[1:0]	npcsel 为`NPC 时,PCO=NPC
MUX_IC	mposci[i.o]	npcsel 为`MFPCF 时,PCO=MFPCF
		否则 PC0=32'h00003000
		ALUSrc 为 0 时,将 V2_E 接入 ALUB
MUX_ALU	ALUSrc	ALUCTO 先 1 叶 收 E22 控) ALUD
		ALUSrc 为 1 时,将 E32 接入 ALUB
		MemtoReg 为`AO 时,WD=AO_W
		MemtoReg 为`DR 时,WD=DM_W
MUX_WD	MemtoReg[1:0]	MemtoReg 为`PC4 时,WD=PC4_W
		MemtoReg 为`PC8 时,WD=PC4_W+4
		否则 WD=0

(2) 转发多选器

控制信号	输入0(低)	输入1	输入2	输入3	输入4(高)	描述
MCMP1D[2:0]	DM_W	PC_W	AO_W	PC_M	AO_M	比较单元的第一路输入、jr \$rs的跳转地址
MCMP2D[2:0]	DM_W	PC_W	AO_W	PC_M	AO_M	比较单元的第二路输入
MALUBE[2:0]	DM_W	PC_W	AO_\	PC_M	AO_M	ALU 的第二路输入、V2_M
MALUAE[2:0]	DM_W	PC_W	AO_W	PC_M	AO_M	ALU的第一路输入
MDMY[2:0]	DM_W	PC_W	AO_W			W级DM单元的回写值
	MCMP1D[2:0] MCMP2D[2:0] MALUBE[2:0] MALUAE[2:0]	MCMP1D[2:0] DM_W MCMP2D[2:0] DM_W MALUBE[2:0] DM_W MALUAE[2:0] DM_W	MCMP1D[2:0] DM_W PC_W MCMP2D[2:0] DM_W PC_W MALUBE[2:0] DM_W PC_W MALUAE[2:0] DM_W PC_W	MCMP1D[2:0] DM_W PC_W AO_W MCMP2D[2:0] DM_W PC_W AO_W MALUBE[2:0] DM_W PC_W AO_W MALUAE[2:0] DM_W PC_W AO_W	MCMP1D[2:0] DM_W PC_W AO_W PC_M MCMP2D[2:0] DM_W PC_W AO_W PC_M MALUBE[2:0] DM_W PC_W AO_W PC_M MALUAE[2:0] DM_W PC_W AO_W PC_M	MCMP1D[2:0] DM_W PC_W AO_W PC_M AO_M MCMP2D[2:0] DM_W PC_W AO_W PC_M AO_M MALUBE[2:0] DM_W PC_W AO_W PC_M AO_M MALUAE[2:0] DM_W PC_W AO_W PC_M AO_M

二、控制模块

1、 真值表

Ор	100001	100011	001101	100011	101011	000100	001111	000011	000010	001000	000000
·											
	addu	subu	ori	lw	sw	beq	lui	jal	j	jr	nop
ALUSrc	0	0	1	1	1	0	1	0	0	0	0
MemtoReg[1:0]	`AO	`AO	`AO	`DR	0	0	`AO	PC8	0	0	0
RegWrite	1	1	1	1	0	0	1	1	0	0	0
MemWrite	0	0	0	0	1	0	0	0	0	0	0
npcsel[1:0]	`ADD4	`ADD4	`ADD4	`ADD4	`ADD4	`NPC	`NPC	`NPC	`NPC	`MFPCF	0
EXTop[1:0]	0	0	`ZERO_	`SIGN_	`SIGN_	0	`high_	0	0	0	0
			EXT	EXT	EXT		ext				

ALUctr[1:0] `add `sub `ori	`add `add	0 `add	0 0	0	0
----------------------------	-----------	--------	-----	---	---

2、信号功能

信号名	功能描述
ALUSrc	0: 将 RF 的 RD2 输入到 ALU 的 B 接口
	1:将 EXT 的 extout 接到 ALU 的 B 接口
MemtoReg[1:0]	`AO:将 ALU 的 ALUout 接到 RF 的 WD 接口
	`DR:将 DM的 dataout接到 RF的 WD接口
	`PC8: 将 PC8 接到 RF 的 WD 接口
RegWrite	0:不对 RF 进行写操作
	1: 将 RF 的 WD 写入 A3 中
MemWrite	0:不对 dm 存储器进行写操作
	1: 将 AO 写入 dm 的 Addr 地址中
npcsel[1:0]	`ADD4:将 ADD4 输入到 PC
	`NPC:将 NPC 输入到 PC
	`MFPCF: 将 MFPCF 输入到 PC
EXTop[1:0]	`zero_ext:将立即数进行无符号扩展
	`sign_ext:将立即数进行有符号扩展
	`high_ext:将立即数进行高位扩展
ALUctr[1:0]	`add: 进行加法操作
	`sub: 进行减法操作
	`ori: 进行或操作

三、测试程序

ori \$31,1 addu \$30,\$31,\$31 ori \$29,\$30,0x6 ori \$28,\$30,0x8 ori \$27,\$30,0x10 ori \$26,\$30,0x12 #addu ori addu \$25,\$26,\$31 subu \$24,\$25,\$31 subu \$23,\$25,\$24 subu \$22,\$25,\$23 subu \$17,\$25,\$22 #addu subu rs addu \$21,\$22,\$31 subu \$19,\$20,\$21 subu \$18,\$19,\$21 subu \$16,\$18,\$21 #addu subu rt addu \$30,\$16,\$26 sw \$30,0(\$0) sw \$30,4(\$0) sw \$30,12(\$0) #addu sw rt	nop beq1:ori \$1,2 addu \$2,\$1,\$0 nop beq \$2,\$1,beq2 nop beq3:ori \$1,3 addu \$4,\$1,\$0 nop nop nop beq \$4,\$1,beq4 nop addu \$5,\$5,\$5 beq4: #addu beq ori \$5,0x30c0 ori \$6,4 addu \$7,\$5,\$6 jr \$7	ori \$5,0x30fc addu \$9,\$5,\$6 nop nop nop jr \$9 nop addu \$5,\$5,\$5 ori \$6,\$0,5 #addu jr subu \$15,\$15,\$15 ori \$11,4 addu \$15,\$0,\$11 sw \$8,0(\$15) sw \$8,4(\$15) sw \$8,8(\$15) #addu sw rs
addu \$15,\$30,\$0 beq \$15,\$30,beq1 nop beq2:ori \$1,1 addu \$2,\$1,\$0 nop nop beq \$2,\$1,beq3	nop addu \$5,\$5,\$5 ori \$5,0x30dc addu \$8,\$5,\$6 nop nop jr \$8 nop addu \$5,\$5,\$5	ori \$4,\$0,0 ori \$3,4 addu \$4,\$4,\$3 lw \$5,0(\$4) lw \$6,4(\$4) lw \$7,8(\$4) #addu lw rs

期望输出:

```
@00003000: $31 <= 00000001
@00003004: $30 <= 00000002
@00003008: $29 <= 00000006
@0000300c: $28 <= 0000000a
@00003010: $27 <= 00000012
@00003014: $26 <= 00000012
@00003018: $25 <= 00000013
@0000301c: $24 <= 00000012
@00003020: $23 <= 00000001
@00003024: $22 <= 00000012
@00003028: $17 <= 00000001
@0000302c: $21 <= 00000013
                                    @000030b0: $ 6 <= 00000004
@00003030: $20 <= ffffffed
                                    @000030b4: $ 7 <= 000030c4
@00003034: $19 <= ffffffda
                                    @000030c4: $ 5 <= 000030dc
                                    @000030c8: $ 8 <= 000030e0
@00003038: $18 <= ffffffc7
                                   @000030e0: $ 5 <= 000030fc
@0000303c: $16 <= fffffb4
                                   @000030e4: $ 9 <= 00003100
@00003040: $30 <= fffffc6
@00003044: *00000000 <= ffffffc6 @00003100: $ 6 <= 00000005
@00003048: *00000004 <= fffffc6 @00003104: $15 <= 00000000
@00003046: *00000004 <= ffffffc6 @00003108: $11 <= 00000004 
@00003050: *00000000 <= ffffffc6 @0000310c: $15 <= 00000004 
@00003050: *0000000 <= ffffffc6 @0000310c: $15 <= 00000004 
@00003150: *15 <= fffffc6
@00003054: $15 <= ffffffc6
                                   @00003114: *00000008 <= 000030e0
@00003078: $ 1 <= 00000002
                                    @00003118: *0000000c <= 000030e0
@0000307c: $ 2 <= 00000002
                                   @0000311c: $ 4 <= 00000000
@00003060: $ 1 <= 00000003
                                    @00003120: $ 3 <= 00000004
@00003064: $ 2 <= 00000003
                                    @00003124: $ 4 <= 00000004
@0000308c: $ 1 <= 00000003
                                    @00003128: $ 5 <= 000030e0
@00003090: $ 4 <= 00000003
                                    @0000312c: $ 6 <= 000030e0
@000030ac: $ 5 <= 000030c0
                                    @00003130: $ 7 <= 000030e0
```

四、思考题

	Tu	se	Tnew	功能部件
	rs	rt		
addu	1	1	1	ALU
subu	1	1	1	ALU
ori	1		1	ALU
lui	1	1	1	ALU
sw	1	2		
lw	1		2	DM
j				
jal			0	PC
jr	0			
beq	0	0		

rs 转发矩阵

		E			M			Ψ	
	ALU	DM	PC	ALU	DM	PC	ALU	DM	PC
	1	2	0	0	1	0	0	0	0
0	S	S	F	F	S	F	F	F	F
1	F	S	F	F	F	F	F	F	F

rt 转发矩阵

		E			M			¥	
	ALU	DM	PC	ALU	DM	PC	ALU	DM	PC
	1	2	0	0	1	0	0	0	0
0	S	S	F	F	S	F	F	F	F
1	F	S	F	F	F	F	F	F	F
2	F	F	F	F	F	F	F	F	F

前序指令	后续指令	前序指令 位置-后续 指令位置	处理方式	样例
addu/subu	addu/subu	M-E	转发	addu \$5, \$1, \$2
		W-E	转发	instr (0, 1)
				subu \$6, \$5, \$3 @
	ori	M-E	转发	addu \$5, \$1, \$2
		W-E	转发	instr (0, 1)
				ori \$6, \$5, 0xcccc

	beq	E-D	暂停	addu \$5, \$1, \$2
		M-D	转发	instr(0.1, 2)
		W-D	转发	beq \$5, \$0, loop@
	jr	E-D	暂停	addu \$5, \$1, \$2
		M-D	转发	instr(0.1, 2)
		W-D	转发	jr \$ 5
	sw	W-M	转发	addu \$4, \$3, \$0
				sw \$4,0(\$4)
	lw	M-E	转发	addu \$5, \$4, \$0
		W-E	转发	instr (0, 1)
				Iw \$6,0(\$5)
ori	addu/subu	M-E	转发	ori \$5,\$0,0x1111
		W-E	转发	instr (0, 1)
				addu/subu \$6, \$5, \$5
	ori	M-E	转发	ori \$5,\$0,0x1111
		W-E	转发	instr (0, 1)
				ori \$6,\$5,0xcccc
	beq	E-D	暂停	ori \$5,\$0,0x1111
		M-D	转发	instr (0, 1, 2)
		W-D	转发	beq \$5, \$1, loop@
	jr	E-D	暂停	ori \$5, \$0, 0x30bc
		M-D	转发	instr (0, 1, 2)
		W-D	转发	jr \$ 5
	sw	W-M	转发	ori \$5,\$0,0x1111
				sw \$5,0(\$0)
	lw	M-E	转发	ori \$5, \$4, 1
		W-E	转发	instr (0, 1)
				Iw \$4.0(\$5)

lui	addu/subu	M-E	转发	lui \$5, 0x1111
		W-E	转发	instr (0, 1)
				addu/subu \$6, \$5, \$5
	ori	M-E	转发	lui \$5, 0x1111
		W-E	转发	instr (0, 1)
				ori \$6,\$5,0xcccc
	beq	E-D	暂停	lui \$5, 0x1111
		M-D	转发	instr (0, 1, 2)
		W-D	转发	beq \$5, \$1, loop@
	jr	E-D	暂停	lui \$5,0x30bc
		M-D	转发	instr (0, 1, 2)
		W-D	转发	jr \$5
	sw	W-M	转发	lui \$5, 0x1111
				sw \$5,0(\$0)
	lw	M-E	转发	lui \$5,0x1111
		W-E	转发	instr (0, 1)
				lw \$40(\$5)
lw	addu/subu	M-E	暂停	lw \$5,4(\$0)
		W-E	转发	instr (0, 1)
				addu \$6, \$5, \$4@
	ori	M-E	暂停	lw \$5,4(\$0)
		W-E	转发	instr (0, 1)
				ori \$6,\$5,\$4
	beq	E-D	暂停	lw \$5,4(\$0)
		M-D	暂停	instr (0, 1, 2)
		W-D	转发	beq \$5, \$4, loop@
	jr	E-D	暂停	lw \$5,4(\$0)

		M-D	暂停	instr (0, 1, 2)
		W-D	转发	jr \$5
	sw	W-M	转发	lw \$5,4(\$0)
				sw \$5,0(\$5)
	lw	M-E	转发	lw \$5,0(\$0)
		W-E	转发	instr (0, 1)
				lw \$6,0(\$5)
jal	addu/subu	M-E	转发	jal loop
		W-E	转发	instr (0, 1)
				addu \$6, \$31, \$4@
	ori	M-E	转发	jal loop
		W-E	转发	instr (0, 1)
				ori \$6,\$31,\$4
	beq	E-D	转发	ial loop
		M-D	转发	instr (0, 1, 2)
		W-D	转发	beq \$5, \$31, loop@
	jr	E-D	转发	jal loop
		M-D	转发	instr (0, 1, 2)
		W-D	转发	jr \$31
	sw	W-M	转发	lw \$5,4(\$0)
				sw \$5.0(\$5)
	lw	M-E	转发	lw \$5,0(\$0)
		W-E	转发	instr (0, 1)
				lw \$6,0(\$5)

构造指令集的Tuse

- □ 思路:结合流水线架构,逐条指令构造Tuse及Tnew
- □ T_{use}注意事项
 - 1) 只关注每条指令的操作语义
 - ◆ 2)指令可能有2个不同的Tuse,如sw
 - ◆ 3) 指令集或流水线架构的变化,均可能导致Tuse 变化
 - 例如:流水线从5级变为6级且第5级为访存,则sw的rt将会延后1级被使用,故rt的T_{use}会变为{0,1,2,<u>3</u>}

	T _{use}				
	rs	rt			
add	1	1			
sub	1	1			
andi	1				
ori	1				
lw	1				
sw	1	2			
beq	0	0			
jr	0				
·	{0,1}	{0,1,2}			

构造指令集的Tnew

- □ 思路:结合流水线架构,逐条指令构造Tuse 及Tnew
- □ T_{new}注意事项:
 - ◆ 一旦减为0,则不再继续减少!
 - 0: 有效结果已经产生了
 - 非0: 有效结果尚未产生
- 为了便于分析,用产生结果的功能部件来 代表指令
 - ◆ 例如, ALU可以代表所有的计算类指令

E M					М			
ALU	DM	PC	ALU	DM	PC	ALU	DM	PC
1	2	0	0	1	0	0	0	0

4F. A	功能	T_{new}			
指令	部件	Е	М	W	
add	ALU	1	0	0	
sub	ALU	1	0	0	
andi	ALU	1	0	0	
ori	ALU	1	0	0	
lw	DM	2	1	0	
sw					
beq					
jal	PC	0	0	0	

根据策略矩阵构造暂停条件的一般性方法

_		Е			М			W	
new	ALU	DM	PC	ALU	DM	PC	ALU	DM	PC
use \	1	2	0	0	1	0	0	0	0
0	S	S	F	F	S	F	F	F	F
1	F	S	F	F	F	F	F	F	F

rt策略矩阵

_		Ε			М		W			
T Inew	ALU	DM	PC	ALU	DM	PC	ALU	DM	PC	
use	1	2	0	0	1	0	0	0	0	
0	S	S	F	F	S	F	F	F	F	
1	F	S	F	F	F	F	F	F	F	
2	F	F	F	F	F	F	F	F	F	

Q: 如何表示T_{new}与T_{use}?


```
Stall_RTO_e1 = . . . .
Stall_RTO_e2 = . . . .
Stall_RTO_m1 = . . .
Stall_RT1_e2 = . . .

Stall_RT = Stall_RTO_e1 |
Stall_RTO_e2 |
```


北京航空航天大学计算机学院

策略矩阵制导构造暂停案例

- □ 当建立策略矩阵后,可以反向构造暂停和转发案例
 - ◆ 示例: rs策略矩阵制导的rs相关暂停用例

	Ī
rs策略	L
矩阵	
	Н

	\		Ε			М		W			
	T \Inew	ALU	DM	PC	ALU	DM	PC	ALU	DM	PC	
Z	'use \	1	2	0	0	1	0	0	0	0	
	0	S1	S2	F	F	S3	F	F	F	F	
	1	F	S4	F	F	F	F	F	F	F	

load类、store类、运 算类、b类均包含多 条指令。 因此,从指令角度, 造成暂停的指令组合 数量巨大。

	S1	运算类 \$1 , \$x, \$y b类 \$1 , \$x, im	运算类 \$1 , \$x, \$y jr \$1		
	S2	load类 \$1, x(\$y) b 类 \$1, \$x, im	load类 \$1, x(\$y) jr \$1		
rs相关 暂停 用例	S3	load类 \$1 , x(\$y) XXXXX b类 \$1 , \$x, im	load类 \$1, x(\$y) XXXXX jr \$1		
	S4	load类 \$1 , x(\$y) 运算类 \$x, \$1 , \$y	load类 \$1 , x(\$y) load类 \$x, y(\$1)	load类 \$1 , x(\$y) store类 \$x, x(\$1)	L学院

策略矩阵制导构造转发案例

□ 示例: rt策略矩阵制导的可以转发的rt相关用例

	_		Е			М			W	
	T _{use} new	ALU	DM	PC	ALU	DM	PC	ALU	DM	РС
. *** m*z		1	2	0	0	1	0	0	0	0
rt策略 矩阵	0	S	S	F	F	S	F	F3	F3	F3
XLIT	1	F	S	F	F	F	F	F3	F3	F3
	2	F	F1	F	F	F2	F	F3	F3	F3

TIPS 相对于转发类相关数 据更为惊人。 覆盖性分析方法带来 很多重要启示,进一 步深化流水线认识。

rt相关 转发 用例

F1	load类 \$1 , \$x, \$y store类 \$1 , x(\$y)	启示:W级应该有向M级的 转发通路
F2	load类 \$1 , x(\$y) XXXXX store类 \$1 , x(\$y)	启示:同步信息的流水线寄存器也是需求点
F3	运算类 \$1 , \$x, \$y XXXXX XXXXX store类 \$1 , x(\$y)	启示: RF需要支撑内部转发 (2017新方法也可以采用外 部显式转发)

北京航空航天大学计算机学院 School of Computer Science and Engineering, Bellhang University

		jr	jal	j	lui	beq	sw	lw .	addu	subu	ori	MUX	0	1		2	3
PC		RF-RD1	NPC	NPC	ADD4	ADD4 NPC	ADD4	ADD4	ADD4	ADD4	ADD4	MUX-PC	ADD4	NPC	RF-RD1		
IM		PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC					
ADD4		PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC					
D級	IR-D	IM	IM	IM	IM	IM	IM	IM	IM	IM	IM	IM					
	PC4-D	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4					
RF	A1	IR-D(rs)			IR-D(rs)	IR-D(rs)	IR-D(rs)	IR-D(rs)	IR-D(rs)	IR-D(rs)	IR-D(rs)	IR-D(rs)					
	A2					IR-D(rt)	IR-D(rt)		IR-D(rt)	IR-D(rt)		IR-D(rt)					
XT					IR-D(imm)		IR-D(imm)	IR-D(imm)			IR-D(imm)	IR-D(imm)					
	PC4		PC4-D	PC4-D		PC4-D						PC4-D					
NPC (4F+4)	IMM26		IR-D (imm)	IR-D(imm)		IR-D(imm)						IR-D(imm)					
	zero					CMP-zero						CMP-zero					
CMP	D1					RF-RD1						RF-RD1					
CMP	D2					RF-RD2						RF-RD2					
	V1-E				RF-RD1		RF-RD1	RF-RD1	RF-RD1	RF-RD1	RF-RD1	RF-RD1					
	V2-E						RF-RD2		RF-RD2	RF-RD2		RF-RD2				\top	
	A1-E						IR-D(rs)	IR-D(rs)	IR-D(rs)	IR-D(rs)	IR-D(rs)	IR-D(rs)					
B級	A2-E						IR-D(rt)		IR-D(rt)	IR-D(rt)		IR-D(rt)				\top	
	A3-E		31		IR-D(rt)			IR-D(rt)	IR-D (rd)	IR-D(rd)	IR-D(rd)	MUX-A3	IR-D(rt)	IR-D(rd)	3		
	E32-E				EXT-out		EXT-out	EXT-out			EXT-out	EXT-out					
	PC4-E		PC4-D									PC4-D				\top	
	A				V1-E		V1-E	V1-E	V1-E	V1-E	V1-E	V1-E					
ALU	В				E32-E		E32-E	E32-E	V2-E	V2-E	E32-E	MUX-ALUB	V2-E	E32-E			
	V2-M						V2-E					V2-E		1			
	A2-M						A2-E					A2-E					
MAR	AO-M				ALU-out		ALU-out	ALU-out	ALU-out	ALU-out	ALU-out	ALU-out					
	A3-M		A3-E		A3-E			A3-E	A3-E	A3-E	A3-E	A3-E					
	PC4-M		PC4-E									PC4-E				$\overline{}$	_
	A				1		AO-M	AO-M	AO-M	AO-M	AO-M	AO-M					
DM	WD						V2-M					V2-M				_	
	A3-W		A3-M		A3-M	1	1.2.2	A3-M	A3-M	A3-M	A3-M	A3-M		i e	1		
_	PC4-W		PC4-M									PC4-M					
W級	AO-W				AO-M			AO-M	A0-M	AO-M	A0-M	AO-M					
	DR-W							DM-out				DM-out				-	
	10 N							10.7				10.77					

	Tnew	功能部件
add/addu/sub/subu/and/or/xor/nor sll/sra/sll/mflo/mfhi addi/addiu/andi/ori/xori/lui/ sllv/srlv/srav/slt/sltu/slti/sltiu	1	ALU
lbu/lb/lhu/lh/lw	2	DM
jal/jalr	0	PC

	Tu	ıse
	rs	rt
beq/bne	0	0
blez/bgez/bltz/bgtz/jr/jalr	0	
add/addu/sub/subu/and/or/xor/nor sllv/srlv/srav/slt/sltu/mult/div/multu/divu	1	1
sb/sh/sw	1	2
sll/sra/sll		1
addi/addiu/andi/ori/xori/lui/ lbu/lb/lhu/lh/lw/slti/sltiu/mtlo/mthi	1	

将指令分为7类,每一类的数据通路大致相同,从而按照类来进行冲突分析。

addu/add/subu/sub/nor/or/xor/slt/sltu/sllv/srav/srlv/and	1
addi/addiu/andi/lui/ori/xori/slti/sltiu/	2
lb/lbu/lh/lhu/lw	3
sb/sw/sh	4
sll/sra/srl	5
Ъ	6
j	7