תכנון אלגוריתמים תרגיל 4 – דף תשובות

אנא הגישו רק חלק זה. <u>אל תחרגו מהמקום המוקצה לתשובה!</u>

ציון		
	ת.ז	שם
	ת.ז	שם
		<u>שאלה 1</u>
		תיאור האלגוריתם
	$.\mathrm{d}(\mathrm{v})=\infty,\pi(v)=null$ נאתחל	$v eq ext{s}$ ולכל, $ ext{d}(ext{s}) = 0$, $\pi(ext{s}) = null$,
		:עד $ V -1$ בצע $i=1$ צ <u>עד:</u>
С	מתקיינ Relax לפני פעולת ה $(\mathrm{u},\mathrm{v})\in\mathrm{E}$ מתקיינ	אם באיטרצי .Re lax (u,v) בצע $(u,v)\inE$ לכל
		break אז $d(v) \le d(u) + w(u, v)$
		<u>סיום:</u> החזרת את המרחקים ואת העץ.
		הוכחת נכונות האלגוריתם
		<u>טענה ראשית:</u> בסוף ריצת האלגוריתם לכל v מר
	רציות, אזי לפי בלמן פורד (בהנחה שלא קיימים	
	, אם התבצע <i>break</i> , משמע האיטרציה לא שינ	
	זר האיטרציות שנותרו, לא היה מתבצע שום שינ	
$.d(v) = \delta(s, v)$	v) לנו כי בסוף ריצת האלגוריתם לכל v מתקיים	Relax. ושוב, מנכונות אלגוריתם בלמן פורד קינ

ניתוח זמן ריצה – חסם על מס' האיטרציות

לפי טענה שהוכחה בכיתה, אם קיים מסלול קל ביותר מ s ל v שמכיל קשתות, אזי בסוף איטרציה i מתקיים
. $lpha(G)$ - אליו שאורכו קטן שווה מ s אליו פעל משקל מינימלי מ א פנוסף, לכל א קיים מסלול בעל משקל מינימלי מ d(v) = $\delta(s,v)$
לכן, לאחר $\alpha(G)$ נקבל כי לכל $\alpha(v) = \delta(s,v)$ מתקיים $\alpha(v) = \delta(s,v)$ לכן נוסיף את האיטרציה האחרונה בה לפי מה
שקיבלנו לא יתבצע שום שינוי בעזרת ה – Relax ולכן נצא מהלולאה. בסך הכל קיבלנו כי מספר האיטרציות
. $\alpha(G)+1$ חסום ע"י

<u>שאלה 2</u>

סעיף א

$C(S_1, V\setminus S_1) = C(S_2, V\setminus S_2) = f $ מתקיים MCMF יהיו $S_1, S_2 \in F$ ותהי $S_1, S_2 \in F$ ותהי $S_1, S_2 \in F$
בנוסף, ע"פ טענה שהוכחנו בכיתה מתקיים כי $f(S_1, V \setminus S_1) = f(S_2, V \setminus S_2) = f $ מכאן נובע כי
וכל S_1 וכל החותכות החותכות את אלן, $f(S_2, V\setminus S_2)=\mathcal{C}(S_2, V\setminus S_2)$ ו וכל הצלעות החותכות את וכל וכל הצלעות החותכות את וכל
.f רוויות תחת \mathbb{S}_2 רוויות תחת הצלעות החותכות את
.f או את $S_1 \cup S_2$ או את $S_1 \cup S_2$ או את פרוויה $S_1 \cap S_2$ או את או את פרוויה פ $S_1 \cup S_2$ או את פרויה מחת פריי צלע
קיבלנו כי כל קשת החותכת את $S_1 \cup S_2$ או את $S_1 \cap S_2$ רוויה, ולכן
$.f(S_1 \cup S_2 , V \setminus S_1 \cup S_2) = \mathcal{C}(S_1 \cup S_2 , V \setminus S_1 \cup S_2) \text{ ind } f(S_1 \cap S_2 , V \setminus S_1 \cap S_2) = \mathcal{C}(S_1 \cap S_2 , V \setminus S_1 \cap S_2)$
שנית, ע"פ הטענה שהוכחנו בכיתה מתקיים $f(S_1 \cap S_2$, $V \setminus S_1 \cap S_2$) $= f(S_1 \cup S_2$, $V \setminus S_1 \cup S_2$) אולכן, ולכן
$S_1 \cap S_2$ וגם $S_1 \cup S_2 \cup S_3$ ווגם f ומכיוון שבכל חתך וורם $C(S_1 \cap S_2 \cup S_1 \cap S_2) = C(S_1 \cup S_2 \cup S_2) = f $
הינם חתכים מינימליים (לא יתכן חתך בעל קיבול קטן יותר מכיוון שבמידה וכן לא יכולנו להזרים בו את f), אז
$.S_1 \cap S_2, S_1 \cup S_2 \in F$
$.S_1 \cap S_2, S_1 \cup S_2 \in F$
$.S_1 \cap S_2, S_1 \cup S_2 \in F$
$.S_1 \cap S_2, S_1 \cup S_2 \in F$
$.S_1 \cap S_2, S_1 \cup S_2 \in F$
$.S_1 \cap S_2, S_1 \cup S_2 \in F$
$.S_1 \cap S_2, S_1 \cup S_2 \in F$
$.S_1 \cap S_2, S_1 \cup S_2 \in F$
$.S_1 \cap S_2, S_1 \cup S_2 \in F$

S_{min} - סעיף ב

תיאור האלגוריתם

נאתחל $B=\{s\}$. נכניס את s למחסנית, כל עוד המחסנית לא ריקה, נשלוף ממנה קודקוד ונסתכל על כל $B=\{s\}$ הקשתות היוצאות ממנו. אם הקשת לא רוויה תחת f, נכניס את הקודקוד אליו היא מגיעה ל $B=\{s\}$ ולמחסנית. נחזיר את B.

הוכחת נכונות

ראשית נראה כי $B \in \mathcal{F}$. ע"פ תיאור האלגוריתם, כל קשת החותכת את B , רוויה תחת B , ולכן הקיבול של החתך
:שקיבלנו שווה לזרימה f, ובדומה לסעיף הקודם קיבלנו כי $B \in F$. נוכיח את השוויון $B = \mathrm{S}_{\min}$ ע"י הכלה דו"כ
$B-$ מתקבל מחיתוך כל החתכים השייכים ל $F-$, ובפרט B , ולכן מוכל ב $S_{\min}:\supseteq$
⊇: נוכיח באינדוקציה על השלב ה – i באלגוריתם:
. אז $B=\{{ m s}\}$ ומכיוון ש ${ m s}-{ m s}$ שייך לכל חתך, הוא שייך לחיתוך של כל החתכים המינימליים ${ m s}-{ m i}$
הנחה: נניח כי בשלב ה $i-i$ מוכל ב $si-i$.
m V אם לא התווסף ל B – B שום קודקוד, סיימנו. אם התווסף ל B – אם לא התווסף ל B – צעד: נסתכל על השלב ה
כלשהו, נניח בשלילה כי $ ho$ לא שייך ל - $ m S_{min}$. ע"פ סעיף קודם, $ m S_{min}$ הינו חתך מינימלי, ולכן כל קשת שחותכת
אותו רוויה תחת f. אך האלגוריתם בחר את v מכיוון שקיימת קשת מקודקוד כלשהו השייך לקבוצה B מהשלב
הקודם (וגם ל $_{ m min}$ ע"פ ההנחה) שאינה רוויה תחת f , וקיבלנו כי קיימת קשת החותכת את $_{ m min}$ ואינה רוויה
תחת f. סתירה.

תכנון אלגוריתמים 2020, עבודת בית 4
C
S_{max} - סעיף ב
תיאור האלגוריתם מעתפל את (2) עצי 2) בכנס את ל לתחפנות כל עוד בתחפנות אונב בודב משלום דודדוד א מבתחפנות אם
נאתחל את $C = V \setminus \{t\}$. נכניס את t למחסנית, כל עוד המחסנית אינה ריקה, נשלוף קודקוד V מהמחסנית. אם $C = V \setminus \{t\}$ מקודקוד ב $C = C$ שאינה רוויה תחת t, נוציא את $V = C$ ונכניסו למחסנית.
ין ימונ קשונ לקודקוד ע מקודקוד ב – C שאינודד ווידד ננוווניו, נוציא אוניע מ – C ונכניסו למוזסניונ. נחזיר את C.
THE MESS.
הוכחת נכונות
ולכן הקיבול של החתך, f ראשית נראה כי $c \in F$ ע"פ תיאור האלגוריתם, כל קשת החותכת את $c \in F$ ראשית נראה כי
:כו"י הכלה דו"כ ע"י הכלה את השוויון $\mathcal{C} = S_{\max}$ שקיבלנו שווה לזרימה f, ובדומה לסעיף הקודם קיבלנו כי $\mathcal{C} \in F$ נוכיח את השוויון
C מתקבל מאיחוד כל החתכים השייכים ל F , ובפרט C , ולכן מכיל את S $_{ m max}$:
⊆: נוכיח באינדוקציה על השלב ה – i באלגוריתם:
$S_{ ext{max}}$ ובפרט רכן כל חתך מוכל ב $C-D$ ובפרט, $C=V\setminus\{t\}:i=0$
הנחה: נניח כי בשלב ה $i-1$, מוכל ב $i-2$.
עניח בשלילה C – אם לא הוסר מ – C קודקוד סיימנו. אם הוסר מ – C אודקוד $^{ m C}$ נניח בשלילה. איניח בשלילה
C אז לפי תיאור האלגוריתם קיימת קשת לא רוויה מהחתך C – א שייך ל $S_{ m max}$. אם הסרנו את V א לפי תיאור האלגוריתם אייך ל
מהשלב הקודם (ולפי ההנחה מ - $S_{ m max}$) ל – v. וקיבלנו קשת לא רוויה החותכת את $S_{ m max}$, בסתירה להיותו
חתך מינימלי ע"פ הסעיף הקודם.
2012 107 - 2 2110
סעיף ב – זמן ריצה ניתן לראות כי אנו עוברים על כל צלע וכל קודקוד לכל היותר פעמיים במהלך ריצת האלגוריתם
ניונן זו אוונ כי אנו עוברים ע <i>ל כל צלע וכל ק</i> וו קוור <i>לכל</i> וריוונו פעמיים במוזקן דיצונ וואלגוו יונם Smin (לכל היותר פעם אחת למציאת Smax), ומכאן שזמן ריצת האלגוריתם
(זכל ודוונו פעם אווונ <i>ד</i> נגבאונ m_{in} ו <i>דכר</i> ודיוונו פעם אווונ <i>ד</i> נגבאונ m_{max} , ומכאן שינון די בונ וזאל אוו יונם $O(V + E)$.
ווינו (וַבּן + וְעוֹ)ט.
<u>שאלה 3</u>
תיאור האלגוריתם
, אחרת. $w(u,v)=1$ אז $c(u,v)=f(u,v)$ אז $w(u,v)=0$ אחרת. אחרת.
נריץ דייקסטרה בגרף G מקודקוד S ע"פ פונקציית המשקל w . אם t החזר "כן", אחרת $w(u,v)=0$
החזר "לא".

תכנון אלגוריתמים 2020, עבודת בית 4
הוכחת נכונות האלגוריתם
<u>טענה ראשית:</u> האלגוריתם מחזיר כן אמ"ם ניתן להגדיל את הזרימה f ע"י הגדלת הקיבול של
לכל היותר k צלעות ב – N.
.f אמ"ם קיים מסלול מ $s-v$ ל $v-v$ בעל לכל היותר אמ"ם קיים מסלול מ $d(v) \leq k'$ בעל לכל היותר
הוכחת טענה ראשית: $d(t) \leq k$, ולכן ע"פ טענת מחזיר "כן". אזי מהגדרת האלגוריתם $d(t) \leq k$, ולכן ע"פ טענת
k בעל לכל היותר k קשתות רווית תחת f. נוכל להגדיל את קיבולן של $G-b$ ב $t-b$ s – העזר קיים מסלול מ
או פחות הקשתות הנ"ל בלפחות 1 כל אחת (מכיוון שבכל קשת שאינה רוויה במסלול ניתן להזרים לפחות עוד
1), ובכך להגדיל את הזרימה במסלול הנ"ל בלפחות 1 ובסה"כ להגדיל את f.
- נניח כי האלגוריתם מחזיר "לא". אזי מהגדרת האלגוריתם $d(t)>k$, ולכן ע"פ טענת העזר כל מסלול מ \Rightarrow
קשתות k בעל יותר מ $k-k$ קשתות רוויות תחת f מכאן ניתן להסיק כי על כל בחירה של עד s s
ב – G הגדלת הקיבול שלהן יותיר לפחות צלע אחת רוויה בכל מסלול מ – s ל – t, ולכן לא ניתן להגדיל את
הזרימה f ע"י הגדלת הקיבול של לכל היותר k צלעות ב – N.
תחת k' בעל משקל לכל היותר אי בער משקל מ- אי פוניח כי $d(v) \leq k'$ אזי קיים מסלול מ- א בער משקל לכל היותר אוים מסלול מ
w. ע"פ בניית w, ניתן לראות כי קיימות לכל היותר 'k קשתות רוויות תחת f במסלול זה.
קיים w אזי מבניית אזי מבניית א קשתות רוויות תחת f איים מסלול מ $G-v$ בער לכל היותר אזי קיים מסלול מ
$d(v) \leq k'$ בעל משקל לכל היותר 'k', ומנכונות אלגוריתם דייקסטרה נקבל כי 'S – בעל משקל איותר 'C בעל משקל איז מסלול מ
ניתוח זמן ריצה
הגדרת פונקציית המשקל תעשה בזמן של $O(E)$. מכיוון שבזרימה קיימות יותר צלעות מקודקודים, זמן
$O(E \log V)$ בסך הכל זמן ריצת האלגוריתם הינו $O(E \log V)$, ובסך הכל זמן ריצת האלגוריתם הינו.

ı			

4 תכנון אלגוריתמים 2020, עבודת בית

<u>שאלה 4</u>

$.\delta_{\mathrm{f}'}(s,v)$ את המסלול הקצר ביותר מ $s-s$ ל ארריכי - צי אורכו של P את המסלול הקצר ביותר מ
N _f - מצא ב P נמצא ב P נמצא ב
ע"פ הנתון, כל מסלול מ $s-t$ ל – $v-t$ ברשת השכבות L $_{ m f}$, משמע כל מסלול קצר ביותר מ $s-t$ ל – $v-t$, רווי,
ומכיוון שאורכו של P הינו P אינו מסלול קצר ביותר מ $v - v - v$ ב $v - v$. ומכיוון שאורכו של P אינו מסלול קצר ביותר מ
$.\delta_{\mathbf{f}'}(s,v) > \delta_{\mathbf{f}}(s,v)$
N _f - לא נמצא ב P לא נמצא ב P לא נמצא ב
$P=(s=v_0,v_1,,v_{\delta_{\mathbf{f}'}(s,v)}=v)$ בלומר קיימת קשת (u,v) $\in P$ שלא מופיעה ב $N_{\mathbf{f}}$. נסמן את קודקודי המסלול
.P קשת כלשהי במסלול (v_i,v_{i+1})
$\delta_{\mathrm{f}}(s,v_{i+1}) \leq \delta_{\mathrm{f}}(s,v_{i}) + 1$ אז N_{f} - אם (v_{i},v_{i+1}) מופיעה ב
אס (v_{i+1},v_i) כן מופיעה ב \mathbf{N}_{f} והזרמנו עליה זרימה, אזי היא מופיעה - \mathbf{N}_{f} אם (v_{i+1},v_i) כן מופיעה ב
$.\delta_{\mathrm{f}}(s,v_{i+1})+1=\delta_{\mathrm{f}}(s,v_{i})$ במסלול קצר ביותר מ $-$ s – צ ר ע ר רישא נובע כי אומשפט הרישא נובע כי
נסתכל על הסדרה הבאה $\delta_f(s,s=v_0), \delta_f(s,v_1),, \delta_f\left(s,v_{\delta_f'(s,v)}=v ight)$ נסתכל על הסדרה הבאה נסתכל על הסדרה הבאה ($\delta_f(s,v_1),, \delta_f\left(s,v_{\delta_f'(s,v)}=v ight)$ נסתכל על הסדרה הבאה
אז קיים מקום בו (עו, ר Nf - אלא מופיעה ב (u, v) \in P אדלים בלכל היותר 1, ומכיוון שאנו במקרה בו
קטנים ב $-$ 1. מכיוון שהסדרה מתחילה ב $-$ 0 ונגמרת ב $+$ 0, מספר האיברים בה הוא לפחות
$.\delta_{\mathrm{f}'}(s,v)>\delta_{\mathrm{f}}(s,v)$ ולכן אורכו של P הוא לפחות $\delta_{\mathrm{f}}(s,v)+3$, ושוב קיבלנו כי $\delta_{\mathrm{f}}(s,v)+3$