$x \in J$.

(3) 由于 φ 是同态,所以有 $\varphi(a \lor b) = \varphi(a) \lor \varphi(b) = 0 \lor 0 = 0$, $a \lor b \in J$ 。

19.36

(1) 对任意同态 $\varphi: B_1 \to B_2$,由教材定理 19.24(1) 应有 $\varphi(0) = 0$, $\varphi(1) = 1$ 。从而必有 $\varphi(B_1) = B_2$ 。

易见,若 $\varphi(a) = \varphi(b) = 0$ (或 $\varphi(a) = \varphi(b) = 1$),则有 $\varphi(a) \vee \varphi(b) = 0 \neq 1 = \varphi(a \vee b)$ (或 $\varphi(a) \wedge \varphi(b) = 1 \neq 0 = \varphi(a \wedge b)$),从而 φ 不是同态。而当 $\varphi(a) \neq \varphi(b)$ 时, φ 是同态。

因此,从 B_1 到 B_2 的同态只有 $\varphi_1 = \{\langle 0,0 \rangle, \langle a,0 \rangle, \langle b,1 \rangle, \langle 1,1 \rangle\}$ 和 $\varphi_2 = \{\langle 0,0 \rangle, \langle a,1 \rangle, \langle b,0 \rangle, \langle 1,1 \rangle\}$ 。

(2) 对上题中的 φ_1 ,有 $B_1/\sim = \langle \{\{0,a\},\{b,1\}\},\land,\lor,\bar{\ },\{0,a\},\{b,1\}\rangle$ 。运算表如下:

对于 φ_2 , 只需将上述集合中的 a, b 对换即可。

19.37 注意到:

引理 **19.3** 设 A, B 是两个不交的集合,则对任意 $X_1, X_2 \subseteq A$, $Y_1, Y_2 \subseteq B$,有 $X_1 \cup Y_1 \subseteq X_2 \cup Y_2 \iff X_1 \subseteq X_2 \perp Y_1 \subseteq Y_2$.

证明: 充分性显然。下面证必要性。

若 $X_1 \cup Y_1 \subseteq X_2 \cup Y_2$,则对任意 $x \in X_1$,有 $x \in X_1 \cup Y_1 \subseteq X_2 \cup Y_2$ 。由 $x \in A$ 和 $A \cap B = \emptyset$ 可知, $x \notin Y_2 \subseteq B$ 。从而必有 $x \in X_2$ 。这就证明了 $X_1 \subseteq X_2$ 。同理可证 $Y_1 \subseteq Y_2$ 。

再证原题。

证明:由教材例 19.14 和教材定理 15.6 可知, $\langle \mathcal{P}(A \cup B), \cap, \cup, \sim, \varnothing, A \cup B \rangle$ 和 $\langle \mathcal{P}(A) \times \mathcal{P}(B), \wedge, \vee, -, \langle \varnothing, \varnothing \rangle, \langle A, B \rangle \rangle$ 都是布尔代数。

定义 $\varphi: \mathcal{P}(A) \times \mathcal{P}(B) \to \mathcal{P}(A \cup B)$, $\forall \langle X, Y \rangle \in \mathcal{P}(A) \times \mathcal{P}(B)$,令 $\varphi(\langle X, Y \rangle) = X \cup Y$ 。 φ 显然是映射,且为满射。

由引理 19.3 可知, φ 是单射, 从而是双射。

由引理 19.3 和教材定理 19.8 可知, φ 是 $\langle \mathcal{P}(A) \times \mathcal{P}(B), \wedge, \vee \rangle$ 到 $\langle \mathcal{P}(A \cup B), \cap, \cup \rangle$ 的同构。也即,对任意 $\langle X_1, Y_1 \rangle, \langle X_2, Y_2 \rangle \in \mathcal{P}(A \cup B)$,有 $\varphi(\langle X_1, Y_1 \rangle \wedge \langle X_2, Y_2 \rangle) = \varphi(\langle X_1, Y_1 \rangle) \cap \varphi(\langle X_2, Y_2 \rangle)$ 和 $\varphi(\langle X_1, Y_1 \rangle \vee \langle X_2, Y_2 \rangle) = \varphi(\langle X_1, Y_1 \rangle) \cup \varphi(\langle X_2, Y_2 \rangle)$ 。

$$\forall \langle X, Y \rangle \in \mathcal{P}(A) \times \mathcal{P}(B)$$
,有 $\varphi(-\langle X, Y \rangle)$

$$=((A \cap \sim X) \cup B) \cap ((A \cap \sim X) \cup \sim I)$$

$$=(A \cup B) \cap (\sim X \cup B) \cap (A \cup \sim Y) \cap (\sim X \cup \sim Y)$$
(分配律)

$$=(A \cup B) \cap \sim X \cap \sim Y \cap (\sim X \cup \sim Y)$$
 (B $\subseteq \sim X$ 、 $A \subseteq \sim Y$ 、 习题 1.21 结论)

$$=(A \cup B) \cap \sim X \cap \sim Y$$
 ($\sim Y \subset \sim X \cup \sim Y$ 、习题 1.21 结论)