Terceira Lista de Preparação para a L IMO e XXIV Olimpíada Iberoamericana de Matemática

Nível III

A nossa última lista de 2009 veio reforçada, com mais quatro problemas! Nessa lista, você deve fazer resumos para seis problemas.

Atenção: todas as listas devem chegar às nossas mãos até o dia 16 de maio! Se for o caso, envie por SEDEX.

▶ PROBLEMA 1

Prove que, para quaisquer quatro reais positivos a, b, c, d,

$$\frac{(a-b)(a-c)}{a+b+c} + \frac{(b-c)(b-d)}{b+c+d} + \frac{(c-d)(c-a)}{c+d+a} + \frac{(d-a)(d-b)}{d+a+b} \geqslant 0$$

Descubra todos os casos de igualdade.

▶PROBLEMA 2

Para cada inteiro m, denote por t(m) o único número em $\{1,2,3\}$ tal que m+t(m) é múltiplo de 3. A função $f: Z \to Z$ satisfaz f(-1) = 0, f(0) = 1, f(1) = -1 e

$$f(2^n + m) = f(2^n - t(m)) - f(m)$$
 para todos os inteiros $m, n \ge 0$ com $2^n > m$.

Prove que $f(3p) \ge 0$ para todo inteiro $p \ge 0$.

▶PROBLEMA 3

Sejam b_1, b_2, \ldots, b_n e $0 \leqslant \alpha_1 < \alpha_2 < \cdots < \alpha_n \leqslant \pi$ números reais tais que $\left| \sum_{j=1}^n b_j \cos k \alpha_j \right| < \frac{1}{k}$ para todo inteiro positivo k. Prove que $b_1 = b_2 = \cdots = b_n = 0$.

▶PROBLEMA 4

Considere paralelepípedos reto-retângulos com arestas paralelas aos eixos coordenados. Dois paralelepípedos intersectam-se se eles têm um ponto em comum nos seus interiores.

Encontre o maior n para o qual existem n paralelepípedos P_1, \ldots, P_n tais que P_i e P_j se intersectam se, e somente se, $i \not\equiv j \pm 1 \pmod{n}$.

▶PROBLEMA 5

Para $n \ge 2$, sejam $S_1, S_2, \ldots, S_{2^n}$ 2^n subconjuntos de $A = \{1, 2, 3, \ldots, 2^{n+1}\}$ com a seguinte propriedade: não existem índices a e b com a < b e elementos $x, y, z \in A$ com x < y < z tais que $y, z \in S_a$ e $x, z \in S_b$. Prove que pelo menos um dos conjuntos $S_1, S_2, \ldots, S_{2^n}$ contém não mais do que 2n + 1 elementos.

▶PROBLEMA 6

Encontre todos os pares de inteiros (m, n) com $m \ge n \ge 3$ tais que é possível escrever um inteiro em cada casinha de um tabuleiro $m \times n$ de modo que a soma dos números em qualquer quadrado 2×2 é negativa e a soma dos números em qualquer quadrado 3×3 é positiva.

▶PROBLEMA 7

Sejam k e n inteiros com $0 \le k \le n-2$. Considere um conjunto L de n retas no plano tais que não haja duas delas paralelas nem três delas concorrentes. Seja I o conjunto dos pontos de interseções de retas em L. Seja O um ponto no plano não pertencente a nenhuma reta de L.

Um ponto $X \in I$ é pintado de vermelho se o segmento de reta aberto OX (que não contém O e X) corta no máximo k retas de L. Prove que I contém pelo menos $\frac{1}{2}(k+1)(k+2)$ pontos vermelhos.

▶PROBLEMA 8

Seja P um ponto no interior ou sobre algum dos lados do triângulo ABC. As distâncias de P aos lados BC, CA e AB são d_a , d_b e d_c . Prove que máx $\{AP, BP, CP\} \geqslant \sqrt{d_a^2 + d_b^2 + d_c^2}$. Quando ocorre a igualdade?

▶PROBLEMA 9

Sejam AA_1 , BB_1 , CC_1 as alturas do triângulo acutângulo ABC, com A_1 , B_1 , C_1 sobre os lados. Denote por A_c a projeção ortogonal de A_1 sobre AB e defina os pontos A_b , B_a , B_c , C_a , C_b de modo análogo. Prove que esses seis pontos estão sobre uma circunferência.

▶PROBLEMA 10

Seja n um inteiro positivo. Prove que os números

$$\binom{2^{n}-1}{0}$$
, $\binom{2^{n}-1}{1}$, $\binom{2^{n}-1}{2}$, ..., $\binom{2^{n}-1}{2^{n-1}-1}$

são congruentes a $1, 3, 5, \dots, 2^n - 1$ módulo 2^n , em alguma ordem.

▶PROBLEMA 11

Seja S o conjunto dos inteiros positivos. Para todo $n \in S$, seja d(n) o número de divisores positivos de n. Encontre todas as funções $f: S \to S$ com ambas as seguintes propriedades:

- (i) $d(f(x)) = x \text{ para todo } x \in S;$
- (ii) f(xy) divide $(x-1)y^{xy-1}f(x)$ para todos $x, y \in S$.

▶PROBLEMA 12

Sejam $a\geqslant 2$ e $m\geqslant 2$ inteiros primos entre si e seja k a ordem de a módulo m. Seja t um inteiro positivo ímpar cujos divisores primos dividem m mas não dividem $\frac{a^k-1}{m}$. Prove que a ordem de a módulo mt é igual a kt.

A ordem de um número b módulo n é o menor inteiro positivo d, se existir, tal que $b^d \equiv 1 \pmod{n}$.