Task 1 and 2) You have to implement iterative algorithms (perceptron algorithm in Task 1, relaxation algorithm in Task 2) that find linear discriminant functions. The information can be found on pages 18-29 in the file "LDA_presentation.pdf".

Additional tips: A general idea of both algorithms:

0. start from the random weight vector (v)

1. classify all data points and determine a set of those incorrectly classified (Y)

 $Y = \{ \mathbf{y}_i | \mathbf{v}^T \mathbf{y}_i < 0 \}$ (perceptron algorithm)

 $Y = \{ y_i | v^T y_i \le b \}$ (relaxation algorithm)

If all classifications are correct (i.e. if Y is an empty set) then stop the algorithm, otherwise

2. update weight vector using the sum of misclassified data points:

$$\mathbf{v}_{k+1} = \mathbf{v}_k + \rho_k \sum_{\mathbf{y}_i \in Y} \mathbf{y}_i$$
 (perceptron algorithm)

$$\mathbf{v}_{k+1} = \mathbf{v}_k + \rho_k \sum_{\mathbf{y}_i \in Y} \frac{b - \mathbf{v}^T \mathbf{y}_i}{|\mathbf{y}_i|^2} \mathbf{y}_i$$
 (relaxation algorithm)

3. go to the step 1.

Please pay attention to the correct definitions of vectors **v** and **y**.

Example of the results:

black line - corresponds to the initial random weight vector green line - corresponds to the obtained final weight vector

Task 3) You have to calculate Fisher's linear discriminant analysis formulas, that can be found on pages 22-23 in the file "LDA_lect.pdf".