OSG Based Primitive CAD Modeler

Centre for Computational Technologies

Transforming human life by democratization of technology

https://www.cctech.co.in

Content Reviewer: Vinayak Sutar Revision Date: 7 - 5 - 2024

Version: 1.0

1. Introduction

Purpose

- The purpose of this software project is to develop an Open Scene Graph (OSG) based primitive CAD modeler.
- This application allows users to create and manipulate primitive shapes in a 3D environment through drag-and-drop interactions.
- The CAD modeler targets users who need a simple yet a powerful tool for creating basic 3D models.

Scope

- The CAD modeler will provide a user-friendly interface for creating and visualizing primitive shapes such as point, line, circle, ellipse, arc.
- It will support basic operations like translation, rotation, and scaling, allowing users to arrange and manipulate shapes as needed.

2. System Overview

- The system includes features such as drag-and-drop functionality for adding primitive shapes, navigation controls for viewing the model.
- The graphics rendering component utilizes the Open Scene Graph (OSG) library.
- It handles the creation and rendering of the 3D scene, including all the primitive shapes added by the user.

It allows users to add and remove shapes.

3. Functional Requirements

Rendering Primitives:

The system should allow users to render primitive shapes such as points, lines, circles, ellipses, and arcs.

Each primitive shape should be rendered accurately.

• Drag and Drop Interaction:

Users should be able to create and manipulate primitive shapes using drag-and-drop interactions.

Point Rendering:

Users should be able to render individual points using drag-and-drop on the canvas.

• Line Rendering:

Users should be able to draw lines using drag-and-drop on the canvas.

• Circle Rendering:

Users should be able to draw circles using drag-and-drop on the canvas.

Ellipse Rendering:

Users should be able to draw ellipses using drag-and-drop on the canvas.

Arc Rendering:

Users should be able to draw arcs using drag-and-drop on the canvas.

4. Tools

- C++ programming language for application development
- Visual Studio for the structuring part
- Open Scene Graph API
- Qt framework for GUI development
- OpenGL for real-time 3D rendering

5. Milestones and Timeline

Sr. No.	Milestones	Date and Time
1	Project Problem Definition	06 - 05 - 2024 02.30 PM
2	SRS Presentation & Approval	07 - 05 - 2024 02.30 PM
3	Discussion on User Interface	08 - 05 - 2024 07.00 PM
4	Implementation of User Interface	08 - 05 - 2024 07.00 PM
5	Implementation of OSG based CAD Modeler	10 - 05 - 2024 07.00 PM
6	Final Presentation and Demonstration	13 - 05 - 2024 07.00 PM

7	Project Completion and Submission	13 - 05 - 2024 07.00 PM

6. UI

7. Conclusion

- The Open Scene Graph (OSG) based primitive CAD modeler aims to provide a user-friendly interface for creating 2D shapes by leveraging the capabilities of OSG.
- The project facilitates the rendering of basic geometric primitives such as points, lines, circles, ellipses, and arcs through intuitive drag-and-drop interactions.

- Tools such as C++, Visual Studio, Open Scene Graph, Qt and OpenGL will be employed for development.
- The project's success will be evaluated based on accuracy and visual quality, with implications for this project and avenues for future research.