Ejemplo de codificación huffman

Codificación Huffman

Ejemplo de codificación (paso a paso):

Usamos una estructura mixta, una lista de árboles.

Mensaje: HOLA MAMA

Espacio

9 caracteres a codificar

1) Armamos una lista de nodos de árbol binario (ordenada por ocurrencias de menor a mayor)

Datos referenciales: PRIMERNODOLISTA La lista se crea ordenada de menor a mayor y por orden de ocurrencia null H 1 null M 2 null null O 1 null A 3 null

2) Iniciamos el proceso de armado de sub arboles de 2 en 2 (primera iteración)

Eliminamos "momentáneamente" los 2 primeros nodos de la lista.

Decimos momentáneamente, porque le creamos un nodo padre a ambos sumándole las ocurrencias de los hijos

Y luego a ese nodo padre lo volvemos a insertar en la lista

2da iteración del proceso de armado de sub arboles de 2 en 2 Volvemos a eliminar "momentáneamente" los 2 primeros nodos de la lista.

3er iteración del proceso de armado de sub arboles de 2 en 2

4ta iteración del proceso de armado de sub arboles de 2 en 2

5ta iteración del proceso de armado de sub arboles de 2 en 2

3) Etiquetamos aristas y armamos tabla

Н	010	72	01001000
0	011	79	01001111
L	100	76	01001100
_	101	32	00100000
M	00	77	01001101
Α	11	65	01000001

Mensaje ascii original: HOLA MAMA

Mensaje binario original 01001000 01001111 01001100 01000001 00100000 01001101 01000001 01001101 01000001

Mensaje binario compactado 010011100111001110110011

4) Generamos el archivo codificado (comprimido) a partir de la tabla. COMPRESIÓN

Mensaje ascii original: HOLA MAMA

Mensaje binario original

010010000100111101001100<mark>01000001</mark>00100000<mark>01001101</mark>01000001<mark>01001101</mark>01000001

Mensaje binario compactado Teórico 01001110011101100110011

BITS de relleno para completar el byte

- 5) Generamos el archivo original *(descomprimido)* a partir del archivo codificado *(comprimido)* usando la tabla. **DESCOMPRESIÓN**
- NOTAS: * No se puede descomprimir el archivo si no poseemos la tabla y/o el árbol.
- * Precisamos saber cuantos símbolos había en el archivo original (cuestiones de implementación).

Se concatenan bits en una variable auxiliar hasta que sea una de las entradas de la tabla

Mensaje binario compactado 01001110011101100110011001

Mensaje ascii original:

Mensaje binario original

Si no hubiésemos contado los <u>simbolos</u> del archivo original, confundiríamos los bits de relleno con información a decodificar.

Para implementar descompresión por **Huffman**, deberemos haber guardado previamente, tanto la información de la tabla con cantidad de ocurrencias y/o árbol, como la cantidad de símbolos que poseía el archivo sin comprimir. De lo contrario nos sería imposible descomprimir el mensaje.