

Interrogación 3 Estática y Dinámica

Facultad de Física

Martes 12 de Noviembre de 2013

Nombre: #Alumno Sección:

Instrucciones:

- -Tiene 2.5 horas para resolver los siguientes problemas.
- -Marque con una CRUZ sólo la alternativa que considere correcta en esta hoja de respuesta.
- -Todos los problemas tienen el mismo peso en la nota final.
- -Respuestas sin desarrollo que las justifique se consideran incorrectas.
- -Cada respuesta incorrecta descuenta 1/3 (un tercio) del puntaje de una buena.
- -No está permitido utilizar calculadora ni teléfono celular.

TABLA DE RESPUESTAS

Pregunta 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	(a)	(b)	(c) X	d)
1			X	
2	X			
3				X
4		X		
5			X	
6				X X X
7		X		X
8			X	X
9	X			
10				Χ
11		X		
12		X		
13				X
14		X		
15		X X X X		
16			X	
17		X		
18				X
19				X
20				X X X
21	X			
22			X	
23			X	

Enunciado para problemas 1 al 5.

Considere el mecanismo mostrado en la figura abajo, el cual consiste de dos barras homogéneas de largo L y masa m, unidas mediante un pivote libre de roce C, las que a su vez están unidas al soporte A y al soporte móvil B. El mecanismo se encuentra en equilibrio debido a la acción del bloque de masa M, el cual cuelga de una cuerda ideal desde el pivote C, y del pistón hidráulico vinculado al apoyo B.

Figura 1: problemas 1 a 5. Diagrama del mecanismo en el estado de equilibrio y diagrama del mecanismo al imponer el desplazamiento virtual δx .

Problema 1. Si P es el módulo de la fuerza que el pistón ejerce sobre el apoyo B, ¿cuál de las siguientes expresiones corresponde al módulo de la reacción horizontal en el apoyo A?

- a) 2P
- b) Mg + P
- c) P
- d) (M+2m)g

Problema 2. ¿Cuál de las siguientes expresiones corresponde al módulo de la reacción vertical en el apoyo

- d) (M + 2m)g

Problema 3. ¿Cuál de las siguientes expresiones corresponde al módulo del desplazamiento vertical virtual (δy) del bloque, cuando el módulo del desplazamiento virtual del apoyo B es δx tal como se muestra en la figura?

- a) $\delta y = \delta x \frac{\sin \theta}{2}$ b) $\delta y = \delta x \frac{\cos \theta}{2}$ c) $\delta y = \delta x \frac{\sin \theta}{2 \cos \theta}$ d) $\delta y = \delta x \frac{\cos \theta}{2 \sin \theta}$

Problema 4. ¿Cuál de las siguientes expresiones corresponde al módulo del desplazamiento vertical virtual $(\delta y_{\rm cm})$ del centro de masa de una de las barras, cuando el módulo del desplazamiento virtual del apoyo B es δx tal como se muestra en la figura?

a)
$$\delta y_{\rm cm} = \delta x \frac{\cos \theta}{\sin \theta}$$

b)
$$\delta y_{\rm cm} = \delta x \frac{\cos \theta}{4 \sin \theta}$$

a)
$$\delta y_{\rm cm} = \delta x \frac{\cos \theta}{\sin \theta}$$

b) $\delta y_{\rm cm} = \delta x \frac{\cos \theta}{4 \sin \theta}$
c) $\delta y_{\rm cm} = \delta x \frac{\sin \theta}{\cos \theta}$

d)
$$\delta y_{\rm cm} = \delta x \frac{\sin \theta}{4}$$

Problema 5. ¿Cuál de las siguientes expresiones corresponde al módulo de la fuerza que el pistón ejerce sobre el apoyo B?

a)
$$P = (M + 2m)g \frac{\sin \theta}{2\cos \theta}$$

b) $P = (M + m)g \frac{\cos \theta}{\sin \theta}$

b)
$$P = (M+m)g\frac{\cos\theta}{\sin\theta}$$

c)
$$P = (M+m)g \frac{\cos \theta}{2\sin \theta}$$

d)
$$P = (M + 2m)g \frac{\sin \theta}{\cos \theta}$$

Problema 6.

Determine el momento de fuerza (torque), M , tal que la barra AB permanece en la posición de equilibrio mostrada en la figura abajo. Desprecie el peso de la barra y considere que el diámetro de la polea en B es muy pequeño. El ángulo $\theta,$ la longitud L y el peso de W se dan por conocidos.

Figura 2: problema 6.

a)
$$M = LW(\cos\theta + \sin\theta)$$

b)
$$M = -LW(\cos\theta + \sin\theta)$$

c)
$$M = -LW(\cos\theta - \sin\theta)$$

d)
$$M = LW(\cos\theta - \sin\theta)$$

Enunciado para problemas 7 a 9.

Considere el arco circular rígido de radio R mostrado en la figura abajo. Este está unido a soportes fijos en los extremos A y C. Dos fuerzas P y Q son ejercidas sobre el punto más alto (B) del arco. Las magnitudes de las fuerzas P y Q así como el radio R, se dan por conocidos.

Figura 3: problemas 7 a 9.

Problema 7. Si las fuerzas P y Q son cero, ¿qué se puede decir de las fuerzas de reacción A_y y C_y ?

- a) Ambas fuerzas van en el sentido negativo del eje \boldsymbol{y}
- b) Ambas fuerzas son nulas
- c) La magnitud de ambas fuerzas es igual pero de sentidos opuestos
- d) El sistema es indeterminado

Problema 8. Si P > 0 pero Q = 0, ¿qué se puede decir de las fuerzas de reacción A_y y C_y ?

- a) Ambas fuerzas van en el sentido negativo del eje \boldsymbol{y}
- b) La magnitud de ambas fuerzas es la misma pero de sentidos opuestos
- c) La magnitud de ambas fuerzas es ${\cal P}/2$
- d) El sistema es indeterminado pues las fuerzas de reacción horizontales son desconocidas

Problema 9. Si P > 0 y Q > 0, ¿qué se puede decir de las fuerzas de reacción horizontales?

a)
$$C_x + A_x = Q$$

b) $A_x > C_x$

b)
$$A_x > C_x$$

c)
$$C_x - A_x = Q$$

c)
$$C_x - A_x = Q$$

d) $C_x = Q/2 \text{ y } A_x = Q/2$

Enunciado para problemas 10 a 14.

Una armadura plana está sometida a una carga de magnitud f, como se indica en la figura abajo.

Figura 4: problemas 10 a 14.

Problema 10. La fuerza sobre el miembro JL es

- a) JL = f (tensión) b) $JL = \frac{f}{2}$ (tensión)
- c) JL = f (compresión)
- d) $JL = \frac{f}{2}$ (compresión)

Problema 11. La fuerza sobre el miembro GI es

a)
$$GI = \frac{4f}{5}$$
 (tensión) b) $GI = 0$

b)
$$GI = 0$$

c)
$$GI = f$$
 (tensión)

d)
$$GI = \frac{4f}{5}$$
 (compresión)

Problema 12. La fuerza sobre el miembro AC es

a)
$$AC = f$$
 (compresión)

a)
$$AC = f$$
 (compresión)
b) $AC = \frac{5f}{6}$ (compresión)
c) $AC = \frac{10f}{9}$ (compresión)
d) $AC = 0$

c)
$$AC = \frac{10f}{g}$$
 (compresión)

d)
$$AC = 0$$

Problema 13. La fuerza sobre el miembro AD es

a)
$$AD = \frac{4f}{5}$$
 (compresión)
b) $AD = f$ (tensión)

b)
$$AD = f'(\text{tensión})$$

c)
$$AD = \frac{3f}{5}$$
 (compresión)
d) $AD = 0$

$$d) AD = 0$$

Problema 14. La fuerza sobre el miembro DE es

a)
$$DE = 0$$

b)
$$DE = \frac{2f}{3}$$
 (tensión)

c)
$$DE = \frac{3f}{8}$$
 (tensión)
d) $DE = f$ (tensión)

d)
$$DE = f$$
 (tensión)

Problema 15.

Considere la saliente de la figura abajo, la cual está empotrada en la pared en el punto Q. La saliente tiene masa M y largo L, y sobre ella hay una carga distribuida descrita por la ecuación

$$w(x) = w_0 \frac{x(L-x)}{L^2}.$$

Figura 5: problema 15.

El torque o momento de fuerza ${\cal C}_Q$ que hace la pared en el punto Q es

a)
$$C_Q = Mg\frac{L}{2}$$

a)
$$C_Q=Mg\frac{L}{2}$$
 b) $C_Q=\left(Mg+\frac{1}{6}w_0L\right)\frac{L}{2}$

c)
$$C_Q = \left(Mg + \frac{1}{3}w_0L\right)\frac{L}{2}$$

d)
$$C_Q = (Mg + w_0 L) \frac{L}{2}$$

Enunciado para problemas 16 a 19.

El cilindro mostrado en la figura abajo tiene radio R y masa M. Suponga que la masa de la barra es despreciable, y que el sistema se encuentra en equilibrio en el ángulo θ . El roce en los puntos de apoyo C y D es despreciable.

Figura 6: problemas 16 a 19.

Problema 16. El módulo de la reacción R_C en el punto de apoyo C es

- a) $R_C = Mg / \cos\theta$ b) $R_C = Mg$
- c) $R_C = Mg \tan\theta$
- d) $R_C = Mg\sin\theta$

Problema 17. El módulo de la reacción \mathcal{R}_D en el punto de apoyo D es

- a) $R_D = Mg$
- b) $R_D = Mg/\cos\theta$
- c) $R_D = R_C$
- d) $R_D = Mg \cot \theta$

Problema 18. La distancia l_{AD} entre los puntos A y D en la figura es

- a) $l_{AD} = R \tan(\pi/2 \theta)$ b) $l_{AD} = R \cot(\pi/2 \theta)$
- c) $l_{AD} = R \tan(\pi/4 \theta/2)$
- d) $l_{AD} = R \cot(\pi/4 \theta/2)$

Problema 19. La tensión en la cuerda T es

a)
$$T = \frac{H}{l_{AD}} R_D$$

b) $T = \frac{l_{AD}}{H} R_C$

b)
$$T = \frac{l_{AD}}{H} R_C$$

c)
$$T = R_D$$

$$d) T = \frac{l_{AD}}{H} R_D$$

Enunciado para problemas 20 a 23.

Sobre una barra sin masa de largo total 3L se aplica una fuerza puntual P, y también una densidad de fuerza distribuida constante $w_0 = 1 \,\mathrm{N/m}$ (figura abajo). El soporte en A es fijo, mientras que en C es movil.

Figura 7: problemas 20 a 23.

Problema 20. Considerando primero sólo la fuerza distribuida, determine la fuerza equivalente \bar{F} y su punto de aplicación \bar{x} (medido desde A).

a)
$$\bar{F}=Lw_0$$
 , $\bar{x}=\frac{L}{2}$ b) $\bar{F}=2Lw_0$, $\bar{x}=\frac{L}{2}$

b)
$$\bar{F} = 2Lw_0$$
 $\bar{x} = \frac{L}{2}$

c)
$$\bar{F} = 3Lw_0$$
, $\bar{x} = \frac{L}{2}$

d)
$$\bar{F} = 3Lw_0 \ , \ \bar{x} = \frac{3L}{2}$$

Problema 21. Ahora considerando también la fuerza P, determine las reacciones normales externas en A y C en términos de $\bar{x} y \bar{F}$.

a)
$$A_y = \frac{P}{3} + \left(1 - \frac{\bar{x}}{3L}\right)\bar{F}$$
, $C_y = \frac{2P}{3} + \frac{\bar{x}}{3L}\bar{F}$

b)
$$A_y = \frac{\ddot{P}}{3} + (1 + \frac{\ddot{x}}{3L})\ddot{F}$$
, $C_y = \frac{2P}{3} - \frac{3L}{3L}\ddot{F}$

a)
$$A_y = \frac{P}{3} + \left(1 - \frac{\bar{x}}{3L}\right)\bar{F}$$
 , $C_y = \frac{2P}{3} + \frac{\bar{x}}{3L}\bar{F}$
b) $A_y = \frac{P}{3} + \left(1 + \frac{\bar{x}}{3L}\right)\bar{F}$, $C_y = \frac{2P}{3} - \frac{\bar{x}}{3L}\bar{F}$
c) $A_y = \frac{2P}{3} + \left(1 - \frac{\bar{x}}{3L}\right)\bar{F}$, $C_y = \frac{P}{3} + \frac{\bar{x}}{3L}\bar{F}$

d)
$$A_y = \frac{P}{2} + \frac{\bar{F}}{2}$$
 , $C_y = \frac{P}{2} + \frac{\bar{F}}{2}$

Para las siguientes preguntas, considere el caso $L=2\,\mathrm{m},~w_0=1\,\mathrm{N/m},~P=3\,\mathrm{N},~A_y=4\,\mathrm{N},~C_y=5\,\mathrm{N}.$

Problema 22. El gráfico de la fuerza de corte V(x) es

Problema 23. El gráfico del momento de flexión M(x) (torque interno) corresponde a

