

## Financial Portfolio Optimization

Bernardo Gomes Kishan Rama Tomás Falcato



## Tópicos

- Introdução
- Formulação do problema
- CVX
- Barrier Method
- Reformulação
- Resultados
- Conclusões



# Introdução





## Formulação do problema(1)

maximize 
$$\mu^T \omega - \gamma \omega^T \Sigma \omega$$
  
s.t.  $1^T \omega = 1$   
 $\omega \in \mathbb{R}^n_+$ 



## Formulação do problema(2)

maximize 
$$\mu^T \omega - \gamma \omega^T \Sigma \omega$$
  
s.t.  $1^T \omega = 1$   
 $\omega \in \mathbb{R}^n_+$ 



## Formulação do problema(3)

maximize 
$$\mu^T \omega - \gamma \omega^T \Sigma \omega$$
  
s.t.  $1^T \omega = 1$   
 $\omega \in \mathbb{R}^n_+$ 



## Formulação do problema(4)

maximize 
$$\mu^T \omega - \gamma \omega^T \Sigma \omega$$
  
s.t.  $1^T \omega = 1$   
 $\omega \in \mathbb{R}^n_+$ 



## Formulação do problema(5)

maximize 
$$\mu^T \omega - \gamma \omega^T \Sigma \omega$$
  
s.t.  $1^T \omega = 1$   
 $\omega \in \mathbb{R}^n_+$ 



## Formulação do problema(6)

maximize 
$$\mu^T \omega - \gamma \omega^T \Sigma \omega$$
  
s.t.  $1^T \omega = 1$   
 $\omega \in \mathbb{R}^n_+$ 



## Formulação do problema(7)

maximize 
$$\mu^T \omega - \gamma \omega^T \Sigma \omega$$
  
s.t.  $1^T \omega = 1$   
 $\omega \in \mathbb{R}^n_+$ 



## Formulação do problema(8)

maximize 
$$\mu^T \omega - \gamma \omega^T \Sigma \omega$$
  
s.t.  $\mathbf{1}^T \omega = 1$   
 $\omega \in \mathbb{R}^n_+$ 



## Formulação do problema(9)

maximize 
$$\mu^T \omega - \gamma \omega^T \Sigma \omega$$
  
s.t.  $1^T \omega = 1$   
 $\omega \in \mathbb{R}^n_+$ 



#### CVX

```
cvx_begin
  variable w(n);
  maximize(miu'*w - gama*w'*cov*w);
  subject to
  (\text{vec\_ones'})*w == 1; w >= 0;
cvx_end;
```



## Barrier Method(1)

minimize 
$$f_0(x)$$
  
s.t.  $f_i(x) \le 0$   
 $Ax = b$ 



## Barrier Method(2)

minimize 
$$f_0(x) + \sum_{i=1}^m I_{(f_i(x))}$$
  
s. t.  $Ax = b$ 



## Barrier Method(3)

minimize 
$$f_0(x) + (1/t) \sum_{i=1}^m \log(f_i(x))$$

s. t. Ax = b



## Barrier Method(4)





# Barrier Method(5)





# Barrier Method(6)





## Barrier Method(7)

```
given strictly feasible x, t := t(0) > 0, \mu > 1, tolerance \epsilon > 0. repeat
```

- 1. Centering step. Compute x\*(t) by minimizing  $tf0 + \varphi$ , subject to Ax = b.
- 2. Update.  $x := x \star (t)$ .
- 3. Stopping criterion. quit if  $m/t < \varepsilon$ .
- 4. Increase t.  $t := \mu t$ .



## Reformulação(1)

$$1^T \omega = 1$$

$$\omega = Dz + b \quad \square$$



## Reformulação(2)

$$\omega \in \mathbb{R}^n_+$$

$$Dz + b \ge 0$$





## Reformulação(3)

minimize 
$$-\mu^T(Dz+b) + \gamma(Dz+b)^T\Sigma(Dz+b)$$
  
s.t.  $-Dz-b \le 0$ 

$$f_0(z) = -\mu^T (Dz + b) + \gamma (Dz + b)^T \Sigma (Dz + b)$$
  
$$f_i(z) = -\delta_i^T z - b_i$$



## Reformulação(4)

minimize 
$$-\mu^T(Dz+b) + \gamma(Dz+b)^T\Sigma(Dz+b)$$
  
s.t.  $-Dz-b \le 0$ 

$$f_0(z) = -\mu^T (Dz + b) + \gamma (Dz + b)^T \Sigma (Dz + b)$$
  
$$f_i(z) = -\delta_i^T z - b_i$$



## Reformulação(5)

minimize 
$$-\mu^T(Dz+b) + \gamma(Dz+b)^T\Sigma(Dz+b)$$
  
s.t.  $-Dz-b \le 0$ 

$$f_0(z) = -\mu^T (Dz + b) + \gamma (Dz + b)^T \Sigma (Dz + b)$$
  
$$f_i(z) = -\delta_i^T z - b_i$$



## Reformulação(6)

minimize 
$$f(z) = tf_0(z) + \phi(z)$$

$$\phi(z) = -\sum_{i=1}^{m} log(-f_i(z))$$



## Resultados Númericos(1)

Caso 1: A pessoa que investe não se preocupa com o risco  $\chi=0$ 



## Resultados Númericos(2)

Caso 1: A pessoa que investe não se preocupa com o risco  $\chi=0$ 





#### Resultados Númericos(3)

Caso 2: A pessoa que investe tem em conta o risco (aversão ao risco) γ=100



## Resultados Númericos(4)

Caso 2: A pessoa que investe tem em conta o risco (aversão ao risco) y=100





## Resultados Númericos(5)

Caso 3: Retornos iguais para todos os assets



## Resultados Númericos(6)

#### Caso 3: Retornos iguais para todos os assets





#### Resultados Númericos(7)

Caso 4: Influência do asset 1 no asset 2

$$\Sigma = \begin{bmatrix} 100 & 10 & 0 & 0 \\ 10 & 1 & 0 & 0 \\ 0 & 0 & 0.1117 & 0.3545 \\ 0 & 0 & 0.3545 & 1.1745 \end{bmatrix}$$



## Resultados Númericos(8)

#### Caso 4: Influência do asset 1 no asset 2





## Resultados Númericos(35)

#### Tempo de Optimização: CVX vs Barrier





## Conclusão

