Quantum Walks

Theory and Application

Rodrigo O. G. Chaves March 10, 2022

Universidade Federal de Minas Gerais

Sumário

- 1. What is graph theory?
- 2. Continuous-time quantum walks
- 3. Discrete-time quantum walks

What is graph theory?

Graphs

1 2 3 4 5 6

Graphs

Mathematical definition

Given a graph G with a set of vertices V(G) and a set of edges E(G):

• Laplacian of a graph:

$$(L)_{ij} = \begin{cases} -1 & \text{if } (i,j) \in E(G), \\ d_i & \text{if } i = j, \\ 0 & \text{otherwise} \end{cases}$$
 (1)

Mathematical definition

Given a graph G with a set of vertices V(G) and a set of edges E(G):

• Laplacian of a graph:

$$(L)_{ij} = \begin{cases} -1 & \text{if } (i,j) \in E(G), \\ d_i & \text{if } i = j, \\ 0 & \text{otherwise} \end{cases}$$
 (1)

• Adjacency matrix of a graph:

$$(A)_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E(G), \\ 0 & \text{otherwise} \end{cases}$$
 (2)

4

Continuous-time quantum walks

Continuous-time quantum walks (CTQW)

• Evolution in time of a classical random walk

$$\frac{d}{dt}p_a = \gamma \sum_k L_{jk}p_b,\tag{3}$$

where p_k is the probability of finding the walker in the vertex k.

Continuous-time quantum walks (CTQW)

• Evolution in time of a classical random walk

$$\frac{d}{dt}p_a = \gamma \sum_k L_{jk}p_b,\tag{3}$$

where p_k is the probability of finding the walker in the vertex k.

Schrödinger equation

$$\frac{d}{dt} \langle a|\psi \rangle = -i \sum_{b} \langle a|H|b \rangle \langle b|\psi \rangle; \qquad (4)$$

Continuous-time quantum walks (CTQW)

• Evolution in time of a classical random walk

$$\frac{d}{dt}p_a = \gamma \sum_k L_{jk}p_b,\tag{3}$$

where p_k is the probability of finding the walker in the vertex k.

Schrödinger equation

$$\frac{d}{dt} \langle a|\psi \rangle = -i \sum_{b} \langle a|H|b \rangle \langle b|\psi \rangle; \qquad (4)$$

• Is it ok if we use H = A?.

Theorem¹

The XY-Hamiltonian can be defined as

$$H_{xy} = \sum_{ij \in E(G)} X_i X_j + Y_i Y_j, \tag{5}$$

where X, Y are Pauli matrices. H_{xy} is a block matrix where each block is a k-excitation space. Additionally, the 1-excitation space is equal to the adjacency matrix, A, of the graph G.

¹Godsil and Coutinho, Graph Spectra and Continuous Quantum Walks

$$H|00...0\rangle = |00...0\rangle \tag{6}$$

$$H|x_2\rangle = \sum_{\mathbf{x}_2'} \alpha_{\mathbf{x}_2'} |\mathbf{x}_2'\rangle \tag{7}$$

$$H|x_1\rangle = \sum_{x_1'} \alpha_{x_1'} |x_1'\rangle \tag{8}$$

Change of basis

• From a Hilbert space of dimension 2^n ;

Change of basis

- From a Hilbert space of dimension 2^n ;
- To one of its subspaces of dimension n;

Change of basis

- From a Hilbert space of dimension 2^n ;
- To one of its subspaces of dimension *n*;
- Define the characteristic vector of vertex a as |a> and the quantum walk as

$$e^{-itA}|a\rangle = \sum_{k \in V(G)} \alpha_k |k\rangle.$$
 (9)

State transfer²

Perfect state transfer (PST)

²Phys. Rev. Lett. 92, 187902 (2004)

PST

$$U(t)|a\rangle = \beta|c\rangle$$

What is the difference?

Zero transfer in even cycles

Zero transfer in even cycles

Zero transfer in even cycles

• Fundamental research on QM;

- Fundamental research on QM;
- Able to find phenomena exclusive to QM;

- Fundamental research on QM;
- Able to find phenomena exclusive to QM;
- Graph theory gives good explanation on why it happens;

- Fundamental research on QM;
- Able to find phenomena exclusive to QM;
- Graph theory gives good explanation on why it happens;
- Not applicable to QC :(

• Time is discrete and evolves in steps;

³Portugal, Quantum Walks and search algorithms

- Time is discrete and evolves in steps;
- Tensor product of two Hilberts spaces, $\mathcal{H}_c \otimes \mathcal{H}_V$;

³Portugal, Quantum Walks and search algorithms

- Time is discrete and evolves in steps;
- Tensor product of two Hilberts spaces, $\mathcal{H}_c \otimes \mathcal{H}_V$;
- Time evolution operator given by:

$$U_{DQW} = S(C \otimes I) \tag{10}$$

³Portugal, Quantum Walks and search algorithms

- Time is discrete and evolves in steps;
- Tensor product of two Hilberts spaces, $\mathcal{H}_c \otimes \mathcal{H}_V$;
- Time evolution operator given by:

$$U_{DQW} = S(C \otimes I) \tag{10}$$

• Shift operator (*S*):

$$S = |0\rangle\langle 0| \otimes \sum_{x \in V(G)} |x - 1\rangle\langle x| + |1\rangle\langle 1| \otimes \sum_{x \in V(G)} |x + 1\rangle\langle x|$$
 (11)

³Portugal, Quantum Walks and search algorithms

- Time is discrete and evolves in steps;
- Tensor product of two Hilberts spaces, $\mathcal{H}_c \otimes \mathcal{H}_V$;
- Time evolution operator given by:

$$U_{DQW} = S(C \otimes I) \tag{10}$$

• Shift operator (S):

$$S = |0\rangle\langle 0| \otimes \sum_{x \in V(G)} |x - 1\rangle\langle x| + |1\rangle\langle 1| \otimes \sum_{x \in V(G)} |x + 1\rangle\langle x|$$
 (11)

• Coin operator (C) for us is $RX(\theta)$;

³Portugal, Quantum Walks and search algorithms

- Time is discrete and evolves in steps;
- Tensor product of two Hilberts spaces, $\mathcal{H}_c \otimes \mathcal{H}_V$;
- Time evolution operator given by:

$$U_{DQW} = S(C \otimes I) \tag{10}$$

• Shift operator (S):

$$S = |0\rangle\langle 0| \otimes \sum_{x \in V(G)} |x - 1\rangle\langle x| + |1\rangle\langle 1| \otimes \sum_{x \in V(G)} |x + 1\rangle\langle x| \qquad (11)$$

- Coin operator (C) for us is $RX(\theta)$;
- Usually associated to search algorithms due to faster hitting time³.

³Portugal, Quantum Walks and search algorithms

 Cellular automata: a tool for computation with discrete time and space;

⁴arXiv:2002.02537

- Cellular automata: a tool for computation with discrete time and space;
- DCA time evolution for spin-1/2 particle based on Dirac's equation:

$$U_{DCA} = \alpha(|0\rangle\langle 0| \otimes T_{-} + |1\rangle\langle 1| \otimes T_{+}) - i\beta(X \otimes I), \tag{12}$$

where
$$T_{\pm} = \sum_{x \in V(G)} |x \pm 1\rangle\langle x|$$
;

⁴arXiv:2002.02537

- Cellular automata: a tool for computation with discrete time and space;
- DCA time evolution for spin-1/2 particle based on Dirac's equation:

$$U_{DCA} = \alpha (|0\rangle\langle 0| \otimes T_{-} + |1\rangle\langle 1| \otimes T_{+}) - i\beta(X \otimes I), \qquad (12)$$

where $T_{\pm} = \sum_{x \in V(G)} |x \pm 1\rangle\langle x|;$

If we define a DWQ with operators given by

$$U_{DW} = S_+ C(\theta_2) S_- C(\theta_1), \tag{13}$$

where
$$S_+ = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| T_+$$
 and $S_- = |0\rangle\langle 0| \otimes T_- + |1\rangle\langle 1| \otimes I$;

⁴arXiv:2002.02537

- Cellular automata: a tool for computation with discrete time and space;
- DCA time evolution for spin-1/2 particle based on Dirac's equation:

$$U_{DCA} = \alpha (|0\rangle\langle 0| \otimes T_{-} + |1\rangle\langle 1| \otimes T_{+}) - i\beta(X \otimes I), \qquad (12)$$

where $T_{\pm} = \sum_{x \in V(G)} |x \pm 1\rangle\langle x|;$

If we define a DWQ with operators given by

$$U_{DW} = S_+ C(\theta_2) S_- C(\theta_1), \tag{13}$$

where
$$S_+ = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| T_+$$
 and $S_- = |0\rangle\langle 0| \otimes T_- + |1\rangle\langle 1| \otimes I$;

• If we set $\theta_1 = 0$, then

$$U_{DQW} = \cos \theta_2 (|0\rangle\langle 0| \otimes T_- + |1\rangle\langle 1| \otimes T_+) - i \sin \theta_2 (X \otimes I).$$
 (14)

⁴arXiv:2002.02537

DCA for a path graph

$ x=0\rangle \equiv 0000\rangle$	
$ x=1\rangle \equiv 0001\rangle$	$ x = -1\rangle \equiv 0111\rangle$
$ x=2\rangle \equiv 0010\rangle$	$ x=-2\rangle \equiv 0110\rangle$
$ x=3\rangle \equiv 0011\rangle$	$ x = -3\rangle \equiv 0101\rangle$
$ x=4 angle \equiv 1100 angle$	$ x=-4 angle \equiv 0100 angle$
$ x=5\rangle \equiv 1101\rangle$	$ x=-5\rangle \equiv 1011\rangle$
$ x=6\rangle \equiv 1110\rangle$	$ x=-6\rangle \equiv 1010\rangle$
$ x=7 angle\equiv 1111 angle$	$ x=-7\rangle \equiv 1001\rangle$

DCA for a path graph

Proposed circuit by the authors:

DCA for a path graph

Thank you!