EECS 496: Sequential Decision Making

Soumya Ray

sray@case.edu

Office: Olin 516

Office hours: T 4-5:30 or by appointment

Today

Intro to course mechanics

What is this course about?

Sequential Decision Making is a subfield of AI

 How to make a sequence of decisions to reach some goal or maximize some utility function

 Integrate reasoning, learning and acting: a "full" AI agent

What is this class about?

 Languages for representation and reasoning (overlaps with 391 and 491)

 Understand different tradeoffs in designing methods for SDM; theory and empirical evaluation

 Goal: Be able to think about, design, implement and analyze SDM methods of your own

Syllabus

- Representation Languages and Inference (4 weeks)
- Automated Planning (5 weeks)
- Reinforcement Learning (5 weeks)
- Advanced topics / review (1 week)??

Canvas

 "Assignments:" submit written assignments (pdf) here

 "Files:" Lecture Notes, Book Chapters and assignment descriptions, data and solutions

https://csevcs.case.edu

- Git server that we will use to submit/track programming exercises
- Please sign in with your Case ID by Friday
 - Needed to create a repository for you
 - (Go to website and sign in; don't use ssh)
- Learn to use git

Textbooks

- Artificial Intelligence: A modern approach 3ed (Russell and Norvig) for part 1
- Automated Planning and Acting by Ghallab,
 Nau and Traverso (2016 ed) for part 2
- Reinforcement Learning: An Introduction by Sutton and Barto 2ed (2016) for part 3
- Other material will be linked from course website as needed

Office hours and TA

- T 4-5:30pm
 - Or by appointment

• TAs: ?????

Email

- You can send me email at sray@case.edu
- It will help if you prefix the subject line with "EECS 496"
 - E.g. "EECS 496: Question about homework 1"
- Occasionally I will send email to the class list
 - This goes to your official address in SIS, make sure this can receive email

Assignments

- Written and Programming assignments generally due Friday 11:59pm
- Written
 - Around 2-3 questions per week
 - Submit pdfs for each question individually through Canvas
 - All questions can be answered from lecture slides, or additional reading as indicated

Programming Exercises

- Programming in Python or Java
 - 3 programming exercises (1 per part)
 - First part: can use python or java
 - 2 and 3 must be in Java

Programming: SEPIA

- We will use a strategy game as a framework for the programming exercises in the second and third parts
 - Strategy Engine for Programming Intelligent Agents
 - Written in Java
 - Similar to Age of Empires, Warcraft, Starcraft etc, but modified for teaching and research
 - Developed by students here
 - Needs Java 1.8
- You will write code for players ("agents") that will learn to play (parts of) this game

Programming Exercises

- Weekly commits in csevcs.case.edu for multiweek exercises
 - Does not necessarily have to be working code, but must show significant progress each week
 - Supplemented by a README that describes what you have done so far

Class Project

 Read papers on recent advances in planning and RL

 Implement and evaluate algorithms, and compare their behavior

Code submitted through git repository

Grading

- Written Problems: 30%
- Programming Problems: 35%
- Project: 35%
- Quality Class Participation: 5%

Bonuses to your grade

- Any assignment or commit turned in a week or more in advance +10% to the score
 - Need to notify us of early commits by email
- Programming assignments that are very well written, easy to read and efficient may get bonus points (see description)
- Partial credit is available for all written assignments
- Class Participation points

Penalties to your grade

- One late day each week (up to Saturday 11:59 pm)
 - If Canvas marks your assignments as late, you will receive a 20% penalty to the score
- Submissions after Saturday 11:59pm for a week will NOT be graded
 - (If you have a genuine reason, such as illness, please email or talk to me and ask for an extension)

Quality of Work

- Graduate level work is expected
 - Neatly written or typed answers
 - Clear arguments, no steps omitted proofs
 - Well structured, clean and efficient code that is properly documented

Collaboration policy

- All assignments must be done in groups of 3
 - Each group submits one assignment
 - Self signup enabled in Canvas
 - It is expected that everyone will pull their weight
 - Must contribute equally to all work done
 - If not, person doing less work will be penalized
 - For written assignments, names of everyone who contributed must appear on the assignment
- Projects will be done by groups of 6

Academic Integrity Policy

- You are free to talk to fellow students, TAs/mentors and me about assignments to clarify/refine your ideas
- But any submitted work MUST be substantially your own
 - Do not copy from any source including any online sources
 - Do not put your name on an assignment where your partner did the work
 - Any violation will be penalized up to failure in the class

Course Load

 I recommend setting aside about 6-8 hours each week to work on this course (besides class hours)

Do timely work

Expected background

- Computer science concepts (algorithms, runtime/space, data structures etc)
- Strong programming skills
- Probability and Statistics

- Helpful
 - General exposure to Artificial Intelligence
 - Optimization

Questions?

Groups

- Similar academic Level
- Schedule Alignment

SEPIA tutorial

http://engr.case.edu/ray_soumya/sepia/html/

Todo list

- Sign in to csevcs.case.edu
- Form groups
- Communicate with partners, set up schedule and allocate block of time for this class
- Set up your development environment; learn/refresh git