Theoretische Mechanik

Übungen - Serie 4

Ausgabe: 30. April 2014, Abgabe: 7. Mai 2014 in der Vorlesung

1. Bestimmung von Potentialen

5 Punkte

Untersuchen Sie, ob die Kraftfelder

a)
$$\vec{F} = \vec{a} \times \vec{r} \, ,$$

b)
$$\vec{F} = \vec{a} \times (\vec{b} \times \vec{r})$$

(dabei sind \vec{a} und \vec{b} konstante Vektoren) ein Potential besitzen. Bestimmen Sie gegebenenfalls das Potential. Für den Fall a) berechne man das Arbeitsintegral mit dem Vektor $\vec{a}=a\vec{e_z}$ und dem Anfangspunkt $P_1=(1,1,1)$ sowie dem Endpunkt $P_2=(2,2,2)$ auf den beiden Wegen

- 1.) Strecke $\overline{P_1P_2}$,
- 2.) dem aus den Teilstrecken

$$(1,1,1) \to (2,1,1), \quad (2,1,1) \to (2,2,1), \quad (2,2,1) \to (2,2,2)$$

zusammengesetzten Weg.

2. Energie- und Drehimpulsbilanz für Oszilltor

5 Punkte

Stellen Sie für den isotropen harmonischen Oszillator mit Reibung (Bewegungsgleichung: $m\ddot{r}=-k\vec{r}-\beta\dot{r},\ k$ und β positive Konstanten) die Energie- und Drehimpulsbilanz auf! Welche Aussage folgt für $t\to\infty$? Geben Sie das zeitliche Verhalten des Drehimpulses an!

3. Näherungslösung für nichtlinearen Oszillator

5 Punkte

Ein nichtlinearer Oszillator habe das Potential

$$U(x) = \frac{kx^2}{2} - \frac{m\lambda x^3}{3} \qquad (\lambda \text{ klein}).$$

Finden Sie eine Lösung der Bewegungsgleichung, die bis zur ersten Ordnung in λ korrekt ist. Dabei sei x=0 für t=0.

Hinweis:

Überzeugen Sie sich zunächst, daß $x_{(0)}=A\sin(\omega t)\,,\;(\omega:=\sqrt{k/m})$ eine Lösung für $\lambda=0$ ist.

Gehen Sie dann mit dem Ansatz $x_{(1)}=x_{(0)}+\lambda x_1$ in die Bewegungsgleichung ein und verifizieren Sie (bei Vernachlässigung höherer Terme in λ):

$$\ddot{x}_1 + \omega^2 x_1 = x_{(0)}^2 = \frac{A^2}{2} [1 - \cos(2\omega t)].$$

Machen Sie einen geigneten Ansatz um eine spezielle Lösung dieser inhomogenen Differentialgleichung zu finden, bestimmen Sie diese und geben Sie damit die Lösung des Problems mit Berückssichtigung der Anfangsbedingung an.