# Machine Learning for Automated Cryptocurrency Trading

Advisee: Mathee Prasertkijaphan 6310422053

Advisor: Assistant Professor Dr. Ekarat Rattagan

7/3/2022

# Agenda



As of 2012, a report from Morgan Stanley showed that 84% of all stock trades in the U.S. Stock Market were done by computer algorithm, while only 16% were by human investors.

#### AI / Machine Learning Hedge Fund Returns During Key Market Risk Events

| Date       | Event                               | Al Hedge Fund<br>Index | CTA/ Managed<br>Futures | Trend Following<br>Index | Hedge Fund<br>Index |
|------------|-------------------------------------|------------------------|-------------------------|--------------------------|---------------------|
| Mar-<br>21 | Covid19 Drawdown                    | 3.27%                  | 1.82%                   | 4.10%                    | -2.23%              |
| Nov-<br>16 | Trump Win                           | -0.94%                 | -0.18%                  | 0.38%                    | 0.31%               |
| Jun-16     | Brexit                              | 1 29%                  | 2.32%                   | 4.18%                    | 0.32%               |
| Feb-<br>16 | Oil Price Dip/China growth concerns | -0.86%                 | 1.71%                   | 1.92%                    | 0.00%               |
| Jan-16     | Oil Price Dip/China growth concerns | 4.33%                  | 1.33%                   | 2.42%                    | -1.74%              |
| Aug-<br>15 | China Equity Crash                  | 0.72%                  | -1.72%                  | -2.54%                   | -1.92%              |
| Jul-15     | China Equity Crash                  | 0.43%                  | 0.97%                   | -2.25%                   | -0.06%              |
| Jun-15     | Greek referendum                    | 1.84%                  | -2.00%                  | -3.28%                   | -1.14%              |
| Jan-15     | Swiss Franc De-pegging              | 1.30%                  | 3.23%                   | 3.87%                    | 0.78%               |
| Sep-<br>14 | Oil Price Dip                       | -0.57%                 | 198.00%                 | 333.00%                  | -0.22%              |
| Jun-13     | Taper Tantrum                       | 1.56%                  | -0.93%                  | -1.68%                   | -1.31%              |
| May-<br>13 | Taper Tantrum                       | 1.55%                  | -1.41%                  | -1.07%                   | 0.45%               |

#### Long-Term Analysis - AI vs Quants vs Traditional Hedge Fund Indices



<u>Source</u>: Eurekahedge Database (Eurekahedge, 2018). (https://europepmc.org/article/PPR/PPR306564)

<u>Source</u>: Adapted from (Eurakahedge 2017) to include Covid19 risk assessment (https://europepmc.org/article/PPR/PPR306564).

| Items               | Cryptocurrency                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Definition          | Cryptocurrency is the digital currency or exchange medium which can be used to purchase goods and services. U.S. dollars can be swapped to purchase cryptocurrency in the same way they can be swapped to purchase arcade tokens or casino chips. Cryptocurrency transactions are maintained and safeguarded by encryption in a public ledger utilizing blockchain technology. |
| Exchange            | Decentralized crypto exchange (DEX) and Centralized crypto exchange (CEX)                                                                                                                                                                                                                                                                                                      |
| CEX                 | Binance, FTX, Coinbase Exchange, Kraken, KuCoin, Gate.io and so on.                                                                                                                                                                                                                                                                                                            |
| DEX                 | Uniswap (V3), dYdX, PancakeSwap, Astroport, Apoloox DEX, Curve Finance and so on                                                                                                                                                                                                                                                                                               |
| <b>Trading Time</b> | 24/7                                                                                                                                                                                                                                                                                                                                                                           |

Noted: CEX and DEX are sorted by the size of market share (coinmarketcap)

Top 10 of cryptocurrency by Market Capitalization from CoinMarketCap











# Motivation, Objective, Research Question and Contribution

#### **Motivations**

- To study the performance of which models among deep learning, traditional machine learning and traditional indicator for forecasting are the best models.
- ➤ To study which models among deep learning, traditional machine learning and traditional indicator can generate the highest profit .

### **Objectives**

- ➤ Identify the performance of models that can efficiently forecast cryptocurrency price movement among deep learning, traditional machine learning and traditional indicator
- ➤ Test on which models among deep learning, traditional machine learning and traditional indicator can generate the highest profit under same algorithm.

# Motivation, Objective, Research Question and Contribution

### **Research Questions**

- > Can we use the model to forecast cryptocurrency price movement?
- ➤ Which models can provide the highest profit from automated trading?

#### **Contributions**

- ➤ Providing the best performance models for predicting the cryptocurrency price movement.
- ➤ Providing more appropriate automated trading strategy to generate the highest profit from the model.

# Agenda



# Literature Review: Summary

| Paper                                                  | Methodology                                                                                                                                                                                                                                                                                                                                                                                                                 | Models                                                                                                                                                                                                                                                                          | Result                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ning Lu (2016)                                         | • Individual Approach (N=4)    X                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Individual Approach</li> <li>Ridge logistic regression</li> <li>Sector Approach</li> <li>Lasso logistic regression</li> <li>Decision tree</li> <li>Naïve bayes</li> <li>Support vector machine</li> <li>2 ensemble methods: Majority Vote and Random Subset</li> </ul> | <ul> <li>His trading systems achieved promising Sharpe ratios with nearly 20 percent return, after transaction cost, during the out-of-sample testing period.</li> <li>His trading systems was able to beat risk-free interest rate and some even outperformed the S&amp;P 500.</li> </ul> |
| J. Michankow,<br>P.Sakowski and R.<br>Slepaczuk (2022) | <ul> <li>Portfolio A: BTC combined frequencies (1 d, 1 hour, and 15 min)</li> <li>Portfolio B: S&amp;P500 combined frequencies (1 d, 1 hour, and 15 min)</li> <li>Portfolio C: Combined assets, RB = 3M, weights 10/90</li> <li>Portfolio D: Combined assets, RB = 3M, weights 20/80</li> <li>Portfolio E: Combined assets, RB = 6M, weights 10/90</li> <li>Portfolio F: Combined assets, RB = 6M, weights 20/80</li> </ul> | • LSTM    Hyperparameter   Selected Value                                                                                                                                                                                                                                       | <ul> <li>The combination of weights equal to {S&amp;P500 = W20%, BTC = 80%} was always better than {S&amp;P500 = W10%, BTC = W90%}.</li> <li>The length of rebalancing period equal to RB6m was always better than RB3m</li> </ul>                                                         |

# Agenda

Introduction

Literature Review

Theoretical Frameworks

Data

Methodology

Empirical result

Conclusion

# **SimpleRNN**

#### Standard Recurrent Unit



 $h_{t-1}$  - hidden state at previous timestep t-1 (memory)

 $x_t$  - input vector at current timestep t

 $h_t$  - hidden state at current timestep t

tanh - tanh activation function

concatenation of vectors

$$h_t = \sigma(w_{xh}^T x_t + w_{hh}^T h_{t-1} + b_h)$$
  
$$\widehat{y}_t = \sigma(w_i^T h_t + b_i)$$

# **SimpleRNN**



7/3/2022 Theoretical Frameworks

# **SimpleRNN**

#### **RNN Problem**

• Given, A like to eat ice-cream. We want to predict which flavor of ice cream A will order today. From historical record, A's flavor selection based on previous 2 days.

| T-2        | T-1     | Т          |
|------------|---------|------------|
| Strawberry | Vanilla | Chocolate  |
| Chocolate  | Vanilla | Strawberry |
| Vanilla    | Vanilla | Vanilla    |





### **LSTM**

#### LSTM is RNN with memory which can decide: Cell state

• What to forget: Forgetting gate

• What new information to add: Input gate

• When to let memory impact prediction: Output gate





### **GRU**



**Reset Gate:** It is another gate is used to decide how much past information to forget.

**Update Gate:** It acts similar to the forget and input gate of an LSTM. It decides what information to throw away and what new information to add.

# LightGBM

#### LightGBM leaf-wise (grows tree vertically):



#### **Tree growth example:**



- Leaf-wise (best-first) tree growth.
- Grow the leaf that minimizes the loss, allowing a growth of an imbalanced tree.
- Overfitting can happen when data is small because it doesn't grow levelwise
- Need to control the tree depth

# Agenda



### 1. SOL-USDT

- ➤ They were obtained from Binance API. The period of the collected hourly data is from December 1, 2020 to April 30, 2022. The details of this cryptocurrency was collected as followed:
  - Symbol
  - Date
  - Closing price
  - Volume
  - Number of trades

### Data

|   | symbol  | date                | close_price | volume   | Number_of_trades | return    |
|---|---------|---------------------|-------------|----------|------------------|-----------|
| 0 | SOLUSDT | 2020-12-01 00:00:00 | 1.9768      | 37873.34 | 543              | 0.000000  |
| 1 | SOLUSDT | 2020-12-01 01:00:00 | 1.9715      | 38888.52 | 512              | -0.002681 |
| 2 | SOLUSDT | 2020-12-01 02:00:00 | 1.9680      | 43257.60 | 539              | -0.001775 |
| 3 | SOLUSDT | 2020-12-01 03:00:00 | 1.9699      | 45466.77 | 677              | 0.000965  |
| 4 | SOLUSDT | 2020-12-01 04:00:00 | 1.9667      | 14399.31 | 427              | -0.001624 |

|       | symbol  | date                | close_price | volume   | Number_of_trades | return    |
|-------|---------|---------------------|-------------|----------|------------------|-----------|
| 12346 | SOLUSDT | 2022-04-30 03:00:00 | 93.69       | 72027.87 | 8820             | 0.008178  |
| 12347 | SOLUSDT | 2022-04-30 04:00:00 | 93.83       | 49799.06 | 7552             | 0.001494  |
| 12348 | SOLUSDT | 2022-04-30 05:00:00 | 94.07       | 37230.90 | 5694             | 0.002558  |
| 12349 | SOLUSDT | 2022-04-30 06:00:00 | 93.96       | 53316.48 | 5572             | -0.001169 |
| 12350 | SOLUSDT | 2022-04-30 07:00:00 | 94.52       | 42360.98 | 6543             | 0.005960  |

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 15025 entries, 0 to 15024
Data columns (total 6 columns):
                     Non-Null Count Dtype
# Column
0 symbol
                     15025 non-null object
                    15025 non-null datetime64[ns]
1 date
2 close price
                    15025 non-null float64
3 volume
                     15025 non-null float64
4 Number of trades 15025 non-null int64
5 return
                     15025 non-null float64
dtypes: datetime64[ns](1), float64(3), int64(1), object(1)
memory usage: 821.7+ KB
```

|       | close_price  | volume               | Number_of_trades    | return       |
|-------|--------------|----------------------|---------------------|--------------|
| count | 12,351.00000 | 12,351.00000         | 12,351.00000        | 12,351.00000 |
| mean  | 81.75690     | 182,837.80000        | 20,989.21000        | 0.00046      |
| std   | 69.73758     | 222,052.90000        | 31,649.80000        | 0.01707      |
| min   | 1.18320      | 0.00000              | 0.00000             | (0.19284)    |
| 25%   | 24.21255     | 68,304.95000         | 5,167.50000         | (0.00777)    |
| 50%   | 54.45900     | 116,192.40000        | 11,676.00000        | 0.00000      |
| 75%   | 139.17000    | 210,888.60000        | 24,559.50000        | 0.00785      |
| max   | 258.44000    | 4,974,114.00000      | 585,919.00000       | 0.18646      |
| var   | 4,863.32934  | 49,307,480,000.00000 | 1,001,710,000.00000 | 0.00029      |
| skew  | 0.61299      | 5.74427              | 5.54499             | 0.54876      |
| kurt  | (0.84430)    | 65.05483             | 51.69817            | 10.43626     |

### Data



# Agenda



# Problem statement (with notation and definition)

### **►** Model:

$$Y_4 = [R_1, R_2, R_3]$$

- Input

- R<sub>1</sub> is the return of SOL from day 1 to day 2.
- R<sub>2</sub> is the return of SOL from day 2 to day 3.
- R<sub>3</sub> is the return of SOL from day 3 to day 4.
- For example,  $[0.43412612, 0.43116426, 0.43277213] \rightarrow [0.43006414]$
- The return is the percentage of different price between buying price and selling price.
- Output
  - Y<sub>4</sub> is the return of SOL from day 4 to day 5.
- Objective
  - We use the returns of SOL itself from day 1 to day N to predict the return at day N+1. So, N is the window size that represents how far we want the model to look back (For this study, we use N=4).

# **Process design**



1.Data exploration







#### 2. Feature selection

• Using hourly closing price.



7. Backtesting Trading Strategy





#### 6.Evaluation

- Mean Squared Error (MSE).
- Mean Absolute Error (MAE).
- Root Mean Square Error (RMSE).



#### 5. Prediction

- 1 hour forecast horizon.
- Data inverse transform.
- Convert return to closing price.



#### 3. Data pre-processing

- Create Sequence return feature from hourly closing price by using window size (N)=4.
- Create train data, validation data and test data (0.8, 0.1 and 0.1)
- Data normalization



#### 4. Model Architecture





# **Data pre-processing**

#### $\triangleright$ Create Sequence return feature from hourly closing price by using window size (N) =4:

| Х                                                           | Υ                |
|-------------------------------------------------------------|------------------|
| R <sub>0</sub> R <sub>1</sub> R <sub>2</sub> R <sub>N</sub> | R <sub>N+1</sub> |

- R<sub>0</sub> is the return of SOL-USDT from day 0 to day 1.
- $R_{N+1}$  is the predicted return of SOL-USDT from day N to day N+1.

```
#Create Sequence feature
window_size=4
x_close,x_return,y_close,y_return = window_return(df_trans["close_price"].values, window_size)
print(f"x_close.shape : {x_close.shape}")
print(f"x_return.shape : {x_return.shape}")
print(f"y_close.shape : {y_close.shape}")
print(f"y_return.shape : {y_return.shape}")

x_close.shape : (12346, 4)
x_return.shape : (12346, 3)
y_close.shape : (12346, 1)
y_return.shape : (12346, 1)
```

```
# Split close price and return
def window return(val, window):
  1st x = []
  lst y = []
  lst x return = []
  lst y return = []
  for i in range(0,len(val) - window -1,1):
    first price = val[i]
    lst x.append(val[i:i+window])
    lst y.append(val[i+window])
    lst x return.append((val[i+1:i+window]-first price)/first price)
    lst y return.append((val[i+window]-first price)/first price)
  array x return = np.array(lst x return).reshape(-1,window-1)
  array y return = np.array(lst y return).reshape(-1,1)
  array_x = np.array(lst_x).reshape(-1,window)
  array y = np.array(lst y).reshape(-1,1)
  return array x,array x return,array y,array y return
```

# Data pre-processing

#### > Train/Test/Validation split:

```
# Split data tuples x-(train, val, test), y-(train, val, test)
lst_x_close ,lst_y_close = split(x_close, y_close, 0.8, 0.1)
lst_x_return ,lst_y_return = split(x_return, y_return, 0.8, 0.1)

print(f"Shape Price:{lst_x_close[0].shape} ,Val:{lst_x_close[1].shape}, Test:{lst_x_close[2].shape}")
print(f"Shape Return:{lst_x_return[0].shape} ,Val:{lst_x_return[1].shape}, Test:{lst_x_return[2].shape}")

Shape Price:(9876, 4) ,Val:(1236, 4), Test:(1234, 4)
Shape Return:(9876, 3) ,Val:(1236, 3), Test:(1234, 3)

print(f"Shape Price:{lst_y_close[0].shape} ,Val:{lst_y_close[1].shape}, Test:{lst_y_close[2].shape}")
print(f"Shape Return:{lst_y_return[0].shape} ,Val:{lst_y_return[1].shape}, Test:{lst_y_return[2].shape}")
Shape Price:(9876, 1) ,Val:(1236, 1), Test:(1234, 1)
Shape Return:(9876, 1) ,Val:(1236, 1), Test:(1234, 1)
```

```
def split(x_array, y_array, ratio_train=0.8, ratio_test=0.1):
    n_data = x_array.shape[0]
    n_train = int(n_data * ratio_train)
    n_test = int(n_data *ratio_test)
    n_val = n_data -n_train -n_test

x_train, y_train = x_array[:n_train], y_array[:n_train]
    x_val, y_val = x_array[n_train:n_train+n_val], y_array[n_train:n_train+n_val]
    x_test, y_test = x_array[n_train+n_val:], y_array[n_train+n_val:]
    return [x_train, x_val, x_test], [y_train, y_val, y_test]
```

# Data pre-processing

#### **Data normalization:**

```
#Normalize Data form train data set
#Fit Normalize tools
min max scaler = MinMaxScaler().fit(lst x return[0].reshape(-1,1))
1st x norm ,1st y norm= norm val(min max scaler, 1st x return, 1st y return)
print(f"Shape x:{lst x norm[0].shape} ,Val:{lst x norm[1].shape}, Test:{lst x norm[2].shape}")
print(f"Shape y:{lst_y_norm[0].shape} ,Val:{lst_y_norm[1].shape}, Test:{lst_y_norm[2].shape}")
Shape x:(9876, 3) ,Val:(1236, 3), Test:(1234, 3)
Shape y:(9876, 1) ,Val:(1236, 1), Test:(1234, 1)
#Create data train - validate - test ( Size , Time , Feature)
#Create x array
x train norm = lst x norm[0]
x val norm = lst x norm[1]
x \text{ test norm} = 1st x norm[2]
#Create y array
y train norm = lst y norm[0]
y val norm = lst y norm[1]
y test norm = lst y norm[2]
y_test = lst_y_close[2]
print(f"\n x train norm.shape {x train norm.shape}{y train norm.shape} \n{x train norm[0]} -->y= {y train norm[0]}")
print(f"\n x_val_norm.shape {x_val_norm.shape}{y_val_norm.shape} \n{x_val_norm[0]} -->y={y_val_norm[0]}")
print(f"\n x test norm.shape {x test norm.shape}{y test norm.shape}\n{x test norm[0]} -->y={y test norm[0]}")
 x train norm.shape (9876, 3)(9876, 1)
[0.43412612 0.43116426 0.43277213] -->v= [0.43006414]
 x val norm.shape (1236, 3)(1236, 1)
[0.44042191 0.42718119 0.4174487 ] -->y=[0.40805571]
 x_test_norm.shape (1234, 3)(1234, 1)
[0.42936787 0.4223882 0.40427878] -->y=[0.42201092]
```

```
def norm_val(norm_fn, lst_x, lst_y):
    return_x = [i for i in lst_x ]
    return_y = [i for i in lst_y ]
    for i in range(len(lst_x)):
        return_x[i] = norm_fn.transform(lst_x[i].reshape(-1,1)).reshape(lst_x[i].shape)
        return_y[i] = norm_fn.transform(lst_y[i].reshape(-1,1)).reshape(lst_y[i].shape)
    return_return_x, return_y
```

#### > <u>LSTM</u>:



| Hyperparameter      | Selected Value |
|---------------------|----------------|
| No. hidden layer    | 3              |
| No. neurons         | 128/256/256    |
| Activation function | relu/linear    |
| Dropout rate        | 0.25           |
| Optimizer           | SGD            |
| Learning Rate       | 0.0001         |
| Decay               | 0.00001        |
| Momentum            | 0.9            |
| Nestero∨            | TRUE           |
| SOL train/test      | 9,876/1,236    |
| Batch size          | 64             |
| Epochs              | 30             |



### > <u>LSTM</u>:





#### > GRU:



| Hyperparameter      | Selected Value |
|---------------------|----------------|
| No. hidden layer    | 3              |
| No. neurons         | 128/256/256    |
| Activation function | relu/linear    |
| Dropout rate        | 0.25           |
| Optimizer           | SGD            |
| Learning Rate       | 0.0001         |
| Decay               | 0.00001        |
| Momentum            | 0.9            |
| Nestero∨            | TRUE           |
| SOL train/test      | 9,876/1,236    |
| Batch size          | 64             |
| Epochs              | 30             |



### **>** <u>**GRU**</u>:





### **>** SimpleRNN:



| Hyperparameter      | Selected Value |
|---------------------|----------------|
| No. hidden layer    | 3              |
| No. neurons         | 128/256/256    |
| Activation function | relu/linear    |
| Dropout rate        | 0.25           |
| Optimizer           | SGD            |
| Learning Rate       | 0.0001         |
| Decay               | 0.00001        |
| Momentum            | 0.9            |
| Nestero∨            | TRUE           |
| SOL train/test      | 9,876/1,236    |
| Batch size          | 64             |
| Epochs              | 30             |

| Model: "sequential"                                                     |                   |         |
|-------------------------------------------------------------------------|-------------------|---------|
| Layer (type)                                                            | Output Shape      | Param # |
| simple_rnn (SimpleRNN)                                                  | (None, None, 128) | 16640   |
| dropout (Dropout)                                                       | (None, None, 128) | 0       |
| simple_rnn_1 (SimpleRNN)                                                | (None, None, 256) | 98560   |
| dropout_1 (Dropout)                                                     | (None, None, 256) | 0       |
| simple_rnn_2 (SimpleRNN)                                                | (None, 256)       | 131328  |
| dropout_2 (Dropout)                                                     | (None, 256)       | 0       |
| dense (Dense)                                                           | (None, 1)         | 257     |
| Total params: 246,785 Trainable params: 246,785 Non-trainable params: 0 |                   |         |

### **>** <u>SimpleRNN</u>:





35

### ➤ <u>LightGBM</u>:

| Hyperparameter        | Selected Value |
|-----------------------|----------------|
| boosting_type         | gbdt           |
| objective             | regression     |
| metric                | l2             |
| num_leaves            | 10             |
| max_depth             | 5              |
| drop_rate             | 0.3            |
| reg_sqrt              | TRUE           |
| boost_from_average    | TRUE           |
| learning_rate         | 0.0001         |
| verbose               | 0              |
| num_boost_round       | 1000           |
| early_stopping_rounds | 100            |
| verbose_eval          | 50             |
| SOL train/test        | 9,876/1,236    |

### **► Moving Average:**

```
lst_x_close[2]
array([ 88.68, 88.19, 87.82, 86.86],
       [88.19, 87.82, 86.86, 87.8],
       [87.82, 86.86, 87.8, 88.91],
       [94.95, 93.85, 92.93, 93.69],
       [93.85, 92.93, 93.69, 93.83],
       [92.93, 93.69, 93.83, 94.07]])
lst_x_close[2].mean(axis=1)
array([87.8875, 87.6675, 87.8475, ..., 93.855 , 93.575 , 93.63 ])
lst_x_close[2].mean(axis=1).reshape(-1, 1)
array([[87.8875],
       [87.6675],
       [87.8475],
       [93.855],
       [93.575],
       [93.63 ]])
```











# Agenda

Introduction

Literature Review

Theoretical Frameworks

Data

Methodology

Empirical result

Conclusion

#### > Trading Strategy 1: single coin

```
If (Actual price at t4 < Predicted price at t5) and (n_sol <= 0):

Buy SOLUSDT (All balance)

Else if (Actual price at t4 > Predicted price) and (n_sol > 0):

If (Actual price at t4 > latest buy price):

Sell SOLUSDT (All shares)

Else if (n_sol*(1-fee)* Actual price at t4) < (total cost*(1-stopper)):

Sell SOLUSDT (All shares)

Sell SOLUSDT (All shares)

Stopped loss: The actual value of portfolio at the current time is less than total cost*(1-stopper).
```

Noted: -Stopper = 15%

#### The highest unrealized profit

|                                  |                                  |                                  | /                                |                                  |                                  |
|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Items                            | LSTM                             | GRU                              | SimpleRNN                        | LightGBM                         | MA                               |
| Initial budget                   | 1,000                            | 1,000                            | 1,000                            | 1,000                            | 1,000                            |
| Maker/Taker                      | 0.1%/0.1%                        | 0.1%/0.1%                        | 0.1%/0.1%                        | 0.1%/0.1%                        | 0.1%/0.1%                        |
| Period (Hourly data)             | 9-Apr-22 20:00 - 30-Apr-22 07:00 |
| Total hours                      | 1,236                            | 1,236                            | 1,236                            | 1,236                            | 1,236                            |
| Total Cost at the end            | 1,040                            | 1,079                            | 1,252                            | 1,120                            | 1,040                            |
| Total Portfolio value at the end | 906                              | 940                              | 1,069                            | 986                              | 925                              |
| Unrealized Profit                | (94)                             | (60)                             | 69                               | (14)                             | (75)                             |
| % Profit                         | <b>-9</b> %                      | -6%                              | <b>7</b> %                       | -1%                              | -7%                              |
|                                  | •                                |                                  |                                  |                                  | '                                |

400

200



Hour

#### LSTM

| ltems .                  | LSTM        |
|--------------------------|-------------|
| Initial budget           | 1,000       |
| Maker/Taker              | 0.1%/0.1%   |
| Total hours              | 1,236       |
| Total Cost at the end    | 1,040       |
| Total Portfolio value at | 906         |
| the end                  | 706         |
| Unrealized Profit        | (94)        |
| % Profit                 | <b>-9</b> % |

800

1000

1200



### **GRU**

| ltems .                 | GRU       |
|-------------------------|-----------|
| nitial budget           | 1,000     |
| Maker/Taker             | 0.1%/0.1% |
| otal hours              | 1,236     |
| otal Cost at the end    | 1,079     |
| otal Portfolio value at | 940       |
| he end                  | 740       |
| Inrealized Profit       | (60)      |
| % Profit                | -6%       |
| ·                       |           |



### SimpleRNN

| ltems                    | SimpleRNN  |
|--------------------------|------------|
| Initial budget           | 1,000      |
| Maker/Taker              | 0.1%/0.1%  |
| Total hours              | 1,236      |
| Total Cost at the end    | 1,252      |
| Total Portfolio value at | 1,069      |
| the end                  | 1,067      |
| Unrealized Profit        | 69         |
| % Profit                 | <b>7</b> % |



### LightGBM

| ltems                    | LightGBM  |  |
|--------------------------|-----------|--|
| Initial budget           | 1,000     |  |
| Maker/Taker              | 0.1%/0.1% |  |
| Total hours              | 1,236     |  |
| Total Cost at the end    | 1,120     |  |
| 「otal Portfolio ∨alue at | 986       |  |
| the end                  | 700       |  |
| Unrealized Profit        | (14)      |  |
| % Profit                 | -1%       |  |
|                          |           |  |



### MA

| ltems .                  | MA        |
|--------------------------|-----------|
| Initial budget           | 1,000     |
| Maker/Taker              | 0.1%/0.1% |
| Total hours              | 1,236     |
| Total Cost at the end    | 1,040     |
| Total Portfolio value at | 925       |
| the end                  | 720       |
| Unrealized Profit        | (75)      |
| % Profit                 | -7%       |



#### > <u>Trading Strategy 1</u>: multiple coins (SOL and BTC)

```
If (Actual price at t4 < Predicted price at t5) and (n_sol <= 0):

Buy SOLUSDT (All balance)

Else if (Actual price at t4 > Predicted price) and (n_sol > 0):

If (Actual price at t4 > latest buy price):

Sell SOLUSDT (All shares)

Else if (n_sol*(1-fee)* Actual price at t4) < (total cost*(1-stopper)):

Sell SOLUSDT (All shares)

Sell SOLUSDT (All shares)

Sell SOLUSDT (All shares)
```

#### Noted:

- -Total hours = 1,236 hours
- -The first part (Hours: 1-617) will use ML models to trade only SOL.
- -If the hour is 618, we will sell all SOL coins in our portfolio.
- -The last part (hours: 619-1,236) will use ML models to trade only BTC.
- -Stopper = 15%

#### The highest unrealized profit

| ltems .                          | LSTM                             | GRU                              | SimpleRNN                        | LightGBM                         | MA                               |
|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Initial budget                   | 1,000                            | 1,000                            | 1,000                            | 1,000                            | 1,000                            |
| Maker/Taker                      | 0.1%/0.1%                        | 0.1%/0.1%                        | 0.1%/0.1%                        | 0.1%/0.1%                        | 0.1%/0.1%                        |
| Period (Hourly data)             | 9-Apr-22 20:00 - 30-Apr-22 07:00 |
| Total hours                      | 1,236                            | 1,236                            | 1,236                            | 1,236                            | 1,236                            |
| Total Cost at the end            | 1,177                            | 1,187                            | 1,280                            | 1,239                            | 1,148                            |
| Total Portfolio value at the end | 1,078                            | 1,088                            | 1,162                            | 1,135                            | 1,043                            |
| Unrealized Profit                | 78                               | 88                               | 162                              | 135                              | 43                               |
| % Profit                         | 8%                               | <b>9</b> %                       | 16%                              | 14%                              | 4%                               |
|                                  |                                  |                                  |                                  |                                  |                                  |





7/3/2022 Empirical result



7/3/2022 Empirical result





7/3/2022 Empirical result 55

# Agenda



### **Conclusion**





#### Single Coin

| Items                    | SimpleRNN |
|--------------------------|-----------|
| Initial budget           | 1,000     |
| Maker/Taker              | 0.1%/0.1% |
| Total hours              | 1,236     |
| Total Cost at the end    | 1,252     |
| Total Portfolio value at |           |
| the end                  | 1,069     |
| Unrealized Profit        | 69        |
| % Profit                 | 7%        |

Multiple Coins

| Items                    | SimpleRNN |
|--------------------------|-----------|
| nitial budget            | 1,000     |
| Maker/Taker              | 0.1%/0.1% |
| Total hours              | 1,236     |
| Total Cost at the end    | 1,280     |
| Total Portfolio value at |           |
| the end                  | 1,162     |
| Unrealized Profit        | 162       |
| % Profit                 | 16%       |

#### **Future work**

- Add other features such as trading volume, number of trades and so on as independent variables for improving the model prediction.
- > Try to change the architecture of deep learning model for improving the model prediction.
- > Try to use other technical analysis for seeking the signal (buying signal, selling signal and holding signal) such as Directional Movement System (DMS) to make more the profit.