Power system operation and control Homework # 3 . 2022/11/16

I inputed the load as follows.

```
basemva = 100; accuracy = 0.0001; maxiter = 100;
busdata=[1 1
                                       0
                                             0
                                                    0
                                                          0
                                                                 50
                                                                       0
                   1.03
                          0.0
          2 2
                   1.04
                         0.0
                                20
                                       10
                                             80
                                                    0
                                                          0
                                                                 250
                                                                       0
          3 0
                   1.00
                                25
                                                    0
                          0.0
                                       15
                                             0
                                                          0
                                                                 0
                                                                       1
            0
                   1.00
                          0.0
                                10
                                             0
                                                    0
                                                          0
                                                                 0
                                                                       3
          5
             0
                   1.00
                          0.0
                                40
                                       20
                                             0
                                                    0
                                                          0
                                                                 0
                                                                       0
          6
                   1.00
                                       40
                                             0
                                                    0
                                                          0
                                                                 0
                                                                       0
             0
                          0.0
                                60
          7
                                             120
                                                                 100
             2
                   1.01 0.0
                                10
                                       5
                                                    0
                                                          0
                                                                       0
          8 0
                   1.00
                          0.0
                                80
                                       60
                                                    0
                                                          0
                                                                       0
                                             0
                                                                 0
                   1.00
                          0.0
                                100
                                             0
                                                    0
                                                          0
                                                                 0
                                       80
                                                                       0];
linedata=[1
                  2
                          0.018
                                  0.054
                                             0.0045
                                                          1
                                  0.036
                                                          1
          1
                  8
                          0.014
                                             0.0030
          2
                  9
                          0.006
                                  0.030
                                             0.0028
                                                          1
          2
                  3
                          0.013
                                  0.036
                                             0.0030
                                                          1
          3
                  4
                                  0.050
                                             0.0000
                                                          1
                          0.010
          4
                  5
                                             0.0000
                                                          1
                          0.018
                                  0.056
          5
                  6
                          0.020
                                  0.060
                                             0.0000
                                                          1
          6
                  7
                          0.015
                                  0.045
                                             0.0038
                                                          1
          6
                  9
                                                          1
                          0.002
                                  0.066
                                             0.0000
          7
                  8
                          0.032
                                  0.076
                                             0.0000
                                                          1
                  9
                                             0.0000
                          0.022
                                  0.065
                                                          1];
cost=[240
             6.7
                   0.009
      220
                   0.005
             6.1
      240
             6.5
                   0.008];
mwlimits=[50
                   200
           50
                   200
           50
                   100];
```

I run the initial power flow analysis with newton-raphson method and save the out put in a txt file.

```
diary HW3_1stlineflow.txt
Lfybus
Lfnewton
Busout
diary off
```

the command resulting the following output.

```
Power Flow Solution by Newton-Raphson Method
Maximum Power Mismatch = 1.79641e-05
No. of Iterations = 3
```

Bus	Voltage	Angle	L	oad	Genei	Injected	
No.	Mag.	Degree	MW	Mvar	MW	Mvar	Mvar
1	1.030	0.000	0.000	0.000	150.433	9.887	0.000
2	1.040	-2.301	20.000	10.000	80.000	202.151	0.000
3	1.019	-3.082	25.000	15.000	0.000	0.000	1.000
4	1.004	-3.759	10.000	5.000	0.000	0.000	3.000
5	0.988	-4.141	40.000	20.000	0.000	0.000	0.000
6	0.991	-3.376	60.000	40.000	0.000	0.000	0.000
7	1.010	-1.637	10.000	5.000	120.000	33.467	0.000
8	1.001	-1.289	80.000	60.000	0.000	0.000	0.000
9	1.004	-3.100	100.000	80.000	0.000	0.000	0.000
Tota	1		345.000	235.000	350.433	245.505	4.000

In the next phase use while loop to get the optimal dispatch of the generation and store the dpslack and totalcost in an array/matrix.

```
diary HW3_optimaldispatch.txt
dpsiter = 1;
fprintf("\n\n interation NO : %i",dpsiter);
fprintf("\n______")
Bloss
Gencost
Dispatch
dpslackLim = 0.001;
dpsdata =dpslack;
costdata =totalcost;
while dpslack > dpslackLim
    dpsiter = dpsiter+1;
    fprintf("\n\n interation NO : %i",dpsiter);
    fprintf("\n_____")
    Lfnewton
```

```
Gencost
          dpsdata =[dpsdata dpslack];
          costdata =[costdata totalcost];
      end
      diary off
the command resulting the following output.
                                                   0.0013
                                                             0.0092
interation NO: 1
                                                            -0.0009
                                                  -0.0007
                                              B0 =
    0.0108
              0.0011
                       -0.0006
    0.0011
              0.0308
                       -0.0010
                                                  1.0e-03 *
   -0.0006
             -0.0010
                        0.0078
                                                   0.0662
                                                             0.1113
                                               B00 =
   1.0e-03 *
                                                  1.4243e-06
    0.0143
              0.2625
                        0.0096
                                              Total system loss = 4.12665 MW
                                               Incremental cost of delivered power
B00 =
                                               (system lambda) = 8.164874 \$/MWh
                                              Optimal Dispatch of Generation:
   1.4232e-06
                                                  71.9980
Total system loss = 5.41477 MW
                                                 179.3813
                                                  97.9426
Total generation cost =
                           3326.77 $/h
Incremental cost of delivered power
                                              Total system loss = 4.32194 MW
(system lambda) = 8.585979 \$/MWh
Optimal Dispatch of Generation:
                                              Absolute value of the slack bus real
                                              power mismatch, dpslack =
  93,4509
 161.2246
                                              Total generation cost =
 100.0000
Total system loss = 9.67561 MW
                                               interation NO : 3
Absolute value of the slack bus real
                                              B =
power mismatch, dpslack =
                            0.5698 pu
                                                   0.0133
                                                             0.0014
                                                   0.0014
                                                             0.0080
interation NO: 2
                                                  -0.0007
                                                            -0.0008
                                               B0 =
```

-0.0009

0.0082

0.0120

0.1592 pu

3197.52 \$/h

-0.0007

-0.0008

0.0082

Bloss Dispatch

B =

B0 =

B =

0.0120

0.0013

-0.0007

1.0e-04 *

0.9491 0.9575 0.1204

70.3503 181.5573 97.1107

B00 =

1.4247e-06

Total system loss = 4.02054 MW Incremental cost of delivered power (system lambda) = 8.152344 \$/MWhOptimal Dispatch of Generation:

70.4917

181.3638

97.1862

Total system loss = 4.04165 MW

Absolute value of the slack bus real power mismatch, dpslack = 0.0122 pu

Total generation cost = 3195.07 \$/h

interation NO: 4

B =

0.0135 0.0014 -0.0007

0.0014 0.0078 -0.0008 -0.0007 -0.0008 0.0082

B0 =

1.0e-04 *

0.9761 0.9427 0.1219

B00 =

1.4247e-06

Total system loss = 4.01647 MW Incremental cost of delivered power (system lambda) = 8.151350 \$/MWhOptimal Dispatch of Generation:

Total system loss = 4.01826 MW

Absolute value of the slack bus real power mismatch, dpslack =

Total generation cost = 3194.87 \$/h

interation NO : 5

B =

0.0135 0.0014 -0.0007 0.0014 0.0078 -0.0008

-0.0008 0.0082 -0.0007

B0 =

1.0e-04 *

0.9788 0.9413 0.1220

B00 =

1.4247e-06

Total system loss = 4.01613 MW Incremental cost of delivered power (system lambda) = 8.151257 \$/MWhOptimal Dispatch of Generation:

70.3366

181.5760

97.1034

Total system loss = 4.01605 MW

Absolute value of the slack bus real power mismatch, dpslack = 0.0002 pu

Total generation cost = 3194.85 \$/h Elapsed time is 0.087033 seconds.

And display the final output with the following command.

```
diary HW3_finalsolution.txt
Busout
Gencost
Lineflow
diary off
```

Here are the output.

	Maximum Power Mismatch = 1.55071e-08 No. of Iterations = 2									
Bus	Voltage	Angle	Load		Generation		Injected			
No.	Mag.	Degree	MW	Mvar	MW	Mvar	Mvar			
1	1.030	0.000	0.000	0.000	70.360	35.459	0.000			
2	1.040	-0.142	20.000	10.000	181.557	169.819	0.000			
3	1.019	-1.066	25.000	15.000	0.000	0.000	1.000			
4	1.004	-1.937	10.000	5.000	0.000	0.000	3.000			
5	0.988	-2.554	40.000	20.000	0.000	0.000	0.000			
6	0.992	-2.046	60.000	40.000	0.000	0.000	0.000			
7	1.010	-0.738	10.000	5.000	97.111	36.642	0.000			
8	1.001	-1.006	80.000	60.000	0.000	0.000	0.000			
9	1.005	-1.426	100.000	80.000	0.000	0.000	0.000			
	1.005									

Total generation cost = 3194.85 \$/h								
Line Flow and Losses								
Line from to		bus & 1 Mvar	ine flow MVA	Line MW	loss Mvar	Transformer tap		
1 2 8	70.360 -1.300 71.661	35.459 -19.112 54.571	78.790 19.156 90.073	0.059 1.075	-0.787 2.146			
2 1 9 3	1.360 98.775	103.158	227.251 18.376 142.821 72.405	0.059 1.135 0.633	-0.787 5.090 1.117			
3 2 4	-25.000 -60.790 35.790	-37.219			1.117 0.876			
4 3 5	-10.000 -35.615 25.615	-22.342		0.175 0.191	0.876 0.594			
5 4 6	-40.000 -25.424 -14.576	-19.748	32.193	0.191 0.044	0.594 0.131			
	-60.000 14.620 -57.723 -16.896	0.382 -21.210	14.625 61.497	0.044 0.575 0.013	0.131 0.963 0.438			
7 6 8 9	58.298 9.461	31.642 22.172 7.686 1.783	92.679 62.372 12.190 19.434	0.575 0.047 0.081	0.963 0.111 0.241			
8 1 7			87.924	1.075 0.047	2.146 0.111			
		-98.068 19.611	138.387 25.894	1.135 0.013 0.081	5.090 0.438 0.241			
Total los	s			4.028	10.919			

To get better look on the process I run this command to plot the improvement in each iteration.

0.6

```
figure('Position', [1, 1, 400, 800])
tiledlayout(2,1)

nexttile
plot(1:dpsiter,dpsdata);
xlabel("iteration")
ylabel("dpslack value")
axis padded
nexttile
plot(1:dpsiter,costdata);
xlabel("iteration")
ylabel("totalcost")
axis padded
```

1 2 3 4 5 iteration

the simulation show the Total generation cost is 3194.85 \$/h and power mismatch, dpslack = 0.0002 pu achieved after 5 iteration.

