YouTube Viewcount Prediction

Brett Bass and Evan Ezell

Problem Description

- Since inception in 2005, YouTube has rapidly increased in popularity
- Becoming very lucrative to content creators as it has become a great marketing avenue for companies
- Predicting the number of views a video will receive could have great impacts on where these companies will allocate their resources

Data

- 3,000 total sports videos selected from Stanford Sports 1M Dataset
 - 1,000 Table Tennis
 - 1,000 Bowling
 - 1,000 American Football
- Used 2,730 videos as many of the videos had been removed from YouTube

Scraping

- PAFY Python library was used to scrape the majority of YouTube metadata
 - # Likes/Dislikes
 - Rating
 - Publish Date
 - Title
 - Description
 - Length
- The YouTube API was also used to collect some additional data that could not be retrieved using PAFY
 - Subscriber Count
 - View Count

Data Distributions

Missing Data

- Only 68 total missing values
 - o 34 missing "likes" values
 - o 34 missing "dislikes" values
- Values were imputed with the average ratio of views to likes and dislikes

Removing Outliers

Transformations

 Due to the skew of many of the attributes, a log transform was used

Sentiment Analysis

- Sentiment analysis was used for the Title and Description of each video
- VADER (Valence Aware Dictionary and sEntiment Reasoner) package was used
- Social media context for text analysis
- Sensitive to both polarity and intensity
- Used scores would be used as inputs to the final model

https://github.com/cjhutto/vaderSentiment

Random Forest

- Very robust
- Default hyper-parameters often lead to very good results
- Less prone to overfitting
- Interpretation is made easier with relative feature importance

Training/Tuning

- 75% train and 25% test set
- 5-fold cross validation on the training set
- Random grid search to gain insight of hyper-parameter space
- Fine grid search based on values obtained from random grid output
- Optimal values and more details are covered in our report

Results

- We assessed the model quality on the 25% test set
- We iteratively made changes throughout the process
- Log transformation, adding subscriber count, and removing outliers

Mean Absolute Error				
Initial	Removed Outliers and Added Subscriber Count	Log Transform (Final)		
9827.55	5203.4	3795.33		

Results

 We binned the results to see how performance looked for different number of views

% 	Regression Metrics				
R^2	MAE (Full Dataset)	MAE (0-1000 Views)	MAE (0-5000 Views)		
0.8	3795.33	735.77	313.45		

Results

Limitations

- Time
- Google Translate
- Available storage for videos

Future Recommendations

- Pull more videos and use several different categories
- Use CNN to see impact of actual video
- Use more explanatory variables from Youtube API
- Use google translate for sentiment analysis
- Explore more models
- Look at how number of views grows over time