Trabalho Séries Temporais

Adriane Akemi nUSP: 11915623 Álvaro Valentim nUSP: 10392150 Emerson Miady nUSP: 11207943

Objetivo

O objetivo do grupo é usar as técnicas de séries temporais para ajustar algum modelo em um conjunto de dados, aplicando as seguintes etapas:

- 1. Análise exploratória;
- 2. Ajuste do modelo;
- 3. Análise de resíduos;
- 4. Previsão.

Dados

Os dados utilizados são de vendas mensais (em dolar australiano) de uma loja de Souvenir localizada em um beach resort em Queensland, Australia, no período de 1987 a 1993, contendo assim, 84 observações temporais.

```
dat <- scan("http://robjhyndman.com/tsdldata/data/fancy.dat")
dat <- ts(dat, frequency=12, start=c(1987,1))
dat</pre>
```

```
##
               Jan
                         Feb
                                    Mar
                                                          May
                                                                     Jun
                                                                                Jul
                                               Apr
## 1987
          1664.81
                     2397.53
                                2840.71
                                           3547.29
                                                      3752.96
                                                                 3714.74
                                                                           4349.61
## 1988
          2499.81
                     5198.24
                                7225.14
                                           4806.03
                                                      5900.88
                                                                 4951.34
                                                                           6179.12
## 1989
          4717.02
                     5702.63
                                9957.58
                                           5304.78
                                                      6492.43
                                                                 6630.80
                                                                           7349.62
## 1990
          5921.10
                     5814.58
                               12421.25
                                           6369.77
                                                      7609.12
                                                                7224.75
                                                                           8121.22
## 1991
          4826.64
                     6470.23
                                9638.77
                                           8821.17
                                                      8722.37
                                                                10209.48
                                                                          11276.55
## 1992
          7615.03
                     9849.69
                               14558.40
                                          11587.33
                                                      9332.56
                                                               13082.09
                                                                          16732.78
  1993
                               21826.84
                                          17357.33
                                                     15997.79
##
         10243.24
                    11266.88
                                                               18601.53
                                                                          26155.15
##
               Aug
                         Sep
                                    Oct
                                               Nov
                                                          Dec
## 1987
          3566.34
                     5021.82
                                6423.48
                                           7600.60
                                                     19756.21
                     5496.43
                                5835.10
                                          12600.08
                                                    28541.72
## 1988
          4752.15
## 1989
          8176.62
                     8573.17
                                9690.50
                                          15151.84
                                                     34061.01
## 1990
          7979.25
                     8093.06
                                8476.70
                                          17914.66
                                                    30114.41
## 1991
         12552.22
                    11637.39
                               13606.89
                                          21822.11
                                                     45060.69
## 1992
         19888.61
                    23933.38
                               25391.35
                                          36024.80
                                                    80721.71
## 1993
         28586.52
                    30505.41
                               30821.33
                                          46634.38 104660.67
```

Análise exploratória

plot.ts(dat)

ggseasonplot(dat, polar = TRUE)

Seasonal plot: dat

Month

monthplot(dat)

O primeiro plot mostra uma tendência de crescimento da série conforme se passa os anos, indicando que a loja está em constante crescimento. Além disso, existe uma certa periodicidade nas vendas mensais.

O segundo plot é uma confirmação do primeiro, já que em todos os anos o formato da curva se mantém aproximadamente, porém vemos um crescimento de sua área.

O último plot indica que, as médias de vendas (linhas horizontais) aumentam no final do ano, atigindo um pico em dezembro.

plot(decompose(dat))

Decomposition of additive time series

ggtsdisplay(dat)

Da decomposição da série, vemos que existe sazonalidade e uma clara tendência de crescimento nas vendas (série não estacionária), corroborando com as observações feitas anteriormente. Para tratar a tendência, podemos utilizar a diferença de lags entre as observações, ou seja, alterando o argumento "d" do ARIMA.

Vamos fazer o teste ADF (raiz unitária) com d=1 para verificar se a série ainda é não estacionária.

```
adf.test(diff(dat))
```

```
##
## Augmented Dickey-Fuller Test
##
## data: diff(dat)
## Dickey-Fuller = -3.7374, Lag order = 4, p-value = 0.02655
## alternative hypothesis: stationary
```

O d = 1 já indica que a série é estacionária, sendo assim, usaremos este parâmetro para o ARIMA.

Para achar o "p" do AR, olhamos para a PACF, e um valor que queremos testar é 1. Isto porque existe um valor significante na primeira autocorrelação parcial. Já para descobrir o "q" do MA, observamos a FAC, e analogamente, escolhemos o "q" igual a 1.

Então nosso modelo até o momento é ARIMA(1,1,1).

Dado que existe sazonalidade, vamos incluir a componente sazonal neste modelo.

```
ggtsdisplay(dat, lag.max=60)
```


Os gráficos acima são os mesmos que os anteriores, só alterando o número de lags. No PACF, vemos um truncamento periódico (período = 12) em t = 12, e além disso, temos os lags periódicos do ACF decaindo lentamente, em t = 12, 24, 36...

Sendo assim, supomos que o parâmetro "P" do SARIMA deve ser 1 e o "Q" é 0.

Logo, o modelo que supomos foi um $SARIMA(1,1,1)(1,1,0)_{12}$

Ajuste

Residuals from ARIMA(1,1,1)(1,1,0)[12]


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(1,1,1)(1,1,0)[12]
## Q* = 10.112, df = 11, p-value = 0.5204
##
## Model df: 3. Total lags used: 14
```

O teste de Ljung-Box verifica se a autocorrelação dos resíduos é igual a 0. Como o p-valor obtido foi maior que o nível de significância de 5%, não rejeitamos a hipótese nula e portanto, os resíduos não são autocorrelacionados.

Vemos também que, as autocorrelações do ACF não passam da banda de confiança e a distribuição dos resíduos aparenta ser Normal.

Para testar a normalidade deles, vamos usar o teste de Shapiro Wilk.

shapiro.test(fit\$residuals)

```
##
## Shapiro-Wilk normality test
##
## data: fit$residuals
## W = 0.9775, p-value = 0.2239
```

```
mean(fit$residuals)
```

```
## [1] 0.0003959808
```

A média dos resíduos foi praticamente 0, mostrando evidências de que a distribuição deles é $N(0, \sigma^2)$.

Predição

```
forc <- forecast(object = fit, h=12, level = 0.95)
autoplot(forc) + autolayer(test, series = "conjunto de teste") + autolayer(fitted(forc), series = "valor")</pre>
```

Forecasts from ARIMA(1,1,1)(1,1,0)[12]

accuracy(forc, test)

Aparentemente o modelo realizou um bom ajuste, com uma boa predição. Além de que as métricas MPE e MAPE dos conjuntos de treino e teste foram bem satisfatórios.

Conclusão

Passamos por todas as etapas e um bom modelo a ser ajustado foi o $SARIMA(1,1,1)(1,1,0)_{12}$, com boas predições e métricas de avaliação.