

ASE 375 Electromechanical Systems Section 14115

Monday: 3:00 - 6:00 pm

Report 5: Strain-gage Measurements and Fourier Analysis

Andrew Doty, Andres Suniaga, Dennis Hom Due Date: 03/18/2024

Contents

1 Introduction

This experiment presents results of strain-gage measurements performed at the root of a cantilever beam undergoing (1) Different weights placed at its tip and (2) An applied force which leaves the beam freely vibrating. The purpose of this experiment is to learn about the Wheatstone bridge configurations in gathering our strain-gage data on the beam and how different sampling frequencies affect these strain measurements.

In (1), results of strain measurements at the root of the beam are gathered using two different half-bridge configurations. Using the Euler-Bernoulli Beam theory, we make comparisons between the ideal and real strain-gage results. In (2), we model the strain as a function of time at different sampling frequencies. For (2), we utilize one of the half-bridge configurations and perform Fourier analysis to estimate the natural frequency of the cantilever beam.

2 Equipment

Measurement devices and hardware used in this lab include:

• Cantilever Beam:

A uniform aluminum beam that is cantilevered at one end (root) with a string attached at the other end (tip) for holding weights.

	Side View
cantilever_sideview.png	

• Digital Calipers, $\epsilon_b = 0.005$ mm:

Used for measuring outer and inner dimensions of objects. In our case we use it to the measure the wall thickness, t_b , and width, b, of the cantilever beam.

• Ruler/Tape Measure, $\epsilon_b = 0.5$ mm:

Used to measure the length of the cantilever beam, L_F .

• Brass Slotted Weights with hanger:

Used to induce bending on the tip of the cantilever beam to acquire strain measurements. Hanger is 50 g along with ten 20 g weights. Total 250 grams.

• Strain Gauge:

Sensor used to measure surface strains which then converts it into a change in electrical resistance. An output voltage is produced when a surface strain occurs since there is a resistance change within the bridge configuration.

In this lab, we have 2 strain gauges placed at the root of the cantilever beam. One of them is on the top surface of the beam, R_{qt} , and the other is placed on the bottom surface, R_{qb} .

• DAQ, NI-9215 Voltage Input Module, and LabVIEW:

Data Acquisition System used to process sample measurements into digital data. NI-9215 is an analog input module used to measure the output voltage signals of sensors and send it through the DAQ system. LabVIEW used to model these output voltages read from the DAQ of the strain-gage measurements. We connect to the 5V port of the DAQ for our experiment.

• Solderless Breadboard, Jumper Wires, and 350Ω Resistors:

Used to make connections to the input analog modules and to construct circuits. In this lab we build two configurations of the Wheatstone half-bridge circuit with two 350 Ω dummy resistors, labeled R_D , and the two strain gauges, R_{gt} and R_{gb} . Configurations are shown below, with an example of the configuration B circuit on the breadboard:

ASE375 Lab Report 5

Half_bridge_configs.png

Figure 1: Half-Bridge Configurations, V_{OUT} between S^+ and S^-

Figure 2: Configuration B Half-Bridge Circuit on the Breadboard

To switch from Configuration B to Configuration A, rearrange connections at B and D such that the dummy resistor from \overrightarrow{DC} is now \overrightarrow{BC} and bring the positive wire of the bottom strain-gage, R_{gb} , from B to D.

3 Procedure

This experiment is broken up into two parts. In Part 1, we will be gathering the average output voltage read from the two half-bridge configurations as shown in Figure 1 as weights hanging off the tip of the cantilever beam. In Part 2, we will be testing different sampling frequencies and collecting the output voltage read from the half-bridge circuit following Configuration B as the beam undergoes free vibration as a result of an applied force at the tip.

Before experimenting, we must set up the LabVIEW model following the form:

blockdiag_labview_5.png	

ASE375 Lab Report 5

Figure 3: LabVIEW Block Diagram for modeling $V_{OUT} = f(t)$

The Write-to-File block will be used for Part 2 as we model the strain and output voltage as a function of time.

3.1 Part 1

- 1. Create the half-bridge circuit following Configuration A as shown in Figure 1.
- 2. Verify that the output is modeled correctly through LabVIEW by applying force to the beam. Once the setup is working well continue to the next step.
- 3. Begin with no weight hanging at the tip of the beam. This is the "zero" reading. Once the output stabilizes, note down the mean and standard deviation of V_{OUT} .
- 4. Continue collecting the output readings at each weight (in grams) as follows:

 $\mathbf{W}_{\text{up}} = [0, 50, 90, 130, 170, 210, 250].$

• \mathbf{W}_{up} is the sequence we follow as we add weight to the tip of the beam. Take another reading for every 40 g added until a total of 250 g.

ASE375 Lab Report 5

5. Now repeat step 3 as go down in weight, which follows the sequence:

```
\mathbf{W}_{\text{down}} = [230, 210, 190, 170, 150, 130, 110, 90, 70, 50, 0].
```

- We record the output reading as we remove one 20 g at a time until there is no more weight.
- 6. Switch to the half-bridge circuit following <u>Configuration B</u> as shown in Figure 1 and <u>repeat steps 2</u> through 5.
- 7. We note down our observations and begin **Data Processing** to model the strain as we loaded and unloaded the beam with weights.

3.2 Part 2

In this part, we will be utilizing the write-to-file block to collect our data through time. Instead of adding weight to the tip of the beam, we will flick the tip of the beam so it will freely oscillate up and down.

- 1. Use the half-bridge circuit following Configuration B as shown in Figure 1.
- 2. In LabVIEW, we can change the sampling frequency, f_S , and number of samples collected, N, by going into the DAQ and Collector block. We will collect output voltage readings through this sequence of sampling frequencies:

$$\mathbf{f}_S = [10, 20, 50, 100, 1000] \text{ Hz}$$

- 3. For each f_{S_i} , run the sampling model on LabVIEW and apply a force at the tip of the beam so that it will freely oscillate until the sampling reaches its end. Stop and Save the sample data.
- 4. Once finished, note down observations of the effects of different sampling frequencies and continue to **Data Processing** to do time-frequency analysis and find the natural frequency, f_N , of the cantilevered aluminum beam.

4 Data Processing

4.1 Variables and Equations

I.

- 5 Results and Analysis
- 6 Conclusion

NI-9215 Datasheet

https://www.amc-systeme.de/files/pdf/ni-9215-amc.pdf