Cálculo Lambda

Linguagens de Programação 2018.2019

Teresa Gonçalves

tcg@uevora.pt

Departamento de Informática, ECT-UÉ

Sumário

Funções e expressões funcionais Expressões lambda Redução, confluência e formas normais Programação em cálculo-λ

Cálculo Lambda

História

Alonzo Church, 1936

O que é?

Sistema matemático

Permite ilustrar conceitos importantes de LP de forma simples e pura

Tradicionalmente

Notação para definição de funções

Conjunto de regras de cálculo (redução)

Sistema de prova para equações entre expressões

Cálculo Lambda

Significado

Lambda

Letra Grega λ

Cálculo

Redução utilizada para **calcular** o resultado da aplicação duma função a um ou mais argumentos

Forma de avaliação simbólica de expressões

Conceitos de LP

Parametrização

Através de expressões funcionais

Ligação (binding)

Através de declarações

Estratégias de avaliação

Funções e expressões funcionais

Cálculo-\(\lambda\) puro

O que é uma função?

Uma regra para determinar um valor a partir de um ou mais argumentos

Exemplos

$$f(x) = x^2 + 3$$
$$g(x,y) = \sqrt{x^2 + y^2}$$

2 operadores

Abstração-λ (definição da função)

Aplicação (cálculo da função)

Abstração Lambda

O que é?

Operador que define uma função

λx.M

Se **M** for uma expressão, é a função obtida ao tratar **M** como função da variável **x**

Exemplo

Função identidade

```
λx.x
```

Equivalente a "I(x)=x" obriga dar um nome à função

Aplicação

O que é?

Operador que aplica a função a um argumento

$$(\lambda x.M_1) M_2$$

Se M_2 for uma expressão, é aplicação da função ($\lambda x.M_1$) a M_2

Exemplos

 $(\lambda x.x) M$

Aplicação da função identidade à expressão M

O resultado desta expressão é M

 $\lambda f.\lambda g.\lambda x.f(g x)$

Dadas duas funções **f** e **g**, esta função corresponde à composição de **f** e **g** $\lambda x.f(g x)$

Expressões lambda

Sintaxe duma expressão lambda

Assume-se

um conj. infinito *V* de **variáveis**, sendo *x*, *y*, *z*, ... variáveis arbitrárias

Gramática BNF

<M $> <math>\rightarrow$ x | <M $> | <math>\lambda$ x.<M>x pode ser qualquer variável (elemento de V)

Significado

x refere uma variável (determinada pelo contexto)

M₁ M₂ é a aplicação de M₁ ao argumento M₂

λx.M é a definição da função M de x

Termo lambda

É uma expressão de cálculo-λ Exemplos

```
λx.x Uma abstração-λ designada função identidade
```

λx.f(g x) Outra abstração-λ

(λx.x) 5 Uma aplicação

Convenções sintáticas

O âmbito de λ , numa abstração- λ , estende-se o mais para a direita possível

Exemplo

$$\lambda x.x y = \lambda x.(x y)$$

 $\lambda x.x y \neq (\lambda x.x) y$

A aplicação associa à esquerda

Exemplo

$$x y z = (x y) z$$

 $x y z \neq x (y z)$

Ocorrências de variáveis

Livre

Ocorrência fora do âmbito do operador de ligação

Ligadora

Ocorrência onde a variável se torna ligada

Ligada

Outras ocorrências não livres

Exemplo

```
\lambda x.(\lambda y.xy)y
```

- x: 1º ocorrência → ocorrência ligadora 2º ocorrência → ocorrência ligada
- y: 1º ocorrência → ocorrência ligadora 2º ocorrência → ocorrência ligada 3º ocorrência → ocorrência livre

Ligação de uma variável

Ocorrência livre

A variável não foi declarada na expressão

Não é possível avaliar a expressão sem colocá-la noutra (maior) que associe um valor à variável

Exemplo

Na expressão x+3, x é livre

Ocorrência ligada

É uma ocorrência não livre

λ é o operador de ligação

Porque liga uma variável num âmbito específico

Exemplo

Na expressão $\lambda x.M$, x é ligada

M é o âmbito da ligação λx

Variável ligada-λ

Propriedade

É possível renomear uma variável ligada- λ x para y sem alterar o significado da expressão

Exemplo

λx.x define a mesma função que λy.y

Expressões α-equivalentes

São expressões que diferem apenas nos nomes das variáveis ligadas

Escreve-se

$$\lambda x.x =_{\alpha} \lambda y.y$$

Conj. variáveis livres

VL(M)

```
conj. de variáveis livres na expressão M definido por indução na estrutura das expressões VL(x) = \{x\} VL(M N) = VL(M) \cup VL(N) VL(\lambda x.M) = VL(M) - \{x\}, onde – significa diferença conj.
```

Exemplos

$$VL(\lambda x.x) = \emptyset$$
$$VL(\lambda f.\lambda x.f(g x)) = \{g\}$$

Sistema de prova do cálculo-\lambda

Axiomas básicos

equivalência-α

Equivalência de expressões com variáveis ligadas

equivalência-β

Equivalência de expressões através do cálculo de uma aplicação por substituição

Equivalência-α

$$\lambda x.M = \lambda y.[y/x]M$$

[y/x]M corresponde à substituição das ocorrências livres de x em M por y y não pode aparecer em M

Exemplo

$$(\lambda x.(\lambda x.x) x) x =_{\alpha} (\lambda y.(\lambda z.z) y) x$$

Equivalência-B

$$(\lambda x.M)N = [N/x]M$$

λx.M é a função obtida ao tratar M como função de x

[N/x] M : o valor da aplicação em N obtém-se, substituindo as ocorrências livres de x em M por N

Exemplo

$$(\lambda f.f x) (\lambda y.y) =_{\beta} (\lambda y.y) x =_{\beta} x$$

Substituição

[N/x]M

Resultado da substituição de x por N em M (N substitui x em M)

Regras

Definidas por indução na estrutura de M

```
[N/x] x = N
[N/x] y = y 	 y \neq x
[N/x] (M_1 M_2) = [N/x] M_1 [N/x] M_2
[N/x] (\lambda x.M) = \lambda x.M
[N/x] (\lambda y.M) = \lambda y. ([N/x] M) 	 y \neq x, y \notin VL(N)
```

Colisão de variáveis

Quando acontece?

Sempre que na substituição [N/x] M, as ligações- λ em M têm o mesmo nome que variáveis livres de N

Como evitar?

Renomear as variáveis ligadas em $(\lambda x.M)$ N

Todas as variáveis ligadas devem ser diferentes umas das outras e das variáveis livres

Exemplo

$$(\lambda f.\lambda x.f(fx))(\lambda y.y+x)$$

Redução, forma normal e confluência

Redução-B

O que é?

```
equivalência-\beta que permite avaliar uma função
Para indicar a direção, utiliza \rightarrow em vez de =
(\lambda x.M) N \rightarrow [N/x] M
```

$M \rightarrow N$

M reduz- β para NQuando um subtermo de M reduz- β para criar N

Redex (reduction expression)

É um termo do tipo $(\lambda x.M)$ N

Forma normal

O que é?

Uma expressão que não é possível reduzir mais

Exemplos

$$\lambda z.zz$$

$$(\lambda f.\lambda x.f(fx))(\lambda y.y+1)2$$

$$\rightarrow \lambda x.((\lambda y.y+1)((\lambda y.y+1)x))2$$

$$\rightarrow (\lambda x.(\lambda y.y+1)(x+1))2$$

$$\rightarrow (\lambda x.x+1+1)2$$

$$\rightarrow (2+1+1)$$
Forma normal

Se adicionarmos regra cálculo da adição

$$2+1+1$$

$$\rightarrow 3+1$$

$$\rightarrow 4$$

Reduções alternativas

Podem existir várias reduções alternativas Exemplo

Reduções intermináveis

Existem termos onde é possível reduzir sempre (sem nunca chegar à forma normal)

Exemplo

 $(\lambda x.xx)(\lambda x.xx)$

Confluência

O que é?

Se existir, a forma normal é única

O que significa?

Se

M puder ser reduzida para uma forma normal

Então

Existe uma única forma normal de M, independente/ da ordem de avaliação das sub-expressões

A ordem de avaliação não afecta o resultado final da expressão!

Estratégia de redução

É uma regra para escolher redexes Estratégias

Call-by-name (ou ordem normal de redução)

Escolhe o redex mais exterior, mais à esquerda

Call-by-value

Escolhe o redex mais interior, mais à esquerda

Exemplo

```
Call-by-name
```

$$(\lambda x \lambda z.(\lambda x.x) \ z \ (yz)) \ (\lambda x.x)$$

Call-by-value

$$(\lambda x \lambda z.(\lambda x.x) \ z \ (yz)) \ (\lambda x.x)$$

Garantia de chegada à forma normal

Call-by-name: sim

$$(\lambda x.\lambda y.x) \ z \ N \to (\lambda y.z) \ N \to z$$

Call-by-value: não

```
(\lambda y.z) ((\lambda x.xx)(\lambda x.xx))
\rightarrow (\lambda y.z) ((\lambda x.xx)(\lambda x.xx))
\rightarrow (\lambda y.z) ((\lambda x.xx)(\lambda x.xx))
\rightarrow \dots
```

Rapidez de chegada à forma normal

Call-by-value: mais rápido

```
(\lambda x.xx)((\lambda y.y)(\lambda z.z))
\to (\lambda x.xx)(\lambda z.z)
\to (\lambda z.z)(\lambda z.z)
\to (\lambda z.z)
```

Call-by-name: mais lento

```
(\lambda x.xx)((\lambda y.y)(\lambda z.z))
\rightarrow ((\lambda y.y)(\lambda z.z)) ((\lambda y.y)(\lambda z.z))
\rightarrow (\lambda z.z) ((\lambda y.y)(\lambda z.z))
\rightarrow (\lambda y.y)(\lambda z.z)
\rightarrow (\lambda z.z)
```

Computação em cálculo lambda

Declaração let

Construção que permite fazer declarações locais

let x = M in N

let é "açucar sintático"

let x = M in $N \Leftrightarrow (\lambda x.N) M$

Não adiciona poder ao cálculo, mas torna-o mais "amigável"

Exemplo

let compose = $\lambda f.\lambda g.\lambda x.f$ (g x) in compose h h = $_{\beta}$

 $\lambda x.h (h x) \leftarrow \text{composição de h com h}$

Múltiplas variáveis

cálculo-λ

permite tratar uma expressão M como função de uma variável x

Tratar M como função de duas variáveis x e y

 $\lambda x.(\lambda y.M)$

Função de um único argumento que, quando aplicada, devolve uma segunda função que aceita um 2º argumento

Exemplo

f(g,x)=g(x) argumento: par (g,x)

 $f_{curry} = \lambda g.\lambda x.g x$ argumento: g

Currying

Técnica que simula funções de várias variáveis

g é uma versão curried de f se

$$f(x_1, x_2, ..., x_k) = g x_1 x_2 ... x_k$$

A função f tem k argumentos que g aceita à vez

Útil para avaliação parcial

quando um dos argumentos não está disponível

$$(\lambda x.\lambda y.x^*y)$$
 2 $\rightarrow \lambda y.2^*y$

Uma função que multiplica o seu argumento y por 2

Convenção

$$\lambda x.\lambda y.M = \lambda xy.M$$

Exemplos

Operador *

```
\lambda x.\lambda y.x*y
(\lambda x.\lambda y.x*y) \ 2 \ 3 \rightarrow (\lambda y.2*y) \ 3 \rightarrow 2*3
\mathbf{f(x,y) = x-y}
\lambda x.\lambda y.x-y
f(4, 3)
(\lambda x.\lambda y.x-y) \ 4 \ 3
```

Abstração-λ em ML e C

ML

```
fn x => corpo_função;
\lambda x.corpo_função
```

C

```
int f (int x) {return x};

chama_f;

let f = (\lambda x.x) in chama_f
```

Exemplo

```
int function f(x,y){
   return 2*x+y;
}
int main(){
   f(3,4);
}
```

```
let f = \lambda xy.2*x+y in

f 3 4

(\lambda f. f 3 4) (\lambda xy.2*x+y) \rightarrow

(\lambda xy.2*x+y) 3 4 \rightarrow

(\lambda y.2*3+y) 4 \rightarrow

2*3+4
```

Cálculo-\(\lambda\) aplicado

O que é?

Uma extensão do cálculo-λ puro, que adiciona um conjunto de outras operações e tipos

Exemplo

Adição dos operadores básicos de cálculo: +, -, *, /...

LP = $cálculo-\lambda$ aplicado = $cálculo-\lambda$ puro + tipos de dados adicionais