Statistika Inferensial Lanjut Teori & Praktik

Pertemuan 10

Pendahuluan

Runtun Waktu (Time Series) adalah sekumpulan data observasi yang variabelnya diukur dalam urutan periode waktu, misalnya bulanan, caturwulan, tahunan, dsb.

Tujuan Melakukan Analisa Terhadap data runtun waktu adalah untuk menemukan pola data secara historis dan menerapkan pola tersebut untuk peramalan

Contoh:

- Hasil penjualan Perusahaan Microsoft pada tiap kuartal sejak tahun 1985
- Produksi tahunan asam belerang sejak tahun 1970
- Jumlah penerimaan mahasiswa baru UTY tiap tahun sejak tahun 2002

Contoh

Diberikan dataset mengenai penjualan shampoo setiap bulan selama 3 tahun yang diambil dari https://machinelearningmastery.com/time-series-datasets-for-machine-

learning/

Month	Sales
1-01	266
1-02	145.9
1-03	183.1
1-04	119.3
1-05	180.3
1-06	168.5
1-07	231.8
1-08	224.5
1-09	192.8
1-10	122.9
1-11	336.5
1-12	185.9

2-01	194.3
2-02	149.5
2-03	210.1
2-04	273.3
2-05	191.4
2-06	287
2-07	226
2-08	303
2-09	289.9
2-10	421.6
2-11	264.5
2-12	342.3

3-01	339.7
3-02	440.4
3-03	315.9
3-04	439.3
3-05	401.3
3-06	437.3
3-07	575.5
3-08	407.6
3-09	682
3-10	475.3
3-11	581.3
3-12	646.9

Grafik Time Series Dari Data Penjualan Shampoo

Langkah Membentuk Grafik Time Series

- 1. Download data penjualan shampoo yang tersedia pada link berikut https://drive.google.com/drive/u/0/folders/1xuRMoHG5kkdVTP8JArriRBmxt28M-7u3
- 2. Lalu simpan di folder yang kalian gunakan
- 3. Membuka dataset pada Rstudio Klik Import Dataset

Environment History Cor	nnections Tutorial	
	 ✓ ≡ List	- C -
■ Global Environment ▼	Q	
Data		_
Harga	num [1:2, 1:4] 8000 10000 5000 8000 2000 3000 4	5
HargaKomoditi	num [1:2, 1:5] 12518 6541 12529 3241 8355	
Komoditi	num [1:2, 1:5] 12518 12529 8355 10628 5505	
Nilai	num [1:2, 1:4] 32000 60000 10000 24000 2000 6000	D 🔳
Quantity	num [1:2, 1:4] 4 6 2 3 1 2 6 6	
🕠 state. center	List of 2	Q,
🕠 state. x77	50 obs. of 11 variables	
7		Ť

4. Klik From Excel

Data yang diimport Muncul di Rscript

Pada Console, ketikkan:

```
> plot.ts(Dataset_Penjualan_Shampoo$Sales, xlab="Month", ylab="Sales",
main="Grafik Time Series Penjualan Shampoo")
> points(Dataset_Penjualan_Shampoo)
```


Komponen Time Series

Trend Sekuler

- Suatu Gerakan yang menunjukkan arah perkembangan atau kecenderungan dalam jangka Panjang.
- Cirinya: menunjukkan variasi sekuler yang menyerupai garis lurus (trend line)
- Contoh: Jumlah rumah yang dibangun di US mengalami peningkatan dari tahun 1990 hingga 1996, kemudian tetap sama hingga tahun 1999, ketika jumlahnya mulai menurun.

Year	Shipments
1990	188.172
1991	170.713
1992	210.787
1993	254.276
1994	303.932
1995	339.601
1996	363.411
1997	353.377
1998	372.843
1999	348.671
2000	250.55
2001	193.229
2002	168.491
2003	130.815
2004	130.748
2005	146.8
2006	117.3
2007	95.7
2008	81.9
2009	49.8

Komponen Time Series (2)

Variasi Siklis

- · Naik turunnya runtun waktu sepanjang periode yang lebih lama dari 1 tahun.
- Contoh : Data penjualan barang preco dari dataset mock-Kaggle yang dapat didownload di

https://drive.google.com/drive/u/0/folders/1xuRMoHG5kkdVTP8JArriRBmxt28M-7u3

Data Penjualan Preco

Komponen Time Series (3)

Variasi Musiman

- Terjadi jika runtun waktu dipengaruhi factor musiman (misal tahun tertentu, kuartal tertentu, dsb).
- Contoh: Penjualan barang estoque pada dataset mock-Kaggle menunjukkan pola variasi musiman

Data Penjualan Estoque

Sumber gambar : https://otexts.com/fpp2/tspatterns.html

Komponen Time Series (4)

Variasi Tak Beraturan

- Banyak analis yang membagi variasi tak beraturan menjadi variasi episodic dan residual. Fluktuasi episodic tidak dapat diprediksi tetapi dapat dikenali.
- Misal pengaruh awal terhadap perekonomian dan serangan atau perang besar dapat diketahui tetapi serangan tersebut tidak dapat diketahui.
- Setelah fluktuasi episodic menghilang, variasi yang tersisa disebut variasi residual.
- Fluktuasi residual disebut juga fluktuasi kebetulan & tidak dapat digunakan untuk peramalan.

Rata-rata Bergerak (Moving Average)

- Untuk melunakkan (smooth) runtun waktu guna mengamati trennya.
- Metode rata-rata bergerak cenderung melunakkan fluktuasi dalam data. Ini bisa dilakukan dengan "menggerakkan" rata-rata aritmatika melalui runtun waktu.
- Moving Average (MA) adalah garis yang didapat dari perhitungan harga sebelum hari ini, yang menghitung pergerakan harga rata-rata dari suatu asset dalam suatu rentang waktu tertentu.

- Misalnya dalam rentang 5 hari (1 minggu), 20 hari (1 bulan), 60 hari (3 bulan) dst. Artinya MA 20 berarti pergerakan harga 3 bulan ke belakang.
- Beberapa jenis MA yang dapat digunakan untuk membantu dalam menganalisa harga :
- 1. Single Moving Average (SMA)
- 2. Weighted Moving Average (WMA)
- 3. Exponential Moving Average (EMA)
- 4. Metode Least Square (Kuadrat Terkecil)

1. Simple Moving Average

- Aritmatika MA yang dihitung dengan menambahkan harga penutupan asset untuk sejumlah periode waktu dan kemudian dibagi sejumlah periode waktu tersebut.
- Dalam SMA, data yang dimasukkan adalah berbobot sama.

Contoh

Diberikan data Harga Asset selama 15 hari. Tentukan Single Moving Average 5 harian!

Hari	Harga asset	Total Bergerak 5 harian	SMA 5 harian
1	20	-	-
2	24	-	-
3	22	-	-
4	21	-	-
5	20	20+24+22+21+20=107	107/5 = 21,4
6	18	24+22+21+20+18=105	105/5 = 21
7	17	98	98/5 = 19,6
8	22	98	98/5 = 19,6
9	26	103	103/5 = 20,6
10	30	113	113/5 = 22,6
11	31	116	116/5 = 23,2
12	34	143	143/5 = 28,6
13	33	154	154/5 = 30,8
14	30	158	158/5 = 31,6
15	28	156	156/5 = 31,2

2. Weighted Moving Average (WMA)

- Pada metode wighted moving average memberikan penekanan (weight) yang berbeda pada setiap nilai data dan kemudian menghitung bobot yang paling besar untuk pengamatan yang paling baru.
- Nilai penekanan (bobot/weight) akan mengalami penurunan untuk data yang lebih lama.
- WMA kurang lebih memiliki kemiripan dengan SMA, kecuali dalam hal memberikan bobot pada data yang terbaru.
- WMA juga setiap harinya membuang harga penutupan yang tertua dan menambahkan yang terbaru.

- WMA mengalikan faktor untuk memberikan bobot yang berbeda untuk data pada waktu yang berbeda.
- Dalam sejumlah (n) hari, WMA hari terbaru memiliki bobot n, hari memiliki bobot terbaru n— 1, dst, hingga bobot untuk hari yang paling lama adalah 1.

$$WMA = \frac{n \cdot p_m + (n-1) \cdot p_{m-1} + \dots + 2p_{m-n+2} + p_{m-n+1}}{n + (n-1) + (n-2) + \dots + 2 + 1}$$

Contoh

Hari	Harga asset	SMA 5 harian	Bobot	WMA 5 harian
1	20	NA	1	NA
2	24	NA	2	NA
3	22	NA	3	NA
4	21	NA	4	NA
5	20	21,4	5	
6	18	21	1	
7	17	19,6	2	
8	22	19,6	3	
9	26	20,6	4	
10	30	22,6	5	
11	31	25,2	1	
12	34	28,6	2	
13	33	30,8	3	
14	30	31,6	4	
15	28	31,2	5	

Menentukan SMA dan WMA dengan Rstudio

```
Terminal ×
                  Jobs ×
Console
> #Menuliskan dataset yang digunakan
> data_asset<- c(20, 24, 22, 21, 20, 18, 17, 22, 26, 30, 31, 34, 33, 30, 28)</pre>
> data_asset
 [1] 20 24 22 21 20 18 17 22 26 30 31 34 33 30 28
> #Melihat grafik time series dari data_asset
> plot.ts(data_asset, main="Grafik Time Series Data Aset")
> #Menentukan nilai Single Moving Average (SMA)
> #untuk menentukan SMA dan WMA perlu install package TTR
> library(TTR)
> SMA.5 <- SMA(data_asset, 5)</pre>
> SMA.5
                       NA 21.4 21.0 19.6 19.6 20.6 22.6 25.2 28.6 30.8 31.6 31.2
> #Grafik untuk SMA.5
> plot.ts(SMA.5, main="Grafik Single Moving Average 5 harian")
> #Menentukan nilai Weighted Moving Average (WMA)
> WMA.5<- WMA(data_asset, 5, 1:5)</p>
> WMA.5
 [9] 21.66667 24.80000 27.60000 30.53333 32.00000 31.73333 30.53333
> #Grafik untuk WMA.5
> plot.ts(WMA.5, main="Grafik Weighted Moving Average 5 Harian")
```


Contoh

Menggunakan data penjualan shampoo, akan ditentukan SMA dan WMA 4 bulanan dengan bantuan Rstudio

```
Console Terminal x Jobs x

> library(readxl)
> Penjualan_Shampoo <- read_excel("C:/Users/Lenovo/Pictures/Materi Statistik Inferensia
l Lanjut/Runtun waktu/Dataset Penjualan Shampoo.xlsx")
> View(Penjualan_Shampoo)
> 
    #Menghitung SMA & wMA 4 bulanan
> 
    SMA.4<- SMA(Penjualan_Shampoo$sales, 4)
> 
    wMA.4<- wma(Penjualan_Shampoo$sales, 4, 1:4)
> 
    data<- cbind(Penjualan_Shampoo, SMA.4, wma.4)
> data
```

```
Month Sales
                  SMA.4
                         WMA.4
    1-01 266.0
                            NA
                     NΑ
    1-02 145.9
                     NA
                            NA
                            NΑ
         119.3 178.575 158.43
               204.400 207.68
         122.9 193.000 175.08
               209.900
               216.550 188.92
         210.1 184.950 186.34
         273.3 206.800
18
         226.0
20
         303.0
28
36
    3-12 646.9 596.375 596.41
```

Hasil Running R

Grafik SMA4

Grafik WMA4

3. Exponential Moving Average (EMA)

- Exponential Moving Average (EMA) adalah jenis MA yang menyaring data secara infinite, dimana data-data lama tidak ada yang dibuang melainkan hanya dikurangi bobotnya secara eksponensial, namun bobotnya tidak sampai nol.
- EMA memiliki kemiripan dengan WMA dalam hal membedakan bobot data antara data terdahulu dan yang terbaru, dimana dengan perhitungan ini, EMA dan WMA sama-sama lebih sensitif dengan pergerakan harga saham dibandingkan dengan SMA.

• Rumus EMA :

$$EMA_{today} = EMA_{yesterday} + \alpha \times (Price_{today} - EMA_{yesterday})$$

Keterangan:

- $\alpha = \frac{2}{n+1}$ disebut sebagai konstanta penghalus
- Nilai *EMA* saat *n* (EMA pertama kali) dibuat sama seperti SMA pertama kalinya.

Contoh

Karena n=5 maka
$$\alpha = \frac{2}{5+1} = \frac{1}{3}$$

$$EMA_{hari5} = SMA_{hari5} = 21,4$$

$$EMA_{hari6} = EMA_{hari5} + \frac{1}{3} \times (P_{hari6} - EMA_{hari5})$$

$$= 21.4 + \frac{1}{3} \times (18 - 21.4) = 20.267$$

$$EMA_{hari7} = EMA_{hari6} + \frac{1}{3} \times (P_{hari7} - EMA_{hari6})$$

$$=20,267 + \frac{1}{3} \times (17 - 20,267) = 19,178$$

dst

Hari	Harga asset	SMA 5 harian	WMA 5 harian	EMA 5 harian
1	20	NA	NA	NA
2	24	NA	NA	NA
3	22	NA	NA	NA
4	21	NA	NA	NA
5	20	21,4	21,2	21,4
6	18	21	20,1	20,267
7	17	19,6	18,7	19,178
8	22	19,6	19,5	20,118
9	26	20,6	21,7	22,079
10	30	22,6	24,8	24,719
11	31	25,2	27,6	26, 813
12	34	28,6	30,5	29,209
13	33	30,8	32	30,472
14	30	31,6	31,7	30,315
15	28	31,2	30,5	29,543

Dengan Menggunakan Rstudio

```
> data_asset<- c(20, 24, 22, 21, 20, 18, 17, 22, 26, 30, 31, 34, 33, 30, 28)
> EMA(data_asset, 5, FALSE, NULL)

[1] NA NA NA NA 21.40000 20.26667 19.17778 20.11852

[9] 22.07901 24.71934 26.81289 29.20860 30.47240 30.31493 29.54329
> |
```


Tentukan rata-rata bergerak 3 tahunan untuk penjualan di Waccamaw Machine Tool Inc. Gambarkan data asal dan rata-rata bergeraknya!

Tahun	Jumlah Produksi (ribu)
2005	2
2006	6
2007	4
2008	5
2009	3
2010	10

- 1. Pada Data Mock-Kaggle, tentukan SMA, WMA dan EMA 5 harian untuk setiap Produk yang dijual!
- 2. Dari no 1, gambarkan grafik SMA, WMA dan EMA 5 harian tersebut menggunakan Rstudio. Lalu, secara visual, bagaimanakah tren penjualan setiap produknya?
- 3. Lakukan prediksi menggunakan SMA, WMA dan EMA 5 harian tersebut untuk meramalkan jumlah masing-masing produk yang terjual pada tanggal 23 Februari 2014 dan 24 Februari 2014!

Analisis Trend

- ☐Menurut Maryati (2010;129), trend adalah suatu gerakan (kecenderungan) naik atau turun dalam jangka panjang, yang diperoleh dari rata—rata perubahan dari waktu ke waktu.
- □Rata-rata perubahan tersebut bisa bertambah bisa berkurang. Jika rata-rata perubahan bertambah disebut **trend positif** atau trend mempunyai kecenderungan naik.
- □ Jika rata rata perubahan berkurang disebut **trend negatif** atau trend yang mempunyai kecenderungan menurun.

- □Garis trend pada dasarnya garis regresi dan variabel bebas (x) merupakan variabel waktu.
- ☐ Tren garis lurus (linier) adalah suatu trend yang diramalkan naik atau turun secara garis lurus.
- □Variabel waktu sebagai variabel bebas dapat menggunakan waktu tahunan, semesteran, bulanan, atau mingguan.

Persamaan Trend Linear

· Bentuk Persamaan Umum:

$$\widehat{Y} = a + bX$$

Dengan

 \hat{Y} : nilai proyeksi variable Y untuk nilai X tertentu

a: Intersept Y yaitu perkiraan nilai Y saat X=0

b: Kemiringan garis / slope Y yang menunjukkan perubahan rata-rata \hat{Y} setiap kenaikan 1 unit X

X : nilai waktu yang dipilih

Metode Perhitungan Analisis Trend

☐ Metode Semi Average

- ➤ Kelompokkan data menjadi dua kelompok yang sama apabila data ganjil, maka data yang berada di tengah di asumsikan menjadi dua atau diduplikasi dan di hitung dalam kelompok satu maupun kelompok dua atau data dihilangkan
- \triangleright Hitung rata-rata kelompok pertama (\dot{X}_1) dan rata-rata kelompok kedua (\dot{X}_2).
- ightharpoonupLetakkan (\dot{X}_1) pada tahun pertengahan dari kelompok yang pertama dan (\dot{X}_2) pada pertengahan tahun kelompok kedua

- ightharpoonupHitung selisih dari kedua rata-rata tersebut, dengan mengurangi rata-rata dari kelompok kedua dengan rata-rata dari kelompok pertama ($\sum X_2 \sum X_1$).
- ➤ Jika hasilnya positif berarti trendnya naik, jika negatif trendnya menurun

≻Persamaan Trend:

$$Y = a + bX$$

Dengan

a: nilai rata-rata tahun kelompok 1

$$b = \frac{\sum X_2 - \sum X_1}{N}$$

N : jumlah periode antara kelompok data 1 dan kelompok data 2

Tahun	Data	Skala Waktu	Total Semi Average	Semi Average
1990	у ₁	-2		
1991	y ₂	-1		
1992	y₃ Kel. I	0	$(y_1 + y_2 + y_3 + y_4 + y_5)$	$(y_1 + y_2 + y_3 + y_4 + y_5)/5$
1993	y ₄	1		
1994	y 5	2		
1995	y 6	-2		
1996	y 7	-1		
1997	y ₈ Kel II	0		
1998	y 9	1	$(y_6 + y_7 + y_8 + y_9 + y_{10})$	$(Y_6 + Y_7 + Y_8 + y_9 + y_{10})/5$
1999	y ₁₀	2		
Jumlah		0		

Contoh Data Genap & Kelompok Genap

Grafik produksi bawang merah di Indonesia Tahun 2001 - 2012

Tahun	Bawang Merah (Ton)
2001	861150
2002	766572
2003	762795
2004	757399
2005	732609
2006	794931
2007	802810
2008	853615
2009	965164
2010	1048934
2011	893124
1012	964221

Berdasarkan data di samping,

- a. Tentukan Persamaan Trendyang terjadi
- b. Lakukan peramalan untuk tahun 2017

Penyelesaian

Tahun	Penjualan		Semi Total	Semi Average	х
2001	861150				-5
2002	766572				-3
2003	762795	k 1			-1
		Kelompok	861150+766572+762795+757399+732609+794931= 4675456	$\frac{4675456}{6} = 779242,67$	
2004	757399	Kel			1
2005	732609				3
2006	794931				5
2007	802810				7
2008	853615				9
2009	965164	k 2			11
		Kelompok	802810+853615+965164+1048934+893124+964221= 5527868	$\frac{5527868}{6} = 921311,33$	
2010	1048934	Kel			13
2011	893124				15
2012	964221				17

· Persamaan Trend

Karena yang dipilih adalah Kelompok 1 sebagai periode dasar, maka nilai $a = semi \ average \ Kelompok \ I = 779242,67$

nilai
$$b = \frac{Y_2 - Y_1}{N} = \frac{921311,33 - 779242,67}{6} = 23.678,11$$

Sehingga Persamaan trendnya adalah

$$\widehat{Y} = 779242,67 + 23678,11 X$$

· Peramalan Untuk Tahun 2013

X=19 sehingga $\hat{Y}_{2013} = 779242,67 + 23678,11(19) = 1.229.126,76$

Jadi, pada tahun 2013 diramalkan hasil penjualan bawang merah sebanyak 1.229.126,76 ton

· Peramalan Untuk Tahun 2014

X=21 sehingga $\hat{Y}_{2014} = 779242,67 + 23678,11(21) = 1.276.482,98$

Jadi, pada tahun 2014 diramalkan hasil penjualan bawang merah sebanyak 1.276.482,98 ton

Contoh Data Genap Kelompok Ganjil

Misal diberikan data penjualan bawang merah di Indonesia tahun 1999 – 2012 sbb :

Tahun	Bawang Merah (Ton)
1999	938293
2000	772818
2001	861150
2002	766572
2003	762795
2004	757399
2005	732609
2006	794931
2007	802810
2008	853615
2009	965164
2010	1048934
2011	893124
2012	964221

Lalu ramal lah hasil penjualan Bawang Merah Pada Tahun 2013 dan 2014 dengan tahun dasar 2007!

Tahun	Penjualan		Semi Total	Semi Average	Х
1999	938293				-8
2000	772218				-7
2001	861150	ok 1			-6
2002	766572	Kelompok 1	5591036	798719,43	-5
2003	762795	Kelc			-4
2004	757399				-3
2005	732609				-2
2006	794931				-1
<mark>2007</mark>	802810				0
2008	853615	ok 2			1
2009	965164	Kelompok	6322799	903257	2
2010	1048934	Kelc			3
2011	893124				4
2012	964221				5

· Persamaan Trend

Karena yang dipilih adalah Kelompok 2 sebagai periode dasar, maka nilai $a=semi\ average\ Kelompok\ 2=903257$

nilai
$$b = \frac{Y_2 - Y_1}{N} = \frac{903257 - 798719,43}{7} = 14.933,94$$

Sehingga Persamaan trendnya adalah

$$\hat{Y} = 903.257 + 14.933,94X$$

· Peramalan Untuk Tahun 2013

X=6 sehingga $\hat{Y}_{2013} = 903.257 + 14.933,94(6) = 992.860,64$

Jadi, pada tahun 2013 diramalkan hasil penjualan bawang merah sebanyak 992.860,64 ton

· Peramalan Untuk Tahun 2014

X=7 sehingga $\hat{Y}_{2014}=$ **903.257** + 14.933,94(7) = 1.007.794,58 Jadi, pada tahun 2014 diramalkan hasil penjualan bawang merah sebanyak 1.007.794,58 ton

Contoh Data Ganjil

Misal diberikan data penjualan Bawang Merah di Indonesia tahun 2000 – 2012.

- a. Bagaimana Persamaan Trend Linear Dari Data Time Series Tersebut jika tahun dasarnya menggunakan tahun 2008?
- b. Lalu ramal lah hasil penjualan Bawang Merah Pada Tahun 2013 dan 2014!

TAHUN	PENJUALAN (TON)
2000	772218
2001	861150
2002	766572
2003	762795
2004	757399
2005	732609
2006	794931
2007	802810
2008	853615
2009	965164
2010	1048934
2011	893124
2012	964221

Tahun	Penjualan	Semi Total	Semi Average	Х
2000	772218			
2001	861150			
2002	766572			
2003	762795			
2004	757399			
2005	732609			
2006	794931			
2007	802810			
2008	853615			
2009	965164			
2010	1048934			
2011	893124			
2012	964221			

Cara 1 : Menghilangkan Data Tengah

Tahun	Penjualan		Semi Total	Semi Average	Х
2000	772218				-8
2001	861150				-7
2002	766572	ok 1			-6
		Kelompok	4652743	775457,17	-5
2003	762795	Kelo			-4
2004	757399				-3
2005	732609				-2
2007	802810				-1
2008	853615				0
2009	965164	ok 2			1
		Kelompok	5527868	921311,33	
2010	1048934	(elo			2
2011	893124				3
2012	964221				4

· Persamaan Trend

Karena yang dipilih adalah Kelompok 2 sebagai periode dasar, maka nilai $a=semi\ average\ Kelompok\ 2=921.311,33$

nilai
$$b = \frac{Y_2 - Y_1}{N} = \frac{921311,33 - 775457,17}{6} = 24.309,027$$

Sehingga Persamaan trendnya adalah

$$\widehat{Y} = 921.311,33 + 24.309,027X$$

· Peramalan Untuk Tahun 2013

X=5 sehingga $\hat{Y}_{2013} =$ **921.311,33** + **24.309,027**(5) = 1.042.856,465

Jadi, pada tahun 2013 diramalkan hasil penjualan bawang merah sebanyak 1.042.856,465 ton

· Peramalan Untuk Tahun 2014

X=6 sehingga $\hat{Y}_{2014}=$ **921.311,33** + **24.309,027**(6) = 1.067.165,492 Jadi, pada tahun 2014 diramalkan hasil penjualan bawang merah sebanyak 1.067.165,492 ton

Cara 2 : Menduplikasi Data Tengah

		<u> </u>			
Tahun	Penjualan		Semi Total	Semi Average	X
2000	772218				-8
2001	861150	T			-7
2002	766572	ok			-6
2003	762795	Kelompok1	5447674	778239,143	-5
2004	757399	elo			-4
2005	732609				-3
2006	794931				-2
2006	794931				-2
2007	802810	7			-1
2008	853615	o A			0
2009	965164	mp	6322799	903257	1
2010	1048934	Kelompok 2			2
2011	893124	Ž			3
2012	964221				4

· Persamaan Trend

Karena yang dipilih adalah Kelompok 2 sebagai periode dasar, maka nilai $a=semi\ average\ Kelompok\ 2=903.257$

nilai
$$b = \frac{Y_2 - Y_1}{N} = \frac{903257 - 778239,143}{7} = 17.859,69$$

Sehingga Persamaan trendnya adalah

$$\widehat{Y} = 903.257 + 17.859,69 X$$

· Peramalan Untuk Tahun 2013

X=5 sehingga $\hat{Y}_{2013} = 903.257 + 17.859,69(5) = 992.555,45$

Jadi, pada tahun 2013 diramalkan hasil penjualan bawang merah sebanyak 992.555,45 ton

· Peramalan Untuk Tahun 2014

X=6 sehingga $\hat{Y}_{2014}=$ 903.257 + 17.859,69(6) = 1.010.415,14 Jadi, pada tahun 2014 diramalkan hasil penjualan bawang merah sebanyak 1.010.415,14 ton

Metode Kuadrat Terkecil

Dengan menentukan garis trend yang mempunyai jumlah terkecil dari kuadrat selisih data asli dengan data pada garis trend.

$$\widehat{Y} = a + bX$$

Dengan

$$a = \frac{\sum Y}{n} \& b = \frac{\sum XY}{\sum X^2}$$

Di mana $\sum X = 0$

Contoh Genap

Misal diberikan data penjualan bawang merah di Indonesia tahun 1999 – 2012 sbb :

Tahun	Bawang Merah (Ton)
1999	938293
2000	772818
2001	861150
2002	766572
2003	762795
2004	757399
2005	732609
2006	794931
2007	802810
2008	853615
2009	965164
2010	1048934
2011	893124
2012	964221

Lalu ramal lah hasil penjualan Bawang Merah Pada Tahun 2013 dan 2014!

Tahun	Penjualan (Y)	X	XY	X^2
1999	938293	-7	-6568051	49
2000	772218	-6	-4633308	36
2001	861150	-5	-4305750	25
2002	766572	-4	-3066288	16
2003	762795	-3	-2288385	9
2004	757399	-2	-1514798	4
2005	732609	-1	-732609	1
2006	794931	1	794931	1
2007	802810	2	1605620	4
2008	853615	3	2560845	9
2009	965164	4	3860656	16
2010	1048934	5	5244670	25
2011	893124	6	5358744	36
2012	964221	7	6749547	49
Jumlah	11913835	0	3065824	280

$$a = \frac{\sum Y}{n} = \frac{11913835}{14} = 850.988,2$$

$$b = \frac{\sum XY}{\sum X^2} = \frac{3065824}{280} = 10.949,37$$

Sehingga persamaan trend nya adalah

$$\hat{Y} = 850.988,2 + 10.949,37 X$$

Peramalan

 $\hat{Y}_{2013} = 850.988,2 + 10.949,37(8) = 938.583,16$ Artinya penjualan bawang merah pada tahun 2013 diprediksi sebanyak 938.583,16 ton

$$\hat{Y}_{2014} = 850.988,2 + 10.949,37(9) = 949.532,53$$

Artinya penjualan bawang merah pada tahun 2013
diprediksi sebanyak 949.532,53 ton

Contoh Data Ganjil

Misal diberikan data penjualan Bawang Merah di Indonesia tahun 2000 – 2012.

- a. Bagaimana Persamaan Trend Linear Dari Data Time Series Tersebut jika tahun dasarnya menggunakan tahun 2008?
- b. Lalu ramal lah hasil penjualan Bawang Merah Pada Tahun 2013 dan 2014!

TAHUN	PENJUALAN (TON)
2000	772218
2001	861150
2002	766572
2003	762795
2004	757399
2005	732609
2006	794931
2007	802810
2008	853615
2009	965164
2010	1048934
2011	893124
2012	964221

Tahun	Penjualan (Y)	X	XY	X^2
2000	772218	-6	-4633308	36
2001	861150	-5	-4305750	25
2002	766572	-4	-3066288	16
2003	762795	-3	-2288385	9
2004	757399	-2	-1514798	4
2005	732609	-1	-732609	1
2006	794931	0	0	0
2007	802810	1	802810	1
2008	853615	2	1707230	4
2009	965164	3	2895492	9
2010	1048934	4	4195736	16
2011	893124	5	4465620	25
2012	964221	6	5785326	36
Jumlah	10975542	0	3311076	182

$$a = \frac{\sum Y}{n} = \frac{10975542}{13} = 844272,5$$

$$b = \frac{\sum XY}{\sum X^2} = \frac{3311076}{182} = 18.192,73$$

Sehingga persamaan trend nya adalah

$$\hat{Y} = 844.272,5 + 18.192,73 X$$

Peramalan

 $\hat{Y}_{2013} = 844.272,5 + 18.192,73 \ (7) = 971.621,61$ Artinya penjualan bawang merah pada tahun 2013 diprediksi sebanyak 971.621,61 ton

 $\hat{Y}_{2014} = 844.272,5 + 18.192,73 \ (8) = 989.814,34$ Artinya penjualan bawang merah pada tahun 2013 diprediksi sebanyak 989.814,34 ton

Menentukan Trend Linear Menggunakan Rstudio

```
> PenjualanBawang<- c(772218, 861150, 766572, 762795, 757399, 732609, 794931, 802810, 853615, 965164,</p>
       1048934.
                       893124. 964221)
> PenjualanBawang
 [1] 772218 861150 766572 762795 757399 732609 794931 802810 853615 965164 1048934 893124
[13] 964221
> X = -6 : 6
> Y=PenjualanBawang
> fit=lm(Y~X)
> summary(fit)
call:
lm(formula = Y \sim X)
Residuals:
  Min 10 Median
-93471 -49341 -26899 37102 131891
coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 844273
                         19691 42.876 1.35e-13 ***
              18193
                          5263 3.457 0.00536 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 71000 on 11 degrees of freedom
Multiple R-squared: 0.5207, Adjusted R-squared: 0.4771
F-statistic: 11.95 on 1 and 11 DF, p-value: 0.005362
```

Interpretasi Hasil

Dari hasil running R dari data penjualan bawang tersebut diperoleh nilai intercept (a) = 844.273 dan slope (b) = 18.193, sehingga persamaan trend yang terbentuk adalah

$$\hat{Y} = 844.273 + 18.193 X$$

Dari nilai slope tersebut menunjukkan bahwa setiap tahunnya ada kenaikan penjualan bawang sebesar 18.193 ton.

```
> plot(X,Y,type="o", xlabs="periode waktu", ylabs="penjualan bawang (ton)", main="Grafik Penjualan Bawa ng 2000-2012")
There were 12 warnings (use warnings() to see them)
> abline(fit)
There were 24 warnings (use warnings() to see them)
```


Buatlah Persamaan Trend Linear dari data set Corona yang dapat didownload di link berikut

https://docs.google.com/spreadsheets/d/1FO53AnBkHykqtiJPo Ga2c24R-

kctTi9t/edit?usp=sharing&ouid=112279652676935678772&rtp

of=true&sd=true menggunakan Rstudio dan lakukan

peramalan untuk tanggal 17 Maret 2020 dan 18 Maret 2020!

Diberikan data jumlah kamar yang disewa di Plantation Resorts Georgia daritahun 1999 hingga 2009 :

Tahun	Jumlah Sewa	Tahun	Jumlah Sewa
1999	6714	2005	8334
2000	7991	2006	8272
2001	9075	2007	6162
2002	9775	2008	6897
2003	9762	2009	8285
2004	10180		

Tentukan persamaan trend nya menggunakan metode setengah rata-rata dengan tahun dasar 2000 dan metode least square! Berdasarkan informasi tersebut, perkirakan jumlah sewa pada tahun 2010 dan 2011 dengan kedua metode tersebut!

Diberikan data penjualan bersih dalam juta dollar di Home Depot beserta tambahannya dari tahun 1993 hingga 2009:

Tahun	Penjualan	Tahun	Penjualan	Tahun	Penjualan
1993	9239	1999	38434	2005	81511
1994	12477	2000	45738	2006	90837
1995	15470	2001	53553	2007	77349
1996	19535	2002	58247	2008	71300
1997	24156	2003	64816	2009	66200
1998	30219	2004	73094		

Buatlah persamaan trend nya dan perkirakan penjualan bersihnya pada tahun 2011 dan 2013!

Diberikan data kasus Covid di DIY periode 13 Oktober 2020 s.d. 29 Oktober 2020.

- Gambarkan grafik time series tersebut menggunakan
 Rstudio lengkap dengan judul dan nama sumbu X dan Y
 nya
- Buatlah Persamaan Trend kasus Covid di DIY tersebut menggunakan metode kuadrat terkecil dan Rstudio (sertakan screenshoot syntax & hasilnya)
- c. Jelaskan maksud dari Persamaan Trend tersebut terkait slope dan interceptnya
- d. Prediksi jumlah kasus COVID di DIY pada tanggal 1
 November 2020

Tanggal	Kasus Covid
13 Oct	668
14 Oct	672
15 Oct	660
16 Oct	673
17 Oct	649
18 Oct	624
19 Oct	567
20 Oct	529
21 Oct	539
22 Oct	565
23 Oct	568
24 Oct	576
25 Oct	552
26 Oct	549
27 Oct	557
28 Oct	559
29 Oct	589