Geometría Analítica

Facultad de Ingeniería

Universidad Nacional de Cuyo

Ejercicios 2.4 2.10 2.11 resueltos

Resolución de los ejercicios 2.4, 2.10 y 2.11

2.4)

Si D = o	Ax + By + Cz = 0	El plano π pasa por	El origen de coordenadas
Si A = o	By + Cz + D = 0	El plano π es perpendicular	Al plano yz
Si B = o	Ax + Cz + D = 0	El plano π es perpendicular	Al plano xz
Si C = o	Ax + By + D = 0	El plano π es perpendicular	Al plano <i>xy</i>
Si A = B = 0	Cz + D = 0	El plano π es paralelo	Al plano <i>xy</i>
Si A = C = 0	By + D = 0	El plano π es paralelo	Al plano xz
Si B = C = o	Ax + D = 0	El plano π es paralelo	Al plano <i>yz</i>

2.10) a- Ecuación del plano π con vector normal y un punto datos

$$\overline{n_{\pi}} = (1; -2; -3)$$
 $J(1; 5; 4)$ $\overline{PJ} = (1 - x; 5 - y; 4 - z)$

$$\overline{n_{\pi}} \cdot \overline{P_0 J} = 0$$

$$(1; -2; -3) \cdot (1 - x; 5 - y; 4 - z) = 0$$

$$1 - x - 10 + 2Yy_0 - 12 + 3z = 0$$

$$\overline{-x + 2y + 3z - 21} = 0 \rightarrow \text{Ecuación General del Plano } \pi$$

b- Traza del plano π con el plano yz

Plano
$$yx \Rightarrow x = 0$$

$$\begin{cases}
-x + 2y + 3z - 21 = 0 \\
x = 0
\end{cases} \Rightarrow 2y + 3z = 21; x = 0 \Rightarrow \text{Traza con el Plano yz}$$

Geometría Analítica

Facultad de Ingeniería

Universidad Nacional de Cuyo

Ejercicios 2.4 2.10 2.11 resueltos

c- Planos paralelos al plano π a 5 unidades del mismo.

Como π ' y π " son paralelos al plano π , su vector normal es $\overline{kn_{\pi}}$ donde k es un escalar. Consideramos su vector normal igual a $\overline{n_{\pi}}$. En la ecuación general del plano desconocemos entonces el valor de D

$$\pi'$$
: $-x + 2v + 3z + D = 0$

Pero sabemos que la distancia de cualquier punto del plano dato π al nuevo plano π' es 5, entonces:

$$h = 5 h = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

$$5 = \frac{|-x_0 + 2y_0 + 3z_0 + D|}{\sqrt{(-1)^2 + 2^2 + 3^2}}$$

$$5\sqrt{14} = |-x_0 + 2y + 3z_0 + D|$$

$$J(1; 5; 4) \text{ pertenece al plano } \pi$$

$$5\sqrt{14} = |-1 + 2 \cdot 5 + 3.4 + D|$$

$$\boxed{5\sqrt{14} = |21 + D|}$$

De esta expresión podremos obtener dos valores para *D*, es decir existen dos planos solución:

$$5\sqrt{14} = 21 + D_1$$
 de donde $5\sqrt{14} - 21 = D_1$.

Geometría Analítica

Facultad de Ingeniería

Universidad Nacional de Cuyo

Ejercicios 2.4 2.10 2.11 resueltos

Por otra parte,

$$5\sqrt{14} = -(21 + D_2)$$
de donde $-5\sqrt{14} - 21 = D_2$.

Es así que se obtienen dos ecuaciones de planos paralelos:

$$\pi'$$
: $-x + 2y + 3z - 2,292 = 0$

$$\pi''$$
: $-x + 2y + 3z - 39,708 = 0$

Plano π'

$$-X + 2Y + 3Z - 39,708 = 0$$
 → Ecuación General del Plano π

Plano π''

$$-X + 2Y + 3Z - 2,292 = 0$$
 → Ecuación General del Plano π "

2.11)

- **a-** La relación que cumplen los coeficientes de las variables x, y, z de las ecuaciones generales de dos planos dados que son paralelos, es que los coeficientes de la ecuación del plano π_1 son k veces los del plano π_2 , donde $k \in \mathbb{R}$.
- **b-** La relación que cumplen los coeficientes de las variables x, y, z y el término independientes de las ecuaciones generales de dos planos dados que son coincidentes es que todos los coeficientes de la ecuación del plano π_1 son k veces los del plano π_2 , incluido el término independiente, donde $k \in \mathbb{R}$.
- **c-** La relación que cumplen los coeficientes de las variables x, y, z, de dos planos que son perpendiculares, es que el producto escalar entre la terna de coeficientes de π_1 y de π_2 es cero.

$$\overline{\boldsymbol{n}_{\pi 1}}.\overline{\boldsymbol{n}_{\pi 2}}=0$$