

https://data.kma.go.kr

뜨거운 열기로 대한민국이 들썩였던 한일 월드컵이 열린 2002년도의 서울의 기온을 살펴볼까요?

분류, 지역/지점, 기간, 조건 등 설정을 마친 후 검색 버튼을 누름

분류	지상 ∨ ■ 지역/지점	서울 선택	■ 요소	기온 ∨	
■ 기간	일 ∨ 2002 ∨ 년 ~ 2002 ∨ 년				
조건					
□ 요소	평균기온 〉 < 〉 선택 〉	v			
☑ 월	06 ∨ ~ 06 ∨ 월				
☑ 일	01 ∨ ~ 30 ∨ 일				
□ 계절	봄 ∨				
		> 검색			

♥ CSV의 개념

CSV

- Comma-Seperated Values
- 각각의 데이터 값을 콤마(,)로 구분하는 파일 형식

© CSV의 특징

- ✓ 더블 클릭하면 엑셀 프로그램에서 열 수 있고, 엑셀 파일처럼 사용할 수 있음
- ✓ 엑셀 프로그램이 없다면 메모장 같은 텍스트 편집기로 CSV파일을 열어 수정 및 생성할 수 있음

[엑셀]

[메모장]

	Α	В	С	D	Е	F	G	Н
1								
2	계급별통계							
3	[검색조건]							
4		분류: 지상						
5	요소 : 기온							
6		검색구분 : 일						
7		지역/지점명 : 서울						
8		기간 : 200	2 ~ 2002년 0	6 ~ 06월 0	1 ~ 30일			
9								
10								
11								
12	지점번호	지점명	일시	평균기온(°	최고기온(°	최고기온시	최저기온(°	최저기온시각
13	108	서울	2002-06-01	20.2	24.8	12:29	17.1	0:06
14	108	서울	2002-06-02	22.9	30	15:08	15.3	4:50
15	108	서울	2002-06-03	23.4	29.1	14:45	17.6	5:31
16	108	서울	2002-06-04	22.4	27.6	14:06	18.2	4:29
17	108	서울	2002-06-05	25.2	31.4	15:13	19.1	4:43
18	108	서울	2002-06-06	25.9	31.2	13:07	21.2	5:57
19	108	서울	2002-06-07	25.2	30.6	13:23	19.6	23:56
20	108	서울	2002-06-08	22.1	27.1	17:03	19.4	0:15
21	108	서울	2002-06-09	22.8	28	13:12	18.3	5:12
22	108	서울	2002-06-10	22.4	26.6	13:23	20	23:00
23	108	서울	2002-06-11	21.9	26.8	15:14	19	4:20
24	108	서울	2002-06-12	18.6	22.9	10:47	16.6	4:08
25	108	서울	2002-06-13	19.7	24.4	14:35	16	5:09
26	108	서울	2002-06-14	20.4	25	13:00	16.4	5:18
27	108	서울	2002-06-15	20.6	24.8	17:10	17.4	4:53
28	108	서울	2002-06-16	22.4	28.6	15:46	15.7	5:06
29	108	서울	2002-06-17	23.2	28.4	13:50	17.9	5:28
30	108	서울	2002-06-18	23.4	28.9	14:08	19	5:56
31	108	서울	2002-06-19	22.3	26.2	14:51	20.2	2:03
32	108	서울	2002-06-20	22.2	26.1	14:42	19.2	8:38

계급별통계

[검색조건] ,분류: 지상

,요소 : 기온 ,검색구분 : 일

,지역/지점명 : 서울

,기간 : 2002 ~ 2002년 06 ~ 06월 01 ~ 30일

지점번호,지점명,일시,평균기온(°C),최고기온(°C), 최고기온시각,최저

기온(°C),최저기온시각

108,서울,2002-06-01,20.2,24.8,12:29,17.1,00:06

108,서울,2002-06-02,22.9,30.0,15:08,15.3,04:50

108,서울,2002-06-03,23.4,29.1,14:45,17.6,05:31

108,서울,2002-06-04,22.4,27.6,14:06,18.2,04:29

108,서울,2002-06-05,25.2,31.4,15:13,19.1,04:43

108,서울,2002-06-06,25.9,31.2,13:07,21.2,05:57

♥ CSV 파일 정제하기

이 과정에서 경고창이 떠도 당황하지 말고 예(Y) 버튼을 누르기

파일 이름(N): 2002.csv

파일 형식(T): CSV (쉼표로 분리) (*.csv)


```
csv 모듈을 불러옴
import csv
f=open('2002.csv')
                      csv 파일을 open() 함수를 열어서 f에 저장함
data=csv.reader(f)
                  #3
                       csv 파일에서 데이터를 읽어와서 data에 저장함
header=next(data)
                  #4
                       header라는 변수에 헤더 데이터 행을 저장함
print(header)
                  #5
for row in data:
                  #6
  print(row)
                  #7
f.close()
                  #8
```



```
#1
import csv
f=open('2002.csv')
                   #2
data=csv.reader(f)
                   #3
header=next(data)
                   #4
print(header)
                   #5
                        header를 출력함
for row in data:
                       데이터를 한 줄씩 읽어와서
                   #6
   print(row)
                   #7
                       화면에 출력함
f.close()
                   #8
                       파일을 닫음
```



```
\langle \underline{\mathsf{O}} | \underline{\mathsf{O}} | \underline{\mathsf{O}} \rangle ['일시', '평균기온(\mathbb{C})', '최고기온(\mathbb{C})', '최저기온(\mathbb{C})']
                ['2002-06-01', '20.2', '24.8', '17.1']
                ['2002-06-02', '22.9', '30', '15.3']
                 ['2002-06-03', '23.4', '29.1', '17.6']
                 ['2002-06-04', '22.4', '27.6', '18.2']
                ['2002-06-05', '25.2', '31.4', '19.1']
                ['2002-06-06', '25.9', '31.2', '21.2']
                ['2002-06-07', '25.2', '30.6', '19.6']
                 ['2002-06-08', '22.1', '27.1', '19.4']
                ['2002-06-09', '22.8', '28', '18.3']
                ['2002-06-10', '22.4', '26.6', '20']
                ['2002-06-11', '21.9', '26.8', '19']
                ….생략됨
```



```
〈실행결과〉['일시', '평균기온(℃)', '최고기온(℃)', '최저기온(℃)']
                 ['2002-06-01', '20.2', '24.8', '17.1']
                 ['2002-06-02', '22.9', '30', '15.3']
                 ['2002-06-03', '23.4', '29.1', '17.6']
                 ['2002-06-04', '22.4', '27.6', '18.2']
                 ['2002-06-05', '25.2', '31.4', '19.1']
                 ['2002-06-06', '25.9', '31.2', '21.2']
                 ['2002-06-07', '25.2', '30.6', '19.6']
                 ['2002-06-08', '22.1', '27.1', '19.4']
실행결과 분석
                 ['2002-06-09', '22.8', '28', '18.3']
```

- 각 행의 데이터는 리스트로 반환됨
- 각 행의 데이터가 문자열 데이터로 이루어져 있음

☞ SETP 2: 평균기온데이터에 대한 시각화

```
import csv
import matplotlib.pyplot as plt
                               matplotlib라이브러리에 속한 pyplot 모듈을 불러옴
f=open('2002.csv')
data=csv.reader(f)
header=next(data)
print(header)
                               평균기온을 저장하기 위한 리스트 생성
temp=[]
for row in data:
  temp.append(row[1])
                               평균기온을 리스트에 저장
                           #3
temp=list(map(float,temp))
                               평균기온 데이터는 숫자 값이 아닌 문자열이기때문에
                           #4
                               값을 숫자 데이터형으로 변환
print(temp)
```


그래프 그리기

☞ SETP 2: 평균기온데이터에 대한 시각화

```
title()함수 - 그래프에 제목 넣기
plt.title('Average temperature graph')
                                  #1
plt.plot(temp,linewidth=5)
                                       plot()함수는 직선 또는 꺽은 선 형태의 그래프를
                                       그릴 때 사용
plt.xlabel('day')
                                       xlabel()함수-x축 레이블지정/
                                  #3
plt.ylabel('temperature')
                                       ylabel()함수-y축 레이블지정
plt.legend(['temperature'])
                                       legend()함수-범례넣기
                                  #4
plt.show()
                                  #5
                                       show()함수-그래프 보여주기
f.close()
```


☞ SETP 2: 평균기온데이터에 대한 시각화

