- ${f 10}^*$. Выясните, какие из следующих совокупностей формул имеют модели:
 - (a) $\{ \forall x_1 \neg f_1^1 x_1 = x_1, \exists x_0 f_1^1 f_1^1 x_1 = f_1^1 x_1 \}$
 - (6) $\{ \forall x_1 \forall x_2 (\neg x_1 = x_2 \to \neg f_1^1 x_1 = \neg f_1^1 x_2), \forall x_0 \exists x_1 f_1 x_1 = x_0 \}$
 - (B) $\{ \forall x_1 \forall x_2 (P_1^2 x_1 x_2 \to \neg P_1^2 x_2 x_1), \forall x_1 P_1^2 x_1 x_1 \};$
 - (F) $\{\forall x_1 \forall x_2 \ (P_1^2 x_1 x_2 \rightarrow (P_1^2 x_2 x_1 \rightarrow x_1 \stackrel{.}{=} x_2)), \forall x_1 \forall x_2 \ (P_1^2 x_1 x_2 \rightarrow \neg x_1 \stackrel{.}{=} x_2)\};$

ЗАДАНИЕ 14. Выражение свойств алгебраических систем и их элементов

Высший уровень владения языком состоит в умении выражать на этом языке все то, что можно на нем выразить.

Учебные задачи

1. НАУЧИТЬСЯ ВЫПОЛНЯТЬ: строить формулы языка первого порядка данной сигнатуры с данной областью истинности в данной алгебраической системе.

Упражнения для самостоятельного решения $Ceo\check{u}cmea$ "Mupoe"

- **1.** В сигнатуре задачи из предыдущего задания напишите формулу, выражающую это утверждение:
- (а) всякая черная фигура расположена правее любого треугольни-ка;
- (б) каждый большой белый треугольник расположен правее некоторого черного круга;
 - (в) хотя бы один круг расположен правее любого квадрата;
- (Γ) некоторый малый треугольник расположен правее некоторого белого квадрата;
 - (д) каждый квадрат расположен левее некоторой большой фигуры;
- (е) некоторая малая черная фигура расположена правее всякого квадрата.
- **2.** Напишите формулу с одной свободной переменной x (остальные переменные должны быть связанными), которая принимает значение M

в данном мире, если и только если значение $\,x\,$ есть первая справа фигура этого мира.

- **3.** Напишите замкнтую формулу, которая истинна в тех и только тех "мирах", в которых самая правая фигура есть большой белый треугольник.
- **4.** Напишите формулу с двумя свободными переменными, x и y, которая принимает в данном мире значение U в том и только том случае, когда значениями x и y служат фигуры одного размера.
- **5.** Напишите формулу с двумя свободными переменными, x и y, которая принимает в данном мире значение U в том и только том случае, когда значениями x и y служат фигуры разного цвета.
- **6.** Напишите формулу с двумя свободными переменными, x и y, которая принимает в данном мире значение U в том и только том случае, когда значения переменных x и y не равны.
- **7.** Напишите формулу с двумя свободными переменными, x и y, которая принимает в данном мире значение U в том и только том случае, когда значениями x и y служат соседние фигуры.
- **8.** Рассматривается "мир", состоящий из восьми фигур. Как выразить в виде формулы утверждение: "половина фигур в данном "мире" маленькие"?
- **9.** Напишите формулу, принимающую значение U в данном мире, если и только если значение x есть третья слева фигура в данном мире.
- **10.** Напишите формулу, означающую: "третья справа фигура в данном "мире" есть треугольник.
- **11.** Напомним, что треугольник имеет три угла, квадрат четыре, а круг не имеет углов. Напишите формулу с двумя свободными переменными, x и y, которая принимает в данном мире значение U в том и только том случае, когда значение переменной x имеет меньше углов, чем значение переменной y.

Геометрические свойства

12. По [Лавров, Максимова, 1995, ч. II, §4, №17]. Пусть M — множество точек, прямых и плоскостей 3-мерного евклидова геометрического пространства. Пусть сигнатура языка содержит предикатные символы: $P_1^1, P_2^1, P_3^1, P_4^2$. Пусть интерпретация сигнатуры такова, что для всяких m, m_1, m_2 из M выполняется:

 $P_1^1(m) = \mathrm{T}(m) = \mathcal{U} \iff m$ есть точка; $P_2^1(m) = \mathrm{\Pip}(m) = \mathcal{U} \iff m$ есть прямая; $P_3^1(m) = \mathrm{\Pin}(m) = \mathcal{U} \iff m$ есть плоскость; $P_4^1(m_1, m_2) = \mathrm{\Pi}(m_1, m_2) = \mathcal{U} \iff m_1$ лежит на m_2 .

Напишите формулы стандартного языка, выражающие утверждения:

- (а) "на любой прямой лежит хотя бы одна точка";
- (б) "через каждые две точки можно провести прямую";
- (в) "на любой прямой лежит по крайней мере две различные точки";
- (Γ^*) "через каждые две точки можно провести прямую; если эти точки различны, то прямая единственна";
- $(д^*)$ "через каждые три точки, не лежащие на одной прямой можно провести единственную плоскость";
- (e^*) "существуют по крайней мере 3 различные точки, не лежащие на одной прямой".

Замечание. Ответом является формула в сигнатуре $\{P_1^1, P_2^1, P_3^1, P_4^2\}$.

- **13.** По [Лавров, Максимова, 1995, ч. II, §4, №18]. В модели из предыдущей задачи запишите:
 - (а*) определение параллельности прямых;
 - (б*) определение параллельности плоскостей;
 - (в*) аксиому Евклида о параллельности прямых;
 - (г*) аксиому Лобачевского о параллельности прямых.
- **14.** Пусть сигнатура стандартного языка есть $\{=, P_1^3\}$. Пусть интерпретация сигнатуры в множестве M всех точек плоскости такова, что для всяких m_1, m_2, m_2 из M выполняется:

 $P_1^3(m_1, m_2, m_3) = \mathcal{U} \iff$ точки m_1, m_2 и m_3 лежат на одной прямой. Напишите формулу, выражающую утверждение:

- (а) "существуют по крайней мере три различные точки, не лежащие на одной прямой";
- (б) "существуют по крайней мере три различные точки, лежащие на одной прямой";
- (в) "на прямой, проходящей через две произвольные точки существует третья точка, отличная от первых двух".

15. Пусть сигнатура стандартного языка есть $\{=, P_2^3\}$. Пусть интерпретация сигнатуры в множестве M всех точек плоскости такова, что для всяких $m_1, m_2, m_3 \in M$ выполняется:

- (а) "для любых двух различных точек существует третья точка, отличная от них и лежащая между ними";
- (б) "из любых трёх точек одна и только одна лежит между двумя другими".

Алгебраические свойства

16. По [Лавров, Максимова, 1995, с.78, №8]. Пусть сигнатура языка включает в себя один трехместный предикатный символ P_1^3 , интерпретация которого в множестве \mathbb{N}_0 неотрицательных целых чисел такова, что

$$P_1^3(m_1, m_2, m_3) = \mathcal{U} \Leftrightarrow m_1 + m_2 = m_3.$$

Напишите формулу с двумя свободными переменными x_0, x_1 , которая принимает значение U, если и только если для значений переменных выполняется $x_0 \leq x_1$.

17. По [Верещагин, Шень, 2002, с. 99]. Пусть сигнатура стандартного языка есть $\{=, P_1^2\}$. Пусть интерпретация сигнатуры в множестве всех целых чисел $\mathbb Z$ такова, что

$$P_1^2(m_1, m_2) = \mathcal{U} \iff m_1 < m_2.$$

Напишите формулу с двумя свободными перемеными $x_0,\ x_1,\$ принимающую значение U на таких и только таких значениях этих переменных, что $x_0+1=x_1$.

18*. По [Верещагин, Шень, 2002, с. 99]. Пусть сигнатура стандартного языка есть $\{=, P_1^2\}$. Пусть интерпретация сигнатуры в множестве $\mathbb N$ такова, что для всяких $m_1, m_2 \in \mathbb N$ выполняется:

$$P_1^2(m_1, m_2) = \mathcal{U} \iff "m_1$$
 делит $m_2"$.

Напишите формулу с одной свободной переменой x_0 , принимающую значение M на таких и только таких значениях m, этой переменной, что m— простое число.

19. По [Лавров, Максимова, 1995, с.78, №8]. Пусть сигнатура языка включает в себя два трехместных предикатных символа P_1^3 , P_2^3 , интерпретация которых в множестве \mathbb{N}_0 неотрицательных целых чисел такова, что

$$P_1^3(m_1, m_2, m_3) = \mathcal{U} \Leftrightarrow m_1 + m_2 = m_3,$$