

Maximum Marks: 100	Semester: January Examination: ESE I			Duration:3 Hrs.
Programme code: 01 Programme: B Tech in Com	puter Engineering	C	lass: SY	Semester: IV(SVU 2020)
Name of the Constituent Col K. J. Somaiya College of En			Name of th	e department: COMP
Course Code: 116U01C404	Name of the Cou Design	rse:	Theory of	Automata with Compiler
Instructions: 1)Draw neat di 3) Assume suitable data whe		ons	are compuls	sory

Que. No.			Quest	ion		Max. Marks
Q1	Solve any Four					20
i)	Minimize the following FA with:					5
	and the state of		0	1		
	1111	→A	В	D		
	100	B*	A	C	Livery Tuency mich.	
		C	В	D		
	but special	D*	C	A		
	Show step wise	solution				
ii)	What are some real-world applications of DFA and NFA in programming languages, compilers, and natural language processing?			5		
iii)	Design a DFA that recognizes the language of all strings over {0, 1} that have an equal number of 0s and 1s.(State machine and table is expected, No simulation)			5		
iv)	Design a NFA that recognizes the language of all strings over {a,b} that have 'bab' as a suffix.			5		
v)	Write a regular expression for the language $L = \{w \in \{a, b\}^* \mid w \text{ contains the substring ab}\}$ with explanation.			5		
vi)	Explain how the inclusion.	e product of	FA can be us	sed to solve the	problem of language	5

Que. No.	Question	Max. Marks
Q2 A	Solve the following	10
i)	Given the grammar $S \to A$, $A \to AB \mid a$, $B \to bB \mid \epsilon$, show derivation steps and construct a derivation tree for the string aaabbbb.	5
ii)	Use Arden's theorem to find a regular expression for the language $L = \{w \in \{a, b\}^* \mid w \text{ contains at least three consecutive b's}\}.$	5

	or	
Q2 A	How does the Chomsky hierarchy relate to the concepts of decidability and undecidability in formal language theory? Explain with suitable example.	10

Q2B	Solve any One	10
i)	Design a DFA to recognize the language of all strings over the alphabet {a,b} that have a length of at least 3 and end with the same symbol as their first symbol.	10
ii)	Design an NFA that recognizes the language of all strings over {a, b} that contain an odd number of occurrences of the substring aba or the substring bab.	10

Que. No.	Question	dMax. Marks
Q3	Solve any Two	20
i)	Design a Turing machine that accepts the language of all strings over the alphabet {0, 1} that represents binary numbers that are divisible by 3.	10
ii)	Design Turing machine to copy a string(Consider the single tape).	10
iii)	Design a Turing machine that accepts the language of all strings over the alphabet {a, b} that have an odd number of b's.	10

Que, No.	Question	Max. Marks
Q4	Solve any Two	
i)	Construct a PDA for the CFG G = (V, Σ , R, S) where V = {S, A, B}, Σ = {a, b}, R = {S \rightarrow A, A \rightarrow aA, A \rightarrow bB, B \rightarrow bB, B \rightarrow ϵ }.	10
ii)	Convert the PDA ($\{q0, q1, q2, q3\}, \{0, 1\}, \{Z0\}, \delta, q0, \{Z0\}$) with the following transition function:	10
	$\delta(q0, \lambda, Z0) = \{(q1, Z0)\}$ $\delta(q1, 0, Z0) = \{(q1, 0Z0)\}$	
	$\delta(q1, 1, Z0) = \{(q2, \lambda)\}$ $\delta(q2, 1, Z0) = \{(q2, \lambda)\}$ $\delta(q2, \lambda, Z0) = \{(q3, Z0)\}$	
	$\delta(q3, 0, 0) = \{(q3, \lambda)\}\$ $\delta(q3, 1, 0) = \{(q3, \lambda)\}\$	
	$\delta(q3, \lambda, Z0) = \{(q0, \lambda)\}$	
	to a CFG and simplify the resulting grammar.	
iii)	Design a PDA for the language $L = \{w\#w^R \mid w \in \{a, b\}^*\}$, where # is a special symbol not in the alphabet and w^R denotes the reverse of w.	10

A PART OF THE PART

Que. No.	Question			
Q5	(Write notes / Short question type) on any four	20		
i)	Show that the language of all valid parentheses expressions is a context-free language, but not a regular language.	5		
ii)	Can every context-sensitive language be recognized by a linear bound automaton? Why or why not?	5		
iii)	How does a PDA differ from a finite state automaton (FSA) and a Turing machine (TM)?	5		
iv)	What are some real-world applications of Rice's Theorem?	5		
v)	Can a problem that can be solved by a single-tape Turing machine also be solved by a multitape Turing machine? Justify.	5		
vi)	What are some challenges associated with applying the pumping lemma for context-free languages in practice?	5		