	4
k .	5
	6
	1
	2

1

2

3

1.	A system for attenuation of acoustic waves traveling through a longitudinal
mem	ber capable of transmitting said acoustic waves therethrough comprising:

- A plurality of spaced-apart masses firmly attached to an adjacent outer wall of said longitudinal member, each said plurality of masses having a predetermined spacing and a predetermined magnitude for attenuation of acoustic pulses in a predetermined frequency range.
- 2. The system for attenuation of acoustic waves according to claim 1 wherein said predetermined frequency range comprises 10 khz to 20 khz.
- 3. The system for attenuation of acoustic waves according to claim 2 wherein said 1 plurality of masses comprises a material selected from (i) steel rings, and, (ii) tungsten 2 rings. 3
- The system for attenuation of acoustic waves according to claim 3 wherein said 1 4. 2 plurality of masses is between six and ten.
- 5. The system according to claim 1 wherein said spacing of the masses is within the 1 2 range of twelve to fourteen centimeters.
- 1 6. The system according to claim 1 wherein the masses comprise metal rings 414-13238-CIP 28

2

3	from	an inner	r circumference of the rings.
1	7.	The s	ystem according to claim 1 wherein each of said plurality of masses is
2	attacl	ned to th	ne longitudinal member by at least one neck piece.
1	8.	The s	ystem according to claim 1 wherein the masses comprise metal rings
2	attach	ned to a	shoulder on the longitudinal member.
1	9.	The s	ystem according to claim 8 wherein the metal rings are asymmetrically
2	attacl	ned to th	ne shoulder on the longitudinal member.
1	10.	An ap	paratus for performing acoustic investigations of a subsurface geological
2	forma	ation per	netrated by a borehole comprising:
3		(a)	a longitudinally extending body conveyed in said borehole;
4		(b)	an acoustic transmitter supported by the body, said transmitter generating
5			acoustic signals in the body, the borehole and the subsurface formations;
6		(c)	an acoustic receiver spaced apart from the transmitter and supported by
7			the body for receiving said acoustic signals; and
8		(d)	an attenuator located on a substantially cylindrical portion of the body
9			having an inner diameter and an outer diameter, between said acoustic - 1349392
10			transmitter and said acoustic receiver for attenuating said acoustic signals
11			in the body within a predetermined frequency range;

attached to the outer wall of the longitudinal member by neck pieces extending inward

12

13

14

1

2

3

wherein said attenuator comprises a plura	ality of spaced-apart masses having a
predetermined spacing, mass and length	firmly attached to an outer wall of the
cylindrical portion of the body.	

- 11. The apparatus of claim 10 wherein the longitudinally extending body is conveyed on a drilling tubular having a drillbit therein for drilling the borehole, said drilling tubular selected from the group consisting of (i) a drillstring, and, (ii) coiled tubing.
- 1 12. The apparatus of claim 10 wherein the attenuator comprises a plurality of spaced 2 apart masses wherein said predetermined frequency range comprises 10 khz to 20 khz.
- 1 13. The apparatus of claim 10 wherein the attenuator comprises a plurality of spaced
 2 apart masses wherein material of said masses is selected from the group consisting of (i)
 3 steel rings, and, (ii) tungsten rings.
- 1 14. The apparatus of claim 10 wherein the attenuator comprises a plurality of spaced
 2 apart masses wherein said plurality of masses is between six and ten.
- 1 15. The apparatus of claim 10 wherein the attenuator comprises a plurality of spaced
 2 apart masses and wherein said spacing of the masses is within the range of twelve to
 3 fourteen centimeters.
- 1 16. A method of performing acoustic investigations of a subsurface geological
 414-13238-CIP 30

	2	formation penetrated by a borehole comprising:
	3	(a) conveying a logging tool having a substantially cylindrical body
•	4	into the borehole;
11	5	(b) activating a transmitter on the body for generating acoustic signals
	6	in the formation, borehole and the body;
	7	(c) attenuating signals passing through the body using an attenuator
	8	comprising a plurality of spaced-apart masses firmly attached on an
	9	outside adjacent wall of the body, said masses being spaced apart a
	10	preselected distance to attenuate signals within a specified frequency
H U	11	range;
# 	12	(d) using a receiver on a side of the attenuator opposite the transmitter
	13	for receiving signals through the formation and the attenuated signals
1	14	through the body.
J		
	1	17. The method of claim 16 wherein said specified frequency range comprises 10 khz
	2	to 20 khz.
	1	18. The method of claim 16 wherein said plurality of masses comprises a material
	2	selected from (i) steel rings, and, (ii) tungsten rings.
	1	19. The method of claim 16 further comprising conveying the logging tool on a
	2	drilling tubular.

- 1 20. The method of claim 16 further comprising performing said acoustic
- 2 investigations during drilling of the wellbore.
- 1 21. A system for attenuation of acoustic waves traveling through a longitudinal
- 2 member capable of transmitting said acoustic waves therethrough, comprising a plurality
- of spaced-apart masses firmly and asymmetrically attached to an adjacent outer wall of
- said longitudinal member, each said plurality of masses having a predetermined spacing
- and a predetermined magnitude for attenuation of acoustic pulses in a predetermined
- 6 frequency range.
- 1 22. The system according to claim 21 wherein the plurality of masses comprises a
- 2 material selected from (i) steel rings, and (ii) tungsten rings.
- 1 23. The system according to claim 21 wherein the predetermined frequency range
- comprises 10khz to 20 khz.
- 1 24. The system for attenuation of acoustic waves according to claim 21 wherein said
- 2 plurality of masses is between six and ten.
- 1 25. The system according to claim 21 wherein said spacing of the masses is within the
- 2 range of twelve to fourteen centimeters.
- 1 26. Amethod of performing acoustic investigations of a subsurface geological

2	formation penetrated by a borehole comprising:
3	(a) conveying a logging tool having a substantially cylindrical body
4	into the borehole;
5	(b) activating a transmitter on the body for generating acoustic signals
6	in the formation, borehole and the body;
7	(c) preferentially attenuating signals passing through the body in a
8	predetermined direction using an attenuator comprising a plurality of
9	spaced-apart masses firmly and asymmetrically attached on an outside
10	adjacent wall of the body, said masses being spaced apart a preselected
11	distance to attenuate signals within a specified frequency range;
12	(d) using a receiver on a side of the attenuator opposite the transmitter
13	for receiving signals through the formation and the attenuated signals
14	through the body.
1	27. The method of claim 26 wherein said specified frequency range comprises 10 khz
2	to 20 khz.
1	28. The method of claim 26 wherein said plurality of masses comprises a material
2	selected from (i) steel rings, and, (ii) tungsten rings.
1	29. The method of claim 26 further comprising conveying the logging tool on a
2	drilling tubular.

- 30. The method of clarm 26 further comprising performing said acoustic
- investigations during drilling of the wellbore.