Лабораторная работа №1

Халина Ирина

№169

Найдя путем подбора частное решение, привести уравнение Риккати $xy' - (2x+1)y + y^2 = -x^2$ к уравнению Бернулли и решить его.

Решение. Подставим частное решение в виде $y_1(x) = ax + b$ в уравнение. Из полученного тождества составим систему уравнений относительно a и b и, решив ее, получим a = 1, b = 0 или a = b = 1. Положим a = 1, b = 0, тогда $y_1(x) = x$. Произведя замену $y = x + \frac{1}{z}$, получим уравнение:

$$-\frac{1}{z^2}(xz'+z-1) = 0.$$

Тогда z=1-xC и $y=x+\frac{1}{1-xC}.$ Ответ: $y=x+\frac{1}{1-xC}.$

№170

Найдя путем подбора частное решение, привести уравнение Риккати $y' - 2xy + y^2 = 5 - x^2$ к уравнению Бернулли и решить его.

Решение. Подставим частное решение в виде $y_1(x) = ax + b$ в уравнение. Из полученного тождества составим систему уравнений относительно a и b и, решив ее, получим a=1,b=2 или a=1,b=-2. Положим a=1,b=2, тогда $y_1(x)=x+2$. Произведя замену $y=x+2+\frac{1}{z}$ получим уравнение:

$$\frac{1}{z^2}(z'+4z+1)=0.$$

Тогда $z=\frac{Ce^{-4x}-1}{4}$ и $y=x+2+\frac{4}{Ce^{-4x}-1}.$ Ответ: $y=x+2+\frac{4}{Ce^{-4x}-1}.$

$N_{2}171$

Найдя путем подбора частное решение, привести уравнение Риккати $y' + 2ye^x - y^2 = e^{2x} + e^x$ к уравнению Бернулли и решить его.

Peшение. Подставим частное решение в виде $y_1(x) = e^x + a$ в уравнение и получим a = 0, тогда $y_1(x) = e^x$. Произведя замену $y = e^x + z$ получим уравнение:

$$z' - z^2 = 0.$$

Тогда $z=-\frac{1}{x+C}$ и $y=e^x-\frac{1}{x+C}.$ Ответ: $y=e^x-\frac{1}{x+C}.$

№179

Пусть в уравнении xy'+ay=f(x) имеем $a=const>0, f(x)\longrightarrow b$ при $x\longrightarrow 0.$ Показать, что только одно решение остается ограниченным при $x\longrightarrow 0,$ и найти предел этого решения при $x\longrightarrow 0.$

1

Решение. Пусть общее решение уравнения:

$$y = \frac{C}{|x|^a} + \frac{b}{a} + \frac{1}{|x|^a} \int_0^x \varepsilon(t)|t|^{a-1} d(|t|),$$

где $d(|t|)=sgntdt,\,t\neq0,\,\varepsilon(t)\longrightarrow0$ при $t\longrightarrow0.$ Тогда оценим

$$\frac{1}{|x|^a} |\int_0^x \varepsilon(t) |t|^{a-1} d(|t|) | \leq \frac{1}{a} \sup_{0 < t < x} |\varepsilon(t)| \longrightarrow 0, x \longrightarrow 0.$$

Следовательно, $\lim_{x\to 0} y$ существует только при C=0 и равен $\frac{b}{a}$.

№180

Пусть в уравнении xy' + ay = f(x) имеем $a = const < 0, f(x) \longrightarrow b$ при $x \longrightarrow 0$. Показать, что все решения этого уравнения имет один и тот же конечный предел при $x \longrightarrow 0$ и найти его.

Решение. Общее решение уравнения:

$$y = \frac{C}{|x|^a} + \frac{b}{a} + \frac{1}{|x|^a} \int \varepsilon(x)|x|^{a-1} d(|x|).$$

Если $\int \varepsilon(x)|x|^{a-1}d(|x|)$ - ограничен, то

$$\forall C \lim_{x \to 0} y(x) = \frac{b}{a}$$

Если $\int \varepsilon(x)|x|^{a-1}d(|x|)$ - не ограничен, то применим правило Лопиталя:

$$\lim_{x \to 0} \frac{\int \varepsilon(x)|x|^{a-1}d(|x|)}{|x|^a} = \lim_{x \to 0} \frac{\varepsilon(x)|x|^{a-1}}{a|x|^{a-1}} = 0$$

Таким образом,

$$\lim_{x \to 0} y(x) = \frac{b}{a}, \ \forall \ C$$

№181

Показать, что уравнение $\frac{dx}{dt} + x = f(t)$, где $|f(t)| \le M$ при $-\inf < t < +\inf$, имеет одно решение, ограниченное при $-\inf < t < +\inf$, и найти его. Показать, что найденное решение периодическое, если функция f(t) периодическая.

Pemenue. Представим общее решение заданного уравнения в виде:

$$x(t) = e^{-t} + e^{-t} \int_{-\infty}^{t} f(\tau)e^{\tau} d\tau$$

Такое представление возможно в силу того, что $\left| \int_{-\infty}^t f(\tau) e^{\tau} d\tau \right| \leq M e^t$, и, как следствие, несобственный интеграл сходится. Из неравенства также следует, что функция $e^{-t} \int_{-\infty}^t f(\tau) e^{\tau} d\tau$ ограничена числом М $\forall t \in (-\infty, +\infty)$. Таким образом необходимым и достаточным условием ограниченности функции x является равенство C=0. Искомое решение имеет вид:

$$x(t) = e^{-t} \int_{-\infty}^{t} f(\tau)e^{\tau} d\tau$$

Пусть, далее:

$$\forall \tau \in (-\infty, +\infty) f(\tau + T) = f(\tau), \ T > 0$$

Тогда из искомого решения находим:

$$x(t) = e^{-t} \int_{-\infty}^{t} f(\tau + T)e^{\tau} d\tau = e^{-(t+T)} \int_{-\infty}^{t+T} f(\tau_1)e^{\tau_1} d\tau_1 = x(t+T),$$

где $\tau_1 = \tau + T$. Следовательно, х - периодическая функция.