

Proyecto 3

1. Deduzca una fórmula $O(h^4)$ de cinco puntos para aproximar $f'(x_0)$ que utilice $f(x_0 - h), f(x_0), f(x_0 + h), f(x_0 + 2h), f(x_0 + 3h)$.

Respuesta

Para poder llevar a cabo esta aproximación se utilizó el algoritmo programado en Python para poder obtener su resultado. Como primer paso, debemos de realizar un análisis de los polinomios de Taylor y luego realizar el algoritmo que brinde el sistema de ecuaciones para poder obtener el resultado de las aproximaciones.

Consideramos la expresión

$$f'_{(x_0)} = af(x_0 - h) + bf(x_0) + cf(x_0 + h) + df(x_0 + 2h) + ef(x_0 + 3h).$$

Realizamos la expansión de las ecuaciones de Taylor para poder obtener los equivalentes a los coeficientes que nos ayudarán a resolver la ecuación: a,b,c,d,e

$$f'_{(x_0)} = a[f_{(x_0)} - hf'_{(x_0)} + \frac{h^2}{2}f''_{(x_0)} - \frac{h^3}{6}f'''_{(x_0)} + \frac{h^4}{24}f^{(4)}_{(x_0)} - \frac{h^5}{120}f^{(5)}_{(x_0)}(\varepsilon_1)] + b[f^{\text{\tiny init}}_{(x_0)}]$$

$$+c[f_{(x_0)}^{\dots}-hf_{(x_0)}'+\frac{h^2}{2}f_{(x_0)}''-\frac{h^3}{6}f_{(x_0)}'''+\frac{h^4}{24}f_{(x_0)}^{(4)}-\frac{h^5}{120}f_{(x_0)}^{(5)}(\varepsilon_2)]$$

$$+d[f_{(x_0)}^{\perp}-2hf_{(x_0)}'+\frac{(2h)^2}{2}f_{(x_0)}''-\frac{(2h)^3}{6}f_{(x_0)}'''+\frac{(2h)^4}{24}f_{(x_0)}^{(4)}-\frac{(2h)^5}{120}f_{(x_0)}^{(5)}(\varepsilon_3)]$$

$$+ e[f_{(x_0)}^{\text{i.i.}} - 3hf_{(x_0)}' + \frac{(3h)^2}{2}f_{(x_0)}'' - \frac{(3h)^3}{6}f_{(x_0)}''' + \frac{(3h)^4}{24}f_{(x_0)}^{(4)} - \frac{(3h)^5}{120}f_{(x_0)}^{(5)}(\varepsilon_4)]$$

Ya con la expansión de la serie de Taylor procedemos a utilizar el siguiente algoritmo:

```
function [t,x,y] =taylor_SEDO1(f,g,a,b,x0,y0,n)
     h=(b-a)/n;
     t=a:h:b;
     x=zeros(1,n+1); %reserva memoria para n+1 element(i)os del vect(i)or x(i)
     y=zeros(1,n+1);
     x(1)=x0; y(1)=y0;
      for i=1:n
       k1=h*f(t(i),x(i),y(i));
       l1=h*g(t(i),x(i),y(i));
       k2=h*f(t(i)+h/2,x(i)+k1/2,y(i)+l1/2);
       12=h*g(t(i)+h/2,x(i)+k1/2,y(i)+l1/2);
       k3=h*f(t(i)+h,x(i)-k1+2*k2,y(i)-l1+2*l2);
       13=h*f(t(i)+h,x(i)-k1+2*k2,y(i)-l1+2*l2);
       x(i+1)=x(i)+(k1+4*k2+k3)/6;
       y(i+1)=y(i)+(l1+4*l2+l3)/6;
      endfor
endfunction
```

Este algoritmo nos ayuda a reducir de forma significativa los términos con los cuales deberemos de encontrar nuestro sistema de ecuaciones, recordemos que el resultado principal que estamos buscando nos ayudará a encontrar los resultados que estamos buscando:

$$= (a+b+c+d+e) f(x_0)$$

$$+ (-a+c+2d+3e) h f'(x_0)$$

$$+ (a+c+4d+9e) \frac{h^2}{2} f''(x_0)$$

$$+ (-a+c+8d+27e) \frac{h^3}{6} f'''(x_0)$$

$$+ (a+c+16d+81e) \frac{h^4}{24} f^{(4)}(x_0)$$

$$+ (-af^{(5)}(\xi_1) + cf^{(5)}(\xi_2) + 32df^{(5)}(\xi_3) + 243ef^{(5)}(\xi_4)) \frac{h^5}{120}.$$

Sistema de ecuaciones con 5 incógnitas

$$a+b+c+d+e = 0,$$

$$(-a+c+2d+3e)h = 1,$$

$$(a+c+4d+9e)\frac{h^2}{2} = 0,$$

$$(-a+c+8d+27e)\frac{h^3}{6} = 0,$$

$$(a+c+16d+81e)\frac{h^4}{24} = 0.$$

Con el algoritmo anterior tenemos como resultado los siguientes coeficientes, estos coeficientes serán los que nos ayudarán a obtener nuestra fórmula que nos permitirá obtener los resultados deseados en los siguientes ejercicios.

Coeficientes

Función →

$$f'_{(x_0)} = -0.25hf(x_0 - h) - 0.83hf(x_0) + 1.5hf(x_0 + h) - 0.5hf(x_0 + 2h) + 0.083f(x_0 + 3h) + O(h^4)$$

2. Dados los datos a continuación, utilice la fórmula del problema 1 para aproximar f'(0.4) y f'(0.8).

X	0.2	0.4	0.6	0.8	1.0
f(x)	0.9798652	0.9177710	0.8080348	0.6386093	0.3843735

- Respuesta

La fórmula que utilizaremos para poder obtener las aproximaciones indicadas es la siguiente:

$$f'_{(x_0)} = -0.25hf(x_0 - h) - 0.83hf(x_0) + 1.5hf(x_0 + h) - 0.5hf(x_0 + 2h) + 0.083f(x_0 + 3h)$$

Para poder trabajar de forma ordenada nuestra aproximación realizamos una conversión de los valores dados en los coeficientes a **fracciones** para poder estimar de mejor manera los resultados y evitar el uso de decimales. Adicional, preparamos la ecuación para que su sustitución sea intuitiva y fácil de realizar.

$$f'(x_0) = \frac{-3f(x_0 - h) - 10f(x_0) + 18f(x_0 + h) - 6f(x_0 + 2h) + f(x_0 + 3h)}{12h}$$

Entonces utilizando h = 0.2 obtenemos lo siguiente:

$$f'(0.4) \approx \frac{\left(-\frac{1}{4}\right)f(0.4-0.2) + \left(\frac{3}{2}\right)f(0.4+0.2) - \left(\frac{1}{2}\right)f(0.4+2(0.2))}{0.2}$$

$$+\frac{\left(\frac{1}{12}\right)f(0.4+3(0.2))-\left(\frac{5}{6}\right)f(0.2)}{0.2}$$

$$=\frac{\left(-\frac{1}{4}\right)f(0.2)+\left(\frac{3}{2}\right)f(0.6)-\left(\frac{1}{2}\right)f(0.8)+\left(\frac{1}{12}\right)f(1)-\left(\frac{5}{6}\right)f(0.2)}{0.4}$$

$$\approx 0.4249840$$

$$f'(0.8) \approx \frac{\left(-\frac{1}{4}\right)f(0.8 - 0.2) + \left(\frac{3}{2}\right)f(0.8 + 0.2) - \left(\frac{1}{2}\right)f(0.8 + 2(0.2))}{0.2} + \frac{\left(\frac{1}{12}\right)f(0.8 + 3(0.2)) - \left(\frac{5}{6}\right)f(0.2)}{0.2}$$

$$+\frac{\left(\frac{1}{12}\right)f(0.8+3(0.2))-\left(\frac{5}{6}\right)f(0.2)}{0.2}$$

$$=\frac{\left(-\frac{1}{4}\right)f(0.6)+\left(\frac{3}{2}\right)f(1)-\left(\frac{1}{2}\right)f(0.8)+\left(\frac{1}{12}\right)f(1)-\left(\frac{5}{6}\right)f(1.2)}{0.8}$$

$$\approx 0.122142$$

3. Todos los estudiantes de cálculo saben que la derivada de una función f en el punto x puede definirse como

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Escoja su función favorita f, y un número $x \neq 0$, para generar aproximaciones para f'(x) y $f'_n(x)$, $n = 1,2, \cdots 20$, donde

$$f'_n(x) = \frac{f(x+10^{-n}) - f(x)}{10^{-n}}$$

Explique sus resultados.

- Respuesta

A continuación se definen los elementos que utilizamos para el análisis de **aproximación lineal** de una función f(x), los valores fueron los siguientes:

Selección de elementos:

Función f(x)	$f(x) = \frac{3}{4} \cdot x^4 - \sqrt{2} \cdot x^2 - 5x$
Función f'(x)	$f'(x) = \frac{3}{4} \cdot 4x^{4-1} - 2\sqrt{2} \cdot x^{2-1} - 5x^{1-1}$ $f'(x) = 3x^3 - 2\sqrt{2} \cdot x - 5$
Número	1

Primer análisis

Número	1			
				Resultado de F(x) y F'(x)
F(x)	0.75	-1.4142136	-5	-5.664213562
F'(x)	3	-2.8284271	-5	-4.828427125

a) Aproximación lineal para F'(x) donde x=1

F'(x)	3 -2.828427	71 -5		-4.8284
-------	-------------	--------------	--	---------

b) Aproximación lineal para F'n(x) donde x=1 y n=1,2,3....20 tenemos que:

		Та	bla de	resultad	los	
n	Opera	ción de eleme	ntos	Resultado A	Resultado B	Aproximación lineal de F'n(x)
1	0.75	-1.4142	-5	-5.5642136	0.1	1
2	12	-5.6569	-10	-3.6468542	0.01	1
3	60.75	-12.7279	-15	33.0230779	0.001	1
4	192	-22.6274	-20	149.372683	0.0001	1
5	468.75	-35.3553	-25	408.394671	1E-05	1
6	972	-50.9117	-30	891.088313	1E-06	1
7	1800.75	-69.2965	-35	1696.45354	1E-07	1
8	3072	-90.5097	-40	2941.49033	9.9999E-09	1
9	4920.75	-114.5513	-45	4761.1987	1.0004E-09	1
10	7500	-141.4214	-50	7308.57864	1.0004E-10	1
11	10980.75	-171.1198	-55	10754.6302	9.0949E-12	0.91
12	15552	-203.6468	-60	15288.3532	1.819E-12	1.82
13	21420.75	-239.0021	-65	21116.7479	0	0
14	28812	-277.1859	-70	28464.8141	0	0
15	37968.75	-318.1981	-75	37575.5519	0	0
16	49152	-362.0387	-80	48709.9613	0	0
17	62640.75	-408.7077	-85	62147.0423	0	0
18	78732	-458.2052	-90	78183.7948	0	0
19	97740.75	-510.5311	-95	97135.2189	0	0
20	120000	-565.6854	-100	119334.315	0	0

c) Análisis de resultados

Dado que una aproximación lineal representa a una aproximación de cualquier función derivable a otra función que se supone es más sencilla que la anterior. Para poder resolver esta problemática utilizamos el desarrollo de Taylor. Por lo que, al momento de encontrar la aproximación lineal para la función f'(x) tenemos que los resultados de sus raíces son homogéneos y a partir del elemento 13 no tenemos ningún valor que represente esa aproximación dado que nuestros resultados son 0.

Nota: Si se desea observar el procedimiento para obtener los resultados deberá de dirigirse al archivo de excel (u hoja de cálculo) en la pestaña indicada como: **Inciso 3**

4. Construya un método para aproximar $f'''(x_0)$ cuyo término de error sea de orden h^2 expandiendo la función f en un polinomio de Taylor de grado cuatro alrededor de x_0 .

- Respuesta

Se declaran los primeros cuatro términos básicos de las expansiones de Taylor y el término restante.

$$f(x) = f(x_0) + rac{f'(x_0)}{1!}(x - x_0) + rac{f''(x_0)}{2!}(x - x_0)^2 + rac{f'''(x_0)}{3!}(x - x_0)^3 \ + rac{f''''(\xi(x))}{4!}(x - x_0)^4 \ f(x) = f(x_0) + f'(x_0)(x - x_0) + rac{1}{2}f''(x_0)(x - x_0)^2 + rac{1}{6}f'''(x_0)(x - x_0)^3 \ + rac{1}{24}f''''(\xi(x))(x - x_0)^4$$

Se aplica para $x_0 = h y x_0 = 2h$

$$f(x_0-2h)=f(x_0)-2f'(x_0)h+2f''(x_0)h^2-rac{4}{3}f'''(x_0)h^3+rac{2}{3}f''''(\xi(x_0-2h))h^4 \ f(x_0-h)=f(x_0)-f'(x_0)h+rac{1}{2}f''(x_0)h^2-rac{1}{6}f'''(x_0)h^3+rac{1}{24}f''''(\xi(x_0-h))h^4 \ f(x_0+h)=f(x_0)+f'(x_0)h+rac{1}{2}f''(x_0)h^2+rac{1}{6}f'''(x_0)h^3+rac{1}{24}f''''(\xi(x_0+h))h^4 \ f(x_0+2h)=f(x_0)+2f'(x_0)h+2f''(x_0)h^2+rac{4}{3}f'''(x_0)h^3+rac{2}{3}f''''(\xi(x_0+2h))h^4 \ f(x_0+2h)=f(x_0)+2f'(x_0)h+2f''(x_0)h^2+rac{4}{3}f''''(x_0)h^3+rac{2}{3}f''''(\xi(x_0+2h))h^4 \ f(x_0+2h)=f(x_0)+2f'(x_0)h+2f''(x_0)h^2+rac{4}{3}f'''(x_0)h^3+rac{2}{3}f''''(\xi(x_0+2h))h^4 \ f(x_0+2h)=f(x_0)+2f''(x_0)h+2f''(x_0)h^2+rac{4}{3}f'''(x_0)h^3+rac{2}{3}f''''(\xi(x_0+2h))h^4 \ f(x_0+2h)=f(x_0)+2f''(x_0)h+2f''(x_0)h^2+rac{4}{3}f'''(x_0)h^3+rac{2}{3}f''''(\xi(x_0+2h))h^4 \ f(x_0+2h)=f(x_0)+2f''(x_0)h+2f''(x_0)h^2+rac{4}{3}f'''(x_0)h^3+rac{2}{3}f''''(\xi(x_0+2h))h^4 \ f(x_0+2h)=f(x_0)+2f''(x_0)h+2f''(x_0)h^2+rac{4}{3}f'''(x_0)h^3+rac{2}{3}f''''(\xi(x_0+2h))h^4 \ f(x_0+2h)=f(x_0)+2f''(x_0)h^2+2f''(x_0)h^2+2f''(x_0)h^2+2f'''(x_0)h^2+2f'''(x_0)h^2+2f'''(x_0)h^2+2f'''(x_0)h^2+2f'''(x_0)h^2+2f'''(x_0)h^2+2f'''(x_0)h^2+2f'''(x_0)h^2+2f'''(x_0)h^2+2f'''(x_0)h^2+2f'''(x_0)h^2+2f'''(x_0)h^2+2f'''(x_0)h^2+2f'''(x_0)h^2+2f''''(x_0)h^2+2f'''(x_0)h^2+2f'''(x_0)h^2+2f''''(x_0)h^2+2f''''(x_0)h^2+2f''''(x_0)h^2+2f''''(x_0)h^2+2f''''(x_0)h^2+2f'''''(x_0)h^2+2f''''(x_0)h^2+2f'''''(x_0)h^2+2f''''(x_0)h^2+2f''''(x_0)h^2+2f''''(x_0)h^2+2f''''(x_0)h^2+2f''''(x_0)h^2+2f'''''$$

Al momento de convertir las ecuaciones a un sistema matricial tenemos

$$egin{bmatrix} 1 & -2 & 2 & -rac{4}{3} \ 1 & -1 & rac{1}{2} & -rac{1}{6} \ 1 & 1 & rac{1}{2} & rac{1}{6} \ 1 & 2 & 2 & rac{4}{3} \end{bmatrix} egin{bmatrix} f(x_0) \ f'(x_0)h \ f''(x_0)h^2 \ f'''(x_0)h^3 \end{bmatrix} pprox egin{bmatrix} f(x_0-2h) \ f(x_0-h) \ f(x_0+h) \ f(x_0+2h) \end{bmatrix}$$

Al momento de realizar el análisis del sistema obtenemos que: (para este análisis se utilizó el algoritmo declarado en el problema 1)

$$egin{bmatrix} -rac{1}{6} & rac{2}{3} & rac{2}{3} & -rac{1}{6} \ rac{1}{12} & -rac{2}{3} & rac{2}{3} & -rac{1}{12} \ rac{1}{3} & -rac{1}{3} & rac{1}{3} & rac{1}{3} \ -rac{1}{2} & 1 & -1 & rac{1}{2} \ \end{pmatrix} egin{bmatrix} f(x_0-2h) \ f(x_0-h) \ f(x_0+h) \ f(x_0+2h) \end{bmatrix} pprox egin{bmatrix} f(x_0) \ f'(x_0)h \ f''(x_0)h^2 \ f'''(x_0)h^3 \end{bmatrix}$$

Ecuación respuesta:

$$f'''(x_0)pprox rac{1}{h^3}iggl[-rac{1}{2}f(x_0-2h)+f(x_0-h)-f(x_0+h)+rac{1}{2}f(x_0+2h)iggr]$$

Término de error:

$$h\left[-rac{1}{3}f''''(\xi(x_0-2h))+rac{1}{24}f''''(\xi(x_0-h))-rac{1}{24}f''''(\xi(x_0+h))+rac{1}{3}f''''(\xi(x_0+2h))
ight]$$

Para un cohete, se recabaron los datos siguientes de la distancia recorrida versus tiempo:

t(s)	0	25	50	75	100	125
Y(km)	0	32	58	78	92	100

Utilice diferenciación numérica para estimar la velocidad y aceleración del cohete en cada momento.

- Respuesta

La velocidad y la aceleración del cohete en cada momento es:

T(s)	Y(KM)	Y(m)	V(m/s)	V(KM/s)	a(m/s)	a(km/s)	h
0	0	0	1400	1,4	9,600000	0,009600	
25	32	32000	1160	1,16	9,600000	0,009600	
50	58	58000	920	0,92	9,600000	0,009600	
75	78	78000	680	0,68	9,600000	0,009600	
100	92	92000	440	0,44	9,600000	0,009600	
125	100	100000	200	0,2	9,600000	0,009600	

Nota: Si se desea observar el procedimiento para obtener los resultados deberá de dirigirse al archivo de excel (u hoja de cálculo) en la pestaña indicada como: **Inciso 5**

6. Considere los datos de la tabla a continuación:

X	1	2	3	4	5
f(x)	2.71828	7.3896	20.08554	54.59815	148.41316

- 6.1. Aproxime f'(2), f'(3) y f'(4) usando un método de orden O(h).
- 6.2. Aproxime f''(2), f''(3) y f''(4) usando un método de orden $O(h^2)$.
- 6.3. Encuentre el error de aproximación de los incisos anteriores con respecto a los valores exactos para $f(x) = e^x$.

6.1

х	f(x)
1	2.71828
2	2.3896
3	20.08554
4	54.59815
5	148.41316

X	f(x)	f'(2)	f'(3)	f'(4)		
1	2.71828	12.69594	-10.460323	-22.2859225	h=	1
2	7.3896	8.68363	5.4541675	19.1002063		
3	20.08554	23.604275	27.74009	4.4409E-16		
4	54.59815	64.16381	5.4541675	6.4097225		
5	148.41316	34.51261	40.559535	-22.2859225		

6.2	
х	f(x)
1	2.71828
2	7.3896
3	20.08554
4	54.59815
5	148.41316

Х	f(x)	f'(2)	f'(3)	f'(4)
1	7.3890462	348.82273	-635.57798	-4749.57273
2	54.606188	198.01994	557.17658	2971.16365
3	403.42892	1463.1759	5306.7493	0
4	2980.958	10811.519	557.17658	2020.79668
5	22026.466	2577.5291	9348.3427	-4749.57273

6.3

L							
	x	f(x)	f'(2)	f'(3)	f'(4)		
	1	20.085496	7699.5698	-38570.068	-776469.802	h=	1
	2	403.51789	4041.5011	36738.033	425888.952		
	3	8103.0877	81175.637	813207.84	0		
	4	162754.79	1630457.2	36738.033	368036.85		
	5	3269017.4	154651.7	1549281.5	-776469.802		