Ejercicio:

Encontrar la FDT del sistema con entrada $\,v_{\scriptscriptstyle in}(t)\,$ y salida $\,v_{\scriptscriptstyle o}(t)\,$

Solución: Definimos las ecuaciones del sistema en el dominio de Laplace.

$$V_{in}(s) = R_1 I_1(s) + \frac{1}{sC_1} I_3(s)$$
 $\frac{1}{sC_1} I_3(s) = R_2 I_2(s) + V_0(s)$ $V_0(s) = \frac{1}{sC_2} I_2(s)$ $I_3(s) = I_1(s) - I_2(s)$ Ec1 (Malla 1) Ec2 (Malla 2) Ec3 (Voltaje en C2) Ec4 (Corriente en C1)

Se despejan las variables desconocidas, de la primera se despeja $I_1(s)$ ($V_{in}(s)$ es la entrada y siempre se asume conocida), de la segunda se despeja $I_2(s)$ ($I_3(s)$ ya está sola en la cuarta ecuación) y luego se arma el diagrama a bloques de cada ecuación.

Entonces podemos armar nuestro diagrama a bloques global interconectando los bloques de las ecuaciones. Recuerda que la entrada al sistema es y la salida es por lo tanto:

Bloque 1

Recorremos esta línea de 12

Bloques en cascada

$$\frac{V_{in}(s)}{sR_{1}(sC_{1}+s^{2}R_{2}C_{1}C_{2}+sC_{2})+s+s^{2}R_{2}C_{2}} \xrightarrow{V_{0}(s)}$$

$$\frac{V_o(s)}{V_{in}(s)} = \frac{1}{s^2 R_1 R_2 C_1 C_2 + s(R_1 C_1 + R_1 C_2 + R_2 C_2) + 1}$$

¿Qué es la Función de Transferencia de un sistema?

$$FDT = \frac{Y(s)}{U(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_0}$$

¿Cómo se le llama al polinomio en el **denominador** de la FDT? **Ecuación Característica**

¿Cuáles son los Polos de una FDT?

Las raíces de la ecuación característica. Son los valores de **s** donde la FDT tiene valor infinito.

¿Y que tal los Ceros?

Las raíces del numerador de la FDT. Son los valores de **s** donde la FDT tiene valor de cero.

¿Qué dice y para que sirve el teorema del valor final?

$$\lim_{t\to\infty} y(t) = \lim_{s\to 0} sY(s)$$

Nos indica donde se estabiliza el valor de la salida en el tiempo, evaluando un criterio en el dominio complejo de Laplace.

Elemento	Fuerza	Velocidad	Fuerza	Velocidad
Coeficiente de Fricción	f(t) = Bv(t)	$v(t) = \frac{f(t)}{B}$	F(s) = BV(s)	$V(s) = \frac{F(s)}{B}$
Resorte	$f(t) = K \int v(t) dt$	$v(t) = \frac{1}{k} \frac{df(t)}{dt}$	$F(s) = K \frac{V(s)}{s}$	$V(s) = \frac{sF(s)}{k}$
Masa	$f(t) = M \frac{dv(t)}{dt}$	$v(t) = \frac{1}{M} \int f(t)dt$	F(s) = sMV(s)	$V(s) = \frac{F(s)}{sM}$

Nota: En palancas los momentos se deben conservar.

Ejemplo:

Se utilizan diagramas de cuerpo libre para hacer el análisis en sistemas mecánicos.

- Se obtienen **ecuaciones de nodo** (lugar donde se conectan dos o más elementos).
- En este caso hay un **solo nodo** donde se conecta la masa, la fricción y el resorte.
- Se utiliza la **segunda ley de Newton**.

$$F(s) = sMV(s) + BV(s) + \frac{KV(s)}{s}$$

$$V(s) = F(s) \frac{s}{s^2M + sB + K}$$

$$F(s) \xrightarrow{S} V(s) \xrightarrow{1} X(s)$$

$$g^2M + sB + K \xrightarrow{\text{integrador}} V(s) \xrightarrow{\text{integrador}} X(s)$$

Ejercicio:

Variable de Entrada: F(s) Fuerza Aplicada

Variable de Salida: $V_1(s)$ Velocidad Masa 1

Análisis:

En este sistema hay 2 nodos (uno para cada masa).

Nodo de M₂

$$F(s) = sM_2V_2(s) + B_2V_2(s) + k_2[V_2(s) - V_1(s)]/s$$

Nota: La velocidad de compresión de k₂ es una diferencia de velocidades, ya que cada extremo del resorte lleva una velocidad diferente.

Nodo de M₁
$$\frac{k_2[V_2(s) - V_1(s)]}{s} = sM_1V_1(s) + B_1V_1(s) + \frac{k_1V_1(s)}{s}$$

Se multiplican ambas ecuaciones por s

$$sF(s) = s^2 M_2 V_2(s) + sB_2 V_2(s) + k_2 [V_2(s) - V_1(s)]$$

$$k_{2}[V_{2}(s)-V_{1}(s)] = s^{2}M_{1}V_{1}(s)+sB_{1}V_{1}(s)+k_{1}V_{1}(s)$$

Y se despejan las variables de velocidad (la fuerza se conoce por ser la entrada)

$$V_{2}(s) = \frac{sF(s) + k_{2}V_{1}(s)}{s^{2}M_{2} + sB_{2} + k_{2}} - V_{1}(s)$$

$$V_{2}(s) = \frac{sF(s) + k_{2}V_{1}(s)}{s^{2}M_{2} + sB_{2} + k_{2}} - V_{2}(s)$$

$$V_{1}(s) = \frac{k_{2}V_{2}(s)}{s^{2}M_{1} + sB_{1} + k_{1} + k_{2}} \longrightarrow \bigvee \frac{V_{2}(s)}{s^{2}M_{1} + sB_{1} + k_{1} + k_{2}} \stackrel{V_{1}(s)}{\longrightarrow}$$

Interconectamos los bloques de las ecuaciones para obtener el diagrama global.

Bloque de retroalimentación positiva

$$\begin{array}{c|c}
F(s) & k_2 & V_1(s) \\
\hline
(s^2M_2 + sB_2 + k_2)(s^2M_1 + sB_1 + k_1 + k_2) - k_2^2 & \end{array}$$

$$\begin{array}{c|c}
F(s) & sk_2 & V_1(s) \\
\hline
(s^2M_2 + sB_2 + k_2)(s^2M_1 + sB_1 + k_1 + k_2) - k_2^2 & \end{array}$$

$$\frac{V_1(s)}{F(s)} = \frac{sk_2}{\left(s^2M_2 + sB_2 + k_2\right)\left(s^2M_1 + sB_1 + k_1 + k_2\right) - k_2^2}$$

Elemento	Par	Velocidad	Par	Velocidad
Coeficiente de Fricción	T(t) = Bw(t)	$w(t) = \frac{T(t)}{B}$	T(s) = BW(s)	$W(s) = \frac{T(s)}{B}$
Resorte	$T(t) = K \int w(t) dt$	$w(t) = \frac{1}{k} \frac{dT(t)}{dt}$	$T(s) = \frac{K}{s}W(s)$	$W(s) = \frac{sT(s)}{k}$
Momento de Inercia (Jm)	$T(t) = J_m \frac{dw(t)}{dt}$	$w(t) = \frac{1}{J_m} \int T(t)dt$	$T(s) = J_m s W(s)$	$W(s) = \frac{T(s)}{J_m s}$

Nota: En engranes, la potencia del primario es igual a la del secundario. Las relaciones entre par y velocidad angular transmitidos están dadas por:

$$T_2(t) = -\frac{n_2}{n_1}T_1(t)$$
 $w_2(t) = -\frac{n_1}{n_2}w_1(t)$

donde n_1 y n_2 son el número de dientes en el primario y secundario respectivamente. Note que la relación de par es inversa a la de velocidad.

Ejemplo:

Ecuación Diferencial

$$T(t) = Bw(t) + K \int w(t)dt + J_m \frac{dw(t)}{dt}$$

Transformando a Laplace

$$T(s) = BW(s) + \frac{K}{s}W(s) + sJ_mW(s)$$

Despejando Variable Incógnita.

$$T(s) = \left[B + \frac{K}{s} + sJ_m\right]W(s) = \frac{J_m s^2 + Bs + K}{s}W(s)$$

$$W(s) = \frac{S}{J_m s^2 + Bs + K}T(s)$$

FDT

Proyecto Final:

Modelar dinámicamente y diseñar un algoritmo de control automático para un sistema físico que sea de su interés.

Requisitos:

- El proyecto debe ser validado (en alcance y complejidad) por el profesor.
- El proyecto debe incluir las etapas de acondicionamiento necesarias para los sensores del sistema.
- El algoritmo de control debe ser implementado en una tarjeta electrónica de su elección.
- Debe incluir una GUI en Matlab que permita definir la ejecución del sistema de control: empezar/parar experimento, redefinir ganancias, guardar y graficar experimentos, etc.

- Definir objetivo de control.
- Identificación de variables del sistema (controlada, manipulada, internas, referencias).
- Especificaciones del sistema (sensores y actuadores necesarios, naturaleza de las señales, etapas de acondicionamiento que visualizan necesarias, etc.)
- Definir las ecuaciones diferenciales del sistema que identifiquen necesarias.
- Diagrama a bloques del sistema de su proyecto, incluyendo el bloque del controlador.

Sistemas Electromecánicos

Son sistemas que se componen de elementos eléctricos y mecánicos.

Electroimán (Traslación)

La fuerza es proporcional a la corriente aplicada.

$$f(t) = k \cdot i(t)$$

$$F(s) = k \cdot I(s)$$

Motor Eléctrico (Rotación)

El par es proporcional a la corriente aplicada.

$$T(t) = K_T \cdot i(t)$$

$$T(t) = K_T \cdot i(t)$$
 $T(s) = K_T \cdot I(s)$

Fuerza Contraelectromotriz:

Aparece cuando un conductor corta líneas de campo magnético.

El voltaje es proporcional a las líneas de campo que se cortan por segundo (si el campo es fijo es proporcional a la velocidad del conductor).

$$e_m(t) = K_b \cdot w(t)$$

$$E_m(s) = K_b \cdot W(s)$$

El motor de CD es una máquina que convierte **energía eléctrica** en energía **mecánica rotacional**.

En este tipo de motores la corriente de campo es constante (o un flujo magnético generado por imán permanente).

Entonces el diagrama se puede reducir como:

Ecuación Eléctrica

$$v_a(t) = R_a i_a(t) + L_a \frac{di_a(t)}{dt} + e_m(t)$$

Ecuación Mecánica

$$T(t) = J_{m} \frac{d\omega(t)}{dt} + B_{m}\omega(t) + T_{L}(t)$$

Par Generado

$$T(t) = K_T i_a(t)$$

Fuerza Contraelectromotriz

$$e_m(t) = K_b \omega(t)$$

Consideramos $T_L(t) = 0$ para tener un sistema lineal.

$$T(t) = K_T I_a(t)$$

$$T(s) = K_T I_a(s)$$

$$e_m(t) = K_b \omega(t)$$

$$E_m(s) = K_b W(s)$$

$$V_a(t) = R_a i_a(t) + L_a \frac{di_a(t)}{dt} + e_m(t)$$
 \longrightarrow $V_a(s) = R_a I_a(s) + L_a s I_a(s) + E_m(s)$

$$T(t) = J_{m} \frac{d\omega(t)}{dt} + B_{m}\omega(t) \qquad \longrightarrow \qquad T(s) = J_{m}sW(s) + B_{m}W(s)$$

TAREA (T1.2): Obtener la FDT del motor de CD utilizando el procedimiento de álgebra de bloques visto en clase. Definir su entrada como $V_a(s)$ y su salida como W(s).

Simulando FDTs en Matlab y Simulink...

iii Gracias por su atención!!!