2021年1月27日 星期三 15:21

Q4 maximize
$$3 = 4x_1 - 3x_2 + 2x_3 - x_4$$

Subject to: $\{-x_1 - x_2 - x_3 + x_4 \le 5$
 $-x_1 + x_2 + x_3 - x_4 \le 3$
 $x_1, x_2, x_3, x_4 \ge 0$

(a) The reason of this problem doesn't have a maximum.

Since
$$J = 4\chi_1 - 3\chi_2 + 2\chi_3 - \chi_4$$
 and $\chi_1, \chi_2, \chi_3, \chi_4 > 0$.
To maximize J , we set χ_2 , $\chi_4 = 0$. We obtain:

max
$$3 = 4x_1 + 2x_3$$
, subject to:
$$\begin{cases} -x_1 - x_3 \le 5 & 0 \\ -x_1 + x_3 \le 3 & 2 \end{cases}$$
$$\begin{cases} x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

To maximize \mathcal{F} , we need to increase \mathcal{X}_1 and \mathcal{X}_3 . According to the constraints \mathcal{D} and \mathcal{D} , we can infinitly increase \mathcal{X}_1 and \mathcal{X}_3 as long as we keep \mathcal{X}_1 is no more than 3 less than \mathcal{X}_3 to satisfy the constraints \mathcal{D} . (In the other word, $\mathcal{X}_3 \leq \mathcal{X}_1 + 3$). Therefore, we cannot have a maximum \mathcal{F} .

(b). Find a solution with 3 = 1000.

As mentioned in part (a), to get the maximum 3, we set $x_2 = x_4 = 0$. Then we have:

max
$$3 = 4x_1 + 2x_3$$

subject to: $\begin{cases} -x_1 - x_3 \le 5 \\ -x_1 + x_3 \le 3 \end{cases}$
 $\begin{cases} x_1, x_2, x_3, x_4 > 0 \end{cases}$

The boundary is $X_3 = X_1 + 3$. We choose a solution on the boundary U. To achieve $3 \ge 1000$, we pick:

$$\begin{cases} \chi_1 = 500 \\ \chi_3 = 503. \end{cases} \rightarrow \begin{cases} -\chi_1 - \chi_3 = -500 - 503 = -1003 \le 5 \\ -\chi_1 + \chi_3 = -500 + 503 = 3 \le 3 \end{cases}$$

check: $8 = 4 \times 500 + 503 \times 2 = 2106 21000$

Therefore, the particular solution with 3 > 1000 is:

$$\begin{cases} \chi_1 = 500 \\ \chi_2 = 0 \\ \chi_3 = 503 \\ \chi_4 = 0 \end{cases}$$