Теми за Държавен Изпит

29 юли 2024 г.

Дискретни структури

Множества. Декартово произведение. Релации. Функции.

Аксиома (за обема)

 $\forall x (x \in A \iff x \in B) \implies A = B$

Аксиома (за отделянето)

 $A' = \{x | x \in A, \pi(x)\}$ е множество

Аксиома (за степенното множество)

Съвкупността от всички подмножества на множеството X е множество

Аксиома (за индукцията)

 $X = < X_0, \mathcal{F} >$ е множество, където X_0 е непразно множество, а \mathcal{F} е множество от операции

Теорема (математическа индукция)

За всеки елемент x на индуктивно дефинираното мн-во M е в сила $\pi(x)$

Доказателство.

- База: За всеки базов елемент x_0 от M_0 проверяваме верността на $\pi(x_0)$
- Индукционно предположение: Допускаме, че $\pi(x)$ е в сила за всеки елемент x, включен до определен момент в множеството M
- Индукционна стъпка: Показваме, че при направеното предположение, за всеки построен с помощта на операциите от $\mathcal F$ елемент y на M, също е в сила $\pi(y)$
- Заключение: π е в сила за всеки елемент на множеството M

Основни операции върху множества и техните свойства:

$$A \cup B = \{x | x \in A \text{ или } x \in B\}$$

$$A \cap B = \{x | x \in A \text{ и } x \in B\}$$

$$A \backslash B = \{x | x \in A \text{ и } x \notin B\}$$

$$A \triangle B = \{x | (x \in A \text{ и } x \notin B) \text{ или } (x \notin A \text{ и } x \in B)\}$$

- 1. Идемпотентност $A \cup A = A, A \cap A = A$
- 2. Комутативност $A \cup B = B \cup A, A \cap B = B \cap A, A \triangle B = B \cup A$
- 3. Асоциативност $(A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C), (A \triangle B) \triangle C = A \triangle (B \triangle C)$
- 4. Дистрибутивност $(A \cup B) \cap C = (A \cap C) \cup (B \cap C), (A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- 5. Свойства на празното и универсалното множество $A\cup\varnothing=A,A\cap\varnothing=\varnothing,A\cup U=U,A\cap U=A$
- 6. Свойства на допълнението $A \cup \overline{A} = U, A \cap \overline{A} = \varnothing, \overline{\overline{A}} = A$
- 7. Закони на Де Морган $\overline{A \cup B} = \overline{A} \cap \overline{B}, \overline{A \cap B} = \overline{A} \cup \overline{B}$

<u>Дефиниция</u> Нека a и b са произволни елементи. Означаваме с (a,b) множеството $\{a,\{a,b\}\}$ и го наричаме **наредена** двойка от елементите a и b

<u>Дефиниция</u> Нека A и B са множества. Множеството $A \times B = \{(a,b) | a \in A, b \in B\}$ наричаме **Декартово произведение** на множествата A и B

Дефиниция Нека $n \in \mathbb{N}$ и $A_1,...,A_n$ е фамилия от множества. Всяко $\overline{R} \subseteq A_1 \times ... \times A_n$ наричаме n-местна релация над декартовото произведение $A_1 \times ... \times A_n$ или просто n-местна релация. Множествата $A_1,...,A_n$ наричаме домейни. В случай, че n=2, релацията наричаме двуместна, или просто релация.

Дефиниция Нека $R \subseteq A \times A$. Казваме, че релацията R е:

- **Рефлексивна** ако $\forall a \in A, (a, a) \in R$
- Симетрична ако $\forall a, b \in A, a \neq b, (a, b) \in R \implies (b, a) \in R$
- Транзитивна ако $\forall a, b, c \in A, (a, b) \in R, (b, c) \in R \implies (a, c) \in R$
- Антирефлексивна ако $\forall a \in A, (a, a) \notin R$
- Антисиметрична ако $\forall a,b \in A, a \neq b, (a,b) \in R \implies (b,a) \notin R$
- Силно антисиметрична ако $\forall a,b\in A,a\neq b,$ точно едно от $(a,b)\in R$ или $(b,a)\in R$ е в сила

<u>Дефиниция</u> Релацията $R \subseteq A \times A$ наричаме **еквивалентност**, ако е рефлексивна, симетрична и транзитивна.

Дефиниция Нека $R \subseteq A \times A$ е релация на еквивалентност, $a \in A$ и $[a] = \{b|b \in A, aRb\}$. Нека фамилията $\mathcal{R} = \{[a_i]|i \in I\}$ се състои от всички различни множества $[a_i]$, където I е подходящо индексно множество. Тогава \mathcal{R} е разбиране на A. Множествата $[a_i]$ наричаме **класове на еквивалентност**.

<u>Дефиниция</u> Релацията $R \subseteq A \times A$ наричаме **частична наредба**, ако е рефлексивна, антисиметрична и транзитивна.

<u>Дефиниция</u> Частичната наредба $R \subseteq A \times A$ наричаме **пълна**(линейна), ако силно антисиметрична.

<u>Дефиниция</u> Нека $R \subseteq A \times A$. Елементът $a \in A$ наричаме **минимален** в R, ако $\nexists b \in A, b \neq a$ и такъв, че bRa. Елементът $a \in A$ наричаме **максимален** в R, ако $\nexists b \in A, b \neq a$ и такъв, че aRb.

Алгоритъм (топологично сортиране)

<u>Дадено</u>: Множество $A = \{a_1, a_2, ..., a_n\}$ и частична наредба $R \subseteq A \times A$. <u>Резултат</u>: Наредена n-торка $(a_{i_1}, a_{i_2}, ..., a_{i_n})$ от различните елементи на A, задаваща пълна наредба $R' \subseteq A \times A, R \subseteq R'$: $\forall m \in I_n, \forall k \in I_n, m \leqslant k \rightarrow (a_{i_m}, a_{i_k}) \in R'$. Процедура:

- 1. j = 1, T = R, M = A
- 2. Намираме a_{i_i} минимален в M за релацията T
- 3. $T = T \setminus \{(a_{i_j}, a_l) | (a_{i_j}, a_l) \in T\}; M = M \setminus \{a_{i_j}\}; j = j + 1$
- 4. Ако $M \neq \varnothing$ преминаваме към 2., в противен случай алгоритъмът спира.

<u>Дефиниция</u> Релацията $f \subseteq X \times Y$ наричаме **частична функция**, ако $\forall a \in X \exists$ не повече от едно $b \in Y : (a,b) \in f$

<u>Дефиниция</u> Релацията $f\subseteq X\times Y$ наричаме **тотална функция**, ако $\forall a\in X\exists$ точно едно $b\in Y:(a,b)\in f$

<u>Дефиниция</u> Ако $f(x_1) \neq f(x_2), \forall x_1 \neq x_2 \in X$, тогава функцията f наричаме **инекция**.

<u>Дефиниция</u> Ако $\forall b \in Y, \exists a \in X, f(a) = b,$ тогава функцията f наричаме сюрекция на X върху Y.

Дефиниция Множеството A е **крайно**, ако $A = \emptyset$ или $\exists n \in N, n \geqslant 1$ и биекция $f: A \to I_n \ |A| = 0$, ако $A = \emptyset$ и |A| = n в противен случай, наричаме брой на елементите на A (**кардиналност**).

<u>Дефиниция</u> Казваме, че множеството A е **изброимо безкрайно**, ако \exists биекция $f:A \to N$. Казваме, че множеството A е **изброимо**, ако е крайно или изброимо безкрайно.

Принцип на Дирихле Нека X и Y са крайни множества и |X| > |Y|. Тогава за всяка тотална функция $f: X \to Y$ съществуват $x_1 \neq x_2 \in X$ такива, че $f(x_1) = f(x_2)$

Основни комбинаторни принципи и конфигурации. Рекурентни уравнения.

Теорема (принцип на Дирихле)

Нека X е множество с n елемента (предмета), а Y е множество с m елемента (чекмеджета) и n > m. Както и да поставим всички предмети в чекмеджетата, поне в едно чекмедже ще има поне два предмета.

Теорема (принцип на биекцията)

Теорема (принцип на събирането)

Пека A е крайно множество, а $\mathcal{R}=\{S_1,...,S_n\}$ е разбиване на A. Тогава $|A|=\sum_{i=1}^k |S_i|$

Теорема (принцип на изваждането)

 $\overline{\text{Нека } A \text{ е}}$ крайно множество, $A', A'' \subseteq A, A' = A A''$. Тогава |A'| = |A| - |A''|

Теорема (принцип на умножението)

Нека X и Y са крайни множества, |X|=n, |Y|=m. Тогава $|X\times Y|=|X|.|Y|=nm$

Теорема (принцип на делението)

Теорема (принцип за включване и изключване)

 $\overline{\text{Нека } A \text{ е}}$ крайно множество и $A_1,...,A_n\subseteq A$. Тогава:

$$|A_1| = |A| - \sum |A_i| + \sum |A_i \cap A_j| - \sum |A_i \cap A_j \cap A_k| + \dots + (-1)^n |A_1 \cap A_2 \cap \dots \cap A_n|$$

Комбинаторни конфигурации с наредба и повторение

Нека $0 < m \in \mathbb{Z}$ и $\mathcal{K}_{\mathsf{H},\Pi}(n,m)$ е множеството, в което всеки елемент е наредена m-торка с елементи от образуващото множество A, като един елемент на A може да участва произволен брой пъти в m-торката. $|\mathcal{K}_{\mathsf{H},\Pi}(n,m)| = |A^m| = n^m$

Комбинаторни конфигурации с наредба и без повторение

Нека $1\leqslant m\leqslant n\in\mathbb{Z}$ и $\mathcal{K}_{\mathrm{H}}(n,m)$ е множеството от наредените m-торки с елементи от образуващото множество A, в които всеки елемент участва не повече от веднъж. Нека $m\geqslant 2$. Тогава на първо място в m-торката може да се постави кой да е от елементите на A, които са n на брой, а на второ място всеки от останалите n-1. Съгласно принципа за умножението, за първите позиции в m-торката получаваме n(n-1) възможности. За всяка от тях можем да изберем трети елемент по (n-2) възможни начина и съгласно Принципа за умножението, за първите 3 позиции имаме n(n-1)(n-2) възможности. Разсъждавайки индуктивно, получаваме за броя на конфигурациите с наредба и без повтаряне $\mathcal{K}_{\mathrm{H}}(n,m)=n(n-1)...(n-m+1)$. В случай, че m=1 имаме точно n възможности и тъй като $n=\mathcal{K}_{\mathrm{H}}(n,1)$, формулата е в сила и в този случай.

Комбинаторните конфигурации от m елемента, построени от множество с n елемента, $1 \le m \le n$, с наредба и без повтаряне се наричат още **вариации** на n елемента от m-ти клас и се означават с V_n^m

При m=n, комбинаторната конфигурация се нарича **пермутация** и $|P_n|=\mathcal{K}_{\mathrm{H}}(n,n)=n(n-1)...2.1=n!$

Комбинаторни конфигурации без наредба и без повторение

Нека $0>n, 0\leqslant m\leqslant n\in\mathbb{Z}$ и $\mathcal{K}(n,m)$ е множеството от наредените m-торки, без повтаряне, от елементи на образуващото множество A с n елемента. Всъщност отсъствието на наредба и повтаряне означава, че разглежданите конфигурации са m-елементните подмножества на A. Наричаме ги **комбинации** на n елемента от m-ти клас и ги означаваме с C_n^m . За да намерим броя на комбинациите на n елемента от m-ти клас, ще използваме Принципа на делението. Ако вместо ненаредените m-торки без повтаряне разгледаме наредените, множеството $\mathcal{K}(n,m)$ ще се разшири до $\mathcal{K}'(n,m)=\mathcal{K}_{\rm H}(n,m)$, при това всяка ненаредена m-орка ще се среща в новото множество по толкова начина, по колкото можем да подредим всичките й елементи, т.е. по m! начина. Следователно $|\mathcal{K}(n,m)|=\frac{\mathcal{K}_{\rm H}(n,m)}{m!}=\frac{n(n-1)...(n-m+1)}{m!}=\frac{n!}{m!(n-m)!}$. Така получения израз означаваме с $\binom{n}{m}$ и наричаме биномен коефициент.

Теорема (Нютон)

$$\forall n \in \mathbb{N}, \forall x, y \in \mathbb{R} : (x+y)^n = \sum_{m=0}^n \binom{n}{m} x^m y^{n-m}$$

Доказателство. При повдигане бинома x+y на n-та степен всеки едночлен от вида x^my^{n-m} ще се получи толкова пъти, по колкото начина можем да изберем m множители измежду n-те, които взимаме x (от останалите n-m избираме y), а това е точно броят на ненаредените конфигурации без повторение $\binom{n}{m}$

В комбинаториката едно тъждество може да бъде доказано както по формален път, така и по комбинаторен път, чрез преброяване на елементите на подходящо избрана конфигурация по два различни начина. Тази техника е известна като принцип на двукратното броене.

Теорема

$$\overline{\text{Нека } n, m} \in \mathbb{N}, n > m.$$
 Тогава $\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$ и $\binom{n}{m} = \binom{n}{n-m}$

Теорема

Нека
$$n, m \in \mathbb{N}$$
. Тогава $\binom{n+m}{m} = \sum_{k=0}^{m} \binom{n+k-1}{k}$

Комбинаторни конфигурации без наредба и с повторение

Графи. Дървета. Обхождания на графи.

Дефиниция Нека $V = \{v_1, ..., v_n\}$ е крайно множество, елементите на което наричаме върхове, а $E = \{e_1, ..., e_m\}$ е крайно множество, елементите на което наричаме ребра. Функцията $f_G : E \to V \times V$ съпоставяща на всяко ребро наредена двойка от върхове, наричаме **краен ориентиран мултиграф**.

Дефиниция Нека $G(V, E, f_G)$ е краен ориентиран мултиграф и функцията f_G е еднозначна, т.е. $f(e_i) \neq f(e_j), i \neq j$. Тогава $G(V, E, f_G)$ наричаме краен ориентиран граф.

<u>Дефиниция</u> Нека G(V, E) е краен ориентиран граф, такъв че релацията $E \subseteq V \times V$ е антирефлексивна и симетрична. Тогава G(V, E) наричаме краен неориентиран граф или просто граф.

Дефиниция Нека G(V, E) е мултиграф. Последователността от върхове $v_{i_0}...v_{i_l}$ наричаме път в G от v_{i_0} до v_{i_l} , ако $(v_{i_j}, v_{i_{j+1}}) \in E$ и $v_{i_{j-1}} \neq v_{i_{j+1}}, \forall j$. Числото l наричаме дължина на пътя. В случая, когато $v_{i_0} = v_{i_l}$, пътя наричаме цикъл.

Дефиниция За всеки краен неориентиран граф G(V, E) дефинираме релацията $\mathcal{P}_G \subseteq V \times V$ така: $(v_i, v_j) \in \mathcal{P}_G \iff \exists$ път в G от v_i до v_j . Релацията \mathcal{P}_G е релация на еквивалентност.

Дефиниция Върховете от всеки клас на еквивалентност $V' \subseteq V$ на релацията \mathcal{P}_G индуцират в G(V, E) по един подграф, който наричаме **свързана компонента**. Графът G(V, E) се нарича **свързан**, ако $\forall v_i, v_j \in V$, \exists път в G от v_i до v_j .

<u>Дефиниция</u> Свързан граф без цикли наричаме **дърво**, а несвързан граф без цикли - **гора**.

Дефиниция Графът $D(\{r\}, \{\})$ с един връх r и без ребра наричаме дърво с корен r (**кореново дърво**). Единственият връх r е единствен лист на това кореново дърво.

Теорема Всяко дърво с корен е дърво.

Доказателство. Прилагаме индукция по дефиницията на дърво с корен.

- Тривиалното дърво $D(\{r\},\{\})$ е очевидно, че е свързан граф \Longrightarrow тривиалното кореново дърво е дърво.
- Допускаме, че дървото D(V, E), с корен r е свързан граф без цикли.
- Ще докажем, че дървото $D'(V',E') = D'(V \cup \{w\}, E \cup \{(u,w)\})$ с корен r е свързан граф.

За произволни два върха v_i и v_j от $V \exists$ път от v_i до v_j в D, защото според ИП D е свързан граф \Longrightarrow \exists такъв път и в D'. Път от произволен връх $v_i \in V$ до w в D' получаваме, като към съществуващия в D път от v_i до u добавим реброто (u,w), с което w е u, защото $w \notin V \Longrightarrow \exists$ път в D' между всеки два върха и D' е свързан граф.

Съгласно ИП в D няма цикли, а за да има цикъл в D', той трябва да съдържа реброто (u,w). Това не е възможно, тъй като w е край само на реброто (u,w), |w|=1 и съгласно дефиницията не може да участва в цикъл.

Теорема Нека D(V, E) е дърво с корен r. Тогава |V| = |E| + 1.

Доказателство.

- За тривиалното кореново дърво $D(V=r,E=\{\})$ имаме $|V|=1,|E|=0 \implies |V|=|E|+1$
- Нека D(V,E) е кореново дърво и |V|=|E|+1
- Присъединяваме w към върха $u \in V$ и получаваме кореновото дърво $D'(V',E'),V'=V\cup w,E'=E\cup (u,w).$ Сега $|V'|=|V|+1,|E'|=|E|+1\Longrightarrow |V'|-|E'|=|V|-|E|=1$ и |V'|=|E'|+1

7

<u>Дефиниция</u> Нека G(V, E) е граф, а $D(V, E'), E' \subseteq E$ е дърво. Тогава D наричаме покриващо дърво на G.

Алгоритъм (обхождане в ширина)

Дадено: Свързан граф G(V, E)

Резултат: Покриващо дърво D(V, E') на G.

Процедура:

- 1. Коренът r на покриващото дърво ще изберем за начален връх на обхождането. Затова $L_0=\{r\}$. Образуваме дървото $D_0(V_0,E_0),V_0=L_0,E_0=\varnothing$ и l=0.
- 2. Ако $V_l = V$, тогава алгоритъмът спира и търсеното покриващо дърво е D_l . В противен случай преминаваме към 3.
- 3. Нека $D_l(V_l, E_l)$ е дървото, построено след l-тата стъпка и L_l са върховете от l-то ниво. Образуваме следващото ниво $L_{l+1} = \{v|v \notin V_l, \exists w \in L_l, (w,v) \in E\}$. Образуваме дървото $D_{l+1}(V_{l+1}, E_{l+1}), V_{l+1} = V_l \cup L_{l+1}, E_{l+1} = E_l \cup \{(w,v)|(w,v) \in E, w \in L_l, v \in L_{l+1}\}$ с присъединяване на всеки $v \in L_{l+1}$ към съответния $w \in L_l$. Нека l = l+1 и преминаваме към 2.

Алгоритъм (обхождане в дълбочина)

Дадено: Свързан граф G(V, E)

Резултат: Покриващо дърво D(V, E') на G.

Процедура:

- 1. Коренът r на покриващото дърво ще изберем за начален връх на обхождането. Затова $L_0 = \{r\}$. Образуваме дървото $D_0(V_0, E_0), V_0 = \{r\}, E_0 = \emptyset$. Нека t = r, i = 0 и p(t) е неопределен.
- 2. Ако $V_l = V$, тогава алгоритъмът спира и търсеното покриващо дърво е D_l . В противен случай преминаваме към 3.
- 3. Нека е построено дървото $D_i(V_i, E_i)$. Търсим $v \in V_i$ такъв, че $(t, v) \in E$ и
 - ако има такъв, построяваме дървото $D_{i+1}(V_{i+1}, E_{i+1}), V_{i+1} = V_i \cup \{v\}, E_{i+1} = E_i \cup \{(t,v)\}$ Сега p(v) = t, t = v, i = i+1 и преминаваме към 2.
 - в противен случай:
 - ако $t \neq r$, тогава t = p(t) и преминаваме към 2.
 - иначе край. Търсеното покриващо дърво е D_i .

<u>Дефиниция</u> **Ойлеров път** в свързания мултиграф G(V, E) наричаме път, който минава еднократно през всяко ребро на мултиграфа. Ако Ойлеровият път има съвпадащи начало и край, тогава той се нарича **Ойлеров цикъл**.

Теорема

Свързаният мултиграф G(V,E) е Ойлеров \iff всеки връх на G е с четна степен

Теорема

Свързаният мултиграф G(V, E) съдържа Ойлеров път, който не е Ойлеров цикъл \iff има точно 2 върха с нечетна степен

Доказателство. \Leftarrow) Нека v_i и v_j са върховете с нечетна степен. Добавяме в мултиграфа ребро $e \notin E$ и додефинираме $f_{G'}(e) = (v_i, v_j)$ Полученият мултиграф G' е Ойлеров \Longrightarrow можем да построим Ойлеров цикъл. Премахваме добавеното ребро и получаваме път от v_i до v_j , който съдържа всички ребра на графа G(V, E) точно по веднъж \Longrightarrow е Ойлеров път.

 \Rightarrow) Нека ребрата на G(V,E) образуват Ойлеров път от v_i до v_j . Добавяме ребро $e \notin E$ и додефинираме $f_{G'}(e) = (v_i,v_j)$. Пътят се превръща в Ойлеров цикъл за новополучения мултиграф $G' \Longrightarrow$ всички върхове са с четна степен. Добавянето на реброто (v_i,v_j) е увеличило с 1 само степените на v_i и $v_j \Longrightarrow$ в G всички върхове са с четна степен, с изключение на тези два върха.

Езици, автомати и изчислимост

Крайни автомати. Регулярни езици.

Дефиниция Краен детерминиран автомат наричаме петорката $A = < Q, \Sigma, q_0, \delta, F>$, където Q е крайно множество от състояния, Σ е крайна входна азбука, $q_0 \in Q$ е начално състояние, $\delta: Q \times \Sigma \to Q$ е частична функция на преходите, пресмятаща следващото състояние, $F \subseteq Q$ са финални състояния

Дефиниция Краен недетерминиран автомат наричаме петорката $A = < Q, \Sigma, q_0, \delta, F>$, където Q е крайно множество от състояния, Σ е крайна входна азбука, $q_0 \in Q$ е начално състояние, $\delta: Q \times \Sigma \to 2^Q$ е частична функция на преходите, пресмятаща следващото състояние, $F \subseteq Q$ са финални състояния

Теорема

 $\overline{\mbox{3a}}$ всеки KHA A съществува КДА A' такъв, че $L_A=L_{A'}$

Доказателство. Нека $A = \langle Q, \Sigma, q_0, \delta, F \rangle$. Построяваме КДА $A' = \langle Q', \Sigma, t_0, \delta', F' \rangle$,

където $Q'\subseteq 2^Q$. Нека множеството $\{q_{p_1},q_{p_2},...,q_{p_l}\}\in Q'$ означим с $t_{[p_1,p_2,...,p_l]},$ където $t_0=\{q_0\}=t_{[0]}.$ Нека $F'=\{t_{[p_1,...p_l]}|q_{p_1},...,q_{p_l}\cap F\neq\varnothing\}$

<u>Дефиниция</u> Нека $\widetilde{\Sigma} = \Sigma \cup \{\varepsilon, \varnothing, *, +, (,)\}$. Дефинираме **регулярни изрази** рекурсивно:

- Символите \varnothing , ε , както и всяка буква $a \in \Sigma$ са регулярни изрази
- Ако r_1 и r_2 са регулярни изрази, то думите $(r_1.r_2)$, (r_1+r_2) и $(r_1)^*$ са регулярни изрази

<u>Дефиниция</u> Казваме, че езикът L е **регулярен**, ако L = L(r), за някой регулярен израз r над Σ , където езикът L(r) се дефинира така:

- $L(\varnothing) = \varnothing, L(a) = \{a\}$ sa $a \in \Sigma$
- $L(r_1.r_2) = L(r_1).L(r_2), L(r_1+r_2) = L(r_1) \cup L(r_2) \text{ if } L(r_1^*) = L(r_1)^*$

Теорема (Клини)

Всеки език, разпознаван от краен автомат, е регулярен.

Доказателство. Нека $L\subseteq \Sigma^*$ е автоматен език и $\mathcal{A}=< Q, \Sigma, q_0, \delta, F>$ е краен автомат такъв, че $L(\mathcal{A})=L$. БОО $Q=\{0,1,...,n-1\}$ и $q_0=0$. Нека $\forall 0\leqslant i,j\leqslant n-1$ и $\forall 0\leqslant k\leqslant n$ с R^k_{ij} да означим множеството от всички думи над Σ , чрез които можем да се придвижим от състоянието i до състоянието j без да преминаваме през състояние $s\geqslant k$, т.е.

$$R_{ij}^k = \{w \in \Sigma^* | i \xrightarrow{w} j, \text{ минавайки само през състояния } s < k\}$$

Тогава $R_{ii}^0 = \{\varepsilon\} \cup \{a | (i,a,i \in \delta)\}$ и $R_{ij}^0 = \{a | (i,a,j) \in \delta\}$ за $i \neq j \implies \forall 0 \leqslant i,j \leqslant n-1$ езикът R_{ij}^0 е регулярен. От друга страна, $\forall 0 \leqslant i,j \leqslant n-1$ и $\forall 0 \leqslant k \leqslant n-1$ е в сила $R_{ij}^{k+1} = R_{ij}^k \cup R_{ik}^k (R_{kk}^k)^* R_{kj}^k$. Оттук езиците R_{ij}^k са регулярни $\forall 0 \leqslant i,j \leqslant n-1$ и $\forall 0 \leqslant k \leqslant n$. От друга страна $L(\mathcal{A}) = \bigcup_{j \in F} R_{0i}^n \implies L(\mathcal{A})$ е регулярен.

Лема (разрастване на РЕ (uvw))

Нека $L\subseteq \Sigma^*$ е регулярен език. Тогава съществува $n\in \mathbb{N}, n\geqslant 1$ такова, че за всяка дума $w\in L, |w|>n,$ съществуват $x,y,z\in \Sigma^*$ такива, че w=xyz и

- $|xy| \leq n$
- $|y| \geqslant 1$
- $xy^iz \in L, \forall i$

Доказателство. Нека $\mathcal{A}=< Q, q_0, \delta, F>$ е краен автомат над Σ такъв, че $L(\mathcal{A})=L$. Да положим n=|Q|. Нека сега $w\in L$ с |w|=m>n и нека $w=a_1...a_m$, където $a_1...a_m\in \Sigma$. Тогава съществува път $q_0,a_1,q_1,...,a_m,q_m$ в $G_{\mathcal{A}}$ с $q_m\in F$. Тъй като m>n, то поне две от състоянията в горната редица съвпадат (принцип на Дирихле). Нека s е най-голямото, за което

 $q_i \neq q_j, \forall 0 \leqslant i < j \leqslant s$. Ясно е, че s < n и освен това $q_k = q_s$ за някое k < s. Полагаме $x = a_1...a_k, y = a_{k+1}...a_s, z = a_{s+1}...a_m$. Тогава $|xy| = s \geqslant n$ и $|y| = s - k \geqslant 1$. При това $q_0 \stackrel{x}{\mapsto} q_k, q_k \stackrel{y}{\mapsto} q_k$ и $q_k \stackrel{y}{\mapsto} q_m$, откъдето $\forall i \geqslant 0, xy^iz \in L$

Примери за нерегулярни езици

- 1. $\{a^n b^n \mid n \ge 0\}$
- 2. $\{w \mid w = w^{Rev}\}\$
- 3. $\{ww \mid w \in \Sigma^*\}$
- 4. $\{a^nb^nc^n \mid n \geqslant 0\}$

Теорема (Майхил-Нероуд)

Нека $L\subseteq X*$. Релацията $R_L\subseteq X*\times X*$ има краен индекс \iff L е автоматен

Контекстносвободни граматики и езици. Стекови автомати.

Дефиниция Контекстносвободна граматика наричаме четворката $G = \overline{(\Gamma, \Sigma, R, S)}$, където $\Sigma \subseteq \Gamma$ са крайни азбуки, $S \in \Gamma \backslash \Sigma$ и $R \subseteq (\Gamma \backslash \Sigma) \times \Gamma^*$ е крайно множество.

Дефиниция

Дефиниция Недетерминиран стеков автомат наричаме седморката $A = < Q, \Sigma, Z, q_0, z_0, \delta, F>$, където Q е крайно множество от състояния, Σ е крайна входна азбука, Z е крайна стекова азбука, $q_0 \in Q$ е начално състояние, $z_0 \in Z$ е начална стекова буква, $\delta: Q \times (X \cup \{\varepsilon\}) \times Z \to 2^{Q \times Z^*}$ е частична функция на преходите, пресмятаща следващото състояние, $F \subseteq Q$ са финални състояния

<u>Лема</u> (за разрастване на КСЕ)

Нека L е безконтекстен език. Тогава съществува число n>0 такова, че за всяка дума $w\in L, |w|>n,$ съществуват думи x,y,z,u,v такива, че w=xyzuv и

- $|yzu| \leq n, |yu| \geqslant 1$
- $xy^iuv^iw \in L, \forall i \geq 0$

Доказателство. Нека G безконтекстна граматика в НФЧ, която генерира точно думите от L с дължина поне 2. ...

Примери за неконтекстносвободни езици

- 1. $\{a^nb^nc^n \mid n \geqslant 0\}$
- 2. $\{ww^{Rev} \mid w \in \{a, b\}^*\}$
- 3. $\{ww \mid w \in \{a,b\}^*\}$
- 4. $\{a^n b^m c^m d^n \mid n, m \ge 0\}$

Дизайн и анализ на алгоритми

Сложност на алгоритъм. Асимптотично поведение на целочислени функции (O-, Ω -, Θ -, o- и ω -нотация). Сложност на рекурсивни програми.

Дефиниция Машина на Тюринг (с безкрайна в едната посока лента) наричаме петорката $A = < Q, \Gamma, q_0, \delta, F>$, където Q е крайно множество от състояния, Γ е крайна азбука, $q_0 \in Q$ е начално състояние, $\delta: Q \times \Gamma \to (Q \cup F) \times \Gamma \times \{L, R, S\}$ е функция на преходите, F са финални състояния, $F \cap Q = \varnothing$

<u>Дефиниция</u> Нека $f_M:A^*\to A^*$ е изчислима с машината на Тюринг M тотална функция. Функцията

$$t_M(n) = \max_{\alpha \in A^*, d(\alpha) = n} [$$
брой стъпки на М
 при работа върху α]

наричаме **сложност по време** на M в най-лошия случай, а функцията

$$ilde{t}_M(n) = rac{\sum_{lpha \in A^*, d(lpha) = n} \left[ext{ брой стъпки на M при работа върху } lpha \,
ight]}{|A^n|}$$

наричаме средна **сложност по време** на M.

Дефиниция Нека $f_M:A^*\to A^*$ е изчислима с машината на Тюринг M тотална функция. Функцията

$$s_M(n)=\max_{lpha\in A^*,d(lpha)=n}[$$
 брой използвани клетки от M при работа върху $lpha$]

наричаме **сложност по памет** на M в най-лошия случай, а функцията

$$ilde{s}_M(n) = rac{\sum_{\alpha \in A*, d(lpha) = n} \left[\text{ брой използвани клетки от M при работа върху } lpha \,
ight]}{|A^n|}$$

наричаме средна **сложност по памет** на M.

Нека f е реалнозначна функция, дефинирана в \mathbb{R} или \mathbb{Z}^+ . Функцията f се нарича асимптотично отрицателна, когато $\exists n_0 \in \mathbb{N} \forall n \geqslant n_0 : f(n) \geqslant 0$

Функцията се нарича асимптотично положителна, когато $\exists n_0 \in \mathbb{N} \forall n > n_0: f(n) > 0$

<u>Дефиниция</u> $\mathbf{O}(\mathbf{g})$ е множеството от всички функции, които растат асимптотично не по-бързо от g

$$O(g) = \{ f \mid \exists c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geqslant n_0 : 0 \leqslant f(n) \leqslant c.g(n) \}$$

Означение: $f \in O(g), f = O(g), f \leq g$

$$\Omega(g) = \{ f \mid \exists c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geqslant n_0 : 0 \leqslant c.g(n) \leqslant f(n) \}$$

Означение: $f \in \Omega(g), f = \Omega(g), f \geq g$

<u>Дефиниция</u> $\mathbf{o}(\mathbf{g})$ е множеството от всички функции, които растат асимптотично по-бавно от g

$$o(g) = \{ f \mid \forall c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geqslant n_0 : 0 \leqslant f(n) < c.g(n) \}$$

Означение: $f \in o(g), f = o(g), f < g$

$$\omega(g) = \{ f \mid \forall c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geqslant n_0 : 0 \leqslant c.g(n) < f(n) \}$$

Означение: $f \in \omega(g), f = \omega(g), f > g$

$$\Theta(q) = \{ f \mid \exists c_1 > 0 \ \exists c_2 > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : 0 \le c_1.q(n) \le f(n) \le c_2.q(n) \}$$

Означение: $f \in \Theta(q), f = \Theta(q), f \approx q$

Свойства

- 1. Ако $f\sigma g$ и $g\sigma h$, то $f\sigma h$, $\sigma \in \{<,>,\leq,\succeq,\cong\}$ транзитивност
- 2. $f\sigma f$, $\forall \sigma \in \{\leq, \geq, \approx\}$ (Θ , O и Ω са рефлексивни)
- 3. $f \geq g$ и $g \geq f \iff f \asymp g$ (O и Ω са антисиметрични)
- 4. $f \approx g \implies g \approx f \ (\Theta \ e \ симетрична)$
- 5. $f \le g \iff g \ge f, f < g \iff g > f$

Теореми (гранични)

$$\max\{f,g\} \asymp f + g$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \iff f = o(g) \qquad \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \iff f = \omega(g)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0 \implies f = \Theta(g)$$

Теорема (Мастър)

 $\overline{\text{Нека } a \geqslant 1, b > 1}$ и f(n) и T(n) са асимптотично положителни функции и $T(n) = a.T(\frac{n}{b}) + f(n)$. Нека $k = \log_a b$. Тогава:

- 1. Ако $f(n) = O(n^{k-\varepsilon})$ за някое $\varepsilon > 0$, то $T(n) = O(n^k)$
- 2. Ако $f(n) = O(n^k)$, то $T(n) = \Theta(n^k log n)$
- 3. Ако $f(n)=\Omega(n^{k+\varepsilon})$, за някое $\varepsilon>0$ и $\exists c\in(0,1)\ \exists n_0\in\mathbb{N}\ \forall n\geqslant n_0:$ $a.f(\frac{n}{b})\leqslant c.f(n)$, то $T(n)=\Theta(f(n))$

Алгоритми в графи с тегла на ребрата. Оценки за сложност.

Дефиниция Нека G(V, E) е свързан граф и $c: E \to R$ е функция с реални стойности, дефинирана по ребрата на G. Стойността $c(e), e \in E$ наричаме **тегло** (цена) на реброто e. Нека D(V, E') е покриващо дърво на G(V, E). **Тегло** (цена) на дървото наричаме сумата $c(D) = \sum_{e \in E'} c(e)$. Покриващото дърво $D_0(V, E_0)$ на G(V, E) наричаме **минимално**, ако $c(D_0) \leqslant c(D)$ за всяко друго покриващо дърво D на G.

Теорема (МПД-свойство)

Нека G(V,E) е свързан граф с теглова функция на ребрата $c:E\to R$ и $\varnothing\neq U\subset V$. Нека $e=(v_i,v_j)\in E$ е такова, че $v_i\in U,v_j\in V\backslash U$ и (v_i,v_j) има минимално тегло измежду всички такива ребра. Тогава съществува МПД D(V,E') на G такова, че $e\in E'$

Алгоритъм (Прим)

<u>Дадено</u>: Свързан граф G(V, E) и функция $c: E \to R$, задаваща тегла на ребрата му.

Процедура:

1. Построяваме дървото $D_0(V_0, E_0), V_0 = \{r\}, E_0 = \emptyset, k = 0.$

- 2. Нека сме построили $D_k(V_k, E_k)$. Търсим реброто $e = (v_i, v_j), v_i \in V_k, v_j \in V \setminus V_k$ с минимално тегло и построяваме $D_{k+1}(V_{k+1}, E_{k+1}), V_{k+1} = V_k \cup \{v_j\}, E_{k+1} = E_k \cup \{\varepsilon\}, k = k+1$
- 3. Ако $V_k = V$ край, полученото дърво $D(V, E'), E' = E_k$ е оптималното. Иначе минаваме към 2.

Оценка на сложността: T = O(V + E), S = O(V + E)

Алгоритъм (Крускал)

<u>Дадено</u>: Свързан граф G(V, E) и функция $c: E \to R$, задаваща тегла на ребрата му.

Резултат: Минимално покриващо дърво D(V', E) на G.

Процедура:

- 1. Сортираме ребрата на G в нарастващ ред на цената и нека този ред е $e_1,...,e_m$
- 2. От всеки връх v на графа образуваме тривиално дърво $D_v(\{v\},\varnothing)$
- 3. За всяко ребро $e_i = (v_{i_1}, v_{i_2}), i \in I_m$ (по реда определен от сортирането), правим следното: ако v_{i_1}, v_{i_2} са в различни дървета, съответно D'(V', E') и D''(V'', E''), съединяваме двете в дървото $D(V' \cup V'', E' \cup E'' \cup \{(v_{i_1}, v_{i_2})\})$

Оценка на сложността: T = O(V + E), S = O(V + E)

Алгоритъм (Дейкстра)

<u>Дадено:</u> Свързан граф G(V,E) и функция $c:E\to R^+$ и начален връх $v_0\in V$.

 $\underline{\text{Pезултат}}$: Дърво на минималните пътища от v_0 до всички останали върхове в G.

Процедура:

- 1. Разширяваме $c: E \to R^+$ до $c*: V \times V \to R^+$.
- 2. Нека dist[0]=0, part[0]=-1 и $U=\{0\},$ а dist[i]=c*(0,i) и $part[i]=0, i\in I_n$
- 3. Повтаряме n-1 пъти стъпките:
 - Избираме връх $j \notin U$, за който dist[j] е минимално и $U = U \cup \{j\}$
 - За всеки $k \notin U$ пресмятаме dist[k] = min(dist[k], dist[j] + c*(j,k)). Ако $min \in dist[j] + c*(j,k)$, тогава part[k] = j

Оценка на сложността: T = O(V + E), S = O(V + E)

Алгоритъм (Флойд)

Динамично програмиране. Оценки за сложност.

Динамичното програмиране е метод за решаване на задачи чрез комбиниране на решенията на подзадачи. Алгоритъмът решава всяка подзадача веднъж и запазва резултата в таблица, избягвайки нуждата от преизчисляване на отговора всеки път, когато решава някоя подзадача.

Задачи с линейна таблица на подзадачите (най-дълга растяща подредица)

Задачи с триъгълна таблица на подзадачите (оптимално разбиване на подредица)

Задачи с правоъгълна таблица на подзадачите (най-дълга обща подредица на две редици, задача за раницата)