Laboratorul 3 - Programare Logică și Funcțională

Seria 36

Martie 2024

În acest laborator, vom implementa în Prolog formulele propoziționale și semantica lor.

Variabilele vor fi reprezentate de atomi în Prolog (dacă atom(X). este true, atunci $X \in Var$). Operatorii pe care îi vom utiliza sunt \neg , \wedge , \vee şi \rightarrow , pe care îi vom implementa individual, spre deosebire de seminar, iar ei vor fi reprezentați în Prolog prin non/1, and/2, or/2, respectiv imp/2.

Spre exemplu, formula logică $p \to (q \lor r)$ va fi în reprezentarea noastră:

```
?-X = imp(p, or(q, r)).
```

Scopul laboratorului va fi determinarea algoritmică a faptului că o formulă este sau nu tautologie.

1 Exercițiul 1

Definiți un predicat vars/2 care este adevărat exact atunci când primul argument este o formulă, iar al doilea argument este lista care reprezintă mulțimea variabilelor care apar în ea.

```
?- vars(imp(non(a), imp(a, b)), S).
S = [a, b]
```

Utilizați, pentru implementare, predicatul predefinit atom/1, respectiv predicatul union/3, care calculează reuniunea a două liste, considerate ca fiind mulțimi.

2 Exercițiul 2

Vom considera evaluările $e: Var \to \{0,1\}$ ca fiind reprezentate printr-o listă de perechi de forma [(a, 1), (b, 0)] (în evaluarea curentă, e(a) = 1 și e(b) = 0). Definiți un predicat val/3 astfel încât pentru orice variabilă V și orice evaluare E să avem că val (V, E, A) este adevărat exact atunci când A este E(V).

```
?- val(b, [(a, 1), (b, 0)], X).
X = 0
```

3 Exercitiul 3

Definiți predicate bnon/2, band/3, bor/3, bimp/3 care implementează operațiile \neg , \wedge , \vee , \rightarrow pe mulțimea $\{0,1\}$.

```
?- band(1, 0, C).
C = 0
?- bimp(A, 0, 0).
A = 1
?- bimp(0, B, 0).
false
```

Puteți defini unele operații în funcție de altele.

4 Exercițiul 4

Definiți un predicat eval/3 astfel încât pentru orice formulă X și orice evaluare E, avem că pentru orice A, eval(X, E, A) este adevărat exact atunci când A este $E^+(X)$.

```
?- eval(imp(b,d), [(a, 1), (b, 0), (d, 1)], A).
A = 1
?- eval(imp(d,b), [(a, 1), (b, 0), (d, 1)], A).
A = 0
```

5 Exercițiul 5

Definiți un predicat evals/3 astfel încât, pentru orice formulă X și orice listă de evaluări Es, avem că pentru orice As, evals(X, Es, As) este adevărat atunci când As este lista rezultatelor evaluării lui X în fiecare dintre elementele lui Es.

```
?- evals(imp(d, b), [[(a, 1), (b, 0), (d, 1)], [(a, 1), (b, 1), (d, 0)]], As). As = [0, 1]
```

6 Exercițiul 6

Definiți un predicat evs/2 astfel încât, pentru orice listă de variabile S, avem că pentru orice Es, evs(S, Es) este adevărat exact atunci când Es este lista evaluărilor definite pe S.

```
?- evs([c, b], Es).
Es = [[(c, 0), (b, 0)], [(c, 1), (b, 0)], [(c, 0), (b, 1)], [(c, 1), (b, 1)]]
```

7 Exercițiul 7

Definiți un predicat all_evals/2 astfel încât, pentru orice formulă X, avem că pentru orice As, all_evals(X, As) este adevărat exact atunci când As este lista rezultatelor evaluării lui X în fiecare dintre elementele listei evaluărilor definite pe variabilele din X.

```
?- all_evals(imp(a, a), As).
As = [1, 1]
?- all_evals(imp(a, b), As).
As = [1, 0, 1, 1]
```

8 Exercițiul 8

Definiți un predicat taut/1 astfel încât, pentru orice formulă X, avem că taut(X) este true exact atunci când X este tautologie.

```
?- taut(imp(a, a)).
true
?- taut(imp(a, b)).
false
```