Chapitre 1

Généralités-Maximum de Vraisemblance Familles Exponentielles

I.1. Hypothèses sur le modèle

Soient \mathcal{E} une expérience aléatoire,

 (Ω, \mathcal{A}, P) l'espace de probabilité associé à \mathcal{E} ,

X une variable aléatoire (v.a.) associée définie sur (Ω, \mathcal{A}) à valeurs dans $\mathcal{X} = \mathbb{R}$ ou \mathbb{R}^d ,

(X, B) l'espace des observations,

 P_{θ} la loi de probabilité de X, caractérisée par un paramètre $\theta \in \Theta$,

 Θ l'espace des paramètres (sous-ensemble mesurable de \mathbb{R}^{P}),

 (X, \mathfrak{B}, P^X) le modèle image par X du modèle (Ω, \mathcal{A}, P) .

Définition 1 Modèle d'échantillonnage

On appelle modèle d'échantillonnage de taille n, le produit $(\mathcal{X}, P_{\theta})^{\otimes n}$ associé à n expériences aléatoires indépendantes et de même loi P.

On suppose que P appartient à une famille de probabilités $\mathcal{P} = \{P_{\theta} \text{ (ou } f_{\theta}), \theta \in \Theta\}$. (On dit que le modèle est paramétrique).

Notations : - X_i est la v.a. de même loi que X associée à l'expérience numéro « i ».

- x_i est la réalisation de X_i.
- Au modèle $(\mathcal{X}, P_{\theta})^{\otimes n}$ correspondent n v.a.i.i.d. $X_1, ..., X_n$ de loi P_{θ} .

Définition 2 Echantillon (aléatoire)

- On appelle échantillon de taille n ou n-échantillon, le n-uple $(X_1,\,\ldots,\,X_n)$ où les X_i sont n v.a.i.i.d.
- Le n-uple $(x_1, ..., x_n)$ est appelé échantillon d'observations (ce sont n réalisations indépendantes d'une v.a. X).

Définition 3 Modèle paramétrique

a- Un modèle statistique $(\Omega, \mathcal{A}, P)_{P \in \mathcal{P}}$, est une famille de lois de probabilités sur un espace mesuré d'observations.

b- Un modèle (statistique) paramétrique $(\Omega, \mathcal{A}, P_{\theta})_{\theta \in \Theta}$, consiste en l'observation d'une v.a. X de loi $P_{\theta}(x)$ (ou $f_{\theta}(x)$), où seul le paramètre θ est inconnu.

Exemples $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \{\mathcal{N}(0,\sigma^2)\}_{\sigma \in \mathbb{R}^{+*}}), (\mathbb{R}, \mathcal{B}(\mathbb{R}), \{\mathcal{U}[a,b]\}_{(a,b) \in \mathbb{R}}^2).$

Y. Ferrani Page - 1 -

Le but de l'estimation paramétrique est d'identifier la probabilité inconnue P_{θ} (ou f_{θ}), ou bien le paramètre inconnu θ à partir de la réalisation d'un échantillon. On étudie essentiellement des modèles d'échantillonnage où la famille de probabilités \mathcal{P} est constituée de lois possédant une densité ($P(x,\theta) = f_{\theta}(x)$), ou de lois discrètes ($P(x,\theta) = P_{\theta}(X=x)$).

Notation $E_{\theta}(f(X_1, ..., X_n))$ désigne l'espérance de $f(X_1, ..., X_n)$ où le vecteur $(X_1, ..., X_n)$ a pour loi $P_{\theta}^{\otimes n}$.

I.2. Statistique, Estimateur

Définition 4 Une **statistique** S est une v.a. fonction de $(X_1, ..., X_n)$, indépendante de la loi P de X. $(S: (\Omega, \mathcal{A}) \rightarrow (\mathcal{X}, \mathcal{B}))$

(Si cette fonction est utilisée pour évaluer un ou plusieurs paramètres inconnus de la loi de X, elle est appelée **estimateur**, et ses réalisations sont des **estimations**.)

Exemples Les fonctions
$$S_1(X) = \sum_{i=1}^n X_i$$
, $S_2(X) = \max_{1 \le i \le n} X_i$, $S_3(X) = X_1$ et $S_4(X) = (h(X_3-X_1), X_2)$, sont des statistiques de l'échantillon $X = (X_1, ..., X_n)$.

Le premier objectif est d'estimer le paramètre θ . Plus généralement, on peut chercher à estimer une fonction $g(\theta) \in \mathbb{R}^P$ de ce paramètre.

Définition 5

- **a-** Un **estimateur** δ de $g(\theta)$ est une fonction de l'échantillon X (indépendante de $P \in \mathcal{P}$) à valeurs dans $g(\Theta)$ (*c'est une fonction des v.a. observables ne dépendant pas des paramètres inconnus*).
- **b- Estimation** : c'est la valeur prise par l'estimateur sur l'échantillon observé $(x_1, ..., x_n)$.

Exemple La moyenne empirique $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ est un estimateur de E(X).

Définition 6 Convergences

a- Convergence forte : Une suite d'estimateurs $(\hat{g}_n)_{n \in N^*}$ de $g(\theta)$ (où \hat{g}_n est une fonction de l'échantillon de taille n $(X_1, ..., X_n)$) est fortement convergente si

$$\forall \theta \in \Theta, \lim_{n} \hat{g}_{n} = g(\theta), P_{\theta}$$
-presque sûrement.

Remarque Pour simplifier, on confondra estimateur et suite d'estimateurs.

Exemples

E₁. Si X est intégrable $(E(|X|) < +\infty)$ alors $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{PS} E(X)$ c'est la loi forte des grands nombres

E2. Dans le modèle d'échantillonnage exponentiel $\mathcal{P} = \{\mathcal{E}(\lambda), \lambda > 0\}$ les estimateurs

Y. Ferrani Page - 2 -

$$\hat{\lambda}_1 = \frac{n}{\sum_{i=1}^n X_i} \text{ et } \hat{\lambda}_2 = \frac{1}{\sqrt{\frac{1}{2n} \sum_{i=1}^n X_i^2}} \text{ sont 2 estimateurs convergents (presque sûrement) de } \lambda.$$

Ceci découle de la loi forte des grands nombres et le théorème de la continuité pour la convergence presque sûre suivant :

Lemme : Théorème de continuité pour la convergence presque sûre

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de v.a. qui converge presque sûrement (PS) vers X. Soit g une fonction mesurable et \mathcal{C} l'ensemble des points de continuité de g.

Si
$$P(X \in \mathcal{C}) = 1$$
, alors $g(X_n) \xrightarrow{PS} g(X)$.

I.3. Construction d'estimateurs convergents

I.3.3. Le maximum de vraisemblance

Soit $x = (x_1, x_2, ..., x_n)$ une réalisation de l'échantillon $(X_1, X_2, ..., X_n)$ d'une v.a. X. On suppose que X suit une loi de probabilité dépendant d'un paramètre θ . On note

$$L(\theta, x_1, ..., x_n) = \begin{cases} \prod_{i=1}^n f_{\theta}(x_i) & \text{si } X \text{ est absolument continue} \\ \prod_{i=1}^n P_{\theta}(X = x_i) & \text{si } X \text{ est discrète} \end{cases}$$

Définition 8 a- L'application $x = (x_1, x_2, ..., x_n) \mapsto L(\theta, x)$ est appelée **loi conjointe** de x. b- L'application $\theta \mapsto L(\theta, x)$ est appelée **vraisemblance** de θ .

Remarques

- **1.** De la fonction $L(\theta, x_1, x_2, ..., x_n)$ on peut définir la variable aléatoire $L(\theta, X_1, X_2, ..., X_n)$.
- **2.** Les observations x_i jouent le rôle de paramètre de la vraisemblance, c'est-à-dire que la vraisemblance n'est définie qu'après l'observation des réalisations de la variable X ; La vraisemblance est donc une notion statistique, alors que la loi conjointe est une notion probabiliste.

Définition 9 Estimateur du Maximum de Vraisemblance

Si pour tout $x \in \mathcal{X}^n$, il existe une et une seule valeur de $\theta \in \Theta$ (notée $\hat{\theta}_{MV}$) telle que la vraisemblance soit maximale, alors la v.a. $\hat{\theta}_{MV} = \hat{\theta}_{MV}(X_1,...,X_n)$ est appelée estimateur du maximum de vraisemblance (en abrégé EMV) de θ .

Principe Si L est deux fois dérivable par rapport à θ , on peut obtenir $\hat{\theta}_{MV}$ en résolvant le système :

$$\begin{cases} \frac{\partial \mathbf{L}}{\partial \boldsymbol{\theta}} = 0 & (\text{\'equation de vraisemblance}) \\ \frac{\partial^2 \mathbf{L}}{\partial \boldsymbol{\theta}^2} < 0 \end{cases}$$

Y. Ferrani Page - 3 -

Définition 10 La Log - Vraisemblance est le logarithme de la vraisemblance $L(\theta, x)$, c'est-àdire la fonction :

$$\theta \to Log(L(\theta, x)) = \sum_{i=1}^{n} Log(f_{\theta}(x_i)) \left(= \sum_{i=1}^{n} Log(P_{\theta}(X = x_i))\right).$$

Remarque Maximiser la Log-vraisemblance revient à maximiser la vraisemblance. Les calculs sont parfois plus simples pour la Log-vraisemblance.

Proposition (Propriété d'invariance de l'EMV)

Soit $\hat{\theta}_{MV}$ l'EMV de θ associé à la famille de lois $\mathcal{P} = \{P_{\theta} (f_{\theta}), \theta \in \Theta\}$.

Soit $g: \Theta \to g(\Theta)$ mesurable bijective. Alors $g(\hat{\theta}_{MV})$ est l'EMV de $g(\theta)$ associé à la famille $\mathcal{P}_g = \{P_g^{-1}(\beta), \beta \in g(\Theta)\}$

Remarque On dit que $g(\hat{\theta}_{MV})$ est l'EMV de $g(\theta)$ même si g n'est pas bijective.

Exemple Pour le modèle de lois exponentielles $\mathcal{P} = \{\mathcal{E}(\lambda), \lambda > 0\}$, la Log-vraisemblance

est:
$$Log L(\lambda, x) = -\lambda \sum_{i=1}^{n} x_i + nLog\lambda \implies$$

L'EMV de
$$\lambda$$
 est $\hat{\lambda}_n = \frac{n}{\sum_{i=1}^n X_i}$, et l'EMV de $\theta = \frac{1}{\lambda}$ est $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

I.4. Choix d'un estimateur

I.4.1. Comparaison d'estimateurs

Soit une famille paramétrique de lois $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$, et $X_1, ..., X_n$ n v.a.i.i.d. de loi $P_{\theta} \in \mathcal{P}$. Soit δ un estimateur de $g(\theta)$. Il est naturel de minimiser le risque d'erreur, qui est une mesure de la qualité des estimations envisagées.

Définition 12

- L'estimateur δ (de g(θ)) est dit sans biais, s'il est intégrable et si $E_{\theta}(\delta) = g(\theta)$, $\forall \theta \in \Theta$.
- Le biais d'un estimateur intégrable δ de $g(\theta)$ est défini par : $b(\delta) = E_{\theta}(\delta) g(\theta)$, $\forall \theta \in \Theta$.

Exemples La moyenne empirique $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ est un estimateur sans biais de E(X).

La variance empirique $S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ n'est pas un estimateur sans biais de Var(X).

Définition 13 Pour un estimateur δ (de $g(\theta)$), on définit le risque quadratique ou écart (erreur) quadratique moyen (Mean Square Error ou MSE, en anglais) par : $R(\delta,\theta)$ ou $R_{\theta}(\delta) = E_{\theta}(\delta - g(\theta))^2$.

Propriété L'erreur quadratique moyenne de δ se décompose en deux termes, le carré du biais et la variance de δ :

$$\mathbf{R}_{\theta}(\boldsymbol{\delta}) = [\mathbf{E}_{\theta}(\boldsymbol{\delta}) - \mathbf{g}(\boldsymbol{\theta})]^{2} + \mathbf{E}_{\theta}[\mathbf{\delta} - \mathbf{E}_{\theta}(\boldsymbol{\delta})]^{2} = [\mathbf{b}(\boldsymbol{\delta})]^{2} + \mathbf{Var}_{\theta}(\boldsymbol{\delta}).$$

Y. Ferrani Page - 4 -

I.5. Amélioration d'estimateurs

On considère un modèle régulier de taille n.

I.5.3. Familles exponentielles (ou modèles exponentiels)

I.5.3.1. Famille exponentielle d'ordre 1

Définition 26 Une famille de lois $\mathcal{P}=\{P_{\theta}, \theta \in \Theta\}$ est une <u>famille exponentielle d'ordre 1</u> si :

a- Le support Δ de X ne dépend pas de θ ,

b- La loi de X sur Δ est de la forme

$$f_{\theta}(x) = \exp\{a(x)\alpha(\theta) + b(x) + \beta(\theta)\} = h(x).c(\theta)\exp\{a(x)\alpha(\theta)\}$$
 (I)

où $\alpha(.)$, $\beta(.)$ et c(.) ne dépendent que de θ ,

a(.), b(.) et h(.) ne dépendent que de x.

Exemples

E₃. Les familles des lois de Bernoulli $\mathcal{B}(p)$, gaussiennes $\mathcal{N}(0, \sigma^2)$, $\sigma > 0$, gamma (α, λ_0) , λ_0 connu, correspondent à des familles exponentielles :

a-
$$X \sim \mathcal{B}(p) \implies P(X = x) = p^{x} (1 - p)^{1 - x} = \exp\left\{x \cdot Ln\left(\frac{p}{1 - p}\right) + Ln(1 - p)\right\}, x = 0, 1$$

ici
$$a(x) = x$$
, $\alpha(p) = Ln(p)-Ln(1-p)$, $b(x) = 0$, $\beta(p) = Ln(1-p)$.

b-
$$X \sim (0, \sigma^2) \implies$$

c-
$$X \sim Gamma(\alpha, \lambda_0) \implies$$

E4. La famille de loi de Cauchy $(\theta, 1)$ n'est pas exponentielle, en effet

$$f_{\theta}(x) = \frac{1}{\pi} \frac{1}{1 + (x - \theta)^2} = \frac{1}{\pi} exp\{-Ln[1 + (\theta - x)^2]\}$$

avec $-Ln[1+(\theta-x)^2] \neq a(x).\alpha(\theta)$ car la fonction logarithme n'est pas linéaire.

I.5.3.1. Généralisation

Soient **i** / Y $\in \mathbb{R}^p$ un vecteur aléatoire, $X = (X_1, ..., X_n) \in \mathbb{R}^{np}$ un n-échantillon de Y, et $\theta \in \mathbb{R}^k$, **ii** / le support Δ de Y ne dépend pas de θ .

Définition 27 (Définition exacte d'une famille exponentielle)

La famille des lois P_{θ} caractérisée par une densité de la forme (II),

$$f_{\theta}(y) = \exp\left\{\sum_{i=1}^{k} a_i(y)\alpha_i(\theta) + b(y) + \beta(\theta)\right\} = h(y).c(\theta)\exp\left\{\sum_{i=1}^{k} a_i(y)\alpha_i(\theta)\right\}$$
(II)

sur un ensemble Δ indépendant de θ (et nulle en dehors de Δ), est appelée <u>famille exponentielle</u>.

Remarque On peut réécrire une famille exponentielle comme suit :

$$f_{\theta}(x) = h(x).c(\theta) exp\{T(x)Q(\theta)\}$$

T et Q sont des fonctions respectivement de \mathcal{X} et Θ dans \mathbb{R}^k .

Y. Ferrani Page - 5 -

Définition 29 Dans le cas particulier où $\mathcal{X} \subset \mathbb{R}^k$ et $\Theta \subset \mathbb{R}^k$, et

$$f_{\theta}(x) = h(x) \cdot c(\theta) \exp\{\theta \cdot x\}$$
 (III)

la famille est dite (exponentielle) naturelle.

Remarque

 \mathbf{R}_{10} . Un changement de variable de X en T(X) et une re-paramétrisation de θ en $\eta = Q(\theta)$ nous permettent de considérer principalement la forme naturelle (III), bien que les espaces T(X) et $Q(\Theta)$ soient difficiles à décrire et à utiliser.

Définition 30 (Famille régulière)

Soit une famille exponentielle naturelle. Elle est dite régulière si l'espace naturel des paramètres \mathcal{N} est un ensemble ouvert $(\mathcal{N}=\{\theta \mid \int_{\chi}e^{\theta \mid x}h(x)dP_{X}\left(x\right)\prec\infty\})$.

Propriété Les familles exponentielles naturelles peuvent être réécrites

$$f_{\theta}(x) = h(x).c(\theta)e^{\theta x} = h(x)e^{\theta x - \varphi(\theta)}$$

où $\varphi(\theta) = -Ln c(\theta)$ est dite fonction cumulante des moments.

Lemme Si θ appartient à l'intérieur de \mathcal{N} , alors la fonction $\boldsymbol{\varphi}$ est \mathcal{C}^{∞} et :

$$E_{\theta}(X) = \nabla \varphi(\theta) \left(= \frac{\partial}{\partial \theta_i} \varphi(\theta) \right)$$
 (∇ est l'opérateur gradient),

et
$$Cov(X_i, X_j) = \frac{\partial^2 \varphi(\theta)}{\partial \theta_i \partial \theta_j}$$
.

Exemples

E₅.
$$X \sim \mathcal{P}(\lambda) \Longrightarrow P_{\lambda}(X = x) = e^{-\lambda} \frac{\lambda^{x}}{x!} =$$

$$E_6. X \sim \mathcal{B}(n, \theta) \Longrightarrow P_{\theta}(X = x) = C_n^x \theta^x (1 - \theta)^{n - x} =$$

Proposition On considère une famille exponentielle définie par :

$$f_{\theta}(x) = h(x).c(\theta)e^{\theta T(x)} = h(x)e^{\theta T(x)-\varphi(\theta)}$$

Si θ appartient à l'intérieur de \mathcal{N} , alors $\mathbf{E}_{\theta}(\mathbf{T}(\mathbf{X})) = \boldsymbol{\varphi}'(\boldsymbol{\theta})$

et
$$Var_{\theta}(T(X)) = \phi$$
"(θ).

De plus T(X) est un estimateur efficace de $E_{\theta}(T(X)) = g(\theta)$, c'est-à-dire que

$$Var_{\theta}(T(X)) = \varphi''(\theta)$$
 est la borne de Cramer-Rao de $g(\theta)$ (égale à $\frac{(g'(\theta))^2}{I(\theta)}$).

Y. Ferrani Page - 6 -