ZYNQ UltraScale+ FPGA Development Board AXU7EV

User Manual

Version Record

Version	Date	Release By	Description
Rev 1.1	2021-07-28	Rachel Zhou	First Release

Table of Contents

Version Record	2
Part 1: FPGA Development Board Introduction	6
Part 2: ACU7EV Core Board	11
Part 2.1: ACU7EV Core Board Introduction	11
Part 2.2: ZYNQ Chip	12
Part 2.3: DDR4 DRAM	14
Part 2.4: QSPI Flash	23
Part 2.5: eMMC Flash	24
Part 2.6: Clock configuration	26
Part 2.7: Power Supply	28
Part 2.8: ACU7EV Core Board Size Dimension	30
Part 2.9: Board to Board Connectors pin assignment	30
Part 3: Carrier Board	39
Part 3.1: Carrier Board Introduction	39
Part 3.2: PCIe Slot	39
Part 3.3: M.2 Interface	42
Part 3.4: DP Interface	43
Part 3.5: USB3.0 Interface	44
Part 3.6: HDMI Output Interface	46
Part 3.7: HDMI Input Interface	47
Part 3.8: Gigabit Ethernet Interface	49
Part 3.9: USB to Serial Port	52
Part 3.10: SFP Interface	53
Part 3.11: SD Card Slot Interface	54
Part 3.12: MIPI Camera Interface	55
Part 3.13: FMC Interface	56
Part 3.14: CAN Communication Interface	60

ZYNQ Ultrascale + FPGA Board AXU7EV User Manual

Part 3.15: 485 Communication Interface	. 60
Part 3.16: JTAG Debug Port	61
Part 3.17: Real-time Clock	62
Part 3.18: EEPROM and Temperature Sensor	.63
Part 3.19: User LEDs	.64
Part 3.20: Keys	. 65
Part 3.21: DIP Switch Configuration	. 65
Part 3.22: Power Supply	. 66
Part 3.23: ALINX Customized Fan	. 67
Part 3.24: Carrier Board Size Dimension	68

This MPSoCs FPGA development platform adopts the core board + carrier board mode, which is convenient for users to use the core board for secondary development. The core board uses XILINX Zynq UltraScale+ EV chip ZU7EV solution, uses Processing System(PS)+Programmable Logic(PL) technology to integrate dual-core ARM ARM Cortex-A53 and FPGA programmable logic on a single chip. In addition, the PS side of the core board has 4 pieces of 1GB high-speed DDR4 SDRAM chips, 1 piece of 8GB eMMC memory chip and 2 piece of 256Mb QSPI FLASH chip; the PL side of the core board has 4 pieces of 1GB DDR4 SDRAM chip

In the design of carrier board, we have extended a wealth of interfaces for users, such as 1 FMC LPC interface, 1 M.2 SSD interface, 1 Mini DP interface, 4 USB 3.0 Interface, 2 Gigabit Ethernet interfaces, 1 HDMI Output, 1 HDMI Input, 2 Uart, 1 PCIe x 8, 1 TF card slot, 2-Channel CAN bus interfaces, 2-Channel RS485 bus interfaces, 1 MIPI Camera Interface. It meets users' requirements for high-speed data exchange, data storage, Video transmission processing, deep learning, artificial intelligence and industrial control. It is a "professional" ZYNQ development platform. For high-speed data transmission and exchange, pre-verification and post-application of data processing is possible. This product is very suitable for students, engineers and other groups engaged in MPSoCs development.

Part 1: FPGA Development Board Introduction

The entire structure of the AXU7EV PGA development board is inherited from our consistent core board + carrier board model. A high-speed inter-board connector is used between the core board and the carrier board.

The core board is mainly composed of the smallest system of ZU7EV + 8 DDR4 + eMMC + 2 QSPI FLASH, the main FPGA chip is Xilinx's Zynq UltraScale+ MPSoCs family chip, the model number is XCZU7EV-2FFVB1156I. ZU7EV chip can be divided into processor system part Processor System (PS) and programmable logic part Programmable Logic (PL). On the PS side and PL side of the ZU7EV chip, there are 4 DDR4 and 4 DDR4 respectively, each with a capacity of up to 1GB, which enables the ARM system and FPGA system to independently process and store data. The 8GB eMMC FLASH memory chip and two 256Mb QSPI FLASH which are on the PS side, used to statically store the operating system, file system and user data of MPSoCs.

The AXU7EV carrier board expands its rich peripheral interface, including 1 FMC_LPC interface, 1 M.2 SSD interface, 1 Mini DP output interface, 2 SFP Interfaces, 4 USB 3.0 Interface, 2 Gigabit Ethernet interfaces, 1 HDMI Input Interfaces, 1 HDMI Output Interfaces, 2 UART, 1 SD card slot, 1 PCIe x8, 2-Channel CAN bus interfaces, 2-Channel RS485 bus interfaces, 1 MIPI Camera Interface, 40-pin expansion ports and some keys and LEDs.

The following figure shows the structure of the entire development system:

Figure 1-1-1: The Schematic Diagram of the AXU7EV

Through this diagram, you can see the interfaces and functions that the AXU7EV FPGA Development Board contains:

ZU7EV core board

It consists of ZU7EV +4GB DDR4 (PS) +4GB DDR4 (PL) +8GB eMMC FLASH + 512Mb QSPI FLASH, and there are 2 crystal oscillators to provide the clock, a single-ended 33.3333MHz crystal oscillator for the PS system, and a differential 200MHz crystal oscillator for the PL logic DDR reference clock.

PCIe x 8 Interface

It supports the PCI Express 3.0 standard, provides a standard PCIe x 8 high-speed data transmission interface, and the single-channel communication rate can be as high as 8GBaud.

➤ M.2 Interface

1 PCIEx1 standard M.2 interface, used to connect M.2 SSD solid state drives, with a communication speed of up to 6Gbps.

DP Output Interface

1 standard Display Port output display interface, used for video image display. Supports up to 4K@30Hz or 1080P@60Hz output

➤ USB 3.0 Interface

4-channel USB3.0 HOST interface, USB interface type is TYPE A. Used to connect external USB peripherals, such as connecting a mouse, keyboard, U disk, etc.

> HDMI Output Interface

1 HDMI video output interface, using SN75DP159RSBR DP HDMI encoding chip from TI, supports up to 4K@60Hz output.

➤ HDMI Input Interface

1 HDMI video input interface, using TMDS181IRGZT HDMI decoding chip from TI, supports up to 4K@60Hz input and supports data input in different formats.

Gigabit Ethernet Interface

2-Channel 10/100M/1000M Ethernet RJ45 interface for Ethernet data exchange with computers or other network devices.

> USB Uart Interface

2-Channel Uart to USB interfaces for communication with the computer, for user debugging. The serial port chip adopts the USB-UAR chip of Silicon Labs CP2102GM, and the USB interface adopts the MINI USB interface.

2-Channel SFP Fiber Interface

The two high-speed transceivers of the GTH transceiver are connected to the transmitting and receiving of two optical modules, realizing two high-speed optical fiber communication interfaces. The transmitting and

sending speed of each optical fiber data communication is as high as 12.5Gb/s.

> SD Card Slot Interface

1 Micro SD card holder, used to store operating system image and file system.

> FMC Expansion Interface

1 standard FMC LPC expansion port, which can be connected to various FMC modules of XILINX or ALINX (HDMI input and output modules, binocular camera modules, high-speed AD modules, etc.).

CAN Communication Interface

Two-way CAN bus interface, using TI's SN65HVD232 chip, the interface uses 4Pin green terminal blocks.

> 485 Communication Interface

Two-way 485 communication interface, using MAX3485 chip of MAXIM company. The interface uses 6Pin green terminal blocks.

MIPI Interface

2 Lane MIPI camera input interfaces, used to connect MIPI camera module (AN5641).

➤ 40-pin Expansion Header

The 40-pin 2.54mm pitch expansion port use for external ALINX modules (binocular camera, TFT LCD screen, high-speed AD module, etc.). The expansion port includes 1 channel of 5V power supply, 2 channels of 3.3V power supply, 3 channels of ground, and 34 channels of IO port.

JTAG debug port

A 10-pin 0.1 spacing standard JTAG ports for FPGA program download and debugging. Users can debug and download the ZU7EV system through the XILINX downloader.

Temperature and humidity sensor chip LM75

On-board temperature and humidity sensor chip LM75, used to detect the temperature and humidity of the surrounding environment around the FPGA development board

> EEPROM

One EEPROM 24LC04 with I2C interface

➤ Real Time Clock (RTC)

1 built-in RTC real-time clock

> LED Lights

5 LEDs, include 1 LED on the core board, 4 LEDs on the carrier board. There are 1 power indicator and on the core board. There are 1 power indicator,1 DONE Configuration indicator and 2 user indicators on the carrier board.

> KEYs

3 KEYs, include 1 Rest KEY and 2 User KEYs.

Part 2: ACU7EV Core Board

Part 2.1: ACU7EV Core Board Introduction

ACU7EV (core board model, the same below) FPGA core board, ZYNQ chip is based on XCZU7EV-2FFVB1156I of XILINX company Zynq UltraScale+MPSoCs EG Family.

This core board uses 8 Micron DDR4 chips MT40A512M16GE, of which 4 DDR4 chips are mounted on the PS side to form a 64-bit data bus bandwidth and 4GB capacity. 4 DDR4 chip is mounted on the PL end, which is a 64-bit data bus width and a capacity of 4GB. The highest operating speed of DDR4 SDRAM on the PS side can reach 1200MHz (data rate 2400Mbps), and the highest operating speed of DDR4 SDRAM on the PL side can reach 1200MHz (data rate 2400Mbps). In addition, two 256MBit QSPI FLASH and an 8GB eMMC FLASH chip are also integrated on the core board to start storage configuration and system files.

In order to connect with the carrier board, the four board-to-board connectors of this core board expand the PS side USB2.0 interface, Gigabit Ethernet interface, SD card interface and other remaining MIO ports; also expand 4 pairs of PS MGT high-speed transceiver interface; and 16 GTH transceivers and almost all IO ports on the PL side (HP I/O: 143, HD I/O: 46). The wiring between the XCZU7EV chip and the interface has been processed with equal length and differential, and the core board size is only 3.15*2.36 (inch), which is very suitable for secondary development.

Figure 2-1-1: ACU7EV Core Board (Front View)

Part 2.2: ZYNQ Chip

The FPGA core board ACU7EV uses Xilinx's Zynq UltraScale+ MPSoCs EV family chip, module XCZU7EV-2FFVB1156I. The PS system of the ZU7EV chip integrates 4 ARM Cortex[™]-A53 processors with a speed of up to 1.3Ghz and supports Level 2 Cache; it also contains 2 Cortex-R5 processors with a speed of up to 533Mhz

The ZU7EV chip supports 32-bit or 64-bit DDR4, LPDDR4, DDR3, DDR3L, LPDDR3 memory chips, with rich high-speed interfaces on the PS side such as PCIE Gen2, USB3.0, SATA 3.1, DisplayPort; it also supports USB2.0, Gigabit Ethernet, SD/SDIO, I2C, CAN, UART, GPIO and other interfaces. The PL end contains a wealth of programmable logic units, DSP and internal RAM.

Figure 2-2-1 detailed the Overall Block Diagram of the ZU7EV Chip.

Figure 2-2-1: Overall Block Diagram of the ZYNQ ZU7EV Chip

The main parameters of the PS system part are as follows:

- ➤ ARM quad-core Cortex[™]-A53 processor, speed up to 1.3GHz, each CPU 32KB level 1 instruction and data cache, 1MB level 2 cache, shared by 2 CPUs
- ARM dual-core Cortex-R5 processor, speed up to 533MHz, each CPU 32KB level 1 instruction and data cache, and 128K tightly coupled memory.
- ➤ Image video processor Mali-400 MP2, speed up to 677MHz, 64KB level 2 cache.
- External storage interface, support 32/64bit DDR4/3/3L, LPDDR4/3 interface

- Static storage interface, support NAND, 2xQuad-SPI FLASH.
- ➤ High-speed connection interface, support PCle Gen2 x 4, 2 x USB3.0, Sata 3.1, Display Port, 4 x Tri-mode, Gigabit Ethernet
- Common connection interfaces: 2 x USB2.0, 2 x SD/SDIO, 2 x UART, 2 x CAN 2.0B, 2 x I2C, 2 x SPI, 4 x 32b GPIO
- Power management: Support the four-part division of power supply Full/Low/PL/Battery
- Encryption algorithm: support RSA, AES and SHA.
- System monitoring: 10-bit 1Mbps AD sampling for temperature and voltage detection.

The main parameters of the PL logic part are as follows:

- ➤ Logic Cells: 504K
- ➤ CLB Flip-flops: 460.8K
- Look-up-tables (LUTs): 230.4K
- ➤ Block RAM: 11Mb
- Clock Management Units (CMTs): 8
- > DSP Slices: 1728
- > GTH 16.3Gb/s Transceiver: 24

XCZU7EV-2FFVB1156I chip speed grade is -2, industrial grade, package is FFVB1156.

Part 2.3: DDR4 DRAM

The ACU7EV core board is equipped with 8 Micron (Micron) 1GB DDR4 chips, model MT40A512M16LY-062E, of which 4 DDR4 chips are mounted on the PS side to form a 64-bit data bus bandwidth and 4GB capacity. Four DDR4 chip is mounted on the PL end, which is a 64-bit data bus width and a capacity

of 4GB. The maximum operating speed of the DDR4 SDRAM on the PS side can reach 1200MHz (data rate 2400Mbps), and the 4 DDR4 storage systems are directly connected to the memory interface of the PS BANK504. The highest operating speed of the DDR4 SDRAM on the PL side can reach 1200MHz (data rate 2400Mbps), and four piece of DDR4 is connected to the BANK66,67,68 interface of the FPGA. The specific configuration of DDR4 SDRAM is shown in Table 2-3-1 below:

Position	Bit Number	Chip Model	Capacity	Factory
PS	U4,U5,U6,U7	MT40A512M16LY-062E	512M x 16bit	Micron
PL	U17,U19,U45,U46	MT40A512M16LY-062E	512M x 16bit	Micron

Table 2-3-1: DDR4 SDRAM Configuration

The hardware design of DDR4 requires strict consideration of signal integrity. We have fully considered the matching resistor/terminal resistance, trace impedance control, and trace length control in circuit design and PCB design to ensure high-speed and stable operation of DDR4.

The hardware connection of DDR4 SDRAM on the PS Side is shown in Figure 2-3-1:

Figure 2-3-1: DDR3 DRAM schematic diagram

The hardware connection of DDR4 SDRAM on the PL Side is shown in Figure 2-3-2:

Figure 2-3-2: DDR4 DRAM schematic diagram

PS Side DDR4 DRAM pin assignment:

Signal Name	Pin Name	Pin Number
PS_DDR4_DQS0_N	PS_DDR_DQS_N0_504	AN27
PS_DDR4_DQS0_P	PS_DDR_DQS_P0_504	AN26
PS_DDR4_DQS1_N	PS_DDR_DQS_N1_504	AP30
PS_DDR4_DQS1_P	PS_DDR_DQS_P1_504	AN29
PS_DDR4_DQS2_N	PS_DDR_DQS_N2_504	AJ26
PS_DDR4_DQS2_P	PS_DDR_DQS_P2_504	AH26
PS_DDR4_DQS3_N	PS_DDR_DQS_N3_504	AK29
PS_DDR4_DQS3_P	PS_DDR_DQS_P3_504	AK28
PS_DDR4_DQS4_N	PS_DDR_DQS_N4_504	AD31
PS_DDR4_DQS4_P	PS_DDR_DQS_P4_504	AD30
PS_DDR4_DQS5_N	PS_DDR_DQS_N5_504	Y28
PS_DDR4_DQS5_P	PS_DDR_DQS_P5_504	Y27
PS_DDR4_DQS6_N	PS_DDR_DQS_N6_504	AB34
PS_DDR4_DQS6_P	PS_DDR_DQS_P6_504	AB33

PS_DDR4_DQS7_N	PS_DDR_DQS_N7_504	W32
PS_DDR4_DQS7_P	PS_DDR_DQS_P7_504	W31
PS_DDR4_DQ0	PS_DDR_DQ0_504	AP27
PS_DDR4_DQ1	PS_DDR_DQ1_504	AP25
PS_DDR4_DQ2	PS_DDR_DQ2_504	AP26
PS_DDR4_DQ3	PS_DDR_DQ3_504	AM26
PS_DDR4_DQ4	PS_DDR_DQ4_504	AP24
PS_DDR4_DQ5	PS_DDR_DQ5_504	AL25
PS_DDR4_DQ6	PS_DDR_DQ6_504	AM25
PS_DDR4_DQ7	PS_DDR_DQ7_504	AM24
PS_DDR4_DQ8	PS_DDR_DQ8_504	AM28
PS_DDR4_DQ9	PS_DDR_DQ9_504	AN28
PS_DDR4_DQ10	PS_DDR_DQ10_504	AP29
PS_DDR4_DQ11	PS_DDR_DQ11_504	AP28
PS_DDR4_DQ12	PS_DDR_DQ12_504	AM31
PS_DDR4_DQ13	PS_DDR_DQ13_504	AP31
PS_DDR4_DQ14	PS_DDR_DQ14_504	AN31
PS_DDR4_DQ15	PS_DDR_DQ15_504	AM30
PS_DDR4_DQ16	PS_DDR_DQ16_504	AF25
PS_DDR4_DQ17	PS_DDR_DQ17_504	AG25
PS_DDR4_DQ18	PS_DDR_DQ18_504	AG26
PS_DDR4_DQ19	PS_DDR_DQ19_504	AJ25
PS_DDR4_DQ20	PS_DDR_DQ20_504	AG24
PS_DDR4_DQ21	PS_DDR_DQ21_504	AK25
PS_DDR4_DQ22	PS_DDR_DQ22_504	AJ24
PS_DDR4_DQ23	PS_DDR_DQ23_504	AK24
PS_DDR4_DQ24	PS_DDR_DQ24_504	AH28
PS_DDR4_DQ25	PS_DDR_DQ25_504	AH27
PS_DDR4_DQ26	PS_DDR_DQ26_504	AJ27
PS_DDR4_DQ27	PS_DDR_DQ27_504	AK27
PS_DDR4_DQ28	PS_DDR_DQ28_504	AL26
PS_DDR4_DQ29	PS_DDR_DQ29_504	AL27
PS_DDR4_DQ30	PS_DDR_DQ30_504	AH29
PS_DDR4_DQ31	PS_DDR_DQ31_504	AL28
PS_DDR4_DQ32	PS_DDR_DQ32_504	AB29
PS_DDR4_DQ33	PS_DDR_DQ33_504	AB30

PS DDR4 DQ34	PS DDR DQ34 504	AC29
PS DDR4 DQ35	PS DDR DQ35 504	AD32
PS DDR4 DQ36	PS DDR DQ36 504	AC31
PS DDR4 DQ37	PS DDR DQ37 504	AE30
PS DDR4 DQ38	PS DDR DQ38 504	AC28
PS_DDR4_DQ39	PS DDR DQ39 504	AE29
PS DDR4 DQ40	PS DDR DQ40 504	AC27
PS DDR4 DQ41	PS DDR DQ41 504	AA27
PS DDR4 DQ42	PS DDR DQ42 504	AA28
PS DDR4 DQ43	PS DDR DQ43 504	AB28
PS DDR4 DQ44	PS DDR DQ44 504	W27
PS DDR4 DQ45	PS DDR DQ45 504	W29
PS_DDR4_DQ46	PS_DDR_DQ46_504	W28
PS DDR4 DQ47	PS DDR DQ47 504	V27
PS DDR4 DQ48	PS DDR DQ48 504	AA32
PS DDR4 DQ49	PS DDR DQ49 504	AA33
PS DDR4 DQ50	PS DDR DQ50 504	AA34
PS DDR4 DQ51	PS DDR DQ51 504	AE34
PS DDR4 DQ52	PS DDR DQ52 504	AD34
PS DDR4 DQ53	PS_DDR_DQ53_504	AB31
PS DDR4 DQ54	PS DDR DQ54 504	AC34
PS_DDR4_DQ55	PS_DDR_DQ55_504	AC33
PS_DDR4_DQ56	PS_DDR_DQ56_504	AA30
PS_DDR4_DQ57	PS_DDR_DQ57_504	Y30
PS_DDR4_DQ58	PS_DDR_DQ58_504	AA31
PS_DDR4_DQ59	PS_DDR_DQ59_504	W30
PS_DDR4_DQ60	PS_DDR_DQ60_504	Y33
PS_DDR4_DQ61	PS_DDR_DQ61_504	W33
PS_DDR4_DQ62	PS_DDR_DQ62_504	W34
PS_DDR4_DQ63	PS_DDR_DQ63_504	Y34
PS_DDR4_DM0	PS_DDR_DM0_504	AN24
PS_DDR4_DM1	PS_DDR_DM1_504	AM29
PS_DDR4_DM2	PS_DDR_DM2_504	AH24
PS_DDR4_DM3	PS_DDR_DM3_504	AJ29
PS_DDR4_DM4	PS_DDR_DM4_504	AD29
PS_DDR4_DM5	PS_DDR_DM5_504	Y29

PS_DDR4_DM6	PS_DDR_DM6_504	AC32
PS_DDR4_DM7	PS_DDR_DM7_504	Y32
PS_DDR4_A0	PS_DDR_A0_504	AN34
PS_DDR4_A1	PS_DDR_A1_504	AM34
PS_DDR4_A2	PS_DDR_A2_504	AM33
PS_DDR4_A3	PS_DDR_A3_504	AL34
PS_DDR4_A4	PS_DDR_A4_504	AL33
PS_DDR4_A5	PS_DDR_A5_504	AK33
PS_DDR4_A6	PS_DDR_A6_504	AK30
PS_DDR4_A7	PS_DDR_A7_504	AJ30
PS_DDR4_A8	PS_DDR_A8_504	AJ31
PS_DDR4_A9	PS_DDR_A9_504	AH31
PS_DDR4_A10	PS_DDR_A10_504	AG31
PS_DDR4_A11	PS_DDR_A11_504	AF31
PS_DDR4_A12	PS_DDR_A12_504	AG30
PS_DDR4_A13	PS_DDR_A13_504	AF30
PS_DDR4_ODT0	PS_DDR_ODT0_504	AP32
PS_DDR4_PARITY	PS_DDR_PARITY_504	AA26
PS_DDR4_RAS_B	PS_DDR_A16_504	AF28
PS_DDR4_RESET_B	PS_DDR_RAM_RST_N_504	AD26
PS_DDR4_WE_B	PS_DDR_A14_504	AG29
PS_DDR4_ACT_B	PS_DDR_ACT_N_504	AE25
PS_DDR4_ALERT_B	PS_DDR_ALERT_N_504	AB26
PS_DDR4_BA0	PS_DDR_BA0_504	AE27
PS_DDR4_BA1	PS_DDR_BA1_504	AE28
PS_DDR4_BG0	PS_DDR_BG0_504	AD27
PS_DDR4_CAS_B	PS_DDR_A15_504	AG28
PS_DDR4_CKE0	PS_DDR_CKE0_504	AN33
PS_DDR4_CS0_B	PS_DDR_CS_N0_504	AP33
PS_DDR4_CLK0_N	PS_DDR_CK_N0_504	AN32
PS_DDR4_CLK0_P	PS_DDR_CK0_504	AL31

PL Side DDR4 DRAM pin assignment:

Signal Name	Pin Name	Pin Number
PL_DDR4_DQS0_N	IO_L10N_T1U_N7_QBC_AD4N_67	F13

PL_DDR4_DQS0_P	IO_L10P_T1U_N6_QBC_AD4P_67	G14
PL_DDR4_DQS1_N	IO_L4N_T0U_N7_DBC_AD7N_67	B13
PL_DDR4_DQS1_P	IO_L4P_T0U_N6_DBC_AD7P_67	B14
PL_DDR4_DQS2_N	IO_L16N_T2U_N7_QBC_AD3N_67	H17
PL_DDR4_DQS2_P	IO_L16P_T2U_N6_QBC_AD3P_67	H18
PL_DDR4_DQS3_N	IO_L22N_T3U_N7_DBC_AD0N_67	K15
PL_DDR4_DQS3_P	IO_L22P_T3U_N6_DBC_AD0P_67	L15
PL_DDR4_DQS4_N	IO_L16N_T2U_N7_QBC_AD3N_68	D10
PL_DDR4_DQS4_P	IO_L16P_T2U_N6_QBC_AD3P_68	D11
PL_DDR4_DQS5_N	IO_L22N_T3U_N7_DBC_AD0N_68	A10
PL_DDR4_DQS5_P	IO_L22P_T3U_N6_DBC_AD0P_68	B10
PL_DDR4_DQS6_N	IO_L10N_T1U_N7_QBC_AD4N_68	D9
PL_DDR4_DQS6_P	IO_L10P_T1U_N6_QBC_AD4P_68	E9
PL_DDR4_DQS7_N	IO_L4N_T0U_N7_DBC_AD7N_68	J11
PL_DDR4_DQS7_P	IO_L4P_T0U_N6_DBC_AD7P_68	K12
PL_DDR4_DQ0	IO_L9N_T1L_N5_AD12N_67	E17
PL_DDR4_DQ1	IO_L11P_T1U_N8_GC_67	D15
PL_DDR4_DQ2	IO_L8P_T1L_N2_AD5P_67	D17
PL_DDR4_DQ3	IO_L12N_T1U_N11_GC_67	E14
PL_DDR4_DQ4	IO_L9P_T1L_N4_AD12P_67	E18
PL_DDR4_DQ5	IO_L11N_T1U_N9_GC_67	D14
PL_DDR4_DQ6	IO_L12P_T1U_N10_GC_67	E15
PL_DDR4_DQ7	IO_L8N_T1L_N3_AD5N_67	C17
PL_DDR4_DQ8	IO_L2P_T0L_N2_67	B16
PL_DDR4_DQ9	IO_L6P_T0U_N10_AD6P_67	C13
PL_DDR4_DQ10	IO_L3P_T0L_N4_AD15P_67	A15
PL_DDR4_DQ11	IO_L5P_T0U_N8_AD14P_67	A13
PL_DDR4_DQ12	IO_L2N_T0L_N3_67	B15
PL_DDR4_DQ13	IO_L5N_T0U_N9_AD14N_67	A12
PL_DDR4_DQ14	IO_L3N_T0L_N5_AD15N_67	A14
PL_DDR4_DQ15	IO_L6N_T0U_N11_AD6N_67	C12
PL_DDR4_DQ16	IO_L15P_T2L_N4_AD11P_67	H19
PL_DDR4_DQ17	IO_L18P_T2U_N10_AD2P_67	H16
PL_DDR4_DQ18	IO_L17P_T2U_N8_AD10P_67	G18
PL_DDR4_DQ19	IO_L18N_T2U_N11_AD2N_67	G16
PL_DDR4_DQ20	IO_L15N_T2L_N5_AD11N_67	G19

PL DDR4 DQ21	IO L14N T2L N3 GC 67	F15
PL DDR4 DQ22	IO_L14N_12L_N3_GG_07 IO L17N T2U N9 AD10N 67	F18
PL_DDR4_DQ22 PL DDR4_DQ23	IO_L17N_120_N9_AD10N_67	G15
PL_DDR4_DQ23 PL_DDR4_DQ24		L16
	IO_L24N_T3U_N11_67	
PL_DDR4_DQ25	IO_L21N_T3L_N5_AD8N_67	J17
PL_DDR4_DQ26	IO_L23P_T3U_N8_67	K19
PL_DDR4_DQ27	IO_L21P_T3L_N4_AD8P_67	K17
PL_DDR4_DQ28	IO_L24P_T3U_N10_67	L17
PL_DDR4_DQ29	IO_L20P_T3L_N2_AD1P_67	J16
PL_DDR4_DQ30	IO_L23N_T3U_N9_67	K18
PL_DDR4_DQ31	IO_L20N_T3L_N3_AD1N_67	J15
PL_DDR4_DQ32	IO_L18N_T2U_N11_AD2N_68	C11
PL_DDR4_DQ33	IO_L17P_T2U_N8_AD10P_68	F12
PL_DDR4_DQ34	IO_L17N_T2U_N9_AD10N_68	E12
PL_DDR4_DQ35	IO_L14P_T2L_N2_GC_68	F11
PL_DDR4_DQ36	IO_L18P_T2U_N10_AD2P_68	D12
PL_DDR4_DQ37	IO_L15N_T2L_N5_AD11N_68	H12
PL_DDR4_DQ38	IO_L15P_T2L_N4_AD11P_68	H13
PL_DDR4_DQ39	IO_L14N_T2L_N3_GC_68	E10
PL_DDR4_DQ40	IO_L20N_T3L_N3_AD1N_68	B8
PL_DDR4_DQ41	IO_L21N_T3L_N5_AD8N_68	A6
PL_DDR4_DQ42	IO_L20P_T3L_N2_AD1P_68	B9
PL_DDR4_DQ43	IO_L23N_T3U_N9_68	A7
PL_DDR4_DQ44	IO_L24P_T3U_N10_68	B11
PL_DDR4_DQ45	IO_L21P_T3L_N4_AD8P_68	B6
PL_DDR4_DQ46	IO_L24N_T3U_N11_68	A11
PL_DDR4_DQ47	IO_L23P_T3U_N8_68	A8
PL_DDR4_DQ48	IO_L12P_T1U_N10_GC_68	G10
PL_DDR4_DQ49	IO_L9P_T1L_N4_AD12P_68	F8
PL_DDR4_DQ50	IO_L8N_T1L_N3_AD5N_68	C8
PL_DDR4_DQ51	IO_L9N_T1L_N5_AD12N_68	E8
PL_DDR4_DQ52	IO_L12N_T1U_N11_GC_68	F10
PL_DDR4_DQ53	IO_L11P_T1U_N8_GC_68	H9
PL_DDR4_DQ54	IO_L8P_T1L_N2_AD5P_68	C9
PL_DDR4_DQ55	IO_L11N_T1U_N9_GC_68	G 9
PL_DDR4_DQ56	IO_L5N_T0U_N9_AD14N_68	J14

PL_DDR4_DQ57	IO_L6N_T0U_N11_AD6N_68	K13
PL_DDR4_DQ58	IO_L5P_T0U_N8_AD14P_68	K14
PL_DDR4_DQ59	IO_L2P_T0L_N2_68	K10
PL_DDR4_DQ60	IO_L6P_T0U_N10_AD6P_68	L14
PL_DDR4_DQ61	IO_L3P_T0L_N4_AD15P_68	L12
PL_DDR4_DQ62	IO_L2N_T0L_N3_68	J10
PL_DDR4_DQ63	IO_L3N_T0L_N5_AD15N_68	L11
PL_DDR4_DM0	IO_L7P_T1L_N0_QBC_AD13P_67	D16
PL_DDR4_DM1	IO_L1P_T0L_N0_DBC_67	A17
PL_DDR4_DM2	IO_L13P_T2L_N0_GC_QBC_67	F17
PL_DDR4_DM3	IO_L19P_T3L_N0_DBC_AD9P_67	L20
PL_DDR4_DM4	IO_L13P_T2L_N0_GC_QBC_68	H11
PL_DDR4_DM5	IO_L19P_T3L_N0_DBC_AD9P_68	C7
PL_DDR4_DM6	IO_L7P_T1L_N0_QBC_AD13P_68	F7
PL_DDR4_DM7	IO_L1P_T0L_N0_DBC_68	M13
PL_DDR4_A0	IO_L10P_T1U_N6_QBC_AD4P_66	AK8
PL_DDR4_A1	IO_L6P_T0U_N10_AD6P_66	AM9
PL_DDR4_A2	IO_L10N_T1U_N7_QBC_AD4N_66	AL8
PL_DDR4_A3	IO_L5N_T0U_N9_AD14N_66	AM10
PL_DDR4_A4	IO_L11N_T1U_N9_GC_66	AK10
PL_DDR4_A5	IO_L3N_T0L_N5_AD15N_66	AP11
PL_DDR4_A6	IO_L14N_T2L_N3_GC_66	AJ11
PL_DDR4_A7	IO_L4P_T0U_N6_DBC_AD7P_66	AN9
PL_DDR4_A8	IO_L17N_T2U_N9_AD10N_66	AG10
PL_DDR4_A9	IO_L6N_T0U_N11_AD6N_66	AM8
PL_DDR4_A10	IO_L11P_T1U_N8_GC_66	AJ10
PL_DDR4_A11	IO_L5P_T0U_N8_AD14P_66	AM11
PL_DDR4_A12	IO_L9N_T1L_N5_AD12N_66	AL12
PL_DDR4_A13	IO_L4N_T0U_N7_DBC_AD7N_66	AN8
PL_DDR4_ODT	IO_L16P_T2U_N6_QBC_AD3P_66	AG9
PL_DDR4_RAS_B	IO_L8P_T1L_N2_AD5P_66	AL11
PL_DDR4_RST	IO_L14P_T2L_N2_GC_66	AH11
PL_DDR4_WE_B	IO_L15N_T2L_N5_AD11N_66	AH13
PL_DDR4_ACT_B	IO_L16N_T2U_N7_QBC_AD3N_66	AH9
PL_DDR4_BA0	IO_L7N_T1L_N1_QBC_AD13N_66	AL13
PL_DDR4_BA1	IO_L3P_T0L_N4_AD15P_66	AN11

PL_DDR4_BG0	IO_L7P_T1L_N0_QBC_AD13P_66	AK13
PL_DDR4_CAS_B	IO_L8N_T1L_N3_AD5N_66	AL10
PL_DDR4_CKE	IO_L15P_T2L_N4_AD11P_66	AG13
PL_DDR4_CS_B	IO_L9P_T1L_N4_AD12P_66	AK12
PL_DDR4_CLK_N	IO_L13N_T2L_N1_GC_QBC_66	AJ12
PL_DDR4_CLK_P	IO_L13P_T2L_N0_GC_QBC_66	AH12

Part 2.4: QSPI Flash

The FPGA core board ACU7EV is equipped with two 256MBit Quad-SPI FLASH chip to form an 8-bit bandwidth data bus, the flash model is MT25QU256ABA1EW9, which uses the 1.8V CMOS voltage standard. Due to the non-volatile nature of QSPI FLASH, it can be used as a boot device for the system to store the boot image of the system. These images mainly include FPGA bit files, ARM application code, and other user data files. The specific models and related parameters of QSPI FLASH are shown in Table 2-4-1.

Position	Model	Capacity	Factory
U2, U3	MT25QU256ABA1EW9	256Mbit	Winbond

Table 2-4-1: QSPI FLASH Specification

QSPI FLASH is connected to the GPIO port of the BANK500 in the PS section of the ZYNQ chip. In the system design, the GPIO port functions of these PS ports need to be configured as the QSPI FLASH interface. Figure 2-4-1 shows the QSPI Flash in the schematic.

Figure 2-4-1: QSPI Flash in the schematic

Configure chip pin assignments:

Signal Name	Pin Name	Pin Number
MIO0_QSPI0_SCLK	PS_MIO0_500	A24
MIO1_QSPI0_IO1	PS_MIO1_500	C24
MIO2_QSPI0_IO2	PS_MIO2_500	B24
MIO3_QSPI0_IO3	PS_MIO3_500	E25
MIO4_QSPI0_IO0	PS_MIO4_500	A25
MIO5_QSPI0_SS_B	PS_MIO5_500	D25
MIO10_QSPI1_IO2	PS_MIO10_500	F26
MIO11_QSPI1_IO3	PS_MIO11_500	B26
MIO12_QSPI1_SCLK	PS_MIO12_500	C27
MIO7_QSPI1_SS_B	PS_MIO7_500	B25
MIO8_QSPI1_IO0	PS_MIO8_500	D26
MIO9_QSPI1_IO1	PS_MIO9_500	C26

Part 2.5: eMMC Flash

The ACU7EV core board is equipped with a large-capacity 8GB eMMC

FLASH chip, the model is MTFC8GAKAJCN-4M, it supports the HS-MMC interface of the JEDEC e-MMC V5.0 standard, and the level supports 1.8V or 3.3V. The data width of eMMC FLASH and ZYNQ connection is 8bit. Due to the large-capacity and non-volatile characteristics of eMMC FLASH, it can be used as a large-capacity storage device in the ZYNQ system, such as storing ARM applications, system files and other user data files The specific models and related parameters of eMMC FLASH are shown in Table 2-5-1.

Position	Model	Capacity	Factory
U19	MTFC8GAKAJCN-4M	8G Byte	Micron

Table 2-5-1: eMMC FLASH Specification

The eMMC FLASH is connected to the GPIO port of the BANK500 of the PS part of the ZYNQ UltraScale+. In the system design, it is necessary to configure the GPIO port function of the PS side as an EMMC interface. Figure 2-5-1 shows the part of eMMC Flash in the schematic diagram.

Figure 2-5-1: eMMC Flash in the schematic

Configuration Chip pin assignment:

Signal Name	Pin Name	Pin Number
MMC_CCLK	PS_MIO22_500	F28
MMC_CMD	PS_MIO21_500	C28
MMC_DAT0	PS_MIO13_500	D27

MMC_DAT1	PS_MIO14_500	A27
MMC_DAT2	PS_MIO15_500	E27
MMC_DAT3	PS_MIO16_500	A28
MMC_DAT4	PS_MIO17_500	C29
MMC_DAT5	PS_MIO18_500	F27
MMC_DAT6	PS_MIO19_500	B28
MMC_DAT7	PS_MIO20_500	E29
MMC_RSTN	PS_MIO23_500	B29

Part 2.6: Clock configuration

The core board provides reference clock and RTC real-time clock for PS system and PL logic respectively, so that PS system and PL logic can work independently. The schematic diagram of the clock circuit design is shown in Figure 2-6-1:

Figure 2-6-1: Core Board Clock Source

PS System RTC Real Time Clock

The passive crystal Y1 on the core board provides a 32.768KHz real-time clock source for the PS system. The crystal is connected to the PS_PADI_503 and PS_PADO_503 pins of BANK503 of the ZYNQ chip. The schematic

diagram is shown in Figure 2-6-2:

Figure 2-6-2: Passive Crystal Oscillator for RTC

Clock pin assignment:

Signal Name	Pin
PS_PADI_503	M25
PS_PADO_503	L25

PS System Clock Source

The X1 crystal on the core board provides a 33.333MHz clock input for the PS part. The clock input is connected to the PS_REF_CLK_503 pin of BANK503 of the ZYNQ chip. The schematic diagram is shown in Figure 2-6-3:

Figure 2-6-3: Active Crystal in PS part

Clock pin assignment:

Signal Name	Pin
PS_REF_CLK	R24

PL System Clock Source

The core board provides a differential 200MHz PL system clock source for the reference clock of the DDR4 controller. The crystal oscillator output is connected to the global clock (MRCC) of PL BANK64. This global clock can be used to drive the DDR4 controller and user logic circuits in the FPGA. The schematic diagram of this clock source is shown in Figure 2-6-4

Figure 2-6-4: PL system clock source

Clock pin assignment:

Signal Name	Pin
PL_CLK0_P	AJ9
PL_CLK0_N	AK9

Part 2.7: Power Supply

The power supply voltage of the ACU7EV core board is DC12V, which is supplied by connecting the carrier board. The core board uses 2 MYMGM1R824 power chips in parallel to achieve a 50A current to provide the core power of the XCZU7EV with 0.85V. In addition, a PMIC chip TPS6508640 is used to generate all other power supplies required by the XCZU7EV chip. For the TPS6508640 power supply design, please refer to the power supply chip manual. The design block diagram is as follows:

Part 2.8: ACU7EV Core Board Size Dimension

Figure 2-8-1: ACU7EV Core Board Size Dimension

Part 2.9: Board to Board Connectors pin assignment

The core board has a total of four high-speed expansion ports. It uses four 120-pin inter-board connectors (J29/J30/J31/J32) to connect to the carrier board. The connectors used is Panasonic AXK5A2137YG, and the corresponding connector model in the carrier board is Panasonic AXK6A2337YG.

J29 connector

J29 connects to +12V power supply, the IO of BANK28, BANK87,BANK88. the level standard of BANK87, 88 is 3.3V, the level standard of BANK28 is 1.8V, The Level of PS MIO is +1.8V.

Pin assignment of board to board connector J29

J29 Pin	Signal Name	Pin	J29 Pin	Signal Name	Pin Number
		Number			
1	+12V		2	+12V	
3	+12V		4	+12V	
5	+12V		6	+12V	
7	+12V		8	+12V	
9	+12V		10	+12V	
11	+12V		12	+12V	
13	GND		14	GND	
15	B88_L2_N	B1	16	B88_L1_N	D1
17	B88_L2_P	C1	18	B88_L1_P	E1
19	GND		20	GND	
21	B88_L5_N	C2	22	B88_L4_N	E2
23	B88_L5_P	D2	24	B88_L4_P	E3
25	B88_L8_N	D4	26	B88_L3_N	A2
27	B88_L8_P	E4	28	B88_L3_P	A3
29	GND		30	GND	
31	B88_L7_N	B4	32	B88_L6_N	В3
33	B88_L7_P	C4	34	B88_L6_P	C3
35	B88_L9_N	F4	36	B88_L10_N	A5
37	B88_L9_P	F5	38	B88_L10_P	B5
39	GND		40	GND	
41	B88_L11_N	D5	42	B88_L12_N	E5
43	B88_L11_P	D6	44	B88_L12_P	F6
45	B87_L9_N	J6	46	B87_L10_N	G6
47	B87_L9_P	J7	48	B87_L10_P	H6
49	GND		50	GND	
51	B87_L11_N	G7	52	B87_L3_N	M12
53	B87_L11_P	H7	54	B87_L3_P	N13
55	B87_L5_N	M8	56	B87_L12_N	G8
57	B87_L5_P	M9	58	B87_L12_P	H8
59	GND		60	GND	
61	B87_L8_N	J9	62	B87_L7_N	K8
63	B87_L8_P	K9	64	B87_L7_P	L8
65	B87_L2_N	N8	66	B87_L6_N	L10
67	B87_L2_P	N9	68	B87_L6_P	M10

69	GND		70	GND	
71	B87_L4_N	M11	72	B28_L7_N	D19
73	B87_L4_P	N11	74	B28_L7_P	E19
75	B28_L20_N	C19	76	B28_L9_N	D21
77	B28_L20_P	C18	78	B28_L9_P	D20
79	GND		80	GND	
81	B28_L19_N	A19	82	B28_L10_N	F20
83	B28_L19_P	A18	84	B28_L10_P	G20
85	B28_L21_N	A21	86	B28_L22_N	B19
87	B28_L21_P	A20	88	B28_L22_P	B18
89	GND		90	GND	
91	B28_L24_N	B21	92	B28_L15_N	C22
93	B28_L24_P	B20	94	B28_L15_P	C21
95	B28_L23_N	A23	96	B28_L17_N	C23
97	B28_L23_P	A22	98	B28_L17_P	D22
99	GND		100	GND	
101	PS_MIO43	E30	102	-	-
103	PS_MIO26	A29	104	PS_MIO32	B31
105	PS_MIO27	A30	106	PS_MIO35	C31
107	PS_MIO31	B30	108	PS_MIO36	C32
109	PS_MIO40	D31	110	PS_MIO37	C33
111	PS_MIO44	E32	112	PS_MIO29	A32
113	PS_MIO39	D30	114	PS_MIO30	A33
115	PS_MIO33	B33	116	PS_MIO34	B34
117	PS_MIO41	D32	118	PS_MIO42	D34
119	PS_MIO28	A31	120	PS_MIO38	C34

Pin assignment of board to board connector J30

J30 is connected to the transceiver signal of BANK505 MGT, MIO of PS and Bank 28. The Level Standard of Bank 28 is 1.8V, the MIO level of PS is 1.8V standard

J30 Pin	Signal Name	Pin Number	J30 Pin	Signal Name	Pin Number
1	B28_L16_P	E24	2	SD_D2	F31
3	B28_L16_N	D24	4	SD_D3	F32
5	GND	-	6	GND	-

7	B28_L11_N	E22	8	SD_CMD	F33
9	B28_L11_P	F22	10	SD_D0	E34
11	B28_L13_P	F23	12	SD_D1	F30
13	B28_L13_N	E23	14	SD_CLK	F34
15	GND		16	GND	
17	B28_L12_N	F21	18	SD_CD	E33
19	B28_L12_P	G21	20		
21	B28_L3_P	J21	22	USB_STP	H31
23	B28_L3_N	J22	24	USB_DIR	G30
25	GND		26	GND	
27			28	USB_CLK	G29
29			30	USB_NXT	G33
31			32	USB_DATA0	G34
33			34	USB_DATA1	H29
35	GND		36	GND	
37	B28_L18_N	G26	38	USB_DATA2	G31
39	B28_L18_P	G25	40	USB_DATA3	H32
41	B28_L14_N	G24	42	USB_DATA4	H33
43	B28_L14_P	G23	44	USB_DATA5	H34
45	GND		46	GND	
47			48	USB_DATA6	J29
49			50	USB_DATA7	J30
51			52	PHY1_TXD0	J32
53			54	PHY1_TXD1	J34
55	GND		56	GND	
57			58	PHY1_TXD2	K28
59			60	PHY1_TXD3	K29
61	PS_POR_B	M24	62	PHY1_TXCK	J31
63	FPGA_DONE	N24	64	PHY1_TXCTL	K30
65	GND		66	GND	
67	PS_MODE3	K25	68	PHY1_RXD3	L29
69	PS_MODE2	K26	70	PHY1_RXD2	K34
71	PS_MODE1	J26	72	PHY1_RXD1	K33
73	PS_MODE0	H27	74	PHY1_RXD0	K32
75	GND		76	GND	
77	FPGA_TCK	K27	78	PHY1_RXCTL	L30

K31 L33 L34 N30 N29
L34 N30
N30
N20
INZO
-
P32
P31
R30
R29
U30
U29
P28
P27
M32
M31

Pin assignment of board to board connector J31

J31 connects the IO of BANK64, BANK65, the level standard of BANK66, 67 is +1.8V.

J31 Pin	Signal Name	Pin Number	J31 Pin	Signal Name	Pin
					Number
1	POWER_SW		2	VBAT_IN	Y23
3	B65_L24_N	AA20	4	B65_L2_N	AN19
5	B65_L24_P	AA19	6	B65_L2_P	AM19
7	B65_L13_N	AH23	8	B65_L18_N	AE24
9	B65_L13_P	AH22	10	B65_L18_P	AE23
11	GND		12	GND	
13	B65_L8_N	AL23	14	B65_L16_N	AG23
15	B65_L8_P	AL22	16	B65_L16_P	AF23

17	B65_L12_N	AJ22	18	B65_L3_N	AP22
19	B65_L12_P	AJ21	20	B65_L3_P	AP21
21	GND		22	GND	
23	B65_L5_N	AP23	24	B65_L7_N	AL21
25	B65_L5_P	AN22	26	B65_L7_P	AL20
27	B65_L10_N	AK23	28	B65_L21_N	AE20
29	B65_L10_P	AK22	30	B65_L21_P	AD20
31	GND		32	GND	
33	B65_L14_N	AH21	34	B65_L6_N	AN23
35	B65_L14_P	AG21	36	B65_L6_P	AM23
37	B65_L19_N	AE19	38	B65_L17_N	AF22
39	B65_L19_P	AE18	40	B65_L17_P	AF21
41	GND		42	GND	
43	B65_L15_N	AG20	44	B65_L4_N	AN21
45	B65_L15_P	AG19	46	B65_L4_P	AM21
47	B65_L20_N	AC19	48	B65_L11_N	AK20
49	B65_L20_P	AB19	50	B65_L11_P	AJ20
51	GND		52	GND	
53	B65_L23_N	AD19	54	B65_L1_N	AP20
55	B65_L23_P	AC18	56	B65_L1_P	AP19
57	B65_L22_N	AB18	58	B65_L9_N	AK19
59	B65_L22_P	AA18	60	B65_L9_P	AJ19
61	GND		62	GND	
63	B64_L1_P	AP18	64	B64_L9_P	AK18
65	B64_L1_N	AP17	66	B64_L9_N	AL18
67	B64_L6_P	AN17	68	B64_L14_P	AF18
69	B64_L6_N	AN16	70	B64_L14_N	AG18
71	GND		72	GND	
73	B64_L5_P	AP16	74	B64_L11_P	AJ17
75	B64_L5_N	AP15	76	B64_L11_N	AK17
77	B64_L3_P	AM18	78	B64_L4_P	AM14
79	B64_L3_N	AN18	80	B64_L4_N	AN14
81	GND		82	GND	
83	B64_L24_P	AD17	84	B64_L2_P	AN13
85	B64_L24_N	AD16	86	B64_L2_N	AP13
87	B64_L21_P	AB16	88	B64_L8_P	AL16

89	B64_L21_N	AB15	90	B64_L8_N	AL15
91	GND		92	GND	
93	B64_L7_P	AM16	94	B64_L12_P	AJ16
95	B64_L7_N	AM15	96	B64_L12_N	AJ15
97	B64_L10_P	AK15	98	B64_L16_P	AH14
99	B64_L10_N	AK14	100	B64_L16_N	AJ14
101	GND		102	GND	
103	B64_L20_P	AC17	104	B64_L15_P	AE17
105	B64_L20_N	AC16	106	B64_L15_N	AF17
107	B64_L18_P	AG15	108	B64_L17_P	AF16
109	B64_L18_N	AG14	110	B64_L17_N	AF15
111	GND		112	GND	
113	B64_L22_P	AA16	114	B64_L19_P	AD15
115	B64_L22_N	AA15	116	B64_L19_N	AE15
117	B64_L13_P	AH18	118	B64_L23_P	AA14
119	B64_L13_N	AH17	120	B64_L23_N	AB14

Pin assignment of board to board connector J32

J32 connects to the transceiver signal of BANK223, 224, 225,226

J32 Pin	Signal Name	Pin Number	J32 Pin	Signal Name	Pin Number
1	223_RX0_P	AP4	2	223_TX0_P	AN6
3	223_RX0_N	AP3	4	223_TX0_N	AN5
5	GND		6	GND	
7	223_RX1_P	AN2	8	223_TX1_P	AM4
9	223_RX1_N	AN1	10	223_TX1_N	AM3
11	GND		12	GND	
13	223_RX2_P	AL2	14	223_TX2_P	AL6
15	223_RX2_N	AL1	16	223_TX2_N	AL5
17	GND		18	GND	
19	223_RX3_P	AK4	20	223_TX3_P	AJ6
21	223_RX3_N	AK3	22	223_TX3_N	AJ5
23	GND		24	GND	
25	223_CLK1_P	AC10	26	223_CLK0_P	AD8
27	223_CLK1_N	AC9	28	223_CLK0_N	AD7
29	GND		30	GND	

31	224_RX0_P	AJ2	32	224_TX0_P	AH4
33	224_RX0_N	AJ1	34	224_TX0_N	AH3
35	GND		36	GND	
37	224_RX1_P	AG2	38	224_TX1_P	AG6
39	224_RX1_N	AG1	40	224_TX1_N	AG5
41	GND		42	GND	
43	224_RX2_P	AF4	44	224_TX2_P	AE6
45	224_RX2_N	AF3	46	224_TX2_N	AE5
47	GND		48	GND	
49	224_RX3_P	AE2	50	224_TX3_P	AD4
51	224_RX3_N	AE1	52	224_TX3_N	AD3
53	GND		54	GND	
55	224_CLK1_P	AA10	56	224_CLK0_P	AB8
57	224_CLK1_N	AA9	58	224_CLK0_N	AB7
59	GND		60	GND	
61	225_CLK1_P	W10	62	225_CLK0_P	Y8
63	225_CLK1_N	W9	64	225_CLK0_N	Y7
65	GND		66	GND	
67	225_RX1_P	AB4	68	225_RX0_P	AC2
69	225_RX1_N	AB3	70	225_RX0_N	AC1
71	GND		72	GND	
73	225_TX1_P	AA6	74	225_TX0_P	AC6
75	225_TX1_N	AA5	76	225_TX0_N	AC5
77	GND		78	GND	
79	225_RX2_P	AA2	80	225_RX3_P	W2
81	225_RX2_N	AA1	82	225_RX3_N	W1
83	GND		84	GND	
85	225_TX2_P	Y4	86	225_TX3_P	W6
87	225_TX2_N	Y3	88	225_TX3_N	W5
89	GND		90	GND	
91	226_CLK0_P	V8	92	226_CLK1_P	U10
93	226_CLK0_N	V7	94	226_CLK1_N	U9
95	GND		96	GND	
97	226_RX3_P	P4	98	226_TX3_P	N6
99	226_RX3_N	P3	100	226_TX3_N	N5
101	GND		102	GND	

ALINX ZYNQ Ultrascale + FPGA Board AXU7EV User Manual

103	226_RX2_P	R2	104	226_TX2_P	R6
105	226_RX2_N	R1	106	226_TX2_N	R5
107	GND		108	GND	
109	226_RX1_P	U2	110	226_TX1_P	T4
111	226_RX1_N	U1	112	226_TX1_N	Т3
113	GND		114	GND	
115	226_RX0_P	V4	116	226_TX0_P	U6
117	226_RX0_N	V3	118	226_TX0_N	U5
119	GND		120	GND	

Part 3: Carrier Board

Part 3.1: Carrier Board Introduction

Through the previous function introduction, you can understand the function of the carrier board part

- > PCle x8 interface
- ➤ 1-Channel M.2 interface
- > 1-Channel DP output interface
- ➤ 4 USB 3.0 Interfaces
- > 1-Channel HDMI video output interface
- > 1-Channel HDMI video input interface
- > 2-Channel 10/100M/1000M Ethernet RJ-45 interface
- > 2-Channel USB Uart Interfaces
- > 2 SFP Interface
- > 1-Channel Micro SD card slot
- 1-Channel MIPI camera interface
- ➤ 1-Channel FMC interface
- > 2-Channel CAN communication interfaces
- > 2-Channel 485 communication interfaces
- > JTAG debugging interface
- ➤ 1-Channel temperature sensor
- ▶ 1-Channel EEPROM
- > 1-Channel RTC real-time clock
- ➤ 2 LED lights
- ➤ 2 Keys

Part 3.2: PCIe Slot

There is a PCle3.0 x8 interface on the AXU7EV carrier board, and eight pairs of transceivers are connected to the PClEx8, which can realize PCle x 8,

PCle x 4, PCle x 2, PCle x 2 data communication.

The transceiver signal of the PCIe interface is directly connected to the GTH transceiver of FPGA BANK223, BANK224, and the single-channel communication rate can be as high as 8G bit bandwidth.

The PCIe interface schematic is shown in Figure 3-2-1 below, where the TX signal is connected in AC coupling mode.

Figure 3-2-1: PCIe Interface Schematic

PCIe x8 Interface FPGA Pin Assignment

Signal Name	FPGA Pin Name	Pin Number	Description
PCIE_RX0_N	223_RX0_N	AP3	PCIE Channel 0 Data Receive Negative
PCIE_RX0_P	223_RX0_P	AP4	PCIE Channel 0 Data Receive Positive
PCIE_RX1_N	223_RX1_N	AN1	PCIE Channel 1 Data Receive Negative
PCIE_RX1_P	223_RX1_P	AN2	PCIE Channel 1 Data Receive Positive

DOIE DV0 11	000 51/0 1/		PCIE Channel 2 Data Receive Negative
PCIE_RX2_N	223_RX2_N	AL1	
PCIE_RX2_P	223_RX2_P	AL2	PCIE Channel 2 Data Receive Positive
PCIE_RX3_N	223_RX3_N	AK3	PCIE Channel 3 Data Receive Negative
PCIE_RX3_P	223_RX3_P	AK4	PCIE Channel 3 Data Receive Positive
PCIE_RX4_N	224_RX0_N	AJ1	PCIE Channel 4 Data Receive Negative
PCIE_RX4_P	224_RX0_P	AJ2	PCIE Channel 4 Data Receive Positive
PCIE_RX5_N	224_RX1_N	AG1	PCIE Channel 5 Data Receive Negative
PCIE_RX5_P	224_RX1_P	AG2	PCIE Channel 5 Data Receive Positive
PCIE_RX6_N	224_RX2_N	AF3	PCIE Channel 6 Data Receive Negative
PCIE_RX6_P	224_RX2_P	AF4	PCIE Channel 6 Data Receive Positive
PCIE_RX7_N	224_RX3_N	AE1	PCIE Channel 7 Data Receive Negative
PCIE_RX7_P	224_RX3_P	AE2	PCIE Channel 7 Data Receive Positive
PCIE_TX0_N	223_TX0_N	AN5	PCIE Channel 0 Data Receive Negative
PCIE_TX0_P	223_TX0_P	AN6	PCIE Channel 0 Data Receive Positive
PCIE_TX1_N	223_TX1_N	AM3	PCIE Channel 1 Data Receive Negative
PCIE_TX1_P	223_TX1_P	AM4	PCIE Channel 1 Data Receive Positive
PCIE_TX2_N	223_TX2_N	AL5	PCIE Channel 2 Data Receive Negative
PCIE_TX2_P	223_TX2_P	AL6	PCIE Channel 2 Data Receive Positive
PCIE_TX3_N	223_TX3_N	AJ5	PCIE Channel 3 Data Receive Negative
PCIE_TX3_P	223_TX3_P	AJ6	PCIE Channel 3 Data Receive Positive
PCIE_TX4_N	224_TX0_N	AH3	PCIE Channel 4 Data Receive Negative
PCIE_TX4_P	224_TX0_P	AH4	PCIE Channel 4 Data Receive Positive
PCIE_TX5_N	224_TX1_N	AG5	PCIE Channel 5 Data Receive Negative
PCIE_TX5_P	224_TX1_P	AG6	PCIE Channel 5 Data Receive Positive
PCIE_TX6_N	224_TX2_N	AE5	PCIE Channel 6 Data Receive Negative
PCIE_TX6_P	224_TX2_P	AE6	PCIE Channel 6 Data Receive Positive
PCIE_TX7_N	224_TX3_N	AD3	PCIE Channel 7 Data Receive Negative
PCIE_TX7_P	224_TX3_P	AD4	PCIE Channel 7 Data Receive Positive
PCIE_CLK_N	223_CLK0_N	AD7	PCIE Channel Reference Clock Negative
PCIE_CLK_P	223_CLK0_P	AD8	PCIE Channel Reference Clock Positive
PCIE_RSTN	B65_L24_N	AA20	The Reset Signal of the PCIE Board

Part 3.3: M.2 Interface

The AXU7EV FPGA development board is equipped with a PCIE x1 standard M.2 interface for connecting M.2 SSD solid state drives, with a communication speed of up to 6Gbps. The M.2 interface uses the M key slot, which only supports PCI-E, not SATA. When users choose SSD solid state drives, they need to choose PCIE type SSD solid state drives.

The PCIE signal is directly connected to the BANK505 PS MGT transceiver of ZU7EV, and the TX signal and RX signal of one channel are connected to the LANE1 of MGT in a differential signal mode. The PCIE clock is provided by the Si5332 chip, the frequency is 100Mhz, and the schematic diagram of the M.2 circuit design is shown in Figure 3-2-1:

Figure 3-3-1: M.2 Interface Schematic

The pin assignment of M.2 interface ZYNQ is as follows:

Signal Name	Pin Name	Pin Number	Description
PCIE_TX_N	505_TX0_N	U30	PCIE Data Transmit Positive
PCIE_TX_P	505_TX0_P	U29	PCIE Data Transmit Negative
PCIE_RX_N	505_RX0_N	U34	PCIE Data Receive Positive
PCIE_RX_P	505_RX0_P	U33	PCIE Data Receive Negative

505_PCIE_REFCLK_N	505_CLK0_N	T28	PCIE Reference Clock Negative
505_PCIE_REFCLK_P	505_CLK0_P	T27	PCIE Reference Clock Positive
PCIE_RSTN_MIO37	PS_MIO37	C33	PCIE Reset Signal

Part 3.4: DP Interface

The AXU7EV FPGA development board has a standard DisplayPort output display interface for video image display. The interface supports VESA DisplayPort V1.2a output standard, up to 4K x 2K@30Fps output, supports Y-only, YCbCr444, YCbCr422, YCbCr420 and RGB video formats, each color supports 6, 8, 10, or 12 bits.

The DisplayPort data transmission channel is directly driven and output by the BANK505 PS MGT of ZU7EV, and the LANE2 and LANE3 TX signals of MGT are connected to the DP connector in a differential signal mode. The DisplayPort auxiliary channel is connected to the MIO pin of the PS. The schematic diagram of the DP output interface design is shown in Figure 3-4-1:

Figure 3-4-1: DP interface design Schematic

The DisplayPort interface ZYNQ pin assignment is as follows:

Signal Name	ZYNQ Pin Number	ZYNQ Pin Number	Description
GT0 DP TX N	505 TX3 N	N30	Low bits of DP Data
			Transmit Negative
GT0_DP_TX_P	505_TX3_P	N29	Low bits of DP Data
			Transmit Positive
GT1_DP_TX_N	505_TX2_N	P32	High bits of DP Data
			Transmit Negative
GT1 DP TX P	505 TX2 P	P31	High bits of DP Data
			Transmit Positive
505_DP_CLKN	505_CLK2_N	M28	DP Reference Clock
			Positive
505 DP CLKP	505 CLK2 P	M27	DP Reference Clock
			Negative
DP_AUX_OUT_MIO27	PS_MIO27	A30	DP Auxiliary Data Output
DP_AUX_IN_MIO30	PS_MIO30	A33	DP Auxiliary Data Input
DP_OE_MIO29	PS_MIO29	A32	DP Auxiliary Data Output Enable
DP_HPD_MIO28	PS_MIO28	A31	DP Insertion Signal Detection

Part 3.5: USB3.0 Interface

There are 4 USB3.0 ports on the AXU7EV carrier board, supporting the HOST working mode, and the data transmission speed is up to 5.0Gb/s. USB3.0 is connected through the PIPE3 interface, and USB2.0 is connected to the external USB3320C chip through the ULPI interface to realize high-speed USB3.0 and USB2.0 data communication.

The USB interface is a flat USB interface (USB Type A), which is convenient for users to connect different USB Slave peripherals (such as USB mouse, keyboard or U disk) at the same time. The schematic diagram of USB3.0 connection is shown as 3-5-1:

Figure 3-4-1: USB3.0 Interface Schematic

USB Interface Pin Assignment:

Signal Name	Pin Name	Pin Number	Description
USB_SSTXP	505_TX1_N	R30	USB3.0 Data Transmit Positive
USB_SSTXN	505_TX1_P	R29	USB3.0 Data Transmit Negative
USB_SSRXP	505_RX1_N	T32	USB3.0 Data Receive Positive
USB_SSRXN	505_RX1_P	T31	USB3.0 Data Receive Negative
USB_DATA0	USB_DATA0	G34	USB2.0 Data Bit0
USB_DATA1	USB_DATA1	H29	USB2.0 Data Bit1
USB_DATA2	USB_DATA2	G31	USB2.0 Data Bit2
USB_DATA3	USB_DATA3	H32	USB2.0 Data Bit3
USB_DATA4	USB_DATA4	H33	USB2.0 Data Bit4
USB_DATA5	USB_DATA5	H34	USB2.0 Data Bit5
USB_DATA6	USB_DATA6	J29	USB2.0 Data Bit6
USB_DATA7	USB_DATA7	J30	USB2.0 Data Bit7
USB_STP	USB_STP	H31	USB2.0 Stop Signal
USB_DIR	USB_DIR	G30	USB2.0 Data Direction Signal
USB_CLK	USB_CLK	G29	USB2.0 Clock Signal
USB_NXT	USB_NXT	G33	USB2.0 Next Data Signal
USB_RESET_N	PS_MIO32	B31	USB2.0 Reset Signal

Part 3.6: HDMI Output Interface

There is one HDMI Output Interface on the carrier board. The HMDI chip uses TI's SN75DP159 chip to realize the TMDS level conversion redriver and receiver equalization function, and increase the signal driving capability. The HDMI interface supports up to 4K@60Hz output.

The HDMI video output data is connected to the BANK226 GTH transceiver, the clock is connected to BANK64, and the remaining auxiliary channels are connected to BANK88. The hardware connection between SN75DP159RSBR chip and FPGA is shown in Figure 3-6-1:

Figure 3-6-1: HDMI Output Interface Schematic

HDMI Output pin assignment:

Signal Name	FPGA Pin Name	FPGA	Description
		Pin	
		Number	
HDMI_TX0_D0N	226_TX0_N	U5	HDMI Video Output Signal Data 0 Negative
HDMI_TX0_D0P	226_TX0_P	U6	HDMI Video Output Signal Data 0 Positive

HDMI_TX0_D1N	226_TX1_N	Т3	HDMI Video Output Signal Data 1 Negative
HDMI_TX0_D1P	226_TX1_P	T4	HDMI Video Output Signal Data 1 Positive
HDMI_TX0_D2N	226_TX2_N	R5	HDMI Video Output Signal Data 2 Negative
HDMI_TX0_D2P	226_TX2_P	R6	HDMI Video Output Signal Data 2 Positive
HDMI_TX_LVDS_OUT_N	B64_L13_N	AH17	HDMI Video Output Clock Negative
HDMI_TX_LVDS_OUT_P	B64_L13_P	AH18	HDMI Video Output Clock Positive
HDMI_SCL_CTL	B88_L8_P	E4	IIC Clock
HDMI_SDA_CTL	B88_L8_N	D4	IIC Data
HDMI_TX0_DDC_SCL	B88_L4_N	E2	TMDS Bidirectional DDC Clock
HDMI_TX0_DDC_SDA	B88_L1_P	E1	TMDS Bidirectional DDC Data
HDMI_TX0_HPD	B88_L1_N	D1	Hot Plug Detection
HDMI_TX0_OUT_OE	B88_L4_P	E3	Operation Enable Pin

Part 3.7: HDMI Input Interface

There is 1 HDMI input interface on the carrier board. The HMDI chip uses TI's TMDS181IRGZT, which is a TMDS retimer chip. There is a clock and data recovery (CDR) circuit between the HDMI input port and the output port, supporting data rates up to 6Gbps. The HMDI interface supports up to 4K@60Hz input.

The output end of TMDS181IRGZT is connected to BANK226 GTH transceiver, and the remaining auxiliary channels are connected to BANK88 on the PL end. In addition, there is a PLL clock chip 8T49N241 on the board to generate the clock source required by the HDMI IP. The hardware connection between TMDS181IRGZT chip and FPGA is shown in Figure 3-7-1:

Figure 3-7-1: HDMI Input Interface Schematic

ZYNQ pin assignment:

Signal Name	FPGA Pin Name	FPGA Pin Numb er	Description
HDMI_IN0_RX_0N	226_RX0_N	V3	HDMI Video Input Signal Data 0 Negative
HDMI_IN0_RX_0P	226_RX0_P	V4	HDMI Video Input Signal Data 0 Positive
HDMI_IN0_RX_1N	226_RX1_N	U1	HDMI Video Input Signal Data 1 Negative
HDMI_IN0_RX_1P	226_RX1_P	U2	HDMI Video Input Signal Data 1 Positive
HDMI_IN0_RX_2N	226_RX2_N	R1	HDMI Video Input Signal Data 2 Negative

HDMI_IN0_RX_2P	226_RX2_P	R2	HDMI Video Input Signal Data 2 Positive
HDMI_IN0_RX_CLKN	226_CLK0_N	V7	HDMI Video Input Clock Negative
HDMI_IN0_RX_CLKP	226_CLK0_P	V8	HDMI Video Input Clock Positive
HDMI_SCL_CTL	B88_L8_P	E4	IIC Clock
HDMI_SDA_CTL	B88_L8_N	D4	IIC Data
HDMI_RX_DSCL	B88_L5_N	C2	TMDS Bidirectional DDC Clock
HDMI_RX_DSDA	B88_L2_P	C1	TMDS Bidirectional DDC Data
HDMI_RX_HPD	B88_L2_N	B1	Hot Plug Detection
HDMI_8T49N241_OUT_N	226_CLK1_N	U9	PLL Clock Output Negative
HDMI_8T49N241_OUT_P	226_CLK1_P	U10	PLL Clock Output Positive
CLK_REC_SCL	B87_L9_N	J6	PLL Chip IIC Clock
CLK_REC_SDA	B87_L9_P	J7	PLL Chip IIC Data
8T49N241_INT_ALM	B88_L11_N	D5	PLL Interrupt Warning Signal
8T49N241_LOL	B88_L11_P	D6	PLL LOSS Signal
8T49N241_RST	B88_L9_P	F5	PLL Reset Signal

Part 3.8: Gigabit Ethernet Interface

There are 2 Gigabit Ethernet ports on the AXU7EV carrier board, one is connected to the PS end, and the other is connected to the PL end. The GPHY chip uses Micrel's KSZ9031RNX Ethernet PHY chip to provide users with network communication services. The KSZ9031RNX chip supports 10/100/1000 Mbps network transmission rate, and communicates with the MAC layer of the ZU7EV system through the RGMII interface. KSZ9031RNX supports MDI/MDX adaptation, various speed adaptation, Master/Slave adaptation, and MDIO bus for PHY register management.

When the KSZ9031RNX is powered on, it will detect the level status of some specific IOs to determine its own operating mode. Table 3-8-1 describes the default settings after the GPHY chip is powered on.

Configuration Pin	Instructions	Configuration value
PHYAD[2:0]	MDIO/MDC Mode PHY Address	PHY Address 011

CLK125_EN	Enable 125Mhz clock output selection	Enable
LED_MODE	LED light mode configuration	Single LED light mode
MODE0~MODE3	Link adaptation and full duplex	10/100/1000 adaptive, compatible
	configuration	with full-duplex, half-duplex

Table 3-8-1: PHY chip default configuration value

When the network is connected to Gigabit Ethernet, the data transmission of ZYNQ and PHY chip KSZ9031RNX is communicated through the RGMII bus, the transmission clock is 125Mhz, and the data is sampled on the rising edge and falling samples of the clock.

When the network is connected to 100M Ethernet, the data transmission of ZYNQ and PHY chip KSZ9031RNX is communicated through RMII bus, and the transmission clock is 25Mhz. Data is sampled on the rising edge and falling samples of the clock.

Figure 3-8-1: ZYNQ PS system and GPHY connection diagram

PS Gigabit Ethernet pin assignment is as follows

Signal Name	Pin Name	Pin Number	Description
PHY1_TXCK	PHY1_TXCK	J31	Ethernet 1 RGMII Transmit Clock

PHY1_TXD0	PHY1_TXD0	J32	Ethernet 1 Transmit data bit0
PHY1_TXD1	PHY1_TXD1	J34	Ethernet 1 Transmit data bit1
PHY1_TXD2	PHY1_TXD2	K28	Ethernet 1 Transmit data bit2
PHY1_TXD3	PHY1_TXD3	K29	Ethernet 1 Transmit data bit3
PHY1_TXCTL	PHY1_TXCTL	K30	Ethernet 1 Transmit Enable Signal
PHY1_RXCK	PHY1_RXCK	K31	Ethernet 1 RGMII Receive Clock
PHY1_RXD0	PHY1_RXD0	K32	Ethernet 1 Receive Data Bit0
PHY1_RXD1	PHY1_RXD1	K33	Ethernet 1 Receive Data Bit1
PHY1_RXD2	PHY1_RXD2	K34	Ethernet 1 Receive Data Bit2
PHY1_RXD3	PHY1_RXD3	L29	Ethernet 1 Receive Data Bit3
PHY1_RXCTL	PHY1_RXCTL	L30	Ethernet 1 Receive Enable Signal
PHY1_MDC	PHY1_MDC	L33	Ethernet 1 MDIO Clock Management
PHY1_MDIO	PHY1_MDIO	L34	Ethernet 1 MDIO Management Data

PL Gigabit Ethernet pin assignment is as follows

Signal Name	Pin Name	Pin Number	Description
PHY2_TXCK	B65_L14_P	AG21	Ethernet 2 RGMII Transmit Clock
PHY2_TXD0	B65_L19_P	AE18	Ethernet 2 Transmit data bit0
PHY2_TXD1	B65_L19_N	AE19	Ethernet 2 Transmit data bit1
PHY2_TXD2	B65_L10_P	AK22	Ethernet 2 Transmit data bit2
PHY2_TXD3	B65_L14_N	AH21	Ethernet 2 Transmit data bit3
PHY2_TXCTL	B65_L10_N	AK23	Ethernet 2 Transmit Enable Signal
PHY2_RXCK	B65_L13_P	AH22	Ethernet 2 RGMII Receive Clock
PHY2_RXD0	B65_L12_N	AJ22	Ethernet 2 Receive Data Bit0
PHY2_RXD1	B65_L12_P	AJ21	Ethernet 2 Receive Data Bit1
PHY2_RXD2	B65_L5_N	AP23	Ethernet 2 Receive Data Bit2
PHY2_RXD3	B65_L5_P	AN22	Ethernet 2 Receive Data Bit3
PHY2_RXCTL	B65_L8_P	AL22	Ethernet 2 Receive Data Enable
			Signal
PHY2_MDC	B65_L8_N	AL23	Ethernet 2 MDIO Clock Management
PHY2_MDIO	B65_L24_P	AA19	Ethernet 2 MDIO Management Data
PHY2_RESET	B65_L13_N	AH23	Ethernet 2 Reset Signal

Part 3.9: USB to Serial Port

The AXU7EV carrier board is equipped with two Uart to USB ports, one is connected to the PS end, and one is connected to the PL end. The conversion chip uses Silicon Labs CP2102GM's USB-UAR chip, and the USB interface is a MINI USB interface. You can use a USB cable to connect it to the PC's USB port for serial data communication. The schematic diagram of the USB Uart circuit design is shown in the figure below:

The schematic diagram of the USB Uart circuit design is shown in Figure 3-9-1:

Figure 3-9-1: USB to serial port schematic

USB to serial port **ZYNQ** pin assignment:

Signal name	Pin Name	Pin Number	Description
PS_UART_TX	PS_MIO42	D34	PS Uart Data Input
PS_UART_RX	PS_MIO43	E30	PS Uart Data Output
PL_UART_TX	B87_L2_N	N8	PL Uart Data Input
PL_UART_RX	B87_L2_P	N9	PL Uart Data Output

Part 3.10: SFP Interface

The AXU7EV FPGA carrier board has two optical interfaces. Users can purchase SFP optical modules (1.25G, 2.5G, 10G optical modules on the market) and insert them into these two optical interfaces for optical data communication. The two fiber interfaces are connected to the two RX/TX of the GTH transceivers of ZYNQ BANK225, and the data rate of each TX transmission and RX reception is up to 12.5Gb/s. The reference clock of the GTH transceiver is provided by the 125M differential clock of the core board.

The SFP Schematic detailed is shown in Figure 3-10-1:

Figure 3-10-1: SFP Schematic

SFP ZYNQ pin assignment:

Signal Name	ZYNQ Pin Name	ZYNQ Pin Number	Description
SFP1_TX_N	225_TX0_N	AC5	Optical Module 1 Data Transmit Negative
SFP1_TX_P	225_TX0_P	AC6	Optical Module 1 Data Transmit Positive
SFP1_RX_N	225_RX0_N	AC1	Optical Module 1 Data Receive Negative
SFP1_RX_P	225_RX0_P	AC2	Optical Module 1 Data Receive Positive

SFP2_TX_N	225_TX3_N	W5	Optical Module 2 Data Transmit Negative
SFP2_TX_P	225_TX3_P	W6	Optical Module 2 Data Transmit Positive
SFP2_RX_N	225_RX3_N	W1	Optical Module 2 Data Receive Negative
SFP2_RX_P	225_RX3_P	W2	Optical Module 2 Data Receive Positive
SFP_TX_DIS	B88_L3_N	A2	Optical Module Light Emission Prohibited, High
			Level (Positive) Enable
SFP1 LOSS	B88 L7 P	C4	Optical Module 1 Receive LOSS
_			Detect Signal
SFP2 LOSS	B88 L7 N	B4	Optical Module 2 Receive LOSS
_			Detect Signal

Part 3.11: SD Card Slot Interface

The AXU7EV FPGA Development Board contains a Micro SD card interface to provide user access to the SD card memory, the BOOT program for the ZU7EV chip, the Linux operating system kernel, the file system and other user data files.

The SDIO signal is connected to the IO signal of the PS BANK501 of ZU7EV. Since the VCCMIO of the BANK is set to 1.8V, but the data level of the SD card is 3.3V, connected through the TXS02612 level shifter. The schematic of the ZU7EV PS and SD card connector is shown in Figure 3-11-1:

Figure 3-11-1: SD Card Connection Diagram

SD card slot pin assignment:

Signal Name	Pin Name	Pin Number	Description
SD_CLK	SD_CLK	F34	SD Clock Signal
SD_CD	SD_CD	E33	SD Command Signal
SD_D0	SD_D0	E34	SD Data0
SD_D1	SD_D1	F30	SD Data1
SD_D2	SD_D2	F31	SD Data2
SD_D3	SD_D3	F32	SD Data3
SD_CMD	SD_CMD	F33	SD card insertion signal

Part 3.12: MIPI Camera Interface

The AXU7EV carrier board includes a MIPI camera interface, which can be used to connect with the ALINX Brand MIPI OV5640 camera module AN5641. MIPI interface 15PIN FPC connector, 2 LANE data and 1 pair of clock, connected to the differential IO pin of BANK65. other control signals are connected to the IO of BANK87.

The circuit schematic of the MIPI interface part is shown in Figure 3-12-1 below:

Figure 3-12-1: MIPI camera interface design schematic

MIPI interface pin assignment

Signal Name	ZYNQ Pin Name	ZYNQ Pin	Description
		Number	
MIPI_CLK_N	B65_L1_N	AP20	MIPI Input Clock Positive
MIPI_CLK_P	B65_L1_P	AP19	MIPI Input Clock Negative
MIPI_LAN0_N	B65_L2_N	AN19	MIPI Input Date LANE0 Negative
MIPI_LAN0_P	B65_L2_P	AM19	MIPI Input Date LANE0 Positive
MIPI_LAN1_N	B65_L3_N	AP22	MIPI Input Date LANE1 Negative
MIPI_LAN1_P	B65_3_P	AP21	MIPI Input Date LANE1 Positive
CAM_GPIO	B87_L5_N	M8	GPIO Control of Camera
CAM_CLK	B87_L5_P	M9	Clock Input of Camera
CAM_SCL	B87_L11_P	H7	I2C Clock of Camera
CAM_SDA	B87_L11_N	G7	I2C Data of Camera

Part 3.13: FMC Interface

The AXU7EV FPGA Carrier board has a standard FMC LPC expansion port that can be connected to various FMC modules of XILINX or ALINX (HDMI input and output modules, binocular camera modules, high-speed AD modules, etc.). The FMC expansion port contains 36 pairs of differential IO signals and 8 pairs of GTX Transceivers.

The 36 pairs of differential signals of the FMC expansion port are connected to the IO of the BANK28 and BANK64 of the ZYNQ Ultrascale+ chip. The level standard is 1.8V, and the differential signal supports LVDS data communication, 2 pairs of GTX transceiver signals are connected to BANK225. The schematic diagram of ZYNQ Ultrascale+ and FMC connectors is shown in Figure 3-13-1.

Figure 3-13-1: FMC Schematic

FMC connector pin assignment

Signal Name	ZYNQ Pin Name	ZYNQ Pin	Description
		Number	
FMC_DP0_C2M_N	225_TX1_N	AA5	FMC Transceiver Data Transmission 0
			Negative
FMC_DP0_C2M_P	225_TX1_P	AA6	FMC Transceiver Data Transmission 0
			Positive
FMC_DP0_M2C_N	225_RX1_N	AB3	FMC Transceiver Data Receive 0
			Negative
FMC_DP0_M2C_P	225_RX1_P	AB4	FMC Transceiver Data Receive 0
			Positive
FMC_CLK0_N	B28_L11_N	E22	FMC Reference 1 st Clock Negative
FMC_CLK0_P	B28_L11_P	F22	FMC Reference 1st Clock Positive
FMC_CLK1_N	B64_L14_N	AG18	FMC Reference 2 nd Clock Negative
FMC_CLK1_P	B64_L14_P	AF18	FMC Reference 2 nd Clock Positive
FMC_LA00_CC_N	B28_L13_N	E23	FMC Reference 0 th Data (Clock) N
FMC_LA00_CC_P	B28_L13_P	F23	FMC Reference 0 th Data (Clock) P
FMC_LA01_CC_N	B28_L14_N	G24	FMC Reference 1 st Data (Clock) N
FMC_LA01_CC_P	B28_L14_P	G23	FMC Reference 1st Data (Clock) P

FMC_LA02_N	B28_L16_N	D24	FMC Reference 2 nd Data N
FMC_LA02_P	B28_L16_P	E24	FMC Reference 2 nd Data P
FMC_LA03_N	B28_L12_N	F21	FMC Reference 3 rd Data N
FMC_LA03_P	B28_L12_P	G21	FMC Reference 3 rd Data P
FMC_LA04_N	B28_L3_N	J22	FMC Reference 4 th Data N
FMC_LA04_P	B28_L3_P	J21	FMC Reference 4 th Data P
FMC_LA05_N	B28_L18_N	G26	FMC Reference 5 th Data N
FMC_LA05_P	B28_L18_P	G25	FMC Reference 5 th Data P
FMC_LA06_N	B28_L17_N	C23	FMC Reference 6 th Data N
FMC_LA06_P	B28_L17_P	D22	FMC Reference 6 th Data P
FMC_LA07_N	B28_L23_N	A23	FMC Reference 7 th Data N
FMC_LA07_P	B28_L23_P	A22	FMC Reference 7 th Data P
FMC_LA08_N	B28_L15_N	C22	FMC Reference 8 th Data N
FMC_LA08_P	B28_L15_P	C21	FMC Reference 8 th Data P
FMC_LA09_N	B28_L24_N	B21	FMC Reference 9 th Data N
FMC_LA09_P	B28_L24_P	B20	FMC Reference 9 th Data P
FMC_LA10_N	B28_L22_N	B19	FMC Reference 10 th Data N
FMC_LA10_P	B28_L22_P	B18	FMC Reference 10 th Data P
FMC_LA11_N	B28_L19_N	A19	FMC Reference 11 th Data N
FMC_LA11_P	B28_L19_P	A18	FMC Reference 11 th Data P
FMC_LA12_N	B28_L21_N	A21	FMC Reference 12 th Data N
FMC_LA12_P	B28_L21_P	A20	FMC Reference 12 th Data P
FMC_LA13_N	B28_L10_N	F20	FMC Reference 13 th Data N
FMC_LA13_P	B28_L10_P	G20	FMC Reference 13 th Data P
FMC_LA14_N	B28_L9_N	D21	FMC Reference 14 th Data N
FMC_LA14_P	B28_L9_P	D20	FMC Reference 14 th Data P
FMC_LA15_N	B28_L20_N	C19	FMC Reference 15 th Data N
FMC_LA15_P	B28_L20_P	C18	FMC Reference 15 th Data P
FMC_LA16_N	B28_L7_N	D19	FMC Reference 16 th Data N
FMC_LA16_P	B28_L7_P	E19	FMC Reference 16 th Data P
FMC_LA17_CC_N	B64_L11_N	AK17	FMC Reference 17 th Data (Clock) N
FMC_LA17_CC_P	B64_L11_P	AJ17	FMC Reference 17 th Data (Clock) P
FMC_LA18_CC_N	B64_L12_N	AJ15	FMC Reference 18 th Data (Clock) N
FMC_LA18_CC_P	B64_L12_P	AJ16	FMC Reference 18 th Data (Clock) P

FMC_LA19_N B64_L2_N AP13 FMC Reference 19th Data N FMC_LA19_P B64_L2_P AN13 FMC Reference 19th Data P FMC_LA20_N B64_L4_N AN14 FMC Reference 20th Data N FMC_LA21_N B64_L4_P AM14 FMC Reference 21th Data N FMC_LA21_N B64_L3_N AN18 FMC Reference 21th Data N FMC_LA21_P B64_L5_N AN18 FMC Reference 21th Data N FMC_LA22_N B64_L5_N AN18 FMC Reference 22th Data N FMC_LA22_P B64_L5_N AN15 FMC Reference 22th Data N FMC_LA23_N B64_L8_N AL15 FMC Reference 23th Data N FMC_LA23_N B64_L8_N AL15 FMC Reference 23th Data N FMC_LA24_N B64_L16_N AJ14 FMC Reference 24th Data N FMC_LA24_N B64_L16_N AJ14 FMC Reference 25th Data N FMC_LA24_P B64_L16_N AM15 FMC Reference 25th Data N FMC_LA25_N B64_L7_N AM15 FMC Reference 25th Data N FMC_LA26_N B64_L21_N AB16 FMC Referen				
FMC_LA20_N B64_L2_P AN13 FMC Reference 20th Data N FMC_LA20_P B64_L4_P AN14 FMC Reference 20th Data P FMC_LA21_N B64_L4_P AM14 FMC Reference 21th Data N FMC_LA21_P B64_L3_N AN18 FMC Reference 21th Data N FMC_LA22_N B64_L5_N AP15 FMC Reference 22th Data N FMC_LA22_P B64_L5_N AP15 FMC Reference 22th Data N FMC_LA23_N B64_L8_N AL15 FMC Reference 22th Data N FMC_LA23_P B64_L8_P AL16 FMC Reference 23th Data N FMC_LA24_N B64_L8_N AL15 FMC Reference 23th Data N FMC_LA24_N B64_L8_P AL16 FMC Reference 23th Data N FMC_LA24_N B64_L16_P AH14 FMC Reference 25th Data N FMC_LA25_N B64_L7_N AM15 FMC Reference 25th Data N FMC_LA25_D B64_L7_N AM16 FMC Reference 25th Data N FMC_LA26_N B64_L21_N AB15 FMC Reference 26th Data N FMC_LA27_N B64_L24_N AD16 FMC Referenc	FMC_LA19_N	B64_L2_N	AP13	
FMC_LA20_P B64_L4_P AN14 FMC Reference 20th Data P FMC_LA21_N B64_L4_P AM14 FMC Reference 21th Data N FMC_LA21_P B64_L3_N AN18 FMC Reference 21th Data N FMC_LA21_P B64_L5_N AP15 FMC Reference 22th Data N FMC_LA22_N B64_L5_N AP15 FMC Reference 22th Data N FMC_LA23_N B64_L8_N AL15 FMC Reference 23th Data N FMC_LA23_P B64_L8_N AL16 FMC Reference 23th Data N FMC_LA24_N B64_L8_N AL16 FMC Reference 23th Data N FMC_LA24_N B64_L16_P AH14 FMC Reference 24th Data N FMC_LA24_N B64_L16_P AH14 FMC Reference 25th Data N FMC_LA25_N B64_L7_N AM15 FMC Reference 25th Data N FMC_LA25_N B64_L7_N AM16 FMC Reference 25th Data N FMC_LA26_N B64_L21_N AB15 FMC Reference 26th Data N FMC_LA26_N B64_L21_N AB16 FMC Reference 26th Data N FMC_LA27_N B64_L24_N AD16 FMC Refere	FMC_LA19_P	B64_L2_P	AN13	FMC Reference 19 th Data P
FMC_LA21_N B64_L3_N AN18 FMC Reference 21** Data N FMC_LA21_P B64_L3_N AN18 FMC Reference 21** Data P FMC_LA21_P B64_L5_N AP15 FMC Reference 22** Data N FMC_LA22_N B64_L5_N AP15 FMC Reference 23** Data N FMC_LA23_N B64_L8_N AL15 FMC Reference 23** Data N FMC_LA23_P B64_L8_N AL16 FMC Reference 23** Data N FMC_LA24_N B64_L8_N AL16 FMC Reference 24** Data N FMC_LA24_N B64_L16_N AJ14 FMC Reference 24** Data N FMC_LA24_N B64_L16_N AJ14 FMC Reference 25** Data P FMC_LA25_N B64_L16_N AJ14 FMC Reference 25** Data P FMC_LA25_N B64_L16_N AJ15 FMC Reference 25** Data N FMC_LA25_N B64_L21_N AB15 FMC Reference 25** Data N FMC_LA26_N B64_L21_N AB16 FMC Reference 26** Data N FMC_LA26_N B64_L24_N AD16 FMC Reference 27** Data N FMC_LA27_N B64_L24_N AD17 FMC Ref	FMC_LA20_N	B64_L4_N	AN14	
FMC_LA21_N B64_L3_N AN18 FMC Reference 21st Data P FMC_LA22_N B64_L5_N AP15 FMC Reference 22nd Data N FMC_LA22_P B64_L5_P AP16 FMC Reference 22nd Data P FMC_LA23_N B64_L8_N AL15 FMC Reference 23nd Data N FMC_LA23_P B64_L8_P AL16 FMC Reference 23nd Data N FMC_LA24_N B64_L16_N AJ14 FMC Reference 24th Data N FMC_LA24_P B64_L16_P AH14 FMC Reference 25th Data N FMC_LA25_N B64_L7_N AM15 FMC Reference 25th Data N FMC_LA25_P B64_L7_P AM16 FMC Reference 25th Data N FMC_LA26_N B64_L21_N AB15 FMC Reference 25th Data N FMC_LA26_N B64_L21_N AB16 FMC Reference 26th Data N FMC_LA27_N B64_L21_N AD16 FMC Reference 27th Data N FMC_LA27_N B64_L24_N AD16 FMC Reference 27th Data N FMC_LA28_N B64_L18_N AG14 FMC Reference 28th Data N FMC_LA28_N B64_L18_N AG15 FMC Ref	FMC_LA20_P	B64_L4_P	AM14	FMC Reference 20 th Data P
FMC_LA22_N B64_L5_N AP15 FMC Reference 22nd Data N FMC_LA22_P B64_L5_P AP16 FMC Reference 22nd Data P FMC_LA23_N B64_L8_N AL15 FMC Reference 23nd Data N FMC_LA23_P B64_L8_P AL16 FMC Reference 23nd Data N FMC_LA24_N B64_L16_N AJ14 FMC Reference 24th Data N FMC_LA24_P B64_L16_P AH14 FMC Reference 25th Data P FMC_LA25_N B64_L7_N AM15 FMC Reference 25th Data P FMC_LA25_N B64_L7_P AM16 FMC Reference 25th Data P FMC_LA25_N B64_L7_P AM16 FMC Reference 25th Data P FMC_LA26_N B64_L7_P AM16 FMC Reference 26th Data N FMC_LA26_N B64_L21_N AB15 FMC Reference 26th Data N FMC_LA26_P B64_L21_N AD16 FMC Reference 27th Data N FMC_LA27_N B64_L24_N AD16 FMC Reference 27th Data N FMC_LA28_N B64_L18_N AG14 FMC Reference 28th Data N FMC_LA28_N B64_L18_N AG15 FMC Refe	FMC_LA21_N	B64_L3_N	AN18	FMC Reference 21st Data N
FMC_LA22_P B64_L5_P AP16 FMC Reference 22nd Data P FMC_LA23_N B64_L8_N AL15 FMC Reference 23nd Data N FMC_LA23_P B64_L8_P AL16 FMC Reference 23nd Data P FMC_LA24_N B64_L16_N AJ14 FMC Reference 24nd Data N FMC_LA24_P B64_L16_P AH14 FMC Reference 25nd Data P FMC_LA25_N B64_L7_N AM15 FMC Reference 25nd Data P FMC_LA25_P B64_L7_P AM16 FMC Reference 25nd Data P FMC_LA26_N B64_L21_N AB15 FMC Reference 26nd Data N FMC_LA26_P B64_L21_P AB16 FMC Reference 26nd Data N FMC_LA26_P B64_L24_N AD16 FMC Reference 27nd Data P FMC_LA27_N B64_L24_N AD16 FMC Reference 27nd Data P FMC_LA27_P B64_L24_P AD17 FMC Reference 28nd Data N FMC_LA28_N B64_L18_N AG14 FMC Reference 28nd Data N FMC_LA28_P B64_L20_N AC16 FMC Reference 28nd Data N FMC_LA30_N B64_L17_P AF16 FMC R	FMC_LA21_P	B64_L3_P	AM18	FMC Reference 21st Data P
FMC_LA22_P B64_L8_N AL15 FMC Reference 23 rd Data N FMC_LA23_P B64_L8_P AL16 FMC Reference 23 rd Data P FMC_LA24_N B64_L16_N AJ14 FMC Reference 24 th Data N FMC_LA24_P B64_L16_P AH14 FMC Reference 25 th Data P FMC_LA25_N B64_L7_N AM15 FMC Reference 25 th Data N FMC_LA25_P B64_L7_P AM16 FMC Reference 26 th Data P FMC_LA26_N B64_L21_N AB15 FMC Reference 26 th Data N FMC_LA26_P B64_L21_P AB16 FMC Reference 26 th Data N FMC_LA27_N B64_L24_N AD16 FMC Reference 27 th Data N FMC_LA27_P B64_L24_P AD17 FMC Reference 27 th Data N FMC_LA28_N B64_L18_N AG14 FMC Reference 28 th Data N FMC_LA28_P B64_L18_P AG15 FMC Reference 28 th Data N FMC_LA29_N B64_L20_N AC16 FMC Reference 29 th Data N FMC_LA30_N B64_L17_N AF15 FMC Reference 30 th Data N FMC_LA30_N B64_L17_P <t< td=""><td>FMC_LA22_N</td><td>B64_L5_N</td><td>AP15</td><td>FMC Reference 22nd Data N</td></t<>	FMC_LA22_N	B64_L5_N	AP15	FMC Reference 22 nd Data N
FMC_LA23_P B64_L8_P AL16 FMC Reference 23rd Data P FMC_LA24_N B64_L16_N AJ14 FMC Reference 24th Data N FMC_LA24_P B64_L16_P AH14 FMC Reference 25th Data P FMC_LA25_N B64_L17_N AM15 FMC Reference 25th Data N FMC_LA25_P B64_L17_P AM16 FMC Reference 25th Data P FMC_LA26_N B64_L21_N AB15 FMC Reference 26th Data N FMC_LA26_P B64_L21_P AB16 FMC Reference 27th Data N FMC_LA27_N B64_L24_N AD16 FMC Reference 27th Data N FMC_LA27_P B64_L24_N AD16 FMC Reference 27th Data N FMC_LA28_N B64_L18_N AG14 FMC Reference 28th Data N FMC_LA28_P B64_L18_N AG15 FMC Reference 28th Data N FMC_LA29_N B64_L20_N AC16 FMC Reference 29th Data N FMC_LA30_N B64_L10_P AC17 FMC Reference 30th Data N FMC_LA30_N B64_L17_N AF15 FMC Reference 30th Data N FMC_LA31_N B64_L15_N AF17 F	FMC_LA22_P	B64_L5_P	AP16	FMC Reference 22 nd Data P
FMC_LA24_N B64_L16_N AJ14 FMC Reference 24th Data N FMC_LA24_P B64_L16_P AH14 FMC Reference 25th Data P FMC_LA25_N B64_L7_N AM15 FMC Reference 25th Data N FMC_LA25_P B64_L7_P AM16 FMC Reference 25th Data P FMC_LA26_N B64_L21_N AB15 FMC Reference 26th Data N FMC_LA26_P B64_L21_P AB16 FMC Reference 27th Data P FMC_LA27_N B64_L24_N AD16 FMC Reference 27th Data P FMC_LA27_N B64_L24_P AD17 FMC Reference 27th Data N FMC_LA27_P B64_L24_P AD17 FMC Reference 28th Data N FMC_LA28_N B64_L18_N AG14 FMC Reference 28th Data N FMC_LA28_P B64_L18_P AG15 FMC Reference 29th Data P FMC_LA29_N B64_L20_N AC16 FMC Reference 29th Data N FMC_LA30_N B64_L17_N AF15 FMC Reference 30th Data N FMC_LA30_N B64_L17_N AF16 FMC Reference 31st Data N FMC_LA31_N B64_L15_N AF17 FM	FMC_LA23_N	B64_L8_N	AL15	FMC Reference 23 rd Data N
FMC_LA24_P B64_L16_P AH14 FMC Reference 24th Data P FMC_LA25_N B64_L7_N AM15 FMC Reference 25th Data N FMC_LA25_P B64_L7_P AM16 FMC Reference 25th Data P FMC_LA26_N B64_L21_N AB15 FMC Reference 26th Data N FMC_LA26_P B64_L21_P AB16 FMC Reference 27th Data P FMC_LA27_N B64_L24_N AD16 FMC Reference 27th Data P FMC_LA27_P B64_L24_P AD17 FMC Reference 27th Data N FMC_LA27_P B64_L18_N AG14 FMC Reference 28th Data N FMC_LA28_N B64_L18_N AG15 FMC Reference 28th Data N FMC_LA28_P B64_L18_P AG15 FMC Reference 29th Data N FMC_LA29_N B64_L20_N AC16 FMC Reference 29th Data N FMC_LA30_N B64_L17_N AF15 FMC Reference 30th Data N FMC_LA30_N B64_L17_P AF16 FMC Reference 30th Data N FMC_LA31_N B64_L15_N AF17 FMC Reference 31st Data N FMC_LA31_P B64_L15_P AE17 FM	FMC_LA23_P	B64_L8_P	AL16	FMC Reference 23 rd Data P
FMC_LA25_N B64_L16_P AH14 FMC_LA25_N B64_L7_N AM15 FMC Reference 25th Data N FMC_LA25_P B64_L7_P AM16 FMC Reference 25th Data P FMC_LA26_N B64_L21_N AB15 FMC Reference 26th Data N FMC_LA26_P B64_L21_P AB16 FMC Reference 27th Data P FMC_LA27_N B64_L24_N AD16 FMC Reference 27th Data N FMC_LA27_P B64_L24_P AD17 FMC Reference 28th Data N FMC_LA28_N B64_L18_N AG14 FMC Reference 28th Data N FMC_LA28_P B64_L18_P AG15 FMC Reference 29th Data N FMC_LA29_N B64_L20_N AC16 FMC Reference 29th Data N FMC_LA30_N B64_L20_P AC17 FMC Reference 29th Data N FMC_LA30_N B64_L17_N AF15 FMC Reference 30th Data N FMC_LA31_N B64_L15_N AF17 FMC Reference 31st Data N FMC_LA31_N B64_L15_P AE17 FMC Reference 31st Data N FMC_LA31_P B64_L23_N AB14 FMC Reference 32nd Data N	FMC_LA24_N	B64_L16_N	AJ14	FMC Reference 24 th Data N
FMC_LA25_P B64_L7_P AM16 FMC Reference 25th Data P FMC_LA26_N B64_L21_N AB15 FMC Reference 26th Data N FMC_LA26_P B64_L21_P AB16 FMC Reference 26th Data P FMC_LA27_N B64_L24_N AD16 FMC Reference 27th Data N FMC_LA27_P B64_L24_P AD17 FMC Reference 27th Data P FMC_LA28_N B64_L18_N AG14 FMC Reference 28th Data N FMC_LA28_P B64_L18_P AG15 FMC Reference 29th Data P FMC_LA29_N B64_L20_N AC16 FMC Reference 29th Data N FMC_LA30_N B64_L20_P AC17 FMC Reference 30th Data N FMC_LA30_N B64_L17_N AF15 FMC Reference 30th Data N FMC_LA30_N B64_L17_N AF16 FMC Reference 30th Data N FMC_LA31_N B64_L15_N AF17 FMC Reference 31st Data N FMC_LA31_N B64_L15_P AE17 FMC Reference 32nd Data N FMC_LA32_N B64_L23_N AB14 FMC Reference 32nd Data N FMC_LA32_N B64_L19_N AE15 F	FMC_LA24_P	B64_L16_P	AH14	FMC Reference 24 th Data P
FMC_LA26_N B64_L21_N AB15 FMC Reference 26th Data N FMC_LA26_P B64_L21_P AB16 FMC Reference 26th Data P FMC_LA27_N B64_L24_N AD16 FMC Reference 27th Data N FMC_LA27_P B64_L24_P AD17 FMC Reference 27th Data P FMC_LA28_N B64_L18_N AG14 FMC Reference 28th Data N FMC_LA28_P B64_L18_P AG15 FMC Reference 29th Data P FMC_LA29_N B64_L20_N AC16 FMC Reference 29th Data N FMC_LA29_P B64_L20_P AC17 FMC Reference 29th Data N FMC_LA30_N B64_L17_N AF15 FMC Reference 30th Data N FMC_LA30_P B64_L17_P AF16 FMC Reference 31st Data N FMC_LA31_N B64_L15_N AF17 FMC Reference 31st Data N FMC_LA31_P B64_L15_P AE17 FMC Reference 31st Data N FMC_LA32_N B64_L23_N AB14 FMC Reference 32nd Data N FMC_LA32_N B64_L23_P AA14 FMC Reference 32nd Data N FMC_LA33_N B64_L19_N AE15	FMC_LA25_N	B64_L7_N	AM15	FMC Reference 25 th Data N
FMC_LA26_N B64_L21_N AB15 FMC_LA26_P B64_L21_P AB16 FMC Reference 26th Data P FMC_LA27_N B64_L24_N AD16 FMC Reference 27th Data N FMC_LA27_P B64_L24_P AD17 FMC Reference 28th Data P FMC_LA28_N B64_L18_N AG14 FMC Reference 28th Data N FMC_LA28_P B64_L18_P AG15 FMC Reference 29th Data P FMC_LA29_N B64_L20_N AC16 FMC Reference 29th Data N FMC_LA29_P B64_L20_P AC17 FMC Reference 30th Data N FMC_LA30_N B64_L17_N AF15 FMC Reference 30th Data N FMC_LA30_P B64_L17_P AF16 FMC Reference 31st Data N FMC_LA31_N B64_L15_N AF17 FMC Reference 31st Data N FMC_LA31_P B64_L15_P AE17 FMC Reference 32nd Data N FMC_LA32_N B64_L23_N AB14 FMC Reference 32nd Data N FMC_LA32_P B64_L23_P AA14 FMC Reference 33nd Data N FMC_LA33_N B64_L19_N AE15 FMC Reference 33nd Data N	FMC_LA25_P	B64_L7_P	AM16	FMC Reference 25 th Data P
FMC_LA2F_N B64_L24_N AD16 FMC Reference 27th Data N FMC_LA27_P B64_L24_P AD17 FMC Reference 27th Data P FMC_LA28_N B64_L18_N AG14 FMC Reference 28th Data N FMC_LA28_P B64_L18_P AG15 FMC Reference 29th Data P FMC_LA29_N B64_L20_N AC16 FMC Reference 29th Data N FMC_LA29_P B64_L20_P AC17 FMC Reference 29th Data P FMC_LA30_N B64_L17_N AF15 FMC Reference 30th Data N FMC_LA30_P B64_L17_P AF16 FMC Reference 30th Data N FMC_LA31_N B64_L15_N AF17 FMC Reference 31st Data N FMC_LA31_P B64_L15_P AE17 FMC Reference 31st Data N FMC_LA32_N B64_L23_N AB14 FMC Reference 32nd Data N FMC_LA32_P B64_L23_P AA14 FMC Reference 33nd Data P FMC_LA33_N B64_L19_N AE15 FMC Reference 33nd Data P FMC_LA33_P B64_L19_P AD15 FMC Reference 33nd Data P FMC_PRSNT B88_L12_P F6 FMC	FMC_LA26_N	B64_L21_N	AB15	FMC Reference 26 th Data N
FMC_LA27_N B64_L24_P AD16 FMC_LA27_P B64_L24_P AD17 FMC Reference 27th Data P FMC_LA28_N B64_L18_N AG14 FMC Reference 28th Data N FMC_LA28_P B64_L18_P AG15 FMC Reference 29th Data P FMC_LA29_N B64_L20_N AC16 FMC Reference 29th Data N FMC_LA29_P B64_L20_P AC17 FMC Reference 29th Data P FMC_LA30_N B64_L17_N AF15 FMC Reference 30th Data N FMC_LA30_P B64_L17_P AF16 FMC Reference 30th Data N FMC_LA31_N B64_L15_N AF17 FMC Reference 31st Data N FMC_LA31_P B64_L15_P AE17 FMC Reference 32nd Data N FMC_LA32_N B64_L23_N AB14 FMC Reference 32nd Data N FMC_LA33_N B64_L23_P AA14 FMC Reference 33nd Data N FMC_LA33_N B64_L19_N AE15 FMC Reference 33nd Data N FMC_LA33_P B64_L19_P AD15 FMC Reference 33nd Data N FMC_PRSNT B88_L12_P F6 FMC Module Exist Signal <tr< td=""><td>FMC_LA26_P</td><td>B64_L21_P</td><td>AB16</td><td>FMC Reference 26th Data P</td></tr<>	FMC_LA26_P	B64_L21_P	AB16	FMC Reference 26 th Data P
FMC_LA27_P B64_L24_P AD17 FMC_LA28_N B64_L18_N AG14 FMC Reference 28 th Data N FMC_LA28_P B64_L18_P AG15 FMC Reference 29 th Data P FMC_LA29_N B64_L20_N AC16 FMC Reference 29 th Data N FMC_LA29_P B64_L20_P AC17 FMC Reference 29 th Data P FMC_LA30_N B64_L17_N AF15 FMC Reference 30 th Data N FMC_LA30_P B64_L17_P AF16 FMC Reference 30 th Data P FMC_LA31_N B64_L15_N AF17 FMC Reference 31 st Data N FMC_LA31_P B64_L15_P AE17 FMC Reference 31 st Data P FMC_LA32_N B64_L23_N AB14 FMC Reference 32 nd Data N FMC_LA32_P B64_L23_P AA14 FMC Reference 33 rd Data N FMC_LA33_N B64_L19_N AE15 FMC Reference 33 rd Data N FMC_LA33_P B64_L19_P AD15 FMC Reference 33 rd Data P FMC_PRSNT B88_L12_P F6 FMC Module Exist Signal PWRGD B87_L6_P M10 FMC Power Good Signal	FMC_LA27_N	B64_L24_N	AD16	FMC Reference 27 th Data N
FMC_LA28_N B64_L18_N AG14 FMC_LA28_P B64_L18_P AG15 FMC Reference 28th Data P FMC_LA29_N B64_L20_N AC16 FMC Reference 29th Data N FMC_LA29_P B64_L20_P AC17 FMC Reference 29th Data P FMC_LA30_N B64_L17_N AF15 FMC Reference 30th Data N FMC_LA30_P B64_L17_P AF16 FMC Reference 30th Data P FMC_LA31_N B64_L15_N AF17 FMC Reference 31st Data N FMC_LA31_P B64_L15_P AE17 FMC Reference 32nd Data N FMC_LA32_N B64_L23_N AB14 FMC Reference 32nd Data N FMC_LA32_P B64_L23_P AA14 FMC Reference 33nd Data N FMC_LA33_N B64_L19_N AE15 FMC Reference 33nd Data N FMC_LA33_P B64_L19_P AD15 FMC Reference 33nd Data N FMC_PRSNT B88_L12_P F6 FMC Module Exist Signal PWRGD B87_L6_P M10 FMC Power Good Signal PS_IIC0_SCL PS_MIO34 B34 FMC I2C Communication Data	FMC_LA27_P	B64_L24_P	AD17	FMC Reference 27 th Data P
FMC_LA29_N B64_L18_P AG15 FMC_LA29_P B64_L20_N AC16 FMC Reference 29th Data N FMC_LA29_P B64_L20_P AC17 FMC Reference 29th Data P FMC_LA30_N B64_L17_N AF15 FMC Reference 30th Data N FMC_LA30_P B64_L17_P AF16 FMC Reference 30th Data P FMC_LA31_N B64_L15_N AF17 FMC Reference 31st Data N FMC_LA31_P B64_L15_P AE17 FMC Reference 31st Data P FMC_LA32_N B64_L23_N AB14 FMC Reference 32nd Data N FMC_LA32_P B64_L23_P AA14 FMC Reference 32nd Data P FMC_LA33_N B64_L19_N AE15 FMC Reference 33nd Data N FMC_LA33_P B64_L19_P AD15 FMC Reference 33nd Data N FMC_PRSNT B88_L12_P F6 FMC Module Exist Signal PWRGD B87_L6_P M10 FMC Power Good Signal PS_IIC0_SCL PS_MIO34 B34 FMC I2C Communication Data	FMC_LA28_N	B64_L18_N	AG14	FMC Reference 28 th Data N
FMC_LA29_P B64_L20_P AC17 FMC Reference 29 th Data P FMC_LA30_N B64_L17_N FMC_LA30_P B64_L17_P AF16 FMC Reference 30 th Data N FMC_LA31_N B64_L15_N FMC_LA31_P B64_L15_P AE17 FMC Reference 31 st Data N FMC_LA32_N B64_L23_N AB14 FMC Reference 32 nd Data N FMC_LA32_P B64_L23_P AA14 FMC Reference 32 nd Data P FMC_LA33_N B64_L19_N AE15 FMC Reference 33 nd Data N FMC_LA33_P FMC_LA33_P B64_L19_P AD15 FMC Reference 33 nd Data P FMC_PRSNT B88_L12_P FMC Module Exist Signal PWRGD B87_L6_P M10 FMC I2C Communication Data	FMC_LA28_P	B64_L18_P	AG15	FMC Reference 28 th Data P
FMC_LA30_N B64_L17_N AF15 FMC Reference 30 th Data N FMC_LA30_P B64_L17_P AF16 FMC Reference 30 th Data P FMC_LA31_N B64_L15_N AF17 FMC Reference 31 st Data N FMC_LA31_P B64_L15_P AE17 FMC Reference 31 st Data P FMC_LA32_N B64_L23_N AB14 FMC Reference 32 nd Data N FMC_LA32_P B64_L23_P AA14 FMC Reference 32 nd Data P FMC_LA33_N B64_L19_N AE15 FMC Reference 33 rd Data N FMC_LA33_P B64_L19_P AD15 FMC Reference 33 rd Data P FMC_PRSNT B88_L12_P F6 FMC Module Exist Signal PWRGD B87_L6_P M10 FMC Power Good Signal FMC I2C Communication Data	FMC_LA29_N	B64_L20_N	AC16	FMC Reference 29 th Data N
FMC_LA30_N B64_L17_N AF15 FMC Reference 30 th Data N FMC_LA30_P B64_L17_P AF16 FMC Reference 30 th Data P FMC_LA31_N B64_L15_N AF17 FMC Reference 31 st Data N FMC_LA31_P B64_L15_P AE17 FMC Reference 31 st Data P FMC_LA32_N B64_L23_N AB14 FMC Reference 32 nd Data N FMC_LA32_P B64_L23_P AA14 FMC Reference 32 nd Data P FMC_LA33_N B64_L19_N AE15 FMC Reference 33 rd Data N FMC_LA33_P B64_L19_P AD15 FMC Reference 33 rd Data P FMC_PRSNT B88_L12_P F6 FMC Module Exist Signal PWRGD B87_L6_P M10 FMC Power Good Signal FMC I2C Communication Data	FMC LA29 P	B64 L20 P	AC17	FMC Reference 29 th Data P
FMC_LA30_P B64_L17_P AF16 FMC Reference 30 th Data P FMC_LA31_N B64_L15_N AF17 FMC Reference 31 st Data N FMC_LA31_P B64_L15_P AE17 FMC Reference 31 st Data P FMC_LA32_N B64_L23_N AB14 FMC Reference 32 nd Data N FMC_LA32_P B64_L23_P AA14 FMC Reference 32 nd Data P FMC_LA33_N B64_L19_N AE15 FMC Reference 33 rd Data N FMC_LA33_P B64_L19_P AD15 FMC Reference 33 rd Data P FMC_PRSNT B88_L19_P FMC_PRSNT B88_L12_P F6 FMC Module Exist Signal PWRGD B87_L6_P M10 FMC Power Good Signal PS_IIC0_SCL PS_MIO34 FMC I2C Communication Data	FMC LA30 N	B64 L17 N	AF15	FMC Reference 30 th Data N
FMC_LA31_N B64_L15_N AE17 FMC Reference 31st Data P FMC_LA32_N B64_L23_N AB14 FMC Reference 32nd Data N FMC_LA32_P B64_L23_P AA14 FMC Reference 32nd Data P FMC_LA33_N B64_L19_N AE15 FMC Reference 33rd Data N FMC_LA33_P B64_L19_P AD15 FMC Reference 33rd Data P FMC_PRSNT B88_L12_P F6 FMC Module Exist Signal FMC Power Good Signal PS_IICO_SCL PS_MIO34 B34 FMC I2C Communication Data	FMC_LA30_P		AF16	FMC Reference 30 th Data P
FMC_LA31_P B64_L15_P AE17 FMC_LA32_N B64_L23_N AB14 FMC Reference 32 nd Data N FMC_LA32_P B64_L23_P AA14 FMC Reference 32 nd Data P FMC_LA33_N B64_L19_N AE15 FMC Reference 33 rd Data N FMC_LA33_P B64_L19_P AD15 FMC Reference 33 rd Data P FMC_PRSNT B88_L12_P F6 FMC Module Exist Signal PWRGD B87_L6_P M10 FMC Power Good Signal FMC I2C Communication Data	FMC_LA31_N	B64_L15_N	AF17	FMC Reference 31st Data N
FMC_LA32_N B64_L23_N B64_L23_P AA14 FMC Reference 32 nd Data P FMC_LA33_N B64_L19_N AB15 FMC Reference 33 rd Data N FMC_LA33_P B64_L19_P AD15 FMC Reference 33 rd Data P FMC_PRSNT B88_L12_P F6 FMC Module Exist Signal FMC Power Good Signal PS_IIC0_SCL PS_MIO34 B34 FMC I2C Communication Data	FMC LA31 P	B64 L15 P	AE17	FMC Reference 31st Data P
FMC_LA32_P B64_L23_P AA14 FMC Reference 32 nd Data P FMC_LA33_N B64_L19_N AE15 FMC Reference 33 rd Data N FMC_LA33_P B64_L19_P AD15 FMC Reference 33 rd Data P FMC_PRSNT B88_L12_P F6 FMC Module Exist Signal PWRGD B87_L6_P M10 FMC Power Good Signal FMC I2C Communication Data	FMC_LA32 N			FMC Reference 32 nd Data N
FMC_LA33_N B64_L19_N AE15 FMC Reference 33 rd Data N FMC_LA33_P B64_L19_P AD15 FMC Reference 33 rd Data P FMC_PRSNT B88_L12_P F6 FMC Module Exist Signal PWRGD B87_L6_P M10 FMC Power Good Signal PS_IIC0_SCL PS_MIO34 B34 FMC I2C Communication Data			AA14	FMC Reference 32 nd Data P
FMC_LA33_P B64_L19_P AD15 FMC Reference 33 rd Data P FMC_PRSNT B88_L12_P F6 FMC Module Exist Signal FMC Power Good Signal PS_IIC0_SCL PS_MIO34 B34 FMC I2C Communication Data			AE15	FMC Reference 33 rd Data N
FMC_PRSNT B88_L12_P F6 FMC Module Exist Signal PWRGD B87_L6_P M10 FMC Power Good Signal PS_IIC0_SCL PS_MIO34 B34 FMC I2C Communication Data				FMC Reference 33 rd Data P
PWRGD B87_L6_P M10 FMC Power Good Signal PS_IIC0_SCL PS_MIO34 B34 FMC I2C Communication Data				FMC Module Exist Signal
PS_IIC0_SCL PS_MIO34 B34 FMC I2C Communication Data	_		M10	FMC Power Good Signal
FMC 12C Communication Clark			B34	FMC I2C Communication Data
PS_IIC0_SDA PS_MIO35 C31 FIVE 12C Communication Clock		_	C31	FMC I2C Communication Clock

Part 3.14: CAN Communication Interface

There are 2 CAN communication interfaces on the AXU7EV carrier board, which are connected to the MIO interface of the BANK501 on the PS system side. The CAN transceiver chip selected TI's SN65HVD232C chip for user CAN communication services. The connection of the CAN transceiver chip on the PS side is show as Figure 3-14-1

Figure 3-14-1: Connection diagram of CAN transceiver chip on PS side

Signal Name	ZYNQ Pin Name	ZYNQ Pin Number	Description
PS_CAN1_RX	PS_MIO38	C34	CAN1 Receiver
PS_CAN1_TX	PS_MIO39	D30	CAN1 Transmitter
PS_CAN2_RX	PS_MIO41	D32	CAN2 Receiver
PS_CAN2_TX	PS_MIO40	D31	CAN2 Transmitter

Part 3.15: 485 Communication Interface

There are two 485 communication interfaces on the AXU7EV carrier board. The 485 communication port is connected to the IO interface of BANK88 on the PL system. The 485 transceiver chip selects the MAX3485 chip from MAXIM

for the user's 485 communication service.

Figure 3-15-1 is the connection diagram of the 485 transceiver chip on the PL side

Figure 3-15-1: 485 Communication on the PL Side

The 485	communication	pins a	are assigned	as follows:
---------	---------------	--------	--------------	-------------

Signal Name	Pin Name	Pin Number	Description
PL_485_TXD1	B88_L6_P	C3	The 1 st Channel 485 Transceiver
PL_485_RXD1	B88_L3_P	A3	The 1st Channel 485 Receiver
PL_485_DE1	B88_L6_N	В3	The 1st Channel 485 Transmit Enable
PL_485_TXD2	B88_L12_N	E5	The 2 nd Channel 485 Transceiver
PL_485_RXD2	B88_L10_N	A5	The 2 nd Channel 485 Receiver
PL_485_DE2	B88_L10_P	B5	The 2 nd Channel 485 Transmit Enable

Part 3.16: JTAG Debug Port

The JTAG interface is reserved on the AXU7EV carrier board for downloading ZYNQ UltraScale+ programs or firmware programs to FLASH. In order to not damage the ZYNQ UltraScale+ chip by plugging and unplugging under power, we aded a protection diode to the JTAG signal to ensure that the

signal voltage is within the range accepted by the FPGA and avoid damage to the ZYNQ UltraScale+ chip.

Figure 3-14-1: JTAG Interface Schematic

Part 3.17: Real-time Clock

The ZU7EV chip has the function of an RTC real-time clock, with timing functions such as year, month, day, hour, minute, and second, and week. External need to connect a 32.768KHz passive clock to provide an accurate clock source to the internal clock circuit, so that the RTC can accurately provide clock information. At the same time, in order for the real-time clock to operate normally after the product is powered off, it is generally necessary to equip the coin battery (model LR41, voltage is 1.5V) to supply power to the clock chip. The BT1 on the development board is a battery Socket. After we put the coin battery, even the system is off, the coin battery can also power the RTC system and provide continuous time information.

Figure 3-17-1: RTC Schematic

Part 3.18: EEPROM and Temperature Sensor

The AXU7EV Fpga development board has an EEPROM onboard. The model of the EEPROM is 24LC04, and the capacity is: 4Kbit (2 * 256 * 8bit), which is connected to the PS terminal through the I2C bus.

A high-precision, low-power, digital temperature sensor chip is installed on the AXU7EV FPGA development board, and the model is LM75 from ON Semiconductor. The temperature accuracy of the LM75 chip is 0.5 degrees.

The EEPROM and temperature sensor are mounted on the Bank500 MIO of ZYNQ UltraScale+ through the I2C bus. Figure 3-18-1 is the schematic diagram of EEPROM and temperature sensor

Figure 3-16-1: EEPROM and Sensor connection diagram

EEPROM pin assignment:

Signal Name	ZYNQ Pin Name	ZYNQ Pin Number	Description
PS_IIC_SCL_1V8	PS_MIO34	L22	I2C Clock Signal
PS_IIC_SDA_1V8	PS_MIO35	P22	I2C Data Signal

Part 3.19: User LEDs

There are 4 LEDs on the AXU7EV Carrier board. including 1 power indicator light, 1 DONE indicator, 1 PS control indicator, and 1 PL control indicator. The user can control the on and off through the program. The schematic diagram of the user's LED light hardware connection is shown in Figure 3-19-1:

Figure 3-19-1: The User LEDs Hardware Connection Diagram

Pin assignment of user LED lights

Signal Name	ZYNQ Pin Name	ZYNQ Pin Number	Description
PS_LED	PS_MIO44	E32	User PS LED Light
PL_LED	B87_L8_P	K9	User PL LED Light

Part 3.20: Keys

There are 1 reset KEY RESET and 2 user KEYs on the AXU7EV carrier board. The reset signal is connected to the reset chip input of the core board ACU7EV, and the user can use this reset KEY to reset the ZYNQ system. One user KEY is connected to the MIO of the PS, and one is connected to the IO of the PL. The reset KEY and the user KEYs are both low-level active. The connection diagram of the user key is shown in Figure 3-20-1:

Figure 3-20-1: Rest keys connection diagram

ZYNQ pin assignment of keys

Signal Name	ZYNQ Pin Name	ZYNQ Pin Number	Description
PS_KEY1	PS_MIO33	B33	PS KEY Input
PL_KEY1	B87_L8_N	J9	PL KEY Input

Part 3.21: DIP Switch Configuration

There is a 4-digit DIP switch SW1 on the FPGA development board to configure the startup mode of the ZYNQ system. The AXU7EV system development platform supports 4 startup modes. The 4 startup modes are

JTAG debug mode, QSPI FLASH, EMMC and SD2.0 card startup mode. After ZU7EV chip is powered on, it will detect the level of (PS_MODE0~3) to determine the startup mode. The user can select different startup modes through the DIP switch SW1 on the carrier board. The SW1 startup mode configuration is shown in the following table 3-21-1.

SW1	Dial Position (1, 2, 3, 4)	MODE[3:0]	Start mode
FFFF	ON, ON, ON, ON	0000	PS JTAG
ON KE	ON, ON, OFF,ON	0010	QSPI FLASH
1 2 3 4	ON, OFF, ON, OFF	0101	SD Card
1 5 5 5	ON, OFF, OFF, ON	0110	EMMC

Part 3.22: Power Supply

The power input voltage of the AXU7EV development board is DC12V. In the carrier board, the DC12V is converted into +5V, +3.3V, +1.8V, through one-way DC/DC power chip TPS54620 and two-way DC/DC power chip MP2323/MP1482. The schematic diagram of the power supply design on the board is shown in Figure 3-22-1:

Figure 3-22-1: Carrier Board Power Schematic

The functions of each power distribution are shown in the following table:

Power	Function
+5.0V	USB power supply
+1.8V	Ethernet, USB2.0
+3.3V	Ethernet, USB2.0, M.2, SD, DP, CAN, RS485

Part 3.23: ALINX Customized Fan

Because ZU7EV generates a lot of heat when it works normally, we add a heat sink and fan to the chip on the board to prevent the chip from overheating. The control of the fan is controlled by the ZYNQ chip. The control pin is connected to the IO of the BANK88 (PIN F4). If the IO level output is high, the MOSFET is turned on and the fan is working. If the IO level output is low, the fan stops. The fan design on the board is shown in Figure 3-21-1.

Figure 3-23-1: Fan Design Schematic

The fan has been screwed to the FPGA development board before leaving the factory. The power of the fan is connected to the socket of J55. The red is positive and the black is negative.

Part 3.24: Carrier Board Size Dimension

Figure 3-24-1: Top View