Numerical Optimization, 2020 Fall Homework 7

Due on 14:59 NOV 26, 2020 请尽量使用提供的 tex 模板, 若手写作答请标清题号并拍照加入文档.

1 收敛速率

分别构造具有次线性,线性,超线性和二阶收敛速率的序列的例子。[10 pts]

2 梯度下降法的收敛性分析

考虑如下优化问题:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \quad f(\boldsymbol{x}), \tag{1}$$

其中目标函数 f 满足一下性质:

- 对任意 $x, f(x) \ge f$ 。
- ∇f 是 Lipschitz 连续的,即对于任意的 x, y,存在 L > 0 使得

$$\|\nabla f(x) - \nabla f(y)\|_2 < L\|x - y\|_2$$
.

若采用梯度下降法求解问题($\mathbf{1}$),记所产生的迭代点序列为 $\{x^k\}$ 。迭代点的更新为 $x^{k+1} \leftarrow x^k + \alpha^k d^k$ 。试证 明以下问题。

- (i) 在一点 \mathbf{x}^k 处给定一个下降方向 \mathbf{d}^k , 即 \mathbf{d}^k 满足 $\langle \nabla f(\mathbf{x}^k), \mathbf{d}^k \rangle < 0$ 。试证明:对于充分小的 $\alpha > 0$,有 $f(\mathbf{x} + \alpha \mathbf{d}^k) < f(\mathbf{x}^k)$ 成立。[10 pts]
- (ii) 假设存在 $\delta > 0$ 使得 $-\frac{\left\langle \nabla f(\boldsymbol{x}^k), \boldsymbol{d}^k \right\rangle}{\|\nabla f(\boldsymbol{x}^k)\|_2 \|\boldsymbol{d}^k\|_2} > \delta$ 。证明回溯线搜索会有限步终止,并给出对应步长 α^k 的下界。[10 pts]
- (iii) 根据上一问结果证明 $\lim_{k\to\infty} \|\nabla f(\boldsymbol{x}^k)\|_2 = \mathbf{0}$ 。 [10 pts]
- (iv) 令 $d^k = -\nabla f(x^k)$, 采用固定步长 $\alpha^k \equiv \alpha = \frac{1}{L}$ 。试证明该设定下梯度下降法的全局收敛性。[20 pts]

3 编程题

考虑求解如下优化问题:

$$\min_{x_1, x_2} \quad 100(x_2 - x_1^2)^2 + (1 - x_1)^2.$$
(2)

分别用**梯度下降法**和**牛顿法**结合 Armijo 回溯搜索编程求解该问题。分别考虑用 $x^0 = [1.2, 1.2]^T$ 和 $x^0 = [-1.2, 1]^T$ (较困难) 作为初始点启动算法。

要求: 对于两种初始点,分别画出两种算法步长 α^k 和 $\|\nabla f(x^k)\|_{\infty}$ 随迭代步数 k 变化的曲线。(编程可使用 matlab 或 python 完成,请将代码截图贴在该文档中。) [40pts]

(Hint: 步长初始值 $\alpha_0=1$, 参数 c_1 可选为 10^{-4} , 终止条件为 $\|\nabla f(\boldsymbol{x}^k)\|_{\infty} \leq 10^{-4}$.)