编译原理 (H) 习题总结

Homework I to 4

CIRECOGNIZER实验

Lab I-I

LAB I-I

• 一些错误:

- 行注释跨行的处理
- Equal是'=='不是'='
- 注释应该和WhiteSpace一样, skip而不是生成token
- 非token的符号忘记标注fragment而作为token被输出
- 正负号并不在number中,是unary operator
- 'main'不是关键字,学好C语言
- Identifer/Indentifier等拼写错误

TYPICAL ERROR: NO VIABLE ALTERNATIVE AT INPUT <EOF>

- ANTLR 4 old bug, 当左递归非终结符作为起始符号时固定出现
- 保证起始符号不是包含左递归的非终结符,如以如下wrap作为起始即可避免:
 - wrap: leftRecur
 - leftRecur: leftRecur xxx | xxx

SYNTAX TREE DEFINITION

- assembly表示整个程序,对应于单一输入源文件
 - source_name字段留空;本意是表示输入文件名,后来因为只有单一文件输入而放置
- var_def_stmt_syntax同时是global_def_syntax和stmt_syntax
 - 多个变量的声明语句展开为多个var_def_stmt_syntax
 - 在不同上下文中,以不同类型放置于父节点的相应容器(ptr_list<?>)中

书面作业

Homework 1, 2, 3-1&2, 4-1&2

教材版本问题

• 以第三版为准,第二版和第三版的出入很多

HOMEWORK I

- 基本没有问题
- 一些细节
 - 在Git仓库中提交编译生成的内容
 - · 错误的Markdown格式
 - 不详细的说明

HOMEWORK 2

- 绝大多数人没有显式地表达出状态机和回滚。
- HI中的细节问题在H2中基本同时存在。
 - 每个人的特别问题所在在Google Doc文档中有列出

HOMEWORK 3-1&2

- 2.4 (c) C风格块注释的正规式表达,几个重点:
 - 注释内连续的多个"*"是合法的
 - 注释中"*"后不能出现"/",否则会误配超过注释末尾的文本
 - "/*/" 不是合法的
- 由于正规式基本可以简单改写成正则表达式,可以使用正则相关工具测试 正规式,如
 - Online regex tester and debugger: https://regex101.com/

HOMEWORK 3-1&2

- 2.4 (e) 仅出现一次连续两个相同字符的数字串的正规式表达
- 类似课程中提到的"无连续两个相同字符的数字串"的逻辑,基于此扩展即可:
 - "无连续两个相同字符的数字串"记作no_dup,则
 - answer → no_dup no_dup
 - 这一正规式表达二义,但题目并未要求确定性。
- 另一种方式(非二义):
 - answer → {no_dup_end_i no_dup_start_i} | no_dup

HOMEWORK 4-1&2

- 3.4 表达正规式语言的文法。
- 难点: (a) 证明此文法产生所有正规式。
- 两个方向:
 - 上 产生的都是正规式(结论显然,没有明确写出的同学也没有判错)
 - 2. 正规式均能被此文法表达。两种证法:
 - 归纳法,对正规式长度或"层数"做归纳
 - 反证法,假设最短的不被此文法表达的正规式为R

HOMEWORK 4-1&2

- 3.8, 3.11, 3.12
- 同学们普遍能很好地理解题意并知晓如何解决问题。
- 但是!
 - 构造分析器=列出分析表,请不要写代码,看着太累,我不是人形编译器+CPU
 - 证明不是LL(I)文法只需要找出一点不满足条件的即可,不需要把所有的不满足条件的点都列出来

HOMEWORK 5-1&2

- 3.16, 3.20, 3.27
- 同样地没有出现很大的理解问题,但:
 - 证明不是SLR/LR需要至少列出部分分析表、指出冲突
 - 考试时最好列全
 - 证明是SLR/LR需要完整列出最终的分析表,不能偷懒!

HOMEWORK 6-1&2

- 3.22, 3.24, 3.30, 3.34, 3.37
- 依旧同样地没有出现很大的理解问题,但:
 - 同上,证明是或不是SLR/LR/LALR时不能偷懒
 - 注意新推出的状态是否和先前的相同
 - 细心!!!!!

HOMEWORK 6-1&2

- 3.30和3.34的语言相同;注意反例 aaababbb
 - 正解
 - S: a S | a T b S | %empty; T: a T b T | %empty;
 - 常见错解
 - S: a S | E S | %empty; E: a E b | E E | %empty;
- 3.37的DFA较为复杂,共口个状态,其中几对较为相似,易混淆
 - "列出所有可能"共两种可能;这实际上是GLR分析器的方法

习题课

2017-11-23

- 4.12(b) 文法如下:
 - $S \rightarrow (L) \mid a$
 - $L \rightarrow L, S \mid S$
- (1)写一个翻译方案,它打印出每个a在句子中是第几个字符。例如,当句子是(a,(a,(a,a),(a)))时,打印的结果是2,5,8,10,14。
- (2)写出相应的语法制导定义
- (3)写出相应的预测翻译器
- (4)写出自下而上分析的栈操作代码

概念区分

- 语义规则和产生式相联系的两种方式
 - 语法制导定义
 - 将文法符号和某些属性相关联,并通过语义规则来描述如何计算属性的值,没有描述这些规则的计算时机
 - 语法制导的翻译方案
 - · 在产生式的右部的适当位置,插入相应的语义动作,按照分析的进程, 执行遇到的语义动作,从而明确了语法分析过程中属性的计算时机。

• 4.12(b) 文法如下:

$$S \rightarrow (L) \mid a$$

$$L \rightarrow L, S \mid S$$

(1)写一个翻译方案,它打印出每个a 在句子中是第几个字符。例如,当句 子是(a,(a,(a,a),(a)))时,打印的结果是2, 5,8,10,14。

- a自身的信息无法确定a在序列中的位置,因此必须要借助继承属性。
- 方法一:
 - · 继承属性 in: 该文法符号推出的字符序列的前面已经有多少字符
 - 综合属性 out: 该文法符号推出的字符序列的最后一个字符在序列中是第几个字符

```
S' → {S.in = 0; } S

S → {L.in = S.in +1; } (L) {S.out = L.out + 1; }

S → a {S.out = S.in + 1; print (S.out); }

L → {L1.in = L.in; } L1, {S.in = L1.out + 1; } S {L.out = S.out; }

L → {S.in = L.in; } S {L.out = S.out; }
```

```
• 4.12(b) 文法如下:
S → (L) | a
```

$$L \rightarrow L, S \mid S$$

(1)写一个翻译方案,它打印出每个a 在句子中是第几个字符。例如,当句 子是(a,(a,(a,a),(a)))时,打印的结果是2, 5,8,10,14。

- a自身的信息无法确定a在序列中的位置,因此必须要借助继承属性。
- 方法二:
 - 继承属性 in: 该文法符号推出的字符序列的前面已经有多少字符
 - 综合属性 total: 该文法符号推出的字符序列所包含的字符总数

```
S' \rightarrow \{ S.in = 0; \} S

S \rightarrow \{ L.in = S.in +1; \} (L) \{ S.total = L.total + 2; \}

S \rightarrow a \{ S.total = 1; print (S.in + 1); \}

L \rightarrow \{ L1.in = L.in; \} L1, \{ S.in = L1.in + L1.total + 1; \} S \{ L.total = L1.total + 1; \}

L \rightarrow \{ S.in = L.in; \} S \{ L.total = S.total; \}
```

```
• 4.12(b) 文法如下:
```

$$S \rightarrow (L) \mid a$$

$$L \rightarrow L, S \mid S$$

写出相应的语法制导定义

- a自身的信息无法确定a在序列中的位置,因此必须要借助继承属性。
- 方法一的语法制导定义:
 - 继承属性 in: 该文法符号推出的字符序列的前面已经有多少字符
 - 综合属性 out: 该文法符号推出的字符序列的最后一个字符在序列中是第几个字符

产生式	语义规则
$S' \rightarrow S$	S.in = 0;
$S \rightarrow (L)$	L.in = S.in +1; S.out = L.out + 1;
$S \rightarrow a$	S.out = S.in + 1; print (S.out);
$L \rightarrow L1, S$	L1.in = L.in; S.in = L1.out + 1; L.out = S.out;
$L \rightarrow S$	S.in = L.in; L.out = S.out;

$$S \rightarrow (L) \mid a$$

$$L \rightarrow L, S \mid S$$

写出相应的预测翻译器

• 消除左递归

$$S' \rightarrow S$$

 $S \rightarrow (L)$
 $S \rightarrow a$
 $L \rightarrow ST$
 $T \rightarrow ,ST \mid \varepsilon$

产生式	语义规则
$S' \rightarrow S$	S.in = 0;
$S \rightarrow (L)$	L.in = S.in +1; S.out = L.out + 1;
$S \rightarrow a$	S.out = S.in + 1; print (S.out);
$L \rightarrow ST$	S.in = L.in; T.in = S.out; L.out = T.out;
$T \rightarrow ,ST_1$	S.in = T.in + 1; T_1 .in = S.out; T.out = T_1 .out
$T \rightarrow \varepsilon$	T.in = T.out

Η7

```
产生式语义规则S' \to SS.in = 0;S \to (L)L.in = S.in + 1; S.out = L.out + 1;S \to aS.out = S.in + 1; print (S.out);L \to STS.in = L.in; T.in = S.out; L.out = T.out;T \to ,ST_1S.in = T.in + 1; T_1.in = S.out; T.out = T_1.outT \to \varepsilonT.in = T.out
```

```
int S'(){
  return S(0);
}
```

```
int S(int b){
 int in, out;
 if(lookahead == '('){}
   in = b + 1;
   match('(');
   out = L(in) + 1;
   match(')')
 }else
    match('a');
    out = b + 1;
    print(out);
 return out;
```

Η7

```
产生式语义规则S' \to SS.in = 0;S \to (L)L.in = S.in + 1; S.out = L.out + 1;S \to aS.out = S.in + 1; print (S.out);L \to STS.in = L.in; T.in = S.out; L.out = T.out;T \to ,ST_1S.in = T.in + 1; T_1.in = S.out; T.out = T_1.outT \to \varepsilonT.in = T.out
```

```
int L(int b){
  int out;
  out = S(b);
  out = T(out);
  return out;
}
```

```
int T(int b)
  int out;
  if(lookahead == ','){
    match(',');
    out = S(b+1);
    out = T(out);
  }else{
    out = b;
  return out;
```

$$S' \rightarrow S$$

$$S \rightarrow (L)$$

$$S \rightarrow a$$

$$L \rightarrow ST$$

T
$$\rightarrow$$
 ,ST | ε

写出自下而上分析的栈操作代码

•引入标记非终极符M,N,R,P

产生式	语义规则	栈操作代码
$S' \rightarrow MS$	S.in = M.out	Stack[top - 1] = Stack[top]
$M \rightarrow \varepsilon$	M.out = 0	Stack[top + 1] = 0
$S \rightarrow (NL)$	N.in = S.in + 1, L.in = N.out; S.out = L.out + 1;	Stack[top - 3] = Stack[top - 1] + 1
$N \rightarrow \varepsilon$	N.out = N.in	Stack[top + 1] = Stack[top - 1] + 1
$S \rightarrow a$	S.out = S.in + 1; print (S.out);	Stack[top] = Stack[top - 1] + 1
$L \rightarrow SRT$	S.in = L.in; R.in = S.in; T.in = R.out, L.out = T.out;	Stack[top - 2] = Stack[top]
$R \rightarrow \varepsilon$	R.out = R.in	Stack[top + 1] = Stack[top - 1]
$T \rightarrow ,SPT_1$	S.in = T.in + 1; P.in = S.in; T_1 .in = P.out; T_1 .out = S.out;	Stack[top - 3] = Stack[top]
$P \rightarrow \varepsilon$	P.out = P.in	Stack[top + 1] = Stack[top]
$T \rightarrow \varepsilon$	T.out = T.in	Stack[top] = Stack[top - 1]

• 5.5 假如有下列C的声明: typedef struct{ int a, b; } CELL, *PCELL; CELL foo[100]; PCELL bar(x, y) int x; CELL y; {} 为变量foo和函数bar的类型写出类型表达式。

```
CELL foo[100];
```

array(Range ?, TypeOfElement ?)

array(0..99, TypeOfElement ?)

array(0..99, CELL)

array(0..99, record((int a) \times (int b)))

array(0..99, record((a \times integer) \times (b \times integer)))

```
5.5 假如有下列C的声明:
typedef struct{
    int a, b;
} CELL, *PCELL;
CELL foo[100];
PCELL bar(x, y) int x; CELL y; {}
为变量foo和函数bar的类型写出类型表达式。
```

```
PCELL bar(x, y) int x; CELL y; {}
```

```
5.5 假如有下列C的声明:
typedef struct{
    int a, b;
} CELL, *PCELL;
CELL foo[100];
PCELL bar(x, y) int x; CELL y; {}
为变量foo和函数bar的类型写出类型表达式。
```

TypeOfParameters? -> TypeOfReturnValue?

(int
$$\times$$
 CELL) -> PCELL

```
(integer \times record((a \times integer) \times (b \times integer))) -> PCELL
(integer \times record((a \times integer) \times (b \times integer))) -> pointer(record((a \times integer) \times (b \times integer)))
```

• 5.12 拓展5.3.3节的类型检查,使之能包含记录。有关记录部分的类型和记录域引用表达式的语法如下:

```
T → record fields end
fields → fields; field | field
field → id : T
E \to E. id
```

•5.12 拓展5.3.3节的类型检查,使之能包含记录。有关记录部分的类型和记录域引用表达式的语法如下:

```
T \rightarrow record fields end
                                    {T.type = record(fields.type)}
fields \rightarrow fields; field
                                    \{fields.type = fields.type \times field.type\}
                                    {fields.type = field.type}
fields \rightarrow field
field \rightarrow id : T
                                    \{field.type = id.name \times T.type\}
E \rightarrow E_1. id
                                     {E.type = if(E1.type == record(t))
                                                    lookup(E1.type, id.name)
                                                 else
                                                     type error;}
```

• 5.13在文件stdlib.h中,关于qsort的外部声明如下:

extern void qsort(void *, size_t, size_t, int (*)(const void *, const void *));

用SPARC/Solaris C编译器编译下面的C程序时,错误信息如下:

type.c:24: warning: passing argument 4 of `qsort' from incompatible pointer type

请你对该程序略作修改,使得该警告错误能消失,并且不改变程序的结果。

```
#include <stdlib.h>
typedef struct{
          int
              Ave;
          double Prob;
}HYPO;
HYPO *astHypo;
int n;
int HypoCompare(HYPO *stHypo1, HYPO *stHypo2)
  if (stHypo1->Prob>stHypo2->Prob){
   return(-1);
  }else if (stHypo1->Prob<stHypo2->Prob) {
    return(1);
  }else{
    return(0);
}/* end of function HypoCompare */
main()
 qsort ( astHypo,n,sizeof(HYPO),HypoCompare);
```

• 5.13在文件stdlib.h中,关于qsort的外部声明如下:

extern void qsort(void *, size_t, size_t, int (*)(const void *, const void *));

问题: qsort的第四个形式参数类型与函数调用的传参类型不一致

```
#include <stdlib.h>
typedef struct{
          int
              Ave;
          double Prob;
}HYPO;
HYPO *astHypo;
int n;
int HypoCompare(HYPO *stHypo1, HYPO *stHypo2)
  if (stHypo1->Prob>stHypo2->Prob){
   return(-1);
  }else if (stHypo1->Prob<stHypo2->Prob) {
    return(1);
  }else{
    return(0);
}/* end of function HypoCompare */
main()
 qsort ( astHypo, n, sizeof(HYPO), HypoCompare);
```

• 5.13在文件stdlib.h中,关于qsort的外部声明如下:

extern void qsort(void *, size_t, size_t, int (*)(const void *, const void *));

问题: qsort的第四个形式参数类型与函数调用的传参类型不一致

方法一:修改HypoCompare函数形式参数的类型

```
#include <stdlib.h>
typedef struct{
          int
              Ave;
          double Prob;
}HYPO;
HYPO *astHypo;
int n;
int HypoCompare(const void *stHypo1, const void*stHypo2)
  if ((HYPO *)stHypo1->Prob>(HYPO *)stHypo2->Prob){
   return(-1);
  }else if ((HYPO *)stHypo1->Prob<(HYPO *)stHypo2->Prob) {
    return(1);
  }else{
    return(0);
}/* end of function HypoCompare */
main()
 qsort ( astHypo, n, sizeof(HYPO), HypoCompare);
```

• 5.13在文件stdlib.h中,关于qsort的外部声明如下:

extern void qsort(void *, size_t, size_t, int (*)(const void *, const void *));

问题: qsort的第四个形式参数类型与函数调用的传参类型不一致

方法二:强制修改qsort函数调用中第四个参数的类型

```
#include <stdlib.h>
typedef struct{
          int
               Ave;
          double Prob;
}HYPO;
HYPO *astHypo;
int n;
int HypoCompare(HYPO *stHypo1, HYPO *stHypo2)
  if (stHypo1->Prob>stHypo2->Prob){
   return(-1);
  }else if (stHypo1->Prob<stHypo2->Prob) {
    return(1);
  }else{
    return(0);
}/* end of function HypoCompare */
main()
 qsort (astHypo, n, sizeof(HYPO), int (*)(const void *, const void *)
HypoCompare);
                                                       19
```

• 5.16对下面的每对表达式,

(a)
$$\alpha_1 \rightarrow (\alpha_2 \rightarrow \alpha_1)$$

- (b) array $(\beta_1) \rightarrow (pointer (\beta_1) \rightarrow \beta_2)$
- (c) $\gamma_1 \rightarrow \gamma_2$

找出(a)和(b)、(b)和(c)最一般的合一代换:

• (a)与(b)

$$S(\alpha 1) = array (\beta 1)$$

 $S(\alpha 2) = pointer (\beta 1)$
 $S(\beta 2) = array (\beta 1)$

- 5.16对下面的每对表达式,
 - (a) $\alpha_1 \rightarrow (\alpha_2 \rightarrow \alpha_1)$
 - (b) array $(\beta_1) \rightarrow (pointer (\beta_1) \rightarrow \beta_2)$
 - (c) $\gamma_1 \rightarrow \gamma_2$

找出(a)和(b)、(b)和(c)最一般的合一代换:

• (b)与(c)

$$S(\gamma 1) = array (β1)$$

 $S(\gamma 2) = pointer (β1) \rightarrow β2$

• 5.16对下面的每对表达式,

(a)
$$\alpha_1 \rightarrow (\alpha_2 \rightarrow \alpha_1)$$

(b) array
$$(\beta_1) \rightarrow (pointer (\beta_1) \rightarrow \beta_2)$$

(c)
$$\gamma_1 \rightarrow \gamma_2$$

找出(a)和(b)、(b)和(c)最一般的合一代换:

```
• 5.17效仿例5.5,推导下面map的多态类型:
map : \forall \alpha. \forall \beta. ((\alpha \rightarrow \beta) \times list(\alpha)) \rightarrow list(\beta)
map的ML定义是
fun map (f, I) =
   if null (I) then nil
   else cons (f (hd (l)), map (f, tl (l ) ));
在这个函数体中,内部定义的标识符的类型是:
   \text{null}: \forall \alpha. \textit{list}(\alpha) \rightarrow \text{boolean};
   nil: \forall \alpha. list(\alpha);
   cons : \forall \alpha. (\alpha \times list(\alpha)) \rightarrow list(\alpha);
   hd: \forall \alpha. list (\alpha) \rightarrow \alpha;
   \mathsf{tl}: \forall \alpha. \, \mathit{list}(\alpha) \rightarrow \mathit{list}(\alpha);
```

Н9

• 第一步: 列出类型声明和要检查的表达式

```
f:\alpha
Ι: β
if: \forall \alpha. boolean \times list (\alpha) \times list (\alpha) \rightarrow list (\alpha)
null: \forall \alpha. list (\alpha) \rightarrow boolean;
nil: \forall \alpha. \ list(\alpha);
cons : \forall \alpha. (\alpha \times list(\alpha)) \rightarrow list(\alpha);
hd: \forall \alpha. list(\alpha) \rightarrow \alpha;
\mathsf{tl}: \forall \alpha. \ \mathit{list}(\alpha) \rightarrow \mathit{list}(\alpha);
match(
   map (f, I),
   if null (I ) then nil
               else cons (f (hd (l)), map (f, tl (l ) ) );
```

```
5.17效仿例5.5,推导下面map的多态类型:
map : \forall \alpha. \forall \beta. ((\alpha \rightarrow \beta) \times list(\alpha)) \rightarrow list(\beta)
map的ML定义是
fun map (f, I) =
   if null (I) then nil
   else cons (f (hd (l)), map (f, tl (l ) ) );
在这个函数体中,内部定义的标识符的类型是:
   null: \forall \alpha. list (\alpha) \rightarrow boolean;
   nil: \forall \alpha. list(\alpha);
   cons : \forall \alpha. (\alpha \times list (\alpha)) \rightarrow list (\alpha);
   hd: \forall \alpha. list (\alpha) \rightarrow \alpha;
   \mathsf{tl}: \forall \alpha. \, \mathsf{list} \, (\alpha) \to \mathsf{list} \, (\alpha);
```

• 第二步: 代換推导

map : $\forall \alpha$. $\forall \beta$. (($\alpha \rightarrow \beta$) × list (α)) \rightarrow list (β)
fun map (f, l) =
if null (I) then nil
else cons (f (hd (l)), map (f, tl (l)));
null : $\forall \alpha$. <i>list</i> (α) \rightarrow boolean ;
nil : $\forall lpha$. list ($lpha$);
cons : $\forall \alpha$. ($\alpha \times list(\alpha)$) $\rightarrow list(\alpha)$;
hd: $\forall \alpha$. list $(\alpha) \rightarrow \alpha$; tl: $\forall \alpha$. list $(\alpha) \rightarrow$ list (α) ;

行	定型断言	代换	规则
1	f:α		(Exp Id)
2	Ι: β		(Exp Id)
3	map : y		(Exp Id)
4	map (f , l) : δ	$\gamma = (\alpha \times \beta) \rightarrow \delta$	(Exp Funcall)
5	null : list (α 0) \rightarrow boolean		(Exp Id Fresh)
6	null (l) : boolean	$\beta = list(\alpha 0)$	(Exp Funcall + (2))
7	nil : list (α1)		(Exp Id Fresh)
8	I : list (α0)		由(2)可得
9	hd : list $(\alpha 2) \rightarrow \alpha 2$		(Exp Id Fresh)

Н9

行	定型断言	代换	规则
9	hd : list $(\alpha 2) \rightarrow \alpha 2$		(Exp ld Fresh)
10	hd (Ι): α0	$\alpha 2 = \alpha 0$	(Exp Funcall)
11	f (hd (l)) : α3	$\alpha = \alpha 0 \rightarrow \alpha 3$	(Exp Id)
12	f: α0→α3		由(1)可得
13	tl : list $(\alpha 4) \rightarrow$ list $(\alpha 4)$		(Exp Id Fresh)
14	tl (l) : list (α0)	$\alpha 4 = \alpha 0$	(Exp Funcall)
15	$map : ((\alpha 0 \! \rightarrow \! \alpha 3) \times list(\alpha 0)) \! \rightarrow \delta$		由(3)可得
16	map (f , tl (l)) : δ		(Exp Funcall)
17	cons : $\alpha 5 \times list(\alpha 5) \rightarrow list(\alpha 5)$		(Exp Id Fresh)
18	cons () : list (α3)	$\alpha 5 = \alpha 3$, $\delta = list(\alpha 3)$	(Exp Funcall)
19	if: boolean \times list(α 6) \times list(α 6) \rightarrow list(α 6)		(Exp Id Fresh)
20	if () : list (α1)	$\alpha 6 = \alpha 1$, $\alpha 3 = \alpha 1$	(Exp Funcall)
21	$match: \alpha 7 \times \alpha 7 \to \alpha 7$		(Exp Id Fresh)
22	match () : list (α1)	α 7 = list (α 1)	(Exp Funcall)

```
map : \forall \alpha. \forall \beta. ( (\alpha \rightarrow \beta) × list (\alpha) ) \rightarrow list (\beta) fun map (f, I) =

if null (I) then nil

else cons (f (hd (I)), map (f, tI (I)));

null : \forall \alpha. list (\alpha) \rightarrow boolean;

nil : \forall \alpha. list (\alpha);

cons : \forall \alpha. (\alpha \times list (\alpha)) \rightarrow list (\alpha);

hd : \forall \alpha. list (\alpha) \rightarrow \alpha;

tl : \forall \alpha. list (\alpha) \rightarrow list (\alpha);
```

至此有map: $((\alpha 0 \rightarrow \alpha 1) \times list(\alpha 0)) \rightarrow list(\alpha 1)$ 所以map: $\forall \alpha . \forall \beta . ((\alpha \rightarrow \beta) \times list(\alpha)) \rightarrow list(\beta)$

• 5.21 使用例5.9的规则,确定下列哪些表达式有唯一类型(假定z 是复数):

- (a) 1*2*3
- (b) 1 * (z * 2)
- (c) (1 * z) * z

- 5.21 使用例5.9的规则,确定下列哪些表达式有唯一类型(假定z 是复数):
 - (a) 1*2*3
 - (b) 1 * (z *2)
 - (c) (1 * z) * z
- •运算规则:
 - int × int -> int
 - int × int -> complex
 - complex × complex -> complex

- 5.21 使用例5.9的规则,确定下列哪些 表达式有唯一类型(假定z是复数):
 - (a) 1*2*3
 - (b) 1 * (z * 2)
 - (c) (1 * z) * z
- 运算规则:
 - int × int -> int
 - int × int -> complex
 - complex × complex -> complex

1*2*3:{int, complex}

1*2:{int, complex}

*: $\{i \times i \rightarrow i, i \times i \rightarrow c, c \times c \rightarrow c\}$

3:{int, complex}

1:{int, complex}

2:{int, complex}

*: $\{i \times i \rightarrow i, i \times i \rightarrow c, c \times c \rightarrow c\}$

类型不唯一

- 5.21 使用例5.9的规则,确定下列哪些 表达式有唯一类型(假定z是复数):
 - (a) 1*2*3
 - (b) 1 * (z * 2)
 - (c) (1 * z) * z
- 运算规则:
 - int × int -> int
 - int × int -> complex
 - complex × complex -> complex

1:{int}

*: $\{i \times i \rightarrow i, i \times i \rightarrow c, c \times c \rightarrow c\}$

z*2:{complex}

z:{complex} *: {i X i -> i, i X i -> c, c X c -> c} 2:{int, complex}

- 5.21 使用例5.9的规则,确定下列哪些 表达式有唯一类型(假定z是复数):
 - (a) 1*2*3
 - (b) 1 * (z * 2)
 - (c) (1 * z) * z
- 运算规则:
 - int × int -> int
 - int × int -> complex
 - complex × complex -> complex

1*z:{complex}

*: $\{i \times i \rightarrow i, i \times i \rightarrow c, c \times c \rightarrow c\}$

z:{complex}

1:{int, complex} *: $\{i \times i \rightarrow i, i \times i \rightarrow c, c \times c \rightarrow c\}$ z:{complex}

习题课

2017-12-21

• 8.5 在早先的SPARC/SunOS系统上,经某编译器编译后,下面程序的运行结果是120。但是如果把第十行abs(1)改成1的话,则结果为1。试分析一下原因。

```
int fact(){
    static int i = 5;
    if(i == 0){
        return(1);
    }
    else{
        i = i - 1;
        return ((i + abs(1)) * fact());
    }
}
main(){
    printf("factor of 5 = %d\n", fact())
}
```

解答:有一些编译器基于寄存器分配优化的考虑,在计算次序的选择上优先考虑函数表达式。

• 9.15 a. 计算支配关系

$$D(1) = \{1\}$$

$$D(2) = \{1,2\}$$

$$D(3) = \{1,2,3\}$$

$$D(4) = \{1,2,3,4\}$$

$$D(5) = \{1,2,5\}$$

$$D(6) = \{1,2,5,6\}$$

- 9.15 b.找出一种深度优先排序
- {1,2,5,6,3,4}
- Or
- {1,2,3,4,5,6}

- 9.15 c.对(b)的结果,标明前进边,后撤边和交叉边
- 前进边: 1->2; 2->5;2->3;5->6;3->4
- 后撤边: 4->3; 5->2
- 交叉边: 3->5

- 9.15 d.该图是否可归约
- 后撤边: 4->3; 5->2
- 判断他们是不是回边
- 显然是
- 所以可以归约

- 9.15 e.计算该流图的深度
- 深度为1
- 看无环路径上有几条后撤边

- 9.15 f.找出该图的自然循环
- 针对回边:
- 4->3: {3,4}
- 5->2: {2,3,4,5}

- 9.1 a. 识别该流图的循环
- 针对回边:
- 4->3: {3,4}
- 5->2: {2,3,4,5}

- 9.1 b. 块B1中的语句(1)和(2)都是复写语句,并且它们给ab的赋值都是常量。可以对a和b的哪些引用实施复写传播并将这些引用替换成对常量的引用?
- a值在2,3,4,5中未被修改,所以可以使用复写,而b不可以

- 9.1 c. 识别每个循环的全局公共 子表达式。
- {3,4}: 无
- {2,3,4,5}: a+b和 c-a

- 9.1 d. 识别每个循环的归纳变量
- 归纳变量在循环的每一次迭代中增加固定的值
- {3,4}: e
- {2,3,4,5}: b, e, c

- 9.1 e.识别每一个循环的不变计 算
- {3,4}: a+b
- {2,3,4,5}: 无

- 9.3 a.为到达-定值分析,计算每个块的gen,kill,IN和OUT集合
- GEN[B1] = {d1,d2}
- KILL[B1] = {d8,d10,d11}
- $GEN[B2] = \{d3,d4\}$
- KILL[B2] = {d5,d6}
- GEN[B3] = {d5}
- KILL[B3] = {d4,d6}
- $GEN[B4] = \{d6,d7\}$
- KILL[B4] = $\{d4, d5, d9\}$
- GEN[B5] = {d8, d9}
- KILL[B5] = {d2,d11,d7}
- GEN[B6] = {d10,d11}
- KILL[B6] = {d1,d2,d8}

块	初始	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	{d1,d2} U (Ø - {d8,d10,d11}) = {d1,d2}		
B2	Ø				
В3	Ø				
B4	Ø				
B5	Ø				
В6	Ø				

块	初始	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	${d1,d2} \cup (\emptyset - {d8,d10,d11})$ = ${d1,d2}$		
B2	Ø	{d1,d2}	${d3,d4} + ({d1,d2} - {d5,d6}) = {d1,d2,d3,d4}$		
В3	Ø				
B4	Ø				
B5	Ø				
В6	Ø				

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	{d1,d2} U (Ø - {d8,d10,d11}) = {d1,d2}		
B2	Ø	{d1,d2}	${d3,d4} + ({d1,d2} - {d5,d6}) = {d1,d2,d3,d4}$		
В3	Ø	{d1,d2,d3,d4 }	${d5} + ({d1,d2,d3,d4} - {d4,d6})$ = ${d1,d2,d3,d5}$		
B4	Ø				
B5	Ø				
В6	Ø				

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	${d1,d2} U (Ø - {d8,d10,d11})$ = ${d1,d2}$		
B2	Ø	{d1,d2}	${d3,d4} + ({d1,d2} - {d5,d6}) = {d1,d2,d3,d4}$		
В3	Ø	{d1,d2,d3,d4 }	${d5} + ({d1,d2,d3,d4} - {d4,d6})$ = ${d1,d2,d3,d5}$		
B4	Ø	{d1,d2,d3,d5}	${d6,d7} + ({d1,d2,d3,d5} - {d4,d5,d9}) = {d1,d2,d3,d6,d7}$		
B5	Ø				
В6	Ø				

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	${d1,d2} U (Ø - {d8,d10,d11})$ = ${d1,d2}$		
B2	Ø	{d1,d2}	${d3,d4} + ({d1,d2} - {d5,d6}) = {d1,d2,d3,d4}$		
В3	Ø	{d1,d2,d3,d4 }	${d5} + ({d1,d2,d3,d4} - {d4,d6})$ = ${d1,d2,d3,d5}$		
B4	Ø	{d1,d2,d3,d5}	${d6,d7} + ({d1,d2,d3,d5} - {d4,d5,d9}) = {d1,d2,d3,d6,d7}$		
B5	Ø	} U	{d8, d9} + ({d1,d2,d3,d4,d5} -{d2,d11,d7}) = {d1,d3,d4,d5,d8,d9}		
В6	Ø				

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	$\{d1,d2\} \cup (\emptyset - \{d8,d10,d11\})$ = $\{d1,d2\}$		
B2	Ø	{d1,d2}	${d3,d4} + ({d1,d2} - {d5,d6}) = {d1,d2,d3,d4}$		
В3	Ø	{d1,d2,d3,d4 }	${d5} + ({d1,d2,d3,d4} - {d4,d6})$ = ${d1,d2,d3,d5}$		
B4	Ø	{d1,d2,d3,d5}	${d6,d7} + ({d1,d2,d3,d5} - {d4,d5,d9}) = {d1,d2,d3,d6,d7}$		
B5	Ø	} U	{d8, d9} + ({d1,d2,d3,d4,d5} -{d2,d11,d7}) = {d1,d3,d4,d5,d8,d9}		
В6	Ø	{d1,d3,d4,d5 ,d8,d9}	{d10,d11} + ({d1,d3,d4,d5,d8,d9} - {d1,d2,d8}) = {d3,d4,d5,d9,d10,d11}		

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	{d1,d2} U (Ø - {d8,d10,d11}) = {d1,d2}	Ø	{d1,d2}
B2	Ø	{d1,d2}	${d3,d4} + ({d1,d2} - {d5,d6}) = {d1,d2,d3,d4}$	{d1,d2} U {d1,d3,d4,d5,d8,d9} = {d1,d2,d3,d4,d5,d8,d9}	{d3,d4} + ({d1,d2,d3,d4,d5,d8,d9}- {d5,d6}) = {d1,d2,d3,d4,d6,d8,d9}
В3	Ø	{d1,d2,d3,d4 }	{d5} + ({d1,d2,d3,d4} - {d4,d6}) = {d1,d2,d3,d5}		
B4	Ø	{d1,d2,d3,d5}	{d6,d7} + ({d1,d2,d3,d5} - {d4,d5,d9}) = {d1,d2,d3,d6,d7}		
B5	Ø	{d1,d2,d3,d4 } U {d1,d2,d3,d5} = {d1,d2,d3,d4 ,d5}	{d8, d9} + ({d1,d2,d3,d4,d5} -{d2,d11,d7}) = {d1,d3,d4,d5,d8,d9}		
В6	Ø	{d1,d3,d4,d5 ,d8,d9}	{d10,d11} + ({d1,d3,d4,d5,d8,d9} - {d1,d2,d8}) = {d3,d4,d5,d9,d10,d11}		

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	${d1,d2} U (Ø - {d8,d10,d11})$ = ${d1,d2}$	Ø	{d1,d2}
B2	Ø	{d1,d2}	${d3,d4} + ({d1,d2} - {d5,d6}) = {d1,d2,d3,d4}$	{d1,d2} U {d1,d3,d4,d5,d8,d9} = {d1,d2,d3,d4,d5,d8,d9}	${d3,d4} + ({d1,d2,d3,d4,d5,d8,d9} - {d5,d6}) = {d1,d2,d3,d4,d6,d8,d9}$
В3	Ø	{d1,d2,d3,d4 }	{d5} + ({d1,d2,d3,d4} - {d4,d6}) = {d1,d2,d3,d5}	{d1,d2,d3,d4,d6,d8,d9} U {d1,d2,d3,d6,d7} = {d1,d2,d3,d4,d6,d7,d8, d9}	{d5} + ({d1,d2,d3,d4,d6,d7,d8,d9} - {d4,d6}) = {d1,d2,d3,d5,d7,d8,d9}
B4	Ø	{d1,d2,d3,d5}	${d6,d7} + ({d1,d2,d3,d5} - {d4,d5,d9}) = {d1,d2,d3,d6,d7}$		
B5	Ø	{d1,d2,d3,d4 } U {d1,d2,d3,d5} = {d1,d2,d3,d4 ,d5}	{d8, d9} + ({d1,d2,d3,d4,d5} -{d2,d11,d7}) = {d1,d3,d4,d5,d8,d9}		
В6	Ø	{d1,d3,d4,d5 ,d8,d9}	{d10,d11} + ({d1,d3,d4,d5,d8,d9} - {d1,d2,d8}) = {d3,d4,d5,d9,d10,d11}		

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	${d1,d2} U (Ø - {d8,d10,d11})$ = ${d1,d2}$	Ø	{d1,d2}
B2	Ø	{d1,d2}	${d3,d4} + ({d1,d2} - {d5,d6}) = {d1,d2,d3,d4}$	{d1,d2} U {d1,d3,d4,d5,d8,d9} = {d1,d2,d3,d4,d5,d8,d9}	{d3,d4} + ({d1,d2,d3,d4,d5,d8,d9}- {d5,d6}) = {d1,d2,d3,d4,d6,d8,d9}
В3	Ø	{d1,d2,d3,d4 }	{d5} + ({d1,d2,d3,d4} - {d4,d6}) = {d1,d2,d3,d5}	{d1,d2,d3,d4,d6,d8,d9} U {d1,d2,d3,d6,d7} = {d1,d2,d3,d4,d6,d7,d8, d9}	{d5} + ({d1,d2,d3,d4,d6,d7,d8,d9} - {d4,d6}) = {d1,d2,d3,d5,d7,d8,d9}
B4	Ø	{d1,d2,d3,d5}	${d6,d7} + ({d1,d2,d3,d5} - {d4,d5,d9}) = {d1,d2,d3,d6,d7}$	{d1,d2,d3,d5,d7,d8,d9}	{d6,d7} + {d1,d2,d3,d5,d7,d8,d9} - {d4,d5,d9}) = {d1,d2,d3,d6,d7,d8}
B5	Ø	{d1,d2,d3,d4 } U {d1,d2,d3,d5} = {d1,d2,d3,d4 ,d5}	{d8, d9} + ({d1,d2,d3,d4,d5} -{d2,d11,d7}) = {d1,d3,d4,d5,d8,d9}		
В6	Ø	{d1,d3,d4,d5 ,d8,d9}	{d10,d11} + ({d1,d3,d4,d5,d8,d9} - {d1,d2,d8}) = {d3,d4,d5,d9,d10,d11}		

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	$\{d1,d2\} \cup (\emptyset - \{d8,d10,d11\})$ = $\{d1,d2\}$	Ø	{d1,d2}
B2	Ø	{d1,d2}	{d3,d4} + ({d1,d2} - {d5,d6}) = {d1,d2,d3,d4}	{d1,d2} U {d1,d3,d4,d5,d8,d9} = {d1,d2,d3,d4,d5,d8,d9}	${d3,d4} + ({d1,d2,d3,d4,d5,d8,d9} - {d5,d6}) = {d1,d2,d3,d4,d6,d8,d9}$
В3	Ø	{d1,d2,d3,d4 }	{d5} + ({d1,d2,d3,d4} - {d4,d6}) = {d1,d2,d3,d5}	{d1,d2,d3,d4,d6,d8,d9} U {d1,d2,d3,d6,d7} = {d1,d2,d3,d4,d6,d7,d8, d9}	{d5} + ({d1,d2,d3,d4,d6,d7,d8,d9} - {d4,d6}) = {d1,d2,d3,d5,d7,d8,d9}
B4	Ø	{d1,d2,d3,d5}	${d6,d7} + ({d1,d2,d3,d5} - {d4,d5,d9}) = {d1,d2,d3,d6,d7}$	{d1,d2,d3,d5,d7,d8,d9}	{d6,d7} + {d1,d2,d3,d5,d7,d8,d9} - {d4,d5,d9}) = {d1,d2,d3,d6,d7,d8}
B5	Ø	{d1,d2,d3,d4 } U {d1,d2,d3,d5} = {d1,d2,d3,d4 ,d5}	{d8, d9} + ({d1,d2,d3,d4,d5} -{d2,d11,d7}) = {d1,d3,d4,d5,d8,d9}	{d1,d2,d3,d4,d6,d8,d9} U {d1,d2,d3,d5,d7,d8,d9} ={d1,d2,d3,d4,d5,d6,d 7,d8,d9}	{d8, d9} + ({d1,d2,d3,d4,d5,d6,d7,d8,d9}- {d2,d11,d7}) = {d1,d3,d4,d5,d6,d8,d9}
B6	Ø	{d1,d3,d4,d5 ,d8,d9}	{d10,d11} + ({d1,d3,d4,d5,d8,d9} - {d1,d2,d8}) = {d3,d4,d5,d9,d10,d11}		

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	${d1,d2} U (Ø - {d8,d10,d11})$ = ${d1,d2}$	Ø	{d1,d2}
B2	Ø	{d1,d2}	{d3,d4} + ({d1,d2} - {d5,d6}) = {d1,d2,d3,d4}	{d1,d2} U {d1,d3,d4,d5,d8,d9} = {d1,d2,d3,d4,d5,d8,d9}	{d3,d4} + ({d1,d2,d3,d4,d5,d8,d9}- {d5,d6}) = {d1,d2,d3,d4,d6,d8,d9}
В3	Ø	{d1,d2,d3,d4 }	{d5} + ({d1,d2,d3,d4} - {d4,d6}) = {d1,d2,d3,d5}	{d1,d2,d3,d4,d6,d8,d9} U {d1,d2,d3,d6,d7} = {d1,d2,d3,d4,d6,d7,d8, d9}	{d5} + ({d1,d2,d3,d4,d6,d7,d8,d9} - {d4,d6}) = {d1,d2,d3,d5,d7,d8,d9}
B4	Ø	{d1,d2,d3,d5}	${d6,d7} + ({d1,d2,d3,d5} - {d4,d5,d9}) = {d1,d2,d3,d6,d7}$	{d1,d2,d3,d5,d7,d8,d9}	{d6,d7} + {d1,d2,d3,d5,d7,d8,d9} - {d4,d5,d9}) = {d1,d2,d3,d6,d7,d8}
B5	Ø	{d1,d2,d3,d4 } U {d1,d2,d3,d5} = {d1,d2,d3,d4 ,d5}	{d8, d9} + ({d1,d2,d3,d4,d5} -{d2,d11,d7}) = {d1,d3,d4,d5,d8,d9}	{d1,d2,d3,d4,d6,d8,d9} U {d1,d2,d3,d5,d7,d8,d9} ={d1,d2,d3,d4,d5,d6,d 7,d8,d9}	{d8, d9} + ({d1,d2,d3,d4,d5,d6,d7,d8,d9}- {d2,d11,d7}) = {d1,d3,d4,d5,d6,d8,d9}
В6	Ø	{d1,d3,d4,d5 ,d8,d9}	{d10,d11} + ({d1,d3,d4,d5,d8,d9} - {d1,d2,d8}) = {d3,d4,d5,d9,d10,d11}	{d1,d3,d4,d5,d6,d8,d9}	{d10,d11} + ({d1,d3,d4,d5,d6,d8,d9} - {d1,d2,d8}) = {d3,d4,d5,d6,d9,d10,d11}

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	{d1,d2} U (Ø - {d8,d10,d11}) = {d1,d2}	Ø	{d1,d2}
B2	Ø	{d1,d2}	{d3,d4} + ({d1,d2} - {d5,d6}) = {d1,d2,d3,d4}	{d1,d2} U {d1,d3,d4,d5,d8,d9} = {d1,d2,d3,d4,d5,d8,d9}	{d3,d4} + ({d1,d2,d3,d4,d5,d8,d9}- {d5,d6}) = {d1,d2,d3,d4,d6,d8,d9}
В3	Ø	{d1,d2,d3,d4 }	{d5} + ({d1,d2,d3,d4} - {d4,d6}) = {d1,d2,d3,d5}	{d1,d2,d3,d4,d6,d8,d9} U {d1,d2,d3,d6,d7} = {d1,d2,d3,d4,d6,d7,d8, d9}	{d5} + ({d1,d2,d3,d4,d6,d7,d8,d9} - {d4,d6}) = {d1,d2,d3,d5,d7,d8,d9}
B4	Ø	{d1,d2,d3,d5}	继续迭代直到out没有变化, 有可能计算有误,		(字) + {d1,d2,d3,d5,d7,d8,d9} (d1,d2,d3,d6,d7,d8) = {d1,d2,d3,d6,d7,d8}
B5	Ø	{d1,d2,d3,d4 } U {d1,d2,d3,d5} = {d1,d2,d3,d4 ,d5}	-{d2,d11,d7}) = {d1,d3,d4,d5,d8,d9}	U {d1,d2,d3,d5,d7,d8,d9} ={d1,d2,d3,d4,d5,d6,d 7,d8,d9}	9} + ({d1,d2,d3,d4,d5,d6,d7,d8,d9}- {d2,d11,d7}) = {d1,d3,d4,d5,d6,d8,d9}
В6	Ø	{d1,d3,d4,d5 ,d8,d9}	{d10,d11} + ({d1,d3,d4,d5,d8,d9} - {d1,d2,d8}) = {d3,d4,d5,d9,d10,d11}	{d1,d3,d4,d5,d6,d8,d9}	{d10,d11} + ({d1,d3,d4,d5,d6,d8,d9} - {d1,d2,d8}) = {d3,d4,d5,d6,d9,d10,d11}

H12

• 9.3 b.为可用表达式分析,计算每个块的e_gen,e_kill,IN和OUT集合

基本块	e_gen	e_kill	
B ₁	{1,2}	{ a+b, c-a, b*d, a-d}	
B ₂	{ a+b, c-a}	{ b*d, c-a, a-d}	
B_3	Ø	{ b*d, a-d }	
B ₄	{ a+b}	{ b*d, a-d }	
B ₅ {c-a}		{ a+b, b*d, e+1}	
B ₆	{a-d}	{1,2,a+b}	
全部表达式 <i>U</i> = {1,2,a+b,c-a,b*d,e+1,a-d}			

 $(1) \quad a := 1 \\ (2) \quad b := 2$ $(3) \quad c := a + b \\ (4) \quad d := c - a$ $(8) \quad b := a + b \\ (9) \quad e := c - a$ $B_{4} \quad (6) \quad d := a + b \\ (7) \quad e := e + 1$ $(10) \quad a := b * d \\ (11) \quad b := a - d$

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	U	Ø	$\{1,2\} \cup (\emptyset - \{ a+b, c-a, b*d, a-d\}) = \{1,2\}$		
B2	U				
В3	U				
B4	U				
B5	U				
В6	U				

 B_4 (6) d := a + b (10) a := b * d (11) b := a - d B_6

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	U	Ø	$\{1,2\} \cup (\emptyset - \{ a+b, c-a, b*d, a-d\}) = \{1,2\}$		
B2	U	U	$\{a+b, c-a\} U (U-\{b*d, c-a, a-d\}) = \{1,2,a+b,c-a,e+1\}$		
В3	U				
B4	U				
B5	U				
В6	U				

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	U	Ø	$\{1,2\} \cup (\emptyset - \{ a+b, c-a, b*d, a-d\}) = \{1,2\}$		
B2	U	U	$\{a+b, c-a\} \ U \ (U-\{b*d, c-a, a-d\}) = \{1,2,a+b,c-a,e+1\}$		
В3	U				
B4	U				
B5	U				
В6	U				

H12

- 9.3 c.为活跃变量分析,计算每个块的def,use,IN和OUT集合
- 迭代计算

 $OUT[B] = \cup IN[S], S \in Succ(B)$

 $IN[B] = USE[B] \cup (OUT[B]-DEF[B])$

USE[B]一基本块B中有引用且该引用前无定值的变量集合;

DEF[B]一基本块B中有定值且该定值前无引用的变量集合;

- 计算次序
 - 一结点深度优先序的逆序(向后流):
 - B6 \rightarrow B5 \rightarrow B4 \rightarrow B3 \rightarrow B2 \rightarrow B1

H12

- 9.3 c.为活跃变量分析,计算每个块的def,use,IN和OUT集合
- 各基本块USE和DEF如下,

```
USE[B1] = { }; DEF[B1] = { a, b }

USE[B2] = { a, b }; DEF[B2] = { c, d }

USE[B3] = { b, d }; DEF[B3] = { }

USE[B4] = { a, b, e }; DEF[B4] = { d }

USE[B5] = { a, b, c }; DEF[B5] = { e }

USE[B6] = { b, d }; DEF[B6] = { a }
```

• 初始值,all B, IN[B] = { }, OUT[B6]={ }//出口块

(1) a := 1 **B**1 (2) b := 2■第一次迭代计算 (3) c := a + b**B2** (4) d := c - aB3 (5) d := b * d { a,b,c,d } (8) b := a + b**B5** (9) e := c - a(6) d := a + b{ b, d } (7) e := e + 1 (10) a := b * d**B6** (11) b := a - d

■第一次迭代计算

B1

(1) a := 1

(1) a := 1**B1** (2) b := 2■第一次迭代计算 (3) c := a + b**B2** (4) d := c - a{ a,b,c,d,e } B3 (5) d := b * d { a,b,c,d } { a,b,c,d,e } (8) b := a + b**B5** (9) e := c - a{ a,b,e } { b, d} (6) d := a + b{ b, d } (7) e := e + 1 (10) a := b * d**B6** (11) b := a - d

■第一次迭代计算

```
(1) a := 1
                           B1
                                (2) b := 2
                                         |{ a,b,e }
                                { a,b,e }
                                (3) c := a + b
                           B2
                                (4) d := c - a
           { a,b,c,d,e }
                                          { a,b,c,d,e }
B3 (5) d := b * d
                              { a,b,c,d }
             { a,b,c,d,e }
                                (8) b := a + b
                           B5
                                (9) e := c - a
   { a,b,e }
                                          { b, d}
    (6) d := a + b
                               { b, d }
    (7) e := e + 1
                                (10) a := b * d
                                                     B6
                                (11) b := a - d
```

■第二次迭代计算

```
(1) a := 1
                           B1
                                (2) b := 2
                                          { a,b,e }
                                { a,b,e }
                                (3) c := a + b
                           B2
                                (4) d := c - a
           { a,b,c,d,e }
                                          { a,b,c,d,e }
B3 (5) d := b * d
                              { a,b,c,d }
             { a,b,c,d,e }
                                (8) b := a + b
                           B5
                                (9) e := c - a
   { a,b,e }
                                          { b, d}
    (6) d := a + b
                               { b, d }
    (7) e := e + 1
                                (10) a := b * d
                                                     B6
                                (11) b := a - d
```

■第二次迭代计算

■第二次迭代计算

```
(1) a := 1
                            B1
                                 (2) b := 2
                                           { a,b,e }
                                { a,b,e }
                                 (3) c := a + b
                            B2
                                 (4) d := c - a
           { a,b,c,d,e }
                                           { a,b,c,d,e }
B3 (5) d := b * d
                               { a,b,c,d }
              { a,b,c,d,e }
                                 (8) b := a + b
                            B5
                                 (9) e := c - a
  { a,b,c,e }
                                           { a,b,d,e }
    (6) d := a + b
                                { b, d }
    (7) e := e + 1
                                 (10) a := b * d
                                                      B6
            { a,b,c,d,e }
                                 (11) b := a - d
```

{ e } (1) a := 1**B1** (2) b := 2■第二次迭代计算 { a,b,e } { a,b,e } (3) c := a + b**B2** (4) d := c - a{ a,b,c,d,e } { a,b,c,d,e } B3 (5) d := b * d{ a,b,c,d } { a,b,c,d,e } (8) b := a + b**B5** (9) e := c - a{ a,b,c,e } { a,b,d,e } (6) d := a + b{ b, d } (7) e := e + 1 (10) a := b * d**B6** { a,b,c,d,e } (11) b := a - d

{ e } (1) a := 1**B1** (2) b := 2■第二次迭代计算 { a,b,e } { a,b,e } (3) c := a + b**B2** (4) d := c - a{ a,b,c,d,e } { a,b,c,d,e } B3 (5) d := b * d{ a,b,c,d } { a,b,c,d,e } (8) b := a + b**B**5 (9) e := c - a{ a,b,c,e } { a,b,d,e } { b, d } (7) e := e + 1 (10) a := b * d**B6** { a,b,c,d,e } (11) b := a - d

■第二次迭代计算

```
(1) a := 1
                            B1
                                 (2) b := 2
                                          | { a,b,e }
                                { a,b,e }
                                (3) c := a + b
                            B2
                                (4) d := c - a
           { a,b,c,d,e }
                                          { a,b,c,d,e }
B3 (5) d := b * d
                              { a,b,c,d }
             { a,b,c,d,e }
                                 (8) b := a + b
                           B5
                                 (9) e := c - a
  { a,b,c,e }
                                          { a,b,d,e }
    (6) d := a + b
                               { b, d }
    (7) e := e + 1
                                 (10) a := b * d
                                                     B6
            { a,b,c,d,e }
                                (11) b := a - d
```

■ 第三次迭代与前一次 结果一样, 计算结束

B1

(1) a := 1

- 考虑如下的语言,其中的串可以划分成k>=0个子串,每个字串是以b为中心、2m个a组成的轴对称串(m>=1);不同的子串可以有不同的m值。例如,语言包括串ξ,aba,aabaaaba,abaaabaaabaa。
 - (1) 为该语言设计一个LL(1)文法,并证明
 - $S \rightarrow LS \mid \varepsilon$
 - L $\rightarrow aPa$
 - P $\rightarrow aPa \mid b$

- 考虑如下的语言,其中的串可以划分成k>=0个子串,每个字串是以b为中心、2m个a组成的轴对称串(m>=1);不同的子串可以有不同的m值。例如,语言包括串ξ,aba,aabaaaba,abaaabaaabaa。
 - (1) 为该语言设计一个LL(1)文法,并证明
 - $S \rightarrow LS \mid \varepsilon$
 - L $\rightarrow aPa$
 - P $\rightarrow aPa \mid b$
 - First(LS) = $\{a\}$, $First(\varepsilon) = \{\varepsilon\}$, 无交集
 - Follow(S) = {\$}, Follow(S)与First(LS)无交集
 - First(aPa) = $\{a\}$, $First(b) = \{b\}$, 无交集

- 考虑如下的语言,其中的串可以划分成k>=0个子串,每个字串是以b为中心、2m个a组成的轴对称串(m>=1);不同的子串可以有不同的m值。例如,语言包括串ξ,aba,aabaaaba,abaaabaaabaa。
 - (2) 为该语言设计一个二义的文法,并证明
 - S \rightarrow SLS | ε
 - L $\rightarrow aPa$
 - P $\rightarrow aPa \mid b$
 - 对abaabaaba可以找出两个不同的最左推导
 - S \Rightarrow SLS \Rightarrow SLSLS \Rightarrow SLSLSLS \Rightarrow aPaSLSLS \Rightarrow abaSLSLS \Rightarrow abaLSLS
 - S \Rightarrow SLS \Rightarrow SLSLS \Rightarrow aPaSLS \Rightarrow abaSLS \Rightarrow abaSLSLS \Rightarrow abaLSLS

- 考虑如下的语言,其中的串可以划分成k>=0个子串,每个字串是以b为中心、2m个a组成的轴对称串(m>=1);不同的子串可以有不同的m值。例如,语言包括串ξ,aba,aabaaaba,abaaabaaabaa。
 - (3) 为该语言设计一个非二义且非LR(1)的文法,并说明
 - S $\rightarrow MSL \mid \varepsilon$
 - $M \rightarrow \varepsilon$
 - L $\rightarrow aPa$
 - P $\rightarrow aPa \mid b$