

CH 7.1 Diagonalization

Def 7.1.1: Diagonalizable Matrices

Consider a L.T. $T(\vec{x}) = A\vec{x}$ from \mathbb{R}^n to \mathbb{R}^m . Then A is said to be diagonalizable if the matrix B of T with respect to some basis is diagonal.

By theorem 3.4.4 and definition 3.4.5, matrix A is diagonizable iff A is similar to some diagonal matrix B, meaning that there exists an invertible matrix S s.t. S-1AS=B is diagonal.

To diagonalize a square matrix A means to find an invertible matrix S and a diagonal matrix B s.t. S-1AS = B.

Theorem 3.4.7: When is the B-matrix of T diagonal?

Consider a L.T. $T(\vec{x}) = A\vec{x}$ from R^n to R^n . Let $B = (\vec{v}_1, \vec{v}_2, ..., \vec{v}_n)$ be a basis of R^n .

Then the B-matrix B of T is diagonal iff T(v,)=c,v, ..., T(vn)=cnvn for some cieR.

From a geometrical point of view, this means that $T(\vec{v_j})$ is parallel to $\vec{v_j}$ for all $j=1,\ldots,n$.

From theorem 3.4.7, we have:

$$\mathsf{B} = \begin{bmatrix} \lambda_1 & 0 & \cdots & \lambda_n \\ \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \vec{\mathsf{v}}_n$$

If we wish to diagonalize A, we need to find a basis of R" consisting of vectors \$\vec{v}\$ s.t.

Def 7.1.2: Eigenvectors, Eigenvalues, and Eigenbases

Consider a L.T. T(x) = Ax from R" to R"

A nonzero v in Rh is called an eigenvector of A (orT) if

for some scalar λ . This λ is called the eigenvalue associated with eigenvector \vec{v} .

A basis $\vec{v}_1,...,\vec{v}_n$ of \mathbb{R}^n is called an eigenbasis for A if the vectors $\vec{v}_1,...,\vec{v}_n$ are eigenvectors of A, meaning that $A\vec{v}_1 = \lambda_1\vec{v}_1$, ..., $A\vec{v}_n = \lambda_1\vec{v}_n$ for $\lambda_1 \in \mathbb{R}$.

A nonzero vector in \mathbb{R}^n is an eigenvector of A if $A\vec{v}$ is parallel to \vec{v} .

If \vec{v} is an eigenvector of matrix A , with an associated eigenvalue λ , then \vec{v} is an eigenvector of A^2 , A^3 , ... as well, with

$$A^2 \vec{v} = \lambda^2 \vec{v}$$
, $A^3 \vec{v} = \lambda^3 \vec{v}$, ..., $A^m \vec{v} = \lambda^m \vec{v}$

Proof by inductions

Base case:

IS:

W

Theorem 7.1.3: Eigenbases and diagonalization

A is diagonalizable iff there exists an eigenbases for A.

If $\vec{v}_1, ..., \vec{v}_n$ is an eigenbases for A, with $A\vec{v}_1 = \lambda_1 \vec{v}_1, ..., A\vec{v}_n = \lambda_n \vec{v}_n$, then the matrices

$$S = \begin{bmatrix} 1 & 1 & 1 \\ \vec{v_1} & \vec{v_2} & \cdots & \vec{v_n} \\ 1 & 1 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

will diagonalize A, meaning that STAS = B

Conversely, if the matrices S and B diagonalize A, then the column vectors of S will form an eigenbases for A, and the diagonal entries of B will be the associated eigenvalues.

Proof (7.1.3): (=>)

Suppose there exists an eigenbases vi, , ... , vn for A

Then,

= SB 🛮

Ex 2:

Find all eigenvectors and eigenvalues of In

Since Inv=v=lv, Vvelr, all nonzero vectors of Rm are eigenvectors of In with A=1.

Thus all bases for Rn are eigenbases for In

Clearly, In is diagonalizable.

Ex 3

Consider the L.T. $T(\vec{x}) = \begin{bmatrix} 0.64 & 0.48 \\ 0.48 & 0.36 \end{bmatrix} \vec{x} \cdot T(\vec{x})$ represents the Orthogonal projection onto the line $L = Span \begin{bmatrix} 4 \\ 3 \end{bmatrix}$.

Describe the eigenvectors of A geometrically and find all eigenvalues of A.

Describe the eigenvectors of \vec{v} .

We want to find any nonzero $\vec{v} \in \mathbb{R}^2$ s.t $T(\vec{v}) = A\vec{v} = \lambda \vec{v}$. $\vec{v} = [\vec{v}]$ $\vec{v} = [\vec{v}]$

Any v pependicular to L will give: Av = 0 = 0v (Note: v ∈ Ker A)

The eigenvalues are land 0.

Thus B = (v, w) will be an eigenbasis for A, and B-matrix B of 7 will be the diagonal matrix.

Thus the matrices $S = \begin{bmatrix} \vec{v} \vec{w} \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ will diagonalize A.

Note:

STAS = B is true here by thm 7.1.3.

Ex 4:

Let $T(\vec{k}) = A\vec{k} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ be the rotation through an angle of 90° in counterclockwise.

If \vec{v} is any nonzero vector in \mathbb{R}^2 , then $T(\vec{v}) = A\vec{v}$ fails to be parallel to \vec{v} . (it's perpendicular)

Thus there are no real eigenvectors and eigenvalues.

Eigenvalues can also be complex

By def, 0 is an eigenvalue of A if there exists a nonzero vector \vec{v} in R^n s.t. $A\vec{v} = \vec{0}\vec{v} = \vec{0}$

Thus there exists a nonzero vector in Kev A. Thus O is an eigenvalue of A iff Ker A \$ \$0\$, meaning that A is non-invertible