ST 501 Final Project - Fall 2018

Bayesian Inference and Analysis

Muktanidhi Dhotrad Rohit Khurana Kartheek Manavarthi

Being submitted to fulfill the course requirements of Fundamentals of Statistical Inference 1 (ST 501)

Financial Mathematics
North Carolina State University
December 2018

Honor Pledge

I have neither given nor received unauthorized aid on this assignment.

Muktanidhi Dhotrad (5253) Rohit Khurana (7823) Kartheek Manavarthi (7320)

Solutions

1 Analysis of Log Returns on Google Stock

1.1 Sample Quantile and Sample Estimate

The 0.05 sample quantile and the sample estimate are respectively,

$$Q_{0.05} = -0.02692224$$

$$E[R|R < Q_{0.05}] = -0.04221229$$

1.2 Histogram and deciding the distribution for R_t

The histogram for the R_t of Google stock is as follows,

Using the decdist function, we obtained the following plot,

1.3 Usage of fitdist and ad.test functions

The summary of all the tests run to find a better fit to the data is in the table below. Please refer to the R-code file for reference.

Distribution	P-Value
T-Distribution (df=3)	0.5939
Logistic Distribution	0.3967
Logistic Distribution on Differentiated $R_t s$	0.9585
Logistic Distribution on $(R_t + (R_t)^2)$	0.502
Gamma Distribution on $(R_t)^2$	0.3041
Beta Distribution on $(R_t)^2$	0.3019
Cauchy Distribution	0.06303

1.4 To prove for any constant c, $E[R|R < c] = \int_{-\infty}^{c} \frac{rf_R(r)}{F_R(c)} dr$, $F_R(c) = \int_{-\infty}^{c} f_R(r) dr$

The data has a more suitable fit with **T-distribution** with 3 degrees of freedom, hence we will be proceeding with that.

From 1.1 we have the sample estimate to be,

$$E[R|R < Q_{0.05}] = -0.04221229$$

And now by evaluating the complex integral, we have the output to be,

$$E[R|R < c] = \int_{-\infty}^{c} \frac{r f_R(r)}{F_R(c)} dr = -0.0374903$$

Also, c has been calculated with value as below:-

$$Q_{0.05} = -0.02454694$$

Hence proved.

2 Analysis of Log Returns on Amazon Stock

2.1 Sample Quantile and Sample Estimate

The 0.05 sample quantile and the sample estimate are respectively,

$$Q_{0.05} = -0.03228566$$

$$E[R|R < Q_{0.05}] = -0.04896195$$

2.2 Histogram and deciding the distribution for R_t

The histogram for the R_t of Google stock is as follows,

Using the decdist function, we obtained the following plot,

2.3 Usage of fitdist and ad.test functions

The summary of all the tests run to find a better fit to the data is in the table below. Please refer to the R-code file for reference.

Distribution	P-Value
T-Distribution (df=3)	0.7502
Logistic Distribution	0.2098
Logistic Distribution on Differentiated $R_t s$	0.3929

2.4 To prove for any constant c, $E[R|R < c] = \int_{-\infty}^{c} \frac{rf_R(r)}{F_R(c)} dr$, $F_R(c) = \int_{-\infty}^{c} f_R(r) dr$

The data has a more suitable fit with **T-distribution** with 3 degrees of freedom, hence we will be proceeding with that.

From 2.1 we have the sample estimate to be,

$$E[R|R < Q_{0.05}] = -0.04896195$$

And now by evaluating the complex integral, we have the output to be,

$$E[R|R < c] = \int_{-\infty}^{c} \frac{rf_R(r)}{F_R(c)} dr = -0.04736586$$

Also, c has been calculated with value as below:-

$$Q_{0.05} = -0.02635557$$

Hence proved.

3 Determining Portfolio Weights and Analysis

3.1 Sample quantile of the portfolio weight $w, Q_{0.05}(w)$

The 0.05 sample quantile of the portfolio weight $w, Q_{0.05}(w)$, plotted over the range of [0,1] on 50 intervals is as follows,

3.2 Sample estimate $ES(w) = E[R(w)|R(w)] < Q_{0.05}(w)$

The plot of ES(w) as a function of w on a grid of equally spaced 50 values in [0,1] is as follows,

3.3 Minima and Maxima of ES(w)

ES(w) is minimum at w=0

ES(w) is maximum at w = 0.88