Devoir à la maison n°07

- ▶ Le devoir devra être rédigé sur des copies doubles.
- ▶ Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- ▶ Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 –

On note $\mathscr E$ l'ensemble des fonctions f continues sur $\mathbb R$ à valeurs dans $\mathbb R$ telles que

$$\forall (x, y) \in \mathbb{R}^2, f(xy) = xf(y) + yf(x)$$

- **1.** Soit $f \in \mathcal{E}$.
 - **a.** Déterminer les valeurs de f(0), f(1) et f(-1).
 - **b.** Démontrer que la fonction f est impaire.
- **2.** On suppose que f est dérivable sur \mathbb{R}_{+}^{*} .
 - **a.** Montrer que f est solution sur \mathbb{R}_+^* de l'équation différentielle xy'-y=kx où k est une constante dépendant de f que l'on précisera.
 - **b.** En déduire f(x) en fonction de k pour tout $x \in \mathbb{R}$.
- 3. On note φ l'unique élément de \mathscr{E} vérifiant $\varphi'(1) = 1$.
 - **a.** φ est-elle dérivable en 0?
 - **b.** Déterminer les variations et les limites de φ en $+\infty$ et $-\infty$ puis tracer son graphe.
- **4.** On considère $f \in \mathcal{E}$ que l'on suppose seulement continue sur \mathbb{R} . On note alors F l'unique primitive de f s'annulant en 0.
 - **a.** Montrer que pour tout $(x, y) \in \mathbb{R}^2$, $F(xy) = x^2 F(y) + \frac{xy^2}{2} f(x)$.
 - **b.** En déduire que f est dérivable sur \mathbb{R}_{+}^{*} .
 - c. Déterminer l'ensemble \mathscr{E} .

EXERCICE 1.

Toutes les fonctions entrant en jeu dans cet exercice sont à valeurs réelles.

1. On souhaite résoudre sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ l'équation différentielle suivante :

(E):
$$\cos(t)z''(t) - 2\sin(t)z'(t) - \cos(t)z(t) = 0$$

- a. Soit z une fonction deux fois dérivable sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. On pose $\varphi(t) = \cos(t)z(t)$ pour tout $t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. Exprimer $\varphi''(t)$ en fonction de z(t), z'(t) et z''(t) pour tout $t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.
- **b.** En déduire les solutions de (E).

2. On souhaite maintenant résoudre sur]-1,1[l'équation différentielle suivante :

(F):
$$(1-x^2)y''(x)-3xy'(x)-y(x)=0$$

- a. Soit y une fonction deux fois dérivable sur]-1,1[. On pose $z(t) = y(\sin(t))$ pour $t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. Exprimer y(x), y'(x) et y''(x) en fonction de $z(\arcsin x)$, $z'(\arcsin x)$ et $z''(\arcsin x)$ pour tout $x \in]-1,1[$.
- **b.** En déduire que y est solution de (F) sur]-1,1[*si et seulement si z* est solution d'une équation différentielle que l'on précisera. En déduire les solutions de (F).
- **3.** Soit f une solution de (F) sur]-1,1[.
 - **a.** Montrer par récurrence que f est de classe \mathscr{C}^{∞} .
 - **b.** Montrer par récurrence que pour tout $n \in \mathbb{N}$

$$\forall x \in]-1,1[,(1-x^2)f^{(n+2)}(x)-(2n+3)xf^{(n+1)}(x)-(n+1)^2f^{(n)}(x)=0$$

- **c.** Pour tout $n \in \mathbb{N}$, on pose $a_n = f^{(n)}(0)$. Déterminer une relation de récurrence entre a_{n+2} et a_n à l'aide de la question précédente.
- **d.** Montrer que pour tout $p \in \mathbb{N}$,

$$a_{2p} = \frac{\left((2p)!\right)^2}{2^{2p} \left(p!\right)^2} a_0$$
 $a_{2p+1} = 2^{2p} \left(p!\right)^2 a_1$

- 4. On se propose de déterminer plusieurs développements limités à l'aide de la question 3.
 - a. Soit f une fonction de classe \mathscr{C}^{∞} . Rappeler la formule de Taylor-Young appliquée à f en 0 à un ordre $n \in \mathbb{N}$.
 - **b.** Soit $g: x \in]-1, 1[\mapsto \frac{\arcsin x}{\sqrt{1-x^2}}$. Que valent g(0) et g'(0)? En remarquant que g est solution de (F), donner le développement limité à l'ordre 2n+1 en 0 de g.
 - **c.** Soit $h: x \in]-1, 1[\mapsto \frac{1}{\sqrt{1-x^2}}$. Que valent h(0) et h'(0)? En remarquant que h est solution de (F), donner le développement limité à l'ordre 2n en 0 de h.
 - **d.** Soit $k: x \in]-1, 1[\mapsto \arcsin x$. Déduire de la question **4.c** le développement limité à l'ordre 2n+1 en 0 de k.
- 5. En remarquant que g = hk et en considérant le coefficient de x^{2n+1} dans le développement limité de cette fonction, montrer que

$$\sum_{p=0}^{n} \frac{1}{2p+1} \binom{2p}{p} \binom{2(n-p)}{n-p} = \frac{2^{4n}}{(n+1)\binom{2n+1}{n}}$$