			Reg. No.:			
			Name :			
			WIT BHOPAL www.vitbhopal.ac.in			
			MID TERM EXAMINATIONS – November 2024			
					: Inter	im 2024-25
Course Course Course Course Course	I		Theory of Computation and Compiler Design/ CSE2004	Slot	: C11+	·C12+C13
Time			1 ½ hours	Max. Marks	: 50	
	•		Answer all the Questions			
Q. No. Question Description						Marks
1	(a) Design a DEA to account I — got of all attinged by average links hat (0, 1)					5
	ε ε ε ε ε ε ε					
2	2 (a) Construct the DFA equivalent for the following regular expression: 1*00* + 010					5
	(b) A Lex program is given below – Regular Definitions None					
	Transition Rules 1 {} /* actions are omitted here */ 100 {} 1*0* {} Implement the Lex as DFA.					5
3			er the following grammar: $S \rightarrow 0B \mid IA$, $A \rightarrow 0 \mid 0S \mid IAA$, $B \rightarrow 1 \mid 1S \mid 0BB$ estring 00110101, illustrate			10
		(i	(i) the Left-Most Derivation (LMD),ii) the Right-Most Derivation (RMD), andii) the Derivation Tree.brove that the given grammar is ambiguous.			
4	() D 11.4 $()$ C2 $()$ C1 1 N 1 D $()$ CND $()$ 1.4 $()$					5
						5
5	(a) Determine the grammar without left recursion equivalent to the following					5

grammar:	
$X \to X+Y \mid X-Y \mid Y$	
$Y \rightarrow Y^*Z \mid Y/Z \mid Z$	
$Z \rightarrow (X) \mid a$	<u> </u>
(b) Do left factoring for the following grammar:	
$S \rightarrow AS \mid AbS \mid A \mid a$	5
$A \rightarrow aB \mid aBS \mid a$	
$B \rightarrow bA \mid b$	
$\Leftrightarrow \Leftrightarrow \Leftrightarrow$	