Fiche 2

Exercice 1.

Considérez les deux projets suivants :

Projet	T=0	T=1	T=2	T=3
A	-50 000	40 000	20 000	10 000
B	- 50 000	2000	30 000	50 000

Le taux d'actualisation pour cette catégorie de projet est de 11%.

- 1. Quel projet devrait être accepté selon le critère de la VAN?
- 2. Quel projet devrait être accepté selon le critère de la TRI?
- 3. Quel est le taux d'actualisation pour lequel la VAN des deux projets est identique?

Exercice 2. (Extrait examen 2018)

Une entreprise prévoit de développer son département de R&D de façon significative et envisage un investissement (couvrant l'embauche du personnel, l'achat de locaux etc ...) de 5 Millions d'euros. Le directeur financier de la société, considère que les flux nets de trésorerie générés par cet investissement seront les suivants :

$Ann\'ee$	1	2	3	4	5
Flux (en Millions euros)	0,5	1,5	2	2	1

Les apporteurs de capitaux de cette société ont une exigence de rentabilité de 7% (taux d'actualisation).

- 1. Calculer la valeur actuelle nette du projet. Faut-il l'entreprendre?
- 2. Donner l'équation vérifiée par le taux de rentabilité interne (noté t). Donner une valeur approchée à 10^{-2} -près de ce TRI.
- 3. Le directeur financier a peut-être été un peu optimiste pour le flux d'année 4 qui pourrait s'avérer bien inférieur à 2 Millions d'euros. En dessous de quel flux d'année 4 le projet ne doit-il plus être entrepris?

Exercice 3.

1. Vérifier qu'on peut écrire le prix de non arbitrage P_{AOA} (à t=0) de tout titre financier versant une suite de n cash flow $F:=(F_{t_i})_{i=1,\dots,n}$ comme :

$$(*) P_{OAO} = \langle F, B \rangle$$

avec B est le vecteur des prix des zéro-coupon de coordonnées $B(0,i) := (1 + z(t_i))^{-t_i}$, où $z(t_i)$ est le taux zéro-coupon et $\langle \cdot, \cdot \rangle$ désigne le produit scalaire euclidien dans \mathbb{R}^n .

2. 4 obligations sont présentes sur le marché avec comme caractéristiques :

Obligation	$Maturit\'e$	Coupon	Prix
A	1	5%	101
В	2	5.5%	101.5
C	3	5%	99
D	4	6%	100

i) En utilisant, la relation de non-arbitage (*) ci-dessus pou chacun de nos obligation, montrer qu'à t=0, les prix des zéro-coupon $\big(B(0,i)\big)_{i=1,\dots,4}$ sont donnés par :

$$\begin{pmatrix} B(0,1) \\ B(0,2) \\ B(0,3) \\ B(0,4) \end{pmatrix} = \begin{pmatrix} 0.96190 \\ 0.91194 \\ 0.85363 \\ 0.78901 \end{pmatrix}$$

- ii) En déduire les taux zéro-coupon $(z(t_i))_{i=1,...4}$.
- iii) Construire la courbe des taux par terme.

Exercice 4.

3 obligations A, B et C sont présentes sur le marché avec comme caractéristiques :

Obligation	Maturité (années)	Coupon (en %)	Prix (en euros)
A	2	10	108
В	3	7.5	100.85
C	3	8.5	103.50

- 1. Quel est le prix de non arbitrage d'un zéro-coupon de nominal 100 euros et de maturité 3 ans ?
- 2. En déduire les taux zéro-coupon.
- 3. Construire la courbe des taux par terme.