MATH 345 Homework 3

T.J. Liggett

March 2021

1 Problems

1.10 Show that $B = \{[a, b) \subset \mathbb{R} | a < b\}$ is a basis for a topology on \mathbb{R} .

Proof. Let $x \in \mathbb{R}$. Then there exists a basis element $B_x = [x, x+1) \in B$

1.11 Determine which of the following collections of subsets of \mathbb{R} are bases:

- 1. $C_1 = \{(n, n+2) \subset \mathbb{R} | n \in \mathbb{Z} \}$ No
- 2. $C_2 = \{ [a, b] \subset \mathbb{R} | a < b \} \text{ Yes}$
- 3. $C_3 = \{ [a, b] \subset \mathbb{R} | a \leq b \}$ Yes
- 4. $C_4 = \{(-x, x) \subset \mathbb{R} | x \in \mathbb{R} \}$ Yes
- 5. $C_5 = \{(a,b) \cup \{b+1\} \subset \mathbb{R} | a < b\}$ No

1.12 Determine which of the following are open sets in \mathbb{R}_l . In each case, prove your assertion.

$$A = [4,5), B = \{3\}, C = [1,2], D = (7,8)$$

- Set A: [4,5) is a basis element in the basis that generates \mathbb{R}_l , so it is also an open set.
- Set B: BWOC, assume $\{3\}$ is an open set. Then there is a union of basis elements $\bigcup_{n=1}^{t} [a,b)$ which generates $\{3\}$. However, a singleton set in this form would have to be [a,a], with a closed upper bound. A union of these basis elements will never have a closed upper bound, and thus never generate a singleton set, which is a contradiction. Therefore, the set $\{3\}$ is not open.
- Set C: Similarly to above, there is no union of basis elements of the form [a, b) which will generate a closed upper bound. Thus, the set [1, 2] is not open.
- Set D: (7,8) is not a basis element, but can be generated by the union of basis elements $\bigcup_{n=1}^{\infty} [7 + \frac{1}{n}, 8)$, so it is an open set.

1.14 Let B be the collection of subsets of \mathbb{Z} used in defining the digital line in Example 1.10. Show that B is a basis for a topology on \mathbb{Z}

Proof. Let $x \in \mathbb{Z}$. Consider x is odd. Then $B(x) = \{x\}$. If x is even, then $B(x) = \{n-1, n, n+1\}$. Thus, for every $x \in \mathbb{Z}$, there exists a basis element which contains x.

For the second condition of a basis, consider the case where x is even. Let $B_1, B_2 \in B$ be basis elements where $x \in B_1, B_2$. For an even element of B, there exists only one set $B(x) = \{x - 1, x, x + 1\}$ which contains x. Thus, it follows that $B_1 = B_2 = B(x)$, and $B_1 \cap B_2 = B(x) \in B$. So if x is even, for two basis elements where $x \in B_1 \cap B_2$, there exists a third basis element where $x \in B_3 \subset B_1 \cap B_2$.

Now consider the case where x is odd. Let $B_1, B_2 \in B$ be basis elements where $x \in B_1, B_2$. Then either

- 1. B_1 and B_2 are both generated by odd integers.
- 2. B_1 and B_2 are both generated by even integers.
- 3. WLOG, B_1 is generated by an even integer and B_2 is generate by an odd integer.

Case 1: Assume B_1 and B_2 are both generated by odd integers. Then $B_1 = \{a\}$, $B_2 = \{b\}$ where $a, b \in \mathbb{Z}$. Since $x \in B_1$ and $x \in B_2$, it follows that a = b = x, and $B_1 \cap B_2 = \{x\}$, which is a basis element.

Case 2: Assume B_1 and B_2 are both generated by even integers. Since x is in both, B_1 and B_2 can either be $\{x-2, x-1, x\}$ or $\{x, x+1, x+2\}$, and thus $B_1 \cap B_2$ can either be $\{x\}$, $\{x-2, x-1, x\}$, or $\{x, x+1, x+2\}$. In each case, it is true that for the basis element $B(x) = \{x\}$, $x \in B(x) \subset B_1 \cap B_2$.

Case 3: WLOG, assume B_1 is generated by an even integer and B_2 is generate by an odd integer. Since $x \in B_2$, it follows that $B_2 = \{x\}$. $x \in B_1$, which makes B_1 equal to either $\{x - 2, x - 1, x\}$ or $\{x, x + 1, x + 2\}$. In either case, $B_1 \cap B_2 = \{x\} = B(x)$, hence $x \in B(x) \subset B_1 \cap B_2$.

Therefore, B is a basis for a topology on \mathbb{Z} .

1.16

1. Show that B is a basis for a topology on \mathbb{R}^2 .

First, let $x = (x, y) \in \mathbb{R}^2$. Then $x \in B_1 = \{(a, b) \times (c, d) | a < x < b, c < y < d\}$. So for every $x \in \mathbb{R}^2$, there exists a basis element that contains x.

Now let $x = (x, y) \in \mathbb{R}^2$ where $x \in B_1 \cap B_2$, $B_1 = \{(a, b) \times (c, d) | a < b, c < d, a, b, c, d \in \mathbb{R}\}$ and $B_2 = \{(e, f) \times (g, h) | e < f, g < h, e, f, g, h \in \mathbb{R}\}$. Then $B_1 \cap B_2 = \{(max(a, e), min(b, f)) \times (max(c, g), min(d, h))\}$. Since $x \in B_1 \cap B_2$, we can assume this intersection is non-empty, and this rectangle B_3 is an element of B. Thus $x \in B_3 \subset B_1 \cap B_2$.

Therefore, B is a basis for a topology on \mathbb{R}^2 .

2. Show that the topology T', generated by B is the standard topology on \mathbb{R}^2 (T_{std}) .

First, consider an element $S \in T'$, where $S = \{(a,b) \times (c,d) | a < b,c < d\}$. For a point $x \in S$, there exists an open ball $B(x,\epsilon) = \{y \in \mathbb{R}^2 | d(x,y) < \epsilon\}$ where $\epsilon < |x_x - a|, \epsilon < |x_x - b|, \epsilon < |x_y - c|, \epsilon < |x_y - d|$. Hence, this open ball is contained in S and is a basis element of the standard topology on \mathbb{R}^2 , so for every basis element $B_t \in T'$, any point $p \in B_t$ is contained in a basis element of T_{std} that is contained in the B_t . Thus, $T' \in T_{std}$.

Next, consider an element $B(x, \epsilon) = \{y \in \mathbb{R}^2 | d(x, y) < \epsilon\} \in T_{std}$. For a point $r \in B(x, \epsilon)$, there exists an open rectangle R where $r \in R$, R $\{(r_x - s, r_x + s) \times (r_y - s, r_y + s)\}$, and $2s\sqrt{2} + d(x, r) < \epsilon$. Hence, this open rectangle is contained in $B(x, \epsilon)$ and is a basis element of T' on \mathbb{R}^2 , so for every basis element $B_t \in T_{std}$, any point $p \in B_t$ is contained in a basis element of T' that is contained in the B_t . Thus, $T_{std} \subset T'$.

Therefore the topology T', generated by B is the standard topology on \mathbb{R}^2 (T_{std}) .

Exercises for Section 1.3

1.26 Prove that closed balls are closed sets in the standard topology on \mathbb{R}^2 .

Proof. Let $B(x,) = \{ y \in \mathbb{R}^2 | d(x, y) \le \epsilon \}$ be a closed ball on \mathbb{R}^2 . Then the complement of $B(x, \epsilon)$ in \mathbb{R}^2 is

$$\mathbb{R}^2 - B(x, \epsilon) = \{ y \in \mathbb{R}^2 | d(x, y) > \epsilon \}.$$

Consider an arbitrary point $z \in \mathbb{R}^2 - B(x, \epsilon)$. There exists an open ball $B(z, r) = \{a \in \mathbb{R}^2 | d(a, z) < r\}$ where $r < d(x, z) - \epsilon$, so $B(z, r) \subset \mathbb{R}^2 - B(x, \epsilon)$. Hence, for any point $z \in \mathbb{R}^2 - B(x, \epsilon)$, there is a basis element contained in $B(x, \epsilon)$, and thus $\mathbb{R}^2 - B(x, \epsilon)$ is an open set. Since the complement of $B(x, \epsilon)$ is open, $B(x, \epsilon)$ is closed. Therefore, closed balls are closed sets in the standard topology on \mathbb{R}^2 .

1.27 The infinity comb C is the subset of the plane illustrated in Figure 1.17 and defined by

$$C = \{(x,0)|0 \le x \le 1\} \cup \{(\frac{1}{2^n},y)|n = 0,1,2,...and0 \le y \le 1\}$$

Prove that C is not closed in the standard topology on \mathbb{R}^2 .

Proof. Consider the complement of C on \mathbb{R}^2 , $C' = C - \mathbb{R}^2$. Consider $p = (0,1) \in C'$, and an open ball $B(b,\epsilon)$, $\epsilon > 0$, $b \in \mathbb{R}^2$, where $p \in B(b,\epsilon)$. Thus $d(b,p) < \epsilon$. Then there exists a point $x = (\frac{1}{2^n},1)$ where $\frac{1}{2^n} < \epsilon - d(b,p)$, $n \in \{0,1,2,...\}$. It follows that $d(b,x) \le d(b,p) + d(p,x) = d(b,p) + \frac{1}{2^n} < \epsilon$, so $x \in B(b,\epsilon)$. So there exists $p = (0,1) \in C'$ such that for every $B \in \{B(x,\epsilon) | x \in \mathbb{R}^2, \epsilon > 0\}$, either $p \notin B$ or $B \notin C'$. Thus C' is not open, and C is not closed. Therefore, C is not closed in the standard topology on \mathbb{R}^2 .

1.28 Which sets are closed sets in the finite complement topology on a topological space X?

The closed sets in the finite complement topology on X are X and all finite subsets of X. If $A \subset X$ is finite, then its complement X - A is open in the finite complement topology, making A closed.

1.30 Which sets are closed sets in the particular point topology PPX_p on a set X

All sets in $A \subset X$ that don't contain p, and X are closed sets in PPX_p .

1.35 Show that \mathbb{R} in the lower limit topology is Hausdorff.

Consider $a, b \in \mathbb{R}$. WLOG, assume a < b. Observe that two open sets in the lower limit topology, U = [a, b) and V = [b, b+1) are disjoint sets, where $a \in U$ and $b \in V$. So there exist disjoint neighborhoods for a and b. Thus, for any two elements of \mathbb{R} , there exist disjoint neighborhoods for those elements in \mathbb{R}_l , and therefore \mathbb{R} in the lower limit topology is Hausdorff.

1.36 Show that \mathbb{R} in the finite complement topology is not Hausdorff.

Let S_1 and S_2 be open sets in the finite complement topology on \mathbb{R} , where $S_1 = \mathbb{R} - F_1$ and $S_2 = \mathbb{R} - F_2$ for some finite sets, $F_1, F_2 \in \mathbb{R}$. Then:

$$S_1 \cap S_2 = (\mathbb{R} - F_1) \cap (\mathbb{R} - F_2)$$

By DeMorgan's Law,

$$(\mathbb{R}-F_1)\cap(\mathbb{R}-F_2)=\mathbb{R}-(F_1\cup F_2)$$

Since $F_1 \cup F_2$ is a finite set, it follows that $S_1 \cap S_2$ is non-empty. This means that there are no two disjoint open sets in the topology, and thus no two points have disjoint neighborhoods. Therefore, \mathbb{R} in the finite complement topology is not Hausdorff.

.