Optimal Control and Reinforcement Learning

Homework #3

Student ID: 2016145015

Name : 이두현

- Sigma = 0

- Sigma = 2

- Sigma = 4

- Sigma = 8

- Sigma = 10

- 1. Value map의 경우에는 $r_{min}=10$, $r_{max}=90$ 범위에서 _rewards_tmp -= $(r-keep_dist)**2$ / p_denominator로 정의되어 있기 때문에 r=50 (keeping distance = 50)에서 reward가 가장 높게 나오는 것을 알 수 있었습니다. 또한, sigma가 커짐에 따라서 target의 motion uncertainty가 증가하기 때문에, r=50에서 멀 때의 reward가 더 빠르게 감소하는 것을 알 수 있고 그래서 value map 상에서 봤을 때 가운데 r=50 부분으로 좀 더 concentration 되는 것으로 보입니다..
- 2. Policy map의 경우에는 sigma = 0, 즉 deterministic의 경우에 살펴보면 r<d인 경우에는 α <0 이어야 reward가 크고, r>d인 경우에는 α >0이어야 reward가 큰 것을 알 수 있습니다. Sigma가 커지면 target의 motion uncertainty가 커지므로 $|\alpha|$ 가 큰 부분에서의 control 경계가 날카롭게 변하는 것을 알 수 있습니다. 또한, α = 0, r=d 근처 부분에서도 마찬가지로 uncertainty가 증가함에 따라서 control 경계가 날카롭게 변한 것으로 보입니다.