Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 935 001 A1

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 11.08.1999 Bulletin 1999/32

(21) Application number: 97930804.6

(22) Date of filing: 15.07.1997

(51) Int. Cl.⁶: **C12N 15/18**, C12N 15/63, C12P 21/02, C07K 14/485, C07K 16/22, G01N 33/50

(86) International application number: PCT/JP97/02456

(87) International publication number: WO 98/02543 (22.01.1998 Gazette 1998/03)

(84) Designated Contracting States:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
NL PT SE

(30) Priority: 15.07.1996 JP 18521696

(71) Applicant:
Chugal Research Institute for Molecular
Medicine Inc.
Niiharl-gun, Ibaraki 300-41 (JP)

(72) Inventors:

HIRATA, Yulchi,
 Chugai Research Institute
 Nihari-gun, Ibaraki 300-41 (JP)

 NEZU, Junichi, Chugai Research Institute Niiharl-gun, Ibaraki 300-41 (JP)

(74) Representative: VOSSIUS & PARTNER Postfach 86 07 67 81634 München (DE)

(54) NOVEL VEGF-LIKE FACTORS

(57) A novel human gene having a significant homology with a VEGF-C gene, a member of the VEGF family, has been isolated by the PCR method using primers designed based on the sequence of EST that is assumed to be homologous with the C-termial region of the VEGF-C gene. Mouse and rat genes have been isolated based on the human gene isolated as above. A protein encoded by the above human gene has been isolated by introducing the gene into Escherichia coli and expressing it. The isolated protein and genes can be applied to, for example, gene therapy for the VEGF-D deficiency, wound healing, and promotion of collateral vessel formation. Furthermore, VEGF-D protein inhibitors can be used as a novel anticancer drug, etc.

EP 0 935 001 A

Description

Technical Field

[0001] The present invention relates to a protein factor involved in angiogenesis in humans and falls in the field of genetic engineering.

Background Art

- [0002] The process of angiogenesis, in which endothelial cells existing in the inner wall of blood vessels of animals generate new blood vessels, is triggered by transduction of a specific signal. A variety of substances are reportedly involved in this signal transduction. The most notable substance among them is the vascular endothelial growth factor (VEGF). VEGF is a protein factor which was isolated and purified, and can increase the proliferation of endothelial cells and the permeability of blood vessels (Senger, D. R. et al., Science 219: 983-985 (1983); Ferrara, N. and Henzel, W. J., Biochem. Biophys. Res. Commun. 161: 851-858 (1989)). It has been reported that the human VEGF gene contains eight exons and produces four subtypes consisting of 121, 165, 189, or 206 amino acid residues, depending on the difference in splicing, which causes different secretionpatterns (Houck, K. A. et al., Mol. Endocrinol. 5: 1806-1814 (1991)). It has also been reported that there is a VEGF-specific receptor, fit-1, and that the binding of VEGF to fit-1 is important for the signal transduction (Vries, C. D. et al., Science 255: 989-991 (1992)).
- [0003] Placental growth factor (PIGF) and platelet-derived growth factor (PDGF) have thus far been isolated and are factors related to VEGF. These factors are found to promote proliferation activities of vascular endothelial cells (Maglione, D. et al., Proc. Natl. Acad. Sci. USA 88: 9267-9271 (1991); Betsholtz, C. et al., Nature 320: 695-699 (1986)). In addition, VEGF-B (Olofsson, B. et al., Proc. Natl. Acad. Sci. USA 93: 2576-2581 (1996)) and VEGF-C (Lee, J. et al., Proc. Natl. Acad. Sci. USA 93: 1988-1992 (1996); Joukov, V. et al., EMBO J. 15, 290-299 (1996)) have recently been isolated.

[0004] These factors appear to constitute a family, and this may contain additional unknown factors.

[0005] It has been suggested that VEGF is involved in not only vascular formation at the developmental stage but also in the pathological neovascularization associated with diabetes, rheumatoid arthritis, retinopathy, and the growth of solid tumors. Furthermore, in addition to its vascular endothelial cell growth-promoting effects listed above, VEGF's ability to increase vascular permeability was suggested to be involved in the edema formation resulting from various causes. Also, these VEGF family factors may act on not only the blood vessels but also the blood cells and the lymphatic vessels. They may thus play a role in the differentiation and proliferation of blood cells and the formation of lymphatic vessels. Consequently, the VEGF family factors are presently drawing extraordinary attention for developing useful, novel drugs.

Disclosure of the Invention

35

55

[0006] An objective of the present invention is to isolate a novel protein belonging to the VEGF family and a gene encoding the protein. We searched for genes having homology to VEGF-C, which is a recently cloned VEGF family gene, against Expressed Sequence Tags (EST) and Sequence Tagged Sites (STS) in the GenBank database. As a result, we found an EST that was assumed to have homology to the C-terminal portion of VEGF-C. We then designed primers based on the sequence, and amplified and isolated the corresponding cDNA using the 5' RACE method and the 3' RACE method. The nucleotide sequence of the isolated cDNA was determined, and the deduced amino acid sequence therefrom revealed that the amino acid sequence had significant homology to that of VEGF-C. Based on the homology, we have assumed that the isolated human clone is a fourth member of the VEGF family (hereinafter designated as VEGF-D). We have also succeeded in expressing the protein encoded by the isolated human VEGF-D gene in E. coli cells, and have also purified and isolated it. Furthermore, we have succeeded in isolating the mouse and rat VEGF-D genes using the isolated human VEGF-D gene.

[0007] In particular, the present invention relates to a novel protein belonging to the VEGF family and a gene encoding the protein. More specifically it relates to

- (1) A protein shown by SEQ ID NO.1 or having the amino acid sequence derived therefrom in which one or more amino acids are substituted, deleted, or added;
- (2) A protein encoded by a DNA that hybridizes with the DNA shown by SEQ ID NO. 2;

- (3) A DNA encoding the protein of (1):
 - (4) A DNA hybridizing with the DNA shown by SEQ ID NO. 2;
 - (5) A vector containing the DNA of (3) or (4);
 - (6) A transformant carrying the vector of (5);

EP 0 935 CO1 A1

- (7) A method of producing the protein of (1) or (2), which comprises culturing the transformant of (6);
- (8) An antibody binding to the protein of (1) or (2);

5

- (9) A method of screening a compound binding to the protein of (1) or (2), which comprises a step of detecting the activity of the protein of (1) or (2) to bind to a test sample; and
- (10) A compound binding to the protein of (1) or (2), wherein said compound has been isolated by the method of (9).

[0008] The protein of the present invention (VEGF-D) has significant homology to VEGF-C and can be considered to be a fourth factor of the VEGF family. Since the major function of VEGF is vascular formation at the developmental stage and VEGF is considered to be involved in the pathological neovascularization associated with diabetes, rheumatoid arthritis, retinopathy, and the growth of solid tumors, the protein of the present invention is thought to have similar functions.

[0009] A person skilled in the art could prepare functionally equivalent proteins through modifying VEGF-D of the present invention by adding, deleting, or substituting one or more of the amino acids of VEGF-D shown by SEQ ID NO. 1 using known methods. Modifications of the protein can also occur naturally in addition to the artificial modifications described above. These modified proteins are also included in the present invention. Known methods for adding, deleting, or substituting amino acids include the overlap extension polymerase chain reaction (OE-PCR) method (Gene, 1989, 77 (1): 51).

[0010] The DNA encoding VEGF-D of the present invention, shown by SEQ ID NO. 2, is useful for isolating DNAs encoding the proteins having similar functions to VEGF-D in other organisms. For example, a person skilled in the art could routinely isolate homologs of human VEGF-D of the present invention from other organisms by allowing the DNA shown by SEQ ID NO. 2, or part thereof, as a probe, to hybridize with the DNA derived from other organisms. The DNA that hybridizes with the DNA shown by SEQ ID NO. 2 is also included in the present invention. The other organisms include mice, rats, and rabbits.

[0011] The DNA encoding a protein that is functionally equivalent to VEGF-D usually has high homology to the DNA shown by SEQ ID NO. 2. The high homology used herein means at least 70% or higher, more preferably 80% or higher, and still more preferably 90% or higher of sequence homology.

[0012] An example of the hybridization conditions for isolating the DNA having high homology will be given below. Prehybridization is performed in ExpressHyb Solution at 68°C for 30 minutes. The probe labeled with a radioisotope is denatured at 95°C to 100°C for 2 to 5 minutes and rapidly chilled on ice. The probe is added to a new ExpressHyb Solution. The blot is transferred to the solution containing the probe and allowed to hybridize under a temperature gradient of 68°C to 55°C for 2 hours. The blot is washed four times, for 10 minute each, with a 2 x SSC solution containing 0.05% SDS at room temperature. The blot is then washed with a 0.1 x SSC solution containing 0.1% SDS at 45°C for 3 minutes. The blot is subjected to autoradiography.

[0013] An example of the hybridization conditions for isolating the DNA having very high homology will be given below. Prehybridization is performed in ExpressHyb Solution at 68°C or 30 minutes. The probe labeled with a radioisotope is denatured at 95°C to 100°C for 2 to 5 minutes and rapidly chilled on ice. The probe is added into a new ExpressHyb Solution. The blot is transferred into the solution containing the probe, and allowed to hybridize at 68°C for 1 hour. The blot was washed four times, for 10 minute each, with a 2 x SSC solution containing 0.05% SDS at room temperature.

The blot was then washed with a 0.1 X SSC solution containing 0.1% SDS at 50°C for 40 minutes, during which the

The blot was then washed with a 0.1 X SSC solution containing 0.1% SDS at 50°C for 40 minutes, during which the solution was replaced once. The blot was then subjected to autoradiography.

[0014] Note that the hybridization condition can vary depending on the length of the probe (whether it is an oligomer or a probe with more than several hundred bases), the labeling method (whether the probe is radioisotopically labeled or non-radioisotopically labeled), and the type of the target gene to be cloned. A person skilled in the art would properly select the suitable hybridization conditions. In the present invention, it is especially desirable that the condition does not allow the probe to hybridize with the DNA encoding VEGF-C.

[0015] The DNA of the present invention is also used to produce VEGF-D of the present invention as a recombinant protein. Specifically, the recombinant protein can be produced in large quantity by incorporating the DNA encoding VEGF-D (for example, the DNA shown by SEQ ID NO. 2) into a suitable expression vector, introducing the resulting vector into a host, and culturing the transformant to allow the recombinant protein to be expressed.

[0016] The vector to be used for producing the recombinant protein is not particularly restricted. However, vectors such as pGEMEX-1 (Promega) or pEF-BOS (Nucleic Acids Res. 1990, 18(17): p.5322) are preferable.. Suitable examples of the host into which the vector is introduced include E. coli cells, CHO cells, and COS cells.

[0017] The VEGF-D protein expressed by the transformant can be purified by suitably combining purification treatments such as solubilization with a homogenizer or a sonicator, extraction by various buffers, solubilization or precipitation by acid or alkali, extraction or precipitation with organic solvents, salting out by ammonium sulfate and other agents, dialysis, ultrafiltration using membrane filters, gel filtration, ion exchange chromatography, reversed-phase chromatography, counter-current distribution chromatography, high-performance liquid chromatography, isoelectric

focusing, gel electrophoresis, or affinity chromatography in which antibodies or receptors are immobilized.

[0018] Once the recombinant protein is obtained, antibodies against it can be prepared using known methods. The known methods include preparing polyclonal antibodies by immunizing rabbits, sheep, or other animals with the purified protein, and preparing monoclonal antibodies from the antibody-producing cells of immunized mice or rats. These antibodies will make it possible to quantify VEGF. Although the antibodies thus obtained can be used as they are, it will be more effective to use the humanized antibodies to reduce the immunogenicity. The methods of humanizing the antibodies include the CDR graft method and the method of directly producing a human antibody. In the CDR Graft method, the antibody gene is cloned from the monoclonal antibody-producing cells and its antigenic determinant portion is transplanted into an existing human antibody. In the method of directly producing a human antibody, a mouse whose immune system has been replaced by the human immune system is immunized, similar to ordinary monoclonal antibodies. The VEGF-D protein or its antibody thus obtained can be administered into the body by subcutaneous injection or a similar method.

[0019] A person skilled in the art could screen compounds that bind to the protein of the present invention by known methods.

[0020] For example, such compounds can be obtained by making a cDNA library on a phage vector (such as \(\frac{1}{2} \)gt 11 and ZAP) from the cells expected to express the protein that binds to the protein of the present invention (such as lung, small intestine, and heart cells of mammals), expressing the cDNAs on LB-agarose, fixing the expressed proteins onto a filter, preparing the purified protein of the present invention as a biotin-labeled or a fusion protein with the GST protein, and reacting this protein with the above filter. The desired compounds could then be detected by west western blotting using streptavidin or an anti-GST antibody (Skolnik, E. Y., Margolis, B., Mohammadi, M., Lowenstein, E., Fischer, R., Drepps, A., Ullrich, A., and Schlessinger, J. (1991) Cloning of P13 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases, Cell 65: 83-90). Another method comprises the following steps. First, express the protein of the present invention fused with the SRF binding domain or the GAL4 binding domain in yeast cells. Second, prepare a cDNA library which expresses cDNAs fused with the transcription activation domain of VP16 or GAL4 from the cells expected to express a protein that binds to the protein of the present invention. Third, introduce the cDNA into the above yeast cells. Fourth, isolate the library-derived cDNA from the positive clones. Finally, introduce the isolated cDNA into E. coli to allow it to be expressed. (When a protein that binds to the protein of the present invention is expressed in yeast cells, the reporter gene is activated and the positive clone can be detected.) This method can be performed using the two-hybrid system (MATCHMAKER Two-Hybrid system, Mammalian MATCH-MAKER Two-Hybrid Assay Kit, or MATCHMAKER One-Hybrid System (all by Clontech) orthe HybriZAP Two-Hybrid Vector System (Stratagene) (Dalton, S. and Treisman, R. (1992) Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element, Cell 68: 597-612). Alternatively, the binding proteins can be screened by preparing a cDNA library from the cells expected to express a substance, such as a receptor, which binds to the protein of the present invention (for example, vascular endothelial cells, bone marrow cells, or lymph duct cells), introducing it into such cells as COS, detecting the binding of the protein of the present invention by itself or labeled with a radioisotope or a fluorescence, and cloning proteins that bind to the protein of the present invention (Yamasaki, K., Taga, T., Hirata, Y., Yawata, H., Kawanishi, Y., Seed, B., Taniguchi, T., Hirano, T., and Kishimoto, T. (1988) Cloning and expression of human interleukin-6 (BSF-2/IFN beta2) receptor, Science 241: 825-828, Fukunaga, R., Ishizaka-Ikeda, E., Seto, Y., and Nagata, S. (1990) Expression cloning of a receptor for murine granulocyte colony-stimulating factor, Cell 61: 341-350). Still another method comprises applying the culture supernatant or the cellular extract of the cells expected to express a protein that binds to the protein of the present invention onto an affinity column to which the protein of the present invention has been immobilized, and purifying the proteins specifically bound to the column. In addition, a DNA encoding the protein that binds to the protein of the present invention can be obtained by determining the amino acid sequence of the binding protein, synthesizing oligonucleotides based on the sequence, and screening a cDNA library with the oligonucleotides as probes.

[0021] Furthermore, compounds that bind to the protein of the present invention can be screened by contacting compounds, a natural substance bank, or a random phage peptide display library with the immobilized protein of the present invention and detecting the molecules bound to the protein. These compounds can also be screened by high throughput screening utilizing combinatorial chemistry technology (Wrighton, N. C., Farrell, F. X., Chang, R., Kashyap, A. K., Barbone, F. P., Mulcahy, L. S., Johnson, D. L., Barrett, R. W., Jolliffe, L. K., and Dower, W. J., Small peptides as potent mimetics of the protein hormone erythropoietin, Science (United States) Jul 26 1996, 273: 458-464, Verdine, G.L., The combinatorial chemistry of nature, Nature (England) Nov 7 1996, 384: 11-13, Hogan, J.C. Jr. Directed combinatorial chemistry, Nature (England) Nov 7 1996, 384: 17-19).

[0022] VEGF-D of the present invention may be used for gene therapy by introducing the VEGF-D gene into the body of the patient with the VEGF-D deficiency, or expressing the gene in the body. An anti-sense DNA of the VEGF-D gene may also be used to inhibit the expression of the gene itself, thereby suppressing the pathological neovascularization.

[0023] Among the many available methods to introduce the VEGF-D gene or its antisense DNA into the body, the retrovirus method, the liposome method, the cationic liposome method, and the adenovirus method are preferable.

[0024] In order to express these genes in the body, the genes can be incorporated into a suitable vector and introduced into the body by the retrovirus method, the liposome method, the cationic liposome method, or the adenovirus method. Although the vectors to be used are not particularly limited, such vectors as pAdexlcw and pZIPneo are preferable.

5 [0025] The present invention may also be applied for diagnosing disorders caused by abnormalities of the VEGF-D gene, for example, by PCR to detect an abnormality of the nucleotide sequence of the VEGF-D gene.

[0026] Furthermore, according to the present invention, the VEGF-D protein or its agonists can be used to heal wounds, promote collateral vessel formation, and aid hematopoiesis by the hematopoietic stem cells, by taking advantage of the angiogenic effect of the VEGF-D protein. The antibodies against the VEGF-D protein or its antagonists can be used as the therapeutic agents for pathological neovascularization, lymphatic dysplasia, dyshematopoiesis, or edemas arising from various causes. The anti-VEGF-D antibodies can be used for diagnosing diseases resulting from abnormal production of VEGF-D by quantifying VEGF-D.

Brief Description of the Drawings

[0027]

15

40

45

Figure 1 shows the relationship among the VEGF-D gene, the EST sequences, and the primers used for cloning. Figure 2 compares the amino acid sequences of EST (H24828) and VEGF-C.

20 Figure 3 compares the amino acid sequences deduced from the VEGF-D gene and from the known genes of the VEGF family proteins.

Figure 4a shows the hydrophobicity plot of VEGF-D. Figure 4b shows the prediction of the cleavage site of the VEGF-D signal peptide.

25 Best Mode for Implementing the Invention

[0028] The following examples illustrate the present invention in detail, but are not to be construed to limit the scope of the invention.

30 Example 1. Homology search by TFASTA method

[0029] The sequence CGPNKELDENTCQCVC (SEQ ID NO. 3) was designed based on the consensus sequence found in the BR3P (Balbiani ring 3 protein) repeat at the C-terminus of VEGF-C. The entire ESTs and STS sequences in the Genbank database (as of 29 February 1996) were then searched by the TFASTA method (Person and Lipman, Proc. Natl. Acad. Sci. USA 85: 2444-2448 (1988)). The searching conditions used are shown below (Table 1).

Table 1

0	000.040
Sequences	392,210
Symbols	135,585,305
Word Size	2
Gap creation penalty	12.0
Gap extension penalty	4.0

[0030] As a result, an EST (Accession No. H24828) that is considered to code the consensus sequence was found. The sequence is one of the ESTs registered by The WashU-Merck EST Project, and nine out of 16 amino acid residues were identical. Further searching for UniGene by NCBI based on this sequence revealed that five registered sequences (T64149, H24780, H24633, H24828, and T64277 (as of 1 March 1996)), including the above EST, were considered to be derived from the same gene. T64277 and T64149, as well as H24828 and H24780, are the combination of the 5' sequence and the 3' sequence of the same clones, and the length of the insert in both of these clones was 0.9 kb (Fig. 1).

[0031] Translating the H24828 sequence into a protein sequence in a frame where homology is found suggested that this sequence codes 104 C-terminal amino acid residues. Comparing this amino acid sequence with the C-terminus of VEGF-C, 28 out of 104 amino acids (27%) were identical. Moreover, the amino acids that are important for maintaining the protein structure, such as cysteine and proline, were well conserved (Fig. 2). Conserved sequences are shown in a

black box.

3

3

Example 2. cDNA cloning from a library

[0032] Primers for 5' RACE and 3' RACE (5' RACE primer: 5'-AGGGATGGGGAACTTGGAACGCTGAAT-3' (SEQ ID NO. 4), 3' RACE primer: 5'-GATCTAATCCAGCACCCCAAAAACTGC-3' (SEQ ID NO. 5)) were designed (Fig. 1). A double-stranded cDNA was synthesized from human lung-derived polyA* RNA using reverse transcriptase. PCR was then performed using Marathon-Ready cDNA, Lung (Chlontech), having an adapter cDNA ligated to both ends as a template cDNA, and using the above primer and adapter primer (AP-1 primer) as primers. The above adapter cDNA contains the regions to which the adapter primers AP-1 and AP-2 hybridize. The PCR was performed in a manner such that the system was exposed to treatment at 94°C for 1 min; five cycles of treatment at 94°C for 30 sec and at 72°C for 4 min; five cycles of treatment at 94°C for 20 sec and at 68°C for 4 min. (TaKaRa Ex Taq (Takara Shuzo) and the attached buffer were used as Taq polymerase instead of Advantage KlenTaq Polymerase Mix.) As a result, 1.5kb fragments were amplified at the 5' region and 0.9kb fragments at the 3' region. These fragments were cloned with the pCR-Direct Cloning System (Clontech), CR-TRAP Cloning System (Gen-Hunter), and PT7Blue-T vector (Novagen). When the 5'-RACE fragment was cloned into the pCR-Direct vector, the fragment was amplified again using 5'-CTGGTTCGGCCCAGAACTTGGAACGCTGAATCA-3' (SEQ No. 7) and 5'-CTCGCTCGCCCACTAATACGACTCACTATAGG-3' (SEQ ID NO. 8) as primers.

20 Example 3. Nucleotide sequence analysis

[0033] ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit with Amplitaq DNA Polymerase FS and 377 A DNA Sequencer (ABI) were used for DNA sequencing. The primers used are the primers in the vectors (5'-AATTAAC-CCTCACTAAAGGG-3' (SEQ ID NO. 9), 5'-CCAGGGTTTTCCCAGTCACGAC-3'(SEQ ID NO. 10)), AP-2 primer (5'-ACTCACTATAGGGCTCGAGCGGC-3' (SEQ ID NO. 11)), and 10 primers in the sequence shown below (Table 2).

Table 2

		·
	SQ1 (SEQ ID NO. 12)	5'-AAGTCTGGAGACCTGCT-3'
30	SQ2 (SEQ ID NO. 13)	5'-CAGCAGGTCTCCAGACT-3'
	SQ3 (SEQ ID NO. 14)	5'-CGCACCCAAGGAATGGA-3'
	SQ4 (SEQ ID NO. 15)	5'-TGACACCTGGCCATTCCA-3'
35	SQ5 (SEQ ID NO. 16)	5'-CATCAGATGGTAGTTCAT-3'
	SQ6 (SEQ ID NO. 17)	5'-ATGCTGAGCGAGAGTCCATA-3'
	SQ7 (SEQ ID NO. 18)	5'-CACTAGGTTTGCGGCAACTT-3'
40	SQ8 (SEQ ID NO. 19)	5'-GCTGTTGGCAAGCACTTACA-3'
40	SQ9 (SEQ ID NO. 20)	5'-GATCCATCCAGATCCCTGAA-3'
	SQ10 (SEQ ID NO. 21)	5'-CAGATCAGGGCTGCTTCTA-3'
	· · · · · · · · · · · · · · · · · · ·	

45 [0034] Determining the nucleotide sequence of the 1.5kb fragment at the 5'-side and the 0.9kb fragment at the 3'-side revealed that the sequence of the overlapping region was identical, confirming that 5'- and 3'-side cDNAs of the desired gene were obtained. Determining the entire nucleotide sequence of the cDNA revealed that this novel gene has the full length of 2 kb and can code a protein consisting of 354 amino acid residues (SEQ ID NO. 1 and SEQ ID NO. 2). Figure 1 shows the relation between this gene and the EST sequences registered in the Genbank database. Comparing the amino acid sequence with other VEGF family proteins revealed that the amino acids that are well conserved between family proteins are also conserved in this novel gene, and therefore this gene is obviously a new member of the VEGF family (Fig. 3). In Fig. 3, HSVEGF indicates human VEGF; HSVEGF-D, HSVEGF-C, and HSVEGF-B indicate human VEGF homologues (human VEGF-D, human VEGF-C, and human YEGF-B, respectively); HSPDGF-A indicates human PDGF-A; HSPDGF-B indicates human PDGF-B; and HSP1GF2 indicates human P1GF2. The conserved sequences are shown in a black box. Since VEGF-D is highly homologous to VEGF-C that was cloned as the Fit4 ligand, it was presumed to be a ligand to a Fit-4-like receptor.

[0035] Deducing the signal peptide cleavage site (Fig. 4b) by hydrophobicity plot (Fig. 4a) and the method of von Heijne (von Heijne, G, Nucleic Acids Res. 14, 4683-4690(1986)), N-terminal 21 amino acid residues may be cleaved as

signal peptides, and they may also undergo additional processing like VEGF-C.

Example 4. Northern blot analysis

[0036] A 1kb fragment, which had been cut out by digestion with EcoRI from the 5'-fragment subcloned into pCR-Direct vector, was labeled with[α-32P]dCTP and used as a probe. Labeling was performed by random priming using Ready-to Go DNA labeling beads (Pharmacia). Hybridization was performed in ExpressHyb Hybridization Solution (Clontech) by the usual method using Multiple Tissue Northern (MTN) Blot-Human, Human II, Human Fetal, and Human Cell lines (Clontech). Significant expression was observed in lung, heart, and intestine. Weak expression was observed in skeletal muscle, ovary, colon, and pancreas. The apparent molecular weight of the mRNA was 2.2 kb, and the cloned fragment seemed to be almost the full length of the gene.

Example 5. VEGF-D protein expression in E. coli

[0037] Two primers, 5'-TCCAGATCTTTTGCGGCAACTTTCTATGACAT-3' (SEQ ID NO. 22) and 5'-CAGGTCGACT-CAAACAGGCACTAATTCAGGTAC-3' (SEQ ID NO. 23), were synthesized to amplify the region corresponding to the 89th to 181st amino acid residues of human VEGF cDNA. The thus-obtained DNA fragment was digested with restriction enzymes Bgill and Sall, and ligated using ligation kit II (Takara Shuzo Co., Ltd) to plasmid pQE42 ((QIAGEN), which had been digested with restriction enzymes BamHI and Sall. The resulting plasmid was introduced into E. coli SG19003[pREP4] (QIAGEN), and a plasmid, which was obtained as designed without any mutation, was selected (pQE42-BS3). Plasmid pQE42-BS3 was introduced into E. coli BL21 (Invitorogen) and cultured in 10 ml of L Broth containing 100 mg/l bicucilline (ampicillin sodium for injection, Meiji Seika Kaisha, Ltd.). 200 ml of fresh L Broth was then inoculated with the culture. After incubation at 37°C for 1.5 hours, IPTG was added to 3 mM, and the culture was further incubated at 37°C for 5 hours. After cells were harvested, a protein was purified with a Ni-NTA column following the protocol of QIAexpress TypeII kit.

Example 6. Expression of DHFR-VEGF-D fusion protein in E. coli

[0038] The region corresponding to the 89th to 181st amino acid residues of human VEGF cDNA was amplified with the same primers used in Example 5. The thus-obtained DNA fragment was digested with restriction enzymes BglI and Sall. The fragment was then ligated using ligation kit II (Takara Shuzo Co., Ltd.) to the plasmid pQE40 (QIAGEN), which had been digested with restriction enzymes BamHI and Sall. The resulting plasmid was introduced into E. coli SG19003[pREP4] (QIAGEN), and a plasmid, which was obtained as designed without any mutation, was selected (pQE40-BS3). Plasmid pQE40-BS3 was introduced into E. coli BL21 (Invitrogen) and cultured in 10 ml of L Broth containing 100 mg/l bicucilline (ampicillin sodium for injection, Meiji Seika Kaisha, Ltd.). 200 ml of fresh L Broth was then inoculated with the culture. After incubation at 37°C for 1.5 hours, IPTG was added to 3mM, and the culture was further incubated at 37°C for 5 hours. After cells were harvested, a DHFR-VEGF-D fusion protein was purified with a Ni-NTA column following the protocol of a QIAexpress Typell kit.

40 Example 7. Cloning mouse VEGF-D cDNA

[0039] Two Hybond-N+ (Amersham) filters (20 cm x 22 cm) on which 1.5×10^5 pfu of Mouse lung 5'-stretch cDNA library was transferred were prepared. Gradient hybridization from 68°C to 55°C was performed for 2 hours in ExpressHyb Hybridization Solution (Clontech) using as a probe an approximately 50 ng Pvu II fragment of human VEGF-D, which had been labeled with α^{32} P-dCTP (Amersham) using Ready-To-Go DNA Labeling Beads(-dCTP) (Pharmacia). The filters were washed four times in 2 x SSC, 0.05% SDS at room temperature for 10 min, then washed in 0.1 x SSC, 0.1% SDS at 45°C for 3 min. The washed filters were exposed overnight at -80°C using HyperFilm MP (Amersham) and intensifying paper. Positive clones were subjected to the second screening in the same manner as above to isolate a single clone. Isolated lambda DNAs were purified from the plate lysate using a QIAGEN Lambda MAX I Kit (Qiagen). Insert DNAs were cut out with EcoRI and subcloned into pUC118 EcoRI/BAP (Takara Shuzo Co., Ltd.). Its nucleotide sequence was then determined with ABI377 sequencer (Perkin Elmer). The cDNA coding the full length of mouse VRGF-D was reconstructed with two of the obtained clones that overlapped each other. SEQ ID NO. 24 shows the nucleotide sequence of mouse VEGF-D cDNA and the deduced amino acid sequence therefrom.

55 Example 8. Cloning rat VEGF-D cDNA

[0040] Two Hybond-N+ (Amersham) filters (20 cm x 22 cm), on which 1.5 x 10⁵ pfu of Rat lung 5'-stretch cDNA library had been transferred, were prepared. Gradient hybridization from 68°C to 55°C was performed for 2 hours in

ExpressH.Fyb Hybridization Solution (Clontech) using as a probe an approximately 1 µg fragment containing 1-782 bp of the mouse VEGF-D cDNA which had been labeled with α^{32} P-dCTP (Amersham) using Ready-To-Go DNA Labeling Beads(-dCTP) (Pharmacia). The filters were washed four times in 2 x SSC, 0.05% SDS at room temperature for 10 min, then washed in 0.1 x SSC, 0.1% SDS at 45°C for 3 min. The washed filters were exposed overnight at -80°C using HyperFilm MP (Amersham) and intensifying paper. Positive clones were subjected to the second screening in the same manner as above to isolate a single clone. The isolated positive clone was excised into pBluescript using E. coli SOLAR (Stratagene) and helper phage ExAssist (Stratagene), then the sequence was determined with ABI377 sequencer (Perkin Elmer). The sequence seemed to be the rat VEGF-D cDNA but did not contain the termination codon.

[0041] To obtain the C-terminal cDNA which had not been obtained, PCR was performed using Marathon-Ready rat kidney cDNA (Clontech) as a template and 5' primerGCTGCGAGTGTCTGTAAA (SEQ ID NO. 26) and 3' primer GGGTAGTGGCAACAGTGACAGCAA (SEQ ID NO. 27) with 40 cycles of 94°C for 15 sec, 55°C for 30 sec, and 72 °C for 2 min. After the thus-obtained fragment was subcloned into pGEM-T vector (promega), the nucleotide sequence was determined with ABI377 sequencer (Perkin Elmer). The resulting clone contained the C-terminus of rat VEGF-D. Based on the results of sequencing the clone obtained by plaque hybridization and the clone obtained by PCR, the full length of the rat VEGF-D sequence was determined. SEQ ID NO. 25 shows the determined nucleotide sequence and the deduced amino acid sequence therefrom.

Industrial Applicability

35

40

45

50

55

[0042] In the present invention, a novel protein (VEGF-D) having significant homology to VEGF-C and its gene have been isolated. VEGF-D appears to be involved in the pathological neovascularization associated with diabetes, rheumatoid arthritis, the growth of solid tumors, differentiation and proliferation of blood cells, formation of lymphatic vessels, and formation of edema resulting from various causes as well as the normal neovascularization at the developmental stage. The gene of the present invention can be used to diagnos disorders caused by abnormalities of the VEGF-D gene and gene therapy for the VEGF-D deficiency. The VEGF-D protein, which is obtained by expressing the gene of the present invention, can be used for healing wounds, promoting collateral vessel formation, and aiding hematopoietic stemcell proliferation. The antibodies or inhibitors against the VEGF-D protein can be used for treating angiodysplasia and lymphangiodysplasia associated with inflammation, edemas arising from various causes, dyshematopoiesis, and, as a novel anticancer agent, for treating pathological neovascularization. The VEGF-D protein and its antibodies can be useful for diagnosing diseases resulting from abnormal production of VEGF-D.

Sequence Listing

(1) Name or appellation of Applicant: Chugai Research Institute for

Molecular Medicine, Inc. (2) Title of the Invention: Novel VEGF-like Factor (3) Reference Number: C1-802PCT 10 (4) Application Number: (5) Filing date: (6) Country where the priority application was filed and the application number of the application: Japan, No. Hei 8-185216 15 (7) Priority date: July 15, 1996 (8) Number of sequences: 27 20 SEQ ID NO: 1 SEQUENCE LENGTH: 354 SEQUENCE TYPE: amino acid TOPOLOGY: linear 25 MOLECULE TYPE: protein ORIGINAL SOURCE: ORGANISM: Homo sapiens 30 TISSUE TYPE: lung SEQUENCE DESCRIPTION: Met Tyr Arg Glu Trp Val Val Val Asn Val Phe Met Met Leu Tyr Val 5 10 35 Gln Leu Val Gln Gly Ser Ser Asn Glu His Gly Pro Val Lys Arg Ser 20 25 Ser Gln Ser Thr Leu Glu Arg Ser Glu Gln Gln Ile Arg Ala Ala Ser 40 35 40 45 Ser Leu Glu Glu Leu Leu Arg Ile Thr His Ser Glu Asp Trp Lys Leu Trp Arg Cys Arg Leu Arg Leu Lys Ser Phe Thr Ser Met Asp Ser Arg 45 70 75 80 65 Ser Ala Ser His Arg Ser Thr Arg Phe Ala Ala Thr Phe Tyr Asp Ile 90 50 Glu Thr Leu Lys Val Ile Asp Glu Glu Trp Gln Arg Thr Gln Cys Ser

55

100

5

	Pro	Arg	Glu	Thr	Cys	Val	Glu	Val	Ala	Ser	Glu	Leu	Gly	Lys	Ser	Thr
			115					120					125	i		
5	Asn	Thr	Phe	Phe	Lys	Pro	Pro	Cys	Val	Asn	Val	Phe	Arg	Cys	Gly	Gly
		130					135	,				140				
	Cys	Cys	Asn	Glu	Glu	Ser	Leu	Ile	Сув	Met	Asn	Thr	Ser	Thr	Ser	Tyr
10	145					·150)				155					160
	Ile	Ser	Lys	Gln	Leu	Phe	Glu	Ile	Ser	Val	Pro	Leu	Thr	Ser	Val	Pro
					165					170					175	;
	Glu	Leu	Val	Pro	Val	Lys	Val	Ala	Asn	His	Thr	Gly	Cys	Lys	Cys	Leu
15				180					185					190	;	
	Pro	Thr	Ala	Pro	Arg	His	Pro	Tyr	Ser	Ile	Ile	Arg	Arg	Ser	Ile	Gln
			195					200					205			
20	Ile	Pro	Glu	Glu	Asp	Arg	Cys	Ser	His	Ser	Lys	Lys	Leu	Cys	Pro	Ile
		210					215					220				
	-	Met	Leu	Trp	Asp			Lys	Cys	Lys	-	Val	Leu	Gln	Glu	
	225					230				_	235					240
25	Asn	Pro	Leu		•	Thr	Glu	Asp	His		His	Leu	Gln	Glu		Ala
	_	_	_,		245					250	•	•	a	-1	255	
	rėn	Cys	GIÀ		HIS	Met	Met	Pne		GIU	Asp	Arg	Cys		Cys	Val
30	C	Lys	mb -	260	Cue	B=0	t	A a m	265	Tlo	G1-	u ; ~	Dro	270	3	C
	cys	Lys	275	PIO	cys	PLO	rys	280	TEU	116	GIII	UIS	285	гуэ	ASII	cys
	Cor	Cys		Glu	Cve	Tue	G3n	-	T en	G) n	ጥኮኮ	Cve		G) n	T.va	u i e
35	361	290	riic	GIU	cy.	-y -s	295	Der	Dea	014		300	-12	0.211	. ,,,	11.1.3
	Lvs	Leu	Phe	His	Pro	Asp		Cvs	Ser	Cvs	Glu		Ara	Cvs	Pro	Phe
	305					310		-1-		-,-	315			-,-		320
		Thr	Arq	Pro			Ser	Gly	Lys	Thr		Cvs	Ala	Lys	His	
40			Í		325			•	•	330		•		•	335	•
	Arq	Phe	Pro	Lys	Glu	Lys	Arq	Ala	Ala	Gln	Gly	Pro	His	Ser	Arq	Lys
	-			340		•	•		345		•			350	•	•
4 5	Asn	Pro														
	SEQ	ID N	ro: 2	!												
50	SEQU	ENCE	LEN	IGTH:	200	4										
	SEQU	ENCE	TYF	E: n	ucle	ic e	cid									
	STRA	NDED	NESS	5: d	loub l	.e										

	TOPOLOGY: linear	
	MOLECULE TYPE: cDNA to mRNA	
5	ORIGINAL SOURCE:	
	ORGANISM: Homo sapiens	
	TISSUE TYPE: lung	
40	FEATURE:	
10	NAME/KEY: CDS	
	LOCATION: 4031464	
	IDENTIFICATION METHOD: E	
15	SEQUENCE DESCRIPTION:	
	CCAGCTTTCT GTARCTGTAA GCATTGGTGG CCACACCACC TCCTTACAAA GCAACTAGAA	6
	CCTGCGGCAT ACATTGGAGA GATTTTTTTA ATTTTCTGGA CAYGAAGTAA ATTTAGAGTG	12
20	CTTTCYAATT TCAGGTAGAA GACATGTCCA CCTTCTGATT ATTTTTGGAG AACATTTTGA	18
20	TTTTTTCAT CTCTCTCCC CCACCCCTAA GATTGTGCAA AAAAAGCGTA CCTTGCCTAA	24
	TTGAAATAAT TTCATTGGAT TTTGATCAGA ACTGATCATT TGGTTTTCTG TGTGAAGTTT	30
	TGAGGTTTCA AACTTTCCTT CTGGAGAATG CCTTTTGAAA CAATTTTCTC TAGCTGCCTG	36
25	ATGTCAACTG CTTAGTAATC AGTGGATATT GAAATATTCA AA ATG TAC AGA GAG	414
	Met Tyr Arg Glu	
30	TGG GTA GTG GTG AAT GTT TTC ATG ATG TTG TAC GTC CAG CTG GTG CAG	462
	Trp Val Val Asn Val Phe Met Met Leu Tyr Val Gln Leu Val Gln	
	5 10 15 20	
	GGC TCC AGT AAT GAA CAT GGA CCA GTG AAG CGA TCA TCT CAG TCC ACA	510
35	Gly Ser Ser Asn Glu His Gly Pro Val Lys Arg Ser Ser Gln Ser Thr 25 30 35	
	TTG GAA CGA TCT GAA CAG CAG ATC AGG GCT GCT TCT AGT TTG GAG GAA	558
	Leu Glu Arg Ser Glu Gln Gln Ile Arg Ala Ala Ser Ser Leu Glu Glu	,,,,
40	40 45 50	
	CTA CTT CGA ATT ACT CAC TCT GAG GAC TGG AAG CTG TGG AGA TGC AGG	606
	Leu Leu Arg Ile Thr His Ser Glu Asp Trp Lys Leu Trp Arg Cys Arg	
45	55 60 65	
	CTG AGG CTC AAA AGT TTT ACC AGT ATG GAC TCT CGC TCA GCA TCC CAT	654
	Leu Arg Leu Lys Ser Phe Thr Ser Met Asp Ser Arg Ser Ala Ser His	
	70 75 80	
50	CGG TCC ACT AGG TTT GCG GCA ACT TTC TAT GAC ATT GAA ACA CTA AAA	702
	Arg Ser Thr Arg Phe Ala Ala Thr Phe Tyr Asp Ile Glu Thr Leu Lys	

	85					90					95						
		8773	C 3 / F	C. N. N.	C 2 2		CAA	aca	a c m	CAC	-	AGC	CCT	200	C 2 2	100 ACG	250
																	750
5	Val	116	wab	GIU	105	_	GIN	urd	1111	110	•	261	FIG	Arg	115	Thr	
	mac.	cec	CIC	cmc	_		CAC	CTC	ccc			»CC	880	202		TTC	700
	_								_								798
10	cys	Val	GIU		Ald	ser	GIU	ren	-	гÀа	261	Ing	ASI			Phe	
				120	C#0		cmc	mm.c	125		CCM		mcm.	130			046
											_	_				GAA	846
	Lys	Pro		•	Val	Asn	Val		Arg	cys	GIY	GTÅ	_	Cys	ASN	Glu	
15	_		135					140					145				
		-											ATT				894
	Glu		Leu	Ile	Cys	Met		Thr	Ser	Thr	Ser	_	Ile	Ser	Lys	Gln	
20		150					155					160					
											_		GAA				942
		Phe	Glu	Ile	Ser		Pro	Leu	Thr	Ser		Pro	Glu	Leu	Val		
	165					170					175					180	
25													CCA		_		990
	Val	Lys	Val	Ala		H15	Thr	Gly	Суз	-	Cys	Leu	Pro	Thr		Pro	
					185					190					195		
30													ATC				1038
	Arg	His	Pro	-	Ser	Ile	Ile	Arg	-	Ser	He	Gin	Ile			Glu	
				200					205					210			
													GAC				1086
35	Asp	Arg	_	Ser	His	Ser	Lys	-	Leu	Суѕ	Pro	Ile	Asp	Met	Leu	Trp	
			215					220					225				
													AAT				1134
40	Asp		Asn	Lys	Cys	Lys	-	Val	Leu	Gln	Glu		Asn	Pro	Leu	Ala	
		230					235					240					
	GGA	ACA	GAA	GAC	CAC	TCT	CAT	CTC	CAG	GAA	CCA	GCT	CTC	TGT	GGG	CCA	. 1182
	Gly	Thr	Glu	Asp	His	Ser	His	Leu	Gln	Glu	Pro	Ala	Leu	Cys	Gly	Pro	
45	245					250					255					260	
	CAC	ATG	ATG	TTT	GAC	GAA	GAT	CGT	TGC	GAG	TGT	GTC	TGT	AAA	ACA	CCA	1230
	His	Met	Met	Phe	Asp	Glu	Asp	Arg	Cys	Glu	Cys	Val	Cys	Lys	Thr	Pro	
50					265					270					275		
	TGT	ccc	AAA	GAT	CTA	ATC	CAG	CAC	CCC	AAA	AAC	TGC	agt	TGC	TTT	GAG	1278
	Cvs	Pro	Lvs	Asp	Leù	Ile	Gln	His	Pro	Lvs	Asn	Cvs	Ser	Cvs	Phe	Glu	

				280					285								
	TGC	AAA	GAA	AGT	CTG	GAG	ACC	TGC	TGC	CAG	AAG	CAC	AAG	CTA	TTT	CAC	1326
5	Cys	Lys	Glu	Ser	Leu	Glu	Thr	Cys	Cys	Gln	Lys	His	Lys	Leu	Phe	His	
			295					300					305				
	CCA	GAC	ACC	TGC	AGC	TGT	GAG	GAC	AGA	TGC	ccc	TTT	CAT	ACC	AGA	CCA	1374
10	Pro	Asp	Thr	Cys	Ser	Cya	Glu	Asp	Arg	Cys	Pro	Phe	His	Thr	Arg	Pro	
		310					315					320					
	TGT	GCA	AGT	GGC	AAA	ACA	GCA	TGT	GCA	AAG	CAT	TGC	CGC	TTT	CCA	AAG	1422
	Cys	Ala	Ser	Gly	Lys	Thr	Ala	Cys	Ala	Lys	His	Cys	Arg	Phe	Pro	Lys	
15	325					330					335					340	
	GAG	AAA	AGG	GCT	GCC	CAG	GGG	ccc	CAC	AGC	CGA	AAG	AAT	ССТ			1464
	Glu	Lys	Arg	Ala	Ala	Gln	Gly	Pro	His	Ser	Arg	Lys	Asn	Pro			
20					345					350							
	TGAT	TCAG	CG 1	TCC	LAGT	c co	CATO	CCTG	TCA	LTTT1	TAA	CAGO	ATG	TG (TTT	CCAAG	1524
	TTGC	TGTC	AC 1	GTT	TTTT	c co	AGGT	CTTA	AAA A	AAAA	LAAT	CCAT	TTT	CA (AGCA	CCACA	1584
25	GTGA	ATCC	AG A	CCA	CCTI	C CA	\TTC#	CACC	AGC	TAAG	GAG	TCCC	TGG1	TC A	\TTG#	ATGGAT	1644
25	GTCT	TCTA	GC I	GCAG	ATG	C TO	TGC	CACC	AAG	GAAI	GGA	GAGG	AGGG	GA (CCAT	GTAAT	1704
	CCTT	TTGT	TT A	GTT1	TGT	T T	GTTI	TTTG	GTG	AATG	AGA	AAGG	TGTG	CT G	GTCA	TGGAA	1764
	TGGC	AGGT	GT C	ATAI	GACT	G AT	TACI	CAGA	GCA	GATG	AGG	AAAA	CTGI	'AG 1	CTCI	GAGTC	1824
30	CTTT	GCTA	AT C	GCA	CTC1	T GI	GAA1	TATT	CTG	ATTC	TTT	TTTA	TGCA	GA A	TTTG	ATTCG	1884
	TATG	ATCA	GT A	CTGA	CTTI	C TG	ATTA	CTGT	CCA	GCTT	ATA	GTCI	TCCA	GT 1	TAAT	GAACT	1944
	ACCA	TCTG	AT G	TTTC	:ATA1	T TA	AGTG	TATT	TAA	AGAA	LAAT	AAAC	ACCA	A TT	TTCA	AGTCT	2004
35																	
	SEQ	ID N	10: 3	ļ		•											
	SEQU	ENCE	LEN	GTH:	16												
	SEQU	ENCE	TYP	E: 8	minc	aci	.d										
40	TOPO	LOGY	: li	near	7												
	MOLE	CULE	TYP	E: F	epti	.de											
	ORIG	INAL	SOU	RCE:													
45		0	RGAN.	ISM:	Hom	o sa	pien	8									
		T	ISSU	E TY	PE:	lung											
	SEQU	ENCE	DES	CRIP	TION	:											
50	Cys	Gly	Pro	Asn	Lys	Glu	Leu	Asp	Glu	Asn	Thr	Суз	Gln	Cys	Val	Cys	
	1				5					10					15		

	SEQ ID NO: 4	
	SEQUENCE LENGTH: 27	
5	SEQUENCE TYPE: nucleic acid	
	STRANDEDNESS: single	
	TOPOLOGY: linear	
10	MOLECULE TYPE: other nucleic acid, synthetic DNA	
	SEQUENCE DESCRIPTION:	
	AGGGATGGGG AACTTGGAAC GCTGAAT	27
. 15	SEQ ID NO: 5	
	SEQUENCE LENGTH: 27	
	SEQUENCE TYPE: nucleic acid	
20	STRANDEDNESS: single	
	TOPOLOGY: linear	
	MOLECULE TYPE: other nucleic acid, synthetic DNA	
25	SEQUENCE DESCRIPTION:	
	GATCTAATCC AGCACCCCAA AAACTGC	27
	SEQ ID NO: 6	
30	SEQUENCE LENGTH: 27 SEQUENCE TYPE: nucleic acid	
	STRANDEDNESS: single	
	TOPOLOGY: linear	
35	MOLECULE TYPE: other nucleic acid, synthetic DNA	
	SEQUENCE DESCRIPTION:	
	CCATCCTAAT ACGACTCACT ATAGGGC	27
40	CONTROLLES MANAGEMENT MANAGEMENT	• ,
	SEQ ID NO: 7	
	SEQUENCE LENGTH: 33	
45	SEQUENCE TYPE: nucleic acid	
 -	STRANDEDNESS: single	
	TOPOLOGY: linear	
	MOLECULE TYPE: other nucleic acid, synthetic DNA	
50	SEQUENCE DESCRIPTION:	
	CTGGTTCGGC CCAGAACTTG GAACGCTGAA TCA	33

	SEQ ID NO: 8	
	SEQUENCE LENGTH: 32	
5	SEQUENCE TYPE: nucleic acid	
	STRANDEDNESS: single	
	TOPOLOGY: linear	
10	MOLECULE TYPE: other nucleic acid, synthetic DNA	
	SEQUENCE DESCRIPTION:	
	CTCGCTCGCC CACTAATACG ACTCACTATA GG	33
15	SEQ ID NO: 9	
	SEQUENCE LENGTH: 20	
	SEQUENCE TYPE: nucleic acid	
20	STRANDEDNESS: single	
	TOPOLOGY: linear	
	MOLECULE TYPE: other nucleic acid, synthetic DNA	
O.E.	SEQUENCE DESCRIPTION:	
25	AATTAACCCT CACTAAAGGG	20
	SEQ ID NO: 10	
30	SEQUENCE LENGTH: 22	
	SEQUENCE TYPE: nucleic acid	
	STRANDEDNESS: single	
35	TOPOLOGY: linear	
	MOLECULE TYPE: other nucleic acid, synthetic DNA	
	SEQUENCE DESCRIPTION:	
	CCAGGGTTTT CCCAGTCACG AC	22
40		
	SEQ ID NO: 11	
	SEQUENCE LENGTH: 23	
45	SEQUENCE TYPE: nucleic acid	
	STRANDEDNESS: single	
	TOPOLOGY: linear	
50	MOLECULE TYPE: other nucleic acid, synthetic DNA	
	SEQUENCE DESCRIPTION:	
	ACTCACTATA GGGCTCGAGC GGC	23

	SEQ ID NO: 12	
	SEQUENCE LENGTH: 17	
5	SEQUENCE TYPE: nucleic acid	
	STRANDEDNESS: single	
	TOPOLOGY: linear	
10	MOLECULE TYPE: other nucleic acid, synthetic DNA	
	SEQUENCE DESCRIPTION:	
	AAGTCTGGAG ACCTGCT	17
15	SEQ ID NO: 13	
	SEQUENCE LENGTH: 17	
	SEQUENCE TYPE: nucleic acid	
20	STRANDEDNESS: single	
	TOPOLOGY: linear	
	MOLECULE TYPE: other nucleic acid, synthetic DNA	
25	SEQUENCE DESCRIPTION:	
25	CAGCAGGTCT CCAGACT	17
	SEQ ID NO: 14	
30	SEQUENCE LENGTH: 17	
	SEQUENCE TYPE: nucleic acid	
	STRANDEDNESS: single	
35	TOPOLOGY: linear	
	MOLECULE TYPE: other nucleic acid, synthetic DNA	
	SEQUENCE DESCRIPTION:	
	CGCACCCAAG GAATGGA	17
40		
	SEQ ID NO: 15	
	SEQUENCE LENGTH: 18	
45	SEQUENCE TYPE: nucleic acid	
	STRANDEDNESS: single	
	TOPOLOGY: linear	
50	MOLECULE TYPE: other nucleic acid, synthetic DNA	
	SEQUENCE DESCRIPTION:	
	TGACACCTGG CCATTCCA	18

	SEQ ID NO: 16	
	SEQUENCE LENGTH: 18	
5	SEQUENCE TYPE: nucleic acid	
	STRANDEDNESS: single	
	TOPOLOGY: linear	
10	MOLECULE TYPE: other nucleic acid, synthetic DNA	
	SEQUENCE DESCRIPTION:	
	CATCAGATGG TAGTTCAT	18
15	SEQ ID NO: 17	
	SEQUENCE LENGTH: 20	
	SEQUENCE TYPE: nucleic acid	
20	STRANDEDNESS: single	
	TOPOLOGY: linear	
	MOLECULE TYPE: other nucleic acid, synthetic DNA	
25	SEQUENCE DESCRIPTION:	
25	ATGCTGAGCG AGAGTCCATA	20
	SEQ ID NO: 18	
30	SEQUENCE LENGTH: 20	
	SEQUENCE TYPE: nucleic acid	
	STRANDEDNESS: single .	
35	TOPOLOGY: linear	
	MOLECULE TYPE: other nucleic acid, synthetic DNA	
	SEQUENCE DESCRIPTION:	
	CACTAGGTTT GCGGCAACTT	20
40		
	SEQ ID NO: 19	
	SEQUENCE LENGTH: 20	
45	SEQUENCE TYPE: nucleic acid	
	STRANDEDNESS: single	
	TOPOLOGY: linear	
50	MOLECULE TYPE: other nucleic acid, synthetic DNA	
	SEQUENCE DESCRIPTION:	
	GCTGTTGGCA AGCACTTACA	20

	SEQ ID NO: 20	
	SEQUENCE LENGTH: 20	
5	SEQUENCE TYPE: nucleic acid	
	STRANDEDNESS: single	
	TOPOLOGY: linear	
10	MOLECULE TYPE: other nucleic acid, synthetic DNA	
	SEQUENCE DESCRIPTION:	
	GATCCATCCA GATCCCTGAR	20
15		
15	SEQ ID NO: 21	
	SEQUENCE LENGTH: 19	
	SEQUENCE TYPE: nucleic acid .	
20	STRANDEDNESS: single	
	TOPOLOGY: linear	
	MOLECULE TYPE: other nucleic acid, synthetic DNA	
25	SEQUENCE DESCRIPTION:	
	CAGATCAGGG CTGCTTCTA	19
	SEQ ID NO: 22	
30	SEQUENCE LENGTH: 32	
••	SEQUENCE TYPE: nucleic acid	
	STRANDEDNESS: single	
	TOPOLOGY: linear	•
35	MOLECULE TYPE: other nucleic acid, synthetic DNA	
	SEQUENCE DESCRIPTION:	
	TCCAGATCTT TTGCGGCAAC TTTCTATGAC AT	32
40		
	SEQ ID NO: 23	
	SEQUENCE LENGTH: 33	
45	SEQUENCE TYPE: nucleic acid	
	STRANDEDNESS: single	
	TOPOLOGY: linear	
	MOLECULE TYPE: other nucleic acid, synthetic DNA	
50	SEQUENCE DESCRIPTION:	
	CAGGTCGACT CAAACAGGCA CTAATTCAGG TAC	33

	SEQ	ID I	NO: 3	24													
	SEQ	UENC	E LEI	NGTH	: 15	81											
5	SEQ	UENC	E TY	PE: 1	nucl	eic .	acid										
	STRANDEDNESS: double																
	TOPOLOGY: linear																
10	MOL	ECULI	E TYI	PE: 0	: DNA	to i	mRNA										
70	ORI	GINA	L SOI	JRCE	:												
		C	RGAN	IISM:	mot	ıse											
		1	rissu	JE TY	PE:	lung	3										
15	FEA:	rure	:														
		ı	iame/	KEY:	CDS	3											
		1	OCAI	NOI	96.	.116	9										
20		1	DENT	IFIC	ATIC	ON ME	THOD): E									
20	SEQ	JENCI	Z DES	CRII	PTIO	N:											
	TTC	CGGG	CTT T	CCT	GAG	AA T	GCCT?	r t tg(CAAC	CACT	TTTC	AGT	AGCT	GCC ,	rggai	AACAAC	6
	TGC:	rtag:	CA 7	rcggi	CAGA	CA T	LAATT	AATA!	r TC	AAA A	ATG 1	TAT	GGA (GAA '	rgg (GGA	113
25												Cyr (Gly (Glu '	-	Gly	
											1				5		
													GTG				161
30	Met	Gly	Asn		Leu	Met	Met	Phe		Val	Tyr	Leu	Val		Gly	Phe	
				10					15					20			222
						•							GAG				209
	AEG	ser	25	uis	GIÅ	Pro	vai	30 TAR	Asp	Pne	241	PHE	Glu 35	wtd	261	ser	
35	cee	ምርሮ	_	ጥ ተር	CAA	CGA	ጥርጥ		CAA	CAG	አ <i>ጥር</i>	CGA	GCA	CCT	ጥ ርጥ	AGT	257
								_					Ala				
	7	40				;	45					50					
40	TTG		GAG	TTG	CTG	CAA		GCG	CAC	TCT	GAG	GAC	TGG	AAG	CTG	TGG	305
													Trp				
	55					60					65	•	•	•		70	
45	CGA	TGC	CGG	TTG	AAG	CTC	AAA	AGT	CTT	GCC	AGT	ATG	GAC	TCA	CGC	TCA	353
40	Arg	Cys	Arg	Leu	Lys	Leu	Lys	Ser	Leu	Ala	Ser	Met	Asp	Ser	Arg	Ser	
	_	-	-		75		=			80			-		85		
	GCA	TCC	CAT	CGC	TCC	ACC	AGA	TTT	GCG	GCA	ACT	TTC	TAT	GAC	ACT	GAA	401
50	Ala	Ser	His	Arg	Ser	Thr	Arg	Phe	Ala	Ala	Thr	Phe	туг	Asp	Thr	Glu	
				9.0					0 =					100			

	ACA	CTA	AAA	GTT	ATA	GAT	GAA	GAA	TGG	CAG	AGG	ACC	CAA	TGC	AGC	CCT	449
	Thr	Leu	Lys	Val	Ile	Asp	Glu	Glu	Trp	Gln	Arg	Thr	Gln	Cys	Ser	Pro	
5			105	,				110					115	i			
	AGA	GAG	ACA	TGC	GTA	GAA	GTC	GCC	AGT	GAC	CTG	GGG	AAG	ACA	ACC	AAC	497
	Arg	Glu	Thr	Суз	Val	Glu	Val	Ala	Ser	Glu	Leu	Gly	Lys	Thr	Thr	Asn	
10		120				•	125					130					
,,	ACA	TTC	TTC	AAG	ccc	ccc	TGT	GTA	AAT	GTC	TTC	CGG	TGT	GGA	GGC	TGC	545
	Thr	Phe	Phe	Lys	Pro	Pro	Сув	Val	Asn	Val	Phe	Arg	Сув	Gly	Gly	Cys	
	135					140					145					150	
15	TGC	AAC	GAA	GAG	GGT	GTG	ATG	TGT	ATG	AAC	ACA	AGC	ACC	TCC	TAC	ATC	593
	Cys	Asn	Glu	Glu	Gly	Val	Met	Суз	Met	Asn	Thr	Ser	Thr	Ser	Tyr	Ile	
					155					160					165		
20	TCC	AAA	CAG	CTC	TTT	GAG	ATA	TCA	GTG	CCT	CTG	ACA	TCA	GTG	ccc	GAG	641
20	Ser	Lys	Gln	Leu	Phe	Glu	Ile	Ser	Val	Pro	Leu	Thr	Ser	Val	Pro	Glu	
				170					175					180			
	TTA	GTG	CCT	GTT	AAA	ATT	GCC	AAC	CAT	ACG	GGT	TGT	AAG	TGC	TTG	CCC	689
25	Leu	Val	Pro	Val	Lys	Ile	Ala	Asn	His	Thr	Gly	Cys	Lys	Cys	Leu	Pro	
			185					190					195				
							TAC										737
30	Thr	-	Pro	Arg	His	Pro	Tyr	Ser	Ile	Ile	Arg	_	Ser	Ile	Gln	Thr	
		200					205					210					
			_		_		CCT	_									785
		Glu	Glu	Asp		-	Pro	His	Ser	Lys	-	Leu	Cys	Pro	Ile	•	
35	215					220					225					230	
							AAA										833
	Met	Leu	Trp	Asp		Thr	Lys	Cys	Lys	-	Val	Leu	Gln	Asp		Thr	
40				000	235					240					245		
							GAC										881
	PLO	Leu	PIO		Thr	GIU	Asp	HIS		TYT	Leu	GIN	Glu			Leu	
				250					255					260			
45							TTT										929
	Cys	GIÀ		His	Met	Thr	Phe	-	Glu	Asp	Arg	Cys		Cys	Val	Суѕ	
			265					270					275				
50							GAT										977
	Lys		Pro	Cys	Pro	-	Asp	Leu	Ile	Gln	His		Glu	Asn	Cys	Ser	
		280					285					290					

	TGC TTT GAG TGC AAA GAA AGT CTG GAG AGC TGC TGC CAA AAG CAC AAG	1025
	Cys Phe Glu Cys Lys Glu Ser Leu Glu Ser Cys Cys Gln Lys His Lys	
5	295 300 305 310	
	ATT TTT CAC CCA GAC ACC TGC AGC TGT GAG GAC AGA TGT CCT TTT CAC	1073
	Ile Phe His Pro Asp Thr Cys Ser Cys Glu Asp Arg Cys Pro Phe His	
10	315 320 325	
	ACC AGA ACA TGT GCA AGT AGA AAG CCA GCC TGT GGA AAG CAC TGG CGC	1121
	Thr Arg Thr Cys Ala Ser Arg Lys Pro Ala Cys Gly Lys His Trp Arg	
	330 335 340	
15	TTT CCA AAG GAG ACA AGG GCC CAG GGA CTC TAC AGC CAG GAG AAC CCT	1169
	Phe Pro Lys Glu Thr Arg Ala Gln Gly Leu Tyr Ser Gln Glu Asn Pro	
	345 350 355	
20	TGATTCAACT TCCTTTCAAG TCCCCCCATC TCTGTCATTT TAAACAGCTC ACTGCTTTGT	1229
	CAAGTTGCTG TCACTGTTGC CCACTACCCC TGCCCCCCCC CCCCCCGCC TCCAGGTGTT	1289
	AGAAAAGTTG ATTTGACCTA GTGTCATGGT AAAGCCACAT TTCCATGCAA TGGCGGCTAG	1349
	GTGATTCCCC AGTTCACTGA CAAATGACTT GTAGCTTCAA ATGTCTTTGC GCCATCANCA	1409
25	CTCAAAAAGG AAGGGGTCTG AAGAACCCCT TGTTTGATAA ATAAAAACAG GTGCCTGAAA	1469
	CAAAATATTA GGTGCCACTC GATTGGGTCC CTCGGGCTGG CCAAATTCCA AGGGCAATGC	1529
	TCCTGAATTT ATTGTGCCCC TTCCTTAATG CGGAATTTCC TTTTGTTTGA TT	1581
30	SEQ ID NO: 25	
	SEQUENCE LENGTH: 1491	
	SEQUENCE TYPE: nucleic acid	
35	STRANDEDNESS: double	
33	TOPOLOGY: linear	
	MOLECULE TYPE: CDNA to mRNA	
	ORIGINAL SOURCE:	
40	ORGANISM: rat	
	TISSUE TYPE: lung	
	FEATURE:	
45	NAME/KEY: CDS	
	LOCATION: 2701247	
	IDENTIFICATION METHOD: E	
	SEQUENCE DESCRIPTION:	
50	GCCACCTCTT GATTATTTGT GCAGCGGGAA ACTTTGAAAT AGTTTTCATC TCTTTCTCCC	60
	ATACTAAGAT TGTGTGTGC CGTGGGGGAG TCCTTGACTA ACTCAAGTCA TTTCATTGGA	120

	TTT	rgat:	rac A	ACTO	ATC	AT G	rgat.	ATTT?	r TT	CCA	GTA	AAG1	TTT	GGG (GCTT	CAAACT	180
	TTG	CTTC	rgg <i>i</i>	AGAAT	GCC1	r ri	rgcai	ACAC1	TT?	CAG	CAGC	TGC	TGG	AAA (CAAC	IGCTTA	240
5	GCC	ATCA	STG (BACAT	TTG	AA A	TATT	CAAA	ATG	TAT	GGA	GAG	TGG	GCC	GCA	GTG	293
									Met	Tyr	Gly	Glu	Trp	Ala	Ala	Val	
									1				5				
10				ATG													341
	Asn	Ile	Leu	Met	Met	Ser	Tyr	Val	Tyr	Leu	Val	Gln	Gly	Phe	Ser	Ile	
		10					15					20					
				GCA													389
15	Glu	His	Arg	Ala	Val		Asp	Val	Ser	Leu		Arg	Ser	Ser	Arg		
	25					30					35					40	
				CGT													437
20	Val	Leu	Glu	Arg		Glu	Gin	Gln	Ile		YTG	Ala	Ser	Thr		Glu	
				~	45	221	222	m.c.m	C3.C	50	MCC.	220	CTC	mcc.	55	TCC	485
				CAA Gln													403
	GIU	Leu	ren	60	AGI	VIG	ura	261	65	vaħ	110	цуз	Dea	70	nr y	cha	
25	ccc	ም ዋር	aac	CTT	222	AGT	ሮሞሞ	GCC		GTG	GAC	TCG	CGC		ACA	TCC	533
				Leu													
			75		-10			80			•		85				
30	CAT	CGC	TCC	ACC	AGA	TTT	ĠCG	GCA	ACT	TTC	TAT	GAT	ACT	GAA	ACA	CTA	581
	His	Arg	Ser	Thr	Arg	Phe	Ala	Ala	Thr	Phe	Туг	Asp	Thr	Glu	Thr	Leu	
		90					95					100					
35	AAA	GTT	ATA	GAT	GAA	GAA	TGG	CAG	AGG	ACC	CAA	TGC	AGC	CCT	AGA	GAG	629
-	Lys	Val	Ile	Asp	Glu	Glu	Trp	Gln	Arg	Thr	Gln	Суз	Ser	Pro	Arg	Glu	
	105					110					115					120	
	ACA	TGC	GTA	GAA	GTC	GCC	AGT	GAG	CTG	GGG	AAG	ACA	ACC	AAC	ACA	TTT	677
40	Thr	Cys	Val	Glu	Val	Ala	Ser	Glu	Leu	Gly	Lys	Thr	Thr	Asn	Thr	Phe	
					125					130					135		
	TTC	AAG	ccc	CCT	TGT	GTA	AAT	GTC	TTC	CGG	TGT	GGA	GGA	TGC	TGC	AAT	725
45	Phe	Lys	Pro	Pro	Суз	Val	Asn	Val	Phe	Arg	Cys	Gly	Gly	Cys	Сув	Asn	
				140					145					150			
	GAA	GAG	AGC	GTG	ATG	TGT	ATG	AAC	ACA	AGC	ACC	TCC	TAC	ATC	TCC	AAA	773
	Glu	Glu	Ser	Val	Met	Cys	Met	Asn	Thr	Ser	Thr	Ser	Tyr	Ile	Ser	Lys	
50			155					160					165				
								-				-	000	~	mm e	CTC	021

	Gln	Leu	Phe	Glu	Ile	Ser	Val	Pro	Leu	Thr	Ser	Val	Pro	Glu	Leu	Val	
		170					175					180					
5	сст	GTT	AAA	ATT	GCC	AAC	CAT	ACG	GGT	TGT	AAG	TGT	TTG	ccc	ACG	GGC	869
	Pro	Val	Lys	Ile	Ala	Asn	His	Thr	Gly	Суз	Lys	Cys	Leu	Pro	Thr	Gly	
	185					190					195					200	
10	ccc	CGG	CAT	CCT	TAT	TCA	ATT	ATC	AGA	AGA	TCC	ATT	CAG	ATC	CCA	GAA	917
	Pro	Arg	His	Pro	Tyr	Ser	Ile	Ile	Arg	Arg	Ser	Ile	Gln	Ile	Pro	Glu	
					205					210					215	j	
	GAA	GAT	CAA	TGT	CCT	CAT	TCC	AAG	AAA	CTC	TGT	ССТ	GTT	GAC	ATG	CTG	965
15	Glu	Asp	Gln	Cys	Pro	His	Ser	Lys	Lys	Leu	Суз	Pro	Val	Asp	Met	Leu	
				220					225					230)		
	TGG	GAT	AAC	ACC	AAA	TGT	AAA	TGT	GTT	TTA	CAA	GAT	GAG	AAT	CCA	CTG	1013
20	Trp	Asp	Asn	Thr	Lys	Cys	Lys	Сув	Val	Leu	Gln	Asp	Glu	Asn	Pro	Leu	
			235					240					245				
	CCT	GGG	ACA	GAA	GAC	CAC	TCT	TAC	CTC	CAG	GAA	ccc	GCT	CTC	TGT	GGA	1061
25	Pro	Gly	Thr	Glu	Asp	His	Ser	Tyr	Leu	Gln	Glu	Pro	Ala	Leu	Cys	Gly	
20		250					255					260					
	CCA	CAC	ATG	ATG	TTT	GAT	GAA	GAT	CGC	TGC	GAG	TGT	GTC	TGT	AAA	GCA	1109
	Pro	His	Met	Met	Phe	Asp	Glu	Asp	Arg	Cys	Glu	Cys	Val	Суз	Lys	Ala	
30	265					270					275					280	
	CCA	TGT	CCT	GGA	GAT	CTC	ATT	CAG	CAC	CCG	GAA	AAC	TGC	AGT	TGC	TTT	1157
	Pro	Cys	Pro	Gly	Asp	Leu	Ile	Gln	His	Pro	Glu	Asn	Cys	Ser	Суз	Phe	
35					285					290					295		
	GAA	TGC	AAA	GAA	AGT	CTG	GAA	AGC	TGT	TGC	CAA	AAG	CAC	AAG	ATG	TTT	1205
	Glu	Сув	Lys	Glu	Ser	Leu	Glu	Ser	Cys	Cys	Gln	Lys	His	Lys	Met	Phe	
40				300					305					310			
40	CAC	CCT	GAC	ACC	TGC	AGA	TCA	ATG	GTC	TTT	TCA	CTG	TCC	CCT			1247
	His	Pro	Asp	Thr	Cys	Arg	Ser	Met	Val	Phe	Ser	Leu	Ser	Pro			
			315					320					325				
45	TAAT	TTG	STT 1	CACTO	GTG!	AC AT	LATT	LAGGA	CA1	ACTA	LACC	TGA1	TTAT	TG (GGC1	CTTTT	1307
	CTCI	CAG	GC (CAAC	CAC	AC TO	TTA!	\AGG#	ACA	CAGA	CGT	TTGG	CCTC	TA A	AGAA	ATACAT	1367
	GGAA	GTAI	TA I	RAGAC	TGAT	rg at	LAAT?	TTG1	CTI	CTT	TTT	CAA	CAGO	GT (CTCAT	rgatta '	1427
50	CAGA	CCC	TA 1	TGC	CATG	C TO	GCCGT	CATO	CTA	TCAT	GAG	CGGA	AAA	AA 1	CACI	rggcat	1487
	TTAA																1491

SEQUENCE LENGTH: 20 5 SEQUENCE TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear MOLECULE TYPE: other nucleic acid, synthetic DNA 10 SEQUENCE DESCRIPTION: 20 GCTGCGAGTG TGTCTGTAAA 15 SEQ ID NO: 27 SEQUENCE LENGTH: 25 SEQUENCE TYPE: nucleic acid 20 STRANDEDNESS: single TOPOLOGY: linear MOLECULE TYPE: other nucleic acid, synthetic DNA SEQUENCE DESCRIPTION: 25 25 GGGTAGTGGG CAACAGTGAC AGCAA

30

Claims

- A protein shown by SEQ ID NO: 1 or having the amino acid sequence derived therefrom in which one or more amino acids are substituted, deleted, or added.
 - 2. A protein encoded by a DNA hybridizing with the DNA shown by SEQ ID NO: 2.
 - 3. A DNA encoding the protein of Claim 1.

SEQ ID NO: 26

40

- 4. A DNA hybridizing with the DNA shown by SEQ ID NO: 2.
- 5. A vector containing the DNA of Claim 3 or 4.
- 45 6. A transformant carrying the vector of Claim 5.
 - 7. A method of producing the protein of Claim 1 or 2, which comprises culturing the transformant of Claim 6.
 - 8. An antibody binding to the protein of Claim 1 or 2.

- 9. A method of screening a compound binding to the protein of Claim 1 or 2, which comprises a step of detecting the activity of the protein of Claim 1 or 2 to bind to a test sample.
- **10.** A compound binding to the protein of Claim 1 or 2, wherein the compound have been isolated by the method of Claim 9.

Fig. 1

Fig. 2

HSVEGFCC# H24828	MHLLGFFSYA CSLLAAALLP GPREAPAAAA AFESGLDLSD AEPDAGEATA	50 50
HSVEGFCC H24828	YASKOLEEQL RSVSSVDELM TVLYPEYWKM YKCQLRKGGW QHNREQANLN	100 100
HSVEGFCC H24828	SRTEETIKFA AAHYNTEILK SIDNEWRKTQ CMPREVCIDV GKEFGVATNT	150 150
HSVEGFCC H24828	FFKPPCVSVY RCGGCCNSEG LQCMNTSTSY LSKTLFEITV PLSQGPKPVT	200 200
HSVEGFCC H24828	ISFANHTSCR CHSKLDVYRQ VHSIIRRSLP ATLPQCQAAN KTCPTNYMWN	250 250
HSVEGFCC H24828	NHICRCLAGE DFMFSSDAGD DSTDGFHDIC GPNKELDEET CQCYCRAGLR	300 300
HSVEGFCC H24828	PASOGPAKEL GRNSTOGVEF NKLFPSOCGA NREFDENTTO CYCKRTOPRN	350 350
HSVEGFCC H24828	QPLN GKRAF ECTESPONCL LNGNNFHHOT GSCYREPGTN RONGG-EPGF Nlfhedtes E Dr gpfhtepgas Gnthanhcr	400 400
HSVEGFCC H24828	SYSTEVERCY RSYMEREGMS	450 450
*HSVEGFCC:	human YEGF-C	

Fig. 3

HSVEGF-D HSVEGF-C HSPDGF-A HSPDGF-8 HSPIGF2 HSVEGF HSVEGF-B	Motor	ILYVOTVO GSSNEHGP QAAALTP GPREAPAA YLAHVUA EEAEIPRE YURLVSA EGDPIPEE GAGLAUP AVPPOQWA LILYUHH AKWSQAAP UAAALTO LAPAQAPV	SQ I DAI G		50 50 50 50 50 50
HSVEGF-D HSVEGF-C HSPDGF-A HSPDGF-B HSPIGF2 HSVEGF HSVEGF-B		ASSILEGIL RITHSEDA SSILEGIL RITHSEDA DEVESED S-I DPGEEDG AEU			100 100 100 100 100 100
HSVEGF-D HSVEGF-C HSPDGF-A HSPDGF-B HSPEGF-B HSVEGF HSVEGF-B	RSTRFA ATI SRTEENIKFA BAH HGVHANKHVP EKI SHSGGELESL BRO	NHHEVVO FMOV-YOU HORKVYS WILLY-YTS	TO CSPRITCHEV TO CMPREVCIOV AV KITTYVIYEI SE KRETEVEEI SY GRALFRIEDI SY GHILBTINDI AT GOPREVVEPI	ASELGKSENT GKEFGVALINT PRSQVDPIISA SRELIDRINA VSEYPSEVEH FOEYPDEIEY TVELMGTVAK	150 150 150 150 150 150
	NATIMPPONE RE NATION PROVE BO MI STSCAS IL IA KASCAP IM OL VASCAT EQ	CGGCCHE ESTIMMI CGGCCHS IGLOCHNI CCACCHT SVKOGES CSGCCHM RNYOFREI CTGGCGD INLHEVEV CGGCCMD EGLEVVEI CGGCCMD EGLEVVEI CGGCCMD DGLEZVPI	ST SYISKELFEE ST SYLSKTLFEE RV HHRSVKYAKY OV QLRPVKYKE ET ANTHELIKE EE SNITMEIME GQ HQVRMEILME	-SMPLTSVPE -TMPLSQGPK EYVEKKPKLK EIVEKKPKLK EIVEKKPKLK EIVEKKKPKLK EIVEKKKPKLK EIVEKKKPKLK EIVEKKKPKLK EIVEKKKPKLK EIVEKKKPKLK EIVEKKKPKLK EIVEKKKPKLK EIVEKKKPKLK EIVEKKKPKLK EIVEKKKPKLK EIVEKKKPKLK EIVEKKKPKLK EIVEKKKPKLK EIVEKKKPKLK EIVEKKKPKLK EIVEKKKPKLK EIVEKKPKLK EIVEKKPKLK EIVEKKPK EIVEKPK EIVEKKPK EIVEKKPK EIVEKKPK EIVEKKPK EIVEKKPK EIVEKKPK EIVEK EIVEKKPK EIVEKKPK EIVEK EIVEKKPK EIVEK	200 200 200 200 200 200 200
HSVEGF-D HSVEGF-C HSPDGF-A HSPDGF-B HSPEGF2 HSVEGF HSVEGF-B	LAPVKVANET GRI PETISFANET SE EEQVRLEEFL EEV KATVTLED LA ARG VEELTFSOUW KEEL IGEMSFLOEN KEEL LGEMSFLOEN KEEL	BLITA PRHPYSII MSKLDV YRQVHSII MATTSLN PDYREEDT MEI-VAA ARPVTRSP MRI LREKMKPE MRI-KKO RARQEKKS MRIKKD SA	RE SIQIPEEDEC RE S-LPATLPOC GE P-RESGRAU- RE R-PKGRGUER VE G-KGKGOUEK	ELORDI- ZUSRYK-	250 250 250 250 250 250 250
HSVEGF-D HSVEGF-C HSPDGF-A HSPDGF-B HSPIGF2 HSVEGF-B	MLZDSNKSKE VL YMZNNHIGRE LAG	DEE-NOLA GTEOMSHL Dedfafss daggdsto 	QE	TEETTOEVER TEGTRÝTIRT DEGTERESEK DERTERER	300 300 300 300 300 300 300
HSVEGF-D HSVEGF-C HSPDGF-A HSPDGF-B HSPIGF2 HSVEGF HSVEGF-B	PALCEP EM	AFDEDRIGE IVCETPCP MORNSING IVCENKUF KFKHTHOK TALBETIG MNERTIGR GOXPRR	KD LIQHPKNCSC	FERKESL-EN	350 350 350 350 350 350
HSVEGF-D HSVEGF-C HSPDGF-A HSPDGF-B HSPIGF2 HSVEGF HSVEGF-B	GCOKHKEFHE DT GPRNOPIL-NE GK	SCE AGECTES POKCLLKG	OREPFHT KK FHHQTESCYR	RFCASGKTAC RFCTNRQKAC	400 400 400 400 400 400
HSVEGF-D HSVEGF-C HSPDGF-A HSPDGF-B HSPIGF2 HSVEGF HSVEGF-B		AGGEHSRÜ NE RCVESYWÜ REQMS			450 450 450 450 450 450

Fig. 4

a) Hydrophobicity

b) Prediction of the human VEGF-D signal peptide

28

	INTERNATIONAL SEARCH REPO	DRT I						
		,	International app					
		PCT/JP97/02456						
Int	ASSIFICATION OF SUBJECT MATTER C16 C12N15/18, C12N15/63 G01N33/50 to International Patent Classification (IPC) or to both			35, C07K16/22,				
	LDS SEARCHED							
Minimum d Int	Minimum documentation searched (classification system followed by classification symbols) Int. C1 ⁶ C12N15/18, C12N15/63, C12P21/02, C07K14/485, C07K16/22, G01N33/50							
	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched							
Electronic d WPI	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) WPI, WPI/L, BIOSIS PREVIEWS, CAS ONLINE, GENETYX-MAC/CD							
C. DOCT	JMENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where a			Relevant to claim No.				
PX	Yamada, Y. et al. "Molecular vascular endothelial growth Genomics (1997, Jun.), Vol. p. 483-488	n factor, VEC	f a novel GF-D."	1 - 10				
х	Vladimir, J. et al. "A novel vascular 1 - 2 endothelial growth factor, VEGF-C, (VEGFR-2) receptor tyrosine kinases" EMBO J. (1996, Jan.) Vol. 15, No. 2, p. 290-298							
X	Vladimir, J. et al. "A novel vascular 1 - 2 endothelial growth factor, VEGF-C, is a ligand for the Flt4(VEGFR-3) and KDR(VEGFR-2) receptor tyrosine kinases" EMBO J. (1996, Jan.) Vol. 15, No. 7, p. 1751							
PX	PX Maurizio, O. et al. "Identification of a c-fos- induced gene that is related to the platelet- derived growth factor/vascular endothelial growth factor family" Proc. Natl. Acad. Sci. USA (1996, Oct.) Vol. 93, p. 11675-11680							
X Furthe	er documents are listed in the continuation of Box C.	See patent i	amily annex.					
"A" docume to be of	categories of cited documents: at defining the general state of the art which is not considered particular relevance	date and not in co the principle or the	blished after the inter- pallict with the applications underlying the	national filing date or priority ation but cited to understand invention				
"L" docume	E" earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be							
"O" docume	"O" document referring to an oral disclosure, use, exhibition or other means considered to involve an inventive step when the document is combined with one or more other such documents, such combination							
	or pentioned provide the international riving date but taker to an	"A" document membe						
l	octual completion of the international search obser 7, 1997 (07. 10. 97)	Date of mailing of the October 2		ch report 21. 10. 97)				
Name and m	nailing address of the ISA/	Authorized off and						
	anese Patent Office	Authorized officer						
Facsimile No		Telephone No.						
	A/210 (second sheet) (July 1992)	Lichione No.	· · · · · · · · · · · · · · · · · · ·					

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP97/02456

Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages X Georg. B. et al. "Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation" Development (1992) Vol. 114, p. 521-532 X David, T.S. et al. "The mouse gene for vascular endothelial growth factor" J. Biol. Chem. (1996, Feb.) Vol. 271, No. 7, p. 3877-3883 X Kevin, P.C. et al. "Vascular endothelial growth factor" J. Biol. Chem. (1992) Vol. 267, No. 23, p. 16317-16322 X Greg, C. et al. "Amino acid and cDNA sequences of a vascular endothelial cell mitogen that is homologous to platelet-derived growth factor" Proc. Natl. Acad. Sci. USA (1990) Vol. 87, p. 2628-2632 X Edmund, T. et al. "The human gene for vascular endothelial growth factor" J. Biol. Chem. (1991) Vol. 266, No. 18, p. 11947-11954	P9//U2436
X Georg. B. et al. "Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation" Development (1992) Vol. 114, p. 521-532 X David, T.S. et al. "The mouse gene for vascular endothelial growth factor" J. Biol. Chem. (1996, Feb.) Vol. 271, No. 7, p. 3877-3883 X Kevin, P.C. et al. "Vascular endothelial growth factor" J. Biol. Chem. (1992) Vol. 267, No. 23, p. 16317-16322 X Greg, C. et al. "Amino acid and cDNA sequences of a vascular endothelial cell mitogen that is homologous to platelet-derived growth factor" Proc. Natl. Acad. Sci. USA (1990) Vol. 87, p. 2628-2632 X Edmund, T. et al. "The human gene for vascular endothelial growth factor" J. Biol. Chem. (1991)	
endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation" Development (1992) Vol. 114, p. 521-532 X David, T.S. et al. "The mouse gene for vascular endothelial growth factor" J. Biol. Chem. (1996, Feb.) Vol. 271, No. 7, p. 3877-3883 X Kevin, P.C. et al. "Vascular endothelial growth factor" J. Biol. Chem. (1992) Vol. 267, No. 23, p. 16317-16322 X Greg, C. et al. "Amino acid and cDNA sequences of a vascular endothelial cell mitogen that is homologous to platelet-derived growth factor" Proc. Natl. Acad. Sci. USA (1990) Vol. 87, p. 2628-2632 X Edmund, T. et al. "The human gene for vascular endothelial growth factor" J. Biol. Chem. (1991)	Relevant to claim No
endothelial growth factor" J. Biol. Chem. (1996, Feb.) Vol. 271, No. 7, p. 3877-3883 X Kevin, P.C. et al. "Vascular endothelial growth factor" J. Biol. Chem. (1992) Vol. 267, No. 23, p. 16317-16322 X Greg, C. et al. "Amino acid and cDNA sequences of a vascular endothelial cell mitogen that is homologous to platelet-derived growth factor" Proc. Natl. Acad. Sci. USA (1990) Vol. 87, p. 2628-2632 X Edmund, T. et al. "The human gene for vascular endothelial growth factor" J. Biol. Chem. (1991)	1 - 10
factor" J. Biol. Chem. (1992) Vol. 267, No. 23, p. 16317-16322 X Greg, C. et al. "Amino acid and cDNA sequences of a vascular endothelial cell mitogen that is homologous to platelet-derived growth factor" Proc. Natl. Acad. Sci. USA (1990) Vol. 87, p. 2628-2632 X Edmund, T. et al. "The human gene for vascular endothelial growth factor" J. Biol. Chem. (1991)	1 - 10
of a vascular endothelial cell mitogen that is homologous to platelet-derived growth factor" Proc. Natl. Acad. Sci. USA (1990) Vol. 87, p. 2628-2632 X Edmund, T. et al. "The human gene for vascular endothelial growth factor" J. Biol. Chem. (1991)	1 - 10
endothelial growth factor" J. Biol. Chem. (1991)	1 - 10
	1 - 10

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/02456

Disclosure other than written disclosures

- 1. The GenBank Database (Rel. 100) on GENETYX, Accession No. D89628, Yoshiki Yamada, Chugai Research Institute for Molecular Medicine. (29-Nov-1996)
- 2. The GenBank Database (Rel. 100) on GENETYX, Accession No. T64277, Hillier, L. et al. (1995)

Form PCT/ISA/210 (extra sheet) (July 1992)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.