

## ZESZYTY ENERGETYCZNE, TOM VII Wydanie przy II edycji XII Konferencji "Młodzi w Energetyce" 2020

# Uwagi odnośnie redakcji artykułów do Zeszytów Energetycznych

# Jerzy Kulej<sup>1</sup>, Dominik Bajoński<sup>2</sup>

<sup>1</sup>Politechnika Kaliska, Katedra Procesów Cieplno-Przepływowych

Email kontaktowy: ze@pwr.edu.pl

### STRESZCZENIE

Podano, uwagi odnośnie długości i redakcji tekstu.

SŁOWA KLUCZOWE: ETFX, tylda, rysunki.

#### 1. WPROWADZENIE

Prosimy o przygotowanie artykułu według szablonu **szablonZeszyty** i stylu ze.sty. Plik szblonu **ze.sty** musi znajdować się w katalogu, w którym piszemy i kompilujemy nasz artykuł. Tekst kompilujemy używając **PdfLatex**. Powstaje od razu wersja .pdf. Wersję źródłową *nazwisko*.tex i wersję *nazwisko*.pdf wraz z rysunkami należy przesłać na adres **ze@pwr.edu.pl**.

Zbiory z rysunkami nazywamy rysunek1, rysunek2, .. itd. w kolejności takiej jak się pojawiają w tekście artykułu. Koniecznie poddać szczegółowemu sprawdzeniu artykuł w formacie .pdf. Rysunki wstawiamy w formacje \*.jpg lub \*.png. W preambule należy wpisać tytuł swojego referatu i inne swoje dane. Niepotrzebne, struktury źawieszamyśtawiając na początku linii znak %.

Pierwszy raz kompilujemy dwukrotnie aby zostały wypełnione odwołania do literatury. Pozycje literaturowe podawać zgodnie ze wzorcem. Starać się zachować kolejność alfabetyczną. Cytujemy używając np. \cite{Aref1} co utworzy [?]. Literaturę zamieszczamy według wzoru podanego na końcu niniejszego wprowadzenia . Na stronie zeszytów www.ze.pwr.edu.pl zostanie zamieszczony prosty podręcznik do LATEX'a. Wszelkie inne informacje również będą zamieszczane na tej stronie internetowej. Można zwrócić się o pomoc do Panów dr hab. Sławomira Pietrowicza lub do mnie (Henryk Kudela). Wielu kolegów posługuje się już świetnie LATEX'em, więc do nich również można się zwrócić o pomoc. Istnieje wiele tutoriali, podręczników. Polecanie godnym jest łatwo dostępna publikacja Tobiasa Oetikera i innych: Nie za krótkie wprowadzenie do systemu LATEX2.

#### 2. SZCZEGÓŁOWE UWAGI ODNOŚNIE REDAKCJI ARTYKUŁÓW

Wcześniejsza praca nad redakcją Zeszytów pozwala sformułować kilka dodatkowych uwag, których uwzględnienie byłoby niezwykle pożyteczne:

1. Należy zwrócić uwagę na czytelność zamieszczanych w tekście rysunków. Dla zachowania czytelności czcionka na rysunkach powinna być tej wielkości co podpis

<sup>&</sup>lt;sup>2</sup>Politechnika Wrocławska, Katedra Turbin i Modelowania Procesów Cieplno-Przepływowych

2 Jerzy Kulej

pod rysunkiem. Unikać zdjęć stanowisk doświadczalnych, zdjęć dokumentujących odczyty z przyrządów,

- 2. Zwrócić uwagę, aby koniec linii nie kończył się pojedynczą literą, np. w, z, i itp. (tzw. zawieszki). Odstępy, na których nie wolno złamać wiersza, zaznacza się w pliku źródłowym przez umieszczenie znaku tyldy ~ zamiast odstępu np. w ~ końcu.
- 3. Pojedyncze zadanie zamykające akapit nie może przenosić się na nową stronę. Należy tak formatować tekst, dobierając wielkość rysunków i ich położenie, aby wymusić zachowanie ciągłość myśli wyrażonej w tekście. Do dyspozycji jest jeszcze instrukcja **newline**. Nową myśl (akapit) powinniśmy zaczynać wcięciem. Jeżeli Latex tego nie zrobił automatycznie to można to wymusić instrukcją.
- 4. Wzory chemiczne jak również wymiary jednostek fizycznych piszemy prosto. Aby skorzystać z możliwości trybu matematycznego pisania indeksów można użyć instrukcji \operatorname. Miedzy liczbą a jednostką fizyczną pozostawimy spację np. 1 m². Natomiast nie ma spacji przy wielkości wyrażającej temperaturę w stopniach Celsjusza, no 1°C.
- 5. Jeżeli we worze matematycznym został użyty symbol i jest on używany w tekście to musi być napisany italikiem (pochyło),
- 6. Artykuł powinien zawierać parzystą liczbę stron, nie mniej niż 8.

#### 3. Przykłady wzorów matematycznych

Przykład fragment tekstu z **równaniami** zamieszczono poniżej. Równania ruchu lepkiego i nieściśliwego płynu mają postać (równanie ?? oraz ?? - odniesienie do równania zapisujemy jako np. \ref{eom}, natomiast równanie ma dodany \label{eom}, który tworzy podstawę odniesienia):

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho}\nabla p + \nu \Delta \mathbf{u},\tag{1}$$

$$\nabla \cdot \mathbf{u} = 0, \tag{2}$$

gdzie  $\mathbf{u} = (u, v, w)$  jest wektorem prędkości,  $\rho$  – gęstością płynu, p – ciśnieniem a  $\nu$  – kinematycznym współczynnikiem lepkości.

## 4. Przykład zamieszczania wykresów, obrazków.

W dalszej części przedstawiono przykłady zamieszczania **wykresów, obrazków oraz tabel.** Pojedynczy wykres lub zdjęcie (Rys. ?? - odniesienie do obrazu tworzymy analogicznie do przykładu z równaniem):



Rys. 1: Jeden obrazek z podpisem

Uwagi redakcyjne... 3

Dwa wykresy lub zdjęcia obok siebie z dwoma niezależnymi popisami (Rys ?? oraz Rys. ??):





**Rys. 2:** Dwa obrazki obok siebie z dwoma podpisami (lewy)

**Rys. 3:** Dwa obrazki obok siebie z dwoma podpisami (prawy)

Przykład tworzenia tabeli (Tab. ?? oraz Tab. ??).

Tab. 1: Przyspieszenie osiągane dla metody Jacobiego.

| Liczba węzłów | tsl   | tx    | nc    | frm nc |
|---------------|-------|-------|-------|--------|
| 32x32x32      | 4.05  | 6.61  | 6.94  | 12.32  |
| 64x64x64      | 17.71 | 26.32 | 31.26 | 52.82  |
| 128x128x128   | 24.78 | 29.95 | 43.67 | 58.89  |

Dodatkowy przykład tworzenia tabeli.

Tab. 2: Cryogenic coolers

| Cryooler                | Capacity range       |
|-------------------------|----------------------|
| Turbo-Brayton           | 18 - 250 kW at 120 K |
| Stirling                | 2 - 8 kW at 120 K    |
| Gifford-McMahon         | 14 - 600 W at 80 K   |
| Single-stage Pulse Tube | 12 - 90 W at 80 K    |
| Miniature Pulse Tube    | 3 - 10 W at 80 K     |
| Joule-Thomson           | 100 W at 120 K       |

#### 5. Podsumowanie

W pracy przedstawiona została implementacja metody cząstek wirowych typu "wir w komórce" wykorzystująca metodę dekompozycji lepkościowej.

### LITERATURA

- [1] Aref H. Motion of three vortices, Phys. Fluids 22 (3), 393-400, 1997
- [2] Holden H., Karlsen K.H., Lie K.-A., Risebro W.H. Splitting Methods for Partial Differential Equations with Rough Solutions, Society for Industrial and Applied Mathematics, 2007
- [3] LeVeque R.J. Finite Difference Methods for Ordinary and Partial Differential Equations, European Mathematical Society, 2010
- [4] Kudela H., Kosior A. Parallel reconnection of vortex tube reconnection using a graphics card and the 3D Vortex-in-Cell method, Procedia IUTAM, 7, 59-66, 2013