FREIBURG

Kapitel 5

Timing:

- 1. Physikalische Eigenschaften
- 2. Timing wichtiger Komponenten
- 3. Exaktes Timing von ReTI

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Christoph Scholl Institut für Informatik WS 2015/16

Wiederholung: Übergang beim RS-Flipflop

■ Zustand $Q = 0 \rightarrow Zustand Q = 1$:

- Senke /S zur Zeit t_0 ab und hebe zu $t_0 + x$ wieder an (einen solchen Signalverlauf nennt man Puls).
- Nach Zeit $t_{P/SQ}$ ist Q = 1. Nach Zeit $t_{P/S/Q}$ ist Q = 0.
- "Gatter brauchen Zeit zum Schalten!" Aber wie lange ist $t_{P/S/Q}$, $t_{P/S/Q}$? Oder wie lange muss ein Puls mindestens dauern? (=Pulsweite).

REIBURG

Wiederholung: Timing-Diagramm D-LATCH

- Wie lange müssen die einzelnen Signale aktiv sein, damit der Schreibvorgang reibungslos abläuft?
- D.h. Wie lange ist Setup–Zeit t_{SDW}, Hold–Zeit t_{HDW}, Pulsweite y?

REIBURG

Physikalische Signale ↔ Logische Signale

- In jeder Technologie gibt es eine Versorgungsspannung VCC (z.B. 1.1 V bei NanGate).
- Eine Spannung $U \in [0, VCC]$ wird als logischer Wert I(U) interpretiert.
 - Am Eingang (Input) eines Gatters: V_{IL} , V_{IH} .
 - \blacksquare Am Ausgang (Output) eines Gatters: V_{OL} , V_{OH} .
- \blacksquare $V_{IL}, V_{IH}, V_{OL}, V_{OH}$ eines Bausteins sind gegeben.

REIBURG

Zusammenschalten von Gattern

- Will man den Ausgang eines Gatters *u* mit dem Eingang eines Gatters *v* verbinden, dann sollte gelten:
 - $V_{OL}(u) \leq V_{IL}(v)$ und
 - $V_{OH}(u) \geq V_{IH}(v)$.
- Sonst werden Signale falsch interpretiert.

Beispiel: NanGate

$$V_{IL} = 30\% \cdot VCC = 0.33 \ V \ V_{IH} = 70\% \cdot VCC = 0.77 \ V$$

Entsprechend Output-Pegel V_{OL} , V_{OH} .

Verzögerung

Beispiel-Spannungsverlauf x(t), y(t)

Zwei Beispiele für y(t)

FREIBURG

8 / 41

Allgemeine Bemerkung zu Verzögerungszeiten

- Im Allgemeinen gilt nicht $y(t) = x(t t_p)$, so dass man nicht einfach t_{D} als Verzögerungszeit definieren kann. v(t) wird verformt.
- Die Verzögerungszeit (Propagation Delay) wird definiert als $t_0 := (t_2 - t_1)$ bezüglich einer festen "Referenzspannung" M mit $V_{II} < M < V_{IH}$ (Bsp.: M = 0.5 VCC = 0.55 V bei NanGate).
- Bestimme t_1 , t_2 mit $x(t_1) = y(t_2) = M$.

Angaben zur Verzögerungszeit

- In der Regel gibt es verschiedene Verzögerungszeiten für Übergänge am Ausgang:
 - t_{PLH} : Verzögerungszeit bei 0 → 1.
 - t_{PHL} : Verzögerungszeit bei 1 → 0.

REIBURG

Modellierung der Verzögerungszeit

- **Problem** bei der Modellierung der Verzögerungszeit bezüglich fester Spannung *M*:
 - Keine Aussage darüber, wann logische Signale 0 oder 1 sind, d.h. physikalische Signale unterhalb V_{OL} oder oberhalb V_{OH} sind.

Illustration des Problems

Ähnliches Problem am Gattereingang.

REBURG

Anstiegs- und Abfallzeiten

- Für jedes Signal braucht man also zusätzliche Informationen über:
 - Anstiegszeit (Rise Time) = Zeit, in der Signal von V_I nach V_H steigt.
 - Abfallzeit (Fall Time) = Zeit, in der Signal von V_H nach V_I fällt.
 - Bzw. noch genauer würde man eigentlich benötigen:
 - Anstiegszeit von M nach V_H
 - Abfallzeit von M nach V_I

WS 2015/16 CS - Kapitel 5

Beschränkung dieser Zeiten

- Die in unseren Analysen verwendeten Gatter haben die folgende angenehme Eigenschaft:
- $\exists \delta$ mit folgender Eigenschaft:
 Falls rise/fall time $\le \delta$ am Gattereinang, dann rise/fall time $\le \delta$ am Gatterausgang.

Beispiel: NanGate

- $V_{IL} = 30\% \cdot VCC = 0.33 \ V_{IH} = 70\% \cdot VCC = 0.77 \ V_{IH} = 70\% \cdot VCC = 0.77 \ V_{IH} = 70\% \cdot V_{IH} = 7$
- NanGate für *M* = 0.55 *V* spezifiziert. Bausteine *NAND*, *NOT*, *AND*, *OR*, *EXOR*.
- \blacksquare t_p zwischen 0.00 ns und 0.21 ns.
- $\delta = 0.13 \ ns \ (1 \ ns = 10^{-9} \ s)$
- Die Zeiten, an denen die entsprechenden Signale wohldefinierte logische Werte 0, 1 annehmen, unterscheiden sich von denen für M um höchstens δ .

Bemerkung

■ Eine rise/fall time $\leq \delta$ an den primären Eingängen einer Schaltung kann man garantieren, wenn man den Schaltvorgang zur Zeit t_0 beginnt und spätestens zur Zeit $t_0 + \delta$ abschließt.

REIBURG

Analyse der Verzögerungszeit einer Kette von *n* Gattern (1/3)

Analyse der Verzögerungszeit einer Kette von *n* Gattern (2/3)

- Durchläuft X(t) nach Zeit m(0) die Spannung M, dann durchläuft $Y_n(t)$ die Spannung M nach $m(0) + n \cdot t_{PLH}$.
- Falls X(t) mit Anstiegszeit $\leq \delta$, dann auch $Y_1(t), \ldots, Y_n(t)$.
- Also ist Y_n auf jeden Fall zur Zeit $m(0) + n \cdot t_{PLH} + \delta$ logisch 1.
- Beginnt man im Beispiel den Schaltvorgang bei t_0 und beendet ihn bei $t_0 + \delta$, dann gilt $m(0) \le t_0 + \delta$ und Y_n ist spätestens nach $t_0 + n \cdot t_{PLH} + 2\delta$ logisch 1.

Vereinbarungen

■ Im Folgenden soll

Signal *X* wird zum Zeitpunkt *t*₁ abgesenkt/angehoben bedeuten

X wird abgesenkt/angehoben mit $X(t_1) = M$.

- Desweiteren sind alle Zeitangaben in ns.
- Wir nehmen außerdem in Zukunft immer an: rise / fall times $\leq \delta$.

Einfluss auf Verzögerungszeiten

- Verzögerungszeiten von Gattern sind nicht konstant, sondern werden beeinflusst durch:
 - Betriebstemperatur
 - Fertigungsprozess des Chips
 - kapazitive Last am Gatterausgang (Fanout) (Gattereingänge, die mit einem Gatterausgang verbunden sind, verhalten sich wie Kondensatoren, d.h. sie werden beim Schalten ge- bzw. entladen.)

Worst-case Timing-Analyse

Wegen Abhängigkeit der Verzögerungszeit von Temperatur, Fertigungsprozess und kapazitiver Last werden vom Hersteller keine festen Zeiten t_{PLH}/t_{PHL} angegeben, sondern 3 Werte:

```
t^{min} = untere Schranke
```

$$t^{max}$$
 = obere Schranke

$$t^{typ} = typischer Wert (???)$$

min, max und typ (1/2)

 \blacksquare Für die tatsächliche Verzögerungszeit t_p gilt:

$$t^{min} \leq t_p \leq t^{max}$$

- Wir nehmen in den folgenden Analysen an, dass t_p im Intervall [t^{min} , t^{max}] liegt, falls
 - die Temperatur im Bereich *T* liegt ("kommerzieller Temperaturbereich" 0° 70° *C*, militärischer Temperaturbereich −55° 125° *C*)
 - und eine bestimmte kapazitive Last C₀ nicht überschritten wird.
- C₀ wird so gewählt, dass mit Einhalten einer Fanoutbeschränkung von 10 C₀ auf keinen Fall überschritten wird.

min, max und typ (2/2)

- Für t^{typ} gilt ebenfalls $t^{min} \le t^{typ} \le t^{max}$.
- Beim Rechnen mit t^{typ} macht man aber einen Fehler mit unbekannter Größe.
- \rightarrow Kein Rechnen mit t^{typ} , sondern mit Intervallen $[t^{min}, t^{max}]$.

Exkurs: Rechnen mit Intervallarithmetik (1/2)

Definition

Ein Intervall $[a,b]:=\{x\in\mathbb{R}\mid a\leq x\leq b\}\subset\mathbb{R}$ auf \mathbb{R} ist eine zusammenhängende und abgeschlossene Teilmenge von \mathbb{R} . Man bezeichnet es auch als das abgeschlossene Intervall von a bis b.

- Wir betrachten hier nur die Menge der abgeschlossenen Intervalle IR auf \mathbb{R} .
- Es gilt:
 - \blacksquare min[a,b] = a

 - $a \in \mathbb{R} \simeq [a, a] \in IR$ (eine reelle Zahl a kann aufgefasst werden als das Punktintervall von a bis a)

NI REIBURG

Exkurs: Rechnen mit Intervallarithmetik (2/2)

Definition

Gegeben ein Operator $_{op}\in\{+,-,\cdot\}$ in $\mathbb{R}.$ Der dazugehörige Operator $_{\textcircled{op}}$ auf IR ist definiert als:

Für $a, b, c, d \in \mathbb{R}$:

$$[a,b]$$
 @ $[c,d]$:= $\{x \circ_p y \mid x \in [a,b], y \in [c,d]\}$

Beispiele:

- $[a,b] \oplus [c,d] = [a+c,b+d]$
- $[a,b] \odot [c,d] = [a-d,b-c]$
- $[a,b] \odot [c,d] = [\min(a \cdot c, a \cdot d, b \cdot c, b \cdot d), \max(a \cdot c, a \cdot d, b \cdot c, b \cdot d)]$

Bemerkungen

- Wir schreiben vereinfachend nur ℘ statt ⑳.
- Wir verwenden hier hautsächlich den +-Operator und Multiplikation mit natürlichen Zahlen.
- Ein Intervall bezeichnen wir mit $\tau = [t^{min}, t^{max}]$.

Beispiel: AND-Gatter

AND

 $\tau_{PLH} = [0.02, 0.12]$ $\tau_{PHL} = [0.02, 0.12]$

Bzw.:

AND	t ^{min}	t ^{max}
$ au_{PLH}$	0.02	0.12
$ au_{PHL}$	0.02	0.12

Fall 1

AND	t ^{min}	t ^{max}
$ au_{PLH}$	0.02	0.12
$ au_{PHL}$	0.02	0.12

- A, E fest auf 1.
- \blacksquare B von 0 auf 1 zum Zeitpunkt t_0 .
- ightarrow Änderung von C zur Zeit $au_1 = t_0 + au_{PLH}(\mathsf{AND}) = t_0 + [0.02, 0.12]$
- → Änderung von D zur Zeit

$$\begin{aligned} \tau_2 &&= \tau_1 + \tau_{PLH}(\mathsf{AND}) \\ &= t_0 + 2 \cdot \tau_{PLH}(\mathsf{AND}) \\ &= t_0 + 2 \cdot [0.02, 0.12] \\ &= t_0 + [0.04, 0.24] \end{aligned}$$

REIBURG

Fall 1 - Timing-Diagramm

- *A*, *B*, *E* können sich zum Zeitpunkt *t*₀ ändern, sind vorher und nachher stabil.
- Es ist unbekannt, wieviele Signale sich ändern und wie sie sich ändern.
- → Gröbere Abschätzungen

Gröbere Abschätzung

Bestimmung von Zeitintervallen, zu denen Gatter überhaupt schalten können:

Annahmen:

- \blacksquare *u* schaltet im Intervall [a_1, b_1].
- \blacksquare v schaltet im Intervall [a_2, b_2].
- Die Verzögerungszeiten von w sind gegeben durch

$$au_{PLH} = [t_{PLH}^{min}, t_{PLH}^{max}]$$
 $au_{PHL} = [t_{PHL}^{min}, t_{PHL}^{max}]$

Dann gilt mit $t_p^{min} := min(t_{PLH}^{min}, t_{PHL}^{min})$ und $t_p^{max} := max(t_{PLH}^{max}, t_{PHL}^{max})$ w kann schalten im Intervall $[min(a_1, a_2), max(b_1, b_2)] + [t_p^{min}, t_p^{max}]$

Anwendung auf Beispiel, Fall 2

AND	t ^{min}	t ^{max}
$ au_{PLH}$	0.02	0.12
$ au_{PHL}$	0.02	0.12

■ Wenn die Gatter schalten, dann in folgenden Intervallen:

A, B, E:
$$t_0 + [0.0, 0.0]$$

$$\blacksquare$$
 C: $t_0 + [0.02, 0.12]$

■ D:
$$t_0 + [0.0, 0.12] + [0.02, 0.12] = t_0 + [0.02, 0.24]$$

Fall 2 - Timing-Diagramm

Interpretation des Timing-Diagramms

Was kann im schraffierten Bereich passieren?

Beispiel:

 t_0 : A, B, E 110 \rightarrow 101

Annahme:

AND-Gatter haben folgende Verzögerungszeiten.

- 1. AND-Gatter: $t_{PLH} = 0.12$, $t_{PHL} = 0.12$
 - 2. AND-Gatter: $t_{PLH} = 0.02$, $t_{PHL} = 0.02$

Timing-Diagramm zum Beispiel

In manchen Anwendungen will man Spikes verhindern (siehe z.B. FlipFlops).

Spikefreies Umschalten von Gattern

■ Ziel:

Übergang von A = 1, B = 0 zu A = 0, B = 1, ohne Spike am Ausgang.

■ Bemerkung:

Der Übergang $(0,1) \rightarrow (1,0)$ bzw. umgekehrt ist der einzige, bei dem an AND/NAND-Gattern ein Spike auftreten kann.

AND-Gatter

Sicherer Abstand für Senken von A und Anheben von B

Lemma

Man kann zeigen, dass Übergänge für A und B mit

$$0.12 + 2\delta = 0.38$$

sicher sind.

Zum Beweis - Timing im Gatter

- Senke *A* bei $t_0 = 0$.
 - $\rightarrow C = 0$ wegen A = 0 spätestens bei $t_1 = t_0 + 0.12 + \delta$
 - Grund:
 - Bei tatsächlichem Schalten von C=0 wegen A=0 würde das Signal spätestens nach $t_{PHL}^{max}=0.12$ ns den Wert M durchlaufen und wäre 0 spätestens nach $0.12+\delta$ ns.
 - Interner Umschaltvorgang "C = 0 wegen A = 0" muss also spätestens nach $0.12 + \delta$ ns beendet sein.
- Proof of the Heber B (bzgl. M!) zum Zeitpunkt $t_2 = t_1 + \delta$.
 - → Zum Zeitpunkt t_1 gilt auf jeden Fall noch B = 0.
- Also:

Vor
$$t_1$$
: $B = 0 \Rightarrow C = 0$
Nach t_1 : $A = 0 \Rightarrow C = 0$

 \rightarrow Übergänge für *A* und *B* mit Abstand $t_2 - t_0 = 0.12 + 2\delta = 0.38$ ($\delta = 0.13$).

AND	t ^{min}	t ^{max}
$ au_{PLH}$	0.02	0.12
$ au_{PHL}$	0.02	0.12

Analog: Spikefreies Umschalten bei NAND

Beispiel: NAND

NAND	t ^{min}	t ^{max}
$ au_{PLH}$	0.02	0.15
$ au_{PHL}$	0.02	0.12

- Kritischer Übergang: Zuerst $A: 1 \rightarrow 0$, dann $B: 0 \rightarrow 1$.
- Daraus ergibt sich der Abstand $t_{PLH}^{max} + 2\delta = 0.41$