Trasformazioni di una variabile aleatoria

$$Y = g(X)$$

Problema: Determinare $F_Y(y)$ a partire da $F_X(x)$

Nota: g(x) è funzione reale della variabile reale x, il cui dominio contiene tutti i possibili valori di $X \rightarrow Ad$ ogni valore di X corrisponde un solo valore di Y, ma valori distinti di X possono dar luogo ad un medesimo valore di Y

Trasformazioni di una variabile aleatoria

$$F_Y(y) \stackrel{\triangle}{=} P(Y \le y) = P[X \in \mathfrak{I}(y)]$$
 dove: $\mathfrak{I}(y) = \{x : g(x) \le y\}$

$$\Rightarrow F_{Y}(y) = \int_{\Im(y)} f_{X}(x) dx$$

Una volta ricavata la funzione di distribuzione è possibile ricavare la ddp per derivazione:

$$f_{Y}(y) = \frac{\mathrm{d}F_{Y}(y)}{\mathrm{d}y}$$

Il metodo, chiamato "Metodo della Funzione Distribuzione", è generale, si applica a v.a. continue, discrete e miste; esistono tuttavia casi in cui è possibile ricavare la ddp della v.a. trasformata in maniera più semplice

Trasformazioni di una v.a. discreta

- Se Y è una v.a. discreta che assume i valori $y_1, y_2, ..., y_i, ...,$ è spesso conveniente determinare direttamente la massa di probabilità $P(Y = y_k) = p_Y(y_\nu)$
- Se anche la v.a. X è discreta l'evento $\{g(X) = y_k\}$ è la unione di tutti gli eventi $\{X = x_i\}$ per i quali è soddisfatta la relazione $y_k = g(x_i)$
- Ponendo $G(y_k) = \{x_i : g(x_i) = y_k\}$ si ha:

$$p_{Y}(y_{k}) = P(Y = y_{k}) = \sum_{G(y_{k})} P(X = x_{i}) = \sum_{G(y_{k})} p_{X}(x_{i})$$

Trasformazioni di una v.a. discreta

Esempio:

Se $Y=X^2$ e si vuol calcolare la probabilità che Y=4, si ha:

$$p_Y(4) = P(X = 2) + P(X = -2) = p_X(2) + p_X(-2)$$

Se X è una v.a. ternaria che può assumere valori $\{-2,0,2\}$ con la stessa probabilità, allora $Y=X^2$ è una v.a. binaria che può assumere valori $\{0,4\}$ con massa di probabilità:

$$p_{Y}(0) = P(X = 0) = 1/3$$

$$p_{Y}(4) = P(X = 2) + P(X = -2) = 2/3$$

Trasformazioni di una v.a.

Lo stesso ragionamento può essere esteso al caso in cui (con Y discreta) X sia continua

Esempio:

Si consideri la trasformazione Y=g(X), detta Hard Limiter, data da:

$$g(x) = \operatorname{sgn}(x) = \begin{cases} 1 & \text{per } x > 0 \\ 0 & \text{per } x = 0 \\ -1 & \text{per } x < 0 \end{cases}$$

X è una v.a. **continua** di cui è nota $f_X(x)$ oppure $F_X(x)$

Si calcoli la legge di distribuzione di Y

Trasformazioni di una v.a.

Soluzione:

Y è una v.a. ternaria che può assumere valori {-1, 0, 1}, quindi è completamente specificata dalla conoscenza della massa di probabilità:

$$P(Y = -1) = P(X < 0) = \int_{-\infty}^{0} f_X(x) dx = F_X(0)$$

$$P(Y=0)=P(X=0)=0$$

$$P(Y=1) = P(X>0) = \int_0^\infty f_X(x) dx = 1 - F_X(0)$$

Notare che vale la proprietà di normalizzazione!

Trasformazioni di una v.a.

Se le v.a. X e Y=g(X) sono **entrambe continue**, è possibile esprimere direttamente la ddp di Y mediante quella di X:

$$y=g(x)$$

monotona crescente

Gli eventi {y < Y ≤ y+dy} e {x < X ≤ x+dx} sono uguali perché costituiti dagli stessi risultati → Sono uguali le loro probabilità

$$f_{Y}(y)\mathrm{d}y = f_{X}(x)\mathrm{d}x$$

Essendo
$$dy = g'(x)dx$$
, si ottiene: $f_Y(y) = \frac{f_X(x)}{g'(x)}\Big|_{x=g^{-1}(y)}$

Se la funzione fosse monotona decrescente a denominatore ci sarebbe il valore assoluto di g'(x) (una ddp è sempre non negativa)

Se in generale g(X) è una funzione continua, che non è costante in alcun intervallo (altrimenti anche se X fosse continua non lo sarebbe Y):

Generalizzando il ragionamento al caso in cui y=g(x) ha K soluzioni:

$${y < Y \le y + dy} = {x_1 < X \le x_1 + dx_1} + \dots + {x_k < X \le x_k + dx_k}$$

si ricava il Teorema Fondamentale per la trasformazione di una v.a.:

$$f_{Y}(y) = \sum_{i=1}^{K} \frac{f_{X}(x_{i})}{|g'(x_{i})|} \Big|_{x_{i} = g^{-1}(y)} \text{dove } \{x_{i} : g(x_{i}) = y\}$$

ovvero, sono le K soluzioni dell'equazione y=g(x)

Nota:

Il numero K di soluzioni può variare al variare di y

Nota:

se per un certo y^* l'equazione y=g(x) non ha soluzione, risulterà:

$$f_{y}(y^*)=0$$

Teorema Fondamentale per la trasformazione di una variabile aleatoria

Sia X una v.a. avente ddp $f_X(x)$, e si indichi con Y la v.a. legata ad X tramite trasformazione y = g(x)

Se x_i con i=1, 2, ..., K sono le soluzioni reali dell'equazione y-g(x)=0, allora la ddp di Y è data dalla seguente equazione:

$$f_{Y}(y) = \sum_{i=1}^{K} \frac{f_{X}(x_{i})}{|g'(x_{i})|}_{x_{i}=g^{-1}(y)}$$

Se per un dato valore di y l'equazione y-g(x)=0 non ha radici reali, allora $f_Y(y)$ =0

Trasformazioni di una v.a.: squadra R-C

Esempio 8.4 – Libro Luise-Vitetta

- Nel circuito elettrico rappresentato in figura il generatore di tensione v_0 viene collegato alla squadra R-C all'istante t=0
- Il resistore *r* ha un tempo di guasto aleatorio *X* in corrispondenza del quale esso interrompe il circuito → L'istante *X* è una variabile aleatoria avente densità di probabilità esponenziale:

$$f_X(x) = \frac{1}{2\alpha} e^{-\frac{x}{2\alpha}} \mathbf{u}(x)$$

$$\cot \alpha = rc$$

• Vogliamo determinare la densità di probabilità $f_V(v)$ della v.a. V che rappresenta la tensione ai capi del condensatore dopo il guasto del resistore

Trasformazioni di una v.a.: squadra R-C

$$v(t) = v_o(1 - e^{-t/\alpha})u(t)$$

$$V = v(x) = v_0(1 - e^{-\frac{x}{\alpha}})u(x)$$

$$f_{v}(v) = ?$$
 doto $f_{x}(n) = \frac{1}{2\alpha} e^{-\frac{x}{2\alpha}} \mu(x)$

$$\frac{v}{v_{0}} = 1 - e^{-\frac{v}{4}} = 1 - \frac{v}{2}$$

$$-\frac{x_1}{\alpha} = \ln\left(1 - \frac{v}{v_0}\right) = \sqrt{2x_1 = -\alpha \ln\left(1 - \frac{v}{v_0}\right)}$$

30

Trasformazioni di una v.a.: squadra R-C

$$f_{V}(v) = \frac{f_{X}(x_{1})}{|V'(x_{1})|} \Big|_{X_{1}=-\alpha \ln(1-\frac{V}{V_{0}})}$$

$$= \frac{1}{\frac{1}{2\alpha}} \cdot e^{-\frac{\alpha}{2\alpha}} |_{X_{1}=-\alpha \ln(1-\frac{V}{V_{0}})}$$

$$= \frac{1}{\frac{1}{2\alpha}} \cdot e^{-\frac{\alpha}{2\alpha}} |_{X_{2}=-\alpha \ln(1-\frac{V}{V_{0}})}$$

$$= \frac{1}{\frac{1}{2\alpha}} \cdot \sqrt{1-\frac{V}{V_{0}}} |_{X_{2}=-\alpha \ln(1-\frac{V}{V_{0}})}$$

$$= \frac{1}{\frac{1}{2\alpha}} \cdot \sqrt{1-\frac{V}{V_{0}}} |_{X_{2}=-\alpha \ln(1-\frac{V}{V_{0}})} = f_{V}(v) |_{X_{2}=-\alpha \ln(1-\frac{V}{V_{0}})}$$

$$= \frac{1}{\frac{1}{2\alpha}} \cdot \sqrt{1-\frac{V}{V_{0}}} |_{X_{2}=-\alpha \ln(1-\frac{V}{V_{0}})} = f_{V}(v) |_{X_{2}=-\alpha \ln(1-\frac{V}{V_{0}})}$$

Trasformazioni di una v.a.: rand() → v.a. generica

Esempio: MATLAB 8.3 – Libro Luise-Vitetta

• Trasformare un valore (generato tramite la funzione MATLAB rand()) di una v.a. Y uniformemente distribuita tra 0 e 1 in un valore di una v.a. X con densità di probabilità $f_X(x)$ assegnata

$$f(\cdot) \qquad X = f(Y)$$

$$g(\cdot) \qquad f^{-1}(\cdot) \qquad Y = g(X)$$

$$g(x) = f_{x}(x)$$

