PHY 4910U TECHNIQUES OF MODERN ASTROPHYSICS | WINTER 2019

Submodule 1.2 Solving Ordinary Differential Equations

Consider the Lane-Emden equation for polytropic models of stars:

$$\frac{1}{\eta^2}\frac{d}{d\eta}\left[\eta^2\frac{d\varrho}{d\eta}\right] = -\varrho^n.$$

SETTING UP

Rewrite this equation as two first order ODEs. For simplicity and consistency with my work, define $x \equiv \eta$, $y \equiv \varrho$, and $z \equiv d\varrho/d\eta$.

subject to boundary conditions

$$\varrho(\eta_s) = 0, \quad \frac{d\varrho}{d\eta} = 0 \text{ at } \eta = 0,$$

where η_s is the surface of the star. Choose a value for n. Plot the solution. What is the radius of the star? How does the radii behave as you change n?

A. Euler's Method

Choose either n = 0, 1, or 5, and solve the ODE subject to boundary conditions

$$\varrho(\eta_s)=0,\quad rac{darrho}{d\eta}=0 ext{ at } \eta=0,$$

where η_s is the surface of the star.

B. Fourth Order Runge-Kutta

Now solve it again, but use the fourth order Runger-Kutta method. Recall that

$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf(x_n + h/2, y_n + k_1/2)$$

$$k_3 = hf(x_n + h/2, y_n + k_2/2)$$

$$k_4 = hf(x_n + h, y_n + k_3)$$

$$y_{n+1} = y_n + k_1/6 + k_2/3 + k_3/3 + k_4/6.$$

Analysis

Explore the difference between the two methods by plotting them both, along with the analytical solution. Vary your step-size Δx ; at what step size does Runge-Kutta become noticeably better? About how large is Δx when each method visibly breaks down?

CLEAN UP

Create a function for your ODE solver, with a pattern that looks like:

def ode_solver(x_start, x_stop, step_size, y_0, z_0, f, g),

where f = f(x, y, z) and g = g(x, y, z) are functions for the derivatives (e.g., f = dy/dx).

Finally, create a "library" file, called phy4910.py, which contains your two solvers (maybe other things, too!).