```
!pip install shap
!wget "https://drive.google.com/uc?export=download&id=10MjEx6D mDSJSb9-fgOfwD19rz0sZ4ra" -O dataset.csv
def configure plotly browser state():
  import IPython
  display(IPython.core.display.HTML('''
        <script src="/static/components/requirejs/require.js"></script>
        <script>
         requirejs.config({
           paths: {
  base: '/static/base',
             plotly: 'https://cdn.plot.ly/plotly-latest.min.js?noext',
            },
          });
        </script>
import IPython
IPython.get_ipython().events.register('pre_run_cell', configure_plotly_browser_state)
import pandas as pds
import seaborn as sns
import shap
import matplotlib.pyplot as plt #visualization
plt.rcParams["figure.figsize"] = (16,11)
matplotlib.rc('font', **font)
import itertools
import warnings
warnings.filterwarnings("ignore")
import os
import plotly.offline as py #visualization
py.init_notebook_mode(connected=True) #visualization
import plotly.graph_objs as go #visualization
import plotly.tools as tls #visualization
import plotly.figure_factory as ff #visualization
data = pds.read csv('dataset.csv')
data.head()
        RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfFroducts HasCrCard IsActiveMember EstimatedSalary Exited
                                                                               2
                     15634602 Hargrave
                                                     France Female 42
                    15647311
                                             608
                                                       Spain Female 41
                                                                               1 83807.86
     2
               3 15619304
                                             502
                                                    France Female 42
                                                                               8 159660.80
                                                                                                       3
                                                                                                                                 0
                                                                                                                                            113931.57
                                 Onio
                               Boni
                                             699 France Female 39
                                                                               1 0.00
     3
               4 15701354
                                                                                                       2
                                                                                                                  0
                                                                                                                                 0
                                                                                                                                                          0
                                                                                                                                            93826.63
                    15737888 Mitchell
                                             850
     4
                5
                                                       Spain Female 43
                                                                               2 125510.82
                                                                                                                                            79084.10
                                                                                                                                                          0
clean column name = []
columns = data.columns
for i in range(len(columns)):
    clean_column_name.append(columns[i].lower())
data.columns = clean_column_name
data = data.drop(["rownumber", "customerid", "surname"], axis=1)
print(data.shape)
data.head()
    (10000, 11)
        creditscore geography gender age tenure
                                                    balance numofproducts hascrcard isactivemember estimatedsalary exited
     0
                619
                        France Female
                                       42
                                                2
                                                        0.00
                                                                                   1
                                                                                                             101348.88
                608
                        Spain Female 41
                                                1 83807.86
                                                                                   0
                                                                                                  1
                                                                                                                           0
                502
                        France Female 42
                                                8 159660.80
                                                                        3
                                                                                  1
                                                                                                   0
                                                                                                             113931.57
                                                                                                                           1
                699
                                                1 0.00
                                                                        2
                                                                                   0
                                                                                                   0
                                                                                                                           0
     3
                       France Female 39
                                                                                                             93826.63
                850
                                                                                   1
                                                                                                                           0
                        Spain Female 43
                                                2 125510.82
                                                                                                             79084.10
np.sum(data.isna())
     creditscore
    geography
     gender
    balance
     numofproducts
    estimatedsalary
     exited
     dtype: int64
```

Analyse exploratoire et Data Visualization

L'objectif de cette partie est de répondre à des questions que l'on se pose dans le but d'acquérir de la connaissance sur les données. Pour mener à bien cette partie, il faut se mettre dans la tête d'une personne qui ne connaît ni la situation, ni les données et qui poserait des questions essentielles.

Analyse univariée

Effectuons une première visualisation de l'état du compte bancaire au moment de la récupération du jeu de données.

sns.distplot(data['balance'])

Nous observons une forte proportion d'individus ayant un compte bancaire à 0€ le jour de la récupération des informations. Pour autant, cela signifie-t-il qu'il y a eu autant d'individus ayant exactement 0€ sur leur compte bancaire ce jour-là?

sns.distplot(data['balance'][data['balance'] > 0])

→ Analyse multivariée

```
sns.distplot(data.loc[data['exited'] == 1, 'age'], label="Churn")
sns.distplot(data.loc[data['exited'] == 0, 'age'], label="Non churn")
plt.legend()
```


<matplotlib.axes._subplots.AxesSubplot at 0x7f3de39ad780>

sns.violinplot(x='numofproducts', y='age', data=data)

▼ Analyse de la variable réponse

<matplotlib.axes._subplots.AxesSubplot at 0x7f3de3776eb8>

<matplotlib.axes._subplots.AxesSubplot at 0x7f3dele0bf98>

data[(data['exited'] == 1) & (data['numofproducts'] == 4)].shape

Nettoyage

```
cleaned_data = data.copy()
cleaned_data = cleaned_data[~((cleaned_data['exited'] == 1) & (cleaned_data['numofproducts'] == 4))]
cleaned_data.shape
      (9940, 11)
```

→ Encodage

```
X = cleaned_data.iloc[:, :-1].copy()
y = cleaned_data['exited']
X.head()
```

	creditscore	geography	gender	age	tenure	balance	${\tt numofproducts}$	hascrcard	isactivemember	estimatedsalary
0	619	France	Female	42	2	0.00	1	1	1	101348.88
1	608	Spain	Female	41	1	83807.86	1	0	1	112542.58
2	502	France	Female	42	8	159660.80	3	1	0	113931.57
3	699	France	Female	39	1	0.00	2	0	0	93826.63
4	850	Spain	Female	43	2	125510.82	1	1	1	79084.10

▼ Encodage binaire

X['gender'] = data['gender'].apply(lambda x: 1 if x == "Female" else 0)

₽	c	reditscore	geography	gender	age	tenure	balance	numofproducts	hascrcard	isactivemember	estimatedsalary
	0	619	France	1	42	2	0.00	1	1	1	101348.88
	1	608	Spain	1	41	1	83807.86	1	0	1	112542.58
	2	502	France	1	42	8	159660.80	3	1	0	113931.57
	3	699	France	1	39	1	0.00	2	0	0	93826.63
	4	850	Spain	1	43	2	125510.82	1	1	1	79084.10

X = X.join(pds.get_dummies(data['geography'])) X.head()

> creditscore geography gender age tenure balance numofproducts hascrcard isactivemember estimatedsalary France Germany Spain 619 0 42 0.00 101348.88 1 41 1 83807.86 0 608 0 Spain 112542.58 1 502 France 1 42 8 159660.80 3 0 113931.57 0 0 3 699 France 1 39 1 0.00 2 0 0 93826.63 1 0 0 850 1 43 2 125510.82 79084.10 0 0

del X['geography']

X.head()

	creditscore	gender	age	tenure	balance	${\tt numofproducts}$	hascrcard	isactivemember	estimatedsalary	France	Germany	Spain
0	619	1	42	2	0.00	1	1	1	101348.88	1	0	0
1	608	1	41	1	83807.86	1	0	1	112542.58	0	0	1
2	502	1	42	8	159660.80	3	1	0	113931.57	1	0	0

	creditscore	gender	age	tenure	balance	numofproducts	hascrcard	isactivemember	estimatedsalary	france	germany	spain	
(619	1	42	2	0.00	1	1	1	101348.88	1	0	0	
1	608	1	41	1	83807.86	1	0	1	112542.58	0	0	1	
2	502	1	42	8	159660.80	3	1	0	113931.57	1	0	0	
3	699	1	39	1	0.00	2	0	0	93826.63	1	0	0	
4	850	1	43	2	125510.82	1	1	1	79084.10	0	0	1	

Avant d'entraîner un modèle, il faut s'assurer que l'on sépare bien le jeu de données en deux ensembles :

- Un ensemble de train
- Un ensemble de test

Il est essentiel de séparer le jeu de données en deux : on veut se rapprocher au maximum du séparateur en noir, pas en vert.


```
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
```

Modélisation

```
tree = DecisionTreeClassifier(max_depth=6)
tree.fit(X_train, y_train)
```

```
from sklearn.metrics import accuracy_score
print("Train :", accuracy_score(y_train, tree.predict(X_train)))
print("Test :", accuracy_score(y_test, tree.predict(X_test)))
```

```
Train: 0.8695027306697327
Test: 0.8447350771294433

features_imp = pds.DataFrame(
```

data=np.asarray([X.columns, tree.feature_importances_]).transpose(), columns=['Variable', 'Importance']) features_imp

Variable Importance

import graphviz
import sklearn.tree
dot_data = sklearn.tree.export_graphviz(tree, out_file=None)
graph = graphviz.Source(dot_data)
graph