Required: For each Γ and ϕ , decide if ϕ is a propositional consequence of Γ

(a)

$$\Gamma$$
 is $\{(\forall x P(x)) \to Q(y), (\forall x P(x)) \lor (\forall x R(x)), \exists x \neg R(x)\}$, and ϕ is $Q(y)$

Let
$$A :\equiv (\forall x P(x))$$
 and $B :\equiv Q(y)$ and $C :\equiv (\forall x R(x))$. So $\neg C :\equiv \exists x \neg R(x)$

We have that ϕ is a propositional consequence of Γ if and only if the propositional formula,

$$((A \to B) \land (A \lor C) \land \neg C) \to B$$
 is a tautology.

It is trivial to check by truth table, that this is indeed a tautology.

Therefore ϕ IS a propositional consequence of Γ .

(b)

$$\Gamma$$
 is $\{x = y \land Q(y), (Q(y) \lor x + y < z\}$, and ϕ is $x + y < z$

Let
$$A :\equiv x = y$$
 and $B :\equiv Q(y)$ and $C :\equiv x + y < z$

We have that ϕ is a propositional consequence of Γ if and only if the propositional formula,

$$((A \land B) \land (B \lor C)) \rightarrow C$$
 is a tautology.

However, consider the following truth value assignment.

- 1						$((A \land B) \land (B \lor C)) \to C$
	Τ	Τ	F	Τ	Τ	F

Thus, there is a truth value assignment where $((A \wedge B) \wedge (B \vee C)) \rightarrow C$ is false, so it is not a tautology.

Therefore, ϕ IS NOT a propositional consequence of Γ .

(c)

$$\Gamma$$
 is $\{P(x,y,x), x < y \lor M(w,p), (\neg P(x,y,x) \land \neg x < y)\}$, and ϕ is $\neg M(w,p)$

Let
$$A :\equiv P(x, y, x)$$
 and $B :\equiv x < y$ and $C :\equiv M(w, p)$

We have that ϕ is a propositional consequence of Γ if and only if the propositional formula,

 $(A \wedge (B \vee C) \wedge (\neg A \wedge \neg B)) \rightarrow \neg C$ is a tautology.

It is trivial to check by truth table, that this is indeed a tautology.

Therefore ϕ IS a propositional consequence of Γ .

Required to Prove: For variables $x_1, ..., x_n, y_1, ..., y_n$ and n-ary function symbol f, (E3) is valid.

i.e.
$$[(x_1 = y_1) \land ... \land (x_n = y_n)] \rightarrow ((R(x_1, ..., x_n) \rightarrow R(y_1, ..., y_n)))$$
 is valid.

Proof. Fix a structure \mathfrak{A} and a variable assignment function $s: \operatorname{Vars} \to A$, where A is the universe of \mathfrak{A} .

We must show that $\mathfrak{A} \models [(x_1 = y_1) \land ... \land (x_n = y_n)] \rightarrow ((R(x_1, ..., x_n) \rightarrow R(y_1, ..., y_n))[s].$

If $\mathfrak{A} \not\models [(x_1 = y_1) \wedge ... \wedge (x_n = y_n)][s]$, then we are done.

So assume that $\mathfrak{A} \models [(x_1 = y_1) \land ... \land (x_n = y_n)][s]$. Call this assumption 1.

We must now show that $\mathfrak{A} \models (R(x_1,...,x_n) \rightarrow R(y_1,...,y_n))[s].$

If $\mathfrak{A} \not\models R(x_1,...,x_n)[s]$, then we are done.

So assume that $\mathfrak{A} \models R(x_1,...,x_n)[s]$. Call this assumption 2.

We must now show that $\mathfrak{A} \models R(y_1,...,y_n)[s]$.

From assumption 1 and by definition of satisfaction (1.7.4) and \wedge , we get that,

$$\mathfrak{A}\models (x_i=y_i)[s] \text{ for all } i\in\{1,..,n\}.$$

Consider \bar{s} to the be corresponding term assignment function to s. We now have that,

$$\bar{s}(x_i) = \bar{s}(y_i) \text{ for all } i \in \{1, .., n\}.$$

From assumption 2, we have that $((\bar{s}(x_1),...,(\bar{s}(x_n)) \in \mathbb{R}^{\mathfrak{A}}.$

Since $\bar{s}(x_i) = \bar{s}(y_i)$ for all $i \in \{1, ..., n\}$, we have that $((\bar{s}(y_1), ..., (\bar{s}(y_n))) \in \mathbb{R}^{\mathfrak{A}}$.

Therefore, $\mathfrak{A} \models R(y_1,...,y_n)[s]$, by definition of satisfaction (1.7.4).

Thus, we have proven that $\mathfrak{A} \models ((R(x_1,...,x_n) \rightarrow R(y_1,...,y_n))[s].$

Thus, we have proven that $\mathfrak{A} \models [(x_1 = y_1) \land ... \land (x_n = y_n)] \rightarrow ((R(x_1, ..., x_n) \rightarrow R(y_1, ..., y_n))[s].$

Therefore, (E3) is valid.

(a)

The structure $(\mathbb{N}, <)$ DOES NOT SATISFY the axioms for dense linear order without endpoints.

The structure does not satisfy axiom 4, $(\forall x)(\forall y)[x < y \rightarrow (\exists z)(x < z \land z < y)]$, since for x = 1 and y = 2, we have no $z \in \mathbb{N}$ such that $1 < z \land z < 2$.

(b)

The structure $(\mathbb{Z}, <)$ DOES NOT SATISFY the axioms for dense linear order without endpoints.

The structure does not satisfy axiom 4, $(\forall x)(\forall y)[x < y \rightarrow (\exists z)(x < z \land z < y)]$, since for x = 1 and y = 2, we have no $z \in \mathbb{Z}$ such that $1 < z \land z < 2$.

(c)

The structure $(\mathbb{Q}, <)$ SATISFIES the axioms for dense linear order without endpoints.

(d)

The structure $(\mathbb{R}, <)$ SATISFIES the axioms for dense linear order without endpoints.

(e)

The structure $(\mathbb{C}, <)$ DOES NOT SATISFY the axioms for dense linear order without endpoints with the given interpretation of <.

The structure does not satisfy axiom 5, $(\forall x)(\exists y)(\exists z)(y < x \land x < z)$.

Consider x = 0 + 0i. There is no y such that y < 0 since if y = a + ib where $a, b \in \mathbb{R}$, then $a^2 + b^2 \ge 0$. So we have $y \ge 0 = x$. So we cannot have $(y < x \land x < z)$ for any $y, z \in \mathbb{C}$.

Note: I am following the typsetting and using conventions of writing deductions as the sample solutions on pages 296-298. Like the book, I will omit the subscripts and superscripts for term substitution for (Q1) and (Q2).

(a)

Required: Show that $\vdash t = t$ for all terms t.

Consider the following. Note, that t is an arbitrary term.

1.
$$x = x$$
 (E1)
2. $(\forall x)(x = x)$ 1, $\vdash \alpha \text{ iff } \vdash \forall x \alpha$
3. $(\forall x)(x = x) \rightarrow (t = t)$ (Q1)
4. $t = t$ 2,3, (PC)

This shows that $\vdash t = t$ for all terms t.

Alternatively, we can show the above without using the fact that $\vdash \alpha$ iff $\vdash \forall x\alpha$.

Consider the following. Note that t is an arbitrary term.

1.
$$x = x$$
 (E1)
2. $[(y = y) \lor \neg (y = y)] \to (x = x)$ 1, (PC)
3. $[(y = y) \lor \neg (y = y)] \to (\forall x)(x = x)$ 2, (QR)
4. $(\forall x)(x = x)$ 3, (PC)
5. $(\forall x)(x = x) \to (t = t)$ (Q1)
6. $t = t$ 4, 5, (PC)

Again, this shows that $\vdash t = t$ for all terms t.

(b)

Required: Show that $\vdash (\forall x)(\exists y)(fx = y)$

Consider the following,

$$1. x = x (E1)$$

$$2. x = x \to fx = fx (E2)$$

3.
$$fx = fx$$
 1,2, (PC)

4.
$$fx = fx \to (\exists y)(fx = y)$$
 (Q2)

5.
$$(\exists y)(fx = y)$$
 3, 4, (PC)

6.
$$[(z=z) \lor \neg (z=z)] \to (\exists y)(fx=y)$$
 5, (PC)

7.
$$[(z=z) \lor \neg (z=z)] \to (\forall x)(\exists y)(fx=y)$$
 6, (QR)

8.
$$(\forall x)(\exists y)(fx = y)$$
 7, (PC)

(c)

Required: Show that $\vdash (\forall x)[(\forall y)(fx=fy)] \rightarrow (\exists z)[(\forall y)(z=fy)]$

By the Deduction Theorem, we will take $(\forall x)[(\forall y)(fx=fy)]$ as part of our set of axioms.

i.e. We will show
$$\{(\forall x)[(\forall y)(fx=fy)]\} \vdash (\exists z)[(\forall y)(z=fy)]$$

Consider the following.

1.
$$(\forall x)[(\forall y)(fx = fy)]$$

2.
$$(\forall x)[(\forall y)(fx = fy)] \rightarrow (\forall y)(fx = fy)$$
 1, (Q1)

3.
$$(\forall y)(fx = fy)$$
 1,2, (PC)

4.
$$(\forall y)(fx = fy) \to (\exists z)[(\forall y)(z = fy)]$$
 3, (Q2)

5.
$$(\exists z)[(\forall y)(z = fy)]$$
 3,4, (PC)

By the Deduction Theorem, this shows that $\vdash (\forall x)[(\forall y)(fx=fy)] \rightarrow (\exists z)[(\forall y)(z=fy)].$