#### **ECE284 Fall 21 W3S1**

Low-power VLSI Implementation for Machine Learning

**Prof. Mingu Kang** 

# **UCSD Computer Engineering**

#### **VGGNet**



#### **ResNet: Residual Network**





- 1st runner-up in ImageNet challenge in 2015 (3.57% (top-5 error rate))
- Residual network employed to enable very deep neural network without degradation in performance

"Deep Residual Learning for Image Recognition" <a href="https://arxiv.org/abs/1512.03385">https://arxiv.org/abs/1512.03385</a> Figure: <a href="https://towardsdatascience.com/cnn-architectures-a-deep-dive-a99441d18049">https://towardsdatascience.com/cnn-architectures-a-deep-dive-a99441d18049</a>

### ResNet: bottleneck layer



- 1x1 convolutions (bottleneck layer) are used to compute reductions before the expensive 3x3 and 5x5 convolutions.

### GoogleNet (Inception, 2015)







1x1 convolutions

3x3 convolutions

5x5 convolutions

3x3 max pooling

Different kernel size needed

Inception module

- Choice of right kernel size is important.
- A larger kernel is good for global information search whereas a smaller kernel is preferred for local information.
- Inception layer (GoogleNet) introduced

## GoogleNet (Inception, 2015)



- Intermediate classification layers (used only during the training)
- The layer makes its own decision and its loss are summed for the total loss
- This is to prevent the gradient vanishing problem in the deep network

# DenseNet (2017 CVPR)



A dense block in DenseNet

"Densely Connected Convolutional Networks" <a href="https://arxiv.org/abs/1608.06993">https://arxiv.org/abs/1608.06993</a>
Figure: <a href="https://towardsdatascience.com/review-densenet-image-classification-b6631a8ef803">https://towardsdatascience.com/review-densenet-image-classification-b6631a8ef803</a>

### DenseNet: Channel-wise concatenation (2017 CVPR)



#### Channel-wise concatenation

- Each layer receives feature maps from all preceding layers
- So, network can be thinner and compact, i.e. number of channels can be fewer.
- Vanishing gradient issue alleviated

#### **DenseNet**



- Same feature map size maintained inside the same dense block (by using padding)
- This allows the concatenation.
- Between dense blocks the size is reduced via convolution and pooling operation

# [CODE] VGGNet ResNet Training (HW3\_prob1)

#### Number Representation (Quantization) in ML Hardware

#### IBM Research is Leading in Reduced Precision Scaling







Google's first Tensor Processing Unit (TPU) on a printed circuit board (left); TPUs deployed in a Google datacenter

"A TPU contains 65,536 8-bit integer multipliers."



https://www.ibm.com/blogs/research/2018/12/8-bit-precision-training/
https://www.intel.com/content/dam/www/public/us/en/documents/product-overviews/dl-boost-product-overview.pdf

https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

### Why number representation matters?



- Intuitively, by reducing the input bit precision by a factor of S, the hardware complexity, e.g., area, energy, and power, reduces by S<sup>2</sup>.
- Simple and effective solution to improve efficiency

4bit x 4bit array multiplier

#### Number Representation in Inference and Training

#### IBM Research is Leading in Reduced Precision Scaling



- Inference is based on fixed-point representations
- Training is based on **floating-point** representation to represent small error and gradient values

#### Fixed-point Representation: Uniform Quantization



- Quantization step size:

$$\Delta = \frac{v_{max} - v_{min}}{2^B}$$

- Quantization error bounds:

$$|e| < \frac{\Delta}{2} = \frac{v_{max} - v_{min}}{2^{B+1}}$$

- Small bit precision  $\boldsymbol{B}$  creates large quantization error

### 2's Complement Number System

X is B-bit 2's complement number with  $\{x_{B-1}, x_{B-2}, \dots, x_0\}$ Here,  $x_b \in \{0,1\}$ , and  $-1 \le X < 1$ .  $x_{B-1}$  represents sign of the number (1: negative, 0 positive).

$$X = -x_{B-1} + \sum_{b=0}^{B-2} x_b 2^{b-B+1}$$

## Sign and Magnitude Number System

X is B-bit sign and magnitude number with  $\{x_{B-1}, x_{B-2}, ..., x_0\}$ Here,  $x_b \in \{0,1\}$ , and  $-1 \le X < 1$ .  $x_{B-1}$  represents sign of the number.

$$X = (1 - 2x_{B-1}) * \sum_{b=0}^{B-2} x_b 2^{b-B+1}$$

## Floating-point Number Representation

IEEE 754 standard (32b Single precision)

| 31   | 30-23    | 22-0     |
|------|----------|----------|
| Sign | exponent | mantissa |

$$0 \le \text{mantissa} < 1$$

Case1) Normal number (when exponent > 0 && exponent bits not all 1):

$$X = (-1)^S \times (1 + mantissa) \times 2^{exponent-127}$$

Case2) Denormal number (when exponent = 0):

$$X = (-1)^S \times (0 + mantissa) \times 2^{exponent-127}$$

Case3) When exponent and mantissa = 0: X = +0 or -0

Case4) When all exponent bit = 1, and mantissa = 0:  $X = +\infty$  or  $-\infty$ 

Case5) When all exponent bit = 1, and mantissa  $\neq$  0: X = NaN

#### **Error Patterns in Floating-point Number**

#### **Swamping error** example:



- When small number is added to large number, the small number is swamped

## Key Computing Kernel: Multiply-and-accumulation (MAC)

$$sum = \sum_{i=1}^{N} X_i W_i$$



- Multiply-and-accumulation (MAC) is a key computing kernel of DNN
- >7-80% of power consumption comes from MAC
- Multiplication and addition are designed together as a single unit, e.g., FMA
- MAC is considered as two operations (multiplication and addition)
- Output of multiplier needs twice more bit precision
- psum bit precision  $B' = 2B + \log_2 N$

### **Multi-input MAC**



|      | Format                                                      | Instruction                                                    |
|------|-------------------------------------------------------------|----------------------------------------------------------------|
| INT4 | Two's complement                                            | R = $\sum_{8} A_{i}$ . Bi + C<br>(A,B: 8x INT4;<br>R,C: INT16) |
| INT2 | Weights:<br>[-4, -1, 1, 4]<br>Activations:<br>unsigned int2 | R = $\sum_{16} A_i$ . Bi + C<br>(A,B: 16x INT2;<br>R,C: INT16) |

<sup>&</sup>quot;A 7nm 4-Core AI Chip with 25.6TFLOPS Hybrid FP8 Training, 102.4TOPS INT4 Inference and Workload -Aware Throttling" ISSCC21

- Accumulation is taking more power in highly quantized system
- Multi-input MAC is employed

### **Example of Bit Precision Assignment**



$$sum = \sum_{c=1}^{1024} \sum_{i \in 5 \times 5} X_{ci} W_{ci}$$

- psum bit precision  $B' = 2B + \log_2(25 * 1024)$
- When B = 8, 31 bits needed for B'

# **Example: Intel VNNI**



