

Classifying Propositional Content in annotated Argumentative Discourse Units

Natural Language Processing
M.EIC - FEUP
Assignment 1

André Nascimento, up201806461@up.pt Gonçalo Alves, up201806451@up.pt

21st April, 2022

Problem definition

In the scope of the DARGMINTS project, an annotation project was carried out which consisted of annotating argumentation structures in opinion articles published in the Público newspaper:

- Selecting text spans that are taken to have an argumentative role (ADUs);
- Connecting such ADUs through support or attack relations;
- 3. Classifying the propositional content of ADUs as propositions of **Fact**, **Value**, or **Policy**. Within propositions of **value**, distinguish between those with a **positive** (+) or **negative** (-) connotation.

Our **goal** is to develop the **best classifiers** possible for this multi-class classification problem.

Problem definition

OpArticles

Content of each annotated ADU span, its 5-class classification, its annotator and the document from which it has been taken

OpArticles_ ADUs Details for each opinion article that has been annotated, including the full article content

Assignment Steps

Initial Analysis

01 OpArticles

- 373 rows
- 8 columns (title, authors, body, meta_description, topics, keywords, publish_date and url_canonical)
- 8 unique topics
- 0 missing values

OpArticles_ADUs 02

- 16743 rows
- 5 columns (annotator, node, ranges, tokens and label)
- 12008 unique ADUs
- 0 missing values

Fig. 1 Distribution of articles per annotator

Fig. 2 Distribution of articles per year

Fig. 3 Distribution of Labels

Fig. 4 Distribution of Labels regarding Annotators

Fig. 5 Distribution of Topics

Fig. 6 Distribution of Topics regarding Annotator

Fig. 7 Tokens length

Fig. 8 Tokens WordCloud

Relevant fields used

Preprocessing

Preprocessing

01 Remove non alphabetic characters

re.sub('[^a-zA-Z\u00C0-\u00ff]', ' ', ...)

02 Lowercase tokens

03 Remove stopwords

Portuguese stopwords from nltk.corpus except 'não'

04 Apply stemming

PorterStemmer, Snowball PortugueseStemmer, RSLPStemmer

Stemmer Comparison

Tab. 1 Different Stemmers Metrics

	Preprocess time (s)	Corpus Set length	Number of features
PorterStemmer	4.14	11761	15170
Snowball PortugueseStemmer	4.63	11753	9148
RSLPStemmer	7.98	11753	8256

Representation Techniques

Vectorizers

Bag of Words

Ignores word sequence

CountVectorizer converts a collection of text documents to a matrix of token counts.

One hot Encoding

1-hot vector

CountVectorizer with binary parameter - represent each review as a 1-hot vector with a 0 or a 1 for each of the features.

Tf-idf

TF of a word is multiplied by its IDF

TfidfVectorizer - provides a way to directly obtain TF-IDF weighted features.

	erent Vectorizers Metrics	Vectorizer fit_transform time (s)	Number of features	Model fit-predict time (s)	Accuracy	F1-score
Bow		0.38		6.57	0.48	0.49
1-hot	Unigram ngram_range= (1,1)	0.30	8256	8.15	0.49	0.49
TF-IDF	(1,1)	0.37		0.37	0.50	0.50
Bow		0.51		57.79	0.39	0.42
1-hot	ngram_range= 0.67	61558	56.99	0.39	0.42	
TF-IDF	(2,2)	0.71		3.57	0.39	0.43
Bow		0.83		66.67	0.46	0.47
1-hot	UniBigram ngram_range= (1,2)	ngram_range= 0.83	69814	67.39	0.46	0.47
TF-IDF	(1,2)	0.67		5.01	0.52	0.52

Vectorizer Parameters

TfidfVectorizer with ngrams=(1,2) will be the vectorizer used in the pipeline since it leads to considerably **faster classification times** and **better metrics**. The following parameters were also explored:

Tab. 3 Addition Parameters to *TfidfVectorizer*

Additional Parameters	Vectorizer fit_transform time (s)	Number of features	Model fit-predict time (s)	Accuracy	F1-score
strip_accents='unicode'	1.30	69263	5.05	0.52	0.52
min_df=3 max_df=0.8	1.64	19262	1.03	0.52	0.52

Tuning the document frequency parameters **reduced drastically** the **number of features** and consequently the **classification times**, which will be useful for the classification tasks.

Word Embeddings

Besides representation with **Vectorizers**, we also tested **text classification** with a **Word2Vec model** trained on the **body** of the articles, and some **pre-trained models from NILC**.

Tab. 4 Word Embeddings Models

Model	Number of features	Accuracy	F1-score
Article's body	2250	0.49	0.35
Word2Vec CBOW 100		0.48	0.47
Word2Vec Skip-gram 100	1500	0.48	0.46
FastText CBOW 100	1500	0.40	0.41
FastText Skip-gram 100		0.48	0.48
FastText Skip-gram 1000	15000	0.51	0.51

Classification & Results

Baseline Classification

Tested a wide range of Classifiers with default parameters in order to assess the base performance.

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=0, stratify=y)
```

Fig. 9 Train/Test split Function

A stratified train/test split was previously applied in order to have the same label proportion in the train and test sets

Classifier	Elapsed Time (s)	Accuracy	Precision	Recall	F1-score	Tab. 5 Tested Classifiers with default
MultinominalNB	0.95	0.51	0.53	0.51	0.41	parameters
ComplementNB	1.21	0.52	0.52	0.52	0.52	
SGD	29.15	0.54	0.53	0.54	0.52	
LogisticRegression	194.34	0.53	0.54	0.53	0.48	
SVC (max_iter=100)	225.65	0.41	0.38	0.41	0.35	A
Perceptron	20.72	0.49	0.50	0.49	0.49	
DecisionTree	793.28	0.48	0.48	0.48	0.48	N
RandomForest	242.21	0.54	0.53	0.54	0.52	
KNeighbors	14.88	0.41	0.41	0.41	0.40	
XGBoost	605.67	0.52	0.51	0.52	0.44	22

SGD - Best base algorithm

Elapsed time: 29.15s							
Classification report: precision recall f1-score support							
				(100 Mg)			
Fact	0.46	0.31	0.37	733			
Policy	0.55	0.29	0.38	133			
Value	0.57	0.77	0.66	1621			
Value(+)	0.47	0.30	0.36	282			
Value(-)	0.52	0.37	0.43	580			
accuracy			0.54	3349			
macro avg	0.51	0.41	0.44	3349			
weighted avg	0.53	0.54	0.52	3349			

Fig. 10 Classification Report

Fig. 11 SGD Confusion Matrix

Hyperparameter Tuning

Fig. 12 GridSearch Function

Applied only to the top 2 base algorithms, **SGD** and **RandomForest** due to time constraints.

Perform *GridSearch* through the parameters to obtain the best model regarding f1-score.

StratifiedKFold is used in order to have the same label proportion in the several train and validation sets.

Hyperparameter Tuning

```
SGD
                         'loss': ['log', 'hinge', 'perceptron'],
                         'penalty': ['elasticnet', 'l1', 'l2'],
                         'class weight': [None, 'balanced']
Fit time: 6288.64s
Best score: 0.4924921335782078
Best parameters: {'class_weight': None, 'loss': 'hinge', 'penalty': '12'}
Best estimator: SGDClassifier(early stopping=True, n jobs=-1, random state=0)
Classification report:
                           recall f1-score
              precision
                                             support
                                      0.29
        Fact
                  0.52
                            0.20
                                                733
      Policy
                  0.67
                            0.25
                                     0.36
                                                133
       Value
                                      0.66
                  0.54
                            0.85
                                               1621
    Value(+)
                  0.59
                            0.15
                                      0.23
                                                282
    Value(-)
                  0.47
                            0.34
                                      0.39
                                                580
                                      0.53
                                               3349
    accuracy
                  0.56
                            0.36
                                      0.39
                                               3349
   macro avg
weighted avg
                  0.53
                            0.53
                                      0.49
                                               3349
```

Fig. 13 SGD Classification Report and Parameter List

Random Forest 'criterion': ['gini', 'entropy'], 'max features': ['sqrt', 'log2'], 'max depth' : [30, 50, 100], Fit time: 2798.36s 'class weight': [None, 'balanced' Best score: 0.49320507397648533 Best parameters: {'class weight': 'balanced', 'criterion': 'entropy', 'max depth': 100, 'max_features': 'sqrt'} Best estimator: RandomForestClassifier(class weight='balanced', criterion='entropy', max depth=100, max features='sqrt', n jobs=-1, random state=0) Classification report: recall f1-score support precision 0.38 0.45 0.41 733 Fact Policy 0.58 0.49 0.53 133 Value 0.59 0.61 0.60 1621 Value(+) 0.42 0.35 0.38 282 Value(-) 0.48 0.37 0.42 580 0.51 3349 accuracy 0.49 0.45 0.47 3349 macro avg weighted avg 0.51 0.51 0.51 3349

Fig. 14 Random Forest Classification Report and Parameter List

Additional Preprocessing - Resampling

Since the dataset is very **imbalanced**, we initially tried some basic resampling techniques, but all yield **worst** results.

- Undersampling
 - RandomUnderSampler (f1-score: 0.36)
 - NearMiss (f1-score: 0.24)
- Oversampling
 - o RandomOverSampler (f1-score: 0.46)
 - SMOTE (f1-score: 0.48)

Another strategy to balance the dataset is to perform **data augmentation** through **translations**: translate the tokens from the minority classes to a random language and then translate it back to portuguese.

```
Original sentence:
Estou a estudar para engenheiro, o Porto berra quando eu passo.
Gosto muito de processamento de linguagem natural
Iter 0 with lang te
['Estou a estudar engenharia, grita Porto quando passo. Eu amo
o processamento de linguagem natural']
Iter 1 with lang de
['Estou a estudar engenharia, grita Porto ao passar. Eu
realmente gosto de processamento de linguagem natural']
Iter 2 with lang nl
['Estou estudando para ser engenheiro, grita Porto quando
passo. Eu realmente gosto de processamento de linguagem
natural']
```

Fig. 15 Example of back translation in three different languages

Additional Preprocessing - Data Augmentation

A **train/test split** was executed in the original dataset and the **data augmentation** was only performed in the train set in order to avoid data leakage to the test set.

A base **SGDClassifier** was used in these new sets to evaluate the performance:

Elapsed time: 53.67s							
Classification report:							
	precision	recall	f1-score	support			
Fact	0.42	0.45	0.43	733			
Policy	0.35	0.65	0.46	133			
Value	0.65	0.39	0.49	1621			
Value(+)	0.27	0.57	0.37	282			
Value(-)	0.43	0.57	0.49	580			
accuracy			0.46	3349			
macro avg	0.43	0.53	0.45	3349			
weighted avg	0.52	0.46	0.46	3349			

Fig. 16 SGD Classification Report after data augmentation

Fig. 17 SGD Confusion Matrix after data augmentation

Additional Preprocessing - Majority Voting

The last experiment consisted in **removing duplicate** annotated ADUs, only **keeping one** with the **label that most annotators agreed** on.

Elapsed time: 9.05s							
Classification report: precision recall f1-score support							
Fact Policy Value Value(+) Value(-)	0.49 0.34 0.53 0.34 0.42	0.39 0.21 0.74 0.13 0.23	0.43 0.26 0.62 0.19 0.29	637 107 1135 170 353			
accuracy macro avg weighted avg	0.42 0.48	0.34 0.50	0.50 0.36 0.48	2402 2402 2402			

Fig. 18 SGD Classification Report after majority voting

Fig. 19 SGD Confusion Matrix after majority voting

Results Discussion

Results Discussion

Vectorizer parameter exploration proved to be helpful to reduce classification times and achieved the same scores with fewer features.

Simple resampling techniques and even data augmentation did not enhance performance.

Unable to explore **parameters** on all models since *GridSearch* would take **too long**.

After all the experimentations, **baseline SGD** was still the classifier with the **best** scores

Conclusions

Conclusions

- This project was hampered by poor data quality;
- Large amount of features impacted the classification times, and therefore the time spent in this project;
- Results below expectation.

Future Work

- Gather new data, related to ADUs classifications, to balance the dataset.
- Explore more preprocessing techniques;
- Delve into POS tagging and NER techniques;

Thank you!

Do you have any questions?

References

- Sklearn documentation
- Common pitfalls and recommended practices
- Classificação de Textos em Python
- Machine Learning, NLP: Text Classification using scikit-learn, python and NLTK.
- Multi-Class Text Classification Model Comparison and Selection
- Word2Vec and FastText Word Embedding with Gensim
- <u>Data Augmentation in NLP: Best Practices From a Kaggle Master</u>
- How I handled imbalanced text data