Name:	
-------	--

ID:																		
ID:	• •	 •	•	• •	• •	•	•	•	=	 •	•	•	=	•	•	•	=	•

Sec:

- 1. What is the oxidation number for each of the following elements? (1* 3 = 3 points) (e.n.'s: C = 2.5, O = 3.5, H = 2.1)
- a. Co in Co (NO₃)₃
- b. O in HCHO

- c. I in IO₄₋
- 2. Draw energy diagrams of exothermic and endothermic reaction with low activation energy. (4 points)
- 3. What kind of reaction is shown below (between hydrogen peroxide and magnesium sulfite) (1+2+2=5 points)
 - a. $H_2O_2(aq)$ + $MgSO_3(aq)$ $MgSO_4(aq)$ + H_2O

Precipitation gas formation acid-base neutralization redox reaction

- b. Write the total ionic equation for the reaction shown in Question a.
- c. Now convert the total ionic equation in Question b into its net ionic equation.

- 4. Write the formula for the precipitate that forms when a solution of Cu(NO₃)₂ is added to a solution of NaOH. (2 points)
- 5. Explain which of the compounds represent the MOST OXIDIZED and MOST REDUCED class? (3+3 = 6 points)

Answer with the number of the compound:

Most oxidized:

Most reduced:

7. (5 points) Examine the figure and below answer the following questions

- a) What type of reaction is this
- b) What is indicated by the letter A
- c) What is indicated by the letter B
- d) What is indicated by the letter C
- e) What is indicated by the letter D