

DEPARTMENT OF COMPUTER SCIENCE

Seminar

E-Learning

Adaptives Lernen

Eingereicht am:

14. Juli 2016

Eingereicht von: Mervyn Kilian McCreight

> Betreut von: Dr. Olaf Schröder

Inhaltsverzeichnis

Αŀ	Abbildungsverzeichnis			Ш
Ta	Tabellenverzeichnis			IV
1	 1 Einführung 1.1 Die Idee von adaptivem Lernen			
2	2 Adaptives Lernen in der Lerntheorie 2.1 Aptitude Treatment Interaction 2.2 Adaptivität von Lernen 2.3 Adaptionsmaßnahmen 2.4 Adaptionszwecke 2.4.1 Fördermodell 2.4.2 Kompensationsmodell 2.4.3 Präferenzmodell 2.5 Definitionsebenen von Adaptivität		 	. 3 . 3 . 3 . 3 . 4
3	3.1 Definition			. 6 . 7 . 8 . 9 . 9 . 9 . 9 . 9 . 9
4	4 Beispiel (noch aussuchen)			10
5	5 Zusammenfassung			11
Lit	Literaturverzeichnis			12

Abbildungsverzeichnis

3.1	Prinzip eines klassischen tutoriellen Systems	6
3.2	Beispielbild der Pocket Fahrschule Handy-Applikation	7
3.3	Struktur eines Intelligenten Tutoriellen Systems	8

Tabellenverzeichnis

Einführung

- 1.1 Die Idee von adaptivem Lernen
- 1.2 Adaptivem Lernen im Vergleich mit dem klassischen Modell

Adaptives Lernen in der Lerntheorie

Je länger das Verständnis von der Fähigkeit eines Menschen zu Lernen Gegenstand der Forschung ist, desto mehr gerät der Mensch als Individuum auch in den verschiedenen Lehrtheorien in den Vordergrund. So wird in einer der ältesten Lerntheorien des Menschen, dem Behaviorismus, das Gehirn des Menschen noch als Black-Box gesehen, wodurch die Individualität des Lernens eines jeden Menschen fast vollständig außer Acht gelassen wird. Erst in späteren Lerntheorien wie dem Konstruktivismus stellte sich heraus, dass der Lernprozess eines Menschen theoretisch für jeden Menschen individuell unterschiedlich sein kann. Aufgrund dieser Erkenntnisse erscheint es logisch, dass auch die Form des Lehrens auf den Menschen als Individuum eingehen sollte.

Was heißt hierbei adaptiv¹? Das Wort adaptiv beschreibt nicht als die Fähigkeit der Anpassung. Es geht bei Adaptivem Lernen also um angepasste Wissensvermittlungsformen.

Adaptives Lernen in der Lerntheorie beschreibt die Anpassung von Lehrumgebungen an die Bedürfnisse eines Lernenden oder einer Gruppe von Lernenden, um die Lernsituation zu verbessern. Ziel von Adaptivem Lernen ist es, den Unterricht in der Art anzupassen, dass ein Lernender genau die Information und das Wissen vermittelt bekommt, dass für ihn relevant ist, um das Thema zu verstehen. Im optimalen Fall wird das Wissen jedem Lernenden in seiner für ihn individuell am besten geeignesten Form präsentiert.

Vereinfacht ausgedrückt ist Adaptives Lernen nichts anderes, als das, was ein guter Lehrer spontan immer anwenden sollte: Auf seine Schüler im Einzelnen eingehen.

2.1 Aptitude Treatment Interaction

Das Konzept der Adaptivität basiert prinzipiell auf der Forschung des Aptitude-Treament-Interaktion Paradigmas. Hierbei handelt es sich um einen Ansatz zur Instruktion von Lernenden. Er besagt, dass eine Anpassung Lehrmethode an das Niveau der individuellen Lernfähigkeiten des Lernenden notwendig sind, um einen best möglichsten Lerneffekt zu erzielen. Das bedeutet, dass sich ausgehend von den Ausgangsvoraussetzungen ² in unterschiedlichen Lernumgebungen ³ unterschiedliche Lernerfolge zeigen. Forschungen bezüglich der Aptitude-Treatment-Interaktion zielen darauf ab, Informationen zur liefern, mit deren Hilfe es möglich ist, einzuordnen, welche Unterrichtsform sich für welche individuellen Voraussetzungen und Merkmale am besten eignen. [KH07, S. 203]

So stellte sich in den Forschungen heraus, dass Lerner mit niedrigerem Kenntnisstand und erhöhtem Angstniveau bezogen auf eine Unterrichtssituation in höherem Maße von einer hochstrukturierten Unterrichtsform mit vielen festen Vorgaben profitieren, als leistungsstärkere Lerner. Diese profitierten eher von einem gegensätzlichen Unterrichtsmodell mit vielen Freiheitsgraden. [HST, S.65]

¹lat. adaptare

²engl. Aptitude

³engl. Treatments

2.2 Adaptivität von Lernen

Auf Basis des Aptitude-Treatment-Interaktion Ansatzes entwickelte sich das Konzept des Adaptiven Lernens. Hierbei handelt es sich um eine Lehrform, deren Ziel es ist die Unterrichtsform möglichst optimal an die Lernvoraussetzungen des Lerners anzupassen, um die Effektivität des Lernens zu steigern. Konträr zum klassischen Frontalunterricht handelt es sich hierbei also um eine Lehrform, die sich sehr auf den Lerner als Individuum konzentriert.

2.3 Adaptionsmaßnahmen

Um eine Lernsituation adaptiv zu gestalten, werden Maßnahmen angewandt, die sich grundsätzlich in zwei unterschiedliche Kategorien einteilen lassen. So unterscheidet man zwischen Maßnahmen auf der Makro- und Mikroebene.

Maßnahmen in der Makroebene einer Lernumgebung beschreiben Aktionen auf Klassenebene. So werden zum Beispiel Gruppen nach Leistungsniveau eingeteilt, der Lernplan im Gesamten für diese Einteilungen gruppenindividuell angepasst. Eine weitere Maßnahme auf der Makroebene beschreibt die Einführung von kooperativem Lernen. So wird invididuelles Wissen der Lernenden über einen sozialen Austausch über eine bestimmte Thematik revidiert, integriert, neu organisiert oder weiter ausdifferenziert.

Dagegen stehen Maßnahemn, die eine direkte Interaktion und/oder Kommunikation zwischen Lehrer und Lernendem beschreiben. Diese werden als Maßnahmen in der Mikroebene bezeichnet. Durch die Beschäftigung mit einem Lernenden ist es dem Lehrer möglich, besser auf die individuellen Stärken und Schwächen eines Lernenden einzugehen. Das Ziel hierbei ist, den Unterrichtsinhalt und die Lernmaßnahmen besser auf jeden einzelen Lernenden anzupassen.

2.4 Adaptionszwecke

Betrachtet man die Frage Wie und Warum Adaptives Lernen eingesetzt wird, lassen sich drei Adaptionszwecke erkennen. Diese stellen dar, auf welche Aspekte des Lernenden als Individuum geachtet und eingegangen wird, um die Qualität und Effektivität des Lernens zu verbessern. Es wird zwischen dem Fördermodell, dem Kompensationsmodell und dem Präferenzmodell unterschieden.

2.4.1 Fördermodell

Das Ziel des Fördemodells ist es, Lerndefizite des Lernenden zu beseitigen. Meist wird dies durch eine Anpassung in Form von zusätzlichen Lerneinheiten erreicht. Hierfür müssen die Lerndefizite beispielsweise über zusätzliche Tests oder Prüfungen erkannt und beseitigt werden. [Leh10, S. 19]

2.4.2 Kompensationsmodell

Das Kompensationsmodell richtet sich auf Lernende mit unzureichenden Lernvoraussetzungen. Diese können beispielsweise durch Überforderung oder eine generell niedrige Motivation entstehen. Hier wird versucht, dem Lernenden durch geeignete Hilfestellung abhilfe zu leisten, um die Defizite zu kompensieren. [Leh10, S. 19]

2.4.3 Präferenzmodell

Anders als in den beiden vorherigen Modellen, in denen auf die Schwächen eines Lernenden eingegangen wird, sollen im Präferenzmodell die Stärken eines Lernenden nutzbar gemacht werden. Ist erkennbar, dass der Lernende in einem bestimmten Bereich über besondere Lernvoraussetzungen verfügt, sollen diese genutzt werden, um den Lernprozess für diesen Lernenden zu optimieren. [Leh10, S. 19]

2.5 Definitionsebenen von Adaptivität

Intelligente Tutorielle Systeme

Intelligente Tutorielle Systeme¹ sind eine um 1973 von Derek. H. Sleeman und J.R. Hartley definierte Art von computergesteuerten Lernprogrammen. Diese Art von Lernprogrammen waren der erste Ansatz, das in der Lerntheorie ergründete Adaptive Lernen im softwaregestützten e-Learning zu etablieren, um die Effizienz von Lernsoftware zu verbessern.

Intelligente Tutorielle Systeme erreichen ihre Adaptivität und Flexibilität durch eine individuell an den Benutzer angepasste Art von Lernangeboten. Das Verhalten während des Lernens, sowie die Leistungen während Lernüberprüfungen, oder interaktiven Aufgaben, werden bewertet, um die Präsentation der Lerninhalte zu wählen. Das bedeutet, dass ein Intelligentes Tutorielles System zu jeder Zeit versucht zu erkennen, wie ausgeprägt das Wissen eines Anwenders in der jeweiligen Thematik ist, um die zu vermittelnden Inhalte dementsprechend anzupassen, die dazu führen sollen ein definiertes Lernziel zu erreichen. So wird ein Anwender, der bisher keine Erfahrungen in einem Thema hat, nicht sofort mit komplexen Sachverhalten konfrontiert, sondern langsam in die Thematik eingeführt, bis er für die höheren Lernmaterialien bereit ist.

3.1 Definition

"Intelligente tutorielle Systeme (ITS) sind adaptive Mediensysteme, die sich ähnlich einem menschlichen Tutor an die kognitiven Prozesse des Lernenden anpassen sollen, indem sie die Lernfortschritte und -defizite analysieren und dementsprechend das Lernangebot generativ modifizieren sollen." [IK02, S. 555]

Die Intelligenz eines Intelligenten Tutoriellen Systems besteht dementsprechend in der Adaption der Lehrinhalte an den Wissensstand des jeweiligen Benutzers. Ein ITS versucht, vergleichbar mit einem menschlichen Lehrer, einen flexiblen und adaptiven Dialog mit dem Lernenden zu führen, indem es den Unterricht den Merkmalen und Fortschritten des Benutzers anpasst.

Signifikant für ein Intelligentes Tutorielles System sind hierbei folgende drei Hauptmerkmale:

Adaptivität Adaptivität beschreibt die Fähigkeit des Systems, sich selbstständig an den jeweiligen Benutzer anzupassen. Dies geschieht durch die Auswertung von Informationen über zur Verfügung stehenden Lerninhalten, Bewertung des Lernenden, sowie der Anwendung von definierten pädagogischen Strategien. Vergleichbar ist dies mit einer typischen Situation, mit der sich ein menschlicher Lehrer bei der Gestaltung seines Unterrichts konfrontiert sieht. Einem Lehrer ist es nicht möglich, während der Vorbereitung seines Unterrichts zu wissen, welche Strategien er später im Unterricht benötigen wird, um das zu übermittelnde Wissen optimal zu erklären. Er ist dazu gezwungen sich im Laufe des Unterrichts dynamisch an die Situation anzupassen.

¹kurz ITS

Flexibilität Die Flexibilität des Systems bezieht sich auf die Fähigkeit, die Darstellung der Lerninhalte zu verändern. Diese Fähigkeit wird durch die getrennte Realisierung der Wissensbasis und der tutoriellen Komponente ermöglicht. Diese beiden Begriffe werden im Laufe dieser Ausarbeitung näher erläutert.

Diagnosefähigkeit Die Diagnosefähigkeit ist ein weiterer Kernaspekt eines Intelligenten Tutoriellen Systems. Sie beschreibt die Fähigkeit, den aktuellen Wissensstand, sowie weitere Kriterien des Lernenden zu analysieren, um so Rückschlüsse über seine themen- und lernspezifische Kompetenz zu bewerten. Auf diese Art und Weise versucht ein Intelligentes Tutorielles System ein Modell des Lernenden abzuleiten, um darauf basierend eine passende individuelle Lehrstrategie für den Lernenden zu entwickeln. Ohne diese Fähigkeit wäre ein ITS nicht dazu in der Lage, seine Inhalte auf eine sinnvolle Art und Weise individuell an einen Lerner anzupassen.

Wichtig ist, dass der Lernablauf weiterhin benutzergesteuert ist. Der Benutzer steuert selbst, in welcher Geschwindigkeit er seinen Lernprozess gestaltet. Das Intelligente Tutorielle System bietet dem Benutzer hierbei jedoch nur zu der Bewertung seines Wissensstand passende Lernmaterialen an, um mit dem Lernen fortzufahren. So soll gewährleistet werden, dass er Lernende das Lernziel auf einem für ihn optimalen Weg erreicht.

3.2 Unterschiede zu klassischen tutoriellen Systemen

Um zu verstehen, wodurch sich Intelligente Tutorielle Systeme von den früheren klassischen Tutoriellen Systemen unterscheiden, muss zunächst die Funktionsweise von klassischen Tutoriellen Systemen erörtert werden.

Bei klassischen Tutoriellen Systemen handelt es sich ebenfalls um Lernsoftware, die einem Lernenden auf (multi)mediale Art und Weise Lehrstoff präsentiert, um ein definiertes Lernziel zu erreichen. Es handelt sich hierbei jedoch nicht um reine Präsentationssysteme.

Abbildung 3.1: Prinzip eines klassischen tutoriellen Systems

In der Abbildung ist erkennbar, dass tutorielle Systeme zusätzlich zur reinen Präsentation der Lehrinhalte, zwischendurch einige Fragen an den Lernenden stellen. Die Antworten auf diese Fragen, die der Lernüberprüfung dienen, beeinflussen den weiteren Verlauf des Lernkurses. Wichtig hierbei ist, dass lediglich der Ablauf des Lernkurses beeinflusst wird. So wird ein Lehrinhalt bei unzureichendem Ergebnis in der Leistungsüberprüfung solange wiederholt, bis der Lernende dazu in der Lage ist, die Fragestellung korrekt zu beantworten. In einem tutoriellen System erhält der Lernende üblicherweise sofort Feedback auf seine erbrachte Leistung. Bei einer falschen Antwort kann das beispielsweise die

Angabe der korrekten Lösung, oder ein Hinweis auf den richtigen Lösungsweg sein. Dieses Feedback simuliert hierbei die Rolle eines Tutors.

Klassische tutorielle Systeme lassen sich in der Regel dem behavioristischem Lernparadigma zuordnen. Die Software repräsentiert eine absolute Lehrautorität, die dem Lernenden Wissen präsentiert. Die Bewertung von Antworten beschränkt sich auf falsch oder richtig.

Ein einfaches Beispiel für ein klassisches tutorielles System ist das Lernen für die theoretische Fahrschulprüfung mit Hilfe einer Handy-Applikation. Klassisch werden hierbei die aus den offiziellen Fragebögen bekannten Fragen repetetiv präsentiert, und der Benutzer dazu aufgefordert, eine Antwort auszuwählen.

Abbildung 3.2: Beispielbild der Pocket Fahrschule Handy-Applikation

Tut er dies, wird ihm unmittelbar nach der Eingabe der Antwort vermittelt, ob diese richtig oder falsch war. Bei komplexeren Fragestellungen wird, je nach Applikation, zusätzlich erläutert warum die korrekte Lösung korrekt ist. Nach diesem Verfahren wird fortgefahren, bis der Lernende alle vorhandenen Fragen korrekt beantwortet hat.

Intelligente Tutorielle Systeme versuchen darüber hinaus die Erkenntnisse neuerer Lernparadigmen, wie zum Beispiel dem Kognitivismus zu berücksichtigen. Im Gegensatz zu einem klassischen System kann ein ITS individuelle Kritik an einen Lernenden formulieren. Der präsentierte Lehrinhalt ist nicht statisch, also in jedem Fall gleich, sondern angepasst an die individuellen Bedürfnisse eines Lernenden. Auf diese Weise sind ITS dazu in der Lage auch komplexere Sachverhalte zu vermitteln.

3.3 Struktur

Wie jede Software entsprechen auch Intelligente Tutorielle Systeme einer klar definierten Architektur. In der Abbildung ist zu sehen, dass ein Intelligentes Tutorielles System aus vier Hauptkomponenten besteht, die getrennt voneinander implementiert werden.

Die Kanten des Graphen, unter hinzunahme ihrer Beschriftungen, beschreiben die Art der Kommunikation zwischen den einzelnen Komponenten. Man sieht, dass die einzige Kommunikation zwischen dem Lernenden und dem System über die bereitgestellte Benutzerschnittstelle statt findet. Ein beispielhafter Ablauf könnte sein:

Abbildung 3.3: Struktur eines Intelligenten Tutoriellen Systems

Der Schüler löst eine Aufgabe. Über die Benutzerschnittstelle wird dessen Lösung an das Lernermodell weitergeleitet. Das Lernermodell erhält gleichermaßen vom Wissensmodell die Musterlösung der zu lösenden Aufgabe. An dieser Stelle werden die beiden Lösungsansätze verglichen, um mit Hilfe dieses Vergleichs den Wissensstand und die Verhaltensweisen des Lernenden abzuleiten. Das Ergebnis dieser Analyse wird dem Tutorenmodell mitgeteilt, welches auf Basis der Analyse geeignete pädagogische Lernstrategien für den Lernenden einschlagen kann, und ihm entsprechend seiner Bedürfnisse Feedback liefern kann. Dieses wird dem Lernenden über die Benutzerschnittstelle kommuniziert. Im weiteren Verlauf der Ausarbeitung wird nun genauer auf die einzelnen Komponenten eingegangen.

3.3.1 Das Wissensmodell

Das Wissensmodell wird häufig auch das Expertenmodul genannt. Es repräsentiert den vollständigen Wissensstand über die zu lehrende Thematik des Intelligenten Tutoriellen Systems. Das Wissensmodell ist zwingend notwendig, damit das System im Lernermodell dazu in der Lage ist, den aktuellen Wissensstand des Lerners zu analysieren. Es besteht aus einer statischen Ansammlung von Kenntnissen, Erfahrungen, Methoden und Allgemeinwissen. Das Wissen wird hierbei in drei unterschiedliche Kategorien eingeteilt:

Deklaratives Wissen Das deklarative Wissen repräsentiert "Wissen-Was" -Wissen, oder auch Faktenwissen. Es handelt sich hierbei um Sachverhalte, die auswendig gelernt werden können. Beispiele hierfür wären die Anzahl der Wirbel einer menschlichen Wirbelsäule, oder das Faktum, dass 1+1=2 ist. Dieses Wissen kann grundsätzlich durch verschiedene Formen repräsentiert werden. So kann es beispielsweise in Textform vermittelt werden, oder durch Schaubilder, die diese Fakten eindeutig erläutern.

Prozedurales Wissen Prozedurales Wissen wird auch praktisches Wissen oder "Wissen-Wie"-Wissen genannt. Es handelt sich hierbei um Erkenntnisse, auf welche Art und Weise man bekanntes Wissen anwenden kann, um bestimmte Problemstellungen zu lösen. Gemeint sind hiermit bestimmte Zusammensetzung von Regeln, oder auch Schemata, mit Hilfe deren man ein gewünschtes Ergebnis erreicht werden kann. Ein klassisches Beispiel für diese Art von Wissen ist die schriftliche Multiplikation. Man nehme als Beispiel die Lösung der Problemstellung 15*25=?. Dieses Problem kann schematisch in kleineren Schritten gelöst werden, und zwar aus der Addition der zwei Teilprodukte 15*20 und 15*5. Diese herangehensweise ist ein Beispiel für prozedurales Wissen, da es einen Satz von Regeln beschreibt, mit Hilfe deren

3 Intelligente Tutorielle Systeme

ich dazu in der Lage bin, schriftlich zu multiplizieren. Wichtig hierbei ist, dass die Basis von prozeduralem Wissen immer deklaratives Wissen ist. Prozedulares Wissen vermittelt stets Regeln, die deklaratives Wissen, möglicherweise verknüpft, verwenden, um komplexe Problemstellungen zu lösen.

Heuristisches Wissen Das heuristische Wissen beinhaltete im wesentlichen Erfahrungswerte von Lehrenden. Es wird daher auch häufig Erfahrungswissen genannt. Es handelt sich hierbei um typische Handlungsempfehlungen, die einem Lernenden dabei unterstützen können, die richtige Herangehensweise an eine Problemstellung zu finden. Im wesentlichen sind es Tipps, die sich im Laufe der Zeit in der Regel als hilfreich erwiesen haben.

Die Repräsentationsmöglichkeiten des Wissensmodells werden im wesentlichen in zwei verschiedene Modelle eingeteilt.

Zum einen gibt es das "Black-Box-Modell". In diesem Modell sind die Vorgehensweisen des Programms, mit deren Hilfe es dazu in der Lage ist, eine Problemstellung zu lösen, verborgen. Dem Lernenden sind lediglich die Ergebnisse der Lösungen einsehbar. Dieses Modell hat keine Ambitionen, menschliche Intelligenz nachzustellen. Der Vorteil hiervon ist die leichtere Umsetzung zur Lösung auch komplizierter Sachverhalte, da es nicht notwendig ist, darauf zu achten, dass die Lösungswege für einen Menschen nachvollziehbar sind.

Das alternative Modell ist das "Glass-Box-Modell". Dieses Modell erhebt den Anspruch, menschenähnliche Denkweisen zum Lösen von Problemstellungen nachzubilden. Auf diese Weise ist es dem Lernenden zu jeder Zeit der Problembearbeitung möglich, mit dem System zu interagieren. Das System ist nun in der Lage dem Lernenden Schritt für Schritt an die richtige Lösung heranzuführen.

Strukturell wird Wissen im Allgemeinen in der Regel in Form von semantischen Netzen modelliert. Bei semantischen Netzen handelt es sich um Graphen. Die Knoten des Graphen repräsentieren hierbei einzelne atomare Wissenseinheiten. Kanten, mit denen zwei Knoten verbunden werden können, zeigen, dass diese beiden Wissenseinheiten miteinander verknüpft sind. Eine übliche Form der Verknüpfungsbeziehung ist eine Voraussetzung. So kann die Kenntnis einer Wissenseinheit eine Voraussetzung dafür sein, dass eine andere Wissenseinheit erst gelernt werden kann.

- 3.3.2 Das Lernermodell / Das Tutandenmodell
- 3.3.3 Das Tutorenmodell / Die Didaktikkomponente
- 3.3.4 Die Benutzerschnittstelle
- 3.4 Formen der Modifikation zur Adaption
- 3.4.1 Sequenzierung
- 3.4.2 Analyse von Ergebnissen
- 3.4.3 Unterstützung beim Lösen von Problemen
- 3.4.4 Adaptive Präsentation
- 3.4.5 Adaptive Navigation

Beispiel (noch aussuchen)

Zusammenfassung

Literaturverzeichnis

- [HST] M. Hasselhorn, W. Schneider, and U. Trautwein. Lernverlaufsdiagnostik. Tests und Trends.
- [IK02] L.J. Issing and P. Klimsa. Information und Lernen mit Multimedia und Internet: Lehrbuch für Studium und Praxis. Beltz PVU. Beltz, PVU, 2002.
- [KH07] H.W. Krohne and M. Hock. *Psychologische Diagnostik: Grundlagen und Anwendungsfelder*. Kohlhammer Standards Psychologie. Kohlhammer, 2007.
- [Leh10] R. Lehmann. Lernstile als Grundlage adaptiver Lernsysteme in der Softwareschulung. Medien in der Wissenschaft. Waxmann, 2010.