Spatial Interaction Models

Lecture #25 | GEOG 510 GIS & Spatial Analysis in Public Health

Varun Goel

Outline

- Spatial Accessibility
 - Gravity models (spatial interaction)
 - Floating Catchment Areas
 - Calculation

Spatial Accessibility

- Merges measures of accessibility and availability
- Why do we need it?
 - Accessibility does not capture differences in the opportunities available (e.g., magnitude)
 - Container-based Availability has known issues (travel outside of container, MAUP)

Spatial Accessibility

- How do we measure it?
 - Floating Catchment Area (FCA) metrics
 - Simultaneously incorporates distance, supply, and potential demand
 - Based on a Gravity Model
 - Forces pulling people toward facilities
 - Attractive force conceptualized as potential spatial accessibility

Gravity Model

- Basics
 - Larger facilities will have a greater attraction (with constant distance)

Gravity Model

- Basics
 - Attraction increases with decreasing distance (and constant size)

(Modified) Gravity Model

Basics

- Attraction decreases with increasing competition for services (with constant distance and size)

Floating Catchments

- Catchments based on distance from facilities, rather than predetermined (admin) boundaries
 - Alleviates the problem of people's ability to access services outside of their spatial unit

FCA Metrics

- Provide a measurement of spatial accessibility
 - Combination of accessibility and availability
 - Output is a measurement for each population unit
 - e.g., for a county or zip code
 - Output is opportunities / person
 - Just like container-based methods, e.g., hospital beds / person

Two-Step FCA (2SFCA)

- Original methodology
 - Applied approach that built on theoretical gravity models of previous researchers
 - Reflection of the "time"
 - Simply allowed the boundaries to float
 - Two steps
 - Calculate demand at facilities
 - Calculate supply available to populations

Container approach

2SFCA, Step 1

2SFCA, Step 2

0.125

1/8

(facilities per person)

0.267 1/10+1/6(facilities per person)

2SFCA, Step 2

2 Step Floating Catchment Area

$$A_{i}^{G} = \sum_{j=1}^{m} \frac{S_{j} * f(d_{i,j})}{\sum_{k=1}^{k} P_{i} * f(d_{i,j})}$$
 Modified Gravity Formula

Step 1

$$D_{j} = \frac{\sum_{j}^{S_{j}} P_{i}}{\sum_{i \in [d_{i,j} < d]} P_{i}}$$

For each facility

Step 2

$$A_i = \sum_{j \in [d_{i,j} < d]} D_j$$

For each region

Containers

Distance Decay

- Enhanced 2SFCA (E2SFCA)
- Approach is similar, but integrate a distance decay function
 - Accessibility is not consistent within a catchment
 - Used a series of <u>service area</u> rings
 - Define distance decay function
 - Converts distance to a weight

Distance Decay

- We know the concept
 - How to apply?
 - As a distance decay function
 - A mathematical representation of the decrease in interaction with increasing distance

FIGURE 9.11. Different spatial impedance functions. T_{ij} is a measure of travel time or distance.

2 Step Floating Catchment Area

$$A_{i}^{G} = \sum_{j=1}^{m} \frac{S_{j} * f(d_{i,j})}{\sum_{k=1}^{k} P_{i} * f(d_{i,j})}$$
 Modified Gravity Formula

Step 1

$$D_{j} = \frac{\sum_{j}^{S_{j}} P_{i}}{\sum_{i \in [d_{i,j} < d]} P_{i}}$$

For each facility

Step 2

$$A_i = \sum_{j \in [d_{i,j} < d]} D_j$$

For each region

Enhanced 2 Step Floating Catchment Area

$$A_{i}^{G} = \sum_{j=1}^{m} \frac{S_{j} * f(d_{i,j})}{\sum_{k}^{K} F(d_{i,j})}$$
 Modified Gravity Formula

Step 1

$$D_{j} = \frac{S_{j}}{\sum_{i \in [d_{i,j} < d]} P_{i} * W_{i,j}}$$

For each facility

Step 2

$$A_i = \sum_{j \in [d_{i,j} < d]} D_j * W_{i,j}$$

For each region

Catchment without Distance Decay

Catchment without Distance Decay

Catchment without Distance Decay

Step 1
$$D_j = \frac{1}{14}$$
 (facilities per person)

Varun Goel, GEOG 510

Catchments with Distance Decay

Catchments with Distance Decay

Step 1
$$D_{j} = \frac{S_{j}}{\sum_{i \in [d_{i,j} < d]} P_{i} * W_{i,j}}$$

Step 1
$$D_j = \frac{1}{(1*0.98)+(1*0.9)+(3*0.8)+...}$$

Step 1
$$D_j = \frac{1}{8.57}$$

(facilities per person)

Step 2
$$A_i = \sum_{j \in [d_{i,j} < d]} D_j * W_{i,j}$$

Step 2
$$A_i = \frac{1}{8.57} * 0.9$$

Step 2
$$A_i = \frac{1}{9.52}$$
(facilities per person)

Catchments with continuous Distance Decay

Catchments with <u>continuous</u> Distance Decay

Catchments with continuous Distance Decay

Catchments with continuous Distance Decay

FCAs (recent advances)

- Competition
 - When assigning people to facilities in Step 1
- Suboptimal facility configuration
 - M2SFCA, Delamater, 2013
 - Considers suboptimal configurations
- Variable catchment sizes
 - Larger facilities will likely attract people from greater distances

FCAs (recent advances)

- Travel modes
 - Integrates varying travel modes (driving, public transit, walking)
- Health needs and Mobility
 - Modifies population by need estimates
 - Incorporates ability to overcome space
- Commuting patterns
 - Considers distance away from general commute to access services

FCA issue

- Biggest hurdle for potential spatial accessibility: there is no ground truth information
 - Evaluation of new or improved FCA metrics is difficult
 - Requires strong theoretical and mathematical foundation

Keywords

- Spatial Accessibility
- Gravity model
- Floating Catchment Area (FCA)
- Distance decay function