Usměrňovače a filtrace usměrněného napětí

Usměrňovač

- zařízení převádějící střídavý proud (AC) na stejnosměrný proud (DC). (výkonový polovodičový měnič)
- Polovodičové diody využívají vlastnosti PN přechodu tzv. vedou proud jen jedním směrem a vlastně tak propouštějí na svůj výstup jen jednu ze složek střídavého proudu.
- Propustný směr diody (křemíkové) je 0,7v.
- Polovodičová dioda má schematickou značku :

Důvod přeměny/usměrnění

Většina spotřebičů je napájena stejnosměrným el. Proudem. Stejnosměrný proud je nutné použít v obvodech spotřebičů, které obsahují součástky citlivé na směr proudu.

Z hlediska principu činnosti se rozlišují tři typy usměrňovačů:

- 1) neřízený usměrňovač (diodový)
- 2) řízený usměrňovač (tyristorový, polořízený nebo plně řízený)
- 3) aktivní (pulzní) usměrňovač (na bázi IGBT tranzistorů)

Jednocestné usměrnění

- propouští pouze jednu půlvlnu vstupního napětí. (viz obrázek)
- Má pouze poloviční účinnost
- Používá se především u zařízeních s velmi nízkým odběrem proudu.
- nejjednodušší zapojení usměrňovače
- používá jednu diodu

↑↑Zapojení jednocestného usměrňovače s jednou diodou .↑↑

Dvoucestný usměrňovač

1)Uzlové zapojení

- propouští obě půlvlny vstupního napětí.
- Pokud je usměrňovač napájen transformátorem s dvojitým sekundárním vinutím, lze jej realizovat pomocí dvou diod v tzv. uzlovém zapojení.

↑↑Zapojení dvoucestného usměrňovače v uzlovém zapojení.↑↑

2) Můstkové zapojení (Grätzův) můstek

 Nejpoužívanějším typem dvoucestného usměrňovače je <u>Graetzův (Grätzův) můstek</u>. Jde o zapojení využívající čtyři diody v můstkovém zapojení.

↑↑Zapojení dvoucestného usměrňovače do Gratzova můstkuí.↑↑

Filtrace

- Upravuje (filtruje) zvlněné napětí na výstupu usměrňovače na stále stejnosměrné napětí
- Průběh a velikost zvlnění je závislý na typu usměrňovače,na jednocestném usměrňovači je větší než na dvoucestném.

Srovnání zvlnění na jednotlivých typech usměrnovačů

- Výstupní napětí usměrňovače nemá stálou hodnotu, ale je periodicky proměnné. To popisuje činitel zvlnění φzv podle vztahu:

$$\phi_{zv} = \frac{U_{zv}}{U_0} \cdot 100 \quad \left[\%\right] \qquad \qquad \phi_v = \frac{U_{zv1}}{U_{zv2}} \doteq \frac{\phi_{zv1}}{\phi_{zv2}}$$

- Příliš velký činitel zvlnění (velké zvlnění) přímo na výstupu usměrňovače lze zmenšit zařazením filtru mezi usměrňovač a zátěž.
- Účinek filtru posuzujeme podle velikosti tzv. činitele vyhlazení φv, který udává, kolikrát daný filtr zmenšuje amplitudu první harmonické zvlnění (čím větší činitel vyhlazení bude, tím lepší jsou vyhlazovací účinky filtru)

Filtry dělíme obecně na pasivní a aktivní

- 1) Pasivní filtry
 - jsou složeny pouze z RLC součástek
 - I když lze vyrobit velmi kvalitní RLC filtry, často se používá součástek RLC zapojených s nějakým aktivním prvkem.

Nejčastěji jsou používány 2 základní typy pas. filtrů:
- filtry RC (pro malé proudy) dolní propust

- filtry LC (pro velké proudy) dolní propust

filtr RC

- Činitel vyhlazení φ v, kde však frekvenci ω je nutné násobit konstantou p počet usměrňovacích cest, protože např u dvoucestného usměrňovače je na vstupu filtru dvojnásobný kmitočet sítě.
- Vlastnosti méně účinnější než filtr LC, a proto se řadí do kaskád (více stupňů) $\phi_V = \frac{u_{ZV1}}{u_{ZV2}} = \frac{1}{A} = 1 + \frac{R}{R_Z} + j\omega \cdot p \cdot C \cdot R$

 V praxi se činitel vyhlazení φ v zjednodušuje do podoby:

$$\phi_V = \frac{u_{zv1}}{u_{zv2}} = \frac{1}{A} = 1 + \frac{R}{R_z} + j\omega \cdot p \cdot C \cdot R$$

p…počet usměrňovacích cest, tj. pro jednocestný usměrňovač…. p = 1, pro dvoucestný usměrňovač…. p = 2

filtr LC

- Činitel vyhlazení φ v lze odvodit obdobným způsobem jako u filtru RC. Běžná velikost činitele vyhlazení φ v je pro dvoucestný usměrňovač φ v = řádově několik desítek.

- Vlastnosti – účinnější než RC filtr.

Další filtry:

- filtr CRC Činitel vyhlazení lze spočítat ze zjednodušeného vztahu, φ v = m*ω*C*R, proměnná m znamená počet vyhlazovacích cest.
- filtr CLC Tento filtr je účinnější než filtr RC a navíc jeho účinek stoupá s druhou mocninou frekvence. Pro dvojcestné zapojení má filtr 4x větší účinnost než pro jednocestné zapojení.

2) Aktivní filtry

- jsou složitější, protože obsahuje výkonový tranzistor s velkým proudovým zesílením a pasivní RC člen, popř. integrované obvody.
- Pasivní RC člen udržuje konstantní napětí na bázi tranzistoru, to umožňuje, že báze odebírá zanedbatelný proud.

↑↑Aktivní vyhlazovací filtr↑↑