時系列データの解析

Background

Kaggle LANL Earthquake predictionにチャレンジ!

振動データから地震イベントを検出し発生時刻を予想する

Goal

振動データから地震発生時刻を予測する!

Requirement

- 振動データから地震発生時間を予測する
 - 1. 予測する時間はTestデータの最後尾からイベントまでの時間
 - 2. Testデータは地震イベント前後の0.0375[sec]間のデータ

Data

Kaggle competitionページからDL

	Train data	Test data
File数 [file]	1	2496
Data数 [1/file]	6.8 x E8	150000
Event数[1/file]	16	1
サンプリング周期[MHz]	4	4

• EDA

振幅分布、周波数分布にイベント特有のパターンが現れるはず…

=>時間方向に領域を分けるorウィンドウをずらして各領域で振幅、周波数分布を比較

Method

- 古典的手法
 - 外れ値検出(ホテリングのT2法など)

今回はこれをやる!

- 機械学習
 - 抽出した特徴量から回帰分析を行う
- DNN
 - 時系列データなのでRNNで予測ができるはず…

Method

入力した特徴量からイベント発生までの 時間を回帰で求める

機械学習モデル

赤:振動データ

青:イベント発生までの時間(予測)

DNNで特徴量を抽出 & イベント発生までの時間を回帰or異常検知

LSTMを用いたモデルを構築(調査中)

Evaluation

・平均絶対誤差で評価を行う

$$\mathrm{MAE} = rac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$
 y_j : 予測値 \bar{y} : 正解

目標は MAE < 1.321 !!

現在のTop Score