Hidden Markov Models

CISC 5800 **Professor Daniel Leeds**

Representing sequence data

 $\Pi_A = 0.3, \Pi_B = 0.7$

- Spoken language
- DNA sequences
- Daily stock values

Example: spoken language

F?r plu? fi?e is nine

- Between F and r expect a vowel: "aw", "ee", "ah"; NOT "oh", "uh"
- At end of "plu" expect consonant: "g", "m", "s"; NOT "d", "p"

Markov Models

Start with:

• *n* states: s₁, ..., s_n

• Probability of initial start states: $\Pi_1,...,\Pi_n$

• Probability of transition between states: $A_{i,j} = P(q_t=s_i | q_{t-1}=s_j)$

A dice-y example

• Two colored die

• What is the probability we start at s_△?

• What is the probability we have the sequence of die choices:

 s_A, s_A ?

• What is the probability we have the sequence of die choices:

$$s_B$$
, s_A , s_B , s_A ?

A dice-y example

• What is the probability we have the die choices s_B at time t=5

$$\Pi_A = 0.3, \Pi_B = 0.7$$

• Dynamic programming: find answer for q_t , then compute q_{t+1}

State\Time	t ₁	t ₂	t ₃
S _A	0.3		
S _R	0.7		

$$p_t(i) = \sum_j p(q_t = s_i | q_{t-1} = s_j) p_{t-1}(j)$$

 $p_{+}(i) = P(q_{+}=s_{i})$ -- Probability state i at time t

Hidden Markov Models

Probability observe value x_i

- Actual state q "hidden" when state is s_i State produces visible data o: $\phi_{i,j} = P(o_t = x_i | q_t = s_j)$
- Compute

Compute
$$P(\boldsymbol{O}, \boldsymbol{Q} | \boldsymbol{\theta}) = p(q_1 | \pi) \left(\prod_{t=2}^{T} p(q_t | q_{t-1}, \boldsymbol{A}) \right) \left(\prod_{t=1}^{T} p(o_t | q_t, \boldsymbol{\phi}) \right)$$

Probability of state sequence Probability of observation sequence, given states

Deducing die based on observed "emissions"

Each color is biased

Intuition – balance transition and emission probabilities

Observed numbers: 554565254556 – the 2 is probably from s_B Observed numbers: 554565213321 – the 2 is probably from s_A

Deducing die based on observed "emissions"

Each color is biased

0	P(o s _R)	$P(o s_B)$
1	.3	.1
2	.2	.1
3	.2	.1
4	.1	.2
5	.1	.2
6	.1	.3

- What is probability of o=5, q=B (blue) • We see: 5
- What is probability of **o**=5,3 | **q**=B, B? • We see: 5, 3

Goal: calculate most likely states given observable data

$$\operatorname{arg\,max}_{\mathcal{Q}} P(\mathcal{Q} \mid \mathcal{O}) = \operatorname{arg\,max}_{\mathcal{Q}} \frac{P(\mathcal{O} \mid \mathcal{Q}) P(\mathcal{Q})}{P(\mathcal{O})}$$

Define and use $\delta_t(i)$

$$= \arg \max_{Q} P(O \mid Q) P(Q)$$

$$\mathcal{S}_t(i) = \max_{q_1 \dots q_{t-1}} p(q_1 \dots q_{t-1} \wedge q_t = s_i \wedge O_1 \dots O_t)$$

 $\delta_t(i)$: max possible value of $\, {\rm P}({\bf q}_1,..,{\bf q}_t,{\bf o}_1,..,{\bf o}_t) \, {\rm given} \, {\rm we} \, \\ \, {\rm insist} \, {\bf q}_t {=} {\bf s}_i \,$

Find the most likely path from q_1 to q_t that

- $q_t=s_i$
- \bullet Outputs are o_1 , ..., o_t

Viterbi algorithm: $\delta_t(i)$

$$\delta_1(i) = \prod_i P(o_1|q_1 = s_i) = \prod_i \phi_{o_1,i}$$

$$\begin{split} & \delta_t(i) = P(o_t | q_t = s_i) \max \delta_{t-1}(j) P(q_t = s_i | q_{t-1} = s_j) = \\ & \phi_{o_t,i} \max_{j} \delta_{t-1}(j) A_{i,j} \end{split}$$

 $P(Q^*|O) = \operatorname{argmax}_{Q} P(Q|O) = \operatorname{argmax}_{i} \delta_t(i)$

Viterbi algorithm: bigger picture

Compute all $\delta_t(i)$'s

- At time t=1 compute $\delta_1(i)$ for every state i
- At time t=2 compute $\delta_2(i)$ for every state i (based on $\delta_1(i)$ values)
- ...
- At time t=T compute $\delta_T(i)$ for every state i (based on $\delta_{T-1}(i)$ values) Find states going from t=T back to t=1 to lead to max $\delta_T(i)$
- Now find state j that gives maximum value for $\,\delta_T(j)\,$
- Find state k at time T-1 used to maximize $\delta_T(j)$
- ...
- Find state z at time 1 used to maximize $\delta_2(y)$

Viterbi in action: observe "5, 1"

 $\Pi_A = 0.3, \Pi_B = 0.7$

o	P(o s _A)	P(o s _B)
1	.3	.1
2	.2	.1
3	.2	.1
4	.1	.2
5	.1	.2
6	.1	.3

000	0000
	$\delta_2(A)$:

δ_2	(B
- 2	ν-

	t=1 (o ₁ =5)	t=2 (o ₂ =1)
q _t =s _A	.3x.1 = .03	
q _t =s _B	.7x.2 = .14	

15

Parameters in HMM

Initial probabilities: π_i

Transition probabilities A_{i,j} How do we learn these values?

Emission probabilities $\phi_{i,j}$

20