P-121-2012

공기 분리설비의 안전 설계 및 운영에 관한 기술지침

2012. 11.

한국산업안전보건공단

안전보건기술지침의 개요

- O 작성자: Air Products Korea 이윤호
- O 제 · 개정 경과
 - 2012년 11월 화학안전분야 제정위원회 심의(제정)
- O 관련 규격 및 자료
 - FM Global 7-35, "Air Separation Process", 2007
 - FM Global 7-35R, "Air Separation Process", 2007
 - William P. Schmidt, Karen S. Winegardner, Martin Dennehy and Howard Gastle-Smith, "Safe Design and Operation of a Cryogenic Air Separation Unit", 2001
- O 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자: 2012년 11월 29일

제 정 자: 한국산업안전보건공단 이사장

P-121-2012

공기 분리설비의 안전 설계 및 운영에 관한 기술지침

1. 목적

이 지침은 정유·석유화학 공장, 전기·전자 콤플렉스 및 제철·화력 발전소등에 공급되는 주요 유틸리티인 질소, 산소 및 아르곤을 생산하는 공기 분리설비의 안전 설계 및 운영에 필요한 사항을 제시하는데 그 목적이 있다.

2. 적용범위

이 지침은 질소, 산소, 아르곤을 공기에서 분리하여 수요자에게 파이프라인 또는 탱크로리로 공급하는 공기 분리설비에 대해 적용한다.

3. 정의

- (1) 이 지침에서 사용되는 용어의 정의는 다음과 같다.
 - (가) "GOX"이라 함은 기체 산소(Gas oxygen)를 말한다.
 - (나) "GAN"이라 함은 기체 질소(Gas nitrogen)를 말한다.
 - (다) "LOX"이라 함은 액체 산소(Liquid oxygen)를 말한다.
 - (라) "LIN"이라 함은 액체 질소(Liquid nitrogen)를 말한다.
 - (마) "탄화수소 분석기 (THC analyzer, Total hydrocarbon concentration analyzer)" 라 함은 화염 이온화 현상이나 접촉 연소식 또는 적외선 분석기를 사용하여 탄화수소 오염 정도를 측정하는 장비를 말한다.
 - (바) "접합 알루미늄 열교환기 (BAHX, Brazed aluminum heat exchanger)"라 함은 공기 분리설비에서 일반적으로 사용하는 알루미늄 판 핀 열교환기로, 주 응축기 등에서 사용되는 설비를 말한다.
 - (사) "콜드 박스 (Cold box)" 라 함은 저압 탑과 고압 탑, 주 열교환기 및 관련 배관 들로 구성된 초저온 온도 유지 설비로, 박스 내부에 펄라이트(Pearlite) 등으로 채워 단열시킨 설비를 말한다.

P-121-2012

- (아) "전처리 정화공정 (PPU, Pre purification units)"이라 함은 유입된 압축공기로 부터 불순물(이산화탄소, 아산화질소, 탄화수소 등)을 제거하기 위해 활성화된 알루미나나 분자체(Molecular sieve)가 충전된 베드를 가지고 있는 용기를 통해 처리하는 공정을 말한다.
- (자) "펌프 LOX 공정"이라 함은 저압 탑조류 (Low pressure column)로부터 생산되는 LOX로부터 기체 산소를 생산하는 공기 분리설비와 외부 기화기의 펌프를 통해 수요처에게 제품을 공급하는 공정을 말한다.
- (2) 기타 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 주요 물질의 경우를 제외하고는 「산업안전보건법」, 같은 법 시행령, 같은 법 시행규칙 및 「산업 안전보건기준에 관한 규칙」에서 정의하는 바에 의한다.

4. 일반 사항

4.1 공정 개요

- (1) 전체 공정은 <그림 1>과 같으며, 주 공기 압축기(Main air compressor)에서 0.4 ~ 1 MPa까지 공기를 압축하여 상온으로 냉각시킨 후 전처리 정화공정으로 이송한다.
- (2) 흡착 등의 전처리 정화공정을 통해 수분, 이산화탄소 및 기타 탄화수소류 등 공기 중의 불순물을 제거하고, 주 열교환기(Main heat exchanger)를 거치면서 약 -170 ℃까지 냉각한 후 액화시켜 증류탑으로 이송한다.
- (3) 증류탑은 저압과 고압 탑으로 구성되며, 저압 탑은 최종 증류된 제품을 생산하고, 고압 탑은 제품의 증발을 이용하여 열적 균형 유지와 환류(Reflux) 기능을 하고 있다.
- (4) 산소는 가장 높은 끓는점을 가지고 있어서 저압 탑의 하부에 모이고, 질소는 상부 로 모인다.
- (5) 아르곤은 제 3의 다른 증류탑에서 산소와 질소 유체로부터 얻어진다.
- (6) 생산된 제품은 주 열교환기에서 유입된 공기 등과 열 교환을 거쳐 상온까지 승온 한 후 이송하며, 필요시 냉동기를 이용하여 온도를 제어할 수도 있다.
- (7) 공기 분리설비는 제품생산 종류에 따라 크게 두 가지 공정으로 분류된다.

- (가) 첫 번째는 GOX 공정으로, 저압 탑 하부의 흐름으로부터 산소를 얻고, 유입 공기를 통해 온도를 상승시킨다. 이때, 고압 제품이 필요한 경우에는 압축기를 통해 가압된다.
- (나) 두 번째는 펌프 LOX 공정으로, 산소가 저압 탑 하부에서 액체로 얻어지고, 펌 프를 통해 제품을 가압한다. 그리고 주 열교환기에서 유입 산소와 열 교환된 후 기화된다.

<그림 1> 공기 분리설비 공정

- (8) 증류탑의 열적 균형을 유지하는 재비기(Reboiler)와 응축기(Condenser)는 전형적인 BAHX이며, 이 설계는 작은 온도 차이로 열 교환을 하기 위해 상대적으로 넓은 표면을 가진 열교환기를 사용하여 효율을 높인 것으로, 사용되는 재비기는 다음과 같이 두 가지 형태로 분류된다.
 - (가) 써모사이폰(Thermosyphon) 형태는 <그림 2>와 같이 응축된 질소의 공급된 열에 의해 자연적으로 순환시키는 원리를 가진 액체 산소 풀(Pool)에 잠겨있는 재비기이다.
 - (나) 다운플로우(Downflow) 형태는 <그림 3>과 같이 재비기로 흘러 내려오는 유체

P-121-2012

로 산소를 기화시키는 것으로, 이 시스템은 정교하고, 공정 초기운전 및 가동중지 시 더 많은 설비가 필요하다.

<그림 2> 써모싸이폰 형식

<그림 3> 다운플로우 형식

4.2 유입 공기질 관리

- (1) 공기 분리설비로 유입되는 공기의 질은 여러 가지 사고 발생의 원인이 될 수 있으며, 위험성에는 부식, 막힘 및 내부 유체 사이의 다양한 반응 현상 등이 있다.
- (2) <표 1>은 공기 중에 불순물 영향 농도에 대한 일반적인 지침으로, 대부분 전처리 정화공정에서 제거된다.
- (3) 공기 분리설비를 설계할 때에는 일반적으로 공장이 설치되는 지역의 공기 질을 정

P-121-2012

확히 알 수가 없기 때문에 대기 중 정확한 성상을 정의 및 분류하는 것은 설비 소유주와 운전 사업장에 책임이 있으며, 이를 위한 정확한 대기환경은 다음과 같은 조건을 파악해야 한다.

- (가) 공정 가동 후 외부 이웃 공정지역의 성상 변화를 확인한다.
- (나) 대기환경은 바람 방향과 기후에 따라 변화되므로, 장시간의 모니터링이 필요하다.
- (다) 이웃 공정에서 공정유체의 불규칙적인 배출은 공기 분리설비가 위치한 지역의 공기상태를 순간적으로 변화시킬 수 있다.
- (4) 공기상태를 정확하게 결정하기 위해서는 다음과 같은 방법을 사용한다.
 - (가) 사전 현장방문으로 주변 공장지역을 파악하고, 순간적이거나, 불규칙한 공정 배출에 대해서 확인을 해야 한다. 기후조건과 바람 방향을 정의할 때, 이러한 조건도 반영해야 한다.
 - (나) 현장방문 결과가 도출되면, 실제 공기 질을 측정한다. 이때, 여러 가지 변화를 충분히 반영할 수 있도록 장시간의 측정이 필요하며, 또한 측정 장비가 여러 불 순물을 정밀하게 측정할 수 있어야 한다.
 - (다) 만일 현장방문 및 측정이 어려울 경우에는 일반적인 데이터를 적용하는데, <표 1>은 현재 일반적으로 사용하는 수치이다.
- (5) 공기 내 불순물들은 대체적으로 공기 분리 중 산소보다 끓는점이 높은 관계로, 사전에 제거하지 않으면 산소 내에서 농도가 높아지는 경향 때문에 공정안전 측면에서 문제가 발생하므로, 두 가지 측면으로 위험성을 제거해야 한다.
 - (가) 액체 산소 내 탄화수소류 농도는 메탄을 기준으로 450 ppm 이내로 한정한다. 이때, 450 ppm은 산소 환경에서 메탄 폭발하한농도의 1%에 해당되며, 안전상 여유값을 포함하여 더 높게 하는 것도 가능하다.
 - (나) 액상 또는 기상에서 막힘 현상을 일으키는 농도는 용해도의 50% 이하로 규정한다.

<표 6> 공정 내 불순물 제어설계 조건

종류	가능 위험성	공기 내 농도 ^a (ppm)	정화 공정 제거율 ^b
CO_2	막힘	400	>99%
SO_2	부식, 막힘	0.1	100%
HCl	부식	0.05	100%
H_2O	막힘	10,000 (대략)	100%
N_2O	막힘	0.3	30 - 70%
NOx (NO + NO ₂)	막힘, 반응	0.05	100%
$\mathrm{H_2}^\mathrm{c}$	반응	10	0%
CO^{c}	반응	20	0%
O_3	반응	0.2	100%
CH_4	반응	10	0%
C_2H_6	반응	0.1	0%
C_2H_4	반응	0.3	50%
C_2H_2	반응	1.0	100%
C_3H_8	반응	0.05	67%
CO_2	반응	0.2	100%
${\mathsf C_4}^{\scriptscriptstyle +}$	반응	1.0	100%

- a. 이 수치는 전형적인 설계기준이다. 실제 수치는 일반적으로 더 낮다.
- b. 대략적인 기존 전처리 정화공정 순서는 다음과 같다.

 $CH_4>C_2H_6>NO>C_3H_8>N_2O>C_2H_4>CO_2>C_3H_8$, NO_2 , HCl, SO_2 , C_2H_2 , $C_4+>H_2O$

c. CO와 H_2 는 N_2 유체에 그대로 포함된다. 정화공정을 통해서는 제거가 되지 않지만, 저압 탑하 부에는 정체되지는 않는다.

5. 공정 위험성

5.1 급속한 산화

- (1) 대부분의 분리설비 공정에서는 높은 농도의 산소가 정상상태 또는 비정상상태에 서 흐르게 되므로, 이 유체로부터 점화물 또는 점화원을 제거하여 안전성을 확보 해야 한다.
- (2) 점화물에는 공기 분리설비의 여러 공정단계에서 축적되는 탄화수소류와 공정설비

P-121-2012

가 제작 당시부터 가지고 있던 불순물로 나눌 수 있다.

- (가) 대기 중 상대적으로 높은 끓는점을 가진 탄화수소류는 전처리 정화공정에서 제 거된다.
- (나) 이 결과는 전처리 정화공정 후단에서 이산화탄소를 측정(Monitoring)하여 확인 한다. 만일, 이산화탄소가 완전히 제거된다면, 탄화수소류는 모두 제거되었다고 가주하다.
- (3) 일부 낮은 끓는점을 가진 탄화수소류(프로판, 에탄, 에틸렌 및 메탄)는 콜드 박스 (Cold box)로 들어갈 수 있으며, 이 물질들은 산소보다 끓는점이 높기 때문에 다음 과 같은 메커니즘으로 공정 내에 농축될 수 있다.
 - (가) 만일, 액체가 더 이상 주입되지 않은 풀(Pool)이나 액체 정체부분에 고온이 유입되면 '마른 끓음(Dry boil)' 현상이 발생하여 고휘발성 물질을 기화시키고, 저휘발성 물질은 농축시킨다.
 - (나) '팟 끓음(Pot boil)'은 마른 끓음과 유사하지만, 외부에서 새롭게 유입된 유체가 '팟(Pot)'에 계속해서 유입된다는 것이 다른 점이다. 이때, 고휘발성 유체는 기화되고, 저휘발성 유체는 농축된다.
 - (다) 증류 시에는 저휘발성 물질은 이에 따라 액체 내에 남게 되고, 증기의 저휘발성 물질은 액체로 응축된다.
- (4) '팟 끓음'과 증류 현상으로, 낮은 끓는점을 가진 탄화수소류는 재비기/응축기의 고 농도 산소 액체에서 저압 탑 섬프(Sump)에 농축되고, 이 탄화수소류는 액체 산소 퍼지를 통해 제거되며(GOX 공정은 메탄과 작은 소량의 불순물을 제거한다.), 퍼지 비율은 다음과 같이 조정한다.
 - (가) 유량의 메탄 기준 전체 탄화수소 농도를 450 ppm 이내로 조정한다.
 - (나) 유량의 모든 불순물은 각각의 용해도의 50% 이하가 되도록 조정한다.
 - (다) 유량의 공기 주입량의 0.2%가 되도록 한다.
- (5) 만일, 이러한 유량이 유지되지 않는다면, 공정은 가동 중지되도록 공정 연동 (Interlock)을 설정해야 한다.
- (6) 많은 공기 분리설비에서는 일반 탄화수소류 분석기가 탄화수소류 농도 제어를 위해 사용된다.

- (7) 단일 탄화수소 분석기로 일반 탄화수소류 분석기의 장점은 다음과 같다.
 - (가) 오직 탄소의 숫자만 측정하기 때문에 분석이 간단한다. 다만, 단일 탄화수소를 개별적으로 분석하면서 높은 비용이 필요하고 분석이 복잡하다.
 - (나) <표 2>와 같이 단일 탄화수소의 폭발하한농도(LEL, Lower explosion limit)는 다양하므로, 일반 탄화수소류(THC)는 농도를 50,000 ~ 100,000 ppm으로 산정하여 측정한다. 이때, 농도를 보통 50,000 ppm으로 설정하기 때문에 단일 물질로는 검출이 되지 않는 경우도 불안전한 농도수준을 감지할 수 있다.

		,
종류	LEL (ppm)	LEL (ppm, 메탄 등가)
$\mathrm{CH_4}$	50,000	50,000
C_2H_6	30,000	60,000
C_3H_8	21,200	63,600
C_4H_{10}	18,600	74,400
C_5H_{12}	14,000	70,000
C_6H_{14}	11,800	70,800
C_9H_{20}	8,300	74,700
$C_{10}H_{22}$	7,700	77,000
C_2H_4	27,500	55,000
C_3H_6	20,000	60,000
C_2H_2	25,000	50,000
C ₇ H ₈ (Toluene)	12,700	89,000
C ₆ H ₆ (Benzene)	14,000	64,000

<표 7> 기체 산소 내 탄화수소 폭발하한농도

- (8) 설비적인 안전 조치 이외에 탄화수소류 농도가 안전수준에 도달하도록 공장에서 는 전처리 정화공정이 적절함을 확인하는 안전운전 절차로 주기적인 샘플링에 의한 섬프(Sump)의 액체산소 배치 샘플링(Batch sampling)을 실시하여야 한다.
- (9) 비 탄화수소류인 이산화탄소나 아산화질소는 액체와 기상 산소에서 소량 용해되어, 재비기에 고체로 침전된다. 이때, 침전물은 장비 및 배관에 부분적인 막힘이나, '팟 끓음'현상을 일으키거나, 바로 탄화수소류가 공정 내에 농축되기도 한다.
- (10) 이산화탄소를 제거하는 방법은 전처리 정화공정과 액체 퍼지이지만, 이산화탄소

P-121-2012

가 콜드박스로 일부가 유입되므로, 재비기의 액체산소는 주기적으로 이산화탄소 농도를 모니터링 하여 적절한 농도를 유지할 수 있도록 하여야 한다.

- (11) 아산화질소는 전처리 정화공정에서 일부 제거되고, 잔여물은 액체 퍼지로 제거된다. 이때, 대부분의 아산화질소는 제거되므로, 실시간 모니터링은 불필요하다.
- (12) 액체 퍼지 비율은 공기 분리설비 안전측면에서 매우 중요하다. 이때, 정확한 퍼지 비율은 이산화탄소와 아산화질소 막힘 현상을 방지하고, 탄화수소류의 농도 축적 도 방지한다.
- (13) 이러한 퍼지 비율은 반드시 유량 측정기로 직접 측정하거나, 액체 수위 측정을 통해 간접적으로 확인하여야 한다. 만일, 정확한 퍼지 비율이 유지되지 않으면, 공정은 가동 중지되어야 한다.

5.2 재비기의 안전관리

- (1) 재비기와 응축기는 특별한 다음과 같은 관리 및 주의가 필요하다.
- (2) 재비기와 응축기는 액체 산소가 부분적으로 끓으면서, 탄화수소가 액체 내에 남게 된다.
- (3) 구조적으로 재비기에는 많은 작게 분리된 유체 흐름 통로(Passage)들이 수평으로 구성되어 있다.
- (4) 재비기의 개별 통로는 운전 중 상시 동일하게 흐르도록 운전하는 것이 어렵기 때문에 지속적으로 균일하게 흐를 수 있도록 해야 한다.
- (5) 4.1항과 같이 재비기는 써모사이폰과 다운플로우 형식으로 분류되며, 써모사이폰 형식은 다음과 같이 액체 산소가 모든 통로에 균등하게 순환시켜야 한다.
 - (가) 설비 제작 오류에 의한 개별 통로 막힘 가능성을 최소화하도록 설계를 해야 한다.
 - (나) 모든 통로가 적절한 순환이 되도록 완전히 액체에 잠겨 있어야 한다.
 - (다) 동결된 내부 이물질로 인해 막힘 현상이 발생하지 않도록 해동 절차(Defrost)를 운영해야 한다.
- (6) 다운플로우 형식은 아래와 같은 점을 고려해야 한다.

P-121-2012

- (가) 기체와 액체가 역방향으로 흐르지 않도록 설계 및 운전하여 증류에 의한 축적 현상을 방지해야 한다.
- (나) 써모사이폰 재비기도 제작 오류에 의한 통로 막힘 현상을 방지하도록 설계를 해야 한다.
- (다) 해동(Defrost)을 위한 배관을 설치하여 내부 동결에 의한 막힘 현상을 방지해야 한다.
- (라) 각 통로는 균등하게 흐름이 유지되도록 특별한 주의를 해야 한다.
- (마) 별도의 여과장치로 공정 내 존재하는 일부 파편이나 잔해는 막힘 현상과 '팟 끓음' 현상까지 발생시키는 이물질을 제거해야 한다.
- (바) 주기적인 해동절차로 축적되는 물질을 제거해야 한다.
- (사) 이산화탄소와 아산화질소는 최소 농도로 유지해야 한다. (상대적인 각 물질 용해도를 $1 \sim 6\%$ 로 관리해야 한다.)
- (7) 재비기는 설계, 운전 그리고 주기적인 해동절차에 의해 탄화수소류가 공정 내부에 축적되면서 일정수준 이상으로 높아지지 않도록 유지해야 한다.

5.3 펌프 LOX 열교환기의 안전관리

- (1) 펌프 LOX 공정이 사용되면, 산소 조건에서 끓는 현상이 발생하므로 추가적인 안 전설계가 필요하다.
- (2) 잠재적인 위험성은 재비기에 다음과 같은 부분을 고려해야 한다.
 - (가) 공정상 끓음 현상을 가진 산소는 전형적인 '건조 끓음'의 현상이 나타난다.
 - (나) 압력은 저압력 탑보다 높기 때문에 점화와 폭발 전파 위험성이 증가한다.
- (3) 국부적 또는 전체적으로 축적되는 탄화수소류가 점화물로 작용할 수 있다.
 - (가) 이산화탄소와 아산화질소 농도는 국부적인 '풀 끓음'을 발생시키는 침전현상을 방지하기 위해 용해도의 50% 이하로 관리해야 한다.
 - (나) 낮은 산소 끓음 압력(약 대기압력 0.3 MPa)으로 인해 이 농도에 도달하기 위해 콜드 박스로 유입되는 이산화탄소와 아산화질소의 농도는 ppb 단위로 관리해야 한다. 따라서 전처리 정화공정이 중요하다.

P-121-2012

- (다) 산소의 이송 유속은 재순환과 증류 현상을 방지하기 위해 작은 액체 방울까지 이송하기 충분한 속도로 유지해야 한다.
- (라) 공정시스템은 장기 가동중지 시에는 탄화수소류가 공정 내에 축적되는 것을 방지하기 위해 완전히 배수시켜야 한다.
- (마) 열교환기 통로 간의 이동과 다른 통로와의 연결은 균등하게 흘러갈 수 있도록 설계를 해야 한다.
- (바) 유입되는 LOX 내 파편이나 잔여물을 완전히 제거하여 국부적인 막힘 현상을 방지해야 한다.
- (사) 통로 배열과 공정 설치조건이 폭발 전파 가능성을 최소화시키도록 설계해야 한다.
- (아) 설비의 봉합은 작업자에게 노출 및 타 위험을 최소화시키도록 설계해야 한다.
- (4) 펌프 LOX 공정은 본질 안전설계 측면에서 다음과 같은 특징을 가지고 있어야 한다.
 - (가) 저압 탑의 액체 퍼지는 대략적으로 20%의 공기가 포함되어야 한다. 이것은 콜 드 박스로 들어오는 유체 농도의 약 5배에 해당하는 수치로 재비기 섬프 (Sump)의 농도가 축적되는 것을 방지한다.
 - (나) 특히, 산소 압축기가 없으므로, 많은 다른 잠재 위험성을 제거할 수 있다.
 - (다) 만일, 초임계 압력에서 산소가 끓는다면, 증기와 액체 경계가 없어지기 때문에 탄화수소 과잉 농도단계를 생성시키는 것은 불가능하게 된다.

5.4 산소 압축기의 안전관리

- (1) 대부분의 설비에서 산소 압력은 저압 탑 압력 이상이므로 별도의 충압이 필요하다. 만일, GOX 공정이 사용되면, 제품으로 공급되는 산소는 압축기로 충압하며, 이때. 산소 압축기의 두 가지 기본 형식은 원심형과 왕복형이 있다.
- (2) 산소 압축기의 잠재적인 위험성은 다음과 같다.
 - (가) 국부적인 높은 압력은 높은 순도의 산소로부터 만든다.
 - (나) 많은 금속류 설비 재질들이 산소 환경에서는 쉽게 연소될 수 있다.

- (다) 압축기의 많은 가동 부품들은 마찰열로 인해 쉽게 연소될 수 있다.
- (라) 미량의 입자에 의한 오염 가능성(용접 분진, 녹 입자, 먼지, 샌드 블라스팅 코닝입자 등)은 절대 완전히 제거할 수 없다. 특히, 신설 설비와 대규모 정비 후에는이러한 불순물들의 존재 확률이 더 높으며, 압축기의 일부 구간에서 높은 유속(350 m/s)에서 이러한 입자가 잠재적인 점화물로 존재할 수 있으므로, 별도의제거절차가 필요하다.
- (3) 산소 압축기의 기본적인 안전관리 방법은 작업자에게 설비 자체를 노출시키지 않는 것이고, 두 번째는 장비 손상을 최소화시키는 것으로, 이러한 안전관리를 유지하기 위해 다음과 같은 조치가 필요하다.
 - (가) 방호벽-압축기 주위를 위험구역으로 설정하여 압축기 화재 시 인체와 주변 설비손상이 발생하지 않도록 하여야 한다.
 - ① 내화벽으로 내부 화재가 외부로 확산되지 못하도록 하고, 압축기 가동 유무와 관계없이 작업자가 일정 출입 절차를 거치지 않고, 내부로 출입하지 못하도록 한다. 또한, 화재로 인해 융착된 금속들이 외부로 확산되지 않도록 한다.
 - ② 이외 상세사항은 KOSHA Guide '화재 방지를 위한 방화벽 및 방화방벽 설치에 관한 기술지침'을 적용한다.
 - (나) 씰(Seals)-원심형 산소 압축기는 회전 부위와의 접촉면적을 최소화시키기 위해 라비린스 씰(Labyrinth seals)을 사용하는데, 씰 시스템은 공정의 불안전한 구 역(예로, 베어링 하우스)으로 유체가 방출되는 것을 방지하고, 산소의 손실을 최소화하도록 설계된다. 이때, 공기 또는 불활성 기체가 씰 가스 완충기능을 가 지고 있다.
 - ① 씰 가스가 컴프레서 가동 중 주입되지 않을 경우에는 인터록으로 컴프레서가 가동중지 되도록 하여야 한다.
 - ② 오일이 압축기 내로 유입될 가능성을 제거하기 위해 오일 씰과 완충용 씰은 물리적으로 분리해야 한다.
 - ③ 왕복형 압축기는 실린더들이 윤활유가 필요하지 않으므로, 산소가 기어 케이 싱으로 유입될 수 없다. 다만, 배수는 방호벽 외부로 설치하여 오일이 산소 과 잉 지역으로 확산되지 않도록 하여야 한다.
 - (다) 설비 재질-산소 압축기는 산소용으로 제작 시 특정 재질로 구성되기 때문에 쉽 게 연소 및 손상되지는 않는다. 다만, 고정설비와 가동설비간의 간극은 다른 컴 프레서보다 산소 압축기를 상대적으로 크게 조정하여 산소와 다른 외부 물질이

P-121-2012

접촉하는 것을 방지하여야 한다.

- (라) 세척-산소 압축기는 최초 설치 및 정비 후 철저하게 세정해야 하며, 청결이 지속적으로 유지되어야 한다. 이때, 흡입 필터는 컴프레서로 유입되는 입자를 제거하여, 잠재적인 점화원을 제거해야 한다.
- (마) 가동/가동중지-가동과 가동중지 시에는 가동 부품과 다른 부품들과 접촉이 많아지므로, 특히 원심형 압축기는 일정 위험한 속력 이상으로 변이하여 가동될수도 있다.
 - ① 안정한 압력과 온도에 도달할 때까지 공기와 불활성 기체를 혼합하여 가동시 같이 유입하는 것이 바람직하다. 그리고 안정화된 이후에는 산소를 유입시키는 것이 적절하다.
 - ② 가동중지 시에는 역시 공기 또는 불활성 기체를 혼합하여 유입한 후 정지하는 것이 바람직하지만, 비상정지 시에는 예외가 될 수 있다.
 - ③ 작업자는 압축기가 산소 가동 중일 때에는 접근이 금지하며, 만일 불가피한 경우에는 다른 가스를 대체한 후 접근하여야 한다.
 - ④ 가동중지 시에는 압축기 가스가 0.1 MPa까지 20 초 내에 배출되도록 하여야 한다.
- (바) 계기류-일반적인 압축기 계기류 이외에 온도 변화에 빨리 반응하는 스위치를 원심형 압축기 후단이나, 왕복형의 전단 및 후단에 설치하여야 한다. 만일, 고온 이 감지가 될 경우 압축기는 가동 중지하고, 내부 가스는 배출하여야 하며, 또 한 유입 밸브는 차단하여야 한다.

5.5 공기 분리설비의 공정안전 인자

- (1) 공기 분리설비의 운전 시에는 많은 공정안전 인자를 고려하여야 한다.
- (2) 7개의 중요 공정안전 인자는 <표 3>과 같다.

P-121-2012

<표 8> 공기 분리설비의 7개 공정안전 인자

운전방법	이유
전처리 정화설비 ^a 이산화탄소 분석	전처리 정화운전이 안전함을 확인.
LOX 퍼지로 공기의 농도를 0.2% 이하 로 유지함. ^b	재비기 섬프(Sump)에 오염이 발생하지 않음을 확인.
C ₁ 등가로 탄화수소류 분석 농도가 450 ppm 이하로 유지.	재비기 섬프(Sump) 내 탄화수소류가 없음 을 확인.
배치 분석	물질별 농도가 허용 가능한 수준임을 확인.
다운플로우(Downflow) 재비기 배출시 이산화탄소 농도 < 용해도의 6%, 아산 화질소 농도 < 용해도의 1%	이산화탄소와 아산화질소가 일정농도 이상 축적되지 않도록 함.
써모사이폰(Thermosyphone) 재비기는 완전히 잠기도록 함.	국부적으로 높은 농도가 축적되는 것을 방 지하기 위한 적절한 환경임을 확인함.
a. 일정 시간 후에 공정 가동중지가 필요함. b. 별도 계기류와 장비로 최소 퍼지(Purge) 비율을 공기의 0.1%까지 감소시킴.	

р. 현고 계기표가 경비도 위도 파시(Furge) 비팔할 하기의 U.1%까시 삼오시김.

5.6 재질 선택

- (1) 탄소강은 대부분의 상온 설비 및 배관에 사용된다. 그러나 공정의 초저온 부분은 경제적으로 -170 ℃까지 견디도록 설계 및 설치해야 한다.
- (2) 대부분의 공기 분리설비는 정상과 비정상 운전 시 산소과잉 현상이 발생할 수 있 다. 이때, 구리, 알루미늄 그리고 스테인리스 스틸은 <표 4>와 같이 모두 초저온 온도에 적합하다.
- (3) 어떤 물질의 가연특성은 산소 순도, 산소 압력 그리고 물질구조와 밀접한 관련이 있다.
- (4) 가연특성은 일반적으로 높은 압력, 높은 순도, 그리고 얇은 재질일 때 증가한다.
- (5) 특정 상황에서 알루미늄은 불순물 농도가 증가할수록 가연성이 크게 감소하므로, 산소 순도와 밀접한 관련이 있다.

<표 9> 공정재질 선택

항목	탄소강	구리	알루미늄	스테인리스 스틸
저온 적합성	부적합	적합	적합	적합
상대적인 강도 ^a	2	4	3	1
비용	낮음	매우 높음	중간	높음
산소 환경 내 가연성 ^b	중간	N/A ^d	낮음	낮음
연소 강도 ^c	중간	N/A	높음	중간

- a. 이것은 4 가지 물질 중 강도에 대한 상대적인 값이다. 1=중간, 4=가장 낮음.
- b. 산소 환경 내에 금속이 초기 연소시의 정도.
- c. 연소 시작 후의 에너지 방출시의 상대적인 측정값
- d. 구리는 산소 환경에서 가연성 물질이 아니다.
- (6) 산소 취급 시 재질 선택과 작업자의 위험을 최소화를 위한 3가지 방법이 있다.
 - (가) 가능한 모든 점화물을 제거하여, 점화물 없이는 물질은 연소되지 않도록 한다. 예로, 높은 압력의 산소 배관에서 탄소강 배관을 정확히 세정하면 점화물의 제거로 탄소강은 허용 가능한 재질로 적용될 수 있다.
 - (나) 모든 점화원을 제거하는 것이 가능하지 않을 때 연소가 전파되지 않는다면, 물질은 여전히 안전하게 사용될 수 있다. 예로, 알루미늄 배관에서 알루미늄/산소점화는 아직까지 완전히 메커니즘이 밝혀지지 않았지만, 모든 점화원을 제거하는 것은 어렵지만, 최대한 억제시켜야 한다.
 - (다) 화재 전파가 발생하지 않는다면 알루미늄 배관 사용은 경험상 가능하다. 다만, 산소 환경에서 알루미늄을 사용 시 가능한 모든 점화원을 제거하기 위해 세척 해야 한다.

5.7 점화원 관리 및 세척 작업

- (1) 일반적인 점화원은 입자들의 충격과 점화촉진 현상이다.
- (2) 입자의 충격은 작은 외부 불순물질들이 배관 내벽 등의 표면에 부딪치고, 그때 발생하는 에너지가 주변 물질을 점화시키는 것을 말한다.

P-121-2012

- (3) 점화촉진 현상은 연소물질이 산소와 반응하고, 그때 발생하는 반응 에너지가 설비의 구성 재질을 연소시키는 것이다.
- (4) 산소를 취급할 때의 세척작업은 기름, 윤활유, 용매, 용접 용재, 먼지, 오물, 모래 및 이외 외부에서 유입되는 다른 물질들을 제거하는 것으로, 산소 취급 시에는 산소 농도가 23.5% 이상인 경우에는 반드시 세척을 실시해야 한다.
- (5) 증류탑에서 구조물로 이루어진 패킹(Packing)은 제작 공정상 윤활유가 설비의 압축, 각인 그리고 절단 단계에서 사용되기 때문에 상세검토가 필요하다.
 - (가) 패킹(Packing)은 얇은 두께로 만들어져서 상대적으로 점화가 쉽고, 쉽게 연소가 확산되므로, $50 \sim 100 \text{ mg/m²}보다 낮은 밀도의 윤활유는 패킹 부위에서 제거하여야 한다.$
 - (나) 일반적으로 산소 환경 내에서 알루미늄 패킹은 반응성이 높은 것으로 알려져 있기 때문에 구리 패킹으로 위험성을 방지한다.
- (6) 산소 배관은 다음과 같이 설계 및 설치하여야 한다.
 - (가) 배관 내 사용되는 금속과 비금속 부품에 대한 산소 적합성을 반드시 검토하여 야 한다. (예로, 가스킷, 밸브 시트)
 - (나) 배관 내에는 모든 외부물질을 산소 취급수준으로 정밀하게 세척하여야 한다.
 - (다) 배관 내 산소 유속은 외부물질에 의한 배관 내 충돌과 이에 따른 연소현상을 방지하기 위해 적정한 배관 유속 제어를 위한 배관크기와 재질을 선정해야 한다.
 - (라) 주요 유체 충돌지역(곡관, 밸브 그리고 엘보우)은 여러 불순물 입자들이 충돌하여 연소될 수 있다. 이때, 배관의 재질을 산소와 적합한 것으로 교체하거나, 산소 유속을 제어해야 한다.
 - (마) 고압의 산소 배관은 단열압축에 의한 화재 위험성을 제거하기 위해 완만하게 압력을 축압시키도록 설계해야 한다. 이때, 이론적으로 산소가 단열압축으로
 0.1 MPa에서 3.5 MPa로 축압될 경우 온도는 약 527 ℃까지 상승한다.

5.8 공기 분리설비의 후단공정에서 고려 사항

(1) 산소와 질소는 유틸리티 설비로 분류되며, 다음과 같이 두 가지 위험성을 고려해야 한다.

P-121-2012

- (가) 공정설비의 설계압력이 공기 분리설비의 이송압력과 일치하거나, 과압인 경우에는 안전밸브 등을 설치하여야 한다.
- (나) 공정 내 배관들은 초저온 배관이 아니므로, 공기 분리설비에서 기화되지 못한 초저온 액체가 수요자 측 공정 배관으로 유입되면서 배관이 손상되는 경우가 발생할 수 있다. 이때, 안전조치로는 저온 액체 유입 시 배관 차단밸브에 인터록을 설치하거나 또는 배관 히터나 오리피스를 설치해야 한다.
- (2) 배관 파열현상은 일반적으로 초저온 액체설비의 기화기 후단에서 기화기의 열 공급원이 중단되거나, 갑작스런 수요 용량의 증대로 기화기 용량 이상의 초저온 액체가 이송될 경우에 발생하며, 배관 파열은 다음과 같이 두 가지 위험성을 가지고있다.
 - (가) 배관 파열시 과압 에너지의 방출은 위험성이 있는 파동 압력을 가지고 있다. 이 때, 과압 에너지는 초저온 배관이 아닌 모든 부위에서 발생할 수 있지만, 특히 높은 압력을 받는 엘보우나 용접 부위에서 파열이 발생하기 쉽다.
 - (나) 초저온 액체 방출로 산소 과잉 또는 결핍 현상이 발생하여 주위 작업자 등의 인 체 상해 위험성이 높아진다.

5.9 초저온 배관 트랩(Trap)에 의한 과압

- (1) 초저온 배관의 양 방향 차단으로 인한 과압은 어느 배관에서나 발생할 수 있기 때문에 열팽창 밸브의 설치가 반드시 필요하다. 이때, 최대 과압은 약 350 MPa까지 발생할 수 있다.
- (2) 배관의 과압 방출은 압력 에너지 방출과 초저온 액체 방출로 나눌 수 있다. 이때, 과압은 배관을 완전히 파열시킬 수 있으며, 최초에는 작은 누출이나 파열부터 시 작되므로, 두 밸브로 차단되는 구간에는 안전밸브를 설치해야 한다.

5.10 산소 과잉 또는 결핍 위험성

- (1) 산소, 질소, 아르곤은 무색, 무취로 배관이나 공정에서 누출 시 산소 과잉이나 결핍 환경을 조성하며, 쉽게 인지할 수가 없다.
- (2) 초저온 액체로 누출 시에는 상온 외부공기와 접촉하면서 발생하는 연무로 인해 시 각적인 인지가 쉬우며, 이때에는 바람 반대방향으로 대피하고, 위험성을 해당 상주

P-121-2012

인원이 알 수 있도록 비상대응훈련을 실시해야 한다.

- (3) 산소 과잉 위험성
- (가) 산소 과잉은 쉽게 점화되지 않은 금속과 같은 물질들을 점화 및 연소시킬 수 있는 환경을 조성한다. 특히, 공기 분리설비 공장경계 내에서 산소의 누출이 가장 중요한 사고들을 발생시킬 수 있다.
- (나) 산소 과잉에 대한 안전조치가 국제기준으로 합의되어 다음과 같은 위험성이 규 정되었다.
 - ① 점화원이 존재 시 재해 확률
 - ② 의복에 점화될 확률
 - ③ 죽거나 사망할 확률
- (다) 특히, 흡연이 가장 큰 점화원이며, 산소 과잉시 작업자가 흡연 중 몸에 화재가 발생할 가능성이 높게 된다.
- (라) 공장 안팎에서 산소과잉 시 사망 및 심각한 재해를 당할 확률은 <표 5>와 같다.

<표 10> 산소과잉 시 사망이나 심각한 재해 발생 확률

산소 농도	공장 외부에서 확률	공장 내부에서 확률
25 %	0.0175 %	0.0085 %
30 %	0.17 %	0.085 %
35 %	0.53 %	0.265 %
40 %	2.8 %	1.4 %

- (마) 산소가 공정 내/외부에 누출될 가능성과 위험성을 감소시킬 방안은 다음과 같다.
 - ① 공정 내 점화원 제어(예로, 금연 및 나화(Open flame) 제거, 차량 통행금지 등)
 - ② 산소 방출이 가능한 모든 공정에 비상 차단밸브로 공정 가동중지 및 차단
 - ③ 작업자 출입이 가능한 모든 밀폐공간의 산소 배관이나 용기를 제거
 - ④ 화기 작업/용기/핏트(Pit) 출입절차 확립
 - ⑤ 산소 과잉 현상 모니터링
 - ⑥ 산소 벤트 시스템의 위험성을 반영한 설계 및 위치 선정

- ⑦ 소방 활동
- ⑧ 연소 가능한 물질들의 공장 내 정리 정돈
- ⑨ 공장 내/외 비상 대응훈련 실시
- (4) 산소 결핍 위험성
 - (가) 높은 농도의 불활성 기체 즉 질소 또는 아르곤으로 작업자 산소 결핍 재해가 발생할 수 있다.
 - (나) 특히, 개방된 공간은 질소나 아르곤 누출로 산소 결핍 환경이 조성되기가 어렵지만, 출입이 가능한 건물, 밀폐 공간, 4면의 벽으로 둘러싸인 공간 등에서는 <표 6>과 같은 현상이 발생할 수 있다.

<표 11> 산소결핍 시 농도에 따른 인체 반응

산소 농도	인체 반응현상
15 ~ 18 %	인체 제어를 잃음.
< 12 ~ 15 %	호흡 속도가 증가함. 인체 제어와 인지력이 어려움. 판단은 가능함.
10 ~ 12 %	호흡이 곤란함. 판단력이 떨어지며, 입술이 파란색으로 변함.
8 ~ 10 %	정신 착란, 구토, 의식을 잃음.
6 ~ 8 %	8분 노출 시 100% 사망. 6분 노출 시 50% 사망. 4 ~ 5분 노출 시 회복 치료가 필요함.
4 %	40초 내 혼수상태. / 호흡이 멈춤. /사망.

- (다) 전형적인 산소 결핍 위험성은 다음과 같이 나타난다.
 - ① 질소의 유입을 예상하지 못한 공간에 작업자가 출입할 때
 - ② 질소 퍼지가 실시된 지역을 사전에 인지하지 못하고, 출입하여 작업할 때
- (라) 소량의 질소 누출 후 내부에 정체되어 산소 결핍 현상을 발생할 수 있는 4면의 벽으로 둘러싸인 공간에는 다음과 같은 조치가 필요하다.

- ① 팬 가동 중지시 경보가 울리는 강제 배기장치
- ② 산소농도 측정
- ③ 용기/핏트(Pit) 출입절차로 밀폐공간 출입 프로그램 구축
- ④ 호흡 보호구 착용
- ⑤ 구조용 인체 보호 장구(예로, 하네스)
- ⑥ 질식 위험이 배제된 벤트 설계

P-121-2012

[부록 1]

공기 분리설비의 폭발사고 사례

사례 1. 공기 분리설비의 재비기 폭발사고

(1) 발생장소 : 말레이시아 빈툴루(1997년)

(2) 피해규모 : 12명 부상, 피해액은 약 3,000억원. (재보험사 평가 50대 사고 중 28번째 규모)

(3) 사고내용 : 2,500 톤/일 생산량인 공기 분리설비에서 콜드 박스가 폭발.

8개 재비기 중 4개가 폭발로 사라짐. 12명이 다쳤으며, 공기 분리설비 주요 공정이 모두 파손되고, 인접 타 수요처 공정들도 심각한 폭발 손상을 입음. 주요 사고 원인으로 타워 내에 탄화수소 성분의설계 이상의 축적으로 나타남.

사례 2. 공기 분리설비의 재비기 폭발사고

(1) 발생장소 : 중국 푸션(1997년)

(2) 피해규모 : 4명 사망, 31명 부상

(3) 사고내용 : 200 톤/일의 생산량인 공기 분리 설비에서 콜드 박스가 폭발.

50% 재비기가 폭발로 사라짐. 폭발로 주변 300 m까지 창문이 파손되었으며, 당량 1,750 kg의 폭발력을 발생. 주요 사고 원인은 타워 내에 탄화수소 성분의 설계 이상의 축적임.

사례 3. LOX 탱크 파열

(1) 발생장소 : 스페인(2000년)

(2) 피해규모: 470 톤 LOX가 외부로 누출

(3) 사고내용 : 탱크 벽면 파손으로 470 톤 LOX가 외부로 누출. 사고 원인 등은 밝혀지지 않음.

P-121-2012

사례 4. 산소 누출에 의한 사망 사고

(1) 발생장소 : 독일(2001년)

(2) 피해규모 : 작업자 1명 사망

(3) 사고내용 : 누출된 산소가 하수구를 통해 공정 건물로 유입되어 건물 내로 출

입하던 작업자가 사망. 사고 원인은 밝혀지지 않았으며, 누출된 산

소를 상시 검지하는 설계가 필요하였음.