Università degli Studi di Roma "Tor Vergata"

CORSO DI LAUREA IN FISICA E SCIENZE DEI MATERIALI ESPERIENZE DIDATTICHE LABORATORIO 3

Esperienza IIb – Filtri attivi

1. Filtro Passa Basso (Integratore)

Si realizzi un filtro attivo passa basso con amplificazione a centro banda $A_V=10$, resistenza di ingresso $10k\Omega$ e frequenza di taglio superiore $f_{02}=34kHz$. Si ricorda che:

$$f_{02} = \frac{1}{2\pi R_2 C}$$

Figura 1 Filtro attivo "passa basso" (integratore)

La capacità da usare in laboratorio è 47 pF. Si realizzi il circuito e si misurino sperimentalmente i valori delle grandezze A_V e f_{02} misurando la risposta in frequenza del circuito e riportando il grafico A_V in funzione di f su un diagramma di Bode. Si misuri anche la fase Φ del segnale di uscita in funzione di f.

Si utilizzi un segnale in ingresso sinusoidale di ampiezza picco-picco 100 mV. Si verifichi sperimentalmente il comportamento del circuito come integratore (come fate?).

2. Filtro Passa Alto (Derivatore)

Con lo stesso amplificatore del punto 1. si realizzi un filtro passa alto con frequenza di taglio inferiore di f_{01} =1.5 kHz ricordando che

$$f_{01} = \frac{1}{2\pi R_1 C}$$

Figura 1 Filtro attivo "passa basso" (derivatore)

In questo caso C=10 nF. Se ne verifichi il funzionamento in modo analogo a quanto fatto nel punto 1 graficando guadagno in funzione di *f*. Si verifichi inoltre il comportamento del circuito come derivatore.