

Chapitre 1

Les questions auxquelles le cours réponds?

1.1 But

Essentiellement, le but c'est de comprendre le morphisme

$$\operatorname{Spec}(\tilde{\mathcal{O}}_K) \to \operatorname{Spec}(\mathcal{O}_K)$$

provenant de $\mathcal{O}_K \subset \tilde{\mathcal{O}}_K$ la clôture intégrale de \mathcal{O}_K dans L une extension de K. Surtout dans le cas où l'extension est finie.

1.2 Motiver le cadre

On se restreint au cas où \mathcal{O}_K est de valuation discrète. Quand on a un anneau de Dedekind quelconque, on peut s'y ramener en remplaçant

$$\mathcal{O}_K$$

par

$$(\mathcal{O}_K)_{\mathfrak{m}}$$

maintenant les localisés d'anneaux de Dedekind sont des anneaux de valuation discrète!

1.3 Le cadre général

Comme on part d'un anneau de Dedekind \mathcal{O}_K . La première question c'est Quand est-ce que

$$\mathcal{O}_K - \tilde{\mathcal{O}}_K$$

est une extension d'anneaux de Dedekind. La question se réduit systématiquement à

Est-ce que $\tilde{\mathcal{O}}_K$ est noethérien ?

1.4 Ésthétique des anneaux de Dedekind

L'anneau de Dedekind est un anneau noethérien de dimension 1. Autrement dit, on est sur un schéma affine de dimension 1 :

$$\operatorname{Spec}(\mathcal{O}_K) \to \operatorname{Spec}(\mathbb{Z})$$

Mais surtout, tout ses localisés à des premiers sont des anneaux de valuation discrète! Ça ça m'intéresse pour les raisons suivantes:

- 1. On obtient un local-global en localisant.
- 2. On peut compléter et obtenir le cadre des corps locaux.

en particulier on a le pont de, si

$$K-L$$

est une extension de corps finis, on peut en faire une extension de corps valués via le processus suivant :

- 1. D'un premier de \mathcal{O}_K on obtient $(\mathcal{O}_K)_{\mathfrak{m}_K}$.
- 2. On obtient aussi un corps valué $(K, |.|_{\mathfrak{m}_K})$.
- 3. De $\mathfrak{m}_K \tilde{\mathcal{O}}_K = \prod \mathfrak{m}_i^{e_i}$ on obtient des premiers \mathfrak{m}_i .
- 4. D'un $\mathfrak{m}_i|\mathfrak{m}_K$ on obtient une extension de valeur absolue $|.|\mathfrak{m}_i|$ et une extension de DVR

$$\mathcal{O}_K - (\tilde{\mathcal{O}}_K)_{\mathfrak{m}_i}$$
.

Géometriquement c'est l'étude de la fibre en $\mathfrak{m}_K \in \operatorname{Spec}(\mathcal{O}_K)$. Maintenant, on cherche a obtenir le e tel que $\mathfrak{m}_K = \mathfrak{m}_i^e$. On obtient la cardinalité de la fibre et l'indice de ramification des uniformisantes.

En fait maintenant le point puissant, c'est le point où on complète K en \mathfrak{m}_K et L en \mathfrak{m}_i . Alors

$$\widehat{K}-\widehat{L}$$

a dimension $f_i e_i$.

Les questions auxquelles le cours réponds?

Remarque 1. Un point qui semble flou là c'est : mais si je complète K en \mathfrak{m}_K , $\widehat{L} = L.\widehat{K}$ donc il est où le choix de compléter en \mathfrak{m}_i pour L? On dirait que le choix est immédiat et les idéaux se contractent en un. En fait écrire

$$L.\hat{K}$$

équivaut à faire vivre L et \widehat{K} au même endroit. D'où à plonger L dans une clôture de K, K^c et la regarder dans $(\widehat{K})^c$. Sinon on pourrait regarder

$$L \otimes_K \widehat{K}$$

et là son spectre est non trivial! Choisir

$$L \otimes_K \widehat{K} \to (\widehat{K})^c$$

équivaut à choisir un idéal maximal.

On peut maintenant utiliser la théorie des corps complets et Hensel!

1.5 Les points omis

J'ai direct dit que $\tilde{\mathcal{O}}_K$ était de Dedekind. En fait si L/K est finie c'est toujours vrai.

- 1.6 Quand est-ce que $\tilde{\mathcal{O}}_K$ est monogène sur \mathcal{O}_K ?
- 1.7 L'étude du cas complet
- 1.8 Quand est-ce que $\tilde{\mathcal{O}}_K$ est noethérien ?

Comme d'hab on prends

L/K finie avec $K = Frac(\mathcal{O}_K)$ un anneau de valuation discrète

Ensuite on regarde sa fermeture intégrale dans L, $\tilde{\mathcal{O}}_K$. On veut une extension de DVR, pour ça y faut que $\tilde{\mathcal{O}}_K$ soit de Dedekind. Le problème c'est toujours de montrer que c'est noethérien.

1.8.1 Cas séparable

Étant donnée L/K finie séparable, on a tout ce qui nous faut. On a un discriminant non nul bien défini, d'où si $L = \bigoplus Ke_i$ alors

$$(Tr(e_ie_j))_{i,j}$$

est non dégénérée. Puis on a une base duale à e_i , i.e. e_i^* telle que $Tr(e_i^*e_j) = \delta_{ij}$. Avec ça on peut

- 1. à partir de e_i une base de L/K dans $\tilde{\mathcal{O}}_K$, obtenir sa base duale pour la trace e_i^* .
- 2. montrer que tout élément entier $b = \sum \lambda_i e_i^*$ vérifie $\lambda_i \in \mathcal{O}_K$, via $Tr(be_i) = \lambda_i!$
- 3. D'où \mathcal{O}_K est un sous \mathcal{O}_K -module d'un module de type fini donc noethérien.