Analisis Rugi Energi Pada Jaringan Tegangan Rendah Sehubungan Dengan Penggantian Jenis *Connector*

I Gede Budhi Arsana*, Wayan Gede Ariastina, I Nyoman Setiawan

Jurusan Teknik Elektro Fakultas Teknik Universitas Udayana *Email: gd.budhiarsana@yahoo.com

Abstrak

Rugi energi terjadi jika jumlah energi yang disalurkan tidak sama dengan energi yang diterima oleh konsumen tenaga listrik. Rugi energi merupakan salah satu parameter kualitas jaringan listrik. Rugi energi yang tinggi pada jaringan dapat mengakibatkan pula rugi tegangan yang tinggi, sehingga tegangan pelayanan menjadi turun. Menurut SPLN 1, 1995 tegangan pelayanan maksimum adalah +5 % dan minimun -10 % terhadap tegangan nominal. Salah satu cara untuk menurunkan rugi energi yang dilaksanakan oleh PT PLN (Persero) adalah dengan mengganti tap connector tiap sambungan jaringan tegangan rendah dengan connector type press. Penelitian ini menganalisis besarnya rugi energi yang terjadi sebelum penggantian dan setelah penggantian connector. Hasil analisis menunjukkan bahwa dengan dilaksanakannya penggantian tap connector, maka rugi energi pada jaringan tegangan rendah yang terhubung pada transformator DS105 dapat diturunkan sebesar 63,4327 Wh atau sebesar 23,2448%. Dengan kata lain, rugi energi dapat diturunkan dari 272,8896 Wh sebelum penggatian tap connector menjadi 209,4569 Wh setelah penggantian tap connector.

Kata Kunci - Jaringan tegangan rendah, rugi energi, tap connector, connector press.

Abstract

Energy loss occurs if the amount of energy supplied is not the same as that received by consumers of electric power. Loss of energy is one of the quality parameters of the electricity network. High energy loss on the network can also result in high loss of voltage, making the service voltage declining. According to the SPLN 1, 1995 the maximum service voltage is + 5% and -10% minimum of the nominal voltage. One way to reduce the energy loss that carried out by PT PLN (Limited) is to replace the tap connector of each low voltage network connection with connector type press. This study analyzes the amount of energy loss that occurs before and after the replacement of connector. The results showed that with the implementation of the replacement of tap connector, the energy loss in the low voltage network which is connected to the transformer of DS105 could be reduced by 63.4327 Wh or equivalent to 23.2448%. In other words, the energy loss can be reduced from the 27.8896 Wh before replacement of tap connector become 209.4569 Wh after the replacement of tap connector.

Keywords: Low voltage networks, loss of energy, tap connector, connector press.

1. PENDAHULUAN

Seiring dengan kewajiban PLN untuk menyediakan listrik yang berkualitas bagi pelanggan maka diperlukan standar pelayanan yang baik. Hal ini bisa terwujud apabila proses perencanaan, pelaksanaan pembangunan, pengoperasian dan pemeliharaan suatu sistem tenaga listrik senantiasa mengikuti ketentuan standar teknik yang berlaku. Pendistribusian energi listrik dari pembangkit sampai ke konsumen sering terjadi hilangnya energi atau susut energi.

Rugi energi adalah suatu kondisi atau keadaan dimana jumlah energi yang disa-

lurkan tidak sama dengan energi yang diterima. Terjadinya rugi-rugi energi ini dapat disebabkan oleh berbagai faktor seperti jauhnya daerah penyaluran tenaga listrik dari sumber, ketidakseimbangan beban, luas penampang penghantar, umur peralatan, sambungan antar penghantar yang tidak sempurna dan lain-lain.

Susut energi distribusi nasional untuk tahun 2013 ditetapkan menjadi 8.5% sesuai dengan keputusan Direktur Jenderal Ketenagalistrikan Kementerian Energi dan Sumber Daya Mineral [1]. Sehubungan dengan hal tersebut, PT PLN (Persero) Dis-

tribusi Bali Area Bali Selatan berusaha untuk menekan rugi teknis maupun rugi nonteknis yang terjadi pada jaringan, sehingga tegangan pelayanan dapat terjaga sesuai dengan standar yang telah ditetapkan. Berdasarkan Standar PLN No. 1 Tahun 1995, tegangan pelayanan maksimum adalah +5% dan minimun -10% terhadap tegangan nominal [2].

Hasil survei awal pada jaringan tegangan rendah (JTR) yang terhubung dengan gardu distribusi DS. 105, diketahui adanya indikasi terjadinya rugi-rugi energi yang cukup signifikan. Salah satu penyebab tingginya rugi-rugi energi tersebut adalah telah menuanya connector pada percabangan jaringan tegangan rendah.

Gambar 1. Pengukuran suhu connector dengan menggunakan thermovision

Hasil pengukuran suhu connector dengan menggunakan thermovision menunjukkan adanya kenaikan suhu pada connector penghubung SR dan JTR, serta pada sambungan JTR. Suhu yang terukur pada connector yang rusak di JTR mencapai 44,4°C, sedangkan pada sambungan kabel JTR suhunya bisa mencapai 71,4°C. Kenaikan suhu pada connector menyebabkan kenaikan resistansi atau hambatan pada connector sehingga akan timbul rugi rugi energi berupa energi panas. Gambar 1 menunjukkan pengukuran suhu pada connector sebelum dilakukan penggantian. Untuk mengurangi rugi energi yang terjadi, maka perlu dilakukan penggantian connector yang sudah tua dan rusak dengan menggunakan connector baru.

Penelitian ini difokuskan pada analisis besarnya rugi energi yang terjadi sebelum penggantian dan setelah penggantian connector. Analisis rugi energi dilakukan pada jaringan tegangan rendah yang terhubung pada transformator DS105. Connector yang digunakan sebelumnya adalah dari jenis tap connector, sedangkan connector pengganti yang digunakan adalah dari jenis connector type press, seperti ditunjukkan pada Gambar 2 dan 3 [3].

Gambar 2. Tap connector

Gambar 3. Connector type press

2. RUGI ENERGI

2.1 Rugi Pada Sambungan Tidak Sempurna

Rugi energi dapat terjadi pada titik-titik sambungan sepanjang jaringan tegangan rendah, antara lain :

- Sambungan antara kabel opstyg dengan kabel Low Voltage Twist Cable 3x70+ 1x50 mm² seperti ditampilkan pada Gambar 4.
- Sambungan antar saluran jaringan tegangan rendah atau antar kabel Twist Insulated Cable 2x10 mm².
- 3. Percabangan saluran jaringan tegangan renda, seperti pada Gambar 5.

Gambar 4. Sambungan kabel

Gambar 5. Percabangan kabel

2.2 Perhitungan Rugi Energi

Besarnya resistansi pada sambungan dan percabangan *connector* dapat dihitung dengan menggunakan Persamaan (1) berikut ini:

$$R = \frac{V_1 - V_2}{I} \tag{1}$$

Keterangan:

R adalah resistansi connector
V₁ adalah tegangan sebelum
titik sambung
V₂ adalah tegangan sesudah

adalan tegangan sesudar titik sambung

I adalah arus yang mengalir pada connector Besarnya rugi-rugi daya yang timbul pada sambungan dirumuskan seperti pada Persamaan (2):

$$P_{losses} = (I)^2.R \tag{2}$$

Keterangan:

P_{losses} adalah rugi daya nyata
I adalah arus yang mengalir
R adalah resistansi connector

Energi yang hilang akibat terjadinya susut daya ini dapat dihitung dengan Persamaan (3) sebagai berikut:

$$W_{losses} = P_{losses} x t$$
 (3)

Keterangan:

 $egin{array}{ll} W_{losses} & ext{adalah rugi energi} \\ P_{losses} & ext{adalah rugi daya} \\ t & ext{adalah waktu} \\ \end{array}$

3. METODE PENELITIAN

Penelitian dilaksanakan pada jaringan tegangan rendah yang terhubung dengan gardu DS 105. Pengukuran tegangan dan arus dilakukan pada 47 buah connector. Pengukuran tegangan dan arus pada connector dilakukan dua kali, yaitu sebelum penggantian tap connector dan pengukuran kedua setelah dilaksanakannya pengantian. Gambar 6 dan 7 masing-masing menunjukkan kegiatan pengukuran tegangan dan arus di gardu tiang dan di titik penyambungan kabel. Gambar 8 menunjukkan kegiatan penggantian connector yang rusak.

Data hasil pengukuran pada masingmasing *connector* selanjutnya digunakan untuk menghitung resistansi akibat buruknya kontak pada *connector*, rugi daya yang ditimbulkan dan rugi energi rata-rata yang terjadi selama satu hari (24 jam).

Gambar 6. Pengukuran di gardu

Gambar 7. Pengukuran di JTR

Gambar 8. Penggantian tap connector

4. HASIL DAN PEMBAHASAN

4.1 Hasil Pengukuran Tegangan dan Arus

Pengukuran tegangan di kedua ujung sambungan dilakukan pada titik V1 dan V2 seperti ditampilkan pada Gambar 4 dan 5. Sedangkan pengukuran arus dilakukan di salah satu ujung sambungan. Hasil pengukuran tegangan dan arus sebelum dan setelah dilakukannya penggantian jenis *connector* dapat dilihat pada Tabel 1.

Tabel 1. Hasil pengukuran tegangan dan arus

		Sebelum Penggantian			Sesudah Penggantian		
No. No. Tiang		Tegangan (Volt)		Arus	Tegangan (Volt)		Arus
	g	VI	V2	(A)	VI	V2	(A)
1	B2 AI	215.192	215.180	4.000	227.382	227.372	4.100
2	B2 A1	206.789	206.779	5.000	222.568	222.556	5.000
3	B2 A1	222.192	222.186	1.700	229.114	229.109	1.800
4	B2 A2	212.244	212.236	2.000	226.878	226.872	1.600
5	B2 A2	204.784	204.781	1.000	221.012	221.009	1.000
6	B2 A2	221.882	221.879	0.600	227.018	227.015	0.600
7	B2 A4	207.695	207.685	4.100	224.120	224.111	3.700
8	B2 A4	199.244	199.218	6.700	219.157	219.140	8.000
9	B2 A4	219.136	219.120	6.500	225.585	225.571	6.300
10	B2 A5 B1	201.237	201.224	3.000	220.198	220.186	3.000
11	B2 A5B1	194.478	194.465	5.100	210.098	210.086	5.000
12	B2 A5B1	211.582	211.562	1.000	222.286	222.282	2.200
13	B2 A5B2	199.685	199.671	6.000	218.986	218.973	6.200
14	B2 A5B2	192.285	192.250	16.200	207.597	207.565	15.800
15	B2 A5 B2	210.982	210.972	4.200	220.095	220.086	4.100
16	B2 A5 B3	215.375	215.350	11.500	215.030	215.007	11.200
17 18	B2 A5B3 B2 A5B3	202.753 215.686	202.740 215.671	4.800 6.100	202.597 215.198	202.587 215.184	4.200 6.000
19	B2 A5B4	213.249	213.236	4.000	213.089	213.104	4.000
7N	B2 A5B4	199.554	199.532	7.500	202.487	202.471	7.200
21	B2 A5B4	214.566	214.559	2.100	213.197	213.191	1.900
22	B2 A5B5	194,488	194,471	7.800	211.796	211.781	7.400
73	B2 A5B5	187.258	187.229	13.100	197.213	197.185	12.800
24	B2 A5B5	205.142	205.122	9.200	212.148	212.129	9.100
25	B2 A5B5 A1	192.719	192.700	4.200	208.217	208.200	4.100
26	B2 A5B5 A1	186.892	186.873	7.200	193,434	193,417	7.100
27	B2 A5B5AI	204.674	204.660	6.100	210.119	210.106	5.900
28	B2 A5B5 A2	192.698	192.678	8.200	206.172	206.153	7.900
29	B2 A5B5 A2	184.778	184.738	19.500	192.758	192.720	19.000
29	B2 A5B5 A2	184.778	184.738	19.500	192.758	192.720	19.000
30	B2 A5B5 A2	203.783	203.767	6.100	210.539	210.523	6.200
31	B2 A5B5 A3	205.152	205.131	8.100	205.228	205.210	8.000
32	B2 A5B5 A3	187.445	187.398	12.100	187.398	187.370	11.800
33	B2 A5B5A3	209.655	209.630	11.700	209.368	209.344	11.500
34	B2 A5B5 A3B1	188.678	188.629	9.700	201.179	201.152	9.400
35	B2 A5B5 A3B1	181.262	181.237	11.200	184.139	184.110	10.800
36	B2 A5B5 A3B1	201.578	201.561	6.600	207.648	207.633	6.100
37	B2 A5B5 A3B2	187.134	187.117	7.100	199.198	199.182	7.000
38	B2 A5B5 A3B2	180.875	180.850	10.300	183.178	183.156	10.000
39 40	B2 A5B5 A3B3 B2 A5B5 A3B3	185.789 178.893	185.750 178.838	18.000 18.300	198.266 183.578	198.229 183.528	17.800 17.600
40	B2 A5B5 A3B3	199,221	170.030	20.500	206.229	206.187	20.000
47	B2 A5B5 A3B4	183.278	183.252	11.200	198.125	198,100	10.800
42	B2 A5B5 A3B4	177.959	177.930	10.700	184.349	184.325	10.600
44	B2 A5B5 A3B4	198.559	198.540	6.400	206.136	206.123	6.000
45	B2 A5B5 A3B5	184.672	184.646	12.100	197.126	197,101	11.700
46 46	B2 A5B5 A3B5	176.253	176.232	8.700	180.187	180.168	8.100
47	B2 A5B5 A3B5	197.844	197.830	6.700	204.275	204.263	6.200

4.2 Hasil Perhitungan Rugi Daya dan Rugi Energi

Hasil perhitungan rugi daya dan rugi energi sebelum penggantian dan sesudah penggantian jenis connector dapat dilihat pada Tabel 2. Berdasarkan hasil perhitungan rugi energi sebelum dan sesudah penggantian jenis connector, dapat dilihat adanya penurunan rugi energi di tiap-tiap titik sambung connector. Sebagai contoh pada tiang B2A1 rugi energi sebelum penggantian connector adalah 1,1520 Wh dan sesudah penggantian connector menjadi 0,9840 Wh. Dengan demikian terdapat penurunan rugi energi sebesar 0,168 Wh atau sekitar 14,58%.

Tabel 2. Hasil perhitungan rugi daya dan rugi energi

		Sebelum Penggantian			Sesudah Penggantian		
No.	No. Tiang	R	Rugi	Rugi	R	Rugi	Rugi
NO.	No. Hang	••	Daya	Energi		daya	Energi
		(Ohm)	(Watt)	(Wh)	(Ohm)	(Watt)	(Wh)
- 1	B2 AI	0.00300	0.0480	1.1520	0.00244	0.0410	0.9840
2	B2 AI	0.00200	0.0500	1.2000	0.00293	0.0492	1.1808
3	B2 AI	0.00353	0.0102	0.2448	0.00278	0.0090	0.2160
4	B2 A2	0.00400	0.0160	0.3840	0.00375	0.0096	0.2304
5	B2 A2	0.00300	0.0030	0.0720	0.00337	0.0027	0.0641
6	B2 A2	0.00500	0.0018	0.0432	0.00500	0.0018	0.0432
7	B2 A4	0.00244	0.0410	0.9840	0.00243	0.0333	0.7992
8	B2 A4	0.00388	0.1742	4.1808	0.00213	0.1360	3.2640
9	B2 A4	0.00246	0.1040	2.4960	D. <i>00222</i>	0.0882	2.1168
10	B2 A5B1	0.00433	0.0390	0.9360	0.00400	0.0360	0.8640
11	B2 A5B1	0.00255	0.0663	1.5912	0.00240	0.0600	1.4400
12	B2 A5B1	0.02000	0.0200	0.4800	0.00182	0.0088	0.2112
13	B2 A5 B2	0.00233	0.0840	2.0160	0.00210	0.0806	1.9344
14	B2 A5 B2	0.00216	0.5670	13.6080	0.00203	0.5056	12.1344
15	B2 A5 B2	0.00238	0.0420	1.0080	0.00220	0.0369	0.8856
16	B2 A5B3	0.00217	0.2875	6.9000	0.00205	0.2576	6.1824
17	B2 A5B3	0.00271	0.0624	1.4976	0.00238	0.0420	1.0080
18	B2 A5B3	0.00246	0.0915	2.1960	0.00233	0.0840	2.0160
19	B2 A5 B4	0.00325	0.0520	1.2480	0.00300	0.0480	1.1520
20	B2 A5 B4	0.00293	0.1650	3.9600	0.00222	0.1152	2.7648
21	B2 A5 B4	0.00333	0.0147	0.3528	0.00316	0.0114	0.2736
22	B2 A5B5	0.00218	0.1326	3.1824	0.00203	0.1110	2.6640
23	B2 A5B5	0.00221	0.3799	9.1176	0.00219	0.3584	8.6016
24	B2 A5B5	0.00217	0.1840	4.4160	0.00209	0.1729	4.1496
25	B2 A5B5 A1	0.00452	0.0798	1.9152	0.00415	0.0697	1.6728
26	B2 A5B5 A1	0.00264	0.1368	3.2832	0.00239	0.1207	2.8968
27	B2 A5B5 A1	0.00230	0.0854	2.0496	0.00220	0.0767	1.8408
28	B2 A5B5 A2	0.00244	0.1640	3.9360	0.00241	0.1501	3.6024
29	B2 A5B5 A2	0.00205	0.7800	18.7200	0.00200	0.7220	17.3280
30	B2 A5B5 A2	0.00262	0.0976	2.3424	0.00267	0.0960	2.3040
31	B2 A5B5 A3	0.00259	0.1701	4.0824	0.00225	0.1440	3.4560
32	B2 A5B5 A3	0.00388	0.5687	13.6488	0.00237	0.3304	7.9296
33	B2 A5B5 A3	0.00214	0.2925	7.0200	0.00209	0.2760	6.6240
34	B2 A5B5 A3B1	0.00505	0.4753	11.4072	0.00287	0.2538	6.0912
35	B2 A5B5 A3B1	0.00223	0.2800	6.7200	0.00305	0.2755	6.6120
36	B2 A5B5 A3B1	0.00258	0.1122	2.6928	0.00246	0.0915	2.1960
37	B2 A5B5 A3B2	0.00239	0.1207	2.8968	0.00229	0.1120	2.6880
38	B2 A5B5 A3B2	0.00243	0.2575	6.1800	0.00220	0.2200	5.2800
39	B2 A5B5 A3B3	0.00217	0.7020	16.8480	0.00208	0.6586	15.8064
40	B2 A5B5 A3B3	0.00301	1.0065	24.1560	0.00284	0.8800	21.1200
41	B2 A5B5 A3B3	0.00498	2.0910	50.1840	0.00210	0.8400	20.1600
42	B2 A5B5 A3B4	0.00232	0.2912	6.9888	0.00231	0.2700	6.4800
43	B2 A5B5 A3B4	0.00271	0.3103	7.4472	0.00238	0.2424	5.8176
44	B2 A5B5 A3B4	0.00297	0.1216	2.9184	0.00217	0.0780	1.8720
45	B2 A5B5 A3B5	0.00215	0.3146	7.5504	0.00214	0.2925	7.0200
46	B2 A5B5 A3B5	0.00241	0.1827	4.3848	0.00235	0.1539	3.6936
47	B2 A5B5 A3B5	0.00209	0.0938	2.2512	0.00194	0.0744	1.7856
	Total			272.8896			209.4569

Nilai resistansi pada connector type press yang masih cukup tinggi setelah penggantian dapat disebabkan oleh kesalahan dalam prosedur pemasangan seperti pada Tabel 2 dapat dilihat bahwa. Kesalahan prosedur saat pemasangan connector dapat menyebabkan timbulnya rongga yang mengakibatkan buruknya kontak penghantar dengan connector, sehingga menimbulkan kenaikan suhu pada connector sebagai akibat dari tingginya resistansi pada connector.

Secara umum pada setiap titik sambung connector terjadi penurunan rugi daya dan rugi energi seperti dapat dilihat pada Tabel 3. Dengan demikian, secara keseluruhan, penurunan rugi energi setelah penggantian connector adalah sebesar:

$$\Delta W = W_{losses \text{ sebelum}} - W_{losses \text{ sesudah}}$$

= 272.8896 - 209.4569

= 63.4327 Wh

Tabel 3. Penurunan rugi daya dan rugi energi

		۸P	ΛW	Persen-tase
No.	No. Tiang	(watt)	(watt hour)	(%)
1	B2 AI	0.0070	0.1680	14.5833
2	B2 A1	0.0008	0.0192	1.6000
3	B2 AI	0.0012	0.0288	11.7647
4	B2 A2	0.0064	0.1536	40.0
5	B2 A2	0.0003	0.0079	11.0
6	B2 A2	0	0	0
7	B2 A4	0.0077	0.1848	18.7805
8	B2 A4	0.0382	0.9168	21.9288
9	B2 A4	0.0158	0.3792	15.1923
10	B2 A5B1	0.0030	0.0720	7.6923
- 11	B2 A5B1	0.0063	0.1512	9.5023
12	B2 A5B1	0.0112	0.2688	56.0
13	B2 A5 B2	0.0034	0.0816	4.0476
14	B2 A5 B2	0.0614	1.4736	10.8289
15	B2 A5 B2	0.0051	0.1224	12.1429
16	B2 A5 B3	0.0299	0.7176	10.4
17	B2 A5 B3	0.0204	0.4896	32.6923
18	B2 A5 B3	0.0075	0.1800	8.1967
19	B2 A5 B4	0.0040	0.0960	7.6923
20	B2 A5 B4	0.0498	1.1952	30.1818
21	B2 A5 B4	0.0033	0.0792	22.4490
22	B2 A5B5	0.0216	0.5184	16.2896
23	B2 A5B5	0.0215	0.5160	5.6594
24	B2 A5B5	0.0111	0.2664	6.0326
25	B2 A5B5 A1	0.0101	0.2424	12.6566
26	B2 A5B5 A1	0.0161	0.3864	11.7690
27	B2 A5B5 AI	0.0087	0.2088	10.1874
28	B2 A5B5 A2	0.0139	0.3336	8.4756
29	B2 A5B5 A2	0.0580	1.3920	7.4359
30	B2 A5B5 A2	0.0016	0.0384	1.6393
31	B2 A5B5 A3	0.0261	0.6264	15.3439
32	B2 A5B5 A3	0.2383	5.7192	41.9021
33	B2 A5B5 A3	0.0165	0.3960	5.6410
34	B2 A5B5 A3B1	0.2215	5.3160	46.6021
35	B2 A5B5 A3B1	0.0045	0.1080	1.6071
36	B2 A5B5 A3B1	0.0207	0.4968	18.4492
37	B2 A5B5 A3B2	0.0087	0.2088	7.2080
38	B2 A5B5 A3B2	0.0375	0.9000	14.5631
39	B2 A5B5 A3B3	0.0434	1.0416	6.1823
40	B2 A5B5 A3B3	0.1265	3.0360	12.5683
41	B2 A5B5 A3B3	1.2510	30.0240	59.8278
42	B2 A5B5 A3B4	0.0212	0.5088	7.2802
43	B2 A5B5 A3B4	0.0679	1.6296	21.8820
44 4E	B2 A5B5 A3B4	0.0436	1.0464	35.8553
45	B2 A5B5 A3B5	0.0221	0.5304	7.0248
46 47	B2 A5B5 A3B5 B2 A5B5 A3B5	0.0288 0.0194	0.6912 0.4656	15.7635 20.6823
4/				20.6823
	Total	2.6430	63.4327	

Atau sebesar = 63.4327/272.8896 x 100% = 0.232448 x 100%

= 23,2448%

Sehingga penurunan rugi energi rata-rata selama satu bulan menjadi:

 $\Delta W_{dalam \ satu \ bulan} = 63.4327 \ Wh \ x \ 30$ = 1.903 kWh

5. KESIMPULAN

Berdasarkaan hasil perhitungan yang telah dilakukan, dapat diperoleh kesimpulan sebagai berikut:

- Penggantian jenis connector di gardu DS.105 dapat menurunkan rugi energi dari 272,8896 Wh sebelum penggatian tap connector menjadi 209,4569 Wh setelah penggantian tap konektor atau sebesar 63,4327 Wh (23,2448%).
- 2. Penggantian *tap connector* ini menyebabkan kualitas tegangan ujung tiaptiap pelanggan menjadi lebih baik, pada

saat jam beban puncak tidak ada pelanggan yang tegangannya dibawah toleransi minimum (-10%).

6. DAFTAR PUSTAKA

- [1] https://www.google.com/#q=susut+ energi+listrik. Diakses tanggal 07/10/-2013.
- [2] SPLN 1, Tegangan-Tegangan Standar, 1995
- [3] http://www.karya-adikita.com/index.php-/produk-kami?start=48/72. Diakses tanggal 07/10/2013
- [4] Syahruzadi. D. 2005. Laporan Pengujian CCO Di Badan Penelitian dan Pengembangan PT. PLN (Persero). PT. Karya Adikita Galvanize. Jakarta