Warsztaty - modulo

Rozgrzewka:

- 1. Pewna liczba przy dzieleniu przez 7 daje resztę 6. Jaką resztę otrzymamy, dzieląc przez 6 jej kwadrat, a jaką gdy weźmiemy czwartą potęgę?
- 2. Liczba daje resztę 2 z dzielenia przez 7. Udowodnij, że jej czwarta potęga również.

Teoria:

Definicja (a, b, n - całkowite):

1)
$$a \equiv b \pmod{n} \Leftrightarrow n|a-b|$$

2) $a \equiv b \pmod{n} \Leftrightarrow a, b \text{ daja taka sama resztę z dzielenia przez } n$

Reszta z dzielenia to liczba $r\in\{0,\ 1,\ ...\ n-1\}$, taka że przy dzieleniu c przez n mamy $c=n\cdot d+r$, (np. 13 daje resztę 3 (mod 5), bo $13\ =\ 5\cdot 2\ +\ 3)$

Własności:

- $a \equiv a \pmod{n}$ dla każdego a, n
- $a \equiv b \pmod{n}$ oznacza, że $b \equiv a \pmod{n}$
- $a \equiv b \pmod{n}$ i $b \equiv c \pmod{n}$ oznacza, że $b \equiv c \pmod{n}$
- kongruencje można dodawać i odejmować:

$$a \equiv b \pmod{n}$$
, $c \equiv d \pmod{n} \Rightarrow a + c \equiv b + d \pmod{n}$

• kongruencje można mnożyć:

$$a \equiv b \pmod{n}, c \equiv d \pmod{n} \Rightarrow ac \equiv bd \pmod{n}$$

• szczególny przypadek mnożenia to potęgowanie

$$a \equiv b \pmod{n} \Rightarrow a^k \equiv b^k \pmod{n}$$

MIELECKI OBÓZ MATEMATYCZNY

LISTA MŁODSZA

- 1. Zrobić zadania z Rozgrzewki za pomocą modulo.
- 2. Znaleźć ostatnią cyfrę liczby 2²⁰²⁵.
- 3. Znaleźć dwie ostatnie cyfry liczby 51⁵¹.

4.

- a) Znaleźć resztę z dzielenia liczby 5¹⁶ przez 4.
- b) Wykazać, że $53^{53} 33^{33}$ jest podzielne przez 10.
- c) Wykazać, że $2^{55} + 1$ dzieli się przez 11.
- d) Wykazać, że $2^{70} + 3^{70}$ jest podzielne przez 13.
- e) Znaleźć resztę z dzielenia $6^{20} + 3^{100}$ przez 7.
- f) Znaleźć resztę z dzielenia 2025²⁰²⁵ przez 109.
- (AGH 2014/15, etap III) Znajdź wszystkie liczby naturalne mniejsze niż 7
 ,

przez które podzielna jest liczba $L = 3^{2016} + 4$.

Tabelki:

- 6. (*AGH* 2021/22, *etap II*) Dane są trzy kolejne liczby całkowite. Udowodnij, że kwadraty dokładnie dwóch z nich dają resztę 1 z dzielenia przez 3.
- 7. Rozwiąż równanie $x^2 2 = 3k$ w liczbach całkowitych.
- 8. Znajdź x takie, że $x^2 3$ jest podzielne przez 4.
- 9. Wykaż, że kwadrat liczby nieparzystej daje resztę 1 z dzielenia przez 8.
- 10. Wykaż, że 5 dzieli $m^5 m$.

MIELECKI OBÓZ MATEMATYCZNY

LISTA STARSZA

- 1. Wyznacz wszystkie pary liczb pierwszych (p, q), dla których liczby 7p + q oraz pq + 11 również są pierwsze.
- 2. $(AGH\ 2016/17,\ etap\ I)$ Udowodnij, że jedyną liczbą pierwszą p, taką że liczba p^2+2 też jest pierwsza, jest p=3.
- 3. (II MOM) Wykazać, że dla każdej liczby naturalnej n liczba $\sqrt{8n+3}$ nie jest wymierna.
- 4. Znajdź wszystkie takie liczby naturalne n, że liczby $n^2 + n + 1$ oraz $n^2 + n + 3$ są liczbami pierwszymi.
- 5. (II MOM) Wyznacz wszystkie liczby naturalne n, dla których liczba $1 + 2^n + 3^n + 4^n$ jest podzielna przez 5.
- 6. Rozwiąż $x^3 + y^3 + z^3 = 2005^2$.

Małe Twierdzenie Fermata

Dla dowolnej liczby pierwszej p i liczby całkowitej a zachodzi $p \mid a^p - a$. Jest to równoważne zapisowi $a^p \equiv a \pmod{p}$.

Wniosek.

Jeżeli p nie dzieli a, to $a^{p-1} \equiv 1 \pmod{p}$.

- 7. Uzasadnić Wniosek.
- 8. Wykazać, że $2^{55} + 1$ dzieli się przez 11.
- 9. Znaleźć x, y takie, że $x^{16} = 17y^{2022} + 2$.
- 10. Czy istnieje liczba pierwsza p taka, że p^6+6 jest również liczbą pierwszą?
- 11. Znaleźć p pierwsze takie, że $p \mid 29^p + 1$.