1 Si z = 1 + 2i i $\omega = 3 - i$, comprovau les propietats següents:

a)
$$\bar{z} = z$$

a)
$$\overline{\overline{z}} = z$$
 b) $\overline{z + \omega} = \overline{z} + \overline{\omega}$

c)
$$\overline{z \cdot \omega} = \overline{z} \cdot \overline{\omega}$$
 d) $z \cdot \overline{z} \ge 0$

$$\mathbf{d)} \ \ z \cdot \overline{z} > 0$$

2 Si z = 3 - 4i i $\omega = -6 + 8i$, comprovau les propietats següents:

a)
$$|\bar{z}| = |z|$$

a)
$$|\bar{z}| = |z|$$
 b) $|z \cdot \omega| = |z| \cdot |\omega|$

c)
$$| \text{Re } z | \le | z |$$
 d) $| \text{Im } z | \le | z |$

$$\mathbf{d)} \quad | \text{ Im } z | \leq | z |$$

e)
$$|z+\omega| \leq |z| + |\omega|$$

3 Calculau el mòdul i l'argument dels nombres complexos següents:

$$2\sqrt{3}-2i$$
, $5i$, $-\sqrt{3}-i$, $-4+4\sqrt{3}i$, $1+i$

4 Representau gràficament i expressau en forma exponencial i en forma trigonomètrica els nombres complexos següents:

a)
$$z = i$$

a)
$$z = i$$
 b) $z = -2 - 2i$ **c)** $z = 2$

c)
$$z = 2$$

d)
$$z = 1 + i$$
 e) $z = 1 - i$ f) $z = -1 + i$

e)
$$z = 1 - i$$

f)
$$z = -1 + 1$$

5 Representau gràficament i expressau en forma binòmica els nombres complexos següents expressats en forma exponencial:

a)
$$z = 3 e^{i\frac{\pi}{4}}$$

b)
$$z = 2 e^{i\frac{\pi}{3}}$$

a)
$$z = 3 e^{i\frac{\pi}{4}}$$
 b) $z = 2 e^{i\frac{\pi}{3}}$ c) $z = 6 e^{i\frac{5\pi}{3}}$

$$\mathbf{d)} \ z = e^{i\frac{\tau}{6}}$$

d)
$$z = e^{i\frac{\pi}{6}}$$
 e) $z = 8 e^{i\frac{\pi}{2}}$ f) $z = 4 e^{i\pi}$

f)
$$z = 4 e^{i\tau}$$

 $\mathbf 6$ Resoleu les equacions següents en $\mathcal C$ i descomponeu en factors:

a)
$$4x^2 + 48x + 169 = 0$$
 b) $4x^2 - 12x + 25 = 0$

b)
$$4x^2 - 12x + 25 = 0$$

c)
$$x^2 + 49 = 0$$
 d) $x^2 + 16 = 0$

d)
$$x^2 + 16 = 0$$

e)
$$x^2 + 2x - 5 = 0$$

e)
$$x^2 + 2x - 5 = 0$$
 f) $3x^2 - x - 10 = 0$

- 7 Si z = 3 + 2i i $\omega = 5 i$, comprovau les propietats següents:
 - **a)** $e^{z+\omega} = e^z \cdot e^{\omega}$ **b)** $e^{-z} = \frac{1}{e^z}$

 - c) $\overline{e^z} = e^{\overline{z}}$ d) $e^z = e^{z+2\pi i}$
- 8 Provau que si $z_1 = 2 2i, z_2 = 4 + 5i$, aleshores $(z_1 \cdot z_2)^2 = z_1^2 \cdot z_2^2$
- 9 Efectuau les operacions següents amb nombres complexos:
 - a) $(1-i+i^2)(2i-1)^2$ b) $(2+3i)^5$

- c) $\frac{i^{15}-i^{16}}{2-i}$ d) $\frac{(1+i+...+i^{62})}{2-i}$
- 10 Determinau el conjunt de tots els $x, y \in \mathbb{R}$ tals que:
- **a)** x + iy = |x iy| **b)** $x + iy = (x iy)^2$ **c)** $x + iy = \sum_{k=0}^{100} i^k$
- 11 Determinau els conjunts següents:
- a) $\{z \in \mathcal{C} : 1 + e^z = 0\}$ b) $\{z \in \mathcal{C} : \frac{1}{e} e^z = 0\}$ c) $\{z \in \mathcal{C} : 1 + i e^z = 0\}$

12 Determinau les arrels complexes

$$\sqrt[3]{-5i}$$
, $\sqrt[4]{-\sqrt{3}+i}$, $\sqrt[5]{4-4\sqrt{3}i}$, $\sqrt[6]{1+i}$, $\sqrt[3]{-1}$

- **13** Determinau tots els $z \in \mathcal{C}$ tals que $z^4 + i = 0$ i tots els $z \in \mathcal{C}$ tals que $z^8 = 1$.
- 14 Sigui z=1+i. Calculau els conjunts de valors de $(\sqrt[n]{z})^m$ i $\sqrt[n]{z^m}$ per als casos següents:

a)
$$m = 4$$
, $n = 2$ b) $m = 3$, $n = 2$

Nota. Siguin m i n dos nombres naturals i z un nombre complex distint de 0. Llavors el nombre de valors distints de $(\sqrt[n]{z})^m$ és $\frac{n}{d}$, on d = mcd(m, n).