MA227 (Assignment-8)

- 1. Modify the code of function SelfPower.m in the last assignment in such a way that the function accept the matrix A and initial vector x_0 in sparse (e.g. CRS) format. The main step of power method is the matrix-vector multiplication, perform this operation for sparse matrices and return the eigenvector in the sparse format.
- 2. Write a function SelfSD.m that takes an $n \times n$ symmetric positive definite matrix A, vector $b \in \mathbb{R}^{\times}$, initial vector x_0 , integer maxNumIter and positive small number $tol = 10^{-8}$, and returns solution to Ax = b. Use steepest descent (SD) method to find the solution and apply the following stopping criteria
 - No. of iteration k > maxNumIter OR
 - $|r_k| \leq tol$.

Here r_k represents the residual value in the k-th iteration.

For the above two problems, take $A = \begin{bmatrix} 4 & -1 & 0 & 0 & 0 & 0 \\ -1 & 4 & -1 & 0 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & 0 \\ 0 & 0 & -1 & 4 & -1 & 0 \\ 0 & 0 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & -1 & 4 \end{bmatrix}$. For the above second

problem, take $b = \begin{bmatrix} 0 \\ 5 \\ 0 \\ 6 \\ -2 \\ 6 \end{bmatrix}$.