第 5 次作业题解答

1. 如果 $f \in \mathcal{C}(0, +\infty)$ 使得 $\forall x, y > 0$, 均有 f(xy) = f(x) + f(y). 求证: 或者 $f \equiv 0$, 或者 $\exists a > 0 \ (a \neq 1)$ 使得 $\forall x > 0$, $f(x) = \log_a x$.

证明: $\forall x \in \mathbb{R}$, 定义 $F(x) = f(e^x)$. 则 $F \in \mathcal{C}(\mathbb{R})$, 并且 $\forall x, y \in \mathbb{R}$, 我们有

$$F(x+y) = f(e^{x+y}) = f(e^x e^y) = f(e^x) + f(e^y) = F(x) + F(y).$$

从而 $\exists c \in \mathbb{R}$ 使得 $\forall x \in \mathbb{R}$, 均有 F(x) = cx.

若 c=0. 则 $\forall x>0$. 我们有

$$f(x) = f(e^{\log x}) = F(\log x) = c \log x = 0.$$

若 $c \neq 0$, 令 $a = e^{1/c}$, 则 $\forall x > 0$, 均有

$$f(x) = F(\log x) = c \log x = \log_a x.$$

2. 如果 $f \in \mathcal{C}(0, +\infty)$ 使得 $\forall x, y > 0$,均有 f(xy) = f(x)f(y). 求证:或者 $f \equiv 0$,或者 $\exists a \in \mathbb{R}$ 使得 $\forall x > 0$,均有 $f(x) = x^a$.

证明: $\forall x \in \mathbb{R}$, 定义 $F(x) = f(e^x)$. 则 $\forall x, y \in \mathbb{R}$, 我们有

$$F(x+y) = f(e^{x+y}) = f(e^x \cdot e^y) = f(e^x)f(e^y) = F(x)F(y).$$

由于 $F \in \mathcal{C}(\mathbb{R})$, 于是或者 $F \equiv 0$, 或者 $\exists c > 0$ 使得 $\forall x \in \mathbb{R}$, 均有 $F(x) = c^x$.

在第一种情形, $\forall x > 0$, 我们有 $f(x) = f(e^{\log x}) = F(\log x) = 0$.

在第二种情形, 令 $a = \log c$, 则 $\forall x > 0$, 均有

$$f(x) = f(e^{\log x}) = F(\log x)$$
$$= c^{\log x} = e^{(\log c)(\log x)}$$
$$= e^{\log x^a} = x^a.$$

3. 设 $a_1, \ldots, a_n \in \mathbb{R}$ 使得 $a_1 + \cdots + a_n = 0$, 求证: $\lim_{x \to +\infty} \sum_{k=1}^n a_k \sin \sqrt{x+k} = 0$.

证明: $\forall x > 0$, 我们有

$$\left| \sum_{k=1}^{n} a_k \sin \sqrt{x+k} \right| = \left| \sum_{k=1}^{n} a_k (\sin \sqrt{x+k} - \sin \sqrt{x}) \right|$$

$$\leqslant \sum_{k=1}^{n} 2|a_k| \left| \sin \frac{\sqrt{x+k} - \sqrt{x}}{2} \cos \frac{\sqrt{x+k} + \sqrt{x}}{2} \right|$$

$$\leqslant \sum_{k=1}^{n} 2|a_k| \left| \sin \frac{\sqrt{x+k} - \sqrt{x}}{2} \right| \leqslant \sum_{k=1}^{n} |a_k| |\sqrt{x+k} - \sqrt{x}|$$

$$= \sum_{k=1}^{n} \frac{k|a_k|}{\sqrt{x+k} + \sqrt{x}} \leqslant \frac{1}{\sqrt{x}} \sum_{k=1}^{n} k|a_k|,$$

于是由夹逼原理可知所证成立.

4. 利用极限来定义函数 $f(x) = \lim_{n \to \infty} n^x \left(\left(1 + \frac{1}{n} \right)^{n+1} - \left(1 + \frac{1}{n} \right)^n \right)$. 求函数 $f(x) = \lim_{n \to \infty} n^x \left(\left(1 + \frac{1}{n} \right)^{n+1} - \left(1 + \frac{1}{n} \right)^n \right)$.

解: 当 $n \to \infty$ 时, 我们有

$$n^{x} \left(\left(1 + \frac{1}{n} \right)^{n+1} - \left(1 + \frac{1}{n} \right)^{n} \right) = n^{x-1} \left(1 + \frac{1}{n} \right)^{n} \sim en^{x-1}.$$

于是题设极限收敛当且仅当 $x \le 1$, 也即 f 的定义域为 $(-\infty, 1]$, 并且 $\forall x \le 1$,

$$f(x) = \begin{cases} 0, & \text{ \vec{x} } x < 1, \\ e, & \text{ \vec{x} } x = 1. \end{cases}$$

5. 如果 $a_1, a_2, ..., a_n \in \mathbb{R}$ 使得 $\forall x \in (-1, 1), 均有 | \sum_{k=1}^n a_k \sin kx | \leq |\sin x|,$ 求证: $\left|\sum_{k=1}^{n} ka_k\right| \leq 1$.

证明: 由题设可知, $\forall x \in (-1,1) \setminus \{0\}$, 我们有 $\left| \sum_{k=1}^{n} a_k \frac{\sin kx}{\sin x} \right| \leqslant 1$, 于是

$$\left| \sum_{k=1}^{n} k a_k \right| \leqslant \left| \sum_{k=1}^{n} a_k \lim_{x \to 0} \frac{\sin kx}{\sin x} \right| = \lim_{x \to 0} \left| \sum_{k=1}^{n} a_k \frac{\sin kx}{\sin x} \right| \leqslant 1.$$

6. 假设极限 $\lim_{x \to +\infty} ((x^3 + x^2)^c - x)$ 存在 (有限), 求常数 c 以及极限值.

$$\alpha \stackrel{x=\frac{1}{y}}{=} \lim_{y \to 0^+} \left(\left(\frac{1}{y^3} + \frac{1}{y^2} \right)^c - \frac{1}{y} \right) = \lim_{y \to 0^+} \frac{y^{1-3c} (1+y)^c - 1}{y},$$

则 $\lim_{y\to 0^+} \left(y^{1-3c}(1+y)^c-1\right) = \lim_{y\to 0^+} \frac{y^{1-3c}(1+y)^c-1}{y} \cdot y = 0$,故 $\lim_{y\to 0^+} y^{1-3c}(1+y)^c = 1$,由此可得 $\lim_{y\to 0^+} y^{1-3c} = \lim_{y\to 0^+} (1+y)^{-c} = 1$,从而我们有 $\lim_{y\to 0^+} (1-3c)\log y = 0$,故 $3c-1 = \lim_{y\to 0^+} \frac{(3c-1)\log y}{\log y} = 0$,即 $c = \frac{1}{3}$,则所求极限为 $\alpha = \lim_{y\to 0^+} \frac{\sqrt[3]{1+y}-1}{y} = \frac{1}{3}$.

解: (1) 由连续函数复合法则可知 f 在 \mathbb{R} 上连续, 因此在点 $x_0 = 0$ 处连续. 又 $\forall x \in (-1,1), f(x) = 3 - x,$ 从而 f 在点 $x_0 = 0$ 处且 f'(0) = -1.

(2) 由题设条件知 f(0-0) = f(0+0) = 0 = f(0), 因此 f 在点 $x_0 = 0$ 处 连续. 又由左、右导数的定义得

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{x}{x} = 1,$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{\log(1+x)}{x} = 1,$$

于是 f 在点 $x_0 = 0$ 处可导且 f'(0) = 1.

8. 设
$$f(x) = \begin{cases} x^2 + 1, & \vec{x} \le 1 \\ ax + b, & \vec{x} \ge 1 \end{cases}$$
. 问 a, b 取何值时 f 在点 $x = 1$ 可导.

解: 由题设立刻可知 f(1-0)=2, f(1+0)=a+b. 而由定义可知, 函数 f 在点 x=1 处可导当且仅当 f 在该点连续 (也即 a+b=2) 且 $f'_-(1)=f'_+(1)$, 也即 2=a. 故 f 在点 x=1 处可导当且仅当 a=2, b=0.

9. 当 a 为何值时, 曲线 $y = ax^2$ 与 $y = \log x$ 相切?并求切点与切线方程.

解: 曲线 $y=ax^2$ 与 $y=\log x$ 相切当且仅当两曲线有公共的交点 (x_0,y_0) , 且在该点处,两曲线的切线重合. 在点 (x_0,y_0) 处,抛物线 $y=ax^2$ 的切线斜率为 $y'|_{x=x_0}=2ax_0$,曲线 $y=\log x$ 的切线斜率为 $y'|_{x=x_0}=\frac{1}{x_0}$. 故 (x_0,y_0) 为两曲线的公切点当且仅当 $y_0=ax_0^2=\log x_0$, $2ax_0=\frac{1}{x_0}$,从而 $\log x_0=ax_0^2=\frac{1}{2}$. 故 $x_0=\sqrt{e}$,进而可得 $a=\frac{1}{2x_0^2}=\frac{1}{2e}$. 因此当且仅当 $a=\frac{1}{2e}$ 时,抛物线 $y=ax^2$ 与曲线 $y=\log x$ 相切,其公切点为 $(\sqrt{e},\frac{1}{2})$,切线方程为 $y-\frac{1}{2}=\frac{1}{\sqrt{e}}(x-\sqrt{e})$,也即 $y=\frac{x}{\sqrt{e}}-\frac{1}{2}$.

10. 求 th x, cth x 的导数.

解: 由导数的四则运算法则可得

$$(\operatorname{th} x)' = \left(\frac{\operatorname{sh} x}{\operatorname{ch} x}\right)' = \frac{(\operatorname{sh} x)' \operatorname{ch} x - \operatorname{sh} x (\operatorname{ch} x)'}{(\operatorname{ch} x)^2} = \frac{(\operatorname{ch} x)^2 - (\operatorname{sh} x)^2}{(\operatorname{ch} x)^2}$$

$$= \frac{(\operatorname{ch} x + \operatorname{sh} x) (\operatorname{ch} x - \operatorname{sh} x)}{(\operatorname{ch} x)^2} = \frac{e^x \cdot e^{-x}}{(\operatorname{ch} x)^2} = \frac{1}{(\operatorname{ch} x)^2},$$

$$(\operatorname{cth} x)' = \left(\frac{\operatorname{ch} x}{\operatorname{sh} x}\right)' = \frac{(\operatorname{ch} x)' \operatorname{sh} x - \operatorname{ch} x (\operatorname{sh} x)'}{(\operatorname{sh} x)^2} = \frac{(\operatorname{sh} x)^2 - (\operatorname{ch} x)^2}{(\operatorname{sh} x)^2}$$

$$= \frac{(\operatorname{sh} x + \operatorname{ch} x) (\operatorname{sh} x - \operatorname{ch} x)}{(\operatorname{sh} x)^2} = \frac{e^x \cdot (-e^{-x})}{(\operatorname{sh} x)^2} = -\frac{1}{(\operatorname{sh} x)^2}.$$

11. 求下列函数的导函数:

- (1) $y = x(\frac{1}{\sqrt{x}} 3x^{\frac{2}{3}}),$
- (2) $y = 2^x (\sec x + \csc x) + \log_2(3x) + \log_{10} x^2$,
- (3) $y = \sin(\cos^2 x) \cdot \cos(\sin^2 x)$,
- $(4) \ y = \sqrt{x + \sqrt{x + \sqrt{x}}},$
- (5) $y = (x a_1)^{a_1} (x a_2)^{a_2} \cdots (x a_n)^{a_n}$
- (6) $y = x + x^x + x^{x^x}$.

解: (1)
$$y' = (x^{\frac{1}{2}} - 3x^{\frac{5}{3}})' = \frac{1}{2\sqrt{x}} - 5x^{\frac{2}{3}}$$
.

(2)
$$y' = 2^x \log 2 \left(\sec x + \csc x\right) + 2^x \left(\frac{\sin x}{\cos^2 x} - \frac{\cos x}{\sin^2 x}\right) + \frac{1}{x \log 2} + \frac{2}{x \log 10}$$

(3)
$$y = \cos(\cos^2 x) \cdot (2\cos x) \cdot (-\sin x) \cdot \cos(\sin^2 x) + \sin(\cos^2 x) \cdot (-\sin(\sin^2 x) \cdot (2\sin x \cdot \cos x))$$

$$= -\cos(\cos^2 x) \cdot \sin(2x) \cdot \cos(\sin^2 x)$$
$$-\sin(\cos^2 x) \cdot \sin(\sin^2 x) \cdot \sin(2x).$$

$$(4) \ y' = \frac{(x + \sqrt{x + \sqrt{x}})'}{2\sqrt{x + \sqrt{x + \sqrt{x}}}} = \frac{1 + \frac{(x + \sqrt{x})'}{2\sqrt{x + \sqrt{x + \sqrt{x}}}}}{2\sqrt{x + \sqrt{x + \sqrt{x}}}}$$
$$= \frac{1 + \frac{1 + \frac{1}{2\sqrt{x}}}{2\sqrt{x + \sqrt{x + \sqrt{x}}}}}{2\sqrt{x + \sqrt{x + \sqrt{x}}}} = \frac{1 + \frac{2\sqrt{x} + 1}{4\sqrt{x}\sqrt{x + \sqrt{x}}}}{2\sqrt{x + \sqrt{x + \sqrt{x}}}}$$
$$= \frac{4\sqrt{x}\sqrt{x + \sqrt{x}} + 2\sqrt{x} + 1}{8\sqrt{x}\sqrt{x + \sqrt{x}}\sqrt{x + \sqrt{x + \sqrt{x}}}}.$$

(5)
$$y' = (x - a_1)^{a_1} (x - a_2)^{a_2} \cdots (x - a_n)^{a_n} \left(\sum_{k=1}^n \frac{a_k}{x - a_k} \right).$$

(6)
$$y' = 1 + (e^{x \log x})' + (e^{x^x \log x})'$$

 $= 1 + x^x (x \log x)' + x^{x^x} (x^x \log x)'$
 $= 1 + x^x (1 + \log x) + x^{x^x} (x^{x-1} + (x^x)' \log x))$
 $= 1 + x^x (1 + \log x) + x^{x^x} (x^{x-1} + x^x (1 + \log x) \log x).$

12. 设 f 为可微函数, 求 f(f(f(x))) 的导函数.

解: 由复合函数求导法则可知

$$(f(f(f(x))))' = f'(f(f(x))) \cdot (f(f(x)))' = f'(f(f(x)))f'(f(x))f'(x).$$

13. 求函数 $y = x + e^x$ 的反函数的导数.

解:
$$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{\frac{\mathrm{d}y}{}} = \frac{1}{1+e^x}$$
.

14. 设方程 $xy = 1 + xe^y$ 确定了 $y \neq x$ 的可导函数, 求 y'(x).

解: 将
$$xy = 1 + xe^y$$
 对 x 求导得 $y + xy' = e^y + xe^y y'$, 于是 $y' = \frac{e^y - y}{x(1 - e^y)}$.

15. 求曲线 $xy + \log y = 1$ 在点 (1,1) 处的切线方程.

解: 将隐函数方程 $xy + \log y = 1$ 关于 x 求导立刻可得

$$y + xy' + \frac{y'}{y} = 0,$$

则我们有 $y'=-rac{y^2}{1+xy}$,从而 $y'|_{x=1}=-rac{1}{2}$. 故所求切线方程为

$$y - 1 = -\frac{1}{2}(x - 1).$$

16. 对参数方程
$$\begin{cases} x = 3t^2 + 2t \\ e^y \sin t - y + 1 = 0 \end{cases}$$
, 求 $\frac{dy}{dx}$.

解: 将参数方程关于 t 求异可得

$$x' = 6t + 2$$
, $e^y \cos t + e^y y' \sin t - y' = 0$,

则
$$x' = 2(3t+1), \ y' = \frac{e^y \cos t}{1-e^y \sin t}.$$
 故 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y'}{x'} = \frac{e^y \cos t}{2(3t+1)(1-e^y \sin t)}.$