1 HLLC overview

The HLLC solver puts the contact wave back into the HLL solver.

- 1. Get wave speeds S_L , S_{\star} , S_R .
- 2. Construct \mathbf{U}_L^{\star} and \mathbf{U}_R^{\star} .
- 3. Calculate \mathbf{F}_*^{hllc} .

2 Wave speeds

Wave speeds are obtained from approximate simple Riemann solvers depending on the left-right states. These solvers are the primitive variable RS (PVRS), the two-rarefaction RS (TRRS), and the two-shock RS (TSRS). If the pressure jump at the interface is less than a user specified ratio (typically, $p_{max}/p_{pmin} < 2$) then the flow is smooth and the PVRS is used to estimate p_{\star} and u_{\star} . If the pressure jump is larger than this ratio, there is likely either a shock or a rarefaction present. If the interface pressure, p_{\star} , given from the PVRS is less than p_{min} , then the rarefaction solver, TRRS, is used, else the shock solver, TSRS, is used.

The estimates for the three approximate solvers for the pressure and velocity are,

$$p_{pvrs} = \frac{1}{2}(p_L + p_R) - \frac{1}{2}(u_R - u_L)C$$
 (1)

$$u_{pvrs} = \frac{1}{2}(u_L + u_R) - \frac{1}{2}\frac{p_R - p_L}{C}$$
 (2)

$$C = \frac{\rho_L + \rho_R}{2} \frac{a_L + a_R}{2} \tag{3}$$

$$p_{trrs} = \left[\frac{a_L + a_R - \frac{\gamma - 1}{2} (u_R - u_L)}{a_L / p_L^z + a_r / p_R^z} \right]^z \tag{4}$$

$$u_{trrs} = \frac{P_{LR}u_L/a_L + u_R/a_R + \frac{2(P_{LR}-1)}{\gamma - 1}}{P_{LR}/a_L + 1/a_R}$$
 (5)

$$z = \frac{\gamma - 1}{2\gamma} \qquad P_{LR} = \left(\frac{p_L}{p_R}\right)^z \tag{6}$$

$$p_{tsrs} = \frac{g_L(p_0)p_L + g_R(p_0)p_R - (u_R - u_L)}{g_L(p_0) + g_r(p_0)}$$
(7)

$$u_{tsrs} = \frac{1}{2}(u_L + u_R) + \frac{1}{2}\left[(p_{tsrs} - p_R)g_R(p_0) - (p_{tsrs} - p_L)g_L(p_0)\right]$$
(8)

$$g_K(p) = \sqrt{\frac{A_K}{p + B_K}} \qquad p_0 = \max(0, p_{pvrs})$$
(9)

$$A_K = \frac{2}{\rho_K(\gamma + 1)} \qquad B_K = \left(\frac{\gamma - 1}{\gamma + 1}\right) p_K \tag{10}$$

The estimates for the interface pressure and velocity are then,

$$p_{\star}, u_{\star} = \begin{cases} p_{pvrs}, u_{pvrs} & \frac{p_{max}}{p_{min}} < 2\\ p_{trrs}, u_{trrs} & \frac{p_{max}}{p_{min}} > 2 \text{ and } p_{pvrs} < p_{max}\\ p_{tsrs}, u_{tsrs} & \frac{p_{max}}{p_{min}} > 2 \text{ and } p_{pvrs} > p_{max} \end{cases}$$

$$(11)$$

Now that we have p_{\star} and $u_s tar$ we can calculate the minimum, maxmimum and intermediate wave speeds as,

$$S_L = u_L - a_L q_L \tag{12}$$

$$S_L = u_R + a_R q_R \tag{13}$$

$$S_{\star} = \frac{p_R - p_L + \rho_L u_L (S_L - u_L) - \rho_R u_R (S_R - u_R)}{\rho_L (S_L - u_L) - \rho_R (S_R - u_R)}$$
(14)

$$q_K = \begin{cases} 1 & p_{\star} \leq p_K \\ \sqrt{1 + \frac{\gamma + 1}{2\gamma} \left(\frac{p_{\star}}{p_K} - 1\right)} & p_{\star} > p_K \end{cases}$$
 (15)

3 Star region

Now that we have the wave speeds the conservative left and right states in the starred region are,

$$\mathbf{U}_{K}^{\star} = \rho_{K} \left(\frac{S_{K} - u_{K}}{S_{K} - S_{\star}} \right) \begin{bmatrix} 1 \\ S_{\star} \\ v_{K} \\ w_{K} \end{bmatrix}$$

$$\left[\frac{E_{K}}{\rho_{K}} + \left(S_{\star} - u_{K} \right) \left[S_{\star} + \frac{p_{K}}{\rho_{K} \left(S_{K} - u_{K} \right)} \right] \right]$$

$$(16)$$

Additionally, any passive scalar is advected in the same way as the tangential velocities, i.e

$$(\rho q)_{\star}^{K} = \rho_{K} \left(\frac{S_{K} - u_{K}}{S_{K} - S_{\star}} \right) q_{k} \tag{17}$$

4 Final flux

Finally, the HLLC flux is,

$$\mathbf{F}_{i+1/2}^{hllc} = \begin{cases} \mathbf{F}_L & 0 \le S_L \\ \mathbf{F}_L + S_L(\mathbf{U}_{\star}^L - \mathbf{U}_L) & S_L \le 0 \le S_{\star} \\ \mathbf{F}_R + S_R(\mathbf{U}_{\star}^R - \mathbf{U}_R) & S_{\star} \le 0 \le S_R \\ \mathbf{F}_R & 0 \ge S_R \end{cases}$$
(18)