Esame di "FONDAMENTI DI AUTOMATICA" (9 CFU)

Prova MATLAB - 21 gennaio 2020

Istruzioni per lo svolgimento: lo studente deve consegnare al termine della prova una cartella nominata Cognome_Nome, contenente:

- Un Matlab script file (i.e. file di testo con estensione .m) riportante i comandi eseguiti (NOTA: per copiare i comandi dalla Command History, visualizzarla tramite menu "Layout → Command History → Docked", selezionare in tale finestra le righe di interesse tramite Ctrl+mouse left-click e dal menu visualizzato tramite mouse right-click selezionare "create script") e la risposta alle eventuali richieste teoriche sotto forma di commento (i.e. riga di testo preceduta dal simbolo %)
- Un file workspace.mat contenente le variabili definite nel corso dello svolgimento della prova (creato con il comando save workspace)
- Un file MS Word nel quale siano copiate le figure rilevanti per la dimostrazione dei risultati ottenuti (NOTA: per copiare una figura Matlab come bitmap, usare il menu "Edit → Copy Figure" dalla finestra della figura di interesse ed incollare con Ctrl+V nel file Word), avendo cura che le figure siano copiate quando queste mostrano le caratteristiche di interesse per la verifica del progetto (i.e. Settling Time, Stability Margins, ecc.).

INTRODUZIONE

Si consideri il circuito elettrico passivo mostrato dalla seguente figura:

Applicando le opportune leggi di Kirchhoff e di Ohm, il modello matematico del sistema può essere descritto tramite le seguenti equazioni differenziali:

$$L_1 \dot{x}_1 = V_{in} - (x_1 - x_2)R_1$$

$$L_2 \dot{x}_2 = (x_1 - x_2)R_1 - (x_2 - x_3)R_2$$

$$L_3 \dot{x}_3 = (x_2 - x_3)R_2 - x_3R_3$$

Si noti che la tensione V_{out} , corrispondente all'uscita del sistema, risulta essere pari alla quantità $R_3 \, x_3$.

Fissando le ovvie scelte per le variabili di stato e le seguenti per quelle di ingresso e uscita:

$$u = V_{in}; \ y = V_{out} = R_3 x_3;$$

Si ottiene un corrispondente modello dinamico nello spazio degli stati, del tipo:

$$\dot{x}(t) = Ax(t) + Bu(t); \ y(t) = Cx(t) + Du(t)$$

Con:

$$A = \begin{bmatrix} -\frac{R_1}{L_1} & \frac{R_1}{L_1} & 0\\ \frac{R_1}{L_2} & -\frac{R_1 + R_2}{L_2} & \frac{R_2}{L_2}\\ 0 & \frac{R_2}{L_3} & -\frac{R_2 + R_3}{L_3} \end{bmatrix} \qquad B = \begin{bmatrix} \frac{1}{L_1}\\ 0\\ 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 0 & R_3 \end{bmatrix} \qquad \qquad D = \begin{bmatrix} 0 \end{bmatrix}$$

ESERCIZIO 1.

a) Dato il modello ottenuto nell'introduzione, si sostituiscano i seguenti valori per i parametri fisici:

$$R_1 = 1$$
; $R_2 = 3$; $R_3 = 5$; $L_1 = 0.1$; $L_2 = 0.5$; $L_3 = 0.2$;

e si ricavi la funzione di trasferimento G(s) del sistema in esame.

b) Si determinino i poli della funzione di trasferimento e si verifichi se coincidono con gli autovalori di A. Descrivere il motivo di eventuali discrepanze tramite righe di commento (i.e. precedute dal simbolo %) sul file .m

ESERCIZIO 2

Si consideri il sistema in retroazione unitaria rappresentato in figura:

Con G(s) ricavata al punto a) dell'Esercizio 1.

- a) Si verifichi se il sistema ad anello chiuso, con guadagno K=1, risulti o meno stabile tramite l'analisi della risposta y(t) al gradino unitario.
- b) Si determini, se esiste, il valore del guadagno K_{lim} per il quale il sistema risulta semplicemente stabile, utilizzando il grafico del luogo delle radici della funzione G(s).
- c) Si ponga $K_1 = 0.8 \, K_{lim}$, si visualizzi l'andamento della risposta al gradino y(t) del sistema chiuso in retroazione con tale guadagno e si determini il tempo d'assestamento al 5%.

ESERCIZIO 3

Si consideri il sistema rappresentato in figura

Con $G_c(s) = \frac{1+\tau_1 s}{1+\tau_2 s} = \frac{1+\tau s}{1+\alpha \tau s}$ rete anticipatrice $(\tau_2 < \tau_1 \text{ o } \alpha < 1)$, G(s) ricavata al punto a) dell'Esercizio 2 e K_{lim} ricavato al punto b) dell'Esercizio 2.

Si progetti la rete anticipatrice che garantisca un margine di fase $M_f=40^\circ$ utilizzando il metodo delle formule di inversione (allegate in appendice). In particolare:

- a) Si scelga la pulsazione ω^* (vedi formule d'inversione) utilizzando i grafici ottenuti con la funzione matlab leadNetDesignBode, in modo che sia compresa all'interno della regione di realizzabilità della rete anticipatrice.
- b) Si determinino i coefficienti τ_1 e τ_2 della rete anticipatrice e si verifichi che valga $\tau_2 < \tau_1$;
- c) Si visualizzino in un'unica figura i diagrammi di Bode del sistema non compensato e del sistema compensato, evidenziando i relativi margini di fase;
- d) Si verifichi la risposta al gradino del sistema compensato e chiuso in retroazione unitaria negativa e se ne determini il tempo d'assestamento al 5%.

APPENDICE (formule d'inversione)

$$\begin{split} \tau_1 &= \frac{M^* - \cos \varphi^*}{\omega^* \sin \varphi^*} & \qquad \qquad \mathbf{\phi^*} = -180^\circ + \mathbf{M_F} - \arg[\mathbf{G}(\mathbf{j}\omega^*)] \\ \tau_2 &= \frac{\cos \varphi^* - \frac{1}{M^*}}{\omega^* \sin \varphi^*} & \qquad \qquad \mathbf{M^*} = 1 \ / \ |\mathbf{G}(\mathbf{j}\omega^*)| \end{split}$$

NOTA BENE: si ricordi che in MATLAB le funzioni trigonometriche da utilizzare se l'argomento è espresso in gradi sono sind()/cosd().

SOLUZIONE

```
%% Parametri numerici
R1 = 1;
R2 = 3;
R3 = 5;
L1 = 0.1;
L2 = 0.5;
L3 = 0.2;
%% Matrici A,B,C,D
A = [-R1/L1 R1/L1 0;R1/L2 - (R1+R2)/L2 R2/L2;0 R2/L3 -
(R2+R3)/L3];
B = [1/L1;0;0];
C = [0 \ 0 \ R3];
D=0;
%% Es 1-a funzione di trasferimento
G = tf(ss(A,B,C,D));
G =
             1500
  s^3 + 58 s^2 + 690 s + 1500
Continuous-time transfer function.
%% Es 1-b poli e autovalori
p = pole(G);
ev = eig(A);
r = rank(obsv(A,C)') % poli e autovalori coincidono,
infatti il sistema è completamente osservabile r=3
p =
  -42.6446
  -12.5534
   -2.8020
ev =
```

```
-2.8020
-12.5534
```

-42.6446

r =

3

%% Es 2-a stabilità ad anello chiuso
K = 1;
Gcl = feedback(K*G,1);
figure, step(Gcl) % sistema stabile

%% Es 2-b luogo delle radici e guadagno limite
figure,rlocus(G)
Klim = 25.7; valore selezionato dal grafico


```
%% Es 2-c risposta al gradino, tempo di assestamento al
5%
Gcl1 = feedback(0.8*Klim*G,1);
popt = timeoptions;
popt.SettleTimeThreshold = 0.05;
figure, step(Gcl1, popt)
```



```
%% es 3-a scelta di omega

Mf = 40;
G1 = Klim*G;
leadNetDesignBode(G1,Mf)
omega = 50; % valore selezionato dal grafico
M = db2mag(13.1);
phi = -180 + Mf + 213;
```


Continuous-time transfer function.

```
%% Es 2-c verifica margini di fase
figure,bode(G1)
hold on
```



```
%% Es 3-c risposta sistema compensato e tempo
d'assestamento al 5%
Gcl2 = feedback(Gc*G1,1);
figure, step(Gcl2, popt);
```

