සියලු ම හිමිකම් ඇවරුණි (අනුල්) පණුවපුණිකෙනුකෙ යනු/All Rights Reserved)

General Certificate of Education (Adv. Level) Examination, 2022 (2023)

සංයුක්ත ගණිතය

இணைந்த கணிதம் Combined Mathematics

B කොටස

- * පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.
- 11.(a) 0 < |p| < 1 යැයි ගනිමු. $p^2x^2 2x + 1 = 0$ සමීකරණයට තාත්ත්වික පුහින්න මුල ඇති බව පෙන්වන්න. මෙම මූල α හා β (> α) යැයි ගනිමු. α හා β යන දෙකම ධන වන බව පෙන්වන්න.

p ඇපුරෙන් $(\alpha-1)(\beta-1)$ සොයා, $\alpha<1$ හා $\beta>1$ බව **අපෝගනය** කරන්න.

$$\sqrt{\beta} - \sqrt{\alpha} = \frac{1}{|p|} \sqrt{2(1-|p|)}$$
 බව පෙන්වන්න.

$$\sqrt{eta} + \sqrt{lpha} = rac{1}{|p|} \sqrt{2 \left(1 + |p|
ight)}$$
 බව දී ඇත. $\left| \sqrt{lpha} - 1
ight|$ හා $\left| \sqrt{eta} - 1
ight|$ මූල ලෙස ඇති වර්ගජ සමීකරණය

$$|p|x^2 - \sqrt{2(1-|p|)}x + \sqrt{2(1+|p|)} - |p|-1 = 0$$
 බව පෙන්වන්න.

- $(b) \ p(x) = 2x^3 + ax^2 + bx 4$ යැයි ගනිමු; මෙහි $a,b \in \mathbb{R}$ වේ. (x+2) යන්න p(x) හා p'(x) යන දෙකෙහිම සාධකයක් බව දී ඇත; මෙහි p'(x) යනු x විෂයයෙන් p(x) හි වනුත්පන්නය වේ. a හා b හි අගයන් සොයන්න. a හා b හි මෙම අගයන් සඳහා p(x) - 3p'(x) සම්පූර්ණයෙන් සාධකවලට වෙන් කරන්න.
- 12.(a) අවම වශයෙන් එක් සිසුවෙකුට එක් පලතුරක්වත් ලැබෙන පරිදි, අඹ ගෙඩි හයක් හා දොඩම් ගෙඩි හතරක් සිසුන් අට දෙනෙකු අතරේ බෙදා දිය යුතුව ඇත.
 - (i) සිසුන් හය දෙනෙකුට එක් පලතුරක් බැගින් හා ඉතිරි දෙදෙනාගෙන් එක් අයෙකුට **අඹ ගෙඩි දෙකක්** හා අනිත් කෙනාට දොඩම් ගෙඩි දෙකක්,
 - (ii) සිසුන් හත් දෙනෙකුට එක් පලතුර බැගින් හා අනිත් සිසුවාට අඹ ගෙඩි තුනක්,
 - (iii) සිසුන් හත් දෙනෙකුට එක් පලතුර බැගින් හා අනිත් සිසුවාට **පලතුරු තුනක්,**

ලැබෙන පරිදි වූ වෙනස් ආකාර ගණන සොයන්න.

 $(b) \ r \in \mathbb{Z}^+$ සඳහා $U_r = \frac{4(2r+7)}{(2r+1)(2r+3)(2r+5)}$ යැයි ගනිමු. තවද, $r \in \mathbb{Z}^+$ සඳහා $f(r) = \frac{A}{(2r+1)} + \frac{B}{(2r+3)}$ යැයි ගනිමු; මෙහි A හා B යනු තාත්ත්වික නියන වේ. $r \in \mathbb{Z}^+$ සඳහා $U_r = f(r) - f(r+1)$ වන පරිදි A හා B හි අගයන් නිර්ණය කරන්න.

ඒ නයින් හෝ අන් අයුරකින් හෝ, $n\in\mathbb{Z}^+$ සඳහා $\sum_{i=1}^n U_r=rac{4}{5}-rac{3}{2n+3}+rac{1}{2n+5}$ බව පෙන්වන්න.

 $\sum U_r$ අපරිමිත ශ්ලේණිය අභිසාරී බව **අපෝගනය** කර එහි ඓකාය සොයන්න.

ඒ නයින්, $\sum_{r=1}^{\infty} \left(U_r + k U_{r+1}\right) = 1$ වන පරිදි k තාත්ත්වික නියනයෙහි අගය සොයන්න.

$$\mathbf{13.}(a) \ \mathbf{A} = \left(egin{array}{ccc} a & -2 \ 1 & a+2 \end{array}
ight)$$
 යැයි ගතිමු. සියලු $a \in \mathbb{R}$ සඳහා \mathbf{A}^{-1} පවතින බව පෙන්වන්න.

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix}$$
. $\mathbf{Q} = \begin{pmatrix} 2 & 3 & 2 \\ -1 & 7 & 4 \end{pmatrix}$ හා $\mathbf{R} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ නාහස $\mathbf{A} = \mathbf{P}\mathbf{Q}^{\mathsf{T}} + \mathbf{R}$ වන පරිදි වේ. $a = 1$

$$a$$
 හි මෙම අගය සඳහා, \mathbf{A}^{-1} ලියා දක්වා, ඒ **නයින්**, $\mathbf{A} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -5 \\ 10 \end{pmatrix}$ වන පරිදි x හා y හි අගයන් සොයන්න.

- (b) $z, w \in \mathbb{C}$ යැයි ගනිමු. $z\overline{z} = \left|z\right|^2$ බව පෙන්වා **ඒ හයින්**, $\left|z+w\right|^2 = \left|z\right|^2 + 2\operatorname{Re}(z\overline{w}) + \left|w\right|^2$ බව පෙන්වන්න. $\left|z+w\right|^2 + \left|z-w\right|^2 = 2\left(\left|z\right|^2 + \left|w\right|^2\right)$ බව **අපෝගනය** කර, ආගන්ඩ සටහනේ, z, w හා 0 නිරූපණය කරන ලක්ෂා ඒක රේඛීය නොවන විට, ඒ සඳහා ජනාමිනික අර්ථ නිරූපණයක් දෙන්න.
- (c) $z=-1+\sqrt{3}i$ යැයි ගනිමු. z යන්න $r(\cos\theta+i\sin\theta)$ ආකාරයෙන් පුකාශ කරන්න; මෙහි r>0 හා $\frac{\pi}{2}<\theta<\pi$ වේ. $n\in\mathbb{Z}^+$ සඳහා $z^n=a_n+ib_n$ යැයි ගනිමු; මෙහි $a_n,b_n\in\mathbb{R}$ වේ. $m,n\in\mathbb{Z}^+$ සඳහා $\mathrm{Re}\left(z^m\cdot z^n\right)$ යන්න a_m,a_n,b_m හා b_n ඇසුරෙන් ලියා දක්වන්න. z^{m+n} සලකමින් හා ද මුවාවර් පුමේයය භාවිතයෙන් $m,n\in\mathbb{Z}^+$ සඳහා $a_ma_n-b_mb_n=2^{m+n}\cos(m+n)\frac{2\pi}{3}$ බව පෙන්වන්න.

14.(a)
$$x \neq -2$$
 සඳහා $f(x) = \frac{2x+3}{(x+2)^2}$ යැයි ගනිමු.

$$f(x)$$
 හි වසුත්පන්නය, $f'(x)$ යන්න $x \neq -2$ සඳහා $f'(x) = \frac{-2(x+1)}{(x+2)^3}$ මගින් දෙනු ලබන බව පෙන්වන්න.

ඒ තයින්, f(x) වැඩි වන පුාන්තරය හා f(x) අඩු වන පුාන්තර සොයන්න.

f(x) හි හැරුම් ලක්ෂායේ ඛණ්ඩාංක ද සොයන්න.

 $x \neq -2$ සඳහා $f''(x) = \frac{2(2x+1)}{(x+2)^4}$ බව දී ඇත. y = f(x) හි පුස්තාරයේ නතිවර්තන ලක්ෂායේ ඛණ්ඩාංක සොයන්න.

ස්පර්ශෝන්මුබ, හැරුම් ලක්ෂාය හා නතිවර්තන ලක්ෂාය දක්වමින් y=f(x) හි පුස්තාරයේ දළ සටහනක් අදින්න.

 $[k,\infty)$ මත f(x) එකට-එක වන k හි කුඩාතම අගය පුකාශ කරන්න.

(b) රූපයේ පෙන්වා ඇති අඳුරු කළ පෙදෙසෙහි වර්ගඵලය 45 m^2 වේ. එය ලබාගෙන ඇත්තේ දිග 3x m හා පළල 2y m වූ සාජුකෝණාසුයකින්, දිග x m හා පළල y m වූ සාජුකෝණාසුයක් ඉවත් කිරීමෙනි. අඳුරු කළ පෙදෙසෙහි පරිමිතිය L m යන්න 2y m x > 0 සඳහා $L = 6x + \frac{54}{x}$ මගින් දෙනු ලබන බව පෙන්වන්න. L අවම වන x හි අගය සොයන්න.

15.(a) සියලු $x \in \mathbb{R}$ සඳහා $x^2 + x + 2 = A(x^2 + x + 1) + (Bx + C)(x + 1)$ වන පරිදි A, B හා C නියතවල අගයන් සොයන්න.

ඒ නයින්,
$$\frac{x^2+x+2}{(x^2+x+1)(x+1)}$$
 යන්න හින්න භාගවලින් ලියා දක්වා, $\int \frac{x^2+x+2}{(x^2+x+1)(x+1)} \, \mathrm{d}x$ සොයන්න.

- $(b) \ 1 + \sin 2x = 2\cos^2\left(\frac{\pi}{4} x\right)$ බව පෙන්වා, ඒ නයින්, $\int\limits_0^{\frac{\pi}{2}} \frac{1}{1 + \sin 2x} \mathrm{d}x = 1$ බව පෙන්වන්න.
- (c) $I=\int\limits_0^{rac{\pi}{2}}rac{x^2\cos2x}{(1+\sin2x)^2}\,\mathrm{d}x$ යැයි ගනිමු. කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $I=-rac{\pi^2}{8}+J$ බව පෙන්වන්න; මෙහි $J=\int\limits_0^{rac{\pi}{2}}rac{x}{1+\sin2x}\mathrm{d}x$.

$$\int\limits_0^a f(x)\mathrm{d}x = \int\limits_0^a f(a-x)\mathrm{d}x$$
 යන සම්බන්ධය හා (b) හි පුතිඵලය භාවිතයෙන් J හි අගය ගණනය කර $I=\frac{\pi}{8}\left(2-\pi\right)$ බව පෙන්වන්න.

 $P \equiv (x_0,y_0)$ හා l යනු ax+by+c=0 මගින් දෙනු ලබන සරල රේඛාව යැයි ගනිමු. P සිට lට ඇති ලම්බ දුර $\frac{\left|ax_0+by_0+c\right|}{\sqrt{a^2+b^2}}$ බව පෙන්වන්න .

 l_1 හා l_2 යනු පිළිවෙළින්, 4x-3y+8=0 හා 3x-4y+13=0 මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. l_1 හා l_2 , $A\equiv (1,4)$ හිදී ඡේදනය වන බව පෙන්වන්න.

 l_1 හා l_2 අතර සුළු කෝණයේ සමච්ඡේදකයේ පරාමිතික සමීකරණ x=t හා y=t+3 ලෙස ලිවිය හැකි බව ද පෙන්වන්න; මෙහි $t\in\mathbb{R}$.

ඒ නයින්, l_1 හා l_2 සරල රේඛා දෙකම ස්පර්ශ කරන, l_1 හා l_2 අතර සුළු කෝණය අඩංගු වන පෙදෙසෙහි පවතින ඕනෑම වෘත්තයක සමීකරණය $(x-t)^2+(y-t-3)^2=\frac{1}{25}(t-1)^2$ මගින් දෙනු ලබන බව පෙන්වන්න; මෙහි $t\in\mathbb{R}$ හා $t\neq 1$.

ඉහත වෘත්ත අතුරින්, කේන්දුය A වන හා අරය I වන වෘත්තය පුලම්බව ඡේදනය කරන වෘත්තවල සමීකරණ සොයන්න. 17. (a) $\cos A$, $\cos B$, $\sin A$ හා $\sin B$ ඇසුරෙන් $\cos (A+B)$ ලියා දක්වා, $\sin (A-B)$ සඳහා එවැනිම පුකාශනයක් ලබාගන්න.

 $k\in\mathbb{R}$ හා $k\neq 1$ යැයි ගනිමු. k>1 හා k<1 අවස්ථා වෙන වෙනම සලකමින්, $2k\cos\left(\theta+\frac{\pi}{3}\right)+2\sin\left(\theta-\frac{\pi}{6}\right)$ යන්න $R\cos(\theta+\alpha)$ ආකාරයෙන් පුකාශ කරන්න; මෙහි R(>0) k ඇසුරෙන් ද $\alpha\left(0<\alpha<2\pi\right)$ ද නිර්ණය කළ යුතු තාත්ත්වික නියන වේ.

ඒ නයින්, $2k\cos\left(\theta + \frac{\pi}{3}\right) + 2\sin\left(\theta - \frac{\pi}{6}\right) = |k - 1|$ විසඳන්න.

(b) රූපයේ පෙන්වා ඇති ABCD චතුරසුයෙහි AB=2p, CD=4p, D $A\hat{C}B=\frac{\pi}{6}$ හා $A\hat{B}C=A\hat{C}D=\alpha$ වේ. $AD^2=16p^2(\sin^2\alpha-\sin2\alpha+1)$ බව පෙන්වන්න.

ඒ නයින්, AD=4p නම් $lpha= an^{-1}(2)$ බව පෙන්වන්න.

(c) x > 1 සඳහා $\tan^{-1}(\ln x^{\frac{2}{3}}) + \tan^{-1}(\ln x) + \tan^{-1}(\ln x^2) = \frac{\pi}{2}$ විසඳන්න.

හියලු ම හිමිකම් ඇව්රෑන්/முழுப் பதிப்புரிமையுடையது/All Rights Reserved]

இ ஒன். சீல்ல ஏர்பிரும்கின்று? இ ஒன். சீலை சில்ல ஏர்பிரு இதன்ற இரும்கு இரும்கிக்கியில் ஏர்பிரும்கிற இரும்கிற இர

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2022(2023) සහ්ඛා්ධ பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2022(2023) General Certificate of Education (Adv. Level) Examination, 2022(2023)

கு**் பூன்ற ஏறிறபு** II இணைந்த கணிதம் II Combined Mathematics II 10 S II

B කොටස

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

(මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.)

11. (a) සෘජු තිරස් මාර්ගයක වූ O ලක්ෂායක සිට නිශ්චලතාවයෙන් ගමන ආරම්භ කරන P කාරය 2f m s^{-2} ක නියත ත්වරණයකින් එම මාර්ගයේ වූ A ලක්ෂාය දක්වා ගමන් කරයි; මෙහි OA = a m වේ. එය A හිදී ලබාගත් පුවේගය, ගමනේ ඉතිරි කොටස පුරාවටම පවත්වා ගනී. P කාරය A ලක්ෂායට ළඟා වන මොහොතේ, තවත් Q කාරයක් එම මාර්ගයේම එම දිශාවටම O ලක්ෂායේ සිට නිශ්චලතාවයෙන් ගමන ආරම්භ කර, f m s^{-2} ක නියත ත්වරණයකින් චලනය වේ. එකම රූපයක, P හා Q හි චලිතය සඳහා පුවේග-කාල පුස්තාරවල දළ සටහන් අදින්න.

ඒ නයින්, P හා Q හි පුවේග සමාන වන මොහොත දක්වා Q ගන්නා ලද කාලය $2\sqrt{\frac{a}{f}}$ s බව පෙන්වන්න. දැන්, a=50 ද f=2 ද හා Q කාරය P කාරය පසු කරන මාර්ගයේ ලක්ෂාය B යැයි ද ගනිමු. $AB=50\left(5+2\sqrt{6}\right)$ m බව පෙන්වන්න.

(b) P නැවක් පොළොවට සාපේක්ෂව $60~{
m m~s^{-1}}$ ක ඒකාකාර වේගයකින් දකුණු දෙසට යාතුා කරන අතර, Q නැවක් පොළොවට සාපේක්ෂව $30\sqrt{3}~{
m m~s^{-1}}$ ක ඒකාකාර වේගයකින් නැගෙනහිර දෙසට යාතුා කරයි. තෙවන R නැවක්, එය P හි සිට නිරීක්ෂණය කරනු ලැබූ විට, නැගෙනහිරින් 30° ක් උතුරට වූ දිශාවට චලනය වන ලෙස පෙනෙන අතර, R නැව එය Q හි සිට නිරීක්ෂණය කරනු ලැබූ විට දකුණු දෙසට චලනය වන ලෙස පෙනෙයි. R නැව, පොළොවට සාපේක්ෂව, $60~{
m m~s^{-1}}$ ක වේගයකින් නැගෙනහිරින් 30° ක් දකුණට වූ දිශාවට චලනය වන බව පෙන්වන්න.

ආරම්භයේදී R නැව, P ගෙන් $24~{\rm km}$ ක් ඈතින්, බටහිරින් 60° ක් දකුණට වූ දිශාවෙන් තිබෙන අතර Q ගෙන් $6~{\rm km}$ ක් ඈතින් බටහිර දිශාවෙන් තිබේ යැයි සිතමු. P හා R, ඒවා අතර කෙටිම දුරින් පිහිටන විට Q හා R අතර දුර $12~{\rm km}$ ක් බව පෙන්වන්න.

A2.(a) ස්කන්ධය 4m වූ සුමට ඒකාකාර කුට්ටියක ගුරුත්ව කේන්දය හරහා වූ ABCDE සිරස් හරස්කඩ රූපයෙන් පෙන්වා ඇත. AB අඩංගු මුහුණන සුමට තිරස් ගෙබිමක් මත තබා ඇත. AE හා ED ඒවා අඩංගු මුහුණත්වල උපරිම බෑවුම් රේඛා වේ. තවද, AE = 2a, ED = a, DC = a හා $EAB = AED = \frac{\pi}{3}$ වේ. ස්කන්ධ පිළිවෙළින් 3m, 2m හා m වන P, Q හා R අංශු තුනක් AE, ED හා DC හි මධා ලක්ෂායන්හි තබා ඇත. P හා Q අංශු, E හිදී කුට්ටියට සටිකර ඇති සුමට සැහැල්ලු කුඩා කප්පියක් මතින්

යන සැහැල්ලු අවිතනා තන්තුවක දෙකෙළවරට ඇඳා ඇති අතර, Q හා R අංශු, D හිදී කුට්ටියට සවිකර ඇති සුමට සැහැල්ලු කුඩා මුදුවක් තුළින් යන තවත් සැහැල්ලු අවිතනා තන්තුවක දෙකෙළවරට ඇදා ඇත. රූපයේ පෙන්වා ඇති පිහිටුමේදී තන්තුව තදව තිබෙන අතර මෙම පිහිටුමේ සිට පද්ධතිය නිශ්චලතාවයෙන් මුදා හරිනු ලැබේ. Q අංශුව E වෙත ළඟා වීමට ගන්නා කාලය නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලබාගන්න.

(b) අරය a වූ සිලින්ඩරයක් එහි අක්ෂය තිරස්ව සවි කර ඇති අතර එහි අක්ෂයට ලම්බක සිරස් හරස්කඩක් යාබද රූපයෙන් දැක්වේ. සැහැල්ලු අවිතනා තත්තුවකින් යා කළ ස්කන්ධ පිළිවෙළින් m හා 2m වූ P හා Q අංශු දෙකක් තන්තුව තදව ද OP තිරස්ව ද ඇතිව රූපයේ පෙන්වා ඇති පිහිටුමෙහි අල්වා තබා නිශ්චලතාවයෙන් මුදා හරිනු ලැබේ. Q අංශුව සිරස්ව පහළට චලනය වන්නේ යැයි උපකල්පනය කරමින්, \overrightarrow{OP} යන්න θ $(0 \le \theta \le \frac{\pi}{6})$ කෝණයකින් හැරුණු විට P හි වේගය v යන්න $v^2 = \frac{2ga}{3}(2\theta - \sin\theta)$ මගින් දෙනු ලබන බව පෙන්වන්න.

 $heta=rac{\pi}{6}$ විට තන්තුව කපා දමන අතර, P අංශුව සිලින්ඩරය මත චලනය වෙමින් සිලින්ඩරයේ ඉහළම ලක්ෂායට ළඟා වීමට පෙර ක්ෂණික නිශ්චලතාවයට පත් වන බව දී ඇත. පසුව එන චලිතයේදී, P එහි ආරම්භක පිහිටුමේ සිට a දුරක් සිරස්ව පහළින් වන විට, P හි වේගය සොයන්න.

13. ස්වභාවික දිග 2a හා පුතාහස්ථතා මාපාංකය 2mg වන සැහැල්ලු පුතාහස්ථ තන්තුවක එක් කෙළවරක්, සුමට තිරස් ගෙබිමකට 4a දුරක් ඉහළින් වූ O අවල ලක්ෂායකට ද, අනෙක් කෙළවර ස්කන්ධය m වූ P අංශුවකට ද ඇදා ඇත. P අංශුව B හි සමතුලිතතාවයේ එල්ලෙයි. තන්තුවේ විතතිය a බව පෙන්වන්න. දැන්, P හට mv ආවේගයක් සිරස්ව පහළට දෙනු ලැබේ. P හි වලිත සමීකරණය $\ddot{x}+\omega^2x=0$ බව පෙන්වන්න; මෙහි $\omega=\sqrt{\frac{g}{a}}$ හා BP=x වේ. c විස්තාරය වන, $\dot{x}^2=\omega^2(c^2-x^2)$ සූතුය භාවිතයෙන් $v>\sqrt{ag}$ නම්, P ගෙබිමේ වදින බව පෙන්වන්න;

දැන්, $v = 3\sqrt{ag}$ යැයි සිතමු. P ගෙබිමේ වදින පුවේගය සොයන්න.

P සහ ගෙබීම අතර පුතාහාගති සංගුණකය e වේ. $e<\frac{1}{\sqrt{2}}$ නම්, P අංශුව O ට ළඟා නොවන බව පෙන්වන්න. $e=\frac{1}{2}$ බව දී ඇති වීට, තන්තුව පළමුවරට බුරුල් වන විට P හි පුවේගය සොයන්න.

B හිදී P ට ආවේගය දුන් මෙහොතේ සිට, එය පළමුවරට ක්ෂණික නිශ්චලතාවයට පැමිණීමට ගතවන මුළු කාලය සොයන්න.

14.(a) A,B,C හා D ලක්ෂා හතරක පිහිටුම් දෛශික, O අචල මූලයකට අනුබද්ධයෙන් පිළිවෙළින් ${\bf a},{\bf b},3{\bf a}$ හා ${\bf 4b}$ වේ; මෙහි ${\bf a}$ හා ${\bf b}$ යනු ශුනා නොවන හා සමාන්තර නොවන දෛශික වේ. E යනු AD හා BC හි ඡේදන ලක්ෂාය වේ. OAE තිකෝණය සඳහා තිකෝණ ආකලන නියමය භාවිතයෙන්,

 $\lambda \in \mathbb{R}$ සඳහා $\overrightarrow{OE} = \mathbf{a} + \lambda (4\mathbf{b} - \mathbf{a})$ බව පෙන්වන්න.

එලෙසම්, $\mu\in\mathbb{R}$ සඳහා $\overrightarrow{OE}=\mathbf{b}+\mu(3\mathbf{a}-\mathbf{b})$ බව ද පෙන්වන්න.

ඒ නයින්, $\overrightarrow{OE} = \frac{1}{11}(9\mathbf{a} + 8\mathbf{b})$ බව පෙන්වන්න.

(b) α i + 2j, -3i + β j හා i + 5j යන බල තුන, පිහිටුම් දෙශික පිළිචෙළින් i + j, 3i + j හා 2i + 2j වූ ලක්ෂා හරහා කියාකරයි; මෙහි α , $\beta \in \mathbb{R}$ වේ. මෙම බල පද්ධතිය යුග්මයකට තුලා වන බව දී ඇත. α හා β හි අගයන් γ මෙම යුග්මයෙහි සූර්ණය γ සොයන්න.

දැන්, O මූලය හරහා කියාකරන 3γ i + 4γ j අලුත් බලයක් ඉහත බල පද්ධතියට එකතු කරනු ලැබේ; මෙහි $\gamma > 0$ වේ. මෙම බල 4 කින් සමන්විත නව බල පද්ධතිය සම්පුයුක්ත බලයකට තුලs වන බව පෙන්වා එහි විශාලත්වය, දිශාව හා කිුයා රේඛාවේ සමීකරණය සොයන්න.

ඊළඟට, පිහිටුම් දෛශිකය $2\mathbf{i}+3\mathbf{j}$ වූ ලක්ෂාය හරහා කියාකරන $p\mathbf{i}+q\mathbf{j}$ බලයක් එකතු කළ විට, බල 5 කින් සමන්විත මෙම පද්ධතිය සමතුලිතතාවේ ඇති බව දී ඇත. $\gamma,\,p$ හා q හි අගයන් සොයන්න. 15.(a) එක එකක දිග 2a හා බර W වූ AB, BC, CD හා DA ඒකාකාර දඬු හතරක් ඒවායේ A, B, C හා D අන්තවලදී සුමට ලෙස සන්ධි කර ඇත. AB හා BC හි මධාලක්ෂා දිග a වූ සැහැල්ලු අවිතනා තන්තුවක් මගින් යා කර ඇත. එලෙසම, AD හා DC හි මධාලක්ෂා ද දිග a වූ සැහැල්ලු අවිතනා තන්තුවක් මගින් යා කර ඇත. පද්ධතිය A ලක්ෂායෙන් සිරස් තලයක එල්ලා ඇති අතර රූපයේ පෙන්වා ඇති පරිදි සමතුලිතතාවේ පවතී. තන්තුවල ආතති ද BC මගින් AB මත B සන්ධියෙහිදී යොදන පුතිකිුයාවද සොයන්න.

(b) රූපයේ දැක්වෙන, AB, BC, CD, DA හා DB සැහැල්ලු දඬු පහකින් සමන්විත රාමු සැකිල්ල, ඒවායේ අන්තවලදී සුමටව සන්ධි කර ඇත. AD = a, $AB = \sqrt{3} a$, $B\hat{A}D = 90^\circ$, $C\hat{B}D = 90^\circ$ හා $B\hat{D}C = 60^\circ$ බව දී ඇත. B හා C සන්ධි එක එකක W භාරය බැගින් එල්ලා රාමු සැකිල්ල A හිදී අවල ලක්ෂායකට සුමටව සන්ධි කර AB තිරස්ව ඇතිව සිරස් තලයක සමතුලිතතාවයේ තබා ඇත්තේ, D සන්ධියෙහිදී යෙදූ තිරස් P බලයක් මගිනි.

(i) P හි අගය සොයන්න.

(ii) බෝ අංකනය භාවිතයෙන්, C,B හා D සන්ධි සඳහා, පුතාහබල සටහනක් අදින්න. ඒ නයින්, දඬුවල පුතාහබල, ඒවා ආතති ද තෙරපුම් ද යන්න පුකාශ කරමින් සොයන්න.

16. අරය r හා කේන්දය O වන ඒකාකාර අර්ධවෘත්තාකාර ආස්තරයක ස්කන්ධ කේන්දය, O සිට $\frac{4r}{3\pi}$ දුරකින් පිහිටන බව පෙන්වන්න.

යාබද රූපයේ පෙන්වා ඇති පරිදි, QRST සාජුකෝණාසුයෙන් අරය a වූ අර්ධ වෘත්තයක් ඉවත් කර, සමාන පැතිවල දිග $\sqrt{2}a$ වූ PQW සමද්විපාද තිකෝණයක් එක් කර පෘෂ්ඨික ඝනත්වය σ වූ ඒකාකාර තුනී ලෝහ තහඩුවකින් තල ආස්තරයක් සාදා ඇත. QR=2a, RS=6a හා QW=2a වේ. මෙම ආස්තරයේ ස්කන්ධ කේන්දය QR සිට \overline{x} දුරකින්ද RS සිට \overline{y} දුරකින්ද පිහිටයි. $\overline{x}=\frac{(74-3\pi)}{(26-\pi)}a$ හා $\overline{y}=\frac{2(15-\pi)}{(26-\pi)}a$ බව පෙන්වන්න.

රුපයේ පෙන්වා ඇති පරිදි, S හිදී ස්කන්ධය m වූ අංශුවක් සවි කළ ඉහත ආස්තරය, කුඩා සුමට අචල C නාදැත්තක් මතින් යන, U හා W ට කෙළවරවල් ඇඳා ඇති දිග 4a වූ සැහැල්ලු අවිතනෳ තන්තුවකින් RS පැත්ත තිරස්ව ඇතිව සමතුලිතතාවේ එල්ලෙයි. a හා σ ඇසුරෙන් m හි අගය හා තන්තුවේ ආතතිය සොයන්න.

- 17.(a) B_1, B_2, B_3 හා B_4 සර්වසම පෙට්ටි හතරක, පාටින් හැර අන් සෑම අයුරකින්ම සර්වසම පෑන් 4 බැගින් අඩංගු වේ. k=1,2,3,4 සඳහා, එක් එක් B_k පෙට්ටියක රතු පෑන් k හා කළු පෑන් 4-k බැගින් අඩංගු වේ. පෙට්ටි හතරෙන් එක් පෙට්ටියක් සසම්භාවී ලෙස තෝරාගෙන, එම පෙට්ටියෙන් පෑන් 2 ක් ඉවතට ගනු ලැබේ.
 - (i) ඉවතට ගත් පෑන් දෙක රතු පෑන් වීමේ,
 - (ii) ඉවතට ගත් පෑන් දෙක රතු පෑන් බව දී ඇති විට, එම පෑන් දෙක B_4 පෙට්ටියෙන් ඉවතට ගෙන තිබීමේ,

සම්භාවිතාව සොයන්න.

 $\{x_1, x_2, \ldots, x_n\}$ හා $\{y_1, y_2, \ldots, y_m\}$ දත්ත කුලකයන්ට එකම මධානාය ඇති අතර ඒවායේ සම්මත අපගමන, පිළිවෙළින්, σ_x හා σ_y වේ. $\{x_1, \ldots, x_n, y_1, \ldots, y_m\}$ සංයුක්ත දත්ත කුලකයේ විචලතාව $\dfrac{n\sigma_x^2 + m\sigma_y^2}{n+m}$ බව පෙන්වන්න.

කම්හලක නිෂ්පාදිත පොට ඇණවල විෂ්කම්භ පහත වගුවේ සාරාංශගත කර ඇත.

විෂ්කම්හය (mm)	පොට ඇණ සංබනව (දහසේ ඒවායින්)
2 - 6	2
6 - 10	5
10 - 14	8
14 – 18	4
18 - 22	1

ඉහත දී ඇති වහාප්තියේ මධානයාය, මධාස්ථය හා විචලතාව නිමානය කරන්න.

අසල ඇති කම්හලක නිෂ්පාදිත වෙනත් පොට ඇණ 40~000 ක විෂ්කම්භවලට එම මධාෘනාෳයම ඇති අතර විචලතාව $22.53~\mathrm{mm}^2$ වේ. කම්හල් දෙකෙහිම නිෂ්පාදිත පොට ඇණවල විෂ්කම්භයන්හි සංයුක්ත විචලතාව නිමානය කරන්න.