FACULTAD DE CIENCIAS GRUPO ESTUDIANTIL DE MATEMÁTICA

Seminario de Análisis Real

Jimmy Espinoza

13 de diciembre del 2017

- 1. Sea $f:[a,b]\to\mathbb{R}$ una función continua.
 - Muestre que el conjunto f([a,b]) es acotado superiormente.
 - Sea $s = \sup f([a, b])$. Muestre que existe $x_0 \in [a, b]$ tal que $f(x_0) = s$.
- 2. Sea $f:[a,b] \to [a,b]$ continua. Demuestre que f tiene un punto fijo, es decir, existe $x \in [a,b]$ tal que f(x) = x. De un ejemplo de una función continua $f:[0,1) \to [0,1)$ sin punto fijo.
- 3. Probar que si $I \subset \mathbb{R}$ es un intervalo compacto y si $f: I \to \mathbb{R}$ es continua en I, entonces f es uniformemente continua en I.
- 4. Sea $X \subset \mathbb{R}$. Una función f es llamada semicontinua superior en el punto $a \in X$ si, para cada $\epsilon > 0$ dado, existe $\delta > 0$ tal que $x \in X$, $|x-a| < \delta \Rightarrow f(x) < f(a) + \epsilon$. Se dice que f es semicontinua superior si lo es en cada punto de X. Demuestre que un subconjunto $A \subset \mathbb{R}$ es cerrado si y sólo si su función característica $\xi_A : \mathbb{R} \to \mathbb{R}$ es semicontinua superior. (Aclaración: La función característica $\xi_A(x)$ es 1 si $x \in A$ y 0 caso contrario).
- 5. Sea $a>0,\,b>0$ y c>0. Pruebe que:

 - \blacksquare $\lim_{t\to 0^+} t^b (-loq(t))^a = 0.$
- 6. Si $f: I \to \mathbb{R}$ posee un punto crítico no degenerado $c \in int(I)$ (o sea: $f''(c) \neq 0$) en el que f'' es continua, demuestre que existe $\delta > 0$ tal que f es convexa o cóncava en el intervalo $(c \delta, c + \delta)$.
- 7. Sea $f:[a,b]\to\mathbb{R}$ una función continua en [a,b] y derivable en (a,b). Supóngase que f(a)=a, f(b)=b. Demuestre que:
 - existe $c \in (a, b)$ tal que f'(c) = 1;
 - existen distintos puntos $c_1, c_2 \in (a, b)$ tal que $f'(c_1) + f'(c_2) = 2$.
- 8. Sea n un número par y sean $f,g:I\to\mathbb{R}$ funciones n veces diferenciables en el punto $a\in int(I)$. Si $f^{(i)}(a)=g^{(i)}(a)$ para todo $i=0,1,\ldots,n-1$ y $f(x)\geq g(x)$ para todo $x\in I$, demuestre que $f^{(n)}(a)\geq g^{(n)}(a)$.
- 9. Sea \mathcal{C} el conjunto de Cantor. Definimos la función: $\chi_{\mathcal{C}}:[0,1]\to\mathbb{R}$ como $\chi_{\mathcal{C}}(x)=1$ si $x\in\mathcal{C}$ o $\chi_{\mathcal{C}}(x)=0$ en otro caso.
 - Probar que $\chi_{\mathcal{C}}$ es integrable.
 - Evaluar $\int_0^1 \chi_{\mathfrak{C}}(x) dx$.
- 10. Sea $f: \mathbb{R} \to \mathbb{R}$ una función continua y definimos: $F(x) = \int_0^{x^3} f(y) dy$. Pruebe que: $F'(x) = 3x^2 f(x^3)$.

- 11. Sea $f:[0,1]\to\mathbb{R}$ una función continua en [0,1] satisfaciendo $\int_0^1 f(x)dx=0$. Probar que existe $c\in(0,1)$ tal que $f(c)=\int_0^c f(x)dx$.
- 12. Sea $f:[a,b]\to\mathbb{R}$ una función acotada. Supóngase que f es integrable, $f(x)\geq 0$ para todo $x\in[a,b]$ y que $\int_a^b f(x)dx=0$. Demuestre que el conjunto $\{x\in[a,b];f(x)>0\}$ tiene medida cero.
- 13. Sea $p: \mathbb{R} \to \mathbb{R}$ un polinomio de grado ≥ 1 . Demuestre que la sucesión de funciones $f_n: \mathbb{R} \to \mathbb{R}$, dadas por $f_n(x) = p(x) + 1/n$, converge uniformemente a p en \mathbb{R} ; sin embargo $\{f_n^2\}$ no converge uniformemente a p^2 .
- 14. Sea $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \sum_{n=1}^{\infty} \frac{sen(nx)}{n^2}$. Determine $\int_0^{\frac{\pi}{2}} f(x) dx$ y $f'(\pi)$.
- 15. Sean $f_n(x):[0,1]\to\mathbb{R}$ una secuencia de funciones convergiendo uniformemente a la función f. Probar que $\lim_{n\to+\infty}\int_{1/n}^1 f_n(x)dx=\int_0^1 f(x)dx$.
- 16. Sea $\sum_{n=0}^{\infty} a_n x^n$ una serie de potencias cuyos coeficientes están determinados por las igualdades $a_0 = a_1 = 1$ y $a_{n+1} = a_n + a_{n-1}$. Demuestre que el radio de convergencia de dicha serie es igual a $\frac{\sqrt{5}-1}{2}$.