

Project Presentation 1

ME 609 – Optimisation Methods in Engineering

Bracketing Method: Bounding Phase Method

Accurate Method: Golden Section Search Method

Group No: 7

Nirmal S. [234103107] Rohith Kumar Saragadam [234103109]

Plotting the graph on Desmos (online graphing tool) to get an idea of the function we are dealing with.

The bracketing achieved by providing the following inputs:

$$(a,b) = (-2,1)$$
 $x(0) = -2$ (initial guess)
 $delta = 0.01$ $\epsilon = 10^{-3}$

Bounding Phase Method Iterations:

k	iter	x_k	x_(k+1)	f(x_k)	f(x_(k+1))	Continue/ Terminate
0	1	-2	-1.99	3.729329	3.82601	Continue
1	2	-1.99	-1.97	3.82601	4.015713	Continue
2	3	-1.97	-1.93	4.015713	4.380647	Continue
3	4	-1.93	-1.85	4.380647	5.053901	Continue
4	5	-1.85	-1.69	5.053901	6.184152	Continue
5	6	-1.69	-1.37	6.184152	7.660433	Continue
6	7	-1.37	-0.73	7.660433	8.107165	Continue
7	8	-0.73	0.55	8.107165	3.599869	Terminate

-1.500

Function: $8 + x^3 - 2x - 2e^x$ in the interval (-2, 1)

Golden Section Search Method

														0.2097		
														0.2097	739	0.2
					f(x)	vs I	tera	tion						0.2097	739	0.2
1.000														0.2116		
						_ 01		h 1						0.2128		
						— a1		DI						0.2128		
0.500														0.2132	296	0.2
0.000	1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
-0.500		\	_	•												
-1.000			_	•									•		_	

Iterations

aw	bw	lw	w1	w2	f(w1)	f(w2)	Continue/ Terminate	Iter	a1	b1
0	1	1	0.618	0.382	6.695904	7.956962	Continue	1	-1.370	0.550
0	0.618	0.618	0.381924	0.236076	7.95723	8.263398	Continue	2	-1.370	-0.183
0	0.381924	0.381924	0.236029	0.145895	8.263423	8.212644	Continue	3	-1.370	-0.637
0.145895	0.381924	0.236029	0.291761	0.236058	8.198676	8.263408	Continue	4	-1.090	-0.637
0.145895	0.291761	0.145866	0.23604	0.201616	8.263417	8.26778	Continue	5	-1.090	-0.810
0.145895	0.23604	0.090145	0.201605	0.18033	8.267776	8.256047	Continue	6	-1.090	-0.917
0.18033	0.23604	0.05571	0.214759	0.201612	8.269458	8.267778	Continue	7	-1.024	-0.917
0.201612	0.23604	0.034429	0.222888	0.214763	8.268415	8.269458	Continue	8	-0.983	-0.917
0.201612	0.222888	0.021277	0.214761	0.209739	8.269458	8.269311	Continue	9	-0.983	-0.942
0.209739	0.222888	0.013149	0.217865	0.214762	8.269246	8.269458	Continue	10	-0.967	-0.942
0.209739	0.217865	0.008126	0.214761	0.212843	8.269458	8.269474	Continue	11	-0.967	-0.952
0.209739	0.214761	0.005022	0.212843	0.211658	8.269474	8.269439	Continue	12	-0.967	-0.958
0.211658	0.214761	0.003104	0.213576	0.212843	8.269478	8.269474	Continue	13	-0.964	-0.958
0.212843	0.214761	0.001918	0.214029	0.213576	8.269474	8.269478	Continue	14	-0.961	-0.958
0.212843	0.214029	0.001185	0.213576	0.213296	8.269478	8.269478	Continue	15	-0.961	-0.959
0.213296	0.214029	0.000733	0.213749	0.213576	8.269477	8.269478	Terminate	16	-0.960	-0.959

Extracting data by running the program for iterations changing x(0), epsilon and delta

а	b	1	x(0)	delta	Bounding Iterations	a1	b1	l1	epsilon	Golden Section Iterations	final_a	final_b	final_l
-2	1	3	-2	0.01	8	-1.37	0.55	1.92	0.001	16	-0.96047	-0.9596	0.000869
-2	1	3	-1.8	0.01	7	-1.49	-0.53	0.96	0.001	16	-0.96026	-0.95982	0.000435
-2	1	3	-1.6	0.01	7	-1.29	-0.33	0.96	0.001	16	-0.96024	-0.9598	0.000435
-2	1	3	-1.4	0.01	6	-1.25	-0.77	0.48	0.001	16	-0.96022	-0.96	0.000217
-2	1	3	-1.2	0.01	6	-1.05	-0.57	0.48	0.001	16	-0.96025	-0.96003	0.000217
-2	1	3	-1	0.01	3	-0.99	-0.93	0.06	0.001	16	-0.96017	-0.96014	0.0000272
-2	1	3	-0.8	0.01	5	-0.87	-1.11	0.24	0.001	16	-0.96011	-0.96022	0.00011
-2	1	3	-0.6	0.01	6	-0.75	-1.23	0.48	0.001	16	-0.96001	-0.96022	0.00022
-2	1	3	-1.4	0.01	6	-1.25	-0.77	0.48	0.0001	21	-0.96016	-0.96014	1.96E-05
-2	1	3	-1.4	0.01	6	-1.25	-0.77	0.48	0.00001	25	-0.96015	-0.96015	2.86E-06
-2	1	3	-1.4	0.01	6	-1.25	-0.77	0.48	0.01	11	-0.96114	-0.95873	0.002411
-2	1	3	-1.6	0.1	4	-1.3	-0.1	1.2	0.001	16	-0.96051	-0.95996	0.000543
-2	1	3	-1.6	0.05	5	-1.25	-0.05	1.2	0.001	16	-0.96038	-0.95984	0.000543
-2	1	3	-1.6	0.005	8	-1.285	-0.325	0.96	0.001	16	-0.96033	-0.9599	0.000435
-2	1	3	-1.6	0.001	10	-1.345	-0.577	0.768	0.001	16	-0.96036	-0.96001	0.000348

Changing *initial guess* x(0) for Bounding Phase Method

а	b	1	x(0)	delta	Bounding Iterations	a1	b1	l1
-2	1	3	-2	0.01	8	-1.37	0.55	1.92
-2	1	3	-1.8	0.01	7	-1.49	-0.53	0.96
-2	1	3	-1.6	0.01	7	-1.29	-0.33	0.96
-2	1	3	-1.4	0.01	6	-1.25	-0.77	0.48
-2	1	3	-1.2	0.01	6	-1.05	-0.57	0.48
-2	1	3	-1	0.01	3	-0.99	-0.93	0.06
-2	1	3	-0.8	0.01	5	-0.87	-1.11	0.24
-2	1	3	-0.6	0.01	6	-0.75	-1.23	0.48

Number of Iterations vs Initial Guess

Range length vs Initial Guess

Function: $8 + x^3 - 2x - 2e^x$ in the interval (-2, 1)

Changing *delta* for Bounding Phase Method

а	b	1.0	x(0)	delta	Log Delta	Bounding Iterations	a1	b1	l1
-2	1	3	-1.6	0.1	-1.0	4	-1.3	-0.1	1.2
-2	1	3	-1.6	0.05	-1.3	5	-1.25	-0.05	1.2
-2	1	3	-1.6	0.01	-2.0	7	-1.29	-0.33	0.96
-2	1	3	-1.6	0.005	-2.3	8	-1.285	-0.325	0.96
-2	1	3	-1.6	0.001	-3.0	10	-1.345	-0.577	0.768

Changing *epsilon* for Golden Section Search Method

a1	b1	l1	epsilon	Log(epsilon)	Golden Section Iterations	final_a	final_b	final_l	Final L
-1.25	-0.77	0.48	0.01000	-2	11	-0.96114	-0.95873	0.002411	2410.54
-1.25	-0.77	0.48	0.00100	-3	16	-0.96022	-0.96	0.000217	217.30
-1.25	-0.77	0.48	0.00010	-4	21	-0.96016	-0.96014	0.000020	19.59
-1.25	-0.77	0.48	0.00001	-5	25	-0.96015	-0.96015	0.000003	2.86

Results and Observation

Bounding Phase Method

Golden Section Search Method

As the *initial guess* $x^{(0)}$ approaches the solution point, the *number of iterations* and reduces to a minimum.

The *number of iterations* only depend upon the value of *epsilon*.

With the *reduction in delta*, the *final range decreases*, but the *number of iteration increases*.

Project Presentation 2

ME 609 – Optimisation Methods in Engineering

Multivariable Method: Conjugate Direction Method

Unidirectional Search: Bounding Phase & Newton Raphson

Group No: 7

Nirmal S. [234103107] Rohith Kumar Saragadam [234103109]

Sum Squares Function

Optimal Solution: $x^* = (0, 0, 0, 0, 0); f(x^*) = 0$

Trial	Initial Point (x0)	Final Point (x*)	Function Value f(x*)	No. of Fn. Eval
1	(5.000, 5.000, 5.000, 4.000, 3.000)	(-0.000, 0.000, 0.000, 0.000, -0.000)	0	203
2	(1.000, 3.000, 2.450, 2.345, 3.345)	(0.000, 0.000, 0.000, 0.000, -0.000)	0	200
3	(-1.000, -3.000, -2.450, -2.345, -3.345)	(-0.000, -0.000, -0.000, -0.000, 0.000)	0	193
4	(5.000, 5.000, 5.000, 5.000, 5.000)	(0.000, -0.000, -0.000, -0.000, 0.000)	0	209
5	(5.000, -5.000, 5.000, -5.000, 5.000)	(0.000, 0.000, -0.000, 0.000, 0.000)	0	209
6	(-5.000, -5.000, -5.000, -5.000, -5.000)	(-0.000, 0.000, 0.000, 0.000, -0.000)	0	202

Observation:

The point seem to tend toward the Global Minima with any initial value. The number of function evaluation seem to be about the same for any initial point.

No.	Point (x)	Fn_val f(x)
0	(5.000, 5.000, 5.000, 4.000, 3.000)	259
1	(-0.000, 5.000, 5.000, 4.000, 3.000)	234
2	(-0.000, 0.000, 5.000, 4.000, 3.000)	184
3	(-0.000, 0.000, -0.000, 4.000, 3.000)	109
4	(-0.000, 0.000, -0.000, -0.000, 3.000)	45
5	(-0.000, 0.000, -0.000, -0.000, -0.000)	0
6	(-0.000, 0.000, -0.000, -0.000, -0.000)	0
7	(-0.000, 0.000, -0.000, 0.000, -0.000)	0
8	(-0.000, 0.000, -0.000, 0.000, -0.000)	0
9	(-0.000, 0.000, -0.000, 0.000, -0.000)	0
10	(-0.000, 0.000, -0.000, 0.000, -0.000)	0
11	(-0.000, 0.000, -0.000, -0.000, -0.000)	0
12	(-0.000, 0.000, 0.000, 0.000, -0.000)	0
	, , , , , , , , , , , , , , , , , , , ,	

Rosenbrock Function

Optimal Solution: $x^* = (1, 1, 1); f(x^*) = 0$

Trial	Initial Point (x0)	Final Point (x*)	Function Value f(x*)	No. of Fn. Eval
1	(-2.000, 0.000, 2.000)	(0.976, 0.949, 0.901)	0.005	2128
2	(-1.000, 1.000, 0.000)	(-0.758, 0.585, 0.346)	3.276	234
3	(1.020, 1.050, 0.980)	(1.001, 1.002, 1.004)	0.000	193
4	(1.500, 1.500, 0.500)	(0.953, 0.909, 0.825)	0.011	228
5	(-0.700, 0.500, 0.300)	(-0.092, -0.005, 0.009)	2.232	2770
6	(-0.800, 0.600, 0.100)	(-0.372, 0.121, 0.024)	2.697	2478
7	(-2.000, 0.600, 2.000)	(1.106, 1.224, 1.499)	0.062	312
8	(-2.000, -2.000, -2.000)	(0.954, 0.908, 0.819)	0.014	1593
9	(-2.000, -2.000, 1.000)	(0.392, 0.136, -0.016)	1.268	631
10	(-2.000, 1.000, 1.000)	(-1.127, 1.280, 1.644)	4.616	388
11	(1.000, 1.000, 1.000)	(1.000, 1.000, 1.000)	0.000	59

Observation:

There seem to be multiple points at which the conjugate method converges. When the initial point is near the Global Minima, it converges near it.

Dixon-Price Function

Optimal Solution: $x^* = (1.0, 0.707, 0.594, 0.545);$ $f(x^*) = 0$

			Function	
Trial	Initial Point (x0)	Final Point (x*)	Value f(x*)	No. of Fn. Eval
1	(1.000, 0.700, 0.600, 0.500)	(1.004, 0.708, 0.596, 0.546)	0	2282
2	(3.000, 7.000, 6.000, 5.000)	(-253.848, -0.256, 1.114, -0.733)	193980.9	586
3	(0.000, 0.000, 0.000, 0.000)	(0.778, 0.000, 0.000, 0.001)	1.259	72
4	(1.000, 1.000, 1.000, 1.000)	(0.228, -0.541, -0.104, -0.195)	1.935	4885
5	(0.980, 0.650, 0.550, 0.450)	(0.128, -0.591, 0.055, -0.048)	2.492	2081
6	(-1.000, -0.700, 0.000, -0.500)	(-7.787, 0.176, -0.505, -0.009)	201.754	830
7	(1.000, 0.700, 0.600, -0.500)	(-9.848, -0.202, 0.286, 0.973)	325.62	2109

Observation:

There seem to be multiple points at which the conjugate method converges. When the initial point is near the Global Minima, it converges near it.

No.	Point (x)	Fn_val f(x)
0	(1.000, 0.700, 0.600, 0.500)	0.042
1	(1.013, 0.700, 0.600, 0.500)	0.0436
2	(1.013, 0.707, 0.600, 0.500)	0.0411
3	(1.013, 0.707, 0.614, 0.500)	0.059
4	(1.013, 0.707, 0.614, 0.554)	0.0072
5	(1.018, 0.707, 0.614, 0.554)	0.0076
6	(1.018, 0.706, 0.613, 0.551)	0.0074
7	(1.025, 0.706, 0.613, 0.551)	0.0084
8	(1.025, 0.707, 0.613, 0.551)	0.0078
9	(1.025, 0.707, 0.599, 0.551)	0.0024
10	(1.025, 0.707, 0.599, 0.548)	0.0022
30	(1.007, 0.709, 0.596, 0.546)	0.0001
31	(1.006, 0.709, 0.596, 0.546)	0
32	(1.005, 0.709, 0.596, 0.546)	0
33	(1.005, 0.709, 0.596, 0.546)	0
34	(1.005, 0.708, 0.596, 0.546)	0
35	(1.005, 0.708, 0.596, 0.546)	0
36	(1.004, 0.708, 0.596, 0.546)	0
37	(1.004, 0.708, 0.596, 0.546)	0
38	(1.004, 0.708, 0.596, 0.546)	0
39	(1.004, 0.708, 0.596, 0.546)	0
40	(1.004, 0.708, 0.596, 0.546)	0

Trid Function

Optimal Solution: $x^* = (6, 10, 12, 12, 10, 6);$ $f(x^*) = -50$

			Function Value	
Trial	Initial Point (x0)	Final Point (x*)	f(x*)	No. of Fn. Eval
1	(6.000, 10.000, 12.000, 12.000, 10.000, 6.000)	(6.000, 10.000, 12.000, 12.000, 10.000, 6.000)	-50	79
2	(5.000, 9.000, 10.000, 9.000, 9.000, 3.000)	(5.959, 9.816, 11.675, 11.256, 8.992, 5.772)	-49.526	1381
3	(-5.000, -9.000, -10.000, -9.000, -9.000, -3.000)	(5.936, 9.910, 11.878, 11.854, 9.761, 5.022)	-49.242	1741
4	(0.000, -10.000, 4.000, 6.000, 10.000, -12.000)	(3.590, 5.373, 5.095, 4.714, 4.313, 2.842)	-32.509	2347
5	(1.000, -1.000, 1.000, 1.000, 1.000, -1.000)	(6.036, 10.055, 12.065, 11.961, 9.977, 6.060)	-49.988	3036
6	(-1.000, -1.000, -1.000, -1.000, -1.000, -1.000)	(5.998, 9.998, 11.998, 11.998, 9.998, 5.997)	-50	1138
7	(0.000, 0.000, 0.000, 0.000, 0.000, 0.000)	(6.001, 10.001, 12.002, 12.001, 10.002, 6.002)	-50	1117
8	(12.000, 12.000, 12.000, 12.000, 12.000, 12.000)	(6.646, 11.260, 13.832, 14.074, 11.800, 7.117)	-48.515	2306
9	(15.000, 15.000, 15.000, 15.000, 15.000, 15.000)	(7.269, 12.548, 14.994, 14.541, 11.609, 6.674)	-47.076	1277
10	(1.000, 1.000, 1.000, 1.000, 1.000, 1.000)	(5.986, 9.971, 11.933, 11.818, 9.349, 6.393)	-49.26	1012

Observation:

The point seem to tend toward the Global Minima with almost any initial value.

No.	Point (x)	Fn_val f(x)
0	(5.000, 9.000, 10.000, 9.000, 9.000, 3.000)	-40
1	(5.500, 9.000, 10.000, 9.000, 9.000, 3.000)	-40.25
2	(5.500, 8.750, 10.000, 9.000, 9.000, 3.000)	-40.3125
3	(5.500, 8.750, 9.875, 9.000, 9.000, 3.000)	-40.3281
4	(5.500, 8.750, 9.875, 10.437, 9.000, 3.000)	-42.3945
5	(5.500, 8.750, 9.875, 10.437, 7.719, 3.000)	-44.0361
78	(5.959, 9.816, 11.675, 11.257, 8.992, 5.772)	-49.526
79	(5.959, 9.816, 11.675, 11.257, 8.992, 5.772)	-49.526
80	(5.960, 9.816, 11.675, 11.257, 8.992, 5.772)	-49.526
81	(5.960, 9.816, 11.675, 11.257, 8.992, 5.772)	-49.526
82	(5.959, 9.816, 11.675, 11.256, 8.992, 5.772)	-49.526
83		-49.526
84	(5.959, 9.816, 11.675, 11.256, 8.992, 5.772)	
84	(5.959, 9.816, 11.675, 11.256, 8.992, 5.772)	-49.526

Zakharov Function

Optimal Solution: $x^* = (0, 0)$; $f(x^*) = 0$

Trial	Initial Point (x0)	Final Point (x*)	Function Value f(x*)	No. of Fn. Eval
1	(0.000, 0.000)	(-0.000, 0.000)	0	33
2	(1.000, -2.000)	(0.000, 0.000)	0	357
3	(5.000, -2.000)	(0.000, 0.000)	0	359
4	(5.000, -10.000)	(0.000, -0.000)	0	336
5	(-15.000, -10.000)	(0.000, -0.000)	0	339

Observation:

The point seem to tend toward the Global Minima with any initial value.

No.	Point (x)	Fn_val f(x)
0	(5.000, -2.000)	29.3125
1	(1.827, -2.000)	9.9119
2	(1.827, -0.518)	3.7855
3	(0.255, -0.518)	0.5097
4	(-0.188, -0.101)	0.0848
5	(0.041, -0.101)	0.0183
6	(-0.041, -0.023)	0.0042
7	(0.001, -0.001)	0
8	(-0.000, -0.000)	0
9	(0.000, -0.000)	0
10	(0.000, 0.000)	0
11	(0.000, 0.000)	0
12	(0.000, 0.000)	0

Thank you

Project Presentation 3

ME 609 – Optimisation Methods in Engineering

Constrained Optimisation Problem

Multivariable Method: Conjugate Direction Method

Unidirectional Search: Bounding Phase & Newton Raphson

Group No: 7

Nirmal S. [234103107] Rohith Kumar Saragadam [234103109]

Flowchart

Problem 1

$\min f(x) = (x_1 - 10)^3 + (x_2 - 20)^3,$
subject to $g_1(x) = (x_1 - 5)^2 + (x_2 - 5)^2 - 100 \ge 0$,
$g_2(x) = (x_1 - 6)^2 + (x_2 - 5)^2 - 82.81 \le 0,$
$13 \le x_1 \le 20, \qquad 0 \le x_2 \le 4.$

Sl. No	Initial Point	χ^T	Number of Function Evaluation
1	(0, 0)	(14.06990755, 0.78990993)	918
2	(1, 3)	(14.06990755, 0.78990993)	1020
3	(15, -265)	(14.06990755, 0.78990993)	954
4	(-234, 0.1234)	(14.06990755, 0.78990993)	1013
5	(-23.24, 4853.25)	(14.06990755, 0.78990993)	954
6	(-24, 25)	(14.06990755, 0.78990993)	954
7	(-2, 5)	(14.06990755, 0.78990993)	983
8	(-0.0023, 4.2315)	(14.06990755, 0.78990993)	983
9	(-1046, 1046)	(14.06990755, 0.78990993)	954
10	(-106, 10)	(14.06990755, 0.78990993)	970

Observation:

It takes around 1000 function evaluations for any initial point.

Problem 1

$\min f(x) = (x_1 - 10)^3 + (x_2 - 20)^3,$
subject to $g_1(x) = (x_1 - 5)^2 + (x_2 - 5)^2 - 100 \ge 0$
$g_2(x) = (x_1 - 6)^2 + (x_2 - 5)^2 - 82.81 \le 0,$
$13 \le x_1 \le 20$, $0 \le x_2 \le 4$.

Observation:

At the end of 8th sequence, the point converges near optimum value.

Sequence(t)	R(t)	x(t)	P(x(t), R(t))
1	0.1	(0.0, 0.0)	-8750
		(13.1236, 0.0)	-7961.41
		(13.1236, 0.0)	-7961.41
2	1	(13.1236, 0.0)	-7888.39
		(13.5949, 0.0)	-7952.27
			•••
		(13.5949, 0.0)	-7952.27
3	10	(13.5949, 0.0)	-7940.82
		(13.6316, 0.0)	-7947.79
			•••
		(13.6316, 0.0)	-7947.79
4	100	(13.6316, 0.0)	-7908.95
		(13.6349, 0.0)	-7909.54
			•••
		(13.6349, 0.0)	-7909.54
5	1000	(13.6349, 0.0)	-7527.67
		(13.6353, 0.0)	-7527.73
		(13.6353, 0.0)	-7527.73
6	10000	(13.6353, 0.0)	-3709.67
		(13.6353, 0.0)	-3709.68
		(13.8762, 0.4074)	-6313.92
7	100000	(13.8762, 0.4074)	4025.336
		(13.8712, 0.4074)	2591.357
		(13.0, -1.1524)	1624812
8	1000000	(13.0, -1.1524)	16333059
		(13.0, -1.1524)	16333059
		(14.0637, 0.7787)	-5072.91
		(14.0699, 0.7899)	-5415.28

Problem 1

Penalty Function values over each Sequence over Iterations

Observation:

The values of Penalty function changes with each new sequence and then reduces over iterations in the sequence.

Problem 1 Contours

Problem 2, 3

$$\max f(x) = \frac{\sin^3(2\pi x_1)\sin(2\pi x_2)}{x_1^3(x_1 + x_2)},$$
 subject to $g_1(x) = x_1^2 - x_2 + 1 \le 0,$
$$g_2(x) = 1 - x_1 + (x_2 - 4)^2 \le 0,$$

$$0 \le x_1 \le 10, \qquad 0 \le x_2 \le 10$$

$$\min f(x) = x_1 + x_2 + x_3$$

$$subject \ to \ g_1(x) = -1 + 0.0025(x_4 + x_6) \le 0,$$

$$g_2(x) = -1 + 0.0025(-x_4 + x_5 + x_7) \le 0,$$

$$g_3(x) = -1 + 0.01(-x_6 + x_8) \le 0,$$

$$g_4(x) = 100x_1 - x_1x_6 + 833.33252x_4 - 83333.333 \le 0,$$

$$g_5(x) = x_2x_4 - x_2x_7 - 1250x_4 + 1250x_5 \le 0,$$

$$g_6(x) = x_3x_5 - x_3x_8 - 2500x_5 + 1250000 \le 0,$$

$$100 \le x_1 \le 10000$$

$$1000 \le x_i \le 10000, i = 2, 3$$

$$10 \le x_i \le 1000, i = 4, 5, ..., 8$$

Result:

Unable to solve the constrained optimization problems due to the values running to large number leading to *nan* error.

Thank you