The Deep Learning Revolution in NLP

Deep Learning Revolution

- Recent machine learning methods for training "deep" neural networks (NNs) have demonstrated remarkable progress on many challenging AI problems (e.g. speech recognition, visual object recognition, machine translation, game playing).
- However, their capabilities are prone to "hype."
- Deep learning has not "solved" AI and current methods have clear limitations.

Very Brief History of Machine Learning

- Single-layer neural networks (1957-1969)
- Symbolic AI & knowledge engineering (1970-1985)
- Multi-layer NNs and symbolic learning (1985-1995)
- Statistical (Bayesian) learning and kernel methods (1995-2010)
- Deep learning (CNNs and RNNs) (2010-?)

Single-Layer Neural Network (Linear Threshold Unit)

Mathematical model of an individual neuron.

Perceptron

- Rosenblatt (1957) developed an iterative, hill-climbing algorithm for learning the weights of single-layer NN to try to fit a set of training examples.
- Unable to learn or represent many classification functions (e.g. XOR), only the "linearly separable" ones are learnable.

Perceptron Learning Rule

• Update weights by:

$$w_i = w_i + \eta(t - o)x_i$$

where η is the "learning rate," t is the teacher output, and o is the network output.

- Equivalent to rules:
 - If output is correct do nothing.
 - If output is high, lower weights on active inputs
 - If output is low, increase weights on active inputs

Perceptron Demise

- *Perceptons* (1969) by Minksy and Papert illuminated the limitations of the perceptron.
- Work on neural-networks dissipated during the 70's and early 80's.

Neural Net Resurgence (1986)

- Interest in NNs revived in the mid 1980's due to the rise of "connectionism."
- Backpropagation algorithm popularized for training three-layer NN's.
- Generalized the iterative "hill climbing" method to approximate fitting two layers of synaptic connections, but no convergence guarantees.

3-Layer NN Backpropagation

Three-layer back-propagation neural network

Second NN Demise (1995-2010)

- Generic backpropagation did not generalize that well to training deeper networks.
- Little theoretical justification for underlying methods.
- Machine learning research moved to graphical models and kernel methods.

Deep Learning Revolution (2010...)

- Improved methods developed for training deep neural works.
- Particular successes with:
 - Convolutional neural nets (CNNs) for vision.
 - Recurrent neural nets (RNNs) for machine translation and speech recognition.
 - Deep reinforcement learning for game playing.

Massive Data and Specialized Hardware

- Large collections of supervised (crowdsourced) training data has been critical.
- Efficient processing of this big data using specialized hardware (Graphics Processing Units, GPUs) has been critical.

CNNs

- Convolutional layers learn to extract local features from image regions (receptive fields) analogous to human vision (LeCun, et al., 1998).
- Deeper layers extract higher-level features.
- Pool activity of multiple neurons into one at the next layer using max or mean.
- Nonlinear processing with Rectified Linear Units (ReLUs)
- Decision made using final fully connected layers.

CNNs

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

• Recognize 1,000 categories of objects in 150K test images (given 1.2M training images).

ImageNet Performance Over Time

Recurrent Neural Networks (RNNs)

- Add feedback loops where some units' current outputs determine some future network inputs.
- RNNs can model dynamic finite-state machines, beyond the static combinatorial circuits modeled by feed-forward networks.

Simple Recurrent Network (SRN)

- Initially developed by Jeff Elman ("Finding structure in time," 1990).
- Additional input to hidden layer is the state of the hidden layer in the previous time

Unrolled RNN

• Behavior of RNN is perhaps best viewed by "unrolling" the network over time.

Training RNN's

- RNNs can be trained using "backpropagation through time."
- Can viewed as applying normal backprop to the unrolled network.

backpropagated errors

Vanishing/Exploding Gradient Problem

- Backpropagated errors multiply at each layer, resulting in exponential decay (if derivative is small) or growth (if derivative is large).
- Makes it very difficult train deep networks, or simple recurrent networks over many time steps.

Long Distance Dependencies

- It is very difficult to train SRNs to retain information over many time steps.
- This make is very difficult to learn SRNs that handle long-distance dependencies, such as subject-verb agreement.

Long Short Term Memory (LSTM)

- LSTM networks, add additional gating units in each memory cell (Hochreiter & Schmidhuber, 1997).
 - Forget gate
 - Input gate
 - Output gate
- Prevents vanishing/exploding gradient problem and allows network to retain state information over longer periods of time.

LSTM Network Architecture

Bi-directional LSTM (Bi-LSTM)

 Separate LSTMs process sequence forward and backward and hidden layers at each time step are concatenated to form the cell output.

Sequence to Sequence (Seq2Seq) Transduction

• Encoder/Decoder framework maps one sequence to a "deep vector" then another LSTM maps this vector to an output sequence (Sutskever et al., 2014).

• Train model "end to end" on I/O pairs of sequences.

Neural Machine Translation (NMT)

- LSTM Seq2Seq has lead to a new approach to translating human language.
- NMT modestly outperforms previous statistical learning approaches to MT (SMT).

NMT Results (Wu et al., 2016)

 Experimental results using automated (BLEU) and human evaluation for English→ French translation.

Method	BLEU	Human Rating
SMT	37.0	3.87
NMT	40.35	4.46
Human		4.82

LSTM Application Architectures

Independent Word Vectors

- Represent word meanings as vectors based on words with which they co-occur.
- Neural approaches based on predicting a word's context (skip-grams) from its vector (Word2Vec, Mikolov et al., 2013).
- Fails to account for lexical ambiguity or dependence of word meaning on context.

Bidirectional Language Model

- A standard statistical language model predicts the probability of the next word based on the previous context.
 - Your program for Project 4 does not _____
- A bidirectional language model (BiLM) predicts the word at each position based on both prior and posterior context encoded using an RNN (e.g. LSTM).

Contextualized Word Embeddings

- Produce a vector representation for a specific occurrence of a word, by using textual context to compute its meaning.
- ELMo (Embeddings from Language Models, Peters et al., 2018) uses the hidden state of a BiLM to compute contextualized word embeddings.

Transformer Networks

- An alternate Seq2Seq neural architecture based on attention rather than recurrence (Vaswani et al., 2017).
- Attention mechanisms compute the output at each position in the sequence by varying "attention" across different positions in the input sequence.

Transformer Architecture

BERT Contextualized Embeddings

- Bidirectional Encoder Representations from Transformers (BERT, Devlin et al., 2018)
- Trains a transformer network to predict a fraction of "masked" tokens in an input sentence, or predict the next sentence.

BERT Architecture

Neural Information Retrieval

- Word embeddings have been used to improve IR by allowing matching words based on semantic similarity.
- Most recent results (Dai & Callan, SIGIR-2019) show improvements to ad-hoc document retrieval using BERT transformer approach.

BERT IR Results

Table 2: Search accuracy on Robust04 and ClueWeb09-B. † indicates statistically significant improvements over Coor-Ascent by permutation test with p< 0.05.

	nDCG@20				
	Robust04		ClueWeb09-B		
Model	Title	Description	Title	Description	
BOW	0.417	0.409	0.268	0.234	
SDM	0.427	0.427	0.279	0.235	
RankSVM	0.420	0.435	0.289	0.245	
Coor-Ascent	0.427	0.441	0.295	0.251	
DRMM	0.422	0.412	0.275	0.245	
Conv-KNRM	0.416	0.406	0.270	0.242	
BERT-FirstP	0.444^{\dagger}	0.491^{\dagger}	0.286	$\boldsymbol{0.272}^{\dagger}$	
BERT-MaxP	0.469^{\dagger}	0.529^{\dagger}	0.293	0.262^{\dagger}	
BERT-SumP	0.467^{\dagger}	0.524^{\dagger}	0.289	0.261	

"Cramming" Meaning into Vectors

- DNNs force semantics to be encoded into real-valued vectors.
- Structured meaning representations that exploit trees, graphs, and logical representations are only imperfectly encoded as vectors.

Complex Compositional Questions

"Has Woody Allen made more movies with Diane Keaton or Mia Farrow."

count(Y, Director(Y, WoodyAllen) argmax $X \in \{DianeKeaton, \land Cast(Y, X)\}$ MiaFarrow}

Conclusions

- Machine learning, and specifically neural nets, has a a long, rich, varied history.
- Deep learning has made significant recent progress.
- Progress is continuing and holds promise of enabling revolutionary technology.
- However, progress has been exaggerated and core AI problems are a long way from completely solved.