Universidad de la República - Facultad de Ingeniería - IMERL Matemática Discreta 2

SEGUNDO PARCIAL - 29 DE JUNIO DE 2017. DURACIÓN: 3 HORAS

El parcial es sin material y sin calculadora.

Ejercicio 1. Sea $g \in G$ tal que o(g) = n

- a. Probar que para todo $m \in \mathbb{Z}$ se cumple $g^m = e \iff n \mid m$.
- **b**. Probar que $g^a = g^b \iff a \equiv b \pmod{n}$.
- **c.** Probar que $|\langle g \rangle| = n$.
- d. Usar el Teorema de Lagrange para probar que si G es finito, entonces $n \mid |G|$.

Solución.

- **a.** (\Rightarrow) Si $g^m = e$, dividiendo m entre n tenemos que m = nq + r con $0 \le r < n$. Por lo tanto $e = g^m = g^{nq+r} = (g^n)^q g^r = e^q g^r = g^r$. En otras palabras $g^r = e$, pero n es el menor entero positivo que cumple $g^n = e$, y como $0 \le r < n$ debe ser r = 0. Luego, m = nq y $n \mid m$.
 - (\Leftarrow) Si m = nq, entonces $g^m = g^n q = (g^n)^q = e^q = e$.
- **b.** $g^a = g^b \Leftrightarrow g^{a-b} = e \stackrel{\text{(a)}}{\iff} n \mid a b \Leftrightarrow a \equiv b \pmod{n}$.
- **c.** Por la parte anterior $\langle g \rangle = \{g^k : k \in \mathbb{Z}\} = \{g^0, g^1, \dots, g^{n-1}\}$, donde los elementos g^0, g^1, \dots, g^{n-1} son todos distintos. Concluimos que $|\langle g \rangle| = n$.
- **d**. Como $\langle g \rangle$ es un subgrupo de G, el Teorema de Lagrange implica que $n = |\langle g \rangle| \mid |G|$.

Ejercicio 2.

- a. Probar que 11 es una raiz primitiva módulo 71.
- b. Aldo y Beatriz eligen p=71 y g=11 para intercambiar claves utilizando el método de Diffie y Hellman. Beatriz elige m=7 y Aldo le envía el número $g^n\equiv 61\pmod{71}$. ¿Cuál es la clave que acuerdan?

Solución.

- a. Como 71 es primo $\varphi(71) = 70 = 2 \cdot 5 \cdot 7$. Entonces alcanza probar que $11^{10} \not\equiv 1 \pmod{71}$, que $11^{14} \not\equiv 1 \pmod{71}$, y que $11^{35} \not\equiv 1 \pmod{71}$. En efecto calculamos $11^2 \equiv 50$, $11^4 \equiv 50^2 \equiv 15$, $11^8 \equiv 15^2 \equiv 12$, $11^{16} \equiv 12^2 \equiv 2$, $11^{32} \equiv 2^2 \equiv 4$. Ahora $11^{10} \equiv 11^8 \cdot 11^2 \equiv 32 \not\equiv 1$, $11^{14} \equiv 11^{10} \cdot 11^4 \equiv 54 \not\equiv 1$, y $11^{35} \equiv 11^{32} \cdot 11^2 \cdot 11 \equiv 70 \not\equiv 1$.
- **b.** La clave que acuerdan es $g^{nm} = (g^n)^m \equiv 61^7 \pmod{71}$. Calculamos $61^2 \equiv 29$, $61^4 \equiv 29^2 \equiv 60$, y tenemos $61^7 \equiv 61 \cdot 61^2 \cdot 61^4 \equiv 60 \cdot 10 \cdot 29 \equiv 66 \pmod{71}$.

Ejercicio 3. Alicia y Beto quieren comunicarse con el método ElGamal. A tales efectos eligen un primo p y una raíz primitiva g módulo p. Alicia elige un entero a como su clave privada y calcula $h \equiv g^a \pmod{p}$ como su clave pública. Beto quiere enviar un mensaje $m \in \mathbb{Z}_p$ a Alicia.

- a. Describir el algoritmo de cifrado E que debe usar Beto.
- **b**. Describir la función de descifrado D que debe usar Alicia.
- c. Demostrar que D(E(m)) = m para todo $m \in \mathbb{Z}_p$.

Solución.

- a. Beto elige un entero b secreto (utilizable una única vez) y calcula $r \equiv g^b \pmod{p}$ y $c \equiv h^b \cdot m \pmod{p}$, obteniendo E(m) = (r, c).
- **b**. Ana calcula $D(r,c) = c \cdot r^{-a} \pmod{p}$
- $\mathbf{c}. \ D(E(m)) \equiv D(g^b, h^b \cdot m) \equiv (h^b \cdot m) \cdot (g^b)^{-a} \equiv (g^a)^b \cdot m \cdot g^{-ab} \equiv m \cdot (g^{ab} \cdot g^{-ab}) \equiv m \pmod{p}$

Ejercicio 4. Consideramos el grupo dihedral D_3 .

- a. Describir todos los elementos de D_3 indicando su orden.
- b. Sean $u, v \in D_3$ dos elementos distintos de orden 2. Probar que uv tiene orden 3.
- c. Consideramos la función $f: D_3 \to D_3$ dada por $f(x) = x^2$. ¿Es f un homomorfismo?
- **d**. Describir todos los homomorfismos $h: \mathbb{Z}_6 \to D_3$.

Solución.

- a. $D_3 = \{e, r, r^2, s, sr, sr^2\}$ donde r y r^2 son rotaciones y tienen orden 3, mientras que s, sr y sr^2 son simetrías axiales y tienen orden 2.
- b. Como u y v tienen orden 2 son simetrías axiales. Entonces uv es un movimiento directo, debiendo ser 1, r, o r^2 . Pero $u \neq v$ implica que $uv \neq e$. Entonces uv es una rotación, luego tiene orden 3.
- **c**. No es un homomorfismo, por ejemplo si u y v son como en la parte anterior f(u) = e y f(v) = e, pero $f(uv) = (uv)^2 \neq e$.
- d. Como \mathbb{Z}_6 es cíclico generado por $\overline{1}$ de orden 6, cualquier homomorfismo es de la forma $h(\overline{n}) = g^n$ para algún $g \in D_3$ con $o(g) \mid 6$. Pero esto último vale para cualquier $g \in D_3$, entonces hay 6 homomorfismos $h : \mathbb{Z}_6 \to D_3$, uno para cada posible g.

Bonus. Determinar geométricamente el punto P + Q en la siguiente curva elíptica:

