单元6.3 无向图的连通性

第二编图论 第七章图

7.3 无向图的连通性

7.5 有向图的连通性

内容提要

- 连通,连通分支,连通分支数
- 二部图 ⇔ 无奇圈
- 强连通(双向),单向连通,弱连通

连通

- 无向图G=<V,E>, u~v ⇔ u与v之间有通路, 规定u~u
- 连通关系~是等价关系
 - 自反: u~u
 - 对称: u~v ⇒ v~u
 - 传递: u~v ∧ v~w ⇒ u~w
- 连通分支: G[V_i], (i=1,...,k)
 - -设 V/~={ V_i | i=1,...,k }
 - 连通分支数: p(G) = | V/~| = k
- · 连通图: p(G)=1; 非连通图(分离图): p(G)>1

短程线(测地线)

u,v之间长度最短的通路

距离、直径

• 距离: d_G(u,v) = u,v之间短程线的长度(或∞)

• 直径: d(G) = max{ d_G(u,v) | u,v∈V(G) }

• 例: $d(K_n)=1(n\geq 2)$, $d(C_n)=\lfloor n/2\rfloor$, $d(N_1)=0$, $d(N_n)=\infty$ $(n\geq 2)$

距离函数

- 非负性: d(u,v)≥0, d(u,v)=0 ⇔ u=v
- 对称性: d(u,v) = d(v,u)
- Δ不等式: d(u,v) + d(v,w) ≥ d(u,w)
- 任何函数只要满足上述三条性质,就可以当作距离 函数使用

- · 定理7.8 G是二部图 ⇔ G中无奇圈
- 证明: (\Rightarrow) 设G=(V_1,V_2 ;E), 设C= $v_1v_2...v_{l-1}v_lv_1$ 是G中的任意圈,设 $v_1 \in V_1$,则 $v_3,v_5,...,v_{l-1} \in V_1$, $v_2,v_4,...,v_l \in V_2$, 于是l=|C|是偶数,C是偶圈.

· 证: (⇐) 设G连通(否则对每个连通分支进行讨论), 设v∈V(G), 令

 $V_1 = \{ u \in V(G) \mid d(u,v) 为偶数 \},$

V₂={ u∈V(G) | d(u,v)为奇数 }, V₁∪V₂=V(G), V₁∩V₂=Ø.

则 $V_1 \cup V_2 = V(G)$, $V_1 \cap V_2 = \emptyset$.

下证 $E(G)\subseteq V_1 \& V_2$.

定理7.9 若无向图G是连通的,则G的边数m≥n-1

证明:(对n归纳)不妨设G是简单图.

(1) $G=N_1$: n=1, m=0.

(2) 设n≤k时命题成立,下证n=k+1时也成立.

定理7.9证明

∀v∈V(G), 设p(G-v)=s, 则d_G(v)≥s.
 对G-v的连通分支G₁,G₂,...,G_s使用归纳假设,设|V(G_i)|=n_i, |E(G_i)|=m_i,则
 m = m₁+m₂+...+m_s+d_G(v)
 ≥ (n₁-1)+(n₂-1)+...+(n_s-1)+s
 = n₁+n₂+...+n_s = n-1. #

(双向)可达

- 有向图D=<V,E>, u→v
 ⇔从u到v有(有向)通路
 - 规定u→u,可达关系是自反,传递的
- 有向图D=<V,E>, u→v ⇔ u→v ∧ v→u
 - 双向可达关系是等价关系
 - 其等价类的导出子图称为强连通分支

强连通分支: G[{a}],G[{b}],G[{c,e,d}] b •

弱连通

• 有向图的基图是连通图

单向连通

• 有向图的任何一对顶点之间至少单向可达

命题

- 竞赛图一定有初级通路(路径)过每个顶点恰好一次
- 证明:

命题证明

• 证明(续):

命题证明

• 证明(续):

强连通

• 强连通(双向连通):有向图的任何一对顶点之间都双向可达

• 有向图D强连通 ⇔ D中有回路过每个顶点至少一次.

• 说明:不一定有简单回路,反例如下:

定理7.21证明

- 证明:(⇐)显然
- (⇒) 设V(D)={ $v_1,v_2,...,v_n$ }, 设 $\Gamma_{i,j}$ 是从 v_i 到 v_j 的有向通路, 则 $\Gamma_{1,2}$ + $\Gamma_{2,3}$ +...+ $\Gamma_{n-1,n}$ + $\Gamma_{n,1}$ 是过每个顶点至少一次的回路. #

- 有向图D单向连通 ⇔ D中有通路过每个顶点至少一次.#
- 说明:不一定有简单通路,反例如下:

有向图的连通分支

- 强连通分支:极大强连通子图
- 单向连通分支:极大单向连通子图
- 弱连通分支:极大弱连通子图

有向图的连通分支(例7.8(a))

- 强连通分支: [{a}], G[{b}], G[{c,d,e,h,i}],
 G[{f}],G[{g}],G[{j,k,l}]
- 单向连通分支: G[{a,b}],G[{c,d,e,h,i,f,g}], G[{j,k,l}]
- (弱)连通分支:与单向连通分支相同

有向图的连通分支(例7.8(b))

- 强连通分支: G[{a}], G[{b}], G[{c}], G[{d}], G[{e,f,g,h}]
- 单向连通分支: G[{a,b,c}], G[{c,d}], G[{d,e,f,g,h}]
- · (弱)连通分支:G

小结

- 连通,连通分支,连通分支数
- 二部图 ⇔ 无奇圈
- 强连通(双向),单向连通,弱连通

