ΠΡΟΟΔΟΙ 985.

5.1 ΑΚΟΛΟΥΘΙΕΣ

Η έννοια της ακολουθίας

Ας υποθέσουμε ότι καταθέτουμε στην τράπεζα ένα κεφάλαιο 10000 ευρώ με ανατοκισμό ανά έτος και με επιτόκιο 2%. Αυτό σημαίνει ότι σε ένα χρόνο οι τόκοι που θα αποδώσει το κεφάλαιο προστίθενται σε αυτό και το ποσό που προκύπτει ξανατοκίζεται για τον επόμενο χρόνο με το ίδιο επιτόκιο. Η διαδικασία αυτή μπορεί να συνεχιστεί όσα χρόνια θέλουμε. Επομένως, το κεφάλαιο των 10000 ευρώ θα γίνει: Σε 1 χρόνο:

 $10000 + 0.02 \cdot 10000 = 10000(1+0.02) = 10200$ ευρώ.

Σε 2 χρόνια:

 $10000 \cdot 1,02 + 0,02 \cdot (10000 \cdot 1,02) = 10000 \cdot 1,02 \cdot (1+0,02) = 10000 \cdot (1,02)^2 = 10404$ ευρώ.

Συνεχίζοντας με τον ίδιο τρόπο βρίσκουμε ότι το ποσό των 10000 ευρώ θα γίνει: Σε 3 χρόνια $10000 \cdot (1,02)^3$ ευρώ, σε 4 χρόνια $10000 \cdot (1,02)^4$ ευρώ κτλ. και σε ν χρόνια θ α γίνει $10000 \cdot (1,02)^9$ ευρώ.

Έτσι έχουμε τον πίνακα:

Χρόνια: ν	1	2	3	•••	ν	•••
Κεφάλαιο σε ν χρόνια	10000 · 1,02	$10000 \cdot (1,02)^2$	$10000 \cdot (1,02)^3$		10000 · (1,02) ^v	

Παρατηρούμε ότι κάθε θετικός ακέραιος v αντιστοιχίζεται στον πραγματικό αριθμό $10000 \cdot (1,02)^v$.

Η παραπάνω αντιστοίχιση ονομάζεται ακολουθία πραγματικών αριθμών.

Γενικά **ακολουθία πραγματικών αριθμών** είναι μια αντιστοίχιση των φυσικών αριθμών 1, 2, 3, ..., ν, ... στους πραγματικούς αριθμούς. Ο αριθμός στον οποίο αντιστοιχεί ο 1 καλείται **πρώτος όρος** της ακολουθίας και τον συμβολίζουμε συνήθως

122 5. ΠΡΟΟΔΟΙ

με \mathbf{a}_1 , ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με \mathbf{a}_2 κ.λπ. Γενικά ο αριθμός στον οποίο αντιστοιχεί ένας φυσικός αριθμός ν καλείται **ν-οστός** ή γενικός όρος της ακολουθίας και τον συμβολίζουμε συνήθως με $\mathbf{a}_{\rm c}$.

 Δ ηλαδή, $1 \rightarrow \alpha_1, 2 \rightarrow \alpha_2, 3 \rightarrow \alpha_3, ..., \nu \rightarrow \alpha_\nu, ...$ Την ακολουθία αυτή τη συμβολίζουμε (α_ν) .

ΠΑΡΑΔΕΙΓΜΑΤΑ

- i) Η αντιστοίχιση $1 \rightarrow 1^2$, $2 \rightarrow 2^2$, ... $v \rightarrow v^2$, ... είναι η ακολουθία (α_v) με πρώτο όρο $\alpha_1 = 1^2$, δεύτερο όρο $\alpha_2 = 2^2$ κ.λπ. και γενικό όρο $\alpha_v = v^2$.
- ii) Η ακολουθία $(\alpha_{_{v}})$ με γενικό όρο $\alpha_{_{v}}=(-1)^{_{v}}$ έχει όρους: $\alpha_{_{1}}=-1,~\alpha_{_{2}}=1,~\alpha_{_{3}}=-1,~\dots$

iii) Η ακολουθία
$$(\alpha_v)$$
 με ν-οστό όρο $\alpha_v = \frac{1}{v}$ έχει όρους: $\alpha_1 = 1, \ \alpha_2 = \frac{1}{2}, \ \alpha_3 = \frac{1}{3}, \dots$

Ακολουθίες που ορίζονται αναδρομικά

Στην ακολουθία $1^2, 2^2, 3^2, ..., v^2, ...$ ο γενικός της όρος $\alpha_v = v^2$ μας επιτρέπει να βρούμε τον οποιονδήποτε όρο της. Είναι π.χ. $\alpha_{20} = 20^2 = 400, \, \alpha_{100} = 100^2 = 10000$ κτλ.

Υπάρχουν όμως και ακολουθίες που για το γενικό τους όρο είναι δύσκολο να βρεθεί ένας μαθηματικός τύπος.

Ας θεωρήσουμε π.χ. την ακολουθία (α_{v}) , της οποίας ο πρώτος όρος είναι το 1, ο δεύτερος όρος είναι επίσης το 1 και κάθε άλλος όρος, από τον τρίτο και μετά, είναι ίσος με το άθροισμα των δυο προηγούμενων όρων:

$$\alpha_1 = 1, \ \alpha_2 = 1, \ \alpha_{v+2} = \alpha_{v+1} + \alpha_v$$

Έχουμε:

$$\alpha_3 = 1 + 1 = 2$$
, $\alpha_4 = 2 + 1 = 3$, $\alpha_5 = 3 + 2 = 5$, $\alpha_6 = 5 + 3 = 8$, ktl.

Παρατηρούμε ότι μπορούμε με διαδοχικά βήματα να βρούμε τον οποιονδήποτε όρο της ακολουθίας. Αυτό σημαίνει ότι η ακολουθία (α,) είναι τελείως ορισμένη.

Λέμε ότι η ακολουθία (α_v) ορίζεται αναδρομικά και η ισότητα $\alpha_{v+2} = \alpha_{v+1} + \alpha_v$ λέγεται αναδρομικός τύπος της ακολουθίας. Γενικότερα, για να ορίζεται μια ακολουθία αναδρομικά, απαιτείται να γνωρίζουμε:

- i) Τον αναδρομικό της τύπο και
- ii) Όσους αρχικούς όρους μας χρειάζονται, ώστε ο αναδρομικός τύπος να αρχίσει να δίνει όρους.

ΣΧΟΛΙΟ

Υπάρχουν ακολουθίες για τις οποίες μέχρι τώρα δε γνωρίζουμε ούτε έναν τύπο για το γενικό τους όρο ούτε έναν αναδρομικό τύπο. Μια τέτοια ακολουθία είναι π.χ. η ακολουθία των πρώτων αριθμών:

5.1 ΑΚΟΛΟΥΘΙΕΣ

ΠΑΡΑΔΕΙΓΜΑ 10

Να γράψετε τους τέσσερις πρώτους όρους και τους 20ους όρους των ακολουθιών:

i)
$$\alpha_{\nu} = 2\nu^2 - 3$$
 ii) $\beta_{\nu} = \frac{(-1)^{\nu}}{2\nu - 1}$

ΛΥΣΗ

i) Exoure
$$\alpha_1 = 2 \cdot 1^2 - 3 = -1$$
, $\alpha_2 = 2 \cdot 2^2 - 3 = 5$,
$$\alpha_3 = 2 \cdot 3^2 - 3 = 15, \ \alpha_4 = 2 \cdot 4^2 - 3 = 29$$
 kai $\alpha_{20} = 2 \cdot 20^2 - 3 = 797$.

ii) Ecoume
$$\beta_1 = \frac{(-1)^1}{2 \cdot 1 - 1} = -1, \qquad \beta_2 = \frac{(-1)^2}{2 \cdot 2 - 1} = \frac{1}{3},$$

$$\beta_3 = \frac{(-1)^3}{2 \cdot 3 - 1} = -\frac{1}{5}, \qquad \beta_4 = \frac{(-1)^4}{2 \cdot 4 - 1} = \frac{1}{7}$$
 kat
$$\beta_{20} = \frac{(-1)^{20}}{2 \cdot 20 - 1} = \frac{1}{39}$$

ΠΑΡΑΔΕΙΓΜΑ 20

Δίνεται η ακολουθία με $\alpha_1=2$ και $\alpha_{v+1}=\alpha_v^2+1$. Να βρεθούν οι πρώτοι τέσσερις όροι της ακολουθίας.

ΛΥΣΗ

Ecoure
$$\alpha_1=2$$

$$\alpha_2=\alpha_1^2+1=2^2+1=5$$

$$\alpha_3=\alpha_2^2+1=5^2+1=26$$

$$\alpha_4=\alpha_3^2+1=26^2+1=677.$$

ΠΑΡΑΔΕΙΓΜΑ 30

Δίνεται η ακολουθία α, = 3ν+5. Να οριστεί η ακολουθία αυτή και αναδρομικά.

ΛΥΣΗ

Ecoume
$$\alpha_{v+1} - \alpha_v = [3(v+1)+5] - (3v+5)$$

= $3v+3+5-3v-5$

Άρα $\alpha_{v+1} = 3 + \alpha_v$ που είναι ο αναδρομικός τύπος της ακολουθίας.

Επειδή $\alpha_1 = 3 \cdot 1 + 5 = 8$, η ακολουθία ορίζεται αναδρομικά ως εξής:

$$\alpha_1 = 8 \text{ kat } \alpha_{v+1} = 3 + \alpha_v$$

ΑΣΚΗΣΕΙΣ Α΄ ΟΜΑΔΑΣ

1. Να βρείτε τους πέντε πρώτους όρους των ακολουθιών:

i)
$$\alpha_{v} = 2v + 1$$

ii)
$$\alpha_v = 2^v$$

iii)
$$\alpha_{v} = v^2 + v$$

ii)
$$\alpha_{v} = 2^{v}$$
 iii) $\alpha_{v} = v^{2} + v$ **iv)** $\alpha_{v} = \frac{v^{2} - 1}{v + 1}$

v)
$$\alpha_{v} = \left(-\frac{1}{10}\right)^{v-1}$$

$$\mathbf{v)} \ \alpha_{v} = \left(-\frac{1}{10}\right)^{v-1} \qquad \mathbf{vii)} \ \alpha_{v} = 1 - \left(-\frac{1}{2}\right)^{v} \qquad \mathbf{viii)} \ \alpha_{v} = \left|5 - v\right| \qquad \qquad \mathbf{viii)} \ \alpha_{v} = \eta \mu \frac{v\pi}{4}$$

$$\mathbf{vii)} \ \alpha_{v} = \left| 5 - v \right|$$

viii)
$$\alpha_{v} = \eta \mu \frac{v \pi}{4}$$

$$ix) \alpha_{v} = \frac{2^{v}}{v^{2}}$$

ix)
$$\alpha_{v} = \frac{2^{v}}{v^{2}}$$
 x) $\alpha_{v} = (-1)^{v+1} \cdot \frac{1}{v}$ **xi)** $\alpha_{v} = (-1)^{v+1}$.

xi)
$$\alpha_{\nu} = (-1)^{\nu+1}$$

2. Να βρείτε τους πέντε πρώτους όρους των ακολουθιών:

$$\mathbf{i)} \ \ \alpha_{1} = 2, \ \ \alpha_{\nu+1} = \frac{1}{\alpha_{\nu}} \ \ \mathbf{ii)} \ \ \alpha_{1} = 0, \ \ \alpha_{\nu+1} = \alpha_{\nu}^{2} + 1 \ \ \mathbf{iii)} \ \ \alpha_{1} = 3, \ \ \alpha_{\nu+1} = 2(\alpha_{\nu} - 1).$$

iii)
$$\alpha_1 = 3$$
, $\alpha_{v+1} = 2(\alpha_v - 1)$.

3. Να ορίσετε αναδρομικά τις ακολουθίες:

i)
$$\alpha_{v} = v + 5$$

ii)
$$\alpha_{v} = 2^{v}$$

iii)
$$\alpha = 2^{v} -$$

iii)
$$\alpha_{v} = 2^{v} - 1$$
 iv) $\alpha_{v} = 5v + 3$.

4. Να βρείτε το ν≅ όρο των ακολουθιών:

i)
$$\alpha_1 = 1$$
, $\alpha_{v+1} = \alpha_v + 2$ ii) $\alpha_1 = 3$, $\alpha_{v+1} = 5\alpha_v$.

ii)
$$\alpha_1 = 3$$
, $\alpha_{v+1} = 5\alpha_v$