Projeto Reestruturação Bloco "K" UTFPR/CP

Pedro Holtz, Marcelo Machado, Filipe Bonacin, Ademir, Wellington, Jozua Henrique

Universidade Tecnológica Federal do Paraná - Câmpus Cornélio Procópio

Este projeto tem como foco a implantação de uma nova estrutura de cabeamento de redes, que irá contemplar a infraestrutura da rede de hosts do "Bloco K" da UTFPR (Universidade Tecnológica Federal do Paraná) de Cornélio Procópio. Este projeto mostra o planejamento para a implantação de funcionalidades de rede, visando a velocidade, disponibilidade, escalabilidade, integridade, segurança e gerencia das informações. Os estudos deste projeto viabiliza a utilização dos serviços fornecidos pelos Servidores pré existentes no Campus da UTFPR/CP: Arquivos, cópias para restauração futura (backups), controle de acesso à internet, Controle de Usuários (AD), entre outros serviços e dados que irá ser utilizados na rede. Neste, é apresentado o projeto lógico e físico com base nas plantas baixas já existentes.

02/08/2016

Lista de figuras

1	Planta - Estado Atual "Bloco K"
2	Conector Fêmea CAT6 GigaLan
3	Módulo para espelhos modular 1U Branco 1 Porta
4	Cabo Cat6
5	Patch Cord Furukawa
6	Rotulação dos Cabos
7	Modelo de Relatório
8	Conexão Bloco - Entrada - Rack Bloco "K"
9	Detalhes Rack Bloco "K"
10	Laboratórios Bloco "K"
Lista	de tabelas
1	Exemplo de tabela explicativa
2	Segunda-feira
3	Terça-feira

Sumário

																		4
1.1 Contrib	ouições																	4
1.2 Benefíc	ios								•			•					•	4
Estado atua	al																	5
2.1 Infraest	trutura lógica	rede d	o blo	oco "	K"	UT:	FP]	R/C	$^{\mathrm{CP}}$									5
	-	_																6
2.3 Observ	ações:								•			•					•	6
Usuários e	Aplicativos																	6
3.1 Usuário	os																	6
3.2 Aplicat	ivos								•								•	6
Estrutura p	redial existen	te																7
Planta Lógi	ca - Element	os esti	rutur	ados	5													7
5.1 Estado	atual																	7
5.2 Topolog	gia																	7
5.3 Encam	inhamento .																	9
																		10
5.5 Identifi	cação dos cab	os							•			•					•	10
Implantação)																	12
Plano de ce	ertificação																	12
7.1 Manute	enção corretiva	a																14
7.2 Manute	enção preventi	va																15
	-																	16
7.4 Plano	le expansão								•			•					•	16
Orçamento																		16
	Estado atua 2.1 Infraest 2.2 Motivo 2.3 Observa Usuários e A 3.1 Usuário 3.2 Aplicat Estrutura pr Planta Lógi 5.1 Estado 5.2 Topolog 5.3 Encama 5.4 Memor 5.5 Identifi Implantação Plano de ce 7.1 Manute 7.2 Manute 7.3 Equipe 7.4 Plano o	1.1 Contribuições	1.1 Contribuições	1.1 Contribuições	1.1 Contribuições 1.2 Benefícios Estado atual 2.1 Infraestrutura lógica rede do bloco " 2.2 Motivos para reestruturação 2.3 Observações: Usuários e Aplicativos 3.1 Usuários 3.2 Aplicativos Estrutura predial existente Planta Lógica - Elementos estruturados 5.1 Estado atual 5.2 Topologia 5.3 Encaminhamento 5.4 Memorial descritivo 5.5 Identificação dos cabos Implantação Plano de certificação 7.1 Manutenção corretiva 7.2 Manutenção preventiva 7.3 Equipe de suporte 7.4 Plano de expansão	1.1 Contribuições 1.2 Benefícios Estado atual 2.1 Infraestrutura lógica rede do bloco "K" 1 2.2 Motivos para reestruturação 2.3 Observações: Usuários e Aplicativos 3.1 Usuários 3.2 Aplicativos Estrutura predial existente Planta Lógica - Elementos estruturados 5.1 Estado atual 5.2 Topologia 5.3 Encaminhamento 5.4 Memorial descritivo 5.5 Identificação dos cabos Implantação Plano de certificação 7.1 Manutenção corretiva 7.2 Manutenção preventiva 7.3 Equipe de suporte 7.4 Plano de expansão	1.1 Contribuições 1.2 Benefícios Estado atual 2.1 Infraestrutura lógica rede do bloco "K" UT 2.2 Motivos para reestruturação 2.3 Observações: Usuários e Aplicativos 3.1 Usuários 3.2 Aplicativos Estrutura predial existente Planta Lógica - Elementos estruturados 5.1 Estado atual 5.2 Topologia 5.3 Encaminhamento 5.4 Memorial descritivo 5.5 Identificação dos cabos Implantação Plano de certificação 7.1 Manutenção corretiva 7.2 Manutenção preventiva 7.3 Equipe de suporte 7.4 Plano de expansão	1.1 Contribuições 1.2 Benefícios Estado atual 2.1 Infraestrutura lógica rede do bloco "K" UTFP 2.2 Motivos para reestruturação 2.3 Observações: Usuários e Aplicativos 3.1 Usuários 3.2 Aplicativos Estrutura predial existente Planta Lógica - Elementos estruturados 5.1 Estado atual 5.2 Topologia 5.3 Encaminhamento 5.4 Memorial descritivo 5.5 Identificação dos cabos Implantação Plano de certificação 7.1 Manutenção corretiva 7.2 Manutenção preventiva 7.3 Equipe de suporte 7.4 Plano de expansão	1.1 Contribuições 1.2 Benefícios Estado atual 2.1 Infraestrutura lógica rede do bloco "K" UTFPR/C 2.2 Motivos para reestruturação	1.1 Contribuições 1.2 Benefícios Estado atual 2.1 Infraestrutura lógica rede do bloco "K" UTFPR/CP 2.2 Motivos para reestruturação 2.3 Observações: Usuários e Aplicativos 3.1 Usuários 3.2 Aplicativos Estrutura predial existente Planta Lógica - Elementos estruturados 5.1 Estado atual 5.2 Topologia 5.3 Encaminhamento 5.4 Memorial descritivo 5.5 Identificação dos cabos Implantação Plano de certificação 7.1 Manutenção corretiva 7.2 Manutenção preventiva 7.3 Equipe de suporte 7.4 Plano de expansão	1.1 Contribuições 1.2 Benefícios Estado atual 2.1 Infraestrutura lógica rede do bloco "K" UTFPR/CP 2.2 Motivos para reestruturação 2.3 Observações: Usuários e Aplicativos 3.1 Usuários 3.2 Aplicativos Estrutura predial existente Planta Lógica - Elementos estruturados 5.1 Estado atual 5.2 Topologia 5.3 Encaminhamento 5.4 Memorial descritivo 5.5 Identificação dos cabos Implantação Plano de certificação 7.1 Manutenção corretiva 7.2 Manutenção preventiva 7.3 Equipe de suporte 7.4 Plano de expansão	1.1 Contribuições 1.2 Benefícios Estado atual 2.1 Infraestrutura lógica rede do bloco "K" UTFPR/CP 2.2 Motivos para reestruturação 2.3 Observações: Usuários e Aplicativos 3.1 Usuários 3.2 Aplicativos Estrutura predial existente Planta Lógica - Elementos estruturados 5.1 Estado atual 5.2 Topologia 5.3 Encaminhamento 5.4 Memorial descritivo 5.5 Identificação dos cabos Implantação Plano de certificação 7.1 Manutenção corretiva 7.2 Manutenção preventiva 7.3 Equipe de suporte 7.4 Plano de expansão	1.1 Contribuições 1.2 Benefícios Estado atual 2.1 Infraestrutura lógica rede do bloco "K" UTFPR/CP 2.2 Motivos para reestruturação 2.3 Observações: Usuários e Aplicativos 3.1 Usuários 3.2 Aplicativos Estrutura predial existente Planta Lógica - Elementos estruturados 5.1 Estado atual 5.2 Topologia 5.3 Encaminhamento 5.4 Memorial descritivo 5.5 Identificação dos cabos Implantação Plano de certificação 7.1 Manutenção corretiva 7.2 Manutenção preventiva 7.3 Equipe de suporte 7.4 Plano de expansão	1.1 Contribuições 1.2 Benefícios Estado atual 2.1 Infraestrutura lógica rede do bloco "K" UTFPR/CP 2.2 Motivos para reestruturação 2.3 Observações: Usuários e Aplicativos 3.1 Usuários 3.2 Aplicativos Estrutura predial existente Planta Lógica - Elementos estruturados 5.1 Estado atual 5.2 Topologia 5.3 Encaminhamento 5.4 Memorial descritivo 5.5 Identificação dos cabos Implantação Plano de certificação 7.1 Manutenção corretiva 7.2 Manutenção preventiva 7.3 Equipe de suporte 7.4 Plano de expansão	1.1 Contribuições 1.2 Benefícios Estado atual 2.1 Infraestrutura lógica rede do bloco "K" UTFPR/CP 2.2 Motivos para reestruturação 2.3 Observações: Usuários e Aplicativos 3.1 Usuários 3.2 Aplicativos Estrutura predial existente Planta Lógica - Elementos estruturados 5.1 Estado atual 5.2 Topologia 5.3 Encaminhamento 5.4 Memorial descritivo 5.5 Identificação dos cabos Implantação Plano de certificação 7.1 Manutenção corretiva 7.2 Manutenção preventiva 7.3 Equipe de suporte 7.4 Plano de expansão	1.1 Contribuições 1.2 Benefícios Estado atual 2.1 Infraestrutura lógica rede do bloco "K" UTFPR/CP 2.2 Motivos para reestruturação 2.3 Observações: Usuários e Aplicativos 3.1 Usuários 3.2 Aplicativos Estrutura predial existente Planta Lógica - Elementos estruturados 5.1 Estado atual 5.2 Topologia 5.3 Encaminhamento 5.4 Memorial descritivo 5.5 Identificação dos cabos Implantação Plano de certificação 7.1 Manutenção corretiva 7.2 Manutenção preventiva 7.3 Equipe de suporte 7.4 Plano de expansão	1.1 Contribuições 1.2 Benefícios Estado atual 2.1 Infraestrutura lógica rede do bloco "K" UTFPR/CP 2.2 Motivos para reestruturação 2.3 Observações: Usuários e Aplicativos 3.1 Usuários 3.2 Aplicativos Estrutura predial existente Planta Lógica - Elementos estruturados 5.1 Estado atual 5.2 Topologia 5.3 Encaminhamento 5.4 Memorial descritivo 5.5 Identificação dos cabos Implantação Plano de certificação 7.1 Manutenção corretiva 7.2 Manutenção preventiva 7.3 Equipe de suporte 7.4 Plano de expansão	1.1 Contribuições 1.2 Benefícios Estado atual 2.1 Infraestrutura lógica rede do bloco "K" UTFPR/CP 2.2 Motivos para reestruturação 2.3 Observações: Usuários e Aplicativos 3.1 Usuários 3.2 Aplicativos Estrutura predial existente Planta Lógica - Elementos estruturados 5.1 Estado atual 5.2 Topologia 5.3 Encaminhamento 5.4 Memorial descritivo 5.5 Identificação dos cabos Implantação Plano de certificação 7.1 Manutenção corretiva 7.2 Manutenção preventiva 7.3 Equipe de suporte 7.4 Plano de expansão

1 Introdução

O projeto se propõe, através de uma rede de computadores: servidores, shitches, outros dispositivos de rede e cabeamento, prover conectividade e interoperabilidade entre os mesmos, permitindo o intercambio de informações entre estes equipamentos de uma forma segura e rápida. Inerente a isto, serão utilizados recursos tecnológicos de informática a fim de implantar um ambiente estável, definir infraestruturas, padrões que possam ter escalabilidade, grande vida útil através de excelente custo benefício. O desenvolvimento do projeto segue princípios básicos de segurança em sistemas computacionais de rede de computadores, tais como:

- Velocidade: Garantir a utilização de recursos modernos de comunicação.
- Confidencialidade: Proteger a informação disponibilizada;
- **Disponibilidade:** Prevenir interrupções na operação da rede através de um plano de contingencia;
- Integridade: propriedade que garante que a informação manipulada mantenha todas as características originais estabelecidas pelo proprietário da informação.

1.1 Contribuições

Serão oferecidos os mais diversos serviços de redes de computadores tais como:

- Cabeamento estruturado de redes de computadores;
- Compartilhamento de aplicativos e dispositivos dentro das empresas;
- Acesso a internet;
- Gerenciamento e administração dos serviços/servidores;
- Controle de tráfego e segurança da informação;
- Monitoramento do espaço físico por câmeras IP;
- Entre outros serviços descritos no decorrer do projeto.

1.2 Beneficios

- Gerenciamento mais eficiente dos ativos de rede.
- Rapidez e facilidade na identificação de problemas na camada física do modelo OSI.
- Diminuição nos custos de mão de obra e montagem de infra-estrutura.
- Substituição rápida de ativos de rede quando preciso, devido a ordenação dos cabos.
- Documentação técnica para que qualquer profissional, não necessariamente o que atuou na estruturação inicial, possa fazer novas implantações ou alterações.
- Localização fácil de um cabo, devido à identificação em todo o sistema. Facilidade na manutenção de uma área/estação de trabalho.

2 Estado atual

Infraestrutura ativos e passivos

- 01 Rack Attic 36U (600X800MM) com refrigeração 4 cooler na parte superior
- 07 switches 3Com 3CR17561-91 SuperStack 4500 26-Port
- 01 switch HP V1910-24G, modelo JE006A
- 01 switch HP A3600 Series, modelo JG301B Switch "destinado apenas aos pontos de rede das câmeras IP e aos dois Access Points. Esse switch é POE."
- 10 patch panels Furukawa 3CAT 6
- 16 organizadores de cabo para rack, DN Conectividade.
- Cabos Horizontais Furukawa Cat5e
- Cabos Câmeras IP Furukawa Cat6
- Cabos para acces Point Furukawa Cat6
- UPS

2.1 Infraestrutura lógica rede do bloco "K" UTFPR/CP

- K001 12 pontos para máquinas de alunos e 1 para o professor, 1 ponto para câmera ip
- K002 7 pontos para máquinas dos professores, 1 ponto para câmera ip
- K003 7 pontos para máquinas dos professores, 1 ponto para câmera ip
- K004 7 pontos para máquinas dos professores, 1 ponto para câmera ip
- Sala Secretários 2 pontos de rede, 1 ponto para câmera ip
- K005 13 pontos, para máquinas dos professores ,1 ponto para câmera ip
- K006 12 pontos antigos para 3 professores. Antiga sala de pesquisa., 1 ponto para câmera ip
- K007 Servidor de impressão, 8 pontos de rede sendo 2 pontos de professores e 2 pontos de impressora, 1 ponto para câmera ip
- K008 25 pontos de rede e máquinas, 1 ponto para câmera ip
- K009 25 pontos de rede e máquinas, 1 ponto para câmera ip
- Corredor: 2 pontos para câmera e 2 pontos para wifi

2.2 Motivos para reestruturação

- Projetar e implantar uma nova topologia de rede, com a finalidade de ser alcançados serviços de rede com mais segurança, disponibilidade e robustez.
- A estrutura Atual apresenta problemas com as Eletro calhas (amassadas, estufadas, saturadas) que podem influenciar na qualidade os cabos deixando-os expostos a interferências

2.3 Observações:

- O chicote de cabos que sai pela parte de cima do rack vai para as salas K001, K002, K003, K004 e sala dos secretários (lado direito e centro do bloco, olhando do ponto de vista da entrada do bloco), passando por canaletas no alto.
- O chicote de cabos que sai debaixo do rack vai para as salas K005, K006, K007, K008 e K009, numa canaleta que passa pela parede dessas salas.

3 Usuários e Aplicativos

De acordo com os dados obtidos junto à coordenação e levantamento do setor de tecnologia foi elaborado o projeto para que se atenda a futuras demanda para crescimento previsto da **Sala k006** do **Bloco** "K", projeto planejado e posto em vigor com as normas, tanto para a quantidade de pontos de rede como a infraestrutura necessária para instalação.

3.1 Usuários

Os usuários que utilizam a rede no bloco "K" são:

- Alunos (64 Usuários).
- Professores (9 Usuários).
- Técnicos administrativos.

Total de 76 Usuários que irão utilizar a rede do Bloco K da UTFPR/CP.

3.2 Aplicativos

Os aplicativos devem estar sempre atualizados, aplicando-se as correções porventura publicadas pelos fabricantes. Assim, garantindo a segurança e o desempenho dos mesmos. Os serviços que serão utilizados no **Bloco** "K" são esses:

- Active Directory (AD): Armazenamento informações sobre objetos em rede de computadores e disponibiliza essas informações a usuários e administradores desta rede. Professores e técnicos administrativos que trabalham no Bloco "K" utilizam Active Directory para conexões nas máquinas e cada um tem acesso às suas respectivas pastas compartilhadas e às impressoras.
- Software Digifort: Uso DVR Câmeras de segurança.

- Servidor de impressão: Compartilhamento de Impressoras para impressões e digitalizações, utilizando o S.O. Windows Server para controle impressoras locais e terceirizadas.
- SAMBA e CIFS: Compartilhamento de diretórios em rede.
- FlexNet License: Aplicativo de licenças flutuantes
- Outros serviços de rede: DHCP, DNS, FTP, TFTP, SSH, HTTP, HTTPS, Proxy, RPC, RDP, VNC. TeamViewer, VOIP, Skype, WEB WhatsApp.

4 Estrutura predial existente

Explique aqui a planta física dos prédios Pode ser anexada, em escala ou não.

Deve conter uma descrição geral, indicando a possível distância entre os pontos de rede e restrições de instalação.

5 Planta Lógica - Elementos estruturados

5.1 Estado atual

5.2 Topologia

Proposta futura, proposta após implantação. Deve conter o diagrama da rede. Atente-se a redundância e ligações truncadas. Deve explicar todos termos e componentes utilizados nestas plantas. Por exemplo: entrance facility, work area, horizontal cabling, etc..

Todos os elementos das figuras devem ser explicados. Crie esboço da configuração dos racks e brackets. Explique cada um dos componentes. Você pode criar uma tabela contendo figuras dentro, ou criar uma tabela e incluí-la como imagem. Por exemplo, verifique a tabela 1.

Figura na Tabela

1 Rack

2 Rack 2

Tabela 1: Exemplo de tabela explicativa

Figura 1: Planta - Estado Atual "Bloco K"

5.3 Encaminhamento

As rotas de encaminhamento dos cabos foram feitas tomando como ponto inicial as portas do Painel de Interconexão, e como ponto final às respectivas Caixas de Tomadas dos Pontos de Telecomunicações.

Materiais para encaminhamento:

- 45 Metros de Eletrocalha Perfurada modelo DP702. Marca DISPAN
- 120 Suporte para Eletrocalhas
- 12 Curvas Horizontal 90° modelo DP710.
- 12 Curvas Horizontal 45° modelo DP711.
- 12 Curva Vertical 90° modelo DP712.
- 12 Curva Vertical 45° modelo DP713.
- 12 Redução Direita modelo DP722.
- 12 Redução Esquerda modelo DP723.
- 12 Tê Vertical Descida 90° modelo DP717.
- 12 Tê Vertical Subida 90° modelo DP718.
- 60 Metros Eletrodutos Roscavel Metalico 4".
- 45 Metros Eletrodutos Roscavel Metalico 1".
- 30 Caixa de derivação de Conduletes Fixos de 4".
- 30 Caixa de derivação de Conduletes Fixos de 1".
- 20 Luva Metálica 4".
- 20 Luva Metálica 1".
- 10 Curva Galvanizada 4".
- 10 Curva Galvanizada 1".
- 120 Abraçadeiras eletrodutos 4".
- 120 Abraçadeiras eletrodutos 1".
- 2 Pacotes Cinta Hellermann T18L 200 X 2.5mm Preto.

Cuidados a serem tomado na Instalação de Calhas "interferências eletromagnéticas" É um dos problemas que poderão ocorrer no cabeamento metálico. Deve-se evitar que os cabos passem perto de fontes de interferência como:

- Motores elétricos.
- Reatores de lâmpadas fluorescentes.

Figura 2: Conector Fêmea CAT6 GigaLan

Figura 3: Módulo para espelhos modular 1U Branco 1 Porta

- Máquinas fotocopiadoras.
- Máquinas de solda.
- Cabos de energia (alimentadores).
- Cabos elétricos e de dados, quando necessário, devem cruzar-se a 90° sempre devem ser observadas as normas locais de segurança quanto a instalação de sistemas elétricos e de comunicação de dados.

5.4 Memorial descritivo

• Conector Fêmea CAT6 GigaLan

Marca: FURUKAWA Quantidade: 76 Peças.

Certificado RoHS alta qualidade.

• Módulo para espelhos modular 1U Branco 1 Porta

Marca: FURUKAWA Quantidade: 76 Peças.

Este produto está em conformidade com a Diretiva Européia RoHs: uma medida restritiva ao uso de metais pesado na fabricação dos produtos e relacionadas à preservação do meio-ambiente.

5.5 Identificação dos cabos

Uso Horizontal Permanente Furukawa

Figura 4: Cabo Cat6

- Cabo de 4 pares trançados compostos de condutores sólidos de cobre nu, 23 AWG, isolados em polietileno especial. Capa externa em PVC não propagante à chama, nas opções CM, CMR e LSZH.
- Marcação sequencial métrica decrescente (305 0 m) com gravação de dia/mês/ano hora de fabricação, proporcionando rastreamento do lote.
- Produto com capa CM tem padrão de fornecimento de acordo com a Diretiva RoHS.

Uso Patch Cord Furukawa

Figura 5: Patch Cord Furukawa

- Possui "boot" injetado, no mesmo dimensional do plug RJ-45 para evitar fadiga no cabo em movimentos de conexão e que evitam a desconexão acidental da estação de trabalho.
- Produzido com Cabo Fast-Lan Extra-flexível U/UTP certificado pela Anatel.
- ROHS Compliant.

Rotulação dos Cabos

• O rotulador PT7600 é robusto, portátil e utilizar as variadas e resistentes fitas TZ.

Figura 6: Rotulação dos Cabos

- Cria etiquetas com gráficos e códigos de barra de até 24mm de largura. Permite transferir para a memória do rotulador, etiquetas criadas através do software editor com figuras, gráficos e fotos.
- Logo após a instalação dos cabos e a certificação rotular os cabos nas extremidades para fácil identificação no Wallplates e nos Patch Panel

6 Implantação

Estabeleça um cronograma de implantação: Remoção de equipamentos existentes (destino para descarte), instalação dos condutores, instalação dos cabos, identificação dos cabos, montagem dos racks, certificação, etc... Crie atividades e estabeleça o tempo de execução. Se for um projeto real, indique também quais os responsáveis pela execução do projeto e de cada uma das etapas.

Defina marcas (e padrões) e fornecedores se for o caso. Atenção a contratados e subcontratados para a realização das atividades. Estabeleça a responsabilidade de execução da atividade e também da validação dela.

Utilize algum software para gerear o cronograma. Excel, etc. O fundamental é dividir em etapas, descrever e estimar o tempo de cada uma delas.

Segue uma relação de ferramentas: http://asana.com/, https://trello.com/, http://www.ganttproject.bi.http://www.orangescrum.org/.

7 Plano de certificação

Para a certificação da rede é recomendado a utilização do equipamento modelo **LANTEK 6R**. A baixo foi relacionado as etapas seguidas para a certificação:

- Paradiafonia (NEXT);
- Verifica a quantidade de conexões no link;

- Impedância do cabo: Expressa a contribuição das resistências, indutâncias, capacitâncias e condutâncias distribuídas ao longo do condutor, e medida em campo por meio de cable scanners. A qualidade de construção do cabo, é principal determinante no valor da impedância do mesmo.
- Atenuação do cabo: Perda de potência do sinal transmitido quanto maior a frequência do sinal pior é o caso (efeito skin).
- ACR (atenuação x NEXT): Importante parâmetro a ser medido que expressa relação entre a Atenuação e o NEXT .
- Return Loss (perda de retorno): Reflexões causadas por anomalias na impedância característica ao longo de um segmento de cabo.

Após o termínio da passagem dos novos cabos e climpagem de seus conectores. A certificação de rede será realizada em toda rede. Desde sua origem (Patch Panel) até o destino (novos pontos de rede) contemplados no projeto no Bloco "K" da UTFPR/CP. A certificação partirá do Patch Panel localizado na Sala k007 do bloco "k" até cada novo ponto de rede criado nas salas contempladas no projeto. Segue a tabelas de horários e dias da semana para a certificação:

Tabela 2: Segunda-feira

Sala	Inicio	Fim
k001	8Hs,	10Hs.
k002	10Hs.	12hs.
k003	14Hs	16Hs.
k004	16Hs.	18Hs.

Tabela 3: Terça-feira

	-	-
Sala	Inicio	Fim
k005	8Hs,	10Hs.
k006	10Hs.	12Hs.
k008	14hs.	16Hs.
k009	16Hs.	18Hs.

Obs.: Os pontos da Sala k007 também deverá ser certificados.

Ao finalizar as certificações será gerado o seguinte modelo de relatório:

Obs.: Se tudo ocorrer bem, todos os teste deverão aparecer APROVADO.

Por meio dos serviços de analise e diagnóstico de rede, é realizado um trabalho forense de cada dispositivo na rede por criticidade de sua operação que permite diagnosticar os gargalos e sugerir ações práticas de correção. Será realizado trimestralmente a manutenção e execução de serviços de analise e diagnóstico de rede. Desta forma, é possível garantir elevado nível de serviço exigido pela rede para atender o tráfego de voz, imagem e outros dados. Quando necessário adicionar um novo ponto de rede, deverá respeitar as normas utilizadas no projeto. Após a adição de um novo ponto de rede, se faz necessário realizar teses conforme a certificação utilizada no projeto. Assim, é possível garantir que tudo após o serviço a rede continua funcionando de forma esperada. O propósito de um sistema de

Figura 7: Modelo de Relatório

IDEAL Industries, Inc. Certified - Relatório Analítico

Cliente: UTF	FPR	Relate	ório										Dat		ório: 31/07/2016 o do S/W: 3.278
Resumo:															
Todos os Cabos Total: 3 Aprovado: 3 Reprovado: 0		1 A F	Par Trançado Total: 3 Aprovado: 3 Reprovado: 0 Comp. Total: 0.00m				<u>Coax/Twinax</u> Total: 0 Aprovado: 0 Reprovado: 0 n Comp. Total: 0.00m					Total: 0 Total: 0 Aprovado: 0 AReprovado: 0 R		<u>Personalizado</u> Total: 0 Aprovado: 0 Reprovado: 0 Comp. Total: 0.00m	
										AF	PROVADO				
ID do Cabo : Dados do Te Hora do Tes Adapter ID:	este: 31/07/2016 ste: 19:42:57 6000								LAN V	NVF TEK 6 [6 ersão do	Cat 5E UTP Perm P: 0.72c 352014/652023] o F/W: 3.006 mperatura: 20.0° C				
Observaçõe Mapa de Fi	os	1	2	3	4	5	6	7	8	В			APROVADO		
	UP I														
	UR •	1	2	3	4	5	6	7	8	В					
										ares (N	VP)				
Teste				7,8(0	.72)			3,	6(0.72	•	5,4(0.72)	1,2(0.72)	Lim	ite	Resultado
Compriment	to			.Or	m				.0m		.0m	.0m	< 90	.0m	Aprovado
Atraso de Pi													- 50		
Maso ut Fi	ropagaçao			7.2	ns			6	.4ns		6.2ns	6.6ns	< 498	3.0ns	Aprovado
				7.2	ns			6		(Pares		6.6ns			
Desvio (Ske Área de Mar	w)			7.2	ns			6		(Pares 0.0c	6.2ns 7,8 vs. 5,4)	6.6ns	< 498		Aprovado
Desvio (Ske Área de Mar	rgem			7.2	ns			(6.2ns 7,8 vs. 5,4)	6.6ns	< 498		Aprovado Aprovado
Desvio (Ske Área de Mar NEXT: APRO	rgem		Result		ns	Pior	Man				6.2ns 7,8 vs. 5,4) IB		< 498 < 44.		Aprovado Aprovado Aprovado
Desvio (Ske Área de Mar NEXT: APRO <u>Pares</u>	ow) rgem DVADO UP/UR		Result	tado	ns		Marg	gem	1.0ns	0.00	6.2ns 7,8 vs. 5,4) IB <u>PiordB</u>	1	< 498 < 44.	0 ns	Aprovado Aprovado Aprovado <u>Margem</u>
Desvio (Ske Área de Mar NEXT: APRO <u>Pares</u> 7,8-3,6	ow) rgem OVADO UP/UR UP	Ā	Aprova	tado ado	ns	66.5	dB @	gem D 62.	1.0ns 75MH	0.0c	6.2ns 7,8 vs. 5,4) IB PiordB 66.3dB	<u> </u>	< 498 < 44. Limite > 35.6di	0 ns	Aprovado Aprovado Aprovado <u>Margem</u> 30.9dB
Desvio (Ske Área de Mar NEXT: APRO Pares 7,8-3,6 7,8-5,4	ow) rgem OVADO UP/UR UP UP	Ā	Aprova Aprova	tado ado ado	ns	66.5 59.6	dB @	gem D 62.	1.0ns 75MH 75MH	0.0c z z	6.2ns 7,8 vs. 5,4) dB <u>PiordB</u> 66.3dB 59.2dB	<u> </u>	< 498 < 44. Limite > 35.6di > 36.3di	0 ns B B	Aprovado Aprovado Aprovado Margem 30.9dB 23.3dB
Desvio (Ske Área de Mar NEXT: APRO Pares 7,8-3,6 7,8-5,4 7,8-1,2	ow) rgem DVADO UP/UR UP UP UP	Ā A	Aprova Aprova Aprova	tado ado ado ado	ns	66.5 59.6 74.9	dB @ dB @ dB @	gem D 62. D 56. D 99.	75MH 75MH 50MH	0.0c z z z	6.2ns 7,8 vs. 5,4) IB PiordE 66.3de 59.2d6 74.9d8		< 498 < 44. Limite > 35.6di > 36.3di > 32.3di	O ns B B B	Aprovado Aprovado Aprovado Margem 30.9dB 23.3dB 42.6dB
Desvio (Ske Área de Mar NEXT: APRO Pares 7,8-3,6 7,8-5,4 7,8-1,2 3,6-5,4	OVADO UP/UR UP UP UP UP UP UP	A A A	Aprova Aprova Aprova Aprova	tado ado ado ado ado	ns	66.5 59.6 74.9 65.2	dB @ dB @ dB @ dB @	gem D 62. D 56. D 99. D 63.	75MH 75MH 75MH 50MH 75MH	0.0c	6.2ns 7,8 vs. 5,4) IB PiordE 66.3db 59.2db 74.9db 65.2db		< 498 < 444. Limite > 35.6d1 > 36.3d1 > 32.3d1 > 35.5d1	O ns B B B B	Aprovado Aprovado Aprovado Margem 30.9dB 23.3dB 42.6dB 29.7dB
Desvio (Ske Årea de Mar NEXT: APRO Pares 7,8-3,6 7,8-5,4 7,8-1,2 3,6-5,4 3,6-1,2	OVADO UP/UR UP	A A A	Aprova Aprova Aprova Aprova Aprova	tado ado ado ado ado ado ado	ns	66.5 59.6 74.9 65.2 65.2	dB @ dB @ dB @ dB @ dB @	gem D 62. D 56. D 99. D 63. D 62.	75MH 75MH 50MH 75MH 50MH	0.0c	6.2ns 7,8 vs. 5,4) dB PiordB 66.3dB 59.2dB 74.9dB 65.2dB 65.2dB		< 498 < 444. Limite > 35.6dl > 36.3dl > 32.3dl > 35.5dl > 35.7dl	0 ns B B B B B	Aprovado Aprovado Aprovado Margem 30.9dB 23.3dB 42.6dB 29.7dB 29.5dB
Desvio (Ske Área de Mar NEXT: APRO Pares 7,8-3,6 7,8-5,4 7,8-1,2 3,6-5,4 3,6-1,2 5,4-1,2	DVADO UP/UR UP	A A A	Aprova Aprova Aprova Aprova Aprova Aprova	tado ado ado ado ado ado ado ado	ns	66.5 59.6 74.9 65.2 65.2 59.8	dB @ dB @ dB @ dB @ dB @	gem D 62. D 56. D 63. D 62. D 57.	75MH 75MH 75MH 50MH 50MH 00MH	0.0c	6.2ns 7,8 vs. 5,4) IB PiordE 66.3dE 59.2dE 74.9dE 65.2dB 65.2dB 59.8dB	1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	< 498 < 444. Limite > 35.6di > 36.3di > 32.3di > 35.5di > 35.7di > 36.3di > 36.3di	0 ns B B B B B B B	Aprovado Aprovado Aprovado Margem 30.9dB 23.3dB 42.6dB 29.7dB 29.5dB 23.5dB
Desvio (Ske Área de Mar NEXT: APRO Pares 7.8-3,6 7.8-5,4 7.8-1,2 3,6-5,4 3,6-1,2 5,4-1,2 7,8-3,6	OVADO UP/UR UP	A A A A	Aprova Aprova Aprova Aprova Aprova Aprova	tado ado ado ado ado ado ado ado	ns	66.5 59.6 74.9 65.2 65.2 59.8 98.5	dB @ dB @ dB @ dB @ dB @ dB @	gem D 62. D 56. D 99. D 63. D 62. D 57.	75MH 75MH 75MH 50MH 50MH 50MH	0.0c	6.2ns 7,8 vs. 5,4) IB PiordE 66.3d6 59.2d6 74.9d6 65.2d6 65.2d6 59.8d6 78.4d6		< 498 < 444. Limite > 35.6di > 36.3di > 32.3di > 35.5di > 36.7di > 36.3di > 36.3di > 30.3di	0 ns B B B B B B B B B	Aprovado Aprovado Aprovado Margem 30.9dB 23.3dB 42.6dB 29.7dB 29.5dB 23.5dB 38.5dB
Desvio (Ske Årea de Mar NEXT: APRO Pares 7,8-3,6 7,8-1,2 3,6-5,4 3,6-1,2 5,4-1,2 7,8-3,6 7,8-5,4	OVADO UP/UR UP	F F F F F	Aprova Aprova Aprova Aprova Aprova Aprova Aprova	tado ado ado ado ado ado ado ado ado ado	ns	66.5 59.6 74.9 65.2 65.2 59.8 98.5 78.4	dB @dB @dB @dB @dB @dB @dB @dB @dB @dB @	gem D 62. D 63. D 63. D 67. D 57. D 61.	75MH 75MH 75MH 50MH 50MH 50MH 15MHz 25MH	0.0cd z z z z z z z z z z z z z z z z z z z	6.2ns 7,8 vs. 5,4) 3B PiordE 66.3dE 59.2dE 74.9dE 65.2dE 65.2dE 59.8dE 78.4dE 77.9dE		< 498 < 444. Limite > 35.6di > 36.3di > 32.3di > 35.7di > 36.3di > 35.5di > 35.7ds > 36.3di > 35.5ds	0 ns B B B B B B B B B B B B B B B B B	Aprovado Aprovado Aprovado Margem 30.9dB 23.3dB 42.6dB 29.7dB 29.5dB 23.5dB 38.5dB 42.6dB
Desvio (Ske Årea de Mar NEXT: APRO Pares 7,8-3,6 7,8-5,4 7,8-1,2 3,6-5,4 3,6-1,2 5,4-1,2 7,8-3,6 7,8-5,4 7,8-1,2	OVADO UP/UR UP	A A A A A A	Aprova Aprova Aprova Aprova Aprova Aprova Aprova Aprova	tado ado ado ado ado ado ado ado ado ado	ns	66.5 59.6 74.9 65.2 65.2 59.8 98.5 78.4 96.6	dB @	gem D 62. D 56. D 63. D 62. D 57. D 61. D 61.	75MH 75MH 75MH 50MH 50MH 50MH 15MHz 25MH 80MHz	0.0cd z z z z z z z z z z z z z z z z z z z	6.2ns 7,8 vs. 5,4) iB PiordE 66.3d6 59.2d6 74.9d6 65.2d6 65.2d6 59.8d6 78.4d6 77.8d6 81.5d6		< 498 < 444. Limite > 35.6dl > 36.3dl > 32.3dl > 35.5dl > 35.7dl > 36.3dl > 35.7dl > 36.3dl > 60.0dl > 35.8dl > 60.0dl	0 ns B B B B B B B B B B B B B B B B B B	Aprovado Aprovado Aprovado Margem 30.9dB 23.3dB 42.6dB 29.7dB 29.5dB 23.5dB 38.5dB 42.6dB 36.6dB
Desvio (Ske Årea de Mar NEXT: APRO Pares 7,8-3,6 7,8-5,4 7,8-1,2 3,6-5,4 3,6-1,2 7,8-3,6 7,8-5,4 7,8-1,2 3,6-5,4	DVADO UP/UR UP	# # # # # # # # # # # # # # # # # # #	Aprova Aprova Aprova Aprova Aprova Aprova Aprova Aprova Aprova	tado ado ado ado ado ado ado ado ado ado	ns	66.5 59.6 74.9 65.2 65.2 59.8 98.5 78.4 96.6 96.3	dB @	gem D 62. D 56. D 63. D 62. D 57. D 61. D 61. D 5.6	75MH 75MH 75MH 50MH 50MH 50MH 25MH 80MH 85MH 85MH	0.0c	6.2ns 7,8 vs. 5,4) ### 66.3dB 59.2dB 74.9dB 65.2dB 65.2dB 59.8dB 77.9dB 81.5dB 78.7dB		< 498 < 444. Limite > 35.6di > 36.3di > 35.5di > 35.5di > 36.3di > 35.8di > 36.3di > 35.4di > 52.4di > 52.4di	0 ns B	Aprovado Aprovado Aprovado Margem 30.9dB 23.3dB 42.6dB 29.7dB 29.5dB 23.5dB 38.5dB 42.6dB 36.6dB 43.9dB
Desvio (Ske Årea de Mar NEXT: APRO Pares 7,8-3,6 7,8-5,4 7,8-1,2 3,6-5,4 3,6-1,2 5,4-1,2 7,8-3,6 7,8-5,4 7,8-1,2 3,6-5,4 3,6-1,2	OVADO UP/UR UP UR UR UR UR UR UR	# # # # # # # # # # # # # # # # # # #	Aprova Aprova Aprova Aprova Aprova Aprova Aprova Aprova Aprova	tado ado ado ado ado ado ado ado ado ado	ns	66.5 59.6 74.9 65.2 65.2 59.8 98.5 78.4 96.6 96.3	dB @dB @dB @dB @dB @dB @dB @dB @dB @dB @	gem 0 62 0 56 0 57 1 1. 0 61 0 1. 0 0 1.	75MH 75MH 75MH 50MH 50MH 50MH 25MH 80MH 85MH 865MH 860MH	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	6.2ns 7,8 vs. 5,4) 3B PiordE 66.3d6 59.2d6 74.9d6 65.2d6 65.2d6 78.4d6 77.9d6 81.5d6 78.7d6 78.7d6		< 498 < 444. Limite > 35.6di > 36.3di > 32.3di > 35.7di > 36.3di > 35.8di > 60.0di > 52.4di > 60.0di > 60.0di	0 ns B B B B B B B B B B B B B B B B B B B	Aprovado Aprovado Aprovado Aprovado Margem 30.9dB 23.3dB 42.6dB 29.7dB 29.5dB 23.5dB 38.5dB 42.6dB 36.6dB 43.9dB 40.9dB
Desvio (Ske	DVADO UP/UR UP	# # # # # # # # # # # # # # # # # # #	Aprova Aprova Aprova Aprova Aprova Aprova Aprova Aprova Aprova	tado ado ado ado ado ado ado ado ado ado	ns	66.5 59.6 74.9 65.2 65.2 59.8 98.5 78.4 96.6 96.3	dB @dB @dB @dB @dB @dB @dB @dB @dB @dB @	gem 0 62 0 56 0 57 1 1. 0 61 0 1. 0 0 1.	75MH 75MH 75MH 50MH 50MH 50MH 25MH 80MH 85MH 85MH	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	6.2ns 7,8 vs. 5,4) ### 66.3dB 59.2dB 74.9dB 65.2dB 65.2dB 59.8dB 77.9dB 81.5dB 78.7dB		< 498 < 444. Limite > 35.6di > 36.3di > 35.5di > 35.5di > 36.3di > 35.8di > 36.3di > 35.4di > 52.4di > 52.4di	0 ns B B B B B B B B B B B B B B B B B B B	Aprovado Aprovado Aprovado Margem 30.9dB 23.3dB 42.6dB 29.7dB 29.5dB 23.5dB 38.5dB 42.6dB 43.9dB
Desvio (Ske Årea de Mar NEXT: APRO Pares 7,8-3,6 7,8-5,4 7,8-1,2 3,6-5,4 3,6-1,2 5,4-1,2 7,8-3,6 7,8-5,4 7,8-5,4 7,8-5,4 3,6-1,2 5,4-1,2	OVADO UP/UR UP UR UR UR UR UR UR	# # # # # # # # # # # # # # # # # # #	Aprova Aprova Aprova Aprova Aprova Aprova Aprova Aprova Aprova	tado ado ado ado ado ado ado ado ado ado	ns	66.5 59.6 74.9 65.2 65.2 59.8 98.5 78.4 96.6 96.3	dB @dB @dB @dB @dB @dB @dB @dB @dB @dB @	gem 0 62 0 56 0 57 1 1. 0 61 0 1. 0 0 1.	75MH 75MH 75MH 50MH 50MH 50MH 25MH 80MH 85MH 865MH 860MH	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	6.2ns 7,8 vs. 5,4) 3B PiordE 66.3d6 59.2d6 74.9d6 65.2d6 65.2d6 78.4d6 77.9d6 81.5d6 78.7d6 78.7d6		< 498 < 444. Limite > 35.6di > 36.3di > 32.3di > 35.7di > 36.3di > 35.8di > 60.0di > 52.4di > 60.0di > 60.0di	0 ns B B B B B B B B B B B B B B B B B B B	Aprovado Aprovado Aprovado Aprovado Margem 30.9dB 23.3dB 42.6dB 29.7dB 29.5dB 23.5dB 38.5dB 42.6dB 36.6dB 43.9dB 40.9dB
Desvio (Ske Årea de Mar NEXT: APRO Pares 7.8-3,6 7.8-5,4 7.8-1,2 3.6-5,4 3.6-1,2 5.4-1,2 7.8-3,6 7.8-5,4 7.8-1,2 3.6-5,4 3.6-1,2 5,4-1,2 Perda de Re	DVADO DVADO UP/UR UP UP UP UP UP UR	# # # # # # # # # # # # # # # # # # #	Aprova Aprova Aprova Aprova Aprova Aprova Aprova Aprova Aprova	tado ado ado ado ado ado ado ado ado ado	ns	66.5 59.6 74.9 65.2 65.2 59.8 98.5 78.4 96.6 96.3 100. 92.7	dB @	gem 0 62 0 56 0 99 0 63 0 57 0 1.3 0 1.3 0 1.5 0	75MH 75MH 75MH 50MH 50MH 15MH 35MH 30MH 365MH 365MH 365MH 365MH 365MH	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	6.2ns 7,8 vs. 5,4) IB PiordE 66.3dB 59.2dB 74.9dB 65.2dB 65.2dB 78.4dB 77.8dB 78.4dB 77.6dB 78.7dB 78.7dB 78.7dB		< 498 < 444. Limite > 35.6dl > 36.3dl > 32.3dl > 35.7dl > 36.3dl > 35.7dl > 36.3dl > 60.0dl > 52.4dl > 60.0dl > 52.4dl Limite	0 ns B B B B B B B B B B B B B B B B B B B	Aprovado Aprovado Aprovado Aprovado Aprovado Margem 30.9dB 23.3dB 42.6dB 29.7dB 29.5dB 23.5dB 38.5dB 42.6dB 43.9dB 40.9dB 40.9dB 40.3dB
Desvio (Ske Årea de Mar NEXT: APRO Pares 7.8-3,6 7.8-5,4 3.6-5,4 3.6-1,2 5,4-1,2 7.8-3,6 7.8-5,4 7.8-1,2 3.6-5,4 3.6-1,2 5,4-1,2	OVADO DVADO UP/UR UP UP UP UP UP UP UP UR	# # # # # # # # # # # # # # # # # # #	Aprova Aprova Aprova Aprova Aprova Aprova Aprova Aprova Aprova	tado ado ado ado ado ado ado ado ado ado	ns	66.5 59.6 74.9 65.2 65.2 59.8 98.5 78.4 96.6 96.3 100. 92.7	dB @	gem 0 62 0 56 0 99 0 63 0 57 0 1.3 0 1.3 0 1.5 0	75MH 75MH 75MH 50MH 50MH 50MH 25MH 80MH 85MH 865MH 860MH	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	6.2ns 7,8 vs. 5,4) iB PiordE 66.3d6 59.2d6 74.9d6 65.2d6 65.2d6 78.4d6 77.9d6 81.5d6 78.7d6 76.0d6 78.6d6		< 498 < 444. Limite > 35.6dl > 36.3dl > 35.5dl > 35.5dl > 35.5dl > 35.5dl > 35.7dl > 36.3dl > 60.0dl > 52.4dl > 60.0dl > 52.4dl	0 ns B B B B B B B B B B B B B B B B B B B	Aprovado Aprovado Aprovado Aprovado Margem 30.9dB 23.3dB 42.6dB 29.7dB 29.5dB 23.5dB 38.5dB 42.6dB 36.6dB 43.9dB 40.9dB 40.3dB
Desvio (Ske Årea de Mar NEXT: APRO Pares 7.8-3,6 7.8-5,4 7.8-1,2 3.6-5,4 3.6-1,2 5.4-1,2 7.8-3,6 7.8-5,4 7.8-1,2 3.6-5,4 3.6-1,2 5.4-1,2 Perda de Re	DVADO DVADO UP/UR UP UP UP UP UP UR	A A A A A A A A A A A A A A A A A A A	Aprova Aprova Aprova Aprova Aprova Aprova Aprova Aprova Aprova	ado ado ado ado ado ado ado ado ado ado	ns	66.5 59.6 74.9 65.2 65.2 59.8 98.5 78.4 96.6 96.3 100. 92.7	dB @dB @dB @dB @dB @dB @dB @dB @dB @dB @	gem D 62. D 56. D 99. D 63. D 61. D 5.6 Q 1. Gem D 83.	75MH 75MH 75MH 50MH 50MH 15MH 35MH 30MH 365MH 365MH 365MH 365MH 365MH	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	6.2ns 7,8 vs. 5,4) IB PiordE 66.3dB 59.2dB 74.9dB 65.2dB 65.2dB 78.4dB 77.8dB 78.4dB 77.6dB 78.7dB 78.7dB 78.7dB		< 498 < 444. Limite > 35.6dl > 36.3dl > 32.3dl > 35.7dl > 36.3dl > 35.7dl > 36.3dl > 60.0dl > 52.4dl > 60.0dl > 52.4dl Limite	0 ns B	Aprovado Aprovado Aprovado Aprovado Aprovado Margem 30.9dB 23.3dB 42.6dB 29.7dB 29.5dB 23.5dB 38.5dB 42.6dB 43.9dB 40.9dB 40.9dB 40.3dB
Desvio (Ske Årea de Mar NEXT: APRO Pares 7.8-3,6 7.8-5,4 7.8-1,2 3.6-5,4 3.6-1,2 7.8-3,6 7.8-5,4 7.8-1,2 3.6-5,4 3.6-1,2 5,4-1,2 Perda de Re	OVADO DVADO UP/UR UP UP UP UP UP UP UP UR	7 7 7 7 7 7 7 7 7 7	Aprová	tado ado ado ado ado ado ado ado ado ado	ns	66.5 59.6 74.9 65.2 59.8 98.5 78.4 96.6 96.3 100. 92.7 Pior 29.5 25.9	dB @	gem D 62 D 99 D 62 D 61 D 61 C 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G	75MH 75MH 75MH 50MH 50MH 15MH 25MH 35MH 260MH 25MH 260	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	6.2ns 7,8 vs. 5,4) 3B PiordB 66.3d6 59.2d6 74.9d6 65.2d6 65.2d6 59.8d6 77.9d6 81.5d6 78.4d6 78.4d6 78.6d6		< 498 < 444. Limite > 35.6dl > 36.3dl > 32.3dl > 35.7dl > 36.3dl > 35.8dl > 60.0dl > 52.4dl > 60.0dl > 52.4dl	0 ns B B B B B B B B B B B B B B B B B B B	Aprovado Aprovado Aprovado Aprovado 30.9dB 23.3dB 42.6dB 29.7dB 29.5dB 23.5dB 38.5dB 42.6dB 36.6dB 43.9dB 40.9dB 40.3dB

cabeamento estruturado é garantir uma base sólida para o bom desempenho das redes de comunicação de voz, imagem e outros dados devem permitir mudanças e alterações de layout nas demandas de mudança.

7.1 Manutenção corretiva

Os procedimentos acima contribuem para viabilizar a manutenção corretiva, que é aquela de atendimento imediato para consertar equipamentos danificados ou que sofreram avarias. Normalmente, o número de avarias cresce à medida que não são tomadas medidas antecipadas para o perfeito funcionamento dos equipamentos. Este tipo de manutenção é considerado como um dos que mais onera a produção, porque, normalmente, tal manutenção implica na parada do equipamento e interrupção da produção. Por isso, a equipe de manutenção deve trabalhar com eficácia para evitar que os equipamentos sempre parem

IDEAL Industries, Inc. Certified - Relatório Analítico

Nome do trabalho: Exemplo Relatório Cliente: UTFPR

Data do relatório: 31/07/2016 Versão do S/W: 3.278

APROVADO

ID do Cabo 1: TEST0000 ID do Cabo 2: Dados do Teste: 31/07/2016 Hora do Teste: 19:42:57 Adapter ID: 6000

Tipo de Cabo: Cat 5E UTP Perm NVP: 0.72c LANTEK 6 [652014/652023] Versão do F/W: 3.006 Definição de Temperatura: 20.0° C

Padrão do Teste: TIA 568-C.2 Faixa de Freqüência: 1-100 MHz Operador: Contratante: Empresa: UTFPR

Observações: ACR: APROVADO

ares	<u>UP/UR</u>	<u>Resultado</u>	Pior Margem	<u>PiordB</u>	<u>Limite</u>	<u>Margem</u>
8	UP	Aprovado	58.4dB @ 75.75MHz	N/D	>= 16.3dB	42.1dB
6	UP	Aprovado	64.5dB @ 62.50MHz	N/D	>= 19.5dB	45.0dB
4	UP	Aprovado	58.4dB @ 75.75MHz	N/D	>= 16.3dB	42.1dB
2	UP	Aprovado	59.2dB @ 57.00MHz	N/D	>= 20.8dB	38.4dB
8	ÜR	Aprovado	77.2dB @ 71.00MHz	N/D	>= 17.3dB	59.9dB
	UR	Aprovado	75.2dB @ 80.25MHz	N/D	>= 15.3dB	59.9dB
6						
,4	UR	Aprovado	77.1dB @ 71.00MHz	N/D	>= 17.3dB	59.8dB
,2	UR	Aprovado	75.2dB @ 80.25MHz	N/D	>= 15.3dB	59.9dB
LFEXT: A	PROVADO					
<u>ares</u> .8-3,6	<u>UP/UR</u> UP	Resultado Aprovado	Pior Margem 52.4dB @ 44.75MHz	PiordB 45.8dB	<u>Limite</u> > 25.6dB	Margem 26.8dB
8-5.4	UP	Aprovado	54.6dB @ 77.25MHz	52.8dB	> 20.9dB	33.7dB
8-1,2	UP					45.4dB
		Aprovado	68.8dB @ 57.75MHz	65.7dB	> 23.4dB	
6-7,8	UP	Aprovado	52.9dB @ 43.00MHz	45.8dB	> 25.9dB	27.0dB
6-5,4	UP	Aprovado	42.6dB @ 98.75MHz	42.6dB	> 18.7dB	23.9dB
6-1,2	UP	Aprovado	52.8dB @ 52.75MHz	47.4dB	> 24.2dB	28.6dB
4-7,8	UP	Aprovado	54.3dB @ 75.25MHz	52.8dB	> 21.1dB	33.2dB
4-3.6	UP	Aprovado	43.0dB @ 95.00MHz	42.7dB	> 19.1dB	23.9dB
4-1,2	UP	Aprovado	57.2dB @ 79.50MHz	56.4dB	> 20.6dB	36.6dB
	UP					
2-7,8		Aprovado	68.4dB @ 65.00MHz	65.1dB	> 22.4dB	46.0dB
2-3,6	UP	Aprovado	48.5dB @ 85.00MHz	47.4dB	> 20.0dB	28.5dB
2-5,4	UP	Aprovado	57.6dB @ 77.50MHz	56.2dB	> 20.8dB	36.8dB
8-3,6	UR	Aprovado	52.4dB @ 44.75MHz	45.8dB	> 25.6dB	26.8dB
8-5.4	UR	Aprovado	54.8dB @ 75.75MHz	52.8dB	> 21.0dB	33.8dB
8-1.2	UR	Aprovado	68.7dB @ 57.75MHz	65.7dB	> 23.4dB	45.3dB
6-7,8	UR	Aprovado	52.9dB @ 43.00MHz	45.8dB	> 25.9dB	27.0dB
6-7,6 6-5.4					> 25.9dB > 18.7dB	23.9dB
	UR	Aprovado	42.6dB @ 98.75MHz	42.6dB		
6-1,2	UR	Aprovado	55.3dB @ 39.50MHz	47.4dB	> 26.7dB	28.6dB
4-7,8	UR	Aprovado	55.8dB @ 63.50MHz	52.7dB	> 22.6dB	33.2dB
4-3,6	UR	Aprovado	43.0dB @ 95.00MHz	42.7dB	> 19.1dB	23.9dB
4-1.2	UR	Aprovado	57.2dB @ 79.50MHz	56.4dB	> 20.6dB	36.6dB
2-7.8	UR	Aprovado	68.7dB @ 62.25MHz	65.1dB	> 22.7dB	46.0dB
2-3,6	UR		48.5dB @ 85.00MHz	47.4dB	> 20.0dB	28.5dB
,2-3,6	UR	Aprovado Aprovado	57.6dB @ 77.50MHz	56.2dB	> 20.8dB	26.50B 36.8dB
ower Sun	n NEXT: APROVAD					
ares	UP/UR	Resultado	Pior Margem	<u>PiordB</u>	<u>Limite</u>	Margem
,8	UP	Aprovado	59.5dB @ 56.75MHz	58.9dB	> 33.3dB	26.2dB
6	UP	Aprovado	61.3dB @ 63.00MHz	61.3dB	> 32.6dB	28.7dB
4	UP	Aprovado	56.9dB @ 57.00MHz	56.9dB	> 33.3dB	23.6dB
2	UP			59.6dB	> 33.3dB	26.3dB
		Aprovado	59.6dB @ 57.00MHz			
8	UR	Aprovado	92.3dB @ 1.00MHz	75.1dB	> 57.0dB	35.3dB
6	UR	Aprovado	92.3dB @ 1.00MHz	74.2dB	> 57.0dB	35.3dB
4	UR	Aprovado	92.3dB @ 1.00MHz	74.1dB	> 57.0dB	35.3dB
2	UR	Aprovado	92.3dB @ 1.00MHz	75.DdB	> 57.0dB	35.3dB
ower Sun	n ACR: APROVADO	0				
ares	UP/UR	Resultado	Pior Margem	<u>PiordB</u>	<u>Limite</u>	Margem
ares 8	<u>UP/UR</u> UP	<u>Resultado</u> Aprovado	58.1dB @ 75.75MHz	N/D	>= 13 .3dB	44.8dB
ares 8 6	<u>UP/UR</u> UP UP	<u>Resultado</u> Aprovado Aprovado	58.1dB @ 75.75MHz 60.6dB @ 63.00MHz	N/D N/D	>= 13.3dB >= 16.3dB	44.8dB 44.3dB
ares 8 6 4	<u>UP/UR</u> UP UP UP	<u>Resultado</u> Aprovado	58.1dB @ 75.75MHz 60.6dB @ 63.00MHz 56.2dB @ 57.00MHz	N/D N/D N/D	>= 13.3dB >= 16.3dB >= 17.8dB	44.8dB 44.3dB 38.4dB
ares 8 6 4	<u>UP/UR</u> UP UP	<u>Resultado</u> Aprovado Aprovado	58.1dB @ 75.75MHz 60.6dB @ 63.00MHz	N/D N/D	>= 13.3dB >= 16.3dB	44.8dB 44.3dB
ares 8 6 4	UP/UR UP UP UP UP	Resultado Aprovado Aprovado Aprovado Aprovado	58.1dB @ 75.75MHz 60.6dB @ 63.00MHz 56.2dB @ 57.00MHz 59.0dB @ 57.00MHz	N/D N/D N/D N/D	>= 13.3dB >= 16.3dB >= 17.8dB >= 17.8dB	44.8dB 44.3dB 38.4dB 41.2dB
ares 8 6 4 2	UP/UR UP UP UP UP UP UR	Resultado Aprovado Aprovado Aprovado Aprovado Aprovado	58.1dB @ 75.75MHz 60.6dB @ 63.00MHz 56.2dB @ 57.00MHz 59.0dB @ 57.00MHz 74.4dB @ 68.00MHz	N/D N/D N/D N/D N/D N/D	>= 13.3dB >= 16.3dB >= 17.8dB >= 17.8dB >= 15.1dB	44.8dB 44.3dB 38.4dB 41.2dB 59.3dB
ares 8 6 4 2 8 6	UP/UR UP UP UP UR UR	Resultado Aprovado Aprovado Aprovado Aprovado Aprovado Aprovado	58.1dB @ 75.75MHz 60.6dB @ 63.00MHz 56.2dB @ 57.00MHz 59.0dB @ 57.00MHz 74.4dB @ 68.00MHz 73.4dB @ 80.25MHz	N/D N/D N/D N/D N/D N/D N/D	>= 13.3dB >= 16.3dB >= 17.8dB >= 17.8dB >= 15.1dB >= 12.3dB	44.8dB 44.3dB 38.4dB 41.2dB 59.3dB 61.1dB
ures 3 6 4 2 3 6 4	UP/UR UP UP UP UP UP UP UR UR UR UR	Resultado Aprovado Aprovado Aprovado Aprovado Aprovado Aprovado Aprovado Aprovado	58.1dB @ 75.75MHz 60.6dB @ 53.00MHz 56.2dB @ 57.00MHz 59.0dB @ 57.00MHz 74.4dB @ 68.00MHz 73.4dB @ 80.25MHz 73.3dB @ 69.25MHz	N/D N/D N/D N/D N/D N/D N/D	>= 13.3dB >= 16.3dB >= 17.8dB >= 17.8dB >= 15.1dB >= 12.3dB >= 14.7dB	44.8dB 44.3dB 38.4dB 41.2dB 59.3dB 61.1dB 58.6dB
8 6 4 2 8 6 4 2	UP/UR UP UP UP UP UR UR UR UR UR UR UR	Resultado Aprovado	58.1dB @ 75.75MHz 60.6dB @ 63.00MHz 56.2dB @ 57.00MHz 59.0dB @ 57.00MHz 74.4dB @ 68.00MHz 73.4dB @ 80.25MHz	N/D N/D N/D N/D N/D N/D N/D	>= 13.3dB >= 16.3dB >= 17.8dB >= 17.8dB >= 15.1dB >= 12.3dB	44.8dB 44.3dB 38.4dB 41.2dB 59.3dB 61.1dB
ares ,8 ,6 ,4 ,2 ,8 ,6 ,4 ,2 ower Sun	UP/UR UP UP UP UR UR UR UR UR UR UR	Resultado Aprovado	58.1dB @ 75.75MHz 60.6dB @ 63.00MHz 56.2dB @ 57.00MHz 59.0dB @ 57.00MHz 74.4dB @ 68.00MHz 73.4dB @ 80.25MHz 73.3dB @ 69.25MHz 74.2dB @ 80.25MHz	N/D N/D N/D N/D N/D N/D N/D N/D	>= 13.3dB >= 16.3dB >= 17.8dB >= 17.8dB >= 15.1dB >= 12.3dB >= 14.7dB >= 12.3dB	44.8dB 44.3dB 38.4dB 41.2dB 59.3dB 61.1dB 58.6dB 61.9dB
ares 8 6 4 2 8 6 4 2 2	UP/UR UP UP UP UP UR UR UR UR UR UR UR	Resultado Aprovado	58.1dB @ 75.75MHz 60.6dB @ 53.00MHz 56.2dB @ 57.00MHz 59.0dB @ 57.00MHz 74.4dB @ 68.00MHz 73.4dB @ 80.25MHz 73.3dB @ 69.25MHz	N/D N/D N/D N/D N/D N/D N/D	>= 13.3dB >= 16.3dB >= 17.8dB >= 17.8dB >= 15.1dB >= 12.3dB >= 14.7dB	44.8dB 44.3dB 38.4dB 41.2dB 59.3dB 61.1dB 58.6dB
ares 8 6 4 2 8 6 4 2 2 ower Sun	UP/UR UP UP UP UR UR UR UR UR UR UR	Resultado Aprovado	58.1dB @ 75.75MHz 60.6dB @ 63.00MHz 56.2dB @ 57.00MHz 59.0dB @ 57.00MHz 74.4dB @ 68.00MHz 73.4dB @ 80.25MHz 73.3dB @ 69.25MHz 74.2dB @ 80.25MHz	N/D N/D N/D N/D N/D N/D N/D N/D	>= 13.3dB >= 16.3dB >= 17.8dB >= 17.8dB >= 15.1dB >= 12.3dB >= 14.7dB >= 12.3dB	44.8dB 44.3dB 38.4dB 41.2dB 59.3dB 61.1dB 58.6dB 61.9dB
ares 8 6 4 2 8 6 6 4 2 2 ower Sun ares 8	UP/UR UP UP UP UR	Resultado Aprovado	58.1dB @ 75.75MHz 60.6dB @ 63.00MHz 56.2dB @ 57.00MHz 59.0dB @ 57.00MHz 74.4dB @ 68.00MHz 73.4dB @ 80.25MHz 73.3dB @ 69.25MHz 74.2dB @ 80.25MHz 74.2dB @ 80.25MHz	N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D	>= 13.3dB >= 16.3dB >= 17.8dB >= 17.8dB >= 15.1dB >= 12.3dB >= 14.7dB >= 12.3dB	44.8dB 44.3dB 38.4dB 41.2dB 59.3dB 61.1dB 58.6dB 61.9dB
ares 8 6 4 2 8 6 4 2 2 ower Sun ares 8	UP/UR UP UP UP UP UR	Resultado Aprovado	58.1dB @ 75.75MHz 60.6dB @ 63.00MHz 56.2dB @ 57.00MHz 59.0dB @ 57.00MHz 74.4dB @ 68.00MHz 73.4dB @ 80.25MHz 73.3dB @ 69.25MHz 74.2dB @ 80.25MHz Pior Margem 44.9dB @ 99.00MHz 44.9dB @ 99.00MHz	N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D	>= 13.3dB >= 16.3dB >= 17.8dB >= 17.8dB >= 15.1dB >= 12.3dB >= 14.7dB >= 12.3dB Limite >= 15.7dB	44.8dB 44.3d8 38.4dB 41.2dB 59.3dB 61.1dB 58.6dB 61.9dB Margem 29.2dB 24.2dB
ares 8 6 4 2 8 6 6 4 2 2 ower Sun ares 8 6 6	UP/UR UP UP UP UP UR	Resultado Aprovado	58.1dB @ 75.75MHz 60.6dB @ 63.00MHz 56.2dB @ 57.00MHz 59.0dB @ 57.00MHz 74.4dB @ 68.00MHz 73.4dB @ 80.25MHz 73.3dB @ 69.25MHz 74.2dB @ 80.25MHz 74.2dB @ 80.25MHz 74.2dB @ 80.25MHz	N/D N/D N/D N/D N/D N/D N/D N/D N/D PiordB 44.9dB 40.1dB 42.0dB	>= 13.3dB >= 16.3dB >= 17.8dB >= 17.8dB >= 15.1dB >= 12.3dB >= 14.7dB >= 12.3dB Limite >= 15.7dB >= 16.1dB >= 15.7dB	44.8dB 44.3dB 38.4dB 41.2dB 59.3dB 61.1dB 58.6dB 61.9dB Margem 29.2dB 24.2dB 26.3dB
ares 8 6 4 2 8 6 4 2 2 2 2 2 2 3 6 4 2 2 8 6 6 4 4 2 8 6 6 4 4 2 8 6 6 4 4 2 8 8 6 6 4 4 2 8 8 8 8 8 8 8 8 8 8 8 8 8	UP/UR UP UP UP UR UR UR UR UR UR UR UR UP UP UP UP UP UP	Resultado Aprovado	58.1dB @ 75.75MHz 60.6dB @ 63.00MHz 56.2dB @ 57.00MHz 59.0dB @ 57.00MHz 74.4dB @ 68.00MHz 73.4dB @ 80.25MHz 73.3dB @ 69.25MHz 74.2dB @ 80.25MHz 74.2dB @ 80.25MHz Pior Margem 44.9dB @ 99.00MHz 40.3dB @ 95.00MHz 42.0dB @ 98.75MHz 50.9dB @ 61.00MHz	N/D N/D N/D N/D N/D N/D N/D N/D N/D PiordB 44.9dB 40.1dB 42.0dB 46.8dB	= 13.3dB = 16.3dB = 17.8dB = 17.8dB = 15.1dB = 12.3dB = 14.7dB = 12.3dB = 14.7dB = 15.7dB = 16.1dB = 15.7dB = 19.9dB	44,8dB 44,3dB 38,4dB 41,2dB 59,3dB 61,1dB 58,6dB 61,9dB Margem 29,2dB 24,2dB 26,3dB 31,0dB
ares 8 6 4 2 8 6 4 2 ower Sun ares 8 6 4 4 2	UP/UR UP UP UP UR UR UR UR UR UR UR UR UP UP UP UP UP UP UP UP UP	Resultado Aprovado	58.1dB @ 75.75MHz 60.6dB @ 63.00MHz 56.2dB @ 57.00MHz 59.0dB @ 57.00MHz 74.4dB @ 68.00MHz 73.3dB @ 80.25MHz 73.3dB @ 69.25MHz 74.2dB @ 80.25MHz Pior Margem 44.9dB @ 99.00MHz 40.3dB @ 95.00MHz 42.0dB @ 98.75MHz 50.9dB @ 61.00MHz 49.7dB @ 56.75MHz	N/D N/D N/D N/D N/D N/D N/D N/D N/D PiordB 44.9dB 44.9dB 42.0dB 46.8dB 45.0dB	>= 13.3dB >= 16.3dB >= 17.8dB >= 17.8dB >= 15.1dB >= 12.3dB >= 14.7dB >= 12.3dB >= 16.1dB >= 15.7dB >= 16.1dB >= 15.7dB >= 19.9dB >= 20.5dB	44.8dB 44.3d8 38.4dB 41.2dB 59.3dB 61.1dB 58.6dB 61.9dB Margem 29.2dB 24.2dB 26.3dB 31.0dB
ares ,8 ,6 ,4 ,2 ,8 ,6 ,4 ,2	UP/UR UP UP UP UR UR UR UR UR UR UR UR UP UP UP UP UP UP	Resultado Aprovado	58.1dB @ 75.75MHz 60.6dB @ 63.00MHz 56.2dB @ 57.00MHz 59.0dB @ 57.00MHz 74.4dB @ 68.00MHz 73.4dB @ 80.25MHz 73.3dB @ 69.25MHz 74.2dB @ 80.25MHz 74.2dB @ 80.25MHz Pior Margem 44.9dB @ 99.00MHz 40.3dB @ 95.00MHz 42.0dB @ 98.75MHz 50.9dB @ 61.00MHz	N/D N/D N/D N/D N/D N/D N/D N/D N/D PiordB 44.9dB 40.1dB 42.0dB 46.8dB	= 13.3dB = 16.3dB = 17.8dB = 17.8dB = 15.1dB = 12.3dB = 14.7dB = 12.3dB = 14.7dB = 15.7dB = 16.1dB = 15.7dB = 19.9dB	44,8dB 44,3dB 38,4dB 41,2dB 59,3dB 61,1dB 58,6dB 61,9dB Margem 29,2dB 24,2dB 26,3dB 31,0dB

precisando de manutenção corretiva.

7.2 Manutenção preventiva

O treinamento da equipe de manutenção deve ser contínuo, pois tal procedimento é indispensável para garantir maior disponibilidade e confiabilidade dos equipamentos existentes na rede. Para um efetivo controle da manutenção preventiva é necessário monitorar o tráfego de rede e analisar o desempenho no que tange as transmissões por meio físico da rede.

7.3 Equipe de suporte

A equipe de suporte de redes, terão que estar preparados para resolver possíveis problemas que possam ocorrer durante as atividades dos funcionários e alunos da UTFPR/CP. Caso ocorra uma ocorrência em um ponto de rede, o suporte técnico deve identificar o local onde ocorreu o problema, e o mais rápido possível a equipe de suporte se deslocar até o local afetado, analisar o problema e resolvê-lo.

7.4 Plano de expansão

Existe um plano de expansão? Quantos novos pontos poderão ser acrecidos na rede, antes de migração de equipamentos na camada 2? Se houver expansão, quais equipamentos deverão ser direcionados para as estremidades da rede?

8 Orçamento

Crie uma relação de orçamentos baseado na seções anteriores.

9 Imagens

Figura 9: Detalhes Rack Bloco "K"

07 switches 3Com 3CR17561-91 SuperStack 4500 26-Port

01 switch HP V1910-24G, modelo JE006A

01 switch HP A3600 Series, modelo JG301B

10 patch panels Furukawa CAT 6

16 organizadores de cabo para rack, DN Conectividade.

Figura 10: Laboratórios Bloco "K"

