1. Automata and Language

1.1. Finite State Automate

a FA is a tuple $M=(Q,\Sigma,\delta,q_0,F)$ where

- 1. Q is a finite set called states
- 2. Σ is a finite set called the alphabet
- 3. $\delta: Q \times \Sigma \longrightarrow Q$ is the transition function
- 4. $q_0 \in Q$ is the initial state
- 5. $F \subseteq Q$ is the set of accept states

1.2. Computation

Let $M=(Q,\Sigma,\delta,q_0,F)$ and let $w=w_0,w_1...w_n$ a string of $[\Sigma]$ M accepts w if $\exists r_0,r_1,...,r_n\in Q$ where:

- 1. $r_0 = q_0$
- 2. $r_{i+1} = \delta(r_i, w_{i+1})$ for i = 0...n 1
- 3. $r_n \in F$

1.3. regular language

A language is regular if some finite automata recognizes it

1.3.1. regular operations

Let A and B be regular languages, there a three operations **union**, **concatenation** and **star** as follows :

- Union: $A \cup B = \{x \mid x \in A \lor x \in B\}$
- Concatenation: $A \circ B = \{xy \mid x \in A \land y \in B\}$
- Star: $A^* = \{x_1, x_2, ..., x_n \mid n \ge 0 \land x_i \in A\}$

1.3.1.1. Theorem closedness under union

A and B are regular languages then $A \cup B$

1.3.1.1.1. Proof

Let M_1 a state machine recognizes A_1

Let M_2 a state machine recognizes A_2

we can construct M a state machine recognizes $A_1 \cup A_2$ defined as follows

- 1. $M.Q = M_1.Q \times M_2.Q$
- 2. $M.\Sigma = M_1.\Sigma \cup M_2.\Sigma$
- 3. $M.\delta((r_1,r_2),a)=(M_1.\delta(r_1,a),M_2.\delta(r_2,a))$
- 4. $M.q_0 = (M_1.q_0, M_2.q_0)$
- 5. $M.F = \{(f_1, f_2) \mid f_1 \in M_1.F \lor f_2 \in M_2.F\}$

1.3.1.2. Theorem colosedness under concatenation

A and B are regular languages then $A \circ B$ is a regular languages

1.3.1.2.1. incomplete Proof

Let M_1 a state machine recognizes A_1

Let M_2 a state machine recognizes A_2

we can construct M a state machine recognizes $A_1 \circ A_2$ defined as follows

Cannot be done without non determinism

1.4. Non deterministic finite state Automata NFA

a NFA is a tuple $M=(Q,\Sigma,\delta,q_0,F)$ where

- 1. Q is a finite set called states
- 2. Σ is a finite set called the alphabet here sigma includes ε the empty input
- 3. $\delta: Q \times \Sigma \longrightarrow P(Q)$ is the transition function
- 4. $q_0 \in Q$ is the initial state
- 5. $F \subseteq Q$ is the set of accept states

1.4.1. Theorem equivalence of NFA and DFA

DFA and NFA are equivalent meaning forall languages recognized by DFA there is an NFA that recognizes and the reciproc is valid

1.4.1.1. Proof: DFA \Rightarrow NFA

forall DFA there is an NFA:

Let M_1 a DFA recognizes A

we can construct an NFA M that recognizes A

- 1. $M.Q = M_1.Q$
- 2. $M.\Sigma = M_1.\Sigma$
- 3. $M.\delta(q, a) = \{M_1.\delta(q, a)\}$
- 4. $M.q_0 = M_1.q_0$
- 5. $M.F = M_1.F$

1.4.1.2. Proof: NFA \Rightarrow DFA

forall NFA there is a DFA:

Let M_1 a NFA recognizes A

we can construct an NFA M that recognizes A

- 1. $M.Q = P(M_1.Q)$
- 2. $M.\Sigma = M_1.\Sigma$
- 3. $M.\delta(R,a) = \bigcup_{r \in R} M_1.\delta(r,a) \cup \bigcup_{r \in R} M_1.\delta(M_1.\delta(r,a),\varepsilon)$ the second union here is to account for state that have and ε /empty transition
- 4. $M.q_0 = \{M_1.q_0\}$
- 5. $M.F = \{f \mid f \in M.Q \text{ where } \exists x \in f \text{ such that } x \in M_1.F\}$ in human it means the final state of M must containt at least one final state of M_1

1.4.1.3. Proof: NFA \iff DFA

using NFA \Rightarrow DFA and DFA \Rightarrow NFA we get NFA \Longleftrightarrow DFA

1.4.2. Theorem Closure under union using NFA

A and B are regular languages then $A \cup B$ is a regular language

1.4.2.1. Proof

Let N_1 recognize A_1 , and N_2 recognize A_2 we can construct N such that it can recognize $A_1 \cup A_2$ as follows:

- 1. $N.Q = \{q_0\} \cup N_1.Q \cup N_2.Q$
- 2. $N.\Sigma = N_1.\Sigma \cup N_2.\Sigma$
- 3. $N.\delta$ is defined as follows
 - $\bullet \ N.\delta(q_0,\varepsilon)=\{N_1.q_0,N_2.q_0\}$
 - $N.\delta(N_1.q,a) = N_1.\delta(N_1.q,a)$
 - $\bullet \ \ N.\delta(N_2.q,a) = N_2.\delta(N_2.q,a)$
 - $N.\delta(_,_) = \emptyset$
- 4. q_0 is the starting state of
- 5. $N.F = N_1.F \cup N_2.F$

1.4.3. Theorem Closure under concatenation using NFA

A and B are regular languages then $A \circ B$ is a regular language

1.4.3.1. Proof

Let N_1 recognize A_1 , and N_2 recognize A_2 we can construct N such that it can recognize $A_1 \circ A_2$ as follows:

- 1. $N.Q = N_1.Q \cup N_2.Q$
- 2. $N.\Sigma = N_1.\Sigma \cup N_2.\Sigma$
- 3. $N.\delta$ is defined as follows
 - $N.\delta(q,\varepsilon) = N_1.\delta(q,\varepsilon) \cup \{N_2.q_0\}$ if $q \in N_1.F$
 - $N.\delta(N_1.q,a) = N_1.\delta(N_1.q,a)$
 - $\bullet \ N.\delta(N_2.q,a) = N_2.\delta(N_2.q,a)$
- 4. $N.q_0 = N_1.q_0$
- 5. $N.F = N_2.F$

1.4.4. Theorem Closure under star using NFA

A is a regular language then A^* is a regular language

1.4.4.1. Proof

Let N_1 recognize A, we can construct N such that it can recognize A^* as follows:

- 1. $N.Q = \{N.q_0\} \cup N_1.Q$
- 2. $N.\Sigma = N_1.\Sigma$
- 3. $N.\delta$ is defined as follows
 - $N.\delta(N.q_0,\varepsilon)=\{N_1.q_0\}$
 - $N.\delta(N.q_0, _) = \emptyset$
 - $N.\delta(N.q_f,\varepsilon) = \{N_1.q_0\} \cup N_1.\delta(N.q_f,\varepsilon) \text{ where } N.q_f \in N.F$
 - $\bullet \ \ \overline{N.\delta(q,a)} = \overline{N_1.\delta(q,a)}$
- 4. $N.q_0$ is a new state
- 5. $N.F = N.q_0 \cup N_1.F$

1.5. Regular Expression

we Say R is a regular expression of an alphabet Σ if R is:

- 1. $a \in \Sigma$
- $2. \epsilon$
- 3. ∅
- 4. $R_1 \cup R_2$
- 5. $R_1 \circ R_2$
- 6. R_1^{\star}

where R_1, R_2 are regular expressions

1.5.1. Theorem: regular language \Rightarrow **regular expression** a language is regular iff some regular expression describes it

1.5.1.1. Lemma: regular expression \Rightarrow regular language

1.5.1.1.1. Proof

in order to prove this lets consider the 6 cases for describing ${\cal R}$ and make a NFA for each

- 1. R=a for $a\in\Sigma$ so $L(R)=\{a\}$ for this we have the following NFA $N=(\{q_0,q_1\},\Sigma,\delta,q_0,\{q_1\})$ where $\delta(q_0,a)=\{q_1\}$ else \emptyset
- 2. $R=\varepsilon$ so $L(R)=\{\varepsilon\}$ for this we have the following NFA $N=(\{q_0\},\Sigma,\delta,q_0,\{q_0\})$ where $\delta(_,_)=\emptyset$
- 3. $R=\emptyset$ so $L(R)=\emptyset$ for this we have the following NFA $N=(\{q_0\},\Sigma,\delta,q_0,\emptyset)$ where $\delta(_,_)=\emptyset$
- 4. $R=R_1\cup R_2$ so $L(R)=L(R_1)\cup L(R_2)$ we have N_1,N_2 for $L(R_1),L(R_2)$ so we can build N for their union
- 5. $R=R_1\circ R_2$ so $L(R)=L(R_1)\cup L(R_2)$ we have N_1,N_2 for $L(R_1),L(R_2)$ so we can build N for their concatenation
- 6. $R=R_1^\star$ so $L(R)=L(R_1)^\star$ we have N_1 for $L(R_1)^\star$ so we can build N for its star operation

1.5.1.2. Lemma: regular language \Rightarrow regular expression

before making the proof we need to define a new automat a generalized nondeterministic finite automaton GNFA which to make an equivalence between regular languages and GNFA then using showing the equivalence between GNFA and regular expression

1.5.1.2.1. GNFA

A generalized nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_{\rm start}, q_{\rm accept})$, where:

- 1. Q is a finite set of state
- 2. Σ is the input alphabet
- 3. $\delta: \left(Q \left\{q_{\text{accept}}\right\}\right) \times \left(Q \left\{q_{\text{start}}\right\}\right) \longrightarrow R$ is the transition function
 - ullet R is the set for regular expressions over the set of alphabet Σ
- 4. q_{start} is the starting state
- 5. q_{accept} is the accepting state

1.5.1.2.2. my definition of GNFA

A generalized nondeterministic finite automaton is a 7-tuple $(Q, \Sigma, R, \theta, \delta, q_{\rm start}, q_{\rm accept})$, where:

- 1. Q is a finite set of state
- 2. Σ is the input alphabet
- 3. R is a set of regular expressions over Σ
- 4. $\theta: \left(Q-\left\{q_{\mathrm{accept}}\right\}\right) \times \left(Q-\left\{q_{\mathrm{start}}\right\}\right) \longrightarrow R$ is the assignment function
- 5. $\delta: Q \times R \longrightarrow Q$ is the transition function where: $\overline{\delta(q_i, r_i)} = \{q_j | r_i = \theta(q_i, q_j)\}$
- 6. q_{start} is the starting state
- 7. q_{accept} is the accepting state

1.5.1.2.3. Proof: DFA \Rightarrow GNFA

we have a DFA M that recognizes language L we can construct a GNFA G that recognizes the language L as follows: $G = \left(\left\{q_{\text{start}}, q_{\text{accept}}\right\}, M.\Sigma, R, \theta, \delta, q_{\text{start}}, q_{\text{accept}}\right)$ where

- 1. $R = \{ w \mid w \in L \}$
- 2. $\theta(q_{\text{start}}, q_{\text{accept}}) = R$
- 3. $\delta(q_{\text{start}}, r) = q_{\text{accept}}$

1.5.1.2.4. Proof of theorem

DFA can be converted into GNFA which can be converted into regular expressions

1.5.2. Proof: from the previous 2 lemmas