CONFIDENCE INTERVALS

Assume some familiarity with

- Normal distribution/Standard Normal Distribution
- Standard Deviation
- Central Limit Theorem

We take a sample of data from dataset with any kind of distribution

- And takes its mean $\hat{\mu}$
- Let's go away from this for a bit and focus on Normal Distributions and the Central Limit Theorem

Central Limit Theorem

- Lets say we take N different samples
 - Sample 1 (a group of observations)
 - Sample 2 (a group of observations)
 -
- The CLT says that the means of these samples surround the population mean μ and the means of these samples follow a **normal distribution** with standard deviation $\frac{\sigma}{\sqrt{n}}$ where \mathbf{n} ="size of the sample" and $\boldsymbol{\sigma}$ is the Global STD. (With bootstrapping we can estimate that with the sample STD)

Normal distribution

- Approximately 66 % of the data is 1 STD away from mean
- Approximately 95 % of the data is 2 STD away from mean
- Approximately 99 % of the data is 2.5.. STD away from mean

Coming back .. We take a sample of data from a random dataset with any kind of distribution and assume a 95 % confidence interval

- And take its mean $\hat{\mu}$
- We know this $\hat{\mu}$ is part of a distribution over many $\hat{\mu} s$ from different imaginary samples.
- Based on the characteristics of Normal distribution (95 % of data 2 STD from mean) we can say with 95 % confidence that $\hat{\mu}$ is somewhere in the interval 2 STDs away from the mean OR we can say with 99 % confidence that its 2.5.. STDs interval from the Global mean.
- Based on Central Limit Theorem we can say the STD= $\frac{\sigma}{\sqrt{n}}$
- Putting these 2 things together we can say that our observation $\hat{\mu}$ lies with 95 % confidence In area μ +/- 2 \sqrt{n}
- If we are 95 % sure that our observation is $2\frac{\sigma}{\sqrt{n}}$ from global mean then we are saying that we are 95 % sure that global mean is +/- $2\frac{\sigma}{\sqrt{n}}$ from our observation.
 - If it would not
 - The observation would have to be further than $2\frac{\sigma}{\sqrt{n}}$ from the global mean AKA we have confidence interval of 95 % that global mean μ is in area of +/- $2\frac{\sigma}{\sqrt{n}}$ from $\hat{\mu}$
 - OR
 - With same logic we have confidence interval of 99 % that global mean μ is in area of +/- 2.5 $\frac{\sigma}{\sqrt{n}}$ from $\hat{\mu}$