Углубленный Python

Лекция 3 Объектная модель, введение в ООП

Кандауров Геннадий

Напоминание отметиться на портале

+ оставить отзыв

Квиз про прошлой лекции

Содержание занятия

- 1. Пространства имен
- 2. Пример тестирования
- 3. Классы
- 4. Объектная модель
- 5. OOΠ

Пространства имен

"Namespaces are one honking great idea -- let's do more of those!" Tim Peters (import this)

Пространства имен

Пространство имен—это совокупность определенных в настоящий момент символических имен и информации об объектах, на которые они ссылаются.

- Встроенное
- Глобальное
- Объемлющее
- Локальное

Область видимости: LEGB

Область видимости имени это часть программы, в которой данное имя обладает значением.

Интерпретатор определяет эту область в среде выполнения, основываясь на том, где располагается определение имени и из какого места в коде на него ссылаются.

- 1. Локальная
- 2. Объемлющая
- 3. Глобальная
- 4. Встроенная

- o globals()
- o locals()
- o global
- nonlocal

__builtins__

```
>>> hasattr( builtins , "dir")
True
>>> dir( builtins )
. . .
                                                          dir
int
                                      reversed
                 map
float
                 zip
                                      len
                                                          type
                 filter
                                                          isinstance
str
                                      sum
bool
                                      all
                                                          issubclass
                 range
tuple
                                                          hasattr
                 enumerate
                                      any
list
                                      qlobals
                 sorted
                                                          getattr
dict
                                      locals
                 min
                                                          setattr
                                      callable
set
                                                          delattr
                 max
```

Классы

Классы

Шаблон, по которому создаются экземпляры (объекты).

Класс определяет, какие атрибуты и методы будут у экземпляров данного типа.

- Организация и структурирование кода
- Повторное использование
- Инкапсуляция
- Наследование
- Полиморфизм

Классы: атрибуты

```
class A:
   name = "cls name"
    cls private = "cls private"
   def init (self, val):
       self.val = val
        self. protected = "protected"
       self. private = "private"
   def print(self):
       print(
           f"{self.val=}, {self. protected=}, {self. private=}, "
            f"{self.name=}, {self. cls private=}"
```

Классы: методы

```
class A:
   astaticmethod
   def print static():
       print("static")
   @classmethod
   def print cls(cls):
       print(f"class method for {cls. name }")
   def init (self, val):
       self.val = val
    def print offset(self, offset=10):
       print(self.val + offset)
   def str (self):
       return f"{self. class . name }:val={self.val}"
```

Классы

```
object. new (cls[, ...])
Статический метод, создает новый экземпляр класса.
После создание экземпляра вызывается (уже у экземпляра) метод __init__.
init ничего не должен возвращать (кроме None), иначе - TypeError
class Singleton:
    instance = None
    def new (cls, *args, **kwargs):
        if cls. instance is None:
            cls. instance = super(). new (cls, *args, **kwargs)
        return cls. instance
```

Классы

```
object.__del__(self)
Финализатор
class Connector:
    def __init__(self, db_name):
        self.conn = DbDriver(db name)
    def del (self):
        self.conn.close()
        print("DEL")
db = Connector("users")
del db # ???
```

Классы: свойства

```
# классический подход
                                   # pythonic
class Author:
                                   class Author:
   def __init__(self, name):
                                       def init__(self, name):
        self. name = ""
                                           self.name = name
        self.set name(name)
                                       aproperty
    def get name(self):
                                       def name(self):
        return self. name
                                           return self. name
    def set name(self, val):
                                       aname.setter
        self. name = val
                                       def name(self, val):
                                           self. name = val
```

Классы: свойства

```
class Author:
class Author:
                                           def init__(self, name):
    def __init__(self, name):
                                               self.name = name
        self.name = name
                                           def get name(self):
   aproperty
                                               return self. name
    def name(self):
                                           def set name(self, val):
        """name doc"""
                                               self. name = val
        return self. name
                                           def del name(self):
   aname.setter
                                               del self. name
    def name(self, val):
                                           name = property(
        self. name = val
                                               get name,
                                               set_name,
    aname.deleter
                                               del name,
    def name(self):
                                               "name doc",
        del self. name
```

Классы: свойства read/write only

```
class Author:
    def __init__(self, name, password):
        self. name = name
        self.password hash = None
        self.password = password
   aproperty
    def name(self):
        """name is read-only"""
        return self. name
   aproperty
    def password(self):
        raise AttributeError("Password is write-only")
   apassword.setter
    def password(self, plaintext):
        self.password_hash = make_hash_from_password(plaintext)
```

Классы: доступ к атрибутам

Чтобы найти атрибут объекта obj, python обыскивает:

- 1. Сам объект (obj.__dict__ и его системные атрибуты)
- Класс объекта (obj.__class__.__dict__).
- 3. Классы, от которых унаследован класс объекта (obj.__class__.__mro__)

Классы: наследование

```
>>> m = MinuteTiming(1000, 7000)
class Timing:
    def __init__(self, start, end):
                                         >>> m.duration()
        self.start = start
                                          MinuteTiming.duration
        self.end = end
                                          Timing.duration
    def duration(self):
                                          100.0
        print("Timing.duration")
        return self.end - self.start
class MinuteTiming(Timing):
    def duration(self):
        print("MinuteTiming.duration")
        seconds = super(). duration()
        return seconds / 60
```

Классы: super

```
super()
super(type, object_or_type=None)
Возвращает прокси-объект, который делегирует вызовы методов родительскому или
родственному классу type.
```

Полезно для доступа к унаследованным методам, которые были переопределены в классе.

- mro линейный порядок поиска атрибутов
- C3-линеаризация алгоритм вычисления mro

Классы: MRO

Порядок разрешения методов (method resolution order) позволяет python выяснить, из какого класса-предка нужно вызывать метод, если он не обнаружен непосредственно в классе-потомке.

```
cls.__mro__
cls.mro()

>>> MinuteTiming.mro()

[__main__.MinuteTiming, __main__.Timing, object]
```

Классы: локальный порядок старшинства

```
>>> class A:
                                               object
... pass
>>> class B:
... pass
. . .
>>> class C(A, B):
... pass
. . .
>>> C.mro()
[<class '__main__.C'>, <class '__main__.A'>, <class '__main__.B'>, <class 'object'>]
>>>
>>> class C(B, A):
... pass
>>> C.mro()
[<class '__main__.C'>, <class '__main__.B'>, <class '__main__.A'>, <class 'object'>]
```

Классы: множественное наследование

Классы: магические атрибуты

Классы

```
__name__ — имя класса
__module__ — модуль, в котором объявлен класс
__qualname__ — fully qualified имя
__doc__ — докстринг
__annotations__ — аннотации статических полей класса
dict — namespace класса
```

Методы

```
__self__ — объект класса
func — сама функция, которую мы в классе объявили
```

Классы: магические атрибуты

Поля, относящиеся к наследованию

```
bases — базовые классы
base — базовый класс, который указан первым по порядку
mro — список классов, упорядоченный по вызову функции super
class B(A): pass
>>> B. bases
( main .A,)
>>> B. base
main .A
>>> B. mro
( main _.B, __main__.A, object)
```

Доступ к атрибутам

```
o __getattribute__(self, name)
```

- o __getattr__(self, name)
- o __setattr__(self, name, val)
- o __delattr__(self, name)
- o __dir__(self)

```
object.__call__(self[, args...])
class Adder:
    def init (self, val):
        self.val = val
    def __call__(self, value):
        return self.val + value
a = Adder(10)
a(5) # 15
```

To string

```
__repr__ — представление объекта. Если возможно, должно быть валидное python выражение для создание такого же объекта __str__ — вызывается функциями str, format, print __format__ — вызывается при форматировании строки
```

Сравнение

```
object. lt (self, other)
object. le (self, other)
object. eq (self, other)
object. ne (self, other)
object. qt (self, other)
object. ge (self, other)
x < y == x. lt (y) # <=, ==, !=, >, >=
```

Эмуляция чисел object. add (self, other) object. sub (self, other) object. mul (self, other) object. matmul (self, other) (a) object. truediv (self, other) object. floordiv (self, other) object. mod (self. other) object. divmod (self, other) object. pow (self, other[, modulo]) object. lshift (self, other) object. rshift (self, other) object. and (self, other) object. xor (self, other) object. or (self. other)

Эмуляция чисел

Методы вызываются, когда выполняются операции (+, -, *, @, /, //, %, divmod(), pow(), **, <<, >>, &, ^, |) над объектами

$$x + y == x._add_(y)$$
 и дальше $y._radd_(x)$

Есть все такие же с префиксом r и i:

```
__radd__ - вызывается, если левый операнд не поддерживает __add__ iadd - вызывается, когда \times += \vee
```

Эмуляция контейнеров

```
object. len (self)
object. length hint (self)
object. getitem (self, key)
object. setitem (self, key, value)
object.__delitem__(self, key)
object. missing (self, key)
object. iter (self)
object. next (self)
object. reversed (self)
object. contains (self, item)
```

object.__hash__(self)

Вызывается функцией hash() и коллекциями, которые построены на основе hash-таблиц.

Нужно, чтобы у равных объектов был одинаковый hash.

Если определен метод __eq__ и не определен __hash__, то объект не может быть ключом в hashable коллекции.

```
>>> key1 = (1, 2, 3)
>>> key2 = (1, 2, 3, [4, 5])
>>> s = set()
>>> s.add(key1) # ???
>>> s.add(key2) # ???
```

```
object.__slots__
```

Позволяет явно указать поля, которые будут в классе.

```
В случае указания __slots__ пропадают поля __dict__ и __weakref__.
```

Используя __slots__ можно экономить на памяти и времени доступа к атрибутам объекта.

```
class Point:
    __slots__ = ("x", "y")
    def __init__(self, x, y):
        self.x = x
```

self.y = y

Классы: __init_subclass__

```
class Timing:
   def __init__(self, start, end):
        self.start = start
        self.end = end
   aclassmethod
    def init subclass (cls, **kwarqs):
        print("INIT subclass", cls, kwarqs)
class MinuteTiming(Timing):
    def duration(self):
        print("MinuteTiming.duration")
        seconds = super().duration()
        return seconds / 60
```

Домашнее задание #03

- реализовать кастомный список,
 унаследованный от list
- +тесты
- зеленый пайплайн (тесты, coverage, линтеры)

Hапоминание отметиться на портале Vol 2

+ оставить отзыв после лекции

Спасибо за внимание

k education