Introdução à Probabilidade e Estatística

Universidade de Évora

Departamento de Matemática

Ano lectivo 2015/16

Ana Isabel Santos

Aulas 13 e 14

Testes de hipóteses não paramétricos

Testes de Hipóteses Não Paramétricos

Teste de Hipóteses Não Paramétricos

Os teses de hipóteses não paramétricos são menos potentes que os teste de hipóteses paramétricos, pelo que devem utilizar-se apenas como alternativa a estes quando:

- i) Não se verificam as condições para aplicar os testes paramétricos, ou
- ii) As variáveis são do tipo ordinal.

Iremos abordar dois tipos de testes não paramétricos:

- Testes de ajustamento: Para averiguar se as amostras foram retiradas de populações com uma dada distribuição.
 - ► Teste de Kolmogorov-Smirnov (K-S) v.a.'s quantitativas.
 - ► Teste de ajustamento do Qui-Quadrado v.a.'s do tipo quantitativo ou qualitativo, mas onde observações são repartidas em classes.
- Teste de independência: Para testar a independência entre duas variáveis aleatórias X e Y.

Teste de Ajustamento

 $H_0: X$ tem f. de distribuição $F_0(x)$ vs $H_1: X$ não tem f. de distribuição $F_0(x)$

Em geral, a distribuição da população não está completamente especificada.

Admitindo, por exemplo, que ela é Normal não sabemos qual é a sua média e/ou qual é o seu desvio-padrão, pelo que torna-se necessário estimar este(s) parâmetro(s) a partir dos dados amostrais.

No caso em que é necessário proceder-se a estimações, o **Teste de Kolmogorov-Smirnov** (**K-S**) torna-se conservativo, isto é, tende a não rejeitar a hipótese nula. Neste casos usa-se o **Teste de K-S** com a modificação de Lilliefors. Este teste deve ser usado em amostras de grande dimensão (n > 30).

Quando a dimensão da amostra é \leq 30, o **Teste de Shapiro-Wilk** é o mais adequado, uma vez que tem melhor performance que o anterior para amostras de pequena dimensão.

Procedimento

- **1.** Construir k classes de valores da v. a. $X: A_1, A_2, \ldots, A_k$;
- 2. Dada uma amostra aleatória, determinar as frequências absolutas simples observadas, O_i , para cada classe A_i ;
- 3. Calcular a probabilidade, p_i , com base na distribuição teórica definida em H_0 , da classe A_i conter elementos;
- 4. Determinar as frequências absolutas estimadas, E_i , para cada classe;
- 5. Se a distribuição definida em H_0 se ajustar aos dados, então as frequências observadas estarão próximas das estimadas.

Teste de Ajustamento

Teste de ajustamento do Qui-quadrado

Seja X uma variável aleatória com k classes de valores, A_1, A_2, \ldots, A_k .

Notação:

- * n dimensão da amostra; k n.º de classes;
- \star O_i frequência observada para a classe ;
- * p_i probabilidade de uma elemento pertencer à classe A_i , sob a hipótese H_0 ;
- ★ $E_i = np_i$ frequência estimada para a classe A_i , sob a hipótese H_0 ;

Condições de aplicabilidade do teste:

- Não existirem mais de 20% das classes com E_i < 5;
- ii) Todas as classes têm $E_i \ge 1$.

Quando estas condições não se verificam, procede-se ao agrupamento das classes que falham os requisitos com as adjacentes.

Hipóteses a testar:

 H_0 : X tem a função (densidade) de probabilidade $f_0(x)$ vs

 H_1 : X não tem a função (densidade) de probabilidade $f_0(x)$

Estatística de teste:

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} \sim \chi^2_{k-1}.$$

Regiões críticas:

R. A.:
$$[0; \chi^2_{k-1;1-\alpha}[$$
 e **R. R.:** $[\chi^2_{k-1;1-\alpha}; +\infty[$

Regra de decisão:

Rejeitar H_0 se $\chi^2_{obs} \ge \chi^2_{k-1\cdot 1-\alpha}$ - Teste unilateral direito

Exercício 5: Foi realizado um estudo para determinar se a opinião pública era favorável à construção de uma barragem hidroeléctrica. Os resultados foram os seguintes: 40% a favor da construção, 30% são indiferentes, 20% opõem-se e os restantes disseram não terem pensado no assunto. Uma amostra aleatória de 150 indivíduos da região afectada revelou que 42 eram a favor, 61 eram indiferentes e 33 eram contrários à construção.

- a) Com base nos outputs seguintes, estarão estes dados de acordo com os resultados obtidos no referido estudo?
- b) Determine o valor do p-value associado a este teste de hipóteses.

Exercício 5: Outputs do SPSS

Opinião

	Observed N	Expected N	Residual
1	42	60,0	-18,0
2	61	45,0	16,0
3	33	30,0	3,0
4	14	15,0	-1,0
Total	150		

a. 0 cells (0,0%) have expected frequencies less than 5. The minimum expected cell frequency is 15,0.

p-value

Exercício 7: Numa dada sala de cinema da região de Évora realizou-se um inquérito a 400 estudantes, escolhidos aleatoriamente, da Universidade de Évora, relativamente à sua preferência sobre 4 tipos de filmes: A, B C e D. Os resultados obtidos foram:

BONGS:	400
 	ш
	200

	Observed N	Expected N	Residual
Α	а	100,0	30,0
В	b	100,0	-10,0
С	с	100,0	-20,0
D	d	100,0	,0
Total	е		

- a) Determine os valores de a, b, c, d e e?
- b) Ao nível de significância de 1%, poderá afirmar-se que não existe preferência por nenhum dos tipos de filmes? Efectue o teste estatístico que considere mais adequado.

10

Exercício 6: A procura diária de um certo produto foi, em 40 dias escolhidos ao acaso, a seguinte:

N.º de unidades	N.º de dias
0	6
1	14
2	10
3	7
4	2
5	1

Será que se pode admitir que tais observações foram extraídas de uma população com distribuição Poisson, isto é, será de admitir que a procura diária segue uma distribuição de Poisson?

Exercício 6: Outputs do SPSS

Procura diária

	Observed N	Expected N	Residual
0	6	7,4	-1,4
1	14	12,5	1,5
2	10	10,6	-,6
3	7	6,0	1,0
4	2	2,6	-,6
5	1	,9	,1
Total	40		

Test Statistics

	Procura diária
Chi-Square	,765ª
df	5
Asymp. Sig.	,979

a. 2 cells (33,3%) have expected frequencies less than 5. The minimum expected cell frequency is ,9.

Exercício 6: Outputs do SPSS depois de se agruparem as classes 4 e 5

Procura diária

	Observed N	Expected N	Residual
0	6	7,4	-1,4
1	14	12,5	1,5
2	10	10,6	-,6
3	7	6,0	1,0
4	3	3,4	-,4
Total	40	N. 4	- ANT

Test Statistics

	Procura diária
Chi-Square	,677ª
df	4
Asymp. Sig.	,954

a. 1 cells (20,0%) have expected frequencies less than 5. The minimum expected cell frequency is 3,4.

Testes de Independência do Qui-quadrado

Testes de Independência

Teste de independência do Qui-quadrado

Objetivo: Testar a independência entre 2 variáveis, X e Y, que estão agrupadas em classes mutuamente exclusivas e exaustivas.

Procedimento

- **1.** Construir L classes de valores da v. a. $X: X_1, X_2, \ldots, X_L$;
- 2. Construir C classes de valores da v. a. $Y: Y_1, Y_2, \ldots, Y_C$;
- 3. Determinar as frequências absolutas simples observadas, O_{ij} , para cada par de valores (X, Y);
- **4.** Determinar as frequências absolutas estimadas, E_{ij} , para cada par (X, Y) tendo em conta a condição de independência.

Testes de independência do Qui-quadrado

A classificação dos elementos da amostra origina uma tabela de dupla entrada, denominada Tabela de Contingência:

	Y $Y_1 \qquad Y_2 \qquad \cdots \qquad Y_j \qquad \cdots \qquad Y_C$						
X	Y_1	Y_2		Y_j		Y_C	Total
X_1	O ₁₁	O ₁₂	•••	O_{1j} O_{2j}	•••	O_{1C}	$O_{1.}$
X_2	O_{21}	O_{22}	•••	O_{2j}	•••	O_{2C}	$O_{2.}$
•••	•••	•••	•••	•••	•••	•••	•••
X_i	$O_{i 1}$	O_{i2}	•••	O_{ij}	•••	O_{iC}	$O_{i.}$
				O_{Lj}			
Total	$O_{.1}$	$O_{.2}$	•••	$O_{.j}$	•••	$O_{.C}$	n

Teste de independência do Qui-quadrado

Notação:

```
n - n^o total de observações;
```

$$L$$
 - no de categorias da v. a. X ;

$$C$$
 - no de categorias da v. a. Y ;

$$O_{ij}$$
 - frequência absoluta observada na célula (i, j) ;

$$O_{i.}$$
 - frequência absoluta observada na categoria i da v. a. X ;

$$O_j$$
 - frequência absoluta observada na categoria j da v. a. Y ;

$$E_{ij} = \frac{O_{i.} \times O_{.j}}{n}$$
 - frequência estimada para a célula (i, j) .

Condições de aplicabilidade do teste:

- i) Não existirem mais de 20% das classes com E_{ij} < 5;
- ii) Todas as classes terem $E_{ij} \ge 1$.

Quando as condições não se verificam, agrupam-se classes adjacentes.

Teste de independência do Qui-quadrado

Hipóteses a testar:

 $oldsymbol{H_o}$: As variáveis X e Y são independentes vs

 H_1 : As variáveis X e Y não são independentes.

Estatística de teste:

$$\chi^{2} = \sum_{i=1}^{L} \sum_{j=1}^{C} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} \sim \chi^{2}_{(L-1)(C-1)}.$$

Regiões críticas:

R. A.:
$$\left[0; \chi^2_{(L-1)(C-1);1-\alpha} \right]$$
 e **R. R.:** $\left[\chi^2_{(L-1)(C-1);1-\alpha}; +\infty \right]$

Regra de decisão:

Rejeitar H_0 se $\chi^2_{obs} \geq \chi^2_{(L-1)(C-1);1-\alpha}$ - Teste unilateral direito

Testes de independência do Qui-quadrado

No caso em que a tabela de contingência é do tipo 2×2 , deve-se efetuar a **correção de Yates,** para melhorar a aproximação à distribuição χ^2 , o que consiste em considerar a seguinte estatística de teste:

$$\chi^{2} = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{(|O_{ij} - E_{ij}| - 0, 5)^{2}}{E_{ij}}$$

$$= \frac{n(|O_{11} O_{22} - O_{12} O_{21}| - 0, 5n)^{2}}{O_{1} O_{2} O_{11} O_{22}} \sim \chi^{2}_{(L-1)(C-1)=1}.$$

Nota: quando as condições de aplicabilidade não se verificam nas tabelas de 2x2 (amostra pequenas), aplica-se o teste Exato de Fisher.

Teste de independência do Qui-quadrado

Exercício 9: Com o objetivo de participarem numa dada atividade social, os estudantes de uma escola foram submetidos a dois testes: um psicotécnico e um sobre regras de conduta. Obtiveram-se os seguintes resultados:

	Teste Psicotécnico		
Regras de conduta	Aprovado	Reprovado	
Aprovado	54	73	
Reprovado	47	167	

Ao nível de significância de 10%, considera que existe relação entre os resultados obtidos nos dois testes? Se o nível de significância for 5%, mantém a mesma conclusão?

20

Teste de independência do Qui-quadrado

Exercício 9:

Teste regras de conduta * Teste Psicotécnico Crosstabulation

			Teste Psicotécnico			
			Aprovado	Reprovado	Total	
	Annovada	Count	54	47	101	
Teste regras de conduta	Aprovado	Expected Count	37,6	63,4	101,0	
	Reprovado	Count	73	167	240	
		Expected Count	89,4	150,6	240,0	
Total		Count	127	214	341	
Total		Expected Count	127,0	214,0	341,0	

 χ^2_{obs}

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	16,157 ^a	1	,000
Continuity Correction ^b	15,186	1	,000,
Likelihood Ratio	15,863	1	,000
Linear-by-Linear Association	16,110	1	,000
N of Valid Cases	341		

p-value

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 37,62.

b. Computed only for a 2x2 table