Příklady na procvičení numerických metod

1. Gaussovou eliminací s částečným výběrem hlavního prvku najděte řešení soustavy

$$2x + 2y - 4z = -2$$

 $5x + 2y + 3z = 2$
 $25x + 5y + 10z = -5$

Výsledky: $[x, y, z]^T = [-1, 2, 1]^T$

2. Gaussovou eliminací s částečným výběrem hlavního prvku najděte řešení soustavy

$$3x - 3y - 3z = -21$$

$$-2x + 3z = 8$$

$$10x + 2y + 5z = 8$$

Výsledky: $[x, y, z]^T - 1, 4, 2]^T$

3. Gaussovou eliminací s částečným výběrem hlavního prvku najděte řešení soustavy

$$5x + 2y + 2z = 11$$

$$20x - 4y + 5z = -10$$

$$4x - 2y = -6$$

Výsledky: $[x, y, z]^T = [1, 5, -2]^T$

4. Najděte LU rozklad matice

$$A = \begin{pmatrix} 1 & -4 & 2 \\ -2 & 10 & -5 \\ 1 & 2 & -2 \end{pmatrix}.$$

Pak pomocí nalezeného LU rozkladu najděte řešení soustavy rovnic

$$x - 4y + 2z = 0
-2x + 10y - 5z = 1
 x + 2y - 2z = 2$$

Výsledky:

$$L = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 3 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 1 & -4 & 2 \\ 0 & 2 & -1 \\ 0 & 0 & -1 \end{pmatrix}, \quad \left[x, y, z \right]^T = \left[2, 1, 1 \right]^T$$

5. Najděte LU rozklad matice

$$A = \begin{pmatrix} 1 & 2 & -2 \\ 3 & 5 & -3 \\ -2 & -6 & 12 \end{pmatrix}.$$

Pak pomocí nalezeného LU rozkladu najděte řešení soustavy rovnic

$$\begin{array}{rrrr}
 x + 2y - 2z &=& 4 \\
 3x + 5y - 3z &=& 9 \\
 -2x - 6y + 12z &=& -14
 \end{array}$$

Výsledky:

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -2 & 2 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 1 & 2 & -2 \\ 0 & -1 & 3 \\ 0 & 0 & 2 \end{pmatrix}, \quad [x, y, z]^T = \begin{bmatrix} -2, 3, 0 \end{bmatrix}^T$$

6. Najděte LU rozklad matice

$$A = \begin{pmatrix} 1 & 3 & -2 \\ 2 & 9 & 0 \\ -1 & 9 & 10 \end{pmatrix}.$$

Pak pomocí nalezeného LU rozkladu najděte řešení soustavy rovnic

$$x + 3y - 2z = 2$$

 $2x + 9y = 8$
 $-x + 9y + 10z = 6$

Výsledky:

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 4 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 1 & 3 & -2 \\ 0 & 3 & 4 \\ 0 & 0 & -8 \end{pmatrix}, \quad [x,y,z]^T = \begin{bmatrix} 4,0,1 \end{bmatrix}^T$$

7. Je dána soustava rovnic

$$x - 200 y + 2 z = 276$$

 $100 x - 3 y + 4 z = 314$
 $x - y + 500 z = 983$

Řešení soustavy najděte s přesností $\varepsilon = 0.01$ Jacobiho metodou, vyjděte z bodu (3; -1.5; 2). Je-li to potřeba, soustavu nejprve upravte tak, aby byla zaručena konvergence.

Výsledky:

x_i	y_i	z_i
3,0000	-1,5000	2,0000
3,0150	-1,3450	1,9570
3.0214	-1.3454	1.9573

Řešení je přibližně $x \doteq 3{,}02; y \doteq -1{,}35; z \doteq 1{,}96.$

8. Je dána soustava rovnic

$$x - 500 y + 2 z = 987$$

 $x - 3 y + 100 z = 321$
 $200 x - 3 y + 2 z = 567$

Řešení soustavy najděte s přesností $\varepsilon=0.01$ Jacobiho metodou, vyjděte z bodu (2.5; -2; 3). Je-li to potřeba, soustavu nejprve upravte tak, aby byla zaručena konvergence.

Výsledky:

x_i	y_i	z_i
2,5000	-2,0000	3,0000
2,7750	-1,9570	3,1250
2,7744	-1,9560	3,1235

Řešení je přibližně $x \doteq 2,77; y \doteq -1,96; z \doteq 3,12.$

9. Je dána soustava rovnic

$$500 x - 3 y + 2 z = 987$$

$$2 x - 3 y + 100 z = 123$$

$$x - 200 y + 2 z = 543$$

Řešení soustavy najděte s přesností $\varepsilon = 0.01$ Jacobiho metodou, vyjděte z bodu (2; -2,5; 1). Je-li to potřeba, soustavu nejprve upravte tak, aby byla zaručena konvergence.

Výsledky:

x_i	y_i	z_i
2,0000	-2,5000	1,0000
1,9550	-2,6950	1,1150
1,9534	-2,6941	1,1101

Řešení je přibližně $x \doteq 1,95; y \doteq -2,69; z \doteq 1,11.$

10. Je dána soustava rovnic

$$x - 3y + 100z = 123$$

 $200x - 3y + 2z = 765$
 $x - 500y + 2z = 987$

Řešení soustavy najděte s přesností $\varepsilon = 0.01$ Gauss-Seidelovou metodou, vyjděte z bodu (3,5; -2; 1). Je-li to potřeba, soustavu nejprve upravte tak, aby byla zaručena konvergence.

Výsledky:

x_i	y_i	z_i
3,5000	-2,0000	1,0000
3,7850	-1,9624	1,1333
3,7842	-1,9619	1,1333

Řešení je přibližně $x \doteq 3,78; y \doteq -1,96; z \doteq 1,13.$

11. Je dána soustava rovnic

$$500 x - 3 y + 2 z = 567$$

$$2 x - 3 y + 100 z = 123$$

$$x - 200 y + 2 z = 890$$

Řešení soustavy najděte s přesností $\varepsilon=0.01$ Gauss-Seidelovou metodou, vyjděte z bodu (1; -4.5; 1). Je-li to potřeba, soustavu nejprve upravte tak, aby byla zaručena konvergence.

Výsledky:

x_i	y_i	z_i
1,0000	-4,5000	1,0000
1,1030	-4,4345	1,0749
1,1031	-4,4337	1,0749

Řešení je přibližně $x \doteq 1,10; y \doteq -4,43; z \doteq 1,07.$

12. Je dána soustava rovnic

$$x - y + 500 z = 823$$

 $x - 100 y + 2 z = 276$
 $200 x - 3 y + 4 z = 354$

Řešení soustavy najděte s přesností $\varepsilon = 0.01$ Gauss-Seidelovou metodou, vyjděte z bodu (2; -3; 1,5). Je-li to potřeba, soustavu nejprve upravte tak, aby byla zaručena konvergence.

Výsledky:

x_i	y_i	z_i
2,0000	-3,0000	1,5000
1,6950	-2,7131	1,6372
1,6966	-2,7103	1,6372

Řešení je přibližně $x \doteq 1{,}70; y \doteq -2{,}71; z \doteq 1{,}64.$