Universal Soil Loss Equation (USLE)

Introduction

The Universal Soil Loss Equation (USLE) is a widely used mathematical model that describes soil erosion processes.

$$A = R \times K \times LS \times C \times P\left(metric: \frac{\underline{tonnes}}{\underline{ha}}\right)$$

- ✓ R rainfall Erosivity
- ✓ K soil erodibility;
- ✓ L slope length;
- √ S -slope steepness;
- ✓ C cover and management;
- ✓ P support practice.

This tutorial uses the K factor, derived from HWSD v1.2 database soil properties.

Soil Erodibility (K)

- Soil erodibility represents the effect of soil properties and soil profile characteristics on soil loss.
- Data source: Harmonized World Soil Database v 1.2 (https://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/)
- · Spatial coverage: World
- Pixel size: 30 arc-seconds (~ 1 km at the equator)
- Limitation: It can overestimate the soil erosion.

2. Data Acquisition

Step 1: Download HWSD Dataset

Go to: Harmonized World Soil Database v1.2

In the left sidebar, click on "Download data only"

Download:

- √ hwsd_raster.zip (holding raster file)
- √ hwsd.mdb (Microsoft Access metadata file)

Harmonized World Soil Database

Supplementary data
Terrain Data Description
Terrain Data
Land Cover Data
Land Cover Data Soil Qualities Description Soil Quality Data

Data Format Information

Harmonized World Soil Database

HWSD Database

The data available on this page is automatically installed with the HWSD Viewer, in a subdirectory called "Data" of the installation directory. The data is duplicated here for those who do not wish to install the viewer, or already have the viewer and only want to update or repair the database. If updates to the database are necessary and created, they will be documented here.

DATA FILES	DESCRIPTION	DATE	
HWSD RASTER.zip	Raster soil map in .bil file format	07.03.12	
HWSD.mdb	Soil Attribute Database (MS Access)	07.03.12	
HWSD META.mdb	Soil Attribute Database metadata	07.03.12	

If you have a version of the HWSD viewer installed and wish only to update the database, the files above can be copied into the "Data" directory of the installation directory (by default: "Program Files/HWSD_V1.xx\Data). In order to update the raster (HWSD_RASTER.zip) in the viewer, the cache directory must also be deleted. Note that with version 1.20, older versions of the viewer must be uninstalled and version 1.20 must be installed in order for the control of the viewer must be uninstalled and version 1.20 must be installed in order for the control of the viewer must be uninstalled and version 1.20 must be installed in order for the viewer must be uninstalled and version 1.20 must be installed and version 1.20 must be installed. be uninstalled, and version $1.20\ \text{must}$ be installed in order for the database to work with the viewer.

Updates and fixes in HWSD version 1.21 (dated 07.03.12)

- Bulk Density fixed for MU_GLOBAL 31418
 Sequence numbering fixed for MU_GLOBAL 31651
 Sequence number set for MU_GLOBAL 7000
 MU_SOURCE code for MU_GLOBAL 31800 changed to TNns1
- MU_SOURCE code for MU_SCOPAL 21000 dranged to Things representing an non-soil
 Error codes (999) removed from database and from raster map
 Older redundant mapping units that are no longer used on the raster map have been removed. Note that this means raster maps

3. Load and Clip the Raster in QGIS

Step 2: Load Raster in QGIS

Extract hwsd_raster.zip

Open QGIS, Layer \rightarrow Add Layer \rightarrow Add Raster Layer

Load the raster file

Step 3: Clip Raster to Your Area of Interest (AOI)

Open Processing Toolbox

Choose "Clip raster by mask layer"

Input layer: HWSD raster

Mask layer: e.g., your County or Study Area shapefile

Set output file path

Run

Step 4: Visualize Unique Soil Units

 $Right-click\ clipped\ raster\ o\ Properties\ o\ Symbology$

Render type: Palleted/Unique values

Use a color ramp to display distinct soil units

4. Extract Soil Attribute Data

Step 5: Identify Unique Raster Values

Note the unique raster values

Step 6: Get Soil Properties from Metadata

Open hwsd.mdb in Microsoft Access

Go to table: HWSD_DATA

For every unique raster value, locate and copy the row by searching in the ms access document

Paste output into an Excel file

Repeat the process for every unique raster value

5. Prepare Data in Excel

Step 7: Export Significant Columns

Export the following columns:

ID, MU_GLOBAL, T_SAND, T_SILT, T_CLAY, T_OC

Step 8: Calculate Organic Matter (OM)

Make a new column in Excel:

Formula: $OM = 1.72 \times T_OC$

J2	J2 \checkmark : $\times \checkmark f_x$ =1.72*12									
	Α	В	С	D	Е	F	G	Н	ı	J
1	ID	MU_GLOBAL	MU_SOURCE1	MU_SOURCE2	ISSOIL	T_SAND	T_SILT	T_CLAY	T_OC	OM
2	17394	16906	ET886		1	30	28	42	0.78	1.3416
3	17405	16911	ET892		1	43	29	28	0.39	0.6708
4	18077	17415	KE19		1	33	16	51	1.08	1.8576
5	18099	17427	KE20		1	22	21	57	1.65	2.838
6	18112	17438	KE21		1	42	25	33	1.48	2.5456
7	18127	17449	KE22		1	19	22	59	1.03	1.7716
8	18153	17460	KE23		1	11	18	71	1.78	3.0616
9	18198	17482	KE25		1	84	8	8	0.39	0.6708
10	18220	17494	KE260		1	55	15	30	1.15	1.978
11	18264	17526	KE29		1	19	24	57	3.5	6.02
12	18284	17538	KE30		1	36	25	39	2.18	3.7496
13	18346	17571	KE33		1	52	15	33	0.84	1.4448
14	18426	17637	KE39		1	57	14	29	1.33	2.2876
15	18496	17678	KE69		1	26	10	64	1.17	2.0124
16	18503	17682	KE72		1	24	14	62	1	1.72
17	18514	17690	KE8		1	81	8	11	0.54	0.9288
18	18524	17696	KE85		1	44	16	40	1.38	2.3736
19	18527	17698	KE87		1	4	26	70	3.18	5.4696
20	18528	17699	KE88		1	37	16	47	1.19	2.0468

Step 9: Assign Texture Class

Apply T_SAND, T_SILT, T_CLAY, and apply Roose (1996) table to acquire a Textural Class (e.g., sandy clay loam, silty clay, etc.)

Insert this as a new column: TEXTURE_CLASS

Step 10: Assign Mean K Value

Apply the Roose (1996) table to acquire a mean K value on:

Texture class

OM content

Insert a new column in Excel: K_VALUE

Α	В	С	D	Е	F	G	Н	1	J	K	L
ID	MU_GLOBAL	MU_SOURCE1	MU_SOURCE2	ISSOIL	T_SAND	T_SILT	T_CLAY	T_OC	ОМ	TEXTURE_CLASS	K_VALUE
17394	16906	ET886		1	30	28	42	0.78	1.3416	Clay	0.24
17405	16911	ET892		1	43	29	28	0.39	0.6708	Clay Loam	0.33
18077	17415	KE19		1	33	16	51	1.08	1.8576	Clay	0.24
18099	17427	KE20		1	22	21	57	1.65	2.838	Clay	0.21
18112	17438	KE21		1	42	25	33	1.48	2.5456	Clay Loam	0.28
18127	17449	KE22		1	19	22	59	1.03	1.7716	Clay	0.24
18153	17460	KE23		1	11	18	71	1.78	3.0616	Clay	0.21
18198	17482	KE25		1	84	8	8	0.39	0.6708	Loamy Sand	0.05
18220	17494	KE260		1	55	15	30	1.15	1.978	Sandy Clay Loam	0.2
18264	17526	KE29		1	19	24	57	3.5	6.02	Clay	0.21
18284	17538	KE30		1	36	25	39	2.18	3.7496	Clay Loam	0.28
18346	17571	KE33		1	52	15	33	0.84	1.4448	Sandy Clay Loam	0.2
18426	17637	KE39		1	57	14	29	1.33	2.2876	Sandy Clay Loam	0.2
18496	17678	KE69		1	26	10	64	1.17	2.0124	Clay	0.21
18503	17682	KE72		1	24	14	62	1	1.72	Clay	0.24
18514	17690	KE8		1	81	8	11	0.54	0.9288	Loamy Sand	0.05
18524	17696	KE85		1	44	16	40	1.38	2.3736	Clay Loam	0.28
18527	17698	KE87		1	4	26	70	3.18	5.4696	Clay	0.21
18528	17699	KE88		1	37	16	47	1.19	2.0468	Clay	0.21

6. Combine K Values to QGIS Layer

Step 11: Raster to Polygon

 $Raster \rightarrow Conversion \rightarrow Polygonize (Raster to Vector)$

Input: Clipped raster layer

Output: A vector polygon shapefile in MU_GLOBAL units

Step 12: Join Excel Data to Polygon Layer in QGIS

- ✓ Convert the Excel file to CSV format.
- ✓ Load the polygon layer and the CSV file into QGIS.
- ✓ Ensure both layers contain a common field (used as a common key).
- ✓ Open the polygon layer's attribute table and confirm the existence of the K_VALUE field.
- ✓ Use the "Join Attributes by Field Value" tool:
 - o Input Layer: polygon layer
 - o Table Field: Unique Field
 - o Input Layer2: CSV file
 - o Table Field2: Unique Field
 - Layer2 fields to copy: K_VALUE
 - $\circ\quad$ Join Type: Take attributes of the first matching feature only

The tool populates the existing K_VALUE field in the polygon layer with matching values from the CSV.

7. Convert the polygons to raster

Step 13: Convert Polygon to Raster (Rasterize K_VALUE Field)

- ✓ In the Processing Toolbox, search for and open "Rasterize (vector to raster)".
- ✓ For the Input layer, select your polygon layer.
- ✓ Set the Field to use for a burn-in value to K_VALUE.
- ✓ Define the Output raster size units (e.g., pixel size in map units per pixel).
 - o Common values: 10, 30, or 100 meters, depending on your scale and need.
 - o Use the same as the hwsd raster for the vertical and horizontal resolution
 - Specify the extent as your area of intrest
- ✓ Specify the Output file location and give the raster a meaningful name (e.g., K_factor_raster.tif).
- ✓ Click Run.

Step 14: Symbolize K Factor

 $Right-click\ polygon\ layer\ o\ Properties\ o\ Symbology$

Render type: Categorized or Graduated

Choose a color ramp, e.g., Green-Yellow-Red for increasing erodibility

Step 15: Final Map Preparation

Go to Project \rightarrow New Print Layout

Insert:

- ✓ Title
- ✓ Legend
- ✓ Scale bar
- ✓ North arrow
- ✓ Labels (use on a case-by-case basis)

Export the map as PDF, JPEG, and PNG

Final Output

You now have ready a high-resolution map of the Soil Erodibility (K) Factor to be used in further USLE-based soil erosion modeling in QGIS.

References

- QGIS Project. (2024). *QGIS training manual*. QGIS Documentation.

 https://docs.qgis.org/latest/en/docs/training_manual/
- QGIS Development Team. (2024). *QGIS Geographic Information System* (Version 3.x) [Software]. Open Source Geospatial Foundation. https://qgis.org
- Roose, E. (1996). *Land husbandry: Components and strategy*. FAO Soils Bulletin No. 70. Food and Agriculture Organization of the United Nations.
- United States Department of Agriculture Natural Resources Conservation Service (USDA-NRCS). (1993). *Soil survey manual*. U.S. Government Printing Office.
- Wischmeier, W. H., & Smith, D. D. (1978).

 Predicting rainfall erosion losses: A guide to conservation planning (Agriculture
 Handbook No. 537). U.S. Department of Agriculture.