Probability 1

Sure, let's discuss the formulas and explanations for the Normal Distribution, Standard Normal Distribution (Z Distribution), F-Distribution, and Chi-Square Distribution.

1. **Normal Distribution:**

The probability density function (PDF) of a normal distribution is given by:

Where:

- $\(x\)$ is a random variable.
- \(\mu\) is the mean (average) of the distribution.
- \(\sigma\) is the standard deviation, representing the spread of the distribution.

The normal distribution is symmetric and bell-shaped, and about 68% of the data falls within one standard deviation of the mean, 95% within two standard deviations, and 99.7% within three standard deviations.

2. **Standard Normal Distribution (Z Distribution):**

The standard normal distribution is a special case of the normal distribution where the mean ($\(\ullet)$) is 0 and the standard deviation ($\(\ullet)$) is 1. The probability density function for the standard normal distribution is denoted as $\(Z\)$ and is often used in statistical tables:

 $[f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}]$

3. **F-Distribution:**

The probability density function (PDF) of an F-distribution with (d_1) and (d_2) degrees of freedom is given by:

Where:

- $\(x\)$ is a random variable.
- \(\Gamma\) is the gamma function.
- $\(d_1\)$ and $\(d_2\)$ are the degrees of freedom.

The F-distribution is commonly used in analysis of variance (ANOVA) and regression analysis.

4. **Chi-Square Distribution:**

The probability density function (PDF) of a chi-square distribution with $\(k\)$ degrees of freedom is given by:

 $[f(x; k) = \frac{x^{\left(x^{\left(x^{k}^{2} - 1\right)} e^{-\frac{x}{2}}}{2^{\left(x^{k}^{2}\right)} Gamma\left(x^{k}^{2}\right)}] }$

Where:

- $\(x\)$ is a random variable.
- \(\Gamma\) is the gamma function.
- \(k\) is the degrees of freedom.

The chi-square distribution is commonly used in hypothesis testing and is particularly associated with the chi-square test for independence and the chi-square goodness-of-fit test.

These distributions are fundamental in statistical theory and have widespread applications in various fields, including hypothesis testing, confidence intervals, and modeling real-world phenomena.

1. Normal Distribution with NumPy and Pandas:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

```
# Generate random data from a normal distribution
mean = 0
std_dev = 1
num_samples = 1000
normal_data = np.random.normal(mean, std_dev, num_samples)
# Create a DataFrame
df_normal = pd.DataFrame({'Value': normal_data})
# Plot the histogram
plt.hist(df_normal['Value'], bins=30, density=True, alpha=0.5, color='b')
# Plot the normal distribution curve for comparison
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = np.exp(-0.5 * ((x - mean) / std_dev) ** 2) / (std_dev * np.sqrt(2 * np.pi))
plt.plot(x, p, 'k', linewidth=2)
plt.title('Normal Distribution')
plt.show()
```

2. 2. Standard Normal Distribution (Z Distribution) with NumPy

```
# Generate random data from a standard normal distribution

num_samples = 1000

standard_normal_data = np.random.randn(num_samples)

# Create a DataFrame
```

```
df_standard_normal = pd.DataFrame({'Value': standard_normal_data})
# Plot the histogram
plt.hist(df_standard_normal['Value'], bins=30, density=True, alpha=0.5, color='b')
# Plot the standard normal distribution curve for comparison
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = np.exp(-0.5 * x**2) / np.sqrt(2 * np.pi)
plt.plot(x, p, 'k', linewidth=2)
plt.title('Standard Normal Distribution')
plt.show()
3. F-Distribution and Chi-Square Distribution with NumPy:
from scipy.stats import f, chi2
# F-distribution
d1, d2 = 5, 10
f_data = f.rvs(d1, d2, size=num_samples)
# Chi-square distribution
degrees_of_freedom = 8
chi2_data = chi2.rvs(degrees_of_freedom, size=num_samples)
# Create DataFrames
df_f = pd.DataFrame({'Value': f_data})
df_chi2 = pd.DataFrame({'Value': chi2_data})
# Plot histograms
```

```
plt.subplot(1, 2, 1)

plt.hist(df_f['Value'], bins=30, density=True, alpha=0.5, color='b')

plt.title('F-Distribution')

plt.subplot(1, 2, 2)

plt.hist(df_chi2['Value'], bins=30, density=True, alpha=0.5, color='g')

plt.title('Chi-Square Distribution')

plt.tight_layout()

plt.show()
```

4. bars and charts

Certainly! Let's go through examples of creating basic graph representations, including Bar Chart, Histogram, Box Plot, and Scatterplot, along with examples of Probability Distributions.

1. Bar Chart with NumPy and Matplotlib:

```
pythonCopy code
```

import numpy as np import matplotlib.pyplot as plt # Sample data categories = ['Category A', 'Category B', 'Category C'] values = [20, 35, 15] # Create a bar chart plt.bar(categories, values, color='blue') plt.title('Bar Chart') plt.xlabel('Categories') plt.ylabel('Values') plt.show()

2. Histogram with NumPy and Matplotlib:

pythonCopy code

Generate random data for a histogram data = np.random.randn(|1000) | # Create a histogram plt.hist(data, bins=|30|, color=|green|, alpha=|0.7|) plt.title(|HistogramCertainly! Let's go through examples of creating basic graph representations, including Bar Chart, Histogram, Box Plot, and Scatterplot, along with examples of Probability Distributions.

1. Bar Chart with NumPy and Matplotlib:

python

Copy code

import numpy as np

import matplotlib.pyplot as plt

Sample data

categories = ['Category A', 'Category B', 'Category C'] values = [20, 35, 15]

```
# Create a bar chart
plt.bar(categories, values, color='blue')
plt.title('Bar Chart')
plt.xlabel('Categories')
plt.ylabel('Values')
plt.show()
2. Histogram with NumPy and Matplotlib:
python
Copy code
# Generate random data for a histogram
data = np.random.randn(1000)
# Create a histogram
plt.hist(data, bins=30, color='green', alpha=0.7)
plt.title('Histogram')
plt.xlabel('Values')
plt.ylabel('Frequency')
plt.show()
3. Box Plot with Pandas and Matplotlib:
python
Copy code
import pandas as pd
# Generate random data for a box plot
data_box = np.random.randn(100, 3)
# Create a DataFrame
df_box = pd.DataFrame(data_box, columns=['A', 'B', 'C'])
# Create a box plot
df_box.boxplot()
plt.title('Box Plot')
plt.ylabel('Values')
plt.show()
4. Scatterplot with Pandas and Matplotlib:
python
Copy code
# Generate random data for a scatterplot
x_data = np.random.rand(50)
y_{data} = 2 * x_{data} + 1 + 0.1 * np.random.randn(50)
# Create a DataFrame
df_scatter = pd.DataFrame({'X': x_data, 'Y': y_data})
# Create a scatterplot
plt.scatter(df_scatter['X'], df_scatter['Y'], color='red')
plt.title('Scatterplot')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
5. Probability Distributions with NumPy and Matplotlib:
python
Copy code
from scipy.stats import norm, uniform
# Generate data for probability distributions
data_normal = norm.rvs(size=1000)
```

```
data_uniform = uniform.rvs(size=1000)

# Create histograms for normal and uniform distributions
plt.subplot(1, 2, 1)
plt.hist(data_normal, bins=30, color='blue', alpha=0.7)
plt.title('Normal Distribution')

plt.subplot(1, 2, 2)
plt.hist(data_uniform, bins=30, color='orange', alpha=0.7)
plt.title('Uniform Distribution')

plt.tight_layout()
plt.show()') plt.xlabel('Values') plt.ylabel('Frequency') plt.show()
```

3. Box Plot with Pandas and Matplotlib:

```
pythonCopy code
```

import pandas as pd # Generate random data for a box plot data_box = np.random.randn(100, 3) # Create a DataFrame df_box = pd.DataFrame(data_box, columns=['A', 'B', 'C']) # Create a box plot df_box.boxplot() plt.title('Box Plot') plt.ylabel('Values') plt.show()

4. Scatterplot with Pandas and Matplotlib:

```
pythonCopy code
```

Generate random data for a scatterplot x_data = np.random.rand(50) y_data = 2 * x_data + 1 + 0.1 * np.random.randn(50) # Create a DataFrame df_scatter = pd.DataFrame({ 'X' : x_data, 'Y' : y_data}) # Create a scatterplot plt.scatter(df_scatter['X'], df_scatter['Y'], color= 'red') plt.title('Scatterplot') plt.xlabel('X') plt.ylabel('Y') plt.show()

5. Probability Distributions with NumPy and Matplotlib:

pythonCopy code

from scipy.stats import norm, uniform # Generate data for probability distributions data_normal = norm.rvs(size= 1000) data_uniform = uniform.rvs(size= 1000) # Create histograms for normal and uniform distributions plt.subplot(1, 2, 1) plt.hist(data_normal, bins= 30, color= blue', alpha= 0.7) plt.title('Normal Distribution') plt.subplot(1, 2, 2) plt.hist(data_uniform, bins= 30, color= 'orange', alpha= 0.7) plt.title('Uniform Distribution') plt.tight_layout() plt.show()