In the equations n=ni*exp(V/Vt) and p=ni*exp(-V/Vt), the fermi energy level (Ef) is 0. So, use Ef = 0 while drawing the energy band diagram.

Use Newton-Raphson method to solve the poisson's equation for the given devices under thermal equilibrium condition. Use finite central difference scheme for numerical solutions.

The poisson's equation is

$$rac{d^2 V}{dx^2} = -rac{
ho}{arepsilon}$$
 ; where $oldsymbol{
ho} = oldsymbol{q} imes (N_D^+ - N_A^- + oldsymbol{p} - oldsymbol{n})$;

Use Maxwell-Bolzmann statistics for electron (n) and hole (p) concentrations. Consider complete ionization of donor (N_D) and acceptor (N_A) dopants. Use intrinsic carrier concentration $n_i=1.45\times 10^{10}\ /cm^3$, relative permittivity $\varepsilon_r=12$, energy band gap $E_G=1.12\ eV$. Temperature is 300 kelvin.

Plot the following profiles as function of X (i.e. spatial variation) for all the questions:

- a) Potential (V)
- b) Electric field (E)
- c) Charge concentration (ρ/q)
- d) Electron (n) and hole (p) concentrations
- e) Energy band diagram depicting conduction band minimum (E_c), valence band maximum (E_v), mid gap energy level (E_{mid}), fermi energy level E_F .

Q1.

A P-N junction diode with a) abrupt junction b) linearly graded junction. $N_D=N_A=10^{16}\ /cm^3.$

Compare the V vs X graph with the one obtained in Assignment 2 using depletion approximation. Give a qualitative description of your observation.

Q2.

An N^+ -N abrupt junction with doping concentrations 10^{17} /cm³ and 10^{16} /cm³ on the respective sides. Dimensions are same as in Q1 with P region replaced by N^+ region. Compare the E vs X profile with the one in Q1. Explain your observation.

Q3.

An N⁺-P-N⁺ structure with abrupt junctions. Doping in N⁺ regions is $N_D = 10^{17}/cm^3$ and that in P region is $N_A = 10^{16}/cm^3$. Length of N⁺ regions is 10^{-6} m each and that of P region is varied over the following range: (1, 0.9, 0.8, 0.7, 0.6) x 10^{-6} m. Show the variation of (V vs X) as function of P region length (L_P). Give a qualitative description of your observation.