Adventure Works Customer Prediction Analysis

Team Zebra

Presentation Outline

- 1. Data Cleaning
- 2. Data Visualization
- 3. Predictive Models
- 4. Conclusions and Action Items

Data Cleaning

- Visual sanity check
- Remove duplicate values and check for errors in the data
- Discard useless features (Zip Code, Title, Name, etc)
- Check for outliers
- Compute any necessary data such as age
- Join the datasets

Correlations

Bike Buyers highly correlated with:

- Average monthly spending
- Number of children at home

Average Monthly Spending highly correlated with:

- Number of children at home
- Yearly Income
- Average Monthly Spending

Correlations

Bike Buyers highly correlated with:

- Average monthly spending
- Number of children at home

Average Monthly Spending highly correlated with:

- Number of children at home
- Yearly Income
- Average Monthly Spending

Data Exploration

Correlations between numerical outcomes.

Data Exploration

Gender

Number of Children

Customer Demographics

Create An Indicator Variable With R-Script

Variable = Income * isMale/Female * isChildren at Home?

```
7 # Generate 12 Income Labels For Specific Groups
8 m_zero_inc <- ifelse(dataset1$Gender == 'M' & dataset1$NumberChildrenAtHome == '0',dataset1$YearlyIncome,0)
9 m_one_inc <- ifelse(dataset1$Gender == 'M' & dataset1$NumberChildrenAtHome == '1',dataset1$YearlyIncome,0)
10 m_two_inc <- ifelse(dataset1$Gender == 'M' & dataset1$NumberChildrenAtHome == '2',dataset1$YearlyIncome,0)
11 m_three_inc <- ifelse(dataset1$Gender == 'M' & dataset1$NumberChildrenAtHome == '3',dataset1$YearlyIncome,0)
12 m_four_inc <- ifelse(dataset1$Gender == 'M' & dataset1$NumberChildrenAtHome == '4',dataset1$YearlyIncome,0)
13 m_five_inc <- ifelse(dataset1$Gender == 'M' & dataset1$NumberChildrenAtHome == '5',dataset1$YearlyIncome,0)
14
15 f_zero_inc <- ifelse(dataset1$Gender == 'F' & dataset1$NumberChildrenAtHome == '0',dataset1$YearlyIncome,0)
16 f_one_inc <- ifelse(dataset1$Gender == 'F' & dataset1$NumberChildrenAtHome == '1',dataset1$YearlyIncome,0)
17 f_two_inc <- ifelse(dataset1$Gender == 'F' & dataset1$NumberChildrenAtHome == '2',dataset1$YearlyIncome,0)
18 f_three_inc <- ifelse(dataset1$Gender == 'F' & dataset1$NumberChildrenAtHome == '3',dataset1$YearlyIncome,0)
19 f_four_inc <- ifelse(dataset1$Gender == 'F' & dataset1$NumberChildrenAtHome == '1',dataset1$YearlyIncome,0)
20 f_five_inc <- ifelse(dataset1$Gender == 'F' & dataset1$NumberChildrenAtHome == '1',dataset1$YearlyIncome,0)</pre>
```

*Allows Different Slopes for Groups In Previous Slide

Groups of Predictors

3 Key Predictive Features

 Gender, Number of Children, Income- Interaction Term (*From Previous Slide)

9 Less Predictive Features

 Marital Status, Number of Cars, City, State/Province, Country/Region, Education, Occupation, HomeOwner, Age

Importance of Key Features in Model

Nested Model Without Key Features:

Full Model Including Key Features:

Metrics

Metrics

Mean Absolute Error	19.745669	 Mean Absolute Error	0.939415
Root Mean Squared Error	25.897131	 Root Mean Squared Error	1.22055
Relative Absolute Error	0.60587	 Relative Absolute Error	0.028825
Relative Squared Error	0.33938	 Relative Squared Error	0.000754
Coefficient of Determination	0.66062	 Coefficient of Determination	0.999246

Residual Plot From Prediction Algorithm: Only Key Features Used

Classification of Bike Buyers

Algorithm Selection Process

Compare Models In Parallel On Same Features

Conclusions

- Males who have higher income will spend more
- Within the male group, spending increases with more children
- We see the same trends with females, although females spend less overall
- Bottom line we want to target males with higher income and more children. However, there is a sweet spot where we should switch and target females