Bayesian Designs for Phase II Clinical Trials

Yalin Zhu
Biostatistics and Data Management
Regeneron Pharmaceuticals Inc.
yalin.zhu@regeneron.com

August 9, 2016

- 1 Introduction for Bayesian designs
- 2 Practical Examples
- Conclusions and Further Discussions

Introduction for Bayesian designs

Overview of the current clinical trials

Average Cost per Patient: Oncology vs. All Rx categories (2011)

- Phase I: \$73000 (vs. \$36000)
- Phase II: \$57000 (vs. \$47500)
- Phase III: \$66000 (vs. \$47000)

Overall Success Rates (2003-2011)

- 6.7% of Phase I oncology entries were approved
- 10% of Phase I entries in all Rx categories were approved

Phase III Success Rates (2003-2010)

• 34% of trials achieved statistical significance in primary endpoints

1

¹Dirk et al. (2016)

Why Using Bayesian Methods in Phase II trials?

Phase II clinical trials goals:

- Obtain a precise estimate of the response rate of the new drug
- $oldsymbol{0}$ make ${
 m GO/NO}$ GO decisions for further testing in a phase III trial.

Advantages of **B**ayesian over **F**requentist:

- Bayesian methods are natrual and easy to interpret.
- 2 Bayesian designs allow us to sequentially monitor the trials.
- There is a bigger opportunity to stop trials earlier. Save money!

Note: In the early phase II development of the oncology drugs, most trials are **open label**, **single-arm** studies.

Traditional Approaches in Phase II Oncology Study

$$H_0: p \le p_0 \text{ versus } H_1: p \ge p_1 = p_0 + \delta.$$

$$X_1 \sim Bin(n_1, p), \ X_2 \sim Bin(n_2, p) \ and \ n = n_1 + n_2.$$

- $PET(p) = Pr(X_1 \le r_1) = \sum_{x_1=0}^{r_1} {n_1 \choose x_1} p^x (1-p)^{n_1-x_1}$
- $E(N|p) = PET(p)n_1 + (1 PET(p))n$
- Power function: $\beta(p) = Pr(X_1 > r_1 \cap X_1 + X_2 > r)$
- Gehan's Two-stage Design (1961) Cited by 664
 - "14+11". Simplicity.
- Simon's Two-stage Design (1989) Cited by 2612
 - Early stop for futility only, two criteria (minimax and optimal) for selecting sample sizes and stop boundaries. Simon's design is the most popular design method in phase II oncology study.
- Jung's Admissible Design (2004)
 - Aim to minimize linear combination of the expected and maximum

Search Criteria

Under the constraints on **type I error** $(\beta(p_0) \leq \alpha)$ and **power** $(\beta(p_1) \geq power)$, the design parameters (n_1, r_1, n, r) can be searched to meet one of the following criteria:

• Optimal: minimize the expected sample size $E(N|p_0)$

Search Criteria

Under the constraints on **type I error** $(\beta(p_0) \leq \alpha)$ and **power** $(\beta(p_1) \geq power)$, the design parameters (n_1, r_1, n, r) can be searched to meet one of the following criteria:

- Optimal: minimize the expected sample size $E(N|p_0)$
- Minimax: minimize the maxumum sample size $n_1 + n_2$.

Search Criteria

Under the constraints on **type I error** $(\beta(p_0) \leq \alpha)$ and **power** $(\beta(p_1) \geq power)$, the design parameters (n_1, r_1, n, r) can be searched to meet one of the following criteria:

- Optimal: minimize the expected sample size $E(N|p_0)$
- Minimax: minimize the maxumum sample size $n_1 + n_2$.
- Admissible: minimize the Bayes risk via convex hull (contains Optimal and Minimax designs).

Toolkits for Simon's Design (I):

• R function ph2simon in package clinfun.

```
library(clinfun)
ph2simon(pu=0.15, pa=0.3, ep1 = 0.05, ep2=0.1, nmax = 100)
##
##
   Simon 2-stage Phase II design
##
## Unacceptable response rate: 0.15
## Desirable response rate: 0.3
## Error rates: alpha = 0.05; beta = 0.1
##
##
          r1 n1 r n EN(p0) PET(p0)
## Optimal 5 30 17 82 45.05 0.7106
## Minimax 6 42 14 64 51.80 0.5545
```

Toolkits for Simon's Design (II):

However, the function does not provide the information of type I error, power. We also want to find the admissible designs.

 We build a function binom.design including the class of admissible designs, which provides the operating characteristic information and visualization options for the design selections.

Example output

Two-stage Designs


```
##
                         n EN.pO. PET.pO.
                                            error
                                                   power
## Optimal
                  30
                     17
                        82
                            45.05 0.7106 0.04609 0.9007
  Admissible
                5 31 16 76
                            45.28 0.6827 0.04695 0.9037
  Admissible.1
                  36
                     15 70
                            45.86
                                   0.7099 0.04655 0.9001
                                   0.5545 0.04846 0.9003
## Minimax
                  42 14 64
                            51.80
```

Bayesian: Sequential Monitor

Prior:

$$p \sim Beta(a, b)$$
.

Observed Data (likelihood):

$$x \sim Binomial(n, p)$$
.

Posterior:

$$p|x \sim Beta(a+x,b+n-x).$$

• Predictive:

$$Y|x \sim Beta - Binomial(N_{max} - n, a + x, b + n - x)$$

Prior and posterior distributions (Web tool)

We build a website using Shiny, it help look into the relationship among prior, observed data and posteror distribution.

https://allen.shinyapps.io/Beta_Bayes_Prior/

Simulation Example

Consider *objective response rate* (ORR) as the primary endpoint with the following hypotheses:

$$H_0: ORR \leq 15\%$$
 versus $H_1: ORR > 15\%$.

Prior: Beta(0.5,0.5)

Simulation Example (II)

We can observe after 10 patients enrolled, the difference between posterior and true response rate reduced to a stable level below 3%.

Prior: Beta(0.5,0.5)

Prior selection: Non-informative priors

Jeffery prior:

- a=0.5
- b=0.5
- The prior sample size is 1, mean = 0.5, variance = 0.125 (Data dominate)
- **Remark**: Compared Unif(0,1) prior, whose variance is 1/12=0.0833, Jeffery prior is more flat and less informative.

Optimist's prior:

- $a = ORR_{prior} + 1$
- $b = (1 ORR_{prior}) + 1$
- The prior sample size = 3, centered around ORR_{prior} .
- Such a prior distribution is sufficiently vague to allow for the possibility that ORR may take any value in the range 0 < ORR < 1.

Prior selection: Informative priors:

- Based on prior ORR and Sample size ("ORR+N"):
 - $a = ORR_{prior} + 1 + N_{prior}ORR_{prior}$ • $b = (1 - ORR_{prior}) + 1 + N_{prior}(1 - ORR_{prior})$
 - The prior sample size $= 3 + N_{prior}$.
 - It is similar to use mean= ORR_{prior} and variance= $\frac{ORR_{prior}(1-ORR_{prior})}{N_{prior}}$, where the sample size = $N_{prior}-1$
- Based on prior ORR and Width of confidence interval ("ORR+W"):
 - $ORR_{prior} = \frac{a}{a+b}$ • $W_{95} = F^{-1}(0.975; a, b) - F^{-1}(0.025; a, b)$
- Solve the non-linear equations for a and b

GO / NO GO Decision: Posterior Probability

$$PostP = Pr(p > p_0|x)$$

Algorithm 1

- Step 1: Specify the upper and lower probability cutoffs θ_U and θ_L . Typically, $\theta_U \in [0.9, 1]$ for efficacy and $\theta_L \in [0, 0.05]$ for futility, true null response rate p_0 .
- Step 2: Let

$$S_U = \min\{x \in \mathbb{N} : PostP > \theta_U\}$$

and

$$S_L = \max\{x \in \mathbb{N} : PostP < \theta_L\}$$

- **Step 3:** Make decisions after observing another *x* responses out of *n* patients:
 - If $x \ge S_U$, then stop the trial for efficacy;
 - if $x \leq S_L$, then stop the trial for futility;
 - otherwise, continue the trial until N_{max} reached.

GO / NO GO Decision: Predictive Probability

$$PredP = Pr_{Y|x} \{ Pr(p > p_0|x, Y) \ge \theta_T \}$$

Algorithm 2

- Step 1: Specified the upper and lower probability cutoffs θ_U and θ_L , typically, $\theta_U \in [0.9, 1]$ for efficacy and $\theta_L \in [0, 0.05]$ for futility. Specified cutoff θ_T for the future y patients, typically, $\theta_T \in [0.8, 1]$. Set true null response rate p_0 a pre-specified value.
- **Step 2:** Given *x* obwervations, let

$$S_U = \min\{x + y \in \mathbb{N} : PredP > \theta_U\}$$

and

$$S_L = \max\{x + y \in \mathbb{N} : PredP < \theta_L\}$$

be the upper and lower decision boudries based on the number of observed responses.

◆□ → ◆同 → ◆ □ → ○ □ ◆ ○ ○

GO / NO GO Decision: Predictive Probability

$$PredP = Pr_{Y|X} \{ Pr(p > p_0|x, Y) \ge \theta_T \}$$

$$= \sum_{y=0}^{N_{max}-n} I[Pr(p > p_0|x, Y = y) \ge \theta_T] \times Pr(Y = y|x).$$

Algorithm 2 (Cont.)

- **Step 3:** Make decisions after observing another *x* responses out of *n* patients:
 - If $x \geq S_U$, then stop the trial for efficacy ;
 - if $x \leq S_L$, then stop the trial for futility;
 - ullet otherwise, continue the trial until N_{max} reached.

Remark: If there were no indicator function in the formula, the PredP simply reduces to the PostP after averaging out the unobserved Y.

$$\sum_{v=0}^{N_{max}-n} Pr(p > p_0|x, Y = y) \times Pr(Y = y|x) = Pr(p > p_0|x)$$

Practical Examples

 Data reference: R2810 - RECIST (verson 1.1) Overall Response Investigator (PD, SD, CR or PR)

- Data reference: R2810 RECIST (verson 1.1) Overall Response Investigator (PD, SD, CR or PR)
- Aim of study: According to current data and prior competitors' information, make interim analysis, determine suitable stopping rule.

- Data reference: R2810 RECIST (verson 1.1) Overall Response Investigator (PD, SD, CR or PR)
- **Aim of study**: According to current data and prior competitors' information, make interim analysis, determine suitable stopping rule.
- Study design:

- Data reference: R2810 RECIST (verson 1.1) Overall Response Investigator (PD, SD, CR or PR)
- **Aim of study**: According to current data and prior competitors' information, make interim analysis, determine suitable stopping rule.
- Study design:
 - Two-stage Design: Admissible designs

- Data reference: R2810 RECIST (verson 1.1) Overall Response Investigator (PD, SD, CR or PR)
- **Aim of study**: According to current data and prior competitors' information, make interim analysis, determine suitable stopping rule.
- Study design:
 - Two-stage Design: Admissible designs
 - Sequential monitor:

- Data reference: R2810 RECIST (verson 1.1) Overall Response Investigator (PD, SD, CR or PR)
- Aim of study: According to current data and prior competitors' information, make interim analysis, determine suitable stopping rule.
- Study design:
 - Two-stage Design: Admissible designs
 - Sequential monitor:
 - Posterior probability

- Data reference: R2810 RECIST (verson 1.1) Overall Response Investigator (PD, SD, CR or PR)
- Aim of study: According to current data and prior competitors' information, make interim analysis, determine suitable stopping rule.
- Study design:
 - Two-stage Design: Admissible designs
 - Sequential monitor:
 - Posterior probability
 - Predictive probability.

- Data reference: R2810 RECIST (verson 1.1) Overall Response Investigator (PD, SD, CR or PR)
- **Aim of study**: According to current data and prior competitors' information, make interim analysis, determine suitable stopping rule.
- Study design:
 - Two-stage Design: Admissible designs
 - Sequential monitor:
 - Posterior probability
 - 2 Predictive probability.
- Outcome measure: ORR is determined by the proportion of patients with best overall response of CR or PR among patients in SAF.

- Data reference: R2810 RECIST (verson 1.1) Overall Response Investigator (PD, SD, CR or PR)
- **Aim of study**: According to current data and prior competitors' information, make interim analysis, determine suitable stopping rule.
- Study design:
 - Two-stage Design: Admissible designs
 - Sequential monitor:
 - Posterior probability
 - Predictive probability.
- Outcome measure: ORR is determined by the proportion of patients with best overall response of CR or PR among patients in SAF.
- Prior information:

- Data reference: R2810 RECIST (verson 1.1) Overall Response Investigator (PD, SD, CR or PR)
- **Aim of study**: According to current data and prior competitors' information, make interim analysis, determine suitable stopping rule.
- Study design:
 - Two-stage Design: Admissible designs
 - Sequential monitor:
 - Posterior probability
 - Predictive probability.
- Outcome measure: ORR is determined by the proportion of patients with best overall response of CR or PR among patients in SAF.
- Prior information:
 - **1 EXECUTION** ($ORR = 0.236, N = 173, W_{95} = 0.186$)

- Data reference: R2810 RECIST (verson 1.1) Overall Response Investigator (PD, SD, CR or PR)
- Aim of study: According to current data and prior competitors' information, make interim analysis, determine suitable stopping rule.
- Study design:
 - Two-stage Design: Admissible designs
 - Sequential monitor:
 - Posterior probability
 - Predictive probability.
- Outcome measure: ORR is determined by the proportion of patients with best overall response of CR or PR among patients in SAF.
- Prior information:
 - **1** KEYTRUDA ($ORR = 0.236, N = 173, W_{95} = 0.186$)
 - **2** OPDIVO (ORR = 0.317, N = 120, $W_{95} = 0.173$)

Data Summary


```
## Exact binomial test

## data: sum(r01) and length(r01)

## number of successes = 20, number of trials = 100, p-value = 0.7

## alternative hypothesis: true probability of success is not equal to 0.2

## 95 percent confidence interval:

## 0.123 0.264

## sample estimates:

## probability of success

## 0.186
```

Exact Binomial Test

Based on the mean μ and the variance σ^2 , we can derive the prior parameter of Beta(a,b) distribution with

$$a = \mu \left\{ \frac{\mu(1-\mu)}{\sigma^2} - 1 \right\}$$

and

$$b = (1 - \mu) \left\{ \frac{\mu(1 - \mu)}{\sigma^2} - 1 \right\}.$$

Because of a relationship between the cumulative binomial distribution and the beta distribution, the Clopper-Pearson interval is sometimes presented in an alternate format that uses quantiles from the beta distribution.

$$B\left(\frac{\alpha}{2}; x, n-x+1\right) < \theta < B\left(1-\frac{\alpha}{2}; x+1, n-x\right)$$

4日 → 4周 → 4 三 → 4 三 → 9 Q ○

Processing Data By Time-to-event

```
order.data <- response[order(response$TRTSDTM),c("TRTSDTM","AVALC")]
print(cbind(head(order.data,5), tail(order.data,5)),row.names=FALSE)
##
                                      TRISDIM AVAIC
                                                                                                      TRISDIM AVAILE
         2015-02-04 09:50:00
                                                                 SD 2016-04-13 11:07:00
## 2015-02-06 09:08:00
                                                                 PD 2016-04-18 11:05:00
                                                                                                                                 PD
## 2015-02-09 11:15:00
                                                                 SD 2016-04-18 12:20:00
                                                                                                                                 SD
## 2015-03-16 09:30:00
                                                                 PD 2016-04-19 08:40:00
                                                                                                                                 PD
## 2015-03-18 09:55:00
                                                                 PD 2016-04-19 10:42:00
                                                                                                                                 PD
rorder <- r01[order(response$TRTSDTM)]
rorder
            F17 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
[71] 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## [106] 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0
rtotal <- cumsum(r01[order(response$TRTSDTM)])
rtotal
         [24] 3 3 3 3 4 5 5 5 6 6 7 7 7 7 8 9 9 9 10 10 10 11 12
         ## [116] 22 22 23 23 23 24 24 24 24 24 24 24 24 24 24
```

Two-stage Design Analysis

2 22 6 33

Minimax

We can use the following program to run the two-stage designs (Optimal, Minimax and Admissible)

```
binom.design(output="admissible", p0=0.1, p1=0.3, signif.level = 0.05, power.level = 0.9)

## ri n1 r n EN.p0. PET.p0. error power

## Optimal 2 18 6 35 22.5 0.734 0.0474 0.902

## Admissible 2 19 6 34 23.4 0.705 0.0438 0.901
```

		r1(data)	n1	r(data)	n	EN.p0.	PET.p0.	error	power
Scenario 1	Optimal	2(2)	18	6(7)	35	22.5255	0.7338	0.0474	0.9016
$p_0 = 0.1$	Admissible	2(3)	19	6(7)	34	23.4183	0.7054	0.0438	0.9014
$p_1 = 0.3$	Minimax	2(3)	22	6(6)	33	26.1795	0.6200	0.0409	0.9018
Scenario 2	Optimal	4(3)	19	15(13)	54	30.4349	0.6733	0.0482	0.9045
$p_0 = 0.2$	Admissible	4(3)	20	14(12)	49	30.7402	0.6296	0.0457	0.9030
$p_1 = 0.4$	Minimax	5(3)	24	13(11)	45	31.2263	0.6559	0.0483	0.9001
Scenario 3	Optimal	13(3)	24	36(14)	61	34.0132	0.7294	0.0487	0.9014
$p_0 = 0.5$	Admissible	12(3)	23	34(14)	57	34.5199	0.6612	0.0482	0.9046
$p_1 = 0.7$	Minimax	14(3)	27	32(13)	53	36.1144	0.6494	0.0461	0.9004

Table 1: Illustration of Simon's two-stage designs with three scenarios of design parameters, under the constraints on $\alpha=0.05$ and $1-\beta=0.9$.

26.2 0.620 0.0409 0.902

Results for two-stage designs

Except the admissible and minimax design under Scenario 1 ($p_0 = 0.1$, $p_1 = 0.3$), other designs will be early terminated for futility for our data.

Sequential Monitor: PostP Design

The Bayesian designs provide a sequence of stopping boundary for response with corresponding sample size. Theoretically we can sequentially monitor the trial based on these rules.

Programming Examples: **Jeffery prior** a = b = 0.5

```
library(dplyr)
library(ph2bye)
PostP.design(type = "futility", nmax = 129, a=0.5, b=0.5, p0=0.4, theta = 0.05) %>% filter(bound %in% c(4.5.13,
      n bound
           13
           14
           15
simon.power(r1 = 4, n1=19, r=15, n=52, p = 0.2)
## [1] 0.0366
PostP.design(type = "efficacy", nmax = 129, a=0.5, b=0.5, p0=0.2, theta = 0.9)%% filter(bound %in% c(4,5,13,14
      n bound
    48
           14
## 5 52
```

Optimist's prior: KEYTRUDA : a = 1.24, b = 1.76

KT.prior <- optprior(KT.mean): KT.prior # KEYTRUDA optimist's prior

```
## 1.24 1.76
PostP.design(type = "futility", nmax = 129, a=1.24, b=1.76, p0=0.4, theta = 0.05) %>% filter(bound %in% c(4.5.1
      n bound
## 1 19
## 2 23
## 3 47
         13
## 4 50
           14
## 5 52
           15
PostP.design(type = "efficacy", nmax = 129, a=1.24, b=1.76, p0=0.2, theta = 0.9)%% filter(bound %in% c(4.5.13,
      n bound
## 2 12
## 3 45
         13
           14
## 4 49
## 5 53
           15
bayes.design(a = 1.24, b = 1.76, r = rorder, stop.rule = "futility", p0 = 0.4, time.interval = 0.1)
bayes.design(a = 1.24, b = 1.76, r = rorder, stop.rule = "efficacy", p0 = 0.2, time.interval = 0.1)
                                                                        4 - 1 4 - 4 - 4 - 5 + 4 - 5 +
```

Optimist's prior: OPDIVO : a = 1.32, b = 1.68

```
OD.prior <- optprior(OD.mean); OD.prior # OPDIVO optimist's prior
## 1.32 1.68
PostP.design(type = "futility", nmax = 129, a=1.32, b=1.68, p0=0.4, theta = 0.05) %>% filter(bound %in% c(4,5,1
      n bound
## 1 20
## 2 23
## 3 47
         13
## 4 50
           14
## 5 53
           15
PostP.design(type = "efficacy", nmax = 129, a=1.32, b=1.68, p0=0.2, theta = 0.9)%% filter(bound %in% c(4.5.13,
      n bound
## 2 13
## 3 45
         13
           14
## 4 49
## 5 53
           15
bayes.design(a=1.32, b=1.68, r = rorder, stop.rule = "futility", p0 = 0.4, time.interval = 0.1)
bayes.design(a=1.32, b=1.68, r = rorder, stop.rule = "efficacy", p0 = 0.2, time.interval = 0.1)
                                                                        4 - 1 4 - 4 - 4 - 5 + 4 - 5 +
```

ORR+N prior: KEYTRUDA : a = 42.1, b = 133.9

```
KT.prior <- ORRNprior(KT.mean, KT.n); KT.prior # KEYTRUDA optimist's prior
## 42 1 133 9
PostP.design(type = "futility", nmax = 129, a=42.1, b=133.9, p0=0.4, theta = 0.05) %>% filter(bound %in% c(4,5,
      n bound
## 3 13
         13
## 4 14
           14
## 5 15
           15
PostP.design(type = "efficacy", nmax = 129, a=42.1, b=133.9, p0=0.2, theta = 0.9)%% filter(bound %in% c(4.5.13
      n bound
## 1 13
## 2 18
## 3 54
         13
## 4 59
           14
## 5 64
           15
bayes.design(a=42.1, b=133.9, r = rorder, stop.rule = "futility", p0 = 0.4, time.interval = 0.1)
bayes.design(a=42.1, b=133.9, r = rorder, stop.rule = "efficacy", p0 = 0.2, time.interval = 0.1)
```

ORR+N prior: KEYTRUDA : a = 39.4, b = 83.6

OD.prior <- ORRNprior(OD.mean, OD.n); OD.prior # OPDIVO optimist's prior

```
## 39 4 83 6
  PostP.design(type = "futility", nmax = 129, a=39.4, b=83.6, p0=0.4, theta = 0.05) %>% filter(bound %in% c(4.5.1
         n bound
   ## 1
   ## 2 11
   ## 3 33
            13
   ## 4 36
              14
   ## 5 39
              15
  PostP.design(type = "efficacy", nmax = 129, a=39.4, b=83.6, p0=0.2, theta = 0.9)%% filter(bound %in% c(4.5.13,
          n bound
         54
   ## 2
         58
              13
         95
   ## 4 100
              14
   ## 5 104
               15
   bayes.design(a=39.4, b=83.6, r = rorder, stop.rule = "futility", p0 = 0.4, time.interval = 0.1)
   bayes.design(a=39.4, b=83.6, r = rorder, stop.rule = "efficacy", p0 = 0.2, time.interval = 0.1)
                                                                          4 D F 4 D F 4 D F 4 D F
Yalin Zhu Biostatistics and Data Bayesian Designs for Phase II Clinical Trials
                                                                                         August 9, 2016
                                                                                                           31 / 41
```

ORR+W prior: KEYTRUDA: a = 18.5, b = 59.9

```
KT.prior <- ORRWprior(KT.mean, KT.W): # KEYTRUDA optimist's prior
PostP.design(type = "futility", nmax = 129, a=18.5, b=59.9, p0=0.4, theta = 0.05) %% filter(bound %in% c(4,5,1
      n hound
## 1
     4
## 2 5
## 3 20
           13
## 4 23
          14
## 5 26
           15
PostP.design(type = "efficacy", nmax = 129, a=18.5, b=59.9, p0=0.2, theta = 0.9)% filter(bound %in% c(4.5.13,
      n bound
## 1
     5
## 2 9
## 3 45
         13
          14
## 4 49
## 5 54
           15
bayes.design(a=18.5, b=59.9, r = rorder, stop.rule = "futility", p0 = 0.4, time.interval = 0.1)
bayes.design(a=18.5, b=59.9, r = rorder, stop.rule = "futility", p0 = 0.25, time.interval = 0.1)
# [1] "Stop the trial for futility after the inclusion of 83 patients."
bayes.design(a=18.5, b=59.9, r = rorder, stop.rule = "efficacy", p0 = 0.2, time.interval = 0.1)
                                                                       4 D > 4 A > 4 B > 4 B >
```

ORR+W prior: OPDIVO: a = 34.7, b = 74.9

```
OD.prior <- ORRWprior(OD.mean, OD.W): # OPDIVO optimist's prior
PostP.design(type = "futility", nmax = 129, a=34.7, b=74.9, p0=0.4, theta = 0.05) %>% filter(bound %in% c(4.5.1
      n bound
## 1
## 2 12
            5
## 3 34
           13
## 4 36
           14
## 5 39
           15
PostP.design(type = "efficacy", nmax = 129, a=34.7, b=74.9, p0=0.2, theta = 0.9)%% filter(bound %in% c(4.5.13,
      n bound
## 1 46
## 2 50
            5
## 3 87
          13
## 4 91
           14
## 5 96
           15
bayes.design(a=34.7, b=74.9, r = rorder, stop.rule = "futility", p0 = 0.4, time.interval = 0.1)
bayes.design(a=34.7, b=74.9, r = rorder, stop.rule = "efficacy", p0 = 0.2, time.interval = 0.1)
```

Predictive Monitor: PredP Design

In R2810 trials, we set $\theta_U=0.9$ for efficacy stop, $\theta_L=0.05$ for futility stop, $\theta_T=0.9$ for future patients cutoff. For example,

```
PredP.design(type = "futility", nmax = 129, a = 0.5, b = 0.5, p0 = 0.2, theta_t = 0.9, delta = 0.2, theta = 0.
      n bound
## 1 16
           13
## 5 43
           15
PredP.design(type = "futility", nmax = 129, a=1.24, b=1.76, p0 = 0.2, theta t = 0.9, delta = 0.2, theta = 0.0
      n bound
## 1 16
           13
           14
           15
```

Operating characteristics (OC) of PostP design

- Compared with Simon's admissible designs, we take Scenario 2 $(p_0 = 0.2, p_1 = 0.4)$ to illustrate the OC performance.
- Since ORR + N and ORR + W priors are too informative, the observed data hardly affects the posteriors, thus we only compare Jeffery's and optimist's prior. priors.
- Both PostP and PredP stop for futility only.
- Choose the design based on type I error and power constraints.

		r1(data)	n1	r(data)	n	error	power
Scenario 2	Optimal	4(3)	19	15(13)	54	0.0482	0.9045
$p_0 = 0.2$	Admissible	4(3)	20	14(12)	49	0.0457	0.9030
$p_1 = 0.4$	Minimax	5(3)	24	13(11)	45	0.0483	0.9001
PostP	Jeffery	4(3)	19	15(13)	52	0.0366	0.889
Design	Opt.KT	5(3)	23	15(13)	52	0.0379	0.903
	Opt.OD	5(3)	23	15(13)	53	0.0437	0.913
PredP	Jeffery	5(3)	19	14(12)	41	0.0088	0.677
Design	Opt.KT	5(3)	19	14(12)	41	0.0088	0.677
	Opt.OD	5(3)	19	13(11)	39	0.0130	0.700

Table 2: Stopping boundary and operating characteristics comparisons for two-stage designs, PostP and PredP designs with different priors: $\alpha = 0.05$ and $1 - \beta = 0.9$.

Conclusions and Further Discussions

Conclusions

- Under the same boundaries as frequentist two-stage designs, both PostP and PredP designs use smaller sample sizes for the first and second stage. Particularly, PredP design sample sizes are much smaller than two-stage designs. Cost: lose power, but still control type I error
- We can also do the similar comparisons for other scenarios. Stopping for efficacy can also be considered.

Further Discussions

- Similar search design constrained by type I error and power can be constructed to find the optimal boundaries for PostP/PredP design.
- 2 Based on the subgroup property of R2810 expansion cohorts, hierarchical Bayesian models (MCMC) can be considered.

Computing Tools

- We have wrapped the functions for PostP and PredP designs into an R pacakge ph2bye, which is now available on CRAN.
 - https://cran.r-project.org/web/packages/ph2bye
- Useful R package in clinical trial research
- haven: read SAS dataset rapidly;
- clinfun, gsDesign: a bunch of design functions;
- MCMCpack: simulate complicated posterior models;
- dplyr: Manipulate big data.

References

- Ashley, Dirk Reitsma MD Austin Combest, and Simmons Jürgen Hummel. "Improving Oncology Trials Through Adaptive Designs." Applied Clinical Trials 35.3 (2015).
- Simon, Richard. "Optimal two-stage designs for phase II clinical trials." Controlled clinical trials 10.1 (1989): 1-10.
- Jung, Sin-Ho, et al. "Admissible two-stage designs for phase II cancer clinical trials." Statistics in medicine 23.4 (2004): 561-569.
- Tan, Say-Beng, and David Machin. "Bayesian two-stage designs for phase II clinical trials." Statistics in medicine 21.14 (2002): 1991-2012.
- Mayo, Matthew S., and Byron J. Gajewski. "Bayesian sample size calculations in phase II clinical trials using informative conjugate priors." Controlled clinical trials 25.2 (2004): 157-167.
- Thall, Peter F., and Richard Simon. "Practical Bayesian guidelines for phase IIB clinical trials." Biometrics (1994): 337-349.
- Lee, J. Jack, and Diane D. Liu. "A predictive probability design for phase II cancer clinical trials." Clinical Trials 5.2 (2008): 93-106.

Acknowledge

• Questions?

- Questions?
- Thank you!