COMP/EECE 7/8745 Machine Learning

Topics:

Introduction

- What is Machine Learning (ML)?
- Course organization & deliverables
 - Assignments, exams, projects
- Grading scheme

Md Zahangir Alom Department of Computer Science University of Memphis, TN

Machine or Deep learning: got lots of attention.

Google Trends :

What is Machine Learning?

"Learning is any process by which a system improves performance from experience."

- Herbert Simon

Definition by Tom Mitchell (1998):

Machine Learning is the study of algorithms that

- ullet improve their performance P
- at some task T
- with experience *E*.

A well-defined learning task is given by $\langle P, T, E \rangle$.

- "Machine learning is programming computers to optimize a performance criterion using example data or past experience." Intro to Machine Learning, Alpaydin, 2010
- Examples of ML system:
 - Facial recognition
 - Digit recognition
 - Molecular classification
 - Many more

Traditional programming vs ML

Traditional Programming

Machine Learning

When Do We Use Machine Learning?

ML is used when:

- Human expertise does not exist (navigating on Mars)
- Humans can't explain their expertise (speech recognition)
- Models must be customized (personalized medicine)
- Models are based on huge amounts of data (genomics)

Learning isn't always useful:

There is no need to "learn" to calculate payroll

5

Example up-close

- Problem: Recognize images representing digits 0 through 9
- Input: High dimensional vectors representing images
- Output: 0 through 9 indicating the digit the image represents
- Learning: Build a model from "training data"
- Predict "test data" with model

A classic example of a task that requires machine learning: It is very hard to say what makes a 2

Slide credit: Geoffrey Hinton

Machine Learning funding trends and opportunities

History of Machine Learning (ML)

- 1950s
 - Samuel's checker player
 - Selfridge's Pandemonium
- 1960s:
 - Neural networks: Perceptron
 - Pattern recognition
 - Learning in the limit theory
 - Minsky and Papert prove limitations of Perceptron
- 1970s:
 - Symbolic concept induction
 - Winston's arch learner
 - Expert systems and the knowledge acquisition bottleneck
 - Quinlan's ID3
 - Michalski's AQ and soybean diagnosis
 - Scientific discovery with BACON
 - Mathematical discovery with AM

Slide credit: Ray Mooney

History of Machine Learning (ML)

1980s:

- Advanced decision tree and rule learning
- Explanation-based Learning (EBL)
- Learning and planning and problem solving
- Utility problem
- Analogy
- Cognitive architectures
- Resurgence of neural networks (connectionism, backpropagation)
- Valiant's PAC Learning Theory
- Focus on experimental methodology

1990s

- Data mining
- Adaptive software agents and web applications
- Text learning
- Reinforcement learning (RL)
- Inductive Logic Programming (ILP)
- Ensembles: Bagging, Boosting, and Stacking
- Bayes Net learning

Slide credit: Ray Mooney

History of Machine Learning (ML)

2000s

- Support vector machines & kernel methods
- Graphical models
- Statistical relational learning
- Transfer learning
- Sequence labeling
- Collective classification and structured outputs
- Computer Systems Applications (Compilers, Debugging, Graphics, Security)
- E-mail management
- Personalized assistants that learn
- Learning in robotics and vision

2010s

- Deep learning systems
- Learning for big data
- Bayesian methods
- Multi-task & lifelong learning
- Applications to vision, speech, social networks, learning to read, etc.
- ????

Machine learning resources

- Data
 - NIPS and other contest
 - mldata.org
 - UCI machine learning repository
- Contests
 - Kaggle
- Software
 - Python sci-kit
 - <u>R</u>
 - Tensorflow
 - Your own code

What We'll cover in this course

Introduction

- Data acquisition and preparation
- Model validation and evaluation

Supervised learning:

- Least squares
- Logistic regression
- Support vector machines& Kernel methods
- Neural Network
 - Auto-encoder
 - Deep Belief Network (DBN)
 - Recurrent Neural Networks

(RNN)

- Model ensembles

- Bayesian learning
- Graph learning
- Decision trees, random forests, and boosting

Unsupervised learning

- Dimensionality reduction:
 - PCA, Fisher discriminant Maximum margin criterion
- Clustering: tSNE, UMAP etc.

Reinforcement learning

- Temporal difference learning
- Q learning

Explainable AI (XAI)

Statistics for ML

Ethics and regulations for ML

Applications

Background requirements

- Basic linear algebra and probability
 - Vectors
 - Dot products
 - Eigenvector and eigenvalue
- See Appendix of textbook for probability background
 - Mean
 - Variance
 - Gaussian/Normal distribution
 - Probability
- Also see basic and applied stats (from onlines)
- Programming background with Python

Course organization & deliverables

- 5 ~ 6 Assignments (50%)
 - Mix of theory and applications
 - Ref. codes will be available in : https://github.com/zahangircse/COMP-EECE-7-8745
 - First one goes out end of next week
 - Start early, Start early

Topics for assignments

- ML algorithms implementation with Python
 - Linear regression
 - Support Vector Machine (SVM) and Kernel methods
 - Gradient descent for least squares, hinge loss, and logistic loss
 - Neural Networks (NN) and its variants, and ensembling
 - Bagged decision stumps
 - Unsupervised analysis
 - K-means clustering, tSNE, UMAP, etc.
 - Learned with Less labeled samples and Explainable AI (XAI)

Our focus will be on applying machine learning to real applications

Exams

- Examinations (20%)
 - MID-TERM
 - FINAL
 - What to expect on the exams:
 - Basic conceptual understanding of machine learning techniques
 - Deep drive into the theory of ML (sometimes)
- Progress reports (10%)
- Final project (20%)
 - Group project (at most 3 members in each group)

Final project

Goal

- To explore Machine Learning(ML) methods
- Encouraged to apply on Computer vision, Speech, NLP,
 Medical imaging, Robotics, Bioinformatics and so on.
- Must be done this semester.
- You will be asked to form group (not more than 3 member in a group) and submitting project proposal
- Main categories
 - Application/Survey
 - Compare a bunch of existing algorithms on a new application of your interest
 - Formulation/Development
 - Formulate a new model or algorithm for a new or old problem
 - Theory
 - Theoretically analyze an existing machine learning approaches

Computing

- Major bottleneck (May require)
 - GPUs
- Options
 - Your own / group / advisor's resources
 - Google COLAB for free : <u>https://towardsdatascience.com/getting-started-with-google-colab-f2fff97f594c</u>
 - Google Cloud Credits
 - \$50 credits to every registered student courtesy Google
 - UM / CS Department GPU cluster (if available)

Textbooks

- Not required but highly recommended for beginners
- Introduction to Machine Learning by Ethem Alpaydin (2nd edition, 2010, MIT Press). Written by computer scientist and material is accessible with basic probability and linear algebra background
- Foundations of Machine Learning by Afshin Rostamizadeh, Ameet Talwalkar, and Mehryar Mohri (2012, MIT Press)
- Learning with Kernels by Scholkopf and Smola (2001, MIT Press)
- Applied predictive modeling by Kuhn and Johnson (2013, Springer). This book focuses on practical modeling.
- Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville (available at http://www.deeplearningbook.org/).

Summary

- What is machine learning?
- History of machine learning
- What We'll cover in this course
- Course organization & deliverables
- Examinations and projects
- Grade breakdown
- What's next:
 - Different Machine Learning(ML) approaches
 - How and what does machine learn?
 - Ecosystem for Machine Learning (DL)