# dada2\_pipeline

### Nate Olson

November 7, 2016

```
library(dada2)
## Loading required package: Rcpp
library(tidyverse)
## Loading tidyverse: ggplot2
## Loading tidyverse: tibble
## Loading tidyverse: tidyr
## Loading tidyverse: readr
## Loading tidyverse: purrr
## Loading tidyverse: dplyr
## Conflicts with tidy packages ------
## filter(): dplyr, stats
## lag():
            dplyr, stats
library(readr)
library(stringr)
library(forcats)
```

### Pipeline description

- 1. Quality filter read pairs, remove reads with ambiguous bases (Ns) or more than 4 expected errors, trim ends of reads with quality score of 2 or to 290 bp and 220 bp for forward and reverse reads respectively, and the first 10 bases are trimmed.
  - Number of expected errors calculated based on quality scores, EE = sum(10<sup>(-Q/10)</sup>).
  - Quality score of 2 used by Illumina to indicate end of good sequencing data.
- 2. The forward and reverse reads are dereplicated. A consensus (average) quality score is assigned for each position.
- 3. Sequence inference, denoising error correction step.
- 4. Merging forward and reverse read pairs. Uses global ends-free alignment and requires exact overlap for merging.
- 5. Chimera removal filters sequences with complementary regions matching more abundant sequences. Chimeras are identified when Needleman-Wunsch global alignments between a sequence and all more abundance sequences result in perfect matches for left and right partitions of the sequence to two different parent sequences.

#### Pipeline Budget

#### Raw sqeunces

Starting number of sequences per sample.

# **Quality Filter**

The following bash one liner was used to count the number of reads in the filtered datasets.

zgrep -c '^@' \*.fastq.gz > filter\_readcount.txt

#### Difference in number of forward and reverse reads passing filter

The difference in the number of forward and reverse reads passing the quality filter is correlated but less than 0.5% of the mean number of reads excluding no template control samples.

```
filter_dir_check <- filter_count %>% spread(read_dir, total) %>% mutate(x_dif = abs(`F` - R), x_mean =
filter_dir_check %>%
```



Samples 1-E4 and 1-F9 are real samples, the rest of the samples with less than 30,000 sequences are no template controls.

filter\_dir\_check %>% mutate(percent\_dif = x\_dif/x\_mean \* 100) %>% filter(x\_mean < 30000) %>% knitr::kab

| id                     | $pipe\_step$ | F     | R     | $x_{dif}$ | x_mean  | percent_dif |
|------------------------|--------------|-------|-------|-----------|---------|-------------|
| 1-A12                  | filter       | 146   | 147   | 1         | 146.5   | 0.6825939   |
| 1-A6                   | filter       | 32    | 32    | 0         | 32.0    | 0.0000000   |
| 1-D12                  | filter       | 76    | 76    | 0         | 76.0    | 0.0000000   |
| 1-D6                   | filter       | 36    | 36    | 0         | 36.0    | 0.0000000   |
| $1\text{-}\mathrm{E}4$ | filter       | 25712 | 26063 | 351       | 25887.5 | 1.3558667   |
| 1-F9                   | filter       | 2004  | 1997  | 7         | 2000.5  | 0.3499125   |
| 1-H12                  | filter       | 6225  | 6217  | 8         | 6221.0  | 0.1285967   |
| 1-H6                   | filter       | 54    | 53    | 1         | 53.5    | 1.8691589   |
| 2-A12                  | filter       | 48    | 48    | 0         | 48.0    | 0.0000000   |
| 2-A6                   | filter       | 102   | 106   | 4         | 104.0   | 3.8461538   |
| 2-D12                  | filter       | 41    | 44    | 3         | 42.5    | 7.0588235   |
| 2-D6                   | filter       | 56    | 56    | 0         | 56.0    | 0.0000000   |
| 2-H12                  | filter       | 49    | 49    | 0         | 49.0    | 0.0000000   |
| 2-H6                   | filter       | 126   | 128   | 2         | 127.0   | 1.5748031   |

# **Dereplicated Sequences**

```
derepF_counts_file <- "derepF_counts.rds"
if(!(file.exists(derepF_counts_file))){
    derepFs <- readRDS("~/Projects/16S_etec_mix_study/analysis/pipelines/dada2/processed_data/derepFs-2
    derepF_counts <- makeSequenceTable(derepFs)
    saveRDS(derepF_counts, derepF_counts_file)
    rm(derepFs)
}else{
    derepF_counts <- readRDS(derepF_counts_file)
}

derepF_count_df <- get_count_df(derepF_counts, "derep") %>% mutate(read_dir = "F")
rm(derepF_counts)
```

```
derepR_counts_file <- "derepR_counts.rds"
if(!(file.exists(derepR_counts_file))){
    derepRs <- readRDS("~/Projects/16S_etec_mix_study/analysis/pipelines/dada2/processed_data/derepRs-2
    derepR_counts <- makeSequenceTable(derepRs)
    saveRDS(derepR_counts, derepR_counts_file)
    rm(derepRs)
}else{
    derepR_counts <- readRDS(derepR_counts_file)
}

derepR_count_df <- get_count_df(derepR_counts, "derep") %>% mutate(read_dir = "R")
rm(derepR_counts)
```

# Denoising

```
dadaF_counts_file <- "dadaF_counts.rds"</pre>
if(!(file.exists(dadaF_counts_file))){
    dadaFs <- readRDS("~/Projects/16S_etec_mix_study/analysis/pipelines/dada2/processed_data/dadaFs-sin
      dadaF_counts <- makeSequenceTable(dadaFs)</pre>
      saveRDS(dadaF_counts, dadaF_counts_file)
      rm(dadaFs)
}else{
      dadaF_counts <- readRDS(dadaF_counts_file)</pre>
}
dadaF_count_df <- get_count_df(dadaF_counts, "denoise") %>% mutate(read_dir = "F")
rm(dadaF_counts)
dadaR_counts_file <- "dadaR_counts.rds"</pre>
if(!(file.exists(dadaR_counts_file))){
    dadaRs <- readRDS("~/Projects/16S_etec_mix_study/analysis/pipelines/dada2/processed_data/dadaRs-sin
      dadaR_counts <- makeSequenceTable(dadaRs)</pre>
      saveRDS(dadaR_counts, dadaR_counts_file)
      rm(dadaRs)
}else{
      dadaR counts <- readRDS(dadaR counts file)</pre>
}
dadaR_count_df <- get_count_df(dadaR_counts, "denoise") %>% mutate(read_dir = "R")
rm(dadaR counts)
```

#### Merging

```
merger_count_df <- readRDS("~/Projects/16S_etec_mix_study/analysis/pipelines/dada2/processed_data/seqta/
get_count_df("merger")</pre>
```

#### Chimera filter

# Combining Step Count Data



```
count_df %>% filter(read_dir != 'R', count_type == "unique") %>%
ggplot() + geom_path(aes(x = step_num, y = value, group = id), alpha = 0.25) +
    scale_x_continuous(breaks = 3:6,
```

## Warning: Removed 384 rows containing missing values (geom\_path).



Plots excluding no template controls



## Warning: Removed 360 rows containing missing values (geom\_path).

