# SSD1353

# **Product Preview**

160RGB x 132 Dot Matrix OLED/PLED Segment/Common Driver with Controller





# **CONTENTS**

| 1             | GENERAL DESCRIPTION                                             | 6  |
|---------------|-----------------------------------------------------------------|----|
| 2             | FEATURES                                                        | 6  |
| 3             | ORDERING INFORMATION                                            | 7  |
| 4             | BLOCK DIAGRAM                                                   |    |
| 5             | PIN ASSIGNMENT                                                  |    |
| <b>.</b><br>5 |                                                                 |    |
| 6             | PIN DESCRIPTIONS                                                |    |
| U             |                                                                 |    |
| 7             | FUNCTIONAL BLOCK DESCRIPTIONS                                   | 15 |
| 7             | MCU INTERFACE                                                   | 15 |
| /             | 1.1 MCU Parallel 6800-series Interface                          |    |
|               | 1.2 MCU Parallel 8080-series Interface                          |    |
|               | 1.3 MCU Serial Interface                                        |    |
| 7             | ·                                                               |    |
| 7             |                                                                 |    |
|               | 3.1 GDDRAM structure                                            |    |
|               | 3.2 Data bus to RAM mapping under different input mode          |    |
|               | 3.3 RAM mapping and Different color depth mode                  |    |
| 7             |                                                                 |    |
| 7             | OSCILLATOR & TIMING GENERATOR                                   | 21 |
|               | 5.1 Oscillator                                                  |    |
|               | 5.2 FR synchronization                                          | 22 |
| 7             |                                                                 |    |
| 7             |                                                                 |    |
| 7             |                                                                 | 27 |
| 7             |                                                                 |    |
| 7             | 0 V <sub>DD</sub> REGULATOR                                     | 30 |
| 8             | COMMAND TABLE                                                   | 31 |
| 9             | COMMAND DESCRIPTIONS                                            | 39 |
| - 9           |                                                                 |    |
| _             | 1.1 Set Column Address (15h)                                    |    |
|               | 1.2 Write RAM Command (5Ch)                                     |    |
|               | 1.3 Read RAM Command (5Dh)                                      | 39 |
|               | 1.4 Set Row Address (75h)                                       |    |
|               | 1.5 Set Contrast for Color A, B, C (81h, 82h, 83h)              |    |
|               | 1.6 Master Current Control (87h)                                |    |
|               | 1.7 Set Second Pre-charge speed (8Ah)                           |    |
|               | 1.8 Set Re-map & Data Format (A0h)                              |    |
|               | 1.9 Set Display Start Line (A1h)                                |    |
|               | 1.10 Set Display Offset (A2h)                                   |    |
|               | 1.11 Set Display Mode (A4h ~ A7h)                               |    |
|               | 1.12 Set Multiplex Ratio (A8h)                                  |    |
|               | 1.13 Dim mode setting (ABh)                                     |    |
|               | 1.14 Set Display ON/OFF (ACh / AEh / AFh)                       |    |
|               | 1.15 Phase 1 and 2 Period Adjustment (B1h)                      |    |
|               | 1.16 Set Display Clock Divide Ratio/ Oscillator Frequency (B3h) |    |
|               | 1.17 Set Second Fre-charge period (B4n)                         |    |
|               | 1.10 Set Gray Seate Tuble (Boll)                                |    |

|          |                                        | 49 |
|----------|----------------------------------------|----|
| 9.       |                                        | 49 |
| 9.       |                                        | 49 |
| 9.       |                                        |    |
|          |                                        | 50 |
|          |                                        |    |
| 9.2      |                                        | 5  |
|          |                                        | 5  |
|          |                                        | 5. |
|          |                                        |    |
|          |                                        |    |
|          |                                        |    |
|          |                                        | 5  |
|          |                                        | 5- |
|          |                                        | 52 |
|          | 0.2.9 Activate Horizontal Scroll (2Fh) | 5- |
| 9.       | 0.2.10 Set Vertical Scroll Area(A3h)   | 54 |
| 10       | MAXIMUM RATINGS                        | 55 |
| 11       |                                        | 50 |
| 12       | AC CHARACTERISTICS                     | 57 |
| 12<br>13 | APPLICATION EXAMPLE                    | 61 |
| 13       | APPLICATION EXAMPLE                    | 61 |
|          | APPLICATION EXAMPLE  PACKAGE DIMENSION |    |
| 13<br>14 | APPLICATION EXAMPLE  PACKAGE DIMENSION | 61 |

SSD1353 | Rev 0.11 | P 3/65 | Aug 2006 | Solomon Systech

#### **TABLES**

| TABLE 3-1 :ORDERING INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| TABLE 5-1: SSD1353U4R1 PIN ASSIGNMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9  |
| TABLE 6-1: SSD1353 PIN DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12 |
| Table 6-2: Bus Interface selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13 |
| Table 7-1: MCU interface assignment under different bus interface mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15 |
| TABLE 7-2: CONTROL PINS OF 6800 INTERFACE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15 |
| TABLE 7-3: CONTROL PINS OF 8080 INTERFACE (FORM 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17 |
| TABLE 7-4: CONTROL PINS OF 8080 INTERFACE (FORM 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17 |
| TABLE 7-5: CONTROL PINS OF SERIAL INTERFACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18 |
| TABLE 7-6: 262K COLOR DEPTH GRAPHIC DISPLAY DATA RAM STRUCTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19 |
| TABLE 7-7: DATA BUS USAGE UNDER DIFFERENT BUS WIDTH AND COLOR DEPTH MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 |
| TABLE 7-8: 256 AND 65K COLOR MODE MAPPING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20 |
| TABLE 7-9: MAXIMUM GAMMA SETTING IN DIFFERENT GRAY SCALE RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28 |
| TABLE 7-10: GAMMA SETTINGS WITH IDENTICAL BRIGHTNESS IN CURRENT DRIVE PHASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28 |
| TABLE 8-1: COMMAND TABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| TABLE 9-1: RESULT OF CHANGE OF BRIGHTNESS BY DIM WINDOW COMMAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52 |
| TABLE 10-1: MAXIMUM RATINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| TABLE 11-1: DC CHARACTERISTICS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56 |
| TABLE 12-1: AC CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57 |
| TABLE 12-2: 6800-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58 |
| TABLE 12-3: 8080-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59 |
| TABLE 12-4: SERIAL INTERFACE TIMING CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60 |
| Confidential to the chinology con the chinology continued th |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |

 Solomon Systech
 Aug 2006
 P 4/65
 Rev 0.11
 SSD1353

# **FIGURES**

| Figure 4-1 : SSD1353 Block Diagram                                                                                                                            | 8  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| FIGURE 5-1 : SSD1353U4R1 PIN ASSIGNMENT                                                                                                                       | 11 |
| FIGURE 7-1 : DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ                                                                                               | 16 |
| FIGURE 7-2 : EXAMPLE OF WRITE PROCEDURE IN 8080 PARALLEL INTERFACE MODE                                                                                       | 16 |
| FIGURE 7-3: EXAMPLE OF READ PROCEDURE IN 8080 PARALLEL INTERFACE MODE                                                                                         | 16 |
| FIGURE 7-4 : DISPLAY DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ                                                                                       | 17 |
| FIGURE 7-5 : WRITE PROCEDURE IN SPI MODE                                                                                                                      | 18 |
| Figure 7-6 : Oscillator Circuit                                                                                                                               | 21 |
| FIGURE 7-7 : I <sub>ref</sub> Current Setting by Resistor Value                                                                                               | 23 |
| FIGURE 7-8 : SEGMENT AND COMMON DRIVER BLOCK DIAGRAM                                                                                                          | 24 |
| FIGURE 7-9 : SEGMENT AND COMMON DRIVER SIGNAL WAVEFORM                                                                                                        | 25 |
| FIGURE 7-10: GRAY SCALE CONTROL IN SEGMENT                                                                                                                    | 26 |
| FIGURE 7-11: RELATION BETWEEN GDDRAM CONTENT AND GRAY SCALE TABLE ENTRY FOR THREE COLORS IN 262K.                                                             |    |
| COLOR MODE (UNDER COMMAND B9H ENABLE LINEAR GRAY SCALE TABLE)                                                                                                 | 27 |
| FIGURE 7-12: ILLUSTRATION OF CURRENT DRIVE PHASE (PHASE 4) UNDER DIFFERENT GAMMA SETTINGS.                                                                    | 27 |
| FIGURE 7-13: THE POWER ON SEQUENCE.                                                                                                                           | 29 |
| FIGURE 7-14: THE POWER OFF SEQUENCE                                                                                                                           |    |
| FIGURE 7-15 $V_{CI}$ > 2.6V, $V_{DD}$ REGULATOR ENABLE PIN CONNECTION SCHEME                                                                                  | 30 |
| FIGURE 7-16 V <sub>DD</sub> REGULATOR DISABLE PIN CONNECTION SCHEME                                                                                           |    |
| FIGURE 9-1: EXAMPLE OF COLUMN AND ROW ADDRESS POINTER MOVEMENT                                                                                                | 39 |
| FIGURE 9-2: SEGMENT OUTPUT CURRENT FOR DIFFERENT CONTRAST CONTROL AND MASTER CURRENT SETTING                                                                  | 40 |
| FIGURE 9-3: ADDRESS POINTER MOVEMENT OF HORIZONTAL ADDRESS INCREMENT MODE                                                                                     |    |
| FIGURE 9-4: ADDRESS POINTER MOVEMENT OF VERTICAL ADDRESS INCREMENT MODE                                                                                       | 41 |
| FIGURE 9-5: EXAMPLE OF COLUMN ADDRESS MAPPING                                                                                                                 | 41 |
| FIGURE 9-6: COM PINS HARDWARE CONFIGURATION (MUX RATIO: 132)                                                                                                  |    |
| FIGURE 9-7: EXAMPLE OF SET DISPLAY START LINE WITH NO REMAP                                                                                                   |    |
| FIGURE 9-8: EXAMPLE OF SET DISPLAY OFFSET WITH NO REMAP                                                                                                       | 46 |
| FIGURE 9-9 : EXAMPLE OF NORMAL DISPLAY                                                                                                                        |    |
| FIGURE 9-10 : EXAMPLE OF ENTIRE DISPLAY ON                                                                                                                    |    |
| FIGURE 9-11 : EXAMPLE OF ENTIRE DISPLAY OFF                                                                                                                   | 47 |
| FIGURE 9-12 : EXAMPLE OF INVERSE DISPLAY                                                                                                                      |    |
| FIGURE 9-13: TRANSITION BETWEEN DIFFERENT MODES                                                                                                               |    |
| FIGURE 9-14: EXAMPLE OF GAMMA CORRECTION BY GAMMA LOOK UP TABLE SETTING                                                                                       |    |
| FIGURE 9-15: EXAMPLE OF DRAW LINE COMMAND                                                                                                                     |    |
| FIGURE 9-16: EXAMPLE OF DRAW RECTANGLE COMMAND.                                                                                                               | 51 |
| FIGURE 9-17: EXAMPLE OF COPY COMMAND                                                                                                                          |    |
| FIGURE 9-18: EXAMPLE OF COPY + CLEAR = MOVE COMMAND.                                                                                                          |    |
| FIGURE 9-19: EXAMPLES OF CONTINUOUS HORIZONTAL AND VERTICAL SCROLLING COMMAND SETUP                                                                           |    |
| FIGURE 12-1: 6800-SERIES MCU PARALLEL INTERFACE CHARACTERISTICS                                                                                               | 58 |
| FIGURE 12-2: 8080-SERIES MCU PARALLEL INTERFACE CHARACTERISTICS (FORM 1)                                                                                      |    |
| FIGURE 12-3: 8080-SERIES MCU PARALLEL INTERFACE CHARACTERISTICS (FORM 2)                                                                                      |    |
| Figure 12-4 : Serial interface characteristics                                                                                                                |    |
| $Figure\ 13-1: SSD1353\ APPLICATION\ EXAMPLE\ FOR\ 18-Bit\ 6800-parallel\ interface\ mode\ (Internal\ regulated\ NEW AND AND AND AND AND AND AND AND AND AND$ |    |
| $V_{ m DD})$                                                                                                                                                  |    |
| Figure 13-2 : SSD1353 application example for 18-bit 6800-parallel interface mode (External $V_{\text{DD}}$ )                                                 | 62 |
| Figure 14-1: SSD1353U4R1 detail dimension                                                                                                                     | 63 |

 SSD1353
 Rev 0.11
 P 5/65
 Aug 2006
 Solomon Systech

#### 1 GENERAL DESCRIPTION

The SSD1353 is a CMOS OLED/PLED driver with 480 segments and 132 commons output, supporting up to 160RGB x 132 dot matrix display. This chip is designed for Common Cathode type OLED/PLED panel.

The SSD1353 had embedded Graphic Display Data RAM (GDDRAM). It supports with 8, 9, 16, 18 bits 8080 / 6800 parallel interface as well as Serial Peripheral Interface. It has 256-step contrast and 262K color control, giving vivid color display to OLED panels. This driver IC can be widely used in many applications such as MP3, PDA, PMP, mobile phone and Digital Camera.

#### 2 FEATURES

- Resolution: 160 RGB x 132 dot matrix panel
- Portrait and Landscape mode data input
- 262k color depth supported by embedded 160x132x18 bit SRAM display buffer
- Power supply

 $V_{DD} = 2.4V - 2.6V$ 

 $\circ$   $V_{DDIO} = 1.6V - V_{CI}$ 

o  $V_{CI} = 2.4V - 3.5V$ 

 $V_{CC} = 10.0V - 21.0V$ 

(Core  $V_{DD}$  power supply)

(MCU interface logic level)

(Low voltage power supply)

(Panel driving power supply)

- Segment maximum source current: 160uA
- Common maximum sink current: 60mA
- 256 step brightness current control for the each color component plus 16 step master current control
- Pin selectable MCU Interfaces:
  - o 8/9/16/18 bits 6800-series parallel interface
  - o 8/9/16/18 bits 8080-series parallel interface
  - o Serial Peripheral Interface
- Color swapping function (RGB BGR)
- Support various color depth
  - o 262k color (6:6:6)
  - o 65k color (5:6:5)
  - o 256 color (3:3:2)
- Screen saving continuous scrolling function in both horizontal and vertical action
- Graphic Accelerating Command (GAC) set
- Programmable Gamma functions
- RAM write synchronization signal
- Programmable Frame Rate
- On Chip Oscillator
- Power saving mode
- Dim mode
- Non-Volatile Memory (OTP) for calibration
- Slim chip layout best suit for COF
- Operating temperature range -40°C to 85°C.

**Solomon Systech** Aug 2006 | P 6/65 | Rev 0.11 | **SSD1353** 

### 3 ORDERING INFORMATION

**Table 3-1: Ordering Information** 

| Ordering Part<br>Number | SEG    | СОМ | Package<br>Form | Reference  | Remark                                                                                                                                                                                                                   |
|-------------------------|--------|-----|-----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SSD1353U4R1             | 160RGB | 128 | COF             | Page 9, 63 | <ul> <li>48mm film, 5 sprocket holes</li> <li>Output lead pitch:</li> <li>SEG: 0.05mm x 0.999=0.04995mm</li> <li>COM: 0.07mm x 0.999=0.06993mm</li> <li>8-/9-/16-/18-bit 80 / 68 parallel &amp; SPI interface</li> </ul> |



SSD1353 | Rev 0.11 | P 7/65 | Aug 2006 | Solomon Systech

# 4 BLOCK DIAGRAM



Figure 4-1: SSD1353 Block Diagram

 Solomon Systech
 Aug 2006
 P 8/65
 Rev 0.11
 SSD1353

# 5 PIN ASSIGNMENT

# 5.1 SSD1353U4R1 pin assignment

Table 5-1: SSD1353U4R1 Pin assignment

| D. LAT   | In the         |      | D 131      | D 137          | i   | D 131      | In the   |   | D IN       | D 137        |    | D 137      | In 137       |
|----------|----------------|------|------------|----------------|-----|------------|----------|---|------------|--------------|----|------------|--------------|
| Pad No.  | Pad Name       |      | Pad No.    | Pad Name       |     |            | Pad Name |   | Pad No     |              |    | Pad No.    |              |
| 1        | NC             |      | 81         | COM61          |     | 161        | SA148    |   | 241        | SB121        |    | 321        | SC94         |
| 2        | VCC            |      | 82         | COM59          |     | 162        | SC147    |   | 242        | SA121        |    | 322        | SB94         |
| 3        | VCOMH          |      | 83         | COM57          |     | 163        | SB147    |   | 243        | SC120        |    | 323        | SA94         |
| 4        | VLSS           |      | 84         | COM55          |     | 164        | SA147    |   | 244        | SB120        |    | 324        | SC93         |
| 5        | VSS            |      | 85         | COM53          |     | 165        | SC146    |   | 245        | SA120        |    | 325        | SB93         |
| 6        | IREF           |      | 86         | COM51          |     | 166        | SB146    |   | 246        | SC119        |    | 326        | SA93         |
| 7        | D17            |      | 87         | COM49          |     | 167        | SA146    |   | 247        | SB119        |    | 327        | SC92         |
| 8        | D16            |      | 88         | COM47          |     | 168        | SC145    |   | 248        | SA119        |    | 328        | SB92         |
| 9        | D15            |      | 89         | COM45          |     | 169        | SB145    |   | 249        | SC118        |    | 329        | SA92         |
| 10       | D14            |      | 90         | COM43          |     | 170        | SA145    |   | 250        | SB118        |    | 330        | SC91         |
| 11       | D13            |      | 91         | COM41          |     | 171        | SC144    |   | 251        | SA118        |    | 331        | SB91         |
| 12       | D13            |      | 92         | COM39          |     | 172        | SB144    |   | 252        | SC117        |    | 332        | SA91         |
|          |                |      |            | COM39          |     |            |          |   |            |              |    |            |              |
| 13       | D11            |      | 93         |                |     | 173        | SA144    |   | 253        | SB117        |    | 333        | SC90         |
| 14       | D10            |      | 94         | COM35          |     | 174        | SC143    |   | 254        | SA117        |    | 334        | SB90         |
| 15       | D9             |      | 95         | COM33          |     | 175        | SB143    |   | 255        | SC116        |    | 335        | SA90         |
| 16       | D8             |      | 96         | COM31          |     | 176        | SA143    |   | 256        | SB116        |    | 336        | SC89         |
| 17       | D7             |      | 97         | COM29          |     | 177        | SC142    | _ | 257        | SA116        |    | 337        | SB89         |
| 18       | D6             |      | 98         | COM27          |     | 178        | SB142    |   | 258        | SC115        |    | 338        | SA89         |
| 19       | D5             |      | 99         | COM25          |     | 179        | SA142    |   | 259        | SB115        |    | 339        | SC88         |
| 20       | D4             |      | 100        | COM23          |     | 180        | SC141    |   | 260        | SA115        |    | 340        | SB88         |
| 21       | D3             |      | 101        | COM21          |     | 181        | SB141    |   | 261        | SC114        |    | 341        | SA88         |
| 22       | D2             |      | 102        | COM19          |     | 182        | SA141    |   | 262        | SB114        |    | 342        | SC87         |
| 23       | D1             |      | 103        | COM17          |     | 183        | SC140    |   | 263        | SA114        |    | 343        | SB87         |
| 24       | D0             |      | 104        | COM15          |     | 184        | SB140    |   | 264        | SC113        |    | 344        | SA87         |
| 25       | E              |      | 105        | COM13          | _   | 185        | SA140    |   | 265        | SB113        |    | 345        | SC86         |
| 26       | R/W#           |      | 106        | COM11          | ď   | 186        | SC139    |   | 266        | SA113        |    | 346        | SB86         |
| 27       | D/C#           |      | 107        | COM9           | 7.  | 187        | SB139    |   | 267        | SC112        |    | 347        | SA86         |
| 28       | RESB           |      | 108        | COM7           | 3   | 188        | SA139    |   | 268        | SB112        |    | 348        | SC85         |
| 29       | CSB            |      | 109        | COM5           | =   | 189        | SC138    |   | 269        | SA112        |    | 349        | SB85         |
| 30       | FR             | í    | 110        | COM3           |     | 190        | SB138    |   | 270        | SC111        |    | 350        | SA85         |
| 31       | BS3            | 7    | 111        | COM1           |     | 191        | SA138    |   | 271        | SB111        |    | 351        | SC84         |
| 32       | BS2            | 1    | 112        | NC             |     | 192        | SC137    |   | 272        | SA111        |    | 352        | SB84         |
| 33       | BS1            |      | 113        | NC             | - 4 | 193        | SB137    |   | 273        | SC110        | ٠. | 353        | SA84         |
| 34       |                |      | 114        |                |     | 194        |          |   | 274        |              |    | 354        | SC83         |
|          | BS0            |      |            | NC             | 1   |            | SA137    |   |            | SB110        |    |            |              |
| 35       | REGVDD         |      | 115        | NC             |     | 195        | SC136    |   | 275        | SA110        |    | 355        | SB83         |
| 36       | VDDIO          |      | 116        | NC             |     | 196        | SB136    |   | 276        | SC109        |    | 356        | SA83         |
| 37       | VDD            |      | 117        | NC             |     | 197        | SA136    |   | 277        | SB109        |    | 357        | SC82         |
| 38       | VPP            |      | 118        | NC             |     | 198        | SC135    |   | 278        | SA109        |    | 358        | SB82         |
| 39       | VCI            |      | 119        | NC             |     | 199        | SB135    |   | 279        | SC108        |    | 359        | SA82         |
| 40       | VSL            |      | 120        | NC             |     | 200        | SA135    |   | 280        | SB108        |    | 360        | SC81         |
| 41       | VBREF          |      | 121        | NC             | _   | 201        | SC134    |   | 281        | SA108        |    | 361        | SB81         |
| 42       | VSS            |      | 122        | NC             |     | 202        | SB134    |   | 282        | SC107        |    | 362        | SA81         |
| 43       | VLSS           |      | 123        | NC             | 4   | 203        | SA134    |   | 283        | SB107        |    | 363        | SC80         |
| 44       | VCOMH          |      | 124        | NC             |     | 204        | SC133    |   | 284        | SA107        |    | 364        | SB80         |
| 45       | VCC            |      | 125        | NC             |     | 205        | SB133    |   | 285        | SC106        |    | 365        | SA80         |
| 46       | NC             |      | 126        | SC159          |     | 206        | SA133    |   | 286        | SB106        |    | 366        | SC79         |
| 47       | NC             | _    | 127        | SB159          |     | 207        | SC132    |   | 287        | SA106        |    | 367        | SB79         |
| 48       | COM127         |      | 128        | SA159          |     | 208        | SB132    |   | 288        | SC105        |    | 368        | SA79         |
| 49       | COM125         |      | 129        | SC158          |     | 209        | SA132    |   | 289        | SB105        |    | 369        | SC78         |
| 50       | COM123         | 11/2 | 130        | SB158          |     | 210        | SC131    |   | 290        | SA105        |    | 370        | SB78         |
| 51       | COM121         |      | 131        | SA158          |     | 211        | SB131    |   | 291        | SC104        |    | 371        | SA78         |
| 52       | COM119         |      | 132        | SC157          |     | 212        | SA131    |   | 292        | SB104        |    | 372        | SC77         |
| 53       | COM117         |      | 133        | SB157          |     | 213        | SC130    |   | 293        | SA104        |    | 373        | SB77         |
| 54       | COM115         |      | 134        | SA157          |     | 214        | SB130    |   | 294        | SC103        |    | 374        | SA77         |
| 55       | COM113         |      | 135        | SC156          |     | 215        | SA130    |   | 295        | SB103        |    | 375        | SC76         |
| 56       | COM111         |      | 136        | SB156          |     | 216        | SC129    |   | 296        | SA103        |    | 376        | SB76         |
| 57       | COM109         |      | 137        | SA156          |     | 217        | SB129    |   | 297        | SC102        |    | 377        | SA76         |
| 58       | COM107         |      | 138        | SC155          |     | 218        | SA129    |   | 298        | SB102        |    | 378        | SC75         |
| 59       | COM107         |      | 139        | SB155          |     | 219        | SC128    |   | 299        | SA102        |    | 379        | SB75         |
| 60       | COM103         |      | 140        | SA155          |     | 220        | SB128    |   | 300        | SC101        |    | 380        | SA75         |
| 61       | COM101         |      | 141        | SC154          |     | 221        | SA128    |   | 301        | SB101        |    | 381        | SC74         |
| 62       | COM99          |      | 142        | SB154          |     | 222        | SC127    |   | 302        | SA101        |    | 382        | SB74         |
| 63       | COM97          |      | 143        | SA154          |     | 223        | SB127    |   | 303        | SC100        |    | 383        | SA74         |
| 64       | COM95          |      | 144        | SC153          |     | 224        | SA127    |   | 304        | SB100        |    | 384        | SC73         |
| 65       | COM93          |      | 145        | SB153          |     | 225        | SC126    |   | 305        | SA100        |    | 385        | SB73         |
| 66       |                |      | 146        | SA153          |     |            | SB126    |   | 306        | SC99         |    | 386        |              |
| 67       | COM91<br>COM89 |      | 146        | SC152          |     | 226<br>227 | SA126    |   | 307        | SB99         |    | 387        | SA73<br>SC72 |
|          |                |      |            |                |     |            | SC125    |   |            |              |    |            |              |
| 68<br>69 | COM87          |      | 148<br>149 | SB152          |     | 228<br>229 | SB125    |   | 308<br>309 | SA99<br>SC98 |    | 388<br>389 | SB72         |
|          | COM85          |      |            | SA152<br>SC151 |     |            |          |   |            |              |    |            | SA72         |
| 70       | COM83          |      | 150        |                |     | 230        | SA125    |   | 310        | SB98         |    | 390        | SC71         |
| 71       | COM81          |      | 151        | SB151          |     | 231        | SC124    |   | 311        | SA98         |    | 391        | SB71         |
| 72       | COM79          |      | 152        | SA151          |     | 232        | SB124    |   | 312        | SC97         |    | 392        | SA71         |
| 73       | COM77          |      | 153        | SC150          |     | 233        | SA124    |   | 313        | SB97         |    | 393        | SC70         |
| 74       | COM75          |      | 154        | SB150          |     | 234        | SC123    |   | 314        | SA97         |    | 394        | SB70         |
| 75       | COM73          |      | 155        | SA150          |     | 235        | SB123    |   | 315        | SC96         |    | 395        | SA70         |
| 76       | COM71          |      | 156        | SC149          |     | 236        | SA123    |   | 316        | SB96         |    | 396        | SC69         |
| 77       | COM69          |      | 157        | SB149          |     | 237        | SC122    |   | 317        | SA96         |    | 397        | SB69         |
| 78       | COM67          |      | 158        | SA149          |     | 238        | SB122    |   | 318        | SC95         |    | 398        | SA69         |
| 79       | COM65          |      | 159        | SC148          |     | 239        | SA122    |   | 319        | SB95         |    | 399        | SC68         |
| 80       | COM63          |      | 160        | SB148          |     | 240        | SC121    |   | 320        | SA95         |    | 400        | SB68         |

 SSD1353
 Rev 0.11
 P 9/65
 Aug 2006
 Solomon Systech

| Pad No.                                                                                 | Pad Name                                                                                     | i   | Pad No.                                                                                 | Pad Name                                                                                             |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 401                                                                                     | SA68                                                                                         |     | 481                                                                                     | SB41                                                                                                 |
| 402                                                                                     | SC67                                                                                         |     | 482                                                                                     | SA41                                                                                                 |
| 403                                                                                     |                                                                                              |     | 483                                                                                     | SC40                                                                                                 |
| 404                                                                                     | SB67                                                                                         |     | 484                                                                                     | SB40                                                                                                 |
| _                                                                                       | SA67                                                                                         |     |                                                                                         | SA40                                                                                                 |
| 405                                                                                     | SC66                                                                                         |     | 485                                                                                     | SC39                                                                                                 |
| 406                                                                                     | SB66                                                                                         |     | 486                                                                                     |                                                                                                      |
| 407                                                                                     | SA66                                                                                         |     | 487                                                                                     | SB39                                                                                                 |
| 408                                                                                     | SC65                                                                                         |     | 488                                                                                     | SA39                                                                                                 |
| 409                                                                                     | SB65                                                                                         |     | 489                                                                                     | SC38                                                                                                 |
| 410                                                                                     | SA65                                                                                         |     | 490                                                                                     | SB38                                                                                                 |
| 411                                                                                     | SC64                                                                                         |     | 491                                                                                     | SA38                                                                                                 |
| 412                                                                                     | SB64                                                                                         |     | 492                                                                                     | SC37                                                                                                 |
| 413                                                                                     | SA64                                                                                         |     | 493                                                                                     | SB37                                                                                                 |
| 414                                                                                     | SC63                                                                                         |     | 494                                                                                     | SA37                                                                                                 |
| 415                                                                                     | SB63                                                                                         |     | 495                                                                                     | SC36                                                                                                 |
| 416                                                                                     | SA63                                                                                         |     | 496                                                                                     | SB36                                                                                                 |
| 417                                                                                     | SC62                                                                                         |     | 497                                                                                     | SA36                                                                                                 |
| 418                                                                                     | SB62                                                                                         |     | 498                                                                                     | SC35                                                                                                 |
| 419                                                                                     | SA62                                                                                         |     | 499                                                                                     | SB35                                                                                                 |
| 420                                                                                     | SC61                                                                                         | 1   | 500                                                                                     | SA35                                                                                                 |
| 421                                                                                     | SB61                                                                                         |     | 501                                                                                     | SC34                                                                                                 |
| 422                                                                                     | SA61                                                                                         |     | 502                                                                                     | SB34                                                                                                 |
| 423                                                                                     | SC60                                                                                         |     | 503                                                                                     | SA34                                                                                                 |
| 424                                                                                     | SB60                                                                                         | l   | 504                                                                                     | SC33                                                                                                 |
|                                                                                         |                                                                                              |     |                                                                                         |                                                                                                      |
| 425                                                                                     | SA60                                                                                         |     | 505                                                                                     | SB33                                                                                                 |
| 426                                                                                     | SC59                                                                                         | l   | 506                                                                                     | SA33                                                                                                 |
| 427                                                                                     | SB59                                                                                         |     | 507                                                                                     | SC32                                                                                                 |
| 428                                                                                     | SA59                                                                                         | l   | 508                                                                                     | SB32                                                                                                 |
| 429                                                                                     | SC58                                                                                         | l   | 509                                                                                     | SA32                                                                                                 |
| 430                                                                                     | SB58                                                                                         |     | 510                                                                                     | SC31                                                                                                 |
| 431                                                                                     | SA58                                                                                         |     | 511                                                                                     | SB31                                                                                                 |
| 432                                                                                     | SC57                                                                                         |     | 512                                                                                     | SA31                                                                                                 |
| 433                                                                                     | SB57                                                                                         |     | 513                                                                                     | SC30                                                                                                 |
| 434                                                                                     | SA57                                                                                         |     | 514                                                                                     | SB30                                                                                                 |
| 435                                                                                     | SC56                                                                                         |     | 515                                                                                     | SA30                                                                                                 |
| 436                                                                                     | SB56                                                                                         |     | 516                                                                                     | SC29                                                                                                 |
| 437                                                                                     | SA56                                                                                         |     | 517                                                                                     | SB29                                                                                                 |
| 438                                                                                     | SC55                                                                                         | 4   | 518                                                                                     | SA29                                                                                                 |
| 439                                                                                     | SB55                                                                                         |     | 519                                                                                     | SC28                                                                                                 |
| 440                                                                                     | SA55                                                                                         |     | 520                                                                                     | SB28                                                                                                 |
| 441                                                                                     | SC54                                                                                         |     | 521                                                                                     | SA28                                                                                                 |
| 442                                                                                     | SB54                                                                                         |     | 522                                                                                     | SC27                                                                                                 |
| 443                                                                                     | SA54                                                                                         |     | 523                                                                                     | SB27                                                                                                 |
| _                                                                                       |                                                                                              |     |                                                                                         |                                                                                                      |
| 444                                                                                     | SC53                                                                                         |     | 524                                                                                     | SA27                                                                                                 |
| 445                                                                                     | SB53                                                                                         |     | 525                                                                                     | SC26                                                                                                 |
| 446                                                                                     | SA53                                                                                         |     | 526                                                                                     | SB26                                                                                                 |
| 447                                                                                     | SC52                                                                                         |     | 527                                                                                     | SA26                                                                                                 |
| 448                                                                                     | SB52                                                                                         |     | 528                                                                                     | SC25                                                                                                 |
| 449                                                                                     | SA52                                                                                         |     | 529                                                                                     | SB25                                                                                                 |
| 450                                                                                     | SC51                                                                                         |     | 530                                                                                     | SA25                                                                                                 |
| 451                                                                                     | SB51                                                                                         |     | 531                                                                                     | SC24                                                                                                 |
| 452                                                                                     | SA51                                                                                         |     | 532                                                                                     | SB24                                                                                                 |
| 453                                                                                     | SC50                                                                                         | /// | 533                                                                                     | SA24                                                                                                 |
| 454                                                                                     | SB50                                                                                         | 7/7 | 534                                                                                     | SC23                                                                                                 |
| 455                                                                                     | SA50                                                                                         |     | 535                                                                                     | SB23                                                                                                 |
| 456                                                                                     | SC49                                                                                         |     | 536                                                                                     | SA23                                                                                                 |
| 457                                                                                     | SB49                                                                                         |     | 537                                                                                     | SC22                                                                                                 |
| 458                                                                                     | SA49                                                                                         |     | 538                                                                                     | SB22                                                                                                 |
| 459                                                                                     | SC48                                                                                         | ĺ   | 539                                                                                     | SA22                                                                                                 |
| 460                                                                                     | SB48                                                                                         | Ī   | 540                                                                                     | SC21                                                                                                 |
| 461                                                                                     | SA48                                                                                         | Ī   | 541                                                                                     | SB21                                                                                                 |
| 462                                                                                     | SC47                                                                                         | i   | 542                                                                                     | SA21                                                                                                 |
| 463                                                                                     | SB47                                                                                         | 1   | 543                                                                                     | SC20                                                                                                 |
|                                                                                         | /                                                                                            |     |                                                                                         |                                                                                                      |
| 464                                                                                     | SA47                                                                                         |     | 1544                                                                                    | ISB20                                                                                                |
| 464<br>465                                                                              | SA47<br>SC46                                                                                 |     | 544                                                                                     | SB20<br>SA20                                                                                         |
| 465                                                                                     | SC46                                                                                         |     | 545                                                                                     | SA20                                                                                                 |
| 465<br>466                                                                              | SC46<br>SB46                                                                                 |     | 545<br>546                                                                              | SA20<br>SC19                                                                                         |
| 465<br>466<br>467                                                                       | SC46<br>SB46<br>SA46                                                                         |     | 545<br>546<br>547                                                                       | SA20<br>SC19<br>SB19                                                                                 |
| 465<br>466<br>467<br>468                                                                | SC46<br>SB46<br>SA46<br>SC45                                                                 |     | 545<br>546<br>547<br>548                                                                | SA20<br>SC19<br>SB19<br>SA19                                                                         |
| 465<br>466<br>467<br>468<br>469                                                         | SC46<br>SB46<br>SA46<br>SC45<br>SB45                                                         |     | 545<br>546<br>547<br>548<br>549                                                         | SA20<br>SC19<br>SB19<br>SA19<br>SC18                                                                 |
| 465<br>466<br>467<br>468<br>469<br>470                                                  | SC46<br>SB46<br>SA46<br>SC45<br>SB45<br>SA45                                                 |     | 545<br>546<br>547<br>548<br>549<br>550                                                  | SA20<br>SC19<br>SB19<br>SA19<br>SC18<br>SB18                                                         |
| 465<br>466<br>467<br>468<br>469<br>470<br>471                                           | SC46<br>SB46<br>SA46<br>SC45<br>SB45<br>SA45<br>SC44                                         |     | 545<br>546<br>547<br>548<br>549<br>550<br>551                                           | SA20<br>SC19<br>SB19<br>SA19<br>SC18<br>SB18<br>SA18                                                 |
| 465<br>466<br>467<br>468<br>469<br>470<br>471<br>472                                    | SC46<br>SB46<br>SA46<br>SC45<br>SB45<br>SA45<br>SC44<br>SB44                                 |     | 545<br>546<br>547<br>548<br>549<br>550<br>551<br>552                                    | SA20<br>SC19<br>SB19<br>SA19<br>SC18<br>SB18<br>SA18<br>SC17                                         |
| 465<br>466<br>467<br>468<br>469<br>470<br>471<br>472<br>473                             | SC46<br>SB46<br>SA46<br>SC45<br>SB45<br>SA45<br>SC44<br>SB44<br>SA44                         |     | 545<br>546<br>547<br>548<br>549<br>550<br>551<br>552<br>553                             | SA20<br>SC19<br>SB19<br>SA19<br>SC18<br>SB18<br>SA18<br>SC17<br>SB17                                 |
| 465<br>466<br>467<br>468<br>469<br>470<br>471<br>472<br>473                             | SC46<br>SB46<br>SA46<br>SC45<br>SB45<br>SA45<br>SC44<br>SB44<br>SA44<br>SC43                 |     | 545<br>546<br>547<br>548<br>549<br>550<br>551<br>552<br>553<br>554                      | SA20<br>SC19<br>SB19<br>SA19<br>SC18<br>SB18<br>SA18<br>SC17<br>SB17                                 |
| 465<br>466<br>467<br>468<br>469<br>470<br>471<br>472<br>473                             | SC46<br>SB46<br>SA46<br>SC45<br>SB45<br>SA45<br>SC44<br>SB44<br>SA44                         |     | 545<br>546<br>547<br>548<br>549<br>550<br>551<br>552<br>553<br>554                      | SA20<br>SC19<br>SB19<br>SA19<br>SC18<br>SB18<br>SA18<br>SC17<br>SB17<br>SA17<br>SC16                 |
| 465<br>466<br>467<br>468<br>469<br>470<br>471<br>472<br>473                             | SC46<br>SB46<br>SA46<br>SC45<br>SB45<br>SA45<br>SC44<br>SB44<br>SA44<br>SC43<br>SB43<br>SA43 |     | 545<br>546<br>547<br>548<br>549<br>550<br>551<br>552<br>553<br>554<br>555<br>556        | SA20<br>SC19<br>SB19<br>SA19<br>SC18<br>SB18<br>SA18<br>SC17<br>SB17                                 |
| 465<br>466<br>467<br>468<br>469<br>470<br>471<br>472<br>473<br>474<br>475               | SC46<br>SB46<br>SA46<br>SC45<br>SB45<br>SA45<br>SC44<br>SB44<br>SA44<br>SC43<br>SB43         |     | 545<br>546<br>547<br>548<br>549<br>550<br>551<br>552<br>553<br>554                      | SA20<br>SC19<br>SB19<br>SA19<br>SC18<br>SB18<br>SA18<br>SC17<br>SB17<br>SA17<br>SC16                 |
| 465<br>466<br>467<br>468<br>469<br>470<br>471<br>472<br>473<br>474<br>475               | SC46<br>SB46<br>SA46<br>SC45<br>SB45<br>SA45<br>SC44<br>SB44<br>SA44<br>SC43<br>SB43<br>SA43 |     | 545<br>546<br>547<br>548<br>549<br>550<br>551<br>552<br>553<br>554<br>555<br>556        | SA20<br>SC19<br>SB19<br>SA19<br>SC18<br>SB18<br>SA18<br>SC17<br>SB17<br>SA17<br>SC16<br>SB16         |
| 465<br>466<br>467<br>468<br>469<br>470<br>471<br>472<br>473<br>474<br>475<br>476<br>477 | SC46<br>SB46<br>SA46<br>SC45<br>SB45<br>SA45<br>SC44<br>SB44<br>SC43<br>SB43<br>SA43<br>SC42 |     | 545<br>546<br>547<br>548<br>549<br>550<br>551<br>552<br>553<br>554<br>555<br>556<br>557 | SA20<br>SC19<br>SB19<br>SA19<br>SC18<br>SB18<br>SA18<br>SC17<br>SB17<br>SA17<br>SC16<br>SB16<br>SA16 |

| Pad No. Pad Name<br>641 COM42<br>642 COM44 | 2 |
|--------------------------------------------|---|
| 641 COM42<br>642 COM44                     |   |
| 0.12                                       |   |
|                                            |   |
| 643 COM46                                  |   |
| 644 COM48                                  |   |
| 645 COM50<br>646 COM52                     |   |
| 646 COM52                                  |   |
| 647 COM54                                  |   |
| 648 COM56                                  |   |
| 649 COM58                                  |   |
| 650 COM60                                  |   |
| 651 COM62                                  |   |
| 652 COM64                                  |   |
| 653 COM66                                  |   |
| 654 COM68                                  |   |
| 655 COM70                                  |   |
| 656 COM72                                  |   |
| 657 COM74                                  |   |
| 658 COM76                                  |   |
| 659 COM78                                  |   |
| 660 COM80                                  |   |
| 661 COM82                                  |   |
| 662 COM84                                  |   |
| 663 COM86                                  |   |
| 664 COM88                                  |   |
| 665 COM90                                  |   |
| 666 COM92                                  |   |
| 667 COM94                                  |   |
| 668 COM96                                  |   |
| 669 COM98                                  |   |
| 670 COM100                                 |   |
| 671 COM102                                 |   |
| 672 COM104                                 |   |
| 673 COM106                                 |   |
| 674 COM108                                 |   |
| 675 COM110                                 |   |
| 676 COM112                                 | _ |
| 677 COM114                                 |   |
| 678 COM116                                 |   |
| 10/9 ICUMITA                               |   |
| 680 COM120                                 | 7 |
| 681 COM122                                 |   |
| 682 COM124                                 |   |
| 683 COM126                                 |   |
| 684 NC                                     |   |
| 685 NC                                     |   |

Pad No.

561

562

563

564

565

566

567

568

569

570

571

574

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

602

603 604

605 606

607

608

609 610

611

613

614

615

616

617

618

619

620

621

623

628

629

630

631 632

633

634

635

636

637

638

639

Pad Name

SC14

SB14

SA14

SC13

SB13

SA13

SC12

SB12

SA12

SC11

SB11 SA11 SC10

SB10 SA10

SC9

SB9

SA9

SC8

SB8

SA8

SC7

SB7

SA7

SC6

SB6

SA6

SC5

SB5

SA5

SC4

SB4

SA4

SC3

SB3

SA3

SC2

SB2

SA2 SC1

SB1

SA1 SC0

SB0 SA0

NC

NC NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

COM0 COM2

COM4

COM6 COM8 COM10 COM12

COM14

COM16

COM18 COM20

COM22

COM24

COM26

COM28

COM30

COM32

COM34

COM36

COM38 COM40

 Solomon Systech
 Aug 2006
 P 10/65
 Rev 0.11
 SSD1353

Figure 5-1: SSD1353U4R1 Pin assignment



SSD1353 Rev 0.11 P 11/65 Aug 2006 Solomon Systech

Note: (1) COM sequence (Split) is under command setting: ADh, 60h

# **6 PIN DESCRIPTIONS**

# Key:

| I = Input                          | NC = Not Connected                      |
|------------------------------------|-----------------------------------------|
| O =Output                          | Pull LOW= connect to Ground             |
| IO = Bi-directional (input/output) | Pull HIGH= connect to V <sub>DDIO</sub> |
| P = Power pin                      |                                         |

Table 6-1: SSD1353 Pin Description

| Pin Name         | Pin Type | Description                                                                                                                                                                                                 |
|------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ m V_{DD}$      | P        | Power supply pin for core logic operation Refer to Section 7.10 for details.                                                                                                                                |
| $V_{ m DDIO}$    | P        | Power supply for interface logic level. It should be match with the MCU interface voltage level.  Refer to Section 7.10 for details.                                                                        |
| $ m V_{CI}$      | P        | Low voltage power supply $V_{CI}$ must always be equal or higher than $V_{DD}$ and $V_{DDIO}$ . Refer to Section 7.10 for details.                                                                          |
| V <sub>ACI</sub> | P        | Analog Low voltage power supply Connect to $V_{\text{CI}}$ .                                                                                                                                                |
| $V_{CC}$         | P        | Power supply for panel driving voltage. This is also the most positive power voltage supply pin.                                                                                                            |
| V <sub>PP</sub>  | P        | Power supply for programming OTP. In OTP programming, this pin is powered up to 7.5V. In operation mode (without programming OTP), this pin must be connected to $V_{DD}$ .                                 |
| $ m V_{SS}$      | P        | Ground pin                                                                                                                                                                                                  |
| $V_{LSS}$        | P        | Analog system ground pin                                                                                                                                                                                    |
| $V_{COMH}$       | P        | COM signal deselected voltage level. A capacitor should be connected between this pin and $V_{\rm SS}$ .                                                                                                    |
| REGVDD           | 1        | Internal $V_{DD}$ regulator selection pin. When this pin is pulled HIGH, internal $V_{DD}$ regulator is enabled. When this pin is pulled LOW, external $V_{DD}$ is used. Refer to Section 7.10 for details. |
| BGGND            | P        | This is a reserved pin. It should be connected to Ground.                                                                                                                                                   |
| PGGND            | P        | This is a reserved pin. It should be connected to Ground.                                                                                                                                                   |
| $V_{ m DDB}$     | P        | This is a reserved pin. It should be connected to $V_{\text{CI}}$ .                                                                                                                                         |
| $ m V_{SSB}$     | P        | This is a reserved pin. It should be connected to Ground                                                                                                                                                    |
| GDR              | О        | This is a reserved pin. It should be kept NC.                                                                                                                                                               |
| RESE             | I        | This is a reserved pin. It should be kept NC.                                                                                                                                                               |
| FB               | I        | This is a reserved pin. It should be kept NC.                                                                                                                                                               |

 Solomon Systech
 Aug 2006
 P 12/65
 Rev 0.11
 SSD1353

| Pin Name         | Pin Type | Description                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| $ m V_{BREF}$    | О        | This is an internal voltage reference pin. A capacitor should be connected to this pin and $V_{\text{SS}}$ .                                                                                                                                           |  |  |  |  |  |  |
| GPIO0            | I/O      | This is a reserved pin. It should be kept NC.                                                                                                                                                                                                          |  |  |  |  |  |  |
| GPIO1            | I/O      | This is a reserved pin. It should be kept NC.                                                                                                                                                                                                          |  |  |  |  |  |  |
| VSL              | P        | This is segment voltage reference pin. When external VSL is not used, this pin should be left open. When external VSL is used, connect with resistor and diode to ground. (details depend on application)                                              |  |  |  |  |  |  |
| BS[3:0]          | I        | MCU bus interface selection pins. Select appropriate logic setting as described in the following table.  Table 6-2: Bus Interface selection                                                                                                            |  |  |  |  |  |  |
|                  |          | BS[3:0]   Bus Interface Selection                                                                                                                                                                                                                      |  |  |  |  |  |  |
| I <sub>REF</sub> | 1        | This pin is the segment output current reference pin. A resistor should be connected between this pin and $V_{\rm SS}$ to maintain the current around 10uA. Please refer to section 7.6 for the formula of resistor value from $I_{\rm REF}$ .         |  |  |  |  |  |  |
| CL               | I        | Internal clock I/O pin. When internal clock is enable (i.e. pull HIGH in CLS pin), this pin is not used and should be connected to Ground. When internal clock is disable (i.e. pull LOW is CLS pin), this pin is the external clock source input pin. |  |  |  |  |  |  |
| CLS              | I        | Internal clock selection pin. When this pin is pulled HIGH, internal oscillator is enabled (normal operation). When this pin is pulled LOW, an external clock signal should be connected to CL.                                                        |  |  |  |  |  |  |
| CS#              | I        | This pin is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.                                                                                                                        |  |  |  |  |  |  |
| RES#             | I        | This pin is reset signal input. When the pin is pulled LOW, initialization of the chip is executed. Keep this pin pull HIGH during normal operation.                                                                                                   |  |  |  |  |  |  |

 SSD1353
 Rev 0.11
 P 13/65
 Aug 2006
 Solomon Systech

| Pin Type | Description                                                                                                                                                                                                                     |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I        | This pin is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the content at D[17:0] will be interpreted as data. When the pin is pulled LOW, the content at D[17:0] will be interpreted as command. |
| I        | This pin is read / write control input pin connecting to the MCU interface.                                                                                                                                                     |
|          | When interfacing to a 6800-series microprocessor, this pin will be used as Read/Write (R/W#) selection input. Read mode will be carried out when this pin is pulled HIGH and write mode when LOW.                               |
|          | When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled LOW and the chip is selected.                                                           |
|          | When serial interface is selected, this pin R/W (WR#) must be connected to $V_{SS}$ .                                                                                                                                           |
| I        | This pin is MCU interface input.                                                                                                                                                                                                |
|          | When interfacing to a 6800-series microprocessor, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled HIGH and the chip is selected.                                      |
|          | When connecting to an 8080-microprocessor, this pin receives the Read (RD#) signal. Read operation is initiated when this pin is pulled LOW and the chip is selected.                                                           |
|          | When serial interface is selected, this pin $E(RD\#)$ must be connected to $V_{SS}$ .                                                                                                                                           |
| I/O      | These pins are bi-directional data bus connecting to the MCU data bus. Unused pins are recommended to tie LOW. (Except for D2 pin in SPI mode)                                                                                  |
|          | Refer to Section 7.1 for different bus interface connection.                                                                                                                                                                    |
| I        | These are reserved pins. They should be connected to Ground.                                                                                                                                                                    |
| I        | This is a reserved pin. It should be connected to Ground.                                                                                                                                                                       |
| I        | This is a reserved pin. It should be connected to Ground.                                                                                                                                                                       |
| I        | This is a reserved pin. It should be connected to Ground.                                                                                                                                                                       |
| I        | This is a reserved pin. It should be connected to Ground.                                                                                                                                                                       |
| 0        | Ram Write Synchronization output<br>Details refer to section 7.5.2                                                                                                                                                              |
| О        | These pins provide the OLED segment driving signals. These pins are $V_{SS}$ state when display is OFF.                                                                                                                         |
|          | The 480 segment pins are divided into 3 groups, SA, SB and SC. Each group can have different color settings for color A, B and C.                                                                                               |
| I/O      | These pins provide the Common switch signals to the OLED panel. These pins are in high impedance state when display is OFF.                                                                                                     |
|          | I I I I O O                                                                                                                                                                                                                     |

 Solomon Systech
 Aug 2006
 P 14/65
 Rev 0.11
 SSD1353

#### 7 FUNCTIONAL BLOCK DESCRIPTIONS

#### 7.1 MCU Interface

SSD1353 MCU interface consist of 18 data pin and 5 control pins. The pin assignment at different interface mode is summarized in Table 7-1. Different MCU mode can be set by hardware selection on BS[3:0] pins (refer to Table 6-2 for BS[3:0] pins setting)

| Data / Command Interface | D17 | D16 | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | Pin Name Control Signal R/W# 8b / 8080 Tie Low RD# WR# RES# 8b / 6800 Tie Low D[7:0] R/W# 9b / 8080 Tie Low D[8:0] RD# WR# CS# D/C# RES# 9b / 6800 Tie Low R/W# 16b / 8080 D[15:0] RD# CS# 16b / 6800 DI15:01 R/W# D/C# Df17:01 RD# WR# CS# 18h / 8080 D/C# CS# D[17:0] 18b / 6800 R/W# D/C#

Table 7-1: MCU interface assignment under different bus interface mode

### 7.1.1 MCU Parallel 6800-series Interface

The parallel interface consists of 18 bi-directional data pins (D[17:0]), R/W#, D/C#, E and CS#

A LOW in R/W# indicates WRITE operation and HIGH in R/W# indicates READ operation. A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. The E input serves as data latch signal while CS# is LOW. Data is latched at the falling edge of E signal.

| Function      | E            | R/W# | CS# | D/C# |
|---------------|--------------|------|-----|------|
| Write command | 1            | L    | L   | L    |
| Read status   | $\downarrow$ | Н    | L   | L    |
| Write data    | <b>↓</b>     | L    | L   | Н    |
| Read data     | $\downarrow$ | Н    | L   | Н    |

Table 7-2: Control pins of 6800 interface

#### Note

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 7-1.

SSD1353 | Rev 0.11 | P 15/65 | Aug 2006 | Solomon Systech

<sup>(1) ↓</sup> stands for falling edge of signal

<sup>(2)</sup> H stands for HIGH in signal

<sup>(3)</sup> L stands for LOW in signal

Figure 7-1: Data read back procedure - insertion of dummy read



#### 7.1.2 MCU Parallel 8080-series Interface

The parallel interface consists of 18 bi-directional data pins (D[17:0]), RD#, WR#, D/C# and CS#.

A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. A rising edge of RD# input serves as a data READ latch signal while CS# is kept LOW. A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept LOW.

Figure 7-2 : Example of Write procedure in 8080 parallel interface mode  $\,$ 



Figure 7-3: Example of Read procedure in 8080 parallel interface mode



**Solomon Systech** Aug 2006 | P 16/65 | Rev 0.11 | **SSD1353** 

Table 7-3: Control pins of 8080 interface (Form 1)

| Function      | RD# | WR#      | CS# | D/C# |
|---------------|-----|----------|-----|------|
| Write command | Н   | <b>↑</b> | L   | L    |
| Read status   | 1   | Н        | L   | L    |
| Write data    | Н   | <b>↑</b> | L   | Н    |
| Read data     | 1   | Н        | L   | Н    |

Alternatively, RD# and WR# can be keep stable while CS# serves as the data/command latch signal.

Table 7-4: Control pins of 8080 interface (Form 2)

| Function      | RD# | WR# | CS# | D/C# |
|---------------|-----|-----|-----|------|
| Write command | H   | L   | 1   | L    |
| Read status   | L   | Н   | 1   | L    |
| Write data    | Н   | L   | 1   | Н    |
| Read data     | L   | Н   | 1   | Н    |

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 7-4.

Figure 7-4: Display data read back procedure - insertion of dummy read



SSD1353 Rev 0.11 P 17/65 Aug 2006 Solomon Systech

**Note**(1) ↑ stands for rising edge of signal

<sup>(2)</sup> H stands for HIGH in signal

<sup>(3)</sup> L stands for LOW in signal

<sup>(4)</sup> Refer to Figure 12-2 for Form 1 8080-Series MPU Parallel Interface Timing Characteristics

Note

(1) ↑ stands for rising edge of signal
(2) H stands for HIGH in signal

<sup>(3)</sup> L stands for LOW in signal

<sup>(4)</sup> Refer to Figure 12-3 for Form 2 8080-Series MPU Parallel Interface Timing Characteristics

#### 7.1.3 MCU Serial Interface

The serial interface consists of serial clock SCLK, serial data SDIN, D/C#, CS#. In SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D17, E and R/W# can be connected to an external ground.

Table 7-5: Control pins of Serial interface

| Function      | E       | R/W#    | CS# | D/C# |
|---------------|---------|---------|-----|------|
| Write command | Tie LOW | Tie LOW | L   | L    |
| Write data    | Tie LOW | Tie LOW | L   | Н    |

#### Note

(1) H stands for HIGH in signal

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D16, ... D0. D/C# is sampled on every eighth clock and the data byte in the shift register is written to the Graphic Display Data RAM (GDDRAM) or command register in the same clock.

Under serial mode, only write operations are allowed.

#### 7.2 Reset Circuit

When RES# input is pulled LOW, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 132 MUX Display Mode
- 3. Normal segment and display data column address and row address mapping (SEG0 mapped to address 00h and COM0 mapped to address 00h)
- 4. Display start line is set at display RAM address 0
- 5. Column address counter is set at 0
- 6. Normal scan direction of the COM outputs
- 7. Individual contrast control registers of color A, B, and C are set at 80h

Solomon Systech Aug 2006 P 18/65 Rev 0.11 SSD1353

<sup>(2)</sup> L stands for LOW in signal

#### 7.3 GDDRAM

128

129

130

131

3

#### 7.3.1 GDDRAM structure

The GDDRAM is a bit mapped static RAM holding the pattern to be displayed. The RAM size is 160 x 132 x 18bits. For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software. For vertical scrolling of the display, an internal register storing display start line can be set to control the portion of the RAM data to be mapped to the display. Each pixel has 18-bit data. Each sub-pixels for color A, B and C have 6 bits. The arrangement of data pixel in graphic display data RAM is shown in Table 7-6

В5 В5 C5 A5 C5 A5 Data В5 C5 A4 В4 C4 A4 B4 C4 A4 C4 A4 B4 C4 Format A3 В3 C3 A3 В3 C3 A3 C3 A3 В3 C3 A2 B2 C2 A2 B2 C2 A2 C2 A2 B2 C2 Common A1 В1 C1 A1 В1 C1 A1 C1 A1 В1 C1 Address C0 Α0 B0C0 A0 B0C0 A0 C0 A0 B0Common Normal Remapped output COM0 6 6 6 6 130 6 6 COM1 129 2 COM2 3 128 COM3 127 COM4 4 126 COM5 6 125 no of bits in this cell COM6 124 COM7 127 4

COM128

COM129

COM130

COM131

Table 7-6: 262k Color Depth Graphic Display Data RAM Structure

| SEG output | SA0 | SB0  | SC0 | SA1 | SB1 | SC1 | SA2 | <br> | SC158 | SA159 | SB159 | SC159 |
|------------|-----|------|-----|-----|-----|-----|-----|------|-------|-------|-------|-------|
|            |     | 44.0 |     |     |     |     |     |      |       |       |       |       |

SSD1353 | Rev 0.11 | P 19/65 | Aug 2006 | Solomon Systech

# 7.3.2 Data bus to RAM mapping under different input mode

Table 7-7: Data bus usage under different bus width and color depth mode

|           |                  |             |                | Data bus       |                |                |                 |                 |                       |                 |                 |                 |                |                |                |                 |                 |                 |                 |                       |
|-----------|------------------|-------------|----------------|----------------|----------------|----------------|-----------------|-----------------|-----------------------|-----------------|-----------------|-----------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------------|
| Bus width | Color Depth      | Input order | D17            | D16            | D15            | D14            | D13             | D12             | D11                   | D10             | D9              | D8              | <b>D</b> 7     | D6             | D5             | D4              | D3              | D2              | D1              | D0                    |
| 8 bits    | 256              |             | X              | X              | X              | X              | X               | X               | X                     | X               | X               | X               | C <sub>2</sub> | Cı             | C <sub>0</sub> | $B_2$           | B <sub>1</sub>  | $B_0$           | $A_1$           | $A_0$                 |
| 16 bits   | 65k              |             | X              | X              | C <sub>4</sub> | C <sub>3</sub> | C <sub>2</sub>  | C <sub>1</sub>  | C <sub>0</sub>        | $\mathbf{B}_5$  | B <sub>4</sub>  | B <sub>3</sub>  | $B_2$          | Bı             | $B_0$          | A4              | <b>A</b> 3      | $A_2$           | $\mathbf{A}_1$  | $A_0$                 |
| 8 bits    | 65k              | 1st         | X              | X              | X              | X              | X               | X               | X                     | X               | X               | X               | C4             | C <sub>3</sub> | C <sub>2</sub> | Cı              | C <sub>0</sub>  | B <sub>5</sub>  | B <sub>4</sub>  | B <sub>3</sub>        |
| o bits    | USK              | 2nd         | X              | X              | X              | X              | X               | X               | X                     | X               | X               | X               | B <sub>2</sub> | Bı             | $B_0$          | A4              | A3              | $A_2$           | $\mathbf{A}_1$  | $A_0$                 |
|           |                  | 1st         | X              | X              | X              | X              | X               | X               | X                     | X               | X               | X               | X              | X              | C <sub>5</sub> | C <sub>4</sub>  | C <sub>3</sub>  | C <sub>2</sub>  | Cı              | C <sub>0</sub>        |
| 8 bits    | 262k             | 2nd         | X              | X              | X              | X              | X               | X               | X                     | X               | X               | X               | X              | X              | B <sub>5</sub> | B <sub>4</sub>  | B <sub>3</sub>  | $B_2$           | Bı              | $B_0$                 |
|           |                  | 3rd         | X              | X              | X              | X              | X               | X               | X                     | X               | X               | X               | X              | X              | A5             | A4              | <b>A</b> 3      | $A_2$           | $\mathbf{A}_1$  | $A_0$                 |
| 16 bits   | 262k             | 1st         | X              | X              | X              | X              | X               | X               | X                     | X               | X               | X               | X              | X              | C <sub>5</sub> | C <sub>4</sub>  | C <sub>3</sub>  | C <sub>2</sub>  | Cı              | C <sub>0</sub>        |
| 10 bits   | format 1         | 2nd         | X              | X              | X              | X              | <b>B</b> 5      | B4              | <b>B</b> 3            | B2              | Bı              | Bo              | X              | X              | <b>A</b> 5     | A4              | <b>A</b> 3      | A2              | Αı              | A <sub>0</sub>        |
|           |                  | 1st         | X              | X              | X              | X              | C1 <sub>5</sub> | C1 <sub>4</sub> | C1 <sub>3</sub>       | C1 <sub>2</sub> | C1 <sub>1</sub> | C1 <sub>0</sub> | X              | X              | B15            | B1 <sub>4</sub> | B1 <sub>3</sub> | B1 <sub>2</sub> | B1 <sub>1</sub> | B1 <sub>0</sub>       |
| 16 bits   | 262k<br>format 2 | 2nd         | X              | X              | X              | X              | A15             | A14             | A13                   | A12             | A1 <sub>1</sub> | A10             | X              | X              | C25            | C24             | C2 <sub>3</sub> | C2 <sub>2</sub> | C2 <sub>1</sub> | C20                   |
|           |                  | 3rd         | X              | X              | X              | X              | B25             | B24             | B2 <sub>3</sub>       | B2 <sub>2</sub> | B2 <sub>1</sub> | B20             | X              | X              | A25            | A24             | A23             | A22             | A2 <sub>1</sub> | A20                   |
| 9 bits    | 262k             | 1st         | X              | X              | X              | X              | X               | X               | X                     | X               | X               | C <sub>5</sub>  | C4             | C <sub>3</sub> | C <sub>2</sub> | C <sub>1</sub>  | C <sub>0</sub>  | B <sub>5</sub>  | B4              | <b>B</b> <sub>3</sub> |
| 2 DITS    | 202K             | 2nd         | X              | X              | X              | X              | X               | X               | X                     | X               | X               | B <sub>2</sub>  | Bı             | B <sub>0</sub> | A5             | A4              | A3              | A <sub>2</sub>  | $A_1$           | $A_0$                 |
| 18 bits   | 262k             |             | C <sub>5</sub> | C <sub>4</sub> | C <sub>3</sub> | C <sub>2</sub> | Cı              | C <sub>0</sub>  | <b>B</b> <sub>5</sub> | B <sub>4</sub>  | B <sub>3</sub>  | B <sub>2</sub>  | Bı             | $B_0$          | A5             | A4              | A3              | $A_2$           | $A_1$           | $A_0$                 |

# 7.3.3 RAM mapping and Different color depth mode

At 262k color depth mode, color A, B, C are directly mapped to the RAM content. At 256 and 65k color mode, the RAM content will be filled up to 262k format.

Table 7-8: 256 and 65k color mode mapping

|            |       |       | S     | Cn              |                 |                 | SBn   |       |       |                 |                  | SAn             |       |       |                 |                 |                 |                 |
|------------|-------|-------|-------|-----------------|-----------------|-----------------|-------|-------|-------|-----------------|------------------|-----------------|-------|-------|-----------------|-----------------|-----------------|-----------------|
| 262k color | $C_5$ | $C_4$ | $C_3$ | $C_2$           | $C_1$           | $C_0$           | $B_5$ | $B_4$ | $B_3$ | $B_2$           | $\mathbf{B}_{1}$ | $\mathrm{B}_0$  | $A_5$ | $A_4$ | $A_3$           | $A_2$           | $A_1$           | $A_0$           |
| 65k color  | $C_4$ | $C_3$ | $C_2$ | $C_1$           | $C_0$           | *C <sub>4</sub> | $B_5$ | $B_4$ | $B_3$ | $B_2$           | $\mathbf{B}_1$   | $\mathrm{B}_0$  | $A_4$ | $A_3$ | $A_2$           | $A_1$           | $A_0$           | *A <sub>4</sub> |
| 256 color  | $C_2$ | $C_1$ | $C_0$ | *C <sub>2</sub> | *C <sub>2</sub> | *C <sub>2</sub> | $B_2$ | $B_1$ | $B_0$ | *B <sub>2</sub> | *B <sub>2</sub>  | *B <sub>2</sub> | $A_1$ | $A_0$ | *A <sub>1</sub> | *A <sub>1</sub> | *A <sub>1</sub> | *A <sub>1</sub> |

Solomon Systech Aug 2006 | P 20/65 | Rev 0.11 | SSD1353

**Note**  $^{(1)}$   $n = 0 \sim 159d$ 

<sup>(2)</sup> bits with \* are copied from corresponding bits in order to fill up 262K format.

#### 7.4 Command Decoder

This module determines whether the input should be interpreted as data or command based upon the input of the D/C# pin.

If D/C# pin is HIGH, data is written to Graphic Display Data RAM (GDDRAM). If it is LOW, the inputs at D0-D17 are interpreted as a Command and it will be decoded and be written to the corresponding command register.

### 7.5 Oscillator & Timing Generator

#### 7.5.1 Oscillator

Figure 7-6: Oscillator Circuit



This module is an On-Chip low power RC oscillator circuitry (Figure 7-6). The operation clock (CLK) can be generated either from internal oscillator or external source CL pin by CLS pin. If CLS pin is HIGH, internal oscillator is selected. If CLS pin is LOW, external clock from CL pin will be used for CLK. The frequency of internal oscillator  $F_{OSC}$  can be programmed by command B3h.

The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor "D" can be programmed from 1 to 16 by command B3h.

$$DCLK = F_{OSC} / D$$

The frame frequency of display is determined by the following formula:

$$F_{FRM} = \frac{F_{osc}}{D \times K \times No. \text{ of } Mux}$$

where

- D stands for clock divide ratio. It is set by command B3h A[3:0]. The divide ratio has the range from 1 to 16.
- K is the number of display clocks per row. The value is derived by
   K = Phase 1 period +Phase 2 period +98
   = 9 +7 +98 =114 (reset)
- Number of multiplex ratio is set by command A8h. The reset value is 131 (i.e. 132MUX).
- F<sub>osc</sub> is the oscillator frequency. It can be changed by command B3h A[7:4]. The higher the register setting results in higher frequency.

If the frame frequency is set too low, flickering may occur. On the other hand, higher frame frequency leads to higher power consumption on the whole system.

SSD1353 | Rev 0.11 | P 21/65 | Aug 2006 | Solomon Systech

## 7.5.2 FR synchronization

FR synchronization signal can be used to prevent tearing effect.



The starting time to write a new image to OLED driver is depended on the MCU writing speed. If MCU can finish writing a frame image within one frame period, it is classified as fast write MCU. For MCU needs longer writing time to complete ( more than one frame but within two frames), it is a slow write one.

**For fast write MCU:** MCU should start to write new frame of ram data just after rising edge of FR pulse and should be finished well before the rising edge of the next FR pulse.

**For slow write MCU**: MCU should start to write new frame ram data after the falling edge of the 1<sup>st</sup> FR pulse and must be finished before the rising edge of the 3<sup>rd</sup> FR pulse.

**Solomon Systech** Aug 2006 | P 22/65 | Rev 0.11 | **SSD1353** 

### 7.6 SEG/COM Driving block

This block is used to derive the incoming power sources into the different levels of internal use voltage and current.

- V<sub>CC</sub> is the most positive voltage supply.
- V<sub>COMH</sub> is the Common deselected level. It is internally regulated.
- V<sub>LSS</sub> is the ground path of the analog and panel current.
- I<sub>REF</sub> is a reference current source for segment current drivers I<sub>SEG</sub>. The relationship between reference current and segment current of a color is:

```
I_{SEG} = Contrast / 256 * I_{REF} * scale factor in which the contrast (0~255) is set by Set Contrast command (81h,82h,83h); and the scale factor (1 ~ 16) is set by Master Current Control command (87h).
```

For example, in order to achieve  $I_{SEG} = 160 \text{uA}$  at maximum contrast 255,  $I_{REF}$  is set to around 10uA. This current value is obtained by connecting an appropriate resistor from IREF pin to  $V_{SS}$  as shown in Figure 7-7.

Recommended  $I_{REF} = 10uA$ 

Figure 7-7: I<sub>REF</sub> Current Setting by Resistor Value



Since the voltage at  $I_{REF}$  pin is  $V_{CC} - 3V$ , the value of resistor R1 can be found as below:

For 
$$I_{REF}$$
 =10uA,  $V_{CC}$  =18V:  
R1 = (Voltage at  $I_{REF}$  -  $V_{SS}$ ) /  $I_{REF}$   
= (18 - 3) / 10uA  
=  $\approx$  1.5M  $\Omega$ 

SSD1353 | Rev 0.11 | P 23/65 | Aug 2006 | Solomon Systech

#### 7.7 SEG / COM Driver

Segment drivers consist of 480 (160 x 3 colors) current sources to drive OLED panel. The driving current can be adjusted from 0 to 160uA with 256 steps by contrast setting command (81h, 82h, 83h). Common drivers generate scanning voltage pulse. The block diagrams and waveforms of the segment and common driver are shown as follow.



Figure 7-8: Segment and Common Driver Block Diagram

The commons are scanned sequentially, row by row. If a row is not selected, all the pixels on the row are in reverse bias by driving those commons to voltage  $V_{\text{COMH}}$  as shown in Figure 7-9.

In the scanned row, the pixels on the row will be turned ON or OFF by sending the corresponding data signal to the segment pins. If the pixel is turned OFF, the segment current is kept at 0. On the other hand, the segment drives to  $I_{SEG}$  when the pixel is turned ON.

**Solomon Systech** Aug 2006 | P 24/65 | Rev 0.11 | **SSD1353** 

Figure 7-9: Segment and Common Driver Signal Waveform



There are four phases to driving an OLED a pixel. In phase 1, the pixel is reset by the segment driver to  $V_{LSS}$  in order to discharge the previous data charge stored in the parasitic capacitance along the segment electrode. The period of phase 1 can be programmed by command B1h A[3:0]. An OLED panel with larger capacitance requires a longer period for discharging.

SSD1353 | Rev 0.11 | P 25/65 | Aug 2006 | Solomon Systech



In phase 2, first pre-charge is performed. The pixel is driven to attain the corresponding voltage level  $V_P$  from  $V_{LSS}$ . The amplitude of  $V_P$  can be programmed by the command BBh. The period of phase 2 can be programmed by command B1h A[7:4]. If the capacitance value of the pixel of OLED panel is larger, a longer period is required to charge up the capacitor to reach the desired voltage.

In phase 3, the OLED pixel is driven to the targeted driving voltage through second pre-charge. The second pre-charge can control the speed of the charging process. The period of phase 3 can be programmed by command B4h.

Last phase (phase 4) is current drive stage. The current source in the segment driver delivers constant current to the pixel. The driver IC employs PAM+PWM (Pulse Area Modulation + Pulse Width Modulation) method to control the gray scale of each pixel individually. The gray scale can be programmed into different Gamma settings by command B8h/B9h. The bigger gamma setting in the current drive stage results in brighter pixels and vice versa (Details refer to Section 7.8). This is shown in the following figure.



Figure 7-10: Gray Scale Control in Segment

After finishing phase 4, the driver IC will go back to phase 1 to display the next row image data. This four-step cycle is run continuously to refresh image display on OLED panel.

 Solomon Systech
 Aug 2006
 P 26/65
 Rev 0.11
 SSD1353

#### 7.8 Gray Scale Decoder

The gray scale effect is generated by controlling the segment current in current drive phase. The segment current is controlled by the Gamma Settings (Setting  $0\sim$  Setting 128). The larger the setting, the brighter the pixel will be. The Gray Scale Table stores the corresponding Gamma Setting of the 64 gray scale levels (GS0 $\sim$ GS63) through the software commands B8h or B9h. A single Gray Scale Table supports all the three colors A, B and C.

As shown in Figure 7-11, color A, B, C sub-pixel RAM data has 6 bits, represent the 64 gray scale level from GS0 to GS63.

Figure 7-11: Relation between GDDRAM content and Gray Scale table entry for three colors in 262K color mode (under command B9h Enable Linear Gray Scale Table)

| Color A,B,C          | Gray Scale Table | Default Gamma Setting |
|----------------------|------------------|-----------------------|
| GDDRAM data (6 bits) |                  | (Command B9h)         |
| 000000               | GS0              | Setting 0             |
| 000001               | GS1              | Setting 2             |
| 000010               | GS2              | Setting 4             |
| 000011               | GS3              | Setting 6             |
| 000100               | GS4              | Setting 8             |
| :                    |                  | :                     |
| 011111               | GS31             | Setting 62            |
| 100000               | GS32             | Setting 65            |
| 100001               | GS33             | Setting 67            |
|                      | : 40             |                       |
| 111100               | GS60             | Setting 121           |
| 111101               | GS61             | Setting 123           |
| 111110               | GS62             | Setting 125           |
| 111111               | GS63             | Setting 127           |

The Gray Scale Table can be programmed into different Gamma setting by command B8h. For example, if GS2 is programmed into Gamma setting 4, and the color A, B or C of GDDRAM is set as "000010b", then the current drive phase will be similar to the illustration in Figure 7-12(a).

Figure 7-12: Illustration of current drive phase (phase 4) under different Gamma Settings.



SSD1353 | Rev 0.11 | P 27/65 | Aug 2006 | Solomon Systech

There are total 128 Gamma Settings (Setting 0 to Setting 127) available for the Gray Scale table. GS0 has no pre-charge and current drive stages so it is in Gamma Setting 0.

When setting the Gray Scale Table, the rules below must follow:

- 1) The gray scale is defined in incremental way, with reference to the length of previous table entry: 0 < Setting of GS1 < Setting of GS2 < Setting of GS3..... Setting 62 < Setting 63.
- 2) Different GSs should be set within the maximum Gamma Setting as follow:

Table 7-9: Maximum Gamma setting in different Gray Scale ranges

| Gary Scale Range | Maximum Gamma Setting allowed |
|------------------|-------------------------------|
| GS0              | Setting 0                     |
| GS1 ~ G7         | Setting 15                    |
| GS8 ~ GS15       | Setting 31                    |
| GS16 ~ GS31      | Setting 63                    |
| GS32 ~ GS63      | Setting 127                   |

It should be notice that, the brightness under the following pairs of Gamma Setting will be the same:

Table 7-10: Gamma Settings with identical brightness in current drive phase

| e that, the brightness und | ler the following pairs o | f Gamma Setting will be th   | ne same: |  |  |  |  |  |  |  |
|----------------------------|---------------------------|------------------------------|----------|--|--|--|--|--|--|--|
| Table 7-10 : Gamma Sett    | ings with identical brigh | tness in current drive phase |          |  |  |  |  |  |  |  |
| Setting 15 & Setting 16    | Setting 63 & Setting 64   | Setting 111 & Setting 112    |          |  |  |  |  |  |  |  |
| Setting 31 & Setting 32    | Setting 79 & Setting 80   |                              | 4.4      |  |  |  |  |  |  |  |
| Setting 47 & Setting 48    | Setting 95 & Setting 96   |                              |          |  |  |  |  |  |  |  |
|                            | to to chinology con the   |                              |          |  |  |  |  |  |  |  |
| Beiling                    | isionok i                 |                              |          |  |  |  |  |  |  |  |
|                            |                           |                              |          |  |  |  |  |  |  |  |

Aug 2006 | P 28/65 | Rev 0.11 | **SSD1353** Solomon Systech

#### Power ON and OFF sequence

The following figures illustrate the recommended power ON and power OFF sequence of SSD1353 (assume  $V_{CI}$  and  $V_{DDIO}$  are at the same voltage level and internal  $V_{DD}$  is used).

#### Power ON sequence:

- 1. Power ON V<sub>CI</sub>, V<sub>DDIO</sub>.
- 2. After V<sub>CI</sub>, V<sub>DDIO</sub> become stable, set RES# pin LOW (logic low) for at least 100us (t<sub>1</sub>) and then HIGH (logic high).
- 3. After set RES# pin LOW (logic low), wait for at least 100us ( $t_2$ ). Then Power ON  $V_{CC}$ <sup>(1)</sup>
- 4. After V<sub>CC</sub> become stable, send command AFh for display ON. SEG/COM will be ON after 200ms  $(t_{AF}).$



Figure 7-13: The Power ON sequence.

Power OFF sequence:

- Send command AEh for display OFF.
   Power OFF V<sub>CC.</sub><sup>(1), (2)</sup>
- 3. Wait for t<sub>OFF</sub>. Power OFF V<sub>CI</sub>, V<sub>DDIO</sub> (where Minimum t<sub>OFF</sub>=0ms, Typical t<sub>OFF</sub>=100ms)



Figure 7-14: The Power OFF sequence

Note: (1) Since an ESD protection circuit is connected between  $V_{CI}$ ,  $V_{DDIO}$  and  $V_{CC}$ ,  $V_{CC}$  becomes lower than  $V_{CI}$  whenever the detail line of  $V_{CC}$  in Figure 7-13 and Figure 7-14.  $V_{CI}$ ,  $V_{DDIO}$  is ON and  $V_{CC}$  is OFF as shown in the dotted line of  $V_{CC}$  in Figure 7-13 and Figure 7-14. (2)  $V_{CC}$  should be kept float when it is OFF.

SSD1353 Rev 0.11 P 29/65 Aug 2006 Solomon Systech

### 7.10 V<sub>DD</sub> Regulator

In SSD1353, the power supply pin for core logic operation:  $V_{DD}$ , can be supplied by external source or internally regulated through the  $V_{DD}$  regulator.

When the Internal  $V_{DD}$  regulator selections pin: REGVDD is pulled HIGH (i.e. connect to  $V_{DDIO}$ ), the internal  $V_{DD}$  regulator is enabled.  $V_{CI}$  should be larger than 2.6V when using the internal  $V_{DD}$  regulator. The typical regulated  $V_{DD}$  is about 2.5V

When the Internal  $V_{DD}$  regulator selection pin: REGVDD is pulled LOW (i.e. connect to Ground), external  $V_{DD}$  should be used. (external  $V_{DD}$  range :  $2.4V\sim2.6V$ )

It should be notice that, no matter  $V_{DD}$  is supplied by external source or internally regulated,  $V_{CI}$  must always be equal or higher than  $V_{DD}$  and  $V_{DDIO}$ .

The following figure shows the V<sub>DD</sub> regulator pin connection scheme:



Figure 7-15  $V_{CI}$  > 2.6V,  $V_{DD}$  regulator enable pin connection scheme

Figure 7-16 V<sub>DD</sub> regulator disable pin connection scheme



**Solomon Systech** Aug 2006 | P 30/65 | Rev 0.11 | **SSD1353** 

# **8 COMMAND TABLE**

Table 8-1: Command table

(D/C#=0, R/W#(WR#) = 0, E(RD#=1) unless specific setting is stated)

| Fund   | amenta       |                     |                                         |                |                     | E(KD:                                    | ⊬−1) u         | iness          | specii              | ic setting is stated)         |                                                                                                        |
|--------|--------------|---------------------|-----------------------------------------|----------------|---------------------|------------------------------------------|----------------|----------------|---------------------|-------------------------------|--------------------------------------------------------------------------------------------------------|
| D/C#   |              | D7                  |                                         |                |                     | <b>D3</b>                                | D2             | D1             | <b>D</b> 0          | Command                       | Description                                                                                            |
| 0      | 15           | 0                   | 0                                       | 0              | 1                   | 0                                        | 1              | 0              | 1                   | Commanu                       | Set Column start and end address                                                                       |
| 1      | A[7:0]       | $A_7$               | $A_6$                                   | $A_5$          | $A_4$               | $A_3$                                    | $A_2$          | $A_1$          | $A_0$               |                               | Set Column start and end address                                                                       |
| 1      | B[7:0]       | B <sub>7</sub>      | B <sub>6</sub>                          | B <sub>5</sub> | B <sub>4</sub>      | B <sub>3</sub>                           | $\mathbf{B}_2$ | B <sub>1</sub> | $\mathbf{B}_0$      |                               | A[7:0]: Set start column address from 00d-159d [reset= 0d (00h)]                                       |
|        |              |                     |                                         |                |                     |                                          |                |                |                     | Set Column Address            | B[7:0]: Set end column address from 00d-159d<br>[reset= 159d<br>(9Fh)]                                 |
| 0      | 5C           | 0                   | 1                                       | 0              | 1                   | 1                                        | 1              | 0              | 0                   | Write RAM<br>Command          | Enable MCU to write Data into RAM                                                                      |
| 0      | 5D           | 0                   | 1                                       | 0              | 1                   | 1                                        | 1              | 0              | 1                   | Read RAM<br>Command           | Enable MCU to read Data from RAM                                                                       |
| 0      | 75           | 0                   | 1                                       | 1              | 1                   | 0                                        | 1              | 0              | 1                   |                               | Set Row start and end address                                                                          |
| 1      | A[7:0]       | $A_7$               | $A_6$                                   | $A_5$          | $A_4$               | $A_3$                                    | $A_2$          | $A_1$          | $A_0$               | 5                             | 4.44                                                                                                   |
| 1      | B[7:0]       | B <sub>7</sub>      | B <sub>6</sub>                          | B <sub>5</sub> | B <sub>4</sub>      | B <sub>3</sub>                           | B <sub>2</sub> | B <sub>1</sub> | $B_0$               | Set Row Address               | A[7:0]: Set start row address<br>from 00d-131d                                                         |
|        | ,            |                     |                                         |                |                     |                                          |                |                |                     | 1.41                          |                                                                                                        |
| 0<br>1 | 81<br>A[7:0] | 1<br>A <sub>7</sub> | 0<br>A <sub>6</sub>                     | $0$ $A_5$      | 0<br>A <sub>4</sub> | $0$ $A_3$                                | $0$ $A_2$      | $0$ $A_1$      | 1<br>A <sub>0</sub> | 17eCIIII                      | Set contrast for all color "A" segment (Pins :SA0 – SA159)                                             |
|        |              |                     |                                         |                |                     |                                          |                | Ties           | 10                  | Set Contrast for<br>Color "A" | A[7:0] valid range: 00d to 255d [reset=128d (80h)]                                                     |
| 0      | 0.2          | 1                   | 0                                       | _              | 0                   |                                          | 0              | 1              | 0                   |                               | G + + + C 11 1   D   + (B)   GD0                                                                       |
| 0<br>1 | 82<br>A[7:0] | 1<br>A <sub>7</sub> | $\begin{array}{c} 0 \\ A_6 \end{array}$ | $A_5$          | $A_4$               | $\begin{bmatrix} 0 \\ A_3 \end{bmatrix}$ | $A_2$          | $A_1$          | $A_0$               |                               | Set contrast for all color "B" segment (Pins :SB0 – SB159)                                             |
|        |              |                     |                                         |                |                     |                                          |                |                |                     | Set Contrast for<br>Color "B" | A[7:0] valid range: 00d to 255d [reset=128d (80h)]                                                     |
| 0      | 83           | 1                   | 0                                       | 0              | 0                   | 0                                        | 0              | 1              | 1                   |                               | Set contrast for all color "C" segment (Pins :SC0 –                                                    |
| 1      | A[7:0]       | A <sub>7</sub>      | A <sub>6</sub>                          | A <sub>5</sub> | $A_4$               | A <sub>3</sub>                           | A <sub>2</sub> | $\mathbf{A}_1$ | $A_0$               | Set Contrast for              | SC159)                                                                                                 |
|        |              |                     |                                         |                |                     |                                          |                |                |                     | Color "C"                     | A[7:0] valid range: 00d to 255d [reset=128d (80h)]                                                     |
| 0      | 87           | 1                   | 0                                       | 0              | 0                   | 0                                        | 1              | 1              | 1                   |                               | Set master current attenuation factor                                                                  |
|        | A[3:0]       | *                   | *                                       | *              | *                   | A <sub>3</sub>                           | $A_2$          | $A_1$          | $A_0$               | Master Current<br>Control     | A[3:0] can be set from 00d to 15d corresponding to 1/16, 2/16 to 16/16 attenuation. [reset= 15d (0Fh)] |
|        |              |                     |                                         |                |                     |                                          |                |                |                     |                               |                                                                                                        |

 SSD1353
 Rev 0.11
 P 31/65
 Aug 2006
 Solomon Systech

|                  | lamenta              |                     |                     |                     |                     |                     |                     |                     |                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D/C#             |                      | <b>D7</b>           | <b>D6</b>           | <b>D5</b>           | D4                  | D3                  | D2                  | D1                  | D0                  | Command                         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0                | 8A<br>A[1:0]         | 1 0                 | 0 0                 | 0 0                 | 0 0                 | 1 0                 | 0 0                 | 1<br>A <sub>1</sub> | 0<br>A <sub>0</sub> | Set Second Pre-<br>charge speed | Set Second Pre-charge speed A[1:0]= 00b, Second Pre-charge speed =slowest A[1:0]= 01b, Second Pre-charge speed =slow A[1:0]= 10b, Second Pre-charge speed =normal [reset] A[1:0]= 11b, Second Pre-charge speed =Fast                                                                                                                                                                                                                                                                                                                                              |
| 0 1              | A0<br>A[7:0]         | 1<br>A <sub>7</sub> | 0<br>A <sub>6</sub> | 1<br>A <sub>5</sub> | 0<br>A <sub>4</sub> | 0<br>A <sub>3</sub> | 0<br>A <sub>2</sub> | 0<br>A <sub>1</sub> | 0<br>A <sub>0</sub> | Remap & Color<br>Depth setting  | Set driver remap and color depth  A[0]=0, Horizontal address increment [reset] A[0]=1, Vertical address increment  A[1]=0, RAM Column 0 to 159 maps to Pin SEG (SA,SB,SC) 0 to 159 [reset] A[1]=1, RAM Column 0 to 159 maps to Pin SEG (SA,SB,SC) 159 to 0  A[2]=0, normal order SA,SB,SC (e.g. RGB) [reset] A[2]=1, reverse order SC,SB,SA (e.g. BGR)  A[3]=0, Disable left-right swapping on COM [reset] A[3]=1, Set left-right swapping on COM  A[4]=0, Scan from COM0 to COM[N-1] [reset] A[4]=1, Scan from COM[N-1] to COM0. Where N is the multiplex ratio. |
|                  |                      | *                   |                     |                     |                     | 80                  |                     |                     | lic                 | to and Tech                     | A[5]=0, Disable COM Split Odd Even [reset]  A[5]=1, Enable COM Split Odd Even  Refer to Figure 9-6 for details.  A[7:6] = 00; 256 color format  A[7:6] = 01; 65k color format  A[7:6] = 10; 256k color format  A[7:6] = 11; 256k color 16-bit format 2  If 9-/18-bit mode is selected, color depth will be fixed to 256k regardless of the setting.  Refer to Table 7-7 for details.                                                                                                                                                                              |
| 0                | A1<br>A[7:0]         | 1<br>A <sub>7</sub> | 0<br>A <sub>6</sub> | 1<br>A <sub>5</sub> | 0<br>A <sub>4</sub> | 0<br>A <sub>3</sub> | 0<br>A <sub>2</sub> | 0<br>A <sub>1</sub> | 1<br>A <sub>0</sub> | Set Display Start<br>Line       | Set display start line register by Row A[7:0]: from 00d to 131d [00d (00h)]  Note  (1) A[7:0] must be set to 0 when using A3h command.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0<br>1           | A2<br>A[7:0]         | 1<br>A <sub>7</sub> | 0<br>A <sub>6</sub> | 1<br>A <sub>5</sub> | 0<br>A <sub>4</sub> | 0<br>A <sub>3</sub> | 0<br>A <sub>2</sub> | 1<br>A <sub>1</sub> | 0<br>A <sub>0</sub> | Set Display Offset              | Set vertical offset by COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0<br>0<br>0<br>0 | A4<br>A5<br>A6<br>A7 | 1<br>1<br>1<br>1    | 0<br>0<br>0<br>0    | 1<br>1<br>1<br>1    | 0<br>0<br>0<br>0    | 0<br>0<br>0<br>0    | 1<br>1<br>1<br>1    | 0<br>0<br>1<br>1    | 0<br>1<br>0<br>1    | Set Display Mode                | A4h=Normal Display [reset] A5h=Entire Display ON, all pixels turn ON at GS63 A6h=Entire Display OFF, all pixels turn OFF A7h=Inverse Display                                                                                                                                                                                                                                                                                                                                                                                                                      |

 Solomon Systech
 Aug 2006
 P 32/65
 Rev 0.11
 SSD1353

|                       | lamenta                                              |                                                                           |                                                                 |                                                                           |                                        |                                                                                             |                                                                     |                                                                     |                                                                                   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------|------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D/C#                  |                                                      | <b>D7</b>                                                                 | D6                                                              |                                                                           |                                        |                                                                                             | D2                                                                  | D1                                                                  | D0                                                                                | Command                         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0                     | A8<br>A[7:0]                                         | 1<br>A <sub>7</sub>                                                       | $A_6$                                                           | 1<br>A <sub>5</sub>                                                       | 0<br>A <sub>4</sub>                    | 1<br>A <sub>3</sub>                                                                         | 0<br>A <sub>2</sub>                                                 | 0<br>A <sub>1</sub>                                                 | $0$ $A_0$                                                                         | Set Multiplex Ratio             | Set MUX ratio to N+1 Mux N = A[7:0] from 15d to 131d (i.e.16MUX -132 MUX) A[7:0] from 00d to 14d are invalid entry                                                                                                                                                                                                                                                                                                                                           |
|                       |                                                      |                                                                           |                                                                 |                                                                           |                                        |                                                                                             |                                                                     |                                                                     |                                                                                   |                                 | [reset= 131d (83h)]                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1<br>1<br>1<br>1<br>1 | AB<br>A[7:0]<br>B[7:0]<br>C[7:0]<br>D[7:0]<br>E[4:0] | 1<br>A <sub>7</sub><br>B <sub>7</sub><br>C <sub>7</sub><br>D <sub>7</sub> | $egin{array}{c} 0 \\ A_6 \\ B_6 \\ C_6 \\ D_6 \\ * \end{array}$ | 1<br>A <sub>5</sub><br>B <sub>5</sub><br>C <sub>5</sub><br>D <sub>5</sub> | $0 \\ A_4 \\ B_4 \\ C_4 \\ D_4 \\ E_4$ | 1<br>A <sub>3</sub><br>B <sub>3</sub><br>C <sub>3</sub><br>D <sub>3</sub><br>E <sub>3</sub> | $\begin{array}{c} 0 \\ A_2 \\ B_2 \\ C_2 \\ D_2 \\ E_2 \end{array}$ | $\begin{array}{c} 1 \\ A_1 \\ B_1 \\ C_1 \\ D_1 \\ E_1 \end{array}$ | $\begin{array}{c c} 1 & \\ A_0 & \\ B_0 & \\ C_0 & \\ D_0 & \\ E_0 & \end{array}$ |                                 | Configure dim mode setting  A[7:0] = Reserved. (Set as 00h)  B[7:0] = Contrast setting for Color A, valid range 0 to 255d.                                                                                                                                                                                                                                                                                                                                   |
|                       |                                                      |                                                                           |                                                                 |                                                                           |                                        |                                                                                             |                                                                     |                                                                     | . 30                                                                              | Dim Mode setting                | C[7:0] = Contrast setting for Color B, valid range 0 to 255d.  D[7:0] = Contrast setting for Color C, valid range 0 to 255d.  E[4:0] = Pre-charge voltage setting, valid range 0 to 31d.                                                                                                                                                                                                                                                                     |
| 0<br>0<br>0           | AC<br>AE<br>AF                                       | 1 1 1                                                                     | 0 0 0                                                           | 1 1 1                                                                     | 0 0 0                                  | 1 1 1                                                                                       | 1 1                                                                 | 0 1 1 1                                                             | 0 0 1                                                                             | Set Display ON/OFF              | Refer to Figure 9-13 for transitions between different modes                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0                     | B1<br>A[7:0]                                         | 1 A <sub>7</sub>                                                          | 0<br>A <sub>6</sub>                                             | 1 A <sub>5</sub>                                                          | 1 A <sub>4</sub>                       | 0<br>A <sub>3</sub>                                                                         | 0<br>A <sub>2</sub>                                                 | 0<br>A <sub>1</sub>                                                 | $A_0$                                                                             | Phase 1 and 2 period adjustment | A[3:0]: Phase 1 period in N DCLKs. 3~31 DCLKs allowed as follow:    A[3:0]   Phase 1 period   0000   invalid   0001   3 DCLKs   0010   5 DCLKs   0011   7 DCLKs   0100   9 DCLKs   reset   : : :   1111   31 DCLKs   1111   31 DCLKs   2~15 DCLKs allowed.    A[7:4]   Phase 2 period   invalid   0000   invalid   0001   invalid   0010   2 DCLKs   0011   3 DCLKs   : : : : : : : : : : : :   0111   7 DCLKs   reset   : : : : : : : : : : : : : : : : : : |

 SSD1353
 Rev 0.11
 P 33/65
 Aug 2006
 Solomon Systech

| Fund             | amental                 | l Con          | ımand          | Tabl                  | e                         |                                         |                                         |                                         |                                         |                                                    |                                                                                                                                                                                                                                                                                                         |
|------------------|-------------------------|----------------|----------------|-----------------------|---------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D/C#             | Hex                     | <b>D</b> 7     | <b>D6</b>      | D5                    | D4                        | D3                                      | D2                                      | D1                                      | D0                                      | Command                                            | Description                                                                                                                                                                                                                                                                                             |
| 0                | В3                      | 1              | 0              | 1                     | 1                         | 0                                       | 0                                       | 1                                       | 1                                       |                                                    | A[3:0] Divider                                                                                                                                                                                                                                                                                          |
| 1                | A[7:0]                  | A <sub>7</sub> | A <sub>6</sub> | A <sub>5</sub>        | A <sub>4</sub>            | A <sub>3</sub>                          | A <sub>2</sub>                          | $A_1$                                   | $A_0$                                   | Display Clock<br>Divider / Oscillator<br>Frequency | DCLK is generated from CLK divided by DIVIDER<br>+1 (i.e., 1 to 16) [reset=0000b]  A[7:4] Fosc frequency  Frequency increases as setting value increases [reset=1100b]                                                                                                                                  |
| 0                | B4                      | 1              | 0              | 1                     | 1                         | 0                                       | 1                                       | 0                                       | 0                                       |                                                    | A[3:0] Set Second Pre-charge Period                                                                                                                                                                                                                                                                     |
| 1                | A[3:0]                  | *              | *              | *                     | *                         | A <sub>3</sub>                          | A <sub>2</sub>                          | $A_1$                                   | $A_0$                                   | Set Second Pre-<br>charge Period                   | 0000b 0 DCLKS<br>0001b 1 DCLKS<br>0010b 2 DCLKS<br><br>0111 7 DCLKS [reset]<br><br>1111 15 DCLKS                                                                                                                                                                                                        |
| 0                | B8                      | 1              | 0              | 1                     | 1                         | 1                                       | 0                                       | 0                                       | 0                                       | 1011                                               | These 63 parameters define Gray Scale (GS) Table                                                                                                                                                                                                                                                        |
| 1                | A1[3:0]                 | *              | *              | *                     | *                         | A1 <sub>3</sub>                         | $A1_2$                                  | $A1_1$                                  | $A1_0$                                  | 100                                                | in terms of Gamma Setting                                                                                                                                                                                                                                                                               |
| 1<br>1<br>1<br>1 | :<br>A7[3:0]<br>A8[4:0] | :<br>*<br>*    | *              | :<br>*                | :<br>*<br>A8 <sub>4</sub> | :<br>A7 <sub>3</sub><br>A8 <sub>3</sub> | :<br>A7 <sub>2</sub><br>A2 <sub>2</sub> | :<br>A7 <sub>1</sub><br>A8 <sub>1</sub> | :<br>A7 <sub>0</sub><br>A8 <sub>0</sub> | 40                                                 | A1[3:0]: Gamma Setting for GS1,<br>A2[3:0]: Gamma Setting for GS2,                                                                                                                                                                                                                                      |
| 1                | A15[4:0]<br>A16[5:0]    | *              | *              | *<br>A16 <sub>5</sub> | A16 <sub>4</sub>          | A16 <sub>3</sub>                        |                                         |                                         | A15 <sub>0</sub><br>A16 <sub>0</sub>    |                                                    | A62[6:0]: Gamma Setting for GS62,<br>A63[6:0]: Gamma Setting for GS63.                                                                                                                                                                                                                                  |
| 1                | :<br>A31[5:0]           | :              | :              | :                     | :                         | :                                       | :                                       | :                                       | :                                       | Set Gray Scale Table                               |                                                                                                                                                                                                                                                                                                         |
| 1                | A31[5.0]<br>A32[6:0]    | *              | Λ32.           |                       |                           |                                         |                                         |                                         | A31 <sub>0</sub><br>A31 <sub>0</sub>    |                                                    | Note                                                                                                                                                                                                                                                                                                    |
| 1<br>1<br>1      | A63[6:0]                | : *            | :              | :                     | :                         | :                                       | :                                       | :                                       | A63 <sub>0</sub>                        | Ollow                                              | Input 1d for Gamma Setting 1, 2d for Gamma setting 2,, 127d for Gamma Setting127                                                                                                                                                                                                                        |
|                  |                         |                |                |                       |                           | 86                                      |                                         | 19                                      |                                         |                                                    | (2) 0 < Setting of GS1 < Setting of GS2 < Setting of GS3 Setting 62 < Setting 63 Refer to Section 7.8 for details.                                                                                                                                                                                      |
| 0                | В9                      | 1              | 0              | 1                     | 1                         | 1                                       | 0                                       | 0                                       | 1                                       | Enable Linear Gray<br>Scale Table                  | Reset built in Linear Gray Scale table  GS0 = Gamma Setting 0; GS1 = Gamma Setting 2 GS2 = Gamma Setting 4; GS3 = Gamma Setting 6; : GS31 = Gamma Setting 62 GS32 = Gamma Setting 65; GS33 = Gamma Setting 67; : GS62 = Gamma Setting 125; GS63 = Gamma Setting 127;  Refer to Section 7.8 for details. |

 Solomon Systech
 Aug 2006
 P 34/65
 Rev 0.11
 SSD1353

| Fund         | Fundamental Command Table |           |     |                     |                     |                     |                     |                     |     |                       |                                                                                                                                                                                                                                                                                                                |
|--------------|---------------------------|-----------|-----|---------------------|---------------------|---------------------|---------------------|---------------------|-----|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>D/C</b> # | Hex                       | <b>D7</b> | D6  | D5                  | D4                  | D3                  | D2                  | D1                  | D0  | Command               | Description                                                                                                                                                                                                                                                                                                    |
| 0            | BB<br>A[5:1]              | 1 0       | 0   | 1<br>A <sub>5</sub> | 1<br>A <sub>4</sub> | 1<br>A <sub>3</sub> | 0<br>A <sub>2</sub> | 1<br>A <sub>1</sub> | 1 0 |                       | Set pre-charge voltage level. All three colors share the same pre-charge voltage. [RESET =3Eh]                                                                                                                                                                                                                 |
|              |                           |           |     |                     |                     |                     |                     |                     |     | Set Pre-charge level  | A[5:1]   Hex code   pre-charge voltage                                                                                                                                                                                                                                                                         |
| 0            | BE<br>A[5:2]              | 1 0       | 0 0 | 1<br>A <sub>5</sub> | 1<br>A <sub>4</sub> | 1<br>A <sub>3</sub> | 1<br>A <sub>2</sub> | 1 0                 | 0 0 | Set V <sub>COMH</sub> |                                                                                                                                                                                                                                                                                                                |
| 0            | E2                        | 1         | 1   | 1                   | 0                   | 0                   | 0                   | 1                   | 0   | Software Reset        | Reset display circuit and stop Graphic Acceleration operations.                                                                                                                                                                                                                                                |
| 0            | E3                        | 1         | 1   | 1                   | 0                   | 0                   | 0                   | 1                   | 1   | NOP                   | Command for no operation.                                                                                                                                                                                                                                                                                      |
| 0            | FD<br>A[2]                | 1 0       | 1 0 | 1 0                 | 1                   | 1 0                 | 1<br>A <sub>2</sub> | 0                   | 0   | Set Command Lock      | A[2]: MCU protection status [RESET = 12h] A[2] = 0b, Unlock OLED driver IC MCU interface from entering command [RESET]  A[2] = 1b, Lock OLED driver IC MCU interface from entering command  Note  (1) The locked OLED driver IC MCU interface prohibits all commands and memory access except the FDh command. |

Note
(1) "\*" stands for "Don't care".

Rev 0.11 P 35/65 Aug 2006 SSD1353 Solomon Systech

| Graph                                | ic Accele                                                                                    | ratio                                                                                    | n Co                                                                                     | mm                                                                                                                                                                  | and '                                                                      | Tabl                                                                                      | e                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D/C#                                 | Hex                                                                                          | <b>D7</b>                                                                                | <b>D6</b>                                                                                | <b>D5</b>                                                                                                                                                           | D4                                                                         | <b>D3</b>                                                                                 | D2                                                                                                                                                                  | <b>D1</b>                                                                                                                                                           | D0                                                                                                                                                                  | Command              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0<br>1<br>1<br>1<br>1<br>1           | 21<br>A[7:0]<br>B[7:0]<br>C[7:0]<br>D[7:0]<br>E[5:0]<br>F[5:0]<br>G[5:0]                     | 0<br>A <sub>7</sub><br>B <sub>7</sub><br>C <sub>7</sub><br>D <sub>7</sub><br>*           | B <sub>6</sub><br>C <sub>6</sub><br>D <sub>6</sub><br>*                                  | 1<br>A <sub>5</sub><br>B <sub>5</sub><br>C <sub>5</sub><br>D <sub>5</sub><br>E <sub>5</sub><br>F <sub>5</sub><br>G <sub>5</sub>                                     | B <sub>4</sub> C <sub>4</sub> D <sub>4</sub> E <sub>4</sub> F <sub>4</sub> | B <sub>3</sub> C <sub>3</sub> D <sub>3</sub> E <sub>3</sub> F <sub>3</sub>                | $0\\A_2\\B_2\\C_2\\D_2\\E_2\\F_2\\G_2$                                                                                                                              | $\begin{matrix} 0 \\ A_1 \\ B_1 \\ C_1 \\ D_1 \\ E_1 \\ F_1 \\ G_1 \end{matrix}$                                                                                    | $\begin{array}{c} 1 \\ A_0 \\ B_0 \\ C_0 \\ D_0 \\ E_0 \\ F_0 \\ G_0 \end{array}$                                                                                   | Draw Line            | A[7:0]: Column Address of Start B[7:0]: Row Address of Start C[7:0]: Column Address of End D[7:0]: Row Address of End E[5:0]: Color C of the line F[5:0]: Color B of the line G[5:0]: Color A of the line  Note  (1) Please enter all 6 bits for Color setting: E[5:0], F[5:0] and G[5:0], despite of the color format setting in command A0h                                                                                                                                                                                                                       |
| 0<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 22<br>A[7:0]<br>B[7:0]<br>C[7:0]<br>D[7:0]<br>E[5:0]<br>F[5:0]<br>G[5:0]<br>H[5:0]<br>J[5:0] | 0<br>A <sub>7</sub><br>B <sub>7</sub><br>C <sub>7</sub><br>D <sub>7</sub><br>*<br>*<br>* | 0<br>A <sub>6</sub><br>B <sub>6</sub><br>C <sub>6</sub><br>D <sub>6</sub><br>*<br>*<br>* | 1<br>A <sub>5</sub><br>B <sub>5</sub><br>C <sub>5</sub><br>D <sub>5</sub><br>E <sub>5</sub><br>F <sub>5</sub><br>G <sub>5</sub><br>H <sub>5</sub><br>I <sub>5</sub> | $\begin{array}{c} B_4 \\ C_4 \\ D_4 \\ E_4 \\ F_4 \\ G_4 \end{array}$      | B <sub>3</sub> C <sub>3</sub> D <sub>3</sub> E <sub>3</sub> F <sub>3</sub> G <sub>3</sub> | 0<br>A <sub>2</sub><br>B <sub>2</sub><br>C <sub>2</sub><br>D <sub>2</sub><br>E <sub>2</sub><br>F <sub>2</sub><br>G <sub>2</sub><br>H <sub>2</sub><br>I <sub>2</sub> | 1<br>A <sub>1</sub><br>B <sub>1</sub><br>C <sub>1</sub><br>D <sub>1</sub><br>E <sub>1</sub><br>F <sub>1</sub><br>G <sub>1</sub><br>H <sub>1</sub><br>I <sub>1</sub> | 0<br>A <sub>0</sub><br>B <sub>0</sub><br>C <sub>0</sub><br>D <sub>0</sub><br>E <sub>0</sub><br>F <sub>0</sub><br>G <sub>0</sub><br>H <sub>0</sub><br>I <sub>0</sub> | Drawing<br>Rectangle | A[7:0]: Column Address of Start B[7:0]: Row Address of Start C[7:0]: Column Address of End D[7:0]: Row Address of End E[5:0]: Color C of the line F[5:0]: Color B of the line G[5:0]: Color A of the line H[5:0]: Color C of the fill area I[5:0]: Color B of the fill area I[5:0]: Color A of the fill area Vote  Note  (1) Please enter all 6 bits for Color setting: E[5:0], F[5:0], G[5:0], H[5:0]. I[5:0] and J[5:0], despite of the color format setting in command A0h (2) 0 <a[7:0] (3)="" 0<b[7:0]="" 159="" <="" c[7:0]="" d[7:0]<131<="" td=""></a[7:0]> |
| 0<br>1<br>1<br>1<br>1<br>1           | C[7:0]                                                                                       | B <sub>7</sub> C <sub>7</sub> D <sub>7</sub> E <sub>7</sub>                              | B <sub>6</sub><br>C <sub>6</sub><br>D <sub>6</sub>                                       |                                                                                                                                                                     | A <sub>4</sub> B <sub>4</sub> C <sub>4</sub> D <sub>4</sub> E <sub>4</sub> | $A_3$ $B_3$ $C_3$ $D_3$ $E_3$                                                             | $egin{array}{c} 0 \ A_2 \ B_2 \ C_2 \ D_2 \ E_2 \ F_2 \ \end{array}$                                                                                                | $\begin{matrix} 1\\ A_1\\ B_1\\ C_1\\ D_1\\ E_1\\ F_1\\ \end{matrix}$                                                                                               | $\begin{matrix} 1 & & & \\ A_0 & & & \\ B_0 & & & \\ C_0 & & & \\ D_0 & & & \\ E_0 & & & \\ F_0 & & & \end{matrix}$                                                 | Сору                 | A[7:0]: Column Address of Start B[7:0]: Row Address of Start C[7:0]: Column Address of End D[7:0]: Row Address of End E[7:0]: Column Address of New Start F[7:0]: Row Address of New Start                                                                                                                                                                                                                                                                                                                                                                          |
| 0<br>1<br>1<br>1<br>1                | 24<br>A[7:0]<br>B[7:0]<br>C[7:0]<br>D[7:0]                                                   | B <sub>7</sub><br>C <sub>7</sub>                                                         | B <sub>6</sub><br>C <sub>6</sub>                                                         | 1<br>A <sub>5</sub><br>B <sub>5</sub><br>C <sub>5</sub><br>D <sub>5</sub>                                                                                           | B <sub>4</sub><br>C <sub>4</sub>                                           | B <sub>3</sub><br>C <sub>3</sub>                                                          | 1<br>A <sub>2</sub><br>B <sub>2</sub><br>C <sub>2</sub><br>D <sub>2</sub>                                                                                           | 0<br>A <sub>1</sub><br>B <sub>1</sub><br>C <sub>1</sub><br>D <sub>1</sub>                                                                                           | $egin{array}{c} 0 & & & & & & & & & & & & & & & & & & $                                                                                                             | Dim Window           | A[7:0]: Column Address of Start B[7:0]: Row Address of Start C[7:0]: Column Address of End D[7:0]: Row Address of End The effect of dim window: GS15~GS0 no change GS19~GS16 become GS4 GS23~GS20 become GS5 GS63~GS60 become GS15                                                                                                                                                                                                                                                                                                                                  |

 Solomon Systech
 Aug 2006
 P 36/65
 Rev 0.11
 SSD1353

| Graph                 | ic Accele                                  | ratio                            | n Co                             | mm                                                                             | and '                            | Γabl                             | e                                                                              |                                                                                             |                                                                                             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------|--------------------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D/C#                  | Hex                                        | <b>D</b> 7                       | <b>D6</b>                        | <b>D5</b>                                                                      | D4                               | <b>D3</b>                        | D2                                                                             | <b>D1</b>                                                                                   | <b>D</b> 0                                                                                  | Command                                                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0<br>1<br>1<br>1<br>1 | 25<br>A[7:0]<br>B[7:0]<br>C[7:0]<br>D[7:0] | B <sub>7</sub><br>C <sub>7</sub> | B <sub>6</sub><br>C <sub>6</sub> | 1<br>A <sub>5</sub><br>B <sub>5</sub><br>C <sub>5</sub><br>D <sub>5</sub>      | B <sub>4</sub><br>C <sub>4</sub> | B <sub>3</sub><br>C <sub>3</sub> | 1<br>A <sub>2</sub><br>B <sub>2</sub><br>C <sub>2</sub><br>D <sub>2</sub>      | $0\\A_1\\B_1\\C_1\\D_1$                                                                     | $\begin{matrix} 1 \\ A_0 \\ B_0 \\ C_0 \\ D_0 \end{matrix}$                                 | Clear Window                                              | A[7:0]: Column Address of Start B[7:0]: Row Address of Start C[7:0]: Column Address of End D[7:0]: Row Address of End                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0                     | 26<br>A[4:0]                               | 0 *                              | 0 *                              | 1 *                                                                            | 0<br>A <sub>4</sub>              | 0                                | 1 0                                                                            | 1 0                                                                                         | 0<br>A <sub>0</sub>                                                                         | Fill Enable /<br>Disable                                  | A[0]: 0b = Disable Fill for Draw Rectangle Command [reset] 1b = Enable Fill for Draw Rectangle Command A[3:1]: 000 (Reserved values)  A[4]: 0b = Disable reverse copy (reset) 1b = Enable reverse during copy command.                                                                                                                                                                                                                                                                                                                                                                        |
| 0 1 1 1 1 1 1 1 1 1   | 27 A[7:0] B[7:0] C[7:0] D[7:0] E[1:0]      | $\mathbf{B}_{7}$                 | $B_6$                            | 1<br>A <sub>5</sub><br>B <sub>5</sub><br>C <sub>5</sub><br>D <sub>5</sub><br>* | B <sub>4</sub><br>C <sub>4</sub> | B <sub>3</sub> - C <sub>3</sub>  | 1<br>A <sub>2</sub><br>B <sub>2</sub><br>C <sub>2</sub><br>D <sub>2</sub><br>* | 1<br>A <sub>1</sub><br>B <sub>1</sub><br>C <sub>1</sub><br>D <sub>1</sub><br>E <sub>1</sub> | 1<br>A <sub>0</sub><br>B <sub>0</sub><br>C <sub>0</sub><br>D <sub>0</sub><br>E <sub>0</sub> | Continuous<br>Horizontal &<br>Vertical<br>Scrolling Setup | A[7:0]: Set number of column as horizontal scroll offset Range: 0d-131d ( no horizontal scroll if equals to 0  B[7:0]: Define start row address  C[7:0]: Set number of rows to be horizontal scrolled B[7:0]+C[7:0] <=132  D[7:0]: Set number of row as vertical scroll offset Range: 0d-131d ( no vertical scroll if equals to 0)  E[1:0]: Set time interval between each scroll step 00b 3 frames 01b 5 frames 10b 50 frames 11b 100 frames  Note:  (1) Vertical scroll run with command A3h Set Vertical Scroll Area (2) The parameters should not be changed after scrolling is activated |
| 0                     | 2E                                         | 0                                | 0                                | 1                                                                              | 0                                | 1                                | 1                                                                              | 1                                                                                           | 0                                                                                           | Deactivate<br>horizontal scroll                           | Deactivate horizontal scrolling.  Note  (1) After sending 2Eh command to deactivate the scrolling action, the ram data needs to be rewritten.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

 SSD1353
 Rev 0.11
 P 37/65
 Aug 2006
 Solomon Systech

| D/C# | Hex                    | <b>D7</b>                             | <b>D6</b>                             | <b>D5</b>                             | <b>D4</b>                             | <b>D3</b>                             | D2                                    | D1 | D0                                    | Command                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------|------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----|---------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| )    | 2F                     | 0                                     | 0                                     | 1                                     | 0                                     | 1                                     | 1                                     | 1  | 1                                     | Activate<br>horizontal scroll | Activate horizontal scrolling.  This command activates the scrolling function according to the setting done by command 27h Continuous Horizontal & Vertical Scrolling Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | A3<br>A[7:0]<br>B[7:0] | 1<br>A <sub>7</sub><br>B <sub>7</sub> | 0<br>A <sub>6</sub><br>B <sub>6</sub> | 1<br>A <sub>5</sub><br>B <sub>5</sub> | 0<br>A <sub>4</sub><br>B <sub>4</sub> | 0<br>A <sub>3</sub><br>B <sub>3</sub> | 0<br>A <sub>2</sub><br>B <sub>2</sub> |    | 1<br>A <sub>0</sub><br>B <sub>0</sub> |                               | A[7:0]: Set No. of rows in top fixed area. The No. of rows in top fixed area is referenced to the top of the GDDRAM (i.e. row 0).[RESET = 0]  B[7:0]: Set No. of rows in scroll area. This is the number of rows to be used for vertical scrolling. The scroll area starts in the first row below the top fixed area. [RESET = 132]  Note  (1) A[7:0]+B[7:0] <= MUX ratio (2) B[7:0] <= MUX ratio (3) Set Display Start Line (A1h) must be set to 0 when using A3h command.  (4) The last row of the scroll area shifts to the first row of the scroll area.  (5) For 132d MUX display  A[7:0] = 0, B[7:0] = 132: whole area scrolls  A[7:0] + B[7:0] < 132: central area scrolls  A[7:0] + B[7:0] = 132: bottom area scrolls  Refer to Figure 9-19 for details. |
|      |                        |                                       |                                       | 0                                     | 36                                    |                                       |                                       |    | SI                                    | anon                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

 Solomon Systech
 Aug 2006
 P 38/65
 Rev 0.11
 SSD1353

#### 9 COMMAND DESCRIPTIONS

#### 9.1 Fundamental Command

#### 9.1.1 Set Column Address (15h)

This command specifies column start address and end address of the display data RAM. This command also sets the column address pointer to column start address. This pointer is used to define the current read/write column address in graphic display data RAM. If horizontal address increment mode is enabled by command A0h, after finishing read/write one column data, it is incremented automatically to the next column address. Whenever the column address pointer finishes accessing the end column address, it is reset back to start column address.

#### 9.1.2 Write RAM Command (5Ch)

After this single byte command, data entries will be written into the display RAM until another command is written. Address pointer is increased accordingly. This command must be sent before write data into RAM.

#### 9.1.3 Read RAM Command (5Dh)

After this single byte command, data is read from display RAM until another command is written. Address pointer is increased accordingly. This command must be sent before read data from RAM.

#### 9.1.4 Set Row Address (75h)

This command specifies row start address and end address of the display data RAM. This command also sets the row address pointer to row start address. This pointer is used to define the current read/write row address in graphic display data RAM. If vertical address increment mode is enabled by command A0h, after finishing read/write one row data, it is incremented automatically to the next row address. Whenever the row address pointer finishes accessing the end row address, it is reset back to start row address.

The figure below shows the way of column and row address pointer movement through the example: column start address is set to 2 and column end address is set to 157, row start address is set to 1 and row end address is set to 130. Horizontal address increment mode is enabled by command A0h. In this case, the graphic display data RAM column accessible range is from column 2 to column 157 and from row 1 to row 130 only. In addition, the column address pointer is set to 2 and row address pointer is set to 1. After finishing read/write one pixel of data, the column address is increased automatically by 1 to access the next RAM location for next read/write operation (solid line in Figure 9-1). Whenever the column address pointer finishes accessing the end column 157, it is reset back to column 2 and row address is automatically increased by 1 (solid line in Figure 9-1). While the end row 130 and end column 157 RAM location is accessed, the row address is reset back to 1 (dotted line in Figure 9-1).



Figure 9-1: Example of Column and Row Address Pointer Movement

 SSD1353
 Rev 0.11
 P 39/65
 Aug 2006
 Solomon Systech

#### 9.1.5 Set Contrast for Color A, B, C (81h, 82h, 83h)

This command is to set Contrast Setting of each color A, B and C. The chip has three contrast control circuits for color A, B and C. Each contrast circuit has 256 contrast steps from 00h to FFh. The segment output current  $I_{SEG}$  increases linearly with the contrast step, which results in brighter of the color. This relation is shown in Figure 9-2.

### 9.1.6 Master Current Control (87h)

This command is to control the segment output current by a scaling factor. This factor is common to color A, B and C. The chip has 16 master control steps. The factor is ranged from 1 [0000b] to 16 [1111b]. Reset is 16 [1111b]. The smaller the master current value, the dimmer the OLED panel display is set. For example, if original segment output current of a color is 160uA at scale factor = 16, setting scale factor to 8 to reduce the current to 80uA. Please see Figure 9-2.



Figure 9-2: Segment Output Current for Different Contrast Control and Master Current Setting

#### 9.1.7 Set Second Pre-charge speed (8Ah)

This command is used to set the speed of second pre-charge in phase 3. Please refer to Table 8-1 for the details of setting.

#### 9.1.8 Set Re-map & Data Format (A0h)

This command has multiple configurations and each bit setting is described as follows.

• Address increment mode (A[0])
When it is set to 0, the driver is set as horizontal address increment mode. After the display RAM is read/written, the column address pointer is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and

**Solomon Systech** Aug 2006 | P 40/65 | Rev 0.11 | **SSD1353** 

row address pointer is increased by 1. The sequence of movement of the row and column address point for horizontal address increment mode is shown in Figure 9-3.

Figure 9-3: Address Pointer Movement of Horizontal Address Increment Mode

|         | Col 0 | Col 1 |   | Col 158 | Col 159     |
|---------|-------|-------|---|---------|-------------|
| Row 0   |       |       |   |         | <u></u>     |
| Row 1   | +     |       |   |         | <b></b>     |
| :       | +:    | :     | : |         | <del></del> |
| Row 130 |       |       |   |         | <b>†</b>    |
| Row 131 | +     |       |   |         | <b>→</b>    |

When A[0] is set to 1, the driver is set to vertical address increment mode. After the display RAM is read/written, the row address pointer is increased automatically by 1. If the row address pointer reaches the row end address, the row address pointer is reset to row start address and column address pointer is increased by 1. The sequence of movement of the row and column address point for vertical address increment mode is shown in Figure 9-4.

Figure 9-4: Address Pointer Movement of Vertical Address Increment Mode

|         | Co | 0 lo | Co | l 1 |          | Col | 158 | Col | 159 |
|---------|----|------|----|-----|----------|-----|-----|-----|-----|
| Row 0   |    |      |    |     |          |     |     |     |     |
| Row 1   |    |      |    |     | <b>/</b> |     |     |     |     |
| :       |    |      |    |     | : /      |     |     |     |     |
| Row 130 |    |      |    |     |          |     |     |     |     |
| Row 131 |    |      |    |     |          | •   |     | •   | ,   |

• Column Address Mapping (A[1])

This command bit is made for flexible layout of segment signals in OLED module with segment arranged from left to right or vice versa. The display direction is either mapping display data RAM column 0 to SEG0 pin (A[1] = 0), or mapping display data RAM column 159 to SEG0 pin (A[1] = 1). The effects of both are shown in Figure 9-5.

Figure 9-5: Example of Column Address Mapping







Column 159 maps to SEG0 pin

RGB Mapping (A[2])
 This command bit is made for flexible layout of segment signals in OLED module to match filter design.

SSD1353 | Rev 0.11 | P 41/65 | Aug 2006 | Solomon Systech

# • COM Left / Right Remap (A[3])

This command bit is made for flexible layout of common signals in OLED module with common 0 arranged on either left or right side. Details of pin arrangement can be found in Figure 9-6.

#### • COM scan direction Remap (A[4])

This bit determines the scanning direction of the common for flexible layout of common signals in OLED module either from up to down or vice versa. Details of pin arrangement can be found in Figure 9-6.

#### • Odd even split of COM pins (A[5])

This bit can set the odd even arrangement of COM pins.

A[5] = 0: Disable COM split odd even, pin assignment of common is in sequential as COM131 COM130 .... COM 67 COM66..SC159...SA0..COM0 COM1.... COM64 COM65

A[5] = 1: Enable COM split odd even, pin assignment of common is in odd even split as COM131 COM129.... COM3 COM1..SC159..SA0..COM0 COM2,... COM128 COM130 Details of pin arrangement can be found in Figure 9-6.

#### • Display color mode (A[7:6])

Select either 65k or 256 color mode. The display RAM data format in different mode is described in section 7.3.

Figure 9-6: COM Pins Hardware Configuration (MUX ratio: 132)



**Solomon Systech** Aug 2006 | P 42/65 | Rev 0.11 | **SSD1353** 



SSD1353 | Rev 0.11 | P 43/65 | Aug 2006 | Solomon Systech



 Solomon Systech
 Aug 2006
 P 44/65
 Rev 0.11
 SSD1353

# 9.1.9 Set Display Start Line (A1h)

This command is to set Display Start Line register to determine starting address of display RAM to be displayed by selecting a value from 0 to 131. The figure below shows an example of this command. In there, "Row" means the graphic display data RAM row.

Figure 9-7: Example of Set Display Start Line with no Remap

|                  | 132                | 132                | 100       | 100                | MUX ratio (A8h)          |
|------------------|--------------------|--------------------|-----------|--------------------|--------------------------|
| COM Pin          | 0                  | 32                 | 0         | 32                 | Display start line (A1h) |
| COM0             | Row0               | Row32              | Row0      | Row32              |                          |
| COM1             | Row1               | Row33              | Row1      | Row33              |                          |
| COM2             | Row2               | Row34              | Row2      | Row34              |                          |
| COM3             | Row3               | Row35              | Row3      | Row35              |                          |
| COM4             | Row4               | Row36              | Row4      | Row36              |                          |
| COM5             | Row5               | Row37              | Row5      | Row37              | 1                        |
| COM6             | Row6               | Row38              | Row6      | Row38              |                          |
|                  | :                  |                    |           | :                  | 1                        |
| •                | :                  | :                  | :         | :                  | 1                        |
| :                | :                  | :                  | :         | :                  | 1                        |
| •                | :                  | •                  |           | :                  | †                        |
| COM95            | Row95              | Row127             | Row95     | Row128             | †                        |
| COM96            | Row96              | Row128             | Row96     | Row129             | 1                        |
| COM97            | Row97              | Row129             | Row97     | Row129             | 1                        |
| COM98            | Row98              | Row129             | Row98     | Row130             | -                        |
| COM99            | Row99              | Row130             | Row99     | Row0               | -                        |
| COM199<br>COM100 | Row100             | Row0               | - K0W99   | -                  | -                        |
|                  |                    |                    |           |                    | 1                        |
| COM101           | Row101             | Row1               |           | -                  | -                        |
| COM102           | Row102             | Row2               | -         | -                  | -                        |
| COM103           | Row103             | Row3               | -         | -                  |                          |
| COM104           | Row104             | Row4               | -         | ·                  |                          |
| COM105           | Row105             | Row5               | -         | -                  |                          |
| COM106           | Row106             | Row6               | -         |                    |                          |
| COM107           | Row107             | Row7               | -         |                    |                          |
| COM108           | Row108             | Row8               | -         | -                  |                          |
| COM109           | Row109             | Row9               | -         | P                  |                          |
| COM110           | Row110             | Row10              | - 4.11104 | -                  |                          |
| COM111           | Row111             | Row11              |           | -                  |                          |
| COM112           | Row112             | Row12              | -13       | -                  |                          |
| COM113           | Row113             | Row13              | -         | -                  |                          |
| COM114           | Row114             | Row14              | -         | -                  |                          |
| COM115           | Row115             | Row15              | -         | -                  |                          |
| COM116           | Row116             | Row16              | -         | -                  |                          |
| COM117           | Row117             | Row17              | -         | -                  |                          |
| COM118           | Row118             | Row18              | -         | -                  | <u> </u>                 |
| COM119           | Row119             | Row19              | -         | -                  |                          |
| COM120           | Row120             | Row20              | -         | -                  |                          |
| COM121           | Row121             | Row21              | -         | -                  |                          |
| COM122           | Row122             | Row22              | -         | -                  |                          |
| COM123           | Row123             | Row23              | -         | -                  |                          |
| COM124           | Row124             | Row24              | -         | -                  |                          |
| COM125           | Row125             | Row25              | -         | -                  |                          |
| COM126           | Row126             | Row26              | -         | -                  |                          |
| COM127           | Row127             | Row27              | -         | -                  |                          |
| COM128           | Row128             | Row28              | -         | -                  |                          |
| COM129           | Row129             | Row29              | -         | -                  |                          |
| COM130           | Row130             | Row30              | -         | -                  | 1                        |
| COM131           | Row131             | Row31              | -         | -                  | 1                        |
| Display          |                    |                    |           |                    |                          |
| example          | 5                  | SOLOMON<br>SYSTECH |           | SOLOMON<br>SYSTECH | 5                        |
|                  | SOLOMON<br>SYSTECH |                    | COLOMON   |                    | SOLOMON<br>SYSTECH       |
| Į.               | (a)                | (b)                | (c)       | (d)                | (GDDARAM)                |

**SSD1353** | Rev 0.11 | P 45/65 | Aug 2006 | **Solomon Systech** 

# 9.1.10 Set Display Offset (A2h)

This command specifies the mapping of display start line (it is assumed that COM0 is the display start line, display start line register equals to 0) to one of COM0-131. For example, to move the COM16 towards the COM0 direction for 16 lines, the 6-bit data in the second command should be given by 0010000. The figure below shows an example of this command. In there, "Row" means the graphic display data RAM row.

Figure 9-8: Example of Set Display Offset with no Remap

|                    | 132                | 132     | 100   | 100     | MUX ratio (A8h)                 |
|--------------------|--------------------|---------|-------|---------|---------------------------------|
| COM Pin            | 0                  | 32      | 0     | 32      | Display offset (A2h)            |
| COM0               | Row0               | Row32   | Row0  | Row32   |                                 |
| COM1               | Row1               | Row33   | Row1  | Row33   | -                               |
| COM2               | Row2               | Row34   | Row2  | Row34   | †                               |
| COM3               | Row3               | Row35   | Row3  | Row35   | †                               |
| COM4               | Row4               | Row36   | Row4  | Row36   | -                               |
| COM5               | Row5               | Row37   | Row5  | Row37   | †                               |
| COM6               | Row6               | Row38   | Row6  | Row38   | †                               |
|                    | :                  | :       | :     | :       | †                               |
| :                  | :                  | :       | :     |         | 1                               |
| COM66              | Row66              | Row98   | Row66 | Row98   |                                 |
| COM67              | Row67              | Row99   | Row67 | Row99   |                                 |
| :                  | :                  | :       | :     | :       |                                 |
| :                  | :                  | :       | :     | :       |                                 |
| COM95              | Row95              | Row127  | Row95 | -       |                                 |
| COM96              | Row96              | Row128  | Row96 | -       |                                 |
| COM97              | Row97              | Row129  | Row97 | -       | _                               |
| COM98              | Row98              | Row130  | Row98 | -       |                                 |
| COM99              | Row99              | Row131  | Row99 | Row0    | . 1                             |
| COM100             | Row100             | Row0    | 2     | Row1    | 1 2/1                           |
| COM101             | Row101             | Row1    | -     | Row2    |                                 |
| COM102             | Row102             | Row2    | -     | Row3    |                                 |
| COM103             | Row103             | Row3    | -     | Row4    |                                 |
| COM104             | Row104             | Row4    | L-A   | Row5    |                                 |
| COM105             | Row105             | Row5    | 1-1   | Row6    |                                 |
| COM106             | Row106             | Row6    |       | Row7    |                                 |
| COM107             | Row107             | Row7    | -     | Row8    |                                 |
| COM108             | Row108             | Row8    | -     | Row9    |                                 |
| COM109             | Row109             | Row9    | -     | Row10   |                                 |
| COM110             | Row110             | Row10   | - 1   | Row11   |                                 |
| COM111             | Row111             | Row11   |       | Row12   |                                 |
| COM112             | Row112             | Row12   |       | Row13   |                                 |
| COM113             | Row113             | Row13   | -     | Row14   |                                 |
| COM114             | Row114             | Row14   | -     | Row15   |                                 |
| COM115             | Row115             | Row15   | -     | Row16   |                                 |
| COM116             | Row116             | Row16   | -     | Row17   |                                 |
| COM117             | Row117             | Row17   | -     | Row18   |                                 |
| COM118             | Row118             | Row18   | -     | Row19   |                                 |
| COM119             | Row119             | Row19   | -     | Row21   |                                 |
| COM120             | Row120             | Row20   | -     | Row20   |                                 |
| COM121             | Row121             | Row21   | -     | Row22   |                                 |
| COM122             | Row122             | Row22   | -     | Row23   |                                 |
| COM123             | Row123             | Row23   | -     | Row22   |                                 |
| COM124             | Row124             | Row24   | -     | Row24   |                                 |
| COM125             | Row125             | Row25   | -     | Row25   |                                 |
| COM126             | Row126             | Row26   | -     | Row26   | _                               |
| COM127             | Row127             | Row27   | -     | Row27   |                                 |
| COM128             | Row128             | Row28   | -     | Row28   | _                               |
| COM129             | Row129             | Row29   | -     | Row29   | _                               |
| COM130             | Row130             | Row30   | -     | Row30   |                                 |
| COM131             | Row131             | Row31   | -     | Row31   |                                 |
| Display<br>example |                    | SOLOMON |       | COLOMON |                                 |
|                    | SOLOMON<br>SYSTECH | SYSTECH | (c)   | (d)     | SOLOMON<br>SYSTECH<br>(GDDARAM) |
|                    | (a)                | 1 (0)   | (6)   | (u)     | (GDD/HUHY)                      |

 Solomon Systech
 Aug 2006
 P 46/65
 Rev 0.11
 SSD1353

#### 9.1.11 Set Display Mode (A4h $\sim$ A7h)

These are single byte command and they are used to set Normal Display, Entire Display ON, Entire Display OFF and Inverse Display.

Normal Display (A4h)
Reset the above effect and turn the data to ON at the corresponding gray level. Figure 9-9 shows an example of Normal Display.

Figure 9-9: Example of Normal Display



• Set Entire Display ON (A5h)
Forces the entire display to be at "GS63" regardless of the contents of the display data RAM as shown in Figure 9-10.

Figure 9-10: Example of Entire Display ON



Set Entire Display OFF (A6h)
Forces the entire display to be at gray level "GS0" regardless of the contents of the display data RAM as shown in Figure 9-11.

Figure 9-11: Example of Entire Display OFF



• Inverse Display (A7h)
The gray level of display data are swapped such that "GS0" <-> "GS63", "GS1" <-> "GS62", .....
Figure 9-12 shows an example of inverse display.

Figure 9-12: Example of Inverse Display



 SSD1353
 Rev 0.11
 P 47/65
 Aug 2006
 Solomon Systech

#### 9.1.12 Set Multiplex Ratio (A8h)

This command switches default 1:132 multiplex mode to any multiplex mode from 16 to 132. For example, when multiplex ratio is set to 16, only 16 common pins are enabled. The starting and the ending of the enabled common pins are depended on the setting of "Display Offset" register programmed by command A2h. Figure 9-7 and Figure 9-8 show examples of setting the multiplex ratio through command A8h.

#### 9.1.13 Dim mode setting (ABh)

This command contains multiple bits to configure the dim mode display parameters. Contrast setting of color A, B, C and precharge voltage can be set different to normal mode (AFh).

#### 9.1.14 Set Display ON/OFF (ACh / AEh / AFh)

These single byte commands are used to turn the OLED panel display ON or OFF.

When the display is ON, the selected circuits by Set Master Configuration command will be turned ON. When the display is OFF, those circuits will be turned off and the segment and common output are in high impedance state.

These commands set the display to one of the three states:

- o ACh: Dim Mode Display ON
- AEh: Display OFF
- o AFh: Normal Brightness Display ON

where the dim mode settings are controlled by command ABh.



Figure 9-13: Transition between different modes

# 9.1.15 Phase 1 and 2 Period Adjustment (B1h)

This command sets the length of phase 1 and 2 of segment waveform of the driver.

- Phase 1 (A[3:0]): Set the period from 3 to 31 in the unit of 2 DCLKs. A larger capacitance of the OLED pixel may require longer period to discharge the previous data charge completely.
- Phase 2 (A[7:4]): Set the period from 2 to 15 in the unit of DCLKs. A longer period is needed to charge up a larger capacitance of the OLED pixel to the target voltage V<sub>P</sub> for color A, B and C.

#### 9.1.16 Set Display Clock Divide Ratio/ Oscillator Frequency (B3h)

This command consists of two functions:

Display Clock Divide Ratio (A[3:0])
 Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 16, with reset value = 1. Please refer to section 7.5.1 for the details relationship of DCLK and CLK.

Solomon Systech Aug 2006 | P 48/65 | Rev 0.11 | SSD1353

• Oscillator Frequency (A[7:4])
Program the oscillator frequency Fosc which is the source of CLK if CLS pin is pulled HIGH. The 4-bit value results in 16 different frequency setting available.

#### 9.1.17 Set Second Pre-charge period (B4h)

This double byte command is used to set the phase 3 second pre-charge period. The period of phase 3 can be programmed by command B4h and it is ranged from 0 to 15 DCLK's. Please refer to Table 8-1 for the details of setting.

### 9.1.18 Set Gray Scale Table (B8h)

This command is used to set the Gray Scale (GS) table for the display. Except GS0, which is zero as it has no pre-charge and current drive, each entry GS level is programmed in the Gamma Setting. The larger value of Gamma Setting, the brighter is the OLED pixel when it's turned ON. Following the command B8h, the user has to set the Gamma Setting for GS1, GS2, GS3, ..., GS61, GS62, GS63 one by one in sequence. Refer to Section 7.8 for details.

The setting of Gray Scale entry can perform Gamma correction on OLED panel display. Normally, it is desired that the brightness response of the panel is linearly proportional to the image data value in display data RAM. However, the OLED panel is somehow responded in non-linear way. Appropriate Gray Scale table setting like example below can compensate this effect.



Figure 9-14: Example of Gamma correction by Gamma Look Up table setting

#### 9.1.19 Enable Linear Gray Scale Table (B9h)

This command reloads the preset linear Gray Scale table as GS0 =Gamma Setting 0, GS1 = Gamma Setting 2, GS2 = Gamma Setting 4, ..., GS31=Gamma Setting 62, GS32=Gamma Setting 65, GS33=Gamma Setting 67, ..., GS62 = Gamma Setting 125, GS63 = Gamma Setting 127. Refer to Section 7.8 for details.

## 9.1.20 Set Pre- charge voltage (BBh)

This command sets the pre-charge voltage level of segment pins, The level of pre-charge is programmed with reference to  $V_{\rm CC}$ .

#### 9.1.21 Set V<sub>COMH</sub> Voltage (BEh)

This command sets the high voltage level of common pins,  $V_{COMH}$ . The level of  $V_{COMH}$  is programmed with reference to  $V_{CC}$ .

SSD1353 | Rev 0.11 | P 49/65 | Aug 2006 | Solomon Systech

#### 9.1.22 Software Reset (E2h)

This command resets the display circuit and stops the Graphic Acceleration operations by generating an internal reset pulse.

#### 9.1.23 NOP (E3h)

This is the no operation command.

#### 9.1.24 Set Command Lock (FDh)

This command is used to lock the OLED driver IC from accepting any command except itself. After entering FDh 16h (A[2]=1b), the OLED driver IC will not respond to any newly-entered command (except FDh 12h A[2]=0b) and there will be no memory access. This is call "Lock" state. That means the OLED driver IC ignore all the commands (except FDh 12h A[2]=0b) during the "Lock" state.

Entering FDh 12h (A[2]=0b) can unlock the OLED driver IC. That means the driver IC resume from the "Lock" state. And the driver IC will then respond to the command and memory access.



Solomon Systech Aug 2006 | P 50/65 | Rev 0.11 | SSD1353

### 9.2 Graphic Acceleration Command

#### 9.2.1 Draw Line (21h)

This command draws a line by the given start, end column and row coordinates and the color of the line.

Figure 9-15: Example of Draw Line Command



For example, the line above can be drawn by the following command sequence.

- 1. Enter into draw line mode by command 21h
- 2. Send column start address of line, column1, for example = 1h
- 3. Send row start address of line, row 1, for example = 10h
- 4. Send column end address of line, column 2, for example = 28h
- 5. Send row end address of line, row 2, for example = 4h
- 6. Send color C, B and A of line, for example = (3Fh, 0h, 0h)

#### 9.2.2 Draw Rectangle (22h)

Given the starting point (Row 1, Column 1) and the ending point (Row 2, Column 2), specify the outline and fill area colors, a rectangle that will be drawn with the color specified. Remarks: If fill color option is disabled (refer to command 26h Fill Enable/Disable), the enclosed area will not be filled.

Figure 9-16: Example of Draw Rectangle Command



The following example illustrates the rectangle drawing command sequence.

- 1. Enter the "draw rectangle mode" by execute the command 22h
- 2. Set the starting column coordinates, Column 1, for example = 03h
- 3. Set the starting row coordinates, Row 1, for example = 02h
- 4. Set the finishing column coordinates, Column 2, for example = 12h
- 5. Set the finishing row coordinates, Row 2, for example = 15h
- 6. Set the outline color C, B and A, for example = (63d, 0d, 0d)
- 7. Set the filled color C, B and A, for example = (0d, 0d, 63d)

SSD1353 | Rev 0.11 | P 51/65 | Aug 2006 | Solomon Systech

#### 9.2.3 Copy (23h)

Copy the rectangular region defined by the starting point (Row 1, Column 1) and the ending point (Row 2, Column 2) to location (Row 3, Column 3). If the new coordinates are smaller than the ending points, the new image will overlap the original one.

The following example illustrates the copy procedure.

- 1. Enter the "copy mode" by execute the command 23h
- 2. Set the starting column coordinates, Column 1, for example = 00h.
- 3. Set the starting row coordinates, Row 1, for example = 00h.
- 4. Set the finishing column coordinates, Column 2, for example = 05h
- 5. Set the finishing row coordinates, Row 2, for example = 05h
- 6. Set the new column coordinates, Column 3, for example = 03h
- 7. Set the new row coordinates, Row 3, for example = 03h



Figure 9-17: Example of Copy Command

#### 9.2.4 **Dim Window (24h)**

This command will dim the window area specify by starting point (Row 1, Column 1) and the ending point (Row 2, Column 2). After the execution of this command, the selected window area will become darker as follow.

Table 9-1: Result of Change of Brightness by Dim Window Command

| Original gray scale | New gray scale after dim window command |
|---------------------|-----------------------------------------|
| GS0 ~ GS15          | No change                               |
| GS16 ~ GS19         | GS4                                     |
| GS20 ~ GS23         | GS5                                     |
| :                   | :                                       |
| GS60 ~ GS63         | GS15                                    |

Additional execution of this command over the same window area will not change the data content.

**Solomon Systech** Aug 2006 | P 52/65 | Rev 0.11 | **SSD1353** 

#### **9.2.5** Clear Window (25h)

This command sets the window area specify by starting point (Row 1, Column 1) and the ending point (Row 2, Column 2) to clear the window display. The graphic display data RAM content of the specified window area will be set to zero.

This command can be combined with Copy command to make as a "move" result. The following example illustrates the copy plus clear procedure and results in moving the window object.

- 1. Enter the "copy mode" by execute the command 23h
- 2. Set the starting column coordinates, Column 1, for example = 00h.
- 3. Set the starting row coordinates, Row 1, for example = 00h.
- 4. Set the finishing column coordinates, Column 2, for example = 05h
- 5. Set the finishing row coordinates, Row 2, for example 05h
- 6. Set the new column coordinates, Column 3, for example = 06h
- 7. Set the new row coordinates, Row 3, for example = 06h
- 8. Enter the "clear mode" by execute the command 24h
- 9. Set the starting column coordinates, Column 1, for example = 00h.
- 10. Set the starting row coordinates, Row 1, for example = 00h.
- 11. Set the finishing column coordinates, Column 2, for example = 05h
- 12. Set the finishing row coordinates, Row 2, for example = 05h

Figure 9-18: Example of Copy + Clear = Move Command



#### 9.2.6 Fill Enable/Disable (26h)

This command has two functions.

- Enable/Disable fill (A[0])
  - 0 = Disable filling of color into rectangle in draw rectangle command. (reset)
  - 1 = Enable filling of color into rectangle in draw rectangle command.
- Enable/Disable reverse copy (A[4])
  - 0 =Disable reverse copy (reset)
  - 1 = During copy command, the new image colors are swapped such that "GS0" <-> "GS63", "GS1" <-> "GS62", ....

SSD1353 | Rev 0.11 | P 53/65 | Aug 2006 | Solomon Systech

#### 9.2.7 Horizontal Scroll Setup (27h)

This command setup the parameters required for horizontal and vertical scrolling. The parameters should not be changed after scrolling is activated

Display snap shot after scrolling start Display before scrolling start Example 1: Partial screen horizontal left side scrolling with 1 column shift in every 3 frames Sample code 27h // Continuous horizontal scroll 01h // Horizontal scroll by 1 column Start row address 52h // Define row 82 as start row address 32h // Scrolling 50 rows 00h // No vertical scroll No of scrolling SYSTECH 00h // Set time interval between each scroll step as 3 frames 2Fh // Activate scrolling Display snap shot after scrolling start Display before scrolling start Example 2: Full screen vertical scrolling with 1 row up in every 3 frames. Sample code A1h // Set Display Start Line as 0 A3h // Set Vertical Scroll Area 00h // Set 0 rows in top fixed area 84h // Set 132 rows in scroll area 27h // Continuous vertical scroll SYSTECH 00h // No horizontal scroll 00h // Start row address for vertical scrolling 84h // Number of scrolling rows for vertical scrolling 01h // Set vertical scrolling offset as 1 row 00h // Set time interval between each scroll step as 3 frames 2Fh // Activate scrolling Display snap shot after scrolling start Display before scrolling start Example 3: Full screen diagonal Start row scrolling (horizontal left side address scrolling with 1 column shift plus vertical scrolling with 1 row up) in every 5 frames. No of scrolling Sample code Alh // Set Display Start Line as 0 A3h // Set Vertical Scroll Area 00h // Set 0 rows in top fixed area SYSTECH 84h // Set 132 rows in scroll area 27h // Continuous diagonal scroll 01h // Horizontal scroll by 1 column 00h // Define row 0 as start row address 84h // Scrolling 132 rows 01h // Set vertical scrolling offset as 1 row 01h // Set time interval between each scroll step as 5 frames 2Fh // Activate scrolling

Figure 9-19: Examples of Continuous Horizontal and Vertical Scrolling command setup

#### 9.2.8 Deactivate Horizontal Scroll (2Eh)

This command deactivates the scrolling function. After sending 2Eh command to deactivate the scrolling action, the ram data needs to be rewritten.

## 9.2.9 Activate Horizontal Scroll (2Fh)

This command activates the scrolling function according to the setting done by Continuous Horizontal & Vertical Scrolling Setup command 27h.

#### 9.2.10 Set Vertical Scroll Area(A3h)

This command consists of 3 consecutive bytes to set up the vertical scroll area. For details please refer to Table 8-1.

**Solomon Systech** Aug 2006 | P 54/65 | Rev 0.11 | **SSD1353** 

#### 10 MAXIMUM RATINGS

**Table 10-1: Maximum Ratings** 

(Voltage Reference to V<sub>SS</sub>)

| Symbol           | Parameter                 | Value                             | Unit |
|------------------|---------------------------|-----------------------------------|------|
| $V_{DD}$         |                           | -0.5 to 2.75                      | V    |
| $V_{CC}$         | Cumply Valtage            | -0.5 to 22.0                      | V    |
| $V_{ m DDIO}$    | Supply Voltage            | -0.5 to $V_{\rm CI}$              | V    |
| $V_{CI}$         |                           | -0.3 to 4.0                       | V    |
| $V_{SEG}$        | SEG output voltage        | 0 to V <sub>CC</sub>              | V    |
| $V_{COM}$        | COM output voltage        | 0 to 0.9*V <sub>CC</sub>          | V    |
| V <sub>in</sub>  | Input voltage             | Vss-0.3 to V <sub>DDIO</sub> +0.3 | V    |
| T <sub>A</sub>   | Operating Temperature     | -40 to +85                        | °C   |
| $T_{\text{stg}}$ | Storage Temperature Range | -65 to +150                       | °C   |
|                  | dia                       |                                   |      |
|                  | a John John               |                                   |      |
|                  |                           |                                   | 44   |
|                  |                           |                                   |      |
|                  |                           |                                   |      |
|                  | Gom                       | $\rho \Omega_{ab}$                |      |
|                  | Com                       | "CO"                              |      |
|                  | Com                       | 100/00/                           |      |
|                  | Com. 40                   | - 1091 COn                        |      |
|                  | (COM.                     | ry Coul                           |      |
|                  | 40                        | chnology con                      |      |
|                  | to                        | chnology com                      |      |
|                  | to 10                     | chnology com                      |      |
|                  | Com to                    | chnology com                      |      |
|                  | Com to                    | chnology com                      |      |
|                  | Com to                    | chnology com                      |      |
|                  | com to                    | chnology com                      |      |
|                  | ciling Visionox To        | chnology com                      |      |
|                  | Gom to                    | chnology com                      |      |
|                  | seiling Visionox To       | chnology com                      |      |
|                  | seiling Visionox To       | chilology co.                     |      |

<sup>\*</sup>Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description.

SSD1353 Rev 0.11 P 55/65 Aug 2006 Solomon Systech

#### DC CHARACTERISTICS 11

#### **Conditions:**

Voltage referenced to  $V_{\text{SS}}$ 

 $V_{DD}$  = 2.4 to 2.6V  $V_{CI}$  = 2.4 to 3.5V ( $V_{CI}$  must be larger than or equal to  $V_{DD}$ )

 $T_A = 25$ °C

**Table 11-1: DC Characteristics** 

| Symbol                 | Parameter                                              | <b>Test Condition</b>                                                                                                                                                                                                         | Min            | Тур | Max            | Unit |
|------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|----------------|------|
| $V_{CC}$               | Operating Voltage                                      | -                                                                                                                                                                                                                             | 10             | -   | 21             | V    |
| $V_{DD}$               | Logic Supply Voltage                                   | -                                                                                                                                                                                                                             | 2.4            | -   | 2.6            | V    |
| $V_{CI}$               | Low voltage power supply                               | -                                                                                                                                                                                                                             | 2.4            | -   | 3.5            | V    |
| $V_{DDIO}$             | Power Supply for I/O pins                              | -                                                                                                                                                                                                                             | 1.6            | -   | $V_{CI}$       | V    |
| V <sub>OH</sub>        | High Logic Output Level                                | Iout =100uA                                                                                                                                                                                                                   | $0.9*V_{DDIO}$ | -   | $V_{\rm DDIO}$ | V    |
| V <sub>OL</sub>        | Low Logic Output Level                                 | Iout =100uA                                                                                                                                                                                                                   | 0              | -   | $0.1*V_{DDIO}$ | V    |
| $V_{IH}$               | High Logic Input Level                                 | -                                                                                                                                                                                                                             | $0.8*V_{DDIO}$ | -   | $V_{\rm DDIO}$ | V    |
| $V_{IL}$               | Low Logic Input Level                                  | -                                                                                                                                                                                                                             | 0              | -   | $0.2*V_{DDIO}$ | V    |
| $I_{SLP\_VDD}$         | V <sub>DD</sub> Sleep mode Current                     | $V_{CI}$ = 3.3V,<br>$V_{DDIO}$ = $V_{DD}$ (external) = 2.5V,<br>Display OFF, No panel attached                                                                                                                                | -              | -   | 15             | uA   |
| I <sub>SLP_VDDIO</sub> | V <sub>DDIO</sub> Sleep mode Current                   | $V_{CI}$ = 3.3V,<br>$V_{DDIO}$ = $V_{DD}$ (external) = 2.5V,<br>Display OFF, No panel attached                                                                                                                                | -              | -   | 15             | uA   |
| I <sub>SLP_VCI</sub>   | V <sub>CI</sub> Sleep mode Current                     | $V_{CI}$ = 3.3V,<br>$V_{DDIO}$ = $V_{DD}$ (external) = 2.5V,<br>Display OFF, No panel attached                                                                                                                                | - 1001         | -61 | 15             | uA   |
| I <sub>SLP_VCC</sub>   | V <sub>CC</sub> Sleep mode Current                     | $V_{CI}$ = 3.3V,<br>$V_{DDIO}$ = $V_{DD}$ (external) = 2.5V,<br>Display OFF, No panel attached                                                                                                                                | 40/02          |     | 15             | uA   |
| $I_{DD}$               | V <sub>DD</sub> Supply Current                         | $V_{CI}$ = 3.3V, $V_{DDIO}$ = $V_{DD}$ = 2.5V, $V_{CC}$ = 21V, Display ON, No panel attached, contrast = FF                                                                                                                   | -              | TBD | -              | uA   |
| $I_{DDIO}$             | V <sub>DDIO</sub> Supply Current                       | $V_{CI}$ = 3.3V, $V_{DDIO}$ = $V_{DD}$ = 2.5V, $V_{CC}$ = 21V, Display ON, No panel attached, contrast = FF                                                                                                                   | -              | TBD | -              | uA   |
| $I_{CI}$               | V <sub>CI</sub> Supply Current                         | $V_{CI}$ = 3.3V, $V_{DDIO}$ = $V_{DD}$ = 2.5V,<br>$V_{CC}$ = 21V, Display ON, No<br>panel attached, contrast = FF                                                                                                             | -              | TBD | -              | uA   |
| $I_{CC}$               | V <sub>CC</sub> Supply Current                         | $V_{CI}$ = 3.3V, $V_{DDIO}$ = $V_{DD}$ = 2.5V, $V_{CC}$ = 21V, Display ON, No panel attached, contrast = FF                                                                                                                   | -              | TBD | -              | uA   |
|                        | Segment Output Current                                 | Contrast = FF, GS=127                                                                                                                                                                                                         | -              | 160 | -              | uA   |
| $I_{SEG}$              | Setting                                                | Contrast = 7F, GS=127                                                                                                                                                                                                         | _              | 80  | -              | uA   |
| 320                    | $V_{CC}=18V$ , $I_{REF}=10uA$                          | Contrast = 7F, GS= 63                                                                                                                                                                                                         | _              | 40  | _              | uA   |
| Dev                    | Segment output current uniformity                      | $\begin{aligned} &\text{Dev} = (I_{\text{SEG}} - I_{\text{MID}})/I_{\text{MID}} \\ &I_{\text{MID}} = (I_{\text{MAX}} + I_{\text{MIN}})/2 \\ &I_{\text{SEG}} = \text{Segment current at} \\ &\text{contrast FF} \end{aligned}$ | -3             | -   | 3              | %    |
| Adj. Dev               | Adjacent pin output current uniformity (contrast = FF) | Adj Dev = $(I[n]-I[n+1]) / (I[n]+I[n+1])$                                                                                                                                                                                     | -2             | -   | 2              | %    |

Aug 2006 | P 56/65 | Rev 0.11 | **SSD1353** Solomon Systech

#### 12 AC CHARACTERISTICS

#### **Conditions:**

Voltage referenced to V<sub>SS</sub>  $V_{DD} = 2.4 \text{ to } 2.6 \text{ V}$  $T_A = 25$ °C

**Table 12-1: AC Characteristics** 

| Symbol    | Parameter                                            | Test Condition                                                           | Min | Тур                            | Max | Unit |
|-----------|------------------------------------------------------|--------------------------------------------------------------------------|-----|--------------------------------|-----|------|
|           | Oscillation Frequency of Display<br>Timing Generator | $V_{DD} = 2.5V$                                                          | -   | 1.6                            | -   | MHz  |
| FFRM      | Frame Frequency for 132 MUX Mode                     | 160x132 Graphic Display Mode,<br>Display ON, Internal Oscillator Enabled |     | F <sub>OSC</sub> * 1/(D*K*132) | -   | Hz   |
| $t_{RES}$ | Reset low pulse width (RES#)                         | -                                                                        | 100 | =                              | -   | us   |

#### Note

SSD1353 Rev 0.11 P 57/65 Aug 2006 Solomon Systech

 $<sup>^{(1)}</sup>$   $F_{OSC}$  stands for the frequency value of the internal oscillator and the value is measured when command B3h A[7:4] is Beiling Visionox Technology Coultd in default value.

<sup>(2)</sup> D: divide ratio

K: Phase 1 period +Phase 2 period + 98

Table 12-2: 6800-Series MCU Parallel Interface Timing Characteristics

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 2.6 \text{V}, V_{DDIO} = 1.6 \text{V}, V_{CI} = 3.3 \text{V}, T_A = 25 ^{\circ}\text{C})$ 

| Symbol            | Parameter                                                                 | Min       | Тур | Max | Unit |
|-------------------|---------------------------------------------------------------------------|-----------|-----|-----|------|
| $t_{cycle}$       | Clock Cycle Time                                                          | 300       | -   | -   | ns   |
| $t_{AS}$          | Address Setup Time                                                        | 0         | -   | -   | ns   |
| t <sub>AH</sub>   | Address Hold Time                                                         | 0         | -   | -   | ns   |
| $t_{ m DSW}$      | Write Data Setup Time                                                     | 40        | -   | -   | ns   |
| $t_{ m DHW}$      | Write Data Hold Time                                                      | 7         | -   | -   | ns   |
| $t_{ m DHR}$      | Read Data Hold Time                                                       | 20        | -   | -   | ns   |
| $t_{\mathrm{OH}}$ | Output Disable Time                                                       | -         |     | 70  | ns   |
| t <sub>ACC</sub>  | Access Time                                                               | -         | -   | 140 | ns   |
| PW <sub>CSL</sub> | Chip Select Low Pulse Width (read)<br>Chip Select Low Pulse Width (write) | 120<br>60 | -   | -   | ns   |
| $PW_{CSH}$        | Chip Select High Pulse Width (read) Chip Select High Pulse Width (write)  | 60<br>60  | -   | -   | ns   |
| $t_R$             | Rise Time                                                                 | -         | -   | 15  | ns   |
| $t_{\rm F}$       | Fall Time                                                                 | -         | -   | 15  | ns   |

Figure 12-1: 6800-series MCU parallel interface characteristics



#### Note

(1) when 8 bit used: D[7:0] instead; when 9 bit used: D[8:0] instead; when 16 bit used: [15:0] instead; when 18 bit used: D[17:0] instead.

 Solomon Systech
 Aug 2006
 P 58/65
 Rev 0.11
 SSD1353

Table 12-3: 8080-Series MCU Parallel Interface Timing Characteristics

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 2.6\text{V}, V_{DDIO} = 1.6\text{V}, V_{CI} = 3.3\text{V}, T_A = 25^{\circ}\text{C})$ 

| Symbol             | Parameter                            | Min | Тур | Max | Unit |
|--------------------|--------------------------------------|-----|-----|-----|------|
| t <sub>cycle</sub> | Clock Cycle Time                     | 300 | -   | -   | ns   |
| $t_{AS}$           | Address Setup Time                   | 10  | -   | 1   | ns   |
| $t_{AH}$           | Address Hold Time                    | 0   | -   | •   | ns   |
| $t_{DSW}$          | Write Data Setup Time                | 40  | -   | •   | ns   |
| $t_{\mathrm{DHW}}$ | Write Data Hold Time                 | 7   | -   | -   | ns   |
| $t_{\mathrm{DHR}}$ | Read Data Hold Time                  | 20  | -   | -   | ns   |
| $t_{OH}$           | Output Disable Time                  | -   | -   | 70  | ns   |
| $t_{ACC}$          | Access Time                          | -   | -   | 140 | ns   |
| $t_{PWLR}$         | Read Low Time                        | 150 | -   | -   | ns   |
| $t_{PWLW}$         | Write Low Time                       | 60  | -   | -   | ns   |
| $t_{PWHR}$         | Read High Time                       | 60  | -   | -   | ns   |
| $t_{PWHW}$         | Write High Time                      | 60  | -   | -   | ns   |
| $t_R$              | Rise Time                            |     | -   | 15  | ns   |
| $t_{\rm F}$        | Fall Time                            | -   | -   | 15  | ns   |
| t <sub>CS</sub>    | Chip select setup time               | 0   | -   | -   | ns   |
| $t_{CSH}$          | Chip select hold time to read signal | 0   | -   | -   | ns   |
| t <sub>CSF</sub>   | Chip select hold time                | 20  | -   | -   | ns   |

Figure 12-2: 8080-series MCU parallel interface characteristics (Form 1)



Figure 12-3: 8080-series MCU parallel interface characteristics (Form 2)



Note  $^{(1)}$  when 8 bit used: D[7:0] instead; when 9 bit used: D[8:0] instead; when 16 bit used: [15:0] instead; when 18 bit used: D[17:0] instead.

SSD1353 Rev 0.11 P 59/65 Aug 2006 Solomon Systech

**Table 12-4: Serial Interface Timing Characteristics** 

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 2.6V, V_{DDIO} = 1.6V, V_{CI} = 3.3V, T_A = 25^{\circ}C)$ 

| Symbol           | Parameter              | Min | Тур | Max | Unit |
|------------------|------------------------|-----|-----|-----|------|
| $t_{ m cycle}$   | Clock Cycle Time       | 250 | -   | -   | ns   |
| $t_{AS}$         | Address Setup Time     | 150 | -   | -   | ns   |
| $t_{AH}$         | Address Hold Time      | 150 | -   | -   | ns   |
| $t_{CSS}$        | Chip Select Setup Time | 120 | -   | -   | ns   |
| $t_{CSH}$        | Chip Select Hold Time  | 60  | -   | -   | ns   |
| $t_{ m DSW}$     | Write Data Setup Time  | 100 | -   | -   | ns   |
| $t_{ m DHW}$     | Write Data Hold Time   | 100 | -   | -   | ns   |
| $t_{CLKL}$       | Clock Low Time         | 100 | -   | -   | ns   |
| $t_{CLKH}$       | Clock High Time        | 100 | -   | -   | ns   |
| $t_R$            | Rise Time              | -   | -   | 15  | ns   |
| $t_{\mathrm{F}}$ | Fall Time              | -   | -   | 15  | ns   |

Figure 12-4: Serial interface characteristics



 Solomon Systech
 Aug 2006
 P 60/65
 Rev 0.11
 SSD1353

#### 13 APPLICATION EXAMPLE

Figure 13-1 : SSD1353 application example for 18-bit 6800-parallel interface mode (Internal regulated  $V_{DD}$ )



SSD1353 | Rev 0.11 | P 61/65 | Aug 2006 | Solomon Systech

Figure 13-2: SSD1353 application example for 18-bit 6800-parallel interface mode (External  $V_{DD}$ )



Solomon Systech Aug 2006 | P 62/65 | Rev 0.11 | SSD1353

#### 14 PACKAGE DIMENSION

#### 14.1 SSD1353U4R1 Detail Dimension

TAPE UN-WINDING DIRECTION 17.9(Alignment Mark) 17.9(Alignment Mark) (W0.04±0.01) P0.07X(80-1)X0.999=5.52447 35.09993±0.018 (W0.04±0.01) P0.07X(80-1)X0.999=5.52447 P0.05X(480-1)X0.999 =23.92605(W0.025+0.01/-0.005) (W0.04±0.01) P0.07X(80-1)=5.53 (W0.04±0.01) P0.07X(80-1)=5.53 35.135±0.018 P0.05X(480-1)=23.95(W0.025+0.01/-0.005) $.42\pm0.03$ 4-Ø0.25(CU PAD) <u>D</u>ETAIL B DETAIL A 10.0(CUTLINE) 9.5(Alignment 7.7(CUTLINE) 23.75(PIECE LENGTH) 7.2 Alignment 5.8(SR) SSD1353U4 DETAI 7.45(CUTLINE) 5.45(SR) 6.45 ment N 0.872(SR) ·@  $P0.7x(45-1)=30.800\pm0.016(W0.3\pm0.02)$ 15.975(Alignment Mark) 15.975(Alignment Mark) 2-16.2(Alignment Hole) 2-16.2(Alignment Hole) 18.2(SR) 18.2(SR) 18.4(CUTLINE) 18.4(CUTLINE) 42.04 44.86±0.05 48.18±0.2

Figure 14-1: SSD1353U4R1 detail dimension

SSD1353 | Rev 0.11 | P 63/65 | Aug 2006 | Solomon Systech

#### NOTE:

1. GENERAL TOLERANCE: ±0.05mm

2. MATERIAL PI: 38±4um CU: 8±2um SR: 15±10um

(OTHER TOLERANCE: ±0.200mm)

3. Sn PLATING 0.23±0.050mm

4. TAPSITE: 5 SPH, 23.75mm



MIRROR DESIGN



 Solomon Systech
 Aug 2006
 P 64/65
 Rev 0.11
 SSD1353



Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.

http://www.solomon-systech.com

SSD1353 | Rev 0.11 | P 65/65 | Aug 2006 | Solomon Systech