Coalgebras, Covarieties, Coequations

Todd Schmid, PPLV Group

Algebras and Coalgebras

Universal algebra's notion of algebra consists of

- a set X,
- a signature Σ of n-ary operations, and
- an interpretation

$$\sigma: X^{\operatorname{arity}(\sigma)} \longrightarrow X$$

for each $\sigma \in \Sigma$.

In the language of categories, signatures are polynomial endofunctors

$$\coprod_{\mathbf{x}} (-)^{\operatorname{arity}(\sigma)} : \mathbb{S}\mathbf{ets} \longrightarrow \mathbb{S}\mathbf{ets},$$

 $\sigma \in \Sigma$ and an interpretation is a function of the form

$$\coprod_{\sigma \in \Sigma} X^{\operatorname{arity}(\sigma)} \longrightarrow X.$$

In general, given an endofunctor

$$\Sigma: \mathbb{D} \longrightarrow \mathbb{D}$$

a Σ -algebra is any arrow

$$\Sigma X \longrightarrow X$$
.

Dually, given a functor

a **Γ-coalgebra** is an arrow

$$\alpha_X:X\longrightarrow \Gamma X$$
.

A **\Gamma-coalgebra homomorphism** satisfies

$$X \xrightarrow{\alpha_X} \# \qquad X$$

The category of Γ -coalgebras and Γ -coalgebra homomorphisms is denoted \mathbb{D}_{Γ} , and the forgetful functor

$$U: \mathbb{D}_{\Gamma} \longrightarrow \mathbb{D}$$

Typical Question: When is U monadic?

Examples From Mathematics

In general,

algebras model datatypes, and coalgebras model stateful systems.

Automata. These are coalgebras for an endofunctor of the form

$$2 \times (-)^A : \mathbb{S}ets \longrightarrow \mathbb{S}ets,$$

visualized as a set of transitions between states with labels.

$$\{s_1, s_2, s_3\} \longrightarrow 2 \times (\{s_1, s_2, s_3\})^{\{a_1, a_2\}}$$

Kripke Models. For a set of proposition letters Prop, these are functions

$$\alpha_W: W \longrightarrow \mathcal{P}(\mathbf{Prop}) \times \mathcal{P}(W).$$

 $\alpha_W(w)_1 = \text{(worlds accessible from } w)$ $\alpha_W(w)_2 = \text{(propositions } w \text{ believes)}.$ **Graphs.** Given $F: \mathbb{S}\mathbf{ets} \to \mathbb{S}\mathbf{ets}$, an F-**graph** is a coalgebra for the functor

$$\operatorname{Grph}(F): \operatorname{\mathbb{S}ets}^2 \longrightarrow \operatorname{\mathbb{S}ets}^2,$$

$$(V,E) \longmapsto (1,FV).$$

For example, $\operatorname{Grph}((-)\times(-))\text{-coalgebras}$ are equivalent to maps

$$\langle s,t \rangle : E \longrightarrow V \times V,$$

known as quivers. See [Rut00] for this example, and the recent [Jäk15].

Birkoff's Variety Theorem

Given a set $\mathcal T$ of equations in a signature Σ , let $\mathcal T^{\mathsf T}$ be the class of Σ -algebras that satisfy $\mathcal T$.

 \mathcal{T}^\top is a $\mathbf{variety},$ meaning that it is closed under products, quotients, and subalgebras.

Theorem. (Birkoff's Variety Theorem) Let Σ be a signature. A class K of Σ -algebras is a variety if and only if it is of the form \mathcal{T}^{\top} for some \mathcal{T} .

Question: Can we generalize to other algebras? What is the story for coalgebras?

Coequations and Covarieties

A right adjoint $H:\mathbb{D}\to\mathbb{D}_\Gamma$ to U takes D to its **cofree** Γ -coalgebra $HD=\langle S_D,\gamma_D\rangle.$

A **coequation** over $D \in \mathbb{D}$ is a regular subcoalgebra $\langle C, e_C \rangle \leq HD$. $\langle A, \alpha_A \rangle$ **satisfies**

$$\begin{array}{ccc} A & \langle A, \alpha_A \rangle \\ & \downarrow & & \downarrow \\ D & HD & \stackrel{\exists \mathbb{I}}{\longleftarrow} \langle C, e_c \rangle \end{array}$$

This can also be written $\langle A,\alpha_A\rangle \perp i,$ read $``\langle A,i\rangle \text{ is co-orthogonal to }i.''$

A **covariety** is a full subcategory of \mathbb{D}_Γ closed under

- (a) coproducts,
- (b) targets of epics, and
- (c) sub-coalgebras.

(c) sub-coagebras.
This is the dual notion to variety.

The Covariety Theorem

8

the full subcategory of $\Gamma\text{-coalgebras}$ satisfying $\mathcal E.$ Categories of the form $\mathcal E_{\perp}$ are called $\mathbf{coequa-}$

Given a class $\mathcal E$ of coequations over D, let $\mathcal E_{\perp}$ be

Categories of the form \mathcal{E}_{\perp} are called **coeque** tional, and are examples of covarieties.

In the presence of sufficient structure, ie. in co-Birkoff categories, this is the whole story.

 See [AH00] for details. An earlier proof for $\mathbb{D} = \mathbb{S}ets$ and bounded Γ is in [Rut00].

Some Applications

Vast generalizations of modal logic [SBR16].
 Characterizing regular varieties of automata with varieties of languages [Sal+15].

Steven Awodey and Jesse Hughes. "The Coalgebraic	Dual Of Birkhoff's Variety Theorem". In: 2000.	J.J.M.M. Rutten. "Universal coalgebra: a theory of	evetoms" In Theoretical Computer Science 240 1
[AH00]		[Rut00]	

[Jäk15] C. Jäkel. A unified categorical approach to graphs. 2015.
arXiv: 1507. 06328 [math.c0].
[Sal+15] J. Salamanca et al. "Regular Varieties of Automata and

1+15] J. Salamanca et al. "Regular Varieties of Automata and Coequations". In: Mathematics of Program
Construction. Cham: Springer International Publishing,

[SBR16] J. Salamanca, M. Bonsangue, and J. Rot. "Duality of Equations and Coequations via Contravariant Adjunctions". In: Coalgebraic Methods in Computer Science. Springer International Publishing, 2016, pp. 72–73.