Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1-49. (Canceled) 1 1 50. (Previously presented) A probe nucleic acid having the formula: 2 $D-R^{1}-Nu^{1}-R^{2}-O-P-O-NA-O-P-O-R^{3}-Nu^{2}-R^{4}-Q$ CHOLOO-P-O-RO-RO-P-O-RO-R-P-O-RO-P-O-RO-P-O-RO-P-O-RO-P-O-RO-P-O-RO-P-O-RO-P-O-RO-P-O-RO3 4 wherein, 5 CHOL is a cholesterol derivative; R¹, R², R³ and R⁴ are linker moieties independently selected from the group 6 consisting of substituted or unsubstituted alkyl and substituted or 7 8 unsubstituted heteroalky1; Nu¹ and Nu² are members independently selected from the group consisting of 9 10 nucleotide residues and nucleoside residues: 11 NA is a nucleic acid sequence; 12 D is a donor of light energy; and 13 Q is a quencher of light energy, 14 wherein the CHOL moieties interact to bring D and Q into operative proximity, thereby enabling transfer of energy from D to Q, and 15 16 wherein said probe nucleic acid sequence is not hybridized to a target nucleic acid. 17

- 1 51. (Previously presented) The probe nucleic acid according to claim 50,
- 2 wherein R²-CHOL and R³-CHOL are independently selected and have structures according to
- 3 the formula:

5 wherein,

4

R¹¹ is a member selected from the group consisting of substituted or unsubstituted alkyl and substituted or unsubstituted heteroalkyl;

8 PEG is polyethylene glycol;

9 Y³ is an organic functional group adjoining said PEG to said CHOL.

- 1 52. (Previously presented) The probe nucleic acid according to claim 51, 2 wherein said PEG has from about 2 to about 20 ethylene glycol subunits.
- 1 53. (Previously presented) The probe nucleic acid according to claim 51 in which R¹¹ is substituted or unsubstituted alkyl.
- 1 54. (Previously presented) The probe nucleic acid according to claim 53, wherein R¹¹ is C₁-C₆ substituted or unsubstituted alkyl.
- 1 55. (Previously presented) The probe nucleic acid according to claim 51, 2 wherein Y³-CHOL has the structure:

3

- 1 56. (Previously presented) The probe nucleic acid according to claim 50,
- wherein Nu¹ and Nu² are nucleotides having an exocyclic amine group to which -R¹-D and -R⁴Q
- 3 are attached, respectively.
- 1 57. (Currently amended) A probe nucleic acid having the formula:

3 wherein,

- 4 NA is a nucleic acid sequence;
- Nu¹ and Nu² are members independently selected from the group consisting of nucleotide residues and nucleoside residues;
- Y¹ and Y² are linking groups independently selected from the group consisting of substituted or unsubstituted alkyl and substituted or unsubstituted heteroalkyl;
- 10 R⁵ and R⁶ are linking groups independently selected from the group consisting of 11 substituted or unsubstituted alkyl and substituted or unsubstituted 12 heteroalkyl;
- D is a donor of light energy; and
- Q is a quencher of light energy,
- wherein each CHOL interacts with the other CHOL to bring D and Q into
 operative proximity, thereby enabling transfer of energy from D to Q, and
 wherein said probe nucleic acid sequence is not hybridized to a target nucleic
 acid.
- 1 58. (Previously presented) The probe nucleic acid according to claim 57, wherein Y¹ and Y² are members independently selected from substituted or unsubstituted
- 3 heteroalkyl.

- 1 59. (Previously presented) The probe nucleic acid according to claim 58, wherein Y¹ and Y² are polyethylene glycol.
 - 60. (Previously presented) The probe nucleic acid according to claim 59, wherein said polyethylene glycol has from about 2 to about 20 ethylene glycol subunits.
- 1 61. (Previously presented) The probe nucleic acid according to claim 57, 2 wherein Y¹-CHOL and Y²-CHOL have the structure:

1 62. (Canceled)

3