Quantitative skills for genomic data analysis (2): statistics

BBMS 3009: Genome Science (First Semester, 2021)

Dr. Yuanhua Huang / 黃淵華 School of Biomedical Sciences & Department of Statistics and Actuarial Science

Today's learning objectives (Statistics)

- 1. Main idea of statistical hypothesis testing
- 2. Regression based test
- 3. Types of errors and evaluation metrics
- 4. More testing methods: t-test, permutation test, etc

Resource: Chapter 6 in book *Modern Statistics for Modern Biology*

https://www.huber.embl.de/msmb/Chap-Testing.html

R script: Moodle / Lecture handouts / Dr. YH Huang → R-statistics.Rmd

1. Example of hypothesis testing

- Hypothetic example:
 - Does advertising in newspaper have impact on the sales of cars
- Decision to make
 - Yes or No
- Factors to consider when using collected data:
 - Uncertain measurement
 - Sample size is not big enough to represent the whole population

Decision making and hypothesis testing

- Common scientific questions from observed data
 - Difference between groups
 - Tendency, e.g., along with drug doses (effects)
- How to make the decision with considering
 - Uncertainty in observations, e.g., patient responses
 - Sample size is not big enough to represent the population, e.g., in clinical trial
- Statistical hypothesis testing
 - An approach for decision making under uncertainty
 - Estimate the probability to be wrong
 - Maximize expected utility (subjective value)

Main idea of hypothesis testing

A statistical hypothesis, sometimes called confirmatory data analysis, is a hypothesis that is **testable** in the light of observed data that is modeled via a set of random variables.

Main idea

- It is difficult to prove that a fact is "right".
- But it is easy to prove that an opposite fact is "wrong".
- Then you only have to find one counter example.

Main idea of hypothesis testing

It is difficult to prove that a fact is "right", but it is easy to prove that an opposite fact is "wrong".

Research hypothesis (alternative hypothesis)

 \succ H_1 : the newspaper adverting has impact on sales

$$H_1$$
: $y = \beta_0 + \beta_1 \times \text{Newspaper}$; $\beta_1 \neq 0$

Null hypothesis (default hypothesis, you don't need to prove it, just assume it)

 \succ H_0 : the newspaper adverting has no impact on sales

$$H_0$$
: $y = \beta_0 + \beta_1 \times \text{Newspaper}; \beta_1 = 0$

Main idea of hypothesis testing

- With null and alternative hypotheses set up, we then try to show that, in light of our collected data, the null hypothesis is false.
- We do this by calculating the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct
 - If this probability is very small, it suggests that the null hypothesis is false.
 - If this probability is large, it suggests that there is not enough evidence to reject the null hypothesis.
- This probability is called the p value of the test

2. Regression-based testing

- Data collection
 - 200 samples with both newspaper advertising costs and sales values


```
library(datarium)
head(marketing)

# plotting
ggplot(marketing,
aes(x=newspaper, y=sales)) +
  geom_point() +
  geom_smooth(method=lm)
```

Dataset: https://search.r-project.org/CRAN/refmans/datarium/html/marketing.html

Regression-based testing

- Fitting a regression model with maximum likelihood
 - $y = \beta_0 + \beta_1 \times \text{Newspaper};$

Maximum likelihood estimate: mean and standard error

Intercept: $\beta_0 = 14.82 \pm 0.746$ Newspaper: $\beta_1 = 0.0547 \pm 0.0166$

T-statistic for β_1 :

t value = 0.0547 / 0.0166 = 3.3

Regression-based testing

Under the null, the distribution of t-statistic; Degree of freedom=n_sample - n_coefficient = 198

P value =
$$prob(x > t value) = 0.00115$$

P value and level of significance

- P value: under the null hypothesis, the probability to see the test results as extreme as observed test result
 - If p value is very small, it suggests that the null hypothesis is false.
 - But how low does this probability has to be before we can conclude that the null hypothesis is false?
- Convention: choose a **level of significance** before the experiment that dictates how low the *p* value should be before we reject the null hypothesis.
- It is common to choose a significance level of 0.01 or 0.05.
- Here p = 0.00115, so we reject the Null hypothesis at the significance level of 0.01.

More on regression-based testing (1)

- Likelihood ratio test
 - Null model likelihood L_0 : $y = \beta_0$
 - Alternative model likelihood L_1 : $y = \beta_0 + \beta_1 \times \text{Newspaper}$
- Likelihood with maximum likelihood estimate
 - Null hypothesis: $L_0 = -650.15$
 - Alternative hypothesis: $L_1 = -644.8$
- Likelihood ratio statistic
 - Observed results: $\lambda = -2(L_0 L_1) = 10.7$
 - Distribution under the Null: $\lambda \sim \chi^2$ (df = 1)
 - P value: $P(x > \lambda) = 0.00107$

More on regression-based testing (2)

- Condition on other covariate, e.g., advertising on Facebook
 - H_1 : $y = \beta_0 + \beta_1 \times \text{Newspaper} + \beta_2 \times \text{Facebook}$; $\beta_1 \neq 0$
 - H_0 : $y = \beta_0 + \beta_1 \times \text{Newspaper} + \beta_2 \times \text{Facebook}$; $\beta_1 = 0$

	youtube <dbl></dbl>	facebook <dbl></dbl>	newspaper <dbl></dbl>	sales <dbl></dbl>
1	276.12	45.36	83.04	26.52
2	53.40	47.16	54.12	12.48
3	20.64	55.08	83.16	11.16
4	181.80	49.56	70.20	22.20
5	216.96	12.96	70.08	15.48
6	10.44	58.68	90.00	8.64

- Fitting the model with collected data
 - $\beta_0 = 11.02 \pm 0.753$
 - $\beta_1 = 0.0066 \pm 0.0149$; t value = 0.0066/0.0149 = 0.446
 - $\beta_2 = 0.199 \pm 0.022$
- P value = 0.656; fail to reject the null hypothesis at significance level of 0.01.

3. Types of errors

- Now, let's think about genome and we are testing if a gene expression is different between treatment and control for a cancer patient
- We will have a hypothesis testing for each gene, so around 10,000 tests in total.
- What errors on our decision?
 - False positive (type I error): Genes are genuine not different, but we thought they are (reject the null hypothesis)
 - False negative (type II error): Genes are genuine different, but we missed it (we didn't reject the null hypothesis)

Evaluation metrics

- ightharpoonup True positive rate (Power, Sensitivity, Hit rate, Recall): $TPR = \frac{TP}{TP+FN}$
- ightharpoonup True Negative Rate (Specificity): $TNR = \frac{TN}{TN + FP}$
- Precision (Positive Predictive Value; 1- false discovery rate):

$$Precision = \frac{TP}{TP + FP} = 1 - FDR$$

		Predicted condition		
	Total population = P + N	Positive (PP)	Negative (PN)	
Actual condition	Positive (P)	True positive (TP),	False negative (FN), type II error, miss, underestimation	
	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	

4. More hypothesis testing methods

- Is the Sepal width different between versicolor and virginica?
- Difference between groups
 - T test
 - Permutation test
 - Wilcoxon rank-sum test / Mann–Whitney U test
- These won't be examined but can be very useful for your future studies or self-learning

Resources

- Chapter 6 in book *Modern Statistics for Modern Biology*
 - https://www.huber.embl.de/msmb/Chap-Testing.html
- ➤ R script: Moodle / Lecture handouts / Dr. YH Huang → R-statistics.Rmd