Задача оптимизации построения расписания выполнения задач на множестве процессов

Гончаров Илья Викторович 421 гр.

18 ноября 2024 г.

Формальная постановка

Дано:

- N количество независимых работ;
- \bullet M количество процессоров;
- $t_i, i = 1, 2, \dots, N$ время выполнения каждой работы $i, t_i > 0$.

Требуется:

Построить расписание выполнения всех N работ на M процессорах без прерываний, минимизируя указанный критерий.

Расписание

Расписание представлено в виде булевой матрицы X размера $M \times N$, в которой каждому процессору соответствует строка матрицы, а каждому столбцу - задача, которую необходимо выполнить. Значение 1 стоит в клетке с координатами (i, j), если i-ому процессору назначена на выполнение j-ая задача, иначе в этой клетке стоит 0.

Время начала выполнения работы определяется формулой

$$t_i^{start} = \sum_{k=1}^b t_{i-1}^{finish},$$

где b - количество работ на том же процессоре, на котором выполняется работа i, которые выполняются до работы i. Время окончания работы определяется формулой

$$t_i^{finish} = t_i^{start} + t_i$$

Приведем пример расписания.

	1	2	3	 N
1	0	1	0	 0
2	1	0	0	 0
3	0	0	1	 0
4	0	0	0	 0
M-1	0	0	0	 1
M	0	0	0	 0

Таблица 1: Пример расписания

В данном примере:

- 1-ая задача выполняется 2 процессором;
- 2-ая задача выполняется 1 процессором;
- 3-ая задача выполняется 3 процессором;
- N-ая задача выполняется М 1 процессором.

Минимизируемый критерий:

Критерий выбирается на основе значения контрольной суммы CRC32 от фамилии и инициалов:

- Остаток от деления CRC32 на 2 равен 1: минимизируется K_1 ;
- Остаток от деления CRC32 на 2 равен 0: минимизируется K_2 .

Мой критерий — K2

Критерий K_2 :

$$K_2 = \sum_{i=1}^{N} t_i^{finish},$$

Ограничения на корректность расписания:

Расписание должно удовлетворять следующим условиям:

• $\sum_{i=1}^{M} x_{ij} = 1, \forall j \in [1, N]$ — т.е каждая работа назначена только на один процессор и все работы распределены по процессорам.

- $t_i^{finish}-t_i^{start}=t_i$ прерываний при выполнении работы нет, $t_i=const$ время выполнения каждой работы фиксировано
- $t_j^{finish} = t_k^{start}$ где t_j и t_k соответствуют x_{ij} и x_{ik} , причем j < k.