LAPORAN STATISTIKA

ANALISIS JUMLAH KASUS POSITIF COVID-19 TERBANYAK PADA 100 KABUPATEN/KOTA DI INDONESIA

Disusun Oleh:

KELOMPOK 11

Adrian Akbar Ramadhani	(222410102010)
Lailatul Eky Fitriyaningsih	(222410102019)
Awal Nur Linda	(222410102034)
Restanti Mayzaluna S. D.	(222410102044)
Mita Nurul Azizah	(222410102076)

STATISTIKA B PROGRAM STUDI TEKNOLOGI INFORMASI FAKULTAS ILMU KOMPUTER UNIVERSITAS JEMBER 2023

1. Mengubah data tunggal menjadi data kelompok

No.	Kabupaten / Kota	Kasus Positif Covid
1.	Kota Jakarta Timur	353.916
2.	Kota Jakarta Selatan	318.649
3.	Kota Jakarta Barat	277.319
4.	Kota Jakarta Utara	190.513
5.	Kota Bekasi	187.995
6.	Kota Depok	177.362
7.	Kota Jakarta Pusat	138.884
8.	Kota Surabaya	137.996
9.	Kota Bandung	100.989
10.	Kab. Bogor	97.401
11.	Kota Tanggerang Selatan	89.301
12.	Kab. Bekasi	88.265
13.	Kota Tanggerang	87.940
14.	Kota Medan	77.671
15.	Kab. Sleman	66.563
16.	Kab. Bantul	65.997
17.	Kota Pekanbaru	65.261
18.	Kota Makassar	64.398
19.	Kota Bogor	63.833
20.	Kab. Tanggerang	63.662
21.	Kab. Karawang	56.665
22.	Kab. Bandung	55.451
23.	Kab. Sidoarjo	50.066
24.	Kota Yogyakarta	48.860
25.	Kota Palembang	46.846
26.	Kota Balikpapan	37.926
27.	Kab. Klungkung	37.317
28.	Kota Denpasar	35.783
29.	Kota Semarang	35.253
30.	Kab. Garut	34.626
31.	Kota Malang	32.337
32.	Kab. Cirebon	32.194

33.	Kota Batam	31.857
34.	Kab. Bandung Barat	29.146
35.	Kab. Klaten	28.571
36.	Kab. Malang	28.453
37.	Kab. Banyumas	27.828
38.	Kota Binjai	26.254
39.	Kab. Kutai Kartanegara	25.911
40.	Kota Padang	25.423
41.	Kab. Jember	23.381
42.	Kota Banjarmasin	23.252
43.	Kab. Kediri	23.209
44.	Kab. Gresik	23.017
45.	Kab. Kulon	22.481
46.	Kota Cimahi	22.369
47.	Kota Samarinda	22.133
48.	Kab. Indramayu	22.012
49.	Kab. Gunung	21.512
50.	Kota Cilegon	21.504
51.	Kab. Banyuwangi	21.289
52.	Kab. Badung	19.388
53.	Kota Palangka Raya	19.221
54.	Kota Tasikmalaya	19.011
55.	Kab. Magelang	18.943
56.	Kab. Jepara	18.816
57.	Kota Bandar Lampung	18.244
58.	Kab. Jombang	18.243
59.	Kab. Nganjuk	18.103
60.	Kab. Kebumen	17.875
61.	Kab. Kutai Timur	17.802
62.	Kab. Kudus	17.537
63.	Kota Tarakan	17.493
64.	Kab. Purwakarta	17.333
65.	Kota Cirebon	17.249
66.	Kab. Ciamis	17.167
67.	Kota Pontianak	17.024

68.	Kab. Cilacap	16.975
69.	Kab. Kuningan	16.930
70.	Kota Jayapura	16.926
71.	Kab. Purworejo	16.817
72.	Kab. Serang	16.743
73.	Kab. Kendal	16.600
74.	Kab. Semarang	16.514
75.	Kab. Sukabumi	16.372
76.	Kab. Sragen	16.336
77.	Kab. Ponorogo	16.088
78.	Kota Surakarta	16.073
79.	Kab. Karanganyar	15.785
80.	Kota Manado	15.655
81.	Kab. Lebak	15.627
82.	Kab. Cianjur	15.602
83.	Kab. Tegal	15.378
84.	Kota Kupang	15.348
85.	Kota Serang	15.163
86.	Kota Bontang	14.956
87.	Kab. Bulungan	14.580
88.	Kab. Subang	14.526
89.	Kab. Wonosobo	14.406
90.	Kota Banda Aceh	14.220
91.	Kab. Blitar	14.213
92.	Kab. Majalengka	14.124
93.	Kab. Magetan	14.083
94.	Kota Palu	13.819
95.	Kab. Sumedang	13.646
96.	Kota Tanjung Pinang	13.615
97.	Kab. Kutai Barat	12.999
98.	Kab. Berau	12.999
99.	Kab. Pasuruan	12.974
100.	Kota Sukabumi	12.751

1.1 Menentukkan jangkauan atau range (R) dari data:

R = Data Terbesar - Data Terkecil

R = 353.916 - 12.751

R = 341.165

1.2 Menentukan banyaknya kelas (k):

k = 1 + 3.3 Log n

k = 1 + 3.3 Log (100)

k = 7,6 dibulatkan ke atas menjadi 8

1.3 Menentukkan interval atau lebar dari class (i):

i = R/k

i = 341.165/8

i = 42.645,625 dibulatkan ke atas menjadi 42.646

1.4. Menentukan batas kelas

12.751	12.974	12.999	12.999	13.615	13.646	13.819	14.083	14.124	14.213
14.220	14.406	14.526	14.580	14.956	15.163	15.348	15.378	15.602	15.627
15.655	15.785	16.073	16.088	16.336	16.372	16.514	16.600	16.743	16.817
16.926	16.930	16.975	17.024	17.167	17.249	17.333	17.493	17.537	17.802
17.875	18.103	18.243	18.244	18.816	18.943	19.011	19.221	19.388	21.289
21.504	21.512	22.012	22.133	22.369	22.481	23.017	23.209	23.252	23.381
25.423	25.911	26.254	27.828	28.453	28.571	29.146	31.857	32.194	32.337
34.626	35.253	35.783	37.317	37.926	46.846	48.860	50.066	55.451	56.665
63.662	63.833	64.398	65.261	65.997	66.563	77.671	87.940	88.265	89.301
97.401	100.989	137.996	138.884	177.362	187.995	190.513	277.319	318.649	353.916

Xmin = 12.751

k = 8

i = 42.646

Membuat Data Kelompok:

$$12.751 + (42.646 - 1) = 55.396$$

$$55.397 + (42.646 - 1) = 98.042$$

$$98.043 + (42.646 - 1) = 140.688$$

$$140.689 + (42.646 - 1) = 183.334$$

$$183.335 + (42.646 - 1) = 225.980$$

$$225.981 + (42.646 - 1) = 268.626$$

$$268.627 + (42.646 - 1) = 311.272$$

$$311.273 + (42.646 - 1) = 353.918$$

Kelas Interval
12.751 - 55.396
55.397 - 98.042
98.043 - 140.688
140.689 - 183.334
183.335 - 225.980
225.981 - 268.626
268.627 - 311.272
311.273 - 353.918

2. Menentukan nilai mean dan median

Mean adalah salah satu ukuran gejala pusat. Mean dapat dikatakan sebagai wakil kumpulan data. Menentukan mean dapat dilakukan dengan cara menjumlahkan seluruh nilai data, kemudian membaginya dengan banyaknya data.

Jumlah seluruh data: banyak data

atau, dapat dirumuskan dengan:

$$\overline{x} = \sum x / n$$

Keterangan:

 \bar{x} = rerata atau mean

n = banyaknya data

 $\sum x = \text{jumlah seluruh data}$

2.1 Menentukan Nilai Mean dari data dibawah ini

Kelas Interval	Frekuensi (f)
12.751 - 55.396	78
55.397 - 98.042	13
98.043 - 140.688	3
140.689 - 183.334	1
183.335 - 225.980	2
225.981 - 268.626	0
268.627 - 311.272	1
311.273 - 353.918	2
Jumlah	100

Mencari Titik tengah interval nilai harga (xi)

Dengan cara: $\frac{(Xmin+Xmax)}{2}$

Implementasi: $\frac{(12.751 + 55.396)}{2} = 34.073$, 50 sehingga data tersebut menjadi:

Kelas Interval	Nilai Tengah (Xi)	Frekuensi (f)
12.751 - 55.396	34.073,50	78
55.397 - 98.042	76.719,50	13
98.043 -		
140.688	119.365,50	3
140.689 -		
183.334	162.011,50	1

183.335 -		
225.980	204.657,50	2
225 224		
225.981 -		
268.626	247.303,50	0
268.627 -		
311.272	289.949,50	1
311.273 -		
353.918	332.595,50	2
Jumlah	1.466.676	100

Mencari (fixi)

 ${\bf Dengan\ cara}: Frekuensi\ x\ Nilai\ Tengah\ Interval$

Implementasi: 78×34.073 , 5 = 2.657.733 sehingga data yang didapat

Kelas Interval	Nilai Tengah (Xi)	Fixi	Frekuensi (f)
12.751 - 55.396	34.073,50	2.657.733	78
55.397 - 98.042	76.719,50	997.353,5	13
98.043 -		358.096,5	
140.688	119.365,50		3
140.689 -		162.011,50	
183.334	162.011,50		1
183.335 - 225.980	204.657,50	409.315	2
225.981 -	, , , , ,	0	
268.626	247.303,50		0
268.627 -		289.949,5	
311.272	289.949,50		1

311.273 - 353.918	332.595,50	665.191	2
Jumlah	1.466.676	5.539.650	100

Dengan Tabel jumlah keseluruhan seperti gambar dibawah ini

Kelas Interval	Nilai Tengah (Xi)	Fixi	Sistem Tally	Frekuensi (f)
12.751 - 55.396	34.073,50	2.657.733	 	78
55.397 - 98.042	76.719,50	997.353,5	11111 11111 111	13
98.043 - 140.688	119.365,50	358.096,5	Ш	3
140.689 -	119.303,30	162.011,50		3
183.334	162.011,50		I	1
183.335 - 225.980	204.657,50	409.315	II	2
225.981 - 268.626	247.303,50	0	_	0
268.627 -	247.303,30	289.949,5	_	•
311.272	289.949,50		I	1
311.273 - 353.918	332.595,50	665.191	II	2
		5.539.650		
Jumlah	1.466.676		IIIII IIIII	100

2.2 Menentukan Nilai mean dari data diatas

Rumus Rata-Rata/Mean Data Kelompok

Bentuk I

$$\overline{x} = \frac{\sum f_i \cdot x_i}{\sum f_i}$$

Keterangan:

x̄ :rata-rata

x; : titik tengah interval kelas i

f, : frekuensi kelas i

Σ : notasi sigma (jumlah) (CSCHOOL

Implementasi : $x = \frac{5.539.650}{100} = 55.396, 5$

Maka mean dari data tersebut adalah 55.396,5

2.3 Pengertian Median

Median (Me) atau kuartil adalah nilai tengah dari sekumpulan data setelah diurutkan dari data yang terkecil sampai data terbesar, maupun sebaliknya. Apabila suatu data mempunyai median, maka mediannya tunggal.

2.4 Menentukan nilai Batas Bawah dan Batas Atas

Untuk mencari tepi kelas dapat dipakai rumus berikut ini.

Tepi bawah = batas bawah -0.5

Tepi atas = batas atas +0.5

Sehingga data yang didapat sebagai berikut :

Batas Atas	Batas Bawah
12.750,5	55.396,5
55.396,5	98.042,5
98.042,5	140.688,5
140.688,5	183.334,5
183.334,5	225.980,5
225.980,5	268.626,5
268.626,5	311.272,5
311.272,5	353.918,5

2.5 Menentukan Frekuensi Kumulatif

Hitung frekuensi kumulatif yaitu dengan cara menjumlahkan secara bertahap dari frekuensi kelas interval pertama dengan kelas interval akhir hingga bernilai sama dengan jumlah frekuensi total.

Sehingga data yang didapat sebagai berikut:

Batas Atas	Batas Bawah	Fk
12.750,5	55.396,5	78
55.396,5	98.042,5	91
98.042,5	140.688,5	94
140.688,5	183.334,5	95
183.334,5	225.980,5	97
225.980,5	268.626,5	97
268.626,5	311.272,5	98
311.272,5	353.918,5	100

2.6 Menentukan Nilai Median

Rumus Median (Md) Data Kelompok

$$Md = Tb + \left(\frac{\frac{1}{2}n - fkk}{fi}\right)\ell$$

Keterangan:

Md: median

Tb: batas bawah kelas median

n : banyak data

fkk: frekuensi komulatif kurang dari kelas median

fi : frekuensi kelas median

l : panjang kelas median

OSCHOOL

Kelas median : $\frac{Frekuensi kumulatif Akhir}{2} = \frac{100}{2} = 50$

Implementasi Nilai median: 55. 396, 5 + $\frac{(50-78)}{91}$ 42. 646 = 42. 274, 653

3. Modus Range

3.1. Menentukan Range

Range = batas bawah - batas atas

Range pada kelas modus = 55.396,5 - 12.750,5 = 42.646

3.2. Menentukan Modus

Modus = b + (b1 / (b1 + b2)) p

Mo = 12.750,5 + (78 / (78 + 65)) 42.646

Mo = 12.750,5 + (78 / 143) 42.646

Mo = 12.750,5 + 23.261,454

Mo = 36.011,954

4. Simpangan Rata Rata

Simpangan rata-rata (mean deviation) adalah rata-rata jarak antara nilai-nilai data menuju rata-ratanya atau rata-rata penyimpangan absolut data dari rata-ratanya. Simpangan rata-rata termasuk ke dalam ukuran penyebaran data seperti halnya Varian dan Standar Deviasi. Kegunaannya adalah untuk mengetahui seberapa jauh nilai data menyimpang dari rata-ratanya. Simpangan rata rata dirumuskan dengan

$$SR = \frac{\sum f_i |x_i - \overline{x}|}{\sum f_i}$$

Dimana SR adalah simpangan rata rata, k adalah banyaknya kelas interval, fi adalah frekuensi kelas interval ke-I, Xi adalah nilai titik tengah kelas interval ke-I, x^- adalah rata rata data berkelompok.

Kelas Interval	Nilai Tengah (Xi)	Fixi	Frekuensi (f)
12.751 - 55.396	34.073,50	2.657.733	78
55.397 - 98.042	76.719,50	997.353,5	13
98.043 -		358.096,5	
140.688	119.365,50		3
140.689 -		162.011,50	
183.334	162.011,50		1

183.335 - 225.980	204.657,50	409.315	2
225.981 - 268.626	247.303,50	0	0
208.020	247.303,30		0
268.627 -		289.949,5	
311.272	289.949,50		1
311.273 -		665.191	
353.918	332.595,50		2
		5.539.650	
Jumlah	1.466.676	3.307.030	100

4.1 Tentukan nilai tengah x dan hitung rata rata

- a. Untuk mencari nilai tengah kita jumlahkan nilai tiap sel kemudian bagi 2 dan untuk mencari *Xi fi* kalikan frekuensi dengan nilai tengah
- b. Dari tabel diatas diperoleh frekuensi

$$\sum_{i=1}^{k} fi = 100 \text{ dan } \sum_{i=1}^{k} fixi = 5.539.650$$

c. Dari rumus diatas akan diperoleh rata rata dengan cara $5.539.650 \div 100 = 55.396,5$

4.2 Hitung Simpangan Rata Rata

34.073,50	55.396,50	-21.323	21.323	1.663.194
76.719,50	55.396,50	21.323	21.323	277.199
119.365,50	55.396,50	63.969	63.969	191.907
162.011,50	55.396,50	106.615	106.615	106.615
204.657,50	55.396,50	149.261	149.261	298.522
247.303,50	55.396,50	191.907	191.907	0
289.949,50	55.396,50	234.553	234.553	234.553
332.595,50	55.396,50	277.199	277.199	554.398
Jumlah			1.066.150	3.326.388

- a. Nilai mutlak bisa dicari menggunakan rumus Nilai Tengah Rata rata dan untuk mencari simpangan rata rata gunakan rumus jumlah f(nilai mutlak) dibagi dengan frekuensi
- b. Komponen yang diperoleh dari perhitungan tersebut adalah

$$\sum_{i=1}^{k} fi |xi - x| = 3.326.388$$

Dari rumus diatas simpangan rata rata bisa dicari dengan cara $3.326.388 \div 100 = 33.263,88$ (Pembulatan ke atas)

5. Simpangan Deviasi

Standar deviasi atau simpangan baku biasanya diajarkan pada ilmu statistik untuk mengukur tingkat kesamaan atau kedekatan dalam suatu kelompok. Standar deviasi adalah nilai statistik yang sering kali dipakai dalam menentukan kedekatan sebaran data yang ada di dalam sampel dan seberapa dekat titik data individu dengan mean atau rata-rata nilai dari sampel itu sendiri.

5.1 Rumus simpangan deviasi data kelompok

$$S = \sqrt{\frac{\sum f_i(x_i - \bar{x})^2}{n}}$$

S = Standar Deviasi

fi = Frekuensi Kelompok

xi = Nilai tengah x ke i

 \bar{x} = Nilai rata-rata data

n = Jumlah Data

Kelas Interval	Nilai Tengah (Xi)	Fixi	Frekuensi (f)	xi -x	(xi-x)^2	fi(xi-x)^2
12.751 - 55.396	34.073,50	2.657.733	78	-21.323	454.670.329	35.464.285.6 62
55.397 - 98.042	76.719,50	997.353,50	13	21.323	454.670.329	5.910.714.27 7
98.043 - 140.688	119.365,50	358.096,50	3	63.969	4.092.032.96 1	12.276.098.8 83
140.689 - 183.334	162.011,50	162.011,50	1	106.615	11.366.758.2 25	11.366.758.2 55
183.335 - 225.980	204.657,50	409.315	2	149.261	22.278.846.1 21	44.557.692.2 42
225.981 - 268.626	247.303,50	0	0	191.907	36.828.296.6 49	0

268.627 -					55.015.109.8	55.015.109.8
311.272	289.949,50	289.949,50	1	234.553	09	09
311.273 -					76.839.285.6	153.678.571.
353.918	332.595,50	665.191	2	277.199	01	202
Jumlah	1.466.676	5.539.650	100			

Dari data diatas diketahui jawaban deviasi rata rata adalah 1.536.785.712,02

6. Variabilitas

Variabilitas (Dispersi)/Ukuran variasi adalah Ukuran yang menyatakan seberapa banyak nilai-nilai data berbeda dengan nilai pusatnya atau seberapa jauh penyimpangan nilai-nilai data dari nilai pusatnya.

6.1 Menentukan ukuran variasi

Kelas Interval	fi	m	m * fi	m - x	m -x . f
12.751 - 55.396	78	34.073,50	2.657.773	-21.323	1.663.194
55.397 - 98.042	13	76.719,50	997.353,50	21.323	277.199
98.043 - 140.688	3	119.365,50	358.096,50	63.969	191.907
140.689 - 183.334	1	162.011,50	162.011,50	106.615	106.615
183.335 - 225.980	2	204.657,50	409.315	149.261	298.522
225.981 - 268.626	0	247.303,50	0	191.907	0
268.627 - 311.272	1	289.949,50	289.949,50	234.553	234.553
311.273 - 353.918	2	332.595,50	665.191	277.199	554.398
Jumlah	100	1.466.676			3.326.388

$$RS = \frac{1}{n} \sum \left| \left(m_i - \overline{X} \right) \cdot f_i \right|$$

RS = 1/100 * 3.326.388 = 33.26

6.2 Simpangan Baku

Simpangan baku adalah satu ukuran variasi yang diperoleh dari akar kuadrat positif varians. Sedangkan varians sendiri adalah rata-rata hitung dan kuadrat simpangan setiap pengamatan

terhadap rata-rata hitungnya. Digunakan untuk menggambarkan variabilitas dalam suatu distribusi maupun variabilitas beberapa distribusi.

Varian =
$$\frac{1}{n} \sum (X_i - \overline{X})^2$$

Simpangan Baku (S) =
$$\sqrt{varian} = \sqrt{\frac{1}{n} \sum (X_i - \overline{X})^2}$$

Kelas Interval	fi	m	m * fi	$(\mathbf{m} - \overline{X})^2$	$(\mathbf{m} - \overline{X})^2$. f
12.751 - 55.396	78	34.073,50	2.657.773	454.670.329	35.464.285.662
55.397 - 98.042	13	76.719,50	997.353,50	454.670.329	5.910.714.277
98.043 - 140.688	3	119.365,50	358.096,50	4.092.032.961	12.276.098.883
140.689 - 183.334	1	162.011,50	162.011,50	11.366.758.225	11.366.758.225
183.335 - 225.980	2	204.657,50	409.315	22.278.846.121	44.557.692.242
225.981 - 268.626	0	247.303,50	0	36.828.296.649	0
268.627 - 311.272	1	289.949,50	289.949,50	55.015.109.809	55.015.109.809
311.273 - 353.918	2	332.595,50	665.191	76.839.285.601	153.678.571.202
Jumlah	100	1.466.676			318.269.230.300

Varian =
$$\frac{1}{100}$$
 * 318.269.230.300 = 3.182.692.303

$$S = \sqrt{3.182.692.303} = 56.415,36$$

6.3 Ukuran kesimetrisan atau kecondongan

Kelas Interval	Fi
12.751 - 55.396	78
55.397 - 98.042	13
98.043 - 140.688	3
140.689 - 183.334	1
183.335 - 225.980	2
225.981 - 268.626	0
268.627 - 311.272	1

311.273 - 353.918	2
Jumlah	100

Rumus:

$$S_k = \frac{\overline{(X - M_o)}}{S}$$
 Menggunakan modus $S_k = \frac{3\overline{(X - M_d)}}{S}$ Menggunakan median

$$S_k = \frac{55.396,5 - 36.011,954}{1.536.785.712,02}$$

= 1,261369483616576e-5

Karena Sk > 0 maka distribusi akan berkonsentrasi ke sisi sebelah kanan.

6.4 Ukuran keruncingan kurva (Kurtosis)

Ukuran keruncingan yang biasa digunakan adalah α_4 (moment coefficient of kurtosis / koefisien kurtosis)

Untuk data kelompok:

$$\alpha_4 = \frac{M^4}{S^4} = \frac{\frac{1}{n} \sum (m_i - \bar{X})^4 \cdot f_i}{S^4}$$

Bila:

 $\alpha_4 > 3$ dihasilkan kurva Leptokurtik (meruncing)

 $\alpha_4 = 3$ dihasilkan kurva Mesokurtik (normal)

 $\alpha_4 < 3$ dihasilkan kurva Platikurtik (mendatar)

Kelas Interval	Fi	m	m - x	$(m - \bar{x})^4$	(m - \overline{x})^4 . fi
12.751 - 55.396	78	34.073,50	-21.323	2,06725 x 10^17	1,61246 x 10^19
55.397 - 98.042	13	76.719,50	21.323	2,06725 x 10^17	26,87425 x 10^17
98.043 - 140.688	3	119.365,50	63.969	1,67447 x 10^19	5,02341 x 10^19
140.689 - 183.334	1	162.011,50	106.615	1,29203 x 10^20	1,29203 x 10^20
183.335 - 225.980	2	204.657,50	149.261	4,96347 x 10^20	9,92694 x 10^20

225.981 - 268.626	0	247.303,50	191.907	1,35632 x 10^21	0
268.627 - 311.272	1	289.949,50	234.553	3,02666 x 10^21	3,02666 x 10^21
311.273 - 353.918	2	332.595,50	277.199	5,90428 x 10^21	1,18086 x 10^22
Jumlah	100				1,60262 x 10^22

$$\bar{x} = 55.396,5$$

 $S = 150.771 \rightarrow S^4 = 5,16739 \times 10^20$
 $M^4 = \frac{1,60262 \times 10^22}{100} = 1,60262 \times 10^20$
 $\alpha_4 = \frac{M^4}{S^4} = \frac{\frac{1}{n} \sum (m_i - \bar{X})^4 \cdot f_i}{S^4}$

$$\alpha_4 = \frac{1,60262 \times 10^{\circ}22}{5,16739 \times 10^{\circ}20} = 0,31$$

 α 4 < 3, berarti kurva distribusi berbentuk platikurtik (mendatar)

Platikurtik