Question Number	Answer		Mark
11a	Recognises that node to node distance = $\lambda/2$		
	Or $\lambda = L/2$ stated	(1)	
	Wavelength = 0.85m	(1)	
	Example of calculation		
	Node to node distance = $\lambda/2$.		
	String has 4 loops so total length of string is 2λ		
	$\lambda = 1.70 \text{ m} / 2 = 0.85 \text{ m}.$		(2)
11b	Use of $v = \sqrt{T/\mu}$	(1)	
	Use of $T = mg$	(1)	
	$v = 21 \text{ m s}^{-1}$	(1)	
	Example of calculation		
	$T = mg = 0.20 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.96 \text{ N}$		
	$v = \sqrt{(T/\mu)} = \sqrt{(1.96 \text{ N} / 4.5 \times 10^{-3} \text{ kg m}^{-1})} = 20.9 \text{ m s}^{-1}$		
			(3)
11c	T and μ are the same		
	Or (As f decreases,) λ increases	(1)	
	Speed would be the same	(4)	
	Or There is no effect (on the speed)	(1)	
			(2)
	Total for question 11		7