

Algorithms and Data Structures

Graphs: Introduction

Ulf Leser

This Course

	Introduction	4
•	The strain of pro-	
•	Complexity analysis	1
•	Styles of algorithms	1
•	Lists, stacks, queues	2
•	Sorting (lists)	3
•	Searching (in lists, PQs, SOL)	5
•	Hashing (to manage lists)	2
•	Trees (to manage lists)	4
•	Graphs (no lists!)	5
•	Sum	21/26

Content of this Lecture

- Graphs
- Representing Graphs
- Traversing Graphs
- Connected Components
- Shortest Paths

Graphs

- Directed trees represent hierarchical relations
 - A directed edge can represent all kinds of relation, as long as it is
 - Asymmetric: parent_of, subclass_of, smaller_than, owns? ...
 - Cycle-free
 - Binary
- This excludes many real-life relations
 - friend_of, similar_to, reachable_by, html_linked_to, ...
- Graphs can represent all binary relationships
 - Symmetric: Undirected graphs, asymmetric: Directed graphs
- N-ary relationships: Hypergraphs
 - exam(student, professor, subject), borrow(student, book, library)

Importance

- Most graphs you will see are binary
- Most graphs you will see are simple
 - Simple graphs: At most one edge between any two nodes
 - Contrary: multigraphs
- Some graphs you will see are undirected, some directed
- Here: Only (un-)directed, binary, simple, finite graphs

Web Graph

Note the strong local clustering

This is not a random graph

Graph layout is difficult

[http://img.webme.com/pic/c/chegga-hp/opte_org.jpg]

Universities Linking to Universities

Small-World Property

[http://internetlab.cindoc.csic.es/cv/11/world_map/map.html]

Human Protein-Protein-Interaction Network

- Still terribly incomplete
- Proteins that are close in the graph likely share function

[http://www.estradalab.org/research/index.html]

Word Co-Occurrence

- Words that are close have similar meaning
- Words cluster into topics

[http://www.michaelbommarito.com/blog/]

Social Networks

Six degrees of separation

[http://tugll.tugraz.at/94426/files/-1/2461/2007.01.nt.social.network.png]

Road Network

Specific property: Planar graphs

[Sanders, P. &Schultes, D. (2005). Highway Hierarchies Hasten Exact Shortest Path Queries. In *13th European Symposium on Algorithms (ESA)*, *568-579.*]

More Examples

Graphs are also a wonderful abstraction

Coloring Problem

 How many colors do one need to color a map such that never two colors meet at a border?

- Chromatic number: Number of colors sufficient to color a graph such that no adjacent nodes have the same color
- Every planar graph has chromatic number of at most 4

History [Wikipedia.de]

- This is not simple to proof
- It is easy to see that one sometimes needs at least four colors
- It is easy to show that one may need arbitrary many colors for general graphs
- First conjecture which until today was proven only by computers
 - Falls into many, many subcases try all of them with a program

Königsberger Brückenproblem

- Given a city with rivers and bridges: Is there a cyclefree path crossing every bridge exactly once?
 - Euler-Path

Source: Wikipedia.de

Königsberger Brückenproblem

- Given a city with rivers and bridges: Is there a cycle-free path crossing every bridge exactly once?
 - Euler-Path simple
- Hamiltonian path
 - ... visits each vertex exactly once
 - NP complete

Recall?

Content of this Lecture

- Graphs
- Representing Graphs
- Traversing Graphs
- Connected Components
- Shortest Paths

Recall from Trees

Definition

A graph G=(V, E) consists of a set of vertices (nodes) V and a set of edges $(E\subseteq VxV)$.

- A sequence of edges e_1 , e_2 , ..., e_n is called a path iff $\forall 1 \le i < n$: $e_i = (v', v)$ and $e_{i+1} = (v, v)$; the length of this path is n
- A path (v_1, v_2) , (v_2, v_3) , ..., (v_{n-1}, v_n) is acyclic iff all v_i are different
- G is acyclic, if no path in G contains a cycle; otherwise it is cyclic
- A graph is connected if every pair of vertices is connected by at least one path

Definition

A graph (tree) is called undirected, if $\forall (v,v') \in E \Rightarrow (v',v) \in E$. Otherwise it is called directed.

More Definitions

Definition

Let G=(V, E) be a directed graph. Let $v \in V$

- The outdegree out(v) is the number of edges with v as start point
- The indegree in(v) is the number of edges with v as end point
- G is edge-labeled, if there is a function w:E→L that assigns an element of a set of labels L to every edge
- A labeled graph with L=N is called weighted

Remarks

- Weights can as well be reals; often we only allow positive weights
- Labels / weights max be assigned to edges or nodes (or both)

Some More Definitions

- Definition. Let G=(V, E) be a directed graph.
 - Any G'=(V', E') is called a subgraph of G, if $V'\subseteq V$ and $E'\subseteq E$ and for all $(v_1, v_2) \in E'$: $v_1, v_2 \in V'$
 - For any $V'\subseteq V$, the graph $(V', E\cap (V'\times V'))$ is called the induced subgraph of G (induced by V')

Some More Definitions

- Definition. Let G=(V, E) be a directed graph.
 - Any G'=(V', E') is called a subgraph of G, if $V'\subseteq V$ and $E'\subseteq E$ and for all $(v_1, v_2) \in E'$: $v_1, v_2 \in V'$
 - For any $V'\subseteq V$, the graph $(V', E\cap (V'\times V'))$ is called the induced subgraph of G (induced by V')

Some More Definitions

- Definition. Let G=(V, E) be a directed graph.
 - Any G'=(V', E') is called a subgraph of G, if $V'\subseteq V$ and $E'\subseteq E$ and for all $(v_1, v_2) \in E'$: $v_1, v_2 \in V'$
 - For any $V'\subseteq V$, the graph $(V', E\cap (V'\times V'))$ is called the induced subgraph of G (induced by V')

Data Structures

- From an abstract point of view, a graph is a list of nodes and a list of (weighted, directed) edges
- Two fundamental implementations
 - Adjacency matrix
 - Adjacency lists
- As usual, the representation determines which primitive operations take how long
- Appropriateness depends on the specific problem one wants to study and the nature of the graphs
 - Shortest paths, transitive hull, cliques, spanning trees, ...
 - Random, sparse/dense, scale-free, planar, bipartite, ...

Example [OW93]

	1	2	3	4	5	6	7	8	9
1	0	1	1	0	0	0	1	0	0
2	0	0		0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	1	0	0	0
5	0	0	0	1	0	0	0	0	0
6	1	0	0	0		1	0	0	0
7	0	0	0	0	1	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	1	0

Adjacency Matrix

Definition

Let G=(V, E) be a simple graph. The adjacency matrix M_G for G is a two-dimensional matrix of size $|V|^*|V|$, where M[i,j]=1 iff $(v_i,v_i)\in E$

Remarks

- Allows to test existence of an edge in O(1)
- Requires O(|V|) to obtain all incoming (outgoing) edges of a node
- For large graphs, M is too large to be of practical use
- If G is sparse (much less edges than $|V|^2$), M wastes a lot of space
- If G is dense, M is a very compact representation (1 bit / edge)
- In weighted graphs, M[i,j] contains the weight
- Since M must be initialized with zero's, without further tricks all algorithms working on adjacency matrices are in $\Omega(|V|^2)$

Adjacency List

Definition

Let G=(V, E). The adjacency list L_G for G is a list containing all nodes of G. The entry representing $v_i \in V$ also contains a list of all edges outgoing (or incoming or both) from v_i .

Remarks

- Let k be the maximal outdegree of G. Then, accessing an edge is in O(log(k)) if the edge lists are sorted (or use hashing)
 - Which means O(log(|V|)) in the worst case (for simple graphs)
- Obtaining a list of all outgoing edges from a node is in O(k)
 - If only outgoing edges are stored, obtaining a list of all incoming edges is O(|V|*log(|E|)) – we need to search all lists
 - Therefore, usually outgoing and incoming edges are stored, which considerably increases space consumption
- If G is sparse, L is a compact representation

Comparison

	M	L
Test an edge	O(1)	O(log(k))
All outgoing edges of a node	O(n)	O(k)
Space	O(n²)	O(n+m)

- With n=|V|, m=|E|
- We assume a node-indexed array / a node-index list
 - L is an array and nodes are unique numbered

Transitive Closure

- Definition Let G=(V,E) be a digraph and v_i, v_j∈V. The transitive closure of G is a graph G'=(V, E') where (v_i, v_j)∈E' iff G contains a path from v_i to v_i.
- TC usually is represented as adjacency matrix

Content of this Lecture

- Graphs
- Representing Graphs
- Traversing Graphs
- Connected Components
- Shortest Paths

Graph Traversal

- One thing we often do with graphs is traversing them
- "Traversal" means visiting every node exactly once
 - Not necessarily on one consecutive path (Hamiltonian path)
- Two popular orders
 - Depth-first: Using a stack
 - Breadth-first: Using a queue
 - The scheme is identical to that in tree traversal
- Difference
 - We have to take care of cycles
 - No root where should we start?

Breaking Cycles

- In a cyclic graph, naïve traversal will ...
 - run into infinite loops: Algorithm does not terminate
 - visit nodes more than once
- Breaking cycles / avoiding multiple visits
 - Assume we started the traversal at a node r
 - During traversal, we kept a list S of already visited nodes and are now in node v and aim to proceed to v' using e
 - Because e=(v, v')∈E and e was not used before from v
 - If v'∈S, v' was visited before and we are about to run into a cycle
 - In this case, e is ignored

Example

- Started at r and went S={r, y, z, v}
- Testing (v,y): y∈S, drop
- Testing (v, r): r∈S, drop
- Testing (v, x): x∉S, proceed

Where do we Start?

Where do we Start?

- Definition
 Let G=(V, E). Let V'⊆V and G' be the subgraph of G
 induced by V'
 - G' is called connected if it contains a path between any pair v, v'∈V'
 - G' is called maximally connected, if no subgraph induced by a superset of V'* is connected
 - Any maximal connected subgraph of G is called a connected component of G, if G is undirected, and a strongly connected component, if G is directed

Example

Where do we Start?

- If a undirected graph falls into several connected components, we cannot reach all nodes by a single traversal, no matter which node we use as start point
- If a digraph falls into several strongly connected components, we might not reach all nodes by a single traversal
- Remedy: We restart at unseen nodes until all nodes have been traversed

Depth-First Traversal on Graphs

```
func void DFS ((V,E) graph) {
  U := V;  # Unseen nodes
  S := Ø;  # Seen nodes
  while U≠Ø do
    v := any_node_from( U);
    traverse( v, S, U);
  end while;
}
```

Called once for every connected component

```
func void traverse (v node,
                     S,U list)
  s := new Stack();
  s.put(v);
  while not s.isEmpty() do
    n := s.get();
    print n; # Do something
    U := U \setminus \{n\};
    S := S \cup \{n\};
    c := n.outgoingNodes();
    foreach x in c do
      if xEU then
        s.put(x);
      end if;
    end for:
  end while;
```

Analysis

- We have every node exactly once on the stack
 - Once visited, never visited again
- We look at every edge exactly once
 - Outgoing edges of every visited node are never considered again
- S and U can be implemented as bit-array of size |V|, allowing O(1) operations
- Altogether: O(n+m)

```
func void traverse (v node,
                      S,U list) {
  s := new Stack();
  s.put( v);
 while not s.isEmpty() do
    n := s.get();
    print n;
    U := U \setminus \{n\};
    S := S \cup \{n\};
    c := n.outgoingNodes();
    foreach x in c do
      if xEU then
        s.put(x);
      end if:
    end for:
  end while;
```

Unusual Traversal: Random Surfer

- How do search engines determine which hits appear first?
- Ingredient 1: Match to the query
- Ingredient 2: Popularity of the page
 - Pages with many incoming edges are popular
 - Pages are the more popular, the more popular the start points of incoming edges are
 - Recursive definition ...
- Random surfer model
 - Assume a surfer starting at a page chosen at random and following links at random for an infinite time
 - May jump to random pages if stuck
 - Which fraction of time will he spend in a given page?

Content of this Lecture

- Graphs
- Representing Graphs
- Traversing Graphs
- Connected Components
- Shortest Paths

In Undirected Graphs

- In an undirected graph, whenever there is a path from r to v and from v to v', then there is also a path from v' to r
 - Simply go the path $r \rightarrow v \rightarrow v'$ backwards
- Thus, DFS (and BFS) traversal can be used to find all connected components of a undirected graph G
 - Whenever you call traverse(v), create a new component
 - All nodes visited during traverse(v) are added to this component
- Obviously in O(n+m)

In Digraphs

- The problem is considerably more complicated for digraphs
 - Previous conjecture does not hold
- Still: Tarjan's or Kosaraju's algorithm find all strongly connected components in O(n + m)
 - See next lecture

Content of this Lecture

- Graphs
- Representing Graphs
- Traversing Graphs
- Connected Components
- Shortest Paths
 - Single-Source-Shortest-Paths: Dijkstra's Algorithm
 - Shortest Path between two nodes
 - Other

Distance in Graphs

Definition

Let G=(V, E) be a graph. The distance d(u,v) between any two nodes u and v from V is defined as

- G un-weighted: The length of the shortest path from u to v, or ∞ if no path from u to v exists
- G weighted: The minimal aggregated edge weight of all non-cyclic paths from u to v, or ∞ if no path from u to v exists

Remark

- Distance in un-weighted graphs is the same as distance in weighted graphs with unit costs
- Beware of negative cycles in directed graphs

Single-Source Shortest Paths in a Graph

- Task: Find the distance between X and all other nodes
 - Here: Only positive edge weights (see next lecture)

Dijkstra's algorithm

```
1. G = (V, E);
2. x : start node;
                       # xev
3. A: array of distances from x;
4. \forall i: A[i] := \infty;
5. L := V; # organized as PQ
6. A[x] := 0;
7. while L\neq\emptyset
  k := L.get closest node();
8.
9. L := L \setminus k;
10. forall (k,f,w) \in E do
11.
   if fEL then
12.
         new_dist := A[k]+w;
13.
         if new dist < A[f] then
14.
           A[f] := new dist;
15.
    end if;
16.
       update(L);
       end if;
17.
18.
     end for;
19. end while;
```

- Assume a heap-based PQ L
- L holds at most all nodes (n)
- L4: O(n)
- L5: O(n*log(n)) (build PQ)
- L8: O(1) (getMin)
- L9: O(log(n)) (deleteMin)
- L10: O(m) (with adjacency list)
- L11: O(1)
 - Requires additional array of nodes
- L16: O(log(n)) (updatePQ)

Dijkstra's algorithm

```
1. G = (V, E);
2. x : start node;
                        # xev
3. A : array of distances;
4. \forall i: A[i] := \infty;
5. L := V; # organized as PQ
6. A[x] := 0;
7. while L\neq\emptyset
   k := L.get closest node();
8.
9. L := L \setminus k;
10. forall (k,f,w) \in E do
11.
     if fEL then
12.
         new_dist := A[k]+w;
13.
         if new dist < A[f] then
14.
           A[f] := new dist;
15.
    end if;
16.
       update(L);
       end if;
17.
18.
     end for;
19. end while;
```

Central costs

- L9: O(log(n)) (deleteMin)
- L10: O(m) (adjacency list)
- L16: O(log(n))

Loops

- Lines 7-18: O(n)
- Line 10-17: All edges exactly once
- Together: O(m+n)
- Altogether: O((m+n)*log(n))
 - Also possible in O(n²); better in very dense graphs (m~n²)

Single-Source, Single-Target

- Task: Find the distance between X and only Y
 - In general, there is no way to be WC-faster than Dijkstra
 - We can stop as soon as Y appears at the min position of the PQ
 - We can visit edges in order of increasing weight
 - Worst-case complexity unchanged, average case is (slightly) better
- Things are different in planar graphs (navigators!)

Faster SS-ST Algorithms

- Trick 1: Pre-compute all distances
 - Transitive closure with distances
 - Requires $O(|V|^2)$ space: Prohibitive for large graphs
 - How? See next lecture

\rightarrow	Α	В	С	D	Е	F	G	X	Υ
Α	0	ı	ı	ı	1	ı	ı	ı	1
В	3	0	2	ı	ı	ı	ı	ı	-
С	-	ı	0	ı	ı	ı	ı	ı	ı
D	4	1	3	0	3	4	6	7	3
E	6	6	7	5	0	1	11	4	8
F	-	ı	6	ı	ı	0	ı	ı	ı
G	ı	ı	ı	ı	ı	ı	0	ı	ı
X	2	2	4	1	4	5	7	0	4
Υ	-	-	2	-	-	-	3	-	0

Faster SS-ST Algorithms

- Trick 2: Two-hop cover with distances
 - Find a small set S of nodes such that
 - For every pair of nodes v₁,v₂, at least one shortest path from v₁ to v₂ goes through a node s∈S
 - Thus, the distance between v_1, v_2 is min{ $d(v_1, s) + d(s, v_2) \mid s \in S$ }
 - S is called a 2-hop cover
 - Problem: Finding a minimal S is NP-complete
 - And S need not be small

More Distances

- Graphs with negative edge weights
 - Shortest paths (in terms of weights) may be very long (in terms of edges)
 - Bellman-Ford algorithm in O(n²*m)
- All-pairs shortest paths
 - Only positive edge weights: Use Dijkstra n times
 - With negative edge weights: Floyd-Warshall in O(n³)
 - See next lecture
- Reachability
 - Simple in undirected graphs: Compute all connected components
 - In digraphs: Use Dijkstra or a special graph indexing method
 - See special modules