Analisi Dati con Excel

Giovanni Della Lunga

giovanni. della lunga@gmail.com

La prima regola di ogni tecnologia è che l'automazione applicata ad un'operazione efficiente ne aumenterà l'efficienza. La seconda è che l'automazione applicata ad un'operazione inefficiente ne aumenterà l'inefficienza.

Bill Gates

Indici di Rischio

Applicazioni Finanziarie

• Vediamo prima di tutto come poter facilmente scaricare una serie storica di dati da Yahoo Finance gratuitamente ed esportala in un nostro file Excel.

• Il primo passo è collegarsi direttamente al sito.

 Nella barra di ricerca selezioniamo il titolo di nostro interesse, per questo esempio scegliamo il titolo Amazon.

- Ci si aprirà questa schermata che presenta diversi utili dati fondamentali per varie analisi.
- Per lo scopo di questa presentazione però ci focalizziamo sul tab "Historical Data" in alto ed evidenziato nell'immagine.

• Otteniamo quindi questa pagina che già è molto simile ad un file Excel.

Summary	Chart	Conversations	Statistics	Histor	rical Data	Profile	Financials	Analysis	Options	Holders	Sustainabilit
Time Period:	Feb 05,	2021 - Feb 05, 2	2022 🕶	Show:	Historical	Prices 🗸	Freque	ncy: Daily	•		Apply
Currency in USD											↓ Download
Date		Open		High		Low	Close	*	Adj Close**		Volume
Feb 04, 2022		3,112.13	3,224	.00	3,0	12.16	3,152.7	9	3,152.79		12,640,500
Feb 03, 2022		2,834.75	2,884	.95	2,70	66.66	2,776.9	1	2,776.91		11,276,600
Feb 02, 2022		3,101.01	3,101	.50	2,97	77.27	3,012.2	5	3,012.25		4,366,500
Feb 01, 2022		3,000.00	3,034	.16	2,9	52.55	3,023.8	7	3,023.87		2,961,000
Jan 31, 2022		2,895.00	3,007	.21	2,88	36.01	2,991.4	7	2,991.47		3,915,400
Jan 28, 2022		2,817.21	2,879	.96	2,7	58.59	2,879.5	6	2,879.56		3,719,600
Jan 27, 2022		2,816.00	2,884	.87	2.78	37.00	2,792.7	5	2,792.75		3,875,800

Abbiamo la possibilità di personalizzare molto la nostra ricerca a seconda di quella che è l'analisi di nostro interesse.

Possiamo infatti:

- Selezionare il periodo temporale (in Time Period) dal giornaliero fino alla storia di tutto il titolo dalla sua quotazione
- Scegliere di vedere prezzi storici (con i dati di Apertura, Chiusura, Massimo, Minimo, Chiusura Adjust e Volume scambiato)
- Frequenza dei dati (Giornalieri, Settimanali, Mensili)

- Cliccando su Applica/Apply applicheremo i nostri filtri ed infine è sufficiente cliccare su download per ricevere sul nostro PC i dati scelti in formato CSV.
- I dati possono poi essere trasformati in un file Excel più comodo da utilizzare sfruttando la funzione testo in colonne di Excel.
- Infatti il file CSV presenta tutti i dati in una singola colonna.

- Selezioniamo quindi la colonna A e nel ribbon Dati scegliamo la funzione testo in colonne.
- Si apre un menù guidato in cui scegliamo come delimitatore la virgola perché è quella utilizzata da Yahoo finance.

Cenni di Statistica dei Mercati Finanziari: Rischio di Mercato

- La grandezza di cui siamo interessati a stimare le caratteristiche statistiche non è il prezzo di un titolo ma la sua variazione percentuale (rendimento);
- In prima approssimazione possiamo ipotizzare che il rendimento di un titolo azionario sia distribuito in maniera normale;
- In realtà quest'assunzione è fortemente criticabile anche se di impiego quasi universale in pratica;
- La distribuzione effettiva dei rendimenti tende ad essere leptocurtotica

Dalla serie storica dei prezzi a quella dei rendimenti

- » Il primo calcolo che dobbiamo fare è quindi quello di trasformare la serie storica dei prezzi in serie storica dei rendimenti del titolo o della generica attività finanziaria:
 - sia
 - n il numero di osservazioni;
 - S_i il prezzo dell'azione alla fine dell'*i-esimo* intervallo (i = 0,1,...,n);
 - τ la lunghezza dell'intervallo in anni
 - Indichiamo con u_i il tasso di rendimento composto continuamente non annualizzato relativo all'intervallo considerato

$$u_i = \ln\left(\frac{S_i}{S_{i-1}}\right) \approx \frac{\Delta S}{S}$$

La Stima della Volatilità

Una stima della deviazione standard è data da

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (u_i - \overline{u})^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} u_i^2 - \frac{1}{n(n-1)} \left(\sum_{i=1}^{n} u_i\right)^2}$$

- Questa è una stima della volatilità giornaliera, per ottenere una stima della volatilità annualizzata occorre moltiplicare per la radice quadrata del numero di giorni lavorativi in un anno.
- Scegliere un valore per n non è facile, in generale più dati si usano e maggiore è l'accuratezza. Tuttavia σ cambia nel tempo e i dati troppo vecchi possono non essere rilevanti per prevedere il futuro.

La Stima della Volatilità

- Quanti giorni (n) includere nella nostra finestra mobile?
- Questa è la grande decisione che dovete prendere quando calcolate la volatilità storica.
- Viene spesso chiamato periodo di volatilità storica ed è usato in modo simile alle medie mobili e ad altri indicatori di analisi tecnica.

- Se si sceglie un periodo più breve, la volatilità storica risultante rifletterà più da vicino l'azione di mercato più recente, ma nel tempo oscillerà di più (sarà più "volatile").
- Al contrario, se si sceglie un periodo lungo, sarà più stabile, ma forse potrebbe non riflettere sufficientemente gli sviluppi più recenti. C'è un trade-off da accettare tra le due.

La Stima della Volatilità

Se non ne avete idea di dove partire, possiamo partire da quelli più comunemente usati dai trader

- 21 giorni di trading = 1 mese di calendario
- 63 giorni = 3 mesi
- 252 giorni = 1 anno
- Quindi decidiamo di usare 21 giorni per il nostro esempio.
- Calcoleremo ogni deviazione standard usando gli ultimi 21 rendimenti nella colonna C. La prima riga dove possiamo farlo è la riga 23, dove useremo i 21 rendimenti nelle celle da C3 a C23. La formula della deviazione standard nella cella D23 sarà:

=DEV.ST.C(C3:C23)

Stima della volatilità

- » Si noti che la volatilità così stimata è una volatilità che si riferisce al periodo della serie storica
 - Es. se abbiamo una serie di rendimenti giornalieri, la volatilità sarà la volatilità giornaliera del rendimento;
- » Occorre riportare ad un'unità di misura comune;
 - Es. per ricondurre tutto a volatilità annuali, sotto opportune ipotesi statistiche, occorre moltiplicare per la radice del numero di giorni lavorativi

Indici di Sensitività

» Nel modello CAPM, fissato un intervallo di osservazione $[t_1, t_2]$, tra il rendimento R_i dell'azione ed il rendimento R_m del portafoglio di mercato sussiste una relazione lineare che può essere posta nella forma

$$R_{i} = \gamma_{i} + \beta_{i}R_{m} + \varepsilon_{i}$$

$$\beta_{i} = \frac{\text{cov}(R_{i}, R_{m})}{\sigma^{2}(R_{m})}$$

Indici di Sensitività

• Dalle precedenti relazioni possiamo ricavare

$$\sigma^2(R_i) = \beta_i^2 \sigma^2(R_m) + \sigma^2(\varepsilon_i)$$

• Il primo addendo dopo il simbolo di uguaglianza rappresenta la componente di rischio sistematico, mentre la seconda componente individua il rischio specifico del titolo i-esimo.

Indici di Sensitività

• Il rischio sistematico dell'azione i-esima è misurato attraverso il coefficiente β il quale indica il grado di variabilità del rendimento rispetto alle variazioni del mercato azionario nel suo complesso ovvero come un titolo reagisce alle oscillazioni del mercato borsistico.

$$\begin{cases} \textit{rischio sistematico} & \beta_i^2 \sigma^2(R_m) \\ \textit{rischio specifico} & \sigma^2(\varepsilon_i) \end{cases}$$

Esercizio

- » Analisi Volatilità a 21 gg
- » Studio correlazione fra singola azione e mercato di riferimento

Definizione

- Il rischio da tasso di interesse è il rischio che variazioni nei tassi di interesse possano influenzare negativamente i margini di interesse netti, il valore economico delle attività e passività di una banca o di un'altra istituzione finanziaria.
- Questo tipo di rischio deriva dalla possibilità che i tassi di interesse di mercato cambino, influenzando il costo del finanziamento, i ricavi da interessi e il valore delle posizioni di bilancio.

Tipi di Rischio da Tasso di Interesse

Rischio di Rifinanziamento:

- Si verifica quando una banca ha attività e passività con diverse date di rifinanziamento.
- Se i tassi di interesse cambiano, i costi e i ricavi possono variare in modo differente, influenzando i margini di interesse.

Tipi di Rischio da Tasso di Interesse

Rischio di Prezzo:

- Si verifica quando i tassi di interesse cambiano, influenzando il valore di mercato delle attività e delle passività.
- Ad esempio, un aumento dei tassi di interesse provoca una diminuzione del prezzo delle obbligazioni.

Tipi di Rischio da Tasso di Interesse

Rischio di Mismatch di Tassi:

- Si verifica quando le scadenze e le caratteristiche di tasso delle attività e delle passività non corrispondono.
- Questo può portare a variazioni nei margini di interesse netti.

Rischio di Base:

• Si verifica quando i tassi di interesse di attività e passività correlate, ma non identiche, si muovono in modo diverso.

Gestione del Rischio da Tasso di Interesse

Le banche utilizzano vari strumenti e tecniche per gestire il rischio da tasso di interesse:

1. Duration Gap Analysis:

 Misura la sensibilità del valore economico delle attività e delle passività ai cambiamenti dei tassi di interesse. La duration è una misura della durata media ponderata dei flussi di cassa di uno strumento finanziario.

2. Sensibilità al Gap di Riferimento (Interest Rate Gap):

 Confronta le attività e le passività sensibili ai tassi di interesse in vari intervalli temporali per identificare potenziali squilibri.

3. Derivati Finanziari:

 Utilizzo di strumenti come swap sui tassi di interesse, futures e opzioni per coprire il rischio di tasso di interesse.

4. Simulazioni di Scenario:

• Eseguire simulazioni di scenario per valutare l'impatto dei cambiamenti dei tassi di interesse sui margini di interesse netti e sul valore economico dell'equità.

- La duration è una misura della sensibilità del prezzo di uno strumento a reddito fisso, come un'obbligazione, ai cambiamenti nei tassi di interesse.
- Esprime la durata media ponderata dei flussi di cassa (pagamenti di cedole e rimborso del capitale) di un titolo.
- La duration viene utilizzata per stimare quanto il prezzo di un'obbligazione cambierà in risposta a una variazione dei tassi di interesse.

» La formula di calcolo della Duration è la seguente

$$\text{Duration Macaulay} = \frac{\sum_{t=1}^{n} \left(\frac{t \cdot C_t}{(1+r)^t}\right) + \frac{n \cdot F}{(1+r)^n}}{P}$$

dove:

- t è il periodo di pagamento (es. anni).
- C_t è il flusso di cassa al periodo t.
- r è il tasso di rendimento periodico.
- n è il numero totale di periodi.
- F è il valore nominale dell'obbligazione.
- P è il prezzo corrente dell'obbligazione.

Duration Macaulay:

- Rappresenta la media ponderata dei tempi in cui vengono ricevuti i flussi di cassa di un'obbligazione.
- Utilizzata principalmente per calcolare la duration modificata.

Duration Modificata:

- Fornisce una stima diretta della sensibilità del prezzo di un'obbligazione ai cambiamenti nei tassi di interesse.
- È la duration Macaulay aggiustata per il tasso di rendimento corrente.
- Formula:

$$D_{mod} = \frac{D}{1+i}$$

Esercizio

Scenario:

- » Consideriamo un'obbligazione con le seguenti caratteristiche:
 - Valore nominale: €1.000
 - Cedola annuale: €50 (5% del valore nominale)
 - Scadenza: 5 anni
 - Rendimento di mercato: 4%

Svolgimento

- » Calcolare i flussi di cassa scontati:
 - Inserire i flussi di cassa nei periodi (da 1 a 5) nella colonna A.
 - Inserire i rispettivi flussi di cassa (€50 per i primi 4 anni e €1.050 al 5° anno) nella colonna B.
 - Calcolare i flussi di cassa scontati utilizzando la formula:

$$=B2/(1+0.04)^A2$$

- » Calcolare la media ponderata dei tempi:
 - Moltiplicare i periodi per i flussi di cassa scontati
 - Sommare tutti i valori ottenuti.
 - Dividere la somma per il prezzo corrente dell'obbligazione (somma dei flussi di cassa scontati).

Interpretazione della Duration

» Sensibilità ai Tassi di Interesse:

- La duration fornisce una stima della variazione percentuale del prezzo di un'obbligazione per un cambiamento dell'1% nei tassi di interesse.
- Esempio: Se la duration modificata di un'obbligazione è 4.28, un aumento dell'1% nei tassi di interesse ridurrà il prezzo dell'obbligazione di circa il 4.28%.

» Durata Media Ponderata:

- La duration rappresenta anche la media ponderata del tempo necessario per ricevere i flussi di cassa dell'obbligazione.
- Esempio: Una duration di 4.28 anni indica che, in media, i flussi di cassa saranno ricevuti in 4.28 anni.

Interpretazione della Duration

» il principale limite della *duration* è il fatto che essa è un'approssimazione lineare della variazione del prezzo rispetto al tasso, ma la relazione che lega prezzo e tassi è ben lungi dall'essere lineare...

Che cosa è il Value-at-Risk

» Il VaR misura la <u>massima perdita attesa in un dato</u> <u>intervallo di tempo ad un dato livello di confidenza</u> in condizioni normali di mercato

- Il <u>Value-at-Risk</u> (VaR) è una misura della perdita potenziale di capitale che può insorgere a causa di movimenti avversi nelle variabili finanziarie rilevanti.
- Un portafoglio con un VaR con un livello di confidenza del 95% non dovrebbe subire perdite superiori a quelle stimate in 95 casi su 100.

Che cosa è il Value-at-Risk

Che cosa è il Value-at-Risk

- » Con riferimento alla distribuzione riportata, vediamo che esiste una probabilità del 5 % che il rendimento divenga minore di -1.7 % nell'arco di un mese.
- » Quindi se immaginiamo di avere un patrimonio iniziale di 100 milioni di euro, il VAR è pari a 1.7 milioni con un livello di confidenza del 95%.

Value-at-Risk

- » Il concetto di Value-at-Risk è una questione di tempo e probabilità
- » Il VaR risponde alla domanda:

"di quanto capitale ho bisogno per avere buone probabilità di resistere a movimenti avversi del mercato, per un tempo sufficiente a smobilizzare la posizione ed uscire dal mercato?"

 Si noti che questa domanda è tipica per operatori dei mercati di contratti derivati, piuttosto che per operatori di banche commerciali.