
Front matter lang: ru-RU

title: "Отчёт по лабораторной работе №8"

subtitle: "дисциплина: Математическое моделирование"

author: "Уваров Илья Маркович"

Formatting

toc-title: "Содержание"

toc: true # Table of contents

toc_depth: 2

lof: true # List of figures
lot: true # List of tables

fontsize: 12pt
linestretch: 1.5
papersize: a4paper
documentclass: scrreprt
polyglossia-lang: russian
polyglossia-otherlangs: english

mainfont: PT Serif
romanfont: PT Serif
sansfont: PT Sans
monofont: PT Mono

mainfontoptions: Ligatures=TeX
romanfontoptions: Ligatures=TeX

sansfontoptions: Ligatures=TeX,Scale=MatchLowercase

monofontoptions: Scale=MatchLowercase

indent: true

pdf-engine: lualatex
header-includes:

- \linepenalty=10 # the penalty added to the badness of each line within a paragraph (no associated penalty node) Increasing the value makes tex try to have fewer lines in the paragraph.
- \interlinepenalty=0 # value of the penalty (node) added after each line of a paragraph.
- \hyphenpenalty=50 # the penalty for line breaking at an automatically inserted hyphen
- \exhyphenpenalty=50 # the penalty for line breaking at an explicit hyphen
- \binoppenalty=700 # the penalty for breaking a line at a binary operator
- \relpenalty=500 # the penalty for breaking a line at a relation
- \clubpenalty=150 # extra penalty for breaking after first line of a paragraph
- \widowpenalty=150 # extra penalty for breaking before last line of a paragraph
- \displaywidowpenalty=50 # extra penalty for breaking before last line before a display math
- brokenpenalty=100 # extra penalty for page breaking after a hyphenated line
- \predisplaypenalty=10000 # penalty for breaking before a display
- \postdisplaypenalty=0 # penalty for breaking after a display
- \floatingpenalty = 20000 # penalty for splitting an insertion (can only be split footnote in standard LaTeX)

- \raggedbottom # or \flushbottom
- \usepackage{float} # keep figures where there are in the text
- $\{H\}$ # keep figures where there are in the text

Цель работы

Ознакомление с моделью конкуренции двух фирм для двух случаев (без учета и с учетом социально-психологического фактора) и их построение с помощью языка программирования Modelica.

Задание

Вариант 16

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений ![Рис. 1. Уравнения] (img/1.png) { #fig:001 width=70% }

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы — формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед М М1 2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений.

![Puc. 2. Уравнения] (img/2.png) { #fig:002 width=70% } Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами

![Рис. 3. Уравнения] (img/3.png) { #fig:003 width=70% }
Выполнение лабораторной работы

1. Теоритические сведения

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют. Обозначим: N — число потребителей производимого продукта. S — доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения. M — оборотные средства предприятия τ — длительность производственного цикла p — рыночная цена товара p — себестоимость продукта, то есть переменные издержки на производство единицы продукции. δ — доля оборотных средств, идущая на

покрытие переменных издержек. κ - постоянные издержки, которые не зависят от количества выпускаемой продукции. Q(S/p) - функция спроса, зависящая от отношения дохода S κ цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени. Функцию спроса товаров долговременного использования часто представляют в простейшей форме

![Рис. 4. Уравнения] (img/4.png) { #fig:004 width=70% }

```
где q - максимальная потребность одного человека в продукте в единицу
времени. Эта функция падает с ростом цены и при р = pcr (критическая
стоимость продукта) потребители отказываются от приобретения товара.
Величина pcr = Sq/k. Параметр k - мера эластичности функции спроса по
цене. Таким образом, функция спроса в форме (1) является пороговой (то
есть, Q(S/p) = 0 при p \ge pcr) и обладает свойствами насыщения. Уравнения
динамики оборотных средств можно записать в виде
![Рис. 5. Уравнения] (img/5.png) { #fig:005 width=70% }
Уравнение для рыночной цены р представим в виде
![Рис. 6. Уравнения] (img/6.png) { #fig:006 width=70% }
Первый член соответствует количеству поставляемого на рынок товара (то
есть, предложению), а второй член - спросу. Параметр у зависит от скорости
оборота товаров на рынке. Как правило, время торгового оборота существенно
меньше времени производственного цикла т. При заданном М уравнение (3)
описывает быстрое стремление цены к равновесному значению цены, которое
устойчиво. В этом случае уравнение (3) можно заменить алгебраическим
соотношением
![Рис. 7. Уравнения] (img/7.png) { #fig:007 width=70% }
Из этого следует, что равновесное значение цены р равно
![Рис. 8. Уравнения] (img/8.png) { #fig:008 width=70% }
Уравнение с учетом приобретает вид
![Рис. 9. Уравнения] (img/9.png) { #fig:009 width=70% }
Уравнение имеет два стационарных решения, соответствующих условию dM/dt =
![Рис. 10. Уравнения] (imq/10.png) { #fig:0010 width=70% }
![Рис. 11. Уравнения] (img/11.png) { #fig:0011 width=70% }
Из (7) следует, что при больших постоянных издержках (в случае а 2 < 4b)
стационарных состояний нет. Это означает, что в этих условиях фирма не
может функционировать стабильно, то есть, терпит банкротство. Однако, как
правило, постоянные затраты малы по сравнению с переменными (то есть, b <<
а 2 ) и играют роль, только в случае, когда оборотные средства малы. При b
<< а стационарные
![Рис. 12. Уравнения] (img/12.png) { #fig:0012 width=70% }
Первое состояние M\square устойчиво и соответствует стабильному функционированию
предприятия. Второе состояние М\square неустойчиво, так, что при М М\square \square
оборотные средства падают (dM/dt < 0), то есть, фирма идет к банкротству.
По смыслу M\square соответствует начальному капиталу, необходимому для входа в
рынок. В обсуждаемой модели параметр \delta всюду входит в сочетании с \tau. Это
значит, что уменьшение доли оборотных средств, вкладываемых в
производство, эквивалентно удлинению производственного цикла. Поэтому мы в
дальнейшем положим: \delta = 1, а параметр \tau будем считать временем цикла, с
учётом сказанного.
**2. Построение графиков**
```

2.1 Написал программу на OpenModelica:

```
model Lab8 1
 parameter Real p_cr = 10.5;
 parameter Real tau1 = 16;
 parameter Real p1 = 7.2;
 parameter Real tau2 = 21;
 parameter Real p2 = 25;
 parameter Real N = 28;
 parameter Real q = 1;
 parameter Real a1 = p_cr/(tau1*tau1*p1*p1*N*q);
 parameter Real a2 = p_cr/(tau2*tau2*p2*p2*N*q);
 parameter Real b = p_cr/(tau1*tau1* tau2*tau2*p1*p1*p2*p2*N*q);
 parameter Real c1 = (p cr-p1)/(tau1*p1);
 parameter Real c2 = (p_cr-p2)/(tau2*p2);
 Real M1 (start=4.4);
 Real M2 (start=4);
equation
 der(M1)=M1-(b/c1)*M1*M2-(a1/c1)*M1*M1;
 der (M2) = (c2/c1)*M2 - (b/c1)*M1*M2 - (a2/c1)*M2*M2;
end Lab8 1;
Получил следующий график (см. рис. -@fig:001).
![Рис. 13. График для 1 слусая](img/13.png){ #fig:0013 width=70% }
2.2 Написал программу на Modelica:
model Lab8_2
 parameter Real p_cr = 10.5;
 parameter Real tau1 = 16;
 parameter Real p1 = 7.2;
 parameter Real tau2 = 21;
 parameter Real p2 = 25;
 parameter Real N = 28;
 parameter Real q = 1;
 parameter Real a1 = p_cr/(tau1*tau1*p1*p1*N*q);
 parameter Real a2 = p_cr/(tau2*tau2*p2*p2*N*q);
 parameter Real b = p_cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q);
 parameter Real c1 = (p_cr-p1)/(tau1*p1);
 parameter Real c2 = (p_cr-p2)/(tau2*p2);
 Real M1 (start=4.4);
 Real M2 (start=4);
equation
 der(M1)=M1-(b/(c1+0.0007))*M1*M2-a1/c1*M1*M1;
 der(M2)=c2/c1*M2-b/c1*M1*M2-a2/c1*M2*M2;
end Lab8_2;
Получил следующий график (см. рис. -@fig:002).
```

```
![Рис. 14. График для 2 случая](img/14.png){ #fig:0014 width=70% }
```

Выводы

Ознакомился с моделью конкуренции двух фирм для двух случаев. Построил график распространения рекламы.