BUNDESREPUBLIK DEUTSCHLAND

Bescheinigung

RECEIVED

NOV 2 0 2000

TECH CENTER 1600/2900

Die Anmelderin Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts in Heidelberg, Neckar/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Antikörper gegen ein, einen Histidin-Anteil aufweisendes Fusionspolypeptid"

am 1. März 1995 beim Deutschen Patent- und Markenamt eingereicht.

Das angeheftete Stück ist eine richtige und genaue Wiedergabe der ursprünglichen Unterlage dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole C 07 K und G 01 N der Internationalen Patentklassifikation erhalten.

München, den 10. April 2000

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

.Aktenzeichen: <u>195 07 166.2</u>

Agunka

Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Im Neuenheimer Feld 280 61920 Heidelberg

Antikörper gegen ein, einen Histidin-Anteil aufweisendes Fusionspolypeptid

Die vorliegende Erfindung betrifft Antikörper gegen ein, einen Histidin-Anteil aufweisendes Fusionspolypeptid, Verfahren zu ihrer Herstellung und ihre Verwendung.

Es ist bekannt, ein Polypeptid in Form eines Histidin-Fusionspolypeptids zu exprimieren. In einem solchen liegt ein Histidin-Anteil von z.B. 6-18 aufeinander folgenden Histidinresten fusioniert am C- oder N-Terminus des Polypeptids vor. Damit ist es möglich, das Histidin-Fusionspolypeptid mittels einer Nickel-Chelat-Chromatographiesäule aus dem Überstand oder Zellysat der es exprimierenden Zelle zu isolieren.

Vorstehende Säule ist aber teuer. Ferner bedeutet ihr Einsatz einen großen Zeitaufwand. Daher eignet sie sich nicht zum schnellen Nachweis der Expression eines Histidin-Fusionspolypeptids. Ein solcher Nachweis ist aber von Nöten, insbesondere, wenn er zum Screening vieler Zellen herangezogen werden soll.

Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, ein Mittel bereitzustellen, mit dem die Expression eines Histidin-Fusionspolypeptids schnell nachgewiesen werden kann.

Erfindungsgemäß wird dies durch einen Antikörper erreicht, der gegen ein, einen Histidin-Anteil aufweisendes Fusionspolypeptid gerichtet ist.

Ein solcher Antikörper kann ein polyklonaler oder monoklonaler Antikörper sein, wobei ein monoklonaler Antikörper bevorzugt ist. Der Antikörper kann aus jegli-

chem Tier oder dem Menschen erhalten sein, wobei für einen polyklonalen Antikörper Kaninchen und für einen monoklonalen Mäuse bevorzugt sind.

Ferner kann der Antikörper synthetisch sein, wobei ihm ggfs. Teile, die für vorstehende Erkennung nicht notwendig sind, ganz oder teilweise fehlen bzw. diese Teile durch andere ersetzt sind, die dem Antikörper weitere günstige Eigenschaften verleihen.

Der Ausdruck "Histidin-Anteil aufweisendes Fusionspolypeptid" umfaßt ein Polypeptid (Peptid) jeglicher Art und Länge, das einen Histidin-Anteil aufweist. Ein solches Polypeptid kann von jeglichen Zellen, z.B. Bakterien, Hefen, Insekten-, Pflanzen- und tierischen Zellen, sowie Organismen, z.B. transgenen Tieren, exprimiert sein. Ein vorstehender Histidin-Anteil kann z.B. 6-18, vorzugsweise 6 aufeinander folgende Histidinreste umfassen und fusioniert am N und/oder C-Terminus des Polypeptids vorliegen.

Ein bevorzugter Antikörper der vorliegenden Erfindung, nämlich ein monoklonaler Maus-Antikörper mit vorstehender Erkennung, wurde bei der DSM unter der Nummer ACC 2207 am 15. Febr. 1995 hinterlegt.

Erfindungsgemäße Antikörper können nach üblichen Verfahren hergestellt werden. Sollen polyklonale bzw. monoklonale Antikörper hergestellt werden, ist es günstig, Tiere, insbesondere Kaninchen für erstere und Mäuse für letztere Antikörper, mit einem vorstehenden Histidin-Fusionspolypeptid, z.B. His p53 (vgl. deutsche Patentanmeldung P 42 32 823.3) oder His hdm2 (vgl. deutsche Patentanmeldung P 43 39 553.3), vorzugsweise einem Gemisch aus solchen zu immunisieren. Weiteres Boostern der Tiere kann mit dem oder den gleichen Histidin-Fusionspolypeptiden erfolgen. Auch können andere Histidin-Fusionspolypeptide oder eine Kombination aus diesen und dem oder den vorhergehenden Histidin-Fusionspolypeptiden zum Boostern verwendet werden. Die polyklonalen Antikörper können dann aus dem Serum der Tiere erhalten werden. Für die monoklonalen Antikörper werden Milzzellen der Tiere mit Myelomzellen fusioniert.

Zur Herstellung von synthetischen Antikörpern kann z.B. von vorstehend erhaltenen, monoklonalen Antikörpern ausgegangen werden. Hierzu bietet sich an, die Antigen-Bindungsregionen der monoklonalen Antikörper zu analysieren und die für vorstehende Erkennung notwendigen und nicht notwendigen Teile zu identifzieren. Die notwendigen Teile können dann modifiziert und die nicht notwendigen ganz oder teilweise eliminiert bzw. durch Teile ersetzt werden, die den Antikörpern weitere günstige Eigenschaften verleihen. Auch können Teile außerhalb der Bindungsregionen der Antikörper modifiziert, eliminiert oder ersetzt werden. Der Fachmann weiß, daß sich für vorstehende Maßnahmen insbesondere die DNA-Rekombinationstechnologie eignet. Diese ist ihm bestens vertraut.

Erfindungsgemäße Antikörper zeichnen sich dadurch aus, daß sie beliebige Fusionspolypeptide erkennen, die einen Histidin-Anteil aufweisen. Die Antikörper eignen sich daher zum schnellen Nachweis der Expression solcher Fusionspolypeptide. Dies kann in beliebigen Nachweisverfahren, insbesondere in einem Western Blot, einem ELISA, einer Immunpräzipitation oder einer Immunfluoreszenz, erfolgen. Hierzu können die erfindungsgemäßen Antikörper, wenn es angebracht ist, markiert sein oder in Kombination mit markierten gegen sie gerichteten Antikörpern eingesetzt werden.

Die vorliegende Erfindung wird durch die nachstehenden Beispiele erläutert.

Beispiel 1: Herstellung von monoklonalen Antikörpern

Zur Immunisierung wurden Mäuse verwendet. Als Antigene wurden His hdm2 (Aminosäure 1-284), His hdm2 (Aminosäure 58-491) und His p53 (Aminosäure 66-393) (vgl. vorstehend) verwendet. Diese waren in einem Puffer aus 8 M Harnstoff, 100 mM NaH₂PO₄, 10 mM Tris-Hcl gelöst.

Immunisierungs- und Boosterschema:

Tag 1: 50,

50 μ l (= 10 μ g) His hdm2 (Aminosäure 1-284)

50 μ l (= 10 μ g) His hdm2 (Aminosäure 58-491)

50 μ l PBS (Phosphat-gepufferte Saline)

150 µl Freund's Adjuvans komplett

300 μl Mix

200 μ l des Mix wurden in eine Maus injiziert

Tag 30:

50 μ l (= 10 μ g) His hdm2 (Aminosäure 1-284)

50 μ l (= 10 μ g) His hdm2 (Aminosäure 58-491)

20 μI PBS

120 μ l Freund's Adjuvans inkomplett

240 µl Mix

200 μ l des Mix wurden in vorstehende Maus injiziert.

Tag 60:

50 μ I (= 10 μ g) His hdm2 (Aminosäure 1-284)

50 μ l (= 10 μ g) His hdm2 (Aminosäure 58-491)

85 μI PBS

115 µl Freund's Adjuvans inkomplett

300 µl Mix

200 µl des Mix wurden in vorstehende Maus injiziert.

Tag 90:

50 μ l (= 10 μ g) His hdm2 (Aminosäure 1-284)

50 μ I (= 10 μ g) His hdm2 (Aminosäure 58-491)

200 μI PBS

300 µl Mix

200 µl des Mix wurden in vorstehende Maus injiziert.

Tag 180:

150 μ I (= 20 μ g) His p53 (Aminosäure 66-393)

150 µl Freund's Adjuvans komplett

300 µl Mix

200 μ l des Mix wurden in vorstehende Maus injiziert.

Tag 230:

75 μ I (= 10 μ g) His p53 (Aminosäure 66-393)

25 μ I (= 5 μ g) His hdm2 (Aminosäure 1-284)

25 μ l (= 5 μ g) His hdm2 (Aminosäure 58-491)

125 µl Freund's Adjuvans inkomplett

250 µl Mix

200 μ l des Mix wurden in vorstehende Maus injiziert.

Tag 260:

75 μ l (= 10 μ g) His p53 (Aminosäure 66-393)

25 μ I (= 5 μ g) His hdm 2 (Aminosäure 1-284)

25 μ l (= 5 μ g) His hdm 2 (Aminosäure 58-491)

125 µl PBS

250 μl Mix

200 µl des Mix wurden in vorstehende Maus injiziert.

Am Tag 262 wurde die Maus getötet. Milzzellen wurden ihr entnommen und mit Myelomzellen fusioniert. Es wurden monoklonale Antikörper erhalten. Einer dieser wurde bei der DSM unter ACC 2207 am 15. Febr. 1995 hinterlegt.

Beispiel 2: Herstellung von polyklonalen Antikörpern

Zur Immunisierung wurden Kaninchen verwendet. Es wurden die Antigene von Beispiel 1 verwendet. Das Immunisierung- und Boosterschema war identisch mit jenem von Beispiel 1 bis einschließlich Tag 90.

Tag 92: Aus der Ohrvene des Kaninchens wurden 5 ml Blut entnommen und in einem ELISA bzw. Western-Blot auf Antikörper-Aktivität getestet.

Tag 93: Nach positivem Test am Tag 92, wurden die Tiere getötet und die Antikörper aus dem Serum gewonnen.

Beispiel 3: Nachweis von Histidin-Fusionspolypeptiden durch erfindungsgemäße Antikörper

(a) Western-Blot

Histidin-Fusionspolypeptide, nämlich His hdm2 (Aminosäure 1-284), His hdm2 (Aminosäure 58-491) und His p53 (Aminosäure 66-393) von Beispiel 1, sowie die Polypeptide hdm2 (Aminosäure 1-284), WAF 1 (= wildtyp aktivierender Faktor) und t16 (= zell. regulierendes Protein) als Kontrolle wurden einer Polyacrylamid-Gelelektrophorese unterzogen. Das Gel wurde über Nacht auf eine Nitrocellulosemembran übertragen. Diese wurde dann mit vorstehendem, 1:10 bzw. 1:50 verdünnten Antikörper ACC 2207 1 Std. bei 37°C inkubiert. Nach mehreren Waschschritten mit PBS (0,05 % Tween 20) wurde ein käuflicher alkalischer Phosphatase-gekoppelter Ziege-anti-Maus-Antikörper (Verdünnung nach Angabe

der Hersteller) zugegeben. Nach 30-minütiger Inkubation bei 37°C folgten mehrere Waschschritte mit PBS und anschließend die alkalische Phosphatase-Nachweisreaktion mit alkalischer Phosphatase mit Entwicklerlösung (36 μ M 5'Bromo-4-chloro-3-indolylphosphat, 400 μ M Nitroblau-tetrazolium, 100 mM Tris-HCl, pH 9.5, 100 mM NaCl, 5 mM MgCl₂) bei Raumtemperatur bis Banden sichtbar waren.

Es zeigte sich, daß der erfindungsgemäße Antikörper ACC 2207 spezifisch Histidin-Fusionspolypeptide, nicht aber Polypeptide ohne Histidin-Anteil erkennt.

(b) ELISA

In eine 96-Loch-Platte wurden pro Loch je 100μ l mit 20 ng bzw. 8 ng der Histidin-Fusionspolypeptide bzw. der Kontrollen von (a) einpipettiert. Nach Inkubation über Nacht bei 4°C schlossen sich 3 kurze Waschschritte mit PBS an. Anschließend erfolgte die Blockierung freier Bindungsstellen des polymeren Trägers durch einstündige Inkubation mit 1 % BSA in PBS bei 37°C. Der erfindungsgemäße, 1:10 bzw. 1:50 verdünnte Antikörper ACC 2207 wurde 1 Stunde bei 37°C auf der Platte inkubiert. Nach 8 Waschschritten mit PBS wurde der Peroxidase-gekoppelte Ziege anti-Maus Antikörper von (a) zugegeben. Nach 30-minütiger Inkubation bei 37°C folgten 8 Waschschritte und anschließend die Peroxidase-Nachweisreaktion mit Entwicklungslösung (50 mM Natriumacetat, 0,4 mM 3,3′, 5,5′-Tetramethylbenzidin-dihydrochlorid, 4,4 mM $\rm H_2O_2$) bei Raumtemperatur bis Banden sichtbar waren.

Es zeigte sich, daß der erfindungsgemäße Antikörper ACC 2207 spezifisch Histidin-Fusionspolypeptide, nicht aber ein Polypeptid ohne Histidin-Anteil erkennt.

K 2094

Patentansprüche

- 1. Antikörper gegen ein, einen Histidin-Anteil aufweisendes Fusionspolypeptid.
- 2. Antikörper nach Anspruch 1, dadurch gekennzeichnet, daß er polyklonal ist.
- Antikörper nach Anspruch 1, dadurch gekennzeichnet, daß er monoklonal ist.
- 4. Antikörper nach Anspruch 3, dadurch gekennzeichnet, daß er bei der DSM unter ACC 2207 hinterlegt ist.
- Verfahren zur Herstellung eines Antikörpers nach einem der Ansprüche 1-4, dadurch gekennzeichnet, daß ein Tier mit einem Histidin-Fusionspolypeptid immunisiert wird, und
 - (a) polyklonale Antikörper aus dem Serum des Tieres erhalten werden, oder
 - (b) monoklonale Antikörper nach Fusion von Milzzellen des Tieres mit Myelomzellen erhalten werden.
- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß ein Gemisch von Histidin-Fusionspolypeptiden zur Immunisierung eingesetzt wird.
- 7. Verwendung eines Antikörpers nach einem der Ansprüche 1-4 in einem Nachweisverfahren für ein, einen Histidin-Anteil aufweisendes Fusionspolypeptid.
- 8. Verwendung nach Anspruch 7, wobei das Nachweisverfahren ein Western-Blot, ein ELISA, eine Immunfluoreszenz oder eine Immunpräzipitation ist.

K 2094

Zusammenfassung

Antikörper gegen ein, einen Histidin-Anteil aufweisendes Fusionspolypeptid

Die vorliegende Erfindung betrifft Antikörper gegen ein, einen Histidin-Anteil aufweisendes Fusionspolypeptid, Verfahren zu ihrer Herstellung und ihre Verwendung.