FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE

Exercise 6: Inference in First Order Logic – Problems Adrian Kulmburg

Winter Semester 2022/23

Problem 6.1: The man in the painting

(*The following puzzle appears in* **russel** *question* 9.11.) A man stands in front of a painting and says the following:

Brothers and sisters have I none, but that man's father is my father's son.

What is the relationship between the man in the painting and the speaker? Use the predicates

Male(x) : x is male.

Father(x, y): x is the father of y.

Son(x, y): x is a son of y.

Parent(x, y): x is a parent of y.

Child(x, y) : x is a child of y.

Sibling(x, y): x is a sibling of y

and the knowledge

• A sibling is another child of one's parents.

$$\forall x, y \ Sibling(x, y) \Leftrightarrow x \neq y \land \exists p \ Parent(p, x) \land Parent(p, y)$$

• Parent and child are inverse relations.

$$\forall p, c \ Parent(p, c) \Leftrightarrow Child(c, p)$$

to solve the riddle with first-order logic.

Problem 6.1.1: Define the rule which relates *son*, *child*, and *male*. Define also the rule which relates *father* and *parent*.

Problem 6.1.2: Using the constants Me for the speaker and That for the person depicted in the painting, formalise the sentences regarding the sexes of the people in the puzzle.

Problem 6.1.3: Formalise the sentences "Brothers and sisters have I none" and "That man's father is my father's son" in first-order logic.

Problem 6.1.4: Solve this puzzle informally and decide what is the relation between the man in the painting and the speaker.

Problem 6.1.5: Using the resolution technique for first-order logic, prove your answer. You can use the two diagrams on the next page to structure your proof.

·
7.
\downarrow
$\neg Parent(Me, That)$
$Son(F_1, F_2)$
*
<u> </u>
→
\
→
<u> </u>
, <u>, , , , , , , , , , , , , , , , , , </u>
<u> </u>
$oxed{Parent(Me, That)}$

Problem 6.2: Backward chaining

(The following exercise is taken from russel Question 9.10.) Suppose you are given the following axioms:

- 1. $0 \le 3$
- 2. $7 \le 9$
- 3. $\forall x \quad x \leq x$
- 4. $\forall x \quad x \leq x + 0$
- 5. $\forall x \quad x + 0 \le x$
- 6. $\forall x, y \quad x + y \le y + x$
- 7. $\forall w, x, y, z \quad w \leq y \land x \leq z \implies w + x \leq y + z$
- 8. $\forall x, y, z \quad x \leq y \land y \leq z \implies x \leq z$.

Give a backward-chaining proof of the sentence $7 \le 3+9$. (Be sure, of course, to use only the axioms given here, not anything else you may know about arithmetic.) Show only the steps that lead to success, not the irrelevant steps.