1 Prendre un bon départ

1.1 Au collège

1.2 Valeurs remarquables

Quelle que soit la valeur de *x*, on a :

1.3 Conversion d'angle

La mesure d'un angle en radian et sa mesure en degrés sont proportionnelles .

Mesure en degrés				
Mesure en radians				

1.4 Fonctions sinus et cosinus

La fonction **cosinus**, notée cos, est la fonction définie sur \mathbb{R} par : $x \longmapsto \cos(x)$. La fonction **sinus**, notée sin, est la fonction définie sur \mathbb{R} par : $x \longmapsto \sin(x)$.

Activité sur GeoGebra

On appelle ces courbes des sinusoïdes

Observation graphique	Vocabulaire correspondant	Écriture algébrique	Généralisation
la courbe de la fonction sinus est	la fonction sinus		
la courbe de la fonction cosinus est	la fonction cosinus est		
chacune des courbes est invariante par translation de vecteur	les fonctions sinus et cosinus sont		

Remarque: En pratique, **LA** période d'une fonction est un nombre strictement positif le plus petit possible.

SF1 Savoir exploiter la périodicité et la parité d'une fonction

Soit u, une fonction définie sur \mathbb{R} , π -périodique et paire. On a représenté cette fonction sur l'intervalle $\left[0; \frac{\pi}{2}\right]$.

Compléter cette représentation graphique sur $\left[-\frac{3\pi}{2}; \frac{3\pi}{2}\right]$.

SF2 Savoir étudier la périodicité et la parité d'une fonction

1. La courbe représentative \mathscr{C}_f de la fonction f définie sur \mathbb{R} par : $f(x) = 1 + 2\cos x$ est tracée ci-dessous sur l'intervalle $[0; \pi]$ dans le plan muni d'un repère orthogonal.

2

- **a.** Étudier la parité de f puis compléter le graphique à l'aide de cette information.
- **b.** Étudier la périodicité de f puis compléter le graphique à l'aide de cette information.
- **2.** Même travail avec la courbe \mathcal{C}_g représentant la fonction g définie sur \mathbb{R} par : $g(x) = \sin(x)\cos(x)$.
- **3.** Même travail avec la courbe \mathcal{C}_h représentant la fonction h définie sur \mathbb{R} par : $h(x) = 1 \cos(2x)$.

SF3 Savoir reconnaître graphiquement la périodicité et la parité d'une fonction

Associer à chaque courbe l'expression de la fonction qu'elle représente.

$$f(x) = \sin\left(\frac{x}{2}\right)$$

$$g(x) = 0,5\sin(4x)$$

$$h(x) = \sin(4x)$$

$$k(x) = \cos(\pi x)$$

2 Equations et inéquations trigonométriques

SF4 Savoir résoudre une équation trigonométrique

Résoudre les équations suivantes sur $\left]-\pi\,;\,\pi\right]$:

1.
$$\sin(x) = -\frac{\sqrt{2}}{2}$$

2.
$$2\sin(x) - 1 = 0$$

3.
$$(\cos^2(x)) = \frac{3}{4}$$

SF5 Savoir résoudre une inéquation trigonométrique

Résoudre les inéquations suivantes sur $]-\pi;\pi]$:

1.
$$2\sin(x) - \sqrt{2} \ge 0$$

2.
$$2\sqrt{3}\cos(x) \le -3$$

3 Étude de fonctions trigonométriques

On admet que les fonctions sinus et cosinus sont dérivables sur \mathbb{R} .

	Condition
$[\sin x]' =$	
$[\cos x]' =$	

Remarque - Le calcul des primitives se fera par lecture inverse du tableau des dérivées.

• Par lecture directe sur le cercle trigonométrique, on obtient les **tableaux de signe** des fonction cos et sin :

x	$-\pi$	π
signe de sin <i>x</i>		

x	$-\pi$	π
signe de cos x		

SF6 Savoir déterminer le nombre de solutions d'une équation

Préciser si l'affirmation suivante est vraie ou fausse :

"l'équation $x = \cos x$ admet une unique solution dans l'intervalle $\left[0; \frac{\pi}{2}\right]$ ".

• Les **variations** des fonctions cos et sin s'obtiennent soit par lecture directe sur le cercle trigonométrique, soit par le signe de la dérivée :

x	$-\pi$	π
variations de sin		

x	$-\pi$	π
variations de cos		

SF7 Savoir étudier les variations d'une fonction trigonométrique

Soit la fonction f définie sur $[0; \pi]$ par : $f(x) = (1 - \cos x) \sin x$.

- 1. Montrer que $f'(x) = (1 + 2\cos x)(1 \cos x)$.
- **2.** En déduire le sens de variation de f.

Problème de synthèse

Sur la figure ci-contre :

- A est un point donné du cercle \mathscr{C} de centre O et de rayon 1;
- B et C sont deux points variables du cercle $\mathcal C$ tels que ABC soit isocèle en A;
- *H* est le pied de la hauteur issue de *A*.

On note $x = \widehat{HOB}$ avec x en radian et $x \in \left[0; \frac{\pi}{2}\right]$.

- **1. a.** Exprimer BC et AH en fonction de $\sin(x)$ et de $\cos(x)$.
 - **b.** En déduire, en fonction de x, l'aire S(x) du triangle ABC, en unité d'aire.
- **2. a.** Montrer que pour tout réel x de $\left[0; \frac{\pi}{2}\right]$ on a : $S'(x) = (1 + \cos x)(2\cos x 1)$.
 - **b.** Étudier le signe de S'(x) puis dresser le tableau de variation de S.
 - **c.** Pour quelle valeur de *x* l'aire du triangle *ABC* est-elle maximale? Indiquer l'aire maximale. Donner alors la nature du triangle *ABC*.

