Operating System Fundamentals Exam-26/10

closed Book exam , Total time is 60 minutes

* Required
1
Please Write Your Name *
Abdelrahman Salah Bakry Khallaf
2
Please choose your Track *
C Enterprise & Web Applications Development-Java
Native Mobile Applications Development
Web & User Interface Development
Cross Platform Mobile Applications Development
3 By using the virtual memory, the logical address space can be much larger than physical
address space * (1 Point)
True
○ False
4
The System calls are calling for hardware interrupts * (1 Point)
True
False
5
Bootstrap program is loaded after power-up or reboot * (1 Point)
True
() False
6 Any process may pass data to other process * (1 Point)
Any process may pass data to other process * (1 Point)
True
○ False

Open(Ni) – as a File operation- means: move the content of entry Ni in memory to directory structure on disk * (1 Point)
○ True
False
8
The one program running at all times on the computer is the kernel * (1 Point)
True
○ False
9
Cloud computing can be defined as a new style of computing in which dynamically scalable and virtualized resources are provided as a network service * (1 Point)
True
False
10
Operating System Protection refers to a mechanism for controlling access by programs, or users to system resources * (1 Point)
True
False
11
The user program deals with logical addresses; it never sees the real physical addresses * (1 Point)
True
False
12
Process is a passive entity * (1 Point)
○ True
False
13
We can describe the Process Control Block (PCB) as: * (1 Point)
It is just using by operating system designers for design purpose

A way to transfer a process between different types of operating systems

Each process is represented in the operating system by a PCB
type of addressing
14
Interrupt transfers control to the interrupt subroutine (subprogram) generally, through the: * (1 Point)
✓ Interrupt vector
Interrupt service routine.
Interrupt sector.
Interrupt section
15
Device Queue is: * (1 Point)
A set of all processes in the system
A set of all processes residing in main memory, ready and waiting to execute.
A set of processes waiting for an I/O device.
A set of terminated processes
16
One of the scheduling optimization ways is minimizing: * (1 Point)
Turnaround time of each process.
Average waiting time of processes.
Response time for each process.
✓ All of the above.
17
All the following are directory operations except: * (1 Point)
Read from a File.
Search for a file.
✓ Delete a file.
✓ Rename a file
18
Client-Server system is a type of: * (1 Point)
Real Time systems
Desktop Systems
Clustered Systems
✓ Distributed System

In memory management, compaction is an operation to reduce: * (1 Point)
☐ Internal Fragmentation
External Fragmentation
Overhead allocation problem
None of the above
20
Traps or exceptions are happening because: * (1 Point)
Error, division by zero or invalid memory access
A process need to call an API of its operating system
A process communicates another process
All of the above
21
The types of addressing in a computer system: * (1 Point)
Physical address
Real address
✓ Logical address
None of the above
22
The base register is a register which include: * (1 Point)
The first physical address of the currently running program
The first logical address of the currently running program
The first physical address of the finished program
The first logical address of a waiting program
The types of deployment models of cloud – way of access to the cloud- are: * (1 Point)
Private
Public
Community
Hybrid
24
24 Select the file access methods from the following:
* (1 Point)
Random Access

~	Sequential Access
~	Direct Access
	None of the above
	25
	The Deadlock can arise if the following conditions hold simultaneously: * (1 Point)
~	Mutual Exclusion
~	Hold and wait
~	Circular wait
	No preemption resources
	26
	For any modern time-sharing operating system, select the common available <u>process</u> operations which may be managed: * (1 Point)
~	Creation/termination
	Memory compaction
	Open/close file
	Going to trap module
	27
	Select the most appropriate statement to describe the relations between a child process and its parent process: * (1 Point)
~	OS does not allow a child process to continue after termination of its parent.
	OS allows a child process to continue after termination of its parent.
	OS allows a child process to be created without parent process.
	There is no relation between a child process and its parent process.
	28
	The Dispatch latency is: * (1 Point)
	Time to get a process from ready queue to be running in CPU.
~	Time it takes for the dispatcher to stop one process and start another running.
	Time to remove all the processes from ready queue.
	None of the above.
	29
	Select the advantages of virtual machines from the following: * (1 Point)
~	Run operating systems where the physical hardware is unavailable
~	Emulate more machines than are physically available
	Enhance the memory management performance

✓ Run legacy systems
30
Any process may be at one of the following states: * (1 Point)
Ready
Running
Interrupting
✓ Waiting
31
Select the file allocation Methods from the following: * (1 Point)
Contiguous Allocation
✓ Linked Allocation
✓ Indexed Allocation
Discrete Allocation
32
Multi-tasking system is a: * (1 Point)
Multi-programmed batch system
✓ Time-Sharing system
Simple Batch system
None of the above
33
Ready Queue is: * (1 Point)
A set of all processes in the system
A set of all processes residing in main memory, ready and waiting to execute.
A set of processes waiting for an I/O device.
A set of terminated processes
34
The Deadlock problem is: * (1 Point)
A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the same set
Any number of blocked processes more than 2 processes
More than two processes wait I/O operations
None of the above
35

Select which job to be putting into ready queue
Select which job to be running next.
Release all processes from Operating System.
All of the above
36
The process which spend most of its time doing I/O requests is called: * (1 Point)
CPU-Bound Process
Active Process.
Passive Process.
✓ I/O-Bound Process
37
Select the system calls categories from the following: * (1 Point)
File management
Device Management
✓ Process control
✓ Hardware maintenance
Communications
38
Some of the main reasons of processes cooperation are: * (1 Point)
Data sharing.
Modularity.
Speedup the performance.
All of the above.
39
How to satisfy a request of size n from a list of free holes in main memory- in Dynamic Storage-Allocation technique : * (1 Point)
First-fit
Best-fit
Worst-fit
✓ All of the above.
40
The main function of the process dispatcher: * (1 Point)
Gives control of the CPU to the selected process to be run by the short-term scheduler.
Takes control of the CPU from the selected process to be run by the short-term scheduler.
Release all the processes from ready queue.

None of the above.	
41	
The requirements for any process are: * (1 Point)	
✓ CPU Burst time	
Size of needed memory	
✓ The needed I/O devices	
✓ The needed files	
The meaning of preemptive CPU scheduling schema is: * (1 Point)	
Waiting for another process.	
Bring a process from ready queue.	
 Process is releasing the CPU before finishing its execution to execute another proces 	
None of the above.	
Note of the above.	
43	
The advantages of Multi-processing system: * (1 Point)	
Increase throughput	
☐ Increase reliability	
If CPU fail, other CPU's pick up work	
✓ All of the above	
44 Some of Scheduling Algorithms are: * (1 Point)	
First Come First Serviced.	
ldeal Job First.	
Priority.	
Round Robin.	
45	
The data file types are: * (1 Point)	
, , ,	
Numeric	
Character	
Binary	
✓ All of the above	

46

P3 P4	8.0	2	2
P3 P4	8.0	2	2
P3 P4	8.0	2	2
P3	8.0	2	2
P3			
	7.0	6	4
P1 P2	5.0	8	1
Process	Arrival Time	Burst Time	Priority
Process P1	Arrival Time	Burst Time	Priority 5
/4.			
1/4.			
P4	8.0	2	2
P2 P3	5.0 7.0	8	1 4
P1	0.0	7	5
ning with a CPU	ollowing information abo I in an Operating System: "S scheduling algorithm, t		
			h:-h h - h - h -
otection			
cation.			
elete.			
pe.			
nich of the following 1 Point)	ing are file attributes:		

✓ Logical address space can therefore be much larger than physical address space

Allows address spaces to be shared by several processes

In case of using $\mbox{{\bf preemptive Priority}}$ scheduling algorithm, the waiting time for process P3 is:

* (1 Point)

Process	Arrival Time	Burst Time	Priority
P1	0.0	7	5
P2	5.0	8	1
P3	7.0	6	4
P4	8.0	2	2

\bigcirc	8

O 7

15

O 17

51

In case of using **Round Robin** scheduling algorithm (with quantum 5), the process P4 ends its

* (1 Point)

Process	Arrival Time	Burst Time	Priority
P1	0.0	7	5
P2	5.0	8	1
P3	7.0	6	4
P4	8.0	2	2

_	
()	10

19.0

17.0

25.0

In case of using **preemptive Shortest Job First (SJF)** scheduling, the response time for processes P1, P2, P3, P4 are:

* (1 Point)

Process	Arrival Time	Burst Time	Priority
P1	0.0	7	5
P2	5.0	8	1
P3	7.0	6	4
P4	8.0	2	2

0, 15, 0, 0

0, 10, 0, 0

O 5, 10, 15, 20

0, 5, 3, 7

Never give out your password. Report abuse

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the privacy or security practices of its customers, including those of this form owner. Never give out your password.

Powered by Microsoft Forms | The owner of this form has not provided a privacy statement as to how they will use your response data. Do not provide personal or sensitive information. | Terms of use