Formulas

Ecuaciones Horarias

$$x(t) = x_o + V_o \cdot t + rac{1}{2} \cdot a \cdot t^2$$
 $v(t) = V_o + a \cdot t$

Recordar

$$ec{a}=rac{dec{v}}{dt}$$
 $ec{v}=rac{dec{r}}{dt}$

IMPORTANTE

- ullet Para poder obtener la posición $ec{r}_{(t)}$ en un determinado instante t, a partir de $ec{v}_{(t)}$ debo tener la una posicion inicial
 - (\vec{r}_o) de referencia, de lo contrario no se puede.
- Para poder obtener la velocidad $\vec{v}_{(t)}$ en un determinado instante t a partir de $\vec{a}_{(t)}$ debo tener la una velocidad inicial
 - (\vec{v}_o) de referencia, de lo contrario no se puede

Otras formulas

$$V_f^2 = V_o^2 + 2 \cdot a \cdot x$$

Ecuaciones Angulares

Posicion Angular

 $\theta(t)$ es el ángulo con respecto del tiempo

Velocidad Angular

$$w = \frac{d\theta(t)}{dt}$$

Aceleracion Angular

$$\gamma = rac{d^2 heta(t)}{dt^2}$$

Calcular la posicion angular a partir de velocidad angular en funcion del tiempo

Dada la posicion angular inicial, se puede integrar la velocidad angular para obtener $\theta(t)$

Relaciones importantes

Velocidad

$$ec{v} = ec{\omega} imes ec{r}$$
 $|ec{v}| = |ec{\omega}| imes |ec{r}| \longleftrightarrow v = \omega \cdot r$

- ullet v es la velocidad tangencial.
- ullet w es la velocidad angular.
- ullet es el radio de curvatura o posicion de la particula.

Aceleracion

$$egin{aligned} ec{a} &= \left(\gamma \cdot |r|
ight) \hat{e}_r - \left(\omega^2 \cdot |r|
ight) \hat{e}_n \ ec{a}_t &= \gamma \cdot |r| \, \hat{e}_r \ ec{a}_c &= - \, \omega^2 \cdot |r| \, \hat{e}_n \end{aligned}$$

- \vec{a}_t aceleracion tangencial
- \hat{e}_r versor radial
- ullet $ec{a}_n$ aceleracion centripeta
- ullet \hat{e}_r versor transversal

Aceleracion en Coordenadas Cartesianas

$$ec{a} = ec{\gamma} imes ec{r} + ec{\omega} imes ec{\omega} imes ec{r}$$

• Al hacer el producto vectorial obtengo el vector aceleracion en coordenadas cartesianas.