Problem

In quadrilateral ABCD, AC is the angle bisector of $\angle BAD$. Take E, a point on CD. Connect BE. BE meets AC at F. Extend DF to meet BC at G. Prove that $\angle GAC = \angle EAC$.

Solution

Draw GQ//CA to meet BE, BA at P and Q, respectively. Draw ES//CA to meet DG, DA at R and S, respectively. Connect QS to meet AC at M.

Since $\angle QAM = \angle SAM, GQ//CA//ES$,

By the angle bisector theorem, $\frac{AQ}{AS} = \frac{QM}{MS}$ We know that $\triangle PGF \sim \triangle ERF \cdot \frac{PE}{FE} = \frac{GP}{ER} = \frac{GF}{FR}$ We also know that in trapezoid $GQSR, \frac{QM}{MS} = \frac{GF}{FR}$ Thus $\frac{AQ}{AS} = \frac{QM}{MS} = \frac{PE}{FE} = \frac{GP}{ER}$

We know that $\triangle BGP \sim \triangle BCF \cdot \frac{GP}{CF} = \frac{BG}{BC}$

We know that $\triangle BGQ \sim \triangle BCA \cdot \frac{QG}{CA} = \frac{BG}{BC}$

From (5) and (6), we have $\frac{GP}{CF} = \frac{QG}{CA} \Rightarrow \frac{GP}{QG} = \frac{CF}{CA}$ We know that $\triangle DFC \sim \triangle DRE. \frac{CF}{ER} = \frac{CD}{ED}$

We know that $\triangle DAC \sim \triangle DSE.\frac{CA}{ES} = \frac{CD}{ED}$

Combining (8) and (9),
$$\frac{CF}{ER} = \frac{CD}{ED} = \frac{CA}{ES} \Rightarrow \frac{CF}{CA} = \frac{ER}{ES}$$

Combining (7) and (10), $\frac{GP}{GQ} = \frac{CF}{CA} = \frac{ER}{ES} \Rightarrow \frac{GP}{GQ} = \frac{ER}{ES}$
 $\Rightarrow \frac{GP}{ER} = \frac{GQ}{ES}$
Combining (4) and (11), $\frac{AQ}{AS} = \frac{GQ}{ES}$.

Since AC//QG, $\angle BAC = \angle BQG$.

Since AC//SE, $\angle DAC = \angle DSE$. Since $\angle BAC = \angle DAC$, $\angle BQG = \angle DSE$. $\angle AQG = 180^{\circ} - \angle BQG = 180^{\circ} - \angle DSE = \angle ASE$, That is, $\angle AQG = \angle ASE$. Therefore, $\triangle AQG \sim \triangle ASE \implies \angle QAG = \angle SAE$. So $\angle GAC = \angle EAC$.

Chapter 6 Draw the Auxiliary Lines with Circles

1. Connect the center of the circle and points on the circumference B is the tangent point and O is the center. Connect OB. We have $OB \perp AB$.

Theorem 6.1. The radius of a circle is only perpendicular to a tangent line at the point of tangency.

Theorem 6.2. If a line is tangent to a circle, it is perpendicular to a radius at the point of tangency.

Theorem 6.3. A line perpendicular to a radius at a point on the circle is tangent to the circle at that point.

- Theorem 6.4. A line perpendicular to a tangent line at the point of tangency with a circle contains the center of the circle.
- Theorem 6.5. A line perpendicular to a chord of a circle and containing the center of the circle, bisects the chord and its major and minor arcs.
- Theorem 6.6. The perpendicular bisector of a chord of a circle contains the center of the circle.