

Instruction Manual

Variable Speed Control

P.O. Box 10 5000 W. 106th Street Zionsville, Indiana 46077 Phone (317) 873-5211 Fax (317) 873-1105 www.dartcontrols.com

LT125G (0514) A-5-3261J

TABLE OF CONTENTS

WARRANTY	1
INTRODUCTION	2
CONTROL FEATURES	2
125D SERIES HEATSINK DIMENSIONS	2
MOUNTING PROCEDURE	3
MODEL SELECTION	3
WIRING PROCEDURE & FUSING	3
TERMINAL STRIP WIRING INSTRUCTIONS	3
123D / 125D HOOK-UP DIAGRAM	4
CONTROL START-UP	4
TRIMPOT ADJUSTMENT CHART & PROCEDURE	5
CONTROL MODIFICATIONS	6
TWO SPEED OPERATION	6
DYNAMIC BRAKING	6
TACH FEEDBACK/FOLLOWER	6
INHIBIT FUNCTIONS	6
SPEEDPOT KIT ASSEMBLY	7
OPTION DESCRIPTION	7-10
-1 / -2A OPTIONS	7
-5 / -7 OPTIONS	8-9
-15B / -K OPTIONS / -29B OPTIONS	9
-55H / -56H OPTION	10
IN CASE OF DIFFICULTY	11
SPECIFICATIONS	11
TYPICAL MOTOR CURRENTS	12
125D SERIES PARTS PLACEMENT & LIST	12
125D SERIES SCHEMATIC	13
PRODUCT LINE	BACK COVER

WARRANTY

Dart Controls, Inc. (DCI) warrants its products to be free from defects in material and workmanship. The exclusive remedy for this warranty is DCI factory replacement of any part or parts of such product which shall within 12 months after delivery to the purchaser be returned to DCI factory with all transportation charges prepaid and which DCI determines to its satisfaction to be defective. This warranty shall not extend to defects in assembly by other than DCI or to any article which has been repaired or altered by other than DCI or to any article which DCI determines has been subjected to improper use. DCI assumes no responsibility for the design characteristics of any unit or its operation in any circuit or assembly. This warranty is in lieu of all other warranties, express or implied; all other liabilities or obligations on the part of DCI, including consequential damages, are hereby expressly excluded.

NOTE: Carefully check the control for shipping damage. Report any damage to the carrier immediately. Do not attempt to operate the drive if visible damage is evident to either the circuit or to the electronic components.

All information contained in this manual is intended to be correct, however information and data in this manual are subject to change without notice. DCI makes no warranty of any kind with regard to this information or data. Further, DCI is not responsible for any omissions or errors or consequential damage caused by the user of the product. DCI reserves the right to make manufacturing changes which may not be included in this manual.

WARNING

Improper installation or operation of this control may cause injury to personnel or control failure. The control must be installed in accordance with local, state, and national safety codes. Make certain that the power supply is disconnected before attempting to service or remove any components!!! If the power disconnect point is out of sight, lock it in disconnected position and tag to prevent unexpected application of power. Only a qualified electrician or service personnel should perform any electrical troubleshooting or maintenance. At no time should circuit continuity be checked by shorting terminals with a screwdriver or other metal device.

INTRODUCTION

- The 123D variable speed control is available in a range of 150mA through 5.5 ADC (or up to 10 ADC if using a suitable external heatsink) at 24 through 36 VAC input.
- The 125D variable speed control is available in a range of 150mA through 1/4 H.P. at 120/240 VAC input.
- The 125DV variable speed control is available in a range of 1/8 through 1 H.P. at 120/240 VAC input. With
 -HS(125D) or suitable external heatsink (where 125D extrusion temperature does not exceed 70° C.), maximum
 U.L. rating can be increased to 2 H.P. and 10 Amps DC.
- The control is designed for DC Permanent Magnet, Shunt Wound, and some Universal (AC/DC) motors in the above horsepower ranges.
- Incoming AC voltage is converted to adjustable full wave rectified DC voltage to operate the DC motor. Also, a
 full wave field voltage is provided for shunt wound motors (see page 4 for voltages).
- The control incorporates transient voltage protection with adjustable current limit which fits into a compact
 package. It features adjustable minimum and maximum speeds along with adjustable IR compensation and an
 inhibit function.
- Options are available to change ACCEL/DECEL time (see page 8, -15 / -K options).
- cULus Recognized under, U.L. File # E78180.

CONTROL FEATURES

MINIMUM SPEED - Allows adjustment of the motor speed when the speedpot is set at minimum (CCW). This permits the user to eliminate "Deadband" on the main speed control, permitting zero calibration. Clockwise rotation of "MIN" trimpot increases speed.

MAX SPEED (Maximum Speed) - Allows adjustment of the motor speed when the speedpot is set at maximum (CW). This permits the user to eliminate the top end "Deadband", which will provide full speed at maximum rotation. Rotation of the "MAX" trimpot in the clockwise direction increases the maximum motor speed.

IR COMP (Speed Regulation) - This allows for adjustment of the circuitry that controls the speed regulation of the motor. The circuitry controls armature speed by changing the armature voltage to compensate for increased or decreased motor loading. Clockwise rotation of the "IR COMP" trimpot will increase compensation.

CUR. LIM. (Current Limit) - Provides protection from excessive armature current by limiting the maximum armature current the control can provide. This enables adjustment of the maximum torque the motor can deliver. Torque adjustment (Cur. Lim.) is preset at 125% of rated motor torque (current) based on horsepower. Clockwise rotation of the "CUR. LIM." trimpot increases the torque (current) the control will provide.

INHIBIT TERMINAL PIN - Allows the user a choice of stopping and starting hard (fast) or stopping hard with a soft start through an adjustable acceleration ramp, without breaking the AC lines (see page 6).

TERMINAL STRIP - Allows for connection of AC lines, motor leads, motor field (if needed), and speed potentiometer

125D SERIES HEATSINK DIMENSIONS

AUXILIARY HEATSINK -HS(125D)

5.625

STANDARD HEATSINK

MOUNTING PROCEDURE

- 1. Eight 3/16" wide slots are provided for control mounting.
- 2. Control chassis can be used as a template.
- 3. Use standard hardware to mount.

CAUTION:

DO NOT MOUNT WHERE AMBIENT TEMPERATURE IS OUTSIDE THE RANGE OF -10° C (15° F) TO 45° C (115° F)

MODEL SELECTION

HORSEPOWER	INPUT VOLTAGE	OUTPUT VOLTAGE	OUTPUT* AMPS DC	MODEL NUMBER
150mA thru 5.5 A	24 to 36 VAC	0-20 / 0-30 VDC	5.5A	123D-C*
1/50 thru 1/8	120/240 VAC	0-90 / 0-180 VDC	1.2A	125D-12C
1/8 thru 1	120/240 VAC	0-90 / 0-180 VDC	5.5A	125DV-C*

NOTE: * With -HS(125D) or suitable external heatsink (where 125D extrusion temperature does not exceed 70° C.), maximum U.L. for Output Amps can be increased to 10 Amps D.C.

WIRING PROCEDURE & FUSING

- 1. Size all wires which carry armature or line currents **AS SPECIFIED BY NATIONAL**, **STATE**, **AND/OR LOCAL CODES**. All other wires may be # 18 AWG or smaller as permitted by local code.
- 2. Separate control wires from the armature and AC lines when routed in conduit or in wire trays.
- 3. Fusing The motor and control are protected against overloads by the current limit circuit and a customer installed fuse in the AC line. THIS PROTECTION ALREADY MAY BE PROVIDED BY THE CUSTOMER WITH CIRCUIT BREAKERS OR FUSES IN BOTH MAIN LINES. IF NOT:

FOR 120 VAC INPUT - fuse protection should be added by the customer in AC Line 1 (see following chart)

FOR 240 VAC INPUT - fuse protection should be added by the customer in AC Line 1 and Line 2 (see following chart)

FUSING ADDED BY CUSTOMER (Bussman ABC or Little Fuse 314 Series ceramic fuses)

HORSEPOWER	120 VAC INPUT	240 VAC INPUT
1/50	2 AMP	
1/20	2 AMP	1 AMP
1/8	3 AMP	2 AMP
1/4	4 AMP	3 AMP
1/3	6 AMP	3 AMP
1/2	8 AMP	4 AMP
3/4	12 AMP	6 AMP
1.0	15 AMP	8 AMP
1.5		12 AMP
2.0		15 AMP

NOTE: To determine fusing for the 123D-C Series control (24 to 36 VAC input), use 200% of Full Load Current.

TERMINAL STRIP WIRING INSTRUCTIONS

The 125D Series uses an 8 position terminal strip for ease of connection.

P1-1,2 (AC or L) 120 VAC - Connect incoming hot AC or L (black wire) to P1-1 and neutral AC or N (white wire) to P1-2. Connect ground (green wire) to CHASSIS of control.

240 VAC - Connect both hot sides (L & N), one to P1-1 and one to P1-2. Connect ground wire to CHASSIS of control.

P1-3 (+Arm) Connect to PLUS (+) Armature wire on motor. 0-90 VDC for 120 VAC input or 0-180 VDC for 240 VAC input. See "SPECIFICATIONS" for output rating.

P1-4 (-Arm/-Field) Connects to MINUS (-) Armature wire on motor and, if necessary, connect MINUS (-) Field wire of SHUNT WOUND MOTOR.

P1-5

(+Field) DO NOT use for Permanent Magnet Motor. This supplies +Field voltage for a SHUNT WOUND MOTOR (refer to field voltage table). For motors with dual voltage field (ie. 50/100V or 100/200V), make sure highest value is connected.

FIELD VOLTAGE TABLE								
VAC INPUT 24 36 120 240								
VDC FIELD 20 30 100 200								

P1-6

(Speedpot Hi) Connects to high side (white wire) of Speedpot (CW end). This is internal +12 volts. For start-stop applications, the connection between this terminal and Speedpot HI can be opened and closed by a SPST switch. INPUT MUST NOT BE GROUNDED!

P1-7

(Speedpot Wiper) Connects to wiper (red wire) of Speedpot (center lead). For Voltage Follower applications, this INPUT MUST NOT BE GREATER THAN +12V MAXIMUM AND MUST NOT BE **GROUNDED!**

P1-8

Connects to Low side (orange wire) of 5K Speedpot (CCW end). This input is raised and (Speedpot Lo) lowered by the MIN. trimpot (5K). Electronic speed input (voltage follower) may be referenced to Speedpot LO if the MIN trimpot adjustments are to be active. Otherwise, inputs may be referenced to -ARM, which will bypass the MIN trimpot. INPUT MUST NOT BE GROUNDED!

Warning:

- Be sure the control housing is properly grounded.
- Armature connections must not be switched or broken while the control is on. Serious control damage may result.
- For non-speedpot applications, the input connection to the LO, WIPER, and HI terminals must not be grounded! Serious control damage may result from a grounded input.

123D/125D HOOK-UP DIAGRAM

Warning:

Do not attempt to perform Hi-pot test across AC lines with control in circuit. This will result in immediate or long term damage to the control.

CONTROL START-UP

WARNING: ALL POWER MUST BE TURNED OFF BEFORE PROCEEDING!

- 1. Recheck all wiring. Accidental grounds, loose or pinched wires on armature or speedpot wires may damage the control power is applied.
- 2. Check to see that incoming service is of correct voltage.
- 3. Turn speedpot to zero (fully CCW).
- 4. Turn power on, and advance speedpot while observing motor. Power must be off before step 5 can be accomplished!
- 5. If motor rotation is incorrect, turn power off at external disconnect and reverse +ARM and -ARM connections.
- 6. Check for satisfactory operation throughout the speed range.
- 7. If operation is satisfactory, no readjustments are needed.
- 8. If instability or surging is observed, or if maximum speed is higher than desired, see "TRIMPOT ADJUSTMENT CHART " on
- 9. For other problems, consult page 10, "IN CASE OF DIFFICULTY".

TRIMPOT ADJUSTMENT CHART & PROCEDURE

C.L.	I.R.	MAX	MIN	
$\overline{\bigcirc}$			IVIIIV	HP
				1/50
				1/20
				1/8
				1/8
				1/4
				1/3
				1/2
				3/4*
				1.0*
				d ±10% of the normal line voltage ments are permanent; periodic re-

Settings a in conjunc	pply whe	en using the adj	g a 5K ohr ustment p	n master s procedure	speedpot. This chart is used and is approximate.
HP	C.L.	I.R.	MAX	MIN	
1/20					125D-12C
1/8					240 VAC input;
1/4					0-180 VDC output
1/4					
1/3					
1/2					125DV-C
3/4*					240 VAC input;
1.0*					0-180 VDC output
1.5*					
2.0*					

^{*} NOTE: ADDITIONAL CUSTOMER HEATSINK REQUIRED FOR 125DV-C (120 VAC INPUT - GREATER THAN 1/2 H.P. MOTORS) AND (240 VAC INPUT - GREATER THAN 1 H.P. MOTORS). 125 EXTRUSION TEMPERATURES SHOULD NOT EXCEED 70 DEGREES C.

NOTE: FOR DETERMINING TRIMPOT SETTINGS FOR THE 123D-C SERIES, SEE TRIMPOT SETTINGS PROCEDURE BELOW.

TRIMPOT	FUNCTION	ADJUSTMENT
MIN.	Sets minimum motor speed when speedpot is set at zero. CW rotation will increase minimum motor speed.	 Set Speedpot to zero (fully CCW). Rotate MIN trimpot CW until motor starts to rotate. Slowly rotate MIN trimpot CCW until motor stops. NOTE: If motor rotation is desired, rotate MIN trimpot CW until desired MIN speed is reached.
IR COMP	Provides a means of improving motor speed regulation in the armature feedback mode. If a slowdown due to load change is of no concern, rotate this trimpot fully CCW.	 Set Speedpot at 50%. Observe motor speed at no load condition. Apply full load to motor. Turn IR COMP trimpot CW to obtain the same motor speed as with no load.
MAX.	Sets maximum motor speed when speedpot is set at maximum (fully CW rotation). CW rotation of MAX trimpot increases maximum motor speed.	 TURN DRIVE POWER OFF!! Connect a DC Voltmeter: + to +ARM, - to -ARM. NOTE: Meter must not be grounded!! Set meter voltage range: (90 VDC for 120 VAC, 180 VDC for 240 VAC). Turn power on. Set Speedpot at 100%. Adjust MAX trimpot to rated motor armature voltage as shown on meter. NOTE: A tachometer or strobe may be used in lieu of a meter. Follow above steps, except adjust MAX trimpot to rated motor base speed indicated by tachometer or strobe.
CUR.LIM.	Limits DC motor armature current (torque) to	1. TURN DRIVE POWER OFF!

is normally not needed.

prevent damage to the motor or control. The current limit is set for the rated motor current. CW rotation of this trimpot increases the armature current (or torque produced).

- 2. Connect a DC Ammeter between A1 on motor and +ARM on control. This is in series with the motor.
- 3. Turn power on.
- 4. Set Speedpot at the 50% position.
- 5. Apply friction braking to motor shaft until motor stalls.
- 6. With motor stalled, set current at 125% of rated motor armature current by adjusting CUR. LIM . trimpot.

CONTROL MODIFICATIONS

TWO SPEED OPERATION

Two pot operation is done using two 10K ohm speed potentiometers in parallel (both HI's to P1-6, both LO's to P1-8). The WIPER is switched using a SPDT switch.

DYNAMIC BRAKING

A DPDT switch is used to inhibit the control and to connect the DBR. Typical values for the DBR (dynamic brake resistor) are 5 ohms for 120V, 10 ohms for 240V (both 35W to 50W). Note that motor horsepower, inertia, and cycle time effect sizing of the DBR. NOTE: This modification cannot be used with any of the -15 options.

TACHOMETER FEEDBACK

Improves speed regulation to $\pm 1/2\%$ of base speed.

TACHOMETER FOLLOWER

Allows control output to follow tachometer voltage.

INHIBIT (USED INDEPENDENTLY)

The customer supplied SPST switch is connected in series between the speedpot HI (P1-6) and the Inhibit pin (P3). To inhibit (stop motor), speedpot HI is closed to the Inhibit pin. To restart, the switch is returned to open. NOTE: The control will stop and start fast.

INHIBIT (USED WITH SPEEDPOT)

The Common of the SPDT switch is connected to control pot HI and is switched between Speedpot Hi and the Inhibit pin (P3). To inhibit (stop motor), speedpot HI is closed to the Inhibit pin. To restart, the switch is returned to Speedpot Hi. NOTE: The control will stop fast and soft start through a fixed acceleration range.

NOTE: Permits starting and stopping of motor without breaking AC lines. In the event of SCR failure or false triggering, the Inhibit circuit will not stop motor.

Always use a shielded wire when connecting to the inhibit terminal. The shield should be connected to -Armature or Common of the control.

SPEEDPOT KIT ASSEMBLY

OPTION DESCRIPTIONS

-1 option Electronic Speedpot Interlock

Field or Factory Installed Available All Models

The -1 adder board connects to the 125 series board through use of a female connector and plastic standoff support.

When incoming AC power to the control is applied, the Electronic Interlock will prevent the motor from starting until the speedpot is first rotated to the zero position and then rotated clockwise toward the set speed.

Also, should the incoming AC power be interrupted for any reason, then restored, the Electronic Interlock will prevent an automatic restart of the motor. To restart, the speedpot must first be rotated to the zero position and then rotated clockwise toward the set speed.

CAUTION: The Electronic Interlock becomes inoperative if SCR failure should occur.

<u>-2A option</u>

Field or Factory Installed Available All Models

Individually Adjustable Linear Accel and Decel

This option plugs into the five position expansion connector on the 125D main board. The -2A option overrides the fixed accel ramp built into the 125D control, providing independently adjustable linear accel and decel from 0.5 to 8.0 seconds. To install, flip over the -2A option board so the printed circuit lines are visible. Align the male connector CN1 (-2A option) with the female connector P2 (125D board) so terminal CN1-1 fits into P2-6, CN1-2 in P2-5, etc. Align the plastic stand-off on the -2A option board with the hole shown on the 125D main board. Once connectors and stand-off are aligned, snap into place. Adjustment of both trimpots is accomplished via the labeled access holes on the back side of the -2A option board. Full CCW rotation equals minimum accel or decel time and full CW rotation equals maximum accel or decel time. Note: Each trimpot operates independently of the other.

-7 option

Isolated 4-20 mA Signal Follower with Auto/Manual Switch

Factory or Field Installed Customer Wired

-5 and -7 option Hookup Procedure

DO NOT USE TRIMPOT CHART TO ADJUST MIN AND MAX TRIMPOTS ON MAIN BOARD. IF ADJUSTMENT IS NEEDED THEN REFER TO THE SETUP PROCEDURE BELOW.

The -5 option is a 4-20 mA isolated signal card that replaces the speedpot to control speed. The 4-20 mA signal input can be either grounded or ungrounded. The board sets on spacers screwed to the pot HI, Wiper, and LO terminals on the main board using long screws. The current source connects to the + and - two position terminal strip (P16-1 and -2) on the -5 option board.

The Linearity trimpot on the -5 option board is set at the factory for proper linearity, however this trimpot may need to be reset after tuning the Max and Min trimpot settings on the control for your specific application. If needed then refer to the setup procedure below.

The -7 option is also a 4-20 mA isolated signal card but it allows the control to be run in either the Manual mode via a speed pot or the Auto mode via the 4-20 mA signal. This option also includes a Balance trimpot which is used to scale the maximum speed in the Manual mode. It is factory set so the maximum speed in Manual mode equals the maximum speed in Auto mode. The Linearity trimpot on the -7 option board is set at the factory for proper linearity, however this trimpot may need to be re-set after tuning the Max and Min trimpot settings on the control or if the Balance trimpot on the -7 must be reset for your specific application. If needed then refer to the setup procedure below.

The following is the recommended procedure to set up the -5/-7 option on the 125/250/500 Series:

- 1) With the 125/250/530 oriented so that trimpots are along the top, adjust Min trimpot to minimum (full CCW) and Max trimpot to 50%. The voltage is set below the typical motor voltage to make certain the drive is NOT in saturation before setting the -5/-7 board saturation point.
- 2) Set the Linearity/gain pot on the -5/-7 full CW. This is a 20 turn pot and you should hear a clicking with each turn when fully up or just count 20 turns.
- 3) Make certain your motor is connected to +/-ARM output of the drive, the AUTO / MAN switch is in AUTO mode for -7 options, and source power for the control is turned on. (Note: For proper tuning this setup is best done on an unloaded motor.)

- 4) With power applied and a voltmeter monitoring motor output Vdc, apply 4mA to -5/-7 board. Check voltmeter reading and adjust the Linearity/gain trimpot, R16, on the -5/-7 board CCW until motor output voltage is less than 0.1Vdc.
- 5) Now apply 20mA to the -5/-7 board and adjust the Max trimpot to a voltage that is 5 volts (15 volts for the 250G series controls) above the final desired max motor voltage output. Adjust the Linearity/gain trimpot on the -5/-7 board CCW until the motor output voltage decreases to the desired max voltage set point.
- 6) Now, apply 4mA to the -5/-7 board again and adjust the Min trimpot to deadband or the desired minimum motor voltage output. The deadband point is where you are at 0Vdc and any further increase of the Min trimpot would result in an output to the motor. Re-apply 20mA to the -5/-7 board and verify max output has not changed. A small adjustment may be needed to the Max trimpot to reset to desired max output.
- 7) Adjust 4-20 input to 12mA. If tuned properly the output voltage of an unloaded motor should be within a few volts of ½ output (based on max output setting above).

-7 option only: With 20mA applied to the -7 in Auto mode, move AUTO/MANUAL switch to MANUAL.

8) In manual mode turn the speedpot full CW, note motor voltage output reading on voltmeter. If not equal to output at 20mA in Auto Mode, adjust the Balance trimpot on the -7 board (CW or CCW) until the same reading is achieved. The motor output Vdc should not change more than 1 Vdc when flipping back and forth between AUTO and MANUAL position.

-15B / -K options

Acceleration Time Ranges

Factory Installed

This option provides the Accel times shown below. The standard Accel time is 0.5 seconds.

<u>-15B OPTION</u> <u>-K OPTION</u>

ACCELERATION TIME 4 seconds 6 seconds

USE STANDARD HOOK-UP

-29B option

Manual Forward-Off-Reverse Switch

Field Installed Only

Permits reversing of motor. This is accomplished using a 4PDT blocked center switch. When switched between the forward/reverse positions, a delay is encountered due to the blocked center position, which protects the control from any voltage that may be at the ARM terminals. The center position is OFF/NEUTRAL.

THE MOTOR MUST COME TO A COMPLETE STOP BEFORE CHANGING DIRECTIONS. IF THE MOTOR DOES NOT COME TO A COMPLETE STOP, SERIOUS DAMAGE TO THE CONTROL MAY RESULT. BYPASS OF THE SWITCH CENTER BLOCK MAY RESULT IN DAMAGE TO THE CONTROL.

NOTE: This option cannot be used on the 123D-C series control.

This option card allows for the use of either a grounded or nongrounded remote DC signal such as 0 to 5 through 0 to 250Vdc. 4-20mA current, or a remote speed pot. The DC input signal type can be selected for voltage (Vin) or current (4-20mA) via the JP2 jumper clip. There is a Hi/Lo range jumper selection that should be set to the (Lo) setting when using a 4-20mA signal or voltage ranges of 0-5 through 0-25Vdc. When using voltage ranges of 0-25 through 0-250 this jumper must be set to (Hi). The GAIN trimpot is used to set full linear output in reference to the input signal range. The output of this remote signal isolation board is a linear signal that is proportional to the remote input signal being supplied.

(FOR SHUNT WOUND MOTOR, SEE PAGE 4 OF MANUAL FOR FIELD CONNECTIONS).

CAUTION: DO NOT use TRIMPOT ADJUSTMENT CHART, Set pots using directions in following SET-UP PROCEDURES.

SETUP PROCEDURE FOR -55H AND -56H OPTIONS

- 1. With NO power to control, connect a DC Voltmeter to control outputs as follows: Meter COMMON to the -ARM terminal, Meter POSITIVE to the +ARM terminal. Select correct meter range (0-90V or 0-180V).
- 2. Preset GAIN pot on the remote signal board fully CCW.
- 3. Place the JP2 jumper clip in the proper position based on the input signal being used.
- 4. Place the P4 jumper clip in the Lo position for 4-20mA signals or voltage signals less than 25Vdc. Place the P4 jumper clip in the Hi position for voltage signals greater than 25Vdc. (NOTE: Never exceed 250Vdc)
- 5. Make sure all connections are properly made per the hookup connection diagram and then apply AC power to the controller.
- 6. Set the remote input signal to its lowest setting. Adjust the MIN trimpot to deadband (the point just before an increase causes an output).
- 7. Apply the maximum remote input signal. Motor should start to run. Adjust the GAIN pot CW until no further increase in control output voltage occurs and then decrease the gain pot slowly until output voltage to the motor drops approximately 5Vdc.
- 8. Set the MAX trimpot on the control to the correct motor voltage.
- 9. Some interaction between trimpots may occur. Recheck the Min trimpot setting and repeat steps 6 through 8 as needed.

-56H option

Isolated Signal Input with Auto / Manual Switch

Factory or Field Installed

NOTE: This option cannot be used on the 123D-C series control.

The -56H option is identical to the -55H option with the added ability to have remote Auto/Manual switching. See -55H for more further

detail.

(FOR SHUNT WOUND MOTOR, SEE PAGE 4 OF MANUAL FOR FIELD CONNECTIONS).

CAUTION: DO NOT use TRIMPOT ADJUSTMENT CHART. Set pots using directions in following SET UP PROCEDURES.

IN CASE OF DIFFICULTY

PROBLEM	POSSIBLE CAUSE(S)	CORRECTIVE ACTION(S)
Motor doesn't operate	- Blown Fuse or Breaker	Replace Fuse or reset breaker
	- Incorrect or no power source	Install proper service
	- Speedpot set at Zero	Adjust Speedpot CW to start
	- Worn motor brushes	Replace brushes
Armature output voltage	- No motor or load connected	Check that motor or load is connected to
cannot be adjusted, output		armature terminals
is a constant DC level	- Speedpot low connection open	Check that speedpot low wire is connected
Motor stalls, or runs very	- Low Voltage	Check that VAC is above 100VAC
slowly with speed control	- Overload Condition	Reduce load or increase motor size and/or
turned fully CW		C.L. setting.
	- Worn motor brushes	Replace brushes
	- MAX SPEED set incorrectly	See ADJUSTMENT PROCEDURE
Motor hunts	- Motor current less than 150Ma	Motor current must be greater than 150mA
		D.C.
	- Too much IR COMP	See ADJUSTMENT PROCEDURE
	- Motor is in current limit	See ADJUSTMENT PROCEDURE
	- Motor speed is above rated speed	Reduce Speed
	- Max set too high	See ADJUSTMENT PROCEDURE
Repeated fuse blowing	- Low Voltage	

If control still will not operate, go to www.dartcontrols.com/support or call (317) 873-5211.

SPECIFICATIONS

AC input voltage	±10% of rated line voltage
Acceleration	
Amps - DC output	
Controller overload capacity	200% for one minute
Current limit trimpot range	
Deceleration	0.5 seconds (standard 125D)
Dimensions and weights:	•
•	

	WIDTH	LENGTH	DEPTH	WEIGHT
ENGLISH	3.625"	4.250"	1.300"	8.00 oz.
METRIC	92mm	108mm	33mm	228 gms.

Drive service factorEfficiency	
Input frequency	50 or 60 Hertz
Max. trimpot speed range	
Nin. trimpot speed range Power devices	
Shunt field voltage	20VDC for 24VAC input; 30VDC for 36VAC input;
	100VDC for 120VAC input; 200VDC for 240VAC input; 1 amp maximum
Speed control	via 5Kohms 2W potentiometer or 0-10VDC isolated signal 50:1
Speed range	5 <u>0</u> :1
Speed regulation	+1% of base speed
Temperature range	
Transient protection	
Trigger	opto-coupler
Type ramp of accel/decel	RC time constant

 $^{^*}$ With -HS(125D) or suitable external heatsink (where 125D extrusion temperature does not exceed 70 $^\circ$ C.), maximum U.L. rating for output amps can be increased to 10 amps D.C.

^{**} not used on the 123D-C series control

TYPICAL MOTOR CURRENTS

Horsepower	1/50	1/20	1/8	1/4	1/3	1/2	3/4	1.0	1.5	2.0
Typical AC Amps (120VAC)	0.50	1.00	2.00	3.50	4.40	6.50	9.30	13.20		
Typical Arm Amps (120VAC)	0.42	0.81	1.60	2.70	3.40	5.00	8.20	10.90		
Typical AC Amps (240VAC)		0.80	1.20	1.80	2.20	3.30	4.80	6.50	9.70	12.90
Typical Arm Amps (240VAC)		0.40	0.60	1.40	1.70	2.50	3.70	5.00	8.20	11.60

125D SERIES PARTS PLACEMENT & LIST

RESISTORS

NEOIO	IUNO
R1	15K 6W
R2	470 Ω
R3	2.7K
R4	2.7K
R5	82K
R6	5K (MIN TRIM)
R7	300K
R8	180K
R9	1.2M
R10	39K
R11	100K
R12	10K
R13	2.2K
	820 Ω
R15	4.7K
R16	470K
R17	1K
R18	100 Ω (I.R. TRIM)
R19	5K (C.L. TRIM)
R20	300K
R21	10K (MAX TRIM)
R22	1K
R23	300K
R24	.01 Ω 5W
R25	91K
R26	1K
R27	390 Ω
R28	390 Ω
R29	5K SPEEDPOT *

ACCEL CHANGES

Replace N.P. cap with polarized cap (see above) -15A ... C8 ... 33uf 16V

-15B ... C8 ... 15uf 25V -15C ... C8 ... 4.7uf 16V - K C8 ... 22uf 16V

125D-12C (1/50 thru 1/8 H.P.) CHANGES:

R24062 Ω 5W

MISCELLANEOUS

11.14	4004 COLID INICIII ATED MIDE
JU1	18GA. SOLID INSULATED WIRE
JU2	18GA. SOLID INSULATED WIRE
PCB	A-4-2033F PRINTED CIRCUIT
P1 (-1 THRU -8)	8 POS. TERMINAL STRIP
P2 (-2 THRU -6)	5 POS. FEMALE CONNECTOR
⊃3 ` ′	3/16" MALE SPADE PIN

ACTIVE DEVICES

Q1	2N6027
U2	3052 MOC
Q3	S4015L
Q4	S4015L
U5	LM358 IC
Q6	275V G-MOV

CAPACITORS

C1	.01μF 100V
C2	10μF 35V
C3	.01μF 100V
C4	.033µF 400V
C5	.22μF 1KV
C8	1μF 50V N.P.
C9	.0047μF 1KV
C10	.1μF 5່0V
C11	47μF 16V

DIODES

D1	1N4005
D2	1N4005
D3	1N914B
D4	1N5242B
D5	1N4005
D6	1N5233B
D7	1N914B
D8	D4015L
D9	D4015L
D10	D4015L

123D-C CHANGES:

D6	1N914B
	(reverse direction)
Q6	DELETE
R1	1K 2W
R2	47Ω
R16	220K
R23	47K
R25	15K
R27	47Ω
R28	47Ω

NOTES:

CONTENIDO

GARANTIA	1
INTRODUCCION	
CARACTERISTICAS DE CONTROL	2
DIAGRAMA DE DIMENSIONES DEL 125D	2
DIMENSIONES DEL DISIPADOR TERMICO HS (125D)	2
MONTAJE	3
SELECCION DE MODELO	
PROCEDIMIENTO DE ALAMBRADO	3
FUSIBLES	
ALAMBRADO DE LA BANDA DE TERMINALES	3-4
DIAGRAMAS DE CONEXION	4
PROCEDIMIENTO DE ARRANQUE	
CUADRO DE AJUSTE DEL POTENCIÓMETRO REGULADOR "TRIMPOT"	5
PROCEDIMIENTOS DE AJUSTE	
OPERACION DE DOS VELOCIDADES	
FRENADO DINAMICO	
RETROALIMENTACION DEL TACOMETRO	6
FUNCION DE INHIBICION	
ENSAMBLE DEL JUEGO DE POTENCIÓMETRO DE VELOCIDAD "SPEEDPOT"	7
OPCIONES -1 / -2A	
OPCIONES -5 -7	
OPCIONES -11 -15	
OPCIONES -29B	
EN CASO DE DIFICULTAD	
ESPECIFICACIONES	
CORRIENTE TIPICA DE LOS MOTORES	11
LISTA DE PARTES DE REPUESTO	11
DIBUJO ESQUEMATICO	12

GARANTIA

Dart Controls, Inc. (DCI) garantiza que sus productos están libres de defectos de materiales y mano de obra. El único derecho que otorga esta garantía es que la fábrica DCI reemplace cualquier parte o partes del producto que dentro del término de doce (12) meses a partir de la entrega del producto al comprador la parte o partes defectuosas sean devueltas a la fábrica de DCI con todos los costos de transporte prepagados, y las cuales DCI encuentre a su satisfacción que en realidad son defectuosas. Esta garantía no cubre los defectos en montaje por personas distintas a DCI, ni ningún articulo que haya sido reparado o alterado por personas distintas a DCI, ni cualquier artículo que DCI determine que ha sido usado en forma indebida. DCI no asume ninguna responsabilidad por las características de diseño de ninguna unidad o su operación en un circuito o ensamblaje. Esta garantía sustituye cualquier otra garantía expresa o implícita. Por lo tanto cualquier otra responsabilidad u obligación de parte de DCI, incluyendo daños consecuenciales quedan aquí expresamente excluidos.

NOTA: Revise cuidadosamente el control para detectar daños sufridos en el transporte. Avise inmediatamente de cualquier daño a la compañía transportadora. No trate de operar el aparato si es evidente que ha sufrido daños en el circuito o en cualquiera de sus componentes electrónicos.

Toda la información contenida en este manual se considera correcta, sin embargo datos e información que aparecen en el manual están sujetos a cambio sin aviso previo. DCI no garantiza en ninguna forma esta información o datos. Más aún, DCI no es responsable por omisiones o errores o daños consecuenciales causados por el usuario del producto. DCI se reserva el derecho de hacer cambios de fabricación que pueden no estar incluidos en este manual.

ADVERTENCIA

La instalación u operación inadecuadas de este control pueden causar lesiones al personal o fallas de control. El control debe instalarse de acuerdo con los Códigos de Seguridad nacionales, estatales y locales. ¡¡¡Asegúrese de que la corriente de alimentación está desconectada antes de tratar de dar mantenimiento al control o remover cualquiera de sus componentes!!! Si el punto de desconexión de la corriente no está a la vista, asegúrelo en posición desconectada y coloque un aviso para evitar una aplicación inesperada de la corriente. Unicamente electricistas calificados o personal de mantenimiento calificado deben realizar tareas de mantenimiento o reparación eléctricos. Nunca debe verificarse la continuidad de un circuito haciendo corto circuito en los terminales con un destornillador o herramienta metálica.

INTRODUCCION

- El control de velocidad variable 123D se ofrece en un rango desde 150 mA hasta 5.5 ACD (o hasta 10 ACD si se usa un disipador externo de calor) a valores de entrada de 24 a 36 VCA.
- El modelo 125D de control de velocidad variable se ofrece con un rango desde 150 mA hasta 1/8 HP con corriente de entrada de 120VCA.
- El control de velocidad variable 125DV se ofrece en un rango desde 1/8 hasta 1 HP, con corrientes de entrada de 120/ 240VCA. Con un disipador externo de calor, apropiado, la clasificación máxima U.L. puede aumentarse hasta 2 HP.
- El control está diseñado para motores de imán permanente de CD, de devanado en derivación y algunos motores de tipo Universal (CA/CD) en los rangos de potencia (HP) especificados arriba.
- El voltaje de CA de entrada se convierte a una onda completa rectificada de voltaje de CD para operar el motor de CD.
 También una onda completa de voltaje de campo se suministra para motores de devanado en derivación (vea la página 11 donde se listan los voltajes).
- El control incluye una protección para voltaje transiente con límite ajustable de corriente y que ha sido diseñado en un paquete muy compacto. También incluye velocidades máximas y mínimas ajustables junto con compensación de IR y una función de inhibe.
- Se ofrecen opciones para cambiar el tiempo de ACCEL/DECEL (vea página 8, opción -15).
- El control está reconocido por cULus, File No. E78180 (N).

CARACTERISTICAS DE CONTROL

VELOCIDAD MINIMA - Permite el ajuste de la velocidad del motor cuando el "SPEEDPOT" (potenciómetro) se fija en el mínimo (giro total a la izquierda, es decir, giro total en la dirección opuesta a las manecillas de reloj). Esto permite que el usuario pueda eliminar la "banda muerta" en el control principal de velocidad, permitiendo la calibración a cero. Al girar el "trimpot" de "MIN" en la dirección de las manecillas de reloj, se aumenta la velocidad mínima del motor.

MAX. SPEED (Velocidad Máxima) - Permite el ajuste de la velocidad del motor cuando el "SPEEDPOT" se ha fijado al máximo (giro máximo a la derecha, es decir, giro máximo en la dirección de las manecillas de reloj). Esta característica permite que el usuario elimine el extremo superior de la "banda muerta", lo cual proporciona velocidad máxima con rotación máxima. Al girar el "trimpot" de "MAX" en la dirección de las manecillas de reloj se aumenta la velocidad máxima del motor.

IR COMP. (Regulación de Velocidad) - Este control permite el ajuste de los circuitos que controlan la velocidad de regulación del motor. Estos circuitos controlan la velocidad de la armadura, cambiando el voltaje de la armadura para compensar por aumentos o disminuciones en la carga del motor. Al girar el "trimpot" "IR COMP" en la dirección de las manecillas del reloj se aumenta la compensación.

CUR. LIM. (Límite de Corriente) - Proporciona protección contra corriente excesiva de armadura, limitando la corriente máxima de la armadura que puede proporcionar el control. Esta característica permite el ajuste del momento de torsión* máximo que el motor puede proporcionar. El ajuste de límite de corriente (CUR.LIM.) está fijado en 125% de la clasificación de momento de torsión del motor, basado en su caballaje de potencia. Al girar el "trimpot" "CUR. LIM." en la dirección de las manecillas de reloj se aumenta la corriente (de torsión) que el control puede proporcionar.

* En algunos países el momento de torsión se denomina "par".

TERMINAL INHIBIDOR EN CLAVIJA - Permite que el usuario pueda arrancar y parar fuertemente (rápidamente), o parar fuertemente con un arranque suave a través de una rampa ajustable de aceleración, sin interrumpir las líneas de CA (vea la página 6).

BANDA DE TERMINALES - Permite la conexión de líneas de CA, conductores del motor, campo del motor (si es necesario), y potenciómetro de velocidad.

MONTAJE

- 1. Encontrará 6 aberturas con un diámetro de 4 mm para el montaje del control.
- 2. El chasis del control puede usarse como templete.
- 3. Use elementos estándar de ferretería para el montaje.

PRECAUCION:

No haga el montaje del control cuando la temperatura ambiente es menor de -10° o mayor de 45° C (15° a 115° F).

SELECCION DEL MODELO BASICO

CABALLOS DE	VOLTAJE DE EN-		AMPERAJE DE SALI-	
POTENCIA	TRADA	VOLTAJE DE SALIDA	DA* EN CD	MODELO NUMERO
150mA à 5.5 A	24 a 36 VCA	0-20 / 0-30 VCD	5.5A	123C-D
1/50 a 1/8	120/240 VCA	0-90 / 0-180 VCD	1.2A	125C-12D
1/8 a 1	120/240 VCA	0-90 / 0-180 VCD	5.5A	125VC-D

NOTA: * Con un disipador térmico externo, apropiado, la clasificación máxima U.L. para Amperaje de Salida puede aumentarse hasta 10 Amps. de CD.

PROCEDIMIENTO DE ALAMBRADO Y FUSIBLES

- 1. Escoja el tamaño de los conductores que llevan corriente de la armadura o de la línea de manera que sean suficientes para estas corrientes, SEGÚN LO ESPECIFICAN LOS CÓDIGOS NACIONALES, ESTATALES Y LOCALES. Todos los demás conductores pueden ser número 18 AWG o más pequeños, si lo permite el código local.
- 2. Separe los alambres de control de los de armadura y línea de CA cuando los instale en conductos o en bandejas de cables.
- 3. Fusibles El motor y el control están protegidos de sobrecargas por el circuito que limita la corriente y por un fusible instalado por el usuario en la línea de CA. ESTA PROTECCION PUEDE HABER SIDO PROPORCIONADA YA POR EL USUARIO CON INTERRUPTORES DE CIRCUITO O FUSIBLES EN AMBAS LINEAS PRINCIPALES. SI ESTE NO ES EL CASO:

PARA CORRIENTES DE ENTRADA DE 120 VCA - el usuario debe añadir un fusible de protección en la Línea 1 de CA (véase el diagrama siguiente).

PARA CORRIENTES DE ENTRADA DE 240 VCA - el usuario debe proporcionar un fusible de protección en la Línea 1 de CA y otro en la Línea 2 (véase el diagrama siguiente).

FUSIBLES INSTALADOS POR EL USUARIO (Bussman ABC o Little Fuse Serie 314 de fusibles cerámicos)

НР	CORRIENTE DE ENTRADA DE 120 VCA	CORRIENTE DE ENTRADA DE 240 VCA
1/50	2 AMP	
1/20	2 AMP	
1/8	3 AMP	
1/4	4 AMP	3 AMP
1/3	6 AMP	3 AMP
1/2	8 AMP	4 AMP
3/4	12 AMP	6 AMP
1.0	15 AMP	8 AMP
1.5		12 AMP
2.0		15 AMP

NOTA: Para determinar las necesidades de fusibles para los controles de la Serie 123D-C (24 a 36 VCA de corriente de entrada), use un valor de 200% de la Corriente a Plena Carga.

ALAMBRADO DE LA BANDA DE TERMINALES

La Serie 125D usa una banda de terminales de 8 posiciones para facilitar las conexiones. 120 VCA - Conecte el alambre electrizado de entrada de CA (alambre negro) P1-1,2 (CA) a P1-1 y el Neutro (alambre blanco) a P1-2. Conecte el alambre a tierra (alambre

P1-3

verde) al CHASIS del control.

240 VCA - Conecte ambos alambres electrizados, uno a P1-1 y el otro a P1-2. Conecte el alambre de conexión a tierra al CHASIS del control.

Conecte al PLUS (+) del alambre de la Armadura del motor, 0-90 VCD para una corriente de entrada de 120 VCA \underline{o} 0-180 VCD para una corriente de entrada de 240 VCA. Vea las (+Arm) "ESPECIFICACIONES" para la clasificación de salida.

P1-4 (-Arm/-Field) Conecte el MINUS (-) del alambre de la Armadura del motor, y, si es necesario, conecte el MINUS (-) alambre de Campo del MOTOR DE DEVANADO EN DERIVACION.

(Continuación)

P1-5

NO USE ESTA CONEXIÓN con motores de imán permanente. Esta (+Field) conexión proporciona voltaje de +Field a motores de DEVANADO EN

DERIVACIÓN. (Consulte la tabla de voltajes de campo.) En motores con campo de volt je dual (por ejemplo, 50/100V o 100/200V), asegúrese que conecta el

valor más alto.

TABLA DE VOLTAJES				
VOLTAJE CA DE ENTRADA DEL CAMPO	24	36	120	240
VOLTAJE CD DE CAMPO	20	30	100	200

P1-6 ("SPEEDPOT" HI) Conecta al lado alto (alambre blanco) del "SPEEDPOT" (el extremo de giro

máximo a la derecha). Esto es +12 voltios internos. Para aplicaciones de arranque-parada la conexión entre este terminal y el "SPEEDPOT" HI puede abrirse y cerrarse con un interruptor SPST. LA ENTRADA NO DEBE ESTAR

CONECTA DA A TIERRA.

P1-7 ("SPEEDPOT" WIPER) Conecta al "wiper" o cursor (alambre rojo) del "SPEEDPOT" (conductor del centro).

Para aplicaciones de seguidor de voltaje esta ENTRADA NO DEBE SER MAYOR DE +12 VOLTIOS MÁXIMO, Y NO DEBE ESTAR CONECTADA A TIERRA.

P1-8 ("SPEEDPOT" LO) Conecta al lado bajo (alambre amarillo) del "SPEEDPOT" de 5K (normalmente

el extremo de giro máximo a la izquierda). Este nivel de entrada se puede subir o bajar por medio del "trimpot" MIN (5K). La entrada de velocidad electróni ca (seguidor de voltaje) puede referenciarse al "SPEEDPOT" LO si los ajustes del "trimpot" MIN van a ser activados. De otra manera, las entradas pueden referirse a -ARM, lo cual las desvía del "trimpot" MIN. LA ENTRADA NO DEBE

CONECTARSE A TIERRA.

Advertencia:

1. Asegúrese de que el chasis de control está conectado a tierra apropiadamente.

2. Las conexiones de la armadura no deben conectarse o interrumpirse cuando el control está funcionando. Esto puede ocasionar serios daños al aparato.

3. Para aplicaciones que no requieren "SPEEDPOT" la conexión de entrada debe hacerse al LO. WIPER, y los terminales HI no deben conectarse a tierra! Una conexión a tierra de la corriente de entrada puede ocasionar serios daños al aparato.

DIAGRAMA DE CONEXIÓN DE LA SERIE 123D/125D

Advertencia:

No trate de hacer una prueba de Hi-Potenciómetro a través de las líneas de CA con el control en circuito. Esto puede ocasionar daño inmediato o permanente al control.

PROCEDIMIENTO DE ARRANQUE

ADVERTENCIA: TODA LA CORRIENTE DE ALIMENTACIÓN DEBE ESTAR APAGADA ANTES DE PROCEDER!

- 1. Verifique cuidadosamente todo el alambrado. Los contactos accidentales a tierra o alambres sueltos o enredados en la armadura o en el "SPEEDPOT" pueden dañar el control cuando se conecte la corriente. Verifique que la corriente de entrada es del voltaje requerido.
- 3. Gire el "SPEEDPOT" a cero (giro total a la izquierda).
- 4. Conecte la corriente y avance el "SPEEDPOT" observando el motor. La corriente debe apagarse antes de proceder con el paso 5!
- Si la rotación del motor no es la correcta, apague la corriente en un punto de conexión externa e invierta las conexiones +ARM y -ARM.
- Verifique que el motor opera satisfactoriamente a través de todo su rango de velocidad.
- 7. Si la operación es satisfactoria no es necesario hacer ningún ajuste.
- 8. Si se observa inestabilidad o funcionamiento irregular o si la velocidad máxima es más alta que la que se desea, consulte la "TABLA DE AJUSTE DEL TRIMPOT" (página 5)
- Si encuentra otros problemas consulte en la página 10, la sección "EN CASO DE DIFICULTAD".

TABLA DE AJUSTE DEL "TRIMPOT"

		C.L. I.R. MAX MIN	HP
	125D-12C		1/50
1 2	1235 120		1/20
2 0 V C			1/8
A E			1/8
N T			1/4
9 0 V	125DV-C		1/3
La operación de control más allá de +/- 10%			1/2
del voltaje normal de la línea puede resultar en un reajuste. Estos			3/4*
ajustes son permanentes; L el reajuste periódico			1.0*
normalmente no es necesario.			

HP	C.L.	I.R.	MAX	MIN	
1/20					125D-12C
1/8					1230-120
1/4					
1/4					
1/3					
1/2					125DV-C
3/4*					12004-0
1.0*					
1.5*		-			
2.0*			$\langle c \rangle \langle c \rangle$		

3. Encienda la corriente.

4. Coloque el "SPEEDPOT" en la posición de 50%. 5. Aplique el freno de fricción del eje de motor hasta

Mientras el motor se encuentra detenido coloque la corriente a 125% de la corriente de armadura de

clasificación del motor ajustando el "trimpot" CUR. LIM..

que el motor trate de detenerse.

Estas graduaciones son aplicables cuando se usa un "SPEEDPOT" Maestro de 5000 Ohmios. Esta Tabla de "Trimpot" es aproximada. Usela junto con los Porcedimientos de Ajuste.

E N T

1 8 0 V C D

s A

*NOTA: SE REQUIERE UN DISIPADOR TERMICO PROPORCIONADO POR EL USUARIO PARA 125 DV-C (120 VCA DE ENTRADA - MOTORES MAYORES DE 1/2 HP) Y (240 VCA DE CORRIENTE DE ENTRADA - MOTORES DE MAS DE 1 HP). LAS TEMPERATURAS DE EXTRUSION 125 NO DEBEN EXCEDER 70° C.

NOTA: PARA DETERMINAR LAS GRADUACIONES DE TRIMPOT PARA LAS SERIES 123D-C, VEA AJUSTES DEL TRIMPOT EN LA SECCION SIGUIENTE.					
TRIMPOT	FUNCIÓN	AJUSTE			
MIN	Establece la velocidad mínima del motor cuando el "SPEEDPOT" se coloca en cero. El giro en la dirección de las manecillas de reloj aumenta la velocidad mínima del motor.	 Coloque el "SPEEDPOT" en cero (giro total a la izquierda). Gire el "trimpot" MIN en el sentido de las manecillas de reloj hasta que el motor principie a girar. Lentamente gire el "trimpot" MIN en la dirección opuesta a las manecillas de reloj hasta que el motor se detenga. NOTA: Si se desea que el motor gire en la graduación cero, gire el "trimpot" MIN en la dirección de las manecillas de reloj hasta que se llegue a la velocidad mínima deseada. 			
IR COMP.	Proporciona una forma de mejorar la regulación de la velocidad del motor en la modalidad de realimentación de la armadura. Si es admisible una reducción en la velocidad debido a un cambio en la carga, gire este "trimpot" completamente a la izquierda.	 Coloque el "SPEEDPOT" en 50%. Observe la velocidad del motor sin carga. Aplique la carga completa al motor. Ajuste el "trimpot" IR COMP. en la dirección de las manecillas de reloj para obtener la misma velocidad que el motor tenía sin carga. 			
MAX.	Establece la velocidad máxima del motor cuando el "SPEEDPOT" se gira al máximo (100% de rotación, giro máximo a la derecha). El giro en la dirección de las manecillas de reloj del "trimpot" MAX aumenta la velocidad máxima del motor.	 APAGUE LA CORRIENTE DE ALIMENTACIÓN. Conecte un Voltímetro de CD: + a +ARM y - a -ARM. NOTA: El medidor no debe estar conectado a tierra!! Gradúe el rango de voltaje del voltímetro: (90VCD para corriente de 120 VCA, 180VCD para corriente de 240 VCA). Encienda la corriente. Coloque el "SPEEDPOT" en la graduación a 100%. Ajuste el "trimpot" MAX al voltaje de armadura de la clasificación del motor según lo indica el voltímetro. NOTA: Se puede usar un tacómetro o un estrobosco pio en lugar del voltímetro. Siga los pasos descritos arriba, excepto que debe ajustar el "trimpot" MAX a la velocidad base de clasificación del motor indicada por el tacómetro o el estroboscopio. 			
CUR. LIM.	Limita la corriente de la armadura en el motor de CD (Torsión) para evitar daño al motor o al control. El límite de corriente depende de la corriente de clasificación del motor. El giro de este "trimpot" en la dirección de las manecillas de reloj aumenta la	APAGUE LA CORRIENTE DE ALIMENTACIÓN. Conecte un amperímetro de CD entre A1 en el motor y +ARM en el control. Esta conexión es en serie cor el motor.			

corriente de la armadura (o torsión producida).

OPERACIÓN DE DOS VELOCIDADES

La operación con dos potenciómetros se hace usando dos potenciómetros de velocidad de 10K Ohmios en paralelo (ambos HI a P1-6 y ambos LO a P1-8). El WIPER se conmuta usando un interruptor SPDT.

P1 LO LO W HI SPDT -6

FRENADO DINÁMICO

Se usa un interruptor DPDT para inhibir el control y conectar el DBR. Los valores típicos del DBR (Dynamic Brake Resistor, resistencia de freno dinámico) son 5 Ohmios para 120V, y 10 Ohmios para 240V (ambos 35W a 50W). Note que la potencia en HP del motor, la inercia y el tiempo del ciclo afectan el dimensionamiento del DBR. **NOTA:** Esta modificación no puede ser usada con ninguna de las opciones -15.

RETROALIMENTACION DEL TACOMETRO

Mejora la regulación de la velocidad a + o - 1/2% de la velocidad de base.

SEGUIDOR DE TACOMETRO

Permite que el control de salida siga el voltaje del tacómetro.

NOTA: NECESITA 1% O MENOS - DISTORSION EN LA ONDA DE SALIDA DEL TACOMETRO

INHIBICIÓN (USADA INDEPENDIENTEMENTE)

El interruptor SPST, suministrado por el usuario, se conecta en serie entre el "SPEEDPOT" HI (P1-6) y la clavija de Inhibición (P3). Para inhibir (parar el motor), el "SPEEDPOT" HI se cierra a la clavija de Inhibición. Para reiniciar la operación el interruptor se vuelve a su posición abierta. NOTA: El control detiene y arranca el motor rápidamente.

SPEEDPOT WIPER -7 HI -6

INHIBICION (USADO CON "SPEEDPOT")

El contacto Común del interruptor SPDT se conecta al potenciómetro de control HI y conmuta entre "SPEEDPOT" HI y la clavija de Inhibición P3. Para inhibir (detener el motor) el "SPEEDPOT" HI se cierra a la clavija de Inhibición. Para reiniciar la operación, el interruptor se devuelve a "SPEEDPOT" HI. NOTA: El control detiene rápidamente y arranca suavemente a través de un rango de aceleración fijado.

NOTA: Permite arrancar y detener el motor sin interrumpir las líneas de CA. En caso de que falle el SCR o haya disparo en falso, el circuito de Inhibición no detiene el motor.

JUEGO DE ENSAMBLE DEL "SPEEDPOT" (en centímetros)

DESCRIPCIÓN DE LAS OPCIONES

Opcion -1Instalada en Fábrica o en Sitio

Interbloqueo Electrónico del Speedpot Disponible para Todos los Modelos

El tablero adicionador -1 conecta el tablero de la Serie 125 usando un conector hembra y un soporte plástico de conexión.

Cuando la corriente de entrada de Ca se aplica al control, el Interbloqueo Electrónico evita que el motor pueda comenzar la operación hasta que el speedpot se gire a la posición cero y luego se gire en dirección de las manecillas de reloj hacia la velocidad deseada.

Así mismo, si por cualquier razón se interrumpiera la entrada de corriente de CA, y luego se restableciera, el Interbloqueo Electrónico evita un arranque automático del motor. Para restablecer su operación, es necesario girar el speedpot a la posición cero y, luego, girarlo en la dirección de las manecillas de reloj hasta la velocidad deseada.

PRECAUCION: El Interbloqueo Electrónico deja de operar si ocurriera una falla en el SCR.

Opción -2A Instalada en Fábrica o en el Sitio

Aceleración/Desaceleración Lineal Ajustable Disponible para Todos los Modelos

Esta opción se conecta en el conector de cinco posiciones de expansión en el tablero principal del 125D. La opción -2A contramanda la rampa de aceleración fija que se ha diseñado en el control del 125D, proporcionando una aceleración/desaceleración lineal ajustable que varía desde 0.5 hasta 8.0 segundos. Para instalarla, voltee el tablero de la opción -2A de manera que las líneas del circuito impreso queden visibles. Alinee el conector macho CN1 (de la opción -2A) con el conector hembra P2 (tablero del 125D) de manera que el terminal CN1 -1 corresponda al P2 -6, CN1 -2 con P2 -5, etc. Alinee el soporte plástico en la opción -2A con la abertura que muestra el tablero principal del 125D. Una vez que los conectores están alineados, afirme las conexiones. El ajuste del trimpot se logra por medio de la pequeña abertura de acceso en el lado posterior del tablero de opción -2A. La rotación completa hacia la izquierda produce el valor mínimo de tiempo de aceleración/desaceleración y la rotación máxima a la derecha produce el tiempo máximo de aceleración/desaceleración. Cada trimpot funciona de manera independient.

opción -7
Seguidor de señal aislado de 4-20 ma.
con Interruptor manual/automático

Cerrado - Sólo instalación en fábrica Chasis - Instalación en el campo o en fábrica Chasis - interruptor y cableado provisto por el cliente

PROCEDIMIENTO DE LA TRANSMISIÓN EN CIRCUITO DE LA OPCIÓN -5 y -7

NO USE LA TABLA DEL POTENCIÓMETRO DE AJUSTE PARA AJUSTAR LOS POTENCIÓMETROS MÍN. Y MÁX. EN EL TABLERO PRINCIPAL. SI ES NECESARIO AJUSTARLOS, CONSULTE EL PROCEDIMIENTO DE AJUSTE SIGUIENTE.

La opción -5 es una tarjeta de señal aislada de 4-20 mA que reemplaza el potenciómetro de velocidad con control de velocidad. La entrada de señal 4-20 mA se puede conectar o no a tierra. El tablero permite que los espaciadores sean atornillados a las terminales del potenciómetro HI, contacto deslizante y terminales LO en el tablero principal usando tornillos largos. La fuente de corriente se conecta a la regleta de terminales de dos posiciones + y - (P16-1 y -2) en el tablero de la opción -5.

El potenciómetro de Linealidad en el tablero de la opción -5 se ha ajustado en fábrica para obtener la linealidad apropiada; sin embargo, esta posición necesita ser reajustada después de ajustar la configuración Máx. y Mín. del potenciómetro en el control para su aplicación específica. Si es necesario, consulte el procedimiento de ajuste siguiente.

La opción -7 también es una tarjeta de señal aislada 4-20 mA, pero permite que el control sea accionado, ya sea en el modo Manual por medio de un potenciómetro de velocidad o el modo Automático por medio de la señal 4-20 mAl. Esta opción también incluye un potenciómetro de Balance que se usa para escalar la velocidad máxima en el modo Manual. Es ajustado en fábrica, así que la velocidad máxima en el modo Manual es igual a la velocidad máxima en el modo Automático.

El potenciómetro de Linealidad en el tablero de la opción -7 está ajustado en fábrica obtener la linealidad apropiada; sin embargo, puede ser necesario volver a ajustar este potenciómetro después de ajustar la configuración Máx. y Mín. del potenciómetro en el control o si el potenciómetro de Balance en la opción -7 debe ser reajustado para su aplicación específica. Si es necesario, consulte el procedimiento de ajuste siguiente.

El siguiente, es el procedimiento recomendado para ajustar la opción -5/-7 en las Series 125:

- 1) Con el 125 orientado de forma que los potenciómetros estén a lo largo de la parte superior, ajuste el potenciómetro Mín. al mínimo (giro completo en el sentido de las manecillas del reloj) y el potenciómetro Máx. en 50%. El voltaje se ajusta por debajo del voltaje de motor habitual para asegurarse que la transmisión NO esté saturada antes de ajustar el punto de saturación del tablero -5/-7.
- 2) Ajuste el potenciómetro de Linealidad/ganancia en la opción -5/-7 con un giro total en el sentido de las manecillas del reloj. Éste es un potenciómetro de 20 giros y debe oír un chasquido con cada vuelta cuando esté completamente girado o sólo cuente 20 vueltas.
- 3) Asegúrese de que su motor esté conectado a la salida +/-ARM de la transmisión, el interruptor AUTO / MAN esté en modo AUTO para las opciones -7 y que la fuente de energía del control esté encendida. (Nota: Para un ajuste adecuado, esta configuración se realiza mejor en un motor descargado.)
- 4) Con la potencia aplicada y un voltímetro que controle la salida Vdc del motor, aplique el tablero 4mA a -5/-7. Verifique la lectura del voltímetro y ajuste el potenciómetro de ajuste de Linealidad/ganancia, R16, en el tablero -5/-7 en contra de las manecillas del reloj hasta que el voltaje de salida del motor sea menor a 0.1Vdc.
- 5) Ahora aplique 20mA al tablero de -5/-7 y ajuste el Máximo potenciómetro de ajuste a un voltaje que esté 5 voltios (15 voltios para los controles de la serie 250G) por encima de la salida de voltaje máxima final del motor deseada. Ajuste el potenciómetro de Linealidad/ ganancia en el tablero -5/-7 girando en contra del sentido de las manecillas del reloj hasta que el voltaje de salida del motor descienda al punto de ajuste de voltaje máximo deseado.
- 6) Ahora, aplique de nuevo 4mA al tablero -5/-7 y ajuste el potenciómetro de ajuste Mín. a la banda muerta o a la salida de voltaje mínima del motor deseada. El punto de banda muerta es donde está en 0Vdc y cualquier incremento adicional del potenciómetro de ajuste Mín. resultará en una salida hacia el motor. Vuelva a aplicar 20mA al tablero -5/-7 y verifique que no se haya cargado la salida máxima. Tal vez sea necesario hacer un pequeño ajuste al potenciómetro de ajuste Máximo para reajustar la salida máxima deseada.
- 7) Ajuste la entrada 4-20 a 12mA. Si el ajuste es el adecuado el voltaje de salida de un motor descargado debe estar dentro de unos pocos voltios de 1/2 salida (con base en la configuración de salida máxima anterior).

Opción -7 solamente: Con una potencia de 20mA aplicada a la opción -7 en el modo Automático, mueva el interruptor AUTO/ MANUAL a MANUAL.

8) En el modo manual gire el potenciómetro de velocidad completamente en el sentido de las manecillas del reloj, observe la lectura de salida de voltaje del motor en el voltímetro. Si no es igual a la salida a 20mA en el Modo Automático, ajuste el potenciómetro de Balance en el tablero -7 (En ambos sentidos de giro de las manecillas del reloj) hasta que se alcance la misma lectura. Los Vdc de salida del motor no deben cambiar más que 1 Vdc cuando se alterne entre la posición AUTO y MANUAL.

Opción -11 "SPEEDPOT" Maestro de 10 Giros

Instalado en la Fábrica y en el Sitio Disponible Para Todos los Modelos

Proporciona un control muy preciso de la velocidad. Use las instrucciones estándar de instalación y el Cuadro de Graduación de "TRIMPOT" de la página 5.

Opción -15

Rangos de Tiempo de Aceleración

Instalado en Fábrica

Esta opción proporciona los tiempos de aceleración que se muestran abajo. El tiempo de aceleración estándar de 0.5 segundos.

TIEMPO DE ACELERACION

OPCION -15B

OPCION -K

4 segundos 6 segundos

USE CONEXION ESTANDAR

Permite poner el motor en reverso. Esto se hace usando un interruptor 4PDT con el centro bloqueado. Cuando el interruptor alterna entre marcha hacia adelante y marcha hacia atrás se crea una demora debido a la posición del centro, bloqueada que protege el control de cualquier voltaje presente en los terminales de la armadura. La posición del centro es OFF/NEUTRAL. EL MOTOR DEBE PARAR COMPLETAMENTE ANTES DE CAMBIAR DIRECCION. SI EL MOTOR NO HA LLEGADO A PARAR

EL MOTOR DEBE PARAR COMPLETAMENTE ANTES DE CAMBIAR DIRECCION. SI EL MOTOR NO HA LLEGADO A PARAR COMPLETAMENTE, EL CONTROL PUEDE SUFRIR DAÑOS SERIOS. EL DESVIAR LA CONEXION DEL BLOQUE DEL CENTRO DEL INTERRUPTOR PUEDE CAUSAR DAÑOS AL CONTROL.

EN CASO DE DIFICULTAD

PROBLEMA	POSIBLES CAUSAS	ACCIONES CORRECTIVAS
El motor no opera	-Fusible quemado	Reemplace el fusible
·	-Fuente de corriente de alimentación incorrecta o inexistente	Instale un servicio apropiado desde la fuente de alimentación
	-"SPEEDPOT" graduado en cero	Ajuste el "SPEEDPOT" en la dirección de las manecillas del reloj para arrancar
	-Escobillas del motor gastadas	Reemplace las escobillas del motor
El motor se detiene u opera muy lentamente con el	-Bajo voltaje	Verifique que el voltaje esté por encima de 100V o de 208V
"SPEEDPOT" girado total-	-Condición de sobrecarga	Reduzca la carga
mente a la derecha	-Escobillas del motor gastadas	Reemplace las escobillas del motor
	-MAX SPEED, velocidad máxima, graduada incorrectamente	Vea el PROCEDIMIENTO DE AJUSTE
El motor funciona errática- mente	-La corriente al motor es de menos de 150mA	La corriente del motor debe ser de más de 150 mA CD
	-Demasiado I.R. COMP.	Vea el PROCEDIMIENTO DE AJUSTE
	-El motor está en el límite de corriente	Vea el PROCEDIMIENTO DE AJUSTE
	-La velocidad del motor excede la velocidad de clasificación	Reduzca la velocidad
	-El trimpot MAX está graduado demasiado alto	Vea el PROCEDIMIENTO DE AJUSTE
Los fusibles se queman repetidamente	-Bajo voltaje	Verifique que el voltaje esté por encima de 100V o de 208V
	-Condición de sobrecarga	Reduzca la carga
	-Escobillas del motor gastadas	Reemplace las escobillas
	-Cojinetes del motor defectuosos	Reemplace los cojinetes
	-Componente eléctrico defectuoso	Llame al Distribuidor de Dart o a su Representante

Si el control todavía no funciona, vaya a www.dartcontrols.com/support o a la llamada (317) 873-5211.

ESPECIFICACIONES

Voltaie de entrada	‡ 10% del voltaje nominal de línea
Amperios - salida de CD	150 mA a 5.5 ACD*
Capacidad del controlador de sobrecarga	200% por un minuto
Rango de corriente límite de "TRIMPOT"	
	0.5 segundos (estándar 125D)

Dimensiones y peso:

	ANCHO	LARGO	PROFUNDIDAD	PESO
INGLES	3.625"	4.250"	1.300"	8.00 oz.
METRICO	92 mm	108 mm	33 mm	228 gm

Factor de servicio del impulsor	1.0 típica 85% 50 o 60 Hz
Frecuencia de la corriente de entrada	50 o 60 Hz
Rango de velocidad del "TRIMPOT" MAX	de 60% a 110% de la velocidad básica
Bango de velocidad del "TRIMPOT" MIN	de 0% a 30% de la velocidad máxima
Artefactos de potencia	caja aislada, de lengüetas 20VCD para entrada de 24 VCA; 30VCD para entrada de 36VCA;
Voltaje del campo del devanado de derivación	20VCD para entrada de 24 VCA; 30VCD para entrada de 36VCA;
100 VCD para e	ntrada de 120 VCA; 200VCD para entrada de 240 VCA; 1 amperio máximo
Control de velocidad	por medio de un potenciómetro de 5Ký 2W o señal aislada de 0-10VCD
Rango de velocidad	50:1
Regulación de velocidad	±1% de la velocidad de base
Rango de temperatura	temperatura ambiente de -10° a 45° C (15° a 115° F)
Protección de transientes	G-Mov**
Gatillo	acoplamiento óptico
	RC de tiempo constante
	•

con un disipador térmico externo apropiado, la clasificación máxima de U.L. para amperaje de salida puede aumentarse hasta 10 amperios de CD

La temperatura de extrusión del 125D no debe exceder 70°C.

CORRIENTE TIPICA DE LOS MOTORES

POTENCIA, en HP	1/50	1/20	1/8	1/4	1/3	1/2	3/4	1.0	1.5	2.0
Amperaje tîpico de CA (120 VCA)	0.50	1.00	2.00	3.50	4.40	6.50	9.30	13.20		
Amperaje tîpico de Arm (120 VCA)	0.42	0.81	1.60	2.70	3.40	5.00	8.20	10.90		
Amperaje tîpico de CA (240 VCA)				1.80	2.20	3.30	4.80	6.50	9.70	12.90
Amperaje tîpico de Arm (240 VCA)				1.40	1.70	2.50	3.70	5.00	8.20	11.60

LISTA DE PARTES DE REPUESTO

15K 6W 470Ω 2.7K 2.7K R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 82K 5K(MIN TRIM) 300K 180K 1.2M 39K 100K R12 10K 2.2K 820Ω 4.7K 470K 1K 100Ω (I.R TRIM) 50 (C.L. TRIM) 300K 10K (MAX TRIM) 1K 300K 01Ω 5W 10K R24 R25 R26 .01Ω 5W 91K

RESISTENCIAS

390Ω 5K SPEEDPOT* ARTEFACTOS ACTIVOS

U2 MOC3052 Q3 S4015L Q4 S4015L U5 LM3581C

390Ω

PCB P1 (-1 THRU -8) P2 (-2 THRU -6)

JU1

PARTES VARIAS 18GA. CABLE RIGIDO AISLADO 18GA. CABLE RIGIDO AISLADO A-4-2033F CIRCUITO IMPRESO 8 POS.BANDA PARA TERMINALES 5 POS. CONECTOR HEMBRA 3/16" CLAVIJA MACHO

125D-12C (1/50 a 1/8 HP) **CAMBIOS:**

R24062Ω 5W

DIODOS

1N4005 D2 1N914B D3 1N5242B 1N4005 1N5233B D5 D6 1N914B D7 D4015L Π9 D4015L D4015L D10

$\underset{\text{C1}}{\textbf{CONDENSADORES}}$

.01μF 100V 10μF 35V C2 C3 .01μF 100V .033μF 400V .22μF 1KV 1μF 50V N.P. C5 C8 .0047µF 1KV C9 .1μF 50V 47μF 16V C10

CAMBIOS EN ACCEL
REEMPLACE EL CASQUETE N.P. POR UN CASQUETE POLARIZADO (VEA ARRIBA) 33uf 16V C8 -15B C8 15uf 25V -15C C8 4.7uf 16VC8 22uf 16V

CAMBIOS EN 123D-C

HOTOS EN 123D-C 1N9148 (CAMBIE EL SENTIDO DE ROTACION) BORRAR 1K2W 47Ω 220K 47K 15K 47CD6 Q6 R1 R2 R16 R23 R25 R27 47Ω

^{**} no se usa en los controles en las Series 123D-C

TABLE DES MATIÈRES

GarantieGarantie	1
ntroduction	2
Caractéristiques de la commande	2
Dimensions de la série 125D	2
Dimensions du radiateur HS (125D)	2
Montage	3
Sélection du modèle de base	3
Procédure de raccordement	3
nstallation des fusibles	3
Raccordement du bornier	3
Schémas d'installation	4
Procédure de mise en route	
Table de réglages du potentiomètre	5
Réglages	5
Fonctionnement à deux vitesses	6
Freinage rhéostatique	6
Rétroaction du tachymètre & Suiveur de tension	6
nstructions d'inhibition	6
Kit d'assemblage du potentiomètre	7
Options -1 / -2A	
Options -5 / -7	
Options -11 / -15	9
Option -29B	10
En cas de difficulté	10
Spécifications	11
Courants de moteur typiques	11
Emplacement et liste des pièces	11
Schéma	12

GARANTIE

Dart Controls, Inc. (CCI) garantie que ces produit sont exempts de vices de fabrication. En cas de défectuosité reconnue par CCI, le recours exclusif pour cette garantie consiste en un échange par l'usine CCI de toute pièce d'un tel produit, qui devra être retourné à l'usine de CCI avec tous les frais de transport payés dans les douze mois suivant la livraison auprès de l'acheteur. Cette garantie ne couvre pas les défauts causés lors d'un montage autre que par CCI ou tout article ayant été réparé ou modifié par un parti autre que CCI ou tout article jugé par CCI comme ayant été soumis à une mauvaise utilisation. CCI n'assume aucune responsabilité pour les caractéristiques de conception d'une unité ou de son exploitation dans un circuit ou un assemblage. Cette garantie désavoue toute autre garantie, expresse ou implicite; toute autre obligation de la part de CCI, y compris des dommages indirects, sera par conséquent expressément exclue.

REMARQUE: Vérifiez soigneusement la commande pour déceler tout dégât. Signalez immédiatement les dommages au transporteur. N'essayez pas de faire fonctionner le moteur si des dégâts visibles sont en évidence sur le circuit ou sur les composants électriques.

Les informations contenues dans ce guide sont sensées être correctes, mais elles pourront faire l'objet de modifications sans préavis. Aucune garantie spéciale n'est accordée concernant ces informations et données. De plus, CCI désavoue toute obligation en cas d'omissions ou d'erreurs ou de dommages indirects causés par l'utilisateur de ce produit. CCI se réserve le droit de procéder à des modifications de fabrication n'ayant pas été incluses dans ce guide.

AVERTISSEMENT

Toute installation ou exploitation irrégulière de cette commande peut causer des blessures au personnel ou une panne à la commande. La commande doit être installée en respectant les codes de sécurité locaux, fédéraux et nationaux. Assurez-vous que l'alimentation est coupée avant de maintenir ou d'enlever des composants !!! Si le point de coupure de courant n'est pas visible, bloquez-le à la position de déconnexion et étiquetez-le pour éviter tout mise sous tension imprévue. Toute localisation de panne électrique ou maintenance devrait être effectuée par un électricien qualifié. La continuité du circuit ne devrait en aucun cas être vérifiée en court-circuitant les bornes avec un tournevis ou tout autre objet métallique.

INTRODUCTION

- La commande à vitesse variable 123D est disponible avec une plage allant de 150mA à 5.5 ACC (ou jusqu'à 10 ACC si vous utilisez un radiateur externe) à une entrée de 24 à 36 VCA.
- La commande à vitesse variable 125D est disponible avec une plage allant de 150mA à 1/8 de H.P à une entrée de 120 VCA.
- La commande à vitesse variable 125DV est disponible avec une plage allant de 1/8 de H.P à 1 H.P à un entrée de 120/240 VCA. La puissance nominale maximale U.L. peut atteindre 2 H.P. avec un radiateur externe adéquat.
- Conçu pour moteurs CC à aimants permanents, à enroulement de dérivation et certains moteurs universels avec les plages de puissances indiquées ci-dessus.
- La tension CA d'entrée est également convertie en une pleine onde de tension CC redressée et réglable pour faire fonctionner un moteur CC Pour les moteurs à enroulement de dérivation, une tension à pleine onde est fournie (voir page 11 pour les tensions).
- La commande est munie d'une protection contre les courants transitoires avec un limiteur de courant réglable dans une enveloppe compacte. Elle offre également des vitesses minimum et maximum ainsi qu'une résistance d'isolement (IR) de compensation et une commande d'inhibition.
- Les options sont disponibles afin de changer le temps d'ACCEL/DECEL (voir page 8, option -15).
- Homologation cULus, fichier n° E78180 (N).

CARACTÉRISTIQUES DE LA COMMANDE

VITESSE MIN. (vitesse minimum): Permet de régler la vitesse du moteur lorsque le potentiomètre est réglé à son minimum (sens contraire des aiguilles d'une montre). De cette façon, l'utilisateur peut éliminer la "zone morte" à la commande de vitesse principale permettant un étalonnage zéro. En tournant le potentiomètre "MIN" dans le sens des aiguilles d'une montre, la vitesse maximum du moteur augmente.

VITESSE MAX. (vitesse maximum): Permet un réglage de la vitesse du moteur lorsque le potentiomètre est réglé à son maximum (SAM). De cette façon, l'utilisateur peut éliminer la "zone morte" supérieure, qui fournira la vitesse maximum à un régime maximum. En tournant le potentiomètre "MAX" dans le sens des aiguilles d'une montre (sens des aiguilles d'une montre), la vitesse maximum du moteur augmente.

IR COMP (réglage de la vitesse): Permet de régler le circuit qui contrôle la vitesse du moteur. Le circuit contrôle l'induit en changeant la tension de l'induit pour compenser les augmentations ou réductions de charges de vitesse. En tournant le potentiomètre "IR COMP" dans le sens des aiguilles d'une montre, la compensation augmente.

CUR. LIM. (limiteur de tension): Fournit une protection contre tout courant d'induit excessif en limitant le courant d'induit maximum pouvant être fournit par la commande. Permet de régler le couple maximum pouvant être fournit par le moteur. Le réglage du couple (CUR. LIM.) est réglé à 125% du couple (courant) nominal du moteur en fonction de la puissance en horse-power. En tournant le potentiomètre "CUR. LIM." dans le sens des aiguilles d'une montre, le couple (courant) fournit par la commande augmente.

BROCHE D'INHIBITION: Donne à l'utilisateur le choix entre un arrêt et un démarrage à chaud ou un arrêt à chaud et un démarrage SOFT via une section d'accélération réglable, sans interrompre les lignes CA (voir page 6).

BORNIER DE CONNEXION: Permet de raccorder les lignes CA, les fils du moteur (si nécessaire), et le potentiomètre de vitesse.

DIMENSIONS DE LA SÉRIE 125D (en centimètres)

MONTAGE

- 1. Six fentes d'un diamètre de 4 mm sont fournies pour le montage de la commande.
- 2. Le châssis de la commande peut être utilisé comme gabarit.
- 3. Utilisez du matériel standard pour le montage.

ATTENTION:

NE MONTEZ PAS LA COMMANDE À UN EMPLACEMENT OÙ LA TEMPÉRATURE AMBIANTE SE TROUVE EN DEHORS DE LA PLAGE ALLANT DE -10°C (15°F) À 45°C (115°F).

SÉLECTION DU MODÈLE DE BASE

HORSE-POWER	TENSION D'ENTRÉE	TENSION DE SORTIE	AMPS DE SOR TIE* CC	NUMÉRO DE MODÉLE
150mA à 5.5 A	24 à 36 VCA	0-20 / 0-30 VCC	5.5A	123D-C
1/50 à 1/8	120/240 VCA	0-90 / 0-180 VCC	1.2A	125D-12C
1/8 à 1	120/240 VCA	0-90 / 0-180 VCC	5.5A	125DV-C

REMARQUE: * À l'aide d'un radiateur externe adéquat, la puissance nominale maximum homologuée U.L. pour la sortie des ampères peut être augmentée jusqu'à atteindre 10 ampères CC.

PROCEDURE DE RACCORDEMENT/FUSIBLES

- 1. Utilisez les calibres de fils appropriés pour transporter le courant de l'induit et de l'armature EN RESPECTANT LES NORMES NATIONALES, FÉDÉRALES ET/OU LOCALES. Tous les autres fils peuvent avoir un calibre #18 ou inférieur, en fonction du code local.
- 2. Séparez les fils de la commande de tous les fils des lignes d'induit et CA lorsque vous les router dans les gaines ou les
- goulottes.
 Fusible Le moteur et la commande sont protégés contre toute surcharge grâce au circuit limiteur de courant et à un fusible que l'utilisateur se doit d'installer sur la ligne CĂ. CETTE PROTECTION PEUT DÉJA EXISTER SI L'UTILISATEUR A DÉJA IN STALLER DES DISJONCTEURS OU DES FUSIBLES SUR LES DEUX LIGNES PRINCIPALES: DANS LE CAS CONTRAIRE:

POUR UNE ENTRÉE DE 120 VCA - l'utilisateur doit installer un fusible sur la ligne CA 1 (voir tableau suivant)

POUR UNE ENTRÉE DE 240 VCA - l'utilisateur doit installer un fusible sur les lignes CA 1 et 2 (voir tableau suivant)

FUSIBLE DEVANT ETRE INSTALLÉ PAR L'UTILISATEUR (fusibles Bussman ABC ou Little Fuse Séries 314 en céramique).

HORSE-POWER	ENTRÉE 120 VCA	ENTRÉE 240 VCA
1/50	2 AMP	
1/20	2 AMP	
1/8	3 AMP	
1/4	4 AMP	3 AMP
1/3	6 AMP	3 AMP
1/2	8 AMP	4 AMP
3/4	12 AMP	6 AMP
1.0	15 AMP	8 AMP
1.5		12 AMP
2.0		15 AMP

REMARQUE: Pour déterminer quel genre de fusible doit être utilisé pour la commande Série 123 D-C (entrée VCA de 24 à 36), utilisez 200% de la pleine charge de courant.

INSTRUCTIONS POUR LE RACCORDEMENT DU BORNIER

Pour faciliter son raccordement, le modèle Série 125D possède un bornier à 8 positions.

P1-1.2

120 VCA - Raccordez la phase CA en entrée (fil noir) à P1-1 et le fil neutre (fil blanc) à (CA) P1-2. Raccordez le fil de terre (fil vert) au CHÂSSIS de la commande.

240 VCA - Raccordez les deux phases, l'une à P1-1, l'autre à P1-2. Raccordez le fil de

mise à la terre au CHÂSSIS de la commande.

Raccordez au fil POSITIF (+) de l'induit sur le moteur. 0-90 VCC pour une entrée de 120 P1-3 (Arm +)VCA ou 0-180 VCC pour une entrée de 240 VCA. Voir "SPÉCIFICATIONS" pour la puissance de sortie nominale.

Racçordez le fil négatif (-) de l'induit situé sur le moteur, et si nécessaire, raccordez le P1-4 (Arm - / Alimentation-) fil NEGATIF (-) DE L'ALIMENTATION DU MOTEUR À ENROULEMENT DE DÉRIVATION. (Suite)

P1-5

(Alimentation +)

À NE PAS utiliser avec un moteur à aimants permanents. Fournit l'alimentation+pour un MOTEUR À ENROULEMENT DE DÉRIVATION (consultez la table des tensions). Pour des moteurs bitension, (50/100V ou 100/200V) assurez-vous que la valeur la plus élevée est raccordée.

TABLE DES TENSIONS SUR SITE						
ENTRÉE VCA 24 36 120 240						
ALIMENTATION VCC 20 30 100 200						

P1-6 (Potentiomètre de vitesse HI)

Se raccorde au coté supérieur (fil blanc) du potentiomètre (coté allant dans le sens des aiguilles d'une montre). +12 volts interne. Pour des applications départarrêt, la connexion entre cette borne et le potentiomètre HI peut être ouverte et fermée à l'aide d'un interrupteur marche-arrêt. L'ENTRÉE NE DOIT PAS ÊTRE MISE À LA TERRE !!!

P1-7 (Curseur du potentiomètre de vitesse)

Se raccorde au curseur (fil rouge) du potentiomètre (fil central). Pour les applica tions à étage suiveur de tension, CETTE ENTRÉE NE DOIT PAS ÊTRE SUPÉRIEURE À +12 VOLTS MAXIMUM ET NE DOIT PAS ÊTRE MISE À LA TERRE.

P1-8 (POTENTIOMÈTRE DE VITESSE LO)

Raccorde le coté inférieur (fil orange) du potentiomètre 5K (normalement le coté allant dans le sens contraire des aiguilles d'une montre). Cette entrée est élevée et abaissée par le potentiomètre MIN 5K. L'entrée électronique de la vitesse (l'étage suiveur de tension) peut être référencée au potentiomètre LO si les réglages du potentiomètre MIN doivent être actifs. Dans le cas contraire, les entrées peuvent être référencées à ARM-, qui contourneront le potentiomètre MIN. L'ENTRÉE NE DOIT PAS ÊTRE MISE À LA TERRE !!!

Avertissement

- Assurez-vous que le coffrage du système de commande est correctement mis à la terre.
- 2. Les raccordements ARM ne doivent pas être commutés ou interrompus pendant que la commande est sazous ten sion. De sérieux dégâts peuvent en découler.
- Pour les applications sans potentiomètre : les connexions d'entrée vers les fils Lo-Curseur-Hi ne doivent pas être mises à la terre. Une entrée mise à la terre peut gravement endommager la commande.

SCHÉMA D'INSTALLATION SÉRIES 123D/125D

Avertissement:

N'essayez pas d'effectuer d'essai diélectrique à travers les lignes CA lorsque la commande est dans le circuit. La commande sera immédiatement et irrémédiablement endommagée.

PROCÉDURE DE MISE EN ROUTE

AVERTISSEMENT: L'ALIMENTATION DOIT ÊTRE COUPÉE AVANT DE DÉMARRER!!!

- Vérifiez le câblage. Des mises à la terre accidentelles, des fils lâches ou pincés sur les fils de l'induit ou des potentiomètres peuvent endommager la commande lorsqu'elle est mise sous tension.
- Assurez-vous que la tension correcte est appliquée.
- 3. Tournez le potentiomètre à zéro (complètement dans le sens contraire à celui des aiguilles d'une montre).
- Mettez la commande sous tension et avancez le potentiomètre tout en observant le moteur. L'alimentation doit être éteinte avant que l'étape 5 puisse être effectuée.
- 5. Si la rotation du moteur est incorrecte, coupez l'alimentation à la déconnexion externe et inversez les connexions ARM+ et ARM-.
- 6. Assurez-vous d'obtenir un bon fonctionnement sur toute la plage de vitesse.
- 7. Si le fonctionnement est satisfaisant, aucun réglage supplémentaire n'est nécessaire.
- Si vous observez une instabilité ou une surcharge quelconque, ou si la vitesse maximum est plus élevée que celle voulue, consultez la rubrique "RÉGLAGE DES POTENTIOMÈTRES" à la page 5.
- 9. Pour tout autre problème, consultez la page 10, "EN CAS DE DIFFICULTÉ".

TABLE DE RÉGLAGE DU POTENTIOMÈTRE

LE FONCTIONNEMENT DE LA COMMANDE AU DELÀ D'UNE VALEUR À ± 10% DE LA TENSION DE LIGNE NORMALE PEUT DONNER LIEU À DES RÉAJUSTEMENTS. CES RÉGLAGES **SONT PERMANENTS; DES RÉGLAGES** PÉRIODIQUES NE SONT NORMALEMENT PAS REQUIS.

E N T

Ċ

SORT9

0

	C.L.	I.R.	MAX	MIN	HP
125D-12C					1/50
123D-12C		\bigcirc			1/20
					1/8
					1/8
	\bigcirc	$\overline{\bigcirc}$			1/4
125DV-C					1/3
					1/2
					3/4*
					1.0*

HP	C.L. I.R. MAX MII	N
1/20		125D-12C
1/8		1200 120
1/4		
1/4		
1/3		
1/2		125DV-C
3/4*		
1.0*		
1.5*		
2.0*		

CES RÉGLAGES S'APPLIQUENT À UN **POTENTIOMÈTRE** PRINCIPAL DE PRINCIPAL DE
5000 OHMS. LES
RÉGLAGES DE
CETTE TABLE SONT
APPROXIMATIFS.
UTILISEZ-LES DE
PAIRE AVEC LES
PROCÉDURES DE
RÉGLAGE RÉGLAGE.

Е

0

C A

S O

R T 1

8

0 V

C

*REMARQUE: RADIATEUR (DISSIPATEUR DE CHALEUR) SUPPLÉMENTAIRE REQUIS POUR MODÈLE 125CC-C (ENTRÉ 120 VCA - SUPÉRIEUR AUX MOTEURS À 1/2 H.P.) ET (ENTRÉ 240 VCA - SUPÉRIEUR AUX MOTEURS D' 1 H.P.). LA TEMPÉRATURE D'EXTRUSION DU MODÈLE 125 NE DOIT PAS **DÉPASSER 70 DEGRÉS CENTIGRADES.**

REMARQUE: POUR DÉTERMINER LES RÉGLAGES DU POTENTIOMÈTRE DE LA SÉRIE 123D-C, VOIR RÉGLAGES CI-DESSOUS DU POTENTIOMÈTRE.

POTENTIOMÈTRE	FONCTION	RÉGLAGE
MIN.	Règle la vitesse minimum du moteur lorsque le potentiomètre est à zéro. En le tournant dans le sens des aiguilles d'une montre, vous augmentez la vitesse minimum du moteur.	 Réglez le potentiomètre à zero (dans le sens contraire des aiguilles d'une montre). Tournez le potentiomètre MIN dabs le sens des aiguilles d'une montre jusqu'à ce que le moteur se mette en route. Tournez lentement le potentiomètre MIN dans le sens contraire des aiguilles d'une montre jusqu'à l'arrêt du moteur. REMARQUE : Si le moteur doit tourner, tournez le potentiomètre MIN dans le sens des aiguilles d'une montre jusqu'à ce que la vitesse minimum désirée est atteinte.
IR COMP	Étalonne la régulation de la vitesse - Fournit un moyen d'améliorer la régulation de la vitesse du moteur dans le mode de retour de l'induit. Si vous n'êtes pas concerné par un ralentissement dû à un changement de charge, tournez ce potentiomètre à fond dans le sens contraire des aiguilles d'une montre.	 Réglez le potentiomètre à 50%. Observez la vitesse du moteur sans charge. Appliquez une pleine charge au moteur. Tournez le potentiomètre IR COMP dans le sens des aiguilles d'une montre pour obtenir la même vitesse que sans charge.
MAX.	Règle la vitesse maximum du moteur lorsque le potentiomètre est réglé à son maximum (rotation à 100% dans le sens des aiguilles d'une montre). En tournant le potentiomètre MAX dans le sens des aiguilles d'une montre, vous augmentez la vitesse maximum du moteur.	 COUPEZ L'ALIMENTATION DE COMMANDE! Connectez le voltmètre CC: + à ARM+, - à ARM-, REMARQUE: Le voltmètre ne doit pas être mis à la terre! Réglez la plage de tension du compteur (90 VCC pour 120 VCA, 180 VCC pour 240 VCA). Remettez le courant. Réglez le potentiom ètre à 100%. Réglez le potentiomètre MAX à la tension nominale de l'induit, indiqué par le compteur. REMARQUE: Vous pouvez utiliser un tachymètre ou un stroboscope à la place d'un compteur. Suivez les étapes ci-dessus, mais réglez le potentiomètre MAX à la vitesse nominale de base indiquée par le t achymètre ou le stroboscope.
CUR. LIM.	Limite le courant CC de l'induit (couple) afin d'empêcher d'endommager le moteur ou la commande. Le limiteur de	METTEZ LE MOTEUR HORS TENSION !! Connectez un ampèremètre CC entre A1 sur le

courant est réglé en fonction du courant nominal du moteur. Si le potentiomètre est tourné dans le sens des aiguilles d'une montre, le courant de l'induit augmente (ou produit le couple).

- moteur et ARM+ sur la commande. En série avec le moteur.
- 3. Remettez le courant.
- Réglez le potentiomètre à 50 %.
- Appliquez un freinage mécanique à l'arbre du moteur jusqu'à ce que le moteur cale.
- Avec le moteur calé, réglez le courant à 125% du courant nominal d'induit de la plaque d'identification en réglant le potentiomètre CUR LIM.

FONCTIONNEMENT À DEUX VITESSES

Le fonctionnement à deux potentiomètres est effectué en utilisant deux potentiomètres de vitesse de 10K ohms en parallèle (les deux HI sur P1-6, les deux LO sur P1-8). Le CURSEUR est commuté à l'aide d'un interrupteur unipolaire bidirectionnel.

DEUX POTENTIOMETRES 10K

FREINAGE RHÉOSTATIQUE

Un interrupteur bipolaire bidirectionnel est utilisé pour inhiber la commande et connecter la résistance de freinage rhéostatique (DBR). Les valeurs typiques pour cette résistance (DBR) sont 5 ohms pour 120 V et 10 ohms pour 240 V (les deux de 35 à 50 W). Il est à noter que la puissance du moteur, l'inertie et le temps de cycle agissent sur l'étalonnage de la résistance DBR.

REMARQUE: Cette modification ne peut être utilisée avec aucune

des options -15.

RÉTROACTION DU TACHYMÈTRE

Améliore la régulation de vitesse jusqu'à ±1/2% de la vitesse de base.

SUIVEUR DE TENSION DU TACHYMÈTRE

Permet à la sortie de la commande de suivre la tension du tachymètre.

REMARQUE: ONDULATION DE SORTIE DU TACHYMÈTRE À 1% OU MOINS.

INHIBITION (UTILISÉE INDÉPENDAMMENT)

L'interrupteur SPST fourni par le client est raccordé en série entre le potentiomètre HI (P1-6) et la broche d'inhibition (P3). Pour invalider (arrêter le moteur), le potentiomètre HI est fermé pour là broche d'invalidation. Pour le redémarrage; l'interrupteur repasse à ouvert. REMARQUE: Cette commande s'arrêtera et démarrera rapidement.

INHIBITION (UTILISÉE AVEC UN POTENTIOMÈTRE)

Le fil Commun sur l'interrupteur SPDT est raccordé au potentiomètre HI de la commande et commuté entre le potentionnètre HI et la broche d'inhibition (P3). Pour inhiber (arrêter le moteur), le potentiomètre HI est fermé à la broche. Pour redémarrer, l'interrupteur retourne vers le potentiomètre HI. REMARQUE : La commande s'arrêtera rapidement et démarrera en suivant une plage d'accélération fixe.

REMARQUE: Permet de démarrer et d'arrêter le moteur sans avoir à couper les lignes CA. En cas de panne de thyristor ou d'un déclenchement intempestif; le circuit d'inhibition n'arrêtera pas le moteur.

KIT D'ASSEMBLAGE DU POTENTIOMÈTRE

DESCRIPTION DES OPTIONS

Option -1Verrouillage Électronique du Potentiomètre

Installé sur Site ou en Usine Disponible sur Tous les Modèles

La carte "sommateur" -1 se connecte à la carte des séries 125 grâce à un connecteur femelle et une entretoise de support en plastique.

Lorsque la commande est mise sous tension par le courant CA, le verrouillage électronique évitera que le moteur ne démarre jusqu'à ce que le potentiomètre soit tout d'abord tourné jusqu'à la position zéro puis tourné dans le sens des aiguilles d'une montre vers la vitesse réglée.

De plus, si l'alimentation en courant CA venait à être interrompue pour une raison ou pour une autre, le verrouillage électronique évitera tout démarrage automatique du moteur. Pour redémarrer, le potentiomètre doit tout d'abord être tourné sur la position zéro puis tourné dans le sens des aiguilles d'une montre vers la vitesse réglée.

ATTENTION: Le verrouillage électronique est inefficace si une panne du SCR (redresseur) venait à se produire.

Option -2A Accél/Décél Linéaire Réglable

Installé sur Site ou en Usine Disponible sur Tous les Modèles

Cette option peut être branchée sur le connecteur d'expansion à cinq positions sur la carte-mère 125D. L'option -2A aura la priorité sur la rampe fixe d'accélération intégrée de la commande 125D permettant une accél/décél linéaire de 0.5 à 8.0 secondes. Pour monter, retournez la carte de l'option -2A afin que les circuits imprimés soient visibles. Alignez le connecteur mâle CN1 (option -2A) avec le connecteur femelle P2 (carte 125D) de façon à ce que la borne CN1-1 soit compatible avec P2-6, et CN1-2 soit compatible avec P2-5, etc. Alignez l'entretoise plastique sur l'option -2A avec le trou indiqué sur la carte-mère 125D. Après avoir aligné les connecteurs et l'entretoise, enclipsez. Le réglage du potentionetre est effectué par l'intermédiaire du petit trou d'accès au dos de la carte de l'option -2A. Une complète rotation dans le sens contraire à celui des aiguilles d'une montre est égale au temps d'accél/décél minimum et une complète rotation dans le sens des aiguilles d'une montre est égale au temps d'accél/décél maximum.

option -7 Suiveur de signal isolé 4-20 mA avec interrupteur auto/manuel

Dans un boîtier- Installé en usine seulement Boîtier – Installé en usine ou sur les lieux Boîtier – l'interrupteur et le câblage sont fournis par le client

PROCÉDÉ de CONJUGAISON de l'OPTION -5 et -7

NE PAS UTILISER LE DIAGRAMME DU POTENTIOMÈTRE POUR AJUSTER LES POTENTIOMÈTRES AU MINIMUM ET AU MAXIMUM DU TABLEAU PRINCIPAL. SI UN RÉGLAGE EST NÉCESSAIRE, CONSULTEZ LES PROCÉDURES DE CONFIGURATION CI-DESSOUS.

L'option -5 est une carte à signal isolé 4-20 mA qui remplace le potentiomètre à grande vitesse pour la commande de vitesse. Cette entrée de signal 4-20 mA peut être reliée ou non à une prise de terre. Le tableau comporte des espaceurs vissés au potentiomètre MAX., des curseurs et des terminaux MIN. dans le tableau principal fixés par de longues vis. La source de courant se connecte au + et au -, de la bande terminale en deux positions (P16-1 et -2) du tableau d'option -5.

Le potentiomètre de linéarité du tableau d'option -5 est configuré par le fabricant pour une linéarité appropriée ; néanmoins ce potentiomètre doit être reconfiguré après un réglage des configurations minimum et maximum du potentiomètre de commande selon votre programme spécifique. Si nécessaire, consultez la procédure de configuration ci-dessous.

L'option -7 est également une carte à signal isolé 4-20 mA permettant toutefois d'assurer la commande en mode manuel via le potentiomètre à grande vitesse ou en mode automatique via le signal 4-20 mA. Cette option comprend aussi un potentiomètre d'équilibre utilisé pour augmenter la vitesse maximum en mode manuel.

C'est le fabricant qui le configure pour que la vitesse maximum en mode manuel puisse équivaloir à la vitesse maximum en mode automatique.

Le potentiomètre de linéarité du tableau de l'option -7 est configuré par le fabricant pour une linéarité appropriée; néanmoins ce potentiomètre doit être reconfiguré après un réglage des configurations maximum et minimum des commandes ou si le potentiomètre d'équilibre en -7 doit être reconfiguré pour un programme spécifique. Si nécessaire, consultez la procédure de configuration ci-dessous.

Ce qui suit est la procédure recommandée de l'option -5/-7 des séries 125:

- 1) Avec les 125 orientés afin que le potentiomètre soit vers le haut, ajustez le potentiomètre Min au minimum (à fond dans le sens antihoraire) et le potentiomètre Max à 50 %. La tension est réglée en dessous de la tension habituelle du moteur dans le but de s'assurer que le lecteur n'est PAS saturé avant de régler le point de saturation du tableau -5/-7.
- 2) Ajustez le potentiomètre de linéarité /gain sur le -5/-7, à fond dans le sens horaire. Il s'agit d'un potentiomètre rotatif 20 et vous devez entendre un claquement à chaque tour complet ou tous les 20 tours.
- 3) Assurez-vous que votre moteur est connecté à la sortie +/- ARM du lecteur, que l'interrupteur AUTO/MANUEL est en mode automatique pour les options -7 et que la source de courant pour le contrôle du fonctionnement est branchée. (Remarque: pour un réglage adéquat, ce système fonctionne mieux avec un moteur déchargé).
- 4) Avec la puissance employée et un voltmètre du contrôle en sortie Vdc du moteur, appliquez 4mA au -5/-7. Vérifiez l'affichage du voltmètre et ajustez le potentiomètre de linéarité/gain R16 sur le tableau -5/-7 dans le sens antihoraire jusqu'à ce que la tension en sortie soit inférieure à 0,1Vdc.
- 5) Appliquez maintenant 20mA au tableau -5/-7 et réglez le potentiomètre Max sur une tension de 5 volts (15 volts pour contrôler la série 250G), au-dessus de la tension maximum de la sortie du moteur souhaitée. Réglez le potentiomètre linéarité/gain sur le tableau -5/-7 dans le sens antihoraire jusqu'à ce que la sortie de tension du moteur diminue jusqu'au point de tension maximum configurée et voulue.
- 6) Appliquez maintenant 4mA sur le tableau -5/-7 à nouveau et réglez le potentiomètre Min jusqu'à la fin de la zone morte ou jusqu'à la tension de sortie minimale du moteur souhaitée. La zone morte est là où se situe la tension continue de 0 Volts et toute autre augmentation du potentiomètre Minimum produirait une sortie vers le moteur. Appliquez à nouveau 20mA au tableau -5/-7 et vérifiez si la sortie maximum n'a pas changé. Un petit réglage peut être nécessaire au potentiomètre Maximum pour réinitialiser la sortie maximum souhaitée.
- 7) Réglez l'entrée 4-20 jusqu'à 12mA. Si la tension de sortie est correctement configurée, la tension de sortie d'un moteur déchargé devra être inférieure de quelques de volts à 1/2 de la valeur de sortie (selon la configuration de sortie maximum cidessus).

Uniquement option -7 : Pour le programme de 20mA au mode Auto -7, déplacez l'interrupteur AUTOMATIQUE/MANUEL vers MANUEL.

8) En mode manuel tournez à fond le potentiomètre de vitesse dans le sens horaire, tenez compte de l'affichage de la tension de sortie du moteur sur le voltmètre. S'il n'est pas égal en sortie à 20mA en mode automatique, ajustez le potentiomètre Balance sur le tableau -7 (sens horaire ou antihoraire) jusqu'à atteindre le même affichage. La tension continue en sortie du moteur ne doit pas varier de plus d'1 V de tension continue pendant le va-et-vient entre la position AUTOMATIQUE et MANUEL.

Option -11Potentiomètre à 10 Tours

Installé sur Site Disponible sur Tous les Modèles

Fournit une commande plus précise de la vitesse. Utilisez les instructions de raccordement standard et la table des potentiomètres (page 5).

Option -15Modifications des Temps d'Accélération

Installé en Usine Disponible sur Tous les Modèles

Cette option fournit les temps d'accel indiqués ci-dessous. Le temps d'accel standard est de 0.5 seconde.

TEMPS D'ACCÉLÉRATION

OPTION -15

OPTION-K

4 secondes

6 secondes

SUIVEZ L'INSTALLATION STANDARD

Permet d'inverser le moteur. Pour cela, utilisez un interrupteur central immobilisé 4PDT. En commutant l'interrupteur entre les positions avant-arrière, un délai se produit. Ce délai est dû à la position centrale immobilisée, qui protège la commande contre toute tension pouvant se trouver sur les bornes de l'induit. La position centrale est ARRÊT/NEUTRE.

LE MOTEUR DOIT VENIR À UNE POSITION D'ARRÊT TOTALE AVANT DE POUVOIR CHANGER DE DIRECTION. SI LE MOTEUR NE S'ARRÊTE PAS COMPLÈTEMENT, LA COMMANDE PEUT ÊTRE SÉRIEUSEMENT ENDOMMAGÉE. SI LE BLOC CENTRAL DE L'INTERRUPTEUR EST BIPASSÉ, LA COMMANDE PEUT ÊTRE SÉRIEUSEMENT ENDOMMAGÉE.

EN CAS DE DIFFICULTÉ

PROBLEME	CAUSE(S) POSSIBLE(S)	MESURE(S) CORRECTIVE(S)
Le moteur ne	 Le fusible a sauté 	Remplacez le fusible
fonctionne pas	 Source d'alimentation 	Installez le branchement approprié
	inappropriée ou absente	Tournez le potentiomètre dans le sens des ai-
	 Potentiomètre réglé à zéro 	guilles d'une montre au démarrage
	 Balais de moteur usés 	Remplacez les balais du moteur
Le moteur cale, ou tourne	- Tension trop basse	Vérifiez-la - doit être supérieure à 100V ou 208V
très lentement avec le	– Surcharge	Réduisez la charge
potentiomètre entièrement	 Balais de moteur usés 	Remplacez les balais du moteur
ouvert	 VITESSE MAXIMUM mal réglée 	Voir RÉGLAGES
Le moteur fonctionne par	Courant moteur inférieur à 150mA	La tension doit être supérieure à 150mA CC
à-coups	 I.R. COMP trop élevé 	Voir RÉGLAGES
•	 Moteur a atteint sa capacité 	Voir RÉGLAGES
	 Vitesse du moteur dépasse sa 	Réduisez la vitesse
	vitesse nominale	Voir RÉGLAGES
	 Potentiomètre réglé trop haut 	
Les fusibles sautent de	- Tension trop basse	À vérifier - devrait être supérieure à 100V ou 208V
manière répétée	– Surcharge	Réduisez la charge
•	 Balais de moteur usées 	Remplacez-les
	- Roulements défectueux	Remplacez-les
	 Composants électriques défectueux 	Appelez le Distributeur ou un représentant Dart

Si la commande ne fonctionnera toujours pas, allez à www.dartcontrols.com/support ou à l'appel (317) 873-5211.

SPÉCIFICATIONS

	±10% de la tension nominale du secteur
	0,5 secondes (125D standard) 150 mA à 5.5 Ampères CC
Surcharge admissible du contrôleur	200% pour une minute
Plage du limiteur de courant du potentiomètre	
Décélération	de 0,5 seconde (125D standard)
Dimensions et poids:	

	LARGEUR	LONGUEUR	PROFONDEUR	POIDS
ANGLAIS	3,625"	4,250"	1,300"	8,00 oz.
MÉTRIQUE	92 mm	108 mm	33 mm	228 gm

	
Facteur de surcharge de la commande	
Efficacité	
Fréguence de l'entrée	
Plage max du pot. de vitesse	
Plage min du pot. de vitesse	
Périphériques d'alimentation	Bôite isolée
Tension d'excitation shunt	
	100VCC pour entrée 120VCA; 200VCC pour entrée 240VCA; 1 ampère maximum
Commande de vitesse	via potentiomètre de 5K Ohms 2W ou signal isolé 0 à 10VCC
Plage de vitesse	50:1
Réglage de la vitesse	±1 % de la vitesse de base
Température de fonctionnement	10° à 45° C (15° à 115° F)
Protection transitoire	
Déclencheur	coupleur optoélectronique
Type de section d'accel/décél	

^{*} À l'aide d'un radiateur externe adéquat, la puissance nominale maximale homologuée UL. pour la sortie des ampères peut être augmentée jusqu'à atteindre 10 ampères CC.

D1 D2

D4

D5

D6

D8

D9

1N4005 1N4005 1N914B

1N5242B

1N4005

1N5233B 1N914B

D4015L

D4015L D4015L

La température d'extrusion du modèle 125D ne doit pas dépasser 70 degrés centigrades.

COURANTS DE MOTEUR TYPIQUES

Horse-power	1/50	1/20	1/8	1/4	1/3	1/2	3/4	1.0	1.5	2.0
Amperage CA typique (120 VCA)	0.50	1.00	2.00	3.50	4.40	6.50	9.30	13.20		
Amperage ARM typique (120 VCA)	0.42	0.81	1.60	2.70	3.40	5.00	8.20	10.90		
Amperage CA typique (240 VCA)				1.80	2.20	3.30	4.80	6.50	9.70	12.90
Amperage ARM typique (240 VCA)				1.40	1.70	2.50	3.70	5.00	8.20	11.60

EMPLACEMENT ET LISTE DES PIÈCES DIODES CONDEN

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R112 R13 R14 R15 R16 R17 R18 R17 R19 TRIM) R21 R22 R23 R24 R25 R26 R27 R28	ISTANCES 15K 6W 470Ω 2.7K 470Ω 2.7K 82K 5K(MIN TRIM) 300K 180K 1.2M 39K 100K 10K 2.2K 820Ω 4.7K 470K 1K 100Ω (I.R TRIM) 5K (C.L. 300K 10K (MAX TRIM) 1K 300C 300K 10K (MAX TRIM) 1K 390 Ω 390 Ω
R27	390 Ω
ÉQU	IDMENITS

ACTIFS Q1 2N6027

U2 MOC3052

Q3 S4015L

Q4 S4015L U5 LM3581C Q6 275V G-MOV

PIÈCES DIVERSES

 JU1
 1,75" - 16GA FIL ISOL'E SOLIDE

 JU2
 2,50" - 16GA FIL ISOL'E SOLIDE

 PCB
 CARTE DE CIRCUITS IMPRIMÉS A-4-2033F

 P1 (-1 à -8)
 Bornier à 8 positions

 P2 (-2 à -6)
 Connecteur femelle à 5 positions

 P3
 Borne à plage ouverte 3/16"

R19 R10 R10 R10 R10 R110 R110

CONDENSATEURS

C1	.01μF 100V
C2	10µF 35V
C3	.01μF 100V
C4	.033μF 400V
C5	.22μF 1KV
C8	1μF 50V N.P.
C9	.0047μF 1KV
C10	.1μF 50V
C11	47μF 16V

MODIFICATIONS ACCEL

-15A	C8	33uf 16V
-15B	C8	15uf 25V
-15C	C8	4.7uf 16V
-K	C8	22uf 16V

MODIFICATIONS 123D-C

 D6
 1N914B (SENS INVERSE)

 Q6
 BORRAR

 R1
 1K2W

 R2
 47Ω

 R16
 220K

 R23
 47K

 R25
 15K

 R27
 47Ω

 R28
 47Ω

11 - Fr

^{**} n'est pas utilisé sur une commande de séries 123D-C.

MORE DC MOTOR SPEED CONTROL PRODUCTS FOR YOUR EVERYDAY NEEDS

Stock # 5JJ58 1/40 - 2/3 Hp NEMA 4 Enclosed

Stock # 2M510 1/50 Hp - 1.0 Hp Open Chassis SCR

Stock # 6Z385A 1/50 Hp - 2.0 Hp Open Chassis SCR

Stock # 6Z388B 1/4 - 2 Hp NEMA 4/4X Extra Features

Stock # 6Z386A 1/50 - 2 Hp NEMA 4/4X Extra Features

Stock # 1XC92A Field Programmable Closed-loop DC Speed Control

Stock # 5JJ62 Variable AC Voltage control

Stock # 5HA33 1/15 - 1.0 Hp Reversing Control

Stock # 6Z392 Shaft-mounted Hall-Effect pulse generator

Stock # 3VU55, 5JJ52, 6YC44 DC Input - Variable DC Output 10, 20, and 60 Amp Models

Stock # 3VU57 Field Programmable Digital Tachometer and Rate Meter