

$$e^{x}: (-\infty, \infty) \xrightarrow{1-1} (0, \infty)$$

Ly x

$$\log Z = \frac{a}{g}$$
 branch of a complex $\log \frac{a}{g}$

$$= \frac{a}{2} \left(\frac{1}{2\pi} \right) = \frac{a}{2} \left(\frac{a}{2\pi} \right) = \frac{a}{2} \left(\frac{a}{2\pi} \right) = \frac{a}{2} \left(\frac{a}{2\pi} \right) = \frac{a}{2\pi} \left(\frac{a}{2\pi} \right$$

Then
$$h(z) = f(g(z))$$
 is analytic and

$$h'(z) = f'(g(z))g'(z).$$

Let
$$E(z) = e^z$$
. We know $E'(z) = E(z)$.

$$E'(\log z) dz(\log z) = dz(z) = 1$$

$$\frac{E(\log z)}{z} \leq d(\log z) = \frac{1}{z} V$$

Powers:
$$2^3 = 2 \cdot 2 \cdot 2$$

$$2^{1/2} = \chi \quad \text{such} \quad \chi^2 = 2.$$

$$2^{5/7} = (2^5)^{1/7} = x \text{ such that}$$

$$\chi^7 = 2^5$$
.

$$2^{17} = 7$$
 Lim 2^{15}
 $1^{17} = 7$ Lim 2^{15}
 $1^{17} = 3$, $\frac{31}{10}$, $\frac{314}{100}$, $\frac{3141}{1000}$, $\frac{31415}{10000}$, ---

Aha!
$$2^{\pi} = e^{\pi \ln 2}$$
 $e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$

$$= e^{-\left(\frac{y}{2} + h 2\pi\right)}$$

$$= e^{-\left(\frac{y}{2} + h 2\pi\right)}$$

$$= e^{-\pi h} \cdot e^{N2\pi} \quad (N=-n)$$

so many real numbers! All >0 |

$$\frac{1}{e^{\pi i/2}}$$

O and as are limits of values of i

Gut feelings are still valid:

$$Z^{n} = e^{n \log z} = e^{n \left(\ln |z| + i \operatorname{arg} z \right)}$$

$$= e^{\ln |z|^{n}} + i \operatorname{in} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{in} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{in} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{in} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{in} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{in} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{n} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{n} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{n} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{n} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{n} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{n} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{n} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{n} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{n} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{n} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{n} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{n} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{n} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{n} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{n} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{n} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{n} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{n} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{n} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{n} \left(\operatorname{Arg} z \right) + i \operatorname{n} 2 \operatorname{in}$$

$$= e^{\ln |z|^{n}} + i \operatorname{n} 2 \operatorname{in$$

Only two values: ± (\$\frac{1}{2} + 2\frac{1}{2})

5) 2 60 many values for generic z, w Complex.

Important convention: $\vec{z} = e^{x} e^{x} \vec{y}$ $= e^{x} (osy + i e^{x} siny)$ $not e^{z} = e^{z} (oge) = e^{z} (lne + i n ln)$

Convention:
$$\partial^{Z} = e^{Z \ln Z}$$

$$\chi^{Z} = e^{U \ln X} \quad \text{when } x \text{ real}$$

$$\chi^{Z} = e^{U \ln X} \quad \text{when } x \text{ real}$$

$$\chi > 0.$$
(hain rule: $h(x) = f(g(x))$

$$w_{0} = g(x_{0})$$

$$w_{0} = g(x_{0})$$

$$w_{0} = f(w_{0}) + E(w)$$

$$w_{0} = g(x_{0})$$

$$w_$$

So
$$E(g(\Xi)) \rightarrow 0$$
 as $\Xi \rightarrow \Xi_0$.

$$EX = e^{iz} = E(iz).$$

$$\frac{d}{dz} e^{iz} = \frac{d}{dz} (E(iz)) = E'(iz) \frac{d}{dz} (iz)$$