Parcial 2 Simulación

Jesus David Macias Carlos Andres Pulido

Single-server Queue

Introducción

El siguiente parcial nos permite comprobar nuestros conocimientos sobre los temas vistos en clase (Cola de un servidor) en este caso simularemos el comportamiento de un establecimiento comercial la cual ofrece un servicio continuo entre las 8 am y las 4 pm.

Para la solución de esta simulación tuvimos que tener en cuenta los datos que nos estaban dando entre ellos los tiempos de llegada y de servicio siguiendo una distribución exponencial de λ =5/10 y λ =6/10.

La distribución exponencial estudia el tiempo entre cada una de estas llegadas. Si las llegadas son de Poisson el tiempo entre estas llegadas es exponencial. La distribución exponencial es continua porque el tiempo entre llegadas no tiene que ser un número entero. Esta distribución se utiliza mucho para describir el tiempo entre eventos. Más específicamente la variable aleatoria que representa al tiempo necesario para servir a la llegada.

En dicha simulación se deben generar 1000 réplicas de forma aleatoria teniendo en cuenta el tiempo que ofrecía el establecimiento el cual era continuo entre las 8 am y las 4 pm (480 min).

Las réplicas son múltiples corridas experimentales con la misma configuración de factores. Las réplicas están sujetas a las mismas fuentes de variabilidad, de forma independiente unas de otras.

Una vez encontramos los estadísticos de trabajo y tiempo para cada réplica iniciamos a calcular los intervalos de confianza, para ello usamos una biblioteca en python llamada "Scipy" la cual calcula un intervalo de confianza a partir de un conjunto de datos.

Resultados

Intervalo de confianza para el número de trabajos	239.7616846458398	241.5963153541602
Intervalo para el Tiempo Medio de Llegada	0.01647261271255149	0.0179699968830561
Intervalo para el Tiempo Promedio de Servicio	1.6621434208946375	1.675343232440514
Intervalo para el Tiempo Promedio de Retraso	198.140323556215	200.5869052342558
Intervalo para el Tiempo Promedio de Espera	199.80458637565462	202.26012906815137
Intervalo para el Tasa de Llegada	99.52721713984154	122.45988148493909
Intervalo para el Tasa de Servicio	0.5993061323677256	0.6041549604334218
Intervalo para el Numero de Tiempo Promedio en la Cola	118.49768784768533	119.5726267841823
Intervalo para el Numero de Tiempo promedio en Servicio	0.9961191951952345	0.9971024656798194
Intervalo para el Numero Promediado en el Tiempo en el Nodo	119.49426023713603	120.56927605560666

Conclusión

Observamos que el intervalo de tasa de llegada es inferior al intervalo de tasa de servicio esto nos dice que la mayoría de las veces el establecimiento es capaz de atender a sus clientes sin retraso.