Tema 2 (Primera parte): Inducción y recursión.

David de Frutos Escrig versión original elaborada por María Inés Fernández Camacho

MATEMÁTICA DISCRETA Y LÓGICA MATEMÁTICA (Ingeniería Informática - Ciencias Matemáticas) UCM Curso 18/19

EL CONJUNTO DE LOS NÚMEROS NATURALES

$$\mathbb{N} = \{0, 1, 2, 3, \cdots\}$$

• $\mathbb N$ puede generarse a partir del 0 aplicando reiteradamente la función sucesor s: $\mathbb N \to \mathbb N$ que asigna a cada natural n el que le sigue, es decir n + 1

EL CONJUNTO DE LOS NÚMEROS NATURALES (2)

AXIOMAS DE PEANO

Se define el conjunto $\mathbb N$ de los números naturales mediante los cinco axiomas siguientes:

- Existe un elemento de N que llamamos 0 (Primer natural)
- ② Existe la llamada función sucesor s: $\mathbb{N} \to \mathbb{N}$ tal que \forall n $\in \mathbb{N}$, s(n) $\in \mathbb{N}$ (El sucesor de un número natural es otro número natural y es único)
- ③ \forall n ∈ N, s(n) \neq 0 (El 0 no es el sucesor de ningún número natural)
- $\begin{tabular}{ll} \bullet & \forall \ n,m \in \mathbb{N}, \ ((s(n)=s(m)) \to (n=m) \\ \ (\mbox{No existen dos números naturales distintos con el mismo sucesor)} \\ \end{tabular}$
- **③** \forall A ⊆ \mathbb{N} (((0 ∈ A) \land (\forall n ∈ A, s(n) ∈ A)) \rightarrow (A = \mathbb{N})) (Todo conjunto numérico A al que pertenece el 0 y dónde todo elemento de A tiene su sucesor en A, necesariamente coincide con \mathbb{N})

EL CONJUNTO DE LOS NÚMEROS NATURALES (3)

- ullet N es cerrado con respecto a las operaciones suma y producto
- N es un conjunto ordenado mediante la relación ≤ definida así:
 ∀ m, n ∈ N, decimos que m es menor o igual que n, y lo escribimos m ≤ n, si ambos son iguales o podemos obtener n a partir de m aplicando reiteradamente la función sucesor. Si m ≤ n y m ≠ n escribimos m < n
- Principio de buena ordenación (PBO): Todo subconjunto A no vacío de N tiene un elemento mínimo (primer elemento)
- $\bullet \ \, \mathsf{Dado} \,\, \mathsf{m} \in \mathbb{N}, \ \, \mathbb{N}_{\boldsymbol{\mathsf{m}}} = \{\mathsf{n} \in \mathbb{N} \, | \, \mathsf{m} \leq \mathsf{n} \}$

PRINCIPIO DE INDUCCIÓN

Para toda propiedad P definida sobre \mathbb{N} , si se verifica:

- P(0) (caso base), y
- Para todo k de N (paso inductivo):
 - si la verificación de P(k) (hipótesis de inducción (HI))
 implica que se verifique P(k+1) (caso inductivo (CI))

entonces $\forall n \in \mathbb{N}, P(n)$

O como regla de inferencia:

Base: P(0)

Paso inductivo:
$$\forall \ k \in \mathbb{N}, \ (P(k) \to P(k+1))$$

 $\therefore \forall n \in \mathbb{N}, P(n)$

Ej.. Demostrar que \forall $n \in \mathbb{N}$, $2+4+6+\cdots+2n=n(n+1)$

Dem.:

$$\mathsf{P}(\mathsf{n}) \colon \sum_{i=1}^n 2i = \ \mathsf{n}(\mathsf{n}+1) \quad \mathsf{donde} \quad \sum_{i=m}^n s_i = \left\{ \begin{array}{ll} 0 & \text{si} & n < m \\ \\ s_n & \text{si} & n = m \\ \\ \sum_{i=m}^{n-1} s_i + s_n & \text{si} & m < n \end{array} \right.$$

n = 0 $\sum_{i=1}^{0} 2i = 0 = 0(0+1)$ Caso base:

Paso inductivo: Sea $k \in \mathbb{N}$

HI: P(k): $\sum_{i=1}^{k} 2i = k(k+1)$

CI: P(k+1): $\sum_{i=1}^{k+1} 2i = (k+1)(k+2)$

 $P(k) \rightarrow P(k+1)$?

$$\begin{array}{lll} \sum_{i=1}^{k+1} 2i & = \sum_{i=1}^{k} 2i + 2(\mathsf{k}\!+\!1) & [\mathsf{def.} \sum] \\ & = \mathsf{k}(\mathsf{k}\!+\!1) + 2(\mathsf{k}\!+\!1) & [\mathsf{HI}] \\ & = (\mathsf{k}\!+\!1)(\mathsf{k}\!+\!2) & [\mathsf{Factor\ com\'un}] \end{array}$$

Luego

 $\forall n \in \mathbb{N}, \quad \sum_{i=1}^{n} 2i = n(n+1)$

Ej.. Demostrar que
$$\forall$$
 $n \in \mathbb{N}$, $\underbrace{(3^{2n}+4^{n+1})}_{\text{P(n)}}$ es múltiplo de 5

Dem.:

$$P(n) \sim \exists m \in \mathbb{Z}, \ (3^{2n} + 4^{n+1} = 5m)$$

Caso base:
$$n = 0$$
 $3^{2 \cdot 0} + 4^{0+1} = 1 + 4 = 5$

Paso inductivo: Sea $k \in \mathbb{N}$

HI:
$$P(k)$$
: $\exists m \in \mathbb{Z}, (3^{2k} + 4^{k+1} = 5m)$

CI:
$$P(k+1)$$
: $\exists m \in \mathbb{Z}, (3^{2(k+1)} + 4^{(k+1)+1} = 5m)$

$$P(k) \rightarrow P(k+1) ?$$

$$3^{2(k+1)} + 4^{(k+1)+1} = 3^{2k+2} + 4 \cdot 4^{(k+1)} = 9 \cdot 3^{2k} + 4 \cdot 4^{(k+1)} = (4+5)3^{2k} + 4 \cdot 4^{(k+1)}$$

$$= 4(3^{2k} + 4^{(k+1)}) + 5 \cdot 3^{2k}$$

= $4 \cdot 5m + 5 \cdot 3^{2k}$ para un cierto $m \in$

para un cierto m
$$\in \mathbb{Z}$$

$$= 5(4m + 3^{2k})$$
 para un cierto $m \in \mathbb{Z}$
$$= 5m'$$
 para un cierto $m' \in \mathbb{Z}$

para un cierto m'
$$\in \mathbb{Z}$$

[en concreto:
$$m' = 4m + 3^{2k} \in \mathbb{Z}$$
, pues \mathbb{Z} es cerrado bajo $+ y \times$]

Luego \forall $n \in \mathbb{N}$, $(3^{2n} + 4^{n+1})$ es múltiplo de 5

INDUCCIÓN SIMPLE SOBRE N_m

Para toda propiedad P definida sobre \mathbb{N}_{m} , si se verifica:

- P(m) (caso base 1), P(m + 1) (caso base 2), \cdots y P(m+i) (caso base i+1)
- Para todo k de \mathbb{N}_m tal que k \geq (m+i) (paso inductivo):
 - si la verificación de P(k) (hipótesis de inducción (HI)) implica que se verifique P(k+1) (caso inductivo (CI))

entonces
$$\forall n \in \mathbb{N}_m, P(n)$$

O como regla de inferencia:

Base:
$$P(m) \land P(m+1) \land \cdots \land P(m+i)$$

$$(HI) \qquad (CI)$$
Paso inductivo: $\forall k \in \mathbb{N}_{m+i}, (P(k) \rightarrow P(k+1))$

$$\therefore \forall n \in \mathbb{N}_m, P(n)$$

Ej.. Demostrar que $\forall n \ge 4, 2^n < n!$

Dem.:

$$P(n): 2^{n} < n!$$

Caso base: $n = 4, 2^4 = 16 < 4! = 24$

Paso inductivo: Sea $k \in \mathbb{N}_4$ (es decir $k \in \mathbb{N}, k \ge 4$)

HI: P(k): $2^k < k!$

CI: P(k+1): $2^{k+1} < (k+1)!$

$$_{i} P(k) \rightarrow P(k+1) ?$$

$$\begin{array}{lll} 2^{k+1} = & 2 \cdot 2^k \\ & < 2 \cdot k! & \text{[HI]} \\ & < (k+1) \cdot k! & \text{[k+1>2 ya que } k \geq 4] \\ & = (k+1)! \end{array}$$

Luego $\forall n \geq 4, 2^n < n!$

Obs: P(n) no es cierta para $n \leq 3$

A veces para demostrar que P(k) es cierta, no es suficiente con suponer en el paso inductivo que el predecesor cumple la propiedad , sino que se necesita que todos los valores anteriores a k también la cumplan

INDUCCIÓN COMPLETA SOBRE \mathbb{N}_m

Para toda propiedad P definida sobre \mathbb{N}_m , si se verifica:

- P(m) (caso base 1), P(m + 1) (caso base 2), \cdots y P(m+i) (caso base i+1)
- Para todo k de \mathbb{N}_m tal que (m+i) < k (paso inductivo completo):
 - si la verificación de P(I) ∀I ∈ N_m tal que m ≤ I < k (hipótesis de inducción completa (HIC))
 implica que se verifique P(k) (caso inductivo completo (CIC))

entonces

 $\forall n \in \mathbb{N}_m, P(n)$

Ej.. Demostrar que "Todo número natural mayor o igual que 4 puede expresarse como suma de (dos o más) primos"

Dem.: P(n): n puede expresarse como suma de primos.

Casos base:

$$n = 4$$
, $n = 2 + 2$

$$n = 5$$
, $n = 2 + 3$

$$n = 6$$
, $n = 3 + 3$

Paso inductivo completo: Dado $k \ge 7$

HIC: \forall I, $4 \le I < k$, I puede expresarse somo suma de primos

CIC: k puede expresarse somo suma de primos

$$k = (k - 3) + 3$$

= suma de primos [HIC ya que
$$4 < k-3 < k$$
 por ser $k > 7$]

Luego \forall $n \in \mathbb{N}_4$, P(n) (Todo número natural mayor o igual que 4 puede expresarse como suma de (dos o más) primos)

Ej.. Demostrar que "Para todo número natural n mayor o igual que 1, realizar el producto de n números requiere al menos n-1 multiplicaciones, independientemente del orden en que se asocien los factores al hacerlo"

Dem.: P(n): el producto de n factores requiere n-1 multiplicaciones.

Caso base: n = 1. El cálculo de un producto (degenerado) con sólo 1 factor no requiere multiplicaciones (observese que 0 = 1 - 1).

Paso inductivo completo: Dado $k \ge 2$

HIC: $\forall \ | \ , \ 1 \le \ | \ < k$, se cumple que el producto de $\ | \$ factores requiere $\ | \ -1$ multiplicaciones.

P(1)

CIC: P(k): el producto de k factores requiere k-1 multiplicaciones.

 $\ensuremath{ \xi(P(1) \wedge P(2) \wedge \dots \wedge P(k-1)) \to P(k) ?}$

Al realizar el producto de k números la última operación será de la forma:

$$(a_1 \cdot \ldots \cdot a_m) \cdot (a_{m+1} \cdot \ldots \cdot a_k)$$

donde $(a_1 \cdot \ldots \cdot a_m)$ y $(a_{m+1} \cdot \ldots \cdot a_k)$ son respectivamente el producto de $m \vee k - m$ números, con $1 \leq m \leq k \vee 1 \leq k - m \leq k$, así que podemos aplicar la HIC sobre ambos. Esta nos asegura que el primero requiere al menos m-1 multiplicaciones y que el segundo requiere al menos k-m-1, luego el producto de k factores requerirá al menos (m-1)+(k-m-1)+1=k-1 multiplicaciones, con lo que queda demostrada la implicación $(P(1) \land P(2) \land \cdots \land P(k-1)) \rightarrow P(k)$

Luego
$$\forall n \in \mathbb{N}_1, P(n)$$

$$\mathbb{Z} = \{\cdots -3, -2, -1, 0, 1, 2, 3, \cdots\}$$

• \mathbb{Z} puede generarse a partir del 0 aplicando reiteradamente bien la función sucesor s: $\mathbb{Z} \to \mathbb{Z}$ o la predecesor p: $\mathbb{Z} \to \mathbb{Z}$, que asignan respectivamente a cada entero n el que le sigue, es decir s(n) = n + 1 y el que le precede, es decir p(n) = n - 1. Estas dos operaciones generadoras están relacionadas así : s(p(n)) = n = p(s(n))

- Existe un elemento de \mathbb{Z} que llamamos 0.
- Existe la llamada función sucesor s: $\mathbb{Z} \to \mathbb{Z}$ tal que \forall n $\in \mathbb{Z}$, s(n) $\in \mathbb{Z}$ (El sucesor de un número entero es otro número entero y es único)
- Existe la llamada función predecesor $p: \mathbb{Z} \to \mathbb{Z}$ tal que $\forall n \in \mathbb{Z}$, $p(n) \in \mathbb{Z}$ (El predecesor de un número entero es otro número entero y es único)
- \forall n,m $\in \mathbb{Z}$, $(s(n) = s(m)) \rightarrow (n = m)$ (No existen dos números enteros distintos con el mismo sucesor)
- \forall n,m $\in \mathbb{Z}$, $(p(n) = p(m)) \rightarrow (n = m)$ (No existen dos números enteros distintos con el mismo predecesor)
- $\bullet \ \forall \ n \in \mathbb{Z}, \ s(p(n)) = p(s(n)) = n$
- Todo n ∈ Z distinto del 0 puede obtenerse, bien por medio de una o más aplicaciones de s sobre el 0 (los positivos), o bien por medio de aplicaciones de p (los negativos), pero ninguno de ambas formas.

- Z es cerrado con respecto a las operaciones suma, resta y producto
- $\mathbb{Z}^+ = \{1, 2, 3, 4, \cdots\}$ $\mathbb{Z}^- = \{-1, -2, -3, -4, \cdots\}$
- $\bullet \ \mathbb{Z} = \mathbb{Z}^+ \cup \{0\} \cup \mathbb{Z}^-$
- \mathbb{Z} es un conjunto ordenado mediante la relación \leq definida así: \forall m, n \in \mathbb{Z} , decimos que m es menor o igual que n, y lo escribimos m \leq n, si ambos son iguales, o bien podemos obtener n a partir de m aplicando reiteradamente la función sucesor. Si m \leq n y m \neq n escribimos m < n
- $\mathbb Z$ no cumple el principio de buena ordenación : $\mathbb Z^-$ es un subconjunto no vacío de $\mathbb Z$ y no tiene un elemento mínimo
- Dado $m \in \mathbb{Z}, \ \mathbb{Z}_{\mathbf{m}} = \{ n \in \mathbb{Z} \, | \, \mathbf{m} \leq \mathbf{n} \}$
- Dado $m \in \mathbb{Z}$, los elementos de \mathbb{Z}_m pueden obtenerse aplicando reiteradamente la función sucesor sobre m
- \mathbb{Z}_m sí cumple el principio de buena ordenación: Todo subconjunto no vacío A de \mathbb{Z}_m tiene un elemento mínimo (primer elemento)

Los principios de inducción simple y completa con uno o varios casos básicos siguen siendo ciertos sobre cada \mathbb{Z}_m , pero no cubren todo \mathbb{Z}

INDUCCIÓN ESTRUCTURAL PARA Z

Para toda propiedad P definida sobre $\ensuremath{\mathbb{Z}}$

- si se verifica:
 - P(0) (caso base)
 - Para todo $k \in \mathbb{Z}$ (paso inductivo):
 - si la verificación de P(k) (hipótesis de inducción (HI))
 implica que se verifique P(k+1) (caso inductivo 1 (CI1))
 - si la verificación de P(k) (hipótesis de inducción (HI)) implica que se verifique P(k-1) (caso inductivo 2 (CI2))

entonces

 $\forall n \in \mathbb{Z}, P(n)$

Ej.. Demostrar que dados $a, m \in \mathbb{Z}$ con $a \neq 0$, se cumple que $\forall n \in \mathbb{Z}$ $a^{m+n} = a^m \cdot a^n$

Dem.:

Recordemos:

$$\begin{cases} a^0 = 1 \\ a^i = a^{i-1} \cdot a & \text{si } i \ge 1 \\ \text{y si } a \ne 0 \text{ entonces} & a^{-i} = \frac{1}{a^i} & \text{si } i \ge 1 \end{cases}$$
Lema: Si $a \ne 0$ entonces $\forall i \in \mathbb{Z}$ $a^i = a^{i-1} \cdot a$

Lema: Si $a \neq 0$ entonces $\forall i \in \mathbb{Z}$ $a^i = a^{i-1} \cdot a$

$$P(n)$$
: $a^{m+n} = a^m \cdot a^n$

Caso base:
$$n = 0$$
 $a^{m+0} = a^m = a^m \cdot 1 = a^m \cdot a^0$

Paso inductivo: Sea $k \in \mathbb{Z}$

HI:
$$P(k)$$
: $a^{m+k} = a^m \cdot a^k$

CI1:
$$P(k+1)$$
: $a^{m+(k+1)} = a^m \cdot a^{k+1}$

HI: P(k):
$$a^{m+k} = a^m \cdot a^k$$

CI1: P(k+1): $a^{m+(k+1)} = a^m \cdot a^{k+1}$
CI2: P(k-1): $a^{m+(k-1)} = a^m \cdot a^{k-1}$

¿
$$P(k)$$
 → $P(k+1)$?

$$a^{m+(k+1)} = a^{(m+k)+1}$$
 [Asociatividad de la +]
 $= a^{m+k} \cdot a$ [Lema]
 $= (a^m \cdot a^k) \cdot a$ [HI]
 $= a^m \cdot (a^k \cdot a)$ [Asociatividad del x]
 $= a^m \cdot a^{k+1}$ [Lema]

¿
$$P(k)$$
 → $P(k-1)$?

$$a^{m+(k-1)} = a^{(m+k)-1}$$
 [Asociatividad de la +]
 $= \frac{a^{(m+k)-1} \cdot a}{a}$
 $= \frac{a^{m+k}}{a}$ [Lema]
 $= \frac{a^m \cdot a^k}{a}$ [HI]
 $= a^m \cdot a^{k-1}$ [Lema]

Luego

 $\forall n \in \mathbb{Z}, P(n)$

Definiciones recursivas

- Def.: Una función f: A → B está definida recursivamente si para cada x ∈ A o bien x es un caso básico para el que el valor de f está definido explícitamente por un valor y ∈ B; o bien x es un caso "recurrente" para el que el valor de f queda definido recurriendo (regla de recurrencia) al valor de f sobre algún(os) otro(s) elemento(s) z ∈ A, de tal modo que tras la aplicación de un número finito de veces de la regla de recurrencia, se obtiene el valor de f(x)combinando valores de f sobre casos básicos.
- Caso particular: Definiciones recursivas sobre \mathbb{Z}_m
- Relación entre inducción y recursión.

DEF:

Una función $f: \mathbb{Z}_m \to B$ está definida recursivamente sobre \mathbb{Z}_m si para cada $n \in \mathbb{Z}_m$ o bien el valor de f está definido explícitamente por un valor $b_n \in B$, o bien recurriendo al valor de f para algún o algunos $k \in \mathbb{Z}_m$ tales que $m \le k < n$.

Los valores $b_n \in B$, imágenes de la función f constituyen una sucesión definida recursivamente. (Obviamente, esta sucesión sigue las mismas reglas que la función f definida recursivamente)

Ej.. Función (o Sucesión) de Fibonacci $f: \mathbb{Z}_1 \to \mathbb{Z}$

- **(B)** Casos base: f(1) = 1, f(2) = 1
- (R) Regla de recurrencia: $f(n) = f(n-1) + f(n-2) \quad \forall n \geq 3$

Para demostrar que está bien definida basta aplicar el principio de inducción completa sobre $\mathbb{Z}_{\mathbf{1}}$

Números de Fibonacci: Los que pertenecen a la imagen de f: 1,1,2,3,5 ····. Constituyen una sucesión (sucesión de Fibonacci) definida recursivamente así:

(B)
$$f_1 = 1$$
, $f_2 = 1$

(R)
$$f_n = f_{n-1} + f_{n-2} \quad \forall n \geq 3$$

Por reescritura

Ej: Para la función de Fibonacci:

$$f(6) = f(5) + f(4)$$

$$= f(4) + f(3) + f(3) + f(2)$$

$$= f(3) + f(2) + f(2) + f(1) + f(2) + f(1) + 1$$

$$= f(2) + f(1) + 1 + 1 + 1 + 1 + 1$$

$$= 1 + 1 + 6$$

$$= 8$$

Por iteración

Ej: Para la función de Fibonacci:

$$f(1) = 1, f(2) = 1$$

 $f(3) = f(2) + f(1) = 1 + 1 = 2$

$$f(4) = f(3) + f(2) = 2 + 1 = 3$$

$$f(5) = f(4) + f(3) = 3 + 2 = 5$$

$$f(6) = f(5) + f(4) = 5 + 3 = 8$$

• Operadores prefijos (\sum, \prod) para la escritura abreviada de la suma o el producto de parte de los términos de una sucesión.

$$\sum_{i=m}^{n} s_{i} = \begin{cases} 0 & \text{si} & n < m \\ s_{n} & \text{si} & n = m \\ s_{m} + s_{m+1} + \ldots + s_{n} & \text{si} & m < n \end{cases} \qquad \prod_{i=m}^{n} s_{i} = \begin{cases} 1 & \text{si} & n < m \\ s_{n} & \text{si} & n = m \\ s_{m} \cdot s_{m+1} \cdot \ldots \cdot s_{n} & \text{si} & m < n \end{cases}$$

• Sumatorios y productorios como definiciones recursivas de funciones:

Fijado un $m \in \mathbb{Z}$ cualquiera,

$$\sum_{i=m}^{n} s_i \qquad \qquad \prod_{i=m}^{n} s_i$$

representa la función $f: \mathbb{Z} \to \mathbb{R}$

representa la función
$$g: \mathbb{Z} \to \mathbb{R}$$

• Ej.: $\sum_{i=1}^{n} (2i-1) = 1+3+5+\cdots+(2n-1)$ representa la función $f: \mathbb{Z} \to \mathbb{N}$

$$f(n) = \begin{cases} 0 & \text{si} & n < 1 \\ 1 & \text{si} & n = 1 \\ 1 + 3 + \dots + (2n - 1) & \text{si} & n > 1 \end{cases}$$

que puede definirse recursivamente así:

(B)
$$f(n) = 0 \ \forall n \le 0, \ f(1) = 1$$

(R) $f(n) = f(n-1) + (2n-1) \ \forall n \ge 2$

• **Ej.:** $\prod_{i=1}^n i = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$ representa la función factorial $!: \mathbb{N} \to \mathbb{N}$ que puede definirse recursivamente así:

(B)
$$n! = 1$$
 si $n = 0$
(R) $n! = (n-1)! \cdot n$ $\forall n \ge 1$

La inducción es una técnica muy útil (imprescindible casi siempre) para demostrar propiedades de funciones definidas recursivamente.

Ej.. Demuestra que la función de Fibonacci $f: \mathbb{Z}_1 \to \mathbb{Z}$

(B)
$$f(1) = 1$$
, $f(2) = 1$
(R) $f(n) = f(n-1) + f(n-2) \quad \forall n \ge 3$
verifica que $\forall n \in \mathbb{Z}_1$ $\sum_{i=1}^n f^2(i) = f(n) * f(n+1)$

donde $f^2(i)$ denota abreviadamente $(f(i))^2$

Dem.: Por inducción simple.

Casos base:

$$\begin{array}{lll} \mathsf{n} = 1 & f^2(1) = 1 = f(1) * f(2) & [\mathsf{B}] \\ \mathsf{n} = 2 & f^2(1) + f^2(2) = 1 + 1 = 2 & [\mathsf{B}] \\ & f(2) * f(3) = 1 * 2 = 2 & [f(3) = f(2) + f(1) = 1 + 1 = 2 \\ & \mathsf{por} \ \mathsf{B} \ \mathsf{y} \ \mathsf{R}] \end{array}$$

Paso inductivo: Sea $k \in \mathbb{Z}, k \ge 2$

HI: P(k):
$$\sum_{i=1}^{k} f^2(i) = f(k) * f(k+1)$$

CI:
$$P(k+1)$$
: $\sum_{i=1}^{k+1} f^2(i) = f(k+1) * f(k+2)$

= f(k+1) * f(k+2)

¿
$$P(k)$$
 → $P(k+1)$?

$$\sum_{i=1}^{k+1} f^{2}(i) = \sum_{i=1}^{k} f^{2}(i) + f^{2}(k+1)$$
 [Def. de \sum]
$$= f(k) * f(k+1) + f^{2}(k+1)$$
 [HI]
$$= f(k+1) * (f(k+1) + f(k))$$
 [Factor común]

 $\forall n > 1 P(n)$

Luego

[R ya que k + 2 > 4 > 3]

por ser k > 2

Ej.. Demuestra que la sucesión de números enteros definida por medio de:

$$a_0 = 2$$
 ; $a_1 = 1$; $a_{n+2} = a_{n+1} + 2a_n$ $\forall n \ge 0$ verifica que $\forall n \ge 0$ $\underbrace{a_n = 2^n + (-1)^n}_{P(n)}$

Dem.:

$$a_{n+2} = a_{n+1} + 2a_n \quad \forall n \ge 0$$
 es equivalente a $a_n = a_{n-1} + 2a_{n-2} \quad \forall n \ge 2$

Por inducción completa tenemos:

Casos base:

$$n = 0$$
 $a_0 = 2 = 1 + 1 = 2^0 + (-1)^0$ [B y aritmética elemental] $n = 1$ $a_1 = 1 = 2 - 1 = 2^1 + (-1)^1$ [B y aritmética elemental]

Paso inductivo completo: Dado $k \ge 2$

HIC:
$$\forall$$
 I, $0 \le I < k$, $a_I = 2^I + (-1)^I$
CIC: $a_k = 2^k + (-1)^k$

$$\wr (\mathsf{P}(0) \land \; \mathsf{P}(1) \land \cdots \land \; \mathsf{P}(\mathsf{k}\text{-}1)) \to \mathsf{P}(\mathsf{k})?$$

$$\begin{array}{lll} a_k = a_{k-1} + 2a_{k-2} & \text{ [R ya que } k \geq 2 \text{]} \\ = 2^{k-1} + (-1)^{k-1} + 2(2^{k-2} + (-1)^{k-2}) & \text{ [HIC ya que } 0 \leq k-2 \leq k-1 < k \\ & \text{ por ser } k \geq 2 \text{]} \\ = 2 \cdot 2^{k-1} + (-1)^{k-1} + 2 \cdot (-1)^{k-2} & \text{ [Aritmética elemental]} \\ = 2^k + (-1)^{k-2}(2-1) & \text{ [Aritmética elemental]} \\ = 2^k + (-1)^k & \text{ [} (-1)^{k-2} = (-1)^k \text{]} \end{array}$$

[R ya que
$$k \ge 2$$
] [HIC ya que $0 \le k-2 \le k-1 < k$ por ser $k \ge 2$] [Aritmética elemental] [Aritmética elemental] [$(-1)^{k-2} = (-1)^k$]

Luego

$$\forall n \geq 0 P(n)$$

Consideraremos casos en que la recursión puede hacerse sobre sólo uno de los argumentos:

Ej.. Definimos $f: \mathbb{Z} \times \mathbb{Z}_0 \to \mathbb{Z}$ así:

(B)
$$f(m,0) = m$$

(R)
$$f(m, n) = f(m, n - 1) + 1 \quad \forall n > 0$$

Demuestra que $\forall m \in \mathbb{Z}$ se verifica que $\forall n \in \mathbb{Z}_0$ $\underbrace{f(m,n) = m+n}_{P(n)}$

Dem.: Fijado $m \in \mathbb{Z}$, demostraremos Q(m) por inducción simple en n, y luego aplicaremos generalización universal para concluir que $\forall m \in \mathbb{Z}$ Q(m).

Caso base:

$$n = 0$$
 $f(m, 0) = m = m + 0$ [B y aritmética elemental]

Paso inductivo: Sea $k \in \mathbb{Z}, k \geq 0$

HI:
$$P(k)$$
: $f(m, k) = m + k$

CI:
$$P(k+1)$$
: $f(m, k+1) = m + (k+1)$

$$; P(k) \rightarrow P(k+1)?$$

$$f(m, k+1) = f(m, k+1-1)+1$$
 [R ya que $k+1>0$ por ser $k \ge 0$]
= $f(m, k)+1$
= $(m+k)+1$ [HI]
= $m+(k+1)$ [Asociatividad de la +]

Luego

 \forall n \geq 0 P(n), y por generalización universal concluimos que

$$\forall m \in \mathbb{Z} \ \forall n \in \mathbb{Z}_0 \ f(m,n) = m+n$$