Mathematical Logic, End-Semester Exam Chennai Mathematical Institute November 2023

- 1. Suppose ϕ is a propositional logic formula and p is an atomic proposition occurring in ϕ . Prove that there are formulas ϕ_1, ϕ_2 in which p doesn't occur, such that ϕ is logically equivalent to $(\phi_1 \wedge p) \vee (\phi_2 \wedge \neg p)$. (4)
- 2. We could consider enriching first-order logic by the addition of a new quantifier. The formula $\exists ! x \phi$ (read "there exists a unique x such that ϕ ") is to be satisfied by a structure A and interpretation σ iff there is exactly one element e in the universe of discourse of A such that $(A, \sigma[x \mapsto e]) \models \phi$. Show that this apparent enrichment comes to naught, in the sense that we can find an ordinary formula logically equivalent to $\exists ! x \phi$. (2)
- 3. Let $k \in \mathbb{N}$. Assume that FO[k] contains only finitely many formulas up to logical equivalence, if the free variables are among the fixed set $\{x_1, x_2, \ldots, x_m\}$. Suppose there is a property \mathcal{P} satisfying the following condition: for any two structures A, B, if A has the property \mathcal{P} and agrees on FO[k] with B, then B also has the property \mathcal{P} . Prove that the property \mathcal{P} is FO-definable. (4)
- 4. A set M of natural numbers is called a *spectrum* if there is a first-order language L and a sentence ϕ over L such that

 $M = \{n \mid \phi \text{ has a model containing exactly } n \text{ elements } \}$.

Show that:

- (a) Every finite subset of $\{1, 2, 3, \ldots\}$ is a spectrum. (2)
- (b) The set of squares greater than 0 is a spectrum. (6)
- 5. Suppose G = (V, E) is a graph, whose vertices are coloured with either red, blue or green. The interpreted graph associated with G is the graph H = (V', E') where $V' = \{(v_1, v_2, v_3) \in V \times V \times V \mid (v_1, v_2) \in E, (v_2, v_3) \in E, (v_1, v_3) \notin E, v_1 \text{ is red}, v_2 \text{ is blue}, v_3 \text{ is green}\}$ and the set of edges is $E' = \{((v_1, v_2, v_3), (u_1, u_2, u_3)) \in V' \times V' \mid (v_1, u_1) \in E, (v_2, u_2) \notin E, (v_3, u_3) \in E\}$. The problem is to write a first-order formula ϕ that can only use the equality symbol, the unary relation symbols red, blue, green and a binary relation symbol E. The formula ϕ should be true in G iff the interpreted graph H has a dominating set of size k, where $k \in \mathbb{N}$ is a constant. A dominating set in a graph is a set of vertices such that all other vertices are adjacent to at lest one vertex in the dominating set. (7)

- 6. In propositional logic, recall that $voc(\phi)$ is the set of atomic propositions occurring in ϕ , suppose $\phi_1 \models \phi_2$ and $voc(\phi_1) \cap voc(\phi_2) = \emptyset$. Prove that there is a formula ϕ_i such that $voc(\phi_i) = voc(\phi_1) \cap voc(\phi_2)$, $\phi_1 \models \phi_i$ and $\phi_i \models \phi_2$.
- 7. Prove the interpolation theorem: if $\phi_1 \models \phi_2$, there is a formula ϕ_i such that $\operatorname{voc}(\phi_i) = \operatorname{voc}(\phi_1) \cap \operatorname{voc}(\phi_2)$, $\phi_1 \models \phi_i$ and $\phi_i \models \phi_2$. Hint: do an induction on $|\operatorname{voc}(\phi_1) \cap \operatorname{voc}(\phi_2)|$. If $p \in \operatorname{voc}(\phi_1) \cap \operatorname{voc}(\phi_2)$, Problem 1 shows that ϕ_1 (resp. ϕ_2) is logically equivalent to $(\phi'_1 \wedge p) \vee (\phi''_1 \wedge \neg p)$ (resp. $(\phi'_2 \wedge p) \vee (\phi''_2 \wedge \neg p)$). Prove that $\phi'_1 \models \phi'_2$, $\phi''_1 \models \phi''_2$ and use the induction hypothesis.