Nom:

Question de cours :

- Donner la définition (par relation de récurrence) d'une suite arithmétique de raison $r \in \mathbb{R}$.
- Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison $q\in\mathbb{R}.$ Que vaut $\sum u_k$?

Exercice:

1. Pour les suites suivantes données de façon explicite, déterminer une relation de récurrence :

a)
$$u_n = 5n + 4$$

b)
$$v_n = n^2 + 3n + 1$$

2. Pour les suites suivantes définies par récurrence, donner une expression de u_n, v_n et w_n pour tout $n \in \mathbb{N}$:

a)
$$u_0 = 2$$
 et $u_{n+1} = 5u_n$

b)
$$v_0 = 1$$
 et $v_{n+1} = v_n + 3$

c)
$$w_0 = 2$$
 et $w_{n+1} = 3w_n + 4$

Exercice:

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=\frac{1}{2}$ et pour tout $n\in\mathbb{N}$: $u_{n+1}=\frac{3u_n}{1+2u_n}$. (On admet que pour tout $n \in \mathbb{N}$, on a $0 < u_n < 1$)

- 1. Pour tout $n \in \mathbb{N}$, on pose $v_n = \frac{u_n}{1 u_n}$. Montrer que $(v_n)_{n \in \mathbb{N}}$ est une suite géométrique dont on précisera la raison.
- 2. Donner alors une expression de v_n pour tout $n \in \mathbb{N}$.
- 3. À l'aide de la question précédente, donner une expression de u_n pour tout $n \in \mathbb{N}$.

Exercice:

Soit
$$n \ge 1$$
, démontrer que $(n+1)! \ge \sum_{k=0}^{n} k!$.

Commentaire:

Nom:

Question de cours :

- Donner la définition (par relation de récurrence) d'une suite géométrique de raison $q \in \mathbb{R}$.
- Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r=3 et de valeur initial $u_0=5$. Donner u_n pour tout $n\in\mathbb{N}$.

Exercice:

1. Pour les suites suivantes données de façon explicite, déterminer une relation de récurrence :

a)
$$u_n = 3n - 2$$

b)
$$v_n = 2n^2 + n - 2$$

2. Pour les suites suivantes définies par récurrence, donner une expression de u_n, v_n et w_n pour tout $n \in \mathbb{N}$:

a)
$$u_0 = 2$$
 et $u_{n+1} = u_n + 3$ b) $v_0 = 5$ et $v_{n+1} = 2v_n$

b)
$$v_0 = 5$$
 et $v_{n+1} = 2v_n$

c)
$$w_0 = -1$$
 et $w_{n+1} = 5w_n - 8$

Exercice:

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0$ et pour tout $n\in\mathbb{N}$: $u_{n+1}=\frac{3u_n+2}{u_n+4}$. (On admet que pour tout $n \in \mathbb{N}$, on a $u_n \neq -2, -4$)

- 1. Pour tout $n \in \mathbb{N}$, on pose $v_n = \frac{u_n 1}{u_n + 2}$. Montrer que $(v_n)_{n \in \mathbb{N}}$ est une suite géométrique dont on précisera la raison.
- 2. Donner alors une expression de v_n pour tout $n \in \mathbb{N}$.
- 3. À l'aide de la question précédente, donner une expression de u_n pour tout $n \in \mathbb{N}$.

Exercice:

Montrer par récurrence que pour tout
$$n \geq 0$$
, on a : $\sum_{k=0}^n k^2 = \frac{n(n+1)(2n+1)}{6}$.

Commentaire:

Nom:

Question de cours :

- Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q=2 et de valeur initial $u_0=3$. Donner u_n pour tout $n\in\mathbb{N}$.
- Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison $r\in\mathbb{R}.$ Que vaut $\sum_{k=0}^{\infty}u_k$?

Exercice:

1. Pour les suites suivantes données de façon explicite, déterminer une relation de récurrence :

a)
$$u_n = 5.3^n$$

b)
$$v_n = n^2 + 2n + 3$$

2. Pour les suites suivantes définies par récurrence, donner une expression de u_n, v_n et w_n pour tout $n \in \mathbb{N}$:

a)
$$u_0 = 0$$
 et $u_{n+1} = 2u_n$

b)
$$v_0 = 5$$
 et $v_{n+1} = v_n + 3$

b)
$$v_0 = 5$$
 et $v_{n+1} = v_n + 3$ c) $w_0 = 3$ et $w_{n+1} = -2w_n + 3$

Exercice:

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et pour tout $n\in\mathbb{N}$: $u_{n+1}=\frac{9}{6-u}$. (On admet que pour tout $n \in \mathbb{N}$, on a $u_n \neq 3, 6$)

- 1. Pour tout $n \in \mathbb{N}$, on pose $v_n = \frac{1}{u_n 3}$. Montrer que $(v_n)_{n \in \mathbb{N}}$ est une suite géométrique dont on précisera la raison.
- 2. Donner alors une expression de v_n pour tout $n \in \mathbb{N}$.
- 3. À l'aide de la question précédente, donner une expression de u_n pour tout $n \in \mathbb{N}$.

Exercice:

Soit $(H_n)_{n\geq 1}$ la suite définie pour tout $n\geq 1$ par : $H_n=\sum_{k=1}^n\frac{1}{k}$. Le but est de montrer que $H_n\to +\infty$.

On admet que si $H_n \to l$ où $l \in \mathbb{R}$, alors $H_{2n} \to l$.

- 1. Écrire $H_{2n} H_n$ en une unique somme.
- 2. En déduire que $H_{2n} H_n \ge \frac{1}{2}$.
- 3. Conclure par l'absurde que $(H_n)_{n\geq 1}$ diverge puis que $H_n\to +\infty$.

Commentaire: