INTELIGENCIA ARTIFICIAL

Luis Emilio Cabrera Crot

lcabrera@ubiobio.cl

Universidad del Bío Bío

Facultad de Ciencias Empresarias Ingeniería de Ejecución en Computación e Informática

Lecture 4

PREVIOUSLY ON AI...

- Solución de Problemas mediante búsqueda.
- Tipos de Problemas.
- Problemas bien definidos y soluciones.

EN EL CAPÍTULO DE HOY

- ¿Qué estamos buscando?.
- Estrategias de búsqueda no informada.
- Comparativo de búsquedas.
- Actividad: Implementado Búsquedas.

¿QUÉ ESTAMOS BUSCANDO?

- Recordemos que tenemos un problema, en el cual queremos alcanzar una meta a través de una solución.
- El problema es la descripción del ambiente al cual nos enfrentamos.
- La solución es una secuencia de acciones que nos lleva a nuestra meta.

RECORDEMOS CON UN EJEMPLO

- Veamos el problema típico de la ruta más corta.
- Este problema es muy común (aka WAZE, Google Maps).
- Se requiere encontrar la ruta más corta desde un punto A a un punto B.

PROBLEMA

Ruta más corta entre Concepción y Chillán.

DEFINIENDO EL PROBLEMA

- Estados: 13 (ciudades)
- Árbol de búsqueda:

ESTRUCTURA DE DATOS

Estructura de datos para los árboles de búsqueda:

- Estado: El estado del espacio de estados al que corresponde un nodo.
- Nodo Padre: El nodo en el Árbol de búsqueda que ha generado este nodo.
- Operador: El operador que se aplicó para generar el nodo actual.
- Profundidad: El número de pasos a lo largo del camino desde el estado inicial.
- Costo del Camino: El costo de un camino desde el estado inicial al nodo, indicado por los punteros a los padres.

¿CÓMO ENCONTRAR UN BUEN ALGORITMO?

Medidas para evaluar el rendimiento de una estrategia de búsqueda:

- Completitud.
- Optimización.
- Complejidad Temporal
- Complejidad Espacial.

DEFINICIONES

Para medir las complejidades, utilizaremos las siguientes variables:

- b: Máximo número de hijos.
- d: Profundidad primera solución.
- m: Longitud máxima de caminos.

BÚSQUEDA NO INFORMADAS

- Una búsqueda no informada ocurre cuando el agente no tiene información sobre su avance, sólo de la meta.
 - Búsqueda por Anchura.
 - Búsqueda por Profundidad.
 - Búsqueda Costo Uniforme.
 - Búsqueda Limitada Profundidad.
 - Búsqueda Profundidad Iterativa.
 - Búsqueda Bidireccional.

BÚSQUEDA POR ANCHURA

Búsqueda que expande todos los hijos de cada nodo padre que revisa.

Es posible implementarla mediante FIFO (First In First Out).

BÚSQUEDA POR ANCHURA

- Completitud: Sí, encuentra la solución (en caso de que exista).
- Optimización: Sólo si costo de paso es 1.
- Complejidad Temporal: $\Theta(b^d)$.
- Complejidad Espacial: $\Theta(b^d)$.

BÚSQUEDA POR ANCHURA

Exponencial no es una buena medida.

Profundidad	Nodos	Tiempo	Memoria
0	1	1 milisegundo	100 bytes
2	111	0,1 segundos	11 KB
4	11.111	11 segundos	1 MB
6	$\approx 1.000.000$	18 minutos	111 MB
8	pprox 100 millones	31 horas	11 GB
10	pprox 10 mil millones	128 días	1 TB
12	pprox 1 billón	35 años	111 TB
14	pprox 100 billones	3.500 años	11.111 TB

BÚSQUEDA POR PROFUNDIDAD

Búsqueda que elige un camino y lo sigue hasta el final.

Es posible implementarla mediante LIFO (Last In First Out).

BÚSQUEDA POR PROFUNDIDAD

- Completitud: No cuando $m = \infty$.
- Optimización: Sólo si costo de paso es 1.
- Complejidad Temporal: $\Theta(b^m)$.
- Complejidad Espacial: $\Theta(b*m)$.

BÚSQUEDA CON COSTO UNIFORME

Igual a Anchura, pero se expanden los nodos en orden de costo.

BÚSQUEDA CON COSTO UNIFORME

- Completitud: Sí.
- Optimización: Sí.
- Complejidad Temporal: $\Theta(b^d)$.
- Complejidad Espacial: $\Theta(b^d)$.

BÚSQUEDA POR PROFUNDIDAD LIMITIDA

Búsqueda por profundidad limitada por profundidad L.

No siempre es posible calcular un *L* apropiado.

BÚSQUEDA POR PROFUNDIDAD LIMITIDA

- Completitud: No si *L* es pequeño.
- Optimización: No.
- Complejidad Temporal: $\Theta(b^l)$.
- Complejidad Espacial: $\Theta(b * I)$.

BÚSQUEDA POR PROFUNDIDAD ITERATIVA

Búsqueda por profundidad limitada por profundidad L, con L incremental.

BÚSQUEDA POR PROFUNDIDAD ITERATIVA

- Completitud: Sí.
- Optimización: Sí.
- Complejidad Temporal: $\Theta(b^d)$.
- Complejidad Espacial: $\Theta(b*d)$.

BÚSQUEDA BIDIRECCIONAL

Busca desde el inicio y desde el final.

No siempre factible. Operador debe ser reversible.

BÚSQUEDA BIDIRECCIONAL

- Completitud: Sí.
- Optimización: Sólo si costo de paso es 1.
- Complejidad Temporal: $\Theta(b^{d/2})$.
- Complejidad Espacial: $\Theta(b^{d/2})$.

COMPARATIVO

Criterio	Tiempo	Espacio	¿Es óptima?	¿Es completa?
Amplitud	b ^d	b ^d	✓	✓
C. Uniforme	b^d	b^d	✓	✓
Profundidad	b^m	b∗ m	Х	Х
Prof. Limitada	b^L	b*L	×	(cuando $L \ge d$)
Prof. Iterativa	b ^d	b * d	✓	✓
Bidireccional (Cuando aplica)	b ^{d/2}	$b^{d/2}$	✓	✓

ACTIVIDAD

Dado el juego de placas deslizables:

Construya un programa que permita explorar el árbol de estados de este problema:

- Por Amplitud
- Por Profunfidad Iterativa
- En forma Bidireccional

INTELIGENCIA ARTIFICIAL

Luis Emilio Cabrera Crot

lcabrera@ubiobio.cl

Universidad del Bío Bío

Facultad de Ciencias Empresarias Ingeniería de Ejecución en Computación e Informática

Lecture 4

