T P C 3+1* 0 3

CAD/CAM

Course Objectives:

The general objectives of the course are to enable the students to

- 1. Understand the basic fundamentals of computer aided design and manufacturing.
- 2. To learn 2D & 3D transformations of the basic entities like line, circle, ellipse etc.
- To understand the different geometric modeling techniques like solid modeling, surface modeling, feature based modeling etc. and to visualize how the components look like before its manufacturing or fabrication.
- 4. To learn the part programming, importance of group technology, computer aided process planning, computer aided quality control.
- 5. To learn the overall configuration and elements of computer integrated manufacturing systems.

UNIT – I

Computers in industrial manufacturing, product cycle, CAD / CAM Hardware, basic structure, CPU, memory types, input devices, display devices, hard copy devices, storage devices.

COMPUTER GRAPHICS: Raster scan graphics coordinate system, database structure for graphics modeling, transformation of geometry, 3D transformations, mathematics of projections, clipping, hidden surface removal.

UNIT - II

GEOMETRIC MODELING: Requirements, geometric models, geometric construction models, curve representation methods, surface representation methods, modeling facilities desired.

DRAFTING AND MODELING SYSTEMS: Basic geometric commands, layers, display control commands, editing, dimensioning, solid modeling.

UNIT - III

PART PROGRAMMING FOR NC MACHINES: NC, NC modes, NC elements, CNC machine tools, structure of CNC machine tools, features of Machining center, turning center, CNC Part Programming: fundamentals, manual part programming methods, Computer Aided Part Programming.

Direct Numerical Control, Adaptive Control.

UNIT - IV

GROUP TECHNOLOGY: Part family, coding and classification, production flow analysis, types and advantages.

Computer aided processes planning – importance, types.

UNIT - V

COMPUTER AIDED QUALITY CONTROL: Terminology used in quality control, use of computers in Quality control. Inspection methods-contact and noncontact types, computer aided testing, integration of CAQC with CAD/CAM.

UNIT - VI

COMPUTER INTEGRATED MANUFACTURING SYSTEMS: Types of manufacturing systems, machine tools and related equipment, material handling systems, material requirement planning, computer control systems, human labor in manufacturing systems, CIMS benefits.

TEXT BOOKS:

- 1. CAD / CAM / CAE E Zimmers & M.Groover/Pearson Education
- 2. Automation, Production systems & Computer integrated Manufacturing/ Groover/P.E

REFERENCES:

- 1. CAD / CAM Theory and Practice / Ibrahim Zeid / TMH.
- 2. Principles of Computer Aided Design and Manufacturing / Farid Amirouche / Pearson.
- Computer Numerical Control Concepts and programming / Warren S Seames / Thomson.
- 4. Product manufacturing and cost estimation using CAD/CAE/ Kuang Hua Chang, Elsevier Publishers.

Course Outcome:

At the end of the course the students shall be able to:

- Describe the mathematical basis in the technique of representation of geometric entities including points, lines, and parametric curves, surfaces and solid, and the technique of transformation of geometric entities using transformation matrix.
- 2. Describe the use of GT and CAPP for the product development.
- 3. Identify the various elements and their activities in the Computer Integrated Manufacturing Systems.

T P C 3+1* 0 3

FINITE ELEMENT METHODS

Course Objectives:

- 1. To learn basic principles of finite element analysis procedure.
- 2. To learn the theory and characteristics of finite elements that represent engineering structures.
- 3. To learn and apply finite element solutions to structural, thermal, dynamic problem to develop the knowledge and skills needed to effectively evaluate finite element analyses performed by others.
- 4. Learn to model complex geometry problems and solution techniques.

UNIT-I

Introduction to finite element method, stress and equilibrium, strain – displacement relations, stress – strain relations, plane stress and plane strain conditions, variational and weighted residual methods, concept of potential energy, one dimensional problems.

UNIT - II

Discretization of domain, element shapes, discretization procedures, assembly of stiffness matrix, band width, node numbering, mesh generation, interpolation functions, local and global coordinates, convergence requirements, treatment of boundary conditions.

UNIT - III

Analysis of Trusses: Finite element modeling, coordinates and shape functions, assembly of global stiffness matrix and load vector, finite element equations, treatment of boundary conditions, stress, strain and support reaction calculations. Analysis of Beams: Element stiffness matrix for Hermite beam element, derivation of load vector for concentrated and UDL, simple problems on beams.

UNIT - IV

Finite element modeling of two dimensional stress analysis with constant strain triangles and treatment of boundary conditions, formulation of axisymmetric problems.

UNIT-V

Higher order and isoparametric elements: One dimensional quadratic and cubic

elements in natural coordinates, two dimensional four noded isoparametric elements and numerical integration.

UNIT - VI

Steady state heat transfer analysis: one dimensional analysis of a fin and two dimensional analysis of thin plate, analysis of a uniform shaft subjected to torsion. Dynamic Analysis: Formulation of finite element model, element consistent and lumped mass matrices, evaluation of eigen values and eigen vectors, free vibration analysis.

TEXT BOOKS:

- Introduction to Finite Elements in Engineering / Chandraputla, Ashok and Belegundu / Prentice – Hall.
- 2. The Finite Element Methods in Engineering / SS Rao / Pergamon.

REFERENCES:

- 1. Finite Element Method with applications in Engineering / YM Desai, Eldho & Shah /Pearson publishers.
- 2. An introduction to Finite Element Method / JN Reddy / McGrawHill.
- 3. The Finite Element Method for Engineers Kenneth H. Huebner, Donald L. Dewhirst, Douglas E. Smith and Ted G. Byrom / John Wiley & sons (ASIA) Pte Ltd.
- 4. Finite Element Analysis: Theory and Application with Ansys, Saeed Moaveniu, Pearson Education.

Course outcomes:

Upon successful completion of this course you should be able to:

- 1. Understand the concepts behind variational methods and weighted residual methods in FEM.
- 2. Identify the application and characteristics of FEA elements such as bars, beams, plane and isoparametric elements, and 3-D element.
- 3. Develop element characteristic equation procedure and generation of global stiffness equation will be applied.
- 4. Able to apply Suitable boundary conditions to a global structural equation, and reduce it to a solvable form.
- 5. Able to identify how the finite element method expands beyond the structural domain, for problems involving dynamics, heat transfer, and fluid flow.

T P C 3+1* 0 3

UN CONVENTIONAL MACHINING PROCESSES

Course Objectives:

- The course aims in identifying the classification of unconventional machining processes.
- To understand the principle, mechanism of metal removal of various unconventional machining processes.
- To study the various process parameters and their effect on the component machined on various unconventional machining processes.
- To understand the applications of different processes.

UNIT - I

INTRODUCTION: Need for non-traditional machining methods-classification of modern machining processes – considerations in process selection, applications.

Ultrasonic machining – Elements of the process, mechanics of material removal, MRR process parameters, economic considerations, applications and limitations.

UNIT - II

ELECTRO – **CHEMICAL MACHINING:** Fundamentals of electro chemical machining, electrochemical grinding, electro chemical honing and deburring process, metal removal rate in ECM, Tool design, Surface finish and accuracy, economic aspects of ECM – Simple problems for estimation of metal removal rate, fundamentals of chemical, machining, advantages and applications.

UNIT - III

THERMAL METAL REMOVAL PROCESSES: General principle and applications of Electric Discharge Machining, Electric Discharge Grinding and wire EDM – Power circuits for EDM, Mechanics of metal removal in EDM, Process parameters, selection of tool electrode and dielectric fluids, surface finish and machining accuracy, characteristics of spark eroded surface.

UNIT - VI

Electron Beam Machining, Laser Beam Machining - Basic principle and theory, mechanics of material removal, process parameters, efficiency & accuracy, applications

UNIT-V

Plasma Machining: Application of plasma for machining, metal removal mechanism, process parameters, accuracy and surface finish and other applications of plasma in manufacturing industries.

UNIT - VI

Abrasive jet machining, Water jet machining and abrasive water jet machining: Basic principles, equipments, process variables, mechanics of material removal, MRR, application and limitations.

Magnetic abrasive finishing, abrasive flow finishing, Electrostream drilling, shaped tube electrolytic machining.

TEXT BOOK:

1. Advanced machining processes/ VK Jain/ Allied publishers.

REFERENCES:

- 1. Modern Machining Process / Pandey P.C. and Shah H.S./ TMH.
- New Technology / Bhattacharya A/ The Institution of Engineers, India 1984.

Course outcomes:

After completion of course, the student shall understand the principle of working, mechanism of metal removal in the various unconventional machining process. The student is able to identify the process parameters, their effect and applications of different processes.

T P C 3+1* 0 3

OPEN ELECTIVE

MICRO ELECTRO MECHANICAL SYSTEMS (MEMS)

Course Objectives:

- 1. To learn basics of Micro Electro Mechanical Systems (MEMS).
- 2. To learn about various sensors and actuators used in MEMS.
- 3. To learn the principle and various devices of MOEMS, Fluidic, bio and chemical systems.

Unit – I

INTRODUCTION: Definition of MEMS, MEMS history and development, micro machining, lithography principles & methods, structural and sacrificial materials, thin film deposition, impurity doping, etching, surface micro machining, wafer bonding, LIGA.

MECHANICAL SENSORS AND ACTUATORS: Principles of sensing and actuation: beam and cantilever, capacitive, piezo electric, strain, pressure, flow, pressure measurement by micro phone, MEMS gyroscopes, shear mode piezo actuator, gripping piezo actuator, Inchworm technology.

Unit - II

THERMAL SENSORS AND ACTUATORS: Thermal energy basics and heat transfer processes, thermisters, thermo devices, thermo couple, micro machined thermo couple probe, peltier effect heat pumps, thermal flow sensors, micro hot plate gas sensors, MEMS thermo vessels, pyro electricity, shape memory alloys (SMA), U-shaped horizontal and vertical electro thermal actuator, thermally activated MEMS relay, micro spring thermal actuator, data storage cantilever.

Unit - III

MICRO-OPTO-ELECTRO MECHANICAL SYSTEMS: Principle of MOEMS technology, properties of light, light modulators, beam splitter, micro lens, micro mirrors, digital micro mirror device (DMD), light detectors, grating light valve (GLV), optical switch, wave guide and tuning, shear stress measurement.

Unit - IV

MAGNETIC SENSORS AND ACTUATORS: Magnetic materials for MEMS and properties, magnetic sensing and detection, magneto resistive

sensor, more on hall effect, magneto diodes, magneto transistor, MEMS magnetic sensor, pressure sensor utilizing MOKE, mag MEMS actuators, by directional micro actuator, feedback circuit integrated magnetic actuator, large force reluctance actuator, magnetic probe based storage device.

Unit - V

MICRO FLUIDIC SYSTEMS: Applications, considerations on micro scale fluid, fluid actuation methods, dielectro phoresis (DEP), electro wetting, electro thermal flow, thermo capillary effect, electro osmosis flow, opto electro wetting (OEW), tuning using micro fluidics, typical micro fluidic channel, microfluid dispenser, micro needle, molecular gate, micro pumps.

RADIO FREQUENCY (RF) MEMS: RF – based communication systems, RF MEMS, MEMS inductors, varactors, tuner/filter, resonator, clarification of tuner, filter, resonator, MEMS switches, phase shifter.

Unit - VI

CHEMICAL AND BIO MEDICAL MICRO SYSTEMS: Sensing mechanism & principle, membrane-transducer materials, chem.-lab-on-a-chip (CLOC) chemoresistors, chemocapacitors, chemotransistors, electronic nose (E-nose), mass sensitive chemosensors, fluroscence detection, calorimetric spectroscopy.

TEXT BOOK:

MEMS, Nitaigour Premchand Mahalik, TMH Publishing co.

REFERENCE BOOKS:

- 1. Foundation of MEMS, Chang Liu, Prentice Hall Ltd.
- 2. MEMS and NEMS, Sergey Edwrd Lyshevski, CRC Press, Indian Edition.
- 3. MEMS and Micro Systems: Design and Manufacture, Tai-Ran Hsu, TMH Publishers.
- Introductory MEMS, Thomas M Adams, Richard A Layton, Springer International Publishers.

Course outcomes:

Upon successful completion of this course the student shall be able to know the importance and various devices of MEMS and their applications.

NANO TECHNOLOGY (OPEN ELECTIVE)

Course objective

On successful completion of the course, students should be able to: Understand the basic cientific concepts of nanoscience. Understand the properties of nano materials, characterization of materials, synthesis and fabrication. Understand the applications of nano technology in various science, engineering and technology fields.

UNIT-I

INTRODUCTION: History of nano science, definition of nano meter, nano materials, nano technology. Classification of nano materials. Crystal symmetries, crystal directions, crystal planes. Band structure.

UNIT-II

PROPERTIES OF MATERIALS:

Mechanical properties, electrical properties, dielectric properties, thermal properties, magnetic properties, opto electronic properties. Effect of size reduction on properties, electronic structure of nano materials.

UNIT-III

SYNTHESIS AND FABRICATION: Synthesis of bulk polycrystalline samples, growth of single crystals. Synthesis techniques for preparation of nano particle – Bottom Up Approach – sol gel synthesis, hydro thermal growth, thin film growth, PVD and CVD; Top Down Approach – Ball milling, micro fabrication, lithography. Requirements for realizing semiconductor nano structures, growth techniques for nano structures.

UNIT-IV

CHARECTERIZATION TECHNIQUES: X-Ray diffraction and Scherrer method, scanning electron microscopy, transmission electron microscopy, scanning probe microscopy, atomic force microscopy, piezoresponse microscopy, X-ray photoelectron spectroscopy, XANES and XAFS, angle resolved photoemission spectroscopy, diffuse reflectance spectra, photoluminescence spectra, Raman spectroscopy.

UNIT-V

CARBON NANO TECHNOLOGY:

Characterization of carbon allotropes, synthesis of diamond – nucleation of diamond, growth and morphology. Applications of nano crystalling diamond

films, grapheme, applications of carbon nano tubes.

UNIT-VI

APPLICATIONS OF NANO TECHNOLOGY:

Applications in material science, biology and medicine, surface science, energy and environment. Applications of nano structured thin fins, applications of quantum dots.

TEXT BOOKS:

 Nano science and nano technology by M.S Ramachandra Rao, Shubra Singh, Wiley publishers.

REFERENCE BOOKS:

- 1. Introduction to Nano Technology by Charles P. Poole, Jr., Frank J.Owens, Wiley publishers.
- 2. Nanotechnology by Jermy J Ramsden, Elsevier publishers.
- 3. Nano Materials- A.K.Bandyopadhyay/ New Age Introdu.
- 4. Nano Essentials- T.Pradeep/TMH.
- Nanotechnology the Science of Small by M.A Shah, K.A Shah, Wiley Publishers.
- 6. Principles of Nanotechnology by Phani Kumar, Scitech.

Course outcomes:

various fields.

Upon successful completion of this course the student shall be able to: Identify the essential concepts used in nanotechnology. Identify the materials, properties, syntheses and fabrication, characterization and applications in

T P C 3+1* 0 3

DEPARTMENTAL ELECTIVE - II

MATERIAL CHARACTERIZATION TECHNIQUES

Course objective: The course presents the principles and methods of characterizing the structure and other aspects of materials. Various advanced characterizing techniques and their application will be studied.

UNIT -I

Introduction: Scope of subject, classification of techniques for characterization, macro and micro - characterization structure of solids.

UNIT-II

Bulk averaging techniques: Thermal analysis, DTA, DSC, TGA, dilatometry, resistivity/conductivity.

UNIT -III

Optical & X-ray spectroscopy: Atomic absorption spectroscopy, X-ray spectrometry, infrared spectroscopy and Raman spectroscopy.

UNIT-IV

Metallographic techniques: Optical metallography, image analysis, quantitative phase estimation.

UNIT-V

Diffraction methods: X-ray diffraction (crystal systems and space groups, Bravais lattices, direct and reciprocal lattice, Bragg law, powder diffraction and phase identification, single crystal diffraction, structure factor, X-ray crystal structure determination).

UNIT-VI

Electron optical methods: Scanning electron microscopy and image formation in the SEM.

Course outcomes: At the end of the semester, the student should able to

- 1. Analyze the microstructure of materials.
- 2. Apply various characterization techniques like XRD, SEM TEM.
- 3. Identify the phases existing in the material.
- 4. Analyze the image.

TEXT BOOKS

- 1. The Principles of metallogrphy laboratory practices –George L.Khel-Eurasia publishing house (Pvt. Ltd).
- 2 Transmission electron Microscopy of metals Garet Thomas.-John wiley and sons.

REFERENCES:

- 1. Modern Metallographic Techniques & their application victor phillips.
- 2. Physical Metallurgy, Part I RW Chao and P. Haasan.
- Experimental Techniques in Physical Metallurgy VT Cherepin and AK Mallik.
- 4. Electron Microscopy in the study of materials –P.J. Grundy.

DESIGN FOR MANUFACTURE (DEPARTMENTAL ELECTIVE – II)

Course Objectives:

- 1. Understand the design rules and considerations with reference to various manufacturing processes.
- 2. To discusses capabilities and limitations of each manufacturing process in relation to part design and cost.
- 3. To examine DFM principles including how the design affects manufacturing cost, lean manufacturing, six sigma, etc.

UNIT - I

Introduction: Design philosophy-steps in design process-general design rules for manufacturability-basic principles of designing for economical production - creativity in design.

UNIT-II

Machining processes: Overview of various machining processes-general design rules for machining-dimensional tolerance and surface roughness-Design for machining – ease –redesigning of components for machining ease with suitable examples. General design recommendations for machined parts.

UNIT - III

Metal casting: Appraisal of various casting processes, selection of casting process,-general design considerations for casting-casting tolerance-use of solidification, simulation in casting design-product design rules for sand casting.

UNIT - IV

Metal joining: Appraisal of various welding processes, factors in design of weldments – general design guidelines-pre and post treatment of welds-effects of thermal stresses in weld joints-design of brazed joints. Forging: Design factors for forging – closed die forging design – parting lines of dies – drop forging die design – general design recommendations.

UNIT - V

Extrusion & Sheet metal work: Design guide lines extruded sections-design principles for punching, blanking, bending, deep drawing-Keeler Goodman forging line diagram – component design for blanking.

UNIT - VI

Plastics: Visco elastic and creep behavior in plastics-design guidelines for plastic components-design considerations for injection moulding – design guidelines for machining and joining of plastics.

TEXT BOOKS:

- 1. Design for manufacture, John cobert, Adisson Wesley 1995
- 2. Design for Manufacture by Boothroyd
- 3. Design for manufacture, James Bralla

REFERENCE:

ASM Hand book Vol.20

Course outcomes:

Upon completion of the course, the student will be able to:

- 1. Design components for machining.
- 2. Simulate the casting design and choose the best casting process for a specific product.
- 3. Evaluate the effect of thermal stresses in weld joints.
- 4. Design components for sheet metal work by understanding in depth the sheet metal processes and their formation mechanisms.
- 5. Design plastic components for machining and joining and selecting a proper processes for different joining cases.

AUTOMATION IN MANUFACTURING (DEPARTMENTAL ELECTIVE – II)

Course objective:

- 1. To study the types and strategies and various components in Automated Systems.
- 2. To understand the automated flow lines, line balancing, material storage and retrieval and inspection.

UNIT-I

INTRODUCTION: Types and strategies of automation, pneumatic and hydraulic components, circuits, automation in machine tools, mechanical feeding and tool changing and machine tool control.

UNIT - II

AUTOMATED FLOW LINES: Methods of part transport, transfer mechanism, buffer storage, control function, design and fabrication considerations.

Analysis of automated flow lines - General terminology and analysis of transfer lines without and with buffer storage, partial automation, implementation of automated flow lines.

UNIT - III

ASSEMBLY SYSTEM AND LINE BALANCING: Assembly process and systems, assembly line, line balancing methods, ways of improving line balance, flexible assembly lines.

UNIT - IV

AUTOMATED MATERIAL HANDLING and STORAGE SYSTEMS:

Types of equipment, functions, analysis and design of material handling systems, conveyor systems, automated guided vehicle systems. Automated storage and retrieval systems; work in process storage, interfacing handling and storage with manufacturing.

UNIT - V

ADAPTIVE CONTROL SYSTEMS: Introduction, adaptive control with optimization, adaptive control with constraints, application of adaptive control in machining operations. Consideration of various parameters such as cutting force, temperatures, vibration and acoustic emission in the adaptive controls systems.

UNIT - VI

AUTOMATED INSPECTION: Fundamentals, types of inspection methods and equipment, Coordinate Measuring Machines, Machine Vision.

TEXT BOOK:

1. Automation, Production Systems and Computer Integrated Manufacturing: M.P. Groover./ PE/PHI.

REFERENCES:

- 1. Computer Control of Manufacturing Systems by Yoram Coren.
- 2. CAD / CAM/ CIM by Radhakrishnan.
- 3. Automation by W. Buekinsham.

Course outcomes:

Upon successful completion of this course student should be able to:

Solve the line balancing problems in the various flow line systems with and without use buffer storage.

Understand the different automated material handling, storage and retrieval systems and automated inspection systems.

Use of Adaptive Control principles and implement the same online inspection and control.

INDUSTRIAL HYDRAULICS & PNEUMATICS (DEPARTMENTAL ELECTIVE – II)

Course objective

- 1. Understand the underlying principles of Industrial Hydraulics & Pneumatic System.
- Analyze circuits and Enumerate the functions & characteristics of circuit elements.
- 3. Attend to troubleshooting in fluid power systems.
- 4. identify and describe the basic operation of Hydraulic / Pneumatic systems, the various equipment used in their operation.

UNIT - I

Fundamentals of Fluid Power Systems-Introduction-types advantages, disadvantages & applications-fluid characteristics-terminologies used in fluid power-hydraulic symbols-hydraulic systems and components-sources-pumping theory-gear, vane & piston pumps.

UNIT-II

Fluid Power Actuators: Introduction-hydraulic actuators-hydraulic cylinderstypes, construction, specifications and special types. hydraulic motorsworking principle-selection criteria for various types-hydraulic motors in circuits- formulae-numerical problems.

UNIT-III

Hydraulic elements in the design of circuits- Introduction-control elementsdirection control valve-check valve-pressure control valve-relief valvethrottle valve-temperature & pressure compensation-locations of flow control valve.

UNIT-IV

Accumulators & intensifiers-types, size &function of accumulators-application & circuits of accumulators- intensifiers-circuit & applications.

Design & drawing of hydraulic circuits-Introduction-case study & specifications-method of drawing a hydraulic circuit-hydraulic cylinder-quick return of a hydraulic cylinder.

UNIT-V

Pneumatic systems-Introduction-symbols used-concepts & components-comparision-types & specifications of compressors-arrangement of a

complete pneumatic system-compressed air behaviour- understanding pneumatic circuits-direction control valves.

Electro pneumatics- Introduction-Pilot operated solenoid valve-electrical connections to solenoids-electro pneumatic circuit switches-relays-solenoids-P.E converter-concept of latching.

UNIT-VI

Applications-servo systems-introduction-closed loop, hydro-mechanical and electro hydraulic – conventional and proportional valves-characteristics of proportional and servo valves- PLC applications in fluid power – selected pneumatic / electro pneumatic circuit problems – failure and trouble shooting in fluid power systems.

TEXT BOOKS:

- 1. Introduction to Hydraulics and Pneumatics by S. Ilango and V. Soundararajan, PHI, New Delhi.
- 2. Applied hydraulics and pneumatics-T. Sunder Selwyn & R. Jayendiran, Anuradha Publications.

REFERENCE BOOKS:

- 1. Oil Hydraulic Systems, S.R. Majumdar, McGrawHill Companies.
- Pneumatic Systems : Principles and Maintenance, Majumdar, Mc Graw Hill.

Course outcome:

Upon successful completion of this course student should be able to:

- 1. understand the general concepts associated with Hydraulic and Pneumatic equipment as found in industry today.
- 2. The course describes the various types of Hydraulic / Pneumatic equipment as well as the different types of Seals used in such equipment.
- 3. Understand advantage of fluid power, it provides examples of applications.
- 4. Understand the operation of hydraulics & pnuematics circuits and components typically used in industry.

T P C 0 3 2

SIMULATION LAB

Course Objectives:

- 1. To impart the fundamental knowledge on using various analytical tools like ANSYS, FLUENT, etc., for Engineering Simulation.
- 2. To know various fields of engineering where these tools can be effectively used to improve the output of a product.
- 3. To impart knowledge on how these tools are used in Industries by solving some real time problems using these tools..
- DRAFTING: Development of part drawings for various components in the form of orthographic andisometric. representation of dimensioning and tolerances scanning and plotting. study of script, DXE and IGES files.
- PART MODELING: Generation of various 3D models through protrusion, revolve, shell sweep. creation of various features. study of parent child relation. feature based and boolean based modeling surface and assembly modeling. study of various standard translators. design simple components.
- 3. a) Determination of deflection and stresses in 2D and 3D trusses and beams.
 - b) Determination of deflections component and principal and Von-mises stresses in plane stress, plane strain and Axisymmetric components.
 - c) Determination of stresses in 3D and shell structures (at least one example in each case)
 - d) Estimation of natural frequencies and mode shapes, Harmonic response of 2D beam.
 - e) Steady state heat transfer Analysis of plane and Axisymmetric components.
- 4. a) Development of process sheets for various components based on tooling Machines.
 - b) Development of manufacturing and tool management systems.
 - c) Study of various post processors used in NC Machines.
 - d) Development of NC code for free form and sculptured surfaces using CAM packages.

- e) Machining of simple components on NC lathe and Mill by transferring NC Code / from a CAM package. Through RS 232.
- f) Quality Control and inspection.

Packages to be provided to cater to drafting, modeling & analysis from the following:

Auto CAD, Micro Station, CATIA, Pro-E, I-DEAS, ANSYS, NISA, CAEFEM, Gibbs CAM, Master CAM etc.

Course outcomes:

Upon successful completion of this course student should be able to:

- The student will be able to appreciate the utility of the tools like ANSYS or FLUENT in solving real time problems and day to day problems.
- 2. Use of these tools for any engineering and real time applications.
- Acquire knowledge on utilizing these tools for a better project in their curriculum as well as they will be prepared to handle industry problems with confidence when it matters to use these tools in their employment.

T P C 0 2 1

DESIGN / FABRICATION PROJECT

Objective:

To develop the ability to conceptualize a product, apply standard/innovative design techniques and realize the product through fabrication with focus on design-manufacturing integration.

Course content:

Identification of possible improvements in an existing product, conceptualization of a new product/part, design of the part using design methodologies, selection of material(s), preparation of process flow chart for manufacturing, fabrication of the part using the available in-house facilities, assembly, testing of the functionality of the product.

The students should come up with their own original and innovative ideas for product design. The task may be performed by student teams/groups.

Course Outcome:

Through this course the student is expected to learn realization of a product, conceptualized and designed by him. The student gets hand on experience of the entire chain of manufacturing steps with an understanding of designmanufacturing integration.