Listing of Claims

1. (original) A compound of the formula

wherein

R₁ is optionally substituted lower alkyl or aralkyl:

R₂ is optionally substituted lower alkyl;

R₃ and R₄ are independently hydrogen, halo, lower alkyl, alkoxy or trifluoromethyl; or

R₃ and R₄ combined together with the carbon atoms to which they are attached form an optionally substituted fused 6-membered aromatic ring provided that R₃ and R₄ are attached to carbon atoms adjacent to each other:

R₅ is hydrogen, lower alkyl, lower alkoxy or halo;

R₆ and R₇ are hydrogen; or

 R_{6} and R_{7} combined together with the carbon atoms to which they are attached form a fused 6-membered aromatic ring;

provided that

- (i) R_3 , R_4 , R_5 , R_6 and R_7 are not hydrogen when R_1 is methyl, ethyl, pentyl, allyl, 3-buten-1-yl, benzyl or phenethyl and R_7 is methyl; or
- (ii) R_3 , R_4 , R_6 and R_7 are not hydrogen when R_1 and R_2 are methyl and R_5 is methyl located at the 4-position;

or an enantiomer thereof; or an enantiomeric mixture thereof.

2. (original) A compound according to claim 1, wherein

 R_3 and R_4 combined together with the carbon atoms to which they are attached form an optionally substituted fused 6-membered aromatic ring provided that R_3 and R_4 are attached to carbon atoms adjacent to each other:

or an enantiomer thereof; or an enantiomeric mixture thereof.

3. (original) A compound according to claim 2 of the formula

wherein

R₁ is optionally substituted C₁₋₄alkyl;

R₂ is methyl:

R_s is hydrogen:

R₆ and R₇ are hydrogen; or

 R_6 and R_7 combined together with the carbon atoms to which they are attached form a fused 6-membered aromatic ring:

or an enantiomer thereof; or an enantiomeric mixture thereof.

4. (original) A compound according to claim 3, wherein R_{S} and R_{T} are hydrogen;

or an enantiomer thereof; or an enantiomeric mixture thereof.

5. (original) A compound according to claim 4, wherein R₁ is methyl;

or an enantiomer thereof; or an enantiomeric mixture thereof.

6. (original) A method for converting a carbonyl compound to a chiral alcohol in the presence of a suitable organozinc reagent and a compound of the formula

$$\begin{array}{c|c} R_2 & R_7 \\ \hline R_3 & OH \end{array} \hspace{0.5cm} (I)$$

wherein

R₁ is optionally substituted lower alkyl or aralkyl;

R₂ is optionally substituted lower alkyl;

R₃ and R₄ are independently hydrogen, halo, lower alkyl, alkoxy or trifluoromethyl; or

 R_3 and R_4 combined together with the carbon atoms to which they are attached form an optionally substituted fused 6-membered aromatic ring provided that R_3 and R_4 are attached to carbon atoms adjacent to each other;

R₅ is hydrogen, lower alkyl, lower alkoxy or halo;

R₆ and R₇ are hydrogen; or

 $R_{\rm 6}$ and $R_{\rm 7}$ combined together with the carbon atoms to which they are attached form a fused 6-membered aromatic ring;

provided that

- (i) R_3 , R_4 , R_5 , R_6 and R_7 are not hydrogen when R_1 is methyl, ethyl, pentyl, allyl, 3-buten-1-yl, benzyl or phenethyl and R_2 is methyl; or
- (ii) R_3 , R_4 , R_6 and R_7 are not hydrogen when R_1 and R_2 are methyl and R_6 is methyl located at the 4-position;

or an enantiomer thereof; or an enantiomeric mixture thereof.

7. (original) A method according to claim 6, wherein

R₃ and R₄ combined together with the carbon atoms to which they are attached form an optionally substituted fused 6-membered aromatic ring provided that R₃ and R₄ are attached to carbon atoms adjacent to each other:

or an enantiomer thereof; or an enantiomeric mixture thereof.

8. (original) A method according to claim 7, wherein a compound of formula (I) has the formula

$$\begin{array}{c|c} R_2 & & \\ R_2 & & \\ R_3 & & \\ R_4 & & \\ \end{array}$$

wherein

R₁ is optionally substituted C₁₋₄alkyl;

R₂ is methyl;

Rs is hydrogen:

R₆ and R₇ are hydrogen; or

 R_{G} and R_{T} combined together with the carbon atoms to which they are attached form a fused 6-membered aromatic ring;

or an enantiomer thereof: or an enantiomeric mixture thereof.

9. (original) A method according to claim 8, wherein

R₆ and R₇ are hydrogen;

or an enantiomer thereof; or an enantiomeric mixture thereof.

10. (original) A method according to claim 9, wherein

R₁ is methyl:

or an enantiomer thereof; or an enantiomeric mixture thereof.

- 11. (original) A method according to claim 6, wherein the carbonyl compound is an aromatic aldehyde.
- 12. (original) A method according to claim 11, wherein the chiral alcohol is a diarylmethanol.
- 13. (original) A method according to claim 12, wherein the organozinc reagent is generated by reacting a compound of the formula

$$R_8B(OH)_2$$
 (V)

wherein R_n represents and; with dimethyl zinc or diethyl zinc.

- 14. (original) A method according to claim 12, wherein the reaction mixture further comprises a polyether.
- 15. (original) A method according to claim 14, wherein the polyether is dimethoxypolyethylene glycol.
- 16. (original) A method according to claim 12, wherein

 R_3 and R_4 combined together with the carbon atoms to which they are attached form an optionally substituted fused 6-membered aromatic ring provided that R_3 and R_4 are attached to carbon atoms adiacent to each other;

or an enantiomer thereof; or an enantiomeric mixture thereof.

17. (original) A method according to claim 16, wherein a compound of formula (I) has the formula

$$\begin{array}{c|c} R_{\xi} & R_{2} \\ \hline \\ R_{1} & R_{6} \\ \hline \\ OH & (IA) \\ \end{array}$$

wherein

R₁ is optionally substituted C₁₋₄alkyl;

R₂ is methyl;

R₅ is hydrogen;

Re and Rr are hydrogen; or

 R_{0} and R_{7} combined together with the carbon atoms to which they are attached form a fused 6-membered aromatic ring:

or an enantiomer thereof; or an enantiomeric mixture thereof.

18. (original) A method according to claim 17, wherein

R₆ and R₇ are hydrogen;

or an enantiomer thereof; or an enantiomeric mixture thereof.

19. (original) A method according to claim 18, wherein

R₁ is methyl;

or an enantiomer thereof; or an enantiomeric mixture thereof.

- 20. (original) A method according to claim 6, wherein the reaction mixture further comprises a polyether.
- 21. (original) A method according to claim 18, wherein the polyether is dimethoxypolyethylene glycol.