Surveying candidate genes for temperature adaptation in wild *Saccharomyces paradoxus* populations using highest performing Multiple Genome Alignment software

Corinn Small Biol 607 & 608 MAMBE

Kiel University & Max Planck Institute for Evolutionary Biology
Supervisors: Christoph Eschenbrenner, Primrose Boynton and Prof. Dr. Eva Stuckenbrock
December 2017 - March 2018

Saccharomyces cerevisiae has been a highly relevant organism throughout human history.

♦ Domesticated thousands of years ago (McGovern *et al.* 2004)

♦ 1st eukaryotic model organisms established in scientific community (Botstein *et al.* 1997)

Utilized in numerous applications— from brewing beer to studying the aging process
 (Legras et al. 2007 & Nicolass et al. 2013)

However, there are barriers to studying the natural history of *Saccharomyces cerevisiae*

- Purely natural populations of S. cerevisiae have been difficult to find (Wang et al. 2012).
- Populations found in nature
 - may contain mixed genetics (not consistent with geography) (Liti et al. 2009).
 - or may have been influenced by other domestications
 - Origin? → comigration with grape varieties (Marsit & Dequin 2015)

(Liti et al. 2009).

S. paradoxus = wild sister species helpful for investigating the natural evolution & ecology of Saccharomyces cerevisiae

Liti et al. 2009

From a population of *S. paradoxus*... What genomic diversity can we observe?

- Northern Germany
- ❖ Free living in soil under oak trees
- Constant abundance throughout the year (Kowallik& Greig 2016)

http://www.cathedralgrove.eu/text/08-Tree-Web sites.htm

Is this population undergoing positive selection due to seasonal changes in temperature?

Overall hypothesis: due to seasonal changes, temperature positively selects for alleles involved in temperature adaptation and therefore maintains polymorphisms at these loci.

Null hypothesis: due to rate of temperature fluctuations, the population is not undergoing positive selection, but is rather phenotypically plastic.

Question: Is there evidence for <u>local temporal adaptation</u> to temperature?

Aim:

To identify candidate genes involved in temperature adaptation based on evolutionary predictions of an *S. paradoxus* genome dataset

Generated SNP dataset from MugsyP-RF to investigate variation found in exons

Strains sampled from populations from various temperature ranges

S. paradoxus strains	Region	Source	Country
Y8.5	Europe	Quercus spp.	UK
Z1.1	Europe	Quercus spp.	UK
Y9.6	Europe	Quercus spp.	UK
Z1	Europe	Quercus spp.	UK
Q59.1	Europe	Quercus spp.	UK
S36.7	Europe	Quercus spp.	UK
Y6.5	Europe	Quercus spp.	UK
Y7	Europe	Quercus spp.	UK
Q95.3	Europe	Quercus spp.	UK
T21.4	Europe	Quercus spp.	UK
W7	Europe	Quercus spp.	UK
DBVPG4650	Europe	Fossilized guano	Italy
	Annotated reference	-	
S. cerevisiae S288c	North America	Rotting fig/lab strain	US
S. paradoxus CBS432	European Russia	Quercus spp.	Moscow, Russia

Comparisons to related research from Liti et al 2009 may help to assess alignment quality

Number variants by type

Туре	Total
SNP	1,326,174
MNP	0
INS	0
DEL	0
MIXED	0
INV	0
DUP	0
BND	0
INTERVAL	0
Total	1,326,174

Using dataset of 13 *S. paradoxus* + 1 *S. cerevisiae*

623,287 SNPs total found in *S. paradoxus* alignment from Liti *et al* 2009

S	Strains	
S. paradoxus		35
	England	18
	Continental Europe/Siberia	6
	Far East Russia/Japan	4
	North & South America	6
	Hawaii	1

Large amount of missense variation could be caused by several factors impacting the alignment other than positive selection

Variants (by type of effect) per gene

False variation can arise from...

- Mis-alignment /mis-annotation
- Duplications/ psuedogenization
- Indels
- * Transposable elements
- * Repeat rich regions

score=700 Sp_CBS432.CP020258.1 7566 86 + 71482 ATATATATTTTTTC-ATTATAATATTTTAAATAA Sp W7.scaffold1420 size3763 464 86 + 3763 ATATAATATTTTTTC-ATTATAATATTTTAAATAAA Sp_Y6_5.scaffold344_size800 465 86 + 800 ATATAATATTTTTTC-ATTATAATATTTTAAATAAA Sp_Q95_3.scaffold307_size775 440 86 -775 ATATAATATTTTTTC-ATTATAATATTTTAAATAAA Sp T21 4.scaffold419 size555 223 86 + 555 ATATAATATTTTTTC-ATTATAATATTTTAAATAAA Sp Y9 6.scaffold505 size729 0 62 + 729 -TATAATATTTTTTC-ATTATAATATTTTAAATAAA Sp_Q59_1.scaffold245_size843 511 86 -843 ATATAATATTTTTTC-ATTATAATATTTTAAATAAA Sp N44.scaffold368 size5437 3828 74 + 5437 ATATAAT-TA----CC-ATAATAA-ATT---AATTTT Sp_Y8_5.scaffold386_size1105 1105 -TATAATATTTTTTC-ATTATAATATTTTAAATAAA Sp_S36_7.scaffold413_size1167 414 86 -1167 ATATAATATTTTTTC-ATTATAATATTTTAAATAAA Sp_Z1.scaffold647_size1173 168 86 + 1173 ATATAATATTTTTTC-ATTATAATATTTTAAATAA Sp YPS138.scaffold420 size4720 252 83 -4720 -TATTATATATTTTTTTTTTATTATAATATTTTAAATAAA Sp_Y7.scaffold254_size1697 434 86 -1697 ATATAATATTTTTTC-ATTATAATATTTTAAATAAA Sp Z1 1.scaffold212 size475 143 86 -475 ATATAATATTTTTTC-ATTATAATATTTTAAATAAA

Survey of candidate genes & their functions

Gene Name Gene ID		# Snps (>=10)	Function				
ARP2	YDL029W	13	Actin-related; actin nucleation center required for the motility and integrity of actin patches; involved in endocytosis and membrane growth and polarity; https://www.yeastgenome.org/reference/S000055626				
CIN2	YPL241C	15	GTPase-activating protein (GAP) for Cin4p; tubulin folding factor C involved in beta-tubulin (Tub2p) folding; mutants display increased chromosome loss; https://www.yeastgenome.org/locus/S000006162				
DDI3	YNL335W	20	DNA Damage Inducible; Cyanamide hydratase, detoxifies cyanamide (a dehydration agent (reacts with H ₂ O); https://www.yeastgenome.org/locus/S000005279				
ECM33	YBR078W	17	Extra-cellular mutant: Glycosylphosphatidylinositol (GPI) - associated protein, anchors to plasma membrane; https://www.yeastgenome.org/reference/S000072533				
ЕСМ9	YKR004C	17	Extra-cellular mutant: unknown function, non-essential; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1208169/pdf/ge1472435.pdf				
HPC2	YBR215W	39	HIR (a nucleosome assembly) complex subunit; involved in regulation of histone gene transcription; https://www.yeastgenome.org/locus/S000000419#reference				

Gene Name	Gene ID	(>=10)	Function	
IWR1	YDL115C		RNA polymerase II transport factor, nucleo-cytoplasmic shuttling protein; https://www.yeastgenome.org/locus/S000002273	
KIN28	YDL108W	15	Protein kinase; https://www.yeastgenome.org/locus/S000002266	
MUD1	YBR119W	15	Involved in nuclear mRNA splicing; https://www.yeastgenome.org/locus/S000000323	
PMI40	YER003C		Mannose-6-phosphate isomerase, required for early steps in mannose glycoside synthesis; https://www.yeastgenome.org/reference/S000042091	
RFA2	YNL312W		Replication Protein A subunit- involved in DNA replication, repair, recombination, https://www.yeastgenome.org/locus/S000005256	
RPL36B	YPL249C+AC0-A		Ribosomal 60S subunit protein L36B; httphttps://www.yeastgenome.org/locus/S000006438s://www.yeastgenome.org/locus/S000006438	
STO1	YMR125W		Large subunit of the nuclear mRNA cap-binding protein complex; interacts with Npl3p to carry nuclear poly(A)+ mRNA to cytoplasm; https://www.yeastgenome.org/locus/S000004732	
TFC3	YAL001C		RNA polymerase III transcription initiation factor complex subunit; https://www.yeastgenome.org/locus/S00000001	ALL LONDON
TUB3	YML124C		Alpha-tubulin associates with Tub2p forms tubulin dimer, polymerizes to form microtubules; https://www.yeastgenome.org/locus/S000004593	

Snps

REFERENCES

- Samuel V. Angiuoli, Steven L. Salzberg; Mugsy: fast multiple alignment of closely related whole genomes, *Bioinformatics*, Volume 27, Issue 3, 1 February 2011, Pages 334–342, https://doi.org/10.1093/bioinformatics/btg665
- Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, et al. Population genomics of domestic and wild yeasts. Nature [Internet]. 2009;458(7236):337–41. Available from: http://dx.doi.org/10.1038/nature07743
- ♦ Kowallik, Vienna & Greig, Duncan. (2016). A systematic forest survey showing an association of Saccharomyces with oak leaf litter. Environmental Microbiology Reports. 8. 10.1111/1758-2229.12446.
- Fermented beverages of pre- and proto-historic China. Patrick E. McGovern, Juzhong Zhang, Jigen Tang, Zhiqing Zhang, Gretchen R. Hall, Robert A. Moreau, Alberto Nuñez, Eric D. Butrym, Michael P.Richards, Chen-shan Wang, Guangsheng Cheng, Zhijun Zhao, ChangsuiWang Proceedings of the National Academy of Sciences Dec 2004, 101 (51) 17593-17598; DOI:10.1073/pnas.0407921102
- ♦ Botstein, D, Steven A. Chervitz, and J. Michael Cherry. "Yeast as a Model Organism." *Science (New York, N.Y.)* 277.5330 (1997): 1259–1260.
- Legras, J., Merdinoglu, D., Cornuet, J. And Karst, F. 2007. Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Molecular Ecology, 16: 2091-2102. doi:10.1111/j.1365-294X.2007.03266.x
- Nicolaas A Buijs, Verena Siewers, Jens Nielsen. 2013. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Current Opinion in Chemical Biology, 17: 3: 480-488. ISSN 1367-5931. https://doi.org/10.1016/j.cbpa.2013.03.036.
- ♦ Manolis Kellis, Nick Patterson, Bruce Birren, Bonnie Berger, and Eric S. Lander.Journal of Computational Biology.Mar 2004.ahead of printhttp://doi.org/10.1089/1066527041410319
- ♦ Wang, Q. M., Liu, W. Q., Liti, G., Wang, S. A. & Bai, F. Y. Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity. Mol. Ecol. 21, 5404–5417 (2012).
- Souhir Marsit, Sylvie Dequin; Diversity and adaptive evolution of *Saccharomyces* wine yeast: a review, *FEMS Yeast Research*, Volume 15, Issue 7, 1 November 2015, fov067, https://doi.org/10.1093/femsyr/fov067
- Pablo Cingolani, Adrian Platts, Le Lily Wang, Melissa Coon, Tung Nguyen, Luan Wang, Susan J. Land, Xiangyi Lu & Douglas M. Ruden (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff, Fly, 6:2, 80-92,DOI: 10.4161/fly.19695

Thank you to...

Prof. Dr. Eva H. Stukenbrock Dr. Primrose Boynton Dr. Alice Feurtey

Questions?

Supplementary Material

General Pipeline for Alignment Comparison and Survey Generation

Assembly Preparation

- -Download assemblies (step 1 & 2)
- -Rename assembly headers and files: new header.py (step 3)
- -Check for short contigs: Quast (step 4)
- -(Optional) Filter N's: Script3-Assembly Splitter.py Filter out short contigs < 1 kbp: filtering CS.py (step 5)

Alignment: TBA

- -Blastn using beta-tubulin (step 6)
- -Create Seaview phylogenetic guide tree (step 7)
- -Generate *Blastz* commands for pairwise comparisons (step 8)
- -Generate bash script: all_bzToSGE_modified.py (step 9)
- -Reformat headers for *Multiz*: formatSeq_PacBio.py (step 10)
- -Generate pairwise alignments: scriptSGE.sh (step 11)
- -Generate mutliple genome alignment using TBA (step 12)
- -Project alignment against reference genome *Sp_*CBS432 (step 13)

Alignment: Mugsy

- -Generate MGA using Mugsy serial (step 14)
- -Generate MGA using Mugsy parallel (step 15)

Filtering Alignments

- -Realign one set of alignments using *Mafft* (step 16a)
- -Filter both realigned alignments and the raw alignments using bpp files with specified filtering options: Mafffilter (step 16b)

Evaluation of Alignments & Variant Calling

- -Generate alignment statistics: QMS.py (step 17)
- -Generate site frequency spectrums using *Maffilter* (step 18)
- -Call genome-wide nucleotide variants using *Maffilter* (step 19)

Population Genomics for Best Alignment

-Calculate nucleotide diversity estimators:

Tajima's D, Tajima's Pi, and Watterson Theta using Maffilter

(step 21)

-Construct PCA plot: Adjust MapFile.py, PCA_SNPs.py & Plot_PCA.R in this order (steps 22 - 24)

Candidate Gene Survey

- -Generates SnpEff files from VCF files (step 1)
- -Match genes: matching snps to temp genes.py (step 2)
- -Filter matched SnpEff genes for only those containing ≥ 10 SNPs: high impact genes.py (can change threshold)
- (step 3)

Additional stats refer to the quality of the alignment

N50 & L50

N50 -> length of the <u>smallest block</u> included in the summed block lengths that make up 50% of total alignment

Larger N50 & L50 => the more bases are contiguous

L50 refers to the number of summed blocks that give N50

$$L50 = 3$$

Additional stats refer to the quality of the alignment

Block Length and Gap% reflect homology

Longer		Shorter	
More homology			Less homology
Less introduced gaps		More introduce	ed gaps

(Angiuoli & Salzberg 2011)

QMS statistics scoring shows that re-alignment is necessary before filtering.

First, best type of filtering per software was chosen

_				
	Key	-1 (worst)	+1 (best)	NA (not included in the analysis)

	Total Length	Blocks	■ Gap%	1 N50	↑ L50	Total Block Length ≥ 1kb	Total Block Length: ≥ 5kb	Total Block Length: ≥10kb	Evaluation score
Tba UF	12229423	10061	1.28	3309	1101	11057280	7830332	4360009	NA
Tba F	8458355	40541	0.36	163	18831	236325	0	0	-6
Tba RF *	11028652	6397	0.3	1906	1940	9794899	3795678	946740	6
MugsyP UF	12023677	7036	2.59	3396	1049	10935200	7801887	4536046	NA
MugsyP F	11190803	6576	0.99	1792	2085	9818100	3536276	920109	-3
MugsyP RF	11176614	6301	0.77	1880	1982	9886060	3796347	1001818	3
MugsyS UF	12004021	6965	2.5	3424	1046	10931937	7785588	4501238	NA
MugsyS F	11187565	6529	0.98	1797	2080	9814145	3525269	920242	-3
MugsyS RF	11172450	6263	0.76	1886	1980	9883914	3773364	991599	3

Mugsy + local realignment + MafFiltering = Highest quality alignment

Key	-1	0 (intermediate)	1	NA
-----	----	------------------	---	----

	Total Length	Blocks	↓ Gap%	1 N50	1	Total Block Length: 1kb	Total Block Length: 5kb	Total Block Length: 10kb	Evaluation score
Tba RF	11028652	6397	0.3	1906	1940	9794899	3795678	946740	-2
MugsyP RF	11176614	6301	0.77	1880	1982	9886060	3796347	1001818	3
MugsyP F	11190803	6576	0.99	1792	2085	9818100	3536276	920109	-1
MugsyS RF	11172450	6263	0.76	1886	1980	9883914	3773364	991599	0

^{*} Mugsy P-RF and Mugsy S-RF are very comparable= no significant differences

Number of effects by type and region

Туре		Region				
Type (alphabetical order)	Count	Percent				
downstream_gene_variant	3,970,211	42.735%				
initiator_codon_variant	31	0%				
intergenic_region	424,054	4.564%	Type (alphabetical order)	Count	Percent	
intron_variant	13,780	0.148%	DOWNSTREAM		42.745%	
missense_variant	271,551	2.923%		3,970,211		
non_coding_transcript_exon_variant	5,118	0.055%	EXON	905,500	9.749%	
splice_acceptor_variant	27	0%	INTERGENIC	424,054	4.566%	
splice_donor_variant	7	0%	INTRON	13,379		
splice_region_variant	2,170	0.023%	SPLICE_SITE_ACCEPTOR	27	0%	
start_lost	444	0.005%	SPLICE_SITE_DONOR	6	0%	
stop_gained	2,893	0.031%	SPLICE_SITE_REGION	1,679	0.018%	
stop_lost	1,071	0.012%	UPSTREAM	3,973,277	42.778%	
stop_retained_variant	1,408	0.015%				
synonymous_variant	624,295	6.72%				
upstream_gene_variant	3,973,277	42.768%				

Type of Exonic effect	Predicted Effect Count	Percent of total effects
Initiator codon variant	31	~0%
Start lost	444	0.005%
Stop gained	2,893	0.031%
Stop lost	1,071	0.012%
Missense variant	271,551	2.92%
Synonymous variant	624,295	6.72%
Total exonic effects	900,285	9.74%

Variation found in upstream regions could point to plasticity rather than adaptation

