Prof. Amador Martin-Pizarro Übungen: Michael Lösch

Logik für Studierende der Informatik

Blatt 4

Abgabe: 20.11.2018 14 Uhr Gruppennummer angeben!

Aufgabe 1 (4 Punkte).

Sei \mathcal{L}_0 eine Teilmenge der Sprache \mathcal{L} . Jede \mathcal{L} -Struktur \mathcal{A} kann in kanonischer Weise als \mathcal{L}_0 -Struktur $\mathcal{A} \upharpoonright \mathcal{L}_0$ betrachtet werden. Zeige durch Induktion über den Aufbau der \mathcal{L}_0 -Formel $\varphi[x_1, \ldots, x_n]$, dass für alle a_1, \ldots, a_n aus A

$$\mathcal{A} \models \varphi[a_1, \dots a_n]$$
 genau dann, wenn $\mathcal{A} \upharpoonright \mathcal{L}_0 \models \varphi[a_1, \dots a_n]$.

Aufgabe 2 (6 Punkte). Forme folgende Formeln in pränexe Normalform um:

(a)
$$\forall x \forall y \Big(\neg (x \doteq y) \longrightarrow \exists z \big(\neg (z \doteq x) \land \neg (z \doteq y) \big) \Big).$$

(b)
$$\forall x \forall y \left(\neg (x \doteq y) \longrightarrow \forall z \exists u \left(\left(\neg (z \doteq x) \land \neg (z \doteq y) \right) \longrightarrow (z \doteq u) \right) \right)$$
.

(c)
$$\left((g(x,y,z) \doteq 1) \longleftrightarrow \left(\left((z \doteq 0) \land (f(x,y) \doteq 1) \right) \lor \exists w \left((w < x + y + 1) \land \left((x \doteq y + w) \lor (y \doteq x + w) \right) \right) \right)$$

Aufgabe 3 (4 Punkte).

Eine Unterstruktur \mathcal{A} der \mathcal{L} -Struktur \mathcal{B} heißt *elementar*, bezeichnet mit $\mathcal{A} \leq \mathcal{B}$, falls für jede \mathcal{L} -Formel $\varphi[x_1, \ldots, x_n]$ und für alle a_1, \ldots, a_n aus A folgende Implikation gilt:

$$\mathcal{A} \models \varphi[a_1, \dots a_n] \Longrightarrow \mathcal{B} \models \varphi[a_1, \dots a_n].$$

- (a) Zeige, dass $A \equiv B$ aus $A \leq B$ folgt.
- (b) Sei nun T eine Theorie in der Sprache \mathcal{L} derart, dass es für jede \mathcal{L} -Formel $\varphi[x_1, \ldots, x_n]$ eine quantorenfreie \mathcal{L} -Formel $\psi[x_1, \ldots, x_n]$ gibt, so dass

$$T \models \forall x_1 \dots \forall x_n \Big(\varphi[x_1, \dots, x_n] \longleftrightarrow \psi[x_1, \dots, x_n] \Big).$$

Zeige, dass $\mathcal{A} \leq \mathcal{B}$ aus $\mathcal{A} \subset \mathcal{B}$ folgt, falls beide Strukturen \mathcal{A} und \mathcal{B} Modelle von T sind.

Aufgabe 4 (6 Punkte).

Sei \mathcal{A} eine Struktur in der Sprache \mathcal{L} und c_1, \ldots, c_n neue Konstantenzeichen.

- (a) Zeige, dass \mathcal{A} sich zu einer Struktur in der Sprache $\mathcal{L}' = \mathcal{L} \cup \{c_1, \dots, c_n\}$ erweitern läßt.
- (b) Sind alle solche Erweiterungen isomorph als \mathcal{L}' -Strukturen?

(Bitte wenden!)

(c) Zeige, dass die \mathcal{L} -Formel $\varphi[x_1,\ldots,x_n]$ genau dann allgemeingültig ist, wenn die \mathcal{L}' -Aussage $\varphi[c_1,\ldots,c_n]$ allgemeingültig ist.

Die Übungsblätter müssen zu zweit eingereicht werden. Abgabe der Übungsblätter in den (mit den Nummern der Übungsgruppen gekennzeichneten) Fächern im EG des Gebäudes 51.