Fondamenti dell'Informatica

Esercitazione 5

(CON RISPOSTE)

Esercizio 1. Ordini parziali e Diagrammi di Hasse 1

Si consideri il seguente grafo G basato sulla relazione R:

- 1. Il grafo rappresenta un ordine parziale? In caso contrario, come trasformare la relazione R affinché ne risulti un nuovo grafo G_1 rappresentante un ordine parziale?
- 2. Si consideri G_1 , e si prendano i sottinsiemi $X = \{E, C, D\}$ e $Y = \{A, C, D\}$. Indicare, se presenti:
 - Elementi minimali e massimali in G_1
 - Elementi minimi e massimi in G_1
 - Minoranti di X e Y in G_1
 - Maggioranti di X e Y in G_1
 - \bullet Massimi minoranti di X e Y in G_1
 - \bullet Minimi maggioranti di Xe Y in G_1
- 3. Rappresentare G_1 come diagramma di Hasse.

Risposta 1.

1. Il grafo G non rappresenta un ordine parziale, perché non vengono rispettate, riflessività e transitività. Trasformando R in modo che queste proprietà vengano osservate, si ottiene il seguente grafo G_1 :

- 2. Considerato G_1 e i sottinsiemi $X = \{E, C, D\}$ e $Y = \{A, C, D\}$ si hanno:
 - Minimali = $\{A, B, F\}$, Massimali = $\{G\}$.
 - Minimi = $\{\}$, Massimi = $\{G\}$.
 - Minoranti per X = B, Minoranti per Y = //.
 - Maggioranti per X = E, G, Maggioranti per Y = E, G.
 - Massimi minoranti per X=B, Massimi minoranti per Y=//.
 - Minimi maggioranti per X = E, Minimi maggioranti per Y = E.

3. Rappresentazione di ${\cal G}_1$ come diagramma di Hasse:

Esercizio 2. Ordini parziali e Diagrammi di Hasse 2

Si consideri il seguente grafo G:

- 1. Verificare se il grafo rappresenti un POSET;
- 2. In caso il grafo non sia un POSET, renderlo tale per poi trasformarlo in un diagramma di Hasse;
- 3. Determinare se il grafo sia un reticolo motivando la risposta.

Risposta 2.

- 1. Il grafo presentato in figura è un ordine parziale, dato che vengono rispettate riflessività, antisimmetria e transitività.
- 2. Rappresentazione di G in diagramma di Hasse:

3. Il grafo presentato risulta essere un reticolo, in quanto ogni coppia di elementi possiede sia un estremo inferiore che un estremo superiore.

Esercizio 3. Diagrammi di Hasse 1

Si consideri il seguente diagramma di Hasse:

- 1. Elencare le proprietà di cui gode la relazione rappresentata dal diagramma di Hasse.
- 2. Si prendano i sottinsiemi $X = \{B, C\}, Y = \{B, E, G\}$ e $Z = \{F, D\}$. Indicare, se presenti:
 - Elementi minimali e massimali del diagramma di Hasse
 - Elementi minimi e massimi del diagramma di Hasse
 - Minoranti di $X, Y \in Z$
 - ullet Maggioranti di $X, Y \in Z$
 - \bullet Massimi minoranti di $X,\,Y$ e Z
 - \bullet Minimi maggioranti di $X,\,Y$ e Z
- 3. Il diagramma di Hasse rappresenta un reticolo?

Risposta 3.

- 1. Dato che i diagrammi di Hasse si usano per rappresentare insiemi parzialmente ordinati, la relazione rappresentata dal diagramma di Hasse gode di riflessività, antisimmetria e transitivià.
- 2. Presi i sottinsiemi $X = \{B, C\}, Y = \{B, E, G\}$ e $Z = \{F, D\}$ si ha che:
 - Minimali = $\{A, D, F\}$, Massimali = $\{G, H\}$
 - $Minimi = \{\}, Massimi = \{\}$
 - Minoranti per X=A, Minoranti per Y=B,A, Minoranti per Z=//
 - Maggioranti per X=E,G,H, Maggioranti per Y=G, Maggioranti per Z=G
 - Massimi minoranti per X = A, Massimi minoranti per Y = B, Massimi minoranti per Z = //
 - Minimi maggioranti per X=E, Minimi maggioranti per Y=G, Minimi maggioranti per Z=G
- 3. Il diagramma di Hasse non rappresenta un reticolo perché non viene rispettata la presenza di un minimo maggiorante e di un massimo minorante per ogni coppia di nodi presi arbitrariamente.

Esercizio 4. Diagrammi di Hasse 2

Si consideri il seguente diagramma di Hasse:

- 1. Trasformare il diagramma di Hasse in un grafo diretto;
- 2. Utilizzare il diagramma di Hasse per dimostrare che si tratta di un reticolo;
- 3. Dire se il reticolo in questione risulti essere complementato.