PH3104 End Semester

Full marks: 40 Time: 2 hours 30 minutes

Attempt all questions

Q 1) a) In a common base BJT circuit the input port is between the emitter and the base, and the output between the base and the collector. Express the common base h parameters h_{ib} , h_{rb} , h_{fb} and h_{ob} in terms of the corresponding common emitter h parameters, h_{ie} and h_{fe} (you can neglect h_{re} and h_{oe}).

b) In the circuit below $R_1 = 20 \text{ k}$, $R_2 = 10 \text{ k}$, $R_C = R_E = 1 \text{ k}$.

If the β for the BJT is 100, determine the bias currents and voltages. You can take $V_{BE} = 0.7 \,\mathrm{V}$ [4 + 3]

Q 2) Consider the JFET based amplifier shown below.

a) Draw the equivalent small signal ac circuit for mid-band frequencies.

b) Determine expressions for Z_i , Z_o and A_V for the circuit in terms of the circuit parameters and the effective parameters g_m and r_d for the JFET. [2+3]

Q 3) In the OP-AMP circuit shown below, the saturation voltages for the OP-AMP are $\pm 11 \, \text{V}$.

Plot the graph of i versus v for the range v = -2 V to v = +2 V for the following two cases :

a)
$$R_1 = R_3 = R_4 = 1 \text{ k}, R_2 = 10 \text{ k}.$$

b)
$$R_1 = R_2 = R_3 = R_4 = 1 \text{ k.}$$

Explain your reasoning. Label the axes and scales appropriately. [3+3]

 ${\bf Q}$ 4) Consider the phase shift oscillator shown below

- a) Determine the feedback ratio $\beta = \frac{v_f}{v_o}$ as a function of $\xi = \frac{1}{\omega CR}$. Hint: you can use nodal analysis or any other method of choice!
- **b)** Use this expression to determine the oscillation frequency and the minimum value of R' for the circuit to oscillate. [6 + 2]
- **Q 5 a)** The truth table of a 4-input Boolean function is given below (The Xs in the output column denote don't cares).

A	В	С	D	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	X
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	X
1	1	0	1	1
1	1	1	0	1
1	1	1	1	X

Use the Karnaugh map technique to write down the simplest form of the Boolean function which implements this. Choose the don't care conditions wisely!

- b) Implement this function using 2-input NAND gates only!
- c) Write down the truth table for the circuit shown below (here D_4, D_3, D_2, D_1, D_0 are the outputs, while A_3, A_2, A_1, A_0 are inputs).

Explain what circuits like this can be used for.

[4+3+3]

Q 6) The circuit below is a small modification of the ripple counter that was discussed in class. Specifically the outputs Q_1 and Q_3 are fed back to a NAND gate, the output of which is fed to an AND gate, along with the \overline{CLR} signal.

Explain how the output nibble (the binary number $Q_3Q_2Q_1Q_0$) will change with successive clock pulses. [4]