Федеральное государственное автономное образовательное учреждение высшего образования «Научно-образовательная корпорация ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Домашнее задание по теории графов №1

Вариант 92

Выполнил:

Степанов Арсений

Группа:

P3109

Преподаватель:

Поляков Владимир Иванович

Матрица смежности графа

Взвешенная

V/V	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}
e_1	0			5				4	1	4		1
e_2		0			4		4		1			
e_3			0	5		4	3	4		3	3	
e_4	5		5	0			1					1
e_5		4			0	4	4					5
e_6			4		4	0	5		3			2
e_7		4	3	1	4	5	0	2			5	
e_8	4		4				2	0			1	
e_9	1	1				3			0	4	4	
e_{10}	4		3						4	0	5	5
e_{11}			3				5	1	4	5	0	2
e_{12}	1			1	5	2				5	2	0

Не взвешенная

V/V	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}
e_1	0			1				1	1	1		1
e_2		0			1		1		1			
e_3			0	1		1	1	1		1	1	
e_4	1		1	0			1					1
e_5		1			0	1	1					1
e_6			1		1	0	1		1			1
e_7		1	1	1	1	1	0	1			1	
e_8	1		1				1	0			1	
e_9	1	1				1			0	1	1	
e_{10}	1		1						1	0	1	1
e_{11}			1				1	1	1	1	0	1
e_{12}	1			1	1	1				1	1	0

Раскраска графа приближенным алгоритмом

Посчитаем количество связей у каждой вершины:

V/V	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	r_i
e_1	0			1				1	1	1		1	5
e_2		0			1		1		1				3
e_3			0	1		1	1	1		1	1		6
e_4	1		1	0			1					1	4
e_5		1			0	1	1					1	4
e_6			1		1	0	1		1			1	5
e_7		1	1	1	1	1	0	1			1		7
e_8	1		1				1	0			1		4
e_9	1	1				1			0	1	1		5
e_{10}	1		1						1	0	1	1	5
e_{11}			1				1	1	1	1	0	1	6
e_{12}	1			1	1	1				1	1	0	6

Отсортируем вершины по неубыванию r_i :

 $e_7, e_3, e_{11}, e_{12}, e_1, e_6, e_9, e_{10}, e_4, e_5, e_8, e_2$

Окрасим в первый цвет вершину e_7 и вершины не смежные с ней и попарно Вершины не смежные с e_7 : e_1 , e_9 , e_{10} , e_{12}

Красим в первый цвет вершины e_7, e_{12}, e_9 и вычёркиваем их из матрицы:

V/V	e_1	e_2	e_3	e_4	e_5	e_6	e_8	e_{10}	e_{11}	r_i
e_1	0			1			1	1		3
e_2		0			1					1
e_3			0	1		1	1	1	1	5
e_4	1		1	0						2
e_5		1			0	1				2
e_6			1		1	0				2
e_8	1		1				0		1	3
e_{10}	1		1					0	1	3
e_{11}			1				1	1	0	3

Отсортируем вершины по неубыванию r_i :

 $e_3, e_1, e_8, e_{10}, e_{11}, e_4, e_5, e_6, e_2,$

Окрасим во второй цвет вершину e_3 и вершины не смежные с ней и попарно Вершины не смежные с e_3 : e_1 , e_2 , e_5

Красим во второй цвет вершины e_3, e_1, e_5 и вычёркиваем их из матрицы:

V/V	e_2	e_4	e_6	e_8	e_{10}	e_{11}	r_i
e_2	0						0
e_4		0					0
e_6			0				0
e_8				0		1	1
e_{10}					0	1	1
e_{11}				1	1	0	2

Отсортируем вершины по неубыванию r_i :

 $e_{11}, e_8, e_{10}, e_2, e_4, e_6$

Окрасим в третий цвет вершину e_{11} и вершины не смежные с ней и попарно Вершины не смежные с e_{11} : e_2 , e_4 , e_6

Красим в третий цвет вершины e_{11}, e_2, e_4, e_6 и вычёркиваем их из матрицы:

V/V	e_8	e_{10}	r_i
e_8	0		0
e_{10}		0	0

Оставшиеся две несмежные вершины e_8 и e_{10} красим в четвёртый цвет Таким образом по приближенному алгоритму раскраски: хроматическое число графа - 4

Рисунок раскрашенного графа

