Student ID: 103128918

## SWINBURNE UNIVERSITY OF TECHNOLOGY



# MASTER OF DATA SCIENCE COS80025 – Data Visualisation Semester 2, 2024

Deliverable 1: Project Proposal

Due date: Sunday 24th August 2024

Project facilitator: Mr Mohammad Abuhassan

Submitted by: Thi Ngan Ha Do

Student ID: 103128918

#### 1.0 Introduction

## 1.1 Background and Motivation

For decades, road accidents have been one of the main causes of unnatural death, posing a substantial global safety concern due to the associated injuries and fatalities (World Health, 2023). According to the (Berg et al., 2023), from 1913 to 2022, the number of motor-vehicle fatalities in the United States increased by 996%, including passenger cars, trucks, buses, and motorcycles.

Despite the alarming increase in traffic crashes, we believe this issue can be addressed by raising road user awareness and implementing a more effective traffic control system. Therefore, it is imperative to examine past data to identify contributing reasons and assess the efficiency of current safety measures. Understanding the underlying causes of road accidents is critical to designing effective safety measures.

There are several compelling reasons why traffic crashes have been selected as the focus of this project. From a social perspective, traffic collisions are a longstanding issue within society. In 2023, the economic impact of car crashes accounted for over 1.4% of the U.S. GDP (Tandrayen-Ragoobur, 2024), highlighting the substantial financial burden these incidents impose on the economy, including significant productivity losses.

On a personal level, traffic is an unavoidable part of daily life, yet it poses serious risks, with participants facing potentially life-threatening dangers. The repercussions of traffic crashes extend beyond property damage and physical injury; they also include the profound losses experienced by the families of victims. Around 75% of low-income households who lost a member in a traffic crash reported a decline in their standard of living (Abdulhafedh, 2017). Given these considerations, it is crucial—both personally and collectively—for individuals to understand the factors contributing to accidents and to explore ways to reduce or eliminate the likelihood of such events.

#### 1.2 Project Objectives

The purpose of this project is to examine the impact of many critical elements to uncover common trends in traffic crash severity and evaluate the effectiveness of current safety measures.

|   | Research topic                                               | Objective                                                                                                                           | Reason                                                                                                                                                                                                          |
|---|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Identifying common contributory factors in traffic accidents | Understanding the impact of driver behaviour, infrastructure and environmental conditions on the frequency and severity of crashes. | <ul> <li>Individuals: Avoid risk factors for safer driving practices</li> <li>For policy makers:         <ul> <li>Guide the development of targeted interventions and safety regulations</li> </ul> </li> </ul> |

| 2 | Spatio-temporal<br>analysis of traffic crash<br>density and police<br>response times | Map out the distribution of traffic crashes across various locations and time periods, and analyse the response times of police to these incidents | <ul> <li>Individuals: take precautionary measures (avoid high-risk areas and time periods)</li> <li>For policy makers: resource allocation, traffic management, and law enforcement deployment</li> </ul> |
|---|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | Predictive modelling of vehicle damage and influential factors                       | Identify and analyse the attributes that most significantly influence the extent of vehicle damage                                                 | <ul> <li>Individuals: practice safe driving and enhance awareness of high-risk situations.</li> <li>For policy makers: prioritize interventions that reduce the severity of vehicle damage</li> </ul>     |

# 1.3 Project Schedule

In accordance with the syllabus and assignment timeline, a project schedule has been established to ensure consistent weekly progress and the completion of the project within the designated timeframe.

| Week    | Task                                       | Description                                                                                                                                                                                                                                                                                                                                                                           | Start Date | End Date   |
|---------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| Week 1- | Data collection<br>and project<br>proposal | <ul> <li>(1) Data Collection:</li> <li>Identify and gather relevant datasets to the project's objectives</li> <li>Document the data sources and attributes for future reference</li> <li>(2) Project Proposal:</li> <li>Define the research questions</li> <li>Develop a project plan (objectives and scope)</li> <li>Obtain feedback and approval on the project proposal</li> </ul> | 29/07/2024 | 25/08/2024 |
| Week 5  | Data processing                            | <ul><li>(1) Data Cleaning:</li><li>Check for errors and correct any inconsistencies</li></ul>                                                                                                                                                                                                                                                                                         | 26/08/2024 | 01/09/2024 |

|              |                                                   | <ul> <li>Standardize date-time formats</li> <li>(2) Feature Engineering:</li> <li>Standardise features for modelling</li> <li>Create new columns</li> <li>Extract temporal features</li> </ul>                                                                                |            |            |
|--------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| Week 6-<br>9 | Data<br>exploration and<br>building<br>dashboards | <ul> <li>(1) Data Exploration:</li> <li>Perform exploratory data analysis and identify potential patterns</li> <li>Develop predictive models</li> <li>(2) Building Dashboards:</li> <li>Design dashboards</li> <li>Integrate predictive models into the dashboards</li> </ul> | 02/09/2024 | 06/10/2024 |
| Week 10      | Finalize<br>dashboards                            | <ul> <li>(1) Dashboard Refinement:</li> <li>Review the dashboard</li> <li>Collect feedback</li> <li>(2) Documentation:</li> <li>Document the methodology, data sources, and key insights</li> </ul>                                                                           | 07/10/2024 | 13/10/2024 |
| Week 11      | Final Report                                      | <ul> <li>Summarize the entire project</li> <li>Discuss the implications of<br/>the findings and provide<br/>actionable recommendations</li> </ul>                                                                                                                             | 14/10/2024 | 20/10/2024 |

The most time-consuming task involves data exploration, which will be conducted by building dashboards aligned with the proposed research questions. Additionally, regarding vehicle damage prediction (research topic 3), data modelling will initially be performed using a Python notebook, with the analytical results subsequently visualised on a Tableau dashboard. This will be complemented by a thorough descriptive and predictive analysis of the key factors significantly influencing property damage.

#### 2.0 Data

#### 2.1 Data Source

#### 2.1.1. Data Acquisition

The "Traffic Crashes - Crashes" dataset was sourced from the Chicago Data Portal and was last updated on August 23, 2024, as per the last access date. This dataset, provided by the City of Chicago (2024), is part of a broader Traffic Crashes database schema, which also includes datasets on people and vehicles. However, the analysis and visualization for this

project focused solely on the crashes dataset, excluding the other two. The data covers a collection period from 2015 to the present.

## 2.1.2. Metadata

The dataset comprises 48 attributes and contains over 800,000 records, with each row corresponding to a distinct traffic accident incident. The metadata is comprehensively detailed on the official city government website:

|    | Column                 | Description                                                                                      | Data<br>Type   | Category    |
|----|------------------------|--------------------------------------------------------------------------------------------------|----------------|-------------|
| 1  | crash_record_id        | Unique identifier                                                                                | Text           | Categorical |
| 2  | crash_date_est_i       | Crash date estimated                                                                             | Text           | Categorical |
| 3  | crash_date             | Date and time of crash                                                                           | Datetime       | Temporal    |
| 4  | posted_speed_limit     | Posted speed limit                                                                               | Integer        | Numerical   |
| 5  | traffic_control_device | Traffic control device present                                                                   | Text           | Categorical |
| 6  | device_condition       | Control device condition                                                                         | Text           | Categorical |
| 7  | weather_condition      | Weather condition                                                                                | Text           | Categorical |
| 8  | lighting_condition     | Light condition                                                                                  | Text           | Categorical |
| 9  | first_crash_type       | Type of first collision in crash                                                                 | Text           | Categorical |
| 10 | trafficway_type        | Trafficway type                                                                                  | Text           | Categorical |
| 11 | lane_cnt               | Total number of through lanes<br>in either direction, excluding<br>turn lanes (0 = intersection) | Integer        | Numerical   |
| 12 | alignment              | Street alignment                                                                                 | Text           | Categorical |
| 13 | roadway_surface_cond   | Road surface condition                                                                           | Text           | Categorical |
| 14 | road defect            | Road defects                                                                                     | Text           | Categorical |
| 15 | report type            | Administrative report type (at                                                                   | Text           | Categorical |
|    | roport_type            | scene, at desk, amended)                                                                         | 10/11          | Catogoricai |
| 16 | crash type             | Severity classification: Injury                                                                  | Text           | Categorical |
|    |                        | and/or Tow Due to Crash or                                                                       |                |             |
| 47 |                        | No Injury / Drive Away                                                                           | <del>-</del> . |             |
| 17 | intersection_related_i | A field observation whether an                                                                   | Text           | Categorical |
| 40 |                        | intersection played a role                                                                       | Text           | 0-1         |
| 18 | not_right_of_way_i     | Whether the crash began, or<br>first contact was made outside                                    | Text           | Categorical |
|    |                        |                                                                                                  |                |             |
| 10 | hit and min i          | of the public right-of-way  Crash did/did not involve a                                          | Text           | Catagorical |
| 19 | hit_and_run_i          | driver who caused the crash                                                                      | rext           | Categorical |
|    |                        | and fled the scene                                                                               |                |             |
| 20 | damage                 | A field observation of                                                                           | Text           | Categorical |
| 20 | uamaye                 |                                                                                                  | Text           | Categorical |
| 21 | date police notified   | estimated damage Calendar date on which police                                                   | Datetime       | Temporal    |
| 41 | date_police_notilled   | were notified of the crash                                                                       | Datetime       | remporar    |
|    |                        | were notined of the crash                                                                        |                |             |

| 22 | prim_contributory_cause       | The most significant causing                                                                          | Text    | Categorical |
|----|-------------------------------|-------------------------------------------------------------------------------------------------------|---------|-------------|
|    |                               | factor                                                                                                |         |             |
| 23 | sec_contributory_cause        | The second most significant<br>causing factor                                                         | Text    | Categorical |
| 24 | street_no                     | Street address number                                                                                 | Text    | Categorical |
| 25 | street_direction              | Street address direction                                                                              | Text    | Categorical |
| 26 | street_name                   | Street address name                                                                                   | Text    | Categorical |
| 27 | beat_of_occurrence            | Chicago Police Department<br>Beat ID                                                                  | Integer | Numerical   |
| 28 | photos_taken_i                | Whether the Chicago Police<br>Department took photos at the<br>location of the crash                  | Text    | Categorical |
| 29 | statements_taken_i            | Whether statements were<br>taken from unit(s) involved                                                | Text    | Categorical |
| 30 | dooring_i                     | Whether crash involved a<br>vehicle occupant opening a<br>door into the travel path of a<br>bicyclist | Text    | Categorical |
| 31 | work_zone_i                   | Whether the crash occurred in<br>an active work zone                                                  | Text    | Categorical |
| 32 | work_zone_type                | The type of work zone                                                                                 | Text    | Categorical |
| 33 | workers_present_i             | Whether construction workers<br>were present in an active work<br>zone                                | Text    | Categorical |
| 34 | num_units                     | Number of units involved.<br>Each unit represents a mode<br>of traffic                                | Integer | Numerical   |
| 35 | most_severe_injury            | Most severe injury sustained<br>by any person involved                                                | Text    | Categorical |
| 36 | injuries_total                | Total persons sustaining fatal,<br>incapacitating, non-<br>incapacitating, and possible<br>injuries   | Integer | Numerical   |
| 37 | injuries_fatal                | Total persons sustaining fatal<br>injuries                                                            | Integer | Numerical   |
| 38 | injuries_incapacitating       | Total persons sustaining<br>incapacitating injuries                                                   | Integer | Numerical   |
| 39 | injuries_non_incapacitating   | Total persons sustaining non-<br>incapacitating injuries                                              | Integer | Numerical   |
| 40 | injuries_reported_not_evident | Total persons sustaining<br>possible injuries                                                         | Integer | Numerical   |
| 41 | injuries_no_indication        | Total persons sustaining no<br>injuries in the crash                                                  | Integer | Numerical   |

| 42 | injuries_unknown  | Total persons for whom<br>injuries sustained are unknown   | Integer | Numerical |
|----|-------------------|------------------------------------------------------------|---------|-----------|
| 43 | crash_hour        | The hour of the day<br>component of CRASH_DATE             | Integer | Numerical |
| 44 | crash_day_of_week | The day of the week component of CRASH_DATE. Sunday=1      | Integer | Numerical |
| 45 | crash_month       | The month component of<br>CRASH_DATE                       | Integer | Numerical |
| 46 | latitude          | The latitude of the crash<br>location                      | Float   | Numerical |
| 47 | longitude         | The longitude of the crash<br>location                     | Float   | Numerical |
| 48 | location          | The crash location as derived<br>from the reported address |         | Point     |

#### 2.2 Data Processing

This dataset, collected and pre-processed by an official provider, is considered a reliable source with minimal errors. However, in preparation for the data exploration phase, it is crucial to ensure data consistency and to derive additional insights by creating new columns from the existing data to address the proposed research questions.

| Issues         | Relevant Columns                                        | Solution                                      |
|----------------|---------------------------------------------------------|-----------------------------------------------|
| Missing values | lissing values    Entries missing over 30%    Drop rows |                                               |
|                | values                                                  |                                               |
|                | Nominal columns                                         | Fill in missing values with False/No          |
| Data types     | Date-time columns                                       | Convert mm/dd/yyyy to dd/mm/yyyy format       |
| New columns    |                                                         | Calculate time differences in crash date and  |
| creation       | Date_police_notified                                    | police notified date                          |
|                | Crash_date                                              | Extract the hour, day of the week, month, and |
|                |                                                         | year components to establish a date hierarchy |

Several rules have been established to handle missing values and duplicates. Given the large volume of entries, it is acceptable to remove rows that do not meet the criteria. Throughout the data exploration process, maintaining data integrity is prioritized to ensure the accessibility and accuracy of the final report.

#### 3.0 Requirements

#### 3.1 Must-Have Features

| Column                           | Research question       | Reason                  |
|----------------------------------|-------------------------|-------------------------|
| posted_speed_limit, device_cond, | Identifying common      | Critical environmental, |
| weather_cond, lighting_cond,     | contributory factors in | infrastructural, and    |
| trafficway_type,                 | traffic accidents       | behavioral factors that |

| roadway_surface_cond, crash_type,  |                              | contribute to traffic       |
|------------------------------------|------------------------------|-----------------------------|
| prim_contributory_cause,           |                              | accidents                   |
| sec_contributory_cause, dooring_i, |                              |                             |
| crash_date, date_police_notified,  | Spatio-temporal analysis     | Temporal and spatial data   |
| street_no, street_name, latitude,  | of traffic crash density and | to analyze the distribution |
| longtitude                         | police response times        | of crashes over time and    |
|                                    |                              | across locations, as well   |
|                                    |                              | as the efficiency of police |
|                                    |                              | response times              |
| num_units, injuries_total, damage, | Predictive modelling of      | Key variables (both         |
| crash_hour, crash_day_of_week,     | vehicle damage and           | numerical and               |
| first_crash_type, trafficway_type  | influential factors          | categorical) that influence |
|                                    |                              | the severity of vehicle     |
|                                    |                              | damage, enabling the        |
|                                    |                              | development of accurate     |
|                                    |                              | predictive models           |

# 3.2 Optional Features

| Column                  | Reason                                                        |
|-------------------------|---------------------------------------------------------------|
| lane_cnt, alignment,    | Additional information on the roadway conditions, may not be  |
| report_type, location   | necessary for the scope of this analysis. Regarding location, |
|                         | the data format is incompatible with visualisation tools like |
|                         | Tableau, replace with Longtitude and Latitude columns         |
| intersection_related_i, | Columns with over 30% missing values are suboptimal for       |
| not_right_of_way_i,     | visualization purposes. The nominal data in these columns     |
| beat_of_occurence,      | offers limited utility for data modeling.                     |
| photo_taken_i,          |                                                               |
| statements_taken_i,     |                                                               |
| work_zone_i,            |                                                               |
| work_zone_type,         |                                                               |
| workers_present_i       |                                                               |

#### 4.0 Reference List

- Abdulhafedh, A. (2017). Road traffic crash data: an overview on sources, problems, and collection methods. *Journal of transportation technologies*, 7(2), 206-219.
- Berg, C., Evans, S., Luby, E., Medrano, I., Reyes, H., Shepard, E.,...Cody, P. (2023). National Safety Council: Our Driving Concern Program Evaluation.
- City of Chicago. (2024). Traffic crashes Crashes [Data set]. *Chicago Data Portal*. <a href="https://data.cityofchicago.org/Transportation/Traffic-Crashes-Crashes/85ca-t3if/about\_data">https://data.cityofchicago.org/Transportation/Traffic-Crashes-Crashes/85ca-t3if/about\_data</a>
- Tandrayen-Ragoobur, V. (2024). The economic burden of road traffic accidents and injuries: A small island perspective. *International Journal of Transportation Science and Technology*.
- World Health, O. (2023). *Global status report on road safety 2023: summary*. World Health Organization.