123456

Opphrenus uposo

Долгосрочное домашнее задание

Вариант №18

1.
$$\Omega = \{(x_1, x_2, \dots, x_5) : x_i = \{0,1\}\}$$
 Пускай 1 - выпал герб (далее орел).
 $\boldsymbol{\mathcal{F}} = 2^{\Omega}$ $|\Omega| = 2^5 = 32$

$$P: \mathbf{\mathcal{F}} \to [0,1]$$

$$P(\emptyset) = 0$$
 $P(\Omega) = 1$ $\{A_i\}_{i \ge 1} P(\Sigma A_i) = \Sigma P(A_i)$

$$\forall \omega \ P(\omega) = \frac{1}{|\Omega|} = \frac{1}{32}$$

Т.к. бросков 5, то орел выпадает три раза подряд в "11100", "01110", "00111", "11101", "11111", "11111", "11111". Т.о. получаем 8 благоприятных исходов.

Значит
$$P(A) = \frac{8}{32} = 0.25$$

Кол-во благоприятных исходов: $C_5^3 + C_5^4 + C_5^5 = 10 + 5 + 1 = 16$

$$P(B) = \frac{16}{32} = 0.5$$

2.
$$\Omega = \{0,1,2,\ldots,9\}$$

$$\mathcal{F} = 2^{\Omega}$$
 $|\Omega| = 10$

$$P: \mathcal{F} \rightarrow [0,1]$$

$$P(\emptyset) = 0$$
 $P(\Omega) = 1$ $\{A_i\}_{i>1}$ $P(\Sigma A_i) = \Sigma P(A_i)$

$$\forall \omega \ P(\omega) = \frac{1}{|\Omega|} = \frac{1}{10}$$

$$B_1 = \{$$
 "Угадал с первой попытки" $\}$

$$B_2 = \{\text{"Угадал со 2 попытки"}\}$$

$$B_3 = \{\text{"Угадал с 3 попытки"}\}$$

$$P(A) = \sum_{i=1}^{3} P(B_i) = \frac{1}{10} + \frac{9}{10} \cdot \frac{1}{9} + \frac{9}{10} \cdot \frac{8}{9} \cdot \frac{1}{8} = 0.3$$

Условная вероятность

$$3.~\Omega_1=\{\text{``M''},\text{``Ж''}\} \qquad \Omega_2=\{x,\,x=\{0,1\}\},\,\text{где }1\text{ - дальтоник}$$

$$\Omega=\Omega_1\times\Omega_2 \qquad \boldsymbol{\mathcal{F}}=2^\Omega$$

$$P(1 \mid "M") = 0.05$$

$$P(1 \mid \text{``K''}) = 0.0025$$

По условию задачи мужчин и женщин одинаково \Rightarrow P("M") = P("Ж") = 0.5 По формуле Байесса получаем:

$$P(\text{``M''} \mid 1) = \frac{P(1 \mid \text{``M''}) \cdot P(\text{``M''})}{P(1 \mid \text{``M''}) \cdot P(\text{``M''}) + P(1 \mid \text{``K''}) \cdot P(\text{``K''})} = \frac{20}{21} \approx 0.952381$$

4.
$$\Omega_1 = \{x, x = 1,2,3, ..., 12\}$$
, где

Но мин ал	2	3	4	5	6	7	8	9	10	J	Q	K	A
X	1	2	3	4	5	6	7	8	9	10	11	12	13

$$\Omega_2 = \{y, y = 1,2,3,4\},$$
 где

Масть	черви	трефы	пики	бубны
Y	1	2	3	4

$$\Omega = \Omega_1 \times \Omega_2$$
 $\mathbf{\mathcal{F}} = 2^{\Omega}$

 $A_1 = \{$ "Извлечен туз" $\}$

 $A_2 = \{\text{"Извлечена пика"}\}$

Для проверки независимости событий проверим выполняется ли $P(A_1A_2) = P(A_1) \cdot P(A_2)$

В левой части вероятность того, что извлечен пиковый туз – $P(A_1A_2) = \frac{1}{52}$

В правой части вероятность того, что извлечен туз, умноженная на вероятность того, что извлечена пика – $P(A_1) \cdot P(A_2) = \frac{4}{52} \cdot \frac{1}{4} = \frac{1}{52}$

Левая часть уравнения равна правой, значит эти два события являются независимыми.

Геометрическая вероятность

5.
$$\Omega = \{(X, Y) : X, Y \in [0,1]\}$$
 $\mathbf{F} = \mathbf{\beta}(\mathbb{R}^2 \cap \Omega)$ Р - геометрическая вероятность $\xi = x, \eta = y, z \in [0,1]$

а) На графике ниже красным помечена нужная нам область. Это пересечение зеленой и черной областей

Чтобы найти вероятность $P(\max(\xi,\eta) < z)$, представим ее в виде $P(\xi < z \cap \xi \ge \eta) \cap P(\eta < z \cap \eta \ge \xi) = z \cdot z = z^2$

б) На графике ниже синем обозначена нужная нам область.

$$P(|\xi - \eta| < z) = 1 - 2 \cdot \frac{1}{2} (1-z)^2 = \frac{2z - z^2}{2}$$

6. $\Omega = \{(X, Y, Z) : X, Y, Z \in [0,1]\}$

 ${\boldsymbol{\mathcal F}}={\boldsymbol{\beta}}({\mathbb R}^3\,\cap\,\Omega)$ Р - геометрическая вероятность

На рис. 1 зеленым помечена область, в которой X+Y>Z. На рис. 2 помечена проекция красной области с рис. 1 на плоск ость XOY.

Чтобы найти вроятность P(X+Y > Z), найдем вероятность противоположного события и будем считать $P(X+Y > Z) = 1 - P(X+Y \le Z)$

$$= 1 - \int_{0}^{1} dx \int_{0}^{1-x} dy \int_{x+y}^{1} dz = 1 - \int_{0}^{1} dx \int_{0}^{1-x} (1 - x - y) dy = 1 - \int_{0}^{1} (\frac{x^{2} - 2x + 1}{2}) dx = 1 - \int_{0}^{1} ($$

 $-\frac{1}{6} = \frac{5}{6} \approx 0.8(3)$

Uxu refredes