$$\frac{SP}{PM} = e : SP = e PM$$

(i)e=1 হলে পরাবৃত্ত (ii)0< e<1 হলে উপবৃত্ত (iii)e>1 হলে অধিবৃত্ত

এখানে, SP হল উপকেন্দ্রিক দূরত্ব এবং PM হল P(x,y) বিন্দু থেকে দিকাক্ষের উপর লম্ব দূরত্ব। যেমনঃ S(1,2), P(x,y) এবং দিকাক্ষের সমীকরণ 2x+y-3=0 হলে $SP=\sqrt{(x-1)^2+(y-2)^2}$ এবং $PM=\left|\frac{2x+y-3}{\sqrt{4+1}}\right|$

সাধারণ সমীকরণঃ (i) কোন কনিকের (পরাবৃত্ত, উপবৃত্ত, অধিবৃত্ত) উপকেন্দ্র (S) এবং দিকাক্ষের সমীকরণ দেয়া থাকলে কনিকের সমীকরণ SP = ePM (ii) কনিকের উপকেন্দ্রিক লম্বের দৈর্ঘ্য, $|4a| = 2e \times SZ$

Parabola (পরাবৃত্ত)

$$SP=ePM;\,(e=1)$$
 : $SP=PM;ZA=AS=a$: A, ZS এর মধ্যবিন্দু

Mathicstry

পরাবৃত্তের আকার ঃ

(i) $y^2 = 4ax$ (অক্ষরেখা x অক্ষ বরাবর)

(ii) $y^2 = -4ax$ (অক্ষরেখা x অক্ষ বরাবর)

(iii) $x^2 = 4ay$ (অক্ষরেখা y অক্ষ বরাবর)

 $(iv) x^2 = -4ay$ (অক্ষরেখা y অক্ষ বরাবর)

১। আদর্শ সমীকরণ (প্রমিত সমীকরণ) ঃ $y^2=4ax$ (অক্ষরেখা x অক্ষ বরাবর)

প্রমিত সমীকরণ $y^2 = 4ax$	$x^2 = 4ay$
(i) শীর্ষবিন্দু $A(0,0)$	A (0,0)
(ii) উপকেন্দ্র $S(a,0)$	S(0,a)
(iii) অক্ষরেখার সমীকরণ, $y=0$	x = 0
$({ m iv})$ শীর্ষে স্পর্শকের সমীকরণ, $\chi=0$	y = 0
(v) দিকাক্ষের সমীকরণ, $x=-a$	y = -a
$({ m vi})$ উপকেন্দ্রিক লম্বের সমীকরণ, $x=a$	y = a
(vii) উপকেন্দ্রিক লম্বের দৈর্ঘ্য= 4a	4a
$({ m viii})$ উপকেন্দ্রিক লম্বের প্রান্তবিন্দুদ্বয়ের স্থানাংক $(a,\pm 2a)$	$(\pm 2a,a)$
(ix) উপকেন্দ্রিক দূরত্ব, $SP = a + x$	SP = a + y
(x) দিকাক্ষ ও অক্ষের ছেদবিন্দু $Z(-a,0)$	Z(0,-a)

Note: উপকেন্দ্রিক লম্বকে **নাভিলম্ব** এবং উপকেন্ত্রিক দূরত্বকে ফোকাস দূরত্ব আবার দিকাক্ষকে নিয়ামক রেখা বলে।

Remember: (i) $y^2=4ax$ এর প্রতিটি সূত্র মনে রাখলেই $x^2=4ay$ এর সূত্রগুলি মনে রাখা যায়। (ii) $y^2=4ax$ এর প্রতিটি স্থানাংক Interchange ; x এর স্থলে y, y এর স্থলে x বসালেই $x^2=4ay$ এর সূত্র পাওয়া যাবে। যেমন ঃ(a,0) এর জায়গায় (0,a) হবে এবং দিকাক্ষের সমীকরণ x=a $(y^2=4ax$ এর ক্ষেত্রে) \therefore দিকাক্ষের সমীকরণ y=a $(x^2=4ay$ এর ক্ষেত্রে x এর স্থলে y বসানো হয়েছে)

২। শীর্ষবিন্দু দেওয়া থাকলে ঃ

(i) শীর্ষবিন্দু (lpha,eta) এবং অক্ষ x অক্ষের সমান্তরাল হলে পরাবৃত্তের সমীকরণ, $(y-eta)^2=4a(x-lpha)$

(ii) শীর্ষবিন্দু (lpha,eta) এবং অক্ষ y অক্ষের সমান্তরাল হলে পরাবৃত্তের সমীকরণ, $(x-lpha)^2=4lpha~(y-eta)$

Admission Test এর জন্য ঃ

৩।
$$(x_1,y_1)$$
 বিন্দুতে $y^2=4ax$ এর স্পর্শকের সমীকরণ, $yy_1=4arac{x+x_1}{2}$

 $(\ \chi^2$ এর পরিবর্তে $\chi\chi_1$

 y^2 এর পরিবর্তে yy_1

x এর পরিবর্তে $\frac{x+x_1}{2}$

y এর পরিবর্তে $rac{y+y_1}{2}$)

8। y=mx+c সরল রেখাটি $y^2=4ax$ পরাবৃত্তকে স্পর্শ করলে $c=rac{a}{m}$ এবং স্পর্শবিন্দু $\left(rac{a}{m^2},rac{2a}{m}
ight)$

৫। y=mx+c সরলরেখাটি $x^2=4ay$ পরাবৃত্তকে স্পর্শ করলে $c=-am^2$

এবং স্পর্শবিন্দু (2am, am²)

Ellipse (উপবৃত্ত)

SP = e PM (o < e < 1)

আদর্শ বা প্রমিত সমীকরণ ঃ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

$$CA = CA' = a$$
 $\therefore AA' = 2a$

$$\therefore AA' = 2a$$

$$CS = CS' = ae$$
 $\therefore SS' = 2ae$

$$\cdot \text{ CC}' - 220$$

$$CZ = CZ' = \frac{a}{e} \quad \therefore ZZ' = \frac{2a}{e}$$

অনুরূপ দিকাক্ষ ও উপকেন্দ্রের মধ্যবর্তী দূরত্ব, $SZ = CZ - CS = \frac{a}{e} - ae$

$3 + \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a > b$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$ a < b
(i) কেন্দ্র C (0,0)	C (0,0)
(ii) শীর্ষ A (±a, 0)	$B(0,\pm b)$
(iii) উপকেন্দ্র S (±ae, 0)	$S(0, \pm be)$
(iv) বৃহৎঅক্ষের দৈর্ঘ্য, $AA'=2a$	2b
(v) ক্ষুদ্র অক্ষের দৈর্ঘ্য, $BB'=2b$	2a
(vi) বৃহৎ অক্ষের সমীকরণ, $y=0$	x = 0
(vii) ক্ষুদ্র অক্ষের সমীকরণ, x = 0	y = 0
$(viii)$ উপকেন্দ্রিক লম্বের সমীকরণ, $x=\pm ae$	$y = \pm be$
(ix) উপকেন্দ্রিক লম্বের দৈর্ঘ্য, $\mathrm{LL}'=rac{2\mathrm{b}^2}{\mathrm{a}}$	$\frac{2a^2}{b}$
(x) দিকাক্ষের সমীকরণ $x = \pm a/e$	$y = \pm b/e$
$(xi) e = \sqrt{1 - \frac{b^2}{a^2}}$	$e = \sqrt{1 - \frac{a^2}{b^2}}$

Remember: যথারীতি, a>b এর প্রতিটি সূত্র মনে রাখলেই a< b এর গুলো মনে রাখা যায়।

স্থানাংক Interchange হবে, x এর স্থলে y, y স্থলে x; a এর জায়গায় b; b এর জায়গায় a হবে। যেমন ঃ (± ae, o) হতে (o, ±be)

২। কেন্দ্র
$$(\alpha,\beta)$$
 হলে উপবৃত্তের সমীকরণ , $\frac{(x-\alpha)^2}{a^2}+\frac{(y-\beta)^2}{b^2}=1$

Admission Test এর জন্য ঃ

৩।
$$(x_1,y_1)$$
 বিন্দুতে $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ এর স্পর্শকের সমীকরণ $\frac{xx_1}{a^2}+\frac{yy_1}{b^2}=1$

$$(x^2$$
 এর পরিবর্তে xx_1 ; y^2 এর পরিবর্তে yy_1 ; x এর পরিবর্তে $\frac{x+x_1}{2}$; y এর পরিবর্তে $\frac{y+y_1}{2}$)

$$8 \cdot y = mx + c$$
 সরলরেখাটি $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ উপবৃত্তকে স্পর্শ করলে $c^2 = a^2m^2 + b^2$

৫।
$$a=b$$
 হলে উপবৃত্তি বৃত্তে পরিনত হয় $\therefore a=b$ হলে উপবৃত্তের সমীকরণ $\frac{x^2}{a^2}+\frac{y^2}{a^2}=1\Rightarrow x^2+y^2=a^2$, যা বৃত্তের সমীকরণ। \therefore বৃত্তের উৎকেন্দ্রিকতা $e=\sqrt{1-\frac{a^2}{a^2}}=\sqrt{1-1}=0$ (শূন্য)

Hyperbola (অধিবৃত্ত)

অধিবৃত্তের প্রতিটি সূত্র উপবৃত্তের সূত্রের সাথে একই।

মনে রাখতে হবে (i) উপবৃত্তের বৃহৎ অক্ষ \longrightarrow অধিবৃত্তে এটাকে আড় অক্ষ বলা হয়।

- (ii) উপবৃত্তের ক্ষুদ্র অক্ষ \longrightarrow অধিবৃত্তে এটাকে অনুবন্ধী অক্ষ বলা হয়।
- (iii) শুধু মাত্র উৎকেন্দ্রিকতা ভিন্ন হবে ।

$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1; a > b$	$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1; a < b$
(i) $e = \sqrt{1 + \frac{b^2}{a^2}}$	$e = \sqrt{1 + \frac{a^2}{b^2}}$

২। কেন্দ্র (α,β) হলে অধিবৃত্তের সমীকরণ $\frac{(x-\alpha)^2}{a^2}-\frac{(y-\beta)^2}{b^2}=1$

Admission Test এর জন্য ঃ

৩।
$$(x_1,y_1)$$
 বিন্দুতে $rac{x^2}{a^2}-rac{y^2}{b^2}=1$ এর স্পর্শকের সমীকরণ $rac{xx_1}{a^2}-rac{yy_1}{b^2}=1$

 $(\ x^2$ এর পরিবর্তে xx_1 ; y^2 এর পরিবর্তে yy_1 ; x এর পরিবর্তে $\frac{x+x_1}{2}$; y এর পরিবর্তে $\frac{y+y_1}{2}$)

8।
$$y=mx+c$$
 সরল রেখাটি $rac{x^2}{a^2}-rac{y^2}{b^2}=1$ অধিবৃত্তকে স্পার্শ করলে $c^2=a^2m^2-b^2$

$$e \mid \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 অধিবৃত্তের অসীমতট, $y = \pm \frac{b}{a} x$

৬।
$$a=b$$
 হলে অধিবৃত্তি আয়তাকার অধিবৃত্তে পরিণত হয় \therefore আয়তাকার অধিবৃত্তের সমীকরণ $\frac{x^2}{a^2}-\frac{y^2}{a^2}=1\Rightarrow x^2-y^2=a^2;$ আয়তাকার অধিবৃত্তের উৎকেন্দ্রিকতা $e=\sqrt{1+\frac{a^2}{a^2}}=\sqrt{1+1}=\sqrt{2}$