	s, Set Operation	s, and Mathema	atical Induction		
Basic	Set T	heory		Han from 18. Rodsiguez L	
		_			
			6 1:1.		
members no ele	of that ements.	set. The	emply sel	$f(\emptyset)$ is t	lements or the set with
	se a set. Th				
· a & S "(is an elem	ment in S" clanent in S"	" E•	There exists " There exists " implies"	a cenique"
· \ / " \ \ . := " \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	sefine		• => "	"if and on	y if
Definition		(
1. a set in B.	is a <u>subset</u> Given Ac	f of B , A f $a \in$	(CB,if e A⇒ae	very eleme B.	nt of A is
					and BCA
			F B, A ⊊	BIFAC	B and A # B
	loling notall $P(x)$ for x				
	"all $x \in A$		roperty PC	×) ".	

This means "all x∈ A that satisfy property P(x)".
E.g. {x|x is an even number}.

Key sets

1. Set of natural numbers: $N = \{1, 2, 3, 4, ...\}$ 2. Set of integers : $Z = \{1, 1, 2, -2, ...\}$ 3. Set of rational numbers: $Q = \{\frac{m}{n} \mid m, n \in \mathbb{Z} \text{ and } n \neq 0\}$

4. The set of Real numbers: 1R

NCZCQCR(CC)

Defenitions

1. The Union of A and Bis the set A UB= 2x x EA or x EB}

2. The intersection of A and B is the set A MB = Ex (x ∈ A and x ∈ B)

3. The set difference of A and Bis the set A \ B = {x \in A | x \in B}

4. The complement of A is the set A = {x | x & A}

5. A and B are disjoint of ANB = 0

Theorem: "De Morgan's Laws"

If A B, C are sels then: 1.(BUC) = B OC

2. (B 1) C) = B'U C'

3. $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$

4. A \ (BAC) = (A\B) U (A\C)

Proof:

1. To prove: (BUC) = B'AC" and B'AC"= (BUC)"

if x ∈ (BUC) => x € BUC => x € B and x € C. Hence XEB and XEC -> XEB AC. Thus (BUC) CB AC

· if x ∈ B° NC° => x ∈ B° and x ∈ C° => x ∉ B and x ∉ C. >> x & BUC => x ∈(BUC) Hence B°NC C(BUC) T

- If x ∈ B / IC => x ∈ B ond x ∈ C => x ∈ B ond x ∈ C.
 ⇒ x ∈ B ∪ C => x ∈ (B ∪ C) Hence B ∩ C ⊂ (B ∪ C) T
- 2. To prove: (BAC)'C B'UC' and B'UC'C(BAC)'
- · if $x \in (B \cap C)$ ⇒ $x \notin B \cap C$ ⇒ $x \notin B$ or $x \notin C$ ⇒ $x \notin C$ ⇒ $x \notin B$ or $x \notin C$ ⇒ $x \notin C$
- · if x∈B'UC' ⇒ x∈B' or x∈C' → x∈B or x∈C ⇒ x∈ B∩C → x∈(B∩C)'. Here B'UC' ⊂(B∩C)' □
- 3. A\(BUC) C(A\B) 1) (A\C) and (A\B) 1)(A\C) c A\(BUC)
- if $x \in A \setminus (BUC) \Rightarrow x \in A \mid x \notin BUC \Rightarrow x \in A \mid x \notin B$ on $x \notin C \Rightarrow x \in A \mid x \notin B$ and $x \in A \mid x \notin C$ $\Rightarrow x \in (A \mid B) \cap (A \mid B)$ $\therefore A \setminus (BUC) \subset (A \setminus B) \cap (A \setminus C)$
- if $x \in (A \setminus B) \cap (A \setminus C) \Rightarrow x \in A \mid x \notin B$ and $x \in A \mid x \notin C$ $\Rightarrow x \in A \mid x \notin B \cup C \Rightarrow x \in A \setminus (B \cup C)$ $\therefore (A \setminus B) \cap (A \setminus C) \subset A \setminus (B \cup C)$
- 4. To prove: Al (BMC) C(A B) U(A C) and (A B) U(A C) < A (BAC)
- if $x \in A \mid_{x \in (B \cap C)} \Rightarrow x \in A \mid_{x \in B} \Rightarrow x \in A \mid_{x \in C}$ $\Rightarrow x \in (A \mid_B) \cup (A \mid_C)$ $\therefore A \setminus (B \cap C) \subset (A \setminus B) \cup (A \setminus C)$
- if $x \in (A \setminus B) \cup (A \setminus c) \Rightarrow x \in A \mid x \notin B$ or $x \in A \mid x \notin C$ $\Rightarrow x \in A \mid x \notin B \cap C \Rightarrow x \in A \setminus (B \cap C)$ $\therefore (A \setminus B) \cup (A \setminus C) \subset A \setminus (B \cap C)$

Mathematical Induction

Axiom: "The well-ordering property"

The well-ordering property of N states that if SCN then I an x∈S s.t. x ≤ y Y y ∈ S.

i.e. there is always a smallest element.

Theorem: Induction

Let P(n) be a statement depending on neN. Assume that:

1. (Base Case) PCS) is True and

2. (Indud: ve step) if P(m) is true then P(m+1) is True.

Then, P(n) is True Y n E N.

Proof: Let $S = \{n \in N \mid P(n) \text{ is not true}\}$ Wish to show: $S = \emptyset$

Suppose that $S \neq \emptyset$. Then by WOP of N, Shus the least element $m \in S$. Since P(1) is true, $m \neq 1$, i.e. $m \neq 1$. Since m is a least element $\Rightarrow m - 1 \notin S \Rightarrow P(m - 1)$ is True.

this implies P(m) is true $\Rightarrow M \notin S$ by assumption.

But then mes and mes. This is a contradiction.

Thus S= Ø and : P(n) is true for all n ∈ N. []

Remark: When we prove something by contradiction, we assume the conclusion we want is false, and then show that we will reach a false statement. Rubs of logic thus imply that the initial statement must be false. Thus in this case we assumed $S \neq \emptyset$ and derived a fulse statement.

Theorem:

Y C ∈ R, C ≠ 1 and ∀ n ∈ N, 1+ C+ c²+...+ C° = 1- Cⁿ⁺¹ 1-C

Proof (by induction):

•
$$(n=1)$$
 $1+c=\frac{1-c^{1+1}}{1-c} \Rightarrow 1+c=\frac{1-c^2}{1-c} \Rightarrow 1+c=\frac{(1-e)(1+c)}{1-c}$

• A source that eq. is true for
$$k \in \mathbb{N}$$
:

 $1 + C + C^2 + ... + C^k = 1 - C^{k+1}$

$$\begin{aligned} 1 + (+c^{2} + ... + c^{k} + c^{k+1} &= (1 + c^{2} + ... + c^{k}) + c^{k+1} \\ &= 1 - c^{k+1} + c^{k+1} \\ &= 1 - c^{k+1} + c^{k+1} (1 - c) \\ &= 1 - c \end{aligned}$$

Theorem

Suppose that
$$(1+c)^m \ge 1+mc$$

Then,
 $(1+c)^{m+1} = (1+c)^m (1+c)$

$$\geq (1+mc)(1+c)$$

= $1+(m+1)c+mc^2$
 $\geq 1+(m+1)c$