Leis de Velocidade

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

Nível I

PROBLEMA 1.1

3D01

Considere a reação química:

$$4\,NO_2\,(g) + O_2(g) \longrightarrow 2\,N_2O_5(g)$$

Em um experimento, são formados 6 mol de N_2O_5 em um minuto

Assinale a alternativa que mais se aproxima da velocidade média de consumo de dióxido de nitrogênio.

- \mathbf{A} 100 mmol s⁻¹
- \mathbf{B} 200 mmol s⁻¹
- \mathbf{C} 300 mmol s⁻¹
- \mathbf{D} 400 mmol s⁻¹
- $E 500 \,\mathrm{mmol}\,\mathrm{s}^{-1}$

PROBLEMA 1.2

3D02

Considere a reação química:

$$HBrO_3(aq) + HBr(aq) \longrightarrow Br_2(aq) + H_2O(aq)$$

Em um experimento, são consumidos 20 mmol de HBr em um segundo.

Assinale a alternativa que mais se aproxima da velocidade média de formação de bromo.

- A $12 \,\mathrm{mmol}\,\mathrm{s}^{-1}$
- \mathbf{B} 14 mmol s⁻¹
- $16 \,\mathrm{mmol}\,\mathrm{s}^{-1}$
- \mathbf{D} 18 mmol s⁻¹
- E 20 mmol s⁻¹

PROBLEMA 1.3

3D06

Considere a reação química:

$$FeCl_{2}(aq) + O_{2}(aq) + HCl\left(aq\right) \longrightarrow FeCl_{3}(aq) + H_{2}O\left(l\right)$$

Quando a concentração de ferro (II) é duplicada, a velocidade da aumenta 8 vezes. Quando as concentrações de ferro (II) e oxigênio são duplicadas, a velocidade aumenta 16 vezes. Quando a concentração de todos os reagentes é duplicada, a velocidade aumenta 32 vezes.

Assinale a alternativa com a ordem da reação em relação ao ácido clorídrico.

- **A** 0
- C
- 2
- **D** 3
- F 4

PROBLEMA 1.4

3D05

Considere a reação química:

$$CH_3Br(aq) + OH^-(aq) \longrightarrow CH_3OH(aq) + Br^-(aq)$$

Quando a concentração de hidróxido é duplicada, a velocidade da reação dobra. Quando a concentração de bromometano é triplicada, a velocidade da reação triplica.

Assinale a alternativa com a ordem global da reação.

- Α
- В
- C
- D
- E

PROBLEMA 1.5

3D03

A reação de Sabatier-Sanderens consiste na hidrogenação catalítica de alcenos ou de alcinos com níquel, para a obtenção de alcanos. Considere os resultados obtidos na reação de hidrogenação do acetileno:

t/min	0	4	6	10
$\overline{[C_2H_2]/M}$	50	38	35	30

Assinale a alternativa que mais se aproxima da velocidade média de consumo do hidrogênio no período de 4 min a 6 min.

- **B** $1.50 \, \text{mol} \, \text{L}^{-1} \, \text{min}^{-1}$
- \mathbf{C} 2 mol L⁻¹ min⁻¹
- \mathbf{D} 2,50 mol L⁻¹ min⁻¹
- \mathbf{E} 3 mol L⁻¹ min⁻¹

PROBLEMA 1.6

3D08

Considere a reação de decomposição do NO₂:

$$2\,NO_2(g) \longrightarrow 2\,NO(g) + O_2(g)$$

Essa reação possui constante cinética $k=0,500\,atm^{-1}\,s^{-1}$. Em um experimento 4,60 g de NO $_2$ são adicionados em um recipiente de 224 mL a 0 °C.

Assinale a alternativa que mais se aproxima da velocidade inicial de formação de NO.

- A 5 atm s⁻¹
- **B** $10 \, \text{atm s}^{-1}$
- **c** $50 \, \text{atm s}^{-1}$
- **D** $100 \, \text{atm s}^{-1}$
- **E** $500 \, \text{atm s}^{-1}$

3D09

3D10

3D12

Considere a reação química:

$$2\mathbf{A}(g) + 2\mathbf{B}(g) + \mathbf{C}(g) \longrightarrow 3\mathbf{G}(g) + 4\mathbf{F}(g)$$

Os resultados a seguir foram obtidos no estudo da cinética dessa reação:

#	[A] /mM	[B] /mM	[C] /mM	$\nu_{\text{G}} \ / (mM s^{-1})$
1	10	100	700	2
2	20	100	300	4
3	20	200	200	16
4	10	100	400	2
5	50	300	500	

Assinale a alternativa que mais se aproxima da velocidade inicial de consumo de **A** no experimento **5**.

- **A** $50 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- **B** $60 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- $70 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- ${f D}$ 80 mmol ${f L}^{-1}\,{f s}^{-1}$
- **E** 90 mmol L^{-1} s⁻¹

PROBLEMA 1.8

Considere a reação química:

$$2\mathbf{A}(g) + 2\mathbf{B}(g) \longrightarrow \mathbf{C}(g)$$

Os resultados a seguir foram obtidos no estudo da cinética dessa reação:

#	[A] /mM	[B] /mM	$v/(mMs^{-1})$
1	0,600	0,300	12,6
2	0,200	0,300	1,40
3	0,600	0,100	4,20
4	0,170	0,250	

Assinale a alternativa que mais se aproxima da velocidade inicial do experimento **4**.

- **A** $0,590 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- **B** $0,630 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- $0,740 \,\mathrm{mmol}\,\mathrm{L}^{-1}\,\mathrm{s}^{-1}$
- $0,870 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- \mathbf{E} 0,960 mmol L⁻¹ s⁻¹

Considere a reação química:

$$\mathbf{A}(aq) + \mathbf{B}(aq) + \mathbf{C}(aq) \longrightarrow \mathbf{G}(aq)$$

Os resultados a seguir foram obtidos no estudo da cinética dessa reação:

#	[A]/mM	$[\mathbf{B}] / mM$	$\left[\boldsymbol{C}\right] /mM$	$\nu_{\text{G}}/(mMs^{-1})$
1	1,25	1,25	1,25	8,70
2	2,50	1,25	1,25	17,4
3	1,25	3	1,25	50,8
4	1,25	3	3,75	457
5	3	1	1,15	

Assinale a alternativa que mais se aproxima da velocidade inicial de formação de **G** no experimento **5**.

- **A** $10,5 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- **B** $11.5 \text{ mmol L}^{-1} \text{ s}^{-1}$
- $12,5 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- **D** 13,5 mmol L^{-1} s⁻¹
- $14,5 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$

PROBLEMA 1.10

Considere a reação de síntese do gás fosgênio.

$$CO(g) + Cl_2(g) \longrightarrow COCl_2(g)$$

Os resultados a seguir foram obtidos no estudo da cinética dessa reação:

#	$\left[CO\right] /mM$	$\left[Cl_{2}\right] /mM$	$r_{COCl_2}/(mMs^{-1})$
1	0,120	0,200	0,121
2	0,240	0,200	0,241
3	0,240	0,400	0,682
4	0,170	0,340	

Assinale a alternativa que mais se aproxima da velocidade inicial de formação de COCl₂ no experimento **4**.

- **A** $0,170 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- **B** $0.370 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- $0.570 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- **D** $0,770 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- **E** $0,970 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$

PROBLEMA 1.15

3D17

A substância **A** sofre decomposição com cinética de ordem zero. **Assinale** a alternativa *correta*.

- A A velocidade inicial de consumo de A é maior que sua média.
- **B** A velocidade inicial de consumo de **A** é função da concentração de **A**.
- **C** A velocidade inicial de consumo de **A** permanece constante durante a reação.
- **D** O logaritmo da concentração de **A** diminui linearmente com o tempo.
- E A concentração de A diminui exponencialmente.

PROBLEMA 1.12

3D14

3D13

Uma substância gasosa se decompõe por um processo com cinética de orem zero com constante $k=1\times 10^{-3}$ atm s^{-1} . Em um experimento, a pressão inicial dessa substância é 0,600 atm. **Assinale** a alternativa que mais se aproxima do tempo necessário para que um terço da substância se decomponha.

- **A** 100 s
- **B** 200 s
- **c** 400 s
- **D** 600 s
- **E** 700 s

PROBLEMA 1.13

3D15

Considere a reação de decomposição do N₂O₅:

$$2 N_2 O_5(g) \longrightarrow 4 NO_2(g) + O_2(g)$$

Com cinética de primeira ordem e constante $k=5,20\times 10^{-3}~s^{-1}$. Em um experimento a concentração inicial de N_2O_5 é 40 mmol L^{-1} . **Assinale** a alternativa que mais se aproxima da concentração de N_2O_5 após 600 s do início do experimento.

- **A** 1,40 mmol L
- **B** 1,80 mmol L
- c 2,20 mmol L
- **D** 2,60 mmol L
- **E** 3,80 mmol L

PROBLEMA 1.14

3D16

Um fármaco é metabolizado pelo corpo humano por um processo com cinética de primeira ordem com constante $k=7,60\times 10^{-3}\,\text{min}^{-1}$. Uma dose contendo 20 mg desse fármaco é administrada em um paciente.

Assinale a alternativa que mais se aproxima da massa de fármaco restante após 5 h da administração.

- A 2 mg
- B 6 mg
- **c** 10 mg
- **D** 14 mg
- **E** 18 mg

Considere a reação de decomposição do etano a 700 °C:

-

$$C_2H_6 \longrightarrow 2\,CH_3$$

Com cinética de primeira ordem e constante $k=2\,h^{-1}$. Em um experimento a pressão inicial de etano é 20 atm. **Assinale** a alternativa que mais se aproxima do tempo necessário para que a pressão de metano caia para 2 atm

- **A** 110 min
- **B** 140 min
- **c** 170 min
- **D** 200 min
- **E** 230 min

PROBLEMA 1.16

3D18

O mercúrio é metabolizado pelo corpo humano por um processo com cinética de primeira ordem de meia-vida de 70 dias. **Assinale** a alternativa que mais se aproxima do tempo necessário para que a concentração do mercúrio nos tecidos de um paciente decaia para 12,5% de seu valor inicial.

- A 70 dias
- **B** 140 dias
- **c** 210 dias
- **D** 280 dias
- **E** 350 dias

PROBLEMA 1.17

3D19

Considere a reação de decomposição do NO₂:

$$2\,NO_2(g) \longrightarrow 2\,NO(g) + O_2(g)$$

Com cinética de segunda ordem e constante $k=0,540\,\mathrm{L\,mol}^{-1}\,\mathrm{s}^{-1}$. Em um experimento a concentração inicial de NOBr é $0,300\,\mathrm{mol}\,\mathrm{L}^{-1}$. **Assinale** a alternativa que mais se aproxima do tempo necessário para que a concentração de NOBr caia para $0,100\,\mathrm{mol}\,\mathrm{L}^{-1}$

- A 10 mmol L
- B 12 mmol L
- c 14 mmol L
- D 16 mmol L
- E 18 mmol L

Leis de Velocidade | Gabriel Braun, 2022

3D21

Considere a reação de decomposição do N₂O a 1000 K:

$$2 N_2 O(g) \longrightarrow 2 N_2(g) + O_2(g)$$

Os resultados a seguir foram obtidos no estudo da cinética dessa reação:

Assinale a alternativa que mais se aproxima da velocidade inicial de formação de oxigênio em um experimento em que a pressão parcial de $\rm N_2O$ é 30 atm.

- \mathbf{A} 12 atm s⁻¹
- \mathbf{B} 24 atm s⁻¹
- \mathbf{C} 72 atm s⁻¹
- **D** $360 \, \text{atm s}^{-1}$
- **E** $720 \, \text{atm s}^{-1}$

PROBLEMA 1.19

3D20

Considere a reação de decomposição do NOBr:

$$2 \text{ NOBr}(g) \longrightarrow 2 \text{ NO}(g) + Br_2(g)$$

Com cinética de segunda ordem e constante $k=0,800\,L\,mol^{-1}\,s^{-1}$. Em um experimento a concentração inicial de NOBr é 860 mol L^{-1} . **Assinale** a alternativa que mais se aproxima da concentração de NOBr após 22 s.

- A 26 mmol L
- B 35 mmol L
- c 44 mmol L
- D 53 mmol L
- E 62 mmol L

Considere a reação de decomposição do HI a 800 K:

$$H_2(g) + I_2(g) \longrightarrow 2\,HI(g)$$

Considere os resultados obtidos no estudo da cinética dessa reação com mesma concentração inicial de H_2 e I_2 :

Assinale a alternativa que mais se aproxima da velocidade inicial de formação de HI em um experimento em que a concentração de $\rm H_2$ e $\rm I_2$ é $\rm 2$ mol $\rm L^{-1}$.

- \mathbf{A} 6 atm s⁻¹
- \mathbf{B} 12 atm s⁻¹
- \mathbf{C} 24 atm s⁻¹
- \mathbf{D} 48 atm s⁻¹
- \mathbf{E} 72 atm s⁻¹

3D23

Considere quatro séries de experimentos em que quatro espécies químicas reagem entre si, à pressão e temperatura constantes:

$$A(aq) + B(aq) + C(aq) + D(aq) \longrightarrow produtos$$

Em cada série, fixam-se as concentrações de três espécies e varia-se a concentração, c_0 , da quarta. Para cada série, determina-se a velocidade inicial da reação, v_0 , em cada experimento. Os resultados de cada série são apresentados a seguir.

Assinale a alternativa com a ordem global da reação.

A 3

B 4

C

D

E

PROBLEMA 2.2

3D25

Considere os resultados obtidos no estudo cinético da decomposição da substância **A**.

t/s	100	200	300	400	500
[A]/M	0,630	0,430	0,300	0,210	0,140
1/([A]/M)	-0,460	-0,840	-1,20	-1,56	-1,97
$ln([\boldsymbol{A}]/M)$	1,59	2,33	3,33	4,76	7,14

Assinale alternativa que mais se aproxima da constante cinética dessa reação.

$$\boxed{\textbf{A}} \quad 4\times 10^{-3}\ s^{-1}$$

$$4 \times 10^{-3} \, L \, mol^{-1} \, s^{-1}$$

$$4 \times 10^{-2} \, \text{s}^{-1}$$

$$4 \times 10^{-2} \, \text{L} \, \text{mol}^{-1} \, \text{s}^{-1}$$

Considere a reação química:

$$\mathbf{A}(\mathbf{g}) \longrightarrow \mathbf{B}(\mathbf{g})$$

Considere as proposições:

- Se [A] variar linearmente com o tempo, a lei de velocidade da reação dependerá somente da constante de velocidade.
- Se 1/[A] variar linearmente com o tempo, a reação será de segunda ordem.
- **3.** Se a velocidade da reação variar linearmente com [A], a reação será de primeira ordem.
- **4.** Se a velocidade da reação variar linearmente com [**A**]², a reação será de primeira ordem.

Assinale a alternativa que relaciona as proposições corretas.

PROBLEMA 2.4

3D26

Considere a reação de decomposição do etanal:

$$CH_3CHO(g) \longrightarrow CH_4(g) + CO(g)$$

Em um experimento, metade do etanal em cim cilindro de 90 atm sofre decomposição em 20 min. A lei de velocidade para essa reação é:

$$\nu_{\text{CH}_3\text{CHO}} = -k[\text{CH}_3\text{CHO}]^{3/2}$$

Assinale a alternativa que mais se aproxima do tempo necessário para que metade do etanal em um cilindro de 10 atm.

Considere a reação de decomposição do amônia:

$$NH_3(g) \longrightarrow \frac{1}{2}\,N_2(g) + \frac{3}{2}\,H_2(g)$$

Os resultados a seguir foram obtidos no estudo da cinética dessa reação:

$\overline{P_{NH_3}/atm}$	264	130	59	16
${t_{1/2}/min}$	456	228	102	60

Assinale a alternativa com a ordem dessa reação.

- 2 h

- 4 h
- 5 h

PROBLEMA 2.6

3D28

3D27

Considere os resultados obtidos no estudo cinético da decomposição de três substâncias, A, B e C

t/s	200	210	202	230	240
[A]/M	0,800	0,790	0,780	0,770	0,760
$[\mathbf{B}]/M$	0,833	0,826	0,820	0,813	0,806
$[\mathbf{C}]/M$	0,819	0,811	0,802	0,795	0,787

Assinale a com a ordem da cinética de decomposição de A, B e C, respectivamente.

- 1, 2 e 0.
- 0, 1 e 2.
- **c** 0, 2 e 1.

- 2, 0 e 1.
- 2, 1 e 0.

PROBLEMA 2.7

3D29

Considere os resultados obtidos no estudo cinético da decomposição de quatro substâncias, A, B, C e D.

Assinale a alternativa com a substância que sofre decaimento com cinética de primeira ordem.

- Nenhuma

B

D

C

Dois isômeros A e B se decompões com cinética de segunda ordem formando o composto C:

$$2\,\boldsymbol{A} \xrightarrow{\ k_1 \ } \boldsymbol{C}$$

$$2\, \boldsymbol{B} \xrightarrow{k_2} \boldsymbol{C}$$

Em um experimento, uma solução é preparada com $10 \, \text{mmol L}^{-1}$ de $\bf A$ e 25 mmol $\bf L^{-1}$ de $\bf B$. Após três minutos, a concentração de $\bf C$ é 3,70 mmol $\bf L^{-1}$.

Assinale a alternativa que mais se aproxima do valor da constante cinética k2.

- $0,110\,\mathrm{L\,mol}^{-1}\,\mathrm{s}^{-1}$
- **B** $0.220 \,\mathrm{L}\,\mathrm{mol}^{-1}\,\mathrm{s}^{-1}$
- $2.20 \, \mathrm{L} \, \mathrm{mol}^{-1} \, \mathrm{s}^{-1}$
- **D** $0,440 \, \text{L} \, \text{mol}^{-1} \, \text{s}^{-1}$
- $4.40 \,\mathrm{L}\,\mathrm{mol}^{-1}\,\mathrm{s}^{-1}$

PROBLEMA 2.9

3D31

Considere a reação química:

$$2\mathbf{A}(g) \longrightarrow 3\mathbf{C}(g) + 4\mathbf{D}(g) + \mathbf{E}(g)$$

A lei de velocidade para essa reação é:

$$\nu_{\text{A}} = -(0,250\,h^{-1})P_{\text{A}}$$

Um reator químico, projetado com uma válvula de alívio de pressão que é acionada a 8,50 atm, contém uma mistura gasosa composta por quantidades iguais do reagente A e de uma substância inerte **B**, a 10 °C e 1 atm.

- a. Determine o tempo até que a válvula de alívio seja acio-
- b. Determine a composição do reator no momento de acionamento da válvula.
- c. Determine a quantidade máxima de mistura gasosa que pode ser adicionada ao reator sem que a válvula de alívio seja acionada.

PROBLEMA 2.10

3D33

Considere a reação química:

$$2 \mathbf{A}(\mathbf{g}) \longrightarrow 3 \mathbf{B}(\mathbf{g})$$

Um reator contem 20 atm de uma mistura gasosa contendo 75% da substância A e 25% do inerte I em volume. Os resultados a seguir foram obtidos no estudo da cinética dessa reação:

t/s	0,890	2,08	3,75	6,25	10,4
P/atm	21	22	23	24	25
v/atmmin	1,96	1,44	1	0,640	0,360

- a. Determine a ordem da reação.
- b. **Determine** a constante cinética da reação.
- c. **Determine** a composição do reator em 10,4 min.

Gabarito

Nível I

- 1. B 2. A 3. B 4. C 5. E 6. E 7. B 8. D 9. B 10. D
- 11. C 12. A 13. B 14. A 15. B 16. C 17. B 18. C 19. D 20. C

Nível II

- 1. C
- 2. A
- 3. E
- 4. A
- 5. A
- 6 C
- 7. E
- 8. C
- **9.** a. 6 h
 - b. $P_{A}=0,\!500\,atm,\,P_{B}=2\,atm,\,P_{C}=2,\!25\,atm,\,P_{D}=0,\!750\,atm,\,P_{E}=0,\!750\,atm$
 - c. 1,70 atm
- 10. a. Segunda ordem
 - b. $0.0100 \, \mathrm{min} \, \mathrm{atm}^{-1}$
 - c. $P_{\text{A}}=6$ atm, $P_{\text{B}}=14$ atm, $P_{\text{C}}=4$ atm