CC2530 寄存器配置说明

ZigBee 的基础实验(1)

P12/P13	CC2530 I/O口
UART CTS/L	P0.4
BUTTON1/LED4	P0.1
UART RX/L	P0.2
UART TX/L	P0.3
L MODE	P0.0
LED2/IR OUT	P1.1
KEY LEVEL	P0.6
LEDO/L BLA	P0.7
FLASH CS	P1.3
LED1/IR IN	P1.0
DEBUG DD	P2.1
DEBUG DC	P2.2
CSN/LED3	P1.4
SCLK	P1.5
MOSI	P1.6
MISO	P1.7
LCD CS/BUTTON0	P1.2
KEY MOVE/LED1	P2.0
UART RTS/L	P0.5

这是飞比 FB2530EB V2.0 提供的芯片 I/O 对应表

```
*more607
```

*/

#include <ioCC2530.h>

#define uint unsigned int

#define uchar unsigned char

//定义控制灯的端口

#define RLED P1_0 //定义 LED1 为 P1.0 口控制 #define GLED P1_1 //定义 LED2 为 P1.1 口控制 #define YLED P1_4 //定义 LED3 为 P1.4 口控制 #define BLED P0_1 //定义 LED4 为 P0.1 口控制

^{*2011/11/17 22:13}

^{*}飞比 CC2530EB 模块

```
#define S1 P0 1 //定义 S1 为 P0.1 口控制(注意: 因为端口复用所以需要设置 P0DIR,
              //在程序中复用比较难,所以本程序就不用来做按键了)
#define S2 P0_3 //定义 S2 为 P0.3 口控制(我将 P10 的针脚接到 P14 针脚上,所以是 P0.3 口)
#define S6 P1_2 //定义 S6 为 P1.2 口控制
//函数声明
              //初始化 LED 控制 IO 口函数
void InitIO(void);
                  //初始化按键
void InitKey(void);
                   //按键输入
void keyScan(void);
//全局变量
int times;
                     //计数器
void InitIO(void) //初始化 IO 口程序
{
   P1DIR ⊨ 0x13; //P1_0、P1_1、P1_4 定义为输出
   P0DIR ⊨ 0x02; //P0_1 定义为输出
   RLED = 1;
   GLED = 1;
   YLED = 1;
   BLED = 1;
                //将 4 盏 LED 灯都打开
}
void InitKey(void)//初始化按键
 P1SEL &= 0xFB; //定义为输入
 P1DIR &= 0xFB; //按钮 s6 的
 P1INP |= 0x06; //拉高电压
 POSEL &= 0xFB; //定义为输入
 PODIR &= 0xFB; //按钮 s6 的
 POINP ⊨ 0x06; //拉高电压
}
void keyScan(void)
 if(S6 == 0)
   times ++://增加值
 while(S6 == 0);
 if(S2 == 0)
   times=0;//清空值
 while (S2 == 0);
void main(void)
 times = 0;
                //初始化
   InitIO();
```

```
//死循环让循环内的代码不断执行
while(1)
{
  keyScan();
  if(times>4)
    times = 0;
  if(times == 0)//灯全灭
    RLED = 0;
    GLED = 0;
    YLED = 0;
    BLED = 0;
  }
  if(times == 1)//亮一灯
    RLED = 1;
   GLED = 0;
    YLED = 0;
    BLED = 0;
  if(times == 2)//亮两个灯
    RLED = 1;
    GLED = 1;
    YLED = 0;
   BLED = 0;
  }
  if(times == 3)//亮三个灯
   RLED = 1;
    GLED = 1;
    YLED = 1;
    BLED = 0;
  }
  if(times == 4)//全亮
    RLED = 1;
    GLED = 1;
    YLED = 1;
    BLED = 1;
}
```

}

来自: http://blog.163.com/j_evil/blog/static/163211317201161211362979/数据手册 POSEL (P1SEL 相同): 各个 I/O 口的功能选择, 0 为普通 I/O 功能, 1 为外设功能

D7	D6	D5	D4	D3	D2	D1	D0
P0_7 功能	P0_6 功能	P0_5 功能	P0_4 功能	P0_3 功能	P0_2 功能	P0_1 功能	P0_0 功能

P2SEL: (D0 到 D2 位)端口 2 功能选择和端口 1 外设优先级控制 什么是外设优先级: 当 PERCFG 分配两个外设到相同的引脚时,需要设置这两个外设的优先级,确定哪 一个外设先被响应

D7	D6	D5	D4	D3	D2	D1	D0
未用	0: USART 0 优先 1: USART 1 优先	优先	1 优先	优先	P2_4功能 选择	P2_3 功能 选择	P2_0 功能 选择

CFG: 设置部分外设的 I/O 位置, 0 为默认 I 位置 1,1 为默认位置 2

D7	D6	D5	D4	D3	D2	D1	D0
未用	定时器1	定时器3	定时器 4	未用	未用	USART1	USART0

PODIR (P1DIR 相同): 设置各个 I/O 的方向, 0 为输入, 1 为输出

D7	D6	D5	D4	D3	D2	D1	D0
P0_7 方向	P0_6 方向	P0_5 方向	P0_4 方向	P0_3 方向	P0_2 方向	P0_1 方向	P0_0 方向

P2DIR: D0^{D4} 设置 P2_0 到 P2_4 的方向 D7、D6 位作为端口 0 外设优先级的控制

D7	D6	D5	D4	D3	D2	D1	D0
X	X	未使用	P2_4 方向	P2_3 方向	P2_2 方向	P2_1 方向	P2_0 方向

D7D6	意义
	第 1 优先级: USART 0
00	第 2 优先级: USART 1
	第3优先级:定时器1
01	第 1 优先级: USART 1

	第 2 优先级: USART 0 第 3 优先级: 定时器 1
10	第1优先级:定时器1通道0-1 第2优先级:USART 1 第3优先级:USART 0 第4优先级:定时器1通道2 -3
11	第1优先级:定时器1通道2-3 第2优先级:USART 0 第3优先级:USART 1 第4优先级:定时器1通道0-1

POINP (P1INP 意义相似): 设置各个 I/O 口的输入模式, 0 为上拉/下拉, 1 为三态模式

D7	D6	D5	D4	D3	D2	D1	D0
P0_7 模式	P0_6 模式	P0_5 模式	P0_4 模式	P0_3 模式	P0_2 模式	P0_1 模式	P0_0 模式

需要注意的是: P1INP中,只有D7~D2分别设置对应I/O口的输入模式。D1D0两位无作用。

P2INP: D0^{D4} 控制 P2_0^{P2_4} 的输入模式, 0 为上拉/下拉, 1 为三态; D5^{D7} 设置对 P0、P1 和 P2 的上拉或下拉的选择。0 为上拉, 1 为下拉;

D7	D6	D5	D4	D3	D2	D1	DO
端口2选择	端口1选择	端口0选择	P2_4 模式	P2_3 模式	P2_2 模式	P2_1 模式	P2_0 模式

POIFG (P1IFG 相同): 终端状态标志寄存器, 当输入端口有中断请求时, 相应的标志位将置 1。

D7	D6	D5	D4	D3	D2	D1	D0
P0_7	P0_6	P0_5	P0_4	P0_3	P0_2	P0_1	P0_0

POIEN(P1IEN 相同):各个控制口的中断使能,0为中断禁止,1为中断使能。

D7	D6	D5	D4	D3	D2	D1	D0
P0_7	P0_6	P0_5	P0_4	P0_3	P0_2	P0_1	P0_0

P2IFG: D0~D4 为 P2_0~P2_4 的中断标志位

D5 为 USD D+中断状态标志,当 D+线有一个中断请求未决时设置该标志,用于检测 USB 挂起状复事件。当 USB 控制器没有挂起时不设置该标志。

D7	D6	D5	D4	D3	D2	D1	DO
未用	未用	USB D+	P2_4	P2_3	P2_2	P2_1	P2_0

P2IEN: D0²D4 控制 P2_0²P2_4 的中断使能 D5 控制 USB D+的中断使能

D7	D6	D5	D4	D3	D2	D1	D0
未用	未用	USB D+	P2_4	P2_3	P2_2	P2_1	P2_0

PICTL: DO D3 设置各个端口的中断触发方式, 0 为上升沿触发, 1 为下降沿触发。

D7 控制 I/O 引脚在输出模式下的驱动能力。选择输出驱动能力增强来补偿引脚 DVD

压,确保在较

低的电压下的驱动能力和较高电压下相同。0为最小驱动能力增强。1为最大驱动能力增强。

D7	D6	D5	D4	D3	D2	D1	D0
I/0 驱动能力	未用	未用	未用	P2_0~P2_4	P1_4~P1_7	P1_0~P1_3	P0_0~P0_7

IENO: 中断使能 0,0 为中断禁止,1 为中断使能

D7	D6	D5	D4	D3	D2	D1	D0
总中断	未	睡眠定时器	AES 加密/解密	USART1 RX 中	USARTO RX 中	ADC 中	RF TX/RF FIFO
EA	用	中断	中断	断	断	断	中断

IEN1:中断使能 1,0 为中断禁止,1 为中断使能

D7	D6	D5	D4	D3	D2	D1	DO
未用	未用	端口0	定时器 4	定时器3	定时器 2	定时器 1	DMA 传输

IEN2: 中断使能 2,0 为中断禁止,1 为中断使能

D7	D6	D5	D4	D3	D2	D1	D0
未用	未用	看门狗定时器	端口1	USART1 TX	USARTO TX	端口2	RF 一般中断

T1CTL: 定时器 1 的控制, D1D0 控制运行模式, D3D2 设置分频划分值

D7	D6	D5	D4	D3D2	D1D0
未用	未用	未用	未用	00: 不分频 01: 8分频 10: 32分 频 11: 128分 频	00: 暂停运行 01: 自由运行,反复从 0x0000 到 0xffff 计数 10: 模计数,从 0x000 到 T1CC0 反复计数

T1STAT: 定时器 1 的状态寄存器, $D4^D0$ 为通道 4^D0 的中断标志,D5 为溢出标志位,当计数到最高动置 1。

D7	D6	D5	D4	D3	D2	D1	D0
未用	未用	溢出中断	通道4中断	通道3中断	通道2中断	通道1中断	通道0中断

T1CCTL0 $^{\sim}$ T1CCTL4: 定时器 1 通道 0 $^{\sim}$ 通道 4 的工作方式设置。D1D0 为捕捉模式选择: 00 为不捕捉, 0 获, 10 为下降沿捕获, 11 为上升或下降沿都捕获。

D2 位为捕获或比较的选择,0 为捕获模式,1 为比较模式。D5D4D3 为比较模式的选择:000 为发生比较1,001 为发生比较时输出端清0,010 为比较时输出翻转,其他模式较少使用。

D7	D6	D5D4D3	D2	D1D0
未用	未用	比较模式	捕获/比较	捕捉模式

IRCON: 中断标志 4,; 0 为无中断请求。1 为有中断请求。

D7	D6	D5	D4	D3	D2	D1	D0
睡眠定时器	必须为0	端口0	定时器 4	定时器3	定时器 2	定时器1	DMA 完成

T3CTL/T4CTL: 定时器 3 或定时器 4 的方式控制寄存器。D7D6D5 设置分频: 000 为无分频、001 为 2 分分频、011 为 8 分频、100 为 16 分频、101 为 32 分频、110 为 64 分频,111 为 128 分频。D4 为启动信停止工作为 0。D3 位为中断使能位,0 为禁止,1 为使能,默认为 1; D2 为复位,置 1 时定时器复位。器模式选择: 该位与 T1CTL 的 D1D0 位意义相同。

D7D6D5	D4	D3	D2	D1D0
分频	启动定时器	溢出中断	清除计数器	计数模式

T3CCTL0/T3CCTL1/T4CCTL0/T4CCTL1: 定时器 3 或定时器 4 的通道 0 和通道 1 的方式控制, D6 为该通过 0 为禁止, 1 为使能, 默认为 1; D5~D0 与 T1CCTL0 相同

D7	D6	D5D4D3	D1	DO
未用	中断使能	比较模式	捕获/比较	捕捉模式

TIMIF: 定时器 1 的溢出中断屏蔽与定时器 3、4 的中断标志。D6 为定时器 1 的溢出中断屏蔽,0 为屏默认为 1. D5~D0 为定时器 3 和 4 中各个通道的中断标志。

D7	D6	D5	D4	D3	D2	D1	DO
未	T1 溢出中断	T4通道1中断	T4通道0中断	T4 溢出标志中	T3 通	T3 通	T3 溢出中断
用	使能	标志	标志	断标志	道1	道 0	标志

CLKCONCMD: 时钟频率控制寄存器。

D7	D6	D5~D3	D2~D0
32KHZ 时间振荡器选择	系统时钟选择	定时器输出标记	系统主时钟选择

D7 位为 32KHZ 时间振荡器选择,,0 为 32KRC 震荡,1 为 32K 晶振。默认为1。

D6 位为系统时钟选择。0 为 32M 晶振, 1 为 16M RC 震荡。当 D7 位为 0 时 D6 必须为 1。

D5²D3 为定时器输出标记。000 为 32MHZ,001 为 16MHZ,010 为 8MHZ,011 为 4MHZ,100 为 2MHZ,101 为 500KHZ,111 为 250KHZ。默认为 001。需要注意的是:当 D6 为 1 时,定时器频率最高可采用频率之 D2²D0:系统主时钟选择:000 为 32MHZ,001 为 16MHZ,010 为 8MHZ,011 为 4MHZ,100 为 2MHZ,101 为 500KHZ,111 为 250KHZ。当 D6 为 1 时,系统主时钟最高可采用频率为 16MHZ。

CLKCONSTA: 时间频率状态寄存器。

D7	D6	D5~D3	D2~D0
当前 32KHZ 时间振荡器	当前系统时钟	当前定时器输出标记	当前系统主时钟

D7 位为当前 32KHZ 时间振荡器频率。0 为 32KRC 震荡, 1 为 32K 晶振。

D6 位为当前系统时钟选择。0 为 32M 晶振, 1 为 16M RC 震荡。

D5~D3 为当前定时器输出标记。000 为 32MHZ,001 为 16MHZ,010 为 8MHZ,011 为 4MHZ,100 为 2MHZ,110 为 500KHZ,111 为 250KHZ。

D2^{D0} 为当前系统主时钟。000 为 32MHZ,001 为 16MHZ,010 为 8MHZ,011 为 4MHZ,100 为 2MHZ,101 为 500KHZ,111 为 250KHZ。

UOCSR: USARTO 控制与状态;

D7	D6	D5	D4	D3	D2	D1	D0
模式选	接收器使	SPI 主/从模	帧错误状	奇偶错误状	接受状	传送状	收发主动状
择	能	式	态	态	态	态	态

D7 为工作模式选择, 0 为 SPI 模式, 1 为 USART 模式

D6 为 UART 接收器使能, 0 为禁用接收器, 1 为接收器使能。

D5 为 SPI 主/从模式选择, 0 为 SPI 主模式, 1 为 SPI 从模式。

D4 为帧错误检测状态, 0 为无错误, 1 为出现出错。

D3 为奇偶错误检测, 0 为无错误出现, 1 为出现奇偶校验错误。

D2 为字节接收状态, 0 为没有收到字节, 1 为准备好接收字节。

D1 为字节传送状态, 0 为字节没有被传送, 1 为写到数据缓冲区的字节已经被发送。

DO为USART接收/传送主动状态,0为USART空闲,1为USART忙碌。

UOGCR: USARTO 通用控制寄存器:

D7	D6	D5	D4~D0
SPI 时钟极性	SPI 时钟相位	传送位顺序	波特率指数值

D7 为 SPI 时钟极性: 0 为负时钟极性, 1 为正时钟极性;

D6 为 SPI 时钟相位:

D5 为传送为顺序: 0 为最低有效位先传送, 1 为最高有效位先传送。

D4~D0 为波特率设置:

波特率	指数值	小数部分
2400	6	59
4800	7	59
9600	8	59
14400	8	216
19200	9	59
28800	9	216
38400	10	59
57600	10	216
76800	11	59
115200	11	216
230400	12	216

UOBAUD: 波特率控制小数部分。(取值参考上表)