OC: Examen du 28/05/2021

Durée 2h

Exercice 1 Soit T un ensemble de n tâches. Chaque tâche i est caractérisée par une utilité w_i , une durée p_i et une date d'échéance d_i . On se donne une durée D. Nous supposerons ici que les tâches sont numérotées par ordre des dates d'échéance :

$$d_1 \leq d_2 \leq \ldots \leq d_n$$

Il s'agit de choisir un sous-ensemble X de tâches à effectuer parmi les n, de sorte que :

- X de durée $\leq D$: La somme des durées des tâches de X ne dépasse pas D
- X sans retard : lorqu'on effectue sur une machine les tâches de X dans l'ordre de leur numéro, elles sont toutes à l'heure (elles se terminent avant leur échéance).
- X d'utilité maximale parmi les sous-ensembles vérifiant les deux propriétés précédentes.

On dira qu'il s'agit du problème ORDOSR.

Question 1 Proposer un modèle mathématique pour de problème.

Dans la suite on cherche à construire une méthode arborescente pour le résoudre.

Question 2 Si l'on relâche la contrainte X est sans retard quel est le problème obtenu? En déduire un algorithme permettant de construire un majorant de la valeur de la solution optimale du problème ORDOSR.

Question 3 Proposer un algorithme pour construire un minorant de la valeur optimale du problème ORDOSR.

Question 4 Appliquer les deux algorithmes à la donnée suivante :

	1	2	3	4	5
p_i	3	4	1	4	3
d_i	4	4	5	7	8
w_i	21	12	10	8	3

Question 5 On va construire une méthode arborescente basée sur le principe suivant : A chaque noeud S est associé un ensemble C(S) et un ensemble R(S) de tâches, et les solutions du noeud S sont les sous-ensembles X qui coniennent C(S) et aucune tâche de R(S) tout en vérifiant les contraintes du problème. Proposer une technique de séparation (on veillera à ce qu'on ne créee pas de noeud infaisable).

Question 6 Préciser comment utiliser les techniques de majoration/minoration des questions 1 et 2 pour calculer des évaluations par défaut et par excès d'un noeud.

Question 7 Appliquer la méthode arborescente à la donnée de la question 4. On développera au plus 5 noeuds.

Exercice 2 On considère un ensemble de n personnes. Ces personnes doivent être recrutées pour réaliser deux projets. le niveau de compétence de la personne i pour le premier projet est noté a_i , et son niveau pour le second projet est noté b_i . Pour que le projet 1 (resp. le projet 2) soit bien réalisé, il faut que la somme des niveaux de compétences des personnes recrutées pour ce projet soit au moins égale à A (resp. B). l'embauche d'une personne i dans l'un des projets coûte c_i . On cherche à déterminer quelles personnes recruter pour les projets (une personne ne peut pas être recrutée pour les deux projets), de sorte que le coût d'embauche soit minimal?

Question 1 Modéliser le problème avec un programme linéaire à variables binaires

Question 2 Soient (u, v) un couple d'entiers. Définissons $F_k(u, v)$ le coût minimum de l'embauche de personnes parmi $\{k, \ldots n\}$ de sorte que la somme des compétences des personnes pour le projet 1 (resp. 2) vaut au moins u (resp. v). Tracer le schéma de programmation dynamique induit par cette définition et préciser l'état initial.

Question 3 Indiquer comment calculer $F_n(u, v)$

 ${\bf Question~4}~{\bf D}$ éfinir l'équation de récurrence associée à ce schéma de programmation dynamique

Question 5 Quelle est la complexité de l'algorithme de résolution qui en découle?