

Homework - 4

DEPARTMENT OF CIVIL, CHEMICAL AND ENVIRONMENTAL ENGINEERING COURSE: TURBULENCE AND CFD MODELS

Submitted To:

Joel Guerrero

 $Submitted\ By$:

Biniyam Sishah

Genoa, Italy

1 Question 1

Derive the incompressible Reynolds-Averaged Navier -Stokes (RANS) equations,

Let start by writing the averaging rules to be followed: In the derivation process both vector notations and Einstein notation are used. Whenever the prior notation is used, **Bold** variables indicate vectors. Similarly, in the later notation, mean values were described with capital letter (i.e U = Time averaged Mean velocity), whereas in the prior notation they are represented by a bold small letter with an overline (i.e $\overline{\mathbf{u}} = Time$ averaged Mean velocity).

• Time averaging

For an instantaneous flow variable $f(\mathbf{X},t)$, its time averaging $F_T(\mathbf{X})$, is given by:

$$F_T(\mathbf{X}) = \lim_{t \to \infty} \int_t^{t+T} f(\mathbf{X}, t) dt \tag{1}$$

• Decomposition of flow variables

The instantaneous terms are expressed as the sum of a mean, $U(\mathbf{x})$, and a fluctuating part, $u'_i(\mathbf{X},t)$

$$u_i(\mathbf{X}, t) = U_i(\mathbf{X}) + u'_i(\mathbf{X}, t)(2)$$

As in equation (1), the quantity $U_i(\mathbf{X})$ is the time averaged, or mean velocity defined by

$$U_i(\mathbf{X}) = \lim_{t \to \infty} \int_t^{t+T} u_i(\mathbf{X}, t) dt$$
 (3)

The time averaged of the mean velocity is again the same time-averaged value; i.e.,

$$\overline{U}_i(\mathbf{X}) = \lim_{t \to \infty} \int_t^{t+T} U_i(\mathbf{X}, t) dt = U_i(\mathbf{X})$$
(4)

where an overbar is shorthand for the time average. The time average of the fluctuating part of the velocity is zero. That is, using equation (4)

$$\overline{u_i'} = \lim_{t \to \infty} \int_t^{t+T} [u_i(\mathbf{X}, t) - U_i(\mathbf{X})] dt = U_i(\mathbf{X}) - \overline{U_i}(\mathbf{X}) = 0$$
 (5)

• Rules of averaging If ϕ and ψ are instantaneous flow terms their time averaging is given by:

$$\bar{\phi}' = 0, \qquad \qquad \overline{\phi} = \overline{(\bar{\phi} + \phi')(\bar{\varphi} + \varphi')}$$

$$\bar{\phi} = \bar{\phi}, \qquad \qquad = \overline{\bar{\phi}} \bar{\varphi} + \bar{\phi} \varphi' + \bar{\varphi} \phi' + \phi' \varphi'$$

$$\bar{\phi} = \overline{\bar{\phi}} + \bar{\phi} + \bar{\phi}$$

• Derivation of the Reynolds averaged Navier-Stokes equations for an incomparable Newtonian fluid

Continuity equation

$$\frac{\partial u_i}{\partial x_i} = 0 \tag{6}$$

The Navier-Stokes equation

$$\frac{\partial u_i}{\partial t} + u_j \frac{u_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_j^2}$$
 (7)

The vectors u_i and x_i are velocity and position, t is time, p is pressure, ρ is density ν in kinematic viscosity.

To simplify the time averaging process, we write the convective term in the "conservative form", i.e.,

$$u_j \frac{\partial u_i}{\partial x_j} = \frac{\partial u_j u_i}{\partial x_j} - u_i \frac{\partial u_j}{\partial x_j} = \frac{\partial u_j u_i}{\partial x_j}$$
 (8)

Then time averaging equations (6) and (7) yields the **Reynolds averaged equations** of motion in conservation form, viz.

$$\frac{\partial U_i}{\partial x_i} = 0 \tag{9}$$

$$\frac{\partial U_i}{\partial t} + \frac{\partial (U_j U_i + \overline{u'_j u'_i})}{\partial x_j} = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} + \nu \frac{\partial^2 U_i}{\partial x_j^2}$$
(10)

Equations (10) can be rearranged and written in their most recognizable form:

$$\frac{\partial U_i}{\partial t} + \frac{\partial U_j U_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} + \nu \frac{\partial^2 U_i}{\partial x_j^2} + \frac{1}{\rho} \frac{\partial \tau^R}{\partial x_j}$$
(11)

where $\tau^R = -\rho(\overline{u_j'u_i'})$

Using vector notation equations (9) and (10) can be written as:

$$\nabla . \overline{\mathbf{u}} = 0 \tag{12}$$

$$\frac{\partial \overline{\mathbf{u}}}{\partial t} + \nabla \cdot (\overline{\mathbf{u}}\overline{\mathbf{u}}) = -\frac{1}{\rho} \nabla \overline{p} + \nu \nabla^2 \overline{\mathbf{u}} + \frac{1}{\rho} \nabla \cdot \tau^R$$
(13)

2 Question 2

Using the Boussinesq hypothesis, derive the solvable incompressible Reynolds-Averaged Navier-Stokes(RANS) equation

Boussinesq hypothesis:

$$\tau^{R} = 2\mu_{T}D^{R} - \frac{2}{3}\rho\kappa\mathbf{I} = \mu_{T}[\nabla\overline{\mathbf{u}} + (\nabla\overline{\mathbf{u}})^{T}] - \frac{2}{3}\rho\kappa\mathbf{I}$$
(14)

Substituting equation (14) to (13) after expressing the viscous term in equation (13) by the viscous tensor expression indicated by equation (15), we get equation (??

$$\nu \nabla^2 \overline{\mathbf{u}} = \frac{1}{\rho} \nabla \cdot (2\mu D^R) = \frac{1}{\rho} \nabla \cdot [\nabla \overline{\mathbf{u}} + (\nabla \overline{\mathbf{u}})^T] = \frac{1}{\rho} \nabla \cdot (\nabla \overline{\mathbf{u}})$$
 (15)

The transpose of the velocity gradient will vanish in equation (15) due to symmetry of second derivatives and considering continuity equation. This is shown below using Einstein notations. (**N.B: This answers Question 3**)

$$\nabla \cdot (\nabla \overline{\mathbf{u}}^T) = \frac{\partial}{\partial x_i} (\frac{\partial U_j}{\partial x_i}) = \frac{\partial}{\partial x_i} (\frac{\partial U_j}{\partial x_i}) = 0$$
 (16)

$$\frac{\partial \overline{\mathbf{u}}}{\partial t} + \nabla \cdot (\overline{\mathbf{u}}\overline{\mathbf{u}}) = -\frac{1}{\rho} \nabla \overline{p} + \frac{1}{\rho} \nabla \cdot (\nabla \overline{\mathbf{u}}) + \frac{1}{\rho} \nabla \cdot (\mu_T [\nabla \overline{\mathbf{u}} + (\nabla \overline{\mathbf{u}})^T] - \frac{2}{3} \rho \kappa \mathbf{I})$$
(17)

Canceling transpose of the velocity gradient in the turbulence stress term and rearranging equation (17) we can write the solvable RANS equation as follows

$$\frac{\partial \overline{\mathbf{u}}}{\partial t} + \nabla \cdot (\overline{\mathbf{u}}\overline{\mathbf{u}}) = -\frac{1}{\rho} \left(\nabla \overline{p} + \frac{2}{3}\rho\kappa \right) + \nabla \cdot \left[\frac{1}{\rho} (\mu + \mu_T) \nabla \overline{\mathbf{u}} \right]$$
(18)

The sum of the molecular viscosity and turbulence viscosity shown in equation (18) is collectively called as **effective viscosity** μ_{eff} .

The major reference material used was the book by Wilcox et al. (1998).

References

Wilcox, D. C., et al. (1998). Turbulence modeling for cfd (Vol. 2). DCW industries La Canada, CA.