Ecuaciones diferenciales parciales I

Carlos Aznarán Laos

Último cambio: 28 de octubre de 2024 a las 00:15h.

Enlaces útiles 📎

Haga clic con el PUNTERO DEL RATÓN en cada viñeta para obtener recursos actualizados o la portada del libro en las siguientes diapositivas.

- · Almohadilla + información general
- Enlace de reunión Vídeo lun. vie 21:00:00 -05
- · Diapositivas de proyector + Informe de la conferencia Archivo-pdf
- Métodos analíticos para resolver la ecuación de onda (1D, Curso 2D y 3D + libros

- Grabaciones en vivo + Conferencias de Jason Bramburger YouTube
- Repositorio Gitlab
- · Animaciones con matplotlib

• Carpeta compartida Dropbox + ejercicios

Observación

Intentaremos seguir este esquema https://math.dartmouth.edu/~m53f22.

VisualPDE

Cada vez que exploramos una nueva PDE es probable que visualicemos la animación en https://visualpde.com.

Visor de documentos universal

Okular es un visor de PDF que permite la interacción con formularios, por ejemplo, mostrar animaciones de soluciones PDE dependientes del tiempo.

Referencias con fundamentos sobre EDO

Referencias con fundamentos sobre Análisis Funcional

Referencias con fundamentos sobre Análisis Numérico

Contenido

- 1 Revisión de EDO
- 2 Jso de Python Python para resolver ecuaciones diferenciales parciales
- 3 Análisis de estabilidad de Fourier
- 4 Definiciones básicas
- 5 Clasificación de ecuaciones parciales lineales de segundo orden Ecuaciones diferenciales
- 6 Método de características
- 7 Series trigonométricas de Fourier

- 8 Transformada de Fourier
- 9 Distribución
- erador de onda
- 11 Ecuación de onda con dos dimensiones espaciales
- 12 Operador de difusión
- 13 Operador de Laplace
- 14 El algoritmo de separación de variables para límites Problemas de valores

Una ecuación diferencial ordinaria (EDO) es una ecuación funcional que relaciona alguna función con sus derivadas.

Ejemplo (Clasificación de EDO en Python))

• Coeficiente constante lineal heterogéneo de primer orden.

· Lineal homogéneo de segundo orden.

$$\frac{\text{para ti}}{\text{dx2}} \times \frac{\text{tú}}{\text{ }} + \text{u} = 0.\text{dx}$$

· Coeficiente constante lineal homogéneo de segundo orden .

$$\frac{d2u}{---}$$
 + $\alpha 2u = 0.dx2$

· No lineal heterogéneo de primer orden .

$$\frac{t\acute{u}}{Dx} = tu + 1.$$

Último cambio: 28 de octubre de 2024 a las 00:15h.

Carlos Aznarán Laos

Para funciones de varias variables, una EDO se convierte en una EDP.

Ejemplo (modelos PDE de Python))

• Modela la concentración de una sustancia que fluye en un fluido a una velocidad constante c R \ {0}.

Su solución general es u $(x, t) = \varphi(x - ct)$ donde φ es una función arbitraria.

• Tipo de perturbación que se propaga y que se mueve más rápido que la velocidad del sonido en un medio.

(Ondas de choque)

$$\partial xu + u\partial yu = 0.$$

Al igual que una onda común, una onda de choque transporta energía y puede propagarse a través de un medio, pero se caracteriza por una cambio abrupto, casi discontinuo en la presión, temperatura y densidad del medio.

• Modela el flujo de calor constante en una región donde la temperatura está fija en el límite.

(Laplace)

u = 0.

Más clasificaciones de ecuaciones diferenciales

· Una ecuación integro-diferencial que involucra tanto las derivadas como sus antiderivadas de una solución.

(Circuito RLC Python)
$$y_0 \frac{y_0(t)}{es} + RI(t) + \frac{1}{do} y_0(\tau) d\tau = E(t)$$
.

· Una ecuación diferencial funcional con argumento desviado y más aplicable que las EDO.

(Crecimiento de la población Python)
$$\frac{t\dot{u}(t)}{es} = \rho u(t) 1 - \frac{u(t-\tau)}{a} .$$

· Una ecuación diferencial estocástica se compone en términos de un proceso estocástico.

```
(Movimiento browniano aritmético Python ) dXt = \mu dt + \sigma dBt .
```

- Una ecuación algebraica diferencial involucra términos diferenciales y algebraicos.
- PDE rígida, PDE con retardo, PDE controlada, PDE fraccionaria, PDE neuronal, etc.

Último cambio: 28 de octubre de 2024 a las 00:15h.

Carlos Aznarán Laos

Deje que el IVP

$$\frac{t\dot{u}}{es} = -\frac{t\dot{u}}{2}, \quad t \quad [0, 10].$$

$$u(0) = ai,$$

donde a1 = 2, a2 = 4, a3 = 6 y a4 = 8.

importar numpy como np desde jaxtyping importar Array, Float desde scipy.integrate importar solve_ivp

def decaimiento exponencial(

```
t: Flotante[Matriz, "dim"], u: Flotante[Matriz, "dim"]
) ->- Flotante[Matriz, "2"]:
devuelve -0.5 * u
```

```
sol = resolver_ivp(
diversion-decamiento exponencial,
1_span=(0, 10),
yo=(2, 4, 6, 8),
1_eval=np,linspace(inicio=0, fin=10),
salida densa=Verdadero,
```

Programa Python : Recuperado

de https://docs.scipy.org/doc/scipy-1.14.1/reference/ generado/scipy.integrate.solve ivp.html.

Figura: Solución numérica.

EI BVP

$$\frac{t\dot{u}}{Dx}$$
 + exp (u) = 0, u (0) = u (1) = 0.

importar numpy como np desde jaxtyping importar Array, Float desde scipy,integrate importar solve byp

def fun(x: Flotador[Matriz, "dim"], u: Flotador[Matriz, "2"]) ->- Flotador[Matriz, "2"]:
 devuelve np.vstack((u[1], -np.exp(u[0])))

def bc(ua: float, ub: float) ->- Float[Matriz, "2"]:
 devuelve np.array([ua[0], ub[0]])

x = np.linspace(inicio=0, fin=1, num=5) u_a = np.zeros(forma=(2, x.tamaño)) u_b = np.copia(a=u_a)

u_b = np.copia(a=u_a u_b[0] = 3

sol_a = resolver_bvp(fun=fun, bc=bc, x=x, y=u_a) sol_b = resolver_bvp(fun=fun, bc=bc, x=x, y=u_b)

Programa Python: Recuperado
de https://docs.scipy.org/doc/scipy-1.14.1/reference/
generado/scipy.integrate.solve bvp.html.

Figura: Solución numérica.

Teorema de Picard-Lindelöf (Existencia y unicidad de soluciones)

Consideremos el problema del valor inicial

(1)
$$\frac{t\dot{u}}{Dx} = f(x, u),$$

$$u(\xi) = \eta.$$

Aquí se supone que f (\cdot,\cdot) es continua en $[\xi,\xi+a]\times R$ donde a > 0, y además satisface

(Condición de Lipschitz) $|f(x, u) - f(x, u)| \le \Gamma |u - u|$

para algún L R \geq 0; aquí se permiten todos los x [ξ , ξ + a], u, u R. Entonces (1) admite precisamente una C1 -solución u (x) en [ξ , ξ + a].

Carlos Aznarán Laos

Idea de prueba.

1 Formulación como un problema de punto fijo.

$$u(x) = \eta + f(t, u(t)) dt.$$

2Introducción de un espacio de Banach, verificando la propiedad de contracción.

$$T: C \circ (Ib) \longrightarrow C \circ (Ib)$$

$$u \xrightarrow{} \eta + \qquad f(t, u(t)) dt.$$

(

3 Aplicación del Principio de Contracción, construcción de solución local.

Teorema de Peano

Para I = [ξ , ξ + a], J = [η – b, η + b], tenemos f $_{\frac{b}{M+1}}$ C0 (I × J) , |f|C0(I×J) ≤ M para algún M, a, b > 0, existe una solución u (x) C1 ξ , ξ + min a,

Idea de prueba.

- La idea es reducir la situación a la del teorema de Picard.
- La apaciguamiento de f ahora viene dado por la familia de funciones.

$$f\epsilon \left(x,\, u \right) := f \quad u \; \chi\epsilon \left(x,\, u \right) = \qquad \qquad f \left(x,\, u - z \right) \chi\epsilon \left(z \right) dz.$$
 R

г

Para poder invocar la versión del teorema de Picard, necesitamos extender fε (x, u) a todos los R.

$$|f\epsilon(x, u) - f\epsilon(x, u)| \le - \frac{do}{mi} M |u - u|$$

Utilice el teorema de Arzelà-Ascoli.

Ecuación separable

Si el lado derecho de la ecuación

$$\frac{t\acute{u}}{Dx} = g(x) p(u)$$

puede expresarse como función g (x) que depende solo de x por una función p (u) que depende solo de u, la ecuación diferencial se llama separable.

Ejemplo (ecuación separable Python)

$$\frac{t\acute{u}}{Dx} = \frac{x-5}{u2}.$$

Solución

$$^{2 \text{ tu}} du = (x - 5) dx.$$

$$^{2 \text{ tu}} du = (x - 5) dx.$$

$$\frac{3 \text{ tu}}{3} = \frac{2x}{2} - 5x + C = \text{ u (x)} = \frac{\frac{3 \text{ tu (x)}}{2}}{2} - 15x + K$$

Último cambio: 28 de octubre de 2024 a las 00:15h.

Carlos Aznarán Laos

Ecuación lineal

Para resolver la EDO en la forma estándar

$$\frac{t\acute{u}}{Dx} + P(x) u(x) = Q(x).$$

Calcular el factor de integración µ (x) mediante

$$\mu(x) = \exp P(x) dx$$
.

Y multiplica (2) por (3)

$$\frac{d}{Dx} \left[\mu (x) u (x) \right] = \mu (x) Q (x).$$

Y obtener la solución

$$u(x) = \frac{1}{\mu(x)}$$
 $\mu(x) Q(x) dx + C.$

Ejemplo (ecuación lineal Python)

$$\frac{t\acute{u}}{Dx}$$
 + 2u (x) = 50exp(-10x).

EDO de segundo orden homogéneo lineal

Sea a $R \setminus \{0\}$.

$$a \frac{d2u du + b +}{dx2} cu = \frac{0.dx}{0.dx}$$

Encuentre una solución de la forma u (x) = e rx.

ar2 y
$$^{\text{receta}}$$
 + brerx + cerx = 0.

mirx ar2 + br +
$$c = 0$$
.

Desde e receta > 0

$$ar2 + br + c = 0$$
.

Ejemplo (Python lineal homogéneo de segundo orden))

$$\frac{d 2u du + 5 -}{6u = 0. dx2 dx}$$

Solución

$$2r + 5r - 6 = (r - 1)(r + 6) = 0.$$

mix y e-6x son soluciones.

Carlos Aznarán Laos

Ejemplo (Python))

$$\frac{\text{el } 3u}{\text{dx3}} + 3 \frac{\text{para ti}}{\text{dx2}} - \frac{\text{tú}}{\text{Dx}} - 3u = 0.$$

Último cambio: 28 de octubre de 2024 a las 00:15h.

Carlos Aznarán Laos

No homogéneo

$$a \frac{d 2u du + cu =}{dx2} - f(x) . + b dx$$

Ejemplo (Python no homogéneo))

d 2u du + 3 +
—— 2u =
$$\frac{3x}{4}$$
 dx2 dx

Método de variación de parámetros

$$a \frac{d 2u du + b}{dx^2} dx - + cu = f(x)$$
.

Ejemplo (Python))

Solución

$$v1(x) = sen(x) - ln|sec x + tan x| + C1. v2(x) = -cos x +$$

C2.

$$u(x) = c1 \cos x + c2 \sin x - (\cos x) \ln (\sec x + \tan x)$$
.

Uso de Python para resolver ecuaciones diferenciales parciales