Challenge Valhalla

Rogelio Lizárraga Escobar A01742161

Importamos las librerías necesarias y hacemos nuestra conexión con Google Drive

```
import numpy as np
import pandas as pd
from sklearn.linear_model import Ridge, Lasso, ElasticNet
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt
import seaborn as sns
data =
pd.read_csv("https://raw.githubusercontent.com/Jacks3262/IA_A01742161/
main/Valhalla23.csv")
```

Guardamos los datos en un dataframe

```
df = pd.DataFrame(data)
```

Definimos nuestro dataset y hacemos un split del 85% entre train y test

```
y = df[['Valks']].to_numpy()
X = df[['Celsius']].to_numpy()
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.15, random_state=42)
```

Regularización L1, L2 y ElasticNet

Se escoge el miodelo de regresión lineal para la resolución de este Challenge, pues explica la relación entre Valks y Celsius. Sin embargo, se le aplicó técnicas de regularización a esta regresión lineal por medio de:

- La regresión Lasso (L_1)
- La regresión Ridge (L_2)
- La regresión ElasticNet que fusiona la penalización de ambas regresiones

Con las funciones anteriores, se hará un GridSearch, donde se seleccionarán aquella regularización con el menor MSE, habiendo optimizado sus hiperparámetros (α para las tres regularizaciones y la proporción de las penalizaciones entre Lasso y Ridge δ) para ElasticNet.

```
ridge = Ridge(max iter = 10000)
lasso = Lasso(max iter = 10000)
elastic_net = ElasticNet(max iter = 10000)
hyper grid r = \{ 'alpha' : np.logspace(-50, 50, 50) \}
hyper grid l = \{'alpha': np.logspace(-50, 50, 50)\}
hyper_grid_e_n = {'alpha': np.logspace(-50, 50, 50), 'l1 ratio':
np.linspace(0, 1, 10)
import warnings
from sklearn.exceptions import ConvergenceWarning
warnings.filterwarnings("ignore", category=ConvergenceWarning) #
Eliminamos los warnings de no convergencia
ridge grid = GridSearchCV(ridge, hyper grid r, cv= 3,
scoring='neg mean squared error') # Seleccionamos como nuestra función
costo -MSE, pues scikit maximiza scores.
ridge_grid.fit(X_train, y_train) # Entrenamos nuestro modelo
best alpha r = ridge grid.best params ['alpha'] #Guardamos el mejor
alpha para ridge
# Hacemos lo mismo con Lasso y ElasticNet
lasso grid = GridSearchCV(lasso, hyper grid l, cv= 3,
scoring='neg mean squared error')
lasso_grid.fit(X_train, y_train)
best alpha l = lasso grid.best params ['alpha']
elastic net grid = GridSearchCV(elastic_net, hyper_grid_e_n, cv = 3,
scoring='neg mean squared error')
elastic net grid.fit(X train, y train)
best alpha elastic = elastic net grid.best params ['alpha']
best ratio e n = elastic net grid.best params ['l1 ratio'] # Guardamos
la mejor razón entre L1 y L2
# Entrenamos nuestros tres modelos con los hiperparámetros óptimos
star ridge = Ridge(alpha=best alpha r, max iter = 10000)
star ridge.fit(X train, y train)
star_lasso = Lasso(alpha=best_alpha_l, max iter = 10000)
star lasso.fit(X train, y train)
star e n = ElasticNet(alpha=best alpha elastic,
ll ratio=best ratio e n, max iter = 10000)
star e n.fit(X train, y train)
max iter=10000)
```

Observamos que \$\alpha^* = 5.964e-12 \$ y $L_{1_{Ratio}}^{i}$ = 0.8888, lo cual nos indica que la proporción entre L_1 y L_2 fue 88.88% contra 11.12%. Es decir, en su mayoría fue L_1 .

```
# Hacemos nuestra predicciones para los tres modelos realizados
r pred = star ridge.predict(X test)
l pred = star lasso.predict(X test)
net pred = star e n.predict(X test)
# Encontramos los coeficientes de determinación de cada uno de los
modelos, así como el MSE
ridge_r2 = round(r2_score(y_test, r_pred), 4)
lasso r2 = round(r2 score(y test, l pred), 4)
net r\overline{2} = round(r2 score(y test, net pred), 4)
print("-----
print(f"Coeficiente de determinación de Ridge (R^2): {ridge r2}")
print(f"Coeficiente de determinación de Lasso (R^2): {lasso r2}")
print(f"Coeficiente de determinación de ElasticNet (R^2): {net r2}")
ridge_mse = round(mean_squared_error(y_test, r_pred), 4)
lasso mse = round(mean squared error(y test, l pred), 4)
net mse = round(mean squared error(y test, net pred), 4)
print("----
print(f"MSE Ridge: {ridge mse}")
print(f"MSE Lasso: {lasso mse}")
print(f"MSE ElasticNet: {net mse}")
Coeficiente de determinación de Ridge (R^2): 0.9968
Coeficiente de determinación de Lasso (R^2): 0.9968
Coeficiente de determinación de ElasticNet (R^2): 0.9968
MSE Ridge: 25.6825
MSE Lasso: 25.6825
MSE ElasticNet: 25.6825
```

Observamos que $R_{lasso}^2 \approx R_{ridge}^2 \approx R_{Elastic_{Net}}^2 \approx 1$ y también que \$MSE_{lasso} \approx MSE_{ridge} \approx MSE_{lastic_{Net}} \$\$\$\$ \propto 25.6825, lo cual es muy bueno, pues nos indica que el modelo se ajusta a los datos con casi un 100% y un error muy bajo. Es decir, el casi 100% de la variabilidad de la temperatura en Valks puede ser explicada por la temperatura en "Celsius".

```
plt.figure(figsize=(21, 6))
# Graficamos las predicciones de Ridge contra los valores reales

plt.subplot(1, 3, 1)
plt.scatter(y_test, r_pred, alpha= 0.9, color = 'pink')
plt.plot([y_test.min()-10, y_test.max()+10], [y_test.min()-10, y_test.max()+10], 'b--')
plt.title('Regressión de Ridge: preds vs valores reales')
```

```
plt.xlabel('Valores reales')
plt.ylabel('Predicciones')
# Graficamos las predicciones de Lasso contra los valores reales
plt.subplot(1, 3, 2)
plt.scatter(y_test, l_pred, alpha= 0.9, color = 'pink')
plt.plot([y test.min()-10, y test.max()+10], [y test.min()-10,
y test.\max()+10], 'b--')
plt.title('Regressión de Lasso: preds vs valores reales')
plt.xlabel('Valores reales')
plt.ylabel('Predicciones')
# Graficamos las predicciones de ElasticNet contra los valores reales
plt.subplot(1, 3, 3)
plt.scatter(y_test, net_pred, alpha= 0.9, color = 'pink')
plt.plot([y_test.min()-10, y_test.max()+10], [y_test.min()-10,
y \text{ test.max}()+10], 'b--')
plt.title('ElasticNet: preds vs valores reales')
plt.xlabel('Valores reales')
plt.ylabel('Predicciones')
plt.tight_layout()
plt.show()
```

