Erteilt auf Grund des Ersten Überleitungsgesetzes vom 8. Juli 1949 (WiGBI. S. 175)

BUNDESREPUBLIK DEUTSCHLAND

AUSGEGEBEN AM 29. APRIL 1954

DEUTSCHES PATENTAMT

PATENTSCHRIFT

Mr. 910 184
KLASSE 21c GRUPPE 4750

A 12074 VIIIb/216

Dipl.-Sug. Adolf von Frankenberg, Erlangen ist als Erfinder genannt worden

Allgemeine Elektricitäts-Gesellschaft, Berlin-Grunewald

Halbwellenschaltung mit zwei Intensitäten

Patentiert im Gebiet der Bundesrepublik Deutschland vom 8. April 1942 an Der Zeitraum vom 8. Mai 1945 bis einschließlich 7. Mai 1950 wird auf die Patentdauer nicht angerechnet (Ges. v. 15. 7. 51)

> Patentanmeldung bekanntgemacht am 3. September 1953 Patenterteilung bekanntgemacht am 18. März 1954

Es ist bekannt. Meldungen oder Kommandos mittels Wechselstrom über nur eine Leitung in der Weise zu übertragen, daß diese Leitung an der Sendesteile und an der Empfangsstelle mit einer 5 Gleichrichtergabelschaltung versehen wird, wodurch zwei voneinander getrennte Stromzweige entstehen. An der Empfangsstelle ist in jedem Stromzweig ein Relais, an der Sendestelle in jedem Stromzweig eine Kommandotaste vorgesehen. Mit einer derartigen Schaltung lassen sich insgesamt drei Kommandos übertragen, und zwar eines unter Benutzung der positiven Halbwelle, ein zweites unter Benutzung der negativen Halbwelle und ein drittes Kommando schließlich unter Benutzung

beider Halbwellen, wobei beide Sendetasten geschlossen sind und beide Empfangsrelais gleichzeitig ansprechen.

Diese Anzahl der Übertragungsmöglichkeiten genügt neuzeitlichen Anforderungen nicht, weil stets danach gestrebt wird, vorhandene Leitungen in größerem Maße auszunutzen, als dies bisher der Fall war. Eine Erweiterung auf insgesamt acht Kommandos wird erfindungsgemäß dadurch erreicht, daß zusätzlich mit zwei verschiedenen Intensitäten gearbeitet wird und Empfangsrelais 25 mit verschiedener Empfindlichkeit benutzt werden.

In Fig. 1 ist ein Ausführungsbeispiel einer entsprechenden Schaltung dargestellt, in Fig. 2 ist

BNSDOCID: < DE 910184C1, 1 2

schematisch der Stromverlauf für die einzelnen Kommandos und daneben die auf dieses Kommando ansprechende Relaiskombination angegeben.

In Fig. 1 ist im linken Teil die Sendestelle, im rechten Teil die Empfangsstelle dargestellt. Zwischen beiden besteht eine Verbindung durch eine Doppelleitung L_a und L_b . An der Sendestelle befinden sich die Kommandotasten K_1 bis K_8 , die in der gezeichneten Weise mit Hilfsleitungen a, b, c, d verbunden sind. Außerdem sind hier die Gleichrichter G_1 und G_2 vorhanden sowie die Widerstände W_1 und W_2 . Die Speisung erfolgt über einen Transformator Tr aus einem vorhandenen Wechselstromnetz. Auf der Empfangsseite ist wiederum eine Gabelschaltung vorhanden, die durch die Gleichrichter G_1' und G_2' gebildet wird. Hier sind ferner Relais R_1 und R_2 sowie T_1 und T_2 vorhanden. Parallel zu den einzelnen Relaiswicklungen sind Kondensatoren C_1 , C_2 , C_1 und C_2 geschaltet, die zur Glättung dienen. Die Relais T_1 und T_2 sind hochempfindliche neutrale Telegraphenrelais, während R_1 und R_2 normale Fernsprechrelais sind. Kontakte dieser Relais sind mit dem entsprechenden kleinen Buchstaben bezeichnet. Sie sind in der aus Fig. 1 ersichtlichen Weise zusammengeschaltet und wirken auf die eigentlichen Empfangsrelais \mathcal{E}_1 bis E_8 , von denen jeweils eines zum Ansprechen kommt, wenn die entsprechende Taste K_1 bis K_8 auf der Sendeseite hetätigt wurde. Hier ist außerdem noch ein Gleichrichter G vorhanden, der dazu dient, im Ruhezustand der Apparatur, d.h. wenn alle Empfangsrelais abgefallen sind, einen Stromfluß über die Relaiswicklungen E_6 , E_4 und E_5 zu verhindern. Die Endrelais E_1 bis E_8 betätigen ihrerseits bei ihrem Ansprechen den gewünschten, nicht dargestellten Apparat. Wesentlich für die Empfangsschaltung ist, daß man vollkommen ohne Zwischenempfangsrelais auskommt, und zwar auch in bezug auf die Telegraphenrelais. Dies wird dadurch erreicht, daß die Umschaltkontakte t_1 und t_2 der Telegraphenrelais T_1 und T_2 direkt in die Stromzuführung gelegt werden.

Die Ausführung beispielsweise des Kommandos 7 erfolgt so, daß die Kommandotaste K_7 geschlossen 45 wird. Dadurch wird die vom Transformator Tr herrührende Spannung einmal an die Hilfsleitung c und über den Gleichrichter G_1 unmittelbar an die Fernleitung gelegt. Außerdem wird diese Spannung aber auch über die Hilfsleitung a und den Widerstand W2 angeschaltet, wodurch sie eine entsprechende Verkleinerung ihrer Amplitude erfährt. Für die positive Halbwelle ergibt sich ein Stromverlauf vom Transformator über die Hilfsleitung c. den Gleichrichter G_1 , die Fernleitungsader L_a , den Gleichrichter G_1 , die beiden Relais R_1 und T_1 und die Fernleitungsader L_b zurück zum Transformator. In diesem Stromkreis wirkt die positive Halbwelle mit ihrer vollen Amplitude, so daß beide Relais R_1 und T_1 ansprechen. Gleichzeitig wird über den zweiten Kontakt der Kommandotaste K_7 ein Stromweg für die negative Halbwelle durchgeschaltet. der über die Fernleitungsader L_b , die Relais T_a und R_2 , den Gleichrichter G_2 , die Fernleitungs-

ader L_a , den Gleichrichter G_a , den Widerstand W_a . die Hilfsleitung a und die Kommandotaste K, zum Transformator zurück verläuft? In diesem Stromweg befindet sich der Widerstand W_2 , so daß die negative Halbwelle in ihrer Amplitude entsprechend verringert wird, wie dies aus dem Kommandoschema der Fig. 2 ersichtlich ist. Die Verringerung, 7 die durch Bemessung des Widerstandes W_2 erreicht werden kann, ist so gewählt, daß in dem angegebenen Stromweg nur das hochempfindliche Telegraphenrelais T_2 , nicht aber das Relais R_2 ansprechen kann. Infolgedessen bleibt der Kontakt r2' in der gezeichneten Ruhestellung liegen, während die Kontakte t_1 , r_1 und t_2 ihre Stellung ändern. Es kommt dann ein Stromkreis für c e Wicklung des Endrelais E_7 zustande.

Das Kommando 7 ist daher durch das Ansprechen 80

der Relais R_1 , T_1 und T_2 gekennzeichnet. In ganz ähnlicher Weise vollzieht sich die Ausführung anderer Kommandos, und zwar sind die unter Benutzung der Tasten K_1 bis K_8 und der Widerstände W_1 und W_2 sich ergebenden Polaritiken und Intensitäten aus dem Kommandoscheme täten und Intensitäten aus dem Kommandoschema der Fig. 2 ersichtlich.

Wie man daraus sieht, ergeben sich unter Verwendung des Halbwellenprinzips und unter Benutzung zweier Intensitäten, wie schon eingangs 90 erwähnt wurde, insgesamt acht Kommandos. Die Schaltung arbeitet, wie versuchsweise festgestellt wurde, bei einem Intensitätsverhältnis von 1:5 einwandfrei.

Die angegebene Schaltung läßt sich im Bedarfs- 95 fall auch für mehr als zwei Intensitäten ausführen und bringt dann eine entsprechende Erhöhung der Kommandozahl mit sich. So z. B. beträgt die Zahl der übertragbaren Kommandos bei drei Intensitäten bereits 15. Ist n die Zahl der Intensitäten, 100 so heträgt die Gesamtzahl der möglichen Kommandos $n^2 + 2n$.

PATENTANSPRUCHE:

1. Kommandoübertragungseinrichtung, da- 105 durch gekennzeichnet, daß über zwei Adern Empfangsrelais mit verschiedener Empfindlichkeit bezüglich Intensität und Polarität durch die verschiedenen oder gleichen Intensitäten der beiden Halbwellen einer Wechsel- 110 spannung oder deren Kombination so zum Ansprechen gebracht werden, daß sie ohne Zwischenschaltung von Hilfsrelais die den jeweiligen Kommandos zugeordneten Stromkreise direkt betätigen.

2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß für jede Polarität nur zwei Intensitäten vorhanden sind, durch die je ein empfindliches Telegraphenrelais (T_1, T_2) mit nur einem Wechselkontakt und je ein normales 120 Fernsprechrelais (R_1, R_2) an der Empfangsstelle in beliebiger Kombination betätigt

3. Einrichtung nach Auspruch I und 2, dadurch gekennzeichnet, daß an der Sendestelle 125 Kommandotasten $(K_1$ bis $K_3)$ an einen Pol einer Wechselstromquelle angeschlossen sind, deren anderer Pol mit einer Fernleitungsader verbunden ist.

4. Einrichtung nach Anspruch I bis 3, dadurch gekennzeichnet, daß die Kommandotasten $(K_1$ bis $K_8)$ bei ihrer Betätigung Hilfsleitungen (a bis d) an Spannung legen, die über Gleichrichter (G_1, G_2) unmittelbar oder über Zusatz-

widerstände $(W_1,\ W_2)$ an die andere Fernleitungsader angeschlossen sind.

5. Einrichtung nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß auf der Empfangsseite die Relais (R_1, T_1) einerseits und die Relais (R_2, T_2) andererseits in einer Gleichrichtergabelschaltung liegen und mit ihren Kontakten Empfangsrelais $(E_1$ bis $E_8)$ betätigen.

Hierzu i Blatt Zeichnungen

| Strommerlauf | Empfangsrelais | Ry Ft R2 F2 | Rq T7 | Rq T7 | R2 E | FT F2 | FT F4 | FT F2 | FT F4 | FT F2 | FT F4 | FT F2 | FT F2 F2 | FT F4 | FT F2 | FT F4 | FT F2 | FT F4 | FT F