ENGR 1204 Programming Languages in Engineering

MATLAB Lab 4 (Function)

The objective of this exercise is to minimize the total surface area of a cylindrical metal can for a given volume, and compare that area to that of a sphere of equal volume. Assume that the volume is equal to $\pi \approx 3.1416$.

For this exercise, first create two user function files:

cylinder.m Inputs – radius, height Outputs – volume, area

sphere.m Input – radius Outputs – volume, area

Next create a MATLAB program (script .M file) to perform the following steps:

For cylinder:

- (1) Display table headings for cylinder radius, height, volume and area
- (2) For radius values of 0.5 to 1 in steps of 0.02
 - Compute the height resulting in constant volume
 - Call cylinder.m to calculate and return cylinder volume and area
 - Display the results formatted to 4 significant figures.

For sphere:

- (3) Calculate and display the sphere radius for a volume of π .
- (4) Call sphere.m to calculate, return and display sphere volume and area.

Compare the minimum cylinder area to the sphere's area.

<u>Formulas</u>

Cylinder: volume =
$$\pi$$
 r² h area = 2π r h + π r² + π r² = 2π r (r + h) (sides) (top) (bottom)

Sphere: volume =
$$(4/3) \pi r^3$$
 area = $4 \pi r^2$