Nearest Neighbour Algorithms

Christos Dimitrakakis

September 20, 2024

Outline

Introduction

The hidden secret of machine learning

The algorithm

k Nearest NeighboursExtensions and parameters

Introduction

The hidden secret of machine learning

The algorithm

k Nearest NeighboursExtensions and parameters

Supervised learning

- ▶ Given labelled training examples $(x_1, y_1), ..., (x_T, y_T)$ where
- $\triangleright x_t \in X$ are features
- \triangleright $y_t \in Y$ are labels...

Feature space

- ▶ Usually $=^n$: the n-dimensional Euclidean space
- ► How do we use your class data?

Classification

 $Y = \{1, ..., m\}$ are discrete labels

Regression

Y = m are continuous values

The kNN algorithm idea

- Assume an unknown example is similar to its neighbours
- Smoothness allows us to make predictions

Discriminatory analysis-nonparametric discrimination: consistency properties, Evelyn Fix and Joseph L. Hodges Jr, 1951.

Figure: Evelyn Fix

Figure: Joseph Hodges

Performance of KNN on image classification ./fig/knn-image-performance.png

Introduction

The hidden secret of machine learning

The algorithm k Nearest Neighbours Extensions and parameters

The Nearest Neighbour algorithm

Pseudocode

- ▶ Input: Data $(x_t, y_t)_{t=1}^T$, test point x, distance d
- $ightharpoonup t^* =_t d(x_t, x)$ / How do we implement this?
- ightharpoonup Return $\hat{y}_t = y_{t^*}$

Classification

$$\hat{y}_t \in [m] \equiv \{1, \dots, m\}$$

Regression

$$\hat{y}_t \in m$$

The k-Nearest Neighbour algorithm

Pseudocode

- lnput: Data $(x_t, y_t)_{t=1}^T$, test point x, distance d, neighbours k
- ightharpoonup Calculate $h_t = d(x_t, x)$ for all t.
- ▶ Get sorted indices $s = \operatorname{argsort}(h)$ so that $d(x_{s_i}, x) \leq d(x_{s_{i+1}}, x)$ for all i. (How?)
- ightharpoonup Return $\sum_{i=1}^k y_{s_i}/k$.

Classification

- It is not convenient to work with discrete labels.
- ▶ We use a one-hot encoding (0, ..., 0, 1, 0, ..., 0)\$.
- ▶ $y_t \in \{0,1\}^m$ with $||y_t||_1 = 1$, so that the class of the *t*-th example is j iff $y_{t,j} = 1$.

Regression

 \triangleright $y_t \in {}^m$, so we need do nothing

Making a decision

kNN Output

- ightharpoonup Given features x, we get a vector

Accuracy

- Predicted label a
- ► Actual label y
- V(a, y) = a = y

Classification decision to maximise accuracy

$$ightharpoonup a_t =_i p_i$$

The number of neighbours

- k = 1
 - How does it perform on the training data?
 - How might it perform on unseen data?

k = T

- ► How does it perform on the training data?
- ► How might it perform on unseen data?

Distance function

For data in n , p-norm

$$d(x,y) = ||x - y||_p$$

Scaled norms

When features having varying scales:

$$d(x,y) = \|Sx - Sy\|_p$$

Or pre-scale the data

Complex data

- Manifold distances
- ► Graph distance

Distances

A distance $d(\cdot, \cdot)$:

- ▶ Identity d(x,x) = 0.
- ▶ Positivity d(x, y) > 0 if $x \neq y$.
- ► Symmetry d(y,x) = d(x,y).
- ▶ Triangle inequality $d(x, y) \le d(x, z) + d(z, y)$.

For data in n, p-norm

$$d(x,y) = \|x - y\|_p$$

Norms;

A norm $\|\cdot\|$

- ightharpoonup Zero element ||0|| = 0.
- ▶ Homogeneity ||cx|| = c||x|| for any scalar a.
- ► Triangle inequality $||x + y|| \le ||x|| + ||y||$.

\$p\$-norm

$$||z||_p = \left(\sum_i z_i^p\right)^{1/p}$$

Neighbourhood calculation

If we have T datapoints

Sort and top K.

ightharpoonup Requires $O(T \ln T)$ time

Use the Cover-Tree or KD-Tree algorithm

- ► Requires $O(cK \ln T)$ time.
- c depends on the data distribution.

Introduction

The hidden secret of machine learning

The algorithm

k Nearest NeighboursExtensions and parameters

KNN activity

- ► Implement nearest neighbours
- ► Introduction to scikitlearn nearest neighbours