PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(51) International Patent Classification ⁵ : C11C 3/10	A1	(11) International Publication Number: WO 94/26854 (43) International Publication Date: 24 November 1994 (24.11.94)
(21) International Application Number: PCT/EF (22) International Filing Date: 22 April 1994 ((30) Priority Data: 22 April 1994 ((30) Priority Data: 31 May 1993 (13.05.93) (71) Applicant (for all designated States except US): I CROKLAAN [NL/NL]; Zanndijkerweg 36, NL- Womerveer (NL). (72) Inventor; and (75) Inventor/Applicant (for US only): QUINLAN, Paul (GB/GB): 9 Ely Way, Kempston, Bedford MB (GB). (74) Agent: UNILEVER N.V.; Patent Division, P.O. Box 3130 AC Vlaardingen (NL).	22.04.9 CODER 1521 A	CZ, DE, DK, ES, FI, GB, GE, HU, JP, KG, FP, KK KZ, K, LI, LV, WD, MG, MN, WN, NI, NO, NZ, PI PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA. US, UZ. VP European patent (AT, BE, CH, DE, DK, ES, FR, GB, GB IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CI CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). S- Published With international search report.

(54) Title: PROCESS FOR PRODUCTION OF HUMAN MILK FAT REPLACERS

(57) Abstract

Triglycerides with more than 40 wt% saturated fatty acids in the 2-position contain considerable amounts of trisaturated triglycerides; these trisaturated triglycerides are removed (reduced) by performing an enzymic conversion with a source providing unsaturated C184-residues, using a 1,3-specific enzyme.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	FF	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon				

WO 94/26854 PCT/EP94/01304

PROCESS FOR PRODUCTION OF HUMAN MILK FAT REPLACERS

The enzymic preparation of fats that can be used as human milk fat replacers, in which fats more than 40 wt.% of the 5 total amount of saturated fatty acids present are in the 2-position, is the subject of our earlier European patent 0209327 (Application N° 86305325.2) and European patent application 91300496.6.

10 According to these processes, fats (A) high in trisaturated triglycerides (= S₃, wherein S is preferably palmitic) are converted with a source (B) that provides oleic acid moieties. Sources of B are, e.g., free fatty acid mixtures rich in oleic acid or triglycerides with a high oleic acid 15 content in the 1,3-positions, e.g. high-oleic sunflower oil.

The conversion is carried out in the presence of a 1,3specific enzyme. The product of this enzymic conversion

containing residual amounts of non-converted S3, partial
conversion products, such as SSO, and the desired
conversion products (OSO), is subjected to a fractionation
process in which a product rich in OSO is obtained while a
product rich in SSO is removed and recirculated to the

conversion zone. Spent oleic acid sources (B) are removed
in a strip zone and can be used again in the process, if
and when appropriate.

Human milk replacement fats can only contain very limited amounts of trisaturated triglycerides (S_3 , where S_3 saturated fatty acid with at least 16 C-atoms). When the amount of S_3 is too high, the fat becomes too hard, and simultaneously absorption of the fat by infants is affected adversely.

WO 94/26854 PCT/EP94/01304

zone normally still contain amounts of 7 or more wt.% of S3, which is above the level, generally regarded as acceptable (about 4 wt%). Only when these products were subjected to solvent fractionation could these levels be 5 decreased to the desired level. However, wet fractionation requires high investments in equipment, time and energy and is therefore less attractive from a commercial point of view.

2

10 We have now found a new process by which the desired fats of maximum levels of 3 wt.% of S3 are obtained and in which fractionation can be avoided.

Accordingly, our invention is concerned with a process for 15 the preparation of triglyceride compositions, in which more than 40 wt.% of the total amount of saturated fatty acids present are in the 2-position, by enzymic interesterification of triglycerides high in trisaturates (= A) with a source (B) providing unsaturated fatty acid 20 moieties (C18 or more), which process is characterized by the performance of an enzymic removal, using a 1,3-specific enzyme, of trisaturated triglycerides (= S3, S= C16 or higher), in particular trisaturated triglycerides high in P3 and/or St3 (P = palmitic, St = stearic) or a combination 25 thereof (PSt P. etc.) from a product high in triglycerides rich in 2-saturated fatty acids from the USU and/or SSU type (U = unsaturated fatty acids C18 or more; S = saturated fatty acids C16 or more) by contacting the product rich in USU and/or SSU with an oil blend high in 30 triglycerides with acids other than palmitic and/or stearic acid in the 1,3-positions, but not being a triglyceride composition with more than 40 wt% of the fatty acids in the 2-position being saturated fatty acids with 16 or more Catoms.

35

Preferably, blends are used which are rich in triglycerides having a high level of unsaturated fatty acids, such as

oleic or linoleic acid or short chain saturated fatty acids, such as $C_{8:0};\ C_{10:0}$ or $C_{12:0}$ in at least the 1,3-positions.

3

- 5 A preferred process is a multi-step process comprising the steps of :
- converting triglycerides A enzymatically with a 1,3-specific enzyme and the unsaturated acid source B in a 10 first enzymic conversion zone;
 - 2) removing the spent unsaturated acid source B from the crude product of 1);
 - optionally subjecting the remaining part of 2) to an enzymic removal of diglycerides;
- 4) converting the remaining part of 2) and/or the product of 3) in a second enzymic conversion zone with a fresh source providing unsaturated acid moieties (B) in the presence of a 1,3-specific enzyme;
- 5) removing the spent unsaturated acid source B from 20 the crude product of 4);
 - 6) optionally recirculating the spent unsaturated acid source (B) from 5) to step 1);
- 7) decreasing the level of trisaturates (S₃, S= S₁₆ or higher) in the remaining part of 5) by a further enzymic 25 treatment, using a 1,3-specific enzyme with an oil blend high in triglycerides with acids other than palmitic and/or stearic acid in the 1,3-positions, but not being a triglyceride composition with more than 40 wt% of the fatty acids in the 2-position being saturated fatty acids with 16 or more C-atoms.
- It is surprising to find in this case that a third enzymic conversion can replace the fractionation procedure, as the levels of S₃ after two previous enzymic conversions were still too high. In an alternative embodiment of the process the second enzyme conversion (steps 4 and 5 above) can be omitted, proceeding directly to step 7 by employing a

sufficiently high ratio of acid to oil in step (1).

The above-mentioned process is in particular applicable to systems in which a fatty acid mixture high in oleic acid is 5 used as source (B) providing oleic acid moieties.

Fats A, which can be used as fats high in trisaturates S₃ (S= palmitic and/or stearic), are in particular the top fractions of palm oil fractionation. These fats preferably 10 contain more than 60 wt.% of S₃ (S = palmitic and/or stearic), while more than 20 wt.% of SSU (U = unsaturated) can also be present.

The best results are obtained when weight ratios of

15 trisaturated fat A: unsaturated acid source B of 1:2 - 2:1

are applied in the first and/or the second enzymic

conversion zones of steps 1) and/or 4).

The other process conditions in these enzymic zones can be chosen within the process conditions as disclosed in, e.g., GB 1,577,933, European patent 0209327 (86305325.2) and European patent application 91300496.6. In particular, water contents, water activity, solvent, selection of 1,3-specific enzyme, catalyst-supporting materials are mentioned in these documents.

As any enzymic conversion inevitably also leads to the formation of some diglyceride, it is very useful to subject the crude triglyceride products of the enzymic

- 30 conversion(s) to a treatment with a catalyst specific for the conversion of diglycerides into glycerol. Very useful is an Amano G-catalyst, which is conventionally used for this purpose.
- 35 In step 7), the level of S_3 is decreased by enzymic conversion, using the oil blend which is high in triglycerides with acids other than palmitic and/or stearic

acid in the 1,3-positions. It is very suitable to use for this purpose: medium chain triglycerides (i.e. MCT-oils, based on C₈-C₁₄ fatty acids), coconut oil, palm kernel, soybean oil, palm oil, rapeseed oil, high-oleic sunflower oil, olive oil, fish oil, fungal, algal or other lipid sources rich in long chain polyunsaturated fatty acids, such as C_{20:4 w 6} or C_{22:6 w 3}, and butterfat, or mixtures thereof.

10 As well as being suitable for applications in infant formulas and infant foods as human milk fat replacers, fats derived from the above process are readily digestible and may also be applied in other foods, for example in confectionery, spreads, creams, bakery products, cooking oils and health foods, and as a component in clinical products.

Our invention will be further explained by the following non-limiting Example(s).

20

EXAMPLE I

Palm stearine was reacted with high oleic sunflower acids (1:1 by weight) by passing the mixture through a column packed with SP-392. The product of this reaction was distilled to remove fatty acids and treated with Lipase G to reduce the diglyceride level. The residual S_3 level in this product was 7.6%. This product was mixed with high oleic sunflower oil (1:1 by weight) and interesterified using SP-392 as catalyst. The silver phase HPLC analysis of the fat blend before and after interesterification is shown below:

SLnS SOO OSO OSln OOO wt.% SSS SOS SSO Physical 3.8 1.6 12.9 12.6 11.6 5.8 Blend 3.9 33.7 After intn 2.4 4.2 12.7 0.7 20.9 15.2 4.9

 $S= \geq C_{16:0}$, O= oleic, ln= linoleic, > 3DB= > 3 double bonds/triglyceride

The fatty acid composition of this blend (unaffected by interesterification) was:

Fatty

acids 12:0 14:0 16:0 18:0 18:1 18:2 18:3 wt% 0.2 0.6 22.6 3.8 63.5 7.7 0.1

Interesterification of the physical blend reduced the S_3 level by nearly 40%.

EXAMPLE II

Palm stearine was mixed with fatty acids (normal and high oleic sunflower plus canola acids) in a weight ratio of 1:0.75, the feed partially saturated with water and passed through a column packed with immobilised lipase (mucor miehei on duolite) (Novo; code SP-392). The product of Step 1 was collected and the fatty acids removed by distillation (Step 2). Treatment of the oil fraction with

C18:3

lipase G (diglyceride-specific lipase; Amano Pharmaceutical Co) was used to reduce diglyceride levels (Step 3). Fresh acids were added to the resultant triglycerides in the same ratio as before, and passed through a second enzyme column (Step 4). The fatty acids stripping and lipase G steps were repeated (steps 5 and 6). The resultant triglyceride (50 parts) was mixed with liquid vegetable oils (30 parts) and coconut oil (20 parts) and passed through a third enzyme column containing Sp-392 catalyst step 7). The final oil blend was refined. Step 7 reduced the SSS level from 10% to 2.7% in the refined oil.

Results

1. Product of Steps 4-6

1.1 Fatty acid composition

	-10:0	10:0	10.1	10.2	10.
Total	48.3	2.4	35	13.3	1.0
2-positi	on 91.9	0.4	6 ,	1.4	0.4
1.2 Sil	ver Phase	HPLC			
SSS	SSU	usu	sus	suu	טטט
10	40 4	42.3	0.8	3.2	3.4

C16.0 C18.0 C18.1 C18.2

2. Product of Step 7

1.1 Fatty Acid composition

	C8:0-14:0	C _{16:0}	C _{18:0}	C _{18:1}	C _{18:2}	C _{18:3}
Total	18	25	3.0	35.4	16.0	2.0
2=200	ition 15.7	42.8	0.2	16.5	16.0	2.8

(57% of total palmitate in 2-position)

 S_3 level reduced to 2.7% (s= $C_{16:0} + C_{18:0}$)

PCT/EP94/01304

EXAMPLE III

Palm stearine (1 part) was mixed with unsaturated fatty acids (2 parts) derived from vegetable sources, partially wetted and reacted by passing through a column packed with SP-392 lipase (step 1). The product of this reaction was distilled to remove fatty acids (step 2) and treated with lipase G to reduce the diglyceride level (step 3). This product (50 parts) was mixed with 20 parts coconut oil and 30 parts mixed vegetable oils (sunflower, high oleic sunflower, canola, soybean) and reacted by passing through a second enzyme column (step 4). The final product was collected and fully refined. The S₃ level after step 3 was 11.8%, and was reduced to 2.5% after step 4.

1. Product of step 3

1.1 Fatty acid composition

	C _{16:0}	C _{18:0}	C _{18:1}	C _{18:2}	C _{18:3}
Total	51.1	2.3	35	10.5	1.1
2-posit	ion 95.4	0.2	4.0	0.4	0.4
1.2 Si	lver Phase	HPLC			
SSS	SSU	usu	sus	ຮບບ	טטט
11.8	43.8	40.4	0.4	1.8	1.9

2.1 Fatty Acid analysis

	C8:0-14:0	C _{16:0}	C _{18:0}	C _{18:1}	C _{18:2}	C _{18:3}
FAME	18	25	3.0	35.2	17.0	1.6
2-pos	ition 18.7	43	0.2	17.3	19.0	1.8

^{(57%} of total palmitate in 2-position)

 S_3 level reduced to 2.4% (s= $C_{16:0}$ + $C_{18:0}$)

CLAIMS

- A process for the preparation of triglyceride 1. compositions, in which more than 40 wt.% of the total amount of saturated fatty acids present are in the 2position, by enzymic interesterification of triglycerides high in trisaturates (= A) with a source providing unsaturated fatty acid moieties with 18 or more C-atoms (= B), characterized by the performance of an enzymic removal, using a 1,3-specific enzyme, of trisaturated triglycerides (= S3, S= 16 or more C-atoms) from a product high in triglycerides, rich in 2-saturated fatty acids from the USU and/or SSU type by contacting the product rich in USU and/or SSU with an oil blend high in triglycerides with acids other than palmitic and/or stearic acid in the 1,3-positions, but not being a triglyceride composition with more than 40 wt% of the fatty acids in the 2-position being saturated fatty acids with 16 or more C-atoms
- 2. A process for the preparation of triglyceride compositions, in which more than 40 wt.% of the total amount of saturated fatty acids present are in the 2position, by enzymic interesterification of triglycerides high in trisaturates (= A) with a source providing unsaturated acid moieties (= B), characterized by a multistep process comprising the steps of :
- converting triglycerides A enzymatically with a 1,3-specific enzyme and the unsaturated acid source B in a first enzymic conversion zone;
- 2) removing the spent unsaturated acid source B from the crude product of 1);
- optionally subjecting the remaining part of 2) to an enzymic removal of diglyceride;
- 4) converting the remaining part of 2) or the product of 3) in a second enzymic conversion zone with a fresh

source providing unsaturated acid moieties (B) in the presence of a 1,3-specific enzyme;

- 5) removing the spent unsaturated acid source B from the crude product of 4):
- 6) optionally recirculating the spent unsaturated acid source (B) from 5) to step 1);
- 7) decreasing the level of trisaturates (S_3 , $S=C_{16}$ or higher) in the remaining part of 5) by a further enzymic treatment, using a 1,3-specific enzyme with an oil blend high in triglycerides with acids other than palmitic and/or stearic acid in the 1,3-positions, but not being a triglyceride composition with more than 40 wt% of the fatty acids in the 2-position being saturated fatty acids with 16 or more C-atoms.
- 3. A process according to Claim 1 or 2, wherein a fatty acid mixture high in oleic acid is used as a source of the unsaturated acid moieties B.
- 4. A process according to Claim 2, wherein weight ratios of trisaturated fat A: unsaturated acid source B of 1:2 2:1 are used in the first and/or second enzymic conversion zones of steps 1) and/or 4).
- 5. A process according to Claim 2, wherein in step 3) an Amano G-type enzyme is used.
- 6. A process according to Claim 1 or 2, wherein a blend is used selected from the group consisting of MCT-oils (medium chain triglyceride; C_6 - C_{14} fatty acids), coconut oil, palm kernel, soybean oil, olive oil, high-oleic sunflower oil, fish oil, rapeseed oil, palm oil and butterfat, or fraction thereof.

11

7. A process according to Claim 1 or 2, wherein mixture A comprises a mixture rich in palmitic acid with more than 60 wt.% of S_3 (S = palmitic and/or stearic) and more than 20 wt.% of SSU (U = unsaturated acid).

		PCT/EP 94	/01304
IPC 5	IFICATION OF SUBJECT MATTER C11C3/10	-	
According t	to International Patent Classification (IPC) or to both national classi-	fication and IPC	
	SEARCHED		
Minimum d IPC 5	ocumentation searched (classification system followed by classificat C11C A23D A23C	tion symbols)	
Documentat	tion searched other than minimum documentation to the extent that	such documents are included in the fields so	earched
Electronic d	lata base consulted during the international search (name of data ba	se and, where practical, search terms used)	
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the r	elevant passages	Relevant to elaim No.
A	EP,A,O 417 823 (UNILEVER NV) 20 I see claims 4,6,12; example	March 1991	1
A	EP,A,O 209 327 (UNILEVER PLC) 21 1987 cited in the application	January	1
	see the whole document		
A	EP,A,O 496 456 (UNILEVER NV) 20 of cited in the application see the whole document	July 1992	1
A	US,A,5 061 498 (NARIHIDE MATSUZA 29 October 1991 see claims 1,4,6,17	(I ET AL.)	1
		-	
Furt	her documents are listed in the continuation of box C.	Patent family members are listed in	n annex.
	tegories of cited documents:	"T" later document published after the inte or priority date and not in conflict wi	
'E' earlier	ent defining the general state of the art which is not ered to be of particular relevance document but published on or after the international	cited to understand the principle or th invention "X" document of particular relevance; the	eory underlying the claimed invention
"L" docume which	nate nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified)	cannot be considered novel or cannot involve an inventive step when the do "Y" document of particular relevance; the cannot be considered to involve an in	cument is taken alone claimed invention
"O" docume	ent referring to an oral disclosure, use, exhibition or means	document is combined with one or mements, such combination being obvior in the art.	ore other such docu- us to a person skilled
later th	nan the priority date elaimed	*& document member of the same patent	
	actual completion of the international search August 1994	Date of mailing of the international se 2 3. 08. 94	arch report
		Authorized officer	
Name and r	nailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Augustized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Dekeirel, M	

PCT/EP 94/01304

Patent document cited in search report	Publication date	Patent mem	Patent family member(s)	
EP-A-0417823	20-03-91	GB-A-	2236537	10-04-91
		AU-B-	628644	17-09-92
		AU-A-	6236990	21-03-91
		JP-A-	3109495	09-05-91
EP-A-0209327	21-01-87	GB-A-	2178752	18-02-87
LI A 0203327		AU-B-	586264	06-07-89
		AU-A-	6011686	15-01-87
		CA-A-	1297336	17-03-92
		JP-B-	4041599	08-07-92
		JP-A-	62025936	03-02-87
		SE-A-	8603100	13-01-87
		US-A-	4876107	24-10-89
		AU-B-	640301	19-08-93
EP-A-0496456	29-07-92		1034492	06-08-92
		AU-A-		30-03-93
		JP-A-	5076283	30-03-93
US-A-5061498	29-10-91	JP-A-	1312995	18-12-89