

SWN1821

1. 概述

SWN1821,内置高精度电压检测电路和延迟电路以及内置 MOSFET,是用于单节锂离子/锂聚合物可再充电电池的保护 IC。

本 IC 适合于对 1 节锂离子/锂聚合物可再充电电池的过充电、过放电和过电流进行保护。

2. 特点

SWN1821 具备如下特点:

(1) 高精度电压检测电路

● 过充电检测电压 4.30V 精度±50mV
● 过充电释放电压 4.15V 精度±70mV
● 过放电检测电压 2.45V 精度±100mV
● 过放电释放电压 3.00V 精度±100mV

(2) 各延迟时间由内部电路设置(不需外接电容)

● 过充电检测延迟时间 典型值 100ms● 过放电检测延迟时间 典型值 100ms● 放电过流检测延迟时间 典型值 20ms

(3) 低耗电流

■ 工作模式 典型值 3.0µA, 最大值 6.0µA (VDD=3.5V)

● 过放电模式 典型值 1.0µA, 最大值 1.5µA (VDD=2.0V)

(4) 允许向 **0V** 电池充电。

(5) 导通内阻常态 $48m\Omega$. 3.5A 过流保护

(6) 封装: SOT23-5L

应用

- 1节锂离子可再充电电池组
- 1 节锂聚合物可再充电电池组

SWN1821

3. 封装、脚位及标记信息

脚位	符号	说明	SOT23-5L 管脚排列图
1	NC	悬空	VM
2	VSS	芯片地,接电芯负极	VM
3	VDD	电源输入端	Pin1
4	VM	充电器/负载负极连接端	VSS
5	VM	充电器/负载负极连接端	

4. 绝对最大额定值

(VSS=0V, Ta=25℃, 除非特别说明)

项目	符号	规格	单位
VDD 和 VSS 之间输入电压	V_{DD}	VSS-0.3~VSS+8	V
VM 输入端子电压	V_{VM}	-8~ +11	V
工作温度范围	T _{OP}	-55~+145	${\mathbb C}$
储存温度范围	T _{ST}	-40~+145	$^{\circ}$
容许功耗	P _D	400	mW
ESD	HBM	4000	V

SWN1821

5. 电气特性

(VSS=0V, Ta=25℃, 除非特别说明)

项目	符号	条件	最小值	典型值	最大值	单位		
输入电压								
VDD-VSS 工作电压	V _{DSOP1}	-	0	-	6	V		
VDD-VM 工作电压	V _{DSOP2}	-	-6	-	6	V		
耗电流								
工作电流	I_{DD}	VDD=3.9V		3.0	6.0	uA		
过放电时电流	I_{PD}	VDD=2.0V		1.0	1.5	uA		
		检测电压			1	ı		
过充电检测电压	V _{CO}	R1=100Ω	4.250	4.300	4.350	V		
过充电释放电压	V_{CR}	R1=100Ω	4.080	4.150	4.220	V		
过放电检测电压	V_{DL}	R1=100Ω	2.350	2.450	2.550	V		
过放电释放电压	V_{DR}	R1=100Ω	2.900	3.000	3.100	V		
放电过流保护电流 1	I _{IOV1}	V _{DD} =3.5V	3.0	3.5	5.0	Α		
放电过流保护电流 2	I _{IOV2}	V _{DD} =3.5V	5	7	9	Α		
负载短路保护电流	I _{Short}	V _{DD} =3.5V	8	10	13	Α		
充电电流检测	I _{CHA}	V _{DD} =3.5V	2.8	3.5	5.5	Α		
		延迟时间						
过充电检测延迟时间	T _{oc}	V _{DD} =3.8V → 4.5V		100		ms		
过放电检测延迟时间	T_OD	V_{DD} =3.2V \rightarrow 2.2V		100		ms		
放电过流 1 检测延迟时间	T _{DIP1}	V _{DD} =3.0V		20		ms		
放电过流 2 检测延迟时间	T _{DIP2}	V _{DD} =3.0V		2.5		ms		
负载短路检测延迟时间	T_{SIP}	V _{DD} =3.6V		150		μs		
内置 MOSFET 参数								
内置 MOSFET 导通内阻	Rds(on)	V _{DD} =3.6V, I _{VM} =1.0A,	40	48	58	mΩ		
过温保护参数								
过温保护检测温度	TSHD			150		$^{\circ}$ C		
过温保护释放温度	TSHR			120		$^{\circ}\mathbb{C}$		
向 0V 电池充电								
允许向 0V 电池充电的电 压阀值	V_{0CH}	允许允许向 0V 电池充 电功能	-	-		V		

说明: *1、此温度范围内的参数是设计保证值,而非高、低温实测筛选。

SWN1821

6. 电池保护 IC 应用电路示例

注: 此版本芯片外围无需接电容(已内置),若 VDD-VSS 间另加电容,可能会更容易出现接电芯后需要激活的状况出现

标记	器件名称	用途	最小值	典型值	最大值	说明
R1	电阻	限流、稳定VDD、加强ESD	50Ω	100Ω	1000Ω	

7. 工作说明

7.1. 正常工作状态

此 IC 持续侦测连接在 VDD 和 VM 之间的电池电压,以及 VM 与 VSS 之间的电压差,来控制充电和放电。当电池电压在过放电检测电压(V_{DL})与过充电检测电压(V_{CIP})之间,且 VM 端子电压在放电过流检测电压(V_{DIP})与充电过流检测电压(V_{CIP})之间时,为"正常工作状态"。此状态下,充电和放电都可以自由进行。

说明:初次连接电芯时,会有不能放电的可能性,此时,短接 VM 端子和 VSS 端子,或者连接充电器,就能恢复到正常工作状态。

7.2. 过充电状态

正常工作状态下的电池,在充电过程中,一旦电池电压超过过充电检测电压(V_{CU}),并且这种状态持续的时间超过过充电检测延迟时间(T_{OC})以上时,SWN1821 停止充电,这个状态称为"过充电状态"。

过充电状态的释放,有以下两种方法:

- (1)由于自放电使电池电压降低到过充电释放电压(V_{CR})以下时,过充电状态释放,恢复到正常工作状态。
 - (2) 移走充电器并连接负载,当电池电压降低到过充电检测电压(Vcu)以下时,过充电状态

SWN1821

释放,恢复到正常工作状态。

7.3. 过放电状态及休眠状态

正常工作状态下的电池,在放电过程中,当电池电压降低到过放电检测电压(V_{DL})以下,并且这种状态持续的时间超过过放电检测延迟时间(T_{OD})以上时,SWN1821 停止放电,这个状态称为"过放电状态"。若此时 VM 端电压一直高于负载短路保护电压(T_{SIP}),电路即进入"休眠状态"。

过放电状态的释放,有以下两种方法:

- (1) 连接充电器,对电池进行充电,当电池电压高于过放电检测电压(V_{DL})时,恢复到正常工作状态。
- (2) 若负载移除,电芯本身的"自身压"可能会使电池电压高于过放电释放电压(V_{DR}),此时过放电状态释放,恢复到正常工作状态。

7.4. 放电过流状态(放电过流检测功能和负载短路检测功能)

正常工作状态下的电池,SWN1821 通过检测 VM 端子电压持续侦测放电电流。一旦 VM 端子电压超过放电过流检测电压(V_{DIP}),并且这种状态持续的时间超过放电过流检测延迟时间(T_{DIP}),停止放电,这个状态称为"放电过流状态"。

而一旦 VM 端子电压超过负载短路检测电压(V_{SIP}),并且这种状态持续的时间超过负载短路检测延迟时间(T_{SIP}),停止放电,这个状态称为"负载短路状态"。

当 VM 端子电压降低至低于过放电过流检测电压 (V_{DIP}),且持续时间超过放电过流释放延迟时间 (T_{DIPR})时,也即是说若所有放电负载移除,电池恢复到正常工作状态。

7.5. 充电过流状态

正常工作状态下的电池,SWN1821 通过检测 VM 端子电压持续侦测放电电流。若充电电流过大使 VM 端子电压低于充电过流检测电压(V_{CIP}),并且这种状态持续的时间超过充电过流检测延迟时间(T_{CIP}),停止放电,这个状态称为"充电过流状态"。

移除充电器,电池连接负载后,当 VM 端子电压上升至高于充电过流检测电压(V_{CIP}),且持续时间超过充电过流释放延迟时间(T_{CIPR})时,电池恢复到正常工作状态。

7.6. 向 0V 电池充电功能(允许)

若电池自放电到 0V,对电池充电,当 VDD 端相对于 VM 端的电压高于"向 0V 电池充电的电压 阀值(V_{0CH})"时,继续充电,当电池电压高于过放电检测电压(V_{DL})时,IC 进入正常工作状态。

注意:某些完全自放电后的电池,不推荐被再次充电,这是由锂电池的特性决定的。所以在决定使用"向**0V**电池充电"功能时,请详细询问电池供货商。

SWN1821

时序图

1. 过充(OCV) →放电 →正常工作

Figure 1. 充电,放电,正常工作时序图

SWN1821

2. 过放(ODV) →充电 →正常工作

Figure 2. 过放, 充电和正常工作时序图

SWN1821

3. 放电过流 (ODC) →正常工作

Figure 3. 放电过流和正常工作时序图

SWN1821

8. SOT23-5L 产品外形尺寸

Unit: mm

Symbol	Dimensions I	n Millimeters	6 -1 -1	Dimensions In Millimeters		
	Min	Max	Symbol	Min	Max	
L	2.82	3.02	E1	0.85	1.05	
В	1.50	1.70	a	0.35	0.50	
С	0.90	1.30	С	0.10	0.20	
L1	2.60	3.00	b	0.35	0.55	
E	1.80	2.00	F'	0	0.15	