ALL ABOUT A FOLD*

GClaramunt

YOU COULD'VE INVENTED FOLD...

HOW TO SUM ALL ELEMENTS OF A LIST?

```
[1, 7, 4, 11, 3, 9]
sum :: [Int] -> Int
```

HOW TO SUM ALL ELEMENTS OF A LIST?

```
[1, 7, 4, 11, 3, 9]
sum :: [Int] -> Int
sum [] = ?
sum (x:xs) = ?
```

HOW TO SUM ALL ELEMENTS OF A LIST?

```
[1, 7, 4, 11, 3, 9]
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs
```

HOW TO SUM ALL ELEMENTS OF A LIST? (IN SCALA)

```
List(1, 7, 4, 11, 3, 9)

def sum(nums: List[Int]): Int = nums match {
   case Nil => 0
   case x::xs => x + sum(xs)
```

HOW TO CONCATENATE ALL ELEMENTS OF A LIST?

```
[1, 7, 4, 11, 3, 9]
toString :: [Int] -> String
toString [] = ?
toString (x:xs) = ?
```

CONVERT TO STRING ALL ELEMENTS OF A LIST?

```
[1, 7, 4, 11, 3, 9]

toString :: [Int] -> String

toString [] = ""

toString (x:xs) = show x ++ toString xs
```

ALL ELEMENTS OF A LIST SATISFY A PROPERTY?

```
[1, 7, 4, 11, 3, 9]
all :: ( a->Bool ) -> [a] -> Bool
all _ [] = ?
all p (x:xs) = ?
```

ALL ELEMENTS OF A LIST SATISFY A PROPERTY?

```
[1, 7, 4, 11, 3, 9]
all :: ( a->Bool ) -> [a] -> Bool
all _ [] = True
all p (x:xs) = p x && all p xs
```

HOW WE DID RECURSION?

We have:

- One definition for the empty case
- One definition for the head/tail case

HOW WE DID RECURSION?

We have:

- One definition for the empty case
- One definition for the head/tail case

We are doing recursion in the structure of the list!

```
sum [] = 0
sum (x:xs) = x + sum xs
toString [] = ""
toString (x:xs) =
    show x ++ toString xs
all _ [] = True
all p(x:xs) = p x \&\& all p xs
```

```
sum [] = 0
                                       sum [] = 0
sum (x:xs) = x + sum xs
                                       sum (x:xs) = (+) x (sum xs)
toString [] = ""
                                       toString [] = ""
toString (x:xs) =
                                       toString (x:xs) =
                                           ((++).show) x (toString xs)
    show x ++ toString xs
all [] = True
                                       all [] = True
all p(x:xs) = p \times \&\&  all p(xs) = ((\&\&).p) \times (all p xs)
```

```
sum [] = 0
sum (x:xs) = (+) x (sum xs)
toString [] = ""
toString (x:xs) =
    ((++).show) x (toString xs)
all [] = True
all p (x:xs) = ((\&\&).p) x (all p xs)
```


A function f for the head/tail case that combines the head with the result of the recursive call on the tail

A value **z** for the empty case

A function f for the head/tail case that combines the head with the result of the recursive call on the tail

```
rec_list f z [] = z
rec_list f z (x:xs) = f x (rec_list f z xs)
```

Is "foldr"!

A value z for the empty case

A function f for the head/tail case that combines the head with the result of the recursive call on the tail rec_list f z [] = z

rec_list f z (x:xs) = f x (rec_list f z xs)

FOLD!

```
foldr :: (a -> b -> b) -> b -> [a] -> b
```

Usually "given a function f that combines an element with the accumulation and an initial value z, starting with z traverses the list (backwards) applying f producing a single result"

The result is $f(a_1, f(a_2, ..., (f(a_n, z))...))$

(sadly, not tail recursive)

WHAT ABOUT OTHER DATATYPES?

FOLD!

```
What happens with other datatypes ?

data BTree a = Branch (BTree a) (BTree a) | Leaf a

What about Either or Maybe ?
```

HOW TO SUM ALL ELEMENTS OF A TREE?

data BTree a = Branch (BTree a) (BTree a) | Leaf a
sum :: BTree Int -> Int

HOW TO SUM ALL ELEMENTS OF A TREE?

```
data BTree a = Branch (BTree a) (BTree a) | Leaf a
sum :: BTree Int -> Int
sum (Leaf a) = ?
sum (Branch t1 t2) = ?
```

HOW TO SUM ALL ELEMENTS OF A TREE?

```
data BTree a = Branch (BTree a) (BTree a) | Leaf a
sum :: BTree Int -> Int
sum (Leaf a) = a
sum (Branch t1 t2) = sum t1 + sum t2
```

CONVERT TO STRING ALL ELEMENTS OF A TREE?

```
data BTree a = Branch (BTree a) (BTree a) | Leaf a
toString :: BTree Int -> String
toString (Leaf a) = ?
toString (Branch t1 t2) = ?
```

CONVERT TO STRING ALL ELEMENTS OF A TREE?

```
data BTree a = Branch (BTree a) (BTree a) | Leaf a
toString :: BTree Int -> String
toString (Leaf a) = show a
toString (Branch t1 t2) = sum t1 ++ sum t2
```

HOW TO FOLD A TREE?

```
data BTree a = Branch (BTree a) (BTree a) | Leaf a
rec tree :: (b -> b -> b) ->(a -> b) -> BTree a -> b
Branch (Branch (Leaf 1) (Leaf 2)) (Leaf 3) ~>
      f (f (g 1) (g 2)) (g 3)
```

A FOLD REPLACES THE DATATYPE CONSTRUCTORS WITH FUNCTIONS

WHAT ABOUT OTHER DATATYPES?

Maybe a = Nothing | Just a

Either a b = Left a | Right b

WHAT ABOUT OTHER DATATYPES?

```
Maybe a = Nothing | Just a
   fold_m :: b -> (a -> b) -> Maybe a -> b
   ( "maybe" in Haskell )
Either a b = Left a | Right b
   fold e :: (a->c) -> (b->c) -> Either a b -> c
   ( "either" in Haskell )
```

Transforms the input into something else, following the structure of the datatype

Catamorphism

Greek ' $\kappa\alpha\tau\alpha$ -' meaning "downward or according to"

"There's a truly
marvellous category theory
explanation for this which
this slide is too narrow
to contain"

CATAMORPHISMS!

"Catamorphisms are generalizations of the concept of a fold in functional programming. A catamorphism deconstructs a data structure with an F-algebra for its underlying functor"

Given an F-algebra $h : F A \rightarrow A$,

fold_F(h) is the unique homomorphism

Fold replaces each constructor for the corresponding function in the

Fold corresponds to definitions by structural recursion over the type

CATAMORPHISMS!

"Catamorphisms are generalizations of the concept of a fold in functional programming. A catamorphism deconstructs a data structure with an F-algebra for its underlying functor"

(An algebra of functors 1,K,I,+,* can describe regular datatypes and be an initial algebra for all of them)

"AFTER ALL, A FOLD IS ORIGINATED BY THE UNIQUE HOMOMORPHISM THAT EXISTS BETWEEN THE INITIAL ALGEBRA AND ANY OTHER ALGEBRA, WHAT'S THE PROBLEM?"

THANK YOU!

@GCLARAMUNT