

Законы движения планет 12/01/2021

Солнечная система

Орбитальные параметры планет Солнечной системы

Планета	Радиус орбиты, 10 ⁹ м	Наклон экватора к орбите, градусы	Период обращения, земные сут
Меркурий	57,9	2 3	88
Венера	108,2	177,3	225
Земля	149,6	23,5	365
Марс	227,9	24,0	687
Юпитер	778,3	3,1	4333
Сатурн	1427,0	26,7	10759
Уран	2869,6	97,9	30685
Нептун	4496,6	29,6	60189

Эллипс

• Каноническое уравнение $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

• Эксцентриситет
$$e = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a}$$

1 закон Кеплера

• Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.

2 закон Кеплера

• За равные промежутки времени радиусвектор, соединяющий Солнце и планету, описывает равные площади.

3 закон Кеплера

• Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей орбит планет.

•
$$\frac{T^2}{a^3} = const$$

3 обобщенный закон Кеплера

$$\frac{T^2(M+m)}{a^3} = \frac{4\pi^2}{G},$$

где *M* – масса Солнца

т – масса планеты

а – большая полуось

G = 6,67·10
$$^{-11}$$
 $\frac{M^3}{c^2 \kappa r}$ – гравитационная постоянная

Кеплеровы элементы орбиты

Кеплеровы элементы орбиты

Элемент орбиты	Обозначе ние	Что определяет
большая полуось	a	Форма орбиты
эксцентриситет	e	Форма орбиты
наклонение	i	Ориентация орбиты относительно эклиптики
долгота восходящего узла	Ω	Ориентация орбиты относительно эклиптики
аргумент перицентра	ω	Ориентация орбиты относительно эклиптики
средняя аномалия	M_{0}	Положение тела на орбите

Большая полуось (а)

• Среднее расстояние между планетой и звездой

Эксцентриситет (е)

- Эксцентриситет характеризует «сжатость» эллипса.
- В общем случае вид орбиты определяется эксцентриситетом:
 - ≽е =0 окружность
 - >0< e <1 эллипс</p>
 - ≽е =1 парабола
 - >1< e <∞ гипербола</p>
 - ightharpoonup e = ∞ прямая (вырожденный случай)

Конические сечения

 под действием гравитационной силы тела могут двигаться только по коническим сечениям

Наклонение (і)

- Угол между плоскостью орбиты и плоскостью отсчёта (например, эклиптикой).
 - ➤ Если 0°<i<90°, то движение небесного тела называется прямым
 - ➤ Если 90°<i<180°, то движение небесного тела называется обратным

Узел орбиты

- Восходящий узел орбиты точка, в которой движущееся по орбите тело пересекает условную плоскость в северном направлении (то есть переходит из южного полушария небесной сферы в северное).
- Нисходящий узел орбиты точка, в которой движущееся по орбите тело пересекает условную плоскость в южном направлении (то есть переходит из северного полушария небесной сферы в южное).

Долгота восходящего узла

 угол в базовой плоскости, образуемый между направлением на нулевую точку и направлением на точку восходящего узла

Аргумент перицентра

• угол между направлениями из притягивающего центра на *восходящий узел* орбиты и на перицентр (или угол между линией узлов и линией апсид)

Средняя аномалия

- угловое расстояние от перицентра гипотетического тела, движущегося с постоянной угловой скоростью, равной среднему движению
- $M = M_0 + n(t t_0)$ где M_0 средняя аномалия на эпоху t_0 , t_0 начальная эпоха, t эпоха, на которую производятся вычисления,
- n среднее движение.

Уравнение Кеплера

• $M = E - e \sin E$ где $E - \sec E$ — эксцентрическая аномалия, $e - \sec E$ — эксцентриситет.

