Locating Parking Garages in NYC CUNY School of Professional Studies Sharad Gurung

# PROJECT OVERVIEW

## **OVERVIEW**

- Demonstration of a simple mash-up technique in R
- Combine NYC Parking Garage data from NYC OpenData with Google Maps
- Implement a simple algorithm to find nearby parking locations
- Display parking locations in a static Google map image
- × Packages: plyr, Imap, and RgoogleMaps

## PROJECT GOALS

Display nearby garages in a map

Implement nearby garage search algorithm

Collect and shape NYC parking garage data

## DATA COLLECTION

- NYC Parking Garage data is available at NYC OpenData portal
- CSV format selected for simplicity
- Latitude and Longitude extracted from Address field
- Garage classification depends on Number Of Spaces field
- Cleaned/shaped data saved for later use

### DATA MANAGEMENT

### Pros

- Quality
- Accuracy
- Uniqueness
- Full Address
- Number of Spaces

### Cons

- Missing trade name
- Data structure
- Poor formatting

### Opportunity

- Mash-up rate data
- Mash-up vacancy data
- SpacesClassification

## DATA MANAGEMENT CHALLENGE

| CHALLENGE                                                                                                                                     | SOLUTION                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extract latitude and longitude from address field. Example: 511 25 WEST 18 STREET NEW YORK, NY 10011 (40.74471526669623, - 74.00460000028977) | <pre>Idply(FullAddress, function(address) {     split = unlist(strsplit(address, "\n", fixed = TRUE))     coord = split[3]     coord = sub("\\(", "", coord)     coord = sub("\\)", "", coord)     split = unlist(strsplit(coord, ","))     return (data.frame(lon=split[2], lat=split[1])) })</pre>            |
| Classify parking locations by number of spaces                                                                                                | y = quantile(nyc\$Spaces, c(.8,.6,.4,.2))<br>nyc\$Qtle[nyc\$Spaces >= y[1]] = "1"<br>nyc\$Qtle[nyc\$Spaces < y[1] & nyc\$Spaces >= y[2]] = "2"<br>nyc\$Qtle[nyc\$Spaces < y[2] & nyc\$Spaces >= y[3]] = "3"<br>nyc\$Qtle[nyc\$Spaces < y[3] & nyc\$Spaces >= y[4]] = "4"<br>nyc\$Qtle[nyc\$Spaces < y[4]] = "5" |

NOTE: Code was refactored to fit the slide! Please refer to github for complete code.

## NEARBY GARAGE ALGORITHM

#### address.Coordinates

- Accepts user provided address
- Calls getGeoCode
- Returns address lat/lon

#### location.Distance

- Accepts locations, and start location
- Applies gdist to each row
- Returns distance for each row

#### nearby.Parking

- Accepts locations, start location, and search radius
- Filters locations by distance
- Returns closest five locations

## **ALGORITHM CONTINUED**

### Location.distance

```
+ apply(locations, 1, function(location) {
    gdist(lon.1=longitude, lat.1=latitude,
    lon.2=as.numeric(location["lon"]),
    lat.2=as.numeric(location["lat"]), units="miles")})
```

### Nearby.Parking

- + matches = locations[locations\$distance <
   searchRadius,];</pre>
- + matches = matches[order(matches\$distance),];
- + return (na.omit(matches[1:max.Locations,]));

# DISPLAY NEARBY GARAGE

#### GetMap

- Get static map
- Center on destination
- Zoom based on location range
- Size 640 by 640

#### PlotOnStaticMap

- Size: Depends on Number of Spaces
- Color: cyan

#### TextOnStaticMap

- Size: Customizable
- Location: Above plot image
- Color: Blue
- Text Width: Customizable

# FINAL RESULT



## FURTHER ENHANCEMENTS

- Mash-up vacancy data
- Mash-up rates data
- Implement web service

# REFERENCE

Complete Code at

https://github.com/sharadgit/IS607/Final