Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial Grammars

Luke S. Zettlemoyer and Michael Collins

MIT CSAIL

UAI 2005

semantic parsing

- input: sentence
- output: logical form
- dataset
 - Geo880, queries to a database of United States geography
 - Jobs640, queries to a database of job listings

Example: What states border Texas?

 $\lambda x.state(x) \land borders(x,texas)$

lambda calculus

- constants: entities, numbers, functions
- logical connectives: conjunction (△), disjunction (∨), negation(¬), implication (→)
- p quantifiers: universal (∀) and existential (∃)
- lambda expressions: anonymous functions (λx.f (x))
- other quantifiers/functions: arg max, definite descriptions

Example: What states border Texas?

 $\lambda x.state(x) \land borders(x,texas)$

lambda calculus

- constants: entities, numbers, functions
- logical connectives: conjunction (△), disjunction (∀),
 negation(¬), implication (→)
- quantifiers: universal (∀) and existential (∃)
- lambda expressions: anonymous functions (λx.f (x))
- other quantifiers/functions: arg max, definite descriptions

Example: What is the largest state?

arg max(λx.state(x), λx.size(x))

CCG

application rules

```
A/B: f B: g \Rightarrow A: f(g)
```

composition rules

```
A/B: f B/C: g \Rightarrow A/C: \lambda x.f(g(x))
```

type-raising rules

$$NP : f \Rightarrow NP/(S \setminus NP) : \lambda g.g(f)$$

```
Utah borders Idaho
NP (S\NP)/NP NP
S\NP
```

Utah := NP : utah

Idaho := NP : idaho

borders := $(S\NP)/NP : \lambda x. \lambda y. borders(y, x)$

CCG

Utah	borders	Idaho			
NP	(S\NP)/NP	NP			
utah	$\lambda x. \lambda y. borders(y, x)$	Idaho			
	S\NP		<i>></i>		
	λy.borders(y, idaho)				
	S		.<		

borders(utah, idaho)

main idea

Probabilistic Model:

Deciding between different analyses, handling spurious ambiguity.

Lexical Extraction:

Based on template

log-linear model

Log-Linear Model

- A set X of inputs (e.g. sentences)
- A set Y of labels/structures.
- ▶ A feature function $f: X \times Y \rightarrow \mathbb{R}^d$ for any pair (x,y)

Conditional Model

$$p(y \mid x; \theta) = \frac{e^{f(x,y)\cdot\theta}}{Z(x,\theta)}$$

inner product

$$f(x,y)\cdot\theta=\sum_{k=1}^d\theta_kf_k(x,y)$$

normalization term

$$Z(x,\theta) = \sum_{y' \in \mathcal{Y}} e^{f(x,y') \cdot \theta}$$

log-linear model

Maximum Likelihood: find a model θ* that maximizes LCL

$$\theta^* = \max_{\theta} \prod_{i=1}^n p(y_i \mid x_i; \theta)$$

$$= \max_{\theta} \sum_{i=1}^n \log p(y_i \mid x_i; \theta)$$

logarithm of conditional likelihood (LCL)

$$\mathcal{O}(\theta) = \sum_{i=1}^{n} \log p(y_i \mid x_i; \theta)$$

Computing Gradient

$$\frac{\partial}{\partial \theta_j} \log p(y \mid x; \theta) = \sum_{i=1}^n f_j(x_i, y_n) - \sum_{i=1}^n \sum_{y' \in \mathcal{Y}} p(y \mid x_i; \theta) f_j(x_i, y)$$

log-linear model

▶ Maximum Likelihood: find a model θ* that maximizes LCL

$$\theta^* = \max_{\theta} \prod_{i=1}^n p(y_i \mid x_i; \theta)$$

$$= \max_{\theta} \sum_{i=1}^n \log p(y_i \mid x_i; \theta)$$

logarithm of conditional likelihood (LCL)

$$\mathcal{O}(\theta) = \sum_{i=1}^{n} \log p(y_i \mid x_i; \theta)$$

Computing Gradient

$$\frac{\partial}{\partial \theta_{j}} \log p(y \mid x; \theta) = \sum_{i=1}^{n} f_{j}(x_{i}, y_{n}) - \sum_{i=1}^{n} \sum_{y' \in \mathcal{Y}} p(y \mid x_{i}; \theta) f_{j}(x_{i}, y)$$

Empirical counts

Expected counts

Probabilistic CCGs

- deciding between different analyses, handling spurious ambiguity
 - lexical items have more than one entry
 - logical form L may be derived by multiple derivations T
- Use a log-linear formulation of CCG (Clark and Curran (2003))

$$p(L, T \mid S; \theta) = \frac{e^{f(L, T, S) \cdot \theta}}{\sum_{(L, T)} e^{f(L, T, S) \cdot \theta}}$$

Parsing Problem

$$\underset{L}{\operatorname{argmax}} P(L \mid S; \theta) = \underset{L}{\operatorname{argmax}} \sum_{T} p(L, T \mid S; \theta)$$

note: T might be very large, use dynamic programming.

Probabilistic CCGs

- Local features
 - Limit features to lexical rules in derivations
- Why?
 - for convenience of dynamic programming

```
\frac{\text{Oklahoma}}{\text{Oklahoma}} \frac{(\text{S}\backslash \text{NP})/\text{NP} : \lambda y, \lambda x.borders(x,y)}{\text{S}\backslash \text{NP} : \lambda x.borders(x,texas')}}{\text{S}\backslash \text{NP} : \lambda x.borders(x,texas')} 
\frac{\text{S}\backslash \text{NP} : \lambda x.borders(x,texas')}{\text{S} : \text{borders}(\text{oklahoma',texas'})} 
f_{id(\text{NP} : \text{texas'})}(x,y) = count(\text{NP} : \text{texas'}) = 1
```

Probabilistic CCGs

LCL objective

$$\mathcal{O}(\theta) = \sum_{i=1}^{n} log \ p(L_i \mid x_i; \theta) = \sum_{i=1}^{n} log \left(\sum_{T} p(L_i, T \mid x_i; \theta) \right)$$

Computing Gradient

$$\frac{\partial}{\partial \theta_j} \mathcal{O}(\theta) = \sum_{i=1}^n \sum_T f_j(L_i, T, x_i) p(T \mid L_i, x_i; \theta) - \sum_{i=1}^n \sum_{L, T} f_j(L, T, x_i) p(L, T \mid x_i; \theta)$$

- note: This involves find the probability of all trees/derivations and their features given an input
- Dynamic programming: Use variant of inside-outside algorithm

GenLex: Lexical extraction

GenLex: Take a sentence and logical form and generates lexical items.

GENLEX(S,L) =
$$\{x := y \mid x \in W(S), y \in C(L)\}$$

- W(S): set of substrings in input S
- C(L): CCG rule templates or triggers

GenLex: Lexical extraction

Rules		Categories produced from logical form		
Input Trigger	Output Category	$arg \max(\lambda x.state(x) \land borders(x, texas), \lambda x.size(x))$		
constant c	NP:c	NP:texas		
arity one predicate p_1	$N:\lambda x.p_1(x)$	$N: \lambda x.state(x)$		
arity one predicate p_1	$S \backslash NP : \lambda x. p_1(x)$	$S \backslash NP : \lambda x.state(x)$		
arity two predicate p_2	$(S\backslash NP)/NP:\lambda x.\lambda y.p_2(y,x)$	$(S \backslash NP)/NP : \lambda x. \lambda y. borders(y, x)$		
arity two predicate p_2	$(S\backslash NP)/NP: \lambda x.\lambda y.p_2(x,y)$	$(S \backslash NP)/NP : \lambda x. \lambda y. borders(x, y)$		
arity one predicate p_1	$N/N: \lambda g.\lambda x.p_1(x) \wedge g(x)$	$N/N: \lambda g. \lambda x. state(x) \wedge g(x)$		
literal with arity two predicate p_2 and constant second argument c	$N/N:\lambda g.\lambda x.p_2(x,c)\wedge g(x)$	$N/N: \lambda g. \lambda x. borders(x, texas) \wedge g(x)$		
arity two predicate p_2	$(N\backslash N)/NP: \lambda x.\lambda g.\lambda y.p_2(x,y) \wedge g(x)$	$(N\backslash N)/NP: \lambda g.\lambda x.\lambda y.borders(x,y) \wedge g(x)$		
an $arg max / min$ with second argument arity one function f	$NP/N: \lambda g. \arg\max / \min(g, \lambda x. f(x))$	$NP/N: \lambda g. rg \max(g, \lambda x. size(x))$		
an arity one numeric-ranged function f	$S/NP:\lambda x.f(x)$	$S/NP: \lambda x. size(x)$		

GenLex: Lexical extraction

Example: Oklahoma borders Texas.

borders(oklahoma,texas)

- W (Oklahoma borders Texas) = {"Oklahoma", "Texas","Oklahoma borders", ...}
- C(borders(oklahoma, texas)) = {borders(...) → (S\NP)/NP : λy, λx.borders(x, y); texas → NP : texas, ...}

learning

- lexical generation
- log-linear parameter estimation

big idea

Learn compact lexicons via greedy iterative method that works with high probability rules/derivations

- an initial lexicon, Λ₀
 - includes lexical items that are derived directly from the database in the domain
 - such as { Utah := NP : utah, Idaho := NP : idaho, Nevada := NP : nevada, . . .}
- possible lexical items set

$$\Lambda^* = \Lambda_0 \cup \bigcup_{i=1}^n \text{GENLEX}(S_i, L_i)$$

ightharpoonup parameter initialization: 0.1 for all lexical items in Λ_0 , and 0.01 for all other lexical items

Algorithm:

- \bullet For $t=1\dots T$
- **Step 1:** (Lexical generation)
 - For i = 1 ... n:

 - Set $\lambda = \Lambda_0 \cup \text{GENLEX}(S_i, L_i)$. Calculate $\pi = \text{PARSE}(S_i, L_i, \lambda, \bar{\theta}^{t-1})$.
 - Define λ_i to be the set of lexical entries in π .
 - Set $\Lambda_t = \Lambda_0 \cup \bigcup_{i=1}^n \lambda_i$

Step 2: (Parameter Estimation)

• Set
$$\bar{\theta}^t = ESTIMATE(\Lambda_t, E, \bar{\theta}^{t-1})$$
 Returns parameter values θ that are the

Output: Lexicon Λ_T together with parameters $\bar{\theta}^T$.

output of SGD

Returns the

logical form Li

highest probability

parse for S_i with

- **Step 1**: Search for small set of lexical entries to parse data, then parse and find most probable rules.
- Step 2: Re-estimate log-linear model based on these compact lexical entries.

Results

	Geo880		Jobs640		
	P	R	P	R	
Our Method	96.25	79.29	97.36	79.29	
COCKTAIL	89.92	79.40	93.25	79.84	

- Geo880(600/280), Jobs640(500/140)
- Creates compact lexicons
- Easily inject linguistic knowledge
- Weakly supervised learning

Inducing Probabilistic CCG Grammars from Logical Form with Higher-Order Unification

Tom Kwiatkowski*, Luke Zettlemoyer, Sharon Goldwater and Mark Steedman

University of Edinburgh and University of Washington

EMNLP 2010

Unification-based GENLEX

- Automatically learns the templates
 - Can be applied to any language and many different approaches for semantic modeling
- Two step process
 - Initialize lexicon with labeled logical forms
 - "Reverse" parsing operations to split lexical entries

Unification-based GENLEX

Initialize lexicon with labeled logical forms

For every labeled training example:

I want a flight to Boston λx.flight(x) ^ to(x, BOS)

Initialize the lexicon with:

I want a flight to Boston \vdash S : λx .flight(x) $^{\land}$ to(x, BOS)

I want a flight to Boston $\vdash S : \lambda x.flight(x) \land to(x, BOS)$

I want a flight $\vdash S/(S|NP) : \lambda f.\lambda x.flight(x) \land f(x)$ to Boston $\vdash S|NP : \lambda x.to(x,BOS)$

Many possible category pairs

$$S_L(w_{0:n} \vdash A) = \{(w_{0:i} \vdash B, w_{i+1:n} \vdash C) \mid 0 \le i < n \land (B, C) \in S_C(A)\}$$

Split logical form h to f and g s.t.

$$f(g) = h \text{ or } \lambda x. f(g(x)) = h$$

- Infer syntax from logical form type
 - C(T) takes an input type T and returns the syntactic category of T

$$C(T) = \begin{cases} NP & \text{if } T = e \\ S & \text{if } T = t \\ C(T_2)|C(T_1) & \text{when } T = \langle T_1, T_2 \rangle \end{cases}$$

eg.
$$C() = S|NP$$
 $C(>) = S|NP|NP$ $T(tex) = e$ $T(\lambda x.state(x)) =$

 $\lambda f.\lambda x.flight(x) \wedge f(x)$ $\lambda x.to(x, BOS)$

 $\lambda y.\lambda x.flight(x) \wedge f(x,y)$ BOS

. . .

```
S: \lambda x.flight(x) \wedge to(x, BOS) \\ \hline \\ S|NP: \\ \lambda x.to(x, BOS) \\ \hline \\ S/NP: \\ \lambda y.\lambda x.flight(x) \wedge f(x) \\ \lambda y.\lambda x.flight(x) \wedge f(x,y) \\ NP: \\ BOS
```

Split logical form h to f and g

$$FA(X:h) = \{ (X/Y:f, Y:g) \mid h = f(g) \land Y = C(T(g)) \}$$

$$FC(X/Y:h) = \{ (X/W:f, W/Y:g) \mid h = \lambda x. f(g(x)) \land W = C(T(g(x))) \}$$

$$S_C(A) = \{FA(A) \cup BA(A) \cup FC(A) \cup BC(A)\}\$$

Parameter Initialization

Compute co-occurrence (IBM Model 1) between words and logical constants

Initial score for new lexical entries: average over pairwise weights

I want a flight to Boston

 $\lambda x.flight(x) \wedge to(x, BOS)$

- I. Find highest scoring correct parse
- 2. Find splits that most increases score
- 3. Return new lexical entries

 $\frac{\text{I want a flight to Boston}}{S}$ $\lambda x. flight(x) \wedge to(x, BOS)$

I want a flight to Boston

 $\lambda x.flight(x) \wedge to(x,BOS)$

- Find highest scoring correct parse
- 2. Find splits that most increases score
- 3. Return new lexical entries

I want a flight to Boston

 $\lambda x.flight(x) \wedge to(x,BOS)$

- Find highest scoring correct parse
- 2. Find splits that most increases score
- Return new lexical entries

I want a flight to Boston

 $\lambda x.flight(x) \wedge to(x, BOS)$

- I. Find highest scoring correct parse
- 2. Find splits that most increases score
- Return new lexical entries

Iteration 2

$$\frac{I \text{ want a flight}}{S/(S|NP)} \frac{\text{to Boston}}{S|NP} \\ \frac{\lambda f. \lambda x. flight(x) \wedge f(x)}{S} \frac{\lambda x. to(x, BOS)}{\lambda x. flight(x) \wedge to(x, BOS)} > 0$$

I want a flight to Boston

 $\lambda x.flight(x) \wedge to(x,BOS)$

- Find highest scoring correct parse
- 2. Find splits that most increases score
- Return new lexical entries

Iteration 2

I want a flight to Boston

 $\lambda x.flight(x) \wedge to(x,BOS)$

- Find highest scoring correct parse
- 2. Find splits that most increases score
- Return new lexical entries

Iteration 2

Experiments

System	Vai	riable F	ree	Lambda Calculu		culus
	Rec.	Pre.	F1	Rec.	Pre.	F1
Cross Validation Results						
KRISP	71.7	93.3	81.1	_	_	_
WASP	74.8	87.2	80.5	<u>_</u>		
Lu08	81.5	89.3	85.2		_	_
λ -WASP	_	_	_	86.6	92.0	89.2
Independent Test Set						
ZC05	_	_	-	79.3	96.3	87.0
ZC07	_	_	_	86.1	91.6	88.8
UBL	81.4	89.4	85.2	85.0	94.1	89.3
UBL-s	84.3	85.2	84.7	87.9	88.5	88.2

(on Geo880)

Experiments

System	8	English	Ĺ	,	Spanish	1
	Rec.	Pre.	F1	Rec.	Pre.	F1
λ -WASP	75.6	91.8	82.9	80.0	92.5	85.8
UBL	78.0	93.2	84.7	75.9	93.4	83.6
UBL-s	81.8	83.5	82.6	81.4	83.4	82.4
System	Japanese			Turkish		
	Rec.	Pre.	F1	Rec.	Pre.	F1
λ -WASP	81.2	90.1	85.8	68.8	90.4	78.1
POST COLOR COLOR COLOR COLOR						AV 0.000000 0.0000
UBL	78.9	90.9	84.4	67.4	93.4	78.1

(on Geo250)