CS 105: Department Introductory Course on Discrete Structures

Instructor: S. Akshay

Aug 22, 2023 Lecture 07 – Basic Mathematical Structures Countable Sets and functions

Pop Quiz

Define a sequence of shapes as follows:

- \blacktriangleright K(0) is an equilateral triangle.
- For n > 0, K(n) is formed by replacing each line segment of K(n-1) by the shape shown in bottom of left fig., such

- 1. Show by induction that $\forall n \in \mathbb{N}$, the no. of line segments in K(n) is $4^n \cdot 3$.
- 2. If the original equilateral triangle K(0) has side length 1,
 - 2.1 what is the perimeter of K(n) as a function of n?
 - 2.2 what is the area of K(n)? (Prove both by induction)

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

One direction is easy.

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

One direction is easy. $(\Leftarrow=)$

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

One direction is easy. (\Leftarrow)

1. Show contrapositive! If A is finite, then there can't be a bijection from A to $A \cup \{b\}$.

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

Now, lets see the more difficult direction (\Longrightarrow)

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

Now, lets see the more difficult direction (\Longrightarrow)

1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$.

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}$.

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}$. Define $f(a_1) = a_0$.

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}$. Define $f(a_1) = a_0$.
- 3. $\forall i \in \mathbb{N}, i \geq 1, A \setminus \{a_0, \dots a_{i-1}\}\$ is infinite, hence non-empty, so let $a_i \in A \setminus \{a_0, \dots, a_{i-1}\}.$

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}$. Define $f(a_1) = a_0$.
- 3. $\forall i \in \mathbb{N}, i \geq 1, A \setminus \{a_0, \dots a_{i-1}\}$ is infinite, hence non-empty, so let $a_i \in A \setminus \{a_0, \dots, a_{i-1}\}$. Define $f(a_i) = a_{i-1}$.

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}$. Define $f(a_1) = a_0$.
- 3. $\forall i \in \mathbb{N}, i \geq 1, A \setminus \{a_0, \dots a_{i-1}\}$ is infinite, hence non-empty, so let $a_i \in A \setminus \{a_0, \dots, a_{i-1}\}$. Define $f(a_i) = a_{i-1}$.
- 4. If $a \neq a_i$ for any $i \in \mathbb{N}$, then Define f(a) = a.

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}$. Define $f(a_1) = a_0$.
- 3. $\forall i \in \mathbb{N}, i \geq 1, A \setminus \{a_0, \dots a_{i-1}\}$ is infinite, hence non-empty, so let $a_i \in A \setminus \{a_0, \dots, a_{i-1}\}$. Define $f(a_i) = a_{i-1}$.
- 4. If $a \neq a_i$ for any $i \in \mathbb{N}$, then Define f(a) = a.
- 5. f is a bijection! Prove surjection and injection...

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}$. Define $f(a_1) = a_0$.
- 3. $\forall i \in \mathbb{N}, i \geq 1, A \setminus \{a_0, \dots a_{i-1}\}$ is infinite, hence non-empty, so let $a_i \in A \setminus \{a_0, \dots, a_{i-1}\}$. Define $f(a_i) = a_{i-1}$.
- 4. If $a \neq a_i$ for any $i \in \mathbb{N}$, then Define f(a) = a.
- 5. f is a bijection! Prove surjection and injection...

Corollary: Difference between finite vs infinite sets

▶ Even if A, B are infinite, $A \subset B$, there can be a bijection from A to B

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}$. Define $f(a_1) = a_0$.
- 3. $\forall i \in \mathbb{N}, i \geq 1, A \setminus \{a_0, \dots a_{i-1}\}$ is infinite, hence non-empty, so let $a_i \in A \setminus \{a_0, \dots, a_{i-1}\}$. Define $f(a_i) = a_{i-1}$.
- 4. If $a \neq a_i$ for any $i \in \mathbb{N}$, then Define f(a) = a.
- 5. f is a bijection! Prove surjection and injection...

Corollary: Difference between finite vs infinite sets

Even if A, B are infinite, $A \subset B$, there can be a bijection from A to B, i.e., they have the same "cardinality".

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \Longrightarrow non-empty, so let $a_1 \in A \setminus \{a_0\}$. Define $f(a_1) = a_0$.
- 3. $\forall i \in \mathbb{N}, i \geq 1, A \setminus \{a_0, \dots a_{i-1}\}$ is infinite, hence non-empty, so let $a_i \in A \setminus \{a_0, \dots, a_{i-1}\}$. Define $f(a_i) = a_{i-1}$.
- 4. If $a \neq a_i$ for any $i \in \mathbb{N}$, then Define f(a) = a.
- 5. f is a bijection! Prove surjection and injection...

Corollary: Difference between finite vs infinite sets

- Even if A, B are infinite, $A \subset B$, there can be a bijection from A to B, i.e., they have the same "cardinality".
- ightharpoonup From any set A, there is a surjection from A to \mathbb{N} .

Comparing infinite sets using functions

Theorem

There is a bijection from \mathbb{Z} to \mathbb{N} .

Proof: Hilbert's hotel argument. But how do you formalize it?

Comparing infinite sets using functions

Theorem

There is a bijection from \mathbb{Z} to \mathbb{N} .

Proof: Hilbert's hotel argument. But how do you formalize it?

$$f(x) = \begin{cases} -2x & \text{if } x \le 0\\ 2x - 1 & \text{else} \end{cases}$$

Comparing infinite sets using functions

Theorem

There is a bijection from \mathbb{Z} to \mathbb{N} .

Proof: Hilbert's hotel argument. But how do you formalize it?

$$f(x) = \begin{cases} -2x & \text{if } x \le 0\\ 2x - 1 & \text{else} \end{cases}$$

Some questions...

- 1. Is there a bijection between $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} ? yes
- 2. Is there a bijection between $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ to \mathbb{N} ? yes
- 3. Is there a bijection from \mathbb{Q} to \mathbb{N} ? yes
- 4. Is there a bijection from the set of all subsets of \mathbb{N} to \mathbb{N} ? no
- 5. Is there a bijection from \mathbb{R} to \mathbb{N} ? no

Countable and countably infinite sets

Definition

- For a given set C, if there is a bijection from C to \mathbb{N} , then C is called countably infinite.
- ► A set is countable if it is finite or countably infinite.

Examples: even numbers, number of horses,...

By previous corollary (\exists surj from any infinite set to \mathbb{N})

Countably infinite sets are the "smallest" infinite sets.

Countable and countably infinite sets

Definition

- ▶ For a given set C, if there is a bijection from C to \mathbb{N} , then C is called countably infinite.
- ▶ A set is **countable** if it is finite or countably infinite.

Examples: even numbers, number of horses,...

By previous corollary (\exists surj from any infinite set to \mathbb{N})

Countably infinite sets are the "smallest" infinite sets.

What are the other properties of countable sets?

Some questions...

Are the following sets countable?

That is, is there a bijection from these sets to \mathbb{N} ?

- \triangleright the set of all integers \mathbb{Z}
- \triangleright $\mathbb{N} \times \mathbb{N}$
- $ightharpoonup \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- \triangleright the set of rationals \mathbb{Q}
- \triangleright the set of all (finite and infinite) subsets of $\mathbb N$
- \triangleright the set of all real numbers \mathbb{R}

Some questions...

Are the following sets countable?

That is, is there a bijection from these sets to \mathbb{N} ?

- \triangleright the set of all integers \mathbb{Z}
- \triangleright $\mathbb{N} \times \mathbb{N}$
- $ightharpoonup \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- ightharpoonup the set of rationals $\mathbb Q$
- \triangleright the set of all (finite and infinite) subsets of $\mathbb N$
- \triangleright the set of all real numbers \mathbb{R}

To show these it suffices to show that why?

 \triangleright there is an injection from these sets to \mathbb{N}

Some questions...

Are the following sets countable?

That is, is there a bijection from these sets to \mathbb{N} ?

- \triangleright the set of all integers \mathbb{Z}
- \triangleright $\mathbb{N} \times \mathbb{N}$
- $ightharpoonup \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- ightharpoonup the set of rationals $\mathbb Q$
- \triangleright the set of all (finite and infinite) subsets of $\mathbb N$
- \triangleright the set of all real numbers \mathbb{R}

To show these it suffices to show that

- \triangleright there is an injection from these sets to $\mathbb N$
- \triangleright or there is a surjection from \mathbb{N} (or any countable set) to these sets.