一、单项选择题(每小题2分,共20分)

1. D 2. A 3. D 4. B 5. B

6. D 7. D 8. C 9. D 10. D

二、简答题(每小题2分,共20分)

1. (15364), 偶置换

2.

+	a	b	c
a	a	b	c
b	b	c	a
c	c	a	b

×	a	b	c
a	a	a	a
b	a	b	c
c	a	c	b

3. GF(3), GF(9), GF(27)

4. $(x+1)^9$

5. {1, -1}

6. (1)(3)(6)

7. $x^{12}+1$

8. x^3+x^2+1 , x^3+x+1

9. 不是; 不是

10. 是

三、解答题(共30分)

1. (10分)

(1) $H=\{I, (1 4 2), (1 2 4)\}$

(2) H, {(1 2 3), (2 3 4), (1 4)(2 3)},

 $\{(1\ 3\ 2), (1\ 3)(2\ 4), (1\ 3\ 4)\}, \{(2\ 4\ 3), (1\ 4\ 3), (1\ 2)(3\ 4)\}$

2. (10分)

商式: bx²+bx+a

余式: ax²+b

3. (10分)解:

四、证明题(共30分)

1. (15分)

证明: (1) 因为 G 是循环群,则一定存在一个生成元 a, G=(a),对于 G'任意的元素 b ',在 G 中一定对应一个 a^k ,满足 $\sigma(a^k)=b'$,根据同态性,则 $b'=\sigma(a^k)=\sigma(a^{k-1}\cdot a)=\sigma(a^{k-1})\sigma(a)=\sigma(a^{k-2}\cdot a)$ $\sigma(a)=\sigma(a^{k-2})\sigma(a)^2=.....=\sigma(a)^k$,因此在 G'中任意的元素可由 $\sigma(a)$ 生成,故 G'也是循环群。

(2) ①H 非空。根据同态映射的性质, G 中有单位元 1,满足 $\sigma(1)=\tau(1)=1'$, 1' 为 G'的单位元。

②对于任意的 a、b∈H,则有 σ (a)= τ (a), σ (b)= τ (b),则 σ (b)-¹= τ (b)-¹,则 σ (b'-¹)= σ (b) -¹= τ (b)-¹= τ (b)-¹= τ (b)-¹= τ (b) , 因此 σ (ab-¹)= σ (a) σ (b-¹)= τ (a) τ (b-¹)= τ (ab-¹),故 ab-¹∈H,因此 H 是 G 的子群。

(3) a 的周期可能有限,也可能无限。例如:设 G 是整数加法群, $G'=\{-1,1,-i,i\}$ 复数乘法群;同态映射 $\sigma(n)=i^n$,显然 $\sigma(0)=i^0=1,1$ 的周期为 1,0 的周期有限也为 1; $\sigma(1)=i$ 的周期为 4,而 1 的周期是无限的。

2. (10分)

证明:须找到 $GF(P^n)$ 上一个 m 次质式。对任意 $n \ge 1$,唯一存在 $GF(P^n)$ 。又 因 n|mn,故 $GF(P^n)$ 是 $GF(P^{nm})$ 子域。将 $\Phi_{P^{mn-1}}(x)$ 看做 $GF(P^n)$ 上多项式。取它 在 $GF(P^n)$ 上一不可约因式 $\varphi(x)$,设次 $\varphi(x)=r$ 。因 $GF(P^{mn})$ 中元都是 $xP^{mn}-x=0$ 的 根, $\varphi(x)|x^{P^{mn}-x}$ 。故 $\varphi(x)$ 在 $GF(P^{mn})$ 上有根。设ξ为其中一个。令 $F=GF(P^n)$,规定 F[x]到 $GF(P^{mn})$ 的一个映射如下:

 $\sigma(f(x))=f(\xi)$

参照讲义上的证明过程容易验证: σ 是 F[x]到 $GF(P^{mn})$ 上的同态映射。核为 $\phi(x)F[x]$ 。

$F[x]/\phi(x)F[x] \cong GF(P^{mn})$

因次 $\phi(x)=r$,故 $F[x]/\phi(x)F[x]$ 中可做为剩余类代表元的是低于 r 次的多项式。共 $(P^n)^r$ 个。

所以, $F[x]/\phi(x)F[x]$ 是 P^{nr} 元域。但 $F[x]/\phi(x)F[x]\cong GF(P^{mn})$, $F[x]/\phi(x)F[x]$ 又应是 P^{mn} 元域, $\therefore r=m$ 。 $\therefore \phi(x)$ 便是 $GF(P^n)$ 上的一个 m 次质式。 $\therefore GF(P^n)$ 上必有 m 次质式。

3. (5分)

反证法