يسم الله الرحمن الرحيم

نظریه زبانها و ماشینها

جلسه ۱۵

مجتبی خلیلی دانشکده برق و کامپیوتر دانشگاه صنعتی اصفهان

Given a string w of terminals, we want to know whether or not w is in L(G). If so, we may want to find a derivation of w. An algorithm that can tell us whether w is in L(G) is a membership algorithm. The term **parsing** describes finding a sequence of productions by which a $w \in L(G)$ is derived.

$$S
ightarrow 0S1 \mid 1S0S \mid T$$
 $T
ightarrow S \mid \varepsilon$

$$0011 \in L$$
?

تجزيه

Exhaustive search parsing has serious flaws. The most obvious one is its tediousness; it is not to be used where efficient parsing is required. But even when efficiency is a secondary issue, there is a more pertinent objection. While the method always parses a $w \in L(G)$, it is possible that it never terminates for strings not in L(G).

تجزيه

- ایده: چنانچه طول رشته اشتقاق شده بیشتر از ورودی بود، ادامه نده.
 - با اینحال موانعی باقی میماند:

تجزيه

$$S \rightarrow AS \mid B$$

$$A \rightarrow B \mid \epsilon$$

$$B \rightarrow A \mid b$$

o وجود حلقه (unit rules):

$$S \Rightarrow B \Rightarrow b$$
 $S \Rightarrow B \Rightarrow A \Rightarrow B \Rightarrow b$
 $S \Rightarrow B \Rightarrow A \Rightarrow B \Rightarrow b$

:(ϵ –rules) نایدید شدن متغیرها \circ

$$S \Rightarrow AS \stackrel{*}{\Rightarrow} AAAS \Rightarrow AAAB \stackrel{*}{\Rightarrow} B \Rightarrow b$$

 $S \Rightarrow AS \stackrel{*}{\Rightarrow} AAAAAS \Rightarrow AAAAAB \stackrel{*}{\Rightarrow} B \Rightarrow b$

حذف برخی جملات گرامرها

Before we can study context-free languages in greater depth, we must attend to some technical matters. The definition of a context-free grammar imposes no restriction whatsoever on the right side of a production. However, complete freedom is not necessary and, in fact, is a detriment in some arguments. In Theorem 5.2, we see the convenience of certain restrictions on grammatical forms; eliminating rules of the form $A \to \lambda$ and $A \to B$ make the arguments easier. In many instances, it is desirable to place even more stringent restrictions on the grammar.

DEFINITION 6.2

Any production of a context-free grammar of the form

$$A \rightarrow \lambda$$

is called a λ -production. Any variable A for which the derivation

$$A \stackrel{*}{\Rightarrow} \lambda \tag{6.3}$$

is possible is called **nullable**.

EXAMPLE 6.4

Consider the grammar

$$S \to aS_1b,$$

$$S_1 \to aS_1b|\lambda,$$

with start variable S. This grammar generates the λ -free language $\{a^nb^n: n \geq 1\}$. The λ -production $S_1 \to \lambda$ can be removed after adding new productions obtained by substituting λ for S_1 where it occurs on the right. Doing this we get the grammar

$$S \to aS_1b|ab,$$

$$S_1 \to aS_1b|ab.$$

We can easily show that this new grammar generates the same language as the original one.

In more general situations, substitutions for λ -productions can be made in a similar, although more complicated, manner.

- o سپس در نظر گرفتن همه nullable ها
 - ۰ بازنویسی گرامر بر اساس آنها
 - میتواند به ϵ برود. \circ

EXAMPLE 6.5

Find a context-free grammar without λ -productions equivalent to the grammar defined by

$$S \to ABaC$$

$$A \to BC$$

$$B \to b|\lambda$$
,

$$C \to D|\lambda$$
,

$$D \rightarrow d$$
.

From the first step of the construction in Theorem 6.3, we find that the nullable variables are A, B, C. Then, following the second step of the construction, we get

$$S \to ABaC |BaC| AaC |ABa| aC |Aa| Ba|a,$$

 $A \to B|C| BC$

$$A \to B |C| BC$$

$$B \rightarrow b$$
,

$$C \to D$$
,

$$D \rightarrow d$$
.

مثال

ϵ –productions حذف \circ

$$S o 0ABC \mid 1B \mid BB$$
 $S o 0ABC \mid 0BC \mid 0AB \mid 0B \mid 1B \mid BB$ $A o ABB0 \mid C$ $A o ABB0 \mid BB0 \mid C$ $B o 0B \mid 1$ $C o CC \mid \epsilon$ $C o CC \mid C$ $D o 1D \mid AA$ $D o 1D \mid 1 \mid AA \mid A$

DEFINITION 6.3

Any production of a context-free grammar of the form

$$A \to B$$
,

where $A, B \in V$, is called a **unit-production**.

EXAMPLE 6.6

Remove all unit-productions from

$$S \to Aa|B$$
,

$$B \to A|bb$$
,

$$A \rightarrow a |bc| B$$
.

The dependency graph for the unit-productions:

- ۰ سپس در نظر گرفتن گراف
- ۰ بازنویسی گرامر بر اساس آنها

$$S \to Aa|B,$$

 $B \to A|bb,$
 $A \to a|bc|B.$

$$S \rightarrow Aa,$$
 $A \rightarrow a|bc,$
 $B \rightarrow bb,$

$$S \rightarrow a |bc| bb| Aa,$$

 $A \rightarrow a |bb| bc,$
 $B \rightarrow a |bb| bc.$

متغیرهای بی فایده

$$S \to a |bc| bb|Aa$$
,

$$A \rightarrow a |bb| bc$$

$$B \rightarrow a |bb| bc$$
.

$$S \rightarrow a |bc| bb| Aa,$$

 $A \rightarrow a |bb| bc,$

DEFINITION 6.1

Let G = (V, T, S, P) be a context-free grammar. A variable $A \in V$ is said to be **useful** if and only if there is at least one $w \in L(G)$ such that

$$S \stackrel{*}{\Rightarrow} xAy \stackrel{*}{\Rightarrow} w, \tag{6.2}$$

with x, y in $(V \cup T)^*$. In words, a variable is useful if and only if it occurs in at least one derivation. A variable that is not useful is called **useless**. A production is useless if it involves any useless variable.

حذف unit production (مثال)

$$S \rightarrow 0ABC \mid 0BC \mid 0AB \mid 0B \mid 1B \mid BB$$

$$A \rightarrow ABB0 \mid BB0 \mid C$$

$$B \rightarrow 0B \mid 1$$

$$C \rightarrow CC \mid C$$

$$D
ightarrow 1D \mid 1 \mid AA \mid A$$

$$S \rightarrow 0ABC \mid 0BC \mid 0AB \mid 0B \mid 1B \mid BB$$

$$A \rightarrow ABB0 \mid BB0 \mid CC$$

$$B \rightarrow 0B \mid 1$$

$$C \rightarrow CC$$

$$D
ightarrow 1D \mid 1 \mid AA \mid ABB0 \mid BB0 \mid CC$$

حذف متغیرهای بی فایده (مثال)

$$S \rightarrow 0ABC \mid 0BC \mid 0AB \mid 0B \mid 1B \mid BB$$

$$A \rightarrow ABB0 \mid BB0 \mid CC$$

$$B \rightarrow 0B \mid 1$$

$$C \rightarrow CC$$

$$D
ightarrow 1D \mid 1 \mid AA \mid ABB0 \mid BB0 \mid CC$$

داریم:

$$S \rightarrow 0AB \mid 0B \mid 1B \mid BB$$

$$A \rightarrow ABB0 \mid BB0$$

$$B \rightarrow 0B \mid 1$$