数值分析上机习题报告(13)

张宏毅 1500017736

May 12, 2017

1 Problem

分别用 Euler 方法和改进的 Euler 方法求解下列初值问题:

$$\begin{cases} y' = -\frac{1}{x^2} - \frac{y}{x} - y^2, & 1 \le x \le 2, \\ y(1) = -1. \end{cases}$$

比较它们的计算结果,从中体会预估-校正的作用。

2 Solution

先求题给初值问题的精确解。令 z = xy,则

$$\frac{\mathrm{d}z}{\mathrm{d}x} = y + x \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1+z^2}{x}.$$

分离变量即解得初值问题的解为 $\ln x = -\pi/4 - \arctan z$, 整理得

$$y = -\frac{1}{x} \tan\left(\ln x + \frac{\pi}{4}\right).$$

下面求题给问题的数值解。一般 Euler 格式的递推式为

$$y_{n+1} = y_n + hf(x_n, y_n),$$

该方法是一阶方法,而改进的 Euler 方法

$$\begin{cases} y_{n+1} = y_n + \frac{h}{2}(K_1 + K_2), \\ K_1 = f(x_n, y_n), \\ K_2 = f(x_n + h, y_n + hK_1). \end{cases}$$

属于二阶 Runge-Kutta 方法。表 1 展示了利用两种数值方法进行求解的结果(步长 h=0.01)。可以看到,改进的 Euler 公式利用预估-校正的思想,结合了隐式方法较小的截断误差和显式方法较小的计算量两大优点,得到了更加令人满意的数值结果。

表 1: Euler 方法的数值解与精确解对比 (h = 0.01)

x_n	Euler 方法	改进的 Euler 方法	精确解
1.1	-1.101092	-1.101288	-1.101282
1.2	-1.209266	-1.210083	-1.210074
1.3	-1.332087	-1.334096	-1.334087
1.4	-1.478647	-1.482754	-1.482748
1.5	-1.661645	-1.669437	-1.669442
1.6	-1.900952	-1.915463	-1.915498
1.7	-2.230992	-2.258605	-2.258716
1.8	-2.718380	-2.774337	-2.774662
1.9	-3.512131	-3.640303	-3.641357
2.0	-5.027163	-5.399977	-5.404613