A-5 Code 71

A-5 Code

The following extra material reflects the structure of the code.

A-5-1 Variable names code and text

Names for variables in code and text

Code	Text	Name	Unit
phi_i	ϕ_i	Ice volume fraction	-
С	ĉ	Condensation rate	$\mathrm{kgm^{-3}s^{-1}}$
v_i	v_i	Settling velocity of the ice	ms^{-1}
v_iso	v_{iso}	Isolated settling velocity of the ice	ms^{-1}
v_dz	$\frac{dv_i}{dz}$	Derivative if settling velocity	s ⁻¹
rho_eff	$ ho_{eff}$	Snow density	${\rm kgm^{-3}}$
rho_i	ρ_i	Ice density if $\phi_i=1$	${\rm kgm^{-3}}$
rho_a	ρ_a	Density of air	${\rm kgm^{-3}}$
rho_T	$ ho_v^{eq}$	Water vapor saturation density	${\rm kgm^{-3}}$
Т	T	Temperature	K
T_prev	-	Temperature of previous iteration	K
T_ref	T_{ref}	Reference temperature	K
bc_1	T_{top}	Temperature at the top of the snowpack, fixed	K
bc_0	T_{bot}	Temperature at the bottom of the snowpack, fixed	K
T_fus	T_{fus}	Melting temperature of water	K
coord	z	Depth coordinates	ms^{-1}
Z	Z	Total height of snowpack	ms^{-1}
nz	nz	Total number of nodes	-
g	g	Gravitational acceleration	ms^{-2}
L	L	Latent heat of sublimation of ice	$\rm Jkg^{-1}$
sigma	σ	Vertical stress	$\mathrm{kgm^{-1}s^{-2}}$
sigma0	σ_0	Vertical stress at the ground	$\mathrm{kgm^{-1}s^{-2}}$
sigma_Dz	$\sigma_{\Delta z_k}$	Contribution of respective layer to total vertical stress	$\mathrm{kgm^{-1}s^{-2}}$
sigmacum	σ_k	Vertical stress at height z=k	$\mathrm{kgm^{-1}s^{-2}}$
D_eff	D_{eff}	Effective water vapor diffusion constant in snow	$\mathrm{m}^{2}\mathrm{s}^{-1}$
D0	D_0	Vapor diffusion constant in air	$\mathrm{m}^{2}\mathrm{s}^{-1}$
rhoC_eff	$(\rho C)_{eff}$	Effective volumetric heat capacity in snow Jm	
C_a	C_a	Specific heat of air Jkg	
C_i	C_i	Specific heat of ice	$ m Jkg^{-1}K^{-1}$

72 Further material

Continuation of: Names for variables in code and text

Code	Text	Name	Unit
k_eff	k_{eff}	Effective thermal conductivity of snow	${ m Wm^{-1}K^{-1}}$
k_a	k_a	Effective thermal conductivity of air at $\phi_i = 0$	${ m Wm^{-1}K^{-1}}$
k_i	k_i	Effective thermal conductivity of ice at $\phi_i = 1$	${ m Wm^{-1}K^{-1}}$
mH2O	m_{H_2O}	Mass of a water molecule	kg
kB	k_B	Boltzmann's constant	$ m JK^{-1}$
R_v	R	Water vapor gas constant	$ m Jkg^{-1}K^{-1}$
eta	η	Snow viscosity	$\mathrm{kgs^{-1}m^{-1}}$
etatest1	-	Constant snow viscosity	$\mathrm{kgs^{-1}m^{-1}}$
dt	Δt	Time step	s
SC	MF	Mesh fourier number	_
iter_max	-	Maximum number of iterations -	

A-5-2 Important commands

Commands to set initial conditions, activate settling velocity, and choose equations for effective parameters and saturation water vapor density

Command	Possible inputs	Name	Relevant function	
geom	1, 2, 3	Initial model geometry	set_up_model_geometry	
TT	1, 2, 3, 4, 5	Initial temperature profile	$initial_conditions$	
RHO	1, 2, 3, 4, 5	Initial effective snow density	initial_conditions	
media	'hom'; 'het'	Media	model_parameters, solve_for_T	
SWVD	'Loewe'; 'Hansen'; 'Calonne'	Saturation water vapor	Sat_Vap_Dens	
	Loewe, Hansen, Calonne	density equation		
SetVel	'Y' ; 'N'	Incorporation of settling	settling_vel	
form	'Loewe'; 'Hansen'	Define effective parameters	model_parameters	

A-5 Code 73

74 Further material

A-5-3 Overview of computational steps and respective functions in the code

Overview of computational steps associated with their respective functions (black boxes) in the code. The inputs are specified on the left hand side and the outputs are specified on the right hand side.

August 9, 2019