(19)日本国特許庁 (JP) (12) 公 開 特 許 公 報 (A) (11)特許出願公院番号

特開平8-147988

(43)公開日 平成8年(1996)6月7日

(51) Int.CL⁶

識別紀号 庁内整理番号 FΙ

技術表示簡所

G 1 1 C 16/06

H01L 27/04 21/822

309 F

G 1 1 C 17/00 H01L 27/04

審査請求 未請求 請求項の数6 OL (全12頁) 最終頁に続く

(21)出願番号

特爾平6-283779

(71) 出版人 000002185

ソニー株式会社 東京都品川区北品川6丁目7番35号

(22)出籍日 平成6年(1994)11月17日

(72)発明者 荒瀬 謙士朗 東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 弁理士 佐藤 隆久

(54) 【発明の名称】 半適体不揮発性記憶装置

(57) 【要約】

【目的】繰り返し書き換え後の電荷保持特性の悪化を防 止で、信頼性の大幅な向上を図れる半導体不揮発性記憶 装置を実現できる。 【構成】演算回路34でレジスタ31の累積書き換え回

数の情報等に基づきメモリセルの限界電荷保持時間を 得、演算回路35でレジスタ32の最後の書き換え時刻 およびレジスタ33のシステム時刻の情報に基づき最後 の書き換え後の経過時間を得、比較回路38で限界電荷 保持時間および最後の書き換え後の経過時間の情報を比 較することによりリフレッシュ動作を行うべきかどうか を判断する。そして、リフレッシュする場合には、フラ ッシュメモリアレイ2のデータをメモリデータ退避領域 39に一時退避させて、フラッシュメモリアレイ2内の データの一括消去を行い、次にメモリデータ退避領域3 9に一時退避させておいたフラッシュメモリアレイ2の データをフラッシュメモリアレイ2に再書き込みする。

【特許請求の範囲】

【請求項1】 メモリセルに対して電気的に書き込み消去を行うことにより、一定の回数、繰り返し書き換えのできる半進体不揮祭性記憶装置であって.

最後の書き換え時からの経過時間と指定された限界電荷 保持時間とを比較し、比較結果に応じてメモリセルに対 し再度の書き換えを行うリフレッシュ回路を有する半導 体不揮発性記憶装置。

【請求項 2】 上配リフレッシュ回路は、最後の書き換 え時刻を記録する記録手段と、この記録手段の記録時刻 10 からの経過時間を得る手段と、あらかじめ設せされた段 界電荷保持時間と上記経過時間とを比較し、比較結果に 応じてメモリセルに対し再接の書き換えを行う比較手段 とを有する語水可算1配載の半層が

【請求項3】 メモリセルに対して電気的に書き込み消去を行うことにより、一定の回敷、繰り返し書き換えのできる半導体不輝発性記憶装置であって、

メモリセルに対する果積審き換え回数から限界電荷保持 時間を得、この限界電荷保持時間と最後の書き換え時か らの経過時間とを比較し、比較結果に応じてメモリセル 20 に対し再度の書き換えを行うリフレッシュ回路を有する 半選体不履配件配筒装置。

[請求項4] 上記リフレッシュ回路は、累積審金換え 回数を記録する第1の記録手段と、最後の審さ換え時刻 を記録する第2の記録手段と、上記第1の記録手段に記 録された累積審金換え回数に基づいて限界電荷保持時間 を得る手段と、上記第2の記録手段の記録時刻からの経 過時間を得る手段と、上記第4歳宿保持時間と記録延 時間とを比較し、比較結果に応じてメモリセルに対し再 度の審き換えを行う比較手段とを有する請求項1記載の 幼 半線体不得を把能接載

[請求項5] 上記記録部が各ワード線セクタ毎に設け られ、上記書き換え動作はワード線セクタ毎に行われる 請求項1、2、3または4記載の半導体不揮発性配憶装 館。

【請求項6】 上配配録部はメモリアレイ領域を複数に 分割した各プロック毎に設けられ、上記書き換え動作は 各プロック毎に行われる請求項1、2、3または4配載 の半導体不揮発性記憶整置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電気的に書き換え可能 な不揮発性メモリ、たとえばフラッシュEEPROMな どの半導体不揮発性紀憶装置に関するものである。

[0002]

性上、非常に重要である。

[0003] 図15は、フラッシュEEPROMの書き 換え後のフローティングゲート中に蓄積された電荷の保 持特性を示す図である。図15において、機能はある一 定温度、たとえば125°Cでの放置時間、縦軸は書き 込み状態でのとも地値飛比り hーWを表している。ま た、図中R1、R2、R3、R4に対応する特性は、繰 り返し書き換え回数がそれぞれN1、N2、N3、N4 回接の特性である。N1×N2×N3×N4である。

【0004】一般的広チャンネルホットエレクトロン (CHE) 書き込み/FN (Powler Nordhein) 消去型フラッシュE E P R C N の場合、書き込み状態でフローティングゲート中に電子が狂入されており、その注入電子は放置時間の連行とともに減かする。このため、書き込み状態でのしきい値電圧 V t h が低下し、場合によっては、いわゆるリテンション不良と呼ばれる信頼性不良を生ずる可能性がある。

【0005】その特性は、図15に示すように、累積の線り返し書き換え回数が大きいほど、確停保持等性が駆く、R1、R2、R3、R4に対応する特性において、ある一定量のしきい値電圧Vth-Wの低下ムVth-Wを生じるのに必要な時間t1、t2、t3、t4は、t1>t2>t3>t4である。図15に示すような繰り返し書き換え後の電荷保持特性は、フラッシュEEPROMの信頼性上非常に重要であり、従来、おのおの書き換え後10年間保証するのが一般的であった。

「発明が解決しようとする課題」ところが、フラッシュ EEPROMの微細化、特にトンネル機化帳の沸製化に ともない、わかゆる、ストレスに超因するトンネル機化 膜の劣化によるリーク電流の発生現象により、図15 に 示すように繰り返し書き換え後の電荷枠特性の邪化が 顕著になってきている。この現象は、トンネル機化機を 沸壊化していくと、さらに指数関数的に激しくなってい くことが知られており、今後、フラッシュEEPROM の電荷保持特性を、おのおの書き換え後10 年間にわた り保証していくことは、困難になっていくものと予想さ れる。

[0007] 本発明は、かかる事情に鑑みてなされたも 40 のであり、その目的は、繰り返し書き換え後の電荷保持 特性の悪化を防止でき、信頼性の大幅な向上を図れる半 導体不揮発性記憶整度を提供することにある。

[8000]

【課題を解決するための手段】上配目的を達成するため に、木兜明は、メモリセルに対して電気的に書き込み消 法を行うことにより、一定の回数、繰り返し書き換えの できる半導体へ揮発性配憶整度であって、最後の書き換 え時からの経過時間と指定された限界電荷保持時間とを 比較し、比較結果に成じてメモリセルに対し再度の書き 独まを行う11/20×20・回路を有する。

【0009】また、上記リフレッシュ回路は、最後の書 き換え時刻を記録する記録手段と、この記録手段の記録 時刻からの経過時間を得る手段と、あらかじめ設定され た限界電荷保持時間と上記経過時間とを比較し、比較結 果に応じてメモリセルに対し再度の書き換えを行う比較 手段とを有する。

【0010】また、本発明は、メモリセルに対して電気 的に書き込み消去を行うことにより、一定の回数、繰り 返し書き換えのできる半導体不揮発性記憶装置であっ て、メモリセルに対する累積書き換え回数から限界電荷 10 保持時間を得、この限界電荷保持時間と最後の書き換え 時からの経過時間とを比較し、比較結果に応じてメモリ セルに対し再席の書き換えを行うリフレッシュ同路を有

【0011】また、上記リフレッシュ回路は、累積書き 換え回数を記録する第1の記録手段と、最後の書き換え 時刻を記録する第2の記録手段と、上記第1の記録手段 に記録された累積書き換え回数に基づいて限界電荷保持 時間を得る手段と、上記第2の記録手段の記録時刻から の経過時間を得る手段と、上記限界電荷保持時間と上記 20 経過時間とを比較し、比較結果に応じてメモリセルに対 し再度の書き換えを行う比較手段とを有する。

【0012】さらに、本発明の半導体不揮発性記憶装置 では、上記記録部が各ワード線セクタ毎に設けられ、上 記書き換え動作はワード線セクタ毎に行われる。また、 本発明の半導体不揮発性記憶装置では、上記記録部はメ モリアレイ領域を複数に分割した各プロック毎に設けら れ、上記書き換え動作は各プロック毎に行われる。

[0013]

【作用】本発明の半導体不揮発性記憶装置によれば、記 30 録手段に記録された最後の書き換え時刻に基づいて、定 期的または任意的に最後の書き橡え後の経過時間が得ら れる。そして、比較手段において、この経過時間とあら かじめ設定されたメモリセルの限界電荷保持時間との比 較が行われ、その結果によりリフレッシュ動作が行われ

【0014】また、本発明の半導体不揮発性記憶装置に よれば、累積書き換え回数が第1の記録手段に記録さ れ、最後の書き換え時刻が第2の記録手段に記録され る。第1の記録手段に記録された累積書き換え回数に基 40 づいてメモリセルの限界電荷保持時間を得られ、第2の 記録手段に記録された最後の書き換え時刻に基づいて、 定期的または任意的に最後の書き換え後の経過時間が得 られる。そして、比較手段において、経過時間とメモリ セルの限界電荷保持時間との比較が行われ、その結果に よりリフレッシュ動作が行われる。

【0015】また、本発明の半導体不揮発性記憶装置に よれば、ワード線セクタ毎に書き換え動作を行う場合に は、各ワード線毎に上記動作が行われる。このため、各 ワード線セクタ毎の信頼性を大幅に向上することができ 50 【0023】図3(b)は、記録部が、メモリアレイに

【0016】また、本発明の半導体不揮発性記憶装置に よれば、メモリアレイ領域が複数のメモリ領域に分割さ れぞれぞれのプロック毎に書き換え動作を行う場合に は、各プロック毎に上記動作が行われる。

[0017]

【実施例】図1は、本発明に係わる半導体不揮発性記憶 装置、具体的にはCHE書き込み/FN消去型フラッシ ュEEPROMの書き込み時のパイアス条件を示す図で ある。また、図2は消去時のパイアス条件を示す図であ

【0018】図1および図2において、WLm-1、W Lm、WLm+1はワード線、BLn-1、BLn、B Ln+1はピット線、SRLは共通ソース線、MTm-1, n-1, MTm-1, n, MTm-1, n+1, M Tm, n-1, MTm, n, MTm, n+1, MTm+1, n-1, MTm+1, n, MTm+1, n+1はメ モリヤルをそれぞれ示している。

【0019】図1の書き込み例においては、実線で開ん だメモリセルMTm、nにデータ書き込みを行う場合、 選択するワード線WLmに12V、選択するピット線B Lnに7Vを印加し、その他のワード線WLm-1、W Lm+1、ピット線BLn-1, BLn+1および共通 ソース線SRLには0Vを印加する。その結果、選択さ れたメモリセルMTm, nにのみ、チャンネルホットエ レクトロン (CHE) により、フローティングゲート中 に電子が注入されて、しきい値能圧Vthは5V以上に 上昇する。

【0020】図2の消去例においては、全メモリセルー 括消去を行う場合である。この場合、全てのワード線W Lm-1、WLm、WLm+1に0V、全てのピット線 をフローティング状態にパイアスして、共通ソース線S RLに12Vを印加する。その結果、フローティングゲ ート中の電子がFNトンネリングによりソース側から引 き抜かれて、しきい値電圧Vthは1V~2V程度にな

【0021】図3(a), (b)は、図1および図2に 示すメモリアレイの書き込み、消去動作による繰り返し 書き換え動作時に、累積書き換え回数および最後の書き 換え時刻を記録するための記録部を、メモリアレイ領域 内の一部に設けた2種類の具体例を示す図である。

【0022】図3 (a) は、メモリアレイ領域内に設け られた記録部が、メモリアレイ内の通常の1ワード線に 接続されたメモリセルの場合である。図3(a)におい て、WL1~WLNは通常ワード線、BL1~BLMは ピット線、WLnは通常ワード線内に設けられた記録部 のための1ワード線である。また、○は通常メモリとし て用いるメモリセル、●は記録部として用いるメモリセ ルを表している。

補助的に設けられた1ワード線に接続されたメモリセル の場合である。図3 (b) において、WL1〜WLNは 遊常ワード線, BL1〜BLMはビット線、WLcは通 常ワード線外に設けられた記録部のための補助ワード線 である。また、○は通常メモリとして用いるメモリセ 、●は認識を起して用いるメモリセルを表している。

[0024] なお、図3(a)および図3(b)は、メモリアレイ領域内に記録形を設ける場合の2種類の具体例であるが、これらに限定されるのではなくて、その他の種々の態様に及ぶことはいうまでもない。

(0025) 図4は、たとえば図3 (a) および図3 (b) のメモリアレイ領域内に設けられた記録部に、累積書き換え回数および最後の書き換え時刻の情報を記録する場合の、データ構造を示す図である。図4 (a) は、最後の書き換え時刻を記録するためのデータ構造であり、たとえば、1994年7月26日15時36分52秒の情報においては、年のデータに7ピット、月のデータに4ピット、日のデータに5ピット、分のデータに6ピット、分のデータに6ピット、分のデータに6ピット、分のデータに6ピット、分のデータに6ピット、分のアータレのメモリセルを必要とする。

【0026】図4(b)は、累積書き換え回数を記録するためのデータ構造であり、たとえば、繰り返し書き換えが10000回まで行うことができるフラッシュEEPROMの場合、14ビットのメモリセルを必要とす。

【0027】図5は、本発明のフラッシュメモリアレイを含む全システムを、簡単に示したプロック図であり、たとえば、携帯用電子機器に適用される電子回路である。図5において、1は主電子回路プロックを示し、この主電子回路プロック1はフラッシュメモリ2およびフラッシュメモリ2に対して頂度書き込みを行うリフレッシュ動件を飼御するためのリフレッシュ動料回路3を有している。また、4はシステムの時刻を刻むタイマ、5はタイマ4の計判に基づく一定時刻毎に電子回路プロック1に割り込みを行うためのタイマ制御回路をそれぞれ示し、これらタイマ4およびタイマ制御回路を上れぞれ示し、これらタイマ4およびタイマ制御回路を上れぞれ示し、これらタイマ4およびタイマ制御回路5は常時動作しており、電源が切られることはない。

【0028】図5の例においては、タイマ4がある一定 の時刻を計時する時に、タイマ4の出力信号s1を受け たタイマ制御同路5は、主電子同路プロック1に割り込 40 みをかけ電源動作状態にして、信号s2によりリフレッ シュ制御回路3を動作させる、さらに、リフレッシュ制 押口路3は信号s3によりフラッシュメモリアレイ2を リフレッシュする。

[0029] 図6は、図5のプロック図において、リフ レッシュ新御四路3を中心とするより詳細な回路図にお ける、第10実施例を示す取である。第10実施例は、 フラッシュメモリアレイ内に配録された情報が、累積書 き換え回数と最後の書き換え時刻の両方の場合の例を示 す図である。

【0030】図6において、31は累積書き換え回数を 記憶するためのレジスタ、32は最後の書き換え時刻を 記憶するためのレジスタ、33はシステム時刻を記憶す るためのレジスタ、34は累積書き換え回数の情報に基 づきメモリセルの限界電荷保持時間を演算するための演 算回路、35はレジスタ32の最後の書き換え時刻およ びレジスタ33のシステム時刻の情報に基づき最後の書 き換え後の経過時間を演算するための演算回路、36は その限界電荷保持時間を記憶するためのレジスタ、37 10 はその最後の書き換え後の経過時間を記憶するためのレ ジスタ、38はレジスタ36の限界電荷保持時間および レジスタ37の最後の書き換え後の経過時間の情報を比 較することによりリフレッシュ動作を行うべきかどうか を判断するための比較回路、39はリフレッシュ動作時 にフラッシュメモリアレイ2のデータを一時退避させる ためのメモリデータ退避領域をそれぞれ示している。

[0031] 図6の例においては、図5のタイマ制制回路5より信号521を受けレジスタ33にシスト時刻を記憶し、信号522を受けレジスタ33にシスト時刻を記憶し、信号52と受けフラッシュメモリアレイ22 傾域内の記録部に記録された情報を読み出し、果積書き換え回数の情報をレジスタ31の累積書き換え回数の情報をといえなりまた。 はレジスタ31の累積書き換え回数の情報およびたとえば図示したいRのMに配憶されている服界電荷保持時間テーブルの情報に基づきメモリセルの限界電荷保持時間を演集レレジスタ35に配憶し、満費回路55はレジスタ32の最後の書き換え時刻およびレジスタ33のシステム時刻の情報に基づき最後の書き換え後の経過時間を演集レジスタ3で記憶する。

【0032】続いて、比較回路38はレジスタ36の限 界電荷保持時間およびレジスタ37の最後の書き換え後 の経過時間の情報を比較することによりリフレッシュ動 作を行うべきかどうかを判断する。もし比較回路38が リフレッシュするべきであると判断した場合には、まず 信号S31によりフラッシュメモリアレイ2のデータを メモリデータ退避領域39に一時退避させる。続いて、 フラッシュメモリアレイ 2内のデータの一括消去を行 い、次に信号S32により、メモリデータ退避領域39 に一時退避させておいたフラッシュメモリアレイ2のデ ータをフラッシュメモリアレイ2に再書き込みする。続 いて、信号S33により、レジスタ31に記憶してある 累積書き換え回数のデータをインクリメントしてフラッ シュメモリアレイ 2内に設けられたしかるべき記録部に 書き込みを行い、信号S34により、レジスタ33に記 憶してあるシステム時刻を最後の書き換え時刻としてフ ラッシュメモリアレイ2内に設けられたしかるべき記録 部に書き込む。

【0033】図7は、図6における演算回路34が、累 積審き換え回数に応じたメモリセルの限界電荷保持時間 50 を演算するときの一例を示す図である。図7において、 横軸は累積書き換え回数Nを、縦軸は限界電荷保持時間 Tをそれぞれ示している。

【0034】図7の例においては、累積書き換え回数が N1、N2、N3、・・・、Nnと増大するにともな い、限界電荷保持時間がそれぞれT1, T2, T3, ・ ・・. Tnと隣段的に減少するように演算される。これ ら情報は、たとえば上述したように、図示しないROM に限界電荷保持時間テーブルとしてあらかじめ記憶され

【0035】図8は、図6の回路におけるリフレッシュ 10 制御の動作を説明するためのフローチャートである。以 下に、前述の説明と重複する部分もあるが、このフロー チャートに従ってリフレッシュ制御動作を順を追って説 明する。図6のリフレッシュ制御動作は、たとえば図8 に示すように、まずシステム時刻を読み込み(SF 1)、フラッシュメモリアレイ2内に記録された累積書 き換え回数回数および最後の書き換え時刻を読み込む (SF2、SF3)。続いて、演算回路34においてレ ジスタ31に記憶された累積書き換え回数の情報により メモリセルの限界電荷保持時間を演算し(SF4)、演 20 算回路35においてレジスタ33に記憶されたシステム 時刻とレジスタ32に保持された最後の書き換え時刻の 情報により最後の書き換え後の経過時間を演算する(S F5).

【0036】続いて、比較回路38において、レジスタ 36に格納された限界電荷保持時間およびレジスタ37 に格納された最後の書き換え後の経過時間の情報を比較 することによりリフレッシュ動作を行うべきかどうかを 判断する (SF6)。 もしリフレッシュするべきである データをメモリデータ退避領域39に一時退避させる (SF7)。続いて、フラッシュメモリアレイ2内のデ ータの一括消去を行い(SF8)、次にメモリデータ退 避領域39に一時退避させておいたフラッシュメモリア レイ2のデータの再書き込みを行う(SF9)。続い て、累積書き換え回数のデータを+1だけインクリメン トして再書き込みを行い (SF10)、システム時刻を 最後の書き換え時刻として再書き込みを行う (SF1) 1) .

【0037】図9は、図5のブロック図において、リフ 40 レッシュ制御回路3を中心とするより詳細な回路図にお ける、第2の実施例を示す図である。第2の実施例は、 フラッシュメモリアレイ内に記録された情報が、最後の 書き換え時刻だけの場合の例を示している。

[0038] 図9において、32は最後の書き換え時刻 を記憶するためのレジスタ、33はシステム時刻を記憶 するためのレジスタ、35はレジスタ32の最後の書き 換え時刻およびレジスタ33のシステム時刻の情報に基 づき最後の書き換え後の経過時間を演算するための演算

の情報データを記憶するレジスタ、37はその最後の書 き換え後の経過時間を記憶するためのレジスタ、38は レジスタ36aの限界電荷保持時間およびレジスタ37 の最後の書き換え後の経過時間の情報を比較することに よりリフレッシュ動作を行うべきかどうかを判断するた めの比較回路、39はリフレッシュ動作時にフラッシュ メモリアレイ2のデータを一時退避させるためのメモリ データ退避領域をそれぞれ示している。

【0039】 図9の例においては、図5のタイマ制御回 路5より信号S21を受けレジスタ33にシステム時刻 を記録し、信号S22を受けフラッシュメモリアレイ2 領域内の記録部に記録された最後の書き換え時刻の情報 を読み出し、レジスタ32に記憶する。続いて、演算回 路35は、レジスタ32の最後の書き換え時刻およびレ ジスタ33のシステム時刻の情報に基づき最後の書き換 え後の経過時間を演算し、レジスタ37に記憶する。

【0040】繰いて、比較回路38は、レジスタ36a の限界電荷保持時間およびレジスタ37の最後の書き線 え後の経過時間の情報を比較することによりリフレッシ ュ動作を行うべきかどうかを判断する。もし比較回路3 8がリフレッシュするべきであると判断した場合には、 まず信号S31によりフラッシュメモリアレイ2のデー タをメモリデータ退避領域39に一時退避させる。続い て、フラッシュメモリアレイ2内のデータの一括消去を 行い、次に信号S32により、メモリデータ退避領域3 9 に一時误避させておいたフラッシュメモリアレイ2の データをフラッシュメモリアレイ2に再書き込みする。 続いて、信号S34により、レジスタ33に記憶してあ るシステム時刻を最後の書き橡え時刻としてフラッシュ と判断した場合には、まずフラッシュメモリアレイ2の 30 メモリアレイ3内に設けられたしかるべき記録部に書き 込む。

【0041】図10は、図9の同路におけるリフレッシ ュ制御の動作を説明するためのフローチャートである。 図9のリフレッシュ制御動作は、図8に示す図6の回路 のリフレッシュ制御動作のうちの、ステップSF2、S F4およびステップSF10の動作が行われないものと 等価となる。すなわち、まずシステム時刻を読み込み (SF1)、フラッシュメモリアレイ2内に記録された 最後の書き換え時刻を読み込む(SF3)。続いて、演 算回路35において、レジスタ33に配憶されたシステ ム時刻とレジスタ32に記憶された最後の書き換え時刻 の情報により最後の書き換え後の経過時間を演算する (SF5)。続いて、比較回路38において、レジスタ 36 a に記憶されている限界電荷保持時間およびレジス タ37に記憶された最後の書き換え後の経過時間の情報 を比較することによりリフレッシュ動作を行うべきかど うかを判断する (SF6) 。 もしリフレッシュするべき であると判断した場合には、まずフラッシュメモリアレ イ2のデータをメモリデータ退避領域39に一時退避さ 回路、36aはあらかじめ設定された限界電荷保持時間 50 せる (SF7)。続いて、フラッシュメモリアレイ2内 のデータの一括消去を行い(SF8)、次にメモリデー 夕退避領域39に一時退避させておいたフラッシュメモ リアレイ2のデータの再書き込みを行う(SF9)。続 いて、システム時刻を最後の書き換え時刻として再書き 込みを行う(SF11)。

【0042】図11は、本発明に係る半導体不揮発性記 憶装置、具体的にはCHE書き込み/FN消去型フラッ シュEEPROMがワード線セクタ毎に書き換え動作を 行う場合において、ワード線セクタ消去のパイアス条件 を示す図である。本発明における半導体不揮発性記憶装 10 置がこのような場合にも適用できるというのはいうまで もない。図11において、WLm-1、WLm、WLm +1はワード線、BLn-1、BLn、BLn+1はピ ット線、SRLは共通ソース線、MTm-1, n-1、 MTm-1, n, MTm-1, n+1, MTm, n-1, MTm, n, MTm, n+1, MTm+1, n-1、MTm+1, n、MTm+1, n+1はメモリセル をそれぞれ示している。

【0043】図11の消去例においては、ワード線WL mに連なるメモリセルの消去を行う場合であり、選択す 20 るワード線WLmに-10V、その他の非選択ワード線 WLm-1. WLm+1に0V、全てのピット線BLn -1、BLn、BLn+1をフローティング状態にパイ アスして、共通ソース線SRLに5Vを印加する。その 結果、選択ワード線WLmに連なるメモリセルMTm, n-1、MTm, n、MTm, n+1においてのみ、フ ローティングゲート中の電子がFNトンネリングにより ソース側から引き抜かれて、しきい値電圧V t h は 1 V 2 V程度になる。

【0044】図12は、図11のワード線セクタ毎に書 30 き機を動作を行うフラッシュEEPROMにおいて、累 積書き換え回数および最後の書き換え時刻または最後の 書き換え時刻を記録するための記録部を、メモリアレイ 領域内の一部に設けた具体例を示す図である。図12に 示す例は、メモリアレイに補助的に設けられた複数のピ ット線に接続されたメモリセルに、それぞれのワード線 セクタ毎の記録部を設けた場合である。なお、図12に おいて、WL1~WLNは預常ワード線、BL1~BL Mは通常ピット線、BC1~BCiは通常ピット線外に 設けられた記録部のための補助ビット線をそれぞれ示 40 し、○は通常メモリとして用いるメモリセル、●は記録 部として用いるメモリセルを表している。

【0045】図13は、本発明に係る半導体不揮発性記 憶装置、具体的にはCHE書き込み/FN消去型フラッ シュEEPROMが複数のブロックに分割され各ブロッ ク毎に書き換え動作を行う場合において、プロック消去 のパイアス条件を示す図である。本発明における半導体 不揮発性記憶装置がこのような場合にも適用できるのは いうまでもない。

LK11, MBLK12, MBLK21, MBLK22 の4プロックに分割されている。また、図中、WL11 ~WL1N、WL21~WL2Nはワード線、BL11 ~BL1M、BL21~BL2Mはピット線、SRL1 1、SRL12、SRL21、SRL22はそれぞれの プロックの共通ソース線を示している。

【0047】図13の消去例においては、メモリブロッ クMBLK12の消去を行う場合であり、全てのワード 線WL11~WL1N、WL21~WL2Nは0V、全 てのピット線BL11~BL1M、BL21~BL2M をフローティング状態にパイアスして、選択するメモリ プロックMBLK12の共通ソース線SRL12に12 V、その他のメモリプロックMBLK11、MBLK2 MBLK22の共通ソース線SRL11、SRL2 SRL22に0Vを印加する。その結果、選択され たメモリプロックMBLK12内のメモリセルにおいて のみ、フローティングゲート中の電子がFNトンネリン グによりソース側から引き抜かれて、しきい値電圧V t hは1V~2V程度になる。

【0048】さらに、図14は、図13のプロック毎に **書き換え動作を行うフラッシュEEPROMにおいて、** 取積書き換え回数および帰答の書き換え時刻または帰後 の書き換え時刻を記録するための記録部を、各メモリブ ロック領域内の一部、具体的にはメモリプロックMBL K12の一部に設けた具体例を示す図である。

【0049】図14に示す例は、メモリブロックMBL K12内に誇けられた記録部が、メモリプロックアレイ 内の通常の1ワード線に接続されたメモリセルの場合で ある。なお、図14においては、図12と同様に、WL 11~WL1Nは通常ワード線、BL21~BL2Mは 通常ピット線、WL1nは通常ワード線内に設けられた 紀録部のための1ワード線をそれぞれ示している。ま た、○は通常メモリとして用いるメモリセル、●は記録 部として用いるメモリセルを表している。

【0050】以上説明したように、本実施例によれば、 メモリアレイ領域内の一部メモリ領域に、累積書き換え 回数および最後の書き換え時刻を記録し、定期的または 任意的に最後の書き換え後の経過時間を調べ、さらに当 該経過時間と累積書き換え回数に応じて算出されたメモ リセルの限界電荷保持時間、あるいはあらかじめ設定さ れたメモリセルの限界電荷保持時間との比較結果に応じ て、メモリアレイのリフレッシュ動作を行うようにした ので、信頼性の大幅な向上が図れるだけでなく、さらな るトンネル酸化膜の薄膜化により、性能の大幅な向上を 図れる半導体不揮発性記憶装置を実現できる。

【発明の効果】以上説明したように、本発明の半導体不 揮発性記憶装置によれば、累積書き換え回数および最後 の書き換え時刻を記録し、定期的または任意的に最後の 【0046】図13の例において、メモリアレイはMB 50 書き換え後の経過時間を調べ、さらに当該経過時間と累

11

接書き換え回敷に応じて算出されたメモリセルの限界電 衛保持時間、あるいはあらかじめ設定されたメモリセル の限界電荷保持時間との比較結果に応じて、メモリアレ イのリフレッシュ動作を行うことにより、信報性の大幅 な向上がはかられるだけでなく、さらなるトンネル酸化 襲の薄膜化により、性能の大幅な向上を図れる利点があ る。

【図面の簡単な説明】

【図1】本発明のフラッシュEEPROMにおいて書き 込み時のパイアス条件を示す図である。

【図2】本発明のフラッシュEEPROMにおいて一括 消去時のパイアス条件を示す図である。

【図3】図2の一括消去を行うフラッシュEEPROM においてメモリアレイ領域内に設けた記録部の2種類の 継接を示す図である。

【図4】 累積書き換え回数および最後の書き換え時刻の 情報を記録する場合のデータ構造を示す図である。

【図5】本発明に係るフラッシュEEPROMを含む携帯用電子機器の令システムの簡単なプロック図である。

【図 6】本発明においてリフレッシュ制御回路を中心と 20 した第1の実施例を示す図である。

【図7】図6において累積書き換え回数に応じたメモリ セルの限界電荷保持時間を演算するときの一例を示す図 である。

【図8】図6のリフレッシュ制御回路の動作を説明する ためのフローチャートである。

【図9】本発明においてリフレッシュ制御回路を中心と した第2の実施例を示す図である。

【図10】図9のリフレッシュ制御回路の動作を説明するためのフローチャートである。

【図1】本発明のフラッシュEEPROMにおいて、ワード線セクタ消去時のパイアス条件を示す図である。 (図12】図11のワード線セクタ消去を行うフラッシュEEPROMにおいて、各ワード線セクタ毎のメモリアレイ傾域内に記録能を設けた一例を示す図である。 (図13】本発明のフラッシュEEPROMにおいて、プロック消去時のパイアス条件を示す図である。

【図14】図13のプロック消去を行うフラッシュEE PROMにおいて、各プロック毎のメモリアレイ領域内 10 に記録部を設けた一例を示す図である。

【図15】フラッシュEEPROMにおける繰り返し書き換え後の電荷保持特性特性を示す図である。

【符号の説明】 1…主電子回路プロック

1…王鳴」四扇フロック 2…フラッシュメモリアレイ

3…リフレッシュ制御回路

4…タイマ

5…タイマ制御回路

31…累積書き換え回数を記録するためのレジスタ

32…最後の書き換え時刻を記憶するためのレジスタ

33…システム時刻を記憶するためのレジスタ

34…限界電荷保持時間を演算するための演算回路 35…最後の書き換え後の経過時間を演算するための演 算回路

36…限界電荷保持時間を記憶するためのレジスタ

37…最後の書き換え後の経過時間を記憶するためのレジスタ

38…リフレッシュを行うかどうかを判断するための比 較回路

39…メモリデータ退避領域

[図1]

[2]2]

[図6]

[図7]

[図11]

【図8】

[図12]

【図10】

[図13]

フロントページの続き

(51) Int. Cl. 6

H01L 27/115 21/8247 29/788 29/792

識別記号 庁内整理番号

FΙ

技術表示箇所

H01L 27/10 434

29/78

371

```
DIALOG(R)File 351:Derwent WPI
(c) 2002 Thomson Derwent. All rts. reserv.

010829383 **Image available**
WPI Acc No: 1996-326335/199633
XRPX Acc No: N96-274846
Semiconductor non-volatile memory e.g. flash EEPROM - rewrites data stored in evacuation area into flash memory array
Patent Assignace: SOMY CORP (SONY )
```

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
JP 8147988 A 19960607 JP 94283779 A 19941117 199633 B

Priority Applications (No Type Date): JP 94283779 A 19941117 Patent Details: Patent No Kind Lan Pq Main IPC Filing Notes

JP 8147988 A 12 G11C-016/06 Abstract (Basic): JP 8147988 A

The memory has a first operation circuit (34) which obtains the critical electric charge holding time of memory cell. This is done based on the information on number of accumulation rewritings stored in a register (31). A second operation circuit (35) obtains the progress time after last rewriting. This is done based on the information on last rewriting time stored in a first register (32) and a system stored in a second register (33). A comparator circuit (38) compares the critical electric charge holding time and the progress time.

Based on this comparison, a judgment is made regarding whether a

Based on this comparison, a judgment is made regarding whether a refresh operation should be performed or not. During a refresh operation, the data of a flash memory array (2) is evacuated to a memory data evacuation area (39) temporarily. The erasure of the data in the memory array is performed. The data stored in the evacuation area is finally rewritten in the memory array.

ADVANTAGE - Prevents aggravation of electric charge holding characteristic after repetitive rewriting. Improves reliability and performance.

Dwg.6/15
Title Terms: SEMICONDUCTOR; NON; VOLATILE; MEMORY; FLASH; EEPROM; REWRITING; DATA; STORAGE; EVACUATE; AREA; FLASH; MEMORY; ARRAY Derwent Class: U13; U14

International Patent Class (Main): G11C-016/06

International Patent Class (Additional): H01L-021/822; H01L-021/8247; H01L-027/04; H01L-027/115; H01L-029/788; H01L-029/792

File Segment: EPI