Notation

The notation used in this work is very similar to the machine learning standard (for example, [20]). The subscript k always refers to the kth classifier, and the subscript n refers to the nth observation. The only exception is Chapter 5 that discusses a single classifier, which makes the use of k superfluous. Composite objects, like sets, vectors and matrices, are usually written in bold. Vectors are usually column vectors and are denoted by a lowercase symbol; matrices are denoted by an uppercase symbol. T is the transpose of a vector/matrix. is an estimate. in Chapter 7 denotes the parameters of the variational posterior, and the posterior itself, and in Chapter 9 indicates optimality.

The tables in the next pages give the used symbol in the first column, a brief explanation of its meaning in the second column, and — where appropriate — the section number that is best to consult with respect to this symbol in the third column.

Sets, Functions and Distributions $\,$

Ø	empty set	
\mathbb{R}	set of real numbers	
\mathbb{N}	set of natural numbers	
$\mathbb{E}_X(X,Y)$	expectation of X, Y with respect to X	
var(X)	variance of X	
cov(X, Y)	covariance between X and Y	
$\operatorname{Tr}(\mathbf{A})$	trace of matrix \mathbf{A}	
$\langle \mathbf{x}, \mathbf{y} angle$	inner product of \mathbf{x} and \mathbf{y}	5.2
$\langle \mathbf{x}, \mathbf{y} angle_A$	inner product of \mathbf{x} and \mathbf{y} , weighted by matrix \mathbf{A}	5.2
$\ \mathbf{x}\ _A$	norm of \mathbf{x} associated with inner product space	5.2
	$\langle \cdot, \cdot \rangle_A$	
$\ \mathbf{x}\ $	Euclidean norm of \mathbf{x} , $\ \mathbf{x}\ \equiv \ \mathbf{x}\ _I$	5.2
$\ \mathbf{x}\ _{\infty}$	maximum norm of \mathbf{x}	9.2.1
\otimes, \oslash	multiplication and division operator for element-	8.1
	wise matrix and vector multiplication/division	
${ m L}$	loss function, $L: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$	3.1.1
l	log-likelihood function	4.1.2
$\mathcal{N}(\mathbf{x} oldsymbol{\mu},oldsymbol{\Sigma})$	normal distribution with mean vector $\boldsymbol{\mu}$ and co-	4.2.1
	variance matrix Σ	
Gam(x a,b)	gamma distribution with shape a , scale b	7.2.3
$\mathrm{St}(\mathbf{x} \boldsymbol{\mu},\boldsymbol{\Lambda},a)$	Student's t distribution with mean vector $\boldsymbol{\mu}$, pre-	7.4
	cision matrix Λ , and a degrees of freedom	
$\mathrm{Dir}(\mathbf{x} oldsymbol{lpha})$	Dirichlet distribution with parameter vector $\boldsymbol{\alpha}$	7.5
p	probability mass/density	
q	variational probability mass/density	7.3.1
q^*	variational posterior	7.3
Γ	gamma function	7.2.3
Ψ	digamma function	7.3.7
KL(q p)	Kullback-Leibler divergence between q and p	7.3.1
$\mathcal{L}(q)$	variational bound of q	7.3.1
${f U}$	set of hidden variables	7.2.6

Data and Model

\mathcal{X}	input space	3.1
${\mathcal Y}$	output space	3.1
$D_{\mathcal{X}}$	dimensionality of \mathcal{X}	3.1.2
$D_{\mathcal{Y}}$	dimensionality of \mathcal{Y}	3.1.2
\dot{N}	number of observations	3.1
n	index referring to the n th observation	3.1
\mathbf{X}	set/matrix of inputs	3.1, 3.1.2
\mathbf{Y}	set/matrix of outputs	3.1, 3.1.2
x	input, $\mathbf{x} \in \mathcal{X}$,	3.1
\mathbf{y}	output, $\mathbf{y} \in \mathcal{Y}$	3.1
$oldsymbol{v}$	random variable for output \mathbf{y}	5.1.1
${\cal D}$	$data/training set$, $\mathcal{D} = \{X, Y\}$	3.1
f	target function, mean of data-generating	3.1.1
	process,	
	$f:\mathcal{X} o\mathcal{Y}$	
ϵ	zero-mean random variable, modelling stochas-	3.1.1
	ticity of data-generating process and measure-	
	ment noise	
\mathcal{M}	model structure, $\mathcal{M} = \{\mathbf{M}, K\}$	$3.1.1,\ 3.2.5$
$oldsymbol{ heta}{\hat{f}_{\mathcal{M}}}$	model parameters	3.2.1
$\hat{f}_{\mathcal{M}}$	hypothesis for data-generating process of model	3.1.1
	with structure $\mathcal{M}, \hat{f}_{\mathcal{M}}: \mathcal{X} \to \mathcal{Y}$	
K	number of classifiers	3.2.2
k	index referring to classifier k	3.2.3

Classifier Model

\mathcal{X}_k	input space of classifier $k, \mathcal{X}_k \subseteq \mathcal{X}$	3.2.3
m_{nk}	binary matching random variable of classifier k	4.3.1
	for observation n	
m_k	matching function of classifier $k, m_k : \mathcal{X} \to [0, 1]$	3.2.3
${f M}$	set of matching functions, $\mathbf{M} = \{m_k\}$	3.2.5
\mathbf{M}_k	matching matrix of classifier k	5.2.1
${f M}$	matching matrix for all classifiers	8.1
$oldsymbol{ heta}_k$	parameters of model of kth classifier	9.1.1
\mathbf{w}_k	weight vector of classifier $k, \mathbf{w}_k \in \mathbb{R}^{D_{\mathcal{X}}}$	4.2.1
$oldsymbol{\omega}_k$	random vector for weight vector of classifier k	5.1.1
\mathbf{W}_k	weight matrix of classifier $k, \mathbf{W} \in \mathbb{R}^{D_{\mathcal{Y}} \times D_{\mathcal{X}}}$	7.2
$ au_k$	noise precision of classifier $k, \tau_k \in \mathbb{R}$	4.2.1
α_k	weight shrinkage prior	7.2
$a_{ au}, b_{ au}$	shape, scale parameters of prior on noise preci-	7.2
	sion	
$a_{ au_k}, b_{ au_k}$	shape, scale parameters of posterior on noise pre-	7.3.2
	cision of classifier k	
a_{α}, b_{α}	shape, scale parameters of hyperprior on weight	7.2
	shrinkage priors	
$a_{\alpha_k}, b_{\alpha_k}$	shape, scale parameters of hyperposterior on	7.3.3
	weight shrinkage prior of classifier k	
${f W}$	set of weight matrices, $\mathbf{W} = {\mathbf{W}_k}$	7.2
au	set of noise precisions, $\tau = \{\tau_k\}$	7.2
lpha	set of weight shrinkage priors, $\alpha = {\alpha_k}$	7.2
ϵ_k	zero-mean Gaussian noise for classifier k	5.1.1
c_k	match count of classifier k	5.2.2
$oldsymbol{\Lambda}_k^{-1}$	input covariance matrix (for RLS, input correla-	5.3.5
	tion matrix) of classifier k	
γ	step size for gradient-based algorithms	5.3
$\lambda_{min} / \lambda_{max}$	smallest / largest eigenvalue of input correlation matrix $c_k^{-1} \mathbf{X}^T \mathbf{M}_k \mathbf{X}$	5.3
T	time constant	5.3
λ	ridge complexity	5.3.5
λ	decay factor for recency-weighting	5.3.5
ζ	Kalman gain	5.3.6
5	J	

Gating Network / Mixing Model

z_{nk}	binary latent variable, associating observation n to classifier k	4.1
r_{nk}	, , , , , , , , , , , , , , , , , , ,	4.1.3, 7.3.2
	$r_{nk} = \mathbb{E}(z_{nk})$	
\mathbf{v}_k	gating/mixing vector, associated with classifier $k, \mathbf{v}_k \in \mathbb{R}^{D_V}$	4.1.2
β_k	mixing weight shrinkage prior, associated with	7.2
	classifier k	
a_{eta}, b_{eta}	shape, scale parameters for hyperprior on mixing	7.2
	weight shrinkage priors	
a_{β_k}, b_{β_k}	shape, scale parameters for hyperposterior on	7.3.5
	mixing weight shrinkage priors, associated with	
	classifier k	
${f Z}$	set of latent variables, $\mathbf{Z} = \{z_{nk}\}$	4.1
\mathbf{V}	set/vector of gating/mixing vectors	4.1.2
$oldsymbol{eta}$	set of mixing weight shrinkage priors, $\beta = \{\beta_k\}$	7.2
D_V	dimensionality of gating/mixing space	6.1
g_k	gating/mixing function (softmax function in Sec-	4.1.2, 4.3.1
	tion 4.1.2, any mixing function in Chapter 6, oth-	
	erwise generalised softmax function), $g_k: \mathcal{X} \to$	
	[0,1]	
ϕ	transfer function, $\phi: \mathcal{X} \to \mathbb{R}^{D_V}$	6.1
Φ	mixing feature matrix, $\mathbf{\Phi} \in \mathbb{R}^{N \times D_V}$	8.1
\mathbf{H}	Hessian matrix, $\mathbf{H} \in \mathbb{R}^{KD_V \times KD_V}$	6.1.1
E	error function of mixing model, $E: \mathbb{R}^{KD_V} \to \mathbb{R}$	6.1.1
γ_k	function returning quality metric for model of	6.2
	classifier k for state $\mathbf{x}, \gamma_k : \mathcal{X} \to \mathbb{R}^+$	

Dynamic Programming and Reinforcement Learning

\mathcal{X}	set of states	9.1.1
\mathbf{x}	state, $\mathbf{x} \in \mathcal{X}$	9.1.1
N	number of states	9.1.1
${\mathcal A}$	set of actions	9.1.1
a	action, $a \in \mathcal{A}$	9.1.1
$r_{xx'}(a)$	reward function, $r: \mathcal{X} \times \mathcal{X} \times \mathcal{A} \to \mathbb{R}$	9.1.1
$r^{\mu}_{xx'}$	reward function for policy μ	9.1.1
r_x^{μ}	reward function for expected rewards and policy	9.1.1
	μ	
${\bf r}^\mu$	reward vector of expected rewards for policy μ ,	9.1.1
	$\mathbf{r}^{\mu} \in \mathbb{R}^{N}$	
p^{μ}	transition function for policy μ	9.1.1
\mathbf{P}^{μ}	transition matrix for policy μ , $\mathbf{P}^{\mu} \in [0,1]^{N \times N}$	9.1.4
γ	discount rate, $0 < \gamma \le 1$	9.1.1
μ	policy, $\mu: \mathcal{X} \to \mathcal{A}$	9.1.1
V	value function, $V: \mathcal{X} \to \mathbb{R}, V^*$ optimal, V^{μ} for	9.1.2
	policy μ , V approximated	
\mathbf{V}	value vector, $\mathbf{V} \in \mathbb{R}^N$, \mathbf{V}^* optimal, \mathbf{V}^{μ} for policy	9.1.4
~	μ , V approximated	
$egin{array}{c} ilde{\mathbf{V}}_k \ Q \end{array}$	value vector approximated by classifier k	9.3.1
Q	action-value function, $Q: \mathcal{X} \times \mathcal{A} \to \mathbb{R}, Q^*$ op-	9.1.2
~	tional, Q^{μ} for policy μ , \hat{Q} approximated	
$ ilde{Q}_k$	action-value function approximated by classifier	9.3.4
	k	0.01
T	dynamic programming operator	9.2.1
T_{μ}	dynamic programming operator for policy μ	9.2.1
${ m T}_{\mu} \ { m T}_{\mu}^{(\lambda)}$	temporal-difference learning operator for policy	9.2.4
	μ	
Π	approximation operator	9.2.3
Π_k	approximation operator of classifier k	9.3.1
π	steady-state distribution of Markov chain \mathbf{P}^{μ}	9.4.3
π_k	matching-augmented stead-state distribution for	9.4.3
ъ	classifier k	0.49
D	diagonal state sampling matrix	9.4.3
\mathbf{D}_k	matching-augmented diagonal state sampling	9.4.3
	matrix for classifier k	0.26
α	step-size for gradient-based incremental algo-	9.2.6
	rithms	