Attention and Transformer Models for Genomics

BMI/CS 776

www.biostat.wisc.edu/bmi776/

Spring 2025

Daifeng Wang

daifeng.wang@wisc.edu

Goals for lecture

- Attentions
 - Interpretation
 - Self and Cross-Attention Calculation
 - Multi-Head Attention
- Transformer architecture
 - Positional Encoding
 - Generative Output
- Applications to bioinformatics

Attention Interpretation

Attention Calculation

Attention Calculation

- Embeddings are passed through feed-forward networks to produce a query vector, as well as key and value vectors
- Value vectors are summed proportionally to the similarity between their corresponding keys and the query

Attention Calculation

- Key and query vectors can be thought of as sharing a latent space
- The distance between the query and keys then determines the final output in value space

Types of Attention

Cross-Attention

Multi-Head Attention

Each attention module is known as a 'head'

Multi-head attention involves aggregating multiple heads, usually culminating in average pooling

This allows each head to prioritize differing features of the sequence (e.g. noun-noun relationships, noun-verb relationships)

Transformer Outline

Example: Generative Text

Transformer Architecture

Encoder Decoder

Input Embedding

Add positional representations to

Allows the network to consider

Positional Encoding Matrix for the sequence 'I am a robot'

$$P(k, 2i) = \sin\left(\frac{k}{n^{2i/d}}\right)$$

$$P(k, 2i + 1) = \cos\left(\frac{k}{n^{2i/d}}\right)$$

Positional Encoding Matrix for the sequence 'I am a robot'

Inputs

Outputs (shifted right)

Attention Modules

Prioritize bases relative to each other

- This is the primary mechanism which allows transformers to work
- Essentially adds context to existing embeddings

Self and Cross-Attention

Transformer Attention

Transformer Decoder

For generative outputs, repeatedly choose the most likely next element until the end of the sequence

- 0. <start>
- 1. <start> A
- 2. <start> A T
- 3. <start> ATT
- 4. <start> ATTG
- 5. <start> A T T G <end>

Example: Protein Function Annotation

Transformers have applications other than sequence generation as well

Instead of generating a DNA sequence, genomic tracks (e.g. TF binding, accessibility) can be generated instead

- Convolve 100kb to produce features for each base with attention pooling
- Feed to multiple selfattention blocks (transformer encoder)
- Apply final convolutions to predict tracks for humans or mice

Transformers allow for broader search regions with fewer computational limits

Predict attribute-correlated locations based on DNA sequence

After predicting tracks, known enhancers line up with calculated attention scores

