Manual VCF2PCACluster

hewm2008@gmail.com / hewm2008@qq.com

QQ group: **125293663** WeChat

Dir

VCF2PCACluster	0
1 Introduction	2
2. Application	3
3 Download and Installation	6
3.1 Download	6
3.2 Requirements	6
3.3 Installation	7
4 Usage and parameters	8
4.1 Simplest usage	8
4.2 Detailed parameters	8
4.3 Input file	10
4.3.1 Basic input file format	10
4.3.2 Sample cluster information (optional)	11
4.4 Output	11
5Benchmark of accuracy and performance	11
5.1 Accuracy	12
5.1.1 Kinship : Normalized_IBS	12
5.1.2 Kinship : Centered_IBS	13
5.1.3 PCA	14
5.2 Performance	15
5.2.1 VCF2PCACluster	16
5.2.2 plink	17
5.2.3 gcta64	17
5.2.4 tassel	17
5.2.5 gapit3	17
6 Advantages	18
7. algorithm description	18
7.1 Kinship matrix	18
7.1.1 BaldingNicolsKinship(Yang/Normalized_IBS)	19
7.1.2 BaldingNicolsKinship(Yang/Normalized_IBS)	19
7.1.3 p distance.	21
7.1.4 IBSKinship	19
7.1.5 IBSKinshipImpute	20
7.2 Clustering methods	21
7.2.1 EM_Gaussian_cluster	21
7.2.2 DBSCAN	21
7.2.3 KMeans	21
8.Question and Answer (QA)	22
8.1 Accuracy about VCF2PCACluster	22
8.3 Contacts	22

1 Introduction

VCF2PCACluster is a PCA and clustering analysis tool based on population SNPs in a popular VCF format. It requires only one input file and then performs PCA, Clustering and Visualization in a single step, making it very simple, easy-to-use and efficient.

Major highlights:

- 1. The PCA result is almost identical to those generated by Tassel and Gapit, with only minor differences in precision.
- 2. Functions include: (1) calculating kinship matrix using five algorithms; (2) PCA analysis; (3) clustering analysis using three algorithms; and (4) visualization of clustering results.
 - 3. One VCF input, one-step process, convenient for users, and capable analysis of subpopulations.
- 4. Memory usage is only affected by the number of samples, not the number of SNPs, so the memory usage is only around 1-2 GB even up to 10k samples.
- 5. Three clustering algorithms: 5.1 EM-Gaussian: EM algorithm combined with a Gaussian mixture model. 5.2 K-means clustering analysis, identifies the best K value, similar to Structure and K value. 5.3 DBSCAN clustering algorithm.
- 6. Two custom scripts were also provided to optimize the plotting details in 2D and/ or 3D manners.

2. Application

2.1 Small Data

To show the accuracy, we provided an example (example 1) with a small SNP dataset. We downloaded the SNPs of the 1000 Genomes Project deposited in dbSNP database, and randomly selected 1194 loci from chromosome (chr) 22, including 203 samples from four populations: CEU (49), CHB (46), JPT (56), and YRI (52). (example1)

Command:

```
VCF2PCACluster -InVCF Khuman.vcf -OutPut OUT
```

Of which, users could add the option *-InSampleGroup* for a given of prior classification and compared with PCA and clustering results using the command:

```
VCF2PCACluster -InVCF Khuman.vcf -OutPut OUT-InSampleGroup pop.info
```

Note:

- 1 The format of *pop.info* contains two columns: sample name and cluster name.
- 2 Users can choose the clustering method through the [-ClusterMethod] parameter
- 3 The user can choose the formula for calculating kinship through -KinshipMethod parameter

We next demonstrated plots with different clustering methods as the following:

2.1.1 EM

- 1. The algorithm first uses the K-means algorithm to determine the best K, and users can also specify a specific K value through the parameter "-BestKManually".
- 2. Default initial values, iteration times (default 1000, can be passed through the parameter -Iterations), and convergence judgment parameters (default automatic, not greater than 1e-10, which can be passed by the user through Epsilon).
- 3. Call the EM algorithm to find the maximum value clustering result.

2.1.2 Kmean

According to the relationship between K and SSE, the software considers the best clustering to be K=4, as the SSE levels off or increases after 4. The software can pick the best K as 4. The software outputs results for K3-12 by default.

Our software also has the functionality to calculate the Davies–Bouldin index (DBI). Based on the relationship between K and DBI, the minimum value of DBI corresponds to the best K.

Here is the result and PCA plot for K=4:

2.1.3 DBSCAN

The DBSCAN algorithm has two main parameters:

- The neighborhood radius: Eps;
- The minimum number of points required to form a core object in the neighborhood radius: MinPts.

Both of these parameters can be manually set by the user, but the program defaults to using the Elbow method to determine the optimal value for Eps, and sets MinPts to 4. The below plot is generated by DBSCAN clustering method.

2.2 big Data

To test the accuracy and the efficiency of VCF2PCACluster, we used data of SNP data on chr22 from 1000 Genome Project (downloaded from ttp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502) with 1,055,401 SNP in 2504 samples.

VCF2PCACluster : peak memory usage ~0.1 GB; CPU running time: ~13min (8 threading)

```
echo Start Time:
date
#wget -c
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr22.phase3 shapeit2 mvncall
_integrated_v5b.20130502.genotypes.vcf.gz
#wget -c
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_samples_v3.2013050
2.ALL.panel
             integrated_call_samples_v3.20130502.ALL.panel > sample.group
cut -f 1,3
time MingPCACluster-1.30/bin/VCF2PCA
                                           -InVCF
ALL.chr22.phase3_shapeit2_mvncall_integrated_v5b.20130502.genotypes.vcf.gz -
InSampleGroup sample.group -OutPut OUT
echo End Time:
date
```

the Fig is show as follows:

3 Download and Installation

3.1 Download

The new version of VCF2PCACluster will be updated and maintained in hewm2008/VCF2PCACluster. Please click below link to download the latest version. hewm2008/VCF2PCACluster

https://github.com/hewm2008/VCF2PCACluster

3.2 Requirements

VCF2PCAtools is capable for Linux/Unix/Mac OS systems. We also provide executable programs for Linux and Mac. Please install the following requirements before compiling and using VCF2PCAtools.

- 1. OpenMP c/c++ command is recommended to be pre-installed
- 2. $g^{++}: g^{++} \text{ with } \frac{--\text{std}=c^{++}11}{---} > 4.8 + \text{ is recommended}$
- 3. zlib : zlib > 1.2.3 is recommended
- 4. R : R with ggplot2 and scatterplot3d are recommended

3.3 Installation

Users can install it with the following options:

Option 1, we provide a static version for Linux/Unix

```
git clone https://github.com/hewm2008/VCF2PCACluster.git
cd VCF2PCACluster; chmod 755 -R bin/*
./bin/VCF2PCACluster -h ### print help information
```

Option 2: compile from source code for Linux/Unix/macOS

```
git clone https://github.com/hewm2008/VCF2PCACluster.git
cd VCF2PCACluster; chmod 755 configure; ; ./configure;
make; # sh make.sh
mv VCF2PCACluster bin/; # [rm *.o]
```

Note: For macOS, users can run the following command first. Please ensure g^{++-} 11 has been installed using the homebrew, we have successfully tested on the macOS Monterey, Apple M1 chip.

```
ln -s /opt/homebrew/bin/g++-11 /opt/homebrew/bin/g++ ;
export PATH=/opt/homebrew/bin/:$PATH
```

4 Usage and parameters

4.1 Simplest usage

```
[heweiming@cngb-ologin-25 bin]$ ./MingPCACluster
    Usage: MingPCACluster -InVCF in.vcf.gz -OutPut outPrefix [options]
        -InVCF
                                    Input SNP VCF Format
                        <str>
        -InKinship
                        <str>
                                    Input SNP K Kinship File Format
        -OutPut
                                    OutPut File Prefix(Kinship PCA etc)
                                    Method of Kinship [1-5], defaut [1]
        -KinshipMethod <int>
                                    1:Normalized_IBS(Yang/BaldingNicolsKinship)
                                     2:Centered IBS(VanRaden)
                                     3:IBSKinshipImpute 4:IBSKinship 5:p_dis
        -ClusterMethod <str>
                                    Method For Cluster[EM/Kmean/DBSCAN/None] [EM]
        -help
                        v1.38
                                    Show more Parameters and help [hewm2008]
```

The simplest usage is just given a VCF file via *-InVCF* parameter and a prefix for output via *-OutPut* parameter. Also, users could provide another parameter (*-InSubSample*) for analysis of a given subset.

Users could select other methods for Kinship matrix estimation and clustering via parameters -*KinshipMethod* and -*ClusterMethod* respectively.

- **-KinshipMethod**, five alternative methods for calculation Kinship matrix. The default is 1 that Normalized_IBS method.
- -ClusterMethod, three alternative methods for clustering analysis, EM is set as default.

4.2 Detailed parameters

In addition of parameters for input, output and methods for calculation of kinship and clustering analysis, we also provide other parameters for SNP filtering and clustering. For more details, please add "-h".

More Help documen	t please see th	ne pdf/doc help Para [-i] is show for [-InVCF], Para [-o] is show for [-OutPut]
Jsage: MingPCAClus	ter -InVCF i	n.vcf.gz -OutPut outPrefix [options]
-InVCF	<str></str>	Input SNP VCF Format
-InKinship	<str></str>	Input SNP K Kinship File Format
-OutPut	<str></str>	OutPut File Prefix(Kinship PCA etc)
-KinshipMeth	od <int></int>	Method of Kinship [1-5],defaut [1]
		1:Normalized_IBS(Yang/BaldingNicolsKinship)
		2:Centered_IBS(VanRaden)
		3:IBSKinshipImpute 4:IBSKinship 5:p_dis
-ClusterMeth	od <str></str>	Method For Cluster[EM/Kmean/DBSCAN/None] [EM]
-help	v1.38	Show more Parameters and help [hewm2008]
InFile:		
-InGenotype	<str></str>	InPut Genotype File for no VCF file
-InSubSample	e <str></str>	Only keep samples from subsample List for PCA[ALLsample]
-InSampleGro	oup <str></str>	InFile of sample Group info,format(sample groupA)
SNP Filtering:		
-MAF	<float></float>	Min minor allele frequency filter [0.001]
-Miss	<float></float>	Max ratio of miss allele filter [0.25]
-Het	<float></float>	Max ratio of het allele filter [1.00]
-HWE	<float></float>	Exact test of Hardy-Weinberg Equilibrium for SNP Pvalue[0]
-Fchr	<str></str>	Filter the chrX chr[chrX,chrY,X,Y]
-KeepRemain	VCF	keep the VCF after filter
Clustering:		
-RandomCen		Random diff-center to Re-Run Cluster for Kmean
-BestKManua		manually set the Best K (Num of Cluster) (auto)
-BestKRatio	<float></float>	Get the best K Cluster by deta -SSE Ratio[0.15]
-MinPointNu		Minimum point number of D-cluster[4]
-Epsilon -Iterations	<float> <int></int></float>	Epsilon for DBSCAN_Distance/EM_convergence (auto) iterations number for EM clustering[1000]
OutPut:		
-PCnum	<int></int>	Num of PC eig [10]

Parameters for other scripts

Bin/Plot2Deig and *Bin/Plot3Deig* are PERL scripts for plotting PCA and clustering results in 2D or 3D manners respectively.

```
./Plot2Deig
           -h
    Version:1.40
                          hewm2008@gmail.com
    Usage: Plot2Deig -InFile pca.eigenvec -OutPut Fig
        Options
        -InFile
                         <s> : InPut PCA.eigenvec File
        -OutPut
                        <s> : OutPut svg file result
        -help
                              : Show more help with more parameter
        -ColShap
                               : colour <=> shape for cluster or group
         -Columns
                              : the columns to plot a:b [4:5]
                         <s>
        -ColorBrewer
                         <s>
                              : the color brewer for points [Dark2]
         -Title
                               : title (legend) [PCA]
                         <s>
                                : The Bin Dir of gnuplot/R/convert [$PATH]
         -BinDir
                         <s>
```

4.3 Input file

- 1. VCF format
- 2. GenoType format

4.3.1 Basic input file format

1. VCF format

1.1 An example

```
##fileTormat=VCFv4.2
##fileDate=20090805
##ourco=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##roference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##roference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##roference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##roference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##roference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##roference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##roference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##roference=file://seq/references/1000GenomesPilot-NCBI36.fasta
##roference=file://seq/references
```

2 Genotype format

4.3.2 Sample cluster information (optional)

In some cases, one may has known about the actual cluster information and want to compare it with clustering results. Then, users could provide sample cluster information by the option (<code>-InSampleGroup</code>) with the file contains two columns: <code>sample name</code> and <code>sample cluster</code>. In addition, users could analyze a subset of samples in the VCF file and then give the subset information with only one column containing sample names by the option (<code>-InSubSample</code>).

```
NA06984 CEU
NA06986 CEU
NA06994 CEU
NA07048 CEU
NA07051 CEU
NA07347 CEU
NA07357 CEU
```

4.4 Output

VCF2PCAtools generated five output files and listed belows:

Output files	explanation
out.kinship	Kinship matrix
out.eigenvec	Best clustering and PCA results
out.eigenval	Eigenvector values of PCA results
out.PCA1_PCA2.pdf	PCA 2D plot with cluster
out.PCA1PCA2PC3.pdf	PCA 3D plot

5 Benchmark of accuracy and performance

We could observe that the consistent between VCF2PCACluster clustering result and prior sample groups was 0.995.

5.1 Accuracy

The core result of PCA is the Kinship calculation. Here we mainly compare the Kinship and PCA result using the test data in example 1.

We found the identical result of Kinship calculated by VCF2PCACluster, Tassel and Gcta64. In addition, The PCA result of VCF2PCACluster is also the same with that generated by Gcta64 indicating our high accuracy.

List below are Kinship matrix estimated by different methods.

5.1.1 Kinship: Normalized IBS

Compared with kinship calculated by VCF2PCACluster (Normalized_IBS), Tassel (Normalized_IBS) and Gcta64 (Yang) showed the identical result. (example1)

VCF2PCA -InVCF Khuman.vcf.gz -OutPut OUT -KinshipMethod 1

203				
NA06984	0.951454	0.207497	0.046003	0.071316
NA06986	0.207497	1.469973	0.112982	0.028815
NA06994	0.046003	0.112982	0.822367	0.047398
NA07048	0.071316	0.028815	0.047398	0.663251
NA07051	0.080176	0.016679	0.064628	0.075370
NA07347	0.027569	0.035410	0.057977	0.080284
NA07357	0.033770	0.018793	0.066452	0.062673
NA10851	0.053527	0.026677	0.064728	0.095548
NA11829	0.080034	0.055461	0.095494	0.045353
NA11831	0.078578	0.113936	0.108653	0.130886
NA11843	0.090061	0.006014	0.045330	0.097095
NA11881	0.099786	0.012721	0.052846	0.034093
NA11893	0.048694	0.003612	0.074860	0.035699
NA11919	0.038211	0.144765	0.073593	0.069128
NA11930	0.150488	0.116373	0.047459	0.014196
NA11932	0.116248	0.081502	0.027814	0.107138
NA11992	0.062731	0.045931	0.057637	0.094080
NA11004	0 067070	0.062150	0 022050	0 100050

Figure above. screenshot of kinship calculated by VCF2PCACluster using Normalized IBS method.

```
tassel-5.2.52/run_pipeline.pl -fork1 -vcf Khuman.vcf.gz -KinshipPlugin -method
Normalized_IBS -endPlugin -export kinship.txt -exportType SqrMatrix
gcta64 --make-grm-alg 0 ## Yang
```

##Matrix_Type=Normalize	ed_IBS		
NA06984 0.95145607	0.20749767	0.046003226	0.07131609
NA06986 0.20749767	1.4699764	0.11298213	0.028815197
NA06994 0.046003226	0.11298213	0.82236797	0.047398437
NA07048 0.07131609	0.028815197	0.047398437	0.6632524
NA07051 0.08017568	0.0166794	0.064628385	0.07537005
NA07347 0.027568767	0.035409804	0.057976812	0.08028415
NA07357 0.033770025	0.01879272	0.06645211	0.06267319
NA10851 0.05352711	0.026677167	0.064728	0.09554797
NA11829 0.08003405	0.055461053	0.09549438	0.045352943
NA11831 0.0785781	0.11393575	0.108653106	0.13088617
NA11843 0.090060584	0.0060143895	0.04532959	0.09709576
NA11881 0.099785596	0.0127210645	0.052845903	0.034092586
NA11893 0.048693813	0.003611813	0.07486027	0.035699457
NA11919 0.038210884	0.14476547	0.07359314	0.06912766
NA11930 0.15048817	0.116373464	0.047458738	0.014195871
NA11932 0.11624839	0.081501536	0.02781394	0.10713782
NA11992 0.06273149	0.045930885	0.057637252	0.09407976
NA11994 0.06787799	0.06215866	0.023858458	0.10984979
NA12003 0.1274933	0.0580304	0.060805053	0.054646336

Figure above, screenshot of kinship calculated by Tassel and Gcta64 using Normalized_IBS and Yang methods respectively.

5.1.2 Kinship : Centered_IBS

The Kinship matrix calculated using Centered_IBS by VCF2PCACluster and Tassel is the sample, as well as the Van method implemented in Gcta64. (example1)

```
VCF2PCA -InVCF Khuman.vcf.gz -OutPut OUT -KinshipMethod 2
```

203				
NA06984	1.039789	0.282751	0.089736	0.261001
NA06986	0.282751	1.076777	0.196358	0.182553
NA06994	0.089736	0.196358	1.228332	0.068854
NA07048	0.261001	0.182553	0.068854	0.989213
NA07051	0.266601	0.117650	0.171396	0.148778
NA07347	0.089692	0.116999	0.153119	0.218629
NA07357	0.052400	0.106146	0.256833	0.075583
NA10851	0.136101	0.172221	0.120212	0.300289
NA11829	0.199571	0.174001	0.236559	0.143438
NA11831	0.149038	0.185158	0.238903	0.339665
NA11843	0.166013	0.096378	0.185375	0.083441
NA11881	0.230047	0.107535	0.187719	0.147475
NA11893	0.153075	0.048189	0.101935	0.096942
NA11919	0.188457	0.295080	0.084439	0.220453
NA11930	0.161888	0.224447	0.101935	0.044065
NA11932	0.223144	0.188761	0.075062	0.272765
NA11992	0.173045	0.182727	0.271724	0.231480
NA11994	0.224360	0.163538	0.076278	0.203478

Figure above. screenshot of Kinship calculated by VCF2PCACluster using Centered IBS method.

```
tassel-5.2.52/run_pipeline.pl -fork1 -vcf Khuman.vcf.gz -KinshipPlugin -method

Centered_IBS -endPlugin -export kinship.txt -exportType SqrMatrix

gcta64 --make-grm-alg 1 ## Van
```

##Centered IBS.SumPk=1	13 470394991763	73	
##Matrix_Type=Centered		/ 3	
203	_102		
NA06984 1.0397892	0.28275055	0.08973562	0.26100054
NA06986 0.28275055	1.0767771	0.19635832	0.18255298
NA06994 0.08973562	0.19635832	1.2283326	0.068853885
NA07048 0.26100054	0.18255298	0.068853885	0.98921293
NA07051 0.26660082	0.1176503	0.17139576	0.14877753
NA07347 0.08969222	0.116999105	0.15311885	0.21862932
NA07357 0.052400317	0.10614583	0.2568329	0.07558296
NA10851 0.13610087	0.17222063	0.12021166	0.30028948
NA11829 O.19957092	0.17400058	0.23655891	0.1434377
NA11831 0.149038	0.18515775	0.23890325	0.3396652
NA11843 0.16601254	0.096377864	0.18537481	0.08344071
NA11881 0.23004694	0.10753501	0.18771914	0.14747511
NA11893 0.15307543	0.048189238	0.10193472	0.09694221
NA11919 0.18845718	0.29507992	0.08443922	0.22045268
NA11930 0.16188832	0.22444667	0.10193473	0.044065014
NA11932 0.22314425	0.18876107	0.07506197	0.27276552
NA11992 0.17304549	0.18272662	0.2717236	0.2314796
NA11994 0.22435984	0.16353801	0.07627755	0.20347811
NA12003 0.2600889	0.15520267	0.17369668	0.21276852
NA12005 0.23556042	0.3774346	0.2989871	0.19705296
NA12043 0.048579946	0.11995119	0.023877863	0.1246398
NA12045 0.13966076	0.22865778	0.21190026	0.18928201
171111111111111111111111111111111111111	0.22003770	0.21100020	0.10020201

Figure above. Screenshort of Kinship calculated by Tassel and gcta64.

5.1.3 PCA

We run these tools using the default parameters and compared the first three PCs. The result showed the consistent of PCA results produced by these tools, including the PC projection. The following listed the details. (example1)

_					
SampleName	Group Cluster		PCA3 PCA4	PCA5 PCA6	PCA7 PCA8
NA06984 CEU	Cluster1	0.021051	-0.141331	0.00170528	-0.00326334
NA06986 CEU	Cluster1	0.0503198	-0.134854	-0.00612967	0.00826446
NA06994 CEU	Cluster1	0.0265172	-0.117603	-0.00314609	0.0124698
NA07048 CEU	Cluster1	0.0373148	-0.114575	0.00107168	0.0109161
NA07051 CEU	Cluster1	0.02924 -0.1100	75 0.00745	0.00683	107 -0.0
NA07347 CEU	Cluster1	0.0270689	-0.123653	0.000800091	0.00411394
NA07357 CEU	Cluster1	0.019393	-0.119408	-0.0257179	0.00185087
NA10851 CEU	Cluster1	0.0259301	-0.0990199	0.00424188	0.00498169
NA11829 CEU	Cluster1	0.0213705	-0.145019	-0.000675612	-0.00110612
NA11831 CEU	Cluster1	0.0339703	-0.126462	0.0104739	0.027259
NA11843 CEU	Cluster1	0.0164779	-0.140548	0.0191187	-0.0037902
NA11881 CEU	Cluster1	0.0228064	-0.0981855	0.00803481	-0.00153922
NA11893 CEU	Cluster1	0.028189	-0.101798	-0.000516194	0.00697281
NA11919 CEU	Cluster1	0.0336541	-0.141849	0.00791679	0.0125857
NA11930 CEU	Cluster1	0.018898	-0.0994452	-0.00214388	0.0163885
NA11932 CEU	Cluster1	0.0239667	-0.128468	0.00265258	-0.00487043
NA11992 CEU	Cluster1	0.0323722	-0.121468	-0.00901025	0.0171458
NA11994 CEU	Cluster1	0.0215832	-0.109444	-0.000131104	-0.00852011
NA12003 CEU	Cluster1	0.0139342	-0.150668	0.0174059	0.00588741

```
O NAO6984 0.021051 -0.141331 0.00170528 -0.00326334
O NAO6986 0.0503198 -0.134854 -0.00612967 0.00826446
O NAO6994 0.0265172 -0.117603 -0.00314609 0.0124698
O NAO7048 0.0373148 -0.114575 0.00107168 0.0109161
O NAO7051 0.02924 -0.110075 0.00745119 0.00683107
O NAO7347 0.0270689 -0.123653 0.000800092 0.00411394
O NAO7357 0.019393 -0.119408 -0.0257179 0.00185087
O NA10851 0.0259301 -0.0990199 0.00424188 0.00498169
O NA11829 0.0213705 -0.145019 -0.000675611 -0.00110613
O NA11831 0.0339703 -0.126462 0.0104739 0.027259
O NA11843 0.0164779 -0.140548 0.0191187 -0.00379019
O NA11881 0.0228064 -0.0981855 0.00803481 -0.00153922
O NA11893 0.028189 -0.101798 -0.000516194 0.00697281
O NA11919 0.0336541 -0.141849 0.0079168 0.0125857
O NA11930 0.018898 -0.0994452 -0.00214388 0.0163885
O NA11932 0.0239667 -0.128468 0.00265258 -0.00487042
O NA11992 0.0323722 -0.121468 -0.00901025 0.0171458

O NA11994 0.0315833 0.109444 0.000131104 0.00853011

O RECAGA --bfile file --make-grm GRM

O GRM --pca 4
```

5.2 Performance

In performance comparison, versions of GCC and OpenMP may affect.

To test the accuracy and the efficiency of VCF2PCACluster, we used data of SNP data on chr22 from 1000 Genome Project (downloaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502) with 1,055,401 SNP in 2504 samples and run in the same computational node.

We compared different software programs using the chromosome 22 data from the 1,000 Genomes Project, which consisted of over 1 million SNPs and 2,504 samples. Tassel and GAPIT3 took a large amount of time and memory (over 150 GB), and waiting times exceeded 100 minutes. Therefore, these software programs may not be suitable for large-scale kinship and PCA analyses.

GCTA does not support reading VCF files directly, and VCF files must be filtered and converted to the PLINK format using PLINK. The waiting time for GCTA was approximately 2.27 minutes, with the use of multiple threads.

The VCF2PCACluster software used multiple threads during computations but did not use them while reading the VCF. However, the impact of the number of SNPs on the memory usage of VCF2PCACluster was eliminated. This means that the peak memory usage of VCF2PCACluster will not increase even when dealing with massive amounts of data.

Overall, we believe that VCF2PCACluster is more user-friendly, as it allows for onestep analysis, clustering, and plotting without additional filtering or conversion. Additionally, the time and memory requirements of VCF2PCACluster are very reasonable even for novice users.

The scripts used for the evaluation are attached for reference.

Software€	Input←	SNP filtering€	Functions ² per				perf ormance <	
Software input		5 vi intering	Kinship←	PCA ^C	Clustering←	Visualization -	memory	time consumption€
VCF2PCACluster€	VCF€	Maf, Missing, HWE	yes↩	yes€	yes€	yes₽	~0.1GB	~12min (8 threads)₽
GCTA ←	Plink2←	Maf⇔	yes€	yes€	no€	no€	~1.5GB€	~7min (16 threads)€
PLINK2←	VCF€	Maf, Missing, HWE€	yes↩	yes↩	no←	no←	~1.5 GB ←	~2.47min (16 threads)
TASSEL₽	VCF/hmp←	Maf	yes€	yes↩	no↩	no€	>180GB	>400min←
GAPIT₽	hmp←	no€	no€	yes⊷	no↩	yes₽	>150GB	>400min←

The command listed below was to compare VCF2PCACluster with other tools.

5.2.1 VCF2PCACluster

VCF2PCACluster: peak memory usage <0.1 GB; CPU running time: ~13min (8 threading)

```
echo Start Time :
date
#wget -c
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr22.phase3_shapeit2_mvncall
_integrated_v5b.20130502.genotypes.vcf.gz
#wget -c
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_samples_v3.2013050
2.ALL.panel
cut -f 1,3 integrated_call_samples_v3.20130502.ALL.panel > sample.group
time MingPCACluster-1.30/bin/VCF2PCA -InVCF
ALL.chr22.phase3_shapeit2_mvncall_integrated_v5b.20130502.genotypes.vcf.gz -
InSampleGroup sample.group -OutPut OUT
echo End Time :
date
```

5.2.2 plink

```
plink: PCA; peak memory usage: 1.5G; CPU running time: 2m47.502s

plink2 --vcf ALL.chr22.phase3_shapeit2_mvncall_integrated_v5b.20130502.genotypes.vcf.gz

-out plink --allow-extra-chr --pca
```

5.2.3 gcta64

step1: use plink2 for format converting and SNP filtering; peak memory usage 1.5G; CPU running time: 2.47 min.

```
plink2 --vcf ALL.chr22.phase3_shapeit2_mvncall_integrated_v5b.20130502.genotypes.vcf.gz
-out plink --allow-extra-chr --make-bed
step2: use gcta64 for converting plink into grm; peak memory usage 0.5G; CPU
running time: 4.21 min.
gcta64 --bfile plink--make-grm --out out.grm
gcta64 --grm out.grm --pca10 --out outPCA
```

5.2.4 tassel

Requirement of pre-processing SNPs, including discard repeated sites and sorted. It's ok to test on small dataset but the running time >200 min and peak memory usage >180 GB.

```
##
Perl
                                                                           remove repeatSie.pl
ALL.chr22.phase3 shapeit2 mvncall integrated v5b.20130502.genotypes.vcf.gz
                                                                             out.vcf
perl tassel-5.2.52/run pipeline.pl
                                   -Xms180g -Xmx180g -fork1
                                                                           ../chr22.vcf.gz
PrincipalComponentsPlugin -covariance true -endPlugin -export output -runfork1
   same with the BaldingNicolsKinship ##
       tassel-5.2.52/run pipeline.pl -fork1
                                            -vcf Khuman.vcf.gz
                                                                       -KinshipPlugin -method
Normalized_IBS -endPlugin
                             -export kinship2.txt
                                                   -exportType
                                                                 SqrMatrix
```

5.2.5 gapit3

```
source("http://www.zzlab.net/GAPIT/GAPIT.library.R")
source("http://www.zzlab.net/GAPIT/gapit_functions.txt")
```

```
myG <- read.table("snp220.hapmap.hmp.txt", head = FALSE)
myY <- read.table("220_pheno.txt", head = TRUE, sep="\t")
myGAPIT <- GAPIT(G=myG, output.numerical=TRUE,file.output =FALSE)
myGD= myGAPIT$GD
myGM= myGAPIT$GM
myGAPIT <- GAPIT(
Y=myY,
GD=myGD,
GM=myGM,
model=c("GLM"),
PCA.total=3,
file.output =T
)
```

Note: We didn't recommend users to employ Gapit for PCA analysis unless for GWAS and should filter low MAF (e.g., 0.05) to avoid large amount of peak memory usage.

6 Advantages

- 1. Fast and low memory usage
- 2. Simple and user-friendly
- 3. Highly user-defined
- 4. Free-installation and convenient
- 5. Five methods calculating Kinship

7. algorithm description

7.1 Kinship matrix

The formula calculating Kinship are referred to: How to estimate kinship

7.1.1 BaldingNicolsKinship(Yang/Normalized IBS)

When information is combined over loci by weighting with sample heterozygosities, we write a common kinship estimator as r_{ij}^{w} :

$$r_{jj'}^{w} = \frac{\sum_{l=1}^{L} (X_{j_l} - 2\tilde{p}_l) (X_{j'_l} - 2\tilde{p}_l)}{2\sum_{l=1}^{L} \tilde{p}_l (1 - \tilde{p}_l)}$$
(2)

The weighted estimator in Equation (2) is the first estimator discussed by VanRaden (2008). It estimates $(1 + F_j)/2$ when j = j' and $\theta_{jj'}$ when $j \neq j'$. There is no simple translation from these estimates to those we propose in Equation (1).

It is common to refer to $(X_{j_l}-2\tilde{p}_l)/\sqrt{[2\tilde{p}_l\,(1-\tilde{p}_l)]}$ as a standardized genotype measure on the basis that the expected value of X_{j_l} is twice the allele frequency $(2p_l)$ in the reference population. However, the variance of X_{j_l} is $2p_l\,(1-p_l)\,(1+F_j)$ rather than $2p_l\,(1-p_l)$.

7.1.2 BaldingNicolsKinship(Yang/Normalized_IBS)

When information over loci is combined as an unweighted average, we write a common kinship estimator as $r_{jj'}^{u}$:

$$r_{jj'}^{\mathrm{u}} = rac{1}{L} \sum_{l=1}^{L} rac{\left(X_{j_{l}} - 2 ilde{p}_{l}
ight)\left(X_{j_{l}'} - 2 ilde{p}_{l}
ight)}{2 ilde{p}_{l}\left(1 - ilde{p}_{l}
ight)}$$
 (4)

These terms correspond to the second estimator of Van Raden (2008), and they form the off-diagonal elements of the genetic relatedness matrix in GCTA (Yang, Lee, Goddard, & Visscher, 2011). We note that Van Raden (2008) called this estimator "weighted," because in his matrix notation, the diagonal matrix $\mathscr D$ of locus variances comes between the dosage matrices $\mathscr X$ and $\mathscr X'$ ($\mathscr M$ and $\mathscr M'$ in the notation of Van Raden 2008, respectively).

7.1.3 IBSKinship

IBS (identity by state) defined as the probability that alleles drawn at random from two individuals at the same locus are the same. The calculation is based on the definition. For a bi-allelic locus with alleles A and C, probabilityIBS(AA,AA) = 2, pIBS(AA,CC) = 0, pIBS(AC,xx) = 1, IBSKinship matrix and skip missing genotype.

```
/**

* IBSKinship matrix and skip missing genotype

* Kinship for marker j

* 0 1 2

* 0 2 1 0

* 1 1 2 1

* 2 0 1 2

*/
```

```
double table[4][4];
table[0][0] = table[1][1] = table[2][2] = 2;
table[0][1] = table[1][0] = table[1][2] = table[2][1] = table[1][3] =table[3][1] = 1;
table[0][2] = table[2][0] = 0;
```

[Sum() /L] *0.5

7.1.4 IBSKinshipImpute

IBS (identity by state) defined as the probability that alleles drawn at random from two individuals at the same locus are the same. The calculation is based on the definition. For a bi-allelic locus with alleles A and C, probabilityIBS(AA,AA) = 2, pIBS(AA,CC) = 0, pIBS(AC,xx) = 1, for miss alleles, we use the probability(p) to Impute the it. the related formula is as follows:

```
/**
* IBSKinship matrix and use probability to impute kinship
* Kinship for marker j
                            2
                                   missing
          2
                     1
                            0
                                   2(1-p)
                    2
          1
                           1
                    1
                           2
                                   2p
* missing 2(1-p)
                                   2(p^2+q^2)
                   1
                          2p
```

```
double table[4][4];
table[0][0] = table[1][1] = table[2][2] = 2;
table[0][1] = table[1][0] = table[1][2] = table[2][1] = table[1][3] = table[3][1] = 1;
table[0][2] = table[2][0] = 0;

double p =NowMAF;
table[0][3] = table[3][0] = 2.0 * (1.0 - p);
table[2][3] = table[3][2] = 2.0 * p;
table[3][3] = 2.0 - 4.0 * p * (1 - p);
```

7.1.5 p distance

We calculates P_Distance as 1-0.5*IBS (identity by state) similarity, with IBS defined as the probability that alleles drawn at random from two individuals at the same locus are the same. For clustering, the distance of an individual from itself is set to 0.

The calculation is based on the definition. For a bi-allelic locus with alleles A and C, probabilityIBS(AA,AA) = 2, pIBS(AA,CC) = 0, pIBS(AC,xx) = 1, where xx is any other genotype. For two taxa, pIBS is averaged over all non-missing loci.

$P_Distance = 1 - 0.5*pIBS.$

Where L is the length of regions where SNPs can be identified, and given the alleles at position l are A/C:

$d(1)_{ij}=0.0$	if the genotypes of the two individuals were AA and AA;
d(1)_ij=0.5	if the genotypes of the two individuals were AA and AC;
d(1)_ij=0.0	if the genotypes of the two individuals were AC and AC;
d(1)_ij=1.0	if the genotypes of the two individuals were AA and CC;
d(1)_ij=0.0	if the genotypes of the two individuals were CC and CC;

7.2 Clustering methods

7.2.1 EM Gaussian cluster

Please refers to https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm for details.

7.2.2 DBSCAN

Please refers to https://en.wikipedia.org/wiki/DBSCAN for details.

7.2.3 KMeans

Please refers to https://en.wikipedia.org/wiki/K-means_clustering for details.

8. Question and Answer (QA)

8.1 Accuracy about VCF2PCACluster

Answer: For accuracy estimation, we compared with other tools, GCTA, Tassle, Gapit, using the same data for PCA analysis. We found the Kinship matrix is consistent and the PCA result is the same between VCF2PCACluster and other tools. In addition, an example was provided where the different populations were clearly separated, demonstrating that the accuracy of the software is reliable, and its efficiency was considered to be high and low-memory consuming during development. By the way, Tassel GAPIT mainly performs GWAS, and the PCA was done after filtering out MAF 0.05, which had a significant impact on outlier samples. However, the default MAF for VCF2PCACluster is set to 0.001, so PCA can still identify outlier samples.

8.2 Contacts

If any question, please email to hewm2008@gmail.com or hewm2008@gq.com.

QQ group: **125293663 WeChat**

