$H_{b+\epsilon}$). The region bounded by the hyperplanes $H_{w,b-\epsilon}$ and $H_{b+\epsilon}$ (which contains the best fit hyperplane $H_{w,b}$) is called the ϵ -slab.

We also allow errors by allowing the point (x_i, y_i) to be outside of the ϵ -slab but in the slab between the hyperplane $H_{w,b-\epsilon-\xi_i}$ of equation

$$(w^{\top} - 1) \begin{pmatrix} x \\ z \end{pmatrix} + b - \epsilon - \xi_i = w^{\top} x - z + b - \epsilon - \xi_i = 0$$

for some $\xi_i > 0$ (which is below the blue margin hyperplane $H_{w,b-\epsilon}$) and the hyperplane $H_{w,b+\epsilon+\xi'_i}$ of equation

$$(w^{\top} - 1) \begin{pmatrix} x \\ z \end{pmatrix} + b + \epsilon + \xi_i' = w^{\top} x_i - z + b + \epsilon + \xi_i' = 0$$

for some $\xi_i' > 0$ (which is above the red margin hyperplane $H_{w,b+\epsilon}$), so that $w^\top x_i - y_i + b - \epsilon - \xi_i \leq 0$ and $w^\top x_i - y_i + b + \epsilon + \xi_i' \geq 0$, that is,

$$f(x) - y_i = w^{\top} x_i + b - y_i \le \epsilon + \xi_i, -(f(x) - y_i) = -w^{\top} x_i - b + y_i \le \epsilon + \xi_i'.$$

Our goal is to minimize ϵ and the errors ξ_i and ξ'_i . See Figure 56.1. The trade off between

Figure 56.1: The ϵ -slab around the graph of the best fit affine function $f(x) = x^{\top}w + b$.

the size of ϵ and the size of the slack variables ξ_i and ξ_i' is achieved by using two constants $\nu \geq 0$ and C > 0. The method of ν -support vector regression, for short ν -SV regression, is specified by the following minimization problem: