```
In [102]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline
```

Training Data:

Janurary 2014 to June 2016

```
df = pd.read_csv('train_lending_club.csv')
In [103]:
In [104]: | df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 236846 entries, 0 to 236845
         Data columns (total 27 columns):
              Column
                                        Non-Null Count
                                                        Dtype
              -----
                                        -----
                                                        ----
          0
              issue d
                                        236846 non-null object
          1
              sub grade
                                        236846 non-null object
           2
                                        236846 non-null object
              term
           3
              home_ownership
                                       236846 non-null object
          4
              fico_range_low
                                       236846 non-null float64
              total_acc
          5
                                        236846 non-null float64
          6
              pub_rec
                                       236846 non-null float64
          7
                                       236846 non-null float64
              revol util
          8
              annual inc
                                       236846 non-null float64
          9
              int_rate
                                        236846 non-null float64
          10 dti
                                       236846 non-null float64
          11 purpose
                                       236846 non-null object
                                        236846 non-null float64
          12 mort_acc
          13 loan amnt
                                        236846 non-null float64
          14 application_type
                                        236846 non-null object
          15 installment
                                        236846 non-null float64
          16 verification_status
                                        236846 non-null object
          17  pub_rec_bankruptcies
                                        236846 non-null float64
          18 addr state
                                        236846 non-null object
          19 initial list status
                                        236846 non-null object
          20 fico_range_high
                                        236846 non-null float64
          21 revol_bal
                                        236846 non-null float64
          22 id
                                        236846 non-null int64
          23 open_acc
                                        236846 non-null float64
          24 emp_length
                                        236846 non-null float64
          25 loan_status
                                       236846 non-null int64
          26 time_to_earliest_cr_line 236846 non-null float64
          dtypes: float64(16), int64(2), object(9)
         memory usage: 48.8+ MB
```

Data Cleaning Function

```
In [105]: | def cleaning_data(df):
              # rescale the annual_income column: using log
              annual_inc = np.log(df['annual_inc'])
              # add this column
              df['log_annual_inc'] = annual_inc
              # take the average of the "low-" and "high-" range fico scores for each bo
          rrrower
              FICO = df[['fico_range_low', 'fico_range_high']].mean(axis=1)
              # add this column
              df['fico'] = FICO
              # drop irrelevant columns
              df2 = df.drop(columns = ['issue_d', 'sub_grade', 'term', 'home_ownership',
          'fico_range_low', 'annual_inc',
                                        'application_type','verification_status', 'addr_s
          tate', 'initial_list_status',
                                        'fico_range_high', 'id'])
              # handle the missing/underfined data
              df2.replace(to_replace = [np.inf, -np.inf],
                          value = np.nan,
                           inplace = True)
              # drop NaNs
              df2.dropna(inplace= True)
              # check for NaN
              print( " \n Checking for NaNs: \n \n", df2.isna().sum() )
              return df2
```

```
In [106]: # call the data into the function
          loans = cleaning_data(df)
```

Checking for NaNs:

total_acc	0
pub_rec	0
revol_util	0
int_rate	0
dti	0
purpose	0
mort_acc	0
loan_amnt	0
installment	0
<pre>pub_rec_bankruptcies</pre>	0
revol_bal	0
open_acc	0
emp_length	0
loan_status	0
<pre>time_to_earliest_cr_line</pre>	0
log_annual_inc	0
fico	0
dtype: int64	

C:\Newfolder\lib\site-packages\pandas\core\arraylike.py:396: RuntimeWarning: divide by zero encountered in log result = getattr(ufunc, method)(*inputs, **kwargs)

In [107]: # view the cleaned data

loans.head()

Out[107]:

	total_acc	pub_rec	revol_util	int_rate	dti	purpose	mort_acc	loan_amnt	installm
0	18.0	0.0	86.8	16.99	15.16	credit_card	1.0	17775.0	441
1	26.0	0.0	103.5	15.61	16.74	credit_card	4.0	29175.0	703
2	47.0	0.0	11.4	7.90	20.34	debt_consolidation	1.0	6000.0	187
3	26.0	0.0	56.2	16.99	23.15	debt_consolidation	7.0	15600.0	387
4	15.0	1.0	67.1	14.98	17.88	vacation	1.0	10000.0	346
4					_				

Exploratory Data Analysis

```
In [108]: # check basic statistics of the data
loans.describe()
```

Out[108]:

	total_acc	pub_rec	revol_util	int_rate	dti	mort_ac
count	236840.000000	236840.000000	236840.000000	236840.000000	236840.000000	236840.00000
mean	25.573391	0.239351	52.846637	12.603131	18.534255	1.73330
std	12.196261	0.673020	24.012396	4.481979	9.214346	2.04463
min	2.000000	0.000000	0.000000	5.320000	0.000000	0.00000
25%	17.000000	0.000000	35.000000	9.170000	12.050000	0.00000
50%	24.000000	0.000000	53.000000	12.290000	17.890000	1.00000
75%	32.000000	0.000000	71.200000	15.310000	24.520000	3.00000
max	169.000000	86.000000	182.800000	30.990000	999.000000	47.00000
4						>

How many loans were paid in full, based on loan pupose?

Out[109]: <Axes: xlabel='purpose', ylabel='count'>

Insights:

- Loans that are Fully paid = 0, and Not fully paid = 1
- Between 2014 2016, majority of borrowers used the money for debt consolidation and credit cards
- · Education had the least number of loans collected
- No loan under Education and Wedding was paid in full with the latter having more debt

Deeper Dive in to Education & Wedding

Out[112]:

_		total_acc	pub_rec	revol_util	int_rate	dti	purpose	mort_acc	loan_amnt	installmer
_	89151	56.0	1.0	42.8	9.99	8.11	wedding	0.0	3600.0	116.1
	93948	77.0	0.0	75.2	11.53	19.62	educational	0.0	2200.0	72.5
	40915	23.0	0.0	33.8	12.49	24.16	wedding	0.0	6000.0	200.7
	52727	20.0	0.0	97.8	14.99	11.80	wedding	0.0	14000.0	485.2
	4969	8.0	0.0	60.7	18.92	1.74	wedding	0.0	5500.0	201.3
	14329	49.0	5.0	28.1	18.92	10.91	wedding	3.0	5000.0	183.0
	39738	21.0	0.0	75.6	25.89	30.42	wedding	1.0	14950.0	601.4
	96135	14.0	0.0	8.1	25.99	8.33	wedding	0.0	23100.0	691.4
4										•

Insights:

- There are more borrowers for wedding than for education (see 'purpose' column)
- Interest rate for wedding borrowers went as high as ~26% and education was less than half of that

What is the average interest rate for each *Purpose*?

```
In [113]: loans['int_rate'].groupby(by = loans['purpose']).mean().sort_values()
Out[113]: purpose
          credit_card
                                 10.976304
          educational
                                 11.530000
                                 11.888936
          major_purchase
                                 12.367448
          home_improvement
debt_consolidation
                                 12.512215
                                 12.983961
          vacation
                                 13.880177
          medical
                                 14.145555
          other
                                 14.233732
          moving
                                 15.367108
          renewable_energy
                                 15.905938
          small_business
                                 16.701099
          house
                                 17.159396
          wedding
                                 18.170000
          Name: int_rate, dtype: float64
```

Insights:

- On average, Weddings had more interest-rate than any other category. Housing and small business followed
- Credit card had the least amount of interest-rate among all categories

Is there a Correlation between FICO score and Interest Rate?

```
In [114]: from scipy.stats import pearsonr
```

Out[115]: Text(0.05, 0.95, 'r = -0.389\np = 0.000')

Insights:

- There is a weak negative correlation between FICO score and Interest Rate
- · A low interest rate is not a strong indicator of high FICO score; and vice versa

FICO vs. Interest Rate: How does the trend differ in Loan Status?

Out[116]: <seaborn.axisgrid.FacetGrid at 0x207078db8b0>

Get the correlation coefficient for each plot

Fully Paid Loans (loan_status = 0), correlation coefficient is: -0.225

Not Fully Paid Loans (loan_status = 1), correlation coefficient is: -0.395

Insights

- For Not Fully Paid Loans, high FICO score scores minimally contributes to lowering the interest rate.
 - Similarly, a high interest rate does not necessarily predict that FICO score will be low
- There is NO connection between FICO score and interest rate for Fully Paid Loans

Data Preparation

Categorical Features

- Observe that the purpose column is "categorical"
- This implies, there is need for transformation (to numerical): using dummy variables -this way, the library *sklearn* will be able to understand them
- We do this using the function: pd.get_dummies()
- This function, "drops" the purpose column and then creates a unique column for each category

```
In [119]: ## Observe the "purpose" column
          loans['purpose'].value_counts()
Out[119]: purpose
          debt consolidation
                                138368
          credit_card
                                 56322
          home_improvement
                                 14823
          other
                                 11922
          major_purchase
                                  4616
          medical
                                  2459
                                  2274
          small business
          car
                                  2152
                                  1480
          moving
                                  1410
          vacation
          house
                                   878
          renewable_energy
                                    128
          wedding
                                     7
                                      1
          educational
          Name: count, dtype: int64
```

Out[120]:

	total_acc	pub_rec	revol_util	int_rate	dti	mort_acc	loan_amnt	installment	pub_rec_bank
0	18.0	0.0	86.8	16.99	15.16	1.0	17775.0	441.66	
1	26.0	0.0	103.5	15.61	16.74	4.0	29175.0	703.45	
2	47.0	0.0	11.4	7.90	20.34	1.0	6000.0	187.75	
3	26.0	0.0	56.2	16.99	23.15	7.0	15600.0	387.62	
4	15.0	1.0	67.1	14.98	17.88	1.0	10000.0	346.56	

5 rows × 27 columns

Model Training

Prediction

[[2492 9446] [1649 57465]]

```
In [124]: | pred_initial = rndforest_100.predict(X_test)
In [125]: # create classification report from the predictions
          from sklearn.metrics import classification_report, confusion_matrix, accuracy_
          score
          print(
              classification_report(y_true = y_test,
                                     y_pred = pred_initial)
          )
          print(
              confusion_matrix(y_true = y_test,
                               y_pred = pred_initial)
          )
                        precision
                                     recall f1-score
                                                         support
                     0
                             0.60
                                        0.21
                                                  0.31
                                                           11938
                     1
                             0.86
                                        0.97
                                                  0.91
                                                           59114
              accuracy
                                                  0.84
                                                           71052
             macro avg
                             0.73
                                       0.59
                                                  0.61
                                                           71052
          weighted avg
                             0.82
                                        0.84
                                                  0.81
                                                           71052
```

Key Insight:

- Performance of the model good with overall accuracy = 84%
- Only < 5% of the data was misclassified. i.e.:
 - from 236,840 borrowers, the loan (payment) status of 11,091 were wrongly classified
- It is important to point out recall=97% , which tells us that:
 - * Of all the instances of **Not Fully Paid Loans**, 97% were correctly identified
 - * This can be a good thing as our model is very effective in (or sensitive to) catching bad borrowers
- Although, the data is highly imbalance (see 'support'), hence the usefulness of $\emph{f1-score}=91\%$ striking a good balance
- Moving forward, let's try to tune our hyperparameter $n_estimators$, in attempt to find the optimal number of estimators
- Perhaps this will improve the model's performance

```
In [127]: # Model Performance
          print("Number of Estimators = 200: ")
          print(classification_report(y_true = y_test,
                                    y_pred = pred_200)
          print(confusion_matrix(y_true = y_test,
                               y_pred = pred_200)
          print(" \n \n Number of Estimators = 300: ")
          print(classification_report(y_true = y_test,
                                    y_pred = pred_300)
          print(confusion_matrix(y_true = y_test,
                               y_pred = pred_300)
          Number of Estimators = 200:
                        precision
                                   recall f1-score
                                                        support
                                       0.20
                     0
                             0.62
                                                0.31
                                                         11938
                     1
                             0.86
                                       0.97
                                                0.91
                                                         59114
                                                0.84
                                                         71052
              accuracy
             macro avg
                            0.74
                                       0.59
                                                0.61
                                                         71052
          weighted avg
                             0.82
                                       0.84
                                                 0.81
                                                         71052
          [[ 2434 9504]
           [ 1519 57595]]
           Number of Estimators = 300:
                        precision recall f1-score
                                                        support
                             0.62
                                       0.20
                                                 0.30
                                                         11938
                     0
                             0.86
                                       0.97
                                                 0.91
                                                          59114
                                                 0.84
                                                         71052
              accuracy
                           0.74
                                       0.59
                                                0.61
                                                         71052
             macro avg
          weighted avg
                            0.82
                                       0.84
                                                0.81
                                                         71052
          [[ 2390 9548]
```

Key Insight

- Performance of the model did not change significantly with 200 and 300 iterations, hence we
- finalize using the model with **100 estimators** having a good overall accuracy=84

Apply this model on a fresh dataset

[1495 57619]]

```
# Get a new dataset and use it on the model
In [128]: | new_df = pd.read_csv('test_lending_club.csv')
           new_df.head()
Out[128]:
               issue_d sub_grade
                                         home_ownership fico_range_low total_acc pub_rec revol_util
                                   term
                 2016-
                                     36
            0
                             A4
                                             MORTGAGE
                                                                 830.0
                                                                            13.0
                                                                                     0.0
                                                                                              12.0
                                  months
                 07-01
                 2016-
                                     36
            1
                              B5
                                                  RENT
                                                                 660.0
                                                                            25.0
                                                                                     0.0
                                                                                              59.4
```

MORTGAGE

MORTGAGE

RENT

660.0

740.0

680.0

17.0

36.0

14.0

40.9

27.7

44.3

1.0

0.0

0.0

months

months

months

months

60

D2

Α1

5 rows × 27 columns

07-01

2016-

07-01 2016-

07-01 2016-

07-01

2

3

NEW test Data

July 2016 to December 2018

In [129]: len(new_df)

Out[129]: 95019

```
In [130]: # Clean the dataset
          new_loans = cleaning_data(new_df)
           Checking for NaNs:
           total_acc
                                        0
          pub_rec
                                       0
          revol_util
                                       0
          int_rate
                                       0
          dti
                                       0
                                       0
          purpose
                                       0
          mort_acc
          loan_amnt
                                       0
                                       0
          installment
          pub_rec_bankruptcies
                                       0
          revol_bal
                                       0
                                       0
          open_acc
          emp_length
                                       0
          loan_status
                                       0
          time_to_earliest_cr_line
                                       0
          log_annual_inc
                                       0
          fico
                                       0
          dtype: int64
          C:\Newfolder\lib\site-packages\pandas\core\arraylike.py:396: RuntimeWarning:
          divide by zero encountered in log
            result = getattr(ufunc, method)(*inputs, **kwargs)
In [131]: | # create a new dataset with this new dummy variables
```


Out[131]:

	total_acc	pub_rec	revol_util	int_rate	dti	mort_acc	loan_amnt	installment	pub_rec_bank
0	13.0	0.0	12.0	7.99	7.25	9.0	15000.0	469.98	
1	25.0	0.0	59.4	11.49	34.49	0.0	5000.0	164.86	
2	17.0	1.0	40.9	17.99	13.20	3.0	8000.0	289.18	
3	36.0	0.0	27.7	5.32	12.90	0.0	16000.0	481.84	
4	14.0	0.0	44.3	14.49	13.89	1.0	14000.0	329.33	

5 rows × 27 columns

```
In [132]: | # get predictors & drop response
           X_new = new_loans_df.drop(['loan_status'], axis = 1)
In [133]: # Use the already built model to predict response
            prediction_new_loans = rndforest_100.predict(X_new)
In [134]: | # create a new column for the predicted response
            new_loans['NEW loan_status'] = prediction_new_loans
In [135]: # view the outcome
           new_loans.head()
Out[135]:
               total_acc pub_rec revol_util int_rate
                                                     dti
                                                                 purpose mort_acc loan_amnt installm
                                              7.99
                                                    7.25
                                                                                      15000.0
            0
                   13.0
                             0.0
                                      12.0
                                                           major_purchase
                                                                               9.0
                                                                                                  469
            1
                   25.0
                             0.0
                                      59.4
                                             11.49 34.49
                                                                               0.0
                                                                                       5000.0
                                                                                                  164
                                                                    other
            2
                   17.0
                             1.0
                                      40.9
                                             17.99 13.20
                                                         debt_consolidation
                                                                               3.0
                                                                                       0.0008
                                                                                                  289
             3
                                      27.7
                                                  12.90
                                                         debt consolidation
                                                                                      16000.0
                   36.0
                             0.0
                                                                               0.0
                                                                                                  481
                                      44.3
                                                         debt_consolidation
                                                                                      14000.0
                   14.0
                             0.0
                                             14.49 13.89
                                                                               1.0
                                                                                                  329
```

Check to see the model performance in predicting the response

- original response variable (came in with with data), y_true = new loans['loan status']
- new prediction, y_pred = prediction new loans

```
In [143]: # Manually: build a simple function to calculate the *accuracy, *recall *preci
          sion and *f1-score
          def classification_metrics(y_true, y_pred):
              tp - true positive
              fp - false positive
              fn - false negative
              tn - true negative
              Reference Wikipedia explanation on "Confusion Matrix" ---https://en.wikipe
          dia.org/wiki/Confusion_matrix
              # keep counts
              tp = fp = fn = tn = 0
              # on both y_true and y_pred, run through every element and make relevant c
          omparisms
              for i in range(len(y true)):
                  if y_true[i] == 1 and y_pred[i] == 1:
                      tp += 1 # update true positive
                  elif y_true[i] == 0 and y_pred[i] == 1:
                      fp += 1 # update false positive
                  elif y_true[i] == 1 and y_pred[i] == 0:
                                # update false negative
                      fn += 1
                  elif y_true[i] == 0 and y_pred[i] == 0:
                      tn += 1
                                # update true negative
              # implementing formulas
              accuracy = (tp + tn) / len(y_true)
              recall = tp / (tp + fn) if (tp + fn) > 0 else 0
              precision = tp / (tp + fp) if (tp + fp) > 0 else 0
              f1 = 2 * precision * recall / (precision + recall) if (precision + recall)
          > 0 else 0
              return accuracy, recall, precision, f1
```

Accuracy: 0.866
Recall: 0.97
Precision: 0.883
F1-score: 0.924

Key Insights:

- In our new data, overall, the model performed better than in training
 - 87% accuracy vs. training model of 84%
 - 97% recall (same as in training)
 - improved precision of 88% vs. 86% in training
 - f1-score of 92%, a better balance than in training (91%)
- Note the above results takes the positive class as 1 (i.e. Loans that are not fully paid)
- Again, using 100 estimators for our hyperparameter

In []:	