CHRISTOPHER D. COOPER

Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Avenida España 1680 Valparaíso, Chile +56 32 265 4162

PERSONAL INFORMATION

Full name Christopher David Cooper Villagrán

Date, place of birth November 11th, 1984. Viña del Mar, Chile

Nationality Chilean/Spanish

Email address christopher.cooper@usm.cl

christophercooperv@gmail.com

Phone +56 32 265 4450

EDUCATION

2010-2015 PhD. Mechanical Engineering. Boston University, Boston, MA. Advisor: Prof. Lorena Barba.

2010-2012 MS. Mechanical Engineering. Boston University, Boston, MA. Advisor: Prof. Lorena Barba.

2003-2009 Professional Mechanical Engineer. Universidad Técnica Federico Santa María, Valparaíso, Chile.

2003-2007 BSc. Mechanical Engineering. Universidad Técnica Federico Santa María, Valparaíso, Chile.

CURRENT EMPLOYMENT

2015- Instructor Académico (entry level faculty position). Departamento de Ingeniería Mecánica. Universidad Técnica Federico Santa María. Valparaíso, Chile.

Courses taught: Introduction to Fluid Mechanics, Advanced Fluid Mechanics, Fundamentals of Computational Fluid Mechanics, Simulation with Fast Algorithms.

2016- Associate Researcher. Centro Científico Tecnológico de Valparaíso (CCTVal). Valparaíso, Chile.

PREVIOUS EXPERIENCE

Research

- 01-03/2017 Visiting Research Assistant. Mathematics Department, University of Michigan, Ann Arbor, MI.
- 2010-2014 Research assistant. Boston University, Boston, MA.
 - 2008 Visiting Research Assistant. Research exchange program funded by SCAT-ALFA project (scat-alfa.eu). University of Bristol, Bristol, UK.
 - 2007 Research assistant for FONDEF D05110098 project. Universidad Técnica Federico Santa María, Valparaíso, Chile.

Teaching

- Fall 2014 Teaching assistant for Practical Numerical Methods in Python (MOOC developed at GWU)
 Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC.
- ${\bf 2011}$ and ${\bf 2014}$ Graduate teaching assistant for Mechanics I course.

Mechanical Engineering Department, Boston University, Boston, MA.

- **August 2011** Designed and taught a one month course on GPU computing at Universidad Técnica Federico Santa María, Valparaíso, Chile.
 - **2010** Graduate teaching assistant for Fluid Mechanics course.

Mechanical Engineering Department, Boston University, Boston, MA.

2006 - 2009 Teaching assistant for General Fluid Mechanics and Fluid Mechanics II courses.

Mechanical Engineering Department, Universidad Técnica Federico Santa María, Valparaíso, Chile.

2004 Teaching assistant for Mathematics I course.

Mathematics Department, Universidad Técnica Federico Santa María, Valparaíso, Chile.

Industry

2009 Project engineer assistant at a R&D&I office Sociedad de Consultoría e Inversiones Tecnova S.A., Viña del Mar, Chile

FUNDING

- 2017-2018 FONDEF IDeA en dos etapas. "Preparación y caracterización de metamateriales magnéticos para detección remota de tensiones en neumáticos". (Co-PI)
- **2016-2019** FONDECYT Iniciación. "Full viruses on your local cluster: parallel simulations of virus-cell electrostatic interactions". (PI)
 - 2016 USM-DGIP Internal project. "Modelación y diseño de prototipo para medir tensiones en compósitos poliméricos". (PI)
 - **2016** USM-DGIP Internal project. "Dinámica del escurrimiento sobre una superficie porosa: aplicación a la predicción de aluviones". (Co-PI)
 - **2015** USM-DGIP Internal project. "Modelación numérica de moléculas ligando en biosensores". (PI)

AWARDS AND HONORS

- 2013 Travel award for the 2013 International HPC Summer School in New York University from Xsede, Prace and Riken. New York, NY.
- 2010 Graduate Teaching Fellow. Boston University, Boston, MA.
- 2010-2013 "Becas Chile" scholarship for doctoral studies. Chile.
 - 2009 "Colegio de Ingenieros de Chile" Prize. Valparaíso, Chile.
 - **2009** "Federico Santa María" Prize for best Mechanical Engineering graduate. Universidad Técnica Federico Santa María, Valparaíso, Chile.
 - 2008 Mobility grant as part of the Scientific Computing Advanced Training (SCAT) project, funded by the ALFA program to the University of Bristol, Bristol, UK.
- 2004-2009 University's honor list for outstanding students. Universidad Técnica Federico Santa María, Valparaíso, Chile.
 - **2003** Scholarship for high score in University admissions National Test (PAA). Universidad Técnica Federico Santa María, Valparaíso, Chile.

COMPUTER SKILLS

Languages C/C++, Python, Matlab, CUDA

Libraries MPI, OpenMP

Software iWork, MS Office, LATEX, Git

OS OSX, Windows, Linux

LANGUAGES

English Bilingual proficiency

Spanish Native proficiency

PUBLICATIONS

Journal publications

- A. Molavi Tabrizi, S. Goossens, A. Mehdizadeh Rahimi, C. D. Cooper, M. G. Knepley, and J. P. Bardhan. Extending the Solvation-Layer Interface Condition Continum Electrostatic Model to a Linearized Poisson-Boltzmann Solvent. *Journal of Chemical Theory and Computation* 13 (6) (2017): 2897-2914
- C. D. Cooper, N. C. Clementi, G. Forsyth, and L. A. Barba. PyGBe: Python, GPUs and Boundary elements for biomolecular electrostatics. *Journal of Open Source Software*. **1** (2016):43. 10.21105/joss.00043
- C. D. Cooper and L. A. Barba. Poisson-Boltzmann model for protein-surface electrostatic interactions and grid-convergence study using the PyGBe code. *Comput. Phys. Commun.* 202 (2016): 23-32. arxiv:1506.03745
- C. D. Cooper, N. C. Clementi and L. A. Barba. Probing protein orientation near charged nanosurfaces for simulation-assisted biosensor design. *J. Chem. Phys.* 143 **12** (2015): 124709. arXiv:1503.08150
- C. D. Cooper, J. P. Bardhan, L. A. Barba. A biomolecular electrostatics solver using Python, GPUs and boundary elements that can handle solvent-filled cavities and Stern layers. *Comput. Phys. Commun.* 185 **3** (2014): 720-729. arXiv:1309.4018

Conference presentations and proceedings

- C. D. Cooper. Numerical simulations of sensitivity in LSPR biosensors. *X Conferencia Iberoamericana de Sensores Ibersensor 2016*. Viña del Mar, Chile (October, 2016)
- S. Flores and C. D. Cooper. Jupyter notebooks como herramienta versátil para docencia en cursos STEM. XIXX Congreso Chileno de Educación en Ingeniería, SOCHEDI 2016. Pucón, Chile (October, 2016).
- C. D. Cooper. Modelación numérica de nano-biosensores con modelos continuos. XVI Congreso Chileno de Ingeniería Mecánica, COCIM 2015. Valparaíso, Chile (November, 2015).
- C. D. Cooper and L. A. Barba. Implicit solvent model using Python and GPUs for proteins interacting with charged surfaces. XXVI IUPAP Conference on Computational Physics, CCP 2014. Boston, MA (August, 2014).
- C. D. Cooper, J. P. Bardhan and L. A. Barba. Efficient boundary element methods for molecular electrostatics using Python and GPUs. *SIAM Conference on Computational Science and Engineering*. Boston, MA (February, 2013).
- C. D. Cooper and L. A. Barba. Fast tree methods and GPUs for protein electrostatics. *Symposium of the International Association for Boundary Element Method, IABEM 2013.* Santiago, Chile (January, 2013).
- C. D. Cooper and L. A. Barba. Efficient Boundary Element Methods in Python with GPUs. 10th World Congress on Computational Mechanics. Sao Paulo, Brazil (July, 2012).
- F. A. Cruz, C. D. Cooper, R. Yokota, L. A. Barba. Parallel Implementation of the Panel-free Boundary Conditions for the Viscous Vortex Method. 21st International Conference on Parallel Computational Fluid Dynamics. Moffet Field, CA (2009).
- C. D. Cooper, L. A. Barba. Panel-free Boundary Conditions for the Viscous Vortex Method. 19th AIAA Computational Fluid Dynamics Conference. San Antonio, TX (2009).

Other presentations

C. D. Cooper. Dissolving proteins with continuum models: a Poisson-Boltzmann solver in Python, with GPUs and boundary elements. *Theoretical and Computational Biophysics Group Seminar*. Beckman Institute, University of Illinois, Urbana-Champaign, IL. March, 2017. (Invited talk)

- C. D. Cooper. Simulating protein electrostatics with Python and GPUs: implementation and applications. First Chilean Symposium on Boundary Element Methods. Pontificia Universidad Católica de Chile, Santiago, Chile. December, 2016. (Invited talk)
- C. D. Cooper. Solvating proteins with continuum models: a Poisson-Boltzmann solver in Python, with GPUs and boundary elements. *Computational Methods in Biology and Biomedicine*. Pontificia Universidad Católica de Chile, Santiago, Chile. September, 2016. (Invited talk)
- C. D. Cooper. Electrostática en proteínas: presente y futuras direcciones. Centro Científico Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Valparaíso, Chile. March, 2016. (Invited talk)
- C. D. Cooper. Biomolecular electrostatics with continuum models: a boundary integral implementation and applications to biosensors. Invited talk. *Coloquio de Informática*. Departamento de Informática, Universidad Técnica Federico Santa María, Valparaíso, Chile. March, 2015. (Invited talk)
- C. D. Cooper and L. A. Barba. Using GPUs for the boundary element method. *CUDA Research Fast Forward NVIDIA Booth, Supercomputing 2011*. Seattle, WA. November, 2011.

WORKSHOPS

International Summer School on HPC Challenges in Computational Sciences. Organized by Xsede, Prace and Riken. New York, NY (July, 2013).

Pan-American Advanced Studies Institute: Scientific computing in the Americas, the challenges of massively parallel. Organized by L. Barba with NSF funding. Valparaíso, Chile (January, 2011).

RESEARCH INTERESTS

Boundary element methods

Continuum electrostatics for biomolecular simulations

Treecodes and Fast Multipole Methods

GPU computing

Computational Fluid Dynamics