Colle 06 - MPSI Inégalités dans \mathbb{R} Révision d'analyse

Relation d'ordre dans \mathbb{R}

Exercice 1

Soient A et B deux parties non vides de $\mathbb R$ telles que

$$\forall (a,b) \in A \times B, a \le b.$$

Montrer que sup A et inf B existent et que sup $A \leq \inf B$.

Exercice 2

Soient A et B deux parties non vides et majorées de \mathbb{R} . On forme

$$A + B = \{a + b | (a, b) \in A \times B\}$$

Montrer que A + B est majorée et que

$$\sup(A+B) = \sup A + \sup B.$$

Exercice 3

Montrer

$$\forall n \in \mathbb{N}^*, \forall x_1, ..., x_n \in \mathbb{R}_+, \quad \sqrt{\sum_{i=1}^n x_i} \le \sum_{i=1}^n \sqrt{x_i}.$$

Exercice 4

1. Montrer

$$\forall n \in \mathbb{N}^*, \quad (\sqrt{n+1} - \sqrt{n}) < \frac{1}{2\sqrt{n}} < (\sqrt{n} - \sqrt{n-1}).$$

2. En déduire la valeur de

$$\left[\frac{1}{2} \sum_{k=1}^{10\ 000} \frac{1}{\sqrt{k}} \right].$$

Analyse

Exercice 5

Calculer la dérivée de

$$f(x) = \ln \frac{\sqrt{1+x^2} - 1}{\sqrt{1+x^2} + 1}.$$

Exercice 6

Pour $\lambda \in \mathbb{R}$, on considère les fonctions

$$f_{\lambda}: x \longmapsto \frac{x+\lambda}{r^2+1}.$$

- 1. Montrer que les tangentes en 0 aux fonctions f_{λ} sont parallèles.
- 2. Observer que les tangentes en 1 sont concourantes.

Valeur absolue

Exercice 7

Résoudre dans $\mathbb R$ l'équation suivante :

$$\sqrt{x - 4\sqrt{x - 4}} + \sqrt{x + 5 - 6\sqrt{x - 4}} = 1.$$

Fonctions usuelles

Exercice 8

Parmi les relations suivantes, lesquelles sont exactes :

1.
$$(a^b)^c = a^{bc}$$

$$2. \ a^b a^c = a^{bc}$$

3.
$$a^{2b} = (a^b)^2$$

4.
$$(ab)^c = a^{c/2}b^{c/2}$$

5.
$$(a^b)^c = a^{(b^c)}$$

6.
$$(a^b)^c = (a^c)^b$$

Exercice 9

Établir, pour tout $x \ge 0$ l'encadrement

$$x - \frac{1}{2}x^2 \le \ln(1+x) \le x.$$

Exercice 10

Simplifier a^b pour $a = \exp x^2$ et $b = \frac{1}{x} \ln x^{1/x}$.

Exercice 11

Comparer

$$\lim_{x \to 0^+} x^{(x^x)}$$
 et $\lim_{x \to 0^+} (x^x)^x$.

Exercice 12

Déterminer les limites suivantes :

$$1. \lim_{x \to +\infty} x^{1/x}$$

$$2. \lim_{x \to 0} x^{\sqrt{x}}$$

3.
$$\lim_{x \to 0^+} x^{1/x}$$

Exercice 13

Montrer que pour tout a, b > 0

$$\frac{1}{2}(\ln a + \ln b) \le \ln \frac{a+b}{2}.$$

Exercice 14

Résoudre les équations suivantes :

1.
$$e^x + e^{1-x} = e + 1$$

2.
$$x^{\sqrt{x}} = (\sqrt{x})^x$$

3.
$$2^{2x} - 3^{x-1/2} = 3^{x+1/2} - 2^{2x-1}$$

Exercice 15

Résoudre les systèmes suivants :

$$1. \begin{cases} 8^x = 10y \\ 2^x = 5y \end{cases}$$

1.
$$\begin{cases} 8^x = 10y \\ 2^x = 5y \end{cases}$$
2.
$$\begin{cases} e^x e^{2y} = a \\ 2xy = 1 \end{cases}$$

Relation d'ordre dans \mathbb{R}

Correction de l'exercice 1

Soit $b \in B$. Puisque $\forall a \in A, a \leq b$ la partie A est majorée par b.

A est une partie de \mathbb{R} non vide et majorée par b, donc sup A existe et sup $A \leq b$. B est une partie de \mathbb{R} non vide et minorée par sup A sont inf B existe et sup $A \leq \inf B$.

Correction de l'exercice 2

A et B sont deux parties non vides et majorées de \mathbb{R} donc sup A et sup B existent.

Pour tout $x \in A + B$, on peut écrire x = a + b avec $a \in A$ et $b \in B$.

On a $x = a + b \le \sup A + \sup B$, donc A + B est majorée par $\sup A + \sup B$.

A+B est une partie de $\mathbb R$ non vide et majorée donc sup A+B existe et

$$\sup(A+B) \le \sup A + \sup B.$$

Pour tout $a \in A$ et tout $b \in B$

$$a = (a+b) - b \le \sup(A+B) - b$$

donc A est majorée par $\sup(A+B)-b$, d'où

$$\sup A \le \sup (A+B) - b$$

Par suite

$$b \le \sup(A+B) - \sup A$$

et B est donc majorée par $\sup(A+B) - \sup A$ et par suite

$$\sup B \le \sup(A+B) - \sup A$$

Finalement

$$\sup A + \sup B \le \sup (A + B)$$

puis l'égalité.

Correction de l'exercice 3

Correction de l'exercice 4

Correction de l'exercice 5

$$U = \frac{\sqrt{1+x^2} - 1}{\sqrt{1+x^2} + 1} = \frac{u}{v}$$

pour
$$x \neq 0$$
.

$$f'(x) = \frac{U'}{U} \text{ avec } U' = \frac{u'v - uv'}{v^2} \text{ avec } u'(x) = \frac{x}{\sqrt{1 + x^2}} \text{ et } v'(x) = \frac{x}{\sqrt{1 + x^2}}.$$

$$f'(x) = \frac{2}{x\sqrt{1 + x^2}}.$$

Correction de l'exercice 6

Correction de l'exercice 7

$$\sqrt{x - 4\sqrt{x - 4}} + \sqrt{x + 5 - 6\sqrt{x - 4}} = 1.$$

On pose $t = \sqrt{x-4}$.

$$\sqrt{(\sqrt{x-4}-2)^2} + \sqrt{(\sqrt{x-4}-3)^2} = 1$$
$$|t-2| + |t-3| = 1$$

En prenant sur la droite des réels A(2), B(3) et M(t), on a AM+BM=1. Comme les points A,M,B sont alignés, ils le sont dans cet ordre. Donc $2 \le t \le 3$.

$$S = [8; 13].$$

Fonctions usuelles

Correction de l'exercice 8

(a), (c) et (f)

Correction de l'exercice 9

Par étude des variations de 2 fonctions.

Correction de l'exercice 10

 $a^b = x$.

Correction de l'exercice 11

$$x^{(x^x)} = \exp(x^x \ln x) = \exp(\exp(x \ln x) \ln x) \to 0$$

 $(x^x)^x = \exp(x \ln x) = \exp(x^2 \ln x) \to 1.$

Correction de l'exercice 12

1.
$$\lim_{x \to +\infty} x^{1/x} = 1$$

2.
$$\lim_{x\to 0} x^{\sqrt{x}} = 1$$

3.
$$\lim_{x\to 0^+} x^{1/x} = 0$$

Correction de l'exercice 13

On a

$$\ln\left(\frac{a+b}{2}\right) - \frac{1}{2}(\ln a + \ln b) = \ln\frac{a+b}{2\sqrt{ab}}$$

or

$$a+b = \sqrt{a}^2 + \sqrt{b}^2 \ge 2\sqrt{ab}$$

donc

$$\ln \frac{a+b}{2\sqrt{ab}} \ge 0.$$

Correction de l'exercice 14

1.
$$S = \{0, 1\}$$

2.
$$S = \{0, 1, 4\}$$

3. Obtenir
$$2^{2x-3} = 3^{x-3/2}$$
 puis $S = \{3/2\}$.

Correction de l'exercice 15

1.
$$x = 1/2, y = \sqrt{2}/5$$

2. Obtenir un système somme/produit en x et 2y puis le résoudre.