

Visualizing & Forecasting Residential Energy Data

JENNIFER BROSNAHAN

Background

- IOT Analytics has been asked by a law firm to conduct an in-depth analysis of power consumption data for a client's residential home.
- The law firm's client claims to have not been occupying a specific residence at the time of an undisclosed event during Summer of 2008.
- Energy use records will be used to provide evidence on whether or not residence was occupied from July-September, 2008.

Business Objectives

- Analyze energy use records for client residence to answer the primary question:
 - Was client residence occupied during the Summer of 2008 (July-September)?
- Conduct in-depth analysis of power use by sub-meter from 2007 to 2010 to identify overall patterns.
- Visualize energy use patterns on high level (3-years) and precise-level (Summer of 2008).
- Use electrical power data from 2007-2009 to forecast energy use by sub-meter into 2010.

Data Description

Data consists of energy consumed per minute for 3 different sub-meters in residential home from 2007 through 2009

- 1,569,894 total minute observations
- Energy amount used each minute for each of 3 sub-meters:
 - Sub-meter 1: Kitchen (dishwasher, oven, microwave)
 - Sub-meter 2: Laundry (washing machine, drier, fridge, light)
 - Sub-meter 3: Electric Water Heater and AC

Data Description (Missing Data)

Missing Data (minutes from 2007 to 2010):

- 57 days with missing minutes (<1440 minutes per day)
- 7086 total missing minutes
- Range was 1 to 1380 minutes missing/day
- 25 days missing 1 minute
- 15 days missing 2-4 minutes
- 4 total minutes missing on 3 different dates during time period in question (July-Sept 2008)

Due to relatively insignificant number of missing minutes during primary time focus, missing values were not adjusted in data set.

Summary of Energy Use by Sub-Meter (2007 to 2010)

Sub-meter 1: Kitchen

- Least total energy used (1,819,989 Watts)
- Average 1.16 Watts per minute
- Largest energy range (0-82 Watts)

Sub-meter 2: Laundry

- Total energy used (2,108,410 Watts)
- Average 1.34 Watts per minute
- Energy range (0-78 Watts)

Sub-meter 3: Water Heater & AC

- Most total energy used (9,758,843 Watts)
- Average 6.21 Watts per minute
- Smallest energy range (0-32 Watts)

Seasonal Patterns: Monthly Energy Use Across 3 Years

- Water Heater & AC consistently use more energy than other sub-meters across years
- Seasonal patterns show peak energy use for Water Heater & AC in winter months, with steady decline reaching lows in summer months
- Sharp decline for all sub-meters seen in August 2008
- **Recommendation**: Explore Summer 2008 dip

Power Consumption Monthly Use by Year

Summer 2008: Daily Energy Use from Jul-Sept 2008

- Notice steep drop in energy use in all sub-meters from Aug 5-Aug 29, 2008
- Water Heater & AC consistently use more energy than other sub-meters, even during August time period
- •Recommendation: Compare Summer months across years to see if 2008 is pattern or anomaly

Daily Power Use July - September 2008

Summer Comparison: Daily Energy Use Jul-Sept by Year

- Steep, extended drop in energy use is seen in Aug 2008 only
- Water Heater & AC consistently uses more energy than other submeters across years
- Less steep drop is seen for short duration beginning of Aug 2009
- Recommendation: Explore on microscopic level weeks and days within August 2008

Daily Power Use July-Sept by Year

Hourly Energy Use for 1 week Jul 29-Aug 4 2008

- Kitchen: used 4 times in 1 week period, 19-37 Watts/time
- Laundry: 1 higher use of 35 Watts, otherwise 2-3 Watts regular intervals
- Water Heater/AC: Range of 2-30
 Watts used more frequently throughout the week
- Recommendation: Explore hourly use the following week

Hourly Consumption from July 29 - Aug 4 2008

Hourly Energy Use for 1 Week: Aug 4-11 2008

- Noticeable difference in energy use Aug 5 on.
- Kitchen: reveals 1 spike of 39 Watts on Aug 5, with no more use
- Laundry: 1 spike of 71 Watts late Aug
 4. Can see 2-3 Watts intervals rest of week.
- Water Heater/AC: High of 30 Watts occurred on Aug 5, followed by 1-2 Watt regular intervals with 12-Watt spikes about once/day
- Recommendation: Explore hourly use the following week

Hourly Consumption from Aug 5 - Aug 11 2008

Hourly Energy Use for 1 Week: Aug 11-18 2008

- Kitchen: Appears to be no energy use
- Laundry: 1-2 Watts daily intervals, however, also notice time periods of no energy use
- Water Heater/AC: 1-Watt regular intervals with 12-Watt spikes about once/day
- •Recommendation: Explore hourly use the following week

Hourly Consumption from Aug 11 - Aug 18 2008

Hourly Energy Use for 1 Week: Aug 18-25 2008

- Kitchen: Appears to be no energy use
- Laundry: Appears no energy used Aug 18-19, but used other days
- Water Heater/AC: 1 Watt regular daily intervals, with some spikes
- Recommendation: Explore hourly use Aug 18 to see if Laundry room sub-meter is used or not

Hourly Consumption from Aug 18 - Aug 25 2008

Hourly Energy Use for 1 Day: Aug 18, 2008

- Kitchen: No energy used
- Laundry: Reveals energy is being used at 1-2 Watt regular intervals
- Water Heater/AC: 1-Watt hourly intervals with spikes throughout the day

Recommendation: Compare submeter energy use to another day in different time period

Hourly Power Consumption August 18th, 2008

Hourly Energy Use for 1 Day: Jan 9, 2008

- Energy use in kitchen indicates residence was occupied.
- Laundry has same 1-2
 Watt pattern as Aug 18, 2008.
- Water Heater & AC consistently run during the day on this day in January

Hourly Power Consumption January 9th, 2008

Top Insights from Energy Visualizations

- •Water Heater & AC sub-meter consistently use more energy than other sub-meters all year, with peak in winter and low in summer months
- •Sharp extended decline for all sub-meters seen from Aug 5th-31st 2008
 - This decline is atypical of all other time periods
 - No energy was used from kitchen sub-meter from Aug 6th-31st
 - Lower energy use than typically seen in summer from Laundry and Water Heater/AC sub-meters
- •Energy use analysis recommendation is that residence was not occupied from Aug 6th-31st, 2008 and was occupied all other days within July-September 2008 time frame.

Forecasting Energy Use into 2010

Utilize various forecasting techniques on each sub-meter to predict energy use into 2010:

- Time Series Visualizations
- Seasonal Forecasting Visuals
- A Deeper Look at Seasonality, Trends, and Randomness in Energy Use
- Non-Seasonal Forecasting

Time-Series Observation Frequency

Sub-meter 1 Kitchen: Collected 1 observation daily at 6:00pm

Sub-meter 2 Laundry: Collected 1 observation daily at 7:00pm

Sub-meter 3 Water Heater & AC: Collected 1 observation weekly on Monday at 8:00pm

Sub-meters 1 and 2 were collected more frequently since total use was significantly lower than Sub-meter 3

Time Series Visualizations 3-Year Period

- Kitchen sub-meter
 - Less frequent spikes
 - Yields lowest total energy use (1,819,989 Watts)
- Laundry sub-meter
 - More frequent spikes than kitchen
 - Yields slightly more total energy than kitchen (2,108,410 Watts)

Submeter 2: Laundry, Daily Interval

Time Series Visualizations 3-Year Period

- Water Heater & AC
 - Collected on Weekly basis vs. Daily
 - Shows relatively consistent energy use over time
 - Some lulls in 2008

25-Day Linear Regression Forecast

Sub-meter 1: Kitchen

- Daily observation frequency at 6:00pm over 3-year time period
- Forecasted energy use ranges from 0.47 to 0.95, with sharp peak to 13.6 on day 14
- R2 (confidence): .313
- RMSE (error): 6.56

Submeter 1 Kitchen: 25-day Linear Regression Forecast

25-Day Linear Regression Forecast

Sub-meter 2: Laundry

- Daily observation frequency at 7:00pm over 3-year time period
- Forecasted energy use line has negative values, ranges from -0.32 to a peak of 22
- R2 (confidence): .334
- RMSE (error): 7.91

Submeter 2, Laundry: 25-day Seasonal Forecast

10-Week Linear Regression Forecast

- Sub-meter 3: Water Heater& AC
 - Weekly observation frequency, Mondays at 8:00pm over 3-year time period
 - Forecasted energy use line has negative values, ranges from -2.37 to 8.95
 - R2 (confidence): .358
 - RMSE (error): 7.08

Submeter 3: Water Heater & AC 10-Week Seasonal Forecast

25-Day Seasonal Forecast: R2 & RMSE

- •R2 (confidence): the closer to 1.0, the better
- •RMSE (error): the lower it is to 0, the better
- Overall, the forecast for submeter 3 is most accurate
- •All predicted negative values

	R2	RMSE	80% low	80% high
Kitchen	.313	6.56	-9.8	10.7
Laundry	.334	7.91	-12.7	33.7
Water Heater/AC	.358	7.08	-13.1	20

Trend, Seasonality, and Randomness Breakdown

Kitchen Sub-meter 1

Trend reveals steady decline from 1.1 mid-2007 to low of 0.6 mid-2008 then rise to 1.8 mid-2009

Reveals seasonality

Reveals some randomness

Decomposition of additive time series

Trend, Seasonality, and Randomness Breakdown

Laundry Sub-meter 2

Trend reveals decline from high of 2.4 March 2008 to low of 1.6 in March 2009, then rise to 2.1 mid-2009

Reveals significant seasonality

Reveals some randomness

Decomposition of additive time series

Trend, Seasonality, and Randomness Breakdown

Water Heater & AC Submeter 3

Trend reveals steady decline from high of 6 mid-2007 to low of 1 late-2008, then increase to 4 mid-2009

Seasonal effects show decreased use Q3s and peak use Q1s

Reveals some randomness

Decomposition of additive time series

Trend, Seasonality, and Randomness

Summary Statistics

	Seasonal	Trend	Random	Observations
Kitchen	1090	1090	1090	365
Laundry	1090	1090	1090	365
Water Heater/ AC	157	157	157	52

Holt-Winters 25-Day Forecast: Sub 1 Kitchen

- Includes seasonality
- Daily observation frequency at 6:00pm for 3-year time period
- Forecasted energy use hovers around 0.5 to 1.28 watts per hour
- One sharp peak up to 33.7 watts on day 13, then back down to 0.5
- Overall, predictions similar to average energy use in kitchen from 2007-2009

Submeter 1 Kitchen: Holt-Winters 25 Day Forecast

Submeter 1 Kitchen: Holt-Winters 25 Day Forecast, 25-50% confidence interval

Holt-Winters 25-Day Forecast: Sub 2 Laundry

- Includes seasonality
- Daily observation frequency at 7:00pm for 3year time period
- •Forecasted energy use for submeter 2 includes negative values, and ranges from -0.06 to 3.54 (day 8), not as useful

Submeter 2 Laundry: Holt-Winters 25-Day Forecast

Submeter 2 Laundry: Holt-Winters 25-Day Forecast, 25-50% confidence interval

Holt-Winters 10-Week Forecast: Water-Heater/AC

- Includes seasonality
- Weekly observation frequency at 8:00pm for 3year time period
- Forecasted energy use between 5.6 to 6.6 watts per hour primarily
- Increases to 10.5 week 6, peaks at 19.5 week 7, then back to 6 watts week 8
- Overall, predictions similar to average Water Heater/AC use from 2007-2009

Water Heater/AC: Holt-Winters 10-Week Forecast

Water Heater/AC: Holt-Winters 10-Week Forecast, 25-50% CI

Insights from Energy Forecasting

- Holt-winters forecast for Submeter 1 (Kitchen) and Submeter 3 (Water Heater/AC):
 - provided positive forecast line while accounting for seasonality in the data
 - forecast line is similar to average use in both submeters acress 2007-2009
- Both methods forecasted negative energy use for Submeter 2 (Laundry)
 - Other time subsets may be needed to forecast positive values for energy use in Submeter 2

Summary

- Conducted in-depth analysis of power use by submeter for residential home from 2007 to 2010.
- Visualized energy use patterns on high level (3-year time period) and precise-level (during Summer of 2008).
 - Used electrical power data from 2007 through 2009 to forecast energy use by sub-meter into 2010.
- Gained insights from visualizations and forecasts.

Energy Saving Recommendations

- Reset HVAC controls to reduce daily Water Heater & AC spikes noted throughout the year to save energy
- Reduce the length of time AC and/or Water Heater is programmed to turn on during the day
- Reset AC thermometer in winter months to higher temperature setting to reduce energy use during peak season
- Minimize sharp peaks in demand, as observed in July 2008, to cut energy costs

Lessons Learned

- o DateTime is extremely difficult to pull apart, subset, and analyze.
- Tidyr gather() and Dplyr filter(), summarise(), group_by(), and the pipe %>% were lifesavers once I figured out how to use.
- Although plan of attack encouraged plotly, I quickly learned that I prefer ggplot2, code seemed more efficient.
- o Just when I was about to give up, I finally discovered the code to label DateTime, which meant a lot to me: P <- scale_x_date(labels = date_format('%b %d'), breaks = date_breaks('1 day')) +</p>

theme(axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1, size = 8)) +

I learned the hard way that we should keep seasonality within Holt-Winters forecast to allow an element of seasonality applied to our data.