TP #4

Installation et exploitation de librairies tierces

I. Création d'un nouveau projet

Ouvrez l'IDE de votre choix (VSCode ou PyCharm), et initiez un projet vierge (tp4).

Créez un fichier de type python (tp4.py).

II. Librairie Requests

Citi Bike est le système de vélos en libre-service de la ville de New York. Une API est disponible, permettant d'obtenir des informations en temps réel :

https://gbfs.citibikenyc.com/gbfs/fr/station_information.json

https://gbfs.citibikenyc.com/gbfs/fr/station_status.json

Exercice 1

Installez la librairie Requests, qui vous permettra de faire des requêtes web afin d'interroger cette API.

Exercice 2

En exploitant l'API mise en place (station_information.json), affichez le nom de toutes les stations avec leur capacité actuelle.

Réponse attendue

```
St Johns Pl & Saratoga Ave : 0
4567.07 : 0
Morton St & West St : 23
Bergen St & Kingston Ave : 0
Sterling Pl & Schenectady Ave : 0
Pacific St & Thomas S. Boyland St : 0
JC Medical Center : 21
Carroll St & Rochester Ave : 0
College Ave & E 169 St : 19
Lafayette Ave & Stuyvesant Ave : 24
```

Exercice 3

En exploitant l'API mise en place (station_status.json), affichez :

- Le nombre de stations en service (active)
- ➤ Le nombre de stations HS (out_of_service)
- ➤ Le ratio de stations en service

Réponse attendue

Ratio de stations en service : 0.9459308807134894

Exercice 4

En exploitant l'API mise en place (station_status.json), affichez :

- Le nombre de vélos électriques
- Le nombre de vélos classiques
- Le ratio de vélos électriques

Réponse attendue

Ratio de vélos électriques : 0.08626536668079694

III. Librairie Math

Nous souhaitons trouver quelles sont les stations les plus éloignées. Pour cela, nous utiliserons la célèbre formule du théorème de Pythagore : $c = \sqrt{a^2 + b^2}$

Exercice 5

Trouvez l'algorithme permettant de trouver quelles sont les 2 stations les plus éloignées.

Réponse attendue

