Proof that the Bayes Decision Rule is Optimal

For any decision function $q: \mathbb{R}^d \xrightarrow{g} \{0, 1\},\$ Theorem

$$Pr\{g(\mathbf{X})! = Y\} \ge Pr\{g^*(\mathbf{X})! = Y\}$$

We'll prove it in the 2-class problem.

Proof

First we concentrate the attention on the error rate (probability of classification error) of the generic decision function $g(\cdot)$. Look at a SPECIFIC feature vector (namely, condition on X = x), and recall that uppercase letters denote a random variable, while a lowercase letter denotes a value.

$$\Pr \{q(\mathbf{X}) \neq Y \mid \mathbf{X} = \mathbf{x}\} = 1 - \Pr \{q(\mathbf{X}) = Y \mid \mathbf{X} = \mathbf{x}\}\$$

so, when $\mathbf{X} = \mathbf{x}$ the probability of error is 1 minus the probability of correct decision. We make a correct decision if $g(\mathbf{X}) = 1$ and Y = 1 OR if $g(\mathbf{X}) = 0$ and Y = 0. Note that the expression of the unity $g(\mathbf{PR})$ is the sum of the probabilities

$$1-\Pr\{g(\mathbf{X})=Y\mid \mathbf{X}\}=1-\Pr\{g(\mathbf{X})=1,Y=1\mid \mathbf{X}=\mathbf{x}\}-\Pr\{g(\mathbf{X})=0,Y=0\mid \mathbf{X}=\mathbf{x}\}.$$

1-Pr $\{g(\mathbf{X}) = Y \mid \mathbf{X}\} = 1$ -Pr $\{g(\mathbf{X}) = 1, Y = 1 \mid \mathbf{X} = \mathbf{x}\}$ -Pr $\{g(\mathbf{X}) = 0, Y = 0 \mid \mathbf{X} = \mathbf{x}\}$. We now show that conditional on $\mathbf{X} = \mathbf{X}$ where $\mathbf{X} = \mathbf{X}$ and $\mathbf{X} = \mathbf{X}$ and $\mathbf{X} = \mathbf{X}$. are independent (surprising, isn't it?).

First, note that conditional on \mathcal{X} of \mathcal{Y} of \mathcal{Y} or \mathcal{Y} therefore, $g(\mathbf{x})$ is just the value of g evaluated at \mathbf{x} . This is either 0 or \mathbf{r} .

Assume WLOG that $g(\mathbf{x}) = 1$. Then $\Pr \{g(\mathbf{x}) = 0, Y = 0 \mid \mathbf{X} = \mathbf{x})\}$ is equal to zero, because $q(\mathbf{x})$ is equal to 1. Note, therefore, that the event $\{q(\mathbf{X})=1\}$ has probability 0, and is conditionally independent of the event Y=0 given $\mathbf{X}=\mathbf{x}$. therefore:

$$\Pr\left\{g(\mathbf{X})=0,Y=0\mid\mathbf{X}=\mathbf{x}\right\} = \Pr\left\{g(\mathbf{X})=0\mid\mathbf{X}=\mathbf{x}\right\}\Pr\left\{Y=0\mid\mathbf{X}=\mathbf{x}\right\}.$$

Similarly, $\Pr\{g(\mathbf{x}) = 1, Y = 1 \mid \mathbf{X} = \mathbf{x}\} = \Pr\{Y = 1 \mid \mathbf{X} = \mathbf{x}\}\$ because, by assumption, $\Pr \{g(\mathbf{X} = 1) \mid \mathbf{X} = \mathbf{x}\} = 1$:

BUT an event having probability 1 is independent of any other event (can you prove it?), then

$$\Pr\{g(\mathbf{X}) = 1, Y = 1 \mid \mathbf{X} = \mathbf{x}\} = \Pr\{g(\mathbf{X}) = 1 \mid \mathbf{X} = \mathbf{x}\} \Pr\{Y = 1 \mid \mathbf{X} = \mathbf{x}\}\$$

by definition of independence.

Thus, for each x where $q(\mathbf{x}) = 1$,

$$\Pr\{q(\mathbf{X}) = k, Y = k \mid \mathbf{X} = \mathbf{x}\} = \Pr\{q(\mathbf{X}) = k \mid \mathbf{X} = \mathbf{x}\} \Pr\{Y = k \mid \mathbf{X} = \mathbf{x}\}\},$$

for k = 0, 1, and independence for this case is proved.

The same argument applies for each x where $g(\mathbf{x}) = 0$: thus we can always write

$$\Pr\{g(\mathbf{X}) = k, Y = k \mid \mathbf{X} = \mathbf{x}\} = \Pr\{g(\mathbf{X}) = k \mid \mathbf{X} = \mathbf{x}\} \Pr\{Y = k \mid \mathbf{X} = \mathbf{x}\}$$
,

for k = 0, 1, which concludes the independence proof.

Now note that $\Pr\{g(\mathbf{X}) = k \mid \mathbf{X} = \mathbf{x}\} = 1 \text{ if } g(\mathbf{x}) = k, \text{ and } = 0 \text{ if } g(\mathbf{x}) \neq k.$ By using the notation 1_A to denote the indicator of the set A, we can write:

1-Pr
$$\{g(\mathbf{X}) = Y \mid \mathbf{X}\} = 1 - (1_{g(\mathbf{x})=1} \Pr \{Y = 1 \mid \mathbf{X} = \mathbf{x}\} + 1_{g(\mathbf{x})=0} \Pr \{Y = 0 \mid \mathbf{X} = \mathbf{x}\}),$$

Let's now subtract $\Pr\{g(\mathbf{X}) = Y \mid \mathbf{X} = \mathbf{x}\}\$ from $\Pr\{g^*(\mathbf{X}) = Y \mid \mathbf{X} = \mathbf{x}\}$:

$$\Pr \left\{ g^*(\mathbf{X}) = Y \mid \mathbf{X} = \mathbf{x} \right\} - \Pr \left\{ g(\mathbf{X}) = Y \mid \mathbf{X} = \mathbf{x} \right\}$$

$$= \Pr \left\{ Y = 1 \mid \mathbf{X} = \mathbf{x} \right\} \left(1_{g^*(\mathbf{x}) = 1} - 1_{g(\mathbf{x}) = 1} \right)$$

$$\mathbf{Assignment} \left\{ \mathbf{PFOJEE} \right\} \mathbf{E}_* \mathbf{X} \mathbf{am}_g(\mathbf{x} = \mathbf{p})$$

(simple algebra). Noting that $\Pr\{Y = 0 \mid \mathbf{X} = \mathbf{x}\} = 1 - \Pr\{Y = 1 \mid \mathbf{X} = \mathbf{x}\}$, we can then write

$$\begin{array}{l} \text{https://powcoder.com} \\ \Pr\left\{g^*(\mathbf{X}) = Y \mid \mathbf{X} = \mathbf{x}\right\} - \Pr\left\{g(\mathbf{X}) = Y \mid \mathbf{X} = \mathbf{x}\right\} \\ = \Pr\left\{Y = 1 \mid \mathbf{X} = \mathbf{x}\right\} \begin{pmatrix} 1_{g^*(\mathbf{X}) = 1} - 1_{g(\mathbf{X}) = 1} \end{pmatrix} \\ \text{Add} + W \text{ expansion of the expansion$$

Now, note that $1_{g^*(\mathbf{X})=0} = 1 - 1_{g^*(\mathbf{X})=1}$, etc. Hence,

$$\Pr\{g^{*}(\mathbf{X}) = Y \mid \mathbf{X} = \mathbf{x}\} - \Pr\{g(\mathbf{X}) = Y \mid \mathbf{X} = \mathbf{x}\}$$

$$= \Pr\{Y = 1 \mid \mathbf{X} = \mathbf{x}\} \left(1_{g^{*}(\mathbf{x})=1} - 1_{g(\mathbf{x})=1}\right)$$

$$+ (1 - \Pr\{Y = 1 \mid \mathbf{X} = \mathbf{x}\}) \left(1 - 1_{g^{*}(\mathbf{x})=1} - 1 + 1_{g(\mathbf{x})=1}\right)$$

$$= (2\Pr\{Y = 1 \mid \mathbf{X} = \mathbf{x}\} - 1) \left(1_{g^{*}(\mathbf{x})=1} - 1_{g(\mathbf{x})=1}\right)$$
(2)

Now, note that, for each \mathbf{x} ,

- if $\Pr\{Y=1 \mid \mathbf{X}=\mathbf{x}\} > 1/2$, then by definition of the Bayes Decision Rule, $1_{g^*(\mathbf{x})=1}=1$, and, in general $1_{g(\mathbf{x})=1}\leq 1$; thus, Eq $2\geq 0$.
- if $\Pr\{Y=1 \mid \mathbf{X}=\mathbf{x}\} < 1/2$, then again by definition the Bayes Decision Rule, $1_{g^*(\mathbf{x})=1} = 0$, and, in general $1_{g(\mathbf{x})=1} \geq 0$; thus, Eq $2 \geq 0$.

This is true for $\mathbf{X} = \mathbf{x}$; Now, take the expectation with respect to $f(\mathbf{X})$.