620

(1)

静止していた電子が1Vで加速されるときに得る運動エネルギーを1電子ボルトと定義されているので、電子の得た運動エネルギーKは、

$$K = V[eV]$$

= $eV[J]$ (1[eV] = $e[J]$ より)

(2)

$$K = \frac{1}{2}mv^2$$
 より、 (運動エネルギーの式) $K = eV[J]$, $m = m[kg]$ を代入して、 $eV = \frac{1}{2}mv^2$ $\therefore v = \sqrt{\frac{2eV}{m}}$

よって、電子のもつ運動量pは、

$$p = mv$$

$$= m \cdot \sqrt{\frac{2eV}{m}}$$

$$= \sqrt{2emV}$$

(3)

$$p = \frac{h}{\lambda}$$
 より、 $p = \sqrt{2emV}$, $h = h$ を代入して、 $\sqrt{2emV} = \frac{h}{\lambda}$ $\therefore \lambda = \frac{h}{\sqrt{2emV}}$