Table 1:			dome	u "Sa"
souce symbol	peob	code	prop	code.
<i>S</i> ₁	0.4-	4	>0.4	in j
82	0.3,		-0.3	t
S	0.2 -		→(0·3)	€26, 17. J
0.0	0.1 -	28	<i>ي</i> . `	

Two-choises gou placing the "composite symbol" One way is placing the "composite symbol" on low as possible." as shown in table 1. The second way is placing the composite symbol "as high as possible." as shown in

ble 2. Table 2:	क्षे १६ मध्ये	Source Sa"
Source symbol	prob code	prob code
6 2 L	0.4	>0.4
100 1, 40 C	0.3	0.3
0-300	0.2	
St. X	0.1	

step + and dleps"; Follow the first method to form enduced some "so" by combinging Cast "r=2" symbols of "So".

Table 3.	+40 T	gradion to	Source	e "Sa"	Jourc	1 "db"
coma symbol		code	Dw p	code	poob	code
S	0.4	<u> </u>	>0.9 ~		0.6	
.	0.3 -	(1.	> 0.3 -		20.4	(0)
○ ~~. √3	0.2 -		0.3)-			
Sto.	0.1 -	ال	2 2 2 2		÷ .	

"as low as possible".

step 6: Last r=2 symbols au now encoded with 'r' different code symbols ie 'o' and 'i' shown Fable 4

Table 4:	S- 7		Soma "Sa"		Soma "Sh"	
Soma symbol	prob	code	doscl	code	prob	code
S,	0.4		0.4	· 5.	0.6	-0
	Ĉ 0 ⋅ 3 ∪. ¹		0.3 A	by 500	0.4	1
of the state of th	0.2	3 720	(O · 3)) 4 1 1	X. 15.	
Sy Sy	0.1	10: r.,).). ¹	1 2 3 6 2 1	Juži	Soft J

Step 7: As we comming backward '0' may be recomposed as '00' and '0' and '1' may be as '10' and '1' depending on the level of combining. as in Table 5.

مد ۱۱ اس	V. 0 42				1		
Table 5:			at the second second second	ce 'Sa"	Source		
Soma symbol	prob	code	prob	cocle	prob	cocle	
\$1	0.40		0.42	-1 [-0.6	-0	
<i>9</i> ,	0,3		0.3 <	-00-	0.4	-1	
wing of front	20.237	is wi	0.3	-01	NS L	8 2 3	
847 8=	€ 0./ ()	K		.)) [,	, j.		

Step 8 and step 9: This procedure continues till are get codewood corresponding to each source symbol showar In Table 6:

,	Table		L.		Some	e"Sa"	Soure	"38"
80	ull	symbol	prob	code	prob	Code	buop	cocle
	81	ž	0.4	<u> </u>	-0.4	1	0.6	0
	Sa		0.3	-00-	-0.3	00	0.4	ı
	$\mathcal{S}_{\mathcal{J}}$	e . 1	0.2	-010	0.3	01	9 -	
52 ** 7	54	261 12	0-1	-011	Konton	I. 19. 1	**-) *	
					91.5			

Code Table:

donce symbol	code word	peob	length (birits).
Spill What	1 / 2	0.4	<u>.</u> . !
J2	00	0.3	2
1 3	010	0.2	3
SA	011	0.1	3

Average length;
$$L = \frac{4}{e}$$
 pelo

Code efficiency,
$$V_c = \frac{47es}{L} = \frac{1.846 \times 100}{1.9} = \frac{97.15}{1.9} \text{ } \text{.}$$

09- Constenct a binary Huffman code by placing the composite symbol "as low as possible".

Repeale the coding by movening the composite symbol "as high as possible". Compare the variance of the wordlengths and comment the result?