Instituto Nacional de Telecomunicações - INATEL

2ª Prova de E201-B/D – Circuitos Elétricos I Prof. Antonio Alves Ferreira Júnior

Aluno: Edmundo	Henrique de Paiva Silva		Matrícula: <u>675</u>
Período:1	_Curso: EA () EB (X) EC ()	EL()EP()ES	() ET () Data: 15e16/06/2020
Duração: 90 minu	tosPontuação: 100 pontos	Nota:	

Formulário:

$$q_{e} = 1,6\times10^{-19}\text{C} \qquad F = k\frac{|Qq|}{d^{2}} \qquad \varepsilon_{pot} = Fd \qquad \varepsilon_{pot} = Vq \qquad \varepsilon_{pot} = Pt \qquad I = \frac{Q}{t} \qquad R = \rho\frac{L}{S} \qquad V = RI$$

$$P = VI \qquad P = \frac{V^{2}}{R} \qquad P = RI^{2} \qquad V_{x} = \frac{R_{x}}{R_{T}}V_{T} \qquad I_{x} = \frac{R_{y}}{R_{T}}I_{T}$$

Ouestões

1) (30 pontos) Para o circuito a seguir, o valor máximo da corrente que a fonte real pode fornecer é de 0,4A, quando $R_L = 0\Omega$ (curto-circuito). Na condição de máxima transferência de potência o valor da corrente na carga (R_L) é a metade do valor máximo. Nesta condição, determinar o valor da tensão V_g . Não serão aceitas respostas sem as soluções e as devidas justificativas.

2) (35 pontos) Utilizando <u>obrigatoriamente</u> o <u>Método das Malhas</u> determinar os valores das correntes I_1 , I_2 e I_3 do circuito com os sentidos indicados. <u>Não utilizar nenhum outro método ou teorema.</u> Não serão aceitas respostas sem as soluções e as devidas justificativas.

	$I_1 = -375 \text{m [A]}$
Respostas a caneta	$I_2 = -412,5 \text{m [A]}$
	$I_3 = -37,5 \text{m} [A]$

3) (35 pontos) Utilizando <u>obrigatoriamente</u> o <u>Teorema de Thévenin</u> determinar o valor da corrente *I*, com o sentido indicado, entre os pontos *A* e *B* do circuito. <u>Não utilizar nenhum outro teorema.</u> Não serão aceitas respostas sem as soluções e as devidas justificativas.

	$V_{TH} = 0 \text{ [V]}$
Respostas a caneta	$R_{TH} = 209, 09 [\Omega]$
	I = 0 [A]