Academic Integrity Checklist

Please read the checklist below. Once you have verified these points, sign the checklist and submit with your assignment or test.

- I understand that I am responsible for being honest and ethical in this
 assessment as per <u>Policy 71</u>
- I have included in-text citations or footnotes when referencing words, ideas, or other intellectual property from other sources in the completion of this assessment, if applicable
- I have included a proper bibliography or works cited, which includes acknowledgement of all sources used to complete this assessment, if applicable
- The assessment was completed by my own efforts and I did not collaborate with any other person for ideas or answers
- This is the first time I have submitted this assessment (either partially or entirely) for academic evaluation

Student Name (by signing or typing foregoing statements)	my name here I affirm my agreement to the
Student I.D. Number	
Data	
Date	

AMATH 342 Winter 2021: Assignment 1

Due Date: Friday 29 January, 2021. Total points: 35.

- Assignments below are either theory or computational. For the computational assignments you may use any programming language you want **except** Maple or Mathematica. Besides your written/typed solutions you must also submit your code.
- This assignment should be submitted to Crowdmark. Please make sure your upload has the correct orientation.
- Office hrs: Tuesday's and Thursday's 10:00–11:00am (local time Waterloo, ON). A link will be emailed to you before each office hour.
- If you want to use your one time 3-day extension, the due date is Wednesday 3 February, 2021. Please email the TA if you plan to use your extension.
- 1. (0 points) Please sign the Academic Integrity Checklist. If you do not sign the Academic Integrity Checklist you will receive a 0 for this assignment.
- 2. (5 points) Exercise 1.1 of the book by Arieh Iserles. Only prove convergence of the implicit midpoint rule (1.12). You do not need to prove convergence of the theta method (1.13).
- 3. Consider the scalar linear problem y' = f(y), y(0) = 1, $t \in [0, t^*]$, where f(y) = ay with a < 0.
 - (a) (1 point) Write down Euler's method for this problem.
 - (b) (3 points) Now take a = -2 and $t^* = 100$. To prove that Euler's method is convergent, we proved that

$$|e_{n,h}| \leq \frac{c}{\lambda} (\exp(t^*\lambda) - 1)h,$$

where λ is the Lipschitz constant associated with f(y) and c a constant bounding the $\mathcal{O}(h^2)$ term in the Taylor series expansion of $y(t_{n+1})$ (see the proof of Theorem 1.1 of the Arieh Iserles book). A reasonable choice is c=2 (see page 7 of Arieh Iserles book). Find a value for λ and therefore a bound for the norm of the error of the form $|e_{n,h}| \leq \alpha h$ with $\alpha \in \mathbb{R}^+$. Is this bound of any use in practice?

(c) (4 points) An improved error bound is given by

$$|e_{n,h}| \le \frac{1}{2} t^* a^2 h.$$

Prove this error bound. With a = -2 and $t^* = 100$, compare this error bound to that found in (b).

Hint: Show that

$$|e_{n,h}| = |(1+ah)^n - \exp(anh)|.$$

Then use that for $-1 \ll x \leq 0$, and n = 0, 1, 2, ... that

$$\exp(nx) - \frac{1}{2}nx^2 \exp((n-1)x) \le (1+x)^n \le \exp(nx).$$

4. We are given the following ODE:

$$y'' + by' + cy = 0,$$
 $t \in [0, 1],$ $y(0) = 1, y'(0) = 0,$

where $b^2 = 4c$.

- (a) (1 point) Find the exact solution to the above problem.
- (b) (1 point) Write the above second-order ODE as a system of first order ODEs.
- (c) (5 points) Implement Euler's method to solve the system of first order ODEs. Take b = 10. In 3 separate figures plot both the numerical solution and the exact solution. In Figure 1 use h = 0.5, in Figure 2 use h = 0.05 and in Figure 3 use h = 0.005.
- (d) (2 points) Let the error on a grid with time step h be defined as:

$$E_h = \max_{0 \le nh \le 1} |y_{n,h} - y(nh)|$$

For h = 0.5, h = 0.05 and h = 0.005 compute E_h . You will see that the error satisfies $E_h = \mathcal{O}(h^p)$. What is p? Explain your answer.

- (e) (5 point) Write down the theta-method for the system of first order ODEs of question (b). Repeat questions (c) and (d) but instead of the Euler method, use the θ -method with $\theta = 0.5$. Which of the two methods discussed here converges faster to the exact solution? Explain your answer.
- 5. The Lorenz equations are a simplified model of convection in the earths atmosphere, and is given by

$$\frac{dx}{dt} = \sigma(y - x)$$

$$\frac{dy}{dt} = x(\rho - z) - y$$

$$\frac{dz}{dt} = xy - \beta z$$

where σ , ρ and β are system parameters.

- (a) (5 points) Take $\sigma = 10$, $\rho = 28$ and $\beta = 8/3$. Implement Euler's method to solve the Lorenz equations. Let $t \in [0, 50]$ and take h = 0.002. As initial condition take $(x_0, y_0, z_0) = (1, 0, 0)$. Plot the solution where the horizontal axis is x and the vertical axis is z.
- (b) (1 point) Repeat question (a) but with $\rho = 14$.
- (c) (2 points) Search online or in a textbook for the definitions of 'chaos', 'strange attractor', 'Lorentz attractor', etc. to explain the plots found in questions (a) and (b). (A short two or three sentence explanation is sufficient.)