Outtine Theoretical complexity comparison Ouadratic Residues

| distact and primes. Find P, q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Problens                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Diffire-Hellman: Given $9 \in \mathbb{Z}_p^*$ where $p$ is odd pine and $A \cap B$ such that $A = 9^*$ and $P$ . $B = 9^*$ and $P$ .  Functioning: Given $N = PQ$ where $P$ and $Q$ are distant and $P$ where $P$ and $P$ are distant and $P$ where $P$ and $P$ are $P$ are $P$ are $P$ and $P$ are $P$ ar |                                                                       |
| and A/B such that  A = 9° road P  B = 9° mod P.  Find 9°  Find 9°  Aistact and primes. Find P, q  RSA problem: Given N = Pq where P and q are  distact and primes, e such that  9cd (P, (P)(q+1)) = 1, and C. Find M  Sully that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $9^{\times} - M$                                                      |
| Factoring: Given N=PQ where p and q are  RSA problem: Given N=PQ where p and q are  district add primes. Find P, q  Clistrict add primes, E such that  gcd(P, (PD(q-1))=1, and C. Find m  Such that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |
| Factoring: Given N= PQ where p and q are distact and primes. Find P, q  RSA problem: Given N= PQ where p and q are distact add primes, e such that gcd(P, (P)(q-1))=1, and C. Find m  Sully treat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |
| Factoring: Given N=PQ where p and q are  RSA problem: Given N=PQ where p and q are  distinct odd primes, & sum that  9cd(P, (P-D(q+1))=1, and C. Find m  Sum that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |
| district and primes. Find P, q  RSA problem: Given N= Pq Where P and q are  district odd primes, e sum that  gcd(P, (P-D(q-1))=1, and C. Find m  sum that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Find gab                                                              |
| distinct odd primes, e sun that  gcd(P, (P-)(q-1))=1, and C. Find m  such that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Factoring: Given N=Pq where p and q are distact and primes. Find P, q |
| Sulh that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | distinct odd primes, e such that                                      |
| m = c. nod N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sulh that                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M = C  and  D                                                         |

Given N = pg where p and q are Squae Poot: distinct odd primes. Find M such that m= c mod N

| The | eonetica        | nl co              | mplex     | T.   | Compai    | 002    | _     |                         |           |           |
|-----|-----------------|--------------------|-----------|------|-----------|--------|-------|-------------------------|-----------|-----------|
| Pr  | o plev          | , A                | is        | UD   | harde-    | tran   | Pos   | 010-                    | B         |           |
| 2;  | Z 00            | <del>e f f</del> ; | cient     | alos | عيدم م    | 102 07 | -16 3 | 10H0-                   | n B       |           |
| C   | -ch P           | e us               | ed.       | to 3 | solve     | Pable  | ~ A   | 10                      | polynom   | ial       |
| R   |                 | Proj               | olem      | A -  | to Pro    | ble-   | B     |                         |           |           |
|     | met. o          |                    | 201       |      | 07 00     |        | #     | N = (                   |           | ()        |
|     | υ() (( <b>x</b> | . (( (             | ( )       |      | no ha     |        | 11/4/ | DUCT                    | The Lough | *\(\tau\) |
| 9   |                 |                    |           |      | harde-    |        |       |                         |           |           |
|     | Obe             | questi             | اس:       | Is   | Factorina | no W   | ~ sku | than                    | BZG,      | -         |
| 3)  | Syna            | re Rin             | t is      | 00   | hwder     | · tucr | Ten   | (- <del>(</del> \sigma) | 9         |           |
|     | Fou.            | toina              | 2,1       |      | harde     |        |       |                         |           |           |
|     | Fact            | orna               | ard       | Squ  | werest    | pnb)   | ens   | are                     | polynami  | al -      |
|     | tin             | ne ea              | ાળે પવા દ | 7+-  |           |        |       |                         |           |           |
|     |                 |                    |           |      |           |        |       |                         |           |           |
|     |                 |                    |           |      |           |        |       |                         |           |           |

Definition: Given a group  $G_{r}$  an element  $y \in G$  is a quadratic residue if  $y = x^{2}$  for some  $x \in G$ .

An element y e & that is not a gadatic residue 15 called guddatic non-residue. (ONR)

Example: G= Z5\*

000=11, 43

Theorem: Given an abelian group E. The set of QR is a subgroup.

Notation: G= Zn\*

ORn: Set of quadratic residue adule of ONRn: Set of quadratic non-residue adule of.

```
Quadratic Residu Modulo prime P >2
                               P= 5
Osenutin: 10Rp1 = 10NRp]
                               F=9
                               D= 1
Theorem: For all y & ORp, there exists exactly two
         24007 8-PUPS
 Prof: = X sit U= x2 mod P
         So, x is a square rost of y.
         (-x)2 = x2 = y (mod p)
        SO, -x is a square not of y.
        IS x is equal to -x? No. Because if x = -x modp
                               then 2x =0 way b
                               but 2XP because pis odd
                                prime.
        We have shown that x, x are square 100% of 9.
         suld there se a third square root of y?
         Suppose yes. say X
           (X')2 = N = X2 mod &
           b/ x, 5- x3
           P \mid (x'-x)(x+x)
           \rightarrow p \mid x_{-} \times \rho \cup b \mid x_{+} \times \lambda
           → X'=X mod p > X'=-X mod p
        There an only be two square not of y.
```



Observation: Consider  $\mathbb{Z}_{p}^{k} = \{97 \text{ where } 9 \text{ is a generior.}$   $\mathbb{Z}_{p}^{k} = \{90, 9', 9^{2}, 3^{2}, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9^{2}, 1, 9$ 

ORP = 7 9, 9, 9, 9, ..., 9, ..., 9, ..., 9, ..., 9, ..., 9, ...

multiply the exponent by 2 reduced modulo P-1.

Elements in ORP 15 of the form 9' Where

i is even.

Elements in ONRp is of the form 9' where it is old.

```
Theorem: An element X EDRP iff X== | mad P
                                                                     An element X E ONRp 1ff X= = -1 mod P
                         bust: Must corly be the natures of XE way bs
                                                                                              \left( \times_{\overline{b+l}} \right)_3 = \times_{b+l} = l \quad \text{way} \quad b
                                                                                                 \times \frac{p-1}{2} = 1
                                                                      Suppose X EQRP, X=92, mod & Where QEZp*
                                                                       such that ord cy) = P-1
                                                                                   X = \frac{1}{2} = 
                                                                        Suppose X = = 1 and P.
                                                                            Suppose X = 92it
                                                                          Since X = 1 mill P
                                                                    then Q = = | mod P 0
                                                                           Because orders )= pl, g= = 1 mod p.
                                                                                                         O contradicts Q.
```

Algorithm to check if x EORp Toput: P, XEZP compute X = mod 7. If the resurt is 1, output X is QRP DIW, output x is ONRp. Runing Time: polynomial. Argorithm to compute square rost of x given that XEQRA X = 1 mad p XE X = X mad P X = = X rod P (X pt/) = X mad P So, X is a square rost of X -X is also a squre root of X. This only work when PHI is an integer. p= 3 mod 4 When P = 3 mod 4, if X & ORP, then + X + mod P are the square rosts of X. When p = 1 mid 4, it x & ORD, no deterministic polynomial arg.

```
Jacobi Symbol
 J_{\rho}(x) = 1 \quad i' + x \in OR_{\rho}
-1 \quad i + x \in ONR_{\rho}
  An element X E ORp iff X== \ mod P
   Jp(x) = x = mod p
 multiplicative property of Jp(x)
 Theorem: JP(xy) = Jp(x)Jp(y)
   Proof: Jp(xy) = xy = mod p = Jo(x) Jp(y)
            Jb(x) = X = way b
            Jp(g) = y 2 mod p
Corshan - If x, x' E ORP, y,y' E QNRP
         (a) \times \times \in \mathcal{O}_{R}
        (b) yy' \in QP \rightarrow J_{P}(yy') = J_{P}(y)J_{P}(y')
                                             (-1) (-1)
        (C) Xy E ONRP
                              (P)q [(Nq[ = (px)q [
                                       = (1)(-1)
```