Физический уровень Среды передачи Кодирование данных

Физический уровень

- Протоколы физического уровня описывают электрические, механические, функциональные и процедурные средства для активации, поддержки и деактивации физического соединения, обеспечивающего передачу битов из одного сетевого устройства в другое
- и физический уровень определяет:
 - Физические компоненты среды (кабели, разъемы, порты, интерфейсы и др.)
 - Способ кодирования битов кадра (например, манчестерский код, код NRZ и др.)
 - Способ передачи сигналов (изменения электромагнитного поля: амплитуда, частота, фаза)
- Примеры: 10Base-T, 1000Base-FX
- Единица данных бит (bit binary digit)

Назначение физического уровня

- Физический уровень узла-отправителя кодирует биты, из которых состоит кадр канального уровня, и создает электрические, оптические сигналы или радиоволны
- Сигналы поочередно отправляются через среду передачи данных
- Физический уровень узла назначения получает эти отдельные сигналы из среды, восстанавливает их к битовым представлениям и передаёт биты на канальный уровень в виде целого кадра

Стандарты физического уровня

- □ ISO/IEC 8877: Официальное утверждение разъемов RJ (например, RJ-45, RJ-11)
- ISO/IEC 11801: Стандарт прокладки сетевых кабелей (аналог TIA/EIA 568)
- ANSI/TIA/EIA 569-В: Телеком. трассы и пространства коммерческих зданий
- ТІА 598-С: Цветовая кодировка оптоволоконного кабеля
- ТІА 942: Телеком. инфраструктура ЦОД
- ANSI 568-С: Разводки коннектора RJ-45
- ITU-T G.992: Технология ADSL
- IEEE 802.3: Локальные сети Ethernet
- IEEE 802.11: Беспроводные сети (WLAN)

Характеристики сред передачи

- Пропускная способность (bandwidth) [бит/с] способность среды передавать данные; влияют:
 - физические свойства среды передачи
 - выбор технологии передачи и обнаружения сигналов в сети
- Производительность (throughput) [бит/с] измерение скорости передачи битов по среде за указанный промежуток времени; влияют:
 - объем и тип трафика
 - время ожидания (latency) общее время задержек (delay)
- Полезная пропускная способность (goodput) [бит/с] измерение объема данных, переданных за указанный промежуток времени (производительность полосы минус потери на создание сеансов, подтверждений и инкапсуляции)

Медные кабели

- Неэкранированная витая пара (UTP)
- Экранированная витая пара (STP)
- Коаксиальные кабели

Передача данных в виде электрических импульсов

Достоинства

- Невысокая стоимость
- Простота монтажа
- Низкое сопротивление

Недостатки

- Затухание на расстоянии
- Подверженность помехам
 - Электромагнитные (ЭМП/РЧП): внешние (электродвигатели, флуоресцентные лампы)
 - Перекрестные: ЭМ-поле смежного кабеля

Коаксиальный кабель

■ Коаксиальный кабель – вид кабеля связи, состоящий из двух соосных проводников, разделенных диэлектриком

- Область применения:
 - Радиосвязь: от передатчика к антенне
 - Гибридная волоконно-коаксиальная связь (HFC)

Витая пара (twisted pair)

- Витая пара вид кабеля связи,
 представляет собой несколько пар
 изолированных медных проводников,
 попарно скрученных между собой и
 покрытых оболочкой ПВХ
- Стандарт ISO 11801 (EIA/TIA 568)
 - Физические параметры кабеля
 - Цветовая маркировка пар
 - Коннектор RJ-45

Витая пара: виды и категории

- Виды витой пары:
 - Неэкранированная (Unshielded – UTP)
 - Фольгированная (Foiled – FTP)
 - Экранированная (Shielded – STP)
- Категория ВП (1 8) определяет совокупность характеристик: число пар, полосу частот, пропускную способность (см. ISO/IEC 11801)

Витая пара – коннектор RJ-45

T568B	Pin #	100 B-TX	1000 B-T	T568A
Бело-оранжевый	1	Transmit +	BI_DA+	Бело-зелёный
Оранжевый	2	Transmit -	BI_DA -	Зелёный
Бело-зелёный	3	Receive +	BI_DB +	Бело-оранжевый
Синий	4	N/A	BI_DB -	Синий
Бело-синий	5	N/A	BI_DC+	Бело-синий
Зелёный	6	Receive -	BI_DC -	Оранжевый
Бело-коричневый	7	N/A	BI_DD +	Бело-коричневый
Коричневый	8	N/A	BI_DD+	Коричневый

Витая пара – типы кабелей

- Прямой (straight-through) используется для подключения конечного устройства к промежуточному (сетевой адаптер коммутатор, коммутатор маршрутизатор и т.д.)
 - T568-A T568-A
 - T568-B
- Перекрёстный (cross-over) используется для соединения однотипных устройств (коммутатор коммутатор, сетевой адаптер маршрутизатор)
 - T568-A ——— T568-B
- Инверсный (rollover) используется для управления сетевым оборудованием (через консольный порт)
 - **(1-2-3-4-5-6-7-8) (8-7-6-5-4-3-2-1)**

Волоконно-оптические кабели

- Оптическое волокно (optical fiber) вид кабеля связи, используемый для передачи световых импульсов по тонкому и гибкому световоду
 - Сердечник (Core) светопередающая среда тончайшая нить сверхчистого стекла или кварца, коэффициент преломления n_1
 - Оболочка (Cladding) цилиндрическое зеркало вокруг сердечника, коэффициент преломления n_2 ($n_2 < n_1$)

Передача данных в виде световых импульсов

Защитное покрытие (Coating) – внешнее защитное покрытие для защиты от истирания и агрессивных сред. Состав внешней оболочки зависит от области применения кабеля (обычно ПВХ).

Типы оптических волокон

Модовая дисперсия

- Мода это одна из возможных траекторий распространения света в волокне (одно из возможных решений уравнения Максвелла)
- Дисперсионное искажение формы сигнала (модовая дисперсия) прямо пропорционально числу мод N:

$$N = \frac{2\pi^2 D^2 \sqrt{n_1^2 - n_2^2}}{\lambda^2}$$

D — диаметр ядра волокна, λ — длина волны света n_1 , n_2 — коэффициенты преломления

Беспроводные среды передачи

Передача данных в виде электромагнитных волн сверхвысокой частоты

- Особенности беспроводных сред
 - Зона покрытия и препятствия
 - Восприимчивость к помехам (ЭМП/РЧП)
 - Требования к информационной безопасности

Кодирование

- **Кодирование** способ преобразования потока бит в предопределенный битовый код, понятный и отправителю, и получателю
- Кодирование определяется правилом изменения уровней напряжения и тока, используемого для представления бит
 - потенциальное (без возврата к нулю)
 - импульсное (с возвратом к нулю)
 - улучшенное

Потенциальное кодирование

- бит 0 представляется значением U (B)
- бит 1 представляется нулевым напряжением (0 В)

- смена уровня сигнала при передаче бита 1
- неизменный уровень сигнала при передаче бита 0

- биты 0 представляются нулевым напряжением (0 В)
- биты 1 представляются поочерёдно значениями -U и +U (B)

Значимой является величина сигнала в течение такта

Достоинства:

- простая реализация
- распознаваемость ошибок
- и малое затухание сигналов
- низкая частота (1/2 битовой скорости)

Недостатки:

- отсутствие самосинхронизации
- появление постоянной составляющей при передаче длинной последовательности нулей/единиц

Импульсное кодирование

Значимым является не уровень сигнала в течение такта, а его изменение за такт

Область применения:

- Локальные сети Ethernet предыдущего поколения
- Бесконтактные устройства (RFID и NFC)

Достоинства:

- самосинхронизация
- отсутствие постоянной составляющей

Недостатки:

высокая частота (сопоставима с битовой скоростью)

- каждый такт делится пополам;
- бит 0 представляется перепадом вниз (U→0)
- бит 1 представляется обратным перепадом

• каждый такт делится пополам;

- бит 0 представляется перепадом -U→0
- бит 1 представляется перепадом +U→0

Улучшенные коды

Увеличение битовой скорости требует применения усложненных кодов, таких как 2B1Q, MLT3, B8ZS, HDB3 и др.

Кодова я группа	Кодовы й символ	Кодово е напр.
00	-3	-2,5 B
01	-1	-0,833 B
10	+3	+2,5 B
11	+1	+0,833 B

код 2B1Q (2 binary – 1 quandary)

- четыре допустимых уровня сигнала;
- каждые 2 бита (2B) кодируются 1 из 4 сигналов (1Q);

Скремблирование

Скремблирование – модификация исходной кодовой последовательности путём побитового вычисления результирующего кода на основании соответствующих бит исходного кода и полученных в предыдущих тактах бит результирующего кода (например, для подавления постоянной составляющей)

Пример:

$$B_i = A_i \oplus B_{i-3} \oplus B_{i-5}$$

$$C_{i} = B_{i} \oplus B_{i-3} \oplus B_{i-5} = (A_{i} \oplus B_{i-3} \oplus B_{i-5}) \oplus B_{i-3} \oplus B_{i-5} = A_{i}$$

	1	2	3	4	5	6	7	8	9	10	11	12
A	1	1	0	1	1	0	0	0	0	0	0	1
В	1	1	0	0	0	1	1	0	1	1	1	1
C	1	1	0	1	1	0	0	0	0	0	0	1

Скрембл-коды

- Код **B8ZS** (Bipolar Eight Zero Substitution) заменяет каждые **0000 0000** последовательностью **000V B0VB**
- Код HDB3 (High Density Bipolar 3) заменяет каждые 0000
 - последовательностью **000V** после чётного числа единиц результирующего кода
 - последовательностью **B00V** после нечётного числа единиц результирующего кода
 - V − сигнал единицы запрещённой полярности
 - В сигнал единицы разрешённой полярности, соответствующий 0 в исходном коде

Режимы передачи

- Асинхронный: сигналы данных передаются без соответствующего тактового сигнала
 - временные промежутки между символами или группами данных могут быть произвольными
 - для обозначения начала и конца кадра необходимы флаги
- **Синхронный**: сигналы данных посылаются в соответствии с тактовым сигналом, который отмеряет равные промежутки времени (время передачи бита)

Модуляция

Модуляция – способ передачи сигналов, основанный на изменении характеристик *несущего* сигнала в соответствии с изменениями входного *информационного* сигнала

$$A_1 \sin(\omega_1 t) \cdot A_2 \sin(\omega_2 t) = \frac{1}{2} A_1 A_2 \left[\sin(\omega_1 + \omega_2) t + \sin(\omega_1 - \omega_2) t \right]$$

Информационный (входной) сигнал

Амплитудная модуляция (АМ)

Частотная модуляция (FM)

Фазовая модуляция (РМ)

Структурированная кабельная система (СКС)

- СКС универсальная телекоммуникационная инфраструктура здания или комплекса зданий, обеспечивающая передачу сигналов всех типов, включая речевые, информационные, видео
- Стандарт ISO/IEC 11801
- Подсистемы СКС:
 - магистральная подсистема комплекса соединяет магистральные системы зданий
 - магистральная подсистема здания (вертикальная) соединяет коммутационные узлы этажей
 - горизонтальная подсистема здания соединяет абонентов с ТК узлом этажа

Структура СКС

Телекоммуникационное оборудование

Маршрутизатор (router) – сетевое устройство, предназначенное для объединения сетей (в т.ч. различных) в составные сети

Канальный

Коммутатор (switch) – сетевое устройство,
 предназначенное для объединения сегментов сети в локальную сеть

Физический

□ Повторитель (repeater) – сетевое устройство, предназначенное для увеличения расстояния сетевого соединения путем повторения электрического сигнала «один в один»

■ Концентратор (hub) – сетевое устройство для объединения нескольких других устройств в общий сегмент сети путем повторения электрического сигнала «один во все»

