

- 1 -

SEQUENCE LISTING

<110> Cade, Rebecca M
Dietrich, Robert A
Lawton, Kay Ann

<120> INDUCIBLE PROMOTERS

<130> A-31089CIP1

<140>
<141>

<150> 60/171,008
<151> 1999-12-15

<150> 60/175,519
<151> 2000-01-11

<160> 31

<170> PatentIn Ver. 2.1

<210> 1
<211> 509
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (68)..(433)
<223> gene product NI16

<220>
<221> misc_feature
<222> (142)..(147)
<223> SalI site

<220>
<221> misc_feature
<222> (344)..(349)
<223> EcoRI site

<400> 1
aaaatcagca aataaaacttt tcttgactaa gcttaaacga cgccgttaac attttcttct 60

ggcttaac atg aac aac tct ttg aag aaa gaa gaa cgc gta gaa gaa gat 109
Met Asn Asn Ser Leu Lys Lys Glu Glu Arg Val Glu Glu Asp
1 5 10

aac gga aaa tct gac ggt aac aga ggg aaa ccg tcg acg gaa gtt gtt 157
Asn Gly Lys Ser Asp Gly Asn Arg Gly Lys Pro Ser Thr Glu Val Val
15 20 25 30

cgg acg gta acg gag gaa gag gtg gat gag ttt ttc aag ata tta cgg 205
Arg Thr Val Thr Glu Glu Val Asp Glu Phe Phe Lys Ile Leu Arg
35 40 45

aga gta cac gtg gcg aca cga acg gtt gcg aaa gtt aac ggc ggt gtt 253
Arg Val His Val Ala Thr Arg Thr Val Ala Lys Val Asn Gly Gly Val
50 55 60

- 2 -

gct gag gga gag tta ccg tct aag aag agg aaa cgg agt cag aat ctt	301
Ala Glu Gly Glu Leu Pro Ser Lys Lys Arg Lys Arg Ser Gln Asn Leu	
65	70
	75

ggg ttg aga aac tcg ttg gat tgt aac ggc gtt cga gac gga gaa ttc	349
Gly Leu Arg Asn Ser Leu Asp Cys Asn Gly Val Arg Asp Gly Glu Phe	
80	85
	90

gat gag att aat ccg gtc ggg tta cag ggt ttg ggt ttg gat ctg aac	397
Asp Glu Ile Asn Arg Val Gly Leu Gln Gly Leu Gly Leu Asp Leu Asn	
95	100
	105
	110

tgt aaa ccg gaa cca gac agc gtt agt tta tcg ttg tagacttgta	443
Cys Lys Pro Glu Pro Asp Ser Val Ser Leu Ser Leu	
115	120

gtccttcatg tttttccctt tcttacaata atcaattttt tttaactac aatactttt	503
aaaaaaa	509

<210> 2
<211> 122
<212> PRT
<213> Arabidopsis thaliana

<400> 2	
Met Asn Asn Ser Leu Lys Lys Glu Glu Arg Val Glu Glu Asp Asn Gly	
1	5
	10
	15

Lys Ser Asp Gly Asn Arg Gly Lys Pro Ser Thr Glu Val Val Arg Thr	
20	25
	30

Val Thr Glu Glu Glu Val Asp Glu Phe Phe Lys Ile Leu Arg Arg Val	
35	40
	45

His Val Ala Thr Arg Thr Val Ala Lys Val Asn Gly Gly Val Ala Glu	
50	55
	60

Gly Glu Leu Pro Ser Lys Lys Arg Lys Arg Ser Gln Asn Leu Gly Leu	
65	70
	75
	80

Arg Asn Ser Leu Asp Cys Asn Gly Val Arg Asp Gly Glu Phe Asp Glu	
85	90
	95

Ile Asn Arg Val Gly Leu Gln Gly Leu Gly Leu Asp Leu Asn Cys Lys	
100	105
	110

Pro Glu Pro Asp Ser Val Ser Leu Ser Leu	
115	120

<210> 3
<211> 1700
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> misc_feature
<222> (365)..(374)
<223> TCA1 motif

```
<220>
<221> misc_feature
<222> (426)..(435)
<223> TCA1 motif

<220>
<221> misc_feature
<222> (609)..(614)
<223> MYCATR22 element

<220>
<221> misc_feature
<222> (646)..(665)
<223> CAMV AS1 salicylic acid response element

<220>
<221> misc_feature
<222> (707)..(712)
<223> PAL BOX

<220>
<221> misc_feature
<222> (757)..(762)
<223> HEXAMERAT 4 element

<220>
<221> misc_feature
<222> (863)..(1228)
<223> NI16 genomic coding region

<400> 3
tgggtttta ttggataaca tgacaaatat ttatttattt catgagttt tattggatag 60
catgacaaat attaatatat cagtgttaat aacatgtttt gttctaaaa tacatgcatt 120
ttaaaatcag acatttgttt taaaatcaaa tctaattctt tatatcacaa cgacattgac 180
ggaaaattca ggtaaaaaga gaaaataaaag aatgagagat agagagattt ctatggaaaa 240
agaaaagag aacatgttagg tgaacaaaat aaagagatat gatgatatat tttatgagag 300
gtggtaaga ttattttagg agagggagag agaaaatagaa aaagaaaatg acatggtaa 360
tctgaagaag atgaatttgtt taaaagatga agagagaaaag agaactccat ggctaaagt 420
tcgttaaaaaaa gataaaaaaag aaacaaaaga aggaagaaga aagagaaaagg ctaaaataga 480
ctaactattt cccaaatttc tggtagccgac aataactatt tggtccaaagg ttattttgt 540
tattttttt aagtcaaaaat ttatttttta catatactt aaaaatatag ccgataccaa 600
ttttttccaca catggacttc ctttattcca aaaaatcaata aagtgtgacg tcatgatact 660
tacgccttaa aacatcgcat gatgttgtca ttagcatcaa tctccaccgt ccaattttt 720
tagtttgta caatatcgac cgtctaagtt ccacaccgac ggctataaga gtttcattat 780
aaatttttagc aaaataaaaat cagcaataa ttttttcttg actaagctt aacgacgccc 840
ttaacatttt cttctggcta acatgaacaa ctctttgaag aaagaagaac gcgtagaaga 900
agataacgga aaatctgacg gtaacagagg gaaaccgtcg acggaagttt ttcggacggt 960
aacggaggaa gaggtggatg agttttcaa gatattacgg agagtacacg tggcgacacg 1020
aacgggttgcg aaagtttaacg gcggttgc tgagggagag ttaccgtcta agaagaggaa 1080
acggagttagt aatcttgggt tgagaaactc gttggattgt aacgggttc gagacggaga 1140
attcgatgag attaatcggg tcgggttaca gggtttgggt ttggatctga actgtaaacc 1200
ggaaccagac agcgtagtt tatcggttga gacttgttagt ccttcattttt tttcccttc 1260
ttacaataat caatttttt ttaactacaa tactttgaa aaaaatggta aaagaagatt 1320
attaacatgt tatccaaatt tcagattttt cagttttttt ttatacgatca aaaaaaaaaa 1380
tatataatttgc caaaaactaca agtcaacaa aagctttaa agcgtttgac gtccctaaac 1440
aacataaaattt ttaacttttca aaaaatggttt gatggtaaaag atatcaatttgc 1500
ggccttgcc tggcccggtt agtaatattt cagagtaggtt atggccctgt ataagggagt 1560
ccaaaaaaaag agcgggcattt gcggttgggg tgcgtttggaa accttggattt gtggatttagt 1620
catggtttat ctatataatgtt ctgcggactt gtggacgacg cgcttggatctt tcttccttc 1680
tttacgactt acgaacatata 1700
```

<210> 4
<211> 608
<212> DNA
<213> Solanum tuberosum

<220>
<221> CDS
<222> (124) .. (438)

<400> 4
caggtataac acacagaaaa cattgacata acagatcgaa tacacattat attatattaa 60
tgagagaata aagagaagta attgcactag cagtattgac aattaatcag cttagccggct 120
tga atg cta ctt atg gac gga gaa aag aag agg aag aga aca gca atc 168
Met Leu Leu Met Asp Gly Glu Lys Lys Arg Lys Arg Thr Ala Ile
1 5 10 15
ggc gcc gga gat cgg agt aag gat gag gta gaa gct act gtg aag gag 216
Gly Ala Gly Asp Arg Ser Lys Asp Glu Val Glu Ala Thr Val Lys Glu
20 25 30
gag gag ccg ccg tca gag gcg gag gtt gac gag ttc ttc gcg atc tta 264
Glu Glu Pro Pro Ser Glu Ala Glu Val Asp Glu Phe Phe Ala Ile Leu
35 40 45
cg agg atg cat gtg gcg gtg aaa tat ctc cag aga aat gct cag att 312
Arg Arg Met His Val Ala Val Lys Tyr Leu Gln Arg Asn Ala Gln Ile
50 55 60
cg ccg gaa aac ctt aac gca tcg ccg gcc ggt gct aac ggt gtc gca 360
Arg Pro Glu Asn Leu Asn Ala Ser Pro Ala Gly Ala Asn Gly Val Ala
65 70 75
gct gga cg aag aga gaa cg gga atc gtg aga aaa ggt gat ttg gac 408
Ala Gly Arg Lys Arg Glu Arg Gly Ile Val Arg Lys Gly Asp Leu Asp
80 85 90 95
ctc aac act ctg ccg gac ggc gga gac taa ttaacgcagt ttaagcatag 458
Leu Asn Thr Leu Pro Asp Gly Gly Asp
100 105
gttaattaca taaatgcacc cttaattatc gttagattctt aagattgatc tgctgtacag 518
attnaattat taaaggcttt ttttatatat atttctccgg taaacggttt gctctttgtg 578
attncttta ataaattaa ttatattat 608

<210> 5
<211> 104
<212> PRT
<213> Solanum tuberosum

<400> 5
Met Leu Leu Met Asp Gly Glu Lys Lys Arg Lys Arg Thr Ala Ile Gly
1 5 10 15
Ala Gly Asp Arg Ser Lys Asp Glu Val Glu Ala Thr Val Lys Glu Glu
20 25 30
Glu Pro Pro Ser Glu Ala Glu Val Asp Glu Phe Phe Ala Ile Leu Arg
35 40 45

- 5 -

<210> 6
<211> 349
<212> DNA
<213> *Lycopersicon esculentum*

<220>
<221> CDS
<222> (3) .. (233)

<400> 6

```

ct tcg gag gga gag gtg gat gag ttt ttc gca att tta cgg agg atg      47
  Ser Glu Gly Glu Val Asp Glu Phe Phe Ala Ile Leu Arg Arg Met
           1          5          10         15

```

```

cac atg gcc gta aaa tat ctt cag aga aac gct cag att cag ccg gaa  95
His Met Ala Val Lys Tyr Leu Gln Arg Asn Ala Gln Ile Gln Pro Glu
          20           25           30

```

```

aac gtt aac gct cac ggc agc aag tta acc gca tcg ccg gcc ggt gtt 143
Asn Val Asn Ala His Gly Ser Lys Leu Thr Ala Ser Pro Ala Gly Val
          35           40           45

```

```

aac gga gat gca act gga cag aag aga gaa cgg gga atc gtg aga aaa 191
Asn Gly Asp Ala Thr Gly Gln Lys Arg Glu Arg Gly Ile Val Arg Lys
      50          55          60

```

ggt gat ttg gac ctc aac act ttg ccg gac tgc gga gac taa 233
 Gly Asp Leu Asp Leu Asn Thr Leu Pro Asp Cys Gly Asp
 65 70 75

cgcagttaa gcataggta attacagaaa tgcacctta attatcgtag attcttaaga 293
ttqatctqct qtacaaatta attaaatqaa qcctttttt atatataaaa aaaaaaa 349

<210> 7
<211> 76
<212> PRT
<213> Lycopersicon esculentum

```

<400> 7
Ser Glu Gly Glu Val Asp Glu Phe Phe Ala Ile Leu Arg Arg Met His
      1           5          10          15
Met Ala Val Lys Tyr Leu Gln Arg Asn Ala Gln Ile Gln Pro Glu Asn
      20          25          30
Val Asn Ala His Gly Ser Lys Leu Thr Ala Ser Pro Ala Gly Val Asn
      35          40          45
Gly Asp Ala Thr Gly Gln Lys Arg Glu Arg Gly Ile Val Arg Lys Gly
      50          55          60
Asp Leu Asp Leu Asn Thr Leu Pro Asp Cys Gly Asp
      65          70          75

```

- 6 -

<210> 8
<211> 75
<212> PRT
<213> Glycine max

<400> 8
Met Glu Val Glu Lys Arg Lys Asn Lys Arg Val Met Gly Glu Glu Glu
1 5 10 15
Glu Ser Glu Arg Val Lys Asn Lys Arg Leu Lys Gly Val Glu Glu Glu
20 25 30
Asp Gly Ser Asp Gly Val Pro Thr Glu Glu Glu Val Glu Glu Phe Phe
35 40 45
Ala Ile Leu Arg Arg Met Arg Met Ala Val Lys Tyr Phe Asp Asp Lys
50 55 60
Gly Arg Gly Gly Arg Glu Trp Arg Glu Ala Leu
65 70 75

<210> 9
<211> 90
<212> PRT
<213> Glycine max

<400> 9
Gly Gly Val Pro Thr Glu Glu Glu Val Glu Glu Phe Phe Ala Ile Leu
1 5 10 15
Arg Arg Met Arg Val Ala Val Lys Tyr Phe Asp Asp Lys Gly Ser Gly
20 25 30
Gly Lys Glu Trp Arg Lys Ala Leu Glu Thr Ala Glu Leu Thr Val Asp
35 40 45
His Arg His Asp Val Val Ala Ala Glu Glu Asp Asp Lys Pro Arg Lys
50 55 60
Lys Gly Gly Glu Val Ile Ile Asn Glu Gly Phe Asp Leu Asn Ala Val
65 70 75 80
Ala Pro Glu Ala Ala Glu Gly Gly Ala
85 90

<210> 10
<211> 85
<212> PRT
<213> Nicotiana tabacum

<400> 10
Met Asp Gly Glu Lys Lys Arg Lys Arg Thr Glu Asn Gly Lys Ala Asn
1 5 10 15
Gly Gly Asp Arg Asn Arg His Glu Arg Lys Ser Ala Ala Asn Glu His
20 25 30

- 7 -

Thr Ala Val Ser Pro Pro Pro Ser Glu Ala Glu Val Asp Glu Phe Phe
35 40 45

Ala Ile Leu Arg Arg Met His Val Ala Val Arg Tyr Leu Gln Glu Ser
50 55 60

Gly Gln Lys Arg Val Val Pro Lys Gly Asp Leu Asp Leu Asn Thr Leu
65 70 75 80

Pro Gly Asn Gly Asp
85

<210> 11

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer NIM5'RI

<400> 11

ggaacgaatt catggacacc accattg

27

<210> 12

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer
NIM3'SalI

<400> 12

aaaaaagtgc actaagagca agagtc

26

<210> 13

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer
NIMtrunc3'NcoI

<400> 13

cgatctccat ggcagttgt cc

22

<210> 14

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer
NIMloop5'RI

<400> 14

gaaccgaatt catgatcgca

20

- 8 -

<210> 15
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer 16GSP1

<400> 15
ttccgggtta cagttcagat

20

<210> 16
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer GSP2

<400> 16
gacccgatttataatctcat cg

22

<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer GSP3

<400> 17
caccattttctt ggttggaggt

20

<210> 18
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer 16F

<400> 18
acgacgcccgt taacattttc

20

<210> 19
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer 16R

<400> 19
gaaggggaaa aacatgaagg a

21

- 9 -

```

<210> 20
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR primer
      NI16-DegF

<220>
<221> misc_feature
<222> (1)..(26)
<223> n = a, t, c, or g

<400> 20
      cgagggnnga ggtnaygag tttytcc                                26

<210> 21
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR primer
      NI16-DegR

<220>
<221> misc_feature
<222> (1)..(27)
<223> n = a, t, c, or g

<400> 21
      gaaraactcr tcnacctcnn ccctccg                                27

<210> 22
<211> 413
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (1)..(336)
<223> NI19

<400> 22
      atg gac aga gac aga aag agg gtg aaa atg gag aag gaa gat gac gaa      48
      Met Asp Arg Asp Arg Lys Arg Val Lys Met Glu Lys Glu Asp Asp Glu
      1           5           10          15

      gaa gaa aag atg gag aag ttg tac aca gtg ctt aaa aac gca agg gaa      96
      Glu Glu Lys Met Glu Lys Leu Tyr Thr Val Leu Lys Asn Ala Arg Glu
      20          25          30

      atg cgg aaa tat gtc aac agc tcc atg gag aag aag aga cag gaa gaa      144
      Met Arg Lys Tyr Val Asn Ser Ser Met Glu Lys Lys Arg Gln Glu Glu
      35          40          45

      gaa gaa aga gca agg gtt cgt aga ttc cct tcg ttt cag cca gaa gat      192
      Glu Glu Arg Ala Arg Val Arg Arg Phe Pro Ser Phe Gln Pro Glu Asp
      50          55          60

```

- 10 -

ttc att ttc atg aat aaa gca gag gcc aac aac att gaa aaa gca gct
 Phe Ile Phe Met Asn Lys Ala Glu Ala Asn Asn Ile Glu Lys Ala Ala
 65 70 75 80 240

 aat gag agc tct tca gca tcc aac gag tat gat ggc tct aag gaa aag
 Asn Glu Ser Ser Ser Ala Ser Asn Glu Tyr Asp Gly Ser Lys Glu Lys
 85 90 95 288

 caa gaa gga tct gag act aac gtt tgt tta gac ttg aat ctt tct ctg
 Gln Glu Gly Ser Glu Thr Asn Val Cys Leu Asp Leu Asn Leu Ser Leu
 100 105 110 336

 tagcatacat acatacaaga gacaaagagc tcttcagttt ctgtataagc aacaaagaat
 gtttagtaact acgtacc 396

 <210> 23
 <211> 112
 <212> PRT
 <213> Arabidopsis thaliana
 <400> 23

 Met Asp Arg Asp Arg Lys Arg Val Lys Met Glu Lys Glu Asp Asp Glu
 1 5 10 15

 Glu Glu Lys Met Glu Lys Leu Tyr Thr Val Leu Lys Asn Ala Arg Glu
 20 25 30

 Met Arg Lys Tyr Val Asn Ser Ser Met Glu Lys Lys Arg Gln Glu Glu
 35 40 45

 Glu Glu Arg Ala Arg Val Arg Arg Phe Pro Ser Phe Gln Pro Glu Asp
 50 55 60

 Phe Ile Phe Met Asn Lys Ala Glu Ala Asn Asn Ile Glu Lys Ala Ala
 65 70 75 80

 Asn Glu Ser Ser Ser Ala Ser Asn Glu Tyr Asp Gly Ser Lys Glu Lys
 85 90 95

 Gln Glu Gly Ser Glu Thr Asn Val Cys Leu Asp Leu Asn Leu Ser Leu
 100 105 110

 <210> 24
 <211> 962
 <212> DNA
 <213> Arabidopsis thaliana
 <400> 24

 tgtgtttctc agaaaatagca cgaaaatattt ataaaaagca tgcaattctc ttatagatcg
 cgaagtttaa aaaaacatat agaatttgtt caatattaca tgggtttta ttggataaca
 tgacaaatat ttatatttt catgagttt tattggatag catgacaaat attaatatat
 cagtgttaat aacatgtttt gttcttaaaa tacatgcatt taaaatcag acattgttt
 60
 120
 180
 240

taaaaatcaaa tctaattctct tatatcacaa cgacattgac ggaaaattca ggtaaaaaga	300
gaaaataaaag aatgagagat agagagattt ctatggaaaa agaaagagag aacatgttag	360
tgaacaaaat aaagagatat gatgatatat ttatgagag gtggtaaga ttatTTTtagg	420
agaggagag agaaatagaa aaagaaaatg acatggtaa tctgaagaag atgaattgt	480
ttaaagatga agagagaaag agaactccat ggctaaagtc tcgtaaagaa gatgaaaaag	540
aaacaaaaga aggaagaaga aagagaaagg ctaaaataga ctaactattt ccAAATTTC	600
tgtagccgac aaatactatt tggccaagg ttatTTTgtg tattCTTTg aagtcaaaag	660
ttatTTCTTA cataactct aaaaatatacg ccgataccaa ttTTTCCACA catggacttc	720
ctttattCCA aaagtcaata aagtgtgacg tcatgatact tacgcttAA aacatcgcat	780
gatgatgtca ttagcatcaa tctccaccgt ccaattttt tagttgtga caatatcgac	840
cgtctaagtt ccacaccgac ggctataaga gtttcattat aaatTTtagc aaaataaaat	900
cagcaaataa ttTTTCTTG actaagctt aacgacGCCG ttaacatttt cttctggcta	960
ac	962

<210> 25

<211> 862

<212> DNA

<213> Arabidopsis thaliana

<400> 25

tgggtttta ttggataaca tgacaaatata ttatTTTttt catgagTTT tattggatag	60
catgacaaat attaatatac cagtgttaat aacatgtttt gttctaaaa tacatgcatt	120
ttaaaatcag acatttggTT taaaatcaaa tctaattctct tatatcacaa cgacattgac	180
ggaaaattca ggtaaaaaga gaaaataaaag aatgagagat agagagattt ctatggaaaa	240
agaaagagag aacatgttagg tgaacaaaat aaagagatata gatgatatac ttatgagag	300
gtggtaaga ttatTTtagg agaggagag agaaatagaa aaagaaaatg acatggtaa	360
tctgaagaag atgaattgtg ttaaagatga agagagaaag agaactccat ggctaaagtc	420
tcgtaaagaa gatgaaaaag aaacaaaaga aggaagaaga aagagaaagg ctaaaataga	480
ctaactattt ccAAATTTC tgtagccgac aaatactatt tggccaagg ttatTTTgtg	540
tattCTTTg aagtcaaaag ttatTTCTTA cataactct aaaaatatacg ccgataccaa	600
ttTTTCCACA catggacttc ctTTTattCCA aaagtcaata aagtgtgacg tcatgatact	660
tacgcttAA aacatcgcat gatgatgtca ttagcatcaa tctccaccgt ccaattttt	720
tagttgtga caatatcgac cgtctaagtt ccacaccgac ggctataaga gtttcattat	780
aaatTTtagc aaaataaaat cagcaaataa ttTTTCTTG actaagctt aacgacGCCG	840

ttaacat ttt	c tt tctggcta	ac	862			
<210>	26					
<211>	274					
<212>	DNA					
<213>	Arabidopsis thaliana					
<400>	26					
tctaaaata	tagccgatac	caat ttt cc	acacatggac	ttc ttt tatt	ccaaaagtca	60
ataaaagtgtg	acgtcat gt	acttacg c tt	taaaacatcg	cat gt atgatg	tcattagcat	120
caatctccac	cgtccaattt	at tt tagttgt	tgacaat at tc	gaccgtctaa	gttccacacc	180
gacggctata	agagttcat	tataa at ttt	agcaa a ataa	aatcagcaaa	taat ttt tc	240
ttgacta ag c	ttaaacgacg	ccgttaacat	tttc			274
<210>	27					
<211>	544					
<212>	DNA					
<213>	Arabidopsis thaliana					
<400>	27					
agattat ttt	aggagaggga	gagaga aa ata	gaaaaagaaaa	atgacatg gt	gaatctgaag	60
aagatgaatt	gtgttaa aga ga	tgaagagaga	aagagaactc	catggctaaa	gtctcgtaaa	120
gaagatgaaa	aaga aa acaaa	agaagg a aga	agaaagagaa	aggctaaaat	agactaacta	180
ttgc cc aaaat	ttctgttagcc	gaca aa act	at tt gg t cca	agg tt at ttt	gtgtattctt	240
ttgaagtcaa	aagttat ttc	ttacatatac	tctaaaata	tagccgatac	caat ttt cc	300
acacatggac	ttc ttt tatt	ccaaaagtca	ataaaagtgtg	acgtcat gt	acttacg c tt	360
taaaacatcg	cat gt atgatg	tcattagcat	caatctccac	cgtccaattt	at tt tagttgt	420
tgacaat at tc	gaccgtctaa	gttccacacc	gacggctata	agagttcat	tataa at ttt	480
agcaa a ataa	aatcagcaaa	taat ttt tc	ttgacta ag c	ttaaacgacg	ccgttaacat	540
tttc						544
<210>	28					
<211>	274					
<212>	DNA					
<213>	Arabidopsis thaliana					
<400>	28					
tctaga aa ata	tagccgatac	caat ttt cc	acacatggac	ttc ttt tatt	ccaaaagtca	60
ataaaagtgtg	acgtcat gt	acttacg c tt	taaaacatcg	cat gt atgatg	tcattagcat	120
caatctccac	cgtccaattt	at tt tagttgt	tgacaat at tc	gaccgtctaa	gttccacacc	180

gacggctata agagttcat tataaattt agcaaaataa aatcagcaaa taatttttc	240
ttgactaagg ttaaacgacg ccgttaacat tttc	274
<210> 29	
<211> 2001	
<212> DNA	
<213> Artificial	
<220>	
<223> GUS reporter gene with an intron	
<400> 29	
atggccgtc ctgttagaaac cccaaccgt gaaatcaaaa aactcgacgg cctgtggca	60
ttcagtctgg atcgcgaaaaa ctgtggaatt gatcagcggt ggtggaaag cgcgttacaa	120
gaaagccggg caattgctgt gccaggcagt tttaacgatc agttcgccga tgcatgatatt	180
cgttaattatg cggcaacgt ctggtatcag cgcaagatct ttataccaa agttggca	240
ggccagcgtt tcgtgctgctg tttcgatgcg gtcactcatt acggcaaagt gtgggtcaat	300
aatcaggaag tcatggagca tcagggcggc tatacgccat ttgaagccga tgtcacgccc	360
tatgttattt cccggaaaag tgcgttgcg tttctgcttc taccttgat atatatataa	420
taattatcat taattatgtg taatataata tttcaaatat tttttcaaa ataaaagaat	480
gtatgtata gcaattgttt ttctgttagtt tataagtgtt tatattttaa ttataactt	540
ttctaataata tgacccaaat ttgttgcgtt gcaggtatca ccgttgtgt gaacaacgaa	600
ctgaactggc agactatccc gcccggaaatg gtgattaccg acgaaaacgg caagaaaaag	660
cagtcttact tccatgattt cttaactat gccggaatcc atcgacgtt aatgtctac	720
accacgccga acacctgggt ggacgatatac accgtggtga cgcatgtcgc gcaagactgt	780
aaccacgcgt ctgttgcgtt gcaggtgggt gccaatgggt atgtcagcgt tgaactgcgt	840
gatgcggatc aacagggtgt tgcaactgga caaggcacta gcgggacttt gcaagggtgt	900
aatccgcacc tctggcaacc gggtaaggt tatctctatg aactgtgcgt cacagccaa	960
agccagacag agtgtgatata ctaccgcatt cggtcggtca tccggcgtt ggcaactgt	1020
ggcgaacagt tcctgattaa ccacaaaccg ttctacttta ctggctttgg tcgtcatgaa	1080
gatgcggact tgcgtggcaa aggattcgat aacgtgctga tgggcacga ccacgcatta	1140
atggactgga ttggggccaa ctcctaccgt acctcgattt acccttacgc tgaagagatg	1200
ctcgactggc cagatgaaca tggcatcggt gtgattgtt aaactgtgc tgcggcttt	1260
aacctcttt taggcattgg tttcgaagcg ggcaacaagg cgaaagaact gtacagcgaa	1320
gaggcagtca acggggaaac tcagcaagcg cacttacagg cgattaaaga gctgatagcg	1380
cgtgacaaaa accacccaag cgtggatgt tggagtattt ccaacgaaacc ggatacccg	1440

ccgcaaggtg cacgggaata tttcgcgcca ctggcggaaag caacgcgtaa actcgaccg	1500
acgcgtccga tcacctgcgt caatgtaatg ttctgcgacg ctcacaccga taccatcagc	1560
gatctcttg atgtgctgtg cctgaaccgt tattacggat ggtatgtcca aagcggcgat	1620
ttggaaacgg cagagaaggt actggaaaaa gaacttctgg cctggcagga gaaactgcat	1680
cagccgatta tcatcaccga atacggcgtg gatacgttag ccgggctgca ctcaatgtac	1740
accgacatgt ggagtgaaga gtatcagtgt gcatggctgg atatgtatca ccgcgtctt	1800
gatcgcgtca gcgcgcgtcg cggtgaacag gtatggaatt tcgcccattt tgccgacctcg	1860
caaggcatat tgcgcggtgg cggtacaacaag aaagggatct tcactcgca ccgcaaaccg	1920
aagtccggcg ctttctgct gcaaaaacgc tggactggca tgaacttcgg tgaaaaaccg	1980
cagcagggag gcaaaacaatg a	2001

<210> 30

<211> 1259

<212> DNA

<213> Arabidopsis thaliana

<400> 30

cttataaaat gattctccct ccatataaaa aagtttgatt ttatagaatg tttataccga	60
ttaaaaaaat aataatgctt agttataaat tactatttat tcatgctaaa ctatttctcg	120
taactattaa ccaatagtaa ttcatcaaattt tttaaaattc tcaattaatt gattcttgaa	180
attcataacc tttaatattt gattgataaa aatatacata aactcaatct tttaataca	240
aaaaaaacttt aaaaaatcaa ttttctgat tcggagggag tatatgttat tgcttagaat	300
cacagattca tatkaggatt ggaaaatttt aaagccagtg catatcagta gtcaaaattt	360
gtaaatgata tacgaaggcg gtacaaaattt aggtatactg aagatagaag aacacaaaag	420
tagatcggtc accttagagtt tttcaattt aactgcgtat tagtgtttgg aaaaaaaaaa	480
caaagtgtat acaatgtcaa tcggggatct tttttttttt tttttttttt ttttttcttt	540
tggataaaat ctcaatgggt gatctattga ctgtttctct acgtcactat tttacttacg	600
tcatagatgt ggcggcatat attcttcagg acttttcagc cataggcaag agttagatagag	660
atactcatat gcatgaaaca ctaagaaaca aataattctt gactttttt cttttatttg	720
aaaattgact gtagatataa acttttattt tttctgactg taaatataat cttaattgcc	780
aaactgtccg atacgatttt tctgtattat ttacaggaag atatcttcaa aacattttga	840
atgaagtaat atatgaaatt caaatttgaa atagaagact taaatttagaa tcatgaagaa	900
aaaaaaacac aaaacaactg aatgacatga aacaactata tacaatgttt cttataaac	960
ttcatttagg gtataacttac atatatacta aaaaatata tcaacaatgg caaagctacc	1020

gatacgaaac aatatttagga aaaatgtgtg taaggacaag attgacaaaa aaatagttac 1080
gaaaacaact tctattcatt tggacaattg caatgaatat tactaaaata ctcacacatg 1140
gaccatgtat ttacaaaaac gtgagatcta tagttaacaa aaaaaaaaaaaga aaaaaatagt 1200
tttcaaatct ctatataagc gatgtttacg aaccccaaaa tcataacaca acaataacc 1259

<210> 31
<211> 1112
<212> DNA
<213> Arabidopsis thaliana

<400> 31

ggatccctga aagcgacgtt ggatgttaac atctacaaat tgccctttct tatcgaccat 60
gtacgtAACG gcttacgttt ttggggacc cttgaggaaa ctggtagctg ttgtgggcct 120
gtggctcaa gatggatcat taatttccac cttcacctac gatggggggc atcgacccgg 180
tgagtaatat tgtacggcta agagcgaatt tggcctgttag gatccctgaa agcgacgttg 240
gatgttaaca tctacaaatt gcctttctt atcgaccatg tacgtaaagcg cttacgttt 300
tggggaccc ttgaggaaac tggtagctgt tgtgggcctg tggctcaag atggatcatt 360
aatttccacc ttcacctacg atggggggca tcgcacccgt gagtaatatt gtacggctaa 420
gagcgaattt ggcctgttagg atccctgaaa gcgacgttg atgttaacat ctacaaattg 480
cctttctta tcgaccatgt acgttaagcgc ttacgtttt ggtggaccct tgaggaaact 540
ggtagctgtt gtgggcctgt ggtctcaaga tggatcatta atttccacct tcacctacga 600
tggggggcat cgccacccgtg agtaatattg tacggctaag agcgaatttgcgcctgttagga 660
tccgcgagct ggtcaatccc attgctttt aagcagctca acattgatct ctttctcgat 720
cgagggagat ttttcaaatac agtgcgcag acgtgacgta agtatccgag tcagttttta 780
ttttctact aatttggtcg ttttatttcgg cgtgttaggac atggcaaccg ggcctgaatt 840
tcgcgggtat tctgtttctta ttccaacttt ttcttgatcc gcagccatta acgacttttg 900
aatagataacg ctgacacgccc aagcctcgct agtcaaaaagt gtaccaaaca acgctttaca 960
gcaagaacgg aatgcgcgtg acgctcgccg tgacgcccatt tcgccttttc agaaaatggat 1020
aaatagcctt gcttcctatt atatctcccc aaattaccaa tacattacac tagcatctga 1080
atttcataac caatctcgat acacccaaatc ga 1112