MERGE SORT

Marge Sort

DIVIDE AND CONQUER

The base case

DIVIDE AND CONQUER

Merge each p

Merge each pair of arrays (Conquer and Combine)

DIVIDE AND CONQUER APPROACH

3 5 2

3 5

2

1

4

3 5

2

ı

4

2 3 5

1 2 3 4 5

https://visualgo.net/en/sorting

"TALK IS CHEAP SHOW ME THE CODE"

- Linus Torvalds

O(N * LOG(N))

On both AVERAGE and WORST cases!!!!!

MERGE SORT VS QUICKSORT

Sorting algorithm	Average Case	Worst Case
Merge Sort	$O(n * \log(n))$	$O(n * \log(n))$
Quicksort	$O(n * \log(n))$	$O(n^2)$

Source: https://stackoverflow.com/questions/29723648/confusion-about-my-quicksort-algorithm-mergesort-algorithm?rq=1

Quick Sort vs. Merge Sort

- Quick sort
 - hard division, easy combination
 - partition in the divide step of the divide-and-conquer framework
 - · hence combine step does nothing
- Merge sort
 - easy division, hard combination
 - merge in the combine step
 - the divide step in this framework does one simple calculation only

SAVE SPACE

• Code a new version of Merge Sort in which the sorting is done in-place, using a minimal amount of extra arrays to help in the process.