MAREK POLEWSKI MECHANIKA LOTU 2 CESSNA 150M PROWADZĄCY: DR INŻ. MACIEJ LASEK

WTOREK 14:15-16:00

Projekt 10

"Podłużna statyczna stateczność i sterowność samolotu"

DATA ODDANIA PROJEKTU:	OCENA:

Spis treści

1	Wstęp	1
2	Środki statecznej stateczności i sterowności podłużnej	1
3	Zapasy podłużnej stateczności i sterowności samolotu	3
4	Kryterium sterowności podłużnej samolotu	4
	4.1 Względem prędkości lotu	4
	4.2 Względem przeciążenia	5
	4.3 Podsumowanie	6

1 Wstęp

Celem projektu jest sprawdzenie statycznej stateczności i sterowności podłużnej. Obliczenia zostały wykonane w język Python.

Podsatawowe zmienne wykorzystane do obliczeń:

- powierzchnia nośna $S = 15.0 m^2$,
- powierzchnia steru wysokości $S_H = 2.2 m^2$,
- Średnia cięciwa aerodynamiczna $C_a = 1.5 m$,
- wydłużenie płata $\Lambda = 6.59$,
- średnia cięciwa steru wysokości $C_{sH} = 0.803 m$,

Ponaddto zostało założone przełożenie kątowe drążka $K_{dh}=1.0$

	$\bar{x}_c[-]$
\bar{x}_{c_1}	0.12
\bar{x}_{c_2}	0.25
\bar{x}_{c_3}	0.38

Tab. 1: Położenia środka ciężkości samolotu

2 Środki statecznej statecznosci i sterowności podłużnej

$$\bar{x}_N = \left(\bar{x}_{SA} + \sum_j \Delta \bar{x}_{SA_j} + \bar{z}_s \left(2 \cdot C_z \left(\frac{1}{\pi \Lambda} - \frac{1}{a}\right) - \alpha_0\right) + \kappa_H^{\prime 0} \cdot \frac{a_1}{a} \cdot \left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right)\right) \cdot K_{gHN}$$
(1)

$$\bar{x}_{N'} = \left(\bar{x}_{SA} + \sum_{j} \Delta \bar{x}_{SA_{j}} + \bar{z}_{s} \left(2 \cdot C_{z} \left(\frac{1}{\pi \Lambda} - \frac{1}{a}\right) - \alpha_{0}\right) + \kappa_{H}'^{0} \cdot \frac{a_{1}}{a} \cdot \left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right) \cdot \left(1 - \frac{a_{2}}{a_{1}} \cdot \frac{b_{1}}{b_{2}}\right)\right) \cdot K_{gHN'}$$

$$(2)$$

$$\bar{x}_{M} = \left(\bar{x}_{SA} + \sum_{j} \Delta \bar{x}_{SA_{j}} + \bar{z}_{s} \left(2 \cdot C_{z} \left(\frac{1}{\pi \Lambda} - \frac{1}{a}\right) - \alpha_{0}\right) + \kappa_{H}^{\prime 0} \cdot \frac{a_{1}}{a} \cdot \left(\left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right) + \frac{a}{\mu_{1}^{0}}\right)\right) \cdot K_{gHM}$$
(3)

$$\bar{x}_{M'} = \left(\bar{x}_{SA} + \sum_{j} \Delta \bar{x}_{SA_{j}} + \bar{z}_{s} \left(2 \cdot C_{z} \left(\frac{1}{\pi \Lambda} - \frac{1}{a}\right) - \alpha_{0}\right) + \kappa_{H}'^{0} \cdot \frac{a_{1}}{a} \cdot \left(1 - \frac{a_{2}}{a_{1}} \cdot \frac{b_{1}}{b_{2}}\right) \cdot \left(\left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right) + \frac{a}{\mu_{1}^{0}}\right)\right) \cdot K_{gHM'}$$

$$\tag{4}$$

$$K_{gHN} = \frac{1}{1 + \frac{S_H}{S} \cdot \frac{a_1}{a} \cdot \left(\frac{V_{H\infty}}{V_{\infty}}\right)^2 \cdot \left(1 - \frac{\partial \varepsilon}{\partial a}\right)} = 0.9528 \tag{5}$$

$$K_{gHN'} = \frac{1}{1 + \frac{S_H}{S} \cdot \frac{a_1}{a} \cdot \left(\frac{V_{H\infty}}{V_{\infty}}\right)^2 \cdot \left(1 - \frac{\partial \varepsilon}{\partial a}\right) \cdot \left(1 - \frac{a_2}{a_1} \cdot \frac{b_1}{b_2}\right)} = 0.9761 \tag{6}$$

$$K_{gHN} = \frac{1}{1 + \frac{S_H}{S} \cdot \frac{a_1}{a} \cdot \left(\frac{V_{H\infty}}{V_{\infty}}\right)^2 \cdot \left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right)} = 0.9528$$

$$K_{gHN'} = \frac{1}{1 + \frac{S_H}{S} \cdot \frac{a_1}{a} \cdot \left(\frac{V_{H\infty}}{V_{\infty}}\right)^2 \cdot \left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right) \cdot \left(1 - \frac{a_2}{a_1} \cdot \frac{b_1}{b_2}\right)} = 0.9761$$

$$K_{gHN} = \frac{1}{1 + \frac{S_H}{S} \cdot \frac{a_1}{a} \cdot \left(\frac{V_{H\infty}}{V_{\infty}}\right)^2 \cdot \left(\left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right) + \frac{2a}{\mu_1^0}\right)} = 0.9478$$

$$(5)$$

$$(6)$$

$$K_{gHM'} = \frac{1}{1 + \frac{S_H}{S} \cdot \frac{a_1}{a} \cdot \left(\frac{V_{H\infty}}{V_{\infty}}\right)^2 \cdot \left(\left(1 - \frac{\partial \varepsilon}{\partial a}\right) + \frac{2a}{\mu_1^0}\right) \cdot \left(1 - \frac{a_2}{a_1} \cdot \frac{b_1}{b_2}\right)} = 0.9636$$
(8)

$$\mu_1^0 = \frac{m}{\frac{1}{2} \cdot \rho S x_{SAH}} = 16.45 \tag{9}$$

$$\kappa_H^{\prime 0} = \frac{S_H x_{SAH}}{S \cdot c_a} \cdot \left(\frac{V_{H\infty}}{V_{\infty}}\right) = 0.3573 \tag{10}$$

V [m/s]	C_z	x_n	x'_n	x_m	x'_m	
20.000	1.805	-0.028	-0.074	0.036	-0.029	
23.684	1.287	-0.070	-0.116	-0.006	-0.071	
27.368	0.964	-0.095	-0.142	-0.031	-0.097	
31.053	0.749	-0.113	-0.160	-0.048	-0.114	
34.737	0.598	-0.125	-0.172	-0.060	-0.126	
38.421	0.489	-0.133	-0.181	-0.069	-0.135	
42.105	0.407	-0.140	-0.188	-0.075	-0.141	
45.789	0.344	-0.145	-0.193	-0.080	-0.146	
49.474	0.295	-0.149	-0.197	-0.084	-0.150	
53.158	0.255	-0.152	-0.200	-0.087	-0.154	
56.842	0.223	-0.154	-0.203	-0.090	-0.156	
60.526	0.197	-0.156	-0.205	-0.092	-0.158	
64.211	0.175	-0.158	-0.207	-0.094	-0.160	
67.895	0.157	-0.160	-0.208	-0.095	-0.162	
71.579	0.141	-0.161	-0.209	-0.096	-0.163	
75.263	0.127	-0.162	-0.211	-0.097	-0.164	
78.947	0.116	-0.163	-0.212	-0.098	-0.165	
82.632	0.106	-0.164	-0.212	-0.099	-0.166	
86.316	0.097	-0.164	-0.213	-0.100	-0.166	
90.000	0.089	-0.165	-0.214	-0.100	-0.167	

Tab. 2: Tablica z danymi do obliczeń.

Rys. 1: Wykresy w funkcji Cz

Rys. 2: Wykresy w funkcji ${\cal V}$

3 Zapasy podłużnej stateczności i sterowności samolotu

Kryteria sterownoci podłunej względem prędkoci definiowane jako pochodne kąta wychylenia steru wysokoci oraz siły na drążku (wolancie) względem prędkoci lotu dane są następującymi zależnościami:

• Zapas stateczności ze sterem trzymanym:

$$\bar{h_N} = \bar{x_N} - \bar{x_c}$$

• Zapas stateczności ze sterem puszczonym:

$$\bar{h_N} = \bar{x_N} - \bar{x_c}$$

• Zapas sterowności ze sterem trzymanym:

$$\bar{h_N} = \bar{x_N} - \bar{x_c}$$

• Zapas sterowności ze sterem puszczonym:

$$\bar{h_N} = \bar{x_N} - \bar{x_c}$$

Rys. 3: Zapas stateczności i sterowności w funkcji prędkości

4 Kryterium sterowności podłużnej samolotu

4.1 Względem prędkości lotu

Kryteria sterowności podłunej względem prędkoci definiowane jako pochodne kąta wychylenia steru wysokoci oraz siły na drążku (wolancie) względem prędkoci. Wyniki zostały przedstawione w

$$\frac{\delta_H}{dV} = \frac{4mg}{\rho S \kappa_H^{\prime 0} \cdot a_2} \cdot \frac{1}{V^3} \cdot \bar{h}_N \tag{11}$$

$$\frac{\delta_H}{dV} = \frac{4 \cdot 670.0 \cdot 9.81}{1.225 \cdot 15.0 \cdot 0.3573 \cdot 2.218} \cdot \frac{1}{V^3} \cdot \bar{h}_N$$

$$\frac{dP_{dH}}{dV} = -2mgK_{dH} \cdot \frac{S_{Sh} \cdot c_{sH}}{S_H \cdot x_{SAH}} \cdot \frac{c_a}{l_{dH}} \cdot \frac{1}{V} \cdot \bar{h}_{N'}$$
(12)

$$\frac{dP_{dH}}{dV} = -2 \cdot 670.0 \cdot 9.81 \cdot 1.0 \cdot \frac{2.2 \cdot 0.803}{15.0 \cdot 4.29} \cdot \frac{1.5}{1.0} \cdot \frac{1}{V} \cdot \bar{h}_{N'}$$

(a) Pochodna wychylenia stery wysokości

Rys. 4: Kryteria sterowności podłużnej w funkcji prędkości

4.2 Względem przeciążenia

Kryteria sterowności podłużnej względem przeciążenia: przyrost kąta wychylenia względem współczynnika przeciążeń i przyrost siły na drążku odniesiony do współczynnika przeciążeń

$$\frac{\Delta \delta_H}{m_g - 1} = -2 \cdot m \cdot g \cdot \frac{c_a}{\rho \cdot S_H \cdot x_{SAH} \cdot a_2} \cdot \frac{1}{V^2} \cdot \bar{h}_M \tag{13}$$

$$\frac{\Delta \delta_H}{m_g - 1} = -2 \cdot 670.0 \cdot 9.81 \cdot \frac{1.5}{1.225 \cdot 2.2 \cdot 4.29 \cdot 2.218} \cdot \frac{1}{V^2} \cdot \bar{h}_M$$

$$\frac{\Delta P_{dH}}{m_g - 1} = m \cdot g \cdot K_{dH} \cdot \frac{c_a}{l_{dH}} \cdot \frac{S_{SH} \cdot c_{SH}}{S_H \cdot x_{SAH} \cdot \frac{b_2}{a_2}} \cdot \bar{h}_{M'}$$

$$\frac{\Delta P_{dH}}{m_g - 1} = 670.0 \cdot 9.81 \cdot 1.0 \cdot \frac{1.5}{1.0} \cdot \frac{2.2 \cdot 0.803}{15.0 \cdot 4.29 \cdot \frac{-0.322}{2.218}} \cdot \bar{h}_{M'}$$
(14)

Rys. 5: Kryteria sterowności podłużnej w funkcji przeciążenia

4.3 Podsumowanie

Na podsatwie warunkkuów zawartych w instrukcji można swierdzić, że ——:

$$\frac{d\delta_H}{dV} > 0 \quad \frac{dP_{dH}}{dV} < 0 \quad \frac{\Delta\delta_H}{m_g - 1} < 0 \quad \frac{\Delta P_{dH}}{m_g - 1} > 0$$