

Pruebas de Acceso a enseñanzas universitarias oficiales de grado

Castilla y León

MATEMÁTICAS II

EJERCICIO

Nº Páginas: 2

INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo desarrollar los cuatro ejercicios de la misma en el orden que desee.

2.- Se permitirá el uso de **calculadoras no programables** (que no admitan memoria para texto ni representaciones gráficas).

CRITERIOS GENERALES DE EVALUACIÓN: Cada ejercicio se puntuará sobre un máximo de 2,5 puntos. Se observarán fundamentalmente los siguientes aspectos: Correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos.

OPCIÓN A

E1.- Hallar la ecuación de la recta que pasa por el punto (1, 2) y determina en el primer cuadrante con los ejes coordenados un triángulo de área mínima. Calcular dicha área.

(2,5 puntos)

E2.- a) Estudiar la continuidad y derivabilidad de la función f(x) = |x-1| en el intervalo [-2, 2]. Calcular la función derivada de f(x) en ese intervalo. (1,25 puntos)

b) Calcular el área del recinto delimitado en el primer cuadrante, por la gráfica de la función $y = \ln x$ y las rectas y = 0, y = 1 y x = 0. (1,25 puntos)

E3.- a) Averiguar para qué valores de
$$m$$
 la matriz $A = \begin{pmatrix} -1 & 0 & 1 \\ -1 & 1 & -m \\ 0 & m & -2 \end{pmatrix}$ no tiene inversa.

(0,5 puntos)

b) Calcula la matriz inversa de A para m = 0.

(1 punto)

c) Sabemos que el determinante de una matriz cuadrada A vale -1 y que el determinante de la matriz $2 \cdot A$ vale -16 ¿Cuál es el orden de la matriz A? (1 punto)

E4.- Sean la recta $r = \begin{cases} x + y = 1 \\ my + z = 0 \end{cases}$ y el plano $\pi = x + (m+1)y + mz = m+1$. Estudiar la posición relativa de la recta y el plano según los valores de m. (2,5 puntos)

OPCIÓN B

E1.- Dada la función $y = \frac{\ln x}{x}$, determinar su dominio de definición, sus asíntotas, extremos relativos y puntos de inflexión. Hacer un esbozo de su representación gráfica.

(2,5 puntos)

- **E2.-** Hallar el valor de m para que el área delimitada, en el primer cuadrante, por la función $y = 4x^3$ y la recta y = mx sea de 9 unidades cuadradas. (2,5 puntos)
- E3.- Discutir según los valores de m y resolver cuando sea posible, el sistema de ecuaciones

lineales
$$\begin{cases} mx + y = 2 \\ x + my = m \\ x + y = 2 \end{cases}$$
 (2,5 puntos)

E4.- a) Calcular un vector unitario y ortogonal a los vectores v = (1, 2, 0) y w = (-1, 0, 1).

(1 punto)

b) Calcular el plano que contiene a las rectas $r = \begin{cases} y+1=0 \\ x+z=1 \end{cases}$ y $s = \frac{x}{-1} = \frac{y+3}{0} = z-2$.

(1,5 puntos)