5.1: Logistic Regression

Dr. Bean - Stat 5100

1 Why Logistic Regression?

Recall the linear regression model

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_{p-1} X_{p-1} + \epsilon \qquad (\epsilon \sim N(0, \sigma^2)).$$

(Individual) What are some properties of the variable Y that are required for ϵ to be normally distributed.

- continuous (new-continuous)

- line relationship

1.1 Why not regression on categorical data?

Consider fitting a regression model where we use age to try and predict whether or not a person has a disease (a 0-1 variable).

Figure 1: Fit plot and residual diagnostics for regression model that uses age to predict the presence/absence of a disease.

It is for this reason that instead of trying to predict the **value** of a categorical predictor, we should rather try to predict the **probability** of occurrence π_i ,

$$\pi_i = \beta_0 + \beta_1 X_{i,1} + \dots + \beta_{p-1} X_{i,p-1} + \epsilon_i \qquad (\epsilon \sim N(0, \sigma^2)).$$
 (1)

(Individual) However, based on the previous example, what are some of the issues with trying to predict the probability using (1)?

o we den't M

o residul assumptions will new be saterful

2 Transforming Probabilities

Because regression works best with **unconstrained** variables (i.e. variables that can theoretically take on any value). We need to find a transformation that maps $\pi \in [0, 1]$ to $f(\pi) \in (-\infty, \infty)$.

Solution: log-odds ratio.

- $\bullet \ \pi \to [0,1]$
- $\frac{\pi}{1-\pi} \to [0,\infty)$
- $L = \log\left(\frac{\pi}{1-\pi}\right) \to (-\infty, \infty)$

The **probit** function is another common transformation that achieves similar results.

• Probit: $Q_i = Z_{\pi_i} \to \mathbb{Z}$ score (of a standard normal distribution) associated with the percentile π_i .

Other "S" shape curves exist, which tend to reach similar conclusions.

Figure 2: Visualization of logit and probit function for various probabilities.

3

Logistic Regression

 $L_i = \beta_0 + \beta_1 X_{i,1} + \dots + \beta_{p-1} X_{i,p-1}$ below β_0 where β_0 is the second β_0 and β_0 and β_0 is the second β_0 and β_0 and β_0 and β_0 is the second β_0 and β_0 and β_0 and β_0 are second β_0 and β_0 and β_0 are second β_0 are second β_0 and β_0 are second β_0 are second β_0 are second β_0 and β_0 are second β_0 are second β_0 are second β_0 are second β_0 and β_0 are second β_0 and β_0 are second β_0 are second β_0 and β_0 are second β_0 and β_0 are second β_0 and β_0 are second β_0 are second β_0 and β_0 are second β_0 are second β_0 and β_0 are second β_0 and β_0 are second β_0 and β_0 are second β_0 are second β_0 are second β_0 a

- b_k estimates obtained from MLE-based iterative procedure (Newton-Raphson, Fisher)
- Transform estimates $\hat{L}_i = b_0 + b_1 X_{i,1} + \dots + b_{p-1} X_{i,p-1}$ back to probability scale.

 $\hat{\pi}_i = \frac{1}{1 + e^{-\hat{L}_i}} \qquad O\hat{d}ds_i = e^{\hat{L}_i}$ probability

$$\hat{\pi}_i = \frac{1}{1 + e^{-\hat{L}_i}}$$

$$O\hat{d}ds_i = e^{\hat{L}_i}$$

Interpretation of Estimates 3.1

- $X_{i,1} = \cdots = X_{i,p-1} = 0 \implies \hat{L}_i = b_0 \implies O\hat{d}ds_i = e^{b_0}$
- Hold $X_{i,2} = \cdots = X_{i,p-1} = 0$, increase $X_{i,1}$ from 0 to 1

$$\implies \hat{L}_i = b_0 + b_1 \implies O\hat{d}ds_i = e^{b_0 + b_1} = e^{b_0}e^{b_1}$$

- Thus, an increase in one unit in X_j multiplies the odds (in favor of Y=1) by a factor of e^{b_j}
 - Note that it is the *odds* that are multiplied, **not** the probability.
- Alternative Interpretation: the odds of Y=1 change by $100(e^{b_j}-1)\%$ per unit increase in X_i while holding other predictors constant.
 - Example (Handout 5.1.1): b_j for sector is 1.57 $\implies e^{1.57} = 4.83$.
 - "Holding all other predictors constant, the odds of having disease are 100(4.83-1)383% greater in Sector 2 than in Sector 1.

(Groups) How would you interpret the coefficient associated with Age in the Handout

5.1.1 logistic model?

e =) = 3.01%. Odds of dres on 3% gratures of meese on agl.

• The "Odds Ratio" for X_j (odds of Y = 1 when $X_j + 1$ vs odds of Y = 1 when X_j)

$$\frac{e^{b_0+b_1X_1+\dots+\mathbf{b_j}(\mathbf{X_j}+\mathbf{1})+\dots+b_{p-1}X_{p-1}}}{e^{b_0+b_1X_1+\dots+\mathbf{b_j}(\mathbf{X_j})+\dots+b_{p-1}X_{p-1}}} = e^{b_j}$$

Inference with Estimates 3.2

- Single Variable Test:
 - $-H_0: \beta_i = 0 \ (X_i \text{ has no effect on } P(Y=1)).$
 - Test statistic: $t = \frac{b_j}{SE\{b_i\}}$ (standard normal for "large" N).
 - $-\implies t^2 \sim \chi_1^2$ (obtain confidence intervals from here)
 - * This approach is called the "Wald Test"
- Subset variables test:

$$-H_0: \beta_{p-H} = \dots = \beta_{p-1} = 0$$

- * reorder the X variables so that the subset we are checking for comes last
- Let L_{full} be the likelihood associated with the full model
- Test statistics: $\chi^2 = -2 \log \frac{L_{red}}{L_{full}}$
- Under $H_0: \chi^2 \sim \chi_H^2$
- Overall model test:

$$Model\chi^2 = -2 \log L_{intercept} + 2 \log L_{int\&covariates}$$

- Often called the **deviance**, DEV or $DEV(X_0, X_1, X_{p-1})$
- Conditional Effect plot: predicted \hat{pi} vs one predictor X_j
 - While holding all other predictors at some constant level. The default level in SAS is the mean (average) of each variable.

(0,4) (10) =

4 Goodness of Fit Measures:

- Pseudo R-square: $\frac{\chi^2}{\chi^2+n}$ (χ^2 from model test)
- Hosmer-Lemeshow Goodness of Fit Test
 - $-H_0$: logistic regression response function is appropriate
 - Based on sorted $\hat{\pi}$ values, group observations into 5-10 roughly equal sized groups.
 - Within each group, look at the total observed numbers of Y=1 and Y=0
 - Based on the model fit, calculate the total expected numbers of Y=1 and $Y=\emptyset$.
 - Test statistic χ^2 is sum (across groups) of $\frac{(observed-expected)^2}{expected}$
- \bullet "Concordance" look at all pairs of observations with different Y
 - Let n_c be the # of "concordant" pairs (observed Y = 1 has larger $\hat{\pi}$)
 - Let n_d be the # of "discordant" pairs (observed Y=1 has smaller $\hat{\pi}$)
 - Let n_t be the # of "tied" paired (observed Y=1 and Y=0 have same $\hat{\pi}$ (likely due to identical X-profiles)
 - Define rank correlation indices (larger is better):

Somers'
$$D = \frac{n_c - n_d}{n_c + n_d + n_t}$$

$$\gamma = \frac{n_c - n_d}{n_c + n_d}$$

Tau-a =
$$\frac{n_c - n_d}{0.5(n-1)n}$$

$$AUC = \frac{n_c + 0.5n_t}{n_c + n_d + n_t}$$

• ROC (Receiver Operating Characteristic) Curve

- Sort all observations from the smallest to biggest \hat{pi} .
- At each position in the list:
 - * Use $\hat{\pi}$ as threshold for $\hat{Y} = 1$, moving cutoff from the standard 0.5 threshold.

 * Colorlate consitivity: (proportion $Y_i = 1$ values with $\hat{Y}_i = 1$).

 - * Calculate specificity: (proportion Y = 0 values with $\hat{Y} = 0$).
 - · Sensitivity and Specificity think smoke alarms and pregnancy tests.
 - * False positive rate (prop Y=0 values with $\hat{Y}=1$) = 1 specificity
 - * Plot false positives against true positive rates (sensitivity)
 - * Calculate the area under the curve.

Given the three ROC curves in Figure 3, which model has the best predictive power and why?

Figure 3: Comparison of three ROC curves.

model 3

Multicollinearity 5

Recall that multicollinearity occurs when X variables are highly correlated with each other. It has **nothing** to do with the response variable Y.

As in OLS, multicollinearity inflates the variance of the b_k estimates, making them hard to interpret/test for significance.

As in OLS, stepwise selection and all possible regression methods exist to "score" each combination of explanatory variables and select a best model.

6 Outliers in Logistic Regression

(Individual) If Y can only take on two values (0 or 1), how are outlier values possible?

large discigneent between of al the discionation.

• Define "deviance residual" as

- The more certain we are (probability near 0 or 1), the more potential we have to be very wrong.
- $DEV(X_0, \cdots X_{p-1}) = \sum_i dev_i^2$
- "Outliers" are values not well represented by the model
- "Half-normal probability plot observed $|dev_i|$ vs expected value under normality
 - **However**, since the residuals are not normally distributed, we asses differences from our expectation using simulations based on $\hat{\pi}_i$.
 - * Create 19 simulations by generating a "new" response variable where the values of $Y_{new,i} \sim Bernoulli(\hat{\pi}_i)$
 - Simulated envelop (SEE 5.1.1 MACRO ON CANVAS) plots the minimum, maximum, and mean of the 19 simulations
 - * Why 19 simulations? Since our observed deviances represent the 20th observation, the probability that our deviances will fall outside the envelope is less than 5% IF the fitted model is appropriate.
 - * Points falling outside in the envelop in the upper right corner of the plot are evidence of outliers/bad fits.

7 Influential Observations

Influential observations have the same effect on model coefficients as they did in OLS.

Diagnostics (similar to Leverage and DFBETAS):

- $\bullet D_i : DEV DEV_{(i)}$
 - Measures decrease in "misfit" when obs. i is ignored. (essentially measures the "poorness of fit for observation i).
 - "large" $\Delta D_i \implies$ obs. i overly influences model fit
 - SAS: DIFDEV on step difference in deviance

· BBi (b) - b)ci) -> sum ere there differences

- Similar to Cook's distance, measures influence of obs. i on the estimates b_i

- SAS: C confidence interval displacement C
- $\bullet \chi_i^2$
 - Similar to D_i : "poorness of fit" for obs i
 - SAS: DIFCHISQ one step difference in Pearson χ^2

Unlike in OLS, there is no consistent numerical rule of thumbs to determine thresholds for the δ measures.

Instead, we will simply rely on graphical diagnostics.

- $\delta D_i, \delta B_i, \delta X_i^2$ vs. Observation Number look for extreme values
- δD_i vs $\hat{\pi}_i$ (or $\delta \hat{X}_i^2$ vs $\hat{\pi}_i$)
 - Look for points with low $\hat{\pi}$ but $Y_i = 1$ (upper left corner) OR high $\hat{\pi}$ but Y = 0 (upper right corner) which are much different than the overall pattern
 - (Optional) plot different size points where point size is determined by δB_i

8 Remedial Measures

Similar to OLS:

- Look for typos in the data
- Consider transformations of the X variables
- Consider dropping problematic points (only if you have a good argument for removing them).

9 Final Thought

If you have a lot of explanatory variables, you should strongly consider classification trees and random forest for classification.