Configuration Options for MDITRE

July 9, 2021

1 General options

- \bullet $\,$ data: path to the pickle file containing the preprocessed dataset
- data_name: Name of the dataset, used to create a directory to store the model output
- save_as_csv: Save all the model output as CSV files
- verbose: Print training output logs to the console

2 Training options

- workers: Number of cpu threads to use for pytorch data loading
- epochs: Number of training iterations to run the model
- batch-size: Number of training samples in a single batch. For full batch training it is set to the dataset size
- deterministic: Deterministic training for reproducibility
- seed: Random seed for reproducibility
- cv_type: Cross-Validation procedure to be used. Options are "loo" (leave-one-out), "kfold" and "None"
- kfolds: Number of folds to use if cv_type chosen is "kfold"
- distributed: Use multiprocessing for training
- local_rank: Rank of the current process if using distributed training

3 Optimization options

- lr_fc: Learning rate for the regression coefficients. Value of 0.001 works well in practice.
- lr_bias: Learning rate for the regression bias term. Value of 0.001 works well in practice.
- lr_alpha: Learning rate on detector selector parameters. Value of 0.001 works well in practice. Using a very high value may result in model not training.
- lr_beta: Learning rate on rule selector parameters. Value of 0.001 works well in practice. Using a very high value may result in model not training.
- lr_thresh: Learning rate on abundance threshold parameters. This value is dependent on the scale of the abundances. We found that value of 0.001 works well for all our datasets.
- lr_slope: Learning rate on slope threshold parameters. This value is dependent on the scale of rate of change of abundances. We found that a value of 0.0001 works well for all our datasets.
- lr_time: Learning rate on time window length parameters. Value of 0.01 works well in practice since the time windows are generally on a higher scale (days, months etc.)
- lr_mu: Learning rate on time window center parameters. Value of 0.01 works well in practice since the time window centers are generally on a higher scale (day, month etc.)
- lr_kappa: Learning rate on phylogenetic radius parameters. Value of 0.001 works well in practice.
- lr_eta: Learning rate on phylogenetic embedding parameters. Value of 0.001 works well in practice.

4 Model options

- min_k_bc: Initial temperature (sharpening factor) before annealing on the rule and detector selectors.
- max_k_bc: Final temperature (sharpening factor) after annealing on the rule and detector selectors.
- min_k_thresh: Initial temperature (sharpening factor) before annealing on the threshold detector response.
- max_k_thresh: Final temperature (sharpening factor) after annealing on the threshold detector response.

- min_k_slope: Initial temperature (sharpening factor) before annealing on the slope detector response.
- max_k_slope: Final temperature (sharpening factor) after annealing on the slope detector response.
- min_k_time: Initial temperature (sharpening factor) before annealing on the temporal focus response.
- max_k_time: Final temperature (sharpening factor) after annealing on the temporal focus response.
- min_k_otu: Initial temperature (sharpening factor) before annealing on the phylogenetic focus response.
- max_k_otu: Final temperature (sharpening factor) after annealing on the phylogenetic focus response.
- z_mean: Mean of the Negative Binomial prior on the detector selectors.
- \bullet **z_var**: Variance of the Negative Binomial prior on the detector selectors.
- **z_r_mean**: Mean of the Negative Binomial prior on the rule selectors.
- z_r_var: Variance of the Negative Binomial prior on the rule selectors.
- w_var: Variance of the Normal prior on the regression coefficients.