Spécification processeur

Nous proposons ici une spécification pour un processeur minimaliste 16 bit RISC.

Registres

La machine dispose de 8 registres « généraux » :

- 0. Registre Z ou zéro (valant tout le temps 0...)
- 1. Registre A
- 2. Registre B
- 3. Registre C
- 4. Registre D
- 5. Registre E, écrit par certaines instructions (multiplication, division...) et utilisé préférentiellement comme registre temporaire pour certaines instructions composées
- 6. Registre F, ou RA (return adresse), écrit par l'instruction jal
- 7. Registre G, ou SP (stack pointer), utilisé par les instructions pop et push

De plus, le processeur dispose d'un registre non manipulable, le registre PC (program counter).

Les numéros de registres sont donc codés sur 3 bits.

Mémoire

La mémoire est adressée sur 16 bits, il y a donc 64ko disponnibles.

On définit plusieurs zones de mémoire :

0x0000 - 0x2FFF	VGA Framebuffer (noir et blanc, 336x288)
0x3000 - 0x37FF	ROM pour police d'écriture
0x3800 - 0x3FFF	MMIO (seuls quelques octets seront utilisés)
0x4000 - 0x7FFF	ROM pour programme utilisateur
0x8000 - 0xFFFF	RAM pour programme utilisateur

Tableau 1. Memory map

Les 0x3000 (12288) octets de mémoire pour le VGA correspondent à un affichage bitmappé 336x288 noir et blanc (un octet représente 8 pixels), ce qui fait avec une police d'écriture 8x8 un affichage texte possible en 42x36.

Les 0x0800 (2048) octets de RAM pour la fonte suffisent à définir 256 caractères en résolution 8x8 (donc 8 octets par caractère).

Sur les 0x8000 octets alloués pour la MMIO, on en aura un pour l'entrée série, un pour la sortie série, un pour l'horloge et c'est tout.

Le reste est auto-explicite.

Jeu d'instruction

Les instructions sont codées sur 16 bits.

Types d'instructions

Format
$$R$$
 $\begin{bmatrix} 5 \text{ bits } 3 \text{ bits } 3 \text{ bits } 3 \text{ bits } 2 \text{ bits} \\ \hline I & R & R_A & R_B & f \end{bmatrix}$

Format
$$I = \begin{bmatrix} 5 \text{ bits } 3 \text{ bits } 8 \text{ bits} \\ \hline I & R & d \end{bmatrix}$$

Format
$$J = \begin{bmatrix} 5 \text{ bits } 11 \text{ bits} \\ \hline I & d \end{bmatrix}$$

Tableau d'instructions

Certain noms d'instuctions sont en *italique*, il s'agit de signifier qu'il s'agit d'un alias (optionnel) pour une autre instruction.

I	format	f	description	action	valeurs signés ?
00000	R	0	add	$R \leftarrow R_A + R_B$	signé
		1	sub	$R \leftarrow R_A - R_B$	signé
		2	mul	$R \leftarrow \log(R_A \times R_B)$	signé
				$E \leftarrow \operatorname{hi}(R_A \times R_B) \text{ si } E \neq R$	
		3	div	$R \leftarrow q(R_A, R_B)$	signé
				$E \leftarrow r(R_A, R_B) \text{ si } E \neq R$	
00001	R	0	addu	idem add	non signé
		1	subu	idem sub	non signé
		2	mulu	idem mul	non signé
		3	divu	idem div	non signé
00010	R	0	or	$R \leftarrow (R_A \vee R_B)$	
		1	and	$R \leftarrow (R_A \wedge R_B)$	
		2	xor	$R \leftarrow (R_A \oplus R_B)$	
		3	nor	$R \leftarrow \text{not}\left(R_A \vee R_B\right)$	
00011	R	0	lsl	$R \leftarrow (R_A \ll R_B)$	
		1	lsl		
		2	lsr	$R \leftarrow (R_A \gg R_B)$ (logical)	(non signé)
		3	asr	$R \leftarrow (R_A \gg R_B)$ (arith)	$(sign\acute{e})$
00100	R	0	se		
		1	sne		
		2	se	$R \leftarrow (R_A = R_B?1:0)$	
		3	sne	$R \leftarrow (R_A \neq R_B?1:0)$	
00101	\mathbf{R}	0	slt	$R \leftarrow (R_A < R_B?1:0)$	signé
		1	sle	$R \leftarrow (R_A \leqslant R_B?1:0)$	signé
		2	sltu	$R \leftarrow (R_A < R_B?1:0)$	non signé
		3	sleu	$R \leftarrow (R_A \leqslant R_B?1:0)$	non signé
00110	I		incri	$R \leftarrow (R+d)$	d signé
00111	Ι		$_{ m shi}$	$R \leftarrow (R \ll d)$	d signé
01000	J		j	$PC \leftarrow PC + d$	
01001	J		jal	$F \leftarrow (PC + 2); PC \leftarrow PC + d$	
01010	R	0	jr	$PC \leftarrow R$	
		1	$_{ m jalr}$	$F \leftarrow (PC + 2); PC \leftarrow R$	
		2	$_{ m jer}$	if $R_A = R_B$ then $PC \leftarrow R$	
		3	$_{ m jner}$	if $R_A \neq R_B$ then $PC \leftarrow R$	
01011	R	0	$_{ m jltr}$	if $R_A < R_B$ then $PC \leftarrow R$	signé
		1	jler	if $R_A \leqslant R_B$ then $PC \leftarrow R$	signé
		2	jltru	if $R_A < R_B$ then $PC \leftarrow R$	non signé
		3	jleru	if $R_A \leqslant R_B$ then $PC \leftarrow R$	non signé
01100			nop		
01101			nop		
01110			nop		
01111			nop		
10000	K		lw	$R \leftarrow \text{mem}(R' + d) \text{ (16 bits)}$	
10001	K		sw	$mem(R'+d) \leftarrow R \ (16 \ bits)$	
10010	K		lb	$R \leftarrow \text{mem}(R' + d) \text{ (8 bits)}$	
10011	K		$^{\mathrm{sb}}$	$mem(R'+d) \leftarrow R \ (8 \ bits)$	
10100	R	*	lwr	$R \leftarrow \text{mem}(R_A + R_B) \text{ (16 bits)}$	
10101	R	*	swr	$mem(R_A + R_B) \leftarrow R \ (16 \ bits)$	
10110	R	*	lbr	$R \leftarrow \text{mem}(R_A + R_B) \text{ (8 bits)}$	
10111	R	*	sbr	$mem(R_A + R_B) \leftarrow R \text{ (8 bits)}$	
11000	I		lil	$R_{\mathrm{lo}} \leftarrow d$	
11001	I		$_{ m lilz}$	$R_{\text{lo}} \leftarrow d; R_{\text{hi}} \leftarrow 0$	
11010	I		liu	$R_{\mathrm{hi}} \leftarrow d$	
11011	I		liuz	$R_{\text{hi}} \leftarrow d; R_{\text{lo}} \leftarrow 0$	
11100			nop		
11101			nop		
11110			nop	3 ~	
11111			nop	3 Ø	

Tableau 2. Instructions reconnues par le microproceseur

Nom	Action	Code assembleur de base équivalent
push R	$G \leftarrow G - 2$; mem $(G) \leftarrow R$	incri $G, -2$
		sw R, G
pop R	$R \leftarrow \text{mem}(G)$; $G \leftarrow G + 2$	lw R, G
		incri $G, 2$
move R, R_A	$R \leftarrow R_A$	add R, R_A, Z
addi, subi,	$R \leftarrow R_A + d$	(utilise E comme registre temporaire)
not R, R_A	$R \leftarrow \text{not } R_A$	$\operatorname{nor} R, R_A, Z$
jz R , addr	if $R = 0$ then $PC \leftarrow addr$	lil E, lo(addr); liu E, hi(addr) OU lilz E, addr
		jer R, E, Z
jnz R , addr	if $R \neq 0$ then $PC \leftarrow addr$	lil E, lo(addr); liu E, hi(addr) OU lilz E, addr
	•	jner R, E, Z

Tableau 3. Instructions supplémentaires (produites par l'assembleur)