COMP 446 / 546 ALGORITHM DESIGN AND ANALYSIS

LECTURE 2 SORTING ALPTEKİN KÜPÇÜ

Based on slides of Serdar Taşıran, Shafi Goldwasser, and Erik Demaine

SORTING

Sorting

- Input: a sequence of n numbers <a1,a2,...,an>
- Output: a re-ordering <a'₁,a'₂,...,a'_n> of the sequence such that a'₁ ≤ a'₂ ≤ ... ≤ a'_n

• Example:

- Input: 8 2 4 9 3 6
- Output: 2 3 4 6 8 9
- Called an instance of the problem

Check these demos:

- http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/sortcontest/sortcontest.htm
- http://www.cs.oswego.edu/~mohammad/classes/csc241/samples/sort/Sort2-E.html
- http://www.cs.ubc.ca/~harrison/Java/sorting-demo.html
- http://www.cs.pitt.edu/~kirk/cs1501/animations/Sort3.html

INSERTION SORT

- Takes array A[1..n] containing a sequence of length n to be sorted
- Sorts the array in place
 - Numbers re-arranged inside A with at most a constant number of them stored outside.
 - O(1) extra space

Figure 2.1 Sorting a hand of cards using insertion sort.

INSERTION SORT

"pseudocode"

INSERTION-SORT $(A, n) \triangleright A[1 ... n]$ for $j \leftarrow 2$ to ndo $key \leftarrow A[j]$ $i \leftarrow j - 1$ while i > 0 and A[i] > keydo $A[i+1] \leftarrow A[i]$ $i \leftarrow i - 1$ A[i+1] = key

EXAMPLE OF INSERTION SORT

CORRECTNESS OF INSERTION SORT

```
INSERTION-SORT (A, n) \triangleright A[1 ... n]

for j \leftarrow 2 to n

do key \leftarrow A[j]

i \leftarrow j - 1

while i > 0 and A[i] > key

do A[i+1] \leftarrow A[i]

i \leftarrow i - 1

A[i+1] = key
```

- Loop invariant:
 - At the start of each iteration, the subarray A[1..j-1] contains the elements originally in A[1..j-1] but in sorted (increasing) order
- Prove initialization, maintenance, termination
- Invariant must imply interesting property about algorithm

RUNNING TIME

- The running time of insertion sort depends on the input: e.g., an already sorted sequence is easier to sort.
- Major Simplifying Convention: Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones.
 - $T_A(n) = time of A when run with inputs of length n$
 - > n: Number of bits required to encode input
 - **▶**Ignore machine-dependent constants
 - ► Look at *growth* of T(n) as $n \to \infty$
 - For small inputs, the algorithm will run fast anyway. Important thing is for how big inputs we can still run the algorithm given a reasonable amount of time.

KINDS OF ANALYSES

- Worst-case: (mostly-used)
 - T(n) = maximum time of algorithm on any input of size n.
 - Generally, we seek upper bounds on the running time, to have a guarantee of performance.
- Average-case: (sometimes used)
 - T(n) = expected time of algorithm over all inputs of size n.
 - Need assumption of statistical distribution of real inputs.
- Best-case: (almost never used)
 - T(n) = best possible time of algorithm over any input of size n.
 - Cheat with a slow algorithm that works fast on some input.
 - May be useful when proving negative results
 - e.g., Even the best case of algorithm X is slower than the worst case of algorithm Y.

RUNNING-TIME OF INSERTION SORT

```
INSERTION-SORT (A, n) \triangleright A[1 \dots n]
                                                                          TIMES
                                                             COST
   for j \leftarrow 2 to n
                                                                C_1
          do key \leftarrow A[j]
                                                                            n-1
                                                                C_2
               i \leftarrow j - 1
                                                                           n-1
                                                                C_3
                                                               c_4 \qquad \sum_{i=2}^n t_i
               while i > 0 and A[i] > key
                      do A[i+1] \leftarrow A[i]
                                                                        \sum_{i=2}^{n} (t_i - 1)
                           i \leftarrow i - 1
                                                                C_6
                                                                        \sum_{i=2}^{n} (tj-1)
               A[i+1] = key
                                                                             n-1
```

Let T(n) = running time of INSERTION-SORT

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

The running time depends on the values of t_j. This vary according to the input.

9

INSERTION SORT ANALYSIS

Worst case: Input reverse sorted.

$$T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^2)$$
 [arithmetic series]

Average case: All permutations equally likely.

$$T(n) = \sum_{j=2}^{n} \Theta(j/2) = \Theta(n^2)$$

Best case: Input already sorted. O(n)

Is insertion sort a fast sorting algorithm?

- Moderately so, for small n.
- Not at all, for large n.

HOW TO DESIGN ALGORITHMS?

- We'll see many example styles throughout the semester
- Insertion sort was an example of an "incremental algorithm"
- Another common paradigm: Divide and Conquer
 - Divide into simpler/smaller sub-problems
 - Solve (conquer) sub-problems recursively
 - Combine results of sub-problems

MERGE SORT

```
MERGE-SORT A[1...n]

If n = 1, return

Recursively sort

A[1...[n/2]] and A[[n/2]+1...n]

Merge the two sorted lists
```

Key subroutine: MERGE

MERGE SORT EXAMPLE

13 Alptekin Küpçü

20 12

13 11

7 9

2 1

20 12

13 11

7 9

Alptekin Küpçü

Alptekin Küpçü

Time = O(n) to merge a total of n elements (linear time).

ANALYZING MERGE SORT

```
T(n)MERGE-SORT A[1 ... n]O(1)If n = 1, return2T(n/2)Recursively sortA[1 ... \lceil n/2 \rceil] and A[\lceil n/2 \rceil + 1 ... n]O(n)Merge the two sorted lists
```

Sloppiness: Should be $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$, but it turns out this does not matter asymptotically.

RECURRENCE FOR MERGE SORT

$$T(n) = \begin{cases} O(1) \text{ if } n = 1\\ 2T(n/2) + O(n) \text{ if } n > 1 \end{cases}$$

Note: Usually the base case T(1) = O(1)

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(*n*)

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

Alptekin Küpçü

CONCLUSIONS

- $O(n \log n)$ grows more slowly than $O(n^2)$.
- Therefore, merge sort asymptotically beats insertion sort in the worst case.
- In practice, merge sort beats insertion sort for n > 30 or so.

34

MASTER THEOREM

- Let T(n) = a T(n/b) + f(n) where
 - a ≥ 1, b > 1 are constants
 - f(n) is an asymptotically positive function
- Then, T(n) can be bounded asymptotically as follows
 - If $f(n)=O(n^{\log_b a-\varepsilon})$ for some $\varepsilon > 0$, then $T(n)=O(n^{\log_b a})$
 - If $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log n)$
 - If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some $\epsilon > 0$, and if, for all sufficiently large n and a constant c < 1 we have $af(n/b) \le cf(n)$, then $T(n) = \Theta(f(n))$