Algorithmen der Sequenzanalyse:

Sequenzalignments

AlgSeq – 09/12/2024

Prof. M. Sammeth

Multiples Sequenz-Aligment (MSA)

Multipel = mehr als 2 Sequenzen

Asp:

YAFDLGYTCMFPVLLGGGELHIVQKETYTAPDEIAHYIKEHGITYIKLTPSLFHTIVNTASFAFDANFESLRLIVLGGEKIIPIDVIAFRKMYGHTE-FINHYGPTEATIGA Orn:

-AFDVSAGDFARALLTGGQLIVCPNEVKMDPASLYAIIKKYDITIFEATPALVIPLMEYI-YEQKLDISQLQILIVGSDSCSMEDFKTLVSRFGSTIRIVNSYGVTEACIDS Val:

IAFDASSWEIYAPLLNGGTVVCIDYYTTIDIKALEAVFKQHHIRGAMLPPALLKQCLVSA----PTMISSLEILFAAGDRLSSQDAILARRAVGSGV-Y-NAYGPTENTVLS

Größe des Alignment Graphen

- 2 Sequenzen mit längen m ~ n:
 n²
- 3 Sequenzen: *n*³
- k Sequenzen: *n*^k

Bsp: Proteinfamilie mit 10 Mitgliedern, je 500 Aminosäuren.

→ 500¹⁰ ~ 10²⁷ Knoten (!)

Heuristiken: Progressives Alignment

Heuristik

Abkürzung der Berechnung, effizienterer Algorithmus.

Heuristiken sind meist inexakt, es gibt jedoch auch exakte.

Progressives Alignment: CLUSTALV, CLUSTALW, CLUSTALX

Des Higgins

Inexakte Heuristiken: Progressives MSA

Alignment Profile und Profil Alignments

```
T C G G G - g T T T t t
Alignment
             c C - - t G A c T T a C a C G - G G A T T T t C
             T t G G G - A c T T t
             a - - - G - - - T - C -
             T C G - - G A T T c a t
             TaGGGGAac--C
             T C G G G t A T a a C C
Profil
          A: .2 .1 0 0 0 0 .8 .1 .1 .2 0
           C: .1 .5 0 0 0 0 0 .3 .1 .2 .4 .5
          G: 0 0 .7 .6 .8 .6 .1 0 0 0 0
           T: .6 .2 0 0 .1 .1 0 .5 .8 .6 .2 .3
```


ClustalW

Valid format for input is: FASTA(Pearson) max number of sequences = 30 max total length of sequences = 10000 Help page							
More information on Clustal home page							
Scoring matrix :	Blosum						
Opening gap penalty:	10	Extending gap penalty:	0.05				
End gap penalty:	10	Separation gap penalty:	0.05				
Output format :	Clustal	Output order :	Input				
Input sequences: (see above for valid formats)							
	Run ClustalW	Clear Input					

Probleme mit dem Progressiven Alignment

"Once a gap, always a gap"

Konsistenz-basiertes Alignment

(1) Vorbereitung: berechne alle paarweisen Alignments.

```
SeqAGARFIELD<br/>SeqBTHE<br/>GARFIELD<br/>THELAST<br/>FAST<br/>CAT<br/>CATPrim. Weight = 88SeqB<br/>GARFIELD<br/>THEGARFIELD<br/>THE<br/>THETHE<br/>VERYFAST<br/>FAST<br/>CATPrim. Weight = 100SeqA<br/>SeqCGARFIELD<br/>GARFIELD<br/>THETHE<br/>FAST<br/>CATLAST<br/>FAST<br/>CATFAST<br/>CATPrim. Weight = 100SeqD<br/>GARFIELD<br/>THE<br/>SeqD<br/>THETHE<br/>THE<br/>THE<br/>THE<br/>THEVERY<br/>FAST<br/>CATPrim. Weight = 100
```

(2) Gewichtung: wie oft wurd jedes Positionspaar in den paarweisen Vergleichen aligniert?

(4) Progressives Multiples Alignment

PSSM – Position-Specific Scoring Matrices

a) Alignment Matrix

- AATTGA
- AGGTCC
- AGGATG
- AGGCGT

A 4 1 0 1 0 1 C 0 0 0 1 1 1 G 0 3 3 0 2 1 T 0 0 1 2 1 1

consensus: A G G T G N

b) Weight Matrix

$$\frac{(n_{i,j} + p_i) / (N+1)}{p_i} \approx \ln \frac{f_{i,j}}{p_i} \qquad \mathbf{A} \qquad \begin{array}{|c|c|c|c|}\hline
1.2 & 0 & -1.6 & 0 \\
\hline
\mathbf{C} & -1.6 & -1.6 & -1.6 & 0 \\
\hline
\mathbf{G} & -1.6 & -96 & -96 & -1.6
\end{array}$$

test sequence: A G G T G C

T-Coffee

(Tree-based Consistency Objective Function

for alignment Evaluation)

"Konsistenz"-Scores können beliebige a priori bekannte Informationen in ein Progressives Alignment einfliessen lassen.

Cedrik Notredame

Der COFFEE – Mixer:

M-Coffee – kombiniert unterschiedliche multiple alignments

R-Coffee – RNA Sekundärstruktur Information

3D-Coffee – Protein Strukturinformation

...

T-Coffee

Aligns DNA, RNA or Proteins using the default T-Coffee

Sequences input Paste or upload your set of sequen	ces in FASTA format			
Sequences to align Click here to use the sample file				
	- OR - Click here	to upload a file		
Hide advanced options				
Methods T-Coffee produces an alignment by	combining the outpu	rt of several alignment method	ds. Use this section to select the individual me	thods.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	υ στο του γενο	O TOTAL OF THE PROPERTY OF THE		
Pairwise Structual Methods	sap_pair =	TMalign_pair 🗆 mustar	ng_pair	
Multiple Methods	pcma_msa	─ mafft_msa	□ clustalw_msa □ dialigntx_msa	□ poa_msa
	□ muscle_msa	□ probcons_msa	□ t_coffee_msa □ amap_msa	
				5 –
	☐ fsa msa	□ probconsRNA msa	□ mus4 msa	

Exakte Heuristiken: Divide-and-Conquer MSA

z.B.: Quicksort, Mergesort, binäre Suche...

Divide-and-Conquer Ansätze:

- zerlegen (rekursiv) den Suchraum in kleinere Sub-Suchräume (*Divide*)
- finden für jeden (meist trivialen) Sub-Sub-Suchraum eine Lösung (Conquer)
- setzen die Lösung zur Gesamtlösung zusammen (Merge)

Divide-and-Conquer für Paarweise Alignments

Optimales *Präfix-, Suffix-* und *Totales* Alignment Score Bsp.: LCS-Scoring (Match= +1)

optimaels Präfix-Alignment Score (i,i)

+

optimales Suffix-Alignment Score (i,j)

Score des optimalen Alignments, d.h. längster Pfad durch (*i,j*)

Pfadlänge(i,j) = vonSource(i,j) + zurSink(i,j)

Der "Mittlere" Knoten

Mittlere Spalte := Spalte, die die Dynamische Programmier-Matrix halbiert

Mittlerer Knoten := (ein) Knoten in der mittleren Spalte des Alignments mit maximalem Score.

Ein Mittlerer Knoten (i,j) teilt die DP-Matrix in die zwei Submatrizen [0;i] x [0;j] und [i+1;n] x [j+1;m]

Divide-and-Conquer mit mittleren Knoten

Idee:

- Der mittlere Knoten teilt das Problem in zweil +/- gleich große Subprobleme (Divide).
- Wenn links/oben und rechts/unten vom mittleren Knoten alle Knoten des längsten Pfades bekannt sind (Conquer),
- dann kann die Lösung einfach zusammengesetzt werden (Merge) als:

Knoten des längsten Pfades links/oben + mittlerer Knoten + Knotendes längsten Pfades rechts/unten

erster mittlerer Knoten: teilt DP Matrix in zwei Submatrizen

zweite mittlere Knoten, je einer pro Submatrix

Paarweises Divide-and-Conquer Alignment

Rekursive Fortsetzung führt zu

dritte mittlere Knoten

(fast) alle Knoten des längsten Pfades bekannt

Mittlere Kanten statt Mittlere Knoten

Mittlere Kante := ausgehende Kante des/eines mittleren Knotens, die Teil des/eines optimalen Alignments ist.

Algorithmus Outline:

```
Algorithm: DCALIGNMENT(oben, unten, links, rechts)
 if links = rechts then
   return Alignment aus (unten - oben) "\downarrow" Kanten
 if oben = unten then
   return Alignment aus (rechts - links) "\rightarrow" Kanten
 mitllereSpalte = |(links + rechts)/2|
 mitllereZeile = MittlererKnoten(oben, unten, links, rechts)
 mitllereKante = MittlereKante(oben, unten, links, rechts)
 output DCALIGNMENT(oben, mittlereZeile, links, mittlereSpalte)
 output mittlereKante
 if mittlereKante = "\rightarrow" or mittlereKante = "\gamma" then
    mittlereSpalte = mittlereSpalte + 1
 if mittlereKante = "\downarrow" or mittlereKante = "\searrow" then
   mittlereZeile = mittlereZeile + 1
 output DCALIGNMENT(mittlereZeile, unten, mittlereSpalte, rechts)
```

```
MITTLERERKNOTEN(...): gibt Koordinate i des mittleren Knotens der Substrings v_{oben+1} ... v_{unten} und w_{links+1}...w_{rechts} zurück
```

MITTLEREKANTE(...): gibt die Richtung der ausgehenden Kante des mittleren Knotens (i, mittlereSpalte) zurück

Divide-and-Conquer für MSA

Jens Stoye

Stoye 1998, *Multiple sequence alignment with the divide-and-conquer method*. https://doi.org/10.1016/S0378-1119(98)00097-3 Bielefeld

Exake MSA Heuristiken: Branch-and-Bound

Branch-and-Bound Optimierung:

- exploriert systematisch den Ergebnisraum (*branching* step)
- berücksichtigt aber suboptimale Lösungen fühzeitig nicht weiter (bounding step)
- benötigt Annahme über das Score des optimalen Alignments und monotone Scoring Funktion.
- im worst case muss der ganze Datenraum exploriert werden.