Solutions to selected problems on Introduction to Topological Manifolds -John M. Lee.

Franco Zacco

Chapter 2 - Topological Spaces

Exercises

Proof. Exercise 2.2.

- (a) Let X be any set such that every subset of X is open. Let also $\mathcal{T} = \mathcal{P}(X)$ we want to prove \mathcal{T} is a topology on X.
 - (i) Given that $\mathcal{T} = \mathcal{P}(X)$ is the power set of X, by definition $X \in \mathcal{P}(X)$ and $\emptyset \in \mathcal{P}(X)$.
 - (ii) Let $U_1, ..., U_n$ be a finite set of elements of $\mathcal{T} = \mathcal{P}(X)$ then by definition $U_1 \cap ... \cap U_n$ is a set of elements of X and hence they are also in $\mathcal{P}(X) = \mathcal{T}$.
 - (iii) Let $(U_{\alpha})_{\alpha \in A}$ be any (finite or infinite) family of elements of $\mathcal{T} = \mathcal{P}(X)$ then their union $\bigcup_{\alpha \in A} U_{\alpha}$ is the union of sets from X hence it's a subset of X then they are also in $\mathcal{P}(X) = \mathcal{T}$.
- (b) Let Y be any set and $\mathcal{T} = \{Y, \emptyset\}$ we want to prove that \mathcal{T} is a topology on Y.
 - (i) By definition Y and the \emptyset are in \mathcal{T} .
 - (ii) Any intersection between elements of \mathcal{T} is either Y or \emptyset and both of them are in \mathcal{T} .
 - (iii) Any union between elements of \mathcal{T} is either Y or \emptyset and both of them are in \mathcal{T} .
- (c) Let $Z = \{1, 2, 3\}$ and $\mathcal{T} = \{\{1\}, \{1, 2\}, \{1, 2, 3\}, \emptyset\}$ we want to prove that \mathcal{T} is a topology on Z.
 - (i) By definition Z and the \emptyset are in \mathcal{T} .

$$\{1\} \cap \{1,2\} \cap \{1,2,3\} \cap \emptyset = \emptyset$$

$$\{1,2\} \cap \{1,2,3\} \cap \emptyset = \emptyset$$

$$\{1\} \cap \{1,2,3\} \cap \emptyset = \emptyset$$

$$\{1\} \cap \{1,2\} \cap \{1,2,3\} = \{1\}$$

$$\{1\} \cap \{1,2\} \cap \{1,2,3\} = \{1\}$$

$$\{1\} \cap \{1,2,3\} = \{1\}$$

$$\{1\} \cap \{1,2,3\} = \{1\}$$

$$\{1\} \cap \emptyset = \emptyset$$

$$\{1,2\} \cap \{1,2,3\} = \{1,2\}$$

$$\{1,2\} \cap \emptyset = \emptyset$$

Therefore every finite intersection of elements of \mathcal{T} is in \mathcal{T} .

(iii)

$$\{1\} \cup \{1,2\} \cup \{1,2,3\} \cup \emptyset = \{1,2,3\}$$

$$\{1,2\} \cup \{1,2,3\} \cup \emptyset = \{1,2,3\}$$

$$\{1\} \cup \{1,2,3\} \cup \emptyset = \{1,2,3\}$$

$$\{1\} \cup \{1,2\} \cup \emptyset = \{1,2\}$$

$$\{1\} \cup \{1,2\} \cup \{1,2,3\} = \{1,2,3\}$$

$$\{1\} \cup \{1,2,3\} = \{1,2,3\}$$

$$\{1\} \cup \{1,2,3\} = \{1,2,3\}$$

$$\{1\} \cup \emptyset = \{1\}$$

$$\{1,2\} \cup \{1,2,3\} = \{1,2,3\}$$

$$\{1,2\} \cup \emptyset = \{1,2,3\}$$

Therefore every union of elements of \mathcal{T} is in \mathcal{T} .

Proof. Exercise 2.4.

- (a) (\Rightarrow) Suppose d and d' generate the same topology on M then the topologies \mathcal{T} and \mathcal{T}' generated by d and d' respectively have the same open sets. Let $x \in M$ and r > 0 then $B_r^{(d)}(x) \in \mathcal{T}$ and $B_r^{(d)}(x) \in \mathcal{T}'$ because $B_r^{(d)}(x)$ is an open set then there is $r_1 > 0$ such that $B_{r_1}^{(d')}(x) \subseteq B_r^{(d)}(x)$. In the same way $B_r^{(d')}(x) \in \mathcal{T}$ because it's an open set and hence then there is $r_2 > 0$ such that $B_{r_2}^{(d)}(x) \subseteq B_r^{(d')}(x)$.
 - (\Leftarrow) Let $U \subset (M,d)$ be an open set. Let also \mathcal{T} and \mathcal{T}' be the topologies generated by d and d'. It happens that $U \in \mathcal{T}$ since U is open then there is some r > 0 such that $B_r^{(d)}(x) \subseteq U$ but also we know that there is some $r_1 > 0$ such that $B_{r_1}^{(d')}(x) \subseteq B_r^{(d)}(x) \subseteq U$ which implies that there is a ball around x for (M,d') and hence U is also an open set in (M,d') therefore $U \in \mathcal{T}'$. If we take now $U \subset (M,d')$ such that $U \in \mathcal{T}'$ we can show in the same way that $U \in \mathcal{T}$ which implies that d and d' generate the same topology on M.
- (b) Let $x \in M$ and r > 0. By definition $B_r^{(d)}(x) = \{y \in M : d(x,y) < r\}$ then let $r_1 = rc > 0$ so

$$B_{r_1}^{(d')}(x) = \{ y \in M : cd(x,y) < rc \} = \{ y \in M : d(x,y) < r \}$$

Hence $B_r^{(d)}(x) = B_{r_1}^{(d')}(x)$.

Now let $B_r^{(d')}(x) = \{ y \in M : d'(x,y) < r \}$ if $r_2 = r/c > 0$ we get that

$$B_{r_2}^{(d)}(x) = \{ y \in M : d(x,y) < r/c \} = \{ y \in M : cd(x,y) < r \}$$

Hence $B_r^{(d')}(x) = B_{r_2}^{(d)}(x)$.

Therefore because of what we proved in (a) we see that d and d' generate the same topology.

(c) Let

$$d(x,y) = |x - y| = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

and

$$d'(x,y) = \max\{|x_1 - y_1|, ..., |x_n - y_n|\}$$

Let also r > 0 and $y \in B_r^d(x)$ then d(x,y) < r but we know from problem B.1 that $d'(x,y) \le d(x,y) \le \sqrt{n}d'(x,y)$ then we see that $y \in B_r^{d'}(x)$ because $d'(x,y) \le d(x,y) < r$ which imply that $B_r^d(x) \subseteq B_r^{d'}(x)$.

On the other hand, let $y \in B_{r_1}^{d'}(x)$ where $r_1 = r/\sqrt{n}$ then $\sqrt{n}d'(x,y) < r$ and from problem B.1 we have that $d(x,y) \le \sqrt{n}d'(x,y) < r$ which implies that $y \in B_r^d(x)$ and hence $B_{r_1}^{d'}(x) \subseteq B_r^d(x)$. With this and the result we got from problem (a) we get that d and d' generate the same topology.

(d) Let $x \in X$ and $0 < r \le 1$ then $B_r^d(x) = \{x\}$ so $\{x\}$ is an open set. Now let $S \subset X$ be any set of X we see that it can be written as

$$S = \bigcup_{x \in X} B_r^d(x)$$

Which is also open. Hence the topology induced by d is a topology where every set of X is open then the topology is the discrete topology.

(e) We know that the discrete metric on \mathbb{Z} generates the discrete topology on \mathbb{Z} so we want to show that the Euclidean metric generates it as well. It is sufficient to prove that the singletons are open sets in \mathbb{Z} with the Euclidean metric from there we can generate any set as we did for the discrete metric hence they generate the same topology. Let $x \in \mathbb{Z}$ then $\{x\}$ is open since there is $0 \le r \le 1$ such that $B_r^d(x) \subseteq \{x\}$ where d is the Euclidean metric.

Proof. Exercise 2.5. We want to show that

$$\mathcal{T} = \{Z : Z \subset Y \text{ and } Z \text{ is open on } X\}$$

is a topology on Y.

- (i) Given that X is a topological space then $\emptyset \subset X$. And since \emptyset is open it is also a subset of Y so $\emptyset \subset \mathcal{T}$. Also, by definition Y is open in X then $Y \subset \mathcal{T}$.
- (ii) Given that X is a topological space then any intersection of finitely many open subsets of X is an open subset of X. Then since $Y \subset X$ then any finite intersection of open subsets of Y is an open subset of Y.
- (iii) Given that X is a topological space then any union of arbitrarily many open subsets of X is an open subset of X. In particular, since $Y \subset X$ then any union of arbitrarily many open subsets of Y is an open subset of Y.

Therefore \mathcal{T} is a topology on Y.

Proof. Exercise 2.6. Let $\{\mathcal{T}_{\alpha}\}_{{\alpha}\in A}$ be a collection of topologies on X. We want to prove that $\mathcal{T} = \bigcap_{{\alpha}\in A} \mathcal{T}_{\alpha}$ is also a topology on X.

- (i) Given that every \mathcal{T}_{α} is a topology on X then $\emptyset \in \mathcal{T}_{\alpha}$ and $X \in \mathcal{T}_{\alpha}$ for every $\alpha \in A$ therefore $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$.
- (ii) Let $U_1, ..., U_n$ be a finite set of elements from \mathcal{T} then each U_i is an open set because it belongs to \mathcal{T}_{α} for every $\alpha \in A$ also $U_1 \cap ... \cap U_n$ is open and is in every \mathcal{T}_{α} because they are topologies on X. Therefore $U_1 \cap ... \cap U_n \in \mathcal{T}$.
- (iii) Let $(U_{\beta})_{\beta \in A}$ be any family of elements of \mathcal{T} as before each U_{β} is in every \mathcal{T}_{α} by the definition of \mathcal{T} and since \mathcal{T}_{α} are topologies on X it must happen that $\bigcup_{\beta \in A} U_{\beta} \in \mathcal{T}_{\alpha}$ hence $\bigcup_{\beta \in A} U_{\beta} \in \mathcal{T}$.

Therefore \mathcal{T} is a topology on X.

Proof. Exercise 2.9. We will prove Proposition 2.8.

- (a) (\Rightarrow) Let $x \in Int(A)$ since Int(A) is open and $Int(A) \subseteq A$ then x has a neighborhood contained in A.
 - (\Leftarrow) Let $U \subseteq A$ be an open neighborhood that contains a point $x \in A$ then since $\operatorname{Int}(A)$ is the largest open subset contained in A it must happen that $U \subseteq \operatorname{Int}(A)$. Therefore $x \in \operatorname{Int}(A)$.

- (b) (\Rightarrow) Let $x \in \text{Ext}(A)$ then by definition $x \in X \setminus \overline{A}$ which is an open set and we see that $X \setminus \overline{A} \subseteq X \setminus A$ hence x has a neighborhood contained in $X \setminus A$.
 - (\Leftarrow) Let $U \subseteq X \setminus A$ be an open neighborhood that contains a point $x \in X \setminus A$ then since $\operatorname{Int}(X \setminus A)$ is the largest open subset contained in $X \setminus A$ it must happen that $U \subseteq \operatorname{Int}(X \setminus A)$ and also we know that $\operatorname{Int}(X \setminus A) = X \setminus \overline{A}$ hence $x \in X \setminus \overline{A} = \operatorname{Ext}(A)$.
- (c) (\Rightarrow) Let $x \in \partial A$ and U be a neighborhood of x since $x \notin \text{Int}(A)$ then $U \not\subseteq A$ so there is a point $y \in U$ such that $y \in X \setminus A$. On the other hand, since $x \notin \text{Ext}(A)$ then $U \not\subseteq X \setminus A$ so there is a point $z \in U$ such that $z \in A$.
 - (\Leftarrow) Let U be a neighborhood of some point x we know there is a point $y \in U$ such that $y \in X \setminus A$ then $U \not\subseteq A$ hence $x \not\in \operatorname{Int}(A)$. Also, we know that there is a point $z \in U$ such that $z \in A$ then $U \not\subseteq X \setminus A$ hence $x \not\in \operatorname{Ext}(A)$. Therefore this implies that $x \in \partial A$.
- (d) (\Rightarrow) Let $x \in \overline{A}$ and U be a neighborhood of x since $x \notin \operatorname{Ext}(A) = X \setminus \overline{A}$ then $U \nsubseteq X \setminus A$ so there is a point $y \in U$ such that $y \in A$.
 - (⇐) Let $x \in U$ be a neighborhood of $x \in A$ then $U \nsubseteq X \setminus A$ hence $x \notin \text{Ext}(A) = X \setminus \overline{A}$. Therefore $x \in \overline{A}$.

- (e) Let $x \in \overline{A}$ given that $A \subseteq \overline{A}$ then x might be in A as well. Suppose $x \notin A$ hence $x \notin \operatorname{Int}(A)$ but also we know by definition that $x \notin \operatorname{Ext}(A) = X \setminus \overline{A}$ therefore x must be in ∂A . Hence $\overline{A} = A \cup \partial A$.
 - In the same way, let $x \in \overline{A}$ given that $\operatorname{Int}(A) \subset \overline{A}$ then x might be in $\operatorname{Int}(A)$ as well but let us suppose that $x \notin \operatorname{Int}(A)$ but also we know by definition that $x \notin \operatorname{Ext}(A) = X \setminus \overline{A}$ therefore x must be in ∂A . Hence we also have that $\overline{A} = \operatorname{Int}(A) \cup \partial A$.
- (f) By definition $\operatorname{Int}(A)$ is the largest open subset contained in A hence it's open in X. Also, we know that \overline{A} is closed then $X \setminus \overline{A} = \operatorname{Ext}(A)$ is open in X.
 - By definition \overline{A} is the smallest closed subset containing A hence it's closed in X. Also, we know that $\operatorname{Int}(A) \cup \operatorname{Ext}(A)$ is open because they are both open as we proved before then $\partial A = X \setminus (\operatorname{Int}(A) \cup \operatorname{Ext}(A))$ is closed in X.
- (g) Suppose A is open in X then A is the largest open subset contained in A hence A = Int(A).
 - If A = Int(A) then no element of A is in Ext(A) or in ∂A hence A contains none of its boundary points.
 - If A contains none of its boundary points then no neighborhood contains a point of $X \setminus A$ hence every point of A has a neighborhood contained in A.
 - Finally, if every point of A has a neighborhood contained in A then it must happen that A = Int(A) which we know is open. Therefore A is open in X.
- (h) Suppose A is closed in X then A is the smallest closed subset that contains A hence $A = \overline{A}$.
 - If $A = \overline{A}$ then $A = \text{Int} A \cup \partial A$ hence A contains all of its boundary points.

Let A contain all of its boundary points. Let us note that $\overline{A} = \operatorname{Int}(A) \cup \partial A$ since $\partial A \subseteq A$ and $\operatorname{Int}(A) \subseteq A$ by definition then we have that $\overline{A} \subseteq A$ and hence A is closed which implies that $X \setminus A$ is open and therefore every point of $X \setminus A$ has a neighborhood contained in $X \setminus A$.

Finally, if every point of $X \setminus A$ has a neighborhood contained in $X \setminus A$ then $X \setminus A$ is open and hence A is closed.

Proof. Exercise 2.10.

- (\Rightarrow) Let $A\subseteq X$ be a closed subset in a topological space X also let $p\in X$ be a limit point of A we want to prove that also $p\in A$. Since every neighborhood U of p contains a point of A then $U\cap A\neq\emptyset$ hence $U\not\subseteq X\setminus A$ and since A is closed then every point of $X\setminus A$ must contain a neighborhood contained in $X\setminus A$ hence $p\not\in X\setminus A$ which implies that $p\in A$. Therefore A contains all of its limit points.
- (\Leftarrow) Let $A\subseteq X$ be a subset in a topological space X that contains all of its limit points, we want to prove that A is closed. Suppose that $X\setminus A$ is not open we want to arrive at a contradiction. Let $p\in X\setminus A$ and let U be a neighborhood of p since $X\setminus A$ is not open then for every U of p we have that $U\cap A\neq\emptyset$ then p is a limit point of A but A contains all of its limits point which is a contradiction. Therefore $X\setminus A$ is open which implies that A is closed.

Proof. Exercise 2.11.

 (\Rightarrow) Let $x \in \overline{A} = X$ then every neighborhood U where $x \in U$ contains a point of A because of Proposition 2.8.(d) therefore every non-empty open subset of X contains a point of A.

- (\Leftarrow) Let us suppose $\overline{A} \neq X$ we want to arrive at a contradiction. Let $x \in X$ such that $x \notin \overline{A}$ but we know that for every neighborhood U where $x \in U$ there is a point of A in it but then $x \in \overline{A}$ because of Proposition 2.8.(d) so we have a contradiction and therefore must be that $\overline{A} = X$. \square
- Proof. Exercise 2.12. Let X be a topological metric space then from the topological convergence definition if $(x_i)_{i=1}^{\infty}$ is a sequence that converges to $x \in X$ we know that for every neighborhood U of x there exists $N \in \mathbb{N}$ such that $x_i \in U$ for all $i \geq N$ but since we are in a metric space we have that for every neighborhood there is a ball $B_{\epsilon}(x) \subseteq U$ for some $\epsilon > 0$ which implies that there is $N' \in \mathbb{N}$ with $N' \geq N$ such that when $i \geq N'$ we have that $d(x_i, x) < \epsilon$. Therefore when X is a topological metric space the two definitions are equivalent.

Proof. Exercise 2.13. Let (x_i) be a convergent sequence in the discrete topological space X. Hence there is some $x \in X$ such that for every neighborhood U of x there exists $N \in \mathbb{N}$ such that $x_i \in U$ for all $i \geq N$. Since X is a discrete topological space this implies that the set $\{x\}$ is an open set and also a neighborhood around x so there exists some $N \in \mathbb{N}$ such that $x_i \in \{x\}$ for all $i \geq N$ but this implies that $x_i = x$ for every $i \geq N$. Therefore convergent sequences in discrete topological spaces are eventually constant.

Proof. Exercise 2.14. Let $A \subseteq X$ and $(x_i) \subseteq A$ such that $x_i \to x$ where $x \in X$ then by the definition of a convergent sequence we have that for every neighborhood U of x there is some $N \in \mathbb{N}$ such that when $i \geq N$ we have that $x_i \in U$ this implies that every neighborhood of x has at least a point of A therefore $x \in \overline{A}$.

Proof. Exercise 2.16.

 (\Rightarrow) Let $f: X \to Y$ be a continuous map and let $V \subseteq Y$ be closed subset then $Y \setminus V$ is open and since f is continuous we have that $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is also open then

$$X \setminus (X \setminus f^{-1}(V)) = (f^{-1}(V) \cap X) \cup (X \setminus X) = f^{-1}(V)$$

is closed.

 (\Leftarrow) Let $U \subseteq Y$ be an open subset then $Y \setminus U$ is closed so we have that $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$ is also closed hence

$$X \setminus (X \setminus f^{-1}(U)) = (f^{-1}(U) \cap X) \cup (X \setminus X) = f^{-1}(U)$$

is open which implies that f is continuous.

Proof. Exercise 2.18.

- (a) Let $f: X \to Y$ be a constant map where every $x \in X$ is sent to a constant $y \in Y$ and let $U \subseteq Y$ be an open set then if $y \notin U$ we have that $f^{-1}(U) = \emptyset$ which is an open set if $y \in U$ then $f^{-1}(U) = X$ which is also an open set, therefore f is continuous.
- (b) Let $Id_X: X \to X$ be the identity map and let $U \subset X$ be an open set hence $Id_X^{-1}(U) = U$ since Id_X is the identity map, hence $Id_X^{-1}(U)$ is also an open set which implies that Id_X is continuous.
- (c) Let $f: X \to Y$ be a continuous function and let $f_U: U \to Y$ be a restriction of f to an open subset $U \subset X$ also let $V \subset Y$ be an open set from Y then we see that $f_U^{-1}(V) = f^{-1}(V) \cap U$ and we know that $f^{-1}(V)$ is open since f is continuous and U is open by definition then $f_U^{-1}(V)$ is also an open set. Therefore f_U the restriction of f to an open set $U \subset X$ is continuous.

Proof. Exercise 2.20. We want to prove that "homeomorphic" is an equivalence relation on the class of all topological spaces then

- (a) Let X be a topological space then there is the identity map Id_X : $X \to X$ which is continuous as we saw in Proposition 2.17(b) and bijective by definition. Also, we have that $Id_X = Id_X^{-1}$ hence Id_X^{-1} is also continuous. Therefore X is homeomorphic to X i.e. $X \approx X$.
- (b) Let $X \approx Y$ i.e. X is homeomorphic to Y then there is $f: X \to Y$ such that f is bijective and continuous and also f^{-1} is continuos. Now let us define $g = f^{-1}$ hence $g: Y \to X$ where g is bijective and continuous by definition and $g^{-1} = (f^{-1})^{-1} = f$ is also continuos. Therefore $Y \approx X$.
- (c) Let $f: X \to Y$ and $g: Y \to Z$ be homeomorphisms (i.e. $X \approx Y$ and $Y \approx Z$) then there is $h = g \circ f$ such that $h: X \to Z$ which we know is continuous because of Proposition 2.17(d) and is bijective since f and g are bijective. Also, if we define $h^{-1} = f^{-1} \circ g^{-1}$ we have that $h^{-1}: Z \to X$ and h^{-1} is continuous since f^{-1} and g^{-1} are continuous and their composition is continuous. Therefore if $X \approx Y$ and $Y \approx Z$ then $X \approx Z$.

Finally since "homeomorphic" is a reflexive, symmetric and transitive relation then "homeomorphic" is an equivalence relation on the class of all topological spaces. \Box

Proof. Exercise 2.21. Let (X_1, \mathcal{T}_1) and (X_2, \mathcal{T}_2) be topological spaces and $f: X_1 \to X_2$ a bijective map.

 (\Rightarrow) Let f be a homeomorphism, we want to prove that $f(\mathcal{T}_1) = \mathcal{T}_2$. Let $U \in \mathcal{T}_1$ i.e. U is an open set from X_1 since f is a homeomorphism then f^{-1} is continuous hence $(f^{-1})^{-1}(U)$ is an open set of X_2 so $(f^{-1})^{-1}(U) \in \mathcal{T}_2$ but $(f^{-1})^{-1}(U) = f(U) \in \mathcal{T}_2$ because f is bijective.

On the other hand, let us name $V = f(U) \in \mathcal{T}_2$ since f is a homeomorphism then f is continuous so $f^{-1}(V) = f^{-1}(f(U)) = U$ is an open set from X_1 hence $U \in \mathcal{T}_1$.

Therefore $U \in \mathcal{T}_1$ if and only if $f(U) \in \mathcal{T}_2$ i.e. $f(\mathcal{T}_1) = \mathcal{T}_2$.

 (\Leftarrow) Let $U \in \mathcal{T}_1$ we know that $f(U) \in \mathcal{T}_2$. Let us name V = f(U) then $f^{-1}(V) = U$ because f is bijective and $U \in \mathcal{T}_1$ hence $f^{-1}(V)$ is an open set of X_1 which implies that f is continuous.

Let $U \in \mathcal{T}_1$ then $(f^{-1})^{-1}(U) = f(U)$ because f is bijective but we know that $f(U) \in \mathcal{T}_2$ hence $(f^{-1})^{-1}(U)$ is an open set of X_2 which implies that f^{-1} is continuous.

Finally, since we know that f is bijective we get that f is a homeomorphism. \Box

Proof. Exercise 2.22. Let $f: X \to Y$ be a homeomorphism and let $U \subseteq X$ be an open subset. Since f is a homeomorphism then f^{-1} is continuous hence $(f^{-1})^{-1}(U)$ is an open set of Y but $(f^{-1})^{-1}(U) = f(U)$ because f is bijective therefore f(U) is an open set of Y.

Let $f|_U: U \to f(U)$ be the restriction of f to U. Since f is a homeomorphism then f is continuous and we know from Exercise 2.18 (c) that then $f|_U$ is continuous. Let also $f|_U^{-1}: f(U) \to U$ we know f^{-1} is continuous since f is a homeomorphism then because of Exercise 2.18 (c) we have that $f|_U^{-1}$ is also continuous. Finally, since f is biyective then $f|_U$ is also biyective. Therefore $f|_U$ is also a homeomorphism.

Proof. Exercise 2.23.

- (\Rightarrow) Let $Id_X: (X, \mathcal{T}_1) \to (X, \mathcal{T}_2)$ be a continuous identity map then let $U \subseteq (X, \mathcal{T}_2)$ since Id_X is continuous we have that $Id_X^{-1}(U) \subseteq (X, \mathcal{T}_1)$ but $Id_X^{-1}(U) = U$ which implies that $\mathcal{T}_2 \subseteq \mathcal{T}_1$.
- (\Leftarrow) Let \mathcal{T}_1 be finer than \mathcal{T}_2 i.e. $\mathcal{T}_2 \subseteq \mathcal{T}_1$ now let $U \subseteq (X, \mathcal{T}_2)$ then $U \subseteq (X, \mathcal{T}_1)$ but we know that $U = Id_X^{-1}(U)$ hence $Id_X^{-1}(U) \subseteq (X, \mathcal{T}_1)$. Therefore Id_X is continuous.
- (\Rightarrow) Let $Id_X:(X,\mathcal{T}_1)\to (X,\mathcal{T}_2)$ be a homeomorphism then Id_X is continuous which implies from what we just proved that $\mathcal{T}_2\subseteq \mathcal{T}_1$, on the other hand we know that Id_X^{-1} is also continuous hence we also get that $\mathcal{T}_1\subseteq \mathcal{T}_2$ which implies that $\mathcal{T}_1=\mathcal{T}_2$.
- (\Leftarrow) Let $\mathcal{T}_1 = \mathcal{T}_2$ hence we can write that $\mathcal{T}_2 \subseteq \mathcal{T}_1$ which implies that Id_X is continuous from what we just proved, also, if we write $\mathcal{T}_1 \subseteq \mathcal{T}_2$ this implies that Id_X^{-1} is continuous. Finally, we know that Id_X is bijective by definition, therefore Id_X is a homeomorphism.

Proof. Exercise 2.27. Let us first check that

$$\varphi^{-1}(x, y, z) = \frac{(x, y, z)}{\max\{|x|, |y|, |z|\}}$$

is the inverse of φ as defined in example 2.26. so we compute the following

$$\varphi(\varphi^{-1}(x,y,z)) = \frac{\left(\frac{x}{\max\{|x|,|y|,|z|\}}, \frac{y}{\max\{|x|,|y|,|z|\}}, \frac{z}{\max\{|x|,|y|,|z|\}}\right)}{\sqrt{\frac{x^2}{\max\{|x|,|y|,|z|\}^2} + \frac{y^2}{\max\{|x|,|y|,|z|\}^2} + \frac{z^2}{\max\{|x|,|y|,|z|\}^2}}}$$

$$= \frac{\frac{(x,y,z)}{\max\{|x|,|y|,|z|\}}}{\sqrt{x^2 + y^2 + z^2}}$$

$$= \frac{(x,y,z)}{\max\{|x|,|y|,|z|\}}$$

$$= \frac{(x,y,z)}{\sqrt{x^2 + y^2 + z^2}}$$

But since (x, y, z) represents the unit sphere \mathbb{S}^2 then $\sqrt{x^2 + y^2 + z^2} = 1$ hence $\varphi(\varphi^{-1}(x,y,z)) = (x,y,z)$. Now we prove the same for the opposite composition

$$\varphi^{-1}(\varphi(x,y,z)) = \frac{\left(\frac{x}{\sqrt{x^2+y^2+z^2}}, \frac{y}{\sqrt{x^2+y^2+z^2}}, \frac{z}{\sqrt{x^2+y^2+z^2}}\right)}{\max\left\{\left|\frac{x}{\sqrt{x^2+y^2+z^2}}\right|, \left|\frac{y}{\sqrt{x^2+y^2+z^2}}\right|, \left|\frac{z}{\sqrt{x^2+y^2+z^2}}\right|, \right\}}$$

$$= \frac{\frac{(x,y,z)}{\sqrt{x^2+y^2+z^2}}}{\frac{\max\{|x|,|y|,|z|\}}{\sqrt{x^2+y^2+z^2}}}$$

$$= \frac{(x,y,z)}{\max\{|x|,|y|,|z|\}}$$

In the same way here (x, y, z) represents the unit cube C hence

 $\max\{|x|,|y|,|z|\}=1$ therefore $\varphi^{-1}(\varphi(x,y,z))=(x,y,z)$ as we wanted. Finally, we want to prove that $\varphi^{-1}:\mathbb{S}^2\to\mathbf{C}$ is a continuous function. Since $\varphi^{-1}(x,y,z) = (x,y,z)/\max\{|x|,|y|,|z|\}$ then φ^{-1} is the division between two functions the identity function $Id:(x,y,z)\to(x,y,z)$ and the infinity norm $\|(x,y,z)\|_{\infty}:(x,y,z)\to \max\{|x|,|y|,|z|\}$ where both of them are continuous functions therefore φ^{-1} is continuous. *Proof.* Exercise 2.28. Let $a(s) = e^{2\pi i s} = \cos(2\pi s) + i\sin(2\pi s)$ we want to show first that a is continuous then let $\epsilon > 0$ we want to show that $\|a(s) - a(t)\|_2 < \epsilon$ whenever $\|s - t\|_2 < \delta$. Let us suppose $\|a(s) - a(t)\|_2 < \epsilon$ is true then we have that

$$\sqrt{(\cos(2\pi s) - \cos(2\pi t))^2 + (\sin(2\pi s) - \sin(2\pi t))^2} < \epsilon$$

$$\sqrt{2 - 2\cos(2\pi s)\cos(2\pi t) - 2\sin(2\pi s)\sin(2\pi t)} < \epsilon$$

$$\sqrt{2 - 2\cos(2\pi (s - t))} < \epsilon$$

$$1 + \cos(\pi - 2\pi (s - t)) < \frac{\epsilon^2}{2}$$

$$-2\pi (s - t) < \arccos\left(\frac{\epsilon^2}{2} - 1\right) - \pi$$

$$-(s - t) < \frac{1}{2\pi}\arccos\left(\frac{\epsilon^2}{2} - 1\right) - \frac{1}{2}$$

Therefore if we take $\delta = \frac{1}{2\pi} \arccos\left(\frac{\epsilon^2}{2} - 1\right) - \frac{1}{2}$ whenever

$$||s - t||_2 = \sqrt{(s - t)^2} < \delta$$

we get that $||a(s) - a(t)||_2 < \epsilon$ which implies that a is continuous.

Let us prove now that a is one-to-one so let us suppose a(s) = a(t) then $e^{2\pi is} = e^{2\pi it}$ which implies that s = t so a is one-to-one.

Now we want to prove a is onto, let $v \in \mathbb{S}^1$ we want to show that there is some $s \in [0,1)$ such that v = a(s) let us take $s = \frac{\log(v)}{2\pi i}$ then

$$a(s) = e^{2\pi i(\frac{\log(v)}{2\pi i})} = e^{\log(v)} = v$$

Therefore for every $v \in \mathbb{S}^1$ there is some $s \in [0,1)$ such that a(s) = v which implies that a is onto.

Finally, we want to show that a^{-1} is not continuous. Let $x_n = \cos(2\pi(1+1/n)) + i\sin(2\pi(1+1/n))$ be a sequence in \mathbb{S}^1 which tends to $1 \in \mathbb{S}^1$ and we see that $(1+1/n) \to 1$ but $1 \notin [0,1)$ therefore a^{-1} is not continuous.

Proof. Exercise 2.29.

- $(a) \Rightarrow (b)$ Let f be a homeomorphism then if $U \subseteq X$ is an open set we know that $f(U) = (f^{-1})^{-1}(U)$ is open since f^{-1} is continuous.
- $(b)\Rightarrow(c)$ Let f be open. If $E\subseteq X$ is a closed set then $X\setminus E$ is open and since f is open then $f(X\setminus E)=Y\setminus f(E)$ is open hence $Y\setminus (Y\setminus f(E))$ is closed and we see that

$$Y \setminus (Y \setminus f(E)) = (f(E) \cap Y) \cup (Y \setminus Y) = f(E) \cup \emptyset = f(E)$$

therefore f is closed.

 $(c)\Rightarrow (a)$ Let f be closed. Let $U\subseteq X$ be a open set then $X\setminus U$ is closed hence $f(X\setminus U)=Y\setminus f(U)$ is also closed since f is closed hence $Y\setminus (Y\setminus f(U))=f(U)$ is an open set. But also we know that $(f^{-1})^{-1}(U)=f(U)$ since f is bijective. Therefore f^{-1} is also continuous which implies that f is a homeomorphism.

Proof. Exercise 2.32.

(a) Let $f: X \to Y$ be a homeomorphism and let $x \in X$ with a neighborhood $U \subseteq X$ which is open by definition. Since f is a homeomorphism then f^{-1} is continuous hence $(f^{-1})^{-1}(U)$ is an open set of Y but $(f^{-1})^{-1}(U) = f(U)$ because f is bijective therefore f(U) is an open set of Y.

Let $f|_U: U \to f(U)$ be the restriction of f to U. Since f is a homeomorphism then f is continuous and we know from Exercise 2.18 (c) that then $f|_U$ is continuous. Let also $f|_U^{-1}: f(U) \to U$ we know f^{-1} is continuous since f is a homeomorphism then because of Exercise 2.18 (c) we have that $f|_U^{-1}$ is also continuous. Finally, since f is biyective then $f|_U$ is also biyective. Therefore $f|_U$ is also a homeomorphism and f is a local homeomorphism.

(b) Let f be a local homeomorphism and let $U \subseteq X$ be an open subset then for every $x \in U$ there is a neighborhood $V_x \subseteq X$ such that $f|_{V_x}$ is a homeomorphism hence $(f|_{V_x})^{-1}$ is continuous which implies that $f|_{V_x}(U)$ is an open set in $f(V_x)$ and by definition we have that

$$f|_{V_x}(U) = f(V_x) \cap f(U)$$

Hence $f|_{V_x}(U)$ is contained in f(U) therefore every element of f(U) has a neighborhood $f|_{V_x}(U)$ which is contained in f(U) which implies that f(U) is open and f is an open map.

Let $B \subseteq Y$ be an open set then for every $x \in f^{-1}(B) \subseteq X$ there is a neighborhood $U_x \subseteq X$ such that $f|_{U_x}$ is a homeomorphism hence $f|_{U_x}$ is continuous then $(f|_{U_x})^{-1}(B)$ must be open in U_x so by definition we have that

$$(f|_{U_x})^{-1}(B) = U_x \cap f^{-1}(B)$$

Hence $(f|_{U_x})^{-1}(B)$ is contained in $f^{-1}(B)$ therefore every element of $f^{-1}(B)$ has a neighborhood $(f|_{U_x})^{-1}(B)$ which is contained in $f^{-1}(B)$ which implies that $f^{-1}(B)$ is open and f is continuous.

(c) Let f be a bijective local homeomorphism then f is continuous and open from (b). Let $U \subseteq X$ be an open set then $f(U) = (f^{-1})^{-1}(U)$ since f is bijective and it's open since f is an open map. Therefore f^{-1} is also continuous which implies that f is a homeomorphism.

Proof. Exercise 2.33. Let $(y_i) \subseteq Y$ be a sequence that converges to $y \in Y$ this implies that for every neighborhood U of y there exists $N \in \mathbb{N}$ such that $y_i \in U$ for all $i \geq N$ but we are considering a trivial topology of Y then the only possible neighborhood for y is Y hence there is always $1 \in \mathbb{N}$ such that for all $i \geq 1$ we have that $y_i \in Y$. Therefore since y is arbitrary every sequence (y_i) converges to every element in Y.