(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003 年4 月3 日 (03.04.2003)

PCT

(10) 国際公開番号 WO 03/027098 A1

(51) 国際特許分類7: **C07D 401/12**, 405/14, A61K 31/4439, A61P 1/04, 31/04, 35/00, 43/00

(21) 国際出願番号: PCT/JP02/09746

(22) 国際出願日: 2002 年9 月24 日 (24.09.2002)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ: 特願2001-292619 2001年9月25日(25.09.2001) JP 特願2002-047204 2002年2月22日(22.02.2002) JP

(71) 出願人 (米国を除く全ての指定国について): 武田薬品 工業株式会社 (TAKEDA CHEMICAL INDUSTRIES, LTD.) [JP/JP]; 〒541-0045 大阪府 大阪市 中央区道修 町四丁目 1番 1号 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 神山 圭司 (KAMIYAMA, Keiji) [JP/JP]; 〒 567-0037 大阪府 茨 木市 上穂東町 1 番 1 6-8 0 2 号 Osaka (JP). 佐 藤 文彦 (SATO, Fumihiko) [JP/JP]; 〒 565-0872 大阪 府吹田市上山田8番13-113号 Osaka (JP). 坂 野浩 (BANNO, Hiroshi) [JP/JP]; 〒666-0004 兵庫県 川西市 萩原2丁目1番21号 Hyogo (JP). 蓮岡 淳 のガイダンスノート」を参照。

(HASUOKA, Atsushi) [JP/JP]; 〒569-0043 大阪府 高槻 市 竹の内町 6 8 番 1 号 Osaka (JP).

(74) 代理人: 高島 — (TAKASHIMA, Hajime); 〒541-0044 大阪府大阪市中央区伏見町四丁目2番14号藤村 大和生命ビル Osaka (JP).

(81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ 特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI 特 許(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語

(54) Title: BENZIMIDAZOLE COMPOUND, PROCESS FOR PRODUCING THE SAME, AND USE THEREOF

(54) 発明の名称: ベンズイミダゾール化合物、その製造法およびその用途

(57) Abstract: A compound represented by the formula (I) (wherein the symbols have the same meanings as in the description) or a salt thereof, which is a prodrug of 2-[[[3-methyl-4-(2,2,2-trifluoroethoxy)-2-pyridyl]methyl]sulfinyl]-1H-benzimidazole and has excellent stability to acids. The compound has the following effects. (1) It has excellent in vivo activities such as antiulcerous activity, gastric hydrochloric acid secretion inhibitory activity, mucosal protective activity, and antihelicobacter pylori activity. (2) It is lowly toxic. (3) It is highly stable to acids (it eliminates the necessity of enteric formulation to attain cost reduction and is easy to take because of a decrease in preparation size). (4) It is absorbed more rapidly than enteric drugs (the gastric hydrochloric acid secretion inhibitory activity is exhibited earlier). (5) It is effective for long.

(57) 要約:

本発明は、優れた酸安定性を有する、2-[[[3-メチル-4-(2,2,2-トリフルオロエトキシ)-2-ピリジル]メチル]スルフィニル]-1H-ベンズイミダゾールのプロドラッグである、下式

(I)

〔式中の記号は明細書と同意義〕で表される化合物またはその塩に関する。当該化合物は、(1)生体内での優れた、抗潰瘍作用、胃酸分泌抑制作用、粘膜保護作用、抗ヘリコバクター・ピロリ作用等、(2)低毒性、(3)優れた酸安定性(腸溶製剤化の不要による費用の削減や製剤の寸法の減少による服用し易い)、(4)腸溶製剤より吸収が速い(胃酸分泌抑制作用の発現が速い)、(5)持続性といった効果を有する。

明細書

ベンズイミダゾール化合物、その製造法およびその用途 技術分野

本発明は、生体内でプロトンポンプ阻害薬に変換されて抗潰瘍作用等 を示すベンズイミダゾール化合物、その製造方法およびその用途に関す る。

背景技術

抗潰瘍作用を有するプロトンポンプ阻害薬 2-[[[3-メチル-4-(2,2,2-)]] の (2,2,2-) の (2,2-) の (

しかしながら、上記化合物は酸に不安定なため、経口投与する場合には胃酸による分解を防ぐために腸溶製剤にしてカプセルに充填して投与されている。

15 このため酸に安定で胃酸により分解し難い上記化合物のプロドラッグ の開発が望まれており、米国特許第6093734号で当該プロドラッ グが報告されている。また、上記以外のプロトンポンプ阻害薬のプロドラッグについて、米国特許第4045563号、第4686230号、第4873337号、第4965269号、第5021433号等に開 示されている。

以上のことから、優れた酸安定性を有するプロトンポンプ阻害薬のプロドラッグの開発が望まれている。

本発明の目的は、優れた酸安定性を有し、生体内で2-[[[3-メ チルー4-(2,2,2-トリフルオロエトキシ)-2-ピリジル]メ 25 チル]スルフィニル]-1H-ベンズイミダゾールに変換されて抗潰瘍 作用等を示すベンズイミダゾール化合物、その製造方法およびその用途 を提供することである。

発明の開示

本発明者らは、下記一般式(I)で表わされる化合物を初めて合成し、該化合物が、予想外に優れた酸安定性を有し、かつ徐々にベンズイミダゾール環の窒素原子上の置換基を脱離し、持続した酸分泌抑制作用を奏することを初めて見出し、これらの知見に基づいてさらに研究し、本発明を完成した。

本発明により、2-[[[3-メチルー4-(2,2,2-トリフルオロエトキシ)-2-ピリジル]メチル]スルフィニル]-1H-ベンズイミダゾールを修飾して酸に安定なプロドラッグ(一般式(I)の化合物)にすることができ、これにより、腸溶製剤にすることなく通常の錠剤等として経口投与することができる。このため、腸溶製剤にする費用を削減でき、その上、錠剤等の製剤を小さくすることができる。製剤が小さくなると嚥下力の弱い病人、特に老人や小人に服用しやすくなるという利点を有する。しかも、腸溶製剤のような徐放効果はないので吸収が速く、胃酸分泌抑制作用の発現が速く、痛み等の症状の改善が速い。また生体内で徐々にプロトンポンプ阻害薬に変換されるので持続性のある抗潰瘍剤等を提供することができる。

即ち、本発明は、

(1) 一般式(I)

5

10

15

20 (I)

〔式中、Aは置換基を有していてもよい炭素数2以上のアルキリデン基を示し、Rは置換基を有していてもよい炭化水素基または置換基を有し

ていてもよい複素環基を示すか、あるいはAとRが結合して置換基を有していてもよい4乃至8員環を形成していてもよく、Dは酸素原子又は結合手を示す。〕

で表わされるベンズイミダゾール化合物(以下、化合物(I)と略すること もある)またはその塩。

(2) (i) AとRは結合して置換基を有していてもよい4乃至8員環を 形成し、Dは酸素原子又は結合手を示すか、あるいは

(ii) AとRは結合せず、Aは置換基を有していてもよい炭素数2以上のアルキリデン基を示し、Rは置換基を有していてもよい炭化水素基または置換基を有していてもよい複素環基を示し、Dは酸素原子又は結合手を示す。〕

で表わされる上記(1)の化合物。

(3) 一般式

15 〔式中、各記号は上記(1)と同意義を示す。〕で表わされる(R)体である上記(1)の化合物。

(i) C₆₋₁₄アリール基、(ii)水酸基、(iii)ハロゲン、(iv)

ハロゲンで置換されていてもよい C_{1-6} アルコキシ基、 $(v)C_{7-12}$ アラルキルオキシ基、 $(vi)C_{1-5}$ アルコキシーカルボニル基および (vii) ハロゲンで置換されていてもよい C_{1-6} アルキル基からなる群より選ばれる置換基を有していてもよい、 C_{3-8} シクロアルキル基又は C_{6-14} アリール基であり、Aがハロゲンで置換されていてもよい C_{2-6} アルキリデン基である、上記(1)の化合物。

- (5) Rが、(i) C_{6-14} Pリール基、(ii) 水酸基、(iii) ハロゲン、(iv) ハロゲンで置換されていてもよい C_{1-6} Pルコキシ基、(v) C_{7-12} Pラルキルオキシ基、(vi) C_{1-5} Pルコキシーカルボニル基および (vii) アシルアミノ基からなる群より選ばれる置換基を有していてもよい C_{1-6} Pルキル基であるか、あるいは
- (i) C_{6-14} アリール基、(ii) 水酸基、(iii) ハロゲン、(iv) ハロゲンで置換されていてもよい C_{1-6} アルコキシ基、(v) C_{7-12} アラルキルオキシ基、(vi) C_{1-5} アルコキシーカルボニル基および (vii) ハロゲンで置換されていてもよい C_{1-6} アルキル基からなる群より選ばれる置換基を有していてもよい、 C_{3-8} シクロアルキル基又は C_{6-14} アリール基であり、Aがハロゲンで置換されていてもよい C_{2-6} アルキリデン基である、上記(1)の化合物。
 - (6) AとRが結合して形成する4乃至8員環が、式

$$O$$
 $CH_2)m$

5

10

20

(式中、mは1~3の整数を示し、他の記号は上記(1)と同意義である。) で表される環である上記(1)の化合物。

(7) 一般式(I')

〔式中、A'は置換基を有していてもよい炭素数 2 以上のアルキリデン基を示し、R'は置換基を有していてもよい炭化水素基を示し、D'は酸素原子又は結合手を示す。〕

5 で表わされるベンズイミダゾール化合物またはその塩。

(8) 一般式

〔式中、各記号は上記(7)と同意義を示す。〕で表わされる(R)体である上記(7)の化合物。

- 10 (9) R, が、(i) C_{6-14} アリール基、(ii) 水酸基、(iii) ハロゲン、(iv)ハロゲンで置換されていてもよい C_{1-6} アルコキシ基、(v) C_{7-12} アラルキルオキシ基および (vi) C_{1-5} アルコキシーカルボニル基からなる群より選ばれる置換基を有していてもよい、 C_{1-6} アルキル基、 C_{2-6} アルケニル基又は C_{2-6} アルキニル基であるか、あるいは
- 15 (i) C_{6-14} アリール基、(ii) 水酸基、(iii) ハロゲン、(iv) ハロゲンで置換されていてもよい C_{1-6} アルコキシ基、(v) C_{7-12} アラルキルオキシ基、(vi) C_{1-5} アルコキシーカルボニル基および(vii)

ハロゲンで置換されていてもよい C_{1-6} アルキル基からなる群より選ばれる置換基を有していてもよい、 C_{3-8} シクロアルキル基又は C_{6-14} アリール基であり、A, がハロゲンで置換されていてもよい C_{2-6} アルキリデン基である、上記(7)の化合物。

- 5 (10) R, が、(i) C_{6-14} アリール基、(ii) 水酸基、(iii) ハロゲン、(iv) ハロゲンで置換されていてもよい C_{1-6} アルコキシ基、(v) C_{7-12} アラルキルオキシ基および (vi) C_{1-5} アルコキシーカルボニル基からなる群より選ばれる置換基を有していてもよい C_{1-6} アルキル基であるか、あるいは
- 10 (i) C_{6-14} アリール基、(ii) 水酸基、(iii) ハロゲン、(iv) ハロゲンで置換されていてもよい C_{1-6} アルコキシ基、(v) C_{7-12} アラルキルオキシ基、(vi) C_{1-5} アルコキシーカルボニル基および (vii) ハロゲンで置換されていてもよい C_{1-6} アルキル基からなる群より選ばれる置換基を有していてもよい、 C_{3-8} シクロアルキル基又は C_{6-14} アリール基であり、A, がハロゲンで置換されていてもよい C_{2-6} アルキリデン基である、上記(7)の化合物。
 - (11) A'がエチリデン基またはプロピリデン基である、上記(7)の化合物。
 - (12) A'がエチリデン基である上記(7)の化合物。
- 20 (13) A'がエチリデン基であり、R'が C_{1-6} アルキル基又は C_{3-8} シクロアルキル基である上記(7)の化合物。
 - (14) (1) 式(II)

〔式中、Mは水素原子、金属陽イオンまたは第4級アンモニウムイオン を示す〕で表わされる化合物(以下、化合物(II)と略することもある)

またはその塩と

式 (III)

〔式中、Xは脱離基を、Aは置換基を有していてもよい炭素数2以上のアルキリデン基を示し、Rは置換基を有していてもよい炭化水素基または置換基を有していてもよい複素環基を示すか、あるいはAとRが結合して置換基を有していてもよい4万至8員環を形成していてもよく、Dは酸素原子又は結合手を示す。〕で表わされる化合物(以下、化合物(III)と略することもある)とを縮合させるか、

10 あるいは

5

(2)式(IV)

〔式中の各記号は前記と同意義を示す。〕で表わされる化合物(以下、化合物(IV)と略することもある)またはその塩を酸化反応に付すことを特徴とする上記(1)の化合物の製造方法。

- (15) 上記(1)または(7)の化合物を含有してなる医薬組成物。
- (16) 消化性潰瘍、胃炎、逆流性食道炎、食道炎を伴わない胃食道逆流症
 (Symptomatic Gastroesophageal Reflux Disease (Symptomatic GER D))、NUD、胃癌、胃MALTリンパ腫、ゾリンジャー・エリソン(Z
- 20 ollinger-Ellison) 症候群、胃酸過多または上部消化管出血の予防・治

療剤である上記(15)の医薬組成物。

(17) ヘリコバクター・ピロリ除菌剤である上記(15)の医薬組成物。

- (18) 上記(16)の医薬組成物、及び該医薬組成物を消化性潰瘍、胃炎、逆流性食道炎、食道炎を伴わない胃食道逆流症(Symptomatic Gastroesop hageal Reflux Disease (Symptomatic GERD))、NUD、胃癌、胃MA LTリンパ腫、ゾリンジャー・エリソン (Zollinger-Ellison) 症候群、胃酸過多または上部消化管出血の予防または治療用途に使用することができる、または使用すべきであることを記載した、該医薬組成物に関する記載物を含む商業パッケージ。
- 10 (19) 上記(17)の医薬組成物、及び該医薬組成物をヘリコバクター・ピロリの除菌用途に使用することができる、または使用すべきであることを記載した、該医薬組成物に関する記載物を含む商業パッケージ。
 - (20)上記(1)または(7)の化合物を投与することからなる、消化性潰瘍、胃炎、逆流性食道炎、食道炎を伴わない胃食道逆流症(Symptomatic Ga
- stroesophageal Reflux Disease (Symptomatic GERD))、NUD、胃癌、胃MALTリンパ腫、ゾリンジャー・エリソン (Zollinger-Ellison)症候群、胃酸過多または上部消化管出血の予防または治療方法。
 - (21) 上記(1)または(7)の化合物を投与することからなる、ヘリコバクター・ピロリ除菌方法。
- 20 (22) 消化性潰瘍、胃炎、逆流性食道炎、食道炎を伴わない胃食道逆流症 (Symptomatic Gastroesophageal Reflux Disease (Symptomatic GER D))、NUD、胃癌、胃MALTリンパ腫、ゾリンジャー・エリソン (Zollinger-Ellison) 症候群、胃酸過多または上部消化管出血の予防また は治療剤を製造するための上記(1)または(7)の化合物の使用。
- 25 (23) ヘリコバクター・ピロリ除菌剤を製造するための上記(1)または(7) の化合物の使用。

発明の実施の形態

本発明における「 C_{6-14} アリール基」とは、単環式または縮合多環式の、 炭素数 $6\sim 1$ 4 の芳香族炭化水素基であり、例えば、フェニル、ナフチ ル、アントリル、フェナントリル、アセナフチレニルが挙げられ、炭素 数 $6\sim 1$ 0 の芳香族炭化水素基が好ましく、Rにおいては、中でもフェ 5 ニルが特に好ましい。

本発明における「ハロゲン」とは、フッ素、塩素、臭素、ヨウ素である。式(I)中のRで表される炭化水素基及びAのアルキリデン基の置換基としてのハロゲンにおいては、好ましくはフッ素、塩素である。

本発明における「ハロゲンで置換されていてもよい C_{1-6} アルコキシ基」 2は、ハロゲン(上記と同義;好ましくは $1 \sim 3$ 個)で置換されていてもよい、直鎖状または分岐鎖状の炭素数 $1 \sim 6$ のアルコキシ基であり、 C_{1-6} アルコキシ基としては、例えば、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ等が挙げられ、炭素数 $1 \sim 4$ のアルコキシ基が好ましい。ハロゲンで置換されていてもよい C_{1-6} アルコキシ基としては、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、トリフルオロメトキシ、2, 2, 2-トリフルオロエトキシが好ましい。

本発明における「 C_{1-6} アルキル基」とは、直鎖状または分岐鎖状の炭 20 素数 $1 \sim 6$ のアルキル基であり、例えば、メチル、エチル、n-プロピル、1 のアルキル、1 のアルキル、1 のアルキル、1 のアルキル、1 のアルキル、1 のアルナル、1 のアルナル、1 のアルナル、1 のアルナル、1 のアルナル、1 のアルキル、1 のアルキル、1 のアルキル、1 のアルキル、1 のアルキル、1 のアルキル、1 のアルキル、1 のアルキル、1 のアルキルをが好ましい。1 によいては、中でもエチル、イソプロピル、1 のアルキルが好ましく、特にイソプロピルが好ましい。

本発明における「 C_{7-12} アラルキルオキシ基」とは、アリール基が上記したようなアリール基(好ましくはフェニル基)であり、アルキル部が上記「 C_{1-6} アルキル基」と同義である、炭素数 $7 \sim 12$ のアラルキルオキシ基であり、例えば、ベンジルオキシ、1-ナフチルメチルオキシ、2-ナフチルメチルオキシ等が挙げられ、炭素数 $7 \sim 11$ のアラルキルオキシ基が好ましく、中でもベンジルオキシが好ましい。

5

25

本発明における「 C_{1-5} アルコキシーカルボニル基」とは、アルコキシ 部が直鎖状または分岐鎖状の炭素数 $1 \sim 5$ のアルコキシ基である、アル コキシカルボニル基であり、例えば、メトキシカルボニル、エトキシカ ルボニル、プロポキシカルボニル、イソプロポキシカルボニルなどが挙 げられ、アルコキシ部の炭素数が $1 \sim 4$ であるアルコキシカルボニル基 が好ましく、中でもメトキシカルボニル、エトキシカルボニルが好まし い。

本発明における「ハロゲンで置換されていてもよい C_{1-6} アルキル基」 2は、ハロゲン(上記と同義;好ましくは $1\sim 5$ 個、より好ましくは $1\sim 3$ 個)で置換されていてもよい C_{1-6} アルキル基(上記と同義)であり、メチル、エチル、プロピル、イソプロピル、トリフルオロメチルが好ましい。

本発明における「炭素数 2 以上のアルキリデン基」とは、炭素数 2 以 20 上の、直鎖状または分岐鎖状のアルキリデン基であり、例えば、エチリデン、プロピリデン、ブチリデン、ペンチリデン、ヘキシリデンが挙げられ、中でも炭素数 2~6のアルキリデン基が好ましく、炭素数 2~3の直鎖状アルキリデン基がより好ましい。中でも、エチリデン、プロピリデンが好ましく、特にエチリデンが好ましい。

本発明における「 C_{2-6} アルケニル基」とは、直鎖状または分岐鎖状の 炭素数 $2 \sim 6$ のアルケニル基であり、例えば、ビニル、n-プロペニル、 イソプロペニル、n-ブテニル、イソブテニル、sec-ブテニル、tert

ーブテニル、nーペンテニル、イソペンテニル、ネオペンテニル、1ーメチルプロペニル、nーヘキセニル、イソヘキセニル、1,1ージメチルブテニル、2,2ージメチルブテニル、3,3ージメチルブテニル、3,3ージメチルプロペニル、2ーエチルブテニル等が挙げられ、炭素数 2~4のアルケニル基が好ましく、中でもビニル、n-プロペニル、イソプロペニルが好ましい。

本発明における「 C_{2-6} アルキニル基」とは、直鎖状または分岐鎖状の 炭素数 $2 \sim 6$ のアルキニル基であり、例えば、エチニル、n-プロピニ ル (1-プロピニル)、イソプロピニル(2-プロピニル)、n-ブチ 10 ニル、イソブチニル、sec-ブチニル、tert-ブチニル、n-ペンチニル、 イソペンチニル、ネオペンチニル、1-メチルプロピニル、n-ヘキシ ニル、イソヘキシニル、1,1-ジメチルブチニル、2,2-ジメチルブ チニル、3,3-ジメチルブチニル、3,3-ジメチルプロピニル、2-エチルブチニル等が挙げられ、炭素数 $2\sim 3$ のアルキニル基が好ましく、 中でもエチニル、1-プロピニル、2-プロピニルが好ましい。

本発明における「 C_{3-8} シクロアルキル基」とは、直鎖状または分岐鎖状の炭素数 $3 \sim 8$ のシクロアルキル基であり、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロペキシル、シクロペプチル、シクロオクチル等が挙げられ、炭素数 $5 \sim 7$ のシクロアルキル基が好ましく、中でもシクロペンチル、シクロヘキシル、シクロヘプチルが好ましく、特にシクロヘキシルが好ましい。

20

本発明における「 C_{1-6} アルキル基で置換されていてもよいアミノ基」とは、上記と同義の「 C_{1-6} アルキル基」で置換されていてもよいアミノ 基のことであり、例えば、メチルアミノ、エチルアミノ、プロピルアミ ノ、イソプロピルアミノ、ブチルアミノ、sec-ブチルアミノ、tert-ブ チルアミノ、ペンチルアミノ、ヘキシルアミノなどが挙げられ、好まし くはメチルアミノ、エチルアミノ、プロピルアミノ、イソプロピルアミ

ノである。

本発明における「アシルアミノ基」におけるアシル基としては、好ましくは炭素数1~6、より好ましくは1~3であるアルカノイル基が好適であり、このようなアシルアミノ基としては、例えば、ホルミルアミノ、アセチルアミノ、プロピオニルアミノなどが挙げられ、好ましくはアセチルアミノである。

本発明における「炭化水素基」とは、脂肪族および芳香族の炭化水素基を包含し、ここでいう脂肪族炭化水素基とは、飽和または不飽和の、直鎖状、分岐鎖状または環状の炭化水素基を意味する。炭化水素基としては、炭素数が $1\sim1$ 4である炭化水素基が好ましく、例えば、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基、 C_{3-8} シクロアルキル基、 C_{6-14} アリール基が挙げられ、 C_{1-6} アルキル基、 C_{3-8} シクロアルキルル基、 C_{6-14} アリール基が好ましく、中でも C_{1-6} アルキル基、 C_{3-8} シクロアルキル基がより好ましい。

15 本発明における「金属陽イオン」としては、アルカリ金属イオン(例えば、 Na^+ 、 K^+ 、 Li^+ 、 Cs^+ など)が挙げられ、中でも Na^+ 、 Cs^+ が好ましい。

本発明における「第4級アンモニウムイオン」としては、例えば、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピル アンモニウム、テトラブチルアンモニウムなどが挙げられ、中でもテトラブチルアンモニウムが好ましい。

本発明における「複素環基」とは、ヘテロ原子(例えば、酸素原子、 窒素原子、硫黄原子など)を1~3個、好ましくは1または2個含む複素環から任意の水素原子を1個除いた1価の基であり、飽和でも不飽和 でも、芳香族でも脂肪族でもよい。具体的には、テトラヒドロー2Hー ピラニル、1,3-ジオキサニル、4ーピペリジニル、テトラヒドロー 2H-チオピラニル、テトラヒドロフラニル、ピロリジニル、ピリジル、

ピロリル、フリル、チエニルなどが挙げられ、好ましくはテトラヒドロ -2H-ピラニル、1,3-ジオキサニルである。

本発明の式(I)におけるAとRは結合して環を形成してもよく、ここでいう環とは、4~8員環、好ましくは5~7員環の、ヘテロ原子(例えば、酸素原子、窒素原子、硫黄原子など)として少なくとも酸素原子を1個含む複素環であり、飽和でも、不飽和でもよい。このような環として、例えば、式

$$O$$
 CH_2) m

5

20

25

(式中の記号は前記と同義である。)

10 で表される環が挙げられる。AとRが結合して形成する4~8員環は上記ランソプラゾールのイミダゾール環のN位に結合してプロトンポンプインヒビター (PPI) のプロドラックとして適用されるだけでなく、オメプラゾール、パントプラゾール、ラベプラゾールなど他のピリジルメチルスルホニル置換ベンズイミダゾール構造にも結合してPPIのプロドラッグとして好ましく適用される。

本発明の式(I)におけるAとRが結合して形成する $4 \sim 8$ 員環の具体例としては、1, 3-ジオキソラン-2-オン、ジヒドロフラン-2(3 H) -オン、<math>1, 3-ジオキサン-2-オン、テトラヒドロ-2H-ピラン-2-オンなどが挙げられ、好ましくは<math>1, 3-ジオキソラン-2-オンである。

本発明の「炭化水素基」は、置換されていてもよく、置換基の例としては、例えば、 C_{6-14} アリール基、水酸基、ハロゲン、ハロゲンで置換されていてもよい C_{1-6} アルコキシ基、 C_{7-12} アラルキルオキシ基、 C_{1-5} アルコキシーカルボニル基、ハロゲンで置換されていてもよい C_{1-6} アルキル基、アシルアミノ基、 C_{1-6} アルキル基で置換されていてもよいアミノ

基などが挙げられる。該置換基の数は $1 \sim 5$ 個、好ましくは $1 \sim 3$ 個である。

本発明の炭化水素基中の「 C_{1-6} アルキル基」、「 C_{2-6} アルケニル基」 および「 C_{2-6} アルキニル基」は、置換されていてもよく、好ましい置換 基の例としては、(i) C_{6-14} アリール基、(ii) 水酸基、(iii) ハロゲン、(i v) ハロゲンで置換されていてもよい C_{1-6} アルコキシ基、(v) C_{7-12} アラルキルオキシ基、(vi) C_{1-6} アルコキシーカルボニル基、(vii) アシルアミノ基、(viii) C_{1-6} アルキル基で置換されていてもよいアミノ基などが挙げられ、中でも(i)~(vii) が好ましく、(i)~(vi) がより好ましい。該置 換基の数は 1~5 個、好ましくは 1~3 個である。

5

10

15

25

上記「 C_{3-8} シクロアルキル基」および「 C_{6-14} アリール基」は、置換されていてもよく、置換基の例としては、(i) C_{6-14} アリール基、(ii) 水酸基、(iii) ハロゲン、(iv) ハロゲンで置換されていてもよい C_{1-6} アルコキシ基、(v) C_{7-12} アラルキルオキシ基、(vi) C_{1-5} アルコキシーカルボニル基、(vii) ハロゲンで置換されていてもよい C_{1-6} アルキル基、(viii) C_{1-6} アルキル基で置換されていてもよい C_{1-6} アルキル基で置換されていてもよい C_{1-6} アルキル基で置換されていてもよい C_{1-6} アルキル基で置換されていてもよい C_{1-6} の C_{1-6}

本発明の「炭素数 2 以上のアルキリデン基」は置換されていてもよく、
20 置換基としては、例えば、ハロゲン、 C_{1-6} アルコキシ基(上記「ハロゲ
ンで置換されていてもよい C_{1-6} アルコキシ基」における「 C_{1-6} アルコキ
シ基」と同義である)などが挙げられ、中でもハロゲンが好ましい。

式(I)中のRとしては、(i) C_{6-14} アリール基、(ii)水酸基、(iii)ハロゲン、(iv)ハロゲンで置換されていてもよい C_{1-6} アルコキシ基、(v) C_7 $-_{12}$ アラルキルオキシ基、(vi) C_{1-5} アルコキシーカルボニル基および(vii) アシルアミノ基からなる群より選ばれる置換基を有していてもよい、 C_1 $-_6$ アルキル基、 C_{2-6} アルケニル基又は C_{2-6} アルキニル基であるか、ある

いは

基であるか、あるいは

25

(i) C_{6-14} アリール基、(ii) 水酸基、(iii) ハロゲン、(iv) ハロゲンで置換されていてもよい C_{1-6} アルコキシ基、(v) C_{7-12} アラルキルオキシ基、(vi) C_{1-6} アルコキシーカルボニル基および(vii) ハロゲンで置換されていてもよい、 C_{1-6} アルキル基からなる群より選ばれる置換基を有していてもよい、 C_{3-8} シクロアルキル基又は C_{6-14} アリール基であるのが好ましく、上記置換基を有していてもよい、(1) C_{1-6} アルキル基、(2) C_{6-14} アリール基又は(3) C_{3-8} シクロアルキル基であるのがより好ましい。式(I)中のRおよび式(I')中のR'としては、さらに好ましくは(i) C_6 10 C_{1-4} アリール基、(ii) 水酸基、(iii) ハロゲン、(iv) ハロゲンで置換されていてもよい C_{1-6} アルコキシ基、(v) C_{7-12} アラルキルオキシ基および(vi) C_{1-5} アルコキシーカルボニル基からなる群より選ばれる置換基を有していてもよい、 C_{1-6} アルキル基、 C_{2-6} アルケニル基又は C_{2-6} アルキニル

15 (i) C_{6-14} アリール基、(ii) 水酸基、(iii) ハロゲン、(iv) ハロゲンで置換されていてもよい C_{1-6} アルコキシ基、(v) C_{7-12} アラルキルオキシ基、(v i) C_{1-5} アルコキシーカルボニル基および(vii) ハロゲンで置換されていてもよい C_{1-6} アルキル基からなる群より選ばれる置換基を有していてもよい、 C_{3-8} シクロアルキル基又は C_{6-14} アリール基であり、上記置換基を10 ていてもよい、(1) C_{1-6} アルキル基、(2) C_{6-14} アリール基又は(3) C_{3-8} シクロアルキル基であるのがより好ましい。

式 (I)中のRとしては、上記したような複素環であってもよく、該複素環は置換基を有していてもよい。置換基としては、「炭化水素基」の置換基として上述した基および C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基等が挙げられる。これらの置換基を $1\sim 5$ 個、好ましくは $1\sim 3$ 個有していてもよい。

Aとしては、ハロゲンで置換されていてもよい C_{2-6} アルキリデン基が

好ましく、中でもエチリデン基、プロピリデン基がより好ましく、特に エチリデン基が好ましい。

本発明の化合物(I)の好ましい態様としては、以下の化合物が挙げられる。

- 5 (a) $A \ge R$ が結合せず、A が置換基を有していてもよい炭素数 2 以上のアルキリデン基であり、R が置換基を有していてもよい炭化水素基であり、D が酸素原子又は結合手である化合物(上記式(I')の化合物と同一)が好ましく、中でもA がエチリデン基であり、D が酸素原子又は結合手であり、R が C_{1-6} アルキル基又は C_{3-8} シクロアルキル基である化合物がより好ましい。
 - (b) AとRが結合して式

20

(式中、各記号は前記の通りである。)

で表される4~8員環を形成している化合物が好ましく、Dが酸素原子 15 である化合物が特に好ましい。とりわけ、mが1である化合物が好まし い。

化合物(I)は分子中の酸性基と無機塩基または有機塩基等とが薬理学的に許容され得る塩基塩を形成することができ、ここでいう塩基塩としては、例えば、無機塩基塩(例えば、アルカリ金属(例えば、ナトリウム、カリウム等)、アルカリ土類金属(例えば、カルシウム等)、アンモニア等との塩)、有機塩基塩(例えば、ジメチルアミン、トリエチルアミン、ピペラジン、ピロリジン、ピペリジン、2-フェニルエチルアミン、ペンジルアミン、エタノールアミン、ジエタノールアミン、ピリジン、コリジン等との塩)等が挙げられる。

25 また、化合物(I)は分子中の塩基性基と無機酸または有機酸等とが薬理

学的に許容され得る酸付加塩を形成することができ、ここでいう酸付加塩としては、例えば、無機酸塩(例えば、塩酸塩、硫酸塩、臭化水素酸塩、リン酸塩等)、有機酸塩(例えば、酢酸塩、トリフルオロ酢酸塩、コハク酸塩、マレイン酸塩、フマル酸塩、プロピオン酸塩、クエン酸塩、酒石酸塩、乳酸塩、蓚酸塩、メタンスルホン酸塩、pートルエンスルホン酸塩等)等が挙げられる。

本発明の化合物(I)としては、水和物を包含している。該「水和物」としては、0.5水和物ないし5.0水和物が挙げられる。このうち、0.5水和物、1.0水和物、1.5水和物、2.0水和物が好ましい。

本発明の化合物(I)としては、ラセミ体および光学的に活性な化合物とその混合物を包含している。光学的に活性な化合物としては、一方のエナンチオマーが90%以上のエナンチオマー過剰(e.e.)のものが好ましく、より好ましくは99%以上エナンチオマー過剰のものが挙げられる。光学活性体としては、一般式

5

10

20

15C式中の記号は前記と同意義を示す〕で表わされる(R)体が好ましい。

本発明の式(I)におけるAおよびRの定義において、「Aは置換基を有していてもよい炭素数2以上のアルキリデン基を示し、Rは置換基を有していてもよい炭化水素基または置換基を有していてもよい複素環基を示すか、あるいはAとRが結合して置換基を有していてもよい4乃至8員環を形成していてもよく」とは、AとRとが(i)結合して置換基を有していてもよい4乃至8員環を形成し、Dは酸素原子又は結合手を示す態様と、

(ii)結合せず、Aは置換基を有していてもよい炭素数2以上のアルキリデン基を示し、Rは置換基を有していてもよい炭化水素基または置換基を有していてもよい炭化水素基または置換基を有していてもよい複素環基を示す態様からなることを意味する。

化合物(I)は、自体公知の方法、例えば、米国特許第4873337号、 同第5021433号に記載の方法またはこれに準じる方法により製造 することができる。また、例えば、以下の方法AおよびBによっても製 造することができる。

(方法A)

5

化合物 (II) またはその塩と化合物 (III) とを縮合させることによっ 10 て化合物(I)またはその塩を得ることができる。

(式中、Mは水素原子、金属陽イオンまたは第4級アンモニウムイオンを、Xは脱離基を、他の記号は前記と同意義を示す。)

20 方法Aは、例えば、塩基の存在下、化合物(II)またはその塩と化合物(III)とを反応させることにより行われる。具体的には、例えば、化合物(III)またはその塩と化合物(III)との混合溶液に塩基を加え、撹拌する。

ここでいう化合物(II)の塩としては、上記化合物(I)の塩と同様の塩が 挙げられ、例えば、無機酸塩(例えば、塩酸塩、硫酸塩、臭化水素酸塩、 リン酸塩等)、有機酸塩(例えば、酢酸塩、トリフルオロ酢酸塩、コハ ク酸塩、マレイン酸塩、フマル酸塩、プロピオン酸塩、クエン酸塩、酒 石酸塩、乳酸塩、蓚酸塩、メタンスルホン酸塩、 pートルエンスルホン 酸塩等)等の酸付加塩を挙げることができる。

5

25

方法Aの反応は一般に溶媒中で行われ、上記反応を阻害しない溶媒が 適宜選択される。このような溶媒としては、例えば、アルコール類(例 えば、メタノール、エタノール、プロパノール、イソプロパノール、ブ タノール、tertーブタノール等)、エーテル類(例えば、ジオキサン、・ 10 テトラヒドロフラン、ジエチルエーテル、tertーブチルメチルエーテル、 ジイソプロピルエーテル、エチレングリコール、ジメチルエーテル等)、 エステル類 (例えば、ギ酸エチル、酢酸エチル、酢酸 n ーブチル等)、 ハロゲン化炭化水素類(例えば、ジクロロメタン、クロロホルム、四塩 化炭素、トリクレン、1,2ージクロロエタン等)、炭化水素類(例えば、 15 nーヘキサン、ベンゼン、トルエン等)、アミド類(例えば、ホルムア ミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等)、 ケトン類 (例えば、アセトン、メチルエチルケトン、メチルイソブチル ケトン等)、ニトリル類(例えば、アセトニトリル、プロピオニトリル 等) 等の他、ジメチルスルホキシド、スルホラン、ヘキサメチルホスホ 20 ルアミド、水等が挙げられ、これらは単独または混合溶媒として用いら れる。これらの溶媒の使用量は、反応混合物を撹拌できる量であれば特 に限定はない。該溶媒は化合物(II)またはその塩に対して、通常2~1 00倍重量用いられる。

方法Aの塩基としては、例えば、 C_{1-6} アルキルリチウム類または C_{6-1} $_{0}$ アリールリチウム類(例えば、メチルリチウム、エチルリチウム、n ブチルリチウム、secーブチルリチウム、tertーブチルリチウム、フェニ

ルリチウム等)、 C₂₋₆リチウムアルキルアミド類 (例えば、リチウムジ メチルアミド、リチウムジエチルアミド、リチウムジイソプロピルアミ ド等)、金属水素化物(例えば、水素化リチウム、水素化ナトリウム等)、 C₁₋₆アルカリ金属アルコキシド類(例えば、リチウムエトキシド、リチ ウムーtertーブトキシド、ナトリウムメトキシド、ナトリウムエトキシ ド、カリウムーtertーブトキシド等)、アルカリ金属アミド類(例えば、 リチウムアミド、カリウムアミド、ナトリウムアミド等)、アルカリ金 属水酸化物(例えば、水酸化リチウム、水酸化カリウム、水酸化ナトリ ウム等)、アルカリ金属の炭酸塩または重炭酸塩(例えば、炭酸ナトリ 10 ウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム等)等の無機 塩基;トリエチルアミン、トリ(nープロピル)アミン、トリ(nーブ チル)アミン、ジイソプロピルエチルアミン、シクロヘキシルジメチル アミン、ピリジン、4ー(ジメチルアミノ)ピリジン、ルチジン、ァー コリジン、N,Nージメチルアニリン、Nーメチルピペリジン、Nーメチ 15 ルピロリジン、Nーメチルモルホリン等の3級アミン類等の有機塩基が 挙げられる。当該塩基の使用量は、化合物(II)またはその塩1モルに対 して、下限は通常0.1モル以上、好ましくは0.5モル以上、より好 ましくは1モル以上であり、上限は通常10モル以下、好ましくは3モ ル以下である。

20 方法Aにおいては、化合物 (III) は、化合物 (II) またはその塩1モルに対して、通常1モル~5モル、好ましくは1モル~3モルを用いることができる。

方法Aの反応は、通常約-80℃ないし100℃、好ましくは0℃ないし60℃で行い、化合物(II)、(III)および溶媒の種類や反応温度等により異なるが、通常1分~72時間、好ましくは15分~24時間で終了する。

25

化合物(II)は、特開昭61-50978号公報、USP4,628,

098等に記載の方法またはこれらに準じた方法により製造される。

化合物(III)は、ジャーナル オブ ジ アメリカン ケミカル ソサイェティ(Journal of The American Chemical Society) 第43巻、651頁(1921年)、特公昭61-40246号公報、特公平4-58460号公報、ジャーナル オブ ジ アメリカン ケミカル ソサイェティ(Journal of The American Chemical Society) 第105巻、7592頁(1983年)に記載の方法またはこれらに準じた方法により製造される。

10 また、化合物(III)のXがヨウ素以外の場合、ヨウ化リチウム、ヨウ化 ナトリウムなどを用いて化合物(III)をXがヨウ素である化合物(III)に 変換後、化合物(II) との反応に付すこともできる。

(方法B)

5

化合物(IV)またはその塩を酸化反応に付すことによって化合物(I)ま 15 たはその塩を得ることができる。

(式中、各記号は前記と同意義である)

方法Bにおける反応は、例えば、硝酸、過酸化水素、過酸類(例えば、
20 モノパーオキシフタル酸マグネシウム塩など)、過エステル、オゾン、
四酸化二窒素、ヨード素ベンゼン、Nーハロスクシンイミド、1ークロ
ロベンゾトリアゾール、次亜塩素酸 tertーブチル、ジアザビシクロ[2.2]オクタン臭素錯体、メタ過ヨウ素酸ナトリウム、二酸化セレン、

二酸化マンガン、クロム酸、硝酸セリウムアンモニウム、臭素、塩素、スルフリルクロライド、3ークロロ過安息香酸等の酸化剤を用いて行うことができる。酸化剤の使用量は、化合物(IV)またはその塩1モルに対して、通常0.5モル~2モル、好ましくは0.8モル~1.2モルである。酸化剤として上記した過酸化水素や過酸類を用いて酸化を行う場合、バナジウムアセテート等の触媒の存在下に酸化を行うこともできる。

5

10

15

方法Bの反応は、通常、上記酸化反応に不活性な溶媒中で行う。該「上記酸化反応に不活性な溶媒」としては、例えば、水、アルコール類(例、メタノール、エタノール、1ープロパノール、2ープロパノール等)、ケトン類(例、アセトン、メチルエチルケトン等)、ニトリル類(例、アセトニトリル、プロピオニトリル等)、アミド類(例、ホルムアミド、

アセトニトリル、プロピオニトリル等)、アミド類(例、ホルムアミド、N,N-ジメチルホルムアミド等)、エーテル類(例、ジエチルエーテル、 tert-ブチルメチルエーテル、ジイソプロピルエーテル、ジオキサン、テトラヒドロフラン等)、スルホキシド類(例、ジメチルスルホキシド等)、極性溶媒(例、スルホラン、ヘキサメチルホスホルアミド等)、

ハロゲン化炭化水素類 (例えば、ジクロロメタン等)、炭化水素類 (nーヘキサン、ベンゼン、トルエン等)が挙げられ、これらは単独または二種以上の混合溶媒として用いる。該「上記酸化反応に不活性な溶媒」は、化合物(IV)またはその塩に対して、下限は通常1倍重量以上であり、

20 上限は通常200倍重量以下、好ましくは100倍重量以下の範囲の量で用いられる。

方法Bは、通常-80 ℃ないし80 ℃、好ましくは0 ℃ないし30 ℃で行い、通常1 分ないし6 時間、好ましくは15 分ないし1 時間で終了する。

25 方法Bの原料である化合物(IV)は、例えば、2-[[[3-メチルー4-(2,2,2-トリフルオロエトキシ)-2-ピリジル]メチル]チオ[-1H-ベンズイミダゾールを、方法Aと同様の反応に付すこと

により得ることができる。即ち、化合物(II)の-S(=O)-基が-S-基である化合物(II')と化合物(III)とを、上記方法Aと同様な条件下で反応させることにより、化合物(IV)を得ることができる。化合物(I')と化合物(III)とを反応させる際、18-クラウン-6のような触媒の共存下に反応を行ってもよい。また、化合物(III)のXがヨウ素以外の場合、ヨウ化リチウム、ヨウ化ナトリウムなどを用いて化合物(III)のXをヨウ素に変換後、化合物(II')との反応に付すこともできる。

5

20

化合物(IV)の塩としては、上記化合物(I)の塩と同様の塩が挙げられ、 例えば、無機酸塩(例えば、塩酸塩、硫酸塩、臭化水素酸塩、リン酸塩 10 等)、有機酸塩(例えば、酢酸塩、トリフルオロ酢酸塩、コハク酸塩、 マレイン酸塩、フマル酸塩、プロピオン酸塩、クエン酸塩、酒石酸塩、 乳酸塩、蓚酸塩、メタンスルホン酸塩、pートルエンスルホン酸塩等) 等の酸付加塩を挙げることができる。

上記方法AおよびBで得られた化合物(I)またはその塩は、自体公知の 15 分離手段(例、濃縮、減圧濃縮、溶媒抽出、晶出、再結晶、転溶、クロマトグラフィー等)により、反応混合物から単離、精製することができる。

方法Aの原料の1つである、(R)-2-[[[3-メチルー4-(2, 2, 2-トリフルオロエトキシ)-2-ピリジル] メチル] スルフィニル<math>[-1H-ベンズイミダゾールは、例えば

- (A) 2-[[3-メチルー4-(2,2,2-トリフルオロエトキッ) -2-ピリジル] メチル] スルフィニル] <math>-1 H -ベンズイミダゾールまたはその塩を光学分割に付すか、
- (B) 2-[[3-メチル-4-(2,2,2-トリフルオロエトキ25 シ)-2-ピリジル]メチル]チオ]-1H-ベンズイミダゾールを不斉酸化するか、あるいは
 - (C) WOO0/78745、WOO1/83473などに記載の製造

方法などに従うことにより製造することができる。

(A)における光学分割の方法としては、自体公知の方法が挙げられ、例えば、分別再結晶法、キラルカラム法、ジアステレオマー法等が用いられる。

5 (B)における不斉酸化は、自体公知の方法、例えばWO96/02535に記載の方法等を用いてもよい。

「分別再結晶法」としては、ラセミ体と光学活性な化合物〔例えば、 (+) ーマンデル酸、(ー) ーマンデル酸、(+) ー酒石酸、(ー) ー 酒石酸、(+) ー 1ーフェネチルアミン、(ー) ー 1ーフェネチルアミン、(ー) ー 1 ーフェネチルアミ ン、シンコニン、(ー) ーシンコニジン、ブルシン等〕とで塩を形成させ、これを分別再結晶法等によって分離し、所望により中和工程に付し、フリーの光学活性体を得る方法が挙げられる。

「キラルカラム法」としては、ラセミ体またはその塩を光学異性体分離用カラム(キラルカラム)に付す方法が挙げられる。例えば、液体クロマトグラフィーの場合、ENANTIO-OVM(トーソー社製)またはダイセル社製CHIRALシリーズ等のキラルカラムにラセミ体を添加し、水、緩衝液(例、リン酸緩衝液)、有機溶媒(例、ヘキサン、エタノール、メタノール、イソプロパノール、アセトニトリル、トリフルオロ酢酸、ジエチルアミン、トリエチルアミン等)またはこれらの混合溶媒で展開して光学異性体を分離する方法が挙げられる。例えば、ガスクロマトグラフィーの場合、CP-Chirasil-DeXCB(ジーエルサイセンス社製)等のキラルカラムを使用して分離する方法が挙げられる。

「ジアステレオマー法」としては、ラセミ体と光学活性な試薬を反応 25 させて(好ましくは、ベンズイミダゾール基の1位に光学活性な試薬を 反応させて)ジアステレオマーの混合物を得、次いで通常の分離手段(例 えば、分別再結晶、クロマトグラフィー法等)により一方のジアステレ

オマーを得た後、化学反応(例えば、酸加水分解反応、塩基性加水分解反応、加水素分解反応等)に付して光学活性な試薬部位を切り離し、目的とする光学活性体を得る方法が挙げられる。該「光学活性な試薬」としては、例えば、MTPA $[\alpha- \lambda + + \nu - \alpha - (+ \nu + \nu + \nu)]$ フェニル酢酸 $[\alpha - \lambda + \nu + \nu + \nu + \nu]$ 、 $[\alpha - \lambda + \nu + \nu + \nu]$ 、 $[\alpha - \lambda + \nu + \nu + \nu]$ 、 $[\alpha - \lambda + \nu + \nu]$ $[\alpha - \lambda + \nu + \nu]$ $[\alpha - \lambda +$

5

10 本発明の化合物(I)またはその塩は、生体内で従来公知のプロトンポンプ阻害薬である2-[[3-メチル-4-(2,2,2-トリフルオロエトキシ)-2-ピリジル]メチル]スルフィニル]-1H-ベンズイミダゾール(以下、ランソプラゾールと称することがある)に変換されて、優れた抗潰瘍作用、胃酸分泌抑制作用、粘膜保護作用、抗ヘリコバクター・ピロリ作用等を示し、また毒性が低いため、医薬として有用である。しかも、酸に安定なので、経口投与する際に腸溶製剤にする必要がなく、腸溶製剤化の費用を削減し、また、錠剤が小さくなることにより嚥下力の弱い病人、特に老人や小人に服用しやすくなる。しかも、腸溶製剤よりも吸収が速いので胃酸分泌抑制作用が速く発現し、また生20 体内で徐々に従来公知のプロトンポンプ阻害薬に変換されるので持続性があり、抗潰瘍剤等として有用である。

本発明の化合物(I)またはその塩は、哺乳動物(例、ヒト、サル、ヒツジ、ウシ、ウマ、イヌ、ネコ、ウサギ、ラット、マウス等)において、消化性潰瘍(例、胃潰瘍、手術後ストレスによる胃潰瘍、十二指腸潰瘍、の合部潰瘍、ゾリンジャー・エリソン(Zollinger-Ellison)症候群、非ステロイド系抗炎症剤に起因する潰瘍等);胃炎;逆流性食道炎;食道炎を伴わない胃食道逆流症(Symptomatic Gastroesophageal Reflux Di

sease (Symptomatic GERD)); NUD (Non Ulcer Dyspepsia); 胃癌(インターロイキンー1の遺伝子多型によるインターロイキンー1βの産生促進に伴う胃癌を含む); 胃MALTリンパ腫; ゾリンジャー・エリソン(Zollinger-Ellison)症候群; 胃酸過多(例、手術後ストレスによる胃酸過多); 急性ストレス潰瘍、出血性胃炎または侵襲ストレス(手術後に集中管理を必要とする大手術や集中治療を必要とする脳血管障害、頭部外傷、多臓器不全、広範囲熱傷から起こるストレス)等による上部消化管出血等の治療および予防、麻酔前投与、ヘリコバクター・ピロリ除菌等に有用である。

5

25

発明の医薬組成物中の、本発明の化合物(I)またはその塩の含有量は、組成物全体の約0.01ないし100重量%である。該投与量は、投与対象、投与ルート、疾患等によっても異なるが、例えば、抗潰瘍剤として、成人(60kg)に対し経口的に投与する場合、有効成分として約0.5~1500mg/日、好ましくは約5~150mg/日である。本発15 明の化合物(I)またはその塩は、1日1回または2~3回に分けて投与してもよい。

本発明の化合物(I)またはその塩は、毒性が低く、そのままあるいは自体公知の方法に従って、薬理学的に許容される担体を混合した医薬組成物、例えば、錠剤(糖衣錠、フィルムコーティング錠を含む)、散剤、20 顆粒剤、カプセル剤(ソフトカプセルを含む)、口腔内崩壊錠、液剤、注射剤、坐剤、徐放剤、貼布剤等の製剤として、経口的または非経口的(例、局所、直腸、静脈投与等)に安全に投与することができる。とりわけ、錠剤、顆粒剤、カプセル剤等として経口剤として好適に投与される。

本発明の医薬組成物の製造に用いられてもよい薬理学的に許容される 担体としては、製剤素材として慣用の各種有機あるいは無機担体物質が 挙げられ、例えば、固形製剤における賦形剤、滑沢剤、結合剤、崩壊剤、

水溶性高分子、塩基性無機塩;液状製剤における溶剤、溶解補助剤、懸 濁化剤、等張化剤、緩衝剤、無痛化剤等が挙げられる。また、必要に応 じて、通常の防腐剤、抗酸化剤、着色剤、甘味剤、酸味剤、発泡剤、香 料等の添加物を用いることもできる。

5 該「賦形剤」としては、例えば、乳糖、白糖、D-マンニトール、でんぷん、コーンスターチ、結晶セルロース、軽質無水ケイ酸、酸化チタン等が挙げられる。

該「滑沢剤」としては、例えば、ステアリン酸マグネシウム、ショ糖 脂肪酸エステル、ポリエチレングリコール、タルク、ステアリン酸等が 挙げられる。

10

該「結合剤」としては、例えば、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、結晶セルロース、デンプン、ポリビニルピロリドン、アラビアゴム末、ゼラチン、プルラン、低置換度ヒドロキシプロピルセルロース等が挙げられる。

該「崩壊剤」としては、(1)クロスポビドン、(2)クロスカルメロースナトリウム(FMC-旭化成)、カルメロースカルシウム(五徳薬品)等スーパー崩壊剤と称される崩壊剤、(3)カルボキシメチルスターチナトリウム(例、松谷化学(株)製)、(4)低置換度ヒドロキシプロピルセルロース(例、信越化学(株)製)、(5)コーンスターチ等が挙げられる。該「クロスポピドン」としては、ポリビニルポリピロリドン(PVPP)、1ービニルー2ーピロリジノンホモポリマーと称されているものも含め、1ーエテニルー2ーピロリジノンホモポリマーという化学名を有し架橋されている重合物のいずれであってもよく、具体例としては、コリドンCL(BASF社製)、ポリプラスドンXL(ISP社製)、ポリプラスドンXL(ISP社製)、ポリプラスドンXL(ISP社製)、ポリプラスドンXL(ISP社製)、ポリプラスドンXL(ISP社製)、ポリプラスドンXL(ISP社製)、ポリプラスドンXL(ISP社製)

該「水溶性高分子」としては、例えば、エタノール可溶性水溶性高分

子〔例えば、ヒドロキシプロピルセルロース(以下、HPCと記載することがある)等のセルロース誘導体、ポリビニルピロリドン等〕、エタノール不溶性水溶性高分子〔例えば、ヒドロキシプロピルメチルセルロース(以下、HPMCと記載することがある)、メチルセルロース、カルボキシメチルセルロースナトリウム等のセルロース誘導体、ポリアクリル酸ナトリウム、ポリビニルアルコール、アルギン酸ナトリウム、グアーガム等〕等が挙げられる。

5

25

該「塩基性無機塩」としては、例えば、ナトリウム、カリウム、マグ ネシウムおよび/またはカルシウムの塩基性無機塩が挙げられる。好ま しくはマグネシウムおよび/またはカルシウムの塩基性無機塩である。 10 さらに好ましくはマグネシウムの塩基性無機塩である。該ナトリウムの 塩基性無機塩としては、例えば、炭酸ナトリウム、炭酸水素ナトリウム、 リン酸水素二ナトリウム等が挙げられる。該カリウムの塩基性無機塩と しては、例えば、炭酸カリウム、炭酸水素カリウム等が挙げられる。該 マグネシウムの塩基性無機塩としては、例えば、重質炭酸マグネシウム、 15 炭酸マグネシウム、酸化マグネシウム、水酸化マグネシウム、メタ珪酸 アルミン酸マグネシウム、珪酸マグネシウム、アルミン酸マグネシウム、 合成ヒドロタルサイト $[Mg_6Al_2(OH)_{16} \cdot CO_3 \cdot 4H_2O]$ および 水酸化アルミナ・マグネシウム、好ましくは、重質炭酸マグネシウム、 炭酸マグネシウム、酸化マグネシウム、水酸化マグネシウム等が挙げら 20 れる。該カルシウムの塩基性無機塩としては、例えば、沈降炭酸カルシ ウム、水酸化カルシウム等が挙げられる。

該「溶剤」としては、例えば、注射用水、アルコール、プロピレング リコール、マクロゴール、ゴマ油、トウモロコシ油、オリーブ油等が挙 げられる。

該「溶解補助剤」としては、例えば、ポリエチレングリコール、プロ・ピレングリコール、Dーマンニトール、安息香酸ベンジル、エタノール、

トリスアミノメタン、コレステロール、トリエタノールアミン、炭酸ナトリウム、クエン酸ナトリウム等が挙げられる。

該「懸濁化剤」としては、例えば、ステアリルトリエタノールアミン、 ラウリル硫酸ナトリウム、ラウリルアミノプロピオン酸、レシチン、塩 化ベンザルコニウム、塩化ベンゼトニウム、モノステアリン酸グリセリ ン等の界面活性剤;例えば、ポリビニルアルコール、ポリビニルピロリ ドン、カルボキシメチルセルロースナトリウム、メチルセルロース、ヒ ドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシ プロピルセルロース等の親水性高分子等が挙げられる。

5

10 該「等張化剤」としては、例えば、ブドウ糖、D-ソルビトール、塩 化ナトリウム、グリセリン、D-マンニトール等が挙げられる。

該「緩衝剤」としては、例えば、リン酸塩、酢酸塩、炭酸塩、クエン酸塩等の緩衝液等が挙げられる。

該「無痛化剤」としては、例えばベンジルアルコール等が挙げられる。

15 該「防腐剤」としては、例えば、パラオキシ安息香酸エステル類、クロロブタノール、ベンジルアルコール、フェネチルアルコール、デヒドロ酢酸、ソルビン酸等が挙げられる。

該「抗酸化剤」としては、例えば、亜硫酸塩、アスコルビン酸、αートコフェロール等が挙げられる。

20 該「着色剤」としては、例えば、食用黄色5号、食用赤色2号、食用 青色2号等の食用色素;食用レーキ色素、ベンガラ等が挙げられる。

該「甘味剤」としては、例えば、サッカリンナトリウム、グリチルリチンニカリウム、アスパルテーム、ステビア、ソーマチン等が挙げられる。

25 該「酸味剤」としては、例えば、クエン酸 (無水クエン酸)、酒石酸、リンゴ酸等が挙げられる。

該「発泡剤」としては、例えば炭酸水素ナトリウム等が挙げられる。

該「香料」としては、合成物および天然物のいずれでもよく、例えば、 レモン、ライム、オレンジ、メントール、ストロベリー等が挙げられる。

本発明の化合物は、自体公知の方法に従い、例えば、賦形剤、崩壊剤、 結合剤または滑沢剤等の担体を添加して圧縮成形し、次いで必要により、 味のマスキング、腸溶性あるいは持続性の目的のため自体公知の方法で コーティングすることにより経口投与製剤とすることができる。腸溶性 製剤とする場合、腸溶層と薬剤含有層との間に両層の分離を目的として、 自体公知の方法により中間層を設けることもできる。

本発明の化合物(I)またはその塩を例えば口腔内崩壊錠とする場合、例えば、結晶セルロースおよび乳糖を含有する核を、本発明の化合物(I)またはその塩および必要により塩基性無機塩で被覆し、さらに水溶性高分子含有被覆層で被覆して組成物を得、得られた組成物をポリエチレングリコール含有腸溶性被覆層で被覆し、次にクエン酸トリエチル含有腸溶性被覆層で被覆し、さらにポリエチレングリコール含有腸溶性被覆層で被覆し、さらにポリエチレングリコール含有腸溶性被覆層で被覆し、最後にマンニトールで被覆して細粒を得、得られた細粒と添加剤とを混合し、成形する方法によって製造することができる。

10

15

上記「腸溶性被覆層」としては、例えば、セルロースアセテートフタレート(CAP)、ヒドロキシプロピルメチルセルロースフタレート、ヒドロキシメチルセルロースアセテートサクシネート、メタアクリル酸共 20 重合体〔例えば、オイドラギット(Eudragit)L30D-55(商品名;レーム社製)、コリコートMAE30DP(商品名;BASF社製)、ポリキッドPA30(商品名;三洋化成社製)等〕、カルボキシメチルエチルセルロース、セラック等の水系腸溶性高分子基剤;メタアクリル酸共重合体〔例えば、オイドラギットNE30D(商品名)、オイドラギットRL30D(商品名)、オイドラギットRS30D(商品名)等〕等の徐放性基剤;水溶性高分子;クエン酸トリエチル、ポリエチレングリコール、アセチル化モノグリセリド、トリアセチン、ヒマシ油等の可塑

PCT/JP02/09746 **WO** 03/027098

剤等の一種または二種以上混合したもの等からなる層が挙げられる。

上記「添加剤」としては、例えば、水溶性糖アルコール(例、ソルビ トール、マンニトールおよびマルチトール、還元澱粉糖化物、キシリト ール、還元パラチノース、エリスリトール等)、結晶セルロース(例、 セオラスKG 801、アビセルPH 101、アビセルPH 102、 アビセルPH 301、アビセルPH 302、アビセルRC-591 (結晶セルロース・カルメロースナトリウム)等)、低置換度ヒドロキ シプロピルセルロース(例、LH-22、LH-32、LH-23、L H-33 (信越化学(株)) およびこれらの混合物等)等が挙げられ、 10 さらに結合剤、酸味料、発泡剤、甘味剤、香料、滑沢剤、着色剤、安定 化剤、賦形剤、崩壊剤等も用いられる。

5

本発明の化合物は、さらに他の1ないし3種の活性成分と併用しても よい。

該「他の活性成分」としては、例えば、抗ヘリコバクター・ピロリ活 性物質、イミダゾール系化合物、ビスマス塩、キノロン系化合物等が挙 . 15 げられる。

該「抗ヘリコバクター・ピロリ活性物質」としては、例えば、ペニシ リン系抗生物質(例、アモキシシリン、ベンジルペニシリン、ピペラシ リン、メシリナム等)、セフェム系抗生物質(例、セフィキシム、セフ アクロル等)、マクロライド系抗生物質(例、エリスロマイシン、クラ 20 リスロマイシン等)、テトラサイクリン系抗生物質(例、テトラサイク リン、ミノサイクリン、ストレプトマイシン等)、アミノグリコシド系 抗生物質(例、ゲンタマイシン、アミカシン等)、イミペネム等が挙げ られる。中でも、ペニシリン系抗生物質、マクロライド系抗生物質等が 25 好ましい。

該「イミダゾール系化合物」としては、例えば、メトロニダゾール、 ミコナゾール等が挙げられる。

該「ビスマス塩」としては、例えば、ビスマス酢酸塩、ビスマスクエン酸塩等が挙げられる。

該「キノロン系化合物」としては、例えば、オフロキサシン、シプロ キサシン等が挙げられる。

5 とりわけ、ヘリコバクター・ピロリ除菌のためには、本発明の化合物(I) またはその塩と、ペニシリン系抗生物質(例、アモキシシリン等)およびエリスロマイシン系抗生物質(例、クラリスロマイシン等)とが好ましく用いられる。

該「他の活性成分」と本発明の化合物(I)またはその塩とを自体公知の方法に従って混合し、ひとつの医薬組成物(例えば、錠剤、散剤、顆粒剤、カプセル剤(ソフトカプセルを含む)、液剤、注射剤、坐剤、徐放剤等)中に製剤化して併用してもよく、それぞれを別々に製剤化し、同一対象に対して同時にまたは時間差を置いて投与してもよい。

実施例

15 以下に、参考例および実施例を挙げて本発明をさらに詳しく説明するが、これらは本発明を限定するものではない。

以下の参考例、実施例において、室温は、約15~30℃を意味する。

 1 H-NMRは、Varian Gemini-200またはMercury-300を用いて測定し、CDC 1_{3} を溶媒として用い、内部標準のテトラメチルシランからのケミカルシフト δ (ppm) を示した。

旋光度〔α〕_Dは、DIP-370 Digital polari meter (日本分光 (JASCO) 製)を用い、20℃で測定した。

鏡像体過剰率 (% e e) は、以下の条件の光学活性カラムを用いる高速液体クロマトグラフィーにより測定した。

25 高速液体クロマトグラフィー条件(A);

10

20

カラム: CHIRALCEL OD (ダイセル工業(株)製)

移動層:ヘキサン/エタノール=90/10

流速: 1. 0 m L / m i n

検出: UV285nm

その他の本明細書中の記号は以下の意味を示す。

s:シングレット

5 d:ダブレット

t:トリプレット

a:クアルテット

m:マルチプレット

bs:ブロードシングレット

10 J:結合定数

参考例 1

(R) - 2 - [[[3 - メチル - 4 - (2, 2, 2 - トリフルオロエトキシ) - 2 - ピリジニル] メチル] スルフィニル] ベンズイミダゾールル

- 窒素気流下、2-[[[3-メチル-4-(2,2,2-トリフルオーエトキシ)-2-ピリジニル]メチル]チオ]ベンズイミダゾール(4.5kg,12.7mol,水分1.89gを含む)、トルエン(22L)、水(25g,1.39mol,全水分量として1.49mol)および(+)-酒石酸ジエチル(0.958L,5.60mol)を混合した。
- 20 窒素気流下、50~60℃で混合物にチタニウム(IV)イソプロポキシド(0.747L,2.53mo1)を添加し、同温度で30分間攪拌した。窒素気流下、室温で、得られた混合液にジイソプロピルエチルアミン(0.733L,4.44mo1)を加えた後、-5~5℃でクメンヒドロペルオキシド(6.88L,含量82%,37.5mo1)を加え、-5~5℃で1.5時間攪拌し、反応液を得た。同反応液に、窒素気流下、30%チオ硫酸ナトリウム水溶液(17L)を加え、残存す

るクメンヒドロペルオキシドを分解した。分液し、得られた有機層に、

水 (4.5L)、ヘプタン (13.5L)、 t ーブチルメチルエーテル (18L)およびヘプタン(27L)を順次加え、攪拌下、晶出させた。 結晶を分離し、
t ーブチルメチルエーテルートルエン (t ーブチルメチ ルエーテル:トルエン=4:1)(4L)で洗浄した。攪拌下、同湿結 晶のアセトン(20L)懸濁液を、アセトン(7L)および水(34L) 5 の混液中に滴下し、ついで水 (47L)を加えた。析出結晶を分離し、 アセトン-水 (アセトン:水=1:3) (4L) および水 (12L) で 洗浄した。同湿結晶を酢酸エチル(45L)および水(3L)に溶解後、 分液した。有機層中の微量不溶物をろ去、ついでトリエチルアミン(0. 2 L)を添加した後、減圧下で液量が約7 Lになるまで濃縮した。濃縮 10 液にメタノール (2.3 L)、約50℃の約12.5%アンモニア水 (2 3 L) および約50℃のtーブチルメチルエーテル (22 L) を加え、 分液した。有機層に約12.5%アンモニア水(11L)を加え、分液 した(本操作をもう一回繰り返した)。水層を合わせ、酢酸エチル(2) 2 L) を加え、冷却下で、酢酸を滴下し、pHを約8に調整した。分液 15 し、水層を酢酸エチル(11L)で抽出した。有機層を合わせ、約20% 食塩水 (11L) で洗浄した。トリエチルアミシ (0.2L) 添加後、 有機層を減圧濃縮した。濃縮物にアセトン(5 L)を加え、減圧濃縮し た。濃縮物をアセトン(9 L)に溶解させ、同液をアセトン(4.5 L) および水(22.5L)混合液へ滴下し、ついで得られた混合液に水(1. 20 8 L)を滴下した。析出結晶を分離し、冷アセトンー水 (アセトン:水 =1:3) (3L)、水(12L)で順次洗浄した。同湿結晶を酢酸エ チル (32L) に溶解した。分離した水層を分液操作により分離し、得 られた有機層を、液量が約14Lになるまで減圧濃縮した。残留液に酢 酸エチル(36L)および活性炭(270g)を加え、攪拌した後、活 25 性炭をろ過により除去した。ろ液を、液量が約14Lになるまで減圧濃 縮した。約40℃でヘプタン(90L)を残留液物に滴下した。同温度

で約30分間攪拌後、結晶を分離し、約40℃の酢酸エチルーへプタン (酢酸エチル:ヘプタン=1:8,6L)で洗浄した。乾燥し、表題化 合物 (3.4 kg)を得た。該化合物のエナンチオマー過剰率は、10 0%eeであった。

5 参考例 2

1-クロロエチル エチル カーボネート

1-クロロエチル クロロホルメート(7.14g)をエタノール(2.30g)とピリジン(3.95g)のテトラヒドロフラン溶液(60mL)に-78℃で滴下した。室温で2日間攪拌し、析出した固体をろ去し、ジエチルエーテルで洗浄した。ろ液と洗液を合わせ、飽和食塩水(15mL)で洗浄後、無水硫酸マグネシウムで乾燥した。ろ過後、減圧濃縮し、残留物を減圧蒸留することにより標題化合物7.01gを無色液体として得た。

¹H-NMR (CDCl₃): 1.34 (3H, t, J=7.2Hz),
1.83 (3H, d, J=5.8Hz), 4.27 (2H, q, J=7.
2Hz), 6.44 (1H, q, J=5.8Hz).
参考例3

1-クロロエチル トリメチルアセテート

トリメチルアセチルクロリド(12.1g)とパラアルデヒド(6.

- 17g)との混合物に触媒量の塩化亜鉛を加えて90℃で1時間攪拌した。ジエチルエーテル(150mL)を加え、炭酸水素ナトリウム水(100mL)で洗浄後、無水硫酸マグネシウムで乾燥した。減圧濃縮後、残留物を減圧蒸留し、1-クロロエチル トリメチルアセテート12.
 2gを無色油状物として得た。
- 25 ¹H-NMR (CDCl₃): 1.22 (9H, s), 1.80 (3H, d, J=5.9Hz), 6.54 (1H, q, J=5.9Hz). 参考例 4

1-クロロエチル 2-メチルプロパノエート

イソブチリルクロリド (10.7g) とパラアルデヒド (6.17g) との混合物に触媒量の塩化亜鉛を加えて 80° で1時間攪拌した。ジエチルエーテル (150mL) を加え、炭酸水素ナトリウム水 (100mL) で洗浄後、無水硫酸マグネシウムで乾燥した。減圧濃縮後、残留物を減圧蒸留し、1-クロロエチル 2-メチルプロパノエート8.17gを無色油状物として得た。

 $^{1}H-NMR$ (CDC1₃): 1. 19 (3H, d, J=7. 0Hz), 1. 20 (3H, d, J=7. 0Hz), 1. 79 (3H, d, J=5.

10 9 Hz), 2. 47-2. 69 (1 H, m), 6. 55 (1 H, q, J) = 5. 9 Hz).

参考例5

5

1-クロロプロピル トリメチルアセテート

トリメチルアセチルクロリド (12.1g) とプロピオンアルデヒド
15 (8.13g) との混合物に触媒量の塩化亜鉛を加えて90℃で30分間攪拌した。ジエチルエーテル (200mL) を加え、炭酸水素ナトリウム水 (100mL) で洗浄後、無水硫酸マグネシウムで乾燥した。減圧濃縮後、残留物を減圧蒸留し、1-クロロプロピル トリメチルアセテート9.13gを淡黄色油状物として得た。

20 ${}^{1}H-NMR$ (CDCl₃): 1.05 (3H, t, J=7.3Hz), 1.23 (9H, s), 1.97-2.13 (2H, m), 6.38 (1H, t, J=5.7Hz).

参考例6

1-クロロエチル 1,3-ジエトキシー2-プロピル カーボネー 25 ト

1,3-ジエトキシー2-プロパノール(5.00g)を用い参考例 2と同様の操作を行い、標題化合物8.03gを淡黄色液体として得た。

 $^{1}H-NMR$ (CDCl₃): 1. 10-1. 30 (6H, m), 1. 8 3 (3H, d, J=5. 6Hz), 3. 40-3. 70 (8H, m), 5. 02 (1H, quintet, J=5. 2Hz), 6. 43 (1H, q, J=5. 6Hz).

5 参考例 7

1,3-ジエトキシー2-プロピル 1-ヨードエチル カーボネート

参考例6の化合物(3.0g)の二硫化炭素溶液(5 mL)にヨウ化ナトリウム(2.39g)と塩化亜鉛(0.15g)を加え室温で2時間攪拌した。反応液をジエチルエーテルー水で抽出し、有機層を飽和食塩水、チオ硫酸ナトリウム水溶液、飽和食塩水で順次洗浄した。無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去し、標題化合物3.15gを淡黄色液体として得た。

¹H-NMR (CDCl₃): 1.10-1.40 (6H, m), 2.2 4 (3H, d, J=6.2Hz), 3.40-3.80 (8H, m), 5.02 (1H, m), 6.77 (1H, q, J=6.2Hz). 参考例8

1ークロロエチル 1,3ージメトキシー2ープロピル カーボネート

1,3-ジメトキシー2-プロパノール(5.00g)を用い参考例2と同様の操作を行い、標題化合物8.08gを淡黄色液体として得た。
¹H-NMR(CDCl₃):1.83(3H,d,J=5.6Hz),
3.38(6H,s),3.59(4H,d,J=5.2Hz),5.
03(1H,quint,J=5.2Hz),6.43(1H,q,J)
25=5.6Hz).

参考例 9

1,3-ジメトキシー2-プロピル 1-ヨードエチル カーボネー

}

参考例8の化合物(3.00g)を用い、参考例7と同様の操作を行い、標題化合物3.45gを無色液体として得た。

 $^{1}H-NMR$ (CDC1₃): 2. 24 (3H, d, J=5.8Hz), 3. 38 (3H, s), 3. 39 (3H, s), 3. 55-3.61 (4 H, m), 4. 95-5. 10 (1H, m), 6. 76 (1H, q, J =5.8Hz).

参考例10

1-クロロエチル テトラヒドロー2H-ピランー4-イル カーボ 10 ネート

4-ヒドロキシテトラヒドロピラン (4.00g)を用い参考例2と同様の操作を行い、標題化合物6.92gを淡黄色液体として得た。

 $^{1}H-NMR$ (CDC1₃): 1. 65-1. 90 (5H, m), 1. 9 3-2. 10 (2H, m), 3. 45-3. 61 (2H, m), 3. 8

8-4.00 (2H, m), 4.80-5.00 (1H, m), 6.43 (1H, q, J=5.8Hz).

参考例11

テトラヒドロー2H-ピランー4ーイル 1-ヨードエチル カーボネート

20 参考例10の化合物(3.00g)を用い、参考例7と同様の操作を 行い、標題化合物3.02gを無色液体として得た。

 $^{1}H-NMR$ (CDC1₃): 1. 60-1. 90 (2H, m), 1. 9 5-2. 10 (2H, m), 2. 25 (3H, d, J=5. 8Hz), 3. 45-3. 65 (2H, m), 3. 85-4. 00 (2H, m),

25 4.80-5.00 (1H, m), 6.76 (1H, q, J=5.8H z).

参考例 1 2

1-クロロエチル 2-メトキシエチル カーボネート

2-メトキシエタノール(6.00g)を用い参考例2と同様の操作を行い、標題化合物6.73gを淡黄色液体として得た。

 $^{1}H-NMR$ (CDC1₃): 1.83 (3H, d, J=6.0Hz),

5 3.40(3H,s),3.64(2H,t,J=4.6Hz),4. 30-4.40(2H,m),6.42(1H,q,J=5.8Hz). 参考例13

2-メトキシエチル 1-ヨードエチル カーボネート

参考例12の化合物(3.00g)を用い、参考例7と同様の操作を 10 行い、標題化合物3.70gを無色液体として得た。

¹H-NMR (CDCl₃): 2.24 (3H, d, J=6.0Hz), 3.40 (3H, s), 3.61 (2H, t, J=4.6Hz), 4.30-4.40 (2H, m), 6.76 (1H, q, J=6.0Hz). 参考例14

- 15 2,2-ビス (メトキシメチル) プロパン酸
 - 2, 2-ビス(ヒドロキシメチル)プロパン酸(10.0g)のN, N-ジメチルホルムアミド溶液(100mL)に水素化ナトリウム(6.27g)を氷冷下加えた。水素の発生が見られなくなった後、ヨードメタン(16.2mL)を加え、室温で18時間攪拌した。反応液に6N
 - 20 水酸化ナトリウム水溶液(12.4 m L)を加え、3時間攪拌した後、減圧濃縮した。残留物に濃塩酸を加え、得られた酸性水溶液をジエチルエーテルで抽出した。抽出液を飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥し、減圧濃縮することで標題化合物7.50gを淡黄色油状物として得た。
 - 25 ¹H-NMR (CDCl₃): 1.22 (3H, s), 3.36 (6H, s), 3.51 (4H, s), 6.50-7.30 (1H, br). 参考例15

1-ヨードエチル 2,2ービス(メトキシメチル)プロバノエート参考例14の化合物(2.0g)を塩化チオニル(5.0 mL)に溶かし、室温で1時間攪拌した後、反応液を減圧濃縮した。残留物にトルエン(10 mL)を加え不溶物をろ過し、ろ液を減圧濃縮した。得られた無色油状物にパラアルデヒド(0.812g)と塩化亜鉛(10 mg)を加え、50℃で1時間攪拌した。反応液を酢酸エチルー水で抽出し、有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧濃縮することで1ークロロエチル 2,2ービス(メトキシメチル)プロパノエート(1.32g)を淡黄色油状物として得た。1ークロロエチル 2,2ービス(メトキシメチル)プロパノエート(1.30g)を用い、参考例7と同様の操作を行い、標題化合物1.20gを無色液体として得た。

 $^{1}H-NMR$ (CDC1₃): 1. 18 (3H, s), 2. 20 (3H, d, J=5.8Hz), 3. 34 (6H, s), 3. 48 (4H, s), 6. 90 (1H, q, J=5.8Hz).

参考例 1 6

5

10

15

1-ヨードエチル シクロペンタンカルボキシレート

ヨウ化ナトリウム(5.09g)とパラアルデヒド(1.10g)のアセトニトリル溶液(30mL)に氷冷下、シクロペンタンカルボニル20 クロリド(3.0g)を加え、30分間攪拌した。反応液を酢酸エチルー水で抽出し、有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧濃縮することで標題化合物4.64gを淡黄色油状物として得た。

 $^{1}H-NMR$ (CDCl₃): 1. 40-2.00 (8H, m), 2. 2 25 0 (3H, d, J=6.2Hz), 2. 65-2.85 (1H, m), 6.86 (1H, q, J=6.2Hz).

参考例17

1-クロロエチル シクロペンチル カーボネート

1-クロロエチル クロロホルメート(3.84 mL)のテトラヒドロフラン(20 mL)溶液をシクロペンタノール(3.06 mL)とピリジン(5.46 mL)のテトラヒドロフラン(100 mL)溶液に0℃で滴下した。室温で24時間攪拌し、析出した固体をろ去した。ろ液に酢酸エチル(100 mL)を加え、1 N塩酸(100 mL)、飽和食塩水(100 mL×2)で洗浄後、無水硫酸ナトリウムで乾燥した。ろ過後、減圧濃縮すると標題化合物5.44gが無色油状物として得られた。 1 H-NMR(CDCl₃):1.43-1.97(8 H, m),1.83(3 H, d, J=6.0 Hz),5.13-5.19(1 H, m),6.43(1 H, q, J=6.0 Hz).

参考例18

5

10

シクロペンチル 1-ヨードエチル カーボネート

1 ークロロエチル シクロペンチル カーボネートの二硫化炭素(15mL)溶液にヨウ化ナトリウム(5.93g)及び塩化亜鉛(216mg)を順次加え、室温で4時間撹拌した。反応液にジエチルエーテル(100mL)を加え、水(50mL)、5%チオ硫酸ナトリウム水溶液(50mL)、飽和食塩水(50mL)で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧濃縮すると標題化合物6.59gが淡黄色20 油状物として得られた。

 $^{1}H-NMR$ (CDCl₃): 1.56-2.09 (8H, m), 2.2 4 (3H, d, J=6.2Hz), 5.12-5.20 (1H, m), 6.76 (1H, q, J=6.2Hz).

参考例19

2-(アセチルアミノ) エチル 1-クロロエチル カーボネート 1-クロロエチル クロロホルメート $(3.92 \,\mathrm{m\,L})$ のテトラヒド ロフラン $(20 \,\mathrm{m\,L})$ 溶液をN-アセチルエタノールアミン <math>(3.10)

mL)とピリジン(5.46 mL)のテトラヒドロフラン(100 mL) 溶液に0℃で滴下した。室温で24時間攪拌し、析出した固体をろ去した。ろ液に酢酸エチル(100 mL)を加え、1 N塩酸(100 mL)、 飽和食塩水(100 mL×2)で洗浄後、無水硫酸ナトリウムで乾燥した。ろ過後、減圧濃縮すると標題化合物(6.05g)が無色油状物として得られた。

 $^{1}H-NMR$ (CDCl₃): 1.84 (3H, d, J=5.8Hz), 2.02 (3H, s), 3.60 (2H, q, J=5.6Hz), 4. 18-4.39 (2H, m), 6.27 (1H, brs), 6.86 (1H, q, J=5.8Hz).

参考例20

5

10

- 2-(アセチルアミノ) エチル 1-ヨードエチル カーボネート 2-(アセチルアミノ)エチル 1-クロロエチル カーボネート(3.0g)のアセトニトリル(100mL)溶液にヨウ化ナトリウム(21.
- 5g)を加え、アルゴン雰囲気下、70℃で2時間撹拌した。析出した 固体をろ去し、酢酸エチル(100mL)を加えた後、5%チオ硫酸ナ トリウム水溶液(100mL)、飽和食塩水(100mL)で洗浄し、 無水硫酸ナトリウムで乾燥した。ろ過後、減圧濃縮すると標題化合物1.
 64gが淡黄色油状物として得られた。
- $^{1}H-NMR$ (CDC1₃): 2.04 (3H, s), 2.26 (3H, d, J=6.3Hz), 3.58 (2H, d, J=5.7Hz), 4. 24-4.37 (2H, m), 6.24 (1H, bs), 6.76 (1H, q, J=6.3Hz).

参考例21

25 ジエチル 3ー[[(1ークロロエトキシ)カルボニル]オキシ]ペ ンタンジオエート

1-クロロエチル クロロホルメート (3.92mL) のテトラヒド

ロフラン($20\,\mathrm{mL}$)溶液をジエチル 3-ヒドロキシグルタレート(6. $24\,\mathrm{mL}$) とピリジン(5. $46\,\mathrm{mL}$) のテトラヒドロフラン($100\,\mathrm{mL}$) 溶液に $0\,\mathrm{C}$ で滴下した。室温で24時間攪拌し、析出した固体をろ去した。ろ液に酢酸エチル($100\,\mathrm{mL}$)を加え、水($100\,\mathrm{mL}$)、

5 1 N塩酸 (100 m L)、飽和食塩水 (100 m L)で洗浄後、無水硫酸ナトリウムで乾燥した。ろ過後、減圧濃縮すると標題化合物 9.68 g が無色油状物として得られた。

 $^{1}H-NMR$ (CDCl₃): 1. 26 (3H, t, J=7. 0Hz), 1. 27 (3H, t, J=7. 0Hz), 1. 83 (3H, d, J=6.

10 0 Hz), 2.78 (4H, d, J=6.6Hz), 4.16 (2H, q, J=7.0Hz), 4.17 (2H, q, J=7.0Hz), 5.48 (1H, quintet, J=6.6Hz), 6.42 (1H, q, J=6.0Hz).

参考例22

15 ジエチル 3-[[(1-ヨードエトキシ)カルボニル]オキシ]ペンタンジオエート

ジエチル 3-[[(1-クロロエトキシ) カルボニル] オキシ] ペンタンジオエート <math>(3g) のアセトニトリル (100mL) 溶液にヨウ化ナトリウム (21.5g) を加え、アルゴン雰囲気下、70%で3時

- 20 間撹拌した。析出した固体をろ去し、酢酸エチル (100mL) を加えた後、水 (100mL)、5%チオ硫酸ナトリウム水溶液 (100mL)、飽和食塩水 (100mL) で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧濃縮すると標題化合物3.26gが淡黄色油状物として得られた。
- $^{1}H-NMR$ (CDC1₃): 1. 23-1. 31 (6H, m), 2. 2 3 (3H, d, J=6.0Hz), 2. 71-2. 85 (4H, m), 4. 09-4. 22 (4H, m), 5. 48 (1H, quintet,

J=6.0Hz),6.76(1H,q,J=6.0Hz). 参考例23

1-ヨードエチル アセテート

パラアルデヒド(1.45g)とヨウ化ナトリウム(4.95g)の アセトニトリル(30mL)溶液に氷冷下、塩化アセチル(2.13m L)を加え、0℃で2時間撹拌した。反応液を氷水(100mL)に注 ぎ込み、ジエチルエーテル(50mL×2)で抽出した。抽出液を水(1 00mL)、5%チオ硫酸ナトリウム水溶液(100mL)、炭酸水素 ナトリウム水(100mL)、飽和食塩水(100mL)で順次洗浄し、

10 無水硫酸ナトリウムで乾燥した。ろ過後、減圧濃縮すると標題化合物 3. 10gが淡黄色油状物として得られた。

¹H-NMR (CDC1₃): 2.08 (3H, s), 2.20 (3H, d, J=6.2Hz), 6.83 (1H, q, J=4.2Hz). 参考例24

15 1ークロロエチル 1,3ージオキサンー5ーイル カーボネート 1ークロロエチル クロロホルメート (3.84mL)のテトラヒドロフラン (20mL)溶液をグリセロール ホルマール (2.92mL)とピリジン (5.46mL)のテトラヒドロフラン (100mL)溶液に0℃で滴下した。室温で24時間攪拌し、析出した固体をろ去した。

20 ろ液に酢酸エチル (100mL) を加え、水 (100mL)、1N塩酸 (100mL)、飽和食塩水 (100mL)で洗浄後、無水硫酸ナトリウムで乾燥した。ろ過後、減圧濃縮し、得られた残留物をシリカゲルフラッシュカラムクロマトグラフィー (酢酸エチル:ヘキサン=1:40-1:10で溶出)で精製すると、標題化合物2.95gが無色油状物25 として得られた。

 $^{1}H-NMR$ (CDCl₃): 1.85 (3H, d, J=6.0Hz), 4.04 (4H, t, J=3.0Hz), 4.66 (1H, quint

et, J=3.0Hz), 4.81 (1H, d, J=6.0Hz), 4. 95 (1H, d, J=6.0Hz), 6.42 (1H, q, J=6.0 Hz).

参考例25

1,3-ジオキサン-5-イル 1-ヨードエチル カーボネート 1-クロロエチル 1,3-ジオキサン-5-イル カーボネート(2・95g)のアセトニトリル(100mL)溶液にヨウ化ナトリウム(2・1・0g)を加え、アルゴン雰囲気下、70℃で3時間撹拌した。析出した固体をろ去し、酢酸エチル(100mL)を加えた後、水(100mL)、5%チオ硫酸ナトリウム水溶液(100mL)、飽和食塩水(100mL)で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧濃縮すると標題化合物2・43gが淡黄色油状物として得られた。

¹H-NMR (CDCl₃): 2. 26 (3H, d, J=6.0Hz), 4. 03 (4H, t, J=2.8Hz), 4.66 (1H, quint et, J=2.8Hz), 4.81 (1H, d, J=6.2Hz), 4. 95 (1H, d, J=6.2Hz), 6.75 (1H, q, J=6.0 Hz).

参考例26

1-ヨードエチル シクロヘキサンカルボキシレート

- 20 パラアルデヒド(1.45g)、ヨウ化ナトリウム(4.50g)の アセトニトリル溶液(30mL)に氷冷下、シクロヘキサンカルボニル クロリド(4.40g)を滴下した。氷冷下、2時間攪拌後、氷冷水、チオ硫酸ナトリウム、炭酸水素ナトリウム、食塩、ジエチルエーテルを 加えた。有機層を分取し、無水硫酸マグネシウムで乾燥後、減圧濃縮し、
- 25 標題化合物 6.84gを濃赤紫色油状物として得た。

 ${}^{1}H-NMR$ (CDCl₃): 1. 20-2. 00 (10H, m), 2. 19 (3H, d, J=6. 2Hz), 2. 20-2. 40 (1H, m),

6.86 (1H, q, J = 6.2Hz).

参考例27

1-ヨードエチル メトキシアセテート

パラアルデヒド (1.45g)、ヨウ化ナトリウム (4.50g)の アセトニトリル溶液 (30mL)に氷冷下、メトキシアセチルクロリド (3.26g)を滴下した。氷冷下、2.5時間攪拌後、ジイソプロピルエーテル (100mL)を加え、チオ硫酸ナトリウム水溶液 (50mL)、炭酸水素ナトリウム水 (50mL)、食塩水 (50mL)で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮し、標題化合物2.0 2gを濃赤紫色油状物として得た。

 $^{1}H-NMR$ (CDC1₃): 2. 22 (3H, d, J=6. 2Hz), 3. 47 (3H, s), 4. 03 (2H, s), 6. 93 (1H, q, J=6. 2Hz).

実施例1

15 1-[2-[[3-x+n-4-(2,2,2-h]]] 1-[2-[[3-x+n-4-(2,2,2-h]]] 1-[11-x+n] 1-[11-x+n]

1-クロロエチル ベンゾエート (2.22g) と2-[[[3-メ20 チルー4ー (2,2,2-F) リフルオロエトキシ) -2-ピリジニル] メチル] チオ] ベンズイミダゾール (2.12g) のアセトニトリル溶・

液($50\,\mathrm{mL}$)にヨウ化ナトリウム($0.45\,\mathrm{g}$)と炭酸カリウム($1.66\,\mathrm{g}$)を加え、 $60\,\mathrm{CC}$ で $10\,\mathrm{Flll}$ 攪拌した。 $1-0\,\mathrm{PPL}$ ベンゾエート($1.11\,\mathrm{g}$)を追加し、 $60\,\mathrm{CC}$ で $12\,\mathrm{Flll}$ 攪拌した。滅圧濃縮後、残留物に酢酸エチル($200\,\mathrm{mL}$)と飽和炭酸水素ナトリウム水($100\,\mathrm{mL}$)を加えて抽出した。酢酸エチル層を分取し、 $10\,\mathrm{%}$ 亜硫酸ナトリウム水溶液($50\,\mathrm{mL}$)で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮した。残留物をシリカゲルクロマトグラフィー(酢酸エチル: $0.2\,\mathrm{mL}$)に高製し、 $0.2\,\mathrm{mL}$ で精製し、 $0.2\,\mathrm{mL}$ で大チルー4ー($0.2\,\mathrm{mL}$)に高製し、 $0.2\,\mathrm{mL}$ で大チルー4ー($0.2\,\mathrm{mL}$)ので大きゾールー1ーイル コエチル・ベンゾエート $0.2\,\mathrm{mL}$ のののでは、 $0.2\,\mathrm{mL}$ で大きゾールー1ーイル カース・ベンゾエート $0.2\,\mathrm{mL}$ のののでは、 $0.2\,\mathrm{mL}$ で大きグゾールー1ーイル カース・グェート $0.2\,\mathrm{mL}$ のののののでは、 $0.2\,\mathrm{mL}$ で大きグゾールー1ーイル カース・グェート $0.2\,\mathrm{mL}$ のののののでは、 $0.2\,\mathrm{mL}$ で大きグゾールー1ーイル アンゾエート $0.2\,\mathrm{mL}$ ののののののでは、 $0.2\,\mathrm{mL}$ で大きグゾールー1ーイル アンゾエート $0.2\,\mathrm{mL}$ ののののののでは、 $0.2\,\mathrm{mL}$ では、 $0.2\,\mathrm{mL}$ で大きグゾールー1ーイル アンゾエート $0.2\,\mathrm{mL}$ ののののののでは、 $0.2\,\mathrm{mL}$ で大きび、 $0.2\,\mathrm{mL}$ で大きない。 $0.2\,\mathrm{mL}$ で大きな

5

10

20

25

1H-NMR (CDCl₃): 1.97 (3H, d, J=6.3Hz), 2.35 (3H, s), 4.39 (2H, q, J=7.8Hz), 4. 85 (1H, d, J=13.2Hz), 4.91 (1H, d, J=13. 15 2Hz), 6.65 (1H, d, J=5.7Hz), 7.21-7.3 1 (3H, m), 7.40-7.46 (2H, m), 7.57 (1H, t, J=7.4Hz), 7.64-7.72 (2H, m), 8.04 (2H, d, J=7.5Hz), 8.37 (1H, d, J=5.7Hz). 1-[2-[[3-メチル-4-(2,2,2-トリフルオロエト

キシ) -2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾール -1-イル]エチル ベンゾエート(0.86g)のジクロロメタン溶 液(10mL)に氷冷下、3-クロロ過安息香酸(含量:約65%:0. 455g)のジクロロメタン溶液(10mL)を滴下した。氷冷下、1. 5時間攪拌後、ジクロロメタン(30mL)で希釈し、10%亜硫酸ナトリウム水溶液(20mL)、飽和炭酸水素ナトリウム水(20mL)で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮した。残留物をシリカゲルクロマトグラフィー(酢酸エチル:ヘキサン=1:1で溶出)

で精製し、標題化合物のジアステレオマー混合物 0.6 4 gを得た。エタノールから結晶化し、酢酸エチルーへキサンからの再結晶、アセトンーへキサンからの再結晶、酢酸エチルーへキサンからの再結晶、酢酸エチルーメタノールからの再結晶を行うことにより、標題化合物の低極性ジアステレオマー体 0.2 9 gを無色固体として得た。

¹H-NMR (CDCl₃): 2. 12 (3H, d, J=6. 2Hz), 2. 37 (3H, s), 4. 36 (2H, q, J=7. 8Hz), 5. 12 (2H, s), 6. 61 (1H, d, J=5. 7Hz), 7. 31 -7. 48 (4H, m), 7. 58-7. 72 (2H, m), 7. 78 10 -7. 90 (2H, m), 8. 04 (2H, d, J=7. 4Hz), 8. 34 (1H, d, J=5. 7Hz).

実施例2

5

15

エチル 1-[2-[[3-メチル-4-(2,2,2-トリフル オロエトキシ)-2-ピリジニル]メチル]スルフィニル]-1Hーベンズイミダゾールー1ーイル]エチル カーボネート

1ークロロエチル エチル カーボネート(1.52g)とヨウ化ナトリウム(4.48g)のアセトニトリル溶液(50mL)を60℃で1時間攪拌した。アセトニトリルを減圧留去後、残留物をジエチルエー20 テル(60mL)で抽出した。ろ過後、ろ液を減圧濃縮した。残留物に2ー[[[3ーメチルー4ー(2,2,2ートリフルオロエトキシ)ー2ーピリジニル]メチル]チオ]ベンズイミダゾール(1.57g)と

アセトニトリル (30 m L) を加え、室温で3日間攪拌した。減圧濃縮後、残留物に酢酸エチル (200 m L) と飽和炭酸水素ナトリウム水 (100 m L) を加えて抽出した。酢酸エチル層を分取し、10%亜硫酸ナトリウム水溶液 (50 m L)、飽和食塩水 (50 m L) で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮した。残留物をシリカゲルクロマトグラフィー(酢酸エチル: $^{+}$ ハキサン=1:1で溶出)で精製し、エチル 1-[2-[[3-メチル-4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾール-1-イル]エチル カーボネート 0.84gを無色固体として得た。

5

10

¹H-NMR (CDCl₃): 1. 25 (3H, t, J=7. 1Hz), 1. 87 (3H, d, J=6. 3Hz), 2. 35 (3H, s), 4. 05-4. 25 (2H, m), 4. 40 (2H, q, J=7. 8Hz), 4. 83 (1H, d, J=13. 5Hz), 4. 88 (1H, d, J=13. 5Hz), 6. 66 (1H, d, J=5. 4Hz), 7. 19-7. 28 (2H, m), 7. 60 (1H, m), 7. 70 (1H, m), 8. 36 (1H, d, J=5. 4Hz).

エチル 1-[2-[[[3-メチル-4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル]メチル]チオ]-1H-ベンズイミ 20 ダゾール-1-イル]エチル カーボネート(0.84g)のジクロロメタン溶液(10mL)に氷冷下、3-クロロ過安息香酸(含量:約65%:0.475g)のジクロロメタン溶液(10mL)を滴下した。氷冷下、1.5時間攪拌後、ジクロロメタン(30mL)で希釈し、10%亜硫酸ナトリウム水溶液(20mL)、飽和炭酸水素ナトリウム水 (20mL)で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮した。残留物をシリカゲルクロマトグラフィー(酢酸エチル:ヘキサン=1:1で溶出)で精製し、標題化合物のジアステレオマー混合物0.6

4 gを得た。ジイソプロピルエーテルから結晶化し、酢酸エチルーへキサンからの再結晶を2回繰り返すことにより、標題化合物の低極性ジアステレオマー体0.31gを無色固体として得た。

¹H-NMR (CDCl₃): 1. 24 (3H, t, J=7. 2Hz), 2. 01 (3H, d, J=6. 3Hz), 2. 38 (3H, s), 4. 03-4. 24 (2H, m), 4. 40 (2H, q, J=7. 7Hz), 5. 00 (1H, d, J=13. 7Hz), 5. 12 (1H, d, J=13. 7Hz), 6. 67 (1H, d, J=5. 7Hz), 7. 32-7. 43 (3H, m), 7. 76 (1H, m), 7. 87 (1H, m), 8. 39 (1H, d, J=5. 5Hz).

実施例3

1-[2-[[3-x+n-4-(2,2,2-h]]] + 2) -2-y+n] + 2 + 3] -2-y+n] + 3 + 3 + 3 + 4

15

20

5

10

2-[[[3-メチルー4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル]メチル]チオ]ベンズイミダゾール(6.72g)、<math>1-クロロエチル トリメチルアセテート(6.59g)、ヨウ化ナトリウム(3.00g)、炭酸カリウム(8.29g)およびアセトニトリル(200mL)の混合物を60℃で2日間攪拌した。反応液を減圧濃縮後、酢酸エチル(200mL)を加え、水(100mL)、飽和食

塩水 (100 m L) で洗浄後、無水硫酸マグネシウムで乾燥した。減圧 濃縮後、残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル: ヘキサン=1:1続いて4:1で溶出)で精製することにより、1-[2 -[[3-メチルー4-(2,2,2-トリフルオロエトキシ)-2 -ピリジニル]メチル]チオ]-1H-ベンズイミダゾール-1-イル] エチル トリメチルアセテート5.19gを橙色油状物として得た。 「H-NMR (CDC1₃):1.16(9H,s),1.81(3H,d,J=6.2Hz),2.35(3H,s),4.40(2H,q,J=7.8Hz),4.86(2H,s),6.65(1H,d,J=10.5.6Hz),6.98(1H,q,J=6.2Hz),7.15-7.30(2H,m),7.50-7.60(1H,m),7.65-7.75(1H,m),8.36(1H,d,J=5.6Hz).

1-[2-[[[3-メチル-4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾール
15 -1-イル]エチル トリメチルアセテート(5.42g)のジクロロメタン溶液(120mL)に3-クロロ過安息香酸(含量:約65%:3.19g)を-25℃で加えた。-25℃で15分間、0℃で30分間攪拌した後、炭酸水素ナトリウム水(100mL)と10%チオ硫酸ナトリウム水(50mL)で洗浄後、無水硫酸ナトリウムで乾燥した。

- 20 減圧濃縮後、残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル: ヘキサン=1:1続いて酢酸エチルで溶出)で精製した。得られた固体を酢酸エチルとジイソプロピルエーテルの混合溶液で洗い、さらに酢酸エチルとジイソプロピルエーテルより再結晶することにより、標題化合物の低極性ジアステレオマー体2.13gを無色固体として得た。
- 25 ${}^{1}H-NMR$ (CDC1₃): 1. 14 (9H, s), 1. 96 (3H, d, J=6. 2Hz), 2. 37 (3H, s), 4. 40 (2H, q, J=7. 9Hz), 5. 03 (1H, d, J=13. 9Hz), 5. 1

2 (1H, d, J=13.9Hz), 6.66 (1H, d, J=5.5 Hz), 7.29-7.46 (3H, m), 7.66-7.76 (1H, m), 7.81-7.91 (1H, m), 8.38 (1H, d, J=5.5 5Hz).

5 実施例 4

1-[2-[[3-x+n-4-(2,2,2-h]]] + 2-h + 2-h

2-[[[3-メチル-4-(2,2,2-トリフルオロエトキシ) -2-ピリジニル]メチル]チオ]ベンズイミダゾール(3.53g)、1-クロロエチル 2-メチルプロパノエート(1.81g)、ヨウ化ナトリウム(3.00g)、炭酸カリウム(2.76g)およびアセトニトリル(100mL)の混合物を60℃で10時間攪拌した。1-クロエチル 2-メチルプロパノエート(1.20g)および炭酸カリウム(1.38g)を追加して60℃で終夜攪拌した。反応液を減圧濃縮後、酢酸エチル(100mL)を加え、水(50mL)、飽和食塩水(50mL)で洗浄後、無水硫酸マグネシウムで乾燥した。減圧濃縮後、残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン20=3:7続いて7:3で溶出)で精製することにより、1-[2-[[[3-メチル-4-(2,2,2-トリフルオロエトキシ)-2-ピリジニ

ル]メチル]チオ]-1H-ベンズイミダゾール-1-イル]エチル 2
ーメチルプロパノエート1.38gを淡黄橙色油状物として得た。
「H-NMR (CDCl₃):1.09 (3H,d,J=6.9Hz),
1.15 (3H,d,J=6.9Hz),1.82 (3H,d,J=6.
5 2Hz),2.35 (3H,s),2.48-2.66 (1H,m),
4.40 (2H,q,J=7.9Hz),4.86 (2H,s),6.66 (1H,d,J=5.6Hz),7.00 (1H,q,J=6.2Hz),7.15-7.30 (2H,m),7.52-7.60 (1H,m),7.65-7.73 (1H,m),8.37 (1H,d,J=5.10 6Hz).

1-[2-[[3-メチル-4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾールー1-イル]エチル 2-メチルプロパノエート(1.37g)のジクロロメタン溶液(30mL)に3-クロロ過安息香酸(含量:約65%:796mg)を0℃で加えた。0℃で1時間攪拌した後、炭酸水素ナトリウム水(30mL)と10%チオ硫酸ナトリウム水(10mL)で洗浄後、無水硫酸ナトリウムで乾燥した。減圧濃縮後、残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:1続いて酢酸エチルで溶出)で精製した。得られた固体を酢酸エチルとジイソプロピルエーテルの混合溶液で洗い、さらに酢酸エチルとジイソプロピルエーテルより再結晶することにより、標題化合物の低極性ジアステレオマー体466mgを無色固体として得た。

¹H-NMR (CDCl₃): 1. 05 (3H, d, J=7. 1Hz), 1. 13 (3H, d, J=7. 1Hz), 1. 97 (3H, d, J=6. 25 2Hz), 2. 38 (3H, s), 2. 47-2. 69 (1H, m), 4. 40 (2H, q, J=7. 8Hz), 5. 01 (1H, d, J=1 3. 8Hz), 5. 12 (1H, d, J=13. 8Hz), 6. 66 (1

H, d, J = 5.3 Hz), 7. 30-7.46(3 H, m), 7. 6 7-7.78(1 H, m), 7. 82-7.92(1 H, m), 8. 3 8(1 H, d, J = 5.3 Hz).

実施例5

5 1-[2-[[3-メチルー4-(2,2,2-トリフルオロエト キシ)-2-ピリジニル]メチル]スルフィニル]-1Hーベンズイミ ダゾール-1-イル]プロピル トリメチルアセテート

10 -2-ピリジニル]メチル]チオ]ベンズイミダゾール(3.53g)、
1-クロロプロピル トリメチルアセテート(1.78g)、ヨウ化ナトリウム(0.75g)、炭酸カリウム(2.76g)およびアセトニトリル(100mL)の混合物を60℃で終夜攪拌した。1-クロロプロピルトリメチルアセテート(0.89g)および炭酸カリウム(0.69g)を追加して60℃で5時間攪拌した。1-クロロプロピルトリメチルアセテート(0.89g)、ヨウ化ナトリウム(0.75g)および炭酸カリウム(0.69g)を追加して60℃で6時間攪拌した。1-クロロプロビルトリメチルアセテート(1.78g)および炭酸カリウム(1.38g)を追加して60℃で2日間攪拌した。反応液を30 減圧濃縮後、酢酸エチル(100mL)を加え、水(50mL)、飽和食塩水(50mL)で洗浄後、無水硫酸マグネシウムで乾燥した。減圧

2-[[3-メチル-4-(2,2,2-トリフルオロエトキシ)

1-[2-[[[3-メチルー4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾール15-1-イル]プロピル トリメチルアセテート(2.31g)のジクロロメタン溶液(50mL)に3-クロロ過安息香酸(含量:約65%:1.33g)を0℃で加えた。0℃で1時間攪拌した後、炭酸水素ナトリウム水(30mL)と10%チオ硫酸ナトリウム水(10mL)で洗浄後、無水硫酸ナトリウムで乾燥した。減圧濃縮後、残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:1続いて酢酸エチルで溶出)で精製した。酢酸エチルとジイソプロピルエーテルより結晶化させ、ろ取し、ジイソプロピルエーテルで洗浄した。さらに酢酸エチルとジイソプロピルエーテルより再結晶することにより、標題化合物の低極性ジアステレオマー体667mgを無色固体として得た。

25 ${}^{1}H-NMR$ (CDC1₃): 0. 99 (3H, t, J=7. 5Hz), 1. 15 (9H, s), 2. 22-2. 52 (2H, m), 2. 37 (3 H, s), 4. 40 (2H, q, J=7. 8Hz), 5. 01 (1H,

d, J=13.9Hz), 5.14 (1H, d, J=13.9Hz),
6.66 (1H, d, J=5.5Hz), 7.10 (1H, t, J=7.
3Hz), 7.30-7.43 (2H, m), 7.63-7.74 (1H, m), 7.83-7.93 (1H, m), 8.39 (1H, d, J=5.5Hz).

実施例6

5

10

20

シクロヘキシル 1-[2-[[3-メチルー4-(2,2,2-1)]]トリフルオロエトキシ) -2-ピリジニル]メチル] スルフィニル] -11 H-ベンズイミダゾールー1ーイル] エチル カーボネート

2-[[[3-メチル-4-(2,2,2-トリフルオロエトキシ) -2-ピリジニル]メチル]チオ]ベンズイミダゾール(2.12g) と1-クロロエチル シクロヘキシルカーボネート(1.86g)のアセトニトリル溶液(50mL)にヨウ化ナトリウム(0.45g)と炭酸カリウム(1.66g)を加え、60℃で34時間攪拌した。アセトニトリルを減圧留去後、残留物を酢酸エチル(150mL)と水(50

残留物をシリカゲルクロマトグラフィー (酢酸エチル: $^{+}$ ハキサン=1: 1で溶出)で精製し、シクロヘキシル 1-[2-[[3-メチル-4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾール-1-イル]エチル カーボネート

mL)で抽出した。有機層を分取し、10%亜硫酸ナトリウム水溶液(3

0 m L) で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮した。

1.00gをアモルファスとして得た。

1.00gをアレルアノスとしていた。

1H-NMR (CDC1₃): 1.08-1.98 (10H, m), 1.86 (3H, d, J=6.5Hz), 2.35 (3H, s), 4.44 (2H, q, J=7.5Hz), 4.54 (1H, m), 4.86 (2 H, s), 6.65 (1H, d, J=5.8Hz), 6.86 (1H, q, J=6.5Hz), 7.17-7.29 (2H, m), 7.56-7.72 (2H, m), 8.36 (1H, d, J=5.8Hz).シクロヘキシル 1-[2-[[[3-メチル-4-(2,2,2-hリフルオロエトキシ)-2-ピリジニル]メチル]チオ]-1Hーベンズイミダゾールー1ーイル]エチル カーボネート(0.99g)のジクロロメタン溶液 (11mL) に氷冷下、3ークロロ過安息香酸(含量:約65%:0.505g)のジクロロメタン溶液 (11mL) を滴下した。氷冷下、2時間攪拌後、ジクロロメタン (30mL) で希釈し、10% 亜硫酸ナトリウム水溶液 (20mL)、飽和炭酸水素ナトリウム

10% 亜硫酸テトリウム水溶液 (20 m L)、 起和灰酸水系テトリウム 水 (20 m L) で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮 した。残留物をシリカゲルクロマトグラフィー(酢酸エチル: ヘキサン = 1:1で溶出)で精製し、さらに分取用HPLC(YMC社製ODS - A、直径20 m m、長さ250 m m: アセトニトリル: 水=38:62 で流速20 m L / 分で溶出)を用いて精製し、標題化合物の高極性ジア

20 ステレオマー体 0.08g、低極性ジアステレオマー体 0.13gを無 色固体として得た。

高極性ジアステレオマー体

¹H-NMR (CDCl₃): 1. 18-2. 02 (10H, m), 1. 92 (3H, d, J=6. 2Hz), 2. 26 (3H, s), 4. 38 (2H, q, J=7. 8Hz), 4. 59 (1H, m), 4. 90 (1 H, d, J=14.0Hz), 5. 30 (1H, d, J=14.0Hz), 6. 63 (1H, d, J=5.9Hz), 7. 24-7. 41 (2H,

m) 7. 69 (1H, q, J=6.2Hz), 7. 70-7. 82 (2 H, m), 8. 31 (1H, d, J=5.9Hz).

低極性ジアステレオマー体

¹H-NMR (CDCl₃): 1. 10-1. 99 (10H, m), 2. 00 (3H, d, J=6. 6Hz), 2. 38 (3H, s), 4. 40 (2H, q, J=7. 8Hz), 4. 51 (1H, m), 4. 99 (1H, d, J=13. 9Hz), 6. 67 (1H, d, J=5. 8Hz), 7. 28-7. 44 (3H, m), 7. 73-7. 89 (2H, m), 8. 38 (1H, d, J=5. 8Hz).

実施例7

5

10

15

シクロヘキシル 1-[(R)-2-[[[3-メチルー4-(2,2],2-トリフルオロエトキシ)-2-ピリジニル]メチル]スルフィニル<math>]-1H-ベンズイミダゾール]-1H-ベンズイミダゾール]-イル]エチル カーボネート

1-クロロエチル シクロヘキシルカーボネート(5.0g)の二硫 化炭素溶液(25mL)にヨウ化ナトリウム(6.8g)と塩化亜鉛(0.25g)を加え、室温で3時間攪拌した。反応液を氷水(100mL)にあけ、ジエチルエーテル(50mL)で2回抽出した。有機層を合わせ、10%亜硫酸ナトリウム水溶液(30mL)、飽和炭酸水素ナトリウム水(30mL)、水(30mL)で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮することによりシクロヘキシル 1-ヨードエチ

ルカーボネート6.10gを液体として得た。

- 5 46g)とのアセトン溶液(100mL)に炭酸セシウム(7.82g)を加え、15℃で2時間攪拌した。酢酸エチル(100mL)を加え、 ろ過後、減圧濃縮した。残留物を酢酸エチル(150mL)と水(100mL)で抽出した。有機層を分取し、10%亜硫酸ナトリウム水溶液(20mL)、飽和食塩水(30mL)で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮した。残留物をシリカゲルクロマトグラフィー
 - ウムで乾燥後、減圧濃縮した。残留物をシリカゲルクロマトグラフィー (アセトニトリル:ジイソプロピルエーテル=1:4で溶出)で精製した。さらに分取用HPLC (YMC社製ODS-A、直径30mm、長さ250mm:アセトニトリル:水=38:62で流速20mL/分で溶出)を用いて精製し、標題化合物の高極性ジアステレオマー体1.65
- 15 g、低極性ジアステレオマー体 0.48gを無色固体として得た。 高極性ジアステレオマー体
 - $^{1}H-NMR$ (CDCl₃): 1. 18-2.02 (10H, m), 1. 92 (3H, d, J=6.2Hz), 2.26 (3H, s), 4.38 (2H, q, J=7.8Hz), 4.59 (1H, m), 4.90 (1
- 20 H, d, J=14.0Hz), 5.30(1H, d, J=14.0Hz), 6.63(1H, d, J=5.9Hz), 7.24-7.41(2H, m) 7.69(1H, q, J=6.2Hz), 7.70-7.82(2 H, m), 8.31(1H, d, J=5.9Hz).

低極性ジアステレオマー体

 $^{1}H-NMR$ (CDCl₃): 1. 10-1. 99 (10H, m), 2. 00 (3H, d, J=6. 4Hz), 2. 38 (3H, s), 4. 40 (2H, q, J=7. 9Hz), 4. 51 (1H, m), 5. 00 (1

H, d, J=13.7Hz), 5.12(1H, d, J=13.7Hz), 6.67(1H, d, J=6.0Hz), 7.28-7.44(3H, m), 7.73-7.90(2H, m), 8.38(1H, d, J=6.0Hz).

5 実施例8

エチル 1-[(R)-2-[[[3-メチルー4-(2,2,2-1)]] トリフルオロエトキシ) -2-ピリジニル] メチル] スルフィニル] -1 H-ベンズイミダゾールー<math>1-イル] エチル カーボネート

10 1-クロロエチル エチル カーボネート(2.50g)の二硫化炭素溶液(12.5 mL)にヨウ化ナトリウム(3.4 g)と塩化亜鉛(0.13g)を加え、室温で7時間攪拌した。反応液を氷水(50 mL)にあけ、ジエチルエーテル(50 mL)で2回抽出した。有機層を合わせ、10%亜硫酸ナトリウム水溶液(25 mL)、飽和炭酸水素ナトリウム水(25 mL)、水(25 mL)で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮することによりエチル 1-ヨードエチルカーボネート3.53gを液体として得た。

(R) -2-[[[3-メチル-4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル]メチル]スルフィニル]ベンズイミダゾール(3.70g)とエチル 1-ヨードエチルカーボネート(3.52g)とのアセトン溶液(50mL)に炭酸セシウム(4.89g)を加え、室温で19時間攪拌した。アセトンを減圧留去し、残留物を酢酸エ

チル (150mL) と水 (100mL) で抽出した。有機層を分取し、 10% 亜硫酸ナトリウム水溶液 (50mL)、飽和食塩水 (50mL) で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮した。残留物を シリカゲルクロマトグラフィー (酢酸エチル:ヘキサン=1:1で溶出) で精製した。さらに分取用HPLC (YMC社製ODS-A、直径30mm、長さ250mm:アセトニトリル:水=27:73で流速20mL /分で溶出)を用いて精製し、標題化合物の高極性ジアステレオマー体 0.41g、低極性ジアステレオマー体 0.67gを無色固体として得 た。

10 高極性ジアステレオマー体

¹H-NMR (CDCl₃): 1. 27 (3H, t, J=7. 2Hz), 1. 93 (3H, d, J=6. 3Hz), 2. 26 (3H, s), 4. 08-4. 28 (2H, m), 4. 38 (2H, q, J=7. 8Hz), 4. 90 (1H, d, J=13. 7Hz), 5. 31 (1H, d, J= 15 13. 7Hz), 6. 64 (1H, d, J=6. 0Hz), 7. 28-7. 42 (2H, m), 7. 69-7. 83 (3H, m), 8. 32 (1H, d, J=6. 0Hz).

低極性ジアステレオマー体

¹H-NMR (CDCl₃): 1. 24 (3H, t, J=7. 2Hz), 20 2. 01 (3H, d, J=6. 2Hz), 2. 38 (3H, s), 3. 98-4. 27 (2H, m), 4. 40 (2H, q, J=7.8Hz), 4. 99 (1H, d, J=13.8Hz), 5. 12 (1H, d, J= 13. 8Hz), 6. 67 (1H, d, J=5.6Hz), 7. 30-7. 45 (3H, m), 7. 76 (1H, m), 7. 86 (1H, m), 25 8. 39 (1H, d, J=5.6Hz).

実施例9

ベンジル 1-[2-[[[3-メチル-4-(2,2,2-トリフ

ルオロエトキシ) - 2 - ピリジニル] メチル] スルフィニル] - 1 H - ベンズイミダゾール-1-イル] エチル カーボネート

ベンジルアルコール (5.17mL)、ピリジン (4.85mL) お よびジクロロメタン (100mL) の混合物に-78℃でクロロギ酸1 -クロロエチル (5.40mL) を加えて室温で3日間攪拌した。反応 液を減圧濃縮後、酢酸エチル (200mL) を加え、飽和食塩水 (100mL) で洗浄後、無水硫酸マグネシウムで乾燥した。減圧濃縮し、ベンジル 1-クロロエチル カーボネート11.3 gを黄色油状物とし て得た。

¹H-NMR (CDCl₃): 1.83 (3H, d, J=5.8Hz), 5.20 (1H, d, J=12.0Hz), 5.25 (1H, d, J=12.0Hz), 6.44 (1H, q, J=5.8Hz), 7.30-7.45 (5H, m).

バンジル 1-クロロエチル カーボネート(2.15g)、ヨウ化ナトリウム(3.00g)、18-クラウン-6(132mg)およびトルエン(20mL)の混合物を80℃で12時間、室温で2日間攪拌した。反応液に酢酸エチル(50mL)を加え、水(30mL)、10%チオ硫酸ナトリウム水(30mL)、飽和食塩水(30mL)で洗浄後、20 無水硫酸マグネシウムで乾燥し、減圧濃縮した。残留物に2-[[3 -メチル-4-(2,2,2-トリフルオロエトキシ)-2-ピリジニ

ル]メチル]チオ]ベンズイミダゾール(3.53g)、ヨウ化ナトリウム(1.50g)、18-クラウン-6(264mg)、炭酸カリウム(2.76g)、アセトニトリル(100mL)を加え、60℃で18時間攪拌した。反応液を減圧濃縮後、酢酸エチル(100mL)を加え、水(50mL)、10%チオ硫酸ナトリウム水(50mL)、飽和食塩水(100mL)で洗浄後、無水硫酸マグネシウムで乾燥した。減圧濃縮後、残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=2:1続いて酢酸エチルで溶出)で精製後、ジイソプロピルエーテルを加えて固化させ、ろ取し、ベンジル 1-[2-[[3-10 メチル-4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾール-1-イル]エチル カーボネート703mgを無色固体として得た。

¹H-NMR (CDCl₃): 1.86 (3H, d, J=6.5Hz), 2.35 (3H, s), 4.40 (2H, q, J=7.9Hz), 4. 15 85 (2H, s), 5.02 (1H, d, J=11.7Hz), 5.1 7 (1H, d, J=11.7Hz), 6.65 (1H, d, J=5.5 Hz), 6.90 (1H, q, J=6.5Hz), 7.16-7.38 (7H, m), 7.52-7.75 (2H, m), 8.36 (1H, d, J=5.5Hz).

ベンジル 1-[2-[[[3-メチル-4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾール-1ーイル]エチル カーボネート(675mg)のジクロロメタン溶液(15mL)に3-クロロ過安息香酸(含量:約65%:372mg)を0℃で加えた。0℃で3時間攪拌した後、炭酸水素ナトリウム水(10mL)と10%チオ硫酸ナトリウム水(10mL)で洗浄後、無水硫酸ナトリウムで乾燥した。減圧濃縮後、残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:1続いて酢

酸エチルで溶出)で精製し、酢酸エチルとジイソプロピルエーテルを加えて固化させ、ろ取し、洗浄した。さらに酢酸エチルとジイソプロピルエーテルより再結晶することにより、標題化合物の低極性ジアステレオマー体320mgを無色固体として得た。

5 ¹H-NMR (CDCl₃): 1. 97 (3H, d, J=6. 2Hz), 2. 37 (3H, s), 4. 39 (2H, q, J=8. 0Hz), 4. 96-5. 19 (4H, m), 6. 63 (1H, d, J=5. 9Hz), 7. 20-7. 45 (8H, m), 7. 68-7. 94 (2H, m), 8. 35 (1H, d, J=5. 9Hz).

10 実施例10

イソプロピル 1-[(R)-2-[[[3-メチルー4-(2,2,2)]2-トリフルオロエトキシ)-2-ピリジニル]メチル]スルフィニル] <math>-1H-ベンズイミダゾール-1-イル]エチル カーボネート

2 ープロパノール (3.83 mL)、ピリジン (4.85 mL)、ジクロロメタン (100 mL) の混合物に - 78℃でクロロギ酸1 ークロロエチル (5.40 mL) を加えて室温で3日間攪拌した。反応液を減圧濃縮後、酢酸エチル (200 mL) を加え、飽和食塩水 (100 mL)で洗浄後、無水硫酸マグネシウムで乾燥した。減圧濃縮し、1 ークロロエチル イソプロピル カーボネート7.87gを黄橙色油状物として得た。

 $^{1}H-NMR$ (CDCl₃): 1.33 (3H, d, J=6.3Hz),

1. 34 (3H, d, J=6. 3Hz), 1. 83 (3H, d, J=5. 8Hz), 4. 88-5. 02 (1H, m), 6. 43 (1H, q, J=5. 8Hz).

1-クロロエチル イソプロピル カーボネート(5.00g)、ヨ ウ化ナトリウム(6.30g)、塩化亜鉛(205mg)、二硫化炭素(25mL)の混合物を室温で4時間攪拌した。反応液に氷水を加え、エーテル(50mL×2)で抽出した。有機層を、炭酸水素ナトリウム水(30mL)、10%チオ硫酸ナトリウム水(30mL)で洗浄後、無水硫酸マグネシウムで乾燥した。減圧濃縮し、1-ヨードエチル イ ソプロピル カーボネート6.18gを黒黄色油状物として得た。 1 H-NMR(CDC1 $_3$):1.33(3H,d,J=6.2Hz),1.35(3H,d,J=6.0Hz),4.85-5.05(1H,m),6.77(1H,q,J=6.0Hz),

(R) -2-[[[3-メチル-4-(2,2,2-トリフルオロエ 15 トキシ) -2-ピリジル] メチル] スルフィニル] ベンズイミダゾール (5.54g)、1-ヨードエチル イソプロピル カーボネート(5.68g)、炭酸セシウム(9.77g)、アセトン(100mL)の混 合物を室温で1時間攪拌した。反応液を減圧濃縮後、酢酸エチル(20 0 m L) を加え、水(100 m L)、10%チオ硫酸ナトリウム水(1 .2000mL)、飽和食塩水(100mL)で洗浄後、無水硫酸マグネシウ ムで乾燥した。減圧濃縮後、残留物をシリカゲルカラムクロマトグラフ ィー(酢酸エチル:ヘキサン=1:1続いて酢酸エチルで溶出)で精製 し、ジイソプロピルエーテルを加えて固化させ、ろ取し、洗浄した。さ らに酢酸エチルとジイソプロピルエーテルより再結晶することにより、 25 標題化合物の低極性ジアステレオマー体1.40gを無色固体として得 た。

 ${}^{1}H-NMR$ (CDC1₃): 1. 15 (3H, d, J=6. 2Hz), 1. 28 (3H, d, J = 6.2Hz), 2. 00 (3H, d, J = 6.2 Hz), 2.37 (3H, s), 4.40 (2H, q, J=7.8H z), 4. 68-4. 88 (1H, m), 5. 00 (1H, d, J=13.7Hz), 5.12(1H, d, J=13.7Hz), 6.66(1H, d, J = 5.7 Hz), 7. 28 - 7.46(3 H, m), 7. 7 0-7.93(2H, m), 8.38(1H, d, J=5.7Hz).実施例11

イソプロピル 1-[2-[[3-メチル-4-(2,2,2-ト リフルオロエトキシ) -2-ピリジニル] メチル] スルフィニル] -1 10 H-ベンズイミダゾールー1-イル] エチル カーボネート

5

15

1-クロロエチル イソプロピル カーボネート (5.15g)の二 硫化炭素溶液(30mL)にヨウ化ナトリウム(9.27g)と塩化亜 鉛(0.30g)を加え、室温で2.5時間攪拌した。反応液を氷水(1 50mL) にあけ、ジエチルエーテル (50mL) で3回抽出した。有 機層を合わせ、10%亜硫酸ナトリウム水溶液(30mL)、飽和炭酸 水素ナトリウム水 (30mL)、水(30mL)で洗浄した。無水硫酸 マグネシウムで乾燥後、減圧濃縮することにより1-ヨードエチル イ ソプロピル カーボネート5.01gを液体として得た。 20

2-[[[3-メチル-4-(2,2,2-トリフルオロエトキシ) -2-ピリジニル] メチル] スルフィニル] ベンズイミダゾール(2.

64g)、1ーヨードエチル イソプロピル カーボネート(2.03g)のアセトン溶液(70mL)に炭酸セシウム(2.56g)を加え、室温で2時間攪拌した。アセトンを減圧留去し、残留物を酢酸エチル(140mL)と水(70mL)で抽出した。有機層を分取し、10%亜硫酸ナトリウム水溶液(30mL)、飽和食塩水(30mL)で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮した。残留物をシリカゲルクロマトグラフィー(酢酸エチル:ヘキサン=2:1で溶出)で精製した。さらに分取用HPLC(YMC社製ODS-A、直径30mm、長さ250mm、アセトニトリル:水=33:67で流速20mL/分で溶出)を用いて精製し、標題化合物の低極性ジアステレオマー体0.296gを無色固体として得た。

¹H-NMR (CDCl₃): 1. 15 (3H, d, J=6.0Hz), 1. 28 (3H, d, J=6.3Hz), 2. 00 (3H, d, J=6.3Hz), 2. 38 (3H, s), 4. 40 (2H, q, J=7.9H 2), 4. 78 (1H, m), 5. 00 (1H, d, J=13.8Hz), 5. 12 (1H, d, J=13.8Hz), 6. 67 (1H, d, J=5.6Hz), 7. 31-7. 44 (3H, m), 7. 76 (1H, m), 7. 88 (1H, m), 8. 39 (1H, d, J=5.6Hz). 実施例12

20 イソプロピル 1-[(S)-2-[[[3-メチルー4-(2,2,2,2-1)]]] 2-1 1-1

(S) -2-[[[3-メチルー4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル]メチル]スルフィニル]-1H-ベンズイミダゾール(3.70g)、イソプロピル 1-ヨードエチル カーボ ネート(2.86g)のアセトン溶液(100mL)に氷冷下、炭酸セシウム(3.62g)を加え、1.5時間攪拌した。反応液を減圧濃縮した後、残留物を酢酸エチルと水で抽出した。有機層を分取し、飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮し、残留物をシリカゲルクロマトグラフィー(酢酸エチル:ヘキサン=2:1で溶出)で精製し、得られた固体を酢酸エチルーイソプロピルエーテルから再結晶し、標題化合物の低極性ジアステレオマー体0.75gを無色固体として得た。

H-NMR (CDCl₃): 1. 15 (3H, d, J=6. 2Hz),
1. 27 (3H, d, J=6. 2Hz), 2. 00 (3H, d, J=6.
15 6Hz), 2. 37 (3H, s), 4. 40 (2H, q, J=8. 0Hz), 4. 80-4. 95 (1H, m), 5. 00 (1H, d, J=14. 0Hz), 5. 12 (1H, d, J=14. 0Hz), 6. 67 (1H, d, J=6. 0Hz), 7. 30-7. 50 (3H, m), 7. 70-7. 95 (2H, m), 8. 38 (1H, d, J=6. 0Hz).

20 実施例 1 3

1,3-ジエトキシー2-プロピル 1-[2-[[3-メチルー

4-(2,2,2-)リフルオロエトキシ)-2-ピリジニル]メチル] スルフィニル]-1 H-ベンズイミダゾール-1-イル] エチル カーボネート

5 2-[[[3-メチルー4-(2,2,2-トリフルオロエトキシ) -2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾール(1.77g)のアセトン溶液(30mL)に、参考例7の化合物(3.00g)と炭酸セシウム(2.61g)を加え室温で18時間攪拌した。反応液を酢酸エチルー水で抽出し、有機層を飽和食塩水で洗浄後、無水硫10酸マグネシウムで乾燥し、減圧濃縮した。残留物をシリカゲルクロマトグラフィー(酢酸エチル:ヘキサン=2:1で溶出)で精製し、1,3ージエトキシー2ープロピル 1-[2-[[[3-メチルー4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル]メチル]チオ]ー1H-ベンズイミダゾールー1ーイル]エチルカーボネート0.45gを無色固体として得た。

¹H-NMR (CDCl₃): 0. 97 (3H, t, J=7. 0Hz), 1. 17 (3H, t, J=7. 0Hz), 1. 87 (3H, d, J=6. 2Hz), 2. 35 (3H, s), 3. 20-3. 70 (8H, m), 4. 40 (2H, q, J=5. 8Hz), 4. 70-4. 95 (1H, 20 m), 4. 85 (2H, s), 6. 66 (1H, d, J=6. 0Hz), 6. 87 (1H, q, J=6. 2Hz), 7. 10-7. 30 (2H,

m), 7. 55-7. 75 (2H, m), 8. 36 (1H, d, J=6. 0Hz).

1,3-ジエトキシー2-プロピル 1-[2-[[3-メチルー 4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル]メチル] チオ] -1H-ベンズイミダゾール-1-イル] エチル カーボネート (O. 44g) のトルエン溶液 (10mL) に氷冷下、3-クロロ過安 息香酸(含量:約65%:0.15g)を加え、3時間攪拌した。反応 液を酢酸エチルー水で抽出し、有機層を、10%チオ硫酸ナトリウム水 溶液、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧濃縮 した。残留物をシリカゲルクロマトグラフィー(酢酸エチルで溶出)で、 10 精製し、ジイソプロピルエーテルから結晶化することにより、標題化合 物の低極性ジアステレオマー体 0.25gを無色固体として得た。 $^{1}H-NMR$ (CDC1₃): 0.87 (3H, t, J=7.0Hz), 1. 17 (3H, t, J=7.0Hz), 2. 01 (3H, d, J=6. $6 \,\mathrm{Hz}$), 2. 37 (3H, s), 3. 10-3. 65 (8H, m), 15 4. 40 (2H, q, J=8. 2Hz), 4. 80-4. 95 (1H, m), 5.00 (1H, d, J=14.0Hz), 5.12 (1H, d, J = 14.0 Hz), 6.67 (1H, d, J = 5.8 Hz), 7.3 0-7.50 (3H, m), 7.70-7.90 (2H, m), 8.38 (1H, d, J=5.8Hz). 20

実施例14

25

10

gを無色固体として得た。

2-[[3-x+n-4-(2,2,2-h)] アンスタン 2-h アン

4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル]メチル]

チオ] -1 H-ベンズイミダゾール-1 -イル] エチル カーボネート (1.45g)のトルエン溶液(20mL)に氷冷下、3-クロロ過安 息香酸(含量:約65%:0.506g)を加え、3時間攪拌した。反 応液を酢酸エチルー水で抽出し、有機層を、10%チオ硫酸ナトリウム 水溶液、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残留物をシリカゲルクロマトグラフィー(酢酸エチルで溶出)で精製し、酢酸エチルージイソプロピルエーテルから再結晶することに より、標題化合物の低極性ジアステレオマー体0.85gを無色固体として得た。

実施例 1 5

1-[2-[[3-x+n-4-(2,2,2-h]]] 1-[2-[[3-x+n-4-(2,2,2-h]]] 1-[2-[[3-x+n-4-(2,2,2-h]]] 1-[2-[2-k]] 1-[2-k] 1-

10

2-[[3-メチル-4-(2,2,2-トリフルオロエトキシ) -2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾール(2. 47g)のアセトン溶液(20mL)に、参考例11の化合物(3.0) 0g)と炭酸セシウム(3.25g)を加え室温で3時間攪拌した。反 応液を酢酸エチルー水で抽出し、有機層を飽和食塩水で洗浄後、無水硫 ** 酸マグネシウムで乾燥し、減圧濃縮した。残留物をシリカゲルクロマト グラフィー(酢酸エチル:ヘキサン=2:1で溶出)で精製し、1-[2 - [[[3-メチル-4- (2, 2, 2-トリフルオロエトキシ) - 2 ーピリジニル] メチル] チオ] -1H-ベンズイミダゾール-1-イル] エチル テトラヒドロー2 Hーピランー4ーイル カーボネート0.8 5 gを無色固体として得た。

 $^{1}H-NMR$ (CDC1₃): 1.50-2.10 (4H, m), 1.8 8 (3H, d, J=6.4Hz), 2.36 (3H, s), 3.35-3. 55 (2H, m), 3. 80-4.00 (2H, m), 4. 40 (2 15 H, q, J = 7.8Hz), 4.65-4.85 (1H, m), 4.8 6 (2H, s), 6.66 (1H, d, J=5.8Hz), 6.88 (1H, q, J = 6.4 Hz), 7.20-7.30 (2H, m), 7.5 5-7.75(2H, m), 8.36(1H, d, J=5.8Hz).20

キシ) -2ーピリジニル]メチル]チオ] -1H-ベンズイミダゾール -1ーイル]エチル テトラヒドロー2H-ピランー4ーイル カーボネート(0.70g)のトルエン溶液(15mL)に氷冷下、3ークロロ過安息香酸(含量:約65%:0.252g)を加え、3時間攪拌した。反応液を酢酸エチルー水で抽出し、有機層を、10%チオ硫酸ナトリウム水溶液、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残留物をシリカゲルクロマトグラフィー(酢酸エチルで溶出)で精製し、酢酸エチルージイソプロピルエーテルから再結晶することにより、標題化合物の低極性ジアステレオマー体0.48gを無色10 固体として得た。

¹H-NMR (CDCl₃): 1.50-1.90 (4H, m), 2.0 2 (3H, d, J=6.2Hz), 2.38 (3H, s), 3.30-3.55 (2H, m), 3.75-4.00 (2H, m), 4.41 (2 H, q, J=7.6Hz), 4.60-4.80 (1H, m), 5.0 15 0 (1H, d, J=13.8Hz), 5.12 (1H, d, J=13. 8Hz), 6.67 (1H, d, J=5.8Hz), 7.30-7.5 0 (3H, m), 7.70-7.95 (2H, m), 8.37 (1H, d, J=5.8Hz).

実施例16

20 2- 2- 2- 1- [2- [2- [2-]3- 2- 2- 2- 1- 2- 2- 1- 2- 2- 2- 1- 2-

5

10

¹H-NMR (CDCl₃): 1.87 (3H, d, J=6.2Hz), 2.35 (3H, s), 3.32 (3H, s), 3.55 (2H, t, J=4.4Hz), 4.10-4.50 (4H, m), 4.85 (2H, s), 6.66 (1H, d, J=5.8Hz), 6.89 (1H, q, J=6.2Hz), 7.15-7.30 (2H, m), 7.50-7. 75 (2H, m), 8.36 (1H, d, J=5.8Hz).

2-メトキシエチル 1-[2-[[3-メチルー4-(2,2,2)20 2-トリフルオロエトキシ)-2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾールー1-イル]エチル カーボネート(1.50g)

15 実施例17

5

10

20

1-[2-[[[3-x+n-4-(2,2,2-h]]]] + 2-h + 2-h

2-[[[3-メチル-4-(2,2,2-トリフルオロエトキシ)

-2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾール(0.67g)のアセトン溶液(10mL)に、参考例15の化合物(1.20g)と炭酸セシウム(0.912g)を加え室温で18時間攪拌した。 反応液を酢酸エチルー水で抽出し、有機層を飽和食塩水で洗浄後、無水 硫酸マグネシウムで乾燥し、減圧濃縮した。残留物をシリカゲルクロマトグラフィー(酢酸エチル:ヘキサン=2:1で溶出)で精製し、1-[2-[[[3-メチル-4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾールー1ーイル]エチル 3-メトキシー2-(メトキシメチル)-2-メチルプロバノエート(1-[2-[[3-メチルー4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾールー1ーイル]エチル 2,2-ピス(メトキシメチル)プロバノエート)0.280gを無色固体として得た。

¹H-NMR (CDCl₃): 1. 15 (3H, s), 1. 83 (3H, d, J=6.2Hz), 2. 35 (3H, s), 3. 13 (3H, s), 3. 19 (3H, s), 3. 41 (2H, s), 3. 44 (2H, s), 4. 40 (2H, q, J=8.2Hz), 4. 85 (2H, s), 6. 66 (1H, d, J=5.8Hz), 7. 03 (1H, q, J=6.2Hz), 7. 10-7. 30 (2H, m), 7. 50-7. 60 (1H, m), 7. 62-7. 75 (1H, m), 8. 36 (1H, d, J=5.8Hz).

1-[2-[[[3-メチル-4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾールー1-イル]エチル 2,2-ビス(メトキシメチル)プロパノエート (0.27g)のトルエン溶液(10mL)に氷冷下、3ークロロ過安息香酸(含量:約65%:95mg)を加え、1時間攪拌した。反応液を酢酸エチルー水で抽出し、有機層を、10%チオ硫酸ナトリウム水溶

液、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残留物をシリカゲルクロマトグラフィー(酢酸エチル:ヘキサン=2:1で溶出)で精製し、酢酸エチルージイソプロピルエーテルから再結晶することにより、標題化合物の低極性ジアステレオマー体0.12gを無色固体として得た。

¹H-NMR (CDCl₃): 1. 14 (3H, s), 1. 98 (3H, d, J=6.2Hz), 2. 37 (3H, s), 3. 05 (3H, s), 3. 12 (3H, s), 3. 30-3.50 (4H, m), 4. 40 (2H, q, J=8.0Hz), 5. 00 (1H, d, J=13.8Hz), 5. 12 (1H, d, J=13.8Hz), 6. 66 (1H, d, J=5.6Hz), 7. 25-7.50 (3H, m), 7. 65-7.75 (1H, m), 7. 80-7.90 (1H, m), 8. 38 (1H, d, J=5.6Hz).

実施例 18

5

15 1-[2-[[3-x+n-4-(2,2,2-h]]] 1-[2-[[3-x+n-4-(2,2,2-h]]] 1-[1-x+n] 1-[1-x+n]

参考例16の化合物を用い、実施例17と同様の操作を行うことで標 20 題化合物の低極性ジアステレオマー体1.80gを合成した。

 ${}^{1}H-NMR$ (CDC1₃) : 1. 40-2. 00 (8H, m), 1. 9

6 (3H, d, J=6.2Hz), 2.37 (3H, s), 2.60-2.90 (1H, m), 4.40 (2H, q, J=7.6Hz), 5.00 (1H, d, J=13.8Hz), 5.12 (1H, d, J=13.8Hz), 6.66 (1H, d, J=5.8Hz), 7.30-7.45 (3H, m), 7.65-7.75 (1H, m), 7.80-7.90 (1H, m), 8.38 (1H, d, J=5.8Hz).

実施例 1 9

5

 $2\sqrt{2}$ $2\sqrt{$

2-[[[3-メチル-4-(2,2,2-トリフルオロエトキシ) -2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾール(3. 18g)、シクロペンチル 1-ヨードエチル カーボネート(3.8 15 4g)、炭酸水素ナトリウム(3.78g)およびアセトニトリル(20mL)の混合物を室温で24時間攪拌した。反応液に水(50mL)を加え、酢酸エチル(50mL)で抽出後、酢酸エチル層を飽和食塩水(50mL)で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧濃縮して得られた残留物をシリカゲルフラッシュカラムクロマトグラフィー(酢酸エチル:ヘキサン=4:1で溶出)で精製するとシクロペンチル 1-[2-[[3-メチル-4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾ

ールー1ーイル] エチル カーボネート2.69gが淡黄橙色粉末晶として得られた。

 $^{1}H-NMR$ (CDC1₃) : 1. 52-2. 00 (8H, m), 1. 8 6 (3H, d, J=6.2Hz), 2.35 (3H, s), 4.40 (2H, q, J = 8.0 Hz), 4.86 (2H, s), 4.98-5.0 5 3 (1H, m), 6.66 (1H, d, J=6.0Hz), 6.89 (1H, q, J = 6.2 Hz), 7. 17-7. 27 (2H, m), 7. 5 6-7.72 (2H, m), 8.36 (1H, d, J=6.0Hz). 1-[2-[[3-メチル-4-(2,2,2-トリフルオロエト 10 キシ) - 2 - ピリジニル] メチル] チオ] - 1 H - ベンズイミダゾール -1-7ル] エチル カーボネート (2.62g) のトルエン (10m L)溶液に3-クロロ過安息香酸(含量:約65%:1.27g)を0℃ で加えた。0℃で3時間攪拌した後、反応液に水(50mL)を加え、 酢酸エチル (50 m L) で抽出した。酢酸エチル層を炭酸水素ナトリウ ム水 (50 m L) と飽和食塩水 (50 m L) で洗浄後、無水硫酸ナトリ 15 ウムで乾燥した。減圧濃縮後、残留物をシリカゲルフラッシュカラムク ロマトグラフィー(酢酸エチル:ヘキサン=5:1-10:1で溶出) で精製し、酢酸エチルージイソプロピルエーテルより結晶化すると標題 化合物の低極性ジアステレオマー体707mgが白色粉末晶として得ら

¹H-NMR (CDCl₃): 1. 40-1. 90 (8H, m), 2. 0
0 (3H, d, J=6.6Hz), 2. 37 (3H, s), 4. 44 (2H, q, J=8.0Hz), 4. 96-5. 03 (1H, m), 5. 0
0 (1H, d, J=13.6Hz), 5. 12 (1H, d, J=13.6Hz), 6. 67 (1H, d, J=6.0Hz), 7. 26-7. 4
4 (3H, m), 7. 71-7. 76 (1H, m), 7. 83-7. 8
9 (1H, m), 8. 38 (1H, d, J=6.0Hz).

れた。

20

実施例20

2-(rセチルアミノ) エチル 1-[2-[[3-メチルー4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル] メチル] スルフィニル] -1 H -ベンズイミダゾールー1 -イル] エチル カーボ 3

2-「[[3-メチルー4-(2,2,2-トリフルオロエトキシ) -2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾール(62 6 mg)、2-(アセチルアミノ)エチル 1-ヨードエチル カーボ * ネート (800mg)、炭酸水素ナトリウム (743mg) およびアセ 10 トニトリル (20mL) の混合物を室温で20時間攪拌した。反応液に 水(50mL)を加え、酢酸エチル(100mL)で抽出後、酢酸エチ ル層を飽和食塩水(100mL)で洗浄し、無水硫酸ナトリウムで乾燥 した。ろ過後、減圧濃縮して得られた残留物をシリカゲルフラッシュカ ラムクロマトグラフィー (アセトン:ヘキサン=1:1で溶出)で精製 15 し、ジイソプロピルエーテルから結晶化すると2-(アセチルアミノ) エチル 1-[2-[[[3-メチル-4-(2,2,2-トリフルオ ロエトキシ) -2-ピリジニル] メチル] チオ] -1H-ベンズイミダ ゾールー1ーイル]エチル カーボネート265mgが淡黄色粉末晶と して得られた。 20

 ${}^{1}H-NMR$ (CDC1₃): 1.87 (3H, s), 1.90 (3H,

d, J=6. 2 Hz), 2. 36 (3 H, s), 3. 46 (2 H, q, J=6. 0 Hz), 4. 18 (2 H, t, J=6. 0 Hz), 4. 45 (2 H, q, J=8. 2 Hz), 4. 82 (2 H, d, J=13. 6 Hz), 4. 89 (2 H, d, J=13. 6 Hz), 5. 75 (1 H, bs), 6. 66 (1 H, d, J=6. 2 Hz), 6. 84 (1 H, q, J=6. 2 Hz), 7. 20-7. 31 (2 H, m), 7. 56-7. 60 (1 H, m), 7. 68-7. 72 (1 H, m), 8. 35 (1 H, d, J=6. 2 Hz).

2- (アセチルアミノ) エチル 1- [2- [[3-メチル-4-10 (2,2,2-トリフルオロエトキシ) -2-ピリジニル] メチル] チオ]-1H-ベンズイミダゾール-1-イル]エチル カーボネート(500mg)のトルエン(5mL)溶液に3-クロロ過安息香酸(含量:約65%:277mg)を0℃で加えた。室温で2時間攪拌した後、反応液に水(50mL)を加え、酢酸エチル(50mL×2)で抽出した。15 酢酸エチル層を炭酸水素ナトリウム水(100mL)と飽和食塩水(100mL)で洗浄後、無水硫酸ナトリウムで乾燥した。減圧濃縮して得た残留物をシリカゲルフラッシュカラムクロマトグラフィー(アセトン:ヘキサン=1:1-2:1で溶出)で精製し、ジイソプロピルエーテルより結晶化すると標題化合物の低極性ジアステレオマー体319m20 gが白色粉末晶として得られた。

H-NMR (CDC1₃): 1. 74 (3H, s), 2. 03 (3H, d, J=6.2Hz), 2. 37 (3H, s), 3. 36-3. 48 (2H, m), 4. 02-4. 14 (1H, m), 4. 25-4. 34 (1H, m), 4. 39 (2H, q, J=6.6Hz), 5. 03 (1H, d, J=6.4Hz), 5. 26 (1H, d, J=6.4Hz), 6. 48 (1H, bs), 6. 63 (1H, d, J=5.4Hz), 7. 2 (1H, q, J=6.2Hz), 7. 33-7. 48 (2H, m),

7. 64-7. 69 (1H, m), 7. 81-7. 86 (1H, m), 8. 23 (1H, d, J=5. 4Hz).

実施例21

10

15

20

ジエチル 3-[[[1-[2-[[[3-メチル-4-(2,2,5]]2-]2-]3-]3-[[[3-メチル-4-(2,2,5]]2-]3-]3-[3-

ールー1ーイル]エトキシ]カルボニル]オキシ]-1,5ーペンタンジオエート1.27gが淡黄色粉末晶として得られた。

 $^{1}H-NMR$ (CDC1₃): 0.99 (3H, t, J=7.0Hz), 1.25 (3H, t, J=7.2Hz), 2.86 (3H, d, J=6.

- 5 4 Hz), 2. 35 (3H, s), 2. 64 (2H, d, J=6.6Hz), 2. 72 (2H, d, J=6.6Hz), 3. 74-3.96 (2H, m), 4. 13 (2H, q, J=7.0Hz), 4. 37 (2H, q, J=7.2Hz), 4. 82 (1H, d, J=13.8Hz), 4. 88 (1H, d, J=13.8Hz), 5. 32 (1H, d, J=6.
- 10 6 H z), 6.66 (1 H, d, J = 5.8 H z), 6.87 (1 H, q, J = 6.4 H z), 7.16-7.29 (2 H, m), 7.52-7.58 (1 H, m), 7.66-7.70 (1 H, m), 8.36 (1 H, d, J = 5.2 H z).

ジエチル 3-[[[1-[2-[[[3-メチル-4-(2,2,1]] 2-トリフルオロエトキシ)-2-ピリジニル]メチル]チオ]-1H -ベンズイミダゾール-1-イル]エトキシ]カルボニル]オキシ]-1,5-ペンタンジオエート(500mg)のトルエン(5mL)溶液に3-クロロ過安息香酸(含量:約65%:233mg)を0℃で加えた。室温で3時間攪拌した後、反応液に水(50mL)を加え、酢酸エ

20

25

チル (100 m L) で抽出した。酢酸エチル層を炭酸水素ナトリウム水 (100 m L) と飽和食塩水 (100 m L) で洗浄後、無水硫酸ナトリウムで乾燥した。減圧濃縮して得た残留物をシリカゲルフラッシュカラムクロマトグラフィー (酢酸エチル:ヘキサン=1:4で溶出)で精製し、ジイソプロピルエーテルより結晶化すると標題化合物の低極性ジアステレオマー体302 m g が白色粉末晶として得られた。

 ${}^{1}H-NMR$ (CDC1₃): 0. 94 (3H, t, J=7. 0Hz), 1. 25 (3H, t, J=7. 0Hz), 2. 00 (3H, d, J=6.

2 H z), 2. 36 (3 H, s), 2. 60 (2 H, d, J=6. 2 H z), 2. 72 (2 H, d, J=6. 2 H z), 3. 65-3. 88 (2 H, m), 4. 14 (2 H, q, J=7. 0 H z), 4. 41 (2 H, q, J=7. 0 H z), 5. 03 (1 H, d, J=14. 0 H z), 5. 11 (1 H, d, J=14. 0 H z), 5. 31 (1 H, q, J=6. 2 H z), 6. 67 (1 H, d, J=6. 0 H z), 7. 31-7. 4 2 (3 H, m), 7. 67-7. 76 (1 H, m), 7. 82-7. 8 8 (1 H, m), 8. 37 (1 H, d, J=6. 0 H z).

実施例 2 2

10 1-[2-[[3-x+n-4-(2,2,2-h]]] 1-[2-[[3-x+n-4-(2,2,2-h]]] 1-[2-h] 1-

2-[[[3-メチル-4-(2,2,2-トリフルオロエトキシ)
15 -2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾール(3.41g)、1-ヨードエチル アセテート(3.1g)、炭酸水素ナトリウム(2.44g)、塩化セシウム(3.25g)およびアセトニトリル(20mL)の混合物を室温で20時間攪拌した。反応液に水(20mL)を加え、酢酸エチル(100mL)で抽出後、酢酸エチル層を水(100mL)及び飽和食塩水(100mL)で洗浄し、無水硫酸ナトリウムで乾燥した。減圧濃縮して得られた残留物をシリカゲルフラッシュカラムクロマトグラフィー(アセトン:ヘキサン=1:10-1:

4で溶出)で精製し、ジイソプロピルエーテルから結晶化すると1-[2-[2-[3-x]] (2) -[[3-x]] (2) -[3-x] (3) -[3-x] (4) -[3-x] (2) -[3-x] (3) -[3-x] (4) -[3-x] (5) -[3-x] (6) -[3-x] (7) -[3-x] (7) -[3-x] (8) -[3-x] (9) -[3-x] (1) -[3-x] (1) -[3-x] (2) -[3-x] (3) -[3-x] (4) -[3-x] (5) -[3-x] (6) -[3-x] (7) -[3-x] (7) -[3-x] (8) -[3-x] (9) -[3-x] (9) -[3-x] (1) -[3-x] (1) -[3-x] (2) -[3-x] (3) -[3-x] (4) -[3-x] (5) -[3-x] (6) -[3-x] (7) -[3-x] (7) -[3-x] (8) -[3-x] (9) -

- 5 ¹H-NMR (CDC1₃): 1.83 (3H, d, J=6.2Hz), 2.05 (3H, s), 2.35 (3H, s), 4.40 (2H, q, J=8.0Hz), 4.85 (2H, s), 6.66 (1H, d, J= 5.4Hz), 7.02 (1H, q, J=6.2Hz), 7.18-7. 39 (2H, m), 7.52-7.59 (1H, m), 7.65-7.
- 1-[2-[[3-メチルー4-(2,2,2-トリフルオロエト キシ) -2-ピリジニル] メチル] チオ] -1 H-ベンズイミダゾール <math>-1-イル] エチル アセテート (500 m g) のトルエン (5 m L) 溶液に3-クロロ過安息香酸 (含量:約<math>65%:332 m g) を0 $\mathbb C$ $\mathbb C$

72 (1H, m), 8.37 (1H, d, J=5.4Hz).

10

- 15 加えた。室温で2時間攪拌した後、反応液に水(100mL)を加え、 酢酸エチル(100mL)で抽出した。酢酸エチル層を炭酸水素ナトリウム水(100mL)と飽和食塩水(100mL)で洗浄後、無水硫酸ナトリウムで乾燥した。減圧濃縮して得た残留物をシリカゲルフラッシュカラムクロマトグラフィー(酢酸エチル:ヘキサン=4:1-10:
- 20 1で溶出)で精製し、酢酸エチルージイソプロピルエーテルより結晶化すると標題化合物の低極性ジアステレオマー体300mgが白色粉末晶として得られた。

¹H-NMR (CDCl₃): 1. 98 (3H, d, J=6.6Hz), 2. 07 (3H, s), 2. 38 (3H, s), 4. 40 (2H, q, J=8.0Hz), 4. 98 (1H, d, J=14.0Hz), 5. 1 2 (1H, d, J=14.0Hz), 6. 66 (1H, d, J=5.8 Hz), 7. 33-7. 45 (3H, m), 7. 69-7. 73 (1H,

m), 7.83-7.90 (1H, m), 8.37 (1H, d, J=5.8Hz).

実施例 2 3

2-[[[3-メチル-4-(2,2,2-トリフルオロエトキシ) -2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾール(4· 10 34g)、1,3-ジオキサン-5-イル 1-ヨードエチル カーボ ネート (5.57g)、炭酸水素ナトリウム (3.1g)、塩化セシウ ム (4.14g) およびアセトニトリル (20mL) の混合物を室温で 20時間攪拌した。反応液に水(100mL)を加え、酢酸エチル(1 00mL×2)で抽出後、酢酸エチル層を水(100mL)及び飽和食 15 塩水(100mL)で洗浄し、無水硫酸ナトリウムで乾燥した。減圧濃 縮して得られた残留物をシリカゲルフラッシュカラムグロマトグラフィ - (アセトン: ヘキサン=1:5-1:2で溶出)で精製し、ジイソプ ロピルエーテルから結晶化すると1,3-ジオキサン-5-イル 1-[2-[[3-メチルー4ー(2,2,2-トリフルオロエトキシ) 20 -2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾール-1-イル]エチル カーボネート2.71gが淡黄色粉末晶として得られた。

 $^{1}H-NMR$ (CDC1₃): 1.89 (3H, d, J=6.2Hz), 2.35 (3H, s), 3.87-3.90 (1H, m), 3.98-4. 02 (1H, m), 4. 40 (2H, q, J=8.0Hz), 4. 51 (1H, quintet, J=3.0Hz), 4.79 (1H, d,J = 6.2 Hz), 4.85 (2H, s), 4.92 (1H, d, J =6. 2 Hz), 6. 65 (1H, d, J = 5. 8 Hz), 6. 89 (1 H, q, J = 6.2 Hz), 7. 18-7.30(2 H, m), 7. 5 7-7.73 (2H, m), 8.36 (1H, d, J=5.8Hz). 1,3-ジオキサン-5-イル 1-[2-[[3-メチル-4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル]メチル]チ 10 オ]-1H-ベンズイミダゾール-1-イル]エチル カーボネート(1. 05g) のトルエン (150mL) ーテトラヒドロフラン (15mL) 溶液に3-クロロ過安息香酸(含量:約65%:584mg)を0℃で 加えた。室温で2時間攪拌した後、酢酸エチル(100 m.L)を加え、 水(100mL)、炭酸水素ナトリウム水(100mL)、飽和食塩水 15 (100mL)で洗浄後、無水硫酸ナトリウムで乾燥した。減圧濃縮し て得た残留物をシリカゲルフラッシュカラムクロマトグラフィー(酢酸 エチル:ヘキサン=1:5-1:1続いて酢酸エチルで溶出)で精製し、 酢酸エチルージイソプロピルエーテルより結晶化すると標題化合物の低 極性ジアステレオマー体828mgが白色粉末晶として得られた。 20 $^{1}H-NMR$ (CDC1₃): 2.03 (3H, d, J=6.6Hz), 2. 37 (3H, s), 3. 86-3. 87 (2H, m), 3. 97-4. 00 (2H, m), 4. 42 (2H, q, J = 8. 0Hz), 4. 49 (1H, quintet, J=3.0Hz), 4.75 (1H, d,J = 6.2Hz), 4.93 (1H, d, J = 6.2Hz), 5.00 25 (1H, d, J=13.8Hz), 5.11(1H, d, J=13.8Hz), 6. 66 (1H, d, J=5.8Hz), 7. 33-7. 45

(3H, m), 7. 75-7. 82(1H, m), 7. 84-7. 88(1H, m), 8. 36(1H, d), J=5. 8Hz).

実施例24

15

1-[2-[[3-x+y-4-(2,2,2-h]]] 1-[2-[[3-x+y-4-(2,2,2-h]]] 1-[3-x+y-4-(2,2,2-h]] 1-[3-x+y-4-(2,2,2-h]]

2-[[3-メチルー4-(2,2,2-トリフルオロエトキシ) -2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾール(3.

10 13g)、炭酸セシウム(3.46g)、アセトン(50mL)の混合物に1-ヨードエチル シクロヘキサンカルボキシレート(2.50g)を滴下した。室温で4時間攪拌した後、不溶物をろ別し、減圧濃縮した。

残留物をシリカゲルクロマトグラフィー (酢酸エチル: \land キサン= 1: 1続いて2:1で溶出)で精製し、1-[2-[[3-メチルー4-

(2,2,2ートリフルオロエトキシ) -2-ピリジニル]メチル] チオ] -1 H -ベンズイミダゾールー1-イル] エチル シクロヘキサンカルボキシレート 1.7 2 gを無色油状物として得た。

 ${}^{1}H-NMR$ (CDCl₃): 1. 10-2. 00 (10H, m), 1. 81 (3H, d, J=6. 2Hz), 2. 20-2. 40 (1H, m),

20 2.35 (3H, s), 4.40 (2H, q, J=7.9Hz), 4. 85 (2H, s), 6.65 (1H, d, J=5.9Hz), 7.00

 $(1 \text{ H}, q, J=6.\ 2 \text{ Hz})$, $7.\ 16-7.\ 30\ (2 \text{ H}, m)$, $7.\ 50-7.\ 62\ (1 \text{ H}, m)$, $7.\ 64-7.\ 73\ (1 \text{ H}, m)$, $8.\ 36\ (1 \text{ H}, d, J=5.\ 9 \text{ Hz})$.

1-[2-[[3-メチルー4-(2,2,2-トリフルオロエト キシ) -2-ピリジニル] メチル] チオ] -1H-ベンズイミダゾール 5 -1-イル] エチル シクロヘキサンカルボキシレート (1.65g) のトルエン溶液(30mL)に氷冷下、3-クロロ過安息香酸(含量: 約65%:0.865g)を少量づつ加えた。氷冷下、1時間攪拌後、 酢酸エチル(100mL)を加え、炭酸水素ナトリウム水(50mL)、 チオ硫酸ナトリウム水溶液 (50mL)、食塩水 (50mL)で洗浄し 10 た。無水硫酸マグネシウムで乾燥後、減圧濃縮した。残留物をシリカゲ ルクロマトグラフィー(酢酸エチル:ヘキサン=2:1、続いて酢酸エ チルで溶出)で精製した。ジイソプロピルエーテルから結晶化し、酢酸 エチルージイソプロピルエーテルからの再結晶を行うことにより、標題 化合物の低極性ジアステレオマー体1.10gを無色固体として得た。 15 ${}^{1}H-NMR$ (CDC1₃): 1. 10-2. 00 (10H, m), 1. 96 (3H, d, J = 6.6Hz), 2.22-2.42 (1H, m), 2. 37 (3H, s), 4. 40 (2H, q, J=7. 8Hz), 5. 0.1 (1H, d, J=13.9Hz), 5.12 (1H, d, J=13.9 Hz), 6. 66 (1 H, d, J=5. 7 Hz), 7. 30-7. 4 20 5 (3H, m), 7.67-7.76 (1H, m), 7.82-7.92 (1H, m), 8.38 (1H, d, J=5.7Hz).

1-[2-[[3-x+n-4-(2,2,2-h]]] 1-[2-[[3-x+n-4-(2,2,2-h]]] 1-[2-k] 1-[2-

実施例25

2-[[[3-メチル-4-(2,2,2-トリフルオロエトキシ) -2-ピリジニル] メチル] チオ] -1H-ベンズイミダゾール(2. 20g)、炭酸水素ナトリウム(2.62g)およびアセトニトリル(6 0 m L) の混合物に 1 ー ヨードエチル メトキシアセテート (1.83 g)を滴下した。室温で4日間攪拌した後、酢酸エチル(100mL) を加え、水(50mL)、チオ硫酸ナトリウム水溶液(50mL)、食 塩水(50mL)で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃 縮した。残留物をシリカゲルクロマトグラフィー(酢酸エチル:ヘキサ ン=1:1、続いて4:1で溶出)で精製し、1-[2-[[3-メ 10 チルー4ー(2,2,2ートリフルオロエトキシ)ー2ーピリジニル] メチル]チオ]-1H-ベンズイミダゾール-1-イル]エチル メト キシアセテートを含む画分を集め、減圧濃縮した。残留物 1.65gの トルエン溶液(30mL)に氷冷下、3ークロロ過安息香酸(含量:約 65%:0.936g)を少量づつ加えた。氷冷下、1時間攪拌後、酢 15 酸エチル(100mL)を加え、炭酸水素ナトリウム水(50mL)、 チオ硫酸ナトリウム水溶液 (50mL)、食塩水 (50mL)で洗浄し た。無水硫酸マグネシウムで乾燥後、減圧濃縮した。残留物をシリカゲ ルクロマトグラフィー(酢酸エチル:ヘキサン=1:1、続いて酢酸エ チル、続いて酢酸エチル:エタノール=19:1で溶出)で精製した。 20 酢酸エチルージイソプロピルエーテルから結晶化し、酢酸エチルージイ ソプロピルエーテルからの再結晶を行うことにより、標題化合物の低極・

性ジアステレオマー体0.327gを無色固体として得た。

¹H-NMR (CDCl₃): 2. 01 (3H, d, J=6. 3Hz), 2. 37 (3H, s), 3. 36 (3H, s), 4. 06 (2H, s), 4. 40 (2H, q, J=7. 8Hz), 5. 08 (2H, s), 6. 65 (1H, d, J=5. 6Hz), 7. 31-7. 45 (2H, m), 7. 51 (1H, q, J=6. 3Hz), 7. 64-7. 73 (1H, m), 7. 82-7. 91 (1H, m), 8. 35 (1H, d, J=5. 6Hz).

実施例 2 6

10 4-[(R)-2-[[[3-メチル-4-(2,2,2-トリフル オロエトキシ)-2-ピリジニル]メチル]スルフィニル]-1H-ベンズイミダゾールー1ーイル]-1,3-ジオキソラン-2-オン

(R) -2-[[[3-メチル-4-(2,2,2-トリフルオロエトナシ)-2-ピリジニル]メチル]スルフィニル]-1H-ベンズイミダゾール ナトリウム塩(30.0g)のテトラヒドロフラン溶液(150mL)にヨウ化リチウム(63.7g)と4-(ジメチルアミノ)ピリジン(4.69g)を加え、室温で1時間撹拌した。反応液を-20℃に冷却し、4-クロロ-1,3-ジオキソラン-2-オン(13.8mL)を加えた後、0℃に昇温しさらに4時間撹拌した。反応液を酢酸エチル(1.5L)に加え、100mMリン酸緩衝液、10%チオ硫酸ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで

乾燥後減圧濃縮した。残留固体をジエチルエーテルで洗浄し減圧下乾燥した。得られた固体をアセトンから再結晶し、標題化合物の低極性ジアステレオマー体18.0gを無色固体として得た。

¹H-NMR (CDC1₃): 2.20 (3H, s), 4.41 (2H, q, J=8.0Hz), 4.75-5.00 (4H, m), 6.67 (1H, d, J=5.8Hz), 7.30-7.50 (3H, m), 7.8 0-7.90 (2H, m), 8.23 (1H, d, J=5.8Hz). 実施例 2 7

4-[2-[[3-メチルー4-(2,2,2-トリフルオロエト 10 キシ)-2-ピリジニル]メチル]スルフィニル]-1Hーベンズイミダゾール-1-イル]-1,3-ジオキソラン-2-オン

5

2-[[3-メチルー4-(2,2,2-トリフルオロエトキシ) -2-ピリジニル]メチル]チオ]-1H-ベンズイミダゾール(5.

 15 0g)のN, N-ジメチルホルムアミド溶液(20mL)に氷冷下、6 0%油性水素化ナトリウム(736mg)をヘキサンで洗浄後に加え、 0℃で1時間撹拌した。クロロエチレン カーボネート(2.07g) を加え、さらに1時間撹拌した後、酢酸エチルー水で抽出した。有機層 を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。
 20 残渣を酢酸エチルから再結晶し、4-[2-[[[3-メチル-4-(2,

2, 2-トリフルオロエトキシ) -2-ピリジニル] メチル] チオ] -1 H-ベンズイミダゾールー1-イル] -1, 3-ジオキソラン-2-

オンを無色固体 (3.0g) として得た。4-[2-[[[3-メチル-4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル] メチル]チオ]-1H-ベンズイミダゾール-1-イル]-1,3-ジオキソラン-2-オン(1.0g)を塩化メチレン(20mL)に溶解し、0℃に冷却した後、3-クロロ過安息香酸(含量:約65%、617mg)を加え、1時間撹拌した。反応液を塩化メチレンー飽和炭酸水素ナトリウム水で抽出し、有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧濃縮した。残留物をシリカゲルクロマトグラフィー(酢酸エチルで溶出)で精製した。酢酸エチルから再結晶し、標題化合物の高極性ジアステレオマー体(ラセミ体)400mgを無色固体として得た。

¹H-NMR (CDC1₃): 2. 25 (3H, s), 4. 35 (2H, q, J=7.8Hz), 4. 80-5. 10 (3H, m), 5. 24 (1H, d, J=14.6Hz), 6. 58 (1H, d, J=5.8Hz), 7. 30-7. 50 (3H, m), 7. 53 (1H, dd, J=4.8, 7. 6Hz), 7. 70-7. 80 (1H, m), 8. 18 (1H, d, J=5.8Hz).

実施例 2 8

4-[2-[[3-メチル-4-(2,2,2-トリフルオロエト]] + シ) - 2-ピリジニル] メチル] スルフィニル] - 1 H - ベンズイミダゾール-1-イル] - 1,3-ジオキソラン-2-オン

 $2-[[[3-メチル-4-(2,2,2-トリフルオロエトキシ)-2-ピリジニル]メチル]スルフィニル]-1H-ベンズイミダゾール(2.0g)のテトラヒドロフラン溶液(<math>50\,\mathrm{mL}$)に氷冷下、60%油性水素化ナトリウム($249\,\mathrm{mg}$)をヘキサンで洗浄後に加え、0%で30分間撹拌した後、ヨウ化リチウム($2.05\mathrm{g}$)とクロロエチレンカーボネート($1.38\mathrm{g}$)を加え、さらに2時間撹拌した。反応液を酢酸エチルー水で抽出し、有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチルで溶出)で精製した後、酢酸エチルから再結晶し、標題化合物の低極性ジアステレオマー(ラセミ体)860 mg を無色固体として得た。

5

10

¹H-NMR (CDCl₃): 2.19 (3H, s), 4.41 (2H, q, J=8.0Hz), 4.75-5.00 (4H, m), 6.67 (1H, d, J=5.8Hz), 7.30-7.50 (3H, m), 7.8 0-7.90 (2H, m), 8.23 (1H, d, J=5.8Hz). 産業上の利用可能性

本発明の化合物は、生体内でプロトンポンプ阻害薬であるランソプラ ゾールに変換されて、優れた抗潰瘍作用、胃酸分泌抑制作用、粘膜保護 作用、抗ヘリコバクター・ピロリ作用等を示し、また毒性が低いため、 20 医薬品として有用である。しかも、酸に安定なので、腸溶製剤にする必 要がなく、腸溶製剤化の費用を削減し、また、錠剤が小さくなることに より嚥下力の弱い病人、特に老人や小人に服用しやすくなる。しかも、 腸溶製剤よりも吸収が速いので、胃酸分泌抑制作用が速く発現し、また 生体内で徐々に従来公知のプロトンポンプ阻害薬に変換されるので持続 25 性があり、抗潰瘍剤等として有用である。

本出願は日本で出願された、特願2001-292619および特願

2002-047204を基礎としており、その内容は本明細書にすべて包含するものである。

請求の範囲

1. 一般式(I)

SO-
$$CH_2$$

N
SO- CH_2

CH₃
OCH₂CF₃

(I)

〔式中、Aは置換基を有していてもよい炭素数2以上のアルキリデン基を示し、Rは置換基を有していてもよい炭化水素基または置換基を有していてもよい複素環基を示すか、あるいはAとRが結合して置換基を有していてもよい4乃至8員環を形成していてもよく、Dは酸素原子又は結合手を示す。〕

で表わされるベンズイミダゾール化合物またはその塩。

10 2. (i) AとRは結合して置換基を有していてもよい 4 乃至 8 員環を形成し、Dは酸素原子又は結合手を示すか、あるいは

(ii) AとRは結合せず、Aは置換基を有していてもよい炭素数2以上のアルキリデン基を示し、Rは置換基を有していてもよい炭化水素基または置換基を有していてもよい複素環基を示し、Dは酸素原子又は結

15 合手を示す。〕

5

で表わされる請求項1記載の化合物。

3. 一般式

〔式中、各記号は請求項1と同意義を示す。〕で表わされる(R)体である請求項1記載の化合物。

4. Rが、(i) C_{6-14} Pリール基、(ii) 水酸基、(iii) ハロゲン、(iv)ハロゲンで置換されていてもよい C_{1-6} Pルコキシ基、(v) C_{7-12} Pラルキルオキシ基、(vi) C_{1-5} Pルコキシーカルボニル基および (vii) Pシルアミノ基からなる群より選ばれる置換基を有していてもよい、 C_{1-6} Pルキル基、 C_{2-6} Pルケニル基又は C_{2-6} Pルキニル基であるか、あるいは

5

20

- (i) C_{6-14} アリール基、(ii) 水酸基、(iii) ハロゲン、(iv) 10 ハロゲンで置換されていてもよい C_{1-6} アルコキシ基、(v) C_{7-12} アラルキルオキシ基、(vi) C_{1-5} アルコキシーカルボニル基および (vii) ハロゲンで置換されていてもよい C_{1-6} アルキル基からなる群より選ばれる置換基を有していてもよい、 C_{3-8} シクロアルキル基又は C_{6-14} アリール基であり、Aがハロゲンで置換されていてもよい C_{2-6} アルキリデン基である、請求項 1 記載の化合物。
 - 5. Rが、(i) C_{6-14} Pリール基、(ii) 水酸基、(iii) ハロゲン、(iv)ハロゲンで置換されていてもよい C_{1-6} Pルコキシ基、(v) C_{7-12} Pラルキルオキシ基、(vi) C_{1-5} Pルコキシーカルボニル基および (vii) Pシルアミノ基からなる群より選ばれる置換基を有していてもよい C_{1-6} Pルキル基であるか、あるいは
- (i) C_{6-14} アリール基、(ii) 水酸基、(iii) ハロゲン、(iv) ハロゲンで置換されていてもよい C_{1-6} アルコキシ基、(v) C_{7-12} アラルキルオキシ基、(vi) C_{1-5} アルコキシーカルボニル基および (vii) ハロゲンで置換されていてもよい C_{1-6} アルキル基からなる群より選ばれる置換基を有していてもよい、 C_{3-8} シクロアルキル基又は C_{6-14} アリール基であり、Aがハロゲンで置換されていてもよい C_{2-6} アルキリデン基である、請求項 1 記載の化合物。

6. AとRが結合して形成する4乃至8員環が、式

(式中、mは1~3の整数を示し、他の記号は請求項1と同意義である。) で表される環である請求項1記載の化合物。

5 7. 一般式(I')

〔式中、A'は置換基を有していてもよい炭素数 2 以上のアルキリデン基を示し、R'は置換基を有していてもよい炭化水素基を示し、D'は酸素原子又は結合手を示す。〕

10 で表わされるベンズイミダゾール化合物またはその塩。

8. 一般式

〔式中、各記号は請求項7と同意義を示す。〕で表わされる(R)体である請求項7記載の化合物。

15 9. R'が、(i) C₆₋₁₄アリール基、(ii) 水酸基、(iii) ハ

ロゲン、(iv)ハロゲンで置換されていてもよい C_{1-6} アルコキシ基、 (v) C_{7-12} アラルキルオキシ基および (vi) C_{1-5} アルコキシーカルボニル基からなる群より選ばれる置換基を有していてもよい、 C_{1-6} アルキル基、 C_{2-6} アルケニル基又は C_{2-6} アルキニル基であるか、あるいは

- 5 (i) C_{6-14} アリール基、(ii)水酸基、(iii)ハロゲン、(iv) ハロゲンで置換されていてもよい C_{1-6} アルコキシ基、(v) C_{7-12} アラル キルオキシ基、(vi) C_{1-5} アルコキシーカルボニル基および(vii) ハロゲンで置換されていてもよい C_{1-6} アルキル基からなる群より選ばれる置換基を有していてもよい、 C_{3-8} シクロアルキル基又は C_{6-14} アリール 基であり、A,がハロゲンで置換されていてもよい C_{2-6} アルキリデン基である、請求項7記載の化合物。
 - 10. R'が、(i) C_{6-14} アリール基、(ii) 水酸基、(iii) ハロゲン、(iv)ハロゲンで置換されていてもよい C_{1-6} アルコキシ基、(v) C_{7-12} アラルキルオキシ基および (vi) C_{1-5} アルコキシーカルボニル基からなる群より選ばれる置換基を有していてもよい C_{1-6} アルキル基であるか、あるいは

15

- (i) C_{6-14} アリール基、(ii) 水酸基、(iii) ハロゲン、(iv) ハロゲンで置換されていてもよい C_{1-6} アルコキシ基、(v) C_{7-12} アラルキルオキシ基、(vi) C_{1-5} アルコキシーカルボニル基および (vii) 20 ハロゲンで置換されていてもよい C_{1-6} アルキル基からなる群より選ばれる置換基を有していてもよい、 C_{3-8} シクロアルキル基又は C_{6-14} アリール基であり、A'がハロゲンで置換されていてもよい C_{2-6} アルキリデン基である、請求項7記載の化合物。
- 11. A'がエチリデン基またはプロピリデン基である、請求項7記 25 載の化合物。
 - 12. A'がエチリデン基である請求項7記載の化合物。
 - 13. A'がエチリデン基であり、R'が C_{1-6} アルキル基又は C_{3-8} シ 100

クロアルキル基である請求項7記載の化合物。

14. (1) 式(II)

〔式中、Mは水素原子、金属陽イオンまたは第4級アンモニウムイオンを示す〕で表わされる化合物またはその塩と

式 (III)

10

15

〔式中、Xは脱離基を、Aは置換基を有していてもよい炭素数2以上のアルキリデン基を示し、Rは置換基を有していてもよい炭化水素基または置換基を有していてもよい複素環基を示すか、あるいはAとRが結合して置換基を有していてもよい4乃至8員環を形成していてもよく、Dは酸素原子又は結合手を示す。〕で表わされる化合物とを縮合させるか、あるいは

(2)式(IV)

〔式中の各記号は前記と同意義を示す。〕で表わされる化合物またはその塩を酸化反応に付すことを特徴とする請求項1記載の化合物の製造方法。

101

L5. 請求項1または7記載の化合物を含有してなる医薬組成物。

- 16. 消化性潰瘍、胃炎、逆流性食道炎、食道炎を伴わない胃食道逆流症 (Symptomatic Gastroesophageal Reflux Disease (Symptomatic GERD))、NUD、胃癌、胃MALTリンパ腫、ゾリンジャー・エリソン
- 5 (Zollinger-Ellison) 症候群、胃酸過多または上部消化管出血の予防・ 治療剤である請求項15記載の医薬組成物。
 - 17. ヘリコバクター・ピロリ除菌剤である請求項15記載の医薬組成物。
 - 18. 請求項16記載の医薬組成物、及び該医薬組成物を消化性潰瘍、
- 10 胃炎、逆流性食道炎、食道炎を伴わない胃食道逆流症(Symptomatic Gastroesophageal Reflux Disease (Symptomatic GERD))、NUD、胃癌、胃MALTリンパ腫、ゾリンジャー・エリソン (Zollinger-Ellison)症候群、胃酸過多または上部消化管出血の予防または治療用途に使用することができる、または使用すべきであることを記載した、該医薬組成物に関する記載物を含む商業パッケージ。
 - 19. 請求項17記載の医薬組成物、及び該医薬組成物をヘリコバクター・ピロリの除菌用途に使用することができる、または使用すべきであることを記載した、該医薬組成物に関する記載物を含む商業パッケー

ジ。

- 20 20. 請求項1または7記載の化合物を投与することからなる、消化性潰瘍、胃炎、逆流性食道炎、食道炎を伴わない胃食道逆流症(Symptomatic Gastroesophageal Reflux Disease (Symptomatic GERD))、NUD、胃癌、胃MALTリンパ腫、ゾリンジャー・エリソン(Zollinger-Ellison)症候群、胃酸過多または上部消化管出血の予防または治療方法。
- 25 21. 請求項1または7記載の化合物を投与することからなる、ヘリコバクター・ピロリ除菌方法。
 - 22. 消化性潰瘍、胃炎、逆流性食道炎、食道炎を伴わない胃食道逆 102

流症(Symptomatic Gastroesophageal Reflux Disease(Symptomatic GERD))、NUD、胃癌、胃MALTリンパ腫、ゾリンジャー・エリソン(Zollinger-Ellison)症候群、胃酸過多または上部消化管出血の予防または治療剤を製造するための請求項1または7記載の化合物の使用。

5 23. ヘリコバクター・ピロリ除菌剤を製造するための請求項1また は7記載の化合物の使用。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP02/09746

A.	CLASSIFIC Int.Cl ⁷	ATION OF SUBJECT MATTER C07D401/12, 405/14, A61K31 43/00	/4439, A61P1/04, 31/04,	35/00,		
Acco	According to International Patent Classification (IPC) or to both national classification and IPC					
	FIELDS SEA					
Mini	imum docum Int.Cl ⁷	entation searched (classification system followed land C07D401/12, 405/14, A61K31 43/00	y classification symbols) /4439, A61P1/04, 31/04,	35/00,		
		earched other than minimum documentation to the				
		ase consulted during the international search (name REGISTRY (STN)	e of data base and, where practicable, sear	ch terms used)		
C.	DOCUMEN	TS CONSIDERED TO BE RELEVANT				
Cate	egory*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
		AU 8783302 A & EP DD 270531 A & EP JP 2-500744 A & HU EP 510719 A1 & CN DK 8803654 A & NO	84504 A 279149 A2 332647 A1 51269 A 87107309 A 8803229 A 5215974 A	1-19,22,23		
×	Further do	cuments are listed in the continuation of Box C.	See patent family annex.			
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "p" document published prior to the international filing date but later than the priority date claimed			"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report 10 December, 2002 (10.12.02)			
Nan		ng address of the ISA/ se Patent Office	Authorized officer			
Facsimile No.			Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/09746

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	WO 87/02668 A1 (Aktiebolag Haessle), 07 May, 1987 (07.05.87), & EP 221041 A2 & ZA 8607716 A & DD 252375 A & AU 8665429 A & EP 233284 A1 & HU 43843 A & JP 63-501151 A & IL 80437 A & CN 86107595 A & DK 8703205 A & NO 8702686 A & FI 872864 A & US 5021433 A	1-19,22,23
Y	EP 176308 A2 (Upjohn Co.), 02 April, 1986 (02.04.86), & AU 8546690 A & ZA 8506671 A & JP 61-78784 A & FI 8503649 A & DK 8504302 A & ES 547226 A & US 4873337 A	1-19,22,23
Y	EP 174726 A1 (Takeda Chem. Ind., Ltd.), 19 March, 1986 (19.03.86), & AU 8545895 A & JP 61-50978 A & NO 8503226 A & DK 8503564 A & ZA 8506117 A & US 4628098 A & ES 8607288 A & US 4689333 A & CN 85106134 A & CA 1255314 A & SU 1507211 A	1-19,22,23
Y	J. Med. Chem., (1991), 34(3), p.1049-62	1-19,22,23
P,X	WO 02/30920 A1 (Takeda Chem. Ind., Ltd.), 18 April, 2002 (18.04.02), & AU 2001094228 A & JP 2002-187890 A	1-19,22,23

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/09746

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: 20, 21 because they relate to subject matter not required to be searched by this Authority, namely: The inventions as set forth in claims 20, 21 is relevant to methods for treatment of the human body by therapy.
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl' C07D401/12, 405/14, A61K31/4439, A61P1/04, 31/04, 35	5/00, 43/00	
B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl ⁷ C07D401/12, 405/14, A61K31/4439, A61P1/04, 31/04, 35	5/00, 43/00	
最小限資料以外の資料で調査を行った分野に含まれるもの		, ,
国際調査で使用した電子データベース(データベースの名称、CAPLUS, REGISTRY (STN)	調査に使用した用語)	
C. 関連すると認められる文献	•	目的中ナフ
引用文献の	ヒきは、その関連する箇所の表示	関連する 請求の範囲の番号
X WO 88/03921 A1 (AKTIEBOLAG HAESSLE ZA 8708263 A & IL 84504 A & AU 87 DD 270531 A & EP 332647 A1 & JP 2 EP 510719 A1 & CN 87107309 A & DK NO 8803229 A & FI 8902454 A & US	783302 A & EP 279149 A2 & 2-500744 A & HU 51269 A & 8803654 A &	1-19, 22, 23
区 C欄の続きにも文献が列挙されている。	□ パテントファミリーに関する別	リ紙を参照。
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの 「&」同一パテントファミリー文献	
国際調査を完了した日 25.11.02	n a company	12.02
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 富永 保 電話番号 03-3581-1101	4P 9159 内線 3490

(1/1±2)		
C (続き). 引用文献の	関連すると認められる文献	関連する
<u>カテゴリー*</u> Y	明文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 WO 87/02668 A1 (AKTIEBOLAG HAESSLE) 1987.05.07 & EP 221041 A2 & ZA 8607716 A & DD 252375 A & AU 8665429 A & EP 233284 A1 & HU 43843 A & JP 63-501151 A & IL 80437 A & CN 86107595 A & DK 8703205 A & NO 8702686 A & FI 872864 A & US .5021433 A	請求の範囲の番号 1-19, 22, 23
Y	EP 176308 A2 (UPJOHN CO.) 1986.04.02 & AU 8546690 A & ZA 8506671 A & JP 61-78784 A & FI 8503649 A & DK 8504302 A & ES 547226 A & US 4873337 A	1-19, 22, 23
Y	EP 174726 A1 (TAKEDA CHEM. IND., LTD.) 1986.03.19 & AU 8545895 A & JP 61-50978 A & NO 8503226 A & DK 8503564 A & ZA 8506117 A & US 4628098 A & ES 8607288 A & US 4689333 A & CN 85106134 A & CA 1255314 A & SU 1507211 A	1-19, 22, 23
Y	J. Med. Chem., (1991), 34(3), p. 1049-62	1-19, 22, 23
РХ	WO 02/30920 A1(TAKEDA CHEM. IND., LTD.) 2002.04.18 & AU 2001094228 A & JP 2002-187890 A	1-19, 22, 23

第Ⅰ欄	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第89成しなが	条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作めった。
1. x	請求の範囲 20,21 は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
	請求の範囲20,21に記載された発明は、人体の治療による処置方法に該当する。
2.	請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
	なく、国際国際の制力をでいるのでである。これが、
16. 10. 10.	
3	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に
	従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に近	述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
·	
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3.	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. \square	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載
	されている発明に係る次の請求の範囲について作成した。
,	
追加調查	and the day of the second for EE. In the two
1	至手数料の異議の申立てに関する注意 」 追加調査手数料の納付と共に出願人から異議申立てがあった。