第一章 函数的微分

1.1 微分的定义

定义 1.1.1: 微分的定义

设函数 y = f(x) 在某区间内有定义, x_0 及 $x_0 + \Delta x$ 在这个区间内, 如果函数的增量为

$$\Delta y = f(x_0 + \Delta x) - f(x_0)$$

可表示为

$$\Delta y = A\Delta x + o(\Delta x)$$

其中 A 是不依赖于 Δx 的常数, 那么称函数 f(x) 在点 x_0 是可微的, 而 $A\Delta x$ 叫做函数 y=f(x) 在点 x_0 相应于自变量增量 Δx 的微分, 记作 dy, 即:

$$dy = A\Delta x$$

函数 f(x) 在任意点 x 的微分, 称为函数的微分, 记作 dy 或 df(x), 即

$$dy = f'(x)\Delta x$$

核心思想: 局部用切线段近似代替曲线段

第一章 函数的微分 2

1.2 微分的几何意义

图 1.1: 函数微分的说明图像

函数在一点的微分. 其中红线部分是微分量, 而加上灰线部分后是实际的改变量

1.3 微分存在的意义

在当前仅知当前函数的 x 值和导数的情况下, 预测未来函数的值, 并推测出一个极限, 来保证预测值与真实值相近

1.4 微分的计算公式

1.5 近似计算

定义 1.5.1

如果 y = f(x) 在点 x_0 处的导数 $f'(x_0) \neq 0$, 且 $|\delta x|$ 很小时, 我们有

$$\Delta y \approx \mathrm{d}y = f'\left(x_0\right) \Delta x$$

即函数在这个点的微分,那么函数在点 x 处的值可以近似为

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

或

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0)(x - x_0)$$