MA2001 Envariabelanalys

Något om derivator del 2

Mikael Hindgren

11 november 2024

Derivatan av inversen till en funktion

Exempel 1

 $y = f(x) = \sqrt{x}$ är strängt växande och har en invers. Bestäm Df(x) och $Df^{-1}(y)$.

Lösning:

$$f(x) = \sqrt{x} = x^{1/2}$$

$$\Rightarrow Df(x) = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$$

$$f(x) = \sqrt{x}$$

Inversen:
$$y = \sqrt{x} \Leftrightarrow x = y^2, y \ge 0.$$

$$f^{-1}(y) = y^2 \Rightarrow Df^{-1}(y) = 2y$$

Anm:
$$Df^{-1}(y) = 2y = 2\sqrt{x} = \frac{1}{\frac{1}{2\sqrt{x}}} = \frac{1}{Df(x)}$$
. Gäller detta allmänt?

Derivatan av inversen till en funktion

$$\frac{f^{-1}(y+\Delta y)-f^{-1}(y)}{\Delta y} = \frac{1}{\frac{\Delta y}{f^{-1}(y+\Delta y)-f^{-1}(y)}} = \frac{1}{\frac{f(x+\Delta x)-f(x)}{\Delta x}}$$

$$\rightarrow \frac{1}{Df(x)} d\mathring{a} \Delta x \rightarrow 0 \text{ dvs } d\mathring{a} \Delta y \rightarrow 0$$

Sats 1 (Derivatan av invers)

$$Df^{-1}(y) = \frac{1}{Df(x)}$$
 om $f'(x) \neq 0$

Derivatan av inversen till en funktion

Exempel 2

Bestäm Darctan x.

$$y = \arctan x \Leftrightarrow x = \tan y, -\frac{\pi}{2} < y < \frac{\pi}{2}$$

$$\Rightarrow D \arctan x = \frac{1}{D \tan y} = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + x^2}$$

Sammanfattning av deriveringsregler

$$D(f+g) = f' + g'$$

1
$$Df^{-1}(y) = \frac{1}{Df(x)}$$
 om $f'(x) \neq 0$

Högre derivator

• Derivatan av f'(x) kallas andra-derivatan.

Beteckningar:
$$f''(x)$$
, $f^{(2)}(x)$, $D^2(f(x))$, $\frac{d^2f}{dx^2}$

• Pss betecknas *n*:te-derivatan: $f^{(n)}(x)$, $D^n(f(x))$, $\frac{d^n f}{dx^n}$

Exempel 3

Bestäm $D^5 \ln x$.

Lösning:

$$D \ln x = \frac{1}{x} = x^{-1}$$

$$\Rightarrow D^{2} \ln x = (-1)x^{-2}$$

$$\Rightarrow D^{3} \ln x = (-2)(-1)x^{-3}$$

$$\Rightarrow D^{4} \ln x = (-3)(-2)(-1)x^{-4}$$

$$\Rightarrow D^{5} \ln x = (-4)(-3)(-2)(-1)x^{-5} = (-1)^{4}4!x^{-5}$$

Allmänt: $D^n \ln x = (-1)^{n-1}(n-1)!x^{-n}$

- f har lokalt maximum i $x_1, x_3, b \leftarrow$ lokala maximipunkter
- f har lokalt minimum i $x_2, x_4, a \leftarrow lokala$ minimipunkter
- $f'(x_1) = f'(x_2) = f'(x_4) = 0 \Rightarrow x_1, x_2, x_4 \text{ är stationära punkter}$
- Lokala max- och min-punkter/värden kallas lokala extrempunkter/värden

Sats 2

Om f har ett lokalt extremvärde i en inre punkt x_0 i definitionsområdet och om f(x) är deriverbar så är $f'(x_0) = 0$.

Ex:
$$f(x) = x^3 \Rightarrow f'(x) = 3x^2 \Rightarrow f'(0) = 0$$

 x_0 är en terasspunkt dvs en stationär punkt som inte är en extrempunkt.

Sammanfattning

Om x_0 är en stationär punkt dvs om $f'(x_0) = 0$, så kan x_0 vara en lokal minimi-, maximi- eller terasspunkt.

Antag att $f'(x_0) = 0$ och $f''(x_0) > 0$:

$$f''(x_0) = \lim_{h \to 0} \frac{f'(x_0 + h) - f'(x_0)}{h} = \lim_{h \to 0} \frac{f'(x_0 + h)}{h} > 0$$

För tillräckligt små h är alltså

$$\frac{f'(x_0 + h)}{h} > 0 \Rightarrow \begin{cases} f'(x_0 + h) < 0 \text{ om } h < 0 \\ f'(x_0 + h) > 0 \text{ om } h > 0 \end{cases}$$

 \Rightarrow f har ett lokalt minimum i x_0

Gör vi motsvarande för fallet $f''(x_0) < 0$ får vi:

Sats 3

Om $f(x_0) = 0$ och $f''(x_0)$ existerar så gäller:

- $f''(x_0) > 0 \Rightarrow f(x)$ har lokalt minimum i x_0
- $f''(x_0) < 0 \Rightarrow f(x)$ har lokalt maximum i x_0

Anm: Om $f'(x_0) = f''(x_0) = 0$ kan man inte dra några slutsatser. x_0 kan vara en lokal maximi-, minimi- eller terasspunkt.

- För $f(x) = x^3$ är $\begin{cases} f'(x) = 3x^2 \\ f''(x) = 6x \end{cases}$ $\Rightarrow f'(0) = f''(0) = 0$
 - I det här fallet är x = 0 en terasspunkt.
- För $f(x) = x^4$ är $\begin{cases} f'(x) = 4x^3 \\ f''(x) = 12x^2 \end{cases} \Rightarrow f'(0) = f''(0) = 0$ I det här fallet är x = 0 en minimipunkt.

Exempel 4

Bestäm alla lokala extremvärden till $f(x) = \frac{x^4 - 8x^2}{4}$.

$$f'(x) = x^3 - 4x = x(x^2 - 4) = 0 \Leftrightarrow x = 0 \text{ eller } x = \pm 2$$

$$f''(x) = 3x^2 - 4 \Rightarrow \begin{cases} f''(-2) = 8 > 0 & \Rightarrow \text{ lokalt min } f(-2) = -4 \\ f''(0) = -4 < 0 & \Rightarrow \text{ lokalt max } f(0) = 0 \\ f''(2) = 8 > 0 & \Rightarrow \text{ lokalt min } f(2) = -4 \end{cases}$$

Medelvärdessatsen

HÖGSKOLAN I HALISTAD

- Vi studerar en deriverbar funktion
 f(x) i intervallet [a, b]
- Drag en linje L mellan punkterna (a, f(a)) och (b, f(b)).
- Då är

$$k_L = \frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a}$$

Det finns minst en punkt $x=c\in]a,b[$ sådan att tangenten T till y=f(x) i x=c är parallell med L dvs

$$k_L = k_T \Leftrightarrow \frac{f(b) - f(a)}{b - a} = f'(c)$$

Sats 4 (Medelvärdessatsen)

Om f är kontinuerlig i [a,b] och deriverbar i]a,b[så finns det ett $c \in$]a, b[sådant att

$$f(b) - f(a) = f'(c)(b - a)$$

Medelvärdessatsen

Exempel 5

Visa att $e^{-x} - \frac{5x}{4} = 0$ har en rot x = b i intervallet [0, 1] och uppskatta felet i approximationen $b \approx 0.5$.

Lösning:

Vi visar först att ekvationen har en rot i [0, 1]:

Sätt
$$f(x) = e^{-x} - \frac{5x}{4}$$

 $\Rightarrow f(x)$ är kontinuerlig och strängt avtagande
 $\Rightarrow f(x)$ har högst nollställe $x = b$.
 $f(0) = 1 > 0$
 $f(1) = \frac{1}{e} - \frac{5}{4} < \frac{1}{2} - \frac{5}{4} = -\frac{3}{4} < 0$
 $\Rightarrow f(x)$ har ett nollställe i]0,1[

Medelvärdessatsen

Exempel 5 (forts)

Vi kan använda medelvärdessatsen för att uppskatta storleken av felet |b-0.5|:

Medelvärdessatsen

Om f är kontinuerlig i [a,b] och deriverbar i]a,b[så finns det ett $c \in$]a, b[sådant att

$$f(b) - f(a) = f'(c)(b - a)$$

$$\underbrace{\frac{f(b)}{-0} - f(0.5)}_{=0} = f'(c)(b - 0.5) \Rightarrow \underbrace{|b - 0.5|}_{\text{felet}} = \frac{|f(0.5)|}{|f'(c)|}$$

$$|f'(x)| = \left| -e^{-x} - \frac{5}{4} \right| = e^{-x} + \frac{5}{4} = \frac{1}{e^{x}} + \frac{5}{4}$$

$$\geqslant \frac{1}{e^{1}} + \frac{5}{4} > \frac{1}{3} + \frac{5}{4} = \frac{4 + 15}{12} = \frac{19}{12}$$

$$\Rightarrow |b - 0.5| < \frac{|e^{-0.5} - \frac{5 \cdot 0.5}{4}|}{\frac{19}{12}} = \frac{|\frac{1}{\sqrt{e}} - \frac{5}{8}|}{\frac{19}{12}} \approx 0.01166 < 0.02$$

: Roten $b = 0.5 \pm 0.02$

Växande och avtagande

Sats 5

- \bullet f'(x) = 0 för alla $x \in I \Leftrightarrow f(x)$ är konstant i I.
- ② $f'(x) \ge 0$ för alla $x \in I \Leftrightarrow f(x)$ är växande i I.

Motsvarande gäller för (strängt)avtagande

Exempel 6

Visa att $e^x \ge 1 + x$ för alla x.

Exempel 7

Rita kurvan
$$y = f(x) = \frac{x^3}{x^2 - 3}$$
. (Tenta 020327, uppg 2, 5p)

Exempel 8

Rita kurvan
$$y = f(x) = \frac{x^2 + 3}{x} + 4 \arctan x$$
. (Tenta 070111, uppg 3, 5p)

Var och när antar en kontinuerlig funktion största och minsta värde i ett intervall [a, b]?

- maximum i b (ändpunkt)
- minimum i x_0 ($f(x_0) = 0$)

- maximum i x_0 $f'(x_0)$ existerar ej
- minimum i a (ändpunkt)

Sats 6

Om f är kontinuerlig i [a, b] så har f ett maximum och ett minimum i [a, b] vilka antas i någon av följande punkter:

- a eller b
- o en punkt $x_0 \in]a, b[$ sådan att $f'(x_0)$ inte existerar
- o en punkt $x_0 \in [a, b]$ sådan att $f'(x_0) = 0$

Exempel 9

En bonde ska göra en rektangulär inhägnad av 100 m staket. Ena sidan av inhägnaden utgörs av en bäck och behöver inget staket. Vilken är den största möjliga arean av inhägnaden?

Exempel 10

En cylinder är inskriven i en kon. Hur stor del av konens volym kan cylindern högst uppta?

Exempel 11

En fyr ligger i havet 5 km utanför en lång rak strand där det finns en elstation. Sträckan mellan elstationen och den punkt på stranden som har det kortaste avståndet till fyren är $b=10\,\mathrm{km}$.

Pelle ska dra kabel från fyren över havet till en punkt P på stranden och sedan därifrån till elstationen. Kostnaden att dra kabel på land är 25 kr/m och i havet är det dubbelt så dyrt.

- a) Var på stranden ska punkten *P* ligga för att kostnaden för kabeldragningen ska minimeras?
- b) Ändras svaret om b = 2.5 km och i så fall hur?

Exempel 11 (forts)

Lösning:

- Sätt $k_l = 25 \text{ kr/m}$ och $k_h = 2k_l = 50 \text{ kr/m}$.
- Totala kostnaden f\u00f6r kabeldragningen ges d\u00e5 av funktionen

$$K(x) = k_h \sqrt{a^2 + x^2} + k_l(b - x) = k_l(2\sqrt{a^2 + x^2} + b - x), \ 0 \le x \le b$$

• Eftersom K(x) är deriverbar (\Rightarrow kontinuerlig) i I = [0, b] antar K sitt minsta värde i någon av I:s ändpunkter eller i en punkt x_0 där $K'(x_0) = 0$.

Exempel 11 (forts)

Eventuella stationära punkter till $K(x) = k_1(2\sqrt{a^2 + x^2} + b - x)$ ges av:

$$K'(x) = k_1 \left(2 \frac{1}{2\sqrt{a^2 + x^2}} \cdot 2x - 1 \right) = \frac{k_1 (2x - \sqrt{a^2 + x^2})}{\sqrt{a^2 + x^2}} = 0$$

$$\Leftrightarrow 2x - \sqrt{a^2 + x^2} = 0 \Leftrightarrow_{a \ge 0, x \ge 0} x = \frac{a}{\sqrt{3}}$$

Eftersom b = 2a får vi:

$$K(0) = k_{l}(2\sqrt{a^{2}+0^{2}}+b-0) = k_{l}(2a+b) = 4k_{l}a$$

$$K\left(\frac{a}{\sqrt{3}}\right) = k_{l}\left(2\sqrt{a^{2}+\frac{a^{2}}{3}}+b-\frac{a}{\sqrt{3}}\right) = k_{l}(\sqrt{3}a+b) = (2+\sqrt{3})k_{l}a < K(0)$$

$$K(b) = k_{l}(2\sqrt{a^{2}+b^{2}}+b-b) = 2k_{l}\sqrt{a^{2}+b^{2}} = 2\sqrt{5}k_{l}a > K(0)$$

∴ Kostnaden blir minst om punkten P ligger 10 $-\frac{5}{\sqrt{3}} \approx 7.1$ km från elstationen

$$\Rightarrow \mathcal{K}_{\mathsf{min}} = \mathcal{K}\Big(rac{a}{\sqrt{3}}\Big) = (2+\sqrt{3}) \mathit{k}_{\mathit{l}} \mathit{a} pprox 466500 \; \mathsf{kr}$$

Exempel 11 (forts)

Om $b=\frac{a}{2}=2.5$ km: K(x) och derivatans nollställe $a/\sqrt{3}\approx 2.89$ påverkas inte men nollstället ligger utanför intervallet [0,b=2.5]

- $\Rightarrow f(\frac{a}{\sqrt{3}})$ kan inte vara funktionens minsta värde
- ⇒ minsta värdet måste antas i någon av ändpunkterna:

$$K(0) = k_1(2\sqrt{a^2+0^2}+b-0) = k_1(2a+b) = k_1(2a+\frac{a}{2}) = \frac{5ak_1}{2}$$

$$K(b) = k_1(2\sqrt{a^2 + b^2} + b - b) = 2k_1\sqrt{a^2 + b^2} = 2k_1\sqrt{a^2 + \frac{a^2}{4}}$$
$$= \sqrt{5}k_1a < K(0)$$

... Minsta kostnaden får vi om vi drar kabeln direkt från fyren till elstationen

$$\Rightarrow K_{\min} = K(b) = \sqrt{5}k_{l}a \approx 279500 \text{ kr}$$