Lection 06.

RIP.

Динамическая маршрутизация

- Пересылка пакетов роутерами осуществляется в зависимости от текущего состояния сети
- Автоматическое обновление маршрутных таблиц
- Дистанционно-векторные протоколы (DVA) (пр. RIPx)
- Протоколы состояния линий (LSA) (пр.OSPF)

Interior vs Exterior

RIP - Routing Information Protocol

- Дистанционно-векторный протокол
- Работает поверх UDP протокола
- При рассылке сообщений используются multicast (групповые) адреса (224.0.0.9)
- Каждый маршрутизатор ведет таблицу известных сетей (адрес сети, маска сети, расстояние, адрес следующего маршрутизатора)
- Расстояние кол-во переходов (от 1 до 16, 16 сеть недостижима)

	Network	Next Hop	Metric	From	Tag	Time
C(i)	10.13.4.0/24	0.0.0.0	1	self	0	
R(n)	10.13.4.0/29	10.13.4.65	2	10.13.4.65	0	16:46
R(n)	10.13.4.128/27	10.13.4.65	2	10.13.4.65	0	16:46
C(i)	10.13.8.0/24	0.0.0.0	1	self	0	
R(n)	10.13.11.0/24	10.13.4.74	2	10.13.4.74	0	16:50
R(n)	152.78.68.175/32	10.13.4.65	3	10.13.4.65	0	16:46
R(n)	152.78.68.176/32	10.13.4.65	3	10.13.4.65	0	16:46
R(n)	152.78.189.83/32	10.13.4.65	3	10.13.4.65	0	16:46

RIP - таймеры

- Update timer частота отправки обновлений (30 секунд по умолчанию)
- Invalid timer если обновление о маршруте не будет получено до истечения данного таймера, маршрут будет помечен как Invalid, то есть с метрикой 16 (180 секунд по умолчанию)
- Garbage collection timer если данный таймер истечет до прихода обновлений о маршруте, маршрут будет исключен из таблицы маршрутизации (240 секунд по умолчанию)

OSPF - Open Shortest Path First

- 1. После включения маршрутизаторов протокол ищет непосредственно подключенных соседей и устанавливает с ними «дружеские» отношения.
- 2. Затем они обмениваются друг с другом информацией о подключенных и доступных им сетях. То есть они строят карту сети (топологию сети). Данная карта одинакова на всех маршрутизаторах.
- 3. На основе полученной информации запускается алгоритм SPF (Shortest Path First, «выбор наилучшего пути»), который рассчитывает оптимальный маршрут к каждой сети. Данный процесс похож на построение дерева, корнем которого является сам маршрутизатор, а ветвями пути к доступным сетям.

- Высокая скорость сходимости по сравнению с дистанционно-векторными протоколами маршрутизации;
- Оптимальное использование пропускной способности с построением дерева кратчайших путей.

OSPF

Zebra/Quagga

Quagga — пакет свободного программного обеспечения, поддерживающий протоколы динамической маршрутизации IP. Компьютер с установленным и сконфигурированным пакетом Quagga становится способен использовать любые из нижеследующих протоколов динамической маршрутизации:

- Routing Information Protocol (RIP): v1, v2, v3;
- Open Shortest Path First (OSPF): v2, v3;
- Border Gateway Protocol (BGP): v4;

Автономная система (AS

An AS is a connected group of one or more IP prefixes run by one or more network operators which has a SINGLE and CLEARLY DEFINED routing policy.

- система IP-сетей и маршрутизаторов, управляемых одним или несколькими операторами, имеющими единую политику маршрутизации с Интернетом
- Interior/Exterior Routing Gateway (EBGP/IBGP/RIP/OSPF)
- Peer
- announcement

AS 6868 Moscow State Technical University named NE Bouwman

195.19.32.0/19

eu.bmstu.ru [195.19.33.59]

bmstu.ru [195.19.50.250]

Upstreams

- AS3209 Vodafone GmbH
- AS2603 NORDUnet
- AS1299 Telia Company AB
- AS3356 Level 3 Parent, LLC
- AS1239 Sprint
- AS174 Cogent Communications
- . AS6461 Zayo Bandwidth

BGP - Border Gateway Protocol

Протокол BGP предназначен для обмена информацией о достижимости подсетей между автономными системами (AC, англ. AS — autonomous system), то есть группами маршрутизаторов под единым техническим и административным управлением, использующими протокол внутридоменной маршрутизации для определения маршрутов внутри себя и протокол междоменной маршрутизации для определения маршрутов доставки пакетов в другие AC. Передаваемая информация включает в себя список AC, к которым имеется доступ через данную систему. Выбор наилучших маршрутов осуществляется исходя из правил, принятых в сети.

FACEBOOK vs BGP

BGP updates Facebook

BGP Hijacking

- January 2017: Iranian pornography censorship.^[17]
- April 2017: Russian telecommunication company Rostelecom (AS12389) originated 37 prefixes^[18] for numerous other Autonomous Systems. The hijacked prefixes belonged to financial institutions (most notably MasterCard and Visa), other telecom companies, and a variety of other organizations.^[19] Even though the possible hijacking lasted no more than 7 minutes it is still not clear if the traffic got intercepted or modified.
- December 2017: Eighty high-traffic prefixes normally announced by Google, Apple, Facebook, Microsoft, Twitch, NTT Communications, Riot Games, and others, were announced by a Russian AS, DV-LINK-AS (AS39523).^{[20][21]}

MSK-IX

