

Chapter 3 – Process Description and Control Lecture 3

Roadmap

- How are processes represented and controlled by the OS?
- Process states which characterize the behaviour of processes.
- Data structures used to manage processes.
- Ways in which the OS uses these data structures to control process execution.

What are the fundamental tasks for an operating system?

Process management

Process

Fundamental to the structure of OS's

A process is:

- A program in execution
- An instance of a running program
- The entity that can be assigned to and executed on a processor
- A single sequential thread of execution, a current state, and an associated set of system resources.

Process elements

Program code

Set of data

Status info

Process Control Block

- Contains the process elements
- It is possible to interrupt a running process and later resume execution as if the interruption had not occurred
- Created and manage by the operating system
- Key tool that allows support for multiple processes

Process Execution

- Consider three processes being executed
- All are in memory (plus the dispatcher)
- Lets ignore virtual memory for this.

Trace from the *processes* point of view:

Each process runs to completion

5000 = Starting address of program of Process A 8000 = Starting address of program of Process B 12000 = Starting address of program of Process C

Trace from *Processors* point of view

27	12004	
28	12005	
		Timeout
29	100	
30	101	
31	102	
32	103	
33	104	
34	105	
35	5006	
36	5007	
37	5008	
38	5009	
39	5010	
40	5011	
		Timeout
41	100	
42	101	
43	102	
43 44	102 103	
44	103	
44 45	103 104	
44 45 46	103 104 105	
44 45 46 47	103 104 105 12006	
44 45 46 47 48	103 104 105 12006 12007	
44 45 46 47 48 49	103 104 105 12006 12007 12008	
44 45 46 47 48 49 50	103 104 105 12006 12007 12008 12009	

Roadmap

- How are processes represented and controlled by the OS?
- Process states which characterize the behaviour of processes.
- Data structures used to manage processes.
- Ways in which the OS uses these data structures to control process execution.

Two-State Process Model

- Process may be in one of two states
 - Running
 - Not-running

Queuing Diagram

(b) Queuing diagram

Etc ... processes moved by the dispatcher of the OS to the CPU then back to the queue until the task is competed

Process Birth and Death

Reasons for Creation	Termination
New batch job	Normal Completion
Interactive Login	Memory unavailable
Created by OS to provide a service	Protection error
Spawned by existing process	Operator or OS Intervention

See tables 3.1 and 3.2 for more

Process Creation

What needs to be done?

Who creates a process? And termination?

Five-State Process Model

Figure 3.6 Five-State Process Model

Using Two Queues

(a) Single blocked queue

Multiple Blocked Queues

(b) Multiple blocked queues

What (should) happen(s) when there are too many processes?

One Suspend State

Two Suspend States

(b) With Two Suspend States

Roadmap

- How are processes represented and controlled by the OS?
- Process states which characterize the behaviour of processes.
- Data structures used to manage processes.
- Ways in which the OS uses these data structures to control process execution.

Processes and Resources

Tables are needed to manage status and resources

OS Control Tables

Figure 3.11 General Structure of Operating System Control Tables

Memory Tables

- Memory
 Devices
 Files
 Processes

 File Tables

 Process 1

 Process 1

 Process 2

 Process 3

 Process 3

 Process 1

 Process 1
- Memory tables are used to keep track of both main and secondary memory.
- Must include this information:
 - Allocation of main memory to processes
 - Allocation of secondary memory to processes
 - Protection attributes for access to shared memory regions
 - Information needed to manage virtual memory

I/O Tables

- Memory Tables

 Memory Devices

 Files

 Processes

 File Tables

 Primary Process Table

 Process 1

 Process 2

 Process 3

 Process 3
- Used by the OS to manage the I/O devices and channels of the computer.
- The OS needs to know
 - Whether the I/O device is available or assigned
 - The status of I/O operation
 - The location in main memory being used as the source or destination of the I/O transfer

File Tables

- These tables provide information about:
 - Existence of files
 - Location on secondary memory
 - Current Status
 - other attributes.
- Sometimes this information is maintained by a file management system

Process Tables

- Memory Labes

 Devices
 Files
 Processes

 Primary Process Table
 Process 1
 Process 2
 Process 1
 Process 1
- To manage processes the OS needs to know details of the processes
 - Current state
 - Process ID
 - Location in memory
 - etc
- Process control block
 - Process image is the collection of program. Data, stack, and attributes

Process Image

Process 1

Process Process Process Identification Identification Identification Process Processor State Processo State Processor State Control Information Information Information Block Process Control Process Control Process Control Information Information Information User Stack User Stack User Stack Private User Private User Private User Address Space Address Space Address Space (Programs, Data) (Programs, Data) (Programs, Data) ¥¥¥ Shared Address Shared Address Shared Address Space Space Space

Process 2

Process n

Process Control Block

Process Identification
Process status

Process Control information

Role of the Process Control Block

- The most important data structure in an OS
 - It defines the state of the OS
- Process Control Block requires protection
 - A faulty routine could cause damage to the block destroying the OS's ability to manage the process
 - Any design change to the block could affect many modules of the OS

Roadmap

- How are processes represented and controlled by the OS?
- Process states which characterize the behaviour of processes.
- Data structures used to manage processes.
- Ways in which the OS uses these data structures to control process execution.

Process Creation

- Once the OS decides to create a new process it:
 - Assigns a unique process identifier
 - Allocates space for the process
 - Initializes process control block
 - Sets up appropriate linkages such as scheduling queues
 - Creates or expand other data structures (e.g. accounting)

Switching Processes - When to switch processes

A process switch may occur any time that the OS has gained control from the currently running process. Possible events giving OS control are:

Mechanism	Cause	Use
Interrupt	External to the execution of the current instruction	Reaction to an asynchronous external event
Trap	Associated with the execution of the current instruction	Handling of an error or an exception condition
Supervisor call	Explicit request	Call to an operating system function

PCB

pointer	process state		
process number			
program counter			
registers			
memory limits			
list of open files			
	:		

Change of Process State ...

The steps in a process switch are:

- 1. Save context of processor including program counter and other registers
- 2. Update the process control block of the process that is currently in the Running *state*
- Move process control block to appropriate queue ready; blocked; ready/suspend

Change of Process State cont...

- 4. Select another process for execution
- 5. Update the process control block of the process selected
- 6. Update memory-management data structures
- 7. Restore context of the selected process

Is the OS a Process?

- If the OS is just a collection of programs and if it is executed by the processor just like any other program, is the OS a process?
- If so, how is it controlled?
 - Who (what) controls it?

Execution of the Operating System

Unix SRV4

Linux

GeekOS

(b) OS functions execute within user processes

Win 8, 9, 10

(c) OS functions execute as separate processes

Figure 3.15 Relationship Between Operating System and User Processes

Random selection & Practical assignment explanation

Questions?

