

Maize

- Alleles for kernel composition (Starch, Protein and Oil) selected and lost during the domestication process of maize?
- <u>Performance of teosinte alleles</u> relative to maize alleles (B73)?

Kernel composition of teosinte, landrace, and inbred lines

Flint-Garcia et al. Theoretical and Applied Genetics (2009) 119:1129–1142

 BC_4S_2

Population Structure

- 10 NIL populations (total of 961 NILs)
- Developed from 10 geographically diverse parviglumis accessions by backcrossing ten accessions into B73 background
- % introgression in BC₄S₂ Teo-NILs
 - ~96% homozygous B73
 - ~2.6% heterozygous
 - ~1.5% homozygous Teosinte

High-throughput and Non-Destructive Phenotyping

FOSS® 6500 Near Infrared Reflectance (NIR)
Instrument

Oxford Inst. <u>Nuclear Magnetic</u> <u>Resonance (NMR)</u> Instrument

NIR and NMR calibration statistics

Calibration statistics of NIR for total protein and starch on a dry matter basis in intact maize kernels

Trait	Instrument	n	r	Error	Treatment	Spectral range
		1		i i		
Starch	NIRS	210	0.82	1 2.705	MSC; 1st Deriv	900 - 2500 nm
				1		
Protein	NIRS	210	0.97	0.719	MSC	900 - 2500 nm
		1		l i		

Calibration statistics of NMR for total oil content on DMB in intact maize kernels

Trait	Instrument	n	r	Error	Weight	Frequency (MHz)
Oil	NMR	45	0.98	0.09	~10gm	5

Distribution of kernel starch, protein and, oil

Joint-linkage QTL analysis for total kernel Starch, Protein, and Oil

- * STARCH Significant at *P*-value $< 1.31 \times 10^{-06}$
- * **PROETIN** Significant at *P*-value $<6.06 \times 10^{-07}$
- * OIL Significant at *P*-value $< 1.12 \times 10^{-06}$

Heatmap: Additive effects of teosinte alleles relative to B73

	Starc	Starch (%) Protein (%)				
Z029	0.62	-0.79**		2.21**	0.32	0.83**
Z030	-0.21	-0.47		0.54	-	0.88**
Z031	-0.93**	-1.11**		1.25**	0.78	1.02**
Z032	0.02	-1.19		1.07	0.09	-0.77
Z033	-0.06	-0.95**		0.42	0.39	-0.06
Z034	0.82	-0.12		0.35	-0.7	0.37
Z035	0.41	-0.68		0.96**	-0.22	0.44
Z036	-1.58**	-0.59**		-0.33	1.14**	-0.18
Z037	-0.04	-0.73**		0.96**	-0.14	1.36**
Z038	-2.56**	-1.11**		1.61**	0.96	0.34
Chr.	Chr 3	Chr 9		Chr 1	Chr 3	Chr 5
marker	m382	m977		m76	m385	m649

Joint Linkage QTL Peak Markers

- No Teosinte Introgression

^{*} Significant at $p \le 0.05$

^{**} Significant at $p \le 0.01$

Comparing QTLs and additive effects of NAM (Maize alleles)

and Teosinte alleles for kernel composition traits

NAM Population								
			Allelic Effects					
Trait		QTLs	Min (%)	Max (%)				
Starch		21	-0.62	0.65				
Protein		26	-0.38	0.34				
Oil		22	-0.12	0.21				

JP Cook et al. Plant Physiology (2012) vol. 158: 824-834

Teosinte NILs								
			Allelic Effects					
Trait		QTLs	Min (%)	Max (%)				
Starch		2	-2.56	0.82				
Protein		3	-0.77	2.21				
Oil		6	-0.33	0.61				

Putative **Candidate Genes** underlying the major QTLs

<u>Pleiotropic effects</u> between overlapping starch, protein, and oil QTL intervals on Chr. 1 and 3

Overlapping	QTL Marker Intervals	Correlations
Overimphing	Q I E Mai her intervals	Colletations

Chr	Starch	Protein	Oil	S/P	S/O	P/O
1		m76 [89.1]	m81 [92.0]			-0.185
3	m382 [90]	m385 [92.6]	m385 [92.6]	-0.834*	-0.392	0.523

^{*} Significant at $p \le 0.05$

^{**} Significant at $p \le 0.01$

Pleiotropic effect: Protein, Oil, and Kernel Weight (KWT) QTL intervals

Overlanning	OTL Marker Intervals
Overlabbilig	OTL Marker Intervals

	FF8			College				
Chr	Protein	Oil	KWT	KRN	KWT/P	KWT/O	KRN/P	KRN/O
1	m76 [89.1]	m81 [92.0]	m66 [82.4]		-0.046	-0.439		
5		m613 [68.1]	m618 [70]	m613 [68.1]		-0.67		-0.43

^{*} Significant at $p \le 0.05$

^{**} Significant at $p \le 0.01$

Conclusion:

- Identified 2 starch, 3 protein and 6 oil QTLs, which collectively explained 18%, 23% and 45% of the total variation, respectively, with a range of stronger additive allelic effects for kernel starch, protein and oil content than NAM.
- Teosinte *does* harbor stronger and novel alleles for kernel composition that can be utilized for the improvement of kernel traits in modern maize germplasm.

What's next?

- Role of rare alleles for in complex quantitative traits such as adaptation and kernel composition
- Explore if rare alleles are involved in <u>epistatic</u> interactions
- Answer to these questions cannot be explored in the teosinte NILs

- Randomly mating backcrossed (BC₁) progeny of 11 parviglumis accessions in the B73 background for several generation.
- An expected genetic ratio of ~25% teosinte and ~75% B73

Stay tuned!

Acknowledgments

- Dr. Sherry Flint-Garcia lab
- Dr. Ed Buckler's lab (Cornell University)
- Dr. Jason Gillman (USDA-ARS)
- Dr. Mark R. Campbell (Truman State University)

Thank you for your attention!

