(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

TIPO PHP

(43) International Publication Date 8 April 2004 (08.04.2004)

PCT

(10) International Publication Number WO 2004/029269 A1

(51) International Patent Classification⁷: C12N 9/04

C12P 17/04,

(21) International Application Number:

PCT/EP2003/010495

(22) International Filing Date:

22 September 2003 (22.09.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

02021624.8

27 September 2002 (27.09.2002) EP

(71) Applicant (for all designated States except US): DSM IP ASSETS B.V. [NL/NL]; Het Overloon 1, NL-6411 TE Heerlen (NL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HOSHINO, Tatsuo [JP/JP]; 2-18-14 Fueta, Kamakura-shi, Kanagawa-ken 248-0027 (JP). MIYAZAKI, Taro [JP/JP]; Kameino 2-14-8, Fujisawa-shi, Kanagawa-ken 252-0813 (JP). SUGISAWA, Teruhide [JP/CH]; Inzlingerstrasse 80, CH-4125 Riehen (CH).

(74) Agent: MUELLER, Ingrid; Roche Vitamins Ltd., Patent Department (VMD), Wurmisweg 576, CH-4303 Kaiseraugst (CH). (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- with (an) indication(s) in relation to deposited biological material furnished under Rule 13bis separately from the description

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PROCESS FOR PRODUCING VITAMIN C

(57) Abstract: The present invention relates to a process for the production of vitamin C from L sorbosone using an aldehyde dehydrogenase which is isolated from Gluconobacter oxydans DSM 4025 (FERM BP-3812), said enzyme having the following physicochemical properties: (a) molecular weight of $150,000 \pm 6,000$ Da or $230,000 \pm 9,000$ Da (consisting of 2 or 3 homologous subunits, each subunit having a molecular weight of $75,000 \pm 3,000$ Da); (b) substrate specificity as active on aldehyde compounds; (c) Cofactors are pyrroloquinoline quinone and heme c; (d) Optimum pH between 6.4 and 8.2 for vitamin C production from L-sorbosone; and (e) as inhibitors Co^{2+} , Cu^{2+} , Fe^{2+} , Ni^{2+} , Zn^{2+} , monoiodoacetate and ethylendiamine tetraacetic acid. The process is performed in the presence of a suitable electron acceptor and the vitamin C isolated from the reaction mixture.

,

WO 2004/029269

5

15

20

Process for producing Vitamin C

- 1 -

The present invention relates to a process for producing L-ascorbic acid (vitamin C) from L-sorbosone utilizing an aldehyde dehydrogenase, i.e., L-sorbosone dehydrogenase, purified from the cell free extract of *Gluconobacter oxydans* DSM 4025 (FERM BP-3812).

The above mentioned enzyme was disclosed in EP 0 922 759 A2 and catalyzes the oxidation reaction of L-sorbosone to 2-keto-L-gulonic acid (2-KGA).

Vitamin C is a very important and indispensable nutrient factor for human beings. It is industrially synthesized by the "Reichstein method". D-glucosone and L-sorbosone are putative intermediates of vitamin C biosynthesis in bean and spinach, and the nicotinamide adenine dinucleotide phosphate (NADP)-dependent enzyme catalyzing the oxidation reaction of L-sorbosone to vitamin C has been partially purified. However, there have been no reports on the conversion of L-sorbosone to vitamin C by using the enzyme originating from a bacterial source. Surprisingly, it was found that this enzyme can convert L-sorbosone not only to 2-KGA, but also to vitamin C under specific reaction.

The present invention provides a process for producing vitamin C from L-sorbosone comprising contacting L-sorbosone with a purified L-sorbosone dehydrogenase having the following physico-chemical properties:

- (a) Molecular weight: 150,000 ± 6,000 Da or 230,000 ± 9,000 Da (consisting of 2 or 3 homologous subunits, each subunit having a molecular weight of 75,000 ± 3,000 Da);
 - (b) Substrate specificity: active on aldehyde compounds;
 - (c) Cofactors: pyrroloquinoline quinone and heme c;
 - (d) Optimum pH: 6.4 to 8.2 for the production of vitamin C from L-sorbosone;
- (e) Inhibitors: Co²⁺, Cu²⁺, Fe²⁺, Ni²⁺, Zn²⁺, monoiodoacetate and ethylenediamine tetraacetic acid;

in the presence of an electron acceptor, and isolating the resulting vitamin C from the reaction mixture.

For the purpose of the present invention, the term "purified" also includes isolated from its natural environment.

WO 2004/029269 PCT/EP2003/010495

- 2 -

Oxidation of L-sorbosone to vitamin C in the presence of an electron acceptor occurs according to the following reaction equation:

L-Sorbosone + Electron acceptor → Vitamin C + Reduced electron acceptor

The enzyme does not work with oxygen as an electron acceptor. In addition nicotineamide adenine dinucleotide (NAD) and nicotineamide adenine dinucleotide phosphate (NADP) are not suitable electron acceptors. However, other conventional electron acceptors can be utilized in conjunction with the process of this invention. (2,6-dichlorophenolindophenol (DCIP), phenazine methosulfate (PMS), ferriccyanide and cytochrome c are preferred electron acceptors.

10 The enzyme assay may be performed as follows:

a) Product (vitamin C) assay of L-sorbosone dehydrogenase activity

A reaction mixture consisting of 1.0 mM PMS, 25 mM potassium phosphate buffer (pH 7.0), 1.0 µM pyrroloquinoline quinone (PQQ), 1.0 mM CaCl₂, 50 mM L-sorbosone and enzyme solution in a final volume of 100 µl with water is prepared just before the assay. The reaction is carried out at 30°C for 60 min unless otherwise stated. The amount of vitamin C produced is measured at a wavelength of 264 nm by a high performance liquid chromatography (HPLC) which is coupled with a UV detector (TOSOH UV8000; TOSOH Co., Kyobashi 3-2-4, Chuo-ku, Tokyo, Japan), a dualpump (TOSOH CCPE; TOSOH Co.), an integrator (Shimadzu C-R6A; Shimadzu Co.,

Kuwahara-cho 1, Nishinokyo, Chukyo-ku, Kyoto, Japan) and a column (YMC-Pack Polyamine-II, YMC, Inc., 3233 Burnt Mill Drive Wilimington, NC 28403, U.S.A.). The amount of 2-KGA produced is measured by HPLC. One unit of the enzyme activity is defined as the amount of the enzyme that produces 1 mg vitamin C or 2-KGA in 60 min in the reaction mixture.

25 b) Photometrical assay of L-sorbosone dehydrogenase activity

A reaction mixture consisting of 0.1 mM DCIP, 1.0 mM PMS, 50 mM potassium phosphate buffer (pH 7.0), 1.0 μ M PQQ, 2.0 mM L-sorbosone and enzyme solution in a final volume of 100 μ l with water is prepared just before the assay. The reaction is started at 25°C with L-sorbosone, and the enzyme activity is measured as the initial reduction rate of DCIP at 600 nm. One unit of the enzyme activity is defined as the amount of the enzyme catalyzing the reduction of 1 μ mole DCIP per minute. The extinction coefficient of DCIP at pH 7.0 is taken as 14.2 mM⁻¹. A reference cuvette contains all the above constituents except of L-sorbosone.

5

10

20

The L-sorbosone dehydrogenase of the present invention can be isolated from a cell free extract of *G. oxydans* DSM 4025 (FERM BP-3812) in accordance with the methods described in EP 0 922 759 A2.

Thus, the present invention provides a process for producing vitamin C from L-sorbosone as described above, wherein the L-sorbosone dehydrogenase is derived from the strain *Gluconobacter oxydans* DSM 4025 (FERM BP-3812), a microorganism belonging to the genus Gluconobacter having the identifying characteristics of *G. oxydans* DSM 4025 (FERM BP-3812) or mutants thereof.

G. oxydans DSM 4025 was deposited at the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) in Göttingen (Germany), based on the stipulations of the Budapest Treaty, under DSM No. 4025 on March 17, 1987. The depositor was The Oriental Scientific Instruments Import and Export Corporation for Institute of Microbiology, Academia Sinica, 52 San-Li-He Rd., Beijing, Peoples Republic of China. The effective depositor was said Institute, of which the full address is The Institute of Microbiology, Academy of Sciences of China, Haidian, Zhongguancun, Beijing 100080, People's Republic of China.

A subculture of the strain has also been deposited at the National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan, also based on the stipulations of the Budapest Treaty, under the deposit No. FERM BP-3812 on March 30, 1992. The depositor is Nippon Roche K.K., 6-1, Shiba 2-chome, Minato-ku, Tokyo 105-8532 Japan. This subculture is also most preferably used in the present invention.

The enzyme may be isolated and purified after the cultivation of the microorganism, G. oxydans DSM 4025 (FERM BP-3812) as follows:

- (1) Cells are harvested from the liquid culture broth by centrifugation or filtration.
- (2) The harvested cells are washed with water, physiological saline or a buffer solution having an appropriate pH.
- (3) The washed cells are suspended in the buffer solution and disrupted by means of a
 homogenizer, sonicator or French press or by treatment with lysozyme and the like to give a solution of disrupted cells.
 - (4) The said enzyme is isolated and purified from the cell-free extract of disrupted cells, preferably from the cytosol fraction of the microorganism.

The enzyme applied to the process provided by the present invention is useful as a catalyst for the production of vitamin C from L-sorbosone. The reaction may be at pH

WO 2004/029269 PCT/EP2003/010495

-4-

60°C for about 0.5 to 48 hours in the presence of an electron acceptor, for example DCIP, PMS and the like in a solvent such as phosphate buffer, Tris-buffer and the like. A pH of about 7.0 to 8.2 and a temperature in the range of from about 20°C to 50°C for about 0.5 to 24 hours are a condition under which L-sorbosone is efficiently converted to vitamin C.

5

15

Thus, in the process of the present invention, the reaction is carried out at a pH of about 6.4 to about 9.0 and at a temperature of about 20°C to about 60°C for about 0.5 to about 48 h. A preferred reaction is carried out at a pH of about 7.0 to about 8.2 and at a temperature of about 20°C to about 50°C for about 0.5 to about 24 h.

The concentration of L-sorbosone in a reaction mixture can vary depending on other reaction conditions but, in general, is about 0.5 to about 50 g/L, preferably from about 1 to about 30 g/L.

According to the present invention the catalytic reaction is carried out in water or aqueous solvents such as methanol, ethanol, acetone or mixtures of any one of these solvents and water, however, water is preferred from the view point of economy and easy handling.

In the process of this invention, the enzyme may also be used in an immobilized state with an appropriate carrier. Any means of immobilizing enzymes generally known in the art may be used. For instance, the enzyme may be bound directly to a membrane, granules or the like of a resin having one or more functional groups, or it may be bound to the resin through bridging compounds having one or more functional groups, for example glutaraldehyde.

The produced vitamin C in the reaction mixture may be isolated by conventional methods known in the art, and it may be separated as a salt, e.g., sodium, potassium, calcium, ammonium or the like. This salt may be converted into a free acid by conventional methods known in the art. Specifically, the separation may be performed by any suitable combination or repetition of the following steps: formation of a salt by using differences in properties between the product and the surrounding impurities, such as solubility, absorbability and distribution coefficient between the solvents, and absorption, for example, on ion exchange resin and the like. Any of these procedures alone or in combination constitutes a convenient means for isolating the product. The product thus obtained may further be purified in a conventional manner, e.g., by recrystallization or chromatography.

The following Examples further illustrate the present invention.

Preparation of L-sorbosone dehydrogenase Example 1:

All the operations were performed at 8°C, and the buffer was 0.05 M potassium phosphate (pH 7.0) unless otherwise stated.

(1) Cultivation of G. oxydans DSM 4025 (FERM BP-3812):

G. oxydans DSM 4025 (FERM BP-3812) was grown on an agar plate containing 5 5.0% D-mannitol, 0.25% MgSO₄•7H₂O, 1.75 % corn steep liquor, 5.0% baker's yeast, 0.5% urea, 0.5% CaCO3 and 2.0% agar at 27° C for 4 days. One loopful of the cells was inoculated into 50 ml of a seed culture medium containing 2% L-sorbose, 0.2% yeast extract, 0.05% glycerol, 0.25% MgSO₄•7H₂O, 1.75% corn steep liquor, 0.5% urea and 1.5% CaCO3 in a 500 ml Erlenmeyer flask, and cultivated at 30°C with 180 rpm for one day on a rotary shaker.

The cultured broth (10 ml) was transferred into 500 ml Erlenmeyer flasks containing 100 ml of the same seed culture medium and cultivated in the same manner as described above. The seed culture thus prepared was used for inoculating 15 liters of medium, which contained 8.0% L-sorbose, 0.05% glycerol, 0.25% MgSO₄•7H₂O, 3.0% corn steep liquor, 0.4% yeast extract and 0.15% antifoam, in 30 L jar fermentor. The fermentation parameters were 800 rpm for the agitation speed and 0.5 vvm (volume of air/volume of medium/minute) for aeration at a temperature of 30°C. The pH was maintained at 7.0 with sodium hydroxide during the fermentation. After 48 h of cultivation, 30 liters of the cultivated broth containing the cells of G. oxydans DSM 4025 (FERM BP-3812) by using the two sets of fermentors were harvested by continuous centrifugation. The pellets containing the cells were recovered and suspended in an appropriate volume of saline.

After the suspension was centrifuged at 2,500 rpm (1,000 x g), the supernatant containing the cells was recovered to remove the insoluble materials derived from corn steep liquor and yeast extract which were ingredients in the medium. The supernatant was then centrifuged at 8,000 rpm (10,000 x g) to obtain the cell pellet. As a result, 123 g of G. oxydans DSM 4025 (FERM BP-3812) cells (wet weight) was obtained from 30 liters of broth.

30 (2) Preparation of cytosol fraction:

10

25

The cell pellet (64.2 g) was suspended with 280 ml of the buffer and passed through a French pressure cell press. After centrifugation to remove intact cells, the supernatant was designated as the cell-free extract, and the cell-free extract was centrifuged at 100,000 x g for 60 min. The resultant supernatant (227 ml) was designated as the soluble fraction

of *G. oxydans* DSM 4025 (FERM BP-3812). After this fraction was dialyzed against the buffer, 150 ml of the dialyzed fraction having a specific activity of 0.107 unit/mg protein were used for the next purification step.

(3) Diethylaminoethyl (DEAE)-cellulose column chromatography:

The dialysate (150 ml) was put on a column of DEAE-cellulose (Whatman DE-52, 3 x 50 cm) equilibrated and washed with the buffer to elute minor proteins. Then proteins bound to the resin were eluted stepwise with 0.28, 0.32, 0.36 M NaCl in the buffer. Major enzyme activity was eluted at 0.36 M NaCl. The active fractions (143 ml) were collected.

(4) Carboxymethyl-cellulose column chromatography:

A portion (127 ml) of the active fraction from the previous step was filtrated by an ultrafiltrator (Centriprep-10, Amicon) to concentrate. After the concentrated sample (28 ml) was dialyzed against the buffer, 28 ml of the dialyzed fraction (31 ml) was put on a column of carboxymethyl-cellulose (Whatman CM-52, 3 x 23 cm) equilibrated with the buffer. The proteins that passed through the column without binding to the resin were collected.

(5) Q-sepharose column chromatography (#1):

The pooled active fraction (43 ml) was concentrated by an ultrafiltrator (Centriprep-10). A portion (9.5 ml) of the concentrated fraction (10 ml) from the previous step was put on a column of Q-sepharose (Pharmacia, 1.5 by 50 cm) equilibrated with the buffer. After the column was washed with the buffer containing 0.3 M NaCl, a linear gradient of NaCl from 0.3 to 0.6 M was added to the buffer. The active fractions were eluted at NaCl concentrations ranging from 0.55 to 0.57 M.

(6) Q-sepharose column chromatography (#2):

The pooled active fraction (22 ml) from the previous step was concentrated by an ultrafiltrator (Centriprep-10). The concentrate (3.0 ml) was dialyzed against the buffer. The dialyzed sample (3.5 ml) was put on a column of Q-sepharose (Pharmacia, 1.5 by 50 cm) equilibrated with the buffer. After the column was washed with the buffer containing 0.35 M NaCl, a linear gradient of NaCl from 0.35 to 0.7 M was added to the buffer. The active fractions were eluted at NaCl concentrations ranging from 0.51 to 0.53 M.

(7) Gel filtration (Sephacryl S-300 High Resolution) column chromatography:

The pooled active fraction (20 ml) from the previous step was concentrated by an ultrafiltrator (Centriprep-10). A 1.5 ml portion of the concentrated and desalted (below 0.1 M NaCl) sample (2.0 ml) was put on a column of Sephacryl S-300 High Resolution (Pharmacia, 1.5 by 120 cm) equilibrated with the buffer containing 0.1 M NaCl. The active fractions (12 ml) were collected and dialyzed against the buffer.

(8) Hydrophobic column (RESOURCE ISO) chromatography:

The dialyzed active fraction from the previous step was concentrated by an ultrafiltrator (Centriprep-10). A portion (1.5 ml) of the concentrated sample (1.75 ml) was added to the equal volume (1.5 ml) of the buffer containing 3 M ammonium sulfate (final concentration: 1.5 M). After centrifugation (15,000 x g) of the sample, the supernatant was loaded on a column RESOURCE ISO (Pharmacia, 1.0 ml) equilibrated with the buffer containing 1.5 M ammonium sulfate. After the column was washed with the buffer containing 1.5 M ammonium sulfate, the proteins were eluted with the buffer containing a linear gradient of ammonium sulfate from 1.5 to 0.75 M. The active fractions corresponding to the L-sorbosone dehydrogenase were eluted at ammonium sulfate concentrations ranging from 1.12 to 1.10 M. The active fractions were dialyzed against the buffer using dialysis cups (Dialysis-cup MWCO 8000, Daiichi pure chemicals). Afterwards, the fractions were collected and stored at -20°C. A summary of the purification steps of the enzyme is given in Table 1.

Table 1: Purification of the aldehyde dehydrogenase from *G. oxydans* DSM 4025 (FERM BP-3812)

Step	Total activity (units)	Total protein (mg)	Specific activity (units/mg protein)
Soluble fraction	343.0	3205.2	0.107
DEAE-Cellulose DE52	26.10	120.67	0.216
CM-Cellulose CM52	28.86	105.70	0.273
Q-Sepharose (#1)	38.94	12.56	3.100
Q-Sepharose (#2)	10.77	3.47	3.102
Sephacryl S-300HR	9.09	0.71	12.81
RESOURCE ISO	3.71	0.12	31.71

Example 2: Influence of pH on the reaction products from L-sorbosone

The reaction mixture consisting of the purified enzyme (0.42 μg), L-sorbosone (50 mM), PMS (1 mM), CaCl₂ (1mM) and PQQ (1 μM) in 100 μl of 100 mM various buffers

5

was incubated for 1 h at 30°C. The reaction products were analyzed by thin layer chromatography (Silica gel 60F₂₅₄, MERCK) and HPLC. The vitamin C production was detected in the pH range from 6.4 to around 8.0. On the other hand, 2-KGA production was detected in the pH range from 5.4 to around 9.0 as shown in Table 2.

Table 2: Influence of pH on the reaction products from L-sorbosone

Buffers used	pH set (-)	Vitamin C	2-KGA produced
		produced (mg/L)	(mg/L)
	4.4	0.0	0.0
Citrate-NaOH	5.4	0.0	21.5
	6.4	6.5	5.1
	6.6	11.9	5.0
Potassium	7.1	29.0	not done
phosphate	7.4	48.8	9.6
phosphate	7.8	38.8	17.6
	8.2	21.0	24.8
	7.9	19.5	92.3
Tris-HCl	8.4	0.0	106.3
	8.9	0.0	147.5

Example 3: Effect of temperature on the activity

The reaction mixture containing 0.42 µg of the purified L-sorbosone
dehydrogenase, 50 mM L-sorbosone, 1 µM PQQ, 1mM CaCl₂, 1 mM PMS in 25 mM
potassium phosphate buffer (pH 7.0) was incubated for 60 min at various temperatures.
L-sorbosone was converted to vitamin C and 2-KGA as shown in Table 3.

Table 3: Effect of temperature on the conversion activity of L-sorbosone to vitamin C and 2-KGA

Temperature (°C)	Vitamin C produced (mg/L)	2-KGA produced (mg/L)
20	148.6	36.1
25	111.1	32.6
30	115.9	34.4
35	107.8	30.3
40	141.4	35.4
50	111.4	41.5
60	6.4	20.6

Claims

- 1. A process for producing vitamin C from L-sorbosone comprising contacting L-sorbosone with a purified L-sorbosone dehydrogenase having the following physicochemical properties:
- a) Molecular weight: $150,000 \pm 6,000$ Da or $230,000 \pm 9,000$ Da (consisting of 2 or 3 homologous subunits, each subunit having a molecular weight of $75,000 \pm 3,000$ Da);
 - b) Substrate specificity: active on aldehyde compounds;
 - c) Cofactors: pyrroloquinoline quinone and heme c;

20

- d) Optimum pH: 6.4 to 8.2 for the production of vitamin C from L-sorbosone;
- e) Inhibitors: Co²⁺, Cu²⁺, Fe²⁺, Ni²⁺, Zn²⁺, monoiodoacetate and ethylenediamine tetraacetic acid; in the presence of an electron acceptor, and isolating the resulting vitamin C from the reaction mixture.
- 2. The process according to claim 1, wherein the L-sorbosone dehydrogenase is derived from the strain *Gluconobacter oxydans* DSM No. 4025 (FERM BP-3812), a microorganism belonging to the genus *Gluconobacter* having the identifying characteristics of *G. oxydans* DSM 4025 (FERM BP-3812) or mutants thereof.
 - 3. The process according to claim 1 or 2, wherein the reaction is carried out at a pH of about 6.4 to about 9.0 and at a temperature of about 20°C to about 60°C for about 0.5 to about 48 h.
 - 4. The process according to any one of claims 1 to 3, wherein reaction is carried out at a pH of about 7.0 to about 8.2 and at a temperature of about 20°C to about 50°C for about 0.5 to about 24 h.

INTERNATIONAL FORM

The Oriental Scientific Instruments, Import and Export Corp. for Inst. of Microbiology Academia Sinica 52 San-Li-He Rd. Beijing, P.R. China

VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

I. DEPOSIT	OR .	II. IDENTIFICATION OF THE MICROORGANISM
Name: Address:	The Oriental Scientific Instruments, Import and Export Corp. for Inst. of Microbiology Academia Sinica 52 San-Li-He Rd. Beijing, P.R. China	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 4025 Date of the deposit or the transfer!: 1987-03-17
III. VIABILI	TTY STATEMENT	•
On that date	y of the microorganism identified under II above was tested on the said microorganism was . y viable	2003-08-13 2.
()) ³ no longer viable	
IV. CONDI	TIONS UNDER WHICH THE VIABILITY TEST HAS BEEN PE	RFORMED ¹
V. INTERN	IATIONAL DEPOSITARY AUTHORITY	
Name:	DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s):
Address:	Mascheroder Weg 1b D-38124 Braunschweig	Date: 2003-08-15

Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).

In the cases referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test.

Mark with a cross the applicable box.

Fill in if the information has been requested and if the results of the test were negative.

Form DSMZ-BP/9 (sole page) 12/2001

INTERNATIONAL SEARCH REPORT

PCT/EP 03/10495

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12P17/04 C12N9/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12P C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BIOSIS, FSTA, CHEM ABS Data

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
E	WO 03 104445 A (ROCHE VITAMINS AG; SUGISAWA TERUHIDE (JP); MIYAZAKI TARO (JP); HOS) 18 December 2003 (2003-12-18) claims 1-13	1-4
E .	WO 03 089634 A (ROCHE VITAMINS AG; SUGISAWA TERUHIDE (CH); MIYAZAKI TARO (JP); HOS) 30 October 2003 (2003-10-30) claims 1-13	1~4
X	EP 0 922 759 A (HOFFMANN LA ROCHE) 16 June 1999 (1999-06-16) cited in the application the whole document	1-4
Α	EP 0 518 136 A (HOFFMANN LA ROCHE) 16 December 1992 (1992-12-16) example 7	1-4

Y Further documents are listed in the continuation of box C.	χ Patent family members are listed in annex.
Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international villing date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filing date but later than the priority date claimed	 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combined with one or more other such documents, such combination being obvious to a person skilled in the art. '&' document member of the same patent family
Date of the actual completion of the international search 9 February 2004	Date of mailing of the International search report 17/02/2004
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Devijver, K

INTERNATIONAL SEARCH REPORT

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

PCT7EP 03/10495

		CI/EP 03/10495
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 832 974 A (HOFFMANN LA ROCHE) 1 April 1998 (1998-04-01) claim 19	1-4
Α	GB 466 548 A (TADEUS REICHSTEIN) 31 May 1937 (1937-05-31) the whole document	1-4
Α	LOEWUS M W ET AL: "Conversion of L-sorbosone to L-ascorbic acid by a NADP-dependent dehydrogenase in bean and spinach leaf" PLANT PHYSIOLOGY, AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, US, vol. 94, 1996, pages 1492-1495, XP002101863 ISSN: 0032-0889 the whole document	1-4
A	EP 1 026 257 A (HOFFMANN LA ROCHE) 9 August 2000 (2000-08-09) page 5, line 10 - line 14; claims 1-10	1-4
	. .	
	·	
	·	
		1

INTERNATIONAL SEARCH REPORT

PCT/EP 03/10495

							:
	tent document in search report		Publication date		Patent family member(s)		Publication date
WO	03104445	Α	18-12-2003	WO	03104445	A1	18-12-2003
WO	03089634	Α	30-10-2003	WO	03089634	A1 .	30-10-2003
EP	0922759	Α	16-06-1999	EP	0922759		16-06-1999
				BR	9805685		11-04-2000
				CA	2253023		01-06-1999
				CN	1225390		11-08-1999
				IN	187978		03-08-2002
				JP	11225754		24-08-1999
				US	6242233		05-06-2001
				US	2001026933	A1	04-10-2001
ΕP	0518136	Α	16-12-1992	AT	157400	T	15-09-1997
			•	CN	1067681		06-01-1993
				CN	1181423	Α	13-05-1998
				DE	69221777		02-10-1997
				DE	69221777		29-01-1998
				DK	518136		22-12-1997
				EP	0518136		16-12-1992
	•			HR	930952		31-12-1995
				JP	3192487		30-07-2001
				JP	5317062		03-12-1993
				RU	2102481		20-01-1998
	~~~~~~~			US	5312741	A 	17-05-1994
ΕP	0832974	Α	01-04-1998	EP	0832974	A2	01-04-1998
				BR	9704748		10-11-1998
				CN	1183472		03-06-1998
				JP	10229885	Α	02-09-1998
GB	466548	Α	31-05-1937	NONE			
EP	1026257	. <u></u>	09-08-2000	BR	0000073	A	26-09-2000
				CN	1263950		23-08-2000
				ΕP	1026257		09-08-2000
				JP	2000210094		02-08-2000
				KR	2000053496	٨	25-08-2000
				N/V	2000053490	n	23-00-2000