HARDWARE

Seneca

Saeid Khosravani Summer 2022

Grounding Power Equipment

- Ground fault circuit interrupter (GFCI) turns off electrical circuit when safety hazard occurs
- Post safety rules in work area
- Wear required personal protective equipment

Seneca

End-Effectors

The last link of the robotic arm that interact with the environment is called an end-effector.

Source: wikipedia.org/wiki/File:Endeffector.png

Classifications of End effector

- Two Major Classifications:
- Gripper
- Mechanical Grippers
- Collet Grippers
- Vacuum Grippers
- Electromechanical Grippers
- Tools
- Welding Tools
- Material Application Tools
- Machining and Assembly tools

Gripper Types

Gripper End Effectors			
Gripper Type	Gripper Configuration	Gripper Movement	Internal/External Gripping
Mechanical finger	Two-finger Three-finger Four-finger	Parallel or angular	Internal and external
Collet	Round Square Hexagonal	360° clamping contact	Internal and external
Vacuum	One or more suction cups	Vacuum/suction	External
Electromechanical	Permanent magnet Electromagnet	Magnetic attraction	External

Goodheart-Willcox Publisher

Grippers

 V-shaped fingers with two points of contact on each finger

 Human thumb, index finger, and third finger

Three-finger grippers

GRIPPER FORCE

External Grip

External Gripping Force

MHZ2-10D/MHZL2-10D

External Gripping Force

MHZ2-32D

Example 1

Calculate the 2-finger gripper force required to hold the mass of 5 Kg.

Consider coefficient of friction μ =0.2 and factor of safety (fos=4)?

Solution:

$$F = \frac{mg}{n \mu} \times fos$$
 $F = \frac{(5)(9.8)}{(2)(0.2)} \times (4) = 490 N$

Where,

M = mass in Kg

G = gravitational accelerations

N = number of fingers

 μ = Coefficient of friction

fos = factor of safety

Example 2

Calculate the force of a 2-finger gripper. If the gripper is holding a block of 5Kg and moving with an acceleration of 3 m/s^2 . Consider the coefficient of friction $\mu = 0.2$ and factor of safety (fos) is 4

Solution:

$$F = \frac{ma}{n \,\mu} \times fos$$

$$F = \frac{(5)(9.8+3)}{(2)(0.2)} \times (4) = 640 \, N$$

Where,

M = mass in Kg

G = gravitational accelerations

N = number of fingers

 μ = Coefficient of friction

fos = factor of safety

Note: If additional acceleration is given for moving the mass then g = 9.8 + additional acceleration value

Proximity Sensors

- Detect absence or presence of an object
- Optical proximity sensors
 - Measure light reflected from an object
 - Use incandescent lights or light-emitting diodes (LEDs)

- Eddy current proximity sensors
 - Magnetic field induces eddy currents into nearby conductive material
- Acoustical proximity sensors react to sound
 - Nearby objects interfere with sound waves
- Touch-sensitive proximity sensors react to capacitance
 - Changes frequency of an electronic circuit

<u>Encoder</u>

Question 1:

If an optical encoder has 8 slits and it gives 5 output pulse signals then determine the resolution of the encoder and angular displacement of the joint where the encoder is attached.

Answer:

R = 360 ° / number of slits = 45° Angular displacement = R x number of outputs = 45° x 5 = 225°

Question 2:

If an optical encoder has 10 slits and it is giving 200 output pulses in 2 minutes then determine the speed of the joint in rpm and rps.

Answer:

In one minute: 200/2 = 100 pulses / min.

In one complete revolution total pulses: 10

Therefore,

10 pulses = I rev (round).

100 pulses per min= 10 rpm

10 rpm = 10/60 = 0.16 rps (round per second)

Introduction on Controls

Open Loop Control System

A control system in which the control action is totally independent of output of the system then it is called **open loop control system**

Open loop Control system normally depends on time slice. Each action divides in set of times to produce the desire results

Example of Open Loop System

- **Electric Hand Drier** Hot air (output) comes out as long as you keep your hand under the machine, irrespective of how much your hand is dried.
- **Automatic Washing Machine** This machine runs according to the preset time irrespective of washing is completed or not.
- **Bread Toaster** This machine runs as per adjusted time irrespective of toasting is completed or not.
- **Automatic Tea/Coffee Maker** These machines also function for pre adjusted time only.
- **Timer Based Clothes Drier** This machine dries wet clothes for pre adjusted time, it does not matter how much the clothes are dried.
- **Traffic Signals** Signals turn on or off irrespective the load of traffic

Advantages and Disadvantages of an Open Loop Control System

Advantages

- Simple in construction and design.
- Economical.
- Easy to maintain.
- Generally stable.
- Convenient to use as output is difficult to measure.

Disadvantages

- They are inaccurate.
- They are unreliable.
- Any change in output cannot be corrected automatically.

Close Loop Control System

Examples of Closed Loop Control System

- **Automatic Electric Iron** Heating elements are controlled by output temperature of the iron.
- **Water Level Controller** Input water is controlled by water level of the reservoir.
- **Missile Launched & Auto Tracked by Radar** The direction of missile is controlled by comparing the target and position of the missile.
- **An Air Conditioner** An air conditioner functions depending upon the temperature of the room.
- **Thermostat Heater** It operates depending upon the temperature which it controls.

Advantages and Disadvantages Of Closed Loop Control System

Advantages

- Highly accurate as any error arising is corrected due to presence of feedback signal.
- Facilitates automation
- This system is less affected by External disturbances

Disadvantages

- They are costlier
- They are complicated to design
- Required more maintenance
- Stability is the major problem and more care is needed to design a stable closed loop system