Feuille d'exercices nº 7 : suites numériques

Exercice 1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$\begin{cases} u_0 = 4, \\ u_1 = 10, \\ \forall n \in \mathbb{N}, \ u_{n+2} = 5u_{n+1} - 6u_n. \end{cases}$$

Montrer par récurrence que : $\forall n \in \mathbb{N}, \ u_n = 2^{n+1} + 2 \times 3^n$.

Exercice 2. Calculer le terme général pour chacune des suites suivantes.

1.
$$u_1 = 1$$
 et $\forall n \in \mathbb{N}^*$, $u_{n+1} = -3u_n$. Calculer: $\sum_{k=1}^n u_k$.

2.
$$u_3 = 10$$
 et $\forall n \ge 3$, $u_{n+1} = u_n + 5$. Calculer : $\sum_{k=p}^{n} u_k$ pour $p \le n$.

3.
$$u_0 = -1$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = -\frac{1}{2}u_n + 3$

4.
$$u_0 = 0$$
; $u_1 = 1$ et $\forall n \in \mathbb{N}, u_{n+2} = 6u_{n+1} - 9u_n$

5.
$$u_0 = 0$$
, $u_1 = 1$ et $\forall n \ge 0$, $4u_{n+2} + 3u_{n+1} - 2u_n = 0$

6.
$$u_0 = 0$$
, $u_1 = 1$ et $\forall n \ge 0$, $u_{n+2} - 2u_{n+1} + 2u_n = 0$

Exercice 3. Expliciter u_n en fonction de n:

$$\begin{cases} u_0 = 0 \\ u_n = u_{n-1} + n \end{cases} \qquad \begin{cases} v_0 = 1 \\ v_n = v_{n-1} + \frac{1}{3^n} \end{cases} \qquad \begin{cases} w_0 = a \\ w_n = w_{n-1}^2 \end{cases}$$

Indication: Commencer par calculer u_1, u_2, u_3 et conjecturer une formule pour $u_n.$

Exercice 4. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $\forall n\in\mathbb{N}, u_{n+1}=\frac{2u_n}{3u_n+1}$ et $u_0=1$.

1. Faire l'étude complète de la fonction
$$f(x) = \frac{2x}{3x+1}$$
.

2. Montrer que pour tout
$$n \in \mathbb{N}$$
, u_n existe et $u_n \geqslant \frac{1}{3}$.

3. Montrer que
$$u$$
 est décroissante.

4. En déduire que
$$u$$
 converge.

5. On pose
$$v_n = 1 - \frac{1}{3u_n}$$
. Montrer que (v_n) est une suite géométrique, et calculer v_n puis u_n .

6. Trouver la limite de
$$u$$
.

Exercice 5. Déterminer la limite éventuelle de chacune des suites suivantes :

1.
$$u_n = \frac{3^n - 2^n}{4^n}$$

$$3. \quad u_n = \frac{n^2 - 3n + 2}{2n^2 + 5n - 34}$$

5.
$$u_n = \sqrt{n^2 + 1} - n$$

2.
$$u_n = (-n+2)e^{-n}$$

4.
$$u_n = \sqrt{n^4 + 1} - n$$

6.
$$u_n = \frac{(n+2)!}{(n^2+1) \times n!}$$

$$7. \ u_n = \frac{n + \sin(n)}{n - \cos(n)}$$

Exercice 6. Étudier la convergence des suites suivantes données par leur terme général et donner leur limite éventuelle :

$$a_n = \sum_{k=0}^n \frac{n}{n^2 + k}, \qquad b_n = \sum_{k=0}^{n^2} \frac{1}{\sqrt{n^2 + 2k}}, \qquad c_n = \frac{n!}{n^n}.$$

 $Indication : Pour a_n$, partir de $0 \le k \le n$ pour encadrer $\frac{n}{n^2 + k}$. Passer à la somme. En déduire la limite de a_n par encadrement.

Exercice 7. On pose : $H_n = \sum_{k=1}^n \frac{1}{k}$.

- 1. Montrer que : $H_{2n} H_n \geqslant \frac{1}{2} \quad \forall n \in \mathbb{N}^*$.
- 2. En déduire que la suite H ne converge pas.
- 3. Montrer finalement que H tend vers $+\infty$.

Exercice 8. Soit u la suite définie par : $\forall n \in \mathbb{N}, u_{n+1} = \frac{1 + u_n^2}{2}$ et $u_0 \geqslant 0$.

- 1. Quelles sont les valeurs possibles pour la limite ℓ de u dans le cas où la suite convergerait?
- 2. Montrer que u est croissante.
- 3. On suppose que $u_0 \in [0,1]$. Montrer que : $\forall n \in \mathbb{N}, u_n \in [0,1]$. En déduire que u converge.
- 4. Que se passe-t-il si $u_0 > 1$?

Exercice 9. On considère la suite : $u_0 \ge 1$ et $\forall n \in \mathbb{N}, u_{n+1} = 1 + \ln(u_n)$.

- 1. Montrer que la suite est bien définie.
- 2. Étudier la fonction $g(x) = 1 + \ln x x$. En déduire que la suite u est monotone.
- 3. Montrer que la suite converge et donner la valeur de sa limite.

Exercice 10. La suite (u_n) est définie par la relation : $\forall n \in \mathbb{N}$, $u_{n+1} = (1 - u_n)^2$ et $u_0 = \frac{1}{2}$. Soit la fonction $f: x \mapsto (1 - x)^2$.

- 1. Étudier rapidement f sur [0,1] et montrer que l'intervalle [0,1] est stable par f.
- 2. En déduire que : $\forall n \in \mathbb{N}, u_n \in [0, 1].$
- 3. On pose $g = f \circ f$. Montrer que g est croissante sur [0, 1].
- 4. On définit les suites v et w par : $v_n = u_{2n}$ et $w_n = u_{2n+1}$, pour tout n. Montrer que (v_n) est croissante, et (w_n) décroissante.
- 5. Montrer que (v_n) tend vers 1. Est-ce que (w_n) peut converger vers 1? Que peut-on dire pour (u_n) ?

Exercice 11. On définit les suites u et v par : $\forall n \ge 2$, $u_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} - \ln(n)$ et $v_n = u_n - \frac{1}{n}$.

- 1. Étudier rapidement les fonctions $f(x) = \frac{1}{x+1} \ln(x+1) + \ln x$ et $g(x) = \frac{1}{x} \ln(x+1) + \ln x$.
- 2. Montrer que u et v sont adjacentes. Leur limite commune est la constante d'Euler, notée γ , et on ne sait toujours pas si $\gamma \in \mathbb{Q}$.

Exercice 12. Soient a et b deux réels vérifiant 0 < a et 0 < b. On définit deux suites de la façon suivante : $u_0 = a$; $v_0 = b$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \sqrt{u_n v_n}$ et $v_{n+1} = \frac{u_n + v_n}{2}$.

- 1. Vérifier que ces deux suites sont bien définies.
- 2. Montrer que, $\forall n \in \mathbb{N}^*, u_n \leq v_n$
- 3. Déterminer la monotonie de chacune des deux suites.
- 4. En déduire que (u_n) et (v_n) convergent vers la même limite. Leur limite commune est appelée moyenne arithmético-géométrique de a et b.

Indication:

- 1. Par récurrence, montrer que : " $u_n \ge 0$ et $v_n \ge 0$ ".
- 2. Calculer $v_{n+1} u_{n+1}$.
- 3. Signe de $u_{n+1} u_n$.
- 4. Utiliser le théorème de la limite monotone pour montrer que les deux suites convergent. Vérifier ensuite que les deux limites ℓ et ℓ' sont égales.

Exercice 13. Soit : $\forall n \in \mathbb{N}^*$, $u_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. On note v et w les suites définies par : $v_n = u_{2n}$ et $w_n = u_{2n+1}$. Montrer que (v_n) et (w_n) sont adjacentes et que (u_n) converge.

Pour s'entrainer

Exercice 14.

- 1. Dresser le tableau de variation de la fonction g définie par $g(x) = \ln(1+x) x$. En déduire le signe de g.
- 2. Soit u la suite définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = \ln(u_n + 1)$.
 - (a) Démontrer que pour tout entier n, u_n est définie et $u_n > 0$.
 - (b) Quel est le sens de variation de u? (Penser à se servir de la question 1.)
 - (c) La suite u est-elle convergente? Si oui, préciser sa limite.

Exercice 15. Soit la suite $(u_n)_{n\in\mathbb{N}}$ la suite définie par son premier terme $u_0 \geqslant 1$ et la relation $u_{n+1} = f(u_n)$ où f est la fonction définie sur \mathbb{R}_+^* par $f(x) = x^2 + \frac{1}{x}$.

- 1. Prouver par récurrence que pour tout $n \in \mathbb{N}$, u_n est bien défini et $u_n \ge 1$.
- 2. Étudier la fonction g(x) = f(x) x.
- 3. Quel est le sens de variation de (u_n) ?
- 4. Prouver par l'absurde que la suite (u_n) ne converge pas.

Exercice 16. Soit f la fonction définie sur]-1;2] par $f(x)=\sqrt{\frac{2-x}{1+x}}$. On considère la suite définie par $u_0=1/2$ et $u_{n+1}=f(u_n)$ pour tout $n\in\mathbb{N}$.

- 1. Calculer la dérivée de f, puis dresser le tableau de variations de f.
- 2. La suite u est-elle monotone?
- 3. Montrer que l'équation x = f(x) admet une unique solution $\ell \in [1/2, 1]$.
- 4. Montrer que la suite (u_n) est bien définie et que $\forall n \in \mathbb{N}, u_n \in [1/2; 1]$.
- 5. Prouver qu'il existe un réel M < 1 tel que pour tout $x \in [1/2; 1], |f'(x)| \leq M$.
- 6. En déduire que pour tout $n \in \mathbb{N}, |u_n \ell| \leq M^n |1/2 \ell|$.
- 7. Conclure quant à la convergence de la suite (u_n) .

Exercice 17. Soit la suite définie par $u_0 = \frac{1}{2}$ et $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{e^{u_n}}{u_n + 2}$.

- 1. Etude de $f(x) = \frac{e^x}{x+2}$. Calculer f', f''. Construire le tableau de variation de f; préciser f([0,1]).
- 2. Justifier : $\forall x \in [0,1], \frac{1}{4} \leqslant f'(x) \leqslant \frac{2}{3}$.
- 3. Etablir que l'équation f(x) = x admet sur [0,1] une unique solution α .
- 4. Etude de (u_n) . Montrer que : $\forall n \in \mathbb{N}, u_n \in [0, 1]$. Justifier :

$$|u_{n+1} - \alpha| \leqslant \frac{2}{3}|u_n - \alpha|.$$

En déduire : $\forall n \in \mathbb{N}, |u_n - \alpha| \leq (2/3)^n$. Conclure.

5. Écrire un programme en pseudo-code qui affiche une valeur approchée de α à moins de 10^{-6} près.

Exercice 18. On considère la suite (u_n) définie par son premier terme $u_0 \ge 0$ et la relation :

$$\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n + u_n^3}{2}.$$

- 1. Montrer que pour tout $n, u_n \ge 0$.
- 2. Soit f la fonction définie sur \mathbb{R}_+ par $f(x) = \frac{x+x^3}{2}$.
 - (a) Déterminer les variation de f.
 - (b) Déterminer pour tout réel x positif le signe de f(x) x.
- 3. Si la suite converge vers ℓ , quelles sont les valeurs possibles de ℓ .
- 4. (a) Que dire de la suite si $u_0 = 0$? Et si $u_0 = 1$?
 - (b) On suppose que $u_0 \in]0;1[$. Montrer que (u_n) décroit. Montrer que (u_n) converge et donner sa limite.
- 5. On suppose maintenant que $u_0 > 1$. Montrer que pour tout $n, u_n > 1$. Etudier la monotonie de la suite (u_n) puis montrer que $\lim_{n \to +\infty} u_n = +\infty$