Matrix Decomposition

CS 556 Erisa Terolli

Outline

- Eigen Decomposition
- Singular Value Decomposition (SVD)
- Dimensionality Reduction with SVD
- Movie Recommender System with SVD

$$\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = ?$$

$$\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \end{bmatrix}$$

What happens when we multiply a 2D matrix with a vector?

$$\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \end{bmatrix}$$

The matrix will transform the vector by rotating and stretching/shortening it

$$R = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

Rotation by θ

$$S = \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix}$$

Stretching by α

$$\begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$$

$$4\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}4\\8\end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$$

Transformation matrix A is applied to a vector v and outputs a vector w. If w points in the same direction as v (a.k.a. lies on the same 1 dimensional subspace), then v is an eigenvector of matrix A.

$$Av = w$$
$$\lambda v = w$$
$$Av = \lambda v$$

 λ is an eigenvalue associated with eigenvector v of A

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

2 eigenvectors with values 1 and 2

0 Eigenvectors

0 Eigenvectors

Check the vectors that lie on the same span after transformation and measure how much they magnitude change

Finding Eigenvalues

$$Av = \lambda v$$

$$Av - \lambda v = 0$$

$$(A - \lambda)v = 0$$

Shift the matrix A by $\lambda \mid --- (A - \lambda I)v = 0$

It has nontrivial null space. It must be singular. $A - \lambda I$

$$det(A - \lambda I) = 0$$

 $det(A - \lambda I) = 0$ The Determinant of singular matrices is 0.

Finding Eigenvectors

- 1. Find all eigenvalues λ
- 2. For each λ , find $v \in N(A \lambda I)$
 - Find a vector v that is in the null space of the matrix $(A \lambda I)$

Example 1

$$det\left(\begin{bmatrix} 1-\lambda & 0\\ 0 & 2-\lambda \end{bmatrix}\right) = 0$$

$$(1 - \lambda)(2 - \lambda) = 0$$

$$\lambda = 1, \quad \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ v_2 \end{bmatrix} = 0, \quad v = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\lambda = 2, \quad \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} -v_1 \\ 0 \end{bmatrix} = 0, \quad v = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Eigen Decomposition

Eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors.

Diagonalization

$$AV = V\Lambda \underbrace{ \begin{array}{c} V^{-1}AV = \Lambda \\ A = V\Lambda V^{-1} \end{array} }$$

Finding a set of basis vectors V such that the original matrix A is diagonal in that basis space, assuming that the columns in V are linearly independent.

Spectral Theorem

Every symmetric matrix has the factorization $S=Q\Lambda Q^{-1}$ with real eigenvalues in Λ and orthonormal eigenvectors in the columns of $Q:S=Q\Lambda Q^{-1}=Q\Lambda Q^T$ with $Q^{-1}=Q^T$.

I.e. Eigenvectors of a real symmetric matrix are always perpendicular.

Proof: Let's assume that x and y are two eigenvectors of S with eigenvalues λ_1 and λ_2 where $\lambda_1 \neq \lambda_2$.

$$Sx = \lambda_1 x, Sy = \lambda_2 y$$

$$(Sx)^T y = (\lambda_1 x)^T y, \ x^T S^T y = x^T \lambda_1 y, \ x^T S y = x^T \lambda_1 y$$

$$x^T \lambda_2 y = x^T \lambda_1 y$$
 Since $\lambda_1 \neq \lambda_2$ then $x^T y = 0 \rightarrow x \perp y$.

Singular Value Decomposition

SVD

The goal of SVD is to decompose a matrix A as the product of 3 other matrices $A = U\Sigma V^T$, where matrix V and U are orthogonal matrices and Σ is a diagonal matrix.

Formulation

$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} v_1 & v_2 & \dots & v_r \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & \dots & u_r \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ & \ddots \\ & & AV = U\Sigma \end{bmatrix}$$

$$AV = U\Sigma V^{-1} = U\Sigma V^{T}$$

How to compute SVD?

$$A = U\Sigma V^{T}$$

$$A^{T}A = (U\Sigma V^{T})^{T}U\Sigma V^{T}$$

$$A^{T}A = V\Sigma^{T}U^{T}U\Sigma V^{T}$$

$$A^{T}A = V\Sigma^{T}I\Sigma V^{T}$$

$$A^{T}A = V\Sigma^{T}\Sigma V^{T}$$

$$A^{T}A = V\Sigma^{T}\Sigma V^{T}$$

$$A^{T}A = V\Sigma^{T}\Sigma V^{T}$$

To find V compute eigendecomposition of A^TA where V will be the eigenvectors of A^TA and Σ^2 are the eigenvalues of A^TA .

$$AA^T = U\Sigma^2 U^T$$

To find U compute eigendecomposition of AA^T where U will be the eigenvectors of AA^T and Σ^2 are the eigenvalues of AA^T .

Dimensionality Reduction with SVD

Eckart - Young Theorem 1936 [1] The reconstruction matrix $R_k = U_k \Sigma_k V_k^T$ is the closest rank-k matrix to R.

Movie Recommendation with SVD

User-Movie Rating

User Movie Rating

Overfit representation of user tases

- Computational Complexity, potentially poor results
- Goal: A more compact representation of users tastes and items descriptions
 - Represent our tastes not in terms of the products we like and dislike, but in terms of higher level attributes

How to create these representations?

- Singular Value Decomposition (SVD)
- Intuitive Description: Reduce space to a smaller taste space that is compact and robust

Singular Value Decomposition

$$R = U\Sigma V^T$$

- R is mxn rating matrix
- U is mxk user feature affinity matrix
- V is nxk item feature relevance matrix
- Σ is kxk diagonal feature weight matrix
- Exists for any real R

Rating Matrix

	The Notebook	Captain America	Seven	Forrest Gump
User 1	5	_	_	5
User 2	-	5	-	3
•••				
User m	1	5	5	_

User Feature Matrix

	Drama	Thriller	Action	Fantasy
User 1	0.7	0.2	0.1	0
User 2	0	0.05	0.75	0.2
User m	0.4	0.3	0.2	0.1

Feature Diagonal

	Drama	Thriller	Action	Fantasy
Drama	0.4	0	0	0
Thriller	0	0.3	0	0
Action	0	0	0.27	0
Fantasy	0	0	0	0.05

Movie Feature Matrix

	Drama	Thriller	Action	Fantasy
The notebook	1.0	0	0	0
Captain America	0	0.1	0.7	0.2
Seven	0.5	0.5	0.1	0
Forrest Gump	0.98	0	0	0.03

Rating Matrix

	The Notebook	Captain America	Seven	Forrest Gump
User 1	5	???	-	5
User 2	-	5	_	3
•••				
User m	1	5	5	_

User Feature Matrix

	Drama	Thriller	Action	Fantasy
User 1	0.7	0.2	0.1	0
User 2	0	0.05	0.75	0.2
User m	0.4	0.3	0.2	0.1

Feature Diagonal

	Drama	Thriller	Action	Fantasy
Drama	0.4	0	0	0
Thriller	0	0.3	0	0
Action	0	0	0.27	0
Fantasy	0	0	0	0.05

Movie Feature Matrix

	Drama	Thriller	Action	Fantasy
The notebook	1.0	0	0	0
Captain America	0	0.1	0.7	0.9
Seven	0.5	0.5	0.1	0
Forrest Gump	0.98	0	0	0.03

$$R(User_1, Captain America) = U_{User_1}SV_{Captain America}^T$$

References

[1] https://citeseer.ist.psu.edu/viewdoc/
download;jsessionid=6B65A9A35513A03050594C88798801DB?
doi=10.1.1.23.1831&rep=rep1&type=pdf

Thank you!

In-Class Exercise

Find all eigenvalues and eigenvectors of matrix A.

$$A = \begin{bmatrix} 3 & 1 \\ 4 & 6 \end{bmatrix}$$

In Class Exercise

Compute SVD for matrix A:

$$A = \begin{bmatrix} 4 & 0 \\ 3 & -5 \end{bmatrix}$$