Topological Sort

Input file: standard input
Output file: standard output

Time limit: 2 seconds

Memory limit: 1024 megabytes

You are given a positive integer N and a permutation $P = (P_1, P_2, \dots, P_N)$ of $(1, 2, \dots, N)$.

Find the number of directed graphs with N vertices labeled with $1, 2, \ldots, N$ and unlabeled edges, satisfying the following conditions:

- The graph is a simple DAG. That is, it does not contain directed cycles nor multiple edges.
- \bullet The lexicographically smallest topological ordering of the vertices is P.

Output the answer modulo 998244353.

Input

The input is given from Standard Input in the following format:

$$N$$
 $P_1 P_2 \dots P_N$

- $2 \le N \le 2 \times 10^5$
- (P_1, P_2, \ldots, P_N) is a permutation of $(1, 2, \ldots, N)$.
- All input values are integers.

Output

Print the answer in a single line.

Examples

standard input	standard output
3	4
1 3 2	
5	1024
1 2 3 4 5	
6	4096
4 2 1 5 6 3	

Note

In the first example, the following four directed graphs satisfy the conditions.

