Particle spectrograph

Wave operator and propagator

	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha^{\beta}$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_{1}} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$ au_1^{\#_1} + ^{lpha}$	$\tau_1^{\#2} + \alpha$
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2\left(2r_1+r_5\right)}$	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta} \tau_{1}^{\#1}{}_{\alpha\beta}$	0	0	0	0	0	0	0
$\tau_{1}^{\#1}\!$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 \left(r_1 + r_5 \right)}$	$\frac{\sqrt{2}}{k^2 (1+2 k^2) (r_1 + r_5)}$	0	$-\frac{2i}{k(1+2k^2)(r_1+r_5)}$
$\sigma_{1}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{k^2 (1+2 k^2) (r_1+r_5)}$	$\frac{3k^2(r_1+r_5)+2t_3}{(k+2k^3)^2(r_1+r_5)t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_1+r_5)+2t_3)}{k(1+2k^2)^2(r_1+r_5)t_3}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$ au_1^{\#2}$	0	0	0	$\frac{2i}{k(1+2k^2)(r_1+r_5)}$	$\frac{i\sqrt{2}(3k^2(r_1+r_5)+2t_3)}{k(1+2k^2)^2(r_1+r_5)t_3}$	0	$\frac{6k^2(r_1+r_5)+4t_3}{(1+2k^2)^2(r_1+r_5)t_3}$

$f_{1}^{\#2}$	0	0	0	$-\frac{2}{3}ikt_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	[3]	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$k^2 (r_1 + r_5) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	<u>2 i k t 3</u> 3
$f_{1}^{\#1}$	0	0	0	0	0	0	0
$\omega_1^{\#_2^2}$,	0	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 (2 r_1 + r_5)$	0	0	0	0	0	0
	$\omega_1^{\#_1} +^{\alpha\beta}$	$\omega_1^{\#_+^2} +^{\alpha\beta}$	$f_1^{\#_1} +^{\alpha\beta}$	$\omega_{1^{\text{-}}}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{\#2} + ^{lpha}$

Quadratic (free) Lagrangian density $\frac{2}{3}t_3 \omega_{,\alpha}^{\alpha\prime} \omega_{\kappa\alpha}^{\kappa} + f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}^{\kappa} - r_5 \partial_{\iota} \omega^{\kappa\lambda}_{\kappa}^{\lambda} \partial_{\iota} \omega_{\lambda}^{\alpha}_{\alpha}^{2} r_1 \partial^{\beta} \omega^{\theta\alpha}_{\alpha}^{\kappa} - \frac{2}{3} r_1 \partial^{\beta} \omega^{\theta\alpha}_{\alpha}^{\kappa} - \frac{2}{3} r_1 \partial^{\beta} \omega^{\theta\alpha}_{\alpha}^{\kappa} - r_5 \partial_{\alpha} \omega_{\lambda}^{\kappa}_{\alpha}^{\alpha} + r_5 \partial_{\alpha} \omega_{\lambda}^{\alpha}_{\alpha}^{\alpha} + r_5 \partial_{\alpha} \omega_{\lambda}^{\alpha}_{\alpha}^{\alpha} + r_5 \partial_{\alpha} \omega_{\lambda}^{\alpha}_{\alpha}^{\alpha} + r_5 \partial_{\alpha} \omega_{\lambda}^{\alpha}_{\alpha}^{\alpha}_$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{1}{k^2 r_1}$

_	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1}\dagger^{\alpha\beta}$	0	0	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1$

 $\tau_0^{\#1} - 2\, \bar{i}\, k\, \sigma_0^{\#1} == 0$

 $\tau_{1}^{\#2}{}^{\alpha}+2ik\;\sigma_{1}^{\#2}{}^{\alpha}$

 $^{\circ}$

 $\tau_1^{\#1}{}^{\alpha\beta} == 0$

 $\tau_{1}^{\#1}{}^{\alpha} == 0$

 $\sigma_1^{\#2}\alpha\beta==0$

2

 $\tau_{2}^{\#1}\alpha\beta == 0$

Total constraints:

Source constraints/gauge generators SO(3) irreps Multiplicities

 $\sigma_{0}^{\#1} == 0$

 $\tau_{0}^{\#2} == 0$

**************************************	t3	ı √2 . 0	0	
	$\omega_{0}^{#1} + \omega_{0}^{#1}$	$f_0^{\#\dot{+}} \uparrow f_0$	$\omega_{0}^{\#1}$ \dagger	
$t_{0}^{\#2} = \sigma_{0}^{\#1}$	0	0	0	0
$t_{0}^{#2}$	0	0	0	0
${\tau_0^{\#1}}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
	2 t3	2 t3		

 $\tau_{0}^{#1} + \\ \tau_{0}^{#2} + \\ \sigma_{0}^{#1} +$

0

0

 $2 k^2 t_3$

0

0

0

0

 $-i\sqrt{2} kt_3$

	G	G	~			3	3	+	
Ма	ssive	an	d massle	ess spec	tra				

(No massive particles)

?	
?	Quadratic p
$\frac{k^{\mu}}{}$?	Pole residue
?	Polarisation
?	

pole ie: --r ns: 2 $-\frac{1}{r_1(r_1+r_5)(2r_1+r_5)p^2} > 0$

Unitarity conditions

 $r_1 < 0 \&\& (r_5 < -r_1 || r_5 > -2 r_1) || r_1 > 0 \&\& -2 r_1 < r_5 < -r_1$