TEP4905-RP-02-04 Rev. 0

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30-2015

INTRODUCTION

An electric submersible pump (ESP) is a centrifugal pump installed in a well's downhole. The purpose of an ESP is to lift the pressure of the fluid coming from the wellbore in order to reach the wellhead with the required pressure level.

The model developed supports adjusting the pump's performance due to viscosity and impeller rotational speed. The rotational speed is proportional to the pump frequency, following the conversion 60 rpm = 1 Hz. The main algorithms used to adjust the pump performance due to these variables are as follows:

- · Frequency: by using the so-called affinity laws. These laws allow to compare the performance of pumps with similar characteristics, using dimensionless numbers and proportionality relationships to correlate the impeller rotational speed and diameter, the shaft power input, and the capacity and head of the pump.
- · Viscosity: by using the Hydraulic Institute procedure (ANSI/HI Standard 9.6.7, 2010). This procedure allows to adjust the performance curve of a centrifugal pump, considering the service fluid viscosity up to 4000 cSt.

DOCUMENT OBJECTIVE

Describing the main features, algorithms and calculations perform by the ESPObj class.

DOCUMENT SCOPE

Describe all properties, methods and events included in the ESPObj class, in its version 02. Additional to this, provide a detailed explanation on the major algorithms applied to solve the object depending on the variable configurations.

Class developed in MATLAB R2015a.

PROPERTIES

An attribute table describes each property. This table is a simplified version of the property attributes available in MATLAB, and it purpose is for any user or programmer with no previous experience in MATLAB have a better understanding of the property functionality.

For information, the attribute descriptions are as follows:

TECHNICAL REPORT 4

TEP4905-RP-02-04 Rev. 0

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30-2015

Property attribute	Description	Values	
Access	Property accessibility once a class instance is created. • Public: unrestricted access	{public protected private}	
	Protected: access from classes and subclassesPrivate: access from class member only		
Dependent	Property auto-calculated by class instance, once all dependencies have been set. When true, the property does not store any value, and it is calculated in every callback.	{true false}	
Hidden	Property visibility for a class instance. When true, the property is not listed in the available class instance's properties.	{true false}	
Set access	Property ability to be written by the user in a class instance. Public: unrestricted access	{public protected private immutable}	
	· Protected: access from classes and subclasses		
	· Private: access from class member only		
	· Immutable: access from class constructor only		
Get access	Property ability to be read by the user in a class instance.	{public protected	
	· Public: unrestricted access	private}	
	· Protected: access from classes and subclasses		
	· Private: access from class member only		

Q

Description	Pump capacity					
	Volumetric flowrate of the pump given in m ³ /h.					
Access	Public	Dependent	False	Set access	Public	
Hidden	False	Class	Double	Get access	Public	

CURVEHQ

Description	Head-capacity per	formance curve			
	Performance curve of the pump, indicating the pump head for a given capacity for a reference fluid (water) and at a reference impeller rotational speed (N). The curve is given as a set of points, head and capacity, in m and m ³ /h respectively.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

TEP4905-RP-02-04 Rev. 0

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30-2015

CURVEPQ

Description	Power-capacity performance curve				
	Performance curve of the pump, indicating the pump power consumption for a given capacity. for a reference fluid (water) and at a reference impeller rotational speed (N). The curve is given as a set of points, power and capacity, in kW and m³/h respectively. This curve must have the same number of points than the H-Q curve.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

CURVENQ

Description	Efficiency-capacity	Efficiency-capacity performance curve				
	Performance curve of the pump, indicating the pump efficiency for a given capacity for a reference fluid (water) and at a reference impeller rotational speed (N). The curve is given as a set of points, efficiency and capacity, in % and m³/h respectively. This curve must have the same number of points than the H-Q curve.					
Access	Public	Dependent	False	Set access	Public	
Hidden	False	Class	Double	Get access	Public	

CURVE**HQ**VC

Description	Performance curve service fluid viscos of points, head an	sity and at a reference d capacity, in m and	rected by viscosity ating the pump head te impeller rotational of m³/h respectively. cosityAdjustmen	al speed (N). The cur	•
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

CURVEPQVC

Description	Power-capacity performance curve, corrected by viscosity Performance curve of the pump, indicating the pump power consumption for a given capacity. corrected by the service fluid viscosity and at a reference impeller rotational speed (N). The curve is given as a set of points, power and capacity, in kW and m³/h respectively. To create the curve, the method ViscosityAdjustment must be used.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

TEP4905-RP-02-04 Rev. 0

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30-2015

CURVE**NQ**VC

Description	Performance curvi service fluid viscos of points, efficience	e of the pump, ind ity and at a referency y and capacity, in %	corrected by viscosite icating the pump endeted in the pump ended in the ication and m³/h respective cosityAdjustmen	fficiency for a giver al speed (N). The cur ely.	
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

CURVEHQNC

Description	Head-capacity performance curve, corrected by frequency Performance curve of the pump, indicating the pump head for a given capacity corrected by the service fluid viscosity and at the current impeller rotational speed (Nc). The curve is given as a set of points, head and capacity, in m and m³/h respectively. To create the curve, the method FrequencyAdjustment must be used.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

CURVEPQNC

Description	, , ,	•	rrected by frequency		
	Performance curve of the pump, indicating the pump power consumption for a given capacity. corrected by the service fluid viscosity and at the current impeller rotational speed (Nc). The curve is given as a set of points, power and capacity, in kW and m³/h respectively. To create the curve, the method FrequencyAdjustment must be used.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

FCURVE**HQ**VC

Description	Head-capacity performance curve function, corrected by viscosity Polynomial expression for the H-Q performance curve, corrected using the service fluid viscosity. The polynomial expression is calculated as indicated in the section Algorithms. To create the curve, the method PerformanceCurve must be used, with the argument 'viscosity'.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

TEP4905-RP-02-04 Rev. 0

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30-2015

FCURVEHQNC

Description	Head-capacity performance curve function, corrected by frequency Polynomial expression for the H-Q performance curve, corrected using the current impeller rotational speed. The polynomial expression is calculated as indicated in the section Algorithms.					
	To create the curve, the method PerformanceCurve must be used, with the argument 'frequency'.					
Access	Public	Dependent	False	Set access	Public	
Hidden	False	Class	Double	Get access	Public	

BEP

Description	Best efficiency poir	Best efficiency point				
	Best efficiency point (BEP) reported by the pump manufacturer. The BEP is a pair H-Q values, from the H-Q pump original curve. H is given in m, and Q is given in m ³ /h.					
Access	Public	Dependent	False	Set access	Public	
Hidden	False	Class	Double	Get access	Public	

Ν

Description	Pump frequency, reference Reference impeller rotational speed at which the H-Q performance curve is given. N is given in rpm.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

VNU

Description	Fluid kinematic viscosity Viscosity of the service fluid given in cSt. The viscosity must be given at the pump inlet conditions.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

SG

Description	Fluid specific gravity Specific gravity of the service. The specific gravity must be given at the pump inlet conditions.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

TEP4905-RP-02-04 Rev. 0

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30-2015

Nc

Description	Pump frequency, corrected Current impeller rotational speed of the pump. Nc is given in rpm.					
Access	Public					
Hidden	False	Class	Double	Get access	Public	

Н

Description	Pump head				
	Pump head given at m. This variable is calculated using the pump performance curve corrected by viscosity and by frequency if they are available.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

G

Description	Gravity acceleration Acceleration of gravity. It is a constant value, 9.81 m/s².				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

PF

Description	Auxiliary function,	Auxiliary function, standard ANSI/HI 9.6.7				
	Auxiliary function, to calculate the pump shaft input power, given by equation number 8 from HI standard (ANSI/HI Standard 9.6.7, 2010).					
Access	Protected	Dependent	False	Set access	Immutable	
Hidden	True	Class	Handle	Get access	Protected	

METHODS

An attribute table describes each method. This table is a simplified version of the method attributes available in MATLAB, and it purpose is for any user or programmer with no previous experience in MATLAB have a better understanding of the method functionality.

For information, the attribute descriptions are as follows:

TECHNICAL REPORT 4

TEP4905-RP-02-04 Rev. 0

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30-2015

Method attribute	Description	Values
Access	 Method accessibility once a class instance is created. Public: unrestricted access Protected: access from classes and subclasses Private: access from class member only 	{public protected private}
Hidden	Method visibility for a class instance. When true, the property is not listed in the available class instance's methods.	{true false}
Static	Method independency on a class object. Relative to methods inherent to the class code, such as error/exception handling. When true, the method is only available inside the class code only and does not require arguments related to the class instance.	{true false}

PLOTHQN**A**DJUSTMENT

Description	Plotting method, H	Plotting method, H-Q performance curve adjusted by frequency			
	When using this method, the object displays a plot including the H-Q performance curve of the pump adjusted by the pump frequency. In this case, the method uses the impeller rotational speed instead of the pump frequency. Consider the conversion 60 rpm = 1 Hz.				
Access	Public	Hidden	False	Static	False

PLOTHQVADJUSTMENT

Description	Plotting method, H-Q performance curve adjusted by viscosity When using this method, the object displays a plot including the H-Q performance curve of the				
	pump adjusted by the service fluid viscosity.				
Access	Public	Hidden	False	Static	False

PLOTPQVADJUSTMENT

Description	When using this m pump adjusted by using the conversi	nethod, the object d the service fluid vis	ve adjusted by viscos isplays a plot includ cosity. In this case, t ere ρ is the fluid de I units.	ling the p-Q perforr he pump head is re	placed by pressure
Access	Public	Hidden	False	Static	False

RUBEN ENSALZADO - N754813

Jun-30-2015

FREQUENCY ADJUSTMENT

Description	Frequency adjustment				
	When using this method, the object applies the affinity laws to adjust the pump performance curve based on the current impeller rotational speed, given in rpm. The method requires that the properties BEP, CurveHQ, N, and Nc are defined by the user in advance.				
Access	Public	Hidden	False	Static	False

VISCOSITY ADJUSTMENT

Description	Viscosity adjustment When using this method, the object applies the viscosity adjustment procedure suggested by the Hydraulic Institute (ANSI/HI Standard 9.6.7, 2010) to adjust the pump performance curve based on the service fluid viscosity. The method requires that the properties BEP, CurveHQ, and vnu are defined by the user in advance.				
Access	Public	Hidden	False	Static	False

PERFORMANCECURVE

Description	Performance curve adjustment When using this method, the object performs a fitting procedure to the adjusted performance curve, either by viscosity or frequency. The fitting procedure is based on least minimum squares polynomial fitting; the algorithm selects the lowest polynomial degree (from 3 to 9), based on the R ² dispersion parameter.				
Access	Public	Hidden	False	Static	False

ESPPROPERTY**C**HANGE

Description	Event control, Nc				
	This static method is designed to monitor the variable Nc, in order to update the FCurveHQnc property. When this variable is changed by the user, the property FCurveHQnc is recalculated.				
Access	Protected	Hidden	True	Static	True

STRUCTURE BRIEFING

In the following table, there is a list of all public properties included in every object created from this class.

Property	Name	Remarks
Q	Pump capacity	Required.
CurveHQ	Head-capacity performance curve	Required. Default value = zeros(10, 2)

RUBEN ENSALZADO - N754813

Jun-30-2015

Property	Name	Remarks
CurvePQ	Power-capacity performance curve	Optional.
CurveNQ	Efficiency-capacity performance curve	Optional.
CurveHQvc	HQ performance curve, corrected by viscosity	Calculated by method ViscosityAdjustment
CurvePQvc	PQ performance curve, corrected by viscosity	Calculated by method ViscosityAdjustment
CurveNQvc	NQ performance curve, corrected by viscosity	Calculated by method ViscosityAdjustment
CurveHQnc	HQ performance curve, corrected by frequency	Calculated by method FrequencyAdjustment
CurvePQnc	PQ performance curve, corrected by frequency	Calculated by method FrequencyAdjustment
FCurveHQvc	HQ performance curve function	Calculated by method PerformeCurve
FCurveHQnc	HQ performance curve function	Calculated by method PerformeCurve
BEP	Best efficiency point	Required. Default value = [0 0]
N	Impeller rotational speed, reference	Required.
vnu	Fluid kinetic viscosity	Required.
SG	Fluid specific gravity	Required. Default value = 0.895
Nc	Impeller rotational speed, actual	Required.
Н	Pump head	Dependent.
g	Gravity acceleration	Constant. Value = 9.81

APPLICATION

In the next blocks of code, some applications of the class are shown

EXAMPLE 1: DEFINING AN OBJECT

In the following example, an ESPObj instance is created. In this example, the ESP has 30 stages, and a capacity multiplier of 3 is used. The pump properties are as follows:

- Fluid viscosity is 300 cSt, and specific gravity is 0,9496.
- Reference impeller rotational speed for the performance curve is 3600 rpm and corrected rotational speed is 3000 rpm.

```
SN = 30;

CM = 3;

H1 = SN*[24.1; 24.1; 23.8; 23.1; 22.7; 22.3; 21.9; 21.9; ...

22.0; 22.3; 22.4; 22.5; 22.5; 21.9; 21.1; 19.6; ...

17.5; 14.2];
```

```
Q1 = CM*[0.0; 10.8; 21.7; 32.5; 43.3; 54.2; 65.0; 75.8; ...

86.7; 97.5; 108.3; 119.2; 130.0; 140.8; 151.7; ...

162.5; 173.3; 184.2];

PP = ESPObj;

PP.CurveHQ = [H1 Q1];

PP.BEP = [SN*21.1 CM*151.7];

PP.vnu = 300;

PP.SG = 0.9496;

PP.N = 3600;

PP.Nc = 3000;
```

EXAMPLE 2: USING THE FREQUENCY ADJUSTMENT AND VISCOSITY ADJUSTMENT METHODS

The following code refers to the object created in the previous example. The methods are invoked using the dot notation. After completing the pump performance adjustment due to frequency and viscosity, all properties are calculated these adjusted parameters.

In this example, after setting the pump capacity, the user gets the adjusted head.

```
PP.ViscosityAdjustment
PP.FrequencyAdjustment
PP.Q = 150;
PP.H
ans =
448.0924
```

EXAMPLE 3: USING THE PERFORMANCE CURVE METHOD

By using this method, the user computes the fitting polynomial expression for the adjusted performance curve, either by viscosity or frequency. As an important remark, the frequency adjustment is done over the data adjusted by viscosity.

In the following example, there are two applications of the method, using the two possible arguments.

EXAMPLE 4: USING THE PLOTHQNADJUSTMENT METHOD

By calling this method, the user will be able to display a plot from the H-Q performance curve adjusted by the actual pump impeller rotational speed.

PP.PlotHQnAdjustment

EXAMPLE 5: USING THE PLOTHQVADJUSTMENT METHOD

By calling this method, the user will be able to display a plot from the H-Q performance curve adjusted by the service fluid viscosity.

PP.PlotHQvAdjustment

EXAMPLE 6: USING THE PLOTPQVADJUSTMENT METHOD

By calling this method, the user will be able to display a plot from the p-Q performance curve adjusted by the service fluid viscosity.

REFERENCES

ANSI/HI Standard 9.6.7. (2010). *Effects of Liquid Viscosity on Rotodynamic (Centrifugal and Vertical) Pump Performance.* American National Standards Institute, Inc.