Annotation Summary

1 annotation on 1 page by Darbin E Reyes

FEATURES

- Supports IBM PC and Compatible System Designs
- Runs Much Faster Than Traditional Keyboard Controllers
- Host interface Compatible with Traditional Keyboard Controller
- 6 MHz 12 MHz Operating Frequency
- · Communicates with Keyboard Directly
- High-reliability CMOS Technology
- 40 Pin DIP and 44 Pin PLCC Package

GENERAL DESCRIPTION

KBD42W11 keyboard controller programmed to support the IBM® compatible personal computer keyboard serial interface. The keyboard controller receives serial data from the keyboard, checks the parity of the data, translates the scan code, and presents the data to the system as a byte of data in its output buffer. The controller will interrupt the system when data is placed in its output buffer. The byte of data will be sent to the keyboard serially with an odd parity bit automatically inserted. The keyboard is required to acknowledge all data transmissions. No transmission should be sent to the keyboard until acknowledgment is received for the previous byte sent.

The KBD42W11 keyboard controller and BIOS to improve the performance of IBM PC machines and their compatibles. A hardwire methodology

is used in this keyboard controller instead of a software implementation, as in the traditional 8042 keyboard BIOS. This enables the keyboard controller to respond instantly to all commands sent from the keyboard to the CPU BIOS.

The KBD42W11 enables popular programs such as AutoCAD[®], Microsoft[®] Windows[™], NOVELL[®], and other programs to run much faster.

IBM is a registered trademark of International Business Machines Corporation. AutoCAD is a registered trademark of Autodesk, Inc. Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation. NOVELL is a registered trademark of Novell, Inc.

Standard Microsystems is a registered trademark and SMSC is a trademark of Standard Microsystems Corporation. Other product and company names are trademarks or registered trademarks of their respective holders.

TABLE OF CONTENTS

FEATURES	1
GENERAL DESCRIPTION	1
PIN CONFIGURATION	3
PIN DESCRIPTION	4
BLOCK DIAGRAM	5
AC TIMING	6
TIMING WAVEFORMS	7
Write Cycle Timing	7
READ CYCLE TIMING	7
SEND DATA TO K/B	8
RECEIVE DATA FROM K/B	8
XIN/XOUT CLOCK	8
ABSOLUTE MAXIMUM RATINGS	9
ELECTRICAL CHARACTERISTICS & CAPACITANCE	9
STATUS REGISTER	10
OUTPUT BUFFER	10
INPUT BUFFER	10
VO PORTS	10
COMMANDS (I/O ADDRESS HEX 64)	12
APPLICATION CIRCUIT	13
Asynchronous	13
SYNCHRONOUS	14
PACKAGE DIMENSIONS	15

80 Arkay Drive Hauppauge, NY 11788 (516) 435-6000 FAX (516) 273-3123

PIN CONFIGURATION

PIN DESCRIPTION

PIN DESCRIPT PIN NO.	PIN NO.			
(40 Pin DIP)	(44 Pin PLCC)	I/O	NAME	FUNCTION
1	2	ı	T0	K/B Clock Input
2	3	ı	XIN	Crystal Clock I/P
3	4	0	XOUT	Crystal Clock O/P
4	5	ı	nRESET	Chip Reset
5	6	-	VDD	Optional +5V Power Supply
6	7	-	nCS	Chip Select
7	8	-	VSS	Optional Ground Power
8	9	ı	nRD	I/O Read
9	10	ı	A2	Connect to Address A2
10	11	ı	nWR	I/O Write
11,26	1,12,13,23,29, 34	-	NC	Reserved
12,13,14,	14,15,16,17,18,	I/O	D0-D7	Data Bus D0 - D7
15,16,17,	19,20,21			
18, 19				
20	22	-	VSS	Ground Power Supply
21	24	0	P20	Bit 0 of Port 2 (RCB: System
				Reset)
22	25	0	P21	Bit 1 of Port 2 (GA20: GATE A20)
23	26	I/O	P22	Bit 2 of Port 2
24	27	I/O	P23	Bit 3 of Port 2
25	28	- 1/0	VDD	Optional +5V Power Supply
27	30	I/O	P10	Bit 0 of Port 1
28	31	I/O	P11	Bit 1 of Port 1
29	32	I/O	P12	Bit 2 of Port 1
30	33	I/O	P13	Bit 3 of Port 1
31	35	l	P14	Bit 4 of Port 1 (RAM Jumper Select)
32	36		P15	Bit 5 of Port 1 (JUMP)
33	37		P16	Bit 6 of Port 1 (Display Select)
34	38	<u> </u>	P17	Bit 7 of Port 1 (K/B Inhibit Switch)
35	39	0	P24	Bit 4 of Port 2 (OBF O/P Interrupt)
36	40	0	P25	Bit 5 of Port 2 (I/P Buffer Empty)
37	41	0	P26	Bit 6 of Port 2 (K/B Clock O/P)
38	42	0	P27	Bit 7 of Port 2 (K/B Data O/P)
39	43	Ĭ	T1	K/B Data Input
40	44	-	VDD	+5V Power Supply
+∪	77	<u> </u>	\ \UU	10 v I Over Ouppry

BLOCK DIAGRAM

AC TIMING

NO.	DESCRIPTION	MIN.	MAX.	UNIT
T1	Address Setup Time from nWR	0		nS
T2	Address Setup Time from nRD	0		nS
T3	nWR Strobe Width	20		nS
T4	nRD Strobe Width	20		nS
T5	Address Hold Time from nWR	0		nS
T6	Address Hold Time from nRD	0		nS
T7	Data Setup Time	50		nS
T8	Data Hold Time	0		nS
Т9	Gate Delay Time from nWR	10		nS
T10	nRD to Drive Data Delay		20	nS
T11	nRD to Floating Data Delay	0	20	nS
T12	Data Valid After Clock Falling (SEND)		4	μS
T13	K/B Clock Period	20		μS
T14	K/B Clock Pulse Width	10		μS
T15	Data Valid Before Clock Falling (RECEIVE)	4		μS
T16	K/B ACK After Finish Receiving	20		μS
T17	nRC Fast Reset Pulse Delay (8 MHz)	2	3	μS
T18	nRC Pulse Width (8 MHz)	6		μS
T19	Transmit Timeout		2	mS
T20	Data Valid Hold Time	0		μS
T21	XIN/XOUT Period (6-12 MHz)	83	167	nS

TIMING WAVEFORMS

Write Cycle Timing

Read Cycle Timing

Receive Data from K/B

XIN/XOUT Clock

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
Ambient Operating Temperature	-0 to +85	°C
Storage Temperature	-65 to +150	°C
Supply Voltage to Ground Potential	-0.3 to +7.0	V
Applied Input/Output Voltage	-0.3 to +7.0	V
Power Dissipation	50	mW

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

ELECTRICAL CHARACTERISTICS & CAPACITANCE

 $(Ta = 0^{\circ} C \text{ to } +70^{\circ} C, VDD = +5V \pm 5\%)$

SYMBOL	DESCRIPTION	MIN.	TYP.	MAX.	UNIT
VDD	Power Supply	4.75	5.0	5.25	V
TA	Operating Temperature	0	25	70	V
VIH	High Level Voltage for TTL Min. I/P	2.0		VDD	V
VIL	Low Level Voltage for TTL Max. I/P	-0.3		0.8	V
VOH	High Level Voltage for TTL Min. O/P	VDD-0.5			V
VOL	Low Level Voltage for TTL Max. O/P			0.5	V
RIP	Min. I/P Resist	10K			Ω
ILI	I/P Leakage Current	-10		10	μΑ
ILO	O/P Leakage Current	-10		10	μA
IOL	O/P Sink Current	4			mA
CL	O/P Load Capacity	15		50	pF

STATUS REGISTER

The status register is an 8-bit read-only register at I/O address hex 64 that holds information about the state of the keyboard controller and interface. It may be read at any time.

BIT	BIT DESCRIPTION	FUNCTION
0	Output Buffer Full	0: Output Buffer Empty
		1: Output Buffer Full
1	Input Buffer Full	0: Input Buffer Empty
		1: Input Buffer Full
2	System Flag	This bit may be set to 0 or 1 by writing to the system flag bit in
		the command byte of the keyboard controller. It is set to 0 after a
		power-on reset
3	Command/data	0: Data Byte
		1: Command Byte
4	Inhibit Switch	0: Keyboard is Inhibited
		1: Keyboard is Not Inhibited
5	Transmit Time Out	0: No Transmit Time Out Error
		1: Transmit Time Out Error
6	Receive Time Out	0: No Receive Time Out Error
		1: Receive Time Out Error
7	Parity Error	0: Odd Parity (No Error)
		1: Even Parity (Error)

OUTPUT BUFFER

The output buffer is an 8-bit read-only register at I/O address hex 60. The keyboard controller uses the output buffer to send the scan code received from the keyboard and data bytes required by command to the system. The output buffer should be read only when the output buffer full bit in the register is 1.

INPUT BUFFER

The input buffer is an 8-bit write-only register at I/O address hex 60 or 64. Writing to address hex 60 sets a flag that indicates a data write; writing to address hex 64 sets a flag that indicates a command write. Data written to I/O address hex 60 are sent to the keyboard (unless the keyboard controller is expecting a data byte) following the controller's input buffer only if the input buffer full bit in the status register is set to 0.

I/O PORTS

The keyboard controller has two 8-bit I/O ports and two test inputs. One of the ports is assigned for input and the other for output. The controller uses the test inputs to read the state of the keyboard's clock line and data line.

The following figures show bit definitions for the input, output, and test-input ports.

(A) Input Port Definitions

BIT	FUNCTION
0	Undefined
1	Undefined
2	Undefined
3	Undefined
4	RAM on System Board 0: Disable 2nd 256 KB of System Board RAM 1: Enable 2nd 256 KB of System Board RAM
5	Manufacturing Jumper Installed 0: Manufacturing Jumper 1: Jumper Not Installed
6	Display Type Switch 0: Primary Display Attached to Color/graphics 0: Primary Display Attached to Monochrome
7	Keyboard Inhibit Switch 0: Keyboard Inhibited 1: Keyboard Not Inhibited

(B) Output Port Definitions

BIT	FUNCTION
0	System Reset
1	Gate A20
2	Undefined
3	Undefined
4	Output Buffer Full
5	Input Buffer Empty
6	Keyboard Clock (Output)
7	Keyboard Data (Output)

(C) Test-Input Definitions

(d) Test input Bernitions		
BIT	FUNCTION	
0	Keyboard Clock (Input)	
1	Keyboard Data (Input)	

COMMANDS (I/O ADDRESS HEX 64)

COMMAND	FUNCTION		
20	Read Command Byte of Keyboard Controller		
60	Write Command Byte of Keyboard Controller BIT BIT DEFINITIONS 7 Reserved 6 IBM PC Compatible Mode 5 IBM PC Mode 4 Disable Keyboard 3 Inhibit Override 2 System Flag 1 Reserved 0 Enable Output Buffer Full Interrupt		
AA	Self-test BIT BIT DEFINITIONS 00 No Error Detected 01 K/B Clock Line is Stuck Low 02 K/B Clock Line is Stuck High 03 K/B Data Line is Stuck High 04 K/B Data Line is Stuck High		
AB	Interface Test		
AD	Disable Keyboard Feature		
AE	Enable Keyboard Interface		
C0	Read Input Port		
D0	Read Output Port		
D1	Write Output Port		
E0	Read Test Inputs		
F0-FF	Pulse Output Port		

APPLICATION CIRCUIT

Asynchronous

Synchronous

PACKAGE DIMENSIONS

40 Pin PDIP

© 1998 STANDARD MICROSYSTEMS CORPORATION (SMSC)

Circuit diagrams utilizing SMSC products are included as a means of illustrating typical applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any licenses under the patent rights of SMSC or others. SMSC reserves the right to make changes at any time in order to improve design and supply the best product possible. SMSC products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer.

KBD42W11 Rev. 10/20/98