Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US04/042302

International filing date: 16 December 2004 (16.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: US

Number: 60/598,397

Filing date: 03 August 2004 (03.08.2004)

Date of receipt at the International Bureau: 24 January 2005 (24.01.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

TAND AND TANKS OF THE SECOND SECOND CONTROL

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

January 11, 2005

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 60/598,397
FILING DATE: August 03, 2004
RELATED PCT APPLICATION NUMBER: PCT/US04/42302

1272510

Certified By

Jon W Dudas

Under Secretary of Commerce for Intellectual Property and Acting Director of the Unites States Patent and Trademark Office 7,

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. PROVISIONAL APPLICATION FOR PATENT COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53(c).

Express Mail Label No. EV417444517US

							0
		INVENT	OR(S)				4
Given Name (first and middle [if any]) Family Name or Surname		Residence (City and either State or Foreign Country)		S.C.			
DAVID ALAN		CLARK		LANDENBERG, PENNSYLVANIA		PENNSYLVANIA	151
BRUCE LAWRENC	E	FINKELSTEIN	1	<u> </u>	NEWARK, [DELAWARE	- 24
Additional inventors are being	named on the	1	separately	numbered sheet	ts attached h	ereto	713
	TI	TLE OF THE INVENTIO					N
		HERBICIDAL F	PYRIMIDINE	S			
Direct all correspondence to:	COR	RESPONDENCE ADDRES	S			·- ·	
Customer Number:		23906					
OR [
Firm or Individual Name							
Address							
Address							
City	(State		Zip		
Country			Telephon	e	Fax		
	ENCL	OSED APPLICATION P			1		
			l1				
Specification Number of	Pages	116	Ш	CD(s), Num	ber		—
Drawing(s) Number of Sheets Other (specify) FEE SHEET					\neg		
Application Data Sheet. S							
METHOD OF PAYMENT OF F			ODI JOATION	EOO DATENT			
METHOD OF PATMENT OF F	ILING FEES P	OK THIS PROVISIONAL P	FFLICATION	FORFATENT			
Applicant claims small e	ntity status. Se	ee 37 CFR 1.27.			FILING		
A check or money order	is enclosed to	cover the filing fees.			Amou	nt (\$)	
l ·		_					
The Director is hereby at fees or credit any overpa		narge tiling osit Account Number:	04-192	28	\$1	60.00	
l						l	
Payment by credit card.	Form PTO-20)38 is attached.					
The invention was made by an United States Government.	agency of the	United States Government	or under a co	ntract with an ag	ency of the		
No.							
I号 ****							
Yes, the name of the U.S	6. Government	agency and the Government	nt contract nur	mber are:			_
	^ -	IPage 1	of 21				
Respectfully submitted, D $lpha$	uid E	Heiser Paris	51 2 1 7 4 A	Date	AUGUST	3, 2004	
Respectfully submitted, Da	9 16.	for ry N	0 31366	REGISTRAT	ION NO.	38,719	
TYPED or PRINTED NAME	INDA D PIE	PCH		(if appropriat	e) DA	9323USPRV1	_
I T PED OF PRINTED NAME 4	TUA U. DIF	NOI I		Docket Num	per:	3020001 TV 1	

TELEPHONE (302) 992-4949

IELEPHONE (302) 992-4949

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

This collection of information is required by 37 CFR 1.51. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 8 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

PROVISIONAL APPLICATION COVER SHEET Additional Page

PTO/SB/16 (04-04)
Approved for use through 07/31/2006. OMB 0651-0032
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Docket Number BA9323USPRV1 INVENTOR(S)/APPLICANT(S) Residence Given Name (first and middle [if any] Family or Surname (City and either State or Foreign Country) **GREGORY RUSSELL** ARMEL BEAR, DELAWARE **VERNON ARIE** WITTENBACH WILMINGTON, DELAWARE

[Page 2 of 2]

PTO/SB/17 (10-03)

Approved for use through 07/31/2006. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

EEE TOANGMITTAL			Complete if Known					
FEE TRANSMITTAL			Application Number UNKNOWN					
for FY 2004			Date		AUGUS	ST 3, 2004		
			Named	Invent	tor David A	lan Clark E	Et. Al.	
Effective 10/01/2003. Patent fees are subject to annual revision		Exam	iner Na	ame				
Applicant claims small entity status. See 37 CFR 1.27		Art U	nit				 	
TOTAL AMOUNT OF PAYMENT (\$) 160.00		Attorr	ey Doo	cket No	o. BA9323	SUSPRV1		
METHOD OF PAYMENT (check all that apply)	l			FEE	CALCULA	TION (con	tinued)	
Check Credit card Money Other None	3. 4	ADDITI	ONAL	FEE	S			
✓ Deposit Account:		Entity						
Deposit 0.4.4000	Fee Cod	Fee e (\$)	Fee I Code	Fee (\$)	Fee	Descriptior	1	Fee Paid
Account Number 04-1928	1051	1 130	2051	65	Surcharge - late	e filing fee or o	oath	
Deposit Account E. I. du Pont de Nemours and Company	1052	2 50	2052		Surcharge - late cover sheet	provisional f	iling fee or	
Name The Director is authorized to: (check all that apply)	1053	3 130	1053		Non-English sp	ecification		
Charge fee(s) indicated below Credit any overpayments	1812	2,520	1812 2				te reexamination	
Charge any additional fee(s) or any underpayment of fee(s)	1804	920*	1804		Requesting pub Examiner actior		R prior to	
Charge fee(s) indicated below, except for the filing fee to the above-identified deposit account.	1805	5 1,840*	1805 1		Requesting put Examiner action		R after	
FEE CALCULATION	1251	1 110	2251		Extension for re		st month	
1. BASIC FILING FEE	1252	2 420	2252	210	Extension for re	eply within se	cond month	LI
Large Entity Small Entity	1253	950	2253	475	Extension for re	eply within thi	rd month	
Fee Fee Fee Fee Pee Paid Code (\$) Code (\$)	1254	1,480	2254	740	Extension for re	eply within for	urth month	
1001 770 2001 385 Utility filing fee	1255	5 2,010	2255	1,005	Extension for re	eply within fift	h month	
1002 340 2002 170 Design filing fee	1401	1 330	2401	165	Notice of Appe	a!		<u> </u>
1003 530 2003 265 Plant filing fee	1402		2402		Filing a brief in		appeal	
1004 770 2004 385 Reissue filing fee	1403		2403		Request for ora	-		· · · · · · · · · · · · · · · · · · ·
1005 160 2005 80 Provisional filing fee 160.00	ı	1 1,510	1451		Petition to instit	•	, ,	
SUBTOTAL (1) (\$) 160.00	1452		2452		Petition to reviv			
2. EXTRA CLAIM FEES FOR UTILITY AND REISSUE		3 1,330 1 1,330	2453 2501		Petition to reviv Utility issue fee		onai	
Fee from Extra Claims below Fee Paid	1502	•	2502		Design issue fe			
Total Claims20** = X 18 =	1503	3 640	2503		Plant issue fee			
Independent - 3** = X 86 = X	1460	130	1460	130	Petitions to the	Commission	er	
Multiple Dependent YES 290.00 =	1807	7 50	1807	50	Processing fee	under 37 CF	R 1.17(q)	
Large Entity Small Entity Fee Fee Fee Fee Fee Description	1806	180	1806		Submission of I			
Code (\$) Code (\$)	8021	1 40	8021	40	Recording each property (times	n patent assig	nment per	
1202 18 2202 9 Claims in excess of 20 1201 86 2201 43 Independent claims in excess of 3	1809	770	2809	385	Filing a submis (37 CFR 1.129	sion after fina	•	
1203 290 2203 145 Multiple dependent claim, if not paid	1810	770	2810		For each additi	onal inventior		
1204 86 2204 43 ** Reissue independent claims over original patent	180	1 770	2801	385	examined (37 C) mination (RCE)	
1205 18 2205 9 ** Reissue claims in excess of 20	180		1802		Request for e		` '	┝─┤
and over original patent					of a design ap			├ ──
SUBTOTAL (2) (\$) 0.00		er fee (sp duced by		iling Fe	e Paid	NUDTOTA:	(0) (0)	
**or number previously paid, if greater, For Reissues, see above	, red	Juceu Dy	Jasic F	ang re	oraiu (SUBTOTAL		0.00
SUBMITTED BY		Dag!-4	diam At			(Complete (if applicable))	
Name (Print/Type) Linda D. Birch	$oldsymbol{\perp}$	Registra (Attomev			38,719	Telephone	(302) 99	2-4949
Signature by David E. Heiser	772	18	M	_(:	31366)	Date	AUGUST	3, 2004

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

This collection of information is required by 37 CFR 1.17 and 1.27. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

15

20

25

1

TITLE HERBICIDAL PYRIMIDINES

FIELD OF THE INVENTION

This invention relates to certain pyrimidines, their *N*-oxides, agriculturally suitable salts and compositions, and methods of their use for controlling undesirable vegetation.

BACKGROUND OF THE INVENTION

The control of undesired vegetation is extremely important in achieving high crop efficiency. Achievement of selective control of the growth of weeds especially in such useful crops as rice, soybean, sugar beet, corn (maize), potato, wheat, barley, tomato and plantation crops, among others, is very desirable. Unchecked weed growth in such useful crops can cause significant reduction in productivity and thereby result in increased costs to the consumer. The control of undesired vegetation in noncrop areas is also important. Many products are commercially available for these purposes, but the need continues for new compounds which are more effective, less costly, less toxic, environmentally safer or have different modes of action.

World Patent Application Publication WO 92/05159-A discloses pyrimidines useful as plant protectants, especially fungicides.

SUMMARY OF THE INVENTION

This invention is directed to a compound of Formula I including all geometric and stereoisomers, N-oxides or agriculturally suitable salts thereof, agricultural compositions containing them and their use as herbicides:

$$R^2$$
 R^3 R^4

I

wherein

R¹ is cyclopropyl optionally substituted with 1-5 R⁵, isopropyl optionally substituted with 1-5 R⁶, or phenyl optionally substituted with 1-3 R⁷;

 R^2 is $((O)_jC(R^{15})(R^{16}))_kR$;

R is CO₂H or a herbicidally effective derivative of CO₂H;

 R^3 is halogen, cyano, nitro, OR^{20} , SR^{21} or $N(R^{22})R^{23}$;

 R^4 is $-N(R^{24})R^{25}$ or $-NO_2$;

each R^5 and R^6 is independently halogen, C_1 – C_2 alkyl or C_1 – C_2 haloalkyl;

```
each R<sup>7</sup> is independently halogen, cyano, nitro, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub> haloalkyl, C<sub>3</sub>-C<sub>6</sub>
                           cycloalkyl, C<sub>3</sub>-C<sub>6</sub> halocycloalkyl, C<sub>1</sub>-C<sub>4</sub> hydroxyalkyl, C<sub>2</sub>-C<sub>4</sub> alkoxyalkyl,
                           C_2-C_4 haloalkoxyalkyl, C_2-C_4 alkenyl, C_2-C_4 haloalkenyl, C_3-C_4 alkynyl,
                           C<sub>3</sub>-C<sub>4</sub> haloalkynyl, hydroxy, C<sub>1</sub>-C<sub>4</sub> alkoxy, C<sub>1</sub>-C<sub>4</sub> haloalkoxy, C<sub>2</sub>-C<sub>4</sub>
 5
                           alkenyloxy, C<sub>2</sub>-C<sub>4</sub> haloalkenyloxy, C<sub>3</sub>-C<sub>4</sub> alkynyloxy, C<sub>3</sub>-C<sub>4</sub> haloalkynyloxy,
                           C<sub>1</sub>-C<sub>4</sub> alkylthio, C<sub>1</sub>-C<sub>4</sub> haloalkylthio, C<sub>1</sub>-C<sub>4</sub> alkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>
                           haloalkylsulfinyl, C<sub>1</sub>-C<sub>4</sub> alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub> haloalkylsulfonyl, C<sub>2</sub>-C<sub>4</sub>
                           alkenylthio, C<sub>2</sub>-C<sub>4</sub> haloalkenylthio, C<sub>2</sub>-C<sub>4</sub> alkenylsulfinyl, C<sub>2</sub>-C<sub>4</sub>
                           haloalkenylsulfinyl, C<sub>2</sub>-C<sub>4</sub> alkenylsulfonyl, C<sub>2</sub>-C<sub>4</sub> haloalkenylsulfonyl, C<sub>3</sub>-C<sub>4</sub>
                           alkynylthio, C<sub>3</sub>-C<sub>4</sub> haloalkynylthio, C<sub>3</sub>-C<sub>4</sub> alkynylsulfinyl, C<sub>3</sub>-C<sub>4</sub>
10
                           haloalkynylsulfinyl, C<sub>3</sub>-C<sub>4</sub> alkynylsulfonyl, C<sub>3</sub>-C<sub>4</sub> haloalkynylsulfonyl, C<sub>1</sub>-C<sub>4</sub>
                           alkylamino, C<sub>2</sub>-C<sub>8</sub> dialkylamino, C<sub>3</sub>-C<sub>6</sub> cycloalkylamino, C<sub>3</sub>-C<sub>6</sub>
                           (alkyl)cycloalkylamino, C2-C6 alkylcarbonyl, C2-C6 alkoxycarbonyl, C2-C6
                           alkylaminocarbonyl, C<sub>3</sub>–C<sub>8</sub> dialkylaminocarbonyl, C<sub>3</sub>–C<sub>6</sub> trialkylsilyl, phenyl,
15
                           phenoxy and 5- or 6-membered heteroaromatic rings, each phenyl, phenoxy and
                           5- or 6-membered heteroaromatic ring optionally substituted with one to three
                           substituents independently selected from R<sup>45</sup>; or
                  two adjacent R<sup>7</sup> are taken together as -OCH<sub>2</sub>O-, -CH<sub>2</sub>CH<sub>2</sub>O-, -OCH(CH<sub>3</sub>)O-,
                           -OC(CH<sub>3</sub>)<sub>2</sub>O-, -OCF<sub>2</sub>O-, -CF<sub>2</sub>CF<sub>2</sub>O-, -OCF<sub>2</sub>CF<sub>2</sub>O- or -CH=CH-CH=CH-;
20
                  R^{15} is H, halogen, C_1–C_4 alkyl, C_1–C_4 haloalkyl, hydroxy, C_1–C_4 alkoxy or C_2–C_4
                           alkylcarbonyloxy;
                  R^{16} is H, halogen, C_1–C_4 alkyl or C_1–C_4 haloalkyl;
                  R^{20} is H, C_1–C_4 alkyl or C_1–C_3 haloalkyl;
                  R^{21} is H, C_1–C_4 alkyl or C_1–C_3 haloalkyl;
                  R^{22} and R^{23} are independently H or C_1-C_4 alkyl;
25
                  R^{24} is H, C_1–C_4 alkyl optionally substituted with 1–2 R^{30}, C_2–C_4 alkenyl optionally
                           substituted with 1–2 R^{31}, or C_2–C_4 alkynyl optionally substituted with 1–2 R^{32};
                           or R^{24} is C(=O)R^{33}, nitro, OR^{34}, S(O)_2R^{35} or N(R^{36})R^{37};
                 R^{25} is H, C_1–C_4 alkyl optionally substituted with 1–2 R^{30} or C(=0)R^{33}; or
30
                  R^{24} and R^{25} are taken together as a radical selected from -(CH<sub>2</sub>)<sub>4</sub>-, -(CH<sub>2</sub>)<sub>5</sub>-,
                           -CH<sub>2</sub>CH=CHCH<sub>2</sub>- and -(CH<sub>2</sub>)<sub>2</sub>O(CH<sub>2</sub>)<sub>2</sub>-, each radical optionally substituted
                           with 1-2 R^{38}; or
                 R^{24} and R^{25} are taken together as =C(R^{39})N(R^{40})R^{41} or =C(R^{42})OR^{43};
                  each R<sup>30</sup>, R<sup>31</sup> and R<sup>32</sup> is independently halogen, C<sub>1</sub>-C<sub>3</sub> alkoxy, C<sub>1</sub>-C<sub>3</sub> haloalkoxy,
35
                           C<sub>1</sub>-C<sub>3</sub> alkylthio, C<sub>1</sub>-C<sub>3</sub> haloalkylthio, amino, C<sub>1</sub>-C<sub>3</sub> alkylamino, C<sub>2</sub>-C<sub>4</sub>
                           dialkylamino or C2-C4 alkoxycarbonyl;
                  each R<sup>33</sup> is independently H, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>3</sub> haloalkyl, C<sub>1</sub>-C<sub>4</sub> alkoxy, phenoxy
```

or benzyloxy;

```
R^{34} is H, C_1–C_4 alkyl or C_1–C_3 haloalkyl;
                  R^{35} is C_1–C_4 alkyl or C_1–C_3 haloalkyl;
                  R^{36} and R^{37} are independently H or C_1–C_4 alkyl;
                  each R^{38} is independently halogen, C_1–C_3 alkyl, C_1–C_3 alkoxy, C_1–C_3 haloalkoxy,
 5
                           C<sub>1</sub>-C<sub>3</sub> alkylthio, C<sub>1</sub>-C<sub>3</sub> haloalkylthio, amino, C<sub>1</sub>-C<sub>3</sub> alkylamino, C<sub>2</sub>-C<sub>4</sub>
                            dialkylamino or C<sub>2</sub>-C<sub>4</sub> alkoxycarbonyl;
                  R^{39} is H or C_1–C_4 alkyl;
                  R<sup>40</sup> and R<sup>41</sup> are independently H or C<sub>1</sub>-C<sub>4</sub> alkyl; or
                  R^{40} and R^{41} are taken together as -(CH<sub>2</sub>)<sub>4</sub>-, -(CH<sub>2</sub>)<sub>5</sub>-, -CH<sub>2</sub>CH=CHCH<sub>2</sub>- or
10
                            -(CH_2)_2O(CH_2)_2-;
                  R^{42} is H or C_1–C_4 alkyl;
                  R^{43} is H or C_1–C_4 alkyl;
                  each R^{45} is independently halogen, cyano, nitro, C_1–C_4 alkyl, C_1–C_4 haloalkyl, C_3–C_6
                            cycloalkyl, C<sub>3</sub>-C<sub>6</sub> halocycloalkyl, C<sub>2</sub>-C<sub>4</sub> alkenyl, C<sub>2</sub>-C<sub>4</sub> haloalkenyl, C<sub>3</sub>-C<sub>4</sub>
                           alkynyl, C<sub>3</sub>-C<sub>4</sub> haloalkynyl, C<sub>1</sub>-C<sub>4</sub> alkoxy, C<sub>1</sub>-C<sub>4</sub> haloalkoxy, C<sub>1</sub>-C<sub>4</sub> alkylthio,
15
                           C<sub>1</sub>-C<sub>4</sub> haloalkylthio, C<sub>1</sub>-C<sub>4</sub> alkylsulfinyl, C<sub>1</sub>-C<sub>4</sub> alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>
                            alkylamino, C<sub>2</sub>-C<sub>8</sub> dialkylamino, C<sub>3</sub>-C<sub>6</sub> cycloalkylamino, C<sub>3</sub>-C<sub>6</sub>
                            (alkyl)cycloalkylamino,
                           C<sub>2</sub>-C<sub>4</sub> alkylcarbonyl, C<sub>2</sub>-C<sub>6</sub> alkoxycarbonyl, C<sub>2</sub>-C<sub>6</sub> alkylaminocarbonyl,
20
                           C<sub>3</sub>-C<sub>8</sub> dialkylaminocarbonyl or C<sub>3</sub>-C<sub>6</sub> trialkylsilyl;
                  j is 0 or 1; and
                  k is 0 or 1;
         provided that:
                  (a) when k is 0, then j is 0;
25
```

- (b) when R² is CH₂OR^a wherein R^a is H, optionally substituted alkyl or benzyl, then R³ is other than cyano;
 - (c) when R^1 is phenyl substituted by Cl in each of the meta positions, the phenyl is also substituted by R^7 in the para position; and
 - (d) when R^1 is phenyl substituted by R^7 in the para position, said R^7 is other than *tert*-butyl.

35

More particularly, this invention pertains to a compound of Formula I, including all geometric and stereoisomers, N-oxides or agriculturally suitable salts thereof. This invention also relates to a herbicidal composition comprising a herbicidally effective amount of a compound of Formula I and at least one of a surfactant, a solid diluent or a liquid diluent. This invention further relates to a method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of Formula I (e.g., as a composition described herein). This invention also relates to a herbicidal mixture comprising a herbicidally effective amount of a compound of

Formula I and an effective amount of at least one additional active ingredient selected from the group consisting of an other herbicide and a herbicide safener. This invention further relates to a herbicidal composition comprising a herbicidally effective amount of a compound of Formula I, an effective amount of at least one additional active ingredient selected from the group consisting of an other herbicide and a herbicide safener, and at least one of a surfactant, a solid diluent or a liquid diluent.

5

10

15

20

25

30

35

DETAILS OF THE INVENTION

As used herein, the terms "comprises," "comprising," "includes," "including," "has," "having" or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a composition, process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such composition, process, method, article, or apparatus. Further, unless expressly stated to the contrary, "or" refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present).

Also, the indefinite articles "a" and "an" preceding an element or component of the invention are intended to be nonrestrictive regarding the number of instances (i.e. occurrences) of the element or component. Therefore "a" or "an" should be read to include one or at least one, and the singular word form of the element or component also includes the plural unless the number is obviously meant to be singular.

In the above recitations, the term "alkyl", used either alone or in compound words such as "alkylthio" or "haloalkyl" includes straight-chain or branched alkyl, such as, methyl, ethyl, n-propyl, i-propyl, or the different butyl, pentyl or hexyl isomers. "Alkenyl" includes straight-chain or branched alkenes such as ethenyl, 1-propenyl, 2-propenyl, and the different butenyl, pentenyl and hexenyl isomers. "Alkenyl" also includes polyenes such as 1,2-propadienyl and 2,4-hexadienyl. "Alkynyl" includes straight-chain or branched alkynes such as ethynyl, 1-propynyl, 2-propynyl and the different butynyl, pentynyl and hexynyl isomers. "Alkynyl" can also include moieties comprised of multiple triple bonds such as 2,5-hexadiynyl. "Alkoxy" includes, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy and the different butoxy, pentoxy and hexyloxy isomers. "Alkoxyalkyl" denotes alkoxy substitution on alkyl. Examples of "alkoxyalkyl" include CH₃OCH₂, CH₃OCH₂CH₂, CH₃CH₂OCH₂ and CH₃CH₂OCH₂CH₂. "Alkenyloxy" includes straight-chain or branched alkenyloxy moieties. Examples of "alkenyloxy" include H₂C=CHCH₂O, (CH₃)CH=CHCH₂O and CH₂=CHCH₂CH₂O. "Alkynyloxy" includes straight-chain or branched alkynyloxy moieties. Examples of "alkynyloxy" include HC≡CCH₂O and CH₃C≡CCH₂O. "Alkylthio" includes branched or straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio and butylthio isomers.

"Alkylsulfinyl" includes both enantiomers of an alkylsulfinyl group. Examples of "alkylsulfinyl" include CH₃S(O), CH₃CH₂S(O), CH₃CH₂CH₂S(O), (CH₃)₂CHS(O) and the different butylsulfinyl isomers. Examples of "alkylsulfonyl" include CH₃S(O)₂, CH₃CH₂S(O)₂, CH₃CH₂CH₂S(O)₂, (CH₃)₂CHS(O)₂ and the different butylsulfonyl isomers. "Alkylamino", "dialkylamino", "alkenylthio", "alkenylsulfinyl", "alkenylsulfonyl", "alkynylthio", "alkynylsulfinyl", "alkynylsulfonyl", and the like, are defined analogously to the above examples. "Cycloalkyl" includes, for example, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. Examples of "cycloalkylalkyl" include cyclopropylmethyl, cyclopentylethyl, and other cycloalkyl moieties bonded to straight-chain or branched alkyl groups. "Alkylcycloalkyl" denotes alkyl substitution on a cycloalkyl moiety. Examples include 4-methylcyclohexyl and 3-ethylcyclopentyl. The term "heteroaromatic ring" includes fully aromatic heterocycles. Aromatic indicates that each of the ring atoms is essentially in the same plane and has a p-orbital perpendicular to the ring plane, and in which $(4n + 2) \pi$ electrons, when n is 0 or a positive integer, are associated with the ring to comply with Hückel's rule. A wide variety of synthetic methods are known in the art to enable preparation of aromatic heterocyclic rings; for extensive reviews see the eight volume set of Comprehensive Heterocyclic Chemistry, A. R. Katritzky and C. W. Rees editors-in-chief, Pergamon Press, Oxford, 1984 and the twelve volume set of Comprehensive Heterocyclic Chemistry II, A. R. Katritzky, C. W. Rees and E. F. V. Scriven editors-in-chief, Pergamon Press, Oxford, 1996. The 5- and 6-membered heteroaromatic rings described for R⁷ typically comprise 1 to 4 heteroatom ring members, the heteroatom members selected from 0-4 N, 0-1 O and 0-1 S atoms. Exhibit 1 shows examples of heteroaromatic rings; H-1 through H-55 are to be construed as illustrative rather than limiting of the heteroaromatic rings within the scope of the present invention.

25

H-1

5

10

15

20

$$(R^{71})_p$$
, $(R^{71})_p$,

H-2

Exhibit 1

wherein

each R⁷¹ is independently R⁴⁵;

 R^{71a} , R^{72} and R^{73} are independently H or R^{45} ;

p is an integer from 0 to 3; and

q is an integer from 0 to 2.

10

15

20

25

30

35

References herein to R⁷ groups H-1 through H-55 refer to those shown in Exhibit 1.

One skilled in the art will appreciate that not all nitrogen-containing heterocycles can form N-oxides since the nitrogen requires an available lone pair of electrons for oxidation to the oxide; one skilled in the art will recognize those nitrogen containing heterocycles which can form N-oxides. One skilled in the art will also recognize that tertiary amines can form N-oxides. Synthetic methods for the preparation of N-oxides of heterocycles and tertiary amines are very well known by one skilled in the art including the oxidation of heterocycles and tertiary amines with peroxy acids such as peracetic and m-chloroperbenzoic acid (MCPBA), hydrogen peroxide, alkyl hydroperoxides such as t-butyl hydroperoxide, sodium perborate, and dioxiranes such as dimethydioxirane. These methods for the preparation of N-oxides have been extensively described and reviewed in the literature, see for example: T. L. Gilchrist in Comprehensive Organic Synthesis, vol. 7, pp 748-750, S. V. Ley, Ed., Pergamon Press; M. Tisler and B. Stanovnik in Comprehensive Heterocyclic Chemistry, vol. 3, pp 18-20, A. J. Boulton and A. McKillop, Eds., Pergamon Press; M. R. Grimmett and B. R. T. Keene in Advances in Heterocyclic Chemistry, vol. 43, pp 149–161, A. R. Katritzky, Ed., Academic Press; M. Tisler and B. Stanovnik in Advances in Heterocyclic Chemistry, vol. 9, pp 285-291, A. R. Katritzky and A. J. Boulton, Eds., Academic Press; and G. W. H. Cheeseman and E. S. G. Werstiuk in Advances in Heterocyclic Chemistry, vol. 22, pp 390-392, A. R. Katritzky and A. J. Boulton, Eds., Academic Press.

The term "halogen", either alone or in compound words such as "haloalkyl", includes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as "haloalkyl", said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of "haloalkyl" include F₃C, ClCH₂, CF₃CH₂ and CF₃CCl₂. The terms "haloalkenyl", "haloalkynyl", "haloalkoxy", "haloalkylthio", and the like, are defined analogously to the term "haloalkyl". Examples of "haloalkenyl" include (Cl)₂C=CHCH₂ and CF₃CH₂CH=CHCH₂. Examples of "haloalkynyl" include HC≡CCHCl, CF₃C≡C, CCl₃C≡C and FCH₂C≡CCH₂. Examples of "haloalkoxy" include CF₃O, CCl₃CH₂O, HCF₂CH₂CH₂O and CF₃CH₂O. Examples of "haloalkylthio" include CCl₃S, CF₃S, CCl₃CH₂S and ClCH₂CH₂CH₂S. Examples of "haloalkylsulfinyl" include CF₃S(O), CCl₃S(O), CF₃CH₂S(O) and CF₃CF₂S(O). Examples of "haloalkylsulfonyl" include CF₃S(O)₂, CCl₃S(O)₂, CF₃CH₂S(O)₂ and CF₃CF₂S(O)₂.

The total number of carbon atoms in a substituent group is indicated by the " C_i – C_j " prefix where i and j are numbers from 1 to 14. For example, C_1 – C_3 alkylsulfonyl designates methylsulfonyl through propylsulfonyl; C_2 alkoxyalkyl designates CH_3OCH_2 ; C_3 alkoxyalkyl designates, for example, $CH_3CH(OCH_3)$, $CH_3OCH_2CH_2$ or $CH_3CH_2OCH_2$; and C_4 alkoxyalkyl designates the various isomers of an alkyl group substituted with an alkoxy group containing a total of four carbon atoms, examples including $CH_3CH_2OCH_2$ and $CH_3CH_2OCH_2CH_2$. Examples of "alkylcarbonyl" include

C(O)CH₃, C(O)CH₂CH₂CH₃ and C(O)CH(CH₃)₂. Examples of "alkoxycarbonyl" include CH₃OC(=O), CH₃CH₂OC(=O), CH₃CH₂CH₂OC(=O), (CH₃)₂CHOC(=O) and the different butoxy- or pentoxycarbonyl isomers. In the above recitations, when a compound of Formula I is comprised of one or more heterocyclic rings, all substituents are attached to these rings through any available carbon or nitrogen by replacement of a hydrogen on said carbon or nitrogen.

When a compound is substituted with a substituent bearing a subscript (e.g., $(R^d)_{1-3}$) that indicates the number of instances (i.e. occurrences) of said substituent can vary or the substituent is preceded with a numeric range (e.g., 1-3 R^d) indicating the number of instances of said substituent can vary, then when the number of said instances is greater than 1, each instance is independently selected from the group of radicals defined for the substituent. Further, when the subscript indicates a range, e.g., $(R^d)_{i-j}$, then the number of substituent instances may be selected from the integers between i and j inclusive.

"-CH
$$\{O(CH_2)_n\}$$
" means
$$\bigcup_{H}^{O}(CH_2)_n$$

When a group contains a substituent which can be hydrogen, for example R^{15} or R^{34} , then, when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted.

Compounds of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. One skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. Accordingly, the present invention comprises compounds selected from Formula I, N-oxides and agriculturally suitable salts thereof. The compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers, or as an optically active form.

The compounds of Formula I wherein R is CO₂H (i.e. a carboxylic acid function) are believed to be the compounds that bind to an active site on a plant enzyme or receptor causing herbicidal effect on the plant. Other compounds of Formula I wherein the substituent R is a group that can be transformed within plants or the environment to a carboxylic acid function (i.e. CO₂H) provide similar herbicidal effects and are within the scope of the present invention. Therefore "a herbicidally effective derivative of CO₂H" when used describe the substituent R in Formula I is defined as any salt, ester, carboxamide, acyl hydrazide, imidate, thioimidate, amidine, acyl halide, acyl cyanide, acid anhydride, ether, acetal, orthoester, carboxaldehyde, oxime, hydrazone, thioacid, thioester, dithiolester, nitrile or any other carboxylic acid derivative known in the art which does not extinguish the

herbicidal activity of the compound of Formula I and is or can be hydrolyzed, oxidized, reduced or otherwise metabolized in plants or soil to provide the carboxylic acid function, which depending upon pH, is in the dissociated or the undissociated form.

The agriculturally suitable salts of the compounds of the invention include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfuric, acetic, butyric, fumaric, lactic, maleic, malonic, oxalic, propionic, salicylic, tartaric, 4-toluenesulfonic or valeric acids. The agriculturally suitable salts of the compounds of the invention also include those formed with strong bases (e.g., hydrides or hydroxides of sodium, potassium or lithium). One skilled in the art recognizes that because in the environment and under physiological conditions salts of the compounds of the invention are in equilibrium with their corresponding nonsalt forms, agriculturally suitable salts share the biological utility of the nonsalt forms.

Embodiments of the present invention include:

```
Embodiment 1. A compound of Formula I wherein j is 0.
```

Embodiment 2. A compound of Formula I wherein k is 0.

Embodiment 3. A compound of Formula I wherein R¹⁵ is H.

Embodiment 4. A compound of Embodiment 3 wherein R¹⁶ is H.

Embodiment 5. A compound of Formula I wherein

```
R is CO_2R^{12}, CH_2OR^{13}, CH(OR^{46})(OR^{47}), CHO, C(=NOR^{14})H, C(=NNR^{48}R^{49})H, C(=O)N(R^{18})R^{19}, C(=S)OR^{50}, C(=O)SR^{51}, C(=S)SR^{52} or C(=NR^{53})YR^{54};
```

 R^{12} is H; or a radical selected from C_1 – C_{14} alkyl, C_3 – C_{12} cycloalkyl, C_4 – C_{12} alkylcycloalkyl, C_4 – C_{12} cycloalkylalkyl, C_2 – C_{14} alkenyl and C_2 – C_{14} alkynyl, each radical optionally substituted with 1–3 R^{27} ; or -N=C(R^{55}) R^{56} ;

R¹³ is H, C₁-C₁₀ alkyl optionally substituted with 1-3 R²⁸, or benzyl;

R¹⁴ is H, C₁-C₄ alkyl, C₁-C₄ haloalkyl or benzyl;

 R^{18} is H, C_1 – C_4 alkyl, hydroxy, C_1 – C_4 alkoxy or $S(O)_2R^{57}$;

 R^{19} is H or C_1 – C_4 alkyl;

5

10

15

20

25

30

35

each R^{26} is independently halogen, C_1 – C_4 alkyl, C_1 – C_3 haloalkyl, C_1 – C_3 alkoxy, C_1 – C_3 haloalkoxy, C_1 – C_3 haloalkylthio;

each R^{27} is independently halogen, hydroxycarbonyl, C_2 – C_4 alkoxycarbonyl, hydroxy, C_1 – C_4 alkoxy, C_1 – C_4 haloalkoxy, C_1 – C_4 alkylthio, C_1 – C_4 haloalkylthio, amino, C_1 – C_4 alkylamino, C_2 – C_4 dialkylamino, -CH $\{O(CH_2)_n\}$ or phenyl optionally substituted with 1–3 R^{44} ; or

two \mathbb{R}^{27} are taken together as -OC(O)O- or -O(C(\mathbb{R}^{58})(\mathbb{R}^{58}))₁₋₂O-; or

two R²⁷ are taken together as an oxygen atom to form, with the carbon atom to which they are attached, a carbonyl moiety;

each R²⁸ is independently halogen, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄

```
alkylthio, C<sub>1</sub>-C<sub>4</sub> haloalkylthio, amino, C<sub>1</sub>-C<sub>4</sub> alkylamino or C<sub>2</sub>-C<sub>4</sub>
                         dialkylamino; or
                two R<sup>28</sup> are taken together as an oxygen atom to form, with the carbon atom to which
  5
                         they are attached, a carbonyl moiety;
                each R^{44} is independently halogen, C_1–C_4 alkyl, C_1–C_3 haloalkyl, hydroxy, C_1–C_4
                         alkoxy, C<sub>1</sub>-C<sub>3</sub> haloalkoxy, C<sub>1</sub>-C<sub>3</sub> alkylthio, C<sub>1</sub>-C<sub>3</sub> haloalkylthio, amino, C<sub>1</sub>-C<sub>3</sub>
                         alkylamino, C<sub>2</sub>-C<sub>4</sub> dialkylamino or nitro;
                R<sup>46</sup> and R<sup>47</sup> are independently C<sub>1</sub>-C<sub>4</sub> alkyl or C<sub>1</sub>-C<sub>3</sub> haloalkyl; or
                R^{46} and R^{47} are taken together as -CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH(CH<sub>3</sub>)- or -(CH<sub>2</sub>)<sub>3</sub>-;
10
                 R^{48} is H, C_1–C_4 alkyl, C_1–C_4 haloalkyl, C_2–C_4 alkylcarbonyl, C_2–C_4 alkoxycarbonyl
                         or benzyl;
                R^{49} is H or C_1–C_4 alkyl or C_1–C_4 haloalkyl;
                R^{50}, R^{51} and R^{52} are H; or a radical selected from C_1–C_{14} alkyl, C_3–C_{12} cycloalkyl,
15
                         C<sub>4</sub>-C<sub>12</sub> alkylcycloalkyl, C<sub>4</sub>-C<sub>12</sub> cycloalkylalkyl, C<sub>2</sub>-C<sub>14</sub> alkenyl and C<sub>2</sub>-C<sub>14</sub>
                         alkynyl, each radical optionally substituted with 1-3 R<sup>27</sup>;
                 Y is O, S or NR^{61};
                R^{53} is H, C_1–C_3 alkyl, C_1–C_3 haloalkyl or C_2–C_4 alkoxyalkyl;
                R^{54} is C_1–C_3 alkyl, C_1–C_3 haloalkyl or C_2–C_4 alkoxyalkyl; or
                R^{53} and R^{54} are taken together as -(CH<sub>2</sub>)<sub>2</sub>-, -CH<sub>2</sub>CH(CH<sub>3</sub>)- or -(CH<sub>2</sub>)<sub>3</sub>-;
20
                R<sup>55</sup> and R<sup>56</sup> are independently C<sub>1</sub>-C<sub>4</sub> alkyl;
                R^{57} is C_1–C_4 alkyl, C_1–C_3 haloalkyl or NR^{59}R^{60};
                each R<sup>58</sup> is independently selected from H and C<sub>1</sub>-C<sub>4</sub> alkyl;
                R<sup>59</sup> and R<sup>60</sup> are independently H or C<sub>1</sub>-C<sub>4</sub> alkyl;
25
                R^{61} is H, C_1–C_3 alkyl, C_1–C_3 haloalkyl or C_2–C_4 alkoxyalkyl; and
                n is an integer from 1 to 4.
               Embodiment 6. A compound of Formula I wherein when R<sup>1</sup> is optionally substituted
                         cyclopropyl, then R<sup>2</sup> is other than alkoxyalkyl or alkylthioalkyl.
               Embodiment 7. A compound of Formula I wherein R<sup>2</sup> is other than alkoxyalkyl or
30
                         alkylthioalkyl.
               Embodiment 8. A compound of Formula I wherein
                R^2 is CO_2R^{12}, CH_2OR^{13}, CH(OR^{46})(OR^{47}), CHO, C(=NOR^{14})H, C(=NNR^{48}R^{49})H,
                        (O)_iC(R^{15})(R^{16})CO_2R^{17} or C(=O)N(R^{18})R^{19}, C(=S)OR^{50}, C(=O)SR^{51} or
                         C(=S)SR^{52} or C(=NR^{53})YR^{54};
                R<sup>17</sup> is C<sub>1</sub>-C<sub>10</sub> alkyl optionally substituted with 1-3 R<sup>29</sup>, or benzyl; and
35
                each R<sup>29</sup> is independently halogen, C<sub>1</sub>-C<sub>4</sub> alkoxy, C<sub>1</sub>-C<sub>4</sub> haloalkoxy, C<sub>1</sub>-C<sub>4</sub>
                         alkylthio, C<sub>1</sub>-C<sub>4</sub> haloalkylthio, amino, C<sub>1</sub>-C<sub>4</sub> alkylamino or C<sub>2</sub>-C<sub>4</sub>
                        dialkylamino.
```

- Embodiment 9. A compound of Embodiment 8 wherein when R³ is CH₂OR¹³, then R¹³ is other than alkyl.
- Embodiment 10. A compound of Embodiment 8 wherein when R^3 is CH_2OR^{13} , then R^{13} is other than optionally substituted alkyl.
- 5 Embodiment 11. A compound of Embodiment 8 wherein R³ is other than CH₂OR¹³.
 - Embodiment 12. A compound of Embodiment 8 wherein j is 0.

30

35

- Embodiment 13. A compound of Embodiment 12 wherein R² is CO₂R¹², CH₂OR¹³, CHO or CH₂CO₂R¹⁷.
- Embodiment 14. A compound of Embodiment 13 wherein R² is CO₂R¹².
- 10 Embodiment 15. A compound of Embodiment 14 wherein R^{12} is H, C_1 – C_8 alkyl or C_1 alkyl substituted with phenyl optionally substituted with 1–3 R^{44} .
 - Embodiment 16. A compound of Embodiment 15 wherein R^{12} is H, C_1 – C_4 alkyl or C_1 alkyl substituted with phenyl optionally substituted with 1–3 R^{44} .
 - Embodiment 17. A compound of Embodiment 16 wherein R¹² is H, C₁-C₄ alkyl or benzyl.
 - Embodiment 18. A compound of Formula I wherein R^1 is cyclopropyl optionally substituted with 1-2 R^6 or phenyl optionally substituted with 1-3 R^7 .
 - Embodiment 19. A compound of Embodiment 18 wherein R^1 is cyclopropyl optionally substituted with 1-2 R^6 .
- 20 Embodiment 20. A compound of Embodiment 18 wherein R¹ is cyclopropyl or phenyl optionally substituted with 1–3 R⁷.
 - Embodiment 21. A compound of Embodiment 20 wherein R¹ is cyclopropyl.
 - Embodiment 22. A compound of Embodiment 20 wherein R¹ is phenyl optionally substituted with 1–3 R⁷.
- Embodiment 23. A compound of Embodiment 20 wherein R¹ is cyclopropyl or phenyl substituted with a R⁷ radical in the para position and optionally with 1–2 R⁷ in other positions.
 - Embodiment 24. A compound of Embodiment 23 wherein R¹ is cyclopropyl or phenyl substituted with a halogen, methyl or methoxy radical in the para position and optionally with 1–2 radicals selected from halogen and methyl in other positions.
 - Embodiment 25. A compound of Embodiment 24 wherein R¹ is cyclopropyl or phenyl substituted with a halogen radical in the para position and optionally with 1–2 radicals selected from halogen and methyl in other positions.
 - Embodiment 26. A compound of Embodiment 25 wherein R¹ is cyclopropyl or phenyl substituted with a Br or Cl radical in the para position and optionally with 1–2 radicals selected from halogen and methyl in other positions.

- Embodiment 27. A compound of Embodiment 26 wherein R¹ is phenyl substituted with a Br or Cl radical in the para position and optionally with 1–2 radicals selected from halogen and methyl in other positions.
- Embodiment 28. A compound of Embodiment 26 wherein R¹ is cyclopropyl or phenyl substituted with a Br or Cl radical in the para position.
- Embodiment 29. A compound of Embodiment 28 wherein R¹ is phenyl substituted with a Br or Cl radical in the para position.
- Embodiment 30. A compound of Formula I wherein each R⁷ is independently selected from halogen, methyl and methoxy.
- Embodiment 31. A compound of Embodiment 30 wherein each R⁷ is independently selected from halogen and methyl.
 - Embodiment 32. A compound of Embodiment 31 wherein each R⁷ is independently selected from F, Cl and Br.
 - Embodiment 33. A compound of Embodiment 32 wherein each R⁷ is independently selected from Cl and Br.
 - Embodiment 34. A compound of Formula I wherein R^3 is halogen, nitro, OR^{20} , SR^{21} or $N(R^{22})R^{23}$;
 - Embodiment 35. A compound of Embodiment 34 wherein R³ is halogen.
 - Embodiment 36. A compound of Embodiment 35 wherein R³ is Br or Cl.
- Embodiment 37. A compound of Embodiment 36 wherein R³ is Cl.

10

15

25

30

- Embodiment 38. A compound of Formula I wherein R⁴ is -N(R²⁴)R²⁵.
- Embodiment 39. A compound of Formula I wherein R^{24} is other than C_2 – C_4 alkynyl optionally substituted with 1–2 R^{32} .
- Embodiment 40. A compound of Formula I wherein R^{24} is H, $C(O)R^{33}$ or C_1 – C_4 alkyl optionally substituted with R^{30} ; R^{25} is H or C_1 – C_2 alkyl; or R^{24} and R^{25} are taken together as $=C(R^{39})N(R^{40})R^{41}$.
- Embodiment 41. A compound of Embodiment 40 wherein R^{24} is H, C(O)CH₃ or C_1 – C_4 alkyl optionally substituted with R^{30} ; and R^{25} is H or C_1 – C_2 alkyl.
- Embodiment 42. A compound of Embodiment 41 wherein R^{24} and R^{25} are independently H or methyl.
- Embodiment 43. A compound of Embodiment 42 wherein R²⁴ and R²⁵ are H.
- Embodiment 44. A compound of Formula I wherein R³⁰ is halogen, methoxy, C₁ fluoroalkoxy, methylthio, C₁ fluoroalkylthio, amino, methylamino, dimethylamino or methoxycarbonyl.
- Embodiment 45. A compound of Formula I wherein R³³ is H or C₁-C₃ alkyl.
 - Embodiment 46. A compound of Embodiment 45 wherein R³³ is CH₃.
 - Embodiment 47. A compound of Formula I wherein R³⁹ is H or C₁-C₂ alkyl.

Embodiment 48. A compound of Formula I wherein R⁴⁰ and R⁴¹ are independently H or C_1 – C_2 alkyl. Combinations of Embodiments 1-48 are illustrated by: Embodiment A. A compound of Formula I wherein R^2 is CR^2 is CO_2R^{12} , CH_2OR^{13} , $CH(OR^{46})(OR^{47})$, CHO, $C(=NOR^{14})H$, $C(=NNR^{48}R^{49})H$, $(O)_iC(R^{15})(R^{16})CO_2R^{17}$ or $C(=O)N(R^{18})R^{19}$, $C(=S)OR^{50}$, $C(=O)SR^{51}$ or $C(=S)SR^{52}$ or $C(=NR^{53})YR^{54}$; R^{12} is H; or a radical selected from $C_1\!-\!C_{14}$ alkyl, $C_3\!-\!C_{12}$ cycloalkyl, $C_4\!-\!C_{12}$ alkylcycloalkyl, C₄-C₁₂ cycloalkylalkyl, C₂-C₁₄ alkenyl and C₂-C₁₄ alkynyl, each radical optionally substituted with 1-3 R²⁷; or -N=C(R⁵⁵)R⁵⁶; R^{13} is H, C_1 – C_{10} alkyl optionally substituted with 1–3 R^{28} , or benzyl; R¹⁴ is H, C₁-C₄ alkyl, C₁-C₄ haloalkyl or benzyl; R^{17} is $C_1\!-\!C_{10}$ alkyl optionally substituted with 1–3 $R^{29},$ or benzyl; and R^{18} is H, C_1 – C_4 alkyl, hydroxy, C_1 – C_4 alkoxy or $S(O)_2R^{57}$; R^{19} is H or C_1 – C_4 alkyl; each R²⁶ is independently halogen, C₁-C₄ alkyl, C₁-C₃ haloalkyl, C₁-C₃ alkoxy, C₁- C_3 haloalkoxy, C_1 – C_3 alkylthio or C_1 – C_3 haloalkylthio; each R²⁷ is independently halogen, hydroxycarbonyl, C₂-C₄ alkoxycarbonyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ haloalkylthio, amino, C_1-C_4 alkylamino, C_2-C_4 dialkylamino, $-CH\{O(CH_2)_n\}$ or phenyl optionally substituted with 1-3 R⁴⁴; or two \mathbb{R}^{27} are taken together as -OC(O)O- or -O(C(\mathbb{R}^{58})(\mathbb{R}^{58}))₁₋₂O-; or two R²⁷ are taken together as an oxygen atom to form, with the carbon atom to which they are attached, a carbonyl moiety; each R²⁸ is independently halogen, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ haloalkylthio, amino, C₁-C₄ alkylamino or C₂-C₄ dialkylamino; or two R²⁸ are taken together as an oxygen atom to form, with the carbon atom to which they are attached, a carbonyl moiety;

30

5

10

15

20

25

each R^{29} is independently halogen, C_1 – C_4 alkoxy, C_1 – C_4 haloalkoxy, C_1 – C_4 alkylthio, C_1 – C_4 haloalkylthio, amino, C_1 – C_4 alkylamino or C_2 – C_4 dialkylamino;

35

each R^{44} is independently halogen, C_1 – C_4 alkyl, C_1 – C_3 haloalkyl, hydroxy, C_1 – C_4 alkoxy, C_1 – C_3 haloalkoxy, C_1 – C_3 haloalkylthio, C_1 – C_3 haloalkylthio, amino, C_1 – C_3 alkylamino, C_2 – C_4 dialkylamino or nitro;

 R^{46} and R^{47} are independently C_1 – C_4 alkyl or C_1 – C_3 haloalkyl; or R^{46} and R^{47} are taken together as -CH₂CH₂-, -CH₂CH(CH₃)- or -(CH₂)₃-;

10

15

20

25

30

35

```
R^{48} \text{ is H, C}_1-C_4 \text{ alkyl, C}_1-C_4 \text{ haloalkyl, C}_2-C_4 \text{ alkylcarbonyl, C}_2-C_4 \text{ alkoxycarbonyl}
              or benzyl;
      R^{49} is H or C_1–C_4 alkyl or C_1–C_4 haloalkyl;
      R^{50}, R^{51} and R^{52} are H; or a radical selected from C_1–C_{14} alkyl, C_3–C_{12} cycloalkyl,
              C<sub>4</sub>-C<sub>12</sub> alkylcycloalkyl, C<sub>4</sub>-C<sub>12</sub> cycloalkylalkyl, C<sub>2</sub>-C<sub>14</sub> alkenyl and C<sub>2</sub>-C<sub>14</sub>
              alkynyl, each radical optionally substituted with 1-3 R<sup>27</sup>;
       Y is O, S or NR^{61};
       R^{53} is H, C_1–C_3 alkyl, C_1–C_3 haloalkyl or C_2–C_4 alkoxyalkyl;
       R^{54} is C_1-C_3 alkyl, C_1-C_3 haloalkyl or C_2-C_4 alkoxyalkyl; or
       R^{53} and R^{54} are taken together as -(CH<sub>2</sub>)<sub>2</sub>-, -CH<sub>2</sub>CH(CH<sub>3</sub>)- or -(CH<sub>2</sub>)<sub>3</sub>-;
       R^{55} and R^{56} are independently C_1–C_4 alkyl;
       R^{57} is C_1–C_4 alkyl, C_1–C_3 haloalkyl or NR^{59}R^{60};
       each R<sup>58</sup> is independently selected from H and C<sub>1</sub>-C<sub>4</sub> alkyl;
      R^{59} and R^{60} are independently H or C_1–C_4 alkyl;
       R^{61} is H, C_1–C_3 alkyl, C_1–C_3 haloalkyl or C_2–C_4 alkoxyalkyl; and
       n is an integer from 1 to 4.
     Embodiment B. A compound of Embodiment A wherein R<sup>3</sup> is halogen.
     Embodiment C. A compound of Embodiment B wherein R<sup>1</sup> is cyclopropyl or phenyl
              substituted with a halogen, methyl or methoxy radical in the para position and
              optionally with 1-2 radicals selected from halogen and methyl in other positions;
              and R^4 is -N(R^{24})R^{25}.
     Embodiment D. A compound of Embodiment C wherein R<sup>2</sup> is CO<sub>2</sub>R<sup>12</sup>, CH<sub>2</sub>OR<sup>13</sup>,
              CHO or CH<sub>2</sub>CO<sub>2</sub>R<sup>17</sup>.
     Embodiment E. A compound of Embodiment D wherein R<sup>24</sup> is H, C(O)R<sup>33</sup> or C<sub>1</sub>-C<sub>4</sub>
              alkyl optionally substituted with R30; R25 is H or C1-C2 alkyl; or R24 and R25
              are taken together as =C(R^{39})N(R^{40})R^{41}.
     Embodiment F. A compound of Embodiment E wherein R<sup>2</sup> is CO<sub>2</sub>R<sup>12</sup>; and R<sup>24</sup> and
              R<sup>25</sup> are H.
     Embodiment G. A compound of Embodiment F wherein R<sup>12</sup> is H, C<sub>1</sub>-C<sub>4</sub> alkyl or
              benzyl.
       Specific embodiments include compounds of Formula I selected from the group
consisting of:
          methyl 6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylate,
          ethyl 6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylate,
          phenylmethyl 6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylate,
          6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylic acid monosodium salt,
```

methyl 6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylate,

phenylmethyl 6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylate,

6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylic acid monosodium salt, ethyl 6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylate, methyl 6-amino-5-chloro-2-(4-chlorophenyl)-4-pyrimidinecarboxylate, ethyl 6-amino-5-chloro-2-(4-chlorophenyl)-4-pyrimidinecarboxylate, 6-amino-5-chloro-2-(4-chlorophenyl)-4-pyrimidinecarboxylic acid, ethyl 6-amino-2-(4-bromophenyl)-5-chloro-4-pyrimidinecarboxylate, methyl 6-amino-2-(4-bromophenyl)-5-chloro-4-pyrimidinecarboxylate, and 6-amino-2-(4-bromophenyl)-5-chloro-4-pyrimidinecarboxylic acid.

5

10

15

20

25

30

35

Also noteworthy as embodiments are herbicidal compositions of the present invention comprising the compounds of embodiments described above.

This invention also relates to a method for controlling undesired vegetation comprising applying to the locus of the vegetation herbicidally effective amounts of the compounds of the invention (e.g., as a composition described herein). Of note as embodiments relating to methods of use are those involving the compounds of embodiments described above.

Of note is a compound of Formula I, including all geometric and stereoisomers, N-oxides or agriculturally suitable salts thereof, agricultural compositions containing them and their use as herbicides wherein R² is CO₂R¹², CH₂OR¹³, CHO, C(=NOR¹⁴)H, $C(R^{15})(R^{16})CO_2R^{17}$ or $C(=O)N(R^{18})R^{19}$; each R^7 is independently halogen, C_1-C_4 alkyl, C_1-C_3 haloalkyl, C_1-C_3 alkoxy, C_1-C_3 haloalkoxy, C_1-C_3 alkylthio or C_1-C_3 haloalkylthio; R¹² is H; or a radical selected from C₁-C₁₄ alkyl, C₃-C₁₂ cycloalkyl, C₄-C₁₂ alkylcycloalkyl, C_4 – C_{12} cycloalkylalkyl, C_2 – C_{14} alkenyl and C_2 – C_{14} alkynyl, each radical optionally substituted with 1–3 R^{27} ; R^{13} is H, C_1 – C_{10} alkyl optionally substituted with 1–3 R²⁸ or benzyl; R¹⁴ is H, C₁-C₄ alkyl or C₁-C₄ haloalkyl; R¹⁵ and R¹⁶ are independently H, halogen, C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, hydroxy or C_1 – C_4 alkoxy; R^{17} is C_1 – C_{10} alkyl optionally substituted with 1-3 R^{29} or benzyl; R^{18} and R^{19} are independently H or C_1 - C_4 alkyl; each R²⁷ is independently halogen, hydroxycarbonyl, C₂-C₄ alkoxycarbonyl, hydroxy, C_1 – C_4 alkoxy, C_1 – C_4 haloalkoxy, C_1 – C_4 alkylthio, C_1 – C_4 haloalkylthio, amino, C_1 - C_4 alkylamino, C_2 - C_4 dialkylamino, -CH $\{O(CH_2)_n\}$ or phenyl optionally substituted with 1-3 R⁴⁴; or two R²⁷ are taken together with the carbon atom to which they are attached to form a carbonyl moiety; each R^{28} and R^{29} is independently halogen, C_1 – C_4 alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ haloalkylthio, amino, C₁-C₄ alkylamino or C₂-C₄ dialkylamino; each R³⁰, R³¹ and R³² is independently halogen, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ haloalkylthio, amino, C₁-C₄ alkylamino, C₂-C₄ dialkylamino or C₂-C₄ alkoxycarbonyl; each R³⁸ is independently halogen, C_1-C_3 alkyl, C_1-C_3 alkoxy, C_1-C_3 haloalkoxy, C_1-C_3 alkylthio, C_1-C_3 haloalkylthio, amino, C₁-C₃ alkylamino, C₂-C₄ dialkylamino or C₂-C₄ alkoxycarbonyl; each R^{44} is independently halogen, C_1 – C_4 alkyl, C_1 – C_3 haloalkyl, hydroxy, C_1 – C_4 alkoxy,

 C_1 – C_3 haloalkoxy, C_1 – C_4 alkylthio, C_1 – C_3 haloalkylthio, amino, C_1 – C_3 alkylamino, C_2 – C_4 dialkylamino or nitro; m is an integer from 2 to 5; and n is an integer from 1 to 4.

The compounds of Formula I can be prepared by one or more of the following methods and variations as described in Schemes 1 through 7 and accompanying text. The definitions of R, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹, R²², R²³, R²⁴, R²⁵, R²⁶, R²⁷, R²⁸, R²⁹, R³⁰, R³¹, R³², R³³, R³⁴, R³⁵, R³⁶, R³⁷, R³⁸, R³⁹, R⁴⁰, R⁴¹, R⁴², R⁴³, R⁴⁴, R⁴⁵, R⁴⁶, R⁴⁷, R⁴⁸, R⁴⁹, R⁵⁰, R⁵¹, R⁵², R⁵³, R⁵⁴, R⁵⁵, R⁵⁶, R⁵⁷, R⁵⁸, R⁵⁹, R⁶⁰, R⁶¹, Y, j, k and n in the compounds of Formulae I through 12 below are as defined above in the Summary of the Invention and description of preferred embodiments unless otherwise indicated.

5

10

15

20

25

Compounds of Formula I can be prepared from chlorides of Formula 2 by reaction with amines of Formula 3, optionally in the presence of a base such as triethylamine or potassium carbonate as outlined in Scheme 1. The reaction can be run in a variety of solvents including tetrahydrofuran, p-dioxane, ethanol and methanol with optimum temperatures ranging from room temperature to 200 °C. The method of Scheme 1 is illustrated in Step C of Example 1, Step D of Example 2, and Step B of Example 3.

Scheme 1

Compounds of Formula 2 can be prepared from hydroxy compounds of Formula 4 (which may exist in the keto form) by reaction with a chlorination reagent such as phosphorous oxychloride or thionyl chloride, optionally in the presence of a base such as N,N-dimethylaniline as shown in Scheme 2. The reaction can be run neat or in the presence of a solvent such as N,N-dimethylformamide at temperatures ranging from room temperature to 120 °C. The method of Scheme 2 is illustrated in Step C of Examples 1 and 2 and Step B of Example 3.

Scheme 2

4

Compounds of Formula 4 can be prepared by the condensation of amidines of Formula 5 with keto esters of Formula 6 in solvents such as methanol or ethanol at temperatures ranging from room temperature to the reflux temperature of the solvent as shown in Scheme 3. Optionally a base such as a metal alkoxide or 1,1,3,3-tetramethylguanidine may be employed. The method of Scheme 3 is illustrated in Step A of Examples 1, 2 and 3.

Scheme 3

$$R^1$$
 NH
 NH_2
 $+$
 R^2
 R^3
 R^3
 $+$
 R^3

wherein R^{80} is a carbon moiety such as alkyl, preferably $C_1\text{--}C_2$ alkyl.

5

10

15

20

25

Compounds of Formula 4 wherein R³ is a halogen can be prepared from compounds of Formula 4 wherein R³ is hydrogen by reaction with a halogen such as bromine or a halogenating reagent such as an *N*-halosuccinimide or a sulfuryl halide in a variety of solvents including acetic acid, *N*,*N*-dimethylformamide, dichloromethane and carbon tetrachloride at temperatures ranging from 0–100 °C as shown in Scheme 4. The method of Scheme 4 is illustrated in Step B of Examples 1 and 2.

Scheme 4 halogenating reagent 4 (R³ is H) (R³ is halogen)

Also, compounds of Formula I wherein R³ is a halogen can be prepared from compounds of Formula I wherein R³ is hydrogen by reaction with a halogenating reagent analogous to the method of Scheme 4. This alternative method is illustrated in Step C of Example 3.

A particularly useful preparation of compounds of Formula 4 wherein R^3 is a halogen and R^2 is CO_2R^{12} is the reaction of compounds of Formula 4 where R^3 is hydrogen and R^2 is $CH(OR^{12})_2$ with a halogenating reagent and oxidizing reagent such as an N-halosuccinimide or bromine (when R^3 is bromine) in a solvent such as dichloromethane, trichloromethane or tetrachloromethane at temperatures ranging from room temperature to the reflux temperature of the solvent as shown in Scheme 5.

Scheme 5

4

(R² is CH(OR¹²)₂;

R³ is H)

$$(R^2 \text{ is } CO_2R^{12};$$
 $(R^3 \text{ is halogen})$
 $(R^3 \text{ is halogen})$

Compounds of Formula 5 and 6 are either commercially available or can be prepared by known methods. (For example see: P. J. Dunn in *Comprehensive Organic Functional Group Transformations*, A. R. Katritzky, O. Meth-Cohn, C.W. Rees Eds, Pergamon Press; Oxford, 1995; vol. 5, pp.741–782; T.L. Gillchrist in *Comprehensive Organic Functional Group Transformations*, A. R. Katritzky, O. Meth-Cohn, C.W. Rees Eds., Pergamon Press; Oxford, 1995; vol. 6, pp. 601–637 and B. R. Davis, P. J. Garratt in *Comprehensive Organic Synthesis*, B. M. Trost Ed., Pergamom Press; Oxford, 1991; vol. 2, pp. 795–803.)

5

10

15

20

Alternatively compounds of Formula I can be prepared from corresponding compounds of Formula 7 wherein X^1 is a leaving group, such as a halogen or alkylsulfonyl group (e.g., methanesulfonyl, trifluoromethanesulfonyl, benzenesulfonyl), as shown in Scheme 6.

Scheme 6 M¹R¹ 8 Pd catalyst R⁴ R⁴ R¹ R(R¹ is optionally substituted cyclopropyl, isopropyl or phenyl)

wherein M^1 is $B(OH)_2$, $Sn(n-Bu)_3$, MgX^1 or ZnX^1 ; R^1 is optionally substituted cyclopropyl, optionally substituted isopropyl or optionally substituted phenyl; and X^1 is a leaving group.

This method involves palladium-catalyzed reaction of a compound of Formula 7 with a compound of Formula 8 in the form of a boronic acid (e.g., M¹ is B(OH)₂), an organotin reagent (e.g., M¹ is Sn(n-Bu)₃), a Grignard reagent (e.g., M¹ is MgX¹) or an organozinc reagent (e.g., M¹ is ZnX¹). (For example see: N. Ali, A. McKillop, M. Mitchell, R. Rebelo, A. Ricardo, P. Wallbank, *Tetrahedron*, 1992, 48, 8117–8126; J. Solberg, K. Undheim, *Acta Chem. Scand.*, 1989, 43, 62–68, V. Bonnet, F. Mongin, F. Trécourt, G. Quéguiner and P. Knochel, *Tetrahedron*, 2002, 58, 4429–4438.)

Compounds of Formula 7 wherein X^1 is a halogen can be prepared from dihalo compounds of Formula 12 with an amine of Formula 3 optionally catalyzed by a base such as triethylamine or potassium carbonate in a variety of solvents including tetrahydrofuran and dichloromethane at temperatures ranging from 0 °C to the reflux temperature of the solvent as shown in Scheme 7.

5

10

15

20

25

30

Scheme 7

$$R^2$$
 X^1
 X^1

12 (X^1 is halogen)

Compounds of Formula 12 can be prepared by known methods. (For example, see H. Gershon, J. Org. Chem., 1962, 27, 3507–3510.)

It is recognized that some reagents and reaction conditions described above for preparing compounds of Formula I may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, T. W. Greene, P. G. M. Wuts, *Protective Groups in Organic Synthesis*, 2nd ed.; Wiley: New York, 1991). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in detail to complete the synthesis of compounds of Formula I. One skilled in the art will also recognize that it may be necessary to perform a combination of the steps illustrated in the above schemes in an order other than that implied by the particular sequence presented to prepare the compounds of Formula I.

One skilled in the art will also recognize that compounds of Formula I and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.

Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Steps in the following Examples illustrate a procedure for each step in an overall synthetic transformation, and the starting material for each step may not have necessarily been prepared by a particular preparative run whose procedure is described in

other Examples or Steps. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated. ¹H NMR spectra are reported in ppm downfield from tetramethylsilane; "s" means singlet, "d" means doublet, "t" means triplet, "q" means quartet, "m" means multiplet, "dd" means doublet of doublets, "dd" means doublet of doublets, "dd" means doublet of quartets, "br s" means broad singlet, "br d" means broad doublet.

5

10

15

20

25

30

35

EXAMPLE 1

Preparation of ethyl 6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylate (Compound 1) and

methyl 6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylate (Compound 2)

Step A: Preparation of 2-cyclopropyl-6-(diethoxymethyl)-4(1H)-pyrimidinone

To a mixture of ethyl 4,4-diethoxy-3-oxobutanoate (prepared according to the method of E. Graf, R. Troschutz, *Synthesis*, 1999, 7, 1216; 10.0 g, 46 mmol) and cyclopropane-carboximidamide monohydrochloride (Lancaster Synthesis, 5.0 g, 41 mmol) in methanol (100 mL) was added a methanol solution of sodium methoxide (5.4 M, 8.4 mL, 46 mmol). The reaction mixture was stirred overnight. The solvent was removed with a rotary evaporator. Dichloromethane was added and the mixture was filtered. The solvent from the filtrate was removed with a rotary evaporator. The residue was purified by medium pressure liquid chromatography (MPLC) (35 \rightarrow 100% ethyl acetate in hexanes as eluant) to afford the title compound as a white solid (4.67 g).

¹H NMR (CDCl₃) δ 6.55 (s, 1H), 5.10 (s, 1H), 3.61 (m, 4H), 1.91 (m, 1H), 1.23 (m, 8H), 1.09 (m, 2H).

Additionally 3.24 g of an undehydrated product was obtained. This material could be converted to the title compound by refluxing it in methanol with a catalytic amount of pyridinium p-toluenesulfonate.

Step B: Preparation of ethyl 5-bromo-2-cyclopropyl-1,6-dihydro-6-oxo-4-pyrimidinecarboxylate

To a solution of 2-cyclopropyl-6-(diethoxymethyl)-4(1H)-pyrimidinone (i.e. the title product of Step A) (2.9 g, 12.1 mmol) in dichloromethane (75 mL) was added N-bromosuccinimide (4.76 g, 26.8 mmol). The reaction mixture was stirred overnight. The solvent was removed with a rotary evaporator. The residue was purified by MPLC (1 \rightarrow 4% methanol in dichloromethane as eluant) to afford the title compound as a white solid (2.68 g).

¹H NMR (CDCl₃) δ 4.43 (q, 2H), 1.90 (m, 1H), 1.41 (t, 3H), 1.30 (m, 2H), 1.20 (m, 2H).

Step C: Preparation of ethyl 6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylate and methyl 6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylate

10

15

20

25

30

35

To a solution of ethyl 5-bromo-2-cyclopropyl-1,6-dihydro-6-oxo-4-pyrimidine-carboxylate (i.e. the product of Step B) (1.07 g, 3.7 mmol) in *N*,*N*-dimethylformamide (15 mL) was added thionyl chloride (0.54 mL, 7.5 mmol). The reaction mixture was stirred for 2 h. The solvent was removed with a rotary evaporator. The residue was dissolved in dichloromethane, washed with saturated aqueous sodium bicarbonate and dried (Na₂SO₄). The solvent was removed with a rotary evaporator. The residue was dissolved in tetrahydrofuran (2 mL), and a methanolic solution of ammonia (7 N, 2 mL) was added. The reaction mixture was placed in a sealed vial and heated in a microwave reactor at 125 °C for 2h. The reaction mixture was allowed to stand over the weekend. Dichloromethane was added and the reaction mixture was filtered. The solvent was removed with a rotary evaporator. The residue was purified by MPLC (10→30% ethyl acetate in hexanes as eluant) to afford the title product, a compound of the present invention, as a white solid (0.52 g).

¹H NMR (CDCl₃) δ 5.40 (br s, 2H), 4.44 (q, 2H), 2.05 (m, 1H), 1.01 (t, 3H), 1.05 (m, 2H), 0.99 (m, 2H).

Also isolated from the MPLC purification was the corresponding methyl ester, i.e. methyl 6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylate, a further compound of the present invention, as a white solid (0.06 g).

¹H NMR (CDCl₃) δ 5.40 (br s, 2H), 3.97 (s, 3H) 2.05 (m, 1H), 1.05 (m, 2H), 0.99 (m, 2H).

EXAMPLE 2

Preparation of methyl 6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylate (Compound 9)

Step A: Preparation of 2-cyclopropyl-1,6-dihydro-6-oxo-4-pyrimidinecarboxylic acid

To a mixture of diethyl oxalacetate sodium salt (150 g, 714 mmol) in methanol (300 mL) and water (150 mL) warmed to 30 °C was added 50% aqueous sodium hydroxide (56 g, 700 mmol) in water (60 mL) over 30 minutes, over which time the temperature remained at 25–30 °C and the pH at 11–12. Then the stirred mixture was heated for an additional 30 min at 35 °C. To this mixture was added cyclopropanecarboximidamide monohydrochloride (64 g, 530 mol) in portions over 15 minutes. The orange solution was heated to 50 °C over 30 minutes and held at that temperature for 3 h. The reaction mixture was cooled to 35 °C, and concentrated hydrochloric acid (ca. 70 g, 0.7 mol) was added gradually (resulting in foaming) over 30 minutes at 30–40 °C until the pH was about 1.5–2.5. The mixture was concentrated with a rotary evaporator at 35–40 °C to remove alcohols, stirred for 3–4 h at 25 °C to complete crystallization of the product. After the mixture was cooled to 0 °C the solid was collected by filtration. The solid was washed with water (2 x 60

mL), suction-dried, and then dried in a vacuum-oven at 60 °C to afford the title compound as a beige solid (ca. 60 g).

¹H NMR (DMSO- d_6) δ 6.58 (s, 1H), 1.95 (m, 1H), 1.0 (m, 4H).

5

10

15

20

25

30

35

Step B: Preparation of 5-chloro-2-cyclopropyl-1,6-dihydro-6-oxo-4-pyrimidine-carboxylic acid

To a mixture of 2-cyclopropyl-1,6-dihydro-6-oxo-4-pyrimidinecarboxylic acid (i.e. the product of Step A) (9.2 g, 52 mmol) in water (30 mL) and concentrated hydrochloric acid (22 g, 220 mmol) at 15 °C was added dropwise aqueous sodium hypochlorite solution (11%, 40 g, 59 mmol) over 15 minutes so that with cooling the reaction mixture was maintained at 15–20 °C. The mixture was then held at 20–25 °C for 1 h. Solid sodium bisulfite (ca. 2 g) was added, and then aqueous sodium hydroxide solution (50%, 8 g, 0.10 mol) was added dropwise so that with cooling the reaction mixture was maintained at about 25 °C. The mixture was cooled to 10 °C, and the suspended product was isolated by filtration and washed with a minimum amount of cold water. The product was then dried to constant weight in vacuum-oven at 50 °C to afford the title compound (7.5 g).

¹H NMR (DMSO- d_6) δ 13.4 (br s, 1H), 1.95 (m, 1H), 1.0 (m, 4H).

Step C: Preparation of 5,6-dichloro-2-cyclopropyl-4-pyrimidinecarboxylic acid

Phosphorus oxychloride (14 mL, 23 g, 0.15 mol) and 5-chloro-2-cyclopropyl-1,6-dihydro-6-oxo-4-pyrimidinecarboxylic acid (i.e. the product of Step B) (75 g, 300 mmol) were combined and heated at 85 °C for 3 h. The reaction mixture was cooled to 30 °C and added over 30 minutes to a mixture of acetonitrile (50 mL) and ice water (80 mL), with the temperature maintained at 5–10 °C and the pH maintained in the range 1–3 by co-feeding aqueous ammonia (28%). The pH was adjusted to about 2, the mixture was concentrated at 25 °C with a rotary evaporator to remove acetonitrile, and the precipitated product was isolated by filtration and washed with water (2 x 25 mL). The solid was dried in a vacuum oven to afford the title compound (ca. 7.0 g).

¹H NMR (DMSO- d_6) δ 2.23 (m, 1H), 1.2 (m, 1H), 1.0 (m, 2H).

Step D: Preparation of 6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylic acid

A mixture of 5,6-dichloro-2-cyclopropyl-4-pyrimidinecarboxylic acid (i.e. the product of Step C) (5.1 g, 22 mmol), water (30 mL) and aqueous ammonia (28%, 8 g, 130 mmol) was heated at 80 °C for 3 h. The solution was concentrated at 50 °C and 70 torr (9.3 kPa) pressure to about half volume to remove most of the excess ammonia. The resulting slurry was stirred at 20 °C, acidified to pH 2 with aqueous hydrochloric acid, cooled to 5 °C and filtered. The isolated solid was dried in a vacuum oven to afford the title compound (4.2 g). ¹H NMR (DMSO-d₆) δ 13.4 (br s, 1H), 1.95 (m, 1H), 1.0 (m, 4H).

Step E: Preparation of methyl 6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylate

To a solution of 6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylic acid (i.e. the product of Step D) (2.0 g, 8.5 mmol) in methanol (20 mL) was added dropwise thionyl chloride (4 mL, 70 mmol). The mixture was heated at reflux for 24 h. Concentrated sulfuric acid (5 drops) was added, and the reaction mixture was heated at reflux for 16 h. After the mixture was cooled, water (30 mL) was added, and aqueous ammonia (28%, 10 mL) was added dropwise. The mixture was cooled to 5 °C, and the solid was isolated by filtration, washed with water and dried in a vacuum oven at 40 °C to afford the title product (2.3 g), a compound of the present invention.

¹H NMR (CDCl₃) δ 5.41 (br s, 2H), 3.98 (s, 3H), 1.04 (m, 2H), 1.00 (m, 2H).

5

10

15

20

25

30

35

EXAMPLE 3

Preparation of 6-amino-5-chloro-2-(4-chlorophenyl)-4-pyrimidinecarboxylic acid (Compound 65)

Step A: Preparation of 2-(4-chlorophenyl)-1,6-dihydro-6-oxo-4-pyrimidinecarboxylic acid

To a mixture of diethyl oxalacetate sodium salt (123.2 g, 586 mmol) in water (750 mL) was slowly added aqueous sodium hydroxide (50%, 47 g, 586 mmol). After 1 h the solids had dissolved. 4-Chlorobenzenecarboximidamide monohydrochloride (111.95 g, 586 mmol) was then added, and the mixture was heated at 70 °C overnight. After cooling to room temperature concentrated hydrochloric acid was slowly added (causing foaming) until the pH was lowered to 1.5. The solid was isolated by filtration and washed with water and methanol. The solid was then triturated twice with hot methanol, washed repeatedly with 1N hydrochloric acid, then once with methanol and dried to afford the title compound (66.07 g). 1 H NMR (DMSO- d_{6}) δ 8.23 (d, 2H), 7.65 (d, 2H), 6.90 (s, 1H).

Step B: Preparation of 6-amino-2-(4-chlorophenyl)-4-pyrimidinecarboxylic acid

To phosphorus oxychloride (180 mL) was added 2-(4-chlorophenyl)-1,6-dihydro-6-oxo-4-pyrimidinecarboxylic acid (i.e. the product of Step A) (81.81 g, 326 mmol). The mixture was heated to 90 °C for 2.5 h. After cooling to room temperature the reaction mixture was slowly added to 1:2 acetonitrile:water (1.5 L) while keeping the temperature between 35 and 45 °C. After the reaction mixture was stirred at room temperature for 30 minutes the resulting solid was isolated by filtration and washed with water. The solid was then combined with aqueous ammonia (5%, 2.1 L) and heated to 80 °C for 18 h. After 2 days at room temperature the solid was isolated by filtration and washed with water. A second crop was obtained by cooling the filtrate and refiltering. The combined solids were dried to afford the title compound (58.8 g).

¹H NMR (DMSO- d_6) δ 8.33 (d, 2H), 7.51 (d, 2H), 6.89 (s, 2H), 6.81 (s, 1H).

To a solution of 6-amino-2-(4-chlorophenyl)-4-pyrimidinecarboxylic acid (i.e. the product of Step B) (75 g, 300 mmol) in *N*,*N*-dimethylformamide (300 mL) at 50 °C was added portionwise *N*-chlorosuccinimide (44.1 g, 330 mmol). The temperature of the reaction mixture increased exothermically to 65 °C. Then the reaction mixture was heated at 55 °C for 3 h. Additional *N*-chlorosuccinimide (14 g, 90 mmol) was added portionwise, and the reaction mixture was maintained at 55 °C for 30 minutes. After the reaction mixture was cooled water was added. The resulting solid was isolated by filtration, washed with water, dissolved in ethyl acetate, washed with water and dried. The solvent was removed using a rotary evaporator to afford the title product, a compound of the present invention, as a tan solid (73.68 g).

¹H NMR (DMSO- d_6) δ 8.28 (d, 2H), 7.70 (br s, 2H), 7.58 (d, 2H).

5

10

15

20

25

EXAMPLE 4

Preparation of ethyl 6-amino-5-chloro-2-(4-chlorophenyl)-4-pyrimidinecarboxylate (Compound 64)

To a solution of 6-amino-5-chloro-2-(4-chlorophenyl)-4-pyrimidinecarboxylic acid (i.e. the product of Example 3, Step C) (20.0 g, 70.4 mmol) in ethanol (70 mL) was added thionyl chloride (5.14 mL, 70.4 mmol) while maintaining the temperature below 15 °C using an ice bath. The reaction mixture was then heated at reflux overnight. Water was added. Then with external cooling aqueous sodium hydroxide (50%) was added to adjust the pH to 7. The resulting solid was isolated by filtration and dried to afford the title product, a compound of the present invention, as a light beige solid (20.1 g).

By the procedures described herein together with methods known in the art, the following compounds of Tables 1 to 4 can be prepared. The following abbreviations are used in the Tables which follow: t means tertiary, i means iso, Me means methyl, Et means ethyl, Pr means propyl, i-Pr means isopropyl, Bu means butyl, t-Bu means tert-butyl, CN means cyano, and $S(O)_2$ Me means methylsulfonyl.

¹H NMR (CDCl₃) δ 8.31 (d, 2H), 7.42 (d, 2H), 5.50 (br s, 2H), 4.50 (q, 2H), 1.47 (t, 3H).

_1	L.1	L	L1
R ¹ is cyclopropyl; R ³ is	R ¹ is cyclopropyl; R ³ is F.		R ¹ is cyclopropyl; R ³ is I.
Cl.		Br.	
<u>R²</u>	$\frac{\mathbb{R}^2}{2}$	$\frac{\mathbb{R}^2}{2}$	$\frac{\mathbb{R}^2}{2}$
CO ₂ H	CO ₂ H	CO ₂ H	CO ₂ H
CO ₂ Me	CO ₂ Me	CO ₂ Me	CO ₂ Me
CO ₂ Et	CO ₂ Et	CO ₂ Et	CO ₂ Et
CO ₂ Pr	CO ₂ Pr	CO ₂ Pr	CO ₂ Pr
CO ₂ iPr	CO ₂ iPr	CO ₂ iPr	CO ₂ iPr
CO ₂ t-Bu	CO ₂ t-Bu	CO ₂ t-Bu	CO ₂ t-Bu
CO ₂ cyclohexyl	CO ₂ cyclohexyl	CO ₂ cyclohexyl	CO ₂ cyclohexyl
CO ₂ hexyl	CO ₂ hexyl	CO ₂ hexyl	CO ₂ hexyl
CO ₂ CH ₂ cyclohexyl	CO ₂ CH ₂ cyclohexyl	CO ₂ CH ₂ cyclohexyl	CO ₂ CH ₂ cyclohexyl
CO ₂ CH ₂ Ph	CO ₂ CH ₂ Ph	CO ₂ CH ₂ Ph	CO ₂ CH ₂ Ph
CO ₂ CH(Me)Ph	CO ₂ CH(Me)Ph	CO ₂ CH(Me)Ph	CO ₂ CH(Me)Ph
$CO_2CH_2(4-Cl-Ph)$	CO ₂ CH ₂ (4-Cl-Ph)	CO ₂ CH ₂ (4-Cl-Ph)	CO ₂ CH ₂ (4-Cl-Ph)
$CO_2CH_2(3-F-Ph)$	CO ₂ CH ₂ (3-F-Ph)	CO ₂ CH ₂ (3-F-Ph)	CO ₂ CH ₂ (3-F-Ph)
$CO_2CH_2CH_2NMe_2$	CO ₂ CH ₂ CH ₂ NMe ₂	CO ₂ CH ₂ CH ₂ NMe ₂	CO ₂ CH ₂ CH ₂ NMe ₂
CO ₂ CH ₂ CH ₂ OMe	CO ₂ CH ₂ CH ₂ OMe	CO ₂ CH ₂ CH ₂ OMe	CO ₂ CH ₂ CH ₂ OMe
CO ₂ CH ₂ CH ₂ OMe	CO ₂ CH ₂ CH ₂ OMe	CO ₂ CH ₂ CH ₂ OMe	CO ₂ CH ₂ CH ₂ OMe
CO ₂ CH ₂ CH ₂ OH	CO ₂ CH ₂ CH ₂ OH	CO ₂ CH ₂ CH ₂ OH	CO ₂ CH ₂ CH ₂ OH
CO ₂ CH ₂ (3-oxetanyl)	CO ₂ CH ₂ (3-oxetanyl)	CO ₂ CH ₂ (3-oxetanyl)	CO ₂ CH ₂ (3-oxetanyl)
CH ₂ OH	СН ₂ ОН	СH ₂ ОН	СН ₂ ОН
CH ₂ OMe	CH ₂ OMe	CH ₂ OMe	CH ₂ OMe
CH ₂ CO ₂ Me	CH ₂ CO ₂ Me	CH ₂ CO ₂ Me	CH ₂ CO ₂ Me
CH(OH)CO ₂ Me	CH(OH)CO ₂ Me	CH(OH)CO ₂ Me	CH(OH)CO ₂ Me
CH(OC(=O)Me)CO ₂ Me	CH(OC(=O)Me)CO ₂ Me	CH(OC(=O)Me)CO ₂ Me	CH(OC(=O)Me)CO ₂ Me
СНО	СНО	СНО	СНО
C(=NOH)H	C(=NOH)H	C(=NOH)H	C(=NOH)H
C(=NOMe)H	C(=NOMe)H	C(=NOMe)H	C(=NOMe)H
$C(=O)NH_2$	C(=0)NH ₂	C(=O)NH ₂	C(=O)NH ₂
C(=O)NHMe	C(=O)NHMe	C(=O)NHMe	C(=O)NHMe
$C(=O)NMe_2$	C(=O)NMe ₂	C(=O)NMe ₂	C(=O)NMe ₂
R^1 is 4-Cl-Ph; R^3 is Cl.	R^1 is 4-Cl-Ph; R^3 is F.	R ¹ is 4-Cl-Ph; R ³ is Br.	R ¹ is 4-Cl-Ph; R ³ is I.
<u>R</u> ²	<u>R²</u>	\mathbb{R}^2	<u>R²</u>
CO ₂ H	СО ₂ Н	CO ₂ H	СО ₂ Н
CO ₂ Me	CO ₂ Me	CO ₂ Me	CO ₂ Me
CO ₂ Et	CO ₂ Et	CO ₂ Et	CO ₂ Et

		ı	•
CO ₂ Pr	CO ₂ Pr	CO ₂ Pr	CO ₂ Pr
CO ₂ iPr	CO ₂ iPr	CO ₂ iPr	CO ₂ iPr
CO ₂ t-Bu	CO ₂ t-Bu	CO ₂ t-Bu	CO ₂ t-Bu
CO ₂ cyclohexyl	CO ₂ cyclohexyl	CO ₂ cyclohexyl	CO ₂ cyclohexyl
CO ₂ hexyl	CO ₂ hexyl	CO ₂ hexyl	CO ₂ hexyl
CO ₂ CH ₂ cyclohexyl	CO ₂ CH ₂ cyclohexyl	CO ₂ CH ₂ cyclohexyl	CO ₂ CH ₂ cyclohexyl
CO ₂ CH ₂ Ph	CO ₂ CH ₂ Ph	CO ₂ CH ₂ Ph	CO ₂ CH ₂ Ph
CO ₂ CH(Me)Ph	CO ₂ CH(Me)Ph	CO ₂ CH(Me)Ph	CO ₂ CH(Me)Ph
$CO_2CH_2(4-Cl-Ph)$	CO ₂ CH ₂ (4-Cl-Ph)	CO ₂ CH ₂ (4-Cl-Ph)	CO ₂ CH ₂ (4-Cl-Ph)
CO ₂ CH ₂ (3-F-Ph)	CO ₂ CH ₂ (3-F-Ph)	CO ₂ CH ₂ (3-F-Ph)	CO ₂ CH ₂ (3-F-Ph)
$CO_2CH_2CH_2NMe_2$	CO ₂ CH ₂ CH ₂ NMe ₂	CO ₂ CH ₂ CH ₂ NMe ₂	CO ₂ CH ₂ CH ₂ NMe ₂
CO ₂ CH ₂ CH ₂ OH	CO ₂ CH ₂ CH ₂ OH	CO ₂ CH ₂ CH ₂ OH	CO ₂ CH ₂ CH ₂ OH
$CO_2CH_2CH_2OMe$	CO ₂ CH ₂ CH ₂ OMe	CO ₂ CH ₂ CH ₂ OMe	CO ₂ CH ₂ CH ₂ OMe
CO ₂ CH ₂ CH ₂ OH	CO ₂ CH ₂ CH ₂ OH	CO ₂ CH ₂ CH ₂ OH	со ₂ сн ₂ сн ₂ он
CO ₂ CH ₂ (3-oxetanyl)	CO ₂ CH ₂ (3-oxetanyl)	CO ₂ CH ₂ (3-oxetanyl)	CO ₂ CH ₂ (3-oxetanyl)
СН2ОН	СH ₂ ОН	сн ₂ он	СH ₂ ОН
CH ₂ OMe	CH ₂ OMe	CH ₂ OMe	CH ₂ OMe
CH ₂ CO ₂ Me	CH ₂ CO ₂ Me	CH ₂ CO ₂ Me	CH ₂ CO ₂ Me
CH(OH)CO ₂ Me	CH(OH)CO ₂ Me	CH(OH)CO ₂ Me	СН(ОН)СО2Ме
СНО	СНО	СНО	СНО
CH(OC(=O)Me)CO ₂ Me	CH(OC(=O)Me)CO ₂ Me	CH(OC(=O)Me)CO ₂ Me	CH(OC(=O)Me)CO ₂ Me
C(=NOH)H	C(=NOH)H	C(=NOH)H	C(=NOH)H
C(=NOMe)H	C(=NOMe)H	C(=NOMe)H	C(=NOMe)H
$C(=O)NH_2$	C(=O)NH ₂	C(=O)NH ₂	$C(=O)NH_2$
C(=O)NHMe	C(=O)NHMe	C(=O)NHMe	C(=O)NHMe
C(=O)NMe ₂	C(=O)NMe ₂	C(=O)NMe ₂	C(=O)NMe ₂

R^2 is CO_2H ; R^3 is Cl .	R^2 is CO_2Me ; R^3 is CI .	\mathbb{R}^2 is CO_2Et ; \mathbb{R}^3 is Cl .
<u>R</u> 1	<u>R</u> 1	<u>R1</u>
i-Pr	i-Pr	i-Pr
1-Me-cyclopropyl	1-Me-cyclopropyl	1-Me-cyclopropyl
2-Me-cyclopropyl	2-Me-cyclopropyl	2-Me-cyclopropyl

2-F-cyclopropyl	2-F-cyclopropyl	2-F-cyclopropyl
2-Cl-cyclopropyi	2-Cl-cyclopropyl	2-Cl-cyclopropyl
2,2-di-F-cyclopropyl	2,2-di-F-cyclopropyl	2,2-di-F-cyclopropyl
2,2-di-Cl-cyclopropyl	2,2-di-Cl-cyclopropyl	2,2-di-Cl-cyclopropyl
1,2-di-F-cyclopropyl	1,2-di-F-cyclopropyl	1,2-di-F-cyclopropyl
2,2,3,3-tetra-F-cyclopropyl	2,2,3,3-tetra-F-cyclopropyl	2,2,3,3-tetra-F-cyclopropyl
1,2,2,3,3-penta-F-cyclopropyl	1,2,2,3,3-penta-F-cyclopropyl	1,2,2,3,3-penta-F-cyclopropyl
Ph	Ph	Ph
4-Cl-Ph	4-Cl-Ph	4-Cl-Ph
4-F-Ph	4-F-Ph	4-F-Ph
3-OMe-Ph	3-OMe-Ph	3-OMe-Ph
4-Br-Ph	4-Br-Ph	4-Br-Ph
4-I-Ph	4-I-Ph	4-I-Ph
4-CF ₃ -Ph	4-CF ₃ -Ph	4-CF ₃ -Ph
4-OCHF ₂ -Ph	4-OCHF ₂ -Ph	4-OCHF ₂ -Ph
4-OCF ₃ -Ph	4-OCF ₃ -Ph	4-OCF ₃ -Ph
4-SCF ₃ -Ph	4-SCF ₃ -Ph	4-SCF ₃ -Ph
4-SCHF ₂ -Ph	4-SCHF ₂ -Ph	4-SCHF ₂ -Ph
4-CN-Ph	4-CN-Ph	4-CN-Ph
4-CO ₂ Me-Ph	4-CO ₂ Me-Ph	4-CO ₂ Me-Ph
2,4-di-Cl-Ph	2,4-di-Cl-Ph	2,4-di-Cl-Ph
2-F-4-Cl-Ph	2-F-4-Cl-Ph	2-F-4-Cl-Ph
3,4-di-Cl-Ph	3,4-di-Cl-Ph	3,4-di-Cl-Ph
	1	
R^2 is CO_2H ; R^3 is Br.	R^2 is CO_2 Me; R^3 is Br.	\mathbb{R}^2 is \mathbb{CO}_2 Et; \mathbb{R}^3 is Br.
<u>R</u> 1	<u>R</u> 1	<u>R1</u>
i-Pr	i-Pr	i-Pr
1-Me-cyclopropyl	1-Me-cyclopropyl	1-Me-cyclopropyl
2-Me-cyclopropyl	2-Me-cyclopropyl	2-Me-cyclopropyl
2-F-cyclopropyl	2-F-cyclopropyl	2-F-cyclopropyl
2-Cl-cyclopropyl	2-Cl-cyclopropyl	2-Cl-cyclopropyl
2,2-di-F-cyclopropyl	2,2-di-F-cyclopropyl	2,2-di-F-cyclopropyl
2,2-di-Cl-cyclopropyl	2,2-di-Cl-cyclopropyl	2,2-di-Cl-cyclopropyl
1,2-di-F-cyclopropyl	1,2-di-F-cyclopropyl	1,2-di-F-cyclopropyl
2,2,3,3-tetra-F-cyclopropyl	2,2,3,3-tetra-F-cyclopropyl	2,2,3,3-tetra-F-cyclopropyl
1,2,2,3,3-penta-F-cyclopropyl	1,2,2,3,3-penta-F-cyclopropyl	1,2,2,3,3-penta-F-cyclopropyl
Ph	Ph	Ph
4-Cl-Ph	4-Cl-Ph	4-Cl-Ph

4-F-Ph	4-F-Ph	4-F-Ph
3-OMe-Ph	3-OMe-Ph	3-OMe-Ph
4-Br-Ph	4-Br-Ph	4-Br-Ph
4-I-Ph	4-I-Ph	4-I-Ph
4-CF ₃ -Ph	4-CF ₃ -Ph	4-CF ₃ -Ph
4-OCHF ₂ -Ph	4-OCHF ₂ -Ph	4-OCHF ₂ -Ph
4-OCF ₃ -Ph	4-OCF ₃ -Ph	4-OCF ₃ -Ph
4-SCF ₃ -Ph	4-SCF ₃ -Ph	4-SCF ₃ -Ph
4-SCHF ₂ -Ph	4-SCHF ₂ -Ph	4-SCHF ₂ -Ph
4-CN-Ph	4-CN-Ph	4-CN-Ph
4-CO ₂ Me-Ph	4-CO ₂ Me-Ph	4-CO ₂ Me-Ph
2,4-di-Cl-Ph	2,4-di-Cl-Ph	2,4-di-Cl-Ph
2-F-4-Cl-Ph	2-F-4-Cl-Ph	2-F-4-Cl-Ph
3,4-di-Cl-Ph	3,4-di-Cl-Ph	3,4-di-Cl-Ph

$$\mathbb{R}^2$$
 \mathbb{R}^3 \mathbb{R}^3

R ¹ is cyclopropyl; R ² is CO ₂ Me.	R ¹ is cyclopropyl; R ² is CO ₂ Et.
<u>R</u> ³	<u>R</u> 3
CN	CN
NO ₂	NO ₂
OMe	ОМе
SMe	SMe
NH ₂	NH ₂
NHMe	NHMe
NMe ₂	NMe ₂

$$R^2$$
 R^3
 R^4

R ¹ is cyclopropyl; R ² is	R ¹ is cyclopropyl; R ² is	R ¹ is cyclopropyl; R ² is	\mathbb{R}^1 is cyclopropyl; \mathbb{R}^2 is
CO ₂ Me; R ³ is Cl.	CO ₂ Me; R ³ is Br.	CO ₂ Et; R ³ is Cl.	CO ₂ Et; R ³ is Br.
<u>R</u> ⁴	<u>R</u> 4	\mathbb{R}^4	<u>R</u> 4
NO ₂	NO ₂	NO ₂	NO ₂
NHMe	NHMe	NHMe	NHMe
NMe ₂	NMe ₂	NMe ₂	NMe ₂
N(-CH ₂ CH ₂ OCH ₂ CH ₂ -)	N(-CH ₂ CH ₂ OCH ₂ CH ₂ -)	N(-CH ₂ CH ₂ OCH ₂ CH ₂ -)	N(-CH ₂ CH ₂ OCH ₂ CH ₂ -)
NHC(=O)Me	NHC(=O)Me	NHC(=O)Me	NHC(=O)Me
NHC(=O)OMe	NHC(=O)OMe	NHC(=O)OMe	NHC(=O)OMe
NHS(O) ₂ Me	NHS(O) ₂ Me	NHS(O) ₂ Me	NHS(O) ₂ Me
NHNH ₂	NHNH ₂	NHNH ₂	NHNH ₂
NHNO ₂	NHNO ₂	NHNO ₂	NHNO ₂
N=CHNMe ₂	N=CHNMe ₂	N=CHNMe ₂	N=CHNMe ₂
NHOH	NHOH	NHOH	NHOH
NHOMe	NHOMe	NHOMe	NHOMe
NHCH ₂ CO ₂ Me			
NHCH ₂ CO ₂ Et	NHCH2CO2Et	NHCH ₂ CO ₂ Et	NHCH ₂ CO ₂ Et
NHCH ₂ CH ₂ OH			
NHCH ₂ CH ₂ OMe			
NHCH ₂ CH ₂ NMe ₂			
	1.	1	1
R^1 is 4-Cl-Ph; R^2 is	R^1 is 4-Cl-Ph; R^2 is	\mathbb{R}^1 is 4-Cl-Ph; \mathbb{R}^2 is	R^1 is 4-Cl-Ph; R^2 is
CO_2Me ; R^3 is Cl .	$CO_2Me; R^3 \text{ is Br.}$	CO ₂ Et; R ³ is Cl.	CO ₂ Et; R ³ is Br.
<u>R</u> 4	<u>R</u> ⁴	\mathbb{R}^4	<u>R</u> ⁴
NO ₂	NO ₂	NO ₂	NO ₂
NHMe	NHMe	NHMe	NHMe
NMe ₂	NMe ₂	NMe ₂	NMe ₂
N(-CH ₂ CH ₂ OCH ₂ CH ₂ -)	N(-CH ₂ CH ₂ OCH ₂ CH ₂ -)	N(-CH ₂ CH ₂ OCH ₂ CH ₂ -)	N(-CH ₂ CH ₂ OCH ₂ CH ₂ -)
NHC(=O)Me	NHC(=O)Me	NHC(=O)Me	NHC(=O)Me
NHC(=0)OMe	NHC(=O)OMe	NHC(=O)OMe	NHC(=O)OMe
NHS(O) ₂ Me	NHS(O) ₂ Me	NHS(O) ₂ Me	NHS(O) ₂ Me
NHNH ₂	NHNH ₂	NHNH ₂	NHNH ₂

NHNO ₂	NHNO ₂	NHNO ₂	NHNO ₂
N=CHNMe ₂	N=CHNMe ₂	N=CHNMe ₂	N=CHNMe ₂
NHOH	NНОН	NHOH	NHOH
NHOMe	NHOMe	NHOMe	NHOMe
NHCH ₂ CO ₂ Me			
NHCH ₂ CO ₂ Et			
NHCH ₂ CH ₂ OH			
NHCH ₂ CH ₂ OMe			
NHCH ₂ CH ₂ NMe ₂			

Formulation/Utility

5

10

15

20

Compounds of this invention will generally be used as a formulation or composition with an agriculturally suitable carrier comprising at least one of a liquid diluent, a solid diluent or a surfactant. The formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature. Useful formulations include liquids such as solutions (including emulsifiable concentrates), suspensions, emulsions (including microemulsions and/or suspoemulsions) and the like which optionally can be thickened into gels. Useful formulations further include solids such as dusts, powders, granules, pellets, tablets, films (including seed coatings), and the like which can be water-dispersible ("wettable") or water-soluble. Active ingredient can (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or "overcoated"). Encapsulation can control or delay release of the active ingredient. Sprayable formulations can be extended in suitable media and used at spray volumes from about one to several hundred liters per hectare. High-strength compositions are primarily used as intermediates for further formulation.

The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up to 100 percent by weight.

***	1 .	T	
Wei	αht	Percent	
* * C1	2111	I CICCIII	

	Active Ingredient	Diluent	Surfactant
Water-Dispersible and Water-soluble Granules, Tablets and Powders.	0.001–90	0–99.999	0–15
Suspensions, Emulsions, Solutions (including Emulsifiable Concentrates)	1–50	40–99	0–50
Dusts	1–25	70–99	0–5
Granules and Pellets	0.001–99	5-99.999	0–15
High Strength Compositions	90–99	0–10	0–2

Typical solid diluents are described in Watkins, et al., *Handbook of Insecticide Dust Diluents and Carriers*, 2nd Ed., Dorland Books, Caldwell, New Jersey. Typical liquid diluents are described in Marsden, *Solvents Guide*, 2nd Ed., Interscience, New York, 1950. *McCutcheon's Detergents and Emulsifiers Annual*, Allured Publ. Corp., Ridgewood, New Jersey, as well as Sisely and Wood, *Encyclopedia of Surface Active Agents*, Chemical Publ. Co., Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foam, caking, corrosion, microbiological growth and the like, or thickeners to increase viscosity.

10

15

20

25

Surfactants include, for example, polyethoxylated alcohols, polyethoxylated alkylphenols, polyethoxylated sorbitan fatty acid esters, dialkyl sulfosuccinates, alkyl sulfates, alkylbenzene sulfonates, organosilicones, N,N-dialkyltaurates, lignin sulfonates, naphthalene sulfonate formaldehyde condensates, polycarboxylates, glycerol esters, polyoxyethylene/polyoxypropylene block copolymers, and alkylpolyglycosides where the number of glucose units, referred to as degree of polymerization (D.P.), can range from 1 to 3 and the alkyl units can range from C₆ to C₁₄ (see Pure and Applied Chemistry 72, 1255-Solid diluents include, for example, clays such as bentonite, montmorillonite, attapulgite and kaolin, starch, sugar, silica, talc, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Liquid diluents include, for example, water, N,N-dimethylformamide, dimethyl sulfoxide, N-alkylpyrrolidone, ethylene glycol, polypropylene glycol, propylene carbonate, dibasic esters, paraffins, alkylbenzenes, alkylnaphthalenes, glycerine, triacetine, oils of olive, castor, linseed, tung, sesame, corn, peanut, cotton-seed, soybean, rape-seed and coconut, fatty acid esters, ketones such as cyclohexanone, 2-heptanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, acetates such as hexyl acetate, heptyl acetate and octyl acetate, and alcohols such as methanol, cyclohexanol, decanol, benzyl and tetrahydrofurfuryl alcohol.

Useful formulations of this invention may also contain materials well known to those skilled in the art as formulation aids such as antifoams, film formers and dyes. Antifoams can include water dispersible liquids comprising polyorganosiloxanes like Rhodorsil® 416. The film formers can include polyvinyl acetates, polyvinyl acetate copolymers, polyvinylpyrrolidone-vinyl acetate copolymer, polyvinyl alcohols, polyvinyl alcohol copolymers and waxes. Dyes can include water dispersible liquid colorant compositions like Pro-lzed® Colorant Red. One skilled in the art will appreciate that this is a non-exhaustive list of formulation aids. Suitable examples of formulation aids include those listed herein and those listed in *McCutcheon's 2001*, *Volume 2: Functional Materials* published by MC Publishing Company and PCT Publication WO 03/024222.

Solutions, including emulsifiable concentrates, can be prepared by simply mixing the ingredients. Dusts and powders can be prepared by blending and, usually, grinding as in a hammer mill or fluid-energy mill. Suspensions are usually prepared by wet-milling; see, for example, U.S. 3,060,084. Granules and pellets can be prepared by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", *Chemical Engineering*, December 4, 1967, pp 147–48, *Perry's Chemical Engineer's Handbook*, 4th Ed., McGraw-Hill, New York, 1963, pages 8–57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714. Water-dispersible and water-soluble granules can be prepared as taught in U.S. 4,144,050, U.S. 3,920,442 and DE 3,246,493. Tablets can be prepared as taught in U.S. 5,180,587, U.S. 5,232,701 and U.S. 5,208,030. Films can be prepared as taught in GB 2,095,558 and U.S. 3,299,566.

For further information regarding the art of formulation, see T. S. Woods, "The Formulator's Toolbox – Product Forms for Modern Agriculture" in *Pesticide Chemistry and Bioscience, The Food–Environment Challenge*, T. Brooks and T. R. Roberts, Eds., Proceedings of the 9th International Congress on Pesticide Chemistry, The Royal Society of Chemistry, Cambridge, 1999, pp. 120–133. See also U.S. 3,235,361, Col. 6, line 16 through Col. 7, line 19 and Examples 10–41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138–140, 162–164, 166, 167 and 169–182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1–4; Klingman, *Weed Control as a Science*, John Wiley and Sons, Inc., New York, 1961, pp 81–96; Hance et al., *Weed Control Handbook*, 8th Ed., Blackwell Scientific Publications, Oxford, 1989; and *Developments in formulation technology*, PJB Publications, Richmond, UK, 2000.

In the following Examples, all percentages are by weight and all formulations are prepared in conventional ways. Compound numbers refer to compounds in Index Tables A-B.

Example A

	High Strength Concentrate	
	Compound 1	98.5%
	silica aerogel	0.5%
5	synthetic amorphous fine silica	1.0%.
	Example B	
	Wettable Powder	
	Compound 2	65.0%
	dodecylphenol polyethylene glycol ether	2.0%
10	sodium ligninsulfonate	4.0%
	sodium silicoaluminate	6.0%
	montmorillonite (calcined)	23.0%.
	Example C	
	Granule	
15	Compound 4	10.0%
	attapulgite granules (low volatile matter,	
	0.71/0.30 mm; U.S.S. No. 25-50 sieves)	90.0%.
	Example D	
	Aqueous Suspension	
20	Compound 9	25.0%
	hydrated attapulgite	3.0%
	crude calcium ligninsulfonate	10.0%
	sodium dihydrogen phosphate	0.5%
	water	61.5%.
25	Example E	
	Extruded Pellet	
	Compound 1	25.0%
	anhydrous sodium sulfate	10.0%
	crude calcium ligninsulfonate	5.0%
30	sodium alkylnaphthalenesulfonate	1.0%
	calcium/magnesium bentonite	59.0%.

Example F

Microemulsion

10

15

20

25

30

35

	Compound 2	1.0%
	triacetine	30.0%
5	$ m C_8 ext{-}C_{10}$ alkylpolyglycoside	30.0%
	glyceryl monooleate	19.0%
	water	20.0%.

Test results indicate that the compounds of the present invention are highly active preemergent and/or postemergent herbicides and/or plant growth regulants. Many of them have utility for broad-spectrum pre- and/or postemergence weed control in areas where complete control of all vegetation is desired such as around fuel storage tanks, industrial storage areas, parking lots, drive-in theaters, air fields, river banks, irrigation and other waterways, around billboards and highway and railroad structures. Many of the compounds of this invention, by virtue of selective metabolism in crops versus weeds, or by selective activity at the locus of physiological inhibition in crops and weeds, or by selective placement on or within the environment of a mixture of crops and weeds, are useful for the selective control of grass and broadleaf weeds within a crop/weed mixture. One skilled in the art will recognize that the preferred combination of these selectivity factors within a compound or group of compounds can readily be determined by performing routine biological and/or biochemical assays. Compounds of this invention may show tolerance to important agronomic crops including, but is not limited to, alfalfa, barley, cotton, wheat, rape, sugar beets, corn (maize), sorghum, soybeans, rice, oats, peanuts, vegetables, tomato, potato, perennial plantation crops including coffee, cocoa, oil palm, rubber, sugarcane, citrus, grapes, fruit trees, nut trees, banana, plantain, pineapple, hops, tea and forests such as eucalyptus and conifers (e.g., loblolly pine), and turf species (e.g., Kentucky bluegrass, St. Augustine grass, Kentucky fescue and Bermuda grass). Those skilled in the art will appreciate that not all compounds are equally effective against all weeds. Alternatively, the subject compounds are useful to modify plant growth.

As the compounds of the invention have both preemergent and postemergent herbicidal activity, to control undesired vegetation by killing or injuring the vegetation or reducing its growth, the compounds can be usefully applied by a variety of methods involving contacting a herbicidally effective amount of a compound of the invention, or a composition comprising said compound and at least one of a surfactant, a solid diluent or a liquid diluent, to the foliage or other part of the undesired vegetation or to the environment of the undesired vegetation such as the soil or water in which the undesired vegetation is growing or which surrounds the seed or other propagule of the undesired vegetation.

A herbicidally effective amount of the compounds of this invention is determined by a number of factors. These factors include: formulation selected, method of application,

amount and type of vegetation present, growing conditions, etc. In general, a herbicidally effective amount of compounds of this invention is about 0.0001 to 20 kg/ha with a preferred range of about 0.001 to 5 kg/ha and a more preferred range of about 0.004 to 3 kg/ha. One skilled in the art can easily determine the herbicidally effective amount necessary for the desired level of weed control.

5

10

15

20

25

30

35

Compounds of this invention can be used alone or in combination with other commercial herbicides, insecticides and fungicides, and other agricultural chemicals such as fertilizers. Mixtures of the compounds of the invention with other herbicides can broaden the spectrum of activity against additional weed species, and suppress the proliferation of any resistant biotypes. A mixture of one or more of the following herbicides with a compound of this invention may be particularly useful for weed control: acetochlor, acifluorfen and its sodium salt, aclonifen, acrolein (2-propenal), alachlor, alloxydim, ametryn, amicarbazone, amidosulfuron, aminopyralid, amitrole, ammonium sulfamate, anilofos, asulam, atrazine, azimsulfuron, beflubutamid, benazolin, benazolin-ethyl, benfluralin, benfuresate, bensulfuron-methyl, bensulide, bentazone, benzobicyclon, benzofenap, bifenox, bilanafos, bispyribac and its sodium salt, bromacil, bromobutide, bromofenoxim, bromoxynil, bromoxynil octanoate, butachlor, butafenacil, butamifos, butralin, butroxydim, butylate, cafenstrole, carbetamide, carfentrazone-ethyl, catechin, chlomethoxyfen, chloramben, chlorbromuron, chlorflurenol-methyl, chloridazon, chlorimuron-ethyl, chlorotoluron, chlorpropham, chlorsulfuron, chlorthal-dimethyl, chlorthiamid, cinidon-ethyl, cinmethylin, cinosulfuron, clethodim, clodinafop-propargyl, clomazone, clomeprop, clopyralid, clopyralid-olamine, cloransulam-methyl, cumyluron, cyanazine, cycloate, cyclosulfamuron, cycloxydim, cyhalofop-butyl, 2,4-D and its butotyl, butyl, isoctyl and isopropyl esters and its dimethylammonium, diolamine and trolamine salts, daimuron, dalapon, dalapon-sodium, dazomet, 2,4-DB and its dimethylammonium, potassium and sodium salts, desmedipham, desmetryn, dicamba and its diglycolammonium, dimethylammonium, potassium and sodium salts, dichlobenil, dichlorprop, diclofop-methyl, diclosulam, difenzoquat metilsulfate, diflufenican, diflufenzopyr, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimethipin, dimethylarsinic acid and its sodium salt, dinitramine, dinoterb, diphenamid, diquat dibromide, dithiopyr, diuron, DNOC, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron-methyl, ethofumesate, ethoxyfen, ethoxysulfuron, etobenzanid, fenoxaprop-ethyl, fenoxaprop-Pethyl, fentrazamide, fenuron, fenuron-TCA, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, florasulam, fluazifop-butyl, fluazifop-P-butyl, flucarbazone. flufenpyr, fluchloralin. flufenacet, flufenpyr-ethyl, flumetsulam, flumiclorac-pentyl, flumioxazin, fluometuron, fluoroglycofen-ethyl, flupyrsulfuron-methyl and its sodium salt, flurenol, flurenol-butyl, fluridone, flurochloridone, fluroxypyr, flurtamone, fluthiacet-methyl, fomesafen, foramsulfuron, fosamine-ammonium, glufosinate,

10

15

20

25

30

35

glufosinate-ammonium, glyphosate and its salts such as ammonium, isopropylammonium, potassium, sodium (including sesquisodium) and trimesium (alternatively named sulfosate), halosulfuron-methyl, haloxyfop-etotyl, haloxyfop-methyl, hexazinone, imazamethabenz-methyl, imazamox, imazapic, imazapyr, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, imazosulfuron, indanofan, iodosulfuron-methyl, ioxynil, ioxynil octanoate, ioxynil-sodium, isoproturon, isouron, isoxaben, isoxaflutole, isoxachlortole, isoxadifen, lactofen, lenacil, linuron, maleic hydrazide, MCPA and its dimethylammonium, potassium and sodium salts, MCPA-isoctyl, MCPA-thioethyl, MCPB and its sodium salt, MCPB-ethyl, mecoprop, mecoprop-P, mefenacet, mefluidide, mesosulfuron-methyl, mesotrione, metam-sodium, metamifop, metamitron, metazachlor, methabenzthiazuron, methylarsonic acid and its calcium, monoammonium, monosodium and disodium salts, methyldymron, metobenzuron, metobromuron, metolachlor, S-metholachlor, metosulam, metoxuron, metribuzin, metsulfuron-methyl, molinate, monolinuron. naproanilide, napropamide, naptalam, neburon, nicosulfuron, norflurazon, orbencarb, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfluorfen, paraquat dichloride, pebulate, pelargonic acid, pendimethalin, penoxsulam, pentanochlor, pentoxazone, perfluidone, pethoxyamid, phenmedipham, picloram, picloram-potassium, picolinafen, piperofos, pretilachlor, primisulfuron-methyl, prodiamine, profoxydim, prometryn, propachlor, propanil, propaquizafop, prometon. propazine, propham, propisochlor, propoxycarbazone, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen-ethyl, pyrazogyl, pyrazolynate, pyrazoxyfen, pyrazosulfuron-ethyl, pyribenzoxim, pyributicarb, pyridate, pyriftalid, pyriminobac-methyl, pyrithiobac, pyrithiobac-sodium. quinclorac, quinmerac, quinoclamine, quizalofop-ethyl, quizalofop-P-ethyl, quizalofop-P-tefuryl, rimsulfuron, sethoxydim, siduron, simazine, simetryn, sulcotrione, sulfentrazone, sulfometuron-methyl, sulfosulfuron, 2,3,6-TBA, TCA, TCA-sodium, tebutam, tebuthiuron, tepraloxydim, terbacil, terbumeton, terbuthylazine, terbutryn, thenylchlor, thiazopyr, thifensulfuron-methyl, thiobencarb, tiocarbazil, tralkoxydim, tri-allate. triasulfuron, triaziflam, tribenuron-methyl, triclopyr, triclopyr-butotyl, triclopyr-triethylammonium, tridiphane, trietazine, trifloxysulfuron, trifluralin, triflusulfuron-methyl, tritosulfuron and vernolate. Other herbicides also include bioherbicides such as Alternaria destruens Simmons, Colletotrichum gloeosporiodes (Penz.) Penz. & Sacc., Drechsiera monoceras (MTB-951), Myrothecium verrucaria (Albertini & Schweinitz) Ditmar: Fries, Phytophthora palmivora (Butl.) Butl. and Puccinia thlaspeos Schub. Combinations of compounds of the invention with other herbicides can result in a greater-than-additive (i.e. synergistic) effect on weeds and/or a less-than-additive effect (i.e. safening) on crops or other desirable plants. In certain instances, combinations with other herbicides having a similar spectrum of control but a different mode of action will be particularly advantageous for preventing the development of resistant weeds. Herbicidally

effective amounts of compounds of the invention as well as herbicidally effective amounts of other herbicides can be easily determined by one skilled in the art through simple experimentation.

5

10

15

20

25

30

35

Preferred for better control of undesired vegetation (e.g., lower use rate, broader spectrum of weeds controlled, or enhanced crop safety) or for preventing the development of resistant weeds are mixtures of a compound of this invention with a herbicide selected from the group consisting of diuron, hexazinone, terbacil, bromacil, glyphosate (particularly glyphosate-isopropylammonium, glyphosate-sodium, glyphosate-potassium, glyphosatetrimesium), glufosinate (particularly glufosinate-ammonium), azimsulfuron, chlorsulfuron, ethametsulfuron-methyl, chlorimuron-ethyl, bensulfuron-methyl, rimsulfuron, sulfometuron-methyl, metsulfuron-methyl, nicosulfuron, tribenuron-methyl, thifensulfuronmethyl, flupyrsulfuron-methyl, flupyrsulfuron-methyl-sodium, halosulfuron-methyl, primisulfuron-methyl, trifloxysulfuron, foramsulfuron, mesosulfuron-methyl, iodosulfuronmethyl, isoproturon, ametryn, amitrole, paraquat dichloride, diquat dibromide, atrazine, metribuzin, acetochlor, metolachlor, S-metolachlor, alachlor, pretilachlor, sethoxydim, tralkoxydim, clethodim, cyhalofop-butyl, quizalofop-ethyl, diclofop-methyl, clodinafoppropargyl, fenoxaprop-ethyl, dimethenamid. flufenacet. picloram, prodiamine, fosamine-ammonium, 2,4-D, 2,4-DB, dicamba, penoxsulam, flumetsulam, naptalam, pendimethalin, oryzalin, MCPA (and its dimethylammonium, potassium and sodium salts), MCPA-isoctyl, MCPA-thioethyl mecoprop, clopyralid, aminopyralid, triclopyr, fluroxypyr, diflufenzopyr, imazapyr, imazethapyr, imazamox, picolinafen, oxyfluorfen, oxadiazon, carfentrazone-ethyl, sulfentrazone, flumioxazin, diflufenican, bromoxynil, propanil, thiobencarb, molinate, fluridone, mesotrione, sulcotrione, isoxaflutole, isoxaben, and clomazone. Specifically preferred mixtures (compound numbers refer to compounds in Index Tables A-B) are selected from the group: compound 1 and diuron; compound 9 and diuron; compound 58 and diuron; compound 64 and diuron; compound 65 and diuron; compound 77 and diuron; compound 94 and diuron; compound 95 and diuron; compound 96 and diuron; compound 1 and hexazinone; compound 9 and hexazinone; compound 58 and hexazinone; compound 64 and hexazinone; compound 65 and hexazinone; compound 77 and hexazinone; compound 94 and hexazinone; compound 95 and hexazinone; compound 96 and hexazinone; compound 1 and terbacil; compound 9 and terbacil; compound 58 and terbacil; compound 64 and terbacil; compound 65 and terbacil; compound 77 and terbacil; compound 94 and terbacil; compound 95 and terbacil; compound 96 and terbacil; compound 1 and bromacil; compound 9 and bromacil; compound 58 and bromacil; compound 64 and bromacil; compound 65 and bromacil; compound 77 and bromacil; compound 94 and bromacil; compound 95 and bromacil; compound 96 and bromacil; compound 1 and glyphosate; compound 9 and glyphosate; compound 58 and glyphosate; compound 64 and glyphosate; compound 65 and glyphosate; compound 77 and glyphosate; compound 94 and

10

15

20

25

30

35

glyphosate; compound 95 and glyphosate; compound 1 and glufosinate; compound 9 and glufosinate; compound 58 and glufosinate; compound 64 and glufosinate; compound 65 and glufosinate; compound 77 and glufosinate; compound 94 and glufosinate; compound 95 and glufosinate; compound 96 and glufosinate; compound 1 and azimsulfuron; compound 9 and azimsulfuron; compound 58 and azimsulfuron; compound 64 and azimsulfuron; compound 65 and azimsulfuron; compound 77 and azimsulfuron; compound 94 and azimsulfuron; compound 95 and azimsulfuron; compound 96 and azimsulfuron; compound 1 and chlorsulfuron; compound 9 and chlorsulfuron; compound 58 and chlorsulfuron; compound 64 and chlorsulfuron; compound 65 and chlorsulfuron; compound 77 and chlorsulfuron; compound 94 and chlorsulfuron; compound 95 and chlorsulfuron; compound 96 and chlorsulfuron; compound 1 and ethametsulfuron-methyl; compound 9 and ethametsulfuron-methyl; compound 58 and ethametsulfuron-methyl; compound 64 and ethametsulfuron-methyl; compound 65 and ethametsulfuron-methyl; compound 77 and ethametsulfuron-methyl; compound 94 and ethametsulfuron-methyl; compound 95 and ethametsulfuron-methyl; compound 96 and ethametsulfuron-methyl; compound 1 and chlorimuron-ethyl; compound 9 and chlorimuron-ethyl; compound 58 and chlorimuron-ethyl; compound 64 and chlorimuron-ethyl; compound 65 and chlorimuronethyl; compound 77 and chlorimuron-ethyl; compound 94 and chlorimuron-ethyl; compound 95 and chlorimuron-ethyl; compound 96 and chlorimuron-ethyl; compound 1 and bensulfuron-methyl; compound 9 and bensulfuron-methyl; compound 58 and bensulfuronmethyl; compound 64 and bensulfuron-methyl; compound 65 and bensulfuron-methyl; compound 77 and bensulfuron-methyl; compound 94 and bensulfuron-methyl; compound 95 and bensulfuron-methyl; compound 96 and bensulfuron-methyl; compound 1 and rimsulfuron; compound 9 and rimsulfuron; compound 58 and rimsulfuron; compound 64 and rimsulfuron; compound 65 and rimsulfuron; compound 77 and rimsulfuron; compound 94 and rimsulfuron; compound 95 and rimsulfuron; compound 96 and rimsulfuron; compound 1 and sulfometuron-methyl; compound 9 and sulfometuron-methyl; compound 58 and sulfometuron-methyl; compound 64 and sulfometuron-methyl; compound 65 and sulfometuron-methyl; compound 77 and sulfometuron-methyl; compound 94 and sulfometuron-methyl; compound 95 and sulfometuron-methyl; compound 96 sulfometuron-methyl; compound 1 and metsulfuron-methyl; compound 9 and metsulfuronmethyl; compound 58 and metsulfuron-methyl; compound 64 and metsulfuron-methyl; compound 65 and metsulfuron-methyl; compound 77 and metsulfuron-methyl; compound 94 and metsulfuron-methyl; compound 95 and metsulfuron-methyl; compound 96 and compound 1 and nicosulfuron; compound 9 and nicosulfuron; metsulfuron-methyl; compound 58 and nicosulfuron; compound 64 and nicosulfuron; compound 65 and nicosulfuron; compound 77 and nicosulfuron; compound 94 and nicosulfuron; compound 95 and nicosulfuron; compound 96 and nicosulfuron; compound 1 and tribenuron-methyl;

10

15

20

25

30

35

compound 9 and tribenuron-methyl; compound 58 and tribenuron-methyl; compound 64 and tribenuron-methyl; compound 65 and tribenuron-methyl; compound 77 and tribenuronmethyl; compound 94 and tribenuron-methyl; compound 95 and tribenuron-methyl; compound 96 and tribenuron-methyl; compound 1 and thifensulfuron-methyl; compound 9 and thifensulfuron-methyl; compound 58 and thifensulfuron-methyl; compound 64 and thifensulfuron-methyl; compound 65 and thifensulfuron-methyl; compound 77 and thifensulfuron-methyl; compound 94 and thifensulfuron-methyl; compound 95 and thifensulfuron-methyl; compound 96 thifensulfuron-methyl; and compound 1 and flupyrsulfuron-methyl; compound 9 and flupyrsulfuron-methyl; compound 58 and flupyrsulfuron-methyl; compound 64 and flupyrsulfuron-methyl; compound 65 and flupyrsulfuron-methyl; compound 77 and flupyrsulfuron-methyl; compound 94 and flupyrsulfuron-methyl; compound 95 and flupyrsulfuron-methyl; compound 96 and flupyrsulfuron-methyl; compound 1 and flupyrsulfuron-methyl-sodium; compound 9 and flupyrsulfuron-methyl-sodium; compound 58 and flupyrsulfuron-methyl-sodium; compound 64 and flupyrsulfuron-methyl-sodium; compound 65 and flupyrsulfuron-methylsodium; compound 77 and flupyrsulfuron-methyl-sodium; compound 94 and flupyrsulfuronmethyl-sodium; compound 95 and flupyrsulfuron-methyl-sodium; compound 96 flupyrsulfuron-methyl-sodium; compound 1 and halosulfuron-methyl; compound 9 and halosulfuron-methyl; compound 58 halosulfuron-methyl; and compound and halosulfuron-methyl; compound 65 halosulfuron-methyl; and compound 77 and halosulfuron-methyl; compound 94 halosulfuron-methyl; and compound 95 and halosulfuron-methyl; compound halosulfuron-methyl; 96 and compound 1 and primisulfuron-methyl; compound 9 and primisulfuron-methyl; compound 58 and primisulfuron-methyl; compound 64 and primisulfuron-methyl; compound and 65 primisulfuron-methyl; compound 77 and primisulfuron-methyl; compound 94 and primisulfuron-methyl; compound 95 and primisulfuron-methyl; compound 96 primisulfuron-methyl; compound 1 and trifloxysulfuron; compound 9 and trifloxysulfuron; compound 58 and trifloxysulfuron; compound 64 and trifloxysulfuron; compound 65 and trifloxysulfuron; compound 77 and trifloxysulfuron; compound 94 and trifloxysulfuron; compound 95 and trifloxysulfuron; compound 96 and trifloxysulfuron; compound 1 and compound 9 and foramsulfuron; compound 58 and foramsulfuron; foramsulfuron; compound 64 and foramsulfuron; compound 65 and foramsulfuron; compound 77 and foramsulfuron; compound 94 and foramsulfuron; compound 95 and foramsulfuron; compound 96 and foramsulfuron; compound 1 and mesosulfuron-methyl; compound 9 and mesosulfuron-methyl; compound 58 and mesosulfuron-methyl; compound mesosulfuron-methyl; compound 65 and mesosulfuron-methyl; compound and mesosulfuron-methyl; compound 94 and mesosulfuron-methyl; compound and mesosulfuron-methyl; compound 96 mesosulfuron-methyl; and compound and

10

15

20

25

30

35

iodosulfuron-methyl; compound 9 and iodosulfuron-methyl; compound 58 and iodosulfuronmethyl; compound 64 and iodosulfuron-methyl; compound 65 and iodosulfuron-methyl; compound 77 and iodosulfuron-methyl; compound 94 and iodosulfuron-methyl; compound 95 and iodosulfuron-methyl; compound 96 and iodosulfuron-methyl; compound 1 and isoproturon; compound 9 and isoproturon; compound 58 and isoproturon; compound 64 and isoproturon; compound 65 and isoproturon; compound 77 and isoproturon; compound 94 and isoproturon; compound 95 and isoproturon; compound 96 and isoproturon; compound 1 and ametryn; compound 9 and ametryn; compound 58 and ametryn; compound 64 and ametryn; compound 65 and ametryn; compound 77 and ametryn; compound 94 and ametryn; compound 95 and ametryn; compound 96 and ametryn; compound 1 and amitrole; compound 9 and amitrole; compound 58 and amitrole; compound 64 and amitrole; compound 65 and amitrole; compound 77 and amitrole; compound 94 and amitrole; compound 95 and amitrole; compound 96 and amitrole; compound 1 and paraquat dichloride; compound 9 and paraquat dichloride; compound 58 and paraquat dichloride; compound 64 and paraquat dichloride; compound 65 and paraquat dichloride; compound 77 and paraquat dichloride; compound 94 and paraquat dichloride; compound 95 and paraquat dichloride; compound 96 and paraquat dichloride; compound 1 and diquat dibromide; compound 9 and diquat dibromide; compound 58 and diquat dibromide; compound 64 and diquat dibromide; compound 65 and diquat dibromide; compound 77 and diquat dibromide; compound 94 and diquat dibromide; compound 95 and diquat dibromide; compound 96 and diquat dibromide; compound 1 and atrazine; compound 9 and atrazine; compound 58 and atrazine; compound 64 and atrazine; compound 65 and atrazine; compound 77 and atrazine; compound 94 and atrazine; compound 95 and atrazine; compound 96 and atrazine; compound 1 and metribuzin; compound 9 and metribuzin; compound 58 and metribuzin; compound 64 and metribuzin; compound 65 and metribuzin; compound 77 and metribuzin; compound 94 and metribuzin; compound 95 and metribuzin; compound 96 and metribuzin; compound 1 and acetochlor; compound 9 and acetochlor; compound 58 and acetochlor; compound 64 and acetochlor; compound 65 and acetochlor; compound 77 and acetochlor; compound 94 and acetochlor; compound 95 and acetochlor; compound 96 and acetochlor; compound 1 and metolachlor; compound 9 and metolachlor; compound 58 and metolachlor; compound 64 and metolachlor; compound 65 and metolachlor; compound 77 and metolachlor; compound 94 and metolachlor; compound 95 and metolachlor; compound 96 and metolachlor; compound 1 and S-metolachlor; compound 9 and S-metolachlor; compound 58 and S-metolachlor; compound 64 and S-metolachlor; compound 65 and Smetolachlor; compound 77 and S-metolachlor; compound 94 and S-metolachlor; compound 95 and S-metolachlor; compound 96 and S-metolachlor; compound 1 and alachlor; compound 9 and alachlor; compound 58 and alachlor; compound 64 and alachlor; compound 65 and alachlor; compound 77 and alachlor; compound 94 and alachlor; compound 95 and

10

15

20

25

.30

35

alachlor; compound 96 and alachlor; compound 1 and pretilachlor; compound 9 and pretilachlor; compound 58 and pretilachlor; compound 64 and pretilachlor; compound 65 and pretilachlor; compound 77 and pretilachlor; compound 94 and pretilachlor; compound 95 and pretilachlor; compound 96 and pretilachlor; compound 1 and sethoxydim; compound 9 and sethoxydim; compound 58 and sethoxydim; compound 64 and sethoxydim; compound 65 and sethoxydim; compound 77 and sethoxydim; compound 94 and sethoxydim; compound 95 and sethoxydim; compound 96 and sethoxydim; compound 1 and tralkoxydim; compound 9 and tralkoxydim; compound 58 and tralkoxydim; compound 64 and tralkoxydim; compound 65 and tralkoxydim; compound 77 and tralkoxydim; compound 94 and tralkoxydim; compound 95 and tralkoxydim; compound 96 and tralkoxydim; compound 1 and clethodim; compound 9 and clethodim; compound 58 and clethodim; compound 64 and clethodim; compound 65 and clethodim; compound 77 and clethodim; compound 94 and clethodim; compound 95 and clethodim; compound 96 and clethodim; compound 1 and cyhalofop-butyl; compound 9 and cyhalofop-butyl; compound 58 and cyhalofop-butyl; compound 64 and cyhalofop-butyl; compound 65 and cyhalofop-butyl; compound 77 and cyhalofop-butyl; compound 94 and cyhalofop-butyl; compound 95 and cyhalofop-butyl; compound 96 and cyhalofop-butyl; compound 1 and quizalofop-ethyl; compound 9 and quizalofop-ethyl; compound 58 and quizalofop-ethyl; compound 64 and quizalofop-ethyl; compound 65 and quizalofop-ethyl; compound 77 and quizalofop-ethyl; compound 94 and quizalofop-ethyl; compound 95 and quizalofop-ethyl; compound 96 and quizalofop-ethyl; compound 1 and diclofop-methyl; compound 9 and diclofop-methyl; compound 58 and diclofop-methyl; compound 64 and diclofop-methyl; compound 65 and diclofop-methyl; compound 77 and diclofop-methyl; compound 94 and diclofop-methyl; compound 95 and diclofop-methyl; compound 96 and diclofop-methyl; compound 1 and clodinafop-propargyl; compound 9 and clodinafop-propargyl; compound 58 and clodinafop-propargyl; compound 64 and clodinafop-propargyl; compound 65 and clodinafop-propargyl; compound 77 and clodinafop-propargyl; compound 94 and clodinafop-propargyl; compound 95 clodinafop-propargyl; compound 96 and clodinafop-propargyl; compound 1 fenoxaprop-ethyl; compound 9 and fenoxaprop-ethyl; compound 58 and fenoxaprop-ethyl; compound 64 and fenoxaprop-ethyl; compound 65 and fenoxaprop-ethyl; compound 77 and fenoxaprop-ethyl; compound 94 and fenoxaprop-ethyl; compound 95 and fenoxaprop-ethyl; compound 96 and fenoxaprop-ethyl; compound 1 and dimethenamid; compound 9 and dimethenamid; compound 58 and dimethenamid; compound 64 and dimethenamid; compound 65 and dimethenamid; compound 77 and dimethenamid; compound 94 and dimethenamid; compound 95 and dimethenamid; compound 96 and dimethenamid; compound 1 and flufenacet; compound 9 and flufenacet; compound 58 and flufenacet; compound 64 and flufenacet; compound 65 and flufenacet; compound 77 and flufenacet; compound 94 and flufenacet; compound 95 and flufenacet; compound 96 and flufenacet;

10

15

20

25

30

35

compound 1 and picloram; compound 9 and picloram; compound 58 and picloram; compound 64 and picloram; compound 65 and picloram; compound 77 and picloram; compound 94 and picloram; compound 95 and picloram; compound 96 and picloram; compound 1 and prodiamine; compound 9 and prodiamine; compound 58 and prodiamine; compound 64 and prodiamine; compound 65 and prodiamine; compound 77 and prodiamine; compound 94 and prodiamine; compound 95 and prodiamine; compound 96 and prodiamine; compound 1 and fosamine-ammonium; compound 9 and fosamine-ammonium; compound 58 and fosamine-ammonium; compound 64 and fosamine-ammonium; compound 65 and fosamine-ammonium; compound 77 and fosamine-ammonium; compound 94 and fosamineammonium; compound 95 and fosamine-ammonium; compound 96 and fosamineammonium; compound 1 and 2,4-D; compound 9 and 2,4-D; compound 58 and 2,4-D; compound 64 and 2,4-D; compound 65 and 2,4-D; compound 77 and 2,4-D; compound 94 and 2,4-D; compound 95 and 2,4-D; compound 9 and 2,4-D; compound 1 and 2,4-DB; compound 9 and 2,4-DB; compound 58 and 2,4-DB; compound 64 and 2,4-DB; compound 65 and 2,4-DB; compound 77 and 2,4-DB; compound 94 and 2,4-DB; compound 95 and 2,4-DB; compound 96 and 2,4-DB; compound 1 and dicamba; compound 9 and dicamba; compound 58 and dicamba; compound 64 and dicamba; compound 65 and dicamba; compound 77 and dicamba; compound 94 and dicamba; compound 95 and dicamba; compound 96 and dicamba; compound 1 and penoxsulam; compound 9 and penoxsulam; compound 58 and penoxsulam; compound 64 and penoxsulam; compound 65 and penoxsulam; compound 77 and penoxsulam; compound 94 and penoxsulam; compound 95 and penoxsulam; compound 96 and penoxsulam; compound 1 and flumetsulam; compound 9 and flumetsulam; compound 58 and flumetsulam; compound 64 and flumetsulam; compound 65 and flumetsulam; compound 77 and flumetsulam; compound 94 and flumetsulam; compound 95 and flumetsulam; compound 96 and flumetsulam; compound 1 and naptalam; compound 9 and naptalam; compound 58 and naptalam; compound 64 and naptalam; compound 65 and naptalam; compound 77 and naptalam; compound 94 and naptalam; compound 95 and naptalam; compound 1 and pendimethalin; compound 9 and pendimethalin; compound 58 and pendimethalin; compound 64 and pendimethalin; compound 65 and pendimethalin; compound 77 and pendimethalin; compound 94 and pendimethalin; compound 95 and pendimethalin; compound 96 and pendimethalin; compound 1 and oryzalin; compound 9 and oryzalin; compound 58 and oryzalin; compound 64 and oryzalin; compound 65 and oryzalin; compound 77 and oryzalin; compound 94 and oryzalin; compound 95 and oryzalin; compound 96 and oryzalin; compound 1 and MCPA; compound 9 and MCPA; compound 58 and MCPA; compound 64 and MCPA; compound 65 and MCPA; compound 77 and MCPA; compound 94 and MCPA; compound 95 and MCPA; compound 96 and MCPA; compound 1 and mecoprop; compound 9 and mecoprop; compound 58 and mecoprop;

10

15

20

25

30

35

compound 64 and mecoprop; compound 65 and mecoprop; compound 77 and mecoprop; compound 94 and mecoprop; compound 95 and mecoprop; compound 96 and mecoprop; compound 1 and clopyralid; compound 9 and clopyralid; compound 58 and clopyralid; compound 64 and clopyralid; compound 65 and clopyralid; compound 77 and clopyralid; compound 94 and clopyralid; compound 95 and clopyralid; compound 96 and clopyralid; compound 1 and aminopyralid; compound 9 and aminopyralid; compound 58 and aminopyralid; compound 64 and aminopyralid; compound 65 and aminopyralid; compound 77 and aminopyralid; compound 94 and aminopyralid; compound 95 and aminopyralid; compound 96 and aminopyralid; compound 1 and triclopyr; compound 9 and triclopyr; compound 58 and triclopyr; compound 64 and triclopyr; compound 65 and triclopyr; compound 77 and triclopyr; compound 94 and triclopyr; compound 95 and triclopyr; compound 96 and triclopyr; compound 1 and fluroxypyr; compound 9 and fluroxypyr; compound 58 and fluroxypyr; compound 64 and fluroxypyr; compound 65 and fluroxypyr; compound 77 and fluroxypyr; compound 94 and fluroxypyr; compound 95 and fluroxypyr; compound 96 and fluroxypyr; compound 1 and imazethapyr; compound 9 and imazethapyr; compound 58 and imazethapyr; compound 64 and imazethapyr; compound 65 and imazethapyr; compound 77 and imazethapyr; compound 94 and imazethapyr; compound 95 and imazethapyr; compound 96 and imazethapyr; compound 1 and imazamox; compound 9 and imazamox; compound 58 and imazamox; compound 64 and imazamox; compound 65 and imazamox; compound 77 and imazamox; compound 94 and imazamox; compound 95 and imazamox; compound 96 and imazamox; compound 1 and picolinafen; compound 9 and picolinafen; compound 58 and picolinafen; compound 64 and picolinafen; compound 65 and picolinafen; compound 77 and picolinafen; compound 94 and picolinafen; compound 95 and picolinafen; compound 96 and picolinafen; compound 1 and oxyfluorfen; compound 9 and oxyfluorfen; compound 58 and oxyfluorfen; compound 64 and oxyfluorfen; compound 65 and oxyfluorfen; compound 77 and oxyfluorfen; compound 94 and oxyfluorfen; compound 95 and oxyfluorfen; compound 96 and oxyfluorfen; compound 1 and oxadiazon; compound 9 and oxadiazon; compound 58 and oxadiazon; compound 64 and oxadiazon; compound 65 and oxadiazon; compound 77 and oxadiazon; compound 94 and oxadiazon; compound 95 and oxadiazon; compound 96 and oxadiazon; compound 1 and carfentrazonecompound 9 and carfentrazone-ethyl; compound 58 and carfentrazone-ethyl; compound 64 and carfentrazone-ethyl; compound 65 and carfentrazone-ethyl; compound 77 and carfentrazone-ethyl; compound 94 and carfentrazone-ethyl; compound 95 and carfentrazone-ethyl; compound 96 and carfentrazone-ethyl; compound 1 and sulfentrazone; compound 9 and sulfentrazone; compound 58 and sulfentrazone; compound 64 and sulfentrazone; compound 65 and sulfentrazone; compound 77 and sulfentrazone; compound 94 and sulfentrazone; compound 95 and sulfentrazone; compound 96 and sulfentrazone; compound 1 and flumioxazin; compound 9 and flumioxazin; compound 58 and flumioxazin;

compound 64 and flumioxazin; compound 65 and flumioxazin; compound 77 and flumioxazin; compound 94 and flumioxazin; compound 95 and flumioxazin; compound 96 and flumioxazin; compound 1 and diflufenican; compound 9 and diflufenican; compound 58 and diflufenican; compound 64 and diflufenican; compound 65 and diflufenican; compound 77 and diflufenican; compound 94 and diflufenican; compound 95 and diflufenican; 5 compound 96 and diflufenican; compound 1 and bromoxynil; compound 9 and bromoxynil; compound 58 and bromoxynil; compound 64 and bromoxynil; compound 65 and bromoxynil; compound 77 and bromoxynil; compound 94 and bromoxynil; compound 95 and bromoxynil; compound 96 and bromoxynil; compound 1 and propanil; compound 9 and 10 propanil; compound 58 and propanil; compound 64 and propanil; compound 65 and propanil; compound 77 and propanil; compound 94 and propanil; compound 95 and propanil; compound 96 and propanil; compound 1 and thiobencarb; compound 9 and thiobencarb; compound 58 and thiobencarb; compound 64 and thiobencarb; compound 65 and thiobencarb; compound 77 and thiobencarb; compound 94 and thiobencarb; compound 15 95 and thiobencarb; compound 96 and thiobencarb; compound 1 and molinate; compound 9 and molinate; compound 58 and molinate; compound 64 and molinate; compound 65 and molinate; compound 77 and molinate; compound 94 and molinate; compound 95 and molinate; compound 96 and molinate; compound 1 and fluridone; compound 9 and fluridone; compound 58 and fluridone; compound 64 and fluridone; compound 65 and 20 fluridone; compound 77 and fluridone; compound 94 and fluridone; compound 95 and fluridone; compound 96 and fluridone; compound 1 and mesotrione; compound 9 and mesotrione; compound 58 and mesotrione; compound 64 and mesotrione; compound 65 and mesotrione; compound 77 and mesotrione; compound 94 and mesotrione; compound 95 and mesotrione; compound 96 and mesotrione; compound 1 and sulcotrione; compound 9 and 25 sulcotrione; compound 58 and sulcotrione; compound 64 and sulcotrione; compound 65 and sulcotrione; compound 77 and sulcotrione; compound 94 and sulcotrione; compound 95 and sulcotrione; compound 96 and sulcotrione; compound 1 and isoxaflutole; compound 9 and isoxaflutole; compound 58 and isoxaflutole; compound 64 and isoxaflutole; compound 65 and isoxaflutole; compound 77 and isoxaflutole; compound 94 and isoxaflutole; compound 30 95 and isoxaflutole; compound 96 and isoxaflutole; compound 1 and isoxaflutole; compound 9 and isoxaflutole; compound 58 and isoxaflutole; compound 64 and isoxaflutole; compound 65 and isoxaflutole; compound 77 and isoxaflutole; compound 94 and isoxaflutole; compound 95 and isoxaflutole; compound 96 and isoxaflutole; compound 1 and isoxaben; compound 9 and isoxaben; compound 58 and isoxaben; compound 64 and 35 isoxaben; compound 65 and isoxaben; compound 77 and isoxaben; compound 94 and isoxaben; compound 95 and isoxaben; compound 96 and isoxaben; compound 1 and clomazone; compound 9 and clomazone; compound 58 and clomazone; compound 64 and

clomazone; compound 65 and clomazone; compound 77 and clomazone; compound 94 and clomazone; compound 95 and clomazone.

5

10

15

20

25

30

35

Particularly noteworthy because of greater than additive (i.e. synergistic) efficacy on certain weeds are mixtures of compounds of the invention with auxin transport inhibitors (phytotropins), an example being the combination of compound 1 (ethyl 6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylate) with diflufenzopyr. Auxin transport inhibitors are chemical substances that inhibit auxin transport in plants, such as by binding with an auxin-carrier protein. Other examples of auxin transport inhibitors include naptalam (also known as N-(1-naphthyl)phthalamic acid and 2-[(1-naphthalenylamino)carbonyl]benzoic acid), 9-hydroxyfluorene-9-carboxylic acid and 2,3,5-triiodobenzoic acid. Therefore an aspect of the present invention relates to a herbicidal mixture comprising synergistically effective amounts of a compound of Claim 1 and an auxin transport inhibitor. Synergistically effective amounts of auxin transport inhibitors with the compounds of the invention can be easily determined.

Compounds of this invention can also be used in combination with herbicide safeners such as benoxacor, BCS (1-bromo-4-[(chloromethyl)sulfonyl]benzene), cloquintocet-mexyl, cyometrinil, dichlormid, 2-(dichloromethyl)-2-methyl-1,3-dioxolane (MG 191), fenchlorazole-ethyl, fenclorim, flurazole, fluxofenim, furilazole, isoxadifen-ethyl, mefenpyrethyl. methoxyphenone ((4-methoxy-3-methylphenyl)(3-methylphenyl)methanone), naphthalic anhydride (1,8-naphthalic anhydride) and oxabetrinil to increase safety to certain crops. Antidotally effective amounts of the herbicide safeners can be applied at the same time as the compounds of this invention, or applied as seed treatments. Therefore an aspect of the present invention relates to a herbicidal mixture comprising a compound of this invention and an antidotally effective amount of a herbicide safener. Seed treatment is particularly useful for selective weed control, because it physically restricts antidoting to the crop plants. Therefore a particularly useful embodiment of the present invention is a method for selectively controlling the growth of undesired vegetation in a crop comprising contacting the locus of the crop with a herbicidally effective amount of a compound of this invention wherein seed from which the crop is grown is treated with an antidotally effective amount of safener. Antidotally effective amounts of safeners can be easily determined by one skilled in the art through simple experimentation.

Compounds of this invention can also be used in combination with plant growth regulators such as aviglycine, N-(phenylmethyl)-1H-purin-6-amine, epocholeone, gibberellic acid, gibberellin A_4 and A_7 , harpin protein, mepiquat chloride, prohexadione calcium, prohydrojasmon, sodium nitrophenolate and trinexapac-methyl, and plant growth modifying organisms such as *Bacillus cereus* strain BP01.

The following Tests demonstrate the control efficacy of the compounds of this invention against specific weeds. The weed control afforded by the compounds is not

limited, however, to these species. See Index Tables A-B for compound descriptions. The following abbreviations are used in the Index Tables which follow: t means tertiary, s means secondary, n means normal, i means iso, c means cyclo, Me means methyl, Et means ethyl, Pr means propyl, i-Pr means isopropyl, Bu means butyl, Ph means phenyl, MeO means methoxy, EtO means ethoxy, and CN means cyano. The abbreviation "dec." indicates that the compound appeared to decompose on melting. The abbreviation "Ex." stands for "Example" and is followed by a number indicating in which example the compound is prepared.

INDEX TABLE A

$$\mathbb{R}^2$$
 \mathbb{R}^3

10

5

Compound	<u>R</u> 1	<u>R</u> 2	$\underline{R^3}$	<u>R</u> 4	m.p. (°C)
1 (Ex. 1)	c-Pr	CO ₂ CH ₂ CH ₃	Br	NH ₂	107–108
2 (Ex. 1)	c-Pr	CO ₂ CH ₃	Br	NH ₂	148-150
3	i-Pr	CO ₂ CH ₃	Br	NH ₂	107-109
. 4	c-Pr	CO ₂ CH ₂ CH ₃	Cl	NH ₂	87–89
5	c-Pr	CO ₂ CH ₃	Br	NHCH ₃	*
7	c-Pr	CO ₂ CH ₃	Í	NH ₂	145–146
8	<i>c</i> -Pr	CO ₂ H	Br	NH ₂	160–162
9 (Ex. 2)	c-Pr	CO ₂ CH ₃	Cl	NH ₂	143–145
10	c-Pr	CO ₂ CH ₃	Br	NHCH ₂ CO ₂ CH ₃	95–96
11	c-Pr	CH ₂ OCH ₃	Br	NH ₂	*
12	c-Pr	CH ₂ CO ₂ CH ₂ CH ₃	Br	NH ₂	*
13	c-Pr	CH ₂ CO ₂ CH ₃	Br	NH ₂	*
14	c-Pr	CO ₂ (<i>i</i> -Pr)	Br	NH ₂	141-142
15	c-Pr	CO ₂ CH ₂ CH ₂ CH ₃	Br	NH ₂	86–90
16	c-Pr	CO ₂ CH ₂ CH ₂ CH ₂ CH ₃	Br	NH ₂	87–90
17	c-Pr	CO ₂ (<i>i</i> -Bu)	Br	NH ₂	121–123
18	Ph	CO ₂ CH ₂ CH ₃	Br	NH ₂	110–111
19	<i>c</i> -Pr	CO ₂ CH ₃	Br	$N=CHN(CH_3)_2$	*
20	c-Pr	C(O)NH ₂	Br	NH ₂	*
21	c-Pr	CH ₂ OH	Br	NH ₂	182–185
22	c-Pr	CO ₂ CH ₂ Ph	Br	NH ₂	129-131
23	Ph	CO ₂ CH ₃	Br	NH ₂	*

Compound	<u>R</u> 1	<u>R</u> ²	<u>R</u> 3	<u>R</u> 4	<u>m.p. (°C)</u>
24	c-Pr	СНО	F	NH ₂	*
25	c-Pr	CO ₂ CH ₃	F	NH ₂	*
26	c-Pr	СНО	Br	NH ₂	*
27	c-Pr	CH=NOH	Br	NH ₂	*
28	2-Me- <i>c</i> -Pr	CO ₂ CH ₃	Br	NH ₂	132-133
30	c-Pr	CO ₂ CH ₂ CH ₃	F	NH ₂	*
31	c-Pr	CH(Cl)CO ₂ CH ₂ CH ₃	Br	NH ₂	*
32	c-Pr	CH(CH ₃)CO ₂ CH ₂ CH ₃	Br	NH ₂	*
33	c-Pr	CH ₂ CO ₂ CH ₂ CH ₃	Br	$N=CHN(CH_3)_2$	*
34	c-Pr	CCl ₂ CO ₂ CH ₂ CH ₃	Br	NH ₂	*
35	c-Pr	CO ₂ CH ₃	Br	NHOH	*
36	t-Bu	$CO_2CH_2CH_3$	Br	NH ₂	69–70
37	4-Cl-Ph	$CO_2CH_2CH_3$	Br	NH ₂	120-121
38	c-Pr	CO ₂ CH ₂ CH ₃	Br	NHCH ₂ CH ₂ N(CH ₃) ₂	*
39	c-Pr	CO ₂ CH ₂ CH ₃	Br	NHCH ₂ CH ₂ OCH ₃	*
40	c-Pr	CO ₂ CH ₂ CH ₃	Br	$N=CHN(CH_3)_2$	*
41	4-Cl-Ph	CH ₂ CO ₂ CH ₂ CH ₃	Br	NH ₂	*
42	c-Pr	CO ₂ CH ₂ CH ₃	Br	NHNH ₂	*
43	4-F-Ph	CO ₂ CH ₃	Cl	NH ₂	*
44	4-CF ₃ -Ph	CO ₂ CH ₃	Cl	NH ₂	*
45	c-Pr	$CH(OCH_2CH_3)_2$	Br	NH ₂	*
46	c-Pr	CH(OCH ₃) ₂	F	NH ₂	*
. 47	c-Pr	$CH(CO_2CH_2CH_3)OC(O)CH_3$	Br	NH ₂	*
48	c-Pr	CH=NOCH ₃	Br	NH_2	*
49	c-Pr	CH=NNHCH ₃	Br	NH ₂	*
50	c-Pr	$CH=NN(CH_3)_2$	Br	NH ₂	*
51	c-Pr	CH=NNHC(O)CH ₃	Br	NH ₂	*
52	c-Pr	CO ₂ CH ₂ CH ₃	Br	NHOCH ₃	*
53	c-Pr	CO ₂ CH ₂ CH ₃	Br	NHC(O)CH ₃	*
54	c-Pr	$CO_2CH_2CH_3$	Br	NHOCH ₂ Ph	*
55	c-Pr	CO ₂ CH ₂ CH ₃	Br	NHO(t-Bu)	*
56	c-Pr	CO ₂ CH ₂ CH ₃	Br	$N \{ CH_2 CH_2 CH_2 CH_2 \}$	*
57	<i>c</i> -Pr	C(OH)CO ₂ CH ₂ CH ₃	Br	NH ₂	*
58	4-Cl-Ph	CO ₂ CH ₃	Cl	NH ₂	215–218
59	с-Рг	CO ₂ CH ₃	OCH ₃	NH ₂	*
60	4-CF ₃ -Ph	CO ₂ CH ₂ CH ₃	Br	NH ₂	*
61	4-CH ₃ -Ph	CO ₂ CH ₂ CH ₃	Br	NH ₂	*

Compound	<u>R</u> 1	<u>R</u> ²	<u>R</u> 3	<u>R</u> ⁴	m.p. (°C)
62	4-CH ₃ -Ph	CO ₂ CH ₂ CH ₃	Cl	NH ₂	*
63	4-F-Ph	CO ₂ CH ₂ CH ₃	Br	NH_2	*
64 (Ex. 4)	4-Cl-Ph	CO ₂ CH ₂ CH ₃	Cl	NH ₂	132-133
65 (Ex. 3)	4-Cl-Ph	CO ₂ H	Cl	NH ₂	158–160
					dec.
66	3,4-di-Cl-Ph	CO ₂ CH ₂ CH ₃	Br	NH_2	*
67	2,4-di-Cl-Ph	CO ₂ CH ₂ CH ₃	Br	NH_2	*
68	1,3-benzodioxol-5-yl	CO ₂ CH ₂ CH ₃	Br	NH_2	*
69	2-F-4-Cl-Ph	CO ₂ CH ₂ CH ₃	Br	NH_2	*
70	3,4-di-Me-Ph	CO ₂ CH ₂ CH ₃	Br	NH ₂	*
71	3,4-di-Me-Ph	CO ₂ CH ₂ CH ₃	Cl	NH ₂	*
. 72	2,4-di-Cl-Ph	CO ₂ CH ₂ CH ₃	Cl	NH ₂	*
73	3,4-di-Cl-Ph	CO ₂ CH ₂ CH ₃	Cl	NH ₂	*
74	1,3-benzodioxol-5-yl	CO ₂ CH ₂ CH ₃	Cl	NH ₂	*
75	c-Pr	CO ₂ CH ₂ CH ₂ CH ₃	Cl	NH_2	87–90
. 76	c-Pr	$CO_2CH_2CH_2CH_2CH_3$	Cl	NH_2	97–99
77	c-Pr	C(O)O ⁻ Na ⁺	Cl	NH ₂	297 dec.
- 78	c-Pr	CO ₂ CH ₂ Ph	$_{\cdot}\mathbf{Cl}$	NH_2	126–128
79	c-Pr	CO ₂ CH ₃	Cl	NHCH ₃	*
. 80	c-Pr	CO ₂ CH ₂ (4-Cl-Ph)	· Cl	NH_2	123–125
81	c-Pr	C(O)NHCH ₃	Cl	NH_2	*
82	4-Me-Ph	CO ₂ CH ₃	Br	NH_2	*
83	4-Cl-Ph	CO ₂ CH ₃	Br	NH_2	*
84	4-Me-Ph	CO ₂ CH ₃	Cl	NH_2	*
85	c-Pr	C(O)NH ₂	Cl	NH_2	232–236
86	3-F-4-Me-Ph	CO ₂ CH ₃	Cl	NH ₂	185–186
87	3-F-4-Me-Ph	CO ₂ H	Cl	NH_2	150 dec.
88	4-Cl-Ph	CO ₂ H	Br	NH ₂	*
89	4-Me-Ph	CO ₂ H	Br	NH ₂	*
. 90	4-F-Ph	CO ₂ H	Cl	NH_2	*
91	4-Me-Ph	CO ₂ CH ₃	Cl	NH_2	*
92	4-F-Ph	CO ₂ CH ₃	Br	NH_2	*
93	4-F-Ph	CO ₂ H	Br	NH_2	*
94	4-Br-Ph	CO ₂ CH ₂ CH ₃	Cl	NH_2	136–137
95	4-Br-Ph	CO ₂ H	Cl	NH ₂	157–158
					dec.
96	4-Br-Ph	CO ₂ CH ₃	Cl	NH ₂	223–224

Compound	<u>R1</u>	<u>R</u> 2	<u>R</u> 3	<u>R</u> 4	m.p. (°C)
97	3-Me-Ph	CO ₂ CH ₃	Cl	NH ₂	*
98	4-MeO-Ph	CO ₂ CH ₂ CH ₃	Cl	NH ₂	*
99	4-Et-Ph	CO ₂ CH ₂ CH ₃	Cl	NH ₂	*
100	3-Cl-Ph	CO ₂ CH ₂ CH ₃	Cl	NH ₂	*
101	3-Br-5-MeO-Ph	CO ₂ CH ₂ CH ₃	Cl	NH ₂	110-112
102	4-Cl-Ph	CO ₂ (<i>i</i> -Pr)	Cl	NH ₂	153–156
103	4-CF ₃ O-Ph	CO ₂ CH ₂ CH ₃	Cl	NH ₂	*
104	4-CF ₃ -Ph	CO ₂ CH ₂ CH ₃	Cl	NH ₂	138–140
· 105	4-Cl-Ph	CO ₂ CH ₂ CH ₂ CH ₃	Cl	NH_2	8081
106	2-F-Ph	CO ₂ CH ₂ CH ₃	Cl	NH ₂	120–124
107	3-CF ₃ -Ph	CO ₂ CH ₂ CH ₃	Cl	NH_2	121-122
108	<i>i</i> -Pr	CO ₂ CH ₂ CH ₃	Cl	NH_2	102-103
109	<i>i</i> -Pr	C(O)O- Na+	Cl	NH_2	190–192
					dec.
110	<i>i</i> -Pr	CO_2CH_3	Cl	NH ₂	100–104
					dec.
111	4-Cl-Ph	CO ₂ CH ₃	Cl	NHCH ₃	124–126
112	c-Pr	OCH ₂ CO ₂ CH ₃	Cl	NH ₂	148–150
113	c-Pr	C(O)O ⁻ Na ⁺	Br	NH ₂	>300
. 114	4-Cl-Ph	$OCH_2CO_2CH_2CH_3$	Cl	NH ₂	*
115	c-Pr	$OCH_2CO_2CH_2CH_3$	Cl	NH ₂	164–168
116	c-Pr	OCH ₂ C(O)O-Na+	Cl	NH_2	264–267
:					dec.
117	4-Cl-Ph	C(O)O ⁻ Na ⁺	Cl	NH ₂	>300
118	4-Cl-Ph	CO ₂ CH ₂ Ph	Cl	NH ₂	150–153
119	4-Cl-Ph	OCH ₂ CO ₂ CH ₃	Cl	NH ₂	129–132
120	4-Cl-Ph	CH ₂ CO ₂ CH ₂ CH ₃	Cl	NH_2	*
121	4-MeS-Ph	CO ₂ CH ₃	Cl	NH_2	169–173
122	4-MeS(O) ₂ -Ph	CO ₂ CH ₃	Cl	NH_2	173–175
123	4-MeS(O)-Ph	CO ₂ CH ₃	Cl	NH ₂	173–175

^{*} See Index Table B for ¹H NMR data.

INDEX TABLE B

Compound	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
5	δ 5.60 (br s, 1H), 3.96 (s, 3H), 3.02 (d, 3H), 2.10 (m, 1H), 1.10 (m, 2H), 0.98 (m, 2H).
11	δ 5.20 (br s, 2H), 4.97 (s, 2H), 3.49 (s, 3H), 2.07 (m, 1H), 1.02 (m, 2H), 0.95 (m, 2H).
12	δ 5.20 (br s, 2H), 4.18 (q, 2H), 3.80 (s, 2H), 1.90 (m, 1H), 1.25 (t, 3H), 1.01–0.93 (m, 4H).
13	δ 5.26 (br s, 2H), 3.82 (s, 2H), 3.73 (s, 3H), 1.90 (m, 1H), 1.02–0.92 (m, 4H).

Compound	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
19	δ 8.60 (s, 1H), 3.97 (s, 3H), 3.20 (s, 3H), 3.19 (s, 3H), 2.10 (m, 1H), 1.08 (m, 2H), 0.99 (m, 2H).
20	δ 7.65 (br s, 1H), 5.94 (br s, 2H), 5.8 (br s, 1H), 2.01 (m, 1H), 1.03 (m, 4H).
23	δ 8.35 (m, 2H), 7.46 (m, 3H), 5.61 (br s, 2H), 4.02 (s, 3H).
24	δ 10.01 (s, 1H), 5.31 (br s, 2H), 2.10 (m, 1H), 1.10–0.95 (m, 4H).
25	δ 5.15 (br s, 2H), 3.98 (s, 3H), 2.03 (m, 1H), 1.04–0.92 (m, 4H).
26	δ 9.98 (s, 1H), 5.60 (br s, 2H), 2.10 (m, 1H), 1.10–1.02 (m, 4H).
27	δ 8.19 (s, 1H), 1.89 (m, 1H), 0.92–0.87 (m, 4H).
30	δ 5.12 (br s, 2H), 4.45 (q, 2H), 2.13 (m, 1H), 1.41 (t, 3H), 1.04–0.92 (m, 4H).
31	δ 5.66 (s, 1H), 5.34 (br s, 2H), 4.30 (q, 2H), 1.98 (m, 1H), 1.30 (t, 3H), 1.13–0.92 (m, 4H).
32	δ 5.26 (br s, 2H), 4.21–4.07 (m, 3H), 1.94 (m, 1H), 1.45 (d, 2H), 1.22 (t, 3H), 1.08–0.90 (m, 4H).
33	δ 8.57 (s, 1H), 4.18 (q, 2H), 3.88 (s, 2H), 3.18 (s, 3H), 3.16 (s, 3H), 2.00 (m, 1H), 1.24 (t, 3H), 1.05–0.96 (m, 4H).
34	δ 5.48 (br s, 2H), 4.38 (q, 2H), 2.02 (m, 1H), 1.36 (t, 3H), 1.11–0.97(m, 4H).
35	δ 3.97 (s, 3H), 2.07 (m, 1H), 1.20–1.13 (m, 2H), 1.12–1.04 (m, 2H).
38	δ 6.20 (br s, 1H), 4.43 (q, 2H), 3.48 (m, 2H), 2.50 (m, 2H), 2.27 (s, 6H), 2.07 (m, 1H), 1.41 (t, 3H), 1.07 (m, 2H), 0.96 (m, 2H).
. 39	δ 5.90 (br s, 1H), 4.43 (q, 2H), 3.65 (m, 2H), 3.54 (m, 2H), 3.39 (s, 3H), 2.08 (m, 1H), 1.41 (t, 3H), 1.04 (m, 2H), 0.98 (m, 2H).
40	δ 8.59 (s, 1H), 4.44 (q, 2H), 3.20 (s, 3H), 3.18 (s, 3H), 2.10 (m, 1H), 1.41 (t, 3H), 1.11–1.05 (m, 2H), 1.01–0.94 (m, 2H).
41	δ 8.27 (m, 2H), 7.39 (m, 2H), 5.39 (br s, 2H), 4.23 (q, 2H), 3.93 (s, 2H), 1.29 (t, 3H).
42	δ 6.70 (br s, 1H), 4.43 (q, 2H), 4.0 (br s, 2H), 2.10 (m, 1H), 1.41 (t, 3H), 1.11 (m, 2H), 1.01 (m, 2H).
43	δ 8.35 (m, 2H), 7.10 (dd, 2H), 5.54 (br s, 2H), 4.02 (s, 3H).
44	δ 8.47 (d, 2H), 7.69 (d, 2H), 5.61 (br s, 2H), 4.04 (s, 3H).
45	δ 5.56 (s, 1H), 5.29 (br s, 2H), 3.86–3.74 (m, 2H), 3.71–3.58 (m, 2H), 2.14–2.03 (m, 1H), 1.30–1.23 (m, 6H), 1.07–0.89 (m, 4H).
46	δ 5.39 (s, 1H), 4.96 (br s, 2H), 3.49 (s, 6H), 2.15–2.04 (m, 1H), 1.02–0.87 (m, 4H).
47	δ 6.32 (s, 1H), 5.34 (br s, 2H), 4.28 (q, 2H), 2.21 (s, 3H), 2.03–1.93 (m, 1H), 1.28 (t, 3H), 1.11–0.91 (m, 4H).
48	δ 8.41 (s, 1H), 5.34 (br s, 2H), 4.12 (s, 3H), 2.19–2.10 (m, 1H), 0.90–0.80 (m, 4H).
49	(DMSO-d ₆) δ 8.45 (q, 1H), 7.34 (s, 1H), 6.82 (br s), 2.86 (d, 3H), 1.91–1.81 (m, 1H), 1.07–0.92 (m, 4H).
50	δ 7.23 (s, 1H), 5.18 (br s, 2H), 3.21 (s, 6H), 2.19–2.08 (m, 1H), 1.05–0.88 (m, 4H).
51	(DMSO- d_6) δ 11.68 + 11.55 (2 x s, 1H), 8.39 + 8.09 (2 x s, 1H), 2.20 + 1.97 (2 x s, 3H),

1.97-1.86 (m, 1H), 0.90 (d, 4H).

Compound	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
52	δ 8.76 + 8.07 (2 x s, 1H), 4.50–4.32 (br s, 2H), 3.94 + 3.89 (2 x s, 3H), 2.26–2.11 (br m, 1H),
	1.40 (br s, 3H), 1.20–1.12 (m, 2H), 1.09–1.00 (m, 2H).
53	δ 4.49 (q, 2H), 2.30 (s, 3H), 2.3–2.2 (m, 1H), 1.43 (t, 3H), 1.27–1.09 (m, 4H).
54	δ 7.47–7.34 (m, 5H), 5.06 (s, 2H), 4.43 (q, 2H), 1.90–1.84 (m, 1H), 1.41 (t, 3H), 1.23–1.03
	(m, 4H).
55	δ 8.64 + 7.64 (2 x s, 1H), 4.45 + 4.36 (2 x q, 2H), 2.20–2.10 (m, 1H), 1.42 + 1.37 (2 x t, 3H), 1.34 + 1.32 (2 x s, 9H), 1.18–0.98 (m, 4H).
56	δ 4.42 (q, 2H), 3.77 (m, 4H), 2.07–1.97 (m, 1H), 1.91 (m, 4H), 1.40 (t, 3H), 1.07–0.89 (m, 4H).
57	δ 5.37–5.30 (m, 3H), 4.51 (d, 1H), 4.28–4.16 (m, 2H), 2.06–1.96 (m, 1H), 1.27 (t, 3H), 1.09–0.94 (m, 4H).
59	δ 5.14 (br s, 2H), 3.97 (s, 3H), 3.84 (s, 3H), 2.09 (m, 1H), 1.00 (m, 2H), 0.94
	(m, 2H).
60	δ 8.46 (d, 2H), 7.69 (d, 2H), 5.65 (br s, 2H), 4.50 (m, 2H), 1.46 (t, 3H).
61	δ 8.23 (d, 2H), 7.24 (d, 2H), 5.57 + 5.53 (2 x br s, 2H), 4.49 (m, 2H), 2.40 (s, 3H), 1.45 (t, 3H).
62	δ 8.23 (d, 2H), 7.24 (d, 2H), 5.53 (br s, 2H), 4.49 (m, 2H), 2.40 (s, 3H), 1.45 (t, 3H).
63	δ 8.35 (m, 2H), 7.11 (t, 2H), 5.57 (br s, 2H), 4.49 (m, 2H), 1.45 (t, 3H).
66	δ 8.46 (d, 1H), 8.20 (dd, 1H), 7.50 (d, 1H), 5.62 (br s, 2H), 4.50 (m, 2H), 1.46 (t, 3H).
67	δ 7.67 (d, 1H), 7.48 (d, 1H), 7.32 (dd, 1H), 5.69 (br s, 2H), 4.47 (m, 2H), 1.43 (t, 3H).
68	δ 7.96 (dd, 1H), 7.83 (d, 1H), 6.85 (d, 1H), 6.02 (s, 2H), 5.53 (br s, 2H), 4.48 (m, 2H), 1.45 (t, 3H).
69	δ 8.97 (t, 1H), 7.23–7.15 (m, 2H), 5.67 (br s, 2H), 4.48 (m, 2H), 1.44 (t, 3H).
· 70	δ 8.11 (m, 1H), 8.06 (m, 1H), 7.19 (d, 1H), 5.57 (br s, 2H), 4.49 (m, 2H), 2.32 (t, 3H), 2.30 (t, 3H), 1.45 (t, 3H).
71	δ 8.11 (m, 1H), 8.06 (m, 1H), 7.20 (d, 1H), 5.50 (br s, 2H), 4.49 (m, 2H), 2.33 (t, 3H), 2.31 (t, 3H), 1.45 (t, 3H).
72	δ 7.67 (d, 1H), 7.48 (d, 1H), 7.32 (dd, 1H), 5.63 (br s, 2H), 4.48 (m, 2H), 1.43 (t, 3H).
73	δ 8.46 (d, 1H), 8.20 (dd, 1H), 7.50 (d, 1H), 5.56 (br s, 2H), 4.50 (m, 2H), 1.46 (t, 3H).
74	87.95 (dd, 1H), 7.83 (d, 1H), 6.86 (d, 1H), 6.02 (s, 2H), 5.48 (br s, 2H), 4.48 (m, 2H), 1.45 (t, 3H).
79	δ 5.56 (br s, 1H), 3.97 (s, 3H), 3.04 (d, 3H), 2.11 (m, 1H), 1.10 (m, 2H), 0.98
	(m, 2H).
80	δ 5.56 (br s, 1H), 3.97 (s, 3H), 3.04 (d, 3H), 2.11 (m, 1H), 1.10 (m, 2H), 0.98
	(m, 2H).
81	δ 7.82 (br s, 1H), 5.48 (br s, 2H), 2.97 (d, 3H), 2.01 (m, 1H), 1.04 (m, 2H), 0.99
	(m, 2H).
82	δ 8.22 (d, 2H), 7.24 (d, 2H), 5.57 + 5.52 (2 x br s, 2H), 4.02 (s, 3H), 2.40 (s, 3H).

```
Compound
               <sup>1</sup>H NMR Data (CDCl<sub>3</sub> solution unless indicated otherwise)<sup>a</sup>
               δ 8.29 (d, 2H), 7.40 (d, 2H), 5.60 (br s, 2H), 4.02 (s, 3H).
    83
    84
               δ 8.22 (d, 2H), 7.24 (d, 2H), 5.53 (br s, 2H), 4.02 (s, 3H), 2.40 (s, 3H).
    88
               (DMSO-d_6) \delta 14.1–13.9 (br s), 8.25 (d, 2H), 7.56 (d, 2H).
               (DMSO-d_6) \delta 8.15 (d, 2H), 7.29 (d, 2H), 2.36 (s, 3H).
    89
    90
               (DMSO-d_6) \delta 14.2–13.9 (br s), 8.29 (m, 2H), 7.31 (t, 2H).
    91
               δ 8.18 (d, 2H), 7.30 (d, 2H), 5.84 (br s, 2H), 2.43 (s, 3H).
    92
               δ 8.35 (m, 2H), 7.11 (t, 2H), 5.59 (br s, 2H), 4.02 (s, 3H).
    93
               \delta 8.32 (m, 2H), 7.17 (t, 2H), 5.96 (br s, 2H).
    97
               \delta 8.11 (m, 2H), 7.31 (m, 2H), 5.57 (br s, 2H), 4.02 (s, 3H), 2.42 (s, 3H).
    98
               δ 8.30 (d, 2H), 6.94 (d, 2H), 5.48 (br s, 2H), 4.49 (q, 2H), 3.86 (s, 3H), 1.45 (t, 3H).
               \delta 8.24 (d, 2H), 7.26 (d, 2H), 5.51 (br s, 2H), 4.49 (q, 2H), 2.70 (q, 2H) 1.45 (t, 3H), 1.26 (t, 2H)
    99
                 3H).
    100
               δ 8.35 (s, 1H), 8.24 (d, 1H), 7.46–7.34 (m, 2H), 5.56 (br s, 2H), 4.50 (q, 2H), 1.46 (t, 3H).
    103
               δ 8.39 (d, 2H), 7.27 (d, 2H), 5.47 (br s, 2H), 4.50 (q, 2H), 1.45 (t, 3H).
    114
               δ 8.19 (d, 2H), 7.38 (d, 2H), 5.26 (br s, 2H), 4.98 (s, 2H), 4.24 (q, 2H), 1.26 (t, 3H).
               \delta~8.27~(d,2H),~7.39~(d,2H),~5.34~(br~s,2H),~4.23~(q,2H),~3.91~(s,2H),~1.29~(t,3H).
    120
```

BIOLOGICAL EXAMPLES OF THE INVENTION

5 TEST A

10

15

Seeds of barnyardgrass (*Echinochloa crus-galli*), crabgrass (*Digitaria sanguinalis*), giant foxtail (*Setaria faberi*), morningglory (*Ipomoea* spp.), redroot pigweed (*Amaranthus retroflexus*) and velvetleaf (*Abutilon theophrasti*) were planted into a blend of loam soil and sand and treated preemergence with a directed soil spray using test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant. At the same time these species were also treated with postemergence applications of test chemicals formulated in the same manner.

Plants ranged in height from 2 to 10 cm and were in the 1- to 2-leaf stage for the postemergence treatment. Treated plants and untreated controls were maintained in a greenhouse for approximately ten days, after which time all treated plants were compared to untreated controls and visually evaluated for injury. Plant response ratings, summarized in Table A, are based on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (–) response means no test results.

^a ¹H NMR data are in ppm downfield from tetramethylsilane. Couplings are designated by (s)-singlet, (d)-doublet, (t)-triplet, (q)-quartet, (m)-multiplet, (dd)-doublet of doublets, (dt)-doublet of triplets, (dq)-doublet of quartets, (br s)-broad singlet, (br d)-broad d, (br m)-broad multiplet.

Table A	Com	ooun	đe		,	Tabl	e A			Co	mpou	nd		
2000 g ai/ha	1	57						i/ha			43			
Postemergence	-	1 57 1000 g ai/ha 43 Postemergence												
Barnyardgrass	75	·												
Crabgrass, Large	80	30					_	_			30			
Foxtail, Giant	75	J,												
Morningglory	100													
		95 Pigweed 85												
Pigweed Velvetleaf	100							- c						
vervettear	85	85 80 Velvetleaf 50												
Table A						Com	poun	ds						
500 g ai/ha	1	20	57	58	59	60	61	62	63	64	65	66	67	68
Postemergence														
Barnyardgrass	75	0	25	10	30	0	60	80	0	70	85	0	0	0
Crabgrass, Large	65	0	10	10	. 10	0	5	35	0	70	80	0	5	0
Foxtail, Giant	70	0	60	50	35	0	25	80	0	80	95	0	0	0
Morningglory	95	40	70	80	100	20	30	35	25	95	95	30	60	35
Pigweed	100	60	75	80	80	40	50	60	65	100	100	65	90	55
Velvetleaf	95	55	50	85	85	40	100	95	70	100	100	75	75	60
Table A						Com	poun	ds						
500 g ai/ha	69	70	71	72	73	74	75	76	77	78	79	80	81	82
Postemergence														
Barnyardgrass	5	0	0	0	5	70	90	90	90	90	90	90	30	50
Crabgrass, Large	40	20	5	30	35	60	90	70	90	80	75	70	10	0
Foxtail, Giant	55	0	0	0	45	70	90	90	90	80	90	90	30	0
Morningglory	90	10	0	70	65	30	90	95	100	90	95	95	80	40
Pigweed	90	20	30	95	80	70	100	95	95	95	100	95	75	75
Velvetleaf	90	60	55	85	75	80	100	100	100	90	95	90	75	90
Table A						Com	ooun	ds						
500 g ai/ha	83	84	85	86	87	88	89	90	91	92	93	94	95	96
Postemergence														
Barnyardgrass	10	80	0	30	90	85	85	10	90	0	0	60	90	25
Crabgrass, Large	10	10	0	0	10	85	10	20	15	5	0	50	80	20
Foxtail, Giant	10	20	0	0	30	90	45	30	75	0	0	65	85	35
Morningglory	75	20	75	20	15	85	30	65	30	75	55	75	80	65
Pigweed	85	65	90	50	90	95	100	90	100	70	70	85	95	85
Velvetleaf	90	90	60	85	95	95	95	85	95	70	80	90	95	85

Table A						Comp	ouno	ds						
500 g ai/ha	97	98	99	100	101	102	103	104	105	106	107	108	109	110
Postemergence														
Barnyardgrass	10	20	0	10	0	0	0	10	25	5	0	5	10	10
Crabgrass, Large	0	10	0	0	0	10	0	30	45	0	5	0	10	10
Foxtail, Giant	0	15	0	0	0	0	0	5	10	0	35	10	10	5
Morningglory	50	0	0	55	0	15	0	40	70	35	0	90	80	85
Pigweed	30	15	10	25	5	65	20	45	90	70	10	85	85	85
Velvetleaf	70	45	35	70	15	70	70	80	95	55	65	65	80	65
Table A					C	ogmo	unds							
500 g ai/ha	111	112	113	114	115	116	117	118	119	120	121	122	123	
Postemergence														
Barnyardgrass	10	0	90	0	0	0	90	0	5	40	5	0	10	
Crabgrass, Large	30	0	55	0	0	0	90	20	0	5	0	0	0	
Foxtail, Giant	0	0	85	0	0	0	90	15	0	0	0	0	10	
Morningglory	50	50	90	55	60	60	90	70	35	55	10	0	20	
Pigweed	85	40	90	55	45	35	100	75	45	35	0	0	0	
Velvetleaf	85	35	95	5	40	40	100	95	10	65	0	0	0	
Table A Comp	oound													
250 g ai/ha	43								٠					
250 g ai/ha Postemergence	43													
4.5	43 10								٠					
Postemergence									·					
Postemergence Barnyardgrass	10													
Postemergence Barnyardgrass Crabgrass, Large	10 10													
Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant	10 10 10													
Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory	10 10 10 20													
Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed	10 10 10 20 60					Comp	pound	ls						
Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf	10 10 10 20 60	58	59	60	61	Comp 62	ooune 63	ls 64	65	66	67	68	69	70
Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A	10 10 10 20 60 50	58	59	60	61				65	66	67	68	69	70
Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 125 g ai/ha	10 10 10 20 60 50	5 8	59	60	61				65	66	67	68	69	70
Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 125 g ai/ha Postemergence	10 10 10 20 60 50					62	63	64						
Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 125 g ai/ha Postemergence Barnyardgrass	10 10 10 20 60 50	5	0	0	. 35	62 15	63	64 25	85	0	0	0	0	0
Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 125 g ai/ha Postemergence Barnyardgrass Crabgrass, Large	10 10 20 60 50	5 5	0	0	35	62 15 0	63 0 0	64 25 50	85 55	0	0 5	0	0 20	0
Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 125 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant	10 10 20 60 50 20 0	5 5 0	0 0 0	0 0 0	35 0 0	15 0	63 0 0	6425507080	85 55 85	0 0 0	0 5 0	0 0 0	0 20 0	0 0 0

Table A						Comp	oun	ds						
125 g ai/ha	71	72	73	74	75	76	77	78	79	80	81	82	83	84
Postemergence														
Barnyardgrass	0	0	0	30	85	90	90	80	85	55	0	40	0	55
Crabgrass, Large	0	10	15	30	80	45	70	70	40	30	0	0	0	0
Foxtail, Giant	0	0	15	60	90	90	85	70	80	70	0	0	0	0
Morningglory	0	55	50	40	90	90	95	80	90	90	50	20	55	5
Pigweed	5	95	75	60	90	85	95	85	90	65	55	45	70	60
Velvetleaf	40	85	70	70	85	80	95	75	90	65	50	90	90	75
Table A						Comp	oun	ds						
125 g ai/ha	85	86	87	88	89	90	91	92	93	94	95	96	97	98
Postemergence														
Barnyardgrass	0	10	50	50	60	0	75	0	0	30	75	20	30	0
Crabgrass, Large	0	0	0	60	0	0	5	0	0	35	70	5	0	0
Foxtail, Giant	0	0	0	80	10	0	5	0	0	45	85	25	0	0
Morningglory	20	0	0	60	0	20	5	45	40	70	75	60	45	0
Pigweed	75	20	55	90	50	35	55	35	45	80	85	70	10	5
Velvetleaf	25	70	90	90	70	65	75	45	65	90	90	80	60	35
Table A						Comp	ounc	ds						
Table A 125 g ai/ha	99	100	101	102	103	_			107	108	109	110	111	112
	99	100	101	102	103	_			107	108	109	110	111	112
125 g ai/ha	99	100	101	102	103	_			107	108	109	110	111	112 0
125 g ai/ha Postemergence						104	105	106						
125 g ai/ha Postemergence Barnyardgrass	0	0	0	0	0	104	105	106 0	0	0	0	0	0	0.
125 g ai/ha Postemergence Barnyardgrass Crabgrass, Large	0	0	0	0 10	0	104 0 15	105 10 20	106 0 0	0	0	0	0	0 5	0
125 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant	0	0 0 0	0 0 0	0 10 0	0 0 0	104 0 15	105 10 20 10	106 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 5 0	0· 0
125 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory	0 0 0	0 0 0 40	0 0 0	0 10 0	0 0 0	104 0 15 0 25	105 10 20 10 50	106 0 0 0	0 0 0	0 0 0 70	0 0 0 70	0 0 0 70	0 5 0 20	0· 0 0 55
125 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed	0 0 0 0 5	0 0 0 40	0 0 0	0 10 0 0 50 45	0 0 0 0	104 0 15 0 25 30 70	105 10 20 10 50 65	106 0 0 0 20 15	0 0 0 0	0 0 0 70 50	0 0 0 70 60	0 0 0 70 55	0 5 0 20 55	0° 0 0 55 20
125 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf	0 0 0 0 5	0 0 40 10 50	0 0 0 0 0	0 10 0 0 50 45	0 0 0 0 0 45	104 0 15 0 25 30 70	105 10 20 10 50 65 85	106 0 0 20 15 25	0 0 0 0 10 35	0 0 70 50 35	0 0 70 60 25	0 0 0 70 55	0 5 0 20 55	0° 0 0 55 20
125 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A	0 0 0 0 5	0 0 40 10 50	0 0 0 0 0	0 10 0 0 50 45	0 0 0 0 0 45	104 0 15 0 25 30 70	105 10 20 10 50 65 85	106 0 0 20 15 25	0 0 0 0 10 35	0 0 70 50 35	0 0 70 60 25	0 0 0 70 55	0 5 0 20 55	0° 0 0 55 20
125 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 125 g ai/ha	0 0 0 0 5	0 0 40 10 50	0 0 0 0 0	0 10 0 0 50 45	0 0 0 0 0 45	104 0 15 0 25 30 70	105 10 20 10 50 65 85	106 0 0 20 15 25	0 0 0 0 10 35	0 0 70 50 35	0 0 70 60 25	0 0 0 70 55	0 5 0 20 55	0° 0 0 55 20
125 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 125 g ai/ha Postemergence	0 0 0 0 5 0	0 0 40 10 50	0 0 0 0 0	0 10 0 50 45 Cc	0 0 0 0 45 ompor	104 0 15 0 25 30 70 ands 118	105 10 20 10 50 65 85	106 0 0 20 15 25	0 0 0 10 35	0 0 70 50 35	0 0 70 60 25	0 0 0 70 55	0 5 0 20 55	0° 0 0 55 20
125 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 125 g ai/ha Postemergence Barnyardgrass	0 0 0 0 5 0	0 0 40 10 50	0 0 0 0 0 0	0 10 0 50 45 Cc 116	0 0 0 0 45 0 117	104 0 15 0 25 30 70 118	105 10 20 10 50 65 85	106 0 0 20 15 25	0 0 0 10 35	0 0 70 50 35	0 0 70 60 25	0 0 0 70 55	0 5 0 20 55	0° 0 0 55 20
125 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 125 g ai/ha Postemergence Barnyardgrass Crabgrass, Large	0 0 0 0 5 0 113	0 0 40 10 50 114	0 0 0 0 0 0	0 10 0 50 45 Cc 116	0 0 0 0 45 0 117 85 75	104 0 15 0 25 30 70 ands 118	105 10 20 10 50 65 85 119 0	106 0 0 20 15 25 120	0 0 0 10 35 121	0 0 70 50 35 122 0	0 0 70 60 25 123	0 0 0 70 55	0 5 0 20 55	0° 0 0 55 20
125 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 125 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant	0 0 0 5 0 113 55 25 65	0 0 40 10 50 114 0 0	0 0 0 0 0 0	0 10 0 50 45 Cc 116	0 0 0 0 45 0 117 85 75	104 0 15 0 25 30 70 118 0 10 0	105 10 20 10 50 65 85 119 0	106 0 0 20 15 25 120 10 0	0 0 0 10 35 121 0 0	0 0 70 50 35 122 0 0	0 0 70 60 25 123 0 0	0 0 0 70 55	0 5 0 20 55	0° 0 0 55 20

Table A	Compoun	ds				Tabl	e A		Co	mpou	nd			
2000 g ai/ha	1	57				1000	g a	i/ha			43			
Preemergence						Pree	merg	ence						
Barnyardgrass	80	80				Barn	yard	gras	s		10			
Crabgrass, Larg	e 75	70				Crab	gras	s, L	arge		10			
Foxtail, Giant	85	70				Foxt	ail,	Gia	nt		10			
Morningglory	100	100				Morn	ingg	lory			45			
Pigweed	100	100				Pigw	eed				75			
Velvetleaf	80	95				Velv	etle	af			20			
Table A						Com	poun	ds						
500 g ai/ha	1	20	57	58	59	60	61	62	63	64	65	66	67	68
Preemergence														
Barnyardgrass	60	0	25	0	15	0	10	45	40	60	90	0	0	0
Crabgrass, Larg	e 25	0	10	0	0	0	30	60	75	90	90	15	30	0
Foxtail, Giant	40	0	10	10	0	0	10	0	35	70	80	0	30	0
Morningglory	85	60	100	25	100	0	15	35	0	70	90	0	0	0
Pigweed	85	70	90	60	70	0	30	75	80	100	100	10	75	15
Velvetleaf	60	70	80	40	45	0	50	75	15	95	95	35	40	10
Table A						Com	oun	ds						
500 g ai/ha	69	70	71	72	73	74	75	76	77	78	79	80	81	82
Preemergence														
Barnyardgrass	15	0	0	0	30	50	95	90	100	75	80	80	20	15
Crabgrass, Larg	e 75	20	0	0	35	50	90	75	80	70	80	85	10	0
Foxtail, Giant	50	5	0	0	15	40	90	85	95	65	95	70	10	0
Morningglory	0	0	0	0	0	30	100	100	100	100	100	100	50	0
Pigweed	85	10	15	100	60	40	95	90	95	90	100	90	70	70
Velvetleaf	65	35	50	55	40	50	95	100	100	85	90	90	40	35
Table A						Comp	ouno	ds						
500 g ai/ha	83	84	85	86	87	88	89	90	91	92	93	94	95	96
Preemergence														
Barnyardgrass	5	25	0	0	20	55	50	35	80	0	30	40	80	10
Crabgrass, Larg	e 5	15	5	0	75	85	60	50	75	0	45	55	85	65
Foxtail, Giant	0	20	0	0	0	50	10	15	25	0	35	40	90	10
Morningglory	10	0	20	0	20	90	0	25	50	0	5	35	85	80
Pigweed	50	80	60	5	100	100	100	80	100	45	90	95	100	80
Velvetleaf	30	70	10	10	95	70	75	45	100	45	85	90	95	80

Table A						Comp	pound	is						
500 g ai/ha	97	98	99	100	101	102	103	104	105	106	107	108	109	110
Preemergence														
Barnyardgrass	0	0	0	0	0	0	0	5	0	5	0	15	25	15
Crabgrass, Large	25	15	0	0	0	0	0	10	0	0	5	20	25	15
Foxtail, Giant	5	0	0	0	0	0	0	5	0	0	0	0	5	0
Morningglory	0	0	0	0	0	0	0	0	0	0	0	90	95	90
Pigweed	70	0	0	0	0	15	10	10	0	30	0	75	80	65
Velvetleaf	50	5	0	0	0	20	10	10	0	30	10	50	50	35
Table A					Co	oqmo	ınds							
500 g ai/ha	111	112	113	114	115	116	117	118	119	120	121	122	123	
Preemergence														
Barnyardgrass	0	10	80	0	20	20	85	10	10	15	0	0	0	
Crabgrass, Large	. 0	10	70	0	10	10	75	25	0	0	0	0	0	
Foxtail, Giant	0	0	80	0	0	0	85	15	0	0	0	0	0	
Morningglory	0	10	100	0	35	50	85	0	0	0	0	0	0	
Pigweed	0	30	90	0	40	50	100	55	0	0	0	0	0	
Velvetleaf	0	10	95	0	10	15	100	15	0	0	0	0	0	
Table A Co	mpound													
250 g ai/ha	43													
250 g ai/ha Preemergence	43													
•	43													
Preemergence	0													
Preemergence Barnyardgrass	0													
Preemergence Barnyardgrass Crabgrass, Large	0													
Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant	0 9 0													
Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory	0 0 0													
Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed	0 0 0 0 0					Comp	oound	is						
Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf	0 0 0 0 0	58	59	60	61	Com <u>r</u> 62	oound 63	ls 64	65	66	67	68		70
Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A	0 0 0 0 0 0	58	59	60	61	_			65	66	67	68	69	70
Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 125 g ai/ha	0 0 0 0 0 0	58	59	60	61	_			65 50	66	67	68	69	70
Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 125 g ai/ha Preemergence	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					62	63	64						
Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 125 g ai/ha Preemergence Barnyardgrass	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	62	63	64	50	0	0	0	0	0
Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 125 g ai/ha Preemergence Barnyardgrass Crabgrass, Large	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	62 0 0	63 0 0	64 0 25	50 60	0	0	0	0 50	0 5
Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 125 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant	0 0 0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	62 0 0	63 0 0	0 25 15 40	50 60 40	0 0 0	0 0 0	0 0 0	0 50 10	0 5 5

Table A						Com	poun	ds						
125 g ai/ha	71	72	73	74	75	76	77	78	79	80	81	82	83	84
Preemergence														
Barnyardgrass	0	0	5	0	70	75	90	45	30	10	10	0	0	0
Crabgrass, Large	0	0	5	20	85	30	70	55	30	45	0	0	0	0
Foxtail, Giant	0	0	0	0	75	70	75	10	40	15	0	0	0	0
Morningglory	0	0	0	0	95	100	100	90	55	90	0	0	0	0
Pigweed	0	75	15	0	90	80	85	75	90	80	60	0	20	0
Velvetleaf	30	40	35	30	80	90	100	80	60	75	20	5	15	15
Table A						Com	oun	ds						
125 g ai/ha	85	86	87	88	89	90	91	92	93	94	95	96	97	98
Preemergence														
Barnyardgrass	0	0	0	10	0	0	5	0	5	5	20	5	0	0
Crabgrass, Large	0	0	10	35	0	10	25	0	25	45	65	50	15	0
Foxtail, Giant	0	0	0	10	0	0	0	0	. 5	20	65	5	5	0
Morningglory	0	0	0	10	0	0	5	0	. 0	30	80	15	0	0
Pigweed	50	0	85	80	80	70	100	15	80	90	95	80	25	0
Velvetleaf	0	0	25	10	20	10	80	10	55	75	55	65	45	0
Table A						Comp	ouno	ds						
Table A 125 g ai/ha	99	100	101	102	103	_	•		107	108	109	110	111	112
-	99	100	101	102	103	_	•		107	108	109	110	111	112
125 g ai/ha	99	100	101	102	103	_	•		107	108	109	110	111	112
125 g ai/ha Preemergence						104	105	106						
125 g ai/ha Preemergence Barnyardgrass	0	5	0	0	. 0	104	105	106	0	10	0	0	0	0
125 g ai/ha Preemergence Barnyardgrass Crabgrass, Large	0	5 10	0	0	0	104 0 0	105 0 0	106 0 0	0	10	0	0	0	0
125 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant	0 0	5 10 0	0 0 0	0 0 0	0 0	104 0 0	105 0 0	106 0 0	0 0 0	10 0 0	0 0 0	0 0 0	0 0 0	0 0 0
125 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory	0 0 0	5 10 0 0	0 0 0	0 0 0	0 0 0	104 0 0 0	105 0 0 0	106 0 0 0	0 0 0	10 0 0	0 0 0 30	0 0 0	0 0 0	0 0 0
125 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed	0 0 0 0	5 10 0 0 20	0 0 0 0	0 0 0 0 10	0 0 0 0	104 0 0 0 0 0	105 0 0 0 0	106 0 0 0 0	0 0 0 0	10 0 0 0 55	0 0 0 30 50	0 0 0 0 40	0 0 0 0	0 0 0 0
125 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf	0 0 0 0 0	5 10 0 0 20	0 0 0 0	0 0 0 10 10	0 0 0 0 0	104 0 0 0 0 0 0	105 0 0 0 0 0	106 0 0 0 0 0 5	0 0 0 0	10 0 0 0 55 10	0 0 30 50	0 0 0 0 40	0 0 0 0	0 0 0 0
125 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A	0 0 0 0 0	5 10 0 0 20	0 0 0 0	0 0 0 10 10	0 0 0 0 0	104 0 0 0 0 0 0	105 0 0 0 0 0	106 0 0 0 0 0 5	0 0 0 0	10 0 0 0 55 10	0 0 30 50	0 0 0 0 40	0 0 0 0	0 0 0 0
125 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 125 g ai/ha	0 0 0 0 0	5 10 0 0 20	0 0 0 0	0 0 0 10 10	0 0 0 0 0	104 0 0 0 0 0 0	105 0 0 0 0 0	106 0 0 0 0 0 5	0 0 0 0	10 0 0 0 55 10	0 0 30 50	0 0 0 0 40	0 0 0 0	0 0 0 0
125 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 125 g ai/ha Preemergence	0 0 0 0 0 0	5 10 0 20 0	0 0 0 0 0	0 0 0 10 10 Cc	0 0 0 0 0 0 0 0	104 0 0 0 0 0 0 ands 118	105 0 0 0 0 0	106 0 0 0 0 5	0 0 0 0 0	10 0 0 55 10	0 0 30 50 15	0 0 0 0 40	0 0 0 0	0 0 0 0
125 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 125 g ai/ha Preemergence Barnyardgrass	0 0 0 0 0 0	5 10 0 20 0	0 0 0 0 0 0	0 0 0 10 10 Cc 116	0 0 0 0 0 0 0 0 0 117	104 0 0 0 0 0 0 0 2nds 118	105 0 0 0 0 0	106 0 0 0 0 5	0 0 0 0 0	10 0 0 55 10	0 0 30 50 15	0 0 0 0 40	0 0 0 0	0 0 0 0
125 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 125 g ai/ha Preemergence Barnyardgrass Crabgrass, Large	0 0 0 0 0 0 113 25	5 10 0 20 0 114	0 0 0 0 0 0	0 0 0 10 10 Cc 116	0 0 0 0 0 0 0 0 117 25 45	104 0 0 0 0 0 0 2nds 118	105 0 0 0 0 0 0	106 0 0 0 0 5	0 0 0 0 0 0	10 0 0 55 10	0 0 30 50 15	0 0 0 0 40	0 0 0 0	0 0 0 0
125 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 125 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant	0 0 0 0 0 0 113 25 15	5 10 0 20 0 114 0 0	0 0 0 0 0 0	0 0 0 10 10 Cc 116	0 0 0 0 0 0 0 117 25 45	104 0 0 0 0 0 0 ands 118 0	105 0 0 0 0 0 0	106 0 0 0 0 5 120	0 0 0 0 0 0	10 0 0 55 10 122 0 0	0 0 30 50 15 123 0 0	0 0 0 0 40	0 0 0 0	0 0 0 0

TEST B

5

10

15

Seeds selected from barnyardgrass (Echinochloa crus-galli), Surinam grass (Brachiaria decumbens), cocklebur (Xanthium strumarium), corn (Zea mays), crabgrass (Digitaria sanguinalis), giant foxtail (Setaria faberii), lambsquarters (Chenopodium album), morningglory (Ipomoea coccinea), pigweed (Amaranthus retroflexus), velvetleaf (Abutilon theophrasti), and wheat (Triticum aestivum) were planted and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

At the same time, plants selected from these crop and weed species and also blackgrass (Alopecurus myosuroides) and wild oat (Avena fatua) were treated with postemergence applications of test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage) for postemergence treatments. Plant species in the flooded paddy test consisted of rice (Oryza sativa), umbrella sedge (Cyperus difformis), duck salad (Heteranthera limosa) and barnyardgrass (Echinochloa crus-galli) grown to the 2-leaf stage for testing. Treated plants and controls were maintained in a greenhouse for 13 to 15 days, after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table B, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

Table B						Comp	oun	ds						
1000 g ai/ha	1	2	3	4	5	7	8	9	10	11	12	13	14	15
Flood														
Barnyardgrass	80	90	0	90	50	20	70	90	0	0	0	0	80	90
Ducksalad	80	90	0	100	90	0	90	100	0	70	20	0	80	80
Rice	70	60	0	80	0	0	60	80	0	0	20	0	20	70
Sedge, Umbrella	20	90	0	80	90	0	40	90	0	20	0	0	50	70
Table B						Comp	oun	ds						
1000 g ai/ha	16	17	18	19	21	22	23	24	25	26	27	28	30	31
Flood														
Barnyardgrass	90	80	0	80	60	80	0	0	30	60	0	0	0	30
Ducksalad	90	90	80	80	80	90	30	0	40	90	60	30	0	60
Rice	70	50	0	60	40	60	0	10	30	70	20	0	0	20
Sedge, Umbrella	60	50	0	70	0	50	0	20	40	80	60	0	0	0
Table B		•				Comp	ound	ds						
1000 g ai/ha	32	33	34	35	36	37	38	39	40	41	42	44	45	46
Flood														
Barnyardgrass	0	0	0	0	0	20	0	0	70	0	0	0	0	0
Ducksalad	0	0	0	0	0	100	0	0	80	90	0	90	0	60
Rice	0	0	0	0	0	0	0	0	60	0	0	0	0	0

Sedge, Umbrella	0	0	0	0	0	90	0	0	70	80	0	80	0	30
Table B	Co	oqmo	unds											
1000 g ai/ha	47	48	49	50	51									
Flood														
Barnyardgrass	0	20	50	30	0									
Ducksalad	80	20	60	40	0									
Rice	0	0	30	30	0									
Sedge, Umbrella	70	0	70	0	0									
Table B						Comp	ound	ls						
500 g ai/ha	58	59	60	64	75	76	77	78	79	80	88	91	94	95
Flood														
Barnyardgrass	0	0	20	0	70	70	60	40	0	50	0	20	0	30
Ducksalad	100	0	90	100	70	70	80	70	70	70	90	100	100	100
Rice	0	0	0	0	70	50	50	40	20	50	0	0	0	40
Sedge, Umbrella	100	0	30	90	10	70	40	50	0	70	90	90	90	90
Table B	Compor	ınds			7	rable	В		Cor	npour	nd			
500 g ai/ha	96	113	117		2	250 g	g ai/	'ha		ϵ	54			
Flood					I	71000	l							
Barnyardgrass	10	0	70		I	Barny	ardo	grass	3		0			
Ducksalad	100	0	100		I	Ducks	alad	l		10	0			
Ducksalad Rice	100 0	0 0	100 50			Oucks Rice	alad	l		10	0			
					I				.la		-			
Rice	0	0	50		I	Rice	e, Un	nbrel	la		0			
Rice Sedge, Umbrella	0	0	50	64	I	Rice Sedg∈	e, Un	nbrel	.la 79		0	91	94	95
Rice Sedge, Umbrella Table B	0 90	0	50 90	64	I S	Rice Sedge Comp	e, Un ound	nbre]		7	0	91	94	95
Rice Sedge, Umbrella Table B 125 g ai/ha	0 90	0	50 90	64	I S	Rice Sedge Comp	e, Un ound	nbre]		7	0 '0 88			
Rice Sedge, Umbrella Table B 125 g ai/ha Flood	0 90 58	0 0 59	50 90 60		75	Rice Sedge Comp 76	e, Un ound 77	nbrel s 78	79	80	0 70 88		0	
Rice Sedge, Umbrella Table B 125 g ai/ha Flood Barnyardgrass	0 90 58	0 0 59	50 90 60	0	75 0	Rice Sedge Comp 76	ound 77	nbre] s 78 0	79 0	80	0 70 88	0	0	0
Rice Sedge, Umbrella Table B 125 g ai/ha Flood Barnyardgrass Ducksalad	0 90 58 0	0 0 59 0	50 90 60 0 80	0 90	75 0	Rice Sedge Comp 76 0	ound 77 0 40	nbre] s 78 0 20	79 0 10	80 0 50	0 70 88 0 90	0 100 0	0 100	0 90
Rice Sedge, Umbrella Table B 125 g ai/ha Flood Barnyardgrass Ducksalad Rice	0 90 58 0 100	0 0 59 0 0 0	50 90 60 0 80	0 90 0	75 0 0	Rice Sedge Comp 76 0 0	ound 77 0 40	nbre] 58 78 0 20	79 0 10 0	80 0 50	0 70 88 0 90	0 100 0	0 100 0	0 90 0
Rice Sedge, Umbrella Table B 125 g ai/ha Flood Barnyardgrass Ducksalad Rice Sedge, Umbrella	0 90 58 0 100 0 90	0 0 59 0 0	50 90 60 0 80 0	0 90 0	75 0 0	Rice Sedge Comp 76 0 0	ound 77 0 40	nbre] 58 78 0 20	79 0 10 0	80 0 50	0 70 88 0 90	0 100 0	0 100 0	0 90 0
Rice Sedge, Umbrella Table B 125 g ai/ha Flood Barnyardgrass Ducksalad Rice Sedge, Umbrella Table B	0 90 58 0 100 0 90	0 0 59 0 0 0	50 90 60 0 80 0	0 90 0	75 0 0	Rice Sedge Comp 76 0 0	ound 77 0 40	nbre] 58 78 0 20	79 0 10 0	80 0 50	0 70 88 0 90	0 100 0	0 100 0	0 90 0
Rice Sedge, Umbrella Table B 125 g ai/ha Flood Barnyardgrass Ducksalad Rice Sedge, Umbrella Table B 125 g ai/ha	0 90 58 0 100 0 90	0 0 59 0 0 0	50 90 60 0 80 0	0 90 0	75 0 0	Rice Sedge Comp 76 0 0	ound 77 0 40	nbre] 58 78 0 20	79 0 10 0	80 0 50	0 70 88 0 90	0 100 0	0 100 0	0 90 0
Rice Sedge, Umbrella Table B 125 g ai/ha Flood Barnyardgrass Ducksalad Rice Sedge, Umbrella Table B 125 g ai/ha Flood	0 90 58 0 100 0 90 Compor	0 0 59 0 0 0 ands 113	50 90 60 0 80 0	0 90 0	75 0 0	Rice Sedge Comp 76 0 0	ound 77 0 40	nbre] 58 78 0 20	79 0 10 0	80 0 50	0 70 88 0 90	0 100 0	0 100 0	0 90 0
Rice Sedge, Umbrella Table B 125 g ai/ha Flood Barnyardgrass Ducksalad Rice Sedge, Umbrella Table B 125 g ai/ha Flood Barnyardgrass	0 90 58 0 100 0 90 Compor 96	0 0 59 0 0 0 ands 113	50 90 60 0 80 0 0	0 90 0	75 0 0	Rice Sedge Comp 76 0 0	ound 77 0 40	nbre] 58 78 0 20	79 0 10 0	80 0 50	0 70 88 0 90	0 100 0	0 100 0	0 90 0

Table B C	ompound													
62 g ai/ha	64													
Flood														
Barnyardgrass	0													
Ducksalad	80													
Rice	0													
Sedge, Umbrella	0													
Table B						Com	poun	ds						
500 g ai/ha	2	3	5	7	8	9	10	11	12	13	14	15	16	17
Postemergence														
Barnyardgrass	90	10	90	30	90	90	10	90	40	10	90	90	90	90
Blackgrass	80	50	80	80	0	80	0	60	0	20	60	80	70	70
Cocklebur	100	100	100	100	100	100	70	90	70	40	70	100	100	100
Corn	80	0	90	30	90	90	0	0	0	0	70	80	80	80
Crabgrass, Large	e 90	40	90	30	90	90	40	70	30	30	30	60	80	50
Foxtail, Giant	80	40	50	40	90	90	10	50	30	20	50	70	80	70
Lambsquarters	100	100	100	100	100	100	90	100	80	70	100	100	100	100
Morningglory	100	100	100	90	100	100	80	100	80	70	100	100	100	100
Oat, Wild	70	30	60	70	0	70	10	10	0	0	70	70	60	50
Pigweed	100	90	100	90	100	100	90	90	80	70	90	100	100	90
Surinam Grass	90	30	80	20	90	90	10	50	0	0	50	90	90	80
Velvetleaf	100	80	90	90	100	100	80	80	60	50	70	90	90	100
Wheat	70	20	60	80	0	70	0	40	0	0	50	70	60	60
Table B						Com	pound	ds						
500 g ai/ha	18	19	21	22	23	24	25	26	27	28	30	31	32	33
Postemergence														
Barnyardgrass	0	90	0	90	0	10	80	60	0	50	80	0	70	20
Blackgrass	0	80	20	80	10	10	60	70	30	30	70	0	40	40
Cocklebur	70	100	10	100	90	70	90	90	100	100	100	80	90	80
Corn	0	70	0	80	0	10	30	20	20	0	30	0	10	0
Crabgrass, Large	9 0	80	0	90	0	40	80	70	10	50	90	30	20	20
Foxtail, Giant	0	80	0	80	10	30	80	40	30	40	90	0	20	40
Lambsquarters	90	100	20	100	80	80	90	80	90	90	100	70	80	70
Morningglory	70	100	30	100	70	90	90	80	90	90	100	70	90	70
Oat, Wild	0	70	0	60	10	0	20	40	30	10	70	0	30	20
Pigweed	70	100	30	100	70	80	100	80	70	90	100	50	80	80
Surinam Grass	0	90	0	90	10	10	70	60	0	50	80	0	10	0

Velvetleaf	50	100	30	100	70	50	70	70	70	90	90	60	50	50
Wheat	0	60	20	70	20	0	30	30	30	10	60	0	30	20
Table B						Com	oound	s						
500 g ai/ha	34	35	36	37	38	39	40	41	42	44	46	47	48	49
Postemergence														
Barnyardgrass	60	90	0	90	0	70	90	70	30	50	30	60	20	70
Blackgrass	70	70	40	60	0	0	60	60	60	40	10	0	20	50
Cocklebur	80	100	70	100	0	50	90	-	90	100	0	100	80	100
Corn	0	60	0	70	0	50	60	80	0	70	0	0	0	30
Crabgrass, Large	30	50	0	80	20	40	80	20	30	80	30	60	20	80
Foxtail, Giant	50	60	10	60	0	30	60	30	0	-	10	50	10	70
Lambsquarters	90	100	50	100	60	90	100	90	90	90	30	90	80	90
Morningglory	70	100	70	100	40	100	100	90	90	100	90	90	80	100
Oat, Wild	40	60	40	0	0	0	60	0	0	0	0	0	20	60
Pigweed	80	100	30	100	30	70	100	90	90	90	80	80	80	90
Surinam Grass	50	80	0	70	20	30	70	10	10	50	10	20	10	60
Velvetleaf	60	90	40	100	50	70	90	70	80	90	0	40	60	80
Wheat	40	60	40	60	0	0	60	40	50	30	0	0	20	40
Table B		<u> </u>		-										
Table b		Comp	oun	as										
500 g ai/ha	50	51	oun 52	54	55	56								
	50	_			55	56								
500 g ai/ha	50 50	_			55 50	56 30								
500 g ai/ha Postemergence		51	52	54										
500 g ai/ha Postemergence Barnyardgrass	50	51	52 80	54 70	50	30								
500 g ai/ha Postemergence Barnyardgrass Blackgrass	50 50	51 60 30	52 80 50	54 70 40	50 40	30 20								
500 g ai/ha Postemergence Barnyardgrass Blackgrass Cocklebur	50 50 90	51 60 30 90	52 80 50 60	54 70 40 80	50 40 80	30 20 20								
500 g ai/ha Postemergence Barnyardgrass Blackgrass Cocklebur Corn	50 50 90 40	51 60 30 90	52 80 50 60	5470408020	50 40 80 20	30 20 20 0								
500 g ai/ha Postemergence Barnyardgrass Blackgrass Cocklebur Corn Crabgrass, Large	50 50 90 40	51 60 30 90 0	52 80 50 60 60	547040802030	50 40 80 20 30	30 20 20 0								
500 g ai/ha Postemergence Barnyardgrass Blackgrass Cocklebur Corn Crabgrass, Large Foxtail, Giant	50 50 90 40 80 70	51 60 30 90 0 60 30	52 80 50 60 60 60	54 70 40 80 20 30 30	50 40 80 20 30 20	30 20 20 0 0	·							
500 g ai/ha Postemergence Barnyardgrass Blackgrass Cocklebur Corn Crabgrass, Large Foxtail, Giant Lambsquarters	50 50 90 40 80 70	51 60 30 90 0 60 30 90	52 80 50 60 60 60 90	70 40 80 20 30 30	50 40 80 20 30 20	30 20 20 0 0 0 30								
500 g ai/ha Postemergence Barnyardgrass Blackgrass Cocklebur Corn Crabgrass, Large Foxtail, Giant Lambsquarters Morningglory	50 50 90 40 80 70 90	51 60 30 90 0 60 30 90	52 80 50 60 60 60 90	70 40 80 20 30 30 90	50 40 80 20 30 20 90	30 20 20 0 0 0 30 50								
500 g ai/ha Postemergence Barnyardgrass Blackgrass Cocklebur Corn Crabgrass, Large Foxtail, Giant Lambsquarters Morningglory Oat, Wild	50 50 90 40 80 70 90 60	51 60 30 90 60 30 90 90 30	52 80 50 60 60 60 90 90	70 40 80 20 30 30 90 40	50 40 80 20 30 20 90 90	30 20 20 0 0 0 30 50								
500 g ai/ha Postemergence Barnyardgrass Blackgrass Cocklebur Corn Crabgrass, Large Foxtail, Giant Lambsquarters Morningglory Oat, Wild Pigweed	50 50 90 40 80 70 90 60 90	51 60 30 90 0 60 30 90 90 30	52 80 50 60 60 60 90 90 20	70 40 80 20 30 30 90 90	50 40 80 20 30 20 90 90 20 80	30 20 20 0 0 30 50 20								

Table B	Com	poun	ds											
250 g ai/ha	1	4	45	53										
Postemergence														
Barnyardgrass	90	90	0	90										
Blackgrass	70	90	0	60										
Cocklebur	90	100	10	90										
Corn	70	90	0	70										
Crabgrass, Large	90	90	20	30										
Foxtail, Giant	80	90	0	70										
Lambsquarters	100	100	30	100										
Morningglory	100	100	60	90										
Oat, Wild	60	80	0	60										
Pigweed	100	100	50	100										
Surinam Grass	90	90	0	50										
Velvetleaf	90	100	20	80										
Wheat	70	80	0	60										
Table B						Comp	ound	ls						
125 g ai/ha	2	3	5	7	8	9	10	11	12	13	14	15	16	17
Postemergence														
Barnyardgrass	90	0	50	0	90	90	0	20	. 0	0	30	90	70	20
Blackgrass	50	20	70	60	0	60	0	20	0	10	30	70	10	0
Cocklebur	100	70	80	90	100	100	60	80	40	10	50	100	90	100
Corn	20	0	30	0	70	70	0	0	0	0	30	50	30	0
Crabgrass, Large	90	30	50	10	80	90	30	30	10	20	10	30	30	20
Foxtail, Giant	70	20	40	20	80	90	0	10	0	10	20	40	30	10
Lambsquarters	100	100	100	80	100	90	80	90	60	60	100	100	100	100
Morningglory	100	80	100	80	100	100	80	80	60	50	100	100	100	100
Oat, Wild	40	10	40	40	0	20	0	0	0	0	20	10	10	0
Pigweed	100	80	90	0	100	100	80	80	50	50	80	80	90	70
Surinam Grass	90	10	50	0	80	90	10	20	0	0	10	60	60	30
Velvetleaf	60	50	70	50	80	100	50	60	20	40	50	80	80	60
Wheat	40	10	50	50	0	40	0	0	0	0	20	40	30	0
Table B						Comp	ound	ls						
125 g ai/ha	18	19	21	22	23	24	25	26	27	28	30	32	33	34
Postemergence														
Barnyardgrass	0	80	0	70	0	0	40	20	0	20	0	20	0	0
Blackgrass	0	60	10	60	0	0	10	40	30	10	60	30	40	60

Cocklebur	70	90	0	100	30	50	90	80	100	90	100	40	60	80
Corn	0	30	0	20	0	0	0	0	0	0	0	0	0	0
Crabgrass, Large	0	40	0	50	0	20	60	40	10	30	30	10	10	0
Foxtail, Giant	0	20	0	70	0	20	50	30	20	20	0	10	10	20
Lambsquarters	70	100	10	100	70	70	90	70	80	90	90	70	60	70
Morningglory	20	100	10	90	40	60	90	7 0	70	90	90	40	40	60
Oat, Wild	0	40	0	10	10	0	10	30	20	0	60	20	20	30
Pigweed	20	90	0	100	30	70	90	70	60	80	90	80	60	50
Surinam Grass	0	40	0	80	0	0	50	30	0	10	10	0	0	10
Velvetleaf	20	70	10	100	40	40	60	40	60	70	50	10	40	30
Wheat	0	20	10	0	0	0	20	30	20	0	50	20	20	30
Table B						Com	poun	ds						
125 g ai/ha	35	36	37	38	39	40	41	42	44	46	47	48	49	50
Postemergence														
Barnyardgrass	40	0	0	0	0	0	20	10	40	0	20	10	30	10
Blackgrass	60	0	40	0	0	50	20	30	30	0	0	0	20	30
Cocklebur	30	20	100	0	30	0	70	80	90	0	90	20	90	90
Corn	0	0	0	0	0	0	20	0	30	0	0	0	0	0
Crabgrass, Large	20	0	60	0	0	0	10	0	70	10	10	10	30	40
Foxtail, Giant	10	0	10	0	0	0	20	0	-	0	10	10	10	20
Lambsquarters	90	40	100	20	70	0	80	80	90	10	80	60	80	80
Morningglory	70	10	90	10	80	0	70	80	80	80	80	30	90	90
Oat, Wild	60	0	0	0	0	40	0	0	0	0	0	0	30	30
Pigweed	70	20	100	30	50	0	70	80	80	70	70	60	90	80
Surinam Grass	20	0	20	0	0	0	0	0	-	0	0	0	10	20
Velvetleaf	50	20	80	0	40	0	50	50	80	0	20	10	50	70
Wheat	20	0	0	0	0	50	30	50	0	0	0	0	30	30
Table B					C	ogmo	unds							
125 g ai/ha	51	52	54	55	56	75	76	77	78	79	88	94	95	
Postemergence														
Barnyardgrass	20	30	0	0	0	90	90	90	90	80	90	90	90	
Blackgrass	20	0	40	30	0	60	60	60	40	50	60	60	-	
Cocklebur	80	40	20	20	0	100	90	100	100	60	100	100	90	
Corn	0	0	0	0	0	70	70	80	80	60	80	90	90	
Crabgrass, Large	30	0	20	0	0	80	90	80	70	60	80	80	80	
Foxtail, Giant	0	40	20	20	0	80	80	80	70	70	70	60	80	
Lambsquarters	80	80	80	70	20	100	100	100	100	100	100	90	100	

Morningglory	80	90	80	80	0	100	100	100	100	100	90	90	100	
Oat, Wild	20	0	0	0	0	60	60	60	70	40	50	30	60	
Pigweed	80	60	80	70	50	90	100	100	100	100	100	90	100	
Surinam Grass	0	0	0	0	0	80	80	80	80	60	80	80	90	
Velvetleaf	70	40	50	10	0	100	90	90	80	80	100	100	100	
Wheat	30	0	0	0	0	70	70	60	70	40	60	60	50	
Table B						Comp	ooun	ds						
62 g ai/ha	1	4	31	45	53	65	75	76	77	78	79	88	94	95
Postemergence														
Barnyardgrass	50	70	0	0	80	70	80	90	60	80	50	90	80	90
Blackgrass	40	70	0	0	20	70	50	50	50	20	20	40	40	60
Cocklebur	90	90	70	0	50	100	70	60	70	100		100	100	90
Corn	30	50	0	0	0	80	60	50	30	40	20	70	70	80
Crabgrass, Large	70	80	0	0	0	80	70	70	70	60	30	70	70	80
Foxtail, Giant	50	80	0	0	30	70	60	60	70	60	40	60	50	80
Lambsquarters	100	100	40	10	90	100	90	100	100	100	90	100	90	100
Morningglory	90	90	50	40	90	80	100	100	100	100	90	60	80	90
Oat; Wild	20	50	0	0	30	40	50	50	50	50	30	40	30	30
Pigweed	90	100	20	30	80	100	80	90	90	80	80	100	90	100
Surinam Grass	60	90	0	0	10	80	70	70	70	60	20	80	80	80
Velvetleaf	90	70	10	0	40	90	70	90	80	70	50	90	90	100
Wheat	30	40	0	0	30	50	50	60	50	50	0	50	40	40

Table B Compound 4 g ai/ha 65 Postemergence Barnyardgrass 20 Blackgrass 20 Cocklebur 80 Corn 10 Crabgrass, Large 20 Foxtail, Giant 40 Lambsquarters 80 Morningglory 70 Oat, Wild 0 Pigweed 70 Surinam Grass 20 Velvetleaf 50

					07										
Wheat	0														
Table B		Compounds													
500 g ai/ha	2	3	5	7	8	9	10	11	12	13	14	15	16	17	
Preemergence															
Barnyardgrass	90	0	30	30	90	90	50	10	80	80	80	90	90	80	
Cocklebur	100	80	80	80	100	100	90	90	90	100	80	100	100	90	
Corn	80	0	70	0	90	80	0	0	30	30	70	80	70	60	
Crabgrass, Large	90	50	70	30	90	100	60	80	70	70	80	90	100	100	
Foxtail, Giant	90	0	10	0	90	80	20	70	50	40	80	80	80	70	
Lambsquarters	100	90	100	90	100	100	90	100	100	100	100	100	100	100	
Morningglory	100	60	80	80	100	100	90	90	90	100	100	100	100	100	
Pigweed	100	90	90	90	100	100	90	90	90	90	90	100	90	100	
Surinam Grass	90	20	10	0	90	90	0	70	-	-	80	90	80	90	
Velvetleaf	100	70	90	80	100	100	90	90	90	90	80	100	100	90	
Wheat	70	0	50	30	80	80	0	50	60	60	50	60	60	60	
Table B	Compounds														
500 g ai/ha	18	19	21	22	23	24	25	26	27	28	30	31	32	33	
Preemergence															
Barnyardgrass	0	90	10	20	0	20	60	90	60	30	40	70	10	50	
Cocklebur	40	100	80	80	10	90	90	90	90	90	100	100	90	90	
Corn	0	90	-	-	0	0	0	80	50	0	80	40	0	30	
Crabgrass, Large	0	90	60	100	0	80	70	90	70	80	90	80	40	50	
Foxtail, Giant	0	80	.10	20	0	60	80	80	40	50	80	80	0	40	
Lambsquarters	60	100	80	100	30	90	90	100	100	100	90	100	90	100	
Morningglory	0	100	90	100	10	90	90	100	90	90	100	100	80	90	
Pigweed	70	100	70	80	20	90	90	100	100	90	90	100	90	90	
Surinam Grass	0	90	20	20	0	50	70	80	70	60	80	60	0	40	
Velvetleaf	40	100	80	100	20	80	80	100	90	90	80	90	80	80	
Wheat	0	60	30	50	0	70	60	60	50	40	60	70	10	50	
Table B	Compounds														
500 g ai/ha	34	35	36	37	38	39	40	41	42	44	46	47	48	49	
Preemergence															
Barnyardgrass	0	80	0	40	0	20	90	10	0	10	0	40	10	60	
Cocklebur	60	90	60	80	0	30	100	10	70	80	40	90	20	90	
Corn	0	50	0	10	10	50	50	0	0	0	0	30	0	40	
Crabgrass, Large	70	80	0	90	0	50	80	20	20	80	40	90	-	90	
Foxtail, Giant	20	70	0	60	0	20	80	0	0	40	50	40	50	70	

Lambsquarters	80	100	40	100	90	100	100	60	90	60	60	100	100	100
Morningglory	70	100	0	50	50	70	100	20	80	40	90	100	30	100
Pigweed	80	100	20	100	70	100	100	60	90	80	90	90	80	100
Surinam Grass	50	60	0	40	0	0	70	0	20	60	40	20	60	60
Velvetleaf	60	90	40	80	0	30	90	30	70	80	20	90	0	90
Wheat	10	50	0	60	0	10	70	20	10	60	20	50	30	70
Table B		Comp	oun	ds										
500 g ai/ha	50	51	52	54	55	56								
Preemergence														
Barnyardgrass	50	0	30	40	60	0								
Cocklebur	90	20	60	90	90	30								
Corn	20	0	0	0	0	0								
Crabgrass, Large	80	0	0	0	60	0								
Foxtail, Giant	40	0	0	0	0	0								
Lambsquarters	100	80	_	_	-	_								
Morningglory	90	40	100	_	100	20								
Pigweed	90	70	50	100	100	80								
Surinam Grass	70	0	0	0	50	0								
Velvetleaf	90	0	30	80	90	30								
Wheat	40	0	0	0	70	0	i							
Table B	Com	ouno	ls											
250 g ai/ha	1	4	45	53										
Preemergence														
Barnyardgrass	90	90	0	70										
Cocklebur	100	100	0	100										
Corn	80	80	_	0										
Crabgrass, Large	90	90	0	50										
Foxtail, Giant	90	80	0	50										
Lambsquarters	100	100	30	_										
Morningglory	100	100	50	100										
Pigweed	100	100	50	100										
Surinam Grass	80	90	0	30										
Velvetleaf	100	90	0	90										

60 70

0 40

Wheat

Table B						Comp	oun	ds						
125 g ai/ha	2	3	5	7	8	9	10	11	12	13	14	15	16	17
Preemergence														
Barnyardgrass	70	0	10	0	70	50	20	0	50	40	10	40	30	20
Cocklebur	90	80	70	70	90	90	80	80	80	90	60	70	70	80
Corn	0	0	0	0	90	50	0	0	0	-	0	20	30	0
Crabgrass, Large	90	10	20	0	80	90	20	30	20	50	10	70	70	70
Foxtail, Giant	30	0	0	0	50	70	0	10	20	20	30	40	30	20
Lambsquarters	100	70	90	80	90	90	-	100	90	90	90	90	100	90
Morningglory	100	50	70	70	100	100	80	80	70	90	70	70	90	100
Pigweed	90	80	90	90	100	90	80	80	80	80	80	90	90	80
Surinam Grass	40	0	0	0	60	70	0	10	0	0	40	30	40	30
Velvetleaf	90	40	70	50	80	90	80	80	80	80	60	70	80	70
Wheat	60	0	-	0	60	40	0	0	30	40	40	40	50	40
Table B						Comp	oun	ds						
125 g ai/ha	18	19	21	22	23	24	25	26	27	28	30	32	33	34
Preemergence														
Barnyardgrass	0	40	0	0	0	0	20	50	30	10	10	0	20	0
Cocklebur	10	90	30	50	0	80	80	80	80	80	60	80	80	30
Corn	0	70	0	10	0	-	0	30	10	0	10	0	10	0
Crabgrass, Large	0	80	0	20	0	60	60	30	30	70	50	0	0	0
Foxtail, Giant	. 0	20	0	0	0	10	40	10	0	30	10	0	0	0
Lambsquarters	10	100	70	70	0	70	90	100	90	80	80	40	90	50
Morningglory	0	90	50	100	0	50	80	90	80	80	90	40	0	20
Pigweed	0	90	50	60	0	80	80	90	90	80	50	40	80	40
Surinam Grass	0	60	0	0	0	10	20	10	0	_	0	0	0	10
Velvetleaf	0	90	10	30	0	50	70	90	80	80	10	50	70	30
Wheat	0	50	0	10	0	30	50	30	10	10	30	0	0	0
Table B						Comp	oun	ds						
125 g ai/ha	35	36	37	38	39	40	41	42	44	46	47	48	49	50
Preemergence														
Barnyardgrass	10	0	10	0	0	50	0	0	0	0	0	0	30	30
Cocklebur	60	10	20	0	10	90	0	40	10	0	80	0	80	80
Corn	0	0	0	0	30	0	0	0	0	0	0	0	10	20
Crabgrass, Large	30	0	50	0	0	60	0	0	40	0	20	10	80	50
Foxtail, Giant	0	0	10	0	0	20	0	0	20	0	20	30	40	10
Lambsquarters	90	0	100	20	50	100	30	40	-	10	90	70	90	90

Morningglory	70	0	10	0	30	90	0	20	10	50	80	0	80	80
Pigweed	80	0	100	10	70	90	0	50	70	80	80	60	90	70
Surinam Grass	10	0	_	0	0	50	_	0	40	0	0	30	40	20
Velvetleaf	70	10	40	0	0	90	10	10	30	0	60	0	80	80
Wheat	20	0	30	0	0	40	0	10	30	0	20	0	30	20
		Ī							-		20	J	30	20
Table B						oqmo	unds			•				
125 g ai/ha	51	52	54	55	56	75	76	77	78	79	88	94	95	
Preemergence														
Barnyardgrass	0	0	0	0	0	80	90	90	70	70	-	-	-	
Cocklebur	0	10	50	70	0	90	100	100	100	80	90	50	100	
Corn	0	-	0	0	0	80	80	80	70	60	10	0	80	
Crabgrass, Large	0	0	0	50	0	90	90	90	90	70	70	70	100	
Foxtail, Giant	0	0	0	0	0	90	80	90	70	20	30	20	90	
Lambsquarters	-	-	-	-	-	100	100	100	100	90	_	-	-	
Morningglory	0	10	0	80	-	100	100	100	100	90	10	0	60	
Pigweed	10	-	100	80	-	100	100	100	100	100	-	-	-	
Surinam Grass	0	0	0	0	0	80	90	90	90	0	50	30	100	
Velvetleaf	0	0	10	50	0	100	90	100	90	80	90	70	100	
Wheat	0	0	0	0	0	70	70	70	70	60	70	60	80	
Table B						Com	ooun	ds						
62 g ai/ha	1	4	31	45	53	65	75	76	77	78	79	88	94	95
Preemergence														
Barnyardgrass	60	30	20	0	0	40	60	40	70	60	0	-	_	_
Cocklebur	90	80	90	-	60	80	90	80	80	80	50	60	30	90
Corn	20	0	0	0	0	0	50	70	70	30	30	0	0	40
Crabgrass, Large	90	70	10	0	0	70	80	80	80	80	0	50	40	80
Foxtail, Giant	30	10	10	0	0	30	30	40	70	20	0	10	0	50
Lambsquarters	100	90	90	0	-	90	100	90	100	90	90	_	_	_
Morningglory	90	60	90	30	90	30	80	100	100	80	70	0	0	30
Pigweed	90	90	90	0	60	100	100	100	100	100	80	-	_	_
Surinam Grass	50	40	20	0	0	40	70	70	60	60	0	20	10	50
Velvetleaf	90	80	80	0	20	70	80	80	80	70	50	70	40	80
Wheat	30	50	40	0	0	80	30	30	70	30	0	50	30	70

Table B Compound 4 g ai/ha 65
Preemergence
Barnyardgrass 0

Cocklebur	10
Corn	0
Crabgrass, Large	20
Foxtail, Giant	0
Lambsquarters	30
Morningglory	0
Pigweed	20
Surinam Grass	0
Velvetleaf	0
Wheat	20

TEST C

Seeds of plant species selected from bermudagrass (Cynodon dactylon), Surinam grass (Brachiaria decumbens), cocklebur (Xanthium strumarium), corn (Zea mays), crabgrass (Digitaria sanguinalis), woolly cupgrass (Eriochloa villosa), giant foxtail (Setaria faberii), goosegrass (Eleusine indica), johnsongrass (Sorghum halepense), kochia (Kochia scoparia), lambsquarters (Chenopodium album), morningglory (Ipomoea coccinea), eastern black nightshade (Solanum ptycanthum), yellow nutsedge (Cyperus esculentus), pigweed (Amaranthus retroflexus), common ragweed (Ambrosia elatior), soybean (Glycine max), common (oilseed) sunflower (Helianthus annuus), and velvetleaf (Abutilon theophrasti) were planted and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

At the same time, plants selected from these crop and weed species and also winter barley (Hordeum vulgare), blackgrass (Alopecurus myosuroides), canarygrass (Phalaris minor), chickweed (Stellaria media), downy brome (Bromus tectorum), green foxtail (Setaria viridis), Italian ryegrass (Lolium multiflorum), wheat (Triticum aestivum), wild oat (Avena fatua) and windgrass (Apera spica-venti) were treated with postemergence applications of some of the test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage) for postemergence treatments. Plant species in the flooded paddy test consisted of rice (Oryza sativa), umbrella sedge (Cyperus difformis), duck salad (Heteranthera limosa) and barnyardgrass (Echinochloa crus-galli) grown to the 2-leaf stage for testing. Treated plants and controls were maintained in a greenhouse for 12 to 14 days, after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table C, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

Table C					Co	mpou	nds							
500 g ai/ha	1	2	4	5	9	14	15	16	17	19	22	26	37	
Flood														
Barnyardgrass	25	75	85	20	85	45	75	50	50	60	70	0	0	
Ducksalad	0	95	100	0	90	55	85	85	80	60	95	40	100	
Rice	0	65	80	0	75	0	50	65	75	20	60	25	0	
Sedge, Umbrella	0	25	75	0	85	30	25	55	25	50	95	20	95	
Table C					Co	mpou	nds							
250 g ai/ha	1	2	4	5	9	14	15	16	17	19	22	26	37	
Flood														
Barnyardgrass	15	45	65	0	55	0	25	15	0	0	40	0	0	
Ducksalad	0	90	90	0	80	45	50	75	80	60	90	40	100	
Rice	0	45	75	0	55	0	20	0	45	10	40	20	0	
Sedge, Umbrella	0	0	65	0	15	0	10	50	20	50	75	20	90	
Table C					Co	mpou	nds							
125 g ai/ha	1	2	4	5	9	14	15	16	17	19	22	26	37	
Flood														
Barnyardgrass	0	20	60	0	15	0	0	0	0	0	0	0	0	
Ducksalad	_	70	80	0	70	40	45	65	0	40	60	40	95	
Rice	0	25	40	0	30	0	0	0	0	0	20	0	0	
Sedge, Umbrella	-	0	30	0	15	0	0	0	0	50	30	0	85	
Table C					Co	mpou	nds							
62 g ai/ha	1	2	4	5	9	14	15	16	17	19	22	26	37	
Flood														
Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	
Ducksalad	0	50	70	0	45	0	45	65	0	20	30	40	95	
Rice	0	0	0	0	0	0	0	0	0	0	20	0	0	
Sedge, Umbrella	0	0	0	0	0	0	0	-	0	20	0	0	85	
Table C					÷	Comp	ound	s						
500 g ai/ha	1	4	5	7	8	10	15	22	27	28	35	37	49	50
Postemergence														
Barley	-	65	-	_	_	-	_	-	-	_	45	_	40	_
Bermudagrass	90	80	80	0	75	0	75	60	30	0	_	20	65	95
Blackgrass	_	70	-	_	_	_	-	-	-	-	65	_	60	_
Bromegrass, Downy	-	70	-	-	-	-	-	-	-	-	40	_	30	-
Canarygrass	-	60	_	-	-	-	-	-	-	-	55	-	40	-

Chickweed	-	100	-	0	100	70	85	90	0	20	-	0	45	20
Cocklebur	100	100	100	30	100	75	100	100	25	100	-	95	95	90
Corn	45	95	45	0	90	0	75	65	0	0	-	25	25	65
Crabgrass, Large	90	80	80	25	75	0	80	85	30	20	_	60	95	80
Cupgrass, Woolly	90	95	70	20	85	0	75	65	0	0	-	45	65	30
Foxtail, Giant	90	95	60	10	75	0	70	60	0	15	-	45	0	20
Foxtail, Green	_	75	-	-	-	-	-	-	-	_	65	-	60	-
Goosegrass	70	75	50	0	60	0	55	25	0	15	-	0	25	0
Johnsongrass	70	95	45	0	85	0	80	100	0	0	-	55	70	60
Kochia	100	100	100	80	100	100	100	100	60	95	-	95	100	95
Lambsquarters	100	100	100	80	100	100	100	95	50	95	-	95	95	85
Morningglory	100	100	100	65	100	95	100	100	85	95	_	95	100	95
Nutsedge, Yellow	5	0	0	0	0	0	0	0	0	0	-	20	0	0
Oat, Wild	_	70	_	-	-	-	-	-	-	-	55	_	60	-
Pigweed	100	100	100	55	100	95	100	100	80	75	-	100	95	95
Ragweed	100	100	100	75	100	90	95	90	50	95	-	95	90	80
Ryegrass, Italian	-	65	-	-	-	-	-	-	-	-	40	-	50	_
Soybean	100	100	100	60	100	100	100	100	95	95	_	100	100	100
Surinam Grass	95	95	70	0	80	0	65	85	0	0	_	0	45	60
Velvetleaf	100	100	95	40	95	90	90	95	30	75	-	95	80	80
Wheat	-	65	-	-	-	-	-	-	_	_	45	-	60	_
Windgrass	-	75	_	-	-	-	-	-	-	_	65	-	60	-

Table C Compound 500 g ai/ha 51 Postemergence Barley Bermudagrass 0 Blackgrass Bromegrass, Downy Canarygrass Chickweed 45 Cocklebur 85 Corn 0 Crabgrass, Large 45 Cupgrass, Woolly 0 Foxtail, Giant 0 Foxtail, Green Goosegrass 0

Johnsongrass	0													
Kochia	95													
Lambsquarters	90													
Morningglory	100													
Nutsedge, Yellow	0													
Oat, Wild	-													
Pigweed	85													
Ragweed	85													
Ryegrass, Italian	-													
Soybean	95													
Surinam Grass	0													
Velvetleaf	65													
Wheat	-													
Windgrass	-													
Table C						Com	ooun	ds						
250 g ai/ha	1	2	3	4	5	7	8	9	10	15	16	17	22	27
Postemergence														
Barley	-	60	30	65	_	-	-	-	-	-	-	-	-	-
Bermudagrass	90	80	45	70	70	0	65	80	0	65	75	0	. 60	0
Blackgrass	-	75	0	70	-	-	-	-	_	-	-	_	_	-
Bromegrass, Downy	-	60	20	65	-	-	-	-	_	-	-	-	-	-
Canarygrass	-	40	10	60	_	-	-	-	-	-	-	_	_	-
Chickweed	90	95	40	100	20	0	95	100	20	65	35	85	85	0
Cocklebur	100	85	90	100	100	30	100	100	60	100	100	100	100	25
Corn	40	30	0	90	40	0	70	95	0	55	55	20	60	0
Crabgrass, Large	85	70	0	75	70	5	70	80	0	65	75	65	85	5
Cupgrass, Woolly	90	75	0	85	50	0	75	85	0	65	65	20	60	0
Foxtail, Giant	80	70	0	85	50	0	70	80	0	65	65	35	50	0
Foxtail, Green	-	70	35	70	-	-	-	-	_	-	-	_	_	-
Goosegrass	40	45	0	65	40	0	45	45	0	40	20	0	20	0
Johnsongrass	70	60	0	95	4 5	0	45	85	0	70	70	60	80	0
Kochia	100	100	100	100	100	70	100	100	95	100	100	100	100	50
Lambsquarters	100	100	100	100	100	70	100	100	90	100	100	100	95	25
Morningglory	100	100	75	100	100	55	100	100	95	100	100	100	95	85
Nutsedge, Yellow	5	20	0	0	0	0	0	0	0	0	0	0	0	0
Oat, Wild	_	60	40	70	-	-	-	-	-	-	-	-	_	-
Pigweed	100	100	80	100	90	40	100	100	95	85	95	95	100	30
Ragweed	100	95	95	100	95	65	95	100	80	90	95	95	90	40

Ryegrass, Italian	-	60	35	65	_	-	-	-	-	-	-	-	-	-
Soybean	100	100	95	100	100	35	100	100	90	95	100	100	100	85
Surinam Grass	90	70	0	75	30	0	7 0	80	0	55	55	0	85	0
Velvetleaf	100	100	70	100	90	35	85	95	80	85	90	95	90	0
Wheat	-	65	10	65	_	-	-	-	-	-	-	-	-	-
Windgrass	-	70	30	70	-	-	-	-	-	-	-	-	-	-
Table C				Comp	oound	ls								
250 g ai/ha	28	30	34	35	37	42	49	50	51	64				
Postemergence														
Barley	-	-	40	40	-	_	30	-	-	100				
Bermudagrass	0	5	-	-	0	5	55	90	0	70				
Blackgrass	-	-	45	60	-	-	50	_	-	50				
Bromegrass, Downy	_	-	35	40	-	-	0	_	-	20				
Canarygrass	-	-	45	45	-	-	30	_	-	10				
Chickweed	15	85	-	-	0	10	40	_	0	55				
Cocklebur	95	100	-	-	95	20	95	65	70	_				
Corn	0	50	-	-	15	0	20	60	0	_				
Crabgrass, Large	0	50	-	-	40	0	75	75	0	90				
Cupgrass, Woolly	0	40	-	_	0	5	60	15	0	-				
Foxtail, Giant	0	40	-	_	40	0	0	0	0	50				
Foxtail, Green	-	_	45	60	-	-	50	-	_	45				
Goosegrass	0	0	-	-	0	0	20	0	0	70				
Johnsongrass	0	40	-	-	-	10	35	-	0	85				
Kochia	95	100	-	-	95	85	95	65	85	90				
Lambsquarters	85	90	-	_	95	25	95	80	85	90				
Morningglory	95	95	-	-	80	85	80	85	85	90				
Nutsedge, Yellow	0	5	-	-	0	0	0	0	0	50				
Oat, Wild	-	-	50	45	_	-	40	-	-	10				
Pigweed	60	90	-	-	100	30	95	85	80	100				
Ragweed	90	90	-	-	90	40	75	45	80	90				
Ryegrass, Italian	_	-	60	40	-	-	50	-	-	45				
Soybean	95	95	-	-	95	70	95	100	95	100				
Surinam Grass	0	35	-	-	0	0	40	0	0	_				
Velvetleaf	70	60	-	-	90	20	75	70	60	95				
Wheat	-	-	35	45	-	-	50	_	-	10				

- - 60 65

- 60

Windgrass

Table C						Comp	ouno	as						
125 g ai/ha	1	2	3	4	5	7	8	9	10	11	15	16	17	19
Postemergence														
Barley	-	60	0	65	-	_	_	_	-	-	-	_	_	45
Bermudagrass	90	70	0	65	50	0	60	70	0	0	45	60	0	45
Blackgrass	_	70	0	65	-	-	-	_	_	-	-	-	_	65
Bromegrass, Downy	-	45	20	60	-	-	-	_	-	-	-	-	-	60
Canarygrass	-	40	10	45	-	-	-	_	_	-	_	-	-	65
Chickweed	-	75	0	85	10	0	75	100	0	0	50	20	55	5
Cocklebur	100	85	75	100	95	30	100	100	15	40	100	100	100	90
Corn	15	20	0	80	40	0	20	65	0	0	15	20	0	35
Crabgrass, Large	85	60	0	75	50	0	65	75	0	20	45	45	20	70
Cupgrass, Woolly	80	70	0	70	50	0	60	70	0	0	50	0	0	65
Foxtail, Giant	65	65	0	75	30	0	60	75	0	0	60	55	0	55
Foxtail, Green	-	65	35	70	-	-	-	-	-	_	_	-	_	60
Goosegrass	0	0	0	20	5	0	0	40	0	0	0	0	0	0
Johnsongrass	30	25	0	80	40	0	35	80	0	0	55	60	40	-
Kochia	100	95	90	100	100	65	100	100	90	90	95	100	100	90
Lambsquarters	100	100	90	100	100	60	100	100	80	80	100	100	100	95
Morningglory	100	100	65	100	95	50	95	100	85	0	95	100	100	85
Nutsedge, Yellow	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oat, Wild	-	55	40	65	-	-	-	_	-	-	-	-	_	65
Pigweed	100	95	75	100	90	40	7 5	100	80	90	70	95	75	65
Ragweed	100	90	80	100	95	35	80	95	65	75	85	95	95	80
Ryegrass, Italian	-	60	35	60	-	-	_	_	-	-	-	-	-	70
Soybean	100	100	90	100	100	25	95	100	80	95	95	100	100	75
Surinam Grass	90	65	0	75	20	0	65	75	0	0	20	25	0	-
Velvetleaf	90	80	55	100	90	10	70	80	70	75	70	65	80	60
Wheat	-	65	0	60	-	-	-	-	-	-	-	-	-	45
Windgrass	-	70	30	65	-	-	-	-	-	-	-	-	-	60
Table C						Comp	ound	ls						
125 g ai/ha	22	25	27	28	30	34	35	37	42	47	49	50	51	64
Postemergence														
Barley	-	_	-	-	_	30	35	_	_	-	20	_	-	-
Bermudagrass	60	0	0	0	5	-	_	0	0	15	55	75	0	65
Blackgrass	-	_	-	-	-	35	50	-	-	_	40	_	_	50
Bromegrass, Downy	_	-	-	-	-	30	30	-	-	-	0	-	_	20
Canarygrass	-	-	-	-	-	35	45	-	-	-	20	-	-	10

Chickweed	60	85	0	0	65	-	-	0	0	0	0	0	0	0
Cocklebur	90	90	25	95	100	-	_	95	5	65	95	40	65	100
Corn	40	0	0	0	0	-	-	10	0	0	0	0	0	50
Crabgrass, Large	55	50	0	0	5	-	-	15	0	20	65	60	0	85
Cupgrass, Woolly	60	30	0	0	0	-	-	0	0	0	15	0	0	65
Foxtail, Giant	45	30	0	0	0	-	-	0	0	0	0	0	0	50
Foxtail, Green	_	_	-	-	-	45	50	-	-	-	20	-	_	40
Goosegrass	10	0	0	0	0	-	-	0	0	0	0	0	0	60
Johnsongrass	80	20	0	0	10	-	-	20	0	0	20	-	-	85
Kochia	100	85	20	85	100	-	-	90	50	100	45	55	60	90
Lambsquarters	95	90	20	75	80	-	-	95	20	80	90	75	75	90
Morningglory	90	90	85	95	95	-	-	65	80	65	70	80	80	90
Nutsedge, Yellow	0	0	0	0	0	-	-	0	0	0	0	0	0	50
Oat, Wild	-	-	-	-	-	45	45	-	-	-	40	-	-	10
Pigweed	100	100	20	35	80	-	-	95	20	70	80	80	70	100
Ragweed	85	70	20	80	85	-	-	80	40	80	65	45	80	85
Ryegrass, Italian	-	-	-	-	-	45	40	-	-	-	30	-	-	35
Soybean	100	90	45	85	90	-	-	85	40	75	95	95	95	100
Surinam Grass	60	5	0	0	0	-	-	0	0	20	0	0	0	60
Velvetleaf	60	45	0	50	60	-	_	85	0	0	70	55	20	90
Wheat	-	_	-	-	-	30	40	-	-	_	40	-	-	10
Windgrass	-	-	-	-	-	50	55	-	-	-	40	-	-	55

Table C	Compo	ınds	
125 g ai/ha	65	76	79
Postemergence			
Barley	50	_	35
Bermudagrass	70	75	_
Blackgrass	65	-	60
Bromegrass, Downy	7 55	-	35
Canarygrass	45	-	35
Chickweed	70	95	-
Cocklebur	100	100	-
Corn	90	70	-
Crabgrass, Large	90	90	-
Cupgrass, Woolly	85	95	-
Foxtail, Giant	70	85	-
Foxtail, Green	70	-	60
Goosegrass	70	50	_

Johnsongrass	85	95	-											
Kochia	90	100	-											
Lambsquarters	95	100	-											
Morningglory	95	100	-											
Nutsedge, Yellow	50	60	-											
Oat, Wild	40	_	45											
Pigweed	100	100	-											
Ragweed	95	100	-											
Ryegrass, Italian	60	_	45											
Soybean	100	100	-											
Surinam Grass	80	-	-											
Velvetleaf	90	95	-											
Wheat	45	_	40											
Windgrass	70	-	50											
Table C						Comp	oun	ds						
62 g ai/ha	1	2	3	4	5	7	8	9	10	11	15	16	17	19
Postemergence														
Barley	-	35	0	30	_	-	-	_	-	_	-	_	_	35
Bermudagrass	70	60	0	40	5	0	50	65	0	0	0	0	0	30
Blackgrass	_	65	0	65	_	-	-	_	-	-	_	-	-	65
Bromegrass, Downy	_	35	20	45	-	-	-	_	· _	-	_	-	-	50
Canarygrass	-	40	10	35	-	-	_	_	-	-	_	_	-	60
Chickweed	80	65	0	30	0	0	20	85	0	0	20	0	0	5
Cocklebur	90	75	65	85	80	30	80	85	0	25	85	95	100	50
Corn	10	15	0	0	10	0	0	55	0	0	15	0	0	0
Crabgrass, Large	30	55	0	70	40	0	60	70	0	0	15	15	0	70
Cupgrass, Woolly	65	60	0	60	5	0	30	60	0	0	0	0	0	65
Foxtail, Giant	40	35	0	60	20	0	40	65	0	0	45	20	0	40
Foxtail, Green	-	55	30	65	_	-	-	-	-	-	-	-	-	45
Goosegrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Johnsongrass	30	0	0	70	0	0	30	65	0	0	20	0	0	0
Kochia	100	95	65	100	100	40	95	100	80	75	95	100	100	90
Lambsquarters	100	100	90	100	95	50	75	95	60	70	100	100	100 ⁻	90
Morningglory	100	75	60	15	95	-	95	95	70	0	90	95	95	80
Nutsedge, Yellow	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oat, Wild	_	55	30	60	_	-	-	-	-	-	-	-	-	60
Pigweed	90	80	65	100	85	20	70	70	65	80	65	90	65	65
Ragweed	100	85	75	100	90	25	60	80	45	65	7 5	85	85	70

Ryegrass, Italian	-	45	35	45	-	-	-	-	-	-	-	_	-	65
Soybean	100	100	75	100	95	25	95	100	70	80	95	95	95	75
Surinam Grass	90	55	0	60	0	0	40	65	0	0	0	0	0	45
Velvetleaf	85	70	55	80	55	0	60	7 5	65	60	65	60	50	50
Wheat	-	60	0	50	-	-	-	-	_	-	-	-	-	40
Windgrass	-	65	30	60	-	-	-	-	-	-	-	-	-	60
Table C						Comp	ounc	as						
62 g ai/ha	22	25	27	28	30	34	35	37	42	47	49	50	51	64
Postemergence														
Barley	-	_	-	_	-	20	20	-	_	_	0	_	_	20
Bermudagrass	50	0	0	0	0	_	-	0	0	0	0	50	0	60
Blackgrass	-	-	-	-	-	35	50	-	-	-	40	-	_	45
Bromegrass, Downy	-	-	_	_	-	0	30	-	_	-	0	-	-	15
Canarygrass	-	-	-	-	-	30	35	-	_	_	0	-	-	5
Chickweed	30	40	0	0	50	_	-	0	0	0	0	0	0	0
Cocklebur	90	90	20	85	95	_	-	0	0	60	75	40	65	90
Corn	30	0	0	0	0	_	-	0	0	0	0	0	0	50
Crabgrass, Large	50	30	0	0	0	-	-	0	0	0	0	60	0	80
Cupgrass, Woolly	60	0	0	0	0	_	-	0	0	0	0	0	0	40
Foxtail, Giant	40	5	0	0	0	-	-	0	0	0	0	0	0	20
Foxtail, Green	-	_	_	_	_	40	40	_	_	-	0	-	-	30
Goosegrass	10	0	0	0	0	_	-	0	0	0	0	0	0	35
Johnsongrass	40	10	0	0	5	_	-	0	0	0	_	0	0	80
Kochia	95	85	0	75	90	_	-	0	30	20	20	20	15	85
Lambsquarters	90	85	20	60	60	-	-	0	20	70	70	70	60	90
Morningglory	90	90	20	80	90	-	_	0	50	40	50	65	80	90
Nutsedge, Yellow	0	0	0	0	0	-	_	0	0	0	0	0	0	50
Oat, Wild	-	-	-	-	-	40	30	-	-	_	30	_	-	5
Pigweed	85	80	5	30	70	_	-	0	10	45	65	75	65	95
Ragweed	80	65	5	65	80	-	-	0	10	40	45	20	65	80
Ryegrass, Italian	-	-	-	-	_	40	40	_	-	_	30	-	-	30
Soybean	95	90	30	75	90	-	-	20	30	65	95	95	75	90
Surinam Grass	55	0	0	0	0	_	-	0	0	0	0	0	0	60
Velvetleaf	55	45	0	45	10	-	_	0	0	0	45	50	0	85
Wheat	-	_	-	-	-	20	35	-	-	-	20	_	-	0
Windgrass	-	-	-	-	-	40	40	-	-	-	40	-	-	55

Table C	Compo	unds												
62 g ai/ha	65	76	79											
Postemergence														
Barley	50	_	35											
Bermudagrass	70	7 5	-											
Blackgrass	65	_	60											
Bromegrass, Downy	, 50	_	30											
Canarygrass	35	-	25											
Chickweed	60	70	-											
Cocklebur	100	100	-											
Corn	90	55	-											
Crabgrass, Large	90	85	-											
Cupgrass, Woolly	85	80	-											
Foxtail, Giant	70	55	-											
Foxtail, Green	60	-	30											
Goosegrass	70	45	-											
Johnsongrass	85	-	-											
Kochia	85	95	-											
Lambsquarters	90	100	-											
Morningglory	90	95	_											
Nutsedge, Yellow	20	40	_											
Oat, Wild	20	-	25											
Pigweed	100	100	_											
Ragweed	95	95	-											
Ryegrass, Italian	n 55	-	40											
Soybean	100	95	-											
Surinam Grass	80	95	-											
Velvetleaf	80	95	-											
Wheat	45	-	30											
Windgrass	70	-	45											
Table C						Comp	ound	ls						
31 g ai/ha	2	3	9	11	16	17	19	25	30	34	42	47	64	65
Postemergence														
Barley	0	0	-	-	_	-	25	-	-	20	-	-	20	40
Bermudagrass	15	0	60	0	0	0	5	0	0	-	0	0	20	60
Blackgrass	60	0	-	-	-	-	60	-	-	0	-	-	40	60
Bromegrass, Downy	20	20	-	-	-	-	0	_	-	0	-	-	10	50
Canarygrass	30	10	-	-	-	-	60	_	-	20	-	-	5	30

Chickweed	60	0	15	0	0	0	0	-	40	-	0	0	0	60
Cocklebur	65 °	60	40	0	75	95	25	85	90	_	0	45	90	100
Corn	15	0	45	0	0	0	0	0	0	_	0	0	20	90
Crabgrass, Large	40	0	60	0	0	0	40	0	0	-	0	0	70	80
Cupgrass, Woolly	40	0	40	0	0	0	25	0	0	-	0	0	30	80
Foxtail, Giant	0	0	60	0	0	0	5	0	0	-	0	0	0	60
Foxtail, Green	55	20	-	-	-	-	35	-	-	40	-	-	0	55
Goosegrass	0	0	0	0	0	0	0	0	0	-	0	0	35	50
Johnsongrass	0	0	55	0	0	0	0	10	0	-	0	-	60	60
Kochia	85	20	95	65	95	100	90	80	55	-	5	0	80	85
Lambsquarters	100	75	90	60	95	95	90	60	50	-	10	45	80	90
Morningglory	70	45	90	0	85	95	55	90	90	_	0	35	90	90
Nutsedge, Yellow	0	0	0	0	0	0	0	0	0	-	0	0	40	0
Oat, Wild	20	30	-	-	-	-	40	-	-	20	-	-	5	15
Pigweed	65	60	55	70	85	45	50	50	60	-	10	15	85	90
Ragweed	65	55	70	45	60	65	40	50	60	-	0	0	75	90
Ryegrass, Italian	35	35	-	-	-	-	65	_	-	40	-	-	5	50
Soybean	100	60	95	60	85	85	55	90	80	-	10	40	90	100
Surinam Grass	0	0	45	0	0	0	25	0	0	-	0	0	20	80
Velvetleaf	65	25	0	50	55	25	40	20	10	-	0	0	80	80
Wheat	20	0	-	-	-	-	30	-	-	0	-	-	0	40
Windgrass	65	10	-	-	-	-	40	-	-	40	-	-	40	60

	_	
31 g ai/ha	76	79
Postemergence		
Barley	-	30
Bermudagrass	70	-
Blackgrass	-	40
Bromegrass, Downy	-	20
Canarygrass	-	20
Chickweed	45	-
Cocklebur	100	-
Corn	35	-
Crabgrass, Large	75	-
Cupgrass, Woolly	60	-
Foxtail, Giant	25	-
Foxtail, Green	-	20
Goosegrass	45	_

Table C Compounds

Johnsongrass	65	-					
Kochia	95	-					
Lambsquarters	95	-					
Morningglory	95	-					
Nutsedge, Yellow	30	-					
Oat, Wild	-	25					
Pigweed	95	-					
Ragweed	90	-					
Ryegrass, Italian	-	35					
Soybean	95	-					
Surinam Grass	70	-					
Velvetleaf	80	_					
Wheat	-	20					
Windgrass	-	40					
Table C		Co	mpou	ınds			
16 g ai/ha	11	19	25	47	65	76	79
Postemergence							
Barley	_	25	-	_	40	-	0
Bermudagrass	0	0	0	0	60	15	-
Blackgrass	_	55	-	-	50	_	20
Bromegrass, Downy	-	0	-	-	40	_	0
Canarygrass	_	45	-	_	30	_	0
Chickweed	0	0	0	0	60	35	-
Cocklebur	0	25	70	35	90	100	-
Corn	0	0	0	0	5	10	-
Crabgrass, Large	0	20	0	0	80	55	-
Cupgrass, Woolly	0	0	0	0	60	55	-
Foxtail, Giant	0	0	0	0	50	15	-
Foxtail, Green	-	30	-	-	50	_	20
Goosegrass	0	0	0	0	50	30	-
Johnsongrass	0	0	0	-	45	25	-
Kochia	40	80	10	0	85	90	-
Lambsquarters	50	70	30	0	85	90	-
Morningglory	0	-	90	20	90	95	-
Nutsedge, Yellow	0	0	0	0	0	10	-
Oat, Wild	-	40	-	-	5	-	0
Pigweed	60	50	50	0	90	85	-
Ragweed	15	35	40	0	80	80	-

Ryegrass, Italian	-	65	-	-	10	-	35							
Soybean	45	45	40	20	100	95	-							
Surinam Grass	0	0	0	0	60	60	-							
Velvetleaf	20	30	5	0	65	45	-							
Wheat	_	10	-	_	40	-	0							
Windgrass	-	40	_	-	50	-	40							
Table C						Com	poun	ds						
500 g ai/ha	1	4	5	8	10	15	22	26	27	28	33	40	49	50
Preemergence														
Bermudagrass	90	95	70	100	0	70	90	0	0	35	0	70	95	95
Cocklebur	100	100	100	100	100	100	100	95	95	100	95	100	100	95
Corn	70	90	50	75	0	60	65	20	25	0	40	40	65	45
Crabgrass, Large	95	95	60	0	0	100	100	-	85	_	100	100	100	95
Cupgrass, Woolly	95	95	0	100	0	95	95	0	15	0	0	95	25	40
Foxtail, Giant	90	85	60	0	0	80	60	10	20	0	50	35	65	70
Goosegrass	70	65	40	45	0	0	100	0	20	20	0	40	15	0
Johnsongrass	90	95	70	20	0	95	100	100	65	-	40	95	85	85
Kochia	100	100	100	100	65	100	-	50	45	100	50	-	100	90
Lambsquarters	100	100	100	100	95	100	100	90	100	100	-	100	100	100
Morningglory	100	100	100	100	100	100	100	90	100	100	95	100	100	100
Nightshade	100	100	100	-	95	100	100	100	100	100	100	100	100	100
Nutsedge, Yellow	50	80	0	100	-	20	95	0	20	0	0	0	0	0
Pigweed	100	100	100	95	85	100	100	100	100	100	90	100	100	100
Ragweed	100	100	100	100	85	100	100	90	95	100	90	100	100	100
Soybean	100	100	100	100	-	100	100	20	75	90	90	95	90	90
Sunflower	100	100	100	100	0	100	100	90	95	100	90	95	100	100
Surinam Grass	90	100	0	100	0	95	100	10	30	0	10	90	65	85
Velvetleaf	100	100	90	100	60	100	100	90	70	100	85	100	100	100
Table C						Comp	ounc	is						
250 g ai/ha	1	2	3	4	5	8	9	10	12	13	15	16	17	
Preemergence														
Bermudagrass	70	0	0	45	30	100	100	0	20	0	0	0	0	50
Cocklebur	100	100	70	100	100	100	100	0	90	95	100	100	100	100
Corn	50	0	0	75	20	10	75	0	-	30	45	75	75	65
Crabgrass, Large	90	50	0	85	20	0	100	0	0	0	95	95	80	95
Cupgrass, Woolly	90	45	0	95	0	100	100	0	100	0	85	65	85	95
Foxtail, Giant	90	30	0	75	10	0	80	0	0	5	65	75	75	20

Goosegrass	10	60	0	55	0	35	50	0	0	0	0	0	0	80
Johnsongrass	80	40	0	90	60	0	90	0	5	45	75	80	75	100
Kochia	100	100	30	100	100	100	100	45	85	85	100	100	85	-
Lambsquarters	100	100	80	100	100	90	100	65	70	90	100	100	100	100
Morningglory	100	100	35	100	90	100	100	0	90	90	100	100	100	100
Nightshade	100	100	20	100	100	-	-	20	80	90	100	100	100	100
Nutsedge, Yellow	50	0	0	15	0	100	100	-	0	0	0	0	. 0	95
Pigweed	100	100	80	100	100	90	100	70	85	90	100	100	100	100
Ragweed	100	0	45	100	100	100	100	55	85	85	100	100	100	100
Soybean	100	100	20	100	98	100	100	_	70	90	95	100	100	100
Sunflower	100	100	0	100	100	100	100	0	85	90	100	100	100	100
Surinam Grass	90	0	0	85	0	100	100	0	0	10	75	80	0	100
Velvetleaf	95	90	35	95	90	100	100	0	70	90	100	100	100	100
Table C				Comp	ouno	is								
250 g ai/ha	26	27	28	30	31	33	40	49	50	64				
Preemergence											•			
Bermudagrass	0	0	30	0	0	0	0	85	0	20				
Cocklebur	90	70	95	90	85	90	90	95	95	30				
Corn	0	15	0	0	0	30	20	15	20	30				
Crabgrass, Large	-	0	_	85	0	100	-	95	95	90				
Cupgrass, Woolly	0	10	0	50	0	0	70	20	. 0	40				
Foxtail, Giant	0	0	0	60	0	50	30	0	0	0				
Goosegrass	0	0	0	50	20	0	5	0	0	75				
Johnsongrass	0	45	0	5	5	10	80	80	65	60				
Kochia	-	30	90	90	70	50	-	100	20	70				
Lambsquarters	-	90	100	90	80	85	100	100	100	100				
Morningglory	85	95	100	100	50	90	90	100	95	10				
Nightshade	100	100	100	100	-	95	100	100	100	95				
Nutsedge, Yellow	0	0	0	0	0	0	0	0	0	10				
Pigweed	100	90	100	90	40	90	100	100	95	100				
Ragweed	85	85	100	100	60	70	100	100	95	100				
Soybean	10	20	65	70	80	80	90	90	75	85				
Sunflower	70	90	100	90	70	80	90	100	95	85				
Surinam Grass	10	20	0	20	0	0	10	40	65	90				

Velvetleaf 90 50 95 50 60 60 90 90 85 0

Table C						Com	pound	ds						
125 g ai/ha	1	2	3	4	5	8	9	10	11	12	13	15	16	17
Preemergence														
Bermudagrass	50	0	0	20	0	100	100	0	0	0	0	0	0	0
Cocklebur	100	80	55	95	90	85	100	0	0	85	90	90	95	95
Corn	0	-	0	0	5	0	60	0	0	60	10	15	20	35
Crabgrass, Large	60	0	0	65	0	0	95	0	60	0	0	95	65	20
Cupgrass, Woolly	60	0	0	80	0	65	95	0	0	10	0	20	15	20
Foxtail, Giant	30	0	0	40	0	0	75	0	20	0	0	0	0	20
Goosegrass	0	0	0	25	0	0	20	0	0	0	0	0	0	0
Johnsongrass	30	0	0	70	20	0	65	0	75	5	5	65	65	55
Kochia	100	95	20	100	95	85	100	0	60	50	80	100	100	25
Lambsquarters	100	100	0	100	95	20	100	50	85	40	90	100	100	100
Morningglory	100	100	20	100	80	100	100	0	0	60	85	100	100	100
Nightshade	100	100	0	100	100	-	-	-	-	60	90	100	95	95
Nutsedge, Yellow	0	0	0	0	0	0	100	0	-	0	0	0	0	0
Pigweed	100	95	65	100	90	85	100	55	90	50	85	100	100	100
Ragweed	100	0	0	100	90	100	100	0	45	20	70	95	95	95
Soybean	100	90	15	100	90	100	100	-	55	-	90	90	100	95
Sunflower	100	100	0	100	90	40	100	0	0	0	60	100	100	100
Surinam Grass	35	0	0	65	0	100	100	0	100	0	0	65	15	0
Velvetleaf	90	75	20	95	85	75	100	0	0	50	80	95	95	100
Table C						Com	ounc	is						
125 g ai/ha	19	22	25	26	27	28	30	31	33	40	47	49	50	64
Preemergence														
Bermudagrass	0	50	10	0	0	20	0	0	0	0	95	0	0	20
Cocklebur	80	95	85	70	50	95	85	75	0	70	75	95	85	5
Corn	0	50	0	0	10	0	0	0	0	20	0	15	10	20
Crabgrass, Large	0	95	0	_	0	-	70	0	20	-	100	95	90	70
Cupgrass, Woolly	0	95	50	0	0	0	45	0	0	5	0	0	0	0
Foxtail, Giant	0	15	0	0	0	0	20	0	10	0	20	0	0	0
Goosegrass	0	0	0	0	0	0	35	0	0	0	90	0	0	0
Johnsongrass	55	100	0	-	20	-	5	0	5	80	0	65	55	50
Kochia	90	_	70	-	0	80	70	50	-	-	100	100	0	25
Lambsquarters	100	100	50	-	40	100	85	40	-	100	95	100	100	95
Morningglory	90	100	90	5	70	100	90	10	85	90	100	95	95	0
Nightshade	100	100	75	100	70	100	100	0	50	100	100	100	100	85
Nutsedge, Yellow	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Pigweed	95	100	85	100	80	95	80	35	90	100	85	90	90	100
Ragweed	80	100	85	10	65	95	90	60	20	90	65	100	85	95
Soybean	90	95	65	10	0	45	5	15	30	40	0	70	60	85
Sunflower	90	95	90	20	20	50	90	5	70	90	100	75	55	30
Surinam Grass	10	90	40	0	0	0	0	0	0	0	0	15	15	50
Velvetleaf	65	95	40	10	0	55	15	0	20	70	50	70	75	0
Table C	Co	rogmc	ınds											
125 g ai/ha	65	75	76	77	78									
Preemergence														
Bermudagrass	80	20	0	0	20									
Cocklebur	90	100	90	95	90									
Corn	30	65	45	35	40									
Crabgrass, Large	80	60	60	0	45									
Cupgrass, Woolly	70	60	50	0	10									
Foxtail, Giant	60	10	10	0	0									
Goosegrass	50	30	0	0	0									
Johnsongrass	70	55	50	0	50									
Kochia	70	100	100	80	100									
Lambsquarters	100	100	80	40	80									
Morningglory	100	100	100	75	100									
Nightshade	80	100	100	0	70									
Nutsedge, Yellow	70	0	0	0	-									
Pigweed	100	90	90	65	95									
Ragweed	100	90	100	55	80									
Soybean	100	100	95	100	95									
Sunflower	100	100	100	100	100									
Surinam Grass	80	55	45	0	75									
Velvetleaf	100	100	90	90	80									
Table C						Com	oound	is						
62 g ai/ha	1	2	3	4	5	8	9	10	11	12	13	15	16	17
Preemergence														
Bermudagrass	0	0	0	0	0	100	100	0	0	0	0	0	0	0
Cocklebur	90	_	30	80	10	-	80	-	0	50	60	65	95	90
Corn	0	0	0	-	5	0	5	0	0	30	5	0	15	20
Crabgrass, Large	10	0	0	40	0	0	95	0	0	0	0	0	0	0
Cupgrass, Woolly	0	0	0	0	0	0	90	0	0	0	0	0	0	0
Foxtail, Giant	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Goosegrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Johnsongrass	0	0	0	50	5	0	45	0	0	0	0	20	40	0
Kochia	95	90	0	95	80	50	95	0	0	50	60	95	95	0
Lambsquarters	95	100	0	95	95	0	100	0	40	10	85	95	95	95
Morningglory	90	100	0	100	50	20	100	0	0	60	65	95	95	95
Nightshade	100	20	0	100	100	_	-	-	-	50	0	95	90	80
Nutsedge, Yellow	0	0	0	0	0	0	100	0	0	0	0	0	0	0
Pigweed	90	95	50	95	60	65	95	20	65	50	60	90	95	100
Ragweed	95	0	0	100	85	100	100	0	20	10	60	90	90	80
Soybean	85	75	0	95	85	100	100	0	-	50	60	75	85	90
Sunflower	80	100	0	100	60	20	100	0	0	0	50	65	85	95
Surinam Grass	0	0	0	0	0	0	100	-	100	-	0	15	0	0
Velvetleaf	80	50	0	75	85	65	95	0	0	5	60	80	90	80
Table C						Comp	pound	ls						
62 g ai/ha	19	22	25	26	27	28	30	31	33	40	47	49	50	64
Preemergence														
Bermudagrass	0	0	0	0	0	0	0	0	0	0	0	0	-	0
Cocklebur	65	90	60	70	.0	90	60	60	0	5	70	20	70	0
Corn	0	40	0	0	.0	0	0	0	0	0	0	_	10	0
Crabgrass, Large	0	90	0	_	0	-	0	0	0	5	100	95	90	0
Cupgrass, Woolly	0	40	0	0	0	0	5	0	0	5	0	0	0	0
Foxtail, Giant	0	10	0	0	0	0	0	0	0	0	0	0	0	. 0
Goosegrass	0	0	0	0	0	0	30	0	0	0	85	0	0	0
Johnsongrass	35	80	0	0	0	-	0	0	0	0	0	45	0	5
Kochia	85	_	5	0	0	0	70	0	-	-	0	100	_	20
Lambsquarters	100	100	30	10	-	95	80	40	-	100	85	100	95	95
Morningglory	90	100	50	0	0	100	85	0	0	-	70	90	80	0
Nightshade	100	100	30	10	0	100	80	0	0	100	95	95	95	85
Nutsedge, Yellow	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pigweed	70	90	35	30	20	80	30	30	85	20	85	85	75	30
Ragweed	70	90	70	0	20	65	85	10	0	90	45	70	70	85
Soybean	85	95	60	0	0	0	5	5	0	10	0	0	0	85
Sunflower	70	90	75	0	0	45	80	0	0	5	20	15	15	0
Surinam Grass	0	-	0	0	0	0	0	0	0	-	0	0	0	0
Velvetleaf	40	90	0	0	0	50	10	0	0	0	20	15	65	0

Compounds

Table C

62 g ai/ha	65	75	76	77	78									
Preemergence														
Bermudagrass	70	0	0	0	0									
Cocklebur	50	95	90	80	90									
Corn	0	30	35	0	20									
Crabgrass, Large	70	20	5	0	40									
Cupgrass, Woolly	5	60	20	0	0									
Foxtail, Giant	50	0	0	0	0									
Goosegrass	0	0	0	0	0									
Johnsongrass	60	50	20	0	20									
Kochia	50	100	95	50	100									
Lambsquarters	80	80	80	-	80									
Morningglory	20	95	100	50	85									
Nightshade	-	70	60	0	60									
Nutsedge, Yellow	30	0	0	0	0									
Pigweed	80	80	80	65	70									
Ragweed	90	80	80	50	80									
Soybean	95	100	95	100	80									
Sunflower	95	100	100	100	100									
Surinam Grass	80	55	0	0	0									
Velvetleaf	80	85	70	85	70									
Table C						Comp	ound	ls						
31 g ai/ha	2	3	9	11	12	13	16	17	19	25	30	31	47	64
Preemergence														
Bermudagrass	0	0	100	0	0	0	0	0	0	0	0	0	0	0
Cocklebur	60	0	75	0	50	40	45	75	30	20	0	0	0	0
Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Crabgrass, Large	0	0	20	0	0	0	0	0	0	0	0	0	100	0
Cupgrass, Woolly	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Foxtail, Giant										_		_	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	U	
Goosegrass	0	0	0	0	0	0	0	0	0	0	0	0	45	0
Goosegrass Johnsongrass														0 5
	0	0	0	0	0	0	0	0	0	0	0	0	45	
Johnsongrass	0	0 0	0 15	0 0	0 0	0 0	0 0	0 0 0	0 0	0 0	0 0	0 0	45 0	5
Johnsongrass Kochia	0 0 75	0 0 0	0 15 95 95	0 0 0	0 0 0	0 0 45	0 0 90	0 0 0	0 0 -	0 0 0	0 0 50	0 0 0	45 0 -	5 20
Johnsongrass Kochia Lambsquarters	0 0 75 90	0 0 0	0 15 95 95	0 0 0	0 0 0	0 0 45 50	0 0 90 95	0 0 0 95	0 0 - 100	0 0 0	0 0 50 0	0 0 0	45 0 - -	5 20 70

Pigweed	90	20	95	0	10	50	85	95	45	30	0	10	80	10
Ragweed	0	0	100	0	-	45	45	70	55	70	30	5	_	85
Soybean	15	0	100	-	_	0	75	70	25	_	0	0	0	0
Sunflower	20	0	100	0	0	5	20	60	25	60	20	0	0	0
Surinam Grass	0	0	95	0	0	0	0	0	_	0	0	0	0	_
Velvetleaf	20	0	70	0	0	60	25	20	35	0	0	0	20	0
Table C	Co	mpou	ınds											
31 g ai/ha	65	75	76	77	78									
Preemergence														
Bermudagrass	50	0	0	0	0									
Cocklebur	30	90	90	70	70									
Corn	0	0	0	0	0									
Crabgrass, Large	20	10	0	0	5									
Cupgrass, Woolly	0	0	0	0	0									
Foxtail, Giant	10	0	0	0	0									
Goosegrass	0	0	0	0	0									
Johnsongrass	50	0	0	0	10									
Kochia	0	80	90	-	80									
Lambsquarters	50	75	70	0	70									
Morningglory	0	90	60	50	70									
Nightshade	0	50	40	0	30									
Nutsedge, Yellow	0	0	0	0	0									
Pigweed	80	75	80	60	60									
Ragweed	85	70	60	0	65									
Soybean	95	60	70	100	70									
Sunflower	70	70	85	50	70									
Surinam Grass	40	0	0	0	0									
Velvetleaf	40	60	40	30	55									
Table C			Co	ompou	ınds									
16 g ai/ha	11	19	25	47	65	75	76	77	78					
Preemergence														
Bermudagrass	0	0	0	0	0	0	0	0	0					
Cocklebur	0	15	0	0	0	55	65	55	55					
Corn	0	0	0	0	0	-	0	0	0					
Crabgrass, Large	0	0	0	20	0	0	0	0	0					
Cupgrass, Woolly	0	0	0	0	0	0	0	0	0					

Foxtail, Giant 0 0

Goosegrass	0	0	0	0	0	0	0	0	0
Johnsongrass	0	0	0	0	0	0	0	0	0
Kochia	0	35	0	0	0	70	70	20	70
Lambsquarters	0	75	0	0	0	70	70	0	0
Morningglory	0	10	0	0	0	50	40	5	0
Nightshade	_	0	0	80	0	0	30	0	0
Nutsedge, Yellow	0	0	0	0	0	0	0	0	0
Pigweed	0	35	0	0	40	70	60	60	55
Ragweed	0	55	0	0	85	20	50	0	10
Soybean	-	0	30	0	85	55	50	40	30
Sunflower	0	10	5	0	40	50	50	20	50
Surinam Grass	0	0	0	0	0	0	0	0	0
Velvetleaf	0	25	0	0	0	5	30	10	10

TEST D

5

10

15

Seeds of plant species selected from annual blugrass (*Poa annua*), blackgrass (*Alopecurus myosuroides*), catchweed bedstraw (*Galium aparine*), common chickweed (*Stellaria media*), downy bromegrass (*Bromus tectorum*), green foxtail (*Setaria viridis*), Italian ryegrass (*Lolium multiflorum*), kochia (*Kochia scoparia*), lambsquarters (*Chenopodium album*), littleseed canarygrass (*Phalaris minor*), pigweed (*Amaranthus retroflexus*), Russian thistle (*Salsola kali*), wild buckwheat (*Polygonum convolvulus*), wild mustard (*Sinapis arvensis*), wild oat (*Avena fatua*), windgrass (*Apera spica-venti*), winter barley (*Hordeum vulgare*), and wheat (*Triticum aestivum*) were planted and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

At the same time, plants selected from these crop and weed species were treated with postemergence applications of some of the test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage) for postemergence treatments. Treated plants and controls were maintained in a controlled growth environment for 15 to 25 days after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table D, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (–) response means no test result.

Table D	Com	poun	ds		Table D	Com	ooun	ds	
125 g ai/ha	1	2	4	9	62 g ai/ha	1	2	4	9
Postemergence					Postemergence				
Buckwheat, Wild	80	95	100	100	Buckwheat, Wild	80	90	100	100
Chickweed	85	85	100	100	Chickweed	65	85	100	100
Galium	100	100	100	100	Galium	100	100	100	100
Kochia	100	100	100	100	Kochia	100	100	100	100
Lambsquarters	100	100	100	100	Lambsquarters	100	100	100	100
Mustard, Wild	75	80	90	95	Mustard, Wild	70	70	75	80
Pigweed	100	100	100	100	Pigweed	100	100	100	100
Russian Thistle	100	100	100	100	Russian Thistle	85	95	100	100
Wheat	100	100	100	100	Wheat	90	100	100	90
Table D	Com	poun	ds		Table D	Comp	pound	ds	
31 g ai/ha	1	2	4	9	16 g ai/ha	1	2	4	9
Postemergence					Postemergence				
Buckwheat, Wild	80	65	85	80	Buckwheat, Wild	50	45	80	65
Chickweed	65	60	100	100	Chickweed	65	60	65	60
Galium	100	100	100	100	Galium	95	75	100	100
Kochia	100	100	100	100	Kochia	85	75	85	85
Lambsquarters	95	100	100	100	Lambsquarters	95	60	95	95
Mustard, Wild	70	65	65	80	Mustard, Wild	60	65	65	65
Pigweed	100	85	100	100	Pigweed	60	65	85	65
Russian Thistle	65	85	90	90	Russian Thistle	45	65	80	.65
Wheat	80	70	85	80	Wheat	40	70	80	50
Table D	Comp	oun	is		Table D	Comp	ounc	ls	
125 g ai/ha	1	2	4	9	62 g ai/ha	1	2	4	9
Preemergence					Preemergence				
Buckwheat, Wild	75	85	100	100	Buckwheat, Wild	70	80	100	100
Chickweed	75	90	100	100	Chickweed	70	7 5	85	100
Galium	100	100	100	100	Galium	100	98	100	100
Kochia	100	100	100	100	Kochia	100	100	100	100
Lambsquarters	100	100	100	100	Lambsquarters	85	95	100	100
Mustard, Wild	90	85	85	85	Mustard, Wild	70	70	85	85
Pigweed	100	100	100	100	Pigweed	95	85	100	100
Russian Thistle	100	100	100	100	Russian Thistle	100	100	100	100
Wheat	70	70	80	-	Wheat	70	70	80	75

Table D	Comp	oun	ds		Table D	Comp	ound	s	
31 g ai/ha	1	2	4	9	16 g ai/ha	1	2	4	9
Preemergence					Preemergence				
Buckwheat, Wild	60	65	80	85	Buckwheat, Wild	45	4 5	60	60
Chickweed	65	60	70	95	Chickweed	60	60	65	65
Galium ·	80	90	100	100	Galium	80	80	90	85
Kochia	75	70	100	98	Kochia	65	55	85	70
Lambsquarters	75	85	80	100	Lambsquarters	65	-	70	65
Mustard, Wild	65	70	85	70	Mustard, Wild	50	50	65	60
Pigweed	70	70	90	80	Pigweed	60	65	70	65
Russian Thistle	100	100	100	100	Russian Thistle	100	85	90	100
Wheat	70	60	70	75	Wheat	35	45	-	60

TEST E

5

10

15

20

Three plastic pots (ca. 16-cm diameter) per rate were partially filled with sterilized Tama silt loam soil comprising a 35:50:15 ratio of sand, silt and clay and 2.6% organic matter. Separate plantings for each of the three pots were as follows. Seeds from the U.S. of ducksalad (Heteranthera limosa), smallflower umbrella sedge (Cyperus difformis) and purple redstem (Ammannia coccinea), were planted into one 16-cm pot for each rate. Seeds from the U.S. of rice flatsedge (Cyperus iria), bearded (brdd.) sprangletop (Leptochloa fascicularis), one stand of 9 or 10 water seeded rice seedlings (Oryza sativa cv. 'Japonica – M202'), and one stand of 6 transplanted rice seedlings (Oryza sativa cv. 'Japonica – M202') were planted into one 16-cm pot for each rate. Seeds from the U.S. of barnyardgrass (Echinochloa crus-galli), late watergrass (Echinochloa oryzoides) and junglerice (Echinochloa colona) were planted into one 16-cm pot for each rate. Plantings were sequential so that crop and weed species were at the 2.0 to 2.5-leaf stage at time of treatment.

Potted plants were grown in a greenhouse with day/night temperature settings of 29.5/26.7 °C, and supplemental balanced lighting was provided to maintain a 16-hour photoperiod. Test pots were maintained in the greenhouse until test completion.

At time of treatment, test pots were flooded to 3 cm above the soil surface, treated by application of test compounds directly to the paddy water, and then maintained at that water depth for the duration of the test. Effects of treatments on rice and weeds were visually evaluated by comparison to untreated controls after 21 days. Plant response ratings, summarized in Table E, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (–) response means no test result.

Table E	Comp	ound	3											
500 g ai/ha	44	61	62											
Flood														
Barnyardgrass	10	65	100											
Ducksalad	100	100	100											
Flatsedge, Rice	-	95	100											
Junglerice	20	25	65											
Redstem	7 5	100	100											
Rice, Transplanted	0	25	30											
Rice, Water Seeded	20	35	60											
Sedge, Umbrella	100	100	100											
Sprangletop, Brdd.	95	65	75											
Watergrass, Early	0	25	0											
Watergrass, Late	20	25	20											
Table E						Co	mpou	nds						
250 g ai/ha	37	44	58	61	62	63	64	65	66	67	69	70	71	72
Flood														
Barnyardgrass	0	0	-	0	50	-	-	-	35	40	_	0	60	0
Ducksalad	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Flatsedge, Rice	90	-	100	40	65	85	100	100	0	60	100	65	0	100
Junglerice	0	20	0	25	50	30	0	40	0	65	0	0	45	0
Redstem	80	50	95	100	95	75	80	60	100	85	30	0	30	100
Rice, Transplanted	0	0	0	0	0	0	10	0	0	0	0	0	0	0
Rice, Water Seeded	0	0	20	10	10	30	0	10	0	0	0	0	0	0
Sedge, Umbrella	95	100	100	95	100	80	100	100	0	70	100	60	70	100
Sprangletop, Brdd.	0	50	60	65	45	65	0	40	0	30	0	0	60	0
Watergrass, Early	_	0	-	20	0	0	0	10	0	0	0	0	0	0
Watergrass, Late	0	0	0	20	20	0	20	25	0	0	0	0	0	0
Table E				Cor	npour	nds								
250 g ai/ha	73	74	84	88	91	94	95	96	98	99				
Flood														
Barnyardgrass	100	0	85	0	10	0	0	0	0	0				
Ducksalad	100	100	100	100	100	100	100	100	100	100				
Flatsedge, Rice	45	95	80	100	-	100	0	100	100	100				
Junglerice	0	65	50	90	70	0	0	0	0	0				
Redstem	100	25	100	65	50	100	80	100	40	45				
Rice, Transplanted	0	0	20	0	10	20	15	20	0	20				

Rice, Water Seeded	0	0	30	0	20	10	15	10	0	20				
Sedge, Umbrella	85	100	100	95	100	100	95	100	60	_				
Sprangletop, Brdd.	70	0	40	95	30	40	0	0	0	0				
Watergrass, Early	0	0	30	50	0	0	0	0	0	0				
Watergrass, Late	20	0	20	0	0	0	0	0	0	0				
Table E						Cor	npour	nds						
125 g ai/ha	37	44	58	61	62	63	64	65	66	67	69	70	71	72
Flood														
Barnyardgrass	0	0	-	0	0	-	-	-	0	40	0	0	0	0
Ducksalad	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Flatsedge, Rice	75	-	100	40	45	85	100	100	0	60	100	30	0	100
Junglerice	0	0	0	20	40	0	0	40	0	30	0	0	0	0
Redstem	40	20	95	80	85	75	60	50	40	0	0	0	0	35
Rice, Transplanted	0	0	0	0	0	0	10	0	0	0	0	0	0	0
Rice, Water Seeded	0	0	0	0	0	20	0	0	0	0	0	0	0	0
Sedge, Umbrella	65	90	95	85	95	75	100	100	0	40	90	0	30	90
Sprangletop, Brdd.	0	30	60	60	30	40	0	40	0	30	0	0	0	0
Watergrass, Early	-	0	_	0	0	0	0	0	0	0	0	0	0	0
Watergrass, Late	0	0	0	20	20	0	20	0	, 0	0	0	0	0	0
Table E				Cor	npoui	nds								
125 g ai/ha	73	74	84	88	91	94	95	96	98	99				
Flood														
Barnyardgrass	90	-	20	0	10	0	0	0	0	0				
Ducksalad	100	100	100	100	100	100	100	100	100	100				
Flatsedge, Rice	-	90	60	100	-	100	0	100	100	100			*	
Junglerice	0	0	50	0	0	0	0	0	0	0				
Redstem	100	20	70	0	3.0	100	70	100	40	0				
Rice, Transplanted				U	50		. •							
-	0	0	0	0	0	10	0	10	0	0				
Rice, Water Seeded	0	0 0								0 20				
Rice, Water Seeded Sedge, Umbrella			0	0 0	0	10 10	0 0	10	0					
	0	0	0 0	0 0	0 10	10 10	0 0	10 10	0 0	20				
Sedge, Umbrella	0 35	0 95	0 0 90	0 0 85	0 10 100	10 10 100	0 0 95	10 10 100	0 0 60	20				
Sedge, Umbrella Sprangletop, Brdd.	0 35 50	0 95 0	0 0 90 0	0 0 85 85	0 10 100 30	10 10 100 20	0 0 95 0	10 10 100 0	0 0 60 0	20 -				
Sedge, Umbrella Sprangletop, Brdd. Watergrass, Early	0 35 50 0	0 95 0 0	0 90 0 20	0 85 85 0	0 10 100 30 0	10 10 100 20 0	0 0 95 0	10 10 100 0 0	0 0 60 0	20 - 0				
Sedge, Umbrella Sprangletop, Brdd. Watergrass, Early Watergrass, Late	0 35 50 0	0 95 0 0	0 90 0 20	0 85 85 0	0 10 100 30 0	10 10 100 20 0	0 0 95 0 0	10 10 100 0 0	0 0 60 0	20 - 0	69	70	71	72
Sedge, Umbrella Sprangletop, Brdd. Watergrass, Early Watergrass, Late Table E	0 35 50 0	0 95 0 0	0 90 0 20	0 85 85 0	0 100 100 30 0	10 100 20 0 0	0 95 0 0 0	10 100 0 0 0	0 0 60 0 0	20 - 0 0	69	70	71	72

Ducksalad	100	100	100	100	100	65	100	100	100	100	100	100	100	100
Flatsedge, Rice	0	-	100	0	0	75	90	100	0	30	100	0	0	100
Junglerice	0	0	0	20	30	0	0	0	0	0	0	0	0	0
Redstem	30	10	85	80	85	65	60	30	0	0	0	0	0	25
Rice, Transplanted	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rice, Water Seeded	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sedge, Umbrella	50	90	95	75	80	75	85	85	0	0	30	0	0	75
Sprangletop, Brdd.	0	30	60	35	0	40	0	0	0	0	0	0	-	0
Watergrass, Early	-	0	_	0	0	0	0	0	0	0	0	0	0	0
Watergrass, Late	0	0	0	20	20	0	0	0	0	0	0	0	0	0
Table E				Cor	npou	nds								
64 g ai/ha	73	74	84	88	91	94	95	96	98	99				
Flood														
Barnyardgrass	0	0	0	0	10	0	0	0	0	0				
Ducksalad	100	100	100	100	100	100	100	100	100	100				
Flatsedge, Rice	0	0	60	100	-	100	0	100	100	100				
Junglerice	0	0	0	0	0	0	0	0	0	0				
Redstem	90	0	20	0	0	75	30	90	0	_				
Rice, Transplanted	0	0	0	0	0	10	0	0	0	0				
Rice, Water Seeded	0	0	0	0	10	-	0	0	0	0				
Sedge, Umbrella	0	80	80	_	30	100	95	100	60	-				
Sprangletop, Brdd.	0	0	0	0	0	0	0	0	0	0				
Watergrass, Early	0	0	10	0	0	0	0	0	0	0				
Watergrass, Late	0	0	0	0	0	0	0	0	0	0				
Table E						Coi	npour	nds						
32 g ai/ha	37	44	58	61	62	63	64	65	66	67	69	70	71	72
Flood														
Barnyardgrass	0	0	-	0	0	_	-	-	0	0	0	0	0	0
Ducksalad	100	100	100	100	100	30	100	100	100	100	100	40	100	80
Flatsedge, Rice	0	-	100	0	0	75	85	80	0	0	70	0	0	100
Junglerice	0	0	0	0	20	0	0	0	0	0	0	0	0	0
Redstem	0	0	80	65	75	65	60	30	0	0	0	0	0	25
Rice, Transplanted	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rice, Water Seeded	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sedge, Umbrella	50	20	95	20	70	75	80	80	0	0	0	0	0	30
Sprangletop, Brdd.	0	20	40	35	0	0	0	0	0	0	0	0	0	0
Watergrass, Early	-	0	-	0	0	0	0	0	0	0	0	0	0	0

Watergrass, Late	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Table E				Cor	mpou	nds								
32 g ai/ha	73	74	84	88	91	94	95	96	98	99				
Flood														
Barnyardgrass	-	0	0	0	0	0	0	0	0	0				
Ducksalad	100	100	100	100	100	100	100	100	100	100				
Flatsedge, Rice	0	0	35	85	_	100	0	100	80	_				
Junglerice	0	0	0	0	0	0	0	0	0	0				
Redstem	0	0	20	0	0	65	-	85	0	0				
Rice, Transplanted	0	0	0	0	0	0	0	0	0	0				
Rice, Water Seeded	0	0	0	0	0	0	0	0	0	0				
Sedge, Umbrella	0	0	80	40	0	100	95	100	60	-				
Sprangletop, Brdd.	0	0	0	0	0	0	0	0	0	0				
Watergrass, Early	0	0	0	0	0	0	0	0	0	0				
Watergrass, Late	0	0	0	0	0	0	0	0	0	0				
Table E						Cor	npou	nds						
16 g ai/ha	37	58	63	64	65	66	67	69	70	71	72	73	74	84
Flood														
Barnyardgrass	0	-	-	-	-	0	0	0	0	0	-	0	0	0
Ducksalad	80	100	30	100	100	95	85	95	0	100	80	75	100	100
Flatsedge, Rice	0	40	60	75	0	0	0	65	0	0	90	0	0	25
Junglerice	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Redstem	0	60	65	20	0	0	0	0	0	0	0	0	0	0
Rice, Transplanted	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0
Rice, Water Seeded	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sedge, Umbrella	30	65	70	65	20	0	0	0	0	0	0	0	0	70
Sprangletop, Brdd.	0	20	0	0	0	0	0	0	0	_	0	0	0	0
Watergrass, Early	-	-	0	0	0	0	0	0	0	0	0	0	0	0
Watergrass, Late	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Table E		(Compo	ounds	3									
16 g ai/ha	88	91	94	95	96	98	99							
Flood														
Barnyardgrass	0	0	0	0	0	0	0							
Ducksalad	95	100	100	100	100	0	95							
Flatsedge, Rice	50	-	100	0	100	80	100							
Junglerice	0	0	0	0	0	0	0							
Redstem	0	0	0	30	0	0	0							

Rice, Transplanted	0	0	0	0	0	0	0
Rice, Water Seeded	0	0	0	0	0	0	0
Sedge, Umbrella	40	0	100	0	100	60	-
Sprangletop, Brdd.	0	-	0	0	0	0	0
Watergrass, Early	0	0	0	0	0	0	0
Watergrass, Late	0	0	0	0	0	0	0

TEST F

5

10

15

Seeds of plant species selected from bermudagrass (Cynodon dactylon), Kentucky bluegrass (Poa pratensis), bentgrass (Agrostis palustris), hard fescue (Festuca ovina), large crabgrass (Digitaria sanguinalis), goosegrass (Eleusine indica), dallisgrass (Paspalum dilatatum), annual bluegrass (Poa annua), common chickweed (Stellaria media), dandelion (Taraxacum officinale), white clover (Trifolium repens), and yellow nutsedge (Cyperus esculentus) were planted and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

At the same time, plants selected from these weed species were treated with postemergence applications of some of the test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage) for postemergence treatments. Treated plants and controls were maintained in a greenhouse for 12 to 14 days, after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table F, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (–) response means no test result.

Table F	Compound	Table F	Compound
500 g ai/ha	1	250 g ai/ha	1
Postemergence		Postemergence	
Bentgrass	70	Bentgrass	50
Bermudagrass,	Turf 70	Bermudagrass,	Turf 50
Bluegrass	95	Bluegrass	70
Bluegrass, KY	30	Bluegrass, KY	0
Chickweed	100	Chickweed	85
Clover, White	100	Clover, White	100
Crabgrass, La	rge 90	Crabgrass, Lar	ge 75
Dallisgrass	60	Dallisgrass	75
Dandelion	95	Dandelion	85
Fescue, Hard	0	Fescue, Hard	0
Goosegrass	50	Goosegrass	40
Nutsedge, Yell	low 15	Nutsedge, Yello	ow 15

Table F Compound	Table F Compound
125 g ai/ha 1	62 gʻai/ha 1
Postemergence	Postemergence
Bentgrass 50	Bentgrass 30
Bermudagrass, Turf 40	Bermudagrass, Turf 20
Bluegrass 45	Bluegrass, KY 0
Bluegrass, KY 0	Chickweed 80
Chickweed 85	Clover, White 90
Clover, White 100	Crabgrass, Large 45
Crabgrass, Large 70	Dallisgrass 0
Dallisgrass 15	Dandelion 75
Dandelion 75	Fescue, Hard 0
Fescue, Hard 0	Goosegrass 10
Goosegrass 35	Nutsedge, Yellow 10
Nutsedge, Yellow 10	
Table F Compound	Table F Compound
31 g ai/ha 1	500 g ai/ha 1
Postemergence	Preemergence
Bentgrass 0	Bentgrass 100
Bermudagrass, Turf 0	Bermudagrass, Turf 90
Bluegrass 35	Bluegrass 70
Bluegrass, KY 20	Bluegrass, KY 80
Chickweed 0	Chickweed 100
Clover, White 70	Clover, White 100
Crabgrass, Large 0	Crabgrass, Large 100
Dallisgrass 0	Dallisgrass 95
Dandelion 50	Dandelion 100
Fescue, Hard 0	Fescue, Hard 90
Goosegrass 5	Goosegrass 85
Nutsedge, Yellow 0	Nutsedge, Yellow 70
Table F Compound	Table F Compound
250 g ai/ha 1	125 g ai/ha 1
Preemergence	Preemergence
Bentgrass 90	Bentgrass 60
Bermudagrass, Turf 80	Bermudagrass, Turf 50
Bluegrass 70	Bluegrass 45
Bluegrass, KY 40	Bluegrass, KY 30

Chickweed	100	Chickweed 100
Clover, White	100	Clover, White 100
Crabgrass, Large	95	Crabgrass, Large 85
Dallisgrass	70	Dallisgrass 45
Dandelion	100	Dandelion 100
Fescue, Hard	60	Fescue, Hard 60
Goosegrass	65	Goosegrass 30
Nutsedge, Yellow	25	Nutsedge, Yellow 30
Table F Compo	ound	Table F Compound
62 g ai/ha	1	31 g ai/ha 1
Preemergence		Preemergence
Bentgrass	60	Bentgrass 50
Bermudagrass, Turf	40	Bermudagrass, Turf 10
Bluegrass	65	Bluegrass 20
Bluegrass, KY	30	Bluegrass, KY 0
Chickweed	100	Chickweed 80
Clover, White	100	Clover, White 80
Crabgrass, Large	40	Crabgrass, Large 15
Dallisgrass	35	Dallisgrass 10
Dandelion	95	Dandelion 35
Fescue, Hard	60	Fescue, Hard 50
Goosegrass	40	Goosegrass 30
Nutsedge, Yellow	15	Nutsedge, Yellow 0

TEST G

5

10

Seeds of plant species selected from bermudagrass (Cynodon dactylon), Surinam grass (Brachiaria decumbens), large crabgrass (Digitaria sanguinalis), green foxtail (Setaria viridis), goosegrass (Eleusine indica), johnsongrass (Sorghum halepense), kochia (Kochia scoparia), pitted morningglory (Ipomoea lacunosa), purple nutsedge (Cyperus rotundus), common ragweed (Ambrosia elatior), mustard (Brassica nigra), guineagrass (Panicum maximum), dallisgrass (Paspalum dilatatum), barnyardgrass (Echinochloa crus-galli), southern sandbur (Cenchrus echinatus), common Sowthistle (Sonchus oleraceous), prickly sida (Sida spinosa), Italian ryegrass (Lolium multiflorum), common purslane (Portulaca oleracea), broadleaf Signalgrass (Brachiaria platyphylla), common groundsel (Senecio vulgaris), common chickweed (Stellaria media), tropical spiderwort (Commelina benghalensis), annual bluegrass (Poa annua), downy bromegrass (Bromus tectorum), itchgrass (Rottboellia cochinchinensis), quackgrass (Elytrigia repens), Canada horseweed (Conyza canadensis), field bindweed (Convolvulus arvensis), spanishneedles (Bidens

bipinnata), common mallow (Malva sylvestris), and Russian thistle (Salsola kali) were planted and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

At the same time, plants selected from these weed species were treated with postemergence applications of some of the test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage) for postemergence treatments. Treated plants and controls were maintained in a greenhouse for 12 to 14 days, after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table G, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

5

10

Table G	Compound	Table G	Compound	Table G Com	pound
250 g ai/ha	22	125 g ai/ha	22	62 g ai/ha	22
Postemergence		Postemergence		Postemergence	
Barnyardgrass	85	Barnyardgrass	25	Barnyardgrass	15
Bermudagrass	65	Bermudagrass	40	Bermudagrass	35
Bindweed, Fiel	.d 100	Bindweed, Fiel	d 100	Bindweed, Field	100
Black Mustard	95	Black Mustard	95	Black Mustard	75
Bluegrass	75	Bluegrass	40	Bluegrass	15
Bromegrass, Do	owny 95	Bromegrass, Do	wny 95	Bromegrass, Downy	85
Chickweed	95	Chickweed	85	Chickweed	50
Crabgrass, Lar	rge 85	Crabgrass, Lar	ge 85	Crabgrass, Large	50
Dallisgrass	75	Dallisgrass	25	Dallisgrass	15
Foxtail, Green	n 75	Foxtail, Green	. 50	Foxtail, Green	25
Goosegrass	50	Goosegrass	35	Goosegrass	25
Guineagrass	100	Groundsel	85	Groundsel	65
Itchgrass	85	Guineagrass	95	Guineagrass	65
Kochia	100	Itchgrass	75	Itchgrass	50
Mallow	95	Kochia	100	Kochia	98
Morningglory	100	Mallow	85	Morningglory	85
Nutsedge, Purp	ole 15	Morningglory	95	Nutsedge, Purple	0
Prickly Sida	95	Nutsedge, Purp	le 0	Prickly Sida	90
Purslane	98	Prickly Sida	95	Purslane	85
Quackgrass	85	Purslane	95	Quackgrass	65
Ragweed	100	Quackgrass	75	Ragweed	98
Russian Thistl	.e 100	Ragweed	98	Russian Thistle	100
Ryegrass, Ital	ian 85	Russian Thistl	e 100	Ryegrass, Italian	15
Sandbur	95	Ryegrass, Ital	ian 40	Sandbur	40
Signalgrass	85	Sandbur	85	Signalgrass	25

Sowthistle	100	Signalgrass	50	Sowthistle	95
Spiderwort	98	Sowthistle	100	Spiderwort	85
Surinam Grass	95		95	_	
Surmam Grass	95	Spiderwort		Surinam Grass	35
		Surinam Grass	65		
Table G Co	ompound	Table G	Compound	Table G	Compound
31 g ai/ha	22	16 g ai/ha	22	500 g ai/ha	1
Postemergence		Postemergence		Postemergence	
Barnyardgrass	0	Barnyardgrass	0	Barnyardgrass	75
Bermudagrass	35	Bermudagrass	15	Bermudagrass	50
Bindweed, Field	100	Bindweed, Fiel	d 85	Bindweed, Field	95
Black Mustard	75	Black Mustard	50	Black Mustard	75
Bluegrass	0	Bluegrass	0	Bluegrass	50
Bromegrass, Down	ny 65	Bromegrass, Do	wny 15	Bromegrass, Dov	my 80
Chickweed	50	Crabgrass, Lar	ge 15	Crabgrass, Larç	ge 70
Crabgrass, Large	e 35	Dallisgrass	0	Dallisgrass	30
Dallisgrass	0	Foxtail, Green	0	Foxtail, Green	60
Foxtail, Green	15	Goosegrass	5	Goosegrass	60
Goosegrass	15	Groundsel	65	Groundsel	100
Groundsel	65	Guineagrass	5	Guineagrass	95
Guineagrass	55	Itchgrass	15	Horseweed	100
Itchgrass	25	Kochia	98	Itchgrass	70
Kochia	98	Mallow	40	Johnsongrass	95
Mallow	60	Morningglory	50	Mallow	95
Morningglory	85	Nutsedge, Purp	le 0	Morningglory	100
Nutsedge, Purple	e 0	Prickly Sida	75	Nutsedge, Purpl	.e 30
Prickly Sida	85	Purslane	50	Prickly Sida	95
Purslane	55	Quackgrass	15	Purslane	100
Quackgrass	40	Ragweed	65	Quackgrass	70
Ragweed	85	Russian Thistle	95	Ragweed	100
Russian Thistle	100	Ryegrass, Ital:	ian 0	Ryegrass, Itali	an 40
Ryegrass, Italia	an 5	Sandbur	0	Sandbur	95
Sandbur	15	Signalgrass	5	Signalgrass	85
Signalgrass	15	Sowthistle	75	Sowthistle	100
Sowthistle	85	Spiderwort	15	Spanishneedles	95
Spiderwort	40	Surinam Grass	0	Spiderwort	95
Surinam Grass	15			Surinam Grass	90

. .

Table G	Compound	Table G	Compound	Table G C	ompound
375 g ai/ha	1	250 g ai/ha	1	125 g ai/ha	1
Postemergence		Postemergence		Postemergence	
Barnyardgrass	70	Barnyardgrass	70	Barnyardgrass	60
Bermudagrass	40	Bermudagrass	40	Bermudagrass	25
Bindweed, Fiel	.d 95	Bindweed, Fiel	d 95	Bindweed, Field	95
Black Mustard	75	Black Mustard	75	Black Mustard	75
Bluegrass	50	Bluegrass	40	Bluegrass	30
Bromegrass, Do	wny 70	Bromegrass, Do	wny 60	Bromegrass, Dow	my 30
Chickweed	100	Chickweed	95	Chickweed	95
Crabgrass, Lar	ge 70	Crabgrass, Lar	ge 70	Crabgrass, Larg	e 60
Dallisgrass	30	Dallisgrass	30	Dallisgrass	20
Foxtail, Green	50	Foxtail, Green	30	Foxtail, Green	20
Goosegrass	60	Goosegrass	60	Goosegrass	60
Groundsel	100	Groundsel	95	Groundsel	95
Horseweed	100	Guineagrass	95	Guineagrass	70
Itchgrass	60	Horseweed	100	Horseweed	70
Johnsongrass	95	Itchgrass	60	Itchgrass	40
Kochia	95	Johnsongrass	95	Johnsongrass	70
Mallow	95	Mallow	70	Mallow	60
Morningglory	100	Morningglory	100	Morningglory	100
Nutsedge, Purp	ole 30	Nutsedge, Purp	le 20	Nutsedge, Purpl	e 10
Prickly Sida	95	Prickly Sida	90	Prickly Sida	70
Purslane	100	Purslane	100	Purslane	100
Quackgrass	70	Quackgrass	60	Quackgrass	30
Ragweed	100	Ragweed	95	Ragweed	95
Russian Thistl	e 100	Russian Thistl	e 100	Russian Thistle	100
Ryegrass, Ital	ian 40	Ryegrass, Ital	ian 40	Ryegrass, Itali	an 10
Sandbur	95	Sandbur	95	Sandbur	60
Signalgrass	75	Signalgrass	75	Signalgrass	60
Sowthistle	95	Sowthistle	95	Sowthistle	95
Spanishneedles	95	Spanishneedles	95	Spanishneedles	95
Spiderwort	95	Spiderwort	95	Spiderwort	95
Surinam Grass	90	Surinam Grass	85	Surinam Grass	60

Table G Comp	ound	Table G Compounds	
62 g ai/ha	1	1500 g ai/ha 1 4	
Postemergence		Postemergence	
Barnyardgrass	60	Grape 100 100	
Bermudagrass	25	Olive 50 -	
Bindweed, Field	90	Orange 50 75	
Black Mustard	60	Table G Compound	
Bluegrass	20	900 g ai/ha 4	
Bromegrass, Downy	30	Postemergence	
Crabgrass, Large	50	Olive 50	
Dallisgrass	10		
Foxtail, Green	10	Table G Compounds	
Goosegrass	20	500 g ai/ha 1 9	
Groundsel	60	Postemergence	
Guineagrass	60	Sugarcane 38 17	
Itchgrass	20	Table G Compounds	
Johnsongrass	70	250 g ai/ha 1 9	
Mallow	50	Postemergence	
Morningglory	100	Sugarcane 13 7	
Prickly Sida	70	Table G Compounds	
Purslane	80	125 g ai/ha 1 9	
Quackgrass	10	Postemergence	
Ragweed	75	Sugarcane 3 0	
Russian Thistle	100	bugareanc 5 0	
Ryegrass, Italian	0	Table G Compounds	
Sandbur	30	62 g ai/ha 1 9	
Signalgrass	20	Postemergence	
Sowthistle	95	Sugarcane 0 0	
Spanishneedles	80	Table G Compounds	
Spiderwort	95	31 g ai/ha 1 9	
Surinam Grass	30	Postemergence	
		Sugarcane 0 0	
Table G Comp	ound	Table G Compound Table G	Compound
250 g ai/ha	22	125 g ai/ha 22 62 g ai/ha	22
Preemergence		Preemergence Preemergence	
Barnyardgrass	80	Barnyardgrass 70 Barnyardgrass	30
Bermudagrass	30	Bermudagrass 0 Bermudagrass	0

Bindweed, Field	100	Bindweed, Field	90	Bindweed, Field	90
Black Mustard	75	Black Mustard	65	Black Mustard	60
Bluegrass	60	Bluegrass	30	Bluegrass	0
Bromegrass, Downy	75	Bromegrass, Downy	20	Bromegrass, Downy	0
Chickweed	100	Chickweed	90	Crabgrass, Large	40
Crabgrass, Large	80	Crabgrass, Large	80	Dallisgrass	0
Dallisgrass	50	Dallisgrass	40	Foxtail, Green	0
Foxtail, Green	20	Foxtail, Green	10	Goosegrass	0
Goosegrass	0	Goosegrass	0	Guineagrass	75
Groundsel	50	Guineagrass	90	Itchgrass	20
Guineagrass	95	Itchgrass	40	Johnsongrass	20
Itchgrass	65	Johnsongrass	50	Kochia	98
Johnsongrass	80	Kochia	100	Mallow	75
Kochia	100	Mallow	80	Morningglory	60
Mallow	80	Morningglory	90	Nutsedge, Purple	30
Morningglory	90	Nutsedge, Purple	40	Prickly Sida	65
Nutsedge, Purple	50	Prickly Sida	80	Purslane	50
Prickly Sida	95	Purslane	70	Quackgrass	20
Purslane	75	Quackgrass	20	Ragweed	90
Quackgrass	30	Ragweed	95	Russian Thistle	95
Ragweed	100	Russian Thistle	100	Ryegrass, Italian	0
Russian Thistle	100	Ryegrass, Italian	0	Sandbur	0
Ryegrass, Italian	50	Sandbur	70	Signalgrass	0
Sandbur	85	Signalgrass	10	Sowthistle	90
Signalgrass	80	Sowthistle	100	Spiderwort	95
Sowthistle	100	Spiderwort	100	Surinam Grass	0
Spiderwort	100	Surinam Grass	35		
Surinam Grass	90				
Table G Comp	ound	Table G Comp	ound		
31 g ai/ha	22	16 g ai/ha	22		
Preemergence		Preemergence			
Barnyardgrass	20	Barnyardgrass	10		
Bermudagrass	0	Bermudagrass	0		
Bindweed, Field	75	Bindweed, Field	65		
Black Mustard	35	Black Mustard	30		
Bluegrass	0	Bluegrass	0		
Bromegrass, Downy	0	Bromegrass, Downy	0		

0

Crabgrass, Large

Dallisgrass

Goosegrass

Foxtail, Green

90

95

90

50

50 Chickweed

Chickweed

Chickweed

Dallisgrass

Foxtail, Green

CITCAWCCA	30	CHICKWeed	· ·	
Crabgrass, Large	40	Crabgrass,	Large 0	
Dallisgrass	0	Dallisgrass	0	
Foxtail, Green	0	Foxtail, Gr	een 0	
Goosegrass	0	Goosegrass	0	
Groundsel	0	Guineagrass	0	
Guineagrass	35	Itchgrass	0	
Itchgrass	0	Johnsongras	s 0	
Johnsongrass	0	Kochia	35	
Kochia	70	Mallow	50	
Mallow	50	Morningglor	y 20	
Morningglory	50	Nutsedge, P	urple 0	
Nutsedge, Purple	0	Prickly Sid	a 50	
Prickly Sida	50	Purslane	0	
Purslane	0	Quackgrass	0	
Quackgrass	0	Ragweed	65	
Ragweed	75	Russian Thi	stle 65	
Russian Thistle	75	Ryegrass, I	talian 0	
Ryegrass, Italian	0	Sandbur	0	
Sandbur	0	Signalgrass	0	
Signalgrass	0	Sowthistle	3 5	
Sowthistle	75	Spiderwort	0	
Spiderwort	50	Surinam Gra	ss 0	
Surinam Grass	0			
Table G	Compound	ds	Table G	Compound
500 g ai/ha	1	4 9	375 g ai/ha	1
Preemergence			Preemergence	<u> </u>
Barnyardgrass	70 10	00 95	Barnyardgras	ss 70
Bermudagrass	70 1	00 100	Bermudagrass	70
Bindweed, Field	100 10	00 100	Bindweed, Fi	.eld 100
Black Mustard	100 10	00 100	Black Mustar	d 100
Bluegrass	85 10	00 100	Bromegrass,	Downy 95
Bromegrass, Downy	95 10	00 100	Chickweed	100

100 100 100

95 100 100

90 100 100

Crabgrass, Large 90 100 100

Goosegrass	50	90	95	Groundsel	100		
Groundsel	100	100	-	Guineagrass	100		
Guineagrass	100	100	100	Horseweed	100		
Horseweed	100	100	100	Itchgrass	85		
Itchgrass	90	95	85	Johnsongrass	75		
Johnsongrass	75	95	95	Kochia	100		
Kochia	100	-	-	Mallow	95		
Mallow	95	100	100	Morningglory	100		
Morningglory	100	100	100	Nutsedge, Purple	100		
Nutsedge, Purple	100	100	-	Prickly Sida	100		
Prickly Sida	100	100	100	Purslane	100		
Purslane	100	100	-	Quackgrass	95		
Quackgrass	95	100	100	Ragweed	100		
Ragweed	100	100	100	Russian Thistle	100		
Russian Thistle	100	100	-	Ryegrass, Italian	95		
Ryegrass, Italian	95	100	80	Sandbur	85		
Sandbur	85	100	95	Signalgrass	75		
Signalgrass	95	95	100	Sowthistle	100		
Sowthistle	100	100	-	Spanishneedles	100		
Spanishneedles	100	100	100	Spiderwort	100		
Spiderwort	100	100	100	Surinam Grass	95		
Surinam Grass	100	95	90				
Table G	Compo	unds		Table G C	ompou	ınds	
250 g ai/ha	1	4	9	125 g ai/ha	1	4	9
Preemergence				Preemergence			
Barnyardgrass	50	80	85	Barnyardgrass	20	70	70
Bermudagrass	30	95	95	Bermudagrass	20	90	95
Bindweed, Field	100	100	100	Bindweed, Field	100	100	100
Black Mustard	85	100	100	Black Mustard	80	95	75
Bluegrass	85	80	95	Bluegrass	30	60	30
Bromegrass, Downy	95	100	70	Bromegrass, Downy	20	70	50
Chickweed	95	100	100	Chickweed	95	100	100
Crabgrass, Large	90	100	90	Crabgrass, Large	30	7 5	90
Dallisgrass	50	95	80	Dallisgrass	10	50	70
Foxtail, Green	50	100	100	Foxtail, Green	10	70	85
Goosegrass	50	70	95	Goosegrass	-	60	60
Groundsel	100	100	-	Groundsel	100	95	-

Guineagrass	85	100	100	Guineagrass 70 95	100
Horseweed	100	100	100	Horseweed 95 100	100
Itchgrass	80	80	80	Itchgrass 30 70	60
Johnsongrass	60	85	95	Johnsongrass 40 75	80
Kochia	100	-	_	Kochia 100 -	-
Mallow	95	100	100	Mallow 80 100	100
Morningglory	100	100	100	Morningglory 100 100	100
Nutsedge, Purple	100	100	-	Nutsedge, Purple 100 100	-
Prickly Sida	100	100	100	Prickly Sida 100 100	100
Purslane	95	100	-	Purslane 60 100	-
Quackgrass	90	100	70	Quackgrass 60 90	-
Ragweed	100	100	100	Ragweed 95 100	100
Russian Thistle	100	100	-	Russian Thistle 100 100	-
Ryegrass, Italian	30	100	75	Ryegrass, Italian 10 60	50
Sandbur	70	90	90	Sandbur 30 80	80
Signalgrass	75	95	80	Signalgrass 70 70	80
Sowthistle	100	100	-	Sowthistle 100 100	-
Spanishneedles	100	100	100	Spanishneedles 100 100	100
Spiderwort	100	100	100	Spiderwort 100 100	100
Surinam Grass	95	80	80	Surinam Grass 95 60	70
Table G C	ompou	ınds		Table G Compound	
62 g ai/ha	1	4	9	375 g ai/ha 1	
Preemergence				Preemergence	
Barnyardgrass	0	50	30	Sugarcane 0	
Bermudagrass	10	20	10	Table G Compound	
Bindweed, Field	95	100	95	250 g ai/ha 1	
Black Mustard	30	95	70	Preemergence	
Bluegrass	10	10	10	Sugarcane 0	
Bromegrass, Downy	0	30	10	-	
Chickweed	70	100	-	Table G Compound	
Crabgrass, Large	20	60	70	125 g ai/ha 1	
Dallisgrass	0	0	10	Preemergence	
Foxtail, Green	10	20	20	Sugarcane 0	
Goosegrass	0	10	10	Table G Compound	
Groundsel	60	95	-	62 g ai/ha 1	
Guineagrass	70	95	90	Preemergence	
Horseweed	95	100	100	Sugarcane 0	

Itchgrass	10	70	30
Johnsongrass	20	60	40
Kochia	100	_	-
Mallow	50	100	90
Morningglory	95	100	70
Nutsedge, Purple	10	40	-
Prickly Sida	70	85	95
Purslane	10	60	-
Quackgrass	10	60	70
Ragweed	50	80	95
Russian Thistle	100	-	-
Ryegrass, Italian	0	30	20
Sandbur	0	30	-
Signalgrass	10	50	20
Sowthistle	95	100	-
Spanishneedles	100	100	100
Spiderwort	70	100	100
Surinam Grass	95	30	40

TEST H

5

10

15

This test evaluated the effect of mixtures of compound 1 with diflufenzopyr on several plant species. Seeds of test plants consisting of large crabgrass (DIGSA, Digitaria sanguinalis (L.) Scop.), lambsquarters (CHEAL, Chenopodium album L.), redroot pigweed (AMARE, Amaranthus retroflexus L.), cocklebur (XANST, Xanthium strumarium L.), barnyardgrass (ECHCG; Echinochloa crus-galli (L.) Beauv.), com (ZEAMD, Zea mays L. cv. 'Pioneer 33G26'), scarlet (red) morningglory (IPOCO, *Ipomoea coccinea* L.), giant foxtail (SETFA, Setaria faberi Herrm.) and velvetleaf (ABUTH, Abutilon theophrasti Medik.) were planted in pots containing Redi-Earth® planting medium (Scotts Company, 14111 Scottslawn Road, Marysville, Ohio 43041) comprising spaghnum peat moss, vermiculite, wetting agent and starter nutrients. Seeds of small-seeded species were planted about 1 cm deep; larger seeds were planted about 2.5 cm deep. Plants were grown in a greenhouse using supplemental lighting to maintain a photoperiod of about 14 hours; daytime and nighttime temperatures were about 25-30 °C and 22-25 °C, respectively. Balanced fertilizer was applied through the watering system. The plants were grown for 7 to 11 days so that at time of treatment the plants ranged in height from 2 to 18 cm (1- to 4leaf stage). Treatments consisted of Compound 1 and diflufenzopyr alone and in combination, suspended or dissolved in an aqueous solvent comprising glycerin and Tween nonionic surfactant and applied as a foliage spray using a volume of 541 L/ha. Each

treatment was replicated four times. The application solvent was observed to have no effect compared to untreated check plants. Treated plants and controls were maintained in the greenhouse and watered as needed with care to not wet the foliage for the first 24 hours after treatment. The effects on the plants approximately 3 weeks after treatment were visually compared to untreated controls. Plant response ratings were calculated as the means of the four replicates, based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. Colby's Equation was used to determine the herbicidal effects expected from the mixtures. Colby's Equation (Colby, S. R. "Calculating Synergistic and Antagonistic Responses of Herbicide Combinations," Weeds, 15(1), pp 20–22 (1967)) calculates the expected additive effect of herbicidal mixtures, and for two active ingredients is of the form:

$$P_{a+b} = P_a + P_b - (P_a P_b / 100)$$

wherein P_{a+b} is the percentage effect of the mixture expected from additive contribution of the individual components,

P_a is the observed percentage effect of the first active ingredient at the same use rate as in the mixture, and

P_b is the observed percentage effect of the second active ingredient at the same use rate as in the mixture.

The results and additive effects expected from Colby's Equation are listed in Table H.

Table H – Observed and Expected Results from Compound 1 Alone and in Combination with Diflufenzopyr*

Application	Rate (g a.i./ha)	DIC	SSA	СНІ	EAL	AM.	ARE	XA	NST	ECH	ICG
Cmpd 1	Diflufenzopyr	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Ехр.
125	_	81		100	-	100	_	97	_	90	_
62	-	37	-	100		97	_	98	-	42	_
31	-	7	-	98	_	91	-	87	-	25	-
	50	8		80	_	95	_	68	_	23	_
	25	1	_	76	1	91	_	60	-	10	_
-	12	0	1	61	1	73	_	43	_	5	_
125	50	88	83	100	100	100	100	100	99	93	92
62	25	77	38	100	100	100	100	92	99	85	48
31	12	62	7	100	99	100	98	100	93	85	29

20

15

5

10

Application I	Rate (g a.i./ha)	ZEAMD		IPOCO		SETFA		ABU	JTH
Cmpd 1	Diflufenzopyr	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Ехр.
125		22	-	100	-	65	_	93	-
62	-	5	-	97	_	4	_	26	-
31	-	2	1	92	_	2	-	14	-
	50	0	_	82		59	-	68	-
_	25	0		83	_	58	_	78	-
_	12	0	ı	77	1	41	1	50	_
125	50	56	22	100	100	89	86	100	98
62	25	32	5	100	99	72	60	92	84
31	12	8	2	99	98	73	42	62	57

^{*} Application rates are grams of active ingredient per hectare (g a.i./ha). "Obsd." is observed effect. "Exp." is expected effect calculated from Colby's Equation.

As can be seen from the results listed in Table H, most of the observed results were greater than expected from the Colby Equation, and in some cases much greater. Most notable was the greater than additive effect observed on crabgrass, barnyardgrass, corn and giant foxtail. The increase was less noticeable for other test species, but primarily because the expected effect was already near 100% at the rates tested.

5

111

CLAIMS

What is claimed is:

1. A compound selected from Formula I, an N-oxide or an agriculturally suitable salt thereof,

$$\mathbb{R}^2$$
 \mathbb{R}^3 \mathbb{R}^3

T

5

15

20

25

30

wherein

 R^1 is cyclopropyl optionally substituted with 1–5 R^5 , isopropyl optionally substituted with 1–5 R^6 , or phenyl optionally substituted with 1–3 R^7 ;

 R^2 is $((O)_iC(R^{15})(R^{16}))_kR$;

10 R is CO₂H or a herbicidally effective derivative of CO₂H;

R³ is halogen, cyano, nitro, OR²⁰, SR²¹ or N(R²²)R²³;

 R^4 is $-N(R^{24})R^{25}$ or $-NO_2$;

each R⁵ and R⁶ is independently halogen, C₁-C₂ alkyl or C₁-C₂ haloalkyl;

each R^7 is independently halogen, cyano, nitro, C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_3 – C_6 cycloalkyl, C_3 – C_6 halocycloalkyl, C_1 – C_4 hydroxyalkyl, C_2 – C_4 alkoxyalkyl,

 C_2 – C_4 haloalkoxyalkyl, C_2 – C_4 alkenyl, C_2 – C_4 haloalkenyl, C_3 – C_4 alkynyl, C_3 – C_4 haloalkynyl, hydroxy, C_1 – C_4 alkoxy, C_1 – C_4 haloalkoxy, C_2 – C_4

alkenyloxy, C_2 – C_4 haloalkenyloxy, C_3 – C_4 alkynyloxy, C_3 – C_4 haloalkynyloxy,

 $C_1 - C_4 \ alkylthio, C_1 - C_4 \ haloalkylthio, C_1 - C_4 \ alkylsulfinyl, C_1 - C_4$

haloalkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylsulfonyl, C₂-C₄

alkenylthio, C2-C4 haloalkenylthio, C2-C4 alkenylsulfinyl, C2-C4

 $haloalkenylsulfinyl, C_2-C_4 \ alkenylsulfonyl, C_2-C_4 \ haloalkenylsulfonyl, C_3-C_4$

alkynylthio, C_3 – C_4 haloalkynylthio, C_3 – C_4 alkynylsulfinyl, C_3 – C_4

 $\label{eq:condition} haloalkynylsulfinyl, C_3-C_4 \ alkynylsulfonyl, C_3-C_4 \ haloalkynylsulfonyl, C_1-C_4$

alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆

(alkyl)cycloalkylamino, C_2 – C_6 alkylcarbonyl, C_2 – C_6 alkoxycarbonyl, C_2 – C_6

alkylaminocarbonyl, C₃–C₈ dialkylaminocarbonyl, C₃–C₆ trialkylsilyl, phenyl,

phenoxy and 5- or 6-membered heteroaromatic rings, each phenyl, phenoxy and

5- or 6-membered heteroaromatic ring optionally substituted with one to three

substituents independently selected from R⁴⁵; or

two adjacent R⁷ are taken together as -OCH₂O-, -CH₂CH₂O-, -OCH(CH₃)O-, -OC(CH₃)₂O-, -OCF₂O-, -CF₂CF₂O-, -OCF₂CF₂O- or -CH=CH=CH=CH=;

```
R^{15} \text{ is H, halogen, C}_1-C_4 \text{ alkyl, C}_1-C_4 \text{ haloalkyl, hydroxy, C}_1-C_4 \text{ alkoxy or C}_2-C_4
                           alkylcarbonyloxy;
                  R<sup>16</sup> is H, halogen, C<sub>1</sub>-C<sub>4</sub> alkyl or C<sub>1</sub>-C<sub>4</sub> haloalkyl;
                  R^{20} is H, C_1–C_4 alkyl or C_1–C_3 haloalkyl;
  5
                  R^{21} is H, C_1–C_4 alkyl or C_1–C_3 haloalkyl;
                  R^{22} and R^{23} are independently H or C_1–C_4 alkyl;
                  R<sup>24</sup> is H, C<sub>1</sub>-C<sub>4</sub> alkyl optionally substituted with 1-2 R<sup>30</sup>, C<sub>2</sub>-C<sub>4</sub> alkenyl optionally
                           substituted with 1-2 R<sup>31</sup>, or C<sub>2</sub>-C<sub>4</sub> alkynyl optionally substituted with 1-2 R<sup>32</sup>;
                           or R^{24} is C(=O)R^{33}, nitro, OR^{34}, S(O)_2R^{35} or N(R^{36})R^{37};
                  R^{25} is H, C_1–C_4 alkyl optionally substituted with 1–2 R^{30} or C(=0)R^{33}; or
10
                  R^{24} and R^{25} are taken together as a radical selected from -(CH2)4-, -(CH2)5-,
                           -CH<sub>2</sub>CH=CHCH<sub>2</sub>- and -(CH<sub>2</sub>)<sub>2</sub>O(CH<sub>2</sub>)<sub>2</sub>-, each radical optionally substituted
                           with
                           1-2 R^{38}; or
                  R^{24} and R^{25} are taken together as =C(R^{39})N(R^{40})R^{41} or =C(R^{42})OR^{43};
15
                  each R<sup>30</sup>, R<sup>31</sup> and R<sup>32</sup> is independently halogen, C<sub>1</sub>-C<sub>3</sub> alkoxy, C<sub>1</sub>-C<sub>3</sub> haloalkoxy,
                           C_1–C_3 alkylthio, C_1–C_3 haloalkylthio, amino, C_1–C_3 alkylamino, C_2–C_4
                           dialkylamino or C<sub>2</sub>-C<sub>4</sub> alkoxycarbonyl;
                  each R<sup>33</sup> is independently H, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>3</sub> haloalkyl, C<sub>1</sub>-C<sub>4</sub> alkoxy, phenoxy
20
                           or benzyloxy;
                  R^{34} is H, C_1–C_4 alkyl or C_1–C_3 haloalkyl;
                  R^{35} is C_1-C_4 alkyl or C_1-C_3 haloalkyl;
                  R<sup>36</sup> and R<sup>37</sup> are independently H or C<sub>1</sub>-C<sub>4</sub> alkyl;
                  each R<sup>38</sup> is independently halogen, C<sub>1</sub>-C<sub>3</sub> alkyl, C<sub>1</sub>-C<sub>3</sub> alkoxy, C<sub>1</sub>-C<sub>3</sub> haloalkoxy,
25
                           C<sub>1</sub>-C<sub>3</sub> alkylthio, C<sub>1</sub>-C<sub>3</sub> haloalkylthio, amino, C<sub>1</sub>-C<sub>3</sub> alkylamino, C<sub>2</sub>-C<sub>4</sub>
                           dialkylamino or C<sub>2</sub>-C<sub>4</sub> alkoxycarbonyl;
                  R^{39} is H or C_1–C_4 alkyl;
                  R^{40} and R^{41} are independently H or C_1–C_4 alkyl; or
                  R^{40} and R^{41} are taken together as -(CH<sub>2</sub>)<sub>4</sub>-, -(CH<sub>2</sub>)<sub>5</sub>-, -CH<sub>2</sub>CH=CHCH<sub>2</sub>- or
30
                           -(CH_2)_2O(CH_2)_2-;
                  R^{42} is H or C_1–C_4 alkyl;
                  R^{43} is H or C_1–C_4 alkyl;
                  each R<sup>45</sup> is independently halogen, cyano, nitro, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub> haloalkyl, C<sub>3</sub>-C<sub>6</sub>
                           cycloalkyl, C<sub>3</sub>-C<sub>6</sub> halocycloalkyl, C<sub>2</sub>-C<sub>4</sub> alkenyl, C<sub>2</sub>-C<sub>4</sub> haloalkenyl, C<sub>3</sub>-C<sub>4</sub>
35
                           alkynyl, C<sub>3</sub>-C<sub>4</sub> haloalkynyl, C<sub>1</sub>-C<sub>4</sub> alkoxy, C<sub>1</sub>-C<sub>4</sub> haloalkoxy, C<sub>1</sub>-C<sub>4</sub> alkylthio,
                           C<sub>1</sub>-C<sub>4</sub> haloalkylthio, C<sub>1</sub>-C<sub>4</sub> alkylsulfinyl, C<sub>1</sub>-C<sub>4</sub> alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>
                           alkylamino, C2-C8 dialkylamino, C3-C6 cycloalkylamino, C3-C6
                           (alkyl)cycloalkylamino,
```

5

10

15

20

25

30

35

```
113
                 C_2-C_4 alkylcarbonyl, C_2-C_6 alkoxycarbonyl, C_2-C_6 alkylaminocarbonyl,
                 C<sub>3</sub>-C<sub>8</sub> dialkylaminocarbonyl or C<sub>3</sub>-C<sub>6</sub> trialkylsilyl;
        j is 0 or 1; and
        k is 0 or 1:
provided that:
        (a) when k is 0, then j is 0;
        (b) when R<sup>2</sup> is CH<sub>2</sub>OR<sup>a</sup> wherein R<sup>a</sup> is H, optionally substituted alkyl or benzyl, then
              R<sup>3</sup> is other than cyano;
        (c) when R<sup>1</sup> is phenyl substituted by Cl in each of the meta positions, the phenyl is
              also substituted by R<sup>7</sup> in the para position; and
        (d) when R<sup>1</sup> is phenyl substituted by R<sup>7</sup> in the para position, said R<sup>7</sup> is other than
             tert-butyl.
                The compound of Claim 1 wherein
        R<sup>2</sup> is CR<sup>2</sup> is CO<sub>2</sub>R<sup>12</sup>, CH<sub>2</sub>OR<sup>13</sup>, CH(OR<sup>46</sup>)(OR<sup>47</sup>), CHO, C(=NOR<sup>14</sup>)H,
                C(=NNR^{48}R^{49})H, (O)_iC(R^{15})(R^{16})CO_2R^{17} or C(=O)N(R^{18})R^{19}, C(=S)OR^{50},
                C(=O)SR^{51} or C(=S)SR^{52} or C(=NR^{53})YR^{54};
        R<sup>12</sup> is H; or a radical selected from C<sub>1</sub>-C<sub>14</sub> alkyl, C<sub>3</sub>-C<sub>12</sub> cycloalkyl, C<sub>4</sub>-C<sub>12</sub>
                alkylcycloalkyl, C<sub>4</sub>-C<sub>12</sub> cycloalkylalkyl, C<sub>2</sub>-C<sub>14</sub> alkenyl and C<sub>2</sub>-C<sub>14</sub> alkynyl,
                 each radical optionally substituted with 1-3 R<sup>27</sup>; or -N=C(R<sup>55</sup>)R<sup>56</sup>;
        R<sup>13</sup> is H, C<sub>1</sub>-C<sub>10</sub> alkyl optionally substituted with 1-3 R<sup>28</sup>, or benzyl;
        R<sup>14</sup> is H, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub> haloalkyl or benzyl;
        R<sup>17</sup> is C<sub>1</sub>-C<sub>10</sub> alkyl optionally substituted with 1-3 R<sup>29</sup>, or benzyl; and
        R^{18} is H, C_1–C_4 alkyl, hydroxy, C_1–C_4 alkoxy or S(O)_2R^{57};
        R^{19} is H or C_1–C_4 alkyl;
        each R<sup>26</sup> is independently halogen, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>3</sub> haloalkyl, C<sub>1</sub>-C<sub>3</sub> alkoxy, C<sub>1</sub>-
                C<sub>3</sub> haloalkoxy, C<sub>1</sub>-C<sub>3</sub> alkylthio or C<sub>1</sub>-C<sub>3</sub> haloalkylthio;
        each R<sup>27</sup> is independently halogen, hydroxycarbonyl, C<sub>2</sub>-C<sub>4</sub> alkoxycarbonyl, hydroxy,
                C_1–C_4 alkoxy, C_1–C_4 haloalkoxy, C_1–C_4 alkylthio, C_1–C_4 haloalkylthio, amino,
                C_1-C_4 alkylamino, C_2-C_4 dialkylamino, -CH\{O(CH_2)_n\} or phenyl optionally
                substituted with 1-3 R44; or
        two \mathbb{R}^{27} are taken together as -OC(O)O- or -O(C(\mathbb{R}^{58})(\mathbb{R}^{58}))<sub>1-2</sub>O-; or
        two R<sup>27</sup> are taken together as an oxygen atom to form, with the carbon atom to which
                they are attached, a carbonyl moiety;
        each R<sup>28</sup> is independently halogen, C<sub>1</sub>-C<sub>4</sub> alkoxy, C<sub>1</sub>-C<sub>4</sub> haloalkoxy, C<sub>1</sub>-C<sub>4</sub>
                alkylthio, C<sub>1</sub>-C<sub>4</sub> haloalkylthio, amino, C<sub>1</sub>-C<sub>4</sub> alkylamino or C<sub>2</sub>-C<sub>4</sub>
                dialkylamino; or
```

two R²⁸ are taken together as an oxygen atom to form, with the carbon atom to which

they are attached, a carbonyl moiety;

```
each R^{29} is independently halogen, C_1–C_4 alkoxy, C_1–C_4 haloalkoxy, C_1–C_4 alkylthio, C_1–C_4 haloalkylthio, amino, C_1–C_4 alkylamino or C_2–C_4 dialkylamino;
```

each R^{44} is independently halogen, C_1 – C_4 alkyl, C_1 – C_3 haloalkyl, hydroxy, C_1 – C_4 alkoxy, C_1 – C_3 haloalkoxy, C_1 – C_3 alkylthio, C_1 – C_3 haloalkylthio, amino, C_1 – C_3 alkylamino, C_2 – C_4 dialkylamino or nitro;

R⁴⁶ and R⁴⁷ are independently C₁-C₄ alkyl or C₁-C₃ haloalkyl; or

 R^{46} and R^{47} are taken together as -CH₂CH₂-, -CH₂CH(CH₃)- or -(CH₂)₃-;

 R^{48} is H, C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_2 – C_4 alkylcarbonyl, C_2 – C_4 alkoxycarbonyl or benzyl;

 R^{49} is H or C_1 – C_4 alkyl or C_1 – C_4 haloalkyl;

 R^{50} , R^{51} and R^{52} are H; or a radical selected from C_1 – C_{14} alkyl, C_3 – C_{12} cycloalkyl, C_4 – C_{12} alkylcycloalkyl, C_4 – C_{12} cycloalkylalkyl, C_2 – C_{14} alkenyl and C_2 – C_{14} alkynyl, each radical optionally substituted with 1–3 R^{27} ;

15 Y is O, S or NR^{61} ;

5

10

R⁵³ is H, C₁-C₃ alkyl, C₁-C₃ haloalkyl or C₂-C₄ alkoxyalkyl;

 R^{54} is C_1-C_3 alkyl, C_1-C_3 haloalkyl or C_2-C_4 alkoxyalkyl; or

 R^{53} and R^{54} are taken together as -(CH₂)₂-, -CH₂CH(CH₃)- or -(CH₂)₃-;

R⁵⁵ and R⁵⁶ are independently C₁-C₄ alkyl;

20 R^{57} is C_1-C_4 alkyl, C_1-C_3 haloalkyl or $NR^{59}R^{60}$;

each R⁵⁸ is independently selected from H and C₁-C₄ alkyl;

R⁵⁹ and R⁶⁰ are independently H or C₁-C₄ alkyl;

 R^{61} is H, C_1 – C_3 alkyl, C_1 – C_3 haloalkyl or C_2 – C_4 alkoxyalkyl; and n is an integer from 1 to 4.

- The compound of Claim 2 wherein R³ is halogen.
 - 4. The compound of Claim 2 wherein R^1 is cyclopropyl or phenyl substituted with a halogen, methyl or methoxy radical in the para position and optionally with 1-2 radicals selected from halogen and methyl in other positions; and R^4 is $-N(R^{24})R^{25}$.
- 5. The compound of Claim 4 wherein R^2 is CO_2R^{12} , CH_2OR^{13} , CHO or $CH_2CO_2R^{17}$.
 - 6. The compound of Claim 5 wherein R^{24} is H, C(O) R^{33} or C_1 – C_4 alkyl optionally substituted with R^{30} ; R^{25} is H or C_1 – C_2 alkyl; or R^{24} and R^{25} are taken together as =C(R^{39})N(R^{40}) R^{41} .
 - 7. The compound of Claim 6 wherein R^2 is CO_2R^{12} ; and R^{24} and R^{25} are H.
- 35 8. The compound of Claim 7 wherein R^{12} is H, C_1 – C_4 alkyl or benzyl.
 - 9. The compound of Claim 1 selected from the group consisting of:

methyl 6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylate, ethyl 6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylate, phenylmethyl 6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylate, 6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylic acid monosodium salt, methyl 6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylate, phenylmethyl 6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylate, 6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylic acid monosodium salt, ethyl 6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylate, methyl 6-amino-5-chloro-2-(4-chlorophenyl)-4-pyrimidinecarboxylate, ethyl 6-amino-5-chloro-2-(4-chlorophenyl)-4-pyrimidinecarboxylate, 6-amino-5-chloro-2-(4-chlorophenyl)-4-pyrimidinecarboxylate, methyl 6-amino-2-(4-bromophenyl)-5-chloro-4-pyrimidinecarboxylate, and 6-amino-2-(4-bromophenyl)-5-chloro-4-pyrimidinecarboxylate, and 6-amino-2-(4-bromophenyl)-5-chloro-4-pyrimidinecarboxylic acid.

5

10

- 9. A herbicidal mixture comprising a herbicidally effective amount of a compound of Claim 1 and an effective amount of at least one additional active ingredient selected from the group consisting of an other herbicide and a herbicide safener.
 - 10. A herbicidal mixture comprising synergistically effective amounts of a compound of Claim 1 and an auxin transport inhibitor.
- 20 11. A herbicidal composition comprising a herbicidally effective amount of a compound of Claim 1 and at least one of a surfactant, a solid diluent or a liquid diluent.
 - 12. A method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of Claim 1.
- 25 13. A herbicidal composition comprising a herbicidally effective amount of a compound of Claim 1, an effective amount of at least one additional active ingredient selected from the group consisting of an other herbicide and a herbicide safener, and at least one of a surfactant, a solid diluent or a liquid diluent.

TITLE HERBICIDAL PYRIMIDINES

ABSTRACT OF THE DISCLOSURE

Compounds of Formula I, and their N-oxides and agriculturally suitable salts, are disclosed which are useful for controlling undesired vegetation

$$\mathbb{R}^2$$
 \mathbb{R}^3 \mathbb{R}^4

I

wherein

15

20

R¹ is cyclopropyl optionally substituted with 1-5 R⁵, isopropyl optionally substituted with 1-5 R⁶, or phenyl optionally substituted with 1-3 R⁷;

10 R^2 is $((O)_iC(R^{15})(R^{16}))_kR$;

R is CO₂H or a herbicidally effective derivative of CO₂H;

R³ is halogen, cyano, nitro, OR²⁰, SR²¹ or N(R²²)R²³;

 R^4 is $-N(R^{24})R^{25}$ or $-NO_2$;

j is 0 or 1; and k is 0 or 1; provided that when k is 0, then j is 0;

and R⁵, R⁶, R⁷, R¹⁵, R¹⁶, R²⁰, R²¹, R²², R²³, R²⁴ and R²⁵ are as defined in the disclosure.

Also disclosed are compositions comprising the compounds of Formula I and a method for controlling undesired vegetation which involves contacting the vegetation or its environment with an effective amount of a compound of Formula I. Also disclosed are compositions comprising a compound of Formula I and at least one additional active ingredient selected from the group consisting of an other herbicide and a herbicide safener.