Fundamentos de regresión lineal

German Rosati german.rosati@gmail.com

UNTREF - UNSAM - CONICET

27 de marzo de 2019

Hoja de ruta

Temas a tocar

Modelos de regresión lineal y logística

- Forma funcional
- Interpretación de parámetros
- Evaluación
- Problemas...

- Forma de proponer hipótesis sobre la forma en que se combinan variables
- En general, tienen esta forma

$$Y = f(X) + \epsilon \tag{1}$$

- Problema: estimar f(X)
 - Suponer que Y es una combinación lineal de las X
 - ullet A su vez Y es una variable cuantitativa
 - Terreno propicio para la regresión lineal

Fundamentos

En una regresión lineal, asumimos que la relación entre los predictores
 X y la respuesta Y toma la siguiente forma

$$y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$
 (2)

• En general, buscaremos estimar los parámetros del modelo, por lo cual, dadas las estimaciones $\hat{\beta}_0$ y $\hat{\beta}_j$, definimos una nueva predicción del valor \hat{Y} como

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \dots + \hat{\beta}_p X_p + \epsilon$$
 (3)

• β_0 es el intercepto y β_j es la pendiente para la variable X_j

Fundamentos

- Si $\hat{y_i}$ representa la predicción para el i-ésimo caso condicionado a los valores de X_i , $\implies \epsilon_i = (\hat{y_i} y_i)$ es el *residuo* para ese i-ésimo caso
- Definimos a la suma de los residuos al cuadrado (RSS) como $RSS = \epsilon_1^2 + \epsilon_2^2 + \epsilon_3^2 + ... + \epsilon_n^2$, o, de forma equivalente
- Buscamos estimar los valores de $\beta_0, \beta_1, ..., \beta_p$ como el valor que minimiza el RSS

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$= \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 X_1 - \hat{\beta}_2 X_2 - \dots - \hat{\beta}_p X_p)^2$$
(4)

• RSS es una medida de la variabilidad de la variable dependiente que NO es explicada por nuestro modelo... nuestra "ignorancia"

Ejemplo 1

- Modelo simple: predecir las ventas de una emprsa en función del gasto que realizan en publicidad para TV
- ¿Cuántas variables hay?
- ¿Qué función cumple cada una?

$$Y = \beta_0 + \beta_1 X + \epsilon$$

$$sales = \beta_0 + \beta_1 x TV + \epsilon$$
(5)

• Asumimos que la relación es lineal

Ejemplo 1

- Infinitas rectas pasan por esta nube de puntos
- Cada una se caracteriza por un set de parámetros: (β_0, β_1)
- Queremos encontrar la que mejor ajusta: la que minimiza el RSS

Figura: Scatter plot de gasto en TV y ventas [1]

Ejemplo 1

Figura: Esquema de valores de RSS en función de β_0 y β_1 [1]

- Para cada combinación (β_0, β_1) se podría calcular su *RSS* correspondiente.
- Intuición: pruebo todas las combinaciones posibles de (β_0, β_1) y elijo la de menor RSS

Ejemplo 1

Figura: Esquema de valores de *RSS* en función de β_0 y β_1 [1]

 En regresión lineal forma analítica de resolucion.
 Derivando sobre la ecuación del RSS se obtienen las ecuaciones normales:

$$\beta_{1} = \frac{\sum (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum (X_{i} - \bar{X})^{2}}$$
 (6)
$$\beta_{0} = \bar{y} - \beta_{1}\bar{X}$$

Otros métodos... Descenso de gradiente

Ejemplo 1 - Coeficientes

	Coefficient	Std. error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

Figura: Coeficientes β estimados para TV y Sales [1]

- ¿Cómo se interpretan?: β_p Efecto marginal
- ¿Qué significa cada columna de la tabla?

Ejemplo 1 - Coeficientes

Intervalo de confianza

Error estándard:

$$SE(\beta_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$
 (7)

Intervalo de confianza:

$$\beta_1 \pm 2 \times SE(\beta_1) \tag{8}$$

- Hay un aproximadamente un 95 % de chances de que el intervalo contenga el valor verdadero del parámetro.
- Para el ejemplo, el intervalo de confianza de 95 % para β_1 es [0,042,0,053]

Ejemplo 1 - Coeficientes

Test de hipótesis

- Hipótesis más común:
 - H_O : No hay relación entre X y $Y \beta_1 = 0$
 - H_A : Hay relación entre X y $Y \beta_1 \neq 0$
- Estadístico t:

$$t = \frac{\beta_1 - 0}{SE(\beta_1)} \tag{9}$$

Muchas medidas:

Coeficiente de determinación:

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} \tag{10}$$

dónde $TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$

Es decir, la proporción de la varianza de la variable dependiente que es explicada por el modelo

- $MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- $RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2}$

Volvamos al comienzo...

$$y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$
 (11)

- Interpretamos cada β_j como el efecto promedio sobre Y mantiendo todos los demás factores -X's- constantes
- Nuestro modelo se transforma en

$$sales = \beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times diarios + \epsilon$$
 (12)

Interpretación

- Escenario ideal:
 - Diseño balanceado
 - Cada coeficiente puede ser interpretado y testeado de forma separada
 - Las interpretaciones estilo "efecto de X_j sobre Y manteniendo el resto constante" son viables
- La correlación entre los predictores trae problemas
 - La varianza de los predictores tiende a aumentar
 - Las interpretaciones se vuelven más imprecisas: no funciona el "manteniendo todo lo demás constante" porque cuando X_j cambia, el resto también
- Abstenerse de hacer interpretaciones causales

Ejemplo 2

	Coefficient	Std. Error	t-statistic	p-value
Intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

Correlations:				
	TV	radio	newspaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

Figura: Coeficientes β estimados para TV, radio, diarios y Sales [1]

Algunas preguntas relevantes

- ¿Es al menos uno de los predictores relevantes para la predicción de y?
 - Estadístico F:

$$F = \frac{(TSS - RSS)/p}{RSS/(n - p - 1)}$$
(13)

Quantity	Value
Residual Standard Error	1.69
R^2	0.897
F-statistic	570

Figura: Prueba F y R^2 para regresión completa [1]

Evaluación: ¿Qué variables son importantes?

- Área más amplia llamada model selection
- Muchos enfoques y técnicas
 - Best Subset Selection: ajustamos todos los modelos posibles para todos los subsets de variables y elegimos el mejor basado en alguna métrica de error.
 - *Problema:* generalmente no podemos examinar TODOS los modelos posibles. Hay 2^p modelos posibles. Para p=40 hay más de 1.000.000.000 de modelos.
 - Necesitamos algún enfoque de selección automático y que achique el espacio de búsqueda

Evaluación: ¿Qué variables son importantes?

Forward Selection:

- **1** Empezamos con modelo nulo: contiene solo β_0
- Fiteamos p modelos simples (un predictor) y elegimos el mejor en térmimos de RSS
- Sagregamos a ese modelo la variable que mejor funciona en un modelo de dos variables
- Seguimos hasta que se cumple algún criterio de corte

Evaluación: ¿Qué variables son importantes?

Backward Selection:

- Empezamos con un modelo con todas las variables
- Eliminamos la variable con mayor p-valor en la prueba t
- $oldsymbol{3}$ Fiteamos el nuevo modelo con (p-1) variables y volvemos a eliminar la variable con mayor p-valor
- Seguimos hasta que se cumple algún criterio de corte

Evaluación: ¿Qué variables son importantes?

- Hay muchos criterios para elegir un modelo "óptimo" en el camino de modelos construidos por la selección Forward o Backward
 - Cp de Mallow
 - Akaike Information Criteria (AIC)
 - Bayesian Information Criteria (BIC)
 - R² ajustado
 - Cross-Validation

Interacciones entre predictores

- Pese a su simplicidad, es posible agregar complejidad a un modelo lineal
- Podemos modelar la interacción entre predictores a través del producto X_1X_2
- El modelo adquiere la siguiente forma

$$y_{i} = \beta_{0} + \beta_{1}X_{1} + \beta_{2}X_{2} + \beta_{3}X_{1}X_{2} + \epsilon$$

= \beta_{0} + (\beta_{1} + \beta_{3}X_{2})X_{1} + \beta_{2}X_{2} + \epsilon} (14)

 Principio jerárquico: si se incluye una interacción en el modelo, debe incluirse también los efectos de orden menor (aún cuando los p-valores no sean significativos)

Extensiones del Regresión Lineal

Interacciones entre predictores - Ejemplo 3

- Supongamos que en el modelo anterior que el impacto de un incremento del gasto en TV afecta de alguna forma la efectividad de gasto en radio
- En esta situación, dado un presupuesto fijo quizás sea más efectivo alocarlo en ambas variables
- Efecto interacción

Extensiones del Regresión Lineal

Interacciones entre predictores - Ejemplo 3

Nuestro modelo:

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + +\beta_3 \times radio \times TV + \epsilon$$

= $\beta_0 + (\beta_1 + \beta_3 \times radio) \times TV + \beta_2 \times radio + \epsilon$ (15)

Resultados

	Coefficient	Std. Error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
$ extsf{TV} imes extsf{radio}$	0.0011	0.000	20.73	< 0.0001

Figura: Resultados de regresión con términos de interacción[1]

Extensiones del Regresión Lineal

Interacciones entre predictores - Ejemplo 3

- ¿Es relevante la interacción?
- $R^2 = 0.98$ ¿Qué pueden decir del ajuste respecto al modelo anterior?
- Los coeficientes sugieren que un incremento de la publicidad en TV de \$1.000 se asocia con un incremento en las ventas de $(\beta_1 + \beta_3 \times radio) \times 1,000 = 19 + 1,1 \times radio$

Introduciendo no linealidad

- Diferentes formas funcionales:
 - Log-Log:

$$ln(y_i) = \beta_0 + \beta_1 ln(X_i) + \epsilon \tag{16}$$

• Inversas:

$$y_i = \beta_0 + \beta_1 \frac{1}{X_i} + \epsilon \tag{17}$$

Regresiones polinómicas

$$y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3 + \dots + \beta_p X_i^p + \epsilon$$
 (18)

Predictores cualitativos

- Algunos predictores no son cuantitativos sino categóricos
- Ejemplo: pensemos en modelar el monto de deuda de una persona en función de la condición de estudiante y del ingreso
 - Creamos una nueva variable

$$genero_i = \begin{cases} 1 & \text{si la i-\'esima persona es mujer} \\ 0 & \text{si la i-\'esima persona es estudiante} \end{cases}$$

• El modelo resulta en

$$deuda_i \approx \beta_0 + \beta_1 \times ingreso + \beta_2 \times estud$$

Predictores cualitativos

Entonces.

$$deuda \approx \beta_0 + \beta_1 \times ingreso + \begin{cases} \beta_2 & \text{if } estud = 1\\ 0 & \text{if } estud = 0 \end{cases}$$

$$\approx \beta_1 \times ingreso + \begin{cases} \beta_0 + \beta_2 & \text{if } estud = 1\\ \beta_2 & \text{if } estud = 0 \end{cases}$$

$$(19)$$

Predictores cualitativos

Si hubiera interacción....

$$\begin{aligned} \textit{deuda} \approx & \beta_0 + \beta_1 \times \textit{ingreso} + \begin{cases} \beta_2 + \beta_3 \times \textit{income} & \text{if } \textit{estud} = 1 \\ 0 & \text{if } \textit{estud} = 0 \end{cases} \\ \approx & \begin{cases} (\beta_0 + \beta_2) + (\beta_1 + \beta_3) \times \textit{income} & \text{if } \textit{estud} = 1 \\ \beta_0 + \beta_1 \times \textit{income} & \text{if } \textit{estud} = 0 \end{cases} \end{aligned}$$

$$(20)$$

Predictores cualitativos

Figura: IZQ: sin interacción ; DER: con interacción [1]

Modelo Lineal y Overfitting

Regularización

- ¿Qué hacemos con el overfitting?
- Una forma es hacer model selection...
- Otra es utilizar técnicas de regularización.
- El objetivo es introducir una restricción en la función de costo (RSS la función que se minimiza) y con eso forzar a los β a reducir su valor
- Ridge:

$$CF = \sum_{i=1}^{N} (y_i - \beta_0 \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \beta_j^2 = RSS + \lambda \beta_j^2$$
 (21)

LASSO:

$$CF = \sum_{i=1}^{N} (y_i - \beta_0 \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda |\beta_j| = RSS + \lambda |\beta_j|$$
 (22)

Modelo Lineal y Overfitting

Regularización

- Se parte de la minimización de RSS habitual + una restricción $\lambda | \sum_{i=1}^{p} \beta_{i} |$ que tiene el efecto de reducir los coeficientes β_{i} estimados
- λ es un hiperparámetro del modelo que controla el impacto de la penalización y se estima mediante *cross validation*
- Ridge se inventó originalmente para lidiar con el problema de la multicolinealidad. Sesga los coeficientes para reducir la varianza
- Ambos "encogen" los coeficientes hacia cero. LASSO, además, hace que algunos sean iguales a cero
- LASSO, entonces, realiza model selection
- Es una formalización de un proceso que muchas veces se hace artesanalmente

Referencias bibliográficas I

James, G., Witten, D., Hastie, T., and Tibshirani, R.

An Introduction to Statistical Learning – with Applications in R, vol. 103 of Springer Texts in Statistics.

Springer, New York, 2013.