Problemas Tema 3. Topología I

Doble grado en ingeniería informática y matemáticas Curso 2021–22

- **1.** Sea X un conjunto y T, T' dos topologías en X tales que $T \subset T'$. Probar que si (X, T') es conexo entonces (X, T) también lo es. Dar un ejemplo en el que (X, T) es conexo y (X, T') no lo es.
- **2.** Sea (X,T) un espacio topológico y $A \subset X$ un subconjunto arbitrario. Sea $B \subset X$ un subconjunto conexo tal que $B \cap A \neq \emptyset$, $B \cap (X \setminus A) \neq \emptyset$. Probar que $B \cap \partial A \neq \emptyset$. ¿Es cierto el resultado si el conjunto B no es conexo?
- **3.** Para cada n ∈ \mathbb{N} se considera la recta:

$$R_n = \{(x, y) \in \mathbb{R}^2 : y = 1/n\}$$

y la recta límite $R_{\infty} = \{(x, y) \in \mathbb{R}^2 : y = 0\}$. Sea $X = \left(\bigcup_{n \in \mathbb{N}} R_n\right) \cup R_{\infty}$.

- (1) Describir las componentes conexas de X.
- (2) ¿Son las componentes conexas de *X* subconjuntos abiertos de *X*?
- **4.** Si X e Y son espacios topológicos conexos y $A \subsetneq X$, $B \subsetneq Y$, probar que $(X \times Y) \setminus (A \times B)$ es conexo.
- **5.** Consideramos en $[0,1] \subset \mathbb{R}$ la topología inducida por la topología usual en \mathbb{R} . Sea $f:[0,1] \to [0,1]$ una aplicación continua. Probar que, para todo $n \in \mathbb{N}$, existe $x_n \in [0,1]$ tal que $f(x_n) = x^n$.
- **6.** Estudiar las componentes conexas de ([-1,1],T), donde T es la topología

$$T = \{ U \subset X : 0 \notin U \circ (-1, 1) \subset U \}.$$

7.– Sea X un conjunto, $A \subset X$. Se considera la topología

$$T = \{U \subset X : A \subset U\} \cup \{\emptyset\}.$$

Estudiar las componentes conexas de (X, T).

8.– Estudiar las componentes conexas de \mathbb{R} con la topología de Sorgenfrey.

- **9.–** Si (X, T) es un espacio topológico compacto y $T' \subset T$, probar que (X, T') es compacto. ¿Es cierto el resultado si $T \subset T'$?
- **10.** Estudiar los subconjuntos compactos de $\mathbb N$ con la topología de los complementos finitos.
- **11.**− Sea $K = \{1/n : n \in \mathbb{N}\} \subset \mathbb{R}$. Consideramos en \mathbb{R} la topología T_K generada por la base:

$$\mathcal{B} = \{(a, b) : a < b\} \cup \{(a, b) \setminus K : a < b\}.$$

- (1) ¿Es [0, 1] un subconjunto compacto de (\mathbb{R} , T_K)?
- (2) Probar que (\mathbb{R}, T_K) es conexo.
- (3) Probar que (\mathbb{R}, T_K) no es conexo por arcos.
- **12.** Probar que un espacio métrico conexo con más de un punto es no numerable. (Indicación: si X es conexo y $x \neq y$, probar que para cada 0 < r < d(x, y) el conjunto $\overline{B}(x, r) \setminus B(x, r)$ es no vacío).

Solución al ejercicio 9. Como (X,T) es compacto y la aplicación $Id:(X,T)\to (X,T')$ es continua porque $T'\subset T$, se tiene que (X,T') es compacto (imagen de un espacio compacto por una aplicación continua).

Si (X, T') es compacto y $T' \subset T$ entonces (X, T) no es, en general, un espacio compacto. Por ejemplo, si X es un conjunto infinito y T_t , T_D son las topologías trivial y discreta en X, entonces $T_t \subset T_D$, (X, T_t) es compacto y (X, T_D) no lo es.

Solución al ejercicio 10. Veamos en primer lugar que (X,T_{CF}) es compacto. Sea $\{U_i\}_{i\in I}$ un recubrimiento abierto de X. Sea $U_{i_0} \neq \emptyset$. Si $U_{i_0} = X$ entonces $\{U_{i_0}\}$ es un subrecubrimiento finito de X. Si $U_{i_0} \neq X$ entonces $U_{i_0} = X \setminus \{x_1, \dots, x_k\}$. Para cada $j \in \{i, \dots, k\}$ elegimos un conjunto U_{i_j} tal que $x_j \in U_{i_j}$. Entonces $\{U_{i_0}, U_{i_1}, \dots, u_{i_k}\}$ es un subrecubrimiento finito de X.

Si $A \subset X$ entonces $(T_{CF})_A$ es la topología de los complementos finitos en A. Por el párrafo anterior $(A, (T_{CF})_A)$ es un espacio compacto.

Solución al ejercicio 11. (1) El subconjunto [0, 1] no es compacto en (\mathbb{R}, T_K) : consideramos los conjuntos

$$U_n = \left(\frac{1}{n+1}, \frac{1}{n-1}\right), \quad n \in \mathbb{N},$$

que pertenecen a T_K y verifican $U_n \cap K = \{1/n\}$. Entonces

$$\{\mathbb{R}\setminus K\}\cup\{U_n\}_{n\in\mathbb{N}}$$

es un recubrimiento de [0,1] por abiertos de T_K del que no puede extraerse ningún subrecubrimiento finito.

(2) Consideramos los conjuntos $A = (-\infty, 0)$ y $B = (0, +\infty)$. La topología inducida $(T_K)_A$ coincide con la topología usual $(T_u)_A$ restringida a A. Del mismo modo, $(T_K)_B = (T_u)_B$. Por tanto, A, B son subconjuntos conexos de (\mathbb{R}, T_K) (los subconjuntos conexos de \mathbb{R} con la topología usual son los intervalos). Las clausuras \overline{A} , \overline{B} en (\mathbb{R}, T_K) son también subconjuntos conexos en (\mathbb{R}, T_K) . Es fácil comprobar que

$$\overline{A} = (-\infty, 0], \qquad \overline{B} = [0, +\infty).$$

Por tanto, (\mathbb{R}, T_K) es conexo porque es la unión de dos subconjuntos conexos, \overline{A} y \overline{B} , con intersección no vacía.

(3) Veamos que no existe una aplicación continua (un arco) $\gamma:([0,1],(T_u)_{[0,1]}) \to (\mathbb{R}, T_K)$ tal que $\gamma(0) = 0, \gamma(1) = 1$. Sea

$$t_0 = \sup\{t \in [0,1] : \gamma(t) \in (-\infty,0)\}.$$

Entonces $t_0 < 1$ y $\gamma(t) > 0$ para todo $t \in (t_0, 1]$. Como γ es continua, $\gamma^{-1}(\mathbb{R} \setminus K)$ es un abierto de la topología usual restringida a [0, 1] que contiene a t_0 . Existe entonces $\varepsilon > 0$ tal que $t_0 + \varepsilon < 1$ y $(t_0 - \varepsilon, t_0 + \varepsilon) \cap [0, 1] \subset \gamma^{-1}(\mathbb{R} \setminus K)$. Por tanto $\gamma([t_0, t_0 + \varepsilon)) \subset \mathbb{R} \setminus K$. Pero $\gamma([t_0, t_0 + \varepsilon))$ es un subconjunto conexo que contiene a $\gamma(t_0) = 0$. Entonces $\gamma([t_0, t_0 + \varepsilon))$ está contenido en la componente conexa C_0 de $\mathbb{R} \setminus K$ que contiene a $\gamma(t_0) = 0$. Un cálculo sencillo demuestra que $\gamma(t_0) = 0$ 0 para todo $\gamma(t_0) = 0$ 1. Esto es imposible porque $\gamma(t) > 0$ 0 para todo $\gamma(t_0) = 0$ 1.

Solución al ejercicio 12. Sean $x, y \in X$, $x \neq y$. Sea $r_0 = d(x, y) > 0$. Para todo r > 0,

$$\partial B(x,r) = \overline{B(x,r)} \setminus B(x,r) \subset \overline{B}(x,r) \setminus B(x,r) = \{z \in X : d(z,x) = r\} = S(x,r).$$

Por tanto, la frontera de la bola abierta B(x, r) de radio r está contenida en la esfera S(x, r) para todo r > 0.

Veamos que, para $r \in (0, r_0)$, la frontera $\partial B(x, r)$ es no vacía. Eligiendo un punto en cada una de estas fronteras, que son disjuntas porque están contenidas en esferas de centro x y radios distintos, obtenemos un subconjunto no numerable de X. Por tanto, X es no numerable.

Para ver que $\partial B(x,r) \neq \emptyset$ cuando $r \in (0,r_0)$ razonamos por contradicción: si existe $r \in (0,r_0)$ tal que $\partial B(x,r) = \emptyset$. Entonces

(*)
$$X = B(x,r) \cup \text{ext}(B(x,r)) = B(x,r) \cup \text{int}(X \setminus B(x,r)).$$

Como $d(y, x) = r_0 > r$, se tiene que

$$y \in X \setminus \overline{B}(x,r) \subset \operatorname{int}(X \setminus B(x,r))$$

porque $X \setminus \overline{B}(x,r)$ es un subconjunto abierto de $X \setminus B(x,r)$. Entonces (*) permite expresar X como unión de dos conjuntos abiertos, disjuntos y no vacíos. Esto contradice la hipótesis de que X es conexo y demuestra que $\partial B(x,r) \neq \emptyset$.