

Ensemble Models Demystified

Ensembles: Why do we care?

- Good performance
- General purpose
- Usually easier to train than other fancy techniques
- Really popular in industry and ML competitions

Why this talk?

Theory

```
\begin{split} &|D(T_{*,e}a,b)| \leq 2 \\ &|\varphi(S_{*}b)|\varphi(S_{*}b)|\varphi(S_{*}b)| \leq 2 \\ &|\varphi(S_{*}b)|\varphi(S_{*}b)|\varphi(S_{*}b)| \leq 2 \\ &|\varphi(S_{*}b)|\varphi(S_{*}b)| \leq 2 \\ &|\varphi(S_{*}b)| \leq 2 \\ &|\varphi(S_{*}
```


Why this talk?

Theory

$$\begin{split} &\left| D\left(T, e, a, b\right) \right| \leq 2 \\ &\gamma\left(S, e\right) \neq \left(S, e\right) \leq \left(\left(S, e, d\right)\right) \\ &\left| L_{1} \right| \leq \left(\left(S, e, d\right)\right) \\ &\left| L_{2} \right| \leq \frac{1}{16} \left(\frac{1}{160} \right) \frac{1}{16} \left(\frac{1}{160} \right) \frac{1}{160} \left(\frac{1}{160} \right) \\ &\left| L_{2} \right| \leq \frac{1}{16} \left(\frac{1}{160} \right) \frac{1}{160} \left(\frac{1}{160} \right) \frac{1}{160} \left(\frac{1}{160} \right) \\ &\left| L_{2} \right| \leq \frac{1}{16} \left(\frac{1}{160} \right) \frac{1}{160} \left(\frac{1}{160} \right) \frac{1}{160} \left(\frac{1}{160} \right) \\ &\left| L_{3} \right| \leq \frac{1}{160} \left(\frac{1}{160} \right) \frac{1}{160} \left(\frac{1}{160} \right) \\ &\left| L_{3} \right| \left(\frac{1}{160} \right) \frac{1}{160} \left(\frac{1}{160} \right) \frac{1}{160} \left(\frac{1}{160} \right) \\ &\left| L_{3} \right| \left(\frac{1}{160} \right) \frac{1}{160} \left(\frac{1}{160} \right) \frac{1}{160} \left(\frac{1}{160} \right) \\ &\left| L_{3} \right| \left(\frac{1}{160} \right) \frac{1}{160} \left(\frac{1}{160} \right) \frac{1}{160} \left(\frac{1}{160} \right) \\ &\left| L_{3} \right| \left(\frac{1}{160} \right) \frac{1}{160} \left(\frac{1}{160} \right) \frac{1}{160} \left(\frac{1}{160} \right) \\ &\left| L_{3} \right| \left(\frac{1}{160} \right) \frac{1}{160} \left(\frac{1}{160} \right) \frac{1}{160} \left(\frac{1}{160} \right) \\ &\left| L_{3} \right| \left(\frac{1}{160} \right) \frac{1}{160} \left(\frac{1}{160} \right) \frac{1}{160} \left(\frac{1}{160} \right) \\ &\left| L_{3} \right| \left(\frac{1}{160} \right) \frac{1}{160} \left(\frac{1}{160} \right) \frac{1}{160} \left(\frac{1}{160} \right) \right) \\ &\left| L_{3} \right| \left(\frac{1}{160} \right) \frac{1}{160} \left(\frac{1}{160} \right) \frac{1}{160$$

Why this talk?

Theory

$$\begin{split} &|D(T,e,a,b)| \leq 2 \\ &|V(S,e)|V(S,e)| = \frac{1}{2} \left(\frac{(S,e)^{-1}(E)}{4} \right) \\ &|V(S,e)|V(S,e)|V(S,e)| = \frac{1}{2} \left(\frac{(S,e)^{-1}(E)}{4} \right) \\ &|V(S,e)|V(S,e)| \\ &|V(S,e)| = \frac{1}{2} \left(\frac{(S,e)^{-1}(E)}{4} \right) \\ &|V(S,e)|V(S,e)| \\ &|V(S,e)|V(S,e)|V(S,e)| \\ &|V(S,e)|V(S,e)|V(S,e)| \\ &|V(S,e)|V(S,e)|V(S,e)| \\ &|V(S,e)|V(S,e)|V(S,e)|V(S,e)| \\ &|V(S,e)|$$

Agenda

- 1. Intuition
- 2. Weak learner (Decision Tree)
- 3. Bagging (Random Forest)
- 4. Boosting (Gradient Boosting)
- 5. Other boosting libraries

1. Intuition

What are ensemble models?

- Combining multiple simple models (weak learners) into a larger one (ensemble)
- Two popular techniques:
 - Bagging
 - Boosting
 - Usually with decision trees as weak learner

Intuition

Accuracy = 60%

Accuracy = 75%

Both say you have **X**... what's the likelihood that you really have **X**?

Two big assumptions

• Weak Learner: "Experts" need to be more right than wrong on average

Two big assumptions

- Weak Learner: "Experts" need to be more right than wrong on average
- **Diversity**: "Experts" need to make different errors

2. Weak Learners

Decision Trees

Why are they good?

- Can capture complex relationships in the data
 - We'll often be able to get our > 50% accuracy!
- Overfits easily
 - We can use that to create diverse models!

How do we control them?

No constraints = one leaf per sample = massive overfitting

Some good constraints:

- Pick a maximum depth
- Pick a **minimum number of samples** needed in a new node/leaf

3. Bagging

Random Forest

Each one is trained on a subsample of observations [Bootstrapping]

- Each one is trained on a subsample of **observations** [Bootstrapping]
- Each one is trained on a subsample of features

- Each one is trained on a subsample of observations [Bootstrapping]
- Each one is trained on a subsample of features
- Loosen your constraints to let your trees overfit

- Each one is trained on a subsample of **observations** [Bootstrapping]
- Each one is trained on a subsample of **features**
- Loosen your constraints to let your trees overfit

Don't overdo it... We still need:

Good performance per tree (no underfitting)

- Each one is trained on a subsample of observations [Bootstrapping]
- Each one is trained on a subsample of **features**
- Loosen your constraints to let your trees overfit

Don't overdo it... We still need:

- Good performance per tree (no underfitting)
- Able to generalise (no overfitting)

Bagging - Random Forest

+ Easy to run in **parallel**

- + Easy to run in parallel
- + Decision Trees = we can get feature importance

- + Easy to run in **parallel**
- + Decision Trees = we can get **feature importance**
- Models remain correlated (similar data)

- + Easy to run in parallel
- + Decision Trees = we can get **feature importance**
- Models remain correlated (similar data)
- Hard to interpret

- + Easy to run in **parallel**
- + Decision Trees = we can get **feature importance**
- Models remain correlated (similar data)
- Hard to interpret
- ? Outliers likely to be ignored by most weak learners

4. Boosting

Gradient Boosting

We want to build weak learners that actively compensate each others' errors.

We want to build weak learners that actively compensate each others' errors.

We want to build weak learners that **actively compensate** each others' errors.

Let's focus on one sample: (X, y) with y = 100

1. Train DT1 on (X, y)

$$DT1(X) = 95$$

We want to build weak learners that **actively compensate** each others' errors.

- 1. Train DT1 on (X, y)
- 2. Compute residuals

$$DT1(X) = 95$$

$$r = 100 - 95 = 5$$

We want to build weak learners that **actively compensate** each others' errors.

- 1. Train DT1 on (X, y)
- 2. Compute residuals
- 3. Train DT2 on (**X**, **5**)

$$DT1(X) = 95$$

$$r = 100 - 95 = 5$$

$$DT2(X) = 4$$

We want to build weak learners that **actively compensate** each others' errors.

- 1. Train DT1 on (X, y)
- 2. Compute residuals
- 3. Train DT2 on (**X**, **5**)
- 4. Aggregate DT1 and DT2

$$DT1(X) = 95$$

$$r = 100 - 95 = 5$$

$$DT2(X) = 4$$

$$DT1(X) + DT2(X) = 95 + 4 = 99$$

We want to build weak learners that **actively compensate** each others' errors.

- 1. Train DT1 on (X, y)
- 2. Compute residuals
- 3. Train DT2 on (**X**, **5**)
- 4. Aggregate DT1 and DT2
- 5. Repeat

$$DT1(X) = 95$$

$$r = 100 - 95 = 5$$

$$DT2(X) = 4$$

$$DT1(X) + DT2(X) = 95 + 4 = 99$$

We want to build weak learners that **actively compensate** each others' errors.

Let's focus on one sample: (X, y) with y = 100

- 1. Train DT1 on (X, y)
- 2. Compute residuals
- 3. Train DT2 on (**X**, **5**)
- 4. Aggregate DT1 and DT2
- 5. Repeat

$$DT1(X) = 95$$

$$r = 100 - 95 = 5$$

$$DT2(X) = 4$$

$$DT1(X) + DT2(X) = 95 + 4 = 99$$

Weak learners increasingly focus on "hard points"

too many stages **OR** too complex trees = overfit to noise

too many stages **OR** too complex trees = overfit to noise

• Getting the number of stages right is **extremely** important

too many stages **OR** too complex trees = overfit to noise

- Getting the number of stages right is **extremely** important
- We need to build small, constrained trees

+ Great performance (usually)

- + Great **performance** (usually)
- + Decision Trees = we can get feature importance

- + Great **performance** (usually)
- + Decision Trees = we can get **feature importance**
- Hard to run in parallel

- + Great performance (usually)
- + Decision Trees = we can get **feature importance**
- Hard to run in parallel
- Hard to interpret

- + Great **performance** (usually)
- + Decision Trees = we can get **feature importance**
- Hard to run in parallel
- Hard to interpret
- Can easily overfit

Any questions?

