1 Methods

1.1 Generalised Bernoulli social equation

We model the density of interaction ties $\rho(\mathbf{r},t)$ in an *n*-dimensional social phase space. Inspired by incompressible fluid flow, we propose the continuity-like equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, \mathbf{v}) = 0,\tag{1}$$

with velocity field

$$\mathbf{v} = -\alpha \nabla \Phi + \beta \,\mathbf{r},\tag{2}$$

where $\Phi = \ln \rho$ is a potential akin to information pressure, $\alpha > 0$ modulates entropic attraction, and $\beta > 0$ encodes centrifugal social cost. Combining both gives the **generalised Bernoulli equation**

$$\frac{\partial \Phi}{\partial t} + \frac{\alpha}{2} |\nabla \Phi|^2 + \beta \, \mathbf{r} \cdot \nabla \Phi = 0. \tag{3}$$

1.2 Fractal dimension estimators

At steady state $(\partial_t \Phi = 0)$, the density ρ^* admits a scaling form $\rho^*(r) \propto r^{-(D_1+1)}$ for r in the mesoscopic range. We estimate the capacity (D_0) , information (D_1) and correlation (D_2) dimensions via a standard box-counting scheme[?].

$$D_q = \lim_{\epsilon \to 0} \frac{1}{q - 1} \frac{\log \sum_i p_i^q}{\log \epsilon}, \qquad (q \in \mathbb{R}). \tag{4}$$

1.3 Entropy-based stability criterion

Table 1: Symbols and units used throughout the manuscript

۰	sole 1. Symbols and amous asea embassione the manascri			
	Symbol	Meaning	Unit (SI)	
	$\rho(\mathbf{r},t)$	Social tie density	$ties m^{-n}$	
	\mathbf{v}	Social flow velocity	${ m ms^{-1}}$	
	Φ	Informational potential $\ln \rho$	_	
	α	Entropic attraction coefficient	${ m m}^2{ m s}^{-1}$	
	β	Radial cost coefficient	s^{-1}	
	$D_{0,1,2}$	Fractal dimensions	_	
	H	Shannon entropy	nat	

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, \mathbf{v}) = 0, \tag{5}$$

$$\mathbf{v} = -\alpha \nabla \Phi + \beta \mathbf{r},\tag{6}$$

Define the Shannon entropy of degree distribution p_k as $H = -\sum_k p_k \log p_k$. We posit global stability when

$$\frac{\mathrm{d}H}{\mathrm{d}t} = 0 \quad \text{and} \quad \frac{\mathrm{d}^2 H}{\mathrm{d}t^2}\Big|_{\mathrm{crit}} > 0.$$
 (7)

Substituting Eq. (??) yields the critical ratio $D_0/D_1 \approx 1.37 \pm 0.05$, at which the social layer sizes naturally quantise to 5, 15, 50, 150.