TRANSISTORES

- Símbolo. Características
- Clasificación de los transistores
- Transistores bipolares
- Transistores unipolares

- •Un **transisstor** esta formado por dos uniones PN pero su comportamiento **no** es el de dos diodos enfrentados
- •Proceso de Fabricación → Zona intermedia estrecha y debilmente impurificada → Efecto TRANSISTOR:
- •Posibilidad de controlar la corriente entre colector y emisor mediante el control de la corriente de base

Características. Símbolo

- Elemento triterminal: Terminal de control
- Magnitud control: tensión o corriente
- Funcionamiento específico: dos uniones PN
- Funcionamiento en régimen permanente: componentes de los circuitos digitales

Union PN

Union PN

Clasificación de los transistores

Transistores bipolares: BJT

- Corriente: movimiento de electrones y huecos.
- Magnitud de control: corriente
- Dos tipos: NPN y PNP

Transistores unipolares o de efecto de campo: FET

- Campo eléctrico influye en el comportamiento
- Corriente: movimiento sólo de electrones o huecos, según el tipo de transistor
- Magnitud de control: diferencia de potencial
- JFET
- FETMOS: de canal N (electrones); de canal P (huecos)

Transistores uniunión: UJT

Muy especiales. No los veremos

TRANSISTORES BIPOLARES

- Magnitud de control: corriente
- Terminal central: corriente de control. Terminal base: B
- Terminal izquierda: emisor, E
- Terminal derecha: colector, C

Tipos de transistores bipolares

• Sentido flecha: de P hacia N

transistor bipolar PNP

Magnitudes en los transistores bipolares

- Seis magnitudes a relacionar
- Corriente en cada terminal: I_C, I_B, I_E
- Diferencias potencial entre terminales: V_{BE} , V_{BC} , V_{CE}
- Dos ecuaciones de comportamiento
- Convenio para el sentido de las corrientes y signo de las tensiones

Ecuaciones de comportamiento de los t. bipolares

Ecuaciones de comportamiento de los t. bipolares

$$I_E = I_B + I_C$$

$$V_{BC} = V_{BE} - V_{CE}$$

$$V_{BB} = R_B I_B + V_{BE}$$

$$V_{CC} = R_C I_C + V_{CE}$$

$$I_C = f(V_{CE}, I_B)$$

$$I_B = g(V_{BE}, V_{CE})$$

- Ecuaciones comportamiento: análisis experimental (5,6)
- Simplificando: punto operación del transistor $Q(I_B, I_C, V_{BE}, V_{CE})$

Curvas características: dos

$$I_B = g(V_{BE}, V_{CE})$$

• $V_{\rm CE}$ poca influencia. Se simplifica. $I_B = g(V_{BE})$

F.T.C. V_{BE} V_{BE} V_{BE} V_{BE} V_{BE} V_{BE}

Zonas de funcionamiento del transistor bipolar NPN

• Un transistor tiene dos uniones PN, 4 posibles polarizaciones:

unión BE IP IP DP DP unión BC IP DP IP DP

- Distinguir entre E y C?
- Polarización relativa determina quién funciona como E y quién como C
- E y C NO son exactamente iguales a nivel físico
- <u>Funcionamiento directo o normal</u> (NPN): V_{BE}> V_{BC}
- Funcionamiento inverso (NPN): V_{BE}
- Habitualmente: funcionamiento directo o Normal
- Posible con tres de las cuatro opciones
- Tres zonas de funcionamiento
 - Corte (R.C.N)
 - Región Activa Normal (R.A.N.)
 - Saturación (R.S.N)

1. Corte Transistor NPN

UBC UBE

N P N

E

- BE y BC en I.P.
- Por tanto $V_{BE} \le 0.7 \text{ V}$ y $V_{BC} \le 0.7 \text{ V}$ (se suele comprobar sólo $V_{BE} \le 0.7 \text{ V}$)
- En I.P. no circula corriente, por tanto: $I_C = 0 \text{ A}$ $I_B = 0 \text{ A}$ (por tanto $I_E = 0 \text{ A}$)
- Ya tenemos las dos ecuaciones que nos faltaban
- Resumiendo:

2. Región Activa Normal (R.A.N.)

- BE en D.P., BC en I.P
- Sólo una unión en D.P. pero corriente en ambas. Aún así $I_B << I_C$
- BE en D.P., por tanto, $V_{BE} = 0.7 \text{ V}$ (una ecuación más)
- Otra ecuación: analizando las curvas características del transistor
- Conclusión análisis: $I_C/I_B = \mathcal{B}$ (nueva ecuación, \mathcal{B} "ganancia de corriente")
- Varía según el tipo de transistor. Consideraremos 100
- Verificación de esta zona implica comprobar unión BC en I.P: comprobar $V_{BC} \le 0.5 \text{ V}$ (no 0,7 como en una unión aislada). Equivalente: $V_{CE} \ge 0.2 \text{ V}$

3. Saturación

- BE y BC en D.P.
- Corriente en las dos uniones, *I_B* mayor que antes
- Ambas uniones en D.P.: $V_{BE} = 0.7 \text{ V y } V_{CE} = 0.2 \text{ V} \rightarrow \text{V}_{BC} = V_{BE} V_{CE} = 0.7-0.2 = 0.5 \text{V}$
- No relación constante anterior
- Verificación de esta zona implica comprobar $I_C/I_B \le \mathcal{B}$

Zonas de funcionamiento en la curva característica

Aproximación realizada

	R.C.N	R.A.N	R.S.N
condición	<i>V_{BE}</i> ≤ 0,7 V	<i>V_{BC}</i> ≤ 0,5 V	$\frac{I_C}{I_B} \le \beta$
Modelo	$I_C = I_B = I_E = 0$	$V_{BE} = 0.7 \text{ V}$	V _{BE} = 0,7 V
		$\frac{I_C}{I_B} = \beta$	V_{BC} = 0,5 V
	ightharpoonup C	$ \begin{array}{cccc} & C \\ \downarrow & I_C = B I_B \end{array} $	$\frac{\frac{1}{C} C}{1 + 0.5V}$
	B	B $+$ 0.7 E	B $+$ 0.7V E
		F.T.C.	4.18

Resolución gráfica de circuitos con transistores

- Conocemos curvas (I_B, V_{BE}) y (I_C, V_{CE}) del transistor
- Circuito de entrada

$$V_{BB} = R_B I_B + V_{BE}$$

$$I_B = \frac{V_{BB}}{R_B} - \frac{1}{R_B} \cdot V_{BE}$$

RECTA DE CARGA de entrada

• Dibujando esa recta sobre el mismo plano que la curva (I_B, V_{BE})

• Obtenemos punto de operación de entrada: (I_{BQ}, V_{BEQ})

• Circuito de salida

$$V_{CC} = R_C I_C + V_{CE}$$

$$I_C = \frac{V_{CC}}{R_C} - \frac{1}{R_C} \cdot V_{CE}$$

RECTA DE CARGA de salida

• Dibujando esa recta sobre el mismo plano que la curva (I_C, V_{CF})

- Obtenemos punto de operación de salida
- Con ambos puntos, tenemos el punto de operación del transistor

TRANSISTORES UNIPOLARES O DE EFECTO DE CAMPO

- Campo eléctrico influye en el comportamiento
- Corriente: movimiento sólo de electrones o huecos, según tipo
- Magnitud de control: diferencia de potencial
- JFET
- FETMOS: de canal N (electrones); de canal P (huecos)

MOS, transistores metal-óxido-semiconductor

NMOS de enriquecimiento

PMOS de enriquecimiento

NMOS de empobrecimiento

PMOS de empobrecimiento

Otros símbolos

transistores de enriquecimiento NMOS PMOS NMOS PMOS PMO

- Enriquecimiento: D y S físicamente separadas
- Empobrecimiento: entre D y S siempre hay canal
- B, sustrato (bulk). No es un terminal, sino la base física sobre la que se ha construido el MOS. Normalmente se conecta a S

Magnitudes de los MOS

- Tres magnitudes para analizar comportamiento: I_D, V_{DS} y V_{GS} (t. control)
- Corriente I_G =0 siempre, no dependiendo de la polarización
- Polarización adecuada para crear canal entre S y D (enriquecimiento) o para estrechar el canal existente (empobrecimiento)

NMOS de enriquecimiento

PMOS de enriquecimiento

Transistores MOS

Transistor MOS Canal N (NMOS enriquecimiento)

Transistor MOS Canal N (NMOS enriquecimiento)

$$I_D = f(V_{GS}, V_{DS})$$

Curvas de transferencia en los MOS

- Punto de operación: Q(I_{DQ}, V_{DSQ}, V_{GSQ})
- Corriente I_D depende de las dos tensiones: $I_D = f(V_{GS}, V_{DS})$
- Obtenemos esa curva experimentalmente, al igual que antes, con un circuito similar
- * Curva 1: manteniendo V_{DS} , $I_D = f(V_{GS})$ (transistor en saturación)

NMOS de enriquecimiento

$$I_{D} = I_{Don} \cdot \left(\frac{\boldsymbol{V}_{GS} - \boldsymbol{V}_{T}}{\boldsymbol{V}_{GSon} - \boldsymbol{V}_{T}}\right)^{2}$$

* Curva 2: para distintos valores de V_{GS} , $I_D = f(V_{DS})$

N MOS enriquecimiento, tres zonas de funcionamiento:

	condición	ecuación	† D
CORTE:	$V_{GSQ} \le V_T$	$I_D = 0$	G
			\downarrow_S
ZONA OHMICA:	$V_{GSQ} \ge V_T$ $V_{DSQ} \le V_{DSsat}$	$I_D = V_{DSS} / R_{DS}$	$G = \int_{S}^{D} RDS$
SATURACIÓN:	$V_{GSQ} \ge V_T I_D = K I_D$ $V_{DSQ} \ge V_{DSsat}$	on $K = \left(\frac{V_{GS} - V_T}{V_{GSon} - V_T}\right)^2$	$G \xrightarrow{\begin{subarray}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

N MOS enriquecimiento, funcionamiento como conmutador:

NMOS enriquecimie	ento, funcionamiento com	ightharpoons D	
	condición	ecuación	G
CORTE:	$V_{GSQ} \leq V_{T}$	$I_D = 0$	• S
			ightharpoons D
			G

Conducción:
$$V_{GSQ} \ge V_T$$
 $V_{DS=0}$

Transistor MOS Canal P (PMOS enriquecimiento)

Transistor MOS Canal P (PMOS enriquecimiento)

VGS <0

$$\mathbf{I}_{\mathsf{D}} = \mathit{f}(\mathsf{V}_{\mathsf{GS}}, \mathsf{V}_{\mathsf{DS}})$$

N MOS enriquecimiento, tres zonas de funcionamiento:

	condición	ecuación	brack D
CORTE:	$V_{GSQ} \ge V_T$	$I_D = 0$	$G \longrightarrow \int_{S}$
ZONA OHMICA:	$V_{GSQ} \le V_{T}$ $V_{DSQ} \le V_{DSsat}$	$I_D = V_{DSS} / R_{DS}$	$G = \begin{cases} D \\ RDS \\ S \end{cases}$
			1 D

SATURACIÓN:
$$V_{GSQ} \le V_T I_D = K I_{Don}$$
 $V_{DSQ} \ge V_{DSsat}$

$$K = \left(\frac{V_{GS} - V_T}{V_{DSS}}\right)^2$$

P MOS enriquecimiento, funcionamiento como conmutador:

$$G$$
 I_S

CORTE:

$$V_{GSQ} \ge V_T$$

condición

$$I_D = 0$$

ecuación

$$G = \begin{bmatrix} D \\ S \end{bmatrix}$$

Conducción:

$$V_{GSQ} \leq V_{T}$$

$$V_{DS=0}$$

Transistor MOS Canal N (NMOS empobrecimiento)

- •Existe un canal en ausencia de tensión aplicada (proceso de fabricación)
- •Por defecto y al aplicar una tensión VDS>0 el transistor conduciría
- •Para destruir ese canal y hacer que el transistor no conduzca se necesita aplicar una tensión VGS<0

F.T.C.

4.40

Transistor MOS Canal P (PMOS empobrecimiento)

- •Existe un canal en ausencia de tensión aplicada (proceso de fabricación)
- •Por defecto y al aplicar una tensión VDS>0 el transistor conduciría
- •Para destruir ese canal y hacer que el transistor no conduzca se necesita aplicar una tensión VGS>0

