Assignment Projecta Exami Help

https://eduassistpro.github.

1 The Byzantine agreement problem

Assignment Project Exam Help

- 3 El
- https://eduassistpro.github.
- 6 Attributes Add WeChat edu_assist_pr
- 7 Triple modular redundancy

Byzantine agreement story

Assignment Project Exam Help

- https://eduassistpro.github.
- * Add WeChat edu_assist_pr

Byzantine agreement story

Assignment Project Exam Help

https://eduassistpro.github.N = 4 Byzantine armies, physically separated

- N = 4 byzantine armies, physically separat
- Generals start with their own initial decisio
- · AddoWeChat edu_assist_pr
- They must reach a common decision
- Problem: among them there may be F Byzantine traitors, who may attempt to disrupt the agreement, by any means
- Deterministic agreement between loyal generals possible iff
 N > 3F + 1 and communications are synchronous

Byzantine agreement problem

Assignments Project Exam Help

- Complete graph K_N (loopbacks possible),
- https://eduassistpro.github.
 rollback; binary: 1 or 0)
- · And recharedu_assist_pr
 - Generals should either all attack or all withdraw

 Byz Problem
 Informal
 EIG
 Example
 Attributes
 Quiz
 TMR

 000 ● 000
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00<

Byzantine agreement problem

Assignment of February Benerals, there may be F traiters Help

- https://eduassistpro.github.
- We need two elves (loyals) for each orc plus on (Aa) de two elves (loyals) for each orc plus orc plus
 - Algorithms: Pease, Shostak, Lamport (1 Lamport, Shostak, Pease (1982).
- Impossibility results: Fischer, Lynch, Paterson (1985) FLP

 Byz Problem
 Informal
 EIG
 Example
 Attributes
 Quiz
 TMR

 0000 ● 00
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00<

Byzantine failures

Assignment, Project Exam Help

- https://eduassistpro.github.
- briefly: anything that could disrupt the agre Add WeChat edu assist properties.
 The algorithm must cope with such extrem adversaries.
- The purpose is NOT to identify the traitors, but to ensure that the system continues to work properly (all loyal guys)

 Byz Problem
 Informal
 EIG
 Example
 Attributes
 Quiz
 TMR

 00000●0
 00
 00
 00
 00
 00
 00

Byzantine agreement conditions

Assignment Project Exame Help

. https://eduassistpro.github.

value $v \in V$, then v is the only one pos

Add WeChat edu_assist_processes start with diff_assist_pr

then the final decision could be any of these (as long as it is consistent)

Byzantine agreement scenarios (N = 4)

- The star (*) represents orc's arbitrary or malevolent choices
- The algorithm we study EIG uses an internal parameter, v_0 , which (1) replaces missing or wrongly formatted messages, and (2) breaks ties

Informal example

Assignment Project Exam Help

https://eduassistpro.github.

• The following agreement is required, between the elves:

```
Add We hat edu_assist_pr
```

- Middle: #1 and #3 should reach a consistent decision.
- The orc processes have a perfect disrupting strategy (next)

Informal example

Assignment Project Exam Help

. https://eduassistpro.github.

Process #3 cannot differentiate betwe

A cases and should therefore take the same assist_pressure i.e. We chat edu_assist_pressure as a subject to the same as a

- Process #1 cannot differentiate betwe cases and should therefore take the same decision in both cases, i.e., 1.
- Thus, no common decision is possible for the middle case
- Conclusion: 1 round is not enough...

Informal example

Assignment Project Exam Help

. https://eduassistpro.github. the value received from the other process on the 1st round:

And call carrot differentiate bet a still carrot differentiate bet a still carrot edu_assist_pr

- Process #1 still cannot differentiate bet middle cases...
- Thus, no common decision is possible for the middle case
- Conclusion: 2 rounds are not enough... arguments can continue for any number of rounds...

EIG tree

Assignment Project Exam Help

https://eduassistpro.github.

- EIG = Exponential Information Gathering
- Here, F = 1, N = 3F + 1 = 4, L = F + 1 = 2
- Description in Lynch's monograph

EIG tree

• Each non-faulty process maintains its own copy of the EIG tree

Assignation according to receive messages Xam Help

https://eduassistpro.github.

- On each branch, there is at least one node with a label ending in the ID of a non-faulty node
- The nodes on or above the red cut are common: they have
- the same newval values, in all non-faulty processes
- Thus the final decision is common, for all non-faulty processes
- Full description in Lynch's monograph also our demo

Faulty process ι_1 sends out conflicting messages

- x = 0, y = 1 to process ι_2
- x = 0, y = 0 to process $\iota_3 try$ also x = 1, y = 0
- x = 1, y = 1 to process ι_4

Non-faulty processes are always able to reach a common decision: either all 0, as here - or all 1

EIG trees for non-faulty processes

Byz Problem Informal EIG Example **Attributes** Quiz TMF 0000000 00 00 **●00** 000 0

The top-down val() attribute

Assignment Project Exam Help

https://eduassistpro.github.

How val() are filled (example):

- · vA²dd alwy that #2 directly said edu_assist_pr
- val(21) is what #1 said that #2 said
- If #1 is lying about #2 in val(21), then #3 & #4 will "mask" this by val(23) & val(24)
- invalid or missing messages are assumed to be v_0

The bottom-up newval() attribute

Assignment Project Exam Help

- computed new value
- https://eduassistpro.github.
- Add We Chat edu_assist_pr
 - if any within the accepted limits $(n \ge 3f + 1)$

The bottom-up newval() attribute

Assignment Project Exam Help

https://eduassistpro.github.

Byzantine quiz

Assignment Project Exam Help

https://eduassistpro.github.

Byzantine quiz: decision 0

Assignment Project Exam Help

https://eduassistpro.github.

Byzantine quiz: decision 1

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pro.github.

Byz vs Triple modular redundancy (TMR)

Assignment Project Exam Help

https://eduassistpro.github.