Proof, Verification and NP-hardness

Ziyi Cai 2022/11/14

Review: Deterministic Time & Space Complexity

- The class TIME(T(n)) or DTIME(T(n))
 - A language L is in $\mathbf{TIME}(T(n))$ iff there exists a TM \mathbb{M} that runs in cT(n) time and decides L.
- The class SPACE(S(n)) or DSPACE(S(n))
 - A language L is in SPACE(S(n)) iff there exists a TM M that runs in cS(n) space and decides L.

- Time complexity classes
 - $\mathbf{P} \coloneqq \bigcup_{i=1}^{\infty} \mathbf{TIME}(n^i)$
 - EXP $:= \bigcup_{i=1}^{\infty} TIME \left(2^{n^i}\right)$
- Space complexity classes
 - $L := SPACE(\log n)$
 - PSPACE := $\bigcup_{i=1}^{\infty} SPACE(n^i)$
 - **EXPSPACE** $:= \bigcup_{i=0}^{\infty} \mathbf{SPACE} \left(2^{n^i} \right)$
- $L \subseteq P \subseteq PSPACE \subseteq EXP$

NP: a view from proof and verification

Efficiently Verifiable Solutions

- Sudoku
 - hard to solve a puzzle
 - easy to check a solution

5 6	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			1
7				2				6
	6					2	8	
			4	1	9			5 9
				8			7	9

The Class **NP**: Proof and Verification

- A language L is in **NP** if there exists a polynomial $p: \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM \mathbb{V} such that the following conditions hold:
 - **Completeness**: $\forall x \in L, \exists y \in \{0, 1\}^{p(|x|)}$ such that $\mathbb{V}(x, y) = 1$.
 - **Soundness**: $\forall x \notin L, \forall y \in \{0, 1\}^{p(|x|)}$ we have $\mathbb{V}(x, y) = 0$.
- V is called verifier.
- If $x \in L$ and $y \in \{0,1\}^{p(|x|)}$ satisfy $\mathbb{V}(x,y) = 1$, then we call y a certificate (or witness) for x (with respect to the language L and the machine \mathbb{V}).

Stephen Cook

Leonid Levin

 $P \subseteq NP \subseteq EXP$

Examples of NP languages

- **VERTEX-COVER**: Given a graph G and $k \in \mathbb{N}$, decide whether G has a vertex cover of size k.
 - The certificate is a vertex cover of size k.
- 0/1 **INTEGER PROGRAMS**: Given a set of linear inequalities with rational coefficients over variables $u_1, ..., u_n$, decide whether there is an assignment of numbers in $\{0,1\}$ to $u_1, ..., u_n$ that satisfies it.
 - The certificate is a satisfying assignment.
- **SAT**: SAT $\coloneqq \{\langle \phi \rangle : \phi \text{ is a satisfiable CNF} \}$
 - The most important problem in theoretical computer science.
 - The certificate is a satisfying assignment.

Karp-Reduction and NP-completeness

- A language $L \subseteq \{0,1\}^*$ is polynomial-time Karp reducible to a language $L' \subseteq \{0,1\}^*$, denoted by $L \leq_p L'$, if there is a polynomial-time computable function $f: \{0,1\}^* \to \{0,1\}^*$ such that for every $x \in \{0,1\}^*$, $x \in L \iff f(x) \in L'$.
- A language L is NP-hard if $L' \leq_p L$ for all $L' \in NP$.
- A language L is NP-complete if $L \in NP$ and L is NP-hard.

Arora and Barak (2009). Computational Complexity: A Modern Approach, Cambridge University Press. p. 43.

The Web of Reductions

Cook-Levin Theorem. (Cook 1971, Levin 1973) SAT is NP-complete.

- Proof idea of Cook-Levin Theorem:
 - The computation of the verifier can be formulated by a polynomial-size CNF.
- Another example: 0/1 IPROG is NP-complete.
 - $u_1 \vee \overline{u_2} \vee \overline{u_3}$ can be expressed as $u_1 + (1 u_2) + (1 u_3) \ge 1$
- Why do complexity theorists love reductions?
 - Human creativity is more adaptable to algorithm-design than to proving lower bounds.

Arora and Barak (2009). Computational Complexity: A Modern Approach, Cambridge University Press. p. 51.

P vs. NP

- Is checking the correctness of a proof harder than presenting a proof?
 - THEOREMS := $\{(\varphi, 1^n): \varphi \text{ has a formal proof of length } \leq n \text{ in system } \mathcal{A}\}$ is **NP-complete**.
- Arr P = NP doesn't imply that we can find algorithms for NP problems efficiently.
 - There are problems in P which take thousands of years to solve.
 - PRIMES is in P, proved by Agrawal and Kayal in 2002.
- If $P \neq NP$, then there exists NP intermediate languages!

Ladner's Theorem. (Ladner 1975) Suppose that $P \neq NP$. Then there exists a language $L \in NP \setminus P$ that is not NP-complete.

- Candidates for NP intermediate languages: integer factorization, graph isomorphism.
- They are neither known to be in P nor known to be NP-complete.

What is a theorem-proving procedure?

- An alternative definition of NP: L ∈ NP if and only if there exists TM V such that
 - V runs in polynomial time
 - Completeness: $\forall x \in L, \exists \mathbb{P}, \langle \mathbb{P}, \mathbb{V} \rangle (x) = 1.$
 - **Soundness**: $\forall x \notin L, \forall \mathbb{P}, \langle \mathbb{P}, \mathbb{V} \rangle (x) = 0$.
 - There are no limits on the computational power of \mathbb{P} .

- A probabilistic version of proving?
 - V runs in polynomial time
 - Completeness: $\forall x \in L, \exists \mathbb{P}, \Pr[\langle \mathbb{P}, \mathbb{V} \rangle (x) = 1] \ge 2/3.$
 - **Soundness**: $\forall x \notin L, \forall \mathbb{P}, \Pr[\langle \mathbb{P}, \mathbb{V} \rangle(x) = 0] \leq 1/3.$
 - There are no limits on the computational power of \mathbb{P} .
- What if interaction between prover and verifier is allowed?

Interactive Proof: An Intuitive Example

- Bob has one red sock and one green sock.
- How can he convince A, who is color blind, that the socks are of different color?
- Hint: a private coin is needed.
- Interactive proof is powerful.
 - GNI ∈ IP, but it is not likely to be in NP.

Theorem. (Shamir 1990) IP = PSPACE.

Coping with NP-completeness

Is randomness helpful?

■ A language L is in **BPP**(Bounded-error Probabilistic Polynomial Time) if there exists a polynomial-time TM M and a polynomial $p: \mathbb{N} \to \mathbb{N}$ such that for every $x \in \{0, 1\}^*$

$$\Pr_{r \in_{\mathbb{R}}\{0,1\}^{p(|x|)}}[M(x,r) = L(x)] \ge \frac{2}{3}.$$

- Example: Polynomial Identity Testing
- Clearly, $P \subseteq BPP$.
- Randomness is costly.
 - We cannot achieve true randomness in real world.
 - The difficulty of generating random bits depends on the number and quality of random bits.
 - Randomness can be viewed as a resource, like space and time.

- How to reduce randomness?
 - Can we use fewer random bits?
 - Can we use weaker random sources instead of i.i.d. random variables?
 - Can we replace the probabilistic algorithm with a deterministic one without a significant loss of efficiency? [Derandomization]
- Most researchers believe that P = BPP.
- However, it remains open.
 - Full derandomization of BPP will imply some lower bounds in circuit complexity, which are difficult to prove.

Is non-optimality OK?

- An approximation algorithm $\mathcal{A}(G)$ for minimum vertex cover of graph G:
 - Start with $S = \emptyset$.
 - Whenever an edge (u, v) is not covered, we join u, v into S.
- Define the approximation ratio $\alpha(\mathcal{A}) \coloneqq \max_{G} \frac{\mathcal{A}(G)}{\mathsf{MVC}(G)}$.
- $\alpha(\mathcal{A}) \leq 2$
 - Any vertex cover of the input graph must use a distinct vertex to cover each edge that was considered in the process.

hardness of approximation

Theorem. (Dinur and Safra, 2005) MVC cannot be approximated within a factor of 1.3606 for any sufficiently large vertex degree unless P = NP.

Parameterized Algorithm

- A naïve algorithm for k-**VC**:
 - Enumerate and check all subsets $S \subseteq V$ with $|S| \le k$.
 - The time complexity is roughly $O(|G|^k)$.

- Another naïve algorithm DFS(G, k):
 - If k < 0 then reject
 - If G has no edge then accept
 - Else choose an arbitrary edge (u, v) in G
 - Accept if and only if DFS(G u, k 1) accepts or DFS(G v, k 1) accepts.
- This recursive algorithm decreases k by one and branches to two after each recursion.
- The time complexity is roughly $O(2^k \cdot |G|)$.

A problem is fixed parameter tractable (FPT) with respect to k if there exists a TM \mathbb{M} that runs in $f(k) \cdot |x|^{O(1)}$ time for every $x \in \{0,1\}^*$, where f is a computable function of k which is independent of n.

Average-case Complexity

- Many algorithms work well on "average" cases.
 - Quicksort (non-randomized) runs worst when the input is nearly sorted, which is uncommon in the real world.
 - **3-COLOR** can be solved in linear time with high probability on G(n, 1/2).
- What is the class of distributions that makes sense "in practice"?
 - P-samplable distribution
- A distribution problem is a pair (L, \mathcal{D}) , where
 - L is a language
 - $\mathcal{D} = \{\mathcal{D}_n\}$ is a sequence of distributions over $\{0,1\}^n$.
- The class distP is the average-case analog of P.
- $\langle L, \mathcal{D} \rangle \in \text{sampNP}$ if and only if $L \in \text{NP}$ and \mathcal{D} is P-samplable.

- samp**NP** \subseteq dist**P**?
 - Are NP-hard problems efficiently solvable most of the time?
- Impagliazzo's five worlds of complexity.
 - Algorithmica: P = NP, a computational utopia, no **provably** secure cryptographic scheme
 - Heuristica: $P \neq NP$, samp $NP \subseteq distP$, similar to Algorithmica
 - Pessiland: sampNP ⊈ distP, but still no one-way function exists, worst-possible world
 - Minicrypt and Cryptomania: worlds of cryptography
- Which world do we live in?

Complexity theory is hard.

- Complexity is about some internal properties of problems.
- We can now only classify problems but have no idea about the reason that makes them computationally hard.
- Most results are relative, which means relating one fact regarding computational complexity to another.
 - Absolute results of "big questions" are rare.
- Some proof techniques are shown to be restricted.
 - relativizing barrier, natural proof
- However, a single new "unnatural" technique will open the floodgates for a great many lower bounds.

If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is.
- John von Neumann, 1947

Thanks for listening.