Lecture 03 Derivatives

Ryan McWay[†]

 $^{\dagger}Applied\ Economics,$ University of Minnesota

Mathematics Review Course, Summer 2023 University of Minnesota August 9th, 2023

LAST LECTURE REVIEW

- ► Set Theory:
 - ► Set Operators
 - ▶ de Margan's Law
 - ► Cartesian Product
 - ► Convex Sets
 - ► Bounded Sets
 - ► Compact Sets
- ► Topology:
 - ► Supremum and Infimum
 - ► Separating Hyperplane Theorem

2/29

REVIEW ASSIGNMENT

- 1. Problem Set 02 solutions are available on Github.
- 2. Any issues or problems **You** would like to discuss?

DAILY ICEBREAKER

- ► Attendance via prompt:
 - ► Name
 - ► Program and track
 - ▶ Daily icebreaker subject...

Topic: Derivatives

McWay

5/29

MOTIVATION

- ► General background
 - ▶ Understanding a rate of change.
 - ▶ A core component of calculus alongside integration.
- ▶ Why do economists' care?
 - ▶ How we determine a marginal effect (e.g., coefficient of interest).
 - ► Heavily used throughout theory.
- ► Application in this career
 - The main math tool you will use throughout microeconomic theory.

MOTIVATION

- ► General background
 - ▶ Understanding a rate of change.
 - ▶ A core component of calculus alongside integration.
- ▶ Why do economists' care?
 - ▶ How we determine a marginal effect (e.g., coefficient of interest).
 - ► Heavily used throughout theory.
- ► Application in this career
 - The main math tool you will use throughout microeconomic theory.

MOTIVATION

- ► General background
 - ▶ Understanding a rate of change.
 - ▶ A core component of calculus alongside integration.
- ▶ Why do economists' care?
 - ▶ How we determine a marginal effect (e.g., coefficient of interest).
 - ► Heavily used throughout theory.
- ► Application in this career
 - ► The main math tool you will use throughout microeconomic theory.

OVERVIEW

- 1. Continutity & Differentiability
- 2. First Derivative
- 3. Second Derivative
- 4. Derivative Rules
- 5. Implicit Function
- 6. l'Hopital's Rule
- 7. Taylor Series Approximation
- 8. Mean Value Theorem
- 9. Convexity

1. CONTINUITY AND DIFFERENTIABILITY

- ► Continuous: A function $f: \mathbb{R} \to \mathbb{R}$ is continuous at point $p \in \mathbb{R} \iff \forall \varepsilon > 0 \exists \delta > 0: |x-p| < \delta \implies |f(x)-f(p)| < \varepsilon.$
 - ightharpoonup E.g., All x uniquely maps to f(x) at all x.
- ▶ Differentiable: A function f is differentiable at x if and only if a limit exists. The entire function is differentiable if it is differentiable for all points of $x \in R$.
- ightharpoonup Differentiable \implies continuous.
- ightharpoonup Continuous \implies differentiable.
- $ightharpoonup C^1 = f'$ is continuously differentiable.
- $ightharpoonup C^2 = f''$ is twice continuously differentiable.

SLOPE CHANGE

- ▶ Increasing: $f'(x) > 0 \forall x \in [a, b]$.
- ▶ Decreasing: $f'(x) < 0 \forall x \in [a, b]$.
- ▶ Monotonically Increasing: $f'(x) \ge 0 \forall x \in \mathbb{R}$.
- ▶ Strictly Increasing: $f'(x) > 0 \forall x \in \mathbb{R}$.

9/29

CONTINUOUS BUT NOT DIFFERENTIABLE

- ▶ Sharp points.
- ► Edges.
- ▶ Jumps/holes.

2. FIRST DERIVATIVE

$$f'(x_0) \equiv \frac{df}{dx}(x_0) \equiv \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Relative Maximum

COMMON FIRST DERIVATIVES

- ightharpoonup Constant: a' = 0
- ▶ Base Variable: $(x^a)' = ax^{a-1}$
- ▶ Base Constant: $(a^x)' = a^x ln(a)$
- ightharpoonup Exponent Variable: $(e^x)' = e^x$
- ► Logarithmic: $ln(x)' = \frac{1}{x}$

3. SECOND DERIVATIVE

$$f''(x_0) \equiv \frac{d}{dx} \left(\frac{df}{dx} \right) (x_0) \equiv \frac{d^2f}{dx^2} (x_0)$$

► Can be taken at higher orders, but an unlikely application in economics.

4. Derivative Rules

► Sum Rule

$$[f(x) \pm g(x)]' \equiv f'(x) \pm g'(x)$$

▶ Power Rule

$$[\alpha x^n]' \equiv n\alpha x^{n-1}$$

▶ Product Rule

$$[f(x)g(x)]' \equiv f'(x)g(x) + f(x)g'(x)$$

► Quotient Rule

$$\left[\frac{f(x)}{g(x)}\right]' \equiv \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

McWay

4. DERIVATIVE RULES

- ▶ Inverse Rule
 - ▶ When f(x) is monotone, differentiable, $f'(x) \neq 0$, and $f^{-1}(x)$ is differentiable.

$$[f^{-1}(x)]' \equiv \frac{1}{f'(x)}$$

► Chain Rule

$$\frac{d}{dx}h(g(x)) \equiv h'(g(x))g'(x)$$

5. IMPLICIT FUNCTION

- \triangleright Sometimes y cannot be expressed as an explicit function of x.
- ▶ But we still can calculate $\frac{dy}{dx}$... implicitly.
- ► Ex. $(y = 5x^2 9e^y)dx$.

Answer:

$$\frac{d}{dx}y + \frac{d}{dx}(9e^y) = \frac{d}{dx}5x^2$$
$$\frac{dy}{dx} + \frac{dy}{dx}(9e^y) = 10x$$
$$\frac{dy}{dx} = \frac{10x}{1 + 9e^y}$$

6. L'HOPITAL'S RULE

- ► Applies when:

 - $ightharpoonup \lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \infty$
- ▶ Both f(x) and g(x) need to be differentiable over the interval $I: a \in I$.
- ▶ In both scenarios, we assume that the denominator does not equal 0 or ∞ .

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$$

► Taylor Series:

$$f(x) = f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^2 + \cdots$$
$$= \sum_{k=0}^{n} \frac{f^k(a)}{k!} (x - a)^k$$

▶ Use Taylor Series to approximate with a remainder:

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x$$

$$R(\Delta x, x_0) = f(x_0 + \Delta x) - f(x_0) + f'(x_0) \Delta x$$

• We can approximate to the (k+1) order of derivatives.

$$f(x_0 + \Delta x) = f(x_0) + f'(x_0) \Delta x + \frac{1}{2!} f''(x_0) (\Delta x)^2 + \dots$$

$$+ \frac{1}{k!} f^k(x_0) (\Delta x)^k + R_k(\Delta x, x_0)$$

$$R_k(\Delta x, x_0) = \frac{f^{(k+1)}(c^*)}{(k+1)!} (\Delta x)^{k+1}, c^* \in (x_0, x_0 + \Delta x)$$

$$\lim_{\Delta x \to 0} \frac{R_k(\Delta x, x_0)}{(\Delta x)^k} \to 0$$

$$\Delta y \approx dy = f'(x_0) \Delta x$$

8. MEAN VALUE THEOREM

▶ Let $f: U \to \mathbb{R}$ be a C^1 function over the interval $U \subset \mathbb{R}$.

$$\forall a, b \in U \exists c : a \le c \le b : f'(c) = \frac{f(b) - f(a)}{b - a}$$

9. Convexity & Critical Points

Weierstrass Theorem:

A continuous function $f(\cdot)$ over a closed and bounded interval [a,b] attains both a local maximum and minimum.

► Concave function:

$$\forall x, y \in I : f(y) - f(x) \le f'(x)(y-1) \lor f''(x) \le 0$$

► Convex function:

$$\forall x, y \in I : f(y) - f(x) \ge f'(x)(y-1) \lor f''(x) \ge 0$$

CONCAVE UP AND CONCAVE DOWN

9. Convexity & Critical Points

- ightharpoonup Critical Points: Values of x where f'(x) = 0 or is undefined.
- ► Local Max/Min (over interval I): $x_0, x \in I : f(x_0) \ge (\le)f(x) \forall x$.
- ► Global Max/Min (over domain f): $x_0, x \in f : f(x_0) \ge (\le)f(x) \forall x$.

MAXIMUMS AND MINIMUMS

PRACTICE: DERIVATIVES

1

REVIEW OF DERIVATIVES

- 1. Continutity & Differentiability
- 2. First Derivative
- 3. Second Derivative
- 4. Derivative Rules
- 5. Implicit Function
- 6. l'Hopital's Rule
- 7. Taylor Series Approximation
- 8. Mean Value Theorem
- 9. Convexity

ASSIGNMENT

- ▶ Readings on Integration before Lecture 04:
- ► Assignment:
 - ► Problem Set 03 (PS03)
 - ► Solution set will be available following end of Lecture 04
- ► Struggling?
 - 1. Read the 'Encouraged Reading'
 - 2. Review 'Supplementary material'
 - 3. Reach out directly