数字电路分析与设计

jichengdianzijishu@163.com 2018start

数字电子技术

- 1.分析方法: 真值表、卡诺图、逻辑表达式、特征方程、波 形图、状态转换图
- 2. 器件:基本门电路、组合逻辑单元基本电路、时序逻辑单元基本电路(触发器)
- 3.基本数字部件电路:集成组合逻辑电路、集成时序逻辑电路、大规模数字集成电路
- 4. 模-数(A/D)和数-模(D/A)转换
- 5. 函数信号发生电路(555电路)

总成绩=平时50%(作业20%+实验操作及报告30%)+期末试卷50%(试卷中包含有实验测试题10-15分)

参考书: 面向21世纪课程教材

2、数字电子技术基础 第五版清华大学阎石主编

数字电子电路

第1章 数字电路与系统基本概念

- 1.1 数字信号和数字电路
- 1.2 数字电路中的数制
- 1.3 数字电路中的代码
- 1.4 数字电路中的基本逻辑函数
- 1.5 逻辑代数

数字信号和数字电路

模拟电子技术基础 和 数字电子技术基础

一、模拟信号和数字信号

模拟信号是时间上和数值上都连续的物理量

- (a) 正弦电压波形 (b) 锯齿电压波形
- (c) 随时间温度变化波形

模拟信号其特征表现为随着时间的变化,幅度(大小) 是连续变化的,没有突变或跳跃

数字信号特征是它的幅度(大小)随时间变化是不连续的,是断续的,时有时无的。

例如用一个电子电路记录从自动生产线上输出的零件数目,每送出一个零件就给电子电路一个信号,使之记1,没有零件送出时记0,零件数目这个信号的变化在时间上和数量上都不连续,是数字信号。

数字信号在时间上和数值上都是离散的

正逻辑体制:

规定高电平为逻辑1,低电平为逻辑0

二、模拟电路和数字电路

模拟电路主要研究模拟信号的放大和处理;

音频功率放大电路框图

模拟电路中的器件主要工作在放大区,常用的分析方法是微变等效电路法。

检测人体心率的电路

数字电路中,着重研究输出信号与输入信号之间的逻辑关系,它常用能代表二种截然不同的状态或因果之间的关系来表示。如:来与去,有与无,高与低,开与关,亮与暗等等。所以,在电信号中,用电平的高低来区分。电路中的器件工作在饱和区和截止区。常用的分析方法是逻辑代数。

数字电路的特点:

1.抗干扰能力强 2.信号容易存储在电路中 3.便于计算机处理

三、数字信号的描述方法

1、二值逻辑

数字信号只有两个离散值——高电平和低电平,是一种二值信号,常用数字0和数字1分别表示低电平和高电平。

2、数字波形

数字波形是逻辑电平对时间的图形表示。

在(a)图所示的时钟脉冲控制下,(b)图所包含的信息是0100110111100111。

四、数字信号的处理和传输

简单的数字信号处理

19年的数于19万处2

里

(b)"或"逻辑处理

(c) 分频处理

(a) 串行传输 (b)并行传输

串行传输方式

并行传输方式

1.2 数字电路中的数制

一、数制及相互间的转换

1.计数体制

每一位的构成方法以及从低位到高位的进位规则

▶十进制数

$$475.6=4\times10^{2}+7\times10^{1}+5\times10^{0}+6\times10^{-1}$$

"数码": 0、1、...、9

"基数": 10,逢十进一

"权"表示价值 可表示成(475.6)₁₀ 或 475.6D

102 — 百位的"权" 101 — 拾位的"权"

100 一个位的"权" 10-1 一拾分之一位的"权"

> r进制数的通式:

 $K_{n-1}K_{n-2}...K_2K_1K_0.K_{-1}K_{-2}...K_{-m}$

$$(N)_{r} = K_{n-1} \cdot r^{n-1} + K_{n-2} \cdot r^{n-2} + \dots + K_{2} \cdot r^{2} + K_{1} \cdot r^{1} + K_{0} \cdot r^{0}$$

+ $K_{-1} \cdot r^{-1} + K_{-2} \cdot r^{-2} + \dots + K_{-m} \cdot r^{-m}$

r ——r进制数的基数,数码有r个

第i位的权: ri

进位规则: 逢r进1

 K_{i} ——某数中第i位的数码元素

n ——该数整数部分的位数

m ——小数部分的位数

$$(N)_r = \sum_{i=-m}^{n-1} K_i \cdot (r)^i$$

▶二进制数(binary Number)

基数r=2,逢二进一

只有0和1二个数码元素
$$K_{n-1}K_{n-2}...K_2K_1K_0.K_{-1}K_{-2}...K_{-m}$$

 $(N)_r = K_{n-1} \cdot r^{n-1} + K_{n-2} \cdot r^{n-2} + \cdots + K_2 \cdot r^2 + K_1 \cdot r^1 + K_0 \cdot r^0 + K_{-1} \cdot r^{-1} + K_{-2} \cdot r^{-2} + \cdots + K_{-m} \cdot r^{-m}$
 $(1101.001)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 0 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$

也可表示成1101.001B

二进制数从高位至低位的"位权"依次是:

$$2^{n-1}$$
, 2^{n-2} , ..., 2^{0} , 2^{-1} , ..., 2^{-m} .

▶八进制数(octal Number)

基数r=8,逢八进一 八个数码元素为0、1、...7

(357.61)₈或357.610

$$=3\times8^{2}+5\times8^{1}+7\times8^{0}+6\times8^{-1}+1\times8^{-2}$$

从高位至低位的"位权"依次是:

$$8^{n-1}$$
, 8^{n-2} , ..., 8^0 , 8^{-1} , ..., 8^{-m}

▶十六进制数(hexadecimal Number)

十六个数码元素为 0、1、...9、 A, B, C, D, E, F 基数r=16,逢十六进一 (A8D.C6)₁₆或A8D.C6H $=A \times 16^{2}+8 \times 16^{1}+D \times 16^{0}+C \times 16^{-1}+6 \times 16^{-2}$ 从高位至低位的"位权"依次是:

 16^{n-1} , 16^{n-2} , ..., 16^{0} , 16^{-1} , ..., 16^{-m}

> 几种常见数制间的关系

十进	二进	八进	十六进	
0	0000	0	0	
1	0001	1	1	
2	0010	2	2	
3	0011	3	3	
4	0100	4	4	
5	0101	5	5	
6	0110	6	6	
7	0111	7	7	

十进	二进	八进	十六进	
8	1000	10	8	
9	1001	11	9	
10	1010	12	A	
11	1011	13	В	
12	1100	14	C	
13	1101	15	D	
14	1110	16	E	
15	1111	17	F	

2. 各种进制数间的相互转换

原因:数字电路运行在二值的二进制数字信号下,但为书写方便,常用八进和十六进制数表示,而日常又习惯于十进制数,所以要进行数制间的转换。

数制转换包括:

- r 进制数转换为十进制数
- · 十进制数转换为r 进制数
- 二、八、十六进制数之间的相互转换

> r 进制数转换成十进制数

按权展开再相加

$$(1101.001)_{2}=1\times2^{3}+1\times2^{2}+0\times2^{1}+1\times2^{0}$$

$$+0\times2^{-1}+0\times2^{-2}+1\times2^{-3}$$

$$=(13.125)_{10}$$

$$(357.6)_{8}=3\times8^{2}+5\times8^{1}+7\times8^{0}+6\times8^{-1}$$

$$=(239.75)_{10}$$

$$(A8D.C)_{16}=A\times16^{2}+8\times16^{1}+D\times16^{0}+C\times16^{-1}$$

$$=(2701.75)_{10}$$

> 十进制数转换为r 进制数

整数部分的转换采用除r取余法。将待转换的十进制数整数除以r,取余数,不断地进行,直至商为零。第一次的余数为r进制数的最低位(LSB),最后的余数为转换后进制数的最高位(MSB)。

以十进制数转换成二进制数为例:

$$(N)_{10} = (K_{n-1}K_{n-2}...K_{2}K_{1}K_{0})_{2}$$

$$= K_{n-1} \times 2^{n-1} + K_{n-2} \times 2^{n-2} + \cdots + K_{2} \times 2^{2} + K_{1} \times 2^{1} + K_{0} \times 2^{0}$$

$$= 2\{K_{n-1} \times 2^{n-2} + K_{n-2} \times 2^{n-3} + \cdots + K_{2} \times 2^{1} + K_{1} \times 2^{0}\} + K_{0}$$

$$= 2\{2[K_{n-1} \times 2^{n-3} + \cdots + K_{2} \times 2^{0}] + K_{1}\} + K_{0}$$

$$\vdots$$

$$\overline{\beta} \qquad \overline{\$}$$

$$= 2\{2[\cdots 2(0) + K_{n-1} \cdots] + K_{1}\} + K_{0}$$

【例1.1】

将十进制数175转换成二进制,八进制和十六进制数。

解:
$$2 \mid 175 \dots K_0 = 1 \uparrow (LSB)$$
 8 $\mid 175 \dots 7 \uparrow 16 \mid 175 \dots K_0 = F \uparrow 2 \mid 87 \dots K_1 = 1$ 8 $\mid 21 \dots 5 \mid 16 \mid 10 \dots K_1 = A \mid 2 \mid 21 \dots K_3 = 1$ 2 $\mid 10 \dots K_4 = 0$ 2 $\mid 10 \dots K_5 = 1$ 2 $\mid 2 \dots K_5 = 1$ 2 $\mid 2 \dots K_6 = 0$ 2 $\mid 1 \dots K_7 = 1$ (MSB)

结果
$$(175)_{10}$$
= $(10101111)_2$ = $(257)_8$ = $(AF)_{16}$ ■

• 小数部分的转换

一个十进制小数可用二进制数表示如下:

依次类推,可得K₋₁、K₋₂、...K_{-m}

十进制数转换为r进制数时,小数部分的转换采用乘r取整法。将待转换的十进制小数乘以r,取整数,再将积的小数部分乘以2,不断地进行,直至积的小数部分为零。第一次的整数为转换后的最高位(MSB),最后一次的整数为最低位(LSB)。

必须注意:

有时积的小数部分会达不到零,这时候,可按转换精度的要求来取位数。

【例1.2】

将十进制数小数(0.125)₁₀转换成等值的二进制数、八进制数和十六进制数。

解:
$$0.125$$
 $\times 2$ $\times 2$ $\times 8$ $\times 2$ $\times 16$ $\times 2.0$ $\times 2.0$ $\times 2.0$ $\times 2.0$ $\times 2.0$ $\times 2.0$

结果 $(0.125)_{10}$ = $(0.001)_2$ = $(0.1)_8$ = $(0.2)_{16}$

> 2进制、8进制以及16进制数之间的转换

用二进制数作为桥梁

因为2³=8,所以一个八进制数码元素用一组三位二进制数表示。 因为2⁴=16,所以一个十六进制数码元素用一组四位二进制数表示。

$$(57)_{8} = (\underline{101111})_{2}$$

$$(3A.4)_{16} = (\underline{00111010.0100})_{2}$$

$$(101111)_{2} = (\underline{001011111})_{2} = (2F)_{16}$$

$$(110011.01)_{2} = (\underline{110011.010})_{2} = (63.2)_{8}$$

$$(451)_{8} = (000\underline{100}_{101}\underline{001})_{2} = (129)_{16}$$

4、数字电路中的正负数表示

数字电路只认识二进制数,所以正负数肯定也用二进制数表示。其方法是在一个数的最高位前设置一位符号位。

符号位为"0"时,表示该数为正数,符号位为"1"时为负数。

这种带符号位的数称为机器数,原正负数又称真值。

一个机器数的表示形式有三种:原码,反码和补码。

➤ 原码 (True Form) ■

由符号位加原数的数值部分,即 [X]_原=符号位+原数值

如
$$x_1=+1001010$$
 则 $[x_1]_{\bar{\mathbb{R}}}=01001010$ ■ $x_2=-1001010$ 则 $[x_2]_{\bar{\mathbb{R}}}=11001010$

特点:

原码表示简单,直观。适用于两数相乘,因为乘积的符号位只要将两乘数符号位<mark>异或</mark>即可。但减法运算的符号位较难求出。

➤ 反码 (One's Complement) ■

正数的反码为符号位加上原数值部分,负数的反码为符号位加上原数值的反码(原数值按位求反)。■

例 $x_1=+1001010$ 则 $[x_1]_{\overline{\mathbb{Q}}}=01001010$ ■ $x_2=-1001010$ 则 $[x_2]_{\overline{\mathbb{Q}}}=10110101$

➤ 补码 (Two's Complement)

补码(补数)可以从生活中来认识。如早晨7:00起床时,发现时钟停在10:00上。要校准到7点,有二种方法:

- a. 顺拨时钟9个小时,相当于10+9=12+7
- b. 反拨时钟3个小时,相当于10-3=7

对钟表走一圈为12的最大数而言,顺拨时的10+9和反拨的10-3是相等的。

数学上+9和-3就称为最大数12的互为补数,或称+9是-3对模12的补码。■

由上可见,通过补码,一个减法运算可以变换成加法运算。

一个n位的二进制数x(不包括符号位)的补码可用下式方法求取:

$$\begin{bmatrix} x \end{bmatrix}_{h} = \begin{bmatrix} x \end{bmatrix}$$
 (当x为正数)
 2^{n} - $\begin{bmatrix} x \end{bmatrix}$ (当x为负数) ■
例如 $(-1010)_{h} = 2^{4}$ - $1010 = 10000$ - $1010 = 0110$

x为正数时,补码和原码相同;

x为负数时,符号位仍为1,数值位按位取反,再在最低位加1。

例如 x_1 =+1001010的补码是 $[x_1]_{\stackrel{}{N}}$ =01001010 \blacksquare x_2 = -1001010的补码是 $[x_2]_{\stackrel{}{N}}$ =10110110 \blacksquare

补码的运算规则

$$[x_1]_{N+1} = [x_1 + x_2]_{N+1}$$

补码再求补=原码
 $[x_1-x_2]_{N+1} = [x_1]_{N+1}$

例如求12-9=?

[1100-1001]_补=[1100]_补+[-1001]_补=01100+10111=100011 其中,最高位自然丢失(溢出),次高位0为符号位,运算 结果为+3。 ■

又如求9-12=?

[1001-1100]_补=[1001]_补+[-1100]_补=01001+10100=11101 结果是负数,再求补后得10011,所以是-3。 ■

几个数的真值、原码、反码、补码

X	[x] _原	[x] _反	[x] _{*\}	X	[x] _原	[x] _反	[x] _*
+1010	01010	01010	01010	-1001	11001	10110	10111
+0100	00100	00100	00100	-0011	10011	11100	11101

1.3 数字电路中的代码

生活中用一组十进制数来代表一个特定对象的情况是很多的。如电话号码、邮政编码等等。用一组十进制数代替一个特定对象的过程称为编码。

而在数字电路中,用一组二进制数来代替某一特定的对象,这组二进制数就是代表该对象的代码。代替的方法有非常多的种类。

➤ 二-十进制编码(BCD码)

十进制数的0~9十个数字分别用一个四位的二进制编码表示,称十进制数的二进制编码,简称BCD码(Binary Coded Decimal)。

四位二进制数有十六种不同组合,只要选出 其中的十种分别代替0、1、...、9十个数码进 行组合。

- 有权码: 8-4-2-1、5-4-2-1、...,分别表示这种代码方案中高位至低位的"权",即每一位的1代表的十进制数值。
- 无权码: 某一位代码没有具体十进制数值的意义。

十进			有权码			无权码
制数	8421	5421	2421	2421*	5211	余三码
0	0000	0000	0000	0000	0000	0011
1	0001	0001	0001	0001	0001	0100
2	0010	0010	0010	0010	0100	0101
3	0011	0011	0011	0011	0101	0110
4	0100	0100	0100	0100	0111	0111
5	0101	1000	0101	1011	1000	1000
6	0110	1001	0110	1100	1001	1001
7	0111	1010	0111	1101	1100	1010
8	1000	1011	1110	1110	1101	1011
9	1001	1100	1111	1111	1111	1100

8421BCD码有时也简称为BCD码。

➤ 格雷码(Gray Code)循环码

是一种可靠性编码。因为这种代码中任何二组相邻代码之间只相差一位码不同,其它码相同的特性。

十进制数	4位循环码	十进制数	4位循环码
0	0000	8	1100
1	0001	9	1101
2	0011	10	1111
3	0010	11	1110
4	0110	12	1010
5	0111	13	1011
6	0101	14	1001
7	0100	15	1000

> 字符代码

■ ISO编码(International Standardization Organization)

国际标准组织制定的八位二进制代码,主要用于信息交换,它包括十进制数的10个数码,26个英文字母,以及+、-、×、÷、.....等20个符号,共56种特定对象。

ASCII码(American Standard Code for Information Interchange)

是美国国家信息交换标准代码的简称,也是八位二进制代码,其中一位作奇偶校验位。

1.4 数字电路中的基本逻辑函数

- · 逻辑代数,又称布尔代数。由英国数学家乔治·布尔在1849提出。
- 它用来描述客观事物中的逻辑关系,约100年后 才用在开关电路中。
- 用字母或符号表示变量,但是,该变量不代表具体数值大小,而只代表某种因果关系,或代表二种截然不同的状态,电平等。例如,开关的断开和闭合、晶体管的截止和饱和导电,灯的亮和暗,事件的是和非,真和假.....等

一、逻辑代数中的三种基本运算

1. 与逻辑关系

决定某一结果成立的各种条件都具备时,结果才成立。称为与逻辑。

如二只串联开关控制一只电灯,只有 制二只开关都闭合 当二只开关。因时,电灯才亮。因 此为与逻辑。

· 开关闭合:逻辑"1" 断开:逻辑"0"

• 灯亮暗结果

亮:逻辑"1"

暗:逻辑"0"

• 要使结果成立(L="1"), 二只串联的开关都必须 闭合(A="1", B="1")。

$$L = f(A, B) = A \cdot B$$

条	件	结 果
A	В	L
0	0	0
0	1	0
1	0	0
1	1	1

□ 从逻辑运算上,与逻辑是逻辑乘关系:

条件	结果
A B	L
0 0	0
0 1	0
1 0	0
1 1	1

□ 能完成"与"逻辑功能的电路称为与门。 逻辑符号为:

特定外型符号

国标符号

尚使用符号

2. 或逻辑关系

如果决定结果成立的条件中,只要有一个或一个以上的条件具备时,结果就能成立。称为或逻辑。

条	件	结 果
A	В	L
0	0	0
0	1	1
1	0	1
1	1	1

$$L=A+B$$

□ 从逻辑运算上,或逻辑是逻辑加关系:

条	件	结 果
A	В	${f L}$
0	0	0
0	1	1
1	0	1
1	1	1

□ 能完成"或"逻辑功能的电路称为或门。逻辑符号为:

3. 非逻辑关系

当条件具备时,结果不成立,反之,结果成立。

条	件	结	果
F	4	I	
	0		[
	1	()
	条	条 件 A 0 1	条 件 结 A I I 1 (

¤ 非门逻辑符号

特定外型符号

尚使用符号

4. 复杂逻辑关系

▶与非

决定某一结果成立的各种条件 都具备时,结果才不成立。

$$L = \overline{AB}$$

□ 与非逻辑符号

条	件	结果
A	В	\mathbf{L}
0	0	1
0	1	1
1	0	1
1	1	0

➤ 或非 L=A+B

➤ 与或非 L=AB+CD

特定外型符号

国标符号

> 异或逻辑关系

当决定结果的二个条件相异时,结果成立,二个条件相同时,结果不成立。

$$L = A \cdot B + A \cdot B = A \oplus B$$

□ 异或逻辑符号

条	件	结果
A	В	\mathbf{L}
0	0	0
0	1	1
1	0	1
1	1	0

> 同或逻辑关系

当决定结果的二个条件相同时,结果成立,二个条件相异时,结果不成立。

$$L = A \cdot B + \overline{A} \cdot \overline{B} = A \odot B$$

I	司或逻辑符号	•
---	--------	---

条	件	结果
A	В	\mathbf{L}
0	0	1
0	1	0
1	0	0
1	1	1

