Al Programming

Lecture 22

Preview

Matplotlib

Basics

Import

```
import matplotlib as mpl
import matplotlib.pyplot as plt
```

Plot with Python list

```
x = [0, 1, 2, 3, 4, 5]
plt.plot(x)
plt.show()
```


Basics

Plot with NumPy ndarray

```
import numpy as np

x = np.arange(5)
plt.plot(x, x**2)
plt.show()
```



```
import numpy as np

x = np.arange(5)
plt.plot(x, np.sqrt(x))
plt.show()
```



```
import numpy as np

x = np.arange(5)
plt.plot(x, np.exp(x))
plt.show()
```


Basics

Smooth curves

```
import numpy as np

x = np.linspace(0, 10, 100)

plt.plot(x, np.sin(x))
plt.show()
```



```
import numpy as np

x = np.linspace(0, 10, 100)

plt.plot(x, np.cos(x))
plt.show()
```


Attribute setup

plt.xlim(최소값, 최대값): 플롯의 x축 범위 지정 plt.ylim(최소값, 최대값): 플롯의 y축 범위 지정 plt.title(문자열): 플롯의 제목 plt.xlabel(문자열) / plt.ylabel(문자열): 축 이름 plt.legend(): 범례 표시

```
import numpy as np

x = np.linspace(0, 10, 100)

plt.plot(x, np.sin(x), 'b-', linewidth=2, label='sin(x)')
plt.plot(x, np.cos(x), 'r--', linewidth=1, label='cos(x)')
plt.xlim(0, 10)
plt.ylim(-1, 1)
plt.title('Sine & Cosine Curves')
plt.xlabel('x'), plt.ylabel('sin(x) or cos(x)')
plt.legend()
plt.show()
```


Styles

character	description
1_1	solid line style
''	dashed line style
''	dash-dot line style
1:1	dotted line style

character	color
'b'	blue
'g'	green
'r'	red
'c'	cyan
'm'	magenta
'y'	yellow
'k'	black
'w'	white

character	description
1.1	point marker
1,1	pixel marker
'o'	circle marker
'v'	triangle_down marker
1.61	triangle_up marker
'<'	triangle_left marker
'>'	triangle_right marker
'1'	tri_down marker
'2'	tri_up marker
'3'	tri_left marker
'4'	tri_right marker
's'	square marker
'p'	pentagon marker
**	star marker
'h'	hexagon1 marker
'H'	hexagon2 marker
'+'	plus marker
'x'	x marker
'D'	diamond marker
'd'	thin_diamond marker
.1.	vline marker
'_'	hline marker

Styles

```
x = np.arange(11)

plt.plot(x, x**2, 'b')
plt.show()
```


Exercise


```
x = np.linspace(1, 5, 10)

plt.plot(x, x, 'bo-', label='x')
plt.plot(x, x**2, 'r>--', label='x**2')
plt.plot(x, np.log(x), 'gs:', label='log(x)')
plt.plot(x, np.sqrt(x), 'mp-.', label='sqrt(x)')
plt.title('My Curves')
plt.xlabel('x')
plt.legend()
plt.show()
```

Subplots

```
x = np.linspace(0, 10, 100)

plt.subplot(2, 1, 1)
plt.plot(x, np.sin(x), 'b-', label='sin(x)')
plt.axis([0, 10, -1, 1])
plt.grid(True)
plt.legend()

plt.subplot(2, 1, 2)
plt.plot(x, np.cos(x), 'r-', label='cos(x)')
plt.axis([0, 10, -1, 1])
plt.legend()
plt.show()
```


Subplots

```
x = np.linspace(-10, 10, 100)
plt.subplot(2, 2, 1)
plt.plot(x, np.sin(x), 'b-', label='sin(x)')
plt.legend()
plt.subplot(2, 2, 2)
plt.plot(x, np.cos(x), 'r-', label='cos(x)')
plt.legend()
plt.subplot(2, 2, 3)
plt.plot(x, np.sinh(x), 'g-', label='sinh(x)')
plt.legend()
plt.subplot(2, 2, 4)
plt.plot(x, np.cosh(x), 'm-', label='cosh(x)')
plt.legend()
plt.show()
```


Subplots & for loop

```
x = np.linspace(0, 10, 100)
for i in range(1, 7):
  plt.subplot(3, 2, i)
  plt.plot(x, np.sin(i*x))
  plt.grid(True)
plt.show()
```


Basics

```
x = np.random.randn(100)
y = np.random.randn(100)
plt.plot(x, y, 'ko', ms=2)
plt.show()
```



```
plt.plot(x, y, 'rd', ms=5)
plt.show()
```


Basics

plt.scatter(x, y, c='r', s=50)

```
plt.show()

2-
1-
0-
-1-
-2-
```

```
plt.scatter(x, y, c='b', s=10, marker='s')
plt.show()
```



```
z = np.random.randn(100)
w = np.random.randn(100)

plt.scatter(x, y, c='b', s=10, marker='o')
plt.scatter(z, w, c='r', s=50, marker='x')
plt.show()
```


Exercise


```
x = np.random.randn(20)
y = np.random.randn(20)
z = np.random.randn(20)+5
w = np.random.randn(20)+5
a = np.random.randn(20)-5
b = np.random.randn(20)-5
plt.scatter(x, y, c='b', s=10, marker='o', label='Group 1')
plt.scatter(z, w, c='r', s=50, marker='x', label='Group 2')
plt.scatter(a, b, c='g', s=30, marker='s', label='Group 3')
plt.plot(np.linspace(-5,5,10), np.linspace(-5,5,10), 'k-', label='y=x')
plt.grid(True)
plt.xlabel('x')
plt.ylabel('y')
plt.title('My Scatters')
plt.legend()
plt.show()
```

Basics

```
x = np.arange(3)
y = [100, 200, 300]
plt.bar(x, y)
plt.show()
```



```
x = np.arange(3)
years = ['2017', '2018', '2019']
y = [100, 200, 300]

plt.bar(x, y)
plt.xticks(x, years)
plt.show()
```


Styles

- width: 막대의 너비
- color: 막대의 색
- edgecolor: 테두리 색
- linewidth: 테두리 너비
- tick label: x축 tick

```
x = np.arange(3)
years = ['2017', '2018', '2019']
y = [100, 400, 900]

plt.bar(x, y, width=0.6, color="g", edgecolor="r", linewidth=3, tick_label=years)
plt.show()
```


Horizontal bar

```
x = np.arange(3)
years = ['2017', '2018', '2019']
y = [100, 400, 900]

plt.barh(x, y, height=0.6 color="g", edgecolor="r", linewidth=3, tick_label=years)
plt.show()
```


Histogram

Histogram

Basics

```
mu = 72
sigma = 8
x = np.random.normal(mu, sigma, 10000)
plt.hist(x)
plt.show()
```


Histogram

Styles

• rwidth: 막대의 너비, bins: 계급 수/계급 범위

```
mu = 72
sigma = 8
x = np.random.normal(mu, sigma, 10000)
plt.hist(x, rwidth=0.9)
plt.show()
```

```
2500 -
2000 -
1500 -
1000 -
500 -
500 -
500 -
80 90 100
```

```
mu = 72
sigma = 8
x = np.random.normal(mu, sigma, 10000)

plt.hist(x, rwidth=0.9, bins = 20)
plt.show()
```



```
mu = 72
sigma = 8
x = np.random.normal(mu, sigma, 10000)
plt.hist(x, rwidth=0.9, bins = [40, 50, 60, 70, 80, 90, 100])
plt.show()
```


Summary

Matplotlib

- plt.plot, plt.scatter, plt.hist, plt.bar, plt.barh
- plt.xlim, plt.ylim
- plt.title, plt.xlabel, plt.ylabel
- plt.legend