Defining Object Type Using MDP Homomorphisms

Alicia Peregrin Wolfe and Andrew G. Barto

pippin@cs.umass.edu, barto@cs.umass.edu

Autonomous Learning Laboratory
Department of Computer Science
University of Massachusetts, Amherst

Outline

- Introduction: Object Type
- CMP Homomorphisms
- Object Homomorphisms
- Object Options
- Subtypes
- Discussion

Modeling Objects

- Are green blocks the same as yellow blocks?
- Could the same policy be used to move both?

Modeling Objects

Is a block the same as a plate?

Modeling Objects

- Is a block the same as a plate?
- Can they be stacked the same way?

Related Work

- Givan, R., Dean, T., & Greig, M. Equivalence Notions and Model Minimization in Markov Decision Processes. Artificial Intelligence, 2003
 - stochastic bisimulation
- Ravindran, B. & Barto, A. G. SMDP Homomorphisms: An Algebraic Approach to Abstraction in Semi Markov Decision Processes. IJCAI-03
 - MDP Homomorphisms
- CMP Homomorphisms (Wolfe, Barto, AAAI 2006)
 - If you are going to bother to build a model, use it for multiple tasks

Controlled Markov Processes

- **C**ontrolled Markov Process: (S, A, T)
- $\blacksquare S$: State set, A: Action set, $T: S \times A \times S \rightarrow [0, 1]$

Controlled Markov Processes

- \blacksquare Controlled Markov Process: (S, A, T)
- $\blacksquare S$: State set, A: Action set, $T: S \times A \times S \rightarrow [0, 1]$
- Add output variable: $(S, \overline{A}, T, \overline{y})$
- $y:S\to Y$

- Model which predicts one specific output variable
- Transitions occur between abstract states
- Can build policies for supported reward functions $r \circ y$

Partition of state and action spaces, with constraints:

$$y(f(s), g_s(a)) = y(s, a)$$
 $T(f(s_i), g_s(a), f(s_j)) = \sum_{s_k | f(s_j) = f(s_k)} T(s_i, a, s_k)$

Partition of state and action spaces, with constraints:

$$y(f(s), g_s(a)) = y(s, a)$$
 $T(f(s_i), g_s(a), f(s_j)) = \sum_{s_k | f(s_j) = f(s_k)} T(s_i, a, s_k)$

Partition of state and action spaces, with constraints:

$$y(f(s), g_s(a)) = y(s, a)$$
 $T(f(s_i), g_s(a), f(s_j)) = \sum_{s_k | f(s_j) = f(s_k)} T(s_i, a, s_k)$

Object CMPs

- Output is $z \circ w_o$ where w_o singles out object o, and z singles out a feature
- What if multiple objects have the same model for z?

Object CMPs

- Output is $z \circ w_o$ where w_o singles out object o, and z singles out a feature
- What if multiple objects have the same model for z?

Generalization

- Plates, blocks ∈ stackable objects type
- Only have to be the same with respect to the output variable

Generalization

- Plates, blocks ∈ stackable objects type
- Only have to be the same with respect to the output variable

Generalization

- Plates, blocks ∈ stackable objects type
- Only have to be the same with respect to the output variable

Lifting Policies

Policy specifies action in abstract model

Lifting Policies

- Policy specifies action in abstract model
- Reverse mapping to find the corresponding action in the CMP

Object Options

- Suboal option:
 - \blacksquare reward function r
 - \blacksquare termination function β
- \blacksquare Object option: both are function of z
- Only need to find policies for types, not specific objects

Object Type: Subtypes

- What if all blue and green blocks stick to blocks of the same color, but yellow do not?
- Sample states:

Object Type: Subtypes

- What if all blue and green blocks stick to blocks of the same color, but yellow do not?
- Sample states:

Object Type: Subtypes

- What if all blue and green blocks stick to blocks of the same color, but yellow do not?
- Sample states:

Object CMPs

- Equivalence criteria:
 - \blacksquare \forall CMPs M_k
 - $lackbox{$lackbox{h}}_i$ the reduction of $\overline{M}_k,z\circ\overline{w_{o_i}}$
 - $\exists h_j, M_l, h_j \text{ a reduction of } M_l, z \circ w_{o_j}$
 - Such that $h_i(M_k, z \circ w_{o_i}) = h_j(M_l, \overline{z \circ w_{o_j}})$
 - Then $o_j \leq o_i$ under the output z

Discussion

- View environment from point of view of a single object
 - could be another agent
- Alternate method: add "pointer" to state space
 - one large model over all types
- HM framework does not generalize to more objects
 - Can't use reduction for 3 blocks to learn about 4
 - Find the relations which will generalize from examples of reductions
 - Build a generic reduction