TD 3

Exercices d'application

D'après IPT, Éditions Vuibert.

Savoirs et compétences :

☐ Alg – C15 : Récursivité : avantages et inconvénients.

Exercice 1

Soit l'algorithme suivant :

```
■ Python

def mult(n, p):

if p == 0:

return 0

else:

return n+mult(n,p-1)
```

Question 1 Énoncer un variant de boucle et montrer la terminaison de l'algorithme.

Question 2 Énoncer un invariant de boucle et montrer la correction de l'algorithme.

Correction • Soit \mathcal{P} la propriété d'invariance : à l'itération p, on a $mult(n, p) = n \cdot p$.

- À l'instant 0, on a : d'une part : $\forall n, n \cdot 0 = 0$. D'autre part, mult(n, 0) renvoie 0. La propriété de récurrence est vraie.
- À l'instant p, on considère la propriété de récurrence est vraie à l'instant $p: mult(n, p) = n \cdot p$.
- À l'instant p+1, on applique l'algorithme : p étant différent de 0, l'algorithme retourne mult(n,p+1) = n + mult(n,p). D'après la propriété de récurrence, on a donc $mult(n,p+1) = n + n \cdot p = n(p+1)$. La propriété est donc vraie au rang p+1.
- L'algorithme calcule donc le produit np.

Question 3 Donner et justifier la complexité temporelle de la fonction mult.

Correction On note C(p) le nombre d'appels récursifs : C(p) = 1 + C(p-1) = 1 + 1 + C(p-2) = p + T(0). On a donc $C(p) = \mathcal{O}(p)$. La complexité temporelle est linéaire.

Question 4 Donner et justifier la complexité spatiale de la fonction mult.

Correction On stocke une valeur à chaque appel récursif. Si ce stockage est à coût constant, étant donné qu'il y a n appels récursifs, la complexité spatiale est en $\mathcal{O}(n)$.

Exercice 2

Soit l'algorithme suivant :

Informatique


```
■ Python

def puiss(x, n):
    if n == 0:
        return 1
    else:
        return x*puiss(x,n-1)
```

Question 1 Énoncer un variant de boucle et montrer la terminaison de l'algorithme.

Question 2 Énoncer un invariant de boucle et montrer la correction de l'algorithme.

Correction • Soit \mathcal{P} la propriété d'invariance : à l'itération p, on a $puiss(x, n) = x^n$.

- À l'instant 0, on a : d'une part : $\forall x > 0$, $x^0 = 1$. D'autre part, puiss (x, 0) renvoie 1. La propriété de récurrence est vraie.
- À l'instant n, on considère la propriété de récurrence est vraie et à l'instant $p:puiss(x,n)=x^n$.
- À l'instant n+1, on applique l'algorithme : n étant différent de 0, l'algorithme retourne puiss(x,n+1) = x*mult(x,n). D'après la propriété de récurrence, on a donc $puiss(x,n+1) = x*x^n = x^{n+1}$. La propriété est donc vraie au rang n+1.
- L'algorithme calcule donc le produit x^n .

Question 3 Donner et justifier la complexité temporelle de la fonction puiss.

```
Correction On note C(p) le nombre d'appels récursifs : C(p) = 1 + C(p-1) = 1 + 1 + C(p-2) = p + T(0). On a donc C(p) = \mathcal{O}(p). La complexité temporelle est linéaire.
```

Question 4 Donner et justifier la complexité spatiale de la fonction puiss.

Correction On stocke une valeur à chaque appel récursif. Si ce stockage est à coût constant, étant donné qu'il y a n appels récursifs, la complexité spatiale est en $\mathcal{O}(n)$.

Exercice 3

 $So it\ l'algorithme\ suivant:$

```
■ Python

def rechecheDichoRec(x, 1):
    n=len(1)
    if n == 0:
        return False
    elif x<1[n//2]:
        return rechecheDichoRec(x, 1[0:n//2])
    elif:
        return rechecheDichoRec(x, 1[n//2:n])
    else:
        return True
```

Question 1 Donner et justifier la complexité temporelle de la fonction rechecheDichoRec.

Correction Définissons le coût temporel comme le nombre d'appel récursif. Dans le pire des cas, l'élément n'est pas dans la liste. On cherche p le nombre de fois que n est divisible par 2. On cherche donc p tel que $n\left(\frac{1}{2}\right)^p > 1 \Leftrightarrow$

$$p \ln\left(\frac{1}{2}\right) > \ln\left(\frac{1}{n}\right) \iff p > \frac{\ln\left(\frac{1}{n}\right)}{\ln\left(\frac{1}{2}\right)} = \frac{-\ln(n)}{-\ln(2)} = \frac{\ln(n)}{\ln(2)}$$
. La complexité est logarithmique.

Question 2 Donner et justifier la complexité spatiale de la fonction rechecheDichoRec.

Correction On stocke une liste à chaque appel récursif. On note n le coût de stockage d'une liste de taille n. Soit une liste 1 de taille $n=2^k$ avec $k \in \mathbb{N}$. À chaque itération, on stocke une liste de taille n/2. On a donc $C(n)=n+\frac{n}{2}+\frac{n}{4}+...+1$.

Par conséquent, $C(n) = 2^k + \frac{2^k}{2} + \frac{2^k}{4} + \dots + 1 = 2^k + 2^{k-1} + 2^{k-2} + \dots + 1$. S'agissant de la somme des termes d'une suite géométrique : $C(n) = 1 + 2^1 + \dots + 2^k = \frac{1 - 2^{k+1}}{1 - 2} = 2n + 1$. La complexité spatiale est donc linéaire.