Esame di Elettronica I per Ingegneria informatica (sede di Latina) 9 gennaio 2003 Prof. G. de Cesare

Studente:		
Cognome	Nome	N. Mat

1) Per il seguente circuito calcolare il valore massimo di R_D che mantiene il transistore MOS in zona di saturazione.

2) Spiegare perché si definisce: "corto circuito virtuale" l'ingresso di un amplificatore operazionale.

3) Definire i margini di rumore di un invertitore logico.

Esame di Elettronica I per Ingegneria informatica (sede di Latina) 27 marzo 2003 Prof. G. de Cesare

Studente:		
Cognome	Nome	N. Mat

1) Per il seguente circuito, in presenza del segnale V_{in} riportato, graficare l'andamento nel tempo della tensione d'uscita V_{out}

2) Spiegare perché il prodotto potenza-ritardo è un fattore di merito per un inverter logico.

3) Indirizzamento e struttura di celle di memoria RAM statiche.

Esame di Elettronica I per Ingegneria informatica (sede di Latina) 14 aprile 2003 Prof. G. de Cesare

Studente:		
Cognome	Nome	N. Mat

1) Calcolare l'amplificazione di tensione v_{out}/v_S per il seguente circuito:

2) Disegnare come si muove il punto di lavoro di un inverter CMOS durante la commutazione H-L in uscita

3) Disegnare lo schema a blocchi un FF JK Master Slave sincrono e spiegare il ruolo del Master Slave.

INGEGNERIA INFORMATICA (sede Latina) ELETTRONICA I – Prova scritta del 17/7/2003

Matricola	Cognome	Nome:	
IVIUUI ICOIU	Cognome	1 tollic.	

1) Per il circuito seguente calcolare la resistenza R₂ che determina una corrente in R₁ di 1mA

$$R_1$$
= 5 K Ω R_2 =? R_3 = 2 K Ω
Operazionale: ideale (A_d = ∞ , R_{in} = ∞ , R_0 =0, L^+ = - L^- =10V)

- 2) Disegnare un inverter CMOS, confrontare tra loro i tempi di ritardo H-L e L-H.
- 3) Disegnare un decoder con indirizzo a due bit con porte NOR in tecnologia NMOS.

INGEGNERIA INFORMATICA ELETTRONICA I – Prova scritta del 17/7/2003

Matricola	Cognome	Nome:	
IVIUUI ICOIU	Cognome	1 tollic.	

1) Per il circuito seguente calcolare il massimo valore di R_1 che mantiene in zona lineare l'amplificatore.

 R_1 = ? R_2 =2 $K\Omega$ R_L = 2 $K\Omega$ Operazionale: ideale (A_d = ∞ , R_{in} = ∞ , R_0 =0, L^+ = - L^- =10V)

2) Cosa è "l'effetto body" in un transistore MOS e come si modifica il circuito equivalente per piccoli segnali.

3) Disegnare una porta NAND e una porta NOR in tecnologia NMOS e commentare la differenza in termini di occupazione d'area..

INGEGNERIA INFORMATICA ELETTRONICA I – Prova scritta del 17/7/2003

Matricola	Cognome	Nome:	

1) Per il circuito seguente, con v_s un segnale sinusoidale a valor medio nullo, calcolare la dinamica d'ingresso dell'amplificatore.

 R_S = 100 Ω R_1 = 4 $K\Omega$ R_2 =1 $K\Omega$ R_L = 10 $K\Omega$ Operazionale: ideale (A_d = ∞ , R_{in} = ∞ , R_0 =0, L^+ = - L^- =10V)

2) Dimostrare che in un amplificatore controreazionato il prodotto banda-guadagno è una costante.

3) Disegnare un inverter NMOS con carico a svuotamento, confrontare tra loro i tempi di ritardo H-L e L-H utilizzando il luogo dei punti di lavoro del circuito nelle due commutazioni.

ELETTRONICA I Ingegneria Informatica (Gruppo M-Z) Prova scritta del 18/9/2003

3.7.4.1	•	N.T.	
Matricola	Cognome	Nome:	

1) Del seguente circuito determinare il punto di polarizzazione (I_D, V_{DS} dei due transistori);

- 2) Schema e funzionamento del multivibratore astabile.
- 3) Disegnare il circuito di un FF SR sincrono in tecnologia NMOS e spiegarne la tavola della verità.

ELETTRONICA I (I Mod) Ingegneria Informatica Sede LATINA Prova scritta del 22/9/2003

Matricola Cognome Nome:

1) Del seguente circuito determinare il punto di polarizzazione (I_D, V_{DS} dei due transistori);

$$\begin{array}{lll} \textbf{Q_1:} & V_T \!\!=\! 1V; & K_1 \!\!=\! 1 \text{ mA/V}^2; & C_{gs} \!\!=\! C_{gd} = \text{trascurabili;} & \lambda \!\!=\! 0, \quad \chi \!\!=\! 0 \\ \textbf{Q_2:} & V_T \!\!=\! 1V; & K_2 \!\!=\! 0,\! 25 \text{ mA/V}^2; & C_{gs} \!\!=\! C_{gd} = \text{trascurabili;} & \lambda \!\!=\! 0, \quad \chi \!\!=\! 0 \\ V_{DD} = 10V & R_1 = 10 \text{ M}\Omega & R_L = 10 \text{ K}\Omega \\ C_1 = \infty & C_2 = \infty & \end{array}$$

2) Definire i margini di rumore di una porta logica e commentarne le caratteristiche per la tecnologia CMOS.

3) Schema circuitale e funzionamento di un FF D sincrono in tecnologia NMOS.

ELETTRONICA I (I Mod.)

Ingegneria Informatica Sede Latina Prova scritta del 10/12/2003

Cognome	Nome	Matricola
· -		

1) Descrivere con il modello della rete a due porte l'amplificatore seguente:

$$\begin{split} R_S = R_1 = R_3 = 1 K \Omega \; ; \qquad \quad R_2 = 10 K \Omega \\ Amplificatore operazionale ideale \end{split}$$

2) Funzionamento dinamico dell'inverter NMOS con carico ad arricchimento.

3) Memorie di sola lettura (ROM fisse e programmabili)

ELETTRONICA I (I Mod.)

Ingegneria Informatica Prova scritta del 17/12/2003

Cognome	Nome	Matricola

1) Per l'amplificatore seguente calcolare la corrente che scorre in R_2 per $V_S = 1$ V e $V_S = 2$ V.

2) Definire i margini di rumore alto e basso di un inverter logico.

3) Disegnare il circuito di un flip-flop SR sincrono in tecnologia NMOS con carico a svuotamento e spiegarne il funzionamento.

ELETTRONICA I (I Mod.)

Ingegneria Informatica Prova scritta del 19/12/2003

	NT	N.C. 4
Cognome	Nome	Matricola

1) Calcolare la tensione di uscita del seguente amplificatore.

$$\begin{split} R_1 &= R_3 = R_4 = 1 K \Omega \; ; \qquad R_2 = 10 K \Omega \\ Amplificatore operazionale ideale; L+ = -L- = 10 \; V \end{split}$$

2) Disegnare e commentare la funzione di trasferimento ($V_{out} = f(V_{in})$) di un amplificatore NMOS con carico a svuotamento

3) Tempi di commutazione di un inverter logico CMOS