Interesting Topological Spaces in Algebraic Geometry

D. Zack Garza

Tuesday 28th July, 2020

1

2

3

Contents

1 Ideas for Spaces

2	Analogies
	2.1 Topological Category
	2.2 Smooth Category
3	Kahlers
1	Ideas for Spaces
	• Curves
	- Elliptic Curves
	– Higher genus
	 Hyperelliptic curves
	- The modular curve
	• Surfaces
	 Compact Riemann surfaces
	* Bolza Surface (Genus 2)
	* Klein Quartic (Genus 3)
	* Hurwizt Surfaces
	 Kummer surfaces
	• Compact Complex Surfaces
	- Rational ruled
	- Enriques Surfaces
	-K3
	* Kahler Manifolds
	– Kodaira
	- Toric
	- Hyperelliptic
	 Properly quasi-elliptic
	- General type
	- Type VII

- Fake projective planes
- Conics
- Calabi-Yau manifolds
 - Dimension 1: All elliptic curves (up to homeomorphism)
 - Dimension 2: K3 surfaces
 - Dimension 3 (threefolds): 500 million +, unknown if infinitely many
 - The bananafold
 - Hyperkähler
- Hurwitz schemes
- Topological galois groups, e.g. $G(\overline{F}/F)$ for $F = \mathbb{Q}, \mathbb{F}_p$.
- Spec (R) for R a DVR (a Sierpinski space)
- Quiver Grassmannians
- Rigid analytic spaces
- Affine line with two origins
- Moduli stack of elliptic curves $\mathcal{M}_{1,1}$.
- Abelian Surface
- Fano Varieties
- Curves: isomorphic to \mathbb{P}^1
- Surfaces: Del Pezzo surfaces
- Weighted projective space
- Toric Varieties
- Grassmannian
- Flag Varieties
- Moduli Spaces

Due to Kunihiko Kodaira's classification of complex surfaces, we know that any compact hyperkähler 4-manifold is either a K3 surface or a compact torus T^{4} . (Every Calabi–Yau manifold in 4 (real) dimensions is a hyperkähler manifold, because SU(2) is isomorphic to Sp(1).)

As was discovered by Beauville, the Hilbert scheme of k points on a compact hyperkähler 4-manifold is a hyperkähler manifold of dimension 4k. This gives rise to two series of compact examples: Hilbert schemes of points on a K3 surface and generalized Kummer varieties.

2 Analogies

Notation: all dimensions are over \mathbb{R} .

Impossible goal: pick a category, understand all of the objects and all of the maps. Two main categories with a forgetful functor: $\mathbf{Diff} \longrightarrow \mathbf{Top}$. Question:

- What's in the "image" of this functor? (Manifolds that admit a differentiable structure.)
- What is the "fiber" above a given topological manifold? (Distinct differentiable structures)

Differentiable Manifolds: classified by geometric structure in low dimensions (≤ 4), algebraic data/methods in high dimensions

2.1 Topological Category

Identify objects up to homeomorphism

- Initial object: empty set
- Dimension 0: The point (terminal object)
- 1-manifolds: S^1, \mathbb{R}
- 2-manifolds: $\langle \mathbb{S}, \mathbb{T}, \mathbb{RP} \mid \mathbb{S} = 0, 3\mathbb{RP} = \mathbb{RP} + \mathbb{T} \rangle$. Classified by π_1 (orientability and "genus"). Riemann, Poincare, Klein.

2.2 Smooth Category

- 2-manifolds: Homeomorphic \iff diffeomorphic. Every surface admits a complex structure and a metric.
 - Uniformization: Conformally equivalent to a quotient of one of three spaces
 - * \mathbb{CP}^1 , positive curvature (spherical)
 - * \mathbb{D}° , zero curvature (flat)
 - * H, negative curvature (hyperbolic)
- 3-manifolds: Thurston's Geometrization
 - Oriented prime 3-manifolds can be decomposed into geometric "pieces" of 8 possible types
 - Geometric structure: a diffeo $M\cong \tilde{M}/\Gamma$ where Γ is a discrete Lie group acting freely/transitively on X
- 4-manifolds: classified in the topological category by surgery, but not in the smooth category
- n-manifolds, $n \ge 5$: classified by surgery

3 Kahlers

• For complex manifold, replace Riemannian metric with a Hermitian metric (positive definite sesquilinear inner product on tangent bundle)