Haliuna 6 who we - 2 130 Library N W Bldg. DEC 8 1954

CRPL-F 123

taken i. . . . Library.

FOR OFFICIAL USE

IONOSPHERIC DATA

ISSUED NOVEMBER 1954

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY BOULDER, COLORADO

CRPL-F 123

NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY 24 Nov. 1954 BOULDER, COLORADO

Issued

IONOSPHERIC DATA

CONTENTS

	Page
Symbols, Terminology, Conventions	2
World-Wide Sources of Ionospheric Data	5
Hourly Ionospheric Data at Washington, D. C	7, 12, 24, 51
Ionospheric Storminess at Washington, D. C	7. 36
Radio Propagation Quality Figures	8. 37
Observations of the Solar Corona	10, 40
Relative Sunspot Numbers	10, 46
Observations of Solar Flares	10, 48
Indices of Geomagnetic Activity	11, 49
Sudden Ionosphere Disturbances	11, 50
Erratum	11, 50
Tables of Ionospheric Data	12
Graphs of Ionospheric Data	51
Index of Tables and Graphs of Ionospheric Data in CRPL-F123	87

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1952, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Sixth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Geneva, 1951. Excerpts concerning symbols and terminology from Document No. 626-E of this Meeting are given on pages 2-7 of the report CRPL-F89, "Ionospheric Data," issued January 1952. Reprints of these pages are available upon request.

Beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

The following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given in Document No. 626-R referred to above.

a. For all ionospheric characteristics:

Values missing because of A, C, F, L, M, N, Q, S, or T are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of feF2 (and foE near sentise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted usually as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted;

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic. This practice represents a change from that listed in issues previous to CEPL-F78.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median sount,

d. For sporadic E (Es):

Values of file missing because of E or G (and B when applied to the daytime E region only) are counted as equal to or less than the median foE, or equal to or less than the lower frequency limit of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for Hovember 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- l. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when for is less than or equal to for, leading to erronsously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h'Fl. foFl. h'E. and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, in-asmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.

c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zurich sunspot numbers were used in constructing the contour charts:

Month				Predi	cted S	unspot	Numbe	r		
	1954	1953	1952	1951	1950	1949	1948	1947	1946	1945
December		15	33	53	86	108	114	126	85	38
November		16	38	52	87	112	115	124	83	36
October	10	17	43	52	90	114	116	119	81	23
September	8	18	46	54	91	115	117	121	79	22
August	8	18	49	57	96	111	123	122	77	20
July	8	20	51	60	101	108	125	116	73	
June	9	21	52	63	103	108	129	112	67	
May	10	22	52	68	102	108	130	109	67	
April	10	24	52	74	101	109	133	107	62	
March	11	27	52	78	103	111	133	105	51	
February	12	29	51	82	103	113	133	90	46	
January	14	30	53	85	105	112	130	88	42	

WORLD - WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 72 and figures 1 to 144 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Commonwealth of Australia, Ionospheric Prediction Service of the Commonwealth Observatory:
Brisbane, Australia
Canberra, Australia
Hobart, Tasmania
Townsville, Australia

Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geology and Geophysics:
Watheroo, Western Australia

University of Graz: Graz, Austria Meteorological Service of the Belgian Congo and Ruanda-Urundi: Leopoldville, Belgian Congo

British Department of Scientific and Industrial Research, Radio Research Board:

Falkland Is.
Ibadan, Nigeria
Inverness, Scotland
Port Lockroy
Singapore, British Malaya
Slough, England

Defence Research Board, Canada:
Baker Lake, Canada
Churchill, Canada
Fort Chimo, Canada
Ottawa, Canada
Resolute Bay, Canada
St. John's, Newfoundland

Radio Wave Research Laboratories, National Taiwan University, Taipeh, Formosa, China:
Formosa, China

French Ministry of National Defense (Section for Scientific Research):
Dakar, French West Africa
Djibouti, French Somaliland
Fribourg, Germany

Institute for Ionospheric Research, Lindau Uber Northeim, Hannover, Germany:
Lindau/Harz, Germany

The Royal Netherlands Meteorological Institute: De Bilt, Holland

Icelandic Post and Telegraph Administration: Reykjavik, Iceland

All India Radio (Government of India), New Delhi, India:
Bombay, India
Delhi, India
Madras, India
Tiruchy, India

Ministry of Postal Services, Radio Research Laboratories, Tokyo, Japan:
Akita, Japan
Tokyo (Kokubunji), Japan
Wakkanai, Japan
Yamagawa, Japan

Christchurch Geophysical Observatory, New Zealand Department of Scientific and Industrial Research: Christchurch, New Zealand Rarotonga I.

South African Council for Scientific and Industrial Research: Capetown, Union of South Africa Johannesburg, Union of South Africa

Research Institute of Mational Defence, Stockholm, Sweden: Upsala, Sweden

United States Army Signal Corps:
Adak, Alaska
Okinawa I.
White Sands, New Mexico

National Bureau of Standards (Central Radio Propagation Laboratory):
Anchorage, Alaska
Fairbanks, Alaska (Geophysical Institute of the University
of Alaska)
Guam I.
Huancayo, Peru (Instituto Geofisico de Huancayo)
Maui, Hawaii
Narsarssusk, Greenland
Panama Canal Zone
Point Barrow, Alaska
Puerto Rico, W. I.
Washington, D. C.

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 73 through 84 follow the scaling practices given in the report IRFL-C61. "Report of International Radio Propagation Conference." pages 36 to 39. and the median values are determined by the conventions given above under "Symbols. Terminology, Conventions." Beginning with September 1949, the data are taken at Ft. Belvoir, Virginia.

IONOSPHERIC STORMINESS AT WASHINGTON, D.C.

Table 85 presents ionosphere character figures for Washington, D. C. during October 1954, as determined by the criteria given in the report IRPL-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

Tables 87a and 37b give for September 1954 the radio propagation quality figures for the North Atlantic area, the relevant CRPL advance and short-term forecasts, a summary geomagnetic activity index and sundry comparisons, specifically as follows:

- (a) radio propagation quality figures, Qa, separately for each 6-hour interval of the Greenwich day, viz., 00-06, 06-12, 12-18, 18-24 hours UT (Universal Time or GCT).
- (b) whole-day radio quality indices (beginning October 1952). Each index is a weighted average of the four quarter-day Qa-figures, before rounding off, with half weight given to quality grades 5 and 6. This procedure tends to give whole-day indices suitable for comparison with whole-day advance forecasts which designate whenever possible the days when significant disturbance or unusually quiet conditions will occur.
- (c) short-term forecasts, issued by CRPL every six hours (nominally one hour before 00^h, 06^h, 12^h, 18^h UT) and applicable to the period 1 to 13 (especially 1 to 7) hours ahead. Note that new scoring rules have been adopted beginning with October 1952 data.
- (d) advance forecasts, issued semiweekly (CRPL-J reports) and applicable 1 to 3 or 4 days ahead, 4 or 5 to 7 days ahead, and 8 to 25 days ahead. These forecasts are scored against the whole-day quality indices.
- (e) half-day averages of the geomagnetic K indices measured by the Cheltenham Magnetic Observatory of the U.S. Coast and Geodetic Survey.
- (f) illustration of the comparison of short-term forecasts with Qa-figures and also with estimates of radio quality based on CRPL observations only.
- (g) illustration of the outcome of advance forecasts (1 to 3 or 4 days ahead) and, for comparison, the outcome of a type of "blind" forecast. For the latter the frequency for each quality grade, as determined from the distribution of quality grades in the four most recent months of the current season, is partitioned among the grades observed in the current month in proportion to the frequencies observed in the current month.

These radio propagation quality figures, Qa, are prepared from radio traffic data reported to CRPL by American Telephone and Telegraph Company, Mackay Radio and Telegraph Company, BCA Communications, Inc., Marconi Company, British Admiralty Signal and Radar Establishment, and the following agencies of the U.S. Government:—Coast Guard, Navy, Army Signal Corps, and U.S. Information Agency. The method of calculation, summarized below, is similar to that described in a 1946 report, IRPL-R31, now out of print. Only reports of radio transmission on North Atlantic paths closely approximating New York-London are included in the estimation of quality.

The original reports are submitted on various scales and for various time intervals. The observations for each 6-hour interval are averaged on the quality scale of the original reports. These 6-hour indices are then adjusted to the 1 to 9 quality-figure scale by a conversion table prepared by comparing the distribution of these indices for at least fourmenths, usually a year, with a master distribution determined from analysis of the reports originally made on the 1 to 9 quality-figure scale. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. The 6-hourly quality figures are (subjectively) weighted means of the reports received for that period. These 6-hourly quality figures replace, beginning January 1953, the half-daily quality figures which formerly appeared in this table. (These forecasts and quality indices are prepared by the North Atlantic Radio Warning Service, the CRPL forecasting center at Tt. Belvoir, Virginia,)

Table 86 gives for September 1954, the radio propagation quality figures for the North Pacific area, the relevant CRPL advance and short-term forecasts, and sundry comparisons, specifically as follows:

- (a) radio propagation quality figures. Qp. separately for each of three 9-hour intervals of the Greenwich day, viz., 03-12, 09-18 and 18-03 UT (Universal Time or GCT).
- (b) whole-day radio quality indices for each Greenwich day. These are derived from the same basic data as the 9-hour indices, separately reduced.
- (c) short-term forecasts, issued daily at 02, 09 and 18 hours UT.
- (d) advance forecasts, issued semiweekly (CRPL-Jp reports) and applicable 1 to 3 or 4 days ahead, 4 or 5 to 7 days ahead, and 8 to 25 days ahead. These forecasts are scored against the whole day quality indices.

These radio quality indices, Qp, refer to radio propagation on optimum frequencies over moderately long transmission paths in the North Pacific area. Typical paths are Anchorage (Alaska) to Seattle, or Anchorage to Tokyo. The indices are derived from reports submitted regularly by communications agencies of the U. S. Army and Air Force, and by Aeronautical Radio, Inc. The method of derivation of Qp differs from that of Qa. For data prior to June 1954, the reported quality ratings were reduced to a Q-scale with assumed mean and standard deviation for each of the periods of the day; the Qp published was the average converted rating for each date. Beginning with the data for June 1954 a ranking method has been used with the Q-scale bound statistically to magnetic character figures, as follows:

The original reports from the various contributors are used only to rank the days of the month in order of degree of disturbance. The numerical value of Qp assigned to each day is taken from a table which gives the Qp that corresponds in a statistical sense to the magnetic activity observed during the month, it being assumed that the one-month sample is large enough that the distribution of quiet and disturbance will be the same for magnetic and radio quality indices. This table comes from equating the expected distributions of magnetic activity indices and Qp (for the former, the years 1952-53 of K-Cheltenham were used; for the latter the distribution was arbitrary but strongly influenced by experience with Qa and the previous Qp). In order to avoid the statistic "average rank," the raw scores for each reporterperiod are first converted to the 1-9 scale by ranking and the use of the same table. Mean quality indices for each day-period are then computed and these means ranked and converted by the table to give Qp.

The expected distributions adopted for Qp differ slightly for the different periods of the day for which quality figures are derived. For the 03-12, 18-03 and 00-24 periods 23% of the quality figures are 4 or less and for the 09-18 period 25% are. In the periods 18-03 and 00-24, indices of seven or greater are expected 25% of the time; in the 03-12 period 22% and in the 09-18 period 16%. (These forecasts and quality indices are prepared by the North Pacific Radio Warning Service, the CEPL forecasting center at Anchorage, Alaska.)

These quality figures are, in effect, a consensus of reported radio propagation conditions. The reasons for low quality are not necessarily known and may not be limited to ionospheric storminess. For instance, low quality may result from improper frequency usage for the path and time of day. Although, wherever it is reported, frequency usage is included in the rating of reports, it must often be an assumption that the reports refer to optimum working frequencies. It is more difficult to eliminate from the indices conditions of low quality because of multipath, interference, etc. These considerations should be taken into account in interpreting research correlations between the Q-figures and solar, auroral, geomagnetic or similar indices.

Tables 88 through 90 give the observations of the solar corona during October 1954, obtained at Climax, Colorado, by the High Altitude Observatory of Harvard University and the University of Colorado. Tables 91 through 93 list the coronal observations obtained at Sacramento Peak, New Mexico, during October 1954, derived by Harvard College Observatory as a part of its performance of a research contract with the Upper Air Research Observatory, Geophysical Research Directorate, Air Force Cambridge Research Center. The data are listed separately for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb. The time of observation is given to the nearest tenth of a day, GCT.

Table 88 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 89 gives similarly the intensities of the first red (6374A) coronal line; and table 90, the intensities of the second red (6702A) coronal line; all observed at Climax in October 1954.

Table 91 gives the intensities of the green (5303A) coronal line; table 92, the intensities of the first red (6374A) coronal line; and table 93, the intensities of the second red (670ZA) coronal line; all observed at Sacramento Peak in October 1954.

The following symbols are used in tables 88 through 93: a, observation of low weight for whole limb (if in date column) or for portion of limb indicated; -, corona not visible; and X, no observation for whole limb (if in date column) or for portion of limb indicated.

RELATIVE SUNSPOT NUMBERS

Table 94 lists the daily provisional Zurich relative sunspot number, R_Z , for October 1954, as communicated by the Swiss Federal Observatory. Table 95 contains the daily American relative sunspot number, R_A , for September 1954, as compiled by the Solar Division, American Association of Variable Star Observers.

OBSERVATIONS OF SOLAR FLARES

Table 96 gives the preliminary record of solar flares reported to the CRPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete records are published later in the Quarterly Bulletin of Solar Activity, I.A.U., in various observatory publications, and elsewhere. The present listing serves to identify and roughly describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CRPL are the following observatories: Mt. Wilson, McMath-Hulbert, U. S. Naval, Wendelstein, Kanzel and High Altitude at Sacramento Peak, New Mexico. The remainder report to Meudon (Paris) and the data are taken from the Paris-URSIgram broadcast, monitored fairly regularly by the CRPL. The data on solar flares reported from Sacramento Peak, New Mexico, communicated by the High Altitude Observatory at Boulder, Colorado, are provided by Harvard University as the result of work undertaken on an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories.

The table lists for each flare the reporting observatory, date, times of beginning and ending of observation, duration (when known), total area (corrected for foreshortening), and heliographic coordinates. For the maximum phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to indicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Time (GCT).

INDICES OF GEOMAGNETIC ACTIVITY

Table 97 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary international character-figures, C; (2) geomagnetic planetary three-hour-range indices, Kp; (3) magnetically selected quiet and disturbed days.

The C-figure is the arithmetic mean of the subjective classification by all observatories of each day's magnetic activity on a scale of 0 (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme outlined on pages 219-227 in the December 1943 issue of Terrestrial Magnetism and Atmospheric Electricity. The details of the currently used method follow. For each day of a month, its geomagnetic activity is assigned by weighting equally the following three criteria: (1) the sum of the eight Kp's; (2) the greatest Kp; and (3) the sum of the square of the eight Kp's.

Kp is the mean standardized K-index from 11 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 (very quiet) to 9 (extremely disturbed), expressed in thirds of a unit, e.g., 5- is 4 2/3, 50 is 5 0/3, and 5+ is 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948," published in Washington, D. C., 1949, by the Association of Terrestrial Magnetism and Electricity, International Union of Geodesy and Geophysics. Kp is available from 1937 to date as noted in F108.

The Committee on Characterization of Magnetic Disturbance, ATME, IUGG, has kindly supplied this table. The Meteorological Office, De Bilt, Holland, collects the data and compiles C and selected days. The Chairman of the Committee computes the planetary index. Current tables are also published quarterly in the Journal of Geophysical Research along with data on sudden commencements (sc) and solar flare effects (sfe).

SUDDEN IONOSPHERE DISTURBANCES

Table 98 shows that no sudden ionosphere disturbances were observed at Ft. Belvoir, Virginia, during the month of October 1954.

ERRATUM

CRPL-F122, p. 15, table 20: fEs column at 0200 should read 3.4; at 0300 should read 3.1.

p. 61, fig. 40: See fig. A, p. 50 of this issue for revised graph.

TABLES OF IONOSPHERIC DATA

		4-0-0		Tab	le 1			
Washin	gton, D. C.	(38.70	N. 77.1°	W)				October 1954
Time	h¹F2	foF2	h: Fl	foFl	h¹ E	foE	fEs	(M3000)F2
00	290	2.6						3.0
01	280	2.3						3.1
02	280	2.5						3.1
03	270	2.4						3.1
04	(270)	2.3						3.1
05	(270)	(2.2)						(3.2)
06	250	2.6					2.8	3.3
07	230	4.2	220		120	1.8	2.4	3.5
08	250	5.0	220	3.4	110	2.3	3.0	3.4
09	260	5.3	210	3.8	110	2.5	3.7	3.4
10	280	5.6	200	4.0	100	2.7	3.6	3.4
11	280	5.7	190	4.1	100	2.8	3.5	3.3
12	290	6.0	190	4.1	100	2.9	3.1	3.3
13	290	6.2	200	4.1	100	2.9	3.1	3.2
14	270	6.1	210	3.9	100	2.8	702	3.25
15	270	6.2	220	3.7	110	2.5		3.35
16	250	5.7	230		110	2.2		3.4
17	230	5.6	240		(120)	1.7	1.8	3.5
18	220	4.6			(,	,	0	3.4
19	230	3.8						3.3
20	250	3.2						3.2
21	270	2.8						3.1
22	280	2.8						3.1
23	280	2.7						3.05

Time: 75.00W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

		4	(0)	Tabl	в 3			
Upsala,	Sweden	(59.8°N,	17.6°E)				Ş e _]	otember 1954
Time	h'F2	foF2	h†Fl	foFl	h'E	foE	f Es	(M3000)F2
00	330	(2.0)						(2.9)
01	330	(1.9)					2,2	(2.9)
02	340	(1.7)					2.0	2.9
03	335	(1.6)					2.2	(2.9)
04	345	(1.5)					2.2	2.9
05	280	2.0				E		3.0
06	250	2.9	230	2.6		1.5	2.0	3.3
07	G	3.5	225	3.2	130	1.8	2.1	3.2
08	405	3.8	215	3.5	120	2.2	2.3	3.1
09	390	4.0	210	3.6	115	2.3	3.3	3.0
10	3 50	4.4	200	3.8	110	2.5	3.8	3.1
11	320	4.6	200	3.8	110	2.6	3.4	3.2
12	340	4.4	200	3.9	110	2.6	3.1	3.15
13	325	4.4	200	3.8	110	2.5	2.8	3.1
14	310	4.4	220	3.8	110	2.4	3.0	3.2
15	290	4.2	215	3.6	110	2.3	2.6	3.25
16	275	4.2	23.5	3.3	115	2.1	2.2	3.25
17	275	4.2	245	(3.1)	130	1.8	2.2	3.2
18	255	4.2	245	2.5		E	2.8	3.1
19	2 50	4.1				E	3.0	3.1
20	250	3.7					2.2	3.1
21	250	(3.1)						(3.1)
22	280	(2.5)						(3.0)
23	305	(2.0)						2.9

Time: 15.0° 5. Sweep: 1.4 Mc to 17.0 Mc in 6 minutes, automatic operation.

White S	ande, New	Mexico	(32.3°N,	Tabl		September 1954			
Time	h!F2	foF2	h:Fl	foFl	h1E	foE	fEs	(M3000)F2	
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	250 260 240 230 240 230 240 250 250 380 300 340 320 300 290 280 250 210 200 220 240 240 250	3.1 3.2 3.1 3.2 2.9 2.8 3.5 4.7 5.4 5.4 5.4 5.4 5.8 6.2 6.0 5.8 6.2 6.0 5.2 4.4 3.2 3.1	220 200 200 190 190 200 210 210 220 220	3.4 3.8 4.0 4.1 4.2 4.2 4.1 4.0 3.8 (3.4)	110 (110) 110 110 110 110 110 110 110	(2.0) (2.8) (3.0) (3.1) (3.2) (3.1) (3.0) (2.8) (2.8) (2.5) (2.0)	2.5 2.8 3.4 2.8 2.7 2.8 2.7 2.8 2.6 3.2 2.6	3.1 3.2 3.3 3.3 3.4 3.5 3.5 3.1 3.2 3.3 3.4 3.5 3.1 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	

Time: 105.00W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Tabl	в 2			
Fairba:	ks. Alaek	a (64.9°	B. 147.8	(W)			Sep	tember 1954
Time	h:F2	foF2	h [†] Fl	foFl	h'E	foE	fEs	(M3000)F2
00	(350)	(2.1)					6.4	(2.9)
01							6.0	
02							7.0	
03							6.8	
04	(380)	(2.0)					7.0	(2.75)
05	(330)	(2.4)					6.0	(2.9)
06	G	< 2.8	250	2.8			4.4	G-
07	G	< 3.2	250	3.1	110	(2.0)	3.8	G
08	G-	< 3.3	230	3.3	110	(2.2)	3.8	G
09	G-	< 3.5	220	3.4	110	(2.4)	3.0	G-
10	G-	< 3.5	210	3.5	110	2.5	2.0	G-
11	(500)	(3.7)	210	3.6	110	2.6	2.8	(2.6)
12	(550)	(3.8)	220	3.6	110	(2.5)	2.3	(2.6)
13	(450)	3.9	230	3.6	110	2.5	2.2	2.7
14	(430)	4.0	220	3.6	110	2.4		3.0
15	370	3.8	230	3.5	120	2.2		3.2
16	(340)	3.8	230		120	(1.9)	2.7	3.25
17	260	3.6	230		120	(1.6)		3.25
18	250	3.4				-	1.5	3.3
19	280	3.0					3.2	3.1
20	310	(2.2)					5.0	(3.0)
21	310	(1.9)					4.9	(2.85)
22	(340)	(2.1)					5.6	(2.9)
23	(340)	(2.0)					6.8	

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconde.

Adak.	Alaska (51	.9°N. 17	6.6°W)	Tabl	в 4	Ser	September 194		
Time	h!F2	foF2	h!Fl	foFl	h1E	foE	fEs	(M3000)F2	
Time 00 01 02 03 04 05 06 07 08 09 10 11 12 13	270 280 280 280 280 270 280 360 360 380 390 400 410 370 340	foF2 2.4 2.4 2.5 2.4 2.5 2.4 3.2 3.8 4.1 4.2 4.3 4.4 4.3	230 230 230 220 210 210 200 200 200 210	2.8 3.3 3.5 3.9 3.9 3.9 3.9 3.9	120 110 110 110 110 110 110 110	1.6 2.0 2.3 2.6 2.7 2.8 2.8 2.8	2.0 2.2 2.0 2.2 2.8 2.9 2.6 4.4 2.7 5.0 2.7 2.6	3.05 3.0 3.0 3.0 3.1 3.2 3.1 3.0 3.0 2.8 3.1	
15 16 17 18 19 20 21 22 23	310 270 240 240 250 260 250 240 250	4.1 4.1 3.9 3.8 3.6 3.2 3.1 2.7	220 230 240	3.8 3.6 	110 110 120 130	2.6 2.5 2.2 1.8 1.6	2.8 2.2 1.5 2.2 2.7 3.3 3.2 2.7 2.6 2.6	3.2 3.3 3.4 3.3 3.2 3.1 3.1 3.2 3.2	

Tims: 180.0°W. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

Okinawa	1. (26.3	°N. 127.	8°E)	Table 6			September 1954		
Time	h!F2	foF2	h Fl	foFl	h1E	foE	fEe	(M3000)F2	
00	280	(3.2)					1.9	(3.0)	
01	260	3.2					1.9	(3.1)	
02	240	(3.1)						3.1	
03	240	(2.8)						(3.2)	
04	240	2.5						(3.15)	
0.5	(240)	2.4					2.1	(3.2)	
06	240	4.2					2.2	3.45	
07	230	5.7	230				3.4	3.6	
08	250	5.7	220		(110)		4.0	3.55	
09	290	5.6	210	(4.1)	110		4.4	3.3	
10	310	6.0	200	(4.3)			4.2	3.15	
11	330	7.2	200	4.4			3.7	3.0	
12	320	8.0	200	4.3			4.2	3.0	
13	310	8.6	210	4.3	(110)		3.1	3.1	
14	290	8.8	220	(4.2)	(110)		3.1	3.1	
15	300	7.6	230	(4.1)	110	2.9	3.4	3.1	
16	280	7.4	240		110	(2.7)	3.9	3.3	
17	250	7.8	240		110		3.4	3.4	
18	230	7.3					3.2	3.5	
19	210	(6.0)					4.0	3.4	
20	(220)	4.4					4.6	(3.1)	
21	(270)	4.0					4.4	(2.85)	
22	(300)	3.9					3.6	(2.9)	
23	300	3.8					3.1	(2.9)	

Time: 127.5°E. Sweep: 1.0 Mc to 25.0 Mc in 15 seconde.

Mani. 1	Hawaii (20	.8°N. 15	6.5°∀)	Tabl	e 7		Sep	tember 1954
Time	h F2	foF2	h: Fl	foFl	h [†] E	foE	fEe	(M3000)F2
00	320	3.3					2.4	2.85
01	300	3.3					2.3	3.0
02	280	3.4					1.8	3.1
03	260	3.0					1.6	3.2
Olt	270	2.4					1.6	3.0
05	300	2.2						2.9
06	290	2.6						3.0
07	280	5.2	260		130	2.0	3.0	3.2
08	290	5.7	240	3.9	120	2.5	5.0	3.2
09	350	5.9	230	4.2	120	2.9	5.2	2.9
10	380	6.8	230	4.4	120	3.1	5.6	2.6
11	420	7.8	210	4.5	110	3.3	5.7	2.55
12	390	8.9	220	4.4	120	3.3	5.6	2.7
13	360	9.2	230	4.4	120	3.3	4.8	2.75
14	360	9.4	230	4.3	120	3.2	4.3	2.8
15	340	10.0	240	4.2	(120)	3.0	4.6	2.9
16	300	10.7	240	4.0	120	2.8	4.4	3.1
17	260	10.4	250	3.7	120	2.3	4.4	3.3
18	240	8.2	26 0				4.0	3.5
19	240	5.3					4.4	3.4
20	260	3.8					4.0	2.9
21	310	3.4					3.7	2.8
22	330	3.4					2.6	2.7
23	320	3.4					2.6	2.8

Time: 150.00W. Sweep: 1.0 Mc to 25.0 Mc in 15 eeconde.

Puerto	Rico, W.	I. (18.5	°№, 67.2	ow)			Seg	tember 1954
Time	h*F2	foF2	h:Fl	foFl	h*E	foE	fEs	(M3000)F2
00	290	3.2						2.95
01	280	3.4						3.0
02	270	3.4						3.1
03	240	3.3						3.2
04	250	2.8						3.2
05	260	2.8						3.2
06	240	2.9						3.3
07	230	4.7	220		120	1.9		3.6
08	240	5.2	220	3.6	110	2.4	2.8	3.6
09	290	5.1	200	4.1	110	2.8	2.6	3.3
10	320	5.6	200	4.3	110	3.1	2.9	3.1
11	340	6.0	200	4.3	110	3.2	2.7	3.0
12	320	7.1	200	4.3	110	3.3		3.0
13	310	8.2	210	4.3	110	3.3		3.0
14	310	8.4	210	4.3	110	3.2		3.0
15	300	8.4	230	4.2	110	3.1	2.4	3.1
16	270	9.0	230	4.0	110	2.8	3.6	3.2
17	250	8.6	230	3.7	110	2.4	3.5	3.4
18	230	8.0	220				2.7	3.55
19	210	5.9					2.4	3.5
20	240	4.0					2.6	3.15
21	280	3.3					2.3	3.0
22	300	3.1					-+2	3.0
23	300	3.1						3.0

Time: 60.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconde.

Guam I.	(13.6°N.	144.9°E)		Tab	Le 9		Sep	tember 1954
Time	h F2	foF2	h ¹ Fl	foFl	h [†] E	foE	fEe	(M3000)F2
00	290	3.3					2.0	3.0
01	280	3.2					2.2	3.1
02	240	3.0					1.6	3.4
03	240	2.0						3.4
04	280	1.7						3.4
05	280	1.5						3.4
06	250	2.6					1.6	3.2
07	240	5.2	220	-	110	1.8	2.7	3.5
08	280	6.2	210	3.9	110	2.5	3.4	3.25
09	320	7.0	200	4.1	110	2.9	4.0	2.9
10	360	7.5	200	4.2	110	3.1	4.0	2.7
11	360	7.6	190	4.3	110	3.2	4.2	2.65
12	360	7.7	200	4.3	(110)	(3.2)	4.4	2.65
13	350	8.3	200	4.3	110	3.2	3.6	2.8
14	320	8.8	210	4.3	110	3.2	4.0	3.0
15	300	9.2	220	4.2	110	3.0	4.4	3.1
16	290	9.8	220	4.0	110	2.8	4.5	3.3
17	270	9.4	220	3.7	110	2.3	4.5	3.3
18	250	8.8	240		(120)	(1.4)	3.6	3.3
19	240	8.4					2.8	3.3
20	230	6.8					2.2	3.3
21	230	6.1					2.5	3.3
22	240	5.0					2.3	3.3
23	260	3.9					2,4	3.0

Time: 150.0°E. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Panama	Canal Zone	(9.4°N,	79.9°W)	Tabl	e 10		Seg	otember 1954
Time	h'F2	foF2	h Fl	foFl	h* E	foE	fEs	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	h1F2 280 240 230 240 260 260 260 260 300 370 380 390 360 360 360 360 220 220 230 260	3.5 3.5 3.5 3.5 2.5 2.5 2.8 2.5 2.8 5.2 5.6 9 8.1 9.2 11.0 12.2 11.0 12.2 11.0 12.2 13.8	230 210 220 220 220 220 220 220 230 230 230	4.1 4.2 4.3 4.4 4.4 4.4 4.2 4.0 3.7	120 110 110 110 110 110 110 110 110	2.0 2.6 3.0 3.2 3.4 3.4 3.3 2.8 (2.3)	2.0 1.8 1.8 2.2 3.0 3.6 4.2 4.2 4.4 4.4 4.6 4.6 4.6 4.6 2.8 2.3	(M3000)F2 3.1 3.35 3.6 3.15 3.1 3.2 3.45 3.2 2.45 3.2 2.7 2.7 2.8 2.9 3.1 3.3 3.4 3.5 3.2 3.4 3.5 3.2
22 23	290 300	3.6 3.4						2.9

23 300 3.4 Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 eeconde.

Table 11										
Fairbar	ke, Alasks	(64.9°	N. 147.8	°¥)				August 1954		
Time	h'F2	foF2	h ¹ Fl	foFl	h [†] E	foE	fEe	(M3000)F2		
00	320	(2.5)					4.5	(2.9)		
01	320	(2.7)					5.7	(2.95)		
02	300	2.8					5.4	3.1		
03	320	(2.9)					5.8	(3.05)		
04	310	3.0					5.2	3.0		
05	390	(3.2)	250	2.9	120	(1.6)	4.6	(2.8)		
06	480	(3.5)	220	3.2	120	(2.0)	5.0	(2.65)		
07	(500)	(3.6)	220	3.4	110	(2.3)	4.5	(2.5)		
08	(510)	(3.7)	200	3.5	110	(2.5)	4.0	(2.6)		
09	G-	(3.7)	200	3.6	110	(2.6)	4.2	G		
10	G.	(3.7)	200	3.7	100	(2.6)	4.0	G		
11	(520)	(4.0)	200	3.8	100	(2.7)	4.0	(2.5)		
12	(530)	(4.0)	190	3.8	100	(2.8)	4.4	(2.55)		
13	(520)	(4.0)	200	3.8	110	(2.7)	4.0	(2.4)		
14	(520)	(4.0)	210	3.7	100	2.6	4.0	(2.5)		
15	480	(4.0)	210	3.7	110	(2.5)	4.0	(2.6)		
16	(400)	4.0	210	3.6	110	2.4	3.6	2.9		
17	(340)	3.9	220	(3.5)	110	(2.2)	2.6	3.1		
18	300	3.9	< 230	(3.2)	120	(2.0)	2.5	3.2		
19	260	3.8	240		120	(1.6)	4.0	3.3		
20	270	3.2	240				5.2	3.25		
21 22	290	(2.9)					4.2	(3.1)		
23	310	(2.8)					4.6	(3.0)		
-2)	310	(2.5)					5.6	(3.0)		

Time: 150.00W. Sweep: 1.0 Mc to 25.0 Mc in 15 eeconds.

					le 12			
Reykja	rik, Icela	nd (64.1	N, 21.8	oA)				August 1954
Time	h'F2	foF2	h:Fl	foFl	h E	foE	fEs	(M3000)F2
00							4.2	
01							4.5	
02							4.5	
03							4.2	
04		(2.7)					3.8	
05	G	< 3.0	260	3.0				G
06	G-	< 3.2	230	3.1				G
07	G-	< 3.3	230	3.2				G
08	420	3.7	230	3.5				3.0
09	G-	< 3.7	220	3.5				2.8
10	G	< 3.9	220	3.8				G-
11	420	(4.0)	210	3.8				2.95
12	420	4.2	200	3.8	(110)			2.8
13	420	4.2	210	3.8				3.0
14	400	4.2	220	3.8	(110)			3.0
15	400	4.2	220	3.7	(110)			2.95
16	380	4.2	230	3.6	(110)	(2.5)		3.0
17	390	4.1	230	3.6	110			3.1
18	330	4.0	230	3.4	110		3.0	3.25
19	310	3.8	240		120		2.9	3.3
20	300	(3.8)					3.5	(3.25)
21	(280)	(3.5)					3.8	(3.25)
22							4.2	
23							4.4	

Time: 15.0°W. Sweep: 1.0 Mc to 25.0 Mc in 18 seconde.

Anchor	age, Alaska	4 (61.2°	N, 149.9	°₩)				August 1954
Time	n¹F2	foF2	h1Fl	foFl	h1E	foE	fEs	,M3000)F2
00	300	(1.9)						(3.0)
01	< 300	(2.0)					2.7	(3.05)
02	330	(1.8)					3.2	(2.9)
03	< 310	(1.9)					2.8	(3.0)
04	300	(2,4)					2.8	(3.1)
05	(560)	(2.9)	2 50	2.8	120	1.6	2.7	(2.5)
06	560	3.3	220	3.1	120	(1.9)	2.3	2.5
07	(720)	(3.5)	210	3.3	110	2.3	2.6	(2.1)
08	G	(3.6)	200	3.5	110	2.4	2.6	G
09	0	(3.7)	200	3.6	110	2.6	2.8	G
10	530	3.9	200	3.7	110	2.7	2.8	2.6
11	560	4.0	200	3.8	100	2.7	3.0	2.5
12	G.	(3.9)	190	3.9	100	2.8	2.7	G
13	(690)	(4.0)	200	3.8	100	2.8		(2.25)
14	(640)	3.9	200	3.8	100	2.7		2.3
15	520	3.9	210	3.7	110	2.6		2.6
16	440	3.9	220	3.6	110	2.4		2.85
17	420	3.8	220	3.5	110	2.2		3.0
18	300	3.9	230	(3.3)	120	(2.0)	2.3	3.2
19	260	3.8	230		130	(1.7)	2.8	3.2
20	250	3.6					2.4	3.2
21	250	3.3					3.0	3.1
22	250	(3.0)						(3.2)
23	260	(2.4)						(3.2)

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Adak,	Alaska_(51	.9°¥, 17	6.6°W)	Tabl	e 15			August 1954
Time	h1F2	foF2	h:Fl	foFl	n ¹ E	foE	fEs	(M3000)F2
00	260	3.2					2.6	3.1
01	250	3.1					2.6	3.2
02	260	2.9					2.3	3.1
03	270	2.9					2.2	3.1
04	270	2.9				-	2.5	3.0
05	350	3.1	250	2.7	120	1.6	2.2	2.9
06	410	3.6	230	3.1	120	1.9	3.5	2.8
07	410	4.0	230	3.4	110	2.3	4.1	2.9
08	430	4.1	210	3.7	110	2.6	5.1	2.8
09	440	4.2	210	3.8	110	2.7	5.3	2.8
10	450	4.3	200	3.9	110	2.8	6.3	2.8
11	460	4.3	200	4.0	110	2.8	4.5	2.7
12	500	4.2	200	4.0	110	2.9	4.7	2.7
13	530	4.2	200	4.0	100	2.9	3.9	2.6
14	480	4.2	200	4.0	110	2.8	4.1	2.7
15	430	4.2	210	3.9	110	2.7	4.9	2.8
16	410	4.1	220	3.7	110	2.6	5.3	2.9
17	350	4.0	220	3.5	110	2.2	4.1	3.1
18	300	4.1	240	3.2	120	1.7	4.0	3.2
19	260	4.3					4.2	3.2
20	260	4.8					3.4	3.1
21	250	4.5					3.6	3,1
22	250	4.2					3.5	3.2
23	250	3.5					2.8	3.1

Time: 180.0°W. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

Point B	arrow. Al	aska (71	.3°N, 15	Tabl				July 1954
Time	h'F2	foF2	hª Fl	foFl	h ¹ E	foE	fEs	(M3000)F2
00	290	3.5			110	1.3	6.6	3.3
01	270	3.5	220	2.2	110	1.4	6.2	3.3
02	(260)	3.5	220	2.?	110	(1.5)	5.8	3.3
03	(280)	3.5	220	2.8	110	1.5	6.0	3.4
04	(310)	3.6	220	3.0	100	1.6	4.5	3.3
05	320	3.8	220	3.3	100	1.8	4.8	3.2
06	(420)	3.8	210	3.4	100	2.1	4.5	2.8
07	(440)	(3.8)	220	3.5	100	(2.3)	4.5	2.75
08	500	< 3.9	210	3.6	100	2.4	4.5	2.6
09	G	< 3.8	220	3.7	100	2.5	4.0	G
10	G	< 3.8	210	3.7	100	2.6	3.4	G
11	G	< 3.8	200	3.8	100	2.7	3.3	G
12	660	(3.9)	200	3.8	100	(2.7)	3.2	2.2
13	560	4.0	210	3.8	100	(2.7)	3.0	2.4
14	520	4.0	210	3.8	100	2.6	2.8	2.5
15	480	4.0	210	3.8	100	2.6	2.9	2.7
16	430	4.1	210	3.7	100	2.5	3.0	2.8
17	420	4.0	210	3.7	100	2.4	2.9	2.85
18	390	4.0	220	3.5	100	2.3	3.7	2.9
19	360	3.9	220	3.4	110	2.1	3.4	3.0
20	340	3.7	240	3,3	110	2.0	4.0	3.1
21	320	3.6	240	3.0	110	1.6	4.2	3.2
22	300	3.6			110		4.4	3.2
23	300	3.5			110	1.3	5.4	3.25

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

(300)	(2.6)						(M3000)F
	16.D/					5.3	(3.3)
(320)	(2.6)					5.0	
						5.0	
						5.2	
			-			4.8	
						4.7	(3.25)
		230	3.2	110	2.1	3.3	(3.2)
		220	3.3	100	2.4		(2.7)
		220	3.5	100	2.5		(2.8)
			3.7	100	2.7		(2.5)
			3.8	100	2.8		2.9
			3.8	100	2.9		2.9
		210	3.8	100	2.8		2.95
			3.8	100	2.8		(2.7)
		210	3.8	100			3.0
	4.2	210	3.7	100			3.0
	4.0	220		110		3.1	3.1
	4.0	220	3.5	110			3.1
	3.8	240	3.3	110			3.3
	(3.8)			120			3.35
290	(3.4)			120			(3.4)
270	(3.2)						(3.5)
(250)	(2.9)						(3.35)
(300)	(2.8)						(3.2)
	270 (250)	(340) (3,2) (460) (3,5) (480) (3,5) (560) (3,8) 450 4.0 440 (4.0) 440 (4.0) 420 4.2 410 4.0 320 3.8 300 (3,8) 290 (3,4) 270 (3,2) (250) (2,9)	(340) (3,2) 270 (460) (3,5) 220 (480) (3,8) 220 (560) (3,8) 210 440 4,0 210 440 (4,0) 210 440 4,1 210 420 4,2 210 420 4,2 210 410 4,0 220 320 3,8 240 330 (3,8) 290 (3,4) 270 (3,2) (250) (2,9)	(340) (3,2) 230 3,2 (460) (3,5) 220 3,3 (560) (3,8) 210 3,7 450 4,0 210 3,8 440 (4,0) 210 3,8 520 (4,0) 210 3,8 520 (4,0) 210 3,8 420 4,2 210 3,8 420 3,3 420 3,2 420 3,5 420 3,8 420 3,3 420 3,2 420 3,5 420 3,	(340) (3,2) 230 3,2 110 (460) (3,8) 220 3,5 100 (560) (3,8) 210 3,7 100 (490) (4,0) 210 3,8 100 440 (4,0) 210 3,8 100 520 (4,0) 210 3,8 100 440 (4,0) 210 3,8 100 420 4,2 210 3,8 100 420 4,2 210 3,8 100 420 4,2 210 3,8 100 3,2 100 420 4,2 210 3,8 100 3,2 100 4,2 210 3,8 100 3,2 100 4,2 210 3,8 100 3,2 100 4,2 210 3,8 100 4,2 210 3,8 100 4,2 210 3,5 110 3,2 100 4,0 220 3,5 110 3,5 100 3,5 110 3,5 4,0 220 3,5 110 3,5 110 3,5 4,0 220 3,5 110 3,7 100 4,0 220 3,5 110 3,7 100 4,0 220 3,5 110 3,7 100 4,0 220 3,5 110 3,7 100 4,0 220 3,5 110 3,7 100 4,0 220 3,5 110 3,7 100 4,0 220 3,8 240 3,3 110 2,7 100 4,0 220 3,8 240 3,3 110 2,7 100 4,0 220 3,8 240 3,3 110 2,7 100 4,0 220 3,8 240 3,3 110 2,7 100 4,0 220 3,8 240 3,3 110 2,7 100 4,0 220 3,8 240 3,3 110 2,7 100 4,0 20 20 3,5 110 2,7 10	(340) (3,2) 230 3,2 110 2,1 (460) (3,5) 220 3,3 100 2,4 (480) (3,8) 220 3,5 100 2,5 (560) (3,8) 210 3,7 100 2,7 450 4,0 210 3,8 100 2,8 440 (4,0) 210 3,8 100 2,9 440 (4,0) 210 3,8 100 2,9 440 4,1 210 3,8 100 2,9 420 4,2 210 3,8 100 2,8 420 4,2 210 3,8 100 2,3 320 3,8 240 3,5 110 2,3 320 (3,8) 220 3,5 110 2,3 320 (3,8) 220 3,5 110 2,4 320 (3,8) 220 3,5 110 2,3 320 (3,8) 220 3,5 110 2,3	5.2 (320) (3,2) 4,8 (3(40) (3,2) -230 3,2 110 2,1 3,5 (460) (3,5) 220 3,3 100 2,4 3,2 (460) (3,5) 220 3,5 100 2,5 (560) (3,8) 210 3,7 100 2,7 4 50 4,0 210 3,8 100 2,8 440 (4,0) 210 3,8 100 2,8 440 4,1 210 3,8 100 2,8 520 (4,0) 210 3,8 100 2,8 420 4,2 210 3,8 100 2,8 420 4,2 210 3,8 100 2,8 420 4,2 210 3,8 100 2,8 420 4,2 210 3,8 100 2,7 410 4,0 220 3,5 110 2,4 350 4,0 220 3,5 110 2,5 350 4,0 220 3,5 110 2,4 370 3,8 240 3,3 110 2,4 370 3,8 240 3,3 110 2,4 370 3,8 240 3,3 110 2,4 270 (3,2) 6,6 6,6

White	Sands,	New	Mexico	(32.3°N,	106.5°W)			August 1954
Time	h1	F2	foF2	h³Fl_	foFl	h'E	foE	fEs	(M3000)F2
00	2	50	3.3					2.2	3.3
01	2	40	3.1					2.4	3.2
02		50	3.1						3.2
03	2	40	3.0						3.2
04		30	2.9					1.9	3.3
05	2	40	2.8					2.2	3.4
06	2	40	3.6	210		120		2.7	3.4
07	3	10	4.4	200	3.6	110	(2.2)	3.7	3.3
08	3	00	4.9	200	3.8	100	2.6	4.5	3.3
09	3	20	4.9	190	4.0	100	(2.9)	4.5	3.2
10		80	4.9	180	4.2	100	3.1	4.8	3.0
11	3	40	5.2	180	4.2	100	(3.2)	4.1	3.1
12	3	60	5.2	190	4.2	100	(3.3)	4.1	3.0
13	1 3	40	5.3	200	4.2	100	3.2	3.9	3.0
14	3	30	5.5	200	4.1	100	3.2	3.8	3.1
15	3	10	5.5	200	4.0	100	3.0	4.2	3.2
16	3	00	5.4	200	3.9	110	(2.8)	4.0	3.3
17	2	70	5.4	210	3.6	110	2.4	4.0	3.4
18	2	50	5.4	210	3.3	110		3.8	3.4
19	2	20	5.6					3.0	3.3
20	2	10	5.4					2.3	3.45
21	2	20	4.3					2.6	3.4
22	2	30	3.6					2.7	3.3
23	<2	40	3.3						3.3

23 <240 3.3

Time: 105.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Reykjavik, Iceland (64.1°N, 21.8°W)										
lime	h F2	foF2	h1Fl	foFl	h*E	foE	fEs	(M3000)F2		
00	(270)						(4.6)			
01	(260)	(3.8)					4.7			
02	(280)	(3.1)	-				4.2			
03	(300)	3.1					4.2	(3.2)		
04	(330)	(3.1)	240		100		3.9	(3.0)		
05	0	3.3	230	3.1	110	1.8	1.8	2.8		
06	G	(3.4)	220	3.3	100	2.1		G		
07	(450)	(3.7)	220	3.5	100	2.3		(2.7)		
08	460	3.8	210	3.6	100	2.5	2.8	2.7		
09	G	(3.8)	200	3.6	100	2.7		G-		
10	530	(4.0)	200	3.8	100	(2.7)		2.6		
11	440	4.1	200	3.9	100		2.9	2.9		
12	440	4.2	200	3.9	100			2.8		
13	420	4.2	200	3.9	100	(2.9)	3.1	2.9		
14	440	4.2	200	3.8	100			2.8		
15	430	4.2	210	3.8	100	(2.8)		2.9		
16	400	4.2	210	3.7	100	(2.7)		3.0		
17	380	4.2	210	3.6	100	2.6	3.5	3.0		
18	350	4.1	230	3.5	110	2.4	3.7	3.2		
19	320	4.1	230	3.4	110	2.2	2.6	3.3		
20	310	(3.9)	240		120	1.9	3.6	3.2		
21	290	(3.8)			120		3.8	(3.2)		
22	280	(3.6)				~	4.0	(3.3)		
23	(270)	(4.0)					4.5			

Time: 15.0°W. Swasp: 1.0 Mc to 25.0 Mc in 18 esconde.

				Tabl	8 19			
Narsar	ssuak, Grs	enland (61.2°N,	45.4°W)				July 1954
Time	h'F2	foF2	h2Fl	foFl	h* E	foE	fEs	(M3000)F2
00	(280)	(3.2)					5.0	(3.3)
01	(320)	(3.0)					4.7	(3.2)
02	(310)	(3.2)					4.4	(3.3)
03							4.8	
04		(3.4)					4.9	
05	G-	(3.2)	240	3.2			4.8	G.
06	(400)	(3.5)	220	3.4	110	2.1	4.3	2.9
07	(460)	(3.6)	200	3.5	100	2.4	3.8	(2.6)
08	470	3.8	210	3.7	110	2.7		2.8
09	G.	(3.8)	210	3.8	100	2.7	2.9	G.
10	420	(4.1)	210	3.8	100	2.8		2.9
11	440	4.2	210	3.9	110	2.9	2.9	3.0
12	(490)	(3.9)	210	3.9	110	(3.0)	3.0	(2.5)
13	430	4.1	210	3.9	110	2.9		2.95
14	450	4.1	210	3.9	100	2.8		2.9
15	420	4.2	210	3.8	110	2.8		3.0
16	400	4.0	220	3.7	100	2.6	3.2	3.0
17	380	4.1	220	3.5	110	2.4	4.0	3.1
18	350	4.1	240	3.4	120	2.3	4.2	3.2
19	310	3.9	240	3.2	120	2.1	4.1	3.3
20	270	3.9			120	(1.7)	4.4	3.4
21	250	(3.5)					5.4	(3.5)
22	(270)	(3.2)					5.6	(3.4)
23	270	(3.3)					5.0	(3.4)

Time: 45.0°W.
Swssp: 1.0 Mc to 25.0 Mc in 15 ssconds.

Resolu	te Bay, Ca	nada (74	.7°N, 94	.9°W)				June 1954
Time	h¹F2	foF2	h:Fl	foFl	h'E	foE	fEs	(M3000)F2
00	270	3.9	220	3.0	(120)	1.9		3.4
01	270	3.9	210	3.0	110	1.9		3.4
02	270	3.9	210	3.0	110	1.9		3.4
03	290	3.9	210	3.0	110	2.0		3.3
04	310	3.8	210	3.2	110	2.0		3.3
05	320	3.9	210	3.3	100	2.1		3.2
06	340	4.0	210	3.4	100	2.3		3.2
07	350	4.2	210	3.5	100	2.6		3.15
08	340	4.1	200	3.7	100	2.7		3.2
09	380	4.1	200	3.8	100	2.8		3.1
10	370	4.4	200	3.8	1.00	2.9		3.1
11	370	4.4	200	3.8	100	2.9		3.0
12	370	4.4	200	3.9	100	2.9		3.0
13	370	4.3	200	3.9	100	2.9		3.0
14	390	4.4	200	3.8	100	2.9		3.0
15	370	4.2	200	3.8	100	2.8		3.1
16	360	4.2	200	3.8	100	2.8		3.0
17	360	4.2	200	3.7	100	2.6		3.05
18	320	4.2	200	3.6	100	2.4		3.2
19	310	4.2	200	3.4	100	2.1		3.2
20	300	4.1	210	3.3	110	2.1		3.2
21	280	4.0	210	3.1	110	2.0		3.25
22	280	4.0	210	3.0	110	2.0		3.3
23	280	4.0	220		110	1.9		3.3

Tims: 90.00W. Swsep: 1.0 Mc to 25.0 Mc in 15 seconds.

	Eaker Lake, Canada (64.3° M, 96.0° W) Table 23 June 1										
Baker	Lake, Cana							June 1954			
Time	h'F2	foF2	h2Fl	foFl	h'E	foE	fEs	(M3000)F2			
00	220	3.6				1.2	4.2	3.4			
01	220	3.5			100	1.2	3.0	3.4			
02	220	3.4			110	1.4	3.0	3.4			
03	220	3.5			100	1.7	3.0	3.4			
04	250	3.5	200	2.8	100	1.8	3.0	3.3			
05	300	3.8	200	3.1	100	2.0		3.25			
06	330	4.0	200	3.4	100	2.2		3.2			
07	350	4.2	190	3.7	100	2.5		3.1			
08	380	4.3	180	3.8	100	2.8		3.0			
09	1410	4.3	200	4.0	100	3.3		2.7			
10	420	4.3	200	4.0	100	3.3		2.8			
11	430	4.3	200	4.0	100	3.2		2.85			
12	420	4.3	200	3.9	100	3.2		2.85			
13	410	4.3	200	3.9	100	3.1		2.9			
14	380	4.5	200	3.9	100	3.0		3.0			
15	370	4.6	200	3.9	100	3.0		3.0			
16	340	4.8	200	3.8	100	3.0		3.0			
17	340	4.6	200	3.8	100	3.0		3.05			
18	300	4.7	200	3.7	100	2.9	3.8	3.1			
19	280	4.4	200	3.3	100	2.4	4.0	3.2			
20	360	4.3	200	3.1	100	2.2	6.0	3.3			
21	240	4.2	220		100	1.9	5.3	3.35			
22	230	4.0			110	1.7	5.2	3.3			
23	230	3.8			110	1.4	6.0	3.3			

Time: 90.0°W. SwBep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Tabl	.8 20			
Panama	Canal Z	ons (9.4°N.	79.9°1	4)				July 1954
Time	h'F2	foF2	h ¹ Fl	foFl	h ^t E	foE	fEs	(M3000)F2
00	270	4.1					2.2	3.1
01	260	3.4						3,15
02	270						1.8	3.1
03	260	2.8					2.2	3.15
04	260						2.3	3.1
05	240	2.7					1.9	3.3
06	260	2.8					3.6	3.3
07	280		220	3.5	120	2.1	4.1	3.3
08	330		220	3.9	120	(2.6)	3.9	3.2
09	450	4.7	220	4.0	110	(2.9)	4.0	2.7
10	480	4.8	220	4.1	110	3.2	4.4	2.6
11	460	5.6	210	4.1	110	3.3	4.2	2.6
12	420	6.5	220	4.2	110	3.3	4.5	2.7
13	400	7.3	220	4.2	110	3.3	4.6	2.7
14	370	8.0	2 20	4.1	110	3.3	4.5	2.8
15	350		220	4.0	110	3.1	4.9	2.9
16	< 310	9.0	220	3.8	110	2.9	4.8	3.0
17	300	9.0	220	3.7	110	(2.6)	3.8	3.1
18	270	8.7	230	3.1	130	2.0	3.7	3.1
19	230	7.4					4.1	3.4
20	240	5.7					3.0	3.2
21	250	4.9					2.5	3.1
22	270	4.3					2.0	3.1
23	280	4.1					2.0	3.0

Time: 75.0°W. Swsep: 1.0 Mc to 25.0 Mc in 15 seconds.

						e 22			
Time h FZ f oFZ h FL f oFI h FE f oE f E (My0000)\$ 00 270 3.8 210 2.2 110 1.2 6.0 3.4 01 280 3.8 220 2.3 110 1.3 6.0 3.4 02 280 3.9 210 2.5 110 (1.4) 5.8 3.35 03 280 3.9 210 2.9 110 1.6 4.5 3.4 04 (310) 3.9 210 3.2 100 (1.8) 4.4 3.3 05 350 4.1 200 3.4 110 (2.0) 4.2 3.1 06 400 4.2 220 3.6 100 2.3 4.4 2.9 07 350 4.4 220 3.7 100 2.5 4.6 2.9 08 380 4.3 200 3.7 100 2.6	Point	Barrow, Al	aska (71	.3°N, 15	6.8°W)				June 1954
01	Time	h'F2	foF2	h†Fl		h'E	foE	f Es	(M3000)F2
01		270	3.8	210	2,2	110	1.2	6.0	3.4
02		280		220	2.3	110	1.3	6.0	
03			3.9	210	2.5	110	(1.4)	5.8	
04 (310) 3.9 210 3.2 100 (1.8) 4.4 3.3 05 350 4.1 200 3.4 110 (2.0) 4.2 3.1 06 400 4.2 220 3.6 100 2.3 4.3 2.9 07 390 4.4 220 3.7 100 2.5 4.2 2.9 08 380 4.3 200 3.7 100 2.5 4.2 2.9 09 430 4.2 200 3.6 100 2.7 3.5 2.8 11 450 4.2 200 3.8 100 2.7 3.5 2.8 11 450 4.2 200 3.8 100 2.7 3.5 2.8 11 450 4.2 200 3.8 100 2.7 3.5 2.8 12 450 4.2 200 3.8 100 2.7 3.5 2.8 13 420 4.3 200 3.9 100 2.8 3.4 2.8 13 420 4.3 200 3.9 100 2.8 3.8 2.8 14 400 4.2 200 3.9 100 2.8 3.2 2.9 15 420 4.3 200 3.9 100 2.8 3.2 2.9 16 390 4.3 210 3.8 100 (2.7) 3.0 2.9 16 390 4.3 210 3.8 100 (2.7) 3.0 2.9 17 380 4.3 210 3.8 100 (2.6 2.8 2.95 17 380 4.3 210 3.6 100 2.6 2.8 3.1 19 340 4.3 210 3.6 100 2.6 2.8 3.1 20 300 4.0 230 3.4 110 2.2 3.5 3.1 21 320 4.0 230 3.4 110 2.2 3.5 3.1		280	3.9	210	2.9	110	1.6	4.5	
05				210	3.2	100	(1.8)		
06	05	350	4.1	200	3.4	110	(2.0)	4.2	
07 390				220	3.6	100	2.3	4.3	
08			4.4	220	3.7	100	2.4	4.6	
09		380	4.3	200	3.7	100	2.5		
10	09	430	4.2	200	3.7	100	2.6	3.6	
11 450 4,2 200 3,8 100 2,7 3,5 2,7 12 450 4,2 200 3,9 100 2,8 3,4 2,8 13 420 4,3 200 3,9 100 2,8 3,8 2,8 14 400 4,2 200 3,8 100 (2,7) 3,0 2,9 15 420 4,2 200 3,8 100 (2,7) 3,0 2,9 16 390 4,3 210 3,8 100 2,6 2,8 2,95 17 380 4,3 210 3,6 100 2,4 3,6 3,1 3,0 19 340 4,3 210 3,6 100 2,4 3,6 3,1 20 300 4,0 230 3,4 110 2,2 3,5 3,1 20 300 4,0 230 3,2 110 1,8	10	430	4.2	200	3.8	100	2.7		
12				200	3.8	100			
14 400 4.2 200 3.9 100 2.8 3.3 2.9 15 420 4.2 200 3.8 100 (2.7) 3.0 2.9 16 390 4.3 210 3.8 100 2.6 2.8 2.95 17 380 4.3 210 3.7 100 2.4 3.1 3.0 18 340 4.3 210 3.6 100 2.4 3.6 3.1 19 340 4.1 220 3.5 110 2.2 3.5 3.1 20 300 4.0 230 3.2 110 2.0 4.0 3.3 21 320 4.0 230 3.2 110 1.8 4.0 3.2 22 300 3.8 230 2.9 110 1.6 4.2 3.3		450	4.2	200	3.9	100	2.8	3.4	
14 400 4.2 200 3,9 100 2,8 3,3 2,9 15 420 4.2 200 3,8 100 (2,7) 3,0 2,9 16 390 4.3 210 3,8 100 2,6 2,8 2,95 17 380 4.3 210 3,7 100 2,4 3,1 3,0 18 340 4.3 210 3,6 100 2,4 3,6 3,1 19 340 4.1 220 3,5 110 2,2 3,5 3,1 20 300 4.0 230 3,2 110 2,0 4,0 3,3 21 320 4.0 230 3,2 110 1,6 4,0 3,2 22 300 3,8 230 2,9 110 1,6 4,2 3,3		420	4.3	200	3.9	100	2.8	3.8	2.8
15 420 4,2 200 3,8 100 (2,7) 3,0 2,9 16 390 4,3 210 3,8 100 2,6 2,8 2,95 17 380 4,3 210 3,7 100 2,4 3,1 3,0 18 340 4,3 210 3,6 100 2,4 3,6 3,1 19 340 4,1 220 3,5 110 2,2 3,5 3,1 20 300 4,0 230 3,4 110 2,0 4,0 3,3 21 320 4,0 230 3,2 110 1,8 4,0 3,3 22 300 3,8 230 2,9 110 1,6 4,2 3,3	14	400	4.2	200	3.9	100	2.8	3.3	
16 390 4.3 210 3.8 100 2.6 2.8 2.95 17 380 4.3 210 3.7 100 2.4 3.1 3.0 18 340 4.3 210 3.6 100 2.4 3.6 3.1 19 340 4.1 220 3.5 110 2.2 3.5 3.1 20 300 4.0 230 3.4 110 2.0 4.0 3.3 21 320 4.0 230 3.2 110 1.8 4.0 3.2 22 300 3.8 230 2.9 110 1.6 4.2 3.3	15	420	4.2	200	3.8	100	(2.7)		2.9
18 340 4.3 210 3.6 100 2.4 3.6 3.1 19 340 4.1 220 3.5 110 2.2 3.5 3.1 20 300 4.0 230 3.4 110 2.0 4.0 3.3 21 320 4.0 230 3.2 110 1.8 4.0 3.2 22 300 3.8 230 2.9 110 1.6 4.2 3.3				210	3.8	100			
19			4.3	210	3.7	100	2.4	3.1	3.0
19 340 4.1 220 3.5 110 2.2 3.5 3.1 20 300 4.0 230 3.4 110 2.0 4.0 3.3 21 320 4.0 230 3.2 110 1.8 4.0 3.2 22 300 3.8 230 2.9 110 1.6 4.2 3.3	18	340	4.3	210	3.6	100	2.4	3.6	3.1
20 300 4.0 230 3.4 110 2.0 4.0 3.3 21 320 4.0 230 3.2 110 1.8 4.0 3.2 22 300 3.8 230 2.9 110 1.6 4.2 3.3		340	4.1	220	3.5	110	2.2	3.5	
21 320 4.0 230 3.2 110 1.8 4.0 3.2 22 300 3.8 230 2.9 110 1.6 4.2 3.3	20	300	4.0	230		110	2.0		
22 300 3.8 230 2.9 110 1.6 4.2 3.3	21	320	4.0	230	3.2	110		4.0	
	22	300	3.8	230		110			
	23	290							

Tims: 150.00W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

					le 24			
Church:	ill, Canad	в (58.8°	N, 94.2	W)				June 1954
Time	h¹F2	foF2	h³ Fl	foFl	h¹ E	foE	f Es	(M3000)F2
00	260	3.2					8.8	(3.2)
01	250	3.2				(1.8)	7.5	(3.3)
02	250	3.2			(120)	(1.6)	6.1	(3.25)
03	260	3.3				(1.8)	6.1	(3.3)
04	260	3.5			1.20	2.2	6.2	3.2
05	300	3.7	(250)	3.0	110	3.0	6.0	(3.1)
06	370	4.0	250	3.6	110	3.0	6.9	3.0
07	450	4.0	240	3.7	110	3.2	7.0	2.9
08	480	4.1	230	3.8	110	3.2	7.2	2.8
09	470	4.2	210	3.9	110	3.0	7.2	2.7
10	420	4.2	210	4.0	110	3.0	7.0	2.9
11	410	4.4	200	4.0	110	3.0	7.0	2.9
12	410	4.4	200	4.0	110	3.1	7.0	2.9
13	420	4.4	200	4.0	110	3.0	6.4	2.8
14	420	4.4	200	4.0	110	3.0	6.8	2.9
15	400	4.5	210	3.9	110	3.0	5.4	3.0
16	380	4.6	220	3.9	110	2.9	5.2	3.0
17	360	4.7	230	3.8	110	2.8	4.8	3.0
18	340	4.6	250	3.7	110	2.8	4.4	3.0
19	330	4.3	260	3.4	110	2.7	4.3	3.1
20	300	4.1			120	2.8	4.3	3.1
21	300	3.9			120	2.7	6.0	3.1
22	270	3.8			150	(2.2)	8.0	3.2
23	250	3.5					9.0	3.2

Time: 90.0°W. Sweep: 0.6 Mc to 10.0 Mc in 16 seconds.

Fort C	himo. Cana	da (58.1	°N. 68.3	ow)				June 1954
Time	h¹F2	foF2	h‡Fl	foFl	h1E	foE	fEe	(M3000)F2
00	250	(3.2)					5.2	
01	260	3.1					5.0	
02	260	(3.2)				~-~	4.0	
03	(250)	(3.3)			100	2.8	4.2	
04	280	3.4			100	3.0	4.4	
05	(300)	3.7	2 50	3.3	100	3.1	4.3	
06	340	<4.0	230	3.6	100	2.7	4.3	
07	400	4.0	210	3.7	100	2.9	4.0	(3.15)
08	380	4.2	200	3.8	100	2.8	3.6	G
09	400	4.2	200	3.8	100	3.0	3.2	(2.95)
10	1410	4.2	200	4.0	100	3.0	3.7	G
11	380	4.3	200	4.0	100	3.0		3.0
12	390	4.3	200	4.0	100	3.1	3.4	2.95
13	400	4.3	200	4.0	100	3.0		2.7
14	380	4.4	200	3.9	100	3.0		(2.9)
15	380	4.3	200	3.8	100	3.0	3.7	(2.9)
16	360	4.6	200	3.7	100	2.8		(3.0)
17	360	4.6	240	3.6	100	2.6	3.2	
18	330	4.3	260	(3.3)	100	2.9	3.8	
19	290	4.1	230		100	2.6	3.9	
20	260	(4.0)				2.2	5.3	
21	220	(3.6)					6.2	
22	230	3.2					6.2	
23	230	3.2					4.8	

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 eeconde.

Graz. 1	Austria (4	7.1°N, 1	5.5°E)	Tabl	.e 27			June 1954
Time	h'F2	foF2	h [†] Fl	foFl	h¹E	foE	fEe	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	260 280 280 280 280 270 300 290 300 (290) 300 (290) 300 (290) 300 (290) 290 290 290 290 290 290 290 290 290 290	4.0 3.6 3.7 3.2 4.6 (5.0) 5.2 5.2 (5.0) (5.0) 5.0 (5.0) 5.0 (5.0) 5.0 6.0 5.0 4.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	225 200 (200) (200) 200 200 200 210 (250)	3.0 3.6 3.9 4.1 4.1 (4.3) (4.2) 4.0 4.0 3.8 3.5		(2.6) (2.8) (3.0) (3.1) (3.2) (3.2) (3.1) (3.0) (2.9)	4.2 4.3 5.1 4.0 3.9 3.4 4.0 3.9 4.0 3.8	(1)000/12

Time: 15.0°E. Sweep: 2.5 Mc to 12.0 Mc in 2 minutee.

Wakkana	i, Japan	(45.4°E,	141.7°E)	Tabl	e 29			June 1954
Time	h¹F2	foF2	h*Fl	foFl	h*E	foE	fEe	(M3000)F2
00	260	4.5					4.5	
01	260	4.2					3.6	
02	270	4.5					3.9	
03	260	4.1					4.0	
04	260	4.2					3.7	
05	280	4.5					4.0	
06	310	4.8					5.7	
07	330	5.1					6.2	
08	320	5.2					6.5	
09	320	5.3					6.4	
10	320	5.5					6.5	
11	380	4.9					6.7	
12	400	5.0					6.1	
13	390	5.0					7.2	
14	400	4.7					6.2	
15	380	4.8					5.8	
16	340	4.9					5.6	
17	320	5.0					6.0	
18	300	5.3					5.2	
19	280	5.7					5.4	
20	260	6.0					5.7	
21	270	5.9					5.9	
22	260	5.3					6.0	
23	260	4.8					6.0	

Time: 135.0°E. Swoep: 1.0 Me to 22.0 Me in 1 minute.

				Tab	le 26			
St. Jol	ın¹s. Newf	oundland	(47.6°N.	52.7°W	r)			June 1954
Time	h'F2	foF2	h ¹ Fl	foFl	h ¹ E	foE	fEe	(M3000)F2
00	280	2.4						3.0
01	290	2.1						3.0
02	290	2.0					3.0	3.0
03	280	2.0				E	3.7	3.0
04	240	3.0			130	E	2.8	3.4
0.5	240	3.7	230	3.2	110	2.0	3.6	3.3
06	320	4.0	230	3.5	110	2.4	4.5	3.2
07	350	4.3	220	3.8	110	2.8	4.8	3.2
08	3 50	4.5	210	4.0	110	3.0	5.0	3.2
09	370	4.6	210	4.0	110	3.2	4.6	3.2
10	380	4.6	200	4.1	110	3.2	4.6	3.0
11	380	4.6	200	4.1	100	3.3	4.5	3.1
12	410	4.6	200	4.2	100	3.4	4.5	2.9
13	390	4.6	200	4.1	100	3.3	4.5	3.0
14	390	4.6	200	4.0	110	3.2	4.5	3.0
-15	380	4.5	210	4.0	110	3.0	4.5	3.05
16	370	4.5	2.20	3.8	110	2.9	4.1	3.1
17	340	4.5	230	3.6	110	2.5	4.8	3.1
18	300	4.8	2 50	3.3	110	2.1	4.6	3.2
19	250	5.2	250		120	Σ	4.0	3.25
20	230	5.2				E	4.2	3.4
21	240	4.5				E	2.7	3.3
22	240	3.9					1.7	3.2
23	270	3.2						3.3

Time: 60.0°W. Sweep: 0.9 Mc to 10.0 Mc in 18 seconds.

Ottova	Canada (he how	ac 00w1	Tabl	Le 28			June 1954
Time	h¹F2	foF2	h ^t Fl	foFl	h*E	foE	fEe	(M3000)F2
00	270	2.4						3.1
01	290	2.0						3.1
02	320	1.8					2.3	3.0
03	(330)	1.8					3.0	3.0
04	270	2.1					2.7	3.15
05	240	3.1			120	1.8	2.9	3.4
06	330	3.6	220	3.3	110	2.2	3.2	3.2
07	350	4.0	210	3.6	110	2.6	3.9	3.1
08	360	4.4	210	3.8	110	2.8	4.9	3.1
09	390	4.5	200	4.0	110	3.0	4.8	3.1
10	360	4.6	200	4.1	110	3.2	4.0	3.0
11	380	4.7	200	4.1	110	3.3	4.8	3.0
12	390	4.6	200	4.2	110	3.3		2.9
13	400	4.6	200	4.1	110	3.3		2.9
14	400	4.6	200	4.0	110	3.3		2.9
15	400	4.5	200	4.0	110	3.1		2.85
16	380	4.6	220	3.8	110	3.0		3.0
17	340	4.6	230	3.7	110	2.7		3.0
18	310	4.8	230	3.4	110	2.3	4.0	3.1
19	270	5.0	240	3.0	120	1.9	4.5	3.2
20	240	5.1					4.2	3.2
21	240	4.7					3.4	3.2
22	240	3.9					2.6	3.2
23	250	3.1						3.1

23 250 3.1 Time: 75.0°W. Sweep: 1.0 Mc to 10.0 Mc in 15 seconds.

				Tabl	e 30			
Akita,	Japan (39.	7 B. 14).1°E)					June 1954
Time	h+F2	foF2	h! Fl	foFl	h ¹ E	foE	fEs	(H3000)F2
00	260	4.1					5.0	
01	270	4.0					5.1	
02	250	4.0					4.3	
03	240	3.8					4.2	
04	240	3.5					3.6	
05	250	4.0					3.8	
06	270	4.6					4.6	
07	(270)	5.2					6.9	
08	(290)	5.4					7.0	
09	(270)	5.5					7.2	
10	(300)	(5.4)					7.1	
11		-					7.8	
12	(380)	5.0					7.0	
13	370	5.1					6.7	
14	340	5.1					7.0	
15	330	5.2					6.0	
16	320	5.2					5.4	
17	300	5.2					5.4	
18	280	5.4					5.7	
19	240	5.8					5.7	
20	240	5.7					5.5	
21	240	5.2					4.5	
22	2 50	4.5					6.5	
23	270	4.5					6.1	

Time: 135.0°E. Sweep: 0.85 Mc to 22.0 Mc in 2 minutee.

Tokyo,	Japan (35	. 7 ⁰ N. 13	9.5 ⁰ E)	Tabl	e 31			June 1954
Time	h¹F2	foF2	h Fl	foFl	h¹E	foE	fEs	(M3000)F2
00 01 02	280 280 280	4.0 3.9 3.7					5.2 5.4 5.5	3.0 3.0 3.1
03	260 270	3.4 3.2					4.5	3.1 3.0
05 06	250 300	3.8 4.5	240	3.5	130 110 110	1.6 2.3 2.6	3.5 4.6 6.0	3.25 3.2
07 08 09	290 290 290	5.0 5.5 5.6	2.20	4.1	110	2.9	6.5 7.0	3.2 3.3 3.3
10 11	(340) (360)	(5.1)		4.3	110 110	3.1 3.2	7.2 7.4	3.2 3.0
12 13 14	(370) 400 350	5.0 5.5	230 200 220	4.2 4.1 4.1	110 110 110	3.2 3.2 3.1	7.0 7.0 6.5	3.0 2.9 3.0
15	350 320	5.9 5.8	220 240	4.0	110 110	3.0 2.8	5.9 5.9	3.0 3.1
17 18	310 290	5.8 5.8	230 250	3.5 3.2	110	2.4	5.8 5.4	3.1 3.1
19 20 21	250 250 260	6.0 5.9 4.8					5•6 5•6 4•8	3.2 3.2 3.2
22 23	300 290	4.1 4.0					5.6 5.8	3.0 3.0

Time: 135.0°E. Sweep: 1.0 Mc to 17.2 Mc in 2 minutee.

				Tab]	Le 33			
Huancaj	70, Peru	(12.0°S,	75.3°W)					June 1954
Time	h¹F2	foF2	h1Fl	foFl	h1E	foE	fEg	(M3000)F2
00	230	3.0						3.5
01	230	3.0						3.4
02	230	2.8						3.4
03	240	2.3						3.4
04	250	1.8						3.45
05	270	E				E		(3.4)
06	270	1.8			110	2.0		3.0
07	240	4.4	220		110	2.6	5.7	3.3
08	300	5.4	210		100		9.1	3.1
09	340	5.8	200	3.9	100	~	9.2	2.9
10	380	5.6	200	4.0	100		10.9	2.7
11	400	5.5	190	4.1	100		11.2	2.6
12	410	5.3	190	4.1	100		10.9	2.6
13	420	5.6	190	4.1	100		11.0	2.6
14	390	5.8	190	4.0	100		10.2	2.7
15	360	6.0	190	3.8	100		9.4	2.6
16	310	6.1	190	3.6	110		8.8	2.8
17	(260)		210			2.0	4.8	3.0
18	240	6.0						3.2
19	240	5.2						3.15
20	230	4.6						3.3
21	230	4.7						3.4
22	220	4.3						3.5
23	220	3.4						3.5

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Thusle	Swadan	(59.8°N,	17 (02)	Tabl	e 35			May 1954
				4.50	1.17	0.0	at)	
Time	h¹F2	foF2	h II	foFl	h¹ E	foE	fEs	(M3000)F2
00	260	2.8					2.2	3.1
01	265	2.4					2.0	3.05
02	270	2.3						3.1
03	260	2.6				E	2.2	3.1
04	260	3.2	225	2.8		E	1.8	3.1
05	360	3.6	225	3.2	120	1.8	2.4	3.1
06	370	3.9	225	3.4	110	2.2	3.3	3.0
07	405	4.1	215	3.7	110	2.4	3.2	2.9
08	375	4.3	210	3.8	105	2.6	3.3	2.9
09	370	4.5	210	3.9	105	2.7	3.4	3.1
10	360	4.6	210	4.0	105	2.8	3.4	3.1
11	355	4.7	210	4.0	105	2.9	3.1	3.1
12	360	4.7	210	4.0	105	3.0	3.1	3.1
13	360	4.6	205	4.0	105	2.9	3.0	3.1
14	350	4.7	210	4.0	105	2.8	3.2	3.1
15	355	4.4	210	3.9	105	2.7	3.2	3.1
16	340	4.5	220	3.8	105	2.5	3.4	3.1
17	320	4.5	225	3.6	110	2.3	3.5	3.1
18	290	4.6	235	3.3	110	2.0	3.6	3.2
19	260	4.6	240	(2.8)	130	1.6	3.3	3.3
20	250	4.5	240			E	2.5	3.2
21	240	4.8						3.2
22	235	4.2						3.2
23	250	3.7						3.1

Time: 15.0°E. Sweep: 1.4 Mc to 17.0 Mc in 6 minutes, automatic operation.

				Tabl	Le 32			
Tanagaw	a, Japan	(31.2°N,	130.6°E)					June 1954
Time	h¹F2	foF2	h ^t Fl	foFl	h ¹ E	foE	fEs	(M3000)F2
00	320						6.0	
01	300						5.9	
02	270	(3.5)					5.8	
03	290	(3.3)					5.1	
04	280	(3.2)					5.0	
05	270	3.2					3.3	
06	250	4.3					3.8	
07	280	5.0					5.6	
08	290	5.2					6.2	
09	300	5.6					8.2	
10	(360)	5.2					8.2	
11	(430)	(5.1)					8.6	
12	(400)	(5.5)					8.8	
13	(400)	(5.4)					8.6	
14	370	6.4					8.3	
15	350	6.7					6.4	
16	320	7.1					6.0	
17	300	6.6					6.2	
18	290	6.1					6.0	
19	270	6.1					5.8	
20	260	6.0					5.8	
21	260	5.2					5.8	
22	300	4.6					5.9	
23	300	(4.9)					5.9	

Time: 135.0°E. Sweep: 1.0 Mc to 22.0 Mc in 1 minute.

Table 34

				-				
Wather	oo, W. Aue	tralia (30	0.3°s.	115.9°E)				June 1954
Time	h¹F2	foF2	h:Fl	foFl	h¹ E	fo£	fEs	(M3000)F2
00	240	3.2						3.3
01	240	3.6						3.3
02	240	3.7						3.3
03	240	3.6						3.4
04	240	3.6						3.4
05	220	3.5					1.9	3.4
06	220	3.0						3.45
07	220	3.5						3.4
08	220	7+ 7+				1.9	1.9	3.7
09	240	4.6	230	3.5		2.4	2.7	3.6
10	260	4.8	220	3.8		2.7	2.9	3.6
11	270	5.0	230	4.0		2,8	3.4	3.5
12	280	5.0	230	4.0		2.9	3.5	3.5
13	280	5.2	220	4.0		2.9	3.5	3.5
14	270	5.1	230	3.8		2.7	3.2	3.5
15	260	5.2	220	3.7		2.6	2.9	3.5
16	240	5.1	230	3.3		2.3	3.1	3.6
17	230	4.5					2.8	3.6
18	220	3.5					2.7	3.5
19	230	2.8					2.3	3.3
20	240	3.0					1.9	3.3
21	240	3.1						3.3
22	240	3.5						3.3
23	230	3.4						3.3

23 | 230 3.4 Time: 120.0°E. Sweep: 1.0 Mc to 16.0 Mc in 2 minutes.

nvernees. Scotland (57.40 N. 4.20W) Table 36°									
h¹F2	foF2	h ¹ Fl	foFl	h¹E	fo£	fEs	May 1954 (M3000)F2		
265 265 275 285 275 320 405 390 390 365 385 395 395 390 390 390 390 390 390 390 390 390 390	3.1 2.4) 2.63 3.7 2.63 3.7 4.5 4.5 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	(250) 240 225 220 215 215 210 210 210 215 225 225 225 226 227 220 226 227	(2.4) 3.0 3.3 3.6 3.7 3.9 4.0 4.1 4.1 4.0 3.9 3.7 3.7	125 110 105 110 105 110 105 110 110 110 11	(1.4) 1.6 2.0 2.2 2.5 2.7 2.8 2.9 2.9 2.9 2.8 2.7 2.8	1.4 1.2 1.1 1.0 2.3 2.0 2.9 2.8 2.9 3.7 3.6 3.5 3.3 3.5 3.3 3.5 3.3 3.6 3.5 3.5 3.0 3.1 2.5 2.0 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.0 2.9 2.9 2.9 2.9 3.0 3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.1 3.1 3.1 3.1		
255	(3.8)						3.1		
	h F2 265 265 275 275 275 285 320 405 425 390 365 385 385 385 385 385 385 385 385 385 38	n°F2 foF2 265 3.1 265 2.7 275 (2.4) 275 2.6 285 2.6 275 3.3 320 3.7 405 4.0 425 4.7 385 4.7 385 4.7 385 4.7 385 4.6 385 4.6 315 4.5 350 4.6 315 4.5 340 4.6 315 4.5 340 4.6	h 1 F2 foF2 h 1 F1 265 3,1 265 2.7 275 (2,4) 275 2,2 285 2.6 (250) 275 3.3 240 275 3.3 240 320 3.7 225 405 4.0 220 425 4.2 215 390 4.4 215 390 4.5 215 390 4.6 210 385 4.7 210 385 4.7 210 385 4.6 210 380 4.6 215 395 4.6 220 315 4.5 225 285 4.6 245 245 4.9 245 (4.6)	nee, Scotland (57,40%, 4,20%) h'F2 foF2 h'Fh foF1 265 2.7 275 (2.4) 275 2.2 285 2.6 (250) (2.4) 275 3.3 240 3.0 320 3.7 225 3.3 405 4.0 220 3.6 425 4.2 215 3.7 390 4.4 215 3.9 390 4.5 215 4.0 365 4.7 210 4.0 385 4.7 210 4.1 385 4.6 215 4.0 385 4.7 210 4.1 385 4.6 215 4.0 385 4.7 210 4.1 385 4.6 215 4.0 385 4.7 210 385 4.7 210 4.1 385 4.6 220 3.7 315 4.6 220 3.7 315 4.5 225 3.4 280 4.6 220 3.7 315 4.5 225 3.4 280 4.6 220 3.7 315 4.5 225 3.4 280 4.6 245 3.0	N-F2 FoF2 N-F1 FoF1 N-E	pee, Scotland (57,4°N, 4,2°N) h'F2 foF2 h'F1 foF1 h'E foE 265 3.1 265 2.7 275 (2.4) 275 2.2 285 2.6 (250) (2.4) 275 3.3 2½0 3.0 125 1.6 320 3.7 225 3.3 110 2.0 405 4.0 220 3.6 115 2.2 425 4.2 215 3.7 110 2.5 390 4.4 215 3.9 105 2.7 390 4.5 215 4.0 110 2.8 365 4.7 210 4.1 105 2.9 385 4.6 210 4.1 105 2.9 385 4.6 210 4.1 105 2.9 385 4.6 220 3.7 390 4.6 220 3.7 390 4.6 220 3.9 110 2.7 380 4.6 220 3.9 110 2.9 385 4.6 220 3.7 120 2.7 390 4.6 220 3.9 110 2.7 310 4.6 220 3.7 110 2.5 350 4.6 220 3.7 110 2.5 350 4.6 220 3.7 110 2.5 351 4.5 225 3.4 120 2.1 280 4.6 245 3.0 140 1.8 245 4.9 245 4.9			

Time: 0.0°. Sweep: 0.67 Mc to 25.0 Mc in 5 minutes. *Average values except foF2 and fEe, which are median values.

				Tabl				
De Bilt	. Holland	(52.1°H.	5.2°E)					May 1954
Time	h¹F2	foF2	h!Fl	foFl	P1E	foE	fEe	(M3000)F2
00	260	3.4						3.0
01	260	3.2						3.0
02	(260)	3.0						3.0
03	(270)	2.9						3.0
04	< 260	3.2						3.05
05	310	3.7	240	3.2	120	2.0	2.2	3.05
06	340	4.2	240	3.7	120	2.2	2.9	3.1
07	380	4.2	235	3.8	120	2.5	3.2	3.0
08	360	4.6	225	4.0	115	2.7	3.4	3.05
09	340	4.8	220	4.1	115	2.9	3.5	3.2
10	350	5.0	220	4.2	115	3.0	3.7	3.15
11	340	5.0	220	4.2	120	3.0	3.6	3.05
12	340	5.0	210	4.2	115	3.0	3.3	3.1
13	360	4.9	220	4.2	115	3.0	3.2	3.0
14	355	4.9	220	4.1	120	3.0	3.2	3.0
15	3 50	4.8	240	4.C	115	2.9	3.2	3.1
16	340	4.9	240	3.9	120	2.6	3.6	3.1
17	310	4.8	240	3.6	120	2.4	3.5	3.1
18	280	4.8	240	3.2	120	1.9	3.2	3.2
19	260	5.2					2.5	3.1
20	240	5.2					2.4	3.3
21	240	5.0						3.25
22	240	4.6						3.2
23	(240)	3.6						3.05

23 (240) 3.6

Time: 0.0°.

Sweep: 1.4 Mc to 11.2 Mc in 6 minutes, eutomatic operation.

	England	(51.5°N,	0.6°W)	Table	39°			11 1 o ch
Slough,								May 1954
Time	h'F2	foF2	h [†] FL	foFl	h E	foE	fEe	(M3000)F2
00	265	3.6					2.6	3.0
01	275	3.4					2.6	2.95
02	270	3.1					2.6	2.95
03	265	3.0					2.6	3.0
04	275	3.0	(270)	(2.2)			2.6	3.0
05	290	3.7	245	3.0	125	1.7	3.5	3.15
06	3 50	4.1	230	3.4	120	2.1	4.4	3.1
07	360	4.3	225	3.7	115	2.4	4.5	3.1
08	365	4.5	225	3.9	115	2.7	4.8	3.1
09	355	4.7	230	4.0	115	2.9	4.7	3.15
10	3 50	4.9	225	4.1	115	3.0	5.0	3.1
11	335	5.0	220	4.2	115	3.0	5.0	3.2
12	375	4.9	220	4.2	115	3.1	4.9	3.05
13	395	4.8	225	4.2	115	3.0	4.9	3.1
14 .	3 50	4.9	230	4.2	115	3.0	4.8	3.1
15	365	4.8	235	4.1	115	2.9	4.7	3.05
16	345	4.9	245	3.9	115	2.7	4.5	3.1
17	315	5.0	240	3.7	115	2.5	4.2	3.1
18	300	4.9	235	3.5	120	2.1	3.7	3.1
19	275	5.3	260	3.0	130	1.7	3.1	3.15
20	2 50	5.7					2.6	3.15
21	240	5.5					2.5	3.15
22	245	5.0					2.4	3.2
23	250	4.3					2.4	3.1

Time: 0.00. Sweep: 0.55 Mc to 16.5 Mc in 5 minutes. *Average values except foF2 and fEs, which are median values.

				Table	41.			
Singape	re, Briti	eh Malaya	(1.3°N,	103.8°	Ξ)			May 1954
Time	h¹F2	foF2	h†Fl	foFl	h'E	foE	fEe	(M3000)F2
00	260	3.1					3.9	(3.1)
01	240	2.9					3.4	(3.5)
02	240	2.5					3.1	(3.4)
03	240	2.0					3.0	(3.5)
04	250	1.8					3.1	(3.4)
0.5	(255)	1.4					3.4	
06	250	3.2					3.1	3.2
07	255	5.7	235	(3.7)	120	2.2	3.9	3.2
08	300	7.3	220	4.0	115	2.7	5.4	2.9
09	31.5	8.1	210	4.2	115	3.0	5.6	2.8
10	330	9.0	205	4.3	110	3.2	6.6	2.6
11	335	9.6	200	4.3	110	3.3	8.4	2.5
12	340	9.3	200	4.4	110	3.3	6.0	2.6
13	330	9.5	200	4.3	110	3.3	6.1	2.6
14	320	9.2	200	4.3	110	3.2	5.7	2.7
15	305	9.0	205	4.2	115	3.0	5.1	2.8
16	280	8.9	225	4.0	115	2.7	5.0	2.9
17	255	8.6	230	(3.5)	120	2.2	5.3	3.0
18	235	8.6				(1.5)	3.7	3.1
19	230	7.6					4.0	3.3
20	225	6.6					4.3	3.4
21	220	5.5					4.9	3.5
22	225	3.6					3.6	3.5
23	240	3.0					4.1	(3.1)

Time: 105.0°E.

Sweep: 0.67 Mc to 25.0 Mc in 5 minutes.

*Average values except foF2 and fEs. which are median values.

				Tabl	e 38			
Lindau	Harz, Ger	many (51	.6°N. 10	.1°E)				May 1954
Time	h¹F2	foF2	h#Fl_	foFl	h'E	foE	fEe	(M3000)F2
00	260	3.6					2.2	3.2
01	250	3.6					2.1	3.1
02	260	3.2					2.2	3.1
03	260	3.0					2.2	3.1
04	260	3.0				E	2.2	3.2
05	275	3.4	240	2.7		E	2.9	3.2
06	310	3.9	225	3.3	115	2.0	2.9	3.2
07	310	4.4	225	3.6	110	2.3	3.6	3.3
08	360	4.4	215	3.8	105	2.6	3.8	3.1
09	335	4.8	215	3.9	105	2.8	4.0	3.2
10	320	5.0	210	4.0	105	2.9	4.3	3.25
11	340	5.0	210	4.1	100	3.0	4.2	3.2
12	340	5.0	205	4.2	100	3.0	4.2	3.2
13	335	4.8	210	4.1	100	3.0	4.6	3.2
_ 14	360	4.8	210	4.1	105	3.0	4.2	3.1
15	350	4.8	215	4.0	100	2.9	3.9	3.1
16	320	4.8	225	3.8	105	2.7	3.7	3.25
17	320	4.9	225	3.7	110	2.5	4.2	3.2
18	280	5.0	225	3.4	115	2.2	4.2	3.3
19	260	5.2	230		120	1.7	3.4	3.3
20	250	5.4					3.1	3.3
21	230	5.6					2.6	3.3
22	230	5.0					2.4	3.3
23	240	4.3					2.4	3.3

Time: 15.0°E. Sweep: 1.0 Mc to 16.0 Mc in 8 minutes.

Formoea,	China	May 1954						
Time	h¹F2	foF2	h ^t Fl	foFl	h1E	foE	fEe	(M3000)F2
00	300	4.6					3.7	2.8
01	270	4.2					3.0	3.2
02	240	4.8					3.6	3.2
03	250	4.6					2.4	3.4
04	240	3.1					2.4	3.35
05	240	3.6					3.6	3.3
06	240	5.0					3.8	3.5
07	240	6.0	230	3.6	110	2.4	7.0	3.7
08	270	5.7	225	4.1	105	2.8	6.0	3.4
09	320	6.0	230	4.3	100	3.1	7.9	3.2
10	350	6.7	200		110	3.2	6.0	2.9
11	350	8.2	215		110	3.4	6.6	2.9
12	320	9.4	210	(4.5)		207	5.4	3.0
13	320	9.7	210	4.4	110		5.4	3.1
14	310	10.8	220	4.3	110	3.3	4.8	3.2
15	290	10.7	225	4.2	110	3.1	5.0	3.2
	280	10.4	240	3.9	110	2.8	5.4	3.3
16	260	9.8	240	3.7	100	2.4	4.6	3.4
17	240	9.9	240	201	100		4.6	3.4
		8.0					3.2	3.6
19 20	215 220	6.6					3.7	3.3
	240						3.8	3.2
21 22	280	5.2 5.0					3.2	3.0
23	300	4.2					2.8	3.0

Time: 120,0°E. Sweep: 1.1 Mc to 19.5 Mc in 15 minutes. manual operation.

Leopold	May 1954							
	h'F2	foF2	h¹Fl	foFl	h1E	foE	fEe	(M2000)F2
00 01 02 03 04 05 06 07 08 09 10 12 13 14 15 16	220 (205) (240) 240 250 250 290 290 295 295 285 280 270 260 245	foF2 3.4 5.2 5.9 6.8 7.2 8.1 8.4 9.0 9.0 8.2 7.6			120 110 110 110 105 105 105 110 110 120	2.2 2.7 3.0 3.2 3.3 3.2 3.1 3.0 2.6 2.0	3.0 3.3 3.0 3.0 3.0 2.5 3.7 3.9 4.0 4.0 3.4 3.3 3.3 3.6	(M2000)F2
17 18 19 20 21 22 23	230 220 210 215 (240) (265) 230	6.6 5.8 4.9 3.2 3.2 (4.0)					3.0 3.0 2.9 3.1 2.9 2.7	2.75 2.9 2.8 2.4 (2.4)

23 | 230 (3.0)

Time: 0.0°.
Sweep: 1.0 Mc to 16.0 Mc in 7 eeconds.

Raroton	ga I. (21	May 1954						
Time	h¹F2	foF2	h'Fl	foFl	h' E	foE	fEs	(M3000)F2
00	290	3.2						3.0
01	300	3.0						3.0
02	290	2.9						3.1
03	290	3.1						3.1
04	260	2.9						3.3
05	260	2.7						3.2
06	280	2.5						3.2
07	250	4.5	230	2.6		E	2.4	3.5
80	250	5.5	210	3.5	115	2.2	3.0	3.6
09	260	5.7	200	3.9	110	2.6	3.3	3.5
10	260	5.9	200	4.1	105	2.8	3.5	3.6
11	270	5.7	200	4.2	105	3.0	3.9	3.6
12	290	5.8	200	4.3	105	3.1	4.1	3.4
13	270	6.3	200	4.2	105	3.1	4.0	3.5
1/4	260	6.1	210	4.1	110	3.0	4.1	3.5
15	250	6.1	200	4.0	110	2.8	3.8	3.45
16	260	6.0	220	3.6		2.5	4.1	3.4
17	250	6.0	240	3.0		1.9	3.8	3.4
18	230	5.9					3.5	3.5
19	220	4.7					3.0	3.4
20	240	3.8					2.8	3.2
21	250	3.4					2.6	3.2
22	250	3.2					2.4	3.25
23	270	2.9					2.0	3.1

Time: 157.5°W.
Sweep: 2.0 Mc to 16.0 Mc, manual operation.

Table 44										
Johann	esburg, Un	ion of S	. Africa	(26.208	, 28.1°	E)		May 1954		
Time	h'F2	foF2	h:Fl	foFl	h¹ E	foE	fEs	(M3000)F2		
00	(230)	2.7						3.2		
01	< 240	2.7						3.1		
02	< 250	2.8						3.15		
03	230	2.7						3.2		
ОÅ	< 230	2.8						3.3		
05	< 230	2.6						3.3		
06	< 230	2.6						3.2		
07	220	4.4				1.8		3.6		
08	230	5.3	220	3.3	120	2.3		3.7		
09	250	5.6	210	3.8	110	2.7		3.6		
10	260	5.8	210	4.1	110	2.9		3.45		
11	260	6.0	200	4.2	110	3.1		3.45		
12	280	6.0	200	4.2	110	3.1		3.4		
13	270	5.6	210	4.1	110	3.1	3.6	3.4		
14	280	6.0	200	4.0	110	3.0	3.6	3.2		
15	250	6.5	220	3.8	110	2.7	3.5	3.4		
16	240	5.9	220	3.4	120	2.4	3.1	3.5		
17	220	5.3				1.8	2.0	3.5		
18	210	4.2					1.9	3.5		
19	< 210	3.1					1.7	3.5		
20	< 240	3.1						3.3		
21	220	3.3						3.3		
22	220	3.2						3.4		
23	< 230	2.9						3.3		

Time: 30.0°E.
Sweep: 1.0 Mc to 15.0 Mc in 7 seconde.

					e 45			
Wather	00. W. Aue	tralia	(30.3°s,	115.9°E)				May 1954
Time	h'F2	foF2	h * Fl	foFl	h'E	foE	fEs	(M3000)F2
00	250	3.7					2.3	3.2
01	260	3.9					2.5	3.1
02	250	4.1					2.2	3.1
03	250	4.0					2.0	3.2
04	240	3.9					2.4	3.3
05	220	3.7					1.4	3.4
06	230	3.0					1.8	3.3
07	230	4.0				1.6		3.4
08	240	4.9	230	2.7		2.4	2.7	3.6
09	250	5+3	240	3.7		2.7	3.4	3.5
10	270	6.1	240	4.0		3.2	3.4	3.5
11	280	6.0	230	4.1		3.3	3.5	3.4
12	280	5.9	230	4.2		3.2	3.5	3.4
13	290	6.0	220	4.1		3.0	3.6	3.35
14	280	6.1	220	4.0		3.1	3.7	3.3
15	260	6.5	230	3.8		2.8	3.5	3.4
16	250	5.9	230	3.4		2.5	2.7	3.5
17	230	4.9				2.0	2.6	3.6
18	220	3.8					2.8	3.5
19	230	3.0					1.8	3.25
20	250	3.2					2.2	3.2
21	250	3.3					2.1	3.2
22	250	3.2					2.0	3.15
23	250	3.4					2.1	3.2

Time: 120.0°E. Sweep: 1.0 Mc to 16.0 Mc in 2 minutes.

Table 46 Capetown, Union of S. Africa (34,2°S, 18,3°E)											
Time	h'F2	foF2	h [†] Fl	foFl	h¹E	foE	fEs	May 1954 (M3000)F2			
00	< 240	2.6									
01	< 250	2.7						3.2 3.2			
02	250	2.7						3.1			
03	< 250	2.7						3.1			
04	< 250	2.8						3.1			
05	250	2.9						3.2			
06	220	2.8						3.2			
07	220	2.7						3.3			
08	220	4.4			140	1.6		3.7			
09	230	5.0	220	3.1	120	2.3		3.6			
10	250	5.1	220	3.7	120	2.6		3.5			
11	260	5.5	210	4.0	120	2.9		3.5			
12	270	5.7	210	4.0	110	3.0		3.4			
13	270	5.7	200	4.0	110	3.0		3.3			
14	280	6.0	210	4.0	120	2.9		3.3			
15	260	6.6	230	3.8	120	2.8	3.0	3.4			
16	250	6.2	230	3.5	120	2.5	,	3.5			
17	230	5.6	220	2.7	120	2.0	2.0	3.6			
18	210	4.6					1.7	3.6			
19	220	2.8						3.5			
20	230	2.6						3.2			
21	230	3.0						3.4			
22	230	2.9						3.4			
23	< 230	2.6						3.3			

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

					e 47			
Chrieto	hurch, Hew	Zealand	(43.6°	B. 172.8	oE)			May 1954
Time	h¹F2	foF2	h ⁸ Fl	foFl	h'E	foE	fEs	(M3000)F2
00	270	3.0					3.0	3.05
01	270	3.0					3.0	3.1
02	270	3.0					2.8	3.1
03	270	3.0					2.4	3.1
04	260	2.9					2.3	3.1
05	250	2.7						3.3
06	240	2.3						3.3
07	240	3.1					2.4	3.4
80	240	4.1	240	2.6		1.7		3.5
09	250	4.5	230	3.3		2.2		3.5
10	260	4.6	220	3.6		2.4	3.3	3.5
11	280	4.8	220	3.8		2.5	3.8	3.4
12	270	5.2	230	3.8		2.6	4.3	3.4
13	270	5.0	230	3.8		2.6	4.1	3.4
14	270	5.1	230	3.7		2.4	3.9	3.4
15	250	5.4	230	3.3		2.2	3.0	3.5
16	230	5.1	230	2.4		1.7	2.9	3.5
17	230	4.4					2.9	3.4
18	250	3.4						3.1
19	250	3.0						3.1
20	250	2.9						3.2
21	270	2.7						3.1
22	270	2.9					2.9	3.1
23	270	2.9					3.0	3.1

Time: 172.5°E.
Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 eeconde.

				Tabl	e 48*			
Falklas	nd Ie. (51	.7°S. 57	.8°W)					April 1954
Time	h¹F2	foF2	h ¹ Fl	foFl	h1E	foE	fEs	(M3000)F2
00	300	2.8						2.8
01	295	2.9					2.3	2.8
02	290	2.9					2.9	2.8
03	290	2.9					1.8	2.9
04	275	2.9					1.8	3.0
05	240	3.0					3.5	3.3
06	225	3.0					4.6	3.4
07	210	4.3			(160)	1.6		3.7
08	215	5.1			120	2.1	2.2	3.6
09	(245)	5.4	220		110	2.4	4.4	3.6
10	(255)	6.3	220		110	2.6	5.4	3.5
11	250	6.8	215	3.9	110	2.7	4.7	3.5
12	240	6.6	215	3.9	105	2.7	4.8	3.6
13	230	6.6	215	3.9	105	2.7	3.9	3.7
14	230	5.8	210	(3.6)	(115)	2.5	5.1	3.7
15	230	5.5	(220)		(115)	2.3	3.8	3.7
16	230	5.3			(130)	2.0	3.1	3.7
17	220	5.0					3.1	3.6
18	225	4.3					2.8	3 - 5
19	230	3.5					2.0	3.5
20	245	2.9					1.7	3.2
21	270	2.8						3.0
22	280	2.9					1.9	2.9
23	300	2.9						2.9

Time: 60.0°W. Sweep: 0.67 Mc to 25.0 Mc in 5 minutes. *Average values except foF2 and fEs, which are median.

Port Lo	ockroy (64	.8°s, 63	.5°W)	Tab	le 49°			April 1954
Time	h1F2	foF2	h1Fl	foFl	h [†] E	foE	fEe	(M3000)F2
00	295	2.6						2.8
01	295	2.6					1.2	2.8
02	305	2.5					1.3	2.8
03	285	2.6					1.3	2.8
04	275	2.5					1.4	2.9
05	260	2.6						3.0
06	250	2.5					1.0	3.0
07	230	2.8					1.0	3.3
08	225	3.4				(2.0)	1.7	3.6
09	220	4.5				(2.1)	2.6	3.6
10	220	5.4			(110)	(2.2)	3.2	3.5
11	215	5.5			(105)	2.4	2.8	3.6
12	215	6.0			(105)	2.4	2.7	3.6
13	215	5.8			(105)	2.4	2.7	3.6
14	215	5.4			(110)	2.3		3.7
15	220	5.4			(110)	2.1	2.4	3.6
16	215	4.9			(115)	(2.0)	1.6	3.5
17	220	4.6			(130)	(1.6)	1.9	3.4
18	225	4.5					1.8	3.4
19	235	4.0						3.3
20	240	3.7						3.2
21	255	3.0						3.1
22	280	2.8						3.0
23	290	2.7						2.9

Time: 60.0°W.
Sweep: 0.67 Mc to 25.0 Mc in 5 minutes.
*Average values except foF2 and fEs, which are median values.

Bombay	India	(19.0°N,	73.0°E)	Tab	le 51			March 1954
Time	•	foF2	h¹Fl	foFl	h1E	foE	fEe	(M3000)F2
00 01 02 03 04 05 06:30 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	270 300 333 339 390 390 420 390 420 390 390 390 390 390	5.4 7.1 7.8 8.5 9.7 9.7 10.8 11.4 11.7 11.7 11.7 11.7 11.7 9.3 10.7 9.3 6.8						3.25 3.1 2.95 2.9 2.8 2.7 2.65 2.65 2.55 2.65 2.65 2.7 2.8 2.9 3.1

Time: 75,0°E.
Sweep: 1.5 Mc to 18.0 Mc in 5 minutee, manual operation.
"Height at 0.83 foF2.
""Average values; other columne, median valuee.

Tiruchy,	India	(10.8°N,	78.8°E)	Tabl	.e 53			March 1954
Time		foF2	h:Fl	foFl	h E	foE	fEe	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	360 420 480 500 510 510 510 480 480 450 450 420	4.3 6.4 7.3 7.1 6.9 7.2 7.5 7.8 8.2 8.6 8.6 8.6 8.6 8.7 7.2						2.85 2.45 2.35 2.33 2.25 2.25 2.25 2.33 2.3 2.35 2.4 2.4 2.45

Time: 75.0°E, Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. "Height at 0.83 foRZ. ""Avorage values; other columns, median values.

Delhi, 1	India (2	March 1954						
Time		foF2	h1Fl	foFl	h'E	foE	fEe	(M3000)F2
00	290	2.8						3.15
01	300	2.6						3.2
02								3.05
03								
04	270	2.6						3.4
05	260	2.7						3.4
06	260	3.3						3.45
07	240	5.4						3.55
08	260	6.0						3.4
09	260	6.4						3.4
10	260	7.6						3.4
11	260	> 8.2						3.4
12	260	> 8.3						3.35
13	280	8.6						3.35
14	260	> 8.1						3.4
15	240	7.7						3.5
16	240	7.4						3.6
17	240	7.2						3.6
18	240	6.1						3.6
19	220	5.3						3.7
20	240	3.8						3.55 3.4 3.4
21	260	3.2						3.4
22	260	2.9						3.4
23	280	2.9						3.3

Time: 75.0°%. Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, mammal operation. "Height at 0.83 foF2. "Average values; other columns, median values.

Madras	, India	(13.0°N,	80.2°E)	Tab	le 52			March 1954
Time	9	foF2	h†Fl	foFl	h¹ E	foE	fEe	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	340 380 420 450 450 450 450 450 450 450 390 390 390 390 390	7.4 7.7 7.6 8.0 8.3 8.6 9.1 9.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						2.9 2.75 2.55 2.45 2.45 2.45 2.45 2.45 2.45 2.4

Time: 75,0°E.

Sweep: 1.5 Mc to 18.0 Mc in 5 minutee, manual operation.

**Reight at 0,83 forZ.

**Average valuee; other columne, median values.

				Tabl	e 54			
Townsvi	lle, Aust	ralia (1	9.3°6, 1	46.7°E)				March 1954
Time	h'F2	foF2	h*Fl	foFl	h [‡] E	foE	fEe	(M3000)F2
00	270	4.0					3.7	(3.0)
01	260	3.9					3.1	3.1
02	250	3.7					2.6	3.1
03	260	3.4					2.8	3.0
04	250	3.2					2.1	3.2
05	250	3.0					1.9	3.1
06	250	3.1				E	2.2	3.3
07	240	4.5			120	1.8	3.2	3+5
08	300	5.5	240	3.9	100	2.4	3.8	3.3
09	300	6.2	220	4.1	100	2.9	4.3	3.2
10	300	6.9	200	4.3	100	3.2	4.4	3.2
11	310	7.2	200	4.3	110	3.2	3.9	3.1
12	300	7.6	200	4.4	100	3.3	4.6	3.1
13	290	7.5	200	4.3	100	3.3	4.1	3.2
14	290	7.4	200	4.3	100	3.2	4.8	3.15
15	280	7.7	200	4.1	110	3.2	4.5	3.3
16	260	7.3	230	3.8	100	2.8	5.2	3.3
17	250	6.6	240	3.5	110	2.4	4.5	3.4
18	240	5.5		-			4.0	3.4
19	250	4.6					3.6	3.1
20	250	4.4					3.6	3.0
21	280	4.0					3.8	3.0
22	280	4.0					3.2	3.05
23	290	3.9					3.8	3.0

Time: 150.0°E. Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 meconds.

				Tab:	le 55			
Prioba	ne, Austra	lia (27.	5°s, 153	.0°E)				March 1954
Time	h F2	foF2	h [‡] Fl	foFl	h'E	foE	fEs	(M3000)F2
00	(300)	(4.1)					(3.6)	(2.9)
01	(260)	(4.0)					(3.6)	(3.2)
02	(240)	(4.0)					(2.6)	(3.1)
03	(260)	(3.6)					(3.3)	(3.3)
Ole	(250)	(3.5)						(3.1)
05	(250)	(3.5)						(3.2)
06	(240)	(4.0)						(3.55)
07	(250)	(5.2)	230				(3.8)	(3.5)
80	(270)	5.4	220	4.1		_	(4.2)	(3.4)
09	(300)	(5.7)	220	4.3			(4.1)	(3.3)
10	(300)	(6.1)	40000	4.4		-	(4.8)	(3.2)
11	(300)	(6.2)					(5.3)	(3.2)
12	(230)	(7.0)			-			(3.2)
13	(280)	(5.7)					(5.4)	(3.3)
14	(300)	(6.4)		-	-			(3.2)
15	(280)	(6.4)						(3.25)
16	(270)	6.8					(4.9)	3.3
17	250	6.2					4.2	3.4
18	(240)	5.4					(4.2)	3.3
19	240	5.0					4.0	3.2
20	(240)	(4.3)					(3.2)	(3.3)
21	(280)	(4.1)					(3.6)	(3.0)
22	(300)	(4.1)					(3.9)	(3.0)
23	(290)	(4.1)					(3.8)	(3.1)

				Table	57			
Hobart,	Tasmania	(42.9°S.	147.3°E)					March 1954
Time	h'F2	foF2	h*Fl	foFl	h E	foE	fЕв	(M3000)F2
00	260	2.6						2.9
01	270	2.3						3.0
02	260	2.2						3.0
03	250	2.0						3.0
04	270	2.0						3.0
05	270	2.0						3.0
06	250	2.5				E		3.05
07	220	3.6			100	2.0		3.1
08	210	4.1			100	2.4		3.05
09	380	4.2	200	3.9	100	2.6	2.8	2.8
10	380	4.6	200	4.0	100	2.9	3.1	2.8
11	360	5.0	200	4.0	100	3.0	3.3	2.9
12	350	5.0	200	4.1	100	3.0	3.2	3.0
13	330	5.2	200	4.1	100	3.0		3.0
14	310	5.3	200	4.0	100	3.0	3.0	3.0
15	300	5.2	700	4.0	100	2.8		3.0
16	210	5.0			100	2.6	,	3.1
17	220	4.9			100	2.2		3.1
18	230	5.0			100	1.4	2.5	3.1
19	230	4.7						3.1
20	250	4.5						3.0
21	2 50	3.5						3.0
22	250	3.0						3.0
23	2,50	2.7						3.0

Time: 150.0°E. Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconde.

Fribour	g. Germany	(48.1°N.	7.8°E)	Tabl	.e <u>59</u>		De	ocember 1953
Time	h¹F2	foF2	h ¹ Fl	foFl	h1E	foE	fEs	(M3000)F2
00	<260	3.2					2.2	3.05
01	245	3.2					1.8	3.1
02	255	3.0					1.6	3.05
03	< 260	3.0						3.1
04	245	2.7						3.2
05	<230	2.4						3.25
06	238	2.2						3.25
07	< 240	2.3						3.25
08	218	4.3	220	-	< 159	1.5	2.0	3.6
09	220	5.3	220	-	121	2.0	2.0	3.65
10	230	5-6	220	-	119	2.2	2.3	3.7
11	228	5.9	230		115	2.4	2.3	3.65
12	230	6.0	220		119	2.5	2.5	3.7
13	230	5.5	225	(3.4)	119	2.4	2.6	3.6
14	230	5.5	230		120	2.2	2.5	3.65
15	220	5.3	230	-	129	2.0	2.3	3.6
16	215	4.7					2.1	3.55
17	215	3.3					2.2	3.4
18	232	2.8					2.0	3.25
19	245	2.9					2.0	3.2
20	240	3.0					2.3	3.2
21	235	3.0						3.15
22	2 50	3.1					2.0	3.05
23	265	3.2					2.1	3.05

Time: Local. Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

				Tabl	в 56			
Canberr	a, Auetra	lia (35.	3°s, 149	.0°E)				March 1954
Time	h F2	foF2	h*Fl	foFl	h1E	foE	fЕв	(M3000)F2
00		3.7					3.4	3.0
01		3.5					3.1	3.0
02		(3.4)					3.1	3.0
03		(3.3)					2.5	3.1
04		(3.0)					2.2	3.1
05		(2.8)					(1.5)	(3.0)
06	240	3.1				-		3.25
07	245	4.0	230		(110)	1.9		3.5
08	310	4.6	230	3.7	110	2.5	3.1	3.3
09	315	4.8	220	4.0	110	2.7	3.6	3.2
10	345	5.2	210	4.1	100	3.0	3.7	3.1
11	330	5.6	210	4.1	100	3.0	3.8	3.2
12	320	5.8	210	4.2	100	3.1	3.6	3.2
13	310	5.9	210	4.2	100	3.1	3.7	3.2
14	300	5.8	215	4.1	100	3.1	3.6	3.2
15	300	5.6	220	4.0	100	2.9	3.7	3.1
16	290	5.5	230	3.8	110	2.6	3.6	3.3
17	260	5.3	240	(3.5)	110	2.3	3.2	3.3
18	250	5.1				1.8	3.3	3.3
19	240	5.0					3.1	3.1
20		4.4					3.4	3.1
21		4.0					3.1	3.0
22		3.8					3.6	3.0
23		3.7					3.6	3.0

Time: 150.0°%. Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 eeconds.

Ibadan,	Nigeria	(7.4°N.	4 0°E)	Tabl	Le 58°			January 1954
Time		foF2		4.70	NIE		en.	
11me	h¹F2	1082	h Fl	foFl	h¹ E	foE	fEs	(M3000)F2
00	263	4.7					1.6	(3.3)
01	260	4.4					1.3	
02	261	3.8					1.0	(3.2)
03	251	3.4					1.2	*****
04	237	(2.4)					1.2	
05	234	1.9					1.9	The rest of the last of the la
06	256	3.0					1.9	
07	-	5.6	235		111	2.0	4.6	3.2
80	300	6.6	219	3.8	108	2.8	6.0	2.9
09	337	6.7	211	4.1	109	3.2	8.2	2.5
10	380	6.4	205	4.2	106	3.3	10.0	2.3
11	407	6.2	204	4.3	108	3.4	10.2	2.4
12	362	6.9	198	4.3	107	3.4	10.0	2.6
13	368	7.0	197	4.3	107	3.4	10.0	2.5
14	369	7.0	204	4.2	108	3.2	8.8	2.3
15	348	7.3	211	4.0	108	3.0	6.4	2.4
16	307	7.6	232	-	111	2.7	5.1	2.5
17		7.7	241		115	2.0	4.8	2.5
18	272	6.9			(127)	1.3	2.1	2.6
19	281	6.6					2.0	2.5
20	290	6.7					2.2	The second secon
21	268	6.0					2.2	
22	256	5.4					1.9	3.0
23	251	4.8					1.2	

Time: 0.0°. Sweep: 0.67 Mc to 25.0 Mc in 5 minutes. *Average values except foF2 and fEs, which are median values.

				Tabl	e 60			
Fribous	rg, Germany	(48.1°N.	7.8°E)				No	vember 1953
Time	h¹F2	foF2	h*Fl	foFl	h1E	fo₽	fEs	(M3000)F2
00	270	3.2						2.9
01	270	3.2						2.95
02	< 265	3.2					1.7	2.95
03	< 265	3.2					1.7	3.0
04	250	2.6						3.05
05	< 240	2.3						3.2
06	< 240	2.2						3.2
07	230	3.0						3.3
08	225	4.5	230		125	1.7	2.4	3.55
09	230	5.0	230		119	2.0	2.9	3.55
10	245	5.4	228	3.5	115	2.4	3.1	3.6
11	250	5.6	220	3.6	115	2.5	2.8	3.5
12	240	6.2	222	3.6	115	2.6	3.0	3.55
13	240	5.7	230	3.6	117	2.5	2.7	3.55
14	240	5.6	235		119	2.4	2.3	3.5
15	235	5.6	235		120	2.0	2,2	3.5
16	225	5.2	218			1.6	2.4	3.55
17	220	4.3					2.2	3.45
18	< 240	3.2					2.6	3.2
19	240	3.0					2.1	3.2
20	< 240	2.9					2.0	3.15
21	265	2.8					1.8	2.95
22	270	2.8					1.9	2.9
23	270	3.0						2.95

Time: Local. Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

Dakar, Fr	h'F2	Africa foF2	(14.6°N. h¹Fl	17.4°W)			No	vember 1953
		foF2	1. 1.773					Aemper 1322
	0.11		U.11	foFl	h1E	foE	fEs	(M3000)F2
00 01 02 03 04 05 06 07	265 240 235 225 230 240 255 255 270	6.8 6.6 5.6 4.4 2.8 2.5 3.5 6.8 8.6	235	3.4		2.1	2.4 2.1 1.9 2.4 2.2 2.4 2.3 3.3 4.3	3.25 3.35 3.35 3.4 3.25 3.45 3.25 3.45
09 10 11 12 13 14 15 16 17 18 19 20 21	275 280 290 285 285 285 285 285 250 250 250 255 230 240 255	10.0 11.0 11.2 10.4 10.3 10.2 10.0 10.4 9.9 9.6 7.0 8.4	215 215 210 210 220 220 220 240 250	4.3 4.4 4.5 4.5 4.5 4.5 4.0		3.6 3.2 3.3 3.4 3.3 3.1 2.9 2.5	144443.776.6655.5544 4443.73333333333333333333333333333333	3.45 3.25 3.25 3.1 3.05 3.15 3.05 3.2 3.25 3.3 3.1 3.05

Time: Local. Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

Fribou	rg. Germany	(48.1	°N. 7.8°E)	Tabl	le 63		Ser	otember 1953
Time	h¹F2	foF2	h¹Fl	foFl	h¹E	foE	fEs	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	275 280 275 275 275 277 275 260 260 300 310 300 290 305 305 310 290 305 310 290 305 310 290 295 280 240 250 240 260 240 260 270	3.2.2.0.0.6.4.1.0.1.3.5.5.4.4.3.7.3.9.0.6.0.2.4.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	24 5 23 5 < 23 0 23 0 21 0 23 0 21 5 22 5 22 0 24 0 24 5 24 5	3.4 3.7 4.0 4.1 4.2 4.2 4.1 4.0	130 120 115 111 111 111 111 111 111 121	<1.66 2.15 2.8 2.9 3.0 3.1 3.0 2.8 2.51 1.6	2.5 2.2 1.8 1.8 2.0 2.6 3.1 3.3 3.7 3.6 3.6 3.5 3.5 3.5 3.5 3.9 2.9 3.0 2.4 2.4 2.4 2.6 2.6	2.85 2.85 2.85 2.85 2.99 3.05 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.2

Time: Local.
Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

Djibou	May 1953							
Time	n¹F2	foF2	h³Fl	foFl	h!E	foE	fЕв	(M3000)F2
00	330	(3.9)						(2.8)
01	< 330	(3.2)						
02	300	(3.6)						(3.0)
03	290	3.5						(3.25)
04	260	3.1						(3.3)
05	260	3.0						3.2
06	245	6.0	240		121	2.1	3.4	3.4
07	295	7.0	230		122	2.5	3.4	3.2
08	330	7.6	230	4.4	117	3.2	3.6	2.9
09	360	7.5	220	4.5	114	3.3	4.0	2.65
10	380	7.2	210	4.6	112	3.4	4.3	2.55
11	390	7.2	220	4.4		3.5	4.4	2.6
12	385	7.6	230	4.5	115	3.6	4.4	2.6
13	380	>7.6	220	4.5		3.4	5.8	2.65
14	350	8.3	220	4.4	120	3.3	4.2	2.7
15	330	8.8	220	4.4	116	3.0	4.0	2.8
16	320	9.3	230	4.1	< 122	2.6	4.2	2.8
17	< 270	>9.2	2 50			2.2	4.2	2.95
18	250	8.9					3.5	(2.95)
19	250	>8.0					3.0	3.0
20	260	>7.0					2.2	(2.95)
21	290	>6.0						(2.95)
22	300	5.1						(2.85)
23	325	4.5						(2.7)

Timo: $35.6^{\circ}E$. Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

Fribour	g. Germany	(48.1°N,	7.8°E)	Tabl	€ 62			October 1953
Time	h¹F2	foF2	h ¹ Fl	foFl	h¹E	foE	fΕε	(M3000)F2
00	<275	3.2					1.9	2.9
01	280	3.3					1.8	2.85
02	275	3.3					1.8	2.9
03	< 275	3.2						2.9
04	< 260	3.1					1.8	3.0
05	230	2.7						3.25
06	< 240	2.7						3.2
07	230	4.3	240		129	1.7	2.0	3.45
08	238	5.2	235		120	2.3	2.8	3.55
09	250	5.6	230	3.7	113	2.6	3.3	3.5
10	260	6.1	220	4.0	111	2.8	3.9	3.4
11	255	6.8	220	(4.0)	111	2.8	3.9	3.5
12	255	6.3	225	L.O.	111	3.0	3.8	3.45
13	255	6.2	220	4.0	110	2.9	3.7	3.45
14	260	6.2	235	(3.8)	109	2.8	3.9	3.4
15	2 50	6.3	240	-	711	2.5	3.2	3.45
16	240	6.0	24 5	-	110	2.1	3.2	3.4
17	235	5.6				1.6	3.1	3.45
18	230	5.2					2.4	3.3
19	230	4.8					2.3	3.3
20	235	4.0					2.1	3.2
21	245	3.4					2.0	3.1
22	258	3.3					1.9	2.95
23	265	3.2					1.9	2.95

Time: Local. Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

Fribou	rg, German	, (LR 10	N. 7.8°E)	Tabl	e 64			June 1953
Time	h!F2	foF2	h!Fl	foFl	h'E	foE	fEs	(M3000)F2
00	265	4.4					2.7	2.95
01 02	< 270 < 270	4.0 3.8					2.8	2.9 2.95
03	270	3.4					3.2	2.95
04	< 270 342	3.4	255 245	3.0	121	1.8	2.6	3.05 3.0
06	340	4.6	235	3.6	113	2.3	3.8	3.0
07	340	4.7	235	3.9	111	(2.6)	4.8	(2.95)
08 09	340 335	5.0 5.4	215 220	4.2	108	2.8	4.8	3.1 3.05
10	340	5.1	212	4.3	105	3.1	4.8	3.1
11 12	382 395	5.3 5.2	212 205	4.3	103 105	3.2 3.2	4.8	(2.95) (2.9)
13	370	5.2	225	4.4	105	3.2	4.2	(2.9)
14 15	380 410	5.1 5.0	220 230	4.3	105 108	3.2 3.0	4.0	(3.0) 2.9
16	350	5.2	225	4.0	109	2.9	4.0	3.0
17	325	5.6	245	3.9	109	2.6	4.6	3.05 3.05
18 19	312 280	5.6 6.0	245 <250	3.5 3.0	113	2.3	3.6 3.9	3.0
20	262	6.4					3.8	3.15
21	245 242	6.4					3.3	3.15 3.05
23	260	4.6					3.0	3.0

Time: Local. Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation,

				Tab:	le 66			
Djibout	i, French	Somalil	and (11,	5°N, 43	,1°E)			Jamary 1953
Time	h'F2	foF2	h'Fl	foFl	h'E_	foE	fEs	(M3000)F2
00	245	4.5						3.4
01	232	4.1						3.6
02	228	3.2						3.5
03	230	2.3						3.4
04	260	<1.8						3.5
05		<1.6					1.9	3.5
06	240	4.0				1.3	2.7	3.4
07	265	6.6	220		<117	2.3	3.5	3.3
08	300	7.8	215	4.3	109	2.8	4.4	3.0
09	325	7.6	205	4.4		3.2	6.6	2.7
10	340	7.3	192	4.6		3.4	6.4	2.7
11	< 350	7.3	192	4.6		3.5	6.5	2.7
12	335	7.9	200	4.6	103	3.5	5.8	2.8
13	320	8.6	202	4.6	102	3.4	4.0	3.0
14	305	9.0	205	4.5	104	3.2	3.7	3.1
15	290	9.0	210	4.3	103	3.0	4.8	3.2
16	280	9.1	218		105	2.6	4.5	3.2
17	240	8.8	245			1.9	3.9	3.2
18	248	8.6					3.3	3.1
19	260	7.6					3.2	3.1
20	240	6.7					3.0	3.4
21	230	5.9					3.0	3.4
22	240	5.6					3.1	3.3
23	250	5.2					2.8	3.2

Time: 35.5°E. Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

					e 67			
Djibou	ti. French	-Somalil	and (11.	5° N. 43.	1°E)		De	cember 1952
Time	h¹F2	foF2	h [†] Fl	foFl	h'E	foE	fEs	(M3000)F2
00	240	4.7						3.35
01	240	4.7						3.35
02	230	4.6						3.6
03	220	3.3						3.55
04	220	2.7						3.55
0.5	230	2.0						3.45
06	230	5.1			153	1.6	2.3	3.45
07	250	7.4	215		109	2.4	3.4	3.4
08	275	8.2	205		109	2.8	3.6	3.15
09	300	8.6	205	4.5	109	3.2	6.0	2.95
10	320	8.6	205	4.7	103	3.3	5.5	2.9
11	320	8.8	200	4.8	99	3.4	4.5	2.95
12	310	9.1	205	4.7	101	3.4	4.6	2.9
13	305	9.5	205	4.6	105	3.3	4.3	3.05
14	290	9.7	205	4.4	99	3.2	3.5	3.05
15	280	9.6	210	4.2	107	2.9	4.2	3.05
16	(265)	(9.6)	215		107	2.4	4.2	3.05
17	240	9.0				1.7	3.3	3.05
18	240	8.6					3.1	3.05
19	250	7.1					2.6	2.95
20	245	(7.5)					3.0	3.2
21	240	6.5					2.5	3.2
22	240	5.7					2.8	3.4
23	235	5.0						3.3

Time: $35.6^{\circ\Sigma}$. Sweep: 1.25 Mc to $20.^{\circ}$ Mc in 10 minutes, automatic operation.

					e 69			
Dj1bou	ti, Fren	ch Somali	land (11	.5°N. 43	.1°E)		Ooto	ber 1952
Time	p.125	foF2	h'F1	foFl	hIE	foE	fEs	(M3000)F2
00	230	8.2					2.4	3.4
OI	215	8.4						3.5
02	205	5.8						3.6
03	215	4.5						3.5
04	220	3.5						3.4
05	215	2.8					2.5	3.5
06	220	6.7			131	2.0	3.6	3.5
07	250	8.4	215		100	2.8	4.0	3.4
80	272	9.6	210		109	3.1	4.2	3.2
09	290	>10.0	205	4.7		3.3	5.5	2.9
10	300	9.6	190	4.8	107	(3.6)	6.7	2.8
11	300	9.9	190	4.9	109	3.6	6.6	2.8
12	300	9.8	200	4.8	109	(3.6)	6.6	2.8
13	285	11.4	190	4.8	109	3.5	6.3	3.0
14	275	11.5	200	4.5	107	3.2	6.3	3.1
15	265	12.0	205			3.0	6.5	3.0
16	250	11.7	215		109	2.6	4.5	3.1
17	240	`11.4	235				4.4	2.9
18	260	10.0					3.4	(2.7)
19	270	9.2						(2.7)
20	265	8.9					2.3	(2.8)
21	240	8.4					3.3	(3.0)
22	242	8.8					3.5	3.3
23	242	7.8					3.3	(3.2)

Time: 35.5°E.

Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

Djibot	ti. Frenc		August 1952					
Time	h112	foF2	h'F1	foFl	h'E	foE	fBe	(M3000)F2
00	330	(3.9)					1.9	(2.6)
01	350	(3.8)						
02	(335)						2.8	
03	(290)						2.0	
04	< 260	(3.1)						(3.4)
05	250	2.8						(2.9)
06	230	5.9			125	2.1	3.3	(3.4)
07	270	7.1	215		109	2.5	4.1	3.4
80	305	7.5	208	4.6	101	3.2	4.4	3.1
09	(345)	8.4	202	4.7			6.2	(8.8)
10	(342)	8.3	200	(4.8)		3.5	5.0	2.6
11	380	7.9	202	4.9		3.6	6.4	2.6
12	392	8.0	202	4.9		3.7	5.2	2.6
13	(375)	8.7	205	(4.8)		(3.6)	5.4	2.6
14	348	9.0	205	4.6		3.5	4.4	(2.8)
15	(332)	>9.4	215	4.5			4.4	< 2.8
16	(315)	>10.0	225				4.1	(3.1)
17	(285)	10.2	242				4.2	(3.0)
18	252	10.0					3.6	(2.9)
19	250	>8.8					3.6	(2.9)
20	250	7.4					2.8	(3.2)
21	< 265	5.0						(3.0)
22	(280)	5.4						
53	335	4.5					2.8	(2.5)

23 335 4.5 2,8
Time: 35.60 E.
Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, antomatic operation.

Djibou	ti, Frenc	h Somali	land (11	Tabl .5°N, 43	Nov	November 1952		
Time	P.ES	foF2	h'J1	foF1	h E	foE	fBe	(M3000)F2
00	240	6.4					2,2	3.3
01	220	6.7						3.5
02	205	>5.0						3.6
03	205	3.7						3.5
04	220	2.5						3.5
05	240	1.9						3.6
06	230	5.7			135	2.0	3.4	3.5
07	245	7.9	215		109	2.4	3.5	3.4
80	270	8.9	205	4.4	107	2.9	4.4	3.0
09	290	> 9.1	200	4.6	105	3.3	6.5	2.8
10	300	> 9.0	190	4.7	107	3.4	6.6	2.9
11	300	9.2	190	4.7		3.5	6.7	2.9
12	300	9.6	195	4.7	99	3.5	5.7	3.0
13	290	10.5	195	4.6	105	3.4	6.8	3.1
14	275	11.0	205	4.5	109	3.2	6.0	3.1
15	265	11.0	212		109	2.9	4.6	3.2
15	(250)	11.0	215		109	2.4	4.5	3.1
17	240	10.0					3.5	3.1
18	255	8.8					3.4	2.9
19	265	8.0					3.2	2.8
20	250	7.4					3.3	3.0
SI	240	7.2					3.5	3.2
22	240	(7.2)					3.3	(3.3)
23	245	> 5.0					2 8	2.2

Time: 35.6°Z. Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

				Tab:	le 70			
Djibou	ti, Fren	ch Somali	land (11	.5° N. 43	3.1°E)		Sept	ember 1952
Time	h'T2	folia	h'F1	foFl	h'E	foE	fEe	(M3000)F2
00	252	(8.0)					2.2	< 3.2
01	230	8.5					2.1	(3.6)
02	(215)	5.3					1.6	(3.5)
03	(216)	4.5						(3.4)
04	215	3.5					2.2	(3.5)
05	(230)	3.2					2.3	(3.4)
06	(230)	6.8				2.3	3.0	(3.5)
07	(250)	8.1	210			2.8	3.5	3.4
90	(310)	8.6	212			3.2	4.2	3.1
09	(310)	9.2	190			3.4	6.8	2.7
10	(310)	8.6	205	4.9			6.6	2.7
11	310	8.8	190	4, 9			6.6	2.5
12	(326)	8.9	195	4.8		3.6	6.3	2.7
13	315	9.5	192	4.8		3.5	4.4	2.7
14	300	10.8	205	4.5			7.0	(3.0)
15	280	11.6	208	4.4			5.9	(3.1)
16	(262)	(11.6)	210				4.3	(3.0)
17	(235)	>10.0				2.0	3.8	(2.9)
18	245	(9.8)					3.4	(2.8)
19	252	>9.2					3.1	(2.8)
20	(260)	7.6					2.5	
21	250	8.3					3.4	
22	(250)	8.2					3.7	
23	270	7.5					3.4	

23 270 7.5 3.4

Time: 35.6°%.

Sweep: 1.25 Me to 20.0 Mc in 10 minutes, automatic operation.

				Tab:	le 72			
Djibou	ti, Frenc	h Somali	land (11	.5°N. 43	.1°E)			July 1952
Time	p.12	foF2	h¹T1	foFl	h¹E	foE	fEs	(M3000)F2
00	305	(4.8)					2.0	
01	335						3.0	
02	308						3.3	
03	(308)						3.5	
04	(270)						2.5	-
05	245	3.2					2.9	(3.2)
08	230	6.4	225		111	2.2	3.3	(3.5)
07	275	7.3	215		103	2.8	3.5	3.3
80	310	7.7	210	4.4	101	3.1	4.8	3.2
09	340	7.6	195	4.5	108	3,5	5.3	2.8
10	370	8.0	202	4.7	103	3.6	6.5	2.6
11	370	7.5	208	4.8	111	3.5	6.4	2.5
12	380	7.5	< 210	4.8	104	3.5	6.5	2.5
13	390	7.6	210	4.8			8.6	2.5
14	360	8.7	205	4.6			4.9	2.7
15	350	>8.8	210	4.4			4.5	2.8
16	(310)	8.9	< 220				4,5	(8.8)
17	31.5	8.8	230			-	4.6	2.8
18	250	>8.4					3.7	(2.7)
19	252	>8.5					4.0	(2.9)
20	282	>7.1					2.5	(2.6)
21	278	>5.4					3.0	(2.9)
23	2 95	(5.8)						
23	328	>5.6						

Street: 35.60E. Sweep: 1.25 Mc to 20.0 Mc in 10 mimutes, sustamatic operation.

4BS - D-3 orm adopted June 1 Stondards JJS

National Bureau of

E.J.W. J.W.P.

Scaled by:

73 TABLE

Radia Prapagatian Labaratory, National Bureau of Standards, Washington 25, D.C ONOSPHERIC

1954

October

E E

h' F2

Washington, D. C.

Observed at _

J. J.S. (320) S S (27015 290) × (240) × (290) × [280] × 250 (290) 8 (340) 8 (330) 5 (300) 5 (300) 5 (300) 5 (300) 5 240) 5(270) A (280) 5(280) 5 300) 5 (270) -5 (300) 5 (280) 5 \$ (082) \$ (072) \$ (026) (250) 5 250)5 (280) 5 (270) 5 (260) 3 230 2505 [280] 5 (320)5 280 270 29 300 290 390 290 260 280 300 270 250 250 250 240 127015 280 280 260 280 270 320 250 (280) \$ (300) \$ 300 Solculated by E.J.W., J. W.P. SK 270K (290)\$ (30d \$ 300 K 320 K 250 300 300 240 (270)3 260 250 230 260 280 250 300 240 280 270 280 220)5 (320) A 270 270 29 S 5 29 21 300 240 250 240 270 230 240 240 250 250 270 240 270 260 AR 270 K 28 220 250 230 340 260 K 310K 340K 300K 290K 260K 240K 220K 230K 360K 390K 430K 330K 310K 260K 120 \$ 220K 430K 460K [420] \$ 380K 310K 370K 300K 390)\$ 240K 250K 220 220 220 240 250 230 230 250 260 240 230 230 230 230 230 240 230 220 220 230 300 300 270 260 250 220 220 240 230 220 240 200 230 210 210 220 200 220 210 210 200 220 250 220 220 230 220 240 30 6 (230] C 220 1240)C 220 220 220 210 210 220 220 210 200 220 210 210 230 220 31 8 230 220 300K 250K 220 240 220 220 210 220 230 220 220 240 230 230 240)4 230 3/ 310 K 240 240 270 260 260 250 150 340 280 260 240 340 230 260 250 340 250 31 9 [260] [480] & 460K 400K 370K 400K 380K 330K 260 250 250 280 290 200 260 250 250 290 240 320 300 270 280 250 294 270 270 270 250 270 270 250 340 3 300 300 2 270 H 3 270 260 280 290 290 300 300 290 260 270 260 (290) 200 300 270 280 260 250 4 310 310 300 360 270 250 250 250 280 270 270 260 3 270 260 H 270 280 270 290 330 300 280 270 280 250 260 270 290 10 300 290 H 3 +40K 260 260 260 12° W 270 280 290 300 260 300 280 270 320 270 300 380 280 280 3 [390] 300 H [360] A 420 H 340 280 260 280 350 G (380)⁵ 440^K G K S K G K 460K 590K 490K 270 280 H 240) 260H 250 280 H 250 300 F 290 F 300 F 280K 250 K 260 57012 270 250 260 H 280 250 (250) (300) M 340 360 360 250 270 270 280 280 2201 240 250 250 250 230 280 270 310 290 F 370 360 250 270 270 250 250 290 300 280 310 3 = 300 270 H 280 280 250 270 280 240 300 310 280 300 260 30 0 270 280 A 280 H 300 290K 270K 260 250 250 230 230 250 240)270 250 250 31 240 260 240F 260 240 250 280 340 60 250 240 240 220 250 240 30 | (1250) | (1260) | (1250 | 130 | 250 | (1250) | (340) \$ (300) \$ [290] \$ 280 K 1 620 230 220 230 220 220 270 (270) \$ 120 240 (270) 5 240 230H 240 (270) (270) 250 230 390 290 260 270 240 270 (270) 230 220 250 230 (280) 5 (250) 5 C C 240 250 240 220 (260) 5 (270) 5 240) 5 220 (290,5 (240)5 (270) 5 270 30 20 270 (260) 5 240 260 240 250 (260) \$ 250 270 5 (270) \$ 320 240 270 270 250 300F 280 280 [310] \$ 300 260 90 26 26 0.5 320) 5 (310) 5 (310) 5 (330) 5 (350) 5 Lot 38.7° N , Long 77.1° W 27 0.4 330,5 3,0,5 320,5 260 260 270 25015 30015 28015 39015 230)5 (300)A 342,5 (300) 5 (280) 5 2900 280 270 270 260 250 290 290 270 260 280 280) 3 240 360 270K SK SK SK 360 280 280 270 250,5 260'5 250 260!5 200 270 270 250 270 250 230 290 252 270 250 33013 300 (28013 280 (250)\$ 250 03 320 310 300 W 02 28 Ш SK ,27015 ,25015 0 290 30 8 5 Median Day 9 1 00 5 5 9 2 200 4 0 0 22 23 24 24 25 27 28 59 30 56 3

weep_10 Mc ta 25.0 Mc In 0.25 min Manual (1) Automatic (3)

SPO 83-46049

Manual

Autamatic

Manual

TABLE 74

NBS-D-3 Form adopted June 1946 Standards

National Bureau of

Central Radia Prapagatlan Laborotory, National Bureou of Standards, Washington 25, D.C.

954

October

Mc (Unit)

foF2 (Characteristic)

IONOSPHERIC DATA

J. J.S. J. J.S. 3.3 (2.0) 4.0 23.7 (3.3) (z.z) 5 (2.0) 2,3 23 (2.7) 2.4 2.9 3.8 3.4 3.8 2.9 2,3 7.7 5.6 5.0 7.7 3.0 2. H Ш S E. J. W., J.W. P. Colculated by: E.J. W., J.W.P. 1.9 F (2.8) (2.1) S (2.3) 5 (3.6) K 3.4 S K < 1.0 K < 1.0 K (2.5) 2.5 8.6 3.4 (3.0) 3.8 S. S. 7. 29 22 3 3.9 3.4 3.4 2.35 2.4 F (1.9) F (2.7) S 5(51) (3,1)5 (3.4) () () () 2,0 2.3 83 30 3.0 3. 3.9 2.7 6.0 2.8 2 ä 7.4 3.6 3.4 (3.2) 5 3 3.6 3.5 2.8) 4.4 3.3 3.0 3,7) (81) (F. 7) 30 4.7 3.3 3.4 22 رم م 3.4 20 3,6 3,3 Scaled by: 4 G 3.9 K 3.7 × (H.4) S (3.6) 5 (3.8) (H.S) S (3.1) F 3.1 × 4.6 3.5 ユ 3.5 3.65 4:7 4:7 3.5 3.8 5.0 4.0 3.4 30 4.6 3.8 3.5 0 4.3 8.7 3.7 3.8 3.1 J (3.4) 4.5 4.6 K (4.5) 4.0 (2.5) 5:0 (4.5) H-3) 5.6 4.5 7:5 -60 4.3 4.4 50 5.0 7.5 4.6 5.3 5 4.1 31 4.7 4.9 5.4 8.4 5.2 5.2 5.5 8 5.2 4.5 KI 4.8 × 5.44 (5.9)5 5.6 6.7 8.9 5.4 5.0 5.2 5.6 8.4 5.8 5.3 5.5 6.7 5.7 4.9 4.9 7.0 40 5.3 4.9 <u>_</u> 4.2 0.9 2.9 70 6.0) 7.0 5.5 5.7 4.9 6.5 5.2 5:1 5.6 7.0 49 5.6 4.9 7.0 7.4 5.4 5.2 7.3 3.5 3 4.7 4.8 5.4 6.3 9 9:5 5.3 9 5.4 17.17 6 (3.7) 3 K (3.8) 5 6.2 4.8 1.9 7.0 0.9 0.9 6.2 7.7 5.6 5.5 4.9 6,2 5.0 5.8 3 4.7 5.9 1.9 6.3 6.3 6.7 6.7 Ġ 5.6 5.1 5.6 2 3 [Sweep 10 Mc ta 25.0 Mc in 0.25 min 4.4, 5.9 1.9 6.7 5.9 4.8 1.4 1.9 4 5.7 7.5 9.9 7.7 5,6 1 Time 4.0 X 7.0 7.6 7.0 4 3.1 5.0 F 4.5 4 7.3 7-6.3 5.5 8.9 6.3 5.6 6,9 4.9 9.9 6.7 Mean 6.3 4.7 1.5 63 <u>10</u> 0.9 75°W (4.1) S 4.4 4.3 × 5.5 5.8 7.3 5.7 6.5 99 3 6.3 99 0.9 62 6.7 99 7.0 6.3 5.4 5.0 4.7 6.3 5.5 6.0 6.4 2.9 7.1 2 5.5 4.5 x 9.9 464 5.0 5.4 7.7 7.4 5.7 5.4 5.2 9 5.6 4.9 0.9 9.0 4.3 5.3 5.6 6.3 3.1 5.0 5.0 6.3 1.9 = (3.9) 6.0 5.6 5.5 5.7 5.4 0.9 4.5 4.2 5. 5.8 7.6 5.8 E 5.6 5.7 5.7 5.6 6.3 5. 0 60.5 5.3 5.6 5.4 4.9 3 43.5° (H.S)F 43.3 G < 3.5 K 5.9.X 5.0 0.9 7.7 5.3 5.3 6.2 6.3 5.9 5 _ 50 5.7 5.0 5.6 5.8 56 9 60 5.1 5.1 4.6k 4.1 F S. 4. (5.4) 4.8 F 4.9 6.4 2.5 5.2 5.0 (5:0) 6.3 4.5 5:5 4.9 43 5.3 5.3 5.1 5.1 6.5 1.4 4.3 3 4.7 3 08 33 5.3 4.8 3.0× (6.1) 3.7 K 4.7 3.7 di 4.2 3.8 4.3 33 30 4.3 4.6 7 4.0 4.7 4.7 4.7 7:1 4.0 2. 0 4.0 4.1 33 5. 07 4.3 4.9 8.4 4.8 (8.8) (2.7) (2.2)E (2.6) 5 (2.5)s (1.8) 5 2.5 23 2.9 3.0 8. 2.9 3.0 3.6 3 ri (3.5) 3.6 6.3 90 11 (6.1) J 23 57 1.8 8.1 2.0 x K(2.2) EK (J.7) 5 (2.5) S (2.5) (2.1) 5 2.6 S [2.0] (2.6) 3 (2.1) F 7.2 3.6 (F-C) (0.4) (F. 8) 2.4 (2.9) 2.3 3.6 2.9 05 (6.1) 2.3 < 1.0 F < 1.0 2.25 2.4 5 (3.2) 3 2:15 (2.4) S (2.8) (2.3)5 (1.9) (1.8) (2.2) (2.9) P Lat 38.7° N , Long 77.1° W 2.3 2.6 0.4 2.3 2.8 5 4.8 7:7 2.0 (2,3) 30 2.7 (3,1) 3.0 d. A (23) s Washington, D.C. (2,1) 3. (2.1) 5 (1.9) 1 K (2.0) P K (1.9) P < 1.0 K < 1.0 K 1.9. (2.2)E 2.65 2.4 $(3.0)^{3}_{5}$ $(3.0)^{3}_{5}$ (1.9) 2.6. 3.0 (2.6) 3.0) (2.0) A. H 03 -ig 2.2 3.8 2.3 2.3 \$ (2.3) 2.4 €. 7. 2.2 59 V (2.2) (2.0) F 2.75 1.9 F (2.2) (2.7) S (2.9) F (2.8) } 1.9 5 2.5 2.5 02 (2) (3.3) 2.8 29 2.9 2 3.0 2.7 2.7 5.0 1.8 Ц 3 (2.3) 2.3 7 (2.3) (2.8) 3 3.0 F 3.9)5 [1.9] S 1.9 F (2.3) 2.5 4 1:0 F (2.0) 2.3 2.9 3.0 (3.3) 5.0 2,7 7.6 5.6 63 3.0 7:1 3.0 2.7 3.4 ō Ц 39 3.2 X K (2.4)⁵ (7.7) (2.8) F (2.3) (2.7) 4 1.0 E (1.9) F (2.0) 5 (2.9) P P. (2.5)} 3.6 2.7 (2.2) (2.1)} 2.2 2.5 2.9 3.6 2.9 30 3.3 2.9 23 Observed at __ 3.1 3.8 00 2.2 7 6. ~· Ц 09.40 99 1= 5 15 -Median Caunt 2) 8 6 4 N ĸ 4 20 21 22 23 24 Day 9 > 00 6 2 25 56 27 28 59 30 10

NBS-D-3 Form adopted June 1946 Standards

o f

National Bureau

E. J.W., J.W.P.

Scaled by: -

Central Rodio Propagation Laboratary, National Bureou of Standards, Woshington 25, D.C.

TABLE 75

IONOSPHERIC DATA

October 1954

Mc

Washington, D.C.

Observed at

S J.J. 3.5 K (2.0) (2.1) F 2330 (32) (2.0)5 (3.0) ^(2,3)^Α 3.2 (3.0) 2.6 2.9 2.9 2.7 2.4 2.9 2.7 2.9 0:1 > 14 (29) 3 E. J.W., J.W.P. 233 (2.4) g (2.5) [2.4] ^ X 1.9 5 3.1 4 (3.1) 12.0] \$ [2.0] \$ (3.3) (2.8) 2030 2130 2230 2.9 (2.7) (3.2) (2.0) 3.8 2.9 2.9 0.1 > (3.0) 2.4 جي مي e.e. 3,2 3. 3.6 [8.1] 29 3.0 3.0 ₹ 6.1 V < 1.0 F 12.43 (2.8) H (2.8) (2.4)3 345 3.6 3.9 3.0 3.2 2.2 1,5 2.3 2.7 2.7 2.4 2.7 2.4 3.1 00 1.9 50 [3.6] K (2.5) K (1.7) 3 ¥ [3,0] (2.9) 2.4 5 (2.5)5 2.9 Colculated by: 9. F 2.9 2.6 2.9 29 3.2 3.0 4.3 2.9 3.9 3.9 3.5 2.0 3.7 3.2 3.8 3.9 2.2 U 2.6 (3.4) 3.0 5 3.4 1930 [3.8] 30) 3,5 4.2 4.7 3.8 3.5 3.2 3.4 3.4 4.0 3.6 28 2.4 30 3.9 4.2 4.0 4.2 4.4 (3.7)ص ص 2.0 (H.4) 4.0 5 3.7 F (3.7)5 (5.1) \$ 7.7 3.3 X (3.7) 4.5 4.9 1830 55 4.3 5.2 4.4 4.6 4.3 14.7 4.3 4.4 8.7 3,7 4.3 2.4 3.5 4.9 3.7 4.3 3.0 7 3.6 Ξ 44 4.9 F 1730 5.2 7.5 5.3 7 7 4.6 5.7 6 4.3 5.0 4.7 6.9 5.4 5 3 4.7 5.0 4.9 5.4 5.2 5.3 0.9 5.8 5.8 5.2 5.9 9.9 0.9 5.0 3 19 3.4 K 1 (44) 1630 5.5 5.5 6.5 5.9 6.3 5.0 5.1 5.5 4.9 5.5 4.9 5.3 63 5.7 4.9 8.9 7.0 7.0 5.5 0.9 5.2 5.3 7.0 5.2 5.3 5.3 5.3 5,4 6.9 3 5.1 15 30 4.7 5.4 9.9 7.0 4.9 4.9 3.5 5.7 6.7 5.8 5.5 5.8 9.0 5.8 4.9 9.1 6.1 7.4 7.0 5.8 5. 5.4 5.5 6.9 5.9 849 4.9 3 5.5 8.4 1.7 5.2 × 4.7 K 1330 1430 9.0 6.5 7.0 6.3 5.8 9 <u>-</u> 4.8 5.5 4.9 5.3 (3.1) æ 5.3 6.3 5.7 9.9 7.5 8.9 6.1 5.6 6.3 1.9 6.1 7.4 7.7 8.9 5.6 5.8 9.9 2.8 Time 4.5 K 6.9 0.9 9.9 8.2 6.9 1.9 5.5 9.9 6.2 6.7 6.3 5.7 5.2 0.9 4.0 6.2 31 P.4 8.9 7.0 7.4 6.9 5.6 5.7 5.7 9.9 5.8 1.9 7.1 7.6 5.0 F 12° W 1230 4.2× (4.0)× 6.2 4.5 5.8 5.8 8.9 8.0 4.3 6.3 6.3 6.3 7.0 9.9 5.8 <u>-</u>9 3 5:5 4.9 09 4.9 6.3 6.9 6.00 7.2 7.0 5.8 5.9 9.1 7: 5.6 4.9 F 4.2.4 5.6 5.7 5.4 6.3 1130 5.5 5.6 5:7 6.0 4.9 5.2 5.6 7.0 5.4 5.8 4.9 6.9 6.3 1.9 5.1 3.8 5.2 8.9 7.6 8.9 6.7 5.7 3 14.413 43.7 G 5.5 5.8 # 4.9F (4.6)E (4.3) 5.5 ر م 5.5 10 30 4.9 6.3 6.7 5.4 6.9 5.5 5.5 9-9 0.0 7.5 5.0 5.2 5.4 5.6 50 1.9 4.2 5.7 5.6 5.3 3 (4.2)F 5.6 K H.8] # 5.7 4.9 0930 - 4.9 5:7 6.2 6.0 5.4 5.4 0.9 5.0 5.0 5.5 5.6 ~ 6 5.4 5.4 1:5 2.3 4.5 5.4 5.5 4.1 3.9 5.4 5.8 4.3 5.4 4346 X (5.0) (3.9)5 4.5 F 5(8.5) 7(2.4) 0830 5.2 4.8 4.9 5.6 ñ 4.3 4.6 5.3 5.7 5.2 0.9 5.8 5.6 4.9 4.9 9.9 5.1 % T 5.0 5-5.4 2.0 43.6 5.2 (5.1) 5,3 0730 5,3 4.3 4.6 4.7 9.0 7 4.0 4.7 4.5 5.0 8.4 6.0 5.0 5.5 3.9 3.5 H.3 3 0.7 5:1 4.7 4.7 4.4 5.0 3,7 4.2 4.7 (2.5) 6.4 1.4 (30) 0630 3.63 3.4. 75.5 3.7 3.6 3.2 3 30 3.5 2.9 3.0 رب د 'n 4.7 3.6 60 3.6 9.6 4.2 4.7 an Gr 3.7 <u>~</u> 3.0 60 3. 3.7 3 رن س (2.0) 5 2.4 M. [9.1] 2.0 5 (2.1) (2.9) 3 2.5 5 2.00 (1.9) 0530 (2.2)5 7 2.3 2:5 7.4 2.2 ਜ. ਵ 2.7 2.1 7.4 7:1 27 S 4 2.3 (2.2) S 1.9 4.1.0 S J (2.0] Lang 77.1° W 0430 (2.5) 2.9 5(8.1) x 200 g √ 1:0 E (2.2) 2,2 (4.g) 2.4 7.7 2.3 200 7.4 (2.1) 7.7 9 2.7 60 3.6 (2.1) 20 2.8 Ц (2.4) 2.7 F [1.8] A 2 (6.1) (3,3) \$ 7.1.S (3.0) 7.4 2.45 0230 0330 60 2.2 22 2,3 29 3.8 3.1 2.7 7.7 2.7 2.3 (3.9) 33 Ц 0.1 > 6. Lat 38.7°N (1.9) 3 1.9 F (2.1) (1.9) E (2.4) / (3.2) 5 (1.8) FK (2.0) J 2.4.7 (2.9) E 2.0 2.H d 5 3-5 2.7 3 (3.1) (1.9) 2.4 2.9 3.0 0.17 5 2.2 5 3.93 . S 2000 0130 (5.2) ا ان 5.5 3.6 4 3.6 29 3.3 2.0 9 3.9 1.9 3.0 27 (3.5) (0.0) 2 6.6 5.0 2.0 cń L Ц K 1 (2.6) 41.0 E 2.1 3.15 J. (8.6) 0030 (2.3) (3.6) 2.4 (2.1) 69 d ci 5.5 7.9 (1.9) 3.2 23 2.9 2.9 2.4 3 - 9 7.7 2.7 L 2.9 3.0 30 Median 9 Count 4 2 00 20 Day 7 0 0 2 5 4 5 9 17 8 6 22 23 26 27 29 30 24 25 28 ~ r

Mc to 25 0 Mc in 0 25 min

OIt.

Manuol

Autamatic

Manuol

TABLE 76

NBS-D-3 Form adopted June 1946

National Bureau of Standards

J. J.S.

E.J.W. J.W. P.

Scaled by:

Central Radio Propagation Laboratory, Notional Bureau of Standards, Woshington 25, D.C.

IONOSPHERIC DATA

October 1954

(Unit)

(Characteristic) h' FI

Observed of

Monuol

Automotic

Monuol

GPO 63-46049

NBS-D-3 Form adopted June 1946

TABLE 77

Centrol Rodio Propagation Laboratory, National Bureou of Stondards, Washington 25, D.C.

7.19 W 1.	015	Mc (Unit)	October (Month)	1	1954		د ق	Centrol Roads Propagation Laboratory, National Bureau of Standards, Massimigral 23, D.C. IONOSPHERIC DATA		NOI)SPI	IONOSPHERIC	DZ DZ	DATA		2		, ,	N	tional	nal Bured	eau of Stand	National Bureau of Standards	
1	Lot 38.7 ° N, Long 7	Long C	1/6	W . I .							7	1	lean Time					, 0	coled by a	by E.	J.W.,	î î	J. J. S.	
35 37 \$\beta \text{39} \text{40} \text{40} \text{39} \text{6} \text{40} \text{40} \text{39} \text{6} \text{40} \text	02 03	03	\vdash	0.4	0.5	90	H	90	60	H	=	H	H	H	H	H	8	H	Н	Н	H	H		
1. H H H H H H H H H H H H H H H H H H H							Н	Н		±χ		1 1	Σ¥	¥	×	-7	¥	\square						
3.6 m 3.8 m 41 (40)\(\)^2 40\(\)^4 40\(\)^4 (40)\(\)^4 (38)\(\)^4 \\ \) 40\(\)^4 40\(\)^4 \\ \) 40\(\)^4 40\(\)^4 \\ \) 40\(\)^4 40\(\)^4 \\ \) 40\(\)^4 40\(\)^4 \\ \) 40\(\)^4 \\\ \) 40\(\)^4 \\ \) 40\(\) 40\(\) 40\(\) 40\(\) 40\(\) 40\(\) 40\(\) 40\(\) 40\(\)			-									- (I	- 1	7 6		_	-						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			_				_			_						±¥	¥	_						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							_				_					-1								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-				7				1.4					7								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							H	7 (4.6)			H 1.4		1 1	1 1		Н	L	H	_	_				
(36) ⁶ (39) ⁶ (4,2) ⁸ (4,2) ⁸ 4,2 ⁸ 4,1 ⁸ 4,1 ⁸ (4,0) ⁸ 38 ⁸ L L L L L L L L L L L L L L L L L L L			-					l			4.3			1	_	-1	_							
L											(H 1) H					-4	_	_						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			_					1	_		4.7				_	ø	_	_	_					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							7	7	414	ĺ	4.3 #	l		l		-4								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							H	3.7#	H 1.4	\vdash	434				H	Ø	L	H						
L 3.9 41" 40" 43 43 42 L L L G L 3.9 41" 40" 43 43 42 40 L L L G L 40 41" 42" L L L L C L G L 1 38 40 44 (40) 42 40 (38) L L L L (37) 39 7 40 41 41 42" (40) 638 35								-1	-	ĺ	47	ł	}	}		4								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							B	4	-	l	404		1			7		_						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							7	7	3.5		P.I.A	_				Q		-						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							7	1	0 A		4.2.4	1		_		ø		_	_					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-				7	-	3.8	4.0	-	1		-		-1		\vdash	-		L			L
L M 39 4 40 40 40 40 39 4 36 4 L Q L (37) ² 39 6 41 4 42 4 (40) ² 38 (5.5) ² L Q L (38) ² 33 7 39 7 41 41 40 4 (38) ³ (38) ³ (3.5) ² L Q L (33) ² 35 37 37 38 4 38 4 38 4 35 4 35 4 4 L L Q (32) ² 35 37 36 37 37 36 4 37 4 36 6 35 6 L Q L (33) ² 35 37 36 37 4 36 6 37 6 L L Q L (33) ² 35 38 39 41 41 42 42 35 6 L Q L 33 38 38 39 41 (42) ³ 39 6 Q L 33 39 39 41 (39) ³ 20 L L Q L 38 39 41 (39) ³ L L Q L 38 39 41 41 40 40 69) ² L L Q L 38 39 41 41 40 69 69) ² L L Q L 38 39 41 41 40 69 13 1 L Q L 38 39 41 41 40 69 13 1 L Q L 38 39 41 41 40 40 69) ² L L Q L 38 39 41 41 40 40 69) ² L L Q L 38 39 41 41 40 40 69) ² L L Q L 38 39 41 41 41 40 41 39 L D L 38 39 41 41 41 41 41 41 41 41 41 41 41 41 41							7	_	404	_				1		Ø								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							a	7	¥	3.9	4.0			ſ	I	a								
34 35 37 34 41 40 40 (38) 37 1 1 1 1 1 1 1 1 1							B	Н	(3.7) 4	3.9 F	4.14	1 1				B								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								-	3.5 F	3.7 F	3.9 F					7	¥							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							a	Н	(3.8) 4	3.8	0.4	Н				a	L	H			-			
(32) ² 3.5 3.7 ⁴ 3.8 x 3.8 x 3.8 x 3.7 x 3.6 x 1 x 1 L L L L L L L L L L L L L L L L									(3.7) 4		4.1 #					Ø	_							
K 33 k 35 k 36 k 36 k 37 k 10 k 40								32)4	3.5	3.7 H	3.8 K					1	¥							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1					×		3.5 K		36K					x Q	X							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							×	- 1	3.7 K	- 1	3.9 ±	3.9 F		-	\dashv	Q				_				
L 3.8 3.8 3.9 4,1 (42) ⁴ 3.9 L L L 3.8 3.9 4,0 4,1 (3.9) ⁴ L L 3.6 42 [43] ² 4,1 4,0 4,0 4,0 3,9 L L 3.8 4,0 4,1 4,1 4,0 4,0 3,9 L L 2.8 3,0 4,1 4,1 4,0 4,0 3,0 L 3.4 3.8 4,0 4,1 4,1 4,1 3.9 1,0 4,1 1,0 3,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1							Ø	7	A	3.9	404	-				Q								
L 3.7 3.7 3.9 3.8 3.8 3.8 3.8 3.5 L L 3.8 4.2 4.2 4.1 4.1 4.0 4 6.9) ^L L L L L 3.8 4.0 4.1 4.1 4.1 4.0 3.9 L 3.4 3.8 4.0 4.1 4.1 4.1 3.9 3.7 —		ļ	_				a	1	3.8	00	39		-			B								
L 3.6 42 [43] L 40 4.1 (3.9) L L L L L L L L L L L L L L L L L L L			_				Ø	1	3.7	3.9	3.9		Ŧ			ø								
L 3.6 42 [43] 41 40 46 (39) L L L L 3.8 4 3.8 414 40 4 39 L L L 2 3.4 3.8 4.0 4.1 41 41 3.9 3.7 —							Q	1	3.8		4.0					a								
34. 3.8 4.0 4.1 41 4.1 3.9 L. L. L. 1.0 2.6 3.1 3.1 3.0 2.9 2.7 1.9 4			_				a	7	3.6	_	[43]			}	_	d			_					
3.8 4.0 4.1 41 4.1 3.9 3.7 — 2.6 3.1 3.0 2.9 2.9 1.9 4							Ø	7	٦	3.8 H	3.8	1	H.	8		Ø								
3.8 4.0 4.1 41 4.1 3.9 3.7 — 2.6 3.1 30 2.9 2.7 19 4									_		-							H	_		_			
26 31 31 30 29 27 19		- 1					1	-	3.8	4.0	4.1	_	-	\dashv			-	-		-				
	-	- 1	1					-	76	31	31	30	29 2		_							_		
											Manuot		Automatic 🕅										>	94094.680

TABLE 78

NBS-D-3 Form adopted June 1946

National Bureau of Standards

E. J.W., J. W. P. 10. J. J. S.

Scaled by:_

Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

05

0

03

05

ō

00

Do

Lat 38.7 . N , Long 77.1 . W

Washington, D.C.

October 1954

E (Surj

h'E (Characteristic) Observed at

Calculated by: E.J.W., J.W.P. J.J.S. 23 22 12 50 9 <u>®</u> 120K (120)5 (120)5 (130) 5 (120) 120 110" 130" (120) 5 5 ₹ S D S S S 110 K 110K 120K 120K 011 110 1104 110H 110 120 9 110 120 110 100 10 120 120# 120 120 9 120 120 10 V 110K -10 R 1001 100# [100] 100K 100K 110K 110K 001 110 011 100 01/ 110K 120K (120)5 0/10) 100 100 001 110 110 100 <u>12</u> 8 110 110 9 9 1000 110K 1001 110 H 1001 110 100 100 110 H 110 H 001 001 100 001 100 110 100 4 100 1001 001 100 100 100 9 011 9 75°W Mean Time 100 H (110) R 1001 100K 100K [100] 001 1001 A(001) 1001 1001 10% 100 100 100 100 091 001 001 001 001 100 011 131 100 110 100 00/ 100K 100K 110K 10 I 110 1 100 110 " (100) A , 00/ 100 ,00/ 1001 001 00/ 001 (00) 100 100 100 100 00/ 90/ 2 001 00/ 100 00/ 001 110K 110 14 100K 100 # 110 # 1001 110 K (100)A 100 4 P(001) 00/ 100 001 100 001 100 00/ 00/ 100 100 001 00/ 00/ 110 = 001 100 110 1001 10 X 00/ 110 " 110 100 001 00/ 001 00/ 00/ 011 100 00/ 0// 00/ 00/ 007 00/ 00/ 011 100 91 10 110 0 4 110K IIOK P(011) 120K 100 001 00/ 100 00/ 110Jm 101 110 100 001 0| 001 001 00/ 001 91 110 110 01 9 110 60 Æ 120K 107 120" 1004 110# 110# (110) 100 A(011) 110" 1001 1001 011 011 011 110 110 011 110 110 110 10/1 110 91 110 9/ 90 K (120)\$ 110 " 120 # (120) (120)5 (120)5 (130)5 (130) (100)5 110 # 120 120 120 130 120 120 Æ S K 07 90

> 15 4

91

17 18 8

2 5

8

თ 2 Ξ 6

22

-2

23 24 25 27

56 88 62 30 m Sweep 1.0 Mc to 25.0 Mc In 0.25 min Manual

Autamatic

Manual

(120)

110

110

100 3

100

100

8

100 30

110 30

011

120

Median Count

30

17

100 120

00/ 110

> 100 011

(120) A

120

00/

0// 110

9

120

,00/

001

001 00/ 110 "

1104

110

110

(0/1) 110

110"

10

110

110

011

U

00

28

31

m

3

m

GP 0 83-46049

NBS-D-3 Form adopted June 1946

TABLE 79

Central Rodia Propogatian Labaratory, National Bureau of Standards, Washington 25, D.C.

0		,									,	1					1			1	1							1		1	ı	1		1				1 .
Standards		J.J.S.																																				
Rureau	E.J.W. J.W.P.	ī	23						-					L		_			-												_							
Rure	W W	Calculoted by: E.J.W., J.W.P.	22									_															_	_	_						H	_		
National	E.J.	by: E.J.	21															_	_		`				_								_					
Not	Scaled by:	iculoted	20	_	_	_			-					L					L																H			
	Sc	Ca	61						_					L				_			_								_				_					
. 2			92	X		×	н			5.	W C		-				η	5(7	L		SK	SK					_	_		Ц			
n 25, D.C			-11	K SK	9-1 1.8		" 8.1 H.	1.7	05 1.7	S (F.1)	J (1.8) A	H A		2 5	4 5	L.	3 (1.1)5	2 (1.7)5	S	5	S	S	X	2	5				5	5		14	4)P S		1.7	9	
Central Rodia Propogatian Labaratory, National Bureau of Standards, Washington 25, D.C.			9		3 (2.4)	K 2.3 K		7 2.4	-	2.3	(2.5)	1 2.4"	5 2.4	-# 2.2	1 2.4	1" 2.4	14 2.3	10 2.2	A Is	0.8	A A	44	X 2.2 X	-	2,0				l .	JA (1.9)P	2.05	A A	H A	" (2.2)P			27	
andards,	Z L		15	- 1	-	3K 2.6 K	1 (2.6)	7 2.7	9 2.5	2.9 H 2.7	1 2.7	7 27	_	1 254	1# 2.7	-	7 2.7#	3 [2.4]	A 2.5	⊢	(2.4)P			A	2.5	5K 2.4K		ľ		1 [2.3]A	1# 25	3 (2.6)P		JP 25"		Н	1 29	UIC
eau of St	DAT	- Mean Time	14			7K 2.8K		2. 61			2.8 ₽	2.9	2.7	H 23.7	_	P. 2.9	2.9	2.8	_	00	2.7	JP 2.7 F	AX		1A 2.7		K (2.4)P	l	2.7			-		-			23	In 0.25 n
ional Bur	IONOSPHERIC		Н	es,	- 1	3.0% 2.9K			28H (2.9)P	1)P 3.0 H	2.9	3.1 # 3.0	3.0# 30	1)P 2.8H	2.9	JA (3.0)A	3.0	JA 29		28	7 28	3A (2.8)P	2.7K A		2.9H [2.8] A	28K [2.6] A		-	A	1	# 2.8 H	3.0	3,0	7 29			1 28	Sweep 1.0 Mc to 25.0 Mc In 0.25 min
atory, Nat	SPE	75°W	12	×			_	(3.6) H		(2.9)P	3.0		1	1(LZ) 1()P [3.0] A		7 [2.8] A	7 (3.0)A	2.9	1 27	1)A [28]A						1 K 2.7		H 2.9H	2.911	3,0	30	9 2.9		-	t 27	O Mc to
an Labar	ÖNO	- 1	=			8 2.9 K	1)A 3.0		3 (28)P	4) 2.8	8 (29)"	-	_	-			-	7 2.7	2.9		-	1)^A (24) A		5 (2.6) A		2.5 H (2.4) K	2.5K [26] R		t)P 2.8 H	-	30	A	2.9		_	1 24	Sweep_1
Propogati	<u> </u>		0	d	1, 2.7		15 (2.9)A	26" A	8.2.8	a	7 2.8		-	2.8		7 2.8		6 2.7	K	2.8	U [™] 2.7	H (2 C) H	1 (2,5) A	7A (2.6)A	4 25	A	2.4K 2.	244 2.		3)P (2.4)P	A			2.4 " 2.6	\vdash	-1	t 24	
ıl Rodia			60	61	(2.4)	2.4 1 2.5	H	I	(2.3)5 2.6	2.3# 2.4	3 2.7	4 [26] A	2.7	A	(2.5)	5)5 2.7	D. A	3 26	2 A	BA 2.6	(24JM	3 H 2.5 H	DH 2.4	(25)A	27 2.4	A		2.3K 2	Н	1 (2.3)P	NP A	0 A		\vdash	H	_	5 24	
Centro			Н				1.9# 2.3	7 2.4	1.911 (2.		2.3	(1.8) H 2.4	A	(1.8) H A	(1.7) " (2.2)	(2.0)4 (2.5)5	(22)	(1.1) 2 (1.1)	2.2	(2.4) A		-		A	(2.2)	A			A		(1.9) P	2	2.0	S	Н	-	es	
			5 07	1.7		(1.9	1.	1.7		1.8	K	(1.8	2	(1.8	(E)	(2)	0	(3)	5	S	S	1.8	S	5	1.8	A	(1.9) S	(1.9) \$	5	S	S	S	S	S		8,7	16	
_			90 9						_					_																						+	-	
554	1	8	4 05											L										_		-									-	-		
October	(Month)	977.19	3 04						L					_					_						_						_				\vdash	\dashv	_	
	ton, [ON, Lon	03						L																									_		1	_	
Σ Σ	Washington, D.C.	Lat 38.7 ° N , Long 77.1° W	0.2						L																	-							-			4	_	
	stic)		0						_																										_			
foE	(Characteristic)	0	Day 00		2	ы	4	2	9	7	80	0	0		Q.I	2	4	22	20	7	3	0	0		0.1	FC	-	,,	10		_				-	ian	lo.	09.40
	I ĉ	5	ă										2	=	- 2	-3	14	15	9	17	-8	6	20	21	22	23	24	25	26	27	28	29	30	5		Median	Caunt	

Manuel [] Automotic [8]

TABLE 80

Central Radio Propagation Labaratory, National Bureau of Standards, Washington 25, D.C.

NBS-D-3 Form adopted June 1946 National Bureau of Standards Scoled by: E.J.W., J.W.P. J.J.S. IONOSPHERIC DATA 75° W Meon Time

5.	S.																																			
J.J.S	J. J.	23	2.4,10	ы	Ē	ч	E	Ā	Ш	E	E	E	E	E	2.3/10	Ε	E	24,10	2.8 110	m	E	43,00	E	22100	3.1 130	401,20	361,00	T.	E	J	2.9110	3.7 110	26110		*	30
J.W.P.	J.W.P	22	01114	Ш	IJ	ш	Ē	E)	LLI	Ш	Ē	E	E	E	27,00	E	E	E	15,10	Ē		481104		E	Ē	150	16,00	27,00	9.01,20	J	3.0 / / 6	37110	ш	1 1	*	30
E.J.W.,	E.J.W., J.W.P.	21	32,00	E	Ē	E	E	Ħ	ш	E	E	E	E	3.1 100	3.2,00	E	3	П	F	E		E	24,10	42710	E	42%	Ę	E	2.3 / 00	J	28 110	31/10	B	1 1	*	30
by:	by:	0	2.3 110	E	E	E	F	E	E	E	E	E	E			E	E	E	E	00181	E	5.0 110	4.2 110	3.4%	E	437 H	2.1 90	IJ	ĺ	U	E	ļ	E	1	*	30
Scaled by:	Colcu	61		E		ч	ш	ш	Ш	Ш	ш	Ē	E	E	ш	ш		4	ш	F	13,20	28 100	3.6 H	427,20	E	6.67 120	23/00	F		U	3		E	1	*	30
		18	26,10	13100	F		IJ	E		ш	E	E	Ę		ш	E	E	237,00	E	31 100	ш	19120	34 100	34 120	E	36110	2.3 110	3.1 100	Ü	Ē	45%	W	Ü	1 1	*	31
		_	19	24120	J	ۍ	2.0 140	2.0 110	P	041 81	4.71/20	ئ	1.9 120	Ġ	4 8 8 4	ß	ß	Ŀ	P	3.0 1 0.0	140	1.9 120	424,10	18130	-S	19120	24120	18/00		Ġ	Ġ	Ŀ	P	1 1	00	3.1
		16	3.2 120	2.4 120	P		P	Ŀ	2.4 120	P	J	P	b	ıb	00/	b	P	2.4 100	3.0 (1 3 3)	3.7 100	Ŀ	37 120	3.1 140	B	Ŀ	b	32,00	22,20	2.2 120	B	3.77 100.	23110	2.3 130	;	*	3 /
		15	38120	P	.b ± 0	P	ß	2.9 130	128 130	028130	હ	P	0 8 0 1 2 0	لى	ىل	ß	J		P	92,00	9	38,00	32,00	P	P	b	2.5	G	2.6110	b	62710	481110	P	;		30
	Meon Time	4	39110	P)	7.6	φ,	B		3.5	3.0	P	# G	Vs.	3.0 120		ß	P	001880	P	33/10	3.07120	35100	0 9.7 100	0	o (5-	0 27 120	Ŷ	0 627,20	0 35 110	J	P	J	0112.40	1 1	*	31 31 31 31
)	- 1	15	32,30	3.9 100	ιĥ	3.1	3.67 110	P	74,44	ιŀ	P	8.8 120		30110		G.	G.	3.6120	ß	36 110	9	3.5 100	001 8.60	417	3.2 /10	0 27 120	P	30 / 00	01/1540	P	0 4.91/00	P	001990		3.	3 /
	75° W	12	00/ 64 0	0 / 2.3	6	P	F)	ß	3.25	P	9	(3 3) 500	0 3.7 100	427,20	00/8.60	7.0120	11040	3.0 100	P	9	30 100	1451,00	1 30 /00	9	9	7.8 120	9	0 27 100	33,00	32,00	317,00	0 337,10		\vdash	+	ñ
)	İ	=	H 44 H	0 46 0	001 8.4 4.8 (8.9)	0 3.71,20	5.24, H 3.19 H		100 7.2 100	ß	0/1/24 0.	45 110	0 35 100	& * °	H 37 110	0018201	0 371,10	F)	. O	120 29 110	37 110	011820	H 3.37 H	120 477 4	110 3.24,10	120 9.0 #	110 3.7 110	00 32 100	4 29 100	0 33 / 10	3.0 100	011 84 011	120 32 130		3.5	31
-		으	011 84 01	10 39 11	120 (6.8)5			100 6	9	P	20 747 130	120 6	1036110	10 431 4	H 11 H	100 47 100	00 4x 110	10 437 110	30 120	90	9	20 7.0 120	H 27 H	90	8	2	120 3.0 1	100 42 100	110 29 4	110 27 110	10 30 110	110 3.2 11	120 2.7 12		0	-
			140 37 130	110 3.7 110		30 G	Ŷ	00 37 /	2.77 110		8.57 H	19801	011 9.9 01	434,	-	110 41	001 144 011 S.	10 404 01	110 G		130 481,10	30 27 120	1,6 387,06	4125 30 120	120 747 H	r	1,10 25 1.	و کا	9	1,20 3.7 ,	20 3.0 110	110 4.6 1	2.9		+	30
			36	0.9	120 6	36	130 G	3.6	P	-9 00		110 32/10	46410		20 H 4.57 130	110 3.91	7.5	150 521110"	30 ,	40 G	24,	3.2	m	~	44	3	100 477	011 94 011		100 H 66Y	~		- G		4	3 /
			100 4 3.9	454 5 (29)(10)	46	4.7	1 84 62 1/0.5)	424,00	9	3.0 100	ъ	8./	٠.	P	311,00 661,20	1 7.0 011 0.7	371120 G	· ·	4.17,00 G	140	P 61	P	12 100 3.7 ,	3.77(149)	11.0 4.37	4.27, H 2.77 130	3.6 y	77	P +011	37	J	001	110 G		20	0 30
		05 0		120	£ 2.5	F 24	130 (2.0)	E	2.3 110 E	297 100 44 100	E E	E	E	. E	3.7 130 314	7.0					120 54 H		100 22			704 4 4.27		72 /00H	130 (66)5 4	100 37 100		4.7	4.4	\vdash	*	J.
	M o	04 0	E l	E 4.6%	00/		0.8 011	E	07	110	E	E E	_	100 E	E 3.7		E E	Н	E E	001	E 7.8Y,20	EE	100	EE	14Y 130 E	E 70Y	E E	00/	100 474 130	100 3.8	E	E E	-	-	*	31 3
D.C.	ng 77.1° W	03 0	E	F	3.1	E	0.4 3	H	E Z	4.4 110 2.4		E	E	E 36		00/	E	E	E	100 42	E	Ē	7 100 24	E	17.57 140 241	E	1001	001	100 7.2	9.4 001	E	011	E	-	*	1 3
		02	0/1	E	E	130	120	ш	ш	E 2.4		E		E		4.2 001	E	E	E	110 4.8	E	-	3.71 ,00 3.7	E	161 00 161	E	E 667	9.6	120	44 00/		108 011 432		-	*	٦
Washington,	Lat 38.7 °N, Long.	0 10	E 3.9	0//	E	120 2.1	£ 38	E	E		E		E	F		100 2.7	E	Н	100	110 27	E	F	2.4 100 3.74		00,	E	E I	8.7 00/	0.Z 3	=	04 00/ 199	E 251	0//	:	*	31 31 31 31 31 31 30 30
			7.3 100	E 4.1	110	E 41	E	ш	u,	E	ш	E	ш	ш	100		E	E	E 2.3	110 2.5	E	1007	2.8 / 100 2.4		3.57 100 4.37		E	100	00/	E 3.1	100	110	E 281	,	K K	31 3
Observed of	Opserved	Doy	1 3.3	2	3 19	4	2	9	7	60	o	01	=	12	13 23	14 2.7	15	91	17	18 4.5	61	20 2.9	21 2.8	22) [24 7.5	25	26 3.4	27 13	28	29 9.0	30 3.0	31		1	Count

NBS-D-3 Form adopted June 1946

TABLE 81

Central Radia Prapagatian Labaratary, National Bureau of Standards, Washington 25, D.C.

(M1500) F2

National Bureau of Standards E.J.W. J.W.P. J.J.S. Calculated by: E.J.W., J.W.P. Scaled by: IONOSPHERIC DATA 75° W Mean Time October 1954

													_																						
) -	J.J.S.	23	K 2.1 F	\$ (6.1)	194	2.1	7	2.1	20	20	20	2.0	2.0	N III	2 5	225	2.1	21	1.9	(2.3) F	20	NX H	(2.2)5	2.0	204	Ex	2112	21 F	(2.1) E	U	2.05	(2.1) A	20	2.0	36
J. W. J.	J. W. T.	22	7 5	21	1.9 K	215	(2.1)	5(61)	21	2.3	2.1	2.0	2.0	(2.0)	22	2.2 F	2.1	21	2.0	R1) F	JF	H S	J 5	(21) 5	(19)3	E k	2.1 F	20 F	(2.1)	v	1.9 8	(20)A	2.0	21	25
<u>-</u> اد	. J. ₩.	21	20K	20	K (19) P	(2.2) 5	(21)5	12	2.1	23	2.1	2.1	7.7	(2.1) F	22	225	2.1	2.0	12.0)5	2.1.2	7 7	2 7	(2.1) 8	(20) E	(20) 4	EK	(2.3)F	2.3 €	(20)°	J	20 F	2.2	2.1 F	21	27
	by:	20	2.24	2.2	1.9 K	(23)5	23	2.1	2.2	12	22	2.2	22	(2.3) P	245	2.3	2.2	2.0	2.0	2.2 F	23	H K	(2.3) 5	(21) 3	(21) 5	(2.0)x	2.3 F	245	2.1 5	U	(2.1) 5		2.1 F	22	29
Scaled by	Calculated	19	22K	21	20 K	(25)	2.5	2.2	23	2.2	2.3	2.3	2.2	(25) 8	2.3	2.3	2.2	2.3	20	(2.2)5	2.2	(2.3) F	22	(2 3) 5	224	20K	235	2.45	2.4 5	U	(22)5	23 5		22	30
		18	2.2K	2.3	(24)	2.4	2.4	2,3	2.3	23	£.3	(2.5)	24	2,5	2.4	2.4	2.5	2.4	2.3	2.2 F	(22) 5	K(2.2) 5	22	24	2.14	2.0 K	2.2	24	2.4	J	23 7	3.	20	23	30
		17	2.4 K	23	2.3 K K	2.3	2.3	(2.3)	23	24	2.4	2.5	2(4.5)	2.4	2.4	2.4	24	24	2.4	23	2.3 F	2.3 E	2 4	24	2.2K	2.2K	2.4	25	2.3	2.4	2.5	24	2.3	2.4	31
		91	2.2 K	2.3	2.2 K	2.3	2.3	2.	2.3	23	2.3	24	2.3	2.4	2.4	23	23	2.4	2.4	2.3	22	2.3 K	23	23	214	20 K	23	(25)°	2 4	J	2.4	2.4	2.4	2.3	30
		12	1.9 K	22	2.1 K	2.3	2.2	2.1	22	2.4	2.3	2.3	2.3	23	2.3	23	C	2.4	24	2.3	23	22 F	2.4	2.1	20 K	(20) 5	25	24	4.5	2.4	23	4.5	23	23	30
	ne	4	19 K	22	20 K	21	2.1	2.1	22	22	2.4	22	2.4	23	2.2 H	2.2	2.2	2.2	22	22	2.2	23 K	23	2.0	1.8 K	J 2 X	2.4	2.3	2.3	2.3	2.5	2.3	22	2.2	30
	Mean Time	13	1.7 K	23	1.9 K	2./	2.1 #	7.7	2.2	2.2	2.4	2.1	2.3	22	2.3	2.2	22	21	2.2 4	2.1	2.2	2.1 7	22	2.2	2.0 K	N & 1	24	22	22	2.3	23	23	2.3	22	31
/// o #	200	12	بر بر	23	1 & K	7 7	2.7	61	2.1	4.2	24	24	2.3	4.4	21#	2.2	2.3	21	22	67	2 , E	22 F	23	23	2.1 K	1.8 #	24	23	2.2	23	2.4	2.3	2.1	2.2	30
1		=	1.7 K	23	1 6 1	23	2 4	2.0	7.0 H	2.1	2 3 H	204	23	24	23	Н	23	2.3	23	20	23F	20 F	22	2.2	1.8 W	G K	2.4 K	23	2.1	24	2.7	2.3	22	23	30
		01	16 K	23	61	22	6	23	23	23	23	23	23	7 7	23,	2.4	25	5.53	22	20	2.3 4	21 F	2 4	2 4	20 H	7 ×	22 F	24	2.4	24	2.5	2.2	24	2.3	30
		60	1.8 K	2.2	21	25	23	2.1	24	2 7 #	2 4	2.3 H	23 H	2.5	2.5	2.5	25	25	2.1 "	ş	2.3 F	(2 3) F	23	23	Ф	* 5	23 K	5.5	25	2 4	2.5	25	25	23	30
		80	1.9	23	23 #	23	25	2 4	24	22 %	(25)5	(24)5	22	24	24	2.5	23	24	24	2.1	22 F	23	245	23	21	6 4	224	26	2.4	25 F	25	2.5	2.5	24	31
		07	2.3 F	24	2.15	22	2 2	24	2.4	23	2.4	26	2.4 #	25	25	25	(23)5	2.5	2.4	24	24	2.1	2.3 F	23 F	23	234	23 K	2.4	2.5	25	J	24	25	24	30
		90		(23) F	205	23 F	23	(22)5	23 F	23	23	2.3	2.3	23	(23)F	(24) 5	24	(2.1) S	(23) 6	21	(22)F	22	(2.2) 3	23F	(20) R	PX	5 t	(22)E	2 7	(22)5	U	(22)5	235	23	27
		90	ر ا ا	S	(20) 5	(21)E	225	(24)5	22	(23)5	(21)5	(23)P	6113	(22)5	J F	u n	22	21	24	(2.1)5		(2.0) E	215	(22)F	in .	"(22P	Ex	F s	S	(2.3)E	(22)5		(2.2)°	(22)	23
0	8	0.4	J.	J.		212	215	2112	22	21	20	(23)5	22	(21)5	(2.1) ?	5	22 H	2.1	23	2.1		(20)3	215	7	(20)5	20 4 4	EK	SH	2.0	(22) 5 ((21)5	225	(22) 5	2 /	24
C	Lang //	03	(20)3	J s	(19)3	2 (12)	2	2.0	(20)5	20	21	22	12015	22	F S	2.1 E	2.1	22	22	21			(21) 6	ر ا	23	(20)6	E K	P S	21 F	(22)°	22	23 F	(20)°s	7	26
70 P.	zil	02		(22) F	20	20 5	20	2.1	200%	20	20	21	20	(23)5	N II	(21) 5	(20)F	- 2	21	2,	(22) 5	218	-	5 F	23 5	K(1.9) PK	EX	19 6	22F	(22)F	B S	21 5	12013	7	26
shing	Lat 38. /	10	20) 5	(21) F	5(61)	23	20	(20)5	2.1	20	20	21	(21)5	_	5 7	2.1 F	20 F	22	21	61	(2 UF	215	1961	J s		-	E×	B S	215	22 F	В	215	2.1	21	2.5
Observed of Washington,		00		¥ (81)	20) 5	(21) E	51	20	20	61	20	21	20	20	F 5	215	2.1 2	22	20	20		(20) 5	<i>D</i>	٦. د	- 1	2 1	E X	F 3	22 5		(2.1) 5		(20)°		9
Observed		Day	-	2	ю	_	2	9		8	6	01	=	12	13	14	15	91	1.7	18	61	50	21	22	23	24	25	26	2.7	28	59	30	31	_	Caunt 2

Sweep 1.0 Mc to 25.0 Mc In 0 25 min Manual 🗅 Autamatic 🗵

GPO 63-46049

82 FABLE Radio Propagatian Lobaratory, Nationol Bureau of Standards, Washington 25, D.C. Central

IONOSPHERIC DATA

954

October

(M3000)F2

Washington, D.C.

Observed at .

M . S L

Standards E.J.W., J.W.P. J.J.S. National Bureau of

NBS-D-3 Form adopted June 1946

Calculated by: E. J.W., J.W.P. Scaled by:

A & A & A & S 0.915 32 FS 32 FS 32 S 3.1 F (3.0) FS (3.1) FS (3.1) FS 34 FS (33) FS (31) FS 29 FS 29 FS 30 FS (30)AS (3.1)AS 32 K 30 K J & 3183 2.8 K 2.9 K 3.1 F (3.1)5 (31)FS (33)F 35F 34F 30F 3.1F 3.1 3.1 3.05 70 23 3.0 3.0 3.0 3.0 3.0 3. 30 30 JF 30 (3.5) 15 (3.3) 5 (3.2) +3 (3.1 +5 (3.1) (31) 5 (3.1) PS 3.1 3 3 2(6.6) (33)PS((3.1)FS (3.0)PF 30 (30)5 30 30 22 23 45 30 3.0 3.1 3.2 32 3. 318 27 29K (2.8) 75 AKJB 34F (34)F (3.4)JF (3.1) S 31F 31F 30 3.1 3.3 E. 3.1 3.1 3. 3.3 32 355 325 3.3F 29 32 £.5 6.23 50 32 30 3 3.3 33 3.2 34 3.1 32 3.2 K (35)PS/ 3.3 FS 3.5 F 318 35F 3.0 K 33 F (33)PS 3.4x 33 E (32) RS (34)E (J) 30 6 30 53 32 34 32 (3.4)PS 3.4 3.2 5.3 V 3.3 3.5 32 k) (3.3)PS 3.2 32 K 35 K 32 K 32 K 33 K (3515R 30 34 5.3 3.4 3.3 3.4 3.5 3.5 3.3 3.5 30 <u>@</u> 3.4 3.3 15. 3.5 3.6 134)S 34 3.3 U 33 F 3.5 (35)5 3 35 3.5 3.4 J. 3 4.6 3.5 3.5 2.5 3.5 3.4 3.4 3.5 35 3 3.5 3.4 17 3.4 3.5 36)PS 36 3.5 3.0 H 30 3.4 3.4 3.3 3.4 3.4 3.4 3.4 5.3 34 3.4 5.5 3.4 5.3 33 3.4 9 3.4 33 3.5 2 3 ry N 3.3 O 35 13.01g 2.6 K 2.8 K 2.9 K 2.8 K 3.0 K 31 K 3.1K 3.0K 2.8 K 3.0K 33 K 33 E 335 3.5 30 3.4 53 3.4 34 3.5 3.4 3.5 3.3 E. 33 33 5 3.1 32 3.3 3.4 3.4 3.5 3 3.5 34 W. 3.3 3.2 U 3.2 H 2.7K J& 30 3.2 3.25 3.6 4 6.3 3.4 3.5 3.0 33 3.1 3.2 32 32 32 34 33 32 H 32 3 33 3.2 3.5 33 33 32 3.2 # 33 3.3 10 33 F 31 F 34 3 3.3 3.2 3.5 3.4 3.2 32 33 3.1 5.3 4. 3. 3.3 5.3 32 F 32 7 5.3 3.4 32 8.3 7.5 27 K 3.1 H 2.8 H 3.3 3.5 33 23 34 32 7.5 3.4 3.4 4.5 3.3 30 88 2 33 J. J. 3. 33 3.5 35 3. 30 H 2.7 K 2.4 K 2.6 K 20 H 3.0 H 3 + H (34)F 3.1 F 3.0 F 30H 2.8 K J & G K 34K 32 E 34K 34F 33F 3.4 35 30 3.5 34 30 = 33 34 3.3 3.2 3.3 3.4 34 33 3.4 J.3, 3.0 3.1 3.5 3.4 32 32 K 30 (3.5) 8 3.4 H 3.4 3.5 30 3.5 3.4 4.6 34 3.5 3.3 H 3.4 3.6 ν. Γυ 35 0 34 34 3.6 31 # 32 33 33 2.9 3.3 34 36 3.5 H 0 3 3.6 32 F 34 F 25 3.4 3.6 3.5 3.5 3.4 36 3.5 5.5 60 3.3 3.5 ٤ 3. 3.5 3583 34 3.3 3.3 3.6 36 3.2 VH (3.6)5 3.2 K B 3.4 # 36 F 3.4 3.5 34 2.00 3.4 5.3 3.5 3.3 3.4 32 3.6 08 3.6 34 3.5 3.4 3.5 34 3.5 3.1 3.7 3.6 3+4 3.01 (3.2) PF P P 331K (3.3)5 J 5 (3.0) 5 3.0 5 3.1 5 31 F5 (3.1) F5 3.3 F 3.2 J S (2.8)PF F S (3.1)PF 3.1 5 3.15 (3.3)PS 3.4F JS (32)F 33F 3.4F 3.4 J S 3.3 F 3.3 F 3.4 27 30 3.5 (3.2) 3.3 3.5 3.7 3.6 3.1 8 3.2 8 3.3 3.5 3.5 0 13.1185 (3.5) \$ (3.3) \$ 3.5 (31)PF J F (33)FS 36 3.5 (30)5 J S (30)PA 34 F S (32)FS 35 J 5 36 130) FS 3.2 F (3.2) FS (3.3) FS (3.2) FS (3.3) FS (3.2) \$ 36 (34)F 35 J 3 3 FS (3.5) FS 3.6 (3.1) SH 3.5 3.5 (3.3) 13.5 (32) 3.5 2.935 (3.0) 32 3.1 3.6 3.3 F 3.3 5 3,15 (3.2)5 (3.2)PS (3.3)PS 3.4 S 3.5 (3.1) \$ 3.1 90 13.1)SP 3.4 (3.3) \$ 3.3 (31)5 (32) 5 33 5.3 (3.3)5 (3.3)PS 3.3 (3.1)5 (32)PS J 5 (3.0) S (3.1)5 d W 32 05 65 3.2 (3.1)FS S K A S 7 5 3.2 H Lat 38.7° N , Lang 77.1° W 32 3.1 R 13.01°5 (3.0)°5 3.2 3.0 15 3.1 (3.1) 5 3.0 (3.0) \$ 3.3 45 3.0 0 4 (2.9)35 3.0 F (3.1) FS (30)PF 3.1 F 3.1 F (32)PS J F (3.9) PF (3.0) PF 32 F 31F 32 F 31FS (30) F 131) F (32) FS (31) FS A S 2.8 FS A S 29F (3.0)PS (3.1) S (3.0)S FBFSFS 31 5 3.1 5 13.1) 5 3.1 5 J S J S J S (30) 83 (30) 8 31FS 32FS 34FS 03 (2.7) F (3.1) FS (3.2) FS J S 26 26 3.2 32 F 30 3.45 3.3 3.0 3.2 3.0 3.1 5. 3.1 3.3 3.1 (3.3)5 3.2 3 2.9 3.1 3.1 3.0FS (3.0)FS ASAS 3.0 2.9 30 3.1 3 30 02 3.2 1.8 8 (6.6) 3.1 (3.0) 5 (2.8) 5 3.1 3.2 2 5.7 3.0 ō 3. 3.0 (3.1) 53 3.3 2.9 w. _ 3 31 FS J 5 FX 3.1 K Z S (3.1)PS 26 3.0 3.0 3.0 FS 3.0 2.9 3.0 8.9 3.2 3.0 3.0 0 3.1 3.9 Caunt 4 6 13 15 17 24 Day 4 9 20 -2 8 თ = 2 23 25 0 8 22 27 29 30 28 <u>-</u>

Manuel

Automotic

B

Sweep 1.0 Mc to 25.0 Mc in 0.25 min

NBS - D-3 Form adopted June 1946

TABLE 83

Central Radia Propagation Labaratary, National Bureau of Standords, Washington 25, D.C. IONOSPHERIC DATA

4	1 1	11	1							l		l	l	1			ĺ	l	1	l		1			. 1	1	1	1							1 1	١	ı	
of Standards		D. J.J.S.	23																																			
rean	J.W.P.	J.W.	22																																			
National Bureau of	E.J.W.	Colculated by: E.J.W., J.W.P.	21																																			
Natio	Scaled by:	ulated by	20																																			
	Scale	Colc	6						L																													
			81																																			
25, D.C.			17	Lĸ	7	LK	7	7	7	7	٦	Q	-	d		7	Q	Q	7	Q	ಠ	d	LK	Q	Q	ì	g	Ø	Ø	Ø	D	d	d	Ø		1		
Central Radia Prapagatian Labaratory, National Bureau of Standords, Washington 25, D.C.			91	3.6K		3.5 K	7	7	3.7		7	-1	-1	-1	7	_4	_		-	-1		-1	L	7	7	,	3,3 K	7	7	7	7	7	7	-1		J	#	
dords, Wo	⋖		15	3,5K		3.7 K	_	(3.8)	3.6 #	3.6	3.7	7	٦	3.6	(3.9)#	7	7	U	(3.8)	7	3.7 #	(3.8)	3.6 K	(3.8)	(3.7)	3.5K	- 1	7	7	1	3.9	7	7	7		3.7	19	_
u of Stan	DAIA	Time	4	3.6K			(3.6)	(3.4)	35H	3.6	(3.8)	4.0 H	3.7	7	(3.9) #	3.8	3.7	7	3.6	7	3.7#	3.8	(3.6)#		(3.7)"	3.5 K	3.6 K	7	3.7	3.7	3,7 H		(3.8)	3.7		3.7	26	Sweep 1.0 Mc to 25.0 Mc in 0.25 min
nal Burea	2	Mean Time	13					3.9		1 38 H	1 3.8 H	(38) 4	1 3.7 H	1 3.7 H	1	3.7	3.7	-1	3.6	1	3.5#	1(3.6)	3.6 E		(3.7)#	- 1	3.5 K	_	3.6	_		~	l	3.7#		3.7	29	5.0 Mc in
ory, Notio	IONOSPHERIC	15° W	12		3.7#			3.7		3.9#		3.7 #	40.4	38H	(3.9)#	3.7	300 M	7	1(0:4)	-1	I	1.3.7#	3.7 F				3.5H		3.7	3.6	424	3.8	3.7 #	3,7 #		, M	9	-Mc to 2
Labarat	N N N		=	T + L	3.8	(40) S		4.0	4 3.9H	3.8	1 (3.7) #		3.8	3.8 #	l	4.2.H	A	H 3.9 H	3.9	8, 9,	1	3.9H	3.9 F	ρ. Ω	3.9#		X 3.8 X	<u></u>	3.7H	39	1.4	3.9	7	3.9	\vdash	m	6	weep 1.0
apagatiar	2		0	4.0	3.7		L (3.8) H	- 3,9	1 38 H	3.7		H 1 H	7.8 H	H 3.7	7(6.8)	3.9 H	4.0	3.9 H	4.0	Į.	3.7	L 3.9F	F 3.8 F	2,8		3.7#	- 1	- 1	3.9	3.9	3.9	1.1	8.5	3,84		-	3.	S
Radia Pr		i	60	3.7		H 3.8 M	(3.9)	(3.9)	1	H 3.7H	7(6.8)	7 7	L 3.8 H	+ 3.7 H	7	3.8	3.9	3.9	3.8	3.9 H	٤	(4.0)	4.0 F	7(8.8)	\sim	H 4.0	K 3.7 K	K 3.7K	4	3.8	3.8	3.8	3,9	1		m,	26	
Central			08	3.6	7	3.5	3.8	7	7(8.8)	3.7	(3.8)	7	_	3.6H	7	7	7	7	7		-7	7	3.7	7	7	(3.5)	3.6	7	7	J	7					3,6	9	
		ı	07	ਰ	7	7	7	٦	-1	_		d	_	Ø	Q	d	7	٦	7	د	d	ď	Q	Q	Ø	Ø	Q X	Q	0	Q	0	Q	d	Ø		1	_	
			90						_																									_		_		
54		3	0.5																																			
October	(Month)	Long 77.1°W	0.4						L										L																	_		
Octo			03											_																								
	Washington.	Lat 38.7°N	02				_																													4		
) FI	.2		ō						_																											_		
(M3000) F	(Characteristic	Ubserved at	00						_																											c		09.40
2	, `	COS	Day	-	2	l 60	4	5	9	_	00	0	0	=	12	<u>_</u>	4	15	92	17	8	6	20	21	22	23	24	25	56	27	28	59	30	~		Median	Caunt	S

GPO 83-46048

Manual

Automotic

Manual

TABLE 84

NBS-D-3 form adopted June 1946

National Bureau of Standards

J.J.S.

E.J.W., J.W.P.

Scaled by: __

Central Radio Prapagation Labaratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

October

(M1500) E (Unit)

Observed of Washington, D.C.

c۷

i, 4 6

J.J.S. 23 Calculated by E.J.W., J.W.P. 22 2 50 6 9 5(4.4) (4.5)5 (4.3)P (4.5)A #3 (44)5 44 4.3 SH 5(HH) K 26 4.27 4.3K ナン× 4.3 H 4.7 45) 4.3 4.4 4.4 4.5 K 4.7 4.3 44 4.3 4.3 d(#.4) 4.4 75 4.4 4.2 4.5 4.5 K K 44K 4.3 K 4.4 11 4.4 454 4.2 4.4H 4.2K 4.4 4 (4.4) Ā 1.3× 4.3 25 22 24 23 24 25 29 27 5 4.2 4.3 (4.3) 42 4.3 4.2 44 4.3 4.3 4.3 4.4 4.3 43 4.3 U V 4.2# 4.4 " (4.5)P 4.4" 4.3 F (+·+)P 4 (4:3)A A 4.4 427 (4.3)P 4.5 ++ 4.3 4.4 4.2 ++ 43 4.3 4.4 4.3 4.5 ++ 4.4 4:3 4.3 ++ Ŧ 75° W Mean Time 4.3 K (4.3)A + W + 4.4.4 A (4.4) A A K +3 # 4.3 # (#7b) × 4 + H (4.3)P (4.4) 4.4" 4.2# 42# 4.4 4.4 4.5 43 4.4 4.5 4.5 4.4 4.3 ¥ 4.3 4.3 <u>7</u> 4.3 10 Œ K (4.3)H 4.2.K 4.2# 4.54 (4.3)A 4.3± +++ (4.5) £3 1.24 4.2 x 4.4 45 4.5x 4.4 4.3 2 4.3 4.5 4.3 K K K K X X 4.4) (4.5)A (4.4)A 45 H X X (4·4) H (4.5)P (4.5)A 45K 4.4 1 (45) 8 1++ (#5)P 4.4 " (4.5)" (4.2)A 4.5 4.5 43 42 4.5 ## 45 4.5 45 4.5 4.7 KI 4.3 K K K K T (4:6)A A(+:+) (44) (4.6)A ++ 4.6 - 4-4 45K 45K (4·4) 4.5 44 4.5 44 4.4 4.5 44 54 5 (54) 5 (44) 75 75 4.3 ++ 2 K æ ⋖ K K <K (4.4) H 4.4 5 (44) 4.7× (4.5)P 4.5 H +:+ ++ (#:H) r 4.4 45 (+·+) 60 4.5 43 ∢ 43 4.4 4.4 4.4 ₹ 4.4 K K K K \propto (4.3)A 4.4 " 4.5x (+.+)P 4.4" 4.44 (4.5)\$ (4.3) (4.2) (4.2)5 153 4.44 4.3 " (4.5)P (4.2," (4.5) 4.2 4.4 4.5 +:+ 4:4 4.3 4.5 4.4 K 08 K K ∢ S K (4:2) A S 42 " (4.3)\$ 44 H # # # 44 (+:2) " H(5.4) (4.3) (+.+)^S #:# 4.5 4.3 44 4.3 0 K 4 0 S S S S K S S 20 90 05 Lot 38.7°N, Long 77.1°W 0 4 03 02 5 0 Doy 91

13 15

4

12

=

19 6 20 20

22 23 24 25

17

00 0

6

9

Sweep 1.0 Mc to 25.0 Mc in 0.25 min Manual

Automatic

Manual

Medion

Count

30

27 29

Table 85

Ionospheric Storminess at Washington, D. C.

October 1954

Day	Ionospheric charact		storms End GCT	Geomagnetic 00-12 GCT	character** 12-24 GCT
1	2 5	0900		5	3
_	2 5 3 2	0,00	0000	2	í
3	3 4	1100	2300	5	3
2 3 4	i i		2,000	5 4	2
				2	2
5 6				3	3
7	2 3 2 1			3 2	3 2
8	2 1			3	3
9	1 2			3 2	i
10	1 1			2	1
11	2 2			2	1
12	1 1			0	0
13	1 3 0 3 0 3 1 1			1	1
14	0 3			1	2
15	0 3			3	1
16				1	2
17	1 1			2	2
18	2 3			5	3
19	2 3 3 3 1 4	3,000	0200	3	2 3 3 2
20 2 1	1 4	1200	2300	5 3 3 2	
22	3 3			2	1
23	3 3 1 2 1 5 4 6	1100		3	3 3
24	4 6	1100		5) 4
25	7 1		1100	4	2
26	1 *		1100		2
27	3 <u>1</u>			3	2
28	3 3			2	ĩ
29	2 1			1	1
30	1 1			3	2
31	1 3			2	3

*Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

**Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.
----Dashes indicate continuing storm.

Table 86

Radio Propagation Quality Figures

(Including Comparisons with Short-Term and Advance Forecasts)

September 1954

Day	9-	th Pac hour! ity f:		Short casts			whole day quality index	(Jp r whole	eports	issued	
	03 to 12	09 to 18	18 to 03	02	09	18		l-4 days	4-7 days	8 - 25 days	
1 2 3 4 5	6 6 5 6 5	5 6 5 5 5	6 6 5 5 5	6 5 5 5 6	6 5 5 5 5	6 6 6 6	6 6 5 5 5 5	6 5 5 5 5	6 5 5 6 6		
6 7 8 9	55655	5 5 5 5 5 5	5 6 6 6	5 5 5 6 6	5 5 6 5 5	6 6 6 6	5 5 5 5 6	6 6 5 6 6	6 6 6 6		
11 12 13 14 15	6 6 6 5 5 5	5 5 6 5 5	6 6 6 5 5	6 5 6 5 5	5 5 5 5 5	6 6 7 6	5 6 6 5 5 5	6 5 5 6 6	6 5 5 6 6		
16 17 18 19 20	6 5 6 5 5	6 5 6 6 (4)	6 6 5 (4)	5 6 5 6 6	5 5 5 6 5	6 7 6 7 (4)	6 6 6 (4)	6 6 6 5	6 6 6 5		
21 22 23 24 25	(4) 5 6 5 6	(4) (4) 5 5	5 5 5 5	(4) 5 5 5 5	(3) (4) 5 5	5 6 6 6	(4) (4) 5 5	5 5 6 6 6	5 6 6 5		
26 27 28 29 30	6 6 5 5 5 5	5 5 5 5	66656	5 6 5 5 5	5 5 5 (4)	6 6 5 6	5 6 5 5 5	6 6 5 (4) (4)	5 6 (4) (4)	X X	
Score:	Quiet	Perio	ods F S F	15 0	20 7 0	16 12 1 0		12 15 0	10 17 0 0		
Dis	turbed	Peric	ds F S U	0	1 2 0 0	0 0 0		0 3 0 0	0 2 0 1		
Scales: Q-sca	(1) - ui (2) - vi (3) - pi (4) - pi 5 - fi 6 - fi 7 - gi 8 - vi	seless ery poo oor oor to air air to	fair good	n Quality	P S	- Perfe - Satis for fr - Unsat gr for - Failur	eginning Occt: forecas factory: (b recast qual om observed isfactory: ades differ recast and re: other to o or more g	t quality eginning 0 ity one gr forecast q ent from o observed w imes when	equal to ctober ? ade diffuality ! bserved ere >5, forecast	1952) ferent two or more when <u>botb</u> or both≤5	1

Symbols:
 X - probable disturbed date

Note: All times are UT (Universal Time or GCT)

Table 87a

Radio Propagation Quality Figures

(Including Comparisons with Short-Term and Advance Forecasts)

September 1954

Day	North Atlantic 6-hourly quality figures	Short-term forecasts issued about one hour in advance of:	Whole day quality index	Advance forecasts (J-reports) for whole day; issued in advance by:	Geomag- netic ^K CH
	00 06 12 18 to to to to 06 12 18 24	00 06 12 18		1-4 4-7 8-25 days days days	Half day (1) (2)
1 2 3 4 5	6 6 7 6 5 (4) 7 6 (4) (4) 6 6 5 (3) 7 6 5 (4) 6 7	6 5 7 7 5 (3) 6 6 5 (4) 6 6 5 (4) 6 7	6 6 5 5 5	6 7 6 6 5 6 6 6 6 6	3 (4) (5) 2 3 (4) (4) 3 (4) 2
6 7 8 9	6 5 7 6 (4) (4) 6 6 (4) 5 6 6 5 (4) 7 6 5 (4) 7 7	6 5 7 7 5 (3) 5 6 5 (3) 6 6 5 (4) 6 6 6 (4) 7 7	6 5 5 6 6	6 6 6 6 6 6 5 7	3 3 3 3 2 2 3 2 3 2
11, 12 13 14 15	6 5 7 7 5 5 7 7 6 (4) 7 7 5 (4) 6 5 (4) (3) 7 7	6 (4) 7 7 6 (4) 7 6 6 5 7 7 5 (4) 6 6 (4) (3) 6 6	6 6 6 5 5	6 7 6 6 6 6 6 6	3 2 2 1 2 2 (4) 3 3 3
16 17 18 19 20	6 (4) 6 6 6 5 7 7 5 5 6 7 (4) 5 7 7 5 5 6 5	5 (4) 7 7 6 5 7 7 6 6 7 7 6 (4) 7 6 5 (4) 6 5	5 6 6 6 5	6 6 6 6 6 6 6 6 (4) (4) X	(4) 2 3 2 3 2 2 2 (4) (5)
21 22 23 24 25	(2) (3) 6 5 5 5 6 7 6 5 7 6 6 5 7 7 6 (4) 7 6	(4) (3) (4) 5 (4) (4) 6 6 5 5 6 7 6 5 6 7 5 (4) 6 5	(3) 6 6 6	(4) (4) X (4) 5 5 5 6 5 (4) (4) X	(4) 3 2 2 3 1 2 2 3 3
26 27 28 29 30	5 (4) 7 7 5 5 7 7 5 5 6 6 5 5 6 6 5 (4) 7 6	5 (4) 6 6 6 (4) 7 7 6 (4) 6 6 5 (4) 6 6 (4) (3) 6 6	6 5 6 6	(4) (4) X 5 5 6 5 (4) (4) X (4) (4) X	3 2 2 3 (4) 2 (4) 3 3 2
Score	: P Quiet Periods S U F	14 4 17 19 10 10 12 11 0 1 0 0 0 0 1 0		12 9 12 16 0 0 5 4	
	Disturbed Periods P S U F	1 11 0 0 3 4 0 0 1 0 0 0 1 0 0 0		0 0 1 1 0 0 0 0	
	cale of Radio Propagation (1) - useless (2) - very poor (3) - poor (4) - poor to fair 5 - fair 6 - fair to good 7 - good 8 - very good 9 - excellent cale of Geomagnetic Activi		P - Perfect S - Satisfar forer from U - Unsatis grad forer F - Failure	rinning October 1952): forecast quality equal ctory: (beginning Octobe cast quality one grade d observed factory: forecast qualities different from observe cast and observed were >: other times when forecor more grades different	r 1952) ifferent y two or more ed when both 5, or both 5 ast quality

K-scale of Geomagnetic Activity
O to 9, 9 representing the greatest disturbance; K_{Ch} > h indicates significant disturbance, enclosed in (*) for emphasis

- Scoring: (beginning October 1952)

 P Perfect: forecast quality equal to observed

 S Satisfactory: (beginning October 1952)
 forecast quality one grade different
 from observed

 U Unsatisfactory: forecast quality two or more
 grades different from observed when both
 forecast and observed were >5, or both 65

 F Falture: other times when forecast quality
 two or more grades different from observed

Symbols:
 X - probable disturbed date

Note: All times are UT (Universal Time or GCT)

Table 87b Short-Term Forecasts September 1954

Table 864
Coronal observations at Climax, Colorado, (5303A), east limb

Date				De	gre	es :	nor	th (of i	the	60.	lar	equ	ato	r	_			0°				De	gre	es	sou	th	of	the	s	lar	eç	uat	or			
UT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1954																		П										_									
Oct 1.6	-	-	-	-	_	5	5	5	4	4		20	4	_	-	-	-	\dashv	-	-	-	_	-	-		-			-	-0	-	-0	-	-	-	-	-
2.6a	X	Х	X	-	-	3	4	4	3	3	8	10	2	_	_	_	-	-	_	-	-	-	_	_	_	-	_	X	X	-	_	-	-	-	_	-	-
3.x	ĺ																			1																	
4.6		_	-	-	_	3	4	3	4	4	4	4	2	1	1	-	-	\dashv	-	-	-	_	-	_	_	_	_	-	-	_	-	-	-	-	-	-	-
5.6	-	_	-	_	_	2	2	2	1	1	1	1	_	_	_	_	_	-	-	-	-	-	-	-			_	-	_	-	-	-	_	-	_	-	-
6.7	-	_	-	_	-	_	2	2	2	1	2	2	-	-	-	_	-	Η	-	-	_	-	-	-	-	-	_	1	1	-	-	_	-	-	-	_	-
7.7a	-	-	-	-	1	1	1	_	_	-	-	-	_	_	_	-	-	\dashv	-	-	_	_	_	_	_	_	_	-	_	-	-	-	-	-	_	-	-
9.0	-	_	-	-	_	-	_	_	_	_	_	_	_	-	1	3	1	4	-	-		_	-	-	-	-	-	-	_	-		_	-	-	_	-	-
9.8a	-	_	-	1	1	1	1	_	_	-	_	_	_	_	-		12	긕	-	-	-	-	-	-	-	X	Х	Х	Х	Х	X	X	X	Х	X	X	X
10.7	_	-	-	-	_	_	-	_	_	-	_	_	_	-	1		12	7	-	-	-	\rightarrow	\rightarrow	_	-	-	-	-	-	-	-	-	-	-	-	-	-
11.6	-	_	-	-	_	_	_	_	_	_	_	_	-	-	1	3	5	6	1	-	-	-	-	-	1	1	1	1	_	-	-	_	-	-	-	-	-
12.9	_	_	_	_	_	_	_	_	1	1	_	_	-	-	-	_	-	⊣		-	-	-	1	1	_	-	-	-	-	-	-	-	-	-	_	-	-
13.x																																					
14.6	-	_	-	-	_	_	_	_	1	1	1	1	1	1	-	_	-	Н	-	-	_	-	1	1	1	-	_	-	-	-	-	-	-	$\overline{}$	-	-	-
15.7	-	_	-	-	-	-	_	979	2	3	3	2	2	1	1	1	-	4	-	-	-	_	_	-	_	-	-	-	-	-	-	-	-	-	-	-	-
16.6	-	_	-	1	1	_	_	_	1	1	3	2	ļ	1	1	_	_	Ⅎ	-	-	-	_	_	_	_	_	_	-	_	-	-	_	-	-	_	-	-
17.7	-	_	_	_	-	-	_	_	1	1	1	11	6	3	1	1	1	-	-	-	_	_	_	_	_	1	1	1	2	1	_	-	-		_	-	_
18.x																		- 1		į					_												
19.7a	-	_	-	-	-	_	-	-	1	1	2	3	2	1	1	1	-	4	-	-	_	_	_	_	1	1	_	-	-	-	-	_	-	-	_	-	-
20.8a	-	_	-	-	_	_	-0	_	_	1	1	1	_	-	_	_	-	Н	-	-	_	_	_	-	_		-	-	_	_	-	-	-	-	_	-	X
21.7a	-	_	-	-	_	_	_	_	-	-	-	_	_	1	1	-	_	-	-		_	_	_	-	-	_	_	-	_	-	_	-	-	-	_	-	-
22.7	-		-	-	_	-	1	1	1	1	_	_	-	-	_	-	_	٦	-	-	-	1	2	3	2	2	2	-	-	-	-	_	-	-	_	-	-
23.8	_	_	-	-	_	-	_	_	_	_	_	_	_	_	-	_	-	٦	-	1	1	1	1	1	1	1	1	-	_	-	-	_	-	-	-	-	-
24.X																		- 1																			
25.x																		- 1																			
26.x																																					
27.7	-	_	-	-	-	-	1	2	3	4	4	3	1	1	-	_	-	4	-	-	-	_	_	-			_	-	-	-	-	-	-	-	_	-	_
28. 7a	-	-	-	1	1	1	2	2	7			12	3	1	1	1	1	4	-	-	-	-	-	1	2	2	2	1	-	-	-	-	-	-	-	-	•
29.7	-	-	-	1	1	1	2	2	3				11	3	2	1	5	2	1	-	-	-	-	1	2	2	1	-	-	-	-	-	-		-	-	-
30.7	-	-	-	-	-	_	-	1	2	3	12	8	7	3	-	-	3	4	-	-	-	-	-	-	1	1	1	-	600	-	-	-	-	-	-	-	-
31.7	_	-	-	-	1	2	2	2	1	9	16	14	9	1	_	_	_	-	-	-	_	_	_	_	_	-	_	-	-	-	-	-	-	-	_	-	-

Table 89a
Coronal observations at Climax, Colorado, (6374A), east limb

Da.te				Deg	ree	es r	ort	h o	of t	he	so]	ar	equ	ato	r				0°	П	_		De	gre	es	sou	th	of	the	80	lar	· eq	uat	or			
UT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0.	5	10	15													80	85	90
1954																																					
Oct 1.6	2	2	2	2	1	1	1	1	1	3			24	5	4	4	5	6	6	6	5	5	4	3	3	2	2	2	2	2	1	1	1	2	2	3	2
2.6a	Х	Х	Х	_	-	_	_	_	_	-	_	14	10	3	2	3	3	3	2	2	2	2	2	2	1	1	1	X	X	1	1	1	1	1	1	1	1
3.X																		ı																			
4.6	1	1	1	1	1	1	1	1	1	1	1	12	9	7	8	6	7	6	7	6	6	5	6	6	6	3	3	4	2	2	2	2	1	1	1	1	1
5.6	1	1	1	1	1	2	2	1	1	1	2	3	3	4	3	2	5	4	5	4	3	3	5	5	4	4	4	2	1	1	1	1	ī	ī	ī	ī	ī
6.7	1	1	1	1	1	1	1	1	1	1	1	3	3	4	3	2	3	3	3	3	3	3	3	4	5	4	2	2	1	1	1	ī	ī	2	2	2	3
7.7a	1	1	1	1	1	1	1	1	1	1	1	2	2	3	4	3	3	3	3	4	4	3	3	1	2	4	2	2	2	ī	1	1	ī	1	2	2	2
9.0	2	1	1	1	1	1	1	1	2	2	2	3	3	5	7	8	5	5	6	4	3	3	3	2	1	1	1	1	1	1	1	1	1	2	2	2	2
9.8a	3	3	2	1	1	1	1	2	2	2	2	3	4	5	5	16	20	10	5	3	3	3	3	3	3	X	X	Х	Х	X	Х	X	X	Х	Х	Х	Х
10.7	1	2	2	3	2	1	1	1	1	1	3	3	2	2	2	4	12	14	6	3	3	3	4	4	3	1	1	1	1	1	1	1	1	1	1	2	2
11.6	1	1	1	1	2	1	1	1	1	2	4	5	3	2	4	11	12	6	5	4	5	5	5	5	4	3	2	2	2	1	1	1	1	2	2	2	1
12.9	1	2	1	1	1	1	1	1	1	1	1	1	1	2	3	10	9	-8	4	9	5	3	3	2	2	2	1	1	1	1	1	1	1	2	1		1
13.x																		- 1		l																	
14.6	1	1	1	1	1	1	1	1	1	1	1	3	3	3	3	4	4	5	8	9	9	9	5	5	6	5	4	4	1	1	1	1	1	2	2	2	1
15.7	2	2	2	2	1	1	1	1	2	3	4	4	4	3	3			14			10	10	9	7	5	5	3	2	1	1	1	1	2	2	2	2	3
16.6	1	2	1	1	1	1	1	2	2	3	5	6	6	3	3	3	5	6	6	6	6	6	7	7	4	4	3	2	2	1	1	1	2	2	2	2	2
17.7	1	1	2	1	1	1	1	1	1	2	4	11	20	9	7	6	7	8	9	9	8	8	7	6	6	6	5	3	2	2	1	1	2	2	3	2	2
18.x																		- 1																			
19.7a	1	1	1	1	1	1	1	1	1	2	2	4	5	6	5	5	5	-5	5	5	5	5	5	5	3	2	1	1	1	1	1	2	2	2	2	2	1
20.8a	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	3	3	3	4	3	3	3	2	2	2	1	1	1	1	1	1	1	1	1	1	X
21.7a	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	3	3	4	4	3	3	3	3	2	2	1	1	1	1	1	1	1	2	2	1
22.7	2	2	1	1	1	1	1	1	4	3	3	3	3	3	5	5	6	6	6	6	5	5	5	5	5	4	4	4	2	1	1	2	2	2	2	2	2
23.8	2	1	1	1	1	1	1	1	1	1	1	1	2	3	3	4	5	-51	5	4	5	4	3	2	2	2	2	1	1	1	1	1	1	1	1	1	2
24.x																		- 1																			
25.x																		- 1	İ																		
26.x	_	_		_																																	
27.7	1	1	1	1	1	1	1	1	1	3	5	4	4	4	4	5	6	8	6	4	5	5	4	3	3	3	2	3	1	1	1	1	1	2	2	1	1
28.7a	2	1	3	2	1	2	1	1	1	6	_	14	6	6	6	5	5	9	10	8	8	8	8	5	5	5	4	4	4	2	3	2	2	2	2	1	1
29.7	1	2	2	2	1	1	1	1	1	3	9	8	7	5	6	5	6	7	6	7	7	6	6	5	3	3	4	3	3	2	1	1	2	2	2	2	2
30.7	1	2	2	1	1	1	1	2	1	1		11	8	3	3	5	6	9	10	8	7	6	6	3	2	1	1	1	1	1	1	1	2	2	2	2	1
31.7	1	2	1	Т	Τ	1	1	1	4	1	1	13	8	9	5	6	6	8	9	7	7	6	6	6	6	4	2	2	1	1	1	1	1	1	2	2	3

Table 88b

Coronal observations at Climax, Colorado, ($\underline{5303A}$), west $\underline{\text{Limb}}$

Date				De	gre	es i	sou'	th o	of 1	he	sol	lar	equ	ato	r				0.0												olar						
UT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1954																																					
Oct 1.6	_	-	_	_	-	-	-	_	-	_		_	_	-	_	_	_	-	-	-	-	_	_	-	-	-	-	_	_	-	_	_	_	_	_	-	-
2.6a	-	-	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_	-	-	-	_	_	_	_	-	_	_	_	Х	X	X	X	Х	X	Х	X	Х
3 .x																																					
4.6	-	-	000	_	_	_	-	_	-	_	_	_	-	_	-	-	_	-	-	-	_	-	_	1	3	5	1	_	_	-	_	-	_	_	-	_	-
5.6	-	_	_	_	_	_	_	-	-	_	-	_	-	-	-	_	-	-	-	-	-	_	_	-	_	_	_	_	-	_	-	-	-	_	_	-	_
6.7	-	-	_	_	_	-	-	-	-	1	-	-	_	_	_	-	_	-	-	-	-	-	~	-	-	-	_	-	-	-	-	-	-	-	~	-	-
7.7	-	-	-	-	_	_	-	_	_	_	-	-	_	_	_	_	-	-	-	-	-	-	-	-	~	_	_	-	-	-	-	-	-	-	_	-	-
9.0	-	-	_	-	_	-	-	-	1	3	3	3	2	_	-	_	_	-	-	-	_	-	1	1	1	-	_	-	-	-	-	-	-	_	-	-	-
9.8	X	Х	Х	Х	X	X	Х	X	X	Х	Х	Х	Х	X	X	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	X	X	-	_	-	_	-	-	_	_	-	-
10.7	-	-	_	_	_	_	_	_	1	1	2	5	9	4	1	_	_	-	-	-	_	_	-	1	1	1	1	_	_	-	_	-	_	-	-	_	-
11.6	-	-	_	_	_	_	_	-	_	_	2	12	10	5	1	_	_	-	-	-	-	-	1	1	2	2	1	400	_	-	_	-	-	-	-	-	-
12.9	-	-	_	_	_	_	-	-	_	_	4	5	3	1	1	-	-	-	-	-	-	_	-	2	2	3	-	-	_	-	-	-	-	_	_	-	-
13 ax																				1																	
14.6	-	-	_	_	-	_	-	-	_	_	-	_	1	2	1	-	_	-	-	-	-	_	-	1	1	6	7	3	2	2	1	-	-	40.00	_	_	-
15.7	-	-	-	_	-	_	-	_	-	1	1	1	1	1	1	-	_	-	-	-	_	-	1	2			19	6	3	3	4	1	400	_	-		-
16.6	-	-	-	_	-	_	_	-	_	1	-	-	1	1	1	_	-	-	-	-	1	1	2			21		4	3	4	5	1	-	_	-	-	-
17.7	-	-	_	_	_	1	1	1	1	1	2	1	-	_	_	_	_	-	-	-	_	1	2	5	11	23	20	5	3	7	8	3	1	_	_	_	-
18 ×	ĺ								_	_		_						- 1		1						_	_		_	_		_					
19.7a	-	-	-	_	_	_	_	_	1	3	4	1	_	_	-	_	-	-	-	-	_	_	_	-	1	2	3	4	2	3	1	2	_	_	_	-	400
20.8	X	Х	X	X	Х	X	Х	Х	Х	X	X	Х	Х	Х	Х	X	X	Х	X	Х	X	Х	Х	Х	Х	Х	X	•	_	_	1000	-	-	_	_	-	-
21.7	-	-	_	_	_	-	_	_	_	_	1	1	_	_	_	-	_	-	-	-	_	1	1	1	_	_	1	2	2	1	_	-	_	_	_	-	-
22.7	-	-	_	_	-	-	_	1	2	3	2	1	_	_	-	_	-	-	-	-	_	_	_	_	_	1	1	2	2	1	1	3	3	2	-	_	-
23.8	-	-	_	_	_	_	-	_	_	_	-	_	_	_	_	-	-	1	6	8	1	-	_	_	-	_	_	_	_	-	-	_	_	_	_	-	-
24 x	1																	- 1		1																	
25 x	1																																				
26 x									,	,															,	-											
27.7	-	-	_	-	-	-	-	_	Т	Τ	-	-	-	-	_	-	_	-	_	-	-	_	-	-	Τ	Τ	_	-	-	-	_	-	-	-	-	-	_
28.7	49	-	_	-	_	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	_	_	_	_	1	_	-	Ţ.	Τ	Τ	-	-	_	_	-	-	-
29.7	-	-	_	-	-	-	-	-	Т	Τ	Ţ	_	_	1	T	1	_	-	-	-	-	_	7	-	-	2	3	Ţ	_	_	-	-	_	_	-	-	-
30.7	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	-	_	T	2	2			2	Ţ	_	_	_	_	_	_	-	-
31.7	-	-	_	-	-	_	_	Τ	T	T	T	Τ	_	-	_	_	_	-	_	-	_	_	-	2	4	6	3	2	Т	_	-	_	_	_	_	_	-

<u>Table 89b</u>

Coronal observations at Climax, Colorado, (6374A), west limb

Date								th o											0°														uat				
UT	90	85	08	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	-0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1954																																					
Oct 1.6		1	1	1	1	1	1	2	2	2	2	2	3	3	3	3	4	5	5	4	4	4	4	3	2	1	1	1	1	1	1	1	1	2	2	2	2
2.6a	1	1	1	1	1	1	1	1	1	1	1	2	3	3	4	4	4	5	5	4	4	2	2	3	3	3	2	2	Х	Х	Х	X	X	Х	Х	X	Х
3.x																				l .																	
4.6	1	1	1	1	1	1	1	1	1	1	1	1	1	3	6	5	5	6	6]6	6	5	3	4	5	1	1	1	1	1	1	1	1	1	1	1	1
5.6	1	2	2	2	2	2	2	2	2	3	3	3	3	3	4	4	6	6	5	5	5	4	4	4	3	3	2	1	1	1	1	1	2	2	1	1	1
6.7	3	2	2	1	1	1	1	1	1	2	2	2	2	3	4	3	5	5	5	3	4	3	1	1	2	3	2	2	1	1	1	1	1	1	1	1	1
7.7	2	2	1	1	1	1	2	2	2	2	1	1	2	6	5	4	3	4	4	4	4	4	3	3	3	3	2	2	1	1	1	1	1	1	1	1	1
9.0	2	1	1	1	1	1	1	2	2	3	5	4	4	5	5	4	3	4	5	4	3	3	2	2	2	2	2	2	1	1	1	1	1	1	1	1	2
9,8	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	X	X	X	Х	X	Х	Х	X	X	5	3	2	2	2	2	2	3	1	3
10.7	2	2	2	1	1	1	1	1	ı	1	1	4	5	2	1	4	4	2	4	5	4	3	2	1	1	1	1	1	1	1	1	1	1	1	1	2	1
11.6	1	1	1	2	1	1	1	1	1	2	2	1	2	6	1	5	5	5	5	5	5	3	3	2	1	1	2	2	2	2	2	1	1	1	1	1	1
12.9	1	1	1	1	1	1	1	1	1	1	1	1	3	2	2	3	5	5	6	6	6	3	3	3	4	3	1	1	1	2	1	1	1	2	1	1	1
13.x																				l																	
14.6	1	1	1	1	1	1	2	2	2	2	2	2	3	3	3	3	3	5	6	5	5	5	5	4	6	16	6	1	1	1	1	1	1	1	1	2	1
15.7	3	2	1	1	1	1	2	2	2	2	2	3	4	4	5	5	6	6	6	7	7	6	5	6	26	17	4	3	2	1	1	1	1	1	2	2	2
16 .6	2	2	2	1	1 2	1	2	2	2	1	3	4	4	5	6	9	7	8	8	13	8	6	6	5	17	31	10	1	1	1	1	2	2	2	2	1	1
17.7	2	2	1	1	2	1	2	2	2	3	4	5	5	6	6	7	9	10	10	10	11	9	9	12	15	30	18	3	1	2	2	2	2	2	2	2	1
18.x																																					
19.7a	1	1	1	1	1	1	1	1	1	1	6	6	6	3	3	3	3	3'	3	١3	3	3	4	4	4	2	2	1	1	2	2	2	2	2	2	2	1
20.8	X	Х	Х	X	Х	Х	Х	Х	X	Х	Х	X	Х	X	X	Х	Х	X	X	X	Х	X	X	X	Х	Х	Х	X	2	2	2	2	2	2	2	1	1
21.7	1	1	1	1	1	1	1	1	1	1	1	4	5	2	2	2	3	1	2	3	2	2	1	1	1	1	1	1	1	1	1	1	1	2	2	2	1
22.7	2	2	1	1	1	1	1	1	2	2	2	2	3	3	2	3	4	2	2	5	6	6	5	4	3	1	1	1	1	1	1	1	1	1	1	1	2
23.8	2	1	1	1	1	1	1	2	1	1	1	1	1	ì	3	4	2	2	1	1	8	15	7	2	2	1	1	1	1	1	1	1	1	2	1	1	2
24.x	ŀ																	- 1																			
25.x																		- 1		i																	
26.x	1																	- 1																			
27 .7	1	1	1	1	2	1	1	1	2	2	3	4	3	4	4	5	6	6	6	5	5	5	5	5	4	3	2	1	1	1	1	1	2	1	1	1	1
28.7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	3	4	4	5	5	5	4	3	2	2	2	1	1	1	1	1	1	2	3	3	2
29.7	2	2	2	2	2	1	2	1	1	2	4	3	3	4	6	7	8	7	7	9	5	6	5	4	2	3	3	2	1	1	1	2	2	2	3	2	1
30.7	1	1	1	1	1	1	1	1	2	2	3	2	3	2	5	6	5	5	5	5	3	3	4	3	2	2	1	1	1	1	1	1	1	1	2	2	1
31.7	3	2	1	2	3	1	1	1	1	2	4	3	3	3	4	10	8	6	7	8	8	5	5	8	2	2	4	3	1	1	1	1	1	2	1	2	1

Twole 90a

Coronal observations at Climax, Colorado, (6702A), east limb

					Deg	res	e n	ort	h c	of t	he	sol	ar	eat	ato	or			\neg	00			_	Deg	gree	es s	sout	th o	of	the 50 S	so	lar	eq	uat	or			
	ate UT	90	05	20	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0-	5	10	15 2	20 2	25 3	30 3	35 4	10 4	15	50 5	55	60	65	70	75	80 8	35	90_
	954	30	00	00	70		-	-	-				_						1																			
Oct	1.6	_	_	_	_	_	-	_	1	3	3	4	4	3	1	_	-	_	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
000	2.6a	y	X	Y	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	-	_	-	-	-	-	-	-	X	X	-	-	-	-	-	-	-	-
	3.x	^	Α.	А																																		
	4.6	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	\dashv	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-
	5.6	_	_	_	_	_	_	_	_	_	-	_	-	_	_	_	_	_	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	_	_	-	-	-
	6.7	_	_	_	_	_	_	_	_	-	-	_	-	_	_	_	-	-	4	-	-	-	_	-	_	-	-	_	_	_	-	-	-	_	_	-	-	-
	7.7a	-		_	_	_	_	-	-	_	-	_	-	_	_	-	_	-	\dashv	-	-	-	-	-	_	-	-	_	-	-	-	-	-	_	_	-	-	-
	9.0	_	_	_	_	-	_	_	_	_	-	-	-	_	-	_	-	-	+	-	-	-	-	-	-	_	_	_	-	-	-	~	X	X		_	- v	X
	9.8a	-	_	-	_	-	_	_	_	_	-	-	-	_	_	_	1	2	1	-	-	_	-	-	-	-	X	Y	Ā	Х	A	X	A	A	Α	A	Α.	_
	10.7	-	-	_	_	-	_	-	-	-	-	_	-	-	_	-	_	-	4	-	-	-	-	-	_	-	_	_	-	-	-	_	-	_	_	_	_	_
	11.6	_	-	_	-	-	_	-	-	_	-	-	-	-	-	_	_	-	-	-	-	-	-	-	-	_	-	_	-	-	_	_	_	_	_	_	_	_
	12.9	-	-	_	-	-	_	-	-	_	-	-	-	_	-	_	_	-	٦	-	-	-	_	_	_	-	-	-	-	-	-	_	_	_	_	_		
	13.x 14.6																								_	_	_	_	_	_	_	_	_	_	_	_	_	-
	14.6		-	-	-	-	_	-	-	-	-	-	-	_	-	_	-	-	٦	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	15.7	-	_	-	-	-	_	-	-	_	-	-	-	_	_	-	_	_	٦	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	16.6 17.7	-	_	-	-	-	_	_	_	_	_	_	1	_	_	_	_	_	٦	_	1 -	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		-	-	-	_	-	_	-	-	_	1	1	1	_	_	_	-	_	٦	_	-	_	_															
	18.x	1																	-		l _		_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_
	19.7a	-	-	-	-	-	_	-	-	-	-	_	-	_	_	_	_	-	٦	_	1	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	X
	20.8a	-	-	-	-	-	_	-	-	_	-	_	-	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	21.7a	-	-	-	-	-	_	-	_	_	-	_	-	_	_	_	_	_	٦	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-
	22.7	-	-	-	0	-	_	-	-	-	-	_	-	_	_	_	_	_]	_	IΞ	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
	23.8	-	-	-	-	_	_	_	_	_	_	_	_	_	_	_	_		٦		-																	
	24.x																				1																	
	25.x	1																	Í		1																	
	26.x												_			. –	. –	_	J	_	-	_	_	_	_	_	_	_	_	_	_	_	-	_	-	_	-	-
	27.7	1 -	-	-	_	_	_	-	-	2	2	2	ר			_	_	_		_	-	_	_	_	-	_	_	-	_	-	_	_	-	-	-	-	-	-
	28.7a	-	-	_	_	_	_	1	1	2			1	_				_	4	_	-	_	_	_	-	-	_	_	_	_	-	_	-	-	_	-	-	-
	29.7	-	-	_	_	_	_		_	_			_	_				_	_	-	-	_	_	_	_	-	-	-	-	-	-	_	-	-	-	-	-	-
	30.7	-	_	_	_	7	2	ו	7	٦	2	, 3	2	1				_	_	_	-	_	-	-	_	-	-	-	_	-	-	-	-	-	-	-	-	-
	31.7	-	-	_	_	1	~						~								上								_		_			_		_		

Table 91a

Coronal observations at Sacramento Peak, New Mexico, (5303A), east limb

Date		_						th o											00	Г		_	De	gre	es	sou	th	of	the	e sc	lar	ec	uat	or			
UT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1954																																					
Oct 1.7	-	-	-	_	2	10	16	17	16	14	15	19	47	32	5	4	2	2	-	-	-	2	3	2	4	5	4	2	3	4	3	2	-	-	-	-	-
2.x																		- 1		1																	
3.7	-	-	-	-	-	2	12	17	14	13	11	13	39	38	18	8	5	3	2	2	-	-	-	2	3	5	7	6	3	3	2	2	-	-	-	-	-
4.X	1																			1																	
5.x	1																	- 1		1																	
6.x	ł																																				
7.x																				İ																	
8.x							_	_	_	_	_		_	_					_	١.																	
9.7	-	-	_	_	-	_	2	2	2	2	3	3	2	2	3		11			2	_	-	_	_	_	_	-	-	_	_	-	_	-	-	-	-	-
10.7	-	_	_	_	_	_	-	2	2	3	2	2	3	2	3		16			5	3	-	-	_	2	3	4	4	3	2	-	_	-	-	-	_	-
11.7	-	_	_	_	_	-	-	_	2	3	3	3	4	3	2	3		10		3	2	_	_	_	_	2	3	2	2	3	2	2	-	-	-	-	_
12.7	-	-	-	-	_	_	-	_	2	2	3	2	3	3	3	4	3	3	5	4	3	3	2	3	2	2	_	2	3	2	_	_	-	-	-	-	-
13.8a	-	-	-	-	_	_	_	_	2	3	3	2	2	3	_	_	_	٦	-	2	2	2	2	2	2	3	2	3	3	3	4	3	2	2	-	-	-
14.7a	-	-	_	-	-	_	_	-	2	3	4	4	3	3	3	2	2	٦	-	2	3	3	4	2	2	2	_	-	3	3	2	2	-	-	_	-	-
15.6	-	-	-	_	_	_	_	_	2	3	3	3	3	2	2	_	_	٦	-	-	-	_	_	_	2	2	2	3	2	-	_	_	-	-	-	_	-
16.6	-	-	-	_	_	2	3	3	2	4	4	5	-7	- 5	3	3	2	1	_	-	_	_	_	_	_	2	2	3	2	_	-	-	-	_	-	-	-
17.7	-	-	_	_	-	-	-	_	-	2	3	5	14	12	4	3	2	7	-	-	2	3	2	2	_	2	3	3	3	2	-	-	-	-	-	-	-
18.7	-	-	_	_	_	-	_	_	2	3	3	4	14	15	4	3	2	4	-	-	-	_	2	2	2	3	3	2	2	2	_	_	-	_	-	-	-
19.7	-	-	-	-	-	_	-	2	2	3	2	5	11	5	4	3	2	٦	-	-	_	2	2	2	2	3	2	_	_	_	_	_	_	_	-	_	-
20.6	-	_	_	_	_	-	-	-	_	2	3	4	2	4	3	2	2	4	-	-	_	2	2	_	_	_	2	3	3	2	2	_	-	_	_	_	-
21.7	-	_	_	_	_	_	-	_	~	3		~		3		4	3	-4	_	-	-	-	2	3	2	3	3	3	2	3	2	_	-	_	_	-	-
22.72	-	_	-	_	-	_	_	_	2	3	3	2	3	3	2	2	_	٦	-	-	_	_	2	3	3	3	4	4	2	3	3	2	-	_	-	_	-
23.7a	-	-	-	_	_	-	2	3	4	4	3	3	2	3	3	2	_		-	-	_	2	3	4	5	4	4	3	3	2	_	-	-	_	-	-	-
24.72	-	_	_	-	_	2	2	-	-	2	2	2	_	2	Χ	X	2	4	3	2	2	3	4	5	7	8	7	4	2	2	2	-	_	_	-	_	-
25.x	1	_	-	-					-	_	-	-	,	-			_	- 1		[_		_		_	_							
26.7	2	2	3	3	2	3	3	4	5	5	5	5	6	5	4	3	2	٦	-	-	-	-	2	3	5	8	7	4	3	2	-	-	-	-	-	-	-
27.x	-			_	_	_	-	-	,	,	2.2	3.0				-	-		-	<u>ا</u> ر				-	,	_	,			_							
28.7	_	-	-	2	2	2	3	3	4	Þ	11	13	12	7	4	3	5	4	3	2	-	-	-	3	4	5	6	4	3	2	-	-	-	-	-	-	-
29.x					2	2	,	-		_	3.0	22	22	3.0	3.0	3.0					_				_		_	_									
30.7 31.7	_	_	_	_	2	2	4	>	4						17		8	9	11	3	2	-	-	_	3	4	5	3	2	-	-	-	_	-	_	-	-
31.7		_	_	_	_ ~	_ ~	3	4	4	>	8	12	11	-7	4	3	2	. 1	_	-	_	-	_	2	2	2	3	2	_	_	-	-	-	-	-	_	-

Table 90b

Coronal observations at Climax, Colorado, (6702A), west limb

Date		_		Deg	ree	es i	sou1	th c	f t	he	sol	ar	equ	ato	r			T	o°	Γ			De	gre	es	nor	th	of	the	SC	lar	eq	uat	or			
UT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	-0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1954																		П		Γ																	
Oct 1.6	-	-	=	-	-	=	-	-	-	-	-	-	_	-	-	-	-	-	_	-	_	-	_	-		-	-	_	_	_	_	_	_	_	_	_	
2.6a	-	-	_	_	_	_	-	-	_	_	_	_	-	-	-	-	-	-	-	-	_	-	_	_	_	_	_	_	Х	X	Х	X	X	Х	Х	X	X
3.x																		ı		Ì	-																
4.6	-	-	-		-	-	-	-	_	-	_	-	-	_	-	-	-	4	_	-	_	_	-	_	_	_	_	_	_	_	_	_	_	-	_	-	-
5.6	-	-	-	-	-	_	-	-	-	-	-	-	-	-	_	_	-	4	_	-	-	-	-	_	-	_	-	-	-	-	-	_	_	_	_	_	-
6.7	-	-	_	-	-	_	-	-	_	_	_	-	_	-	_	_	_	4	_	-	-	-	_	-	_	_	_	_	_	_	_	-	-	_	_	_	-
7.7	-	-	=	-		-	-	-	-	_	_	-	-	_	-	-	-	4	-	-	-	-	_	-	-	-	_	-	_	_	-	-	100	-	-	-	-
9.0 9.8	-	_	-	-	-	-	_	-	-	-	-	-	_	-	-	-	-	4	-	-	_	-	_	-	-	_	_	_	-	_	_	-	-	_	_	_	-
9.8	X	Х	X	Х	X	X	X	Х	Х	X	X	X	Х	X	X	X	X	Х	Х	X	X	X	X	X	X	X	X	-	-	-	-	-	-	-	-	-	-
10.7	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	_	_	-	-	-	-	_	-		-	_	-	-	-	-	-
11.6	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	_	-	-	_	-	•	-
12.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	-	-	-	•	-	\Rightarrow	-	-	-	-	-	-	-	-	-	-	_	-	-
13.x	1																																				
14.6	-	-	-	-	-	_	-	-	_	-	40	-	-	_	-	-	-	-	-	-	-	-	-	-	_	-	-	_	_	-	-	_	-	-	_	-	-
15.7	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	4	-	-	_	-	-	-	1	2	3	1	-	-	-	_	-	-	-	-	-
16.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	-	-	-	-	-	1	4	3	1	-	-	-	-	_	-	-	-	-	-
17.7	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	1	5	5	1	-	-	-	_	-	-	_	-	-
18.×	İ																	- 1		l																	
19.7a 20.8	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	4	-	-	_	-	-	-	-	-	_	_	-	•	-	_	_	-	_	-	-
20.8	Х	X	Х	Х	Х	Х	X	X	Х	X	X	X	X	X	Х	Х	X	Х	X	Х	Х	Х	X	X	X	X	X	X	-	-		-	=	-	-	-	-
21.7	-	-	-	-	_	_	-	-	-	_	-	-	-	-	-	_	_	٦	-	-	_	-	-	-	-	-	_	-	_	-	_	_	_	_	-	_	-
22.7	-	-	-	-	_	-	-	-	-	_	-	-	-	-	-	-	-	٦	-	-	-	-	403	-	-	***	-	-	-	-	-	-	_	_	-	-	-
23.8	-	-	-	-	-	-	_	-	_	-	-	-	_	-	-	-	-	-	-	-	-	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-
24.X																		ŀ		1																	
25.X																		- 1		1																	
26.x 27.7																																					
27.7	-	-	-	-	-	•	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	_	-	-	_	-	-	-	-	-	-	-	-
28.7 29.7	-	-	-	-	-	-	_	-	-	_	-	-	_	-	-	_	_	٦	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	_	-	_	-
29.7	-	-	•	-	-	-	-	-	-	_	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-
30.7	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	_	-	-	-	-	-	-	-	_	-	_	-	-	-	-	-	-	-	_	-	-	-
31.7	-	-	-	-	-	-	_	-	_	-	-	_	_	-	-	-	-	-1	_	-	-	_	_	-	_	-	_	-	-	_	-	-	-	9	-	_	-

Table 91b

Coronal observations at Sacramento Peak, New Mexico, (5303A), west limb

Date				De	ree	es e	out	h c	of t	he	so]	ar	equ	ato	or				0°				De	gre	es	no	rth	of	th	e s	ola	r e	quat	tor			_
UT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1954 Oct 1.7	_	_	_	_	_	_	_	2	3	3	3	2	3	3	2	2	2		_	-	_	2	2	3	4	5	4	3	2	2		_	_	2	3	_	_
2.x									_	_	_	_				_					_	_	_		_	_			_	_							
3.7a 4.x	-	-	-	-	-	-	_	-	2	3	3	3	4	4	4	3	4	2	-	-	2	2	3	4	8	8	15	4	3	2	4	3	2	-	_	-	-
5.X																																					
6.x																																					
7.×																																					
8.x 9.7	_							2	2	,	4	-	٠,	3.6	2.7		2		İ	1	2	2	,	_	-	,		2	_	_	2						
10.7	-	_	_	_	_	_	_	2	3	3	4			20		3	3	2	Į.	[_	2	3	3	2	6	9	6	3	3	2	2	2	_	-	_	_	_
11.7	-	-	-	-	-	-	_	-	2	2	3				14	7	4	3		-	_	2	3	3	5	6	5	4	3	2	2	_	_	_	_	_	4.00
12.7	-	-	-	-	-	-	-	-	-	2	3	11	16	14	11	8	4	2		2	3	3	2	3	11	23	7	5	4	3	3	3	2	2	_	-	_
13.8a	-	-	-	-	-	-	-	-	_	2	4	3	4	5	6	8	6	4	3	2	3	3	4	5	5	13	12	11	6	_ 5	5	5	4	3	2	-	-
14.7 2 15.6	-	_	_	_	_	_	_	-	2	3	3	2	3	3	4	4	3	2	-	-	2	3	2	3	5 8	23	18	16	12	10	8	9	7	4	3	•	-
16.6	_	_	_	_	_	_	_	_	_	2	2	3	2	_	2	2	2	_		2	3	2	3	5	_	23	39	23	12	8	9	12	13)	3	2	-
17.7	-	-	-	_	-	-	-	2	2	3	4	2	2	3	2	2	3	2	,	-	_	2	3	4	8	14	39	38	18	8	13	14	13	5	_	_	-
18.7	-	-	-	-	-	-	-	2	3	5	6	8	4	3	2	-	-	-	-	-	2	3	2	3	4	5	8	28	26	8	13	14	13	3	2	-	-
19.7 20.6	=	_	_	_	_	_	_	2	3	3	5	11	13 12	3	3	2	2	-	-	-	-	2	2	2	3	4	5	12	14	12	11	14	17	5	3	-	-
21.7	_	_	_	_	_	_	_	2	3	1.	3	5	7	3	2	2	2		1		2	3	3	3	3	7.	5	6	- 7	5	1	5	8	12	2	_	_
22.7a	-	-	-	-	-	-	-	2	3	2	4	5	4	2	2	-	-	-	2	3	4	5	4	3	2	3	4	4	4	5	5	4	5	8	6	3	-
23.7a	-	-	-	-	-	-	-	-	2	3	5	4	4	3	3	2	2	-			11		8	5	3	2	3	3	2	4	4	3	3	3	5	4	-
24.7a 25.x	-	-	-	-	-	40	-	2	3	2	3	4	4	3	2	2	2	-	-	2	8	16	11	6	5	3	3	3	2	3	2	2	2	3	3	2	0
26.7	_	_	40	_	_	_	_	_	_	2	3	3	3	/.	3	2	2		_	l_	2	3	3	3	5	8		3	2	2	2	_	_	_	_	_	2
27.x										~	-	-	-	4	-	~	~		_]	٨.	,	,	_	,	0	4)	~	~	~	_	_	_	_	_	2,
28.7-	-	-	-	-	-	-	2	2	3	3	4	3	3	2	3	2	3	2	-		-	2	2	2	3	3	5	4	3	3	2	-	-	-	-	***	_
29.x								2	2	_	_	_			_								_	_				_		_							
30.7 31.7		_	_	_	-	-	_	2	2	3	3	3	2	-	2	_	-		-	_	-	_	2	2	3	4	10	5	3	2	2	-	-	-	-	-	-
31.7	1	_	_	_	-	-	-	_	_	_	-	-	_	_	-	-	-	-	-	1-	_	-	2	~	3	2	-7	>	2	2	-	_	_	-	-	-	_

Coronal observations at Sacramento Peak, New Mexico, (6374A), east limb

Date	T					es I													0°										the								
UT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	"	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1954 Oct 1.7	3	4	4	4	3	3	5	6	5	3	8	14	39	40	14	11	12	14	15	14	11	11	10	7	6	7	5	7	6	5	4	3	2	2	3	4	4
2.x 3.7 4.x 5.x 6.x 7.x	4	5	4	4	3	3	4	4	3	3	2	5	35	44	23	24	14	20	21	17	16	15	14	13	14	13	11	7	8	5	3	4	2	4	3	4	5
8. 9.7 10.7 11.7 12.7 13.8a 14.7a 15.6 16.6 17.7 19.7 20.6 21.7 22.7a 23.7a 24.7a	4544453334533433	5434553433434544	4444453433424534	4545444344532444	4434443344543554	3322332333423432	2223232232534533	3433352323422424	443546-444322233	3547562555534535	4458863656855644	596878587 7 056655	7 11 6 13 7 14 28 19	7 10 8 12 7 16 16 18 15 8 7 4	10 8 14 11 11 8 6 14 15	14 11 16 13 11 7 5 12 14	18 14 28 14 12 8 7 9 14 13 12 11 10	32 20 30 15 14 11 15 14 13 12 12 11	23 14 16 14 12 14 16 14 13 13 14 12	00046123531131	11 8 16 15 10 11 12 13 12 12 13 10	12 6 14 15 11 12 11 12 14 11 12 9	13 6 13 14 10 12 10 14 15 11 10 11 8	7 12 11 13 10 14 8 13 14 11 9	12 8 11 11 11 8 13 9 12 14 10 8	7 11 9 14	6 10 11	5 5 4 4 11 10 5 6 8 11 8 4 5 8 6 5	4555885565533535	3434453443323446	2323242432212335	2234332332212223	4323342223422323	5233243334334434	3334-42433323424	4445452472533523	4544344465534434
25.x 26.7 27.x	3	4	4	4	5	3	4	3	4	4	3	3	5	5	8	8	7	11	11	9	8	7	6	4	3	2	3	3	4	2	2	2	3	3	3	4	4
28.7 29.x	5	4	4	4	4	3	4	2	3	4	5	7	15	11	10	9	8	11	15	13	11	11	10	8	6	5	6	5	5	3	2	2	3	3	3	5	4
30.7 31.7	3	2	3	4	3 2	4 2	3	2	4	3 2	4 2		20 11						15 13					13 8	12	11 7	7 6	6	5 3	3	2	2	3	2	3	3	3

Coronal observations at Sacramento Peak, New Mexico, (6702A), east limb

Date				De	gre	es :	nor	th	of	the	so	lar	eq	uat	or				- 0	_			De	ore	PS	SOL	ıth.	of	the		20101		quat				
UT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35	40	45	EV	CE	STATI		Jua (OF	00	OF	
1954																		-		<u> </u>		10			50	55	40	40	30	55	00	00	70	75	80	85	90
Oct 1.7	-	-	_	-	_	-	_	_	_	2	3	5	8	4	3	2		_	_	_	_	_	_	_	_	_											
2.x																~		- 1						_	_	_	_	_	-	_	-	_	_	-	-	_	-
3.7	-	-	-	-	_	_	-	-	_	2	2	3	4	3	2	***	_	_	_	_	_	_	_	_	_	_											
4.X														-				- 1						_	_	_	_	_	-	_	_	-	-	_	-	-	-
5.X																		- 1																			
6.x																		- 1																			
7.X																		- 1																			
8.x																		- 1																			
9.7	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	2	2	3	2	_	_																
10.7	-	-	_	_	-	-	_	-	_	_	_	-	-	-	_	~	2	7.1	3	2	_	_	_	_	_	-	-	-	-	-	-	_	-	-	-	-	-
11.7	-	-	-	-	-	-	-	_	_	-	_	_	_	_	-	_	2	3	3	2	_	_	_	_	_	_	_	-	_	-	-	_	-	-	_	-	-
12.7	-	_	-	-	-	-	_	_	_	_	_	_	-	_	_	_	~		- 1	~	_	_	_	_	_	_	_	_	-	-	_	_		-	_	-	-
13.8a	-	\rightarrow	-	-	-	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	-	_	_	_	_	-	_	-	-	-
14.7a 15.6	-	-	_	_	-	_	_	_	_	-	_	_	_	_	_	_	-	-1	_	_	_	_	_	_	_	_	_	_	-	_	_	_	-	_	_	-	-
15.6	-	-	_	_	-	-		-	_	_	_	_	_	_	_	_	_	4	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	-	-	-
16.6	-	_	-	-	_	_	_	_	_	-	_	-	_	_	_	_	_		_ 1						_	_	_	_	_	-	-	-	_	_	_	_	_
17.7	_	-	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	-	-	-	_	-	-	-	-	-
18.7	-	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_		_	_	_	_	_	_	_	_	_	_	-	-	-	-	-	-	-	-	-
19.7	-	-	_	-	_	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	-	_	-	_	-	-	-	-
20.6	-	-	_	_	-	-	-	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	-	-	_	-	_	-	-	-	-	-	-	-
21.7		-	-	_	_	_	_	_	_	-	_	_	_	-	_	_	_	1		_	_	_	_	_	_	_	_	_	-	_	-	-	-	-	-	-	-
22.7a	-	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_	_	╛	_	_	_	_	_	_	_	_	_	_	_	-	_	_	-	-	-	_	_
23.7a 24.7a	-	-	_	_	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_ [_	_	_	_	_	_	_	_	_	-	_	-	_	-	-	-	-	-
24.7a	-	_	-	_	-	_	_	_	_	_	_	_	Х	Х	_									_	_	_	_	_	_	_	-	_	-	-	-	-	-
25.x													n	Δ	_	_	_	7	-	_	_	_	_	_	-	-	-	-	-	-	_	-	-	-	-	-	-
26.7	-	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_																		
27.x																_	_	7	-	_	_	_	_	_	_	-	_	-	-	-	-	-	-	-	-	-	-
28.7	-	-	-	-	_	_	_	_	_	-	2	2	2	_	_	_	-	_	_ [_	_		_	_		_	_										
29.x																								_	-	_	_	_	_	-	_	_	_	-	-	-	_
30.7	-	-	-	-	-	-	-	_	_	2	2	3	2	2	_	_	_	_	_	_	_			_	_	_											
31.7	_	-	_	_	_	_	_	_	_	_	_	2	3	2	_	_		_1_	- 1					- '	_	_	_	-	-	_	-	_	-	the .	-	-	-

Addle 926

Coronal observations at Sacramento Peak, New Mexico, (6374A), west limb

Date									of t										0°	L									the								
UT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	L°.	1	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1954 Oct 1.7	4	4	4	6	5	4	3	4	3	4	4	5	5	6	8	12	9	11	13	12	12	11	10	8	11	8	7	5	4	3	3	4	2	2	3	3	3
3.7a 4.x 5.x 6.x 7.x 8.x	5	5	4	5	4	3	4	4	4	5	9	10	10	8	14	13	13	14	14	1.3	14	15	13	11	11	10	8	6	7	4	3	3	2	3	5	4	4
9.7 10.7 11.7 13.8a 14.7a 15.6 16.6 17.7 18.7 19.7 20.6 21.7 22.7a 23.7a 24.7a 25.x	45443444655334434	3534243456524445	3534342544434334	44233333455523334	3433443344433233	4333332233332432	4424442334222323	333443 - 442323323	454545 - 4555554223	5556562466765754		14 8 5	16 15 11	15 16 16 13 8 5	14 14 11 10 9 7	8 5 9 5 8 13 15 14 11 10 8	16 8 11 7 12 14 16 13 10 9 11 7	12 12 17 12 13 9 14 15 14 10 11 13 8	11 12 18 14 14 8 15 16 15 13 12 13 7	12 11 16 12 15 9 14 16 10 10 14 16	10 15 12 15 9 16 17 13 11 8 9	11 8 14 11 15 10 18 17 13 12 5 8 19 25	10 14 11 13 14 14 13 6 8 14 11	14 7 11 13 15 14 5 9	6 11 11	36 26 20 18	28 20 34 36	14 16 20	7625564468045644	6836443435543433	4455442344432323	3424442453334222	3223552243435322	4424443245523433	4335442243422444	4445563335422344	4544453334533433
26.7 27.x	4		3	3	3	2	3	2	3	3	4	5	6	7	8						10		10	9	8	7	7	5	4	3	3	2	2	2	2	3	3
28.7 29.x	4	3	4	3	2	3	2	3	3	3	3	4	5	4	5						12			8	6	5	6	4	4	2	3	2	3	3	4	4	5
30.7 31.7	3	3	2	2	3	3	3	2	2	3	5	5	4	5 3	8	11 9			13 11		12 11	10 5	7 5	8	7	5	7	5 4	4	3	2	2	3	2	2	3	3

Tuble 930
Coronal observations at Sacramento Peak, New Mexico, (6702A), west limb

Date				Deg	ree	SE	out	h c	of t	he	sol	lar	eat	iat	or					_			De	gre	es	nor	th	of	the	SC	olar	ec	luat	or			
UT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	o°	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1954																																					_
Oct 1.7	-	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_		_	_	_	_	_
2.x	1																																				
3.7a	-	-	_	-	-	-	-	-	-	-	-	-	_	-	_	_	_	-	-	-	_	_	_	_	_	-	_	_	_	-	_	_	_	_	_	-	-
4.X]																	
5.x																				ŀ																	
6.x]																	
7.x	l																			1																	
8.x																				ŀ																	
9.7	-	_	_	_	***	_	_	_	_	_	-	2	2	2	-	-	_	_	_	-	_	_	-	-	-	_	_	_	_	_	_	_	_	-	_	_	-
10.7	-	-	_	_	-	-	-	-	-	-	-	-	2	3	3	2	_	_	-	-	_	_	-	_	_	_	_	_	_	-	_	_	_	_	-	_	_
11.7	-	-	_	-	_	-	_	_	-	_	-	-	_	-	-	_	-	_	-	-	_	_	_	-	-	-	_	_	_	_	-	-	_	-	_	_	
12.7 13.8a	-	-	_	_	-	-	_	-	-	-	-	-	-	-	-	_	_	-	-	-	_	-	-	_	2	3	2	-	-	-	_	-	_	_	-	-	-
13. 8a	-	-	_	_	-	-	-	-	-	-	-	-	-	_	-	_	_	_	-	-	-	_	_	_	-	-	_	_	_	-	_	_	-	-	-	-	-
14.7a 15.6	j -	-	_	_	-	-	-	-	-	-	-	-	_	-	-	-	_	-	_	-	-	-	-	_	-	_	_	-	_	-	_	_	_	-	_	-	-
15.6	-	-	-	_	-	_	-	-	-	_	-	-	-	-	-	-	-	-	-	i –	-	_	_	-	-	2	4	3	-	_	-	-	_	_	-		-
16.6	-	-	-	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-	_	-	-	_	_	-	-	3	6	3	2	_	-	-	_	-	-	-	-
17.7	-	-	-	_	-	-	_	-	_	-	-	-	_	_	-	-	_	_	-	-	-	-	-	_	-	2	5	6	2	-	_	0	_	***	-	-	-
18.7	-	_	-	-	-	-	_	_	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	_	-	2	3	4	2	-	_	-	-	-	-	-
19.7	-	-	-	_	-	-	-	-	-	_	-	-	_	-	-	-	***	-	-	-	-	_	-	-	-	-	-	-	2	2	_	_	-	_	-	-	-
20.6	-	-	-	-	-	100	-	-	-	_	_	-	-	-	-	-	-	_	-	-	-	_	-	_	_	_	_	-	-	-	-	-	-	_	-	-	-
21.7	-	-	_	-	_	-	-	-	-	-	_	_	_	_	-	_	_	-	-	-	_	-	_	-	-	-	_	_	_	_	-	_	_	_	_	_	-
22.7a	-	-	_	-	-	-	-	_	-	-	_	-	-	_	_	_	-	-	-	-	***	_	-	_	_	_	_	-	-	-	_	_	-	-	-	-	-
23.7a	-	-	-	-	_	-	-	-	-	-	_	_	_	_	-	_	-	_	-	-	_	_	-	_	-	-		-	-	_	_	-	-	~	-	-	_
24.7a	-	-	_	_	-	-	-	_	-	-	-	-	-	-	_	_	_	_	-	 -	-	-	_	-	-	-	-	-	-	-	-	_	_	-	-	-	-
25.x	1																			1																	
26.7	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
27.x																																					
28.7	-	-	-	-	-	-	-	-	_	-	-	-	-	_	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	_	-	-	-	_	-	-
29.x																																					
30.7	-	-	-	-	-	-	-	-	_	-	-	-	-	-	_	-	_	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-	-
31.7	-	-	-	-	-	-	-	_	-	-	-	-	-	_	_	_	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	_	_	-	-	-	-

Table 94
Zurich Provisional Relative Sunspot Numbers
October 1954

Date	R _Z *	Date	R _Z *
1	0	17	22
2	7	18	7
3	14	19	8
4	8	20	14
5	7	21	8
6	0	22	8
7	0	23	14
8	0	24	8
9	0	25	8
10	0	26	7
11	0	27	0
12	7	28	0
13	7	29	0
14	15	30	0
15	17	31	0
16	24	Mean:	6.8

 $[\]mbox{\ensuremath{^{\ast}}}$ Dependent on observations at Zürich Observatory and its stations at Locarno and Arosa.

Table 95

American Relative Sunspot Numbers

September 1954

Date	R _A '	Date	R _A '
1	0	17	0
2	0	18	0
3	0	19	0
4	2	20	0
5	2	21	0
6	1	22	0
7	0	23	0
8	0	24	0
9	0	25	0
10	0	26	0
11	0	27	0
12	0	28	0
13	0	29	0
14	1	30	1
15	1	Mean:	0.3
16	0		

Table 96

Solar Flares, October 1954

No solar flares were reported for the month of October.

Table 97

Indices of Geomagnetic Activity for September 1954

Preliminary values of international character-figures, C; Geomagnetic planetary three-hour-range indices, Kp; Magnetically selected quiet and disturbed days

Gr. Day 1954	С	Values Kp Three-hour interval 1 2 3 4 5 6 7 8 Sum	Final Selected Days
1 2 3 4 5 6 7 8 9 10	1.2 1.0 1.2 1.0 0.8 1.3 1.0 0.5 0.8	3- 30 2+ 3+ 5- 40 4+ 6- 300 5+ 4+ 40 4- 10 3- 2+ 3+ 27- 20 2+ 30 4+ 40 4+ 4+ 5- 290 4- 3+ 30 3+ 3+ 40 10 20 24- 30 30 30 3+ 3- 2- 20 1+ 200 3- 2+ 2+ 1+ 2- 4+ 6- 40 24+ 30 4- 4- 30 2+ 3+ 3+ 30 25+ 30 20 1- 1+ 20 3- 30 10 16- 1+ 40 4- 2- 3+ 30 1+ 3- 210 2- 3+ 30 3- 2+ 20 1+ 20 18+	Five Quiet 8 12 13 19 23
11 12 13 14 15 16 17 18 19 20	0.8 0.2 0.7 1.4 0.9 1.0 0.7 0.9 0.5 1.6	2- 3- 30 3+ 30 3+ 2- 20 21- 0+ 1- 2- 3- 2- 1+ 1+ 20 12- 20 1- 2- 2- 10 1- 10 4+ 130 4- 6- 4+ 3+ 50 3+ 20 4+ 32- 2+ 2+ 3+ 40 4- 30 2- 2+ 23- 4+ 40 3+ 4- 40 30 30 2+ 28- 40 3- 2- 20 0+ 1- 2+ 3- 16+ 40 2+ 3+ 3+ 10 3- 3- 30 22+ 2+ 3- 30 1+ 2- 20 2+ 2+ 18- 4- 40 40 30 5- 60 7- 5- 37-	Five Disturbed 1 14 20 21 29
21 22 23 24 25 26 27	1.3 0.7 0.3 0.6 1.0	40 4+ 4- 40 4- 4+ 4+ 3- 310 2+ 2+ 2+ 3- 4- 2+ 2+ 2- 20- 2- 10 30 3+ 20 1+ 10 10 14+ 20 20 2- 2- 1+ 3- 20 40 17+ 3- 3+ 4- 3- 30 30 4+ 2+ 250 30 3- 30 20 2+ 2- 2+ 2- 19- 2- 20 2- 20 2- 30 40 3+ 19+	Ten Quiet 8 10 12 13
28 29 30 Means	0:9 1:4 1.0	50 4- 3+ 3- 30 20 1+ 2+ 23+ 40 40 3- 4- 3- 5- 50 5+ 320 2- 40 4- 4- 2+ 2+ 4- 40 25+	19 22 23 24 26

Table 98

Sudden Ionosphere Disturbances Observed at Washington, D. C.

October 1954

No sudden ionosphere disturbances were observed during the month of October.

Note: Observers are invited to send to the CRPL information on times of beginning and end of sudden ionosphere disturbances for publication as above. Address letters to the Central Radio Propagation Laboratory, National Bureau of Standards, Boulder, Colorado; Attention: Mr. Vaughn Agy.

ERRATUM

Graph superseding corresponding graph in fig. 40, p. 61, CRPL-F122

Index of Tables and Graphs of Ionospheric Data in CRPL-F123

	Table page	Figure page
Adak, Alaska		
September 1954	. 12	52
August 1954		58
Akita, Japan	• 47	<i>y</i> 0
June 1954	. 16	65
Anchorage, Alaska	-0	0)
August 1954	. 14	57
Baker Lake, Canada		J.
June 1954	. 15	62
Bombay, India		•
March 1954	. 20	76
Brisbane, Australia		, -
March 1954	. 21	78
Canberra, Australia		·
March 1954	. 21	78
Capetown, Union of S. Africa		4
May 1954	. 19	73
Christchurch, New Zealand		, ,
May 1954	. 19	74
Churchill, Canada		•
June 1954	. 15	62
Dakar, French W. Africa		
November 1953	. 22	81
De Bilt, Holland		
May 1954	. 18	69
Delhi, India		
March 1954	. 20	75
Djibouti, French Somaliland		
May 1953	. 22	83
January 1953	. 22	83
December 1952		84
November 1952	. 23	84
October 1952	. 23	85
September 1952	. 23	85
August 1952		86
July 1952	. 23	86
Fairbanks, Alaska		
September 1954	. 12	51
August 1954		56
Falkland Is.	-	
April 1954	. 19	74

Index (CRPL-F123, continued)

	Table page	Figure page
Formosa, China		
May 1954	. 18	70
Fort Chimo, Canada		•
June 1954	. 16	63
Fribourg, Germany		
December 1953		80
November 1953		80
October 1953		81
September 1953		82
June 1953	. 22	82
Graz, Austria	1/	64
June 1954	. 16	0~
Guam I. September 1954	. 13	55
Hobart, Tasmania	• 10	22
March 1954	. 21	79
Huancayo, Peru	• ~ •	17
June 1954	. 17	67
Ibadan, Nigeria		01
January 1954	. 21	79
Inverness, Scotland		• •
May 1954	. 17	68
Johannesburg, Union of S. Africa		
May 1954	. 19	72
Leopoldville, Belgian Congo		
May 1954	. 18	71
Lindau/Harz, Germany	3.0	40
May 1954	. 18	69
Madras, India	20	9/
March 1954	. 20	76
September 1954	. 13	54
Narsarssuak, Greenland	• • • • • • • • • • • • • • • • • • • •	<i>y</i> -
August 1954	. 14	57
July 1954		60
Okinawa I.	• • • •	90
September 1954	. 12	53
Ottawa, Canada		
June 1954	. 16	64
Panama Canal Zone		
September 1954		55
July 1954	. 15	60
Point Barrow, Alaska	- 1	
July 1954	. 14	59
June 1954	. 15	61

Index (CRPL-F123, concluded)

												Table page	Figure page
Port Lockroy													
April 1954												20	75
Puerto Rico, W. I.			•	Ĭ	•	Ť	Ť	•	Ť	Ť	•		(>
September 1954	•		•				•	•	0	•		13	54
Rarotonga I.													
May 1954	• (•	•	•	•	•	•	•	•	•	•	19	72
Resolute Bay, Canada													4.7
June 1954	• •	• •	•	•	•		•	•	•	•	0	15	61
Reykjavik, Iceland												3.0	~ /
August 1954												13	56
July 1954		• •	•	•	•	•	•	•	•	•	•	14	59
St. John's, Newfoundland												16	63
June 1954 Singapore, British Malaye		• •	•	•	•	٠	•	•	•	•	•	10	62
May 1954												18	71
Slough, England	•	• •	•	•	•	•	•	•	•	•	•	20	(
May 1954												18	70
Tiruchy, India		•		•	•	•	•	•	•	•	·		, ,
March 1954												20	77
Tokyo, Japan					•		•		Ť	·	•		1.4
June 1954	•		•		•	•	٠		•	•	•	17	66
Townsville, Australia													
March 1954	•	• •	•	•	•	•	•	٠	•	•	•	20	77
Upsala, Sweden													
September 1954												12	52
May 1954	•	• •	•	•	•	•	•	•	•	٠	0	17	68
Wakkanai, Japan													4
June 1954	•	• •	•	•	•	•	•	•	•	0	•	16	65
Washington, D. C.												10	~1
October 1954 Watheroo, W. Australia	•	• •	•	•	•	٠	•	•		•	•	12	51
June 1954												17	67
May 1954												19	?3
White Sands, New Mexico	•	• •	•	•	•	•	•	•	•	•	•	-7	()
September 1954												12	53
August 1954												14	58
Yamagawa, Japan		. •	•	•	-	-	•	•	•	•	•		7-
June 1954						٠						17	66
												•	

CRPL Reports

[A detailed list of CRPL publications is available from the Central Radio Propagation Laboratory upon request] Dailu:

Radio disturbance forecasts, every half hour from broadcast stations WWV and WWVH of the National Bureau of Standards.

Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Semiweekly:

CRPL—J. North Atlantic Radic Propagation Forecast (of days most likely to be disturbed during following month).

CRPL-Jp. North Pacific Radio Propagation Corecast (of days most likely to be disturbed during following month).

Semimonthly:

CRPL-Ja. Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports.

Monthly:

CRPL—D. Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC 13 () series; Dept. of the Air Force, TO 16-1B-2 series.) On sale by Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Members of the Armed Forces should address cognizant military office.

CRPL—F. Ionospheric Data. Limited distribution. This publication is in general disseminated only to those individuals or scientific organizations which collaborate in the exchange of ionospheric, solar, geomagnetic or other radio propagation data or in exchange for copies of publications on radio, physics and geophysics for the CRPL library.

Circulars of the National Bureau of Standard's pertaining to Radio Sky Wave Transmission:

NBS Circular 462. Ionospheric Radio Propagation.

NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

These circulars are on sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Members of the Armed Forces should address the respective military office having cognizance of radio wave propagation.

The publications listed above may be obtained without charge from the Central Radio Propagation Laboratory, unless otherwise indicated.

