

Programação Computacional

Trabalho final 2022.1

Equipe 537670

Integrantes

539030

Gustavo Almeida

537261

O programa

Motivações iniciais

A importância das senhas no dia de hoje, e a dificuldade ainda existente de gerenciar estas, necessitando assim, a elaboração de um software que ofereça este gerenciamento seguro e eficiente.

Objetivo

O programa tem como principal objetivo, guardar senhas pessoais de forma segura e organizada, essas, ficariam salvas em um arquivo e seriam de fácil acesso ao usuário, tanto para consulta quanto para manipulação de seu diretório.

Diferencial

É um software local, único na máquina de cada usuário, permitindo maior autonomia, oferece maior segurança ao utilizar um sistema de criptografia para os dados cadastrados.

Pass_C_Word

Originada das palavras "pass" (passar) e "word" (palavra), podendo ser traduzida de forma livre como "palavra de passe" ou "palavra para passar", o termo "Password" é bastante conhecido, o nome do programa faz a junção desse termo com a linguagem utilizado na programação.

Linha do tempo

Importância

Palavras chaves

Senha

Conjunto de caracteres que fornece acesso a algo.

Gerenciador de senhas

Um software que armazena dados de login em um cofre criptografado.

Criptografia

Conversão de dados de um formato legível em um formato codificado.

Senha mestra

Aquela que oferece o controle sobre todo o banco de dados do gerenciador.

Organização

Um gerenciador eficiente deve ser organizado, facilitando a utilização.

Transparência

O vínculo de transparência com o usuário é crucial, pois trata-se de dados pessoais.

Segurança

A principal característica que um gerenciador deve possuir.

Automação

Automatiza a relação entre usuários e senhas.

Soluções similares

Keeper

- Exclusiva arquitetura de segurança de conhecimento zero;
- Autentificação multifatores;
- Plano grátis limitado.

Lastpass

- Sistema de autopreenchimento para cadastros;
- Gerador de senhas;
- Monitoramento da Dark Web;
- Versão gratuita e pacotes salvos.

1Password

- Salva demais dados do usuário;
- "Watchtower";
- Um dos serviços mais populares, porém, não é gratuito.

Dashlan

- Sistema de alertas para vazamento de dados;
- Password Changer;
- Importa senhas de outros gerenciadores.

MVC

MVC

Model

Model

Model

Model

MVC

DAO

DAO

MVC

Controller

Controller

MVC

View

Modelos de Criptografia

Existem diversos modelos de criptografia, sejam de simples quebra até outros utilizados por governos poderosos.

01 DES

Um dos mais difundidos mundialmente, pois fornece uma proteção básica de apenas cerca de 56 bits, oferecendo até 72 quadrilhões de combinações. **02** IDEA

Chave simétrica que opera em blocos de informações de 64 bits e utiliza chaves de 128 bits. Ela atua de forma diferenciada, fazendo uma espécie de confusão para cifrar o texto. 03 SAFER

Nesse modelo, a criptografia é feita em blocos de 64 bits.
Porém, é uma criptografia na qual muitos especialistas encontraram diversas fragilidades.

04 AES

É um dos algoritmos de criptografia mais seguros da atualidade, utilizado até mesmo pelo Governo dos Estados Unidos. Sua criptografia é feita em blocos de 128 a 256 bits.

Etapas da Criptografia - Armazenar a senha

```
#include <stdio.h>
int main(){
    int i=0;
    char senha[50], senhacript[150];
    scanf("%s",&senha);
    for(i=0;i<50;i++){
        if(senha[i]=='a'){
            senhacript[3*i]=0;
            senhacript[(3*i)+1]=9;
            senhacript([3*i)+2]=7;
        if(senha[i]=='b'){
            senhacript[3*i]=0;
            senhacript[(3*i)+1]=9;
            senhacript([3*i)+2]=7;
```

Etapas da Criptografia - Armazenar a senha

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main(){
    int i=0;
    char senha[50];
    int arrayint0[50];
    scanf("%s", senha);
    for(i=0;i<50;i++){
        arrayint0[i]=(int)senha[i];
```

Etapas da Criptografia - Chave Pública

```
for(i=0;i<50;i++){
        arrayint0[i]=(int)senha[i];
        arrayint1[i]=arrayint0[i]*codigo%256;
        if(arrayint0[i]!=0){printf("\n%d - %d",arrayint0[i],arrayint1[i]);}
        else{break;};
```

Etapas da Criptografia - Chave privada

```
for(i=0;i<50;i++){
            if((int)arrayint1[i]==0){
            break; }
            swit=arrayint1[i]%7;
            switch(swit){
            if(k<=2){
                arrayint2[i]=(arrayint1[i]/7)+k+36*k;
            else if(k \le 4){
                arrayint2[i]=arrayint1[i]/7+k-1+36*k;
            else if(k \le 6){
                arrayint2[i]=arrayint1[i]/7+k-2+36*k;
            senha[i]=(char)arrayint2[i];
        printf("%c", senha[i]);}
```

Processo de identificação da função para criptografia:

f(x) = [(i17)+0]+36.0	a 907 ==	
- a h b h		
1 - 36 87 7- 252)	t(x) = [(b/4+1)) + 36 · b]
37 - 73 4 (8)- 255)	F(x) = f(b/1+1)	1+36.1] (K
3 74-109 87 76-2517	+(x) = [(b)/742) + 36 (21)
110 -146 7 72- 2543	T(x) = [(b/7+2)]) 4 36 - 31
5 147 - 182 8 +3 5 - 250 ×	*(x)=[1h/7+.	3) + 36. 4]
	x3 F(X) = [(b/7)+	31 + 36.51) K-2
220 - 255 8 1324 - 249	-4 F(X) = [(b/07+	4) + 36.6]
	1	33
F(x) = [(b 17) + x) + 36 · y]		
PRUBLEMA NO (4-4)	b,+ x = 4	OU 8
	50 . ,) •

Tela Inicial

Cadastro

Para sair do programa: Aperte ctrl+c

Usuário:

Login

Para sair do programa: Aperte ctrl+c

Usuário:

Opções pós Login

Escolha uma opção: R: _

Senhas

SEMMAS

-Identificador

Senha---

netflix

fgwe6756§

Aperte s para sair

Fim da execução do programa

PASS_C_WORD

Referências

- https://inova.globalweb.com.br/post/tipos-decriptografia-descubra-as-mais-importantes-para-asua-empresa
- □ https://loupenbrasil.com.br/blog/uma-breve-historiada-senha-e-porque-ela-e-importante/
- ☐ https://pt.vpnmentor.com/blog/melhores-gerenciadores-de-senha-seguros-para/
- □ https://www.uol.com.br/tilt/noticias/redacao/2021/0 8/25/gerenciador-de-senhas-veja-5-aplicativos-paravoce-usar.htm

OBRIGADX PELA ATENÇÃO!