

$\sigma_{0^{ ext{-}}}^{\sharp 1} \dagger$	$ au_{0^{+}}^{#2} +$	$\tau_{0}^{\#1}$ †	$\sigma_{0^{+}}^{*1}$ †	
0	0	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{1}{(1+2k^2)^2t_3}$	$\sigma_{0^+}^{*1}$
0	0	$\frac{2k^2}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$ au_0^{\#1}$
0	0	0	0	$\tau_{0^+}^{\#2}$
$\frac{1}{k^2 r_2}$		0	0	$\sigma_{0^{ ext{-}}}^{\#1}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{lphaeta}$	$-\frac{2}{3k^2r_3}$	0	0
$ au_2^{\#1} \dagger^{lphaeta}$	0	0	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

	$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0+}^{#2}$	$\omega_{0}^{\sharp 1}$
$\omega_{0}^{\#1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0}^{#1}$ †	$i\sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	$k^2 r_2$

Total #:	$\tau_{2+}^{\#1}{}^{\alpha\beta}==0$	$\sigma_2^{\#1}{}^{\alpha\beta\chi} == 0$	$\sigma_{1+}^{\#2\alpha\beta} == 0$	$\tau_{1+}^{\#1}\alpha\beta==0$	$t_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1}^{\#2\alpha} + 2ik \sigma_{1}^{\#2\alpha} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	SO(3) irreps	Source constraints	u
24	5	5	ω	ω	3	ω	1	1	#		

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#_1} \dagger^{\alpha\beta\chi}$	0	0	0

_	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta} f_{1}^{\#1}{}_{\alpha\beta}$		$\omega_{1}^{\#1}{}_{lpha}$	$\omega_{1-lpha}^{$ #2}	$f_{1-\alpha}^{\#1}$	$f_{1\alpha}^{\#2}$
$\omega_{1}^{\sharp 1} \dagger^{lpha eta}$	$k^2 (2 r_3 + r_5)$	0	0	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	0	0	0	0	0	0	0
$f_{1+}^{#1} \dagger^{\alpha\beta}$	0	0	0	0	0	0	0
$\omega_{1}^{#1}$ † lpha	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2} t_3}{3}$	0	$-\frac{2}{3}ikt_3$
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$-\frac{\sqrt{2} t_3}{3}$	<u>t3</u> 3	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	<u>2ikt3</u> 3	$-\frac{1}{3}i\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$

Quadratic pole

? Pole residue: $-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$

Polarisations: 2

Unitarity conditions

 $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$

(No massive particles)