WHAT IS CLAIMED IS:

1. A compound comprising the formula:

(I) $R_{1} = \begin{cases} R_{2} \\ C \\ R_{3} \end{cases} m \qquad K_{1} = \begin{bmatrix} R_{2} \\ C \\ R_{3} \end{bmatrix} m \qquad K_{2} = \begin{bmatrix} R_{1} \\ C \\ R_{3} \end{bmatrix} m$ wherein:

R₁ is a polymeric residue;

 Y_1 is O, S or NR_4 ;

M is O, S or NR₅;

E₁ is

 $\begin{array}{c|c}
 & Y_2 \\
 & C \\
 & C
\end{array}$ $\begin{array}{c|c}
 & C \\
 & R_6
\end{array}$

 E_{2-4} are independently H, E_1 or

 $\begin{array}{c|c}
 & & Y_3 \\
 & & & \\
 & & C \\
\hline
 & & P \\
\hline
 & & R_8
\end{array}$

- (a) is zero or one;
- (m) is zero or a positive integer;
- (n) and (p) are independently 0 or a positive integer;

Y₂₋₃ are independently O, S or NR₁₀;

 R_{2-10} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

D₁ and D₂ are independently OH,

or a terminal branching group;

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

J is
$$NR_{12}$$
 or

L₁ and L₂ are independently selected bifunctional linkers;

Y₄₋₇ are independently selected from the group consisting of O, S and NR₁₄;

 R_{11-14} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroakoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

 B_1 and B_2 are independently selected from the group consisting of leaving groups, OH, residues of hydroxyl-containing moieties or amine-containing moieties.

2. The compound of claim 1, wherein R₁ further comprises a capping group A, selected from the group consisting of hydrogen, NH₂, OH, CO₂H, C₁₋₆ moieties and

$$E_{2} \xrightarrow{E_{1}} C \xrightarrow{Y_{1}} C \xrightarrow{Y_{1}} C \xrightarrow{R_{2}} C \xrightarrow{R_{2}} C \xrightarrow{R_{3}} m$$

3. A compound of claim 2, comprising the formula:

$$E_{2} = \begin{bmatrix} E_{1} & Y_{1} & Y_{1} & E_{2} \\ C & N & C \end{bmatrix} = \begin{bmatrix} R_{2} & Y_{1} & E_{1} \\ C & C \end{bmatrix} = \begin{bmatrix} R_{2} & Y_{1} & E_{1} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & Y_{1} & E_{1} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & Y_{1} & E_{1} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & Y_{1} & E_{1} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & Y_{1} & E_{1} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1} & X_{2} \\ C & M \\ A & C \end{bmatrix} = \begin{bmatrix} R_{2} & X_{1}$$

4. The compound of claim 1, wherein said terminal branching group comprises the formula:

wherein

$$E_{35}$$
 is
$$- \left(\begin{array}{c} R_7 \\ C \\ R_6 \end{array} \right) n$$

E₃₆₋₃₈ are independently H, E₃₅ or

$$\begin{array}{c|c}
 & & Y_3 \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

(n) and (p) are independently 0 or a positive integer;

 Y_{2-3} are independently O, S or NR_{10} ;

 R_{6-10} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} hetero-

alkyls, C₁₋₆ alkoxy, phenoxy and C₁₋₆ heteroalkoxy;

D'1 and D'2 are independently OH,

or

$$\begin{array}{c|c}
(V II) & E_{45} \\
\hline
-N & C & E_{46} \\
\hline
E_{48} & E_{47}
\end{array}$$

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

 L_1 and L_2 are independently selected bifunctional linkers;

Y₄₋₇ are independently selected from the group consisting of O, S and NR₁₄;

 R_{11-14} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroakoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

B₁ and B₂ are independently selected from the group consisting of leaving groups, OH, residues of hydroxyl-containing moieties or amine-containing moieties;

E₄₅ is

$$\begin{array}{c|c}
 & Y_2 \\
 & \parallel^2 \\
 & C \longrightarrow D''_1 \\
\hline
 & R_6
\end{array}$$

 E_{46-48} are independently H, E_{45} or

$$\begin{array}{c|c}
 & & Y_3 \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

wherein

D''1 and D''2 are independently OH,

or

- 5. The compound of claim 3, Y_1 is O.
- 6. The compound of claim 1, wherein R₁ comprises a polyalkylene oxide residue.
- 7. The compound of claim 6, wherein R_1 comprises a polyethylene glycol residue.
- 8. The compound of claim 3, wherein R_1 comprises a polyethylene glycol residue.
- 9. The compound of claim 6, wherein R_1 is selected from the group consisting of

$$-C(=Y_6)-(CH_2)_{f}O-(CH_2CH_2O)_{x}-A,$$

$$-C(=Y_6)-Y_7-(CH_2)_f-O-(CH_2CH_2O)_x-A$$

$$-C(=Y_6)-NR_{23}-(CH_2)_6-O-(CH_2CH_2O)_x-A$$

$$-(CR_{24}R_{25})_e$$
-O- $(CH_2)_f$ -O- $(CH_2CH_2O)_x$ -A,

$$-NR_{23}-(CH_2)_f-O-(CH_2CH_2O)_x-A$$
,

$$-C(=Y_6)-(CH_2)_f-O-(CH_2CH_2O)_x-(CH_2)_f-C(=Y_6)-$$

$$-C(=Y_6)-Y_7-(CH_2)_f-O-(CH_2CH_2O)_x-(CH_2)_f-Y_7-C(=Y_6)-$$

$$-C(=Y_6)-NR_{23}-(CH_2)_fO-(CH_2CH_2O)_x-(CH_2)_fNR_{23}-C(=Y_6)-$$

$$-(CR_{24}R_{25})_e$$
-O- $(CH_2)_f$ -O- $(CH_2CH_2O)_x$ - $(CH_2)_f$ -O- $(CR_{24}R_{25})_e$ -, and

$$-NR_{23}-(CH_2)_fO-(CH_2CH_2O)_x-(CH_2)_fNR_{23}-$$

wherein: Y₆ and Y₇ are independently O, S or NR₂₃;

x is the degree of polymerization;

 $R_{23},\,R_{24}\,\,\text{and}\,\,R_{25}\,\text{are independently selected from among H,}\,\,C_{1\text{-}6}\,\,\text{alkyls,}\,\\ C_{3\text{-}12}\,\,\text{branched alkyls,}\,\,C_{3\text{-}8}\,\,\text{cycloalkyls,}\,\,C_{1\text{-}6}\,\,\text{substituted alkyls,}\,\,C_{3\text{-}8}\,\,\text{substituted cycloalkyls,}\\ \text{aryls, substituted aryls, aralkyls,}\,\,C_{1\text{-}6}\,\,\text{heteroalkyls, substituted}\,\,C_{1\text{-}6}\,\,\text{heteroalkyls,}\\$

 C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

e and f are independently zero, one or two; and A is a capping group.

10. The compound of claim 9, wherein R_1 comprises -O- $(CH_2CH_2O)_x$ and x is a positive integer so that the weight average molecular weight is at least about 20,000.

- 11. The compound of claim 3, wherein R_1 has a weight average molecular weight of from about 20,000 to about 100,000.
- 12. The compound of claim 3, wherein R_1 has a weight average molecular weight of from about 25,000 to about 60,000.
- 13. A compound of claim 3, comprising the formula

14. The compound of claim 13, wherein D_1 is

15. The compound of claim 13, wherein D_1 is

$$--N$$
 $-- -- E_{36}$ E_{38} E_{37}

- 16. The compound of claim 1, wherein L_1 is $(CH_2CH_2O)_2$.
- 17. The compound of claim 1, wherein L_2 is selected from the group consisting of $-CH_2$ -, $-CH(CH_3)$ -, $-CH_2C(O)NHCH(CH_3)$ -, $-(CH_2)_2$ -, $-CH_2C(O)NHCH_2$ -, $-(CH_2)_2$ -NH-, $-(CH_2)_2$ -NH-C(O)(CH₂)₂NH- and $-CH_2C(O)NHCH(CH_2CH(CH_3)_2)$ -.
- 18. A compound of claim 1, selected from the group consisting of:

wherein R₁ is a PEG residue and D is selected from the group consisting of:

where B is a residue of an amine or a hydroxyl-containing drug.

- 19. A compound of claim 18, wherein B is a residue of a member of the group consisting of: daunorubicin, doxorubicin; *p*-aminoaniline mustard, melphalan, Ara-C (cytosine arabinoside), leucine-Ara-C, and gemcitabine
- 20. A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 1, wherein D_1 is a residue of a biologically active moiety.
- 21. A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 18.

22. The compound of claim 1, wherein Ar comprises the formula:

wherein R_{11} and R_{18-20} are individually selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroakoxy.

- The compound of claim 22, wherein R_{11} and R_{18-20} are each H or CH_3 .
- 24. A method of preparing a polymer conjugate, comprising: reacting a compound of the formula (VIII):

$$H-J \longrightarrow \begin{bmatrix} L_1 \\ L_2 \end{bmatrix}_t \begin{bmatrix} L_2 \\ L_2 \end{bmatrix}_t \begin{bmatrix} R_{13} & R_{15} & Y_5 \\ C & C & C \end{bmatrix}$$

$$\begin{bmatrix} R_{13} & R_{15} & Y_5 \\ C & C & C \end{bmatrix}$$

$$\begin{bmatrix} R_{14} & R_{16} \\ R_{11} \end{bmatrix}$$

$$\begin{bmatrix} R_{14} & R_{16} \\ R_{11} \end{bmatrix}$$

wherein

(v) and (t) are independently 0 or a positive integer up to about 6;

J is NR_{12} or

L₁ and L₂ are independently selected bifunctional linkers;

 Y_{4-5} are independently selected from the group consisting of O, S and NR₁₇;

 R_{11-17} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group; and

B'₁ is a residue of a hydroxyl- or an amine-containing moiety; with a compound of the formula (IX):

$$R_{1} = \left\{ \begin{array}{c} R_{2} \\ C \\ R_{3} \end{array} \right\} \begin{array}{c} Y_{1} \\ M_{a} \end{array} \begin{array}{c} E_{5} \\ N \\ E_{8} \end{array} \begin{array}{c} E_{5} \\ E_{7} \end{array}$$

wherein

E₆₋₈ are independently H, E₅ or

D₃ and D₄ are independently OH, a leaving group which is capable of reacting with an unprotected amine or hydroxyl or a terminal branching group;

 R_1 is a polymeric residue;

 Y_1 is O, S or NR_4 ;

M is O, S or NR₅;

- (a) is zero or one;
- (m) is 0 or a positive integer;
- (n) and (p) are independently 0 or a positive integer;

 Y_{2-3} are independently O, S or NR_{10} ; and

 $R_{2\text{-}10}$ are independently selected from the group consisting of hydrogen, $C_{1\text{-}6}$ alkyls, $C_{3\text{-}12}$ branched alkyls, $C_{3\text{-}8}$ cycloalkyls, $C_{1\text{-}6}$ substituted alkyls, $C_{3\text{-}8}$ substituted cycloalkyls, aryls, substituted aryls, aralkyls, $C_{1\text{-}6}$ heteroalkyls, substituted $C_{1\text{-}6}$ heteroalkyls, $C_{1\text{-}6}$ alkoxy, phenoxy and $C_{1\text{-}6}$ heteroalkoxy;

under conditions sufficient to cause a polymeric conjugate to be formed.