Grundpraktikum I Elektrizitätslehre C14

Gruppe C14

15. März 2016

Versuchsbeschreibung

• Ohm'sches Gesetz:

$$R = \frac{U}{I}$$

• Rauschen von *U* und *I* gemessen

Versuchsaufbau und Durchführung

Abbildung: Versuchsaubau

Versuchsauswertung

- Mittelwerte von U und I mit stat. Fehler berechnet
- sys. Fehler aus Herstellerangaben errechnet
- Mittelwert f
 ür R mit Fehler berechnet

Rohdaten

Abbildung: Rauschmessungen

Analyse

Formeln:

$$R = \frac{\bar{U}}{\bar{I}} \quad \sigma_R = \sqrt{(\frac{1}{\bar{I}})^2 \cdot \sigma_{\bar{U}}^2 + (\frac{\bar{U}}{\bar{I}^2})^2 \cdot \sigma_{\bar{I}}^2} \quad \frac{\sigma_R}{R} = \sqrt{(\frac{\sigma_{\bar{U}}}{\bar{U}})^2 + (\frac{\sigma_{\bar{I}}}{\bar{I}})^2}$$

 Aus Fehlerrechnungen der stat. Fehlern und sys. Fehlern aus Herstellerangaben des Sensor-Cassy R berechnet

Tabelle: Ergebnisse

$ar{U}$	$\sigma_{ar{U}}$	$ \bar{I}$	$\sigma_{ar{I}}$	R	ΔR_{stat}	ΔR_{sys}
1.71 <i>V</i>	0.00009 <i>V</i>	0.002 <i>A</i>	0.00002 <i>A</i>	855Ω	8.55Ω	233.27Ω
3.88 <i>V</i>	0.00008 <i>V</i>	0.004 <i>A</i>	0.00002 <i>A</i>	970Ω	4.85Ω	135.8Ω
5.82 <i>V</i>	0.00007 <i>V</i>	0.006 <i>A</i>	0.00003 <i>A</i>	970Ω	4.85Ω	101.84Ω
7.68 <i>V</i>	0.00009 <i>V</i>	0.008 <i>A</i>	0.000026 <i>A</i>	960Ω	2.4Ω	74Ω

Widerstand über Lineare Regression

Widerstand - Variable Spannungen - Beschreibung

- Aufbau gleich wie beim ersten Versuch
- Einzelmessungen bei verschiedenen Spannungen
- U gegen I auftragen
- Steigung der Geraden ist der Widerstand
- statistische Fehler aus dem ersten Versuch übernehmen
- systematische Fehler über Abschätzen die maximalen Variation der Linearen Regression

Das Ohmsche Gesetz

$$U = R \cdot I \tag{1}$$

Widerstand - Variable Spannungen - Aufbau

ullet Bauteil: 1 k Ω Widerstand \pm 5% Toleranz

Widerstand - Variable Spannungen - Rohdaten

Abbildung: Einzelmessungen U gegen I

Widerstand - Variable Spannungen - Verarbeitung - Übersicht

- Daten in Python einlesen
- Lineare Regression durchführen
- systematische Fehler auf U und I maximal variieren
- dadurch den systematischen Fehler abschätzen
- gewichteten Mittelwert berechnen

• Lineare Regression

dadurch den systematischen Fehler abschätzen

$$\bullet \ \sigma_{R_{\rm sys}} = \frac{a_{\rm max} - a_{\rm min}}{2 \cdot \sqrt{12}}$$

$$\sigma_{R_{\text{sys}}} = \frac{59.337608\Omega}{2 \cdot \sqrt{12}} = 8.565\Omega \tag{2}$$

gewichteten Mittelwert berechnen

•
$$\bar{R} = \frac{\sum \frac{R}{(\sigma_{sys} + \sigma_{stat})^2}}{\sum \frac{1}{(\sigma_{sys} + \sigma_{stat})^2}}$$

• $R = 958.798\Omega \pm 1.916\Omega_{\textit{stat}} \pm 8.565\Omega_{\textit{sys}}$

Widerstand - Variable Spannungen - Fazit

- Vermessung mit Multimeter $R = 0.993 k\Omega$
- Unser errechneter Wert (958.798 Ω \pm 1.916 Ω_{stat} \pm 53.154 Ω_{sys})
- Herstellerangabe $0.950k\Omega 1.050k\Omega$
- Unser Wert liegt also auch hier im Rahmen der Toleranz

Versuchsbeschreibung

- Strom- bzw. Spannungsverlauf messen
- Zeitkonstante bestimmen

$$\tau = R \cdot C$$

• Aus abgelesenen Werten τ berechnen:

$$\frac{U_1}{U_2} = e^{-\frac{t_1-t_2}{\tau}}$$

Versuchsaufbau

Abbildung: Versuchsaufbau

Versuchsauswertung

- Offsests korrigiert
- Aus abgelesenen Werten τ berechnen:

$$\tau = \frac{\Delta t}{\ln \frac{U_1}{U_2}} \qquad \sigma_{\tau} = \sqrt{\left(\frac{\sigma_{\Delta t}}{\ln \frac{U_1}{U_2}}\right)^2 + \left(\frac{\Delta t}{U_1} \cdot \sigma_{U_1}\right)^2 + \left(-\frac{\Delta t}{U_2} \cdot \sigma_{U_2}\right)^2}$$

- Aus τ C bestimmen
- sys. Fehler auf C ergibt sich aus:

$$\frac{\sigma_{C,sys}^R}{C} = \frac{\sigma_{R,sys}}{R}$$

Rohdaten

- Werte für *U* und *I* im Abstand von 1*ms* notiert
- Ablesefehler notiert

Tabelle: Oszilloskop

I_1	I_2
0,72 <i>A</i>	1,88 <i>A</i>
0,8 <i>A</i>	2, 24 <i>A</i>
0,76 <i>A</i>	2, 12 <i>A</i>
0,72 <i>A</i>	1,92 <i>A</i>
U_1	U_2
$\frac{U_1}{0,84V}$	U ₂ 2,48V
0,84 <i>V</i>	2,48 <i>V</i>

Analyse/Transformation der Rohdaten

• C und σ_C berechnet:

$$C = \frac{\tau}{R} \qquad \qquad \sigma_C = \sqrt{(\frac{\sigma_\tau}{R})^2 + (-\frac{\tau}{R^2} \cdot \sigma_R)^2}$$

- Der systematische Fehler aus Widerstandsmessung berechnet
- Einzelergebnisse mit Gesammtfehlern gegen Mittelwert geplottet

$$C = 0.921406 \pm 0.008262 \pm 0.002844 \mu F \tag{3}$$

$$C_{Herst.} = 1\mu F \pm 5\% \tag{4}$$

Ergebnis

Abbildung: Ergebnisse vs. Mittelwert

Fazit

- Abweichung zur Herstellerangabe durch nicht berücksichtigte sys. Fehler: z.B. Widerstand der Kabel
- Gemessener Wert im Bereich der Herstellerangabe

Charakterisierung des Kondensators mit Cassy

Kondensator - Cassy - Beschreibung

- gleicher Aufbau wie bei der Messung mit dem Oszilloskop
- Auswertung der Daten mit Python
- Vergleich mit Herstellerangaben

Kondensator - Cassy - Aufbau

Kondensator - Cassy - Rohdaten

Aufladevorgang (U in V [rot], I in A [schwarz]gegen t in ms)

Kondensator - Cassy - Rohdaten

Entladevorgang (U in V [rot], I in A [schwarz]gegen t in ms)

Kondensator - Cassy - Verarbeitung - Übersicht

- Offsets über Cassy grafisch bestimmen
- Daten logarithmieren
- eine Gerade an die Datenpunkte fitten mittels Linearer Regression
- Residuum bilden
- Fit bewerten
- gewichteten Mittelwert bilden

Offset und Ablesefehlerbestimmung

$$off = 0.00041A \tag{5}$$

Logarithmierter I-Datensatz (Einheiten siehe Grafik)

- Bereiche am Anfang und Ende werden nicht berücksichtigt

Logarithmierter I-Datensatz mit angepasstem Bereich(Einheiten siehe Grafik)

- sieht nach einer Geraden aus
- Lineare Regression durchführen

$$\chi^2/f = 3.046431$$

- a = -969.523
- $C = -\frac{1}{a \cdot R} = 1.044 \mu F$

Kondensator - Cassy - Auswertung

Residuum für U

Kondensator - Cassy - Auswertung

Fortpflanzung systematischer Fehler:

$$\sigma_{c_{\rm sys}} = \frac{1}{a \cdot R^2} \cdot \sigma_{R_{\rm sys}} \tag{6}$$

gewichteten Mittelwert bilden:

$$\bar{C} = \frac{\sum \frac{C}{(\sigma_{sys} + \sigma_{stat})^2}}{\sum \frac{1}{(\sigma_{sys} + \sigma_{stat})^2}}$$
(7)

$$\sigma_{C_{ges}} = \sqrt{\frac{1}{\sum \frac{1}{(\sigma_{sys} + \sigma_{stat})^2}}}$$
 (8)

Kondensator - Cassy - Auswertung

60% der Daten schneiden den Mittelwert mit ihren Fehlerbalken

Kondensator - Cassy - Fazit

Kapazität-Endergebnis:

$$C = 1.026\mu F \pm 2.028 \cdot 10^{-3} \mu F \pm 3.143 \cdot 10^{-3} \mu F$$
 (9)

• liegt innerhalb der 5% Toleranzgrenze des Herstellers $(0.95\mu F-1.05\mu F)$

$$\chi^2/f = 3.046 \tag{10}$$

• Wert stimmt mit Messung der Greenbox überein $(0.999 \mu F \pm 0.25\% \mu F)$.

