Student ID: DH20042 Name: 弗兰克

1. The difference in movies rating by males an femeles

0	1	М	4
1	1	М	3
2	1	М	4
3	1	М	4
4	1	М	4
99995	943	М	1
99996	943	М	4
99997	943	М	3
99998	943	М	4
99999	943	М	2

100000 rows × 3 columns

```
In [5]: rating_df.groupby('gender').rating.std()
Out[5]: gender
```

F 1.170951 M 1.109556

Name: rating, dtype: float64

```
In [6]: rating_df.groupby('gender').rating.apply(pd.Series.std)
Out[6]: gender
    F     1.170951
    M     1.109556
    Name: rating, dtype: float64
```

In [7]: rating_df.groupby(['user id','gender']).apply(np.mean)

/opt/anaconda3/lib/python3.9/site-packages/numpy/core/fromnumeric.py:337
0: FutureWarning: Dropping of nuisance columns in DataFrame reductions (w
ith 'numeric_only=None') is deprecated; in a future version this will rai
se TypeError. Select only valid columns before calling the reduction.
return mean(axis=axis, dtype=dtype, out=out, **kwargs)

Out[7]:

user id	gender		
1	М	1.0	3.610294
2	F	2.0	3.709677
3	М	3.0	2.796296
4	М	4.0	4.333333
5	F	5.0	2.874286
•••			
939	F	939.0	4.265306
940	М	940.0	3.457944
941	М	941.0	4.045455
942	F	942.0	4.265823
943	М	943.0	3.410714

user id

rating

943 rows × 2 columns

```
In [8]: #Save the gouping
df1 = rating_df.groupby(['user id','gender']).apply(np.mean)
```

/opt/anaconda3/lib/python3.9/site-packages/numpy/core/fromnumeric.py:337
0: FutureWarning: Dropping of nuisance columns in DataFrame reductions (w
ith 'numeric_only=None') is deprecated; in a future version this will rai
se TypeError. Select only valid columns before calling the reduction.
return mean(axis=axis, dtype=dtype, out=out, **kwargs)

```
In [9]: # Grouping by gender
df1.groupby('gender').rating.std()
```

```
Out[9]: gender
F 0.481241
M 0.430076
```

Name: rating, dtype: float64

```
In [10]: pd.pivot_table(df1, values = 'rating', index = 'gender', aggfunc = pd.Serie
Out[10]:
                   rating
          gender
               F 0.481241
              M 0.430076
In [12]: pd.pivot_table(rating_df, index = ['user id', 'gender'], values = 'rating')
Out[12]:
                          rating
          user id gender
               1
                     M 3.610294
                     F 3.709677
               2
                     M 2.796296
               3
                       4.333333
                       2.874286
               5
                       4.265306
             939
                     M 3.457944
             940
             941
                     M 4.045455
                     F 4.265823
             942
             943
                     M 3.410714
          943 rows × 1 columns
In [13]: t = pd.pivot table(rating df, index = ['user id', 'gender'], values = 'ratin
          female = t.query("gender == ['F']")
         pd.Series.std(female)
Out[13]: rating
                    0.481241
          dtype: float64
In [15]: p = pd.pivot table(rating df, index = ['user id', 'gender'], values = 'ratin'
         male = t.query("gender == ['M']")
         pd.Series.std(male)
Out[15]: rating
                    0.430076
          dtype: float64
 In [ ]:
```