Analysis of Algorithms

How fast is your algorithm?

- Low memory usage?
- Small amount of time measured on a stopwatch?
- Low power consumption?

Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics

Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition, noting the time needed:

from time import time
start_time = time()
run algorithm
end_time = time()
elapsed = end_time - start_time

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n.
- □ Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

The Random Access Machine (RAM) Model

□ A CPU

 An potentially unbounded bank of **memory** cells, each of which can hold an arbitrary number or character

Memory cells are numbered and accessing any cell in memory takes unit time.

Elementary Operations

- Algorithmic "time" is measured in elementary operations
 - Math (+, -, *, /)
 - Comparisons (==, >, <=, ...)
 - Function calls and value returns
 - Variable assignment
 - Variable increment or decrement
 - Array allocation
 - Creating a new object (may have elementary ops too!)
- In practice, all of these operations take different amounts of time
- For the purpose of algorithm analysis, we assume each of these operations takes the same time: "1 operation"

Elementary Operations

- Basic computations performed by an algorithm
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

Examples:

- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Example: Constant Running Time

```
function first(array):
    // Input: an array
    // Output: the first element
    return array[0] // index 0 and return, 2
ops
```

How many operations are performed in this function if the list has ten elements? If it has 100,000 elements?

Example: Constant Running Time

```
function first(array):
    // Input: an array
    // Output: the first element
    return array[0] // index 0 and return, 2
ops
```

- How many operations are performed in this function if the list has ten elements? If it has 100,000 elements?
 - Always 2 operations performed
 - Does not depend on the input size

Example: Linear Running Time

```
def argmax(array):
    // Input: an array
    // Output: the index of the maximum value
    index = 0 // assignment, 1 op
    for i in range(len(array))://1 + 1 op per loop
        if array[i] > array[index]://3 ops per loop
        index = i // 1 op per loop, sometimes
    return index // 1 op
```

How many operations if the list has 10 elements? 100,000 elements?

- Varies proportionally to the size of the input list: 6n + 2
- We'll be in the for loop longer and longer as the input list grows
- If we were to plot, the runtime would increase linearly

Estimating Running Time

- □ Algorithm argmax executes 6n + 2 primitive operations in the worst case, 5n + 2 in the best case. Define:
 - a = Time taken by the fastest primitive operation
 - b = Time taken by the slowest primitive operation
- □ Let T(n) be worst-case time of argmax. Then $a(5n+2) \le T(n) \le b(6n+2)$
- \square Hence, the running time T(n) is bounded by two linear functions.

Growth Rate of Running Time

- Changing the hardware/ software environment
 - \blacksquare Affects T(n) by a constant factor, but
 - Does not alter the growth rate of T(n)
- The linear growth rate of the running time T(n) is an intrinsic property of algorithm $\underset{\sim}{\operatorname{algorithm}}$

Example: Quadratic Running Time

```
def possible_products(array):
    // Input: an array
    // Output: a list of all possible products
    // between any two elements in the list
    products = [] // make an empty list, 1 op
    for i in range(len(array)): // 1+1=2 op per loop
        for j in range(len(array)): // 1+1=2 op per loop per loop
        products.append(array[i] * array[j]) // 4 ops per loop
        return products // 1 op
```

- \Box Requires about $6n^2 + 2n + 2$ operations (okay to approximate!)
 - If we were to plot this, the number of operations executed grows quadratically!
- □Consider adding one element to the list: the added element must be multiplied with every other element in the list
- □Notice that the linear algorithm on the slide #14 had only one for loop, while this quadratic one has two for loops, nested. What would be the highest-degree term (in number of operations) if there were three nested loops?

Some Common Computing Times

$\log_2 n$	n	$n \log_2 n$	n ²	2 <i>n</i>
1	2	2	4	4
2	4	8	16	16
3	8	24	64	256
4	16	64	256	65,536
5	32	160	1,024	4,294,967,296
6	64	384	4,096	1.84×10^{19}
7	128	896	16,384	3.40×10^{38}
8	256	2,048	65,536	1.16×10^{77}
9	512	4,608	262,144	1.34×10^{154}
10	1,024	10,240	1,048,576	1.80×10^{308}

Slide by Matt Stallmann included with permission.

Why Growth Rate Matters

if runtime is	time for n + 1	time for 2 n	time for 4 n
c lg n	c lg (n + 1)	c (lg n + 1)	c(lg n + 2)
cn	c (n + 1)	2c n	4c n
cnlgn	~ c n lg n + c n	2c n lg n + 2cn	4c n lg n + 4cn
c n ²	~ c n ² + 2c n	4c n²	16c n ²
c n ³	$\sim c n^3 + 3c n^2$	8c n ³	64c n ³
c 2 ⁿ	c 2 ⁿ⁺¹	c 2 ²ⁿ	c 2 ⁴ⁿ

runtime quadruples → when problem size doubles

Summarizing Function Growth

T(n)

- For very large inputs, the growth rate of a function becomes less affected by:
 - constant factors or
 - lower-order terms
- Examples
 - 10⁵n² + 10⁸n and n² both grow with same slope despite differing constants and lower-order terms
 - 10n + 10⁵ and n both grow with same slope as well

In this graph (<u>log scale</u> on both axes), the slope of a line corresponds to the growth rate of its respective function ₁₈

Seven Important Functions

- Seven functions that
 often appear in algorithm 1E+30
 analysis:
 - Constant ≈ 1
 - Logarithmic $\approx \log n$
 - Linear $\approx n$
 - N-Log-N $\approx n \log n$
 - Quadratic $\approx n^2$
 - Cubic $\approx n^3$
 - Exponential $\approx 2^n$
- In a log-log chart, the slope of the line corresponds to the growth rate

Functions Graphed Using "Normal" Scale

Slide by Matt Stallmann included with permission.

Typical Growth Rates

Slide by Matt Stallmann included with permission.

Comparison of Two Algorithms

insertion sort is

n² / 4

merge sort is
2 n lg n

sort a million items?

insertion sort takes
roughly 70 hours
while

merge sort takes
roughly 40 seconds

This is a slow machine, but if 100 x as fast then it's 40 minutes versus less than 0.5 seconds

Constant Factors

- The growth rate is not affected by
 - constant factors or
 - lower-order terms
- Examples
 - 10^2 **n** + 10^5 is a linear function
 - $10^5 n^2 + 10^8 n$ is a quadratic function

Comparison of Insertion Sort and Python Built In Sort Function

- Please go to Brightspace to open the InsertionVSbuiltinClassVersion.py file
- □ Implement Insertion sort in that code.
- Use the Python built in sort from list class
- Compare the runtime. Which one is better???
- Submit code to Gradescope

- Idea: like sorting a hand of playing cards
 - Start with an empty left hand and the cards facing down on the table.
 - Remove one card at a time from the table, and insert it into the correct position in the left hand
 - compare it with each of the cards already in the hand, from right to left
 - The cards held in the left hand are sorted
 - these cards were originally the top cards of the pile on the table

Visualization: https://visualgo.net/en/sorting

To insert 12, we need to make room for it by moving first 36 and then 24.

input array

5 2 4 6 1 3

at each iteration, the array is divided in two sub-arrays:

INSERTION-SORT

```
Alg.: INSERTION-SORT(A)
                                                            a_3
                                                      a_2
                                                                   a_4
                                                                        a_5
                                                                              a_6
                                           a_0
   for j \leftarrow 1 to n-1
          do key \leftarrow A[j]
              # Insert key into the sorted sequence A[0..j-1]
              i \leftarrow j - 1
              while i >= 0 and A[i] > key
                    do A[i + 1] \leftarrow A[i]
                         i \leftarrow i - 1
              A[i + 1] \leftarrow \text{key}

    Insertion sort – sorts the elements in place
```

Big-O Notation

Given functions f(n) and g(n), we say thatf(n) is O(g(n))

if there exist positive constants ${\bf c}$ and ${\bf n}_0$ such that

$$f(n) \le c g(n)$$
 for all $n \ge n_0$

Big-O Notation (continued)

Example: n^2 is not O(n)

 $n^2 \le cn$

 $n \le c$

The above inequality cannot be satisfied because c must be a constant, therefore for any n > c the inequality is false

Big-O and Growth Rate

- Big-O notation gives an upper bound on the growth rate of a function
- □ We saw on the previous slide that n² is not 0(n)
 - But n is O(n²)
 - And n^2 is $O(n^3)$
 - Why? Because Big-O is an upper bound!

Summary of Big-O Rules

- □ If f(n) is a polynomial of degree d, then f(n) is O(n^d). In other words:
 - forget about lower-order terms
 - forget about constant factors
- Use the smallest possible degree
 - It's true that 2n is O(n⁵⁰), but that's not a helpful upper bound
 - Instead, say it's O(n), discarding the constant factor and using the smallest possible degree

Constants in Algorithm Analysis

- Find the number of primitive operations executed as a function (T) of the input size
 - first: T(n) = 2
 - argmax: T(n) = 6n + 2
 - possible_products: $T(n) = 6n^2 + 2n + 2$
- In the future we can skip counting operations and replace any constants with c since they become irrelevant as n grows
 - first: T(n) = c
 - argmax: $T(n) = c_0 n + c_1$
 - possible_products: $T(n) = c_0 n^2 + n + c_1$

Big-O in Algorithm Analysis

- Easy to express T in big-O by dropping constants and lower-order terms
- In big-O notation
 - first is 0(1)
 - argmax is O(n)
 - possible_products is $O(n^2)$
- □ The convention for representing T(n) = c in big-O is O(1).

More Big-Oh Examples

- ◆ 7n-2
 - 7n-2 is O(n) need c > 0 and $n_0 \ge 1$ such that $7n-2 \le c \cdot n$ for $n \ge n_0$ this is true for c = 7 and $n_0 = 1$
 - $-3n^3 + 20n^2 + 5$ $3n^3 + 20n^2 + 5$ is $O(n^3)$ need c > 0 and $n_0 \ge 1$ such that $3n^3 + 20n^2 + 5 \le c \cdot n^3$ for $n \ge n_0$ this is true for c = 4 and $n_0 = 21$
 - 3 log n + 5

 $3 \log n + 5 \text{ is } O(\log n)$ need c > 0 and $n_0 \ge 1$ such that $3 \log n + 5 \le c \cdot \log n$ for $n \ge n_0$ this is true for c = 8 and $n_0 = 2$

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- □ The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate

	f(n) is $O(g(n))$	g(n) is $O(f(n))$
g(n) grows more	Yes	No
f(n) grows more	No	Yes
Same growth	Yes	Yes

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation
- Example:
 - We say that algorithm argmax "runs in O(n) time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- The *i*-th prefix average of an array *X* is average of the first (*i* + 1) elements of *X*:

$$A[i] = (X[0] + X[1] + ... + X[i])/(i+1)$$

 Computing the array A of prefix averages of another array X has applications to financial analysis

Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition

```
def prefix_average1(S):

"""Return list such that, for all j, A[j] equals average of S[0], ..., S[j]."""

n = len(S)

A = [0] * n

for j in range(n):

total = 0

for i in range(j + 1):

total + S[i]

A[j] = total / (j+1)

# record the average

return A
```

Arithmetic Progression

- □ The running time of prefixAverage1 isO(1 + 2 + ...+ n)
- □ The sum of the first n integers is n(n + 1)/2
 - There is a simple visual proof of this fact
- Thus, algorithm
 prefixAverage1 runs in
 O(n²) time

Prefix Averages 2 (Looks Better)

The following algorithm uses an internal Python function to simplify the code

 \bullet Algorithm *prefixAverage2* **still** runs in $O(n^2)$ time!

Prefix Averages 3 (Linear Time)

The following algorithm computes prefix averages in linear time by keeping a running sum

ightharpoonup Algorithm *prefixAverage3* runs in O(n) time

Math you need to Review

- Summations
- Logarithms and Exponents

- Proof techniques
- Basic probability

properties of logarithms:

$$log_b(xy) = log_bx + log_by$$

$$log_b(x/y) = log_bx - log_by$$

$$log_bx^a = alog_bx$$

$$log_ba = log_xa/log_xb$$

properties of exponentials:

$$a^{(b+c)} = a^b a^c$$

$$a^{bc} = (a^b)^c$$

$$a^b / a^c = a^{(b-c)}$$

$$b = a^{\log_a b}$$

$$b^c = a^{c*\log_a b}$$

Composition Rules for Big-O

If
$$T_1(N) = O(f(N))$$
 and $T_2(N) = O(g(N))$

$$T_1(N) + T_2(N) = O(f(N)) + O(g(N))$$

O(max(f(N), g(N))

$$T_1(N) * T_2(N) = O(f(N)) * O(g(N))$$

General Rules – Basic forloops

```
Compute \sum_{i=1}^{N} i^3
```

```
1 step (initialization)
+1 step for last test
```

```
public static int sum(int n) {
  int partialSum = 0; 1 step

for (int i = 1; i <= n; i++)  2 steps each
  partialSum += i * i * i;
  return partialSum;
}</pre>

1 step

4 steps each
}
```

T(N) = 6N + 2 = 0(N)

(running time of statements in the bop) X (iterations)

If bop runs a constant number of times: 0 (c)

def sum(n):
 partialSum = 0
 for i in range(1,n+1):
 partialSum += i*i*i
 return partialSum

General Rules – Nested Loops

General Rules – Consecutive Blocks

$$O(N) + O(N^2) = O(N^2)$$

General Rules - Conditionals

$$T(N) = O(\max(T_{S_1}(N), T_{S_2}(N)) + T_{\operatorname{test}}(N))$$

Logarithms in the Runtime

```
public static int binarySearch(int[] a, int x) {
  int low = 0;
  int high = a.length - 1;

while ( low <= high) {
  int mid = (low + high) / 2;
  if (a[mid] < x)
    low = mid + 1;
  else if(a[mid] > x)
    high = mid - 1;
  else
    return mid; // found
  }
  return -1; // Not found.
}
```

```
def binarySearch(a, x):
    low = 0
    high = len(a) - 1

while low <= high:
    mid = (low+high) // 2
    if a[mid] < x:
        low = mid+1
    elif a[mid] > x:
        high = mid-1
    else:
        return mid #found
    return -1 #not found
```

Reduces the search space by half at every step k steps until $N+1 \ge 2^k \ge N$

$$Log_2(N+1) \ge k \ge Log_2N$$

$$T(N) = O(Log(N))$$

In-class exercise

Please complete the in-class Big-O exercises on Gradescope.

Big-Omega (Ω)

- □ Recall that f(n) is O(g(n)) if $f(n) \le cg(n)$ for some constant c as n grows
 - Big-O expresses the idea that f(n) grows no faster than g(n)
 - g(n) acts as an upper bound to f(n)'s growth rate
- What if we want to express a lower bound?

Big-Omega

- □ We say f(n) is Ω(g(n)) if f(n) ≥ cg(n)
 - f(n) grows no **slower** than g(n)

Big-Theta (Θ)

What about an upper and lower bound?

Big-Theta

- □ We say f(n) is $\Theta(g(n))$ if f(n) is O(g(n)) and $\Omega(g(n))$
 - f(n) grows the same as g(n) (tight-bound)

Some More Examples

Function, f(n)	Big-O
an + b	$\Theta(n)$
$an^2 + bn + c$	$\Theta(n^2)$
a	Θ(1)
$3^{n} + an^{40}$	$\Theta(3^n)$
an + b log n	$\Theta(n)$

Common Time Complexities

Name	Running Time
Constant	O(1)
Log-logarithmic	O(log log N)
Logarithmic	O(log N)
Polylogarithmic	O((log N) ²)
Fractional power	$O(N^c)$ where $0 < c < 1$
Linear	O(N)
Linearithmic	O(N log N)
Quadratic	$O(N^2)$
Cubic	$O(N^3)$
Polynomial	$O(N^c)$ where $c > 3$
Exponential	$O(c^N)$ where $c \ge 2$
Factorial	O(N!)
lettere (/en viline elie en (vili/Time	

source: https://en.wikipedia.org/wiki/Time_complexity#Table_of_common_time_complexities⁵⁸

Relatives of Big-Oh

big-Omega

f(n) is Ω(g(n)) if there is a constant c > 0
 and an integer constant n₀ ≥ 1 such that
 f(n) ≥ c•g(n) for n ≥ n₀

big-Theta

f(n) is ⊕(g(n)) if there are constants c' > 0 and c"
 > 0 and an integer constant n₀ ≥ 1 such that c'•g(n) ≤ f(n) ≤ c"•g(n) for n ≥ n₀