Where does the error come from?

Summary

Estimator

$$y = f(x)$$

From training data, we find \hat{f}

 \hat{f} is an estimator of f

Bias and Variance of Estimator

- Estimate the mean of a variable x
 - assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimator of μ
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^{n} \neq \mu$$

But,
$$E[m] = E\left[\frac{1}{N}\sum_{n}x^{n}\right] = \frac{1}{N}\sum_{n}E[x^{n}] = \mu$$

unbiased

Bias and Variance of Estimator

- Estimator of variance σ^2
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^{n} \qquad s = \frac{1}{N} \sum_{n} (x^{n} - m)^{2}$$

$$Var[m] = \frac{\sigma^2}{N}$$

Biased estimator N-1 $E[s] = \frac{N-1}{N}\sigma^2 \neq \sigma^2$

\hat{f} in 100 samples

$$y = b + w_1 \cdot x + w_2 \cdot x^2 + w_3 \cdot x^3 + w_4 \cdot x^4 + w_5 \cdot x^5$$

$$y = b + w_1 \cdot x + w_2 \cdot x^2 + w_3$$

Variance

Simpler model is less influenced by the sampled data

Bias

• Bias: If we average all the , is it close to f?

Black curve: the true function f

Red curves: 500®

Blue curve: the average of $50\hat{q}0 = \bar{f}$

Bias vs. Variance

What to do with large bias?

- Diagnosis:
 - If your model cannot even fit the training examples, then you have large bias
 - If you can fit the training data, but large error on testing data, then you probably have large variance
- For bias, redesign your model: 1000
 - Add more features as input
 - A more complex model

What to do with large variance?

Regularization

May increase

Ex. of Regularization

$$y = b + \sum w_i x_i$$

$$L = \sum_n (y^n - (b + \sum w_i x_i^n))^2$$

The functions with smaller w_i are better

$$+\lambda \sum (w_i)^2$$

- Smooth functions are preferred
- ➤ If some noises corrupt input when testing, a smoother function has less influence.

 \triangleright Training error: smaller λ , less the training error