

Correlation of CO₂ Emissions and Water Toxins

By Jesse Rivera, Jerrica Raemer, Blake Singewald and James Montgomery

CO₂ - Water Toxins Global Impact

- What are the biggest factors contributing to global CO₂ emissions?
 - Fossil fuels coal, oil and gas
 - Industry, transportation and electricity

- In 2019 the Global CO₂ emissions were at 33.2 gigatonnes (Gt)
- In 2022, globally, at least 1.7 billion people use a contaminated drinking water source

Carbon Dioxide is released from the combustion of hydrocarbons as a main source of energy.

Is there a correlation between CO_2 emissions and toxins in waterways?

Hypothesis:

Within countries with high CO₂ emissions there will also be moderate to high levels of toxins in their water catchments.

Data Collection Sources:

https://www.kaggle.com/datasets/ulrikthygepedersen/co2-emissions-by-country

https://portal.gemstat.org/applications/

- Calculate emissions per capita
- Limit to 2019 data
- Highest 3 emitters*
- Lowest 3 emitters*

*water toxins data available

What can pH tell us?

Czechia pH data was not available. 7.61 pH*

Everything but the Netherlands is in a normal pH range: 6.5-8.5

*https://intapi.sciendo.com/pdf/10.2478/johh-2022-0032

Country Codes:

BDI: Burundi

CZE: Czechia

JPN: Japan

KEN: Kenya

NLD: Netherlands

RWA: Rwanda

Average Water Pollutants by Country

The Data: Side by Side

The Data: No Outliers

The Data: No Outliers

The Data: Quartiles

Average # of Pollutants:

Lower Quartile: 19.31
Upper Quartile: 67.57
Interquartile Range: 48.26
Median: 45.47
Lower Bound: -53.08
Upper Bound: 139.97

Emissions per capita(tons):

Lower Quartile: 0.19
Upper Quartile: 8.52
Interquartile Range: 8.33
Median: 4.44
Lower Bound: -12.31
Upper Bound: 21.01

The Data: Stats

Let X_1 represent the pollution and X_2 represent emissions. Then:

$$\mu_1 = 59.52$$
, $\sigma_1 = 64.87$, and $\mu_2 = 4.43$, $\sigma_2 = 4.64$.

Computing the two-sample t-test, we get:

$$t = \frac{59.52 - 4.43}{\sqrt{\frac{(64.87)^2}{6} - \frac{(4.64)^2}{6}}} = \frac{55.09}{697.77} \approx 0.085$$

Since the p-value is greater than 0.05, we cannot reject the null hypothesis.

Hence, we have not proven a correlation between CO2 emissions and water pollution.

Conclusion:

- The survey of pollutants (water toxins) within water catchments of top 3 CO₂ emitting countries compared to lowest 3 countries was not statistically significant.
- Therefore, our hypothesis of a correlation between CO₂ emissions and moderate to high levels of water toxins cannot be proven or disproven due to <u>inconclusive data</u>.
- Why?
 - Possible that high energy producing, industrialized nations have stricter laws against water pollution.
 - Data collection of pollutants across all countries may not be uniform.

Challenges:

• Decision to exclude high CO₂ emitting countries based on being oil rich with very small populations in 2019.

Bahrain	22.259581
Burundi	0.060632
Czechia	9.022786
Japan	8.540980
Kenya	0.437279
Kuwait	20.861949
Netherlands	8.437075
0man	16.518321
Qatar	32.761775
Rwanda	0.103623
United Arab Emirat	es 20.502283

```
2019 Populations:
Qatar 2,760,385
Bahrain 1,477,469
Kuwait 4,360,444
Japan 125,244,761
Netherlands 17,434,557
Rwanda 13,146,362
Kenya 51,985,780
```

Challenges:

- Unable to use the true top 3 CO₂ emitting countries due to lack of water toxins data. Libya 8.65 tons of CO₂ emissions per capita but no data possibly due to geopolitical reasons.
 - Replaced with Netherlands (8.43) which has its own challenges.
 - Not every water pollutant recorded in every country.

• Netherlands "Bill Gates" water pollutant outlier skews data beyond recognition.

If We Had More Time:

- Deeper dive into specific pollutants that are found within all 6 countries.
 - Create scatter plots for each pollutant across top 3 and lowest 3 countries.
 - Calculate Pearson correlation coefficients, coefficients of determination and linear regression lines.
- Focus on water catchments only near major cities of the 6 countries. Retest hypothesis based on these specific data sets.

Questions?

