This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

国際事務局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類 6 (11) 国際公開番号 WO 95/11527 H01M 2/02 A1 (43) 国際公開日 1995年4月27日 (27.04.95) (21)国際出願番号 POT/JP94/01656 (81) 指定国 (22)国際出願日 1994年10月3日(03.10.94) AU, CA, CN, JP, KR, US, 欧州特許(AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE.) (30) 優先権データ **特顯平5/287787** 1993年10月22日(22.10.93) 添付公開書類 (71) 出願人(米国を除くすべての指定国について) 東洋鋼鈑株式会社(TOYO KOHAN CO., LTD.)(JP/JP) 〒100 東京都千代田区霞が関一丁目4番3号 Tokyo, (JP) (72) 発明者;および (75) 発明者/出願人(米国についてのみ) 大村 等(OHMURA, Hitoshi)[JP/JP] 〒745-06 山口県旗毛郡旗毛町大字大河内700-316 Yamaguchi, (JP) 盛山博一(MORIYAMA, Hirokazu)[JP/JP] 〒744 山口県下松市北斗町10-18 Yamaguchi, (JP) 友森龍夫(TOMOMORI, Tatsuo)[JP/JP] 〒743 山口県光市大字島田896~1 Yamaguchi, (JP) 他高 塱(IKETAKA, Satoshi)[JP/JP] 〒744 山口県下松市大字面豊井1720-13 Yamaguchi, (JP) (74) 代理人 弁理士 太田明男(OHTA, Akio) 〒744 山口県下松市東鲁井1302番地 東洋銅飯株式会社 下松工場内 Yamaguchi, (JP) (54) Title: SURFACE-TREATED STEEL SHEET FOR BATTERY CASE AND BATTERY CASE (54) 発明の名称 電池ケース用表面処理鋼板および電池ケース . 基・ 四 (57) Abstract a ... cold-rolled steel sh An object of the invention is b ... nickel plating t provide material for a battery case c ... tin plating which is remarkably reduced in interd ... nickel-tin alloy plating nal contact resistance between the bat-• ... heat treatment tery case and the anode forming mixture, has an excellent alkali corrosion f ... temper-rolling resistance, and can improve the perforg ... surface-treated steel sheet mance of the battery. Another object f the invention is to provide a bat-tery case using the material and a bat-tery manufactured by using the battery case. The surface-treated steel plate has a nickel-tin alloy layer on the surface of a steel substrate which is to 理 be the internal surface of battery case. The nickel-tin alloy layer is formed on the internal surface of the case formed by deep drawing, etc. More-over, a battery is manufactured by putting manganese dioxide, graphite, and potassium hydroxide in the case 質圧

3

as an anode forming mixture and zinc and potassium hydroxide as an active

cathode material.

(57) 要約

電池ケースと正極合剤との接触内部抵抗を著しく低減させ、耐アルカリ腐食性に優れ、電池性能の向上を図った電池ケース用材料を提供することを目的とする。また、その材料を用いた電池ケースおよびその電池ケースを用いて製造した電池を提供することを目的とする。本発明の電池ケース用表面処理鋼板の構成は、鋼板を基板として、電池ケース内面側になる面に、ニッケルー場合金層が形成されている。

また、深絞り成形等で製造した電池ケースの内面側にはニッケルー錫合金層が形成されている。さらに、この電池ケースの内部に、正極合剤として二酸化マンガン、黒鉛、水酸化カリウムを充填して、負極側活物質として亜鉛、水酸化カリウムを充填して電池を製造する。

情報としての用途のみ

PCTに基づいて公開される国際出願をパンフレット第一頁にPCT加盟国を同定するために使用されるコード

AM アルメニア AT オーストリア AT オーストリア BB Xルルギー BE Xペイン BE Xペイン BE Xペイラン BE Xペルギー BE ベルギー BE ベルギー・ファ BG ガルガン BF ブルガン BF ブルブガン BF ブルガン BF ブルブ BF ブルガン BF ブルグ B
--

PCT/JP94/01656

明細書

電池ケース用表面処理鋼板 およひ~ 紀メセケース

技術分野

WO 95/11527

5

本発明は、電池ケース用表面処理鋼板、電池ケースおよびそれを用いた電池に 関する。特に、本発明はアルカリマンガン電池用の電池ケースに適した表面処理 鋼板、その表面処理鋼板を用いた電池ケースおよびその電池ケースを用いた電池 に関する。

10

15

20

25

背景技術

従来、1次電池のアルカリマンガン電池や2次電池のニッケルカドニウム電池、さらに近年、新しい2次電池として需要の伸びが期待されているニッケル水素電池など強アルカリ液を封入する電池ケースには、冷延鋼帯をプレス加工後、バレルめっきする方法である、所謂後めっき法、あるいはニッケルめっき鋼帯をプレス加工して電池ケースにする方法である、所謂先めっき法が採用されてきた。ところでアルカリマンガン電池やニッケルカドニウム電池などの電池用途に、ニッケルめっきが使用される理由は、以下の理由による。

即ち、①これら電池は主として強アルカリ性の水酸化カリウムを電解液としているため、アルカリ性への耐腐食性にニッケルが強いこと、②電池を外部端子に接続する場合、安定した接触抵抗をニッケルは有していること、③更には電池製造時、各構成部品を溶接し、電池に組立てられる際や電圧を上げるため直列に電池を接続したり、多くの電流を取り出すため並列に接続する場合、スポット溶接が行われるが、ニッケルはスポット溶接性にも優れるという理由等による。

しかしながら、バレルめっき法は、細長い円筒形電池ケース等の内面側にめっきする場合には、ケース奥にまでめっき液の循環供給が十分でなく、めっき厚が薄く、かつ均一に付着させることが困難であることなどの理由で品質の不安定性の問題があった。一方、先めっき法は前記の問題はないが、熱拡散処理したニッ

ケルめっき鋼板から作製した電池は、熱処理によりニッケルめっき層が軟化再結 晶するため、展延性に富むため耐食性は向上するものの、プレス成形後の正極ケース内面はクラックが少なく平滑であるため、アルカリマンガン電池の正極合剤 との密着性向上の効果は得られないという問題があった。

5 ここで、アルカリマンガン電池(図2参照)においては、電池性能と正極ケース (本発明の電池ケース)の内面の性状とは大いなる関係がある。

即ち、アルカリマンガン電池の正極合剤(正極活物質である二酸化マンガンと 導電剤である黒鉛、及び電解質の水酸化カリウムからなる)と電池ケース内面と の密着状態の良好なほど電池性能は優れるのである。アルカリマンガン電池の場合、正極合剤と電池ケースとが接触しているので、電池ケースは電池の収納容器 とともに、電子の授受を担う導電体でもある。

10

15

20

25

従って正極合剤と電池ケースの内面の接触抵抗が高くなれば、電池の内部抵抗 が高くなり、この結果電流が低下したり、放電持続時間が減少し電池性能を阻害 したりすることになる。従って高性能の電池を得ようとすれば、正極合剤と電池 ケースの内面接触抵抗を低くすることが望ましい。

アルカリマンガン電池は、特に大きな電流が取り出すことを要求される高負荷 放電性能において、マンガン電池より優れているが、このアルカリマンガン電池 は電池の内部抵抗を低減させることによって、よりその性能を発揮しうる。

大電流を取り出すために正極合剤と電池ケースとの接触抵抗を低減する目的で 電池ケース内面の表面粗さを粗くする方法、電池ケースの縦方向に溝を付ける方 法、黒鉛にバインダーを加えた導電剤を塗布する方法などが提案されている。 (電池便覧、丸善平成2年発行、84頁参照)

正極合剤と電池ケースとの接触状態を良好ならしめることによって内部抵抗が下がる結果、逆に正極合剤中の黒鉛成分を減らし、正極活物質である二酸化マンガン量を増やすことにより電池容量をより大きくすることもできる。このように電池内部抵抗、特に電池ケースと正極合剤との接触状態を良好にならしめることは電池性能上、大きな要素となっている。

しかし、電池ケースの内面を粗くする方法として絞り成形のパンチの粗度を粗くする方法を採用する場合は、パンチの粗度を粗くするほど成形性能が劣化する

ため、ある程度以上には粗くできないという問題がある。

また鋼素地の鋼結晶組織の結晶粒を大きくすることにより、成形加工後の電池 ケースの内面粗さを粗くする方法を採用する場合は、近年主流となっているピッ プ缶型(電池ケースの正極端子部が凸状に形成されている。図2参照)では、結 晶粒が大きくなると、電池ケースの正極端子部に肌荒れが生じ製品外観が悪くな るという問題がある。

一方、導電塗料や導電剤を電池ケース内面に塗布する場合、内部抵抗への低減 の効果は得られるが、電池製造の工程が増え、コストが高くつくなどのデメリッ トが生ずる。

10 したがってアルカリマンガン電池の高性能化に対応していくためには、製造コストが低く、内部抵抗の低い電池用材料が求められている。

発明の開示

- 15 本発明の電池用表面処理鋼板は、以下のいずれかの構成を有している。
 - ① 電池ケースの内面側になる面の最上面には、ニッケルー錫合金層が形成されている。
 - ② 電池ケースの内面側になる面の最上面には、ニッケルー錫合金層が形成されており、その下層にはニッケル層が形成されている。
- 20 ③ 電池ケースの内面側になる面の最上面には、ニッケルー錫合金層が形成され、 その下層にはニッケル層が形成されており、さらにその下層にはニッケルー鉄合 金層が形成されている。
 - ④ 電池ケースの内面側になる面の最上面には、ニッケルー錫合金層が形成され、 その下層にはニッケルー鉄合金層が形成されている。
- 25 ⑤ 電池ケースの内面側になる面の最上面には、ニッケルー錫合金層が形成され、 その下層には鉄ーニッケルー錫合金層が形成されており、さらにその下層にはニッケルー鉄合金層が形成されている。
 - ® 電池ケースの外面側になる面の最上面には、ニッケルー錫合金層が形成され、 その下層にはニッケル層が形成されており、さらにその下層にはニッケルー鉄合

金層が形成されている。

⑦ 電池ケースの外面側になる面の最上面には、ニッケル層が形成され、その下層には鉄ーニッケル合金層が形成されている。

- ⑧ 電池ケースの外面側になる面には、ニッケル層が形成されている。
- 5 本発明の電池用ケースは、上記①~⑧のいずれかの表面処理鋼板を、深絞り加工して製造されたものである。

本発明の電池は、上記の電池ケースを用いて製造されるものであり、この電池ケース内部の正極側に、正極合剤(二酸化マンガン+導電剤である黒鉛+電解液である水酸化カリウム溶液)を充塡し、負極側に、負極ゲル(亜鉛粒+電解液である水酸化カリウム溶液)を充塡する。

このような構成により、電池の内部抵抗が低くしかも短絡電流が大きくとれ、かつ放電持続時間も長時間とれるという電池性能上優れた特性が得られるという 効果がある。

15 図面の簡単な説明

図1は、本発明の表面処理鋼板の製造工程を示す工程図である。

図2は、電池の内部構造を示す断面図である。

図3は、電池ケースの内面観察写真である。

20

10

発明を実施するための最良の形態

本発明をより詳細に説述するために以下これを説明する。

まず、本発明の表面処理鋼板について説明する。

25 本発明の表面処理鋼板においては、電池ケースの内面側になる面と外面側になる面の表面処理層の構成は前述のように異なった構成になっている。

まず、電池ケースの内面側になる面の表面処理層の構成を詳細に説明する。

内面側になる面においては、ニッケルー錫合金層、鉄ーニッケルー錫合金層が形成されている。これらの合金層が電池ケース内面に設けられている理由は、プレ

ス加工時に微小クラックを多数形成させるためである。

また、これらの合金層が電池ケース内面に設けられている他の理由は、アルカ リマンガン電池においては、電池ケースを構成する鉄が電池ケース表面へ露出す ると、正極合剤と反応し鉄酸化物を生成させ、電池内部抵抗を高め電池性能が劣 化するからである。

上記、ニッケルー錫合金層または鉄ーニッケルー錫合金層の厚みは $0.15\sim 3.0\mu$ mであることが望ましい。さらに好ましくは $0.2\sim 2.0\mu$ mであることが望ましい。厚みが 0.15μ m未満であると、プレス加工時に形成される微小クラックの大きさが小さく、正極合剤との密着性向上効果が望めず、電池内部抵抗の低減効果が得られない。一方厚みが 3μ mを越えると、正極合剤との密着性向上効果が飽和に達し、不経済となる。

ニッケルー錫合金層を形成する方法は、ニッケルー錫合金めっき法による方法と、ニッケルめっきをした後に引き続き錫めっきを行ない、熱処理によりニッケル層と錫層とを拡散させ、ニッケルー錫合金層を形成させる方法のいずれの方法を採用してもよい。

さらに、ニッケルー錫合金層と下地鋼板との密着性を向上させ、表面処理鋼板 全体としての耐食性を向上させる目的で、ニッケルー錫合金層の下層に、ニッケ ル層または/および鉄ーニッケル合金層を存在させることも好ましい。これらの 厚みは特に指定するものではないが、経済的考慮から3μm以下が望ましい。

20 次に、電池ケースの外面側になる面の表面処理層の構成を詳細に説明する。 まず、ニッケル層を設ける理由は下記の理由からである。

すなわち、電池ケース外面側に必要とされる特性として、外面側は外部端子との 接続接点となることから、低く安定した接触電気抵抗であることおよび優れた耐 食性を有していることが求められる。

25 次に本発明の表面処理鋼板の製造工程を図1に基づいて説明する。

(鋼板)

5

10

15

めっき原板として、通常低炭素アルミキルド鋼が好適に用いられる。さらにニオ ブ、ボロン、チタンを添加し非時効性極低炭素鋼も用いられる。通常、冷間圧延 後、電解清浄、焼鈍、調質圧延した鋼帯をめっき原板とする。

(ニッケルめっき)

前記めっき原板をアルカリ電解脱脂、水洗、硫酸または塩酸の酸洗(電解または 浸漬)、水洗後の前処理を行った後、ニッケルめっきを行う。

ニッケルめっきの浴は本発明では、ワット浴、スルファミン酸浴、塩化浴など 5 公知のめっき浴のいずれであっても構わない。

さらにニッケルめっきの種類には、無光沢めっき法、半光沢めっき法、光沢めっき法等があるがいずれでも構わない。

これらのうち光沢めっき法を採用する場合は、電池特性の向上が特に期待される。光沢めっき法は、ニッケルめっき液に硫黄を含む有機化合物(ベンゼンスル 10 ホン酸ナトリウム,パラトルオンスルホアミドなどのベンゼンスルフォン酸誘導体,サッカリン)を添加し、めっき層の微細結晶化と平滑化作用によって光沢を 付与させるものであり、同時にめっき層は著しく硬質化する。

ここでいう光沢めっき法とは、鋼板素地上に

1) 直に光沢めっきを施す場合、

20

- 15 2)まず、無光沢めっきを施しその上に光沢めっきを施す場合、
 - 3) まず、半光沢めっきを施しその上に光沢めっきを施す場合、 のいずれを採用しても良い。

光沢ニッケルめっきの上に錫めっきを施した後熱処理すると、プレス加工時に 光沢ニッケルめっき層にもりん片状のクラックが形成されるので、ニッケルー錫 合金層に形成される微小クラックと併せてクラックが多く発生するので好ましい。 すなわちクラック密度が増すので好ましい。

本発明では鋼板の両面または片面に、上記1)~3)のいずれかのニッケルめっきを行う。

電池ケース外面側になる面へのニッケルめっき厚みは、0.5~5μmの範囲 25 とし、1~4μmが好適に用いられる。鋼板の片面側にのみめっきする場合には、 電池ケースの外面側になる面に施す。

電池ケース内面側になる面へのニッケルめっき厚みは $0.5\sim4\mu$ mの範囲が望ましく、 $1\sim3\mu$ mの範囲が、電池性能効果と経済性との調和の観点から好適に用いられる。

上記ニッケルめっき厚みが、電池ケース内面において 0.5 μ m未満の場合は、ニッケルめっき層中に存在するピンホールが多く、電池の内部液であるアルカリ液中への鉄(鋼板)の溶出と鉄酸化物形成が多くなり好ましくない。また電池ケース外面においては耐食性を劣化させる傾向が強くなり、好ましくない。

5 (錫めっき)

10

前記ニッケルめっきに引き続いて、電池ケースの内面側もしくは両面に錫めっきを施す。

錫めっきの浴組成は、通常用いられている酸性浴、アルカリ浴のいずれを採用 しても良いが、本発明では硫酸第一錫浴あるいはフェノールスルフォン酸浴が好 適に用いられる。

この錫めっき層の形成にあたっては次の観点から、錫めっき量が決定される。 即ち本発明において、ニッケルー錫合金層を形成させる熱処理に当っては、錫めっき層を全てニッケルー錫合金層に変化させる必要がある。

場めっき層が残存すると、錫がアルカリ電池の電解液である水酸化カリウムに溶 15 解し水素が発生して、電池性能を損なうからである。そのために熱処理は、錫め っき層をすべてニッケルー錫合金に合金化させることが必須である。

即ち、熱処理工程において温度700℃以下に加熱すると、ニッケルと錫との合金組成は、主としてNi₃Sn、Ni₃Sn₂、Ni₃Sn₄から構成される。これらの組成のうち、ニッケルに対し最も錫の割合の少ないのは、Ni₃Snであるから、Ni₃Snの錫の割合(Ni:Snの原子量比が3:1)より少ない量の錫をめっきすれば、錫は全てニッケルと合金化することとなる。すなわち錫めっき量は、ニッケルめっき量に対し、少なくとも3倍の原子量比以下にすればよい。

ここで、錫の原子量は118.6であり、ニッケルの原子量は58.7である 25 ので、ニッケルのめっき量に対し、錫のめっき量の比率を、次の計算式に示すよ うに約0.67とすれば、Ni:Snの原子量比が3:1になる。

すなわち、ニッケルのめっき量/錫のめっき量の比率

=118.6÷(58.7×3)=約0.67

上記値(=約0.67)以上の割合で錫めっき層が形成されていると、合金化処

理 (熱処理) に際して合金層を形成するニッケルが不足するため、錫めっき層は 金属錫のままで残存することになり、本発明では好ましくない。

換言すれば、ニッケルのめっき量を錫のめっき量の約1.48倍(=1/約0.67;上記値0.67の逆数)以上とすれば、熱処理工程で錫は全てニッケルー 錫合金へと合金化され、金属錫単独では存在しなくなり、電池性能上好ましい。 (ニッケルー錫合金めっき・・・ニッケルー錫合金層を形成させる第2の方法)上述に述べたのは、ニッケルー錫合金層を形成させる方法として、ニッケルめっき層形成後に錫めっき層を形成させ、その後に熱処理してニッケルー錫合金層を形成させる第1の方法である。

10 次に、もうひとつの形成方法として、鋼板上に直接ニッケルー錫合金めっきを施す方法もある。

この方法を採用し、さらに熱処理を行うと、電池性能上、短絡電流が向上する。 次に、上記ニッケルー錫合金めっきを施す場合の基板となる鋼板は、次の2種 類のものから適宜選択される。

15 ①冷延鋼板

②あらかじめニッケルめっきを施した鋼板

上述のように、ニッケルー錫合金層を形成させる方法を2通り述べたが、本発明では、第1の方法、第2の方法のいずれの方法を採用するにしても、めっき後熱処理を利用する。

20 その理由は、電池ケースの外面に相当する面に形成されたニッケルめっき層の 再結晶化および軟質化(電池ケースの耐食性向上に寄与する)を図ることができ るからである。

次に、後述したニッケルー錫合金めっき法 (ニッケルー錫合金層を形成させる 第2の方法)を詳細に説明する。

25 ニッケルー錫合金めっき浴には、塩化物ーフッ化物浴やピロリン酸浴が採用される。なお、このニッケルー錫合金層は冷延鋼板の片面のみに形成してもよいし、 両面に形成することもできる。

ニッケルー錫合金めっきの厚さは、表面処理鋼板の表裏で異なる。すなわち電池 ケースの内面側となる面では $0.15\sim3.0\mu m$ が望ましく、電池ケースの外

面側となる面では、耐食性と接触電気抵抗の観点から $0.15\sim1.5\mu m$ の範囲であることが望ましい。

(熱処理)

ニッケルー錫合金層を形成させる第1の方法では、両面にニッケルめっき処理を行い引き続き少なくとも片面に錫めっきを施した後ニッケルー錫合金化の熱処理を行う。または両面にニッケルめっきを行い、熱処理を施した後に、少なくとも片面に錫めっきを行い、その後さらにニッケルー錫合金化の熱処理を行う。あるいは、冷延鋼板またはあらかじめニッケルめっきを施した上に、ニッケルー錫合金めっきを施し(第2の方法)、熱処理をする。

10 この熱処理は、非酸化性または還元性保護ガス雰囲気下で行うことが表面の酸化膜形成を防止するために好ましい。熱処理温度は、ニッケルー錫合金化処理の場合、200℃程度で合金化する。

ニッケル-錫合金化処理と共にニッケルめっき層と鉄素地(鋼板)との間に、 ニッケル-鉄拡散層を形成させ、めっき層特に電池ケース外面の耐食性を向上させようとする場合には、拡散層の形成に450℃以上が必要とされる。

具体的には、加熱温度は450~850℃、加熱時間は30秒~15時間の範囲で処理される。

鋼板を熱処理する方法として、箱型焼鈍法と連続焼鈍法があるが、本発明ではそのいずれの方法によってもよく、連続焼鈍法では600~850℃×30秒~5分、箱型焼鈍法では450~650×5~15時間の熱処理条件が好ましい。さらに、本発明においては、下地の鋼板と、ニッケルめっき層と、錫めっき層との間で鉄ーニッケルー錫合金層(3元素成分)を形成させることもできるが、この場合はニッケルめっき後、錫めっきをその上に施し、比較的高温度で長時間熱処理することによって、3元素成分を相互拡散させる。

25 (調質圧延)

15

20

調質圧延を行う目的は、ニッケルめっき後の熱処理が原因で発生するストレッチャーストレインの防止である。

また、調質圧延を行う他の目的は、最終仕上げ圧延となるので、調質圧延で用いるワークロールの表面粗さを変えることにより、ブライト仕上げやダル仕上げ

などの目的とする表面粗さや表面外観を得ることができる。

以下に実施例によって、本発明をさらに詳細に説明する。

表面処理鋼板の製造

[実施例1]

5 板厚O. 25mmの冷延・焼鈍済みの低炭素アルミキルド鋼板をめっき原板と して用いた。めっき原板の鋼化学組成は下記の通りである。

C: 0. 04% (%は重量%を示す。以下すべて同じ)、Mn: 0. 19%、

Si: 0. 01%, P: 0. 012%, S: 0. 009%,

A1:0. 064%, N:0. 0028%

10 上記鋼板を、下記の条件でアルカリ電解脱脂した。

(アルカリ電解脱脂)

電解条件;

浴組成 : 苛性ソーダ 30g/1、

電流密度: 5A/dm²(陽極処理)×10秒

15 5 A / d m² (陰極処理) × 1 0 秒

浴温 : 70℃、

その後、硫酸酸洗(硫酸50g/1、浴温30℃、20秒浸漬)を行った後、下 記の条件でニッケルめっきを行った。

(ニッケルめっき)

20 浴組成: 硫酸ニッケル 320g/1

ほう酸 30g/1

塩化ニッケル 40g/1

ラウリル硫酸ソーダ 0.5g/1

浴温 : 55±2℃

25 pH : 4.1~4.6

攪拌 : 空気攪拌

電流密度: 10A/dm²

アノード: ニッケルペレット (チタンバスケットにニッケルペレット充

填、ポリプロピレン製バッグでチタンバスケットを包む)

上記の条件で、片面及び両面に無光沢ニッケルめっきを行い、その厚みを上記 条件で電解時間を変化させて、ニッケルめっき厚を変化させた。

ニッケルめっきに引き続き、片面および両面に下記条件で硫酸第一錫めっき浴で錫めっきを行った。

5 (錫めっき)

20

25

浴組成: 硫酸第一錫 30g/1

フェノールスルフォン酸 60g/1

エトキシ化αナフトール 5g/1

浴温 : 55±2 ℃

10 電流密度: 10A/dm²

アノード: 錫板

上記条件で電解時間を変えて、ニッケルめっきおよび錫めっきのめっき厚の異なったサンプルを何種類か作成した。

次に、ニッケルめっき・錫めっきに引き続き、ニッケルー錫合金化の熱処理を 15 下記の条件で行った。雰囲気は下記のとおりである。

水素 6. 5%、残部窒素ガス、露点-55℃の保護ガスを用いた。

均熱温度、均熱時間を変化させて、幾通りかの表面処理鋼板のサンプルを作成した。このようにして作成したサンプルを、表1中にサンプル1~10で示す。

表1中において、ニッケルめっき層、ニッケルー鉄合金層及びニッケルー錫合 金層の厚みの測定は、GDS (グロー放電発光分光分析) によって測定した。

ニッケルめっき層の上に錫めっきを施した後、熱処理したサンプルをX線回折分析およびGDS(グロー放電発光分光分析)にて表面分析を実施した結果、ニッケルー錫合金が生成することが分かった。即ちニッケルめっき $F2\mu m$ を施した後、その上に錫めっき $F3\mu m$ のめっきを行い、引き続き $F3\mu m$ のかのきを行い、引き続き $F3\mu m$ の数の理を行った。

X線回折結果、ニッケルー錫の2層めっきより、ニッケルー錫合金が生成し、その組成は主として Ni_3Sn からなることが見いだされた。熱処理によりめっき層表層が硬化するる原因はこれらの金属間化合物が析出することによるものと考えられる。300 $\mathbb{C} \times 6$ 時間の熱処理の場合は、主として Ni_3Sn_2 が形成さ

れ、熱処理が高温度のほうが合金組成中のニッケル成分が多く、低温度では錫成分の多い合金層が形成されることが分かった。なお200℃×1時間の熱処理によってもニッケルー錫合金層が生成することをGDS(グロー放電発光分光分析)によって確認した。

5 [実施例2]

実施例1と同じめっき原板を用いて、半光沢ニッケルめっきを施し、その後光 沢めっきを施し、さらに実施例1と同じ錫めっきの条件で錫めっきし、引き続き 熱処理と調質圧延を行って表面処理鋼板を作成した。

表面処理鋼板の作成は、実施例1に示したと同じ条件でアルカリ電解脱脂及び硫 10 酸酸洗を行った後、下記条件で両面に半光沢めっきを施し、その後光沢ニッケル めっきを片面に施した。

1) 半光沢ニッケルめっき

浴組成 : 硫酸ニッケル 300g/1

ほう酸 30g/1

15 塩化ニッケル 45g/1

ラウリル硫酸ソーダ 0.5g/1

市販半光沢剤 1.5ml/1

(不飽和アルコール不飽和カルボン酸系)

浴温 : 50±2℃

20 pH: 4.0-4.5

攪拌 : 空気攪拌

電流密度: 15A/dm²

2) 光沢ニッケルめっき

1) の半光沢ニッケルめっきに引き続き下記の条件で光沢めっきを行った。

25 浴組成: 硫酸ニッケル 300g/1

ほう酸 30g/1

塩化ニッケル 45g/1

ラウリル硫酸ソーダ 0.5g/1

市販光沢剤 1. Om 1/1

PCT/JP94/01656

(ベンゼンスルフォン酸誘導体)

浴温度 : 60±2℃

pH : 4.3-4.6

攪拌 :

空気攪拌

5

電流密度: 10A/dm²

上記の条件で、片面には半光沢ニッケルめっきのみを施し、他面には半光沢ニッ ケルめっきの上に光沢ニッケルめっきを施した。

電解時間を変化させて、ニッケルめっき厚を変えたサンプルを何種類か作成した。 このようにして作成したサンプルを、表2中にサンプル11~14で示す。

「実施例3] 10

(ニッケルー錫合金めっき)

実施例1と同じめっき原板を用いて、実施例1と同じ条件で無光沢ニッケルめ っきを施し、その後塩化物ーフッ化物浴を用いてニッケルー錫合金めっきを施し た。ニッケルー錫合金めっきのめっき条件は下記のとおりである。

15

浴組成 :

塩化第一錫

50g/1

塩化ニッケル

300g/1

フッ化ナトリウム

30g/1

酸性フッ化アンモニウム 35g/1

浴温度 :

65 °C

20

PH

4. 5

電流密度:

:

 $4 A/d m^2$

陽極は、錫を28%含有したニッケルー錫合金アノードを用いた。電解時間を変 化させて、ニッケルー錫合金めっき厚を変えたサンプルを何種類か作成した。こ のようにして作成したサンプルを、表3中にサンプル15~18で示す。

(電池ケースの説明) 25

次に、上記表面処理鋼板を用いた電池ケースの作成について説明する。 本発明の電池ケースは、上記のようにして作成した表面処理鋼板を、プレスをも ちいて深絞り成形し、電池ケースを作成する。

本発明者らは、上記の表面処理鋼板を用いてアルカリ乾電池用の電池ケースに

適用すると、電池性能は従来の電池ケースよりも優れた電池性能を有することを 見いだした。

(電池ケース内面の構成)

アルカリマンガン電池の内部抵抗の大小は、導電剤である正極合剤中の黒鉛と 5 電池ケース内面の接触を如何に高めるかに左右される。即ち凹凸のマイクロクラックのある方が、正極合剤と電池ケース内面の接触面積が広くなるため、接触抵抗が低く、且つ密着力も高まり電池の内部抵抗が下がるものと考えられる。

ところでこの内部抵抗の下がる理由は、ニッケルー錫合金層が非常に硬質であり、プレス成形により、クラックを生じさせる結果、正極合剤との密着性が非常に向上するためであると考えられる。これを確認するため、従来および本発明の電池ケース内面を顕微鏡で比較観察した。

その結果を図3の写真(a)および(b)に示した。

写真(a)は、通常のニッケルめっき鋼板を電池ケースにプレスした、従来のケース内面であり、ケースの縦方向のみに凹凸が観察される。

15 写真(b)は冷延鋼板に順に2μmのニッケル、0.4μmの錫をめっきし、5 00℃×6時間の熱処理を行ってニッケルー錫合金層を形成させ、これをプレス 成形した、本発明の電池ケースの内面であり、縦横に数ミクロンの微小クラック が多数形成されていることが観察される。この縦横に形成された微小クラック内 に、黒鉛粒子を含んだ正極合剤が入り、電池内部抵抗を低減させるものと考えら れる。

プレス成形したケースの内面に微小クラックが多数発生する理由は、ニッケルー場合金層は、硬くて脆いためであると考えられる。この硬くて脆いという事実は、次の実験で確認した。

すなわち、冷延鋼板に、ニッケルを 2μ mの厚みにめっきし、さらにその上に 25 錫を 1.6μ mの厚みにめっきし、500 \mathbb{C} \times 6時間の熱処理をした。

表層の硬度をマイクロビッカース硬度測定器(荷重10g)を用いて測定したところ、860の値を示した。

これに対し、半光沢ニッケルを 2μ mの厚みにめっきしたものの表層硬度は355であり、ニッケルを 2μ mの厚みにめっきした後、上記と同様に500 $\mathbb{C} \times 6$

時間の熱処理をした場合は195の値を示した。

このことから、前二者(半光沢ニッケルめっきをしただけのもの、およびさらに その後熱処理を施したもの)よりも、ニッケルの上に錫をめっきし熱処理をした ものの方が著しく硬くなることが分かった。

5 (電池ケース外面の構成)

本発明は、電池ケース外面の表面処理層の種類を特に限定するものではないが、 電池ケース外面は接触電気抵抗が低く、経時で変化しないことが求められること から、ニッケルめっき層を形成させることが望ましい。

さらに、本発明では、ニッケルめっき層の上に、ニッケルー錫合金層を設けることも好適に用いられる。この合金層は前記の通り、非常に硬いため耐疵付き性が改善されるからであり、特にニッケルめっき後、熱処理し耐食性を向上させる場合、ニッケルめっき層の軟質化により、プレス工程や電池製造工程中に疵が付きやすいという欠点を補うことができる。電池ケース外面側は、接触電気抵抗が低いことが必要であるが、ニッケルー錫合金をめっきすることにより接触電気抵抗を低くすることができる。即ちニッケルめっき厚2μmを施した後、その上に錫めっき0.75μmのめっきを行い、引き続き500℃×6時間の熱処理を行っ

一方、ニッケルめっき厚2μmを施したままの場合の電気接触抵抗値は3.5m Ωであり、このニッケルー錫合金層は電気接触抵抗値が低い表面処理層であるこ 20 とが分かる。

た場合の、4端子法による電気接触抵抗値は、1.8mΩを示した。

電池ケースの外面に形成されるニッケルめっき層の厚さは、 $0.5\sim5\,\mu\,\mathrm{m}$ が 好ましく、望ましくは $1\sim4\,\mu\,\mathrm{m}$ が好適である。このニッケルめっき層は、耐食 性を向上させるため、熱処理により鉄ーニッケル拡散層とすることが望ましい。

一方、ニッケルー錫合金層を内面側に設ける場合には、この合金層の厚さは0. $15\sim3\,\mu$ mが適当である。好ましくは0. $2\sim2\,\mu$ mである。また、ニッケルー錫合金層を外面側に設ける場合には、この合金層の厚さは0. $15\sim1$. $5\,\mu$ mが適当である。

(電池ケースの作製方法の説明)

25

上記の表面処理鋼板を用いて、単3型(JISのLR-6)アルカリマンガン

電池の電池ケースを絞り成形加工によって作製した。

上記表面処理鋼板を、ブランクに打ち抜き加工し、次いで電池ケース開口端のトリミングをし、8工程の絞りプレス加工で、ケース長さ49.3mm、ケース外径13.8mmの筒型ケースを作製した。

5 (電池の製造)

上記のようにして電池ケースを作成した後、次のようにして単3型(LR-6) アルカリマンガン電池を製造した。

まず、二酸化マンガンと黒鉛を重量比で10:1の割合で採取し、これに水酸化カリウム(8mol)を添加混合して、正極合剤を作製した。

10 次いで、この正極合剤を金型中で加圧プレスして、所定寸法のドーナッツ形状の 正極合剤ペレットを作製し、電池ケース内に挿入圧着した。

次に、負極集電棒をスポット溶接した負極板を、電池ケースに装着するために、 電池ケース開口端の下部の所定位置をネックイン加工した。

次いで、ピニロン製不織布からなるセパレータを、電池ケースに圧着したペレッ 15 トの内周に沿って挿入し、亜鉛粒と酸化亜鉛を飽和させた水酸化カリウムからな る負極ゲルを電池ケース内に挿入した。

さらに、負極板に絶縁体のガスケットを装着し、これを電池ケース内に挿入した 後、カシメ加工を行ってアルカリマンガン電池の完成品を作製した。

黒鉛を電池ケースの内面に塗布する場合は、黒鉛80部(重量)に熱硬化性エ 20 ポキシ樹脂20部(重量)をメチルエチルケトンで希釈して、電池ケース内面に エアースプレイした後、150℃×15分乾燥させる。

上記の方法により、作製した単3型アルカリマンガン電池を、室温にて24時間放置し、電池性能を測定した。さらに経時的な変化をみるために、温度60℃、湿度90%の恒温恒湿層内に1ケ月(30日)保存した後、電池性能を測定した。

 25 電池性能は、交流インピーダンス(周波数1kHz)による内部抵抗値(mΩ)、 1mΩ負荷時の短絡電流値(A)の2項目で評価した。測定温度はいずれも20
 ℃で行った。この評価結果を表5に示す。

[比較例]

実施例1に記載したと同じ条件で、ニッケルめっきをし、その後熱処理をおこ

なって、比較例の試料を作製した。この試料で実施例1に記載したと同じ方法によりアルカリ乾電池を作製した。そして実施例1と同じ方法で電池性能評価を行った。この結果を表4のサンプル19~26に示す。

サンプル19~21は実施例1に対応する。このうち19~20は電池性能試験においていずれも実施例1に示す結果よりも初期の内部抵抗値が大きい。また、本発明実施例に比較して、短絡電流値も2~3A程度低い値を示す。さらに、サンプル21はケース内面に黒鉛を塗布した例を示したものであり、実施例1のサンプル9,10に対応している。しかし、本発明の実施例よりも内部抵抗値は高く、短絡電流値も低い値を示す。

10 次に、サンプル22~24は実施例2に対応する。このうち、22,23はサンプル11,13に比較して内部抵抗の値が大きく、短絡電流の値が低い。
黒鉛を塗布したサンプル24は、対応するサンプル12,14に比較して内部抵

さらに、サンプル25~26は実施例3に対応する。このうちサンプル25は サンプル15に比較して内部抵抗の値が大きく、短絡電流の値が低い。またサン プル26は、サンプル16と比較して内部抵抗の値が大きく、短絡電流の値が低 い。

産業上の利用可能性

抗の値が大きく、短絡電流の値が低い。

20

5

以上のように、本発明の電池ケース用表面処理鋼板は、鋼板を基板として、電池ケース内面側になる面に、ニッケルー錫合金層が形成されているので、電池ケースとして用いた場合に、正極合剤との接触内部抵抗を著しく低減させ、耐アルカリ腐食性に優れるという効果をもたらす。

25 また本発明の深絞り成形等で製造された電池ケースは、上記表面処理鋼板を採用したので、電池ケース内面側においては内部抵抗が低く、短絡電流の値が大きくなり、電池ケース外面側においては接触抵抗が低いという優れた特性を有する。さらにそれを用いた本発明の電池は、内部抵抗が低く短絡電流が大きい優れた電池性能が得られる。

	1 1 0	及	めっきの種類 NI-Sn合金化処理 NI-Sn合金化処理 NI-Sn合金化処理	Δ Ni Mi 1.8 1.9 2.0	80 0 0.09 0.10 0.15	めっき後の加熱温度 500	き後の熟処理条件 温度 加熱時間 か り 360	Fe-Ni 拡散層 μm 1.86 1.75 2.25	断に ル の 0.43 0.40 0.28	断面構成 Ni-Sn合金 関厚 μ ^m 0.16 0.17	Fe-Vii-Su un -
聚 超	ο σ	外面侧 内面侧 外面侧	Ni-Sn合金化処理 Ni-Sn合金化処理 Niめっき	2.0	0.74	500	360	1.96 0.53 1.96	0. 15	0.60	1 1
E	4	内面侧外面侧	Ni-Sn合金化処理 Niめっき	1.8	0. 73	200	360	0.93	- 0.8	1.09	0.1
<u>-</u>	D.	内面侧 外面侧	NI-Sn合金化処理 Niめっき	2.0	0.74	300	360	1 1	1.7	0.73	1
	9	内 所 所 所 例	Ni-Sn合金化処理 Ni-Sn合金化処理	1.9	0.76	600	360	4. 41	0.28	0.81	0.40
	7	内 所 外 所 创	Ni-Sn合金化処理 Niめっき	1.9	1. 52	200	360	1. 25	6.0	0.70	1 1
	8	内面侧 外面侧	NI-Sn合金化処理 NI-Sn合金化処理	3.9	2. 53	200	098	2.35	2.83	2.98	1 1
	6	内面侧外面侧	NI-Sn合金化処理 NIめっき	1.0	0.38	200	360	1.34	1.63	0.65	1 1
	10	内面侧外面侧	Ni-Sn合金化処理 Niめっき	1.9	0.35	200	360	1.58	06.00	0.61	1 1

	477.1		4 4	28	めっき厚み		めっき後の	めっき後の熱処理条件		断面	断面構成	!
/	2		めっさり角類	半光沢 Ni 仏画	光积Ni um	Sn µm	加熱温度	加熱時間	批散層 i m	Ni層 ルm	Ni-Sn合金 層庫	Fe-Ni-Su 合金層厚 um
	:	内面倒	Ni-Sn合金化処理	0.9	1.2	0.09	200	UDG	1.85	0. 42	0.15	•
#K	=	外面倒	Niめっき	2.2	1	1	one	900	1.72	0.38		1
\$	9	内面包	NI-Sn合金化処理	1.0	1.1	0.35	003	086	1.84	0.43	09'0	ı
鼍	7 1	外阿甸	Niめっき	2.2		-	ooe	000	1.73	0.39		ŀ
壑	9	内阿甸	Ni-Sn合金化処理	0.5	1.5	0.70	צטט	Uac	1.78	0.40	1.08	1
c	<u></u>	外面側	Niめっき	2.3	_	•	000	. 000	1.72	0.38		ı
7		内面倒	NI-Sn合金化処理	1.0	1.9	2.6	007	008	0.00	2.90	2.94	1
	14	外面側	Niめっき	2.3	-	0.72	400	000			1. 28	-

极

#27° #		めっきの種類	Niめっき厚み μn	Ni-Sn 合金 めっき車 ルn	熱処理 加熱温度 カ	加熱時間	断面 批散層 μm	断面構成およびその厚み Ni層 Ni-Sn un un 台金R	の厚み Ni-Sn 合金層厚 un
12	及 岡 田 宮 田 倉 田 倉	Ni-Sn合金めっき Niめっき	2.5	0.17	550	300	2.3	1.4	0. 20
16	内面侧 外面侧	Ni-Sn合金めっき Niめっき	2.1	1.10	- 200	480	2.3	0.9	1.10
17	内面包 外面包	Ni-Sn合金めっき Niめっき	1.9	2.03	200	480	2.03	1.89	2. 43
18	内面侧 外面侧	Ni-Sn合金めっき Niめっき	1.5	2.93	550	300	2.4	- 0.8	3.30

後3

	477.1			35	や直や	€	めっき後の熱処理条件	理条件		断面構成	構成	
/	2	£	めっきの種類	Ni m m	Sn µ 1/2	有無	加熱温度	加熱時間	批散層 μm	Ni層 山田	Ni-Sn合金 層厚 um	Fe-Ni-Sn合 金層庫 μm
Γ	9	内面倒	Niむっき	1.1	_	1	•	•	ŀ	1.1	ı	•
	A.	外面侧	Niめっき	1.9	-	*			ı	1.9	1	t
5	6	九百宣	Niめっき	1.9	1	1	-	•		1.9	-	•
片	02	外面包	Niめっき	2.2	-	ŧ			•	2.2	1	•
1		内岡甸	Niめっき	1.0	1	1	•	. •	9	1.0	1	1
≱	19	外面侧	Niめっき	2.3	-	*		•	1	2.3	ı	1
Ę	ē	内面包	Niめっき後熱処理	1.0	1	4	003	980	1.7	0.3	ì	_
<u> </u>	77	外面侧	Niめっき後熱処理	1.9	-	Ē	000	000	2.1	0.9	ı	-
	ç	内面包	Niめっき後熱処理	2.0	-	4	800	USF	-	4.8	1	I
	3	外面侧	NIめっき後熱処理	1.0	*	ft	000	000	ı	4.7	•	-
	2	内面倒	NIめっき後熱処理	1.2	-	4	00	260	1.6	1.0	•	-
	4 7	外面側	Niめっき後熱処理	1.9	1	Ē.	900	000	2.3	0.2	•	-
	ų	内面側	Ni-Sn合金めっき	2.1	0.05	4	002	360	1.9	1	0.09	-
	6.7	外面側	Niめっき	2.2	1	Ē	900	000	2.0	0.95	-	_
					Ni-Sn合 金かき							
	96	内面倒	Ni-Sn合金めっき	2.0	I. 05	兼		ı	ı	2.0	1.05	ı
	3	外面側	Ni-Sn合金めっき	1.9	•	#	•	ſ	•	1.9	ı	1

极

PCT/JP94/01656

表 5

実	サンプル ケース内面 No. 黒鉛塗布の			電池性	能試験		総合
施		黒鉛塗布の	内部	抵抗 mΩ	短絡*	電流 A	1
例		有無	初期	保存後	初期	保存後	一評価
	1	無	101	125	8. 3	6. 7	0
	2	無	98	115	8. 0	7. 2	0
	3	無	9 9	113	8. 4	7. 5	0
	4	無	100	117	8. 2	7. 6	0
1	5	無	101	119	8. 2	7.4	0
	6	無	9 7	120	8. 1	7. 3	0
	7	無	9 5	118	8. 4	7. 5	0
	8	無	9 6	105	8.6	7.6	0
	8	有	8 3	106	11.5	9. 5	0
	10	有	7 9	105	11.8	9.8	0
	11	無	8 5	110	10.7	9. 0	0
	12	有	7 2	101	12.3	10.3	0
2	13	無	8 3	109	10.3	9. 1	0
	14	有	70	9 9	12.5	10.1	0
	15	無	102	120	8. 2	7. 2	0
3	16	無	98	115	8. 7	7. 1	0
3	17	有	7 9	98	11.8	9. 5	0
	18	無	8 5	105	8.6	7. 5	0
	19	無	1 2 5	143	5. 6	4.0	×
	20	無	1 2 2	139	5.7	4.4	×
比	21	有	109	119	9.3	7. 8	×
ا برو	22	無	1 2 8	139	5.5	4. 2	×
較	23	無	1 2 5	142	5.6	4.3	×
例	24	有	103	112	9. 4	7. 7	×
	25	無	1 2 8	140	5. 3	4.5	×
	26	無	1 0 1	137	8. 6	4. 1	×

請求の範囲

- 1. 電池ケース用の表面処理鋼板であって、電池ケースの内面側になる面の最上面にニッケルー錫合金層が形成されていることを特徴とする電池用表面処理鋼板。
- 5 2. 電池ケース用の表面処理鋼板であって、電池ケースの内面側になる面の最上面にニッケルー錫合金層が形成されていて、その下層にはニッケル層が形成されていることを特徴とする電池用表面処理鋼板。
 - 3. 電池ケース用の表面処理鋼板であって、電池ケースの内面側になる面の最上面にニッケルー錫合金層が形成されていて、その下層にはニッケル層が形成され
- 10 ていて、さらにその下層にはニッケルー鉄合金層が形成されていることを特徴と する電池用表面処理鋼板。
 - 4. 電池ケース用の表面処理鋼板であって、電池ケースの内面側になる面の最上面にニッケルー錫合金層が形成されていて、その下層にはニッケルー鉄合金層が形成されていることを特徴とする電池用表面処理鋼板。
- 15 5. 電池用ケースの表面処理鋼板であって、電池ケースの内面側になる面の最上面にニッケルー錫合金層が形成されていて、その下層には鉄ーニッケルー錫合金層が形成されていて、さらにその下層にはニッケルー鉄合金層が形成されていることを特徴とする電池用表面処理鋼板。
- 6. 電池ケース用の表面処理鋼板であって、電池ケースの外面側になる面の最上 20 面にニッケルー錫合金層が形成されていて、その下層にはニッケル層が形成され ていて、さらにその下層にはニッケルー鉄合金層が形成されていることを特徴と する電池用表面処理鋼板。
 - 7. 電池ケース用の表面処理鋼板であって、電池ケースの外面側になる面の最上面にニッケル層が形成されていて、その下層には鉄ーニッケル合金層が形成されていることを特徴とする電池用表面処理鋼板。

25

- 8. 電池ケース用の表面処理鋼板であって、電池ケースの外面側になる面にニッケル層が形成されていることを特徴とする電池用表面処理鋼板。
- 9. 請求の範囲1~8のいずれかの表面処理鋼板を、深絞り加工して製造されたことを特徴とする電池ケース。

10. 請求の範囲9の電池ケースを用いて、この電池ケース内部に、正極合剤として二酸化マンガン、黒鉛、水酸化カリウムを充填して、負極側活物質として亜鉛、水酸化カリウムを充填したことを特徴とする電池。

- 11. 電池ケース用の表面処理鋼板を製造する方法であって、冷延鋼板の両面に 5 ニッケルめっきを施し、次に電池ケースの内面側になる面に錫めっきを施し、そ の後熱処理をすることを特徴とする電池用表面処理鋼板の製造方法。
 - 12. 電池ケース用の表面処理鋼板を製造する方法であって、冷延鋼板の両面にニッケルめっきを施し、次にその両面に錫めっきを施し、その後熱処理をすることを特徴とする電池用表面処理鋼板の製造方法。
- 10 13. 電池ケース用の表面処理鋼板を製造する方法であって、冷延鋼板の電池ケースの外面側になる面にニッケルめっきを施し、次に電池ケースの内面側になる面にニッケルー錫合金めっきを施し、その後熱処理をすることを特徴とする電池用表面処理鋼板の製造方法。
- 14. 電池ケース用の表面処理鋼板を製造する方法であって、冷延鋼板の両面に 15 ニッケルめっきを施し、次に電池ケースの内面側になる面にニッケルー錫合金め っきを施し、その後熱処理をすることを特徴とする電池用表面処理鋼板の製造方 法。
- 15. 電池用ケースの表面処理鋼板を製造する方法であって、冷延鋼板の両面に ニッケルー錫合金めっきを施し、その後熱処理をすることを特徴とする電池用表 20 面処理鋼板の製造方法。
 - 16. 電池用ケースの表面処理鋼板を製造する方法であって、冷延鋼板の両面にニッケルめっきを施し、次にその両面にニッケルー錫合金めっきを施し、その後熱処理をすることを特徴とする電池用表面処理鋼板の製造方法。

【図1】

1/3

[22]

[図3]

写真 (a)

10 µm

写 (b)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP94/01656

	ASSIFICATION OF SUBJECT MATTER C16 H01M2/02					
	to International Patent Classification (IPC) or to bot	t d				
	LDS SEARCHED	n nanonai crassification and it.C				
	documentation searched (classification system followed by	by classification symbols)				
	. C1 ⁵ H01M2/02, H01M2/04					
	tion searched other than minimum documentation to the		he fields searched			
Koka	ai Jitsuyo Shinan Koho 19					
Electronic d	ata base consulted during the international search (name	of data base and, where practicable, search	terms used)			
C. DOCU	JMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where a	appropriate, of the relevant passages	Relevant to claim No.			
A	JP, A, 53-26932 (Toshiba I March 13, 1978 (13. 03. 78 Fig. 3, (Family: none)		1-16			
х	JP, B2, 46-8743 (Matsushit Co., Ltd.), March 5, 1971 (05. 03. 71) Fig. 3, (Family: none)		7-9			
A	Microfilm of the specifica annexed to the written app Utility Model Application (Laid-Open No. 80959/1991) Ltd.), August 19, 1991 (19. 08. 9 Line 9, page 1, (Family: n	No. 141723/1989 (Yuasa Battery Co.,	1-16			
Further	r documents are listed in the continuation of Box C.	See patent family annex.				
"A" documer	Special categories of cited documents: "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand to be of particular relevance "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention					
"L" document cited to	ocument but published on or after the international filing date nt which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other reason (as specified)	considered novel or cannot be consid	ered to involve an inventive			
means	nt referring to an oral disclosure, use, exhibition or other	considered to involve an inventive and combined with one or more other such distances of the combined with a negron skilled in the	step when the document is locuments, such combination			
"P" document the prior	nt published prior to the international filing date but later than ity date claimed	"&" document member of the same patent				
Date of the a	ctual completion of the international search	Date of mailing of the international sear	ch report			
Nove	mber 28, 1994 (28. 11. 94)	December 20, 1994	(20. 12. 94)			
	ailing address of the ISA/	Authorized officer				
Japan	nese Patent Office					
Facsimile No).	Telephone No.				

Form PCT/ISA/210 (second sheet) (July 1992)

94/01656

3435

電話番号 03-3581-1101 内線

発明の属する分野の分類(国際特許分類(IPC)) Int C4 6 H0 1M2/02 B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. C. H01M2/02. H01M2/04 最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1926-1994年 1971-1994年 日本国公開実用新案公報 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) C. 関連すると認められる文献 引用文献の 関連する 請求の範囲の番号 カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 JP. A. 53-26932(東芝レイ・オ・バンク株式会社), 1 - 16A 13. 3月. 1978(13. 03. 78), 第3図(ファミリーなし) X JP. B2. 46-8743(松下電器産業株式会社), 5. 3月. 1971(05. 03. 71), 第3図(ファミリーなし) 1 - 16日本国実用新案登録出願平成 1-141723号 . 🛦 ✔ C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。 「丁」国際出願日又は優先日後に公表された文献であって出願と * 引用文献のカテゴリー 矛盾するものではなく、発明の原理又は理論の理解のため 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」先行文献ではあるが、国際出願日以後に公表されたもの に引用するもの 「L」優先権主張に扱義を提起する文献又は他の文献の発行日 「X」特に関連のある文献であって、当該文献のみで発明の新規 若しくは他の特別な理由を確立するために引用する文献 性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以上の文 (理由を付す) 「O」口頭による開示、使用、展示等に含及する文献 畝との、当業者にとって自明である組合せによって進歩性 「P」国際出顧日前で、かつ優先権の主張の基礎となる出願の日 がないと考えられるもの 「&」同一パテントファミリー文献 の後に公表された文献 国際調査報告の発送日 国際調査を完了した日 . 20.12.94 28. 11. 94 特許庁審査官(権限のある職員) 名称及びあて先 4 K 9 2 7 0 日本国特許庁(ISA/JP) 郵便番号100 東京都千代田区霞が関三丁目4番3号

川用文献の カテゴリー 	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
	(日本国実用新案登録出願公開平成3-80959号)の顧書 に添付された明細書及び図面のマイクロフィルム(湯浅電池 株式会社), 19.8月.1991(19.08.91), 明細書p1, 49(ファミリーなし)	
	·	
	·	
		·