Statistical Machine Learning Approaches to Liver Disease Prediction

TeamID:PNT2022TMID49098

TeamLeader: Manivanitha

TeamMember: Logapriya

TeamMember: Nisha

TeamMember: Sakthisubashini

Exploratory Data Analysis

The exploratory data analysis (EDA) notebook is designed to assist you with discovering patterns in data, checking data sanity, and summarizing there levant data for predictive models.

The EDA notebook example was optimized with web-based data in mindand consists of two parts. Part one starts with using Query Service to view trends and data snapshots. Next, with a goal in mind for exploratory data analysis, the data is aggregated at the profile and visitor level.

Part two starts by performing descriptive analysis on aggregated data using Python libraries. This note book show cases visualizations such as histograms, scatterplots, boxplots and a correlation matrix to derive actionable insights used to determine which features are most likely to be helpful in predicting a goal.

[4];		Year	Month	Count_days	First_date	Last_date	Count_hits
	0	2020	1	1	31	31	117060
	1	2020	2	29	1	29	3503948

head(): To check the first five n rows of the dataset, we have a function called **head()**.

Tail(): To check the last five rows of the dataset, we have a function called tail().

dat	data.tail()									
	Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferase	Aspartate_Aminotransfer			
578	60	Male	0.5	0.1	500	20	34			
579	40	Male	0.6	0.1	98	35	31			
580	52	Male	0.8	0.2	245	48	49			
581	31	Male	1.3	0.5	184	29	32			
582	38	Male	1.0	0.3	216	21	24			

Will see how our dataset is, by using the info() method.

```
data.info()
 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 583 entries, 0 to 582
 Data columns (total 11 columns):
 # Column
                                  Non-Null Count Dtype
                                  583 non-null int64
583 non-null object
     Age
  1 Gender
  2 Total_Bilirubin 583 non-null float64
3 Direct_Bilirubin 583 non-null float64
4 Alkaline_Phosphotase 583 non-null int64
     Alamine_Aminotransferase 583 non-null int64
     Aspartate_Aminotransferase 583 non-null
     Total_Protiens
                           583 non-null
                                                    float64
  8 Albumin
                                   583 non-null float64
     Albumin_and_Globulin_Ratio 579 non-null
  10 Dataset
                                   583 non-null
                                                    int64
 dtypes: float64(5), int64(5), object(1)
 memory usage: 50.2+ KB
```

describe(): functions are used to compute values like count, mean, standard deviation and IQR (InterQuantile Ranges) and give a summary of numeric type data.

data.describe()

data.	data.describe()									
	Age	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferase	Aspartate_Aminotransfera				
count	583.000000	583.000000	583.000000	583.000000	583.000000	583.000000				
mean	44.746141	3.298799	1.486106	290.576329	80.713551	109.910806				
std	16.189833	6.209522	2.808498	242.937989	182.620356	288.918529				
min	4.000000	0.400000	0.100000	63.000000	10.000000	10.000000				
25%	33.000000	0.800000	0.200000	175.500000	23.000000	25.000000				
50%	45.000000	1.000000	0.300000	208.000000	35.000000	42.000000				
75%	58.000000	2.600000	1.300000	298.000000	60.500000	87.000000				
max	90.000000	75.000000	19.700000	2110.000000	2000.000000	4929.000000				