

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594

Email: sgs internet operations@sgs.com

Report No.: SZEMO10090607901

Page : 1 of 52

FCC REPORT

Application No: SZEMO100906079RF

Applicant: CHIN FAI ELECTRONICS COMPANY
Manufacturer/Factory: CHIN FAI ELECTRONICS COMPANY
Product Name: SILICON BLUETOOTH KEYBOARD

Operation Frequency: 2402MHz to 2480MHz

FCC ID: XJ4KB6117

Standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247: 2009

Date of Receipt: 2010-09-21

Date of Test: 2010-09-22 to 2010-10-15

Date of Issue: 2010-10-18

Test Result : PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang

Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEMO10090607901

Page : 2 of 52

2 Contents

1 0	COVER PAGE	Page
2 C	CONTENTS	2
3 T	EST SUMMARY	3
4 G	GENERAL INFORMATION	4
4.1	CLIENT INFORMATION	4
4.2	GENERAL DESCRIPTION OF E.U.T.	4
4.3	E.U.T OPERATION MODE	6
4.4	TEST FACILITY	7
4.5	TEST LOCATION	
4.6	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
4.7	TEST INSTRUMENTS LIST	8
5 T	EST RESULTS AND MEASUREMENT DATA	10
5.1	Antenna requirement:	10
5.2	CONDUCTED EMISSIONS	
5.3	CONDUCTED PEAK OUTPUT POWER	16
5.4	20DB OCCUPY BANDWIDTH	
5.5	CARRIER FREQUENCIES SEPARATION	
5.6	HOPPING CHANNEL NUMBER	
5.7	DWELL TIME	
5.8	BAND EDGE	
5.9	RF ANTENNA CONDUCTED SPURIOUS EMISSIONS	
5.10		
5.11		
	5.11.1 Radiated emission below 1GHz	
•	5.11.2 Transmitter emission above 1GHz	
5	5.11.3 Band edge (Radiated Emission)	43-32

Report No.: SZEMO10090607901

Page : 3 of 52

3 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (b)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List (7 July 2002)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remark:

Pass: The EUT complies with the essential requirements in the standard.

Fail: The EUT does not comply with the essential requirements in the standard.

Report No.: SZEMO10090607901

Page : 4 of 52

4 General Information

4.1 Client Information

Applicant:	CHIN FAI ELECTRONICS COMPANY
Manufacturer/Factory:	CHIN FAI ELECTRONICS COMPANY
Address of Applicant:	Building 2C-2D, Yingfeng industrial Part, Sanhe economic development Zone, Huiyang District, Huizhou City, Guangdong Province, China
Address of Manufacturer:	Building 2C-2D, Yingfeng industrial Part, Sanhe economic development Zone, Huiyang District, Huizhou City, Guangdong Province, China
Address of Factory:	Building 2C-2D, Yingfeng industrial Part, Sanhe economic development Zone, Huiyang District, Huizhou City, Guangdong Province, China

4.2 General Description of E.U.T.

Product Name:	SILICON BLUETOOTH KEYBOARD
Item No.:	KB-6117
Operation Frequency:	2402MHz~2480MHz
No. of Channel:	79
Channel separation:	1MHz
Modulation type:	GFSK
Antenna Type:	Integral
Antenna gain:	2dBi
PC supply:	PC USB port supply(charge)
Battery:	3.7V DC (Lithium Battery)

Report No.: SZEMO10090607901

Page : 5 of 52

Operation F	requency each	of channel					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected for testing:

Channel	Frequency
lowest channel	2402MHz
middle channel	2441MHz
highest channel	2480MHz

Report No.: SZEMO10090607901

Page : 6 of 52

4.3 E.U.T Operation mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	50 % RH
Atmospheric Pressure:	1010 mBar
Test mode:	
PC charge	Keep the PC charging to EUT.
PC charge + Bluetooth	Keep the EUT communicating with other bluetooth device and PC charging to EUT.
Bluetooth	Keep the EUT communicating with other bluetooth device.
Transmitting	Keep the EUT in transmitting mode at low channel, middle channel and high channel.
Idle	Keep the EUT in standby mode.

SGS

SGS-CSTC Standards Technical Services Ltd.

Report No.: SZEMO10090607901

Page : 7 of 52

4.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 3m Semi-anechoic chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197 and C-2383 respectively.

Date of Registration: September 29, 2008. Valid until September 28, 2011.

FCC - Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 556682, June 27, 2008.

Industry Canada (IC)

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1.

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch E&E Lab No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 No tests were sub-contracted.

4.6 Other Information Requested by the Customer

None.

SGS

SGS-CSTC Standards Technical Services Ltd.

Report No.: SZEMO10090607901

Page : 8 of 52

4.7 Test Instruments list

RE i	n Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2010-06-17	2011-06-17
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	2009-11-05	2010-11-05
3	EMI Test software	AUDIX	E3	SEL0050	N/A	N/A
4	Coaxial cable	SGS	N/A	SEL0028	2008-06-18	2011-06-18
5	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2009-11-05	2010-11-05
6	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2009-11-10	2010-11-10
7	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2009-11-10	2010-11-10
8	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2010-06-02	2011-06-02
9	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2009-12-18	2010-12-18
10	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	SEL0080	2010-06-04	2011-06-04
11	Band filter	Amindeon	82346	SEL0094	2010-06-02	2011-06-02

Con	ducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	N/A	N/A
2	LISN	ETS-LINDGREN	3816/2	SEL0021	2010-06-02	2011-06-02
3	Two-Line V-Network	Rohde & Schwarz	ENV216	SEL0152	2009-10-22	2010-10-22
4	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2010-06-02	2011-06-02
5	Coaxial Cable	SGS	N/A	SEL0024	2008-06-18	2011-06-18

Report No.: SZEMO10090607901

Page : 9 of 52

RF c	conducted					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	Spectrum Analyzer	Rohde & Schwarz	FSP 30	SEL0154	2009-10-22	2010-10-22
2	Coaxial cable	SGS	N/A	SEL0028	2008-06-18	2011-06-18

Report No.: SZEMO10090607901

Page : 10 of 52

5 Test results and Measurement Data

5.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best gain of the antenna is 2dBi.

Report No.: SZEMO10090607901

Page : 11 of 52

5.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10: 2009				
Test Frequency Range:	150kHz to 30MHz				
Class / Severity:	Class B				
Limit:	Frequency range (MHz)	Limit (dBuV)			
	, , ,	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm				
Test procedure	The E.U.T and simulators are impedance stabilization netwo coupling impedance for the material are also connected to the main 500hm/50uH coupling impedate to the block diagram of the test. A.C. line are checked for maxifind the maximum emission, the interface cables must be conducted measurement.	ork (L.I.S.N.). It provide easuring equipment. To power through a LISI note with 500hm terminat setup and photograpimum conducted interface relative positions of	s a 50ohm/50uH he peripheral devices N that provides a nation. (Please refer hs). Both sides of erence. In order to equipment and all of		
Test setup:	Reference Plane				
	AUX Equipment E.U Test table/Insulation pla Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m		er — AC power		
Test Instruments:	Refer to section 4.7 for details				
Test mode:	PC charge, PC charge+Blueto	ooth			
Test result:	Pass				

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Report No.: SZEMO10090607901

Page : 12 of 52

PC charge Live line:

		Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
		MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1		0.16501	0.04	-0.05	46.95	46.94	65.21	-18.27	QP
2		0.16501	0.04	-0.05	37.52	37.51	55.21	-17.70	Average
3	0	0.29398	0.05	-0.04	45.51	45.52	60.41	-14.89	QP
4		0.29398	0.05	-0.04	34.25	34.26	50.41	-16.15	Average
5		0.65778	0.06	-0.05	40.20	40.21	56.00	-15.79	QP
6		0.65778	0.06	-0.05	28.32	28.33	46.00	-17.67	Average
7		2.554	0.13	-0.07	34.86	34.92	56.00	-21.08	QP
8		2.554	0.13	-0.07	22.41	22.47	46.00	-23.53	Average
9		3.140	0.14	-0.08	37.55	37.61	56.00	-18.39	QP
10		3.140	0.14	-0.08	25.36	25.42	46.00	-20.58	Average
11		4.315	0.16	-0.10	38.18	38.25	56.00	-17.75	QP
12		4.315	0.16	-0.10	24.74	24.80	46.00	-21.20	Average

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEMO10090607901

Page : 13 of 52

Neutral line:

		Cable	LISN	Read		Limit	Over	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.19758	0.04	-0.04	45.97	45.97	63.71	-17.74	QP
2	0.19758	0.04	-0.04	34.52	34.52	53.71	-19.19	Average
3	0.31999	0.05	-0.04	40.23	40.24	59.71	-19.47	QP
4	0.31999	0.05	-0.04	29.54	29.55	49.71	-20.15	Average
5	0.66832	0.06	-0.04	38.02	38.04	56.00	-17.96	QP
6	0.66832	0.06	-0.04	25.36	25.38	46.00	-20.62	Average
7	1.141	0.09	-0.05	38.17	38.21	56.00	-17.79	QP
8	1.141	0.09	-0.05	26.47	26.51	46.00	-19.49	Average
9	2.334	0.13	-0.07	36.71	36.77	56.00	-19.23	QP
10	2.334	0.13	-0.07	24.32	24.38	46.00	-21.62	Average
11	2.707	0.13	-0.07	35.33	35.40	56.00	-20.60	QP
12	2.707	0.13	-0.07	23.41	23.47	46.00	-22.53	Average

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEMO10090607901

Page : 14 of 52

PC charge + Bluetooth Live line:

			Cable	LISN	Read		Limit	Over	
		Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	-	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0	0.28100	0.05	-0.04	46.10	46.11	60.79	-14.68	QP
2	0	0.28100	0.05	-0.04	37.60	37.61	50.79	-13.18	Average
3		0.65778	0.06	-0.05	39.30	39.31	56.00	-16.69	QP
4		0.65778	0.06	-0.05	28.32	28.33	46.00	-17.67	Average
5		2.090	0.12	-0.06	38.90	38.96	56.00	-17.04	QP
6		2.090	0.12	-0.06	28.50	28.56	46.00	-17.44	Average
7		2.554	0.13	-0.07	22.41	22.47	46.00	-23.53	Average
8		2.554	0.13	-0.07	34.86	34.92	56.00	-21.08	QP
9		3.140	0.14	-0.08	37.55	37.61	56.00	-18.39	QP
10		3.140	0.14	-0.08	25.36	25.42	46.00	-20.58	Average
11		4.315	0.16	-0.10	24.74	24.80	46.00	-21.20	Average
12		4.315	0.16	-0.10	38.18	38.25	56.00	-17.75	QP
13		9.502	0.22	-0.27-	500.95-	501.00	60.00-	-561.00	QP

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEMO10090607901

Page : 15 of 52

Neutral line:

	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.22300	0.04	-0.04	31.80	31.80	52.71	-20.90	Average
2	0.22300	0.04	-0.04	42.90	42.90	62.71	-19.80	QP
3	0.31999	0.05	-0.04	40.23	40.24	59.71	-19.47	QP
4	0.31999	0.05	-0.04	29.54	29.55	49.71	-20.15	Average
5	0.66832	0.06	-0.04	25.36	25.38	46.00	-20.62	Average
6	0.66832	0.06	-0.04	38.02	38.04	56.00	-17.96	QP
7 0	1.290	0.09	-0.05	40.40	40.44	56.00	-15.56	QP
8	1.290	0.09	-0.05	29.80	29.84	46.00	-16.16	Average
9	2.334	0.13	-0.07	36.71	36.77	56.00	-19.23	QP
10	2.334	0.13	-0.07	24.32	24.38	46.00	-21.62	Average
11	3.290	0.15	-0.08	38.50	38.56	56.00	-17.44	QP
12	3.290	0.15	-0.08	27.40	27.46	46.00	-18.54	Average

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEMO10090607901

Page : 16 of 52

5.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)			
Test Method:	ANSI C63.10:2009 and KDB DA00-705			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table			
	Ground Reference Plane			
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.			
Test Instruments:	Refer to section 4.7 for details			
Test state:	Non-hopping transmitting with all kinds of modulation.			
Test results:	Pass			

Measurement Data

	GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	-2.58	30.00	Pass			
Middle	-3.08	30.00	Pass			
Highest	-3.66	30.00	Pass			

Report No.: SZEMO10090607901

Page : 17 of 52

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Date: 26.SEP.2010 13:53:07

Test mode: GFSK Test channel: Middle

Date: 26.SEP.2010 14:39:11

Report No.: SZEMO10090607901

Page : 18 of 52

Test mode: GFSK Test channel: Highest

Date: 26.SEP.2010 15:53:32

Report No.: SZEMO10090607901

Page : 19 of 52

5.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10:2009 and KDB DA00-705			
Limit:	NA			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 4.7 for details			
Test state:	Non-hopping transmitting with all kind of modulation.			
Test results:	Pass			

Measurement Data

T. alaba a a l	20dB Occupy Bandwidth (kHz)			
Test channel	GFSK			
Lowest	960			
Middle	972			
Highest	968			

Report No.: SZEMO10090607901

Page : 20 of 52

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Date: 26.SEP.2010 13:54:02

Test mode: GFSK Test channel: Middle

Date: 26.SEP.2010 14:39:50

Report No.: SZEMO10090607901

Page : 21 of 52

Test mode: GFSK Test channel: Highest

Date: 26.SEP.2010 15:57:28

Report No.: SZEMO10090607901

Page : 22 of 52

5.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10:2009 and KDB DA00-705			
Test state:	Hopping transmitting with all kind of modulation.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 4.7 for details			
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)			
Test results:	Pass			

Report No.: SZEMO10090607901

Page : 23 of 52

Measurement Data

GFSK mode					
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Lowest	1004	>648.0	Pass		
Middle	1004	>648.0	Pass		
Highest	1004	>648.0	Pass		

Note: According to section 5.4,

Mode	20dB bandwidth (kHz)	Limit (kHz)	
Wode	(worse case)	(Carrier Frequencies Separation)	
GFSK	972	648.0	

Report No.: SZEMO10090607901

Page : 24 of 52

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Date: 26.SEP.2010 14:35:25

Test mode: GFSK Test channel: Middle

Date: 26.SEP.2010 15:52:12

Report No.: SZEMO10090607901

Page : 25 of 52

Test mode: GFSK Test channel: Highest

Date: 26.SEP.2010 15:56:46

Report No.: SZEMO10090607901

Page : 26 of 52

5.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (b)			
Test Method:	ANSI C63.10:2009 and KDB DA00-705			
Requirement:	≥75 channels			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 4.7 for details			
Test state:	Hopping transmitting with all kind of modulation.			
Test results:	Pass			

Measurement Data

Mode	Hopping channel	Requirement
GFSK	79	≥75
Pi/4QPSK	79	≥75
8DPSK	79	≥75

Report No.: SZEMO10090607901

Page : 27 of 52

Test plot as follows

Test mode: GFSK

Date: 29.SEP.2010 09:15:53

Report No.: SZEMO10090607901

Page : 28 of 52

5.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2009 and KDB DA00-705	
Limit:	≤ 0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 4.7 for details	
Test state:	Hopping transmitting with all kind of modulation.	
Test results:	Pass	

Measurement Data

Mode	Packet	Dwell time (second)	Limit (second)
GFSK	DH1	0.1568	≪0.4
	DH3	0.2848	≪0.4
	DH5	0.3179	≤0.4

Report No.: SZEMO10090607901

Page : 29 of 52

Test plot as follows

Test mode: GFSK Test Packet: DH1

Date: 29.SEP.2010 10:30:27

Test mode: GFSK Test Packet: DH3

Date: 29.SEP.2010 10:31:24

Report No.: SZEMO10090607901

Page : 30 of 52

Test mode: GFSK Test Packet: DH5

Date: 29.SEP.2010 10:32:05

Report No.: SZEMO10090607901

Page : 31 of 52

5.8 Band Edge

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2009 and KDB DA00-705
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.
Test Instruments:	Refer to section 4.7 for details
Test state:	Hopping transmitting with all kinds of modulation.
Test results:	Pass

Report No.: SZEMO10090607901

Page : 32 of 52

Test plot as follows:

Date: 26.SEP.2010 13:57:39

Date: 26.SEP.2010 14:37:27

Report No.: SZEMO10090607901

Page : 33 of 52

Date: 26.SEP.2010 15:54:39

Date: 26.SEP.2010 15:59:48

Report No.: SZEMO10090607901

Page : 34 of 52

5.9 RF Antenna Conducted spurious emissions

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2009 and KDB DA00-705
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.
Test Instruments:	Refer to section 4.7 for details
Test results:	Pass

Report No.: SZEMO10090607901

Page : 35 of 52

Date: 26.SEP.2010 13:56:13

Date: 26.SEP.2010 13:56:35

Report No.: SZEMO10090607901

Page : 36 of 52

Date: 26.SEP.2010 15:46:34

Date: 26.SEP.2010 15:47:07

Report No.: SZEMO10090607901

Page : 37 of 52

Date: 26.SEP.2010 15:55:29

Date: 26.SEP.2010 15:55:49

Report No.: SZEMO10090607901

Page : 38 of 52

5.10 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: SZEMO10090607901

Page : 39 of 52

5.11 Radiated Emission

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205						
Test Method:	FCC Part15 C Section 15.209 and 15.205 ANSI C63.10: 2009								
Test Frequency Range:	30MHz to 25GHz								
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver setup:									
. ioooo. ootap.	Frequency Detector RBW VBW Remark								
	30MHz-1GHz	Quasi-peak	100kHz	300kHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Above Tall2	Peak	1MHz	10Hz	Average Value				
Limit:	_								
	Freque		Limit (dBuV/		Remark				
	30MHz-8		40.0		Quasi-peak Value				
	88MHz-21		43.5		Quasi-peak Value				
	216MHz-9 960MHz-	1	46.0 54.0		Quasi-peak Value Quasi-peak Value				
			54.0		Average Value				
	Above 1	GHz	74.0		Peak Value				
Test Procedure:	the ground a rotated 360 radiation. b. The EUT was antenna, who tower. c. The antenna ground to do horizontal as the measured. For each succase and the meters and degrees to fe. The test-red Specified Base of the EUT whave 10dB in the second secon	at a 3 meter so degrees to de degrees to de degrees to de de degrees to de degrees to de degrees to degree de degree	emi-anechoice stermine the properties away from the total the total the field from one naximum valuarizations of the store was turned to the total	the interference of a varial meter to form the antennation heights fined from 0 ceak Detect Fold Mode. It is mode was a se the emissione by one	ence-receiving ble-height antenna ur meters above the ld strength. Both a are set to make ged to its worst rom 1 meter to 4 degrees to 360				
Test Instruments:	Refer to section	4.7 for details	3						

Report No.: SZEMO10090607901

Page : 40 of 52

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: SZEMO10090607901

Page : 41 of 52

5.11.1 Radiated emission below 1GHz

PC charge + Bluetooth mode

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Emission Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Antenna polarization
113.420	1.24	8.36	27.74	47.59	29.45	43.50	-14.05	Vertical
175.500	1.36	9.71	27.29	48.47	32.25	43.50	-11.25	Vertical
308.390	1.93	14.20	26.79	47.14	36.48	46.00	-9.52	Vertical
455.830	2.43	17.09	27.58	46.64	38.58	46.00	-7.42	Vertical
727.430	2.99	21.61	27.18	45.12	42.54	46.00	-3.46	Vertical
827.340	3.32	22.40	26.79	42.64	41.57	46.00	-4.43	Vertical
83.350	1.10	8.04	27.98	43.80	24.96	40.00	-15.04	Horizontal
198.780	1.40	10.19	27.16	49.32	33.75	43.50	-9.75	Horizontal
230.790	1.58	11.70	27.00	44.02	30.30	46.00	-15.70	Horizontal
362.710	2.10	15.72	27.18	42.58	33.22	46.00	-12.78	Horizontal
455.830	2.43	17.09	27.58	42.93	34.87	46.00	-11.13	Horizontal
727.430	2.99	21.61	27.18	37.73	35.15	46.00	-10.85	Horizontal

Report No.: SZEMO10090607901

Page : 42 of 52

5.11.2 Transmitter emission above 1GHz

Test channel:	Low	est	Remark		Peak			
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Emission Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Antenna polarization
4804	9.36	34.04	41.53	51.89	53.76	74.00	-20.24	Vertical
7206	13.38	36.33	40.98	46.18	54.91	74.00	-19.09	Vertical
9608	13.39	36.99	37.56	44.29	57.11	74.00	-16.89	Vertical
12010	16.45	38.80	39.09	46.19	62.35	74.00	-11.65	Vertical
14412	17.44	39.40	44.77	46.38	58.45	74.00	-15.55	Vertical
4804	9.36	34.04	41.53	56.29	58.16	74.00	-15.84	Horizontal
7206	13.38	36.33	40.98	50.31	59.04	74.00	-14.96	Horizontal
9608	13.39	36.99	37.56	41.39	54.21	74.00	-19.79	Horizontal
12010	16.45	38.80	39.09	41.06	57.22	74.00	-16.78	Horizontal
14412	17.44	39.40	44.77	40.61	52.68	74.00	-21.32	Horizontal

Test channel:	Low	est	Remark	:	Average			
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Antenna polarization
4804	9.36	34.04	41.53	43.26	45.13	54.00	-8.87	Vertical
7206	13.38	36.33	40.98	35.61	44.34	54.00	-9.66	Vertical
9608	13.39	36.99	37.56	34.16	46.98	54.00	-7.02	Vertical
12010	16.45	38.80	39.09	27.96	44.12	54.00	-9.88	Vertical
14412	17.44	39.40	44.77	33.84	45.91	54.00	-8.09	Vertical
4804	9.36	34.04	41.53	39.64	41.51	54.00	-12.49	Horizontal
7206	13.38	36.33	40.98	36.29	45.02	54.00	-8.98	Horizontal
9608	13.39	36.99	37.56	33.48	46.30	54.00	-7.70	Horizontal
12010	16.45	38.80	39.09	30.29	46.45	54.00	-7.55	Horizontal
14412	17.44	39.40	44.77	33.85	45.92	54.00	-8.08	Horizontal

Report No.: SZEMO10090607901

Page : 43 of 52

Test channe	el: Mid	dle	Remark	C :	Peak			
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Emission Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Antenna polarization
4882	10.57	34.02	40.33	49.85	54.11	74.00	-19.89	Vertical
7323	12.91	36.10	40.40	46.29	54.90	74.00	-19.10	Vertical
9764	13.89	37.10	37.94	46.67	59.72	74.00	-14.28	Vertical
12205	17.95	38.93	39.30	43.28	60.86	74.00	-13.14	Vertical
14646	17.18	39.63	45.96	46.86	57.71	74.00	-16.29	Vertical
4882	10.57	34.02	40.33	49.84	54.10	74.00	-19.90	Horizontal
7323	12.91	36.10	40.40	52.34	60.95	74.00	-13.05	Horizontal
9764	13.89	37.10	37.94	44.50	57.55	74.00	-16.45	Horizontal
12205	17.95	38.93	39.30	43.18	60.76	74.00	-13.24	Horizontal
14646	17.18	39.63	45.96	47.16	58.01	74.00	-15.99	Horizontal

Test channe	el: Mid	dle	Remark	C :	Average			
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Antenna polarization
4882	10.57	34.02	40.33	39.19	43.45	54.00	-10.55	Vertical
7323	12.91	36.10	40.40	38.19	46.80	54.00	-7.20	Vertical
9764	13.89	37.10	37.94	33.27	46.32	54.00	-7.68	Vertical
12205	17.95	38.93	39.30	29.19	46.77	54.00	-7.23	Vertical
14646	17.18	39.63	45.96	31.47	42.32	54.00	-11.68	Vertical
4882	10.57	34.02	40.33	37.26	41.52	54.00	-12.48	Horizontal
7323	12.91	36.10	40.40	37.19	45.80	54.00	-8.20	Horizontal
9764	13.89	37.10	37.94	31.19	44.24	54.00	-9.76	Horizontal
12205	17.95	38.93	39.30	29.16	46.74	54.00	-7.26	Horizontal
14646	17.18	39.63	45.96	35.76	46.61	54.00	-7.39	Horizontal

Report No.: SZEMO10090607901

Page : 44 of 52

Test channe	el: Hig	hest	Remark	(:	Peak			
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Emission Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Antenna polarization
4960	10.43	34.01	41.03	51.67	55.08	74.00	-18.92	Vertical
7440	12.72	35.91	40.01	45.86	54.48	74.00	-19.52	Vertical
9920	14.24	37.23	37.78	45.86	59.55	74.00	-14.45	Vertical
12400	17.55	39.04	39.48	43.19	60.30	74.00	-13.70	Vertical
14880	16.69	39.80	46.61	45.89	55.77	74.00	-18.23	Vertical
4960	10.43	34.01	41.03	50.29	53.70	74.00	-20.30	Horizontal
7440	12.72	35.91	40.01	49.18	57.80	74.00	-16.20	Horizontal
9920	14.24	37.23	37.78	44.83	58.52	74.00	-15.48	Horizontal
12400	17.55	39.04	39.48	44.19	61.30	74.00	-12.70	Horizontal
14880	16.69	39.80	46.61	49.51	59.39	74.00	-14.61	Horizontal

Test channe	el: Higl	hest	Remark	C :	Average			
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Antenna polarization
4960	10.43	34.01	41.03	41.95	45.36	54.00	-8.64	Vertical
7440	12.72	35.91	40.01	35.93	44.55	54.00	-9.45	Vertical
9920	14.24	37.23	37.78	29.15	42.84	54.00	-11.16	Vertical
12400	17.55	39.04	39.48	28.35	45.46	54.00	-8.54	Vertical
14880	16.69	39.80	46.61	32.94	42.82	54.00	-11.18	Vertical
4960	10.43	34.01	41.03	38.54	41.95	54.00	-12.05	Horizontal
7440	12.72	35.91	40.01	35.49	44.11	54.00	-9.89	Horizontal
9920	14.24	37.23	37.78	29.68	43.37	54.00	-10.63	Horizontal
12400	17.55	39.04	39.48	28.19	45.30	54.00	-8.70	Horizontal
14880	16.69	39.80	46.61	36.18	46.06	54.00	-7.94	Horizontal

Remark: The disturbance above 15GHz was very low (>20dB below the limit), and the above harmonics were the highest points could be found when testing, so only the above harmonics have been displayed.

Report No.: SZEMO10090607901

Page : 45 of 52

5.11.3 Band edge (Radiated Emission)

Test mode:	Transmitting	Test channel:	Lowest	Remark:	Peak

Vertical:

1

2 X

3 @

2390.000

2400.000

2401.698

6.28

6.34

6.34

32.24

32.25

32.25

39.03

38.87

38.87

44.61

75.01

96.12

44.10

74.72

95.83

74.00 -29.90 Peak

0.72 Peak

21.83 Peak

74.00

74.00

Report No.: SZEMO10090607901

Page : 46 of 52

Horizontal:

	Freq			Preamp Factor			Limit Line	Over Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 2 X 3 0	2390.000 2400.000 2402.070	6.34	32.25	39.03 38.87 38.87	76.46	76.17	74.00	2.17	Peak

Report No.: SZEMO10090607901

Page : 47 of 52

Test mode: Transmitting Test channel: Lowest Remark: Average

Vertical:

	Freq			Preamp Factor	Read Level		Limit Line		Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 2 X 3 0	2390.000 2400.000 2402.070	6.34	32.25	39.03 38.87 38.87	62.43	62.14	54.00	8.14	Peak

Report No.: SZEMO10090607901

Page : 48 of 52

Horizontal:

Report No.: SZEMO10090607901

Page : 49 of 52

Test mode:	Transmitting	Test channel:	Highest	Remark:	Peak
1 oot modo.	rranomiting	1 Oot onamion	riigiioot	i tomant.	1 oak

Vertical:

		CableAntenna		Preamp	Read		Limit	Over	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 @	2480.134	6.45	32.29	39.72	94.60	93.62	74.00	19.62	Peak
2	2483.500	6.22	32.29	39.53	55.53	54.51	74.00	-19.49	Peak

Report No.: SZEMO10090607901

Page : 50 of 52

Horizontal:

Report No.: SZEMO10090607901

Page : 51 of 52

Test mode: Transmitting Test channel: Highest Remark: Average

Vertical:

	Freq			Preamp Factor			Limit Line		Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 @ 2	2480.134 2483.500								Average Average

Report No.: SZEMO10090607901

Page : 52 of 52

Horizontal:

	Freq	CableAntenna Loss Factor		_	Read Level		Limit Line		Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 0 2	2480.071 2483.500								lverage lverage