ZBIRKA REŠENIH ZADATAKA IZ MATEMATIKE 2

35. ispravljeno izdanje

Redaktor i recenzent DOBRILO TOŠIĆ

Urednik MILOLJUB ALBIJANIĆ

Odgovorni urednik MILORAD MARJANOVIĆ

Za izdavača MILOLJUB ALBIJANIĆ direktor i glavni urednik

Ministar prosvete Republike Srbije, svojim rešenjem broj 650-02-00278/2008-06, od 21.07.2008. godine, odobrio je ovu ZBIRKU REŠENIH ZADATAKA IZ MATEMATIKE za izdavanje i upotrebu u drugom razredu gimnazija.

СІР- Каталогизација у публикацији Народна библиотека Србије, Београд 37.016: 51(075.3)(076)

БОГОСЛАВОВ, Вене Т., 1932-

Zbirka rešenih zadataka iz matematike 2/ Vene Bogoslavov - 35. ispravljeno izd.

- Beograd: Zavod za udžbenike, 2011 (Beograd: Cicero). - 407 str. : graf. prikazi, tabele; 20 cm

Tiraž 10.000. - Str. 4: Predgovor/ Dobrilo Tošić, Miloljub Albiijanic. - Beleška o autoru: str. 406-407. Bibliografija 404-405. ISBN 978-86-17-17461-1

COBISS.SR-ID 184374028

©ZAVOD ZA UDŽBENIKE, Beograd (2008–2011)

Ovo delo se ne sme umnožavati i na bilo koji način reprodukovati, u celini niti u delovima, bez pismenog odobrenja izdavača.

S ljubavlju snahi Sonji i sinu Draganu

PREDGOVOR

Ovo je trideset peto izdanje. Prvo izdanje je publikovano januara 1971. godine. Do sada je ukupan tiraž bio blizu 370 000 primeraka, što je svojevrsan rekord!! Većina autora u svakom novom izdanju dodaju nove sadržaje. To je slučaj i sa ovom knjigom. Broj zadataka se stalno povećavao, pri čemu je zanemarivana provera ili poboljšavanje postojećih zadataka. Zbog toga je proizašla potreba da se knjiga sistematski i detaljno pregleda.

Na inicijativu Zavoda ovo izdanje je kardinalno ispravljeno. Ovog mukotrpnog i dugotrajnog posla prihvatio se prvo potpisani. Svaki zadatak je detaljno rešen i mnogi rezultati su provereni na računaru. Pri tome je primećen i otklonjen veliki broj štamparskih i još veći broj stvarnih grešaka. Naravno, teško je ispraviti sve greške, pogotovo kada ih ima mnogo. Kao uteha, često se kaže da nisu dobre one knjige u kojima nema grešaka.

Do navedene inicijative je došlo i zbog saznanja da ova značajna knjiga ima veliku odgovornost i ulogu u procesu matematičkog obrazovanja u Srbiji, s obzirom da se decenijama preporučuje velikom broju učenika.

Interesantno je da većina učenika srednjih škola gradivo iz matematike savlađuju isključivom upotrebom zbirki zadataka. Dakle, matematika se uči rešavanjem zadataka. Mnogi nisu nikada otvorili udžbenik, ili za njega nisu čuli da postoji. Izgleda da je i nastavnicima lakše da tako rade, zaboravljajući da je dobra teorija najbolja praksa. To je dovelo do toga da se prosek nivoa znanja matematike svake godine smanjuje. U zadnjih nekoliko godina osvojeno je dosta medalja na matematičkim olimpijadama—svake godine sve više i više. Međutim, sredina je sve slabija i slabija. To se najbolje vidi kada se pogledaju tekstovi zadataka iz matematike sa prijemnih ispita na fakultetima.

Ova knjiga sadrži pored jednostavnih i veliki broj težih ali lepih zadataka. Upravo je to bio razlog da se otklone greške i mnogi nedostaci. Nadamo se da će ovako osvežena knjiga doživeti još dosta izdanja.

Beograd, maja 2011.

Dobrilo Tošic Miloljub Albijanić

SADRŽAJ

I GLAVA (F						
1. 1.1. 1.2.	STEPENOVANJE I KORENOVANJE	(190) (190)				
1.3.	Osnovne operacije sa stepenima i korenima	(191) (207)				
II GLAVA						
2. 2.1. 2.2.	KVADRATNA JEDNAČINA I KVADRATNA FUNKCIJA 54 Kvadratna jednačina	(209) (209)				
2.3. 2 2	na linearne činioce	(214) (219) (219) (221)				
	.3.3. Trinomne jednačine .74 .3.4. Simetrične (recipročne) jednačine .75 Kvadratna funkcija .77 Kvadratna nejednačina. Znak kvadratnog trinoma .83 Sistem od jedne linearne i jedne ili dve kvadratne jednačine	(222) (223) (226) (234)				
2.7.	sa dve nepoznate	(240) (250)				
III GLAVA						
3. 3.1. 3.2. 3.3. 3.4. 3.5.	EKSPONENCIJALNA I LOGARITAMSKA FUNKCIJA . 100 Eksponencijalna funkcija	(256) (256) (259) (265) (272) (278)				
IV GLAVA						
4. 4.1. 4.2.	TRIGONOMETRIJSKE FUNKCIJE	(279) (279) (286) (287)				
	3.1. Trigonometrijske funkcije zbira i razlike uglova128	(287)				

Sadržaj

4.3.2. Trigonometrijske funkcije dvostrukih uglova 130	(288)			
4.3.3. Trigonometrijske funkcije poluglova131	(289)			
4.3.4. Transformacija zbira i razlike trigonometrijskih				
funkcija u proizvod i obrnuto	(291)			
4.3.5. Kombinovani zadaci iz adicionih formula134	(291)			
4.4. Trigonometrijske jednačine147	(323)			
4.5. Trigonometrijske nejednačine				
4.6. Grafici trigonometrijskih funkcija	(361)			
4.7. Sinusna i kosinusna teorema sa primenama169	(378)			
V GLAVA				
5. RAZNI ZADACI176	(388)			
LITERATURA				
BELEŠKA O AUTORU	406			

IZ DREVNE ISTORIJE ALGEBRE

Isečak iz Ahmesovog papirusa. Ova stara knjiga čuva se sada u Britanskom muzeju u Londonu.

U XVII veku pre naše ere egipatski sveštenik Ahmes, po ugledu na neki još stariji rukopis, napisao je pomenuti papirus u kome je sakupio uglavnom sva dotadašnja znanja iz geometrije i algebre. Papirus sadrži osamdeset zadataka iz algebre, svaki sa sopstvenim rešenjem. Mnogi od tih zadataka bili su "Odredi broj". Ovako je glasio jedan Ahmesov zadatak: "Gomila, njene dve trećine, jedna polovina i tri sedmine, sabrane zajedno daju 33. Odrediti gomilu". Neki su bili očigledno samo za zabavu, na primer: "Ima 7 kuća, u svakoj kući ima po sedam mačaka, svaka mačka ubija sedam miševa, svaki miš pojede po sedam klasova pšenice. Svaki klas pšenice će dati 7 hektara zrna. Koliko je žita spaseno?" Većina zadataka je vezana za svakodnevni život (za hleb, pivo, hranjenje stoke, itd.)...

ZADACI

I GLAVA

1. STEPENOVANJE I KORENOVANJE

1.1. Stepen čiji je izložilac ceo broj

Ako je $a \in \mathbb{R} \land a \neq 0$ i $n \in \mathbb{N}$, onda:

$$1^{\circ} \ a^{0} \stackrel{\text{def}}{=} 1; \ 2^{\circ}. \ a^{-n} \stackrel{\text{def}}{=} \frac{1}{a^{n}}.$$

Ako su $a, b \in \mathbb{R} \land a \neq 0 \land b \neq 0$) i $m, n \in \mathbb{N}$, onda:

$$1^{\circ} a^{m} \cdot a^{n} = a^{m+m}; \quad 2^{\circ} a^{m} : a^{n} = a^{m-n}; \quad 3^{\circ} (a^{m})^{n} = a^{mn};$$

$$4^{\circ} (ab)^n = a^n \cdot b^n; \quad 5^{\circ} \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}.$$

1. Izračunati:

a)
$$5^0 + 3^{-2} \cdot \left(\frac{1}{9}\right)^{-1}$$
; b) $(a - b)^0 + 0, 1^{-2} \cdot 10^{-1} \ (a \neq b)$;

c)
$$\left(\frac{1}{2}\right)^{-2} - \left(\frac{1}{4}\right)^{-1} \cdot 2^{-2}$$
; d) $\left(\left(1\frac{1}{3}\right)^{-1} - 2^{-2}\right)^{-3}$.

2. Izračunati:

$$a) \ 0, 1^{-4} + 0, 01^{-3} + 0, 001^{-2} + 0, 0001^{-1} + 0, 00001^{-0}; \\$$

b)
$$(x+y)^0 + 0.25^{-1} + (-0.5)^{-2} + (0.001^0)^{-4}$$
 $(x+y \neq 0)$.

3. Izračunati:

a)
$$2^{-4} \cdot \left(\frac{1}{4}\right)^{-2}$$
; b) $2^{-4} \cdot 0, 1^{-4}$; c) $\left(\frac{5}{2} - \left(\frac{3}{5}\right)^{-1}\right)^{-1}$;

d)
$$\frac{2^{-2} + 5\left(\frac{1}{2}\right)^0}{3 - \left(\frac{2}{3}\right)^{-2}};$$
 e) $\frac{3^{-2} - \left(\frac{3}{4}\right)^{-2}}{2 - \left(\frac{1}{5}\right)^{-1}};$ f) $\left(\left(-\frac{2}{3}\right)^{-3} + 3 \cdot 2^{-3}\right)^{-2}.$

4. Izračunati:

a)
$$0.5^{-1} + 0.25^{-2} + 0.125^{-3} + 0.0625^{-4}$$

b)
$$1^{-1} + 2^{-2} + 3^{-3} + (-1)^{-1} + (-2)^{-2} + (-3)^{-3}$$

c)
$$\frac{\left(\frac{1}{10}\right)^{-3} \cdot 10^{5}}{\left(\frac{1}{1000}\right)^{3} \cdot 1000^{-5}}$$
; d) $\frac{0,25^{-2} \cdot 1,75^{-3}}{0,75^{2} \cdot 1,25^{3}}$; e) $\frac{0,1^{-2} - (0,4)^{0}}{2\frac{2}{3}\left(\frac{2}{3}\right)^{-3} + \left(-\frac{1}{3}\right)^{-1}}$.

5. Uprostiti izraz:

a)
$$A = \frac{\left((-12)^{-3}\right)^{-2} \cdot 75^{-1} \cdot (-4)^{0}}{(25^{-1})^{4} \cdot 6^{6} \cdot 10^{4}};$$
 b) $A = \frac{1^{-1} + 2^{-2}}{\left(\frac{2}{3}\right)^{-2} + 4^{-1} \cdot 5 + 0, 5^{-2}}.$

6. Izračunati broj v ako je: $v^2 = \frac{0,000\,000\,0004^3 \cdot 8\,100\,000\,000}{0,000\,000\,12^4}$.

7. Ako je
$$a = 5^3 \cdot \left(\frac{1}{4}\right)^{-4} \cdot \left(\frac{3}{2}\right)^2$$
, $b = 10^3 \cdot \left(\frac{5}{3}\right)^{-2}$, izračunati $a \cdot b^{-1}$.

8. Masa atoma vodonika iznosi $1,65\cdot 10^{-24}$ g. Koliko nula ima ovaj decimalan broj ako se računa i nula ispred decimalnog zareza?

9. Date izraze transformisati u identično jednake izraze u kojima ne figurišu stepeni sa negativnim izložiocima:

a)
$$x^{-4}$$
; b) a^2b^{-2} ; c) $9x^8 \cdot 3^{-2}x^{-8}$; d) $-4a^{-2}b^{-3}c \cdot 3a^{-5}b^2c^{-1}$.

10. Osloboditi se razlomaka:

$$\frac{2a}{b^{-2}}; \quad \frac{1}{a^3b^{-2}}; \quad \frac{x}{a^{-n}b^m}; \quad \frac{ab}{(a+b)^3}; \quad \frac{2(a-b)^2}{(a-b)^{-1}}; \quad \left(\frac{2x+1}{x-1}\right)^{-3};$$

$$\frac{7}{(a-b)^{-3}}; \quad \frac{2}{a^2x(x-y)^{-3}}.$$

Uprostiti izraze (11–14):

11. a)
$$\frac{27x^{-2}y^{-3}}{3^2x^{-4}y^2}$$
; b) $\frac{a^{-3}ab^{-2}}{2^{-4}a^3b^{-3}}$; c) $\frac{x^{-5} + 2x^2 - x}{x^{-3}}$;

$$\mathrm{d}) \ \left(\frac{y^{-2}}{x^{-2}}\right)^{-3} : \left(\frac{x^{-1}}{y^2}\right)^{-3}; \quad \mathrm{e}) \ \left(\frac{a^{-3}}{b^{-3}}\right) : \left(\frac{a^{-2}}{b^3}\right)^{-2}.$$

12. a)
$$(50^x + 30^x + 18^x) \cdot (5^x - 3^x)$$
; b) $(25^x + 20^x + 16^x) \cdot (5^x - 4^x)$;

c)
$$\frac{a+b^{-1}}{a+c(bc+1)^{-1}} - \frac{b^{-1}}{abc+a+c}$$
; d) $\frac{ab^{-1}-a^{-1}b}{a^{-2}-2a^{-1}b^{-1}+b^{-2}}$.

13. a)
$$\left(\frac{2^x + 2^{-x}}{2}\right)^2 - \left(\frac{2^x - 2^{-x}}{2}\right)^2$$
;

b)
$$\frac{x^{-4} - 25y^{-2}}{x^{-2} - 5y^{-1}} \cdot x^2 y (y + 5x^2)^{-1};$$

c)
$$\frac{a^{-4} - 9b^{-2}}{a^{-2} - 3b^{-1}} \cdot \frac{(b + 3a^2)^{-1}}{a^{-2}b^{-1}};$$
 d) $\frac{a^{-2} + b^{-2}}{a^{-1} + b^{-1}} \cdot \left(\frac{a^2 + b^2}{ab}\right)^{-1}.$

14. a)
$$\left(\left(\frac{5x^{-5}}{2y^{-2}} \right)^{-2} \cdot \left(\frac{y^{-1}}{5x^{-1}} \right)^{-3} \right) : 10x^2y^{-3};$$

b)
$$\left(\left(\frac{3a^2}{4b^{-3}} \right)^{-3} : \left(\frac{9a^{-2}b}{4} \right)^{-2} \right) \cdot \frac{b^7}{12a^{-11}};$$

c)
$$\left(\left(\frac{3x^{-3}}{5y^{-2}} \right)^{-3} : \left(\frac{9x^{-2}}{5y^{-3}} \right)^{-2} \right) \cdot \frac{x^{-6}y}{15};$$

d)
$$\left(\left(\frac{2a^{-2}}{3ab^{-3}} \right)^{-4} : \left(\frac{4a^{-2}}{3b^{-3}} \right)^{-3} \right) \cdot \frac{1}{12a^5b^{-2}}$$
.

15. Uprostiti izraz $A = \frac{ab^{-2} \cdot (a^{-1}b^2)^4 \cdot (ab^{-1})^2}{a^{-2}b \cdot (a^2b^{-1})^3 \cdot a^{-1}b}$, i izračunati njegovu vrednost za $a = 10^{-3}$, $b = 10^{-2}$.

16. Ako je

$$\begin{split} A &= \frac{a^{-2} - b^{-2}}{a^{-1} - b^{-1}}, \\ B &= \left(\frac{a^{-1}}{a^{-1} - b^{-1}} - \frac{b^{-1}}{a^{-1} + b^{-1}}\right) \cdot (a^{-1} - b^{-1}) \cdot (a^{-2} + b^{-2})^{-1}, \end{split}$$

dokazati da je $A = B^{-1}$.

17. a) Proizvod 0, 2 · 0, 008 napisati u obliku $A \cdot 10^{-5}$, gde je A konstanta koju treba odrediti.

b) Proizvod 0,04 · 0,006 napisati u obliku $B \cdot 10^{-6},$ g
de je Bkonstanta koju treba odrediti.

18. Ako je
$$10^x = \frac{\frac{1}{2} \cdot 10^{-3} + \frac{1}{2} \cdot 10^{-4}}{55 \cdot 10^{-7}}$$
, odrediti x .

19.* Dokazati da je vrednost izraz

$$\left(\left(1 - \left(1 - \frac{b}{a}\right)^{-1}\right)^{-2} - \left(1 - \left(1 - \frac{a}{b}\right)^{-1}\right)^{-2}\right)(a - b)^{-3}(a + b)^{-1},$$

pozitivna za svako $ab \neq 0$ i $a \neq \pm b$.

20.* Dokazati da sledeći izrazi:

a)
$$a^{-x}(a^x-1)^{-1} - 2(a^{2x}-1)^{-1} + a^{-x}(a^x+1)^{-1}$$

a)
$$a^{-x}(a^x - 1)^{-1} - 2(a^{2x} - 1)^{-1} + a^{-x}(a^x + 1)^{-1};$$

b) $\frac{1}{2(1 + a^x)} - \frac{1}{2(1 - a^{-x})} - \frac{1}{a^{-2x} - 1};$

c)
$$\left(\frac{3a^{-x}}{1-a^{-x}} - \frac{2a^{-x}}{1+a^{-x}} - \frac{a^x}{a^{2x}-1}\right) : \frac{a^{-x}}{a^x - a^{-x}}$$

ne zavise od a i x ako je $a^x \neq 1$

21.* Utvrditi istinitosnu vrednost implikacijo

a)
$$(a \neq 0 \land |a^x| \neq 1) \Rightarrow \left(\frac{a^{2x} - a^{-2x}}{a^x + a^{-x}} : \frac{a^x - a^{-x}}{1 + a^{-x}} = \frac{a^x + 1}{a^x}\right);$$

b)
$$(a \neq 0 \land |a^n| \neq 1) \Rightarrow \left(\frac{a^n + a^{-n} - 1}{a^n + a^{-2n}} - \frac{a^n - a^{-n}}{a^n + a^{-n} + 2} = \frac{1}{a^n + 1}\right);$$

c)
$$(a \neq 0 \land |a^x| \neq 1) \Rightarrow 2\left(\frac{a^{-x} - a^{-2x}}{a^{-x}}\right)^{-1}$$

 $-\left(\frac{a^x - a^{-2x}}{a^{-2x} + 2a^{-x} + 3}\right)^{-1} + (a^{-x} + 1) \cdot (a^x + a^{-x} + 1)^{-1} = 2;$

d)
$$(a \neq 0 \land |a^x| \neq 1)$$
 $\Rightarrow \frac{\frac{1+a^{-x}}{1-a^{-x}} - \frac{1-a^{-x}}{1+a^{-x}} + \frac{4a^{-2x}}{a^{-2x}-1}}{1 + \frac{1-a^{-x}}{a^{-2x}} - \frac{a^{2x}}{a^{-x}+1}} = 4.$

22.* a)
$$(x^0 - (1-x)^{-2}) - \frac{1-x^{-2}}{1-2x^{-1}}$$
; b) $1 - \left(\frac{x^{-n} + y^{-n}}{x^{-n} - y^{-n}}\right)^{-2}$;

c)
$$\left(\frac{a+a^{-1}b^2}{a-a^{-1}b^2}-1\right): \left(b^n(a-b)^{-1}+b^n(a+b)^{-1}\right)^{-1};$$

d)
$$(2(a^x + a^{-x})^{-1})^{-2} - (2(a^x - a^{-x})^{-1})^{-2}$$
.

23.* Izračunati: a)
$$\frac{1+x^{-1}}{1-x^{-1}} \cdot \left(1-\frac{2x-1}{x}\right)$$
. za $x=\left(\frac{2}{a-1}\right)^{-1}$;

b)
$$\frac{1+(a+x)^{-1}}{1-(a+x)^{-1}} \cdot \left(1-\frac{1-(a^2+x^2)}{2ax}\right)$$
, za $x=(a-1)^{-1}$.

24. Dokazati da je:

$$\left(\frac{b^{-1}+a^{-1}}{ab^{-1}+ba^{-1}}\right)^{-1} + \left(\frac{a^{-1}+b^{-1}}{2}\right)^{-1} - \frac{b^{-1}-a^{-1}}{a^{-1}b^{-1}} = 2b \; (a,b \neq 0).$$

Uprostiti izraze (25–27):

25.
$$\left(\frac{x-x^{-2}}{x^{-2}+x^{-1}+1} - \frac{x-x^{-1}}{1+x^{-2}+2x^{-1}}\right) : \frac{1-x^{-1}}{1+x^{-1}}.$$

26.
$$\left(\frac{a+a^{-1}-1}{a+a^{-2}} - \frac{a-a^{-1}}{a+a^{-1}+2}\right) : \frac{a^{-1}}{1+a^{-1}}$$

27.
$$\left(\frac{(xy^{-1}+1)^2}{xy^{-1}-x^{-1}y} \cdot \frac{x^3-y^{-3}-1}{x^2y^{-2}+xy^{-1}+1}\right) : \frac{x^3y^{-3}+1}{xy^{-1}+x^{-1}y-1}.$$

Dokazati da vrednost izraza ne zavisi od a, b, c i x (28–35):

28.
$$\frac{a^x + b^{-x}}{a^x + c^x (b^x c^x + 1)^{-1}} - \frac{b^{-x}}{a^x b^x c^x + a^x + c^x}.$$

29.
$$\frac{4}{a^{-x} + \frac{1}{b^{-x} + \frac{1}{c^{-x}}}} : \frac{1}{a^{-x} + \frac{1}{b^{-x}}} - \frac{4}{b^{-x}(a^{-x}b^{-x}c^{-x} + a^{-x} + c^{-x})}.$$

$$\mathbf{30.*} \ \frac{\left((a^x-1)^3-a^x((a^x+1)(a^x-3)-a^x+6)\right)^{2n}}{(a^x)^{n+1}b^x:a^x(b^x)^{n+1}} \cdot \left(\frac{a^x}{b^x}\right)^n.$$

31.*
$$\frac{a^{-2x} - a^{-x} - 6}{a^{-2x} - 4} - \frac{a^{-x} - 1}{2 - a^{-x}} - 2$$
.

32.*
$$\frac{1}{a^{-2x} - a^{-x}} + \frac{2}{1 - a^{-2x}} + \frac{1}{a^{-2x} + a^{-x}}$$
.

33.*
$$\frac{a^{-2x} - a^{-x}}{5^{-x} + 2} \cdot \frac{1 - a^{-2x}}{5^{-x} - 2} + \frac{a^{-2x} + a^{-x}}{5^{-3x} - 8} \cdot \frac{5^{-2x} + 2 \cdot 5^{-x} + 4}{5^{-3x} - 8} \cdot \frac{5^{-2x} + 2 \cdot 5^{-x} + 4}{5^{-x} + 2}.$$

$$\mathbf{34.*} \left(\frac{a^x}{1 - a^{-x}} + \frac{a^{-x}}{1 + a^{-x}} \right) - \left(\frac{a^x}{1 + a^{-x}} + \frac{a^{-x}}{1 - a^{-x}} \right).$$

35.*
$$\left(\frac{2^{-x} + 4 \cdot 3^{-x}}{2 \cdot 3^{-x}} - \frac{6 \cdot 3^{-x}}{2 \cdot 3^{-x} - 2^{-x}}\right)$$
.
 $\left(1 - \frac{2^{-2x} - 2 \cdot 3^{-x} \cdot 2^{-x} + 4 \cdot 3^{-2x}}{2^{-2x} - 4 \cdot 3^{-2x}}\right)$.

- **36.** Predstaviti kao stepen osnove 5 izraz $\frac{5^n \cdot 0, 2^{n+1}}{125^{2-2n} \cdot 0, 04^{-2}}, \quad n \in \mathbb{Z}.$
- 37. Predstaviti kao stepen osnove 2 izraz

$$\frac{4^m \cdot 0, 25^{3-m} \cdot 0, 125^{-2}}{2^{3m-5}}, \quad m \in \mathbb{Z}.$$

38. Uporediti po veličini algebarske izraze

$$A = \left(-4 \cdot 0, 5^{2y-7} \left(12 \left(\frac{1}{2}\right)^{10-2y}\right)\right) \quad i$$

$$B = \left(27 \left(\frac{1}{3}\right)^{5x-1}\right) : \left(\frac{1}{2} \left(\frac{1}{3}\right)^{5x-3}\right), \quad x, y \in \mathbb{Z}.$$

Uprostiti izraze (39–42):

39.*
$$\left(\frac{2^x + 2^{-x}}{2^x - 2^{-x}} - \frac{2^x - 2^{-x}}{2^x + 2^{-x}}\right) : \left(\frac{2^x - 2^{-x}}{2^x + 2^{-x}} + \frac{2^x + 2^{-x}}{2^x - 2^{-x}}\right).$$

40.*
$$\left(\frac{3^{-n}}{6-3\cdot 3^{-n}} + \frac{3^{-n}}{3^{-n}+2} + \frac{4\cdot 3^{-n}}{3^{-2n}-4}\right) : \left(\frac{3^{-n}-4}{3^{-n}-2}\right)$$
.

41.*
$$\frac{\frac{3}{a^{-x}-2} + \frac{3a^{-x}}{a^{-3x}-8} \cdot \frac{a^{-2x} + 2a^{-x} + 4}{a^{-x}+2}}{\frac{2a^{-x}+2}{a^{-2x}+4a^{-x}+4} \cdot \frac{3}{a^{-x}+2}}.$$

$$42.* \frac{2 \cdot 5^{-x} - 1}{2 \cdot 5^{-x}} - \frac{1}{2 \cdot 5^{-x} - 4 \cdot 5^{-2x}} - \frac{2 \cdot 5^{-x}}{2 \cdot 5^{-x} - 1}.$$

43. Dokazati da je za svako $x \in \mathbb{Z} \setminus \{0\}$ vrednost izraza

$$\frac{x^{-6} - 64}{4 + 2x^{-1} + x^{-2}} \cdot \frac{x^2}{4 - 4x^{-1} + x^{-2}} - \frac{4x^2(x^{-1} + 2)}{x^{-1} - 2},$$

neparan broj.

44. Za koje je vrednosti x jednakost

$$\frac{(a+b)b^{-1}-(a-b)a^{-1}}{(a+b)a^{-1}+(a-b)b^{-1}}=x+1 \quad (ab\neq 0),$$

identitet?

45. Izračunati $x = a^2 + a^{-2}$ i $y = a^3 + a^{-3}$, ako je $a + a^{-1} = 5$ $(a \neq 0)$.

46. Vrednost izraza

$$A = \left(\frac{a^n}{1 - a^{-n}} + \frac{a^{-n}}{1 + a^{-n}}\right) - \left(\frac{a^n}{1 + a^{-n}} + \frac{a^{-n}}{1 - a^{-n}}\right)$$

je ceo broj ako je $a \neq \pm 1$ i n prirodni broj. Dokazati.

Izvršite naznačene operacije (47–57)

47.
$$\frac{2 \cdot 7^{-x}}{7^{-x} - 1} - \frac{3 \cdot 7^{-2x} + 2 \cdot 7^{-x} + 1}{7^{-3x} - 1} + \frac{7^{-x} + 1}{7^{-2x} + 7^{-x} + 1}.$$

48.
$$\frac{1}{1-3^{-x}} + \frac{1}{1+3^{-x}} + \frac{2}{1+3^{-2x}} + \frac{4}{1+3^{-4x}} + \frac{8}{1+3^{-8x}} + \frac{16}{1+3^{-16x}}$$

49.
$$\left(\frac{4^{-x}}{1+\frac{1}{4^{-x}}}+1-\frac{1}{1+4^{-x}}\right): \left(\frac{4^{-x}}{1-\frac{1}{4^{-x}}}+\frac{1}{1-4^{-x}}\right).$$

50.
$$\frac{2+2^2+2^3+\cdots+2^n}{2^{-1}+2^{-2}+2^{-3}+\cdots+2^{-n}}.$$
 51.
$$\frac{3^{-3x}-2^{-3y}}{3^{-x}+2\cdot 2^{-y}+\frac{3\cdot 2^{-2y}}{3^{-x}-2^{-y}}}.$$

52.
$$\frac{\frac{5a^{-x} + 5}{a^{-2a} - a^{-x} + 1}}{\frac{1}{a^{-x} + 1} + \frac{3a^{-x}}{a^{-3x} + 1}}.$$

53.
$$\frac{t^{-3} + 2t^{-2} - t^{-1} - 2}{5^{x} + 1} \cdot \frac{5^{2x} + 5^{x}}{t^{-3} - 2t^{-2} - t^{-1} + 2} \cdot \frac{t^{-1} - 2}{t^{-1} + 2}.$$

54.
$$\frac{y^{-2}}{(1+y^{-2})(x^{-2}y^{-2}-2x^{-4})} - \frac{2}{y^{-4}+y^{-2}-2x^{-2}y^{-2}-2x^{-2}}}{\left(1+\frac{3y^{-2}+y^{-4}}{y^{-2}+3}\right)^{-1}}.$$

55.
$$\frac{1}{2^{-x}(2^{-x}+1)} + \frac{1}{(2^{-x}+1)(2^{-x}+2)} + \frac{1}{(2^{-x}+2)(2^{-x}+3)} + \frac{1}{(2^{-x}+3)(2^{-x}+4)} + \frac{1}{(2^{-x}+4)(2^{-x}+5)}.$$

56.
$$\frac{1}{3^{-x}(30^{-x} + 5^{-x} + 2^{-x})} - \frac{1}{2^{-x} + \frac{1}{3^{-x} + \frac{1}{5^{-x}}}} : \frac{1}{2^{-x} + \frac{1}{3^{-x}}}.$$

57.
$$\frac{1 + \frac{x^{-2} + y^{-2} - z^{-2}}{2x^{-1} - y^{-1}}}{\frac{(x^{-1} + y^{-1})^{-2} - z^{-2}}{4x^{-2}y^{-2}}}$$

1.2. Koren; stepen čiji je izložilac racionalan broj. Osnovne operacije sa stepenima i korenima

 $\bf Definicija \ 1.\ Neka je \it a$ pozitivan realan broj in prirodni broj. Pozitivno rešenje jednačine

$$(1) x^n = a$$

po x naziva se n-ti koren broja a, u oznaci $x = \sqrt[n]{a}$. Iz ove definicije proizilazi da je

$$(2) \qquad (\sqrt[n]{a})^n = a$$

Definicija 2. Ako je a bilo koji realan broj, onda

$$\sqrt{a^2} = |a|.$$

Definicija 3. Ako je $a \geq 0$, a m, n prirodni brojevi, onda

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}.$$

Neka su a, b pozitivni realni brojevi, a m, n, p prirodni brojevi. Tada je:

$$1^{\circ} \sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}; \quad 2^{\circ} \sqrt[n]{a} : \sqrt[n]{b} = \sqrt[n]{a : b}; \quad 3^{\circ} (\sqrt[n]{a})^m = \sqrt[n]{a^m};$$

$$4^{\circ} \sqrt[n]{\sqrt[m]{a}} = \sqrt[mn]{a}; \quad 5^{\circ} \sqrt[n]{a^m} = \sqrt[np]{a^{mp}}.$$

Izračunati (58-67):

58. a)
$$\sqrt{36}$$
; b) $\sqrt{\frac{1}{9}}$; c) $\sqrt{\frac{81}{100}}$; d) $-\sqrt{0,49}$; e) $-\sqrt{2,25}$.

59. a)
$$\sqrt[3]{1}$$
; b) $\sqrt[3]{-8}$; c) $\sqrt[4]{16}$; d) $-\sqrt[6]{64}$; e) $-\sqrt[31]{-1}$.

60. a)
$$\sqrt{(-3)^2}$$
; b) $\sqrt{(-5)^2}$; c) $-\sqrt{(-6)^2}$; d) $-\sqrt{5^2}$.

61. a)
$$a\sqrt{128}$$
; b) $4\sqrt{8a^3}$; c) $3\sqrt{25a^3b^2}$; d) $5a\sqrt{9ab^2}$.

62. a)
$$2x\sqrt{18a^5y^3}$$
; b) $a\sqrt{72a^3x^2y^3}$; c) $4ay^2\sqrt{2a^5x^2y^4}$.

63. a)
$$2\sqrt{27a^5x^6}$$
; b) $3ax\sqrt{12a^3x^4}$; c) $\sqrt{80x^2y^4z^5}$.

64. a)
$$\frac{1}{3x}\sqrt{\frac{27x^2}{8}}$$
; b) $\frac{5x}{a}\sqrt{\frac{3a^2}{50x^2}}$.

65. a)
$$\sqrt{\frac{9a^3}{4} + 4a^3}$$
; b) $\frac{75}{8}\sqrt{\frac{a^3}{9} - \frac{a^3}{25}}$.

66.
$$\sqrt{\left(\frac{2a+3}{a+3}-1\right)\left(1+\frac{3}{a}\right)}$$
.

67. a)
$$\sqrt{36} - 2\sqrt{25} + \sqrt[4]{16} - \sqrt[5]{32}$$
; b) $\sqrt{\frac{9}{4}} + \sqrt[3]{\frac{1}{8}} + \sqrt[4]{16}$;

c)
$$\sqrt{\frac{4}{9}} + \sqrt[3]{-27} - \sqrt{4}$$
; d) $\sqrt{9} \cdot \sqrt[3]{-8} \cdot \sqrt[5]{-32}$.

68. Za koje vrednosti realnog broja x imaju realnu vrednost koreni:

a)
$$\sqrt{x}$$
; b) $\sqrt{x-4}$; c) $\sqrt[4]{x-1}$; d) $\sqrt[3]{x+2}$; e) $\sqrt{x^2+4}$?

69. Za koje vrednosti promenjive x važe jednakosti:

a)
$$\sqrt{(x-1)^2} = x-1$$
; b) $\sqrt{(x-5)^2} = 5-x$; c) $\sqrt[3]{(x-2)^3} = 2-x$;

d)
$$\sqrt{(x^2-4)^2} = x^2+4$$
?

Odrediti vrednosti izraza i rezultat grafički prikazati u ravni xOA $(x \in \mathbb{R})$ (70–72).

70. a)
$$A = \sqrt{(x-5)^2} + \sqrt{(x+5)^2}$$
; b) $A = \sqrt{(x-3)^2} - \sqrt{x^2}$;

c)
$$A = \sqrt{a^2 - 6a + 9} + \sqrt{a^2}$$
; d) $A = x + \sqrt{x^2 - 4x + 4}$.

70.
$$A = \sqrt{x^2 + 6x + 9} - 2\sqrt{x^2} + \sqrt{x^2 - 6x + 9}$$
.

72.
$$A = \sqrt{x^2 + 4x + 4} - 2\sqrt{x^2 - 2x + 1} + \sqrt{x^2 - 12x + 36}$$
.

Primenom definicije korena ($\sqrt[n]{a})^n=a$ (pod uslovom da postoji $\sqrt[n]{a})$ izračunati (73–74):

73. a)
$$(\sqrt{5} + \sqrt{3}) \cdot (\sqrt{5} - \sqrt{3})$$
; b) $(5 + \sqrt{3}) \cdot (5 - \sqrt{3})$;

c)
$$(2\sqrt{5} + \sqrt{19}) \cdot (2\sqrt{5} - \sqrt{19});$$
 d) $(3\sqrt{6} - 2\sqrt{16}) \cdot (2\sqrt{16} + 3\sqrt{6}).$

74. a)
$$(\sqrt{3} - \sqrt{3-x}) \cdot (\sqrt{3} + \sqrt{3+x})$$
 za $x \le 3$;

b)
$$(\sqrt{4x+5}-2\sqrt{x})\cdot(\sqrt{4x+5}+2\sqrt{x});$$

c)
$$(\sqrt{3x-2} - \sqrt{3x-5}) \cdot (\sqrt{3x-2} + \sqrt{3x-5}); x > \frac{5}{3}$$
.

Dati su izrazi A i B. Dokazati da izrazi A i B imaju jednake vrednosti (75–80):

75.
$$A = \sqrt{1 - \frac{2a - 1}{a^2}}$$
 i $B = \sqrt{9 + \frac{(a - 1 - 3a)(a - 1 + 3a)}{a^2}}$.

76.
$$A = \sqrt{\left(\frac{1}{b} - \frac{1}{a}\right) \left(\frac{a^2}{b} - \frac{b^2}{a}\right)}$$
 i

$$B = \frac{ab|a^2 - b^2|}{3} \sqrt{\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{ab}\right) : \frac{a^2b^2(a+b)^2}{9}}.$$

77.
$$A = \sqrt[3]{\left(1 - \frac{2}{x} + \frac{1}{x^2}\right)\left(1 - \frac{1}{x^2}\right)}$$
 i

$$B = 3\sqrt[3]{\left(\frac{1}{x} + \frac{1}{x^2}\right)\left(\frac{x}{27} - \frac{1}{9} + \frac{1}{9x} - \frac{1}{27x^2}\right)}.$$

78.
$$A = \sqrt[n]{\frac{a^{n+1}}{x^{n-2}} + \frac{2a^{n+1}}{x^{n-1}} + \frac{a^{n+1}}{x^n}}$$
 i $B = \sqrt[n]{a^{n-1}x^n \left(\frac{a}{x^{n-1}} + \frac{a}{x^n}\right)^2}$.

79.
$$A = \left(2 - \frac{1}{3}\right)\sqrt{5 + \frac{2}{5}} i B = \frac{3}{4}\sqrt{27 - \frac{1}{3}}.$$

80. $A = \left(1 - \frac{1}{3}\right)\sqrt[3]{5\left(1 + \frac{1}{8}\right)} i B = \left(1 + \frac{1}{4}\right)\sqrt[3]{1 - \frac{11}{75}}.$

Izraze ispred korena uneti pod koren i uprostiti ih (81–83):

81.
$$\left(\frac{x}{y} - \frac{y}{x}\right) \sqrt[3]{\frac{x^2y^2}{x^4 - 2x^2y^2 + y^4}}$$
.

82.
$$\left(1+\frac{a}{b}\right)\sqrt[3]{\frac{a^2+ab+b^2}{a^2+2ab+b^2}-\frac{a}{a+b}}$$

82.
$$\left(1+\frac{a}{b}\right)\sqrt[3]{\frac{a^2+ab+b^2}{a^2+2ab+b^2}-\frac{a}{a+b}}$$
.
83. $\left(a-\frac{a^2+1}{2a}\right)\sqrt{\frac{a}{a-1}+\frac{3a}{a+1}-\frac{2a}{a^2-1}}$.

$$A = \frac{x-a}{a} \sqrt[n]{\left(\frac{x}{a}-1\right)^{1-n}} \quad i \quad B = \frac{x^2-a^2}{a} \sqrt[n]{\frac{a^{n-1}}{(x+a)^n (x-a)^{n-1}}},$$

tada je A = B. Dokazati.

85. Ako je

$$A = \frac{a}{b} \sqrt[b]{\frac{ab^n - b^{n-1}}{a^nb - a^{n-1}}} \quad \text{i} \quad B = \frac{a}{b} \sqrt[n]{\frac{a^4b^{n+1}}{a^{n+3} + a^{n-1}b^2} \left(\frac{1}{a^4} + \frac{1}{b^2}\right)} \,,$$

tada je A - B = 0. Dokazati.

Racionalisati imenioce razlomaka (86–109):

a)
$$\frac{1}{\sqrt{5}}$$
; b) $\frac{6}{\sqrt{3}}$; c) $\frac{14}{\sqrt{7}}$; d) $\frac{26}{\sqrt{13}}$.

87. a)
$$\frac{1}{\sqrt{8}}$$
; b) $\frac{9}{\sqrt{12}}$; c) $\frac{12}{\sqrt{18}}$; d) $\frac{15}{\sqrt{20}}$.

88. a)
$$\frac{6\sqrt{5}}{\sqrt{10}}$$
; b) $\frac{6}{\sqrt{2}}$; c) $\frac{12}{\sqrt{8}}$. **89.** a) $\frac{6}{\sqrt{12}}$; b) $\frac{3}{\sqrt{3}}$; c) $\frac{3\sqrt{2}}{\sqrt{6}}$.

90. a)
$$5\sqrt{3} - \frac{9}{2\sqrt{3}}$$
; b) $4\sqrt{5} - \frac{5}{2\sqrt{5}}$.

91. a)
$$\frac{9}{\sqrt{3}}$$
; b) $5\sqrt{2} - \frac{6}{\sqrt{2}}$; c) $\frac{\sqrt{3}}{2} + \frac{15}{2\sqrt{3}}$.

92. a)
$$\frac{6}{\sqrt[3]{2}}$$
; b) $\frac{4}{\sqrt[3]{4}}$; c) $\frac{12}{\sqrt[3]{3}}$. **93.** a) $\frac{10}{\sqrt[4]{25}}$; b) $\frac{14}{\sqrt[5]{8}}$; c) $\frac{3}{\sqrt[3]{6}}$.

94. a)
$$\frac{10}{\sqrt[3]{25}}$$
; b) $\frac{15}{\sqrt[3]{9}}$; c) $\frac{15}{\sqrt[3]{5}}$. **95.** a) $\frac{6}{\sqrt[4]{2}}$; b) $\frac{50}{\sqrt[4]{40}}$; c) $\frac{12}{\sqrt[4]{54}}$

96. a)
$$\frac{ab}{\sqrt[3]{a^2b}}$$
; b) $\frac{3a^2b}{2\sqrt[4]{a^3b^2}}$; c) $\frac{4a}{\sqrt[3]{2a^2b}}$; d) $\frac{6a^2b}{\sqrt[5]{a^6b^3}}$.

97. a)
$$\frac{a\sqrt{b} - b\sqrt{a}}{\sqrt{ab}}$$
; b) $\frac{(a-1)\sqrt{a+1}}{\sqrt[6]{a+1}}$.

98. a)
$$\frac{1}{2+\sqrt{3}}$$
; b) $\frac{1}{\sqrt{2}-1}$; c) $\frac{11}{2\sqrt{3}-1}$.

99. a)
$$\frac{2}{3(\sqrt{3}-\sqrt{5})}$$
; b) $\frac{1}{1(\sqrt{5}+\sqrt{2})}$.

100. a)
$$\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$
; b) $\frac{3\sqrt{2} + 2\sqrt{3}}{\sqrt{2} + \sqrt{3}}$. **101.** a) $\frac{5 - 7\sqrt{3}}{1 + \sqrt{3}}$; b) $\frac{3 - 2\sqrt{5}}{2 - \sqrt{5}}$.

102. a)
$$\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$$
; b) $\frac{3(\sqrt{5} + \sqrt{2})}{\sqrt{5} - \sqrt{2}}$.

103. a)
$$\frac{3-\sqrt{3}}{\sqrt{3}-1}$$
; b) $\frac{\sqrt{6}+3\sqrt{2}}{\sqrt{6}+\sqrt{2}}$

104. a)
$$\frac{\sqrt{6} + 3\sqrt{2}}{3(\sqrt{6} + \sqrt{2})}$$
; b) $\frac{2\sqrt{3} - 3}{3(2 - \sqrt{3})}$.

105. a)
$$\frac{4(3a-1)}{\sqrt{3a}-1}$$
; b) $\frac{a^3-ax}{a+\sqrt{x}}$.

106. a)
$$\frac{a+2(1+\sqrt{a+1})}{\sqrt{a+2}}$$
; b) $\frac{a-2}{\sqrt{a+2}-2}$.

107. a)
$$\frac{a+1-\sqrt{a+1}}{\sqrt{a+1}}$$
; b) $\frac{a}{\sqrt{a+1}+1}$.

108. a)
$$\frac{a - \sqrt{a^2 - 1}}{a + \sqrt{a^2 - 1}}$$
; b) $\frac{\sqrt{x + m} + \sqrt{x - m}}{\sqrt{x + m} - \sqrt{x - m}}$

109. a)
$$\frac{4}{\sqrt[3]{2}-1}$$
; b) $\frac{1}{\sqrt[3]{2}+\sqrt[3]{3}}$; c) $\frac{-3}{\sqrt[4]{5}-2}$.

110. Dokazati jednakosti:

a)
$$\sqrt{7-4\sqrt{3}} = 2-\sqrt{3}$$
; b) $\sqrt{7-4\sqrt{3}} + \sqrt{7+4\sqrt{3}} = 4$;

c)
$$\sqrt{12+6\sqrt{3}} - \sqrt{12-6\sqrt{3}} = 2\sqrt{3}$$
; d) $\sqrt[3]{7+5\sqrt{2}} = 1+\sqrt{2}$;

e)
$$\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}=2$$
.

111. Skratiti razlomke:

a)
$$\frac{\sqrt{30} - \sqrt{20}}{\sqrt{12} - \sqrt{8}}$$
; b) $\frac{3 - 2\sqrt{2}}{\sqrt{2} - 1}$; c) $\frac{2 + \sqrt{2x}}{x + \sqrt{2x}}$;

d)
$$\frac{a+b+2\sqrt{ab}}{a\sqrt{b}+b\sqrt{a}}$$
; e) $\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}$.

112. Obaviti naznačene operacije

a)
$$\sqrt{6} \cdot \sqrt{24}$$
; b) $2\sqrt{5} \cdot 3\sqrt{10}$; c) $\sqrt{x^{n+1}} \cdot \sqrt{x^{n-1}}$;

d)
$$\sqrt{48} : \sqrt{6}$$
; e) $\sqrt{a^3b} : \sqrt{ab}$; f) $\sqrt{a^2 - b^2} : \sqrt{a - b}$.

113. Ako je $A=\sqrt{a}\cdot\sqrt[3]{a^2}$ i $B=\sqrt[4]{a^3}\cdot\sqrt[3]{a}\cdot\sqrt[12]{a}$, tada je A=B. Dokazati.

114. Ako je

$$A = \sqrt[6]{a^5 x^4} \cdot \sqrt[5]{a^4 x^3} \cdot \sqrt[30]{a} \ \ {\rm i} \ \ B = \sqrt[10]{a x^2} \cdot \sqrt[3]{a^2 x^2} \cdot \sqrt[5]{a x^2} \cdot \sqrt[10]{a^7},$$

tada je A - B = 0. Dokazati.

115. Ako je

$$A = \sqrt[3]{\frac{a^2}{b}} \cdot \sqrt[4]{\frac{3b^3}{5a^3}} \cdot \sqrt[6]{\frac{5a}{3b^3}} \ \ {\rm i} \ \ B = \sqrt[8]{\frac{a^2}{2b}} \cdot \sqrt[12]{\frac{3a^4}{b^7}} \cdot \sqrt[4]{\frac{b^3}{a^2}} \cdot \sqrt[24]{\frac{8}{25b^3}},$$

tada je A = B. Dokazati.

116. Ako je
$$A = \sqrt{\frac{2a}{3b}} \cdot \sqrt[4]{\frac{2b^3}{9a^3}} \cdot \sqrt{\frac{2a}{b}}$$
 i $B = \sqrt[4]{\frac{5b}{4a^2}} \cdot \sqrt{\frac{3a^2}{2b}} \cdot \sqrt[4]{\frac{9b^2}{10a^3}}$, tada je $A = \frac{1}{B}$. Dokazati.

117. Ako je

$$P = \sqrt[3]{\frac{ax^2y}{b^2}} \cdot \sqrt[6]{\frac{b}{a^5xy^2}} \quad \text{i} \quad Q = \sqrt{\frac{a}{2b}} \cdot \sqrt{\frac{2a^2b}{x}} \cdot \sqrt[4]{\frac{2b^2}{a^3}} \cdot \sqrt[12]{\frac{ab^2}{2x^2}},$$

tada je $P \cdot Q = 1$. Dokazati.

118. Ako je
$$M = \sqrt[3]{\frac{1}{2} + \frac{3}{4}} \cdot \sqrt[4]{2\left(1 + \frac{1}{5}\right)} \cdot \sqrt[12]{\frac{1}{9} + \frac{2}{27}}$$
 i
$$N = \sqrt[3]{1 + \frac{1}{2}} \cdot \sqrt{1 - \frac{1}{3}} \cdot \sqrt[4]{1 - \frac{3}{4}} \cdot \sqrt[6]{4\left(1 + \frac{1}{5}\right)}, \text{ tada je } MN = 1.$$
 Dokazati.

119. Ako je
$$M = 5\sqrt{\frac{b}{a}} \cdot \sqrt[4]{\frac{3a^3}{b^3}} \cdot \sqrt[6]{\frac{5}{3a}} - 2\sqrt[12]{\frac{3a}{b}}$$
 i
$$N = \sqrt{\frac{4a}{b}} \cdot \sqrt[3]{\frac{b}{a}} \cdot \sqrt[12]{\frac{3b}{a}} + \sqrt[3]{\frac{3a}{b}} \cdot \sqrt[4]{\frac{b}{3a}}, \text{ tada je } M - N = 0. \text{ Dokazati.}$$

120. Ako je
$$P = \sqrt{\frac{2a^2}{a^2 + m^2} - 1} \cdot \sqrt{\left(\frac{a}{m} + \frac{m}{a}\right) : \left(\frac{a}{m} - \frac{m}{a}\right)}$$
 i $Q = \sqrt{\frac{a+m}{a-m}} \cdot \sqrt[3]{\left(\frac{a-m}{a+m}\right)^2} \cdot \sqrt[6]{\frac{a+m}{a-m}}$, tada je $P = Q = 1$ za $(|m| \neq |a|, m \neq 0)$.

121. Dati su izrazi
$$L = ab\sqrt{\frac{ax}{a^2b^2 - x^2y^2}} \cdot \sqrt{\frac{by}{ab + xy}} \cdot \sqrt{xy\left(1 - \frac{xy}{ab}\right)}$$
 i $K = \frac{\sqrt{ab + xy}}{ax - by} \left(\sqrt{\frac{a}{by^2} + \frac{x}{b^2y}} - \sqrt{\frac{b}{ax^2} + \frac{y}{a^2x}}\right)$, njihove vrednosti su recipročne. Dokazati.

Izvršiti naznačene operacije (122–133)

$$\begin{array}{l} \textbf{122. a)} \ \sqrt[5]{2,5x^3y^2} \cdot \sqrt[5]{0,2xy^7} - \sqrt[5]{16x^3y^3} \cdot \sqrt[5]{4x^3y^3}; \\ \textbf{b)} \ y \sqrt[x]{a^{2x-1}y^{4-x}} \cdot \sqrt[x]{a^{6-x}y^3} \cdot a^{-3} \sqrt[x]{a^{4-x}y^{4x-10}} \cdot \sqrt[x]{a^{3x-9}y^{3-2x}}; \\ \textbf{c)} \ \sqrt[9]{\frac{a^{17}b^3c^5}{x^8y^5}} : \sqrt[9]{\frac{a^8c^5x}{b^6y^5}}; \quad \textbf{d)} \ \sqrt[x]{\frac{a^{x-4}b^7}{c^{x-6}a^x}} : \sqrt[x]{\frac{b^{7-x}c^6}{a^4}}. \end{array}$$

123. a)
$$\sqrt{6} \cdot \sqrt[3]{2} \cdot \sqrt[6]{54}$$
; b) $\sqrt{a} \cdot \sqrt[3]{ab} \cdot \sqrt[8]{ab^3} \cdot \sqrt[24]{a^7b^7}$ $(a > 0, b > 0)$; c) $\sqrt{2a} \cdot \sqrt[4]{2a^3} \cdot \sqrt{3a} \cdot \sqrt[4]{18a}$; d) $2\sqrt[4]{x^3} \cdot 4x^4 \cdot \sqrt{x} \cdot \sqrt[8]{24x^7}$.

124. a)
$$\sqrt[5]{a\sqrt[3]{b^8}} \cdot \sqrt[5]{a^3\sqrt[3]{a^2}} \cdot \sqrt[5]{b^2\sqrt[3]{ab}}$$
;

b)
$$\sqrt[4]{\sqrt[6]{a^5}} \cdot \sqrt[12]{\sqrt{a^3}} \cdot \sqrt[3]{\sqrt[8]{a^9}} \cdot \sqrt{\sqrt[12]{a}}$$

c)
$$\sqrt[3]{x^2\sqrt{x^{-1}}} \cdot \sqrt[3]{x^{-1}\sqrt{x}} \cdot \sqrt[3]{x^{-1}\sqrt{x\sqrt{x}}} \cdot \sqrt[3]{x^2\sqrt{x\sqrt{x^{-1}}}}$$
.

125. a)
$$\sqrt{12+2\sqrt{11}} \cdot \sqrt{12-2\sqrt{11}}$$
; b) $\sqrt[3]{5+\sqrt{17}} \cdot \sqrt[3]{5-\sqrt{17}}$;

c)
$$\sqrt[3]{2\sqrt{13}-5} \cdot \sqrt[3]{2\sqrt{13}+5}$$
; d) $\sqrt{a+\sqrt{a^2-b^2}} \cdot \sqrt{a-\sqrt{a^2-b^2}}$

126. a)
$$\sqrt[3]{\sqrt{x} + \sqrt{8+x}} \cdot \sqrt[3]{\sqrt{x} - \sqrt{8+x}}$$
;

b)
$$\sqrt{\sqrt{m+x}+\sqrt{m-x}}\cdot\sqrt{\sqrt{m+x}-\sqrt{m-x}}$$

c)
$$\sqrt[3]{\sqrt{12}-2} \cdot \sqrt[3]{\sqrt{12}+2} + \sqrt[3]{9+\sqrt{17}} \cdot \sqrt[3]{9-\sqrt{17}}$$
;

d)
$$\sqrt[4]{\sqrt{23} - \sqrt{7}} \cdot \sqrt[4]{\sqrt{23} + \sqrt{7}} + \sqrt[6]{5\sqrt{2} - 7} \cdot \sqrt[6]{5\sqrt{2} + 7}$$
.

127. a)
$$\frac{1}{2} \cdot \sqrt[3]{\frac{2x^2}{(x-a)^2}} \cdot \frac{1}{x^2} \cdot \sqrt[3]{8x(x-a)^2} \cdot \sqrt[3]{\frac{x-a}{2}} \cdot \frac{x^3}{x-a}$$

$$(x \neq 0, x \neq a);$$

b)
$$\sqrt[4]{1+2x+x^2} \cdot \sqrt{\frac{x^5+x^4}{x^2-1}} \cdot \sqrt{\frac{1}{x^2}-\frac{1}{x^4}}$$
 $(x>1)$.

Obaviti sledeće operacije (122–133):

128. a)
$$\sqrt{48}$$
: $\sqrt{6}$; b) $\sqrt{15}$: $\sqrt{3}$; c) $\sqrt{18}$: $\sqrt{6}$; d) $\sqrt[3]{51}$: $\sqrt[3]{17}$.

129. a)
$$\sqrt{a^3b} : \sqrt{ab}$$
 (a i b istoga znaka); b) $\sqrt{a^2 - b^2} : \sqrt{a - b}$; c) $\sqrt[3]{a^3 - b^3} : \sqrt[3]{a^2 + ab + b^2}$.

130. a)
$$\sqrt[9]{\frac{a^{17}b^3c^5}{x^8y^5}} : \sqrt[9]{\frac{a^8c^5x}{b^6y^5}};$$
 b) $\sqrt[x]{\frac{a^{x-4}b^7}{c^{x-6}a^x}} : \sqrt[x]{\frac{b^{7-x}c^6}{a^4}}.$

131. a)
$$\sqrt[n]{a^{3n+2}}$$
 : $\sqrt[n]{a^{2n+2}}$; b) $\sqrt[n]{a^{4n-3}}$: $\sqrt[n]{a^{3n-3}}$.

132. a)
$$\left(\sqrt{x^3\sqrt{x^2}}\right) \cdot \sqrt[3]{x^2} : \left(\sqrt{x^{-1}}\right)^3$$
; b) $\left(\sqrt[3]{x^2\sqrt{x}}\left(\sqrt[3]{x^2}\right)^4\right) : \sqrt{x^{-7}}$.

133.
$$(x\sqrt{x})^3 3\sqrt{x^3\sqrt{x}} : x^4 \sqrt[6]{x^5}$$
 $(x > 0)$.

134. Dati su količnici:

a)
$$\sqrt[5]{\frac{a^2}{b^2}}$$
 : $\sqrt[10]{\frac{1}{ab^9}}$; b) $\sqrt[3]{\frac{a^2}{b}}$: $\sqrt[6]{\frac{a}{b^5}}$; c) $\sqrt[n]{a^{n+3}b^{2n-1}}$: $\sqrt[2n]{a^{n+6}b^{3n-2}}$.

Dokazati da su njihove vrednosti geometrijske sredine pozitivnih brojeva a i b.

135. Ako je
$$A = \left(\sqrt[3]{\frac{a^2b}{2c}} \cdot \sqrt{\frac{ab^2}{2c}}\right) : \left(\sqrt[3]{\frac{a^2b}{4c}} \cdot \sqrt[6]{\frac{a^2b^5}{4c^4}}\right) i$$

$$B = \left(\sqrt[3]{\frac{3a^2b}{2c}} \cdot \sqrt{\frac{ab}{c}} \cdot \sqrt[4]{\frac{bc}{a^2}}\right) : \left(\sqrt[6]{\frac{a^3b^2}{2c}} \cdot \sqrt[12]{\frac{81b^7}{16c^7}}\right), \text{ gde su } a, b, c \text{ pozitivni brojevi, tada je } A = B. \text{ Dokazati.}$$

136. Dati su izrazi
$$V = \sqrt[2n]{\frac{(a-b)^2}{a(a+b)^3}} \cdot \sqrt[3n]{\left(\frac{a+b}{a-b}\right)^2} : \sqrt[4n]{\frac{(a+b)^2}{a^6(a-b)}}$$
 i

$$W = \sqrt[2n]{\frac{(a+b)^4}{a(a-b)}} \cdot \sqrt[5n]{\frac{(a-b)^{10}}{(a+b)^5}} : \sqrt[4n]{\frac{a^2(a-b)^7}{a+b}}, \text{ dokazati da je } V = W^{-1}, \text{ pri čemu je } a > b > 0.$$

Uprostiti izraze (137–143):

137.
$$\sqrt[4]{\frac{a^3 - 6a^2x + 12ax^2 - 8x^3}{b^2(a+x)}} : \sqrt{\frac{a-2x}{b}}.$$

138.
$$\sqrt[6]{\frac{a^2 - 4ax + 4x^2}{ab + 2bx}} : \sqrt[3]{\frac{ab + 2bx}{(a - 2x)^2}} : \sqrt[4]{\frac{a^2 - 4x^2}{b^2}}$$

139.
$$\sqrt[3]{\frac{a}{x} + \frac{x}{a} - 2} : \sqrt{\frac{1}{x} - \frac{1}{a}}$$
. **140.** $\sqrt[4]{\frac{x}{x+2} + \frac{1}{(x+2)^2}} : \sqrt{\frac{2x+4}{x+2}}$.

141.
$$\sqrt[6]{\frac{1}{a^2} - \frac{1}{a^3} + \frac{1}{a^4}} : \sqrt{\frac{a^2 - a + 1}{a^2}}$$
.

142.
$$\sqrt[3]{\frac{a+1}{a}}: \sqrt{1-\frac{1}{a}+\frac{1}{a^2}}: \sqrt[6]{\frac{a^2}{a^2-a+1}}$$
.

143.
$$\sqrt[3]{\frac{a^2(9a^2-6a+1)}{3a+1}}:\sqrt{\frac{3a^2+a}{27a^3+27a^2+9a+1}}:\sqrt[6]{\frac{(3a-1)^4}{9a^3+6a^2+a}}.$$

144. Ako je

$$\begin{split} A &= \left(\sqrt[4]{\frac{5x^3}{8y}} : \sqrt[6]{\frac{25x^4}{32y}} \right) \cdot \sqrt[12]{\frac{5x}{2y}} + 3\sqrt[6]{\frac{x}{y}} \,, \\ B &= \frac{5}{4}\sqrt[6]{\frac{y}{x}} - \sqrt{\frac{xy^2}{2}} \cdot \sqrt[3]{\frac{x^2y}{16}} : \left(\sqrt[3]{\frac{xy^2}{2}} \cdot \sqrt{\frac{x^2y}{8}} \right), \end{split}$$

tada je AB = 1. Dokazati.

145. Ako je
$$U=\sqrt[n]{\left(\frac{a+1}{a}\right)^{n-1}}\cdot\sqrt[n]{a\left(1+\frac{1}{a}\right)^{2-n}}$$
 i
$$V=\frac{\sqrt{a}-1}{a+1}\cdot\sqrt[n]{\frac{(a+1)^{n+1}\cdot(\sqrt{a}+1)}{(a-1)(\sqrt{a}-1)^{n-1}}},\,\mathrm{tada}\;\mathrm{je}\;U=V.\;\mathrm{Dokazati}.$$

$$\begin{split} V &= \frac{ax}{a-x}\sqrt[3]{\frac{1}{x^2} + \frac{1}{a^2} - \frac{2}{ax}} \quad \mathrm{i} \\ W &= \frac{a}{\sqrt{a} - \sqrt{x}} \cdot \sqrt[3]{\frac{x}{a^2} \left(\sqrt{a} + \frac{x - 3\sqrt{ax}}{\sqrt{a} + \sqrt{x}}\right)}, \end{split}$$

tada je V - W = 0. Dokazati.

Izvršiti sabiranje i oduzimanje korena (147–161):

147. a)
$$5\sqrt{2} + 3\sqrt{8} - \sqrt{50} - \sqrt{98}$$
; b) $\sqrt{2} - 2\sqrt{8} + \sqrt{50}$;

c)
$$\sqrt{3} + 3\sqrt{27} - 2\sqrt{48}$$
; d) $2\sqrt{50} - \sqrt{32} + \sqrt{72} - 2\sqrt{8}$.

e)
$$\sqrt{45} + \sqrt{12} - (\sqrt{48} + \sqrt{125}) + \sqrt{20} + \sqrt{108}$$
;

f)
$$\sqrt{75} - (6\sqrt{12} - 7\sqrt{3}) - (\sqrt{28} - \sqrt{343})$$
.

148.
$$3\sqrt{12} + \frac{2}{5}\sqrt{75} - 7\sqrt{3} + \frac{8}{3}\sqrt{27} - \frac{5}{4}\sqrt{48}$$
.

149. a)
$$8\sqrt{\frac{3}{4}} - \frac{1}{2}\sqrt{12} + 4\sqrt{27} - 2\sqrt{\frac{3}{16}};$$

b)
$$\sqrt{\frac{3}{4}} + \frac{\sqrt{12}}{3} + 2\sqrt{\frac{3}{25}} - \frac{\sqrt{75}}{5}$$
.

150. a)
$$\sqrt[3]{108} - 5\sqrt[3]{384} + 2\sqrt[3]{500} - 3\sqrt[3]{256} + 8\sqrt[3]{6} + 4\sqrt[3]{162}$$
;

b)
$$3\sqrt[12]{4} - 4\sqrt[15]{27} + 8\sqrt[24]{16} + 5\sqrt[20]{81} - 11\sqrt[30]{32}$$
;

c)
$$8\sqrt[20]{32} - 9\sqrt[6]{9} - 4\sqrt[16]{16} + 4\sqrt[16]{27} + 12\sqrt[12]{8} + 5\sqrt[12]{81}$$
.

151.
$$\sqrt[3]{16} - 2\sqrt[3]{250} - \sqrt[3]{128} + 5\sqrt[3]{54}$$
.

152.
$$7(\sqrt{2} + 4\sqrt[6]{8}) - 6(8\sqrt[8]{16} - 3\sqrt[4]{4}).$$

153.
$$3\sqrt[8]{16} - \sqrt[8]{625} + 2\sqrt[6]{125} + \sqrt[6]{8}$$
.

154.
$$5(\sqrt[4]{25} - 2\sqrt[6]{8}) - 2(\sqrt[6]{125} - 4\sqrt[4]{4}).$$

155.
$$3\sqrt{4a} - 5\sqrt{12a} + 5\sqrt{9a} + 2\sqrt{75a} - 2\sqrt{81a}$$
.

156.
$$9\sqrt{a} - 3\sqrt[3]{a} - \sqrt[6]{a^2} - 7\sqrt{a} + 4\sqrt[3]{a} + \sqrt[6]{a^3}$$
.

157.
$$4(\sqrt[8]{81a^4} + 2\sqrt{3a}) - 3(3\sqrt[6]{27a^3} + 2\sqrt[4]{9a^2}).$$

158.
$$\sqrt{3a} - 4\sqrt[6]{27a^3} + 5\sqrt{3a} - \sqrt[4]{9a^2}$$
.

159.
$$3\sqrt[3]{\frac{125a^2b^5}{c^2}} + \sqrt[3]{\frac{a^2b^2(8a-5b)^3}{c^2}} + 2\sqrt[3]{\frac{a^2b^2(a-5b)^3}{c^2}}.$$

160.
$$\sqrt[3]{\frac{64a^2b^2(a+b)^3}{c^2}} + 2\sqrt[3]{\frac{27a^5b^2}{c^2}} - \sqrt[3]{\frac{8a^2b^5}{c^2}}.$$

161.
$$\sqrt[3]{\frac{a}{64}} + \sqrt{\frac{9a}{4}} - \sqrt[3]{\frac{a}{8}} + \sqrt{\frac{4a}{9}} + 3\sqrt[8]{\frac{8a}{27}} + \sqrt{\frac{25a}{36}} + \sqrt[3]{\frac{125a}{64}}$$
.

162. Dati su izrazi

$$A = \sqrt{49a + 98b} + \sqrt{am^2 + 2bm^2} - \sqrt{4a + 8b} - \sqrt{36a + 72b},$$

$$B = \sqrt{9am^2 + 18bm^2} - \sqrt{25a + 50b} + \sqrt{16a + 32b} - \sqrt{4am^2 + 8bm^2}.$$

Dokazati da je A - B = 0.

163. Dati su izrazi

$$A = \sqrt{9a^2 + 9} + \sqrt{a^6 + 3a^4 + 3a^2 + 1} - \sqrt{(a^4 - 1)(a^2 - 1)},$$

$$B = \sqrt{16a^2 + 16} + \sqrt[4]{81a^2(a^2 + 2) + 81} - \sqrt[6]{64(a^6 + 1) + 192a^2(a^2 + 1)},$$

pri čemu je $|a| \ge 1$. Dokazati da je A = B.

164. Dati su izrazi

$$A = 3\sqrt[3]{(a-2)(a^3 - 2a^2 - 4a + 8)} - \sqrt[3]{8a^4 + 16a^3} + \sqrt[3]{125a + 250},$$

$$B = \sqrt[3]{(a^3 - 3a^2 + 3a - 1)(a + 2)} - \sqrt[3]{27a^4 + 54a^3} + \sqrt[3]{(a^2 + 4a + 4)^2}.$$

Dokazati da je A + B = 0.

165. Dati su izrazi

$$A = \frac{(a+3)(\sqrt[3]{a^4} - 3\sqrt[3]{a}) + (a-3)(\sqrt[3]{a^4} + 3\sqrt[3]{a})}{2(a^2 - 9)},$$

$$B = \frac{3\sqrt[3]{a^7} + \sqrt[3]{64a^4} - \sqrt[3]{27a} - \sqrt[3]{a(a^6 - 15a^4 + 75a^2 - 125)}}{2(a+1)^2}.$$

Dokazati da se izrazi A i B mogu svesti na isti oblik.

166. Dokazati da su vrednosti izraza

$$A = \sqrt{3} \cdot \sqrt{5} \cdot \sqrt{60}$$
, $B = \sqrt{5} \cdot \sqrt{2} \cdot \sqrt{40}$ i $C = \sqrt{3} \cdot \sqrt{6} \cdot \sqrt{72}$

prirodni brojevi.

167. Dokazati da su izrazi

$$A = \sqrt{2} \cdot \sqrt{6} \cdot \sqrt{5}$$
, $B = \sqrt{3} \cdot \sqrt{5} \cdot \sqrt{6}$ i $C = \sqrt{5} \cdot \sqrt{20} \cdot \sqrt{12}$

iracionalni brojevi.

168. Dokazati da su izrazi

$$A = \sqrt{3} \cdot \sqrt{15} \cdot \sqrt{20}$$
 i $B = \sqrt{5} \cdot \sqrt{10} \cdot \sqrt{3} \cdot \sqrt{6}$

racionalni i jednaki.

Dati su izrazi $A,\,B,\,C.\,$ Dokazati da su njihove vrednosti iracionalne i jednake (169–174):

169.
$$A = \sqrt{\frac{5}{2}} \cdot \sqrt{\frac{8}{3}} \cdot \sqrt{\frac{24}{15}}, B = \sqrt{\frac{18}{7}} \cdot \sqrt{\frac{14}{3}} \cdot \sqrt{\frac{8}{9}}, C = \frac{26}{11} \cdot \sqrt{\frac{80}{39}} \cdot \sqrt{\frac{11}{5}}.$$
170. $A = \sqrt{5}\sqrt{\frac{3}{2}} \cdot \sqrt{\frac{12}{5}} i B = \sqrt{\frac{2}{3}} \cdot \sqrt{\frac{12}{5}} \cdot \sqrt{\frac{45}{4}}.$

171.
$$A = \sqrt{\frac{5}{7}} \cdot \sqrt{\frac{40}{3}} \cdot \sqrt{\frac{1}{3} + \frac{3}{5}} i B = \sqrt{\frac{10}{3}} \sqrt{8 + \frac{2}{5}} \cdot \sqrt{\frac{2}{7} + \frac{1}{9} - \frac{5}{63}}$$

172.
$$A = 2(3 - \sqrt{3})(1 + \sqrt{3})$$
 i $B = (3\sqrt{2} + \sqrt{6})(\sqrt{6} - \sqrt{2})$.

173.
$$A = (2\sqrt{2} - \sqrt{3})(\sqrt{3} + \sqrt{2}) - (\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2}) i$$

 $B = (\sqrt{3} + 2)(\sqrt{2} - 3) + \sqrt{3}(3 + 4\sqrt{5}) - \sqrt{2}(2 + 3\sqrt{2})$

174.
$$A = (3 + \sqrt{5})(2 - \sqrt{5}) - (5 + \sqrt{5})(2 - \sqrt{5}) i$$

 $B = (\sqrt{5} + 1)(3\sqrt{5} - 1) - 6(\sqrt{5} + \sqrt{2})(\sqrt{5} - \sqrt{2}).$

175. Dati su izrazi $A = (\sqrt{5} - 2\sqrt{3})(\sqrt{5} + 2\sqrt{3}) - (\sqrt{3} + 2\sqrt{5})(\sqrt{3} - 2\sqrt{5})$ i $B = (\sqrt{3} + 2)(\sqrt{3} - 2) - 2\sqrt{3}(\sqrt{5} - \sqrt{3}) + 2(\sqrt{15} + 2)$. Dokazati da su vrednosti izraza A i B prirodni brojevi.

176. Dati su izrazi
$$A = \sqrt[3]{1 - \frac{5}{9}} \cdot \sqrt[3]{2\left(1 + \frac{2}{9}\right)} \cdot \sqrt[3]{2\left(\frac{1}{5} - \frac{1}{11}\right)}$$
 i

$$B=\sqrt[3]{\frac{1}{2}+\frac{2}{5}}\cdot\sqrt[3]{3\left(\frac{1}{4}+\frac{2}{7}\right)}\cdot\sqrt[3]{5\left(\frac{1}{4}+\frac{1}{3}\right)}.\ \mathrm{Dokazati\ da\ je}\ A\cdot B=1.$$

177. Dati su izrazi

$$A = (\sqrt{a+b+x} + \sqrt{a+b-x})(\sqrt{a+b+x} - \sqrt{a+b-x})$$
 i
$$B = (\sqrt{x} + a)(\sqrt{x} - a) - (a + \sqrt{x})(a - \sqrt{x}) + 2a^{2}.$$

Dokazati da su njihove vrednosti međusobno jednaki parni brojevi za svako $x \in \mathbb{Z}, \, x \geq 0.$

178. Dati su izrazi

$$A = \sqrt[3]{1 + \frac{1}{3}} \cdot \sqrt[3]{1 - \frac{1}{5}} \cdot \sqrt[3]{\frac{1}{2} - \frac{2}{9}}, \ B = \sqrt[3]{\frac{6}{7} - \frac{2}{3}} \cdot \sqrt[3]{\frac{1}{3} + \frac{11}{2}} \cdot \sqrt[3]{\frac{2}{3} - \frac{2}{5}}.$$

Dokazati da su A i B racionalni i jednaki.

Uprostiti izraze (179–184):

179.
$$\sqrt{x+2y+\frac{y^2}{x}}\cdot\sqrt{\frac{y}{x^3-xy^2}}\cdot\sqrt{\frac{x^2}{y}-2x+y}$$
 $(x>y>0).$

180.
$$\sqrt{\frac{1}{x+y} + \frac{2y}{x^2 - y^2}} \cdot \sqrt{\frac{1}{x+y}} \cdot \sqrt{\frac{x^2}{y^2} - 1}$$
 $(x > y > 0).$

181.
$$\sqrt{\frac{a-b}{a+b}} \cdot \sqrt{\frac{a^2+ab+b^2}{a^2+2ab+b^2}} \cdot \sqrt{\frac{a^3+b^3}{a^3-b^3}}$$
 $(a>b>0).$

182.
$$\sqrt{\frac{a-b}{ab}} \cdot \sqrt{a + \frac{ab}{a-b}} \cdot \sqrt{b - \frac{ab}{a+b}}$$
 $(a > b > 0).$

183.
$$\sqrt{1+\frac{y}{x}} \cdot \sqrt{\frac{x^2}{y^2}-1} \cdot \sqrt{x+\frac{xy}{x-y}}$$
 $(x>y>0).$

184.
$$\sqrt{x^2 - \frac{x^2y}{x+y}} \cdot \sqrt{\frac{1}{2(xy-1)} - \frac{1}{2(xy+1)}} \cdot \sqrt{\frac{x+y}{xy+1}}$$

(x > 0, y > 0, xy > 1).

185. Ako je
$$A = \sqrt{\frac{a^2x + ax}{a - x}} \cdot \sqrt{\left(1 + \frac{x}{a}\right)\left(1 - \frac{x}{a}\right)} \cdot \sqrt{\frac{a + 1}{a + x}}$$
 i

$$B=\sqrt{ax-x}\cdot\sqrt{\frac{2a^2+1}{a^2-a}-\frac{a-2}{a-1}},$$
gde je $a>x>1,$ tada je $A=B$. Dokazati

186. Ako je
$$A = \sqrt{\frac{am + m^2}{a^2 - x^2}} \cdot \sqrt{\frac{a + x}{a - x}} \cdot \sqrt{\frac{a - x}{a + m}}$$
 i

$$B = \sqrt{\frac{am - m^2}{a^2}} \cdot \sqrt{\frac{a^2 + ax}{a^2 - m^2}} \cdot \sqrt{\frac{a^2 + ax}{a^2 - x^2}}, \text{ gde je } a > m > 0, a > x > 0,$$
tada je $A - B = 0$. Dokazati.

187. Dokazati implikacije:

a)
$$x > 0 \Rightarrow$$

$$\frac{1}{3}\sqrt{9x} - \left(6\sqrt{\frac{4}{9}x} - \left(3\sqrt{\frac{1}{4}x} + 2\sqrt{3x}\right) - \sqrt{\frac{25}{4}x}\right) - \sqrt{12x} = \sqrt{x};$$

b)
$$(a > 0 \land x > 0) \Rightarrow 6\sqrt{\frac{ax}{4}} - \frac{16}{3a}\sqrt{\frac{a^3x}{16}} + 3a\sqrt{\frac{x}{a}} - 2x\sqrt{\frac{a}{9x}} = 4\sqrt{ax};$$

c)
$$(x > 0 \land a > 0) \Rightarrow \frac{18x}{a} \sqrt{\frac{a^2}{x}} - 21x\sqrt{\frac{1}{x}} + 6\sqrt{\frac{x}{4}} - 2a\sqrt{\frac{x}{a^2}} + 3\sqrt{x} = \sqrt{x};$$

d)
$$(a > b > 0) \Rightarrow$$

$$\frac{8b}{a+b}\sqrt{\frac{a^2-b^2}{4}} - 2a\sqrt{\frac{a-b}{a+b}} - 3b\sqrt{\frac{(a-b)^2}{a^2-b^2}} + 3a\sqrt{\frac{a-b}{a+b}} = \sqrt{a^2-b^2}.$$

Korenovati sledeće korene (188-194):

188. a)
$$\sqrt[3]{\sqrt{8}}$$
; b) $\sqrt[4]{\sqrt[3]{16}}$; c) $\sqrt[5]{\sqrt[4]{32}}$.

189. a)
$$\sqrt[3]{\sqrt[7]{8a^3}}$$
; b $\sqrt[4]{\sqrt[11]{16a^4}}$; c) $\sqrt[3]{\sqrt[5]{8a^3}}$.

190. a)
$$\sqrt[5]{a} \cdot \sqrt[4]{\sqrt[5]{a}} \cdot \sqrt[10]{\sqrt{a^3}}$$
; b) $\sqrt{\sqrt{a\sqrt{a^5\sqrt{a}}}}$.

191.
$$\sqrt[2m]{\sqrt[3n]{a^5}} \cdot \sqrt[m]{\sqrt[6n]{a^9}} \cdot \sqrt[6m]{\sqrt[n]{a^3}} \cdot \sqrt[6n]{\sqrt[m]{a}}$$
.

192. a)
$$\sqrt[n]{a\sqrt[n]{a\sqrt[n]{a^{m/a^{n-m}}}}}$$
; b) $\sqrt[n-1]{a\sqrt[n]{\frac{1}{a}}}$.

193.
$$\sqrt[8]{\sqrt[5]{x^2y^3}} \cdot \sqrt[10]{xy\sqrt[4]{x}} \cdot \sqrt[5]{\sqrt[8]{xy}}$$

194. Ako je
$$A=\sqrt[6]{a^2\sqrt[5]{a^2}},\ B=\sqrt[6]{a^3\sqrt[5]{\frac{1}{a^3}}},\ C=\sqrt[3]{a^2\sqrt[5]{\frac{1}{a^4}}},$$
 tada je $A=B=C.$ Dokazati.

195. Ako je
$$A = \sqrt[3]{xy\sqrt{xy}} \cdot \sqrt{xy\sqrt[3]{\frac{1}{xy}}}, \ B = \sqrt{xy} \cdot \sqrt{x\sqrt[3]{\frac{x}{y}}} \cdot \sqrt{y}\sqrt[3]{\frac{1}{x}},$$
 gde je $xy > 0$, tada je $A = B$. Dokazati.

196. Ako je
$$M = \sqrt{\frac{a}{b}\sqrt[3]{\frac{x}{y}}} \cdot \sqrt[3]{\frac{y}{x}\sqrt{\frac{b}{a}}} \cdot \sqrt[3]{\frac{x}{y}\sqrt{\frac{x}{y}}}$$
 i

$$N=\sqrt[4]{rac{3a}{b}\sqrt[3]{rac{4x}{9y}}}\cdot\sqrt[3]{rac{x}{2y}}\sqrt[4]{rac{4ay}{3bx}},$$
tada je $M-N=0$. Dokazati.

Uprostiti izraze (197–199):

197.
$$\sqrt[3]{\frac{a^2}{b^2}\sqrt{\frac{ay}{bx}}}\cdot\sqrt{\frac{b}{a}\sqrt[3]{\frac{x}{y}}}\cdot\sqrt{\frac{x}{y}\sqrt[3]{\frac{a}{b}}}$$

198.
$$\sqrt[3]{\frac{1}{a^3+1}} \cdot \sqrt{(a^2-a+1)\sqrt[3]{(a+1)^2}}$$
.

199.
$$\sqrt[3]{\frac{(a+b)^2}{a-b}} \sqrt[4]{\frac{(a-b)^3}{a+b}} : \sqrt[3]{\frac{a+b}{(a-b)^2}} \sqrt[4]{\frac{a-b}{(a+b)^3}}.$$

200. Ako je
$$A = \sqrt[3]{(a-3b)\sqrt{\frac{1}{a^2-9b^2}}} \cdot \sqrt[3]{(a+3b)\sqrt{\frac{1}{a^2-9b^2}}}$$
 i $B = \sqrt[3]{\frac{a^3+b^3}{a^2-b^2}} : \sqrt[3]{\frac{a^2-ab+b^2}{a-b}}$, tada je $A = B = 1$. Dokazati.

201. Ako je
$$S = \sqrt[4]{a^3 \sqrt{\frac{b}{a}}} \cdot \sqrt[4]{b^3 \sqrt{\frac{a}{b}}}$$
 i $T = \sqrt[4]{ab \sqrt[6]{\frac{b}{a}}} \cdot \sqrt{\frac{a\sqrt[3]{b^2}\sqrt[4]{b^3}}{a^2}\sqrt[4]{\frac{b^3}{a^3}}}$, tada je $S - T = 0$. Dokazati.

202. Ako je

$$A = \sqrt[3]{\frac{a-b}{b^3}\sqrt{\frac{a+b}{ab}}} : \sqrt[3]{\frac{a+b}{a^3}\sqrt{\frac{a-b}{ab}}} \quad i$$

$$B = \frac{a^2}{b}\sqrt[6]{\frac{a+b}{a}\sqrt[3]{\frac{a-b}{a+b}}} \cdot \sqrt[6]{\frac{a-b}{b}\sqrt[3]{\frac{a+b}{a-b}}} : \sqrt[6]{\frac{a^5(a+b)^2}{b}},$$

tada je A = B. Dokazati.

203. Dati su izrazi

$$V = \sqrt[3]{(a^2 + ax)\sqrt{\frac{a}{a^2 - x^2}}} \cdot \sqrt[3]{(ax - x^2)\sqrt{\frac{x}{a^2 - x^2}}} \quad i$$

$$W = \sqrt[3]{ax(a+x)\sqrt{\frac{a+x}{a-x}}} \cdot \left(\sqrt[3]{\frac{a}{x} + \frac{x}{a} - 2} : \sqrt{\frac{a}{x} - \frac{x}{a}}\right),$$

dokazati da se izrazi V i W mogu svesti na isti oblik.

204. Ako je

$$A = \sqrt[4]{\frac{a-x}{x^n}\sqrt{\frac{a^2-x^2}{ax}}} : \sqrt[n]{\frac{a+x}{a^n}\sqrt{\frac{a^2-x^2}{ax}}} \quad \mathrm{i}$$

$$B = \sqrt[n]{\frac{x^n}{a^{n+2}-2a^{n+1}x+a^nx^2}} \left(2\sqrt[n]{(a+x)\sqrt{\frac{a-x}{a+x}}} - \sqrt[n]{(a-x)\sqrt{\frac{a+x}{a-x}}}\right)^2,$$

gde je a > x > 0, tada je AB = 1. Dokazati.

205. Ako je

$$A = \sqrt[2n]{\frac{a+x}{a-x}} \cdot \left(\sqrt[n]{\frac{a+x}{a^n}} \sqrt{\frac{a-x}{ax}} : \sqrt[n]{\frac{a-x}{x^n}} \sqrt{\frac{a+x}{ax}}\right)$$
 i
$$B = \sqrt[n]{\frac{(ax^n)^2 + 2ax^{2n+1} + x^{2n+2}}{a^{2n+2} - 2a^{2n+1} + (a^nx)^2}},$$

gde je a > x > 0, tada je A = B. Dokazati.

Izračunati (206-207):

206. a)
$$(\sqrt{3} + \sqrt{2})^2$$
; b $(\sqrt{3} + 2)^2$; c) $(\sqrt{5} + \sqrt{3})^3$; d) $(\sqrt{3} - \sqrt{2})^3$;

e)
$$\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)^2$$
; f) $\left(\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\right)^2$;

$$g) \left(\sqrt{7-2\sqrt{6}}+\sqrt{7+2\sqrt{6}}\right)^2.$$

207. a)
$$\left(\sqrt{\frac{x+\sqrt{x^2-4}}{2}} - \sqrt{\frac{x-\sqrt{x^2-4}}{2}}\right)^2 \quad (x \ge 2);$$

b)
$$\left(\sqrt{a+1+2\sqrt{a}} + \sqrt{a+1-2\sqrt{a}}\right)^2 \quad (a \ge 0);$$

c)
$$\left(\sqrt{a+b+2\sqrt{ab}}+\sqrt{a+b-2\sqrt{ab}}\right)^2$$
 $(a,b\geq 0)$.

Izračunati (208–211):

208. a)
$$4^{\frac{1}{2}} + 8^{\frac{1}{3}} + 16^{\frac{1}{4}} + 32^{\frac{1}{5}};$$
 b) $\left(7^{\frac{1}{2}}\right)^{\frac{1}{3}} \cdot \left(2^{\frac{2}{3}}\right)^{\frac{1}{3}} \cdot \left(3^{\frac{1}{5}}\right)^{\frac{1}{3}};$

c)
$$25^{-\frac{1}{2}} - \left(\frac{1}{27}\right)^{-\frac{2}{3}} + 1000^{\frac{1}{3}};$$
 d) $32^{0.6} - 16^{0.75} + (1,44)^{0.5}.$

209. a)
$$\left(16^{\frac{1}{8}} + \left(27^{-\frac{2}{3}}\right)^{-\frac{1}{2}}\right) \cdot \left(2^{0.5} - \left(\frac{1}{9}\right)^{-\frac{1}{2}}\right);$$

b)
$$\left(4^{-\frac{1}{4}} + \left(2^{\frac{3}{2}}\right)^{-\frac{4}{3}}\right) \cdot \left(4^{-0.25} - \left(2 \cdot 2^{\frac{1}{2}}\right)^{-\frac{4}{3}}\right);$$

c)
$$\left(2^{0}\left(\sqrt{3}\right)^{\frac{2}{3}} - 3\left(\frac{1}{2}\right)^{-0.75}\right) \cdot 3^{-\frac{1}{4}} + \sqrt[4]{216};$$

d)
$$\left(5^{\frac{1}{3}} + 3^{\frac{1}{3}}\right) \cdot \left(5^{\frac{2}{3}} - 15^{\frac{1}{3}} + 3^{\frac{2}{3}}\right);$$

e)
$$\left(6^{\frac{1}{3}} - 3^{\frac{1}{3}}\right) \cdot \left(6^{\frac{2}{3}} + 18^{\frac{1}{3}} + 3^{\frac{2}{3}}\right)$$
.

210. a)
$$\frac{a-b}{a^{\frac{1}{2}}+b^{\frac{1}{2}}} + \frac{a-b}{a^{\frac{1}{2}}-b^{\frac{1}{2}}};$$
 b) $\frac{1-a^{-\frac{1}{2}}}{a^{\frac{1}{2}}+1} - \frac{a^{\frac{1}{2}}+a^{-\frac{1}{2}}}{a-1};$

c)
$$\frac{x^{\frac{1}{2}} + 1}{x + x^{\frac{1}{2}} + 1} : \frac{1}{x^{1,5} - 1};$$
 d) $\frac{a+1}{a^{\frac{2}{3}} - a^{\frac{1}{3}} + 1} - \frac{a-1}{a - a^{\frac{1}{2}}}.$

211. a)
$$\left(\frac{3x^{-\frac{1}{3}}}{x^{\frac{2}{3}} - 2x^{-\frac{1}{3}}} - \frac{x^{\frac{1}{3}}}{x^{\frac{4}{3}} - x^{\frac{1}{3}}}\right)^{-1} - \left(\frac{1 - 2x}{3x - 2}\right)^{-1};$$

b)
$$\left(\frac{m^{\frac{2}{3}}}{m^{\frac{2}{3}} - 2m^{-\frac{1}{3}}} - \frac{m^{\frac{4}{3}}}{m^{\frac{4}{3}} - m^{\frac{1}{3}}}\right) \cdot (m - 3 + 2m^{-1}) - \left(\frac{2m - 3}{m + 5}\right)^{0}$$
.

212. Uporediti brojeve $\sqrt{2+\sqrt{2}}$ i $\sqrt[3]{3+\sqrt{3}}$.

213. Dat je broj $A = (\sqrt{6} + \sqrt{2}) \cdot (\sqrt{3} - 2) \cdot \sqrt{\sqrt{3} + 2}$. Izračunati A^2 i, na osnovu toga, odrediti vrednosti broja A.

214. Dati su brojevi

$$a = \sqrt{4 - \sqrt{10 + 2\sqrt{5}}}$$
 i $b = \sqrt{4 + \sqrt{10 + 2\sqrt{5}}}$

Izračunati $a^2 + b^2$, ab i a + b.

215. Dati su brojevi

$$A = \sqrt[3]{\sqrt{9 + \sqrt{17} \cdot \sqrt{9 - \sqrt{17}}}} \quad i \quad B = \sqrt[3]{11 - \sqrt{57} \cdot \sqrt[3]{11 + \sqrt{57}}}$$

Dokazati da su A i B racionalni i jednaki.

Dokazati (216-218):

216.
$$\sqrt{2+\sqrt{3}} \cdot \sqrt{2+\sqrt{2+\sqrt{3}}} \cdot \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}$$

 $\cdot \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}} = 1.$

217. a)
$$\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}=4$$
;

b)
$$\sqrt[3]{5\sqrt{2}+7} - \sqrt[3]{5\sqrt{2}-7} = 2$$
.

218. a)
$$(4 + \sqrt{15}) \cdot (\sqrt{10} - \sqrt{6}) \cdot \sqrt{4 - \sqrt{15}} = 2;$$

b)
$$(\sqrt{3-\sqrt{5}}) \cdot (3+\sqrt{5}) \cdot (\sqrt{10}-\sqrt{2}) = 8;$$

c)
$$\sqrt[3]{26+15\sqrt{3}} \cdot (2-\sqrt{3}) = 1;$$
 d) $\frac{(\sqrt[3]{7+5\sqrt{2}}) \cdot (\sqrt{2}-1)}{\sqrt{4+2\sqrt{3}}-\sqrt{3}} = 1.$

Izračunati (219–220):

219. a)
$$\frac{8}{3-\sqrt{5}} - \frac{2}{2+\sqrt{5}}$$
; b) $\frac{1}{\sqrt{5}-2} - \frac{1}{\sqrt{5}+2}$;

c)
$$\frac{1}{3+\sqrt{7}} + \frac{1}{3-\sqrt{7}}$$
; d) $\frac{2}{\sqrt{5}+\sqrt{3}} + \frac{6}{3-\sqrt{3}} - \frac{4}{3-\sqrt{5}}$

220. a)
$$\left(\frac{15}{\sqrt{6}+1} + \frac{4}{\sqrt{6}-2} - \frac{12}{3-\sqrt{6}}\right) \cdot (\sqrt{6}+11);$$

b)
$$\left(\frac{2}{\sqrt{3}-1} + \frac{3}{\sqrt{3}-2} + \frac{15}{3-\sqrt{3}}\right) \cdot (\sqrt{3}+5)^{-1};$$

c)
$$\left(\frac{1}{\sqrt{3}-\sqrt{2}}+\frac{2}{\sqrt{8}+\sqrt{12}}\right):\frac{1}{\sqrt{3}};$$

d)
$$\frac{2-\sqrt{3}}{2+\sqrt{3}} + \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} + \frac{2+\sqrt{3}}{2-\sqrt{3}} + \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$$
.

Obaviti naznačene operacije (221–222):

221. a)
$$\frac{\sqrt{x} + \sqrt{y} - 1}{x + \sqrt{xy}} + \frac{\sqrt{x} - \sqrt{y}}{2\sqrt{xy}} \left(\frac{\sqrt{y}}{x - \sqrt{xy}} + \frac{\sqrt{y}}{x + \sqrt{xy}} \right),$$

(x > 0, y > 0):

b)
$$\frac{2\sqrt{x}}{\sqrt{a} + \sqrt{x}} + \left(\frac{a\sqrt{a} + x\sqrt{x}}{\sqrt{a} + \sqrt{x}} - \sqrt{ax}\right) : (a - x), (a > 0, b > 0);$$

c)
$$\left(\frac{a+\sqrt{a^2-b^2}}{a-\sqrt{a^2-b^2}} - \frac{a-\sqrt{a^2-b^2}}{a+\sqrt{a^2-b^2}}\right) : \frac{4a\sqrt{a^2-b^2}}{b^2} \quad (a^2 > b^2);$$

d)
$$\left(\frac{a+2}{\sqrt{2a}} - \frac{a}{\sqrt{2a}+2} + \frac{2}{a-\sqrt{2a}}\right) \cdot \frac{\sqrt{a}-\sqrt{2}}{a+2} \quad (a>0);$$

e)
$$\left(\frac{x-y}{\sqrt[3]{x}-\sqrt[3]{y}}+\sqrt[3]{xy}\right):\left(\sqrt[3]{x}+\sqrt[3]{y}\right).$$

222. a)
$$\left(\frac{3\sqrt{a}}{\sqrt{a}-1} - \frac{2\sqrt{a}}{\sqrt{a}+1} - \frac{a}{a-1}\right) \cdot \frac{a-1}{\sqrt{a}}$$
 $(a > 0, a \neq 1);$

b)
$$\left(\frac{1}{1+\sqrt{a}} + \frac{2\sqrt{a}}{1-a}\right) \cdot \left(\frac{1}{\sqrt{a}} - 1\right) \quad (a < 0, |a| \neq 1);$$

c)
$$\left(\frac{1}{\sqrt{a}+1} - \frac{1}{\sqrt{a}-1} + \frac{2\sqrt{a}}{a-1}\right) : \frac{10}{\sqrt{a}+1} \quad (a > 0, \ a \neq 1);$$

d)
$$\frac{\left(1 - \left(\frac{a}{b}\right)^{-2}\right) \cdot a^2}{(\sqrt{a} - \sqrt{b})^2 + 2\sqrt{ab}}$$
 $(a > 0, b > 0).$

Izračunati vrednost izraza (223–224):

223. a)
$$x^2 - 2x - 1$$
 za $x = 1 + \sqrt{2}$;

b)
$$4x^3 - 8x^2 + 2x + 3$$
 za $x = 1 + \frac{1}{2}\sqrt{2}$;

c)
$$(x+1)^{-1} + (y+1)^{-1}$$
 za $x = (2+\sqrt{3})^{-1}$ i $y = (2-\sqrt{3})^{-1}$

d)
$$x^2 - 3xy - y^2$$
 za $x = 5 + 2\sqrt{6}$ i $y = 5 - 2\sqrt{6}$;

e)
$$x^3 - 2x^2 + 6x + 6$$
 za $x = 3 - \sqrt{3}$.

224. a)
$$\frac{(x-1)\sqrt{3}}{\sqrt{x^2-x+1}}$$
 za $x=2+\sqrt{3}$ i $x=2-\sqrt{3}$;

b)
$$\frac{2a\sqrt{1+x^2}}{x+\sqrt{1+x^2}}$$
 za $x = \frac{1}{2} \cdot \left(\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}}\right)$ $(a > 0, b > 0)$;

c)
$$\frac{\sqrt{a+x}+\sqrt{a-x}}{\sqrt{a+x}-\sqrt{a-x}}$$
 za $x=\frac{2an}{n^2+1}$ $(n>1, a>0);$

d)
$$\frac{\sqrt{a+bx} + \sqrt{a-bx}}{\sqrt{a+bx} - \sqrt{a-bx}}$$
 za $x = \frac{2am}{b(1+m^2)}$ $(|m| < 1)$;

e)
$$\frac{xy - \sqrt{x^2 - 1} \cdot \sqrt{y^2 - 1}}{xy + \sqrt{x^2 - 1} \cdot \sqrt{y^2 - 1}}$$
 za $x = \frac{1}{2} \left(a + \frac{1}{a} \right), \ y = \frac{1}{2} \left(b + \frac{1}{b} \right), \ (a \ge 1, b \ge 1).$

225. Dokazati implikaciju:

a)
$$(a \neq b \land a > 0 \land b > 0) \Rightarrow$$

$$\left(\frac{\sqrt{a} - \sqrt{b}}{a\sqrt{b} + b\sqrt{a}} + \frac{\sqrt{a} + \sqrt{b}}{a\sqrt{b} - b\sqrt{a}}\right) \cdot \frac{a\sqrt{b}}{a + b} - \frac{2b}{a - b} = 2;$$

b)
$$(a \neq b \land a > 0 \land b > 0) \Rightarrow$$

$$\frac{(\sqrt{a} - \sqrt{b})^3 + 2\sqrt{a^3} + b\sqrt{b}}{a\sqrt{a} + b\sqrt{b}} + \frac{3\sqrt{ab} - 3b}{a - b} = 3.$$

226. Uprostiti izraz:
$$\sqrt{x+2\sqrt{x-1}} + \sqrt{x-2\sqrt{x-1}}$$
, ako $x \in [1,2]$.

227. Dokazati identitet (Lagranžev identitet):

$$\sqrt{a \pm \sqrt{b}} = \sqrt{\frac{a + \sqrt{a^2 - b}}{2}} \pm \sqrt{\frac{a - \sqrt{a^2 - b}}{2}} \quad (a > 0, \, b > 0, \, b < a^2).$$

Koristeći Lagranžeov identitet, uprostiti i izračunati, sa tačnošću od $0{,}01$ izraze:

a)
$$\sqrt{11+4\sqrt{7}}$$
; b) $\sqrt{2+\sqrt{3}}$; c) $\sqrt{5-\sqrt{21}}$;

d)
$$\sqrt{7+4\sqrt{3}}$$
; e) $\sqrt{31+12\sqrt{3}}$.

Primena Lagranžeovog identiteta (229–232):

229. a)
$$\sqrt{3-\sqrt{8}}$$
; b) $\sqrt{6+\sqrt{20}}$; c) $\sqrt{7+4\sqrt{3}}$.

230. a)
$$\sqrt{12+4\sqrt{5}}$$
; b) $\sqrt{6-4\sqrt{2}}$.

231. a)
$$\sqrt{7+2\sqrt{6}}$$
; b) $\sqrt{8-2\sqrt{15}}$.

232.
$$\sqrt{3+2\sqrt{2}}-\sqrt{6+2\sqrt{5}}$$
.

233. Ako je
$$A = \sqrt{6 + \sqrt{11}}$$
, $B = \sqrt{7 - \sqrt{33}} + \sqrt{2 + \sqrt{3}}$, tada je $A = B$. Dokazati.

234. Ako je
$$M = \sqrt{9 - \sqrt{65}}, \ N = \sqrt{3 + \sqrt{5}} - \sqrt{7 + \sqrt{13}},$$
 tada je $M + N = 0$. Dokazati.

235. Ako je
$$A=\sqrt{9-\sqrt{77}}$$
 i $R=\sqrt{7-\sqrt{33}}-\sqrt{5-\sqrt{21}},$ tada je $A-B=0.$ Dokazati.

236. Ako je
$$V=2\sqrt{4-\sqrt{15}},\ W=\sqrt{11+2\sqrt{10}}-\sqrt{7+2\sqrt{6}},$$
 tada je $V=W.$ Dokazati.

237. Ako je
$$A = \sqrt{13 + 4\sqrt{3}} - \sqrt{2(2 + \sqrt{3})}$$
 i

$$B=\sqrt{8+2\sqrt{15}}-\sqrt{6-2\sqrt{5}}-1,$$
tada je $A=B=\sqrt{3}.$ Dokazati.

238. Ako je

$$A = \sqrt{5 - \frac{2}{3} + \frac{4}{3}\sqrt{3}} - 2\sqrt{1 + \frac{1}{5} - 2\sqrt{\frac{1}{5}}},$$

$$B = 2\sqrt{\frac{19}{20} + \sqrt{\frac{3}{5}}} - \sqrt{\frac{5}{6} - \sqrt{\frac{2}{3}}} - \sqrt{\frac{7}{2} - \sqrt{6}},$$

tada je
$$A=B=\sqrt{\frac{1}{3}}+2\sqrt{\frac{1}{5}}.$$
 Dokazati.

Primenom Lagranžeovog identiteta ili na neki drugi način uprostiti izraze (239–246):

239. a)
$$\sqrt{a + \sqrt{a^2 - b^2}}$$
; b) $\sqrt{a + b - \sqrt{2ab + b^2}}$.

240. a)
$$\sqrt{a+b+2\sqrt{ab}}$$
; b) $\sqrt{2x-2\sqrt{x^2-y^2}}$.

241.
$$\sqrt{2a-2\sqrt{a^2-1}}-\sqrt{2a+1-2\sqrt{a^2+a}}$$
.

242. Ako je
$$A = \sqrt{a+b} - \sqrt{2a+1-2\sqrt{a^2+ab}}$$
 i

$$B = \sqrt{a+b^2+2b\sqrt{a}} + \sqrt{ab-2b\sqrt{ab-b^2}} - \sqrt{b(a-b)},$$

tada je $A = B = \sqrt{a}$. Dokazati.

243. Ako je
$$A=\sqrt{a+2+2\sqrt{a+1}}-\sqrt{a+2-2\sqrt{a+1}}\,$$
 i $B=\sqrt{a-x+2\sqrt{a-x-1}}-\sqrt{a-x-2\sqrt{a-x-1}},$ tada je $A=B=2.$ Dokazati.

244. Ako je
$$P=\sqrt{x(2y+1)+2x\sqrt{2y}}-\sqrt{x+1-2\sqrt{x}}$$
 i
$$Q=\sqrt{x^2+2xy+1+2\sqrt{2xy(x^2+1)}}-\sqrt{x^2+2-2\sqrt{x^2+1}}, \text{ tada je } P=Q. \text{ Dokazati.}$$

245. Dato je
$$V = \sqrt{x^2 + 2a\sqrt{x^2 - a^2}} + \sqrt{2x^2 - a^2 - 2x\sqrt{x^2 - a^2}}$$
 i $W = \sqrt{a^2 + x + 2a\sqrt{x}} + \sqrt{x^2 + x - 2x\sqrt{x}}$, dokazati da je $V = W = a + x$.

246. Ako je

$$S = \left(\sqrt{2a + 2\sqrt{a^2 - x^2}} + \sqrt{2a - 2\sqrt{a^2 - x^2}}\right)\sqrt{\frac{x}{a + x}} \quad i$$
$$T = \left(\sqrt{a + \sqrt{x}} - \sqrt{a - \sqrt{x}}\right)\sqrt{2a + 2\sqrt{a^2 - x}},$$

tada je $S = T = 2\sqrt{x}$, (x > 0). Dokazati.

247. Dokazati da je vrednost izraza

$$\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2}+\sqrt{3}} + \frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2}-\sqrt{3}}$$

iracionalan broj.

248. Razlomak $\frac{1}{(n+1)\cdot\sqrt{n}+n\sqrt{n+1}}$ predstaviti kao razliku dva redukovana razlomka. Primenom dobijene jednakosti izračunati sumu:

$$S = \frac{1}{2\sqrt{1} + 1\sqrt{2}} + \frac{1}{3\sqrt{2} + 2\sqrt{3}} + \dots + \frac{1}{100\sqrt{99} + 99\sqrt{100}}$$

249. Ako je
$$ax^3 = by^3 = cz^3$$
 i $x^{-1} + y^{-1} + z^{-1} = 1$, onda je
$$\sqrt[3]{ax^2 + by^2 + cz^2} = \sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c}.$$

Dokazati

250. Izračunati vrednost funkcije $f(x) = x^3 + 12x$, za

$$x = \sqrt[3]{4(\sqrt{5}+1)} - \sqrt[3]{4(\sqrt{5}-1)}.$$

251. Izračunati vrednost funkcije $y = x^3 + ax + b$, ako je

$$x = \sqrt[3]{-\frac{b}{2} + \sqrt{\frac{b^2}{4} + \frac{a^3}{27}}} + \sqrt[3]{-\frac{b}{2} - \sqrt{\frac{b^2}{4} + \frac{a^3}{27}}}.$$

252.* Dokazati da je

$$x = \sqrt[3]{\frac{A+\sqrt{B}}{A-\sqrt{B}}} + \sqrt[3]{\frac{A-\sqrt{B}}{A+\sqrt{B}}}$$

nula funkcije $f(x) = x^3 - 3x - \frac{2(A^2 + B)}{A^2 - B}$.

253. Data je funkcija $F(x) = \frac{a-b}{\sqrt{b}}x^2 - 2ax + a\sqrt{b}$. Dokazati da su $x' = \frac{\sqrt{ab}}{\sqrt{a} - \sqrt{b}}$ i $x'' = \frac{\sqrt{ab}}{\sqrt{a} + \sqrt{b}}$ nule funkcije (a > 0 i b > 0).

254. Dokazati da je:

a)
$$\left(\frac{3x + 2\sqrt{x}}{4 - 9x} + \frac{x\sqrt{x}}{2 + 3\sqrt{x}} - \frac{\sqrt{x}}{2 - 3\sqrt{x}}\right) \cdot \frac{2 + 3\sqrt{x}}{\sqrt{x^5}} = \frac{1}{x};$$

b)
$$\left(\frac{a\sqrt{a}}{2\sqrt{a}-1} - \frac{a}{2\sqrt{a}+1} - \frac{a}{4a-1}\right) \cdot \frac{2\sqrt{a}+1}{\sqrt{a^5}} = \frac{1}{a}$$
.

255. Dat je niz brojeva x_n definisan rekurzivnom formulom

$$x_n = \frac{\sqrt{3} + x_{n-1}}{1 - \sqrt{3} \cdot x_{n-1}}.$$

Dokazati da je ovaj niz periodičan ako je $x_1 = 1$.

Izračunati vrednosti izraza (256–260):

256.
$$y = \frac{1+2x}{1+\sqrt{1+2x}} + \frac{1-2x}{1-\sqrt{1-2x}}$$
, za $x = \frac{\sqrt{3}}{4}$.

257.
$$\frac{1-2x}{1+2x} \cdot \sqrt{\frac{1+3x}{1-3x}}$$
, za $x = \frac{\sqrt{3}}{6}$.

258.
$$\left(\frac{(x^2+a^2)^{-0.5}+(x^2-a^2)^{-0.5}}{(x^2+a^2)^{-0.5}-(x^2-a^2)^{-0.5}}\right)^{-2}$$
, za $x=a\left(\frac{m^2+n^2}{2mn}\right)^{0.5}$, $(a>0,\ n>m>0)$.

259.
$$((x-1)^{-0.5} + (x+1)^{-0.5}) : ((x-1)^{-0.5} - (x+1)^{-0.5}),$$
 za $x = (a^2 + b^2) : (2ab), a > 0$ i $b > 0$.

260. $(x + (x^2 - 1)^{0.5}) : (x - (x^2 - 1)^{0.5})$, za $x = 2^{-1}(a + a^{-1})$, gde je a realno i različito od nule.

261. Ako je
$$x = \frac{1}{2} \left(\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} \right)$$
, $a > 0$ i $b > 0$, onda je: $2a \cdot (1 + x^2)^{0.5} : (x + (1 + x^2)^{0.5}) = a + b$.

Dokazati.

Dokazati da su vrednosti sledećih izraza prirodni brojevi (262–274):

262.
$$((\sqrt{5}+\sqrt{3})^2+(\sqrt{5}-\sqrt{3})^2)\left(\left(\sqrt{\frac{5}{2}}+\sqrt{\frac{3}{2}}\right)^2-\sqrt{15}\right).$$

263.
$$\left(\sqrt{\frac{3}{2}} + \sqrt{\frac{2}{3}} - 1\right) \left(\sqrt{\frac{3}{2}} + \sqrt{\frac{2}{3}} + 1\right) - \frac{1}{6}$$
.

264.
$$(\sqrt{3} + \sqrt{2}) \left(\sqrt{\frac{3}{4} + \frac{4}{3}} - \sqrt{\frac{1}{2} + \frac{2}{3} + \frac{2}{9}} \right) + \frac{13}{6}.$$

265.
$$(3+\sqrt[4]{5})(3-\sqrt[4]{5})(9+\sqrt{5})$$
. **266.** $7(2+\sqrt{2})^2(3-2\sqrt{2})$.

267.
$$(2+\sqrt[4]{2})(4+\sqrt{2})(2-\sqrt[4]{2})$$
. **268.** $(7-4\sqrt{3})(2+\sqrt{3})^2$.

269.
$$\sqrt{3-2\sqrt{2}} \sqrt[4]{17+12\sqrt{2}}$$

270.
$$\sqrt{3+2\sqrt{2}} \cdot \sqrt{5+2\sqrt{6}} \cdot \sqrt{3-2\sqrt{2}} \cdot \sqrt{5-2\sqrt{6}}$$

271.
$$\sqrt[4]{9+4\sqrt{5}} \cdot \sqrt{\sqrt{5}-2}$$
. **272.** $\frac{1}{1+\frac{\sqrt{3}}{2}} + \frac{1}{1-\frac{\sqrt{3}}{2}}$.

273.
$$\frac{9}{(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})} + \sqrt{6}\left(\sqrt{\frac{2}{3}}+\sqrt{\frac{3}{2}}\right)$$
.

274.
$$\sqrt[6]{\frac{(3+\sqrt{5})^3}{8}}: \sqrt[8]{\frac{(3-\sqrt{5})^4}{16}}.$$

Upostiti izraze (275–280):

275.
$$\sqrt{\frac{1}{2} + \frac{1}{3} - \frac{1}{4}} \cdot \sqrt{\frac{2}{3} + \frac{3}{4} - \frac{5}{6}} \cdot \sqrt{3 + \sqrt{5}}$$
.

276.
$$(2+\sqrt{3})\sqrt{7-4\sqrt{3}}-\sqrt{2+\sqrt{2}}\sqrt[4]{6-4\sqrt{2}}$$
.

277.
$$(\sqrt{5} - \sqrt{3})\sqrt{4 + \sqrt{15}} + (1 - \sqrt{2})\sqrt[3]{7 + 5\sqrt{2}}$$
.

278.
$$\frac{1}{2} \left(\frac{\sqrt{3} - \sqrt{2} + 1}{\sqrt{3} + \sqrt{2} + 1} - \frac{\sqrt{3} + \sqrt{2} - 1}{\sqrt{3} - \sqrt{2} - 1} \right).$$

279.
$$\left(1 + \frac{\sqrt[3]{a^2} + \sqrt[3]{b^2} - \sqrt[3]{c^2}}{2\sqrt[3]{ab}}\right) : \frac{(\sqrt[3]{a} + \sqrt[3]{b})^2 - \sqrt[3]{c^2}}{4\sqrt[3]{a^2b^2}}.$$

280.
$$3\sqrt[6]{\sqrt[10]{7}} - 3\sqrt[5]{\sqrt[12]{7}} + 2\sqrt[12]{\sqrt[5]{7}} - \sqrt[10]{\sqrt[6]{7}}$$
.

281. Ako je
$$A = \sqrt[3]{5\sqrt{2} + 7} \cdot \sqrt[3]{5\sqrt{2} - 7} + \sqrt[4]{2(3 + \sqrt{5})} \cdot \sqrt[4]{2(3 - \sqrt{5})}$$

 $B = (3 + 2\sqrt{5})\sqrt{29 - 12\sqrt{5}} - (\sqrt{10} + \sqrt{8} - 3\sqrt{2})(\sqrt{2} + \sqrt{1,6} + 3\sqrt{0,4}),$ tada su A i B prirodni brojevi i jednaki. Dokazati.

282. Ako je
$$A = \sqrt[4]{\sqrt[3]{5}} \cdot \sqrt[3]{5\sqrt{5}} \cdot \sqrt{5\sqrt[3]{5}} - \sqrt{2\sqrt{20}}$$

$$B = (3\sqrt{\sqrt{5}} \cdot \sqrt[4]{\sqrt{5}} \cdot \sqrt[3]{5\sqrt{5}}) : \sqrt[4]{25\sqrt{5}}, \text{ tada je } A = B = 3\sqrt[4]{5}.$$

Dokazati.

Uprostiti izraze (283–292):

283.
$$5\sqrt[4]{\sqrt[6]{5}} - \sqrt[4]{\sqrt[3]{\sqrt{5}}} + 4\sqrt[5]{\sqrt[8]{5\sqrt[3]{25}}} - 4\sqrt{4\sqrt[12]{5}}$$
.

284.
$$\sqrt{16\sqrt[6]{a^5}} - 7\sqrt[3]{a\sqrt{\sqrt{a}}} + 4\sqrt[4]{16a\sqrt[3]{a^2}} - 5\sqrt[6]{a^2\sqrt{a}}$$
.

285.
$$\sqrt{\sqrt[9]{a^5}} \cdot \sqrt[3]{\sqrt[6]{a}} \cdot \sqrt[3]{\sqrt{\sqrt[3]{a^5}}} \cdot \sqrt[3]{\sqrt[3]{\sqrt{a^7}}}$$
.

286.
$$\sqrt[6]{a\sqrt[4]{a^3}} \cdot \sqrt[3]{a\sqrt[8]{a^3}} \cdot \sqrt[12]{a^2\sqrt{a}} \cdot \sqrt[4]{\sqrt[3]{\sqrt{a}}}$$
.

287.
$$\frac{a}{\sqrt{a^2+1}-a\sqrt{2}} + \frac{1}{\sqrt{a^2+1}-\sqrt{2}} + \frac{\sqrt{a^2+1}}{a+1}$$
.

288.
$$\sqrt[3]{\frac{a^2-1}{a}\sqrt{\frac{a^2+a}{a-1}}} \cdot \sqrt{\frac{1}{a+1}\sqrt[3]{\frac{a}{a-1}}}$$
.

289.
$$\left(a\sqrt{\frac{b}{a}} + b\sqrt{\frac{a}{b}}\right)^2 + (a-b)^2.$$

290.
$$((\sqrt{a} + \sqrt{b})^2 + (\sqrt{a} - \sqrt{b})^2) \left(\left(\sqrt{\frac{a}{2}} + \sqrt{\frac{b}{2}} \right)^2 - \sqrt{ab} \right).$$

291.
$$(\sqrt{a} + \sqrt{b})^2 - \sqrt{ab} \left(\sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}} \right).$$

292.
$$\sqrt{ab+1+2\sqrt{ab}}+\sqrt{ab+1-2\sqrt{ab}}$$
.

Dokazati da je (293–299):

293.
$$\frac{25\sqrt[4]{2} + 2\sqrt{5}}{\sqrt{250} + 5\sqrt[4]{8}} - \sqrt{\frac{\sqrt{2}}{5} + \frac{5}{\sqrt{2}}} + 2 = -1.$$

294.
$$\sqrt[3]{\frac{9-5\sqrt{3}}{9+5\sqrt{3}}} - \frac{\sqrt{3}-1}{\sqrt{3}+1} = 0.$$

295.
$$\frac{\sqrt[3]{a+\sqrt{2-a^2}}\cdot\sqrt[6]{1-a\sqrt{2-a^2}}}{\sqrt[3]{1-a^2}} = \sqrt[6]{2} \quad (|a|<1).$$

296.
$$\frac{(\sqrt[4]{a} - \sqrt[4]{b})^{-2} + (\sqrt[4]{a} + \sqrt[4]{b})^{-2}}{\sqrt{a} + \sqrt{b}} : \left(\frac{a - b}{\sqrt{a} + \sqrt{b}}\right)^{-2} = 2 \quad (a, b > 0,$$

 $a \neq b$).

297.
$$\frac{1+\sqrt{3}}{2\sqrt[3]{2}} - \frac{2+\sqrt{3}}{\sqrt[3]{20+12\sqrt{3}}} = 0.$$

298.
$$\frac{2 \cdot (2 - \sqrt{2})}{\sqrt{7 + 2\sqrt{10}} - \sqrt{7 - 2\sqrt{10}}} - \sqrt[4]{17 - 12\sqrt{2}} = 0.$$

299.
$$\frac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}} = \sqrt{3}+1.$$

Dokazati da je vrednost izraza iracionalan broj (300–304):

300.
$$A = \sqrt{(2+\sqrt{3})\cdot\sqrt{7-4\sqrt{3}}+(\sqrt{3}-\sqrt{2})\cdot\sqrt{5+2\sqrt{6}}}$$
.

301.*
$$A = \sqrt{\sqrt{\frac{3 - 2\sqrt{2}}{17 - 12\sqrt{2}}} - \sqrt{\frac{3 + 2\sqrt{2}}{17 + 12\sqrt{2}}}}$$
.

302.*
$$A = \frac{\sqrt{\sqrt[4]{8} + \sqrt{\sqrt{2} - 1}} - \sqrt{\sqrt[4]{8} - \sqrt{\sqrt{2} - 1}}}{\sqrt{\sqrt[4]{8} - \sqrt{\sqrt{2} + 1}}}.$$

303.*
$$A = \frac{\sqrt{\sqrt[4]{27} + \sqrt{\sqrt{3} - 1}} - \sqrt{\sqrt[4]{27} - \sqrt{\sqrt{3} - 1}}}{\sqrt{\sqrt[4]{27} - \sqrt{2\sqrt{3} + 1}}}.$$

304.*
$$A = \frac{\sqrt{\sqrt[4]{8} - \sqrt{\sqrt{2} + 1}}}{\sqrt{\sqrt[4]{8} + \sqrt{\sqrt{2} - 1}} - \sqrt{\sqrt[4]{8} - \sqrt{\sqrt{2} - 1}}}$$

Uprostiti izraz (305–307):

305.
$$\sqrt{\frac{3\sqrt{5}+5}{2\sqrt{5}}} + \sqrt{\frac{2\sqrt{3}+3}{2\sqrt{3}}} - \sqrt{\frac{3-\sqrt{5}}{2}} + \sqrt{1-\frac{\sqrt{3}}{2}}$$
.

306.
$$\sqrt{3-\sqrt{3}+\sqrt{2+2\sqrt{2}\cdot\sqrt{3+\sqrt{\sqrt{2}-2\sqrt{3}+\sqrt{18-8\sqrt{2}}}}}}$$

307.
$$\sqrt[4]{5\sqrt{5}} \cdot \sqrt{\sqrt{1 + \frac{\sqrt{5}}{4} + \frac{3 \cdot (\sqrt{5} - 1)}{8}} : \sqrt{1 - \frac{(\sqrt{5} - 1)^2}{16}}.$$

Racionalisati imenilac razlomka (308–321):

308. a)
$$\frac{2}{2+\sqrt{3}-\sqrt{5}}$$
; b) $\frac{\sqrt{30}}{\sqrt{5}-\sqrt{3}+\sqrt{2}}$.

309.
$$\frac{\sqrt{8}}{\sqrt{5+\sqrt{2}}+\sqrt{5-\sqrt{2}}}$$
. **310.** $\frac{3\sqrt{2}}{1+\sqrt{2}-2\sqrt{5}-\sqrt{10}}$.

311. Ako je
$$A = \frac{2 + \sqrt{6} - \sqrt{2}}{2 - \sqrt{6} + \sqrt{2}}$$
, $B = \frac{1}{\sqrt{3} - \sqrt{2}}$, tada je $A - B = 0$. Dokazati.

312. Ako je
$$A = \frac{2\sqrt{3} + \sqrt{21} - 3}{2 + \sqrt{3} - \sqrt{7}}$$
, $B = \frac{3}{\sqrt{7} - 2}$, tada je $A = B$. Dokazati.

313. Ako je
$$M=\frac{\sqrt{14}-\sqrt{10}-2}{\sqrt{2}}\,,\ N=\frac{2\sqrt{10}}{\sqrt{2}+\sqrt{5}+\sqrt{7}}\,,$$
 dokazati da je $M+N=0.$

je
$$M+N=0$$
.

314. Ako je $V=\frac{\sqrt{30}+2\sqrt{10}+2\sqrt{3}+7}{\sqrt{5}+\sqrt{2}}$, $W=\frac{3+4\sqrt{3}}{\sqrt{6}-\sqrt{5}+\sqrt{2}}$, tada je $V=W=\sqrt{6}+\sqrt{5}+\sqrt{2}$. Dokazati.

315.*
$$\frac{1}{\sqrt[3]{9} + \sqrt[3]{6} + \sqrt[3]{4}}$$
. **316.*** $\frac{8}{\sqrt{15} + \sqrt{5} - \sqrt{3} - 1}$.

317.*
$$\frac{6}{\sqrt{21} + \sqrt{7} + 2\sqrt{3} + 2}$$
. **318.*** $\frac{2}{\sqrt[6]{72} + \sqrt[3]{3} - \sqrt{2} - 1}$.

319.
$$\frac{7}{1-\sqrt[4]{2}+\sqrt{2}}$$
. **320.** $\frac{2\sqrt{2}+7\sqrt{3}+\sqrt{7}}{2\sqrt{2}+\sqrt{3}-\sqrt{7}}$.

321.
$$\frac{9\sqrt{2}}{1+\sqrt{2}-2\sqrt{5}-\sqrt{10}}.$$

322.* Ako je
$$\sqrt{x^2 + \sqrt[3]{x^4y^2}} + \sqrt{y^2 + \sqrt[3]{x^2y^4}} = a$$
 $(x, y > 0)$, tada je $\sqrt[3]{x^2} + \sqrt[3]{y^2} = \sqrt[3]{a^2}$. Dokazati.

323.* Ako je
$$\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3} = \dots = \frac{a_n}{b_n}$$
, tada je

$$\sqrt{(a_1 + a_2 + a_3 + \dots + a_n) \cdot (b_1 + b_2 + b_3 + \dots + b_n)}$$

$$= \sqrt{a_1 b_1} + \sqrt{a_2 b_2} + \sqrt{a_3 b_3} + \dots + \sqrt{a_n b_n}$$

Dokazati.

Uprostiti izraze (324–342):

324.
$$A = \left(\frac{\sqrt{1+n}}{\sqrt{1+n} - \sqrt{1-n}} + \frac{1-n}{\sqrt{1-n^2} + n - 1}\right) \cdot \left(\sqrt{\frac{1}{n^2} - 1} - \frac{1}{n}\right)$$
 $(0 < n < 1).$

$$\mathbf{325.*} \ A = \frac{\left(\sqrt{\frac{(1-n)\cdot\sqrt[3]{1+n}}{n}}\cdot\sqrt[3]{\frac{3n^2}{4-8n+4n^2}}\right)^{-1}}{\sqrt[3]{\left(\frac{3n\sqrt{n}}{2\sqrt{1-n^2}}\right)^{-1}}} \quad (0 < n < 1).$$

326.
$$A = \sqrt{\frac{(1+a)\cdot\sqrt[3]{1+a}}{3a}}\cdot\sqrt[3]{\frac{\sqrt{3}}{9+18a^{-1}+9a^{-2}}} \quad (a>0).$$

327.
$$A = (p^{0,5} + q^{0,5})^{-2}(p^{-1} + q^{-1}) + \frac{2}{(p^{0,5} + q^{0,5})^3} \cdot (p^{-0,5} + q^{-0,5}),$$
 $(p > 0, q > 0).$

328.
$$A = \left(\frac{(a + \sqrt[3]{a^2x}) : (x + \sqrt[3]{ax^2}) - 1}{\sqrt[3]{a} - \sqrt[3]{x}} - \frac{1}{\sqrt[3]{x}}\right)^6.$$

329.
$$A = x^3 \cdot \left(\frac{(\sqrt[4]{x} + \sqrt[4]{y})^2 + (\sqrt[4]{x} - \sqrt[4]{y})^2}{x + \sqrt{xy}} \right) \cdot \sqrt[3]{x\sqrt{x}} \quad (x, y > 0).$$

330.
$$A = \sqrt[3]{\frac{2x^2}{9 + 18x + 9x^2}} \cdot \sqrt{\frac{(1+x)\sqrt[3]{1-x}}{x}} \cdot \sqrt[3]{\frac{3\sqrt{1-x^2}}{2x\sqrt{x}}}.$$

331.*
$$A = \left(\frac{\sqrt[4]{x^3} - 8}{\sqrt[4]{x} - 2} + 2\sqrt[4]{x}\right)^{0.5} (4x - \sqrt{x^3})^{-1} \left(\frac{\sqrt[4]{x^3} + 8}{\sqrt[4]{x} + 2} - x^{0.5}\right).$$

332.
$$A = \frac{\sqrt{a} - \sqrt{x}}{\sqrt[4]{a} - \sqrt[4]{x}} - \left(\frac{a + \sqrt[4]{ax^3}}{\sqrt{a} + \sqrt[4]{ax}} - \sqrt[4]{ax}\right) : (\sqrt[4]{a} - \sqrt[4]{x}).$$

333.*
$$A = \sqrt[10]{\frac{4}{3}x(a+\sqrt{a^2-4x^4})} \cdot \sqrt[5]{\sqrt{3a+6x^2}-\sqrt{3a-6x^2}}$$
, ako je $a \ge 2x^2$ i $x \ge 0$.

334.*
$$A = \frac{\sqrt{6+2\cdot(\sqrt{6}+\sqrt{3}+\sqrt{2})} - \sqrt{6-2\cdot(\sqrt{6}-\sqrt{3}+\sqrt{2})}}{\sqrt{2}}$$

335.
$$A = \left(\sqrt[6]{5 + 2\sqrt{6}} + \sqrt[3]{\sqrt{3} + \sqrt{2}}\right) \cdot \sqrt[3]{\sqrt{2} - \sqrt{3}}$$

336.
$$A = \left(\sqrt[3]{1 + 2\sqrt{6}} - \sqrt[6]{25 + 4\sqrt{6}}\right) \cdot \sqrt[3]{2\sqrt{6} - 1}$$

337.
$$A = (\sqrt[3]{9 + 4\sqrt{5}} + \sqrt[3]{2 + \sqrt{5}}) \cdot \sqrt[3]{2 - \sqrt{5}}.$$

338.*
$$A = \frac{\sqrt{3} + \sqrt{11 + 6\sqrt{2}} - \sqrt{5 + 2\sqrt{6}}}{\sqrt{2} + \sqrt{6 + 2\sqrt{5}} - \sqrt{7 + 2\sqrt{10}}}$$

339.
$$A = 2\sqrt{3 + \sqrt{5 - \sqrt{13 + \sqrt{48}}}}$$
.

340.
$$A = \sqrt{13 + 30\sqrt{2 + \sqrt{9 + 4\sqrt{2}}}}$$

341.*
$$A = \left(6\sqrt{3 + 2\sqrt{2}} + \sqrt[3]{1 + \sqrt{2}}\right) \cdot \sqrt[3]{1 - \sqrt{2}}$$

342.
$$A = \sqrt{\sqrt{5} - \sqrt{3 - \sqrt{29 - 12\sqrt{5}}}}$$
.

343. Izračunati vrednost izraza

$$A = \frac{\sqrt{x - 2\sqrt{2}}}{\sqrt{x^2 - 4x\sqrt{2} + 8}} - \frac{\sqrt{x + 2\sqrt{2}}}{\sqrt{x^2 + 4x\sqrt{2} + 8}}$$

za x = 3.

Svesti na najjednostavniji oblik izraze (344–353):

344.
$$\frac{\sqrt{1-a} + \frac{1}{\sqrt{1+a}}}{\frac{1}{\sqrt{1-a^2}} + 1} + \frac{1-a}{\sqrt{1-a}}.$$
345.
$$\frac{\frac{1}{\sqrt{1-m}} + \sqrt{1+m}}{\frac{1}{\sqrt{1-m^2}} + 1}.$$
346.
$$\frac{\sqrt{1 + \frac{2am}{1+m^2}} + \sqrt{a - \frac{2am}{1+m^2}}}{\sqrt{1 + \frac{2am}{1+m^2}} - \sqrt{a - \frac{2am}{1+m^2}}}.$$
347.
$$\frac{\frac{a}{x} \left(\frac{1}{\sqrt{a}} + \frac{1}{\sqrt{x}}\right)}{\frac{1}{x} + \frac{1}{\sqrt{ax}}}.$$
348.
$$\frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} - \sqrt{b}} + \frac{\sqrt{a} - \sqrt{b}}{\sqrt{a} + \sqrt{b}}}{\sqrt{a} + \sqrt{b}}.$$
349.
$$\frac{\sqrt{1 + \frac{2\sqrt{a}}{a+1}} + \sqrt{1 - \frac{2\sqrt{a}}{a+1}}}{\sqrt{1 + \frac{2\sqrt{a}}{a+1}} - \sqrt{1 - \frac{2\sqrt{a}}{a+1}}}.$$

350.
$$\frac{\sqrt[3]{a-1}}{\sqrt[3]{\frac{a}{(a-1)^2}} - \sqrt[3]{\frac{a}{a-1} - \frac{a^2-a-1}{(a-1)^2}}}$$

351.
$$\frac{\sqrt[3]{(x-a)\sqrt[4]{(x^2-a^2)\sqrt{\frac{x+a}{x-a}}}}}{\sqrt[4]{(x^2-a^2)\sqrt[3]{\frac{x+a}{x-a}}} \cdot \sqrt[6]{\frac{x+a}{x-a}\sqrt[4]{\frac{x-a}{x+a}}}}$$

352.
$$\frac{\sqrt{3a}\left(\sqrt{\frac{a}{m}} + 2\sqrt{\frac{m}{a}}\right)}{\sqrt{\frac{a^2}{m} + 4(a+m)}}$$
. **353.** $\frac{\frac{a}{b} - \frac{b}{a}}{\frac{1}{\sqrt{b}} - \frac{1}{\sqrt{a}}}(a\sqrt{b} - b\sqrt{a})$.

354. Ako je

$$A = \sqrt{2x} \left(\sqrt{\frac{a^2 + x^2}{2ax} + 1} + \sqrt{\frac{a^2 + x^2}{2ax} - 1} \right),$$

$$B = \frac{x - a}{\sqrt{x + \frac{(x - a)^2}{4a}} + \sqrt{a - \frac{(x - a)^2}{4a}}} + \frac{x - a}{\sqrt{x + \frac{(x - a)^2}{4a}} - \sqrt{a - \frac{(x - a)^2}{4a}}},$$

tada je A - B = 0. Dokazati.

Uprostiti izraze (355–370):

355.
$$\frac{\frac{a}{\sqrt[4]{a}} - \frac{b}{\sqrt[4]{b}}}{\sqrt[4]{a} - \sqrt[4]{b}} \cdot \frac{\frac{a}{\sqrt[4]{a}} + \frac{b}{\sqrt[4]{b}}}{\sqrt[4]{a} + \sqrt[4]{b}}.$$
 356.
$$\frac{\sqrt[5]{5} + \sqrt[5]{5^2} + \dots + \sqrt[5]{5^n}}{\frac{1}{\sqrt[5]{5}} + \frac{1}{\sqrt[5]{5^2}} + \dots + \frac{1}{\sqrt[5]{5^n}}}.$$

357.
$$\frac{\frac{(\sqrt{x} + \sqrt{y})^3}{3\sqrt{xy}} - \sqrt{x} - \sqrt{y}}{\frac{(\sqrt{x} - \sqrt{y})^2}{\sqrt{xy}} + 1}.$$

358.
$$\frac{\sqrt{27} - \sqrt{8}}{\sqrt{3} + \sqrt{2} - \frac{\sqrt{6}}{\sqrt{3} + \sqrt{2}}} - \frac{\sqrt{27} + \sqrt{8}}{\sqrt{3} - \sqrt{2} + \frac{\sqrt{6}}{\sqrt{3} - \sqrt{2}}}.$$

359.
$$\frac{\sqrt[3]{5} + \sqrt[3]{3}}{\sqrt[3]{5} - \sqrt[3]{3}} - \frac{\sqrt[3]{5} - \sqrt[3]{3}}{\sqrt[3]{5} + \sqrt[3]{3}} - \frac{\sqrt[3]{5} + \sqrt[3]{3}}{\sqrt[3]{5} + \sqrt[3]{3}} - \frac{\sqrt[3]{5} + \sqrt[3]{3}}{\sqrt[3]{5} - \sqrt[3]{3}}.$$

360.
$$\frac{1}{1 - \sqrt[3]{a}} + \frac{1}{1 + \sqrt[3]{a}} + \frac{2}{1 + \sqrt[3]{a^2}} + \frac{4}{1 + \sqrt[3]{a^4}} + \frac{8}{1 + \sqrt[3]{a^8}} + \frac{16}{1 + \sqrt[3]{a^{16}}}$$

360.
$$\frac{1}{1 - \sqrt[3]{a}} + \frac{1}{1 + \sqrt[3]{a}} + \frac{1}{1 + \sqrt[3]{a^2}} + \frac{1}{1 + \sqrt[3]{a^4}} + \frac{1}{1 + \sqrt[3]{a^8}} + \frac{1}{1 + \sqrt[3]{a^8}}$$
361.
$$\frac{1}{\sqrt{b}(\sqrt{b}+1)} + \frac{1}{(\sqrt{b}+1)(\sqrt{b}+2)} + \frac{1}{(\sqrt{b}+2)(\sqrt{b}+3)}$$

$$+ \frac{1}{(\sqrt{b}+3)(\sqrt{b}+4)} + \frac{1}{(\sqrt{b}+4)(\sqrt{b}+5)} - \frac{5}{\sqrt{b}(\sqrt{b}+5)}.$$
362.
$$\frac{1}{\sqrt{y}(\sqrt{xyz} + \sqrt{x} + \sqrt{z})} - \frac{1}{\sqrt{x} + \frac{1}{\sqrt{y}}} : \frac{1}{\sqrt{x} + \frac{1}{\sqrt{y}}}.$$

362.
$$\frac{1}{\sqrt{y}(\sqrt{xyz} + \sqrt{x} + \sqrt{z})} - \frac{1}{\sqrt{x} + \frac{1}{\sqrt{y} + \frac{1}{\sqrt{z}}}} : \frac{1}{\sqrt{x} + \frac{1}{\sqrt{y}}}.$$

363.
$$\left(\frac{\sqrt[3]{x} + \sqrt[3]{y}}{\sqrt[3]{x} - \sqrt[3]{y}} + \frac{\sqrt[3]{x} - \sqrt[3]{y}}{\sqrt[3]{x} + \sqrt[3]{y}}\right)^2 - \left(\frac{\sqrt[3]{x} + \sqrt[3]{y}}{\sqrt[3]{x} - \sqrt[3]{y}} - \frac{\sqrt[3]{x} - \sqrt[3]{y}}{\sqrt[3]{x} + \sqrt[3]{y}}\right)^2.$$

364.
$$\frac{4}{\sqrt[4]{x} + \frac{1}{\sqrt[3]{y}} + \frac{1}{\sqrt[3]{z}}} : \frac{1}{\sqrt[3]{x} + \frac{1}{\sqrt[3]{y}}} - \frac{4}{\sqrt[3]{y}(\sqrt[3]{xyz} + \sqrt[3]{x} + \sqrt[3]{z})}.$$

365.
$$\frac{\sqrt[3]{\frac{x}{y}} + \sqrt[3]{\frac{y}{x}}}{\frac{1}{\sqrt[3]{x}} + \frac{1}{\sqrt[3]{y}}} + \frac{2}{\frac{1}{\sqrt[3]{x}} + \frac{1}{\sqrt[3]{y}}} - \frac{\frac{1}{\sqrt[3]{y}} - \frac{1}{\sqrt[3]{x}}}{\frac{1}{\sqrt[3]{xy}}}.$$

366.
$$\left(\frac{1}{\sqrt[4]{a}+1} - \frac{3}{\sqrt[4]{a^3}+1} + \frac{3}{\sqrt[4]{a^2} - \sqrt[4]{a}+1}\right) \left(\sqrt[4]{a} - \frac{2\sqrt[4]{a}-1}{\sqrt[4]{a}+1}\right).$$

367.
$$\frac{1+\sqrt[5]{4}+\frac{1}{1-\sqrt[5]{4}}}{1+\frac{1}{1-\sqrt[5]{16}}}.$$

368.
$$\frac{\frac{1}{\sqrt[3]{x}} - \frac{1}{\sqrt[3]{y}}}{\frac{1}{x} + \frac{1}{y}} : \frac{\sqrt[3]{x^2 y^2}}{(\sqrt[3]{x} + \sqrt[3]{y})^2 - 3\sqrt[3]{xy}} \cdot \frac{\sqrt[3]{xy}}{\sqrt[3]{x^2} - \sqrt[3]{y^2}}.$$

369.
$$\left(\frac{\sqrt[4]{y^{-1}} + \sqrt[4]{x^{-1}}}{\sqrt[4]{xy^{-1}} + \sqrt[4]{yx^{-1}}}\right)^{-1} + \left(\frac{\sqrt[4]{x^{-1}} + \sqrt[4]{y^{-1}}}{2}\right)^{-1} - \frac{\sqrt[4]{y^{-1}} - \sqrt[4]{x^{-1}}}{\sqrt[4]{(xy)^{-1}}}.$$

370.
$$\frac{\sqrt[3]{a^2} - 1}{\sqrt[3]{ab} + \sqrt[3]{b^2}} \cdot \left(\frac{\sqrt[3]{b}}{\sqrt[3]{b} - 1} - 1\right) \cdot \frac{\sqrt[3]{a} - \sqrt[3]{ab^3} - \sqrt[3]{b^4} + \sqrt[3]{b}}{1 - \sqrt[3]{a^2}}.$$

371. Dokazati da je vrednost izraza

$$\frac{1}{1-\sqrt{2}} + \frac{1}{1+\sqrt{2}} + \frac{2}{1+\sqrt{2^2}} + \frac{4}{1+\sqrt{2^4}} + \frac{8}{1+\sqrt{2^8}} + \frac{16}{1+\sqrt{2^{16}}},$$
racionalan broj.

Uprostiti izraze (372–377)

372.
$$\left(\frac{\sqrt{2} + \sqrt{3} + \sqrt{5}}{\sqrt{3} + \sqrt{2} - \sqrt{5}} + \frac{\sqrt{3} + \sqrt{2} - \sqrt{5}}{\sqrt{3} + \sqrt{2} + \sqrt{5}} \right)^{2}$$
$$- \left(\frac{\sqrt{3} + \sqrt{2} + \sqrt{5}}{\sqrt{3} + \sqrt{2} - \sqrt{5}} - \frac{\sqrt{3} + \sqrt{2} - \sqrt{5}}{\sqrt{3} + \sqrt{2} + \sqrt{5}} \right)^{2}.$$

373.
$$\left(\frac{1}{\sqrt{5} + \sqrt{3} + 1} - \frac{3}{(\sqrt{5} + \sqrt{3})^3 + 1} + \frac{3}{(\sqrt{5} + \sqrt{3})^2 - \sqrt{5} - \sqrt{3} + 1} \right) \cdot \left(\sqrt{5} + \sqrt{3} - \frac{2(\sqrt{5} + \sqrt{3}) - 1}{\sqrt{5} + \sqrt{3} + 1} \right).$$

374.
$$\frac{\sqrt[4]{4} + \sqrt[4]{3} + 1}{\sqrt[4]{4} + \sqrt[4]{3} + 2} + \frac{6(\sqrt[4]{4} + \sqrt[4]{3})}{(\sqrt[4]{4} + \sqrt[4]{3})^2 - 1} - \frac{2(\sqrt[4]{4} + \sqrt[4]{3}) - 1}{\sqrt[4]{4} + \sqrt[4]{3} - 2}.$$

375.
$$\left(\frac{3}{\sqrt[3]{a} + \sqrt[3]{b} - 1} - \frac{3(\sqrt[3]{a} + \sqrt[3]{b}) + 3(\sqrt[3]{a} + \sqrt[3]{b})^2 + 3}{(\sqrt[3]{a} + \sqrt[3]{b})^2 - 1} : \frac{(\sqrt[3]{a} + \sqrt[3]{b})^4 - \sqrt[3]{a} - \sqrt[3]{b}}{(\sqrt[3]{a} + \sqrt[3]{b})^3 + 1} \right) \cdot \frac{\sqrt[3]{a} + \sqrt[3]{b} - (\sqrt[3]{a} + \sqrt[3]{b})^2}{3} .$$

376.
$$\frac{1}{\left(\sqrt[3]{5}+\sqrt[3]{4}-1\right)^2} + \frac{\left(\sqrt[3]{5}+\sqrt[3]{4}\right)^2 + \sqrt[3]{5}+\sqrt[3]{4}+1}{\left(\sqrt[3]{5}+\sqrt[3]{4}\right)^3-1}.$$

377.
$$\frac{\frac{2\sqrt{15}}{\sqrt{5}+\sqrt{3}}-\sqrt{5}}{\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{5}-2\sqrt{3}}}+\frac{\frac{2\sqrt{15}}{\sqrt{5}+\sqrt{3}}-\sqrt{3}}{\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{3}-2\sqrt{5}}}.$$

1.3. Kompleksni brojevi i osnovne operacije sa njima

Definicija 1. Skup svih kompleksnih brojeva, u oznaci \mathbb{C} , jeste skup uređenih parova z=(x,y) realnih brojeva za koje važe sledeće aksiome:

- 1) Aksioma sabiranja: $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2).$
- 2) Aksioma množenja: $(x_1, y_1) \cdot (x_2, y_2) = (x_1x_2 y_1y_2, x_1y_2 + x_2y_1).$

Definicija 2. Kompleksan broj (0,0) naziva se kompleksan nula, a broj (1,0) kompleksan jedinica.

Definicija 3. Kompleksan broj (0,1) naziva se imaginarna jedinica i označava se sa i.

Stav 1. Svaki kompleksan broj (x, y) može se predstaviti na jedinstveni način u obliku x + iy, koji se naziva algebarski oblik kompleksnog broja (x, y).

Definicija 4. Neka je dat broj $z=x+iy\ (x,y\in\mathbb{R})$. Broj $\bar{z}=x-iy$ konjugovan je broju z.

Definicija 5. Modul ili norma kompleksnog broja z = x + iy je realan nenegativan broj $\sqrt{x^2 + y^2}$ i označava se sa |z|. (Često se |z| označava sa r ili ρ , tj. $|z| = r = \rho = \sqrt{x^2 + y^2}$.)

378. Izračunati:

a)
$$\sqrt{-36} - \sqrt{-16} - \sqrt{64} + \sqrt{-49}$$

b)
$$\sqrt{-18} - \sqrt{-50} + \sqrt{-72} - \sqrt{-98}$$
;

c)
$$\sqrt{-a^2} - \sqrt{-a^2 + 2ab - b^2} + \sqrt{-b^2}$$
, $(a > b > 0)$.

Izračunati, tj. svesti na oblik x + iy (379–383):

379. a)
$$(3+2i)+(5+8i)$$
; b) $(7+2i)-(4+3i)$; c) $(8+4i)+(7-2i)+(-6+i)$; d) $(7+3i)-(2+8i)+(9-12i)$.

380. a)
$$(-5+2i) \cdot (3+2i)$$
; b) $(6+2i)(6-2i)$;

c)
$$(3+i) \cdot (2+3i) - (1-i)^2$$
; d) $(5+i) \cdot (1-2i) + (5+3i)^2$.

381. a)
$$\frac{3+2i}{1+i}$$
; b) $\frac{2+i}{2-i}$; c) $\frac{2+3i}{2-3i}$; d) $\frac{5-2i}{1-i}$.

382. a)
$$\frac{2+i}{2-i} + \frac{2-i}{2+i}$$
; b) $\frac{1+3i}{(-1-i)^2} + \frac{(-4+i)(-4-i)}{1+i}$;

c)
$$\frac{1-3i}{1+i} - \frac{i}{2+i}$$
; d) $\frac{(1+i)\cdot(3+2i)}{2-i}$.

383. a)
$$i^2$$
, i^3 , i^4 , i^5 , i^6 , i^7 , i^8 , i^{60} ; b) $\frac{1+i}{1-i} + \frac{1-i}{1+i} + i^{24} + i^{33} + i^{49}$.

384. Odrediti module brojeva:

a)
$$3+4i$$
; b) $4-3i$; c) $5+12i$; d) $8+15i$; e) $4+i$; f) $7-2i$.

385. Dat je kompleksan broj z:

a)
$$z = \frac{3+i}{(2-i)^2}$$
; b) $z = \frac{3-2i}{2+i} + \frac{2-i}{3+i}$. Odrediti Re (z) i Im (z) .

386. Data je funkcija formulom:

$$f(z) = z^2 - 4iz - 7 - 4i.$$

Odrediti f(2+3i) i f(-2+i).

387. Ako je
$$f(z) = 2 + z + 3z^2$$
, izračunati $f(z)$ i $f(\bar{z})$ za $z = 3 + 2i$.

388. Izračunati vrednost kompleksnog izraza:

a)
$$\frac{z-\bar{z}}{1+z\cdot\bar{z}}$$
 za $z=1+i;$ b) $\frac{z+\bar{z}}{2z+3}$ za $z=-\frac{1}{2}+\frac{1}{2}i.$

389. Rešiti po z jednačinu (z = x + iy): a) (2 + i)z = 5 + 4i;

b)
$$(2+i)z + 2z - 3 = 4 + 6i$$
;

c)
$$2z(3-5i)+z-1=-30-65i$$
;

d)
$$(z+i) \cdot (1+2i) + (1+zi) \cdot (3-4i) = 1+7i$$
.

390. Rešiti po z jednačinu (z = x + iy):

a)
$$z + 2\bar{z} = 6 - i$$
; b) $\bar{z} + 4z = 20 + 18i$.

391.* Dat je kompleksan broj $z_1 = 2 - 3i$. Odrediti kompleksan broj z = x + iy koji zadovoljava konjunkciju $\operatorname{Re}(z \cdot z_1) = 18 \wedge \operatorname{Im}\left(\frac{\bar{z}}{z_1}\right) = \frac{1}{13}$.

392.* Dat je kompleksan broj $z_1 = 2 + i$. Odrediti kompleksan broj z = x + iy koji zadovoljava konjunkciju:

a) Re
$$\left(\frac{z}{z_1}\right) = -\frac{3}{5} \wedge \operatorname{Im}\left(\bar{z} \cdot z_1\right) = 1;$$

b) Re
$$(\bar{z} \cdot z_1) = 1 \wedge \operatorname{Im} \left(\frac{z}{z_1}\right) = -\frac{3}{5}$$
.

393. Odrediti realne brojeve x i y iz jednačina:

a)
$$3x + xi - 2y = 12 - iy - i$$
; b) $5x - 3yi + 2i = 6 - ix - y$;

c)
$$(x+iy) \cdot (3-7i) = 2+4i$$
; d) $(x+iy) \cdot (2+i) = 1+3i$.

394. Rastaviti na kompleksne činioce sledeće binome:

a)
$$x^2 + 1$$
; b) $x^2 + 81$; c) $4x^2 + 49$; d) $a^2 + b^2$; e) $a + b$.

395.* Ako je
$$z = \frac{-1 \pm i\sqrt{3}}{2}$$
, dokazati da je $z^2 + z + 1 = 0$ i $z^3 = 1$.

396.* Dokazati:

a)
$$\left(\frac{-1+\sqrt{3}}{2}\right)^3 + \left(\frac{-1-i\sqrt{3}}{2}\right)^3 = 2;$$

b)
$$\left(\frac{-1+i\sqrt{3}}{2}\right)^4 + \left(\frac{-1-i\sqrt{3}}{2}\right)^4 = -1;$$

c)
$$\left(\frac{1+i\sqrt{7}}{2}\right)^4 + \left(\frac{1-i\sqrt{7}}{2}\right)^4 = 1.$$

d)
$$\sqrt{1+i\sqrt{3}} + \sqrt{1-i\sqrt{3}} = \sqrt{6}$$
.

397. Dokazati da je
$$z = (1+i)^4 - (1-i)^4$$
 realan broj.

398. Dokazati da je
$$z = \frac{(1+i)^6 - (1-i)^6}{(1+i)^6 \cdot (1-i)^6}$$
 imaginaran broj.

399. Dokazati da je:

a) $(1+i)^{4k}$ realan broj ako je k prirodan broj;

b) $(1+i)^{4k+2}$ imaginaran broj ako je k prirodan broj.

400. Odrediti realni i imaginarni deo kompleksnog broja

a)
$$z = \left(\frac{1+i}{1-i}\right)^n$$
; b) $z = \frac{(1+i)^n}{(1-i)^{n-2}}$, ako je *n* prirodan broj.

401. Ako je z = x + iy i w = a + bi, dokazati da je:

a)
$$|z \cdot w| = |z| \cdot |w|$$
; b) $\left| \frac{z}{w} \right| = \frac{|z|}{|w|}$.

402. Izračunati
$$\left(\frac{3}{1+i} + \frac{1+i}{2i}\right)^{16}$$
.

403.* Dokazati da je
$$(\sqrt{2}+i)^6+(\sqrt{2}-i)^6=-46$$
.

404.* Ako je
$$z=2+11i$$
, onda je $\sqrt[3]{z}+\sqrt[3]{\bar{z}}=4$. Dokazati.

405. Odrediti kompleksan broj z = x + iy koji zadovoljava konjunkciju:

a)
$$\left| \frac{z+2}{1-\bar{z}} \right| = 1 \wedge \operatorname{Re}\left(\frac{z}{2+3i}\right) = \frac{1}{13};$$
 b) $\left| \frac{z-3}{2-\bar{z}} \right| = 1 \wedge \operatorname{Re}\left(\frac{z}{2+i}\right) = 2.$

Rešiti po z jednačinu (z = x + iy) (406–411):

406. a)
$$|z| + z = 2 + i$$
; b) $|z| - z = 1 + 2i$.

407.
$$z + |z + 1| + i = 0$$
.

408.
$$|z|^2 - 2iz + 2i = 0$$
. **409.** $z^2 = 1 + 2\sqrt{ai} - a$ $(a > 0)$.

410.
$$z^2 = 1 - ab - 2\sqrt{ab} i$$
, $(a > 0, b > 0)$.

411. a)
$$z^2 = 3 + 4i$$
; b) $z^2 = 1 - 2i\sqrt{2}$; c) $z^2 = -1 + 2i\sqrt{6}$.

412.* Odrediti kompleksan broj z ako je

$$|z - 2i| = |z| \wedge |z - i| = |z - 1|.$$

413.* Odrediti realne brojeve a i b tako da je kompleksni brojx=a+bi koren jednačine $x^2-3x+3+i=0$.

414.* Ako je $z_1 = 3 + 3i$, $z_2 = 5 - i$ i $z_3 = 3 - 4i$, dokazati da je

$$\left| \frac{z_1 - \bar{z}_2 + |z_3|}{z_3} \right| = \frac{\sqrt{13}}{4}.$$

415.* Dokazati
$$\left(\frac{-1+i\sqrt{3}}{2}\right)^9 + \left(\frac{-1-i\sqrt{3}}{2}\right)^9 = 2.$$

II GLAVA

2. KVADRATNA JEDNAČINA I KVADRATNA FUNKCIJA

2.1. Kvadratna jednačina

Definicija 1. Jednačina oblika

(1)
$$ax^2 + bx + c = 0, \quad (a \neq 0)$$

naziva se kvadratna jednačina, gde su a,b,c realni brojevi a x nepoznata. Ako je c=0, jednačina (1) svodi se na oblik (nepotpuna kvadratna jednačina)

$$ax^2 + bx = 0.$$

Ako je b = 0, onda se jednačina (1) svodi na oblik

$$ax^2 + c = 0$$

Rešenja kvadratne jednačine (1) x_1 i x_2 data su formulom

(4)
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Definicija 2. Izraz $D = b^2 - 4ac$ naziva se diskriminantom kvadratne jednačine (1). Priroda rešenja kvadratne jednačine (1) zavisi od diskriminante D, i to:

 1° ako je D > 0, rešenja x_1 i x_2 su realna i različita;

 2° ako je D=0,rešenja x_1 i x_2 su realna i jednaka;

 3° ako je D<0,rešenja x_1 i x_2 su konjugovano kompleksna.

Ako kvadratna jednačina (1) ima oblik $ax^2 + 2kx + c = 0$, (b = 2k), onda su rešenja

(5)
$$x_{1,2} = \frac{-k \pm \sqrt{k^2 - ac}}{2}.$$

Ako kvadratna jednačina (1) ima oblik $x^2 + 2kx + c = 0$, rešenja su

(6)
$$x_{1,2} = -k \pm \sqrt{k^2 - c}.$$

416. Rešiti nepotpunu kvadratnu jednačinu

a)
$$4x^2 - 9 = 0$$
; b) $4x^2 - 2\frac{7}{9} = 0$; c) $1\frac{2}{3} - \frac{5}{36}x^2 = 1\frac{2}{5}$;

d)
$$0.04x^2 + 0.7225 = 0$$
; e) $5x^2 + 180 = 0$; f) $0.1x^2 = 14.4$.

417. Rešiti jednačine:

a)
$$3x^2 - 5x = 0$$
; b) $\frac{2}{3}x^2 + \frac{4}{5}x = 0$; c) $2x^2 - \frac{1}{3}x = 0$;

d)
$$\frac{3}{4}x^2 - 1\frac{2}{3}x = \frac{1}{3}x^2 + x$$
; e) $(x-2)^2 + (2x+3)^2 = 13 - 4x$;

f)
$$(2x-15)(2x-7)-(x-36)(x-8)+36=0$$
.

418. Rešiti po x jednačinu (a, b, m, n) parametri):

a)
$$a^2x^2 + bx = b^2x^2 + ax$$
; b) $mx^2 - m^2x = nx^2 - n^2x$;

c)
$$(y-m)^2 + (y+n)^2 = m^2 + n^2$$
; d) $(x-a)^2 - 2x(x-a) + a^2$;

e)
$$m^2(z^2 - 25) = n^2(z^2 - 25)$$
; f) $(x+a) : (x-b) = (b+x) : (a-x)$;

g)
$$(a-x)(b+x) + (1-ax)(1+bx) = ab(1-x^2)$$
.

419. Odrediti skup rešenja jednačine

a)
$$\frac{x+4}{x-4} + \frac{x-4}{x+4} = 3\frac{1}{3}$$
; b) $\frac{34}{4x^2-1} + \frac{2x+1}{1-2x} = \frac{2x-1}{2x+1}$;

c)
$$\frac{5-x}{x+5} + \frac{5+x}{5-x} = \frac{100}{25-x^2}$$
; d) $\frac{x+2}{x-2} + \frac{x-2}{x+2} = 2\frac{1}{6}$.

420. Odrediti skup rešenja jednačina

a)
$$\frac{3x^2 - 1}{2} + \frac{2x + 1}{3} = \frac{x^2 - 2}{4} + \frac{1}{3}$$
; b) $\frac{(2x + 3)^2}{3} - \frac{3x + 2}{5} = 2\frac{1}{5}$;

c)
$$\frac{x-1}{3} + \frac{1}{2}x^2 = \frac{3(x-1)}{8} - \frac{x+11}{24}$$
;

d)
$$\frac{1}{x+1} + \frac{1}{x+2} + \frac{1}{x-1} + \frac{1}{x-2} = 0;$$

d)
$$\frac{3}{x+1} + \frac{1}{x+2} + \frac{8}{x-1} + \frac{24}{x-2} = 0;$$

e) $\frac{2x-1}{x^2+2x-3} - \frac{3x+1}{(x-1)(x-5)} = \frac{x-20}{x^2-2x-15}.$

421. Rešiti po x jednačinu (a, b parametri):

a)
$$\frac{2a+b+y}{y+2a-b} = \frac{y-2a+b}{2a+b-y}$$
; b) $\frac{b+x}{a-x} - \frac{b-x}{a+x} = \frac{(a^2-b^2)x^2}{a^2-x^2}$;

c)
$$\frac{x^2 - a^2}{b^2} + \frac{x^2 - b^2}{a^2} + \frac{x^2 + a^2 + b^2}{ab} = 0$$

c)
$$\frac{x^2 - a^2}{b^2} + \frac{x^2 - b^2}{a^2} + \frac{x^2 + a^2 + b^2}{ab} = 0;$$

d)
$$\frac{x^2 - a^2}{b^2} - \frac{2a^2 + 2b^2}{ab} = \frac{b^2 - x^2}{a^2} + 2.$$

422. Koristeći ekvivalenciju $AB = 0 \iff A = 0 \lor B = 0$, odrediti skup rešenja jednačine:

a)
$$(1-x)(4\sqrt{2}-2x) = 0$$
; b) $(x-2)^2 - 9 = 0$;

c)
$$(4x-12)(x\sqrt{2}-1)=0$$
; d) $(x+1)^2-25=0$;

e)
$$(3x+4)^2 + 25 = 0$$
; f) $(x-5)^2 + 5 = 0$.

423. Koristeći formulu $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ za rešenja kvadratne jednačine $ax^2 + bx + c = 0$, rešiti jedna

a)
$$x^2 - 5x + 6 = 0$$
; b) $x^2 - 3x - 28 = 0$; c) $2x^2 - 5x - 25 = 0$;

d)
$$x^2 - 0,11x + 0,001 = 0$$
; e) $4x^2 - 17x + 4 = 0$; f) $x^2 - 9\frac{1}{9}x + 1 = 0$.

jednačine $ax^2 + bx + c = 0$, rešiti jednačinu:

a)
$$x^2 + 12x - 13 = 0$$
; b) $x^2 - 6x + 58 = 0$;

c)
$$9y^2 - 36y + 37 = 0$$
; d) $z^2 - 8z + 41 = 0$;

e)
$$0, 2x^2 - 1, 34x - 0, 42 = 0$$
; f) $x^2 - 24x + 108 = 0$.

425. a)
$$x^2 - 9x + 18 = 0$$
; b) $5x^2 + 17x + 6 = 0$.

426. a)
$$6x^2 - 5x + 1 = 0$$
; b) $6x^2 - 7x - 20 = 0$.

427. a)
$$5x^2 - 14x + 8 = 0$$
; b) $8x^2 + 10x - 3 = 0$.

428. a)
$$x^2 - 30x + 221 = 0$$
: b) $x^2 + 14x - 207 = 0$.

429. a)
$$x^2 - 12x + 31 = 0$$
; b) $x^2 - 6\sqrt{2}x + 6 = 0$.

430. a)
$$x^2 - 4\sqrt{5}x + 11 = 0$$
; b) $4x^2 - (4\sqrt{3} - 1)x - \sqrt{3} = 0$.

431. Rešiti po x jednačine:

a)
$$x^2 - (3 + 2\sqrt{5})x + 7 + 3\sqrt{5} = 0$$
; b) $x^2 - (3 - 2\sqrt{2})x + 4 - 3\sqrt{2} = 0$;

c)
$$(1+\sqrt{2})x^2-2(1-\sqrt{2})x-3\sqrt{2}+1=0$$
.

432. Rešiti po x jednačine (a, b realni brojevi):

a)
$$x^2 + 2bx - a^2 + 8ab - 15b^2 = 0$$
; b) $x^2 - 3ax + 2a^2 + a - 1 = 0$;

c)
$$x^2 + a^n x = a^{3n} x + a^{4n}$$
; d) $(a^2 - b^2)x^2 - (a^2 + b^2)x + ab = 0$.

433. a)
$$25x^2 - 30mx + 9m^2 - 4 = 0$$
; b) $x^2 - 4ax + 4a^2 - b^2 = 0$.

434. a)
$$x^2 - b^2 = 2a(b-x)$$
; b) $x^2 - 4mx + 4m^2 - 1 = 0$.

435. a)
$$m(n+1)x^2 + x - m(m-1) = 0$$
;

b)
$$(a^2 - m^2)x^2 - 2(a^2 + m^2)x + a^2 - m^2 = 0.$$

436. a)
$$(2x-a)^2 = 2(x+1)-a$$
; b) $x(a+b)^2(x-1)+ab=0$.

437.
$$x^2 + ab(a^2 + 2ab + b^2) = a^2x + b^2x + 2abx$$
.

438. Jednačine $amx^2-(a^2-m^2)x-am=0,\ am(x^2+1)=a^2x+m^2x$ imaju dva jednaka korena a druga dva suprotna. Dokazati.

439. U jednačinama $x^2 - 5mx + 4m^2 = 0$ i $x^2 + 3mx - 4m^2 = 0$, prva rešenja su jednaka a druga suprotna. Dokazati

440. Date su jednačine $x^2 - 2ax + a^2 - b^2 = 0$ i $(a^2 - b^2)x^2 - 2ax + 1 = 0$. Dokazati da su rešenja druge jednačine recipročne vrednosti rešenja prve.

441. Jednačine $x^2-4amx+(4m^2a^2-b^2)=0$ i $x^2-2bx-(4m^2a^2-b^2)=0$, imaju dva jednaka korena a druga dva suprotna. Dokazati.

442. Jednačine $\frac{x-4a}{a}-\frac{x-a}{x-4a}=1$ i $x^2+4ax-21a^2$ imaju dva jednaka rešenja a druga dva suprotna. Dokazati

Jednačine u zadacima (443–456) transformisati u ekvivalentne kvadratne jednačine i zatim odrediti skup njihovih rešenja:

443. a)
$$(2x-3)^2 + (2x-5)^2 = 4(x-3)^2 + 30$$
;

b)
$$(z-3)^2 + (z-4)^2 = (z-5)^2 + 5$$
.

444.
$$(x-1)(x-2) + (x-2)(x-3) + (x-3)(x-1) = 0.$$

445.
$$(x+1)(x+2)(x+3) - (x+4)(x+3)(x+2) = x-5$$
.

446. a)
$$\frac{2}{3}x^2 - 1\frac{1}{2}x - 1\frac{1}{4} = 1\frac{1}{3}x - 3\frac{3}{4}$$
; b) $\frac{y+1}{3} + \frac{3(y-1)}{4} = (y-3)^2 + 1$.
447. $\frac{2}{3}y^2 - 2\frac{2}{9}y - 1\frac{1}{2}y + 5 = \frac{2}{9}y^2 - \frac{17}{18}y + 1$.
448. a) $\frac{2x+1}{x+3} - \frac{x-1}{x^2-9} = \frac{x+3}{3-x} - \frac{4+x}{3+x}$; b) $\frac{5x}{2x^2-x-1} - \frac{5}{2x+1} = \frac{4x-5}{x^2-1}$.

449. a)
$$\frac{2x}{x-9} - \frac{x^2+25}{x^2-81} = \frac{5}{x+9} - \frac{5}{x-9}$$
;

b)
$$\frac{2x+1}{x^2+x-6} - \frac{x-1}{x^2-5x+6} = \frac{6}{x^2-9}$$
.

450.
$$\frac{x(x+5)}{x^2-8x+12} + \frac{x+1}{x+7} = \frac{2x-2}{x+7} + \frac{12(x-1)}{x^2-8x+12}$$

451.
$$\frac{2x-5}{x-11} + \frac{7-3x}{(x-6)^2+1} = \frac{x-4}{x-11} + \frac{(x-3)^2}{(x-6)^2+1}$$
.

452.
$$\frac{x(x+5)}{x^2 - 8x + 29} - \frac{x}{x+5} = \frac{4}{x+5} - \frac{3x+16}{x^2 - 8x + 29}$$
.

453.
$$\frac{1}{x^2 - 3x - 10} - \frac{1}{x^2 + 7x + 10} = \frac{1}{x^2 - 4} + \frac{1}{x^2 - 7x + 10}$$

454.
$$\frac{x+1}{x^2-3x} + \frac{x}{2x^2-18} - \frac{2x-3}{x^2+3x} = \frac{18}{10x-30}$$
.

455. a)
$$|x-1| + x^2 - 3x + 2 = 0$$
; b) $x^2 - 3|x| + 2 = 0$.

c)
$$x^2 - 8|x| + 15 = 0$$
; d) $x^2 + 2x - 3|x + 1| + 3 = 0$.

456. a)
$$|x-1| \cdot |x+2| = 4$$
; b) $|x^2 - 3|x| + 1| = 1$;

c)
$$|x^2 - 8x + 12| = x^2 - 8x + 12$$
; d) $2x|x - 3| + |x + 5| = 0$;

e)
$$x^2 + |x+3| + |x-3| = 4,5|x| + 6.$$

Jednačine u zadacima (457–467) transformisati u ekvivalentne kvadratne jednačine i zatim odrediti njihov skup rešenja (a, b, m, n realni brojevi):

457.
$$\frac{a}{a-x} + \frac{b}{b-x} = \frac{(a+b)^2}{ab}$$
. **458.** $\frac{x^2 + ab^2}{ax} = 1 + \frac{b^2 + c^3}{a} - \frac{c^3}{x}$.

459.
$$\frac{x}{2c^2} - \frac{1}{2x(4a+2b+c^2)} = \frac{2a+b}{c^2(4a+2b+c^2)}$$

460.
$$\frac{a-x}{b-x} - \frac{ab}{a^2+b^2} = \frac{a^2+b^2}{ab} - \frac{b-x}{a-x}$$

461.
$$\frac{a+m}{2(a+x)} - \frac{a+2m}{a+b+x} = \frac{b-m}{a+b+x} - \frac{b+m}{2(b+x)}$$

462.
$$\frac{x\left(x+\frac{b}{am}\right)}{\frac{a}{b}} = \frac{\frac{1}{a}\left(1-\frac{2b}{a}\right)}{\frac{m^2}{b}} - \frac{x-\frac{2}{m}}{\frac{m}{3}}.$$

463. a)
$$\frac{m^2}{m-x} + \frac{x^2}{x-m} = 1 + nx$$
; b) $\frac{1}{x-m} + \frac{1}{x-n} = \frac{1}{m} + \frac{1}{n}$.

464. a)
$$\frac{x-n}{x-m} + \frac{x-m}{x-n} = \frac{10}{3}$$
; b) $\frac{x+m}{x-n} - \frac{x-n}{x+m} = 1\frac{1}{2}$.

465. a)
$$\frac{a+4b}{x+2b} - \frac{a-4b}{x-2b} = 4\frac{b}{a}$$
; b) $\frac{a+6b}{x+3b} - \frac{a-6b}{x-3b} = 6\frac{b}{a}$.

466. a)
$$\frac{a-x^2}{(a-x)^2} - \frac{1}{a} = \frac{a-1}{a^3 - ax(2a-x)};$$

b)
$$\frac{1}{2n+nx} - \frac{1}{2x-x^2} = \frac{2(n+3)}{x^3-4x}$$

467. a)
$$\frac{a}{nx-x} - \frac{a-1}{x^2 - 2nx^2 + n^2x^2} = 1;$$

b)
$$\frac{\left(\frac{a-x}{x}\right)^2 - \left(\frac{a}{a+b}\right)^2}{x^2 - 2ax + a^2} = \frac{5}{9x^2}.$$

468.* Data je jednačina $2x^2 - (a+b)x + \sqrt{ab}(a+b-2x) = 0$, gde su a i b realni brojevi. Dokazati da je jedno rešenje date jednačine aritmetička, a drugo geometrijska sredina brojeva a i b.

469.* Data je jednačina

$$2(a+b)x^{2} - (a+b)^{2}x - 2ab(2x - a - b) = 0,$$

gde su a i b realni brojevi. Dokazati da je jedno rešenje date jednačine aritmetička, a drugo harmonijska sredina brojeva a i b.

470.* Ako je
$$f(x)=x^2(x+1)\left(\frac{2}{x+1}-\frac{1}{x^2}-\frac{1}{2x^2+2x}+\frac{1}{x^3+x^2}\right)$$
, rešiti jednačinu $f(x)=x-\frac{1}{2}$.

471. Ako je
$$f(x) = \frac{x^2 - 10x + 9}{(x-1)^2 - (1-x)(3-2x)}$$
, rešiti jednačinu $f(x) = 3$.

472. Ako je
$$f(x) = \begin{cases} x+2, & x>2\\ 2x-3, & x<2 \end{cases}$$
 rešiti jednačinu $(f(x))^2 = 4x+1$.

473. U sledećim jednačinama odrediti parametar m tako da rešenja po x budu jednaka:

a)
$$4x^2 - 2(m+1)x + m^2 - 3m - 1 = 0$$
; b) $x^2 - 2(m-2)x - (2m-4) = 0$;

c)
$$x^2 + 2(3-m)x + 2m - 3 = 0$$
; d) $3mx^2 + 2(3m+4)x + 3m - 5 = 0$;

e)
$$(m+1)x^2 + 2(m-1)x + 4m + 1 = 0$$
;

f)
$$(2m-1)x^2 + (m+2)x + m - 1 = 0$$
.

474. Zavisno od parametra k odrediti prirodu rešenja kvadratne jednačine pox:

a)
$$(k-2)x^2 - (k+1)x + k + 1 = 0$$
; b) $(k-2)x^2 - (k+1)x + 4 = 0$;

c)
$$(4k-3)x^2 + 2(3k-2)x + 7 - 6k = 0$$
:

d)
$$k^2x^2 - k(5k+1)x - (4k+2) = 0$$
.

475. Ako su a, b, c merni brojevi stranica trougla, onda su koreni jednačine $b^2x^2+(b^2+c^2-a^2)x+c^2=0$ kompleksni. Dokazati.

476.* Data je jednačina $a(b-c)x^2+b(c-a)x+c(a-b)=0$. Dokazati da su za svako $a,\,b,\,c,\,(a(b-c)\neq 0)$ rešenja date jednačine realna. Odrediti ta rešenja.

477.* Ako je $a + b \neq 0$, jednačina

$$(a+b)^2x^2 - (a-b)(a^2 - b^2)x - 2ab(a^2 + b^2) = 0$$

ima realna rešenja. Dokazati, a zatim rešiti datu jednačinu.

478.* Date su jednačine

$$(1) x^2 + 2x + a = 0,$$

(2)
$$(1+a)(x^2+2x+a) - 2(a-1)(x^2+1) = 0.$$

u kojima je a realan parametar, a x nepoznata. Dokazati da su koreni jednačine (1) realni i različiti ako su koreni jednačine (2) kompleksni i, obrnuto, da su koreni jednačine (1) kompleksni ako su koreni jednačine (2) realni i različiti.

479.* Ako jednačina

(1)
$$x^2 + px + q = 0 \quad (p, q \text{ realni brojevi})$$

ima realna rešenja, onda i jednačine

(2)
$$x^2 + (p+2a)x + q + ap = 0$$
 (a realan broj),

(3)
$$3x^2 + 2(p+a)x + q + ap = 0$$

takođe imaju realna rešenja. Dokazati.

480.* Ako jednačina

(1)
$$x^2 + px + q = 0 \quad (p, q \text{ realni brojevi})$$

ima realna rešenja, onda i jednačina

(2)
$$x^{2} + \left(k + \frac{1}{k}\right)px + p^{2} + q\left(k - \frac{1}{k}\right)^{2} = 0,$$

gde je k realan broj, takođe ima realna rešenja. Dokazati.

481. Ako su $a,\ m,\ n$ realni brojevi, dokazati da su koreni jednačine $\frac{1}{x-m}+\frac{1}{x-n}=\frac{1}{a^2},$ realni.

2.2. Vietove formule. Rastavljanje kvadratnog trinoma na linearne činioce

Vietove formule jednačine $ax^2 + bx + c = 0 \ (a \neq 0)$ glase

(1)
$$x_1 + x_2 = -\frac{b}{a}$$
 i $x_1 \cdot x_2 = \frac{c}{a}$.

Činioci trinoma $ax^2 + bx + c$ su:

(2)
$$ax^2 + bx + c = a(x - x_1)(x - x_2).$$

482. Formirati kvadratnu jednačinu $x^2 + px + q = 0$ ako su poznata njena rešenja x_1 i x_2 :

a)
$$x_1 = -7$$
, $x_2 = -3$; b) $x_1 = 2\frac{2}{3}$, $x_2 = 1\frac{1}{2}$;

c)
$$x_1 = 5 + \sqrt{2}$$
, $x_1 = 5 - \sqrt{2}$; d) $x_1 = \frac{5 + 3\sqrt{2}}{6}$, $x_2 = \frac{5 - 3\sqrt{2}}{6}$;

e)
$$x_1 = 2 + 3i$$
, $x_2 = 2 - 3i$; f) $x_1 = 3 + \sqrt{3}i$, $x_2 = 3 - \sqrt{3}i$;

g)
$$x_1 = \frac{a}{a+b}, x_2 = \frac{b}{a-b}.$$

483. a)
$$x_1 = \frac{2 + \sqrt{5}}{\sqrt{2}}$$
, $x_2 = \frac{2 - \sqrt{5}}{\sqrt{2}}$; b) $x_1 = \frac{5}{\sqrt{3} + 1}$, $x_2 = \frac{5}{\sqrt{3} - 1}$.

484. a)
$$x_1 = \frac{4+5i}{3}$$
, $x_2 = \frac{4-5i}{3}$; b) $x_1 = \frac{3+i\sqrt{3}}{5}$, $x_2 = \frac{3-i\sqrt{3}}{5}$;

485. a)
$$x_1 = 3a$$
, $x_2 = \frac{a}{2}$; b) $x_1 = 2m$, $x_2 = -\frac{4}{3}m$.

486. a)
$$x_1 = \frac{3m+2}{5}$$
, $x_2 = \frac{3m-2}{5}$; b) $x_1 = \frac{a+m}{a-m}$, $x_2 = \frac{a-m}{a+m}$

487. a)
$$x_1 = \frac{m-1}{m}$$
, $x_2 = -\frac{m}{m+1}$; b) $x_1 = \frac{a+2}{2}$, $x_2 = \frac{a-1}{2}$.

Ako je dat zbir rešenja s i proizvod p kvadratne jednačine, odrediti njena rešenja (488–497):

488. a)
$$s = 4$$
, $p = 1$; b) $s = \frac{4}{3}$, $p = \frac{2}{9}$.

489. a)
$$s = \frac{8 + \sqrt{5}}{2}$$
, $p = \frac{1 - \sqrt{5}}{2}$; b) $s = -\frac{5}{6}(\sqrt{6} + 1)$, $p = \frac{\sqrt{6}}{6}$.

490. a)
$$s = \frac{4\sqrt{3}+2}{3}$$
, $p = \frac{2\sqrt{3}+3}{3}$; b) $s = \frac{5\sqrt{5}-1}{2}$, $p = 5 - \sqrt{5}$.

491. a)
$$s = \frac{a}{b}$$
, $p = \frac{a-b}{b}$; b) $s = \frac{2a}{m}$, $p = \frac{a^2 - b^2}{m^2}$.

492. a)
$$s = \frac{3a-b}{2m}$$
, $p = \frac{a^2-ab}{2m^2}$; b) $s = \frac{15a-4}{6b}$, $p = \frac{3a^2-2a}{2b^2}$.

493.
$$s = 2b - m, p = \frac{1}{3}(4b^2 - 4bm - 3m^2).$$

494.
$$s = a + b, p = \frac{1}{9}(2a^2 + 7ab - 4b^2).$$

495.
$$s = a + 2m, p = \frac{1}{4}(3m^2 + 8am - 3a^2).$$

496.
$$s = -\frac{m(m+2\sqrt{3})}{m\sqrt{3}+3}, p = -1.$$

497.
$$s = -\frac{7a - 6m}{2}$$
, $p = \frac{6a^2 - 11am + 4m^2}{2}$.

498. Data je jednačina $3x^2-x-7=0$, čija su rešenja x_1 i x_2 . Ne rešavajući ovu jednačinu, odrediti numeričke vrednosti izraza:

a)
$$x_1^3 + x_2^3$$
; b) $x_1^3 \cdot x_2^3$; c) $4x_1^3 + 3x_1x_2^2 + 3x_1^2x_2 + 4x_2^3$.

499. Ako su x_1 i x_2 rešenja jednačine $5x^2 - 3x - 1 = 0$, ne rešavajući je odrediti numeričke vrednosti izraza:

a)
$$2x_1^3 - 3x_1^2x_2 + 2x_2^3 - 3x_1x_2^2$$
;

b)
$$\frac{x_1}{x_2} + \frac{x_1}{x_2 + 1} + \frac{x_2}{x_1} + \frac{x_2}{x_1 + 1} + \left(\frac{1}{x_1} - \frac{1}{x_2}\right)^2$$
.

500. Neka su x_1 i x_2 rešenja jednačine $6x^2 - 5x + 1 = 0$, ne rešavajući datu jednačinu formirati kvadratnu jednačinu po y, čija su rešenja

$$y_1 = \frac{x_1 + 1}{x_1 - 1}, \quad y_2 = \frac{x_2 + 1}{x_2 - 1}.$$

501. Data je jednačina $3x^2 + 5x - 6 = 0$. Ne rešavajući ovu jednačinu, formirati kvadratnu jednačinu po y, čija su rešenja y_1 i y_2 povezana sa rešenjima x_1 i x_2 date jednačine pomoću

$$y_1 = x_1 + \frac{1}{x_2}, \quad y_2 = x_2 + \frac{1}{x_1}.$$

502. Ako su x_1 i x_2 rešenja kvadratne jednačine $3x^2 - x - 7 = 0$, napisati kvadratnu jednačinu po y_1 čija su rešenja

$$y_1 = x_1^3 + x_2^3, \quad y_2 = x_1^3 \cdot x_2^3.$$

503. Napisati kvadratnu jednačinu čija su rešenja četvrti stepeni rešenja jednačine $x^2 + px + q = 0$.

504. Rešenja x_1 i x_2 kvadratne jednačine zadovoljavaju uslove:

a)
$$x_1 + x_2 - 2x_1x_2 = 0$$
, $mx_1x_2 - (x_1 + x_2) = 2m - 1$;

b)
$$x_1 + x_2 + x_1x_2 = m$$
, $x_1x_2 - m(x_1 + x_2) = -1$;

Napisati ovu kvadratnu jednačinu i odrediti za koje vrednosti parametra m ta jednačina ima realna rešenja.

505. Ne određujući rešenja x_1 i x_2 date kvadratne jednačine po x, sastaviti kvadratnu jednačinu $y^2 + py + q = 0$ po y, čija su rešenja y_1 i y_2 :

a)
$$3x^2 - 5x - 2 = 0$$
, $y_1 = x_1 + 2$, $y_2 = x_2 + 2$;

b)
$$3x^2 - 4x + 1 = 0$$
, $y_1 = x_1 + x_2$, $y_1 = x_1x_2$;

c)
$$4x^2 - 13x + 3 = 0$$
, $y_1 = \frac{x_1}{x_2}$, $y_2 = \frac{x_2}{x_1}$;

d)
$$2x^2 - 3x + 5 = 0$$
, $y_1 = x_1^2 + x_2^2$, $y_2 = \frac{1}{x_1} + \frac{1}{x_2}$.

506. Neka su x_1 i x_2 rešenja jednačine $x^2+2px+q=0$ Odrediti jednačinu $az^2+bz+c=0$, čija su rešenja $z_1=x_1+\frac{1}{x_2},\,z_2=x_2+\frac{1}{x_1}.$

507. Neka su x_1 i x_2 koreni jednačine $x_2 - (p+1)x + p^2 = 0$:

- a) odrediti jednačinu $az^2+bz+c=0,$ čiji su koreni $z_1=\frac{x_1}{x_2},\,z_2=\frac{x_2}{x_1}\,;$
- b) u tako dobijenoj jednačini odrediti parametar p tako da jedan koren te jednačine bude $\frac{1}{4}$;
- c) za dobijenu vrednost parametra p naći odgovarajuće vrednosti x_1 i x_2 .

508. Ako su x_1 i x_2 koreni jednačine $3x^2 - (m+3)x + m = 0$ (*m* realno):

- a) formirati kvadratnu jednačinu $ay^2+by+c=0$ po y, čija su rešenja $y_1=1-\frac{2}{x_1},\,y_2=1-\frac{2}{x_2};$
- b) u dobijenoj jednačini odrediti parametar m tako da jedno njeno rešenje bude dva puta veće od drugog;
- c) za tako nađeno m odrediti odgovarajuće vrednosti x_1 i x_2 .

509. Neka su x_1 i x_2 koreni jednačine $2x^2 - (p+2)x + p = 0$:

- a) formirati kvadratnu jednačinu $az^2+bz+c=0,$ čiji su koreni $x_1=x_1^{\ 2},$ $z_2=x_2^{\ 2};$
- b) u dobijenoj jednačini odrediti parametar p tako da jedan njen koren bude četiri puta veći od drugog;
- c) za dobijenu vrednost parametra podrediti odgovarajuće vrednosti \boldsymbol{x}_1 i $\boldsymbol{x}_2.$

- **510.** Proveriti da li su brojevi $x_1 = \frac{\sqrt{5}-1}{\sqrt{5}-3}$, $x_2 = \frac{\sqrt{5}+1}{\sqrt{5}+3}$ rešenja jednačine $x^2+x-1=0$?
- **511.** Ako je a+b+c=0, odrediti korene jednačine $ax^2+bx+c=0$.
- **512.** U jednačini $x^2+mx+8=0$, odrediti realnu vrednost broja m tako da je zbir recipročnih vrednosti rešenja jednak $\frac{3}{4}$.
- **513.** U jednačini $x^2 5x + n = 0$, odrediti realan broj n tako da je zbir kvadrata rešenja jednak 13.
- **514.** U jednačini $x^2 sx + 8 = 0$, odrediti vrednost realnog broja s tako da je suma kvadrata rešenja jednaka 20.
- **515.** Data je kvadratna jednačina $x^2 (k+3)x + k + 2 = 0$, gde je x nepoznata a k realan parametar. Odrediti parametar k tako da je suma kvadrata rešenja jednaka 26.
- **516.** U jednačini $x^2 (m-4)x + m 6 = 0$, odrediti realan broj m tako da je zbir kvadrata rešenja 12.
- **517.** Data je kvadratna jednačina $x^2-2(3m-2)x+4-m^2=0$, odrediti realan parametar m iz uslova:
- a) da su rešenja realna i jednaka; b) da su rešenja suprotni brojevi;
- c) da su rešenja recipročna; d) da je jedno rešenje jednako nuli.
- **518.** Data je kvadratna jednačina $(m+1)x^2-2(m+3)x+9=0$. Odrediti realan broj m tako:
- a) da su rešenja realna i jednaka; b) da su rešenja suprotni brojevi;
- c) da su rešenja recipročna.
- **519.** Data je kvadratna jednačina $5x^2 2mx + m^2 4 = 0$, odrediti realan broj m iz uslova:
- a) da su rešenja realna i jednaka; b) da su rešenja suprotni brojevi;
- c) jedno rešenje je nula; d) jedno rešenje je 1;
- e) suma kvadrata rešenja jednaka je $\frac{53}{50}$.

520. Data je kvadratna jednačina

$$4x^2 - 2(2a - \sqrt{2})x + 2a^2 - 2a\sqrt{2} - 1 = 0.$$

Odrediti realan broj a tako da važi:

- a) rešenja realna i jednaka; b) rešenja suprotni brojevi;
- c) jedno rešenje je jednako nuli; d) jedno rešenje je 1.
- **521.** Ne rešavajući datu kvadratnu jednačinu, odrediti m tako da njena rešenja zadovoljavaju uslov:

a)
$$2x^2 - 5x + 2m^2 - 4m + 2 = 0$$
, $x_1 - 2x_2 = 1$;

b)
$$(m+3)x^2 - 3mx + 2m = 0, 2x_1 - x_2 = 3;$$

c)
$$3(m-1)x^2 - 4(m-1)x + 2m - 1 = 0, x_2 = 3x_1;$$

d)
$$mx^2 - 2(m+1)x + m - 4 = 0$$
, $(4x_1 + 1)(4x_2 + 1) + 2 = 20$;

e)
$$(m-2)x^2 - 2(m-1)x + m = 0$$
, $\frac{1}{x_1^2} + \frac{1}{x_2^2} = \frac{5}{4}$;

f)
$$x^2 - mx - m^2 - 5 = 0$$
, $2x_1 + 2x_2 - x_1x_2 = 8$;

g)
$$x^2 - 2mx + m^2 + 1 = 0$$
, $x_1^2 + x_2^2 = 16$;

h)
$$(m-2)x^2 - 2mx + 2m - 3 = 0$$
, $3x_1^2 + 3x_2^2 = 10x_1^2x_2^2$;

i)
$$x^2 + (m-3)x + 1 - 2m = 0$$
, $\frac{x_1}{x_2} + \frac{x_2}{x_1} + 6 = 0$;

j)
$$x^2 - x + m = 0$$
, $x_1^3 + x_2^3 = 7$;

k)
$$mx^2 - (2m+1)x + 1 = 0$$
, $x_1x_2^2 + x_1^2x_2 = 4$.

- **522.** Data je jednačina $(m-2)x^2 2(m+1)x + m + 3 = 0$. Odrediti parametar m tako da zbir kvadrata njenih rešenja bude jednak 52.
- **523.** U jednačini $x^2 2(3m-1)x + 2m + 3 = 0$ odrediti parametar m tako da je zbir kubova rešenja date jednačine jednak zbiru rešenja.
- **524.** Neka su x_1 i x_2 rešenja jednačine $ax^2 + bx + c = 0$ $(a \neq 0)$. Izraziti u funkciji koeficijenata a, b, c vrednosti sledećih izraza:

a)
$$x_1^2 + x_2^2$$
; b) $\frac{1}{x_2} + \frac{1}{x_1}$; c) $x_1^3 + x_2^3$; d) $\frac{1}{x_1^3} + \frac{1}{x_2^3}$.

525. Za svaku od sledećih jednačina naći vezu između njenih rešenja koja ne zavise od parametara:

a)
$$3(m-1)x^2 - 4mx - 2m + 1 = 0$$
;

b)
$$mx^2 - (2m-1)x + m + 2 = 0;$$

c)
$$(m+2)x^2 - (2m+1)x + \frac{3}{4}m = 0;$$

d)
$$x^2 - 2(a+1)x + 3a + 2 = 0$$
;

e)
$$(k-2)x^2 - 2(k-1)x + k - 3 = 0$$
;

f)
$$8x^2 - 4(p-2)x + p(p-4) = 0$$
.

526. U jednačini $(k-1)x^2 + (k-5)x - (k+2) = 0$ odrediti parametar k tako da je:

a)
$$\frac{1}{x_1} + \frac{1}{x_2} > 2$$
; b) $x_1^2 + x_2^2 < 2$; c) $x_1^2 x_2 + x_1 x_2^2 < 2$.

527. Data je jednačina $x^2 - (m+3)x + m + 2 = 0$. Odrediti sve vrednosti realnog parametra m za koje je tačna konjunkcija

$$\frac{1}{x_1} + \frac{1}{x_2} > \frac{1}{2} \wedge x_1^2 + x_2^2 < 5,$$

gde su x_1 i x_2 rešenja date jednačine.

528. Ako su α i β koreni jednačine $x^2+ax+a^2+b=0$, dokazati da važi jednakost $\alpha^2+\alpha\beta+\beta^2+b=0$.

529. U jednačinama $x^2 - ax + b - 4 = 0$ i $y^2 - by + a - \frac{1}{4} = 0$, odrediti realne brojeve a i b tako da koreni jedne od tih jednačina budu jednaki recipročnim vrednostima korena druge jednačine.

530. U jednačini $x^2 - (m+1)x + m = 0$ odrediti realan parametar m tako da razlika kvadrata njenih korena bude 15. Za tako nađeno m rešiti datu jednačinu.

531. Za koje vrednosti parametra m jednačine:

a)
$$2x^2 - (3m+2)x + 12 = 0$$
 i $4x^2 - (9m-2)x + 36 = 0$;

b)
$$x^2 + mx - 2m = 0$$
 i $x^2 - 2mx + m = 0$, imaju zajedničko rešenje?

532. Ako koeficijenti kvadratnih jednačina

$$x^2 + px + q = 0$$
 i $x^2 + p_1x + q_1 = 0$

zadovoljavaju uslov $q+q_1=\frac{pp_1}{2},$ onda su rešenja bar jedne jednačine realna. Dokazati.

533. Kakvi moraju biti realni brojevi p i q da bi koreni jednačine $x^2 + px + q = 0$ bili takođe p i q?

Primenom formule $ax^2 + bx + c = a(x - x_1)(x - x_2)$ rastaviti sledeće kvadratne trinome na činioce (534–539):

534. a)
$$x^2 + 2x - 48$$
; b) $x^2 - 19x + 88$; c) $4x^2 + 3x - 85$;

d)
$$x^2 - 5ax + 6a^2$$
; e) $3x^2 + ax - 2a^2$; f) $a^2b^2 - 7ab + 10$.

535. a)
$$4x^2 - 19x - 5$$
; b) $3a^2 + 20a + 12$.

536. a)
$$12m^2 - 25m + 12$$
; b) $12a^2 + 32a + 21$.

537. a)
$$x^2 - 3ax - 5bx + 15ab$$
; b) $ma^2 - (m^2 + 1)a + m$.

538. a)
$$2b^2 - 5ab - 12a^2$$
: b) $m^2x^2 - 2m^3x + m^4 - 1$.

539. a)
$$x^2 - 6x + 7$$
; b) $4y^2 - 8y + 1$.

540. Skratiti sledeće razlomke:

a)
$$\frac{4x^2 - 19x + 12}{12x^2 - x - 6}$$
; b) $\frac{a^2 + 6a + 8}{a^3 + 5a^2 + 4a}$; c) $\frac{x^2 - 4ax + 3a^2}{x^2 - (a + b)x + ab}$;

d)
$$\frac{x^4 - 7x^3 + 12x^2}{3x^3 - 48x}$$
; e) $\frac{2x^2 - 3ax - 14a^2}{x^2 + (2a + 7)x + 14a}$;

f)
$$\frac{(3x^2 - 48)(4x^2 - 16x + 12)}{(8x^2 - 16x - 24)(2x^2 + 2x - 24)}$$

541. Dati su razlomci $v=\frac{4a^2-1}{2a^2+5a-3},\,W=\frac{2a^2-5a-3}{a^2-9},$ dokazati da se izrazi mogu svesti na iste oblike.

542. Ako je
$$M = \frac{x^2 - 5x + 4}{x^2 - 7x + 6}$$
, $N = \frac{x^2 - x - 12}{x^2 - 3x - 18}$, tada je uslovno $M - N = 0$.

543. Ako je
$$P = \frac{a^2 - 12a + 36}{a^2 - 7a + 6}$$
, $Q = \frac{a^2 - 1}{a^2 - 5a - 6}$, dokazati da je uslovno $PQ = 1$.

544. Ako je
$$A=\frac{2a+5b}{6a^2+17ab+5b^2},$$
 $B=\frac{3a-2b}{9a^2-3ab-2b^2},$ tada su A i B istog oblika. Dokazati.

545. Dokazati da su razlomci

$$U = \frac{m^2x^2 + 3mx + 2}{m^2x^2 + 5mx + 6}, \quad V = \frac{m^2x^2 - 2mx - 15}{m^2x^2 - 4mx - 5},$$

recipročni (pod određenim uslovima).

reciprocni (pod određenim uslovima).
546. Ako je
$$P = \frac{10x^2 - 3mx - m^2}{6x^2 - 11mx + 4m^2}$$
, $Q = \frac{15x^2 - 17mx - 4m^2}{9x^2 - 24mx + 16m^2}$, tada su P i Q istog oblika. Dokazati.

547. Ako je
$$A = \frac{12x^2 + 25xy + 7y^2}{4x^2 + 3xy - 7y^2}$$
, $B = \frac{5y^2 + 6xy - 27x^2}{5y^2 - 14xy + 9x^2}$, tada je $A + B = 0$ (uz određene uslove). Dokazati.

548. Ako je
$$P=\frac{12a^2-11ab-b^2}{3a^2-7ab+4b^2},\ Q=\frac{9a^2-24ab+16b^2}{36a^2-45ab-4b^2},$$
 tada je $PQ=1$ (pod određenim uslovima). Dokazati.

- **549.** Odrediti tri broja od kojih je srednji po veličini za 5 veći od najmanjeg i za 5 manji od najvećeg, ako se zna da je proizvod najvećeg i najmanjeg broja jednak nuli.
- **550.** Ako se od kvadrata nekog broja oduzme proizvod toga broja i broja 7, dobijena razlika je tri puta veća od samog broja. Odrediti sve takve brojeve.
- **551.** Zbir kvadrata tri uzastopna parna cela broja je 200. Odrediti te brojeve.
- **552.** Odrediti tri uzastopna cela broja čiji je zbir kvadrata 110.
- **553.** Razlika kubova dva uzastopna cela broja je 91. Odrediti te brojeve.
- **554.** Naći dvocifren broj čija je cifra jedinica za 1 veća od cifre desetica, a proizvod traženog broja i zbira njegovih cifara jednak je 616.

555. Cifra desetica dvocifrenog broja je za 2 veća od cifre jedinica. Ako se taj broj podeli zbirom njegovih cifara, dobija se količnik za 40 manji od broja napisanog istim ciframa obrnutim redom i ostatak 4. Odrediti taj broj.

556. Dva planinara su istovremeno krenuli na kotu udaljenu 30 km od njih. Jedan planinar prelazi 1 km više na sat od drugog planinara i zbog toga stiže na kotu jedan sat ranije. Koliko kilometara na sat prelazi svaki planinar?

557. Dve slavine pune bazen za $1\frac{7}{8}$ časova, a jedna slavina može sama da napuni isti bazen za dva sata brže od druge. Za koje vreme svaka slavina posebno može da napuni isti bazen?

558. Dva radnika treba da završe neki posao. Ako rade zajedno, završiće ga za 12 dana. Za završetak tog posla jednom od njih je potrebno 10 dana više nego drugom. Za koje bi vreme svaki od ta dva radnika završio taj posao?

559. Visina jednakokrakog trougla jednaka je $\frac{2}{3}$ osnovice. Odrediti stranice i visinu tog trougla ako je njegova površina 48 cm².

560. U kom mnogouglu je broj stranica jednak broju dijagonala?

561. Koji mnogougao ima 170 dijagonala?

562. Stranica jednog kvadrata je 2 m duža od stranice drugog kvadrata. Odrediti stranice tih kvadrata ako se njihove površine odnose kao 9 : 4.

563. Data je polukružnica nad prečnikom AB=2R. Iz tačke M te polukružnice spuštena je normala MN na tangentu u tački B. Odrediti duž AM=x tako da je $AM+MN=\frac{9}{4}R$.

2.3. Neke jednačine koje se svode na kvadratne

2.3.1. BIKVADRATNA JEDNAČINA

Definicija. Jednačina četvrtog stepena sa jednom nepoznatom koja sadrži samo parne izložioce naziva se bikvadratna jednačina i ima oblik

(1)
$$ax^4 + bx^2 + c = 0 \quad (a \neq 0).$$

Bikvadratna jednačina (1) ekvivalentna je jednačini

(2)
$$a(x^2)^2 + bx^2 + c = 0,$$

koja je kvadratna po nepoznatoj x^2 .

Rešiti sledeće jednačine (564–596):

564. a)
$$x^4 - 4x^2 + 3 = 0$$
; b) $y^4 - 5y^2 - 36 = 0$.

565. a)
$$y^4 - 9y^2 + 20 = 0$$
; b) $x^4 + 40x^2 + 144 = 0$.

566. a)
$$x^4 - 109x^2 + 900 = 0$$
; b) $x^4 - 9\frac{1}{9} - x^2 + 1 = 0$.

567. a)
$$4x^2 - 17x^2 + 4 = 0$$
; b) $(4x^2 + 5)(x^2 - 5) = 6x^2$.

568. a)
$$(x^2 + 2)^2 + (x^2 - 3)^2 = 625$$
; b) $25u^4 - 299u^2 - 324 = 0$.

569.
$$(4x^2 - 5)^2 + (x^2 + 5)^2 = 2(8x^4 - 83)$$
.

570.
$$\frac{4y^2+3}{4} - \frac{(2y^2+3)^2}{12} = \frac{y^4-6y^2}{3}$$
.

571.
$$\frac{x^2}{x^2-1} - \frac{x^2-1}{x^2} = \frac{3}{2}$$
. **572.** $\frac{2x^2+3}{5} - \frac{5x^2-16}{10} = \frac{30-2x^2}{x^2-6}$.

573.
$$(3x^2 - 5)^2 - (3x^2 - 2)^2 = 3 - 4x^4$$

574.
$$(x^2-1)(x^2-2)-(2-x^2)(x^2-4)=6(2x^2-5).$$

575.
$$b^2x^4 - (b^4 + a^2)x^2 + a^2b^2 = 0$$
. **576.** $x^4 - \left(a^2 + \frac{1}{a^2}\right)x^2 + 1 = 0$.

577.
$$(x^2 - 2x)^2 - 2(x^2 - 2x) = 3$$
.

578.
$$(2x^2 + 3x)^2 - 34(2x^2 + 3x) + 280 = 0$$
.

579.
$$5\left(x+\frac{1}{x}\right)^2-16\left(x-\frac{1}{x}\right)-52=0.$$

580.
$$3\left(x-\frac{1}{x}\right)^2-12, 5\left(x-\frac{1}{x}\right)+12=0.$$

581.
$$\left(\frac{2x^2-1}{x}\right)^2 - 4\left(\frac{2x^2-1}{x}\right) + 3 = 0.$$

582.
$$2\left(\frac{x^2+1}{x}\right)^2 - 9\left(\frac{x^2+1}{x}\right) + 10 = 0.$$

583.
$$\left(\frac{1}{x} + \frac{1}{2}\right)^2 = \frac{1}{(x-2)^2}$$
. **584.** $\frac{x^2(3x+4)}{2x+1} = \frac{3(2x-1)}{3x-4}$.

585.
$$2x+9-\frac{72}{(x^2-1)(2x-9)}=\frac{16}{2x-9}$$
.

586.
$$\frac{x^2(x+4)}{x^2-52} = \frac{16(x+4)}{x^2-52} - \frac{3}{x-4}$$
. **587.** $\frac{x^2}{2(2x+1)} = \frac{2(2x-1)}{x^2}$.

588.
$$a^2b^2x^4 - (a^4 + b^4)x^2 + a^2b^2 = 0.$$

589.
$$x^4 - 2(a^2 + 1)x^2 + (a^2 - 1)^2 = 0$$

590.
$$(a^2 - m^2)x^4 - 2(a^2 + m^2)x^2 + a^2 - m^2 = 0.$$

591.
$$x^4 - 2a^2x^2 + a^4 - b^4 = 0$$
. **592.** $\frac{x^2 - m}{m+1} - \frac{m-1}{x^2 - m} = 0$.

593.
$$\left(\frac{2x}{a-2}\right)^2 - \frac{1}{2(a-2x^2)} = 0.$$

594.
$$\frac{4(x+b)(x-b)}{a^2-2b^2} + \frac{(a+b\sqrt{2})(a-b\sqrt{2})}{4x^2} = 2.$$

595.
$$(a-b)^2 x^4 + \frac{a^2 b^2}{(a-b)^2} = (a^2 + b^2) x^2$$
.

596.
$$\frac{\left(\frac{mx^2}{ab} + a - b\right)\left(\frac{mx^2}{ab} - a + b\right)}{2(a - b)} = \frac{m(a + b)x^2}{ab(a - b)} - (a - b).$$

Skratiti sledeće razlomke (597–598):

597. a)
$$\frac{x^2 - 4}{x^4 - 13x^2 + 36}$$
; b) $\frac{9b^4 - 40b^2 + 16}{4b^4 - 17b^2 + 4}$.

598. a)
$$\frac{a^4 - 5a + 4}{a^4 - 29a^2 + 100}$$
; b) $\frac{3m^5 - 5m^3 + 2m}{3m^4 - 11m^2 + 6}$.

599. Dati su razlomci
$$p = \frac{x^4 - 3x^2 - 4}{x^4 - 29x^2 + 100}$$
, $Q = \frac{x^4 - 34x^2 + 225}{x^4 - 8x^2 - 9}$, dokazati da je $PQ = 1$.

600. Ako je
$$V = \frac{a^4 - 13a^2 + 36}{9a^4 - 40a^2 + 16}$$
, $W = \frac{9a^4 + 5a^2 - 4}{a^4 - 8a^2 - 9}$, tada je $V = \frac{1}{W}$.

601. Ako je
$$C = \frac{4m^4 + 11m^2 - 3}{4m^4 + 17m^2 + 15}$$
, $D = \frac{8m^4 + 6m^2 - 5}{8m^4 - 6m^2 + 1}$, tada je $CD = 1$. Dokazati.

602. Ako je
$$E=\frac{x^4-(a^2-1)x^2-a^2}{a^2x^4-(1-a^2)x^2-1},\ F=\frac{x^4-(a^2+1)x^2+a^5}{a^2x^4-(a^5+1)x^2+a^3},$$
tada je $E=F.$ Dokazati.

603. Ako je

$$S = \frac{a^4 - 3m^2a^2 + 2m^4}{m^2a^4 - (2m^4 + 1)a^2 + 2m^2}, \quad T = \frac{a^4 + 3m^2a^2 - 4m^4}{m^2a^4 + (4m^4 - 1)a^2 - 4m^2},$$

tada je S - T = 0. Dokazati.

604. Odrediti realne vrednosti parametra a za koje jednačina:

a)
$$x^2 + (3 - a^2)x + 1 = 0$$
; b) $a^2x^2 - 16x + 3a^2 + 4 = 0$ ima jednaka rešenja.

 $\bf 605.$ Površina pravouga
onika je 60 $\rm cm^2,$ a dijagonala 13 cm. Odrediti stranice pravouga
onika.

 $\bf 606.$ Površina pravouglog trougla je $54~\rm cm^2,$ a hipotenuza $15~\rm cm.$ Odrediti njegove katete.

 $\bf 607.~Krak$ jednakokrakog trougla je 20 cm, a površina 192 cm². Odrediti osnovicu tog trougla.

Rešiti jednačinu (608–614)

608.
$$\frac{x^4 + 2(a-b)x^2 + (a-b)^2}{x^4 - 2(a-b)x^2 + (a-b)^2} = \frac{a}{b}, (a > b, b > 0 \text{ i } a \neq b).$$

609.
$$x^2 + x + x^{-1} + x^{-2} = 4$$
. **610.** $4x^2 + 12x + 12x^{-1} + 4x^{-2} = 47$.

611.
$$x(x+1)(x+2)(x+3) = 0,5625.$$

612.
$$x(x-1)(x-2)(x-3) = 1680$$
.

613.
$$\frac{x^2 + 2x - 5}{x} + \frac{3x}{x^2 + x - 5} + 4 = 0.$$

614.
$$x^2 + 2x + 7 = (x^2 + 2x + 3)(4 + 2x + x^2)$$
.

2.3.2. BINOMNE JEDNAČINE

Definicija. Jednačina oblika

(1)
$$Ax^n \pm B = 0 \quad (A > 0 \text{ i } B > 0)$$

naziva se binomna jednačina.

Primedba. Smenom $x = y \sqrt[n]{\frac{B}{A}}$ binomna jednačina (1) svodi se na ekvivalentnu jednačinu

$$(2) y^n \pm 1 = 0.$$

Odrediti skup rešenja sledećih binomnih jednačina (615–628):

615. a)
$$5x^3 + 2 = 0$$
; b) $8x^3 - 11 = 0$.

616. a)
$$8x^3 - 27 = 0$$
; b) $125x^3 + 8c^3 = 0$.

617.
$$m^3x^3 - (m+n)^3 = 0$$
.

618. a)
$$16x^4 - 81 = 0$$
; b) $11x^4 - 17 = 0$. **619.** $b^4x^4 - (2a - c)^4 = 0$.

620. a)
$$x^6 - 729 = 0$$
; b) $x^6 + 64 = 0$. **621.** $x^3(8x^3 + 1) - 1 = 8x^3$.

622.
$$512x^6 - 64x^3 = 27(1 - 8x^3)$$
. **623.** $x^3(3x^3 + 5) = 192x^3 + 320$.

624.
$$x^2(27-x^3)=108-4x^3$$
.

625.
$$(x-a)^3 + (x-b)^3 = 0$$
. **626.** $(a-x)^4 - (b-x)^4 = 0$.

627.
$$(2x-5)^3 + (5x-2)^3 = 0$$
. **628.** $(2x-3)^3 - (9-x)^3 = 0$.

2.3.3. Trinomne jednačine

Definicija. Jednačina oblika

(1)
$$ax^{2n} + bx^n + c = 0,$$

gde su a, b, c realni brojevi različiti od nule, naziva se trinomna jednačina. Trinomna jednačina (1) ekvivalentna je jednačini

(2)
$$a(x^n)^2 + bx^n + c = 0,$$

koja je kvadratna po nepoznatoj x^n .

Odrediti skup rešenja jednačine (629–635):

629. a)
$$x^6 + 7x^3 - 8 = 0$$
; b) $\frac{x^2}{x^2 - 2a^2} = \frac{6a^2}{x^2 - a^2}$.

630. a)
$$x^6 - 9x^3 + 8 = 0$$
; b) $x^8 - 17x^4 + 16 = 0$.

631. a)
$$a^2b^2x^4 - (a^4 + b^4)x^2 + a^2b^2 = 0;$$

b)
$$c^4x^4 + c^2(a^2 - b^2)x^2 - a^2b^2 = 0$$
.

632. a)
$$8x^6 - 35x^3 + 27 = 0$$
; b) $512x^6 + 152x^3 - 27 = 0$.

633. a)
$$\frac{x^3 + 216}{x^3} = 36 - x^3$$
; b) $\frac{x^6 + 3}{x^3} = \frac{x^3 + 217}{9}$.

634.
$$(x^2+5)(x^2-5) + \frac{8(x^4+2)}{x^4} = 0.$$

635.
$$\frac{(4x^4-3)^2}{x^2+1} + (x^2-1)(x^2-252) = \frac{1}{x^2+1}.$$

Uvođenjem odgovarajuće smene rešiti sledeće jednačine (636-644):

636.
$$(x^2 + 2a^2 + m^2)^2 - 4(a^2 + m^2)(x^2 + 2a^2 + m^2) + 3(a^4 + m^4) + 10a^2m^2 = 0 \quad (2m^2 > a^2).$$

637.
$$(x^2 - a^2 - 1)^2 - a(a^3 - 3a + 2)(x^2 - a^2 - 1) + 2a^3(a^2 - 3) = 0$$

638.
$$\left(\frac{n^2x^2}{a} - a\right) - a\left(\frac{n^2x^2}{a} - a\right) + 2an^2 = n^2\left(\frac{n^2x^2}{a} - a\right) + 2a^2.$$

639.
$$(x^2 - 2m)^2 - 5(x^2 - 2m) + 4 = 0.$$

640.
$$(x^2 - 3a^2)^4 - 37a^4(x^2 - 3a^2)^2 + 36a^8 = 0.$$

641.
$$(3+x)^2 + \frac{1}{(3+x)^2} = 100,01.$$

642.
$$(2x^2 - 3x + 1)^2 = 22x^2 - 33x + 1$$
.

643.
$$(x-2)^2 + \frac{1}{(x-2)^2} = \frac{82}{9}$$
. **644.** $(x+a)^2 + \frac{1}{(x+a)^2} = b^2$.

2.3.4. SIMETRIČNE (RECIPROČNE) JEDNAČINE

Definicija. Jednačina oblika

(1)
$$ax^{n} + bx^{n-1} + cx^{n-2} + \dots \pm cx^{2} \pm bx \pm a = 0,$$

gde $a, b, c, \ldots \in \mathbb{R}$, naziva se simetrična (recipročna) jednačina.

Primedba 1. Naziv simetrična potiče iz osobine simetričnosti njenih koeficijenata.

Primedba 2. Naziv recipročna potiče iz osobine: ako je $x=\alpha$ koren jednačine, onda je i $x = \frac{1}{\alpha}$ takođe koren date jednačine.

Primedba 3. Simetrične jednačine neparnog stepena imaju uvek koren x = -1 ili x = 1.

Odrediti skup rešenja sledećih simetričnih jednačina (645–679):

645.
$$3x^3 + 13x^2 + 13x + 3 = 0$$
. **646.** $12x^3 - 13x^2 - 13x + 12 = 0$.

647.
$$2x^3 - 7x^2 + 7x - 2 = 0$$
. **648.** $15x^3 + 19x^2 - 19x - 15 = 0$.

649.
$$6x^4 + 5x^3 - 38x^2 + 5x + 6 = 0$$
.

650.
$$12x^4 - 25x^3 + 25x - 12 = 0$$
.

651.
$$12x^5 + 16x^4 - 37x^3 - 37x^2 + 16x + 12 = 0$$
.

652.
$$6x^5 - x^4 - 43x^3 + 43x^2 + x - 6 = 0$$
.

653.
$$2x^5 + 5x^4 - 13x^3 - 13x^2 + 5x + 2 = 0$$

654.
$$x^6 + 4x^5 - 6x^4 - 28x^3 - 6x^2 + 4x + 1 = 0$$
.

655.
$$2x^3 + 3x^2 - 3x - 2 = 0$$
. **656.** $12x^3 - 37x^2 + 37x - 12 = 0$.

657.
$$2x^4 - 7x^3 + 9x^2 - 7x + 2 = 0$$
.

658.
$$x^4 - 15, 3x^3 + 54, 52x^2 - 15, 3x + 1 = 0.$$

659.
$$x^4 + (n - n^{-1})x^3 - 2n^2x^2 + (n - n^{-1})x + 1 = 0.$$

660.
$$\frac{2}{3}(x-1)^2 + \frac{25x^2}{2(x+1)^2} = \frac{28x}{9}$$
.

661.
$$1 + \frac{x(2x^3 - 3x^2 + 1)}{(2x+1)^2} + \frac{4x^2 - 2x + 1}{2x+1} = 0.$$

662.
$$x^3 + \frac{3x^2 + 1}{x - 3} + x = 0$$
. **663.** $12x^2 + \frac{25x(x^2 - 1)}{x^2 + 1} = 12$.

664.*
$$\frac{6}{x^4 - 5x^2 - 6} - \frac{5x}{x^2 - 6} = \frac{2(3x^2 - 1)}{x^2 + 1}$$
.

665.*
$$x(6x^2 + 5) + \frac{7x^2(x+8) + x^2 + 6}{x-7} = 0.$$

666.* $x(6x+7)(6x-7) - (6x+1)^2 = (5x+1)(5x-1) - 36.$

666.*
$$x(6x+7)(6x-7) - (6x+1)^2 = (5x+1)(5x-1) - 36$$

667.*
$$12x^2(3x-1) - (11x+3)(11x-3) = 10 - 7(19x-5)$$
.

668.
$$8x^5 - 46x^4 + 47x^3 + 47x^2 - 46x + 8 = 0$$
.

669.
$$6x^5 - 41x^4 + 97x^3 - 97x^2 + 41x - 6 = 0$$
.

670.*
$$12(x^5+1) + 2x(8x-1)(x^2-1) = 7x(5x^2+3x-2)$$
.

671.
$$1 + \frac{x(2x^3 - 3x^2 + 1)}{(2x+1)^2} + \frac{4x^2 - 2x + 1}{2x+1} = 0.$$

672.*
$$8x^4(x-2) + (6x+1)^2 + 4x(x^4+1) = x^2(16x-1) + 7(3x^3+1) + 6$$
.

673.
$$2(x^3+6) - x(7x-3) = \frac{10(x+1)}{x^2+1}$$
.

674.
$$6x^5 + 11x^4 - 33x^3 + 11x + 6 = 0$$
.

675.
$$mx^4 - (m+1)^2x^3 + 2(m^2 + m + 1)x^2 - (m+1)^2x + m = 0.$$

676.*
$$amx^4 + (a+m)(am+1)x^3 + ((a+m)^2 + a^2m^2 + 1)x^2 + (a+m)(am+1)x + am = 0.$$

677.*
$$3x^6 - 10x^5 + 3x^4 - 3x^2 + 10x - 3 = 0$$
.

678.*
$$2x^6 + 3x^5 - 18x^4 + 18x^2 - 3x - 2 = 0$$
.

679.*
$$x^7 + 4x^6 + 2x^5 + 5x^4 + 5x^3 + 2x^2 + 4x + 1 = 0.$$

2.4. Kvadratna funkcija

Definicija. Funkcija $x \mapsto f(x) = ax^2 + bx + c$, $(a, b, c \in \mathbb{R}, a \neq 0)$ naziva se kvadratna funkcija. Formula

(1)
$$f(x) = ax^2 + bx + c = 0, \quad (a \neq 0),$$

ekvivalentna je formuli

(2)
$$f(x) = a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a}.$$

Formula (2) naziva se kanonični oblik kvadratne funkcije (1). Često se kraće piše u obliku

(3)
$$f(x) = a(x - \alpha)^2 + \beta,$$

gde je

(4)
$$\alpha = -\frac{b}{2a}, \quad \beta = \frac{4ac - b^2}{4a}.$$

Tačka $T(\alpha, \beta)$ naziva se teme parabole, koja predstavlja grafik kvadratne funkcije.

Ako je $b^2-4ac\geq 0,$ kvadratna funkcija (1) ima realne nule x_1 i x_2 koje su određene formulom

(5)
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Ako taj uslov nije ispunjen, ona nema realnih nula.

680. U istom koordinatnom sistemu konstruisati približan grafik datih funkcija i ispitati njihove osobine:

a) $f:\mathbb{R}\to\mathbb{R}$ ako za svako $x\in\mathbb{R}$ važi:

$$f(x) = x^2$$
, $f(x) = 2x^2$, $f(x) = \frac{1}{2}x^2$;

b) $f:\mathbb{R}\to (-3,+\infty)$ ako za svako $x\in\mathbb{R}$ važi:

$$f(x) = -x^2$$
, $f(x) = -2x^2$, $f(x) = -\frac{1}{2}x^2$.

681. Neka je $f: \mathbb{R} \to (-3, +\infty)$ i $f(x) = \frac{1}{3}x^2 - 3$ za svako $x \in \mathbb{R}$.

Odrediti skup svih $x \in \mathbb{R}$ za koje je: f(x) > 0, f(x) < 0, f(x) = 0. Šta znače te relacije?

682. Ako je funkcija f definisana sa $f(x) = -\frac{1}{4}x^2 + 1$, odrediti skup svih $x \in \mathbb{R}$ za koje je f(x) > 0, f(x) < 0, f(x) = 0. Šta znače te relacije? **683.** Date su funkcije:

a) $y = -x^2 + 4$; b) $y = \frac{1}{2}x^2 - 2$; c) $y = 2x^2 + 1$.

Ispitati promene i konstruisati približne grafike datih funkcija za svako $x \in \mathbb{R}$.

684. Neka funkcija f preslikava skup $\mathbb R$ na skup A i neka je:

a)
$$f(x) = -\frac{1}{2}x^2 - 1$$
; b) $f(x) = x^2 - 9$; c) $f(x) = -\frac{1}{2}x^2 + 2$.

Odrediti skup A, nule, ekstremne vrednosti, intervale monotonosti i znak funkcije, a zatim konstruisati njihove približne grafike.

U zadacima (685–689) transformisati kvadratnu funkciju na kanonični oblik:

685. a)
$$y = x^2 - 6x + 9$$
; b) $y = -x^2 - 2x - 1$.

686. a)
$$y = -x^2 + 3x$$
; b) $y = 2x^2 - 5x$.

687. a)
$$y = -2x^2 + 5x + 2$$
; b) $y = x^2 + 6x - 8$.

688. a)
$$y = -\frac{1}{3}x^2 + 2x + 4$$
; b) $y = \frac{2}{3}x^2 + \frac{8}{3}x$.

689. a)
$$y = x^2 + 6x - 5$$
; b) $y = -\frac{1}{2}x^2 - 2x + \frac{3}{2}$.

Svesti na kanonični oblik, a zatim ispitati promene i konstruisati grafike sledećih funkcija (690–693):

690. a)
$$y = -x^2 + 4x$$
; b) $y = \frac{1}{2}x^2 + x$.

691. a)
$$y = \frac{1}{3}x^2 + 2x + 4$$
; b) $y = -\frac{1}{2}x^2 + 3x + 8$.

692. a)
$$y = -\frac{1}{8}x^2 - \frac{1}{4}x + \frac{15}{8}$$
; b) $y = \frac{1}{3}x^2 + 2x + 2$.

693. a)
$$y = \frac{1}{2}x^2 - 2x + 3$$
; b) $y = -\frac{1}{3}x^2 - \frac{2}{3}x - 2\frac{1}{3}$.

Ispitati promene i konstruisati grafike funkcija (694–696):

694. a)
$$y = x^2 - 2|x|$$
; b) $y = x^2 + |x|$.

695. a)
$$y = |x - x^2| - x$$
; b) $y = x - |x + x^2|$.

696. a)
$$y = -|x^2 - x| + 2$$
; b) $y = 2x^2 - 4|x| - 6$.

697. Dat je skup funkcija $f(x) = ax^2 + 6x + c$, gde su a i c realni brojevi. Iz tog skupa odrediti onu funkciju koja ima nulu $x_1 = 6$ i čiji grafik sadrži tačku M(2,8), zatim proučiti promene i konstruisati grafik dobijene funkcije.

698. Dat je skup funkcija $f(x) = ax^2 + bx + c$. Odrediti koeficijente a, b i c tako da je f(2) = 0, f(3) = -7 i f(-2) = 8, a zatim ispitati promene dobijene funkcije.

699. Dat je skup funkcija $f(x) = ax^2 + bx + c$, gde su a, b i c realni brojevi. Odrediti a, b i c, tako da grafik funkcije sadrži tačke A(5,0), B(4,-3) i da je f(6)=5, a zatim ispitati promene i konstruisati grafik funkcije.

700. U skupu funkcija $y=(m-1)x^2+(m-4)|x|-m-1$ odrediti parametar m tako da funkcija dostiže najmanju vrednost za x=1. Za dobijenu vrednost parametra ispitati promene i konstruisati grafik funkcije.

701. Iz skupa funkcija $y = (m-1)x^2 - (p+4)|x| + p + 3$ odrediti onu funkciju koja ima nulu $x_1 = 5$, ispitati promene i konstruisati grafik dobijene funkcije.

702. Dat je skup parabola $f(x) = (4 - m)x^2 + (5 + m)|x| - 3m - 1$. Odrediti onu parabolu ovog skupa koja sadrži tačku M(3,5), a zatim skicirati grafik dobijene parabole.

703. Dat je skup funkcija $y = ax^2 - 2x - 5$. Odrediti parametar a tako da odgovarajuća funkcija dostiže maksimalnu vrednost $y_{\text{max}} = -2$. Ispitati promene i skicirati grafik dobijene funkcije.

704. Iz skupa funkcija $y = x^2 + px + q$ odrediti onu funkciju:

- a) koja ima nule $x_1 = -2$, i $x_2 = 3$;
- b) koja ima vrednost $y_{\min} = -1$ za x = 2.

705. Dat je skup parabola $y=ax^2-(2a+1)x+2(a+1)$. Odrediti onu parabolu ovog skupa koja dostiže ekstremnu vrednost za x=2. Konstruisati grafik dobijene parabole.

706. Dokazati da se kvadratni trinom $y = ax^2 + bx + c$ (a > 0) može napisati kao kvadrat binoma ako i samo ako je $b^2 - 4ac = 0$.

707. Ako je $f(x) = ax^2 + bx + c$, dokazati da je

$$f(x+3) - 3f(x+2) + 3f(x+1) - f(x) = 0.$$

708. Ako je $f(x+1) = x^2 - 3x + 2$, odrediti f(x).

709. Ako je $f(x+a) = x^2 + x + 2$, odrediti f(x-a).

- **710.** Rešiti funkcionalnu jednačinu $f(x+2) = x^2 2x 2$, gde je f nepoznata funkcija.
- **711.** Rešiti funkcionalnu jednačinu $f(x-1) = x^2 + 3x + 2$, gde je f nepoznata funkcija. Ispitati promene i konstruisati grafik funkcije f.
- **712.** Razložiti broj 24 na dva sabirka tako da zbir kvadrata tih sabiraka bude minimalan.
- **713.** Duž a podeliti na dve duži tako da zbir kvadrata prve i dvostrukog kvadrata druge duži bude minimalan.
- $\bf 714.$ Odrediti stranicu najmanjeg kvadrata koji se može upisati u dati kvadrat stranice 8 cm.
- **715.** Komad žice 56 cm treba podeliti na dva dela; od jednog dela napraviti kvadrat, a od drugog pravougaonik čija je osnovica tri puta duža od visine. Gde treba preseći žicu da bi zbir površina tako nastalih figura bio najmanji?
- **716.** Uglovi na većoj osnovici trapeza su po 60° , a njegov obim iznosi 200 cm. Kolika mora biti osnovica trapeza da bi njegova površina bila maksimalna?
- 717. U trougao osnovice a i visine h upisati pravougaonik maksimalne površine, tako da njegova dva temena pripadaju osnovici trougla, a druga dva na ostalim dvema stranicama. Odrediti stranice i površinu pravougaonika.
- **718.** U polukrugu prečnika 10 cm upisati trapez kome je duža osnovica prečnik, tako da njegov obim ima maksimalnu vrednost.
- **719.** Neka je M proizvoljna tačka duži AB=a. Nad AM=x konstruisan je kvadrat AMCD, pa je nad duži BC ponovo konstruisan kvadrat BEFC. Odrediti položaj tačke M tako da površina šestougla ABEFCD bude što manja.
- **720.** Dat je skup parabola $y = (m-1)x^2 + 2mx + 4$ (*m* realan broj):
- a) dokazati da sve parabole datog skupa sadrže dve fiksne tačke A i B i odrediti te tačke;
- b) odrediti onu parabolu datog skupa koja dodiruje x-osu i parabolu čije je teme tačka B (B ne pripada x-osi).

721.* Dat je skup parabola $y = x^2 - (k+1)x + k$ (k realan broj):

- a) kad se parametar k menja, odrediti krivu kojoj pripadaju temena tih parabola (ta kriva se drugačije naziva geometrijsko mesto temena parabole);
- b) odrediti fiksnu tačku kroz koju prolaze sve date parabole;
- c) grafički predstaviti parabole iz datog skupa za razne vrednosti parametra $k.\,$

722.* Dat je skup parabola $y = ax^2 - 2x + 1$ (a realan broj):

- a) odrediti geometrijsko mesto temena datih parabola kada se a menja;
- b) odrediti fiksnu tačku kroz koju prolaze sve date parabole;
- c) grafički predstaviti parabole iz datog skupa za razne vrednosti parametra a.

723. Data je funkcija $f(x)=ax^2+bx+c\ (a\neq 0)$. Dokazati da je $f\left(-\frac{b}{2a}-h\right)=f\left(-\frac{b}{2a}+h\right)$, gde je h proizvoljan realan broj i geometrijski objasniti tu osobinu date funkcije.

724. Odrediti geometrijsko mesto minimuma funkcije

(6)
$$x \mapsto y = x^2 - 2(m+1)x + 2m(m+2).$$

725. Za koje je vrednosti realnog parametra a zbir kubova rešenja jednačine $6x^2+6(a-1)x-5a+2a^2=0$, najveći?

726. Date su funkcije

$$x \mapsto f(x) = x^2 + (3k+1)x + 5k$$
 i
 $x \mapsto g(x) = (k+1)x^2 + 4kx + 7k$, $(k \in \mathbb{R})$.

Odrediti najmanju vrednost funkcije $k \mapsto F(k) = 2f(k-1) + g(-1)$.

727. Date su funkcije

a)
$$x \mapsto f(x) = x^2 - 2x - 6|x - 1| + 6;$$

b)
$$x \mapsto g(x) = -x^2 - 2x + 4|x+1| - 4$$
.

Ispitati promene datih funkcija i konstruisati njihove grafike.

728. Neka su x_1 i x_2 nule kvadratne funkcije

$$x \mapsto f(x) = x^2 + px + q \quad (p, q \in \mathbb{R})$$

i neka zadovoljavaju jednakosti: a) $5x_1 + x_1x_2 + 5x_2 = 5k(k-4)$,

$$5kx_1 + 4x_1x_2 + 5kx_2 = -20(k-4); k \in \mathbb{R} \setminus \{4\};$$

b)
$$5x_1 + 2x_1x_2 + 5x_2 = 10k(k-2)$$
,

$$5kx_1 + 4x_1x_2 + 5kx_2 = -10(k-2); k \in \mathbb{R} \setminus \{2\}.$$

 1° Izraziti pi qu funkciji od k,a zatim napisati kako glasi tada funkcija.

2° Ispitati znak te funkcije.

729. Konstruisati grafik funkcije:

a)
$$x \mapsto y = |-x^2 + 4|x| - 5|$$
; b) $x \mapsto y = |x^2 - 5|x| + 6|$.

730. Odrediti najmanju vrednost izraza $x^6 + y^6$ ako je $x^2 + y^2 = 1$.

2.5. Kvadratna nejednačina. Znak kvadratnog trinoma

Odrediti znak trinoma (731–733):

731. a)
$$3x^2 - 11x - 4$$
; b) $2t^2 - 7t + 6$.

732. a)
$$-4x^2 - 6x + 4$$
; b) $-5x^2 - x + 4$.

733. a)
$$9x^2 + 12x + 4$$
; b) $-x^2 - 6x - 8$.

Rešiti nejednačine (734–736):

734. a)
$$4x^2 > 4x - 1$$
; b) $(3x - 2)^2 + (x - 2)^2 < 2$.

735. a)
$$\frac{4x - x^2}{x^2 - x + 1} \ge 0$$
; b) $\frac{x^2 - 3x + 4}{1 - x^2} > 0$.

736. a)
$$(x^2 - 4x - 5)(x^2 + 2x - 3) < 0$$
; b) $\frac{x^2 - 6x - 7}{x^2 + 2x - 8} > 0$.

737. Za koje je realne vrednosti
$$x$$
 razlomak $\frac{-x^2 + 2x - 5}{2x^2 - x - 1}$ manji od -1 ?

738. Za koje je realne vrednosti
$$x$$
 razlomak $\frac{x^2 + 2x - 63}{x^2 - 8x + 7}$ veći od 7?

739. Za koje je vrednosti
$$x$$
 razlomak $\frac{x^2-2x+3}{x^2-4x+3}$ veći od -3 ?

740. Data je jednačina $2x^2 + (a-9)x + a^2 + 3a + 4 = 0$. Odrediti realne vrednosti parametra a za koje data jednačina ima realna rešenja.

741. Jednačina $(m^2 + 5)x^2 + 2(m + 3)x + 3 = 0$ nema realnih rešenja ni za jednu vrednost parametra m. Dokazati.

 ${\bf 742.}$ Odrediti realne vrednosti parametra aza koje jednačina

$$\frac{2x}{a^2+3a} - \frac{1}{3a-a^2} = \frac{x^2+8}{a^2-9}$$

ima realna rešenja po x.

 ${\bf 743.}$ Za koje realne vrednosti parametra a jednačina

$$\frac{x-a}{x-2} + \frac{10}{x+2} + \frac{44}{x^2-4} = 0$$

ima realna rešenja po x?

744. Odrediti sve realne vrednosti parametra b za koje jednačina

$$\frac{9}{b^2 - 16} - \frac{2x}{b^2 + 4b} + \frac{x^2}{4b - b^2}$$

ima realna rešenja.

745. Za koje realne vrednosti parametra b jednačina

$$\frac{2x}{x+3} + \frac{bx-2x}{x^2-9} = \frac{x-1}{x-3}$$

ima realna rešenja po x?

746. Data je funkcija $y = (r^2 - 1)x^2 + 2(r - 1)x + 2$. Odrediti realan parametar r tako da funkcija bude pozitivna za svako realno x.

747. Odrediti sve realne vrednosti parametra r za koje je funkcija $y = rx^2 + 2(r+2)x + 2r + 4$ negativna za svako realno x.

748. Odrediti realan parametar a tako da trinom $x^2 - 2ax - 6a + 12$ bude veći od -4 za sve realne vrednosti x.

749. Koje uslove treba da zadovoljavaju koeficijenti a, b i c nejednačine $ax^2 + bx + c > 0$ da bi njena rešenja bila $x_1 < 2$ i $x_2 > 3$?

750. Koje uslove treba da zadovoljavaju koeficijenti a, b i c nejednačine $ax^2 + bx + c > 0$ ako je rešenje -1 < x < 2?

751. Ako su a, b i c dužine stranica trougla, dokazati da je trinom $b^2x^2 + (b^2 + c^2 - a^2)x + c^2$ pozitivan za svako realno x.

752. Za koje vrednosti parametra a nejednačina $\frac{ax}{x^2+4} < \frac{3}{2}$ važi za sve realne vrednosti x?

753. Za koje vrednosti parametra m nejednačine

$$-6 < \frac{2x^2 + mx - 4}{x^2 - x + 1} < 4$$

važe za sve realne vrednosti x?

754. Za koje vrednosti parametra a nejednačine

$$-3 < \frac{x^2 + ax - 2}{x^2 - x + 1} < 2$$

važe za sve realne vrednosti x?

Odrediti intervale u kojima se mora nalaziti x da bi bile zadovoljene nejednačine (755–757):

755. $|x^2 - 5x| \ge 14$.

756. a) $|x^2 - 2x - 3| < x + 1$; b) $|x^2 - x - 2| > x + 1$.

757. a) $|x^2 - 4x - 5| < x + 1$; b) $|x^2 - 2x - 3| < 3x - 3$.

758.* Data je kvadratna jednačina $4x^2=(3-m)(4x-3);\ m$ realan broj. Odrediti vrednost realnog broja m da data jednačina ima realna i različita rešenja x_1 i x_2 , koja zadovoljavaju uslov $\frac{x_1}{x_2}+\frac{x_2}{x_1}\leq \frac{14}{3}$.

759.* Data je kvadratna jednačina $4x^2=(3-a)(2x-1);\ a$ realan broj. Odrediti vrednost realnog broja a da data jednačina ima realna i različita rešenja x_1 i x_2 , koja zadovoljavaju relaciju $\frac{x_1}{x_2}+\frac{x_2}{x_1}\leq 3.$

760. Rešiti nejednačine:

a)
$$\frac{x+5}{2x-4} < \frac{x+1}{x-5} < \frac{2}{x+6}$$
; b) $\frac{2}{x+6} > \frac{x}{x-4} > \frac{x+2}{2x-4}$.

761. Odrediti sve realne vrednosti a takve da je za svako realno x, $(a-1)x^2 + 2ax + 3a - 2 > 0$ (Opštinsko takmičenje iz matematike, održano 15. decembra 1984.)

762. Rešiti nejednačine: a)
$$\left| \frac{x^2 - 3x - 4}{x^2 + x + 1} \right| < 2$$
; b) $\left| \frac{x^2 + 5x + 12}{x^2 + 9x + 12} \right| \le 1$.

763. Odrediti sve realne brojeve m takve da je funkcija:

a)
$$x \mapsto y = (m-2)x^2 - (m+1)x + m + 1$$
;

b)
$$x \mapsto y = (4m - 3)x^2 + 2(3m - 2)x + 7 - 6m$$
;

pozitivna za svako x.

764. Odrediti sve realne brojeve m takve da je funkcija:

a)
$$x \mapsto y = (m+1)x^2 - 2(m-1)x + 4m + 1$$
;

b)
$$x \mapsto y = (2m-1)x^2 + (m+2)x + m - 1;$$

negativna za svako x.

765. Za koje je vrednosti realnog broja p nejednakost

$$-9 < \frac{3x^2 + px - 6}{x^2 - x + 1} < 6$$

ispunjena za sve vrednosti x?

766.* Ako je 2y + 5x = 10, onda je ispunjena nejednakost

$$3xy - x^2 - y^2 < 7.$$

Dokazati.

 ${\bf 767.}^*$ Odrediti ktako da je za svako xispunjena nejednakost

a)
$$\left| \frac{x^2 - kx + 1}{x^2 + x + 1} \right| < 3;$$
 b) $\left| \frac{x^2 + kx + 1}{x^2 + x + 1} \right| < 2.$

768. U jednačini $kx^2 - 2(k-2)x + k - 3 = 0$ odrediti realan broj k tako da rešenja budu istog znaka.

769. Odrediti realan broj a tako da rešenja x_1 i x_2 jednačine

$$ax^2 - 2(a+6)x + 4a = 0$$

budu negativna.

770. U jednačini $(k-4)x^2 - 2(k-2)x + k - 4 = 0$ odrediti realan broj k tako da koreni jednačine budu istog znaka.

771. Data je jednačina $(m-4)x^2 + (m+2)x - m = 0$. Za koje su vrednosti realnog broja m rešenja jednačine suprotnog znaka?

772. Za koje su vrednosti realnog broja p oba korena kvadratne jednačine $x^2+2(p+1)x+9p-5=0$ negativna?

773. Za koje su vrednosti realnog broja n oba korena kvadratne jednačine $(n-2)x^2-2nx+n-3=0$ pozitivna?

774. Ispitati promene znaka rešenja kvadratne jednačine

$$(m-1)x^2 + 2(m-3)x + m + 3 = 0,$$

ako je realan broj $m \in (-\infty, +\infty)$.

775. Data je jednačina $(m+1)x^2 - 2(m-4)x + m + 4 = 0$. Diskutovati egzistenciju i znak rešenja date jednačine, ako se realni parametar m menja.

776. Data je jednačina $(1 - \lambda)x^2 - 2(1 + \lambda)x + 3(1 + \lambda) = 0$, gde je λ realan parametar. Proučiti promene znaka rešenja kada se parametar λ menja.

777. Kako se menjaju rešenja jednačine

$$(m-1)x^2 + 2(m-3)x + (m+3) = 0,$$

kada se realan parametar m menja između $-\infty$ i $+\infty$?

778. Ispitati promene znaka rešenja jednačine $mx^2 - 4x + 3m + 1 = 0$ ako je parametar $m \in (-\infty, +\infty)$.

2.6. Sistem od jedne linearne i jedne ili dve kvadratne jednačine sa dve nepoznate

Definicija 1. Sistem od jedne linearne i jedne kvadratne jednačine sa dve nepoznate jeste konjunkcija tih jednačina.

Definicija 2. Sistem od dve kvadratne jednačine sa dve nepoznate jeste konjunkcija tih jednačina.

Definicija 3. Rešenje sistema jeste presek skupova rešenja jednačina koje čine taj sistem.

Konjunkcija

$$Ax + By + C = 0 \wedge ax^{2} + bxy + cy^{2} + dx + ey + f = 0$$

jeste opšti oblik sistema od jedne linearne i jedne kvadratne jednačine. Uređen par (α, β) naziva se rešenje datog sistema ako je

$$A\alpha + B\beta + C = 0 \wedge a\alpha^2 + b\alpha\beta + c\beta^2 + d\alpha + e\beta + f = 0.$$

Odrediti skup realnih rešenja sistema (779–893):

779. a)
$$x^2 + y^2 = 29 \land x + y = 7$$
; b) $x^2 - y^2 = 16 \land x - y = 2$.

780. a)
$$2x^2 + 2y^2 + 3x - 2 = 0 \land x - 2y = -2$$
;

b)
$$x^2 - 8x - y + 15 = 0 \land x + y = 5$$
.

781.
$$3x^2 + 2xy + 2y^2 + 3x - 4y = 0 \land 2x - y + 5 = 0$$
.

782.
$$9x^2 + 6xy + y^2 - 72x - 24y + 135 = 0 \land 3x - y - 9 = 0.$$

783.
$$3x^2 + 2xy - y^2 + 6x + 4y = 3 \land x - 5y = -5$$
.

784. a)
$$\frac{1}{x} + \frac{1}{y} = \frac{9}{20} \land x - y = -1;$$

b)
$$\frac{3}{x-3} - \frac{6}{y-2} = 1 \land \frac{2}{x-2} - \frac{1}{y-4} = 0.$$

785. a)
$$\frac{x^2 + y + 1}{y^2 + x + 1} = \frac{3}{2} \land x - y = 1;$$

b)
$$\frac{3x-1}{x-1} + \frac{2y-1}{y-1} = 7 \land x - y = 1.$$

786.
$$\frac{2x-y}{x+y} + \frac{x+4y}{x^2-y^2} = 3 \land x+y = 3.$$

787. a)
$$xy = 3a^4 \wedge ax + y = 4a^2$$
; b) $x + y = 5a \wedge xy = 6a^2$.

788.
$$a^2b^2(x^2-y^2) = a^4 - b^4 \wedge ab(x+y) = a^2 + b^2$$
.

789.
$$(a^2 - b^2)xy = ab \wedge (a^2 - b^2)(x + y) = a^2 + b^2$$
.

790.
$$xy = (m^2 - 1)(m + 1) \land x + y = my$$
.

791.
$$x^2 + y^2 = 2a^2 \wedge x + y = 2a$$
. **792.** $x + y = b \wedge xy = a(b - a)$.

793.
$$x - 2xy + y = 11 \land x + 2xy + y = -13$$
.

794.
$$x^2 + y^2 + x + y = 18 \land x^2 - y^2 + x - y = 6$$
.

795.
$$2x^2 + 3y^2 = 12 \wedge 5x^2 - 2y^2 = 11$$
.

796.
$$x^2 + y = 13 \wedge x^2 + y^2 = 25$$
. **797.** $x^2 - y^2 = 5 \wedge x^2 + y = 11$.

798.
$$x^2 + y^2 = 34 \land xy = -15$$
. **799.** $9x^2 + y^2 = 45 \land xy = 6$.

800.
$$x^2 + xy = 16 \land y^2 + xy = 48.$$
 801. $\frac{x}{y} + \frac{y}{x} = 2, 9 \land xy = 10.$

802.
$$\frac{x}{y} + \frac{y}{x} = \frac{13}{6} \wedge x^2 + y^2 = 13.$$
 803. $x^2 - y^2 = 21 \wedge \frac{x}{y} - \frac{y}{x} = \frac{21}{10}.$

804.
$$x - y - xy + 13 = 0 \land xy(x - y) = 30.$$

805.
$$x + y - 2xy + 17 = 0 \land xy(x + y) = 84.$$

806.
$$2x^{-2} + 4y^{-2} = 3 \wedge 3x^{-1} - 2y^{-1} = 2$$
.

807.
$$\frac{1}{x+y} - \frac{1}{x-4y^2} = -\frac{1}{10} \wedge \frac{1}{x+y} + \frac{1}{x-4y^2} = \frac{3}{10}$$
.

808.
$$\frac{x}{y} + \frac{y}{x} = \frac{26}{5} \wedge x^2 - y^2 = 24.$$
 809. $\frac{x+y}{x-y} + \frac{x-y}{x+y} = \frac{26}{5} \wedge xy = 6.$

810.
$$\frac{x+y}{x-y} - \frac{x-y}{x+y} = \frac{9}{20} \wedge x^2 + y^2 = 82$$

811.
$$x^2 - 3xy + y^2 = 11 \land xy = 5$$
.

812.
$$x^2 + y^2 + 2x - 6y + 5 = 0 \land x^2 + y^2 - 17 = 0$$
.

813.
$$(x+2)^2 + (y-2)^2 = 10 \wedge (x+1)^2 + (y-1)^2 = 8$$
.

814.
$$x^2 + 5y^2 - 3xy - 5y + 2 = 0 \land 2x^2 + 3y^2 - 6xy - 4y + 5 = 0$$
.

815.
$$4x^2 + 6xy + 3y^2 - 6x = 7 \wedge 3x^2 + 6xy + 3y^2 - 9x = 3$$
.

816.
$$x^2 - 5y^2 - 3x - y + 22 = 0 \land (x - 3)(y - 2) = y^2 - 3y + 2$$
.

817.
$$x^2 + y^2 = \frac{5m^2}{4} \wedge xy = \frac{m^2}{2}$$
. **818.** $x^2 + y^2 = \frac{13a^2}{36} \wedge xy = \frac{a^2}{6}$

819.
$$x^2 + y = 9 \wedge x^2 y = 20$$
. **820.** $x^2 y - xy^2 = 2 \wedge x - y = 1$.

821.
$$x^2y + xy^2 = 30 \land x + y = 5$$
.

822.
$$4x^2 + 2xy + 6x = 27 \wedge x^2 - 5xy + 6y^2 = 0$$
.

823.
$$x^2 + 2xy + y^2 = 25 \wedge x^2 - 2xy + y^2 = 1$$
.

824.
$$x^2 + 3xy - 8y^2 = 20 \land x^2 - y^2 = 15.$$

825.
$$284x^2 - 49xy - 92y^2 = 14 \wedge 7x^2 - 2xy - y^2 = 7$$
.

826.
$$2x^2 - 3xy + 2y^2 = 4 \wedge x^2 + xy + y^2 = 7$$
.

827.
$$x^2 + xy + y^2 = 3 \wedge 3x^2 + 4xy + 3y^2 = 10$$
.

828.
$$x^2 + xy = a^2 \wedge xy + y^2 = b^2$$
.

829.
$$3x^2 - 2xy + y^2 = 9 \wedge 5x^2 - 4xy + y^2 = 5$$
.

830.
$$x^2 + xy + y^2 - 2x - 2y - 1 = 0 \land 3x^2 + 3xy - 2y^2 - 6x + 4y - 8 = 0$$
.

831.
$$x + xy + y = 19 \land x^2y + xy^2 = 84$$
.

832.
$$x^3 + y^3 = 26 \land x + y = 2$$
.

833.
$$xy(x+y) = 42 \wedge x^2y^2(x^2+y^2) = 1078.$$

834.
$$x^3 + x^3y^3 + y^3 = 17 \land x + xy + y = 5$$
.

835.
$$(x^2 + y^2)(x^3 + y^3) = 280 \land x + y = 4.$$

836.
$$x^2 + y\sqrt{xy} = 420 \wedge y^2 + x\sqrt{xy} = 280.$$

837.
$$x^2 + y\sqrt[3]{x^2y} = 17 \wedge y^2 + x\sqrt[3]{xy^2} = 68.$$

838.
$$(x+y)^2 - 4(x+y) = 45 \wedge (x-y)^2 - 2(x-y) = 3.$$

839.
$$x^2 + y^2 + 2x - 10y + 6 = 0 \wedge 3x^2 + 3y^2 + 4x - 6y - 4 = 0$$
.

840.
$$\sqrt{\frac{6x}{x+y}} + \sqrt{\frac{x+y}{6x}} = \frac{5}{2} \wedge xy - x - y = 0.$$

841.
$$2x^2 - 15xy + 4y^2 - 12x + 45y = 24 \land x^2 + xy - 2y^2 - 3x + 3y = 0$$
.

842.
$$x^2 + 2xy - 8y^2 - 6x + 18y - 7 = 0 \land 2x^2 - 5xy - 10y^2 - 3x + 9y + 7 = 0$$
.

843.
$$3x^2 + 2xy + y^2 = 11 \land x^2 + 2xy + 3y^2 = 17.$$

840.
$$x^3 + y^3 = 1 \wedge x^2y + 2xy^2 + y^3 = 2$$
.

845.
$$x^3 + 3xy^2 = 158 \wedge 3x^2y + y^3 = -185.$$

846.
$$\sqrt{\frac{y+1}{x-y}} + 2\sqrt{\frac{x-y}{y+1}} = 3 \land x + xy + y = 7.$$

847.
$$x - y + \sqrt{\frac{x - y}{x + y}} = \frac{20}{x + y} \wedge x^2 + y^2 = 34.$$

848.
$$(x+y+1)^2 + (x+y)^2 = 25 \wedge x^2 - y^2 = 3$$
.

849.
$$x^3 + y^3 = 9a^3 \wedge x^2y + xy^2 = 6a^3 \ (a \neq 0).$$

850.
$$x^4 + x^2y^2 + y^4 = 91 \land x^2 + xy + y^2 = 13.$$

851.
$$x^4 + y^2 = 17 \wedge x^2 + y^2 = 5$$
. **852.** $\frac{x^3}{y} + xy = 40 \wedge \frac{y^3}{x} + xy = 10$.

853.
$$(x-y)(x^2-y^2) = 3a^3 \wedge (x+y)(x^2+y^2) = 15a^3$$
.

854.
$$x^2 + 2y + \sqrt{x^2 + 2y + 1} = 1 \land 2x + y = 2$$
.

855.
$$x^3 + y^3 = 19 \wedge xy^2 + x^2y = -6$$
.

856.
$$x^3 + y^3 = 5a^3 \wedge xy(x+y) = a^3$$
.

857.
$$(x+2y)^2 - 3(xy+3) = 2(14+y^2) \wedge (2x+y)^2 - 2(x^2+xy+1) = 24$$
.

858.
$$(x-4y)^2 + 3xy = 2(8+y^2-x^2) \wedge (x-2y)^2 + y(3x+2y) = 8.$$

859.
$$(2x-y)^2 + 3x^2 - 2y(y-x) = 7 \wedge \frac{71x^2 - 23y^2}{2 + 7xy} = \frac{7}{4}$$
.

860.
$$(x-y)^2 + 2y(2x+y) = 17 \wedge (x-y)^2 + 2x(x+2y) = 11.$$

861.
$$(x^2 + y^2)(x^3 + y^3) = 1105 \land x + y = 5.$$

862.
$$(x+y)(x^3+y^3) = 931 \wedge x^2 + y^2 = 29$$
.

863.
$$x^3 - y^3 = 152 \land x - y = 2$$
.

864.
$$x^3 - y^3 = 98 \wedge x^2 + xy + y^2 = 49.$$

865.
$$\sqrt{x} + \sqrt{y} = 8 \land x + y + xy = 259.$$

866.
$$\sqrt{xy} = 6 \wedge x^2 + y^2 + xy = 133.$$

867.
$$\sqrt{x} + \sqrt{y} = 5 \land xy = 23 + x + y$$
.

868.
$$x + y + xy = 169 \land 2(x + y) + \sqrt{x + y} = 55.$$

869.
$$x + y + \sqrt{x + y} = 30 \land xy + \sqrt{xy} = 156.$$

870.
$$xy - 6\sqrt{x+y} = 114 \wedge 3\sqrt{x+y} - \sqrt{xy} = 3$$
.

871.
$$2\sqrt{x+y} + xy = 20 \land xy + 5(x+y) = 59.$$

872.
$$\frac{x-y}{\sqrt{x}-\sqrt{y}}=5 \land \sqrt{xy}=6.$$
 873. $xy+\sqrt{xy}=42 \land x^2+y^2=97.$

874.
$$\sqrt[3]{x} + \sqrt[3]{y} = 7 \land x + y = 133.$$

875.
$$x + y - \sqrt{x + y} = 6 \wedge x^3 + y^3 = 189.$$

876.
$$xy - y^2 = 56 \wedge x^2 - 2xy = 15$$
.

877.
$$4x(x-y) + 3y^2 = 4xy \wedge x^2 + y^2 = 13(x-y)$$
.

878.
$$(x+y)(x-y) = 24 \wedge x^2 + y^2 = xy + 39.$$

879.
$$2(x^2 - 8) + y^2 = xy \wedge x(x + y) = 2(22 - y^2).$$

880.
$$x^2 + 2xy - 7y^2 = 28 \wedge 2x^2 - xy - 3y^2 = 42$$
.

881.
$$x^2 - xy - 2y^2 = 18 \wedge x^2 - 3xy - y^2 = 9$$
.

882.
$$\frac{x}{y} - \frac{y}{x} = \frac{15}{4} \wedge x^2 + 4y^2 = 45.$$

883.
$$\frac{4x}{y} + \frac{y}{x} = 5 \wedge 8x^2 + 3xy + y^2 = 1.$$

884.
$$x^2 - 2xy + 2y^2 = 10 \wedge 3x^2 + xy - y^2 = 9$$
.

885.
$$x^2 + xy = 2a(a+b) \wedge y^2 + xy = 2a(a-b)$$
.

886.
$$3x^2 - y^2 = 3m^2 \wedge xy + y^2 = 15m^2$$
.

887.
$$3x^2 - xy + 4y^2 = 2a^2 \wedge 9x^2 - 4y^2 = 3a^2$$
.

888.
$$x^2 + xy = 2m(m+1) \wedge y^2 - xy = 2(1-m)$$
.

889.
$$3(x^2+y^2)-y(x-y)=84a^2\wedge x^2+2xy+12a^2=0.$$

890.
$$x^2 - xy = m^2y \wedge xy - y^2 = 9x$$
.

891.
$$x^2 + xy = a \wedge y^2 + xy = m$$
.

892.
$$x = m\sqrt{x+y} \land y = 2\sqrt{x+y}$$
.

893.
$$\sqrt{\frac{x+y}{x-y}} + \sqrt{\frac{x-y}{x+y}} = \frac{a}{b} \wedge x^2 - y^2 = 4b^2.$$

Rešiti sisteme (894–904):

894.
$$x + y + z = 11 \land x^2 + y^2 + z^2 = 49 \land x(y + z) = 5yz$$
.

895.
$$x + y + z = 24 \land x^2 + y^2 + z^2 = 200 \land z^2 - x^2 - y^2 = 0$$
.

896.
$$x^2 + y^2 = 29 \land y^2 + z^2 = 34 \land x^2 + z^2 = 13.$$

897.
$$x^2 + xy + xz = 20 \land xy + y^2 + yz = 50 \land xz + yz + z^2 = 30$$
.

898.
$$x + y = 18xyz \land y + z = 30xyz \land z + x = 24xyz$$
.

899.
$$x + y - z = 0 \land xz + yz - xy = 28 \land xy = 8$$
.

900.
$$x^2 + x(y+z) = 8 \wedge y^2 + y(x+z) = 3 \wedge z^2 + z(x+y) = 5.$$

901.
$$x^2 + y^2 = 2(a^2 + b^2) \wedge x^2 + z^2 = (a + b)^2 \wedge y^2 + z^2 = (a - b)^2$$
.

902.
$$x + y + z = (a + b)^2 \wedge x^2 + y^2 + z^2 = a + 4a^2b^2 + b^4 \wedge xy = a^2b^2$$
.

903.
$$(x+y)(z+x) = a \wedge (y+z)(x+y) = 2a \wedge (z+x)(y+z) = 2$$
.

904.
$$x + y + z = 3m^2 + 2 \wedge x^2 + y^2 - 2z^2 = 2m(4 - 3m)$$

 $\wedge z^2 - xy = 5m^2 + 4m + 8$.

Odrediti realan broj k za koje sistem (905–909) u skupu realnih brojeva: 1° ima rešenja, 2° ima dva rešenja, 3° nema rešenja.

905.
$$x^2 - y^2 = 7 \wedge 4x - 3y + k = 0$$
.

906.
$$5x^2 + k^2y^2 = 5k^2 \wedge x - 4y - 10 = 0.$$

907.
$$4x^2 + y^2 = 8 \wedge 2x + y - k = 0$$
.

908.
$$(k-1)x^2 - y^2 - x + 3(y+1) = 0 \land y^2 - x^2 - kx - 3y + 1 = 0.$$

909.
$$2x^2 + y^2 + 2x(2-k) + 2y - 3 = 0 \land x^2 + y^2 - 2x - 2(k-y) = 0.$$

910. Odrediti realne vrednosti parametra a za koje sistem

$$x^2 + y^2 - 4x - 2y = 0 \land y = ax + 10$$

u skupu realnih brojeva: 1° ima jedno rešenje, 2° ima dva rešenja, 3° nema rešenja.

911. Odrediti realne vrednosti parametra a za koje sistem

a)
$$x^2 + y^2 = 12 \land y = ax + 4$$
;

b)
$$x^2 + a^2y^2 = 3a^2 \wedge x + y = 3$$
, u skupu realnih brojeva:

1° ima jedno rešenje, 2° ima dva rešenja, 3° nema rešenja.

912. Odrediti sve realne vrednosti realnog broja k da sistem ima realna rešenja. Za granične vrednosti k rešiti sistem:

a)
$$4x^2 - 8(k+1)xy + (8k^2+1)y^2 = 0 \land 4x^2 - 6xy - 5y^2 - 2x - y + 1 = 0$$
;

b)
$$(5k^2+1)x^2+(4k-1)xy+y^2=0 \land 2x^2-4xy+2y^2+x-y-1=0$$
.

913. Dokazati da samo za jednu vrednost realnog broja k sistem ima realna rešenja, zatim odrediti ta rešenja.

a)
$$x^2 + 4(k+1)xy + 5(k^2+4)y^2 = 0 \land x^2 + 8xy - 12y^2 - 3x - 10y + 12 = 0$$
;

b)
$$x^2 + 6xy + y^2 - 4x + 2y - 6 = 0 \land 5(k^2 + 1)x^2 + 2(2k + 1)xy + y^2 = 0$$
.

Grafički rešiti sledeće sisteme (914–919):

914.
$$x^2 - 2x + y + 4 = 0 \land x + y + 2 = 0$$
.

915.
$$xy = 12 \land x + y = 7$$
. **916.** $x^2 - 8x - y + 15 = 0 \land x + y - 5 = 0$.

917.
$$x^2 - y = 1 \land x + y = 5$$
. **918.** $xy = 2 \land x - y = 1$.

919.
$$xy = -6 \wedge x + y = 1$$
.

920. Obim pravougaonika iznosi 28 $\rm cm^2$ a njegova površina 48 $\rm cm^2.$ Odrediti stranice pravougaonika.

921. Odrediti dva broja čiji je zbir 25, a zbir njihovih kvadrata 313.

922. Zbir jednog razlomka i njegove recipročne vrednosti je 2,9 a zbir brojioca i imenioca je 7. Odrediti taj razlomak.

923. Zbir cifara jednog dvocifrenog broja je 8, a proizvod tog broja i broja napisanog istim ciframa obrnutim redosledom je 1855. Naći taj broj.

924. Proizvod cifara dvocifrenog broja je 16, a deljenjem tog broja zbirom njegovih cifara dobija se količnik 8 i ostatak 2. Odrediti taj broj.

925. Zbir površina kvadrata konstruisanih nad dvema susednim stranicama pravougaonika jednak je $74~{\rm m}^2$, a zbir obima tih kvadrata je $48~{\rm m}$. Odrediti stranice pravougaonika.

926. Dva poligona imaju ukupno 20 stranica i 95 dijagonala. Koliko stranica ima svaki od tih poligona?

927.* U skupu prirodnih brojeva rešiti jednačinu

$$2x^2 + 5xy - 12y^2 = 28.$$

928.* U skupu celih brojeva rešiti sistem jednačina:

a)
$$x + y + z = 14 \land x + yz = 19$$
; b) $x^2 - y^2 - z^2 = 1 \land y + z - x = 3$.

929.* U skupu prirodnih, a zatim u skupu celih brojeva rešiti sistem $8x+5y+z=100 \wedge x+y+z=20.$

930.* U skupu prirodnih brojeva rešiti sistem

$$x^{2} + 5y^{2} + 4z^{2} + 4xy + 4yz = 125 \land x^{2} + 3y^{2} - 4z^{2} + 4xy - 4yz = 75.$$

931. Ako je α unutrašnji ugao jednog pravilnog poligona, a β unutrašnji ugao drugog poligona, koji poligoni imaju osobinu da je $\alpha: \beta = 3: 2$?

932. Rezultanta dveju sila koje deluju u jednoj tački pod pravim uglom je 17 N. Ako veću silu smanjimo za 3 N, a drugu uvećamo za 8 N, rezultanta postaje 20 N . Odrediti veličinu sile.

2.7. Iracionalne jednačine i nejednačine

Definicija. Jednačine kod kojih se nepoznata nalazi pod korenom nazivaju se iracionalnim jednačinama. Za iracionalnu jednačinu oblika

$$\sqrt{P} = Q$$
, $(P = P(x), Q = Q(x))$

važi sledeća:

Teorema. Jednačina oblika $\sqrt{P}=Q$ ekvivalentna je sistemu

$$P > 0 \land Q > 0 \land P = Q^2$$
.

Za jednačinu oblika $\sqrt{P(x)} \pm \sqrt{Q(x)} = R(x)$ treba najpre odrediti zajedničku definicionu oblast izraza $\sqrt{P(x)}$ i $\sqrt{Q(x)}$. Zatim se primenjuje prethodna teorema. Skup rešenja jednačine je podskup definicionog skupa tih izraza.

Odrediti realna rešenja sledećih jednačina (933–955):

933.
$$\sqrt{25-x^2}=7-x$$
. **934.** $1+\sqrt{x^2-9}=x$.

935.
$$\sqrt{2x^2+7}=x^2-4$$
. **936.** $\sqrt{x^2-5x+10}=8-2x$.

937.
$$4 + \sqrt{3x^2 - 20x + 16} = x$$
. **938.** $\sqrt{(y-2)(4y+1)} = 2(y+1)$.

939.
$$\sqrt{12-x\sqrt{x^2-8}}=3$$
. **940.** $\sqrt{4+x\sqrt{x^2-7}}=4$.

941.
$$\sqrt{y+7+\sqrt{y^2-27}}=2$$
. **942.** $\sqrt{x^2-6\sqrt{x^2-33}}=5$.

943.
$$\sqrt{x^2-2+\sqrt{x+2}}=x$$
. **944.** $\sqrt{x^2\sqrt{x^2-1}}=-x$.

945.
$$\sqrt{9x^2 - \sqrt{36x^2 - 11}} = 3x - 1$$
. **946.** $\sqrt{1 - \sqrt{x^4 - x^2}} = x - 1$.

947.
$$\sqrt{7x+1} - \sqrt{3x-18} = 5$$
. **948.** $\sqrt{2x+8} + \sqrt{x+5} = 7$.

949.
$$\sqrt{10+x} - \sqrt{10-x} = \sqrt{2x-8}$$
.

950.
$$\sqrt{2x+14}-\sqrt{x-7}=\sqrt{x+5}$$
. **951.** $\sqrt{x+3}+\sqrt{x+8}=\sqrt{x+24}$.

952.
$$\sqrt{4x+6} + \sqrt{4x-6} = \sqrt{12x+6}$$
.

953.
$$3\sqrt{x-2} - 2\sqrt{x-5} = \sqrt{3x-2}$$
.

954.
$$\sqrt{8-\sqrt{z+1+\sqrt{2z^2+z+3}}}=2.$$

955.
$$\frac{1}{\sqrt{2+x}-\sqrt{2-x}}-\frac{1}{\sqrt{2+x}+\sqrt{2-x}}=1.$$

Uvođenjem nove nepoznate, rešiti sledeće jednačine (956–983):

956.
$$\sqrt{x^2-9}+x^2-9=20$$
. **957.** $x^2-2x+\sqrt{x^2-2x+6}=6$.

958.
$$\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1$$
.

959.
$$\sqrt{2x^2+x+\sqrt{2x^2+x-1}}=\sqrt{13}$$
.

960.
$$\sqrt{3x^2 - 7x - 2\sqrt{3x^2 - 7x - 5}} = 2x$$

961.
$$\sqrt{y^2 + 4y + 8} + \sqrt{y^2 + 4y + 4} = \sqrt{2y^2 + 8y + 12}$$
.

962.*
$$\sqrt{x-\frac{1}{x}} - \sqrt{1-\frac{1}{x}} = 1-\frac{1}{x}, (x \neq 0).$$

963.
$$\frac{x\sqrt[3]{x}-1}{\sqrt[3]{x^2}-1} - \frac{\sqrt[3]{x^2}-1}{\sqrt[3]{x+1}} = 4.$$
 964. $\sqrt{5+\sqrt[3]{x}} + \sqrt{5-\sqrt[3]{x}} = \sqrt[3]{x}.$

965.
$$\sqrt{x\sqrt[5]{x}} - \sqrt[5]{x\sqrt{x}} = 56$$
. **966.** $2\sqrt[3]{x} + 5\sqrt[6]{x} - 18 = 0$.

967.
$$\sqrt[5]{\frac{16x}{x-1}} + \sqrt[5]{\frac{x-1}{16x}} = 2, 5.$$

968.
$$\sqrt[3]{(a+x)^2} + 4\sqrt[3]{(a-x)^2} = 5\sqrt[3]{a^2-x^2}$$

969.
$$\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1.$$

970.
$$\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}$$
.

971.
$$\sqrt{x-3-2\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=1$$
.

972.
$$\sqrt{x-2\sqrt{x-1}} + \sqrt{x+3-4\sqrt{x-1}} = 1$$
.

973.
$$\sqrt{(x-1)^2} - \sqrt[4]{(x+1)^2} = 1, 5\sqrt{x^2-1}$$
.

974.
$$2x^2 + 3x - 5\sqrt{2x^2 + 3x + 9} = -3$$
.

975.
$$x^2 + \sqrt{x^2 + 2x + 8} = 12 - 2x$$
.

976.
$$\sqrt[3]{(8-x)^2} + \sqrt[3]{(27+x)^2} - \sqrt[3]{(8-x)(27+x)} = 7.$$

977.
$$6\sqrt[3]{x-3} + \sqrt[3]{x-2} = 5\sqrt[3]{(x-2)(x-3)}$$

978.
$$\sqrt[3]{4(3x+4)} - \sqrt[3]{3(4x-7)} = 1$$
.

979.
$$\sqrt[3]{9-\sqrt{x+1}}+\sqrt[3]{7+\sqrt{x+1}}=4.$$

980.
$$(x + \sqrt{x^2 - 1})^5 \cdot (x - \sqrt{x^2 - 1})^3 = 1.$$

981.
$$\sqrt[4]{x+15} - \sqrt[4]{x-1} = 2$$
. **982.** $\sqrt{x^2+17} - \sqrt[4]{x^2+17} = 6$.

983.
$$\sqrt[5]{(7x-3)^3} + 8\sqrt[5]{(3-7x)^{-3}} = 7.$$

Rešiti sledeće jednačine po x (984–1016):

984.
$$\sqrt{a-x} + \sqrt{b-x} = \frac{b}{\sqrt{b-x}}$$
 $(a, b > 0).$

985.
$$\frac{(x-b)\sqrt{a-x} - (x-a)\sqrt{b-x}}{\sqrt{a-x} - \sqrt{b-x}} = x.$$

986.
$$\frac{3}{x+\sqrt{5-x^2}} + \frac{3}{x-\sqrt{5-x^2}} = 4.$$

987.
$$\frac{1}{\sqrt{x^2+5}+x} + \frac{1}{\sqrt{x^2+5}-x} = \frac{6}{5}$$
.

988.
$$\frac{1}{2x - \sqrt{4 - x^2}} - \frac{1}{2x + \sqrt{4 - x^2}} = 0.$$

989.
$$\frac{a^2}{x + \sqrt{a^2 - x^2}} + \frac{a^2}{x - \sqrt{a^2 - x^2}} = 2x.$$

990.
$$\frac{x}{2m - \sqrt{4m^2 - x^2}} - \frac{x}{2m + \sqrt{4m^2 - x^2}} = \frac{2m\sqrt{3}}{x}$$
 $(m > 0)$.

991.
$$\frac{\sqrt{a+x}-\sqrt{a-x}}{\sqrt{a+x}+\sqrt{a-x}} = \frac{x}{a}$$
. **992.** $\frac{\sqrt{m+x}+\sqrt{m-x}}{\sqrt{m+x}-\sqrt{m-x}} = \frac{m}{x}$.

993.
$$2\sqrt{x+3a^2} - \sqrt{x-5a^2} = 5a$$
.

994.
$$2\sqrt{x+4m^2}-\sqrt{x-4m^2}=5m$$
. **995.** $\frac{a+\sqrt{m^2+x}}{m+\sqrt{a^2-x}}=\frac{a}{m}$.

996.
$$\frac{\sqrt{a} + \sqrt{\frac{x}{a-m} - m}}{\sqrt{m} + \sqrt{\frac{x}{a-m} - a}} = \sqrt{\frac{a}{m}}$$

997.
$$\sqrt{x-9} - \sqrt{x+3} + \sqrt{x+12} = \sqrt{x-4}$$
.

998.
$$\sqrt{2x+3} - \sqrt{3x} = \sqrt{2x+5} - \sqrt{3x+2}$$

999.
$$\sqrt{5 + \sqrt{4 + \sqrt{x(x-10)}}} = 3.$$

1000.
$$\sqrt{4-\sqrt{x}}+\sqrt{3-\sqrt{x}}=\sqrt{7-2\sqrt{x}}$$
.

1001.
$$\sqrt{x^2 + 2a\sqrt{a^2 + x^2}} - x = a$$
.

1002.
$$a - \sqrt{a^2 - \sqrt{\left(\frac{a}{x}\right)^2 + \frac{1}{x^4}}} = \frac{1}{x}.$$

1003.
$$\sqrt{a - \sqrt{x(a+x)}} + \sqrt{x} = \sqrt{a}$$
.

1004.
$$\sqrt{x + \sqrt{2x}} + \sqrt{x - \sqrt{2x}} = \frac{3\sqrt{2x}}{\sqrt{x + \sqrt{2x}}}$$
.

1005.
$$\sqrt[3]{\frac{x+3}{x-4}} + \sqrt[3]{\frac{x-4}{x+3}} = \frac{5}{2}$$
. **1006.** $\sqrt[3]{3x+2} + \sqrt[3]{7-3x} = 3$.

1007.
$$\sqrt[3]{5x+17} = 2 + \sqrt[3]{5x-9}$$
. **1008.** $\sqrt[3]{2(13+x)} = 5 - \sqrt[3]{9-2x}$.

1009.
$$\sqrt[3]{3x+58} = 2 + \sqrt[3]{3x+2}$$
.

1010.
$$\sqrt[3]{(m+7x)^2} + 4\sqrt[3]{(m-7x)^2} = 5\sqrt[3]{(m+7x)(m-7x)}$$
.

1011.
$$\sqrt[4]{x(4-x)(1+x)(1-x)+3x-2} = \sqrt{x(2-x)}$$
.

1012.
$$\sqrt{x-1} = \sqrt[6]{x^3 - x^2 - 6}$$
. **1013.** $\sqrt[3]{30 - \sqrt[4]{16x + 75}} = 3$.

1014.
$$\sqrt[4]{25-3\sqrt[3]{15x-13}}=2$$
. **1015.** $\sqrt[3]{2(x+2)}=\sqrt[6]{15x^2+4x-4}$.

1016.
$$\sqrt[n]{a+2x} = \sqrt[2n]{3x(x+2a)+b^2}$$
.

1017. U skupu realnih brojeva tačna je ekvivalencija

$$\sqrt{g(x)} < f(x) \iff (f(x) > 0 \land g(x) \ge 0 \land g(x) < (f(x))^2).$$

Dokazati.

1018. U skupu realnih brojeva tačna je ekvivalencija:

$$\sqrt{g(x)} > f(x) \Longleftrightarrow (g(x) > 0 \land f(x) < 0) \lor (g(x) > (f(x))^2 \land f(x) \ge 0).$$

Dokazati.

Rešiti nejednačine (1019–1049):

1019.
$$\sqrt{x+7} > 2x-1$$
. **1020.** $\sqrt{x+6} < x-6$.

1021.
$$\sqrt{(x+2)(x-6)} < 8-x$$
.

1022. a)
$$\sqrt{3x-7} > 3$$
; b) $\sqrt{x+2} > x$.

1023. a)
$$\sqrt{\frac{1-x}{2x-5}} < 3$$
; b) $\sqrt{x^2-x-12} > 7+x$.

1024.
$$\sqrt{x^2 - 3x - 10} < 8 - x$$
. **1025.** $3\sqrt{6 + x - x^2 + 2} > 4x$.

1026.
$$\sqrt{2x+1} + \sqrt{x-1} < 1$$
. **1027.** $\sqrt{2x+1} - \sqrt{x+8} > 3$.

1028.
$$\sqrt{5x+6} > \sqrt{x+1} + \sqrt{2x-5}$$
. **1029.** $\sqrt{6-x-x^2} < \sqrt{3x+6}$.

1030.*
$$\sqrt{x^2 - 8x + 15} + \sqrt{x^2 + 2x - 15} > \sqrt{4x^2 - 18x + 18}$$
.

1031.
$$\sqrt{x^2 + 4x + 4} < x + 6$$
. **1032.** $\sqrt{x+1} > 5 - x$.

1033.
$$(1+x)\sqrt{x^2+1} > x^2-1$$
. **1034.** $\sqrt{9-x^2} + \sqrt{6x-x^2} > 3$.

1035.
$$\sqrt{x+6} > \sqrt{x+1} + \sqrt{2x-5}$$
. **1036.** $\sqrt{x} + \sqrt{x-1} > \sqrt{x+1}$.

1037.
$$2x - 1 > \sqrt{x^2 - 3x + 2}$$
. **1038.*** $\frac{\sqrt{2 - x^4}}{x} < 1$.

1039.*
$$\sqrt{x} + \sqrt[3]{1-x} > 1$$
. **1040.** $\sqrt{x-2} < 4-x$.

1041.
$$\sqrt{x^2 - 3x + 2} > x - 2$$
. **1042.** $\sqrt{3 - x} - \sqrt{x + 1} > 0, 5$.

1043.*
$$\frac{1 - \sqrt{1 - 2x^2}}{x} \le 1$$
. **1044.*** $\frac{4x^2}{(1 - \sqrt{1 + 2x})} < 2x + 9$.

1045.
$$\frac{\sqrt{x}+x}{\sqrt{x}-1} \le 6\sqrt{x}$$
. **1046.*** $\frac{1}{x+\sqrt{2-x^2}} + \frac{1}{x-\sqrt{2-x^2}} \ge 0, 5$.

1047.
$$\frac{1}{\sqrt{1+x}} - \frac{1}{\sqrt{1-x}} \ge 1$$
. **1048.** $2(2x-1) < 3\sqrt{-x^2+x+6}$.

1049.
$$\sqrt{(2x-3)(x+1)} < x-1$$
.

III GLAVA

3. EKSPONENCIJALNA I LOGARITAMSKA FUNKCIJA

3.1. Eksponencijalna funkcija

Definicija 1. Funkcija $x\mapsto y=a^x\ (a>0,\, a\neq 1)$ naziva se eksponencijalna funkcija.

Domen eksponencijalne funkcije je skup realnih brojeva $\mathbb{R},$ a kodomen \mathbb{R}^+

Definicija 2. Jednačina kod koje se nepoznata nalazi u eksponentu stepena naziva se eksponencijalna jednačina.

1050. Ispitati promene i skicirati grafik funkcije $y = 3^x$.

1051. Skicirati grafik funkcije $y = \left(\frac{1}{3}\right)^x$.

1052. Skicirati grafike funkcija:

a)
$$y = 0, 5^x$$
; b) $y = 0, 5^{-x}$; c) $y = 0, 2^x$; d) $y = 0, 2^{-x}$.

1053. Grafički predstaviti preslikavanje f dato sa

$$f(x) = \begin{cases} 2^{-x} & (x < -1), \\ 2 & (-1 \le x \le 1), \\ 2^{x} & (x > 1). \end{cases}$$

1054. Grafički predstaviti preslikavanje f dato sa

$$f(x) = \begin{cases} 3^x & (x \le -1), \\ 3^{-1} & (-1 \le x \le 1), \\ 3^{-x} & (x \ge 1). \end{cases}$$

1055. Skicirati grafike funkcija:

a)
$$y = 2^{\sqrt{x^2}}$$
; b) $y = 3^{-\sqrt{x^2}}$.

1056. Koristeći grafike funkcija $y=2^x$ i $y=3^x$ konstruisati grafike funkcija:

a)
$$y = 2^x - 2$$
; b) $y = 2^x + 1$; c) $y = 3^x - 0.5$; d) $y = 3^x + 0.5$.

1057. Koristeći grafik funkcije $y = 2^x - 1$, konstruisati grafik funkcije $y = |2^x - 1|$.

1058. Koristeći osobine eksponencijalne funkcije, uporediti stepene:

a)
$$1,5^{\frac{3}{4}}$$
 i $1,5^{\frac{2}{3}}$; b) $3^{-\frac{1}{2}}$ i $3^{\frac{1}{3}}$;

c)
$$\left(\frac{1}{2}\right)^{\frac{1}{3}}$$
 i $\left(\frac{1}{2}\right)^{\sqrt{2}}$; d) $0, 5^{-2}$ i $0, 5^{\frac{1}{2}}$.

1059. Odrediti koji od sledećih stepena imaju veći izložilac, ako je:

a)
$$\left(\frac{3}{2}\right)^m < \left(\frac{3}{2}\right)^n$$
; b) $0, 3^x > 0, 3^y$.

 ${\bf 1060.}$ Odrediti dva uzastopna cela broja između kojih se nalazi n,ako je:

a)
$$5^n = 8$$
; b) $\left(\frac{1}{2}\right)^n = 5$; c) $\left(\frac{3}{2}\right)^n = \frac{5}{6}$.

1061. Odrediti nule funkcije $y = 2^x - 16$.

Skicirati grafike funkcija (1062–1066):

1062. a)
$$y = 2^{\frac{\sqrt{x^2}}{x}} - 1$$
; b) $y = 3^{|x|-x}$.

1063. a)
$$y = 5^{x + \sqrt{x^2}}$$
; b) $y = -3^{x + \sqrt{x^2}}$.

1064. a)
$$y = 2^{x-|x|}$$
; b) $y = |3^{|x|} - 3|$.

1065. a)
$$y = -2^{\sqrt{x^2} - x}$$
; b) $y = -2^{\frac{|x|}{x} + x}$.

1066.* a)
$$y = 2^x + 2^{-x}$$
; b) $y = 2^x - 2^{-x}$.

Odrediti oblast definisanosti sledećih funkcija (1067–1068):

1067.* a)
$$y = \sqrt{27 \cdot 2^x - 8 \cdot 3^x}$$
; b) $y = \sqrt{3 \cdot 5^x - 5 \cdot 3^x}$.

1068. a)
$$y = 2^{\sqrt{1-x^2}}$$
; b) $y = 3^{\sqrt{16-x^2}} + 5^{\sqrt{x}}$.

3.2. Eksponencijalne jednačine i nejednačine

Napomena. Jednačina čija se nepoznata nalazi u izložiocu stepena naziva se eksponencijalna jednačina. Ako umesto znaka jednako (=) stoji znak veće ili manje (> ili <) onda se ta relacija naziva eksponencijalna nejednačina.

1069. Rešiti eksponencijalnu jednačinu:

a)
$$2^{x-3} = 16$$
; b) $\left(\frac{2}{3}\right)^{2x} = \frac{16}{81}$; c) $9^{-3x} = \left(\frac{1}{27}\right)^{x+3}$.

Rešiti po x jednačine (1070–1107)

1070. a)
$$16^{\frac{1}{x}} = 4^{\frac{x}{2}}$$
; b) $100 \cdot 10^{2x-2} = 1000^{\frac{x+1}{9}}$.

1071. a)
$$\left(\frac{1}{4}\right)^5 = 4^{\frac{5x-3}{3}} \cdot \left(\frac{1}{8}\right)^6$$
; b) $4^{x+1} + 4^x = 320$.

1072. a)
$$2 \cdot 3^{x+1} - 4 \cdot 3^{x-2} = 450$$
; b) $2^{3x-2} - 2^{3x-3} - 2^{3x-4} = 4$.

1073.
$$2^{x-1} - 2^{x-3} = 3^{x-2} - 3^{x-3}$$
.

1074.
$$3 \cdot 4^x + \frac{1}{3} \cdot 9^{x+2} = 6 \cdot 4^{x+1} - \frac{1}{2} \cdot 9^{x+1}$$
.

1075.
$$3^{12x-1} - 9^{6x-1} - 27^{4x-1} + 81^{3x+1} = 2192$$

1076. a)
$$5^x - 5^{3-x} = 20$$
; b) $5^{2x-3} = 2 \cdot 5^{x-2} + 3$.

1077. a)
$$4^x = 2^{\frac{x+1}{x}}$$
; b) $2^{\frac{x+1}{x}} \cdot \left(\frac{1}{2}\right)^{x+1} = 1$.

1078.
$$0, 5^{x^2-20x+61,5} = \frac{8}{\sqrt{2}}$$
. **1079.** $(11^x - 11)^2 = 11^x + 99$.

1080.
$$2^{x^2-3} - 5^{x^2-3} = 0.01 \cdot (10^{x-1})^3$$
.

1081.
$$4^{\sqrt{x-2}} + 16 = 10 \cdot 2^{\sqrt{x-2}}$$
. **1082.** $25^{\sqrt{x}} - 124 \cdot 5^{\sqrt{x}} = 125$.

1083.
$$4^{x+\sqrt{x^2-2}} - 5 \cdot 2^{x-1+\sqrt{x^2-2}} = 6$$
.

1084.
$$2^{3x} - 3^x - 2^{3x-1} \cdot 3^{x+1} = -288.$$

1085.*
$$4^x - 3^{x - \frac{1}{2}} = 3^{x + \frac{1}{2}} - 2^{2x - 1}$$
.

1086.
$$\left(2\sqrt{12} + 3\sqrt{3} + 6\sqrt{\frac{1}{3}}\right)^{\frac{1}{5}} = \sqrt{3^{2x^2 - 2x - 2}}.$$

1087.*
$$\left(\sqrt{2-\sqrt{3}}\right)^x + \left(\sqrt{2+\sqrt{3}}\right)^x = 4.$$

1088.*
$$\left(\sqrt{7+\sqrt{48}}\right)^x + \left(\sqrt{7-\sqrt{48}}\right)^x = 14.$$

1089.*
$$20^x - 6 \cdot 5^x + 10^x = 0$$
. **1090.** $10^{\frac{2}{x}} + 25^{\frac{1}{x}} = 4,25 \cdot 50^{\frac{1}{x}}$.

1091.*
$$3^{\frac{x-1}{2}} - 2^{\frac{x+1}{3}} = 2^{\frac{x-2}{3}} + 3^{\frac{x-3}{2}}$$
.

1092.*
$$5^{\frac{2x+2}{5}} - 4^{\frac{2x-5}{3}} = 5^{\frac{2x-3}{5}} + 4^{\frac{2x-2}{3}}$$

1093.*
$$\sqrt{3} \cdot 3^{\frac{x}{1+\sqrt{x}}} \cdot \left(\frac{1}{3}\right)^{\frac{2+\sqrt{x}+x}{2(1+\sqrt{x})}} = 81.$$

1094.*
$$\sqrt{2^x \sqrt[3]{4^x \cdot \sqrt[x]{0,125}}} = 4 \cdot \sqrt[3]{2}$$
. **1095.*** $\sqrt{2} \cdot 0, 5^{\frac{5}{4\sqrt{x}+10}} = 4^{\frac{1}{\sqrt{x}+1}}$.

1096.*
$$8^{\frac{x-3}{3x-7}} \cdot \sqrt[3]{\sqrt[x-1]{0,5^{3x-1}}} = 1.$$
 1097. $2^{2x+1} - 33 \cdot 2^{x-1} + 4 = 0.$

1098.
$$6 \cdot 9^x - 13 \cdot 6^x + 6 \cdot 4^x = 0$$
.

1099.
$$2(x+1)(2x+1)^x - (x-1)^x = (2x+1)^{x+1}$$
.

1100.
$$3^{x-1} + 3x^{x-2} + 3^{x-3} + 3^{x-4} + 3^{x-5} + 3^{x-6} = 364$$
.

1101.
$$2^{4x} + 2^{4x-1} + 4^{2x-1} + 2^{4x-3} + 16^{x-1} = 31$$
.

1102.
$$3\sqrt[x]{10} = 5\left(50 + \sqrt[2x]{10}\right)$$
. **1103.** $6^x + 6^{x+1} = 2^x + 2^{x+1} + 2^{x+2}$.

1104.*
$$3^{x^2(x^2-1)} = 729 \cdot 7^{x^4-x^2-6}$$
. **1105.*** $3^{x-\frac{1}{2}} + 3^{x+\frac{1}{2}} + 3^{x+\frac{5}{2}} = 31$.

1106.
$$2^{x-\frac{1}{2}} + 2^{x+\frac{1}{2}} + 2^{x+\frac{5}{2}} = 11\sqrt{2}$$
.

1107.
$$(a^4 - 2a^2b^2 + b^4)^{x-1} = \frac{(a+b)^{2x}}{(a+b)^2}$$

1108. Data je jednačina $(8x)^2 + \left(2^{\frac{1}{p}+7} - 80\right)x + 9 = 0$. Odrediti realan broj p, tako da jednačina ima jedinstveno rešenje.

1109. Data je jednačina $(4x)^2 + \left(2^{\frac{1}{b}+4} - 24\right)x + 1 = 0$. Odrediti realan broj b tako da data jednačina ima jedinstveno rešenje.

1110. Data je jednačina $2^x - 5 + \frac{x}{2} = 0$:

a) grafički rešiti datu jednačinu;

b) koristeći grafik, naći približno
$$\sqrt[4]{\left(\frac{1}{2}\right)^{-5}}.$$

1111. Data je jednačina
$$3^x - \frac{x}{2} - 8 = 0$$
:

a) grafički rešiti datu jednačinu;

b) koristeći grafik, naći približno vrednost izraza $\sqrt[4]{3^3}$.

Rešiti nejednačine (1112–1132):

1112. a)
$$5^{7x+3} > 5^{-3}$$
; b) $0, 3^{x-1} < 0, 3^{2x+2}$; c) $2^{x^2-3} > 2$.

1113. a)
$$2^x < 7^x$$
; b) $3^{x-1} > 5^{x-1}$. **1114.** $\frac{1}{2^{2x} + 3} \ge \frac{1}{2^{x+2} - 1}$.

1115.
$$2^{4x+2} \cdot 4^{-x^2} - 3 \cdot 2^{2+2x-x^2} + 8 \le 0.$$

1116.
$$9^{2x+2} \cdot 3^{x^2-1} - 10 \cdot 3^{\frac{1}{2}x^2+1} \cdot 9^x + 3 < 0$$
.

1117.
$$0, 5\sqrt[x]{2} < 0,0625.$$
 1118. $\left(\left(\frac{3}{7} \right)^{x^2 - 2x} \right)^{\frac{1}{x^2}} \ge 1.$

1119.
$$x^2 \cdot 3x - 3^{x+1} \le 0$$
. **1120.** $5^{2x+1} > 5^x + 4$.

1121.
$$4^x - 2^{2(x-1)} + 8^{\frac{2}{3}(x-2)} > 52$$
. **1122.** $25^x < 6 \cdot 5^x - 5$.

1123.
$$4^{\frac{1}{x}-1} - 2^{\frac{1}{x}-2} - 3 \le 0$$
. **1124.** $2^{x+2} - 2^{x+3} - 2^{x+4} > 5^{x+1} - 5^{x+2}$.

1125.
$$0, 3^{2x^2-3x+6} < 0,00243.$$
 1126. $\sqrt{9^x - 3^{x+2}} > 3^x - 9.$

1127.
$$\frac{1}{3^x+5} < \frac{1}{3^{x+1}-1}$$
. **1128.** $0, 2^{\frac{x^2+2}{x^2-1}} > 25$.

1129.*
$$\left(\frac{3}{5}\right)^{13x^2} \le \left(\frac{3}{5}\right)^{x^4+36} < \left(\frac{3}{5}\right)^{12x^2}$$
.

1130.*
$$1 < 3^{|x^2 - x|} < 9$$
. **1131.*** $\left| 2^{4x^2 - 1} - 5 \right| \le 3$.

1132.*
$$\left(\frac{2}{3}\right)^x \cdot \left(\frac{8}{9}\right)^{-x} > \frac{27}{64} \wedge 2^{x^2 - 6x - 3, 5} < 8\sqrt{2}.$$

Rešiti sisteme (1133–1152):

1133.
$$2^x \cdot 3^y = 12 \wedge 2^y \cdot 3^x = 18$$
. **1134.** $2^x \cdot 3^y = 24 \wedge 2^y \cdot 3^x = 54$.

1135.
$$2^x \cdot 4^y = 512 \wedge 8^x = 2^{11} \cdot 4^y$$
.

1136.
$$\sqrt[3]{a^x}$$
: $\sqrt[5]{a^{-y}} = a^7 \wedge a^3 \cdot \sqrt[6]{a^x} = \sqrt[3]{a^y}$.

1137.
$$\sqrt[x]{a} \cdot \sqrt[y]{a^2} = \sqrt[10]{a^7} \wedge \sqrt[x]{a^5} = \sqrt[y]{a^4}$$
.

1138.
$$\sqrt{3^{x-1}} = \sqrt[3]{9^y} \wedge \sqrt[5]{25^{x+1}} \cdot \sqrt[3]{5^{3y-1}} = 5^x \cdot \sqrt[15]{5}$$
.

1139.
$$3 \cdot 2^{x+y} - 5 \cdot 2^{x-y} = 172 \wedge 5 \cdot 2^{x+y} - 4 \cdot 2^{x-y} = 304$$
.

1140.
$$\left(\frac{3}{2}\right)^{x-y} - \left(\frac{2}{3}\right)^{x-y} = \frac{65}{36} \wedge xy - x + y = 118.$$

1141.
$$\left(a^{\frac{2x}{3} - \frac{5y}{12}}\right)^{\frac{4}{7}} = a^2 \left(a^{\frac{3x}{2} - \frac{y}{3}}\right)^{\frac{2}{23}} \wedge a^{\frac{x-y}{x+y}} = a^{\frac{1}{5}}.$$

1142.
$$a^x b^y = m \land x + y = n$$
, $(a > 0, b > 0)$.

1143.
$$x^{\sqrt{x}-\sqrt{y}} = x^2 \wedge x^{\sqrt{x}-\sqrt{y}} = y^4$$
.

1144.
$$x^y = y^x \wedge x^p = y^q$$
, $(x, y > 0)$. **1145.** $a^{x^2} = b^{y^2} \wedge x^a = y^b$.

1146.
$$a^{\frac{x}{y}} = b^{\frac{y}{x}} \wedge x^a = y^b$$
. **1147.** $x^{x^2} = y \wedge x^{4x-1} = y^4$.

1148.
$$x^{x+y} = y^{12} \wedge y^{x+y} = x^3$$
. **1149.** $x^{x+y} = y^{x-y} \wedge x^2 y = 1$.

1150.
$$(1+y)^x = 100 \wedge (y^4 - 2y^2 + 1)^{x-1} = \frac{(y-1)^{2x}}{(y+1)^2}$$
.

1151.
$$a^x = b^y = c^z \wedge x^2 + y^2 + z^2 = d^2$$
.

1152.
$$11^{xz} - 2 \cdot 5^y = 71 \wedge 11^z + 2 \cdot 5^{\frac{y}{2}} = 21 \wedge 11^{(y-1)z} + 5^{\frac{y}{2}} = 16.$$

3.3. Logaritamska funkcija. Osnovna pravila logaritmovanja. Dekadni logaritmi

Definicija 1. Funkcija inverzna eksponencijalnoj funkciji

$$y = a^x$$
, $(a \in \mathbb{R}^+ \setminus \{1\})$

naziva se logaritamska funkcija. Označava se sa $y = \log_a x$ i čita se: logaritam od x za osnovu a.

Pozitivan broj x naziva se argument, pozitivan broj a osnova (baza) – logaritma.

Definicija 2. Logaritam nekog broja jeste broj kojim treba stepenovati bazu logaritma da bi se dobio taj broj. Ta definicija se izražava identitetom

(1)
$$a^{\log_a x} = x, \quad (a, x \in \mathbb{R}^+; \ a \neq 1).$$

Logaritam proizvoda:

(2)
$$\log_a(xy) = \log_a x + \log_a y, \quad (a, x, y \in \mathbb{R}^+; \ a \neq 1).$$

Logaritam količnika:

(3)
$$\log_a \frac{x}{y} = \log_a x - \log_a y, \quad (a, x, y \in \mathbb{R}^+; \ a \neq 1).$$

Logaritam stepena:

(4)
$$\log_a x^b = b \log_a x, \quad (a, x \in \mathbb{R}^+; \ b \in \mathbb{R}; \ a \neq 1).$$

Definicija 3. Jednačina kod koje se nepoznata nalazi i u logaritmu naziva se logaritamska jednačina.

1153. Skicirati grafike funkcija:

a)
$$y = \log_3 x$$
; b) $y = \log_2 x$; c) $y = \log_{\frac{1}{3}} x$.

1154. Koristeći grafik funkcije $y = \log_2 x$, konstruisati grafike funkcija:

a)
$$y = \log_2 x - 1$$
; b) $y = \log_2 x + 1$; c) $y = \log_2 x - 2$.

1155. Koristeći grafik funkcije $y = \log_3 x$, skicirati grafike funkcija:

a)
$$y = \log_3 x - 1$$
; b) $y = \log_3 x + 1$;

c)
$$y = \log_3(x+1)$$
; d) $y = \log_3(x+1)$.

1156. Skicirati grafike funkcija:

a)
$$\log_{\frac{1}{2}} \sqrt{x^2}$$
; b) $y = \log_3 \sqrt{(\log_3 x)^2}$; c) $y = \log_2(-x)$.

1157. Odrediti oblasti definisanosti funkcija:

a)
$$y = \log(x^2 - 2x)$$
; b) $y = \log(x^2 - 3)$; c) $y = \log(2x^2 - 5x - 3)$.

1158. Data je funkcija $y = \log_a(3x^2 - 2x) \ (a > 0, a \neq 1)$:

- a) za koje vrednosti argumenta x funkcija ima smisla u skupu realnih brojeva?
- b) odrediti nule date funkcije;
- c) odrediti x tako da za osnovu $a = \sqrt{5}$ vrednost funkcije bude 2.

1159. Data je funkcija $y = \log_a(2x^2 - x)$ $(a > 0, a \ne 1)$:

- a) odrediti oblast definisanosti date funkcije;
- b) odrediti nule date funkcije;
- c) odrediti x tako da za osnovu $a = \sqrt{3}$ vrednost funkcije bude 2.

1160. Date su funkcije:

$$y = \log_5 x$$
, $y = \log_3 x$ i $y = \log_{\frac{1}{2}} x$.

- a) Koliko presečnih tačaka imaju grafici datih funkcija?
- b) Odrediti koordinate presečnih tačaka.

Odrediti oblast definisanosti funkcija (1161–1166):

1161. a)
$$y = \sqrt{\log_x 2 - \log_2 x}$$
; b) $y = (\log_3 x - \log_2 x)^{-0.5}$.

1162. a)
$$y = \sqrt{\log \frac{1 - 2x}{x + 3}}$$
; b) $y = \sqrt{\log_{0.5} \frac{x}{x^2 - 1}}$.

1163. a)
$$y = \log|x - 3|$$
; b) $y = \log_2\left(\frac{2x}{x + 1} - 1\right)$.

1164. a)
$$y = \left(\log_{0.5}(-2x^2 + 5x - 2)\right)^{-1}$$
; b) $y = \log_4\left(\frac{x}{2x - 3} - 1\right)$.

1165. a)
$$y = \log(2x - x^2 + 15)$$
; b) $y = 10^{\log(x+4)}$.

1166. a)
$$y = \log \log_2(x-3)$$
; b) $y = \log \log_{0.3} |x-1|$.

Skicirati grafik funkcija (1167–1171):

1167. a)
$$y = 10^{\log x}$$
; b) $y = \log |x^2 - 1|$.

1168. a)
$$y = |\log(x-3)|$$
; b) $y = \log|x-3| - 1$.

1169.* a) $y = |\log |x||$; b) $y = \log \log |x|$.

1170.* a)
$$y = \log_2\left(x + \frac{1}{x}\right)$$
; b) $y = \log(2^x + 2^{-x})$.

1171.*
$$y = \log x + |\log x|$$
.

1172.* Odrediti apscisu tačke na grafiku funkcije

$$y = \log_2 \log_6 (2^{\sqrt{x}+1} + 4),$$

čija je ordinata jednaka 1.

1173.* Odrediti nule funkcije $y = \log_3(\sqrt{x^2 + 21} - \sqrt{x^2 + 12})$.

1174. Odrediti tačku preseka grafika funkcija

$$y = \log_2(x+14)$$
 i $y = 6 - \log_2(x+2)$.

1175. Odrediti nule funkcije $y = x^{\log x} - 10000x^3$.

1176. Odrediti vrednost realnog broja k tako da funkcija

$$y = \log(kx) - 2\log(x+1),$$

ima samo jednu nulu.

1177. Odrediti tačku preseka grafika funkcije

$$y = (3, 6^{1 + \log_{3,6}(x+10)})^{\log_6(5+x)}$$

sa ordinatnom osom.

1178. Koristeći osobine logaritamskih funkcija, uporediti sledeće logaritme:

a)
$$\log_2 3$$
 i $\log_2 \sqrt{2}$; b) $\log_3 \frac{1}{3}$ i $\log_3 2^{-1}$;

c)
$$\log_{\frac{1}{2}} \sqrt{5}$$
 i $\log_{\frac{1}{2}} 2$; d) $\log_{\frac{1}{3}} \frac{2}{5}$ i $\log_{\frac{1}{3}} \frac{5}{6}$.

1179. Ako je (m, n > 0):

a)
$$\log_3 m > \log_3 n$$
; b) $\log_{\frac{1}{4}} n < \log_{\frac{1}{4}} m$;

c)
$$\log_{\sqrt{2}} m < \log_{\sqrt{2}} n$$
; d) $\log_{\frac{2}{3}} n > \log_{\frac{2}{3}} m$,

odrediti koji je od brojeva m i n veći.

Bez upotrebe računara izračunati vrednosti logaritama (1180–1183):

1180. a)
$$\log_2 \frac{1}{128}$$
; b) $\log_3 \frac{1}{81}$; c) $\log_{0,1} 1000$.

1181. a)
$$\log_{0.1} 0,0001$$
; b) $\log_{\sqrt{2}} 8$; c) $\log_{\sqrt{2}} 16$; d) $\log_{\sqrt{3}} 81$.

1182. a)
$$\log \frac{1}{\sqrt{2}} 8$$
; b) $\log_2 \sqrt[3]{512}$; c) $\log_3 \sqrt[5]{243}$; d) $\log_a \sqrt[5]{a^2}$.

1183. Odrediti skup $A = \{ \log_4 x | x \in B \}$, ako je

$$B = \left\{ \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, 2, 4, 16 \right\}.$$

Izračunati vrednost izraza (1184–1190):

1184. a)
$$3^{\log_3 81}$$
; b) $10^{\log_{10} 1000}$; c) $2^{\log_2 512}$.

1185. a)
$$3\log_5 25 + 2\log_3 27 - 4\log_2 8$$
;

b)
$$\frac{5}{4}\log_3 81 + 3\log_{\frac{1}{2}} 16 - 2\log_2 \frac{1}{32} + \log_{\frac{1}{3}} \frac{1}{27}$$
.

1186. a)
$$\log_3 81 \cdot \log_3 \frac{1}{27} \cdot \log_2 16 \cdot \log_2 8$$
;

b)
$$\log_2 16 \cdot \log_2 8 \cdot \log_2 4 \cdot \log_2 2 \cdot \log_2 1$$
.

1187. a)
$$2 \cdot 5^{\log_5 125} + 5 \cdot 3^{\log_3 81}$$
; b) $5^{\log_5 25} \cdot 2^{\log_2 8} \cdot 3^{\log_3 3}$.

1188.
$$5^{3-\log_2 25} + 3^{2-\log_3 3} - 4^{4-\log_2 5}$$
.

1189.
$$2\log_5 125 \cdot 2^{1+\log_2 4} - 3^{2\log_3 9 - 1}$$
.

1190. Izraziti logaritme sledećih algebarskih izraza pomoću logaritama pojedinih brojeva koji se u njima javljaju:

a)
$$2ab$$
; b) $3c^2b$; c) $\sqrt[3]{5a^4b^3}$; d) $9(a^2-b^2)$; e) $\frac{ab^2}{c^3}$;

f)
$$\frac{m_1 \cdot m_2}{r^2}$$
; g) $\frac{1}{2} mg^2$; h) $\frac{4}{3} \pi r^3$; i) $\frac{a^2}{4} \sqrt{3}$.

1191. Primenom osnovnih osobina logaritama transformisati sledeće izraze:

a)
$$\log \frac{4a^2\sqrt{7}}{5b^2\sqrt[3]{2}}$$
; b) $\log \frac{8a^4\sqrt{b}}{c^3\sqrt[3]{17}}$; c) $\log \sqrt[4]{\frac{3a^2}{5b^3c^7}}$.

1192. Logaritmovati sledeće izraze:

a)
$$x = \frac{3a^2b}{c^2\sqrt[4]{de^3}};$$
 b) $x = \left(5a^2b^n\sqrt[3]{c^2d}\right)^5;$ c) $p = R\pi(R+s);$

d)
$$p = \sqrt{s(s-a)(s-b)(s-c)}$$
; e) $V = \frac{a^2 H \sqrt{3}}{4}$.

Dokazati da je (1193-1195):

1193. a)
$$\log_6 2 + \log_6 3 = 1$$
; b) $\log_{10} 5000 - \log_{10} 5 = 3$.

1194.
$$2 \log 25 - \log 125 - \log 5 = 0$$
; **1195.** $\log 2 + \log 8 - \frac{1}{2} \log 256 = 0$.

1196. Rešiti po x jednačine:

a)
$$\log x = \log 4 + 2 \log 5 + \log 6 - \log 15$$
; b) $3 \log x + \frac{1}{2} \log a = 3 \log b + \log c$;

c)
$$2\log x - 3\log a = \log 5 + \log b + \frac{1}{2}\log c$$
.

1197. Rešiti po V jednačine:

a)
$$\log V + \log 3 = 2 \log r + \log \pi + \log H$$
; b) $\log V - 2 \log r = \log \pi + \log H$;

c)
$$\log V + \log 3 = \log 4 + 3 \log r + \log \pi$$
.

1198. Rešiti po A jednačine:

a)
$$\log A = \log x + \frac{1}{3}(\log(y-z) + \log(y^2 + yz + z^2))$$

 $-2\log y - \log z - \frac{1}{2}\log(x-1);$

b)
$$\log A = \log a + 2\log z + \frac{1}{2}\log(x-z) - \frac{1}{3}(\log(y^2 - yz + z^2) + \log(y+z)).$$

1199. Dokazati
$$\log_a N = \log_{a^b} N^b$$
; $\mathbb{N} \in \mathbb{R}^+, a \in \mathbb{R}^+ \setminus \{1\}.$

1200. Ako su ai bdva pozitivna broja različita od 1, dokazati identitet $\log_a b \cdot \log_b a = 1.$

1201. Dokazati da je
$$\log_a b = \frac{\log_c b}{\log_c a}$$
 $(a, c \in \mathbb{R}^+ \setminus \{1\}, b \in \mathbb{R}^+).$

Dokazati sledeće identitete (1202–1205):

1202.
$$3\log_b a + 2\log_b \frac{1}{a} = \log_b a \quad (a \in \mathbb{R}^+, b \in \mathbb{R}^+ \setminus \{1\}).$$

1203.
$$\log_b a - \log_b \frac{1}{a} - \log_b a^2 = 0 \quad (a \in \mathbb{R}^+, b \in \mathbb{R}^+ \setminus \{1\}).$$

1204.
$$\log_a \frac{b}{a} + \log_a \frac{a}{bx} - \log_{\frac{1}{a}} x = 0 \quad (a \in \mathbb{R}^+ \setminus \{1\}, b, x \in \mathbb{R}^+).$$

1205.
$$\log_a x - 4 \log_{\frac{1}{a}} x - \log_a x^5 = 0 \quad (a \in \mathbb{R}^+ \setminus \{1\}, x \in \mathbb{R}^+).$$

 ${\bf 1206.}$ Ako su ai bistog znaka, dokazati ekvivalenciju

$$a^{2} + b^{2} = 7ab \iff \log \frac{|a+b|}{3} = \frac{1}{2}(\log |a| + \log |b|).$$

1207. Ako su ai bistog znaka i $a \neq b,$ dokazati ekvivalenciju

$$\log |a + b| - \log |a - b| = \frac{1}{2} \log 2 \iff a^2 + b^2 = 6ab.$$

Izračunati vrednost izraza (1208–1210):

1208.
$$x = 10^{1-\log 5} + 10^{2-\log 20} - 10^{3-\log 500}$$
.

1209.
$$x = 49^{1-\log_7 2} + 5^{-\log_5 4}$$
. **1210.** $x = \sqrt{10^{2+\frac{1}{2}\log 16}}$.

1211. Ako je
$$\log_a x = p$$
, $\log_b x = q$ i $\log_{abc} x = r$, izračunati $\log_c x$.

1212. Ako je
$$\log_5 2 = a$$
 i $\log_5 3 = b$, izračunati $\log_{45} 100$.

1213. Ako je
$$\log_7 2 = c$$
 i $\log_7 5 = d$, izračunati $\log_{70} 2, 5$.

1214. Izračunati
$$\log_8 9, 8$$
, ako je $\log_{10} 2 = a$ i $\log_{10} 7 = b$.

1215. Ako je
$$\log_{10} 3 = a$$
 i $\log_{10} 11 = 6$, izračunati $\log_9 2, 97$.

1216. Ako je
$$\log_b a = m$$
 i $\log_c b = n$, izračunati $\log_{bc} ab$.

1217. Ako je
$$\log_7 2 = a$$
, izračunati $\log_{\frac{1}{2}} 28$.

1218. Izračunati
$$\log_4 39, 2$$
, ako je $\log_7 2 = a$ i $\log_2 10 = b$.

1219. Ako je
$$\log_{30} 3 = a$$
 i $\log_{30} 5 = b$, izračunati $\log_{30} 8$.

1220. Ako je $\log_a x = 2$, $\log_b x = 3$, $\log_c x = 6$, izračunati $\log_{abc} x$.

1221. Izračunati $\log_{35} 28,$ ako je $\log_{14} 7 = a$ i $\log_{14} 5 = b.$

1222. Izračunati $\log_{54} 168$, ako je $\log_7 12 = a$ i $\log_{12} 24 = b$.

1223. Ako je $\log 2 \cdot \log 5 = k,$ izračunati $\log 2$ i $\log 5.$

1224. Ako je $y = 10^{\frac{1}{1 - \log x}}$ i $z = 10^{\frac{1}{1 - \log y}}$, tada je $x = 10^{\frac{1}{1 - \log z}}$. Dokazati.

1225. Dokazati bez upotrebe računara nejednakosti:

a)
$$(\log_2 3)^{-1} + (\log_5 3)^{-1} > 2$$
; b) $(\log_2 \pi)^{-1} + (\log_5 \pi)^{-1} > 2$.

1226. Dokazati implikaciju:

$$\log_{12} 18 = \alpha \wedge \log_{24} 54 = \beta \Rightarrow \alpha\beta + 5(\alpha - \beta) = 1.$$

1227. Dokazati implikaciju:

$$\log_{12} 24 = \alpha \wedge \log_{18} 54 = \beta \Rightarrow 5(\alpha + \beta) - 3\alpha\beta = 8.$$

1228. Ako je $m, k, n, x \in \mathbb{R}^+ \setminus \{1\}$, dokazati implikaciju:

$$2\log_m x = \log_k x + \log_n x \implies n^2 = (kn)^{\log_k m}.$$

1229. Ako je $\log_{10}2=0,30103,\,\log_{10}3=0,47712$ i $\log_{10}5=0,69897,$ izračunati $\log_{10}6;\,\log_{10}15;\,\log_{10}30;\,\log_{10}225;\,\log_{10}5400.$

1230. Ako je $\log_{10} 2 = 0,30103$, $\log_{10} 3 = 0,47712$, $\log_{10} 5 = 0,69897$ i $\log_{10} 7 = 0,84510$, izračunati sledeće logaritme: $\log_{10} 14$; $\log_{10} 35$; $\log_{10} 50$; $\log_{10} 100$.

1231. Ako je
$$\log_{10} 2 = 0,30103$$
, izračunati $\log_{10} \left(32^{-\frac{1}{2}}\right)^{-3}$.

Primenom logaritama izračunati vrednost izraza (1232–1238):

1232. a)
$$2350 \cdot 1,05^{17}$$
; b) $\left(\frac{4}{7}\right)^{0,45}$; c) $5\sqrt[11]{3,1866}$.

1233. a)
$$4,78^2 \cdot 35,64$$
; b) $\frac{7,23^2 \cdot 12,45}{5,72 \cdot 23,86}$; c) $\frac{8,15^2\sqrt{56}}{7,243}$.

1234. a)
$$\sqrt[3]{\frac{0,23\sqrt{2,617}}{1,56^2}}$$
; b) $\sqrt{\frac{1,72\sqrt[3]{56,13}}{0,5782}}$.

1235. a)
$$\frac{\sqrt[3]{27,56} \cdot 0,506^4}{0,02404 \cdot \sqrt{23}}$$
; b) $\frac{8601,6 \cdot \sqrt[3]{9,261}}{67,2^2}$.

1236. a)
$$3, 4^{4,3}$$
; b) $\left(\frac{3}{4}\right)^{\frac{5}{6}}$; c) $\sqrt{\frac{6 \cdot 4035}{3,142}}$.

1237. a)
$$\sqrt[3]{1 + \frac{\pi\sqrt{3}}{11}}$$
; b) $\frac{500}{0.02}(1,02^{42} - 1)$.

1238. a)
$$(-5,32)^3 \sqrt[4]{0,0294}$$
; b) $\sqrt{\frac{17569}{111,11}} - \sqrt[3]{\frac{67685}{1,2365}}$.

- 1239. Izračunati ivicu kocke čija je zapremina 52,3 dm³.
- 1240. Izračunati zapreminu lopte poluprečnika $r=13,2~\mathrm{m}.$
- **1241.** Obim kruga je O=35,24 cm. Izraziti obim upisanog kvadrata u krugu u funkciji obima datog kruga i izračunati njegovu veličinu.
- **1242.** Izračunati ivice kocke čija je zapremina dva puta veća od zapremine kocke ivice 2.378 m.
- **1243.** Izračunati površinu i zapreminu Zemljine kugle ako se uzme da dužina njenog poluprečnika iznosi 6371 km.
- **1244.** Koristeći formulu za jednoliko ubrzano kretanje $s = \frac{1}{2}gt^2$, odrediti put s koji telo prelazi za 19 s, ako je ubrzanje g = 9,81 m/s².
- **1245.** Koristeći prethodnu formulu za jednoliko ubrzano kretanje, odrediti vreme za koje jedno telo prelazi put $s=2356~\rm m.$
- 1246. Na koti visine 120 m postavljen je top iz koga je ispaljena granata u horizontalnom pravcu, brzinom 839 m/s. Izračunati na kom je rastojanju od topa pala granata, koristeći obrazac za rastojanje

$$x: x = v_0 \sqrt{\frac{2h}{g}}.$$

1247. Izračunati visinu sa koje treba ispaliti granatu u horizontalnom pravcu brzinom 975 m/s da bi pala na rastojanju 9,568 km od mesta ispaljivanja.

1248. Ako je k_0 početna količina radijuma u trenutku t=0 i količina neraspadnutog radijuma u trenutku t (mereno u vekovima), onda je $y=k_0e^{-0.038t}$. Naći vreme kada će ostati polovina prvobitne količine (to je vreme poznato kao "poluživot" radijuma).

3.4. Logaritamske jednačine i nejednačine

Napomena. Jednačina čija se nepoznata nalazi u argumentu logaritma naziva se logaritamska jednačina. Ako umesto znaka jednako (=) stoji znak veće ili manje (> ili <) tada se ta relacija naziva logaritamska nejednačina.

Rešiti jednačine (1249–1295):

1249.
$$\log(5-x)+2\log\sqrt{3-x}=1$$
. **1250.** $\log(5-x)-\frac{1}{3}\log(35-x^3)=0$.

1251.
$$\log(x^2 + 19) - \log(x - 8) = 2$$
. **1252.** $0, 1 \cdot x^{\log x - 1} = 10$.

1253. a)
$$x^{2\log^2 x} = 10x^3$$
; b) $x^{\log x} = 100x$.

1254.
$$\log_2(x-1) + \log_2(x+2) = 2$$
.

1255. a)
$$\log_3^2 x - 3\log_3 x + 2 = 0$$
; b) $\log_2 x + \log_x 2 = \frac{5}{2}$

1256. a)
$$\log_x(5x^2) \cdot \log_5^2 x = 1$$
; b) $\log_2 \log_2 x = \log_2 3 + \log_2 4$.

1257. a)
$$\log_2 x + \log_4 x + \log_{16} x = 7$$
; b) $\log x - \left(\log \sqrt[6]{x}\right)^{-1} = 1$.

1258.
$$\log_x \sqrt{5} + \log_x 5x - 2, 25 = \left(\log_x \sqrt{5}\right)^2$$
.

1259.*
$$5^{2(\log_5 2+x)} - 2 = 5^{x+\log_5 2}$$
. **1260.*** $x^{\log_4 x-2} = 2^{3(\log_4 x-1)}$.

1261.
$$\log_3 x \cdot \log_9 x \cdot \log_{27} x \cdot \log_{81} x = \frac{2}{3}$$
.

1262.
$$(\log(x+20) - \log x) \log_x 0, 1 = -1.$$

1263.
$$\log_5(2^{1,5x-2,5}+2^{1,5x-0,5}-0,01\cdot 5^{3x+1})=3x-1.$$

1264.
$$\log_{10} x + \log_{10} x^2 + \log_{10} x^3 + \dots + \log_{10} x^{100} = 5050, (x > 0).$$

1265.
$$\log_7(6+7^{-x}) = 1+x$$
. **1266.*** $x + \log(1+2^x) = x \log 5 + \log 6$.

1267.*
$$\log_{\sqrt{5}}(4^x - 6) - \log_{\sqrt{5}}(2^x - 2) = 2.$$

1268.
$$\log(7-2^x) - \log(5+4^x) + \log 7 = 0.$$

1269.
$$\log(4+2^{x+2}) = \log 4 + \log(5 \cdot 2^{4-x} - 1).$$

1270.
$$\log(3^x + 2) - \log(2 \cdot 3^{2-x} + 9) = \log 3$$
.

1271.*
$$x^{\log x} = 16(6 \cdot x^{\log \sqrt{x}} + 25).$$

1272.
$$5\log_{\frac{x}{9}} + \log_{\frac{9}{x}} x^3 + 8\log_{9x^2} x^2 = 2.$$

1273.
$$\log_x 3 + \log_3 x = \log_{\sqrt{x}} 3 + \log_3 \sqrt{x} + \frac{1}{2}$$
.

1274.
$$\log_{3x} \frac{3}{x} + \log_3^2 x = \log \sqrt{100}$$
. **1275.** $x^{2\log^3 x - \frac{3}{2}\log x} = \sqrt{10}$.

1276.
$$7^{2(\log_7 3 + x)} - 7 = 7^{x + \log_7 2}$$
. **1277.** $\log_3(28 - 3^x) = 2^{\log_2(3 - x)}$.

1278.
$$\log_x a + \log_a x = \log_{\sqrt{x}} a + \log_a \sqrt{x} + 0, 5, (a > 0, a \neq 1).$$

1279.*
$$x^2 \cdot \log_3 x^2 - (2x^2 + 3) \cdot \log_9(2x + 3) = 3 \cdot \log_3 \frac{x}{2x + 3}$$
.

1280.
$$\log_2 \log_3 (2x+3) + \log_{\frac{1}{2}} \log_{\frac{1}{3}} \frac{x+1}{2x+3} = 1.$$

1281.
$$\left(\frac{1}{3}\right)^{\log_9(x^2+2x+4)} = 6^{\log_{1/6}(x+2)}.$$

1282.
$$2 + \log \sqrt{1+x} + 3\log \sqrt{1-x} = \log \sqrt{1-x^2}$$
.

1283.
$$\log_{\sqrt{2}} x \cdot \log_2 x \cdot \log_{2\sqrt{2}} x \cdot \log_4 x = 54.$$

1284.
$$\log_2(x^2 + 2x - 7) \cdot \log_{x^2 - 6x + 9} 4 = 1$$
.

1285.
$$\log_{3x+7}(9+12x+4x^2) + \log_{2x+3}(6x^2+23x+21) = 4.$$

1286.
$$\log_{3x+8}(x^2+8x+16) + \log_{x+4}(3x^2+20x+32) = 4.$$

1287.
$$\log_5(x^2 - 2x - 3) \cdot \log_{x^2 + 14x + 49} 25 = 1.$$

1288.
$$7^{\log x} - 5^{\log x+1} = 3 \cdot 5^{\log x-1} - 13 \cdot 7^{\log x-1}$$
.

1289.
$$\log^2 x - \log x^3 + 2 = 0$$
. **1290.** $\log_2(9^{x-1} + 7) = 2 + \log_2(3^{x-1} + 1)$.

1291.
$$1 + \log_2(x - 1) = \log_{(x-1)} 4$$
.

1292.
$$2^{2\log x - 1} - 7^{\log x} = 7^{\log x - 1} - 3 \cdot 4^{\log x}$$
. **1293.** $x^{1 + \log_3 x} = 3x$.

1294.*
$$2\log_4(2^x - 1) + x + \log_{\frac{1}{2}} 3 + \log_{\frac{\sqrt{6}}{6}} 6 = 0.$$

1295.*
$$(3, (1) - 1, (3))^{\log_{9x} x} = (4, (2) - 2, (4))^{\log_x 9x},$$

 $(a, (b) = a, bbb...$ je periodičan broj).

Odrediti skup vrednosti promenljive x tako da važi (1296–1309):

1296. a)
$$\log \frac{x-1}{x+2} > 0$$
; b) $\log(x-2) > \log x$.

1297.
$$\log(x-4) - \log(x+1) < 1$$
. **1298.** $\log_{0,5}(2x+6) > \log_{0,5}(x+8)$.

1299. a)
$$\log_2(x^2 - 3x + 4) < 1$$
; b) $\log_3(x^2 - 5x + 6) < 0$.

1300.
$$\log_a x + \log_a (x+1) < \log_a (2x+6), \quad (a > 1).$$

1301.
$$\log_{ax} a + 3\log_{a^2x} a > 0$$
, $(a > 1)$. **1302.** $\log_{(2x^2 - x)}(2x + 2) < 1$.

1303.
$$\log_{0.5}(x^2 - 4x + 3) \ge -3$$
. **1304.** $\log_5 x \ge \log_{25}(3x - 2)$.

1305.
$$\log_3(1-x) < \log_{\frac{1}{3}}(x+2)$$
. **1306.*** $\log_{(2x+3)}x^2 < 1$.

1307.
$$\log(5^x + x - 20) > x - x \log 2$$
.

1308.
$$\log_{0.5}(x^2+1) < \log_{0.5}(2x-5)$$
. **1309.** $\log_x \frac{4x+5}{6-5x} < -1$.

1310. Naći sve realne vrednosti x za koje je definisan

$$\log_{(x^2-x-6)}(x^2+x-6).$$

1311. Grafički prikazati skup tačaka M(x,y) čije koordinate zadovoljavaju nejednakost:

a)
$$\log_2(x+y-1) \le 0$$
; b) $\log_{0.5}(x+y-5) \le 0$; c) $0 \le \log_5(x+y+1) < 1$.

Rešiti nejednačine (1312–1325):

1312.
$$\log_x \frac{3x-1}{x^2+1} > 0$$
. **1313.** $\log_{1,5} \frac{2x-8}{x-2} < 0$.

1314.
$$\log_x(x(x^2-x-2)) < 3$$
. **1315.** $\log_{0,5}(x-0,5) + \log_{0,5}(x-1) \ge 1$.

1316.
$$\log 10^{\log(x+16)} > 1 + \log x$$
. **1317.*** $0, 6^{\log_{0,5} \log_5 \frac{5x+4}{x^2+3}} > 1$.

1318.*
$$\log_5 \log_6 \frac{6x-1}{x+1} < \log_{\frac{1}{5}} \log_{\frac{1}{6}} \frac{x+1}{6x-1}$$
.

1319.
$$\frac{1}{5 - \log x} + \frac{2}{1 + \log x} < 1.$$
 1320. $\log_{\frac{1}{\sqrt{5}}} (6^{x+1} - 36^x) \ge -2.$

1321.
$$\log_4(5-3^x) \cdot \log_2 \frac{5-3^x}{8} \ge -1.$$

1322.*
$$|x-1|^{\log_2(4-x)} > |x-1|^{\log_2(1+x)}$$
. **1323.** $\log_2 \frac{|x^2-2x|+4}{|x+2|+x^2|} \le 0$.

1324.
$$\log_3 \frac{|x^2 - 4x| + 3}{x^2 + |x - 5|} \ge 0.$$

1325.*
$$\log_{\frac{1}{5}} \sqrt{x^3 + x^2 + x - 14} \cdot \log_{\frac{1}{4}} (-x^2 + 5x - 6) < 0.$$

1326.* Data je nejednačina

$$\left(2 - \log_2 \frac{y}{y+1}\right) x^2 + \left(1 + \log_2 \frac{y}{y+1}\right) 2x - 2\left(1 + \log_2 \frac{y}{y+1}\right) > 0.$$

Odrediti realan broj y tako da je tačna za svako $x \in \mathbb{R}$.

1327.* U intervalu (0,1) odrediti podskup one vrednosti x, za koje je tačna nejednakost $\left(\frac{1}{81}\right)^{8+\log_a x} > \left(\frac{1}{3}\right)^{\log_a^2 x}$.

1328.* Rešiti sistem
$$|\log_a x| < 1 \land \frac{n}{1 - \log_a x} > \frac{1}{\log_a x}$$
, za $a > 1$ i $n \in \mathbb{N}$.

3.5. Sistem logaritamskih jednačina sa dve nepoznate

Napomena. Konjukcija od dve ili više jednačina sa dve ili više nepoznatih, od kojih je bar jedna logaritamska naziva se sistem logaritamskih jednačina.

Rešiti sisteme jednačina (1329–1349):

1329.
$$3x = 2 \log y + 4 \wedge x + \log y = 3$$
.

1330.
$$2x - y = 9 \wedge \log x = \log 2 + \log y$$
.

1331.
$$\log_4 x - \log_2 y = 0 \wedge x^2 - 5y^2 + 4 = 0.$$

1332.
$$\log(x-y) - 2\log 2 = 1 - \log(x+y) \wedge \log x - \log 3 = \log 7 - \log y$$
.

1333.
$$\log(x^2 + y^2) = 1 + \log 8 \wedge \log(x + y) - \log(x - y) = \log 3.$$

1334.
$$\log_y x - \log_x y = \frac{5}{2} \wedge x + y = 5.$$

1335.
$$3^x \cdot 2^y = 576 \wedge \log_2(y - x) = 2$$
.

1336.
$$y^x = 1000 \land x + 2 \log y = \frac{11}{2}$$
. **1337.** $x^{\log y} = 25 \land xy = 500$.

1338.
$$\log x + \log y = 2 \wedge \log \sqrt{5(x-5)} - \log \sqrt{3y-2} = 0, 5.$$

1339.
$$x^2 + xy = 74 \wedge \log \sqrt{x} + \log \sqrt{y} = 0, 5.$$

1340.
$$x^2 - 4xy^2 = 14 \wedge \log x + 2\log y = 2 - \log 8$$
.

1341.*
$$xy = c^2 \wedge (\log_2 x)^2 + (\log_2 y)^2 = \frac{5}{2} (\log_2 c^2)^2$$
.

1342.
$$2^{\frac{x-y}{2}} + 2^{\frac{y-x}{2}} = \frac{17}{4} \wedge \log(x-2y) + 1 = \log(x+2y) + \log 2$$
.

1343.
$$8(\sqrt{2})^{x-y} = 0, 5^{y-3} \wedge \log_3(x-2y) + \log_3(3x+2y) = 3.$$

1344.
$$4^{\frac{x}{y} + \frac{y}{x}} = 32 \wedge \log_3(x - y) = 1 - \log_3(x + y).$$

1345.
$$7^{\log_3 x} - 3^{\log_9 y} = 40 \wedge 7^{\log_3 \sqrt{x}} - 3^{\log_{81} y} = 4$$
.

1346.
$$x^{\log_8 y} + y^{\log_8 x} = 4 \wedge \log_4 x - \log_4 y = 1.$$

$$1347.* 2^{x+y-1} + 2^{x-y+1} = 3 \land \frac{1}{7} \cdot 3^{x \log_3 2 + y \log_3 2 - 2} + 3^{x \log_3 2 - y \log_3 2 - 2} = \frac{1}{7}.$$

1348.*
$$\log_{1+x}(y^2 - 2y + 1) + \log_{1-y}(x^2 + 2x + 1) = 4 \land \log_{1+x}(2y + 1) + \log_{1-y}(2x + 1) = 2.$$

1349.*
$$\log_{2+x}(y^2 - 6y + 9) + \log_{3-y}(x^2 + 4x + 4) = 4 \land 2\log_{2+x}(4-y) - \log_{3-y}(2-2x) = 1.$$

IV GLAVA

4. TRIGONOMETRIJSKE FUNKCIJE

4.1. Definicije trigonometrijskih funkcija ma kog ugla

 $Osnovne\ trigonometrijski\ identiteti$

1.
$$\sin^2 \alpha + \cos^2 \alpha = 1 \quad (\forall \alpha)$$
.

2.
$$\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha} \quad \left(\alpha \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\right).$$

3.
$$\operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha} \quad (\alpha \neq k\pi, \ k \in \mathbb{Z}.$$

4.
$$\operatorname{ctg} \alpha = \frac{1}{\operatorname{tg} \alpha} \quad \left(\alpha \neq \frac{\pi}{2} (k+1), \ k \in \mathbb{Z} \right).$$

5.
$$\sec \alpha = \frac{1}{\cos \alpha} \quad \left(\alpha \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\right).$$

6.
$$\csc \alpha = \frac{1}{\sin \alpha} \quad (\alpha \neq k\pi, \ k \in \mathbb{Z}).$$

7.
$$\sin \alpha = \frac{\operatorname{tg} \alpha}{\pm \sqrt{1 + \operatorname{tg}^2 \alpha}} \quad \left(\alpha \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\right).$$

8.
$$\cos \alpha = \frac{1}{\pm \sqrt{1 + \operatorname{tg}^2 \alpha}} \quad (\alpha \neq \frac{k\pi}{2}, \ k \in \mathbb{Z}).$$

Dokazati sledeće identitete (1350–1362):

1350.
$$\frac{\sin \alpha}{1 - \cos \alpha} = \frac{1 + \cos \alpha}{\sin \alpha}$$
. **1351.** $\frac{1}{\sin^2 \alpha - \cos^2 \alpha} = \frac{1 + \cot^2 \alpha}{1 - \cot^2 \alpha}$

1352.
$$1 - \frac{\sin^2 \alpha}{1 + \operatorname{ctg} \alpha} - \frac{\cos^2 \alpha}{1 + \operatorname{tg} \alpha} = \sin \alpha \cdot \cos \alpha.$$

1353.
$$\sin^4 \alpha + \cos^2 \alpha + \sin^2 \alpha \cdot \cos^2 \alpha = 1$$
.

1354.
$$\cot^2 \alpha - \cos^2 \alpha = \cos^2 \alpha \cdot \cot^2 \alpha$$
. **1355.** $\frac{1 + \tan^4 \alpha}{\tan^2 \alpha + \cot^2 \alpha} = \tan^2 \alpha$.

1356.
$$\frac{\cos \alpha}{1 + \operatorname{tg}^2 \alpha} + \frac{\sin \alpha}{1 + \operatorname{ctg}^2 \alpha} = (\sin \alpha + \cos \alpha) \cdot (1 - \sin \alpha \cos \alpha).$$

1357.
$$\frac{\cos^2 x - \sin^2 y}{\sin^2 x \cdot \sin^2 y} = \operatorname{ctg}^2 x \cdot \operatorname{ctg}^2 y - 1.$$

1358.
$$\frac{\sin \alpha \operatorname{tg} \alpha + \sin \beta \operatorname{tg} \beta}{\cos \alpha + \cos \beta} = \frac{1}{\cos \alpha \cos \beta} - 1$$

1358.
$$\frac{\sin \alpha \operatorname{tg} \alpha + \sin \beta \operatorname{tg} \beta}{\cos \alpha + \cos \beta} = \frac{1}{\cos \alpha \cos \beta} - 1.$$
1359.
$$\frac{\sin \alpha - \cos \alpha + 1}{\sin \alpha + \cos \alpha - 1} = \frac{\sin \alpha + 1}{\cos \alpha} \quad \left(\alpha \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\right).$$

1360.
$$\left(1 + \lg x + \frac{1}{\cos x}\right) \cdot \left(1 + \lg x - \frac{1}{\cos x}\right) = 2 \lg x.$$

1361.
$$\cos^2 \alpha - \cos^2 \beta = \frac{\operatorname{tg}^2 \beta - \operatorname{tg}^2 \alpha}{(1 + \operatorname{tg}^2 \alpha)(1 + \operatorname{tg}^2 \beta)}.$$

1362.
$$\frac{(\operatorname{tg}\alpha + \operatorname{sec}\alpha) \cdot (\operatorname{cos}\alpha - \operatorname{ctg}\alpha)}{(\operatorname{cos}\alpha + \operatorname{ctg}\alpha) \cdot (\operatorname{tg}\alpha - \operatorname{sec}\alpha)}.$$

1363. Za koje
$$\alpha$$
 važi formula $\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} = \frac{\sin\alpha}{1+\cos\alpha}$?

1364. Ako je
$$0 < \alpha < \frac{\pi}{2}$$
, dokazati da je

$$\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} + \sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}} = \frac{2}{\sin\alpha}.$$

1365. Za koje
$$\alpha$$
 važi formula $\sqrt{\frac{1+\sin\alpha}{1-\sin\alpha}} - \sqrt{\frac{1-\sin\alpha}{1+\sin\alpha}} = 2 \operatorname{tg} \alpha$?

1366. Ako je
$$\frac{\pi}{4} < \alpha < \frac{\pi}{2}$$
, dokazati da je

$$\frac{\sqrt{1-2\sin\alpha\cos\alpha}}{\sin^2\alpha - \cos^2\alpha} + \frac{2}{\sec\alpha + \csc\alpha} = \sin\alpha + \cos\alpha.$$

1367. Ako je $\cos x > 0$, dokazati da je

$$\sin x \cdot \left(\sqrt{1 + \operatorname{tg}^2 x} - \sin x\right) + \cos x \cdot \left(\sqrt{1 + \operatorname{tg}^2 x} - \cos x\right) = \operatorname{tg} x.$$

1368.
$$\frac{\sin \alpha + \cos \alpha}{\sin \alpha - \cos \alpha} - \frac{1 + 2\cos^2 \alpha}{\cos^2 \alpha (\operatorname{tg}^2 \alpha - 1)} = \frac{2}{1 + \operatorname{tg} \alpha}.$$

1369.
$$2(\sin^6 \alpha + \cos^6 \alpha) - 3(\sin^4 \alpha + \cos^4 \alpha) + 1 = 0$$
.

1370.
$$\frac{1 - \sin \alpha \cdot \cos \alpha}{\cos \alpha \cdot (\sec \alpha - \csc \alpha)} \cdot \frac{\sin^2 \alpha - \cos^2 \alpha}{\sin^3 \alpha + \cos^3 \alpha}$$

1371.
$$\frac{\sin^4 \alpha + \cos^4 \alpha - 1}{\sin^6 \alpha + \cos^6 \alpha - 1} = \frac{2}{3}$$
.

1372.
$$\frac{\sin^3\alpha - \cos^3\alpha}{\sin\alpha - \cos\alpha} - \frac{\cos\alpha}{\sqrt{1 + \cot^2\alpha}} - 2\tan\alpha\cot\alpha = -1, \text{ ako je}$$

$$\frac{\pi}{2} < \alpha < \pi.$$

1373. Ako je tg $\alpha + \operatorname{ctg} \alpha = a$, izračunati $\sin \alpha$.

1374. Eliminisati t iz sistema:

- a) $\sin t + \cos t = m \wedge \sin^3 t + \cos^3 t = k$; b) $\alpha \sin t = x \wedge b \cos t = y$;
- c) $x = p + r \sin t \wedge y = q + r \cos t$.

1375. Ako za oštre uglove ΔABC važi jednakost $\sin^2\alpha + \sin^2\beta = 1$, kakav je ΔABC ?

1376. Dokazati da se izraz $\frac{\sin x + \cos x}{\cos^3 x}$, gde je $x \neq (2k+1)\frac{\pi}{2}$, može izraziti kao racionalna funkcija od tgx.

1377. Ako je $a \sin^2 x + b \cos 2x = 1$, $a \cos^2 y + b \sin^2 y = 1$, $a \operatorname{tg} x = b \operatorname{tg} y$ i $a \neq b$, onda je tačna jednakost a + b = 2ab. Dokazati.

1378. Ako je $\csc \alpha - \sin \alpha = m$, $\sec \alpha - \cos \alpha = n$, onda je

$$(mn^2)^{\frac{2}{3}} + (m^2n)^{\frac{2}{3}} = 1.$$

Dokazati.

1379. Ako je tg $^2x+$ ctg $^2x=a,$ tg $^4x+$ ctg $^4x=b,$ a $x\neq k\frac{\pi}{2}$ $(k\in\mathbb{Z}),$ dokazati da je $a^2-b=2.$

1380. Ako je $\sin \alpha - \cos \alpha = \frac{1}{2}$, izračunati $\sin^4 \alpha + \cos^4 \alpha$.

1381. Odrediti $\sin \alpha$ i $\cos \alpha$ ako je:

a) $2\sin\alpha + 3\cos\alpha = 3$; b) $3\sin\alpha + 4\cos\alpha = 5$; c) $\sin\alpha + \cos\alpha = \sqrt{2}$.

1382. Odrediti ugao x, $\left(0 < x < \frac{\pi}{2}\right)$, ako je $3\sin x = 2\cos^2 x$.

1383. Dokazati da je razlomak $\frac{\sin x + \operatorname{tg} x}{\cos x + \operatorname{ctg} x}$ pozitivan za svako x.

1384. Ako je

$$x\cos\alpha + y\sin\beta = a$$
, $x\sin\beta - y\cos\alpha = b$,
 $(x^2 + y^2)(\sin^2\alpha + \cos^2\beta) = 2ab$,

dokazati da je $2(x^2 + y^2) = (a + b)^2$.

1385. Data je funkcija $y = 3(\cos^4 x + \sin^4 x) - 2(\cos^6 x + \sin^6 x)$. Dokazati da za sve vrednosti argumenta funkcija ima konstantnu vrednost.

1386. Izračunati vrednost izraza

$$A = \cos^2 18^\circ + \cos^2 36^\circ + \cos^2 54^\circ + \cos^2 72^\circ.$$

1387. Ako je
$$x=\frac{a}{\cos\alpha}+b\tan\alpha$$
 i $y=a\tan\alpha+\frac{b}{\cos\alpha}$, dokazati da je $x^2-y^2=a^2-b^2$.

$$x^2-y^2=a^2-b^2$$
.

1388. Ako je $x=\frac{1}{\cos\alpha\cos\beta},\ y=\frac{\mathrm{tg}\,\alpha}{\cos\beta},\ z=\mathrm{tg}\,\beta$, izračunati vrednost izraza $A=x^2-y^2-z^2$.

1389. Ako je
$$x=\frac{\cos\alpha}{\cos\beta},\ y=\cos\alpha\,\mathrm{tg}\,\beta,\ z=\sin\alpha,$$
 izračunati vrednost izraza $A=x^2-y^2+z^2.$

1390.* Ako je:

 $a = A\cos\alpha\cos\beta - B\sin\alpha\cos\beta + C\sin\beta$,

 $b = A\cos\alpha\sin\beta - B\sin\alpha\sin\beta - C\cos\beta,$

 $c = A \sin \alpha + B \cos \alpha$, dokazati da je $a^2 + b^2 + c^2 = A^2 + B^2 + C^2$

1391.* Ako je
$$\frac{\sin^4 x}{a} + \frac{\cos^4 x}{b} = \frac{1}{a+b}$$
, $a \cdot b > 0$ onda je

$$\frac{\sin^8 x}{a^3} + \frac{\cos^8 x}{b^3} = \frac{1}{(a+b)^3}.$$

1392. Za koje vrednosti α važi formula

$$\frac{\sqrt{1 - 2\sin\alpha\cos\alpha}}{\sin^2\alpha - \cos^2\alpha} + \frac{2\sin\alpha}{\sec\alpha\sin\alpha + 1} = \sin\alpha + \cos\alpha?$$

1393.* Ako su a, b, c tri pozitivna broja, $0 < \alpha < \pi$ i

$$a^2 = b^2 + c^2 - 2bc\cos\alpha,$$

dokazati da je |b - c| < a < b + c.

1394. Dokazati da je, za svaki oštar ugao α , $\sin \alpha + \cos \alpha > 1$.

Odrediti vrednosti ugla α , $0^{\circ} \le \alpha \le 360^{\circ}$, (1395–1403), ako je:

1395.
$$\frac{\sqrt{2}}{2} - \cos \alpha \le 0.$$
 1396. $\sqrt{3} - \operatorname{tg} \alpha \ge 0.$

1397.
$$\sin \alpha + \frac{\sqrt{2}}{2} \ge 0.$$
 1398. $\operatorname{ctg} \alpha - \sqrt{3} < 0.$

Odrediti vrednosti ugla x (0 $\leq x \leq 2\pi$), za koje su realne sledeće funkcije (1399–1403):

1399.
$$y = \sqrt{\cos 2x}$$
. **1400.** $y = \sqrt{\sin \frac{x}{2}}$. **1401.** $y = \sqrt{\sin x - \frac{1}{2}}$.

1402.
$$y = \sqrt{1 - \lg^2 x}$$
. **1403.** $y = \sqrt{\sin^2 x - \frac{1}{2}}$.

Dokazati sledeće identitete (1404–1412):

1404.
$$\cos^2 \alpha \cdot (\operatorname{tg} \alpha + 2) \cdot (2\operatorname{tg} \alpha + 1) - 5\sin \alpha \cdot \cos \alpha = 2.$$

1405.
$$\operatorname{tg}^4 \alpha = \left(\operatorname{tg}^3 \alpha + \frac{1 - \operatorname{tg} \alpha}{\operatorname{ctg} \alpha}\right) : \left(\frac{1 - \operatorname{ctg} \alpha}{\operatorname{tg} \alpha} + \operatorname{ctg}^3 \alpha\right).$$

1406.
$$(\operatorname{tg} \alpha + \operatorname{ctg} \alpha)^2 = \frac{3}{1 - \sin^6 \alpha - \cos^6 \alpha}$$

1407.
$$(\sin \alpha \cdot \cos \beta + 1)^2 = (\cos \alpha + \cos \beta)^2 + \sin^2 \alpha \cdot \sin^2 \beta$$
.

1408.
$$(\sin \alpha - \sin \beta + 1)^2 = (\sin \alpha + \sin \beta)^2 + \cos^2 \alpha \cdot \cos^2 \beta$$
.

1409.
$$\frac{\operatorname{tg}^{2}a+1}{\operatorname{tg}^{2}\alpha-1} = \frac{\sin\alpha}{\cos\alpha+\sin\alpha} - \frac{\cos\alpha}{\cos\alpha-\sin\alpha}.$$

1410.
$$\frac{2}{\operatorname{tg}\alpha + 1} = \frac{\sin^3\alpha + \cos^3\alpha}{(\sin\alpha - \cos\alpha) \cdot (1 - \sin\alpha\cos\alpha)} - \frac{1 + 2\cos^2\alpha}{\cos^2\alpha \cdot (\operatorname{tg}^2\alpha - 1)}.$$

1411.
$$\frac{1+\sin\alpha\cdot\cos\alpha}{\cos^3\alpha-\sin^3\alpha}+\frac{1}{\sin\alpha+\cos\alpha}+\frac{\sin^2\alpha-2\cdot\cos\alpha-1}{\cos^2\alpha-\sin^2\alpha}=\frac{1}{\operatorname{tg}^2\alpha-1}.$$

1412.
$$3 = \frac{\sin^3 x + \cos^3 x}{\sin x + \cos x} + \frac{\sin^3 x - \cos^3 x}{\sin x - \cos x} + \frac{\sin^4 x - \cos^4 x}{\sin^2 x - \cos^2 x}$$

1413. Uprostiti izraz

$$\cos 20^{\circ} + \cos 40^{\circ} + \cos 60^{\circ} + \dots + \cos 160^{\circ} + \cos 180^{\circ}$$
.

4.2. Svođenje trigonometrijskih funkcija ma kog ugla na trigonometrijske funkcije oštrog ugla

Teorema. 1 Ako je α oštar ugao tada važi:

1.
$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$
, $\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$, $\operatorname{tg}\left(\frac{\pi}{2} - \alpha\right) = \operatorname{ctg}\alpha$, $\operatorname{ctg}\left(\frac{\pi}{2} - \alpha\right) = \operatorname{tg}\alpha$, $\operatorname{ctg}\left(\frac{\pi}{2} - \alpha\right) = \operatorname{tg}\alpha$, $\operatorname{ctg}\left(\frac{\pi}{2} - \alpha\right) = \operatorname{tg}\alpha$, $\operatorname{cos}\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$, $\operatorname{tg}\left(\frac{\pi}{2} + \alpha\right) = -\operatorname{ctg}\alpha$, $\operatorname{ctg}\left(\frac{\pi}{2} + \alpha\right) = -\operatorname{tg}\alpha$, 3. $\sin(\pi - \alpha) = \sin\alpha$, $\cos(\pi - \alpha) = -\cos\alpha$, $\operatorname{tg}(\pi - \alpha) = -\operatorname{tg}\alpha$, $\operatorname{ctg}(\pi - \alpha) = -\operatorname{ctg}\alpha$, 4. $\sin(\pi + \alpha) = -\sin\alpha$, $\cos(\pi + \alpha) = -\cos\alpha$, $\operatorname{tg}(\pi + \alpha) = \operatorname{tg}\alpha$, $\operatorname{ctg}(\pi + \alpha) = \operatorname{ctg}\alpha$, 5. $\sin\left(\frac{3\pi}{2} - \alpha\right) = -\cos\alpha$, $\cos\left(\frac{3\pi}{2} - \alpha\right) = -\sin\alpha$, $\operatorname{tg}\left(\frac{3\pi}{2} - \alpha\right) = \operatorname{tg}\alpha$, $\operatorname{ctg}\left(\frac{3\pi}{2} - \alpha\right) = \operatorname{tg}\alpha$, $\operatorname{ctg}\left(\frac{3\pi}{2} - \alpha\right) = \operatorname{tg}\alpha$.

5.
$$\sin\left(\frac{3\pi}{2} - \alpha\right) = -\cos\alpha$$
, $\cos\left(\frac{3\pi}{2} - \alpha\right) = -\sin\alpha$, $\operatorname{tg}\left(\frac{3\pi}{2} - \alpha\right) = \operatorname{ctg}\alpha$, $\operatorname{ctg}\left(\frac{3\pi}{2} - \alpha\right) = \operatorname{tg}\alpha$,

6. $\sin\left(\frac{3\pi}{2} + \alpha\right) = -\cos\alpha$, $\cos\left(\frac{3\pi}{2} + \alpha\right) = \sin\alpha$, $\operatorname{tg}\left(\frac{3\pi}{2} + \alpha\right) = -\operatorname{ctg}\alpha$, $\operatorname{ctg}\left(\frac{3\pi}{2} + \alpha\right) = -\operatorname{tg}\alpha$,

7.
$$\sin(2\pi - \alpha) = -\sin\alpha$$
, $\cos(2\pi - \alpha) = \cos\alpha$, $\tan(2\pi - \alpha) = -\tan\alpha$, $\cot(2\pi - \alpha) = -\cot\alpha$,

 $^{^{1}\}alpha$ može biti proizvoljan realan broj.

8.
$$\sin(2\pi + \alpha) = \sin \alpha$$
, $\cos(2\pi + \alpha) = \cos \alpha$,
 $\tan(2\pi + \alpha) = \tan \alpha$, $\cot(2\pi + \alpha) = \cot \alpha$,

9.
$$\sin(k \cdot 2\pi + \alpha) = \sin \alpha$$
, $\cos(k \cdot 2\pi + \alpha) = \cos \alpha$, $\tan(k \cdot \pi + \alpha) = \tan \alpha$, $\cot(k \cdot \pi + \alpha) = \cot \alpha$, $(k \in \mathbb{Z})$,

10.
$$\sin(-\alpha) = -\sin \alpha$$
, $\cos(-\alpha) = \cos \alpha$, $\operatorname{tg}(-\alpha) = -\operatorname{tg} \alpha$, $\operatorname{ctg}(-\alpha) = -\operatorname{ctg} \alpha$.

1414. Izračunati vrednost trigonometrijskih funkcija uglova:

a)
$$\alpha = \frac{4\pi}{3}$$
; b) $\beta = \frac{7\pi}{4}$; c) $\gamma = \frac{20\pi}{3}$.

Uprostiti izraze (1415–1419):

1415.
$$\frac{\sin(\pi-x)\operatorname{tg}\left(x-\frac{\pi}{2}\right)}{\cos\left(\frac{3\pi}{2}+x\right)\operatorname{ctg}(\pi-x)}.$$

1416.
$$\cos(90^{\circ} - \alpha) \cdot \sin(180^{\circ} - \alpha) - \cos(180^{\circ} + \alpha) \cdot \sin(90^{\circ} - \alpha)$$
.

1417.
$$\frac{\operatorname{tg}\left(\frac{3}{2}\pi + \alpha\right) + \operatorname{tg}^{3}\left(\frac{\pi}{2} - \alpha\right)}{\operatorname{ctg}^{3}\left(\frac{5}{2}\pi - \alpha\right) + \operatorname{ctg}\left(\frac{3}{2}\pi + \alpha\right)}.$$

1418.
$$\frac{\operatorname{ctg}^{2}\left(\alpha-\frac{\pi}{2}\right)+\cos^{2}\left(\alpha-\frac{\pi}{2}\right)}{\operatorname{ctg}^{2}\left(\alpha-\frac{\pi}{2}\right)-\cos^{2}\left(\alpha+\frac{\pi}{2}\right)}.$$

1419.
$$\frac{\sin^2\left(\frac{\pi}{2} + \alpha\right) - \cos^2\left(\alpha - \frac{\pi}{2}\right)}{\operatorname{tg}^2\left(\frac{\pi}{2} + \alpha\right) - \operatorname{ctg}^2\left(\alpha - \frac{\pi}{2}\right)}.$$

Dokazati identitete (1420–1426):

1420.
$$\frac{\operatorname{ctg}(270^{\circ} - \alpha)}{1 - \operatorname{tg}^{2}(\alpha - 180^{\circ})} \cdot \frac{\operatorname{ctg}^{2}(360^{\circ} - \alpha) - 1}{\operatorname{ctg}(180^{\circ} + \alpha)} = 1.$$

1421.
$$\frac{\cos^2(\alpha - 270^\circ)}{\frac{1}{\sin^2(\alpha + 90^\circ)} - 1} + \frac{\sin^2(\alpha + 270^\circ)}{\frac{1}{\cos^2(\alpha - 90^\circ)} - 1} = 1.$$

1422.
$$\frac{\left(1 + \operatorname{tg}^{2}(\alpha - 90^{\circ})\right) \left(\frac{1}{\sin^{2}(\alpha - 270^{\circ})} - 1\right)}{\frac{1 + \operatorname{ctg}^{2}(\alpha + 270^{\circ})}{\cos^{2}(\alpha + 90^{\circ})}} = \sin^{2}\alpha.$$

1423.
$$\frac{\cos^2(2\alpha - 90^\circ) + \operatorname{ctg}^2(90^\circ + 2\alpha) + 1}{\sin^2(2\alpha - 270^\circ) + \operatorname{tg}^2(270^\circ + 2\alpha) + 1} = \operatorname{tg}^2 2\alpha.$$

1424.
$$\frac{\cos^2 \alpha + 2\sin^2(\alpha - \pi)}{\cos^3(\alpha - 4\pi)} + \frac{\cos^2 \alpha + 4\sin \alpha + \sin^2(\alpha + \pi)}{\cos \alpha \cdot (4\sin \alpha + 1)} = 2\sec^3 \alpha.$$

1425.
$$\frac{\sin^3(\alpha - 1, 5\pi) \cdot \cos(2\pi - \alpha)}{\tan^3(\alpha - 0, 5\pi) \cdot \cos^3(\alpha - 1, 5\pi)} = \cos \alpha.$$

1426.
$$\frac{\cos^2(1,5\pi-\alpha)-\cos^2(-\alpha)+\cos^4(\pi+\alpha)}{\cos^2\alpha-\cos^2\left(\frac{\pi}{2}-\alpha\right)+\sin^4(-\alpha)}=\operatorname{tg}^4\alpha.$$

1427. Dat je izraz:
$$\frac{\operatorname{ctg}\left(\alpha - \frac{\pi}{2}\right) \cdot \sin\left(\alpha - \frac{3\pi}{2}\right) - \sin(\pi + \alpha)}{\operatorname{tg}\left(\pi + \alpha\right) \cdot \cos(\alpha + 2\pi) + \sin(\alpha - 2\pi)}.$$

a) Odrediti oblast definisanosti; b) uprostiti ga.

1428. Izračunati:

$$\sin 180^{\circ} + |\operatorname{tg}(-45^{\circ})| - \cos 90^{\circ} + \sin^{3}(-30^{\circ}) - \sin^{2}(-60^{\circ}).$$

Uprostiti izraze (1429–1434):

1429.
$$\frac{\sin\frac{3\pi}{2}\cdot\operatorname{tg}\left(-\frac{5\pi}{4}\right)\cdot\cos 1000^{\circ}}{\operatorname{ctg}\frac{5\pi}{3}\cdot\cos(-2\pi)\cdot\sin 170^{\circ}}.$$

1430.
$$\frac{\cot 600^{\circ} \cdot \cos 2\pi \cdot \sin(-290^{\circ})}{\cot \frac{5\pi}{6} \cdot \sin \frac{\pi}{2} \cdot \cos(-160^{\circ})}$$

1431.
$$\frac{\sin \frac{34\pi}{15} \cdot \operatorname{tg}(-1125^{\circ}) \cdot \sin 242^{\circ}}{\cos 222^{\circ} \cdot \operatorname{ctg}\left(-\frac{7\pi}{6}\right) \cdot \cos(-692^{\circ})}.$$

1432.
$$\frac{\operatorname{tg}\left(-\frac{17\pi}{10}\right)\cdot\sin(-744^{\circ})\cdot\cos\frac{7\pi}{4}}{\sin\left(-\frac{11\pi}{6}\right)\cdot\cos(-246^{\circ})\cdot\operatorname{ctg}396^{\circ}}.$$

1433.
$$\frac{\sin^2(180^\circ + \alpha)}{\cos(270^\circ + \alpha) - \sin(90^\circ + \alpha)} + \frac{\cos(360^\circ - \alpha) - \sin(\alpha - 180^\circ)}{1 - \cot^2(270^\circ - \alpha)}.$$

1434.
$$\sin \alpha \cdot (1 + \operatorname{tg}^2 \alpha) \cdot \sin^2(\alpha - 270^\circ) + \cos \alpha \cdot (1 + \operatorname{ctg}^2 \alpha) \cdot \cos^2(\alpha + 270^\circ)$$
.

1435. Ako je
$$\alpha + \beta + \gamma + \delta = k\pi \ (k = 0, \pm 1, \pm 2, ...)$$
, tada je

$$\sin(\alpha + \gamma)\sin(\alpha + \delta) = \sin(\beta + \gamma)\sin(\beta + \delta).$$

Dokazati.

1436. Ako je
$$\alpha - \beta = k\pi$$
 $(k = 0, \pm 1, \pm 2, \ldots)$, onda je

$$\sin(\alpha + \gamma)\sin(\alpha + \delta) = \sin(\beta + \gamma)\sin(\beta + \delta).$$

Dokazati.

Izračunati (1437-1441):

1437.
$$\frac{2\sin x - \sin 2x}{2\sin x + \sin 2x}$$
, ako je $x = \frac{2\pi}{3}$.

1438.
$$\frac{\sin 2\alpha + \cos 2\alpha - \cos 6\alpha}{\sin 4\alpha + 2\sin^2 \alpha - 1}$$
, ako je $\alpha = -\frac{3\pi}{4}$.

1439.
$$\frac{\sin^2(\alpha+\beta)-\sin^2\alpha-\sin^2\beta}{\sin^2(\alpha+\beta)-\cos^2\alpha-\cos^2\beta}, \text{ ako je } \alpha=\frac{2\pi}{3} \text{ i } \beta=\frac{2\pi}{3}.$$

1440.
$$\sin x + \sin 2x + \sin 3x + \sin 4x$$
, ako je $x = 60^{\circ}$.

1441.
$$\frac{\sin x + \sin 3x + \sin 5x}{\cos x + \cos 3x + \cos 5x}$$
, za $x = -135^{\circ}$.

4.3. Adicione formule

4.3.1. Trigonometrijske funkcije zbira i razlike uglova

- 1. $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \sin \beta \cos \alpha$.
- 2. $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \beta \sin \alpha$.

3.
$$\operatorname{tg}(\alpha \pm \beta) = \frac{\operatorname{tg}\alpha \pm \operatorname{tg}\beta}{1 \mp \operatorname{tg}\alpha \operatorname{tg}\beta}$$
. 4. $\operatorname{ctg}(\alpha \pm \beta) = \frac{\operatorname{ctg}\alpha \operatorname{ctg}\beta \mp 1}{\operatorname{ctg}\beta \pm \operatorname{ctg}\alpha}$.

1442. Primenom formula zbira i razlike dva ugla trigonometrijskih funkcija izračunati:

- a) $\sin 75^{\circ}$, $\cos 75^{\circ}$, $\tan 75^{\circ}$ i $\cot 975^{\circ}$;
- b) $\sin 105^{\circ}$, $\cos 105^{\circ}$, $\tan 105^{\circ}$ i $\cot 105^{\circ}$;
- c) $\sin 15^{\circ}$, $\cos 15^{\circ}$, $\tan 15^{\circ}$ i $\cot 15^{\circ}$.

1443. Izračunati $\sin(\alpha + \beta)$, ako je $\sin \alpha = \frac{3}{5}$ i $\cos \beta = -\frac{5}{13}$ i ako je $90^{\circ} < \alpha < 180^{\circ}, 180^{\circ} < \beta < 270^{\circ}.$

1444. Izračunati $\sin(\alpha-\beta)$, ako je $\cos\alpha=-\frac45$, $\sin\beta=-\frac{24}{25}$ i ako završni krak ugla α pripada trećem a β četvrtom kvadrantu.

1445. Izračunati $\cos(\alpha+\beta)$, ako je tg $\alpha=-\frac{24}{7}$, tg $\beta=\frac{15}{8}$ i ako završni krak ugla α pripada drugom a β trećem kvadrantu.

1446. Izračunati $\sin(\alpha + \beta) - \sin(\alpha - \beta)$ ako je:

$$\sin \alpha = \frac{3}{5}; \quad \sin \beta = -\frac{7}{25}; \quad 0 < \alpha < \frac{\pi}{2}; \quad \pi < \beta < \frac{3\pi}{2}.$$

1447. Izračunati $\cos\left(\alpha - \frac{\pi}{3}\right)$, ako je $\sin\alpha = 0, 8; \frac{\pi}{2} < \alpha < \pi$.

1448. Ako je $\cos \alpha = -\frac{3}{5}$ i $\pi < \alpha < \frac{3\pi}{2}$, izračunati tg $\left(\frac{\pi}{4} - \alpha\right)$.

1449. Ako je $\sin x = -\frac{3}{5}$ za $\pi < x < \frac{3\pi}{2}$, $\cos y = \frac{5}{13}$ za $\frac{3\pi}{2} < y < 2\pi$, $\sin z = \frac{12}{13}$ za $\frac{\pi}{2} < z < \pi$, odrediti $\sin(x - y + z)$.

 ${\bf 1450.}$ Ako xpripada prvom kvadrantu, ydrugom, ztrećem kvadrantu, i ako je

$$\sin x = \frac{3}{5}$$
, $\sin y = \frac{12}{13}$, $\sin z = -\frac{7}{25}$

izračunati $\sin(x+y+z)$.

Uprostiti izraze (1451–1453):

1451.
$$\sin\left(\frac{\pi}{4} + \alpha\right) \sin\left(\frac{\pi}{4} - \alpha\right) + \cos\left(\frac{\pi}{4} + \alpha\right) \cos\left(\frac{\pi}{4} - \alpha\right).$$

1452.
$$\cos\left(\frac{\pi}{4} + \alpha\right)\cos\left(\frac{\pi}{12} - \alpha\right) - \sin\left(\frac{\pi}{4} + \alpha\right)\sin\left(\frac{\pi}{12} - \alpha\right).$$

1453.
$$\cos x + \cos(120^{\circ} + x) + \cos(240^{\circ} + x) + \sin x$$
,

1454. Ako je
$$\alpha + \beta = \frac{\pi}{4}$$
, dokazati da je $(1 + \operatorname{tg} \alpha) \cdot (1 + \operatorname{tg} \beta) = 2$.

1455. Dokazati identitet
$$\frac{\sin(\alpha+\beta)-\sin(\alpha-\beta)}{\cos(\alpha-\beta)-\cos(\alpha+\beta)}=\operatorname{ctg}\alpha.$$

Za koje vrednosti α i β identitet ne važi.

1456. Dokazati da izraz

$$\cos(\alpha + x)\cos(\alpha - x) - \sin(\alpha + x)\sin(\alpha - x)$$

ne zavisi od x.

1457. Dokazati da izraz

$$\cos^2 x - 2\sin\alpha\cos x\sin(\alpha + x) + \sin^2(\alpha + x)$$

ne zavisi od x.

1458. Ako je tg
$$(\alpha + \beta) = 3$$
, tg $\alpha = 2$, izračunati tg β .

1459. Kakva veza postoji između
$$\alpha$$
 i β ako je $\frac{1-\lg\beta}{1+\lg\beta}=\lg\alpha$?

1460. Dokazati identitet

$$\sin^2 \alpha + \sin^2 \left(\frac{2\pi}{3} - \alpha\right) + \sin^2 \left(\frac{2\pi}{3} + \alpha\right) = \frac{3}{2}.$$

1461. Ako je ct
g $\alpha=\frac{3}{4},$ ctg $\beta=\frac{1}{7},$ $0<\alpha<\frac{\pi}{2},$
 $0<\beta<\frac{\pi}{2},$ izračunati ctg $(\alpha+\beta)$
i $\alpha+\beta.$

1462. Dokazati da je $\alpha + \beta = \frac{\pi}{4}$, gde su α i β oštri uglovi, ako je

a)
$$\operatorname{tg} \alpha = \frac{2}{3}$$
, $\operatorname{tg} \beta = \frac{1}{5}$; b) $\operatorname{tg} \alpha = \frac{4}{5}$, $\operatorname{tg} \beta = \frac{1}{9}$;

c)
$$\lg \alpha = \frac{n}{n+1} \lg \beta = \frac{1}{2n+1}$$
.

4.3.2. Trigonometrijske funkcije dvostrukih uglova

1.
$$\sin 2\alpha = 2 \sin \alpha \cos \alpha$$
. 2. $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$.

3.
$$\operatorname{tg} 2\alpha = \frac{2\operatorname{tg}\alpha}{1-\operatorname{tg}^2\alpha}$$
. 4. $\operatorname{ctg} 2\alpha = \frac{\operatorname{ctg}^2\alpha-1}{2\operatorname{ctg}\alpha}$.

1463. Primenom formula dvostukih uglova trigonometrijskih funkcija izračunati: $\sin \frac{2\pi}{3}$, $\cos \frac{2\pi}{3}$, $\tan \frac{2\pi}{3}$ i $\cot \frac{2\pi}{3}$.

1464. Ako je tg $2\alpha = 3$, izračunati tg $(45^{\circ} + \alpha) - \text{tg} (45^{\circ} - \alpha)$.

1465. Izračunati $\sin 2\alpha$, $\cos 2\alpha$ i t
g 2α ako je:

a)
$$\sin \alpha = -\frac{3}{5}$$
 i $\pi < \alpha < \frac{3\pi}{2}$; b) $\cos \alpha = \frac{5}{13}$ i $\frac{3\pi}{2} < \alpha < 2\pi$;

c)
$$\operatorname{tg} \alpha = -\frac{3}{4} i \frac{\pi}{2} < \alpha < \pi$$
.

1466. Primeniti formule dvostrukih uglova na trigonometrijske funkcije:

a)
$$\sin x$$
; b) $\cos x$; c) $\sin 3x$; d) $\sin(x+y)$.

1467. Ako je
$$\sin 2\alpha = -\frac{24}{25} \left(\pi < 2\alpha < \frac{3\pi}{2} \right)$$
, izračunati $\sin \alpha$ i $\cos \alpha$.

1468. Ako je tg $\alpha=2+\sqrt{3}~\left(0<\alpha<\frac{\pi}{2}\right)$, izračunati $\sin2\alpha,~\cos2\alpha$ i tg $2\alpha.$

1469. Skratiti razlomke:

a)
$$\frac{2\sin\frac{x}{2}}{\sin x}$$
; b) $\frac{\sin 55^{\circ}}{\sin 110^{\circ}}$; c) $\frac{2\cos\frac{\pi}{12}}{\sin\frac{\pi}{6}}$; d) $\frac{2\sin 5\alpha}{\sin 10\alpha}$.

Dokazati identitete (1470–1478):

1470. a)
$$2\sin^2\alpha + \cos^22\alpha = 1$$
; b) $1 + \cos 2\alpha = 2\cos^2\alpha$.

1471. a)
$$\frac{+\cos 2\alpha}{1-\cos 2\alpha} = \operatorname{ctg}^2 \alpha$$
; b) $\frac{\sin 2\alpha - \sin \alpha}{1-\cos \alpha + \cos 2\alpha} = \operatorname{tg} \alpha$.

1472.
$$\cos^4 \alpha + \sin^4 \alpha = 1 - 0, 5 \sin^2 2\alpha$$
;

1473.
$$\cos^6 \alpha + \sin^6 \alpha = 1 - 0.75 \sin^2 2\alpha$$
.

1474.
$$\frac{1+\sin 2\alpha}{\cos 2\alpha} = \frac{\sin \alpha + \cos \alpha}{\cos \alpha - \sin \alpha}$$
. 1475. $\frac{1-\cos 2\alpha + \sin 2\alpha}{1+\cos 2\alpha + \sin 2\alpha} = \operatorname{tg} \alpha$.

1476.
$$\frac{2 - \sin 4\alpha \cdot \cot 2\alpha}{\sin 4\alpha} = \tan 2\alpha.$$

1477.
$$\frac{1 + \cos 2\alpha}{\cos 2\alpha} \cdot \frac{1 + \cos 4\alpha}{\sin 4\alpha} = \operatorname{ctg} \alpha.$$

1478.
$$\cos 4\alpha + 4\cos 2\alpha + 3 = 8\cos^4 \alpha$$
.

1479. Izračunati:

a) $\sin 3x$ u funkciji od $\sin x$; b) $\cos 3x$ u funkciji od $\cos x$.

1480. Izračunati:

- a) $\sin 4x$ u funkciji od $\sin x$ i $\cos x$;
- b) $\cos 4x$ u funkciji od $\sin x$ i $\cos x$; c) $\cos 4x$ u funkciji od $\cos x$.

4.3.3. Trigonometrijske funkcije poluuglova

1.
$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$
 ili $2 \sin^2 \frac{\alpha}{2} = 1 - \cos \alpha$.

2.
$$\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$
 ili $2\cos^2 \frac{\alpha}{2} = 1 + \cos \alpha$.

3.
$$\operatorname{tg} \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$$
. 4. $\operatorname{ctg} \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}}$.

1481. Izračunati vrednosti trigonometrijskih funkcija za sledeće uglove:

a)
$$\alpha = \frac{\pi}{8}$$
; b) $\alpha = \frac{\pi}{12}$; c) $\alpha = \frac{\pi}{16}$; d) $\alpha = \frac{\pi}{24}$

1482. Izračunati $\sin \frac{\alpha}{2}$, $\cos \frac{\alpha}{2}$ i $\operatorname{tg} \frac{\alpha}{2}$ ako je:

a)
$$\cos \alpha = -\frac{7}{25} i \frac{\pi}{2} < \alpha < \pi;$$
 b) $\sin \alpha = -\frac{15}{17} i \frac{3\pi}{2} < \alpha < 2\pi;$

c)
$$\lg \alpha = \frac{4}{3} i \ 0 < \alpha < \frac{\pi}{2}$$
.

1483. Dokazati da je tg
$$\frac{\pi}{24} = 2\sqrt{2 + \sqrt{3}} - \sqrt{3} - 2$$
.

1484. Skratiti razlomke:

a)
$$\frac{1+\cos 40^{\circ}}{2\cos^2 20^{\circ}}$$
; b) $\frac{2\sin^2 32^{\circ}30'}{1-\cos 65^{\circ}}$; c) $\frac{1-\cos\frac{\pi}{8}}{\sin^2\frac{\pi}{16}}$.

Uprostiti izraze (1485–1487):

1485. a)
$$\frac{\sin \alpha}{1 - \cos \alpha}$$
; b) $\frac{1 + \cos 2\alpha}{\sin 2\alpha}$.

1486. a)
$$1 - \cos 40^\circ$$
; b) $\frac{1 - \cos \alpha}{1 + \cos \alpha}$; c) $\frac{1 - \sin \alpha}{1 + \sin \alpha}$.

1487. a)
$$\cot \alpha (1 - \cos 2\alpha)$$
; b) $\cot \alpha (1 + \cos 2\alpha)$;

c)
$$\left(\operatorname{tg} \alpha + \frac{1}{\cos \alpha} \right) \operatorname{tg} \left(\frac{\pi}{4} - \frac{\alpha}{2} \right)$$
.

Dokazati identitete (1488–1493):

1488.
$$\frac{\sin x - \sin 2x}{2\sin x + \sin 2x} = \operatorname{tg}^2 \frac{x}{2}$$
.

1489.
$$\frac{\sin 2x}{1 + \cos 2x} \cdot \frac{\cos x}{1 + \cos x} = \operatorname{tg} \frac{x}{2}.$$

1490.
$$\frac{\cos x - \cos 2x - 1}{\sin x - \sin 2x} = \cot x.$$

1491.
$$\frac{\cos 2x}{1 + \sin 2x} = \operatorname{ctg}\left(\frac{\pi}{4} + x\right).$$

1492.
$$\frac{1+\sin x - \cos x}{1+\sin x + \cos x} = \operatorname{tg} \frac{x}{2}$$
.

1493.
$$\frac{\sin x + \sin 3x}{1 + \cos 2x} = 2\sin x.$$

1494. Dokazati da je:

$$a) \sin \alpha = \frac{2 \operatorname{tg} \frac{\alpha}{2}}{1 + \operatorname{tg}^2 \frac{\alpha}{2}}; \quad b) \cos \alpha = \frac{1 - \operatorname{tg}^2 \frac{\alpha}{2}}{1 + \operatorname{tg}^2 \frac{\alpha}{2}}; \quad c) \operatorname{tg} \alpha = \frac{2 \operatorname{tg} \frac{\alpha}{2}}{1 - \operatorname{tg}^2 \frac{\alpha}{2}}.$$

1495. Izračunati vrednost izraza $\frac{5\cos\alpha-3}{10\sin\alpha+1}$ ako je tg $\frac{\alpha}{2}=3$.

1496. Izračunati vrednost izraza $\frac{5\cos\alpha+4}{10\sin\alpha-1}$, ako je tg $\frac{\alpha}{2}=2$.

1497. Izračunati $\sin \alpha$ i $\cos \alpha$ ako je tg $2\alpha = a \ (a > 0)$.

1498.* Dokazati da je
$$\frac{1 - \operatorname{tg}^2 15^{\circ}}{1 + \operatorname{tg}^2 15^{\circ}} = \frac{\sqrt{3}}{2}$$
.

1499.* Izračunati:

- a) $\cos 210^{\circ} \sqrt{3} \sec 10^{\circ}$; b) $\cos 36^{\circ} + \cos 108^{\circ}$;
- c) $\cos 27^{\circ} \cos 63^{\circ}$; d) $tg 75^{\circ} tg 15^{\circ}$.

4.3.4. Transformacija zbira i razlike trigonometrijskih funkcija u proizvod i obrnuto

1.
$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$
.

2.
$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$
.

3.
$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$
.

4.
$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$
.

5.
$$\sin \alpha \cos \beta = \frac{1}{2}(\sin(\alpha + \beta) + \sin(\alpha - \beta)).$$

6.
$$\sin \alpha \sin \beta = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta)).$$

7.
$$\cos \alpha \cos \beta = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta)).$$

1500. Bez upotrebe računara izračunati vrednost izraza:

- a) $\sin 75^{\circ} + \sin 15^{\circ}$; b) $\cos 105^{\circ} \cos 75^{\circ}$; c) $\sin 105^{\circ} \sin 15^{\circ}$;
- d) $\cos 75^{\circ} \cos 15^{\circ}$; e) $\frac{\sin 75^{\circ} \sin 15^{\circ}}{\cos 75^{\circ} + \cos 15^{\circ}}$.

1501. Izračunati:

a) $\sin 15^{\circ} \cos 75^{\circ}$; b) $\sin 15^{\circ} \cos 15^{\circ}$.

1502. Dokazati da je:

a) $\sin 15^{\circ} \sin 75^{\circ} = 0,25$; b) $\cos 135^{\circ} \cos 45^{\circ} = -0,5$.

1503. Transformisati u proizvod:

a)
$$\cos \frac{\pi}{3} - \cos \frac{2\pi}{3}$$
; b) $\cos 20^{\circ} + \sin 50^{\circ}$; c) $\sin^2 5\alpha - \sin^2 3\alpha$.

Transformisati u proizvod (1504–1507):

1504. $\sin 2\alpha \cos 3\alpha - 2\sin^2 \alpha \sin 3\alpha$.

1505. $\sin 10^{\circ} + 2\sin 5^{\circ}\cos 15^{\circ} + \cos 50^{\circ}$.

1506. $\sin 20^{\circ} + \sin 34^{\circ} + \sin 24^{\circ} + \sin 30^{\circ}$.

1507. $\sin 25^{\circ} + \sin 37^{\circ} + \sin 27^{\circ} + \sin 35^{\circ}$

1508. Izračunati:

a) $tg 75^{\circ} - tg 15^{\circ}$; b) $\sin 15^{\circ} - \sqrt{3} \cos 15^{\circ}$; c) $\cos 15^{\circ} + \sqrt{3} \sin 15^{\circ}$.

1509. Transformisati u proizvod:

a) $1 - \sin \alpha$; b) $\sqrt{2} - 2\cos \alpha$; c) $1 - 4\cos^2 \alpha$; d) $3 - 4\sin^2 \alpha$.

1510. Dokazati da je:

a)
$$\sin 20^{\circ} \cdot \sin 40^{\circ} \cdot \sin 80^{\circ} = \frac{\sqrt{3}}{8};$$
 b) $\cos 10^{\circ} \cdot \cos 50^{\circ} \cdot \cos 70^{\circ} = \frac{\sqrt{3}}{8};$

c) $tg 6^{\circ} \cdot tg 54^{\circ} \cdot tg 66^{\circ} = tg 18^{\circ}$.

1511. Transformisati u proizvod:

a)
$$\sqrt{1 - \cos \alpha} + \sqrt{1 + \cos \alpha}$$
 $(0 < \alpha < 90^{\circ});$

b)
$$\sqrt{1 + \cos \alpha} - \sqrt{1 - \cos \alpha}$$
 $(0 < \alpha < 90^{\circ})$.

1512. Dokazati identitet
$$\frac{\sin 2x}{1 + \cos 2x} \cdot \frac{\cos x}{1 + \cos x} = \operatorname{tg} \frac{x}{2}$$
.

1513. Koji uslov zadovoljavaju α i β $(\alpha, \beta \neq 2k\pi, k \in \mathbb{Z})$ da bi bila tačna jednakost $\sin \alpha + \sin \beta = \sin(\alpha + \beta)$?

4.3.5. Kombinovani zadaci iz adicionih formula

1514. Ako α i β zadovoljavaju nejednačine $0<\alpha<\frac{\pi}{2},\ 0<\beta<\frac{\pi}{2},$ i ako je $\cos\alpha=\frac{7}{\sqrt{50}},\ \operatorname{tg}\beta=\frac{1}{3},$ tada je $\alpha+2\beta=\frac{\pi}{4}.$ Dokazati.

Dokazati da sledeći izrazi (1515–1517) ne zavise od φ :

1515.
$$4\cos\alpha\cdot\cos\varphi\cdot\cos(\alpha-\varphi)-2\cos^2(\alpha-\varphi)-\cos2\varphi$$
.

1516.
$$\sin^2 \varphi - \cos^2(\alpha - \varphi) + 2\cos\alpha \cdot \cos\varphi \cdot \cos(\alpha - \varphi)$$
.

1517.
$$\cos^2 \varphi + \cos^2(\alpha - \varphi) - 2\cos\alpha \cdot \cos\varphi \cdot \cos(\alpha - \varphi)$$
.

1518. Dokazati da vrednost izraza

$$\cos^2(x+y) + \cos^2(x-y) - \cos 2x \cdot \cos 2y,$$

ne zavisi od x i y.

1519. Dokazati da izraz:

$$\sin^2(a+x) + \sin^2(a-x) + 2\sin(a+x) \cdot \sin(a-x) \cdot \cos 2a$$

ne zavisi od x.

1520. Izračunati $\cos 3x$ kao funkciju od $\cos x$.

1521. Izračunati $\sin 3x$ u funkciji od $\sin x$. Zatim dokazati da je

$$4\sin x \cdot \sin\left(\frac{\pi}{3} - x\right) \cdot \sin\left(\frac{\pi}{3} + x\right) = \sin 3x.$$

1522. Izračunati $\sin 5x$ kao funkciju od $\sin x$.

1523. Izračunati $\cos 5x$ kao funkciju od $\cos x$.

1524. Izraziti tg 3x pomoću tg x.

1525. Izraziti
$$S = \operatorname{tg} x + \operatorname{tg} \left(x + \frac{\pi}{3} \right) + \operatorname{tg} \left(x + \frac{2\pi}{3} \right)$$
 pomoću $\operatorname{tg} 3x$.

1526. Dokazati da je za svako x tačna formula

$$\operatorname{tg} 3x = \operatorname{tg} x \cdot \operatorname{tg} \left(\frac{\pi}{3} - x \right) \cdot \operatorname{tg} \left(\frac{\pi}{3} + x \right).$$

1527. Dokazati identitet
$$\frac{1+\sin 2\alpha}{\sin \alpha + \cos \alpha} = \sqrt{2} \cdot \cos \left(\frac{\pi}{4} - \alpha\right).$$

1528. Ako je
$$\sin \frac{x}{2} + \cos \frac{x}{2} = 1, 4$$
, izračunati $\sin x$.

1529. Ako je $\sin \alpha - \cos \alpha = p$, izračunati $\sin 2\alpha$.

1530. Ako je t
g
$$\left(\frac{7}{2}\pi+2\alpha\right)=\frac{9}{11},$$
izračunati

$$\operatorname{tg}\left(\frac{5}{4}\pi + \alpha\right) - \operatorname{tg}\left(\frac{5}{4}\pi - \alpha\right).$$

1531. Ako je tg $\alpha = -2$, izračunati $1 + 5\sin 2\alpha - 3\sec 2\alpha$.

1532. Ako je t
g
$$\left(\frac{3}{2}\pi + x\right) = \frac{3}{4}$$
, izračunati

$$\operatorname{tg}\left(\frac{5}{4}\pi + x\right) + \operatorname{tg}\left(\frac{5}{4}\pi - x\right).$$

1533. Izračunati $\cos 2\alpha$, ako je $2 \operatorname{ctg}^2 \alpha + 7 \operatorname{ctg} \alpha + 3 = 0$ i ako ugao α zadovoljava nejednačine:

$$\mathrm{a)}\ \frac{3\pi}{2}<\alpha<\frac{7\pi}{4};\quad \mathrm{b)}\ \frac{7\pi}{4}<\alpha<2\pi.$$

1534. Izračunati $\sin 2\alpha$, ako je $2 \operatorname{tg}^2 \alpha - 7 \operatorname{tg} \alpha + 3 = 0$, a ugao α zadovoljava nejednačine:

$$a) \ \pi < \alpha < \frac{5\pi}{4}; \quad b) \ \frac{5\pi}{4} < \alpha < \frac{3\pi}{2}.$$

1535. Ako je t
g
$$\alpha=3,$$
izračunati $\frac{2\sin2\alpha-3\cos2\alpha}{4\sin2\alpha+5\cos2\alpha}$

1536. Ako je
$$\frac{\sin(\alpha+\beta)}{\sin(\alpha-\beta)} = \frac{p}{q}$$
, naći $\operatorname{ctg} \beta$ u funkciji od α , p i q .

1537. Ako je
$$\frac{\cos(\alpha+\beta)}{\cos(\alpha-\beta)} = \frac{p}{q}$$
, naći tg β u funkciji od α , p i q .

1538. Ako je tg
$$\alpha = \frac{p}{q}$$
, izračunati $\sin 2\alpha$, $\cos 2\alpha$ i tg 2α .

1539. Ako je tg
$$\frac{\alpha}{2} = m$$
, izračunati vrednost izraza $\frac{1 - 2\sin^2\frac{\alpha}{2}}{1 + \sin\alpha}$.

1540. Izračunati vrednost izraza

$$\frac{1+\cos 2\alpha}{\cot \frac{\alpha}{2}-\cot \frac{\alpha}{2}},$$

ako je $\sin \alpha + \cos \alpha = m$.

1541. Ako je $\sin x + \cos x = \frac{1}{5}$, izračunati tg $\frac{x}{2}$.

1542.* Ako je $\operatorname{tg} x + \operatorname{tg} y = a$, $\operatorname{tg} x \cdot \operatorname{tg} y = b$, tada je

$$\operatorname{tg} 2x + \operatorname{tg} 2y = \frac{2a(1-b)}{(1+b)^2 - a^2}.$$

Dokazati.

1543.* Ako je $\frac{\sin(\varphi - \alpha)}{\sin(\varphi - \beta)} = \frac{a}{b}$ i $\frac{\cos(\varphi - \alpha)}{\cos(\varphi - \beta)} = \frac{c}{d}$, dokazati da je

$$\cos(\alpha - \beta) = \frac{ac + bd}{ad + bc}.$$

1544.* Ako su tg α i tg β koreni kvadratne jednačine $x^2+px+q=0,$ izračunati $\sin^2(\alpha+\beta)+p\sin(\alpha+\beta)\cdot\cos(\alpha+\beta)+q\cos^2(\alpha+\beta).$

1545. Ako su a i b realni brojevi dokazati da je

$$|\sin(a+b)| \le |\sin a| + |\sin b|.$$

1546. Odrediti realne brojeveaibtako da za $\frac{5}{4}\pi \leq x \leq \frac{7}{4}\pi$ važi identitet

$$\cos x = a \cdot \sqrt{1 - \sin 2x} + b \cdot \sqrt{1 + \sin 2x}.$$

1547. Proveriti da li je jednakost

$$\sin(x+y) \cdot \sin(x-y) = (\sin x + \sin y) \cdot (\sin x - \sin y)$$

identitet.

1548. Dokazati da je jednakost

$$\sin^2\left(\frac{\pi}{8} + \alpha\right) - \sin^2\left(\frac{\pi}{8} - \alpha\right) = \frac{\sin 2\alpha}{\sqrt{2}}$$

identitet.

1549.* Proveriti identitet
$$\frac{\cos 3x}{\cos x} - \frac{\cos 6x}{\cos 2x} = 2 \cdot (\cos 2x - \cos 4x).$$

Dokazati identitete (1550-1557):

1550.
$$(\cos \alpha + \cos \beta)^2 + (\sin \alpha + \sin \beta)^2 = 4\cos^2 \frac{\alpha - \beta}{2}$$
.

1551.
$$(\cos \alpha - \cos \beta)^2 + (\sin \alpha - \sin \beta)^2 = 4 \sin^2 \frac{\alpha - \beta}{2}$$
.

1552.
$$\sin \alpha + \sin \beta + \sin \gamma - \sin(\alpha + \beta + \gamma)$$

= $4 \sin \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha + \gamma}{2} \cdot \sin \frac{\beta + \gamma}{2}$.

1553.
$$\cos \alpha + \cos \beta + \cos \gamma + \cos(\alpha + \beta + \gamma)$$

= $4\cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha + \gamma}{2} \cdot \cos \frac{\beta + \gamma}{2}$.

1554.
$$\operatorname{tg} \alpha + \operatorname{tg} \beta + \operatorname{tg} \gamma - \frac{\sin(\alpha + \beta + \gamma)}{\cos \alpha \cdot \cos \beta \cdot \cos \gamma}$$

= $\operatorname{tg} \alpha \cdot \operatorname{tg} \beta \cdot \operatorname{tg} \gamma \quad (\alpha, \beta, \gamma \neq \frac{\pi}{2} + k\pi).$

1555.
$$\cos^3 \alpha \cdot \sin \alpha - \sin^3 \alpha \cdot \cos \alpha = \frac{\sin 4\alpha}{4}$$

1556.
$$\sin^2 \alpha + \sin^2 \beta + 2 \sin \alpha \cdot \sin \beta \cdot \cos(\alpha + \beta) = \sin^2(\alpha + \beta).$$

1557.
$$\frac{1+\cos\alpha+\cos 2\alpha+\cos 3\alpha}{2\cos 2\alpha+\cos \alpha-1}=2\cos\alpha.$$

1558. Ako je
$$(1 + \sin \alpha)(1 + \sin \beta) \cdot (1 + \sin \gamma) = \cos \alpha \cdot \cos \beta \cdot \cos \gamma$$
, uprostiti izraz $A = (1 - \sin \alpha)(1 - \sin \beta) \cdot (1 - \sin \gamma)$.

1559. Ako za
$$\alpha$$
 i β važi: $3\sin^2\alpha + 2\sin^2\beta = 1$, $3\sin2\alpha - 2\sin2\beta = 0$, $0 < \alpha < \frac{\pi}{2}$, $0 < \beta < \frac{\pi}{2}$, dokazati da je $\alpha + 2\beta = \frac{\pi}{2}$.

1560.* Ako je
$$\sin \beta = \frac{1}{5} \sin(2\alpha + \beta)$$
, dokazati da je $\operatorname{tg}(\alpha + \beta) = \frac{3}{2} \operatorname{tg} \alpha$.

Dokazati da za uglove trougla $(\alpha + \beta + \gamma = \pi)$ važe sledeće jednakosti (1561–1574):

1561.
$$\sin \alpha + \sin \beta + \sin \gamma = 4\cos \frac{\alpha}{2} \cdot \cos \frac{\beta}{2} \cdot \cos \frac{\gamma}{2}$$
.

1562.
$$\sin \beta + \sin \gamma - \sin \alpha = 4 \cos \frac{\alpha}{2} \cdot \sin \frac{\beta}{2} \cdot \sin \frac{\gamma}{2}$$
.

1563.
$$\cos \alpha + \cos \beta + \cos \gamma = 1 + 4 \sin \frac{\alpha}{2} \cdot \sin \frac{\beta}{2} \cdot \sin \frac{\gamma}{2}$$
.

1564.
$$\operatorname{tg} \alpha + \operatorname{tg} \beta + \operatorname{tg} \gamma = \operatorname{tg} \alpha \cdot \operatorname{tg} \beta \cdot \operatorname{tg} \gamma$$
.

1565.
$$\operatorname{tg} \frac{\alpha}{2} \cdot \operatorname{tg} \frac{\beta}{2} + \operatorname{tg} \frac{\alpha}{2} \cdot \operatorname{tg} \frac{\gamma}{2} + \operatorname{tg} \frac{\beta}{2} \cdot \operatorname{tg} \frac{\gamma}{2} = 1.$$

1566.
$$\sin 2\alpha + \sin 2\beta + \sin 2\gamma = 4 \sin \alpha \cdot \sin \beta \cdot \sin \gamma$$
.

$$\textbf{1567.} \ \frac{\sin\alpha+\sin\beta+\sin\gamma}{\sin\alpha+\sin\beta-\sin\gamma} = \ \operatorname{ctg}\frac{\alpha}{2} \cdot \ \operatorname{ctg}\frac{\beta}{2}.$$

1568.
$$\sin 3\alpha + \sin 3\beta + \sin 3\gamma = -4\cos\frac{3}{2}\alpha \cdot \cos\frac{3}{2}\beta \cdot \cos\frac{3}{2}\gamma$$
.

1569.
$$\sin 4\alpha + \sin 4\beta + \sin 4\gamma = -4\sin 2\alpha \cdot \sin 2\beta \cdot \sin 2\gamma$$

1570.
$$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma - 2\cos \alpha \cdot \cos \beta \cdot \cos \gamma = 2$$
.

Ako je $\alpha = \beta + \gamma$, dokazati da je (1571–1573):

1571.
$$\cos 2\alpha + \cos 2\beta + \cos 2\gamma = 4\cos \alpha \cdot \cos \beta \cdot \cos \gamma - 1$$
.

1572.
$$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2(1 - \cos \alpha \cdot \cos \beta \cdot \cos \gamma).$$

1573.
$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma - 2\cos \alpha \cdot \cos \beta \cdot \cos \gamma = 1$$
.

1574. Ako je
$$\alpha + \beta = \gamma$$
, dokazati da je

$$\sin \alpha + \sin \beta - \sin \gamma = 4 \sin \frac{\alpha}{2} \cdot \sin \frac{\beta}{2} \cdot \sin \frac{\gamma}{2}.$$

Ako je $\alpha + \beta + \gamma = \frac{\pi}{2}$, dokazati da je (1575–1578):

1575.
$$\operatorname{ctg} \alpha + \operatorname{ctg} \beta + \operatorname{ctg} \gamma = \operatorname{ctg} \alpha \cdot \operatorname{ctg} \beta \cdot \operatorname{ctg} \gamma$$
.

1576.
$$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + 2 \sin \alpha \cdot \sin \beta \cdot \sin \gamma = 1$$
.

1577.
$$\frac{\operatorname{ctg}\beta + \operatorname{ctg}\gamma}{\operatorname{ctg}\alpha + \operatorname{ctg}\gamma} = \frac{\sin 2\alpha}{\sin 2\beta}$$
. 1578. $\frac{\operatorname{tg}\alpha + \operatorname{tg}\beta}{\operatorname{tg}\beta + \operatorname{tg}\gamma} = \frac{\cos^2\gamma}{\cos^2\alpha}$.

Transformisati u proizvod ili količnik sledeće izraze (1579–1597):

1579.
$$\frac{1+\sin\alpha-\cos\alpha}{\sin\frac{\alpha}{2}}.$$
 1580.
$$\cos\alpha+\sin2\alpha-\cos3\alpha.$$

1581.
$$1 - \sin^2(\alpha + \beta) - \sin^2(\alpha - \beta)$$
. **1582.** $\operatorname{tg}\left(\alpha + \frac{\pi}{4}\right) + \operatorname{tg}\left(\alpha - \frac{\pi}{4}\right)$.

1583.
$$\frac{2\sin\beta - \sin 2\beta}{2\sin\beta + \sin 2\beta}$$
. 1584. $\frac{\sqrt{2} - \cos\alpha - \sin\alpha}{\sin\alpha - \cos\alpha}$

1585.
$$\frac{\sin 2\alpha + \cos 2\alpha - \cos 6\alpha - \sin 6\alpha}{\sin 4\alpha + 2\sin^2 2\alpha - 1}.$$

1586.
$$\cos 2\alpha - \sin 4\alpha - \cos 6\alpha$$
.

1587.
$$1 - \cos(\pi - 8\alpha) - \cos(\pi + 4\alpha)$$
.

1588.
$$\sin 2\alpha + \cos 4\alpha - \sin 6\alpha$$
.

1589.
$$\frac{\cos 2\alpha - \sin 4\alpha - \cos 6\alpha}{\cos 2\alpha + \sin 4\alpha - \cos 6\alpha}.$$

1590.
$$\sin^2(2\alpha - \beta) - \sin^2 2\alpha - \sin^2 \beta$$
.

1591.
$$\sin^2(\alpha - 2\beta) - \cos^2\alpha - \cos^2 2\beta$$
.

1592.
$$\frac{\sin^2(\alpha+\beta)-\sin^2\alpha-\sin^2\beta}{\sin^2(\alpha+\beta)-\cos^2\alpha-\cos^2\beta}$$

1593.
$$\sin 8x - \sin 6x - \cos 8x \cdot \sin 2x$$
.

1594.
$$\sin x + \sin 2x + \sin 3x + \sin 4x$$
.

1595.
$$\sin x + \sin 2x + \sin 3x - \cos x - \cos 2x - \cos 3x$$
.

1596.
$$\frac{\sin x + \sin 3x + \sin 5x}{\cos x + \cos 3x + \cos 5x}$$

1597.
$$\sin x + \sin 3x + \sin 9x - \sin 5x$$

1598. Ako je $\sin \alpha \cdot \cos(\alpha + \beta) = \sin \beta$, onda je $\operatorname{tg}(\alpha + \beta) = 2 \operatorname{tg} \alpha$. Dokazati.

1599. Izračunati $\sin x$, $\cos x$, $\operatorname{tg} x$ i $\operatorname{ctg} x$ u funkciji od $\operatorname{tg} \frac{x}{2}$.

1600. Ako je $\sin \alpha + \sin \beta = a$ i $\cos \alpha + \cos \beta = b$, dokazati da je:

$$\sin(\alpha + \beta) = \frac{2ab}{a^2 + b^2}, \quad \cos(\alpha + \beta) = \frac{a^2 - b^2}{a^2 + b^2}.$$

1601. Ako je tg $\alpha=1,\ {\rm tg}\,\beta=2$ i tg $\gamma=3,$ dokazati da je

$$\alpha + \beta + \gamma = k\pi$$
.

1602. Ako je tg $\alpha = \frac{1}{12}$, tg $\gamma = \frac{2}{5}$ i tg $\gamma = \frac{1}{3}$, gde su α , β , γ oštri uglovi, dokazati da je $\alpha + \beta + \gamma = \frac{\pi}{4}$.

4.3. Adicione formule

1603. Ako su α , β i γ oštri uglovi i ako je

$$\operatorname{tg} \alpha = \frac{1}{2}, \quad \operatorname{tg} \beta = 2, \quad \operatorname{tg} \gamma = \frac{13}{9},$$

tada je $2\alpha - \beta + \gamma = \frac{\pi}{4}$. Dokazati.

1604. Ako je: $\sin\alpha = \frac{1}{3}$, $\sin\beta = \frac{1}{3\cdot\sqrt{11}}$, $\sin\gamma = \frac{3}{\sqrt{11}}$ (α , β i γ su oštri uglovi), dokazati da je $\alpha + \beta + \gamma = 90^{\circ}$.

1605. Izračunati bez upotrebe računara:

$$3\sin 15^{\circ} \cdot \cos 15^{\circ} + \frac{\sin 60^{\circ}}{\sin^4 15^{\circ} - \cos^4 15^{\circ}}.$$

Dokazati da je (1606–1611):

1606.
$$\sin \frac{\pi}{8} \cdot \sin \frac{2\pi}{8} \cdot \sin \frac{3\pi}{8} = \frac{1}{4}$$
. **1607.*** $\cos \frac{\pi}{7} - \cos \frac{2\pi}{7} + \cos \frac{3\pi}{7} = \frac{1}{2}$.

1609.*
$$\sin 10^{\circ} \cdot \sin 20^{\circ} \cdot \sin 30^{\circ} \cdot \sin 40^{\circ} \cdot \cos 10^{\circ} \cdot \cos 20^{\circ} \cdot \cos 30^{\circ} \cdot \cos 40^{\circ}$$

$$= \frac{3}{256}.$$

1610.
$$\sin 47^{\circ} + \sin 61^{\circ} - \sin 11^{\circ} - \sin 25^{\circ} = \cos 7^{\circ}$$
.

1611.
$$\cos 24^\circ + \cos 48^\circ - \cos 84^\circ - \cos 12^\circ = \frac{1}{2}$$
.

Dokazati jednakosti (1611–1621):

1612.
$$\frac{\sin 20^{\circ} \cdot \cos 10^{\circ} + \cos 160^{\circ} \cdot \cos 100^{\circ}}{\sin 21^{\circ} \cdot \cos 9^{\circ} + \cos 159^{\circ} \cdot \cos 99^{\circ}} = 1.$$

1613.
$$\frac{\cos 63^{\circ} \cdot \cos 3^{\circ} - \cos 87^{\circ} \cdot \cos 27^{\circ}}{\cos 132^{\circ} \cdot \cos 72^{\circ} - \cos 42^{\circ} \cdot \cos 18^{\circ}} = -\operatorname{tg} 24^{\circ}.$$

1614.
$$\frac{\cos 64^{\circ} \cdot \cos 4^{\circ} - \cos 86^{\circ} \cdot \cos 26^{\circ}}{\cos 71^{\circ} \cdot \cos 41^{\circ} - \cos 49^{\circ} \cdot \cos 19^{\circ}} = -1.$$

1615.
$$\sin^2 70^\circ \cdot \sin^2 50^\circ - \sin^2 10^\circ = \frac{1}{64}$$
. **1616.** $\frac{1}{\sin 10^\circ} - \frac{\sqrt{3}}{\cos 10^\circ} = 4$.

1617.*
$$\sin 10^{\circ} \cdot \sin 30^{\circ} \cdot \sin 50^{\circ} \cdot \sin 70^{\circ} = \frac{1}{16}$$

1618.
$$\sin 20^{\circ} \cdot \sin 40^{\circ} \cdot \sin 60^{\circ} \cdot \sin 80^{\circ} = \frac{3}{16}$$

1619.
$$\frac{\sin 20^{\circ} \cdot \sin 40^{\circ} - \sin 60^{\circ} \cdot \sin 80^{\circ}}{\sin 10^{\circ} \cdot \sin 30^{\circ} \cdot \sin 50^{\circ} \cdot \sin 70^{\circ}} = 3.$$

1620.*
$$\cos 55^{\circ} \cdot \cos 65^{\circ} + \cos 65^{\circ} \cdot \cos 175^{\circ} + \cos 175^{\circ} \cdot \cos 55^{\circ} = -\frac{3}{4}$$

1621.*
$$\sin 495^{\circ} - \sin 795^{\circ} + \sin 1095^{\circ} = 0.$$

1622.* Dokazati da izraz

$$\cos x \cdot \cos \left(\frac{2\pi}{3} + x\right) + \cos \left(\frac{2\pi}{3} + x\right) \cdot \cos \left(\frac{2\pi}{3} - x\right) + \cos \left(\frac{2\pi}{3} - x\right) \cdot \cos x$$

ne zavisi od x.

1623. Ako za uglove trougla važi jednakost $\sin^2\gamma=\sin^2\alpha+\sin^2\beta$ dokazati da je trougao pravougli.

1624. Ako za uglove trougla važi jednakost $\sin \alpha = \frac{\sin \beta + \sin \gamma}{\cos \beta + \cos \gamma}$, ispitati kakav je taj trougao?

1625. Ako za uglove trougla važi jednakost $\sin \gamma = \cos \alpha + \cos \beta$, onda je taj trougao pravougli. Dokazati.

1626. Ako za uglove trougla važi $\sin^2\alpha+\sin^2\beta+\sin^2\gamma=2$, dokazati da je trougao pravougli.

1627. Ako su α , β i γ uglovi trougla i ako je

$$\sin(\alpha - \beta) = \sin^2 \alpha - \sin^2 \beta,$$

dokazati da je trougao ili pravougli ili jednakokraki.

1628. Dokazati da za uglove četvorougla $(\alpha + \beta + \gamma + \delta = 2\pi)$ važi

$$\sin\alpha + \sin\beta + \sin\gamma + \sin\sigma = 4\sin\frac{\alpha+\beta}{2}\cdot\sin\frac{\beta+\delta}{2}\cdot\sin\frac{\gamma+\delta}{2}.$$

1629. Dokazati identitet: $tg 6\beta - tg 4\beta - tg 2\beta = tg 6\beta \cdot tg 4\beta \cdot tg 2\beta$.

1630. Ako je $\cos(\alpha - \beta) \cdot \cos 2\beta = \cos(\alpha + \beta) \left(\alpha \ge 0, \ \beta < \frac{\pi}{2}\right)$, dokazati da je $\alpha = \beta$.

1631. Eliminisati x i y iz sistema

$$\sin x + \sin y = 2a$$
, $\cos x + \cos y = 2b$, $\operatorname{tg} x - \operatorname{tg} y = 2c$.

1633.* Dokazati da je tg $^{2}36^{\circ} \cdot \text{tg}^{2}72^{\circ} = 5.$

1634.* Ako su a, b i c stranice a α , β i γ uglovi ΔABC i

$$\left\{\begin{array}{l} \frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\beta} & \text{dokazati} \end{array}\right. \left\{\begin{array}{l} a^2 = b^2 + c^2 - 2bc\cos\alpha \\ b^2 = a^2 + c^2 - 2ac\cos\beta \\ c^2 = a^2 + b^2 - 2ab\cos\gamma \end{array}\right.$$

1635.* Ako su a, b i c stranice a α, β i γ uglovi ΔABC i

$$\begin{cases} a^2 = b^2 + c^2 - 2bc\cos\alpha \\ b^2 = a^2 + c^2 - 2ac\cos\beta \\ c^2 = a^2 + b^2 - 2ab\cos\gamma \end{cases} \quad \text{dokazati} \quad \begin{cases} \frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\beta} \end{cases}$$

1636. Ako je $\cos 2\alpha = m$, izračunati $\sin^6 \alpha + \cos^6 \alpha$.

1637. Ako je $\cos 2\alpha = m$, izračunati $\cos^8 \alpha - \sin^8 \alpha$.

1638. Ako je $\operatorname{tg} \alpha = m$, izračunati

$$\sin^2\left(\frac{\pi}{4} + \alpha\right) - \sin^2\left(\frac{\pi}{6} - \alpha\right) - \cos\frac{5\pi}{12} \cdot \sin\left(\frac{5\pi}{12} - 2\alpha\right).$$

1639. Izračunati
$$\cos \frac{x}{2} \cdot \cos \frac{5x}{2}$$
, ako je ct
g $\left(\frac{3}{2}\pi - x\right) = \frac{4}{3}$ i $0 < x < \frac{\pi}{2}$.

1640. Izračunati
$$\sin \frac{x}{2} \cdot \sin \frac{5x}{2}$$
, ako je $\sin \left(\frac{5}{2}\pi - x\right) = \frac{3}{5}$.

1641. Ako je $\frac{\operatorname{tg} \alpha + \operatorname{tg} \beta}{\operatorname{tg} \alpha + \operatorname{tg} \gamma} = \frac{\sin 2\gamma}{\sin 2\beta}$, odrediti relacije koje zadovoljavaju uglovi α , β i γ .

1642. Ako je $\frac{\sin^2 \beta}{\sin^2 \gamma} = \frac{\operatorname{tg} \beta}{\operatorname{tg} \gamma}$, odrediti jednakosti koje zadovoljavaju uglovi β i γ $(\beta, \gamma \neq 0)$.

1643. Odrediti vezu između uglova x, y i z, ako je:

$$\operatorname{tg} x + \operatorname{tg} y + \operatorname{tg} z = \operatorname{tg} x \cdot \operatorname{tg} y \cdot \operatorname{tg} z.$$

1644.* Odrediti vezu između uglova x, y i z, ako je:

$$\operatorname{ctg} x + \operatorname{ctg} y + \operatorname{ctg} z = \operatorname{ctg} x \cdot \operatorname{ctg} y \cdot \operatorname{ctg} z.$$

1645.* Ako je
$$\frac{\operatorname{ctg}\beta+\operatorname{ctg}\gamma}{\operatorname{ctg}\alpha+\operatorname{ctg}\gamma}=\frac{\sin2\alpha}{\sin2\beta}, \text{ dokazati da je:}$$

$$\alpha + \beta + \gamma = \frac{\pi}{2}(4k+1)$$
 ili $\beta - \alpha = n\pi$ $(n, k \in \mathbb{Z}).$

1646. Ako je
$$\frac{\operatorname{tg} \alpha + \operatorname{tg} \beta}{\operatorname{tg} \beta + \operatorname{ctg} \gamma} = \frac{\cos^2 \gamma}{\cos^2 \alpha}$$
, dokazati da je:

$$\alpha+\beta+\gamma=\frac{\pi}{2}(4k+1) \quad \text{ili} \quad \alpha-\gamma=n\pi \quad (n,k\in\mathbb{Z}).$$

1647.* Ako je

$$\operatorname{ctg} \alpha \cdot \operatorname{ctg} \beta + \operatorname{ctg} \alpha \cdot \operatorname{ctg} \gamma + \operatorname{ctg} \beta \cdot \operatorname{ctg} \gamma = 1$$

 $(\alpha, \beta \text{ i } \gamma \text{ oštri uglovi}), dokazati da je <math>\alpha + \beta + \gamma = \pi.$

Odrediti bez upotrebe računara oštar uga
o α (1648–1649), ako je:

1648.*
$$\operatorname{tg} \alpha = \sqrt{6} + \sqrt{3} - \sqrt{2} - 2$$
. **1649.*** $\operatorname{ctg} \alpha = 2 + \sqrt{2} + \sqrt{3} + \sqrt{6}$.

1650.* Dokazati da za svaki trougao važi identitet:

$$a^{2} = (b+c)^{2} \cdot \sin^{2} \frac{\alpha}{2} + (b-c)^{2} \cdot \cos \frac{\alpha}{2}$$

1651.* Ako za uglove α , β i γ i stranice a, b trougla važi jednakost: $a+b=\,\,\mathrm{tg}\,\frac{\gamma}{2}\cdot(a\cdot\,\mathrm{tg}\,\alpha+b\cdot\,\mathrm{tg}\,\beta)$, tada je trougao jednakokraki. Dokazati.

4.3. Adicione formule

1652.* Ako je $P = \sin \alpha + \sin \beta + \sin \gamma$, $Q = \cos \alpha + \cos \beta + \cos \gamma + 1$, gde su α , β i γ uglovi trougla, dokazati da je trougao pravougli ako i samo ako je P = Q.

1653.* Uglovi trougla zadovoljavaju jednakost

$$\frac{\sin\alpha + \sin\beta + \sin\gamma}{\cos\alpha + \cos\beta + \cos\gamma} = \frac{\sqrt{3}}{3}.$$

Dokazati da je jedan ugao trougla veći od 120°.

Dokazati identitete (1654–1661):

1654.
$$\frac{\cos^2(x-y) - \cos^2(x+y)}{4\cos^2 x \cdot \cos^2 y} = \operatorname{tg} x \cdot \operatorname{tg} y.$$

1655.
$$\frac{\sin(360^{\circ} - x) \cdot \sin(180^{\circ} + x) - \operatorname{tg} x \cdot \operatorname{ctg} x}{\cos(-x) \cdot \cos(180^{\circ} + x) \cdot \cos^{2} x} = 1 + \operatorname{tg}^{2} x.$$

1656.
$$\frac{1 + \cos(2x + 630^\circ) + \sin(2x + 810^\circ)}{1 - \cos(2x - 630^\circ) + \sin(2x + 630^\circ)} = \operatorname{ctg} x.$$

1657.
$$2\cos^2 x + \cos x - 1 = 2\cos\frac{x}{2} \cdot \cos\frac{3x}{2}$$
.

1658.
$$\frac{\sin^2 2x - 4\cos^2 x}{\sin^2 2x + 4\cos^2 x - 4} = \operatorname{ctg}^4 x.$$

1659.
$$\frac{\sin^2 4x}{2\cos x + \cos 3x + \cos 5x} = 2\sin x \cdot \sin 2x.$$

1660.
$$\frac{2\sin x - \sin 3x + \sin 5x}{\cos x - 2\cos 2x + \cos 3x} = -\frac{2\cos 2x}{\operatorname{tg}\frac{x}{2}}.$$

1661.
$$\frac{2(\cos y - \cos x)}{\sin x \cdot \sin y} = \operatorname{tg} \frac{x}{2} \cdot \operatorname{ctg} \frac{y}{2} - \operatorname{ctg} \frac{x}{2} \cdot \operatorname{tg} \frac{y}{2}.$$

Proveriti jednakosti (1662–1667):

1662.
$$\frac{1}{\sin 10^{\circ}} - 4\sin 70^{\circ} = 2$$
. **1663.** $tg 9^{\circ} - tg 27^{\circ} - tg 63^{\circ} + tg 81^{\circ} = 4$.

1664.
$$\sin^2 24^\circ - \sin^2 6^\circ = \frac{\sqrt{5} - 1}{8}$$
.

1665.
$$\sin \frac{\pi}{16} = \frac{1}{2} \sqrt{2 - \sqrt{2 + \sqrt{2}}}.$$

1666.
$$\operatorname{tg} 7^{\circ} 30' = 2\sqrt{2 + \sqrt{3}} - \sqrt{3} - 2.$$

1667.*
$$\operatorname{tg} 27^{\circ} = \sqrt{5} - 1 - \sqrt{5 - 2\sqrt{5}}$$
.

1668. Ako je tg $x = \frac{1}{7}$, tg $y = \frac{1}{3}$ (x i y oštri uglovi), dokazati da je:

a)
$$x + 2y = 45^{\circ}$$
; b) $\cos 2x = \sin 4y$.

1669. Dokazati da izraz

$$S = \operatorname{tg} x \operatorname{tg} \left(x + \frac{\pi}{3} \right) + \operatorname{tg} \left(x + \frac{\pi}{3} \right) \operatorname{tg} \left(x + \frac{2\pi}{3} \right) + \operatorname{tg} \left(x + \frac{2\pi}{3} \right) \operatorname{tg} x,$$

ne zavisi od x.

1670. Ako su A, B, C uglovi oštrouglog trougla, i ako važi jednakost $\sin^2 A + \sin^2 B = \sin^2 C$, dokazati da je trougao pravougli.

1671. Neka su A, B, C uglovi trougla. Ako je

$$\frac{\sin^2 A + \sin^2 B + \sin^2 C}{\cos^2 A + \cos^2 B + \cos^2 C} = 2,$$

dokazati da je trougao pravougli.

1672.* Ako za uglove trougla A, B, C važi jednakost:

- a) $\cos 3A + \cos 3B + \cos 3C = 1$, tada je jedan od uglova 120°;
- b) $\sin 3A + \sin 3B + \sin 3C = 0$, tada je jedan od uglova 60°. Dokazati.

1673. Ako za uglove trougla A, B, C važi

$$\cos^2 A + \cos^2 B + \cos^2 C = 1.$$

dokazati da je trougao pravougli.

Izračunati (1674–1684):

1674.
$$\sin\left(\arcsin\frac{3}{5} + \arcsin\frac{4}{5}\right)$$
. **1675.** $\cos\left(\arccos\frac{3}{5} + \arcsin\frac{8}{17}\right)$.

1676.
$$\cos\left(\arccos\frac{1}{7} - \arccos\frac{11}{14}\right)$$
.
1677. $\sin\left(\arcsin\frac{5}{13} + \arcsin\frac{12}{13}\right)$. 1678. $\operatorname{tg}\left(\arctan g 0, 5 + \arctan g 1, 5\right)$.
1679. $\operatorname{ctg}\left(\arcsin\frac{4}{5} + \arctan g 3\right)$. 1680. $\operatorname{arctg}\frac{1}{2} + \arctan g \frac{1}{3}$.
1681. $\sin\left(\arccos\frac{\sqrt{3}}{2} + \arcsin\frac{\sqrt{3}}{2}\right)$. 1682. $\cos(\arctan g 1 + \arctan g 1)$.
1683. $\sin\left(\arcsin\frac{\sqrt{2}}{2} + \arcsin(-1)\right)$. 1684. $\sin\left(\arcsin\frac{3}{5} + \arcsin\frac{8}{17}\right)$.
1685. Proveriti jednakost $\arctan g \frac{1}{7} + 2\arctan g \frac{1}{3} = \frac{\pi}{4}$.

Dokazati (1686–1689):

1686.
$$\arcsin x = \arctan \frac{x}{\sqrt{1-x^2}} = \arctan \frac{\sqrt{1-x^2}}{x}.$$
1687. $\arcsin x + \arcsin y = \arcsin \left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right).$
1688. $\arctan x + \arctan y = \arctan \frac{x-y}{1+xy}.$
1689. $\sin(\arcsin x \pm \arcsin y) = x\sqrt{1-y^2} \pm \sqrt{1-x^2}.$

4.4. Trigonometrijske jednačine

Definicija 1. Jednačina kod koje se nepoznata javlja kao argument trigonometrijske funkcije naziva se trigonometrijska jednačina.

Definicija 2. Rešiti trigonometrijsku jednačinu znači odrediti sve vrednosti nepoznate za koje je data jednačina zadovoljena.

Jednačina $\sin x = a$. Ova jednačina ima rešenja tada i samo tada ako je $-1 \le a \le 1$ i onda postoji jedinstveni ugao α u intervalu $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ čiji je sinus jednak a, pa imamo jednačinu $\sin x = \sin \alpha$ koja ima dva

beskonačna skupa rešenja:

$$(1) x_m = \alpha + 2m\pi,$$

(2)
$$x_n = (\pi - \alpha) + 2n\pi$$
, gde je $m, n = 0, \pm 1, \pm 2, \dots$

Lako se uočava² da se formule (1) i (2) mogu sjediniti u jednu

$$(3) x_k = (-1)^k \alpha + k\pi,$$

gde je $k=0,\pm 1,+2,\ldots$ tj. rešenja jednačine $\sin x=a$ mogu se dati formulom (3) umesto formula (1) i (2).

Jednačina $\cos x = a$. Ova jednačina ima rešenje tada i samo tada ako je $-1 \le a \le 1$ i tada postoji jedinstven ugao α u intervalu $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$, čiji je kosinus jednak α , pa imamo jednačinu $\cos x = \cos \alpha$ koja ima dva skupa rešenja:

$$(4) x_m = \alpha + 2m\pi,$$

$$(5) x_n = -\alpha + 2n\pi,$$

gde je $m, n = 0, \pm 1, \pm 2, \dots$ ili $x_k = \pm \alpha + 2k\pi, k = 0, \pm 1, \pm 2, \dots$

Jednačina tgx=a. Ova jednačina ima rešenja za svako a, i postoji jedinstven ugao α u intervalu $-\frac{\pi}{2} \leq \alpha \leq \frac{\pi}{2}$, čiji je tangens jednak broju a, pa imamo jednačinu tgx= tg α , koja ima jedan skup rešenja $x_k=\alpha+k\pi$, gde je $k=0,\pm 1,\pm 2,\ldots$

Jednačina ct
gx=a. Ova jednačina ima rešenja za svak
oa,i postoji jedinstven ugao $\alpha \neq 0$ i
 $-\frac{\pi}{2} \leq \alpha \leq \frac{\pi}{2},$ čiji je kotangens jednak broju
 a, pa dobijamo jednačinu ct
gx=ctg α odakle imamo
 $x_k=a+k\pi$ $(k=0,\pm 1,\pm 2,\ldots).$

Odrediti sva rešenja jednačina (1690–1735):

1690.
$$2\sin^2 x + \sin x = 0$$
. **1691.** $\sin x = \sin 2x$.

²Za k parno (k-2p) formula (3) postaje $x=(-1)^{2p}\alpha+2p\pi=\alpha+2p\pi$, tj. dobija se (1). Za k neparno (k=2p+1) formula (3) postaje $x=(-1)^{2p+1}\alpha+(2p+\pi)=-\alpha+2p\pi+\pi=(\pi-\alpha)+2p\pi$, tj. dobija se (2).

1692.
$$\sin 3x = \cos 2x$$
. **1693.** $\cos \left(x + \frac{\pi}{6}\right) = \sin \left(x - \frac{\pi}{3}\right)$.

1694. a)
$$2\sin\left(3x - \frac{\pi}{3}\right) = 1$$
; b) $2\cos(3x - 0, 5) = \sqrt{2}$.

1695. a)
$$\operatorname{tg}\left(\frac{x}{2} - \frac{\pi}{4}\right) = \sqrt{3}$$
; b) $\sqrt{3}\operatorname{ctg}(2x + 0, 5) = 1$.

1696. a)
$$\left| 2\sin\left(2x - \frac{\pi}{12}\right) \right| = \sqrt{2}$$
; b) $\left| \cos(4x - 0.5) \right| = 0.5$.

1697. a)
$$\left| \operatorname{tg} \left(2x + \frac{\pi}{3} \right) \right| = \sqrt{3}$$
; b) $\left| 2 \cos \left(\frac{x}{4} - \frac{\pi}{8} \right) \right| = \sqrt{2}$.

1698.
$$\sin 2x - \cos x = 0$$
. **1699.** $\cos x - \cos 2x = 1$.

1700.
$$\sin 2x + 2\cos^2 x = 0$$
. **1701.** $\sin x + \sin 3x + \sin 5x = 0$.

1702.
$$1 - \cos(\pi - x) + \sin\frac{\pi + x}{2} = 0.$$
 1703. $\sin x + \sin 5x = 2.$

1704.
$$\sin\left(3x - \frac{\pi}{2}\right) = \cos\left(x - \frac{\pi}{3}\right)$$
.

1705.
$$\sin^2(270^\circ - x) + 2\cos(360^\circ - x) = 3.$$

1706.
$$\sin \frac{x}{2} + \cos x = 1$$
. **1707.** $\sin x + \sqrt{3} \cos x = 2$.

1708.
$$2\cos^2 x - 7\cos x + 3 = 0$$
. **1709.** $2\sin^2 x + 3\sin x + 1 = 0$.

1710.
$$\operatorname{tg} x + 2\operatorname{ctg} x - 3 = 0$$
. **1711.** $\sqrt{2}\sin^2 x + \cos x = 0$.

1712.
$$\frac{1+\operatorname{tg} x}{1-\operatorname{tg} x} = 1 + \sin 2x$$
. **1713.** $\cos^4 x - \sin^4 x = 0$,

1714.
$$\sin^2 x + \frac{1}{2}\sin 2x = 1$$
. **1715.** $\sin^4 x - \cos^4 x = \frac{1}{2}$.

1716.
$$\sin^4 x + \cos^4 x = \frac{5}{8}$$
. **1717.** $\sin 5x \cos 3x - \sin 8x \cos 6x = 0$.

1718.
$$\sin 3x \cos 5x = \sin 4x \cos 6x$$
.

1719.
$$\sin 2x \cos x + \cos 2x \sin x = 0$$
.

1720.
$$\sin\left(x + \frac{\pi}{6}\right) + \cos\left(x + \frac{\pi}{3}\right) = 2\cos^2 x$$
.

1721.
$$\sin\left(x - \frac{\pi}{2}\right) + \sin\frac{\pi}{2} = \sin\left(x + \frac{\pi}{2}\right)$$
.

1722.
$$\operatorname{ctg}\left(\frac{3}{2}\pi - x\right) : \operatorname{ctg} x = \frac{1}{3}.$$
 1723. $2\sin^2 x - \cos x = 1.$

1724.
$$\operatorname{tg} 2x - \operatorname{tg} x = \frac{4}{3} \sin 2x$$
. **1725.** $\cos 3x - \cos 2x + \cos x = 0$.

1726. $\sin x + \sin 2x + \sin 3x + \sin 4x = 0$.

1727. $\sin x + \sin 2x + \sin 3x = \cos x + \cos 2x + \cos 3x$.

1728. $\cos 2x - \cos 8x + \cos 6x = 1$. **1729.** $\cos x - \cos 2x = \sin 3x$.

1730. $\sin 5x + \sin x + 2\sin^2 x = 1$.

1731.
$$1 - \sin 5x = \left(\cos \frac{3x}{2} - \sin \frac{3x}{2}\right)^2$$
. **1732.** $\cos 4x = -2\cos^2 x$.

1733. $(1 + \cos 4x) \sin 4x = \cos^2 2x$. **1734.** $\sin x \sin 7x = \sin 3x \sin 5x$.

1735. $\cos x \sin 7x = \cos 3x \sin 5x$.

1736. Za koje vrednosti parametra a jednačina $(4-a)\sin x = 2a-3$ ima rešenja?

1737. Za koje vrednosti parametra m jednačina t
g $x+\operatorname{ctg} x=m$ ima rešenja?

Odrediti sva rešenja jednačina (1738–1777):

1738. $tg mx \cdot tg nx = 1$, ako je $m + n \neq 0$.

1739. $\sin px = \cos qx$, po nepoznatoj x.

1740. $\sin x \sin 2x \sin 3x = \frac{1}{4} \sin 4x$.

1741.
$$2\left(1-\sin\left(\frac{3\pi}{2}-x\right)\right) = \sqrt{3}\operatorname{tg}\frac{\pi-x}{2}.$$

1742.
$$\operatorname{ctg} x + \frac{\sin x}{1 + \cos x} = 2.$$

1743. $2 \operatorname{ctg}(x - \pi) - (\cos x + \sin x)(\csc x - \sec x) = 4.$

1744.
$$\left(\sin\frac{x}{2} - \cos\frac{x}{2}\right)^2 = \frac{2}{\operatorname{tg}\frac{x}{2} - \operatorname{tg}\frac{x + \pi}{2}}$$
.

1745. $\sin 3x = 4 \sin x \cos 2x$. **1746.** $\cos 2x + \cos x = \sin x + \sin 2x$.

1747. $\sin 5x + \sin 6x + \sin 7x = 0$. **1748.** $2\cos x + \cos 3x + \cos 5x = 0$.

1749. $\sin x + \sin 2x + \sin 3x = 1 + \cos x + \cos 2x$.

1750.
$$1 - \cos^2 2x = \sin 3x - \cos \left(\frac{\pi}{2} + x\right)$$
.

1751.
$$\sin^3 x (1 + \cot x) + \cos^3 x (1 + \cot x) = \cos 2x$$
.

1752.
$$\sin 2x + \operatorname{tg} x - 2 = 0$$
. **1753.** $4 \cos x \sin^2 x = \cos x - \sin x$.

1754.*
$$4\cos^2(2-6x) + 16\cos^2(1-3x) = 13$$
.

1755.*
$$\sin\left(\frac{\pi}{10} + \frac{3x}{2}\right) = 2\sin\left(\frac{3\pi}{10} - \frac{x}{2}\right).$$

1756.
$$5\sin^2 x - 3\sin x \cos x - 2\cos^2 x = 0.3$$

1757.
$$3\cos^2 x - \sin^2 x - \sin 2x = 0$$
.

1758.
$$\cos^2 x + 3\sin^2 x + 2\sqrt{3}\sin x\cos x = 1.$$

1759.
$$2\sin^2 x + 4\sin x \cos x - 4\cos^2 x = 1$$
.

1760.
$$6\sin^2 x + 3\sin x \cos x - 5\cos^2 x = 2$$
.

1761.
$$\sin^2 x + \frac{3}{2}\cos^2 x = \frac{5}{2}\sin x \cos x$$
.

1762.
$$\sin^2 x - 3\cos^2 x + 2\sin 2x = 1$$
.

1763.
$$3\sin^2 x - 4\sin x \cos x + 5\cos^2 x = 2$$
.

1764.
$$\sin x - \sqrt{3}\cos x = 2$$
. **1765.** $2\sin x + 5\cos x = 4$.

1766.
$$\sqrt{3}\sin x - \cos x = \sqrt{2}$$
. **1767.** $\sqrt{3}\cos 4x + \sin 4x = \sqrt{2}$.

1767.
$$\sin x + \sqrt{3}\cos x = -\sqrt{2}$$
. **1769.** $\cos x + \sqrt{3}\sin x = 1$.

1770.
$$\sin x - \cos x = \frac{1}{\sqrt{2}}$$
. **1771.** $\sin 3x + \cos 3x = \sqrt{2}$.

1772.
$$\sqrt{3}\sin\left(\frac{\pi}{3} - x\right) - \cos\left(\frac{\pi}{3} - x\right) = \sqrt{3}.$$

³ Jednačina oblika $a\sin^2x+b\sin x\cos x+c\cos^2x=0$ je homogena po sin xi cosxi svodi se na kvadratnu jednačinu po tgx, tj. a tg ^2x+b tg x+c=0. (Ako je $\cos x=0$, je sin $x=\pm 1$, ove vrednosti ne zadovoljavaju datu jednačinu.)

1773. $5(\sin x + \cos x)^2 - 12(\sin x + \cos x) + 7 = 0.$

1774.
$$| \operatorname{tg} x + \operatorname{ctg} x | = \frac{4}{\sqrt{3}}.$$

1775. $\cos 7x - \sin 5x = \sqrt{3}(\cos 5x - \sin 7x)$.

1776. $\sin(\pi \log x) + \cos(\pi \log x) = 1$.

1777. $\log_{\cos x} \sin x + \log_{\sin x} \cos x = 2$.

1778. Data je jednačina $\sin^6 x + \cos^6 x = a$, gde je a realan parametar.

a) Za koje vrednosti parametra a data jednačina ima realna rešenja?

b) Za granične vrednosti parametra a, za koje su rešenja realna, rešiti jednačinu.

1779.* Odrediti sve vrednosti parametra a, za koje jednačina

$$\sin^2 x - \sin x \cos x - 2\cos^2 x = a$$

ima realna rešenja. Za a=1 rešiti jednačinu.

1780.* Odrediti za koje vrednosti parametra a jednačina

$$\sin^4 x - 2\cos^2 x + a^2 = 0$$

ima realna rešenja i naći ta rešenja.

1781.* U kom intervalu leži realan parametar x da bi jednačina

$$\frac{1}{\sin x} + \frac{1}{\cos x} = \lambda$$

imala koren x koji pripada intervalu $0 < x < \frac{\pi}{2}$?

1782.* Za koje vrednosti parametra a jednačina

$$\cos\left(mx + \frac{\pi}{6}\right)\cos\left(mx - \frac{\pi}{6}\right) = a$$

ima rešenja?

1783. Dokazati da jednačina $\sin 2x \sin 6x = 1$ nema rešenja.

1784.* Odrediti za koje vrednosti parametra a jednačina

$$\sin^4 x + \cos^4 x + \sin 2x + a = 0$$

ima rešenja i odrediti ih.

 ${\bf 1785.}^*$ Za koje vrednosti parametra a jednačina

$$\sin bx \sin cx = \sin^2\left(\frac{b+c}{2}x\right) + a$$

ima rešenja?

1786.* Rešiti jednačinu $\cos^2(x+\alpha)+\cos^2(x-\alpha)=\sin 2\alpha,$ ako je $\frac{\pi}{2}<\alpha<\frac{\pi}{2}.$

1787.* Odrediti sva rešenja jednačine $\sin 3x + \sin 2x = m \sin x$. Zatim odrediti one vrednosti parametra m, za koje jednačina ima rešenja.

1788.* Za koje vrednosti parametra m jednačina

$$\sin^2 x + 2(m-2)\cos x - (m+1) = 0$$

ima rešenja?

1789.* Rešiti i diskutovati jednačinu $\sin 3x = m \sin x$.

1790. Rešiti i diskutovati jednačinu $\sin 3x = m \sin^2 x$.

1791. Rešiti jednačinu $\cos x - \cos \frac{x}{2} + 1 = 0.$

1792. Dokazati da jednačina $3\cos x = |\cos x| - 5$ nema rešenja.

Rešiti jednačine (1793–1794):

1793.
$$\cos x^2 = \frac{1}{2}$$
. **1794.** $\cos \sqrt{49 - x^2} = 1$.

1795. Dokazati da jednačina t
g $\left(x^2 + \frac{\pi}{6}\right)$ tg $\left(x^2 - \frac{\pi}{3}\right) = 2$ nema rešenia.

1796. Rešiti jednačinu $\operatorname{tg}(x^2 - x)\operatorname{ctg} 2 = 1.$

1797. Rešiti jednačinu tg $2x = \frac{1 - \cos x}{1 - \sin |x|}$.

1798. Dokazati da su sva celobrojna rešenja jednačine

$$\cos 2\pi x = \cos \pi x^2$$

parni brojevi.

Rešiti jednačine (1799–1810):

1799.
$$tg x = \frac{8 \sin^2 x + 3 \sin 2x + 1}{8 \cos^2 x + 3 \sin 2x + 1} = 0.$$

1800.
$$(\sin 2x + 3)\sin^4 x - (\sin 2x + 3)\sin^2 x + 1 = 0.$$

1801.
$$\sin^2 x^2 + \sin^2 2x^2 = \sin^2 3x^2 + \sin^2 4x^2$$
.

1802.
$$\cos 3x \cos 2x - \sin x \sin 6x = \cos 7x$$
.

1803.
$$(\sin 2x - \cos 2x)^2 = \sin 4x$$
.

1804.
$$\cos^3 \frac{x}{2} \sin \frac{x}{2} + \cos^2 \frac{x}{2} \sin^2 \frac{x}{2} - 3 \cos \frac{x}{2} \sin^3 \frac{x}{2} - 3 \sin^4 \frac{x}{2} = 0.$$

1805.
$$\cos x + \cos 2x = 2\cos \frac{3x}{2}$$
.

1806.
$$\cos\left(\frac{\pi}{3} - x\right) + \sin\left(x + \frac{\pi}{6}\right) = 1.$$

1807.
$$\sin 4x + \sqrt{3} \sin 3x + \sin 2x = 0$$
.

1808.
$$(1 + \sin 2x)(\cos x - \sin x) = 1 - 2\cos^2 x$$
.

1809.
$$\operatorname{ctg} x - \operatorname{tg} x = \frac{2(\cos x - \sin x)}{\sin 2x}$$
.

1810.
$$\left|\log_{\frac{1}{3}}(1+\sin^2 x)\right| + \left|\log_{\frac{1}{3}}(1-\sin^2 x)\right| = 1.$$

Rešiti jednačine (1811–1841):

1811.
$$2^{1+2\cos 6x} + 16^{\sin^2 3x} = 9$$
.

1812.
$$2\sin^2 x + 4\sin\frac{x}{2}\cos\frac{x}{2} + \cos 2x = \sqrt{3} + 1.$$

1813.
$$\log \operatorname{tg} x + \log \operatorname{tg} 2x = 0.$$

1814.
$$(\sin 2x + \sqrt{3}\cos 2x) - 5 = \cos\left(\frac{\pi}{6} - 2x\right)$$
.

1815.
$$\operatorname{tg} x + \operatorname{ctg} x = 3 + 2\sin 2x$$
.

1816.
$$(1 - \lg x)(1 + \sin 2x) = 1 + \lg x$$
.

1817.
$$\sin x \cos^3 x - \cos x \sin^3 x = \frac{1}{8}$$
.

1818.
$$(\cos 2x)^{2\cos 3x+4\cos x-1} = (\cos 2x)^{-1}$$
.

1819.
$$3^{\cos 2x} \left(4 \cdot 3^{\sin^2 x} - 9 \right) = 1.$$

1820.
$$\frac{2^{\sin x + \sin 3x - \sin 4x}}{2^{(1-\cos x)(1+\cos x)}} = \left(\frac{1}{2}\right)^{\operatorname{tg}^2 x(1+\operatorname{tg}^2 x)^{-1}}.$$

1821.
$$\frac{\sin x + \sin 3x}{\sqrt{2} \cdot |\cos x|} = \sin 2x + \cos 2x.$$

1822.
$$\sin \pi x^2 - \sin \pi (x^2 + 2x) = 0.$$

1823.
$$tg(\pi ctg x) = ctg(\pi tg x)$$
.

1824.
$$\sin x + \sqrt{\sin x + \sin 2x - \cos x} = \cos x$$
.

1825.
$$\cos 2x - \sin 2x = 1 - \cos x - \sin x$$
.

1826.
$$\sin^3 x + \cos^3 x = 1 - \frac{1}{2}\sin 2x$$
.

1827. a)
$$\sin 3x = 4 \sin \left(\frac{\pi}{3} - x\right) \sin \left(\frac{\pi}{3} + x\right);$$

b)
$$\cos 3x = 4\cos\left(\frac{\pi}{3} + x\right)\cos\left(\frac{\pi}{3} - x\right)$$
.

1828. a)
$$\frac{\cos^2 x - \sin^2 x}{4\cos^2 x} = \sin\left(x + \frac{\pi}{3}\right)\sin\left(x - \frac{\pi}{3}\right)$$
.

1829.*
$$10 \cdot 4 \frac{1}{\sin^2 x} - 16 = 4^{2 \cot^2 x + 2}$$
.

1830.
$$\sqrt{5\sin 2x - 2} = \sin x - \cos x$$
.

1831.*
$$4 - \cos(2\pi(13x+9)^2) = 5\sin(\pi(13x+9)^2).$$

1832.
$$\sin(x+30^\circ) - \sin(x+210^\circ) = 2\sin 495^\circ$$
 (90° < x < 180°).

1833.*
$$3^{1+\sin x} + 2 \cdot 3^{2+\cos(90^{\circ} + x)} = 21.$$

1834.*
$$2\sin x - \sqrt[4]{3} = \left(\sqrt{2} - \sqrt[4]{12}\right)\sqrt{\sin x}$$
. **1835.** $\sin\left(\frac{4}{3}\sin x\right) = \frac{1}{2}$.

1836.
$$\sin 2x \left(2\sqrt{3}\sin x + 2\cos x \right) + \sqrt{8} = \cos 2x \left(2\sqrt{3}\cos x - 2\sin x \right).$$

1837.*
$$4^{\sin^2(\pi x)} + 3 \cdot 4^{\cos^2(\pi x)} = 8.$$

1838.
$$\log_2\left(\cos 2x + \cos\frac{x}{2}\right) + \log_{0,5}\left(\sin x + \cos\frac{x}{2}\right) = 0.$$

1839.*
$$|\sin x + \sin 2x|(2x - 5) = \sin x + \sin 2x$$
.

1840.*
$$\cos^3 x - 3\cos^2 x + \cos x = 2\cos\left(\frac{x}{2} + \frac{\pi}{4}\right)\sin\left(\frac{3x}{2} - \frac{\pi}{4}\right).$$

1841.
$$\sin^2 2^{\sqrt{-x}} = 0, 5.$$

1842. Rešiti po x jednačinu $\sin x + 2\sin x \cos(a - x) = \sin a \ (a \text{ realan broj}).$

1843.* Rešiti po x jednačinu

$$4c^2\sin(x+B)\sin(x+A) = (a+b)^2 + 2ab,$$

gde su $a,\,b,\,c$ stranice, a $A,\,B$ oštri uglovi pravouglog trougla.

1844. Rešiti po x jednačinu

$$1+2a\sin^2 x+2b\cos^2 x=(b+a)\sin 2x+(b-a)\cos 2x+\sin^2 x+\cos^2 x$$

(a i b realni brojevi, $a + b \neq 0$).

1845. Za koje vrednosti realnog broja α jednačina $\cos x = \operatorname{tg} \frac{\alpha}{2}$ ima rešenja?

Rešiti sisteme jednačina (1846–1859):

1846.
$$\sin x + \cos y = 0 \wedge \sin^2 x + \cos^2 y = 0, 5.$$

1847.
$$\sin x \cdot \cos y = \frac{1}{4} \wedge 3 \lg x = \lg y.$$

1848.
$$\cos 2x + \sin y = 2\cos^2 30^\circ \wedge 2\cos 2x - \sin y = \sin 540^\circ$$
.

1849.
$$\sqrt{2}\sin x = \sin y \wedge \sqrt{2}\cos x = \sqrt{3}\cos y$$
.

1850.
$$\sqrt{\sin x - \cos y} = \cos x \wedge \sin x + \cos y = \sin^2 x$$
.

1851.*
$$\operatorname{tg} x + \operatorname{tg} y = 1 - \operatorname{tg} x \cdot \operatorname{tg} y \wedge \sin 2y - \sqrt{2} \sin x = 1.$$

1852.
$$\sin x \cdot \cos y = -\frac{1}{2} \wedge \cos x \cdot \sin y = \frac{1}{2}$$

1853.*
$$\cos \frac{x+y}{2} \cdot \cos \frac{x-y}{2} = \frac{1}{2} \wedge \cos x \cdot \cos y = \frac{1}{4}$$
.

1854.
$$\cos x - \sin(x+y) = 0 \wedge \cos y - \sin(x+y) = 0.$$

1855.
$$\sin x \cdot \cos y = \frac{1}{4} \wedge \cos x \cdot \sin y = \frac{3}{4}.$$

1856.*
$$2^{\sin x + \cos y} = 1 \wedge 16^{\sin^2 x + \cos^2 y} = 4$$
.

1857.*
$$9^{2 \operatorname{tg} x + \cos y} = 3 \wedge 9^{\cos y} - 81^{\operatorname{tg} x} = 2$$

1858.*
$$2^{\cos x} + 2^{\sec y} = 5 \wedge 2^{\cos x} \cdot 2^{\sec y} = 4$$

1859.*
$$x - y = -\frac{1}{3} \wedge \cos^2 \pi x - \sin^2 \pi y = \frac{1}{2}$$
.

Rešiti jednačine (1860–1865):

1860.
$$\cos(2\pi x) = \cos(\pi x^2)$$
. **1861.** $6\arcsin(x^2 - 6x + 8, 5) = \pi$.

1862.
$$2 \arcsin x = \arcsin 2x$$
. **1863.** $\arccos x - \arcsin x = \arccos \frac{\sqrt{3}}{2}$.

1864.
$$\arccos x + \arccos(1-x) = \arccos(-x)$$
.

1865.
$$(\arccos x)^2 - 6\arccos x + 8 = 0.$$

4.5. Trigonometrijske nejednačine

Definicija 1. Nejednačina kod koje se nepoznata javlja kao argument trigonometrijske funkcije naziva se trigonometrijska nejednačina.

Definicija 2. Rešiti trigonometrijsku nejednačinu znači naći sve uglove, koji je zadovoljavaju.

Nejednačina $\sin \geqslant a$:

a) Nejednačina sin x>a: Ako je a<-1, njeno rešenje je ma koji realan broj. Ako je $-1\le a\le 1$, rešenje nejednačine je skup intervala

$$2k\pi + \arcsin a < x < (2k+1)\pi - \arcsin a$$
 gde je $k = 0, \pm 1, \pm 2, \dots$

Ako je $a \ge 1$, nejednačina nema rešenja.

b) Nejednačina $\sin x < a$: Ako je $a \le -1,$ nema rešenja. Ako je $-1 \le a \le 1,$ rešenje nejednačine je beskonačan skup intervala

$$(2k+1)\pi - \arcsin a < x < \arcsin a + 2\pi(k+1) \quad (k+0, \pm 1, \pm 2, \ldots).$$

Ako je a > 1, rešenje jednačine je ma koji realan broj.

Nejednačina $\cos x \geqslant a$:

a) Nejednačina $\cos x>a$: Ako je a>-1,njeno rešenje je ma koji realan broj. Ako je $-1\le a\le 1,$ rešenje nejednačine je beskonačan skup intervala

$$2k\pi - \arccos a < x < \arccos a + 2k\pi \quad (k = 0, +1, \pm 2, ...).$$

Ako je $a \ge 1$, nejednačina nema rešenja.

b) Nejednačina $\cos x < a$: Ako je a < -1nema rešenja. Ako je $-1 \le a \le 1$, rešenje nejedna čine je beskonačan skup intervala

$$2k\pi + \arccos a < x < 2\pi(k+1) - \arccos a \quad (k = 0, \pm 1, \pm 2, \ldots).$$

Ako je a > 1, nejednačina je zadovoljena za svako x.

Nejednačina $\operatorname{tg} x \geq a$:

a) Nejednačina t
gx>a: Za svaki realan brojaima za rešenje beskonačan skup intervala

$$\arctan a + k\pi < x < \frac{\pi}{2}(2k+1) \quad (k = 0, \pm 1, \pm 2, \ldots).$$

b) Nejednačina t
gx < a: Za svako realno aima rešenje beskonačan skup intervala

$$\frac{\pi}{2}(2k-1) < x < \arctan a + k\pi, \quad (k = 0, \pm 1, \pm 2, \ldots).$$

Nejednačina $\operatorname{ctg} x \geq a$:

a) Nejednačina $\operatorname{ctg} x > a$: Za sve realne vrednosti a ima rešenja

$$k\pi < x < \arctan a + k\pi$$
, $(k = 0, \pm 1, \pm 2, ...)$.

b) Nejednačina $\operatorname{ctg} x < a$: Za sve realne vrednosti parametra aima rešenja

$$\operatorname{arcctg} a + k\pi < x < (k+1)\pi, \quad (k = 0, \pm 1, \pm 2, \ldots).$$

1866. Za koje je $x~(0 \leq x \leq 2\pi)$ zadovoljena nejednačina

$$\sin^2 x - \frac{1}{2} < 0.$$

Rešiti nejednačine (1867–1875):

1867.
$$\sin 3x - \frac{\sqrt{3}}{2} \ge 0.$$
 1868. $\cos \frac{x}{2} + \frac{1}{2} > 0.$

1869. a)
$$2\sin\left(3x - \frac{\pi}{3}\right) < 1$$
; b) $2\cos\left(3x - \frac{1}{2}\right) \ge \sqrt{2}$.

1870. a)
$$\operatorname{tg}\left(\frac{x}{2} - \frac{\pi}{4}\right) > \sqrt{3}$$
; b) $\sqrt{3}\operatorname{ctg}(2x + 0, 5) \le 1$.

1871. a)
$$\left| \sin \left(2x - \frac{\pi}{12} \right) \right| \le \frac{\sqrt{2}}{2}$$
; b) $\left| \cos(4x - 0, 5) \right| < 0, 5$.

1872. a)
$$\left| \operatorname{tg} \left(2x + \frac{\pi}{3} \right) \right| \ge \sqrt{3}$$
; b) $\left| 2 \cos \left(\frac{x}{2} - \frac{\pi}{8} \right) \right| > \sqrt{2}$.

1873.
$$\sin x + \cos x < \sqrt{2}$$
. **1874.** $\cos x > \sin^2 x - \cos^2 x$.

1875.
$$tg^3x + tg^2x > 1 + tg x$$
.

1876. Rešiti sistem nejednačina $\sin x > \frac{1}{2}$ i $\cos x \ge \frac{1}{2}$.

Rešiti nejednačine (1877–1882):

1877.
$$\cos^3 x \cos 3x - \sin^3 x \sin 3x > \frac{5}{8}$$
. **1878.** $\frac{\sin 2x - \cos 2x + 1}{\sin 2x + \cos 2x - 1} > 0$.

1879.
$$2\sin x + \cos 2x > 1$$
. **1880.** $\sin x > \sin 3x$, $x \in (0, 2\pi)$.

1881.
$$\cos 2x < \cos 4x$$
, $x \in (0, 2\pi)$.

1882.
$$1 + \sin x + \cos x < 0$$
, $x \in (0, 2\pi)$.

1883. Ako je
$$0 < \alpha < \pi$$
, tada je ct
g $\frac{\alpha}{2} \geq 1 +$ ctg α . Dokazati.

1884. Dokazati da je $\cos(\alpha + \beta)\cos(\alpha - \beta) \le \cos^2\alpha\cos^2\beta$.

1885. Ako su $\alpha,\,\beta$ i γ uglovi oštrouglog trougla, tada je

$$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma > 2.$$

Dokazati.

1886. Ako su $\alpha,\,\beta$ i γ uglovi trougla i ako je γ tup, tada je $\,{\rm tg}\,\alpha\,{\rm tg}\,\beta<1.$ Dokazati.

1887. Ako su α , β i γ uglovi trougla, dokazati da je

$$\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\sin\frac{\gamma}{2} \le \frac{1}{8}.$$

1888. Dokazati da važi za svako $\alpha: \frac{1}{\sin^4 \alpha} + \frac{1}{\cos^4 \alpha} \geq 8.$

Rešiti nejednačine (1889–1903):

1889. $\sin x - \sqrt{3}\cos x < 0$. **1890.** $\sqrt{3}\sin x - \cos x < \sqrt{2}$.

1891. $\sqrt{3}\cos 4x + \sin 4x > \sqrt{2}$. **1892.** $(1 + \cos 4x)\sin 4x > \cos^2 2x$.

1893. $\sin 5x + \sin x + 2\sin^2 x < 1$, $x \in [0, 2\pi]$.

1894. $\cos 2x - \cos 8x + \cos 6x > 1$, $x \in [0, 2\pi]$.

1895. $4\cos^2 x + 2(\sqrt{3} - 1)\cos x - \sqrt{3} \le 0.$

1896. $4\sin^2 x - 2(\sqrt{3} + 1)\sin x + \sqrt{3} > 0$.

1897. $4\sin^2 x - 2(\sqrt{2} + 1)\sin x + \sqrt{2} > 0$.

1898. $2\sin^2 x + 5\sin x + 2 > 0$. **1899.** $4\sin^2 x + 2(1-\sqrt{2})\sin x > \sqrt{2}$.

1900.
$$\frac{2\sin x - 1}{\cos 2x - 3\cos x + 2} > 0$$
, ako je $0 < x < 2\pi$.

1901.* $(\sqrt{3} \operatorname{tg} x - 1)(2 \cos^2 x - 1) < 0$, ako je $0 < x < 2\pi$.

1902. $5\sin^2 x + \sin^2 2x > 4\cos 2x$.

1903. $\frac{1 - \lg^2 x}{4 \sin^2 x - 3} > 0$, ako je $0 < x < 2\pi$.

Ispitati znak funkcije (1904–1906):

1904.
$$y = \cos^2 x + 4\cos x + 4$$
.

1905.
$$y = \sin^2 x - \frac{5}{2}\sin x - \frac{3}{2}$$
.

1906.
$$y = \operatorname{tg}^2 x - (1 + \sqrt{3}) \operatorname{tg} x + \sqrt{3}$$
.

1907. Odrediti sve vrednosti α u intervalu $0 \le \alpha \le 2\pi$, za koje je nejednakost $\left(\sin \alpha + \frac{1}{2}\right)x^2 - (2\sin \alpha - 3)x + 1 > 0$ ispunjena za svako realno x.

1908. Odrediti sve vrednosti $\alpha \in [0, 2\pi]$ za koje je kvadratni trinom $y = (2\cos\alpha - 1)x^2 - 2x + \cos\alpha$ pozitivan za svako x.

1909. Rešiti trigonometrijsku nejednačinu $(1+2\cos x)^{0,5} \leq \sin x$. Za koje realne vrednosti x važi znak jednakosti?

1910. Rešiti nejednačinu: $\frac{\arccos x - 2}{\arcsin x} < -1$.

4.6. Grafici trigonometrijskih funkcija⁴

 1° Funkcija $x \mapsto y = \sin x$. Osnovna svojstva:

- a) Definisana za sve realne vrednosti argumenta, tj. $x \in (-\infty, +\infty)$.
- b) Funkcija je periodična, njen osnovni period je $T=2\pi$, tj.

$$\sin(x + 2\pi) = \sin x.$$

Definicija 1. Ako funkcija $x \mapsto f(x)$ ispunjava uslov f(x+T) = f(x) (T konstanta različita od nule), kažemo da je periodična sa periodom T.

- c) Funkcija je neparna jer je $\sin(-x) = -\sin x$, njen grafik je simetričan u odnosu na koordinatni početak.
- d) Nule funkcije su $x = k\pi$ $(k = 0, \pm 1, \pm 2, ...)$.
- e) Ekstremne vrednosti funkcije:

$$y_{max}=1 \quad \text{za} \quad x=\frac{\pi}{2}+2k\pi.$$

$$y_{\min}=-1 \quad \text{za} \quad x=\frac{3\pi}{2}+2k\pi \quad (k=0,\pm 1,\pm 2,\ldots)$$

 $^{^4}$ Trigonometrijske funkcije spadaju u grupu transendentnih funkcija, jer za datu vrednost argumenta x, odgovarajuća vrednost y ne može se izračunati algebarskim putem.

- f) Funkcija je ograničena t
j. $-1 \leq \sin x \leq 1.$
- g) Funkcija raste $2k\pi \frac{\pi}{2} < x < \frac{\pi}{2} + 2k\pi$, opada

$$2k\pi + \frac{\pi}{2} < x < \frac{3\pi}{2} + 2k\pi, \quad (k = 0, \pm 1, \pm 2, \ldots).$$

h) Funkcija je pozitivna u intervalu $2k\pi < x < (2k+1)\pi,$ a negativna

$$(2k+1)\pi < x < 2\pi(k+1)$$
 $(k=0,\pm 1,\pm 2,\ldots).$

Tok funkcije na osnovnom periodu dat je tabelom, a grafik na slici 1.

\boldsymbol{x}	0		$\frac{\pi}{2}$		π		$\frac{3\pi}{2}$		2π
y	0	7	$y_{\text{max}} = 1$	/	0	7	$y_{\min} = 1$	7	0

Sl. 1.

- 2° Funkcija $x\mapsto y=\cos x.$ Osnovna svojstva:
- a) Funkcija je definisana za $x \in (-\infty, +\infty)$.
- b) Funkcija je periodična, njen osnovni period je $T=2\pi.$
- c) Funkcija je parna, jer je $\cos(-x) = \cos x$. Njen grafik je simetričan u odnosu na osu Oy.
- d) Nule funkcije su $x=\frac{\pi}{2}+k\pi,\,(k=0,\pm 1,\pm 2,\ldots).$
- e) Ekstremne vrednosti:

$$y_{max} = 1$$
 za $x = 2k\pi$.
 $y_{min} = -1$, za $x = \pi + 2k\pi$, $(k = \pm 1, \pm 2, ...)$.

- f) Funkcija je ograničena jer je $-1 \le \cos x \le 1$.
- g) Funkcija raste za $(2k+1)\pi < x < 2(k+1)\pi,$ a opada za $2k\pi < x < (2k+1)\pi.$
- h) Funkcija je pozitivna za $2k\pi - \frac{\pi}{2} < x < \frac{3\pi}{2} + 2k\pi,$ a negativna za

$$2k\pi + \frac{\pi}{2} < x < \frac{3\pi}{2} + 2k\pi, \quad (k = 0, \pm 1, \pm 2, \ldots).$$

Grafik je prikazan na slici 2, a tok tabelom.

x	0		$\frac{\pi}{2}$		π		$\frac{3\pi}{2}$		2π	
y	$y_{\text{max}} = 1$	\	0	/	$y_{\min} = 1$	7	0	/	$y_{\text{max}} = 1$	

Sl. 2.

- 3° Funkcija $x\mapsto y=\,\operatorname{tg} x.$ Osnovna svojstva:
- a) Funkcija je definisana za $x \neq \frac{\pi}{2} + k\pi$ $(k = 0, \pm 1, \pm 2, \ldots)$. Za $x = \pi$
- $\frac{\pi}{2} + k\pi$ funkcija nije definisana. Ove prave su vertikalne asimptote.
- b) Osnovni period funkcije je $T = \pi$, $\operatorname{tg}(x + \pi) = \operatorname{tg} x$.
- c) Funkcija je neparna jer je tg(-x) = -tgx.
- d) Nule funkcije su $x = k\pi$ $(k = 0, \pm 1, \pm 2, ...)$.
- e) Funkcija nema ekstremnih vrednosti.
- f) Funkcija nije ograničena, $-\infty < \operatorname{tg} x < +\infty$.
- g) Funkcija je stalno rastuća.

h) Funkcija je pozitivna u intervalu $k\pi < x < \frac{\pi}{2} + k\pi$, a negativna u intervalu $\frac{\pi}{2} + k\pi < x < (k+1)\pi$, $(k=0,\pm 1,\pm 2,\ldots)$. Grafik je prikazan na slici 3, a tok tabelom.

x	0		$\frac{\pi}{2}$	π			$\frac{3\pi}{2}$		2π
y	0	/	$+\infty \ -\infty$	7	0	7	$+\infty \ -\infty$	×	0

- 4° Funkcija $x \mapsto y = \operatorname{ctg} x$. Osnovna svojstva:
- a) Funkcija je definisana za $x\neq k\pi$ $(k=0,\pm 1,\pm 2,\ldots)$. Prave $x=k\pi,$ $(k=0,\pm 1,\pm 2,\ldots)$ su vertikalne asimptote funkcije.
- b) Osnovni period $T = \pi$, jer je $\operatorname{ctg}(x + \pi) = \operatorname{ctg} x$.
- c) Funkcija je neparna, jer je $\operatorname{ctg}(-x) = -\operatorname{ctg} x$.
- d) Nule funkcije su $x = \frac{\pi}{2} + k\pi$, $(k = 0, \pm 1, \pm 2, \ldots)$.
- e) Funkcija nema ekstremnih vrednosti.
- f) Funkcija nije ograničena jer je
 $-\infty < \, {\rm ctg} \, x < +\infty.$
- g) Funkcija opada za sve vrednosti argumenta koje pripadaju oblasti definisanosti.
- h) Funkcija je pozitivna za $k\pi < x < \frac{\pi}{2} + k\pi$, a negativna za $k\pi + \frac{\pi}{2} < x < (k+1)\pi$, $(k=0,\pm 1,\pm 2,\ldots)$.

Grafik je prikazan na slici 4, a tok tabelom.

Sl. 4.

Odrediti period (T)trigonometrijskih funkcija $x\mapsto y$ (1911–1916) gde je:

1911. $y = \sin 5x$. **1912.** $y = a \sin(bx + c)$. **1913.** $y = \cos mx$.

1914. $y = \cos \frac{3x}{2} - \sin \frac{x}{3}$.

1915. a) $y = \sin \frac{x}{2} \cos^3 \frac{x}{2}$; b) $y = \sin \frac{4}{5}x + 3\cos \frac{7}{8}x + \cos 5x$.

1916. a) $y = \sin^2 3x - \cos 4x$; b) $y = 15\sin^2 12x + 12\sin^2 15x$.

1917. Odrediti osnovni period i amplitudu funkcije

$$x \mapsto y = \alpha \cos px + \beta \sin px.$$

1918. Dokazati da funkcije

$$x \mapsto y = \cos^4 x + \sin^4 x$$
 i $x \mapsto y = \cos^6 x + \sin^6 x$

imaju isti period $T = \frac{\pi}{2}$.

1919. Dokazati da funkcije

$$x \mapsto y = \sin x$$
, $x \mapsto y = 2\sin x$ i $x \mapsto y = \frac{1}{2}\sin x$,

imaju isti period; zatim konstruisati njihove grafike u istom koordinatnom sistemu na osnovnom periodu.

1920. Date su funkcije

$$x \mapsto y = \cos x, \quad x \mapsto y = \cos \frac{1}{2}x \quad \text{i} \quad x \mapsto y = \cos 2x.$$

Ispitati promene i konstruisati dijagrame u istom koordinatnom sistemu za sve tri funkcije u intervalu $[0, 2\pi]$.

Ispitati promene i konstruisati grafike trigonometrijskih funkcija $x\mapsto y$ (1921–1937):

1921.
$$y = \sin 3\left(x - \frac{\pi}{6}\right)$$
. **1922.** $y = \frac{3}{2}\sin\left(2x - \frac{\pi}{6}\right)$.

1923.
$$y = 3\sin\left(2x + \frac{\pi}{4}\right)$$
. **1924.** $y = 2\cos\left(2x + \frac{\pi}{4}\right)$.

1925.
$$y = -2\sin\left(\frac{1}{2}x + \frac{\pi}{6}\right)$$
. **1926.** $y = -\frac{4}{3}\cos\left(\frac{1}{2}x - \frac{\pi}{4}\right)$.

1927.
$$y = \frac{1}{2} - \cos 2x$$
. **1928.** $y = 1 - \frac{1}{2} \sin 2x$. **1929.** $y = \sin^2 x$.

1930.
$$y = \cos^2 x$$
. **1931.** $y = -2\sin\left(2x + \frac{\pi}{3}\right) + 1$.

1932.
$$y = -2\cos\left(2x - \frac{\pi}{3}\right) - 1$$
. **1933.** $y = \sin x - \sqrt{3}\cos x$.

1934.
$$y = \sin\left(2x - \frac{\pi}{4}\right) + \cos\left(2x - \frac{3\pi}{4}\right)$$
.

1935.
$$y = \sin\left(2x + \frac{\pi}{4}\right) - \cos(2x - 5\pi).$$

1936.
$$y = \sqrt{3}\sin\left(x + \frac{\pi}{3}\right) + 3\cos\left(x + \frac{\pi}{3}\right)$$
.

1937.
$$y = \sin x \sin \left(x + \frac{\pi}{3} \right)$$
.

Odrediti oblast definisanosti funkcija (1938–1939):

1938.
$$x \mapsto y = \sqrt{-\sin x} + \sqrt{-\cos x}$$
. **1939.** $x \mapsto y = \frac{\sqrt{(2-x)(x-4)}}{\sin x}$

1940. Odrediti oblast⁵ promene funkcije $x \to y = 2 - 3\cos^2 x$.

1941. Odrediti antidomen funkcije $y: x \to y = \operatorname{tg}^2 \pi x + \operatorname{ctg}^2 \pi x$.

1942. Date su funkcije $x \to y = \sin^2 x + \cos^2 x$ i $x \to y = \operatorname{tg} x \operatorname{ctg} x$. U čemu se razlikuju njihovi grafici?

1943. Za koje je vrednosti x funkcija $x \to y = -\frac{\sin x}{\sqrt{\sin^2 x}}$ pozitivna?

1944. Za koje vrednosti parametra b funkcija $x \to y = \cos(x+b)$ ima nule $x = k\pi$, gde je $(k = 0, \pm 1, +2, \ldots)$.

Ispitati promene i konstruisati grafike trigonometrijskih funkcija (1945–1950), $x \to y$, gde je:

1945.
$$y = \sin^2 x + \left| \frac{1}{2} - \cos^2 x \right|$$
. **1946.** $y = \frac{\sin x + \sin 3x}{\sqrt{1 + \cos 2x}}$.

1947.
$$y = \frac{4\sin^2 x \cos^2 x}{|\sin 2x|}$$
. **1948.** $y = \frac{1}{\sin x}$.

1949.
$$y = \frac{2}{\sin\left(x - \frac{\pi}{3}\right)}$$
. **1950.** $y = \frac{1}{\left|\cos\left(2x - \frac{\pi}{3}\right)\right|}$.

1951. Odrediti sve celobrojne vrednosti n, za koje funkcija

$$x \to y = \frac{\sin nx}{\sin \frac{5x}{n}}$$

ima period 3π .

1952. Odrediti najmanju i najveću vrednost funkcije

$$x \to y = \cos 2x - 4\sin x.$$

⁵Oblast promene funkcije se često naziva antidomen funkcije.

1953. Odrediti najmanju i najveću vrednost funkcije

$$x \to y = 2\sin x - \cos 2x$$
.

1954. Odrediti najmanju pozitivnu i najveću negativnu vrednost funkcije

$$x \to y = \operatorname{tg} x + \operatorname{ctg} x$$
.

1955. Data je funkcija $x \to y = 3 + 4\cos x + \cos 2x$. Dokazati da data funkcija ne dobija negativnu vrednost ni za jednu realnu vrednost x.

Ispitati i grafički predstaviti trigonometrijske funkcije $x \to y$ (1956–1962) gde je:

1956.*
$$y = \sin\left(2x + \frac{11\pi}{6}\right) - \cos\left(2x - \frac{5\pi}{3}\right)$$
.

1957.*
$$y = \sin\left(2x + \frac{5\pi}{6}\right) + \cos\left(2x + \frac{\pi}{3}\right).$$

1958.*
$$y = -4\sin\left(x + \frac{\pi}{12}\right)\cos\left(x + \frac{\pi}{4}\right)$$
.

1959.*
$$y = -4\cos x \cos\left(x - \frac{\pi}{3}\right)$$
. **1960.*** $y = -\sqrt{3}\sin 2x - \cos 2x - 1$.

1961.*
$$y = -\sin 2x - \sqrt{3}\cos 2x + 1$$
.

1962.*
$$y = 2\cos^2 x + \sqrt{3}\sin 2x, x \in (0, \pi).$$

1963. Odrediti najmanju vrednost funkcije $x \to y = (\operatorname{tg} x + \operatorname{ctg} x)^2$.

1964. U Dekartovom pravouglom koordinatnom sistemu Oxy konstruisati geometrijsko mesto tačaka M(x,y) čije koordinate zadovoljavaju jednačinu $|y|=2\sin(x+|x|)$.

1965. Konstruisati grafik funkcije $x \to y = \sin(x - \sqrt{x^2})$.

1966. Odrediti maksimalnu i minimalnu vrednost funkcije

$$x \rightarrow y = \cos^2 x + \cos x + 3.$$

1967.* Odrediti a, b i c tako da funkcija

$$x \to f(x) = a + b\cos x + c\sin x$$

ispunjava uslove $f\left(\frac{\pi}{2}\right)=0,\ f(\pi)=0,\ f\left(\frac{\pi}{12}\right)=1.$ Zatim, odrediti minimum i maksimum ove funkcije.

1968.* Odrediti maksimalnu vrednost funkcije

$$x \to f(x) = \sin \frac{x}{2} - 2\sin \frac{x}{2}\sin^2 \frac{x}{4}.$$

Ispitati i grafički predstaviti trigonometrijske funkcije $x \to y$ (1969–1971) gde je:

1969.
$$y = |\sin x|$$
. **1970.** $|y| = \cos |x|$. **1971.** $y = \sin x + |\sin x|$.

4.7. Sinusna i kosinusna teorema sa primenama (rešavanje kosouglog trougla)

Teorema 1 (sinusna teorema). Stranice trougla proporcionalne su sinusima naspramnih uglova. Koeficijent proporcionalnosti je prečnik opisanog kruga oko trougla, tj.

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R.$$

Postoje dva osnovna slučaja primene sinusne teoreme.

- 1. slučaj. Odrediti ostale osnovne elemente trougla ako je data jedna njegova stranica i dva ugla.
- 2. slučaj. Odrediti ostale osnovne elemente trougla ako su date dve njegove stranice i ugao naspram jedne od njih.

Teorema 2 (kosinusna teorema). Kvadrat jedne stranice trougla jednak je zbiru kvadrata ostale dve stranice umanjenog za dvostruki proizvod ovih stranica i kosinusa ugla koji one obrazuju. Dakle, za svaki trougao tačna je konjunkcija:

$$a^2 = b^2 + c^2 - 2bc\cos\alpha \wedge b^2 = a^2 + c^2 - 2ac\cos\beta \wedge$$
$$c^2 = a^2 + b^2 - 2ab\cos\gamma.$$

Postoje dva osnovna slučaja primene kosinusne teoreme.

- 1. slučaj. Odrediti ostale osnovne elemente trougla ako su date dve stranice i zahvaćeni ugao.
- $\it 2.~slu\check{c}aj.$ Odrediti ostale osnovne elemente trougla ako su date sve tri stranice.

U zadacima (1972–1985) odrediti ostale osnovne elemente trougla ABCako je dato:

1972. c = 32,54 cm, $\alpha = 43^{\circ}28'$ i $\beta = 35^{\circ}16'$.

1973. a = 24,32 cm, b = 20,54 cm i $\alpha = 63^{\circ}47'$.

1974. c = 24,62 cm, a = 18,79 cm i $\alpha = 43^{\circ}$.

1975. a = 32 cm, c = 19 cm i $\gamma = 23^{\circ}26'$.

1976. a = 13 cm, b = 14 cm i $\gamma = 67^{\circ}23'$.

1977. a = 30 cm, b = 20 cm i c = 25 cm.

1978. c = 33 cm, $\alpha = 56^{\circ}34'$ i $\beta = 48^{\circ}26'$.

1979. a = 86,42 cm, c = 73,46 cm i $\gamma = 49^{\circ}19'$.

1980. R = 12 cm, $\alpha = 48^{\circ}$ i $\beta = 64^{\circ}$.

1981. a = 6 cm, b = 4 cm i c = 5 cm.

1982. $a = 4, 1 \text{ cm}, c = 5, 8 \text{ cm i } \beta = 59^{\circ}5'.$

1983. a = 40 cm, b = 19 cm i c = 41 cm.

1984. a = 4 cm, b = 5 cm i $\gamma = 60^{\circ}$.

1985. $a = 3\sqrt{2}$, $\alpha = 60^{\circ}$ i $\beta = 75^{\circ}$ (bez upotrebe kalkulatora).

1986. U trouglu ABC dato je $\alpha=45^\circ,\ \beta=60^\circ$ i poluprečnik opisanog kruga $R=2\sqrt{6}.$ Odrediti ostale osnovne elemente bez upotrebe kalkulatora.

1987. Odrediti stranicu btrougla ABCako su njegove stranice $a=2\sqrt{3},$ $c=\sqrt{6}$ i ugao $\beta=105^{\circ}.$

1988. U trouglu ABC dato je AB=24 cm, AC=9 cm i ugao $\alpha=60^\circ$. Odrediti bez upotrebe tablica, stranicu BC i poluprečnik opisane kružnice.

1989. U trouglu ABC razlika stranica a i b jednaka je 3 cm, ugao $\gamma=60^\circ$ i poluprečnik opisane kružnice $R=\frac{7\sqrt{3}}{3}$ cm. Odrediti stranice trougla ABC.

1990. U trouglu ABC razlika stranica a i b jednaka je 5 cm, strnica c=7 cm i poluprečnik opisane kružnice $R=\frac{7\sqrt{3}}{3}$ cm. Odrediti stranice a i b toga trougla.

1991. U krugu su date tetive AB=8 cm i AC=5 cm. One grade međusobno ugao $\alpha=60^\circ$. Izračunati poluprečnik kružnice.

1992. Ako za uglove i stranice trougla važi jednakost $\frac{a}{\cos \alpha} = \frac{b}{\cos \beta}$, dokazati da je taj trougao jednakokraki.

1993. Ako za stranice i uglove trougla važi jednakost

$$\frac{a-b}{a} = 1 - 2\cos\gamma,$$

tada je trougao jednakokraki. Dokazati.

1994. Ako je odnos kosinusa dva ugla trougla jednak odnosu sinusa istih uglova, tada je trougao jednakokraki. Dokazati.

1995. Izračunati stranice trougla ABC ako je $\cos \gamma = \frac{3}{4}$, $\sin \alpha : \sin \gamma = 3: 2$ i c=4 cm.

1996. U oštrouglom trouglu ABC poluprečnik opisane kružnice je $R=\sqrt{2}$, ugao $\alpha=45^\circ$ i stranica $c=\sqrt{6}$. Odrediti ostale osnovne elemente trougla.

1997. U trouglu ABC zadate su sve tri stranice $a=2\sqrt{2},\,b=2\sqrt{3}$ i $c=\sqrt{2}(1+\sqrt{3}).$ Odrediti uglove i poluprečnik opisanog kruga.

1998. U trouglu ABC dato je $b=a+2,\ c=a+3$ i $\sin\gamma=\frac{4\sqrt{3}}{7}$. Odrediti stranice trougla.

1999. Ako su stranice trougla a-2, a, a+2 i jedan ugao iznosi 120° , odrediti stranice.

2000. Izračunati ugao α trougla ako među stranicama važe jednakosti:

a)
$$a^2 = b^2 + c^2 + bc\sqrt{3}$$
; b) $a^2 = b^2 + c^2 - bc$;

c)
$$a^2 = b^2 + c^2 - bc\sqrt{2}$$
; d) $a^2 = b^2 + c^2 - bc\sqrt{3}$.

- **2001.** Izračunati visinu fabričkog dimnjaka koji se nalazi na horizontalnom nepristupačnom tlu, ako se vrh dimnjaka iz tačke A vidi pod uglom α , a iz tačke B pod uglom β . Tačke A i B pripadaju takođe horizontalnoj ravni a njihovo rastojanje je AB=a. Osa dimnjaka i tačke A i B leže u istoj ravni.
- **2002.** Izračunati rastojanje između tačaka A i B ako su obe nepristupačne, a tačke M i N su dve pristupačne tačke u istoj ravni. Poznati su uglovi: $\triangleleft BMA = \alpha, \triangleleft AMN = \beta, \triangleleft MNB = \gamma, \triangleleft BNA = \delta$ i rastojanje MN = a.
- **2003.** Jedna sila R=650 N razložena je na dve jednake komponente, koje zaklapaju međusobno ugao od 126° . Izračunati veličinu komponenata.
- **2004.** Dve sile P=20 N i Q=12 N dejstvuju pod uglom $\alpha=40^\circ$ u jednoj tački. Izračunati veličinu rezultante i ugao koji ona gradi sa silom P.
- **2005.** U jednakokrakom trapezu dato je: dijagonala d=3,9 cm, manja osnovica b=2,8 cm i jedan ugao $\alpha=61^{\circ}56'$. Izračunati površinu trapeza.
- **2006.** Izračunati dužinu tunela između mesta A i B, ako se tačke A i B iz mesta C vide pod uglom $\gamma = 60^{\circ}$ i ako je BC = 8 km, AC = 5 km.
- **2007.** Sa obale reke posmatrač, visine 180 cm, vidi vrh jednog drveta na suprotnoj obali pod elevacionim uglom od 32°, a ako se udalji od obale za 24 m, vidi vrh istog drveta pod elevacionim uglom od 22°. Odrediti visinu drveta i širinu reke na ovom mestu.
- **2008.** Rezultanta dve sile, koje deluju u jednoj tački pod uglom od 120° jednaka je 7 N. Ako povećamo manju silu za 10 N, rezultanta se poveća za 6 N. Odrediti veličinu sila.
- **2009.** Primenom kosinusne teoreme dokazati da je zbir kvadrata dijagonala paralelograma jednak zbiru kvadrata njegovih stranica.
- **2010.** U trouglu ABC dato je $a-b=1,\ h_c=\frac{3}{2},\ R=4.$ Bez upotrebe tablica izračunati ugao $\alpha.$

2011. Izračunati stranice i uglove trougla, ako je stranica a jednaka poluprečniku, a stranica b prečniku opisane kružnice oko trougla i visina $h_c=3$.

2012. Ako za uglove trougla važi jednakost $\sin \alpha = 2 \sin \gamma \cdot \cos \beta$, tada je trougao jednakokraki. Dokazati.

2013. Ako je R poluprečnik opisane kružnice, a α , β , γ unutarnji uglovi trougla, tada je površina trougla $P=2R^2\cdot\sin\alpha\cdot\sin\beta\cdot\sin\gamma$. Dokazati.

2014. Površina tetivnog četvorougla je $P = \frac{1}{2} \cdot (ab + cd) \cdot \sin \alpha$, gde su a, b, c i d stranice četvorougla, a α ugao kojeg obrazuju stranice a i b. Dokazati.

2015. Površina paralelograma je $P = \frac{1}{2} \cdot (a^2 - b^2) \cdot \operatorname{tg} \alpha$, gde su a i b stranice a α ugao između dijagonala. Dokazati.

2016. Ako su a, b, c stranice, α, β, γ uglovi trougla, a s poluobim trougla, tada je tg $\frac{\alpha}{2} = \sqrt{\frac{(s-b)\cdot(s-c)}{s\cdot(s-a)}}, \text{ tg } \frac{\beta}{2} = \sqrt{\frac{(s-a)\cdot(s-c)}{s\cdot(s-b)}},$ tg $\frac{\gamma}{2} = \sqrt{\frac{(s-a)\cdot(s-b)}{s\cdot(s-c)}}$. Dokazati

2017. Stranice trougla su a=264, b=435 i c=473. Primenom obrasca iz prethodnog zadatka izračunati uglove trougla.

2018. a) Ako su a, b, c stranice trougla; t_a , t_b , t_c težišne duži trougla, tada je $t_a^2 = \frac{1}{2} \cdot \left(b^2 + c^2 - \frac{a^2}{2}\right)$, $t_b^2 = \frac{1}{2} \cdot \left(a^2 + c^2 - \frac{b^2}{2}\right)$, $t_c^2 = \frac{1}{2} \cdot \left(a^2 + b^2 - \frac{c^2}{2}\right)$. Dokazati.

b) Izračunati težišne duži trougla ako je $a=4,\,b=3$ i $\gamma=60^{\circ}.$

2019.* a) Ako su a, b, c stranice; $s_{\alpha}, s_{\beta}, s_{\gamma}$ simetrale uglova trougla, tada je

$$s_{\alpha} = \frac{a \cdot \sin \beta \cdot \sin \gamma}{\sin \alpha \cos \frac{\beta - \gamma}{2}}, \quad s_{\beta} = \frac{b \cdot \sin \alpha \cdot \sin \gamma}{\sin \beta \cos \frac{\gamma - \alpha}{2}}, \quad s_{\gamma} = \frac{c \cdot \sin \alpha \cdot \sin \beta}{\sin \gamma \cos \frac{\alpha - \beta}{2}}.$$

Dokazati

b) Izračunati simetrale ugla α ako je $b=5\sqrt{2},\,\gamma=60^\circ$ i $\beta=75^\circ$.

2020. Data je stranica a = 33 m i uglovi trougla

$$\alpha = 56^{\circ}34'$$
 i $\beta = 48^{\circ}26'$.

Izračunati dužine simetrala uglova trougla.

- **2021.** Izračunati osnovne elemente trougla ako je dato: $R=32\sqrt{3}$, $R=\sqrt{\frac{ac}{2}},~\alpha=30^{\circ}$, gde su a,b i c stranice, α ugao, P površina trougla, a R poluprečnik opisane kružnice.
- **2022.** Odrediti sve stranice trapeza površine $P=4\sqrt{3}-4$ i veće osnovice a=5, ako su uglovi na većoj osnovici $\alpha=30^\circ$ i $\beta=45^\circ$.
- **2023.** Oko jednakokrakog trapeza opisana je kružnica poluprečnika 2. Ugao između kraka i veće osnovice je 60°, a veća osnovica se poklapa sa prečnikom kružnice. Odrediti stranice trapeza.
- **2024.** U tetivnom četvorouglu ABCD dijagonala BD je normalna na stranicu BC, ugao $ABC=120^\circ$, ugao $BAD=120^\circ$, DA=1. Izračunati dijagonalu BD i stranicu CD.
- **2025.*** Dužine stranica trougla su $a = p^2 + p + 1$, $b = p^2 + 2p$, c = 2p + 1, gde je p pozitivan broj. Izračunati srednji po veličini ugao toga trougla.
- **2026.** Ako za stranice trougla važi jednakost $(b+c+a)\cdot(b+c-a)=3bc$, tada je ugao $\alpha=60^\circ$. Dokazati.
- **2027.*** U trouglu ABC uga
o $\gamma=120^\circ$ i $\frac{a}{b}=\frac{\sqrt{3}-1}{2}.$ Odrediti uga
o $\beta.$
- **2028.** Ako su stranice trougla $a-4,\ a,\ a+4$ i jedan ugao 120°, odrediti stranice trougla.
- **2029.** Odrediti uglove i obim trougla čije su stranice $a=2,\,b=1+\sqrt{3},$ a površina $P=\frac{3+\sqrt{3}}{2}.$
- **2030.** Odrediti nepoznate, osnovne elemente, kao i obim i površinu trougla, ako je dato: $a = 2\sqrt{2}$, $b = 2\sqrt{3}$, $\gamma = 75^{\circ}$.
- **2031.** Odrediti stranice trougla površine $R=3\sqrt{3}$, ako je ugao $\alpha=60^\circ$ i zbir stranica koje zahvataju dati ugao b+c=7.

2032. Odrediti stranice, uglove i površinu trougla, ako je ugao $\alpha=60^\circ$, stranica $a=\sqrt{21}$, a zbir stranica koje zahvataju dati ugao b+c=9.

2033. Odrediti stranice, uglove i površinu trougla, ako je ugao $\gamma = 60^{\circ}$, stranica $c = \sqrt{13}$, a zbir dve stranice koje obrazuju dati ugao a + b = 7.

2034. Odrediti stranice trougla površine $P=\frac{15}{4}$, ako je $\beta=30^{\circ}$, a zbir stranica koje zahvataju dati ugao a+c=8.

2035.* U trouglu ABC date su stranice

$$a = 2$$
, $b = 4 - 2\sqrt{3}$, $c = 3\sqrt{2} - \sqrt{6}$.

Izračunati ugao BCA i poluprečnik opisane kružnice.

2036.* U trouglu ABC simetrala ugla α , $s_a=5$, obrazuje sa stranicom BC dva ugla, koji su u razmeri 17 : 19. Ako je ugao $\beta=42^\circ$, odrediti stranice trougla.

2037.* Data je stranica a, površina P trougla i razmera stranica b:c=3. Izračunati stranice b i c trougla.

2038.* Dokazati da kod svakog paralelograma važi $a^2 - b^2 < ef$, gde su a i b stranice, a e i f dijagonale paralelograma.

2039.* Ako su stranice trougla ABC redom

$$BC = a$$
, $CA = b$, $AB = c$,

i ako je ugao $A=60^{\circ}$, dokazati da je površina trougla ABC:

$$P = \frac{\sqrt{3}}{4} \cdot (a^2 - (b - c)^2).$$

2040. Izračunati uglove romba stranice a i jedne dijagonale $a\sqrt{2-\sqrt{3}}$.

2041. Izračunati uglove pravouglog trougla ako je razlika kateta $\frac{c\sqrt{2}}{2}$, gde je c hipotenuza.

V GLAVA

5. RAZNI ZADACI¹

2042. Data je funkcija $y = x^2 - 2x \cos \alpha + 1 - \sin \alpha$, gde je $\alpha \in \left[0, \frac{\pi}{2}\right]$.

a) Odrediti α tako da apscisna osa bude tangenta grafika funkcije i skicirati grafike tih funkcija.

b) Ako su x_1 i x_2 rešenja jednačine

$$x^2 - 2x\cos\alpha + 1 - \sin\alpha = 0,$$

odrediti α iz jednakosti $x_1^2 + x_2^2 = 2$.

c) Naći vezu između rešenja \boldsymbol{x}_1 i \boldsymbol{x}_2 jednačine

$$x^2 - 2x\cos\alpha + 1 - \sin\alpha = 0,$$

koja ne zavisi od α .

2043. Data je jednačina $x^2 - (m+3)x + m + 2 = 0$. Odrediti sve vrednosti parametra m za koje je tačna konjunkcija

$$\frac{1}{x_1} + \frac{1}{x_2} > \frac{1}{2} \wedge x_1^2 + x_2^2 < 5.$$

2044. Tri broja x, y, z zadovoljavaju jednakost $y^2 = xz$. Dokazati da je:

$$(x+y+z) \cdot (x-y+z) = x^2 + y^2 + z^2.$$

2045. Odrediti sve vrednosti parametra $\alpha \in (0, 2\pi)$ za koje je kvadratni trinom $y = \left(\sin \alpha + \frac{1}{2}\right) \cdot x^2 - (2\sin \alpha - 3) \cdot x + 1$, pozitivan za svako x.

2046. Zbir dva pozitivna broja je 18. Odrediti te brojeve tako da njihov proizvod bude maksimalan.

¹Ovi zadaci služe za ponavljanje, sistemalizaciju i produbljivanje gradiva. Uglavnom su korišćeni na raznim opštinskim i međuopštinskim takmičenjima iz matematike, kao i na prijemnim ispitima na tehničkim fakultetima.

5. Razni zadaci 177

2047. Dat je skup funkcija $y = x^2 - 2kx - 1 + 2k^2$, gde je k realan parametar.

- a) Naći geometrijsko mesto minimuma funkcije kad se k menja.
- b) Na osnovu tog geometrijskog mesta ispitati prirodu nula date funkcije. (Gradsko takmičenje u Beogradu školske 1969/70 godine.)
- **2048.** Odrediti najmanju vrednost izraza $x^6 + y^6$ ako je $x^2 + y^2 = 1$.
- **2049.** Koji dvocifreni brojevi 10x + y zadovoljavaju uslov

$$10x + y = x^2 + y^2 + xy?$$

2050. Izračunati zapreminu kose kupe ako je dat poluprečnik osnove r=25 i nagibni uglovi najduže i najkraće izvodnice prema osnovi $\alpha=24^\circ11',\ \beta=53^\circ8'.$

2051. Data je kvadratna jednačina po nepoznatoj x:

$$2x^2 + 2x + \cos \alpha = 0 \qquad (0 < \alpha < \pi).$$

- a) Odrediti interval kome pripada parametar α da oba rešenja jednačine budu realna.
- b) Odrediti α ako je $\frac{1}{x_1} + \frac{1}{x_2} = \frac{4}{3}$ i dokazati da je tada $x_1^2 + x_2^2 < 1, 9$, gde su x_1 i x_2 rešenja date jednačine.
- **2052.** Data je jednačina $ax^2-x+\frac{\log a}{a}=0$, gde je a pozitivan broj i osnova logaritma 10. Odrediti parametar a, tako da data jednačina:
- a) ima realne korene;
 b) dva pozitivna korena;
 c) jednake korene.
 U poslednjem slučaju rešiti jednačinu.
- **2053.** Odrediti sve cele brojeve m za koje je $(1+i)^m = (1-i)^m$. $(i=\sqrt{-1})$.

2054. Ako je
$$z_1,=\frac{-1-i\sqrt{3}}{2}$$
 i $z_2=\frac{-1+i\sqrt{3}}{2},$ onda je: a) $z_1^{\ 3}+z_2^{\ 3}=2,\;$ b) $z_1^{\ 3n}+z_2^{\ 3n}=2,\;$ $n\in\mathbb{N}.$ Dokazati.

178 5. Razni zadaci

2055. Ako jednačina $x^2 + px + q = 0$ ima realna i različita rešenja (p i q realni parametri), onda i jednačine

(1)
$$x^2 + (p+2a)x + q + ap = 0,$$

(2)
$$3x^2 + 2(a+p)x + q + ap = 0,$$

(gde je a ma koji realan broj), takođe imaju realna i različita rešenja. Dokazati.

2056. Trougao čije su stranice a-2, a, a+2 i jedan ugao od 120° rotira oko najduže stranice. Odrediti površinu i zapreminu nastalog tela.

2057. Data je kvadratna jednačina $(2\cos\alpha-1)x^2-2x+\cos\alpha=0$, gde je α parametar.

- a) Odrediti vrednost parametra α za koju jednačina ima realna rešenja.
- b) Odrediti α ako je $\frac{1}{x_1} + \frac{1}{x_2} 4\sin\alpha = 0$, gde su x_1 i x_2 rešenja date jednačine.
- c) Iz skupa funkcija $y = (2\cos\alpha 1)x^2 2x + \cos\alpha$ izdvojiti one funkcije čija je tangenta x-osa i konstruisati njihove grafike u ravni xOy.
- **2058.** Osnova piramide je pravougli trougao čija je hipotenuza c i jedan ugao α . Bočne ivice piramide zaklapaju ugao φ sa osnovom. Izračunati zapreminu piramide.

2059. Odrediti sve vrednosti parametra p, za koje je izraz

$$\log ((p-1) \cdot x^2 + 2px + 3p - 2),$$

definisan za svako x.

2060. Ako je $0<\varphi<\frac{\pi}{3}$, odrediti realne vrednosti parametra m za koje je tačna jednakost $\cos\varphi=\frac{m^2-4m-4}{m^2+1}.$

2061. Ako je $0 \le \varphi \le \frac{\pi}{4}$, za koje realne vrednosti parametra m je tačna jednakost tg $\varphi = \frac{2m^2 + 2m}{m^2 - 6m + 9}$?

5. Razni zadaci 179

2062. Osnova prizme je trougao čiji su uglovi α i β , a poluprečnik opisanog kruga R. Odrediti zapreminu prizme ako bočna ivica dužine m zaklapa sa osnovom ugao φ .

2063. U trouglu *ABC* je $a:b=13:1, c=16\sqrt{3}, \alpha=30^{\circ}$:

- a) naći stranice trougla a i b;
- b) naći površinu i zapreminu tela nastalog rotacijom ovog trougla oko stranice c.
- **2064.** Date su funkcije $y=a\cdot 2^x+b,\ y=b\cdot 2^x+a,$ gde su α i b realni parametri. Koji uslov treba da zadovoljavaju a i b da grafici datih funkcija imaju:
- a) jednu zajedničku tačku (odrediti tu tačku);
- b) dve zajedničke tačke (odrediti te tačke)?
- **2065.** Date su funkcije $y = \log_2(x+14)$ i $y=6-\log_2(x+2)$. Odrediti presečnu tačku njihovih grafika.
- **2066.** Data je jednačina $x^2 10x + 2xy y + y^2 = 0$. Odrediti sva njena rešenja u skupu celih brojeva.
- **2067.** Ako je $\frac{\pi}{6} < \alpha < \frac{\pi}{4}$, odrediti realne vrednosti i nepoznate x za koje su tačne jednakosti:

a)
$$x^2 - 5x + 7 = 3 \operatorname{tg}^2 \alpha$$
; b) $x^2 - 7x + 14 = 8 \sin^2 \alpha$.

2068. Skratiti dati razlomak R, a zatim izračunati njegovu vrednost za dato x:

a)
$$R = \frac{3x^2 + x^{-2} - x^4 - 3}{2 - x^2 - x^{-2}}, x = \left(\frac{\sqrt{2} + 1}{\sqrt{2} - 1}\right)^{-\frac{1}{4}};$$

b)
$$R = \frac{x^4 + 3x^2 + x^{-2} + 3}{2 + x^{-2} + x^2}$$
, $x = \left(\frac{\sqrt{2} - 1}{\sqrt{2} + 1}\right)^{-\frac{1}{4}}$.

2069. Dokazati da je $(az^2+bz)\cdot(bz^2+az)=a^2-ab+b^2$, pri čemu su a i b realni brojevi, a z je rešenje jednačine $1+z+z^2=0$.

180 5. Razni zadaci

2070. Data je jednačina $x^2 - 6x + 5 + m(x^2 - 5x + 6) = 0$, $(m \in \mathbb{R})$. Odrediti relaciju između rešenja date jednačine nezavisne od realnog parametra m. (Deseto savezno takmičenje, održano maja 1969.)

2071. Odrediti interval za x u kome je funkcija

$$y = \sqrt{x - 1} + \sqrt{x + 24 - 10\sqrt{x - 1}}$$

konstanta. (Republičko takmičenje iz matematike SR Srbije, 1981.)

2072. Dati su kompleksni brojevi z_1 i z_2 takvi da je $\operatorname{Im}(z_1) \neq 0$ i $\operatorname{Im}(z_2) \neq 0$. Dokazati da su brojevi $z_1 + z_2$ i $z_1 \cdot z_2$ istovremeno realni ako i samo ako je $z_1 = z_2$. (Opštinsko takmičenje iz matematike održano 1984. godine, Beograd).

2073. Dokazati da sistem jednačina $z + \bar{z} = 4 \land |z| = 1$, gde je z kompleksni broj, nema rešenja. (Opštinsko takmičenje iz matematike 1983. godine, Beograd).

2074. Odrediti sve kompleksne brojeve z takve da je

$$2(1-i) \cdot z^2 + 4(1+2i)z - 3 + 5i = 0.$$

(Opštinsko takmičenje iz matematike 1987. godine, Beograd).

2075. Odrediti realan broj m tako da razlika rešenja jednačine

$$x^2 + 4mx + 5m^2 - 6m + 5 = 0$$

bude maksimalna. (Opštinsko takmičenje iz matematike 1987. godine, Beograd).

2076. Rešiti nejednačinu $\left| \frac{x^2 - 3x - 4}{x^2 + x + 1} \right| < 2.$

2077. Za koje realne vrednosti broja a nejednačina $\left|\frac{x^2+ax+1}{x^2+x+1}\right| < 2$ važi za sve realne vrednosti x?

2078. Dati su kompleksni brojevi

$$z_1 = 2 + i\left(\sqrt{3 + \sqrt{8}} - \sqrt{3 - \sqrt{8}}\right)$$
 i $z_2 = 3 + i\log_a\frac{1}{27}$.

Izračunati imaginarne delove datih brojeva i dokazati da je $z_2: z_1 = 3: 2$, ako je a = 0, 333... (Prijemni ispit, Mašinski fakultet, Beograd 1986. godine).

2079. Rešiti jednačinu $x = 1 - 1986(1 - 1986x^2)^2$. (Prijemni ispit na Elektrotehničkom fakultetu u Beogradu, 1986. godine).

2080. Grafički prikazati skup tačaka M(x,y) čije koordinate zadovoljavaju nejednakost $|x+y|^{-x+y+1} \leq 1$. (Prijemni ispit na Elektrotehničkom fakultetu u Beogradu, 1985. godine).

2081. Izračunati
$$\log_{ab} \frac{\sqrt[3]{a}}{\sqrt{b}}$$
, ako je $\log_{ab} a = n$.

 ${\bf 2082.}$ Za koje je vrednosti realnog broja xispunjena jednakost

$$\operatorname{ctg} \alpha = \frac{2x^2 - 2x}{x^2 - 8x + 16},$$

ako je
$$\frac{\pi}{4} \le \alpha \le \frac{\pi}{2}$$
.

2083. Rešiti jednačinu $4^x + 9^x + 25^x = 6^x + 10^x + 15^x$. (Međuopštinsko takmičenje iz matematike, Beograd 1988. godine).

2084. Neka su $n_1, n_2, n_3, \ldots, n_k$ svi prirodni brojevi, koji su delioci broja n, a različiti od 1 i n. Dokazati da je

$$\frac{2}{\log_k n} (\log_k n_1 + \log_k n_2 + \log_k n_3 + \dots + \log_k n_k) = k.$$

(Međuopštinsko takmičenje iz matematike održano u Beogradu 1988. godine).

2085. Odrediti polinom trećeg stepena sa realnim koeficijentima tako da zadovoljava uslove

$$P(1+i) = 3i - 4$$
 i $P(-i) = 4i - 1$ $(i^2 = -1)$.

2086. Ako je $\log \frac{a-b}{2} = \frac{1}{2}(\log a + \log b - \log a)$, gde su a i b katete pravouglog trougla, odrediti uglove trougla.

2087. Ako je tg
$$\alpha = 3^x$$
, tg $\beta = 3^{-x}$ i $\alpha - \beta = \frac{\pi}{6}$, odrediti x .

Rešiti jednačine (2088–2095):

2088.
$$\log_{\frac{1}{8}} \left(2^{x+1} + \operatorname{tg}^2 \frac{\pi}{4} \right) + \log_{\frac{1}{8}} \left(2^x + \operatorname{ctg}^2 \frac{\pi}{6} \right) = \frac{5}{3} + 3 \log_{\frac{1}{8}} 5.$$

2089.
$$2^{1-\log_2 x + \log_2^2 x - \log_2^3 x + \cdots} = x$$
. **2090.** $\sin^{1988} x + \cos^{1000} x = 1$.

2091.
$$\sin^{77} x + \cos^{88} x = 1$$
. **2092.** $\sin x + \cos x = \sqrt{2} \cdot \cos(99x)$.

2093.
$$\sin x - \sqrt{3}\cos x = 2 \cdot \sin(1999x)$$
.

2094.
$$\operatorname{ctg} 2^x = \operatorname{tg} 2^x + 2 \cdot \operatorname{tg} 2^{x+1}$$
.

2095.
$$\log_2\left(\cos 2x + \cos\frac{x}{2}\right) + \log_{0,5}\left(\sin x + \cos\frac{x}{2}\right) = 0.$$

2096. Odrediti skup tačaka u Dekartovoj ravni za koje je

$$\sin\left(\pi\cdot(x+y)\right) > 0.$$

2097. Ako je:

$$\begin{split} a &= A \cdot \cos^2 \alpha + B \cdot \sin \alpha \cos \alpha + C \cdot \sin^2 \alpha, \\ b &= 2 \cdot C \cdot \sin \alpha \cdot \cos \alpha + B \cdot \cos 2\alpha - 2 \cdot A \cdot \sin \alpha \cdot \cos \alpha, \\ c &= A \cdot \sin^2 \alpha - B \cdot \sin \alpha \cdot \cos \alpha + C \cdot \cos^2 \alpha, \end{split}$$

ispitati da li je $b^2 - 4ac = B^2 - 4AC$.

2098. Ako za uglove trougla važi jednakost

$$\cos \alpha + \cos \beta - \cos(\alpha + \beta) = \frac{3}{2},$$

tada je trougao jednakostraničan. Dokazati.

2099. Izračunati zbir

$$\frac{\sin 1}{\cos 0 \cdot \cos 1} + \frac{\sin 1}{\cos 1 \cdot \cos 2} + \dots + \frac{\sin 1}{\cos (n-1) \cdot \cos n}.$$

Dokazati sledeće jednakosti (2100–2104):

2100.
$$\left(\left(\frac{a^{\frac{1}{3}} + 1}{a^{\frac{1}{3}} - 1} \right)^2 + 3 \right) \cdot \left(\left(\frac{a^{\frac{1}{3}} - 1}{a^{\frac{1}{3}} + 1} \right)^2 + 3 \right)^{-1} \cdot \frac{a - 1}{a + 1} - \frac{2}{a^{\frac{1}{3}} - 1} = 1.$$

2101.
$$\frac{y^{\frac{1}{3}}}{2-y^{\frac{1}{3}}} - \left(\frac{72-9y}{8} : \left(\left(\frac{4+y^{\frac{1}{3}}}{2-y^{\frac{1}{3}}}\right)^3 + 1\right)\right)^{-\frac{1}{4}} = -1.$$

2102.
$$\left(\frac{3}{\sqrt[3]{a} - \sqrt[3]{b}} + \frac{3\sqrt[3]{a}}{a - b} \cdot \frac{\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2}}{\sqrt[3]{a} + \sqrt[3]{b}} \right) : \frac{2\sqrt[3]{a} + \sqrt[3]{b}}{\sqrt[3]{a^2} + 2\sqrt[3]{ab} + \sqrt[3]{b^2}} \cdot \frac{3\left(\sqrt[3]{a} - \sqrt[3]{b}\right)}{\sqrt[3]{a} + \sqrt[3]{b}} = 9.$$

2103.
$$\left(\frac{\sqrt{1+n}}{\sqrt{1+n}-\sqrt{1-n}}+\frac{1-n}{\sqrt{1-n^2}-1+n}\right)\cdot\left(\sqrt{\frac{1}{n^2}-1}-\frac{1}{n}\right)=-1.$$
 $(0 < n < 1).$

2104.
$$\sqrt{\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^2-\left(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\right)^2}=2.$$

2105. Odrediti kvadratnu jednačinu sa realnim koeficijentima ako jedan njen koren z=a+bi zadovoljava jednačinu

$$(z+2i)^2 + 4z - 4i\bar{z} + 17 = 0,$$

gde je $\bar{z} = a - bi$.

2106. Rešiti jednačinu $z^2 - (3+2i)z + 5(1+i) = 0$, (z = a+bi).

2107. Ako je $\arg(1+z)=\frac{\pi}{4}$ i |1+z|=4,odrediti kompleksan broj z.

2108. Odrediti kompleksan broj z = x + iy ako je:

a)
$$\left| \frac{z}{z+1} \right| = 1 \land z : \bar{z} = i;$$
 b) $|z^2 - 2i| = 4 \land \left| \frac{z+1+i}{z-1-i} \right| = 1.$

Ispitati promene i konstruisati grafik funkcije $x \to y$ (2109–2110), gde je:

2109. a)
$$y = -\frac{1}{2}|x+3|(x+8) - \frac{1}{2}|x-3|(x-8) + 10x;$$

b)
$$y = \frac{1}{2}|x+3|(x+8) + \frac{1}{2}|x-3|(x-8) - 10x$$
.

2110. a)
$$y = -x^2 + 3|x + 2| + 3|x - 2| - 8;$$

b) $y = x^2 - 3|x + 2| - 3|x - 2| + 8.$

- **2111.** Zbir uglova pod kojim se sa 100, 200 i 300 m udaljenosti od podnožja vidi toranj koji stoji na horizontalnoj ravni iznosi 90°. Visina tornja je:
- a) 100 m; b) 90 m; c) 95 m; d) $64\sqrt{2}$ m; e) $56\sqrt{3}$ m?

2112. Dokazati identitet
$$n = -\log_3 \log_3 \underbrace{\sqrt[3]{\sqrt[3]{\cdots \sqrt[3]{3}}}}_{n \text{ puta}}$$

2113. Ako je $N>0,\ a>0,\ b>0$ i $c>0,\ N\neq 1,\ a\neq 1,\ b\neq 1,\ c\neq 1,$ $abc\neq 1,$ tada je

$$\begin{split} \log_a N \cdot \log_b N + \log_b N \cdot \log_c N + \log_c N \cdot \log_a N \\ &= \frac{\log_a N \cdot \log_b N \cdot \log_c N}{\log_{abc} N}. \end{split}$$

Dokazati.

2114. Ako su a i b katete, a c hipotenuza pravouglog trougla, tada je

$$\log_{b+c} a + \log_{c-b} a = 2\log_{b+c} a \cdot \log_{c-b} a.$$

2115. Ako je n prirodan broj dokazati da je:

a)
$$\log\left(1+\frac{1}{2}\right) + 2\log\left(1+\frac{1}{2}\right) + 3\log\left(1+\frac{1}{3}\right) + \dots + n\log\left(1+\frac{1}{n}\right)$$

= $(1+n)\log(1+n) - \log(1+n)!$;

b)
$$\left(\sqrt[\log_2 N]{N} \cdot \sqrt[\log_4 N]{N} \cdot \sqrt[\log_8 N]{N} \cdots \sqrt[\log_2 N]{N} \right)^{\frac{2}{n+1}} = 2^n$$
. Dokazati

- **2116.** Ako su koeficijenti kvadratne jednačine celi brojevi, a koreni su racionalni brojevi, onda su koreni celi brojevi. Dokazati.
- **2117.** Ako su koeficijenti kvadratne jednačine $ax^2 + bx + c = 0$ celi neparni brojevi, onda koreni date jednačine ne mogu biti racionalni. Dokazati.

2118. Neka su x_1 i x_2 koreni jednačine $x^2 + kx + 1 = 0$. Odrediti sve vrednosti parametra k za koje je tačna nejednakost $\left(\frac{x_1}{x_2}\right)^2 + \left(\frac{x_2}{x_1}\right)^2 > 1$.

2119. Neka su x_1 i x_2 koreni jednačine $p^2x^2 + p^3x + 1 = 0 \ (p \neq 0)$.

a) Odrediti sve realne vrednosti parametra p za koje je tačna nejednakost:

$$\left(\frac{x_1}{x_2}\right)^2 + \left(\frac{x_2}{x_1}\right)^2 > 1.$$

b) Odrediti one vrednosti parametra p za koje je zbir $y=x_1^4+x_2^4$ minimalan.

2120. Za koje vrednosti parametra a jednačine:

$$(1-2a)x^2 - 6ax - 1 = 0$$
, $ax^2 - x + 1 = 0$

imaju zajednički koren?

2121. Ako su p, q i r racionalni brojevi, onda su i rešenja jednačine

$$(p+q+r)x^2 - 2(p+q)x + p + q - r = 0$$

racionalni brojevi. Dokazati.

2122. Rešenja jednačine $x^2 + px + q = 0$ su racionalna ako je

$$p = \frac{a^2 + b^2}{a^2 - b^2}$$
 i $q = \left(\frac{ab}{a^2 - b^2}\right)^2$,

gde su a i b racionalni brojevi. Dokazati.

2123. Dokazati da su koreni jednačine $x^2+px+q=0$ racionalni brojevi, ako je $p=n+\frac{q}{n}$, gde su q i n racionalni brojevi.

2124. Data je kvadratna jednačina $x^2 - 2mx + 2m - 1 = 0$ (m racionalan broj).

- a) Dokazati da su koreni te jednačine racionalni.
- b) Ne rešavajući datu jednačinu, odrediti zbir kvadrata korena u funkciji od parametra m i dokazati da je taj zbir veći od proizvoda korena za svako m.

Dokazati da je (2125–2128):

2125. (1)
$$\frac{1}{x(x+1)} + \frac{1}{(x+1)(x+2)} + \frac{1}{(x+2)(x+3)} + \cdots + \frac{1}{(x+n-1)(x+n)} = \frac{n}{x(x+n)}$$
 $(x \in \mathbb{N}).$

2126. (2)
$$\frac{x + x^2 + x^3 + \dots + x^n}{x^{-1} + x^{-2} + x^{-3} + \dots + x^{-n}} = x^{n+1} \quad (x \neq 0).$$

2127. (3)
$$\frac{1}{1-x} + \frac{1}{1+x} + \frac{2}{1+x^2} + \frac{2^2}{1+x^{2^2}} + \dots + \frac{2^n}{1+x^{2^n}} = \frac{2^{n+1}}{1-x^{2^{n+1}}}, (x \neq \pm 1).$$

2128.
$$\frac{\frac{2\sin x \cos x}{\sin x + \cos x} - \sin x}{\frac{1}{\cos x} + \frac{1}{\sin x - 2\cos x}} + \frac{\frac{2\sin x \cos x}{\sin x + \cos x} - \cos x}{\frac{1}{\sin x} + \frac{1}{\cos x} - \frac{1}{\sin x}} = \sin x \cos x.$$

Rešiti jednačine (2129–2145):

2129.
$$\frac{1}{\ln x (\ln x + 1)} + \frac{1}{(\ln x + 1)(\ln x + 2)} + \dots + \frac{1}{(\ln x + 5)(\ln x + 6)} = \frac{2}{9}$$
.

2130.
$$\frac{1}{\sqrt{x}(\sqrt{x}+1)} + \frac{1}{(\sqrt{x}+1)(\sqrt{x}+2)} + \cdots + \frac{1}{(\sqrt{x}+9)(\sqrt{x}+10)} = \frac{5}{12}.$$

2131.
$$\frac{x+x^2+x^3+\cdots+x^n}{\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x^3}+\cdots+\frac{1}{x^n}} = n^{n+1} \quad (x \neq 0).$$

2132.
$$\frac{\sqrt[5]{5} + \sqrt[5]{5^2} + \sqrt[5]{5^3} + \dots + \sqrt[5]{5^n}}{5^{-\frac{1}{5}} + 5^{-\frac{2}{5}} + 5^{-\frac{3}{5}} + \dots + 5^{-\frac{n}{5}}} = 125.$$

2133.
$$\frac{\ln x + \ln^2 x + \ln^3 x + \dots + \ln^n x}{\frac{1}{\ln x} + \frac{1}{\ln^2 x} + \frac{1}{\ln^3 x} + \dots + \frac{1}{\ln^n x}} = \ln^6 x.$$

2134.
$$\frac{1}{1-x} + \frac{1}{1+x} + \frac{2}{1+x^2} + \frac{2^2}{1+x^{2^2}} + \dots + \frac{2^6}{1+x^{2^6}x} = \frac{128}{1-x^{128}}.$$
2135.
$$\frac{2}{1-\ln^2 x} + \frac{2}{1+\ln^2 x} + \frac{2^2}{1+\ln^{2^2} x} + \dots + \frac{2^{10}}{1+\ln^{2^{10}} x} = \frac{2048}{1-\ln^{2^{11}} x}.$$

2135.
$$\frac{2}{1-\ln^2 x} + \frac{2}{1+\ln^2 x} + \frac{2^2}{1+\ln^{2^2} x} + \dots + \frac{2^{10}}{1+\ln^{2^{10}} x} = \frac{2048}{1-\ln^{2^{11}} x}$$

2136.
$$\frac{1}{x(x+1)} + \frac{1}{(x+1)(x+2)} + \dots + \frac{1}{(x+19)(x+20)} = \frac{5}{11}, (x \in \mathbb{N}).$$

2137.
$$\log_2 8^{x+2} = \frac{x^{-6} - 64}{4 + 2x^{-1} + x^{-2}} \cdot \frac{x^2}{4 - 4x^{-1} + x^{-2}} - \frac{4x^2(2x+1)}{1 - 2x}.$$

2138.
$$\ln^2 x - 4 \ln x + 5 = \frac{1 + \ln x + \frac{1}{1 - \ln x}}{1 + \frac{1}{1 - \ln^2 x}}$$
.

2139.
$$\frac{\operatorname{tg} x + \operatorname{tg}^2 x + \operatorname{tg}^3 x + \dots + \operatorname{tg}^n x}{\operatorname{tg}^{-1} x + \operatorname{tg}^{-2} x + \operatorname{tg}^{-3} x + \dots + \operatorname{tg}^{-n} x} = \left(\operatorname{tg}\left(2x - \frac{\pi}{4}\right)\right)^{n+1}.$$

2140.
$$\frac{\ln^3 x - 2}{\ln x + 2 + \frac{2 \ln x}{\ln x + 2}} - \frac{\ln^3 x + 2}{\ln x - 2 + \frac{2 \ln x}{\ln x - 2}} = \ln x.$$

2141.
$$\frac{\sin^2 x - \sin x - 6}{\sin^2 x - 4} - \frac{\sin x - 1}{2 - \sin x} - 2 = \sin^2 x - \frac{1}{4}$$
.

2142.
$$\frac{\lg^2 x + 1}{\lg x} - \frac{\lg^2 x}{\lg x - 1} + \frac{1}{\lg^2 x - \lg x} = \lg^2 x - 4\lg x - 6.$$

2143.
$$\frac{\ln^2 x + 1}{\ln x} - \frac{\ln^2 x}{\ln x - 1} + \frac{1}{\ln x (\ln x - 1)} = \ln^2 x - \ln x - 3.$$

2144.
$$\frac{1}{\cos x(\cos x - 1)} + \frac{2}{1 - \cos^2 x} + \frac{1}{\cos^2 x + \cos x}$$
$$= \cos^2 x + \frac{\sqrt{2} - 1}{2} \cos x - \frac{\sqrt{2}}{4}$$

2145.
$$\frac{1}{\operatorname{tg} x(\operatorname{tg} x + 1)} + \frac{1}{(\operatorname{tg} x + 1)(\operatorname{tg} x + 2)} + \frac{1}{(\operatorname{tg} x + 2)(\operatorname{tg} x + 3)} + \cdots + \frac{1}{(\operatorname{tg} x + 99)(\operatorname{tg} x + 100)} = \frac{1}{11}.$$

Opštinsko takmičenje iz matematike 03.02.1996. (drugi razred)

2146. Da li postoje prirodni brojevi m i n, koji se zapisuju istim ciframa, ali u različitom redosledu, tako da je m-n=1995? (Obrazložiti odgovor!)

2147. Poljoprivrednik želi da električnom ogradom dužine 100 m ogradi sa tri strane zemljište, koje se nalazi pored reke, tako da ograda zajedno sa delom obale kao četvrtom stranom, čini pravougaonik. Kolike treba da budu dimenzije tog pravougaonika, tako da površina ograđenog zemljišta bude maksimalna?

2148. Oko jednakokrakog trougla ABC(AB=AC) opisan je krug k. Prava ℓ sadrži teme A i seče duž BC u tački D, a krug k u tački E. Ako je AB=c i AE=m odrediti dužinu duži AD.

2149. Naći sve kompleksne brojeve z za koje važi |z-2+i|=5, Re $\left(z(1+i)\right)=2$.

2150. Dokazati da za realne brojeve a, b i c važi nejednakost

$$2(a^4 + b^4 + c^4) > a^3b + b^3c + c^3a + ab^3 + bc^3 + ca^3$$
.

Okružno takmičenje iz matematike 17. 02. 1996. (drugi razred)

2151. a) Dokazati da za sve prirodne brojeve n važi:

$$\sqrt{n+\sqrt{n^2-1}} = \frac{1}{\sqrt{2}} \left(\sqrt{n+1} + \sqrt{n-1}\right).$$

b) Odrediti $n\in\mathbb{N}$ za koje je

$$\frac{1}{\sqrt{1+\sqrt{1^2-1}}} + \frac{1}{\sqrt{2+\sqrt{2^2-1}}} + \dots + \frac{1}{\sqrt{n+\sqrt{n^2-1}}}$$
$$= \frac{\sqrt{2}}{2}(\sqrt{101}+9).$$

2152. Od svih pravouglih trouglova datog poluprečnika R opisane kružnice, naći stranice onog sa najvećim poluprečnikom upisane kružnice.

2153. Naći sve vrednosti x, za koje postoji bar jedno a, $-1 \le a \le 2,$ tako da važi nejednakost:

$$(2-a)x^3 + (1-2a)x^2 - 6x + (5+4a-a^2) < 0.$$

2154. Kada se prirodan broj n podeli sa 3 dobije se ostatak 2, a kada se podeli sa 37, ostatak 22. Koliki je ostatak pri deljenju tog broja sa 111.

2155. U krug je upisan n-tougao, takav da su mu svi uglovi podudarni. Dokazati da je taj n-tougao pravilan, ako je n neparan broj.

Republičko takmičenje iz matematike Novi Sad 16.03.1996. (drugi razred)

2156. Imamo n+1 teg ukupne težine 2n, i terazije sa dva uravnotežena tasa. Težina svakog od tegova izražava se prirodnim brojem. Tegovi se jedan po jedan stavljaju na tas: najpre najteži (ili, ako ih ima više, jedan od najtežih), zatim najteži od preostalih i tako dalje. Pri tome se svaki sledeći teg stavlja na onaj tas na kome je ukupna težina tegova u tom trenutku manja; ako su terazije u ravnoteži onda na proizvoljnu stranu. Dokazati da će nakon stavljanja svih tegova na tasove na opisani način, terazije biti u ravnoteži.

2157. U skupu prirodnih brojeva rešiti jednačinu $7^x - 3 \cdot 2^y = 1$.

2158. Kružnica K dodiruje u tačkama A i C krake ugla sa vrhom B. Tačka D leži na K i $CD\|AB$. Duž BD seče K u tački E. Dokazati da je $CE=\frac{1}{2}DE$.

2159. Krug K_1 poluprečnika 1 iznutra dodiruje krug K_2 poluprečnika 2. Opisati geometrijsko mesto tačaka u kojima se nađe određena tačka M sa kruga K_1 prilikom kotrljanja kruga K_1 po krugu K_2 .

REŠENJA

I GLAVA

1. STEPENOVANJE I KORENOVANJE

1.2. Stepen čiji je izložilac ceo broj

1. a) 2; b) 11; c) 3; d) 8. **2.** a) 2020001; b) 10.

3. a) 1; b) 625; c) 1,2; d) 7; e)
$$\frac{5}{9}$$
; f) $\frac{1}{9}$.

4. a) 66066; b) $\frac{1}{2}$; c) 10^{32} ; d) $\frac{4^{10}}{9 \cdot 35^3}$; e) 16, 5.

5. a)
$$A = \frac{100}{3}$$
; b) $\frac{1}{6}$. **6.** $v = \pm \frac{1}{2} \cdot 10^5 = \pm 50\,000$.

7. $a \cdot b^{-1} = 200$. **8.** 24 nule.

9. a)
$$\frac{1}{x^4}$$
 $(x \neq 0)$; b) $\left(\frac{a}{b}\right)^2$ $(b \neq 0)$; c) 1, $(x \neq 0)$; d) $-\frac{12}{a^7b}$ $(ab \neq 0)$.

10. $2ab^2$; $a^{-3}b^2$; $a^nb^{-m}x$; $ab(a+b)^{-3}$; $2(a-b)^3$;

$$(2x+1)^{-3}(x-1)^3$$
; $7(a-b)^3$; $2a^{-2}x^{-1}(x-y)^3$.

11. a)
$$\frac{3x^2}{y^5}$$
; b) $\frac{16b}{a^5}$; c) $\frac{2x^7 - x^6 + 1}{x^2}$; d) $\frac{1}{x^9}$; e) $\frac{1}{a^7b^3}$.

12. a)
$$250^x - 54^x$$
; b) $125^x - 64^x$; c) 1; d) $\frac{ab(a+b)}{a-b}$.

13. a) 1; b) 1; c) 1; d)
$$\frac{1}{a+b}$$
. **15.** $A = 100$.

17. a)
$$A \cdot 10^{-5} = 0, 2 \cdot 0,008 \Rightarrow A = \frac{0, 2 \cdot 0,008}{10^{-5}} \Rightarrow A = 160;$$
 b) $B = 240.$

18.
$$x = 2$$
. **19.** $\frac{1}{a^2b^2}$. **20.** a) 0; b) $\frac{1}{2}$; c) 5.

22. a)
$$\frac{x+1}{x-1}$$
; b) $\left(\frac{2}{x^n+y^n}\right)^2 \cdot x^n y^n$; c) $\frac{b^{2-n}}{a}$; d) 1.

23. a) Posle sređivanja, dati izraz postaje $-\frac{x+1}{x}$, smenom $x = \frac{a-1}{2}$, dati izraz ima vrednost $\frac{a+1}{1-a}$.

b) Posle sređivanja, izraz postaje $\frac{(a+x+1)^2}{2ax}$; za $x=\frac{1}{a-1}$ dati izraz ima vrednost $\frac{a^3}{2(a-1)}$.

25. 1. **26.** 1. **27.** 1. **27.** 1. **29.** 4. **30.** 1. **31.** 0.

32. 0. **33.** 9. **34.** 2. **35.** 1. **36.** 5^{6n-11} . **37.** 2^{m+5} . **38.** A = -6, B = 6; B > A. **39.** $\frac{2^{2x+1}}{2^{4x}+1}$. **40.** $\frac{2}{3(1-4\cdot 3^n)}$.

41. $\frac{9a^x}{1-2a^x}$. **42.** -5^x . **43.** 2x+1. **44.** Za x=0.

45. x = 23; y = 110. **46.** $A = 2 \in \mathbb{Z}$. **47.** 2

48. Zbiru prva dva razlomka dodati treći razlomak, dobijenom zbiru dodati četvrti, itd. Rezultat: $\frac{32 \cdot 3^{32x}}{3^{32x} - 1}$

49. $\frac{1}{4^x+1}$. **50.** 2^{n+1} . **51.** $(3^{-x}-2^{-y})^2$. **52.** 5. **53.** 5^x . **54.** x^2 .

55. Prvi razlomak je razlika $\frac{1}{2^{-x}} - \frac{1}{2^{-x}+1}$, drugi razlomak je razlika $\frac{1}{2^{-x}+1} - \frac{1}{2^{-x}+2}$, itd. Rezultat: $\frac{5 \cdot 2^{2x}}{5 \cdot 2^{2x}+1}$.

56. -1. **57.** $\frac{2}{xy}$.

1.2. Koren; stepen čiji je izložilac racionalan broj; osnovne operacije sa stepenima i korenima

58. a) 6; b) $\frac{1}{3}$; c) $\frac{9}{10}$; d) -0.7; e) -1.5.

59. a) 1; b) -2; c) 2; d) -2;

60. a) $\sqrt{(-3)^2} = |-3| = 3$; b) 5; c) -6; d) -5.

61. a) $8a\sqrt{2}$; b) $8|a|\sqrt{2a}$; c) $15|ab|\sqrt{a}$; d) $15a|b|\sqrt{a}$

62. a) $6a^2x|y|\sqrt{2ay}$; b) $6a|a||x||y|\sqrt{2ay}$; c) $4a^3|x|y^4\sqrt{2a}$

63. a) $6a^2|x^3|\sqrt{3a}$; b) $6a|a|x^3\sqrt{3a}$; c) $4|x|y^2z^2\sqrt{5z}$.

64. a) Za $x<0,\;-\sqrt{\frac{3}{2}},$ a za $x>0,\;\sqrt{\frac{3}{2}},$ za x=0, izraz nema smisla.

b) Ako su a i x istog znaka $\sqrt{\frac{3}{2}}$, ako su a i x suprotnog znaka $-\sqrt{\frac{3}{2}}$, a za ax=0 izraz nema smisla.

65. a) $\frac{5}{2}|a|\sqrt{a}$; b) $\frac{5}{2}|a|\sqrt{a}$. **66.** 1; $(a \neq 0, a \neq -3)$.

67. a) -4; b) 4; c) $-\frac{13}{3}$; d) 12.

68. a) $x \ge 0$; b) $x \ge 4$; c) $x \ge 1$; d) $\forall x \in \mathbb{R}$; e) $\forall x \in \mathbb{R}$.

69. a) $x \ge 1$; b) $x \le 5$; c) x = 2; d) $\forall x \in \mathbb{R}$.

70. a) Primenom definicije kvadratnog korena izraz A svodi se na A=|x-5|+|x+5|. Tada je za $x<-5,\ A=-2x,$ za $-5\le x<5,\ A=10$ i za $x\ge 5,\ A=2x.$ Grafik sl. 1 (levo).

Sl. 1.

b) Izraz A=|x-3|-|x|, pa je za x<0, A=3, za $0\leq x<3$, A=-2x+3 i za $x\geq 3$, A=-3, sl. 1 (desno).

c) A=|a-3|+|a|. A=-2a+3, za $a<0,\ A=3$, za $0\leq x<3$, i za $x\geq 3$, A=2a-3. Grafik sl. 2.

d) A = x + |x - 2|, A = 2 za $x \le 2$; za x > 2, A = 2x - 2.

71. Prema definiciji kvadratnog korena izraz A = |x+3| - 2|x| + |x-3|. Za $x \in (-\infty, -3), \ A = 0$ i za $x \in [-3, 0), \ A = 2x + 6$. Za $x \in [0, 3), \ A = -2x + 6$ i za $x \in [3, +\infty), \ A = 0$. Grafik sl. 3 (levo).

Sl. 2.

72. A=|x+2|-2|x-1|+|x-6|; za $x\in(-\infty,-2),\ A=2$; za $x\in[-2,1),\ A=2x+6$; za $x\in[1,6),\ A=-2x+10$; za $x\in[6,+\infty),\ A=-2$. Grafik sl. 3 (desno).

73. a) 2; b) 22; c) 1; d) -10. **74.** a) x; b) 5; c) 3.

75. $A = B = \left| \frac{a-1}{a} \right|, \ a \neq 0.$ **76.** $A = B = \left| \frac{a-b}{ab} \right| \sqrt{a^2 + ab + b^2}, \ ab \neq 0.$

77. $A = B = \frac{x-1}{x} \sqrt[3]{\frac{x+1}{x}}, \ x \neq 0.$ 78. $A = B = \frac{a}{x} \sqrt[n]{a(x+1)^2}, \ x \neq 0.$

79. $A = B = \sqrt{15}$. **80.** $A = B = \sqrt[3]{\frac{5}{3}}$. **81.** $\sqrt[3]{\frac{x^2 - y^2}{xy}}$.

82. $\sqrt[3]{\frac{a+b}{b}}$. **83.** $(a-1)\sqrt{\frac{a+1}{a}}$ (a>1). **84.** $A=B=\sqrt[n]{\frac{x-a}{a}}$.

85. $A = B = \sqrt[n]{\frac{a}{b}}$, pa je A - B = 0.

86. a) $\frac{\sqrt{5}}{5}$: b) $2\sqrt{3}$; c) $2\sqrt{7}$; d) $2\sqrt{13}$.

87. a) $\frac{\sqrt{2}}{4}$; b) $\frac{3\sqrt{3}}{2}$; c) $2\sqrt{2}$; d) $\frac{3\sqrt{5}}{2}$.

88. a) $3\sqrt{2}$; b) $3\sqrt{2}$; c) $3\sqrt{2}$. **89.** a) $\sqrt{3}$; b) $\sqrt{3}$; c) $\sqrt{3}$.

90. a) $\frac{7}{2}\sqrt{3}$; b) $\frac{7}{2}\sqrt{5}$. **91.** a) $3\sqrt{3}$; b) $2\sqrt{2}$; c) $3\sqrt{3}$.

92. a) $3\sqrt[3]{4}$; b) $2\sqrt[3]{2}$; c) $4\sqrt[3]{9}$. **93.** a) $2\sqrt{5}$; b) $7\sqrt[5]{4}$; c) $\frac{\sqrt[3]{36}}{2}$.

94. a)
$$2\sqrt[3]{5}$$
; b) $5\sqrt[3]{3}$; c) $3\sqrt[3]{25}$.

95. a)
$$3\sqrt[4]{8}$$
; b) $5\sqrt[4]{250}$; c) $2\sqrt[4]{24}$

96. a)
$$\sqrt[3]{ab^2}$$
; b) $\frac{3a\sqrt[4]{ab^2}}{2}$; c) $\frac{2\sqrt[3]{4ab^2}}{b}$; d) $6\sqrt[5]{a^4b^2}$.

97. a)
$$\sqrt{a} - \sqrt{b}$$
; b) $(a-1)\sqrt[3]{a+1}$.

98. a)
$$2 - \sqrt{3}$$
; b) $\sqrt{2} + 1$; c) $2\sqrt{3} + 1$.

99. a)
$$-\frac{\sqrt{3}+\sqrt{5}}{3}$$
; b) $\frac{\sqrt{5}-\sqrt{2}}{6}$. **100.** $5+2\sqrt{6}$; b) $\sqrt{6}$.

101. a)
$$6\sqrt{3} - 13$$
; b) $\sqrt{5} + 4$. **102.** a) $5 - 2\sqrt{6}$; b) $7 + 2\sqrt{10}$.

103. a)
$$\sqrt{3}$$
; b) $\sqrt{3}$. **104.** a) $\frac{\sqrt{3}}{3}$; b) $\frac{\sqrt{3}}{3}$.

105. a)
$$4(\sqrt{3a}+1)$$
; b) $a(a-\sqrt{x})$.

106. a)
$$2 + \sqrt{a+2}$$
; b) $2 + \sqrt{a+2}$

107. a)
$$\sqrt{a+1} - 1$$
; b) $\sqrt{a+1} - 1$.

108. a)
$$2a(a-\sqrt{a^2-1})-1$$
; b) $\frac{x+\sqrt{x^2-m^2}}{m}$.

109. a)
$$4(\sqrt[3]{4} + \sqrt[3]{2} + 1)$$
; b) $\sqrt[3]{4} - \sqrt[3]{6} + \sqrt[3]{9}$.

111. a)
$$\frac{\sqrt{10}}{2}$$
; b) $\sqrt{2} - 1$; c) $\sqrt{\frac{2}{x}}$; d) $\frac{1}{\sqrt{b}} + \frac{1}{\sqrt{a}}$; e) \sqrt{ab} .

112. a) 12; b)
$$30\sqrt{2}$$
; c) x^n ; d) $2\sqrt{2}$; e) a ; f) $\sqrt{a+b}$.

113.
$$A = B = a \sqrt[6]{a}$$
. **114.** $A = B = ax \sqrt[15]{a^{10}x^4}$.

115.
$$A = B = \sqrt[12]{\frac{3a}{5b}}, (ab \neq 0)$$

116.
$$A = \frac{2}{3} \sqrt[4]{\frac{2a}{b}}, B = \frac{3}{2} \sqrt[4]{\frac{b}{2a}},$$
 tvrđenje je tačno $(ab \neq 0)$.

117.
$$P = \sqrt{\frac{x}{ab}}, Q = \sqrt{\frac{ab}{x}}, \text{ pa je } PQ = 1, \text{ za } a, b, x \neq 0.$$

118.
$$M = \sqrt[6]{\frac{5}{2}}$$
, $N = \sqrt[6]{\frac{2}{5}}$, pa je $MN = 1$.

119.
$$M = N = 3 \cdot \sqrt[12]{\frac{3a}{b}}, (ab \neq 0).$$

121.
$$L = \frac{abxy}{ab + xy}, K = \frac{ab + xy}{abxy}, (a, b, x, y > 0).$$

122. a)
$$2x^2y^3$$
; b) y^2 ; c) $\frac{a \cdot b}{x}$; d) $\frac{b}{c}$.

123. a) 6; b)
$$ab\sqrt[4]{a}$$
; c) $6a^2$; d) $8x^6\sqrt[8]{24x}$.

124. a)
$$ab$$
; b) $\sqrt[4]{a^3}$; c) x . **125.** a) 10; b) 2; c) 3; d) $|b|$.

126. a)
$$-2$$
, $x > 0$; b) $\sqrt{2x}$; c) 6; d) 3. **127.** a) 1; b) $x + 1$.

128. a)
$$2\sqrt{2}$$
; b) $\sqrt{5}$; c) $\sqrt{3}$; d) $\sqrt[3]{3}$.

129. a)
$$|a|$$
; b) $\sqrt{a+b}$, $(a>b>0)$; c) $\sqrt[3]{a-b}$ $(a \neq 0 \land b \neq 0)$.

130. a)
$$\frac{ab}{x}$$
; b) $\frac{b}{c}$, $(a, b, c, x, y \neq 0)$.

131. a)
$$a$$
; b) a ; $(a \neq 0)$. **132.** a) $x \sqrt[6]{x^5}$; b) x^7 . **133.** $3 \cdot \sqrt[3]{x}$.

134. Količnici a), b), c) imaju vrednost
$$\sqrt{ab}$$
 pa je tvrđenje tačno.

135.
$$A = B = \sqrt[6]{2abc}$$
.

136.
$$V = \sqrt[4n]{\frac{a^4(a-b)}{(a+b)^5}}$$
 a $W = \sqrt[4n]{\frac{(a+b)^5}{a^4(a-b)}}$, pa je zaista $VW = 1$.

137.
$$\sqrt[4]{\frac{a-2x}{a+x}}$$
. **138.** $\sqrt[4]{\left(\frac{a-2x}{a+2x}\right)^3}$. **139.** $\sqrt[6]{ax(a-x)}$, $(a, x \neq 0)$.

140.
$$\sqrt{\frac{x+1}{2(x+2)}}$$
, $(x \neq -2)$. **141.** $\sqrt[3]{\frac{a}{a^2 - a + 1}}$, $(a > 0)$.

142.
$$\sqrt[3]{\frac{a(a+1)}{a^2-a+1}}$$
, $(a \neq 0)$. **143.** $(3a+1)\sqrt[3]{a}$, $(a > 0)$.

144. Kako je
$$A = 4 \cdot \sqrt[6]{\frac{x}{y}}, B = \frac{1}{4} \sqrt[6]{\frac{y}{x}}$$
, zaista je $AB = 1, (x, y > 0)$.

145.
$$U = V = \sqrt[n]{a+1}$$
.

146.
$$V = W = \sqrt[3]{\frac{ax}{a-x}}$$
, $(a > 0, x > 0, x \neq a)$, zaista je $V - W = 0$.

147. a)
$$-\sqrt{2}$$
; b) $2\sqrt{2}$; c) $2\sqrt{3}$; d) $8\sqrt{2}$; e) $4\sqrt{3}$; f) $5\sqrt{7}$.

148.
$$4\sqrt{3}$$
. **149.** a) $\frac{29}{2}\sqrt{3}$; b) $\frac{17}{30}\sqrt{3}$.

150. a)
$$\sqrt[3]{4}$$
; b) $\sqrt[5]{3}$; c) $16\sqrt[4]{2}$. **151.** $3\sqrt[3]{2}$. **152.** $5\sqrt{2}$.

153.
$$4\sqrt{2} + \sqrt{5}$$
. **154.** $3\sqrt{5} - 2\sqrt{2}$. **155.** $3\sqrt{a}$. **156.** $3\sqrt{a}$.

157.
$$-3\sqrt{3a}$$
. **158.** $\sqrt{3a}$. **159.** $10a\sqrt[3]{\frac{a^2b^2}{c^2}}$.

160.
$$(10a+2b)\sqrt[3]{\frac{a^2b^2}{c^2}}$$
. **161.** $3(\sqrt[3]{a}+\sqrt{a})$.

162.
$$A = B = (|m| - 1)\sqrt{a + 2b}$$
, pa je $A - B = 0$.

163.
$$A = B = 5\sqrt{a^2 + 1}$$
.

$$A=-B=(a-1)\sqrt[3]{a+2}$$
, pa je tvrđenje tačno. **165.** $A=B=\sqrt[3]{a}$.

166.
$$A = 30, B = 20, C = 36$$
, zaista $20, 30, 36 \in \mathbb{N}$.

167.
$$A=2\sqrt{15},\,B=3\sqrt{10},\,C=20\sqrt{3}.$$
 Dakle sva tri izraza su iracionalna.

168.
$$A = B = 30$$
. **169.** $A = B = C = 4\sqrt{\frac{2}{3}}$. **170.** $A = B = 3\sqrt{2}$.

171.
$$A = B = \frac{4}{3}\sqrt{5}$$
. **172.** $A = B = 4\sqrt{3}$. **173.** $A = B = \sqrt{6}$.

174.
$$A = B = 2\sqrt{5} - 4$$
. **175.** $A = 10, B = 9, (9, 10 \in \mathbb{N})$.

176.
$$A = \frac{2}{3} \sqrt[3]{\frac{4}{5}}$$
, $B = \frac{3}{2} \sqrt[3]{\frac{5}{4}}$, zaista je $AB = 1$. **177.** $A = B = 2x$.

178.
$$A = B = \frac{2}{3} \in \mathbb{Q}$$
. **179.** $\frac{1}{x}\sqrt{x^2 - y^2}$. **180.** $\frac{1}{y}$.

181.
$$\frac{\sqrt{a^2 - ab + b^2}}{a + b}$$
. **182.** $\sqrt{\frac{ab}{a + b}}$. **183.** $\frac{x + y}{y}\sqrt{x}$.

184.
$$\frac{x}{xy+1}\sqrt{\frac{x}{xy-1}}$$
. **185.** $A=B=(a+1)\sqrt{\frac{x}{2}}$.

186.
$$A = B = \sqrt{\frac{m}{a-x}}$$
. **188.** a) $\sqrt{2}$; b) $\sqrt[3]{2}$; c) $\sqrt[4]{2}$.

189. a)
$$\sqrt[7]{2a}$$
; b) $\sqrt[11]{2|a|}$; c) $\sqrt[5]{2a}$.

190. a)
$$\sqrt[5]{a^2}$$
 $(a \ge 0)$; b) $\sqrt[16]{a^{15}}$ $(a \ge 0)$. **191.** $\sqrt[mn]{a^3}$ $(a \ge 0)$.

192. a)
$$\sqrt[m]{a^{m+1}}$$
; b) $\sqrt[n]{a}$. **193.** $\sqrt[5]{xy}$ $(x, y \ge 0)$.

194.
$$A = B = C = \sqrt[5]{a^2}$$
. **195.** $A = B = \sqrt[6]{x^5y^5}$, $A - B = 0$.

196.
$$M = N = \sqrt[3]{\frac{ax}{by}}, M - N = 0.$$
 197. $\sqrt{\frac{ax}{by}}, (a, b, x, y \neq 0).$

198.
$$\sqrt[6]{a^2-a+1}$$
, $(a \neq -1)$. **199.** $\sqrt{a^2-b^2}$, $(a > b \geq 0)$.

200. Za $|a| \neq 3|b|$, $|a| \neq |b|$, tvrđenje je tačno.

201.
$$S = T = \sqrt[4]{ab}$$
, $(a, b > 0)$. **202.** $A = B = \frac{a}{b} \sqrt[6]{\frac{a - b}{a + b}}$, $(a > b > 0)$.

203.
$$V = W = \sqrt{ax}$$
, $(a > x > 0)$, $V - W = 0$.

204. Pošto je
$$A = \frac{a}{x} \cdot \sqrt[n]{\frac{a-x}{a+x}}, B = \frac{x}{a} \sqrt[n]{\frac{a+x}{a-x}}$$
, zaista je $AB = 1$.

205.
$$A = B = \frac{x}{2} \sqrt[n]{\frac{a+x}{a-x}}$$

206. a)
$$5 + 2\sqrt{6}$$
; b) $7 + 4\sqrt{3}$; c) $14\sqrt{5} + 18\sqrt{3}$; e) 6; f) 4; g) 24.

207. a)
$$x-2$$
;

b) Ako označimo kvadrat datog izraza sa A, posle kvadriranja dati izraz se svodi na oblik

$$A = 2a + 2 + 2\sqrt{(a-1)^2} = 2a + 2 + 2|a-1|.$$

Ako je $0 \le a \le 1$, onda je |a-1|=1-a, pa je A=4, a ako je $a \ge 1$, onda je |a-1|=a-1, pa je A=4a;

c) $4a \ (a > b), 4b \ (a < b).$

208. a) 8; b) 4; c)
$$1\frac{1}{5}$$
; d) 1,2;

209. a)
$$-7$$
; b) $\frac{7}{16}$; c) $3^{\frac{1}{12}}$; d) 8; e) 3.

210. a)
$$2\sqrt{a}$$
; b) $\frac{2}{1-a}$; c) $x-1$; d) $a^{\frac{1}{3}}-a^{-\frac{1}{2}}$.

211. a) Ako se prvi razlomak skrati sa $x^{-\frac{1}{3}}$, a drugi sa $x^{\frac{1}{3}}$, dati izraz postaje

$$\left(\frac{3}{x-2} - \frac{1}{x-1}\right)^{-1} - \left(\frac{1-2x}{3x-2}\right)^{-1} = \frac{(x-2)(x-1)}{2x-1} - \frac{3x-2}{1-2x} = \frac{x^2}{2x-1}.$$

b) Za $m \neq 0, \, m \neq 1$ i $m \neq 2$ vrednost izraza jednaka je 0.

212. Pošto je
$$\sqrt{2+\sqrt{2}}=\sqrt[6]{(2+\sqrt{2})^3}=\sqrt[6]{20+14\sqrt{2}}, \text{ a } \sqrt[3]{3+\sqrt{3}}=\sqrt[6]{(3+\sqrt{3})^2}=\sqrt[6]{12+6\sqrt{3}}, \text{ onda je } \sqrt[3]{3+\sqrt{3}}<\sqrt{2+\sqrt{2}}.$$

213.
$$A^2 = 4(\sqrt{3}+2)(\sqrt{3}-2) = 4(3-4)^2 = 4$$
. Kako je $A < 0$ ($\sqrt{3} < 2$), onda je $A = -2$.

214.
$$a^2 + b^2 = 8$$
; $ab = \sqrt{5} - 1$; $a + b = \sqrt{5} + 1$. **215.** $A = B = 2$.

216. Proizvod poslednja dva člana je $\sqrt{2\sqrt{2+\sqrt{3}}}$, proizvod ovog člana sa drugim je $\sqrt{2-\sqrt{3}}$, a proizvod ovog člana sa prvim članom je 1.

217. Kako je $20 + 14\sqrt{2} = (2 + \sqrt{2})^3$, a $20 - 14\sqrt{2} = (2 - \sqrt{2})^3$, onda se lako dobije da je prva jednakost tačna;

b)
$$5\sqrt{2} + 7 = (\sqrt{2} + 1)^3$$
, $5\sqrt{2} - 7 = (\sqrt{2} - 1)^3$.

219. a) 10; b) 4; c) 3; d) 0. **220.** a) -115; b)
$$\frac{1}{2}$$
; c) 6; d) 24.

221. a)
$$\frac{\sqrt{x}}{x}$$
; b) 1; c) 1; d) $\frac{1}{\sqrt{a} + \sqrt{2}}$; e) $\sqrt[3]{x} + \sqrt[3]{y}$.

222. a) 5; b)
$$\frac{1}{\sqrt{a}}$$
; c) $\frac{1}{5}$; d) $a - b$.

a) 0; b) 3; c) 1; d)
$$40\sqrt{6} - 3$$
; e) $54 - 24\sqrt{3}$.

224. a)
$$\sqrt{2}i - \sqrt{2}$$
; b) $a + b$; c) n ; d) $\frac{1}{m}$; e) $\frac{a^2 + b^2}{a^2 \cdot b^2 + 1}$

226. Ako se uvede smena $x-1=y^2$, onda je $x=y^2+1$. Iz uslova $1\leq x\leq 2$ sledi da je $|y|\leq 1$, pa onda dati izraz postaje

$$\sqrt{y^2 + 1 + 2y} + \sqrt{y^2 + 1 - 2y} = |y + 1| + |y - 1| = (y + 1) - (y - 1) = 2,$$

tj. dati izraz ima vrednost 2.

227. Neka je $\sqrt{a+\sqrt{b}}+\sqrt{a-\sqrt{b}}=x$. Iz toga sleduje

$$x^{2} = 2(a + \sqrt{a^{2} - b}) \Rightarrow x = 2\sqrt{\frac{a + \sqrt{a^{2} - b}}{2}}$$

Dakle,

(1)
$$\sqrt{a+\sqrt{b}} + \sqrt{a-\sqrt{b}} = 2\sqrt{\frac{a+\sqrt{a^2-b}}{2}}.$$

Analogno sleduje da je

(2)
$$\sqrt{a+\sqrt{b}} - \sqrt{a-\sqrt{b}} = 2\sqrt{\frac{a-\sqrt{a^2-b}}{2}}.$$

Zbir (1) i (2), odnosno njihova razlika daje traženi identitet.

228. a) Primenom Lagranžeovog identiteta imamo:

$$\sqrt{11 + 4\sqrt{7}} = \sqrt{11 + \sqrt{112}} = \sqrt{\frac{11 + \sqrt{121 - 112}}{2}} + \sqrt{\frac{11 - \sqrt{121 - 112}}{2}}$$
$$= \sqrt{7 + 2} \approx 2,64;$$

b)
$$\frac{\sqrt{6} + \sqrt{2}}{2} \approx 1,93;$$
 c) $\frac{\sqrt{14} - \sqrt{6}}{2} \approx 0,65;$

d)
$$2 + \sqrt{3} \approx 3,73$$
; e) $3\sqrt{3} + 2 \approx 7,19$.

229. a)
$$\sqrt{2} - 1$$
; b) $\sqrt{5} + 1$; c) $2 + \sqrt{3}$.

230. a)
$$\sqrt{10} + \sqrt{2}$$
; b) $2 - \sqrt{2}$. **231.** a) $\sqrt{6} + 1$; b) $\sqrt{5} - \sqrt{3}$.

232.
$$\sqrt{2} - \sqrt{5}$$
. **233.** $A = B = \frac{\sqrt{2}}{2}(\sqrt{11} + 1)$.

234.
$$M = \sqrt{\frac{13}{2}} - \sqrt{\frac{5}{2}}, \, N = \sqrt{\frac{5}{2}} - \sqrt{\frac{13}{2}},$$
 tvrđenje je tačno.

235.
$$A = \frac{\sqrt{2}}{2}(\sqrt{11} - \sqrt{7}), B = \frac{\sqrt{2}}{2}(\sqrt{11} - \sqrt{7}), A - B = 0.$$

236.
$$V = W = \sqrt{2}(\sqrt{5} - \sqrt{3})$$
. **237.** Primeniti Lagranžeov identitet.

238. Primeniti Lagranžeov identitet.

239. a)
$$\sqrt{\frac{a+b}{2}} + \sqrt{\frac{a-b}{2}}$$
; b) $\sqrt{\frac{2a+b}{2}} - \sqrt{\frac{b}{2}}$.

240. a) Potkorena veličina je $(\sqrt{a} + \sqrt{b})^2$. Rezultat: $\sqrt{a} + \sqrt{b}$;

b) potkorena veličina je
$$(\sqrt{x+y}-\sqrt{x-y})^2$$
. Rezultat: $\sqrt{x+y}-\sqrt{x-y}$

241.
$$\sqrt{a} - \sqrt{a-1}$$
.

242. Uputstvo:
$$2a+b-2\sqrt{a^2+ab}=(\sqrt{a+b}-\sqrt{a})^2, a+b^2+2b\sqrt{a}=(\sqrt{a}+b)^2, ab-2b\sqrt{ab-b^2}=(\sqrt{b(a-b)}-b)^2, \text{ itd.}$$

243. Iskoristiti uputstvo prethodnog zadatka, potkorene veličine su kvadrati binoma ili primeniti Lagranžeov identitet.

244.
$$P = Q = \sqrt{2xy} + 1$$
.

246. Primeniti Lagranžeov identitet.

247. Za izraze u imeniocu broja A treba primeniti Lagranžeov identitet, pa se dobija da je $A = \sqrt{2} \in \mathbb{I}$.

248. Ako se imenilac datog razlomka racionališe, onda je:

$$\frac{1}{(n+1)\sqrt{n}+n\sqrt{n+1}} = \frac{(n+1)\sqrt{n}+n\sqrt{n+1}}{(n+1)^2n-n^2(n+1)}$$
$$= \frac{(n+1)\sqrt{n}-n\sqrt{n+1}}{n(n+1)} = \frac{\sqrt{n}}{n} - \frac{\sqrt{n+1}}{n+1} = \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}.$$

Iz toga proizilazi da je

(1)
$$\frac{1}{(n+1)\sqrt{n} + n\sqrt{n+1}} = \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}.$$

Ako u jednakosti (1) stavimo redom da je $n=1,2,\ldots 99,$ onda je:

$$\frac{1}{2\sqrt{1}+1\sqrt{2}} = \frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}},$$

$$\frac{1}{3\sqrt{2}+2\sqrt{3}} = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}},$$

$$\vdots$$

$$\frac{1}{100\sqrt{99}+99\sqrt{100}} = \frac{1}{\sqrt{99}} - \frac{1}{\sqrt{100}}.$$

Sumiranjem gornjih jednakosti proizilazi da je

$$S = \frac{1}{\sqrt{1}} - \frac{1}{\sqrt{100}} = 1 - \frac{1}{10} = \frac{9}{10}.$$

249. Ako se uzmu u obzir pretpostavke, onda je

$$A = \sqrt[3]{ax^2 + by^2 + cz^2} = \sqrt[3]{\frac{ax^3}{x} + \frac{by^3}{y} + \frac{cz^3}{z}}$$
$$= \sqrt[3]{ax^3 \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)} = x\sqrt[3]{a} \implies A = x\sqrt[3]{a}.$$

Analogno se dobija da je $A=y\sqrt[3]{b}$ i $A=z\sqrt[3]{c}$ odakle sledi da je $\frac{A}{x}=\sqrt[3]{a}$, $\frac{A}{y}=\sqrt[3]{b}$ i $\frac{A}{z}=\sqrt[3]{c}$. Zbir ovih jednakosti daje:

$$A\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) = \sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} \Rightarrow A = \sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c}.$$

250. Zamenom vrednosti x u funkciji f(x), a primenom identiteta $(a-b)^3 = a^3 - 3ab(a-b) - b^3$, imamo

$$f(x) = \left(\sqrt[3]{4(\sqrt{5} - 1)}\right)^3 - 3\sqrt[3]{4(\sqrt{5} + 1)} \cdot \sqrt[3]{4(\sqrt{5} - 1)}x - \sqrt[3]{4(\sqrt{5} - 1)^3}$$
$$+12x = 4\sqrt{5} + 4 - 3\sqrt[3]{64}x - 4\sqrt{5} + 4 + 12x = 8 - 12x + 12x = 8.$$

251. Zamenom x u datu funkciju i koristeći identitet $(a+b)^3 = a^3 + 3ab(a+b) + b^3$, imamo:

$$y = \left(\sqrt[3]{-\frac{b}{2} + \sqrt{\frac{b^2}{4} + \frac{a^3}{27}}}\right)^3 + 3\sqrt[3]{\left(-\frac{b}{2}\right)^2 - \left(\sqrt{\frac{b^2}{4} + \frac{a^3}{27}}\right)^2} + \left(\sqrt[3]{-\frac{b}{2} + \sqrt{\frac{b^2}{4} + \frac{a^3}{27}}}\right)^3 + ax + b = -b + 3\sqrt[3]{-\frac{a^3}{27}}x + ax + b = 0.$$

255. Iz rekurzivne formule niza za $n = 2, 3, \ldots$ sukcesivno se dobija:

$$x_2 = \frac{\sqrt{3} + x_1}{1 - \sqrt{3}x_1} = \frac{\sqrt{3} + 1}{1 - \sqrt{3}} = -(2 + \sqrt{3}),$$

$$x_3 = \frac{\sqrt{3} + x_2}{1 - \sqrt{3}x_2} = \frac{-2}{2(2 + \sqrt{3})} = -(2 - \sqrt{3}),$$

$$x_4 = \frac{\sqrt{3} + x_3}{1 - \sqrt{3}x_3} = \frac{\sqrt{3} - (2 - \sqrt{3})}{1 + \sqrt{3}(2 - \sqrt{3})} = \frac{2(\sqrt{3} - 1)}{2(\sqrt{3} - 1)} = 1,$$

dakle $x_4 = x_1 = 1$.

Istim postupkom nalazimo da je $x_5=x_2=-(2+\sqrt{3}); x_6=x_3=-(2-\sqrt{3});$ $x_7=x_4=x_1=1.$ U opštem obliku $x_{3n+1}=x_1=1; \quad x_{3n+2}=x_2=-(2+\sqrt{3});$ $x_{3n+3}=x_3=-(2-\sqrt{3}).$

256. Kako je
$$1+2x=1+\frac{2\sqrt{3}}{4}=\frac{4+2\sqrt{3}}{4}=\left(\frac{1+\sqrt{3}}{2}\right)^2$$
, onda je $\sqrt{1+2x}=\frac{1+\sqrt{3}}{2}$. Zatim $1-2x=\left(\frac{1-\sqrt{3}}{2}\right)^2$, a iza toga $\sqrt{1-2x}=-\frac{1-\sqrt{3}}{2}$.

Vrednost datog izraza

$$y = \frac{2+\sqrt{3}}{3+\sqrt{3}} + \frac{2-\sqrt{3}}{3-\sqrt{3}} = \frac{(2+\sqrt{3})(3-\sqrt{3}) + (3+\sqrt{3})(2-\sqrt{3})}{6} = 1.$$

257. 1.

258. Posle očiglednih transformacija, dati izraz se svodi na oblik

$$\frac{x^2 - \sqrt{x^4 - a^4}}{x^2 + \sqrt{x^4 - a^4}}$$

Za $x = a \left(\frac{m^2 + n^2}{2mn}\right)^{1/2}$ njegova vrednost je $m^2 n^{-2}$.

259.
$$\frac{a}{b}$$
 za $a > b$ i $\frac{b}{a}$ za $a < b$.

260. Vrednost izraza
$$(x^2 - 1)^{0.5} = \frac{1}{2} \left(\left(a - \frac{1}{a} \right)^2 \right)^{0.5} = \frac{1}{2} \left| a - \frac{1}{a} \right|.$$

Vrednost datog izraza je a^2 , za -1 < a < 0, a > 1 ili a^{-2} , za a < -1, 0 < a < 1.

262. 64 **263.** 3. **264.** 3. **265.** 76 **266.** 14. **267.** 14.

268. 1. **269.** 1. **270.** 1. **271.** 1. **272.** 8. **273.** 8.

274.
$$\frac{1}{2}(3+\sqrt{5})$$
. **275.** $\frac{7}{24}(\sqrt{10}+\sqrt{2})$. **276.** $1-\sqrt{2}$. **277.** $\sqrt{2}-1$.

278.
$$\sqrt{3}$$
. **279.** $2\sqrt[3]{ab}$. **280.** $\sqrt[60]{7}$. **281.** $A = B = 3$. **283.** 0 .

284. 0. **285.** a. **286.** a. **287.**
$$-\sqrt{2}$$
. **288.** 1. **289.** $(a+b)^2$.

290.
$$(a+b)^2$$
. **291.** $2\sqrt{ab}$.

292. Potkorene veličine su kvadrati binoma:

$$(\sqrt{ab+1})^2$$
, $(\sqrt{ab-1})^2$. Rezultat: $2\sqrt{ab}$, za $ab > 1$.

293. Dati izraz se može postupno transformisati na ovaj način:

$$\frac{\sqrt{5} \cdot \sqrt[4]{2} (5\sqrt{5} + \sqrt[4]{2^3})}{5\sqrt{2} (\sqrt{5} + \sqrt[4]{2})} - \frac{\sqrt{(5+\sqrt{2})^2}}{\sqrt{5} \sqrt[4]{2}} = \frac{5\sqrt{5} + \sqrt[4]{8}}{\sqrt{5} \cdot \sqrt[4]{2} (\sqrt{5} + \sqrt[4]{2})} - \frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} \cdot \sqrt[4]{2}}$$
$$= \frac{5\sqrt{5} + \sqrt[4]{8} - (5+\sqrt{2})(\sqrt{5} + \sqrt[4]{2})}{\sqrt{5} \cdot \sqrt[4]{2} (\sqrt{5} + \sqrt[4]{2})} = -1.$$

294. Dati izraz se svodi na oblik: $\sqrt[3]{(2-\sqrt{3})^3} - (2-\sqrt{3}) = 0.$

295. Dati izraz sesvodi postupno na sledeći način:

$$\frac{\sqrt[6]{\left(a+\sqrt{2-a^2}\right)^2}\cdot\sqrt[6]{1-a\sqrt{2-a^2}}}{\sqrt[3]{1-a^2}}$$

$$\frac{\sqrt[6]{2(1+a\sqrt{2-a^2})(1-a\sqrt{2-a^2})}}{\sqrt[3]{1-a^2}} = \sqrt[6]{2}\sqrt[6]{(1-a^2)^2} = \sqrt[6]{2}.$$

297. Razlomak

$$\frac{2+\sqrt{3}}{\sqrt[3]{20+12\sqrt{3}}} = \sqrt[3]{\frac{26+15\sqrt{3}}{20+12\sqrt{3}}} = \sqrt[3]{\frac{(26+15\sqrt{3})(20-12\sqrt{3})}{20^2-(12\sqrt{3})^2}}$$
$$= \sqrt[3]{\left(\frac{1+\sqrt{3}}{2\sqrt[3]{2}}\right)^3} = \frac{1+\sqrt{3}}{2\sqrt[3]{2}},$$

jednak je prvom razlomku pa je njihova razlika 0.

298. Primeniti Lagranžeove identitete na izraz $\sqrt{7 \pm \sqrt{40}}$ i iskoristiti da je $17 - 12\sqrt{2} = (3 - 2\sqrt{2})^2$.

299. Leva strana date jednakosti se može transformisati u oblik:

$$\frac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}} = \frac{(\sqrt{3}+1)^2}{\sqrt[3]{(\sqrt{3}+1)^3}} = \sqrt{3}+1.$$

300. Dati izraz napisati u obliku

$$\sqrt{\sqrt{(2+\sqrt{3})^2(7-4\sqrt{3})} + \sqrt{(\sqrt{3}-\sqrt{2})^2(5+2\sqrt{6})}} = \sqrt{1+1}.$$

Vrednost izraza $A = \sqrt{2} \in \mathbb{I}$.

301. $A = \sqrt{2}$.

302. Kako je vrednost razlomka A pozitivan broj, to kvadriranjem obe strane datog izraza i sređivanjem, dobija se $A^2=2\Longleftrightarrow A=\sqrt{2}\in\mathbb{I}.$

303. $A = \sqrt{2}$. **304.** $A = 0, 5\sqrt{2}$.

305. Dati izraz se svodi na oblik

$$\sqrt{\frac{3+\sqrt{5}}{2}} + \sqrt{\frac{2+\sqrt{3}}{2}} - \sqrt{\frac{3-\sqrt{5}}{2}} + \sqrt{\frac{2-\sqrt{3}}{2}},$$

zatim se primeni Lagranžeov identitet na izraze $\sqrt{3 \pm \sqrt{5}}$ i $\sqrt{2 \pm \sqrt{3}}$. Vrednost datog izraza je $1 + \sqrt{3}$.

306. Iskoristiti Lagranžeov identitet na izraz $\sqrt{18-\sqrt{128}}$ i postupno se oslobađati korena od pozadi. Vrednost izraza je $\sqrt{2}$.

307.
$$\sqrt{5}$$
. **308.** a) $\frac{4+3\sqrt{3}-\sqrt{5}+2\sqrt{15}}{11}$; b) $\frac{5-\sqrt{10}+\sqrt{15}}{2}$.

309.
$$\sqrt{5+\sqrt{2}}-\sqrt{5-\sqrt{2}}$$
. **310.** $\frac{\sqrt{2}+2\sqrt{5}-2\sqrt{10}-2}{3}$

311.
$$A = \sqrt{2} + \sqrt{3}$$
, $B = \sqrt{2} + \sqrt{3}$, $A - B = 0$. **312.** $A = B = 2 + \sqrt{7}$.

315. Ako se dati razlomak proširi sa $\sqrt[3]{3} - \sqrt[3]{2}$ dobija se

$$\frac{\sqrt[3]{3} - \sqrt[3]{2}}{(\sqrt[3]{3} - \sqrt[3]{2})(\sqrt[3]{3^2} + \sqrt[3]{3 \cdot 2} + \sqrt[3]{4})} = \frac{\sqrt[3]{3} - \sqrt[3]{2}}{(\sqrt[3]{3})^3 - (\sqrt[3]{2})^3} = \sqrt[3]{3} - \sqrt[3]{2}.$$

316. Imenilac se lako rastavlja na činioce $(\sqrt{5}-1)(\sqrt{3}+1)$, itd. Rezultat: $\sqrt{15}-\sqrt{5}+\sqrt{3}-1$.

317.
$$\sqrt{21} - \sqrt{7} - 2\sqrt{3} + 2$$
.

318. Imenilac se rastavlja na činioce $(\sqrt[3]{3}-1)(\sqrt{2}+1)$. Rezultat: $(\sqrt[3]{9}+\sqrt[3]{3}+1)(\sqrt{2}-1)$.

319. Proširiti razlomak sa $(1+\sqrt{2})+\sqrt[4]{2}$. Tada je imenilac razlika kvadrata $(1+\sqrt{2})^2-(\sqrt[4]{2})^2$, itd. Rezultat: $1+3\sqrt[4]{2}+2\sqrt{2}-\sqrt[4]{8}$.

320.
$$\sqrt{14} + \sqrt{6} + 3$$

321.
$$\sqrt{2} + 2\sqrt{5} - 2\sqrt{10} - 2$$
. (Imenilac je proizvod $(1 - \sqrt{10})(1 + \sqrt{2})$).

322. Pretpostavka se postupno transformiše ekvivalencijama:

$$x\sqrt{1+\sqrt[3]{\frac{y^2}{x^2}}} + y\sqrt{1+\sqrt[3]{\frac{x^2}{y^2}}} = a$$

$$\iff x\sqrt{\frac{\sqrt[3]{x^2} + \sqrt[3]{y^2}}{\sqrt[3]{x^2}}} + y\sqrt{\frac{\sqrt[3]{y^2} + \sqrt[3]{x^2}}{\sqrt[3]{y^2}}} = a$$

$$\iff \sqrt{\sqrt[3]{x^2} + \sqrt[3]{y^2}} \cdot \left(\frac{x}{\sqrt[6]{x^2}} + \frac{y}{\sqrt[6]{y^2}}\right) = a$$

$$\iff \sqrt{\sqrt[3]{x^2} + \sqrt[3]{y^2}} \cdot (\sqrt[3]{x^2} + \sqrt[3]{y^2}) = a$$

$$\iff (\sqrt[3]{x^2} + \sqrt[3]{y^2})^{3/2} = a \iff \sqrt[3]{x^2} + \sqrt[3]{y^2} = \sqrt[3]{a^2}.$$

323. Neka je koeficijenat proporcionalnosti k. Onda je $a_1 = kb_1$, $a_2 = kb_2$, $a_3 = kb_3, \ldots, a_n = kb_n$, a njihov zbir je

$$a_1 + a_2 + a_3 + \dots + a_n = k(b_1 + b_2 + b_3 + \dots + b_n)$$

ili
$$k = \frac{a_1 + a_2 + a_3 + \dots + a_n}{b_1 + b_2 + b_3 + \dots + b_n}$$
. Desna strana se svodi postupno:

$$\sqrt{a_1b_1} + \sqrt{a_2b_2} + \sqrt{a_3b_3} + \dots + \sqrt{a_nb_n}$$

$$= \sqrt{kb_1^2} + \sqrt{kb_2^2} + \sqrt{kb_3^2} + \dots + \sqrt{kb_n^2} = \sqrt{k(b_1 + b_2 + b_3 + \dots + b_n)}$$

$$= \sqrt{\frac{a_1 + a_2 + a_3 + \dots + a_n}{b_1 + b_2 + b_3 + \dots + b_n}} \cdot (b_1 + b_2 + b_3 + \dots + b_n)$$

$$= \sqrt{(a_1 + a_2 + a_3 + \dots + a_n) \cdot (b_1 + b_2 + b_3 + \dots + b_n)},$$

čime je dokaz završen.

324. Kako je

$$\frac{1-n}{\sqrt{1-n^2}+n-1} = \frac{\sqrt{(1-n)^2}}{\sqrt{(1-n)(1+n)}-\sqrt{(1-n)^2}} = \frac{\sqrt{1-n}}{\sqrt{1+n}-\sqrt{1-n}},$$

tada je

$$\begin{split} A &= \left(\frac{\sqrt{1+n}}{\sqrt{1+n} - \sqrt{1-n}} + \frac{\sqrt{1-n}}{\sqrt{1+n} - \sqrt{1-n}}\right) \frac{\sqrt{1-n^2} - 1}{n} \\ &= \frac{\sqrt{1+n} + \sqrt{1-n}}{\sqrt{1+n} - \sqrt{1-n}} \cdot \frac{\sqrt{1-n^2} - 1}{n} \\ &= \frac{2n}{(\sqrt{1+n} - \sqrt{1-n})^2} \cdot \frac{\sqrt{1-n^2} - 1}{n} = -1. \end{split}$$

325.
$$A = \sqrt[3]{\frac{2n}{1+n}}$$
. **326.** $A = \frac{1}{3}\sqrt[6]{a}$. **327.** $A = \frac{1}{pq}$. **328.** $A = \frac{a^2}{x^4}$.

329.
$$A = 2x^3$$
. **330.** Za $x \in (0,1)$, $A = \sqrt[3]{\frac{1-x}{3x}}$.

331. Za
$$x \in (0,16) \cup (16,+\infty), A = \frac{2}{x}$$
.

332.
$$A = 2\sqrt[4]{x}$$
, $(a > 0, x \ge 0, a \ne x)$.

333.
$$A = \sqrt{2x}$$
, ako je $a \ge 2x^2$ i $x \ge 0$.

334. Kako je
$$\sqrt{6+2(\sqrt{6}+\sqrt{3}+\sqrt{2})} = \sqrt{(\sqrt{3}+\sqrt{2}+1)^2} = \sqrt{3}+\sqrt{2}+1$$
, $\sqrt{6-2(\sqrt{6}-\sqrt{3}+\sqrt{2})} = \sqrt{(\sqrt{3}-\sqrt{2}+1)^2} = \sqrt{3}-\sqrt{2}+1$, tada je $A=2$

335.
$$A = -2$$
 (Uputstvo: $5 + 2\sqrt{6} = (\sqrt{3} + \sqrt{2})^2$).

336.
$$A = 0$$
. **337.** $A = -2$.

338.
$$A = 3$$
. (Uputstvo: $11 + 6\sqrt{2} = (3 + \sqrt{2})^2$, $6 + 2\sqrt{5} = (\sqrt{5} + 1)^2$, $7 + 2\sqrt{10} = (\sqrt{5} + \sqrt{2})^2$).

339.
$$A = \sqrt{6} + \sqrt{2}$$
 (Uputstvo: $13 + \sqrt{48} = 13 + 2\sqrt{12} = (\sqrt{12} + 1)^2$, itd.).

340.
$$A = 5 + 3\sqrt{2}$$
 (Uputstvo: $9 + 2\sqrt{8} = (2\sqrt{2} + 1)^2$, $43 + 2\sqrt{450} = (5 + 3\sqrt{2})^2$, itd.).

341.
$$A = -2$$
. **342.** $A = 1$.

343. Kako je $x^2\pm 4x\sqrt{2}+8=(x\pm 2\sqrt{2})^2$, izraz A može se napisati u obliku $A=\frac{1}{\sqrt{x-2\sqrt{2}}}-\frac{1}{\sqrt{x+2\sqrt{2}}}$. Ako se primene Lagranžeovi identiteti za x=3, dobija se $A=\frac{1}{\sqrt{2}-1}-\frac{1}{\sqrt{2}+1}=2$.

344.
$$2\sqrt{1-a}$$
. **345.** $\sqrt{1+m}$. **346.** m , $(m>1)$. **347.** $\frac{a\sqrt{x}}{x}$.

348.
$$\frac{a+b}{2\sqrt{ab}}$$
. **349.** \sqrt{a} , za $a > 1$ i $\frac{1}{\sqrt{a}}$ za $0 < a < 1$. **350.** 1.

351.
$$\sqrt[3]{\frac{x-a}{x+a}}$$
. **352.** $\sqrt{3}$, za $a > 0$ i $m > 0$.

353.
$$a^2 - b^2$$
, za $a > 0$ i $b > 0$.

354.
$$A = 2\sqrt{a}$$
, $B = 2\sqrt{a}$, $A - B = 0$ $(a > x)$. **355.** $a + \sqrt{ab} + b$.

356.
$$5^{\frac{n+1}{5}}$$
. **357.** $\frac{\sqrt{x}+\sqrt{y}}{3}$. **358.** 0. **359.** $\frac{2\sqrt[3]{15}}{\sqrt[3]{25}+\sqrt[3]{9}}$

360. Zbiru prva dva razlomka dodati treći, pa dobijenom zbiru četvrti, itd. Rezultat: $\frac{32}{1-\sqrt[3]{a^{32}}}.$

361. 0. **362.**
$$-1$$
, $(x, y, z > 0)$ **363.** 4, $(|x| \neq |y|)$.

364. 4
$$(x, y, z \neq 0)$$
. **365.** $2\sqrt[3]{y}$ $(x, y \neq 0)$. **366.** 1, $(a > 0)$.

367.
$$\sqrt[5]{4} + 1$$
. **368.** $-\frac{\sqrt[3]{xy}}{(\sqrt[3]{x} + \sqrt[3]{y})^2}$, $(x, y \neq 0, |x| \neq |y|)$.

369.
$$2\sqrt[4]{y}$$
, $(x, y \neq 0)$. **370.** $\frac{\sqrt[3]{b^2} + \sqrt[3]{b} + 1}{\sqrt[3]{b}}$, $(a \neq -b, a \neq 1, b \neq 1)$.

371.
$$-\frac{32}{65535}$$
 . **372.** 4. **373.** 1. (smena: $\sqrt{5} + \sqrt{3} = u$).

374.
$$-\frac{\sqrt[4]{4} + \sqrt[4]{3}}{\sqrt[4]{4} + \sqrt[4]{3} + 2}$$
 (smena: $\sqrt[4]{4} + \sqrt[4]{3} = x$).

375.
$$\frac{1}{\sqrt[3]{a} + \sqrt[3]{b} - 1}$$
 (smena: $\sqrt[3]{a} + \sqrt[3]{b} = y$).

376.
$$\frac{\sqrt[3]{5} + \sqrt[3]{4}}{(\sqrt[3]{5} + \sqrt[3]{4} - 1)^2}$$
. (smena: $\sqrt[3]{5} + \sqrt[3]{4} = t$). **377.** $\sqrt{15}$.

1.3. Kompleksni brojevi i osnovne operacije sa njima

378. a)
$$i$$
; b) $-3i\sqrt{3}$; c) $2bi$.

379. a)
$$8 + 10i$$
; b) $3 - i$; c) $9 + 3i$; d) $14 - 17i$.

380. a)
$$-19 - 4i$$
; b) 40; c) $3 + 13i$; d) $23 + 21i$.

381. a)
$$\frac{5}{2} - \frac{1}{2}i$$
; b) $\frac{3}{5} + \frac{4}{5}i$; c) $-\frac{5}{13} + \frac{12}{13}i$; d) $\frac{7}{2} + \frac{3}{2}i$.

382. a)
$$\frac{6}{5}$$
; b) $10 - 9i$; c) $-\frac{6}{5}(1 + 2i)$; d) $-\frac{3}{5} + \frac{11}{5}i$.

383. b)
$$1 + 2i$$
.

384. a)
$$|z| = \sqrt{a^2 + b^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5;$$

b)
$$|z| = 5$$
; c) $|z| = 13$; d) $|z| = 17$.

385. a)
$$\operatorname{Re}(z) = \frac{1}{5}$$
, $\operatorname{Im}(z) = \frac{3}{5}$; b) $\operatorname{Re}(z) = \frac{13}{10}$, $\operatorname{Im}(z) = -\frac{19}{10}$.

386.
$$f(2+3i) = 0$$
, $f(-2+i) = 0$.

387.
$$f(3+2i) = 20 + 38i$$
; $f(3-2i) = 20 - 38i$.

388. a)
$$\frac{2}{3}i$$
; b) $-\frac{2}{5} + \frac{1}{5}i$.

389. a)
$$z = \frac{14}{5} + \frac{3}{5}i$$
; b) $z = 2 + i$; c) $z = 3 - 5i$; d) $z = 1 + i$.

390. a)
$$z = 2 + i$$
; b) $z = 4 + 6i$. **391.** $z = 3 + 4i$.

392. a)
$$z = -1 - i$$
; b) $z = 1 - i$.

393. a)
$$x = 2$$
, $y = -3$; b) $x = y = 1$; c) $x = -\frac{11}{29}$, $y = \frac{13}{29}$

394. a)
$$(x-i)(x+i)$$
; b) $(x-9i)(x+9i)$; c) $(2x-7i)(2x+7i)$;

d)
$$(a+bi)(a-bi)$$
; e) $(\sqrt{a}+i\sqrt{b})(\sqrt{a}-i\sqrt{b})$ $(a,b\geq 0)$.

397. Kako je
$$z = ((1+i)^2)^2 - ((1-i)^2)^2 = 0 \in \mathbb{R}$$
.

398. Iskoristiti da je
$$(1+i)^6=((1+i)^2)^3=-8i$$
, a $(1-i)^6=((1-i)^2)^3=8i$, pa je $z=-\frac{1}{4}i$.

399. a)
$$(-4)^k \in \mathbb{R}$$
; b) $2(-4)^k i \in \mathbb{C}$.

400. a) Kako je
$$z = \left(\frac{1+i}{1-i}\right)^n = \left(\frac{(1+i)^2}{2}\right)^n = i^n$$
, onda je

za
$$n = 4k$$
, Re $(z) = 1$, Im $(z) = 0$

za
$$n = 4k + 1$$
, Re $(z) = 0$, Im $(z) = 1$

za
$$n = 4k + 2$$
, Re $(z) = -1$, Im $(z) = 0$

za
$$n = 4k + 3$$
, Re $(z) = 0$, Im $(z) = -1$.

b) Slično prethodnom zadatku, imamo:

$$z = \frac{(1+i)^n}{(1-i)^{n-2}} = \left(\frac{1+i}{1-i}\right)^n (1-i)^2 = -2i^{n+1}$$
, itd.

402.
$$2^{24}$$
. **404.** Iskoristiti da je $2 + 11i = (2 + i)^3$ i $2 - 11i = (2 - i)^3$.

405. a)
$$z = -\frac{1}{2} + \frac{2}{3}i$$
; b) $z = \frac{5}{2} + 5i$.

406. a)
$$z = \frac{3}{4} + i$$
; b) $z = \frac{3}{2} - 2i$.

407.
$$z = -1 - i$$
. **408.** $z = 1 - i$.

409.
$$z = \pm (1 + \sqrt{a}i)$$
. (Iskoristiti da je $1 + 2\sqrt{a}i - a = (1 + i\sqrt{a})^2$).

410.
$$z = \pm (1 - i\sqrt{ab})$$
. (Desna strana jednačine je $(1 - i\sqrt{ab})^2$).

411. a)
$$z = 2 + i$$
; $z = -2 - i$; b) $z_1 = \sqrt{2} - i$; $z_2 = -\sqrt{2} + i$;

c)
$$z_1 = \sqrt{2} + i\sqrt{3}$$
; $z_2 = -\sqrt{2} - i\sqrt{3}$.

412.
$$z = 1 + i$$
. **413.** $x_1 = 1 + i$, $x_2 = 2 - i$.

II GLAVA

2. KVADRATNA JEDNAČINA I KVADRATNA FUNKCIJA

2.1. Kvadratna jednačina

416. a)
$$\pm \frac{3}{2}$$
; b) $\pm \frac{5}{6}$; c) $\pm \frac{4}{5}\sqrt{3}$; d) $\frac{17}{4}$; e) $\pm 6i$; f) ± 12 .

417. a)
$$\left\{0, \frac{5}{3}\right\}$$
; b) $\left\{0, -\frac{6}{5}\right\}$; c) $\left\{0, \frac{1}{6}\right\}$; d) $\left\{0, \frac{32}{5}\right\}$; e) $\left\{0, -2, 4\right\}$; f) $\left\{-7, 7\right\}$.

418. a)
$$\left\{0, \frac{1}{a+b}\right\}$$
; b) $\{0, m+n\}$; c) $\{0, m, -n\}$; d) $\{-a\sqrt{2}, a\sqrt{2}\}$;

$${\rm e)} \ \{-5,5\}; \quad {\rm f)} \ \left\{ \pm \sqrt{\frac{a^2+b^2}{2}} \right\}; \quad {\rm g)} \ \{-1,1\}.$$

419. a)
$$\{-8,8\}$$
; b) $\{-2,2\}$; c) nema rešenja; d) $\{-10,10\}$.

420. a)
$$\left\{0, -\frac{8}{15}\right\}$$
; b) $\left\{0, -\frac{51}{20}\right\}$; c) č) $\left\{-i, i\right\}$; d) $\left\{0, -\sqrt{\frac{5}{2}}, \sqrt{\frac{5}{2}}\right\}$; e) $\left\{-3i, 3i\right\}$.

421. a)
$$\{\pm\sqrt{4a^2+b^2}\}$$
; b) $\{0,\frac{2}{a-b}\}$; c) $\{\pm(a-b)\}$; d) $\{\pm(a+b)\}$.

422. a)
$$\{1, 2\sqrt{2}\}$$
; b) $\{-1, 5\}$; c) $\{3, \frac{1}{2}\sqrt{2}\}$; d) $\{-6, 4\}$;

e)
$$\left\{ \frac{-4-5i}{3}, \frac{-4+5i}{3} \right\}$$
; f) $\left\{ 5 - i\sqrt{5}, 5 + i\sqrt{5} \right\}$.

423. a)
$$\{3,2\}$$
; b) $\{-4,7\}$; c) $\{-\frac{5}{2},5\}$; d) $\{0.1,0.01\}$;

e)
$$\left\{\frac{1}{4}, 4\right\}$$
; f) $\left\{\frac{1}{9}, 9\right\}$.

424. a)
$$\{-13, 1\}$$
; b) $\{3 - 7i, 3 + 7i\}$; c) $\{2 - \frac{1}{3}i, 2 + \frac{1}{3}i\}$;

d)
$$\{4-5i, 4+5i\}$$
; e) $\{-0, 3, 7\}$; f) $\{6, 18\}$.

425. a)
$$\{3,6\}$$
; b) $\left\{-3, -\frac{2}{5}\right\}$. **426.** a) $\left\{\frac{1}{2}, \frac{1}{3}\right\}$; b) $\left\{\frac{5}{2}, -\frac{4}{3}\right\}$.

427. a)
$$\left\{2, \frac{4}{5}\right\}$$
; b) $\left\{\frac{1}{4}, -\frac{3}{2}\right\}$. **428.** a) $\{17, 13\}$; b) $\{9, -23\}$.

429. a)
$$\{6+\sqrt{5}, 6-\sqrt{5}\}$$
; b) $\{3\sqrt{2}+2\sqrt{3}, 3\sqrt{2}-2\sqrt{3}\}$.

430. a)
$$\left\{2\sqrt{5}+3,2\sqrt{5}-3\right\}$$
; b) $\left\{\sqrt{3},-\frac{1}{4}\right\}$.

431. a)
$$\{1+\sqrt{5},2+\sqrt{5}\}$$
; b) $\{1-\sqrt{2},2-\sqrt{2}\}$; c) $\{1,4\sqrt{2}-7\}$.

432. a)
$$\{a-5b, 3b-a\}$$
; b) $\{2a-1, a+1\}$; c) $\{-a^n, a^{3n}\}$;

d)
$$\left\{ \frac{a}{a+b}, \frac{b}{a-b} \right\}$$
.

433. a)
$$\left\{ \frac{3m+2}{5}, \frac{3m-2}{5} \right\}$$
; b) $\{2a+b, 2a-b\}$.

434. a)
$$\{b, -(2a+b)\};$$
 b) $\{2m+1, 2m-1\}$

435. a)
$$\left(\frac{m-1}{m}, \frac{m}{m+1}\right)$$
; b) $\left\{\frac{a+m}{a-m}, \frac{a-m}{a+m}\right\}$.

436. a)
$$\left\{ \frac{a+2}{2}, \frac{a-1}{2} \right\}$$
; b) $\left\{ \frac{a}{a+b}, \frac{b}{a+b} \right\}$.

437. Rezultat:
$$\{a(a+b), b(a+b)\}$$

438. Rešenja prve jednačine su
$$\frac{a}{m}$$
, $-\frac{m}{a}$, a druge $\frac{a}{m}$, $\frac{m}{a}$; tvrđenje je tačno.

439. Rezultat:
$$\{4m, m\}, \{m-4m\}$$

440. Rezultat:
$$\{a+b, a-b\}, \left\{\frac{1}{a+b}, \frac{1}{a-b}\right\}.$$

441. Rezultat:
$$\{2am + b, 2am - b\}, \{(2am + b), -(2am - b)\}.$$

442. Rezultat:
$$\{7a, 3a\}, \{-7a, 3a\}.$$
 443. a) $\{-2, 4\}$; b) $\{-1, 5\}$.

444.
$$\left\{2-\frac{1}{3}\sqrt{3},2+\frac{1}{3}\sqrt{3}\right\}$$
. **445.** $\left\{-4\frac{1}{3},-1\right\}$.

446. a)
$$\left\{\frac{5}{4}, 3\right\}$$
; b) $\left\{\frac{25}{12}, 5\right\}$. **447.** $\left\{\frac{9}{4}, 4\right\}$.

448. a)
$$\left\{-\frac{5}{4}, 1\right\}$$
; b) $\left\{-\frac{5}{8}, 2\right\}$. **449.** a) $\{-13, -5\}$; b) $\{1, 12\}$.

450.
$$\left\{3, \frac{40}{11}\right\}$$
. **451.** $\{-15, 1\}$. **452.** $\left\{-4, \frac{9}{17}\right\}$.

453.
$$\left\{\frac{3-i\sqrt{31}}{4}, \frac{3+i\sqrt{31}}{4}\right\}$$
. **454.** $\left\{\frac{30}{23}, 1\right\}$.

455. a) Za $x \ge 1$ data jednačina je ekvivalentna sa $x^2-2x+1=0 \land x \ge 1$, a za x<1 ona je ekvivalentna sa $x^2-4x+3=0 \land x<1$. Jedino rešenje date jednačine je x=1.

b)
$$\{-2, -1, 1, 2\}$$
; c) $\{-5, -3, 3, 5\}$; d) $\{-3, -2, 0, 1\}$.

456. a)
$$\{-3, 2\}$$
; b) $\{-3, -2, -1, 0, 1, 2, 3\}$; c) $\{x \le 2 \lor x \ge 6\}$;

d)
$$\left\{ \frac{7 - \sqrt{89}}{4} \right\}$$
; e) $\{-4, 0, 4\}$

457.
$$\left\{\frac{a^2+b^2}{a+b}, \frac{ab}{a+b}\right\}$$
, $a \neq 0$, $b \neq 0$ i $a \neq -b$. **458.** $\{a, b^2+c^3\}$.

459.
$$\left\{1, -\frac{c^2}{4a+2b+c^2}\right\}$$
. **460.** $\left\{\frac{a^3}{a^2-ab+b^2}, \frac{b^3}{a^2-ab+b^2}\right\}$.

461.
$$\left\{m, -\frac{a^2+b^2}{a+b}\right\}$$
. **462.** $\left\{\frac{2a-b}{am}, \frac{3a+2b}{bm}\right\}$.

463. a) Data jednačina ekvivalentna je sa

$$(1-n)x^2 - (1-mn)x - m^2 + m = 0,$$

pri čemu je $x \neq m$. Diskriminanta ove jednačine je $D = (1+mn-2m)^2$, a rešenje je: $\frac{m-1}{n-1}$;

b)
$$\left\{m+n, \frac{2mn}{m+n}\right\}$$
.

464. a)
$$\left\{ \frac{3m-n}{2}, \frac{3n-m}{2} \right\}$$
; b) $\left\{ m+2n, \frac{n-2m}{3} \right\}$.

465. a)
$$\{a-2b, a+2b\}$$
; b) $\{a-3b, a+3b\}$.

466. a)
$$\left\{1, \frac{a-1}{a+1}\right\}$$
; b) $\{-2n, n+2\}$.

467. a) Data jednačina ekvivalentna je jednačini

$$((n-1)x)^{2} - a(n-1)x + a - 1 = 0.$$

Smenom (n-1)x = z poslednja jednačina postaje $z^2 - az + a - 1 = 0$.

Rešenja date jednačine su $x_1 = \frac{a-1}{n-1}$ i $x_2 = \frac{1}{n-1}$.

b) Data jednačina ekvivalentna je jednačini

$$\left(\frac{a-x}{x}\right)^2 - \left(\frac{a}{a+b}\right)^2 = \frac{5}{9} \left(\frac{a-x}{x}\right)^2,$$

a ona je ekvivalentna sa $\frac{4}{9} \left(\frac{a-x}{x}\right)^2 = \left(\frac{a}{a+b}\right)^2.$

Rešenja date jednačine su $x_1 = \frac{2a(a+b)}{5a+2b}$ i $x_2 = \frac{2a(a+b)}{2b-a}$.

468. Data jednačina ekvivalentna je sa

$$2x^{2} - (a+b+2\sqrt{ab})x + (a+b)\sqrt{ab} = 0.$$

Diskriminanta ove jednačine je

$$D = (a + b + 2\sqrt{ab})^{2} - 8(a + b)\sqrt{ab} = (a + b - 2\sqrt{ab})^{2}.$$

Rešenja date jednačine su $x_1 = \frac{a+b}{2}, x_2 = \sqrt{ab}.$

469. Data jednačina ekvivalentna je sa

$$(2a+2b)x^{2} - (a^{2}+b^{2}+6ab)x + 2ab(a+b) = 0.$$

Diskriminanta ove jednačine je $D=(a^2+b^2-2ab)^2$, a rešenja su

$$x_1 = \frac{a+b}{2}, \quad x_2 = \frac{2ab}{a+b},$$

a to je i trebalo dokazati.

470. Posle nekoliko uzastopnih identičnih transformacija, dobijamo

$$f(x) = \frac{4x^2 - 3x}{2},$$

pa je jednačina $f(x)=x-\frac{1}{2}$ ekvivalentna jednačini $4x^2-5x+1=0$, čija su rešenja $x_1=\frac{1}{x},\,x_2=1.$

471.
$$\frac{15}{4}$$
.

472. Za $x \ge 2$ jednačina postaje $(x+2)^2 = 4x+1 \iff x^2+3=0$, pa data jednačina u ovom slučaju nema realnih rešenja. Za x < 2 imamo $(2x-3)^2 = 4x+1 \iff x^2-4x+2=0$. Rešenja poslednje jednačine su $x_1=2-\sqrt{2}$ i $x_2=2+\sqrt{2}$. Međutim samo $x_1=2-\sqrt{2}$ zadovoljava uslov x<2, pa jedino rešenje date jednačine $x_1=2-\sqrt{2}$.

473. a)
$$m_1 = -\frac{1}{3}$$
, $m_2 = 5$; b) $m_1 = 0$, $m_2 = 2$; c) $m_1 = 2$, $m_2 = 6$;

d)
$$m = -\frac{16}{39}$$
; e) $m_1 = -\frac{7}{3}$, $m_2 = 0$; f) $m_1 = 0$, $m_2 = \frac{16}{7}$.

474. a) Da bi jednačina bila kvadratna, mora biti $k-2 \neq 0$. U tom slučaju za $k \in (-1,2) \cup (2,3)$ je D>0, koreni su realni i različiti za k=-1 ili k=3 je D=0, koreni su realni i jednaki, a za ostale vrednosti k je D<0, koreni su kompleksni.

b) Za $k\in(3,11)$ je D<0, koreni su kompleksni, za k=3 ili k=11 je D=0, koreni su realni i jednaki, a za ostale vrednosti $k\neq 2$, koreni su realni i različiti.

475. Diskriminanta ove jednačine je

$$D = (b^2 + c^2 - a^2)^2 - 4b^2c^2 = (b^2 + c^2 - a^2 - 2bc)(b^2 + c^2 - a^2 + 2bc)$$
$$= ((b - c)^2 - a^2)((b + c)^2 - a^2)$$
$$= (b - c - a)(b - c + a)(b + c - a)(b + c + a).$$

Kako je u svakom trouglu zbir dve stranice veći od treće, to je b-c-a<0, dok je b-c+a>0, b+c-a>0, b+c+a>0, pa je D<0. Znači, data jednačina ima kompleksna rešenja.

476. Ako je $a(b-c) \neq 0$, diskriminanta date jednačine je

$$D = (b(a+c) - 2ac)^2 > 0$$

pa su rešenja date jednačine uvek realna. Rešenja su $x_1 = 1$, $x_2 = \frac{c(a-b)}{a(b-c)}$.

477. Za svako $a, b (a + b \neq 0)$ diskriminanta date jednačine je

$$D = (a - b)^{2}(a^{2} - b^{2})^{2} + 8ab(a + b)^{2}(a^{2} + b^{2})$$

$$= (a + b)^{2}((a - b)^{4} + 8ab(a^{2} + b^{2}))$$

$$= (a + b)^{2}((a^{2} + b^{2} - 2ab)^{2} + 8ab(a^{2} + b^{2}))$$

$$= (a + b)^{2}((a^{2} + b^{2})^{2} + 4ab(a^{2} + b^{2}) + 4a^{2}b^{2})$$

$$= (a + b)^{2}(a^{2} + b^{2} + 2ab)^{2} = (a + b)^{2}(a + b)^{4} = (a + b)^{6} > 0,$$

pa su rešenja date jednačine realna za svako $a, b \ (a + b \neq 0)$.

Rešenja ove jednačine su $x_1 = -\frac{2ab}{a+b}, x_2 = \frac{a^2+b^2}{a+b}.$

478. Diskriminanta jednačine (1) je $D_1 = 4(1-a)$. Diskriminanta jednačine (2) može se napisati u obliku $D_2 = 4(a-1) \cdot ((a-1)^2 + 4)$. Iz toga se vidi da su diskriminante D_1 i D_2 suprotnih znakova za svako $a \neq 1$. Za a = 1 obe diskriminante su jednake nuli, pa jednačine (1) i (2) imaju dvostruka rešenja (realna).

479. Po pretpostavci diskriminanta jednačine (1) jeste $D_1=p^2-4q\geq 0$. Diskriminanta jednačine (2) jeste $D_2=p^2-4q+4a^2=D_1+4a^2\geq 0$, jer je $D_1\geq 0$.

Diskriminanta jednačine (3) jeste

$$D_3 = 4((p+a)^2 - 3(q+ap)) = 4(p^2 - 4q + a^2 - ap + q)$$
$$= 3(p^2 - 4q) + 4\left(a - \frac{1}{2}p\right)^2 = 3D_1 + 4\left(a - \frac{1}{2}p\right)^2 \ge 0.$$

Dakle, ako jednačina (1) ima realna rešenja, onda i jednačine (2) i (3) takođe imaju realna rešenja.

480. Diskriminanta jednačine (2) može se napisati u obliku

$$D_2 = \left(k - \frac{1}{k}\right)^2 D_1,$$

gde je D_1 , diskriminanta jednačine (1).

481. Data jednačina je ekvivalentna sa

$$x^{2} - (m + n + 2a^{2})x + mn + a^{2}(m + n) = 0.$$

Diskriminanta ove jednačine je $D=(m-n)^2+4a^4\geq 0$, pa data jednačina zaista ima realna rešenja.

2.2. Vietove formule. Rastavljanje kvadratnog trinoma na činioce

482. a)
$$x^2 + 10x + 21 = 0$$
; b) $x^2 - \frac{25}{6}x + 4 = 0$; c) $x^2 - 10x + 23 = 0$; d) $x^2 - \frac{5}{3}x + \frac{7}{36} = 0$; e) $x^2 - 4x + 13 = 0$; f) $x^2 - 6x + 12 = 0$; g) $x^2 - \frac{a^2 + b^2}{a^2 - b^2}x + \frac{ab}{a^2 - b^2} = 0$ ($a^2 \neq b^2$).

483. a)
$$2x^2 - 4\sqrt{2}x - 1 = 0$$
; b) $2x^2 - 10\sqrt{3}x + 25 = 0$.

484. a)
$$9x^2 - 24x + 41 = 0$$
; b) $25x^2 - 30x + 12 = 0$.

485. a)
$$2x^2 - 7ax + 3a^2 = 0$$
; b) $3x^2 - 2mx - 8m^2 = 0$.

486. a)
$$25x^2 - 30mx + 9m^2 - 4 = 0$$
;

b)
$$(a^2 - m^2)x^2 - (2a^2 + 2m^2)x + a^2 - m^2 = 0.$$

487. a)
$$m(m+1)x^2 + x - m(m-1) = 0$$
;

b)
$$4x^2 - 2(2a+1)x + a^2 + a - 2 = 0$$
.

488. a)
$$x_1 = 2 + \sqrt{3}$$
, $x_2 = 2 - \sqrt{3}$; b) $x_1 = \frac{2 + \sqrt{2}}{3}$, $x_2 = \frac{2 - \sqrt{2}}{3}$.

489. a)
$$x_1 = 3 + \sqrt{5}$$
, $x_2 = \frac{2 - \sqrt{5}}{2}$; b) $x_1 = \frac{2 - \sqrt{6}}{3}$, $x_2 = \frac{-(3 + \sqrt{6})}{2}$.

490. a)
$$x_1 = \sqrt{3}$$
, $x_2 = \frac{\sqrt{3} + 2}{3}$, $x_1 = 2\sqrt{5}$, $x_2 = \frac{\sqrt{5} - 1}{2}$.

491. a)
$$x_1 = \frac{a-b}{b}$$
, $x_2 = 1$; b) $x_1 = \frac{a+b}{m}$, $x_2 = \frac{a-b}{m}$.

492. a)
$$x_1 = \frac{a}{m}$$
, $x_2 = \frac{a-b}{2m}$; b) $x_1 = \frac{3a}{2b}$, $x_2 = \frac{3a-2}{3b}$.

493.
$$x_1 = \frac{2b+m}{2}$$
, $x_2 = \frac{2b-3m}{2}$. **494.** $x_1 = \frac{2a-b}{3}$, $x_2 = \frac{a+4b}{3}$

495.
$$x_1 = \frac{3a+m}{2}, x_2 = \frac{3m-a}{2}.$$
 496. $x_1 = \frac{m+\sqrt{3}}{\sqrt{3}}, x_2 = -\frac{\sqrt{3}}{m+\sqrt{3}}.$

497.
$$x_1 = \frac{4m - 3a}{2}$$
, $x_2 = m - 2a$.

498. a)
$$\left(\frac{4}{3}\right)^3$$
; b) $-\left(\frac{7}{3}\right)^3$; c) $\frac{193}{27}$. **499.** a) $\frac{189}{125}$; b) $\frac{916}{35}$

500.
$$y^2 + 5y + 6 = 0$$
. **501.** $6y^2 + 5y - 3 = 0$.

502.
$$27y^2 - 64y - 243 = 0$$
. **503.** $y^2 - (p^4 - 4p^2q + 2q^2)y + q^4 = 0$.

504. a)
$$(m-2)x^2 - 2(2m-1)x + 2m - 1 = 0$$
,

$$m \in (-\infty, -1] \cup \left[\frac{1}{2}, 2\right) \cup (2, +\infty);$$

b)
$$x^2 - x + m - 1 = 0, m \le \frac{5}{4}$$
.

505. a)
$$y^2 - \frac{17}{3}y + \frac{20}{3} = 0$$
; b) $y^2 - \frac{5}{3}y + \frac{4}{9} = 0$; c) $y^2 - \frac{145}{12}y + 1 = 0$.

506.
$$qz^2 + 2p(1+q)z + (1+q)^2 = 0.$$

507. a)
$$p^2 z^2 - (1 + 2p - p^2)z + p^2 = 0$$
; b) $p = -\frac{2}{7}$ ili $p = \frac{2}{3}$;

c)
$$x_1 = \frac{1}{7}$$
, $x_2 = \frac{4}{7}$ za $p = -\frac{2}{7}$ i $x_1 = \frac{1}{3}$, $x_2 = \frac{4}{3}$ za $p = \frac{2}{3}$.

508. a)
$$my^2 + 6y + 6 - m = 0$$
; b) $m = 2$ ili $m = 4$;

c) za
$$m = 2: x_1 = \frac{2}{3}, x_2 = 1$$
, za $m = 4: x_1 = 1, x_2 = \frac{4}{3}$

509. a)
$$4z^2 - (p^2 + 4)z + p^2 = 0$$
; b) $-4, -1, 1, 4$.

510. Jesu. **511.**
$$x_1 = -\frac{a+b}{a}$$
, $x_2 = 1$. **512.** -6. **513.** 6.

517. a)
$$0, \frac{6}{5}$$
; b) $\frac{2}{3}$, $(x_1 = -x_2, x_1 + x_2 = 0)$; c) $-\sqrt{3}, \sqrt{3}$; d) $-2, 2$.

518. a) 0, 3; b)
$$-3$$
; c) 8.

519. a)
$$\pm\sqrt{5}$$
; b) 0; c) ±2 ; d) 1; e) $\pm\frac{3}{2}$

520. a)
$$\frac{3\sqrt{2}}{2}$$
, $-\frac{\sqrt{2}}{2}$; b) $\frac{\sqrt{2}}{2}$; c) $\frac{\sqrt{2}\pm 2}{2}$; d) $\frac{\sqrt{2}+2}{2}$

521. a)
$$1 - \frac{\sqrt{14}}{3}$$
 ili $1 + \frac{\sqrt{14}}{3}$; b) -1 ; c) 0; d) 8; e) $\frac{4}{3}$ ili 4; f) -3 ili 1;

g)
$$-3$$
 ili 3; h) $\frac{21}{20}$ ili 3; i) 1 ili 13; j) -2 ; k) $\frac{1-\sqrt{5}}{4}$ ili $\frac{1+\sqrt{5}}{4}$.

522. Iz uslova $x_1^2 + x_2^2 = 52$, odnosno $(x_1 + x_2)^2 - 2x_1x_2 = 52$ i Vieteovih formula

$$x_1 + x_2 = \frac{2(m+1)}{m-2}, \quad x_1 x_2 = \frac{m+3}{m-2},$$

dobija se jednačina $25m^2 - 107m + 96 = 0$, čija su rešenja $m_1 = \frac{32}{25}$, $m_2 = 3$.

523. Postoje tri vrednosti za m, i to: $-\frac{1}{6}$, $\frac{1}{3}$ i 1.

524. a)
$$x_1^2 + x_2^2 = \frac{b^2 - 2ac}{a^2}$$
; b) $\frac{1}{x_1} + \frac{1}{x_2} = -\frac{b}{c}$;

c)
$$x_1^3 + x_2^3 = \frac{3abc - b^3}{a^3}$$
; d) $\frac{1}{x_1^3} + \frac{1}{x_2^3} = \frac{3abc - b^3}{c^3}$

525. a) Ako se iz jednakosti $x_1 + x_2 = \frac{4m}{3(m-1)}$, $x_1x_2 = \frac{-2m+1}{3(m-1)}$ eliminiše parametar m, dobija se $3(x_1 + x_2) + 12x_1x_2 = -4$

b)
$$2(x_1 + x_2) + x_1x_2 = 5$$
; c) $2(x_1 + x_2) - 4x_1x_2 = 1$;

d)
$$3(x_1 + x_2) - 2x_1x_2 = 2$$
; e) $2x_1x_2 + x_1 + x_2 = 4$;

f)
$$(x_1 + x_2)^2 - 2x_1x_2 = 1$$
.

526. a)
$$k \in (-9, -2)$$
; b) ni za jedno k ; c) $k \in (-\infty, +\infty), k \neq 1$.

527.
$$-2 < m < 0$$
.

529. Za
$$a = 0$$
 i $b = 0$ ili $a = \frac{9}{4}$ i $b = \frac{9}{2}$ ili $a = -\frac{7}{4}$ i $b = \frac{7}{2}$.

530. Za m=-4 ili m=4. Za m=-4 rešenja su $x_1=-4$ i $x_2=1$, a za m=4 rešenja su $x_1=1$ i $x_2=4$.

531. a) Za m=3 date jednačine imaju zajedničko rešenje x=4.

b) Za m=1 zajedničko rešenje je x=1.

532. Pretpostavimo suprotno, da su rešenja obe jednačine kompleksna, tj. da je $p^2-4q<0$ i $p_1^2-4q_1<0$. Tada je $p^2+p_1^2-4(q+q_1)<0$. Kako je $q+q_1+1=\frac{1}{2}pp_1$, poslednja nejednakost postaje $p^2+p_1^2-2pp_1<0$, tj. $(p-p_1)^2 < 0$, što je nemoguće

533.
$$(p,q) = (0,0)$$
 ili $(p,q) = (1,-2)$.

534. a)
$$(x-6)(x+8)$$
; b) $(x-8)(x-11)$; c) $(4x-17)(x+5)$;

d)
$$(x-3a)(x-2a)$$
; e) $(3x-2a)(x+a)$; f) $(ab-2)(ab-5)$.

535. a)
$$(x-5)(4x+1)$$
; b) $(3a+2)(a+6)$.

536. a)
$$(3m-4)(4m-3)$$
; b) $(2a+3)(6a+7)$.

537. a)
$$(x-3a)(x-5b)$$
; b) $(a-m)(am-1)$.

538. a)
$$(b-4a)(2b+3a)$$
; b) $(mx-m^2-1)(mx-m^2+1)$.

539. a)
$$(x-3-\sqrt{2})(x-3+\sqrt{2})$$
; b) $(2y-2-\sqrt{3})(2y-2+\sqrt{3})$.

540. a)
$$\frac{4x^2 - 19x + 12}{12x^2 - x - 6} = \frac{(x - 4)(4x - 3)}{(3x + 2)(4x - 3)} = \frac{x - 4}{3x + 2}$$
 za $x \neq \frac{3}{4}$;

540. a)
$$\frac{4x^2 - 19x + 12}{12x^2 - x - 6} = \frac{(x - 4)(4x - 3)}{(3x + 2)(4x - 3)} = \frac{x - 4}{3x + 2} \text{ za } x \neq \frac{3}{4};$$

b) $\frac{a + 2}{a(a + 1)}$, $a \neq -4$; c) $\frac{x - 3a}{x - b}$, $x \neq a$; d) $\frac{x(x - 3)}{3(x + 4)}$, $x \neq 0$, $x \neq 4$;

e)
$$\frac{2x-7a}{x+7}$$
, $x \neq -2a$; f) $\frac{3(x-4)(x-1)}{4(x+1)(x-3)}$, $x \neq 3$, $x \neq -4$.

541. Posle skraćivanja razlomaka dobija se da je

$$V = W = \frac{2a+1}{a+3}, \quad a \neq \pm 3, \quad a \neq \frac{1}{2}.$$

542.
$$M = \frac{x-4}{x-6}$$
, $(x \neq 1)$, $N = \frac{x-4}{x-6}$, $(x \neq -3)$, $M - N = 0$, $x \neq 6$, $x \neq -3$, $x \neq 1$.

543.
$$P = \frac{a-6}{a-1}$$
, $(a \neq 6)$, $Q = \frac{a-1}{a-6}$, $(a \neq -1)$, $PQ = 1$, $a \neq 6$, $a \neq \pm 1$.

544.
$$A = B = \frac{1}{3a+b}, \left(a \neq \frac{2}{3}b, \ a \neq -\frac{5}{2}b\right).$$

545.
$$U = \frac{mx+1}{mx+3}$$
, $V = \frac{mx+3}{mx+1}$, $U = \frac{1}{V}$, $\left(x \neq -\frac{2}{m}, x \neq \frac{5}{m}\right)$,...

546.
$$P = \frac{5x+m}{3x-4m}, \ Q = \frac{5x+m}{3x-4}, \ P = Q, \ \left(x \neq \frac{m}{2}, \ x \neq \frac{4m}{3}\right).$$

547.
$$A = \frac{3x+y}{x-y}, B = -\frac{3x+y}{x-y}, A+B=0, (y \neq 3x, y \neq x, y \neq 5x).$$

548.
$$P = \frac{12a+b}{3a-4b}, Q = \frac{3a-4b}{12a+b}, PQ = 1 \left(a \neq \frac{4}{3}b, a \neq -\frac{1}{12}b\right).$$

549. To su brojevi -10, -5, 0 ili 0, 5, 10. **550.** To su brojevi 0 i 10.

551. To su brojevi -10, -8, -6 ili 6, 8, 10.

552. To su brojevi -7, -6, -5 ili 5, 6, 7.

553. To su brojevi −6 i −5 ili 5 i 6. **554.** Broj 56. **555.** Broj 64.

556. Ako je brzina jednog v, brzina drugog biće v+1. Dalje vt=30 i (v+1)(t-1)=30, gde je t vreme za koje prvi planinar stigne do kote. Rešavanjem ovog sistema, tj. eliminacijom t, dobijamo (30-v)(v+1)=30v. Rešenja poslednje jednačine su $v_1=-6$ i $v_2=5$. Zbog prirode problema, u obzir dolazi samo rešenje v=5. Prema tome, prvi planinar prelazi 5 km/h, a drugi 6 km/h.

557. Problem se svodi na jednačinu $\left(\frac{1}{x}+\frac{1}{x+2}\right)\cdot 1\frac{7}{8}=1$, odakle dobijamo traženo vreme: $x_1=3$ h i $x_2=3+2=5$ h.

558. Jednom radniku je potrebno 20 dana, a drugom 30 dana.

559. Osnovica 12, visina 8 i krak 10. **560.** U petouglu.

561. Dvadesetougao. **562.** 6 m i 4 m. **563.** $x = \frac{R}{2}(2 - \sqrt{2})$.

2.3. Neke jednačine koje se svode na kvadratnu

2.3.1. Bikvadratna jednačina

564. a) Data jednačina je ekvivalentna jednačini $(x^2)^2 - 4x^2 + 3 = 0$. Smenom $x^2 = t$ dobijamo $t^2 - 4t + 3 = 0 \Rightarrow t = 1 \lor t = 3$. Dalje je $x^2 = t \Rightarrow x^2 = 1 \Rightarrow x = 1 \lor x = -1$; $x^2 = t \Rightarrow x^2 = 3 \Rightarrow x = \sqrt{3} \lor x = -\sqrt{3}$. Skup rešenja date jednačine je $\{-\sqrt{3}, -1, 1, \sqrt{3}\}$.

b)
$$\{-3, 3, -2i, 2i\}$$
.

565. a)
$$\{-\sqrt{5}, -2, 2, \sqrt{5}\};$$
 b) $\{-2i, 2i, -6i, 6i\}.$

566. a)
$$\left\{-10, -3, 3, 10\right\}$$
; b) $\left\{-3, -\frac{1}{3}, \frac{1}{3}, 3\right\}$.

567. a)
$$\left\{-2, -\frac{1}{2}, \frac{1}{2}, 2\right\}$$
; b) $\left\{-\frac{5}{2}, \frac{5}{2}, -i, i\right\}$.

568. a)
$$\left\{-3\sqrt{2}, 3\sqrt{2}, i\sqrt{17}, -i\sqrt{17}\right\}$$
; b) $\left\{-\frac{18}{5}, \frac{18}{5}, -i, i\right\}$.

569.
$$\{-3\sqrt{2}, -2\sqrt{3}, 2\sqrt{3}, 3\sqrt{2}\}$$
. **570.** $\{0 \text{ (dvostruko rešenje)}, -\sqrt{3}, \sqrt{3}\}$.

571. a)
$$\left\{-\sqrt{2}, -\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \sqrt{2}\right\}$$
. **572.** $\left\{-6, -2\sqrt{3}, 2\sqrt{3}, 6\right\}$.

573.
$$\left\{-\sqrt{3}, -\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}}, \sqrt{3}\right\}$$
. **574.** $\left\{-2\sqrt{2}, -\sqrt{\frac{5}{2}}, 2\sqrt{2}, \sqrt{\frac{5}{2}}\right\}$.

575.
$$\left\{-b, -\frac{a}{b}, \frac{a}{b}, b\right\}.$$
 576. $\left\{-a, -\frac{1}{a}, \frac{1}{a}, a\right\}.$

577. Smena $x^2 - 2x = t$. Rešenja su -1, 1 (dvostruko rešenje), 3.

578. Smena
$$2x^2 + 3x = t$$
. Rešenja su $\left\{ -3\frac{1}{2}, -4, 2, 2\frac{1}{2} \right\}$.

579. –1 (dvostruko rešenje),
$$\frac{1}{5}$$
, 5. **580.** $\left\{-\frac{1}{2}, -\frac{1}{3}, 2, 3\right\}$.

581.
$$\left\{\frac{3-\sqrt{17}}{4}, \frac{3+\sqrt{17}}{4}, 1, -\frac{1}{2}\right\}$$
. **582.** $\frac{1}{2}$, 1 (dvostruko rešenje), 2.

583.
$$\{\pm(\sqrt{5}\pm1)\}.$$
 584. $\{\pm\frac{1}{3},\pm\sqrt{3}\}$ **585.** $\{\pm\frac{1}{2},\pm5\}.$

586.
$$\{\pm 2, \pm 5\}.$$
 587. $\{\pm (\sqrt{5} \pm \sqrt{3})\}.$ **588.** $\{\pm \frac{a}{b}, \pm \frac{b}{a}\}.$

589.
$$\{(\pm(a+1),\pm(a-1)\}.$$
 590. $\{\pm\sqrt{\frac{a+m}{a-m}},\pm\sqrt{\frac{a-m}{a+m}}\}.$

591.
$$\{\pm\sqrt{a^2\pm b^2}\}.$$
 591. $\{\pm\sqrt{m\pm\sqrt{m^2-1}}\}.$

593.
$$\left\{\pm \frac{\sqrt{a-1} \pm 1}{2}\right\}$$
. $\pm \frac{1}{2}\sqrt{\left(a^2 \pm 2b\sqrt{a^2-b^2}\right)}$.

595.
$$\left\{\pm \frac{a}{a-b}, \pm \frac{b}{a-b}\right\}$$
. **596.** $\left\{\pm \left(a\sqrt{\frac{b}{m}} \pm b\sqrt{\frac{a}{m}}\right)\right\}$.

597. a)
$$\frac{1}{x^2-9}$$
; b) $\frac{9b^2-4}{4b^2-1}$. **598.** a) $\frac{a^2-1}{a^2-25}$; b) $\frac{m^3-m}{m^2-3}$

599.
$$P = \frac{x^2 + 1}{x^2 - 25}, Q = \frac{x^2 - 25}{x^2 + 1}, PQ = 1, |x| \neq 2, |x| \neq 3.$$

600.
$$V = \frac{a^2 - 9}{9a^2 - 4}$$
, $W = \frac{9a^2 - 4}{a^2 - 9}$, $V = \frac{1}{W}$, $|a| \neq 2$.

601.
$$C = \frac{4m^2 - 1}{4m^2 + 5}$$
, $D = \frac{4m^2 + 5}{4m^2 - 1}$, $CD = 1$, $|m| \neq \frac{\sqrt{2}}{2}$.

602.
$$E = \frac{x^2 - a^2}{a^2 x^2 - 1}, F = \frac{x^2 - a^2}{a^2 x^2 - 1}, |x| \neq a\sqrt{a}.$$

603.
$$S = \frac{a^2 - m^2}{a^2 m^2 - 1}, T = \frac{a^2 - m^2}{a^2 m^2 - 1}, S - T = 0, |a| \neq |m|\sqrt{2}.$$

604. a)
$$a \in \{-\sqrt{5}, -1, 1, \sqrt{5}\};$$
 b) $a \in \{-2, 2\}.$

605. Neka je jedna stranica pravougaonika x. Iz površine, druga je $\frac{60}{x}$. Na osnovu Pitagorine teoreme je $x^2 + \left(\frac{60}{x}\right)^2 = 169$. Stranice pravougaonika su 5 cm i 12 cm.

606. 9 cm i 12 cm. **607.** 24 cm ili 32 cm.

608.
$$\{-(\sqrt{a}-\sqrt{b}), -(\sqrt{a}+\sqrt{b}), (\sqrt{a}-\sqrt{b}), (\sqrt{a}+\sqrt{b})\}.$$

609. Neka je $x+x^{-1}=y \Rightarrow x^{-2}+x^2=y^2-2$. Onda je data jednačina ekvivalentna jednačini $y^2+y-2=0 \lor y^2+y-6=0$. Skup rešenja date jednačine je $\left\{1,\frac{3-\sqrt{5}}{2},\frac{-3+\sqrt{5}}{2}\right\}$.

610. Smena
$$x + \frac{1}{x} = y$$
. Skup rešenja je $\left\{2, \frac{1}{2}, \frac{-11 - \sqrt{105}}{4}, -\frac{-11 + \sqrt{105}}{4}\right\}$.

611. Data jednačina ekvivalentna je jednačini $(x^2+3x)(x^2+3x+2)=\frac{9}{16}$. Smenom $x^2+3x=y$ dobija se ekvivalentna jednačina $16y^2-32y-9=0$. Rešenje je skup $\left\{-\frac{3}{2},\frac{-3-\sqrt{10}}{2},\frac{-3+\sqrt{10}}{2}\right\}$.

612. Data jednačina ekvivalentna je jednačini

$$(x^2 - 3x)(x^2 - 3x + 2) = 1680$$

Smena
$$x - 3x = y$$
; rešenje $\left\{ -5, 8, \frac{3 - i\sqrt{159}}{2}, \frac{3 + i\sqrt{159}}{2} \right\}$.

613. Smena
$$\frac{x^2+x-5}{x}=y$$
; rešenje $\{-5,-1-\sqrt{6},1,-1+\sqrt{6}\}.$

614. Smena
$$x^2 + 2x + 3 = y$$
; rešenje $\{-1, -1 - 2i, -1 + 2i\}$.

2.3.2. Binomne jednačine

615. a) Smenom $x=y\sqrt[3]{\frac{2}{5}}$ data jednačina svodi se na niz ekvivalentnih jednačina

$$y^{3} + 1 = 0 \iff (y+1)(y^{2} - y + 1) = 0 \iff y+1 = 0 \lor y^{2} - y + 1 = 0.$$

Skup rešenja date jednačine je $\left\{-\sqrt[3]{\frac{2}{5}}, \frac{1\pm i\sqrt{3}}{2}\cdot\sqrt[3]{\frac{2}{5}}\right\};$

b)
$$\left\{ \frac{\sqrt[3]{11}}{2}, \frac{(-1 \pm i\sqrt{3})\sqrt{11}}{4} \right\}$$
.

616. a)
$$\left\{ \frac{3}{2}, \frac{3}{4}, \left(-1 \pm i\sqrt{3} \right) \right\}$$
; b) $\left\{ -\frac{2c}{3}, \frac{c}{5} \left(1 \pm i\sqrt{3} \right) \right\}$.

616.
$$\left\{ \frac{m+n}{m}, \frac{m+n}{2m} \left(-1 \pm i\sqrt{3} \right) \right\}$$
.

618. a)
$$\left\{\pm \frac{3}{2}, \pm \frac{3}{2}i\right\}$$
; b) $\left\{\pm \sqrt[4]{\frac{17}{11}}, \pm \sqrt[4]{\frac{17}{11}}i\right\}$.

619.
$$\left\{\pm \frac{2a-c}{b}, \pm \frac{(2a-c)i}{b}\right\}$$
.

620. a) Data jednačina ekvivalentna je jednačini

$$(x^{3} - 27)(x^{3} + 27) = 0 \iff x^{3} - 27 = 0 \lor x^{3} + 27 = 0.$$

$$\left\{ \pm 3, \frac{3}{2} \left(-1 \pm i\sqrt{3} \right), \frac{3}{2} \left(1 \pm i\sqrt{3} \right) \right\}$$

b)
$$\{\pm 2i, -i \pm \sqrt{3}, i \pm \sqrt{3}\}.$$

621. Data jednačina ekvivalentna je jednačini

$$(8x^3 + 1)(x^3 - 1) = 0 \iff 8x^3 + 1 = 0 \lor x^3 - 1 = 0.$$
$$\left\{ -\frac{1}{2}, 1, \frac{\pm i\sqrt{3}}{4}, \frac{-1 \pm i\sqrt{3}}{2} \right\}.$$

622.
$$\left\{-\frac{3}{4}, \frac{1}{2}, \frac{-1 \pm i\sqrt{3}}{4}, \frac{3 \pm i3\sqrt{3}}{8}\right\}$$
.

623.
$$\left\{-\sqrt[3]{\frac{3}{5}}, 4, \frac{1 \pm i\sqrt{3}}{2} \cdot \sqrt[3]{\frac{5}{3}}, 2(-1 \pm i\sqrt{3})\right\}.$$

624.
$$\left\{ \pm 2, 3, \frac{3}{2}(-1 \pm i\sqrt{3}) \right\}$$
. **625.** $\left\{ \frac{a+b}{2}, \frac{a+b}{2} \pm \frac{(a-b)\sqrt{3}i}{2} \right\}$.

626.
$$\left\{ \frac{a+b}{2}, \frac{a+b}{2} \pm \frac{(a-b)i}{2} \right\}$$
. **627.** $\left\{ 1, \frac{1}{38} (11 \pm 21 i \sqrt{3}) \right\}$.

628.
$$\left\{4, \frac{3 \pm 5 i \sqrt{3}}{2}\right\}$$
.

2.3.3. Trinomne jednačine

629. a) Smena
$$x^2 = y$$
. $\left\{ -2, 1, \frac{-1 \pm i\sqrt{3}}{2}, 1 \pm i\sqrt{3} \right\}$;

b)
$$\{-2a, -a\sqrt{3}, a\sqrt{3}, 2a\}.$$

630. a)
$$\left\{1, 2, -1 \pm i\sqrt{3}, \frac{1}{2}(-1 \pm i\sqrt{3})\right\}$$
; b) $\{\pm 2, \pm 1, \pm i, \pm 2i\}$.

631. a)
$$\left\{\pm \frac{a}{b}, \pm \frac{b}{a}\right\}$$
; b) $\left\{\pm \frac{b}{c}, \pm \frac{a}{c}i\right\}$.

632. a)
$$\left\{1, \frac{3}{2}, \frac{-1 \pm i\sqrt{3}}{2}, \frac{3}{4}(-1 \pm i\sqrt{3})\right\}$$
;

b)
$$\left\{ \frac{1}{2}, -\frac{3}{4}, \frac{3}{8} (1 \pm i\sqrt{3}), \frac{-1 \pm i\sqrt{3}}{4} \right\}$$
.

633. a)
$$\left\{2, 3, -1 \pm i\sqrt{3}, \frac{-3 \pm 3i\sqrt{3}}{2}\right\}$$
; b) $\left\{\frac{1}{2}, 3, \frac{-1 \pm i\sqrt{3}}{4}, \frac{-3 \pm 3i\sqrt{3}}{2}\right\}$.

634.
$$\{\pm 1, \pm 2, \pm i, \pm 2i\}.$$
 635. $\{\pm 1, \pm 2, \pm \frac{\sqrt{65}i}{4}\}.$

636. Smena:
$$x^2 + 2a^2 + m^2 = y$$
, $\{\pm a, \pm \sqrt{2m^2 - a^2}\}$.

637.
$$\{\pm (a^2-1), \pm (a+1)\}.$$
 638. $\{\pm \sqrt{a}, \pm \frac{a}{n}\sqrt{3}\}.$

639.
$$\{\pm\sqrt{2(m+2)},\pm\sqrt{2m+1}\}.$$
 640. $\{\pm3a\pm ai\sqrt{3},\pm2a,\pm a\sqrt{2}\}.$

641.
$$\left\{-\frac{31}{10}, -\frac{29}{10}, -13, 7\right\}$$
. **642.** $\left\{-\frac{3}{2}, 0, \frac{3}{2}, 3\right\}$.

643.
$$\left\{-1, \frac{5}{3}, \frac{7}{3}, 5\right\}$$
. **644.** $\left\{-a \pm \sqrt{\frac{b^2 \pm \sqrt{b^4 - 4}}{2}}\right\}$.

2.3.4. Simetrične (recipročne) jednačine

645. Jedan koren date jednačine je x=-1. Količnik polinoma

$$3x^3 + 13x^2 + 13x + 3$$

i činioca x+1 daje polinom $3x^2+10x+3$. Dakle, data jednačina ekvivalentna je jednačini

$$(x+1)(3x^2+10x+3) = 0 \iff x+1 = 0 \lor 3x^2+10x+3 = 0.$$

Skup rešenja date jednačine je $\left\{-1, -\frac{1}{3}, -3\right\}$.

646.
$$\left\{-1, \frac{4}{3}, \frac{3}{4}\right\}$$
. **647.** $\left\{\frac{1}{2}, 1, 2\right\}$. **648.** $\left\{1, -\frac{3}{5}, -\frac{5}{3}\right\}$.

649. Neka je $x+\frac{1}{x}=z$, tada je $x^2+\frac{1}{x^2}=z^2-2$. Ako se data jednačina podeli sa x^2 ona je ekvivalentna jednačini

$$6\left(x^2 + \frac{1}{x^2}\right) + 5\left(x + \frac{1}{x}\right) - 38 = 0.$$

S obzirom na uvedenu smenu, data jednačina je ekvivalentna konjunkciji

$$6z^2 + 5z - 50 = 0 \land x + \frac{1}{x} = z.$$

Kako su $z_1=\frac{5}{2}$ i $z_2=-\frac{10}{3}$ rešenja prve jednačine, tada je

$$x + \frac{1}{x} = \frac{5}{2} \lor x + \frac{1}{x} = -\frac{10}{3}.$$

Rešenje ove disjunkcije daje skup rešenja date jednačine $\left\{-3, -\frac{1}{3}, \frac{1}{2}, 2\right\}$.

650. Rešavanje date jednačine svodi se na niz ekvivalencija

$$12(x^{4} - 1) - 25x(x^{2} - 1) = 0 \iff (x^{2} - 1)(12x^{2} - 25x + 12) = 0$$
$$\iff (x - 1)(x + 1)(12x^{2} - 25x + 12) = 0$$
$$\iff x - 1 = 0 \lor x + 1 = 0 \lor 12x^{2} - 25x + 12 = 0.$$

Skup rešenja date jednačine je

$$\left\{-1, 1, \frac{3}{4}, \frac{4}{3}\right\}$$
.

651. Kako je x=-1 koren date jednačine, tada je ona ekvivalentna jednačini

$$(x+1)(12x^4 - 4x^3 - 41x^2 + 4x + 12) = 0$$

$$\iff x+1 = 0 \lor 12x^4 - 4x^3 - 41x^2 + 4x + 12 = 0.$$

Rešenje poslednje disjunkcije daje skup rešenja date jednačine:

$$\left\{-2, -\frac{1}{2}, -1, \frac{2}{3}, \frac{3}{2}\right\}$$
.

652.
$$\left\{-3, -\frac{1}{3}, \frac{1}{2}, 1, 2\right\}$$
. **653.** $\left\{-2, -\sqrt{3}, -2 + \sqrt{3}, -1, \frac{1}{2}, 2\right\}$.

654. Ako se data jednačina podeli sa x^3 , ona je ekvivalentna jednačini

$$x^{3} + \frac{1}{x^{3}} + 4\left(x^{2} + \frac{1}{x^{2}}\right) - 6\left(x + \frac{1}{x}\right) - 28 = 0.$$

Iz smene x+1=z dobija se da je $x^2+\frac{1}{x^2}=z^2-2$, a $x^3+\frac{1}{x^3}=z^3-3z$. Rešavanje date jednačine svodi se na konjunkciju

$$z^3 + 4z^2 - 9z - 36 = 0 \land ax + 1 = z.$$

Skup rešenja date jednačine je

$$\left\{-2, \sqrt{3}, -2 + \sqrt{3}, \frac{3 - \sqrt{5}}{2}, \frac{3 + \sqrt{5}}{2}, \frac{-3 - \sqrt{5}}{2}, \frac{-3 + \sqrt{5}}{2}\right\}.$$

655.
$$\left\{-2, -\frac{1}{2}, 1\right\}$$
. **656.** $\left\{1, \frac{4}{3}, \frac{3}{4}\right\}$ **657.** $\left\{\frac{1}{2}, 2, \frac{1 \pm i\sqrt{3}}{2}\right\}$.

658.
$$\left\{\frac{1}{10}, \frac{1}{5}, 5, 10\right\}$$
. **659.** $\left\{\frac{1}{n}, n, -n \pm \sqrt{n^2 - 1}\right\}$.

660. Data jednačina ekvivalentna je simetričnoj jednačini

$$12x^4 - 56x^3 + 89x^2 - 56x + 12 = 0. \quad \left\{2, \frac{1}{2}, \frac{2}{3}, \frac{3}{2}\right\}.$$

661.
$$\{-2, i, -i\}$$
. **662.** $\{1, \frac{1 \pm i\sqrt{3}}{2}\}$. **663.** $\{-1, -\frac{3}{4}, -\frac{4}{3}, 1\}$.

664.
$$\left\{-3, -\frac{1}{3}, 2, \frac{1}{2}\right\}$$
. **665.** $\left\{\frac{1}{3}, 2, \frac{1}{2}, 3\right\}$. **666.** $\left\{-1, \frac{4}{9}, \frac{9}{4}\right\}$.

667.
$$\left\{1, \frac{4}{9}, \frac{9}{4}\right\}$$
. **668.** $\left\{-1, 4, \frac{1}{4}, 2, \frac{1}{2}\right\}$. **669.** $\left\{1, 3, \frac{1}{3}, 2, \frac{1}{2}\right\}$.

670.
$$\left\{-1, -2, -\frac{1}{2}, \frac{2}{3}, \frac{3}{2}\right\}$$
. **671.** $\left\{-2, \pm i\right\}$. **672.** $\left\{-\frac{3}{2}, -\frac{2}{3}, 1, \frac{1}{2}, 2\right\}$.

673.
$$\left\{-1, 1, \frac{1}{2}, 2\right\}$$
. **674.** $\left\{-3, -\frac{1}{3}, -1, \frac{1}{2}, 2\right\}$. **675.** $\left\{1, m, \frac{1}{m}\right\}$.

676.
$$\left\{-a, -\frac{1}{a}, -m, -\frac{1}{m}\right\}$$
. **677.** $\left\{-1, 1, 3, \frac{1}{3}, i, -i\right\}$.

678.
$$\left\{-1, 1, 2, \frac{1}{2}, -2 \pm \sqrt{3}\right\}$$
. **679.** $\left\{-1, -i, i, \frac{1 \pm i\sqrt{3}}{2}, -2 \pm \sqrt{3}\right\}$.

2.4. Kvadratna funkcija

Približni grafici datih funkcija pod a) i b) prikazani su na slici 4.

681. Važe sledeće ekvivalencije

$$\frac{1}{3}x^2 - 3 > 0 \Longleftrightarrow x^2 - 9 > 0$$

$$\iff (x - 3)(x + 3) > 0$$

$$\iff (x - 3 > 0 \land x + 3 > 0)$$

$$\lor (x - 3 < 0 \land x + 3 < 0)$$

$$\iff (x > 3 \land x > -3)$$

$$\lor (x < 3 \land x < -3)$$

$$\iff (x < -3 \lor x > 3)$$

Ova disjunkcija predstavlja vrednosti argumenta za koje je funkcija pozitivna. Slično se dobija ekvivalencija $f(x) < 0 \Longleftrightarrow -3 < x < 3$. Nule date funkcije su $x_1 = -3$ i $x_2 = 3$.

682. Slično prethodnom zadatku, nalazimo

$$\begin{split} &-\frac{1}{4}x^2+1>0 \Longleftrightarrow -2 < x < 2. \\ &-\frac{1}{4}x^2+1>0 \Longleftrightarrow x \in (-\infty,-2) \cup (2,+\infty), \\ &-\frac{1}{4}x^2+1=0 \Longleftrightarrow x=2 \vee x=-2. \end{split}$$

Prve dve nejednakosti određuju znak date funkcije, a treća (jednačina) određuje nule.

684. c) Iz formule
$$f(x) = -\frac{1}{2}x^2 + 2$$
 sledi

$$x = \sqrt{4 - 2f(x)}$$
 ili $x = -\sqrt{4 - 2f(x)}$.

Da bi $x \in \mathbb{R}$, potrebno je da $4-2f(x) \geq 0$, tj. $f(x) \leq 2$. Dakle, kodomen ove funkcije je skup $A = \{y | -\infty < y \leq 2\}$. Iz f(x) = 0 sleduje x = 2 ili x = -2. $f_{\max} = 2$ za x = 0. f(x) > 0 u intervalu -2 < x < 2, f(x) < 0 za $x \in (-\infty, -2) \cup (2, +\infty)$. Grafik date funkcije prikazan je na slici 5.

685. a) $y = (x-3)^2$; b) $y = -(x+1)^2$.

686. a)
$$y = -\left(x - \frac{3}{2}\right)^2 + \frac{9}{4}$$
; b) $y = 2\left(x - \frac{5}{4}\right)^2 - \frac{25}{8}$.

687. a)
$$y = -2\left(x - \frac{5}{2}\right)^2 + \frac{41}{8}$$
; b) $y = (x+3)^2 - 17$.

688. a)
$$y = -\frac{1}{3}(x-3)^2 + 7$$
; b) $y = \frac{2}{3}(x+2)^2$.

689. a)
$$y = (x+3)^2 - 14$$
; b) $y = -\frac{1}{2}(x+2)^2 + \frac{7}{2}$.

690. a) Kanonični oblik date funkcije je $y=-(x-2)^2+4$; teme parabole je u tački T(2,4); osa parabole je prava x=2; nule date funkcije su x=0 i x=4; y>0 za $x\in(0,4),\ y<0$ za $x\in(-\infty,0)\cup(4,+\infty)$. Za x<2 funkcija raste, a za x>2 funkcija pada. Grafik je prikazan na slici 6.

b) Kanonični oblik date funkcije glasi: $y=\frac{1}{2}(x+1)^2-\frac{1}{2}$. Teme parabole je tačka $T\left(-1,-\frac{1}{2}\right)$. Osa parabole je prava x=-1. Nule funkcije su x=0 i x=-2. Za $x\in(-\infty,-2)\cup(0,+\infty)$ je y>0, dok je za $x\in(-2,0),\,y<0$. Za x<-1 funkcija opada, a za x>-1 funkcija raste. Grafik je prikazan na slici 7.

691. Kanonični oblici datih funkcija su:

a)
$$y = \frac{1}{2}(x+3)^2 + 1$$
; b) $y = -\frac{1}{2}(x-3)^2 + \frac{25}{2}$.

Grafici su prikazani na slici 8.

Sl. 8.

692. Kanonični oblici datih funkcija su:

a)
$$y = -\frac{1}{8}(x+1)^2 + 2$$
; b) $y = \frac{1}{3}(x+3)^2 - 1$.

Grafici su prikazani na slici 9.

Sl. 9.

693. Kanonični oblici datih funkcija su:

2)
$$y = \frac{1}{2}(x-2)^2 + 1$$
; b) $y = -\frac{1}{3}(x+1)^2 - 2$.

694. a) Za $x\in(0,+\infty)$ je |x|=x, pa je $y=x^2-2x=(x-1)^2-1$ $(x\in(0,+\infty))$. Promene te funkcije date su sledećom tabelom

Za $x\in (-\infty,0)$ je x|=-x, pa je $y=x^2+2x=(x+1)^2-1$ $(x\in (-\infty,0))$, a njene promene su date tabelom

$$\begin{array}{c|cccc} x & -\infty & -1 & 0 \\ \hline y & -\infty & & -1 & \nearrow & 0 \\ \end{array}$$

Grafik funkcije $y = x^2 - 2|x|$ prikazan je na slici 10 (levo).

b) Slično kao pod a) za $x \ge 0$ imamo $y = x^2 + x = \left(x + \frac{1}{2}\right)^2 - \frac{1}{4}$.

Sl. 10.

Grafik je prikazan na slici 10 (desno).

695. a) Kako je

$$|x - x^2| = \begin{cases} x - x^2 & \text{za } x \in \{0, 1\} \\ -(x - x^2) & \text{za } x \in (-\infty, 0) \cup (1, +\infty) \end{cases}$$

Imamo $y=-x^2$ za $x\in\{0,1\}$ i $y=x^2-2x$ za $x\in(-\infty,0)\cup(1,+\infty)$. Grafik date funkcije prikazan je na slici 11 (levo), a njen tok prikazan je sledećom tabelom

b) Pošto je

$$|x + x^2| = \begin{cases} x + x^2 & \text{za } x \in (-\infty, -1] \cup \{0, +\infty) \\ -(x + x^2) & \text{za } x \in (-1, 0) \end{cases}$$

to je $y=-x^2,\,x\in\{-\infty,-1\}\cup\{0,+\infty),\,y=x^2+2x,\,x\in(-1,0).$ Grafik date funkcije prikazan je na slici 11 (desno), a njen tok dat je u tabeli

$$\begin{array}{c|ccccc} x & -\infty & 0 & +\infty \\ \hline y & -\infty & \nearrow & 0 & +\infty \\ \end{array}$$

Sl. 11.

697. Kako je $x_1 = 6$, y = 0 i za x = 2, y = 8, dobijamo sistem

$$36a + c = -36 \wedge 4a + c = -4.$$

Rešenja sistema su: $a=-1,\,c=0,$ pa je tražena funkcija $y=-x^2+6x.$

698. Slično prethodnom zadatku, nalazimo da je $a=-1;\ b=-2,\ c=8$ i funkcija glasi

$$y = -x^2 - 2x + 8 = -(x+1)^2 + 9.$$

699.
$$a = 1, b = -6, i c = 5, pa je $f(x) = x^2 - 6x + 5 = (x - 3)^2 - 4.$$$

700. Funkcija dostiže minimalnu vrednost za $x=-\frac{b}{2a}$. Zamenom nalazimo $-\frac{m-4}{2(m-1)}=1 \Longleftrightarrow m-2, \text{ pa je } y=x^2-2|x|-3.$

701.
$$p = 2$$
, $y = x^2 - 6|x| + 5$. **702.** $m = 5$, $f(x) = -x^2 + 10|x| - 16$.

703. Iz obrasca $\beta = \frac{4ac - b^2}{4a}$ proizilazi da je

$$\frac{4a(-5) - (-2)^2}{4a} = -2 \iff a = \frac{1}{3}.$$

Tražena funkcija je $y = -\frac{1}{3}x^2 - 2x - 5 = -\frac{1}{3}(x+3)^2 - 2x$

704. a)
$$p = -1$$
, $q = -6$; b) $p = 4$; $q = 3$.

705.
$$a = \frac{1}{2}$$
, $y = \frac{1}{2}x^2 - 2x + 3 = \frac{1}{2}(x-2)^2 + 1$.

706. Iz pretpostavke $b^2 - 4ac = 0 \Rightarrow b = \pm 2\sqrt{ac}$, pa je

$$y = ax^{2} + bx + c = ax^{2} \pm 2\sqrt{ac}x + c = (x\sqrt{a} \pm \sqrt{c})^{2}$$

Obratno važe implikacije

$$ax^{2} + bx + c = (mx + n)^{2} \Rightarrow a = m^{2} \land b = 2mn \land c = n^{2} \Rightarrow b^{2} - 4ac = 0.$$

708. Stavimo x+1=t, tj. t=x-1, gde je t nova promenljiva. Data funkcija tada postaje $f(t)=(t-1)^2-3(t-1)+2$, pa je tražena funkcija

$$f(x) = (x-1)^2 - 3(x-1) + 2$$
, tj. $f(x) = x^2 - 5x + 6$.

709.
$$f(x-a) = (x-2a)^2 + (x-2a) + 2$$
.

710.
$$f(x) = x^2 - 6x + 6$$
. **711.** $f(x) = x^2 + 5x + 6$

712. Ako je x jedan sabirak, drugi je 24 - x, pa je traženi zbir

$$s(x) = x^2 + (24 - x)^2 = 2x^2 - 48x + 576$$

Ovaj zbir ima minimalnu vrednost za $x=-\frac{b}{2a}=-\frac{-48}{2\cdot 2}=12$, što znači da broj 24 treba rastaviti na dva jednaka sabirka da bi zbir njihovih kvadrata bio minimalan. Taj minimum je $\frac{4ac-b^2}{4a}=288$, tj. $2\cdot 12^2=288$.

713. Ako je prva duž x (0 < x < a) druga je a - x, pa je traženi zbir:

$$y = x^{2} + 2(a - x)^{2} = 3x^{2} - 4ax + 2a^{2}$$
.

Na osnovu toga nalazimo da je tražena minimalna vrednost $y=\frac{2a^2}{3}$ dostignuta za $x=\frac{2a}{3}$, odnosno $a-x=\frac{a}{3}$.

714. Površina upisanog kvadrata stranice a u dati kvadrat je $P=a^2=(8-x)^2+x^2$ (slika 12). Dakle, $P=2x^2-16x+64$, pa je $P_{\min}=32$.

715. Neka je stranica kvadrata y a stranice pravougaonika x i 3x. Tada je 4y+2(3x+x)=56, $P=y^2+3x^2$. Iz toga proizilazi da je $P=7x^2-56x+196$. Za x=4 površina dostiže minimalnu vrednost $P_{\min}=84$. Tada je y=14-8=6, pa žicu treba podeliti na delove čije su dužine 24 cm i 32 cm.

Sl. 12

716. Neka je manja osnovica trapeza y i krak x. Tada je veća osnovica x+y, pa je 3x+2y=200 i $P=-\frac{x^2\sqrt{3}}{2}+50x\sqrt{3}$. Površina ima maksimalnu vrednost $P_{\max}=1250\sqrt{3}$ za x=50. Tada je veća osnovica trapeza y+x=75 cm.

717. Ako su stranice pravouga
onika x i y, njegova površina je P=xy. Iz sličnosti trouglova ABC i
 GFC dobijamo $y=-\frac{h}{a}x+h$, pa je $P(x)=-\frac{h}{a}x^2+hx$. Odavde nalazimo da je $P_{\max}=\frac{ah}{4}$ za $x=\frac{a}{2}$ i $y=\frac{h}{2}$.

718. Neka je DM visina trapeza ABCD i neka je AD=x krak i CD=y osnovica tog trapeza. Tada je $AM=5-\frac{y}{2}$. Iz pravouglog trougla ABD imamo $AD^2=AM\cdot AB, \ x^2=\left(5-\frac{y}{2}\right)\cdot 10,$ a odavde je $y=\frac{50-x^2}{5}$. Obim trapeza u funkciji kraka je $O(x)=10+\frac{50-x^2}{5}+2x=-\frac{1}{5}x^2+2x+20$. Obim je maksimalan za $x=-\frac{b}{2a}=5,\ y=5,$ tj. $O_{\max}=25$ cm.

719.
$$P(x) = \frac{5}{2}x^2 - \frac{3}{2}ax + a^2$$
. Površina dostiže minimum $P_{\min} = \frac{31a^2}{40}$ za $x = \frac{3a}{10}$.

720. Neka su $y = (m-1)x^2 + 2mx + 4$ i $y = (n-1)x^2 + 2nx + 4$ dve parabole datog skupa. Pokažimo da one sadrže dve fiksne tačke, tj. odredimo njihove zajedničke tačke i ustanovimo da one ne zavise od m i n. Imamo

$$(m-n)x^{2} + 2mx + 4 = (n-1)x^{2} + 2nx + 4$$

$$\iff (m-n)x^{2} + 2(m-n)x = 0 \land m \neq n$$

$$\iff x^{2} + 2x = 0 \iff x_{1} = 0 \lor x_{2} = -2.$$

Za $x_1=0$ je $y_1=4$ i za $x_2=-2$ je $y_2=0$. Dakle, tražene fiksne tačke su (0,4) i (-2,0).

b) Parabola dodiruje x-osu ako je

$$\frac{4ac - b^2}{4a} = 0 \implies 4m^2 - 16(m - 1) = 0 \implies (m - 2)^2 = 0 \implies m = 2.$$

Dakle, parabola koja dodiruje x-osu ima oblik $y=x^2+4x+4$. Parabola sa temenom u tački B zadovoljava uslov

$$-\frac{b}{2a} = 0 \Rightarrow -\frac{2m}{2(m-1)} = 0 \Rightarrow m = 0,$$

pa je parabola sa temenom u $B, y = -x^2 + 4$.

721. a) Teme parabole $y=x^2-(k+1)x+k$ je tačka $T\left(\frac{k+1}{2},-\frac{(k-1)^2}{4}\right)$. Ako sa x i y označimo koordinate tačke T, imamo $x=\frac{k+1}{2},\ y=-\frac{(k-1)^2}{4}$. Odavde eliminacijom parametra k dobijamo $y=-(x-1)^2$ što predstavlja geometrijsko mesto temena.

b) Uočimo parabole $y=x^2-x$ i $y=x^2-1$ koje se dobijaju iz datog skupa za k=0 i k=-1, respektivno. Njihova presečna tačka je P(1,0). Direktno se proverava da li sve parabole sadrže ovu tačku.

722. a) Traženo geometrijsko mesto tačaka je prava x + y = 1.

b) Fiksna tačka M(0,1).

c) U datoj familiji parabola nalazi se (za a=0) i jedna prava y=-2x+1. Ta prava je zajednička tangenta svih parabola i sve one se dodiruju u tački M(0,1).

723. Kako je

$$f\left(-\frac{b}{2a}+h\right)=ah^2+\frac{4ac-b^2}{4a}\quad \text{i}\quad f\left(-\frac{b}{2a}-h\right)=ah^2+\frac{4ac-b^2}{4a},$$

zaista je

$$f\left(-\frac{b}{2a} + h\right) = f\left(-\frac{b}{2a} - h\right).$$

Prava $x = -\frac{b}{2a}$ je osa simetrije grafika date funkcije.

724. Geometrijsko mesto minimuma je parabola $y = x^2 - 2$.

725. Zbir kubova rešenja date jednačine je

$$s = x_1^3 + x_2^3 = (x_1 + x_2)((x_1 + x_2)^2 - 3x_1x_2).$$

Kako je $x_1 + x_2 = 1 - a$, a $x_1 \cdot x_2 = \frac{2a^2 - 5a}{6}$, to je $s = -\frac{1}{2}a^2 - \frac{1}{2}a + 1$. Za $a = -\frac{1}{2}$, $s_{\text{max}} = \frac{9}{8}$.

726. Funkcija $k \to F(k) = 2((k-1)^2 + (3k+1)(k-1) + 5k + (k-1) - 4k + 7) = 8k^2 + 6k + 1$. Za $k = -\frac{3}{8}$, $F_{\min} = -\frac{1}{8}$.

727. a) Za x < 1, $f(x) = x^2 + 4x$, a za $x \ge 1$, $f(x) = x^2 - 8x + 12$.

Grafik je prikazan na slici 13.

b) Za x < -1, $g(x) = -x^2 - 6x - 8$, a za $x \ge -1$, $g(x) = -x^2 + 2x$.

Grafik je prikazan na slici 14.

728. a) Funkcija je $x\to f(x)=x^2+4(k+1)x+5(k^2+4)$. Diskriminanta $D=-(k-4)^2<0$ za svako k pa je f(x)>0 za svako x.

b) Funkcija je $x \to f(x) = x^2 + 2(1+2k)x + 5k^2 + 5$. Diskriminanta $D = -(k-2)^2 < 0$ za svako k, pa je f(x) > 0 za svako x.

729. Grafici datih funkcija prikazani su na slikama 15 (levo) i 15 (desno).

730. Kako je $y^2 = 1 - x^2$, tada je $f(x) = x^6 + (1 - x^2)^3 = 3x^4 - 3x^2 + 1$. Za $x^2 = -\frac{b}{2a} = \frac{3}{2 \cdot 3} = \frac{1}{2} \Rightarrow x = \frac{\sqrt{2}}{2}$. Tražena mmimalna vrednost izraza $x^6 + y^6$ je $f_{\min} = f\left(\frac{\sqrt{2}}{2}\right) = \frac{1}{4}$.

2.5. Kvadratne nejednačine. Znak kvadratnog trinoma

731. a) Pozitivan za $x\notin\left[-\frac{1}{3},4\right]$, nula za $x=-\frac{1}{3}\vee x=4$, negativan za $x\in\left(-\frac{3}{2},4\right)$.

b)
 Pozitivan za
$$x\notin\left[-\frac{3}{2},2\right]$$
, nula za $x=\frac{3}{2}\vee x=2$, negativan za $x\in\left(\frac{3}{2},2\right)$.

732. a) Pozitivan za $x \in (-2,1/2)$, nula za $x = -2 \lor x = \frac{1}{2}$, negativan za

b) Pozitivan za $x \in (-1, 4/5)$, nula za $x = -1 \lor x = 4/5$, negativan za $x \notin$

733. a) Pozitivan za $x \neq -\frac{2}{3}$. b) Pozitivan za $x \in (-4,-2)$, nula za x=-4 ili x=-2, negativan za $x \notin [-4,-2]$.

734. a) $x \neq \frac{1}{2}$; b) $\frac{3}{5} < x < 1$. **735.** a) $0 \le x \le 4$; b) -1 < x < 1. **736.** a) -3 < x < -1 ili 1 < x < 5; b) $x \in (-\infty, -4) \cup (-1, 2) \cup (7, +\infty)$.

737. $x \in \left(-3, -\frac{1}{2}\right) \cup (1, 2)$. **738.** 1 < x < 8/3.

739. $x \in (-\infty, 1) \cup \left(\frac{3}{2}, 2\right) \cup (3, +\infty).$

740. $D = b^2 - 4ac < 0 \Rightarrow a \in [-7, 1].$ **741.** D < 0 za svako m.

742. Diskriminanta date kvadratne jednačine je funkcija $D = -6a^2 - 3a + 9$, njene nule su 1 i $-\frac{3}{2}$ a grafik je prikazan u Dekartovoj ravni aOD na sl. 16

(levo). Odatle zaključujemo da je $D \geq 0$, za svako $a \in \left[-\frac{3}{2}, 1\right]$, rešenja su realna.

743. Diskriminanta ove kvadratne jednačine je kvadratna funkcija $D=a^2-$ 16a + 48. Njen grafik je prikazan na slici 16 (desno), odakle zaključujemo da su rešenja realna za $a \in (-\infty, 4) \cup [12, +\infty)$.

Sl. 16.

744.
$$b \in (-\infty, -2) \cup \left(-\frac{4}{5}, +\infty\right), b \neq 0, b \neq \pm 4.$$

745.
$$b \in (-\infty, 6] \cup [10, +\infty)$$
. **746.** $r < -3$ ili $r \ge 1$.

747.
$$r < -2$$
. **748.** $-8 < a < 2$.

749. Iz pretpostavke zadatka imamo sistem

$$a > 0 \land 4a + 2b + c = 0 \land 9a + 3b + c = 0.$$

Odavde nalazimo a > 0, b = -5a, c = 6a.

750.
$$a < 0$$
, $b = -a$, $c = -2a$.

751. Trinom $Ax^2 + Bx + C$ pozitivan je za svako x ako je A > 0 i diskriminanta D < 0. Za dati trinom je $A = b^2 > 0$ i diskriminanta

$$D = -(a+b+c)(a+b-c)(b+c-a)(a+c-b) < 0,$$

jer su a, b i c merni brojevi stranica trougla.

752.
$$-6 < a < 6$$
.

753. Data nejednačina ekvivalentna je sistemu nejednačina:

$$\left(\frac{2x^2 + mx - 4}{x^2 - x + 1} < 4 \land \frac{2x^2 + mx - 4}{x^2 - x + 1} > -6\right)$$

$$\iff \left(\frac{-2x^2 + (m + 4)x - 8}{x^2 - x + 1} < 0 \land \frac{8x^2 + (m - 6)x + 2}{x^2 - x + 1} > 0\right).$$

Kako je trinom $x^2 - x + 1$ pozitivan za svako realno x, sistem postaje

$$-2x^{2} + (m+4)x - 8 < 0 \wedge 8x^{2} + (m-6)x + 2 > 0.$$

Prva nejednakost važi za svako realno x ako i samo ako je $m \in (-12, 4)$, dok druga važi za svako x ako i samo ako je $m \in (-2, 14)$. Dakle, data nejednakost zadovoljena je za svako x kad $m \in (-2, 4)$.

754.
$$-1 < a < 2$$
.

755. Data nejednačina može se zameniti nejednačinama $x^2+5x \leq -14$ ili $x^2-5x \geq 14$. Iz toga dobijamo $x \in (-\infty,-2] \cup [7,+\infty)$. Do rešenja se može doći i posmatranjem grafika funkcija $y=|x^2-5x|$ i y=14.

756. a)
$$x \in (2,4)$$
; b) $x \in (-\infty, -1) \cup (-1,1) \cup (3, +\infty)$.

757. a)
$$x \in (4,6)$$
; b) $x \in (2,5)$.

758. $m \in [-2,0) \cup (3,+\infty)$. **759.** $a \in [-6,-1) \cup (3,+\infty)$.

760. a) -6 < x < 2; b) -6 < x < 2.

761. Data nejednakost je ispunjena za svako realno x ako i samo ako je $a-1>0 \wedge a^2-(a-1)(3a-2)<0$. Ova konjunkcija je ispunjena za a>2.

762. a)
$$x \in (-\infty, -3) \cup \left(-2, -\frac{2}{3}\right) \cup (1, +\infty)$$
; b) $x \in [-4, -3] \cup (0, +\infty)$.

763. a)
$$m > 3$$
; b) $\frac{25}{33} < m < 1$.

764. a)
$$-\infty < m < -\frac{7}{3}$$
; b) $m < 0$. **765.** $-3 .$

766. Kako je $y = \frac{10-5x}{2}$, data nejednakost postaje

$$3x\frac{10-5x}{2} - x^2 - \frac{(10-5x)^2}{4} < 7,$$

odakle sledi $-59x^2 + 160x - 128 < 0$. Ova nejednakost je ispunjena za svako x.

767. Data nejednakost ekvivalentna je sistemu nejednakosti

a)
$$-3 < \frac{x^2 - kx + 1}{x^2 + x + 1} < 3$$
, odakle proizilazi da $k \in (-5, 1)$; b) $k \in (0, 4)$.

768. Primedba. Znak rešenja kvadratne jednačine zavisi od proizvoda x_1x_2 i zbira x_1+x_2 , uz uslov $D=b^2-4ac\geq 0$. Rešenja su istog znaka ako i samo ako je $x_1x_2>0 \land D\geq 0$, tj.

$$\frac{k-3}{k} > 0 \wedge (k-2)^2 - k(k-3) \ge 0.$$

Odatle sledi da je $k \in (-\infty, 0) \cup (3, 4]$.

769.
$$-2 \le a < 0$$
. **770.** $k \in (3, 4) \cup (4, +\infty)$.

771.
$$m \in (-\infty, 0) \cup (4, +\infty)$$
. **772.** $\frac{5}{9} . 773. $n > 3$.$

774. Za m<-3, oba rešenja su negativna; za -3< m<1, rešenja su suprotnog znaka; $1< m\leq \frac{3}{2}$, oba rešenja su pozitivna; za $m>\frac{3}{2}$, rešenja su konjugovano kompleksna.

775. Za egzistenciju rešenja treba ispitati znak diskriminante, a za znak rešenja treba ispitati znak proizvoda rešenja tj. $P=x_1\cdot x_2$ i znak sume rešenja $S=x_1+x_2$.

Rešenja su realna ako je

$$D = (m-4)^2 - (m+1) \cdot (m+4) \ge 0 \quad \text{tj.}$$

$$D = m^2 - 4m + 4 - (m^2 + 5m + 4) \ge 0 \quad \text{ili} \quad -13m + 12 > 0.$$

Dakle $m \leq \frac{12}{13}$.

m	$-\infty$ -4	-1	$+\infty$
m+4	_ 0	+	+
m+1	-	- 0	+
\overline{P}	+ 0	_	+

Proizvod rešenja je $P=\frac{m+4}{m+1},$ a suma $S=\frac{2(m-4)}{m+1}.$ Znak proizvoda predstavljen je gornjom tabelom.

Znak sume rešenja je prikazan sledećom tabelom

m	$-\infty$ -	1	4	$+\infty$
m-4	_	-	Ö	+
m+1	 	+		+
\overline{S}	+	_	Ó	+

Za znake rešenja upotrebiti znak $D,\,P$ i Su zavisnosti od parametra m,što se može prikazati sledećom tabelom.

m	$-\infty$ -	-4 -	-1 12,	/13 4	1 +∞
D	+	+	+] –	_
P	+ () –	+		_
S	+	+	_	()
Rezultat	$0 < x_1 < x_2$	$ \begin{aligned} x_1 < 0 < x_2 \\ x_1 < x_2 \end{aligned} $	$x_1 < x_2 < 0$	x_1, x	$c_2 \in \mathbb{C}$
$0 = x_1 < x_2 \qquad x = -\frac{3}{10} < 0 \qquad x_1 = x_2 < 0$					

Iz tabele izlazi:

- 1) $m \in (-\infty, -4); D > 0, P > 0$ i S > 0. Oba rešenja su pozitivna.
- 2) $m\in (-4,-1);\ D>0,\ P<0$ i S>0rešenja su suprotnog znaka i po apsolutnoj vrednosti je manje negativno rešenje.
- 3) $m\in\left(-1,\frac{12}{13}\right),\,D>0,\,P>0$ i S<0oba rešenja su negativna.
- 4) $m \in \left(\frac{12}{13}, +\infty\right), \, D < 0$ rešenja su kompleksna.

Postoje tri granična slučaja, tj.:

- a) Za $m=-4,\,P=0,$ jedno rešenje je nula, drugo rešenje jednako je sumi, dakle pozitivno.
- b) Za m=-1 jednačina se redukuje u linearnu i ima oblik 10x+3=0, odakle izlazi $x=-\frac{3}{10}$, negativno rešenje.
- c) $m=\frac{12}{13}$, imamo dvostruko rešenje jednako polovini zbira rešenja, dakle negativno $\left(x=-\frac{8}{5}\right)$.

776. Diskriminanta date jednačine ima oblik

$$D = 4((1+\lambda)^2 - 3(1-\lambda) \cdot (1+\lambda)) = 8(\lambda+1) \cdot (2\lambda-1).$$

λ	$-\infty$ -	1 1	/2	$1 + \infty$
D	+ () – (+	+
P	_ (+	+	-
S	_ (+	+	_
Rezultat	$x_1 < 0 < x_2$	$x_1, x_2 \in \mathbb{C}$	$0 < x_1 < x_2$	$x_1 < 0 < x_2$
$x_1 < x_2 = 0$ $x_1 = x_2 = 3$				

Za promenu znaka rešenja treba ispitati i znake rešenja proizvoda P i sume S rešenja.

Proizvod rešenja $P=3\frac{1+\lambda}{1-\lambda},$ a njihova suma $S=2\frac{1+\lambda}{1-\lambda}.$

Promene znaka D, P i S u zavisnosti od parametra λ predstavljene su tabelom.

777.

m	$-\infty$ -	-3	2/	3	$3 + \infty$
D	+	+	+]] –	-
P	+	-	+	+	+
S	_	_	+	+	_
Rezultat	$x_1 < x_2 < 0$	$x_1 < 0 < x_2$	$0 < x_1 < x_2$	x_1, x	$_{2}\in\mathbb{C}$

778.

\overline{m}	$-\infty$ $-$	4/3 -1	/3	0	1 +∞
D	-	+ 0	+	+	_
P		+	_	+	
S		_	_	+	
Rezul- tat	$x_1, x_2 \in \mathbb{C}$	$x_1 < x_2 < 0$	$x_1 < 0 < x_2$	$0 < x_1 < x_2$	$x_1, x_2 \in \mathbb{C}$
$x_1 = x_2 = -\frac{3}{2}$ $x_1 = 0$ $x_2 = -12$ $x_1 = x_2 = 2$					

2.6. Sistem od jedne linearne i jedne kvadratne ili dve kvadratne jednačine sa dve nepoznate

779. a)
$$\{(5,2),(2,5)\}$$
; b) $\{x=5, y=3\}$.

780. a)
$$\{(0,1),(-2,0)\}$$
; b) $\{(5,0),(2,3)\}$. **781.** $\{(-2,1),(-1,3)\}$.

782.
$$\{(3,0),(4,3)\}.$$
 783. $\{(0,1),\left(-\frac{5}{2},\frac{1}{2}\right)\}.$

784. a)
$$\left\{ (4,5), \left(-\frac{5}{9}, \frac{4}{9} \right) \right\};$$
 b) $\{ (4,5), (-12, -3) \}.$

785. a)
$$\{(3,2),(2,1)\};$$
 b) $\{(3,2),\left(\frac{3}{2},\frac{1}{2}\right)\}.$ **786.** $\{(2,1),(4,-1)\}.$

787. a)
$$\{(a^2, 3a^2), (3a^2, a^2)\}$$
; b) $\{(3a, 2a), (2a, 3a)\}$.

788.
$$\left\{ \left(\frac{a}{b}, \frac{b}{a} \right) \right\}$$
. **789.** $\left\{ \left(\frac{a}{a+b}, \frac{b}{a-b} \right), \left(\frac{b}{a-b}, \frac{a}{a+b} \right) \right\}$.

790.
$$\{(m^2-1, m+1), (1-m^2, -m-1)\},$$
 791. $\{(a, a)\}.$

792.
$$\{(a, b - a), (b - a, a)\}.$$
 793. $\{(2, -3), (-3, 2)\}.$

794.
$$\{(3,2), (3,-3), (-4,2), (-4,-3)\}.$$

795.
$$\{(\sqrt{3}, \sqrt{2}), (\sqrt{3}, -\sqrt{2}), (-\sqrt{3}, \sqrt{2}), (-\sqrt{3}, -\sqrt{2})\}.$$

796.
$$\{(\pm 4, -3), (\pm 3, 4)\}.$$
 797. $\{(\pm 3, 2), (\pm \sqrt{14}, -3)\}.$

798.
$$\{(\pm 3, \mp 5), (\pm 5, \mp 3)\}.$$
 799. $\{(\pm 2, \pm 3), (\pm 1, \pm 6)\}.$

800.
$$\{(2,6),(-2,-6)\}.$$
 801. $\{\pm 5,\pm 2),(\pm 2,\pm 5)\}.$

802.
$$\{(\pm 2, \pm 3), (\pm 3, \pm 2)\}.$$
 803. $\{(\pm 5, \pm 2)\}.$

804.
$$\left\{ (5,3), (-3,-5), \left(-\frac{15 \pm \sqrt{217}}{2}, \frac{15 \pm \sqrt{217}}{2} \right) \right\}$$
.

805.
$$\left\{ (3,4), (4,3), \left(\frac{-24 \pm \sqrt{590}}{2}, \frac{-24 \mp \sqrt{590}}{2} \right) \right\}$$

806.
$$\left\{ (1,2) \left(11, -\frac{22}{19} \right) \right\}$$
, (Smena: $\frac{1}{x} = u$, $\frac{1}{y} = v$).

807.
$$\left\{ (9,1), \left(11\frac{1}{4}, -1\frac{1}{4}\right) \right\}$$
. **808.** $\left\{ (\pm 5, \pm 1) \right\}$. **809.** $\left\{ (\pm 3, \pm 2) \right\}$.

810.
$$\{(\pm 1, \mp 9), (\pm 9, \pm 1)\}.$$
 811. $\{(\pm 5, \pm 1), (\pm 1, \pm 5)\}.$

812.
$$\left\{ (1,4), \left(-\frac{16}{5}, \frac{13}{5} \right) \right\}.$$
 813. $\left\{ (1,3), (-3,-1) \right\}.$

814.
$$\{(2,1),(1,1)\}.$$
 815. $\{(1,1),(1,-3)\}.$

816.
$$\{(2, \pm\sqrt{5}, \pm\sqrt{5}), (0, 2), (3, 2)\}.$$
 817. $\{(\pm\frac{m}{2}, \pm m), (\pm m, \pm\frac{m}{2})\}.$

818.
$$\left\{ \left(\pm \frac{a}{3}, \pm \frac{a}{2} \right), \left(\pm \frac{a}{2}, \pm \frac{a}{3} \right) \right\}.$$
 819. $\left\{ \pm 2, 5 \right\}, \left(\pm \sqrt{5}, 4 \right) \right\}.$

820.
$$\{(-1,-2),(2,1)\}.$$
 821. $\{(3,2),(2,3)\}$

822.
$$\left\{ \left(\frac{9}{5}, \frac{9}{10} \right), \left(-3, -\frac{3}{2} \right), \left(\frac{-9 \pm 9\sqrt{15}}{14}, \frac{-3 \pm \sqrt{15}}{14} \right) \right\}.$$

823.
$$\{(\pm 3, \pm 2), (\pm 2, \pm 3)\}.$$
 824. $\{(\pm 4, \pm 1), (\pm \frac{5}{4}\sqrt{10}, \pm \frac{1}{4}\sqrt{10})\}.$

825.
$$\{(\pm 2, \pm 3), (\pm 1, \mp 2)\}.$$
 826. $\{(\pm 1, \pm 2), (\pm 2, \pm 1)\}.$ **827.** $\{(\pm 1, \pm 1)\}.$

$$\mathbf{828.}\ \left\{\left(\pm\frac{a^2}{\sqrt{a^2+b^2}},\pm\frac{b^2}{\sqrt{a^2+b^2}}\right)\right\}. \qquad \mathbf{829.}\ \left\{(\pm 2,\pm 3),\left(\pm\frac{\sqrt{2}}{2},\pm\frac{5\sqrt{2}}{2}\right)\right\}.$$

830.
$$\{(-1,1),(2,1)\}.$$
 831. $\{(4,3),(3,4),(6\pm\sqrt{29},6\mp\sqrt{29})\}.$

832.
$$\{(3,-1),(-1,3)\}.$$
 833. $\{(3\pm\sqrt{2},3\mp\sqrt{2})\}.$

834. Uvesti smene
$$x + y = u$$
, $x \cdot y = v$. Rezultat: $(1,2)$; $(2,1)$.

835. Uvesti smene
$$x + y = u$$
, $x \cdot y = v$. Rezultat: (3,1); (1,3).

836. Deobom prve jednačine sistema sa drugom, imamo

$$\frac{x^2 + y\sqrt{xy}}{y^2 + x\sqrt{xy}} = \frac{3}{2} \quad \text{ili} \quad \frac{x(x\sqrt{x} + y\sqrt{y})}{y(y\sqrt{y} + x\sqrt{x})} = \frac{3}{2}.$$

odakle $\sqrt{\frac{x}{y}}=\frac{3}{2} \Rightarrow x=\frac{9y}{4}$. Iz sistema $\frac{x}{2}=\frac{9y}{4}\wedge y^2+x\sqrt{xy}=280$ dobijamo rešenje (18, 8).

837. Kako je

$$\frac{y^2 + x\sqrt[3]{xy^2}}{x^2 + y\sqrt[3]{x^2y}} = \frac{68}{17} = 4 \quad \text{ili} \quad \frac{\sqrt[3]{y^2}(\sqrt[3]{x^4} + \sqrt[3]{y^4})}{\sqrt[3]{x^2}(\sqrt[3]{x^4} + \sqrt[3]{y^4})} = 4,$$

odakle je $\frac{y}{x}=\pm 8 \Rightarrow y=\pm 8x$. Zamenom u bilo kojoj jednačini datog sistema, dobija se $\{(1,\pm 8),(-1,\pm 8)\}$.

838.
$$\{(6,3),(4,5),(-1,-4),(-3,-2)\}.$$
 839. $\{(1,1),\left(-\frac{67}{29},\frac{21}{29}\right)\}.$

840.
$$\left\{ \left(3, \frac{3}{2} \right), \left(\frac{24}{23}, 24 \right) \right\}$$
. (Smena $\frac{6x}{x+y} = z^2$).

841. Druga jednačina datog sistema može se rastaviti na činioce u obliku (x-y)(x+2y-3)=0. Iz toga proizilazi da je x-y=0 ili x+2y-3=0. Dakle, dati sistem ekvivalentan je sistemima:

$$x - y = 0 \wedge 2x^{2} - 15xy + 4y^{2} - 12x + 45y - 24 = 0,$$

$$x + 2y - 3 = 0 \wedge 2x^{2} - 15xy + 4y^{2} - 12x + 45y - 24 = 0.$$

Njihova rešenja su: $\left\{(1,1), \left(\frac{8}{3}, \frac{8}{3}\right), (5,-1)\right\}$.

842. Zbir obe jednačine datog sistema daje

$$3x^2 - 3xy - 18y^2 - 9x + 27y = 0,$$

iz čega proizilazi

$$(x-3y)(x+2y-3) = 0 \Rightarrow x-3y = 0 \lor x+2y-3 = 0.$$

Tada je dati sistem ekvivalentan sistemima:

$$x - 3y = 0 \land x^{2} + 2xy - 8y^{2} - 6x + 18y - 7 = 0,$$

$$x + 2y - 3 = 0 \land x^{2} + 2xy - 8y^{2} - 6x + 18y - 7 = 0.$$

Rešenja datog sistema su: $\{(-3, -1), (3, 1), (1, 1), (-1, 2)\}.$

843.
$$\left\{ \left(\frac{4}{3}\sqrt{3}, -\frac{5}{3}\sqrt{3} \right), \left(-\frac{4}{3}\sqrt{3}, \frac{5}{3}\sqrt{3} \right), (-1, -2), (1, 2) \right\}.$$

844. Smenom x = ty dati sistem ekvivalentan je sistemu

$$y^{3}(t^{2}+1) = 1 \wedge y^{3}(t^{2}+2t+1) = 2.$$

Deobom jednačina ovog sistema $(y\neq 0)$, imamo $\frac{t^3+1}{t^2+2t+1}=\frac{1}{2}\;(t\neq -1)$ ili $\frac{t^2-t+1}{t+1}=\frac{1}{2};$ posle svođenja imamo $2t^2-3t+1=0.$ Rešenja datog sistema su $\left\{\left(\frac{\sqrt[3]{3}}{2},2\frac{\sqrt[3]{3}}{3}\right),\left(\frac{\sqrt[3]{4}}{2},\frac{\sqrt[3]{4}}{2}\right)\right\}.$

845. $\{(2,-5)\}$, (Smena x=ty).

846.
$$\left\{ (-5, -3), (3, 1), \left(\sqrt{10} - 1, \frac{4\sqrt{10} - 5}{5} \right), \left(-\sqrt{10} - 1, -\frac{4\sqrt{10} + 5}{5} \right) \right\}.$$
 (Smena $\frac{y+1}{x-y} = t^2$).

847. Kako je

$$\sqrt{\frac{x-y}{x+y}} = \sqrt{\frac{x^2-y^2}{(x+y)^2}} = \frac{\sqrt{x^2-y^2}}{|x+y|},$$

to je prva jednačina sistema ekvivalentna jednačini

$$x - y + \frac{\sqrt{x^2 - y^2}}{|x + y|} = \frac{20}{x + y}.$$

Ako je x+y>0, onda je i |x+y|=x+y, pa je dati sistem ekvivalentan sistemu

$$x^{2} - y^{2} + \sqrt{x^{2} - y^{2}} - 20 = 0 \land x^{2} + y^{2} = 34.$$

Smenom $\sqrt{x^2-y^2}=z>0$, prva jednačina ekvivalentna je jednačini $z^2+z-20=0$; odgovara samo rešenje z=4. Poslednji sistem ekvivalentan je sistemu $x^2-y^2=16\wedge x^2+y^2=34$.

Uslovx+y>0 zadovoljava rešenje $(5,\pm 3)$ Analogno za x+y<0sledi $\left\{\left(-\sqrt{\frac{59}{2}},\pm\sqrt{\frac{9}{2}}\right)\right\}.$

848. Smenom x+y=z, prva jednačina postaje $z^2+z-12=0$. Njena rešenja su z=3 i z=-4. Dati sistem ekvivalentan je sistemima:

$$x + y = -4 \wedge x^{2} - y^{2} = 3$$
, $x + y = 3 \wedge x^{2} - y^{2} = 3$.

Rešenja datog sistema su $\left\{\left(-\frac{19}{8},-\frac{13}{8}\right),(2,1)\right\}.$

849. (a, 2a); (2a, a), (smene x + y = u i $x \cdot y = v$).

850. Dati sistem ekvivalentan je sistemu

$$((x+y)^2 - 2xy)^2 - x^2y^2 = 91$$
 i $(x+y)^2 - xy = 13$.

Njegova rešenja su: $\{(1,3),(3,1),(-1,-3),(-3,-1)\}$, (smena x+y=u i $x\cdot y=v$).

851.
$$\{(2,1),(-2,1),(2,-1),(-2,-1)\}.$$

852.
$$(4,2), (-4,-2);$$
 (smene $\frac{x}{y} = u, x^2 + y^2 = v$).

853. Dati sistem ekvivalentan je sistemu

$$(x+y)((x+y)^2 - 4xy) = 3a^3 \wedge a(x+y)((x+y)^2 - 2xy) = 15a^3.$$

Njegova rešenja su: (a, 2a), (2a, a) (smene x + y = u, $x \cdot y = v$).

854.
$$\{(2,-2)\}.$$
 855. $\{(3,-2),(-2,3)\}.$

856.
$$\left\{ \left(a \frac{2 \mp \sqrt{2}}{2}, a \frac{2 \pm \sqrt{2}}{2} \right) \right\}$$
. **857.** $\{ (\pm 1, \pm 4), (\mp 5, \pm 4) \}$.

858.
$$\left\{ (\pm 2, \pm 1), \left(\pm \frac{2\sqrt{3}}{3}, \pm \frac{2\sqrt{3}}{3} \right) \right\}$$
. **859.** $\left\{ (\pm 1, \mp 2), (\pm 2, \pm 3) \right\}$.

860.
$$\left\{ (\pm 1, \pm 2), \left(\pm \frac{4\sqrt{3}}{3}, \mp \frac{5\sqrt{3}}{3} \right) \right\}$$
. **861.** $\left\{ (4,1), (1,4) \right\}$.

862.
$$\left\{ (\pm 5, \pm 2), (\pm 2, \pm 5), \left(\frac{2\sqrt{5} \pm \sqrt{38}}{2}, \frac{-2\sqrt{5} \pm \sqrt{38}}{2} \right), \left(\frac{-2\sqrt{5} \pm \sqrt{38}}{2}, \frac{2\sqrt{5} \pm \sqrt{38}}{2} \right) \right\}.$$

863.
$$\{(6,4),(-4,-6)\}.$$
 864. $\{(5,3),(-3,-5)\}.$

865.
$$\{(25,9),(9,25)\}.$$
 866. $\{(\pm 9,\pm 4),(\pm 4,\pm 9)\}.$

867.
$$\{(9,4),(4,9)\}.$$
 868. $\{(9,16),(16,9)\}.$

869. Isti skup parova kao u prethodnom zadatku.

870. Isti skup parova kao u prethodna dva zadatka.

871.
$$\{(7,2),(2,7)\}.$$
 872. $\{(9,4),(4,9)\}.$

873.
$$\{(9,4),(4,9),(-9,-4),(-4,-9)\}.$$
 874. $\{(125,8),(8,125)\}.$

875.
$$\{(5,4),(4,5)\}.$$
 876. $\{(\pm 15,\pm 7)\},$ (homogeni sistem).

877.
$$\left\{ (0,0), (3,2), \left(-\frac{13}{5}, -\frac{26}{5} \right) \right\}.$$
 878. $\left\{ (\pm 7, \pm 5), (\pm 3\sqrt{3}, \mp \sqrt{3}) \right\}.$

879.
$$\{(\pm 2, \pm 4), (\pm \sqrt{2}, \pm 3\sqrt{2})\}.$$
 880. $\{(\pm 5, \pm 1), (\pm \frac{3\sqrt{14}}{2}, \pm \frac{\sqrt{14}}{2})\}.$

881.
$$\{(\pm 5, \pm 1)\}.$$
 882. $\left\{\left(\pm 6, \pm \frac{3}{2}\right), \left(\pm \frac{3\sqrt{13}}{13}, \mp \frac{12\sqrt{13}}{13}\right)\right\}.$

883.
$$\left\{ \left(\pm \frac{1}{6}, \pm \frac{2}{3} \right), \left(\pm \frac{\sqrt{3}}{6}, \pm \frac{\sqrt{3}}{6} \right) \right\}.$$
 884. $\left\{ (\pm 2, \pm 3), (\pm 2, \mp 1) \right\}.$

885.
$$\{(a+b,a-b),(-(a+b),b-a)\}.$$

886.
$$\left\{ (\pm 2m, \pm 3m), \left(\pm \frac{3m\sqrt{6}}{2}, \mp \frac{5m\sqrt{6}}{2} \right) \right\}.$$

887.
$$\left\{ \left(\pm \frac{2a}{3}, \pm \frac{a}{2} \right), \left(\pm \frac{5a\sqrt{7}}{21}, \mp \frac{a\sqrt{7}}{7} \right) \right\}.$$

888.
$$\{(\pm m\sqrt{2}, \pm \sqrt{2}), (\pm (m-1), \pm (m-1))\}.$$

889.
$$\left\{ (\pm 2a, \mp 4a), \left(\pm 2a\sqrt{2} \mp \frac{5a\sqrt{2}}{2} \right) \right\}.$$

890.
$$\left\{ (0,0), \left(\frac{3m^2}{m-3}, \frac{9m}{m-3} \right), \left(-\frac{3m^2}{m+3}, \frac{9m}{m+3} \right) \right\}.$$

891.
$$\left\{ \left(\pm \frac{a}{\sqrt{a+m}}, \pm \frac{m}{\sqrt{a+m}} \right) \right\}.$$

892.
$$\{(0,0), (m(m+2), 2(m+2))\}\ (m > -2).$$

893.
$$\{(a, \pm \sqrt{a^2 - 4b^2})\}\ (a^2 > 4b^2, b \neq 0).$$

894.
$$\{(6,3,2),(6,2,3),(5,3\pm\sqrt{3},3\mp\sqrt{3})\}.$$
 895. $\{(8,6,10),(6,8,10)\}.$

896.
$$\{(2,5,\pm 3), (2,-5,\pm 3), (-2,5,\pm 3), (-2,-5,\pm 3)\}.$$

897.
$$\{(2,5,3),(-2,-5,-3)\}.$$
 898. $\{(0,0,0),\left(\pm\frac{1}{6},\pm\frac{1}{3},\pm\frac{1}{2}\right)\}.$

899.
$$\{(2,4,6),(4,2,6),(-2,-4,-6),(-4,-2,-6)\}.$$

900.
$$\left\{ \left(\pm 2, \pm \frac{3}{4}, \pm \frac{5}{4}\right) \right\}$$
.

901.
$$\{((a+b), \pm (a-b), 0); (-(a+b), \pm (a-b), 0)\}.$$

902.
$$\{a^2, b^2, 2ab\}, (b^2, a^2, 2ab), (ab, ab, a^2 + b^2)\}.$$

903.
$$\left\{ \left(\frac{a-1}{2}, \frac{a+1}{2}, \frac{3-a}{2} \right), \left(\frac{1-a}{2}, -\frac{1+a}{2}, \frac{a-3}{2} \right) \right\}$$

904.
$$\left\{ (m^2 + m + 2, m^2 - m - 2, m^2 + 2), \right.$$

$$\left(\frac{9m^2+3m+14}{3}, \frac{9m^2-3m+2}{3}, -\frac{9m^2+10}{3}\right)$$

905. Eliminacijom y dobijamo jednačinu $7x^2 + 8kx + k^2 + 63 = 0$.

 1° Diskriminanta ove jednačine je $D=36(k^2-49).$ Da bi sistem imao jedno rešenje, mora biti D=0,odakle je k=-7ili k=7.

 2° Da bi sistem imao dva realna rešenja, mora biti D>0,pa je u tom slučaju k<-7ili k>7. U slučaju <math display="inline">-7< k<7, sistem nema rešenja.

906. Za $k=0,\,k=-\sqrt{20}$ i $k=\sqrt{20}$ rešenja su realna i jednaka. Za |k|<20 sistem nema rešenja, za $|k|>\sqrt{20}$ sistem ima dva rešenja.

907. Jednaka za $k = \pm 4$, različita za -4 < k < 4.

908. Jednaka za k=3 ili k=11, različita za k<3 ili k>11.

909. Jednaka za k=2 ili k=6, različita za k<2 ili k>6. Za ostale vrednosti k sistem nema rešenja.

910. Eliminacijom y dobijamo jednačinu $(1+a^2)x^2 + (18a-4)x + 80 = 0$.

 1° Diskriminanta ove jednačine je $D=4(a^2-36a-76).$ Da bi sistem imao jedno rešenje, mora biti D=0,odakle je a=-2ili a=38.

 2° Da bi sistem imao dva rešenja, mora biti D>0,pa je u tom slučaju a<-2ili a>38.

 3° U ostalim slučajevima sistem nema rešenja u skupu realnih brojeva.

$$\begin{array}{ll} \mathbf{911.} \ \, \mathbf{a}) \ \, 1^{\circ} \ \, a = -\frac{\sqrt{3}}{3} \vee a = \frac{\sqrt{3}}{3}; \quad 2^{\circ} \ \, a < -\frac{\sqrt{3}}{3} \vee a > \frac{\sqrt{3}}{3}; \\ 3^{\circ} \ \, -\frac{\sqrt{3}}{3} < a < \frac{\sqrt{3}}{3}. \\ \mathbf{b}) \ \, 1^{\circ} \ \, a = -\sqrt{2} \vee a = \sqrt{2}; \quad 2^{\circ} \ \, a < -\sqrt{2} \vee a > \sqrt{2}; \quad 3^{\circ} \ \, -\sqrt{2} < a < \sqrt{2}. \end{array}$$

912. a) Rešenja su realna ako je $\frac{1}{2} \le k \le \frac{3}{2}$.

Za
$$k = \frac{1}{2}$$
 rešenja su: $\left(-\frac{3}{2}, -1\right), \left(\frac{3}{10}, \frac{1}{5}\right)$.

Za
$$k = \frac{3}{2}$$
 rešenja su: $\left(\frac{5}{2}, 1\right), \left(\frac{1}{2}, \frac{1}{5}\right)$.

$$\mathrm{b)}\ -\frac{3}{2} \leq k \leq -\frac{1}{2};\ (2,3),\ \left(-1,-\frac{3}{2}\right), \left(\frac{2}{5},\frac{7}{5}\right),\ \left(-\frac{1}{5},-\frac{7}{10}\right).$$

913. a) Rešenja su realna za
$$k=4$$
: $\left(15,-\frac{3}{2}\right), (10,-1).$

b) Rešenja su realna za
$$k=2$$
: $\left(-\frac{1}{2},\frac{5}{2}\right), \left(-3,15\right).$

914. Dati sistem ekvivalentan je sistemu

$$y = -x^{2} + 2x - 4 \land y = -x - 2 \iff x = -(x - 1)^{2} - 3 \land y = -x - 2.$$

Grafik linearne jednačine u Dekartovoj ravni je prava linija, grafik kvadratne jednačine je parabola, sa maksimumom tački T(1,-3) (slika 17); A(2,-4) i T(1,-3).

915. Za $x \neq 0$ dati sistem ekvivalentan je sistemu

$$y = -x + 7 \wedge y = \frac{12}{x}.$$

Grafik je prikazan na slici 18. Prva jednačina ima za grafik pravu liniju, a druga hiperbolu (funkciju indirektne proporcionalnosti). Presečne tačke prave i hiperbole su A(4,3) i B(3,4). Rešenje sistema su parovi $\{(4,3),(3,4)\}$.

916. A(5,0), B(2,3). **917.** $\{(2,3), (-3,8)\}$.

918. $\{(2,1),(-1,-2)\}.$ **919.** $\{(3,-2),(-2,3)\}.$

920. Zadatak se svodi na sistem $2x+2y=28 \wedge xy=48$, odakle nalazimo x=8 cm, y=6 cm ili x=6 cm, y=8 cm.

921. {(12, 13)}.

922. Neka je traženi razlomak $\frac{x}{y}$. Tada imamo sistem

$$\frac{x}{y} + \frac{y}{x} = 2,9 \land x + y = 7.$$

Rešenje sistema je (5,2) i (2,5), pa su traženi razlomci $\frac{2}{5}$ i $\frac{5}{2}.$

923. Ako je traženi broj10x+y,imamo

$$x + y = 8 \land (10x + y)(10y + x) = 1855 \iff (x = 5 \land y = 3) \lor (x = 3 \land y = 5).$$

Dakle, traženi broj je 53 ili 35.

924. Ako su cifre traženog broja x i y, tj. ako je taj broj 10x + y, imamo

$$\begin{split} xy &= 16 \wedge \frac{10x + y}{x + y} = 8 + \frac{2}{x + y} \\ \iff (x = 8 \wedge y = 2) \vee \left(x = -\frac{16}{7} \wedge y = -7\right). \end{split}$$

Jedino rešenje je dvocifreni broj 82.

925. $\{(7,5)\}.$ **926.** $\{(15,5)\}.$

927. Data jednačina ekvivalentna je jednačini

$$2x^{2} - 3xy + 8xy - 12y^{2} = 28$$
 tj. $(2x - 3y)(x + 4y) = 28$.

Kako je broj x+4y činilac broja 28 i pošto je $x+4y\geq 5$, poslednja jednačina ekvivalentna je sistemima

$$(x + 4y = 7 \land 2x - 3y = 4) \lor (x + 4y = 14 \land 2x - 3y = 2)$$

 $\lor (x + 4y = 28 \land 2x - 3y = 1).$

U skupu prirodnih brojeva samo poslednji sistem ima rešenje (8,5).

928. a) Eliminacijom x iz datog sistema dobijamo

$$yz - y - z = 5 \iff yz - y - z + 1 = 6 \iff (y - 1)(z - 1) = 6.$$

Neka je y < z. Tada je poslednja jednačina ekvivalentna sistemima

$$y-1 = \pm 1 \land z - 1 = \pm 6; \quad y-1 = \pm 2 \land z - 1 = \pm 3.$$

Iz prvog sistema imamo $(y=2,z=7) \lor (y=0,z=-5)$, a iz drugog $(y=3,z=4) \lor (y=-1,z=-2)$. Zamenom tih vrednosti y i z u jednoj od jednačina datog sistema dobijaju se odgovarajuće vrednosti za x. Rešenje datog sistema su trojke $\{(5,2,7),(19,0,-5),(7,3,4),(17,-1,-2)\}$. Kako je dati sistem simetričan u odnosu na y i z, to su za |y|>|z| rešenja (5,7,2) ili (7,4,3).

b) Ako eliminišemo x iz datog sistema, dobijamo

$$2yz - 6y - 6z = -8 \iff y(z-3) = 3z - 4 \iff y = \frac{3z-4}{z-3} = 3 + \frac{5}{z-3}.$$

Da y bude ceo broj, izraz z-3 mora biti ± 1 ili ± 5 , pa je $z_1=4,\ z_2=2,\ z_3=8,\ z_4=-2.$

Odgovarajuća rešenja za x i y su: $x_1=9, x_2=-3, x_3=9, x_4=-3; y_1=8, y_2=-2, y_3=4, y_4=2.$

Prema tome, sistem ima četiri rešenja u skupu celih brojeva

$$\{(9,8,4),(-3,-2,2),(9,4,8),(-3,2,-2)\}.$$

929. U skupu prirodnih brojeva rešenja su: (4,13,3); (8,6,6), u skupu celih (4k,20-7k,3k); $k\in\mathbb{Z}$.

930. U skupu prirodnih brojeva rešenja su: (4,3,1) i (8,1,2).

931. Neka m i n označavaju broj stranica poligona čiji su unutrašnji uglovi redom α i β . Kako je $\alpha = \frac{(m-2)\pi}{m}$ i $\beta = \frac{(n-2)\pi}{n}$ jednakost $\alpha:\beta=3:2$ postaje $\frac{(m-2)n}{(n-2)m} = \frac{3}{2} \Longleftrightarrow m = \frac{4n}{6-n}$.

Ova jednakost ima smisla za n=5, a iz prirode problema proizilazi da mora biti $n\geq 3.$ Prema tome, sledeći poligoni imaju osobinu $\alpha:\beta=3:2$

$$n = 3$$
 i $m = 4$; $n = 4$ i $m = 8$; $n = 5$ i $m = 20$.

932. Ako jednu silu označimo sa x, a drugu sa y, onda je

$$x^{2} + y^{2} = 289 \wedge (x - 3)^{2} + (y + 8)^{2} = 400,$$

sledi x = 15 N i y = 8 N.

2.7. Iracionalne jednačine i nejednačine

933. Ako je $25 - x^2 > 0 \land 7 - x > 0$, onda važe ekvivalencije

$$\sqrt{25 - x^2} = 7 - x \Longleftrightarrow 25 - x^2 = (7 - x)^2 \wedge 7 - x \ge 0$$
$$\iff x^2 - 7x + 12 = 0 \wedge x < 7 \Longleftrightarrow x = 4 \vee x = 3 \wedge x < 7.$$

Rešenja su 3 i 4.

934. Rešenje je 5.

935. Data jednačina ekvivalentna je sistemu

$$2x^2 + 7 = (x^2 - 4)^2 \wedge x^2 - 4 \ge 0$$

pa je

$$(x = -3 \lor x = 3 \lor x = -1 \lor x = 1) \land x \in (-\infty, -2] \cup [2, +\infty).$$

Prema tome, rešenja su -3 i 3.

936. 3. **937.** 6. **938.**
$$-\frac{2}{5}$$
. **939.** 3. **940.** 4. **941.** -6.

942.
$$-7$$
, $-\sqrt{37}$, $\sqrt{37}$, 7. **943.** 2. **944.** $-\sqrt{2}$. **945.** 1. **946.** $\frac{5}{4}$

947. 9,
$$\frac{51}{4}$$
. **948.** 4.

949. Pod uslovom $10+x\geq 0 \land 10-x\geq 0 \land 2x-8\geq 0$, tj. $4\leq x\leq 10$, data jednačina ekvivalentna je sa

$$(\sqrt{10+x})^2 = (\sqrt{10-x} + \sqrt{2x-8})^2$$
.

Poslednja jednačina ekvivalentna je sistemu $x^2 - 14x + 48 = 0 \land 4 \le x \le 10$. Rešenja ovog sistema su $x_1 = 6$ i $x_2 = 8$, a to su istovremeno i rešenja date jednačine.

950. 11. **951.** 1. **952.**
$$\frac{5}{2}$$
. **953.** 6. **954.** -37, 6. **955.** 1.

956. Uvesti smenu
$$\sqrt{x^2-9}=z$$
. Rešenja su -5 i 5.

957. Data jednačina ekvivalentna je jednačini

$$x^2 - 2x + 6 + \sqrt{x^2 - 2x + 6} = 12.$$

Smena $\sqrt{x^2 - 2x + 6} = t$. Rešenja su -1 i 3.

958.
$$-\frac{8}{3}$$
, 1. **959.** $-\frac{5}{2}$, 2. **960.** $-\frac{2}{3}$, 3. **961.** -2.

962. Imamo sukcesivno niz ekvivalencija

$$\sqrt{\frac{x^2 - 1}{x}} - \sqrt{\frac{x - 1}{x}} - \left(\sqrt{\frac{x - 1}{x}}\right)^2 = 0$$

$$\iff \sqrt{\frac{x^2 - 1}{x}} \left(\sqrt{x + 1} - 1 - \sqrt{\frac{x - 1}{x}}\right) = 0$$

$$\iff \sqrt{\frac{x^2 - 1}{x}} = 0 \lor \sqrt{x + 1} - \sqrt{\frac{x - 1}{x}} - 1 = 0.$$

Iz prve jednačine sledi da je $x_1 = 1$. Druga jednačina ekvivalentna je jednačini

$$(x^{2} - x) - 2\sqrt{2x^{2} - x} + 1 = 0 \iff \sqrt{(x^{2} - x - 1)^{2}} = 0 \iff x^{2} - x - 1 = 0.$$

Rešenja date jednačine su $x_1=1$ i $x_2=\frac{1+\sqrt{5}}{2}.$

963. Smena $\sqrt[3]{x} = u$, x = 8. **964.** Smena $\sqrt[3]{x} = u$, x = 64.

965. Smena $\sqrt{x^3} = u, x = 1024.$ **966.** Smena $\sqrt[6]{x} = z, x = 64.$

967.
$$x_1 = 2, x_2 = -\frac{1}{511}.$$

968. Data jednačina ekvivalentna je jednačini

$$\sqrt[3]{\frac{a+x}{a-x}} + 4\sqrt[3]{\frac{a-x}{a+x}} = 5.$$

Smena $\frac{a+x}{a-x} = z^3$, $x_1 = 0$, $x_2 = \frac{63a}{65}$

969. Smena $\sqrt{x-1}=y$ svodi datu jednačinu na ekvivalentnu jednačinu |y-2|+|y-3|=1, pa je $2\le y\le 3,$ a $5\le x\le 10.$

970. x = 15. **971.** $5 \le x \le 8$. **972.** $2 \le x \le 5$.

973.
$$x = -\frac{17}{15}$$
. **974.** $x = 3$, $x = -\frac{9}{2}$. **975.** $x = 2$, $x = -4$.

976. Smenama $8-x=u^3$ i $27+x=v^3$ dobija se sistem

$$u^2 - uv + v^2 = 7 \wedge u + v = 5.$$

Rešenja ovog sistema su: (3,2) i (2,3).

Rešenja date jednačine su: x = 0 i x = -19.

977.
$$x = \frac{190}{63}, x = \frac{2185}{728}.$$

978. Smene $4(3x+4)=u^3$ i $3(4x-7)=v^3$. Tada je $u-v=1 \wedge u^3-v^3=37$. Ako se druga jednačina napiše u obliku $(u-v)((u-v)^2+3uv)=37$, dobija se sistem $u-v=1 \wedge uv=12$. Rešenja date jednačine su x=4 i $x=-\frac{43}{12}$.

979. x = 0. **980.** x = 1 i x = -1.

981. Neka je $\sqrt[4]{x+15}=u$ i $\sqrt[4]{x-1}=v$. Tada je $u-v=2 \wedge u^4-v^4=16$, odakle se dobija da je $v=0,\ u=2$.

Rešenje jednačine x = 1.

982.
$$x_1 = -8, x_2 = 8.$$
 983. $x_1 = 5, x_2 = \frac{2}{7}$ (Smena $\sqrt[5]{(7x-3)^3} = y$).

984. $\left\{\frac{ab}{a+b}\right\}$. 985. Identičan skup rešenja kao u predhodnom zadatku.

986.
$$\left\{-2, -\frac{5}{4}\right\}$$
. **987.** $\{-2, 2\}$.

988. Identičan skup rešenja kao u prethodnom zadatku.

989.
$$\{-a, a, 0\}$$
. **990.** $\{-m, m\}$. **991.** $\{-a, a\}$. **992.** $\{-m, m\}$.

993.
$$\left\{\frac{94}{9}a^2, 6a^2\right\}$$
. **994.** $\left\{\frac{85}{9}m^2, 5m^2\right\}$. **995.** $\left\{a^2 - m^2\right\}$.

996. Isti skup rešenja kao u predhodnom zadatku. 997. $\{13\}$. 998. $\{3\}$

999.
$$\{-8, 18\}.$$
 1000. $\{16, 9\}$, (smena: $\sqrt{x} = t$). **1001.** $\left\{\frac{3a}{4}\right\}$.

 ${\bf 1002.}\,$ Recipročna vrednost rešenja prethodnog zadatka.

1003.
$$\left\{0, \frac{9}{16}a\right\}$$
. **1004.** $\left\{\frac{25}{8}\right\}$. **1005.** $\{-4, 5\}$. (Smena: $\frac{x+3}{x-4} = t^3$).

1006. Posle kubiranja leve i desne strane date jednačine, dobija se jednačina

$$\sqrt[3]{(7-3x)^2} - 3\sqrt[3]{7-3x} + 2 = 0,$$

zatim smena: $\sqrt[3]{7-3x} = u$, itd. Rešenje: $\left\{-\frac{1}{3}, 2\right\}$.

1007. Posle kubiranja leve i desne strane date jednačine dobija se jednačina

$$(\sqrt[3]{5x-9})^2 + 2\sqrt[3]{5x-9} - 3 = 0,$$

smena: $\sqrt[3]{5x - 9} = u$. Rešenje: $\left\{ -\frac{18}{5}, 2 \right\}$.

1008.
$$\left\{-9, \frac{1}{2}\right\}$$
. **1009.** $\{-22, 2\}$.

1010. Podeliti datu jednačinu sa $\sqrt[3]{(m+7x)(m-7x)}$, itd.

Rešenje: $\left\{0, \frac{9}{65}m\right\}$.

1011.
$$\left\{1, \frac{2}{5}\right\}$$
. **1012.** $\left\{-1, \frac{5}{2}\right\}$. **1013.** $\left\{\frac{3}{8}\right\}$. **1014.** $\left\{\frac{3}{8}\right\}$.

1015.
$$\left\{-\frac{10}{11}, 2\right\}$$
. **1016.** $\{a-b, a+b\}$.

1019. Data nejednačina ekvivalentna je sistemu nejednačina

$$(x+7>0 \land 2x-1<0) \lor ((\sqrt{x+7})^2 > (2x-1)^2 \land 2x-1 \ge 0).$$

Odakle se dobija da je $-7 \le x < 2$.

1020.
$$x > 10$$
. **1021.** $x \in (-\infty, -2] \cup \left[6, 6\frac{1}{3}\right)$.

1022. a)
$$a \in \left(\frac{16}{3}, +\infty\right)$$
; b) $x \in [-2, 2)$.

1023. a)
$$x \in \left[1, \frac{46}{19}\right]$$
; b) $x \in \left(-\infty, -\frac{61}{15}\right)$.

1024.
$$x \in (-\infty, -2) \cup \left(5, 5\frac{9}{13}\right)$$
. **1025.** $x \in [-2, 2)$.

1026.
$$x \in [-0, 5, 3 - 2\sqrt{3}).$$
 1027. $x \in (34 + 6\sqrt{33}, +\infty).$

1028.
$$x \in \left[\frac{5}{2}, 15\right)$$
. **1029.** $0 < x \le 2$.

1030. Sve potkorene veličine imaju zajednički činilac x-3. Posle deljenja date nejednačine sa $\sqrt{x-3}$, dobija se nejednačina

$$\sqrt{x-5} + \sqrt{x+5} > 2\sqrt{x-\frac{3}{2}}$$
.

Rešenje date nejednačine je $x > 5\frac{2}{3}$.

1031. x > -4. **1032.** $3 < x < +\infty$. **1033.** x > -1. **1034.** $x \in (0, 3)$.

1035.
$$x \in \left[\frac{5}{2}, 3\right)$$
. **1036.** $x \in \left(\frac{2\sqrt{3}}{3}, +\infty\right)$.

1037.
$$x \in \left(\frac{1+\sqrt{13}}{6}, 1\right] \cup [2, +\infty).$$
 1038. $x \in [-\sqrt[4]{2}, 0) \cup (1, \sqrt[4]{2}].$

1039. Skup kome pripadaju rešenja date nejednačine je $x \in [0,+\infty)$, te su obe strane nejednačine $x>1-\sqrt[3]{1-x}$ pozitivne, te se kvadriranjem dobija nejednačina $x>(1-\sqrt[3]{1-x})^2$, ekvivalentna datoj. Smenom $\sqrt[3]{1-x}=y$, dobija se $1-y^3>(1-y)^2 \Longleftrightarrow y^3+y^2-2y<0 \Longleftrightarrow y<-2 \land 0 < y<1$.

Rezultat: $x \in (0,1) \cup (9,+\infty)$.

1040.
$$2 \le x < 3$$
. **1041.** $x \in (-\infty, 1] \cup (2, +\infty)$.

1042. Koreni na levoj strani date nejednačine su definisani za

$$(1) -1 \le x \le 3.$$

Kako je leva strana nejednačine veća od 0,5, veća je i od 0, to rešenja nejednačine treba da zadovoljavaju i uslov $\sqrt{3-x}-\sqrt{x+1}>0$. Rešenje poslednje nejednačine je x<1. Ako se uzme u obzir (1) dobija se

$$(2) -1 \le x < 1.$$

Kvadriranjem date nejednačine dobija se $\sqrt{3-x}\cdot\sqrt{x+1}<\frac{15}{8}$. Ponovnim kvadriranjem i sređivanjem dobija se $64x^2-128x+33>0$. Njena rešenja su

(3)
$$x < 1 - \frac{\sqrt{31}}{8}, \quad x > 1 + \frac{\sqrt{31}}{8}.$$

Iz (2) i (3) dobija se rešenje date nejednačine $-1 \leq x < 1 - \frac{\sqrt{31}}{8}.$

1043.
$$x \in \left[-\frac{\sqrt{2}}{2}, 0\right) \cup \left(0, \frac{2}{3}\right].$$
 1044. $x \in \left[-\frac{1}{2}, 0\right) \cup \left(0, \frac{45}{8}\right).$

1045.
$$x \in [0,1) \cup \left[\frac{49}{25}, +\infty\right)$$
.

1046. Data nejednačina se svodi na sistem nejednačina

$$\frac{-x^2 + 2x + 1}{2(x^2 - 1)} \ge 0 \land 2 - x^2 \ge 0,$$

odakle se dobijaju sva rešenja $x \in (-1, \ 1-\sqrt{2}\,] \cup (1, \ 1+\sqrt{2}\,].$

1047.
$$x \in \left(-1, -\sqrt{2\sqrt{3}-3}\right]$$
. **1048.** $-2 \le x < 2$.

1049.
$$\frac{3}{2} \le x < \frac{\sqrt{17} - 1}{2}$$
.

III GLAVA

3. EKSPONENCIJALNA I LOGARITAMSKA FUNKCIJA

3.1. Eksponencijalna funkcija

1050. Da bismo nacrtali grafik funkcije $y=3^x$, odredićemo uređene parove $(x,3^x)$ za vrednosti argumenta: -3,-2,-1,0,1,2,3. Na taj način dobijamo skup uređenih parova

$$\left\{ \left(-3,\frac{1}{27}\right), \left(2,\frac{1}{9}\right), \left(-1,\frac{1}{3}\right), (0,1), (1,3), (2,9), (3,27) \right\}.$$

Ucrtavanjem tačaka iz ovog skupa u Dekartov koordinatni sistem i njihovim povezivanjem jednom glatkom krivom dobijamo grafik funkcije $y=3^x$ (slika 19). Promene funkcije prikazane su u tabeli

1051. Slično kao u prethodnom zadatku, grafik funkcije $y=\left(\frac{1}{3}\right)^x$ možemo skicirati pomoću skupa uredenih parova

$$\left\{ (-3,27), (-2,9), (-1,3), (0,1), \left(1,\frac{1}{3}\right), \left(2,\frac{1}{9}\right), \left(3,\frac{1}{27}\right) \right\}.$$

Promene funkcije date su u tabeli

$$\begin{array}{c|ccccc} x & -\infty & 0 & +\infty \\ \hline \left(\frac{1}{3}\right)^x & +\infty & \searrow & 1 & \searrow & 0 \\ \end{array}$$

Grafik je prikazan na slici 20.

1053. Grafik datog preslikavanja prikazan je na slici 21. Tok funkcije prikazan je u sledećoj tabeli

1054. Grafik je prikazan na slici 22. Tok funkcije prikazan je u tabeli

1055. Iskoristiti jednakost: $\sqrt{x^2} = |x| = \begin{cases} x & (x \ge 0), \\ -x & (x < 0). \end{cases}$

1057. Grafik je prikazan na slici 23.

1058. a)
$$1,5^{\frac{3}{4}} > 1,5^{\frac{2}{3}}$$
; b) $3^{-\frac{1}{3}} > 3^{-\frac{1}{2}}$;

c)
$$\left(\frac{1}{2}\right)^{\sqrt{2}} < \left(\frac{1}{2}\right)^{\frac{1}{3}};$$
 d) $(0,5)^{-2} > (0,5)^{\frac{1}{2}}.$

1059. a) n > m; b) y > x.

1060. a)
$$1 < n < 2$$
; b) $-3 < n < -2$.

1061.
$$2^x - 16 = 0 \iff 2^x = 2^4 \iff x = 4$$
.

Data funkcija ima jednu nulu x=4. Pri nalaženju nula date funkcije rešili smo eksponencijalnu jednačinu.

1062. Grafici su prikazani na slikama 24a i 24b.

1063. Grafici su prikazani na slikama 25a i 25b.

1064. Grafici su prikazani na slikama 26a i 26b.

1065. Grafici su prikazani na slikama 27a i 27b.

Sl. 27.

1066. Grafici su prikazani na slikama 28a i 28b.

1067. a) $x \in [3, +\infty)$; b) $x \in [1, +\infty)$.

1068. a) $x \in [-1, 1)$; b) $x \in [0, 4)$.

3.2. Eksponencijalne jednačine i nejednačine

1069. Prilikom rešavanja eksponencijalnih jednačina najčešće se obe strane jednačine svode na stepene jednakih osnova, iz čega se zaključuje da su i izložioci jednaki.

a)
$$2^{x-3} = 16 \iff 2^{x-3} \iff 2^4 \iff x - 3 = 4 \iff x = 7;$$

b)
$$\left(\frac{2}{3}\right)^{2x} = \frac{16}{81} \iff \left(\frac{2}{3}\right)^{2x} = \left(\frac{2}{3}\right)^4 \iff 2x = 4 \iff x = 2;$$

b)
$$\left(\frac{2}{3}\right)^{2x} = \frac{16}{81} \iff \left(\frac{2}{3}\right)^{2x} = \left(\frac{2}{3}\right)^4 \iff 2x = 4 \iff x = 2;$$

c) $9^{-3x} = \left(\frac{1}{27}\right)^{x+3} \iff (3^2)^{-3x} = \left(\frac{1}{3^3}\right)^{x+3} \iff 3^{-6x} = 3^{-3x-9} \iff -6x = -3x - 9 \iff -3x = -9 \iff x = 3.$

1070. a)
$$-2$$
; 2; b) $\frac{1}{5}$.

1071. a) 3.

b) Data jednačina ekvivalentna je jednačini $4^x - (4+1) = 320$. Dalje je

$$4^x \cdot (4+1) = 320 \Longleftrightarrow 4^x \cdot 5 = 320 \Longleftrightarrow 4^x = 4^3 \Longleftrightarrow x = 3.$$

Jedino rešenje je, dakle, x = 3.

1072. a) 4; b) 2. **1073.** 4.

1074. Posle transformacije, dobija se da je data jednačina ekvivalentna jednačini $\left(\frac{3}{2}\right)^{2x+1}=1$, odakle je 2x+1=0, tj. $x=-\frac{1}{2}$.

1075.
$$3^{12x-1} - 9^{6x-1} - 27^{4x-1} + 81^{3x+1} = 2192$$

 $\iff 3^{12x-1} - 3^{12x-2} - 3^{12x-3} - 3^{12x+4} = 2192$
 $\iff 3^{12x-3}(3^2 - 3 - 1 + 3^7) = 2192 \iff 3^{12x-3} \cdot 2192 = 2192$
 $\iff 3^{12x-3} = 1 \iff 12x = 3 \iff x = \frac{1}{4}.$

Prema tome jedino rešenje date jednačine je $x = \frac{1}{4}$.

1076. a) Data jednačina ekvivalentna je jednačini $5^{2x} - 20 \cdot 5^x - 125 = 0$. Smenom $5^x = z$ prethodna jednačina postaje $z^2 - 20z - 125 = 0$, pa je $z_1 = 25$, $z_2 = -5$. Iz uvedene smene za z = 25 dobija se

$$5^x = 25 \iff 5^x = 5^2 \iff x = 2.$$

Za z=-5 imamo $5^x=-5$. Ova jednačina nema rešenja u skupu realnih brojeva. Prema tome, jedino rešenje je x=2.

b) Smenom $5^x=z$ data jednačina postaje $z^2-10z-375=0$, odakle je $z_1=25,$ $z_2=-15$. Jedino rešenje je x=2.

1077. a)
$$1, -\frac{1}{2}$$
; b) $-1, 1.$ **1078.** $x_1 = 4, x_2 = 16.$

1079. Data jednačina ekvivalentna je jednačini $11^{2x}-23\cdot 11^x+22=0$. Smenom $11^x=z$ ova jednačina postaje $z^2-23z+22=0$, pa je $z_1=22$, $z_2=1$. Za z=22 iz uvedene smene dobijamo $11^x=22$ odakle je $x=\frac{\log 22}{\log 11}$. Za z=1 iz date smene dobijamo $11^x=1$. Iz toga proizlazi da je x=0. Prema tome, rešenja su $\frac{\log 22}{\log 11}$ i 0.

1080. 1 i 2.

1081. Smenom $2^{\sqrt{x-2}} = z$ data jednačina se svodi na $z^2 - 10z + 16 = 0$. Rešenja ove kvadratne jednačine su 2 i 8. Dalje je

$$(2^{\sqrt{x-2}} = z \Rightarrow 2^{\sqrt{x-2}} = 8 \Longleftrightarrow \sqrt{x-2} = 3 \Longleftrightarrow x = 11)$$

$$\vee (2^{\sqrt{x-2}} = z \Rightarrow 2^{\sqrt{x-2}} = 2 \Longleftrightarrow \sqrt{x-2} = 1 \Longleftrightarrow x = 3).$$

Sva rešenja polazne jednačine su 3 i 11.

1082. Uvođenjem smene $5^{\sqrt{x}} = z$ dobijamo da je jedino rešenje x = 9.

1083. Data jednačina ekvivalentna je jednačini

$$2^{2(x+\sqrt{x^2-2})} - 5 \cdot 2^{-1} \cdot 2^{x+\sqrt{x^2-2}} = 6.$$

Smenom $2^{x+\sqrt{x^2-2}}=z$ ova jednačina se transformiše u $2z^2-5z-12=0$, čija su rešenja z=4 i $z=-\frac{3}{2}$. Zamenom u $2^{x+\sqrt{x^2-2}}=z$ dobijamo da je jedino rešenje $x=\frac{3}{2}$.

1084.
$$(2^3 \cdot 3)^x - \frac{3}{2} \cdot (2^3 \cdot 3)^x = -288 \iff 24^x = 576 \iff 24^x = 24^2 \iff x = 2.$$

1085. Označimo datu jednačinu sa I. Tada je

$$I \iff 2^{2x} \cdot (1+2^{-1}) = 3^{x-\frac{1}{2}} \cdot (3+1) \iff 2^{2x} \cdot 3 = 3^{x-\frac{1}{2}} \cdot 8$$
$$\iff 2^{2x-3} = 3^{x-\frac{3}{2}} \iff 2^{2x-3} = (\sqrt{3})^{2x-3}$$
$$\iff \left(\frac{2}{\sqrt{3}}\right)^{2x-3} = 1 \iff 2x-3 = 0 \iff x = \frac{3}{2}.$$

Prema tome, jedino rešenje je $\frac{3}{2}$.

1086.
$$\left(2\sqrt{12} + 3\sqrt{3} + 6\sqrt{\frac{1}{3}} \right)^{\frac{1}{5}} = 3^{2x^2 - 2x - 2}$$

$$\iff (4\sqrt{3} + 2\sqrt{3} + 2\sqrt{3})^{\frac{1}{5}} = 3^{x^2 - x - 1} \iff 3^{\frac{1}{2}} = 3^{x^2 - x - 1}$$

$$\iff x^2 - x - 1 = \frac{1}{2} \iff 2x^2 - 2x - 3 = 0$$

$$\iff x = \frac{1 - \sqrt{7}}{2} \lor x = \frac{1 + \sqrt{7}}{2}.$$

1087. Data jednačina ekvivalentna je jednačini

$$\left(\sqrt{2-\sqrt{3}}\right)^x + \left(\frac{\sqrt{2+\sqrt{3}}\cdot\sqrt{2-\sqrt{3}}}{\sqrt{2-\sqrt{3}}}\right)^x = 4, \quad \text{tj.}$$
$$\left(\sqrt{2-\sqrt{3}}\right)^x + \frac{1}{\left(\sqrt{2-\sqrt{3}}\right)^x} = 4.$$

Uvođenjem smene $\left(\sqrt{2-\sqrt{3}}\right)^x=z$ dobijamo $z+\frac{1}{z}=4$. Dalje je

$$z + \frac{1}{z} = 4 \iff z^2 - 4z + 1 = 0 \iff z = 2 + \sqrt{3} \lor z = 2 - \sqrt{3}$$

Na osnovu uvedene smene dobijamo $\left(\sqrt{2-\sqrt{3}}\right)^x=2\pm\sqrt{3}$, pa je $x=2\vee x=-2$.

1088. Slično prethodnom zadatku dobijamo dva rešenja -2 i 2. **1089.** 1.

1090. Data jednačina ekvivalentna je jednačini $2^{\frac{2}{x}}-4$, $25\cdot 2^{\frac{1}{x}}+1=0$. Rešenja: $-\frac{1}{2},\,\frac{1}{2}$, (smena $2^{\frac{1}{x}}=z$).

1091. Važe ekvivalencije:

$$3^{\frac{x-1}{2}} - 2^{\frac{x+1}{3}} = 2^{\frac{x-2}{3}} + 3^{\frac{x-3}{2}} \iff 3^{\frac{x-3}{2}} \cdot (3-1) = 2^{\frac{x-2}{3}} (2+1)$$
$$\iff 3^{\frac{x-5}{2}} = 2^{\frac{x-5}{3}} \iff (\sqrt{3})^{x-5} = (\sqrt[3]{2})^{x-5} \iff \left(\frac{\sqrt{3}}{\sqrt[3]{2}}\right)^{x-5} = 1.$$

Odavde proizlazi da je $x - 5 = 0 \iff x = 5$.

1092. Data jednačina ekvivalentna je jednačini

$$\left(\frac{\sqrt[5]{5}}{\sqrt[3]{4}}\right)^{2x-8} = 1 \Longleftrightarrow 2x - 8 = 0 \Longleftrightarrow x = 4.$$

1093. 81. **1094.** 3, $-\frac{1}{5}$. **1095.** 25. **1096.** $\frac{5}{3}$

1097.
$$x = -2 \lor x = 3$$
. **1098.** $x = -1 \lor x = 1$.

1099. Data jednačina ekvivalentna je jednačini

$$(2x+1)^x = (x-1)^x \iff \left(\frac{2x+1}{x-1}\right)^x = 1$$
$$\iff x = 0 \lor \frac{2x+1}{x-1} = 1 \iff x_1 = 0 \lor x_2 = -2.$$

1100. x = 6. **1101.** x = 1.

1102. Smena: $\sqrt[2x]{10} = t$, x = 0, 5. **1103.** x = 0.

1104. Data jednačina ekvivalentna je jednačini:

$$3^{x^4 - x^2 - 6} = 7^{x^4 - x^2 - 6} \iff x^4 - x^2 - 6 = 0$$
$$\iff x^2 = 3 \lor x^2 = -2 \iff x = \pm \sqrt{3} \lor x = \pm i\sqrt{2}.$$

1105. x = 0, 5. **1106.** x = 1.

1107.
$$x = \frac{\log(a-b)}{\log(a+b)}$$
 $(a > b > 0)$. **1108.** $p = -0, 5$. **1109.** $b = 1$.

1110. a) Data jednačina ekvivalentna je konjunkciji $y = 2^x \wedge y = -\frac{1}{2}x + 5$.

Prema tome, rešenje date jednačine je apscisa presečne tačke eksponencijalne funkcije $y=2^x$ i prave $y=-\frac{1}{2}x+5$.

Sa grafika tih funkcija vidi se da je presečna tačka A(2,4).

Prema tome, jedino rešenje je x=2. Bez teškoće se proverava da je to zaista rešenje polazne jednačine.

b) Kako je $\sqrt[4]{\left(\frac{1}{2}\right)^{-5}}=2^{\frac{5}{4}}$, sa grafika funkcije $y=2^x$ za $x=\frac{5}{4}$ čitamo približnu vrednost za y. Na taj način dobijamo $y\approx 2,4$.

1112. a) Kako je $y=a^x$ rastuća funkcija za a>1, imamo

$$5^{7x+3} > 5^{-3} \iff 7x+3 > -3 \iff x > -\frac{6}{7}$$
.

Prema tome, data nejednačina važi za $x \in \left(-\frac{6}{7}, +\infty\right)$.

b)
$$x \in (-\infty, -3)$$
; c) $x \in (-\infty, -2) \cup (2, +\infty)$.

1113. a)
$$x \in (0, +\infty)$$
; b) $x \in (-\infty, 1)$.

1114.
$$x \in (-\infty - 2) \cup \{1\}$$
, (smena $2^x = y$).

1115. Data nejednačina ekvivalentna je nejednačini

$$4^{2x-x^2} - 3 \cdot 2^{2x-x^2} + 2 < 0$$

Rešenje date nejednačine je $0 \le x \le 2$, (smena $2^{2x-x^2} = y$).

1116. Data nejednačina ekvivalentna je nejednačini

$$3 \cdot 3^{x^2 + 4x + 2} - 10 \cdot 3^{\frac{x^2 + 4x + 2}{2}} + 3 \le 0.$$

Rešenja date nejednačine su $-4 \le x \le 0$, (smena $3^{\frac{x^2+4x+2}{2}} = y$).

1117.
$$0 < x < 0, 5$$
. **1118.** $0 < x \le 2$. **1119.** $-\sqrt{3} \le x \le \sqrt{3}$.

1120.
$$x \in (0, +\infty)$$
. **1121.** $x \in (3, +\infty)$. **1122.** $x \in (0, 1)$.

1123.
$$x \in (-\infty, 0) \cup \left[\frac{1}{2}, +\infty\right)$$
. **1124.** $x \in (0, +\infty)$.

1125.
$$x \in (-\infty, 0.5) \cup (1, +\infty)$$
. **1126.** $x \in (2, +\infty)$.

1127.
$$x \in (-1,1)$$
. **1128.** $x \in (-1,0) \cup (0,1)$.

1129.
$$x \in [-3, -\sqrt{6}) \cup (-\sqrt{6}, -2) \cup [2, \sqrt{6}) \cup (\sqrt{6}, 3).$$

1130.
$$x \in (-1,0) \cup (0,1) \cup (1,2)$$
.

1131.
$$x \in \left[-1, -\frac{1}{\sqrt{2}}\right] \cup \left[\frac{1}{\sqrt{2}}, 1\right].$$
 1132. $x \in (-1, 3).$

1133. Deljenjem datih jednačina sistema dobijamo jednačinu

$$\left(\frac{2}{3}\right)^{x-y} = \frac{2}{3} \Longleftrightarrow x - y = 1.$$

Rezultat: (2,1).

1138. (5,3). **1139.** (4,2), (smena:
$$2^{x+y} = u$$
; $2^{x-y} = v$).

1140. (12, 10); (-10, -12). Smena:
$$\left(\frac{3}{2}\right)^{x-y} = u$$
, $\left(\frac{2}{3}\right)^{x-y} = \frac{1}{u}$.

1141. (18, 12). **1142.**
$$\left(\log \frac{b^n}{m} : \log \frac{b}{a}, \log \frac{m}{a^n} : \log \frac{b}{a}\right)$$
.

1143. (1,1); (16,4). **1144.** (1,1);
$$\left(\left(\frac{p}{q}\right)^{\frac{q}{p-q}}, \left(\frac{p}{q}\right)^{\frac{p}{p-q}}\right)$$
.

1145.
$$\left(\left(\frac{\log b}{\log a} \right)^{\frac{b}{2b-2a}}, \left(\frac{\log b}{\log a} \right)^{\frac{a}{2b-2a}} \right).$$

1146.
$$\left(\left(\frac{\log b}{\log a} \right)^{\frac{b}{2(b-a)}}, \left(\frac{\log b}{\log a} \right)^{\frac{a}{2(b-a)}} \right).$$
 1147. $(1,1), \left(\frac{1}{2}, \frac{1}{\sqrt[4]{2}} \right).$

1148. Iz prve jednačine $x=y^{\frac{12}{x+y}}$, zameni se ova vrednost u drugu jednačinu, itd. Rešenja: (1,1); (4,2); (1,-1); (9,-3).

1149.
$$(1,1); (-1,1); \left(\frac{1}{\sqrt[3]{3}}, \sqrt[3]{9}\right).$$
 1150. $(\log_2 100, 1); \left(\frac{\log 100}{\log 102}, 101\right).$

1151. Prva jednačina ekvivalentna je jednačini

$$\frac{x}{\log b \log c} = \frac{c}{\log a \log c} = \frac{z}{\log a \log b} = k.$$

Odavde se dobija $x = k \log b \log c, y = k \log a \log c, z = k \log a \log b$, gde je

$$k = \frac{\pm d}{\log^2 a \log^2 b + \log^2 b \log^2 c + \log^2 b \log^2 c}.$$

1152. (2, 2, 1).

3.3. Logaritamska funkcija. Osnovna pravila logaritmovanja. Dekadni logaritmi

1153. Primedba. a) Pošto je logaritamska funkcija inverzna eksponencijalnoj funkciji, njen grafik je osno-simetričan sa grafikom eksponencijalne funkcije u odnosu na pravu y=x (osobina inverznih funkcija – I razred). Prema tome, grafik funkcije $y=\log_3 x$ dobija se simetričnim preslikavanjem grafika eksponencijalne funkcije $y=3^x$ u odnosu na pravu y=x (sl. 29).

b) Grafik logaritamske funkcije može se približno skicirati izračunavanjem logaritama za pojedine pogodno izabrane vrednosti nezavisno promenljive. Tako, na primer, za funkciju $y=\log_2 x$ podesno je uzeti

$$x \in \left\{ \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1, 2, 4, 8, \dots \right\}.$$

Tada je $y \in \{-3, -2, -1, 0, 1, 2, 3, \ldots\}$. Grafik je prikazan na slici 30.

1154. Grafici datih funkcija prikazani su na slici 31.

1155. Grafici funkcija pod c) i d) dobijaju se pomeranjem grafika funkcije $y = \log_3 x$ za 1 ulevo (slučaj c)), odnosno za 1 udesno (slučaj d)).

1156. a) Kako je $y=\log_{\frac{1}{2}}\sqrt{x^2}=\log_{\frac{1}{2}}|x|$ imamo $y=\log_{\frac{1}{2}}x$ (x>0) i $y=\log_{\frac{1}{2}}(-x)$ (x<0); grafik je prikazan na slici 32.

1157. a) $x \in (-\infty, 0) \cup (2, +\infty)$; b) $x \in (-\infty, -3) \cup (3, +\infty)$; c) $x \in \left(-\infty, -\frac{1}{2}\right) \cup (3, +\infty)$.

1158. a)
$$x \in (-\infty, 0) \cup \left(\frac{2}{3}, +\infty\right)$$
; b) $x = 1 \lor x = -\frac{1}{3}$; c) $x = \frac{5}{3} \lor x = -1$.

1159. a)
$$x \in (-\infty, 0) \cup \left(\frac{1}{2}, +\infty\right)$$
; $b)x = -\frac{1}{2} \lor x = 1$; c) $x = -1 \lor x = \frac{3}{2}$.

1160. a) Jedna tačka; b) M(1,0).

1161. a) $0 < x \le 0, 5, 1 < x \le 2$; b) 0 < x < 1.

1162. a)
$$-3 < x \le -\frac{2}{3}$$
; b) $\frac{1-\sqrt{5}}{2} \le x < 0, x \ge \frac{1+\sqrt{5}}{2}$.

1163. a) $x \in (-\infty, 3) \cup (3, +\infty)$; b) $x \in (-\infty, -1) \cup (1, +\infty)$.

1164. a)
$$x \in \left(\frac{1}{2}, 1\right) \cup \left(1, \frac{3}{2}\right) \cup \left(\frac{3}{2}, 2\right);$$
 b) $x \in \left(\frac{3}{2}, 3\right).$

1165. a) $x \in (-3, 5)$; b) $x \in (-4, +\infty)$.

1166. a) $x \in (4, +\infty)$; b) $x \in (0, 2)$.

1167. Grafici su prikazani na slici 33a i 33b.

Sl. 33.

1168. Grafici su prikazani na slici 34a i 34b.

Sl. 34.

1169. Grafici su prikazani na slici 35a i 35b.

Sl. 35.

1170. Grafici su prikazani na slici 36a i 36b.

1171. Grafik je prikazan na slici 37.

1172.
$$x = 16$$
. **1173.** $x = -2 \lor x = 2$.

1174.
$$A(2,4)$$
. **1175.** $x = 0, 1 \lor x = 10000$.

1176. k = 4. **1177.** A(0, 25).

1178. a)
$$\log_2 3 > \log_2 \sqrt{2}$$
; c) $\log_{\frac{1}{2}} \sqrt{5} < \log_{\frac{1}{2}} 2$.

1179. a)
$$m > n$$
; b) $n > m$; c) $m < n$; d) $n < m$. Sl.

1181. a) 4; b) 6; c) 8; g) 8. **1182.** a) -6; b) 3; c) 1; g)
$$\frac{2}{5}$$
.

1183.
$$A = \left\{-2, -\frac{3}{2}, -1, \frac{1}{2}, 1, 2\right\}.$$

1184. Primenom identiteta (1) dobijamo: a) 81; b) 1000; c) 512.

1188.
$$-\frac{56}{25}$$
. **1189.** 21. **1190.** c) $\frac{1}{3}(\log 5 + 4\log a + 3\log b)$.

1191. a)
$$\log 4 + 2 \log a + \frac{1}{2} \log 7 - \log 5 - 2 \log b - \frac{1}{3} \log 2$$
;

b)
$$\log 8 + 4 \log a + \frac{1}{2} \log b - 3 \log c - \frac{1}{3} \log 17;$$

c)
$$\frac{1}{4}(\log 3 + 2\log a - \log 5 - 3\log b - 7\log c)$$
.

1192. a)
$$\log x = \log 3 + 2 \log a + \log b - 2 \log c - \frac{1}{4} (\log d + 3 \log e);$$

b)
$$\log x = 5 \cdot \left(\log 5 + 2\log a + n\log b + \frac{2}{3}\log c + \frac{1}{3}\log d\right);$$

c)
$$\log p = \log R + \log \pi + \log(R + s);$$

d)
$$\log P = \frac{1}{2} (\log s + \log(s - a) + \log(s - b) + \log(s - c));$$

e)
$$\log V = 2 \log a + \log H + \frac{1}{2} \log 3 - \log 4$$
.

1196. a)
$$x = 40$$
; b) $x = \sqrt[3]{\frac{b^3c}{\sqrt{a}}}$; c) $x = \sqrt{5a^3b\sqrt{c}}$.

1197. a)
$$V = \frac{\pi r^2 H}{3}$$
; b) $V = \pi r^2 H$; c) $V = \frac{4\pi r^3}{3}$.

1198. a)
$$A = \frac{x\sqrt[3]{y^3 - z^3}}{y^2 z \sqrt{x - 1}};$$
 b) $A = \frac{az^2 \sqrt{x - z}}{\sqrt[3]{y^3 + z^3}}.$

1199. Kako je

$$\log_a N = x \Longleftrightarrow a^x = N \Longleftrightarrow (a^x)^b = N^b \Longleftrightarrow (y^b)^x = N^b,$$

logaritmovanjem poslednje jednakosti za osnovu a^b dobijamo $x = \log_{a^b} N^b$. Dakle, $\log_a = \log_{a^b} N^b$.

1200. Kako je $a^{\log_a b} = b$, to je

$$\log_b a^{\log_a b} = \log_b b \iff \log_a b \cdot \log_b a = 1,$$

čime je tvrdnja dokazana. Taj identitet se često koristi pri rešavanju zadataka u kojima je potrebno izvršiti razmenu mesta osnovi i argumentu jer je $\log_b a = \frac{1}{\log_a b}$.

1201. Ako je $a \in \mathbb{R}^+ \setminus \{1\}$ i $b \in \mathbb{R}^+$, onda je $\log_a b$ realan broj i

$$\log_a b = x \Leftrightarrow a^x = b \Leftrightarrow \log_c a^x = \log_c b \Leftrightarrow x \log_c a = \log_c b \Leftrightarrow x = \frac{\log_c b}{\log_c a}$$

pa, s obzirom na to da je $\log_a b = x$, imamo $\log_a b = \frac{\log_c b}{\log_c a}$, čime je dokaz

1206. Da bismo dokazali ekvivalenciju, dokazaćemo dve implikacije:

(1)
$$a^{2} + b^{2} = 7ab \Rightarrow \log \frac{|a+b|}{3} = \frac{1}{2} \cdot (\log |a| + \log |b|);$$

(2)
$$\log \frac{|a+b|}{3} = \frac{1}{2} \cdot (\log |a| + \log |b|) \Rightarrow a^2 + b^2 = 7ab.$$

Prva implikacija proizlazi iz

$$a^{2} + b^{2} = 7ab \Rightarrow (a+b)^{2} = 9ab \Rightarrow \frac{|a+b|}{3}\sqrt{ab}$$
$$\Rightarrow \log\frac{|a+b|}{3} = \frac{1}{2} \cdot (\log|a| + \log|b|).$$

Druga implikacija proizlazi iz

$$\frac{|a+b|}{3} = \frac{1}{2} \cdot (\log|a| + \log|b|) \Rightarrow \log \frac{|a+b|}{3} = \log \sqrt{ab}$$
$$\Rightarrow \sqrt{\frac{(a+b)^2}{9}} = \sqrt{ab} \Rightarrow a^2 + b^2 = 7ab.$$

Iz (1) i (2) sledi tvrđenje.

1208. 5. **1209.**
$$\frac{25}{2}$$
. **1210.** 20.

1211. Kako je

$$r = \log_{abc} x = \frac{1}{\log_x(abc)} = \frac{1}{\log_x a + \log_x b + \log_x c} = \frac{1}{\frac{1}{p} + \frac{1}{q} + \frac{1}{\log_x x}},$$

imamo $\log_c x = \frac{rpq}{pq - rp - rq}$.

1212. Primenom identiteta iz zadatka 1201 dobijamo

$$\log_{45} 100 = \frac{\log_5 100}{\log_5 45} = \frac{\log_5 2^2 + \log_5 5^2}{\log_5 5 + \log_5 3^2} = \frac{2\log_5 2 + 2\log_5 5}{\log_5 5 + 2\log_5 3} = \frac{2a + 2}{1 + 2b}.$$

1213. Slično kao u prethodnom zadatku, dobijamo

$$\log_{70} 2, 5 = \frac{d-c}{c+d+1}$$

1214.
$$\frac{2b+a-1}{3a}$$
. **1215.** $\frac{3a+b-2}{2a}$. **1216.** $\frac{n(m+1)}{n+1}$

1217.
$$-\frac{2a+1}{a}$$
. **1218.** $\frac{3a-ab+2}{2a}$. **1219.** $3(1-a-b)$

1214.
$$\frac{2b+a-1}{3a}$$
. 1215. $\frac{3a+b-2}{2a}$. 1216. $\frac{n(m+1)}{n+1}$. 1217. $-\frac{2a+1}{a}$. 1218. $\frac{3a-ab+2}{2a}$. 1219. $3(1-a-b)$. 1220. $\log_{abc} x = 1$. 1221. $\frac{2-a}{a+b}$. 1222. $\frac{1+ab}{a(8-5b)}$.

1223. Pošto je $2\cdot 5=10\Longleftrightarrow \log 2+\log 5=1$, tada su $\log 2$ i $\log 5$ rešenja kvadratne jednačine $x^2-x+k=0$ (Vietove formule),

$$\log 5 = \frac{1 + \sqrt{1 - 4k}}{2}, \quad \log 2 = \frac{1 - \sqrt{1 - 4k}}{2}.$$

1224. Logaritmovati leve i desne strane pretpostavki i eliminisati y.

1226. Kako je

$$\begin{split} \alpha &= \log_{12} 18 = \log_{12}(3^3 \cdot 2) = 2 \log_{12} 3 + \log_{12} 2 \\ &= \frac{2}{\log_3 12} + \frac{1}{\log_2 12} = \frac{2}{2 \log_3 2 + 1} + \frac{1}{2 \log_2 2 + \log_2 3} = \frac{\log_3 2 + 2}{1 + 2 \log_3 2}, \end{split}$$

to je

$$\log_3 2 = \frac{2 - \alpha}{2\alpha - 1}.$$

Slično je

$$\beta = \log_{24} 54 = \log_{24} (3^3 \cdot 2) = 3 \log_{24} 3 + \log_{24} 2$$
$$= \frac{3}{\log_3 24} + \frac{1}{\log_2 24} = \frac{3 - \log_3 2}{3 \log_3 2 + 1},$$

pa važi

(2)
$$\log_3 2 = \frac{3 - \beta}{3\beta - 1}.$$

Iz (1) i (2) imamo

$$\frac{3-\beta}{3\beta-1} = \frac{2-\alpha}{2\alpha-1} \Rightarrow \alpha\beta + 5(\alpha-\beta) = 1.$$

1228. Primenom identiteta $\log_a b = \frac{\log_c b}{\log_c a}$ imamo

$$\begin{split} 2\log_m x &= \log_k x + \log_n x \, \Rightarrow \, \frac{2\log_k x}{\log_k m} = \frac{\log_k x}{\log_k k} + \frac{\log_k x}{\log_k n} \\ &\Rightarrow \, 2\log_k n = \log_k m (1 + \log_k n) \\ &\Rightarrow \, \log_k n^2 = \log_k m (\log_k k + \log_k n) \\ &\Rightarrow \, \log_k n^2 = \log_k (kn)^{\log_k m}. \end{split}$$

Poslednja jednakost daje $n^2 = (kn)^{\log_k m}$, što je i trebalo dokazati.

1229. 0,77815; 1,17609; 1,47712; 2,35218; 3,73239.

1230. 1,14613; 1,54407; 1,69897; 2.

1231. 2,25772. **1232.** a) 5386,2; b) 0,77738; c) 5,5556.

1233. a) 814,32; b) 4,7685; c) 68,626. **1234.** a) 0,53472; b) 3,3749.

1235. a) 1,71750; b) 4,00000. **1236.** a) 192,91; b) 0,78684; c) 87,7797.

1237. a) Ako je
$$A = \frac{\pi\sqrt{3}}{11}$$
, onda je

$$\log A = \log \pi + \frac{1}{2}\log 3 - \log 11 \implies A = 0,49467$$

pa je 1 + A = 1,49467. Ako je $x = \sqrt[3]{1+A}$, onda je $\log x = \frac{1}{3}\log(1+A) \Rightarrow x = 1,14336$. b) 32431,1.

1238. a) -62,348; b) -25,395. **1239.** $a \approx 3,74$ dm

1240. Zapremina lopte je $V = \frac{4}{3}\pi r^3 = 9634,0834 \text{ m}^3.$

1241.
$$O_{\text{kvad}} = \frac{35,24\sqrt{8}}{\pi} = 31,73 \text{ cm.}$$
 1242. 2,9961.

1243. $P = 510\,064\,472\,\mathrm{km^2}, V = 1\,083\,206\,918\,456\,\mathrm{km^3}.$ **1244.** 1770,705 m.

1245. $\approx 22 \text{ sec}$ **1246.** x = 4, 15 km. **1247.** 472,4 m.

1248. 18,24 veka.

3.4. Logaritamske jednačine i nejednačine

1249. Data jednačina može imati rešenja samo u skupu

$$D = \{x|5 - x > 0\} \cap \{3 - x > 0\} \Rightarrow D = \{x|x < 3\}.$$

Rešenja date jednačine koja pripadaju skupu D nalaze se među rešenjima jednačine:

$$\log(5-x) + \log(3-x) = 1 \Longleftrightarrow \log\left((5-x)\cdot(3-x)\right) = 1$$
$$\Longleftrightarrow x^2 - 8x + 5 = 0 \Longleftrightarrow x = 4 + \sqrt{11} \lor x = 4 - \sqrt{11}.$$

S obzirom na to da $4 + \sqrt{11} \notin D$, jedino rešenje je $x = 4 - \sqrt{11}$.

1250. Data jednačina može imati rešenja samo u skupu

$$D = \{x|5 - x > 0\} \cap \{x|\sqrt[3]{35} - x > 0\} = \{x|x < \sqrt[3]{35}\}.$$

Ako je $x \in D$, onda je

$$3\log(5-x) = \log(35-x^2) \iff (5-x)^3 = 35-x^3$$
$$\iff x^2 - 5x + 6 = 0 \iff x = 3 \lor x = 2.$$

Oba rešenja x=2 i x=3 pripadaju skupu D.

1251.
$$x = 9 \lor x = 91$$
. **1252.** $\frac{1}{10}$, 100.

1253. a)
$$\frac{1}{10}$$
, $10^{\frac{1-\sqrt{3}}{2}}$, $10^{\frac{1+\sqrt{3}}{2}}$; b) $\frac{1}{10}$, 100. **1254.** 2.

1255. a)
$$x = 3 \lor x = 9$$
; b) $\sqrt{2}$, 4.

$$\begin{aligned} \mathbf{1256.} &\text{ a) } \log_x(5x^2) \cdot \log_5^2 x = 1 \Longleftrightarrow (\log_x 5 + 2) \log_5^2 x = 1 \\ &\iff 2 \log_5^2 x + \log_5 x - 1 = 0 \Longleftrightarrow \left(\log_5 x = -1 \vee \log_5 x = \frac{1}{2}\right) \\ &\iff x = \frac{1}{5} \vee x = \sqrt{5}. \end{aligned}$$

b)
$$\log_2 \log_2 x = \log_2 3 + \log_2 4 \iff \log_2 \log_2 x = \log_2 12 \iff \log_2 x = 12 \iff x = 2^{12}$$
.

1257. a) 16; b) 0,01, 1000.

1258.
$$\log_x \sqrt{5} + \log_x 5x - 2, 25 = (\log_x \sqrt{5})^2 \iff \frac{1}{2} \log_x 5 + \log_x 5 + \log_x x - 2, 25 = \left(\frac{1}{2} \log_x 5\right)^2 \iff \log_x^2 5 - 6 \log_x 5 + 5 = 0 \iff \log_x 5 = 5$$

$$\vee \log_x 5 = 1 \iff x = \sqrt[5]{5} \vee x = 5.$$

1259.
$$5^{2(\log_5 2+x)} - 2 = 5^{x+\log_5 2} \iff 5^{2\log_5 2+2x} - 5^{\log_5 2} - 5^{x+\log_5 2} = 0$$

 $\iff 5^{\log_5 2} \cdot (5^{\log_5 2} \cdot 5^{2x} - 1 - 5x) = 0 \iff 2 \cdot 5^{2x} - 5^x - 1 = 0$
 $\iff 5^{2x} = -\frac{1}{2} \vee 5^{2x} = 1.$

Kako je $5^{2x} > 0$, jedino rešenje je x = 0.

1260.
$$x = 2 \lor x = 64$$
. **1261.** $\frac{1}{9}$, 9. **1262.** 5. **1263.** $\frac{1}{3}$.

1264. Data jednačina ekvivalentna je nizu ekvivalencija

$$(1 + 2 + 3 + \dots + 100) \log_{10} x = 5050$$
 $\iff 5050 \log_{10} x = 5050 \iff \log_{10} x = 1 \iff x = 10.$

1265.
$$x = 0$$
. **1266.** $x = 1$. **1267.** 2. **1268.** 2. **1269.** 3.

1270. 3. **1271.** 100,
$$\frac{1}{100}$$
 (smena $x^{\log \sqrt{x}} = t$). **1272.** $\sqrt{3}$, 3.

1273. 9,
$$\frac{1}{3}$$
. **1274.** $\frac{1}{9}$, 1, 3. **1275.** 10, 0,1.

1276.
$$x_1 = 0$$
. **1277.** $x_1 = 0$. **1278.** $x_1 = a^2$, $x_2 = \frac{1}{a}$.

1279. Data jednačina ekvivalentna je jednačini

$$(2x^2 - 3) \cdot \log_3 x = (2x^2 - 3) \cdot \log_9(2x + 3) \land x \in (0, +\infty)$$

$$\iff (2x^2 - 3) \cdot \left(\log_9(2x + 3) - \log_9 x^2\right) = 0 \land x \in (0, +\infty)$$

$$\iff 2x^2 - 3 = 0 \lor \log_9 \frac{2x + 3}{x^2} = 0 \land x \in (0, +\infty) \iff x = 3 \lor x = \sqrt{\frac{3}{2}}.$$

1280. Data jednačina ekvivalentna je jednačini

$$\log_2 \log_3(2x+3) - \log_2 \log_3 \frac{2x+3}{x+1} = 1 \iff \log_2 \frac{\log_3(2x+3)}{\log_3 \frac{2x+3}{x+1}} = 1$$
$$\iff \log_3(2x+3) = 2 \cdot \log_3 \frac{2x+3}{x+1} \iff \log_3(x+1)^2 = \log_3(2x+3)$$
$$\iff x^2 = 2 \land x \in (-1, +\infty) \iff x = \sqrt{2}.$$

1281.
$$x = 0$$
. **1282.** $x = \frac{99}{100}$. **1283.** $x_1 = 8$, $x_2 = \frac{1}{8}$.

1284. Data jednačina ekvivalentna je nizu ekvivalencija

$$\log_2(x^2 + 2x - 7) = \log_4(x^2 - 6x + 9)$$

$$\iff \log_2(x^2 + 2x - 7) = \log_2\sqrt{(x - 3)^2}$$

$$\iff x^2 + 2x - 7 = |x - 3| \iff x = -5.$$

1285. Važi niz ekvivalencija za $x > -\frac{3}{2} \land x \neq -1$

$$\begin{split} \log_{3x+7}(2x+3)^2 + \log_{2x+3}\left((2x+3)\cdot(3x+7)\right) &= 4\\ \iff 2\log_{3x+7}(2x+3) + 1 + \log_{2x+3}(3x+7) &= 4\\ \iff 2\log_{3x+7}(2x+3) + \frac{1}{\log_{3x+7}(2x+3)} - 3 &= 0\\ \iff \log_{3x+7}(2x+3) &= 1 \vee \log_{3x+7}(2x+3) &= 0, 5 \iff x = -\frac{1}{4}. \end{split}$$

1286. x = -2.

1287. Data jednačina se svodi na ekvivalentnu jednačinu

$$\log_5(x^2 - 2x - 3) = \log_5\sqrt{(x+7)^2} \iff x^2 - 2x - 3 = |x+7|,$$

odakle se dobija jedinstveno rešenje x = 5.

1288. Za datu jednačinu važi niz ekvivalencija

$$7^{\log x} \cdot \left(1 + \frac{13}{7}\right) = 5^{\log x} \cdot \left(5 + \frac{3}{5}\right)$$

$$\iff 7^{\log x} \cdot \frac{20}{7} = 5^{\log x} \cdot \frac{28}{5} \iff \left(\frac{7}{5}\right)^{\log x} = \left(\frac{7}{5}\right)^2 \iff \log x = 2 \iff x = 100.$$

1289.
$$x = 10 \lor x = 100$$
. **1290.** $x = 1 \lor x = 2$. **1291.** $x = \frac{5}{4} \lor x = 3$.

1292.
$$x = 100$$
. **1293.** $x = \frac{1}{3} \lor x = 3$.

1294. Primenom identiteta $\log_a b = \frac{\log_c b}{\log_c a}$, važe ekvivalencije

$$2\frac{\log_2(2^x-1)}{\log_2 4} + \log_2 2^x + \frac{\log_2 3}{\log_2 \frac{1}{2}} + \frac{\log_6 6}{\log_6 \frac{\sqrt{6}}{6}} = 0$$

$$\iff \log_2\left(\left(2^x - 1\right) \cdot 2^x\right) - \log_2 3 - 2 = 0 \iff \log_2(2^x - 1) \cdot 2^x = \log_2 3 + \log_2 4$$

$$\iff \log_2\left(2^x(2^x - 1)\right) = \log_2 12 \iff \left(2^x\right)^2 - 2^x - 12 = 0.$$

Rezultat: x = 2.

1295.
$$x = \frac{1}{3}$$

$$\begin{array}{l} \textbf{1296.} \ \ \text{a)} \ \log \frac{x-1}{x+2} > 0 \Longleftrightarrow \frac{x-1}{x+2} > 1 \Longleftrightarrow \frac{-3}{x+2} < 0 \Longleftrightarrow x+2 < 0 \\ \Longleftrightarrow x < -2. \ \ \text{Data nejednačina zadovoljena je za svako} \ x \in (-\infty,-2). \end{array}$$

b) Data nejednačina ekvivalentna je sistemu $x-2>0 \wedge x>0 \wedge x-2>x$ koji nema rešenja.

1297. Data nejednačina ekvivalentna je sistemu

$$x-4 > 0 \land x+1 > 0 \land \log \frac{x-4}{x+1} < 1.$$

Rešenja ovog sistema istovremeno su i rešenja date nejednačine, a to su vrednosti x iz intervala $(4, +\infty)$.

1298.
$$-3 < x < 2$$
.

1299. a) Data nejednačina ekvivalentna je sistemu

$$x^2 - 3x + 4 < 2 \wedge x^2 - 3x + 4 > 0,$$

odakle je 1 < x < 2.

b)
$$\frac{5-\sqrt{5}}{2} < x < 2$$
 ili $3 < x < \frac{5+\sqrt{5}}{2}$.

1300. Kako je a > 1, data nejednačina ekvivalentna je sistemu

$$x > 0 \land x(x+1) < 2x + 6.$$

Rezultat: 0 < x < 3.

1301. Data nejednačina ekvivalentna je nejednačini

$$\frac{1}{\log_a ax} + \frac{3}{\log_a a^2 x} > 0 \quad \text{tj.} \quad \frac{5 + 4\log_a x}{(1 + \log_a x) \cdot (2 + \log_a x)} > 0.$$

Smenom $\log_a x = t$ dobijamo

$$\frac{5+4t}{(1+t)\cdot (2+t)} > 0 \quad \text{pa je} \quad -2 < t < -\frac{5}{4} \vee 1 < t < +\infty.$$

Kako je $t = \log_a x$, dobijamo

$$\frac{1}{a^2} < x < \frac{1}{\sqrt[4]{a^5}} \lor \frac{1}{a} < x < +\infty.$$

1302.
$$\left(-1 < x < -\frac{1}{2}\right) \lor \left(-\frac{1}{2} < x < 0\right) \lor \left(\frac{1}{2} < x < 1\right) \lor (x > 2).$$

1303.
$$(-1 \le x < 1) \lor (3 < x \le 5)$$
. **1304.** $\left(\frac{2}{3} < x \le 1\right) \lor (x \ge 2)$.

1305.
$$\left(-2 < x < \frac{-1 - \sqrt{5}}{2}\right) \lor \left(\frac{-1 + \sqrt{5}}{2} < x < 1\right)$$
.

1306.
$$\left(-\frac{3}{2} < x < -1\right) \lor \left(-1 < x < 3\right)$$
. **1307.** $x > 20$. **1308.** $x > 2, 5$.

1309. Funkcija $x\to \log_x\frac{4x+5}{6-5x}$ definisana je u skupu realnih brojeva za $x>0 \land \frac{4x+5}{6-5x}>0 \land x\neq 1$. Ti uslovi ispunjeni su za

(1)
$$(0 < x < 1) \lor \left(1 < x < \frac{6}{5}\right).$$

Da bi data nejednačina bila zadovoljena, posmairajmo sledeća dva slučaja: 1° Ako je 0 < x < 1, data nejednačina ekvivalentna je nejednačini

$$\frac{4x+5}{6-5x} > \frac{1}{x} \Longleftrightarrow \left(-3 < x < \frac{1}{2}\right) \land \left(0 < x < \frac{6}{5}\right).$$

Prema tome, iz toga dobijamo $\frac{1}{2} < x < 1$.

 2° Ako je x>1,data nejednačina ekvivalentna je nejednačini $\frac{4x+5}{6-5x}>\frac{1}{x}.$

Ova nejednačina je zadovoljena za

$$(x<-3) \vee \left(0 < x < \frac{1}{2}\right) \vee \left(x > \frac{6}{5}\right).$$

Vodeći računa o uslovu (1), zaključujemo da je $\frac{1}{2} < x < 1$ rešenje date nejednačine.

1310.
$$x < -3 \lor \left(3 < x < \frac{1 + \sqrt{29}}{2}\right) \lor \left(x > \frac{1 + \sqrt{29}}{2}\right)$$
.

1311. Skup tačaka M(x,y) koje zadovoljavaju date nejednačine je osenčeni deo ravni xOy; sl. 38a, b, c.

1312.
$$x \in \left(\frac{1}{3}, 1\right) \cup (1, 2)$$
. **1313.** $x \in (4, 6)$. **1314.** $x \in (2, +\infty)$.

1315.
$$x \in \left(1, \frac{3}{2}\right]$$
.

1316. $x \in \left(0, \frac{16}{9}\right)$. (Data nejednačina ekvivalentna je nejednačini $\log(x+16) > 1 + \log x$, itd.).

1317. $x \in \emptyset$. **1318.** $x \in \emptyset$.

1319.
$$x \in \left(0, \frac{1}{10}\right) \cup (100, 1000) \cup (100000, +\infty).$$

1320. $x \in (-\infty, 0) \cup [\log_6 5, 1)$. **1321.** $x \in (-\infty, 0] \cup [1, \log_3 5)$.

1322.
$$x \in (-1,0) \cup \left(\frac{3}{2},2\right)$$
. **1323.** $x \in \left[\frac{1+\sqrt{17}}{4},+\infty\right)$.

1324.
$$x \in \left(-\infty, -\frac{2}{3}\right) \cup \left[\frac{1}{2}, 2\right].$$

1325. Data nejednačina ekvivalentna je nejednačini

$$\log_5 \left((x-2)(x^2+3x+7) \right) \cdot \log_4 \left((x-2)(3-x) \right) < 0 \land 2 < x < 3.$$

Odatle se dobija rešenje nejednačine $x \in (2,3)$.

1327. Ako je
$$a \in (0,1)$$
, tada je $x \in (0,a^8)$, ako je $a > 1$, tada je $x \in \left(0,\frac{1}{a^4}\right)$.

1328.
$$x \in \left(\frac{1}{a}, 1\right) \cup ({}^{n+\sqrt[4]{a}}, a).$$

3.5. Sistem logaritamskih jednačina sa dve nepoznate

1329.
$$(x = 2, y = 10)$$
. **1330.** $(x = 6, y = 3)$.

1331. Prva jednačina ekvivalentna je jednačini $x=y^2$. Rešenja datog sistema su $(x=1,\,y=1)\,\vee\,(x=4,\,y=2).$

1332. Dati sistem ekvivalentan je sistemu $x^2 - y^2 = 4 \wedge xy = 21$. Rešenje je (x = 7, y = 3).

1333.
$$(8,4)$$
. **1334.** $\left(\frac{-1+\sqrt{21}}{2}, \frac{11-\sqrt{21}}{2}\right) \vee \left(\frac{11-\sqrt{21}}{2}, \frac{-1+\sqrt{21}}{2}\right)$.

1335. (2,6). **1336.**
$$(4, \sqrt[4]{1000}); \left(\frac{3}{2}, 100\right)$$
. **1337.** $(100, 5); (5, 100)$.

1338.
$$(25,4)$$
. **1339.** $\left(8,\frac{5}{4}\right)$. **1340.** $\left(8,\frac{5}{4}\right)$.

1341.
$$\{c^3, c^{-1}\}; (c^{-1}, c^3).$$
 1342. $(6, 2).$ **1343.** $(3, -3).$ **1344.** $(2, 1).$

1345. (9,81). (Smena:
$$7^{\log_3 x} = u$$
, $3^{\log_9 y} = v$). **1346.** (8,2); $\left(\frac{1}{2}, \frac{1}{8}\right)$.

1347. Ako se iskoristi definicija $a^{\log_a b} = b$, druga jednačina postaje

$$\frac{1}{63}(2^x \cdot 2^y + 7 \cdot 2^{x-y}) = \frac{1}{7}.$$

Dalje se lako dobija rešenje (0, 5; 0, 5).

1348.
$$\left(-\frac{2}{5}, \frac{2}{5}\right)$$
. **1349.** $\left(-\frac{5}{3}, \frac{8}{3}\right)$.

IV GLAVA

4. TRIGONOMETRIJSKE FUNKCIJE

4.1. Definicije trigonometrijskih funkcija ma kog ugla

1363. Leva strana se transformiše na sledeći način:

$$\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} = \sqrt{\frac{1-\cos^2\alpha}{(1+\cos\alpha)^2}} = \frac{|\sin\alpha|}{1+\cos\alpha},$$

izuzimajući slučaj kada je $\cos \alpha = -1$, tj. $\alpha = (2k+1)\pi$, $(k \in \mathbb{Z})$. Sledi da je formula tačna pod uslovom $|\sin \alpha| = \sin \alpha$, tj. da ispunjava uslov $2k\pi \le \alpha \le (2k+1)\pi$, $(k \in \mathbb{Z})$.

1364.
$$\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} + \sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}} = \sqrt{\frac{(1-\cos\alpha)^2}{1-\cos^2\alpha}} + \sqrt{\frac{(1+\cos\alpha)^2}{1-\cos^2\alpha}}$$
$$= \frac{|1-\cos\alpha|}{|\sin\alpha|} + \frac{|1+\cos\alpha|}{|\sin\alpha|} = \frac{2}{\sin\alpha}.$$

1365. Leva strana date formule može se napisati u obliku

$$\sqrt{\frac{1+\sin\alpha}{1-\sin\alpha}} - \sqrt{\frac{1-\sin\alpha}{1+\sin\alpha}} = \sqrt{\frac{(1+\sin\alpha)^2}{1-\sin^2\alpha}} - \sqrt{\frac{(1-\sin\alpha)^2}{1-\sin^2\alpha}}$$
$$= \frac{|1+\sin\alpha|}{|\cos\alpha|} + \frac{|1-\sin\alpha|}{|\cos\alpha|}.$$

U slučaju $\alpha \neq 0$ tj. $\alpha \neq \frac{\pi}{2} + k\pi$ data formula je tačna ako je

$$1+\sin\alpha>0,\quad 1-\sin\alpha>0\quad {\rm i}\quad \cos\alpha>0,$$

tj.
$$2k\pi < \alpha < \frac{\pi}{2} + 2k\pi; \frac{3\pi}{2} + 2k\pi < \alpha < 2k\pi$$
 i $2k\pi - \frac{\pi}{2} < \alpha < 2k\pi,$ $(k=0,\pm 1,\pm 2,\ldots).$ Dakle,

$$\frac{|1+\sin\alpha|}{|\cos\alpha|} - \frac{|1-\sin\alpha|}{|\cos\alpha|} = \frac{1+\sin\alpha}{\cos\alpha} = \frac{2\sin\alpha}{\cos\alpha} = 2\operatorname{tg}\alpha.$$

1366. Leva strana date jednakosti se transformiše na sledeći način:

$$\begin{split} & \frac{\sqrt{(\sin\alpha - \cos\alpha)^2}}{\sin^2\alpha - \cos^2\alpha} + \frac{2\sin\alpha\cos\alpha}{\sin\alpha + \cos\alpha} = \frac{|\sin\alpha - \cos\alpha|}{\sin^2\alpha - \cos^2\alpha} + \frac{2\sin\alpha\cos\alpha}{\sin\alpha + \cos\alpha} \\ & = \frac{1}{\sin\alpha + \cos\alpha} + \frac{2\sin\alpha\cos\alpha}{\sin\alpha + \cos\alpha} = \frac{(\sin\alpha + \cos\alpha)^2}{\sin\alpha + \cos\alpha} = \sin\alpha + \cos\alpha, \end{split}$$

jer je $\sin \alpha - \cos \alpha > 0$, pošto je $\frac{\pi}{4} < \alpha < \frac{\pi}{2}$.

1368. Imamo niz identičnih transformacija:

$$\frac{\sin\alpha + \cos\alpha}{\sin\alpha - \cos\alpha} - \frac{1 + 2\cos^2\alpha}{\cos^2\alpha(\operatorname{tg}^2\alpha - 1)} = \frac{\sin\alpha + \cos\alpha}{\sin\alpha - \cos\alpha} - \frac{1 + 2\cos^2\alpha}{\sin^2\alpha - \cos^2\alpha}$$
$$\frac{2\sin\alpha\cos\alpha - 2\cos^2\alpha}{\sin^2\alpha - \cos^2\alpha} = \frac{2\cos\alpha}{\sin\alpha + \cos\alpha}$$
$$= \frac{2\cos\alpha}{\cos\alpha\left(\frac{\sin\alpha}{\cos\alpha} + 1\right)} = \frac{2}{\operatorname{tg}\alpha + 1}.$$

1369. Leva strana se transformiše na sledeći način:

$$\begin{split} 2\sin^{6}\alpha - 2\sin^{4}\alpha + 2\cos^{6}\alpha - 2\cos^{4}\alpha + 1 - \sin^{4}\alpha - \cos^{4}\alpha \\ &= -2\sin^{4}\alpha(1 - 2\sin^{2}\alpha) - 2\cos^{4}\alpha(1 - \cos^{2}\alpha) + 1 - \sin^{4}\alpha - \cos^{4}\alpha \\ &= -2\sin^{4}\alpha\cos^{2}\alpha - 2\cos^{4}\alpha\sin^{2}\alpha + 1 - \sin^{4}\alpha - \cos^{4}\alpha \\ &= 1 - 2\sin^{2}\alpha\cos^{2}\alpha(\sin^{2}\alpha + \cos^{2}\alpha) - \sin^{4}\alpha - \cos^{4}\alpha \\ &= 1 - (\sin^{2}\alpha + \cos^{2}\alpha)^{2} = 0. \end{split}$$

1370. Imamo sledeće identične transformacije:

$$\frac{1 - \sin \alpha \cos \alpha}{\cos \alpha} \cdot \frac{(\sin \alpha + \cos \alpha) \cdot (\sin \alpha - \cos \alpha)}{(\sin \alpha + \cos \alpha) \cdot (\sin^2 \alpha - \sin \alpha \cos \alpha + \cos^2 \alpha)}$$
$$= \frac{\sin \alpha \cos \alpha (1 - \sin \alpha \cos \alpha)}{\cos \alpha (\sin \alpha - \cos \alpha)} \cdot \frac{\sin \alpha - \cos \alpha}{1 - \sin \alpha \cos \alpha} = \sin \alpha.$$

1371. Leva strana može se postupno transformisati ns sledeći način:

$$\begin{split} &\frac{\sin^4\alpha + \cos^4\alpha - 1}{\sin^6\alpha + \cos^6\alpha - 1} = \frac{-(\sin^2\alpha - \sin^4\alpha + \cos^2\alpha - \cos^4\alpha)}{-(\sin^2\alpha - \sin^6\alpha + \cos^2\alpha - \cos^6\alpha)} \\ &= \frac{\sin^2\alpha(1 - \sin^2\alpha) + \cos^2\alpha(1 - \cos^2\alpha)}{\sin^2\alpha(1 - \sin^4\alpha) + \cos^2\alpha(1 - \cos^4\alpha)} \\ &= \frac{\sin^2\alpha\cos^2\alpha + \cos^2\alpha\sin^2\alpha}{\sin^2\alpha\cos^2\alpha(1 + \sin^2\alpha) + \cos^2\alpha\sin^2\alpha(1 + \cos^4\alpha)} \\ &= \frac{2\sin^2\alpha\cos^2\alpha}{\sin^2\alpha\cos^2\alpha(1 + \sin^2\alpha + 1 + \cos^2\alpha)} = \frac{2}{2 + \sin^2\alpha + \cos^2\alpha} = \frac{2}{3} \,, \end{split}$$

što je trebalo dokazati.

1373. Iz pretpostavke sledi da je

$$\frac{\sin \alpha}{\cos \alpha} + \frac{\cos \alpha}{\sin \alpha} = a$$
 ili $\frac{1}{\sin \alpha \cos \alpha} = a$,

odavde $\cos\alpha = \frac{1}{a\sin\alpha}.$ Ako se zameni ova vrednost za $\cos\alpha$ u

$$\sin^2\alpha + \cos^2\alpha = 1$$

imamo $a^2 \sin^4 \alpha - a^2 \sin^2 \alpha + 1 = 0$. Odavde sledi da je

$$\sin \alpha = \pm \sqrt{\frac{a \pm \sqrt{a^2 - 4}}{2a}}.$$

1374. a) Ako se prva jednačina kvadrira, a zatim stepenuje sa 3 imamo:

$$\sin^2 x - 2\sin x \cos x + \cos^2 x = m^2$$
 i $\sin^3 x - 3\sin x \cos x (\sin x + \cos x) + \cos^3 x = m^3$,

ili $\sin x \cos x = \frac{m^2 - 1}{2}$ i $\sin^3 x + \cos^3 x + \sin x \cos x (\sin x + \cos x) = m^3$,

odnosno
$$k+3\frac{m^2-1}{2}-m=m^3 \Rightarrow 2k+3m^3-3m=2m^3 \Rightarrow m^3-3m+2k=0;$$
b) $b^2x^2+a^2y^2=a^2b^2;$ c) $(x-p)^2+(y-q)^2=r^2.$

1375. Iz

$$\sin^2 a + \sin^2 \beta = 1 \Rightarrow \sin^2 \alpha = 1 - \sin^2 \beta = \cos^2 \beta$$

kako su uglovi α i β oštri, to je $\sin \alpha > 0$ i $\cos \beta > 0$, pa je $\sin \alpha = \cos \beta$, tj. $\sin \alpha = \sin(90^{\circ} - \beta)$. Odavde sledi $\alpha = 90^{\circ} - \beta$, $\alpha + \beta = 90^{\circ}$, tj. trougao ABC je pravougli.

1376. Imamo niz transformacija:

$$\frac{\sin x + \cos x}{\cos^3 x} = \frac{\sin x}{\cos^3 x} + \frac{\cos x}{\cos^3 x} = \sin x \cdot \frac{1}{\cos^3 x} + \frac{1}{\cos^2 x}$$
$$= \operatorname{tg} x (1 + \operatorname{tg}^2 x) + 1 + \operatorname{tg}^2 x = \operatorname{tg}^3 x + \operatorname{tg}^2 x + \operatorname{tg} x + 1$$

1377. Za egzistenciju treće jednačine neophodno je da $\cos x \neq 0$ i $\cos y \neq 0$. Zatim prve dve jednačine transformišemo u oblik

(1)
$$(a-1) \operatorname{tg}^2 x = 1 - b,$$

(2)
$$(b-1) \operatorname{tg}^{2} y = 1 - a.$$

Pošto je a=-1, jer za a=1 imamo iz (1) b=1, što je u suprotnosti sa pretpostavkom $b\neq a$.

Deobom (1) sa (2)
$$\left(\frac{\operatorname{tg} x}{\operatorname{tg} y}\right)^2 = \left(\frac{1-b}{1-a}\right)^2$$
.

Iz treće jednačine imamo $\frac{\operatorname{tg} x}{\operatorname{tg} y} = \frac{b^2}{a^2}$. Dakle $\left(\frac{b}{a}\right)^2 = \left(\frac{1-b}{1-a}\right)^2$.

Ako je $\frac{b}{a}=\frac{1-b}{1-a}$, to je a=b, a to je nemoguće. Ako je $\frac{b}{a}=-\frac{1-b}{1-a}$, to je a+b=2ab, što je i trebalo dokazati.

1378. Množenjem prve jednačine sa $\sin \alpha$, druge sa $\cos \alpha$, imamo

$$1 - \sin^2 \alpha = m \sin \alpha, \quad 1 - \cos^2 \alpha = n \cos \alpha.$$

Odavde
$$m = \frac{\cos^2 \alpha}{\sin \alpha}, n = \frac{\sin^2 \alpha}{\cos \alpha}$$

Dakle

$$(mn^2)^{\frac{2}{3}} = \left(\frac{\cos^2\alpha}{\sin\alpha} \cdot \frac{\sin^4\alpha}{\cos^2\alpha}\right)^{\frac{2}{3}} = (\sin^3\alpha)^{\frac{2}{3}} = \sin^2\alpha;$$

$$(mn^2)^{\frac{2}{3}} = \left(\frac{\cos^4 \alpha}{\sin^2 \alpha} \cdot \frac{\sin^2 \alpha}{\cos \alpha}\right)^{\frac{2}{3}} = (\cos^3 \alpha)^{\frac{2}{3}} = \cos^2 \alpha.$$

Odavde imamo $(mn^2)^{\frac{2}{3}} + (m^2n)^{\frac{2}{3}} = \sin^2 \alpha + \cos 2\alpha = 1.$

1379. Imamo

$$(tg^2x + ctg^2x)^2 = a^2$$
, ili $tg^4x + 2tg^2x \cdot ctg^2x + ctg^4x = a^2$.

Pošto je tg $^4x + \operatorname{ctg}^4x = b$ i tg $x \cdot \operatorname{ctg} x = 1$, to je $b + 2 = a^2$, odnosno $a^2 - b = 2$.

1380. Imamo

$$(\sin \alpha - \cos \alpha)^2 = \left(\frac{1}{2}\right)^2 \Rightarrow 1 - \frac{1}{4} = 2\sin \alpha \cos \alpha \Rightarrow \sin \alpha \cos \alpha = \frac{3}{8}$$

Zatim

$$(\sin^2 \alpha + \cos^2 \alpha)^2 = 1$$

$$\Rightarrow \sin^4 \alpha + \cos^4 \alpha = 1 - 2(\sin \alpha \cos \alpha)^2 = 1 - 2 \cdot \frac{9}{64} = 1 - \frac{9}{32} = \frac{23}{32}.$$

1381. a) Iz date jednakosti imamo $\cos a = \frac{3-2\sin\alpha}{3}$. Zatim

$$\sin^2 \alpha + \left(\frac{3 - 2\sin \alpha}{3}\right)^2 = 1,$$

odakle sledi da je

$$\sin \alpha = 0 \lor \sin \alpha = \frac{12}{13}$$
, a $\cos \alpha = 1 \lor \cos \alpha = \frac{5}{13}$.

b)
$$\sin \alpha = \frac{3}{5}$$
, $\cos \alpha = \frac{4}{5}$; c) $\sin \alpha = \cos \alpha = \frac{\sqrt{2}}{2}$.

1382. Imamo da je $3 \sin x = 2(1 - \sin^2 x)$, ili $2 \sin^2 x + 3 \sin x - 2 = 0$, odakle sledi da je $\sin x = -2$ (nemoguće), $\sin x = \frac{1}{2} \Rightarrow x = \frac{\pi}{6}$.

1383. Dati razlomak se transformiše u oblik $\frac{\sin^2 x}{\cos^2 x} \cdot \frac{1 + \cos x}{1 + \sin x}$. Pošto su oba činioca proizvoda pozitivna to je i njihov proizvod pozitivan.

1384. Iz prve dve date jednakosti dobijamo

(1)
$$x^2 \cos^2 \alpha + 2xy \cos \alpha \sin \beta + y^2 \sin^2 \beta = a^2.$$

(2)
$$x^2 \sin^2 \beta - 2xy \cos \alpha \sin \beta + y^2 \cos^2 \alpha = x^2 \sin^2 \beta = b^2.$$

Iz (1) i (2) imamo

(3)
$$(x^2 + y^2) \cdot (\cos^2 \alpha + \sin^2 \beta) = a^2 + b^2.$$

Iz (3) i treće date jednakosti proizilazi

$$(x^2 + y^2) \cdot (\sin^2 \alpha + \cos^2 \alpha + \sin^2 \beta + \cos^2 \beta) = a^2 + b^2 + 2ab,$$

odakle sledi $2(x^2 + y^2) = (a + b)^2$, što je trebalo dokazati.

1385. Kako je

$$\cos^4 x + \sin^4 x = (\cos^2 x + \sin^2 x) - 2\sin^2 x \cos^2 x = 1 - 2\sin^2 x \cos^2 x,$$

$$\sin^6 x + \cos^6 x = (\cos^2 x + \sin^2 x)^3 - 3\cos^2 x \sin^2 x (\sin^2 x + \cos^2 x)$$

$$= 1 - 3\sin^2 x \cos^2 x.$$

Odavde izlazi

$$y = 3(1 - 2\cos^2 x \sin^2 x) - 2(1 - 3\cos^2 x \sin^2 x) = 3 - 2 = 1,$$

tj. y = const = 1.

1386. A = 2 (uglovi 18° i 72°; 36° i 54° su komplementni).

1387.
$$x^2 = \frac{a^2}{\cos \alpha} + 2ab \frac{\operatorname{tg} \alpha}{\cos \alpha} + b^2 \operatorname{tg}^2 \alpha = a^2 (1 + \operatorname{tg}^2 \alpha) + 2ab \frac{\operatorname{tg} \alpha}{\cos \alpha} + b^2 \operatorname{tg}^2 \alpha$$
 i

$$y^2 = a^2 \operatorname{tg}^2 \alpha + 2ab \frac{\operatorname{tg} \alpha}{\cos \alpha} + \frac{b^2}{\cos^2 \alpha} = a \operatorname{tg}^2 \alpha + \frac{2ab \operatorname{tg} \alpha}{\cos \alpha} + b^2 (1 + \operatorname{tg}^2 \alpha),$$

odakle

$$x^{2} - y^{2} = a^{2}(1 + tg^{2}\alpha) + b tg^{2}\alpha - a^{2} tg^{2}\alpha - b^{2}(1 + tg^{2}\alpha),$$

tj.
$$x^2 - y^2 = a^2 - b^2$$
.

1388. Primenom jednakosti $\frac{1}{\cos^2 \alpha} = 1 + \operatorname{tg}^2 \alpha$ imamo

$$x^{2} = \frac{1}{\cos^{2} \alpha} \cdot \frac{1}{\cos^{2} \alpha} = (1 + \operatorname{tg}^{2}) \cdot (1 + \operatorname{tg}^{2} \alpha).$$
$$y^{2} = \frac{1}{\cos^{2} \beta} \cdot \operatorname{tg}^{2} \alpha = (1 + \operatorname{tg}^{2} \beta) \cdot \operatorname{tg}^{2} \alpha,$$

odakle proizilazi

$$A = 1 + \operatorname{tg}^{2} \alpha + \operatorname{tg}^{2} \beta + \operatorname{tg}^{2} \alpha \cdot \operatorname{tg}^{2} \beta - (\operatorname{tg}^{2} \alpha + \operatorname{tg}^{2} \beta \cdot \operatorname{tg}^{2} \alpha) - \operatorname{tg}^{2} \beta = 1.$$

1389. A = 1.

1390. Kvadriranjem datih jednakosti imamo

$$\begin{split} a^2 &= A^2 \cos^2 \alpha \cos^2 \beta + B^2 \sin^2 \alpha \cos^2 \beta + C^2 \sin^2 \beta \\ -2AB \sin \alpha \cos \alpha \cos^2 \beta + 2AC \sin \beta \cos \alpha \cos \beta - 2BC \sin \alpha \sin \beta \cos \beta \\ b^2 &= A^2 \cos^2 \alpha \sin^2 \beta + B^2 \sin^2 \alpha \sin^2 \beta + C^2 \cos^2 \beta \\ -2AB \sin \alpha \sin^2 \beta \cos \alpha - 2AC \sin \beta \cos \beta \cos \alpha + 2BC \sin \alpha \sin \beta \cos \beta, \end{split}$$

 $c^2 = A^2 \sin^2 \alpha + 2AB \sin \alpha \cos \alpha + B^2 \cos^2 \alpha.$

Odavde imamo (sabiranjem)

$$a^{2} + b^{2} + c^{2} = A^{2}(\cos^{2}\alpha(\sin^{2}\beta + \cos^{2}\beta) + \sin^{2}\alpha)$$
$$+B^{2}(\sin^{2}\alpha(\sin^{2}\beta + \cos^{2}\beta) + \cos^{2}\alpha) + C^{2}(\sin^{2}\beta + \sin^{2}\beta)$$
$$-2AB\sin\alpha\cos\alpha(\sin^{2}\beta + \cos^{2}\beta - 1).$$

Koeficijenti uz A^2 , B^2 , C^2 su očigledno jednaki jedinici a uz 2AB jednaki nuli, pa je $a^2+b^2+c^2=A^2+B^2+C^2$.

1391. Pretpostavka se može napisati u obliku

$$\frac{\sin^4 x}{a} + \frac{\cos^4 x}{b} - \frac{1}{a+b} = 0, \quad \text{ili} \quad \frac{(1-\cos^2 x)^2}{a} + \frac{\cos^4 x}{b} - \frac{1}{a+b} = 0$$
$$\Rightarrow (a+b)\cos^4 x - 2b\cos^2 x + \frac{b^2}{a+b} = 0.$$

Odavde sledi $\cos^2 x = \frac{b}{a+b}$, a $\sin^2 x = \frac{a}{a+b}$, pa je $\cos^8 x = \frac{b^4}{(a+b)^4}$, a $\sin^8 x = \frac{a^4}{(a+b)^4}.$

Dakle,

$$\frac{\sin^8 x}{a^3} + \frac{\cos^8 x}{b^3} = \frac{a^4}{a^3(a+b)^4} + \frac{b^4}{b^3(a+b)^4}$$
$$= \frac{a}{(a+b)^4} + \frac{b}{(a+b)^4} = \frac{a+b}{(a+b)^4} = \frac{1}{(a+b)^3},$$

što je i trebalo dokazati.

1392. Posle očiglednih transformacija, leva strana formule se transformiše u oblik

$$\frac{|\sin \alpha - \cos \alpha|}{\sin^2 \alpha - \cos^2 \alpha} + \frac{2\sin \alpha \cos \alpha}{\sin \alpha + \cos \alpha} = \frac{1}{\sin \alpha + \cos \alpha} + \frac{2\sin \alpha \cos \alpha}{\sin \alpha + \cos \alpha}$$
$$= \frac{(\sin \alpha + \cos \alpha)^2}{\sin \alpha + \cos \alpha} = \sin \alpha + \cos \alpha,$$

za sin $\alpha-\cos\alpha>0$, tj. $2k\pi+\frac{\pi}{4}<\alpha<\frac{5\pi}{4}+2\pi$. 1393. Pošto je $0<\alpha<\pi \Rightarrow -1<\cos\alpha<1$, to je

(1)
$$\frac{b^2 + c^2 - a^2}{2bc} < 1 \Rightarrow |b - c| < a$$
, (2) $\frac{b^2 + c^2 - a^2}{2bc} < 1 \Rightarrow b + c > a$.

Iz (1) i (2) je |b-c| < a < b+c.

1394. Pošto je α oštar ugao to:

$$|\sin \alpha + \cos \alpha| = \sqrt{(\sin \alpha + \cos \alpha)^2} = \sqrt{1 + 2\sin \alpha \cos \alpha} > 1.$$

Dakle $\sin \alpha + \cos \alpha > 1$.

1395.
$$0^{\circ} \le \alpha \le 45^{\circ}$$
, $315^{\circ} \le \alpha \le 360^{\circ}$.

1396.
$$0^{\circ} \le \alpha \le 60^{\circ}, 90^{\circ} < \alpha \le 240^{\circ}, 270^{\circ} < \alpha \le 360^{\circ}.$$

1397.
$$0^{\circ} \le \alpha \le 225^{\circ}$$
 i $315^{\circ} \le \alpha \le 360^{\circ}$.

1398.
$$30^{\circ} < \alpha < 180^{\circ}, 210^{\circ} \le \alpha \le 360^{\circ}$$

1399.
$$0 \le x \le \frac{\pi}{4}, \frac{3\pi}{4} \le x \le \pi, \, \pi \le x \le \frac{5\pi}{2}, \, \frac{7\pi}{4} \le x \le 2\pi.$$

1400.
$$0 \le x \le 2\pi$$
. **1401.** $\frac{\pi}{6} \le x \le \frac{5\pi}{6}$.

1402.
$$0 \le x \le \frac{\pi}{4}$$
; $\frac{3\pi}{4} < x < \frac{5\pi}{4}$ i $\frac{7\pi}{4} \le x \le 2\pi$. **1413.** -1.

4.2. Svođenje trigonometrijskih funkcija ma kog ugla na trigonometrijske funkcije oštrog ugla

1414. a)
$$\sin \frac{4\pi}{3} = -\frac{1}{2}$$
, $\cos \frac{4\pi}{3} = -\frac{\sqrt{3}}{2}$, $\operatorname{tg} \frac{4\pi}{3} = \sqrt{3}$, $\operatorname{ctg} \frac{4\pi}{3} = \frac{\sqrt{3}}{3}$;

b)
$$\sin \frac{7\pi}{4} = -\frac{\sqrt{2}}{2}$$
, $\cos \frac{7\pi}{4} = \frac{\sqrt{2}}{2}$, $\tan \frac{7\pi}{4} = -1$, $\cot \frac{7\pi}{4} = -1$;

c)
$$\sin \frac{20\pi}{3} = \frac{\sqrt{3}}{2}$$
, $\cos \frac{20\pi}{3} = -\frac{1}{2}$, $\operatorname{tg} \frac{20\pi}{3} = -\sqrt{3}$, $\operatorname{ctg} \frac{20\pi}{3} = -\frac{\sqrt{3}}{3}$.

1415. 1. **1416.** 1. **1417.**
$$-\cot^4 \alpha$$
. **1418.** 1.

1419. $\sin^2 \alpha \cdot \cos^2 \alpha$.

1423. Imamo

. Imamo
$$\frac{\sin^{2} 2\alpha + \tan^{2} 2\alpha + 1}{\cos^{2} 2\alpha + \cot^{2} 2\alpha + 1} = \frac{\sin^{2} 2\alpha + \frac{\sin^{2} 2\alpha}{\cos^{2} 2\alpha} + 1}{\cos^{2} 2\alpha + \frac{\cos^{2} 2\alpha}{\sin^{2} 2\alpha} + 1}$$

$$= \frac{\sin^{2} 2\alpha(\sin^{2} 2\alpha \cos^{2} 2\alpha + \sin^{2} 2\alpha + \cos^{2} 2\alpha)}{\cos^{2} 2\alpha(\sin^{2} 2\alpha \cos^{2} 2\alpha + \cos^{2} 2\alpha + \sin^{2} 2\alpha)} = \tan^{2} 2\alpha.$$

1424. Leva strana datog identiteta identički je jednaka izrazu

$$\frac{\cos^2 \alpha + 2\sin^2 \alpha}{\cos^3 \alpha} + \frac{\cos^2 \alpha + 4\sin \alpha + \sin^2 \alpha}{\cos \alpha (4\sin \alpha + 1)} = \frac{\cos^2 \alpha + 2\sin^2 \alpha}{\cos^3 \alpha} + \frac{1}{\cos \alpha}$$
$$= \frac{\cos^2 \alpha + 2\sin^2 \alpha + \cos^2 \alpha}{\cos^3 \alpha} = \frac{2}{\cos^3 \alpha} = 2\sec^3 \alpha.$$

1427. a)
$$\alpha \neq \frac{k\pi}{2}$$
; $\alpha \neq -\frac{\pi}{4} + k\pi \ (k \in \mathbb{Z})$; b) 0.

1428.
$$\frac{1}{8}$$
. **1429.** $-\sqrt{3}$. **1430.** 1. **1431.** $\frac{\sqrt{3}}{3}$.

1432.
$$\sqrt{2}$$
. **1433.** $\frac{1}{\sin \alpha - \cos \alpha}$. **1434.** $\sin \alpha + \cos \alpha$.

1435. Iz pretpostavke imamo $\alpha = k\pi - \beta - \gamma - \delta$, pa se leva strana može transformisati u oblik

$$\sin(\alpha + \gamma)\sin(\alpha + \delta) = \sin(k\pi - \beta - \gamma - \delta + \gamma)\sin(k\pi - \beta - \gamma - \delta + \delta)$$
$$= \sin(\beta + \delta)\sin(\beta + \gamma).$$

1436. Analogno prethodnom zadatku. 1437. 3.

1438. -2. **1439.** -3. **1440.**
$$\frac{\sqrt{3}}{2}$$
. **1441.** -1.

4.3. Adicione formule

4.3.1. Trigonometrijske funkcije zbira i razlike uglova

1442. Uputstvo: $75^{\circ} = 45^{\circ} + 30^{\circ}$, $105^{\circ} = 60^{\circ} + 45^{\circ}$, $15^{\circ} = 45^{\circ} - 30^{\circ}$.

a)
$$\sin 75^{\circ} = \frac{\sqrt{2}(\sqrt{3}+1)}{4}$$
, $\cos 75^{\circ} = \frac{\sqrt{2}(\sqrt{3}-1)}{4}$, $\operatorname{tg} 75^{\circ} = 2 + \sqrt{3}$.

b)
$$\sin 105^{\circ} = \frac{\sqrt{2}(\sqrt{3}+1)}{4}$$
, $\cos 105^{\circ} \frac{\sqrt{2}(1-\sqrt{3})}{4}$, $tg 105^{\circ} = \sqrt{3}-2$.

c)
$$\sin 15^{\circ} = \frac{\sqrt{2}(\sqrt{3}-1)}{4}$$
, $\cos 15^{\circ} = \frac{\sqrt{2}(\sqrt{3}+1)}{4}$, $\tan 15^{\circ} = 2 - \sqrt{3}$.
1443. $\sin(\alpha+\beta) = \frac{33}{65}$. **1444.** $\sin(\alpha-\beta) = -\frac{117}{125}$.

1443.
$$\sin(\alpha + \beta) = \frac{33}{65}$$
. **1444.** $\sin(\alpha - \beta) = -\frac{117}{125}$.

1445.
$$\cos(\alpha + \beta) = \frac{416}{425}$$
. **1446.** $-\frac{56}{125}$. **1447.** $\frac{4\sqrt{3} - 3}{10}$.

1448.
$$-\frac{1}{7}$$
. 1449. $\frac{3}{5}$. 1450. $-\frac{16}{65}$

1451. Primenom obrasca $\cos(\alpha-\beta)=\cos\alpha\cos\beta+\sin\alpha\sin\beta$, dati izraz postaje

$$\cos\left(\left(\frac{\pi}{4} + \alpha\right) - \left(\frac{\pi}{4} - \alpha\right)\right) = \cos 2\alpha.$$

1452. Analogno prethodnom zadatku dati izraz postaje

$$\cos\left(\left(\frac{\pi}{4} + \alpha\right) + \left(\frac{\pi}{12} - \alpha\right)\right) = \cos\left(\frac{\pi}{4} + \frac{\pi}{12}\right) = \cos\frac{4\pi}{12} = \cos\frac{\pi}{3} = \frac{1}{2}.$$

1453. $\sin x$.

1454. Pošto je $\beta = \frac{\pi}{4} - \alpha$, onda je

$$(1 + \operatorname{tg}\alpha)\left(1 + \operatorname{tg}\left(\frac{\pi}{4} - \alpha\right)\right) = (1 + \operatorname{tg}\alpha)\left(1 + \frac{1 - \operatorname{tg}\alpha}{1 + \operatorname{tg}\alpha}\right) = (1 + \operatorname{tg}\alpha)$$

1456.
$$\cos 2\alpha$$
. **1458.** $\frac{1}{7}$. **1459.** $\alpha + \beta = \frac{\pi}{4}$.

1461. Zamenom datih vrednosti za $\operatorname{ctg}\alpha$ i $\operatorname{ctg}\beta$ u obrazac

$$\operatorname{ctg}(\alpha + \beta) = \frac{\operatorname{ctg}\alpha\operatorname{ctg}\beta - 1}{\operatorname{ctg}\alpha + \operatorname{ctg}\beta}$$

dobija se da je

$$\operatorname{ctg}(\alpha + \beta) = -1 \Rightarrow \alpha + \beta = \frac{3\pi}{4}.$$

1462. Date vrednosti zameniti u obrazac $\operatorname{tg}(\alpha + \beta) = \frac{\operatorname{tg}\alpha + \operatorname{tg}\beta}{1 - \operatorname{tg}\alpha\operatorname{tg}\beta}$

4.3.2. Trigonometrijske funkcije dvostrukih uglova

1463.
$$\sin \frac{2\pi}{3} = 2 \sin \frac{\pi}{3} \cos \frac{\pi}{3} = 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2} = \frac{\sqrt{3}}{2}, \cos \frac{2\pi}{3} = -\frac{1}{2},$$
 $\operatorname{tg} \frac{2\pi}{3} = -\sqrt{3}, \operatorname{ctg} \frac{2\pi}{3} = -\frac{\sqrt{3}}{3}.$

 ${\bf 1464.}\,$ Ako se primene formule tangensa zbira i razlike dva ugla imamo

$$\operatorname{tg}\left(45^{\circ} + \alpha\right) - \operatorname{tg}\left(45^{\circ} - \alpha\right) = \frac{1 + \operatorname{tg}\alpha}{1 - \operatorname{tg}\alpha} - \frac{1 - \operatorname{tg}\alpha}{1 + \operatorname{tg}\alpha} = \frac{4\operatorname{tg}\alpha}{1 - \operatorname{tg}^{2}\alpha} = 2\operatorname{tg}2\alpha = 6.$$

1465. a)
$$\sin 2\alpha = \frac{24}{25}$$
, $\cos 2\alpha = \frac{7}{25}$, $\operatorname{tg} 2\alpha = \frac{24}{7}$;

b)
$$\sin 2\alpha = -\frac{120}{69}$$
, $\cos 2\alpha = -\frac{119}{169}$, $\tan 2\alpha = \frac{120}{119}$

c)
$$\sin 2\alpha = -\frac{24}{25}$$
, $\cos 2\alpha = \frac{7}{25}$, $\operatorname{tg} 2\alpha = -\frac{24}{7}$.

1466. a)
$$\sin x = \sin \left(2 \cdot \frac{x}{2}\right) = 2\sin \frac{x}{2}\cos \frac{x}{2}$$
; b) $\cos x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}$;

c)
$$\sin 3x = 2\sin \frac{3x}{2}\cos \frac{3x}{2}$$
; d) $\sin(x+y) = 2\sin \frac{x+y}{2}\cos \frac{x+y}{2}$.

1467.
$$\sin \alpha = \frac{4}{5}, \cos \alpha = -\frac{3}{5}.$$

1468.
$$\sin 2\alpha = \frac{1}{2}$$
, $\cos 2\alpha = -\frac{\sqrt{3}}{2}$, $\operatorname{tg} 2\alpha = \frac{\sqrt{3}}{3}$.

1469. a)
$$\frac{1}{\cos \frac{x}{2}}$$
; b) $\frac{1}{2\cos 55^{\circ}}$; c) $\frac{1}{\sin \frac{\pi}{12}}$; d) $\frac{1}{\cos 5\alpha}$.

1479. a)
$$\sin 3x = 3\sin x - 4\sin^3 x$$
; b) $\cos 3x = 4\cos^3 x - 3\cos x$.

1480. a)
$$\sin 4x = 4 \sin x \cos x (\cos^2 x - \sin^2 x);$$

b)
$$\cos 4x = \sin^4 x + \cos^4 x - 6\sin^2 x \cos^2 x$$
.

c)
$$\cos 4x = 8\cos^4 x - 8\cos^2 x + 1$$
.

4.3.3. Trigonometrijske funkcije poluuglova

1481. Primenom vrednosti trigonometrijskih funkcija poluuglova imamo:

a)
$$\sin \frac{\pi}{8} = \sqrt{\frac{1 - \cos \frac{\pi}{4}}{2}} = \sqrt{\frac{1 - \frac{\sqrt{2}}{2}}{2}} = \frac{1}{2}\sqrt{2 - \sqrt{2}}, \cos \frac{\pi}{8} = \frac{1}{2}\sqrt{2 + \sqrt{2}},$$

 $tg \frac{\pi}{8} = \sqrt{2} - 1;$

b)
$$\sin \frac{\pi}{12} = \sqrt{\frac{1 - \cos \frac{\pi}{6}}{2}} = \frac{1}{2}\sqrt{2 - \sqrt{3}}$$
, $\cos \frac{\pi}{12} = \frac{1}{2}\sqrt{2 + \sqrt{3}}$, $\cot \frac{\pi}{12} = 2 - \sqrt{3}$;

c)
$$\sin \frac{\pi}{16} = \frac{1}{2}\sqrt{2 - \sqrt{2 + \sqrt{2}}}, \cos \frac{\pi}{16} = \frac{1}{2}\sqrt{2 + \sqrt{2 + \sqrt{2}}}.$$

d)
$$\sin \frac{\pi}{24} = \frac{1}{2}\sqrt{2 - \sqrt{2 + \sqrt{3}}}, \cos \frac{\pi}{24} = \frac{1}{2}\sqrt{2 + \sqrt{2 + \sqrt{3}}}.$$

1482. a)
$$\sin \frac{\alpha}{2} = \frac{4}{5}$$
; $\cos \frac{\alpha}{2} = \frac{3}{5}$; $\operatorname{tg} \frac{\alpha}{2} = \frac{4}{3}$;

b)
$$\sin \frac{\alpha}{2} = \frac{3\sqrt{34}}{34}$$
, $\cos \frac{\alpha}{2} = \frac{-5\sqrt{34}}{34}$, $\operatorname{tg} \frac{\alpha}{2} = -\frac{3}{5}$;

c)
$$\sin \frac{\alpha}{2} = \frac{\sqrt{5}}{2}$$
; $\cos \frac{\alpha}{2} = \frac{2\sqrt{5}}{5}$; $\operatorname{tg} \frac{\alpha}{2} = \frac{1}{2}$.

1484. a) 1; b) 1; c) 2. **1485.** a) $\operatorname{ctg} \frac{\alpha}{2}$; b) $\operatorname{ctg} \alpha$.

1486. a)
$$2\sin^2 20^\circ$$
; b) $tg^2 \frac{\alpha}{2}$; c) $tg^2 \left(\frac{\pi}{4} - \frac{\alpha}{2}\right)$;

1487. a) $\sin 2\alpha$; b) $\sin 2\alpha$; c) 1.

1494. a) Kako je $\sin \alpha = \frac{\sin \alpha}{1} = \frac{2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}{\sin^2 \frac{\alpha}{2} + \cos^2 \frac{\alpha}{2}}$, posle skraćivanja sa $\cos^2 \frac{\alpha}{2}$ dobija se dati identitet;

b) slično pod a)
$$\cos \alpha = \frac{\cos \alpha}{1} = \frac{\cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2}}{\sin^2 \frac{\alpha}{2} + \cos^2 \frac{\alpha}{2}}$$
, itd.

1495. Primeniti formule
$$\sin \alpha = \frac{2 \operatorname{tg} \frac{\alpha}{2}}{1 + \operatorname{tg}^2 \frac{\alpha}{2}}$$
 i $\cos \alpha = \frac{1 - \operatorname{tg}^2 \frac{\alpha}{2}}{1 + \operatorname{tg}^2 \frac{\alpha}{2}}$.

1496. $\frac{1}{7}$

1497. 1° Ako je tg $2\alpha > 0, \ 0 < 2\alpha < \frac{\pi}{2}$, onda je

$$\cos 2\alpha = \frac{1}{\sqrt{1+a^2}}, \quad \sin \alpha = \sqrt{\frac{\sqrt{1+a^2}-1}{2\sqrt{1+a^2}}}, \quad \cos \alpha = \sqrt{\frac{\sqrt{1+a^2}+1}{2\sqrt{1+a^2}}}.$$

 2° Ako je $\pi < 2\alpha < \frac{3\pi}{2},\,\cos 2\alpha < 0,$ tada je

$$\cos 2\alpha = -\frac{1}{\sqrt{1+a^2}}, \quad \sin \alpha = \sqrt{\frac{\sqrt{1+a^2}+1}{2\sqrt{1+a^2}}}, \quad \cos \alpha = \sqrt{\frac{\sqrt{1+a^2}-1}{2\sqrt{1+a^2}}}.$$

1499. a) 4; b) 0,5; c)
$$\frac{\sqrt{10} - \sqrt{2}}{4}$$
; d) $2\sqrt{3}$.

4.3.4. Transformacija zbira i razlike trigonometrijskih funkcija u proizvod i obrnuto

1500. Transformisati date zbirove i razlike u proizvod

a)
$$\frac{\sqrt{6}}{2}$$
; b) $-\sqrt{2-\sqrt{3}}$; c) $\frac{\sqrt{2}}{2}$; d) $-\frac{\sqrt{2}}{2}$; e) $\frac{\sqrt{3}}{3}$.

 ${\bf 1501.}$ a) Transformisati dati proizvod u zbir, tj.:

$$\sin 15^{\circ} \cdot \cos 75^{\circ} = \frac{1}{2} (\sin(15^{\circ} + 75^{\circ}) + \sin(15^{\circ} - 75^{\circ}))$$
$$= \frac{1}{2} (\sin 90^{\circ} + \sin(-60^{\circ})) = \frac{1}{2} \left(1 - \frac{\sqrt{3}}{2} \right) = \frac{2 - \sqrt{3}}{4};$$

b) 0,25.

1503. a) 1; b) $\sqrt{3} \cdot \cos 10^{\circ}$; c) $\sin 8\alpha \sin 2\alpha$.

1504. $2 \sin \alpha \cos 4\alpha$. $\cos 10^{\circ}$. **1506.** $4 \sin 27^{\circ} \cos 5^{\circ} \cos 2^{\circ}$.

1507. $4 \sin 31^{\circ} \cos 5^{\circ} \cos 1^{\circ}$. **1508.** a) $2\sqrt{3}$; b) $-\sqrt{2}$; c) $\sqrt{2}$.

1509. a)
$$1 - \sin \alpha = \sin 90^{\circ} - \sin \alpha = 2 \sin \frac{45^{\circ} - \alpha}{2} \cos \frac{45^{\circ} + \alpha}{2}$$
;

b)
$$-4\sin\frac{45^{\circ} + \alpha}{2}\sin\frac{45^{\circ} - \alpha}{2}$$
; c) $-4\sin(60^{\circ} + \alpha)\sin(60^{\circ} - \alpha)$;

d) $4\sin(60^{\circ} + \alpha)\sin(60^{\circ} - \alpha)$.

1511. a)
$$\cos(\alpha - 45^{\circ})$$
; b) $\sin(45^{\circ} - \alpha)$. **1513.** $\alpha + \beta = 2k\pi, k \in \mathbb{Z}$.

4.3.5. Kombinovani zadaci iz adicionih formula

1514. Dokazati da je tg $(\alpha + 2\beta) = 1$, odakle sledi tvrđenje.

1515. Dati izraz se transformiše u oblik

$$4\cos\alpha\cos\varphi(\cos\alpha\cos\varphi + \sin\alpha\sin\varphi) - 2(\cos\alpha\cos\varphi + \sin\alpha\sin\varphi)^{2} - \cos2\varphi$$

$$= 4\cos^{2}\alpha\cos^{2}\varphi + 4\sin\alpha\sin\varphi\cos\alpha\cos\varphi - 2\cos^{2}\alpha\cos^{2}\varphi$$

$$- 4\sin\alpha\sin\varphi\cos\alpha\cos\varphi - 2\sin^{2}\alpha\sin^{2}\varphi - \cos^{2}\varphi + \cos^{2}\varphi$$

$$= \sin^{2}\varphi - 2\sin^{2}\alpha\sin^{2}\varphi - \cos^{2}\varphi + 2\cos^{2}\varphi\cos^{2}\alpha$$

$$= \sin^{2}\varphi(1 - 2\sin^{2}\alpha) + \cos^{2}\varphi(2\cos^{2}\alpha - 1)$$

$$= \sin^{2}\varphi(\cos^{2}\alpha - \sin^{2}\alpha) + \cos^{2}\varphi(\cos^{2}\alpha - \sin^{2}\alpha)$$

$$= \cos2\alpha(\sin^{2}\varphi + \cos^{2}\varphi) = \cos2\alpha.$$

1516. $\cos^2 \alpha$. **1517.** $\sin^2 \alpha$.

1518. Dati izraz je identički jednak 1, tj. ne zavisi od x i y.

1519. Posle primene adicionih formula dati izraz postaje

$$2\sin^{2} a \cos^{2} x + 2\cos^{2} a \sin^{2} x + 2\sin^{2} a \cos^{2} x \cos 2a - 2\sin^{2} x \cos^{2} x \cos 2x$$

$$= 2\sin^{2} a \cos^{2} x (1 + \cos 2a) + 2\cos^{2} a \sin^{2} x (1 - \cos 2a)$$

$$+ 4\sin^{2} a \cos^{2} x \cos^{2} a + 4\cos^{2} a \sin^{2} x \sin^{2} a$$

$$= 4\sin^{2} a \cos^{2} a (\cos^{2} x + \sin^{2} x) = (2\sin a \cos a)^{2} = \sin^{2} 2a.$$

1520. $\cos 3x = \cos(2x + x) = \cos 2x \cos x - \sin 2x \sin x = (\cos^2 x - \sin^2 x) \cos x - 2\sin^2 x \cos x = 4\cos^3 x - 3\cos x.$

1521. $\sin 3x = 3\sin x - 4\sin^3 x$. Leva strana datog identiteta svodi se na $\sin 3x$.

1522. $\sin 5x = \sin(3x + 2x) = \sin 3x \cos 2x + \cos 3x \sin 2x$.

Kako je $\sin 3x = 3\sin x - 4\sin^3 x$ i $\sin 2x = 2\sin x\cos x$, posle očiglednih transformacija dobija se da je

$$\sin 5x = 16\sin^5 x - 20\sin^3 x + 5\sin x.$$

1523. $\cos 5x = 16\cos^5 x - 20\cos^3 x + 5\cos x$.

1524.
$$\operatorname{tg} 3x = \frac{3 \operatorname{tg} x - \operatorname{tg}^3 x}{1 - 3 \operatorname{tg}^2 x}$$

1525. Izraz S, s obzirom na prethodni zadatak postaje

$$S = 3\frac{3 \operatorname{tg} x - \operatorname{tg}^{3} x}{1 - 3 \operatorname{tg}^{2} x} = \operatorname{tg} 3x.$$

1526.
$$\operatorname{tg} x \cdot \operatorname{tg} \left(\frac{\pi}{3} - x \right) \cdot \operatorname{tg} \left(\frac{\pi}{3} + x \right) = \operatorname{tg} x \frac{\sqrt{3} - \operatorname{tg} x}{1 + \sqrt{3} \operatorname{tg} x} \cdot \frac{\sqrt{3} + \operatorname{tg} x}{1 - \sqrt{3} \operatorname{tg} x} = \frac{\operatorname{tg} x (3 - \operatorname{tg}^2 x)}{1 - 3 \operatorname{tg}^2 x} = \operatorname{tg} 3x$$
, na osnovu prethodnog zadatka.

1527. Leva strana se može transformisati u oblik

$$\begin{split} \frac{1+\sin 2\alpha}{\sin \alpha + \cos \alpha} &= \frac{\sin^2 \alpha + \cos^2 \alpha + 2\sin \alpha \cos \alpha}{\sin \alpha + \cos \alpha} \\ \frac{(\sin \alpha + \cos \alpha)^2}{\sin \alpha + \cos \alpha} &= \sin \alpha + \cos \alpha = \sqrt{2} \left(\frac{1}{\sqrt{2}} \sin \alpha + \frac{1}{\sqrt{2}} \cos \alpha \right) \\ &= \sqrt{2} \left(\cos \alpha \cos \frac{\pi}{4} + \sin \frac{\pi}{4} \sin \alpha \right) = \sqrt{2} \cos \left(\frac{\pi}{4} - a \right). \end{split}$$

1528. 0,96. **1529.**
$$1-p^2$$
. **1530.** $-\frac{22}{9}$. **1531.** 2.

1532.
$$-\frac{50}{7}$$
. **1533.** a) $-\frac{3}{5}$; b) $\frac{4}{5}$.

1534. Iz date jednačine izlazi da je tg $\alpha=\frac{1}{2}$ ili tg $\alpha=3$. Vrednost tg $\alpha=\frac{1}{2}$ je za $\alpha\in\left(\pi,\frac{5\pi}{4}\right)$, a vrednost tg $\alpha=3$ je za $a\in\left(\frac{5\pi}{4},\frac{3\pi}{2}\right)$, pa je tražena vrednost za sin 2α : a) $\frac{4}{5}$; b) $\frac{3}{5}$.

1535. Dati izraz transformisati u oblik $\frac{2 \operatorname{tg} 2\alpha - 3}{4 \operatorname{tg} 2\alpha + 5}$; kako je $\operatorname{tg} 2\alpha = -\frac{3}{4}$, vrednost datog izraza je $-\frac{9}{4}$.

1536. Data jednakost se može transformisati na ovaj način:

$$\frac{\sin\alpha\cos\beta + \cos\alpha\sin\beta}{\sin\alpha\cos\beta - \cos\alpha\sin\beta} = \frac{p}{q},$$

a posle skraćivanja razlomka na levoj strani, sa $\sin \alpha \sin \beta$, imamo

$$\frac{\operatorname{ctg}\beta + \operatorname{ctg}\alpha}{\operatorname{ctg}\beta - \operatorname{ctg}\alpha} = \frac{p}{q} \Rightarrow \operatorname{ctg}\beta = \frac{p+q}{p-q} \cdot \operatorname{ctg}\alpha.$$

1537.
$$\operatorname{tg} \beta = \frac{q-p}{q+p} \cdot \operatorname{ctg} \alpha.$$

1538.
$$\sin 2\alpha = \frac{2pq}{p^2 + q^2}$$
; $\cos 2\alpha = \frac{q^2 - p^2}{q^2 + p^2}$; $\operatorname{tg} 2\alpha = \frac{2pq}{q^2 - p^2}$.

1539. Dati izraz se transformiše na sledeći način:

$$\frac{1 - 2\sin^2\frac{\alpha}{2}}{1 + \sin\alpha} = \frac{\cos\alpha}{1 + \sin\alpha} = \frac{\frac{1 - m^2}{1 + m^2}}{1 + \frac{2m}{1 + m^2}} = \frac{1 - m^2}{(1 + m)^2} = \frac{1 - m}{1 + m}.$$

1540. Posle jednostavnih transformacija dati izraz se svodi na $\sin \alpha \cos \alpha$. Kvadriranjem pretpostavke dobija se

$$1 + 2\sin\alpha\cos\alpha = m^2 \Rightarrow \sin\alpha\cos\alpha = \frac{m^2 - 1}{2}$$
.

Prema tome,

$$\frac{1+\cos 2\alpha}{\operatorname{ctg}\frac{\alpha}{2}-\operatorname{tg}\frac{\alpha}{2}}=\sin \alpha \cos \alpha =\frac{m^2-1}{2}.$$

1541. Iz sistema:

$$\sin x + \cos x = \frac{1}{5} \wedge \sin^2 x + \cos^2 x = 1 \implies \cos x = \frac{4}{5}$$
 ili $\cos x = -\frac{3}{5}$.

Zamenom ovih vrednosti u obrazac t
g $\frac{x}{2}=\pm\sqrt{\frac{1-\cos x}{1+\cos x}}$ dobija se da je t
g $\frac{x}{2}=\pm2$ ili tg $\frac{x}{2}=\pm\frac{1}{3}.$

1542. Primenom obrasca za tangens dvostrukog ugla imamo:

$$tg 2x + tg 2y = \frac{2 tg x}{1 - tg^2 x} + \frac{2 tg y}{1 - tg^2 y}$$

$$= \frac{2(tg x + tg y)(1 - tg x tg y)}{1 - ((tg x + tg y)^2 - 2 tg x tg y) + tg^2 x \cdot tg^2 y}$$

$$= \frac{2a(1 - b)}{1 - (a^2 - 2b) + b^2} = \frac{2a(1 - b)}{(1 + b)^2 - a^2}.$$

1543. Date jednakosti mogu se napisati u obliku

(1)
$$\sin \varphi(b\cos \alpha - a\cos \beta) = \cos \varphi(b\sin \alpha - a\sin \beta),$$

(2)
$$\sin \varphi(d\sin \alpha - c\sin \beta) = \cos \varphi(c\cos \beta - d\cos \alpha).$$

Deljenjem (1)i (2)i svo
enjem dobijene jednakosti na najmanji zajednički sadržalac imamo

$$(b\cos\alpha - a\cos\beta)(c\cos\beta - d\cos\alpha) = (b\sin\alpha - a\sin\beta)(d\sin\alpha - c\sin\beta),$$
odakle sledi

$$bc\cos\alpha\cos\beta - ac\cos^2\beta - bd\cos^2\alpha + ad\cos\alpha\cos\beta$$
$$= bd\sin^2\alpha - ad\sin\alpha\sin\beta - bc\sin\alpha\sin\beta + ac\sin^2\beta,$$

ili

$$(bc + ad)\cos\alpha\cos\beta + (bc + ad)\sin\alpha\sin\beta = bd + ac,$$
$$(bc + ad)(\cos\alpha\cos\beta + \sin\alpha\sin\beta) = bd + ac,$$
$$(bc + ad)\cos(\alpha - \beta) = ac + bd;$$

dakle
$$\cos(\alpha - \beta) = \frac{ac + bd}{bc + ad}$$
.

1544. Kako je

$$p = -(\operatorname{tg} \alpha + \operatorname{tg} \beta) = -\frac{\sin(\alpha + \beta)}{\cos \alpha \cos \beta}$$
 i $q = \operatorname{tg} \alpha \operatorname{tg} \beta$,

dati izraz postaje

$$\sin^{2}(\alpha + \beta) - \frac{\sin^{2}(\alpha + \beta)\cos(\alpha + \beta)}{\cos\alpha\cos\beta} + \operatorname{tg}\alpha\operatorname{tg}\beta\cos^{2}(\alpha + \beta)$$

$$= \sin^{2}(\alpha + \beta)\left(1 - \frac{\cos(\alpha + \beta)}{\cos\alpha\cos\beta}\right) + \operatorname{tg}\alpha\operatorname{tg}\beta\cos^{2}(\alpha + \beta)$$

$$= \frac{\sin^{2}(\alpha + \beta)(\cos\alpha\cos\beta - \cos\alpha\cos\beta + \sin\alpha\sin\beta)}{\cos\alpha\cos\beta}$$

$$+ \operatorname{tg}\alpha\operatorname{tg}\beta\cos^{2}(\alpha + \beta)$$

$$= \sin^{2}(\alpha + \beta) \cdot \operatorname{tg}\alpha\operatorname{tg}\beta + \operatorname{tg}\alpha\operatorname{tg}\beta\cos^{2}(\alpha + \beta)$$

$$= \operatorname{tg}\alpha\operatorname{tg}\beta(\sin^{2}(\alpha + \beta) + \cos^{2}(\alpha + \beta)) = \operatorname{tg}\alpha\operatorname{tg}\beta = q.$$

Dakle, dati izraz ima vrednost q.

1545. Kako je

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

i kako je $|\cos a| \le 1$ i $|\cos b| \le 1$, dobija se

$$|\sin(a+b)| \le |\sin a \cos b + \cos a \sin b| \le |\sin a| + |\sin b|.$$

1546. Napišimo datu jednakost u obliku

$$\cos x = a\sqrt{(\cos x - \sin x)^2} + b\sqrt{(\cos x + \sin x)^2}$$
$$= a|\cos x - \sin x| + b|\cos x + \sin x|.$$

Kako za $\frac{5\pi}{4} < x < \frac{7\pi}{4}$ važe nejednakosti $\cos x - \sin x > 0$ i $\cos x + \sin x < 0,$ dobijamo

$$\cos x = a(\cos x - \sin x) - b(\cos x + \sin x) = (a - b) \cdot \cos x - (a - b) \cdot \sin x,$$

odakle je
$$a-b=1 \wedge a+b=0 \,\Rightarrow\, a=\frac{1}{2},\, b=-\frac{1}{2}.$$

1547. S obzirom da je

$$\sin(x+y) \cdot \sin(x-y) = \frac{1}{2} \Big(\cos(x+y) - (x-y) \Big) - \cos((x+y) + (x-y)) \Big)$$
$$= \frac{1}{2} (\cos 2y - \cos 2x) = (1 - 2\sin^2 y - 1 + 2\sin^2 x)$$
$$= \sin^2 x - \sin^2 y = (\sin x + \sin y) \cdot (\sin x - \sin y),$$

data jednakost je identitet.

1548. Leva strana može se napisati u obliku

$$\left(\sin\left(\frac{\pi}{8} + \alpha\right) + \sin\left(\frac{\pi}{8} - \alpha\right)\right) \cdot \left(\sin\left(\frac{\pi}{8} + \alpha\right) - \sin\left(\frac{\pi}{8} - \alpha\right)\right)$$
$$= 2\sin\frac{\pi}{8} \cdot \cos\frac{\pi}{8} \cdot 2\sin\alpha \cdot \cos\alpha = \sin\frac{\pi}{4} \cdot \sin2\alpha = \frac{\sin2\alpha}{\sqrt{2}}.$$

Dakle, data jednakost je identitet.

1549. Leva strana identiteta može se identički transformisati postupno na ovaj način:

$$\frac{\cos^3 x}{\cos x} - \frac{\cos 6x}{\cos 2x} = \frac{\cos x \cos 2x - \sin x \sin 2x}{\cos x} - \frac{\cos 2x \cos 4x - \sin 2x \sin 4x}{\cos 2x}$$
$$= \cos 2x - \cos 4x + \frac{\sin 2x \sin 4x}{\cos 2x} - \frac{\sin x \sin 2x}{\cos x}$$
$$= \cos 2x - \cos 4x + 2\sin^2 2x - 2\sin^2 x$$
$$= \cos 2x - \cos 4x + 1 - \cos 4x - (1 - \cos 2x)$$
$$= 2(\cos 2x - \cos 4x),$$

čime je dokaz završen.

1550. Leva strana identiteta postaje

$$\begin{aligned} 2 + 2\cos\alpha \cdot \cos\beta + 2\sin\alpha \cdot \sin\beta &= 2(1 + \cos\alpha \cdot \cos\beta + 2\sin\alpha \cdot \sin\beta) \\ &= 2(1 + \cos(\alpha - \beta)) = 2 \cdot 2\cos^2\frac{\alpha - \beta}{2} = 4\cos^2\frac{\alpha - \beta}{2}. \end{aligned}$$

1552. Leva strana identiteta se nizom identičnih transformacija svodi na desnu:

$$\begin{split} &\sin\alpha+\sin\beta+\sin\gamma-\sin(\alpha+\beta+\gamma)\\ &=(\sin\alpha+\sin\beta)+(\sin\gamma-\sin(\alpha+\beta+\gamma))\\ &=2\sin\frac{\alpha+\beta}{2}\cdot\cos\frac{\alpha-\beta}{2}+2\cos\frac{\gamma+\alpha+\beta+\gamma}{2}\cdot\sin\frac{\gamma-\alpha-\beta-\gamma}{2}\\ &=2\sin\frac{\alpha+\beta}{2}\cdot\cos\frac{\alpha-\beta}{2}-2\cos\frac{\alpha+\beta+2\gamma}{2}\cdot\sin\frac{\alpha+\beta}{2}\\ &=2\sin\frac{\alpha+\beta}{2}\cdot\left(\cos\frac{\alpha-\beta}{2}-\cos\frac{\alpha+\beta+2\gamma}{2}\right)\\ &=4\sin\frac{\alpha+\beta}{2}\cdot\sin\frac{\alpha+\gamma}{2}\cdot\sin\frac{\beta+\gamma}{2}. \end{split}$$

1553. Analogno prethodnom zadatku.

1554. Leva strana identiteta nizom identičnih transformacija svodi se na desnu:

$$\begin{split} \frac{\sin\alpha}{\cos\alpha} + \frac{\sin\beta}{\cos\beta} + \frac{\sin\gamma}{\cos\gamma} - \frac{\sin(\alpha+\beta+\gamma)}{\cos\alpha \cdot \cos\beta \cdot \cos\gamma} \\ &= \frac{\sin\alpha\cos\beta\cos\gamma + \sin\beta\cos\alpha\cos\gamma + \sin\gamma\cos\alpha\cos\beta}{\cos\alpha\cos\beta\cos\gamma} \\ - \frac{\sin(\alpha+\beta)\cos\gamma + \cos(\alpha+\beta)\sin\gamma}{\cos\alpha\cos\beta\cos\gamma} \\ &= \frac{\sin(\alpha+\beta)\cos\gamma + \sin\gamma\cos\alpha\cos\beta}{\cos\alpha\cos\beta\cos\gamma} \\ &= \frac{\sin(\alpha+\beta)\cos\gamma + \sin\gamma\cos\alpha\cos\beta}{\cos\alpha\cos\beta\cos\gamma} \\ &= \frac{\sin(\alpha+\beta)\cos\gamma + \cos(\alpha+\beta)\sin\gamma}{\cos\alpha\cos\beta\cos\gamma} \\ &= \frac{\sin(\alpha+\beta)\cos\gamma + \cos(\alpha+\beta)\sin\gamma}{\cos\alpha\cos\beta\cos\gamma} \\ &= \frac{\sin\gamma(\cos\alpha\cos\beta - \cos\alpha\cos\beta + \sin\alpha\sin\beta)}{\cos\alpha\cos\beta\cos\gamma} \\ &= \frac{\sin\alpha\sin\beta\sin\gamma}{\cos\alpha\cos\beta\cos\gamma} = \tan\alpha\tan\beta\alpha. \end{split}$$

1555. Leva strana identičkim transformacijama svodi se na desnu na sledeći način:

$$\sin \alpha \cos \alpha (\cos^2 \alpha - \sin^2 \alpha) = \frac{\sin 2\alpha \cos 2\alpha}{2} = \frac{\sin 4\alpha}{4}.$$

1556. Leva strana postaje:

$$\begin{split} \sin^2 \alpha + \sin^2 \beta + 2 \sin \alpha \sin \beta &(\cos \alpha \cos \beta - \sin \alpha \sin \beta) \\ &= \sin^2 \alpha + \sin^2 \beta + 2 \sin \alpha \sin \beta \cos \alpha \cos \beta - 2 \sin^2 \alpha \sin^2 \beta \\ &= \sin^2 \alpha &(1 - \sin^2 \beta) + \sin^2 \beta &(1 - \sin^2 \alpha) + 2 \sin \alpha \sin \beta \cos \alpha \cos \beta \\ &= &(\sin \alpha \cos \beta + \sin \beta \cos \alpha)^2 = \sin^2 (\alpha + \beta), \end{split}$$

čime je dokaz završen.

1557. Leva strana može se napisati u obliku

$$\frac{(1+\cos 2\alpha) + (\cos 3\alpha + \cos \alpha)}{1+\cos 2\alpha + \cos \alpha - 1} = \frac{2\cos^2 \alpha + 2\cos 2\alpha\cos\alpha}{\cos\alpha + \cos 2\alpha}$$
$$= \frac{2\cos\alpha(\cos\alpha + \cos 2\alpha)}{\cos\alpha + \cos 2\alpha} = 2\cos\alpha.$$

čime je dokaz završen.

1558. Ako se iskoristi pretpostavka, izraz A se svodi na sledeći način:

$$A = (1 - \sin \alpha)(1 - \sin \beta)(1 - \sin \gamma)$$

$$= \frac{(1 - \sin^2 \alpha)(1 - \sin^2 \beta)(1 - \sin^2 \gamma)}{(1 + \sin \alpha)(1 + \sin \beta)(1 + \sin \gamma)} = \frac{\cos^2 \alpha \cdot \cos^2 \beta \cdot \cos^2 \gamma}{\cos \alpha \cos \beta \cos \gamma}$$

$$= \cos \alpha \cos \beta \cos \gamma.$$

1559. Iz datih jednakosti sledi da je:

$$\sin 2\beta = \frac{3}{2}\sin 2\alpha, \quad 3\sin^2\alpha = 1 - 2\sin^2\beta = \cos 2\beta,$$

pa je

$$\cos(\alpha + 2\beta) = \cos\alpha\cos2\beta - \sin\alpha\sin2\beta = \cos\alpha,$$
$$3\sin^2\alpha - \frac{3}{2}\sin\alpha\sin2\alpha = 0,$$

tj. $\cos(\alpha + 2\beta) = 0 \Rightarrow \alpha + 2\beta = \frac{\pi}{2}$, čime je dokaz završen.

1560. Kako je $\sin(2\alpha + \beta) = 5\sin\beta$, imamo:

$$\frac{\operatorname{tg}(\alpha+\beta)}{\operatorname{tg}\alpha} = \frac{\sin(\alpha+\beta)\cos\alpha}{\cos(\alpha+\beta)\sin\alpha} = \frac{\frac{1}{2}(\sin(2\alpha+\beta)+\sin(\alpha+\beta-\alpha))}{\frac{1}{2}(\sin(2\alpha+\beta)+\sin(\alpha-\alpha-\beta))}$$
$$= \frac{\sin(2\alpha+\beta)+\sin\beta}{\sin(2\alpha+\beta)-\sin\beta} = \frac{5\sin\beta+\sin\beta}{5\sin\beta-\sin\beta} = \frac{3}{2}.$$

1561. Kako je
$$\gamma = \pi - (\alpha + \beta)$$
, imamo

$$\begin{split} \sin\alpha + \sin\beta + \sin(\pi - (\alpha + \beta)) \\ &= \sin\alpha + \sin\beta + \sin\alpha\cos\beta + \sin\alpha\sin\beta \\ &= \sin\alpha(1 + \cos\beta) + \sin\beta(1 + \cos\alpha) \\ &= 2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2} \cdot 2\cos^2\frac{\beta}{2} + 2\sin\frac{\beta}{2}\cos\frac{\beta}{2} \cdot 2\cos^2\frac{\alpha}{2} \\ &= 4\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\left(\sin\frac{\alpha}{2}\cos\frac{\beta}{2} + \cos\frac{\alpha}{2}\sin\frac{\beta}{2}\right) \\ &= 4\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\sin\left(\frac{\alpha}{2} + \frac{\beta}{2}\right) = 4\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\cos\frac{\gamma}{2}. \end{split}$$

1562. Analogno prethodnom zadatku.

1563. Pošto je $\gamma = \pi - (\alpha + \beta)$ i ako dodamo neutralni element (1-1) levoj strani, imamo:

$$\begin{aligned} &1+\cos\alpha+\cos\beta-\cos(\alpha+\beta)-1\\ &=1+2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}-1+\cos(\alpha+\beta)\\ &=1+2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}-2\cos^2\frac{\alpha+\beta}{2}\\ &=1+2\cos\frac{\alpha+\beta}{2}\left(\cos\frac{\alpha-\beta}{2}-\cos\frac{\alpha+\beta}{2}\right)\\ &=1+2\cos\frac{\alpha+\beta}{2}\left(-\sin\frac{\alpha+\beta}{2}-\frac{\alpha-\beta}{2}\sin\frac{\alpha-\beta}{2}+\frac{\alpha+\beta}{2}\right)\\ &=1+4\cos\frac{\alpha+\beta}{2}\left(-\sin\frac{\alpha}{2}\right)\sin\left(-\frac{\beta}{2}\right)=1+4\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\sin\frac{\gamma}{2}.\end{aligned}$$

1564. Leva strana, s obzirom da je $\gamma=\pi-(\alpha+\beta),$ svodi se na desnu:

$$tg \alpha + tg \beta - tg (\alpha + \beta) = tg \alpha + tg \beta - \frac{tg \alpha + tg \beta}{1 - tg \alpha tg \beta}$$

$$= (tg \alpha + tg \beta) \left(1 - \frac{1}{1 - tg \alpha tg \beta}\right) = (tg \alpha + tg \beta) \left(\frac{1 - tg \alpha tg \beta - 1}{1 - tg \alpha tg \beta}\right)$$

$$= \frac{tg \alpha + tg \beta}{1 - tg \alpha tg \beta} (-tg \alpha tg \beta) = tg (\alpha + \beta) (-tg \alpha tg \beta)$$

$$= -tg (\pi - \gamma) tg \alpha tg \beta = tg \alpha tg \beta tg \gamma.$$

1565. Leva strana identiteta, s obzirom na $\frac{\gamma}{2} = \frac{\pi}{2} - \left(\frac{\alpha}{2} + \frac{\beta}{2}\right)$, može se transformisati na sledeći način:

$$\begin{split} \operatorname{tg} \frac{\alpha}{2} \operatorname{tg} \frac{\beta}{2} + \left(\operatorname{tg} \frac{\alpha}{2} + \operatorname{tg} \frac{\beta}{2} \right) \operatorname{tg} \frac{\gamma}{2} &= \operatorname{tg} \frac{\alpha}{2} \operatorname{tg} \frac{\beta}{2} + \left(\operatorname{tg} \frac{\alpha}{2} + \operatorname{tg} \frac{\beta}{2} \right) \operatorname{ctg} \left(\frac{\alpha}{2} + \frac{\beta}{2} \right) \\ &= \operatorname{tg} \frac{\alpha}{2} \operatorname{tg} \frac{\beta}{2} + \left(\operatorname{tg} \frac{\alpha}{2} + \operatorname{tg} \frac{\beta}{2} \right) \cdot \frac{1}{\operatorname{tg} \left(\frac{\alpha}{2} + \frac{\beta}{2} \right)} \\ &= \operatorname{tg} \frac{\alpha}{2} \operatorname{tg} \frac{\beta}{2} + \left(\operatorname{tg} \frac{\alpha}{2} + \operatorname{tg} \frac{\beta}{2} \right) \cdot \frac{1 - \operatorname{tg} \frac{\alpha}{2} \operatorname{tg} \frac{\beta}{2}}{\operatorname{tg} \frac{\alpha}{2} + \operatorname{tg} \frac{\beta}{2}} = 1. \end{split}$$

1566. Pretpostavka $\alpha+\beta+\gamma=\pi$ može se napisati u obliku

$$2\gamma = 2\pi - (2\alpha + 2\beta),$$

a leva strana date jednakosti se transformiše na ovaj način:

$$\begin{split} \sin 2\alpha + \sin 2\beta - \sin(2\alpha + 2\beta) &= \sin 2\alpha + \sin 2\beta - \sin 2\alpha \cos 2\beta - \sin 2\alpha \cos 2\beta \\ &= \sin 2\alpha (1 - \cos 2\beta) + \sin 2\beta (1 - \cos 2\alpha) \\ &= 2\sin \alpha \cos \alpha \cdot 2\sin^2 \beta + 2\sin \alpha \sin \beta \cdot 2\cos^2 \alpha \\ &= 4\sin \alpha \sin \beta (2\sin \alpha \cos \beta + \cos \alpha \sin \beta) \\ &= 4\sin \alpha \sin \beta \sin(\alpha + \beta) = 4\sin \alpha \sin \beta \sin \gamma. \end{split}$$

1567. Iz pretpostavke imamo $\gamma=\pi-(\alpha+\beta)$, pa se leva strana date jednakosti svodi na:

$$\begin{split} &\frac{\sin\alpha + \sin\beta + \sin(\alpha + \beta)}{\sin\alpha + \sin\beta - \sin(\alpha - \beta)} = \frac{\sin\alpha + \sin\alpha \cos\beta + \cos\alpha \sin\beta}{\sin\alpha + \sin\beta - \sin\alpha \cos\beta - \cos\alpha \sin\beta} \\ &= \frac{\sin\alpha(1 + \cos\beta) + \sin\beta(1 + \cos\alpha)}{\sin\alpha(1 - \cos\beta) + \sin\beta(1 - \cos\alpha)} \\ &= \frac{4\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}\cos\frac{\beta}{2} + 4\sin\frac{\beta}{2}\cos\frac{\beta}{2}\cos^2\frac{\alpha}{2}}{4\sin\frac{\alpha}{2}\cos\frac{\beta}{2}\sin^2\frac{\beta}{2} + 4\sin\frac{\beta}{2}\cos\frac{\beta}{2}\sin^2\frac{\alpha}{2}} \\ &= \frac{4\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\sin^2\frac{\beta}{2} + 4\sin\frac{\beta}{2}\cos\frac{\beta}{2}\sin^2\frac{\alpha}{2}}{4\sin\frac{\alpha}{2}\cos\frac{\beta}{2}\left(\sin\frac{\alpha}{2}\cos\frac{\beta}{2} + \cos\frac{\alpha}{2}\sin\frac{\beta}{2}\right)} = \cot\frac{\alpha}{2}\cot\frac{\beta}{2}. \end{split}$$

1568. Pretpostavka $\alpha + \beta + \gamma = \pi$ može se napisati u obliku

$$3\gamma = 3\pi - (3\alpha + 3\beta),$$

pa se leva strana svodi na:

$$\sin 3\alpha + \sin 3\beta + \sin(3\pi - (3\alpha + 3\beta)) = \sin 3\alpha + \sin 3\beta + \sin(3\alpha + 3\beta);$$

$$= \sin 3\alpha + \sin 3\beta + \sin(3\alpha + 3\beta)$$

$$= \sin 3\alpha (1 + \cos 3\beta) + \sin 3\beta (1 + \cos 3\alpha)$$

$$= 4\sin \frac{3\alpha}{2}\cos \frac{3\alpha}{2}\cos^2 \frac{3\beta}{2} + 4\sin \frac{3\beta}{2}\cos \frac{3\beta}{2}\cos^2 \frac{3\alpha}{2}$$

$$= 4\cos\frac{3\alpha}{2}\cos\frac{3\beta}{2}\left(\sin\frac{3\alpha}{2}\cos\frac{3\beta}{2} + \cos\frac{3\alpha}{2}\sin\frac{3\beta}{2}\right)$$
$$= 4\cos\frac{3\alpha}{2}\cos\frac{3\beta}{2}\sin\left(\frac{3\alpha}{2} + \frac{3\beta}{2}\right) = -4\cos\frac{3\alpha}{2}\cos\frac{3\beta}{2}\cos\frac{3\gamma}{2},$$

jer je $\frac{3\alpha}{2} + \frac{3\beta}{2} = \frac{3\pi}{2} - \frac{3\gamma}{2}$. Time je dokaz završen.

1569. Analogno prethodnom zadatku.

1570. Kako je $\gamma = 180^{\circ} - (\alpha + \beta)$, imamo:

$$\begin{split} \sin^2\alpha + \sin^2\beta + \sin^2(\alpha + \beta) - 2\cos\alpha\cos\beta\cos(180^\circ - (\alpha + \beta)) \\ &= \sin^2\alpha + \sin^2\beta + \sin^2\alpha\cos^2\beta + 2\sin\alpha\sin\beta\cos\alpha\cos\beta \\ &+ \cos^2\alpha\sin^2\beta + 2\cos^2\alpha\cos^2\beta - 2\sin\alpha\sin\beta\cos\alpha\cos\beta \\ &= \sin^2\alpha + \sin^2\beta + \sin^2\alpha\cos^2\beta + \cos^2\alpha\cos^2\beta + \cos^2\alpha\sin^2\beta \\ &+ \cos^2\alpha\cos^2\beta = \sin^2\alpha + \sin^2\beta + \cos^2\beta(\sin^2\alpha + \cos^2\alpha) \\ &+ \cos^2\alpha(\sin^2\beta + \cos^2\beta) = \sin^2\alpha + \cos^2\alpha + \sin^2\beta + \cos^2\beta = 2. \end{split}$$

1571. Smenom $\alpha = \beta + \gamma$, leva strana se transformiše u:

$$\begin{aligned} \cos 2\beta \cos 2\gamma - \sin 2\beta \sin 2\gamma + \cos 2\beta + \cos 2\gamma \\ &= \cos 2\beta (1 + \cos 2\gamma) + \cos 2\gamma + 4 \sin \beta \sin \gamma \cos \gamma \cos \beta \\ &= 2(2\cos^2 \beta - 1)\cos^2 \gamma + 2\cos^2 \gamma - 4 \sin \beta \sin \gamma \cos \beta \cos \gamma - 1 \\ &= 4\cos^2 \beta \cos^2 \gamma - 4 \sin \beta \sin \gamma \cos \beta \cos \gamma - 1 = \\ &= 4\cos \beta \cos \gamma \cos(\beta + \gamma) - 1 = 4\cos \alpha \cos \beta \cos \gamma - 1. \end{aligned}$$

1572. Analogno prethodnom zadatku.

1573. Analogno zadatku 1571.

1574. Smenom $\alpha + \beta = \gamma$, leva strana se transformiše na sledeći način:

$$\begin{split} \sin\alpha + \sin\beta - \sin\gamma &= \sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} - 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha+\beta}{2} \\ &= 2\sin\frac{\alpha+\beta}{2}\left(\cos\frac{\alpha-\beta}{2} - \cos\frac{\alpha+\beta}{2}\right) \\ &= 2\sin\frac{\alpha+\beta}{2} \cdot 2\sin\frac{\alpha}{2}\sin\frac{\beta}{2} = 4\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\sin\frac{\gamma}{2}. \end{split}$$

1575. Uz pretpostavku, nizom transformacija dobijamo:

$$\begin{aligned} \operatorname{ctg} \alpha + \operatorname{ctg} \beta + \operatorname{tg} \left(\alpha + \beta \right) &= \operatorname{ctg} \alpha + \operatorname{ctg} \beta + \frac{\operatorname{ctg} \alpha + \operatorname{ctg} \beta}{\operatorname{ctg} \alpha \cdot \operatorname{ctg} \beta - 1} \\ &= \left(\operatorname{ctg} \alpha + \operatorname{ctg} \beta \right) \left(1 + \frac{1}{\operatorname{ctg} \alpha \cdot \operatorname{ctg} \beta - 1} \right) \\ &= \frac{\left(\operatorname{ctg} \alpha + \operatorname{ctg} \beta \right) \operatorname{ctg} \alpha \operatorname{ctg} \beta}{\operatorname{ctg} \alpha \cdot \operatorname{ctg} \beta - 1} = \frac{\operatorname{ctg} \alpha \cdot \operatorname{ctg} \beta}{\operatorname{ctg} \left(\alpha + \beta \right)} \\ &= \frac{\operatorname{ctg} \alpha \cdot \operatorname{ctg} \beta}{\operatorname{ctg} \left(\frac{\pi}{2} - \gamma \right)} = \frac{\operatorname{ctg} \alpha \cdot \operatorname{ctg} \beta}{\operatorname{tg} \gamma} = \operatorname{ctg} \alpha \operatorname{ctg} \beta \operatorname{ctg} \gamma. \end{aligned}$$

1576. Zamenom $\gamma = \frac{\pi}{2} - (\alpha + \beta)$ leva strana date jednakosti posle jednostvnih transformacija svodi se na 1.

1577. Smenom $\gamma = \frac{\pi}{2} - (\alpha + \beta)$ leva strana se transformiše u desnu.

1578. Analogno prethodnom zadatku.

1579. Dati izraz se transformiše na sledeći način:

$$\frac{1 - \cos \alpha + \sin \alpha}{\sin \frac{\alpha}{2}} = \frac{2\sin^2 \frac{\alpha}{2} + 2\sin \frac{\alpha}{2}\cos \frac{\alpha}{2}}{\sin \frac{\alpha}{2}} = \frac{2\sin \frac{\alpha}{2}\left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)}{\sin \frac{\alpha}{2}}$$
$$= 2\left(\sin \frac{\alpha}{2} + \sin\left(\frac{\pi}{2} - \frac{\alpha}{2}\right)\right) = 2\sqrt{2}\cos\left(\frac{\pi}{2} - \frac{\alpha}{2}\right).$$

1580. Kako je $(\cos \alpha - \cos 3\alpha) = 2\sin 2\alpha \sin \alpha$, imamo:

$$2\sin 2\alpha \sin \alpha + \sin 2\alpha = 2\sin 2\alpha \left(\sin \alpha + \frac{1}{2}\right)$$
$$= 2\sin 2\alpha \left(\sin \alpha + \sin \frac{\pi}{6}\right) = 4\sin 2\alpha \sin \left(\frac{\alpha}{2} + \frac{\pi}{12}\right)\cos \left(\alpha - \frac{\pi}{12}\right).$$

1581. Dati izraz se transformiše na sledeći način:

$$1 - \sin^{2}(\alpha + \beta) - \sin^{2}(\alpha - \beta) = \cos^{2}(\alpha + \beta) - \sin^{2}(\alpha - \beta)$$

$$= \frac{1 + \cos(2\alpha + 2\beta)}{2} - \frac{1 - \cos(2\alpha - 2\beta)}{2}$$

$$= \frac{\cos(2\alpha + 2\beta) + \cos(2\alpha - 2\beta)}{2} = \frac{2\cos\frac{4\alpha}{2}\cos\frac{4\beta}{2}}{2} = \cos 2\alpha \cos 2\beta.$$

1582. Dati izraz je identički jednak:

$$\frac{\operatorname{tg}\alpha+1}{1-\operatorname{tg}\alpha}+\frac{\operatorname{tg}\alpha-1}{1+\operatorname{tg}\alpha}=\frac{4\operatorname{tg}\alpha}{1-\operatorname{tg}^2\alpha}=2\operatorname{tg}2\alpha.$$

1583. $tg^2 \frac{\beta}{2}$.

1584. Imamo

$$\frac{\sqrt{2} - \cos \alpha - \sin \alpha}{\sin \alpha - \cos \alpha} = \frac{\sqrt{2} \left(1 - \left(\frac{\sqrt{2}}{2} \cos \alpha + \frac{\sqrt{2}}{2} \sin \alpha \right) \right)}{\sin \alpha - \sin(45^{\circ} - \alpha)}$$
$$= \frac{\sqrt{2} (1 - \cos(\alpha - 45^{\circ}))}{2 \sin(\alpha - 45^{\circ})} = \frac{2 \sin^{2} \frac{\alpha - 45^{\circ}}{2}}{2 \sin \frac{\alpha - 45^{\circ}}{2} \cos \frac{\alpha - 45^{\circ}}{2}} = \operatorname{tg} \frac{\alpha - 45^{\circ}}{2}.$$

1585. Dati izraz se može napisati u obliku

$$\begin{split} \frac{(\sin 2\alpha - \sin 6\alpha) + (\cos 2\alpha - \cos 6\alpha)}{\sin 4\alpha - (\cos^2 2\alpha - \sin^2 2\alpha)} &= \frac{-2\cos 4\alpha \sin 2\alpha + 2\sin 4\alpha \sin 2\alpha}{\sin 4\alpha - \cos 4\alpha} \\ &= \frac{2\sin 2\alpha (\sin 4\alpha - \cos 4\alpha)}{\sin 4\alpha - \cos 4\alpha} = 2\sin 2\alpha. \end{split}$$

1586. $4\sin 4\alpha \sin(\alpha - 15^{\circ})\cos(\alpha + 15^{\circ})$.

1587. Dati izraz se transformiše u oblik

$$1 + \cos 8\alpha + \cos 4\alpha = 2\cos^2 4\alpha + \cos 4\alpha$$
$$= 2\cos 4\alpha \left(\cos 4\alpha + \frac{1}{2}\right) = 2\cos 4\alpha \left(\cos 4\alpha + \cos \frac{\pi}{3}\right)$$
$$= 4\cos 4\alpha \cos \left(2\alpha + \frac{\pi}{6}\right)\cos \left(2a - \frac{\pi}{6}\right).$$

1588. $4\cos 4\alpha \sin(15^{\circ} - \alpha)\cos(15^{\circ} + \alpha)$. **1589.** $tg(\alpha - 15^{\circ})ctg(\alpha + 15^{\circ})$.

1590. Dati izraz identički se transformiše u oblik:

$$(\sin(2\alpha - \beta) + \sin 2\alpha)(\sin(2\alpha - \beta) - \sin 2\alpha) - \sin^2 \beta$$

$$= 2\sin\frac{4\alpha - \beta}{2}\cos\left(\frac{-\beta}{2}\right) \cdot 2\cos\frac{4\alpha - \beta}{2}\sin\left(-\frac{\beta}{2}\right) - \sin^2 \beta$$

$$= -2\sin\frac{4\alpha - \beta}{2}\cos\frac{4\alpha - \beta}{2} \cdot 2\sin\frac{\beta}{2}\cos\frac{\beta}{2} - \sin^2 \beta$$

$$= -\sin(4\alpha - \beta)\sin\beta - \sin^2 \beta$$

$$= -\sin\beta(\sin(4\alpha - \beta) + \sin\beta) = -2\sin 2\alpha\sin\beta\cos(2\alpha - \beta).$$

1591. Analogno prethodnom zadatku dati izraz postaje:

$$\begin{aligned} & \left(\sin(\alpha - 2\beta) - \cos\alpha\right) \cdot \left(\sin(\alpha - 2\beta) + \cos\alpha\right) - \cos^2 2\beta \\ & = \left(\sin(\alpha - 2\beta) - \sin(90^\circ - \alpha)\right) \cdot \left(\sin(\alpha - 2\beta) + \sin(90^\circ - \alpha)\right) - \cos^2 2\beta \\ & = 2\sin(45^\circ - \beta)\cos(45^\circ - \beta) \cdot 2\sin(\alpha - \beta - 45^\circ)\cos(\alpha - \beta - 45^\circ) - \cos^2 2\beta \\ & = \sin(90^\circ - 2\beta)\sin(2\alpha - 2\beta - 90^\circ) - \cos^2 2\beta \\ & = -\cos 2\beta\cos(2\alpha - 2\beta) - \cos^2 2\beta = -2\cos\alpha\cos 2\beta\cos(\alpha - 2\beta). \end{aligned}$$

1592. $- \operatorname{tg} \alpha \operatorname{tg} \beta$.

1593. Smenom $\sin 6x = \sin(8x - 2x)$, dati izraz postaje

$$\sin 8x - (\sin 8x \cos 2x - \cos 8x \sin 2x) - \cos 8x \sin 2x$$

= $\sin 8x - \sin 8x \cos 2x = \sin 8x (1 - \cos 2x) = 2\sin^2 x \sin 8x$.

1594. Pregrupisati izraz i primeniti poznate obrasce:

$$(\sin x + \sin 3x) + (\sin 2x + \sin 4x) = 2\sin 2x \cos x + 2\sin 3x \cos x$$
$$= 2\cos x(\sin 2x + \sin 3x) = 4\sin \frac{5x}{2}\cos \frac{x}{2}\cos x.$$

1595. Napišimo dati izraz u obliku

$$\begin{aligned} (\sin x + \sin 3x) - (\cos x + \cos 3x) + (\sin 2x - \cos 2x) \\ &= 2\sin 2x \cos x - 2\cos 2x \cos x + (\sin 2x - \cos 2x) \\ &= 2\cos x (\sin 2x - \cos 2x) + (\sin 2x - \cos 2x) \\ &= (2\cos x + 1)(\sin 2x - \cos 2x) = 2\left(\cos x + \frac{1}{2}\right)\left(\sin 2x - \sin\left(\frac{\pi}{2} - 2x\right)\right) \\ &= 4\sqrt{2}\cos\left(\frac{x}{2} + \frac{\pi}{6}\right)\cos\left(x - \frac{\pi}{6}\right)\sin\left(2x - \frac{\pi}{4}\right). \end{aligned}$$

1596. Brojilac i imenilac napisati u obliku

$$(\sin x + \sin 5x) + \sin 3x; \quad (\cos x + \cos 5x) + \cos 3x,$$

i posle jednostavnih transformacija izraz postaje identički jednak t
g3xza $x\neq\pm\frac{2\pi}{3}+2k\pi.$

1597. Grupisati izraz u oblik $(\sin x + \sin 3x) + (\sin 9x - \sin 5x)$. Posle jednostavnih transformacija dobija se konačni oblik datog izraza $4\sin 2x\cos 3x\cos 4x$.

1598. Kako je

$$\sin \alpha \cos(\alpha + \beta) = \frac{1}{2}(\sin(\alpha + \alpha + \beta) + \sin(\alpha - \alpha - \beta))$$
$$= \frac{1}{2}(\sin(2\alpha + \beta) - \sin \beta),$$

i kako je

$$\sin(2\alpha + \beta) = \sin(\alpha + \beta + \alpha)$$
$$= \sin(\alpha + \beta)\cos\alpha + \cos(\alpha + \beta)\sin\alpha = \sin(2\alpha + \beta)\cos\alpha + \sin\beta,$$

jer je

$$\sin \alpha \cos(\alpha + \beta) = \sin \beta,$$

imamo

$$\sin \alpha \cos(\alpha + \beta) = \frac{1}{2}(\sin(\alpha + \beta)\cos \alpha + \sin \beta - \sin \beta)$$
$$= \sin \alpha \cos(\alpha + \beta) = \frac{1}{2}\sin(\alpha + \beta)\cos \alpha \implies \operatorname{tg}(\alpha + \beta) = 2\operatorname{tg}\alpha.$$

1599. Kako je

$$\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}$$
, $\cos x = \cos^2\frac{x}{2} - \sin^2\frac{x}{2}$ i $\cos^2\frac{x}{2} = \frac{1}{1 + \lg^2\frac{x}{2}}$

imamo

$$\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2} = 2\frac{\sin\frac{x}{2}}{\cos\frac{x}{2}}\cdot\cos^2\frac{x}{2} = \frac{2\operatorname{tg}\frac{x}{2}}{1+\operatorname{tg}^2\frac{x}{2}}, \text{ tj.}$$

$$\cos x = \cos^2\frac{x}{2} - \sin^2\frac{x}{2} = \cos^2\frac{x}{2}\left(1-\operatorname{tg}^2\frac{x}{2}\right) = \frac{1-\operatorname{tg}^2\frac{x}{2}}{1+\operatorname{tg}^2\frac{x}{2}},$$

odakle je

$$\operatorname{tg} x = \frac{2\operatorname{tg} \frac{x}{2}}{1 - \operatorname{tg}^{2} \frac{x}{2}}; \operatorname{ctg} x = \frac{1 - \operatorname{tg}^{2} \frac{x}{2}}{2\operatorname{tg} \frac{x}{2}}.$$

1600. Kako je

$$\frac{\sin \alpha + \sin \beta}{\cos \alpha + \cos \beta} = \frac{2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}}{2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}} = \operatorname{tg} \frac{\alpha + \beta}{2} = \frac{a}{b},$$

primenom obrazaca

$$\sin \alpha = \frac{2 \operatorname{tg} \frac{\alpha}{2}}{1 + \operatorname{tg}^2 \frac{\alpha}{2}}, \quad \cos \alpha = \frac{1 - \operatorname{tg}^2 \frac{\alpha}{2}}{1 + \operatorname{tg}^2 \frac{\alpha}{2}}$$

imamo da je

$$\sin(\alpha+\beta) = \frac{2\operatorname{tg}\frac{\alpha+\beta}{2}}{1+\operatorname{tg}^2\frac{\alpha+\beta}{2}} = \frac{2ab}{a^2+b^2},$$

$$\cos(\alpha + \beta) = \frac{1 - \operatorname{tg}^{2} \frac{\alpha + \beta}{2}}{1 + \operatorname{tg}^{2} \frac{\alpha + \beta}{2}} = \frac{b^{2} - a^{2}}{a^{2} + b^{2}}.$$

1601. Primenom obrasca i zamenom datih vrednosti

$$\operatorname{tg}\left(\alpha+\beta+\gamma\right)=\operatorname{tg}\left(\alpha+\left(\beta+\gamma\right)\right)=\frac{\operatorname{tg}\left(\alpha+\beta\right)+\operatorname{tg}\gamma}{1-\operatorname{tg}\left(\alpha+\beta\right)\operatorname{tg}\gamma}=0\,\Rightarrow\,\alpha+\beta+\gamma=k\pi,$$

tj. dobija se tvrđenje.

1602. Primetimo najpre da su uglovi α , β i γ manji od 45°, jer su njihovi tangensi manji od 1. Primenom obrasca i zamenom datih vrednosti

$$tg(\alpha + \beta + \gamma) = tg(\alpha + (\beta + \gamma)) = \frac{tg\alpha + tg\beta + tg\gamma - tg\alpha tg\beta tg\gamma}{1 - tg\alpha tg\beta - tg\alpha tg\gamma - tg\beta tg\gamma},$$

sledi da je tg ($\alpha + \beta + \gamma$) = 1, odakle $\alpha + \beta + \gamma = \frac{\pi}{4}$.

1603. Imamo da je
$$\operatorname{tg}(2\alpha - (\beta - \gamma)) = \frac{\operatorname{tg} 2\alpha - \operatorname{tg}(\beta - \gamma)}{1 + \operatorname{tg} 2\alpha \operatorname{tg}(\beta - \gamma)}$$
. Dalje je

$$tg \, 2\alpha = \frac{2 tg \, \alpha}{1 - tg^{\,2}\alpha} = \frac{2 \cdot \frac{1}{2}}{1 - \frac{1}{4}} = \frac{4}{3}, \ tg \, (\beta - \gamma) = \frac{tg \, \beta - tg \, \gamma}{1 + tg \, \beta \, tg \, \gamma} = \frac{2 - \frac{13}{9}}{1 + 2 \cdot \frac{13}{9}} = \frac{1}{7},$$

pa je
$$\operatorname{tg}(2\alpha - \beta + \gamma) = \frac{\frac{4}{3} - \frac{1}{7}}{1 + \frac{4}{3} \cdot \frac{1}{7}} = 1$$
. Prema tome $2\alpha - \beta + \gamma = \frac{\pi}{4}$.

1604. Pošto je
$$\cos \alpha = \frac{2\sqrt{2}}{3}$$
, $\cos \beta = \frac{7}{3}\sqrt{\frac{2}{11}}$, $\cos \gamma = \sqrt{\frac{2}{11}}$, onda je
$$\sin(\alpha + \beta + \gamma) = \sin((\alpha + \beta) + \gamma) = \sin(\alpha + \beta)\cos \gamma + \cos(\alpha + \beta)\sin \gamma$$
$$= \sin \alpha\cos \beta + \cos \alpha\sin \beta)\cos \gamma + (\cos \alpha\cos \beta - \sin \alpha\sin \beta)\sin \gamma$$
$$= \left(\frac{1}{3} \cdot \frac{7}{3}\sqrt{\frac{2}{11}} + \frac{2\sqrt{2}}{3} \cdot \frac{1}{3\sqrt{11}}\right) \cdot \sqrt{\frac{2}{11}} + \left(\frac{2\sqrt{2}}{3} \cdot \frac{7}{3}\sqrt{\frac{2}{11}} - \frac{1}{3} \cdot \frac{1}{3\sqrt{11}}\right) \cdot \frac{3}{\sqrt{11}}$$

tj. $\sin(\alpha + \beta + \gamma) = 1 \implies \alpha + \beta + \gamma = \frac{\pi}{2}$.

1605.

$$\begin{split} &\frac{3}{2} \cdot 2 \sin 15^{\circ} \cos 15^{\circ} + \frac{\sin 60^{\circ}}{(\sin^{2} 15^{\circ} - \cos^{2} 15^{\circ})(\sin^{2} 15^{\circ} + \cos^{2} 15^{\circ})} \\ &= \frac{3}{2} \cdot \sin 30^{\circ} - \frac{\sin 60^{\circ}}{\cos^{2} 15^{\circ} - \sin^{2} 15^{\circ}} = \frac{3}{2} \cdot \frac{1}{2} - \frac{\sin 60^{\circ}}{\cos 30^{\circ}} = -\frac{1}{4}. \end{split}$$

1606.

$$\sin \frac{\pi}{8} \cdot 2 \sin \frac{\pi}{8} \cos \frac{\pi}{8} \sin \left(\frac{\pi}{2} - \frac{\pi}{8}\right) = \sin \frac{\pi}{8} \cos \frac{\pi}{8} \sin \frac{\pi}{4}$$
$$= \frac{1}{2} \cdot 2 \sin \frac{\pi}{8} \cos \frac{\pi}{8} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{4} \cdot \frac{\sqrt{2}}{2} = \frac{1}{4}.$$

$$1607. \cos \frac{\pi}{7} - \cos \frac{2\pi}{7} + \cos \frac{3\pi}{7}$$

$$= \frac{2\cos \frac{\pi}{7}\cos \frac{\pi}{14} - 2\cos \frac{2\pi}{7}\cos \frac{\pi}{14} + 2\cos \frac{3\pi}{7}\cos \frac{\pi}{14}}{2\cos \frac{\pi}{14}}$$

$$= \frac{\cos \left(\frac{\pi}{14} + \frac{\pi}{7}\right) + \cos \left(\frac{\pi}{7} - \frac{\pi}{14}\right) - \cos \left(\frac{2\pi}{14} + \frac{\pi}{14}\right)}{2\cos \frac{\pi}{14}}$$

$$+ \frac{\cos \left(\frac{3\pi}{7} + \frac{\pi}{14}\right) + \cos \left(\frac{3\pi}{7} - \frac{\pi}{14}\right)}{2\cos \frac{\pi}{14}}$$

$$= \frac{\cos \frac{3\pi}{14} + \cos \frac{\pi}{14} + \cos \frac{5\pi}{14} - \cos \frac{3\pi}{14} + \cos \frac{7\pi}{14} - \cos \frac{5\pi}{14}}{2\cos \frac{\pi}{14}} = \frac{\cos \frac{\pi}{14}}{2\cos \frac{\pi}{14}} = \frac{1}{2}.$$

1608. Posle jednostavnih transformacija leva strana postaje

$$\begin{split} 8\sin 10^{\circ} \sin 50^{\circ} \sin 70^{\circ} &= \frac{4\cdot 2\sin 10^{\circ} \cos 10^{\circ} \sin 50^{\circ} \sin 70^{\circ}}{\cos 10^{\circ}} \\ &= \frac{4\sin 20^{\circ} \sin 50^{\circ} \sin (90^{\circ} - 20^{\circ})}{\cos 10^{\circ}} = \frac{2\sin 40^{\circ} \sin 50^{\circ}}{\cos 10^{\circ}} \\ &= \frac{2\sin 40^{\circ} \cos 40^{\circ}}{\cos (90^{\circ} - 80^{\circ})} = \frac{\sin 80^{\circ}}{\sin 80^{\circ}} = 1. \end{split}$$

1609. Leva strana može se napisati u obliku

$$\begin{split} &(\sin 10^{\circ}\cos 10^{\circ})(\sin 20^{\circ}\cos 20^{\circ})(\sin 40^{\circ}\cos 40^{\circ}) \cdot \sin 30^{\circ}\cos 30^{\circ} \\ &= \frac{\sqrt{3}}{4} \cdot \frac{1}{2}\sin 20^{\circ} \cdot \frac{1}{2}\sin 40^{\circ} \cdot \frac{1}{2}\sin 80^{\circ} = \frac{\sqrt{3}}{32} \cdot \frac{1}{2}\left(\cos 20^{\circ} - \cos 60^{\circ}\right) \cdot \sin 80^{\circ} \\ &= \frac{\sqrt{3}}{64} \cdot \left(\cos 20^{\circ} - \frac{1}{2}\right)\sin 80^{\circ} = \frac{\sqrt{3}}{64}\left(\cos 20^{\circ}\sin 80^{\circ} - \frac{1}{2}\sin 80^{\circ}\right) \\ &= \frac{\sqrt{3}}{64} \cdot \left(\frac{1}{2}(\sin 100^{\circ} + \sin 60^{\circ}) - \frac{1}{2}\sin 80^{\circ}\right) \\ &= \frac{\sqrt{3}}{128} \cdot \left(\sin (180^{\circ} - 80^{\circ}) + \frac{\sqrt{3}}{2} - \sin 80^{\circ}\right) = \frac{\sqrt{3}}{128} \cdot \frac{\sqrt{3}}{2} = \frac{3}{256}. \end{split}$$

1610.

$$\begin{split} \sin 47^{\circ} + \sin 61^{\circ} - (\sin 11^{\circ} + \sin 25^{\circ}) &= 2\sin 54^{\circ} \cos 7^{\circ} - 2\cos 7^{\circ} \sin 18^{\circ} \\ &= 2\cos 7^{\circ} (\sin 54^{\circ} - \sin 18^{\circ}) = 2\cos 7^{\circ} \cdot 2\cos 36^{\circ} \sin 18^{\circ} \\ &= \frac{2\cos 7^{\circ} \cos 36^{\circ} \cdot 2\sin 18^{\circ} \cos 18^{\circ}}{\cos 18^{\circ}} = \frac{\cos 7^{\circ} \cdot 2\sin 36^{\circ} \cdot \cos 36^{\circ}}{\cos 18^{\circ}} \\ &= \frac{\cos 7^{\circ} \sin 72^{\circ}}{\cos 18^{\circ}} = \cos 7^{\circ}. \end{split}$$

1611.

$$\begin{split} \cos 24^{\circ} + \cos 48^{\circ} - (\cos 84^{\circ} + \cos 12^{\circ}) &= 2\cos 36^{\circ} \cos 12^{\circ} - 2\cos 48^{\circ} \cos 36^{\circ} \\ &= 2\cos 36^{\circ} (\cos 12^{\circ} - \cos 48^{\circ}) = 4\cos 36^{\circ} \sin 18^{\circ} \sin 30^{\circ} \\ &= \frac{2\sin 18^{\circ} \cos 18^{\circ} \cos 36^{\circ}}{\cos 18^{\circ}} = \frac{\sin 36^{\circ} \cos 36^{\circ}}{\cos 18^{\circ}} = \frac{\sin 72^{\circ}}{2\cos (90^{\circ} - 72^{\circ})} = \frac{1}{2}. \end{split}$$

1612. Primenom identiteta:

$$\sin \alpha \cos \beta = \frac{1}{2}(\sin(\alpha + \beta) + \sin(\alpha - \beta)) \quad i$$
$$\cos \alpha \cos \beta = \frac{1}{2}(\cos(\alpha + \beta) + \cos(\alpha - \beta))$$

imamo

$$\frac{\sin 20^{\circ} \cos 10^{\circ} + \cos 160^{\circ} \cos 100^{\circ}}{\sin 21^{\circ} \cos 9^{\circ} + \cos 159^{\circ} \cos 99^{\circ}}$$

$$= \frac{\frac{1}{2}(\sin 30^{\circ} + \sin 10^{\circ}) + \frac{1}{2}(\cos 260^{\circ} + \cos 60^{\circ})}{\frac{1}{2}(\sin 30^{\circ} + \sin 12^{\circ}) + \frac{1}{2}(\cos 258^{\circ} + \cos 60^{\circ})} = \frac{1 + \sin 10^{\circ} - \sin 10^{\circ}}{1 + \sin 12^{\circ} - \sin 12^{\circ}} = 1.$$

1613. Analogno prethodnom zadatku. 1614. Analogno zadatku 1612.

$$\begin{aligned} \mathbf{1615.} & \sin^2 70^\circ \sin^2 50^\circ \sin^2 10^\circ = \frac{\sin^2 70^\circ \sin^2 50^\circ \cdot 4 \sin^2 10^\circ \cos^2 10^\circ}{4 \cos^2 10^\circ} \\ & = \frac{\sin^2 50^\circ \sin^2 (90^\circ - 20^\circ) \sin^2 20^\circ}{4 \cos^2 10^\circ} = \frac{\sin^2 50^\circ \cdot 4 \sin^2 20^\circ \cos^2 20^\circ}{16 \cos^2 10^\circ} \\ & = \frac{\sin^2 (90^\circ - 50^\circ) \sin^2 40^\circ}{16 \cos^2 10^\circ} = \frac{4 \sin^2 40^\circ \cos^2 40^\circ}{64 \cos^2 10^\circ} = \frac{\sin^2 80^\circ}{64 \cos^2 10^\circ} \\ & = \frac{\cos^2 10^\circ}{16 \cos^2 10^\circ} = \frac{1}{64}. \end{aligned}$$

$$\begin{aligned} \mathbf{1616.} & \frac{1}{\sin 10^\circ} - \frac{\tan 10^\circ \tan 10^\circ \tan 10^\circ \tan 10^\circ \tan 10^\circ}{10^\circ 10^\circ} = 2 \frac{\cos 10^\circ - \sin 10^\circ \tan 10^\circ \tan 10^\circ}{10^\circ 10^\circ} \\ & = 2 \frac{\cos 10^\circ - \sin 10^\circ \tan 10^\circ \tan 10^\circ}{10^\circ 10^\circ} = 2 \frac{\cos 60^\circ \cos 10^\circ - \sin 60^\circ \sin 10^\circ}{10^\circ} \\ & = 2 \frac{\cos 70^\circ}{\sin 20^\circ} = 2 \frac{\sin 20^\circ}{\sin 20^\circ \cos 60^\circ} = 4. \end{aligned}$$

$$\begin{aligned} \mathbf{1617.} & \frac{2 \sin 10^\circ \cos 10^\circ \sin 30^\circ \sin 50^\circ \sin 50^\circ \sin 70^\circ}{2 \cos 10^\circ} \\ & = \frac{\sin 20^\circ \sin 30^\circ \sin 50^\circ \sin (90^\circ - 20^\circ)}{2 \cos 10^\circ} = \frac{2 \sin 20^\circ \cos 20^\circ \sin 30^\circ \sin 50^\circ}{4 \cos 10^\circ} \\ & = \frac{2 \sin 40^\circ \sin 30^\circ \sin (90^\circ - 40^\circ)}{8 \cos 10^\circ} = \frac{\sin 80^\circ \sin 30^\circ}{8 \cos 10^\circ} = \frac{1}{16} \cdot \frac{\cos 10^\circ}{\cos 10^\circ} = \frac{1}{16}. \end{aligned}$$

$$\begin{aligned} \mathbf{1618.} & \sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ = \frac{1}{2} \left(\cos 20^\circ - \frac{1}{2}\right) \cdot \frac{1}{2} (\cos 20^\circ - \cos 140^\circ) \\ & = \frac{1}{4} \left(\cos^2 20^\circ - \cos 20^\circ \cos 140^\circ - \frac{1}{2}\cos 20^\circ + \frac{1}{2}\cos 140^\circ\right) \\ & = \frac{1}{4} \left(\frac{1 + \cos 40^\circ}{2} - \frac{1}{2} (\cos 120^\circ + \cos 160^\circ) - \frac{1}{2}\cos 20^\circ - \frac{1}{2}\cos 40^\circ \right) \end{aligned}$$

 $= \frac{1}{8} \left(1 + \cos 40^{\circ} + \frac{1}{2} + \cos 20^{\circ} - \cos 20^{\circ} - \cos 40^{\circ} \right) = \frac{1}{8} \left(1 + \frac{1}{2} \right) = \frac{3}{16}.$

- 1619. Pogledati prethodna dva zadatka.
- 1620. Leva strana se može transformisati u oblik

$$\cos 65^{\circ} (\cos 55^{\circ} + \cos 175^{\circ}) + \cos 175^{\circ} \cos 55^{\circ}$$

$$= 2\cos 65^{\circ} \cdot \cos \frac{230^{\circ}}{2} \cos \frac{120^{\circ}}{2} + \cos 175^{\circ} \cos 55^{\circ}$$

$$= \cos 65^{\circ} \cos 115^{\circ} + \cos 175^{\circ} \cos 55^{\circ}$$

$$= \frac{1}{2} (\cos 180^{\circ} + \cos 50^{\circ} + \cos 230^{\circ} + \cos 120^{\circ})$$

$$= \frac{1}{2} \left(-\frac{3}{2} + 2\cos \frac{230^{\circ} + 50^{\circ}}{2} \cos \frac{230^{\circ} - 50^{\circ}}{2} \right) = -\frac{3}{4}.$$

1621. Leva strana se transformiše u oblik

$$\sin 135^{\circ} - \cos 15^{\circ} + \sin 15^{\circ} = \cos 45^{\circ} - \cos 15^{\circ} + \sin 15^{\circ}$$
$$= -2\sin 30^{\circ} \sin 15^{\circ} + \sin 15^{\circ} = -\sin 15^{\circ} + \sin 15^{\circ} = 0.$$

- 1622. Posle transformacije proizvoda u zbir, dobija se da je vrednost datog izraza $-\frac{3}{4}.$
- **1623.** Kako je $\gamma = 180^{\circ} (\alpha + \beta)$, imamo

$$\sin^2 \gamma = \sin^2 (180^\circ - (\alpha + \beta)) = \sin^2 (\alpha + \beta) = \sin^2 \alpha + \sin^2 \beta.$$

Odatle sledi

$$2\sin^2\alpha\sin^2\beta - 2\sin\alpha\sin\beta\cos\alpha\cos\beta = 0$$

$$\Rightarrow \cos(\alpha + \beta) = 0 \Rightarrow \alpha + \beta = \frac{\pi}{2} \quad i \quad \gamma = \frac{\pi}{2}$$

1624. Data jednakost može se napisati u obliku

$$\sin \alpha = \frac{2 \sin \frac{\beta + \gamma}{2} \cos \frac{\beta - \gamma}{2}}{2 \cos \frac{\beta + \gamma}{2} \cos \frac{\beta - \gamma}{2}}, \quad \text{tj.} \quad \sin \alpha = \operatorname{tg} \frac{\beta + \gamma}{2}.$$

Kako je $\alpha + \beta + \gamma = \pi \, \Rightarrow \, \frac{\beta + \gamma}{2} = \frac{\pi}{2} - \frac{\gamma}{2},$ dobijamo

$$2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2} = \operatorname{tg}\left(\frac{\pi}{2} - \frac{\alpha}{2}\right) \quad \text{ili} \quad \operatorname{ctg}\frac{\alpha}{2}\left(2\sin^2\frac{\alpha}{2} - 1\right) = 0,$$

tj. ct
g $\frac{\alpha}{2}=0\,\Rightarrow\,\alpha=\pi$ što je nemoguće.

$$\sin \frac{\alpha}{2} = \frac{\sqrt{2}}{2} \Rightarrow \alpha = \frac{\pi}{2}$$
, tj. trougao je pravougli.

1625. Kako je $\gamma = \pi - (\alpha + \beta)$, data jednakost postaje

$$\sin(\alpha + \beta) = \cos \alpha + \cos \beta \quad \text{ili}$$

$$2\sin\frac{\alpha + \beta}{2}\cos\frac{\alpha + \beta}{2} - 2\cos\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2} = 0, \quad \text{tj.}$$

$$2\cos\frac{\alpha + \beta}{2}\left(\sin\frac{\alpha + \beta}{2} - \sin\left(\frac{\pi}{2} - \frac{\alpha - \beta}{2}\right)\right) = 0 \Rightarrow \beta = 90^{\circ}.$$

1626. Analogno prethodnom zadatku.

1627. Desna strana date jednakosti se transformiše u proizvod, tj.

$$\sin(\alpha - \beta) = (\sin \alpha + \sin \beta)(\sin \alpha - \sin \beta) \quad \text{ili}$$

$$\sin(\alpha - \beta) = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2} \cdot 2\sin \frac{\alpha - \beta}{2}\cos \frac{\alpha + \beta}{2}$$

$$\iff \sin(\alpha - \beta) = \sin(\alpha + \beta)\sin(\alpha - \beta) \iff \sin(\alpha - \beta)(1 - \sin(\alpha + \beta)) = 0,$$
odakle je $(\sin(\alpha - \beta) = 0 \Rightarrow \alpha = \beta) \lor \left(\sin(\alpha + \beta) = 1 \Rightarrow \alpha + \beta = \frac{\pi}{2}\right).$
1628. Iz jednakosti

$$\alpha + \beta + \gamma + \delta = 2\pi \implies \frac{\beta + \gamma}{2} = \pi - \frac{\alpha + \delta}{2};$$

$$\alpha + \beta = 2\pi - \gamma - \delta \quad \text{i} \quad \alpha + \gamma = 2\pi - \beta - \delta.$$

Leva strana identički je jednaka:

$$\begin{split} \sin\alpha + \sin\delta + \sin\gamma + \sin\beta \\ &= 2\sin\frac{\alpha+\delta}{2}\cos\frac{\alpha-\delta}{2} + 2\sin\frac{\beta+\gamma}{2}\cos\frac{\beta-\gamma}{2} \\ &= 2\sin\frac{\alpha+\delta}{2}\cos\frac{\alpha-\delta}{2} + 2\sin\left(\pi-\frac{\alpha+\delta}{2}\right)\cos\frac{\beta-\gamma}{2} \\ &= 2\sin\frac{\alpha+\delta}{2}\left(\cos\frac{\alpha-\delta}{2} + 2\sin\left(\pi-\frac{\alpha+\delta}{2}\right)\cos\frac{\beta-\gamma}{2}\right) \\ &= 4\sin\frac{\alpha+\delta}{2}\cos\frac{\alpha+\beta-\delta-\gamma}{2}\cos\frac{\alpha+\gamma-\beta-\delta}{2} \\ &= 4\sin\frac{\alpha+\delta}{2}\cos\left(\frac{\pi}{2} - \frac{\delta+\gamma}{2}\right)\cos\left(\frac{\pi}{2} - \frac{\delta+\beta}{2}\right) \\ &= 4\sin\frac{\alpha+\delta}{2}\sin\frac{\delta+\gamma}{2}\sin\frac{\delta+\beta}{2}. \end{split}$$

1629. I način: Leva strana identički je jednaka

$$\begin{split} \operatorname{tg}\left(4\beta+2\beta\right)-\left(\operatorname{tg}4\beta+\operatorname{tg}2\beta\right)&=\frac{\operatorname{tg}4\beta+\operatorname{tg}2\beta}{1-\operatorname{tg}4\beta\operatorname{tg}2\beta}-\left(\operatorname{tg}4\beta+\operatorname{tg}2\beta\right)\\ &=\left(\operatorname{tg}4\beta+\operatorname{tg}2\beta\right)\left(\frac{1}{1-\operatorname{tg}4\beta\operatorname{tg}2\beta}-1\right)&=\frac{\operatorname{tg}4\beta+\operatorname{tg}2\beta}{1-\operatorname{tg}4\beta\operatorname{tg}2\beta}\cdot\operatorname{tg}4\beta\operatorname{tg}2\beta\\ &=\operatorname{tg}\left(4\beta+2\beta\right)\left(\operatorname{tg}4\beta\operatorname{tg}2\beta\right)&=\operatorname{tg}6\beta\operatorname{tg}4\beta\operatorname{tg}2\beta. \end{split}$$

II način: Ako pođemo od identiteta $\mbox{tg}\,6\beta = \frac{\mbox{tg}\,4\beta + \mbox{tg}\,2\beta}{1 - \mbox{tg}\,4\beta \,\mbox{tg}\,2\beta},$ dobijamo

$$tg 6\beta(1 - tg 4\beta tg 2\beta) = tg 4\beta + tg 2\beta \text{ ili}$$

$$tg 6\beta - tg 4\beta - tg 2\beta = tg 6\beta tg 4\beta tg 2\beta.$$

1630. Jednakost se transformiše u oblik

$$\frac{1}{2}(\cos(\alpha - \beta + 2\beta) + \cos(\alpha - \beta - 2\beta)) = \cos(\alpha + \beta),$$

$$\frac{1}{2}(\cos(\alpha + \beta) + \cos(\alpha - 3\beta)) = \cos(\alpha + \beta), \quad \text{ili}$$

$$\cos(\alpha + \beta) + \cos(\alpha - 3\beta) = 2\cos(\alpha + \beta). \quad \text{Zatim}$$

$$\cos(\alpha + \beta) - \cos(\alpha - 3\beta) = 0, \quad \text{odakle je}$$

$$-2\sin\frac{2\alpha - 2\beta}{2}\sin\frac{4\beta}{2} = 0 \vee \sin(\alpha - \beta) = 0 \vee \sin 2\beta = 0$$

$$(\alpha - \beta = 0 \Rightarrow \alpha = \beta) \vee \beta = 0.$$

Iz jednakosti $\cos(\alpha + \beta) - \cos(\alpha - 3\beta) = 0$ nalazimo

$$-2\sin\frac{2\alpha - 2\beta}{2}\sin\frac{4\beta}{2} = 0 \iff \sin(\alpha - \beta) = 0 \lor \sin 2\beta = 0$$
$$(\alpha - \beta = 0 \implies \alpha = \beta) \lor \beta = 0.$$

1631. Treća jednačina se transformiše na

$$2c = \operatorname{tg} x + \operatorname{tg} y = \frac{\sin x \cos y + \sin y \cos x}{\cos x \cos y} = \frac{\sin(x+y)}{\cos x \cos y}.$$

Količnik prve dve jednačine je

$$\frac{2a}{2b} = \frac{\sin x + \sin y}{\cos x + \cos y} = \frac{2\sin\frac{x+y}{2}\cos\frac{x-y}{2}}{2\cos\frac{x+y}{2}\cos\frac{x-y}{2}} = \operatorname{tg}\frac{x+y}{2},$$

pa je t
g $\frac{x+y}{2}=\frac{a}{b}.$ Ako se $\cos(x+y)$ izrazi pomoću t
g $\frac{x+y}{2},$ imamo

$$\cos(x+y) = \frac{1 - \operatorname{tg}^{2} \frac{x+y}{2}}{1 + \operatorname{tg}^{2} \frac{x+y}{2}} = \frac{b^{2} - a^{2}}{b^{2} + a^{2}}.$$

Slično se dobija $\sin(x+y)=\frac{2ab}{a^2+b^2}.$ Ako se jednačine kvadriraju, a zatim saberu, imamo:

$$\sin x + \sin y = 2a \wedge \cos x + \cos y = 2b$$

$$\iff 2 + 2(\cos x \cos y + \sin y \sin x) = 4(a^2 + b^2),$$

a odavde

$$\cos(x - y) = 2(a^2 + b^2) - 1.$$

Zamenom dobijenih izraza nalazimo:

$$\cos x \cos y = \frac{1}{2}(\cos(x+y) + \cos(x-y)) = \frac{1}{2} \left(\frac{b^2 - a^2}{a^2 + b^2} + 2(a^2 + b^2) - 1 \right).$$

Dakle,

$$2c = \frac{\frac{2ab}{a^2 + b^2}}{\frac{1}{2} \left(\frac{b^2 - a^2}{a^2 + b^2} + 2(a^2 + b^2) - 1 \right)} \iff c \left((a^2 + b^2)^2 - a^2 \right) = ab.$$

1632. I način. Jednakokraki trougao OAB je karakteristični trougao pravilnog desetougla sa krakom OA=OB=R, osnovicom $AB=\frac{R}{2}\left(\sqrt{5}-1\right)$ i uglom pri vrhu 36°.

$$\sin 18^{\circ} = \frac{\frac{AB}{2}}{\frac{2}{R}} = \frac{AB}{2R} = \frac{1}{4}(\sqrt{5} - 1).$$

II način. Pošto je $\cos 54^\circ = \sin 36^\circ$, ili $\cos(3\cdot 18^\circ) = \sin(2\cdot 18^\circ)$, tj.

$$4\cos^3 \cdot 18^\circ - 3\cos 18^\circ = 2\sin 18^\circ \cos 18^\circ.$$

Deljenjem sa cos 18° dobija se:

$$4\cos^2 18^\circ - 3 = 2\sin 18^\circ$$

ili $4\sin^2 18^{\circ} + 2\sin 18^{\circ} - 1 = 0$, odakle je

$$\sin 18^{\circ} = \frac{\sqrt{5} - 1}{4}, \quad \cos 18^{\circ} = \sqrt{1 - \frac{1}{16}(\sqrt{5} - 1)^{2}} = \frac{\sqrt{10 + 2\sqrt{5}}}{4},$$

$$\sin 36^{\circ} = 2\sin 18^{\circ} \cos 18^{\circ} = \frac{1}{2}\sqrt{\frac{5 - \sqrt{5}}{2}},$$

$$\cos 36^{\circ} = \cos^{2} 18^{\circ} - \sin^{2} 18^{\circ} = \frac{\sqrt{5} + 1}{4}, \quad \operatorname{tg} 36^{\circ} = \frac{\sin 36^{\circ}}{\cos 36^{\circ}} = \sqrt{5 - 2\sqrt{5}}.$$

1633. Kako je

$$tg72^{\circ} = \frac{2 tg 36^{\circ}}{1 - tg^2 36^{\circ}} = \frac{\sqrt{5 - 2\sqrt{5}}}{\sqrt{5} - 2},$$

tada je

$$tg^{2}36^{\circ} tg^{2}72^{\circ} = \left(\sqrt{5 - 2\sqrt{5}}\right)^{2} \left(\frac{\sqrt{5 - 2\sqrt{5}}}{\sqrt{5} - 2}\right)^{2} = \frac{(5 - 2\sqrt{5})^{2}}{(\sqrt{5} - 2)^{2}}$$
$$= \frac{45 - 20\sqrt{5}}{9 - 4\sqrt{5}} = \frac{5(9 - 4\sqrt{5})}{9 - 4\sqrt{5}} = 5.$$

1634. Kako je

$$\alpha + \beta + \gamma = 180^{\circ} \Rightarrow \alpha = 180^{\circ} - (\beta + \gamma),$$

imamo

(1)
$$\sin \alpha = \sin(180^{\circ} - (\beta + \gamma)) \Rightarrow \sin \alpha = \sin(\beta + \gamma)$$
$$\Rightarrow \sin \alpha = \sin \beta \cos \gamma + \cos \beta \sin \gamma.$$

Pošto je
$$\sin\beta = \frac{b\sin\alpha}{a}$$
 i $\sin\gamma = \frac{c\sin\alpha}{a}$, zamenom u (1) dobijamo
$$\sin\alpha = \frac{b\sin\alpha}{a}\cos\gamma + \frac{c\sin\alpha}{a}\cos\beta \quad \text{ili } a = b\cos\gamma + c\cos\beta.$$

Analogno

$$b = c\cos\alpha + a\cos\beta$$
, $c = a\cos\beta + b\cos\alpha$.

Ako se pomnoži prva jednačina sa -a, druga sa -b, treća sa c i ako se onda sve tri saberu, dobija se $a^2 = b^2 + c^2 - 2bc\cos\alpha$, itd.

1635. Ako se primeni kosinusna teorema i količnik:

$$\frac{\sin \alpha}{\sin \beta} = \frac{\sqrt{1 - \cos^2 \alpha}}{\sqrt{1 - \cos \beta}} = \frac{\sqrt{(1 + \cos \alpha)(1 - \cos \alpha)}}{\sqrt{(1 + \cos \beta)(1 - \cos \beta)}}$$

$$\begin{split} &=\frac{\sqrt{\left(1+\frac{b^2+c^2-a^2}{2bc}\right)\left(1-\frac{b^2+c^2-a^2}{2bc}\right)}}{\sqrt{\left(1+\frac{a^2+c^2-b^2}{2ac}\right)\left(1-\frac{a^2+c^2-b^2}{2ac}\right)}}\\ &=\sqrt{\frac{(2bc+b^2+c^2-a^2)(2bc-b^2-c^2+a^2)4a^2c^2}{(2ac+a^2+c^2-b^2)(2ac-a^2-c^2+b^2)4b^2c^2}}\\ &=\sqrt{\frac{((b+c)^2-a^2)(a^2-(b-c)^2)a^2}{((a+c)^2-b^2)(b^2-(a-c)^2)b^2}}\\ &=\sqrt{\frac{(b+c+a)(b+c-a)(a-b+c)(a+b-c)a^2}{(a+c+b)(a+c-b)(b-a+c)(b+a-c)b^2}}=\frac{a}{b}\,, \end{split}$$

dobija se sinusna teorema

1636.
$$\frac{3m^2+1}{4}$$
. **1637.** $\frac{m}{2}(m^2+1)$. **1638.** Rastavimo razliku kvadrata. Imamo

$$\sin^2\left(\frac{\pi}{4} + \alpha\right) - \sin^2\left(\frac{\pi}{6} - \alpha\right)$$

$$= \left(\sin\left(\frac{\pi}{4} + \alpha\right) + \sin\left(\frac{\pi}{6} - \alpha\right)\right) \left(\sin\left(\frac{\pi}{4} + \alpha\right) - \sin\left(\frac{\pi}{6} - \alpha\right)\right)$$

$$= \sin\frac{5\pi}{12}\sin\left(\frac{\pi}{12} + 2\alpha\right).$$

Onda izraz postaje $\sin \frac{5\pi}{12} \sin \left(\frac{\pi}{12} + 2\alpha \right) - \sin \left(\frac{5\pi}{12} - 2\alpha \right) \cos \frac{5\pi}{12}$. Ako se oba proizvoda transformišu u zbir i izvrše identične transformacije, poslednji izraz postaje

$$2\sin\alpha\cos\alpha = \frac{2\operatorname{tg}\alpha}{1+\operatorname{tg}^2\alpha} = \frac{2m}{1+m^2}.$$

1639. Iz ctg
$$\left(\frac{3}{2}\pi - x\right) = \frac{4}{3} \implies \text{tg } x = \frac{4}{3} \text{ nalazimo}$$
 $\sin x = \frac{4}{5} \quad \text{i} \quad \cos x = \frac{3}{5}.$

Pretvaranjem proizvoda u zbir lako se izračunava vrednost izraza:

$$\cos\frac{x}{2}\cos\frac{5x}{2} = \frac{1}{2}(\cos 3x + \cos 2x)$$
$$= \frac{1}{2}(4\cos^3 x + 2\cos^2 x - 3\cos x - 1) = -\frac{76}{125}$$

1640. Analogno prethodnom zadatku $\frac{41}{125}$

1641. Datu jednakost napišimo u obliku

$$\sin 2\beta (\operatorname{tg} \alpha + \operatorname{tg} \beta) = \sin 2\gamma (\operatorname{tg} \alpha + \operatorname{tg} \gamma)$$

ili

$$\sin \beta \sin(\alpha + \beta) = \sin \gamma \sin(\alpha + \gamma),$$

odakle je

$$\frac{1}{2}(\cos(\beta - \alpha - \beta) - \cos(\beta + \alpha + \beta)) = \frac{1}{2}(\cos(\gamma - \alpha - \gamma) - \cos(\alpha + 2\gamma)),$$

tj. $\cos(\alpha+2\gamma)-\cos(2\beta+\alpha)=0$. Transformišimo ovu razliku u proizvod. Imamo $\sin(\alpha+\beta+\gamma)\sin(\gamma-\beta)=0$, a zatim $\sin(\alpha+\beta+\gamma)=0 \vee \sin(\gamma-\beta)=0$. Odavde izlaze sledeće jednakosti

$$\alpha + \beta + \gamma = k\pi$$
, $\gamma - \beta = n\pi$, $(k, n = 0, \pm 1, \pm 2...)$.

1642. Iz date jednakosti dobija se $\frac{\sin^2\beta}{\sin^2\gamma} - \frac{\sin\beta\cos\gamma}{\sin\gamma\cos\beta} = 0$ ili

$$\sin \beta (\sin \beta \cos \beta - \sin \gamma \cos \gamma) = 0,$$

tj. $\sin \beta \left(\frac{1}{2}\sin 2\beta - \frac{1}{2}\sin 2\gamma\right) = 0 \Rightarrow \sin 2\beta - \sin 2\gamma = 0$. Odavde je

$$2\cos(\beta + \gamma)\sin(\beta - \gamma) = 0.$$

Dakle, $\cos(\beta+\gamma)=0\quad {\rm i}\quad \sin(\beta-\gamma)=0.$ Tražene jednakosti su:

$$\beta+\gamma=\frac{\pi}{2}(2k+1);\quad \beta-\gamma=n\pi,\quad (n,k=0,\pm 1,\pm 2\ldots).$$

1643. Datu jednakost možemo napisati u obliku

(1)
$$tg x(1 - tg y tg z) + tg y + tg z = 0.$$

Neka je $1 - \operatorname{tg} y \operatorname{tg} z = 0$. Tada iz (1) sledi

$$tg y + tg z = 0 \Rightarrow tg^2 y + tg^2 z = -2,$$

što je nemoguće za realne vrednosti yi z. Podelimo (1) sa $1-\operatorname{tg} y\operatorname{tg} z\neq 0.$ Imamo

$$tg x + \frac{tg y + tg z}{1 - tg y tg z} = 0 \quad ili \quad tg x + tg (y + z) = 0$$

tj. tgx=tg(-y-z), odakle je $x=-y-z+k\pi$ ili $x+y+z=k\pi$. Ovo je tražena veza između uglova za koje pretpostavljamo da su različiti od $(2k+1)\frac{\pi}{2}, \ (k=0,\pm 1,\pm 2,\ldots)$, da bi bili definisani odgovarajući tangensi.

1644. Data jednakost se može napisati u obliku

$$\operatorname{tg}\left(\frac{\pi}{2} - x\right) + \operatorname{tg}\left(\frac{\pi}{2} - y\right) + \operatorname{tg}\left(\frac{\pi}{2} - z\right)$$
$$= \operatorname{tg}\left(\frac{\pi}{2} - x\right) \operatorname{tg}\left(\frac{\pi}{2} - y\right) \operatorname{tg}\left(\frac{\pi}{2} - z\right).$$

Primenom rešenja prethodnog zadatka imamo

$$\frac{\pi}{2} - x + \frac{\pi}{2} - y + \frac{\pi}{2} - z = k\pi$$
 ili $x + y + z = \frac{3\pi}{2} - k\pi$.

Smenom 1 - k = n dobijamo $x + y + z = (2n + 1)\frac{\pi}{2}$.

1645. Data jednakost se svodi na

$$\sin(\beta + \gamma)\cos\beta - \sin(\alpha + \gamma)\cos\alpha = 0, \quad \text{ili}$$

$$\frac{1}{2}(\sin(\gamma + 2\beta) + \sin\gamma) - \frac{1}{2}(\sin(2\alpha + \gamma) + \sin\gamma) = 0,$$

odakle

$$\sin(\gamma + 2\beta) - \sin(2\alpha + \gamma) = 0$$
, tj. $2\cos(\alpha + \beta + \gamma) \cdot \sin(\beta - \alpha) = 0$.

Poslednja jednakost je zadovoljena za:

$$\alpha + \beta + \gamma = \frac{\pi}{2}(4k+1) \lor \beta - \alpha = n\pi, \quad (n, k = 0, \pm 1, \pm 2...).$$

1646. Analogno prethodnom zadatku.

1647. Transformišimo datu jednakost na sledeći način:

$$\operatorname{ctg} \alpha(\operatorname{ctg} \beta + \operatorname{ctg} \gamma) = 1 - \operatorname{ctg} \beta \operatorname{ctg} \gamma,$$

odakle je

$$\operatorname{ctg} \alpha = \frac{1 - \operatorname{ctg} \beta \operatorname{ctg} \gamma}{\operatorname{ctg} \beta + \operatorname{ctg} \gamma}, \quad \text{tj.} \quad \operatorname{ctg} \alpha = -\operatorname{ctg} (\beta + \gamma) = \operatorname{ctg} (\pi - \beta - \gamma).$$

Kako su $\alpha,\,\beta$ i γ oštri uglovi, imamo $\alpha=\pi-\beta-\gamma\,\Rightarrow\,\alpha+\beta+\gamma=\pi.$

1648. Imamo

$$\operatorname{tg} \alpha = \sqrt{2}\sqrt{3} + \sqrt{3} - \sqrt{2} - (\sqrt{2})^2 = (\sqrt{3} - \sqrt{2})(\sqrt{2} + 1) = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{2} - 1}$$

$$= \frac{\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2} - \frac{1}{2}} = \frac{\sin 60^{\circ} - \sin 45^{\circ}}{\sin 45^{\circ} - \sin 30^{\circ}} = \frac{2 \cos \frac{105^{\circ}}{2} \sin \frac{15^{\circ}}{2}}{2 \cos \frac{75^{\circ}}{2} \sin \frac{15^{\circ}}{2}}$$
$$= \frac{\cos \left(90^{\circ} - \frac{75^{\circ}}{2}\right)}{\cos \frac{75^{\circ}}{2}} = \operatorname{tg} \frac{75^{\circ}}{2} \Rightarrow \alpha = 37^{\circ}30'.$$

1649. $\alpha = 7^{\circ}30'$.

1650. Iz $a^2 = b^2 + c^2 - 2bc \cos \alpha$ dobijamo

$$a^2 = b^2 \left(\cos^2\frac{\alpha}{2} + \sin^2\frac{\alpha}{2}\right) + c^2 \left(\cos^2\frac{\alpha}{2} + \sin^2\frac{\alpha}{2}\right) - 2bc \left(\cos^2\frac{\alpha}{2} - \sin^2\frac{\alpha}{2}\right),$$

odnosno

$$a^{2} = (b^{2} + 2bc + c^{2})\sin^{2}\frac{\alpha}{2} + (b^{2} - 2bc + c^{2})\cos^{2}\frac{\alpha}{2}$$

odakle je

$$a^{2} = (b+c)^{2} \sin^{2} \frac{\alpha}{2} + (b-c)^{2} \cos^{2} \frac{\alpha}{2}$$

1651. Data jednakost se može napisati u obliku

$$a\left(1-\,\operatorname{tg}\alpha\operatorname{tg}\frac{\gamma}{2}\right)=b\left(\,\operatorname{tg}\beta\operatorname{tg}\frac{\gamma}{2}-1\right), \text{ ili}$$

$$a\frac{\cos\left(\alpha + \frac{\gamma}{2}\right)}{\cos\alpha\cos\frac{\gamma}{2}} = -b\frac{\cos\left(\beta + \frac{\gamma}{2}\right)}{\cos\beta\cos\frac{\gamma}{2}},$$

odakle je

$$a\cos\beta\cos\left(\alpha + \frac{\gamma}{2}\right) + b\cos\alpha\cos\left(\beta + \frac{\gamma}{2}\right) = 0.$$

Kako je
$$\frac{\gamma}{2}=90^{\circ}-\frac{\alpha+\beta}{2}\,,\;\alpha+\frac{\gamma}{2}=90^{\circ}-\frac{\beta-\alpha}{2}\,,\;\beta+\frac{\gamma}{2}=90^{\circ}-\frac{\alpha-\beta}{2}\,,$$
onda je $a\cos\beta\sin\frac{\beta-\alpha}{2}-b\cos\alpha\sin\frac{\beta-\alpha}{2}=0,$ ili

 $\sin \frac{\beta - \alpha}{2} (a \cos \beta - b \cos \alpha) = 0$, odakle je

$$\sin \frac{\beta - \alpha}{2} = 0 \Rightarrow \frac{\beta - \alpha}{2} = 0 \Rightarrow \alpha = \beta \quad \text{ili}$$
$$a\cos \beta - b\cos \alpha = 0, \quad a\cos \beta = b\cos \alpha.$$

Ova jednakost sa kosinusnom teoremom daje

$$a^{2} = b^{2} + c^{2} - 2bc\cos\alpha \Rightarrow a^{2} = b^{2} + c^{2} - 2ac\cos\beta$$

 $b^{2} = a^{2} + c^{2} - 2ac\cos\beta \Rightarrow b^{2} = a^{2} + c^{2} - 2ac\cos\beta$

Razlika ovih jednakosti daje $a^2 = b^2 \Rightarrow a = b$.

1652. Ako uglovi trougla ispunjavaju uslove $0<\alpha\leq\beta\leq\gamma<180^\circ$ i ako je $\gamma=90^\circ,$ tada je razlika

$$\begin{split} P-Q &= \sin\alpha + \sin\beta + \sin\gamma - (\cos\alpha + \cos\beta + \cos\gamma + 1) \\ &= 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} + 1 - \left(2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} + 1\right) \\ &= 2\cos\frac{\alpha-\beta}{2}\left(\cos\frac{\gamma}{2} - \sin\frac{\gamma}{2}\right) = 0, \quad \text{tj.} \quad P = Q. \end{split}$$

Obrnuto, ako je tačna jednakost P = Q, tada je

$$\sin\alpha + \sin\beta + \sin\gamma = \cos\alpha + \cos\beta + \cos\gamma + 1,$$

$$\sin\alpha - \sin(90^\circ - \alpha) + \sin\beta - \sin(90^\circ - \beta) + \sin\gamma - \sin(90^\circ - \gamma) = 1 \quad \text{ili}$$

$$\sqrt{2}\sin(\alpha - 45^\circ) + \sqrt{2}\sin(\beta - 45^\circ) + \sqrt{2}\sin(\gamma - 45^\circ) = 1,$$

odakle je

$$\sin(\alpha - 45^{\circ}) + \sin(\beta - 45^{\circ}) = \sin 45^{\circ} - \sin(\gamma - 45^{\circ}).$$

Dakle,

$$2\sin\left(\frac{\alpha+\beta}{2}-45^{\circ}\right)\cos\frac{\alpha-\beta}{2} = 2\cos\frac{\gamma}{2}\sin\left(45^{\circ}-\frac{\gamma}{2}\right) \quad \text{ili}$$
$$\sin\left(45^{\circ}-\frac{\gamma}{2}\right)\cos\frac{\alpha-\beta}{2} = \cos\frac{\gamma}{2}\sin\left(45^{\circ}-\frac{\gamma}{2}\right), \quad \text{tj.}$$
$$\sin\left(45^{\circ}-\frac{\gamma}{2}\right)\left(\cos\frac{\alpha-\beta}{2}-\cos\frac{\gamma}{2}\right) = 0,$$

odakle je

(1)
$$\sin\left(45^{\circ} - \frac{\alpha}{2}\right)\sin\left(45^{\circ} - \frac{\beta}{2}\right)\sin\left(45^{\circ} - \frac{\gamma}{2}\right) = 0.$$

Kako su uglovi $\frac{\alpha}{2}$, $\frac{\beta}{2}$, $\frac{\gamma}{2}$ oštri, iz (1) izlazi da bar jedan od uglova α , β , γ mora biti 90°, tj. trougao je pravougli.

1653. Kako je $\frac{\sqrt{3}}{3}=\,\mathrm{tg}\,30^\circ,\,\mathrm{data}$ jednakost se transformiše na

$$\sin \alpha \cos 30^{\circ} - \cos \alpha \sin 30^{\circ} + \sin \beta \cos 30^{\circ}$$
$$-\sin 30^{\circ} \cos \beta + \sin \gamma \cos 30^{\circ} - \cos \gamma \sin 30^{\circ} \quad \text{ili na}$$
$$\sin(\alpha - 30^{\circ}) + \sin(\beta - 30^{\circ}) + \sin(\gamma - 30^{\circ}) = 0.$$

Ne umanjujući dokaz, ako pretpostavimo da je $\gamma > 30^{\circ}$, tada je

$$2\sin\left(60^{\circ} - \frac{\gamma}{2}\right)\cos\frac{\alpha - \beta}{2} + \sin(\gamma - 30^{\circ}) = 0,$$

odakle sledi

$$\sin\left(60^\circ-\frac{\gamma}{2}\right)<0\,\Rightarrow\,60^\circ-\frac{\gamma}{2}<0\,\Rightarrow\,\gamma>120^\circ.$$

1662. Primenom obrasca za transformaciju proizvoda sinusa u zbir, leva strana jednakosti se svodi na desnu:

$$\begin{split} \frac{1}{\sin 10^{\circ}} - 4\sin 70^{\circ} &= \frac{1 - 4\sin 70^{\circ} \sin 10^{\circ}}{\sin 10^{\circ}} \\ &= \frac{1 - 4\cdot 0, 5(\cos(70^{\circ} - 10^{\circ}) - \cos(70^{\circ} + 10^{\circ})}{\sin 10^{\circ}} \\ &= \frac{1 - 2(\cos 60^{\circ} - \cos 80^{\circ})}{\sin 10^{\circ}} = \frac{2\cos 80^{\circ}}{\sin 10^{\circ}} = 2. \end{split}$$

1663. Ako se članovi grupišu po dva i izvrše odgovarajuće transformacije, dobija se tvrđenje na ovaj način:

$$\begin{split} (\operatorname{tg}81^{\circ} + \operatorname{tg}9^{\circ}) - (\operatorname{tg}63^{\circ} + \operatorname{tg}27^{\circ}) &= \frac{\sin 90^{\circ}}{\cos 9^{\circ} \cos 81^{\circ}} - \frac{\sin 90^{\circ}}{\sin 27^{\circ} \cos 63^{\circ}} \\ &= \frac{1}{\sin 9^{\circ} \cos 9^{\circ}} - \frac{1}{\sin 27^{\circ} \cos 27^{\circ}} = 2\left(\frac{1}{\sin 18^{\circ}} - \frac{1}{\sin 54^{\circ}}\right) \\ &= \frac{2(\sin 54^{\circ} - \sin 18^{\circ})}{\sin 54^{\circ} \sin 18^{\circ}} = \frac{4\cos 36^{\circ} \sin 18^{\circ}}{\sin 54^{\circ} \sin 18^{\circ}} = 4. \end{split}$$

1664. Primeniti da je

$$\sin^2 24^\circ - \sin^2 6^\circ = (\sin 24^\circ + \sin 6^\circ)(\sin 24^\circ - \sin 6^\circ).$$

Zatim se transformišu zbir i razlika sinusa u proizvod.

1665. U zadacima 1665–1667 primeniti obrasce za poluuglove trigonometrijskih funkcija.

1668. a) Iz
$$\operatorname{tg} x = \frac{1}{7}$$
 i $\operatorname{tg} 2y = \frac{3}{4}$ sledi $\operatorname{tg} (x + 2y) = 1$, i odavde $x + 2y = 45^{\circ}$;

b) izračunati $\cos x$ i $\cos y$ koristeći osnovne trigonometrijske jednakosti koje ih povezuju sa tgx i tgy, a zatim izračunati $\cos 2x$ i $\sin 4y$.

1669. Vrednost datog izraza je S = -3, što znači da ne zavisi od x.

1670. Data jednakost se transformiše na sledeći način:

$$0 = \cos^2 A + \cos^2 B + \cos^2 C - 1 = \frac{1 + \cos 2A}{2} + \frac{1 + \cos 2B}{2} + \cos^2 C - 1$$

$$= \frac{1}{2} (\cos 2A + \cos 2B) + \cos^2 C = \cos(A + B) \cos(A - B) + \cos^2 C$$

$$= \cos(180^\circ - C) \cos(A - B) + \cos^2 C = -\cos C (\cos(A - B) - \cos C)$$

$$= 2 \cos C \sin \frac{A - B + C}{2} \sin \frac{A - B - C}{2} = 2 \cos A \cos B \cos C.$$

Odavde sledi da je jedan od uglova $A,\,B,\,C$ jednak $90^\circ.$

1671. Iz date relacije dobija se redom sledeće:

$$\cos^2 A + \cos^2 B + \cos^2 C = 1$$

$$\iff \cos 2A + \cos 2B + \cos 2C = -1$$

$$\iff 2\cos(A+B)\cos(A-B) + \cos 2(A+B) = -1$$

$$\iff 2\cos(A+B)\cos(A-B) + 2\cos^2(A+B) = 0$$

$$\iff 2\cos(A+B)\cos(A-B) + \cos(A+B) = 0$$

$$\iff \cos(A+B)\cos A \cdot \cos \cos B = 0.$$

Odavde je $A + B = 90^{\circ}$ ili $B = 90^{\circ}$.

Dakle trougao je pravougli, čime je dokaz završen.

1672. a) Kako je $3C=3\cdot 180^{\circ}-3(A+B),$ jednakost se posle primene odgovarajućih formula svodi na oblik

$$2\cos\frac{3(A+B)}{2}\cos\frac{3(A-B)}{2} - \cos3(A-B) - 1 = 0, \quad \text{odnosno}$$

$$2\cos\frac{3(A+B)}{2}\cos\frac{3(A-B)}{2} - 2\cos^2\frac{3(A+B)}{2} = 0$$

$$\iff 2\cos\frac{3(A+B)}{2}\left(\cos\frac{3(A-B)}{2} - \cos\frac{3(A+B)}{2}\right) = 0.$$
 Dalje je
$$\frac{3(A+B)}{2} = 270^\circ - \frac{3}{2}C, \text{ pa je}$$

$$\cos\frac{3(A+B)}{2} = \cos\left(90^\circ + \frac{3}{2}C\right) = -\sin\frac{3}{2}C,$$

a razlika kosinusa u zagradama jednaka je $-2\sin\frac{3}{2}A\sin\frac{3}{2}B.$

Prema tome, poslednja jednakost se svodi na oblik

$$\sin\frac{3A}{2}\sin\frac{3B}{2}\sin\frac{3C}{2} = 0.$$

Da bi ovaj proizvod bio jednak nuli potrebno je i dovoljno da jedan od faktora bude jednak nuli.

Neka na primer sin $\frac{3A}{2}=0;$ onda je $\frac{3A}{2}=180^{\circ}$ ili $A=120^{\circ}.$

b) Slično postupku pod a) data jednakost se transformiše na oblik

$$\cos\frac{3A}{2}\cos\frac{3B}{2}\cos\frac{3C}{2} = 0,$$

odakle se izvodi zakliučak da je jedan od uglova jednak $60^{\circ}.$

1673. Analogno zadacima 1670–1671.

1674. Neka je arcsin $\frac{3}{5}=x$ i arcsin $\frac{4}{5}=y$, tada je sin $x=\frac{3}{5},$ sin $y=\frac{4}{5}$. Izračunava se da je $\cos x=\frac{4}{5}$ i $\cos y=\frac{3}{5}$. Tada je

$$\sin\left(\arcsin\frac{3}{5} + \arcsin\frac{4}{5}\right) = \sin(x+y) = \sin x \cos y + \cos x \sin y$$
$$= \frac{3}{5} \cdot \frac{3}{5} + \frac{4}{5} \cdot \frac{4}{5} = 1.$$

1675.
$$\frac{13}{85}$$
. $\frac{71}{98}$. **1677.** 1. **1678.** 8. **1679.** $-\frac{9}{13}$

1680. Ako se dati izraz označi sa x i uzme se tangens od leve i desne strane, dobija se

$$\operatorname{tg} x = \operatorname{tg} \left(\operatorname{arctg} \frac{1}{2} + \operatorname{arctg} \frac{1}{3} \right) = \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \cdot \frac{1}{3}} \Longleftrightarrow \operatorname{tg} x = 1 \Longleftrightarrow x = \frac{\pi}{4}.$$

Dakle, vrednost datog izraza je $\frac{\pi}{4}$.

1681. 1. **1682.** 0. **1683.**
$$-\frac{\sqrt{2}}{2}$$
. **1684.** $\frac{77}{85}$.

1685. Analogno zadatku 1680.

1686. Neka je $\arcsin x = y \Rightarrow \sin y = \frac{\operatorname{tg} y}{\sqrt{1 + \operatorname{tg}^2 y}}$. Imamo

$$\operatorname{tg} y = \frac{x}{\sqrt{1 - x^2}}, \quad \operatorname{ctg} y = \frac{\sqrt{1 - x^2}}{x}, \quad \text{pa je}$$

$$y = \operatorname{arctg} \frac{x}{\sqrt{1-x^2}}, \quad y = \operatorname{arctg} \frac{\sqrt{1-x^2}}{x}.$$

1687. Neka je $A = \arcsin x + \arcsin y$, $\arcsin x = u$ i $\arcsin y = v$. Poslednje dve jednakosti ekvivalentne su jednakostima $x = \sin u$ i $y = \sin v$. Sinus leve i desne strane prve jednakosti svodi se postupno

 $\sin A = \sin(\arcsin x)\cos(\arcsin y) + \cos(\arcsin x)\sin(\arcsin y),$

pa je

$$\sin A = x\sqrt{1 - y^2} + y\sqrt{1 - x^2}.$$

Odavde sledi da je

$$A = \arcsin\left(x\sqrt{1 - y^2} + y\sqrt{1 - x^2}\right).$$

1688. Analogno prethodnom zadatku. 1689. Analogno zadatku 1687.

4.4. Trigonometrijske jednačine

1690. Data jednačina se svodi na

$$\sin x(2\sin x + 1) = 0 \Longleftrightarrow \sin x = 0 \lor 2\sin x + 1 = 0.$$

Jednačina $\sin x = 0 \iff x_k = k\pi, \quad (k = 0, \pm 1, \pm 2, \ldots),$ a jednačina

$$2\sin x + 1 = 0 \Longleftrightarrow \sin x = -\frac{1}{2}$$

$$\iff x_m = \frac{7\pi}{6} + 2m\pi \lor x_n = \frac{11\pi}{6} + 2n\pi, \quad (m, n = 0, \pm 1, \pm 2, \ldots).$$

1691.
$$x_k = k\pi$$
, $(k = 0, \pm 1, \pm 2, ...)$ $x_m = \pm \frac{\pi}{3} + 2m\pi$, $(m = 0, \pm 1, \pm 2, ...)$.

1692. Ako se jednačina napiše u obliku

$$\sin 3x = \sin \left(\frac{\pi}{2} - 2x\right) \Longleftrightarrow 3x - \left(\frac{\pi}{2} - 2x\right) = 2k\pi \vee 3x + \left(-\frac{\pi}{2} - 2x\right) = 2m\pi,$$

ti

$$x_k = \frac{\pi}{10}(4k+1) \lor x_m = \frac{\pi}{2}(4m+1) \quad (k, m = 0, \pm 1, \pm 2, \ldots).$$

1693. Ako levu i desnu stranu jednačine razvijemo po adicionoj teoremi, dobijamo ekvivalentnu jednačinu

$$\frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x = \frac{1}{2}\sin x - \frac{\sqrt{3}}{2}\cos x \iff \operatorname{tg} x = \sqrt{3}.$$

Prema tome, $x_k = \frac{\pi}{3} + k\pi \ (k = 0, \pm 1, \pm 2, \ldots).$

1694. a)
$$x = \frac{\pi}{6} + \frac{2k\pi}{3}$$
, $x = \frac{7\pi}{18} + \frac{2n\pi}{3}$; b) $x = \frac{1}{6} \pm \frac{\pi}{12} + \frac{2k\pi}{3}$, $k, n \in \mathbb{Z}$.

1695. a)
$$x = \frac{7\pi}{6} + 2k\pi$$
; b) $x = \frac{\pi}{6} - 0,25 + \frac{k\pi}{2}, k \in \mathbb{Z}$.

1696. a)
$$x = \frac{\pi}{6} + \frac{k\pi}{2}$$
, $x = \frac{5\pi}{12} + n\pi$, $x = \frac{2\pi}{3} + m\pi$, $x = \frac{11\pi}{12} + r\pi$;

b)
$$x = \frac{1}{8} \pm \frac{\pi}{12} + \frac{k\pi}{2}, x = \frac{1}{8} \pm \frac{\pi}{6} + \frac{n\pi}{2}, k, n, m, r \in \mathbb{Z}.$$

1697. a)
$$x = \frac{k\pi}{2}$$
, $x = \frac{\pi}{6} + \frac{n\pi}{2}$;

b)
$$x = \frac{7\pi}{2} + 8k\pi, \ x = -\frac{5\pi}{2} + 8n\pi, \ k, n \in \mathbb{Z}.$$

1698.
$$x_k = \frac{\pi}{2} + k\pi \lor x_m = \frac{\pi}{6} + 2m\pi \lor x_n = \frac{5\pi}{6} + 2n\pi$$

$$(k, m, n = 0, \pm 1, \pm 2, \ldots).$$

1699.
$$x_k = \frac{\pi}{3} + 2k\pi \lor x_m = \frac{\pi}{2} + m\pi \lor x_n = \frac{5\pi}{2} + 2n\pi$$

 $(k, m, n = 0, \pm 1, \pm 2, \ldots).$

1700.
$$x_k = \frac{\pi}{2} + k\pi \vee x_n = \frac{3\pi}{4} + n\pi, (k, n = 0, \pm 1, \pm 2, \ldots).$$

1701. Data jednačina ekvivalentna je jednačinama:

$$\sin 3x + (\sin 5x + \sin x) = 0 \Longleftrightarrow \sin 3x + 2\sin 3x \cos 2x = 0$$
$$\sin 3x (2\cos 2x + 1) = 0.$$

Odatle sledi

$$x_k = \frac{k\pi}{3} \lor x_m = \frac{\pi}{3} + m\pi \lor x_n = \frac{2\pi}{3} + n\pi, \quad (k, m, n = 0, \pm 1, \pm 2, \ldots).$$

1702.
$$x_k = (2k+1)\pi \vee x_m = \frac{4\pi}{3} + 4m\pi \vee x_n = -\frac{4\pi}{3} + 4n\pi,$$
 $(k, m, n = 0, \pm 1, \pm 2, \ldots).$

1703. Da bi data jednačina imala rešenja mora biti istovremeno

$$\sin x = 1$$
 i $\sin 5x = 1$, tj. $x_n = \frac{\pi}{2} + 2n\pi$, $x_k = \frac{\pi}{10} + \frac{2k\pi}{5}$, $(k, n = 0, \pm 1, \pm 2, \ldots)$.

Rešenja date jednačine se dobijaju rešavanjem Diofantove jednačine

$$\frac{\pi}{2} + 2n\pi = \frac{\pi}{10} + \frac{2k\pi}{5} \Longleftrightarrow 5n - k + 1 = 0.$$

Za k=5n+1, rešenje druge jednačine je $x_n=\frac{\pi}{2}+2n\pi$. Dakle, rešenje prve jednačine zadovoljava drugu.

1704.
$$x_k = \frac{\pi}{3} + \frac{k\pi}{2}, (k = 0, \pm 1, +2, \ldots).$$

1705. Ova jednačina se svodi na kvadratnu jednačinu po $\cos x$,

$$\cos^2 x + 2\cos x - 3 = 0,$$

čija su rešenja $\cos x = -3$, $\cos x = 1$. Kako prvo rešenje nema smisla, ostaje samo $\cos x = 1$, odakle je $x_k = 2k\pi$ $(k = 0, \pm 1, \pm 2, ...)$.

1706. Data jednačina se svodi na:

$$\sin\frac{x}{2} - (1 - \cos x) = 0 \Longleftrightarrow \sin\frac{x}{2} - 2\sin^2\frac{x}{2} = 0 \Longleftrightarrow \sin\frac{x}{2} \left(1 - 2\sin\frac{x}{2}\right) = 0.$$

Odavde je
$$\left(\sin\frac{x}{2}=0 \Rightarrow x_k=2k\pi\right) \quad (k=0,\pm 1,\pm 2,\ldots),$$
ili

$$\sin\frac{x}{2} = \frac{1}{2} \iff x_m = \frac{\pi}{3} + 4m\pi \lor x_n = \frac{5\pi}{3} + 4n\pi, (m, n = 0, \pm 1, +2, \ldots).$$

1707. Kako je $\sqrt{3}=\operatorname{tg}\frac{\pi}{3}=\frac{\sin\frac{\pi}{3}}{\cos\frac{\pi}{3}}$ leva strana transformiše se u oblik

$$2\sin\left(x+\frac{\pi}{3}\right)=2$$
, odakle sledi

$$\sin\left(x + \frac{\pi}{3}\right) = 1 \Longleftrightarrow x = \frac{\pi}{6} + 2k\pi, \quad (k = 0, \pm 1, \pm 2, \ldots).$$

1708. Data jednačina je ekvivalentna disjunkciji $\cos x = 3 \lor \cos x = \frac{1}{2}$.

Kako prva jednačina nema realnih rešenja, rešenja date jednačine su rešenja druge jednačine sistema: $x_k = \pm \frac{\pi}{3} + 2k\pi, \ (k = 0, \pm 1, \pm 2, \ldots).$

1709.
$$x_k = \frac{3\pi}{2} + 2k\pi \lor x_n = \frac{7\pi}{6} + 2n\pi \lor x_m = \frac{11\pi}{6} + 2m\pi$$

 $(k, m, n = 0, \pm 1, \pm 2, ...)$

1710.
$$x_k = \frac{\pi}{4} + k\pi \vee x_m = \arctan 2 + m\pi, (k, m = 0, \pm 1, \pm 2, \ldots).$$

1711.
$$x_k = \pm \frac{3\pi}{4} + 2k\pi, (k = 0, \pm 1, \pm 2, \ldots).$$

1712. Data jednačina ekvivalentna je jednačini

$$\frac{1+\operatorname{tg} x}{1-\operatorname{tg} x} - 1 = 2\sin x \cos x \Longleftrightarrow \frac{2\operatorname{tg} x}{1-\operatorname{tg} x} - 2\sin x \cos x = 0$$
$$\Longleftrightarrow \sin x \left(\frac{1}{\cos x - \sin x} - \cos x\right) = 0$$
$$\Longleftrightarrow \sin x = 0 \lor \frac{1}{\cos x - \sin x} - \cos x = 0.$$

Jednačina

(1)
$$\sin x = 0 \Longleftrightarrow x_k = k\pi, \quad (k = 0, \pm 1, \pm 2, \ldots),$$

a jednačina

$$\frac{1}{\cos x - \sin x} - \cos x = 0 \Longleftrightarrow \frac{1 - \cos^2 x + \sin x \cos x}{\cos x - \sin x} = 0.$$

 $\operatorname{Za} \cos x - \sin x \neq 0$ imamo

$$\sin^2 x + \sin x \cos x = 0, \quad \sin x (\sin x + \cos x) = 0,$$

odakle sledi da je $\sin x = 0$ čija su rešenja (1) ili

$$\sin x + \cos x = 0 \iff \operatorname{tg} x = -1 \iff x_m = \frac{3\pi}{4} + 2m\pi, \quad (m = 0, \pm 1, \pm 2, \ldots).$$

1713. Data jednačina ekvivalentna je jednačini

$$(\cos^2 x + \sin^2 x)(\cos^2 x - \sin^2 x) = 0.$$

Kako je $(\cos^2 x + \sin^2 x) \neq 0$, tada je

$$\cos^2 x - \sin^2 x = 0 \iff \operatorname{tg}^2 x = 1 \iff x_k = k\pi \pm \frac{\pi}{4}, \quad (k = 0, \pm 1, \pm 2, \ldots).$$

1714. Data jednačina ekvivalentna je jednačini

$$\frac{1}{2}\sin 2x = 1 - \sin^2 x$$

$$\iff \sin x \cos x - \cos^2 x = 0 \iff (\cos x = 0 \lor \operatorname{tg} x = 1)$$

$$\iff x_n = (2n+1)\frac{\pi}{2} \lor x_m = m\pi + \frac{\pi}{4}, \quad (n, m = 0, \pm 1, \pm 2, \ldots).$$

1715. Data jednačina ekvivalentna je jednačini

$$(\sin^2 x + \cos^2 x)(\sin^2 x - \cos^2 x) = \frac{1}{2} \Longleftrightarrow \cos 2x = -\frac{1}{2}$$
$$\Longleftrightarrow x_k = k\pi \pm \frac{\pi}{3}, \quad (k = 0, \pm 1, \pm 2, \ldots).$$

1716. Data jednačina ekvivalentna je jednačini

$$\left(\frac{1-\cos 2x}{2}\right)^2 + \left(\frac{1+\cos 2x}{2}\right)^2 = \frac{5}{8} \iff 2+2\cos^2 2x = \frac{5}{2}$$
$$\iff 1+\cos 4x = \frac{1}{2} \iff \cos 4x = -\frac{1}{2}$$
$$\iff x_k = \pm \frac{\pi}{6} + \frac{k\pi}{2}, \quad (k=0,\pm 1,\pm 2,\ldots).$$

1717. Data jednačina ekvivalentna je jednačini

$$\frac{1}{2}(\sin 8x + \sin 2x) - \frac{1}{2}(\sin 14x + \sin 2x) = 0 \iff \sin 8x - \sin 14x = 0$$
$$\iff -2\sin 3x\cos 11x = 0 \iff \sin 3x = 0 \lor \cos 11x = 0.$$

Jednačina

$$\sin 3x = 0 \implies x_k = \frac{k\pi}{3}, \quad (k = 0, \pm 1, \pm 2, \ldots),$$

a jednačina

$$\cos 11x = 0 \iff x_m = \frac{\pi}{22}(2m+1), \quad (m = 0, \pm 1, \pm 2, \ldots).$$

1718.
$$x_k = k\pi \vee x_n = \frac{\pi}{18} + \frac{n\pi}{9}, (k, n = 0, \pm 1, \pm 2, \ldots).$$

1719.
$$x_k = \frac{k\pi}{3}, (k = 0, \pm 1, \pm 2, \ldots).$$

1720.
$$x_k = \frac{\pi}{2}(2k+1) \lor x_m = \pm \frac{\pi}{3} + 2k\pi, (k, m = 0, \pm 1, \pm 2, \ldots).$$

1721.
$$x_k = \pm \frac{\pi}{3} + 2k\pi, (k = 0, \pm 1, \pm 2, \ldots).$$

1722.
$$x_k = \pm \frac{\pi}{6} + k\pi, (k = 0, \pm 1, \pm 2, \ldots).$$

1723.
$$x_k = \pm \frac{\pi}{3} + 2k\pi \vee x_m = (2m+1)\pi, (k, m=0, \pm 1, \pm 2, \ldots).$$

1724. Izrazimo tg2x i $\sin 2x$ pomoću tgx. Imamo

$$\frac{2\operatorname{tg} x}{1-\operatorname{tg} x} - \operatorname{tg} x = \frac{4}{3} \cdot \frac{2\operatorname{tg} x}{1+\operatorname{tg}^2 x}.$$

Ova jednačina ekvivalentna je sistemu

$$tg x = 0 \lor \frac{2}{1 - tg^2 x} - 1 = \frac{8}{3(1 + tg^2 x)}.$$

Prva jednačina daje skup rešenja $x_k=k\pi,\;(k=0,\pm 1,\pm 2,\ldots),$ a druga je ekvivalentna jednačini

$$3 tg^4 x + 14 tg^2 x - 5 = 0,$$

odakle sledi

$$\operatorname{tg} x = \pm \frac{\sqrt{3}}{3} \iff x_m = \frac{\pi}{6} + m\pi \lor x_n = \frac{5\pi}{6} + n\pi, \quad (m, n = 0, \pm 1, \pm 2, \ldots).$$

Jednačina tg $^2x = -5$ nema realnih rešenja.

1725.
$$x_k = \pm \frac{\pi}{4} + k\pi \vee x_m = \pm \frac{\pi}{3} + 2k\pi, (k, m = 0, \pm 1, \pm 2, \ldots).$$

1726.
$$x_k = \frac{\pi}{2} + k\pi \vee x_m = \frac{2m\pi}{5} \vee x_n = (2n+1)\pi, (k, m, n = 0, \pm 1, \pm 2, \ldots).$$

1727. Data jednačina ekvivalentna je jednačini

$$(\sin x + \sin 3x) - (\cos x + \cos 3x) + (\sin 2x - \cos 2x) = 0$$

$$\iff 2\sin 2x \cos x - 2\cos 2x + (\sin 2x - \cos 2x) = 0$$

$$\iff (2\cos x + 1)(\sin 2x - \cos 2x) = 0$$

$$\iff 2\cos x + 1 = 0 \lor \sin 2x - \cos 2x = 0,$$

odakle sledi da je:

$$2\cos x + 1 = 0 \iff x_n = \frac{2\pi}{3}(3n \pm 1), \quad (n = 0, \pm 1, \pm 2, \dots),$$

$$\sin 2x - \cos 2x = 0 \iff \operatorname{tg} 2x = 1 \iff x_k = \frac{\pi}{8}(4k + 1), \quad (k = 0, \pm 1, \pm 2, \dots).$$

1728. Data jednačina se svodi na:

$$(\cos 2x + \cos 6x) - (1 - \cos 8x) = 0 \iff 2\cos 4x\cos 2x - 2\cos^2 4x = 0$$
$$\iff \cos 4x \sin 3x \sin x = 0 \iff \cos 4x = 0 \lor \sin 3x = 0 \lor \sin x = 0.$$

Kako su rešenja jednačine $\sin x = 0$ sadržana u skupu rešenja jednačine $\sin 3x = 0,$ onda je

$$x_k = \frac{\pi}{8}(2k+1) \lor x_n = \frac{n\pi}{3}, \quad (k, n = 0, \pm 1, \pm 2, \ldots).$$

1729. Data jednačina ekvivalentna je jednačini

$$2\sin\frac{3x}{2}\sin\frac{x}{2} = 2\sin\frac{3x}{2}\cos\frac{3x}{2} \Longleftrightarrow \sin\frac{3x}{2}\left(\sin\frac{x}{2} - \cos\frac{3x}{2}\right) = 0$$

$$\iff \sin\frac{3x}{2}\sin\left(\frac{\pi}{4} + \frac{x}{2}\right)\sin\left(x - \frac{\pi}{4}\right) = 0$$

$$\iff \sin\frac{3x}{2} = 0 \lor \sin\left(\frac{\pi}{4} + \frac{x}{2}\right) = 0 \lor \sin\left(x - \frac{\pi}{4}\right) = 0.$$

Rešenja date jednačine su

$$x_k = \frac{2k\pi}{3} \lor x_n = \frac{\pi}{2} (4n-1) \lor x_m = \frac{\pi}{4} (4m+1), \quad (k, n, m = 0, \pm 1, \pm 2, \ldots).$$

1730. Data jednačina ekvivalentna je jednačini

$$2\sin 3x\cos 2x + 1 - \cos 2x = 1 \Longleftrightarrow \cos 2x(2\sin 3x - 1) = 0,$$

odavde sledi

$$x_k = \frac{\pi}{4}(2k+1), \quad x_n = \frac{\pi}{18} + \frac{2n\pi}{3}, \quad x_m = \frac{5\pi}{18} + \frac{2m\pi}{3} \quad (k, n, m \in \mathbb{Z}).$$

1731. Data jednačina je ekvivalentna jednačini

$$\sin 5x - \sin 3x = 0 \Longleftrightarrow 2\sin x \cos 4x = 0.$$

Odatle sledi da su rešenja:

$$x_k = k\pi \lor x_n = \frac{\pi}{8}(2n+1), \quad (k, n = 0, \pm 1, \pm 2, \ldots).$$

1732. Data jednačina ekvivalentna je jednačini

$$\cos 4x + 2\cos^2 x = 0 \Longleftrightarrow \cos 4x + 1 + \cos 2x = 0$$
$$\Longleftrightarrow 2\cos^2 2x + \cos 2x = 0 \Longleftrightarrow \cos 2x(2\cos 2x + 1) = 0.$$

Dakle, rešenja date jednačine su:

$$x_k = k\pi \pm \frac{\pi}{4} \lor x_n = n\pi \pm \frac{\pi}{3}, \quad (k, n = 0, \pm 1, \pm 2, \ldots).$$

1733. Kako je
$$1+\cos 4x=2\cos^2 2x$$
, dobija se $\cos^2 2x(2\sin 4x-1)=0$, odakle izlazi $x_k=\frac{k\pi}{2}+\frac{\pi}{4} \vee x_n=\frac{\pi}{24}+\frac{n\pi}{2} \vee x_m=\frac{5\pi}{24}+\frac{m\pi}{2} \quad (k,n,m=0,\pm 1,\pm 2,\ldots).$ 1734. $x_k=\frac{k\pi}{4} \quad (k=0,\pm 1,\pm 2,\ldots).$

1735.
$$x_k = \frac{k\pi}{2} \lor x_n = \frac{\pi}{8} (2n+1) \ (k, n = 0, \pm 1, \pm 2, \ldots).$$

1736. Kako je $\sin x = \frac{2a-3}{4-a}$ ova jednačina ima rešenje ako je

$$-1 \le \frac{2a-3}{4-a} \le 1 \Longleftrightarrow a \in \left(-1, \frac{7}{3}\right].$$

1737. Data jednačina ekvivalentna je jednačini $\sin 2x = \frac{2}{m}$, odakle sledi $m \le -2 \lor m \ge 2$.

1738. Data jednačina ekvivalentna je jednačini

$$\frac{\sin mx}{\cos mx} \cdot \frac{\sin nx}{\cos nx} = 1 \iff \sin mx \sin nx = \cos mx \cos nx$$

$$\iff \cos(mx + nx) = 0 \iff x_k = \frac{2k+1}{m+n} \cdot \frac{\pi}{2}, \quad (k = 0, \pm 1, \pm 2, \ldots).$$

1739. Data jednačina se svodi na:

$$\sin px - \sin\left(\frac{\pi}{2} - qx\right) = 0 \iff \sin\left(\frac{p+q}{2}x - \frac{\pi}{4}\right)\cos\left(\frac{p-q}{2}x + \frac{\pi}{4}\right) = 0$$
$$\iff \sin\left(\frac{p+q}{2}x - \frac{\pi}{4}\right) = 0 \lor \cos\left(\frac{p-q}{2}x + \frac{\pi}{4}\right) = 0,$$

odakle je

(1)
$$\frac{p+q}{2} x - \frac{\pi}{4} = k\pi \iff x_k = \frac{1}{2} \cdot \frac{4k+1}{p+q} \pi, \quad (k=0,\pm 1,2,\ldots),$$

(2)
$$\frac{p-q}{2}x + \frac{\pi}{4} = \frac{2m+1}{2}\pi \iff x_m = \frac{1}{2} \cdot \frac{4m+1}{p-q}\pi, \quad (m=0,\pm 1,2,\ldots).$$

U slučaju p=q skup rešenja (2) nema smisla, pa je rešenje $x_k=\frac{4k+1}{4p}\pi$, dok za p=-q skup rešenja (1) nema smisla. U slučaju (2) rešenje je $x_m=\frac{4m+1}{4p}\pi$.

1740. Data jednačina postaje:

$$4\sin x \sin 2x \sin 3x = 2\sin 2x \cos 2x \iff \sin 2x (2\sin x \sin 3x - \cos 2x) = 0$$
$$\iff \sin 2x \cos 4x = 0,$$

gde je proizvod $\sin x \sin 3x$ transformisan u zbir. Rešenja su:

$$x_n = \frac{n\pi}{2} \lor x_k = \frac{\pi}{8}(2k+1), \quad (n, k = 0, \pm 1, \pm 2, \ldots).$$

1741. Kako je

$$\sin\left(\frac{3\pi}{2} - x\right) = -\cos x$$
 i $\operatorname{tg}\left(\frac{\pi}{2} - \frac{x}{2}\right) = \operatorname{ctg}\frac{x}{2}$

data jednačina ekvivalentna je jednačini $2(1+\cos x)-\sqrt{3}\operatorname{ctg}\frac{x}{2}=0$. Ako primenimo formulu $\operatorname{ctg}\frac{x}{2}=\frac{1+\cos x}{\sin x}$, tada je poslednja jednačina ekvivalentna sistemu

$$\left(1 + \cos x = 0 \lor \sin x = \frac{\sqrt{3}}{2}\right)$$

$$\iff x_n = (2n+1)\pi \lor x_k = k\pi + (-1)^k \frac{\pi}{3}, \quad (n,k=0,\pm 1,\pm 2,\ldots).$$

1742. Ako se zameni $\operatorname{ctg} x = \frac{\cos x}{\sin x}$, data jednačina se svodi na

$$\frac{1+\cos x}{\sin x(1+\cos x)} = 2 \Longleftrightarrow \sin x = \frac{1}{2} \quad (1+\cos x \neq 0)$$
$$\Rightarrow x_k = k\pi + (-1)^k \frac{\pi}{6}, \quad (k=0,\pm 1,\pm 2,\ldots).$$

1743. Pošto je $\operatorname{ctg}(x-\pi)=-\operatorname{ctg}(\pi-x)=\operatorname{ctg} x$, data jednačina se svodi na

$$2\operatorname{ctg} x - (\cos x + \sin x)\left(\frac{1}{\sin x} - \frac{1}{\cos x}\right) = 4 \iff \frac{1}{\sin x \cos x} = 4$$
$$\iff \sin 2x = \frac{1}{2} \Rightarrow x_k = \frac{\pi}{2}k + (-1)^k \frac{\pi}{12}, \quad (k = 0, \pm 1, \pm 2, \ldots).$$

1744. Leva strana jednačine se svodi na $1-\sin x,$ a imenilac desne strane na

$$\operatorname{tg}\frac{x}{2} + \operatorname{ctg}\frac{x}{2} = \frac{2}{\sin x},$$

odakle sledi da je data jednačina ekvivalentna jednačini

$$1 - \sin x = \sin x \implies x_k = k \cdot 180^\circ + (-1)^k 30^\circ, \quad (k = 0, \pm 1, \pm 2, \ldots).$$

1745. Jednačina se može napisati u obliku

$$3\sin x - 4\sin^3 x = 4\sin x(1 - 2\sin^2 x)$$
 ili $\sin x(4\sin^2 x - 1) = 0$.

Rešenja su: $x_n = n \cdot 180^{\circ} \lor x_m = m \cdot 180^{\circ} \pm 30^{\circ}, \quad (n, m = 0, \pm 1, \pm 2, \ldots).$

1746.
$$x_k = (2k+1)\pi \vee x_n = \frac{\pi}{6} + \frac{2n\pi}{3} \ (k, n = 0, \pm 1, \pm 2, \ldots).$$

1747.
$$x_k = \frac{k\pi}{6} \lor x_n = \pm \frac{5\pi}{6} + 2n\pi \ (k, n = 0, \pm 1, \pm 2, \ldots).$$

1748. Jednačina se može napisati u obliku

$$(\cos x + \cos 3x) + (\cos x + \cos 5x) = 0.$$

Rešenja su:
$$x_n = \frac{2n+1}{4}\pi \lor x_m = \frac{2m+1}{2}\pi \quad (m,n=0,\pm 1,\pm 2,\ldots).$$

1749. Data jednačina ekvivalentna je sa:

$$2\sin 2x \cos x + \sin 2x = 2\cos^2 x + \cos x$$

$$\iff \sin 2x (2\cos x + 1) = \cos x (2\cos x + 1)$$

$$\iff 2\sin x \cos x (2\cos x + 1) - \cos x (2\cos x + 1) = 0$$

$$\iff \cos x (2\cos x + 1)(2\sin x - 1) = 0,$$

$$\Rightarrow x_k = k\pi + \frac{\pi}{2} \lor x_n = 2n\pi \pm \frac{2\pi}{3} \lor x_m = m\pi + (-1)^m \frac{\pi}{6} \quad (k, n, m \in \mathbb{Z}).$$

1750. Data jednačina je ekvivalentna jednačini:

$$\sin^2 2x = \sin 3x + \sin x \iff \sin^2 2x - 2\sin 2x \cos x = 0$$

$$\iff 2\sin 2x \cos x (\sin x - 1) = 0 \iff \sin 2x = 0$$

$$\lor \cos x = 0 \lor \sin x - 1 = 0$$

$$\iff \left(\sin 2x = 1 \iff x_k = \frac{k\pi}{2}\right) \lor \left(\cos x = 0 \iff x_n = n\pi + \frac{\pi}{2}\right)$$

$$\lor \left(\sin x = 1 \iff x_m = 2m\pi + \frac{\pi}{2}\right) \quad (k, n, m = 0, \pm 1, \pm 2, \ldots).$$

Primetimo da skup rešenja x_n obuhvata skup rešenja x_m .

1751. Data jednačina ekvivalentna je sa:

$$\frac{\sin^3 x(\sin x + \cos x)}{\sin x} + \frac{\cos^3 x(\sin x + \cos x)}{\cos x} = \cos 2x$$

$$\iff (\sin x + \cos x)(\sin^2 x + \cos^2 x) = \cos^2 x - \sin^2 x$$

$$\iff (\sin x + \cos x)(1 + \sin x - \cos x) = 0$$

$$\iff \sin x + \cos x = 0 \lor \sin x - \cos x + 1 = 0.$$

$$\sin x + \cos x = 0 \iff x_k = k\pi - \frac{\pi}{4}, \quad (k = 0, \pm 1, \pm 2, \ldots),$$

$$\cos x - \sin x = 1 \iff \left(x_n = 2n\pi \lor x_m = 2m\pi - \frac{\pi}{2}\right), \quad (n, m = \in \mathbb{Z}).$$

1752. Kako je
$$\sin^2 x = \frac{2 \operatorname{tg} x}{1 + \operatorname{tg}^2 x}$$
, data jednačina postaje:

$$tg^{3}x - 2tg^{2}x + 3tgx - 2 = 0 \iff (tgx - 1)(tg^{2}x - tgx + 2) = 0$$
$$\iff (tgx - 1 = 0 \lor tg^{2}x - tgx + 2 = 0).$$

Jednačina

$$\operatorname{tg} x - 1 = 0 \Longleftrightarrow x_1 = k\pi + \frac{\pi}{4} \quad (k \in \mathbb{Z}),$$

a jednačina tg $^2x-{\rm \;tg}\,x+2=0,$ nema realnih rešenja.

1753. Leva strana jednačine se transformiše u oblik

$$4\sin^2 x \cos x = 2\sin x \sin 2x = \cos x - \cos 3x.$$

Data jednačina ekvivalentna je jednačini

$$\cos x - \cos 3x = \cos x - \sin x \iff \cos 3x = \cos \left(\frac{\pi}{2} - x\right)$$
$$\iff 3x \pm \left(\frac{\pi}{2} - x\right) = 2k\pi \iff x_k = k\pi - \frac{\pi}{4} \lor x_n = \frac{n\pi}{2} + \frac{\pi}{8} \quad (k, n \in \mathbb{Z}).$$

1754. Pošto je $\cos^2(1-3x)=\frac{1+\cos(2x-6x)}{2}$, data jednačina ekvivalentna je jednačini

$$4\cos^2(2-6x) + 8\cos(2-6x) - 5 = 0.$$

Njena rešenja su $x_k = \frac{1}{3} \pm \frac{\pi}{18} - \frac{k\pi}{3}, (k = 0, \pm 1, \pm 2, \ldots).$

1755. Data jednačina ekvivalentna je jednačini

$$\sin\left(\frac{\pi}{10} + \frac{3x}{2}\right) - \sin\left(\frac{3\pi}{10} - \frac{x}{2}\right) = \sin\left(\frac{3\pi}{10} - \frac{x}{2}\right)$$

$$\iff 2\cos\left(\frac{\pi}{5} + \frac{x}{2}\right)\sin\left(x - \frac{\pi}{10}\right) = \sin\left(\frac{3\pi}{10} - \frac{x}{2}\right).$$

Kako je $\cos\left(\frac{\pi}{5}+\frac{x}{2}\right)=\sin\left(\frac{3\pi}{10}-\frac{x}{2}\right)$, prethodna jednačina ekvivalentna je

$$\sin\left(\frac{3\pi}{10} - \frac{x}{2}\right) \left(2\sin\left(x - \frac{\pi}{10}\right) - 1\right) = 0$$

$$\iff \sin\left(\frac{3\pi}{10} - \frac{x}{2}\right) = 0 \lor \sin\left(x - \frac{\pi}{10}\right) = \frac{1}{2},$$

pa je

$$x_m = \frac{10m+3}{5}\pi \lor x_n = \frac{30n+4}{15}\pi \lor x_k = \frac{30k+14}{15}\pi \quad (m,n,k \in \mathbb{Z}).$$

1756. Ako podelimo datu jednačinu sa $\cos^2 x \neq 0$, ona postaje

$$5 tg^2 x - 3 tg x - 2 = 0,$$

odakle sledi

$$\left(\operatorname{tg} x = 1 \Rightarrow x_k = k \cdot \frac{\pi}{4} + k\pi\right)$$

$$\vee \left(\operatorname{tg} x = -\frac{2}{5} \Rightarrow x = -\operatorname{arctg} \frac{2}{5} + n\pi \ (k, n \in \mathbb{Z})\right).$$

1757. Kako je $\sin 2x=2\sin x\cos x,$ data jednačina je homogena i svodi se na oblik tg $^2x+2$ tg x-3=0,odakle izlazi

$$\operatorname{tg} x = 1 \Longleftrightarrow x_k = k\pi + \frac{\pi}{4}, \quad (k = 0, \pm 1, \pm 2, \ldots).$$

$$\operatorname{tg} x = -3 \Longleftrightarrow x_n = n\pi - \operatorname{arctg} 3, \quad (n = 0, \pm 1, \pm 2, \ldots).$$

1758. Ako se primeni identitet $1 = \sin^2 x + \cos^2 x$ data jednačina je homogena i svodi se na oblik

$$\operatorname{tg}^{2} x + \sqrt{3} \operatorname{tg} x = 0 \Rightarrow x_{k} = k\pi \vee x_{n} = \frac{\pi}{3} (3n - 1), \quad (k, n = 0, \pm 1, \pm 2, \ldots).$$

1759.
$$x_k = \frac{\pi}{4} + k\pi \vee x_n = -\arctan 5 + n\pi, \ (k, n = 0, \pm 1, \pm 2, \ldots).$$

1760. Kako je $2 = 2(\sin^2 x + \cos^2 x)$ data jednačina postaje homogena.

$$x_k = k\pi + \frac{\pi}{4} \lor x_n = n\pi - \arctan \frac{7}{4}, \quad (n, k = 0, \pm 1, \pm 2, \ldots).$$

1761.
$$x_k = \frac{\pi}{4}(4k+1) \vee x_n = n\pi + \arctan \frac{3}{2}, (k, n = 0, \pm 1, \pm 2, \ldots).$$

1762.
$$x_k = (2k+1)\frac{\pi}{2} \lor x_n = n\pi + \frac{\pi}{4}, \ (k, n = 0, \pm 1, \pm 2, \ldots).$$

1763.
$$x_k = \frac{\pi}{4} + k\pi \vee x_n = n\pi + \text{arctg } 3, \ (k, n = 0, \pm 1, \pm 2, \ldots).$$

1764. Primedba 1. Data jednačina je oblika

$$A\sin x + B\cos x = C.$$

Leva strana jednačine (1) može se napisati u obliku $a\sin(x+\varphi)$, gde su a i φ nepoznati parametri koje treba odrediti iz

(2)
$$A\sin x + B\cos x = a\sin(x+\varphi).$$

Jednakost (2) može se napisati u obliku

(3)
$$A\sin x + B\cos x = a\cos\varphi\sin x + a\sin\varphi\cos x.$$

Da bi (3) bilo ispunjeno za svako x, treba da je

(4)
$$A = a\cos\varphi, \quad B = a\sin\varphi.$$

Zbir kvadrata jednačine sistema (4) daje formulu za određivanje parametra a

$$(5) a = \sqrt{A^2 + B^2}.$$

Količnik jednačina sistema (5) daje formulu za izračunavanje parametra φ .

(6)
$$\operatorname{tg} \varphi = \frac{B}{A}.$$

I način. Data jednačina može se rešiti na osnovu primedbe 1. Za datu jednačinu iz (5) sledi $a=\sqrt{1+(-3)^2}=2$, a iz (6) tg $\varphi=-\sqrt{3}\Rightarrow \varphi=-\frac{\pi}{3}$.

Data jednačina na osnovu (1) i (2) ekvivalentna je jednačini

$$2\sin\left(x - \frac{\pi}{3}\right) = 2 \iff x = \frac{5\pi}{6}, \quad (k = 0, \pm 1, \pm 2, \ldots).$$

Primedba 2. Pri rešavanju nekih problema iz trigonometrije često se $\sin x$ i $\cos x$ izražavaju pomoću tg $\frac{x}{2}$ i to:

$$\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2} = \frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{\sin^2\frac{x}{2} + \cos^2\frac{x}{2}} = \frac{2\operatorname{tg}\frac{x}{2}}{1 + \operatorname{tg}^2\frac{x}{2}},$$

$$\cos x = \cos^2\frac{x}{2} - \sin^2\frac{x}{2} = \frac{\cos^2\frac{x}{2} - \sin^2\frac{x}{2}}{\sin^2\frac{x}{2} + \cos^2\frac{x}{2}} = \frac{1 - \operatorname{tg}^2\frac{x}{2}}{1 + \operatorname{tg}^2\frac{x}{2}}.$$

Ako se uvede da je tg $\frac{x}{2}=t,$ prethodni obrasci postaju

$$\sin x = \frac{2t}{1+t^2},$$

(2)
$$\cos x = \frac{1 - t^2}{1 + t^2}.$$

II način. Ako se iskoristi primedba 2 i prethodne formule (1) i (2), data jednačina ekvivalentna je jednačini

$$\frac{2t}{1+t^2} - \frac{\sqrt{3}(1-t^2)}{1+t^2} = 2 \iff (2+\sqrt{3})t^2 - 2t + 2 + \sqrt{3} = 0,$$

odakle je $t = \frac{1}{2 - \sqrt{3}}$. Smenom tg $\frac{x}{2} = t$ imamo

$$\operatorname{tg} \frac{x}{2} = \frac{1}{2 - \sqrt{3}} = \sqrt{\frac{1}{(2 - \sqrt{3})^2}} = \sqrt{\frac{2 + \sqrt{3}}{2 - \sqrt{3}}} = \sqrt{\frac{1 + \frac{\sqrt{3}}{2}}{1 - \frac{\sqrt{3}}{2}}} = \sqrt{\frac{1 - \cos\frac{5\pi}{6}}{1 + \cos\frac{5\pi}{6}}},$$

odakle sledi da je $x_k = \frac{5\pi}{6} + 2k\pi, (k \in \mathbb{Z}).$

III način. Kako je $\sqrt{3}=\operatorname{tg}\frac{\pi}{3}=\frac{\sin\frac{\pi}{3}}{\cos\frac{\pi}{3}}$, data jednačina ekvivalentna je jednačini:

$$\sin x \cos \frac{\pi}{3} - \sin \frac{\pi}{3} \cos x = 2 \cos \frac{\pi}{3} \iff \sin \left(x - \frac{\pi}{3} \right) = 1$$

$$\iff x - \frac{\pi}{3} = \frac{\pi}{2} + 2k\pi \iff x_k = \frac{5\pi}{6} + 2k\pi, \quad (k \in \mathbb{Z}).$$

1765. Analogno prethodnom zadatku (primedba 2) dobijaju se rešenja: $x_k = 2k\pi - \arctan\frac{\sqrt{13}-2}{9} \vee x_n = 2k\pi + \arctan\frac{\sqrt{13}+2}{9}, \ (k,n\in\mathbb{Z}).$

1766. Deljenjem date jednačine sa 2 dobija se $\sin(x-30^\circ) = \frac{\sqrt{2}}{2}$, odakle je

$$x - 30^{\circ} = 45^{\circ} + 360^{\circ}k \Rightarrow x_k = 75^{\circ} + 360^{\circ} \cdot k$$
 ili
 $x - 30^{\circ} = 135^{\circ} + 360^{\circ} \cdot n \Rightarrow x_n = 165^{\circ} + 360^{\circ} \cdot n$ $(k, n \in \mathbb{Z}).$

1767. Analogno prethodnom zadatku data jednačina se svodi na oblik

$$\cos\left(4x - \frac{\pi}{6}\right) = \frac{\sqrt{2}}{2},$$

odakle sledi

$$x_k = \frac{5\pi}{48} + \frac{k\pi}{2} \lor x_n = \frac{\pi}{48} + \frac{n\pi}{2}, \quad (k, n \in \mathbb{Z}).$$

1768.
$$x_k = 2k\pi - \frac{7\pi}{12} \lor x_n = 2n\pi + \frac{11\pi}{12}.$$

1769.
$$x_k = 2k\pi + \frac{2\pi}{3} \lor x_n = 2n\pi, \ (k, n \in \mathbb{Z}).$$

1770.
$$x_k = 2k\pi + \frac{5\pi}{12} \lor x_n = (2n+1)\pi + \frac{\pi}{12}$$

1771.
$$x_k = \frac{(8k+1)\pi}{12} \ (k \in \mathbb{Z}).$$

1772.
$$x_k = 2k\pi - \frac{\pi}{6} \lor x_n = 2n\pi - \frac{\pi}{2}, (k, n \in \mathbb{Z}).$$

1773. Neka je $\sin x + \cos x = z$. Tada je $5z^2 - 12z + 7 = 0$, odakle je $z_1 = 1$, $z_2 = \frac{7}{5}$. Dakle,

$$\sin x + \cos x = 1 \quad \text{i} \quad \sin x + \cos x = \frac{7}{5}.$$

$$x_k = 2k\pi \lor x_n = 2n\pi + \frac{\pi}{2} \lor x_m = 2m\pi + 2 \arctan \frac{1}{2}$$

$$\lor x_p = 2p\pi + 2 \arctan \frac{1}{3} \quad (k, n, m, p \in \mathbb{Z}).$$

1774. Kako je
$$\left| \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} \right| = \frac{4}{\sqrt{3}}$$
, onda je $\left| \frac{2}{\sin 2x} \right| = \frac{4}{\sqrt{3}}$.

 1° Ako je $\sin 2x \geq 0$, imamo

$$\frac{2}{\sin 2x} = \frac{4}{\sqrt{3}} \iff \sin 2x = \frac{\sqrt{3}}{2}$$

odakle sledi

$$2x = k\pi + (-1)^k \cdot \frac{\pi}{3} \Longleftrightarrow x_k = \frac{k\pi}{2} + (-1)^k \cdot \frac{\pi}{6} \quad (k \in \mathbb{Z}).$$

$$2^\circ$$
Ako je $\sin 2x < 0,$ tada je $-\frac{2}{\sin 2x} = \frac{4}{\sqrt{3}} \Longleftrightarrow \sin 2x = -\frac{\sqrt{3}}{2}$, odakle je

$$2x = n\pi - (-1)^n \cdot \frac{\pi}{3} \Longleftrightarrow x_n = \frac{n\pi}{2} - (-1)^n \cdot \frac{\pi}{6} \quad (n \in \mathbb{Z}).$$

1775. Ako se pomnoži data jednačina sa $\frac{1}{2}$, onda se može napisati u obliku

$$\frac{1}{2}\cos 7x + \frac{\sqrt{3}}{2}\sin 7x = \frac{\sqrt{3}}{2}\cos 5x + \frac{1}{2}\sin 5x, \text{ ili}$$

$$\sin \frac{\pi}{6}\cos 7x + \cos \frac{\pi}{6}\sin 7x = \sin \frac{\pi}{3}\cos 5x + \cos \frac{\pi}{3}\sin 5x, \text{ tj.}$$

$$\sin \left(7x + \frac{\pi}{6}\right) = \sin \left(5x + \frac{\pi}{3}\right).$$

Odatle

$$7x + \frac{\pi}{6} - 5x + \frac{\pi}{3} = 2k\pi \quad \text{ili} \quad 7x + \frac{\pi}{6} + 5x + \frac{\pi}{3} = (2k+1)\pi.$$
$$x_k = (12k+1)\frac{\pi}{12} \lor x_n = (4n+1)\frac{\pi}{24} \quad (k, n \in \mathbb{Z}).$$

1776. Ako se pomnoži data jednačina sa $\frac{\sqrt{2}}{2}$, onda se može napisati u obliku $\frac{\sqrt{2}}{2}\sin(\pi\log x) + \frac{\sqrt{2}}{2}\cos(\pi\log x) = \frac{\sqrt{2}}{2}$, ili $\cos\left(\pi\log x - \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$, a odatle $\pi\log x - \frac{\pi}{4} = \pm \frac{\pi}{4} + 2k\pi \iff x_k = 10^{2k} \lor x_n = 10^{2n+\frac{1}{2}} \quad (k, n \in \mathbb{Z}).$

1777. Kako je
$$\log_b a = \frac{1}{\log_a b}$$
, tada je $\log_{\cos x} \sin x + \frac{1}{\log_{\cos x} \sin x} - 2 = 0$ ili

$$(\log_{\cos x} \sin x)^{2} - 2\log_{\cos x} \sin x + 1 = 0, \text{ tj.}$$

$$(\log_{\cos x} \sin x - 1)^{2} = 0 \iff \log_{\cos x} \sin x = 1 \iff \sin x = \cos x$$

$$\iff x_{k} = 2k\pi + \frac{\pi}{4} \quad (k \in \mathbb{Z}),$$

jer mora biti ispunjen uslov $\sin x > 0$ i $\cos x < 0$.

1778. a) Leva strana date jednačine može se transformisati u oblik

$$(\sin^2 x + \cos^2 x)(\sin^4 x - \sin^2 x \cos^2 x + \cos^4 x)$$
$$= (\sin^2 x + \cos^2 x)^2 - \frac{3}{4}\sin^2 2x = 1 - \frac{3}{4}\sin^2 2x,$$

pa je $1 - \frac{3}{4}\sin^2 2x = a$, odakle je

$$\sin^2 2x = \frac{4(1-a)}{3}$$
 ili $\frac{1-\cos 4x}{2} = \frac{4(1-a)}{3}$

tj.
$$\cos 4x = \frac{8a - 5}{3}$$

Potreban i dovoljan uslov za egzistenciju realnih rešenja date jednačine je nejednačina $-1 \leq \frac{8a-5}{3} \leq 1$, odakle je $\frac{1}{4} \leq a \leq 1$.

b) Za
$$a = 1$$
, $x_k = \frac{k\pi}{2}$, a ako je $a = \frac{1}{4}$, $x_n = \frac{n\pi}{2} \pm \frac{\pi}{4}$ $(n, k \in \mathbb{Z})$.

1779. Kako je $a = a(\sin^2 x + \cos^2 x)$, data jednačina postaje

(1)
$$(1-a)\sin^2 x - \sin x \cos x - (a+2)\cos^2 x = 0.$$

Neka je $a \neq 1$, tada iz (1) sledi da je $\cos x \neq 0$.

U suprotnom slučaju mi bismo imali $\sin x=\cos x=0,$ što je nemoguće. Ako podelimo jednačinu (1) sa $\cos^2 x$ i uvedemo smenu tgx=t,dobijamo kvadratnu jednačinu

(2)
$$(1-a)t^2 - t - (a+2) = 0.$$

Jednačina (1) ima rešenje ukoliko jednačina (2) ima realna rešenja, tj.:

$$D = -4a^2 - 4a + 9 > 0,$$

odakle nalazimo

$$-\frac{\sqrt{10}+1}{2} \le a \le \frac{\sqrt{10}-1}{2}.$$

Za a = 1 imamo $\sin x(\sin x + 3\cos x) = 0$, odakle

$$x_k = \frac{\pi}{2} + k\pi \vee x_n = n\pi - \operatorname{arctg} 3 \quad (k, n \in \mathbb{Z}).$$

1780. Pošto je

$$\sin^4 x = \left(\frac{1 - \cos 2x}{2}\right)^2, \quad \cos^2 x = \frac{1 + \cos 2x}{2}$$

zamenom $\cos 2x = t$, data jednačina postaje

$$(1) t^2 - 6t + 4a^2 - 3 = 0.$$

Data jednačina ima rešenja za one vrednosti parametra a, za koje koreni t_1 i t_2 jednačine (1) su realni i njihove apsolutne vrednosti ne prelaze 1.

Rešavanjem jednačine (1) nalazimo

$$t_1 = 3 - 2\sqrt{3 - a^2}, \quad t_2 = 3 + 2\sqrt{3 - a^2}.$$

Rešenja t_1 i t_2 jednačine (1) su realna, ako je

$$|a| \le 3.$$

Ako je uslov (2) ispunjen $t_2>1$ i zato ta vrednost ne dolazi u obzir. Radi toga, tražene vrednosti parametra a zadovoljavaju uslov (2) , za koji je $|t_1|\leq 1$, tj.

$$(3) -1 \le 3 - 2\sqrt{3 - a^2} \le 1.$$

Iz (3) izlazi
$$-4 \le -2\sqrt{3-a^2} \le -2$$
, odakle

$$(4) 1 < \sqrt{3 - a^2} < 2.$$

Pošto je nejednačina $\sqrt{3-a^2} \leq 2$ zadovoljena za $|a| \leq \sqrt{3}$, sistem jednačina (4) svodi se na nejednačinu $\sqrt{3-a^2} \geq 1$, odakle nalazimo $|a| \leq \sqrt{2}$. Dakle, data jednačina ima rešenja za $|a| \leq \sqrt{2}$ i to

$$x_k = \pm \frac{1}{2}\arccos(3 - 2\sqrt{3 - a^2}) + k\pi.$$

1781. Kako uga
o $x\in\left(0,\frac{\pi}{2}\right)$, tada je $\lambda>0,$ jer je $\sin x>0$ i
 $\cos x>0,$ padata jednačina, posle kvadriranja, postaje

$$1 + 2\sin x \cos x = \lambda^2 \sin^2 x \cos^2 x.$$

Smenom $\sin 2x = t$ imamo $\lambda^2 t^2 - 4t - 4 = 0$, odakle dobijamo

(1)
$$t_{1/2} = \frac{2 \pm \sqrt{4 + 4\lambda^2}}{\lambda^2}.$$

Pošto $x \in \left(0, \frac{\pi}{2}\right)$, tada $\sin 2x > 0$, pa u jednačini (1) treba uzeti znak plus, tj. $t = \frac{2 + \sqrt{4 + 4\lambda^2}}{\lambda^2}.$

Tražene vrednosti parametra su rešenja nejednačine $\frac{2+\sqrt{4+4\lambda^2}}{\lambda^2} \leq 1$, odakle nalazimo $\lambda \geq 2\sqrt{2}$.

1782. Proizvod u datoj jednačini transformišemo u zbir

$$\frac{1}{2}\left(\cos 2mx + \cos \frac{\pi}{3}\right) = a \quad \text{ili} \quad \cos 2mx = \frac{4a - 1}{2}.$$

Dovoljan i potreban uslov za egzistenciju rešenja date jednačine je nejednačina $-1 \leq \frac{4a-1}{2} \leq 1$, odakle $-\frac{1}{4} \leq a \leq \frac{3}{4}$.

1783. Pošto je $|\sin x| \le 1$, proizvod dva sinusa jednak je jedinici, ako je $1^{\circ} \sin 2x = 1$ i $\sin 6x = 1$;

 $2^{\circ} \sin 2x = -1 \text{ i } \sin 6x = -1.$

Analizirajmo slučaj 1°. Imamo $x_k = \frac{(4k+1)\pi}{4}$ i $x_n = \frac{(4n+1)\pi}{12}$.

Ako izjednačimo nađene vrednosti x, imamo

$$\frac{(4k+1)\pi}{4} = \frac{(4n+1)\pi}{12} \,,$$

odakle je 6k = 2n - 1.

Paran broj ne može biti jednak neparnom, pa je tvrđenje 1° nemoguće. Analogno se pokazuje da je i 2° nemoguće.

1784. Kako je

$$(\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x + \sin 2x + a = 0 \quad \text{ili}$$
$$1 - \frac{1}{2}\sin^2 2x + \sin 2x + a = 0, \quad \text{tj.} \quad \sin^2 2x - 2\sin 2x - 2(a+1) = 0,$$

odakle $\sin 2x=1\pm\sqrt{2a+3}.$ Za realnost rešenja neophodno je $2a+3\geq 0$ ili $a\geq -\frac{3}{2}.$ Kako je $|\sin 2x|<1,$ tada $|1\pm\sqrt{2a+3}|\leq 1.$

Analizirajmo odvojeno poslednje nejednačine:

$$1^{\circ}\ |1-\sqrt{2a+3}|\geq -1,$$
odakle je $-\frac{3}{2}\leq a\leq \frac{1}{2}.$ U ovom slučaju

$$\sin 2x = 1 - \sqrt{2a+3} \Rightarrow x_k = \frac{\pi k}{2} + \frac{(-1)^k}{2} \arcsin(1 - \sqrt{2}a + 3).$$

 $2^\circ~|1-\sqrt{2a+3}|\le 1,$ no kako je sa druge strane $1-\sqrt{2a+3}\le 1,$ tada je $\sqrt{2a+3}=0,$ tj. $a=-\frac32,$ pa je $\sin 2x=1.$

Rešenje ove jednačine je sadržano u rešenju $1^{\circ}.$

1785. Kako je

$$\frac{1}{2}\left(\cos(b-c)x - \cos(b+c)x\right) = \frac{1-\cos(b+c)x}{2} + a \quad \text{ili}$$
$$\cos(b-c) - \cos(b+c)x = 1 - \cos(b+c)x + 2a, \quad \text{tj.}$$
$$\cos(b-c)x = 2a+1.$$

Potreban i dovoljan uslov za egzistenciju rešenja je $-1 \le 2a+1 \le 1$ ili $-2 \le 2a \le 0,$ odakle je $-1 \le a \le 0.$

1786. Leva strana jednačine transformiše se u oblik

$$\frac{1+\cos(2x+2\alpha)}{2} + \frac{1+\cos(2x-2\alpha)}{2} = \sin 2\alpha \quad \text{ili}$$
$$\cos(2x+2\alpha) + \cos(2x-2\alpha) = 2\sin 2\alpha - 2, \quad \text{tj.}$$
$$2\cos 2x\cos 2\alpha = 2(\sin 2\alpha - 1).$$

Ako je $\cos 2\alpha \neq 0,$ t
j. ako je $\alpha \neq \pm \frac{\pi}{4},$ poslednja jednačina postaje

$$\cos 2x = \frac{\sin 2\alpha - 1}{\cos 2\alpha} = \frac{1 - \sin 2\alpha}{-\cos 2\alpha} = \frac{1 - \cos\left(2\alpha - \frac{\pi}{2}\right)}{\sin\left(2\alpha - \frac{\pi}{2}\right)}$$
$$\frac{2\sin^2\left(\alpha - \frac{\pi}{4}\right)}{2\sin\left(\alpha - \frac{\pi}{2}\right)\cos\left(\alpha - \frac{\pi}{4}\right)} = \operatorname{tg}\left(\alpha - \frac{\pi}{4}\right), \, \operatorname{tj}.$$

(1)
$$\cos 2x = \operatorname{tg}\left(\alpha - \frac{\pi}{4}\right).$$

Kako je $-1 \leq \cos 2x \leq 1,$ tada je $-1 \leq$ t
g $\left(\alpha - \frac{\pi}{4}\right) \leq 1$ ili

$$\operatorname{tg}\left(-\frac{\pi}{4}\right) \le \operatorname{tg}\left(\alpha - \frac{\pi}{4}\right) \le \operatorname{tg}\frac{\pi}{4},$$

odakle je

$$-\frac{\pi}{4} < \alpha - \frac{\pi}{4} \le \frac{\pi}{4} \quad \text{tj.} \quad 0 \le \alpha \le \frac{\pi}{2}.$$

Dakle dobijeni interval zadovoljava pretpostavku $-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$ Iz (1) imamo

$$2x = \pm \arccos\left(\operatorname{tg}\left(\alpha - \frac{\pi}{4}\right)\right) + 2k\pi,$$

$$x_k = \pm 0, 5\arccos\left(\operatorname{tg}\left(\alpha - \frac{\pi}{4}\right)\right) + 2k\pi \quad (k \in \mathbb{Z}).$$

1787. Napišimo datu jednačinu u obliku

$$\sin(2x+x) + \sin 2x - m\sin x = 0 \quad \text{ili}$$

$$2\sin x \cos^2 x + \sin x \cos 2x + 2\sin x \cos x - m\sin x = 0, \quad \text{tj.}$$

$$\sin x (4\cos^2 x + 2\cos x - m - 1) = 0,$$

odakle izlazi:

$$\sin x = 0,$$

(2)
$$\cos x = \frac{-1 + \sqrt{4m + 5}}{4},$$

(3)
$$\cos x = \frac{-1 - \sqrt{4m + 5}}{4}.$$

Iz (1) nalazimo $x_k = k\pi$ ($k \in \mathbb{Z}$). Rešenja jednačine (2) i (3) su realna, ako je $4m+5\geq 0$, tj. $m\geq -\frac{5}{4}$; da bi jednačina (3) imala rešenja neophodno je da je

$$\left| \frac{-1 + \sqrt{4m + 5}}{4} \right| \le 1$$

a za egzistenciju rešenja jednačine (4) neophodno je

$$\left| \frac{-1 - \sqrt{4m + 5}}{4} \right| \le 1$$

Iz (4) imamo $|-1+\sqrt{4m+5}| \le 4$ ili

$$-4 \le -1 + \sqrt{4m+5} \le 4$$
 tj. $-3 \le \sqrt{4m+5} \le 5$,

odakle je $m \leq 5$.

Iz (5) imamo $-4 \le -1 - \sqrt{4m+5} \le 4$ odakle $m \le 1$.

Dakle, $x_k = k\pi$, za ma koje m.

Dakle,
$$x_k = k\pi$$
, za ma koje m . $x_n = 2n\pi \pm \arccos \frac{-1 + \sqrt{4m + 5}}{4}$, ako je $-\frac{5}{4} < m < 5$. $x_n = 2n\pi \pm \arccos \frac{-1 - \sqrt{4m + 5}}{4}$, ako je $-\frac{5}{4} \le m \le 1$. 1788. $m \in (-\infty, 1] \cup [5, +\infty)$.

$$x_n = 2n\pi \pm \arccos \frac{-1 - \sqrt{4m+5}}{4}$$
, ako je $-\frac{5}{4} \le m \le 1$

1789.
$$x_k = k\pi$$
, za svako m , $x_n = (-1)^n \cdot \arcsin \sqrt{\frac{3-m}{4}} + 2n\pi$, $x_\ell = \pi - (-1)^\ell \arcsin \sqrt{\frac{3-m}{4}} + 2\ell\pi$ za $-1 \le m \le 3$, $(k, n, \ell \in \mathbb{Z})$.

1790. Data jednačina ekvivalentna je jednačini

$$\sin x = 0 \lor 4\sin^2 x + m\sin x - 3 = 0.$$

Prva jednačina je ispunjena za $x_k=k\pi.$ Druga jednačina ima jedno rešenje za $\sin x,$ ako je m<-1i m>1,a dva rešenja, ako je $-1\leq m\leq 1.$

1791.
$$x_k = (2k+1)\pi; \quad x_n = 2\pi \left(2n \pm \frac{1}{3}\right) \ (k, n \in \mathbb{Z}).$$

1792. Data jednačina ekvivalentna je sistemima

$$(1) \qquad \cos x \ge 0 \land 3\cos x = \cos x - 5$$

$$(2) \qquad \cos x \le 0 \land 3 \cos x = -\cos x - 4.$$

Iz sistema (1) $\cos x = -\frac{5}{2}$, a $\left|-\frac{5}{2}\right| > 1$, pa rešenja nema.

Iz sistema (2) $\cos x = -\frac{5}{4}$, a $\left|-\frac{5}{4}\right| > 1$, pa i u ovom slučaju rešenja nema.

1793. Dato je $x^2 = \pm \frac{\pi}{3} + 2k\pi$ odakle sledi: za k = 0,

$$x = \pm \sqrt{\frac{\pi}{3}};$$
 $k = 1, 2, 3, \dots$ $x = \pm \sqrt{2k \pm \frac{\pi}{3}}.$

1794. Data jednačina ekvivalentna je jednačini

$$\sqrt{49 - x^2} = 2k\pi \iff 49 - x^2 = 4\pi^2 k^2$$
.

Ova jednačina ima realna rešenja za k=0 i k=1, tj.

$$x_{1/2} = \pm 7$$
, $x_{3/4} = \pm \sqrt{49 - 4\pi^2}$.

1795. Pošto je

$$\operatorname{tg}\left(x^{2} + \frac{\pi}{6}\right)\operatorname{tg}\left(x^{2} - \frac{\pi}{6}\right) = \operatorname{tg}\left(\frac{\pi}{2} - \left(\frac{\pi}{3} - x^{2}\right)\right) \cdot \operatorname{tg}\left(x^{2} - \frac{\pi}{3}\right)$$
$$= \operatorname{ctg}\left(\frac{\pi}{3} - x^{2}\right) \cdot \operatorname{tg}\left(x^{2} - \frac{\pi}{3}\right) = -\operatorname{ctg}\left(x^{2} - \frac{\pi}{3}\right) = -1,$$

tj. leva strana date jednačine -1, a desna 2, što je zaista nemoguće.

1796. Napišimo datu jednačinu u obliku $\operatorname{tg}(x^2 - x) = \operatorname{tg} 2$, odakle je

$$x^{2} - x - 2 = k\pi$$
 ili $x^{2} - x - (2 + k\pi) = 0$,

tj.
$$x = \frac{1 \pm \sqrt{4k\pi + 9}}{2}$$
.

Uslov za egzistenciju rešenja je $4k\pi + 9 \ge 0$, ili $k \ge \frac{9}{4\pi}$. Pošto k mora biti ceo

broj i
$$k > -1$$
, tj. $x = \frac{1 \pm \sqrt{4k\pi + 9}}{2}$, gde je $k = 0, 1, 2, ...$

1797. Kako je $\cos |x| = \cos x$ i t
g $^2 |x| = \operatorname{tg}^2 x$, data jednačina se može napisati u obliku

$$\operatorname{tg}^{2}|x| = \frac{1 - \cos|x|}{1 - \sin|x|} \iff \frac{\sin^{2}|x|}{\cos^{2}|x|} = \frac{1 - \cos|x|}{1 - \sin|x|}$$
$$\iff \frac{1 - \cos^{2}|x|}{1 - \sin^{2}|x|} = \frac{1 - \cos|x|}{1 - \sin|x|}.$$

Ako pomnožimo obe strane ove jednačine sa $1 - \sin |x| \neq 0$ tada je

$$\frac{1 - \cos^2|x|}{1 - \sin|x|} = 1 - \cos|x| \iff (1 - \cos|x|)(\cos|x| - \sin|x|) = 0.$$

Ova jednačina ekvivalentna je disjunkciji

$$(1 - \cos|x| = 0 \iff \cos|x| = 1 \iff x_k = 2k\pi)$$

$$\vee \left(\cos|x| - \sin|x| = 0 \iff \operatorname{tg}|x| = 1 \iff x_n = \frac{\pi}{4} + \frac{n\pi}{2}\right) \quad (k, n \in \mathbb{Z}).$$

1798. Iz date jednačine dobija se $\pi x^2 \pm 2\pi x = 2k\pi$ $(k=0,\pm 1,\pm 2,\ldots)$ ili $x^2 \pm 2x - 2k = 0$, odakle je $x=\mp 1\mp \sqrt{2k+1}$. Uslov egzistencije rešenja je $2k+1\geq 0$, ili $k\geq 0$. Da bi x bio ceo broj, neophodno je da broj $\sqrt{2k+1}$ bude ceo. Kako je kvadratni koren iz potpunog kvadrata neparnog broja, neparan broj, to je broj $\mp 1\mp \sqrt{2k+1}$ paran broj.

1799. Pošto je $\sin 2x = 2\sin x\cos x$ i $1 = \sin^2 x + \cos^2 x$, tada je

$$\operatorname{tg} x = \frac{9 \sin^2 x + 6 \sin x \cos x + \cos^2 x}{9 \cos^2 x + 6 \sin x \cos x + \sin^2 x} = 0$$

$$\iff \operatorname{tg} x - \frac{(3 \sin x + \cos x)^2}{(3 \cos x + \sin x)^2} = 0 \iff \operatorname{tg} x - \left(\frac{3 \operatorname{tg} x + 1}{3 + \operatorname{tg} x}\right)^2 = 0$$

$$\iff \operatorname{tg}^3 x - 3 \operatorname{tg}^2 x + 3 \operatorname{tg} x - 1 = 0 \iff (\operatorname{tg} x - 1)^3 = 0 \iff \operatorname{tg} x = 1$$

$$\iff x_k = \frac{\pi}{4} + k\pi \quad (k \in \mathbb{Z}).$$

1800. Data jednačina može se napisati u obliku

$$(\sin 2x + 3) \sin^2 x (\sin^2 x - 1) + 1 = 0$$

$$\iff (\sin 2x + 3) \sin^2 x \cos^2 x - 1 = 0$$

$$\iff (\sin 2x + 3) 4 \sin^2 x \cos^2 x - 4 = 0$$

$$\iff (\sin 2x + 3) \sin^2 2x - 4 = 0$$

$$\iff \sin^3 2x + 3 \sin^2 2x - 4 = 0$$

$$\iff (\sin 2x - 1)(\sin 2x + 2)^2 = 0.$$

Pošto je $(\sin 2x + 1)^2 > 0$ za svako x, onda je $\sin 2x - 1 = 0$, tj. $x_k = \frac{\pi}{4}(4k + 1)$, $(k = 0, \pm 1, \pm 2, \ldots)$.

1801. Data jednačina se može transformisati na sledeći način:

$$\frac{1 - \cos 2x^2}{2} + \frac{1 - \cos 4x^2}{2} = \frac{1 - \cos 6x^2}{2} + \frac{1 - \cos 8x^2}{2}$$

$$\iff \cos 2x^2 + \cos 4x^2 = \cos 6x^2 + \cos 8x^2$$

$$\iff \cos 3x^2 \cos x^2 - \cos 7x^2 \cos x^2 = 0$$

$$\iff \cos x^2 \sin 2x^2 \sin 5x^2 = 0.$$
(1)

Jednačina (1) ekvivalentna je disjunkciji

$$\left(\cos x^2 = 0 \Longleftrightarrow x_k^2 = \frac{2k+1}{2}\pi\right) \vee \left(\sin 2x^2 = 0 \Longleftrightarrow x_n^2 = \frac{n\pi}{2}\right)$$
$$\vee \left(\sin 5x^2 = 0 \Longleftrightarrow x_m^2 = \frac{m\pi}{5}\right).$$

Pošto je $x^2 \ge 0$, onda $(k,n,m=0,1,2,\ldots)$ za $n=2\ell+1,$ $x_n^2=\frac{2\ell+1}{2}\pi=x_\ell^2$. Sva rešenja date jednačine su

$$x_k = \sqrt{\frac{2k+1}{2}\pi}$$
 i $x_m = \sqrt{\frac{m\pi}{5}}$, $(k, m = 0, 1, 2, ...)$.

1802. Ako proizvode na levoj strani date jednačine transformišemo u zbir, dobijamo $\cos 7x - \cos x = 0$ ili $\sin 4x \sin 3x = 0$, odakle je:

$$x_k = \frac{k\pi}{4} \lor x_n = \frac{n\pi}{3}, \quad (k, n = 0, \pm 1, \pm 2, \ldots).$$

1803.
$$x_k = \frac{\pi}{24} + \frac{k\pi}{2}, x_n = \frac{5\pi}{24} + \frac{n\pi}{2} (k, n = 0, \pm 1, \pm 2, \ldots).$$

1804. Data jednačina se transformiše u oblik

$$\sin\frac{x}{2}\left(\cos\frac{x}{2} + \sin\frac{x}{2}\right)\left(\cos^2\frac{x}{2} - 3\sin^2\frac{x}{2}\right) = 0.$$

Odatle sledi: $x_k = 2k\pi, x_n = \frac{3\pi}{2} + 2n\pi, x_m = \pm \frac{\pi}{3} + 2m\pi \quad (k, n, m \in \mathbb{Z}).$

1805.
$$x_k = \frac{\pi}{3} + \frac{2}{3}k\pi, x_n = 4n\pi \ (k, n \in \mathbb{Z}).$$

1806.
$$x_k = \frac{2}{3}\pi + 2k\pi, \ x_n = 2n\pi \ (k, n \in \mathbb{Z}).$$

1807. Data jednačina se može napisati u obliku

$$2\sin 3x\cos x + \sqrt{3}\sin 3x = 0.$$

Odatle sledi:

$$\sin 3x = 0 \iff x_k = \frac{k\pi}{3}, \quad \cos x = -\frac{\sqrt{3}}{2} \iff x_n = \pm \frac{5\pi}{6} + 2n\pi \quad (k, n \in \mathbb{Z}).$$

1808. Data jednačina se svodi na:

$$(\cos x + \sin x)^{2}(\cos x - \sin x) = -\cos 2x$$

$$\iff (\cos x + \sin x)(\cos^{2} x - \sin^{2} x) = -\cos 2x$$

$$\iff \cos 2x(\cos x + \sin x + 1) = 0 \iff \left(\cos 2x = 0 \iff x_{k} = \frac{\pi}{4} + \frac{k\pi}{2}\right)$$

$$\lor \left(\cos x + \sin x + 1 = 0 \iff 2\sin\frac{x}{2}\cos\frac{x}{2} + 2\cos^{2}\frac{x}{2} = 0\right)$$

$$\iff 2\cos\frac{x}{2}\left(\cos\frac{x}{2} + \sin\frac{x}{2}\right) = 0 \iff x_{n} = \pi + 2n\pi \lor x_{m} = \frac{3\pi}{2} + 2m\pi\right)$$

$$(k, n, m = 0, \pm 1, \pm 2, \ldots).$$

1809. Da bi data jednačina bila određena neophodno je: $x \neq \frac{k\pi}{2}$ $(k = \in \mathbb{Z})$. Njena rešenja su: $x_n = \frac{\pi}{4} + n\pi$ $(n \in \mathbb{Z})$.

1810. Ako je $\sin 2x \geq 0$, tada je $1+\sin 2x \geq 1$, a $1-\sin x \leq 1$. Onda je data jednačina ekvivalentna jednačini

$$-\log_{\frac{1}{3}}(1+\sin 2x) + \log_{\frac{1}{3}}(1-\sin 2x) = 1.$$

Antilogaritmovanjem se dobija $\frac{1-\sin 2x}{1+\sin 2x}=\frac{1}{3}$, odakle je:

$$\sin 2x = \frac{1}{2} \iff x = (-1)^k \frac{\pi}{12} + \frac{k\pi}{2}.$$

Analogno, ako je $\sin 2x < 0,$ tada je $1+\sin 2x < 1,$ a $1-2\sin 2x > 1,$ pa se data jednačina svodi na oblik

$$\log_{\frac{1}{3}}(1+\sin 2x) - \log_{\frac{1}{3}}(1-\sin 2x) = 1,$$

odakle nalazimo: $\sin 2x = -\frac{1}{2} \Longleftrightarrow x = (-1)^{k+1} \frac{\pi}{12} + \frac{k\pi}{2}$

1811. Pošto je $\sin^2 3x = \frac{1-\cos 6x}{2}$, data jednačina ekvivalentna je jednačini $2 \cdot 2^{2\cos 6x} + \frac{4}{2^{2\cos 6x}} = 9$. Smena $2^{2\cos 6x} = t$ svodi poslednju jednačinu na kvadratnu $2t^2 - 9t + 4 = 0$. Rešenja date jednačine su

$$x_k = \frac{k\pi}{3} \lor x_n = \pm \frac{\pi}{9} + \frac{n\pi}{3} \quad (k, n \in \mathbb{Z}).$$

1812.
$$x_k = (-1)^k \frac{\pi}{3} + k\pi \ (k \in \mathbb{Z}).$$

1813. Da bi data jednačina imala smisla mora da važi: $\lg x>0 \land \lg 2x>0$, pa je ona ekvivalentna $\lg x\cdot \lg 2x=1$. Postavljeni uslov zadovoljava samo rešenje

$$\operatorname{tg} x = \frac{\sqrt{3}}{3} \Longleftrightarrow x_k = \frac{\pi}{6} + k\pi \quad (k \in \mathbb{Z}).$$

1814. Pošto je

$$\sin 2x + \sqrt{3}\cos 2x = 2\left(\frac{1}{2}\sin 2x + \frac{\sqrt{3}}{2}\cos 2x\right) = 2\cos\left(\frac{\pi}{6} - 2x\right),$$

data jednačina ekvivalentna je jednačini

$$4\cos^2\left(\frac{\pi}{6} - 2x\right) - 5 = \cos\left(\frac{\pi}{6} - 2x\right).$$

Iz ove jednačine dobijamo

$$\cos\left(\frac{\pi}{6} - 2x\right) = -1 \Longleftrightarrow x = \frac{7\pi}{12} + k\pi \quad (k \in \mathbb{Z}).$$

Drugo rešenje ne odgovara.

1815. Data jednačina je ekvivalentna sa:

$$\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} = 3 + 2\sin 2x \iff \frac{2}{\sin 2x} = 3 + 2\sin 2x$$

$$\iff 2\sin^2 2x + 3\sin 2x - 2 = 0 \iff \left(\sin 2x = \frac{1}{2} \vee \sin 2x = -2\right)$$

$$\left(x_n = \frac{\pi}{12} + n\pi \vee x_k = \frac{5\pi}{12} + k\pi\right),$$

gde su k i n celi brojevi. Jednačina $\sin 2x = -2$ nema rešenja.

1816. Jednačina ima smisla ako je $x\neq \frac{\pi}{2}+k\pi$ (kceo broj) i tada je ekvivalentna jednačini

$$(\cos x - \sin x)(\cos x + \sin x)^{2} = \cos x + \sin x$$

$$\iff (\cos^{2} x - \sin^{2} x - 1)(\cos x + \sin x) = 0$$

$$\iff \cos x + \sin x = 0 \lor \cos^{2} x - \sin^{2} x - 1 = 0$$

$$\iff \operatorname{tg} x = -1 \lor \cos 2x = 1 \iff x = -\frac{\pi}{4} + m\pi \lor x = n\pi$$

(n i m celi brojevi).

1817.
$$x = \frac{(-1)^k \pi}{24} + \frac{k\pi}{4}$$
 (*k* ceo broj).

1818. Data jednačina ekvivalentna je jednačini

$$(2\cos 3x + 4\cos x - 1)\log\cos 2x = -\log\cos 2x$$

$$\iff 2(\cos 3x + 2\cos x)\log\cos 2x = 0$$

$$\iff \cos 2x = 1 \vee \cos 3x + 2\cos x = 0$$

$$\iff (2x_k = 2k\pi) \vee \cos x(4\cos^2 x - 1) = 0$$

$$\iff (x_k = k\pi) \vee \left(\cos x = 0 \vee \cos x = \frac{1}{2} \vee \cos x = -\frac{1}{2}\right)$$

$$\iff x_k = k\pi \vee x_n = \frac{\pi}{2} + n\pi \vee x_m = \pm \frac{\pi}{3} + 2m\pi \vee x_\ell = \pm \frac{2\pi}{3} + 2\ell\pi$$

 $(k,n,m,\ell\in\mathbb{Z}).$ Zbog uslova $\cos 2x>0$ otpadaju rešenja $x_n,\,x_m$ i $x_\ell.$

1819. Smena
$$3^{\sin^2 x} = t$$
, $x = \frac{\pi}{2} + k\pi$ $(k \in \mathbb{Z})$.

1820.
$$x = k\pi \lor x = \frac{2n\pi}{3}$$
 $(k, n \in \mathbb{Z}).$

1820.
$$x = k\pi \ \forall \ x = \frac{1}{3}$$
 $(k, n \in \mathbb{Z}).$
1821. $x_k = -\frac{5\pi}{16} + 2k\pi, \ x_\ell = \frac{15\pi}{16} + 2\ell\pi, \ x_m = \frac{3\pi}{16} + 2m\pi, \ x_n = \frac{23\pi}{16} + 2n\pi \ (k, \ell, m, n \in \mathbb{Z}).$

1822.
$$x_k = k \lor x_\ell = \frac{-1 \pm \sqrt{4\ell + 3}}{2} \quad (k, \ell \in \mathbb{Z})$$
.

1823. Data jednačina ekvivalentna je jednačini

(1)
$$\cos(\pi \operatorname{tg} x + \pi \operatorname{ctg} x) = 0$$

$$\iff \pi \operatorname{tg} x + \pi \operatorname{ctg} x = \frac{\pi}{2} + k\pi \quad (k \in \mathbb{Z}).$$

Ova jednačina ima rešenja ako su ispunjeni uslovi $x \neq p\pi, \ x \neq \frac{\pi}{2} + 2q\pi, \pi \operatorname{tg} x \neq \frac{\pi}{2} + r\pi, \ \pi \operatorname{ctg} x \neq s\pi \quad (p,q,r,s \in \mathbb{Z}).$

Smenom t
g $\boldsymbol{x}=t,$ jednačina (1) postaje kvadratna po
 t,

$$t^2 - \left(\frac{1}{2} + k\right)t + 1 = 0.$$

Rešenja date jednačine su:

$$c = \arctan \frac{1 + 2k \pm \sqrt{(1 + 2k)^2 - 16}}{4} + n\pi$$

gde je n ceo broj, a k takođe ceo broj $(k \neq -2, -1, 0, 1, 2)$ i $x = \arctan \frac{1}{2} + m\pi$, $(m \in \mathbb{Z})$.

1824. Smenom $\cos x - \sin x = t$, dobija se jednačina

$$\sqrt{1-t-t^2} = t \iff 2t^2 + t - 1 = 0 \land t > 0.$$

Rešenje date jednačine je $x=-\frac{\pi}{4}\pm \arccos\frac{\sqrt{2}}{4}+2k\pi \quad (k\in\mathbb{Z}).$

1825. Data jednačina je ekvivalentna jednačini

$$1 - \cos 2x + \sin 2x - (\sin x + \cos x) = 0.$$

Primenom identiteta

$$1 - \cos 2x = 2\sin^2 x, \quad \sin 2x = 2\sin x \cos x$$

prethodna jednačina je ekvivalentna jednačini

$$2\left(\sin x - \frac{1}{2}\right)\left(\sin x + \cos x\right) = 0.$$

Rešenja ove jednačine su:

$$x = (-1)^k \frac{\pi}{6} + k\pi, \quad x = -\frac{\pi}{4} + n\pi \quad (n, k \in \mathbb{Z}).$$

1826. Data jednačina ekvivalentna je jednačini

$$(\sin x + \cos x - 1)(1 - \sin x \cos x) = 1 - \sin x \cos x$$

$$\iff (\sin x + \cos x - 1)(\sin x \cos x - 1) = 0$$

$$\iff \sin 2x = 2 \vee \sin x + \cos x - 1 = 0.$$

Jednačina $\sin 2x = 2$ nema realnih rešenja, a rešenja jednačine

$$\sin x + \cos x = 1 \text{ su } x_k = 2k\pi, \ x_m = \frac{\pi}{2} + 2m\pi \quad (k, m \in \mathbb{Z}).$$

1827. a) Primenom identiteta $\sin 3x = 3\sin x - 4\sin^3 x$ i

$$\sin x \cdot \sin y = \frac{1}{2}(\cos(x-y) - \cos(x+y)),$$

data jednačina ekvivalentna je jednačini

$$(\sin x - 1)(3 - 4\sin^2 x) = 0 \iff \left(\sin x = 1 \lor \sin x = \frac{\sqrt{3}}{2} \lor \sin x = -\frac{\sqrt{3}}{2}\right)$$
$$\iff x_k = \frac{\pi}{2} + 2k\pi \lor x_n = (-1)^{n+1}\frac{\pi}{3} + n\pi \lor x_m = (-1)^m\frac{\pi}{3} + m\pi$$

b)
$$x_k = 2k\pi \lor x_n = \pm \frac{\pi}{6} + 2n\pi \lor x_m = \pm \frac{5\pi}{6} + 2m\pi \quad (k, n, m \in \mathbb{Z}).$$

1828.
$$x = \arccos\left(\pm \frac{1}{4}\sqrt{2(-1+\sqrt{17})}\right) + 2k\pi \quad (k \in \mathbb{Z}).$$

1829.
$$x = \pm \arcsin \sqrt{\frac{2}{3}} + k\pi \quad (k \in \mathbb{Z}).$$

1830. Jednačina je ekvivalentna sistemu

$$5\sin 2x - 2 = (\sin x - \cos x)^2 \sin x \ge \cos x.$$

Rezultat:

$$x_n = \frac{13\pi}{12} + 2n\pi, \quad x_k = \frac{5\pi}{12} + 2k\pi \quad (n, k \in \mathbb{Z}).$$

1831. Smenom $\sin(\pi(13x+9)^2)=y$ data jednačina se svodi na kvadratnu $2y^2-5y+3=0.$

$$x_n = \frac{9}{13} \pm \frac{1}{13} \sqrt{0, 5 + 2n\pi} \quad (n \in \mathbb{Z}, \ n \ge 0).$$

1832.
$$x = 105^{\circ}$$
. **1833.** $x = k\pi$ $(k \in \mathbb{Z})$.

1834. Smena
$$\sqrt{\sin x} = t$$
, $t \ge 0$, $x = (-1)^k \frac{\pi}{6} + k\pi$ $(k \in \mathbb{Z})$.

1835.
$$x_k = (-1)^k \arcsin \frac{5}{8} + k\pi, \ x_n = (-1)^n \arcsin \frac{1}{8} + n\pi,$$

 $x_m = (-1)^{m+1} \arcsin \frac{7}{8} + m\pi \quad (k, n, m \in \mathbb{Z}).$

1836.
$$x_k = \pm \frac{\pi}{12} - \frac{\pi}{18} + \frac{2k\pi}{3}$$
 $(k \in \mathbb{Z}).$ **1837.** $x_k = \frac{1}{2} + \frac{1}{2}$ $(k \in \mathbb{Z}).$

1838. Data jednačina ekvivalentna je sistemu

$$\cos 2x = \sin x \wedge \sin x + \cos \frac{x}{2} > 0.$$

$$x_k = \frac{\pi}{6} + 4k\pi, \quad x_n = \frac{5\pi}{6} + 4n\pi \quad (k, n \in \mathbb{Z}).$$

1839. Ako je $\sin x + \sin 2x > 0$, data jednačina je ekvivalentna jednačini 2x - 5 = 1; odavde x = 3, međutim $\sin 3 + \sin 6 < 0$. Ako je $\sin x + \sin 2x < 0$, dobija se x = 2, međutim $\sin 2 + \sin 4 > 0$. Ostaje još slučaj $\sin x + \sin 2x = 0$, odakle se dobija da je

$$x_k = \frac{2k\pi}{3}, \quad x_n = \pi(2n+1) \quad (k, n \in \mathbb{Z}).$$

1840.
$$x_k = \frac{\pi}{2} + k\pi, \ x_n = 2n\pi \quad (k, n \in \mathbb{Z}).$$

1841.
$$x = -\log_2^3 \left(\frac{(2k+1)\pi}{4} \right)$$
 $(k = 0, 1, 2, ...).$

1842. Data jednačina se može prikazati u obliku:

$$\sin x + 2\sin x \cos x \cos a + 2\sin^2 x \sin a - \sin a = 0$$

$$\iff \sin x + \sin 2x \cos a - \cos 2x \sin a = 0$$

$$\iff \sin x + \sin(2x - a) = 0$$

$$\iff 2\cos \frac{x - a}{2} \cdot \sin \frac{3x - a}{2} = 0$$

$$\iff \cos \frac{x - a}{2} = 0 \lor \sin \frac{3x - a}{2} = 0$$

$$\iff x_k = (2k + 1)\pi + a \lor x_n = \frac{2n\pi + a}{3} \quad (k, n \in \mathbb{Z}).$$

1843. Ako se proizvod sinusa transformiše u razliku kosinusa, data jednačina ekvivalentna je jednačini

$$2c^{2}(\cos(B-A) - \cos(2x + A + B)) = a^{2} + b^{2} + 4ab.$$

Kako je trougao pravougli, važe jednakosti

$$c^{2} = a^{2} + b^{2}$$
, $A + B = \frac{\pi}{2}$, $a = c \cos A$, $b = c \sin A$.

Poslednja jednačina je ekvivalentna jednačini

$$\cos\left(\frac{\pi}{2} - 2A\right) - \cos\left(2x + \frac{\pi}{2}\right) = \frac{1}{2} + 2\sin A\cos A$$

$$\iff \sin 2A + \sin 2x = \frac{1}{2} + \sin 2A \iff \sin 2x = \frac{1}{2}$$

$$\iff x_m = \left(m + \frac{1}{12}\right)\pi, \quad x_n = \left(\frac{5}{12} + n\right)\pi \quad (n, m \in \mathbb{Z}).$$

1844.
$$x = \frac{\pi}{4} + k\pi$$
 $(k \in \mathbb{Z}).$

1845.
$$-\frac{\pi}{2} + k\pi \le \alpha \le \frac{\pi}{2} + k\pi \quad (k \in \mathbb{Z}).$$

1846.
$$\left((-1)^{k+1} \frac{\pi}{6} + k\pi, \pm \frac{\pi}{3} + 2\ell\pi \right);$$
 $\left((-1)^k \frac{\pi}{6} + k\pi, \pm \frac{2\pi}{3} + 2\ell\pi \right) \quad (k, \ell \in \mathbb{Z}).$

1847.
$$\left(-\frac{\pi}{6} + 2k\pi, \frac{2\pi}{3} + 2n\pi\right); \quad \left(\frac{5\pi}{6} + 2k\pi; \frac{5\pi}{3} + 2n\pi\right) \quad (k, n \in \mathbb{Z}).$$

1848.
$$\left(\pm \frac{\pi}{6} + k\pi, \frac{\pi}{2} + 2n\pi\right) \quad (k, n \in \mathbb{Z}).$$

1849. Ako jednačine datog sistema kvadriramo a zatim saberemo, dobijamo

$$\sin^2 y + 3\cos^2 y = 2 \Longleftrightarrow \cos^2 y = \frac{1}{2}.$$

Odavde je

$$\cos y = \pm \frac{\sqrt{2}}{2}, \quad \sin y = \pm \frac{\sqrt{2}}{2}.$$

Iz sistema se dobija $\sin x = \pm \frac{1}{2}$, $\cos x = \pm \frac{\sqrt{3}}{2}$.

Sistem je zadovoljen za sledeće uređenje prave (x, y):

$$\begin{array}{l} 1^{\circ}\,\sin x=\frac{1}{2},\,\cos x=\frac{\sqrt{3}}{2},\,\sin y=\frac{\sqrt{2}}{2},\,\cos y=\frac{\sqrt{2}}{2}\\ \Longleftrightarrow \left(\frac{\pi}{6}+2k\pi,\frac{\pi}{4}+2m\pi\right); \end{array}$$

$$2^{\circ} \sin x = \frac{1}{2}, \cos x = -\frac{\sqrt{3}}{2}, \sin y = \frac{\sqrt{2}}{2}, \cos y = -\frac{\sqrt{2}}{2}$$

$$\Longleftrightarrow \left(\frac{5\pi}{6} + 2k\pi, \frac{3\pi}{4} + 2m\pi\right);$$

$$\begin{array}{l} 3^{\circ}\,\sin x=-\frac{1}{2},\,\cos x=\frac{\sqrt{3}}{2},\,\sin y=-\frac{\sqrt{2}}{2},\,\cos y=\frac{\sqrt{2}}{2}\\ \Longleftrightarrow \left(-\frac{\pi}{6}+2k\pi,-\frac{\pi}{4}+2m\pi\right); \end{array}$$

$$\begin{split} &4^{\circ}\,\sin x = -\frac{1}{2},\,\cos x = -\frac{\sqrt{3}}{2},\,\sin y = -\frac{\sqrt{2}}{2},\,\cos y = -\frac{\sqrt{2}}{2}\\ &\iff \left(-\frac{5\pi}{6} + 2k\pi, -\frac{3\pi}{4} + 2m\pi\right) \quad (k,m\in\mathbb{Z}). \end{split}$$

1850.
$$\left(\frac{\pi}{6} + 2k\pi, \pm \arccos\left(-\frac{1}{4}\right) + 2n\pi\right) \quad (k, n \in \mathbb{Z}).$$

1851. Ako je $\cos x \neq 0$, $\cos y \neq 0$, onda je

$$\operatorname{tg}(x+y) = 1 \Longleftrightarrow x + y = \frac{\pi}{4} + k\pi.$$

Rešenje sistema su parovi

$$\left(m\pi, \frac{\pi}{4} + (n-m)\pi\right); \quad \left(-\frac{3\pi}{4} + 2p\pi, \ \pi(n-2p+1)\right) \quad (k, n, p \in \mathbb{Z}).$$

1852. Zbir i razlika jednačina sistema daju

$$\sin(x+y) = 0 \vee \sin(y-x) = 1;$$

$$\left(\pi\left(\frac{n}{2} - k - \frac{1}{4}\right), \pi\left(\frac{n}{2} + k + \frac{1}{4}\right)\right) \quad (n, k \in \mathbb{Z}).$$

1853.
$$\left(\pm \frac{\pi}{3} + 2k\pi, \pm \frac{\pi}{3} + 2n\pi\right) \quad (n, k \in \mathbb{Z}).$$

1854.
$$\left(\frac{\pi}{2} + n\pi, -\frac{\pi}{2} + \pi(2k - n)\right), \left(\frac{\pi}{2} + 2\pi r, -\frac{\pi}{2} + 2m\pi\right),$$

$$\left(\frac{\pi}{6} + 2r\pi, \frac{\pi}{6} + 2\ell\pi\right)$$
 $(n, k, m, \ell \in \mathbb{Z}).$

1855.
$$\left(\frac{\pi}{6} + k\pi, \frac{\pi}{3} + n\pi\right); \left(-\frac{\pi}{6} + k\pi, \frac{2\pi}{3} + n\pi\right) \quad (k, n \in \mathbb{Z}).$$

1856.
$$\left((-1)^k \frac{\pi}{6} + k\pi, \pm \frac{2\pi}{3} + 2n\pi \right),$$

$$\left((-1)^{m+1} \frac{7\pi}{6} + m\pi, \pm \frac{\pi}{3} + 2\ell\pi \right) \quad (k, n, m, \ell \in \mathbb{Z}).$$

1857.
$$\left(k\pi, \pm \frac{\pi}{3} + 2n\pi\right)$$
 $(n, k \in \mathbb{Z}).$

1858.
$$\left(\frac{\pi}{2}(2k+1), \pm \frac{\pi}{3} + 2n\pi\right) \quad (n, k \in \mathbb{Z}).$$

1859.
$$\left(\frac{6k-1}{6}, \frac{6k+1}{6}\right)$$
 $(k \in \mathbb{Z}).$

1860.
$$x_{1/2} = -1 \pm \sqrt{2k+1}, x_{3/4} = 1 \pm \sqrt{2n+1} \quad (n, k = 0, 1, 2, \ldots).$$

1861. x = 2, x = 4.

1862. Data jednačina ekvivalentna je jednačini

$$\sin(2\arcsin x) = \sin\arcsin 2x \iff 2\sin(\arcsin x)\cos(\arcsin x) = 2x$$

 $\iff x\sqrt{1-x^2} = 1 \lor x = 0 \implies x = 0.$

1863. Neka je $\arccos x = a,\,\arcsin x = b;$ tada je

$$(1) \qquad \qquad \cos a = \sin b = x.$$

Data jednačina postaje

$$a-b=\arccos\frac{\sqrt{3}}{2}, \quad \cos(a-b)=\frac{\sqrt{3}}{2}, \quad \cos a \cos b + \sin a \sin b = \frac{\sqrt{3}}{2}.$$

Ako se uzme u obzir (1) dobijamo iracionalnu jednačinu

$$x\sqrt{1-x^2} + x\sqrt{1-x^2} = \frac{\sqrt{3}}{2}$$

$$\iff 4x\sqrt{1-x^2} = \sqrt{3} \iff (16x^2(1-x^2) = 3 \land 1 - x^2 \ge 0) \iff x = 0, 5.$$

1864.
$$x = 0 \lor x = 0, 5.$$
 1865. $x = \cos 4 \lor x = \cos 2.$

4.5. Trigonometrijske nejednačine

1866.
$$0 \le x < \frac{\pi}{12} \lor \frac{5\pi}{12} < x \le \pi \lor \pi \le x < \frac{13\pi}{12} \lor \frac{17\pi}{12} < x \le 2\pi$$
.

1867.
$$\frac{2k\pi}{3} + \frac{\pi}{9} \le x \le \frac{2\pi}{9} + \frac{2k\pi}{3}$$

1868.
$$4k\pi - \frac{4\pi}{3} < x < \frac{4\pi}{3} + 4k\pi \quad (k \in \mathbb{Z}).$$

1869. a)
$$\frac{2k\pi}{3} - \frac{5\pi}{18} < x < \frac{\pi}{6} + \frac{2k\pi}{3}$$
 $(k \in \mathbb{Z}).$

b)
$$\frac{2k\pi}{3} + \frac{1}{6} - \frac{\pi}{12} \le x < \frac{\pi}{12} + \frac{1}{6} + \frac{2k\pi}{3}$$
 $(k \in \mathbb{Z}).$

1870. a)
$$2k\pi + \frac{7\pi}{6} < x < \frac{3\pi}{2} + 2k\pi$$
;

b)
$$\frac{k\pi}{2} + \frac{\pi}{6} - \frac{1}{4} \le \frac{\pi}{4} - \frac{1}{4} + \frac{k\pi}{2}$$
 $(k \in \mathbb{Z}).$

1871. a)
$$\frac{k\pi}{2} - \frac{\pi}{12} \le x \le \frac{\pi}{6} + \frac{k\pi}{2}$$
.

b)
$$\frac{k\pi}{4} + \frac{1}{8} + \frac{\pi}{12} < x < \frac{\pi}{6} + \frac{1}{8} + \frac{k\pi}{4} \quad (k \in \mathbb{Z}).$$

1872. a)
$$\frac{k\pi}{2} \le x < \frac{\pi}{12} + \frac{k\pi}{2}$$
; $\frac{n\pi}{2} + \frac{\pi}{12} < x < \frac{\pi}{6} + \frac{n\pi}{2}$.

b)
$$2k\pi - \frac{\pi}{4} < x < \frac{3\pi}{4} + 2k\pi \quad (k, n \in \mathbb{Z}).$$

1873. Datu nejednačinu napišimo u obliku

$$\sqrt{2}\left(\frac{1}{\sqrt{2}}\sin x + \frac{1}{\sqrt{2}}\cos x\right) < \sqrt{2};$$

odakle je $\cos\left(x - \frac{\pi}{4}\right) < 1$.

Pošto je $|\cos\alpha|<1$ za ma koje α , u datom slučaju $-1\leq\cos\left(x-\frac{\pi}{4}\right)<1$. Iz ove nejednačine sledi da je

$$x - \frac{\pi}{4} \neq 2k\pi$$
, tj. $x \neq \frac{\pi}{4} + 2k\pi$ $(k \in \mathbb{Z})$.

1874.
$$2k\pi - \frac{\pi}{3} < x < \frac{\pi}{3} + 2k\pi \quad (n, k \in \mathbb{Z}).$$

1875. Nejednačina $\, {\rm tg}^{\, 2}x + \, {\rm tg}^{\, 2}x > 1 + \, {\rm tg}\, x$ ekvivalentna je nejednačini

$$tg^2x(1 + tgx) - (1 + tgx) > 0$$
 ili $(1 + tgx)^2 \cdot (tgx - 1) > 0$.

Pošto je $(1 + \operatorname{tg} x)^2 \ge 0$, nejednačina je zadovoljena za $\operatorname{tg} x - 1 > 0$, tj.

$$\operatorname{tg} x > 1 \Longleftrightarrow \frac{\pi}{4} (4k+1) < x < \frac{\pi}{2} (2k+1) \quad (k \in \mathbb{Z}).$$

1876. Iz prve nejednačine dobija se

$$2k\pi + \frac{\pi}{6} < x < \frac{5\pi}{6} + 2k\pi \quad (k \in \mathbb{Z}).$$

Iz druge

$$2n\pi - \frac{\pi}{3} \le x \le \frac{\pi}{3} + 2n\pi \quad (n \in \mathbb{Z}).$$

Odatle sledi rešenje date nejednačine

$$\frac{\pi}{6} + 2m\pi < x \le \frac{\pi}{3} + 2m\pi \quad (m \in \mathbb{Z}).$$

1877. Leva strana date nejednačine može se transformisati na sledeći način:

$$\cos^2 x \cos x \cos 3x - \sin^2 x \sin x \sin 3x$$

$$= \frac{1}{2} \cos^2 x (\cos 4x + \cos 2x) - \frac{1}{2} \sin^2 x (\cos 2x - \cos 4x)$$

$$= \frac{1}{2} \cos 4x (\cos^2 x + \sin^2 x) + \frac{1}{2} \cos 2x (\cos^2 x - \sin^2 x)$$

$$= \frac{1}{2} \cos 4x + \frac{1}{2} \cos^2 2x = \frac{1}{2} \cos 4x + \frac{1}{4} (1 + \cos 4x) = \frac{1 + 3 \cos 4x}{4}.$$

Tada je data nejednačina ekvivalentna nejednačini

$$\frac{1+3\cos 4x}{4} > \frac{5}{8} \Longleftrightarrow \cos 4x > \frac{1}{2},$$

odakle sledi

$$\frac{k\pi}{2} - \frac{\pi}{12} < x < \frac{\pi}{12} + \frac{k\pi}{2} \quad (k \in \mathbb{Z}).$$

1878. Pošto je

$$\begin{split} \frac{\sin 2x - \cos 2x + 1}{\sin 2x + \cos 2x - 1} &= \frac{2\sin x \cos x + 2\sin^2 x}{2\sin x \cos x - 2\sin^2 x} \\ &= \frac{\cos x + \sin x}{\cos x - \sin x} = \frac{1 + \lg x}{1 - \lg x} < 0, \end{split}$$

pri čemu je sin $x \neq 0$, sledi da je $k\pi - \frac{\pi}{4} < x < k\pi$ i $n\pi < x < \frac{\pi}{4} + n\pi$ $(k, n \in \mathbb{Z}).$

1879. Data nejednačina ekvivalentna je nejednačini

$$2\sin x - (1-\cos 2x) > 0 \Longleftrightarrow 2\sin x (1-\sin x) > 0 \Longleftrightarrow 2\sin x - 2\sin^2 x > 0$$

i dakle

$$2k\pi < x < (2k+1)\pi \quad (k \in \mathbb{Z}).$$

1880.
$$\frac{\pi}{4} < x < \frac{3\pi}{4}$$
; $\pi < x < \frac{5\pi}{4}$; $\frac{7\pi}{4} < x < 2\pi$.

1881.
$$\frac{\pi}{3} < x < \frac{2\pi}{3}, \frac{4\pi}{3} < x < \frac{5\pi}{3}.$$

1882. Data nejednačina ekvivalentna je nejednačini

$$\cos\frac{x}{2}\cos\left(\frac{\pi}{4} - \frac{x}{2}\right) < 0,$$

odakle je $\pi < x < \frac{3\pi}{2}$.

1883. Uočimo razliku:

$$\cot \frac{\alpha}{2} - (1 + \cot \alpha) = \cot \frac{\alpha}{2} - \left(1 + \frac{\cot^2 \frac{\alpha}{2} - 1}{2 \cot^2 \frac{\alpha}{2}}\right)$$
$$= \frac{2 \cot^2 \frac{\alpha}{2} - 2 \cot^2 \frac{\alpha}{2} - \cot^2 \frac{\alpha}{2} + 1}{2 \cot^2 \frac{\alpha}{2}} = \frac{\left(\cot^2 \frac{\alpha}{2} - 1\right)^2}{2 \cot^2 \frac{\alpha}{2}} \ge 0.$$

Pošto je 0 < $\frac{\alpha}{2} < \pi,$ znak jednakosti važi za $\alpha = \frac{\pi}{2}.$ Kako je

$$\operatorname{ctg}\frac{\alpha}{2} - (1 + \operatorname{ctg}\alpha) \ge 0$$

za svako $\alpha \in (0, \pi)$, tada je ct
g $\frac{\alpha}{2} \ge 1 + \operatorname{ctg} \alpha$.

1884. Razlika:

$$\cos(\alpha + \beta)\cos(\alpha - \beta) - \cos^2\alpha\cos^2\beta = -\sin^2\alpha \cdot \sin^2\beta \le 0,$$

pri čemu znak jednakosti važi za $\sin\alpha=0,$ ili $\sin\beta=0,$ tj. $\alpha=k\pi$ ili $\beta=n\pi.$ Dakle,

$$\cos(\alpha + \beta)\cos(\alpha - \beta) \le \cos^2 \alpha \cos^2 \beta.$$

1885. Iskoristiti identitet

$$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma - 2 = 2\cos \alpha \cos \beta \cos \gamma$$

(videti zadatak 1570). Pošto su uglovi $\alpha,\,\beta$ i γ oštri, tada je

$$2\cos\alpha\cos\beta\cos\gamma > 0$$
,

te je

$$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma > 2$$
.

1886. Ako je $0 < \alpha + \beta < \frac{\pi}{2}$, tada je

$$\operatorname{tg}(\alpha + \beta) > 0$$
 ili $\frac{\operatorname{tg}\alpha + \operatorname{tg}\beta}{1 - \operatorname{tg}\alpha \cdot \operatorname{tg}\beta} > 0.$

Odatle je 1 – t
g · tg $\beta > 0$, tj. tg α tg $\beta < 1$.

1887. Primenom kosinusne teoreme dobija se:

$$\cos \alpha = \frac{b^2 + c^2 - a^2}{2bc} = \frac{1}{2} \left(\frac{b}{c} + \frac{c}{b} \right) - \frac{a^2}{2bc}.$$

Pošto je $\frac{b}{c} + \frac{c}{b} \geq 2$, tada je $\cos \alpha > 1 - \frac{a^2}{2bc}$ ili $1 - \cos \alpha \leq \frac{a^2}{2bc}$, odakle je $2\sin^2\frac{\alpha}{2} \leq \frac{a^2}{2bc}$, ti. $\sin\frac{\alpha}{2} \leq \frac{a}{2\sqrt{bc}}$. Analogno tome: $\sin\frac{\beta}{2} \leq \frac{b}{2\sqrt{ac}}$ i $\sin\frac{\gamma}{2} < \frac{c}{2\sqrt{ab}}$, odakle sledi:

$$\sin\frac{\alpha}{2}\cdot\sin\frac{\beta}{2}\cdot\sin\frac{\gamma}{2}\leq \frac{a}{2\sqrt{bc}}\cdot\frac{b}{2\sqrt{ac}}\cdot\frac{c}{2\sqrt{ab}}=\frac{1}{8}\cdot\frac{abc}{abc}=\frac{1}{8}\cdot\frac{abc}{abc}$$

1888. Treba transformisati postupno levu stranu

$$\frac{1}{\sin^4 \alpha} + \frac{1}{\cos^4 \alpha} = \frac{\sin^4 \alpha + \cos^4 \alpha}{\sin^4 \alpha \cdot \cos^4 \alpha}$$

$$= \frac{(\sin^2 \alpha + \cos^2 \alpha) - \frac{1}{2}\sin^2 2\alpha}{\sin^4 \alpha \cdot \cos^4 \alpha} = \frac{1 - \frac{1}{2}\sin^2 2\alpha}{\sin^4 \alpha \cdot \cos^4 \alpha}$$

$$= \frac{8(1 + \cos^2 2\alpha)}{\sin^4 2\alpha} = \frac{8}{\sin^4 2\alpha} \ge 8.$$

1889. Data nejednačina ekvivalentna je nejednačini $\sin\left(x-\frac{\pi}{3}\right)<0$. Njena rešenja su $2k\pi+\frac{4\pi}{3}< x<\frac{7\pi}{3}+2k\pi \quad (k\in\mathbb{Z}).$

1890.
$$2k\pi - \frac{13\pi}{12} < x < \frac{5\pi}{12} + 2k\pi \quad (k \in \mathbb{Z}).$$

1891.
$$\frac{k\pi}{2} - \frac{\pi}{48} < x < \frac{5\pi}{48} + \frac{k\pi}{2}$$
 $(k \in \mathbb{Z}).$

1892. Data nejednačina ekvivalentna je nejednačini

$$\cos^2 2x(2\sin 4x - 1) > 0,$$

odakle sledi da je

$$\frac{k\pi}{2} + \frac{\pi}{24} < x < \frac{5\pi}{24} + \frac{k\pi}{2} \quad (k \in \mathbb{Z}).$$

1893. Data nejednačina ekvivalentna je nejednačini

$$\cos 2x(2\sin 3x - 1) < 0 \Longleftrightarrow (\cos 2x > 0 \land 2\sin 3x - 1 < 0)$$
$$\lor (\cos 2x < 0 \land 2\sin 3x - 1 > 0).$$

Ova disjunkcija je tačna ako i samo ako x pripada intervalima $\left[0,\frac{\pi}{18}\right),\left(\frac{\pi}{4},\frac{5\pi}{18}\right),\left(\frac{13\pi}{18},\frac{3\pi}{4}\right),\left(\frac{17\pi}{18},\frac{5\pi}{4}\right),\left(\frac{25\pi}{18},\frac{29\pi}{18}\right),\left(\frac{7\pi}{4},2\pi\right].$

1894. Data nejednačina ekvivalentna je nejednačini $\sin x \sin 3x \cos 4x > 0$.

Rešenja:
$$\left(0, \frac{\pi}{8}\right)$$
, $\left(\frac{\pi}{3}, \frac{3\pi}{8}\right)$, $\left(\frac{5\pi}{8}, \frac{2\pi}{3}\right)$, $\left(\frac{7\pi}{8}, \pi\right)$, $\left(\pi, \frac{9\pi}{8}\right)$, $\left(\frac{4\pi}{3}, \frac{11\pi}{8}\right)$, $\left(\frac{13\pi}{8}, \frac{5\pi}{3}\right)$, $\left(\frac{15\pi}{8}, 2\pi\right)$.

1895. Data nejednačina ekvivalentna je nejednačini

$$\left(\cos x + \frac{\sqrt{3}}{2}\right) \cdot \left(\cos x - \frac{1}{2}\right) \le 0 \implies 2k\pi + \frac{\pi}{3} \le x \le \frac{5\pi}{6} + 2k\pi,$$
$$2n\pi + \frac{7\pi}{6} \le x \le \frac{5\pi}{3} + 2n\pi \quad (n, k \in \mathbb{Z}).$$

1896. Ako se trinom rastavi na činioce, dobija se ekvivalentna nejednačina

$$\left(\sin x - \frac{\sqrt{3}}{2}\right) \cdot \left(\sin x - \frac{1}{2}\right) \ge 0,$$

$$2k\pi + \frac{\pi}{3} \le x \le \frac{2\pi}{3} + 2k\pi, \quad 2n\pi \le x \le \frac{\pi}{6} + 2n\pi,$$

$$2m\pi + \frac{5\pi}{6} \le x \le 2\pi(m+1), \quad (k, n, m \in \mathbb{Z}).$$

1897.
$$2k\pi + \frac{\pi}{4} < x < \frac{3\pi}{4} + 2k\pi, \ 2n\pi + \frac{5\pi}{6} < x < 2\pi(n+1) + \frac{\pi}{6} \quad (k, n \in \mathbb{Z}).$$

1898.
$$2k\pi + \frac{7\pi}{6} < x < 2k\pi + \frac{11\pi}{6} \quad (k \in \mathbb{Z}).$$

1899.
$$2k\pi + \frac{\pi}{4} < x < \frac{3\pi}{4} + 2k\pi, \ 2n\pi + \frac{7\pi}{6} < x < \frac{11\pi}{6} + 2n\pi \quad (n, k \in \mathbb{Z}).$$

1900.
$$\left(0, \frac{\pi}{6}\right), \left(\frac{\pi}{3}, \frac{5\pi}{6}\right), \left(\frac{5\pi}{3}, 2\pi\right).$$

1901.
$$0 < x < \frac{\pi}{6}, \frac{\pi}{4} < x < \frac{\pi}{2}, \frac{3\pi}{4} < x < \frac{7\pi}{6}, \frac{5\pi}{4} < x < \frac{3\pi}{2}, \frac{7\pi}{4} < x < 2\pi$$

1902.
$$k\pi + \frac{\pi}{6} < x < \frac{5\pi}{6} + k\pi \quad (k \in \mathbb{Z}).$$

1903.
$$\frac{\pi}{4} < x < \frac{\pi}{3}, \ \frac{2\pi}{3} < x < \frac{3\pi}{4}, \ \frac{5\pi}{4} < x < \frac{4\pi}{3}, \ \frac{5\pi}{3} < x < \frac{7\pi}{4}.$$

1904. Funkcija je pozitivna za svako x

1905.
$$y > 0$$
 za $-\frac{\pi}{6} < x < \frac{7\pi}{6}$; $y < 0$ za $\frac{7\pi}{6} < x < \frac{11\pi}{6}$.

1906.
$$y > 0$$
 za $n\pi \le x < \frac{\pi}{4} + n\pi$, $k\pi + \frac{\pi}{3} < x < \frac{\pi}{2} + k\pi$;

$$y<0 \text{ za } n\pi+\frac{\pi}{4}< x<\frac{\pi}{3}+n\pi \quad (k,n\in\mathbb{Z}).$$

1907. Primenom Ax^2+Bx+C je pozitivan za svako x, ako je tačna konjukcija $A>0 \wedge B^2-4AC<0$. Za dati trinom ova konjukcija ima oblik

$$\begin{split} \left(\sin\alpha + \frac{1}{2} > 0\right) \wedge \left(\left(2\sin\alpha - 3\right)^2 - 4\left(\sin\alpha + \frac{1}{2}\right) < 0\right) \\ \iff \left(\sin\alpha + \frac{1}{2} > 0\right) \wedge \left(4\left(\sin\alpha - \frac{7}{2}\right) \cdot \left(\sin\alpha - \frac{1}{2}\right) < 0\right) \\ \iff \left(\sin\alpha > -\frac{1}{2}\right) \wedge \left(\sin\alpha < \frac{7}{2} \vee \sin\alpha > \frac{1}{2}\right) \\ \iff \left(\frac{7\pi}{6} < \alpha < \frac{11\pi}{6}\right) \wedge \left(\frac{\pi}{6} < \alpha < \frac{5\pi}{6}\right) \iff \frac{\pi}{6} < \alpha < \frac{5\pi}{6}. \end{split}$$

1908. Ne postoji takva vrednost α .

1909. $\frac{\pi}{2}+2k\pi \leq x \leq \frac{2\pi}{3}+2k\pi \quad (k \in \mathbb{Z});$ znak jednakosti važi za

$$x = \frac{\pi}{2} + 2k\pi.$$

1910. $0 < x \le 1$.

4.6. Grafici trigonometrijskih funkcija

1911. Označimo traženi period sa $T^1.$ Tada je potrebno da jednakost (1) bude ispunjena za svako $\boldsymbol{x}.$

$$\sin 5(x+T) = \sin x,$$

odakle je

(2)
$$2\sin\frac{5T}{2}\cos\left(5x + \frac{5T}{2}\right) = 0.$$

U jednakosti (2) x je promenljiva, a T konstanta, pa je $\cos\left(5x + \frac{5T}{5}\right) \neq 0$. Radi toga, (2) je ispunjeno za sin $\frac{5T}{2} = 0$, odakle je $T = \frac{2\pi}{5}$.

1912. Analogno prethodnom zadatku, mora da važi

$$a\sin(b(x+T)+c) = a\sin(bx+c),$$

 $^{^{1}}T$ je najmanji pozitivan broj koji važi (1) (T je ($osnovni\ period$).

odakle je $2a\cos\frac{2bx+2c+bT}{2}\cdot\sin\frac{bT}{2}=0$. Imamo $\cos \frac{2bx + 2c + bT}{2} \neq 0$, $\sin \frac{bT}{2} = 0 \iff T = \frac{2\pi}{b}$

1913. Iz jednakosti $\cos m(x+T) = \cos mx$ sledi $-2\sin\frac{2mx+mT}{2}\sin\frac{mT}{2} = 0$. Pošto je $\sin\frac{2mx+mT}{2} \neq 0$, tada je $\sin\frac{mT}{2} = 0 \Longleftrightarrow T = \frac{2\pi}{m}$.

1914. Primedba. Period date funkcije jednak je najmanjim zajedničkim sadržiocima pojedinih sabiraka. Ovo pravilo važi samo za zbir ili razliku poje-

Funkcija $\cos\frac{3x}{2}$ ima period $\frac{4\pi}{3}$, a funkcija $\sin\frac{x}{3}$ ima period 6π . Najmanji zajednički sadržilac za brojeve $\frac{4\pi}{3}=2\cdot\frac{2\pi}{3}$ i $6\pi=9\cdot\frac{2\pi}{3}$ je broj $18\cdot\frac{2\pi}{3}=12\pi$, tj. $T = 12\pi$.

1915. a) Data funkcija može se transformisati na sledeći način:

$$\sin\frac{x}{2}\cos\frac{x}{2}\cos^2\frac{x}{2} = \frac{1}{2}\sin x \, \frac{1+\cos x}{2} = \frac{1}{4}\sin x + \frac{1}{8}\sin 2x.$$

Period funkcije $\frac{1}{4}\sin x$ je 2π , a funkcije $\frac{1}{8}\sin 2x$ je π . Najmanji zajednički za 2π i π je period date funkcije $T=2\pi$.

b) $T = 80\pi$.

1916. a) Data funkcija se transformiše u oblik $y = \frac{1}{2} - \frac{1}{2}\cos 6x - \cos 4x$, odakle je period $T = \pi$,

b)
$$T = \frac{\pi}{3}$$
.

1917. Stavimo $\alpha = a \sin \theta$, $\beta = a \cos \theta$. Tada je

$$y = a \sin \theta \cos px + a \cos \theta \sin px = a \sin(px + \theta),$$

pri čemu je $a = \sqrt{\alpha^2 + \beta^2}$. Amplituda je $a = \sqrt{\alpha^2 + \beta^2}$, a period $T = \frac{2\pi}{n}$.

1918.

$$y = (\cos^2 x)^2 + (\sin^2 x)^2 = \left(\frac{1 + \cos 2x}{2}\right)^2 + \left(\frac{1 - \cos 2x}{2}\right)^2$$
$$\frac{1}{2} + \frac{1}{2}\cos^2 2x = \frac{1}{2} + \frac{1}{2} \cdot \frac{1 + \cos 4x}{2} = \frac{3}{4} + \frac{1}{4}\cos 4x \Rightarrow T = \frac{\pi}{2}.$$
$$y = \cos^6 x + \sin^6 x = \frac{5}{8} + \frac{3}{8}\cos 4x \Rightarrow T = \frac{\pi}{2}.$$

1919. Lako se pokazuje da je period za sve tri funkcije $T=2\pi$. Grafik je prikazan na slici 39. Nule su: $x=0,\,x=\pi$ i $x=2\pi$.

Sl. 39.

Za $x=\frac{\pi}{2}$ imaju maksimum i to: $y_{\max}=1,\ y_{\max}=2$ i $y_{\max}=\frac{1}{2}.$ Za $x=\frac{3\pi}{2}$ imaju mimmum, i to: $y_{\min}=-1,\ y_{\min}=-2.\ y_{\min}=-\frac{1}{2}.$

Promene za sve tri funkcije u intervalu $(0, 2\pi)$ mogu se predstaviti tabelom:

1920. Funkcija $y=\cos x$ ima period $T=2\pi$, nule $x=\frac{\pi}{2}$ i $x=\frac{3\pi}{2}$, $y_{\max}=1$ za x=0 i $x=2\pi$, $y_{\min}=-1$ za $x=\pi$. Promene su date tabelom.

x	0		$\frac{\pi}{2}$		π		$\frac{3\pi}{2}$		2π	
y	1	\	0	\	-1	7	0	7	1	_

Funkcija $y=\cos\frac{1}{2}x$ ima period $T=4\pi$, nule $x=\pi$, $y_{\max}=1$ za x=0, $y_{\min}=-1$ za $x=2\pi$; promene su date tabelom

$$\begin{array}{c|ccccc} x & 0 & \pi & 2\pi \\ \hline y & 1 & \searrow & 0 & \searrow & -1 \end{array}$$

Funkcija $y=\cos 2x$ ima period $T=\pi,$ nule $x=\frac{\pi}{4},$ $x=\frac{3\pi}{4},$ $x=\frac{5\pi}{4}$ i $x=\frac{7\pi}{4};$ $y_{\max}=1.$

Promene su date tabelom i slikom 40.

Sl. 40.

1921. Definisana
$$\forall x$$
, period $T=\frac{2\pi}{3},\ y=0$ za $x=\frac{\pi}{6}+\frac{k\pi}{3},\ y_{\max}=1$ za $x=\frac{\pi}{3}+\frac{2k\pi}{3},\ y_{\min}=-1$ za $x=\frac{2\pi}{3}+\frac{2k\pi}{3}.$

Funkcija raste za:
$$\frac{2k\pi}{3} < x < \frac{\pi}{3} + \frac{2k\pi}{3}$$
.

Funkcija raste za:
$$\frac{2k\pi}{3} < x < \frac{\pi}{3} + \frac{2k\pi}{3}.$$
 Funkcija opada za
$$\frac{2k\pi}{3} + \frac{\pi}{3} < x < \frac{2\pi}{3} + \frac{2k\pi}{3}.$$

$$y > 0$$
 za $\frac{2k\pi}{3} + \frac{\pi}{6} < x < \frac{\pi}{2} + \frac{2k\pi}{3}$

$$y>0$$
 za $\frac{2k\pi}{3}+\frac{\pi}{6} < x < \frac{\pi}{2}+\frac{2k\pi}{3},$ $y<0$ za $\frac{2k\pi}{3}+\frac{\pi}{2} < x < \frac{5\pi}{6}+\frac{2k\pi}{3}$ $(k\in\mathbb{Z})$. Grafik je prikazan na slici 41.

Sl. 41.

1922. Definisana
$$\forall x$$
, period $T = \pi$, nule $x = \frac{\pi}{12} + \frac{k\pi}{2}$.

$$y_{\max} = \frac{3}{2}$$
 za $x = \frac{5\pi}{12} + k\pi$, $y_{\min} = -\frac{3}{2}$ za $x = \frac{11\pi}{12} + k\pi$.

Funkcija raste za $k\pi - \frac{\pi}{12} < x < \frac{5\pi}{12} + k\pi$.

Funkcija opada za $k\pi + \frac{5\pi}{12} < x < \frac{11\pi}{12} + k\pi$,

 $y>0 \text{ za } k\pi+\frac{\pi}{6} < x < \frac{2\pi}{3} + k\pi, \, y<0 \text{ za } k\pi+\frac{2\pi}{3} < x < \frac{13\pi}{12} + k\pi \ \ (k\in\mathbb{Z}).$

Grafik na osnovnom periodu prikazan je na slici 42.

Sl. 42.

1923. Definisana $\forall x$, period $T = \pi$, nule $x = -\frac{\pi}{8} + \frac{k\pi}{2}$

$$y_{\rm max}=3$$
 za $x=\frac{\pi}{8}+k\pi,\,y_{\rm min}=-3$ za $x=\frac{5\pi}{8}+k\pi.$

Funkcija raste za $k\pi + \frac{5\pi}{8} < x < \frac{9\pi}{8} + k\pi$.

Funkcija opada za $k\pi + \frac{\pi}{8} < x < \frac{5\pi}{8} + k\pi$.

$$y > 0$$
 za $k\pi + \frac{5\pi}{8} < x < \frac{9\pi}{8} + k\pi$.

y<0 za $k\pi+\frac{\pi}{8}< x<\frac{5\pi}{8}+k\pi \ \ (k\in\mathbb{Z}).$ Grafik je prikazan na slici 43.)

1924. Definisana $\forall x$, period $T = \pi$, nule $x = \frac{\pi}{8} + \frac{k\pi}{2}$,

$$y_{\text{max}} = 2 \text{ za } x = -\frac{\pi}{8} + k\pi, \ y_{\text{min}} = -2 \text{ za } x = \frac{3\pi}{8} + k\pi.$$

Funkcija raste za $k\pi + \frac{3\pi}{8} < x < \frac{7\pi}{8}$. Funkcija opada za $k\pi - \frac{\pi}{8} < x < \frac{3\pi}{8} + k\pi$.

$$y > 0$$
 za $k\pi + \frac{5\pi}{8} < x < \frac{9\pi}{8} + k\pi$.

y<0 za $k\pi+\frac{\pi}{8}< x<\frac{5\pi}{8}+k\pi \ \ (k\in\mathbb{Z}).$ Grafik je prikazan na slici 44.

 $x=\frac{8\pi}{3}+4k\pi,\,y_{\min}=-2\text{ za }x=\frac{2\pi}{3}+4k\pi.$

Funkcija raste za $4k\pi + \frac{2\pi}{3} < x < \frac{8\pi}{3} + 4k\pi$.

Funkcija opada za $4k\pi + \frac{8\pi}{3} < x < \frac{14\pi}{8} + 4k\pi$,

y > 0 za $4k\pi + \frac{5\pi}{3} < x < \frac{11\pi}{3} + 4k\pi$,

y<0 za $4k\pi-\frac{\pi}{3}< x<\frac{5\pi}{3}+4k\pi \ \ (k\in\mathbb{Z}).$ Grafik je prikazan na slici 45.

Sl. 45.

1926. Definisana $\forall x$, period $T=4\pi$, nule $x=\frac{3\pi}{2}+2k\pi$, $y_{\max}=\frac{4}{3}$ za $x=\frac{5\pi}{2}+4k\pi$, $y_{\min}=-\frac{4}{3}$ za $x=\frac{\pi}{2}+4k\pi$.

Funkcija raste za $4k\pi + \frac{\pi}{2} < x < \frac{5\pi}{2} + 4k\pi.$

Funkcija opada za $4k\pi + \frac{5\pi}{2} < x < \frac{9\pi}{2} + 4k\pi,$

$$y>0$$
 za $4k\pi+\frac{3\pi}{2}< x<\frac{7\pi}{2}+4k\pi,$

y<0 za $4k\pi-\frac{\pi}{2}< x<\frac{3\pi}{2}+4k\pi \ \ (k\in\mathbb{Z}).$ Grafik je prikazan na slici 46.

Sl. 46.

1927. Definisana $\forall x$, period $T=\pi$, nule $x=\pm\frac{\pi}{6}+k\pi$, $y_{\max}=\frac{3}{2}$ za $x=\frac{\pi}{2}+k\pi$, $y_{\min}=-\frac{1}{2}$ za $x=k\pi$.

Funkcija raste za $k\pi < x < \frac{\pi}{2} + k\pi$. Funkcija opada za $k\pi + \frac{\pi}{2} < x < \pi + k\pi$,

$$y > 0$$
 za $k\pi \frac{\pi}{6} < x < \frac{5\pi}{6} + k\pi$,

$$y < 0 \text{ za } k\pi - \frac{\pi}{6} < x < \frac{\pi}{6} + k\pi \ (k \in \mathbb{Z}).$$

Grafik je prikazan na slici 47.

Sl. 47.

1928. Definisana $\forall x$, period $T = \pi$, nema nule.

 $y_{\rm max}=\frac{3}{2}$ za $x=\frac{3\pi}{4}+k\pi,~y_{\rm min}=\frac{1}{2}$ za $x=\frac{\pi}{4}.$ Stalno je pozitivna, grafik je na slici 48.

1 1

1929. Datu funkciju možemo napisati u obliku $y = \frac{1}{2} - \frac{1}{2}\cos 2x$.

Definisana je $\forall x$, period $T=\pi$, nule $x=k\pi$. $y_{\max}=1$ za $x=\frac{\pi}{2}+k\pi$, $y_{\min}=0$ za $x=k\pi$. Grafik je prikazan na slici 49.

1930. Analogno prethodnom zadatku data funkcija postaje $y = \frac{1}{2} + \frac{1}{2}\cos 2x$.

1931. Definisana $\forall x$, period $T=\pi$, nule $x=-\frac{\pi}{12}+k\pi$, $x=\frac{\pi}{4}+k\pi$, $y_{\max}=3$ za $x=\frac{7\pi}{12}+k\pi$, $y_{\min}=-1$ za $x=\frac{\pi}{12}+k\pi$.

Grafik je na slici 50.

Sl. 50.

1932. Definisana $\forall x$, period $T=\pi$, nule $x=\frac{\pi}{2}+k\pi$, $x=\frac{5\pi}{6}+k\pi$, $y_{\max}=1 \text{ za } x=\frac{2\pi}{3}+k\pi, \ y_{\min}=-3 \text{ za } x=\frac{\pi}{6}+k\pi. \text{ Grafik je na slici 51.}$

1933. Imamo

$$y = \sin x - \sqrt{3}\cos x = 2\sin\left(x - \frac{\pi}{3}\right).$$

Funkcija se jednostavno ispituje.

1934. Data funkcija se transformiše u oblik

$$y = \sin\left(2x + \frac{\pi}{4}\right) + \sin\left(\frac{\pi}{2} - 2x + \frac{3\pi}{4}\right) = 2\sin\frac{\pi}{4}\cos\frac{4x - \frac{3\pi}{2}}{2},$$
$$y = \sqrt{2}\cos\left(2x - \frac{3\pi}{4}\right),$$

odakle se promene lako ispituju.

1935. Data funkcija se svodi na oblik $y = -2\sin\left(2x - \frac{3\pi}{4}\right)$.

1936. Data funkcija se transformiše u oblik $y = 2\sqrt{3}\sin\left(x + \frac{2\pi}{3}\right)$.

1937. Primenom identiteta $\sin\alpha\sin\beta=\frac{1}{2}(\cos(\alpha-\beta)-\cos(\alpha+\beta))$ data funkcija postaje

$$y = \frac{1}{4} - \frac{1}{2}\cos\left(2x + \frac{\pi}{3}\right).$$

Definisana $\forall x,$ period $T=\pi,$ nule $x=k\pi$ i $x=-\frac{\pi}{3}+k\pi,$

$$y_{\text{max}} = \frac{3}{4} \text{ za } x = \frac{\pi}{3} + k\pi, \ y_{\text{min}} = -\frac{1}{4} \text{ za } x = -\frac{\pi}{6} + k\pi.$$

Sl. 52.

Grafik je prikazan na slici 52.

1938.
$$\pi(2k+1) \le x \le \frac{3\pi}{2} + 2k\pi \ (k \in \mathbb{Z}).$$
 1939. $x \in [2,\pi) \cup (\pi,4].$

1940. Data funkcija se može napisati u obliku $y = \frac{1}{2} - \frac{3}{2}\cos 2x$.

Odatle zaključujemo da je antidomen: $-1 \leq y \leq 2.$

1941. Data funkcija se lako transformiše u oblik

$$y = \frac{4}{\sin^2 2\pi x} - 2,$$

odakle sledi da je antidomen funkcije $y\geq 2.$

1942. U drugoj funkciji su isključene tačke $\left(\frac{k\pi}{2},1\right)$ gde je $k=0,\pm 1,\pm 2,\ldots$

1943.
$$2k\pi - \pi < x < 2k\pi \ (k \in \mathbb{Z}).$$
 1944. $b = \frac{\pi}{2} + m\pi \ (m \in \mathbb{Z}).$

1945. Funkcija je definisana za svako x. Ako je $\cos^2 x < \frac{1}{2}$, tj. ako je

$$\frac{\pi}{4} + k\pi < x < \frac{3\pi}{4} + k\pi,$$

grafik date funkcije se poklapa sa grafikom funkcije $y = \frac{1}{2} - \cos 2x$. Ako je

$$\cos^2 x > \frac{1}{2}$$
, tj. $k\pi - \frac{\pi}{4} < x < \frac{\pi}{4} + k\pi$,

grafik date funkcije se poklapa sa grafikom $y=\frac{1}{2}.$ Grafik je prikazan na slici 53.

1946. Funkcija je definisana za $x \neq \frac{\pi}{2} + k\pi$ i transformiše se u oblik $y = \frac{\cos x \sin 2x}{\sqrt{2} |\cos x|}$. Grafik date funkcije se poklapa sa grafikom funkcije $y = \sqrt{2} \sin 2x$ za $\cos x > 0$, a sa grafikom $y = -\sqrt{2} \sin 2x$, za $\cos x < 0$, (slika 54).

Sl. 54.

Sl. 55.

Sl. 56.

1947. Funkcija je definisana za $x \neq \frac{k\pi}{2}$. Ako je $\sin 2x > 0$, $y = \frac{\sin^2 2x}{\sin 2x} = \sin 2x$; ako je $\sin^2 x < 0$, $y = \frac{\sin^2 2x}{-\sin 2x} = -\sin 2x$, (slika 55).

1948. Definisano za $x \neq k\pi$, funkcija ima asimptote za $x = k\pi$. Grafik date funkcije se lako dobija, ako se konstruiše grafik funkcije $y = \sin x$, a zatim se odrede recipročne vrednosti ordinata tačaka grafika funkcije $y = \sin x$ (slika 56).

1949. Data funkcija se može napisati u obliku

$$y = \frac{1}{\frac{1}{2}\sin\left(x - \frac{\pi}{3}\right)}.$$

Treba najpre konstruisati funkciju

$$y = \frac{1}{2}\sin\left(x - \frac{\pi}{3}\right),$$

a zatim uzeti recipročne vrednosti ordinata (slika 57).

1950. Analogno prethodnom zadatku. Konstruiše se najpre funkcija

$$y = \cos\left(2x + \frac{\pi}{3}\right),\,$$

zatim funkcija $y=\left|\cos\left(2x-\frac{\pi}{3}\right)\right|$ i na kraju data funkcija

$$y = \frac{1}{\left|\cos\left(2x - \frac{\pi}{3}\right)\right|} \quad \text{(slika 58)}.$$

1951. Po pretpostavci, za sve vrednosti $\boldsymbol{x},$ za koje je definisana funkcija imamo

$$\frac{\sin n(x+3\pi)}{\sin \frac{5(x+3\pi)}{n}} = \frac{\sin nx}{\sin \frac{5x}{n}},$$

odakle

(1)
$$(-1)^n \sin \frac{5x}{n} = \sin \frac{5x}{n} \cos \frac{15\pi}{n} + \cos \frac{15\pi}{n}.$$

Ova jednakost je identitet. Stavimo x=0i dobijamo $0=\sin\frac{15\pi}{n}.$ Tada iz (1) sledi

$$(2) \qquad \qquad (-1)^n \sin \frac{5x}{n} = \sin \frac{5x}{n} \cos \frac{15\pi}{n}.$$

Pošto je (2) tačno za svako x, to je $\cos \frac{15\pi}{n} = (-1)^n$.

Poslednja jednakost je tačna za sve cele brojeve koji se sadrže u 15. Dakle, tražene vrednosti za n su: $n=\pm 1,\ n=\pm 3,\ n=\pm 5,\ n=\pm 15.$

1952. Data funkcija može se napisati u obliku

$$y = -2(\sin x + 1)^2 + 3.$$

Odavde se dobija $y_{\min} = -5, y_{\max} = 3.$

1953. Data funkcija može se napisati u obliku

$$y = 2\left(\sin x + \frac{1}{2}\right)^3 - \frac{3}{2}.$$

Odavde se dobija za $x=\frac{\pi}{2},\,y_{\max}=3,$ a za $x=\frac{\pi}{6},\,y_{\min}=-\frac{3}{2}.$

1954. 2; −2.

1955. Data funkcija se transformiše u oblik

$$y = 2(\cos x + 1)^2$$

odakle se izvodi traženi zaključak.

1956. Ako se data funkcija napiše u obliku

$$y = \sin\left(2x + \frac{11\pi}{6}\right) - \sin\left(\frac{\pi}{2} - \left(2x - \frac{5\pi}{3}\right)\right),$$

razlika sinusa se transformiše u proizvod; funkcija postaje

$$y = 2\sin\left(2x - \frac{\pi}{6}\right).$$

1957. Analogno prethodnom zadatku data funkcija se transformiše u oblik

$$y = 2\cos\left(2x + \frac{\pi}{3}\right).$$

1958. Ako se transformiše proizvod sinusa i kosinusa u zbir, data funkcija se svodi na oblik

$$y = -2\sin\left(2x + \frac{\pi}{3}\right) + 1.$$

Za dalje ispitivanje funkcije videti zadatak 1931 i odgovarajuću sliku.

 ${\bf 1959.}\,$ Ako se proizvod kosinusa u datoj funkciji transformiše u zbir, dobija se funkcija

$$y = -2\cos\left(2x - \frac{\pi}{3}\right) - 1.$$

Za dalje ispitivanje funkcije, videti zadatak 1932 i odgovarajuću sliku.

1960. Ako se uvede $\sqrt{3}=\cot\frac{\pi}{6}$ i saberu prva dva sabirka u datoj funkciji, ona postaje $y=-2\sin\left(2x+\frac{\pi}{6}\right)-1.$

1961. Analogno prethodnom zadatku data funkcija se svodi na oblik

$$y = -2\sin\left(2x + \frac{\pi}{3}\right) + 1$$
, itd.

1962. Data funkcija se transformiše u oblik $y=2\cos\left(2x-\frac{\pi}{3}\right)+1,$ (slika 59).

Sl. 59.

Sl. 60.

1963.
$$y_{\max} \to +\infty, \ x \to \frac{k\pi}{2} \quad (k \in \mathbb{Z}).$$

$$y_{\min} = 4 \text{ za } x = \frac{\pi}{4} + \frac{k\pi}{2} \quad (k \in \mathbb{Z}).$$

1964. Koristeći se jednakošću $|a|=\left\{\begin{array}{cc} a & a\geq 0 \\ -1 & a<0 \end{array}\right.$ dobija se

 1° za x < 0, y = 0; 2° za $x \ge 0$, $|y| = 2\sin 2x$;

$$3^{\circ}$$
 za $x > 0 \land y < 0, y = -2\sin 2x$ (slika 60).

1965. Koristeći se jednakošću $\sqrt{x^2} = |x|$, dobija se

$$y = \sin(x - |x|) = \begin{cases} 0 & x \ge 0\\ \sin 2x & x < 0. \end{cases}$$

Grafik je prikazan na slici 61.

Sl. 61.

1966.
$$y_{\text{max}} = 5$$
 za $x = 0$; $y_{\text{min}} = \frac{11}{4}$ za $x = \frac{2\pi}{3}$.

1967.
$$a = b = 2 - \sqrt{2}$$
, $c = \sqrt{2} - 2$, $y_{\text{max}} = \sqrt{2}$ za $x = -\frac{\pi}{4}$.

$$y_{\min} = 4 - 3\sqrt{2}$$
 za $x = -\frac{5\pi}{4}$.

1968. $f_{\text{max}} = 0,5$ za $x = \frac{\pi}{2}$. **1969.** Grafik je prikazan na slici 62.

1970. Grafik je prikazan na slici 63.

1971. Grafik je prikazan na slici 64.

4.7. Sinusna i kosinusna teorema sa primenama

1972. Uga
o $\gamma=180^\circ-(\alpha+\beta)=180^\circ-78^\circ44'=101^\circ16',$ tj. $\gamma=101^\circ16'.$ Polazeći od sinusne teorem
 $\frac{a}{\sin\alpha}=\frac{c}{\sin\gamma}$ dobijamo da važe sledeće implikacije:

$$a = \frac{c \sin \alpha}{\sin \gamma} \, \Rightarrow \, a = \frac{32,54 \cdot \sin 43^{\circ} 28'}{\sin 101^{\circ} 16'} = 22,83 \text{ cm}.$$

Slično nalazimo

$$b = \frac{c \sin \beta}{\sin \gamma} \implies b = \frac{32,54 \cdot \sin 35^{\circ} 16'}{\sin 101^{\circ} 16'} = 19,16 \text{ cm}.$$

1973. Iz sinusne teoreme nalazimo da je

$$\sin\beta = \frac{b\sin\alpha}{a} = \frac{20,54\sin63^\circ47'}{23,42} \, \Rightarrow \, \sin\beta = 0,7577,$$

odakle je $\beta = 49^{\circ}16' \lor \beta = 130^{\circ}44'$.

Pošto je u drugom slučaju $\alpha+\beta>180^\circ,$ taj slučaj otpada. Dalje je

$$\gamma = 180^{\circ} - (\alpha + \beta) = 66^{\circ}57',$$

a zatim iz sinusne teoreme nalazimo $c=24,94~\mathrm{cm}.$

1974. Iz sinusne teoreme nalazimo da je

$$\sin \gamma = \frac{c \sin \alpha}{a} = 0,8936 \Rightarrow \gamma = 63^{\circ}20'.$$

Dalje nalazimo da je $\beta=73^{\circ}40'$ i b=26,44 cm.

1975. Iz sinusne teoreme imamo $\sin \alpha = \frac{a \sin \gamma}{c}$, odakle sledi:

$$\sin \alpha = 0,6698 \Rightarrow \alpha_1 = 42^{\circ}3 \lor \alpha_2 = 180^{\circ} - 42^{\circ}3' = 137^{\circ}57'.$$

Dalje nalazimo β_1 , = 114°31′ \vee β_2 = 18°37′; b_1 = 43, 47 cm, b^2 = 15, 25 cm.

1976. Iz kosinusne teoreme nalazimo $c^2 = a^2 + b^2 - 2ab\cos\gamma$, odakle je

$$c = \sqrt{a^2 + b^2 - 2ab\cos\gamma} \Rightarrow c = \sqrt{365 - 364\cos67^{\circ}23'} = 15.$$

Iz obrasca

$$\cos \alpha = \frac{a^2 + c^2 - a^2}{2bc}$$

dobijamo $\cos\alpha=0,6,$ pa je $\alpha=53^\circ8',$ a iz obrasca $|<\cos\beta=\frac{a^2+c^2-b^2}{2ac}$ sledi $\cos\beta=\frac{33}{65},$ pa je $\beta=59^\circ29'.$

1977.
$$\cos \alpha = \frac{b^2 + c^2 - a^2}{2bc} = 0,12500 \Rightarrow \alpha = 82^{\circ}49;$$

$$\cos \beta = \frac{a^2 + c^2 - b^2}{2ac} = 0,75000 \Rightarrow \beta = 41^{\circ}25';$$

$$\cos \gamma = \frac{a^2 + b^2 - c^2}{2ab} = 0,56250 \Rightarrow \gamma = 55^{\circ}46'.$$

1978. a = 28, 51 cm, b = 25, 56 cm.

1979. $b_1 = 89,53$ cm, $b_2 = 23,13$ cm; $\alpha_1 = 63^{\circ}8' \lor \alpha_2 = 116^{\circ}52'$.

1980. a = 17,84 cm, b = 21,57 cm i c = 22,25 cm.

1981.
$$\alpha = 82^{\circ}49', \ \beta = 41^{\circ}25'.$$
 1982. $b = 5,08 \text{ cm}, \ \gamma = 78^{\circ}25'.$

1983. $\alpha = 73^{\circ}31', \ \beta = 27^{\circ}6'.$ **1984.** $c = 4,58 \text{ cm}, \ \alpha = 49^{\circ}6'.$

1985. $c = 2\sqrt{3}, b = 3 + \sqrt{3}.$ **1986.** $a = 4\sqrt{3}, b = 6\sqrt{2}, c = 2(3 + \sqrt{3}).$ **1987.** Pošto je

$$\cos 105^{\circ} = \cos(60^{\circ} + 45^{\circ}) = \frac{1}{4}(\sqrt{2} - \sqrt{6}),$$

imamo

$$b^2 = 12 + 6\sqrt{3} = (3 + \sqrt{3})^2 \iff b = 3 + \sqrt{3}.$$

1988. BC = 21 cm, $R = 7\sqrt{3}$ cm. **1989.** a = 8 cm, b = 5 cm i c = 7 cm. **1990.** a = 8 cm, b = 3 cm. **1991.** $\frac{7}{\sqrt{3}}$ cm.

1992. Za svaki trougao važi kosinusna teorema, pa je

$$a^{2} = b^{2} + c^{2} - 2bc\cos\alpha \wedge b^{2} = a^{2} + c^{2} - 2ac\cos\beta$$
.

Kako je $a\cos\beta=b\cos\alpha$, imamo

$$a^{2} = b^{2} + c^{2} - 2bc \cos \alpha \wedge b^{2} = a^{2} + c^{2} - 2bc \cos \alpha$$

$$\iff a^{2} - b^{2} = b^{2} - a^{2} \iff 2a^{2} = 2b^{2} \iff a = b.$$

Dakle, trougao za koji važi data jednakost je jednakokraki.

1993. Iz konjunkcije

$$c^2 = a^2 + b^2 - 2ab\cos\gamma \wedge \frac{a-b}{a} = 1 - 2\cos\gamma$$

sledi a = c.

1994. Jednakost $\frac{\sin \alpha}{\sin \beta} = \frac{\cos \alpha}{\cos \beta}$ se svodi na tg $\alpha = \text{tg}\beta \Rightarrow \alpha = \beta$.

1995. a = 6 cm, b = 4 cm. **1996.** a = 2, $b = 1 + \sqrt{3}$, $\beta = 75^{\circ}$, $\gamma = 60^{\circ}$.

1997.
$$\alpha = 45^{\circ}, \ \beta = 60^{\circ}, \ \gamma = 75^{\circ}, \ R = 2.$$

1998. Iz formule $\cos \gamma = \pm \sqrt{1 - \sin^2 \gamma}$ dobijamo $\cos \gamma = \pm \frac{1}{7}$. Za $\cos \gamma = \frac{1}{7}$ primenom kosinusne teoreme nalazimo jedno rešenje, a = 5, b = 7 i c = 8.

1999. Stranice su 3, 5 i 7.

 ${\bf 2000.}\,$ a) Ako uporedimo datu jednakost sa kosinus
nom teoremom, nalazimo da je

$$a^{2} = b^{2} + c^{2} + bc\sqrt{3} \wedge a^{2} = b^{2} + c^{2} - 2bc\cos\alpha,$$

$$2\cos\alpha = -\sqrt{3} \Rightarrow \cos\alpha = -\frac{\sqrt{3}}{2} \Rightarrow \alpha = 150^{\circ}.$$

Sličnim postupkom dobijamo: b) $\alpha = 60^{\circ}$; c) $\alpha = 45^{\circ}$; d) $\alpha = 30^{\circ}$.

2001. U horizontalnoj ravni izaberemo dve tačke A i B, čije je rastojanje AB=a, tako da se iz tačaka A i B vidi vrh dimnjaka (slika 65). U tačkama A i B izmere se uglovi $\sphericalangle SAO=\alpha$, $\sphericalangle SBO=\beta$ pod kojima se vidi vrh dimnjaka. Tada iz trougla ABS primenom sinusne teoreme nalazimo

$$AS = \frac{a\sin\beta}{\sin(\beta - \alpha)}.$$

Zatim iz pravouglog trouglaAOSnalazimo visinu dimnjaka

$$OS = \frac{a \sin \alpha \sin \beta}{\sin(\alpha - \beta)}.$$

2002. Treba izabrati dve tačke M i N i izmeriti njihovo rastojanje MN=a, zatim izmeriti uglove $\triangleleft BMA=\alpha, \triangleleft AMN=\beta$ i $\triangleleft ANB=\gamma$ (slika 66). Tada iz trougla MNB primenom sinusne teoreme dobijamo

$$NB = \frac{a\sin(\alpha + \beta)}{\sin(\alpha + \beta + \gamma)}.$$

Slično, iz trougla AMN je $NA=\frac{a\sin\beta}{\sin(\beta+\gamma)}$, dok primenom kosinusne teoreme na trougao ABN nalazimo $AB=\sqrt{NA^2+NB^2-2NA\cdot NB\cos\delta}$.

2003. P=715,87 N (primeniti kosinusnu teoremu $650^2=P^2+P^2-2P^2\cos 54^\circ).$

2004. $R = 30, 2 \text{ N}, \beta = 14^{\circ}48'.$ **2005.** $P = 5, 4 \text{ cm}^2.$

2006. Iz kosinusne teoreme sledi

$$AB^2 = 8^2 + 5^2 - 2 \cdot 8 \cdot 5 \cos 60^\circ = 64 + 25 - 40 = 49 \implies AB = 7.$$

Dakle, dužina tunela između mesta A i B iznosi 7 km.

2007. Iz trougla ABC (slika 67), primenom sinusne teoreme imamo:

$$\frac{AC}{\sin 22^{\circ}} = \frac{25}{\sin 10^{\circ}} \Rightarrow AC = 53,93 \text{ m}.$$

Iz pravouglog trougla EAC nalazimo

$$EC = 53,93 \sin 32^{\circ} \approx 28,58 \text{ m}.$$

Visina drveta je približno h=28,58+1,80=30,38m, a širina reke na ovom mestu $FG\approx 45,74$ m.

2008. Primenom kosinusne teoreme dobija se $F_1 = 5$ N, $F_2 = 8$ N.

2009. Ako su a i b stranice, d_1 i d_2 dijagonale, α i $(180^{\circ} - \alpha)$ dva uzastopna ugla paralelograma, primenom kosinusne teoreme dobijamo:

(1)
$$d_1^2 = a^2 + b^2 - 2ab\cos\alpha,$$

(2)
$$d_2^2 = a^2 + b^2 - 2ab\cos(180^\circ - \alpha).$$

Zbir (1) i (2) daje $d_1^2 + d_2^2 = 2a^2 + 2b^2$.

2010. Ako se primene poznati obrasci za površinu trougla dobijamo $\frac{ch_c}{2} = \frac{abc}{4R}$. Odavde sledi da je ab=12. Iz sistema $a-b=1 \land ab=12$ dobija se da je $a=4,\,b=3$.

Ako se iskoristi sinusna teorema $\frac{a}{\sin \alpha} = 2R \Rightarrow \alpha = 30^{\circ}$.

2011.
$$a=3,\ b=6,\ c=3\sqrt{3},\ \alpha=30^\circ,\ \beta=90^\circ,\ R=3,\ P=\frac{9\sqrt{3}}{2}.$$

2012. Prema sinusnoj teoremi data jednakost postaje $2\cos\beta = \frac{a}{c}$

Zamenom u kosinusnoj teoremi

$$b^{2} = a^{2} + c^{2} - 2ac\cos\beta, \quad b^{2} = c^{2} \iff b = c.$$

2013. Primeniti sinusnu teoremu i obrazac za površinu trougla $P = \frac{1}{2}ab\sin\gamma$.

2014. Pošto su naspramni uglovi tetivnog četvorougla suplementni, njegova površina može se izračunati kao zbir površina dva trougla, tj.

$$P = \frac{1}{2}ab\sin\alpha + \frac{1}{2}cd\sin(180^{\circ} - \alpha) = \frac{1}{2}(ab + cd)\sin\alpha.$$

2015. Primenom kosinusne teoreme imamo

(1)
$$a^{2} = \left(\frac{d_{1}}{2}\right)^{2} + \left(\frac{d_{2}}{2}\right)^{2} - 2\frac{d_{1}}{2} \cdot \frac{d_{2}}{2} \cos(180^{\circ} - \alpha),$$

(2)
$$b^{2} = \left(\frac{d_{1}}{2}\right)^{2} + \left(\frac{d_{2}}{2}\right)^{2} - 2\frac{d_{1}}{2} \cdot \frac{d_{2}}{2}\cos\alpha,$$

Razlika (1) i (2) daje

$$a^2 - b^2 = d_1 d_2 \cos \alpha.$$

S druge strane, površina paralelograma je

$$(4) P = \frac{1}{2}d_1d_2\sin\alpha.$$

Iz (3) i (4) dobijamo
$$P = \frac{1}{2}(a^2 - b^2) \operatorname{tg} \alpha$$
.

2016. Ako se iskoristi kosinusna teorema $\cos\alpha = \frac{b^2 + c^2 - a^2}{2bc}$ i da je

$$\operatorname{tg} \frac{\alpha}{2} = \frac{\sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2}} = \sqrt{\frac{2\sin^2\frac{\alpha}{2}}{2\cos^2\frac{\alpha}{2}}} = \sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}$$
$$= \sqrt{\frac{(a+c-b)\cdot(a+b-c)}{(a+b+c)\cdot(a+c-b)}} = \sqrt{\frac{(s-b)\cdot(s-c)}{s\cdot(s-a)}},$$

tvrđenje je dokazano, gde je $2s=a+b+c.\,$ Analogno se dokazuju i druga dva obrasca.

2017. Imamo tg
$$\frac{\alpha}{2} = \sqrt{\frac{151 \cdot 113}{586 \cdot 322}} \Rightarrow \alpha = 33^{\circ}28'$$
.

Analogno se dobija $\beta = 65^{\circ}20'$ i $\gamma = 81^{\circ}12'$.

2018. a) Neka je $AM=t_a$ težišna duž konstruisana iz temena A (slika 68). Tačka N je centralno simetrična tački A sa centrom simetrije u M. Iz trougla ABN primenom kosinusne teoreme imamo

$$(2t_a)^2 = c^2 + b^2 - 2bc\cos(180^\circ - \alpha),$$

tj.

(1)
$$(2t_a)^2 = c^2 + b^2 + 2bc\cos\alpha.$$

Ako primenimo kosinusnu teoremu na trouga
oABCimamo

(2)
$$2bc\cos\alpha = b^2 + c^2 - a^2.$$

Iz (1) i (2) sledi obrazac $\,t_a^{\,2}=\frac{1}{2}\left(b^2-c^2-\frac{a^2}{2}\right)$. Analogno se dokazuju druga dva obrasca.

b)
$$t_a = \sqrt{7}$$
, $t_b = 3, 5$, $t_c = 0, 5\sqrt{37}$.

2019. a) Neka je $AD=s_a$ dužina simetrale unutrašnjeg ugla (slika \ref{slika}). Kako je površina trougla ABC

$$(1) P_{ABC} = P_{ABD} + P_{ADC},$$

gde je $P_{ABC} = \frac{1}{2}bc\sin\alpha$, $P_{ABD} = cs_a\sin\frac{\alpha}{2}$, $P_{ABC} = \frac{1}{2}bs_a\sin\frac{\alpha}{2}$.

Zamenom u (1) dobija se $s_a = \frac{2bc\cos\frac{\alpha}{2}}{b+c}$.

Koristeći jednakosti $b = \frac{a \sin \beta}{\sin \alpha}$, $c = \frac{a \sin \gamma}{2}$, koje slede iz sinusne teoreme,

kao i daljim transformacijama, dobijamo $s_a = \frac{a \sin \beta \sin \gamma}{\sin \alpha \cos \frac{\beta - \gamma}{2}}$.

Analogno se dobijaju i druga dva obrasca.

b)
$$\alpha = 45^{\circ}$$
, $a = 5(\sqrt{6} - \sqrt{2})$, $c = 5(3 - \sqrt{3})$, $s_a = \frac{10\sqrt{3}}{\sqrt{4 + \sqrt{2} + \sqrt{6}}}$

2020. Primeniti obrasce iz prethodnog zadatka. $s_a = 32,75 \text{ m}.$

2021.
$$a = 8, b = 8\sqrt{3}, c = 16, \beta = 60^{\circ}, \gamma = 90^{\circ}.$$

2022.
$$a = 5, b = 3, d = 2(\sqrt{3} - 1), c = \sqrt{2}(\sqrt{3} - 1).$$

2023.
$$a = 4$$
, $b = c = d = 2$. **2024.** $BD = \sqrt{3}$, $CD = 2$.

2025. Ako je p=1, trougao je jednakostraničan. Ako je $p \neq 1$ (p>0), onda je stranica a srednja po veličini. Primenom kosinusne teoreme

$$\cos \alpha = \frac{b^2 + c^2 - a^2}{2bc},$$

zamena iz datih izraza za $a,\,b,\,c$ dobijamo $\,\cos\alpha = \frac{1}{2}\,\Rightarrow\,\alpha = 60^{\circ}.$

2026. Iz jednakosti

$$(b+c+a) \cdot (b+c-a) = 3bc \iff a^2 = b^2 + c^2 - bc,$$

upoređivanjem sa $a^2 = b^2 + c^2 - 2b \cos \alpha$ (kosinusna teorema) dobija se

$$\cos \alpha = \frac{1}{2} \implies \alpha = 60^{\circ}.$$

2027. Iz date jednakosti, sinusne i kosinusne teoreme izlazi da je

$$\cos \beta = \frac{\sqrt{2}}{2} \implies \beta = 45^{\circ}.$$

2028. 6, 10, 14.

2029. $\alpha=45^\circ,\,\beta=75^\circ,\,\gamma=60^\circ,\,O=3+\sqrt{3}+\sqrt{6}.$ Zadatak ima još jedno rešenje, $\gamma=120^\circ.$

2030. Pošto je $\cos 75^{\circ} = \cos(45^{\circ} + 30^{\circ}) = \frac{\sqrt{2}}{4}(\sqrt{3} - 1)$, primenom kosinusne teoreme

$$c^{2} = a^{2} + b^{2} - 2ab\cos\gamma \Rightarrow \sqrt{2} + \sqrt{6},$$

$$\alpha = 45^{\circ}, \quad \beta = 60^{\circ}, \quad P = 3 + \sqrt{3}, \quad O = 3\sqrt{2} + 2\sqrt{3} + \sqrt{6}.$$

2031. Iz obrasca $P = \frac{1}{2}bc\sin\alpha$, zamenom datih vrednosti dobija se bc = 12. Iz sistema

$$bc = 12 \land b + c = 7 \implies (b_1 = 3, c_1 = 4) \lor (b_2 = 4, c_2 = 3),$$

a iz kosinusne teoreme sledi da je $a = \sqrt{13}$.

2032. $(b_1 = 5, c_1 = 4) \lor (b_2 = 4, c_2 = 5), P = 5\sqrt{3}.$

2033. $a_1 = 4$, $b_1 = 3$, $\alpha_1 = 73^{\circ}54'$, $\beta_1 = 46^{\circ}6'$, $P_1 = 3\sqrt{3}$, $Q_2 = 3$, $b_2 = 4$, itd.

2034.
$$a_1 = 5$$
, $c_1 = 3$, $b_1 = \sqrt{34 - 15\sqrt{3}}$; $a_2 = 3$, $c_2 = 5$, $b_2 = \sqrt{34 - 15\sqrt{3}}$.

2035.
$$\gamma = 60^{\circ} R = \sqrt{6} - \sqrt{2}$$
.

2036. Za uglove na stranici BC, iz proporcije $\varphi_1:\varphi_2=17:19,$ dobija se $\varphi_1=85^\circ,\ \varphi_2=95^\circ.$ Zatim, imamo $\alpha=86^\circ,\ \gamma=52^\circ.$ Stranice su a=9,423, b=6,321, c=7,444.

2037. Kako je b=3c, eliminacijom α iz

jednačine
$$P = \frac{bc}{a} \sin \alpha$$
 i

$$a^{2}+b^{2}+c^{2}-2bc\cos\alpha$$
 $(\sin^{2}\alpha+\cos^{2}\alpha=1),$

dobijamo bikvadratnu jednačinu

$$64c^4 - 20a^2c^2 + a^4 + 16P^2 = 0.$$

Zadatak je moguć za $P \leq \frac{3a^2}{16}$. Ima dva rešenja

$$c = \sqrt{\frac{5a^2 \pm \sqrt{9a^4 - 256P^2}}{32}}.$$

Zadatak je moguć za $P \leq \frac{3a^2}{16}$. Ima dva rešenja $c = \sqrt{\frac{5a^2 \pm \sqrt{9a^4 - 256P^2}}{32}}$.

2038. Neka je $AB=DC=a,\ BC=AD=b,\ AC=e,\ BD=f,\ a\ O$ presek dijagonala, i ugao $AOB=\varphi$ (slika ??). Primenom kosinusne teoreme na trouglove ABO i BCO dobija se:

(1)
$$a^2 = \frac{e^2}{4} + \frac{f^2}{4} - \frac{ef}{2}\cos\varphi,$$

(2)
$$b^2 = \frac{e^2}{4} + \frac{f^2}{4} + \frac{ef}{2}\cos\varphi,$$

jer je $\cos(180^{\circ} - \varphi) = -\cos\varphi$. Oduzimanjem (1) i (2) imamo

$$a^2 - b^2 = -ef\cos\varphi < ef,$$

jer je $\cos \varphi < 1$, za svako $0 < \varphi < \pi$.

2039. Visina koja odgovara stranici Cu trouglu ABC jednaka je $\frac{c\sqrt{3}}{2},$ pa je površina trougla ABC jednaka

$$(1) P = \frac{bc\sqrt{3}}{4}.$$

Osim toga po kosinusnoj teoremi je

$$a^2 = b^2 + c^2 - 2bc\cos(\triangleleft A) = b^2 + c^2 - bc$$
, ili
$$a^2 - b^2 - c^2 + 2bc = bc$$
.

Zamenom u (1) dobija se

$$P = \frac{\sqrt{3}}{4}(a^2 - (b - c)^2),$$

čime je dokaz završen.

2040. 30° i 150°. 75° i 15°.

V GLAVA

5. RAZNI ZADACI

2042. a) Teme T parabole ima koordinate T ($\cos \alpha$, $\sin^2 \alpha - \sin \alpha$). Iz pretpostavke proizlazi

$$\sin^2 \alpha - \sin \alpha = 0 \iff \alpha = 0 \lor \alpha = \frac{\pi}{2}$$

za
$$\alpha = 0 \Longleftrightarrow y = x^2 - 2x + 1$$
, za $\alpha = \frac{\pi}{2} \Longleftrightarrow y = x^2$;

b)
$$\alpha = 0$$
, $\alpha = \frac{\pi}{6}$;

c) ako eliminišemo α iz sistema

$$x_1 + x_2 = 2\cos\alpha \wedge x_1 \cdot x_1 = 1 - \sin\alpha$$

dobijamo traženu vezu $(x_1 + x_2)^2 + 4x_1x_2(x_1x_2 - 2) = 0$.

2043. -2 < m < 0.

2045. Trinom Ax^2+Bx+C pozitivan je za svako x ako je tačna konjunkcija $A>0 \wedge B^2-4AC<0$. Za dati trinom ova konjunkcija ima oblik

$$\begin{split} \left(\sin\alpha + \frac{1}{2} > 0\right) \wedge \left((2\sin\alpha - 3)^2 - 4\left(\sin\alpha + \frac{1}{2}\right) \right) &< 0 \\ \iff \left(\sin\alpha + \frac{1}{2} > 0\right) \wedge 4\left(\sin\alpha - \frac{7}{2}\right) \cdot \left(\sin\alpha - \frac{1}{2}\right) &< 0 \\ \iff \left(\sin\alpha > -\frac{1}{2}\right) \wedge \left(\sin\alpha < \frac{7}{2} \vee \sin\alpha > \frac{1}{2}\right) \\ \iff \left(\left(0 < \alpha < \frac{7}{6}\right) \vee \left(\frac{11\pi}{6} < \alpha < 2\pi\right) \right) \wedge \left(\frac{\pi}{6} < \alpha < \frac{5}{6}\pi\right) \\ \iff \frac{\pi}{6} &< \alpha < \frac{5}{6}\pi. \end{split}$$

2047. a) Teme datog skupa funkcija u funkciji parametra k je $T(k,k^2-1)$. Eliminacijom k iz X=k i $Y=k^2-1$ dobijamo $Y=X^2-1$, pa je traženo geometrijsko mesto minimuma parabola $Y=X^2-1$.

b) Za $k=-1,\,k=1$ funkcije datog skupa imaju dvostruke nule, a za -1< k<1 dve realne različite nule.

5. Razni zadaci 389

2048. Kako je $y^2=1-x^2$, funkcija čiju minimalnu vrednost treba odrediti je $f(x)=x^6+(1-x^2)^3-3x^4-3x^2+1, \quad \text{tj.} \quad f(x)=3(x^2)^2-3x^2+1.$

Njena minimalna vrednost je za:

$$x^2 = -\frac{b}{2a} = \frac{3}{6} = \frac{1}{3} \Rightarrow x = \frac{\sqrt{2}}{2}$$

pa je

$$f_{\min} = 3\left(\frac{\sqrt{2}}{2}\right)^4 - 3\left(\frac{\sqrt{2}}{2}\right)^2 + 1 = \frac{1}{4}.$$

2049. Data jednačina ekvivalentna je jednačini

$$x^2 + (y - 10)x + y^2 - y = 0$$

odakle je

$$x = \frac{10 - y \pm \sqrt{-3y^2 - 16y + 100}}{2}.$$

Kako je $x,y\in[0,9]$, diskriminanta je pozitivna za y=0,1,2,3, a x je iz intervala [0,9]. Za y=3 je $x=1\lor x=6$, a za y=1 je x=9. Traženi dvocifreni brojevi su 13, 63 i 91.

2053.

$$(1+i)^m = (1-i)^m \iff \left(\frac{1+i}{1-i}\right)^m = 1 \iff \left(\frac{(1+i)^2}{1^2 - i^2}\right)^m = 1$$
$$\iff \left(\frac{1+2i+i^2}{2}\right)^m = 1 \iff i^m = 1.$$

Poslednja jednakost važi za $m = 4k \quad (k \in \mathbb{Z}).$

2055. Diskriminanta jednačine

$$(1) D = p^2 - 4q > 0$$

po pretpostavci. Diskriminante D_1 i D_2 jednačine (1) svode se na oblike $D_1 = D + 4a^2$ i $D_2 = 3D + (2a - p)^2$, pa iz D > 0 sledi $D_1 > 0$ i $D_2 > 0$.

2057. a)
$$2k\pi - \frac{2\pi}{3} \le \alpha \le \frac{2\pi}{3} + 2k\pi$$
 $(k \in \mathbb{Z});$ b) $\alpha = \frac{\pi}{4} + k\pi$ $(k \in \mathbb{Z});$

c)
$$y = x^2 - 2x + 1 \lor y = -2x^2 - 2x - \frac{1}{2}$$
.

2058.
$$V = \frac{1}{24}c^3 \sin 2\alpha \operatorname{tg} \varphi$$
. **2059.** $p > 2$.

2060.
$$-\frac{5}{4} < m < -1 \lor m > 9$$
. **2061.** $-9 \le m \le -1 \lor 0 \le m \le 1$.

390 5. Razni zadaci

2064. a) Ako se y eliminiše iz datih funkcija, dobija se jednačina:

$$a(2^{x})^{2} - (a - b)2^{x} - b = 0.$$

Ova jednačina ima dvostruko rešenje za $D=(a+b)^2=0 \Rightarrow a=-b$, pa je tražena tačka A(0,0).

b) B(0, a+b) i $C\left(\log_2\left(-\frac{b}{a}\right), 0\right)$, apscisa tačke C je realna ako je ab < 0.

2065. M(2,3).

2066.

$$(x,y) = (9k^2 + 19k + 10, -9k^2 - 10k),$$

$$(9k^2 + k, -9k^2 - 10k), \quad (9k^2 - k, -9k^2 + 10k),$$

$$(9k^2 - 19k + 10, -9k^2 + 10k) \quad (k \in \mathbb{Z})$$

2067. a) 1 < x < 2, 3 < x < 4; b) 2 < x < 3, 4 < x < 5.

2068. a)
$$x^2 - 1$$
; $\sqrt{2} - 2$; b) $x^2 + 1$; $\sqrt{2} + 2$.

2069. Leva strana date jednakosti se transformiše, uz uslov $z^2 = -1 - z$, na sledeći način:

$$(az^{2} + bz)(bz^{2} + az) = z^{2}(az + b)(bz + a)$$

$$= z^{2}(abz^{2} + a^{2}z + b^{2}z + ab)$$

$$= (-1 - z)(ab(-1 - z) + a^{2}z + b^{2}z + ab)$$

$$= (-1 - z)(a^{2}z + b^{2}z - abz)$$

$$= (-z - z^{2})(a^{2} + b^{2} - ab) = a^{2} + b^{2} - ab.$$

2070. $x_1 + x_2 + x_1x_2 = 11$.

2071. Smenom $\sqrt{x-1}=t$ (t>0) data funkcija se transformiše na oblik y=|t|+|t-5|. Funkcija je konstanta y=5 za $0 \le t \le 5$, pa je $1 \le x \le 26$.

2072. Neka su dati kompleksni brojevi

$$z_1 = x_1 + iy_1$$
 i $z_2 = x_2 - iy_2$ $(y_1 \neq 0, y_2 \neq 0)$.

Iz uslova $z_1 = z_2$ imamo ekvivalenciju

$$z_1 = z_2 \iff x_1 + iy_1 = x_2 - iy_2 \iff x_1 = x_2 \land y_1 = -y_2.$$

S obzirom na poslednje jednakosti, imamo

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2) = 2x_1 + i \cdot 0 = 2x_1,$$

$$z_1 \cdot z_2 = x_1 \cdot x_2 - y_1 \cdot y_2 + i(x_1y_2 + y_1x_2) = x_1^2 + y_1^2 + i \cdot 0 = x_1^2 + y_1^2.$$

5. Razni zadaci 391

2073. Neka je $z=x+iy,\;(x,y\in\mathbb{R})$ a $\bar{z}=x-iy.$ Tada je dati sistem ekvivalentan sistemu

$$x+iy+x-iy=4 \wedge \sqrt{x^2+y^2}=1$$

$$\Longleftrightarrow x=2 \wedge x^2+y^2=1 \Longleftrightarrow x=2 \wedge y^2=-3,$$

što je nemoguće.

2074.
$$z_1 = -\frac{1}{2}(1+i), z_2 = \frac{1}{2}(3-5i).$$

2075. Razlika rešenja je $x_1 - x_2 = 2\sqrt{-m^2 + 6m - 5}$. Razlika rešenja ima maksimalnu vrednost ako i samo ako funkcija $f(m) = -m^2 + 6m - 5$ ima maksimalnu vrednost. Ova funkcija ima maksimalnu vrednost za m = 3.

2076.
$$x \in (-\infty, -3) \cup \left(-2, -\frac{2}{3}\right) \cup (1, +\infty)$$
. **2077.** $0 < a < 4$.

2078. Kako je

$$\sqrt{3+\sqrt{8}} = \sqrt{3+2\sqrt{2}} = \sqrt{(1+\sqrt{2})^2} = 1+\sqrt{2},$$
$$a\sqrt{3-\sqrt{8}} = \sqrt{(1-\sqrt{2})^2} = |1-\sqrt{2}| = \sqrt{2}-1,$$

pa je $z_1=2+2i$. Pošto je $a=0,333\ldots=\frac{1}{3},$ onda je $\log_{\frac{1}{3}}\frac{1}{27}=3$ pa je $z_2=3+3i$.

Proporcija

$$z_2: z_1 = 3(1+i): (2(1+i)) = 3:2$$

je tačna.

2079. Smenom $1-1986x^2=z$ data jednačina svodi se na sistem

$$x = 1 - 1986z^2 \land z = 1 - 1986x^2.$$

Ako drugu jednačinu ovog sistema oduzmemo od prve, dobijamo

$$x - z = 1986(x^2 - z^2) \iff (x - z) \cdot (1 - 1986 - (x + z)) = 0$$

 $\iff x - z = 0 \lor 1986 \cdot (x + z) = 1.$

Jednačine ovog sistema sa jednačinom $1-1986x^2=z$ daju jednačine

$$1986x^2 + x + 1 = 0,$$

(2)
$$1986x^2 - x - \frac{1985}{1986} = 0.$$

392 5. Razni zadaci

Rešenja jednačine (1) su $x_{1,2} = \frac{-1 \pm \sqrt{7945}}{3972}$.

Rešenja jednačine (2) su $x_{1,2} = \frac{1 \pm \sqrt{7941}}{3972}$

2080. Leva strana nejednakosti je oblika a^b , gde je

$$a = |x + y| \ge 0$$
, $b = -x + y + 1$.

Nejednakost je ispunjena ako je:

$$\begin{array}{ll} 1^{\circ} \ a>1 \wedge b \leq 0, \quad 2^{\circ} \ a \leq 1 \wedge b \geq 0, \\ 3^{\circ} \ a=0 \wedge b=0. \end{array}$$

Na osnovu toga proizlazi:

$$1^{\circ} |x+y| > 1 \wedge -x + y + 1 \le 0,$$

$$2^{\circ} |x+y| \le 1 \land -x + y + 1 > 0,$$

$$3^{\circ} x + y = 0 \land -x + y + 1 = 0.$$

Skup tačaka čije koordinate zadovoljavaju uslove 1° , 2° , 3° , tj. polaznu nejednakost, jeste šrafirana oblast na slici 71.

2081.
$$\frac{5n-3}{6}$$
. **2082.** $x \in [-8,0] \cup [1,2]$.

2083. Ako pomnožimo datu jednačinu sa 2 važe ekvivalencije

$$2 \cdot 4^{x} + 2 \cdot 9^{x} + 2 \cdot 25^{x} = 2 \cdot 6^{x} + 2 \cdot 10^{x} + 2 \cdot 15^{x}$$

$$\iff 4^{x} - 2(2 \cdot 3)^{x} + 9^{x} + 4^{x} - 2(2 \cdot 5)^{x} + 25^{x} + 9^{x} - 2(3 \cdot 5)^{x} + 25^{x} = 0$$

$$\iff (2^{x} - 3^{x})^{2} + (2^{x} - 5^{x})^{2} + (3^{x} - 5^{x})^{2} = 0 \implies x = 0.$$

2084. Neka je $n_1 \leq n_2 \leq \cdots \leq n_k$. Tada je

$$n_1 n_k = n_2 n_{k-1} = \dots = n_k n_1 = n,$$

pa je $n_1^2 \cdot n_2^2 \cdots n_k^2 = n_k$. Logaritmovanjem za osnovu k dobijamo $2(\log_k n_1 + \log_k n_2 + \cdots + \log_k n_k) = k \cdot \log_k n.$

2085.
$$P(x) = x^3 + 2x^2 - 3x + 1$$
.

2086. Data jednakost se svodi na ekvivalentne jednakosti na sledeći način

$$\log \frac{a-b}{2} = \log \sqrt{\frac{a \cdot b}{2}} \iff \frac{a-b}{2} = \sqrt{\frac{a \cdot b}{2}}$$
$$\iff a^2 + b^2 = 4ab \iff \frac{a}{b} + \frac{b}{a} = 4.$$

5. Razni zadaci 393

Kako je t
g
$$\alpha=\frac{a}{b}$$
i ctg $\alpha=\frac{b}{a},$ tada je
$$\operatorname{tg}\alpha+\operatorname{ctg}\alpha=4\Longleftrightarrow\sin2\alpha=\frac{1}{2}\,\Rightarrow\,\alpha=15^{\circ},\quad\text{a}\quad\beta=75^{\circ}.$$

2087.
$$x = 0, 5.$$
 2088. $x = -3.$ **2089.** $\sqrt{2^{\sqrt{5}-1}}.$

2090. Da bi data jednačina imala realna rešenja

$$(-1 \le \sin x \le 1, \quad -1 \le \cos x \le 1),$$

zaključujemo da je:

$$(\sin x = 0 \land (\cos x = 1 \lor \cos x = -1)) \quad \text{ili}$$
$$((\sin x = 1 \lor \sin x = -1) \land (\cos x = 0)).$$

Obe konjunkcije su tačne ako je $x = \frac{k\pi}{2}, k \in \mathbb{Z}.$

2091.
$$x_k = \frac{\pi}{2} + 2k\pi, \ x_n = n\pi, \ n, k \in \mathbb{Z}.$$

2092. Data jednačina ekvivalentna je jednačini

$$\frac{\sqrt{2}}{2}\cos x + \frac{\sqrt{2}}{2}\sin x = \cos 99x \iff \cos\left(x - \frac{\pi}{4}\right) = \cos 99x$$
$$\iff \sin\left(50x - \frac{\pi}{8}\right) \cdot \sin\left(\sin 49x + \frac{\pi}{8}\right) = 0$$
$$\iff x_k = \frac{1}{50}\left(\frac{\pi}{8} + k\pi\right) \lor x_n = \frac{1}{49}\left(-\frac{\pi}{8} + n\pi\right), \quad n, k \in \mathbb{Z}.$$

2093. Data jednačina ekvivalentna je jednačini

$$\sin 1999x - \sin\left(x - \frac{\pi}{3}\right) = 0$$

$$\iff 2\sin\left(1000x - \frac{\pi}{6}\right) \cdot \cos\left(999x + \frac{\pi}{6}\right) = 0$$

$$\iff \sin\left(1000x - \frac{\pi}{6}\right) = 0 \lor \cos\left(999x + \frac{\pi}{6}\right) = 0$$

$$\iff x_k = \frac{1}{1000} \left(\frac{\pi}{6} + k\pi\right) \lor x_n = \frac{1}{999} \left(\frac{\pi}{3} + n\pi\right), \quad k, n \in \mathbb{Z}.$$

2094. Smenom $2^x=t\ (t>0)$ data jednačina se svodi na:

$$\frac{\cos t}{\sin t} = \frac{\sin t}{\cos t} + 2\frac{\sin 2t}{\cos 2t} \Longleftrightarrow \cos^2 2t - \sin^2 2t = 0 \land (\sin t, \cos t, \cos 2t \neq 0).$$

Rešenje date jednačine je: $x_k = \log_2\left(\frac{\pi}{8} + \frac{k\pi}{4}\right), \ k = 0, 1, 2, \dots$

394 5. Razni zadaci

2095. Data jednačina ekvivalentna je sistemu

$$\log_2 = \frac{\cos 2x + \cos \frac{x}{2}}{\sin x + \cos \frac{x}{2}} = 0 \wedge \left(\cos 2x + \cos \frac{x}{2} > 0 \wedge \sin x + \cos \frac{x}{2} > 0\right).$$

Rešenja date jednačine su:

$$x_k = \frac{\pi}{6} + 4k\pi, \quad x_n = \frac{5\pi}{6} + 2n\pi, \quad n, k \in \mathbb{Z}.$$

2096. Kako je za uglove u I i II kvadrantu sinus pozitivan, biće

$$\begin{array}{ll} 2k\pi < \pi(x+y) < (2k+1)\pi \\ \Longleftrightarrow x+y > 2k \wedge x + y < 2k+1, \quad k \in \mathbb{Z}. \\ \text{Za } k = 0 \text{ dobijamo } y > -x \wedge y < 1-x. \\ \text{U Dekartovoj ravni to je osenčena oblast} \\ \text{(slika 72) između pravih } y = -x \text{ i } y = 1-x. \text{ Za } k = 1 \text{ osenčena oblast između pravih } \\ \text{čije su jednačine } y = 2-x \text{ i } y = 3-x, \text{ itd.} \end{array}$$

2098. Data jednakost se transformiše u identične jednakosti

$$2\cos\frac{\alpha+\beta}{2}\cdot\cos\frac{\alpha-\beta}{2} - 2\cos^2\frac{\alpha+\beta}{2} - \frac{1}{2} = 0$$

$$\cos^2\frac{\alpha+\beta}{2} - \cos\frac{\alpha-\beta}{2}\cdot\cos\frac{\alpha+\beta}{2} + \frac{1}{4} = 0$$

$$\iff \left(\cos\frac{\alpha+\beta}{2} - \frac{1}{2}\cos\frac{\alpha-\beta}{2}\right)^2 + \frac{1}{4} - \frac{1}{4}\cos^2\frac{\alpha-\beta}{2} = 0$$

$$\iff \left(\cos\frac{\alpha+\beta}{2} - \frac{1}{2}\cos\frac{\alpha-\beta}{2}\right)^2 + \frac{1}{4}\sin^2\frac{\alpha-\beta}{2} = 0.$$

Suma kvadrata u skupu realnih brojeva jednaka je nuli ako je svaki sabirak jednak nuli. Odatle je

$$\sin\frac{\alpha-\beta}{2} = 0 \wedge \cos\frac{\alpha+\beta}{2} - \frac{1}{2}\cos\frac{\alpha-\beta}{2} = 0.$$

Iz prve jednakosti sledi da je $\alpha = \beta$, koja sa drugom daje jednakost

$$\cos \alpha = \frac{1}{2} \Rightarrow \alpha = \frac{\pi}{3}.$$

Kako je $\alpha = \beta = \frac{\pi}{3}$ tada je i $\gamma = \frac{\pi}{3}$.

5. Razni zadaci 395

2099. Kako je

$$\begin{split} \frac{\sin 1}{\cos(k-1)\cdot\cos k} &= \frac{\sin(k-(k-1))}{\cos(k-1)\cdot\cos k} \\ &= \frac{\sin k\cdot\cos(k-1)-\cos k\cdot\sin(k-1)}{\cos(k-1)\cdot\cos k} = \operatorname{tg} k - \operatorname{tg}(k-1). \end{split}$$

Ako u ovoj jednakosti stavimo $k=1,2,\ldots,k,$ zatim saberemo dobijene jednakosti, dobijamo traženu sumu S,

$$S = (tg 1 - tg 0) + (tg 2 - tg 1) + \cdots + (tg n - tg (n - 1)) = tg n.$$

2105.
$$x^2 + 4x + 5 = 0$$
. **2106.** $z_1 = 2 - i$, $z_2 = 1 + 3i$.

2107.
$$z = -1 + 2\sqrt{2}(1+i)$$
. **2108.** a) $z = -0, 5(1+i)$; b) $z = \pm (1-i)$.

2109. a) Data funkcija se svodi na oblik:

1° za
$$x < -3$$
, $y = x^2 + 10x + 24$;

$$2^{\circ}$$
 za $-3 \le x < 3, y = -x;$

 3° za $x \geq 3$, $y = -x^2 + 10x - 24$. Grafik date funkcije je prikazan na slici 73.

Funkcija je definisana na skupu $D=\{x|x\in\mathbb{R}\}$, antidomen $D=\{y|y\in\mathbb{R}\}$. Nule funkcije su $x=\pm 6,\ x=\pm 4$. Ekstremne vrednosti: $y_{\max}=3$ za x=-3 i $y_{\max}=1$ za x=5. $y_{\min}=-1$ za x=-5 i $y_{\min}=-3$ za x=3, funkcija je neparna, raste za $x\in(-5,-3)\cup(3,5)$, opada za $x\in(-\infty,-5)\cup(-3,3)\cup(5,+\infty)$, pozitivna je za $x\in(-\infty,-6)\cup(-4,0)\cup(4,6)$, negativna je za $x\in(-6,-4)\cup(0,4)\cup(6,+\infty)$.

b) Analogno a) dobija se

$$1^{\circ}$$
 za $x < -3$, $y = -x^2 - 10x - 24$;

$$2^{\circ}$$
 za $-3 \le x < 3, y = x;$

 3° za $x \geq 3$, $y = x^2 - 10x + 25$, grafik date funkcije je na slici 74.

396 5. Razni zadaci

2110. a) Data funkcija se svodi na oblik:

1° za
$$x<-2,\ y=-x^2-6x-8;$$
 2° za $-2\leq x<2,\ y=-x^2+4;$ 3° za $x\geq 2,\ y=-x^2+6x-8.$ Grafik na slici 75.

b) za $x<-2,\;y=x^2+6x+8,$ a za $-2\leq x<2,\;y=x^2-4,$ a za $x\geq 2,\;y=x^2-6x+8.$ Grafik na slici 76.

2111. Neka su $A,\,B,\,C$ tačke iz kojih se vrhVtornja vidi pod uglovima $\alpha,\,\beta,\,\gamma,$ a P podnožje tornja. Iz pravouglih trouglova $APV,\,BPV$ i CPV visina tornja xje: $x=100\cdot\operatorname{tg}\alpha,\,x=200\cdot\operatorname{tg}\beta$ i $x=300\cdot\operatorname{tg}\gamma.$

Iz pretpostavke $\alpha + \beta + \gamma = 90^{\circ}$, dobijamo:

$$\operatorname{tg}(\alpha + \beta) = \operatorname{tg}(90^{\circ} - \gamma) \Longleftrightarrow \frac{\operatorname{tg}\alpha + \operatorname{tg}\beta}{1 - \operatorname{tg}\alpha \cdot \operatorname{tg}\beta} = \frac{1}{\operatorname{tg}\gamma}$$
$$\Longleftrightarrow \frac{\frac{x}{100} + \frac{x}{200}}{1 - \frac{x^2}{20000}} = \frac{300}{x} \Longleftrightarrow x = 100 \text{ m}.$$

Visina tornja je 100 m.

2112. Primenom definicije logaritama slede ekvivalencije:

$$-\log_3\log_3\sqrt[3]{\sqrt[3]{\cdots\sqrt[3]{3}}} = x \iff \log_3\sqrt[3]{\sqrt[3]{\cdots\sqrt[3]{3}}} = 3^{-x}$$
$$\iff \sqrt[3]{\sqrt[3]{\cdots\sqrt[3]{3}}} = 3^{3^{-x}} \iff 3\left(\frac{1}{3}\right)^n = 3\left(\frac{1}{3}\right)^x \iff n = x.$$

2113. Primenom poznatih identiteta sleduje:

$$\begin{split} \frac{1}{\log_{abc} N} &= \log_N abc = \log_N a + \log_N b + \log_N c \\ &= \frac{1}{\log_a N} + \frac{1}{\log_b N} + \frac{1}{\log_c N} \\ &= \frac{\log_b N \cdot \log_c N + \log_a N \cdot \log_c N + \log_a N \cdot \log_b N}{\log_a N \cdot \log_b N \cdot \log_c N} \end{split}$$

Odavde izlazi zadati identitet.

2114. Kako je $a^2 = c^2 - b^2$, odavde logaritmovanjem slede ekvivalencije: $2\log_a a = \log_b((c-b)\cdot(c+b)) \Longleftrightarrow 2 = \log_a(c-b) + \log_a(c+b)$ $\Longleftrightarrow 2 = \frac{1}{\log_{c-b} a} + \frac{1}{\log_{c+b} a} \Longleftrightarrow \log_{c-b} a + \log_{c+b} a = 2\log_{c-b} a \cdot \log_{c+b} a.$

2115. a) Leva strana se transformiše na sledeći način:

$$\log\left(1+\frac{1}{1}\right) + 2\log\left(1+\frac{1}{2}\right) + 3\log\left(1+\frac{1}{3}\right) + \dots + n\log\left(1+\frac{1}{n}\right)$$

$$= \log 2 + 2\log 3 - 2\log 2 + 3\log 4 - 3\log 3 + \dots + n\log(n+1) - n\log n$$

$$= n\log(1+n) - \log 2 - \log 3 - \log 4 - \dots - \log n$$

$$= n\log(1+n) + \log(1+n) - (\log 2 + \log 3 + \log 4 + \dots + \log n + \log(1+n))$$

$$= (1+n) \cdot \log(1+n) - \log(1+n)!.$$

b) Leva strana se svodi na desnu na sledeći način:

$$\left(N^{\frac{1}{\log_2 N} + \frac{1}{\log_4 N} + \frac{1}{\log_8 N} + \dots + \frac{1}{\log_2 n} N}\right)^{\frac{2}{n+1}} \\
= \left(N^{\log_N 2 + \log_N 4 + \log_N 8 + \dots + \log_N 2^n}\right)^{\frac{2}{n+1}} \\
= \left(N^{\log_N (2 \cdot 4 \cdot 8 \cdot \dots 2^n)}\right)^{\frac{2}{n+1}} = (2 \cdot 4 \cdot 8 \cdot 2^n)^{\frac{2}{n+1}} = (2^1 \cdot 2^2 \cdot 2^3 \cdot \dots 2^n)^{\frac{2}{n+1}} \\
= (2^{1+2+3+\dots+n})^{\frac{2}{n+1}} = 2^n.$$

2116. Pretpostavimo suprotno. Koreni jednačine su racionalni u obliku $\frac{a}{b}$ (b>1), gde je (a,b)=1, tj. razlomak $\frac{a}{b}$ je skraćen. Tada imamo:

$$\frac{a^2}{b^2} + p\frac{a}{b} + q = 0,$$

odakle izlazi

$$\frac{a^2}{b} + ap + bq = 0 \quad \text{ili} \quad \frac{a^2}{b} = -(ap + bq).$$

Dakle, dobili smo netačnu jednakost, jer je leva strana razlomak, a desna ceo broj.

2117. Po pretpostavci imamo: $a=2p+1,\,b=2n+1,\,c=2q+1.$ Diskriminanta kvadratne jednačine

(1)
$$D = (2n+1)^2 - 4(2p+1)(2q+1)$$
$$= 8\left[\frac{n(n+1)}{2} - 2pq - p - q - 1\right] + 5.$$

Izraz u uglastim zagradama je ceo broj, jer je n(n+1) deljiv sa 2. Očigledno da je D neparan broj, kao zbir parnog i neparnog broja.

Ako pretpostavimo da su koreni date jednačine racionalni, potrebno je da diskriminanta bude potpun kvadrat. Kako je diskriminanta neparan broj, to njen koren mora biti neparan broj. Iz (1) zaključujemo da pri deljenju diskriminante sa 8 dobijamo ostatak 5. Iz toga izlazi dokaz da je naša pretpostavka, da su koreni racionalni, netačna. Zaista, kvadrat neparnog broja ima oblik:

$$(2n+1)^2 = 4n^2 + 4n + 1 = 4n(n+1) + 1 = 4 \cdot 2m + 1 = 8m + 1,$$

tj. ostatak je 1 a ne 5. Znači tvrđenje zadatka je tačno.

2118. Data nejednakost je zadovoljena za sve vrednosti korena koje su realne, jer ako je $x_1>x_2$, onda je $\left(\frac{x_1}{x_2}\right)^2>1$, a ako su koreni jednaki, onda je leva strana nejednačine jednaka 2. Koreni su realni ako je $D\geq 0$, odnosno $k^2-4\geq 0$, odakle se dobija

$$(1) |k| > 2.$$

Ako uzmemo u obzir i kompleksne korene, s obzirom da je

$$\left(\frac{x_1}{x_2}\right)^2 + \left(\frac{x_2}{x_1}\right)^2$$

realno, iz zadate nejednakosti sleduje $x_1^4 + x_2^4 > 1$, pošto je $x_1 \cdot x_2 = 1$, pa se gornji izraz može napisati u obliku

$$(x_1^2 + x_2^2) - 2x_1^2 x_2^2 > 1$$
 ili $(k^2 - 2)^2 - 2 > 1$.

Ova nejednačina je zadovoljena za

(2)
$$k^2 < 2 - \sqrt{3}$$
 i $k^2 < 2 + \sqrt{3}$.

Prema tome, ako usvojimo da je k realan parametar, iz (1) i (2) dobija se da je data nejednakost zadovoljena za vrednost k koje ispunjava uslove

a) $0 < |k| < \sqrt{2 - \sqrt{3}}$ ili $\sqrt{2 + \sqrt{3}} < k < 2$, kada su koreni kompleksni.

b) |k| > 2, kada su koreni realni.

2119. a)
$$p > \sqrt[4]{2 + \sqrt{3}}$$
, $p < \sqrt[4]{2 - \sqrt{3}}$; b) $p = \pm \sqrt[8]{2}$, $y_{\min} = 2(\sqrt{2} - 2)$.

2120.
$$a=0; \ a=\frac{2}{9} \ {\rm i} \ a=-\frac{3}{4}.$$
 2121. $D=4r^2.$ **2122.** $D=1.$

2123.
$$D = \left(n - \frac{q}{n}\right)^2$$
.

2124. $x_1 = 2m - 1$, $x_2 = 1$, $x_1^2 + x_2^2 > x_1 x_2 \Rightarrow (x_1 + x_2)^2 - 3x_1 x_2 > 0$. Odavde izlazi $4m^2 - 6m + 3 > 0$ za svako m.

2125. Sve razlomke na levoj strani identiteta napisati kao razliku od dva razlomka:

$$\frac{1}{x(x+1)} = \frac{1}{x} - \frac{1}{x+1}, \quad \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2},$$
$$\frac{1}{(x+2)(x+3)} = \frac{1}{x+2} - \frac{1}{x+3}, \quad \text{itd.}$$

2127. Zbiru prva dva razlomka dodati treći razlomak, dobijenom zbiru četvrti, itd.

2129. Ako se iskoristi identitet (1), dobija se ekvivalentna jednačina

$$\frac{6}{\ln x(\ln x + 6)} = \frac{2}{9} \Rightarrow x = e^3, \ x = e^{-9}.$$

2130. Ako se iskoristi identitet (1), data jednačina ekvivalentna je sa

$$\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x+10}} = \frac{5}{12} \implies x = 4.$$

2131. Primenom identiteta (2) dobija se ekvivalentna jednačina

$$x^{n+1} = n^{n+1} \implies x = n.$$

2132. Primeniti identitet (2), n = 14.

2133. Ako se primeni identitet (2) dobija se ekvivalentna jednačina

$$(\ln x)^{n+1} = (\ln x)^6.$$

Data jednačina za rešenja ima svako $x \in \mathbb{R}^+$ i n = 5.

2134. Primeniti identitet (3). x = 0.

2135. Primeniti identitet (3). x = 1.

2136.
$$x = -22, x = 2.$$
 2137. $x = -5.$ **2138.** $x = e^4.$

2139.
$$x = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}.$$
 2140. $x = 1.$

2141.
$$x_k = (-1)^k \frac{\pi}{6} + k\pi, x_n = (-1)^{n+1} \frac{\pi}{6} + n\pi, k, n \in \mathbb{Z}.$$

2142.
$$x_k = \frac{3\pi}{4} + k\pi, x_n = \arctan 5 + n\pi, k, n \in \mathbb{Z}.$$

2143.
$$x = e^2, x = \frac{1}{e}$$
.

2144.
$$x_k = \pm \frac{3\pi}{4} + k\pi, \ x_m = \pm \frac{\pi}{3} + n\pi, \ k, n \in \mathbb{Z}.$$

2145.
$$x_k = \arctan 10 + k\pi, x_n = \arctan (-110) + n\pi, k, n \in \mathbb{Z}.$$

2146. Ne postoje. Brojevimi ndaju isti ostatak pri deljenju sa 9, a 1995 nije deljiv sa 9.

2147. Označimo sa BC stranicu pravouga
onika naspramnu sa rekom. Ako je BC=x, onda je $AB=CD=50-\frac{x}{2}$. Površina pravouga
onika je

$$P(x) = x \cdot \left(50 - \frac{x}{2}\right) = \frac{1}{2}x(100 - x).$$

Maksimum se dostiže za x=50. Dakle $AB=25~\mathrm{m}=CD,\,SC=50~\mathrm{m}.$

2148. Trougao ABE je sličan trouglu ADB, pa je $\frac{AB}{AE} = \frac{AD}{AB}$. Znači $AD = \frac{c^2}{m}$.

2149. Prva jednačina je ekvivalentna sa $(x-2)^2 + (y+1)^2 = 25$, a druga x-y=2, gde je $z=x+iy, \ x,y\in\mathbb{R}$. Zamenom iz druge jednačine u prvu imamo $y^2+(y+1)^2=25$. Rešenja su (5,3) i (-2,-4), odnosno $z_1=5+3i$, $z_2=-2-4i$.

2150.

$$a^{3}b + ab^{3} = ab(a^{2} + b^{2}) \le \frac{(a^{2} + b^{2})^{2}}{2} = \frac{a^{4} + 2a^{2}b^{2} + b^{4}}{2} \le a^{4} + b^{4}.$$

Sabirajući nejednakosti

$$a^{3}b + ab^{3} \le a^{4} + b^{4}$$
, $a^{3}c + ac^{3} \le a^{4} + c^{4}$, $b^{3}c + bc^{3} \le b^{4} + c^{4}$

dobijamo traženu nejednakost.

 ${\bf 2151.} \ \ (a)$ Leva i desna strana su pozitivne. Kvadriranjem dobijamo traženi identitet.

(b) Primenom dokazanog pod (a) imamo

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k+\sqrt{k^2-1}}} = \sqrt{2} \cdot \sum_{k=1}^{n} \frac{1}{\sqrt{k+1}+\sqrt{k-1}}$$
$$= \frac{\sqrt{2}}{2} \sum_{k=1}^{n} \left(\sqrt{k+1} - \sqrt{k-1}\right) = \frac{\sqrt{2}}{2} \left(\sqrt{n+1} + \sqrt{n} - 1\right).$$

Ovaj izraz je jednak $\frac{\sqrt{2}}{2}(\sqrt{101}+9)$ za n=100.

2152. $r=\frac{a+b-c}{2},\, c=2R={\rm const.}$ Dakle r je maksimalno kada zbir a+b dostigne maksimalnu vrednost.

$$a + b = \sqrt{(a+b)^2} \le \sqrt{2(a^2 + b^2)} = c\sqrt{2}.$$

Jednakost se dostiže za $a = b = R\sqrt{2}$.

2153. Nejednakost

$$f(a) = a^2 + a(x^3 + 2x^2 - 4) - (2x^3 + x^2 - 6x + 5) > 0,$$

važi bar za jedno $a \in [-1,2]$ ako je f(-1) > 0 ili f(2) > 0. Poslednji uslov je ekvivalentan sa

$$(x+2) \cdot (x-1) \cdot x < 0$$
 ili $(x+3) \cdot (x-1) > 0$.

Rezultat: $x \in (-\infty, -2) \cup (0, 1) \cup (1, +\infty)$.

2154. n=3k+2 i $n=37\ell+22 \Rightarrow 3k=36\ell+21+\ell-1 \Rightarrow \ell=3m+1.$ n=37(3m+1)+22=111m+59. Ostatak je 59.

2155. Neka su AB, BC i CD tri uzastopne stranice tog n-tougla i O centar kruga i $\Delta AOB \cong \Delta COB$ (AO = BO = CO = DO) i

$$\triangleleft ABO = \triangleleft CBA - \triangleleft CBO = \triangleleft BCD - \triangleleft BCO.$$

Znači AB=CD, tj. svake dve stranice koje imaju zajedničku susednu su jednake. Kako je n neparan broj imamo da su sve stranice jednake.

2156. (1) Neka je m težina najtežeg od tegova, a ℓ broj tegova težine 1. Neka su težine ostalih $n-\ell$ tegova $x_1,x_2,\ldots,x_{n-\ell}$. Imamo

$$2n = m + \ell + x_1 + \dots + x_{n-1} \ge m + \ell + 2(n - \ell) = 2n + m - \ell,$$

tj. $\ell \geq m$.

(2) Lako se vidi da je najveća moguća razlika u težini leve i desne strane m.

(3) Posmatrajmo terazije nakon postavljanja na tasove svih tegova težine veće od 1. Neka je s težina na levom, a d težina na desnom tasu, r=|s-d|, u=s+d. Pošto je $u+\ell=2n$ to su u i ℓ , a time i r i ℓ iste parnosti, i $0 \le r \le m \le \ell$.

(4) Nakon stavljanja r tegova težine 1 na lakšu stranu terazija, terazije će se uravnotežiti. Preostalih $\ell-r$ (paran broj) tegova težine 1 raspoređenih na propisani način neće poremetiti ravnotežu.

2157. Data jednačina se može prikazati u obliku

$$(7-1)\cdot (7^{x-1}+7^{x-2}+\cdots+7+1)=6\cdot 2^{y-1}.$$

Sledi

$$7^{x-1} + 7^{x-2} + \dots + 7 + 1 = 2^{y-1}$$
.

Ako je y=1, onda je x=1 jedno rešenje. Neka je y>1. Tada je x parno i

$$(7+1) \cdot (7^{x-2} + 7^{x-4} + \dots + 7^2 + 1) = 2^{y-1},$$

tj.

$$7^{x-2} + 7^{x-4} + \dots + 7^2 + 1 = 2^{y-4}$$
.

Za y=4dobijamo x=2još jedno rešenje. Za $y>4,\,x$ mora biti deljivo sa 4. Tada

$$(7^2+1)\cdot(7^{x-4}+7^{x-8}+\cdots+7^2+1)=2^{y-4}.$$

Leva strana je deljiva sa 5, a desna nije. Rešenja su $x=1,\ y=1$ i $x=2,\ y=4.$

2158. Neka prava CE seče AB u R. Dokažimo $\Delta CRB \sim \Delta BRE$. Zaista, $\triangleleft BCR = \triangleleft BDC = \triangleleft EBR$ i $\triangleleft BRE$ je zajednički. Iz sličnosti imamo $\frac{BR}{ER} = \frac{RC}{RB} \Rightarrow BR^2 = RE \cdot RC$. Iz potencije tačke R na kružnicu K imamo $RA^2 = RE \cdot RC$. Sledi $BR^2 = RA^2$, tj. R je sredina duži AB.

$$\Delta CRB \sim \Delta DCE(\triangleleft CRB = \triangleleft DCE; \quad \triangleleft RCB = \triangleleft CDE),$$

pa je

$$\frac{BR}{EC} = \frac{BC}{ED} \iff \frac{BR}{BC} = \frac{EC}{ED} \iff \frac{EC}{ED} = \frac{1}{2}.$$

2159. Traženo geometrijsko mesto tačaka je prečnik kruga K_2 koji sadrži M. Neka se krug K_1 u jednom momentu poklopio sa krugom K_1' , a tačka M sa

 $M' \in K_1'$. Iz odnosa poluprečnika krugova K_1 i K_2 sledi da je $2 \triangleleft NO_1 M = \triangleleft NO'M'$. Ako je M'' tačka preseka prave MO_1 i kruga K_1' , iz odnosa centralnog i periferijskog ugla u K_1' , imamo M'' = M'. Obrnuto, za proizvoljnu tačku M'' na prečniku MO_1 kruga K_2 , lako se konstruiše bar jedan krug K_1' , u koji kad pređe K_1 , tačka M pređe u M''. Ako je $M = O_1$, rešenje je prečnik ortogonalan na O_1O . (slika 77.)

Sl. 77.

LITERATURA

- K. Alendorfer, K. Okli: *Principi matematike*, drugo izdanje. Beograd, 1966.
- Н. П. Антонов, М. Я. Выгодский, В. В. Никитин, А. И. Санкин: Сборник задач по элементарной математике. Москва, 1964.
- Brkić Gjumbir Nikolić: *Najzanimljiviji zadaci s matematičkih natjecanja*, Zagreb, 1969.
- V. T. Bogoslavov: Zbirka zadataka iz matematike za IV razred usmerenog obrazovanja, Beograd, 1985.
- V. T. BOGOSLAVOV: Zbirka rešenih zadataka iz algebre za I razred gimnazije, Beograd, 1970.
- V. T. BOGOSLAVOV: Zbirka rešenih zadataka iz algebre za II razred gimnazije, Beograd, 1976.
- V. T. BOGOSLAVOV: Zbirka rešenih zadataka iz matematike za III razred gimnazije, Beograd, 1977.
- V. T. Bogoslavov: Zbirka rešenih zadataka iz matematike za IV razred gimnazije, Beograd, 1978.
- C. Breard: Mathematiques 3e, Paris, 1962.
- C. Breard: Mathematiques 2c, Paris, 1969.
- C. Combes: Exercices & problemes de mathematiques, Paris, 1968.
- P. M. Vasić, R. R. Janić, V. T. Bogoslavov: Zbirka zadataka iz matematike za II razred srednjeg usmerenog obrazovanja, Beograd, 1978.
- P. M. Vasić, R. R. Janić, O. Mitrinović, D. Đ. Tošić: Matematički priručnik za takmičenje srednjoškolaca i prijemne ispite na fakultetima, Beograd, 1974.
- Vukomanović, D. Georgijević, A. Zolić, Đ. Jovanov, M. Lazić, M. Merkle, M. Miličić, R. Radovanović, Z. Radosavljević, Z. Šami: Zbirka zadataka i teslova iz matematike za prijemne ispite za upis na tehničke i prirodno-matematičke fakultete, Beograd 2000.
- R. R. Janić D. Đ. Tošić: Zadaci iz matematike sa prijemnih ispita na tehničkim fakultelima, Beograd, 1987.
- J. KARAMATA: Kompleksni brojevi sa primenom na elementarnu geometriju, Beograd, 1950.
- V. Lespinard et R. Pernet: Algebre classe de premiere A-C-M-M, Lyon, 1962.

Literatura 405

A. De Marko, R. Leso: Algebra con itroduzione all algebra modema, Bolonja, 1979.

- D. S. MITRINOVIĆ: $Matematička\ indukcija.\ Binomna\ formula.\ Kombinatorika,$ Beograd, 1970.
- D. S. MITRINOVIĆ: Matematika u obliku metodičke zbirke zadataka sa rešenjima 1, Beograd, 1978.
- D. S. MITRINOVIĆ, D. MIHAILOVIĆ, P. M. VASIĆ: Linearna algebra. Polinomi Analilička geometrija, Beograd, 1975.
- П. С. Моденов: Сборник sadaч по специльном курсу элементарной математике. Москва, 1964.

BELEŠKA O AUTORU

Mr Vene Bogoslavov rođen je 1932. godine u selu Paralovu, opština Bosilegrad. Po završetku gimnazije u Bosilegradu, završio je matematiku na Prirodnomatematičkom fakultetu u Beogradu (1958).

Godine 1967. završio je specijalističke studije na Prirodnomatematičkom fakultetu, a magistrirao je 1981. godine na Elektrotehničkom fakultetu. U 1980. godini mr Vene Bogoslavov je izuzetne rezultate u vaspitno-obrazovnom radu stekao zvanje pedagoškog savetnika.

Radni vek započeo je kao gimnazijski profesor u beogradskim srednjim školama. Od 1965. godine radi kao profesor u Petoj beogradskoj gimnaziji.

U toku rada mr Vene Bogoslavov bio je na mnogobrojnim funkcijama: rukovodilac aktiva matematičara grada Beograda i matične škole, mentor novim profesorima, član uređivačkog tima u Zavodu za udžbenike i nastavna sredstva, član odbora za proučavanje problema nastave matematike u osnovnim i srednjim školama pri Prosvetnom savetu Srbije i dr. Pored ovih funkcija, obavljao je i druge poslove kao što su: član školskog odbora i saveta škole, u sindikatu, itd.

Objavio je mnogobrojne knjige i članke iz oblasti matematike koji su doživeli zapažen uspeh, imali veliki broj izdanja u milionskom tiražu. Njegove zbirke postale su opšti jugoslovenski udžbenici koji se svakodnevno koriste na svim prostorima bivše Jugoslavije.

Udžbenici: Zbirka zadataka iz matematike za IV razred gimnazije (prvo izdanje 1968, 42. izdanje 2010. g.; ukupan tiraž 332467 primeraka); Zbirka rešenih zadataka iz matematike I (prvo izdanje 1970. g., 37. izdanje 2010. g.; ukupan tiraž 462320 primeraka); Zbirka rešenih zadataka iz matematike 2 (prvo izdanje 1971. g., 34. izdanje 2010.; ukupan tiraž 372874 primeraka); Zbirka rešenih zadataka iz matematike 3 (prvo izdanje 1972. g., 34. izdanje 2010. g.; ukupan tiraž 331764 primeraka); Zbirka zadataka za IV razred prirodnomatematičke struke – četiri izdanja (prvo izdanje 1980. g.; ukupan tiraž 32000 primeraka); Zbirka zadataka za II razred usmerenog obrazovanja – dva izdanja, ukupan tiraž 120000 primeraka, koautori: Petar Vasić, Radovan Janić; Matematika za IV razred usmerenog obrazovanja elektrotehničke i građevinske struke, koautori: Petar Vasić, Radovan Janić i Dobrilo Tošić (ukupan tiraž 18000 primeraka); 50 testova za proveru znanja iz matematike za osnovnu školu, koautori: Dušan Adnađević, Gliša Nešković i Dragoslav Milić (prvo izdanje 1988. g.; 7. izdanje 1995. g.; ukupan tiraž 139000 primeraka); Logaritamske tablice (prvo izdanje 1993. g., četvrto izdanje 2008. g.; ukupan tiraž 30000 primeraka); LoBeleška o autoru 407

garitamska i eksponencijalna funkcija sa zbirkom zadataka, koautor: Svetozar Branković (prvo izdanje 1996. g.).

Mr Vene Bogoslavov bio je recenzent mnogih udžbenika matematike. On je nosilac mnogih diploma, priznanja (Arhimedes, Plaketa Zavoda za izdavanje udžbenika) i zahvalnica.

Danas živi kao penzioner u Beogradu.

Mr Vene T. Bogoslavov ZBIRKA ZADATAKA IZ MATEMATIKE 2 35. izdanje, 2011. godine

Izdavač Zavod za udžbenike, Beograd Obilićev venac 5 www.zavod.co.rs

 $Likovni\ urednik$ m
r Tijana Rančić

Korice mr Tijana Rančić

Grafički urednik Milan Bjelanović

Kompjuterska priprema Željko Hrček Dobrilo Tošić

Korektura Dobrilo Tošić

Obim: 25,5 štamparskih tabaka

Format: 14×20 cm

Rukopis predat u štampu juna 2011. godine Štampanje završeno juna 2011. godine

Štampa CICERO, Beograd