

ĐẠI HỌC ĐÀ NẪNG

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN

VIETNAM - KOREA UNIVERSITY OF INFORMATION AND COMMUNICATION TECHNOLOGY

한-베정보통신기술대학교

Nhân bản – Phụng sự – Khai phóng

Introduction to CG

VKL

CONTENTS

- What is Computer Graphics?
- Developmental History
- Applications Areas
- Elements of Image Formation
- Color Models
- Basic Graphics System
- Coordinate System

VKL

CONTENTS

- What is Computer Graphics?
- Developmental History
- Applications Areas
- Elements of Image Formation
- Color Models
- Basic Graphics System
- Coordinate System

 Creation, Manipulation, and Storage of geometric objects (modeling) and their images (rendering) with a computer

Display those images on screens or hardcopy devides (animation...)

• Other:

- Image processing, Computer Vision,
- CAD, GUI
- Haptics, Virtual Reality,...

Example

- Where did this image come from?
- What hardware/software did we need to produce it?

Answer

- Application: The object is an artist's rendition of the sun for an animation to be shown in a domed environment (planetarium)
- Software: Maya for modeling and rendering but Maya is built on top of OpenGL
- Hardware: PC with graphics card for modeling and rendering

VKL

CONTENTS

- What is Computer Graphics?
- Developmental History
- Applications Areas
- Elements of Image Formation
- Color Models
- Basic Graphics System
- Coordinate System

- 1885 CRT (Cathode Ray Tube)
- 1887 Edison patents motion picture camera
- 1888 Edison and Dickson record motion picture photos on a wax cylinder

 1926 – J.L. Baird invents the television (30 line vertical, black and red scan).

- 1967 GE introduces first full colour real time flight simulator for NASA
- 1974 Intel develop the 8080 processor.

- 1975
 - Mandelbrot plots fractals
 - Bill Gates starts Microsoft

1977

- Academy of Motion Pictures Art and Sciences introduces Visual Effects category for Oscars.
- Star Wars wins oscar for special effects.

• 1978 - Superman wins oscar for special effects.

- 1981
 - IBM introduces the first IBM PC (16 bit 8088 chip)
 - Raiders of the Lost Ark wins an oscar for visual effects.

• 1982 - The Genesis Effect (ILM) for Startrek II is the first all computer animated visual effects shot for film.

- 1983 First Coke Polar Bears Commercial
- 1984 PIXAR Opens

• 1985 -The Last Starfighter is the first live action feature film with realistic computer animation of highly detailed models.

 1995 - Toy Story becomes the first fully 3D computer animation feature film.

- 1997
- Titanic wins oscar for visual effects.
- PIXAR wins oscar for best short film: Geri's Game.

- 1999
 - The Matrix
 - Disney's Tarzan
 - Star Wars: The Phantom Menace

- 2000
 - Sony Playstation II
 - Walking with Dinosaurs
 - Disney's Shrek

- Computer graphics goes back to the earliest days of computing
 - Strip charts
 - Pen plotters(e.g. HP 7470)

 Simple displays using A/D converters to go from computer to calligraphic CRT

- Cost of refresh for CRT too high
 - Computers slow, expensive, unreliable

Sketchpad: IvanSutherland's PhD thesis at MIT

- Recognized the potential of man-machine interaction
- Loop:
 - Display something
 - User moves light pen
 - Computer generates new display
- Sutherland also created many of the now common algorithms for computer graphics

Display Processors:

 Rather than have the host computer try to refresh display use a special purpose computer called a display processor unit (DPU)

- Graphics stored in display list (display file) on display processor
- Host compiles display list and sends to DPU

Vector graphics

- are defined in terms of 2D points, which are connected by lines and curves to form polygons and other shapes
- each of these points has a definite position on the x- and y-axis of the work plane and determines the direction of the path
- each path may have various properties including values for stroke color, shape, curve, thickness, and fill.

Wireframe

Skeletal model

Muscle model

Skin

Hair

Render and Touch up

Vector graphics= geometrical model + rendering

Raster Graphics

- Image produced as an array of picture elements (pixels) in the frame buffer
- scan lines/area to filled polygons

Raster vs Vector

Realism comes to computer graphics

← Mapping

- Special purpose hardware
 - Silicon Graphics geometry engine
 - VLSI implementation of graphics pipeline
- Industry-based standards
 - PHIGS
 - RenderMan
- Networked graphics: X Window System
- Human-Computer Interface (HCI)

- Completely computer-generated feature-length movies (Toy Story) are successful
- OpenGL API
- DirectX (September 1995 as the Windows Games SDK)
- New hardware capabilities
 - Texture mapping
 - Blending
 - Accumulation, stencil buffers

- Photorealism (real-time)
- Graphics cards for PCs dominate market
 - Nvidia, ATI
- Game boxes and game players determine direction of market
- Computer graphics routine in movie industry: Maya, Lightwave
- Programmable pipelines

VKL

CONTENTS

- What is Computer Graphics?
- Developmental History
- Applications Areas
- Elements of Image Formation
- Color Models
- Basic Graphics System
- Coordinate System

Look at 5 areas

- Hardware
- Rendering
- Interaction
- Modeling
- Scientific Visualization

Game/Film Industry

Computer Aided Design

Medical Imaging

Scientific Visualization

VKL

CONTENTS

- What is Computer Graphics?
- Developmental History
- Applications Areas
- Elements of Image Formation
- Color Models
- Basic Graphics System
- Coordinate System

- Each light ray may have interactions with objects before being absorbed or going to infinity
- One way to form an image is to follow light rays from a point source, finding which rays enter the lens of the camera.

- In computer, 2D images are formed from a process analogous to how images are formed by physical imaging systems
- Elements of Image Formation:
 - Objects
 - Viewer
 - Light source(s)
 - Light: Global >< Local
 - Cannot compute color or shade of each object independently
 - Some objects are blocked from light
 - Light can reflect from object to object
 - Some objects might be translucent.

Synthetic Camera Model

Synthetic Camera Model

Advantages

- Separation of objects, viewer, light sources
- 2D graphics is a special case of 3D graphics
- Leads to simple software API
 - Specify objects, lights, camera, attributes
 - Let implementation determine image
- Leads to fast hardware implementation

VKL

CONTENTS

- What is Computer Graphics?
- Developmental History
- Applications Areas
- Elements of Image Formation
- Color Models
- Basic Graphics System
- Coordinate System

Colors

- Color: a narrow frequency band within the electromagnetic spectrum, with wavelengths in the range of about 350-750 nm
- In visible band, each frequency corresponds to a distinct color
- High-frequency (short wavelength) appear as Violet, Low-frequency (long wavelength) as Red.

Color Terminology

- **Hue** (color) is a dominated wavelength or pure color with no black or white added (blue, green, red, etc.). The same colors may increase the intensity, but will not change the hue.
- Saturation (purity) refers to how strong or weak a color is, depends on the amount of white/black which is added to a color.
 - e.g: Red and Pink have the same hue, but a different saturation
- Lightness is luminance (reflecting objects)
- Brightness is luminance (self-luminous objects, e.g: Sun, CRT)
- Value (Intensity, Lightness, Brightness) refers to how light or dark a color is (light having a high value).

Color Terminology

- Tint is created by adding white to a hue, making it lighter than the original color
 ⇒ Saturation reduced
- Shade is created by adding black to a hue, making it darker than the original color
 ⇒ Lightness reduced
- **Tone** is created by adding both white and black to a hue, making it darker/lighter than the original color.

- Gray = Black + White
- Tint, Shade, Tone
 ⇒ create different colors
 of the same hue.

Colors of an object

- Light source emits "white light" (all frequencies of light)
- Object reflects/absorbs some frequencies
- Colors of an object = combination of frequencies reflected

Luminance and Color Images

- Luminance Image
 - Monochromatic
 - Values are gray levels
 - Analogous to working with black and white film/television
- Color Image
 - Has perceptional attributes of Hue, Saturation & Lightness

Do we have to match every frequency in visible spectrum?

No! - Graphic packages provide color palettes to users (often employ two or more color models)

- Color model: an orderly system for creating a whole range of colors from a small set of primary colors.
- **CIE color model**: the most common color space were created by the International Commission on Illumination in 1931, known as the Commission Internationale de l'Elcairage (CIE).
 - three primary colors (saturated): X, Y, and Z
 - any color (color gamut): C = AX + BY + CZ,
 - normalized: x = A/(A+B+C); y = B/(A+B+C); z = 1-x-y

$$\Rightarrow c = xX + yY + zZ,$$
total light intensity: $x + y + z = 1$

⇒ c lies in the 3D plane:

$$x + y + z = 1$$

CIE chromaticity diagram

- Plotting $c(\lambda)=(x(\lambda), y(\lambda))$ by viewing the 3D curve in an orthographic projection, looking along the z-axis
- Hue: inscribing a line from White through the color to the edge of the diagram, Hue is the wavelength of the color at the intersection of the edge and the line.
- Saturation: the ratio of the distance of the color from White on the above line and the length of the whole line.

CIE chromaticity diagram

- Any two colors on a line passing through White and added up to be white are *complementary colors*.
 - e.g: *e* and *f*
 - Red⇔Cyan; Green⇔Magenta; Blue⇔Yellow
- Any color within a triangle can be generated by the three vertices of the triangle, called the color gamut.
 - a point inside ΔIJK is a convex combination of 3 points I, J, K

- Color gamut is a subset of all visible chromaticities, so color model does not contain all visible colors
- In the 3D color coordinate system, a subset can contain all colors within a gamut
- Example: RGB color model
 - 3D Cartesian coordinate system
 - Unit cube subset
 - Use CIE XYZ space to convert to

There are two types:

- Hardware-oriented models: not intuitive, do not relate to concepts of Hue, Saturation, Brightness
 - RGB ⇒ for color monitors
 - CMY (cyan, magenta, yellow),
 CMYK (cyan, magenta, yellow, black)

 ⇒ for color printing
- User-oriented models:
 - HSV (hue, saturation, value),
 also called HSB (B-brightness)
 - HLS (hue, lightness, saturation)

The RGB Color Model

- RGB (Red-Green-Blue): an additive color model for computer displays uses light to display color.
- Gamut: individual contributions of each primary color added together.
 Gray levels on main diagonal.
 - C = rR + gG + bB, where $r, g, b \in [0, 1]$
 - Grays = (x, x, x), where $x \in (0, 1)$
- Hue is defined by the one or two largest parameters
- Saturation can be controlled by varying values of R, G, B
- Luminance can be controlled by varying magnitudes while keeping ratios constant

The RGB Color Model

- Conversion from one RGB gamut to another: convert one to XYZ, then convert from XYZ to another
- Form of each transformation:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} X_r & X_g & X_b \\ Y_r & Y_g & Y_b \\ Z_r & Z_g & Z_b \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Where Xr, Xg, and Xb are weights applied to monitor's RGB colors to find X, etc.

Additive vs. Subtractive Color Systems

The CMY Color Model

CMY (Cyan-Magenta-Yellow)
 the subtractive color model used
 in light absorbing devices, color printing.

- Color specified by what is subtracted from white light
- C absorbs R, M absorbs G, and Y absorbs B
- Conversion from RGB to CMY

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

The HSV Color Model

- HSV: Hue, Saturation, Value (Brightness)
- Hexcone subnet of Cylinder coordinate system
 - The V = 1 plane (hexagon) is obtained from the color cube in isometric projection.
 - Gamut = (h, s, v), where $h \in [0, 360)$ and $s, v \in [0, 1]$
 - hue: angle round the hexagon
 - saturation: distance from the center
 - value: axis through the center

The HSV Color Model

 Human eyes can distinguish: 128 hues, 130 saturations/tints, 23 shades of yellow colors, 16 of blue colors

$$\Rightarrow$$
 128 x 130 x 23 = 82720 colors

- Has intuitive appeal of the artist's tint, shade, and tone model
 - Pure pigments are (x,1,1);
 e.g: pure red ⇔ H = 0, S = 1, V = 1;
 - tints: adding white pigment
 ⇔ decreasing S at constant V
 - shades: adding black pigment
 ⇔ decreasing V at constant S
 - tones: decreasing S and V

The HLS Color Model

- HLS: Hue, Lightness, and Saturation
- Double-hexcone subnet of Cylinder coordinate system
 - Base is from the hexagon as in HSV
 - Gamut = (h, l, s),
 where h ∈ [0, 360) and l, s ∈ [0, 1]
 - hue: angle round the base
 - lightness: axis through the center
 - saturation: distance from the center

VKL

CONTENTS

- What is Computer Graphics?
- Developmental History
- Applications Areas
- Elements of Image Formation
- Color Models
- Basic Graphics System
- Coordinate System

Image formed in frame buffer

Frame Buffer (Video RAM)

- Frame buffer
 - size,
 - X, y,
 - pixel depth.
- Resolution
 - Ex: 1024x1024 pixels.
- Bit Planes / Bit Depth
 - ? bit/pixel.
 - color resolution of video RAM.

1 bit/pixel ⇒ Monochrome display

8 bits/pixel ⇒ 256 màu

24 bits/pixel ⇒ 16,777,216 màu

VKL

CONTENTS

- What is Computer Graphics?
- Developmental History
- Applications Areas
- Elements of Image Formation
- Color Models
- Basic Graphics System
- Coordinate System

World Coordinate System (WCS)

- Mô tả các đối tượng thế giới thực.
- Đơn vị đo phụ thuộc vào không gian, kích thước của đối tượng được mô tả: từ nm, mm... → m, km ...

Hệ toạ độ theo quy ước bàn tay phải (a) và bàn tay trái (b)

Device Coordinate System (DCS)

- Dùng trong thiết bị xuất cụ thể: máy in, màn hình ...
- Đặc điểm:
 - Toạ độ điểm (x,y) trong đó x,y ∈ N.
 - Toạ độ (x,y) giới hạn, phụ thuộc vào từng loại thiết bị
 - Gốc toạ độ O ở góc trên trái màn hình

Normalized Coordinate System (NCS)

- · Giải quyết vấn đề ứng dụng chạy trên thiết bị khác nhau
- $x,y \in [0,1]$.

Các bước mô tả đối tượng thực:

- Ảnh được định nghĩa theo các toạ độ thế giới thực
- Chuyển từ toạ độ thế giới thực sang toạ độ chuẩn.
- Chuyển từ toạ độ chuẩn sang toạ độ thiết bị ứng với từng thiết bị cụ thể

Các bước mô tả đối tượng thực:

· Chuyển từ hệ toạ độ thực sang hệ toạ độ chuẩn:

 Gọi c là cạnh hình vuông không gian lớn nhất trong hệ toạ độ thực chứa đối tượng cần hiển thị. P(x,y) ở thế giới thực được ánh xạ thành P₀(x₀,y₀) trong hệ toạ độ chuẩn:

$$x_0 = x/c$$
 $y_0 = y/c$ $(x_0, y_0 \in [0, 1])$

Chuyển từ hệ toạ độ chuẩn sang hệ toạ độ thiết bị:

• $P_0(x_0,y_0)$ trong hệ toạ độ chuẩn được ánh xạ thành điểm $P_1(x_1,y_1)$ của hệ toạ độ thiết bị theo công thức:

$$x_1 = y_{max}x_0 + (x_{max} - y_{max})/2$$
 $y_1 = y_{max}y_0$

SUMMARY

- What is Computer Graphics?
- Developmental History
- Applications Areas
- Elements of Image Formation
- Color Models
- Basic Graphics System
- Coordinate System

ĐẠI HỌC ĐÀ NẰNG TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN

Nhân bản - Phụng sự - Khai phóng

Enjoy the Course...!