

Übung 05: Boolesche Algebra und kombinatorische Schaltungen

Einführung in die Rechnerarchitektur

Niklas Ladurner

School of Computation, Information and Technology Technische Universität München

15. März 2024

Durchzählen!

Keine Garantie für die Richtigkeit der Tutorfolien: Bei Unklarheiten/Unstimmigkeiten haben VL/ZÜ-Folien Recht!

Boolesche Funktionen

\overline{A}	B	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

\overline{A}	$\neg A$
0	1
1	0

Boolesche Funktionen

- Alternative Schreibweisen: x + y für OR, $x \cdot y$ für AND, \overline{x} für NOT
- Gatter in europäischer Norm einfacher zu zeichnen und besser unterscheidbar \rightarrow in Klausur einheitlich verwenden!
- weitere wichtige Funktionen (bekannt aus DS): ⊕ (XOR), → (Implikation), ↔ (Bikonditional, Iff, XNOR)
- Funktionale Vollständigkeit: Menge $\mathcal F$ sodass alle boolschen Funktionen als Kombination von $f_i \in \mathcal F$ darstellbar sind. Beispiel: $\{\land, \neg\}$

Gesetze der Booleschen Algebra

- Identität: x + 0 = x, $x \cdot 1 = x$
- Idempotenz: x + x = x, $x \cdot x = x$
- Komplementärgesetz: $x + \overline{x} = 1$, $x \cdot \overline{x} = 0$
- Involution: $\overline{\overline{x}} = x$
- De Morgan: $\overline{x+y} = \overline{x} \cdot \overline{y}$ und $\overline{x \cdot y} = \overline{x} + \overline{y}$
- Absorption: $x + (x \cdot y) = x$, $x \cdot (x + y) = x$
- Distributivität: $x \cdot (y+z) = (x \cdot y) + (x \cdot z)$ und $x + (y \cdot z) = (x+y) \cdot (x+z)$

Normalformen

- Konjunktive Normalform (OR in den Klammern, AND dazwischen): $(x + y) \cdot (x + \overline{y})$
- Disjunktive Normalform (AND in den Klammern, OR dazwischen): $(x\cdot y)+(x\cdot \overline{y})$

АВ	С	Ergebnis	Klausel	
0 0	0	0	AVBVC	
0 0	1	0	A v B v ¬C	
0 1	0	1	¬А∧В∧¬С	, /
0 1	1	1	¬A∧B∧C	\\/
1 0	0	0	¬A∨B∨C	
1 0	1	1	A∧¬B∧C	
1 1	0	0	¬A v ¬B v C	
1 1	1	1	AABAC	
			(A ^ ¬B ^ C) v (A v B v C) ^ (¬A	

Fragen?

Artemis-Hausaufgaben

- H05 Wasserstandskontrolle bis 26.11.2023 23:59 Uhr
- Wahrheitstabelle, boolsche Funktion und Schaltung in Logisim

Links

- Zulip: "ERA Tutorium Mi-1600-MI4" bzw. "ERA Tutorium Fr-1100-MW2"
- Logische Grundschaltungen
- Halb- und Volladdierer
- Logisim Evolution
- Konjunktive Normalform

Übung 05: Boolesche Algebra und kombinatorische Schaltungen

Einführung in die Rechnerarchitektur

Niklas Ladurner

School of Computation, Information and Technology Technische Universität München

15. März 2024

