14.1: Functions of Several Variables

Definition

Suppose D is a set of n-tuples of real numbers $(x_1, x_2, x_3, \dots, x_n)$.

A **real-valued function** f on D returns a real number $(f:D o\mathbb{R})$

- domain = D
- range = set of values returned

Examples

Find domain of each:

1.
$$f(x,y) = \sqrt{xy}$$

Answer: $\{(x,y)|xy\geq 0\}$

2.
$$f(x,y) = \frac{1}{\sqrt{x-y}}$$

$$x - y > 0$$
, so:

Answer: $\{(x,y)|x>y\}$

3.
$$f(x, y, z) = \frac{\sqrt{z}}{x^2 - y^2}$$

$$x^2-y^2
eq 0$$

$$z \geq 0$$

Answer: $\{(x,y,z)|x^2 \neq y^2, z \geq 0\}$

Boundary Points and Interior Points

Interior point of a set (or region) R: A point (x_0, y_0) in the center of a disk of positive radius that lies entirely in R.

Boundary point of a set (or region R): A point (x_0, y_0) where every disk of positive radius contains points that lie outside of R and points that lie in R.

 (x_0, y_0) does not need to be in R.

(For the above definitions, in 3D, replace "disk" with ball)

A set is **closed** if it contains <u>all</u> of its boundary points. A set is **open** if it contains <u>none</u> of its boundary points. Otherwise, it is neither open nor closed.

Bounded regions: A region that lies inside a disk of finite radius

• Unbounded: a region that doesn't

Example: Domain and Range of a Real-Valued Function Georgia Tech

Describe the domain of $f(x,y) = \cos^{-1}(y-x^2)$

Level Curves and Surfaces

If c is a value in range of 2-var f, we can sketch the **level curve** f(x,y)=c. If c is a value in range of 3-var f, we can sketch the **level surface** f(x,y,z)=c.

Examples

1. Graph level curves of $f(x,y) = \ln(x-y^2)$ for c=-1,0,1.

$$\ln(x - y^2) = -1$$
 $x - y^2 = e^{-1}$
 $x = y^2 + e^{-1}$
 $\ln(x - y^2) = 0$
 $x - y^2 = e^0$
 $x = y^2 + 1$
 $\ln(x - y^2) = 1$
 $x - y^2 = e^1$
 $x = y^2 + e$

2. Describe the level curves for $f(x,y)=e^{x^2+2y^2}.$

$$e^{x^2+2y^2}=c \ x^2+2y^2=\underbrace{\ln c}_{
m constant}(c>0)$$

The level curves are ellipses.

Which of the following functions is depicted in the contour plot below?

3.

· The contours are level curves.

Recognize one of the curves as $x=-y^2$, so $x+y^2=c$, and $f(x,y)=x+y^2$.

14.2: Limits and Continuity

Limits for Functions of Several Variables

Let $f(x_1, x_2, ..., x_n)$ be a function defined (at least) on some deleted neighborhood of \vec{x}_0 .

$$\lim_{ec{x}
ightarrowec{x}_0}f(ec{x})=L$$

if for each $\epsilon > 0$, there exists $\delta > 0$ such that

$$0<\|ec{x}-ec{x}_0\|<\delta \implies |f(ec{x})-L|<\epsilon$$

(Essentially, as \vec{x} approaches \vec{x}_0 from anywhere, $f(\vec{x})$ approaches L.)

Two paths test

If the paths $\vec{x} \to \vec{x}_0$ approach different values for $f(\vec{x})$, the limit does not exist.

Example: Proving a limit using the definition

This is a doozy.

Find
$$\lim_{(x,y) o(0,0)}f(x,y)$$
 for $f(x,y)=rac{2xy^2}{x^2+y^2}$.

If the limit is true, there must be some relationship between ϵ and δ .

On the ϵ side:

After testing, we find some paths to converge to 0

$$egin{aligned} |f(x,y)-\widehat{L}| < \epsilon \ \left|rac{2xy^2}{x^2+y^2}-0
ight| < \epsilon \ rac{2|x|y^2}{x^2+y^2} < \epsilon \end{aligned}$$

On the δ side:

$$egin{array}{ll} 0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} & < \delta \ 0 < \sqrt{x^2 + y^2} & < \delta \ 0 < 2\sqrt{x^2 + y^2} & < 2\delta \end{array}$$

Since
$$y^2 \leq x^2 + y^2$$
, $rac{y^2}{x^2 + y^2} \leq 1$ and $rac{2|x|y^2}{x^2 + y^2} \leq 2|x|$

So:

$$rac{2|x|y^2}{x^2+y^2} \leq 2|x| = 2\sqrt{x^2} \leq 2\sqrt{x^2+y^2} < \epsilon$$

Thus, you can let $\delta=rac{\epsilon}{2}$ and so the limit exists.

Continuity for Functions of Several Variables

A function f(x,y) is *continuous* at point (x_0,y_0) if:

- 1. f is defined at (x_0, y_0)
- 2. Limit at that point exists
- 3. Limit is equal to $f(x_0, y_0)$

Function is continuous if it is continuous at every point in its domain.

Define f(1,1) in a way that makes $f(x,y)=\frac{x^2-xy}{\sqrt{x}-\sqrt{y}}$ continuous at the point (1,1).

$$\lim_{(x,y)\to(1,1)} \frac{x^2 - xy}{(\sqrt{x} + \sqrt{y})} \frac{(\sqrt{x} + \sqrt{y})}{(\sqrt{x} + \sqrt{y})} = \lim_{(x,y)\to(1,1)} \frac{x(x-y)(\sqrt{x} + \sqrt{y})}{(x-y)} = 1(2) = 2$$

$$f(x,y) = \begin{cases} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}} & (x,y) \neq (1,1) \\ 2 & (x,y) = (1,1) \end{cases}$$

#week4