CLASSIFICATION CHARACTO

RESEARCH MEMORANDUM

FFECTS OF LEADING-EDGE CHORD EXTENSIONS AND AN ALL-MOVABLE HORIZONTAL TAIL ON THE AERODYNAMIC CHARAC-ERISTICS OF A WING-BODY COMBINATION EMPLOYING

A TRIANGULAR WING OF ASPECT RATIO 3 MOUNTED IN A HIGH POSITION AT SUB-SONIC AND SUPERSONIC SPEEDS

By Benton E. Wetzel and Frank A. Pfyl

Ames Aeronautical Laboratory Moffett Field, Calif.

LIBRARY COPY

JAU 111954

LANGLEY AERONAUTICAL LABORATORY LANGLEY FIELD, VIRGINIA

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

January 6, 1954

NACA RM A53J14a

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

EFFECTS OF LEADING-EDGE CHORD EXTENSIONS AND AN ALLMOVABLE HORIZONTAL TAIL ON THE AERODYNAMIC CHARACTERISTICS OF A WING-BODY COMBINATION EMPLOYING
A TRIANGULAR WING OF ASPECT RATIO 3
MOUNTED IN A HIGH POSITION AT SUBSONIC AND SUPERSONIC SPEEDS

By Benton E. Wetzel and Frank A. Pfyl

SUMMARY

The results of an experimental investigation of the effect of leading-edge chord extensions on the aerodynamic characteristics of a wing-body-tail combination employing a 3-percent-thick triangular wing of aspect ratio 3 in conjunction with an unswept, all-movable, horizontal tail located below the wing-chord plane are presented. Lift, drag, pitching moment, and hinge moment were measured at Mach numbers varying from 0.6 to 0.9 and from 1.2 to 1.9, at a Reynolds number of 3.8 million. The angle of attack was varied from -4° to +17° at constant horizontal-tail deflections varying from +4° to -24°. Data are also presented for the model without the horizontal tail.

The wing-body-tail combination was tested with 13.35-percent-chord, leading-edge chord extensions on the outer 50 percent of the wing semispan in an effort to improve the undesirable static longitudinal stability characteristics of the triangular wing at moderate-to-high lift coefficients at subsonic speeds. To improve, also, the subsonic lift and drag characteristics, the chord extensions were drooped 3°.

Comparisons of the results obtained for the wing-body-tail combination having chord extensions with those for the combination without chord extensions showed that the extensions improved the lift, drag, and pitching-moment characteristics at moderate-to-high lift coefficients at subsonic speeds and had small effect on those characteristics at supersonic speeds. Static longitudinal instability, which occurred in a range of moderate lift coefficients at Mach numbers of 0.6 and 0.8 for the model without chord extensions, was either eliminated (M = 0.8) or delayed to higher lift coefficients (M = 0.6). Improved variations of lift with angle of attack at the aforementioned Mach numbers and

increased maximum lift-drag ratios at Mach numbers from 0.6 to 1.3 were realized from the addition of chord extensions. Essentially no changes in the hinge-moment characteristics were brought about at either subsonic or supersonic speeds by the addition of chord extensions.

INTRODUCTION

As part of a program devoted to the investigation of components of interceptor-type supersonic aircraft, a wing-body-tail combination employing a 3-percent-thick triangular wing of aspect ratio 3 and an all-movable horizontal tail was tested in the Ames 6- by 6-foot supersonic wind tunnel. The wing was mounted high on the body, and the tail was below the wing-chord plane. Previous tests of the wing-body combination (ref. 1) showed losses in stability at moderate-to-high lift coefficients at subsonic speeds. Tests of models similar to the present one (ref. 2) have indicated that such variations in stability might be avoided or minimized by locating the horizontal tail in certain positions below the extended chord plane of the wing; however, when the tail was added to the present model, the instability still persisted, and the presence of the tail had little influence upon stability variations. Therefore, the possibility of improving the stability by modifying the wing so as to reduce the center-of-pressure movement was investigated.

This center-of-pressure movement has been shown by previous tests of thin triangular wings to result from flow separation at the wing tips. This flow separation is believed to be accompanied by separation vortices (ref. 3) generated on the upper surface of the wing, which could have an adverse effect on the stability. Research on sweptback wings (e.g., ref. 4) has shown that improvement of the characteristics of such wings can be obtained through the use of leading-edge chord extensions, which serve either to eliminate or to reduce separation or vortex-type flow over the tip sections. An effort was made to improve the longitudinal stability characteristics of the present model through the addition of such devices. The chord extensions were drooped a small amount in order to obtain improved subsonic drag characteristics, such as were reported in reference 4.

The present paper is devoted primarily to the comparison of the lift, drag, and pitching-moment characteristics of the wing-body-tail combination with and without the leading-edge chord extensions and to the presentation of the control-surface characteristics of the combination with chord extensions.

SYMBOLS

b wing span, in.

 C_{D} drag coefficient, $\frac{\mathrm{drag}}{\mathrm{qS}}$

 c_h hinge-moment coefficient, hinge moment, measured about an axis $qS_t\bar{c}_t$ at 30 percent of the chord of the horizontal tail

 C_{L} lift coefficient, $\frac{\text{lift}}{\text{qS}}$

C_m pitching-moment coefficient, <u>pitching moment</u>, referred to a qSc

horizontal axis through the point on the body axis corresponding to 35-percent mean aerodynamic chord of the wing

c local wing chord of the wing without chord extensions, in.

ct local chord of the horizontal tail, in.

 \bar{c} mean aerodynamic chord of the wing, $\frac{\int_0^{b/2} c^2 dy}{\int_0^{b/2} c dy}$, in.

čt mean aerodynamic chord of horizontal tail, in.

 $\left(\frac{L}{D}\right)_{max}$ maximum lift-drag ratio

M free-stream Mach number

q free-stream dynamic pressure, lb/sq in.

R Reynolds number based on the mean aerodynamic chord of the wing

s wing area, formed by extending the leading and trailing edges to the plane of symmetry, sq in.

(The additional area provided by the leading-edge chord extensions has not been included.)

St area of horizontal tail, formed by extending the leading and trailing edges to the plane of symmetry, sq in.

- y spanwise distance from plane of symmetry, in.
- angle of attack of body axis, deg
- δ angle of horizontal-tail deflection, positive for trailing edge down, deg
- δ_n nominal (no load) horizontal-tail deflection, deg

APPARATUS AND MODEL

The experimental investigation was conducted in the Ames 6- by 6-foot supersonic wind tunnel, which is a closed-section, variable-pressure-type tunnel with a Mach number range from 0.6 to 0.9 and from 1.2 to 1.9. A complete description of this facility has been published in reference 5. In this wind tunnel, models are sting-mounted, and over-all forces are measured with an internal electrical strain-gage balance. The model was also equipped with an electrical strain gage which measured the hinge moments on the horizontal tail.

The model consisted of a triangular wing, an all-movable horizontal tail, two vertical fins, and a body. The wing was mounted in a high position on the body, had an aspect ratio of 3, and was composed of NACA 0003-63 airfoil sections in streamwise planes. During a portion of the investigation, the wing was equipped with 13.35-percent-chord, leading-edge chord extensions over the outer 50-percent semispan of the wing, as shown in figure 1. The extensions had the same ordinates as the corresponding wing airfoil sections, with smooth fairings providing the transitions between the extensions and the wing. The chord extensions were drooped 3° with respect to the chord line.

The horizontal tail, which was mounted in a midposition on the body, was pivoted at the 30-percent-chord point and had a taper ratio of 0.4 and an aspect ratio of 5. The airfoil section in a streamwise plane was biconvex, with a maximum thickness-chord ratio of 3 percent at 30-percent chord. The tail was supported at the tips by the two vertical fins rigidly attached to the wing at the 50-percent-semispan station. These fins were of aspect ratio 2.08 and had a 3-percent-thick biconvex section in a streamwise plane. The wing and tail surfaces were of solid steel construction.

The body was the same as that described in reference 1 for use in conjunction with the wings positioned off the body axis. It had a fineness ratio of 9.86. A photograph of the complete model is shown in figure 2.

TEST AND PROCEDURE

Range of Test Variables

Lift, drag, pitching-moment, and hinge-moment characteristics of the model were investigated for a range of Mach numbers varying from 0.6 to 0.9 and from 1.2 to 1.9 at nominal angles of attack varying from -4° to a maximum of +17°. The model with horizontal tail installed was tested at horizontal-tail deflections varying from +4° to -24°, generally in 4° increments. The data were obtained at a Reynolds number of 3.8 million, based on the wing mean aerodynamic chord.

Reduction of Data

The test data have been reduced to standard NACA coefficient form. The pitching moments were calculated about a horizontal axis through the point on the body axis corresponding to 35 percent of the mean aerodynamic chord. Factors which affect the accuracy of these data are discussed in the following paragraphs.

Tunnel-wall interference. - Corrections to the subsonic results for the induced effects of the wind-tunnel walls resulting from lift on the model were made according to the methods of reference 6. The numerical values of these corrections, which were added to the uncorrected data, are:

 $\Delta \alpha = 0.5517 C_{T_1}$

 $\Delta C_{\rm D} = 0.0096 \, C_{\rm L}^2$

The correction to the pitching-moment coefficient was negligible.

Constriction of the flow at subsonic speeds was taken into account in the manner outlined in reference 7. At a Mach number of 0.9, the correction amounted to a 2-percent increase in the Mach number over that determined from a calibration of the wind tunnel without a model in place.

For the tests at supersonic speeds, the reflection from the tunnel wall of the Mach wave originating at the nose of the body crossed the horizontal tail only at a Mach number of 1.2. It is believed that the resulting interference effects were small, and no corrections were made for tunnel-wall effects.

Stream variations. - Tests at subsonic speeds in the 6- by 6-foot supersonic wind tunnel have indicated a small stream curvature and an

inclination in the pitch plane of the model. No correction for this stream curvature has been made. A survey of the airstream at supersonic speeds, reported in reference 5, has shown curvature and inclination only in the yaw plane of the model. The effects of this curvature on the measured aerodynamic characteristics of the model are not known but are believed to be small, as they were shown to be in the case of reference 8.

Surveys at both subsonic and supersonic speeds indicated that there is a static-pressure variation of sufficient magnitude in the wind-tunnel test section to affect the drag measurements. Corrections were added to the measured drag coefficients, therefore, to account for the longitudinal force resulting from the static-pressure variation. The maximum corrections were +0.0007 at a Mach number of 0.9 and -0.0008 at a Mach number of 1.3.

Support interference. At subsonic speeds, the effects of support interference on the aerodynamic characteristics of the model are not known. It is believed that such effects consist primarily of a change in the pressure at the base of the model. In an effort to correct at least partially for this support interference, the base pressure was measured and the drag data adjusted to correspond to a base pressure equal to the static pressure of the free stream.

At supersonic speeds, the interference of the sting on a body of a body-sting combination similar to that of the present model is shown by reference 9 to be confined to a change in base pressure. The abovementioned adjustment of the drag for pressure at the base of the model, therefore, was applied also to the data obtained at supersonic speeds.

Precision

The uncertainties involved in determining dynamic pressure and in measuring forces with the strain-gage balance are described fully in reference 10. The following table lists the maximum uncertainty introduced into each corrected coefficient by the known uncertainties in the measurements:

Quantity		Uncertainty
Lift coefficient	•	±0.002
Drag coefficient		±0.0010
Pitching-moment coefficient	!	±0.002
Hinge-moment coefficient		±0.005
Mach number	: . :	±0.01
Reynolds number	•	$\pm 0.03 \times 10^{6}$
Angle of attack	:	±0.100
Horizontal-tail deflection	:	±0.25°

RESULTS

The experimental results obtained during the investigation are presented in tables I and II for the complete range of test variables. The results for the wing-body and the wing-body-tail combinations without leading-edge chord extensions are presented in table I, those for the combinations with chord extensions in table II. For the purpose of analysis, a portion of these data is presented in graphical form.

The effect of the chord extensions on the variation of pitching-moment coefficient with lift coefficient for the model with the horizontal tail removed (but with the vertical fins attached to the wing) is shown in figure 3 for several subsonic and supersonic Mach numbers. The effect of the chord extensions on the pitching-moment, lift, and drag characteristics of the wing-body-tail combination for a nominal horizontal-tail deflection of zero is shown in figure 4 for the same Mach numbers.

In order to permit a more detailed evaluation of the effect of the chord extensions on the drag characteristics, the variation with Mach number of the drag coefficient at various lift coefficients and the variation with Mach number of the maximum lift-drag ratio are presented in figures 5 and 6, respectively.

The variation of the pitching-moment coefficient with horizontal-tail deflection is shown in figure 7. The variations of hinge-moment coefficient with horizontal-tail deflection and with angle of attack are presented in figures 8 and 9 for the model with chord extensions. A study of the data for the combinations with and without chord extensions showed essentially no difference in the control-effectiveness and hinge-moment characteristics as a result of adding the chord extensions. Therefore, only the results for the wing-body-tail combination with chord extensions are presented graphically. The data presented in these figures have been limited to Mach numbers of 0.6, 0.9, 1.3, and 1.9, since these were considered sufficient to show the variations through the Mach number range. Horizontal-tail deflections noted in figure 8 are nominal settings of the tail surfaces. The actual deflection angles, which changed slightly under aerodynamic load, can be obtained from table II.

DISCUSSION

In the section to follow, two features of the data will be discussed. First, the effects of the chord extensions on the basic serodynamic characteristics of the wing-body and the wing-body-tail

combinations will be considered. A brief discussion of the controlsurface characteristics will follow.

Basic Characteristics

Pitching moment. - As was noted previously, some loss in stability was shown to exist for the wing-body combination at moderate-to-high lift coefficients at subsonic speeds during a previous investigation (ref. 1). With the center of gravity at 35-percent mean aerodynamic chord, the loss in stability was of such magnitude as to result in an unstable variation of pitching-moment coefficient at Mach numbers of 0.6 and 0.8 for the model with the horizontal tail removed. (See fig. 3.) With the horizontal tail added to the wing-body combination (fig. 4(a)), the unstable variation at these subsonic speeds still existed. That the longitudinal instability of the wing-body combination was due largely to the instability of the wing-body combination can be determined from a comparison of figures 3 and 4(a). As indicated in figure 3, addition of the chord extensions improved the pitching-moment characteristics of the wing-body combination, the instability being either eliminated (M = 0.8) or delayed to a higher lift coefficient (M = 0.6). A similar improvement occurred for the wing-body-tail combination (fig. 4(a)). It should be noted that addition of the chord extensions had little effect on the tail contribution to the stability. At supersonic speeds, the chord extensions had only small effect on the pitching-moment characteristics.

Lift. The results for the wing-body-tail combination without chord extensions (fig. 4(b)) showed a range of angle of attack near 8° at Mach numbers of 0.6 and 0.8 in which the lift-curve slope was considerably less than at other angles of attack. This decrease in lift-curve slope appeared initially at about the same lift coefficient as the onset of pitching-moment instability. With chord extensions installed, the lift was maintained up to angles of attack of the order of 16°. The improvement in the lift characteristics is believed to be due primarily to the ability of the chord extensions to improve the flow over the wing tips. At supersonic speeds, the chord extensions had little effect on the lift characteristics. The slight increase in lift-curve slope shown in figure 4(b) may have been due to the increased area provided by the chord extensions.

Drag. - The drag results, presented in figures 4(c) and 5, indicate that the addition of the chord extensions increased slightly the minimum drag coefficient throughout the speed range investigated, although this increase was of the same order of magnitude as the maximum uncertainty of measurement. On the other hand, at lift coefficients greater than 0.2, the chord extensions reduced significantly the drag coefficients at subsonic speeds and at a Mach number of 1.3. The reduction in drag at

these lift coefficients is believed to be due, primarily, to the small amount of camber which resulted from the drooping of the chord extensions. Drooping the leading edge tends to maintain high lifting pressures on that portion of the wing and to provide a component of force in the thrust direction. At Mach numbers greater than 1.5, the beneficial effect of the chord extensions on the drag no longer existed. At the higher lift coefficients, the apparent benefit of the chord extensions shown at these Mach numbers can be attributed to the increased area provided by the chord extensions.

The effect of the chord extensions on the maximum lift-drag ratio is shown in figure 6. At a Mach number of 0.6 a large increase in $(L/D)_{\rm max}$ was realized, the improvement decreasing with increasing Mach number. In the supersonic speed range at Mach numbers of 1.5 and above, decreased lift-drag ratios were incurred with the chord extensions installed.

Control-Surface Characteristics

The following section is devoted to a discussion of the controlsurface characteristics of the tail when used in conjunction with the
wing-body combination with chord extensions. As pointed out in Results,
a study of the data for the models with and without chord extensions
showed essentially no difference in the control-effectiveness and
hinge-moment characteristics. Thus, statements made in the following
discussion also apply to the characteristics of the tail when used with
the wing-body combination without chord extensions.

Control effectiveness. Increasing control effectiveness with increasing Mach number was indicated for the subsonic speed range, as shown in figure 7. The variation of pitching-moment coefficient with horizontal-tail deflection was linear throughout only a moderate range of deflection angles in this speed range. However, for an airplane with its center of gravity at 35 percent of the mean aerodynamic chord, this moderate range is sufficient to provide static longitudinal balance throughout the range of lift coefficients investigated. A large decrease in the effectiveness of the horizontal tail occurred as the Mach number was increased from subsonic to supersonic speed. At supersonic speeds, the variation of pitching moment with angle of deflection was linear up to fairly large negative angles, the control effectiveness decreasing with increasing Mach number.

Hinge-moment coefficient. As noted above, static longitudinal balance could be obtained at subsonic speeds with small deflection of the control surfaces. As shown in figures 8 and 9, the variations of hinge-moment coefficient with angle of attack and with tail deflection were small throughout the range of deflection angles required for balance.

As a result, the control forces required to deflect the horizontal-tail surfaces at subsonic speeds would be expected to be small. If, however, the center-of-gravity position were moved forward so that larger deflection angles were necessary for balance, larger variation of the hinge-moment coefficient with deflection angle would be encountered and larger control forces would be required.

At supersonic speeds, the magnitude of the variations of hingemoment coefficient with angle of attack and with tail deflection increased greatly. As a result, large control forces would be expected to be required in this speed range. For example, if one considered the present wing-body-tail combination to be a 1/12-scale model of an airplane with a wing loading of 45 pounds per square foot, the control moment at a Mach number of 1.5 would be of the order of 30 times that at a Mach number of 0.6 for level flight at an altitude of 30,000 feet.

CONCLUSIONS

Experimental wind-tunnel results for a wing-body-tail combination employing a 3-percent-thick triangular wing of aspect ratio 3 in conjunction with an unswept, all-movable horizontal tail show that the aerodynamic characteristics were improved at moderate-to-high lift coefficients at subsonic speeds and only slightly changed at supersonic speeds, due to the addition of leading-edge chord extensions to the wing. The results of the wind-tunnel investigation are given below.

Pitching moment.- High-lift instability which occurred at subsonic speeds at Mach numbers of 0.6 and 0.8 was either eliminated (M = 0.8) or delayed to higher lift coefficients (M = 0.6) through the addition of chord extensions. Only a small effect at supersonic Mach numbers resulted from the addition of chord extensions.

Lift. The addition of chord extensions eliminated undesirable lift characteristics at subsonic speeds and had little effect on the lift at supersonic speeds. Whereas the variation of lift coefficient with angle of attack for the wing-body-tail combination without chord extensions decreased rapidly at an angle of attack of about 8° at Mach numbers of 0.6 and 0.8, the variation for the combination with chord extensions had no inflection and lift was maintained up to angles of about 16°.

<u>Drag.-</u> The minimum drag was increased slightly throughout the Mach number range with the addition of chord extensions. At subsonic speeds, the drag due to lift was reduced, and the maximum lift-drag ratios were, in consequence, increased. The greatest increase in $(L/D)_{max}$ was obtained at M=0.6, the improvement decreasing with Mach number. At supersonic Mach numbers of 1.5 and greater, no improvement in drag due to lift was realized through the addition of chord extensions. Maximum

Alternative and the

lift-drag ratios obtained in this Mach number range were, as a result, decreased slightly.

Control effectiveness. The control effectiveness of the horizontal tail was essentially unchanged by the addition of chord extensions. At subsonic speeds the effectiveness increased with increasing Mach number. A large decrease in effectiveness occurred as the Mach number was increased from subsonic to supersonic speed. At supersonic speeds the effectiveness decreased with increasing Mach number.

Hinge moment. - Essentially no changes in the hinge-moment characteristics of the horizontal tail occurred due to the addition of chord extensions. The variation of the hinge-moment coefficient with angle of attack and with horizontal-tail deflection was such that the control forces required to deflect the horizontal tail would be much larger at supersonic speeds than at subsonic speeds.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Oct. 14, 1953

REFERENCES

- 1. Heitmeyer, John C.: Effect of Vertical Position of the Wing on the on the Aerodynamic Characteristics of Three Wing-Body Combinations. NACA RM A52L15a, 1953.
- 2. Mitchell, Jesse L.: The Static and Dynamic Longitudinal Stability Characteristics of Some Supersonic Aircraft Configurations. NACA RM L52AlOa, 1952.
- 3. Anderson, Adrien E.: Chordwise and Spanwise Loadings Measured at Low Speed on Large Triangular Wings. NACA RM A9B17, 1949.
- 4. West, F. E., Jr., Liner, George, and Martz, Gladys S.: Effect of Leading-Edge Chord-Extensions on the Aerodynamic Characteristics of a 45° Sweptback Wing-Fuselage Combination at Mach Numbers of 0.40 to 1.03. NACA RM L53BO2, 1953.
- 5. Frick, Charles W., and Olson, Robert N.: Flow Studies in the Asymmetric Adjustable Nozzle of the Ames 6- by 6-Foot Supersonic Wind Tunnel. NACA RM A9E24, 1949.
- 6. Glauert, H.: Wind Tunnel Interference on Wings, Bodies and Airscrews. R. & M. No. 1566, British A.R.C., 1933.

- 7. Herriot, John G.: Blockage Corrections for Three-Dimensional-Flow Closed-Throat Wind Tunnels, With Consideration of the Effect of Compressibility. NACA Rep. 995, 1950. (Formerly NACA RM A7828)
- 8. Lessing, Henry C.: Aerodynamic Study of a Wing-Fuselage Combination Employing a Wing Swept Back 63° Effect of SidesLip on Aerodynamic Characteristics at a Mach Number of 1.4 With the Wing Twisted and Cambered. NACA RM A50F09, 1950.
- 9. Perkins, Edward W.: Experimental Investigation of the Effects of Support Interference on the Drag of Bodies of Revolution at a Mach Number of 1.5. NACA TN 2292, 1951.
- 10. Hall, Charles F., and Heitmeyer, John C.: Aerodynamic Study of a Wing-Fuselage Combination Employing a Wing Swept Back 63°. Characteristics at Supersonic Speeds of a Model With the Wing Twisted and Cambered for Uniform Load. NACA RM A9J24, 1950.

TABLE I.- AERODYNAMIC CHARACTERISTICS OF A MODEL EMPLOYING A TRIANGULAR WING OF ASPECT RATIO 3 AND AN ALL-MOVABLE HORIZONTAL TAIL; R=3.8 × 10⁶ (a) Characteristics for wing-body combination with horizontal tail removed (vertical fins not removed)

M	_ c.	C.T.	C _B	Cm	¥	e	CL	в	Cm	K		C _Z	c _D	C _m
0.60	±26	-0.260	0.0251	0.004	0.90	-4.36	-0.307	0.0290	0.016	1.50	8.32	0.415	0.0712	-0.062
	-0.14	133	.0326	-00k		-2.16	154	.0130	-036		10.39	.510	-102	~.077
	52	011	.0009	.003		53	047	-0064	.005		12.47	.60t	.1401	092
	.72	.01A	.coe4	-002		.50	.022	.008a	.001					1
1	2.11	.10%	.0111	-00E	1	2.16	-130	-0117	005	1.70	الد.ا⊸	197	.0280	.029
	4.25	.231	.0218	a		4.35	.285	.0269	012		-2.07	103	.0176	.016
1	6.39	:深	.0116	-002		6.55	.434	.000	015	l .	50 48	029	.0139	.005
- 1	8.53	.474	.0710	.czo		8.73	-564	.086¥	016		.46	.017	.0137	002
. 1	10.66	.582	.1096	.016		10.85	.660	.129k	017	l	2.06	.090	-0170	012
- [12.77	.662	71/12	.030							4.34	.125	.0271	026
- 1	14.86	-741	.1940 .2487	.033	1.30	-4-18	256	.0322	.oko	Į.	6.21	274	.0427	039
- 1	16.97	827	.2487	.034	ŀ	-2.09	132	.0193	.021	[8.20	.363 447	.063.8	053
٠ ,	15.02	.870	.2789	.034		50	062	.0242	-075		10.34	.447	.0926	067
		-04				.49	-021	.0245	005		12.41	-529	.1260	019
0.80	-4.34	286	.0275	.009		2.08	.115	.0105	016		14.46	.580	.1561	087
1	-6-71	146	.0130	.007		4.17	-240	.0307	036					
1	53	045	.0087	.004		6.26	.364	.0511	034	1.90	13	175	.026	.023
	-53	•00.9	.0084	,002	1	8.35		-0797	073		-2.05	091	.017	.012
	2.14	.117	.0211	OOL	i .	10.43	.585	'77U	087	1	49	027	.0145	.004
	6.49	.258	.0475	005					~~	i i	.48	.013	.0142	002
	8.65	.396		005	1.50	-2.05	225	.0297	.03k	l l	2.05	.076 131-	-0167	011
		609	-078E						.006		6.18	.240	.0309	- 634
	10.78 12.91	.707	1155	.007 .006		50	033	.0130	003	ı	6.24	.319	.0584	- 046
	15.03	-799	2140	-002		2.07	.102	.0173	01		20.30	399	.0631	058
1	25:03	-137	*=1***		ı	4.16	210	.0063	030	ı	12.36	.469	.1129	- 068
1 1			1	[6.24	.314	.0462	045	1	17.16	.540	.1475	078
l i		1			ı		1		رجي: - ا	i .	15.97	-793	.1772	084

(b) Characteristics for wing-body-tail combination; $\delta_n = +4^{\circ}$

ж	Œ	C _L	C _D	C _m	C _{lk}	8	Ж	€.	C _L	C _D	GE .	O _k	8	и	Œ	C _L	င္ခ	C _E	C _h	8
0.60	→.31	-0.225	0.0256	-0.026	0.015	4.0	0.90	4.4	-0.257	0.0306	-0.028	0.014	4.0	1.50	4.12	0.264	0.0362	-0.065	-0.040	3.9
	-6-12	087	.0140	033	-ori	4.0		-6.21	100	-0169	042	-00T	4.0		6.20	-379	-0574	-311	049	3.2
L	48	.00.k	.0126	-040	an.	4.0 4.0		49	.023	.0132 Ç400.	054	-00% -003	4.0 4.0		7.81	.458	.0783	130	055	3.9
i i	2.14	.176	.0178	- 053	,018	4.0		2.19	.214	.023	074	۰۰۰۰۰	4.0	1.70	4.15	186	.0290	.020	004	10.4
1	1.29	.31	.0327	060	.015	4.0		4.38	377	.0406	086	à	4.0		2.06	007	.0192	001	011	1.0
1 1	6.44	.314	.0576	063	.010	4.0	i	6.78	-532	.0717	095	001	4.0		- 24	007	.0161	019	017	4.0
1	8.59	-5][2	.0911	099	.003	4.0		8.77	-677	nine	305	006	4.0		-48	.0k4	.0163	030	022	4.0
	10.72	.639	.1326	058	-005	4.0		10.91	-794	.1642	120	027	4.0		2.04	.125	-0210	ONT	028	3.9
1	15.63	.869	.1763	047	005	¥-0		12.39	.887	.2071	243	044	3.9		4.11 6.18	.229	.0334	071	038 048	3.9
	14.94 17.05	.968	.237.4 .2957	051	015	4.0	1.30	4.19	243	.0393	.024	006	4.0		8.25	.329 .426	.0701	093	056	3.9
1	18.11	1.029	.3332	064	021	4.0	1.30	-2.10	-,106	-0216	006	014	4.0			,420	*0110		-20,00	3.7
			-33-	•••				56	-,010	.0180	008	021	4.0	1.90	-4.33	167	-0275	.015	002	4.0
0.80	4.37	239	.0268	025	.021	4.0		.10	.059	.0284	044	024	4.0		-2.07	076	.0191	003	-2009	4.0
	-2.19	093	.O1.k7	038	.023	4.0		2.0	-159	.0239	067	032	3,9			008	.0165	017	015	4.0
	48	•050	.0122	048	.024	4.0		4-13	-299	.0395	101	012	3-9	1	-47	.037	.0172	026	019	4.0
	.54	.099	.0132	054	.024	1.0		6.21	-424	.0626	131	~.050	3-9		2.03	-106	-0207	040	027	3.9
1 1	2.17	.198	.0191	063	.022	1.0 1.0	1.50	4.17	213	.0312	.024	004	4.0		6.16	.198 .284	.0312 .0473	077	016	3.9
. !	6.59	189	.0536	076	.015	4.0	1	2.09	-,096	-0197	002	013	4.0		8.21	-370	-0696	096	055	3.9
i	6.53	வ்	.0995	070	.007	4.0	•		005	.0162	022	019	4.0		10.27	. 151	.0972	111	063	3.9
	10.83	.724	.1113	073	.004	4.0		73	.052	.oz.66	036	024	3.9					1		
	12.96	.893	-1942	083	004	4.0		2.05	.143	.0218	056	031	3.9							$oldsymbol{\sqcup}$

TABLE I.- AERODYNAMIC CHARACTERISTICS OF A MODEL EMPLOYING A TRIANGULAR WING OF ASPECT RATIO 3 AND AN ALL-MOVABLE HORIZONTAL TAIL; R=3.8 \times 10⁶ - Continued (c) Characteristics for wing-body-tail combination; $\delta_n = +2^\circ$

×	- a	Cv	Cn	Cmt	Ch	8	×	a	C _L	Cn	C _m	Ch	8	l N	_ a	Or.	CD.	Can	G _k	8
-		-	-5		-11	<u> </u>					-			<u> </u>	-	ч.	40	4	Va.	ب
0.60	4.27	-0.240	0.0245	-0.009	0,006	2.1	0.90	4-37	-0.279	0.0089	-0.003	0.017	2.1	1.50	4.13	0.252	0.0337	-0.07E	029	12.0
i	-2.16	108	-0130	015	-010	8.1		-2.21	123	.0141	016	.016	2.1		6.21	367	.0548	099	030	2.0
	53	011	.0099	022	.020	2.1		55	007	.0203	005	.014	2.1	1	8.26	. 577	.0824	126	016	8-0
	-51	-052	.0103	027	-011	2.1		-53	.067	-0110	037	.013	2.1	1		- 1				!
1	2.13	-153	.0148	034	.ch3	5.1		2.18	.187	.0171	050	.010	2.1	1.70	-4.14	195	.0863	.029	.009	2.1
1	1.28	.291	.0286	042	.or4	2.1,		4.36	4350	-0372	065	.009	2.1	1	-2.07	~.092	-0181	.007	002	2.1
1	6.43	.126	-0724	046	.016	2.1		6.59	.516	.0668	074	.005	2.1		54	~.015	-01/47	009	006	2.1
	8.58	.554 .669	.0861	043	.01,6	2.1		8.76	.651	·1068	086	002	2.1	1	.48	.035	-0146.	000	012	2.1
	10.71	.669	.1268	che	-OIA	2.1				1				1	2.05	.116	-0198	036	018	2.1
1	18.61	-747 -847	.1702	031	-013	2.1	1.30	+.19	270	.0337	.030	4004	27		4-18	.218	-0330	060	027	2.0
(14.92	-847	-2277	040	.006	5.7		-0.09	119	.0208	.008	003	2.1	1	6.18	- 31.7 - 41.4	-0490	083	036	2.0
1	17.04	.978	.2923	052	008	5.1		- 55	019	.0167	~014	-4010	2.1	1	8.25		.0737	-702	044	2.0
1	18.09	-999	-3247	~.056	008	2.1			-017	.01.66	~029	014	2.1		10.11	.491	.1012	125	052	2.0
							1	2.06	-151	.0820	- 025	-,020	8.1	1						
0.80	-1.33	259	-0267	007	.011	2.1		4.14	290	-0372	086	029	8-0	1.90	-1.10	171	.0272	-066	-007	8.1
	-2.19	115	-0134	016	-015	2.1	1	6.23	127	.0609	116	037	2.0		-2.06	081	.0165	-004	0	2.1
1 1	- 5	007	-02.00	026	.01.5	2.1		7.18	-486	.0747	130	042	2.0			013	.000	~.009	006	2.2
1 1	-72	-062	-0103	033	-016	2.1								!		.030	-0166	010	011	2.1
1	2.16	.174	-01,58	043	-019	2.1	1.50	-4.16	-,223	-0302	.034		2.1	t i	2.04	-100	-019	032	018	2.1
1 1	4.34	324	.0317	053	*051	2.1		-2.08	104	.0186	-006		2.1		4.10	*130	.0294	000	027	2.0
1	6.52	.471	.0789	- 060	.021	2.1		2	018	.0146		009	2.1	1	6.16	-276	-0450	063	035	5.0
1	8.69	.595 .694	.0946	056		8.1		.48	.041	.0148	024	013	5°F	•	8.21	361	.0666	087	043	9.0
1	10.61	-094	.1372	059	.022	9.1		2.05	.133	.0396	011	020	2.1	1	10.27	.441	-0935	104	052	8.0
	28.96	.814	JB97	074	.028	2.1	1				_				12.33	521	.1269	182	079	5.0

(d) Characteristics for wing-body-tail combination; $\delta_{\rm n}$ = 0°

<u> </u>	α	OL.	C _D	C _m	Ok	8	×	-	C _Z	C _D	C _m	C _h	8	H	•	Or.	On	C.	Oh	T
.60	4.27	-0.266	0.0258	0.010	0.004		2 20	1.00								-	_			+
~	-2.11	131	.0133	*00¥	.004	0.1	0.90	-1.36	-0.311	0.0307	0.020	0.004	0.1	1.50		0.243	0.0319	-0.060	-0-023	0.
	- 50	035	.0097	003	002	1.1		-2.16	150	-0144	.008	006ء	.1		6.20	-359	.0727	087	032	l o
- 1	56	.030	.0095	008					036	.0099	002	.007	-7	ſ	8.35	.470	-0806	114	041	١.
	2.17	.129	.0131	016	.003	.1		2,22	-040	.0098	011	.008	.1							1
	4.30	.26	0254	023	.005				.159	.0146	~-06#	.00€	.1	1.70	-4.13	207	.0292	.039	.011	1 3
	6.48	.400	0482	027	.005	**		4.40	.480	.0609	039	.010	.1	J i	-2.07	100	.0182	.016	-002	۱.,
	8.63	.5e5	.0002	023	.020	:1		6.63 8.81	-480	.0609	~.049	'on	-1		44	023	.ozka	0	003	
	10 77	.645	.1228	023	.012	.1		0.01	.621	1007	060	*008	-1		-56	.029	.0144	012	007	
- 1	12.84	.718	1615	011	-018	.1									2.11	-310	-0185	029	014	-
- 1	14.93	.822	.2160	021	.013	i	1.30	4.00	not.						4.17	.218	.0298	050	022	
	17.02	.928	.2793	- 035	in	.1	1.30	4.16	274	.0347	.054	.011	-1		6.26	.313	.0479	073	032	0
- 1	18.06	978	3136	013	.005	ä		-2.06	132	.0206	-023	.002	41		8.33	.AII	.0725	095	010	0
		•310	توير.	0-0	.00	u.		45	031	.03.60	-001	003	.1		10.40	.702	.1033	116	049	0
oΙ	-1.32	287	.0280	.015	-00A	.1	1	.56	-035	.0161	014	000	.1	l						
٠.	0.14	140	.01.36	.005	.003	i		2.12	-139	-0210	038	015	-7	1.90	4.11	~.180	.0279	.029	-017	2
	51	036	.0097	004	.003	1	- 1	4.19	-277	.0354	070	023	.ı	1 1	-2.04	088	.0186	.012	.002	7
- 1	.57	-035	.0096	011	.003	.1	- 1	6.31 8.39	-116 542	.0999	~-109	032	0		44	020	.03,00	001	~.00R	
	2.20	.144	.0137	020	.005	i	- 1	0.39	.742	.0909	132	011	0		-55	-026	-01.59	011	007	- 1
- 1	4.36	290	-0890	031	.006	<u> </u>	1.50	4.24	1		-1-		. 1	I [2.10	-095	-0189	004	014	1
- 1	6.57	441	.0544	038	·ai	i l	1.50		239	.0312	047	-017	0	, ,	4.15	.183	.028	Oke	024	0
- 1	8.73	-560	.0880	033	.014	i i	- 1	-2-05	116	.0184	-020	-001	0	t I	6.24	.270	-0440	059	030.	0
- 1	10.86	.659	1271	036	.014	•	- 1	45	086	.0148	-001	002	-1	1 1	8.30	-355	.0654	076	011	0
	19.98	.703	1805	-050	.018	* 1	. !	. 26	.032	0143	012	007	-7		10.36	.435	.0920	095	0kg	0
_		-103	رسد.	-,000	····	-1		2.11	.124	.0186	~.033	015	-1		12.39	.513	.1236	112	057	Ö

TABLE I.- AERODYNAMIC CHARACTERISTICS OF A MODEL EMPLOYING A TRIANGULAR WING OF ASPECT RATIO 3 AND AN ALL-MOVABLE HORIZONTAL TAIL; R=3.8 \times 10⁶ - Continued

(e) Characteristics for wing-body-tail combination; $\delta_n = -2^\circ$

¥	Œ	C _L	C _D	C.E.	Ck	8	Ж	æ	c _L	C _D	C _M	Ck	8	M	•	C _L	C _D	C _m	Ch	8
0.60	4.29	-0.263	0.0273	0.026	0	-1-9	0.90	-4.39	-0.335	0.0327	0.012	0.003	-1.9	1.50	8,29	0.453	0.0764	-0.100	-0-029	-2.0
	-C.14	~.150	.0139	.020	.001	-1.9	1	-2.19	172	.0172	.028	.002	-1.9		10.10	.545	-1057	122	037	-2.0
	72	053	.0099	.003	-002	-2.9		54	058	.0099	.015	001	-1.9							
	-52	-010	-0095	.008	.002	-2.9		- 54	.019	.0096	.007	0	-L.9	1.70	-4.13	215	.0301	.047	.021	-1.9
	2.11	-106	-0126	.002	00I	-1.9	1	2.16	.130	-0137	003	0	-1.9		-8.06	110	-0186	.025	.012	-1.9
	1.26	-243	.0243	007	001	-1.9	1	4.36	.452	.0293	016	-004	-1-9		- 19	031	.0145	.008	.005	-1.9
	6.41	-377	-0461	010	.002	-1.9	ı	6-57	. 472	.000	025	-006	-1.9		.48	.018	-01/42	003	.001	-1.9
	8.56	.504	.0773	006	-003	-1-9		8.75	- 593	.0963		.008	-1.9		2.06	.098 .200	.0267	019	003	-1-9
	10.69	.617 .696	.1168	005	.005	-1-9	130	16	287	.0362	com.	.022	-1.9		6.20	.296	.0454	062	011	-1.9 -1.9
	11.90	.796	2096	000	.005	-L9 -L9	7-30	-2.08	- 147	.0215	.070	.013	-1.9		5.26	-200	.0692	084	028	2.0
	17.01	.900	2716	006	.00	-3.6	1	50	011	.0162	.03	.006	-1.9		10.32	.394	.0987	105	038	-2.0
	15.05	-959	-3078	024	.011	-1.9	1	.49	.021	-01.60	0	.002	-ī.ģ			1	1,			
			1.5.1.				1	2.07	.122	.0200	022	002	-1.9	1.90	-1.22	188	.0287	.037	.023	-1.9
0.80	-4.35	309	.0297	.033	۵ ا	-2.9	1	4.16	.258	.0332	054	010	-1.9		-2.06	- 097	.0190	.019	.013	-1.9
	-2.17	- 360	-014	.02	-001	-3.9		6.25	-395		005	018	-1.9		49	027	.0160	.005	.006	-1.9
	53	056	-0097	.013	,002	-1.9	1	6.33	.522	.0562	119	026	-2.0		.48	.015	.0159	003	.002	-1.9
	.53	.012	.0093	.009	G.	-1.9	1								2.05	.085	-0184	017	003	-1.9
	2.1	.118	.0127	001	0	-1.9	1.50	-4-24	248	.0330	.078	-055	-1.9		4.31	-173	.0276	034	013	-1.9
	4.32	.267	-0263	011	0	-1.9		-2.07	128	-0193	-031	.012	-I.9	1	6.17	-279	-0423	071	021	-1.9
	6.49	-411	.0508	017	.002	-1.9		49	035	-0145	-011	-005	-1.9	ı	8.23	-343	.0630	069	029	-2.0
	8.66	-536	.0641	013	-00k	-1-9		.49	.020	.0143	00L	-001	-1.9		10.26	.1423	.0890	086	037	-8.0
	10.79	.634	.1220	013	.004	-L-9	i i	2.07	OII.	.0182	021	003	-1.9	ı	12.3	.502	.1205	102	045	-6-0
	12.93	.770	.1736	025	.007	-L.9		4-14	,296	.0304	047	011	-1.9	ı	24-40	-579	1578	118	072	-2.0
	14.08	-818	-2055	039	.011	-1.9	l	6.22	.342	.0196	074	019	-1.9							

(f) Characteristics for wing-body-tail combination; $\delta_n = -4^{\circ}$

ж	Œ	$c_{\rm L}$	c _D	C _M	c _k	8	ж	α	O _L	Cg	C _M	C _{3k}	8	Ж	Œ	c _L	co.	C.	C _R	8
0.60	4.29 2.14 - 19 2.15	-0.311 180 659 663 663	0.0303 .0159 .0107 .0107 .0123	0.045 .039 .032 .027 .019	-0.01 009 005 007 007	သို့ကိုလူလူကို လူလူလူလူလူလူ	0.90	0.55 9.24 4.39 6.61 8.79	-0.01 100 100 100 100 100 100 100 100 100	0.0100 .0135 .0277 .0335	0.03 .000 .005 004	-0.003 005 003 002 002	-3-9 -3-9 -3-9 -3-9	1.70	-4.12 -2.04 44 60 2.11 4.17	-0.227 -,122 -,040 .013 .090	0.0320 .0198 .0191 .0179 .0263	0.098 .035 .018 .006 010	0.029 .020 .009 .009	-3.9.9.9.9.9
	6.46 8.60 10.75 12.82	.354 .476 .993 .669	.0140 .0737 .1129 .1522	.007	001 002	-3.9 -3.9 -3.9 -3.9	1.30	-4.14 -2.05 45 -61 2.13	303 161 057 .012	.0367 .0230 .0171 .0166	.086 .054 .030 .015	.027 .021 .014 .010	-3.8 -3.9 -3.9 -3.9 -3.9		6.27 8.34 10.41 12.44	.290 .387 .479 .567	.0450 .0677 .0975 .1385	053 075 095 115	014 022 031 040	-3.9 -3.9 -1.0
0.80	-1.35 -2.16 51 54 2.92	339 196 088 015	.0331 .0166 .0097 .0096	.077 .048 .038 .031	015 013 011 008	-3.9 -3.9 -3.9 -3.9		6.33 6.41 10.19	.246 .381 .509 .608	.0327 .05k2 .0644 .1165	039 100 121	003 010 018 025	-3.9 -3.9 -3.9 -3.9	1.90	4.63 	195 105 035 .012	.0296 .0195 .0159 .0139	009	.019 .011 .006	-3.6 -3.9 -3.9 -3.9
	6.56 6.72 10.85	.239 .391 .509 .607	.0249 .0496 .0811 .1185	.010 .003 .008	003 002	-3.9 -3.9 -3.9 -3.9	1.50	-1.13 -2.04 -14 -61 2.13	261 139 017 .014 .102	.0347 .0207 .0152 .0149	.073 .023 .010	.029 .021 .01A .010	-3.8 -3.9 -3.9 -3.9		4.15 6.24 8.30 10.36 12.39 14.43	.165 .250 .334 .414 .451	.0268 .0413 .0614 .0671	026 043 060 077	006 017 029 033	-3-9 -3-9 -3-0 -3-0 -3-0
0.90	-1.36 -2.18 51	372 209 091	.0132 .0182 .0376	.073 .077 .044	001 002	-3.9 -3.9 -3.9		4.19 6.30 8.37 10.45	218 334 442 547	.0226 .0494 .0753 .1086	052 068 088	004 012 020	-3.9 -3.9 -3.9 -4.0		14.43 25.46	.567 .604	.1536 .1743	115	047 052	4.0

TABLE I .- AERODYNAMIC CHARACTERISTICS OF A MODEL EMPLOYING A TRIANGULAR WING OF ASPECT RATIO 3 AND AN ALL-MOVABLE HORIZONTAL TAIL; R=3.8 \times 10⁸ - Continued (g) Characteristics for wing-body-tail combination; $\delta_n = -8^\circ$

Ж	α	C _L	Ç _D	C _{EE}	Ch	В	ж	Œ	C.T.	CD	Cax	Ch	8	Ж	a	C _Z	CD.	Cm	Ca	
0.60	-1.32	-0.346	0.0387	0.074	0.005	-8.0	0.90	4.40	-0.4ok	0.0467	0.105	0.015	-8.0	1.90	6,24	0.306	0.0475	-0.039	0.005	-8.0
	-2.18	222	.0226	.073	.002	-8.0		-2.21	253	-0268	.097	.018		-1,0	6.32	. 10	.0726	- 06	001	
	57	127	.0263	۰066	003	-8.0		71	136	.0186	.086	1009			10.39	. 500	1043	088	009	
	.102	067	.0141	.062	007			-43	072	.0264	.080	.008			11.74	.587	1290	103	015	
	2.10	-032	.0140	.036	011			2.17	018	.0169	.068	.003	-5.0			1	1.			
	4.27	.172	.0225	.046	013			4.36	.914	-0967	-053	-,001		1.70	-4.12	S+4	,0368	-077		-7.9
	6.42 .8.56	-307 -435 -548 -688	.0692	.012	011			6.78 8.72	370	.0864	.044	0	-8.0		-2.05	138	-0233	-053	.036	-7.9
	10.65	1432	1027	.045	008			10.85	.508	.1266	.037	.003	-8.0 -8.0			058	-0180	.035		-7.9
	18.80	606	1420	.059	008			10.07	.000	*17500	.031	.ces	-0.0		2.12	007	-0171	.025	-027	-7-9
	14.86	.722	.1908	.050	005		1.30	-k-2k	329	٠٥٤ <u>٠</u> ١٤	.110	.okz	-7.9		4.15	.171	.0196 -0285	013		-0.0
	16.98	.826	.2489	-057	003			-2.05	190	.0263	.081		-7.9	Į į	6.21	267	.0436	033		-8.0
	18.04	-882	.2823	.029	000			-,49	- 058	.0212	.057	.033		i i	8.26	363	.0659	022		8.0
		_						.49	023	-0196	.057		-7.9	1	10.35	363 542	.0941	073	014	
0.80	-4.36	365	-0430	.092	016			2.14	.083	.0222	.020		-8.0		32.41	.5kg	1266	093	023	
	-2.20	-911	02k1	.084	018			1.19	.215	.0327	010	-017	-0.0							
	58 43	135	.0168	.076	019		1	6.27	349	0721	010	-009	-8-0	1.90	-4.11	212	.0336	.060	.044	
	2.13	071	.0145 .0148	-071	000			8.36	479	.0810	069	.002	-8.0		-2.04	110	.0223	.041	.034	
ì	4.33	.039 .189	.0246	.062	020			10.44	.594	.1176	093	004	-6.0		19	- 070	.0189	.098	.027	
1	6.51	337	0458	.026	019 017	-8.0	1.50	4.19	266	.0416	.097	.046	7.0		-48	005	.0777	-019		-8-0
- 1	8.67	137	.0754	0.3		3.0		2.05	- 162	.0051	.067	.036			2.10	.063	.0196 -0274	011		-8.0
	10.80	.556	.1000	.050		-8.0		49	070	.0251	.045	.033	7.0		6.18	.239	.0108	026		-8.0
	12.89	-664	-15-3	.038		-8.0		.49	012	.0175	.033	.029			8.24	.316	.0603	042		-0.0
1	15.02	-762	-5170	.015	003	-8.0	- 1	2.13	.079	.0202	.012	.022	-0.0		10.30	396	.0853	056	019	
								4.27	-195	.0302	014		-8.0		12.36	. 73	.115	- 074	026	-8.1
															24.42	- 949	.1509	058	033	

(h) Characteristics for wing-body-tail combination; $\delta_n = -12^{\circ}$

H	α	c_{L}	o _D	Cm	Ch	8	¥	Œ	C _L	c _D	Case	C _k	8	ж	α	C _L	c _D	Cas	CP.	8
0.60	4.31	-0.348	0.0454	0.077	0.030	-12.0	0.90	2.16	0.037	0.0236	0.079	0.027	-12.0	1.70	4.11	-0.267	0.0448	0.098	0.062	-11.9
	-0.17	- 224	.0299	.078		-12.0	-1,50	4.38	.183	.0358	.061	-017	-12-0	~,,,	-2.04	158	.0296	.073	.055	
		134	.0236	.077		-12.0		6.58	- 999	.0787	.074	.015			-,49	060	.0235	02		11.
	- 57	061	.0214	.076		-12.0	!	8.76	339	-0919	.072	.014			.49	027	.0020	-043	.044	-11.9
	2.06	.011	-0208	.074	.017	-12.0		10.89	. 568	-1328	.075		-11.9		2.12	.054	-0239	.027	-036	
	4.25	-140	-0277	.071	.011	-IR.0		-			,		,		4.16	.134		.006		-11.9
	6.40	.272	0445	-070	.007	-12.0	1.30	-4.1k	354	.05k2	-133	.069	-11.9		6.23	.251 .345 .436	.0109	014	.015	-12.0
	8.55	-395	-0703	-075		-12.0	- 1	-2.04	- 214	.0364	.105	060	-11.9 -12.9		8.29	345	.0670	033	-006	-19.0
	10.68	.507	-1028	.078		-12.0		47	213	-0987	.084	.054	-11.9		10.36	+36	.0939	053	0	-12.0
	12.78	-587 -674	-1.377	.093		-12.0		-50	049	.0266	.070		-11.9	1	12.42	.525	3276	072	009	
	14.88	.674	.1817	-087	009	-12.0		2.15	-056	-0261	-047	.041	-11.9		13.82	-580	1,729	084		-12.0
_									-191	-0361	.017	.031	وملاء			-				
0.60	-4.36	355	.0459	.07		-12.0	1	6.29	. 322 . 452	.0553	011		-11.9	1.90	-4.10	227	.0398	.077	-079	-11.9
	-2.19	221	.0292	.074		-12.0		8.36	+72	.0827	039	.029	-12.0		-2.0k	136	.0277	-057		-11.9
	77	124	-0229	.073				10.46	- 267	.1180	064	-013	-12.0		49	066	-0231	.043		-11.9
	-43	066	-0230	.073		-18.0		12.3k	-611	1352	072	.010	-12.0	!	.48	023	.0920	.035	-036	-11.9
i	2.14	.034	-0812	-070		-12.0						1			2.10	-018	-0234	-066	-029	-11.9
	4.33	.172	.0306	-067		-12-0	1.50	-4.30	306	-0494	.116		-12.9		4.13	-134	0307	-005		-12.0
	8.67	37.3	.0510	-066		-12.0		-2.04	193	-0335	-09A	.053	-11.9	. 1	6.19	.217	-0136	010	.010	-12.0
	8.67	.434	.0791	.073		-12.0	1	48	097	-0257	.071	.018	-11.9		8.25	.298	.0610	026	.001	-12.0
	10.80	. 396	-1123	-076		-12.0	1	-49	- 036	.0236	.056	011	-11.9	- 1	10.31	.379 .456	10861	040	005	-75'0
	12.99	.626	-1561	.075	008	-12.0		2.1k	.056	-0272	.036		وملت		18.36	.456	.1153	055		-18.0
	1. 5.0		-1-0					4.18	.172	0339	.009		-11.9	l f	14-42	-531	1500	069	021	
-90	-4-40	365	.0498	.088		-11.9		6.25	- 18g	0497	016		-18-0		16.18	-595	-1841	080	026	-1£.1
	-5-50	232	-0306	-080		-11.9		8.33	. 394 . 498	.0732	olo		-12.0	ı 1						
	- 56	124	-0234	.077		-11.9		10.40	495	1040	064	006ء	-12.0	1 1			1	3	- 1	
	.44	063	.0213	-074	.029	-11.9 1		12.47	-597	.1k20	086	0	-12.0	1 1	- 1				- 1	

TABLE I.- AERODYNAMIC CHARACTERISTICS OF A MODEL EMPLOYING A TRIANGULAR WING OF ASPECT RATIO 3 AND AN ALL-MOVABLE HORIZONTAL TAIL; R=3.8 \times 10⁶ - Continued (i) Characteristics for wing-body-tail combination; $\delta_n = -16^\circ$

*	•	Ct.	C _D	C _m	C _h	8	М	•	c _L	∂ _D	C _R	C _h	8	н	•	C _L	C _D	G _R	C _R	8
0.60	4.11 16 75 10 4.26 6.57 10.68 11.87 16.97 18.02	-0.332 208 105 005	0,0481 .0331 .0239 .0268 .0369 .0351 .0778 .1092 .11839 .2390 .2624	0.688 .688 .686 .685 .685 .685 .686 .683 .893 .194 .686 .686 .686 .686 .686 .686 .686 .68	C _h 0.031 0.030 0.030 0.031 0.031 0.031 0.060 0.010 0.001 0.001 0.003	-16.0 -16.0 -16.0 -16.0 -16.0 -16.0 -16.0 -16.0 -16.0 -16.0 -16.0	M 0.90	-2.20 -35 2.15 3.36 6.37 -3.03	-0.231 -1.22 -0.05 -0.03	0.0378 .0291 .0270 .0677 .0683 .0996 .0968 .0961 .0379 .0446 .0612 .0612	0.082 .053 .053 .053 .055 .055 .055 .055 .055	0.036 .037 .036 .035 .035 .035 .036 .036 .036 .036 .036 .036	-16.0 -16.0 -16.0 -16.0 -16.0 -16.0 -16.0 -17.8 -17.9 -17.9 -17.9 -17.9 -17.9 -17.9 -17.9 -17.9	1.50 1.70	10.11 12.18 -1.10 -2.02 19 2.12 1.2.12 10.37 12.15 11.50	0.577 8490 968 975 975 975 975 975 975 975 975 975 975	0.1067 .1434 .056 .0390 .0314 .0292 .0302 .0704 .0704 .0704 .1264 .1565	-0.041 054 057 .077 .083 .046 .004 015 059 059	0.008 .000 .000 .000 .000 .000 .000 .00	-16.0 -16.0 -15.9 -15.9 -15.9 -15.9 -15.9 -16.0 -16.0 -16.0
0.90	2.14 2.14 3.55 6.87 10.89 15.03	-118 -058 -042 -179 -380 -334 -551 -628 -700	.0277 .0259 .0266 .0364 .0777 .0861 .1201 .1601 .2089	.068	.030	-16.0 -16.0 -16.0 -16.0 -16.0 -16.0 -16.0	1.50	11.91 -2.03 47 49 2.14 4.23 6.27 8.34	325 206 116	.0994 .0923 .0324 .0323 .0329 .0406	070 -133 -109 070 075 079 08	.063 .062 .077 .074 .043 .036	-16.0 -15.9 -15.9 -15.9 -15.9 -15.9 -15.9		48 2.10 4.15 6.20 8.26 10.31 12.37 14.43 16.49	082 036 .030 .119 .200 .261 .361 .372 .512 .586	.0291 .0276 .0263 .0349 .0470 .0608 .0681 .1167 .1509	.079 .078 .081 .006 024 077 051	.01 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03	-15.9 -15.9 -15.9 -16.0 -16.0 -16.0 -16.0 -16.0

(j) Characteristics for wing-body-tail combination; $\delta_n = -20^{\circ}$

×	-	Cz	On I	Cat	O _{3k}	8	x	•	c _L	C ₂	C _m	C ₃	8	¥	Œ	$c_{\underline{r}}$	C _D	C _{ML}	C _R	8
m 0.60		0.331 0.4 -205 -110 -205 -110 -106 -106 -107 -106 -107 -107 -107 -108 -108 -108 -108 -108 -108 -108 -108		C# 0.00000000000000000000000000000000000	0,032 0,030 0,030 0,039 0,030 0,035	19.9 19.9 19.9 19.9 19.9 19.9 19.9 19.9	1.50	- 198 -2.19 -2.55 -3.57 -3.57 -3.59 -1.58 -1.58 -1.58 -1.58 -3.97 -2.15 -3.97 -2.15 -3.97 -2.15 -3.97 -2.15 -3.97 -2.15 -3.97	**************************************	6.683845 6.683845 6.6838 6.683	C. 0.000 (0.000) A 1915 (0.000) A 195 (0.000) A	6.000 0.000	-19.8 -19.8 -19.8 -19.8 -19.8 -19.8 -19.8 -19.7 -19.7 -19.7 -19.7 -19.8 -19.8 -19.8 -19.8 -19.8	1.70	10.19 12.19 -2.01 -2.12 -2.12 -2.12 -2.12 -2.13 -10.17 10.17 10.17	0.449 547 - 257 - 119 -	0.110A .1193 .0500 .0500 .0306 .0306 .0306 .0307 .1317 .1666 .0577 .0509 .0309		a.d.33	-19.8 -19.8 -19.7 -19.7 -19.8 -19.8 -19.8 -19.8 -19.8 -19.8 -19.8 -19.8 -19.8 -19.8 -19.8 -19.8 -19.8 -19.8

TABLE I.- AERODYNAMIC CHARACTERISTICS OF A MODEL EMPLOYING A TRIANGULAR WING OF ASPECT RATIO 3 AND AN ALL-MOVABLE HORIZONTAL TAIL; $R=3.8\times10^6$ - Concluded

(k) Characteristics for wing-body-tail combination; $\delta_n = -24^{\circ}$

ж	Œ	C _L	CD	Cen	C ₂	0	и	Œ.	C _L	G)	C _m	C _h	8	н	-	C _T	CD.	C _m	Ch	
0.60	-4.30	-0.336	0.0607	0.074	0.038	-23.9	0.90	→.39	-0.393	0.0706	0.104	0.077	-23.8	1.50	10.44	0.128	0.1202	0.002	0.043	-23.8
	-2.16	206	.0393	.073	.036	-23.9 -23.9		-2.19	240	.0507	.096	027	-23.8		12.52	-527	.1544	019	.038	-23.0
	13	065	.0374	.070	-037	-23.9		وبا.	070	.0417	.087	.052	-23.8	1.70	4.00	305	.0758	.136	.060	-23.7
	2.10	.025	.0377	.069	.036 .036	-23.9		2.16 4.36	-040	.0122	.080	1048	-23.8		-6.01	209	.0615	.122	.075	-23.7
	6.41	278	.0627	.069	.037	-23.9		6.58	.199	.0790	.073	.046	-23.8 -23.8		- 15	134	.0540	-108	.070	-03.7 -03.7
	8.56	-405	.0904	•णर्ग	.036	-23.9		8.76	.354	.1136	.06i	.049	-23.0	1	2.12	008	.0709	.099	.065	23.0
	10.69	.507 .581.	.1578	.084	.035	-23.9 -23.9	1.30	-2.02	-,265	.0719	2.00	,,,,		ł	1.23	.093	.0562	.963	.062	-23.0
	14.88	.677	-2018	.109	-040	-25.9	1.50	-,45	170	.0628	.138	.101	-23.7 -23.7	1	6.30 8.32	.192 .286	.0670	.020	.050	-23.6 -23.8
	16.97 16.02	-723	-2485	.11	.040	-23-9		.51	112	.0997	.127	.091	-23.7	1	10.39	.376	.1064	0	.034	-03.8
	10,02	.758	-2752	.117	.036	-23.9		2.14	013	.0585	.076	.069	-23.T	1	12.46	.466 .548	.1387	018	.023	-23.8
0.80	-4.36	363	.0656 .0478	-086	-046	-23.8		6.34	.250	.0602	.052	.073	-23.8		14.5	.,40	.1750	034	.010	-23.9
	2.18	-,225	.0478	.083	.016	-23.5 -23.8		8.90	372	.1037	-029	.063	-23.8	1.90	-4.08	277	.0716	.124	.071	-23.8
	- 26	~.068	0393	.णा	.014	-23.8		12.54	.505	.1372	009	.056	-23.8 -23.8		-2.01	190	.0586	.098	.067	-23.8 -23.8
	41.9	.034	.0399	.073	.012	-23.8								i i	.49	061	.0501	.091	-069	-23.8
	6.53	.176	.0492	.069	.039	-23.8 -23.8	1.50	-2.01	234	0653	.136	.083	-23.7 -23.7	l .	2.11 4.20	006	.0177	.073	.068	-23.8
	8,68	115	.0998	.075	.035	-23.8		.71	098	.0544	,111	-076	-23.7	i i	6.26	.172	.0518	.033	.037	-83.8 -83.8
	10.83	.547 .628	.1362	.076	.037	-23.8		2.14	009	.0539	.067	.070	-23.7	1	6,26	.251	.0786	.020	.038	-23.8
	15.05	.718	.2272	.074	.010	-23.8 -23.8		6.33	.109	.0637 0726	.057	.064	-23.8 -23.8		10.31	.331	.1009 .1202	009	.026	-23.8 -23.9
Į i	17.15	.788	2795	.012	.043	-23.8		8.37	.324	.0925	.024	016	-23.8	1	14,46	.482	1605	021	.009	23.9
				_											16.52	. 556	.1907	033	.00A	-23.9
																		<u> </u>		

TABLE II.- AERODYNAMIC CHARACTERISTICS OF A MODEL EMPLOYING A TRIANGULAR WING OF ASPECT RATIO 3 WITH LEADING-EDGE CHORD EXTENSIONS AND AN ALL-MOVABLE HORIZONTAL TAIL

(a) Characteristics for wing-body combination with horizontal tail removed (vertical fins not removed)

ж	a.	C _E	OD.	Cag	M	•	a _L	OD.	G _{EK}	Ж	•	ਹਾ	O _D	Q.
0.60	-4.30	-0.270	0.026	٥	0.90	0.91	0.004	0.0088	0.000	1.50	-0.52	-0.039	0,0151	0.00
	-2.16	144	,0138	*005	,-	1.07	.061	.0098	0.00	1 ~	.50	-0.039	.01.6	00
	-1.07	079	.0103	.002	1	2.18	-135	.0118	002	l l	1.09	.018	.0252	00
		046	.0095	.002	1	4.37	.286	.0253	007		2.05	.105	OIBL	61
	-52	.017	.0091	.002		6.56	. 1440	.0726	013		4.17	-213	.0293	03
	1.04	.046	.009A	.002	1	8.77	.602	.0934	025		6.25	120	.0475	04
	2.12	.107	.0111	.002		20.95	.763	1470	050		8.33	320	.0725	06
	4.25	-230	.0197	-002							10.40	518	2040	07
	6.40	.359 .482	.0411	.009	1.20	-1.22	306	.0356	.046			سر.		-201
	8.54	-482	.0705	.009		-0.11	158	.0200	.025	1.70	4.16	206	.0303	.03
	10.68	.608	-1095	.009	ı	-1.06	083	.0158	.014		-2.03	109	.0194	,01
	12.81	.729	.1578	.008	l	52	048	-014-1	-009		-1.04	059	.0162	.01
	14.94	-83¥	2126	-010	ı	.50	.026	.0139	000			034	.0153	.00
	16.97	.920	.26T1	.00k	ı	2.10	.132	.0178	017		51 .49	.018	01.0	000
	18.06	-917	-2897	-034		4.20	.276	.0321	039		1.03	.043	.0151	-00
_	i. I				1	1.04	.061	.0144	006		2.07	.093	.0173	01
-80	→.37	297	.0293	.005		6.30	.420	.0543	-,062		4.15	.186	.0275	02
	-2.19	158	.0144	.005		8.41	-563	.0874	083		6.22	.381	.0418	040
	-1.10	083	-00.04	.003							8.29	.370	.0660	013
	~5 }	048	.0092	.003	1.30	→.21	276	.0356	.041		10.36	457	.0000	06
	-54	.020	.0086	.002		-6.10	-,143	.0212	.022	1	12.43		.1277	
	1.06	.052	.0091	.001	1	-2.05	076	.0172	010		42.73	-539	-7511	075
	2.15	.120	oiro.	0	ŧ I	-,72	043	.03.60	.007	1,90	-k.1k	180	.0686	000
- 1	4.32	.298	.0222	.001		.90	.023	.0155	002	-1.50	-2.07	094	.0192	-02
- 1	6.50	-394	.0454	.001		1.04	.055	-0160	007		-2.03	050	-0166	.003
- 1	8.67	.535 .669	.0801	.003		2.09	.119	.0192	016		-,50	026	-0160	
- 1	10.84	.669	.1248	.ou		4.18	.246	.0316	035		-:50	.016	.0056	00
- 1	12.99	-793	7118	.016		6.28	-372	.0583	054		1.00	.038	.0159	00
	1	- 1	1			8.37	192	.0813	~.072		2.06	.081	-0186	- 011
.90	-4.41	二器	.0321	.011		20.46	.603	.1181	089		1.10	164	.0265	-022
	-2.21	107	.0152	.007							6.19	.248	.0107	03
i	-1.11	090	.010	-005	2.50	→.1B	~.238	.0326	.036		8.25	.327	.0607	046
- [30	050	•009k	.003		-2.09	126	.0201	.020		10.31	-504	.0853	~.057
ł	.		- 1			-1.05	068	.0263	.011		19.37	.479	1155	-00
		1					1				14.43	71	1507	~~~
													NACA	

TABLE II. - AERODYNAMIC CHARACTERISTICS OF A MODEL EMPLOYING A TRIANGULAR WING OF ASPECT RATIO 3 WITH LEADING-EDGE CHORD EXTENSIONS AND AN ALL-MOVABLE HORIZONTAL TAIL - Continued

(b)	Characteristics	for	wing-body-tail	combination;	$\delta_n =$	= +4°
-----	-----------------	-----	----------------	--------------	--------------	-------

ж	æ	OL.	Cap	C _m	Q _k	8	Ж	- C-	C _L	CD	C _m	Ca	8	и	c	OL.	O _E :	Cag	Q ₂	8
0.60	-4.32	-0.229	0.0253	-0.027	0.016	4. 0	0.90	0.56	0.092	0.0339	-0.054	0.060	A.I	1.50	1.02	0.084	0.0187	-0.043	-0.029	3.9
	-0.16	091	.0139	032	.017	1.0		1.10	.131	.0153	~057	.019	4.0	1	2.06	.147		057	026	3.9
	-1.06	019	io.	036	.017	4.0		2.20	.208	.0195	- 062	OIB	4.0	1	4.14	263	.0230	- 083	035	3.9
	49	.012	.0113	036	-018	4.0		4.39	-379	.0358	071	.016	4.0	l I	6.21	-383	.0588	-110	~.043	3.9
	.55	.080	.0191	-02	ATD.	4.0		6.58	.505	.0633	-074	.01A	4.0	•	8.29	.496	.0880	-,137	-051	3.8
1	1.09		.0133	045	.019	4.0		8.78	.666	.1020	087	.012	4.0	í i	9.32	-270	.1052	-150	-054	3.8
1	2.17	123	-0167	-0.9	.016	4.0		10.95	.825	.1589	-111	110.	4.0				,			
.	4.31	.313	0288	~000	.016	4.0		~		1	-			1.70	→.16	196	.0312	.024	I ~I	4.0
1 1	6.46	.313 .450 .511	.0331	- 098	.012	4.0	1.20	4.24	263	.037%	-024	005	4.0	[-6.09	090	.0207	-00E	i~coa (4.0
	8.61	- An	.0531	039	.007	4.0		-2.13	-,127	0226	006	- 001	4.0	1	-1.07	-,037	.0180	013	012	4.0
	10.77	-717	-1356	063	.003	4-0		-1.10	016	.0193	025	01h	3.9		-54	009	.0173	-016	~mx	4.0
	12.92	.849	.1356 .1909	070	001	1.0		56	-,007	.0183	-,033	~.016	3.9		, kg	.047	.0275	029	019	3.9
1	15.05	.963	.2331	013	004	4.0		.55	.072	-0189		021	1.9	I 1	1,02	.075	.0184	035	021	3.9
1 1	17.15	1.01	.2531 .3244	~,064	008	4.0		1.00	.112	.0200	058	00k	3.9	L '	2.06	.129	.0219	046	~025	3.9
	18.19	1.066	.3446	-,059	O14	1.0		2.07	.190	8490	-075	029	3-9	1	4.13	-234	-0343	069	033	3.9
1				22				4.17	.190 .346	.0436	- 109	- 038	3.9	•	6.19	.334	.0331	092	042	3.9
0.80	-39	-,254	-0686	~.030	.022	A.I		6.27	.500	.0698	-140	~.047	3.8		8.26	.334 .43a	.0785	114	049	3.6
	-2.20	099	.0157	038	.023	A.I	l	7.33	-511	.0861	-151	098	3.8	1	10.32	-527	.1105	136	-,057	3.8
	-L.05	020	.0123	-043	,023	1.1				1				Į.	11.36	-213	.1290	116	06I	3.8
1 1	50	.015	.0122	- 016	.004	4.1	2,30	-≒.22	260	.0374	i .oer	003	14.0	(1 -				•	- 1
1 1	.56	.091	.0131	051	.024	4.1		-0.12	-,119	.0236	004	-012	4,0	1.90	-4.74	-171	.0301	.017	0	≽. 0
	1.10	.196	.011/2	024	.024	4.1		1.10	047	.0204	020	016	5.9	1	-2.05	080	.0213	003	-,006	4.0
1 1	2.19	.203	.0186	059	.024	4.I		56	-OLI	.0195	098	018	3.9		-1.06	032	.0198	-011	-010	4.0
1 1	4.37	.346	.033k	066	.022	A.I		49	.062	.0I.98	044	022	3.9	1	54	009	.0186	015	013	4.0
	6.54	.186	.0597	067	.018	4.0		1.02	.097	-0209	-,051	024	3-9	1	- 25	.040	.0189	025	017	4.0
	8.73	.636	.0985	076	.009	4.0		2.06	.160	.0254	066	025	3-9	ſ	1.02	.064	.0196	030	019	3.9
	10,90	.778	1504	089	001	4.0		4.16	.309	.0413	098	035	1.9	1	2.05	.110	-0224	039	024	3.9
	13.06	.914	-2123	-101	-010	4.0		6.24	.309	-0660	- 129	044	3.9		4.11	.20L	0329	037	~032	3.9
		-,			1			7-29	-510	.0809	142	048	3.8	ŧ	6.17	.290	-0494	076	041	13.9
0.90	4.41	-,263	.0312	030	-023	4.1	i	. ~		1	1			Į.	8.22	.376	.0718	095	050	3.8
	-0.22	-107	.01.68	039	.022	4.1	1.50	-4.28	206	.0333	.026	003	4.0	ı	10.27	.458	.0996	-113	058	3.8
[-2.09	023	.0133	015	.021	4.1		-6.70	104	4,000	0	021	4.0	ſ	12.33	.540	-I333	-131	066	3.8
I 1	50	.016	.0129	048	.020	4.1		-1.09	044	.0182	014	-026	3.9	ı	14.39	.619	.1729	-,146	072	3.8
[7~		1					55	-011	.0173	~000	017	3-9	1					1	
l i	i '	1	1	1		i '		- 19	.053	.0175	036	027	3.9		1	ı	1		1.	

(c) Characteristics for wing-body-tail combination; $\delta_n = 0^{\circ}$

M	£	C _E	В	C _m	ď	8	M	6	C _Z	C _D	C _B	O _b	8	и		C _L	c _D	C _{EE}	Chr.	8
0.60	→.30	-0.274	0.0280	0.007	0.003	0.2	0.90	-4.40	-0.327	0.0340	0.015	0.006	0.2	1.50	-0.51	-0.030	0.0359	0.003	0.001	0.2
	-2.15	140	.0149	.002	.003	0.2		-0.91	163	-0166	.006	.006	0.2		.50	.031	.0358	027	005	0.2
	-L.06	069	.0135	-,002	-002	0.2		-1.11	084	.0122	0	.005	0.2		1.03	064	-0165	018	007	0.2
	- 55	036	-010B	005	-008	0.2		~ 54	042	.0002	003	.008	0.2		5.01	.127	.0200	032	015	0.2
1	.51	.030	-030k	009	.003	0.2		-72	-035	.0305	~~010	.009	0.2		4.16	.246	.0327	058	020	0.1
	1.06	.065	TOED.	011	-003	0,2		1.06	.078	*0115	013	.000	0.2	1	6,23	-363 177	.0529	007	008	0.1
	2.13	.133	.0132	015	-004	0.2		2.16	.159	.01k3	020	.006	0.2		8.31	- <u>+3</u> T	OIBD.	-117	037	0.1
	4.26	.262	-0551	022	.005	0.2		4.38	321 486	.0295	032	.031	0.2	1	10.37	.583	TCLL.	136	045	0
	6.41	.400	.0+56	026	-007	0.2		6.58		.058	043	.mı	0.2	L-70	-4,36	~214	.0318	.ohi	.013	0.2
	8.57	.536	.0784	025	.009	0.2	Ι.	8.77	-659	.1030	066	-012	0.2	1-10	-2.00	106	.0203	.018	.007	0.2
	9.63	.599 .663	.0976	030	*020	0.2									-1.0	~.051	.0171	.006	-001	0.2
	10.71	.667	.1197	033	.011	0.2	1.20	-4.22	-,319	-0363	.058	.007	0.2	ı	~ 51	025	.0163	.001	001	0.2
1	11.77	.731	1115	036	-012	0.2		-2.11	~.161	-0219	.027	0	0.2	i	.50	.030	.0169	-012	003	0.2
	12.85	.800	.1730	041	.013	0.2		-1.06	013	.0177	.030	a	0.2	1	1.03	.056	.0169	017	005	0.8
	13.90	.855	-1995	044	.013	0.2	l .	50	039	.0164	.002	00%	0.2	1	2.07	112	-0199	029	000	0.2
'	14.97	.911	-2320	045	.013	0.2	i .	1.04	-087	.0160	015 064	003	0.2	Į.	4.14	217	.0313	051	019	0.1
	16.03	-959	.2626	042	-013	0.2			-079		042	009	0.2		6.21	918	.0491	073	027	0.1
	17.05	-993	.2920	~-039	-012	0.2		2.09	-159	.0356	076	016	0.1		8,25	.318	0736	095	035	0.1
	38.30	1.018	-3206		.009	0.2		6.29	淵	.0612	110	025	lai	1	10.35	511	.0736	- 116	- 014	1 0
0.60	-4.36	200	-0339	்ப	_00k	0-2		8.39	666	.0979	175	037	0.1	ı .	11,35	.562	1226	327	048	١ŏ
0.00	-2.18	303 151	.63	-003	-002	0.2		6.35	.020	.0919									1	1 -
	1.10	073	au.	002		0.2	330	-1.19	- 000	.0378	.057	-ma	0.2	1.90	-4.13	186	.0303	-031	.014	0.3
	- 56	037	.0005	005	.003	0.2	ł	-2.09	290 346	0227	.026	.003	0.2	1	-0.07	092	.0204	.013	.006	0.2
i	52 52	.034	.0300		.00	0.2	1	-1.07	-070	.0185	.016	0	0.2	ì	-1.03	045	_0180	.004	.002	0.2
1	1.07	.071	.0006		.005	0.2	ı	-32	- 035	.0170	.002	002	0.2			023	ETTO.	10	0	0.2
ľ	2.16	.143	.0132	010	-006	0.8	1	.51	.035	.0171	013	006	0.2	ſ	50	.024	.0173	1020	008	0.2
	4.33	205	.0256	026	.006	0.2		1.0	-072	.0277	001	L008	0.2	ι	1.01	.048	.0178	014	005	0.2
1	6.50	.428	.0496	630	.010	0.2	ł	2.05	.145	.022	037	_ma	0.2	1	8.05	.095	.0201	023	009	0.2
1	8.68	.588	.0890	042		0.2	1	4.27	.264	-0354	068	-,020	0.1	1	4.12	.18%	.0295	042	018	0.1
	9.76	.655	1106	050	.013	0.2	l .	6.25	, k20	.0354	099	025	0.1	ľ	6.17	.272	.0148	060	027	0.1
l	9.76	.722	.1344	055	i an	0.2	1	8.33	-,773	.0906	129	037	0.1	1	8.22	.358	.0661	078	035	0.1
1	11,98	.796 .866	.1638	064	.016	0,2	ı	9-37	.615	.1096	143	-041	0.1	1	10.25	.440	.0926	096	043	0.1
[13.00	.866	1948	-,073	.OIB	0.2	1		1	1	_	1	ſ	ſ	12.34	522	.1255	112	051	0
1	14.06	.904	.2276	064	.020	0.3	1.50		-,249		.050	.003	0.3	l	14.40	.598	.1632	126	058	a
1	15.13	.960	-2591	09	.090	0.3	1	-2.09	126	.0209	.023	-004	0.2	i .	1		i	Į.	ì	į.
Į.	8.19	.774	.0793	- 036	2012	0.2		-1.05	⊸জ	.0110	.009	0	0.2	Ł.,	1	1				
																		~	NACA	

TABLE II. - AERODYNAMIC CHARACTERISTICS OF A MODEL EMPLOYING A TRIANGULAR WING OF ASPECT RATIO 3 WITH LEADING-EDGE CHORD EXTENSIONS AND AN ALL-MOVABLE HORIZONTAL TAIL - Continued

(d) Characteristics for wing-body-tail combination; $\delta_n = -2^{\circ}$

М	Œ	OL.	CD	C _M	Gh.	6	K	Œ	OL	C _D	Om	C _k	8	K		_				
0.60	-1.32	-0.300	0.0297	0.021	-0.001	-1.6	0.90	-1.11	-0.201	0.0119		-	_	-	α.	<u> </u>	c _n	Q _E	Ch.	В
	-0.17	156	.0156	.016	0	-L6	1 ".,"	56	062	Boro.	0.016	0,001	-1.6 -1.6	1.50	-1.05	-0.075	0.0176	0.015	0.007	-1.6
	-1.09	093	-0115	.013	.001	-1.6		- 51	.022	:0101	.006	001	1.6	1	52	ou	.0162	.011	.005	-1.6
	5	060	.0105	.011	.001	-1.6	1	1.07	.056	.0105	.003	0	-1.6		1.03	.020	.0157	003	.001	-1-6
	1.06	.010	·0098	-007	001	-16	1	2.15	136	.0733	002	.002	-1.6	1	2.08	.02	.0163	009	.000	-1.6
	2.12	.042	.003	.006	001	-1.6		4.37	-294	.0273	-,012	.005	-1.6	F	4.15	933	.0320	023 049	005	-1.6
	4.26	.109	.0212	002	001	-2.6	1	6.57	.456	-0547	022	.005	-1.6	ŀ	6.23	.233 .349	.0517	079	~.021	-1.6 -1.7
	6.48	.380	.0430	009	0	-1.6 -1.6	ł	9.03	.626	.1001	O47	-006	-1.6		8.30	1.61	.0788	100	029	-1.7
	8.56	.512	.0752	000	-001	-1.6	1	9.86	.698	.1217	~.opé	.009	-1.6		10.37	.568	.1133	127	-,037	-1.7
	9.54	-518	-0946	013	.002	-1.6		m.yo	.791	.1532	073	.014	-1.6	1	11.56	.629	.1365	141	042	-1.7
	10.71	.641	.1159	- 015	-003	-1.6	1.90	-4-21	339	.0403	-		l		1					
	11.78	-705	.1398	018	.004	-1.6		-0.11	177	.0205	.073	.018	-1.5 -1.6	1.70	→.15	-,224	.0326	019	.023.	-1.5
	12.85	.776	.1681	023	.005	-ī.6	1	-1.05	095	.0136	.023	.003	1.6		-2.00 -1.04	117	.0806	.026	.012	-1.6
	13.92	-635	.1967	~.026	-006	-1.6		53	036	0111	.015	.00	-1.6	1	51	062 034	.017	.014	.006	-2.6
	14.98	.887	2258	026	-007	-1.6	1	.50	.025	.0163	002	0 .	-1.6		51	019	.0164	.009	.007	-1.6
	16.04	•935 •972	2566 2005	023	.008	-1.6	1	1.0	.062	.0142	009	0	-1.6		1.03	.047	-0165	003 009	.002	-1-6
	17.09	.972	-2007	039	-009	-1.6	1	2.09	.139	-03.90	026	002	-1.6	l .	2.07	.100	.0192	020	-,002	-1.6
	10.12	-999	.3144	~~020	.010	~1,6	1	4.19	-256 -53 -611	0349	061	007	-1.6	I 1	4.14	201	0299	041	011	-1.6
08.0	-4.38	329	.0395	.026	۱.			6.28	.453	.0600	096	013	-1.6		6.21	.303	.0472	063	001	1.7
	-8.20	177	.0162	.020	°.001	-1.6 -1.6		8.38	-611	-0933	131	023	-1.7	1	82.6	303	.0710	085	029	-1.7
	-1.11	096	-0136	.015	001	-2.6		8.99	-661	.1065	~143	027	-1.7		10.34	.492	.1009	-, 105	037	-1.7
	55	061	.0104	.003	001	-2.6	1.30	4.19	310	ober				Į į	19.41	.582	-1373	125	06	-1.7
	-53	.015	.0098	.007	0	-1.6	4.50	-2.10	163	.0401	.069	.019	-1.5							
	1.09	.051	.0102	.005	l ö	-1.6		-1.05	088	0194	-021	.008	-1.6	1.90	-4.13	193	.0309	-036	.021	-3.5
	2.15	.124	.0125	0	à .	-1.6	1	52	072	.0181	-014	.006	-1.6		-2.07 -1.03	100	-0000	.019	-018	-1.6
	4.33	-269	.0244	020	0	-1.6	•	.50	.022	.0171	002	.001	-L6			052	-0166	.010	.008	-I.6
	6.51	.413	-0477	032	.001	-1.6		1.04	-055	00.76	009	0.~~	-1.6	l	50	029	.0174	.005	.006	-1.6
	9.76	. 562	.0853	023	-003	-1-6	,	2.08	.127	.0212	02	oot	-1.6	1	1.02	.017	.0170	~.00A ~.00B	~005	-1.6
	10.63	630	.1071	029	.004	-1.6	•	4.17	-267	.0349	073	011	-1.6	I	2.06	.087	.0195	- 017	0	-2.6
	11.9	-104	1604	036 043	.006	-1.6		6.26	403	.0573	087	019	-1.7	I :	4,12	.176	.0007	034	003 013	-1.6
	13.01	.776 .841	189	051	-009	-1.6		8.34	-537	.0992	110	025	-1-7		6.18	.B63	0135	052	013	-1.7
			٠	001	.002			10.02	.639	.1209	140	034	-1.7		8.23	.349	.0647	069	033	-1.7
.90	3,52	354	0133	.035	.003	-1.6	1.50	→.17	265	me	~-				30,29	. 430	.0909	~.006	039	-1.7
	-2.22	188	.0171	.023	.001	-1.6	2.50	-8.09	- 110	.0360	.060	.019	-1-2		12.35	.510	.1997	-, 103		-1.6
										0210	.033	.011	-1.6	L.	14.40	.587	.1602	- 226		-1.8

(e) Characteristics for wing-body-tail combination; δ_n = -4°

×	- 4	O _L	C _D	0,	Oh	8	<u> </u>	-	OL.	σn	-	-	1	T	_			·	A	_
	1				-	-		-	- OL	- VP	Can	Op.	8	X		G.	o _D	O _{me}	D.	1.
J-60	-2.17 -1.10 -27	-0.323 187 118 081 015	.0127	0.043 -037 -034 -032 -026	-0.010 009 008 007	1	0.90	-57 -57 -2.12 -2.03	-0.220 134 093 013	0.0204 .0112 .0126 .0111	0.034 .046 .043 .037	0 002 001 001 004	7.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	1.30	4.17 6.26 8.34 10.19	0.251 -367 -517 -627	0.0341 .0555 .0859 .1204	-0.038 058 098 123	0 006 014 022	24.44
	1.04 8.13 4.25 6.38 8.56 10.68	.017 .086 .215 .350 .483	.0106 .0191 .0202 .0398	.026 .022 .014 .010	004 002 001	44444444444444444444444444444444444444		2.20 4.37 6.57 8.77 10.95	.111 .269 .433 .600	.0138 .0267 .0532 .0947	001 001 001	001 001 0	ተተታታ ተተታታ ተ	1.50	→.16 -2.08 -1.03 51	~.274 ~.148 ~.083 ~.051	.0373 .0227 .0183 .0169	.074 .046 .031	.030 .023 .013	Labeled
	12.82 14.94 17.04 18.07	.749 .856 .937 .963	.1627 .2181 .2752 .3022	005 006 001	009 .005 .004	ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት	1,20	-1.20 -2.09 -1.04 -22	350 197 111 072	.0416 .0244 .0191 .0177	.054 .052 .044	.034 .024 .020	7:7 7:7 7:7 7:7		1.04 2.09 4.17 6.25 8.32	.103	.0163 .0168 .0198 .0313 .0504	.010 .005 010 035 061 087	0.00 200. 200. 500.	かかかかかか
-80	→.39 ←.21 →.77 77	356 305 129 090	.0356 .0183 .0129 .0117	.054 .046 .041 .038	014 013 011 011	가요 구요 가요 구요		1.05 2.11 4.20 6.30	.008 .049 .122 .277 .432	.0168 .0174 .0204 .0340	019 006 040	.006	마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마	1.70	10.39	-573 -591 234	.1245	~111 ~190	016 025 028	TTP T
	2.15 1.07 4.32 6.49	-016 .097 .021 .240	.0105 .0105 .0232 .0451	.033 .034 .030 .014	009 005 007 008	구 구 구 구 구 구 구 구 구 구 구 구 구 구 구 구 구 구 구	1.30	8.40 8.98 -1.18	.589 .635 319	.0931 .1050	110	005 012	79.8 -7.8		-2.07 50 50 1.03	069 082 082	.0220 .0182 .0171 .0164 .0169	.037 .024 .019 .006	.017 .015	2444
	8.68 10.83 13.00	.536 .672 .810	.1832	029	.001 001 .001	가유 다유 다유		-2.09 -1.03 52 53 1.07	178 099 063 .011	.0255 .0206 .0191 .0181	.037 .039 .031	.018 .016 .012	73.7 73.8 73.8 73.8		2.08 4.15 6.22 6.28	.093	.0194 .0297	010 081 093	-001	かかかかり
.90	-4.43	367	.0405	.067	.007	-3.B		2.09	.111	.0185 .0216	007	.010	-3.6 -3.8		10.35	392 482 580	.0696 .0989 .1365	094 114	026	7

TABLE II. - AERODYNAMIC CHARACTERISTICS OF A MODEL EMPLOYING A TRIANGULAR WING OF ASPECT RATIO 3 WITH LEADING-EDGE CHORD EXTENSIONS AND AN ALL-MOVABLE HORIZONTAL TAIL - Continued

(f) Characteristics for wing-body-tail combination; $\delta_n = -8^{\circ}$

ж		CL	C _D	C _{RE}	Q _k		ж	•	O _L	ďρ	Ger	9	6	×		OT.	Ca	C _m	0	
0.60	-4.34	.0 262	0.0110	0.070	0.009	-7.6	0.00	7.00	0.000			_	- 0		_	_				_
0200	-2.22	-0.363 231	.0240	.069	.004	7.7	0.90	2.18	-0.032	.0176	0.079	0.012	7.8	1,50	2.13	0.001	-0209	0.066	0.028	7.7
	-1,12	163	0185	.067	•	13.5		4.39	219	.0003	.061	.005	7.8		4.17	198	.0311	410	.023	-7-7
	59	132	.0169	.066	ā	7.0		6.59	.386	.0532	.019	.000	7.8	1	6.29	212	0.88	039	.005	7.8 7.8
	. 10	066	.01A3	.064	004	7.9		8.76	-731	.0919	.029	.004	7.8		8.32	-313 -423	.0739	063	,,	7.3
	1.03	034	.0136	.062	005	-7.9		10.94	710	1635	-002	.032	7.8		10.39	.508	1063	087	008	7.3
	2.09	.033	.0139	.078	009	-5.0							'~		10.25	.619	2414	-100	016	7.5
	4.25	.167	.0200	011	000	-8.0	1.20	-4.18	365	.0483	.125	.0%	-7-6	1		1			1111	ا " ا
	6.40	.903 .434	-0874		009	-8.0		-2.08	- 200	.0293	.125	.056	-7.6	1.70	-4.13	-273 -373	.0364	.079	.047	-7.6
1	8.53 10.65	.434	.0690	.C44	007	-7.9		-1.03	148	.0037	.076	.043	-7.7	1	-6.06	-143	-02kg	.077	.035	7.7
	10.65	-570	.1079	-035	006	7.9		70	-706	.0219	.068	140.	-7.7		-1.02	088	-0208	.043	.033	[-7∙7
	12.79	-702	.1544	.030	004	7-9		.51	030	.0203	.053	.037	-7.7	1	~-,50	060	.019k	.037	.031	-7.7
	24.90 17.00	-807 -869	.2075 .2628	-096	00I	7.8		1.05	.010	.0203	.045	.035	-₹-T		.50	004	.0182	.025	.027	7.7
	18.05	921	-2915	-034	0	-7.8 -7.8		2.15	.089	.0226	.026	.029	-7.7		2.12	.023	.0184	.019	-024	7.7
	10.05	-yer	•2017	.035	۰	7-20		6.31	-242	.0346	007	-018	-7-7		4,15	.077	.0005	.008	-080	7.7
0.80	-4.40	397	.OA53	.086	013	-7.8		8.41	-395 -551	.0567 .0898	038	0.000	7.5		6.22	.175 -275	.0298	013 034	.002	7-8
	-0.23	- 253	.0262	.082	016	-7.8		9.73	63	1175	- 095	002	-7.8 -7.8		8.29	.370	.0676	-054	004	7.8
	-1.14	-177	.0197	.079	~.017	7.8	1	3.13	1 ~~	-11/7	~~~		7.0		10.35	162	.0961	074	-012	73
	7.22	Iki	-0176	.076	017	-4.8	1.30	-4.16	347	.0473	.112	-045	-₹ -7		12.42	.732	.1309	099	-021	7.9
		070	.0152	-072	018	-7.8		-2.07	205	0300	.083	.037	-7.7		13.90	297	1512	-102	025	7.9
	-99	- 035	-m\6	.070	018	-7.8		-1.00	- 131	.0247	.067	ABO.	4.7							''
	2.13	.010	.0151	-065	018	4.5		51	098	.0227	.059	.033	_ 1 .7	1.90	+.11	~217	.0359	.060	-043	-7.7
1	4.32	.187	.0234	.056	016	-7.8		.56	-000	.0212		.030	-7.7		-2.06	I21		.042	.034	4.7
	8.50	淵	.0430	-071	026	-7.8		1.08	.014	.0217	.037	.029	-7.7		-1.01	073	.0217	-033	.029	-7.7
	10.81	.623	.0745	.026	00A 01I	-7.8		2.14	-085	.0237	.022	.029	-र₊र	1 1	-49	050	.0200	.028	.026	₹.7
	12.96	.756	.1191	.000	005	7.8 7.8		6.27	.200	.0345	009	.018	-T-I	1	. 50	002	.0192	-020	.022	₹.7
	-2.50	1	*****		w.w,	7-0		8.42	:32	.0511 .0632	039	.010	7.8	1	2.10	.020	.0194	.015	.019	7.7
0.90	-4.45	431	.0506	.098	.005	-7.8		10.32	.609	.1205	095	.002	-7-8 -7-8		4.13	-151	-0232	011	-015	7-8
	-2.24	267	.0267	-091	-011	- 7 .8							7-0		6.16	-238	.0129	027	007	7.8
	-1.14	- 187	.0219	-098	-OLA	-7.8	1.50	-4.14	301	-0k26	.100	.043	-7-7	1	8.24	321	.0623	043	012	7.8
	59	146	.0196	-086	.org	-7.8		-9.06	176	.0268	.071	.038	-7.7	I	10.29	.102	-0873	099	-,019	7.9
	. 45	071	.0169	*083	.cm	-7-8		-1.02	109	-021A	.055	.034	-7.7		12.35	-480	.1175	-071	026	- 2
							}	50	⊸ oπ	.0197	.048	.033	- 7 .7		14.40	-559	1535	084	032	-7.6
								.50	012	.0183	.093	.030	-7.7							

(g) Characteristics for wing-body-tail combination; $\delta_n = -12^{\circ}$

K	•	C _L	OB .	Cag	C _b	a	¥	•	C _L	CD	C _E	Ch	8	Ж	-	c _L	CD	C _R	19	8
-60	-4.33	-0.362	G.0477	0.075	0.030	-11.7	0.90	1.07	0.035	0.0225	0.097	0.026	-11.7	1.50	0.71	-0.037				
	-2.19	233	.0311	-076	.027	-11.8	,-	2.14	.026	.0237	.094	.016	11.6	1.50			-0.0260	0.050	0.013	-11.
	-1.11	168	-0263	.076	.027	-11.8		4.36	.187	.0333	.067	.015	-11.8	ı	2.14	005	.02 50	.051	.042	.بر- ا
	59	135	.0214	.076	.027	-11.5		6.56	-350	.0564	.077	.au	-11.8	1		.058	.0274·	-037	.039	-11.
	. 17	077	.0219	.076	.025	-11.8		8.75	.505	.0926	.062	-007	-11.8	1	4.19	.173	.0356	.010	.033	-u
	1.01	049	.0215	.077	-024	-11.8		10.09	.659	1121	I.O.	.025	-11.7		6.27	-288	-0518	017	.023	-17
	2.06	.015	-0610	.076	190.	-11.8		225	.075		.041	.027	-11.7		8.34	-399	.0755	041	-01	-11
	1,25	.139	.0233	.074	.014	-11.8	1.20	-4.17	406	.0786	150			1	10.41	-503	.1064	067	.006	-11
	6.39	-273	-0404	-073	.007	-11.0	1	2.06	- 253	.0391	.190	-079	-11.5	1				1		
	8.33	-399	.0664	-075	.002	-11.6	Ī	-1.01			192	-072	-11.6	1.70	-4.12	275	.0475	-101	-060 ·	-11
	10.67	.530	-1004	.072		-11.8	i i	48	-,175	.0329	.106	.068	-11.6		-2.05	165	.0325	.076	.095	-12
	12.87	-530 -658	.1486	.066	006	-11.8			136	.0308	.098	-066	-11.6		-1.01	~.100	-0277	-063	.050	-11
	14,89	.763	2017	.061	005	-11.6		.2	060	-0286	.063	.062	-11.6	1	49	061	-0601	.017	.090	-11
	17.00	.843	.2544	-069	009	-11.8		1.05	000	.0263	.075	.079	-11.6	1	-90	026	-0244	.045	.043	-11
	18.02	866	2761	.071	009	-11.8		2.17	.061	.0299	.058	.072	-11.6		1.06	.001	.0243	.036	.040	-11
	20.02	.000	-Egui	POLT		-11-0		4.27	.215	.0101	.024	-044	-32.7	£ I	2.13	-057	.0257	.027	-035	-11
80	4.30	369	.OASA	.070	-089	-11.7		6.34	.364	.0607	007	-035	-11.7	1 1	4.17	.176	-0337	.005	.025	-12,
~	-2.21	231	.0307	.073				8.44	.516	.0921	039	.024	-11.7		6.24	-276	.0337 .0486	016	-016	-11
	-1.12	160	.0250	.071	.029	-11.7		9.49	.601	.1131	07	-020	-11.7		8.31	371	-0696	035	-007	-11
		126	.0234			-11.7									10.37	441	.0969	054	-001	-11
	- 35 45	063		.071	.026	-11.7	1.30	4.15	366	.0762	-135	.065	-11.6		12.44	-531	.1306	073	007	-11.
	1.00		.0215	.072	.026	-11.7		-2.06	227	.0385	.106	.056	-11.6	1 1				,5	,	
	2.14	030	.0205	.071	.025	-11.7		-1.01	172	.0328	.091	.053	-11.6	1.90	-4-10	234	.0426	-076	.057	-11
		-039	.0213	.071	-023	-11.Ţ		48	116	-0309	.08*	.051	-11.6	1 1	-2.04	139	-0323	.078	.077	-11.
	4.33	.176	.0269	.069	.019	-11.6		-51	048	.0295	.070	.047	-11.6		-1.01	090	.0263	.048	.cle	-11.
	6.50	.311	.0477	.071	.012	-11.8		1.11	012	.0286	.063	.045	-11.7		50	067	.0219	.044	-039	-11.
	8.67	- 423	.0783	.066	.003	-11.5		2.18	-060	.0304	.018	.040	-11.7		.49	020	.0235	.035	.034	-ii.
	10.83	.563	.1191	.077	005	-11.6		4.24	.193	.0396	.018	.034	-11.7		1.04	-002	.0236	.031		
	12.95	.706	.1672	.047	018	-11.8		6.29	328	0778	010	.029	-11.7		2.09	.050	.0249	-022	.032	-11.
- 1	15.08	.823	-2253	.026	015	-11.8		8.38	.328	0850	039	.023	-11.7	I I	4.13	.136	.0322		.027	-11.
	1		F			t I		10.49	.76	1913	- 066	.014	-11.8	1 1	6.19	222	0133	-005	.018	-11.
90	4.41	406	.0531	.088	.035	-11.7			.,,,			****	-1100		8.24		.0173	012	.009	-11.
- 1	-2.23	247	.0322	.080	.032	-11.7	1.50	-4.24	317	.0518	.118	.093	-11.6		10.29	-306	.0643	027	001	-11-
- 1	-1.13	167	.0259	.077	.031	-11.7		-2.05	- 197	.0355	460	.073	-11.6	1		.364 .462	.0879	042	005	-11-
. 1	78	130	.0236	.076	.030	-11.7		-1.01	-132	.0300	.080				12.35	-402	-1174	055	024	-12.
	-53	-072	.0228	.007	.030	-11.7		-,49	101	.0261		-048	-11.6	ı	14.40	- 7-1	-1718	010	021	-11.
_					.530			+7		TOPPE	-013	.047	-11.6	1	16.46	-614	-1993	063 F	027	-11.

TABLE II. - AERODYNAMIC CHARACTERISTICS OF A MODEL EMPLOYING A TRIANGULAR WING OF ASPECT RATIO 3 WITH LEADING-EDGE CHORD EXTENSIONS AND AN ALL-MOVABLE HORIZONTAL TAIL - Continued

(h) Characteristics for wing-body-tail combination; $\delta_n = -16^{\circ}$

	9.18 -1.10 -57 -44 -98 -1.25 -2.40 -	-0.343 212 117 078 029 .031 .146 .257	0.0707 .0344 .0897 .0863 .0866 .0259 .0862 .0321 .0483 .0483	955 855 855 855 855 855 855 855 855 855	0.000	-15.6 -15.6 -15.6 -15.6 -15.6 -15.6	0.90	2.19 4.39 6.79 8.79 10.92	0.060 .214 .372 .525	0.0265 .0359 .0634 .1004	0.071 .066 .060	0.035 .034 .033	-15.6 -15.6 -15.6	1.50	1.03 2.14 4.23	-0.031 .033 .152	0.0326 .0340	0.079	0.056	-15-5 -15-5
	9.18 -1.10 -57 -44 -98 -1.25 -2.40 -	- 212 - 117 - 117 - 058 - 029 - 031 - 146 - 257 - 388	.0344 .0297 .0263 .0266 .0259 .0262 .0321 .0483	655 666 667 676 676	.030 .030 .030 .030	-15.6 -15.6 -15.6 -15.6		6.79 8.79	-372 -525	.1004	.060	.033								
	-1.10 57 44 .98 10 25 -6.40 8.52 10.66	117 058 029 .031 .146 .267	.0297 .0263 .0266 .0259 .0262 .0321 .0483	655 666 667 676 676	.030 .030 .030	-15.6 -15.6 -15.6		8.79	.525	.1004			11-6		4.22	180				
10 10 11 11 11 11 11 11 11 11 11 11 11 1	98 9.10 9.10 9.10 9.10 9.10 9.10 9.10 9.10	058 029 .031 .146 .267	.0266 .0259 .0262 .0321 .0483	.066 .067	.030 .030 .030	-15.6 -15.6			-525							***		-033	.070	-15.5
14 14 14 14 14 14	96 2.10 4.25 6.40 8.52 10.66	029 .031 .146 .257	.0259 .0262 .0321 .0483	.066 .067	.030	-15.6		10,92	i Aki			.032	-15.6		6.27	-267	.0964	.006	.040	-15-6
14 14 14 14 14 14	96 2.10 4.25 6.40 8.52 10.66	.031 .146 .257 .388	.0262 .0321 .0183	.067	.031		l i		****	.1490	.055	.022	-15.6		8.34	-377	.0788	019	.030	-15.6
10 11 11 11 11 11 11 11 11 11 11 11 11 1	6.40 8.52 10.66 12.80	.146 .257 .388	.0321	.073		-15.6					_				10.41	-461	.1061	010	.021	-15-6
1 1 1 1	6.40 8.52 10.66 12.80	.257 .388	-0483				1,20	-4.15	4a1	.0694	.165	.098	-15.4		12.48	.502	.1449	064	.014	-15.7
1 1 1 1	8.52 10.66 12.80	.388			.032	-15.6		-2.05	273	.0489	.139	.092	-15.4			l .				1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.66			.080	.028	-15.7		-1.00	195	.0423	.126	.089	-15.4	1.70	-4.11	-,292 -,186	.0969	.117	.064	-15.5
11	12.80			.084	.024	-15.7		48	158	.0398	.119	.088	-15.4		-2.04			.096	.069	-15.5
11		-515	.1079	.085	.019	-15.7		.51	065	.0371	.105	.085	-15.4		-1.00	129	.0351	.082	.065	-15.5
13		.635	.1525	.083	.013	-15.7		1.05	048	.0367	.099	.083	-15.4		48	102	.0331	.076	.004	-15.5
	14.93	.736 .806	.2022	.084	.008	-15.7		2,16	.033	.0376	.082	.081	-15.4		.50	046	.0324	.063	.061	-15.5
	17.02		.2517	.098	,005	-15.7		4.26	.186	.0468	.070	.072	-15.5		1.03	019	.0305	037	.079	-15.5
12	18.04	.824	.2730	.104	0	-15.7		6.34	.337	.0658	.019	.099	-15.5		2,13	.037	.0313		.05	-15.9
_								8.44	. 491	.0959	013	.047	-15-5		4.21	.139	0383	-024	.042	-15.6
	-4-39	365	.0729	.OTL	.031	-15.6		10.96	.630	.1378	030	.C43	-15.6		6.25	-236	.0518	*005	.031	-15.6
	2.21	226	.0354	.070	.030	-15.6			a.Dvv	.0689		.087			8.31	331	.0718	017	.021	-15.6
-:	-1.12	152	.0299	.069	.030	-15.6	1.30	-4.14	387		.153	.060	-15.4		12.44		.0980	035	.012	-15.7
	27	119	.0262	.068	.030	-15.6		-2.05	249	.0497			-15-4			. 202	.1300	053		-15.7
	.40	052	.0263	.067	.029	-15.6		-1.00	177	.0433	.112	.077	-15.5 -15.5		14.51	. 792	*1000	070	002	-15-7
	1.01	-,019	.0261	-067	.029	-15.6			142	.0382	.091	.075	15.5	1.90	-4.09	-,250	.0509	.093	.014	-15.5
	2.15	.050	.0267	.066	.029	-15.6		. 1	073		.084	.069	-15.5	1.90	2.0		.0376	.074	.065	-15.5
	4.34	.182	0350	.065	-030	-15.6		2.15	037	.0375	.069	.063	-15.5		-1.01	156 100	.0332	.064	.059	-15.5
1 1	6.52	-310	.0542	.069	-030	-15.6		4.24	.035	.0171	.040	055	-15.5			085	.0317	.060	.076	-15.5
	8.69	- 423	.0892	.06	.027	-15.6 -13.6		6.29	.302	.0639	.013	.043	-15.6		19	030	.0399	.051	.070	-15.5
	10.85	.960	.1254	.057	.016	-15.7		8.38	129	.0900	014	.036	-15.6		1.02	015	.0298	.046	.077	-15.5
	12.96		.2264	.051	002	-15.7		10,45	3.8	.1247	037	.034	-15.6	l i	2.11	.036	.0307	.036	02	-12.6
1 *	15.08	-793			-,002			12.10	.633	.1567	~.054	.029	-15.6		4.17	.183	.0375	.021	.030	-15.6
0.90	4.43	397	-0610	.084	.037	-15.6									6,20	207	0197	.004	.020	-15.6
	-2.23	- 246	.0388	.082	.039	-15.6	1.50	-4.12	334	-0610	,134	.069	-15.5		8.25	.890	.0578	011	.011	-15.7
	-1.12	163	.0315	.078	.037	-15.6	1	-2.04	- 217	.0431	.111	.063	-15.5		10.31	.370	.0912	025	.003	-15.7
	58	- 126	.0299	.076	.037	-15.6	1	-1.00	174	.0377	.098	.061	-15.5		12.36	.447	1203	039	001	-15.7
1	67	.053	.0276	.074	.036	-15.6	ł	48	122	.0375	.091	.060	-15.5		14.42	. 121	.1539	072	007	-15.7
	1.03	016	.0275	.072	.035	-15.6		.50	061	.0330	.078	.057	-15.5		16.47	-595	.1929	065	012	-13.7

(i) Characteristics for wing-body-tail combination; $\delta_n = -20^{\circ}$

¥	C.	C _L	CD	Cas	Ch	8	н	G.	C _L	CD	Can	Ch	8	K	Œ	$\mathbf{c}_{\mathbf{L}}$	c _D	Cm	Ck	8
0.60	-4.32	-0.342	0.0554	0.067	0.029	-19.7	0.90	1.03	-0.021	0.0339	0.079	0.044	-19.7	1.50	1.04	-0.050	0.0431	0.090	0.072	-19.5
0.00	·2.18	-216	.0105	.068	.029	-19.7	***	2.18	.034	-0349	.075	.010	-19.7		2.14	.011	.0438	.077	.067	-19.6
1	-1.11	-,120	.0356	.068	.028			4.39	.207	.0472	.070	.038	-19.7		4-25	.129	.0508	053	-063	-19.6
1	57	120	.0341	.068	.026	-19.7		6.59	.370	.0702	.064	.038	-19.7		6.33	.129 .244	.0647	-029		
1		060	.0322	-068	-027	-19.7		8.79	.534	.1101	-048	.038	-19.7		8.37	-152 -456	-085h	-00	-058	
E	.99	032	.0320	.069	.027	-19.7		10.92	.665	-1555	.031	.037	-19.7		10.44	456	.1137	019		-19.6
1	2.10	.026	.0327	.068	.027	-19.7									12.51	-557	.1494	042	-035	-19.7
1	4.26	.149	.0371	-069	.028	-19.7	1.20	-2.0¥	284	-0619	153		-19.4							l l
1	6.40	.274	.0535	.072	-030			99	211	-055	.141	.103	-19.4	1.70	-4-11	303	.0663	-130		-19.7
f I	8.55	-399	0799	.078	.031			47	173	-0527	-134	.101	-19.4		-2.03	202	.0515	.116	-069	
1	10.68	.525 .633	-11/2	-083	-030			- 52	102	-0486	.199	.098			99	149	.0461	108		-19-6
•	12.82	.633	.1596	.085	.030	-19-7	1	1.05	066	-0477	.115	.096	-19.4		- 17	122	.0111	.096		-19.6 -19.6
3	14.92	.720	.2047	-091	.027	-19.7		2.16	-mı	-0483	.100	-093	-19-	I !	.51 1.03	000	.0105	.003		-19.6
	17-03	.789	- 2 9T3	-130	با20.	-19.6		4.26	.162	.0567	.072	.067	-19.4 -19.4		2.13	.015	.0408	.066		-19.6
1 1	18.06	.802	-2777	.119	-020	-19.8		6.38	.165	.1019	.032	.079	19.4		4.22	.116	.0468	440.		-19.6
- 0-			-	~~	.036	-19.7		10.57	.610	.1449	001	.075	-19.5		6.30	216	-0597	.022		-19.6
0.80	-1.36	371	.0122	.075	.035	-19.7		11.33	651	.1610	001	-073	-19.5		8.33	.311	.076A	.003		
1	-1.32	157	.0361	.013	.034				.0,4				~~~		10.40	, 40e	-3037	016		-19.7
1 1	- 57	122	.0344	.072	.034		1.30	-0.04	- 264	.0605	.142	.095	-19.4		12.47	.489	1372	033		-19-7
	16	-,057	.0326	.071	.032	-19.7	~	-1.00	104	-0535	.129	.092	-19.4		14.54	-573	.1726	019	-012	-19.8
r}	1.01	024	.0320	-070	.031			47	159	.0707	.123	.091	-19.4				i '	1 -		'
1	2.15	-OLL	.0327	.069	-030			.71	091	.0477	.110	.089	-19.4	1.90	-4.09	267	.0624	.112		-19.6
1 1	4.33	.183	.0109	.067	.030	-19.7		1.0	057	.0468	.103	.087	-19.4		-2.03	172	-0476	.093		-19.5
	6.50		.0999	.068	.030			2.07	.ois	.0463	.086	.065	-19.4		-1.00	124	-0126	.082		-19.5
1 1	8.67	.317 .155	.0908	.065	.030	-19.7		4.26	.150	.0551	-061	.078	-19.4	1	48	101	.0411	.078		-19.5
1 1	10.83	-579	.1308	.060	.030	-19.7		6.35	-284	.0716	.033	.070	-19.5		-70	054	.0388	.068		-19.6
1 1	12.94	.696	.1796	.055	-030	-19.7		8.40	.409	.0967	-008	-963	-19.5		1.02	031	.038⊵	.061		-19.6
	15.06	.785	-2310	054	.027	-19.7		10.48	.587	.1305	014	.05	-19-5		2.30	.016	.0365	.051		-19-6
								12.56	.631	.1711	032	-016	-19.6		4.19	-103	.olij	.037		-19-6
0.90	-4.40	403	.0653	-091		-19.7									6.25	.189	-0562	.021		-19-7
	-2.22	247	.0116	.086	.043		1.50	-1-75	346	-0715	.148		-19-5		8.27	-210	.0735	.006		-19.7
1 1	-1.12	166	.0382	.064		-19.7		-6-04	233	.0547	.127	-076	-19.5		10.33	.340	0959	000		-19.7
	5 6	132	.0362	.092		-29.7		99	172	-0487	.116	-076			12.39	-424	.1238	021	.013	-19.8
	. 47	029	.03 4 3	-061	.044	-29.7			141	.0452	-110		-19-5		14.45	.499	.157	033	-005	-19.8 -19.8
\Box								.71	080	-0433	.097	.073	-19.5	<u>. </u>	16.51	-513	.1961	045	1	-17-0
			_				-											~	NAC	4

TABLE II.- AERODYNAMIC CHARACTERISTICS OF A MODEL EMPLOYING A TRIANGULAR WING OF ASPECT RATIO 3 WITH LEADING-EDGE CHORD EXTENSIONS AND AN ALL-

MOVABLE HORIZONTAL TAIL - Concluded (j) Characteristics for wing-body-tail combination; $\delta_n = -24^{\circ}$

×	6	c _r	O _D	Cmr	O _B	8.	ĸ	•	G _L	€ _D	C _{EX}	c)	8	¥	Œ	C _L	CD	Cax	C)a.	ð
.60	4.32	-0.343	0.0616	0.069	0.029	-23-7	9.90	4.10	-0.409		0.097	0.053	-23-7	1.50	2.14		0.0550	0.092	0.086	-23-2
**-	-2.18	238	.0167	.070	.oe6	-23.7	- 1	-2.22	252	-0530	.091	053	-23.7		4.24	.113	.0611	-061	-083	-23-7
	-LaIl	151	.OA13	.070	.028	-23.7		1-12	175	-0461	-069	.05	-23-T		6.32	-225	-0747	.045	.075	-23-
	7.77	121	-0399	.070	.028	23.7		- 76	139	-0447	-066	-073	H23-7		8.36	-330	-0970	.023	.069	-63-
	.45	061	.0380	.070		-23-7			068	.0421	.087	-053	-23.7	1 1	10.44	.132	.1224	-002	.083	-23-
	-99	031	.0375	.070		-23-7		1.02	031	.0413 .0424	.085	-053	-23-7		12-51	-532	.1565	019	.068	-23.0
	3-10	.029	.0375	.069		-23.7		2.17	.046			.023	23.7				~~~	امددا	~63	-23.5
	4,26	-153	.0431	-069	.029	-23-T		4.30	-199	.0763	-070	.054	23-T	1.70	-4-10	313	.0527	.135	.082	-23.
	6.40	.279	.0797	.071		23.7	Ł	6.78 8.78	.361 .525	.1153	-033	.046			99	162	-0575	.11	.081	-23.
	10.68	-526	.1211	-016		-23.7 -23.7	1	20.69	690	.1576	36		23.1		-:77	-136	.0995	109	.079	-23.
	12.62		.216	.00		23.7		10.03		1	عدسا	1		ı	- 31	064	.0530	.099	.orr	-23
	14.93 17.02	-739 -798	.2648	.102		e3.7	1.30	3.80	382	.0880	.370	-117	-23.4		1.03	057	.0724	.093		-23.
	18.05	-806	-2659	116		23.7		E.04	271	-0730	.152	.113	-83.4	l l	2.12	004	.0525	.063	-073	-23.0
	رن.س	1	-	1	1	-3	l I	99	205	.0667	.141	.iii	-23.4	1	4.22	096	وَرَوْهِ ا	L063	.072	-e3.4
ao l	-4.38	373	.0665	.080.	.038	-23-7	ĺ	- 16	170	.0640	-135	1111	-23.4	ľ	6.29	.196	-0695	.042	-973	.2 3.4
•••	-2.21	- 234	.0192	.079	.038	23.7		- 52	- 104	-0611	.123	308	-23.4	1	8.33	-295	.0868	.019	.064	-23.0
	-1.10	-360	.0433	.079		-23-T	1	1.05	072	.0601	117		-23.5	ı	10.39	.386	uu.	001	.054	-23.4
		-328	-0414	.078	-038	P3-7	1	2.15	002	-0600	.10 4	.105		Į.	12.45	- 475	.1419	019	.044	-23.
- 1	- 2	063	.0393	-077	.038	43.7		1.27	-129	.0667	-077	.101	-23.5	i	14.52	-560	.1786	036	-03*	-23.
	1.01	030	-0368	.076	-037	-23-7	1	6.36	-263	.0825	.051	.096		1	16.98	.642	.2209	053	.022	-23.
	2.14	-039	.0390	.074	-037	-93-7		8.41	-386	.1068	.027	-090	-23.7	١	١,	۱	.0900	.065	۱	-23-
	4-33	-176	-0465	-on	-037	-23-1	1	10.50	-500	-1386	-00A	-070		1.90	1.02	001	.0188	.072	-076	23
	6.50	٠,١١٢	.0652	.073	-036	-23.7		12.58	-506	_1786	orx	1 -0,00	23.5	ł.	4.10	.091	.0531	-053		-63.4
	8.67	. 51	-0962	-068	-035	-e3-T		1	١	.0826		.101	-23.5		6.24	178	-0641	.036		- i
	10.83	-582	1057	-060	-03*	23.7	1.50	₽.H	37	.0679	.135	.097	-03.5		8.26	261	:0609	OIB	.044	23
	12.9	-700	21037	-071	.032	-23.T	ı	99	162	.0601	126	.096		I	10.31	.342	.1035	.003		23.
	15.07	-199	.2403	-043	1.03*	P23-1	1	- 47	- 132	.0717	121		23.5	1	12.36	419	i.iui	019		23.
	ĺ	į.	1		1	ĺ	Ŀ	.52		.0546	.110	.092		ı	14.41	194	.1636	025		-23
	1	i	ì	1		Į.	1	1.04	063	0543	.104		23.5	ŀ	26.47	.771	.2003			-23.
	ŀ	1	1	1	1	1	1	1	1	1		1		ı	17.70	-607	.2234	043	تنما	-23-

Figure 1.- Dimensional sketch of the model.

Figure 2.- Three-quarter front view of wing-body-tail combination with leading-edge chord extensions.

A-17938.1

Figure 3.- Effect of leading-edge chord extensions on the variation of pitching-moment coefficient with lift coefficient for a wing-body combination employing a triangular wing of aspect ratio 3 (vertical fins attached to wing).

Figure 4- Effect of leading-edge chord extensions on the aerodynamic characteristics of a wing-body-tall combination employing a triangular wing of aspect ratio 3 and an all-marable horizontal tail, & C.

Figure 4.- Continued,

Figure 4.- Concluded,

Figure 5.— Effect of leading-edge chord extensions on the variation of the drag coefficient with Mach number for the wing-body-tail combination, $\delta_n = 0$.

Figure 6. - Effect of leading-edge chord extensions on the variation of the maximum lift-drag ratio with Mach number for the wing-body-tail combination, $\delta_n = 0$.

Figure 7.— Variation of the pitching-moment coefficient with horizontal-tall deflection for the wing-body-tail combination with leading-edge chord extensions.

Figure 8. - Variation of the horizontal-tail hinge-moment coefficient with angle of attack for the wing-body-tail combination with leading-edge chord extensions.

Figure 9.- Variations of the horizontal-tail hinge-moment coefficient with angle of deflection for the wing-body-tail combination with leading-edge chord extensions.

f-1