Discrete Mathematics MT20: Problem Sheet 1

Chapter 1 (Sets)

- Write the following sets explicitly, by listing their elements. In the case of infinite sets, describe all the elements concisely:
 - (i) $\{n \mid n \in \mathbb{Z} \text{ and } n^2 < 0\},\$
 - (ii) $\{n \mid n \in \mathbb{N} \text{ and } n^4 3n^2 + 2n = 0\},\$
- (iii) $\{n^2 n \mid n \in \mathbb{Z}_5\},$
- (iv) $\overline{\{1\} \cup (\bigcup_{i=2}^{\infty} A_i)}$, where $A_i = \{2i, 3i, 4i, \ldots\}$ and the universe is $\mathcal{U} = \mathbb{N}_+$. Hint: compute the first few values of $\bigcup_{i=2}^{\infty} A_i$ and see which numbers are missing.
- Suppose that |A| = m and |B| = n. What are the maximum and minimum possible values for
 - (i) $|A \cup B|$,
- (ii) $|A \cap B|$, (v) $|A \times B|$,
- (iii) $|A \setminus B|$,

- (iv) $|A \oplus B|$,
- (vi) $|\mathcal{P}(A)|$?
- Which of these statements, which might be laws for symmetric difference, are true? There is no need to give proofs.
 - (i) Idempotence: $A \oplus A = A$,
 - (ii) Commutativity: $A \oplus B = B \oplus A$,
 - (iii) Associativity: $(A \oplus B) \oplus C = A \oplus (B \oplus C)$,
 - (iv) Distributivity of \cup over \oplus : $A \cup (B \oplus C) = (A \cup B) \oplus (A \cup C)$,
 - (v) Distributivity of \cap over \oplus : $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$.
- Prove that $A \subseteq B$ and $A \subseteq C$ if and only if $A \subseteq B \cap C$.

Is it true that $A \subset B$ and $A \subset C$ if and only if $A \subset B \cap C$? Give a proof or counterexample.

- One of the following is true and the other is false. Which is which? For the true 1.5 statement give a proof, and for the false one find a counterexample.
 - (i) $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$;
 - (ii) $\mathcal{P}(A \times B) = \mathcal{P}(A) \times \mathcal{P}(B)$.
- 1.6 Using the algebraic laws for sets, in Claims 1.1 and 1.2 of the lecture notes, prove that

$$A \setminus ((C \cap A) \cup B) = A \setminus (B \cup C).$$

The following is a "proof" of the **false** statement $A \setminus (B \cap C) \subseteq (A \setminus B) \cap (A \setminus C)$: 1.7

$$\begin{array}{ll} x \in A \setminus (B \cap C) & \Rightarrow & x \in A \text{ and } x \notin B \cap C \\ & \Rightarrow & x \in A \text{ and } x \notin B \text{ and } x \notin C \\ & \Rightarrow & x \in A \setminus B \text{ and } x \in A \setminus C \\ & \Rightarrow & x \in (A \setminus B) \cap (A \setminus C) \end{array}$$

Find the mistake in the "proof" and give a counterexample to demonstrate that the statement is false.