Proof System for \mathcal{L}_0

Recall

Two aspects of a formal language.

- Syntax
 - formulas
 - connectives
- Semantics
 - truth value/truth assignment
 - truth table/truth function

A proof system for \mathcal{L}_0

Suppose that φ_1 , φ_2 and φ_3 are \mathcal{L}_0 -formulas. Then each of the following \mathcal{L}_0 -formulas is a logical axiom:

(Group I axioms)

- $(\varphi_1 \to (\varphi_2 \to \varphi_3)) \to ((\varphi_1 \to \varphi_2) \to (\varphi_1 \to \varphi_3))$
- $ightharpoonup \varphi_1
 ightharpoonup \varphi_1$

(Group II axioms)

(Group III axioms)

- $(\neg \varphi_1 \to \varphi_1) \to \varphi_1$
- (Group IV axioms)

 - 71 (71 72)

 Δ_0 denote the set of these four groups of logical axioms.

(Group III axioms)

$$(\neg \varphi_1 \to \varphi_1) \to \varphi_1$$

(Group IV axioms)

- $ightharpoonup \neg \varphi_1 \rightarrow (\varphi_1 \rightarrow \varphi_2)$

 Δ_0 denote the set of these four groups of logical axioms.

Proposition 1

Every logical axioms above is a tautology.

Γ -proof

Suppose that $\Gamma \subseteq \mathcal{L}_0$.

Definition 2

Suppose that $s=\langle \varphi_i: i\leq n\rangle$ is a finite sequence of propositional formulas. s is a Γ -proof if for each $i\leq n$ at least one of the following happens:

- $ightharpoonup \varphi_i \in \Gamma;$
- $ightharpoonup \varphi_i$ is a logical axiom;
- ▶ there exists $j_1, j_2 < i$ such that $\varphi_{j_2} = \varphi_{j_1} \to \varphi_i$. This rule is called Modus Ponens.

Γ -proof

Suppose that $\Gamma \subseteq \mathcal{L}_0$.

Definition 2

Suppose that $s=\langle \varphi_i: i\leq n\rangle$ is a finite sequence of propositional formulas. s is a Γ -proof if for each $i\leq n$ at least one of the following happens:

- $ightharpoonup \varphi_i \in \Gamma;$
- $ightharpoonup \varphi_i$ is a logical axiom;
- ▶ there exists $j_1, j_2 < i$ such that $\varphi_{j_2} = \varphi_{j_1} \to \varphi_i$. This rule is called Modus Ponens.

Γ -proof

Suppose that $\Gamma \subseteq \mathcal{L}_0$.

Definition 2

Suppose that $s=\langle \varphi_i: i\leq n\rangle$ is a finite sequence of propositional formulas. s is a Γ -proof if for each $i\leq n$ at least one of the following happens:

- $ightharpoonup \varphi_i \in \Gamma;$
- $\triangleright \varphi_i$ is a logical axiom;
- ▶ there exists $j_1, j_2 < i$ such that $\varphi_{j_2} = \varphi_{j_1} \to \varphi_i$. This rule is called Modus Ponens.

 $\Gamma \vdash \varphi$ (Γ proves φ) iff there exists a finite sequence $s = \langle \varphi_i : i \leq n \rangle$ such that s is a Γ -proof and such that $\varphi_n = \varphi$.

Such sequence s is called a proof from Γ to φ , and φ is called a consequence of Γ .

When $\Gamma = \emptyset$, write $\vdash \varphi$.

Some properties of Γ -proofs

- 1. If s is a Γ -proof, and t is an initial segment of s, then t is also a Γ -proof.
- 2. If $s=\langle \varphi_i:i\leq n\rangle$ and $t=\langle \psi_i:i\leq m\rangle$ are two Γ -proofs, then so is

$$s + t = \langle \varphi_1, \dots, \varphi_n, \psi_1, \dots, \psi_m \rangle.$$

Suppose that $\Gamma \subseteq \mathcal{L}_0$.

- 1. Γ is inconsistent if for some formula φ , $\Gamma \vdash \varphi$ and $\Gamma \vdash \neg \varphi$.
- 2. Γ is consistent if Γ is not inconsistent.
- 3. Γ is maximally consistent if and only if for each formula ψ if $\Gamma \cup \{\psi\}$ is consistent then $\psi \in \Gamma$.

Suppose that $\Gamma \subseteq \mathcal{L}_0$.

- 1. Γ is inconsistent if for some formula φ , $\Gamma \vdash \varphi$ and $\Gamma \vdash \neg \varphi$.
- 2. Γ is consistent if Γ is not inconsistent.
- 3. Γ is maximally consistent if and only if for each formula ψ if $\Gamma \cup \{\psi\}$ is consistent then $\psi \in \Gamma$.

Suppose that $\Gamma \subseteq \mathcal{L}_0$.

- 1. Γ is inconsistent if for some formula φ , $\Gamma \vdash \varphi$ and $\Gamma \vdash \neg \varphi$.
- 2. Γ is consistent if Γ is not inconsistent.
- 3. Γ is maximally consistent if and only if for each formula ψ if $\Gamma \cup \{\psi\}$ is consistent then $\psi \in \Gamma$.

show that

We first show the 'if" direction.

 Γ is consistent if and only if Γ is satisfiable.

Soundness

Theorem 5 (Soundness, version I)

If $\Gamma \subseteq \mathcal{L}_0$ is satisfiable. Then Γ is consistent.

Definition 6 (Logical implication)

Suppose $\Gamma \subseteq \mathcal{L}_0$ and $\varphi \in \mathcal{L}_0$. Then Γ logically implies φ , write $\Gamma \models \varphi$, if and only if for every truth assignment ν , $\nu \models \Gamma$ implies $\nu \models \varphi$.

Theorem 7 (Soundness, version II)

Suppose that $\Gamma \subseteq \mathcal{L}_0$, $\varphi \in \mathcal{L}_0$ and that $\Gamma \vdash \varphi$. Then $\Gamma \models \varphi$.

Theorem 7 (Soundness, version II)

Suppose that $\Gamma \subseteq \mathcal{L}_0$, $\varphi \in \mathcal{L}_0$ and that $\Gamma \vdash \varphi$. Then $\Gamma \models \varphi$.

Proof.

By induction on the length of Γ -proofs.

Some lemmas of this proof system

Lemma 8 (Inference)

Suppose that $\Gamma \subseteq \mathcal{L}_0$, $\varphi, \psi \in \mathcal{L}_0$. Suppose that $\Gamma \vdash \psi$ and $\Gamma \vdash (\psi \rightarrow \varphi)$. Then $\Gamma \vdash \varphi$.

Lemma 9 (Deduction)

Suppose that $\Gamma \subseteq \mathcal{L}_0$, $\varphi, \psi \in \mathcal{L}_0$ and $\Gamma \cup \{\varphi\} \vdash \psi$. Then $\Gamma \vdash (\varphi \rightarrow \psi)^2$

¹No logical axioms required.

²Group I axioms are needed.

Lemma 10

Suppose that $\Gamma \subseteq \mathcal{L}_0$ and that Γ is inconsistent. Suppose that $\psi \in \mathcal{L}_0$. Then $\Gamma \vdash \psi$.³

Lemma 11

Suppose that $\Gamma \subseteq \mathcal{L}_0$ and that Γ is consistent. Suppose that $\varphi \in \mathcal{L}_0$. Then at least one of $\Gamma \cup \{\varphi\}$ or $\Gamma \cup \{\neg \varphi\}$ is consistent, possibly both.⁴

³Uses the Deduction lemma and Group II axioms.

⁴Needs Group III axioms.

Corollary 12

Suppose that $\Gamma \subseteq \mathcal{L}_0$ and that Γ is maximally consistent. Suppose that $\varphi \in \mathcal{L}_0$. Then

- 1. Either $\varphi \in \Gamma$ or $(\neg \varphi) \in \Gamma$.
- 2. If $\Gamma \vdash \varphi$ then $\varphi \in \Gamma$.

Lemma 13

Suppose that $\Gamma \subseteq \mathcal{L}_0$ and that Γ is maximally consistent. Suppose that $\varphi_1, \varphi_2 \in \mathcal{L}_0$. Then $(\varphi_1 \to \varphi_2) \in \Gamma$ iff either $\varphi_1 \notin \Gamma$ or $\varphi_2 \in \Gamma$.

⁵Uses Group IV axioms.

Lemma 14

Suppose that $\Gamma \subseteq \mathcal{L}_0$ and that Γ is maximally consistent. Then Γ is satisfiable.

Lemma 14

Suppose that $\Gamma \subseteq \mathcal{L}_0$ and that Γ is maximally consistent. Then Γ is satisfiable.

Lemma 15

Suppose that $\Gamma \subseteq \mathcal{L}_0$ and that Γ is consistent. Then there exists a set $\Gamma^* \subset \mathcal{L}_0$ such that $\Gamma \subseteq \Gamma^*$ and such that Γ^* is maximally consistent.

Completeness Theorem

Theorem 16 (Completeness, version I)

Suppose that $\Gamma \subseteq \mathcal{L}_0$ and that Γ is consistent. Then Γ is satisfiable.

Completeness Theorem

Theorem 16 (Completeness, version I)

Suppose that $\Gamma \subseteq \mathcal{L}_0$ and that Γ is consistent. Then Γ is satisfiable.

This follows from Lemma ?? and then Lemma ??.

Completeness Theorem

Theorem 16 (Completeness, version I)

Suppose that $\Gamma \subseteq \mathcal{L}_0$ and that Γ is consistent. Then Γ is satisfiable.

This follows from Lemma ?? and then Lemma ??.

Theorem 17 (Completeness, version II)

Suppose that $\Gamma \subseteq \mathcal{L}_0$, $\varphi \in \mathcal{L}_0$ and that $\Gamma \models \varphi$. Then $\Gamma \vdash \varphi$.

Exercise 1 (Slaman & Woodin)

Exercise 1.4.1 (1)–(3)

Exercise (思考题)

Show that

$$1. \vdash \neg \neg \alpha \to \alpha$$

2.
$$\vdash (\alpha \to \neg \beta) \to (\beta \to \neg \alpha)$$

2.
$$\vdash (\alpha \to \neg \beta) \to (\beta \to \neg \alpha)$$

3. $\vdash \alpha \to \neg \neg \alpha$

4.
$$\vdash (\alpha \to \beta) \leftrightarrow (\neg \beta \to \neg \alpha)$$

5. If $\Gamma \vdash (\alpha) \vdash \beta$ and $\Gamma \vdash (\neg \alpha) \vdash \beta$ then $\Gamma \vdash \beta$

5. If
$$\Gamma \cup \{\alpha\} \vdash \beta$$
 and $\Gamma \cup \{\neg \alpha\} \vdash \beta$, then $\Gamma \vdash \beta$.

Let s be a Γ -proof of φ , t be a Γ -proof of $(\varphi \to \psi)$, Then by MP, $s+t+\langle \psi \rangle$ is a Γ -proof of ψ .

Let s be a Γ -proof of φ , t be a Γ -proof of $(\varphi \to \psi)$, Then by MP, $s+t+\langle \psi \rangle$ is a Γ -proof of ψ .

Proof of Deduction.

From a $(\Gamma \cup \{\varphi\})$ -proof of ψ , $\langle \psi_1, \ldots, \psi_n \rangle$, produce a Γ -proof of $(\varphi \to \psi)$. Prove by induction on $i \leq n$ that $\Gamma \vdash (\varphi \to \psi_i)$. Use Inference

Let s be a Γ -proof of φ , t be a Γ -proof of $(\varphi \to \psi)$, Then by MP, $s+t+\langle \psi \rangle$ is a Γ -proof of ψ .

Proof of Deduction.

From a $(\Gamma \cup \{\varphi\})$ -proof of ψ , $\langle \psi_1, \ldots, \psi_n \rangle$, produce a Γ -proof of $(\varphi \to \psi)$. Prove by induction on $i \leq n$ that $\Gamma \vdash (\varphi \to \psi_i)$. Use Inference.

Case 1. $\psi_i \in \Gamma \cup \Delta$.

Case 2. $\psi_i = \varphi$.

Case 3. ψ_i is obtained from MP.

Let s be a Γ -proof of φ , t be a Γ -proof of $(\varphi \to \psi)$, Then by MP, $s+t+\langle \psi \rangle$ is a Γ -proof of ψ .

Proof of Deduction.

From a $(\Gamma \cup \{\varphi\})$ -proof of ψ , $\langle \psi_1, \ldots, \psi_n \rangle$, produce a Γ -proof of $(\varphi \to \psi)$. Prove by induction on $i \leq n$ that $\Gamma \vdash (\varphi \to \psi_i)$. Use Inference

Case 1. $\psi_i \in \Gamma \cup \Delta$. Need $\psi_i \to (\varphi \to \psi_i)$.

Case 2. $\psi_i = \varphi$.

CASE 3. ψ_i is obtained from MP.

Let s be a Γ -proof of φ , t be a Γ -proof of $(\varphi \to \psi)$, Then by MP, $s+t+\langle \psi \rangle$ is a Γ -proof of ψ .

Proof of Deduction.

From a $(\Gamma \cup \{\varphi\})$ -proof of ψ , $\langle \psi_1, \ldots, \psi_n \rangle$, produce a Γ -proof of $(\varphi \to \psi)$. Prove by induction on $i \leq n$ that $\Gamma \vdash (\varphi \to \psi_i)$. Use Inference

Case 1. $\psi_i \in \Gamma \cup \Delta$. Need $\psi_i \to (\varphi \to \psi_i)$.

Case 2. $\psi_i = \varphi$. Need $\varphi \to \varphi$. Case 3. ψ_i is obtained from MP.

Let s be a Γ -proof of φ , t be a Γ -proof of $(\varphi \to \psi)$, Then by MP, $s+t+\langle \psi \rangle$ is a Γ -proof of ψ .

Proof of Deduction.

From a $(\Gamma \cup \{\varphi\})$ -proof of ψ , $\langle \psi_1, \ldots, \psi_n \rangle$, produce a Γ -proof of $(\varphi \to \psi)$. Prove by induction on $i \leq n$ that $\Gamma \vdash (\varphi \to \psi_i)$. Use Inference.

Case 1. $\psi_i \in \Gamma \cup \Delta$. Need $\psi_i \to (\varphi \to \psi_i)$. Case 2. $\psi_i = \varphi$. Need $\varphi \to \varphi$.

CASE 2. $\psi_i = \varphi$. Need $\varphi \to \varphi$. CASE 3. ψ_i is obtained from MP. Need

$$(\varphi \to (\psi_{j_1} \to \psi_i)) \to [(\varphi \to \psi_{j_1}) \to (\varphi \to \psi_i)].$$

Need $\varphi \to (\neg \varphi \to \psi)$. Use Inference.

Need $\varphi \to (\neg \varphi \to \psi)$. Use Inference.

Proof of Lemma ??.

Suppose that Γ is consistent, both $\Gamma\cup\{\varphi\}$ and $\Gamma\cup\{\neg\varphi\}$ are inconsistent. Prove by contradiction.

Need $\varphi \to (\neg \varphi \to \psi)$. Use Inference.

Proof of Lemma ??.

Suppose that Γ is consistent, both $\Gamma \cup \{\varphi\}$ and $\Gamma \cup \{\neg \varphi\}$ are inconsistent. Prove by contradiction.

First show $\Gamma \vdash \varphi$. Since $\Gamma \cup \{\neg \varphi\}$ is inconsistent, by Lemma **??** and Deduction, $\Gamma \vdash \neg \varphi \rightarrow \varphi$. Use $(\neg \varphi \rightarrow \varphi) \rightarrow \varphi \in \Delta$.

Need $\varphi \to (\neg \varphi \to \psi)$. Use Inference.

Proof of Lemma ??.

Suppose that Γ is consistent, both $\Gamma \cup \{\varphi\}$ and $\Gamma \cup \{\neg \varphi\}$ are inconsistent. Prove by contradiction.

First show $\Gamma \vdash \varphi$. Since $\Gamma \cup \{\neg \varphi\}$ is inconsistent, by Lemma **??** and Deduction, $\Gamma \vdash \neg \varphi \rightarrow \varphi$. Use

$$(\neg \varphi \rightarrow \varphi) \rightarrow \varphi \in \Delta.$$

As $\Gamma \cup \{\varphi\}$ is inconsistent, by Lemma ?? and Deduction,

$$\Gamma \vdash \varphi \rightarrow \neg \varphi$$
. We've shown $\Gamma \vdash \varphi$. By Inference, $\Gamma \vdash \neg \varphi$.

Need $\varphi \to (\neg \varphi \to \psi)$. Use Inference.

Proof of Lemma ??.

Suppose that Γ is consistent, both $\Gamma \cup \{\varphi\}$ and $\Gamma \cup \{\neg \varphi\}$ are inconsistent. Prove by contradiction.

First show $\Gamma \vdash \varphi$. Since $\Gamma \cup \{\neg \varphi\}$ is inconsistent, by Lemma **??** and Deduction, $\Gamma \vdash \neg \varphi \rightarrow \varphi$. Use

$$(\neg \varphi \to \varphi) \to \varphi \in \Delta.$$

As $\Gamma \cup \{\varphi\}$ is inconsistent, by Lemma **??** and Deduction, $\Gamma \vdash \varphi \rightarrow \neg \varphi$. We've shown $\Gamma \vdash \varphi$. By Inference, $\Gamma \vdash \neg \varphi$.

Therefore Γ is inconsistent. Contradiction!

1. follows from maximality.

- 1. follows from maximality.
- 2. follows from 1.

- 1. follows from maximality.
- 2. follows from 1.

Proof of Lemma ??.

"\(\infty\)". Suppose $\varphi_1 \notin \Gamma$. Use Corollary ?? and a logical axiom, $(\neg \varphi_1) \to (\varphi_1 \to \varphi_2)$, and Inference to get $(\varphi_1 \to \varphi_2) \in \Gamma$.

- 1. follows from maximality.
- 2. follows from 1.

Proof of Lemma ??.

"\(\infty\)". Suppose $\varphi_1 \notin \Gamma$. Use Corollary **??** and a logical axiom, $(\neg \varphi_1) \to (\varphi_1 \to \varphi_2)$, and Inference to get $(\varphi_1 \to \varphi_2) \in \Gamma$.

Suppose $\varphi_2 \in \Gamma$. Need a logical axiom $\varphi_2 \to (\varphi_1 \to \varphi_2)$.

- 1. follows from maximality.
- 2. follows from 1.

Proof of Lemma ??.

"\(\infty\)". Suppose $\varphi_1 \notin \Gamma$. Use Corollary ?? and a logical axiom, $(\neg \varphi_1) \to (\varphi_1 \to \varphi_2)$, and Inference to get $(\varphi_1 \to \varphi_2) \in \Gamma$.

Suppose $\varphi_2 \in \Gamma$. Need a logical axiom $\varphi_2 \to (\varphi_1 \to \varphi_2)$.

" \Rightarrow ". Suppose $\varphi_1 \in \Gamma$ and $\varphi_2 \notin \Gamma$. By Corollary ??, $\neg \varphi_2 \in \Gamma$.

Need $\varphi_1 \to ((\neg \varphi_2) \to \neg(\varphi_1 \to \varphi_2))$. Therefore $(\neg(\varphi_1 \to \varphi_2)) \in \Gamma$. So it can't be that $(\varphi_1 \to \varphi_2) \in \Gamma$.

Need to give a truth assignment that works for Γ . Set $\nu(A_i)=T$ iff $A_i\in\Gamma$.

Need to give a truth assignment that works for Γ . Set $\nu(A_i)=T$ iff $A_i\in\Gamma$.

Proof of Lemma ??.

Extend Γ to either $\Gamma \cup \{\varphi\}$ or $\Gamma \cup \{\neg \varphi\}$, which ever is consistent, for every $\varphi \in \mathcal{L}_0$.