Komplexe Analysis Zusammenfassung, ETH, D-INFK

Miles Strässle, Prof. A. Iozzi

18. August 2020

Teil I

Zusammenfassung

1 Komplexe Zahlen und Funktionen

Komplexe Zahlen - Grundlagen 1.1

- $i = \sqrt{-1}$
- $z = x + iy = r(\cos(\varphi) + i\sin(\varphi)) = re^{i\varphi}$
- $r = |z| = \sqrt{x^2 + y^2}$
- $\arg(z) = \varphi = \arctan(\frac{y}{x})$ (je nach Quadrant)
- $x = r \cos(\varphi)$
- $y = r \sin(\varphi)$
- $zw = (re^{i\varphi}) \cdot (se^{i\psi}) = rse^{i(\varphi+\psi)}$ $e^{i(\frac{\pi}{2} + 2\pi k)} = i, e^{i\pi} = 1, e^{-i\pi} = -1$

1.2 Rechenregeln

- $x = \operatorname{Re} z = \frac{z + \overline{z}}{2}$
- $y = \text{Im } z = \frac{z^2 \overline{z}}{2i}$ $z \in \mathbb{R} \iff z = \overline{z}$
- $\bullet \ \overline{\overline{z}} = z$
- $\bullet \ \overline{\left(\frac{1}{z}\right)} = \frac{1}{(\overline{z})}$
- $\bullet \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- $\bullet \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$
- $\bullet (a,b)\cdot (c,d) = (ac-bd,ad+bc)$
- $|z|^2 = z\overline{z}$
- $|zw|^2 = (zw) \cdot \overline{(zw)} = |z|^2 |w|^2$ $i^2 = (-i)^2 = -1$ und $\frac{1}{i} = -\frac{1}{i} = -\frac{i^2}{i} = -i$

- $z = x + iy \text{ mit } z \in \mathbb{C}$
- z + z' = (x + x') + i(y + y')
- $\bullet \ z \cdot z' = xx' yy' + i(x'y + y'x)$
- $\alpha z = \alpha x + i\alpha y$
- $\bullet \ \frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{x iy}{x^2 + y^2}$
- $\bullet \ \overline{z} = x iy = \overline{r \cdot e^{i\varphi}} = r \cdot e^{-i\varphi}$
- $\bullet \ e^z = e^{x+iy} = e^x(\cos(y) +$ $i\sin(y)$
- $z^n = (r \cdot e^{i\varphi})^n = r^n \cdot e^{i\varphi n}$

1.3 Betrag

- $|z| = \sqrt{z \cdot \overline{z}} = \sqrt{x^2 + y^2}$ und somit auch $|z|^2 = z \cdot \overline{z} = x^2 + y^2$
- $|z \cdot z'| = |z| \cdot |z'|$ (im komplexen!)
- $z \in \mathbb{R} \implies |z|_{\mathbb{C}} = |z|_{\mathbb{R}}$
- $|\operatorname{Re} z| \leq |z|$, $|\operatorname{Im} z| \leq |z|$
- $|z + z'| \le |z| + |z'|$ (Dreiecksungleichung)
- $\bullet |e^z| = e^{\operatorname{Re} z}$
- $z^2 \overline{z}^2 = 4i \operatorname{Re}(z) \operatorname{Im}(z)$

Der Körper \mathbb{C} ist nicht geordnet und eine **Ungleichung** wie $z_1 < z_2$ macht keinen Sinn!

1.4 Norm

 $||f(t)||^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(t)|^2 dt$

Mitternacht

$$az^{2} + bz + c = 0 \Leftrightarrow z_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

1.6 Polardarstellung

<u>Form</u>

$$z = re^{i\varphi} = r(\cos\varphi + i\sin\varphi)$$
 mit $r \in \mathbb{R}^+(r \ge 0)$

$\overline{\mathrm{kartesisch} \rightarrow \mathrm{polar}}$

$$r = |z| = \sqrt{x^2 + y^2}$$

$$\arg(z) = \arg(x, y) = \{\varphi + 2k\pi | k \in \mathbb{Z}\} \implies \boxed{\varphi \in \arg z} \text{ (Menge)}$$

Innerhalb $[-\pi, \pi]$ lässt sich φ so berechnen:

$$\varphi = \begin{cases} \arctan \frac{y}{x} & \text{für } x > 0 \\ \arctan \frac{y}{x} + \pi & \text{für } x < 0, y \geqslant 0 \\ \arctan \frac{y}{x} - \pi & \text{für } x < 0, y < 0 \\ +\pi/2 & \text{für } x = 0, y > 0 \\ -\pi/2 & \text{für } x = 0, y < 0 \\ undef. & \text{für } x = 0, y = 0 \end{cases}$$

$$x = r\cos\varphi$$

$$y = r\sin\varphi$$

komplexe Multiplikation

$$z_1 \cdot z_2 = r_1 \cdot r_2 e^{i(\varphi_1 + \varphi_2)} \ z^n = r^n \cdot e^{in\varphi}$$

n-te Wurzel
$$\implies$$
 genau n Lösungen!
$$\sqrt[n]{z} = w_k = |z|^{\frac{1}{n}} e^{i\left(\frac{\varphi}{n} + \frac{2k\pi}{n}\right)} \quad \text{mit } k = 0, 1, \dots, n-1$$

Hauptwert des Arguments (eindeutig!)

$$-\pi < \varphi < \pi$$
, mit $\varphi = \operatorname{Arg}(z)$ \Longrightarrow $\operatorname{Arg} \overline{z} = -\operatorname{Arg} z$

z liegt auf der positiven reellen Achse: \iff Arg z=0

z auf negativen reellen Achse \iff Arg-Funktion kann z nicht abbliden

1.7 Gamma-Funktion

$$\Gamma(\alpha) := \int_0^\infty x^{\alpha - 1} e^{-x} dx$$

$$\delta(t) = \begin{cases} \infty, & falls & t = 0 \\ 0, & falls & t \neq 0 \end{cases}$$

Was gilt:

- $\Gamma(\alpha+1) = \alpha \cdot \Gamma(\alpha)$

- $\Gamma(n) = (n-1)!, \forall n \in \mathbb{N}$ $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ $\Gamma(\alpha) \cdot \Gamma(1-\alpha) = \frac{\pi}{\sin(\pi \cdot \alpha)}, \alpha \in$

Komplexwertige Funktionen 2

Begriffe aus der Topologie

Umgebung: (Beliebig kleine) Kreisscheibe um einen Punkt z.

innerer Punkt: Der Punkt z befindet sich in einer Menge und berührt den Rand nicht (Umgebung um z existiert in Menge).

Randpunkt: z befindet sich auf dem Rand einer Menge.

Berührungspunkt: z sitzt in oder auf dem Rand einer Menge.

offene Teilmenge: Teilmenge ohne Rand / nur innere Punkte

abgeschlossene Teilmenge: Teilmenge mit Rand / alle Berührungspunkte sind enthalten

beschränkte Teilmenge: Für jeden Punkt z einer Teilmenge S gilt: |z| ist kleiner als eine Konstante M.

kompakte Teilmenge: abgeschlossen und beschränkt.

zusammenhängende Teilmenge: Jeder Punkt der Teilmenge kann mit jedem anderen Punkt der Menge nur über andere Punkte der Menge verbunden werden (keine Inseln).

Gebiet: zusammenhängende offene Teilmenge.

Komplexe Funktionen

 $f: \mathbb{R} \to \mathbb{C} \text{ oder } f: \mathbb{C} \to \mathbb{C}$

f(z) ist das **Bild** von z und z ist das **Urbild** (nicht immer eindeutig) von w = f(z).

Hauptwert der n-ten Wurzel (principal value, kurz: pv):

pv
$$\sqrt[n]{w}$$
: $\mathbb{C}^{-*} \to S = \{z \in \mathbb{C}^* | -\frac{\pi}{n} < \text{Arg } z < \frac{\pi}{n}\}$

$$w \mapsto \sqrt[n]{|w|} e^{i\frac{\text{Arg } w}{n}}$$

Komplexe Exponentialfunktion

$$\exp : \mathbb{C} \to \mathbb{C} , z \mapsto w = \exp z = \sum_{k=0}^{\infty} \frac{1}{k!} z^k$$

Es gelten folgende Umformungen:

exp
$$(z+z')=\exp z\cdot\exp z'$$
 mit $z,z'\in\mathbb{C}$ $e^z=\exp z$ $e^{i\varphi}=\cos \varphi+i\sin \varphi$ für reelle φ Aus letzterem folgt insbesondere: $e^{2\pi i}=1$ und $\exp(z+2\pi i)=\exp z\cdot\exp(2\pi i)=\exp z$

$z^{\alpha} = \overline{e^{\alpha log(z)}}$

Logarithmus

Da die Exponentialfunktion im komplexen periodisch ist, ist der komplexe Logarithmus als **Menge** definiert:

$$\log w = \{ z \in \mathbb{C} \mid e^z = w \} \subseteq \mathbb{C} \qquad \log(w) = \ln|w| + i \arg(w)$$

Auch hier will man mit einem konkreten Wert rechnen können. Deshalb ist der Hauptwert des Logarithmus wie folgt definiert:

$$\text{Log }: \mathbb{C}^{-*} \to \mathbb{C} \text{ , } w \mapsto \ln|w| + i \text{ Arg } w$$

Hier ist Log nun injektiv und der eindeutig bestimmte Repräsentant von log w im Streifen $S = \{z = x + iy | -\pi < y < \pi\} = \{z \in \mathbb{C} | |\text{Im } z| < \pi\}$

Potenz

Für alle $a \in \mathbb{C}^{-*}$ (<u>nur</u> für diese!) ist der **Hauptwert der Potenz**:

pv
$$a^z = \exp(z \text{Log } a)$$
 und es gilt: $\mathbf{pv} \ a^{z+z'} = \mathbf{pv} \ a^z \cdot \mathbf{pv} \ a^{z'}$

3 Die Cauchy-Riemannschen Differentialgleichungen

Im folgenden untersuchen wir Real- und Imaginärteil von analytischen Funktionen $(f:\Omega\to\mathbb{C})$:

$$f = u(x,y) + iv(x,y) \ (x+iy \in \Omega)$$

Obige Funktion hat stetige partielle Ableitungen nach x und y zwischen denen die Cauchy-Riemannschen Differentialgleichungen gelten:

$$\begin{vmatrix} u_x(x,y) = v_y(x,y) \\ v_x(x,y) = -u_y(x,y) \end{vmatrix} (x+iy \in \Omega)$$

Anwendung der CR-Differentialgleichungen

Die <u>CR-Differentialgleichungen in P</u>olarkoordinaten sind:

$$u_r = \frac{1}{r}v_{\varphi}$$

$$v_r = \frac{-1}{r}u_{\varphi}$$

$$x = r\cos\varphi$$

$$y = r\sin\varphi$$

Zur Info: $holomorphie \Longrightarrow glattheit$

$$u_x, u_y$$
 und v_x, v_y existieren und erfüllen die CR -Differentialgleichungen \iff $f(x+iy)=u(x,y)+iv(x,y)$ analytisch bzw. holomorph auf Ω \iff $f'=f_x=u_x+iv_x$ $f'=-if_y=v_y-iu_y$ \iff f komplex differenzierbar \iff f ∞ -mal komplex differenzierbar

Beispiele

- $f(z) = \overline{z}$ ist nicht differenzierbar, da die CR-Gleichungen nicht erfüllt
- $f(z) = |z|^2$ ist keine analytische Funktion im Ursprung . (Die Ableitung von f existiert nur im Ursprung.) Eine Funktion heisst analytisch in z_0 , falls sie in einer ganzen Umgebung von z_0 analytisch ist.
- Log $z = \ln |z| + i \operatorname{Arg} z$ $(z \in \mathbb{C}^{-*})$ ist analytisch auf \mathbb{C}^{-*} .

4 Die Integralformel von Cauchy

Theorie Übung 4.1

Integral reeller Variablen ("dx" ist hier reell) $g: \mathbb{R} \to \mathbb{C}$, dann:

 $\int_{a}^{b} g(x) dx = \text{``Wie im reellen''} = \int_{a}^{b} \text{Re}(g(x)) dx + i \int_{a}^{b} \text{Im}(g(x)) dx$

 $\left| \int_{a}^{b} f(x) \, dx \right| \leqslant \int_{a}^{b} |f(x)| \, dx \text{ und } \int_{a}^{\overline{b}} f(x) \, dx = \int_{a}^{b} \overline{f(x)} \, dx$

Eine Kurve / ein Weg $\gamma: [a,b] \to \mathbb{C}$ stetig und stückweise glatt

Spur von γ : sp(γ) = {Menge aller Bildpunkte von γ }

Länge der Kurve: $=\int_{0}^{a} |\dot{\gamma}(t)| dt$

Komplexes Linienintegral der Funktion f über der Kurve γ

 $f: \mathbb{C} \to \mathbb{C}$, Parametrisierung $\gamma: [a, b] \to \mathbb{C}$; dann gilt: $\int_{\gamma} f(z) dz = \int_{a} f(\gamma(t)) \cdot \dot{\gamma}(t) dt \quad \text{wobei } dt \text{ wieder reell ist.}$

Es gilt: $\int f(z) dz = -\int f(z) dz$

Parametrisierungen

(können auch AUFGETEILT werden: $\gamma = \gamma_1 + \gamma_2$)

Gerader / direkter Weg von a nach b:

$$\gamma(t) = a(1-t) + bt = a + t(b-a) \quad 0 \leqslant t < 1 \quad \dot{\gamma}(t) = b-a$$

Kreis **gegen** den Uhrzeigersinn mit Rad<u>ius r</u> um Mittelpunkt a:

$$\gamma(t) = a + re^{it}$$
 $0 \leqslant t < 2\pi$ $\dot{\gamma}(t) = ire^{it}$

Einheitskreis **im** Uhrzeigersinn um den Ursprung (a = 0):

 $\gamma(t) = 1 \cdot e^{-it}$ $0 \leqslant t < 2\pi$ $\dot{\gamma}(t) = -ie^{-it}$

Funktion y = f(x): $\gamma(t) = f(t)$

Satz von Cauchy

Sei Ω ein einfach zusammenhängendes Gebiet (= offen, keine Löcher) und f: $\Omega \to \mathbb{C}$ analytisch. Dann gilt für jede geschlossene Kurve ("Zyklus")" γ mit

$$a = b: \oint_{\gamma} f(z) \, dz = 0$$

und deshalb folgt für alle Kurven γ_1 und γ_2 mit demselben Anfangspunkt aund Endpunkt b:

$$\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz$$

$$\implies \text{Der Wert des Integrals ist } \mathbf{WEGUNABH\ddot{A}NGIG!}$$

Integralsatz von Cauchy

 $f:\Omega\to\mathbb{C}$ analytisch, Ω einfach zusammenhängend, γ ein beliebiger Zyklus welcher den Punkt $a \in \Omega \backslash \operatorname{sp}(\gamma)$ $n(\gamma, a)$ -mal gegen den Uhrzeigersinn umläuft:

$$\int_{\gamma} \frac{f(z)}{z-a} dz = 2\pi i \cdot n(\gamma, a) \cdot f(a)$$

Integralsatz von Cauchy für höhere Ableitungen

Sei f analytisch auf ganz Ω und K eine Kreisscheibe innerhalb von Ω mit Rand ∂K (hier wird im Gegenuhrzeigersinn darüber integriert!). Dann gilt für alle

$$\frac{1 \ge 0.}{f^{(n)}(a) \cdot n(\gamma, a)} = \frac{n!}{2\pi i} \int_{\partial K} \frac{f(z)}{(z - a)^{n+1}} dz$$

Analog:

$$\frac{2\pi i}{n!} f^{(n)}(a) \cdot n(\gamma, a) = \int_{\partial K} \frac{f(z)}{(z-a)^{n+1}} dz$$

4.2 Mittelwertsatz

Seien $U \subset \mathbb{C}$ eine offene Menge und $f: U \to \mathbb{C}$ eine holomorphe Funktion. Seien $z_0 \in U$ und r > 0 so dass $B(z_0, r) \subseteq U$. Dann gilt:

$$f(z_0) = \int_0^1 f(z_0 + rexp(2\pi it))dt$$

 $\overline{\mathrm{d.h.}} \ f(z_0)$ ist der Mittelwert von f auf dem Kreis mit Zentrum z_0 und Radius r

Maximum Modulus Prinzip

Sei f holomorph und nicht konstant auf einer wegzusammenhangenden Menge U. Dann besitzt |f(z)| kein Maximum auf U. Anders gesagt, gibt es keinen Punkt $z_0 \in U$ mit $|f(z)| \leq |f(z_0)|$.

5 Reihen

Gewöhnliche Reihen und Potenzreihen

Gewöhnliche Reihe Potenzreihe (mit Entwicklungspunkt
$$z_0$$
)
$$\sum_{k=0}^{\infty} a_k \qquad \qquad \sum_{k=0}^{\infty} b_k (z-z_0)^k$$

Überführen der beiden verschiedenen Reihen

Wir können immer $z_0 = 0$ annehmen oder $w = z - z_0$ substituieren und erhalten dann:

$$\sum_{k=0}^{\infty} a_k = \sum_{k=0}^{\infty} b_k z^k \quad \text{mit } a_k = b_k z^k$$

5.2Konvergenzradius (für alle Reihen)

Der Index (k = ...) ist für den Konvergenzradius nicht relevant! (Kann z.B. auch k=2 sein.)

Quotientenkriterium:

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = q \in \mathbb{C}$$

$$\implies \begin{cases} \sum_{n=0}^{\infty} a_n \text{konvergiert absolut, falls } |q| < 1 \\ \sum_{n=0}^{\infty} a_n \text{divergiert, falls } |q| > 1 \end{cases}$$

Wurzelkriterium:

$$q = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

und die Reihe konvergiert für q < 1 und divergiert für q > 1.

5.3 Potenzreihen

Form
$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$

$$f^{(n)}(z) = \sum_{k=n}^{\infty} k(k-1) \cdots (k-n+1) \cdot a_k(z-z_0)^{k-n}$$

Konvergenzradius (Potenzreihen)

Potenzreihen konvergieren auf Kreisscheiben mit Konvergenzradius ρ :

$$\rho = \lim_{k \to \infty} \frac{|a_k|}{|a_{k+1}|}$$

$$\frac{Quotientenkriterium}{\rho = \lim_{k \to \infty} \frac{|a_k|}{|a_{k+1}|}} \qquad Wurzelkriterium$$

$$\rho = \lim_{k \to \infty} \frac{|a_k|}{|a_{k+1}|}$$

$$\rho = \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|a_k|}}$$

Am Rand der Konvergenzkreisscheibe verhalten sich die Reihen unterschiedlich.

5.5isolierte Singularität (z_0)

- 1. z_0 ist hebbar: $\lim_{z \to z_0} f(z) = \lambda \neq \pm \infty$
 - \rightarrow Hauptteil der Laurentreihe $um\ z_0$ ist null.

(f analytisch fortsetzbar)

falls f(z) beschränkt in $\Omega \Rightarrow z$ ist eine hebb. Sing.

2. z_0 ist Polstelle k-ter Ordnung:

 $\lim_{z \to \infty} (z - z_0)^k f(z) = \lambda \neq \pm \infty \text{ und } \neq 0 \iff k \geq \text{Ordnung des Pols.}$

→ Hauptteil der zugehörigen Laurentreihe ist endlich lang

k ist zu hoch gewählt, falls der Grenzwert = 0 ist und zu niedrig, falls der Grenzwert unendlich ist oder nicht existiert. Die tiefste Ordnung des Hauptteils entspricht k.

Trick zur Bestimmung der Ordnung: Die Ordnung ist gleich dem ersten k für das gilt: $f^{(k)}(z_0) \neq 0$.

Falls $\lim_{z \to z_0} |f(z)| = \infty \Rightarrow z_0$ ist eine Polstelle

3. z_0 ist eine wesentliche Singularität:

 $\lim (z-z_0)^k f(z)$ existiert für kein k. Funktion verhält sich chaotisch im Punkt z_0 . Der Hauptteil der Laurentreihe um z_0 hat unendlich viele

Elemente. Bsp.: $\sum_{k=-\infty}^{-1} a_k (z-z_0)^k$

5.6 nicht isolierte Singularität

Hat keinen Typ. Bsp: $z_0 = 0$ bei $\frac{1}{\sin(\frac{1}{2})}$

6 Der Residuensatz

6.1 Residuensatz

Sei $U\subseteq\mathbb{C}$ eine offene wegzusammenhängende Teilmenge und sei $\gamma:[0,1]\to U$ eine positiv orientierte einfache geschlossene Kurve.

Seien $z_1,...,z_n$ im Innere von γ enthalten und sei $f:U\setminus\{z_1,...,z_n\}\to\mathbb{C}$ holomorph. Dann gilt:

$$\oint_{\partial\Omega} f(z)dz = 2\pi i \sum_{z_i \in \Omega} \operatorname{Res}(f|z_i) \cdot n(\gamma(t), z_i)$$
($n(\gamma(t), z_i)$ normalerweise = ± 1)

6.2 Residuenberechnung

- 4. Res $(f|z_0)=$ Koeffizienten von z^{-1} der innersten Laurentreihe um den Punkt $z_0.$ $(=a_{-1})$
- 5. $\operatorname{Res}(f|z_0) = \frac{1}{2\pi i} \oint_{\partial B} f(z) dz$ mit $\partial B = \partial B(z_0, r)$
- 6. $\operatorname{Res}(f|z_0) = 0$ falls $z_0 = 0$ und f(z) gerade (Laurentreihe hat nur gerade Koeff.)

6.3 Integralabschätzungen

$$\lim_{R \to \infty} \left(\left| \int_{S_R} f(z) dz \right| \right) \leqslant \lim_{R \to \infty} \pi \cdot R \cdot \max\left(|f(z)| \right)$$
wobei $S_R = \text{Halbkreis}, R \to \infty$

$$\lim_{\varepsilon \to 0} \int_{|z - z_0| = \varepsilon, \operatorname{Im}(z) > 0} f(z) dz = \pi \cdot i \cdot \operatorname{Res}(f|z_0)$$
(Halbkreis um Singularität)

6.4 Gängster-Lemma

Sei $\gamma_R(t) := Re^{it}$ für $t \in [0, \pi]$. Seien p und q Polynome mit der folgenden Eigenschaften:

- 1. $deg(p) \le deg(q) 2$;
- 2. q(x) besitzt keine Nullstellen auf der x-Achse.

Sei $f(z):=\frac{p(z)}{q(z)}\cdot h(z)$, wobei |h(z)| auf der Menge $\{z\in\mathbb{C}:Im(z)\geq 0\}$ beschränkt ist. Dann gilt: $\lim_{R\to\infty}\int_{\gamma_R}f(z)dz=0$

Einige Anwendungen des Residuensatzes 6.5

1.
$$\int_{0}^{2\pi} f(\cos(\varphi), \sin(\varphi)) d\varphi = \frac{1}{i} \int_{|z|=1}^{2\pi} \frac{1}{z} f\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2i}\right) dz$$
$$= 2\pi \sum_{z_{i} \in \partial B(0,1)} \text{Res}\left(\frac{1}{z} f\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2i}\right) \Big| z_{i}\right)$$

2.
$$\int_{-\infty}^{\infty} f(x)dx = \begin{cases} 2\pi i \sum_{z_i \in H^+} \operatorname{Res}(f|z_i) + \pi i \sum_{z_i \in \mathbb{R}} \operatorname{Res}(f|z_i) \\ -2\pi i \sum_{z_i \in H^-} \operatorname{Res}(f|z_i) - \pi i \sum_{z_i \in \mathbb{R}} \operatorname{Res}(f|z_i) \end{cases}$$

falls
$$f(z) = \frac{p(z)}{q(z)}$$
 und $\deg(p) \leqslant \deg(q) - 2$

3.
$$\int_{-\infty}^{\infty} f(x)e^{i\alpha x}dx = \begin{cases} 2\pi i \sum_{z_i \in H^+} \operatorname{Res}(f(z)e^{i\alpha z}|z_i) & \alpha \geqslant 0\\ -2\pi i \sum_{z_i \in H^-} \operatorname{Res}(f(z)e^{i\alpha z}|z_i) & \alpha \leqslant 0 \end{cases}$$

falls
$$f(z) = \frac{p(z)}{q(z)}$$
 und $q(z) \neq 0 \ \forall z \in \mathbb{R}$ und $\deg(p) \leqslant \deg(q) - 2$

$$4. \int_{-\infty}^{\infty} f(x) \cos(\alpha x) dx = \begin{cases} -2\pi \cdot \operatorname{Im} \left(\sum_{z_i \in H^+} \operatorname{Res} \left(f(z) e^{i\alpha z} | z_i \right) \right) & \alpha \geqslant 0 \\ 2\pi \cdot \operatorname{Im} \left(\sum_{z_i \in H^-} \operatorname{Res} \left(f(z) e^{i\alpha z} | z_i \right) \right) & \alpha \leqslant 0 \end{cases}$$

$$\to \text{gleiche Bedingungen wie bei } 3.$$

$$5. \int_{-\infty}^{\infty} f(x) \sin(\alpha x) dx = \begin{cases} 2\pi \cdot \operatorname{Re}\left(\sum_{z_i \in H^+} \operatorname{Res}(f(z)e^{i\alpha z}|z_i)\right) & \alpha \geqslant 0 \\ -2\pi \cdot \operatorname{Re}\left(\sum_{z_i \in H^-} \operatorname{Res}(f(z)e^{i\alpha z}|z_i)\right) & \alpha \leqslant 0 \end{cases}$$

$$\to \text{gleiche Bedingungen wie bei 3.}$$
Dabei ist mit H^+ die obere Halbebene, und mit H^- die untere Halbebene ge-

Dabei ist mit H^+ die obere Halbebene, und mit H^- die untere Halbebene gemeint. Also folgt:

 $z \in H^+$: Singularitäten liegen auf der **oberen Halbebene** $z \in H^-$: Singularitäten liegen auf der **unteren Halbebene** $z \in \mathbb{R}$: Singularitäten liegen auf der reellen Achse

Taylorreihe

$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(z_0)}{k!} (z - z_0)^k \quad \forall z \in B(z_0, \rho)$$

Wichtige Potenzreihen

geometrische Reihe:

$$\frac{1}{1 - \left(\frac{z}{c}\right)^d} = \sum_{k=0}^{\infty} \left(\frac{z}{c}\right)^{d \cdot k} \iff \left|\frac{z}{c}\right| < 1 \quad \text{mit } \rho = 1$$

$$\frac{1}{c\left(1-\frac{z}{c}\right)^2} = \sum_{k=1}^{\infty} \frac{k}{c} \left(\frac{z}{c}\right)^{k-1} \iff \left|\frac{z}{c}\right| < 1 \qquad \text{mit } \rho = c$$

Wichtige Umformung für geom. Reihe:

$$\frac{1}{2-z} = \frac{1}{2-z+1-1} = \frac{1}{1-(z-1)} = \sum_{k=0}^{\infty} (z-1)^k \text{ für } |z-1| < 1$$
$$e^z = \exp(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!} = 1 + z + \frac{z^2}{2} + \frac{z^3}{6} + \frac{z^4}{24} \qquad \text{mit } \rho = \infty$$

$$Log(z) = Log(z_0) - \sum_{k=1}^{\infty} \frac{(-1)^k (z - z_0)^k}{k \cdot z_0^k}$$

$$\cos(z) = \sum_{k=0}^{\infty} \frac{(-1)^k \cdot z^{2k}}{(2k)!} = 1 - \frac{z^2}{2} + \frac{z^4}{24} - \frac{z^6}{720} + \dots$$

 $\sin(z) = \sum_{k=0}^{\infty} \frac{(-1)^k \cdot z^{2k+1}}{(2k+1)!} = z - \frac{z^3}{6} + \frac{z^5}{120} - \frac{z^7}{5400} + \dots$

$$e^{iz} = \exp(iz) = \cos(z) + i\sin(z) = 1 + ix + \frac{(ix)^2}{2} + \frac{(ix)^3}{6} + \frac{(ix)^4}{24} + \dots$$

$$=1-\frac{x^2}{2}+\frac{x^4}{24}\mp\dots+i\left(x-\frac{x^3}{6}+\frac{x^5}{120}\mp\dots\right)$$

Umrechnung

$$\frac{1}{z+a} = \frac{1}{a+z_0} \frac{1}{1-\left(-\left(\frac{z-z_0}{a+z_0}\right)\right)} = \frac{1}{a+z_0} \sum_{k=0}^{\infty} \left(-\frac{z-z_0}{a+z_0}\right)^k$$

 $= 1 + ix - \frac{x^2}{2} - \frac{ix^3}{6} + \frac{x^4}{24} + \frac{ix^5}{120} \mp \dots$

Wenn
$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$
 für $|z - z_0| < \rho$
Dann $f(z) = -\sum_{k=0}^{\infty} a_k (z - z_0)^k$ für $|z - z_0| > \rho$

(Begründung hinschreiben!)

8 Laurentreihen

Entwicklung möglich \iff **KEINE Singularität** im Kreisring!

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^k$$
 \iff $f(z)$ analytisch auf einem Kreisring $a < |z - z_0| < b$

$$\text{Kreisring } a < |z - z_0| < b$$

Nebenteil

$\sum_{k=1}^{-1} a_k (z - z_0)^k \quad \sum_{k=1}^{\infty} a_k (z - z_0)^k$

Koeffizienten (wobei gilt: $\partial B = \partial B(z_0, r)!$)

 $a_k = \frac{1}{2\pi i} \oint \frac{f(z)}{(z - z_0)^{k+1}} dz$

4 eigentlich NIE so berechnen, ist nur nützlich für Residuensatz und um Inte-

grale zu bestimmen!

9 Fourierreihe

$$f(t) = \sum_{k=-\infty}^{\infty} c_k e^{k\frac{2\pi i}{T}t} = \frac{a_0}{2} + \sum_{k=-1}^{\infty} a_k \cos\left(k\frac{2\pi}{T}t\right) + b_k \sin\left(k\frac{2\pi}{T}t\right)$$

 $\operatorname{mit} c_k \in \mathbb{C} \text{ und } a_k, b_k \in \mathbb{R}$

9.1 Fourierkoeffizienten

$$a_k = \frac{2}{T} \int_{T_0}^{T_0 + T} f(t) \cos\left(k\frac{2\pi}{T}t\right) dt$$

$$b_k = \frac{2}{T} \int_{T_0}^{T_0 + T} f(t) \sin\left(k\frac{2\pi}{T}t\right) dt$$

$$c_k = \frac{1}{T} \int_{T_0}^{T_0 + T} f(t) e^{-k\frac{2\pi i}{T}t} dt$$

 $Sonder f\"{a}lle$

•
$$f$$
 gerade: $f(t) = f(-t)$

$$b_k = 0$$
 bzw. $c_k = c_{-k} \ \forall k$

$$a_k = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos\left(k\frac{2\pi}{T}t\right) dt$$

• f ungerade: f(t) = -f(-t) $a_k = 0$ bzw. $c_k = -c_{-k} \ \forall k$ und $b_k = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin\left(k\frac{2\pi}{T}t\right) dt$

Legende

 T_0 : Beliebiger Startzeitpunkt, meistens = 0

T: Fundamentalperiode (kleinst mögliche Periode)

$\frac{a_0}{2}$: arithmetisches Mittel von f(t)

ACHTUNG: c_0 und a_0 müssen **einzeln** berechnet werden für k=0!

Koeffizientenumrechnung

$$c_k = \begin{cases} \frac{1}{2}(a_{(-k)} + ib_{(-k)}) & k < 0 \\ \frac{1}{2}(a_k - ib_k) & k > 0 \\ \frac{a_0}{2} & k = 0 \end{cases} \quad a_0 = 2 \cdot c_0$$

$$a_k = c_k + c_{(-k)}$$

$$b_k = i(c_k - c_{(-k)})$$

9.3 Fundamentalintegrale

$$\int_{0}^{2\pi} \sin(kt) dt = 0 \quad \text{für} \quad k \in \mathbb{Z}$$

$$\int_{0}^{2\pi} \cos(kt) dt = 0 \quad \text{für} \quad k \neq 0 \text{ und } k \in \mathbb{Z}$$

$$\int_{0}^{2\pi} e^{ikt} dt = 0 \quad \text{für} \quad k \neq 0 \text{ und } k \in \mathbb{Z}$$

$$\int_{0}^{2\pi} z^{k} dz = 0 \quad \text{für} \quad k \neq -1 \text{ und } k \in \mathbb{Z}$$

$$|z| = r$$

9.4 Wichtige Fourierintegrale

$$\int \sin(\omega t) \cdot \sin(\omega kt) dt = \frac{k \cdot \sin(\omega t) \cdot \cos(\omega kt) - \cos(\omega t) \cdot \sin(\omega kt)}{\omega - k^2 \omega} + C$$

$$\int \sin(\omega t) \cdot \cos(\omega kt) dt = \frac{k \cdot \sin(\omega t) \cdot \sin(\omega kt) + \cos(\omega t) \cdot \cos(\omega kt)}{(k^2 - 1) \cdot \omega} + C$$

$$\int \cos(\omega t) \cdot \cos(\omega kt) dt = \frac{k \cdot \sin(\omega t) \cdot \cos(\omega kt) - k \cdot \cos(\omega t) \sin(\omega kt)}{\omega - k^2 \omega} + C$$

$$\int \cos(\omega t) \cdot \sin(\omega kt) dt = \frac{\sin(\omega t) \cdot \sin(\omega kt) + k \cdot \cos(\omega t) \cdot \cos(\omega kt)}{\omega - k^2 \omega} + C$$

Satz von Parseval

$$||f||_2 = \frac{1}{T} \int_{T_0}^{T_0 + T} |f(t)|^2 dt = \sum_{k = -\infty}^{\infty} |c_k|^2 = \frac{a_0^2}{4} + \frac{1}{2} \sum_{k = 1}^{\infty} |a_k|^2 + |b_k|^2$$

Satz von Plancherel

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \int_{-\infty}^{\infty} |\hat{f}(s)|^2 ds$$

9.7 Skalarprodukt

$$\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt$$
 falls f, g 2π -periodisch $\langle f, g \rangle = \int_{-\infty}^{\infty} f(t) \overline{g(t)} dt$ sonst

9.8**Faltung**

$$(f * g)(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\tau)g(t - \tau) d\tau \quad \text{falls } f, g \text{ } 2\pi\text{-periodisch}$$
$$(f * g)(t) = \int_{-\pi}^{\infty} f(\tau)g(t - \tau) d\tau \quad \text{sonst}$$

Fouriertransformation 10

$$\widehat{f}(\omega) = \mathcal{F}\{f(x)\}(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt \quad \text{falls } \int_{-\infty}^{\infty} |f(t)| dt < \infty$$

Rücktransformation
$$f(t) = \mathcal{F}\{\widehat{f}(\omega)\}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{f}(w)e^{i\omega t} dw \quad \text{falls} \int_{-\infty}^{\infty} |\widehat{f}(w)| dw < \infty$$

 $Fourier\hbox{-} Transformier te$

 $\hat{f}(\omega)$

 $\frac{1}{|a|}\hat{f}(\frac{\omega}{a})$ $\hat{f}(\omega - b)$

 $(i\omega)^n \hat{f}(\omega)$

Sonderfälle

$$f$$
 gerade: $f(t) = f(-t) \implies \widehat{f}(\omega) = \widehat{f}(-\omega)$
 f ungerade: $f(t) = -f(-t) \implies \widehat{f}(\omega) = -\widehat{f}(-\omega)$

Beispiele
$$f(x) = \begin{cases} 1 & -a \leqslant x \leqslant a \\ 0 & sonst \end{cases} \iff \hat{f}(\omega) = \frac{2\sin(\omega a)}{\omega}$$

$$f(x) = c$$

$$\begin{split} f(x) &= e^{-ax^2} \quad a > 0 \Longleftrightarrow \hat{f}(\omega) = \sqrt{\frac{\pi}{a}} e^{-\frac{\omega^2}{4a}} \\ f(x) &= \frac{1}{k^2 + x^2} \quad k > 0 \Longleftrightarrow \hat{f}(\omega) = \frac{\pi}{k} e^{-k|\omega|} \end{split}$$

Rechenregeln

Funktion

f(x)

$\begin{array}{cc} a \cdot f(x) + b \cdot g(x) & a \cdot \hat{f}(\omega) + b \cdot \hat{g}(\omega) \\ f(x-a) & e^{-i\omega a} \hat{f}(\omega) \end{array}$

f(ax) $e^{ibx}f(x)$

$\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^n f(x)$

$x^n f(x)$

(f*g)(x)

$$\begin{array}{ccc}
(dx) \\
x^n f(x) & i^n \left(\frac{\mathrm{d}}{\mathrm{d}\omega}\right)^n \hat{f}(\omega) \\
(f * g)(x) & \hat{f}(\omega) \cdot \hat{g}(\omega) \\
f(x) \cdot g(x) & \frac{1}{2\pi} (\hat{f} * \hat{g})(\omega) \\
\hat{f}(x) & 2\pi f(-\omega)
\end{array}$$

Dualität der Fouriertransformation

Erklärung

Linearität

Transformation

Verschiebung im Zeitbereich

Verschiebung im Frequenzbereich

Streckung im Zeitbereich

Faltung im Zeitbereich

Zeitliche Ableitung

Ableitung im Frequenzbereich

Die folgenden Korrespondenzen sind äquivalent.

 $\hat{x}(-t)$ \circ —•

Die folgenden Korrespondenzen sind äquivale
$$x(t)$$
 \circ —• $\hat{x}(f)$ $\hat{x}(t)$ \circ —• $x(-f)$

$$\hat{x}(f)$$
 $x(-f)$

$$x(f)$$
 $x(-f)$
 $x(f)$

11 Laplacetransformation

$$F(s) = \int_{0}^{\infty} f(t)e^{-st}dt \quad \text{mit } f(t) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} F(s)e^{st} ds$$

Wobei $s = \sigma + i\omega$ und σ so gewählt werden muss, dass die Integrale konvergieren.

Hier (KomA) wird bei der Laplacetrafo f(t) immer = 0 gesetzt, wenn t < 0!

Dies geschieht mit Hilfe der

Heavyside Sprungfunktion

$$H(T) = \begin{cases} 1 & t \geqslant 0 \\ 0 & t < 0 \end{cases}$$

 $\overline{H(T)}$ wird auch $\overline{U(T)}$ geschrieben

11.1 DGl mit Laplace lösen

- DGL Laplace transformieren (rechte und linke Seite) mit Hilfe der Tabellen.
- Anfangswerte in transformierte DGL einsetzen.

 $(f * g)(t) = \int_{0}^{t} f(t - \tau)g(\tau) d\tau \quad \circ \longrightarrow \quad F(s)G(s)$

- DGL nach Y(s) auflösen.
- Ergebnis wieder mit Tabellen rücktransformieren (ev. mit Partialbruchzerlegung, ...).

11.2 Wichtigste Identitäten

$$f(at) \qquad 0 \qquad \frac{1}{|a|}F(\frac{s}{a})$$

$$f(t)e^{at} \qquad 0 \longrightarrow \qquad F(s-a)$$

$$f'(t) \qquad 0 \longrightarrow \qquad sF(s)-f(0^{+})$$

$$f'''(t) \qquad 0 \longrightarrow \qquad s^{2}F(s)-sf(0^{+})-f'(0^{+})$$

$$f'''(t) \qquad 0 \longrightarrow \qquad s^{3}F(s)-s^{2}f(0^{+})-sf'(0^{+})-f''(0^{+})$$

$$f(t-a) \qquad 0 \longrightarrow \qquad e^{-as}F(s)$$

$$\left(\frac{\mathrm{d}}{\mathrm{d}t}\right)^{n}f(t) \qquad 0 \longrightarrow \qquad s^{n}F(s)-s^{n-1}f(0)-s^{n-2}f'(0)-\dots$$

$$-sf^{(n-2)}(0)-f^{(n-1)}(0)$$

$$\int_{0}^{\infty} f(\tau) d\tau \qquad \circ \longrightarrow \frac{1}{s} F(s)$$

$$t^{n} f(t) \qquad \circ \longrightarrow (-1)^{n} \left(\frac{d}{ds}\right)^{n} F(s)$$

$$\frac{f(t)}{t} \qquad \circ \longrightarrow \int_{s}^{\infty} F(u) du$$

$$f(t+T) = f(t) \qquad \circ \longrightarrow \frac{1}{1 - e^{-sT}} \int_{0}^{T} f(t)e^{-st} dt$$

$$(f \text{ ist } T\text{-period.}) \qquad = \frac{1}{1 - e^{-sT}} \mathcal{L}\{f(t)H(T-t)\}(s)$$

f(t)	$\mathcal{L}[f(t)] = F(s)$	
1	$\frac{1}{s}$	(1)
$e^{at}f(t)$	F(s-a)	(2)
$\mathcal{U}(t-a)$	$\frac{e^{-as}}{s}$	(3)
$f(t-a)\mathcal{U}(t-a)$	$e^{-as}F(s)$	(4)
$\delta(t)$	1	(5)
$\delta(t-t_0)$	e^{-st_0}	(6)
$t^n f(t)$	$(-1)^n \frac{d^n F(s)}{ds^n}$	(7)
f'(t)	sF(s) - f(0)	(8)
$f^n(t)$	$s^n F(s) - s^{(n-1)} f(0)$	_
	$\cdots - f^{(n-1)}(0)$	(9)
$\int_0^t f(x)g(t-x)dx$	F(s)G(s)	(10)
$t^n \ (n=0,1,2,\dots)$	$\frac{n!}{s^{n+1}}$	(11)
$t^x \ (x \ge -1 \in \mathbb{R})$	$\frac{\Gamma(x+1)}{s^{x+1}}$	(12)
$\sin kt$	$\frac{k}{s^2 + k^2}$	(13)
$\cos kt$	$\frac{s}{s^2 + k^2}$	(14)
e^{at}	$\frac{1}{s-a}$	(15)
$\sinh kt$	$\frac{k}{s^2 - k^2}$	(16)
$\cosh kt$	$\frac{s}{s^2 - k^2}$	(17)
$\frac{e^{at} - e^{bt}}{a - b}$	$\frac{1}{(s-a)(s-b)}$	(18)

f(t)	$\mathcal{L}[f(t)] = F(s)$	
$\frac{ae^{at} - be^{bt}}{a - b}$	$\frac{s}{(s-a)(s-b)}$	(19)
te^{at}	$\frac{1}{(s-a)^2}$	(20)
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$	(21)
$e^{at}\sin kt$	$\frac{k}{(s-a)^2 + k^2}$	(22)
$e^{at}\cos kt$	$\frac{s-a}{(s-a)^2+k^2}$	(23)
$e^{at}\sinh kt$	$\frac{k}{(s-a)^2 - k^2}$	(24)
$e^{at}\cosh kt$	$\frac{s-a}{(s-a)^2 - k^2}$	(25)
$t\sin kt$	$\frac{2ks}{(s^2+k^2)^2}$	(26)
$t\cos kt$	$\frac{s^2 - k^2}{(s^2 + k^2)^2}$	(27)
$t \sinh kt$	$\frac{2ks}{(s^2 - k^2)^2}$	(28)
$t \cosh kt$	$\frac{s^2 - k^2}{(s^2 - k^2)^2}$	(29)
$\frac{\sin at}{t}$	$\arctan \frac{a}{s}$	(30)
$\frac{1}{\sqrt{\pi t}}e^{-a^2/4t}$	$\frac{e^{-a\sqrt{s}}}{\sqrt{s}}$	(31)
$\frac{a}{2\sqrt{\pi t^3}}e^{-a^2/4t}$	$e^{-a\sqrt{s}}$	(32)
$\operatorname{erfc}\left(\frac{a}{2\sqrt{t}}\right)$	$\frac{e^{-a\sqrt{s}}}{s}$	(33)

Trigonometrie

Trigonometrische Definitionen & Sätze

Definitionen

$$sin(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} \mp \dots$$

$$cos(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = \frac{x^0}{0!} - \frac{x^2}{2!} + \frac{x^4}{4!} \mp \dots$$

$$exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!} = \lim_{n \to \infty} (1 + \frac{x^n}{n})^n$$

$$arctan(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = \frac{x}{1} - \frac{x^3}{3} + \frac{x^5}{5} \mp \dots$$

Hinweis: Für einfache Approximation genügt es die ersten paar Glieder der arctan(x) - Reihe zu berechnen.

Falls: $x \notin [0,1]$, gibt es eine Vereinfachung: $arctan(x) = \frac{sgn(x)*\pi}{2} - arctan(\frac{1}{x})$

1.1.1 **Definition Taylorreihe**

Eine Funktion f(x) wird an einer Stelle x_0 angenähert durch $Tf(x;x_0)$ $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n = f(x_0)$

1.1.2 Definitionen csc(x), sec(x), cot(x)

$$csc(x) := \frac{1}{sin(x)}$$
 $sec(x) := \frac{1}{cos(x)}$ $cot(x) := \frac{1}{tan(x)} = \frac{cos(x)}{sin(x)}$

1.2 Periodizitäten

- $1 \cdot e^{2\pi ik} = 1$ für alle $k \in \mathbb{Z}$
- $\bullet \ e^{\frac{\pi}{2}ik} = i$
- $\bullet \ e^{-\frac{\pi}{2}ik} = -i$
- $\bullet \ e^{-2\pi ik} = 1$
- $e^{\pi i k} = (-1)^k$ $e^{-\pi i k} = (-1)^k$

- $\sin(z+2\pi) = \sin(z)$
- $\bullet \ \cos(z + 2\pi) = \cos(z)$
- $\sinh(z + 2\pi i) = \sinh(z)$
- $\cosh(z + 2\pi i) = \cosh(z)$
- $\bullet \ \sin(z-\pi) = -\sin(z)$
- $\cos(z \frac{\pi}{2}) = \sin(z)$

1.3 Winkel

φ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$
Grad	0°	30°	45°	60°	90°	120°	135°	150°
$\sin(\varphi)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
$\cos(\varphi)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$
$\tan(\varphi)$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	$\pm \infty$	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$

φ	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$
Grad	180°	210°	225°	240°	270°	300°	315°
$\sin(\varphi)$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{2}}$
$\cos(\varphi)$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$
$\tan(\varphi)$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	$\pm \infty$	$-\sqrt{3}$	-1

1.4 Sinusssatz

Abbildung 1: Quelle: https://de.wikipedia.org/

1.5 Cosinusssatz

$$a^2 + b^2 - 2ab * cos(\gamma) = c^2$$

Standardintegrale 1.6

$$\begin{array}{ll} \frac{d}{dx}arcsin(x) = \frac{1}{\sqrt{1-x^2}} & \frac{d}{dx}arsinh(x) = \frac{1}{\sqrt{x^2+1}} \\ \frac{d}{dx}arccos(x) = \frac{-1}{\sqrt{1-x^2}} & \frac{d}{dx}arcosh(x) = \frac{1}{\sqrt{x^2-1}}, \text{wenn } x > 1 \\ \frac{d}{dx}arctan(x) = \frac{1}{x^2+1} & \frac{d}{dx}artanh(x) = \frac{1}{1-x^2}, \text{wenn } |x| < 1 \end{array}$$

Euler Formel 1.7

$$\begin{aligned} \exp(i\varphi) &= \cos(\varphi) + i\sin(\varphi) \\ \exp(-i\varphi) &= \cos(-\varphi) + i\sin(-\varphi) \Longleftrightarrow \exp(-i\varphi) = \cos(\varphi) - i\sin(\varphi) \end{aligned}$$

Daraus kann nun sin, sinh, cos und cosh in Termen von exp(x) ausgedrückt werden.

$$\frac{\exp(i\varphi) + \exp(-i\varphi)}{2} = \cos(\varphi)$$
$$\frac{\exp(i\varphi) - \exp(-i\varphi)}{2i} = \sin(\varphi)$$

Ignoriere alle i, dann folgt...

$$\frac{\exp(\varphi) + \exp(-\varphi)}{2} = \cosh(\varphi)$$

$$\frac{\exp(\varphi) - \exp(-\varphi)}{2} = \sinh(\varphi)$$

Ableitungen, Integrale 1.8

Ableitungen 1.9

$$\frac{d}{dx}sin(x) = cos(x)$$
$$\frac{d}{dx}cos(x) = -sin(x)$$

$$\frac{d}{dx}tan(x) = \frac{d}{dx}\frac{sin(x)}{cos(x)} = \frac{cos(x)cos(x) - sin(x)sin(x)}{cos^2(x)} = 1 - \frac{sin^2(x)}{cos^2(x)} = 1 - tan^2(x) = \frac{1}{cos^2(x)}$$

$$\frac{d}{dx}\frac{1}{\sin(x)} = \frac{0*\sin(x) - 1*\cos(x)}{\sin^2(x)} = \frac{-\cos(x)}{\sin^2(x)}$$
$$\frac{d}{dx}\frac{1}{\cos(x)} = \frac{0*\cos(x) - 1*(-\sin(x))}{\cos^2(x)} = \frac{\sin(x)}{\cos^2(x)}$$

$$\frac{d}{dx}\frac{1}{\cos(x)} = \frac{0*\cos(x) - 1*(-\sin(x))}{\cos^2(x)} = \frac{\sin(x)}{\cos^2(x)}$$

$$\tfrac{d}{dx}sin^2(x) = sin(x)*cos(x) + cos(x)*sin(x) = 2*sin(x)*cos(x)$$

$$\frac{d}{dx}cos^{2}(x) = cos(x)*(-sin)(x) + (-sin(x))*cos(x) = -2*sin(x)*cos(x)$$

1.10 Rechenregeln

1.11 Additions theoreme

$$sin^{2}(x) + cos^{2}(x) = 1$$

$$sin(x \pm y) = sin(x)cos(y) \pm cos(x)sin(y) \quad (\#umgekehrteAbleitungsregel)$$

$$cos(x \pm y) = cos(x)cos(y) \mp sin(x)sin(y)$$

$$tan(x \pm y) = \frac{tan(x)\pm tan(y)}{1\mp tan(x) tan(y)} = \frac{sin(x\pm y)}{cos(x\pm y)}$$

1.12 Doppelwinkel

$$sin(2x) = 2sin(x)cos(x) = \frac{2tan(x)}{1+tan^2(x)}$$

$$cos(2x) = cos^2(x) - sin^2(x) = 1 - 2sin^2(x) = 2cos^2(x) - 1 = \frac{1-tan^2(x)}{1+tan^2(x)}$$

$$tan(2x) = \frac{2tan(x)}{1-tan^2(x)} = \frac{2}{cot(x)-tan(x)}$$

$$cot(2x) = \frac{cot^2(x)-1}{2cot(x)} = \frac{cot(x)-tan(x)}{2}$$

Beweis mit Additionstheorem

1.13 Produkt-zu-Summen-Formel

$$sin(x) * sin(y) = \frac{1}{2}(cos(x - y) - cos(x + y))$$

$$cos(x) * cos(y) = \frac{1}{2}(cos(x - y) + cos(x + y))$$

$$sin(x) * cos(y) = \frac{1}{2}(sin(x - y) + sin(x + y))$$

1.14 Hyperbolische Funktionen

1.14 Hyperbolische Funktionen $sinh(z) := \frac{e^z - e^{-z}}{2} = z + \frac{z^3}{3!} + \frac{z^5}{5!} + \frac{z^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$

 $cosh(z) := \frac{e^z + e^{-z}}{2} = 1 + \frac{z^2}{2!} + \frac{z^4}{4!} + \frac{z^6}{6!} + \dots = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}$

$$sin(z) = Im(e^{iz}) = \frac{1}{2i}(e^{iz} - e^{-iz})$$

$$cos(z) = \text{Re}(e^{iz}) = \frac{1}{2}(e^{iz} + e^{-iz})$$
$$sinh(\pm iz) = \pm i \cdot \sin(z)$$

$$cosh(\pm iz) = cos(z)$$

 $sin(iz) = i \cdot sinh(z)$
 $cos(iz) = cosh(z)$

$$\sin(-z) = -\sin(z)$$

$$\tan -(z) = -\tan(z)$$

$$\cos(-z) = \cos(z)$$

$$\arctan(-z) = -\arctan(z)$$

$$\sin(z) = \sin(x)\cosh(y) + i\cos(x)\sinh(y)$$

$$\cos(z) = \cos(x)\cosh(y) - i\sin(x)\sinh(y)$$

$$e^{z} = e^{x} \cos(y) + ie^{x} \sin(y)$$

$$\sinh(z) = \cos(y) \sinh(x) + i \sin(y) \cosh(x)$$

$$\cosh(z) = \cos(y) \cosh(x) + i \sin(y) \sinh(x)$$

•
$$\int \sinh(ax+b) dx = \frac{\cosh(ax+b)}{a}$$
; $\int \sinh(x) dx = \cosh(x)$

•
$$\int \cosh(ax+b) dx = \frac{\sinh(ax+b)}{a}$$
; $\int \cosh(x) dx = \sinh(x)$

•
$$\int \tan(ax+b) dx = \frac{\log(\cosh(ax+b))}{a}$$
; $\int \tan(x) dx = \log(\cosh(x))$

1.15 Additions theoreme

$$sinh(z_1 \pm z_2) = sinh(z_1) \cdot cosh(z_2) \pm sinh(z_2) \cdot cosh(z_1)$$

$$cosh(z_1 \pm z_2) = cosh(z_1) \cdot cosh(z_2) \pm sinh(z_1) \cdot sinh(z_2)$$

$$tanh(z_1 \pm z_2) = \frac{tanh(z_1) \pm tanh(z_2)}{1 \pm tanh(z_1) \cdot tanh(z_2)}$$

1.15.1 Zusammenhänge

$$\cosh^2(z) - \sinh^2(z) = 1 \qquad \cosh(z) + \sinh(z) = e^z \qquad \cosh(z) - \sinh(z) = e^{-z}$$

1.16 Ableitungen

$$\frac{d}{dz}sinh(z) = cosh(z) \ \frac{d}{dz}cosh(z) = sinh(z) \ \frac{d}{dz}tanh(z) = 1 - tanh^2(z) = \frac{1}{cosh^2(x)}$$

2 Plots Trigonometrischer Funktionen

Differenzialrechnung

1 Differentialgleichungen

1.1 Grundbegriffe

Ordnung: höchste vorkommende Ableitung

linear: alle y-abhängigen Terme kommen linear vor (keine Terme

wie zum Beispiel y^2 , $(y'')^3$, $\sin(y)$, $e^{y'}$)

homogen: Gleichung ohne Störfunktionen

Störfunktion: Term, der rein von der Funktionsvariablen x abhängt

1.2 Methoden

	Problem	Anforderungen
Trennung der	$y' = \frac{dy}{dx} = h(x) \cdot g(y)$	1. Ordnung
Variablen		
Variation der	$y' = \frac{dy}{dx} = h(x)y + b(x)$	1. Ordnung
Konstanten		inhomogen
Euler-Ansatz	$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = 0$	n. Ordnung
		linear
		homogen
Direkter An-	$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = b(x)$	n. Ordnung
satz		linear
		inhomogen

1.2.1 Trennung der Variable

$$y' + x \tan y = 0, \ y(0) = \frac{\pi}{2}$$

umformen
$$\frac{dy}{dx} = -x \tan y$$

konstante Lösungen $y(x) \equiv 0$ erfüllt jedoch $y(0) \equiv \frac{\pi}{2}$ nicht

Trennung
$$\frac{dy}{\tan y} = -xdx$$

integrieren
$$\int \frac{\cos y}{\sin y} dy = -\int x dx \Rightarrow \log|\sin y| = -\frac{x^2}{2} + C$$

$$\Rightarrow |\sin y| = e^{C} e^{\frac{-x^{2}}{2}} \Rightarrow \sin y = \pm e^{C} e^{\frac{-x^{2}}{2}} = C e^{\frac{-x}{2}}$$
$$\sin(y(0)) = \sin(\frac{\pi}{2}) = 1 \Rightarrow C = 1$$

Anfangsbedingung gebrauchen
$$\sin(y(0)) = \sin(\frac{\pi}{2}) = 1 \Rightarrow C$$

Lösung $y(x) = \arcsin(e^{\frac{-x^2}{2}})$

1.2.2 Variation der Konstanten

Grundsatz:
$$y(x) = y_h(x) + y_p(x)$$

$$y'(x+1) + y = x^3, \ y(0) = \sqrt{5}$$

Trennung
$$\frac{y'}{y} = \frac{-1}{x+1}$$

konstante Lösungen $y(x) \equiv 0$ erfüllt jedoch $y(0) \equiv \sqrt{5}$ nicht

integrieren
$$\int \frac{dy}{y} = -\int \frac{dx}{x+1}$$

$$\Rightarrow \ln|y| = -\ln|x+1| + C$$

Homogene Lösung $y_h(x) = \frac{C}{x+1}$, mit $C = \pm e^C \in \mathbb{R} \setminus 0$ partikulärer Ansatz $y_p(x) = \frac{C(x)}{x+1}$ einsetzen $(\frac{C'(x)}{x+1} - \frac{C(x)}{(x+1)^2})(x+1) + \frac{C(x)}{x+1} = x^3$ $C'(x) = x^3$ $C(x) = \frac{x^4}{4}$

partkuläre Lösung
$$y_p(x) = \frac{x^4}{4(x+1)}$$

allgemeine Lösung
$$y(x) = y_h(x) + y_p(x) = \frac{C}{x+1} + \frac{x^4}{4(x+1)}$$

Anfangsbedingung benutzen
$$y(0) = \sqrt{5} \Rightarrow C = \sqrt{5}$$

Lösung $y(x) = \frac{\sqrt{5}}{x+1} + \frac{x^4}{4(x+1)}$

1.2.3 Euler-Ansatz

$$y'' - 2y' - 8y = 0, \ y(1) = 1, y'(1) = 0$$

Euler-Ansatz $y(x) = e^{\lambda x}$

einsetzen
$$\lambda^2 e^{\lambda x} - 2\lambda e^{\lambda x} - 8e^{\lambda x} = 0$$

charakt. Polynom $\lambda^2 - 2\lambda - 8 = (\lambda - 4)(\lambda + 2) = 0$

Nullstellen
$$4, -2$$

allgemeine Lösung $y(x) = Ae^{4x} + Be^{-2x}$

Anfangsbedingung gebrauchen
$$y(1) = Ae^4 + Be^{-2} = 1$$
,
 $y'(1) = 4Ae^4 - 2Be^{-2} = 0$

$$\Rightarrow A = \frac{1}{3}e^{-4}, B = \frac{2}{3}e^{2}$$

$${\bf L\"osung}\quad y(x)=\frac{1}{3}e^{4x-4}+\frac{2}{3}e^{2-2x}$$
 Bemerkung: Zu einer m -fachen Nullstelle λ gehören die m linear unabhängigen

Lösungen $e^{\lambda x}$, $x\cdot e^{\lambda x}$, ..., $x^{m-1}\cdot e^{\lambda x}$. Zur m-fachen Nullstelle $\lambda=0$ gehören die Lösungen $1,\,x,\,\ldots\,,\,x^{m-1}$.

Komplexe Nullstellen:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Ein komplexes Nullstellenpaar der Form $\alpha \pm \beta i$ liefert folgende homogene Lösung:

$$y(x) = e^{\alpha x} (C_1 \cos(\beta x) + C_2 \sin(\beta x))$$

1.2.4 Direkter Ansatz

Grundsatz: $y(x) = y_{\text{homo}}(x) + y_p(x)$

Inhomogener Term $b(x)$	Ansatz für $y_p(x)$	zu bestimmen
Polynom	$Ax^2 + Bx + C$	A, B, C
ce^{kx}	Ae^{kx}	A
$c\sin(kx)$ oder $c\cos(kx)$	$A\sin(kx) + B\cos(kx)$	A, B

Bemerkung: Kommt der gewählte Ansatz schon in der homogenen Lösung vor, so multipliziert man den Ansatz einfach mit x.

$$y'' - y' + \frac{1}{4}y = \cos(x)$$
 homogener Ansatz
$$y'' + y' + \frac{1}{4}y = 0$$
 Euler-Ansatz anwenden
$$\lambda^2 + \lambda + \frac{1}{4} = (\lambda + \frac{1}{2})^2 = 0$$
 homogene Lösung
$$\Rightarrow y_{\text{homo}}(x) = Ae^{-\frac{x}{2}} + Bx \cdot e^{-\frac{x}{2}}$$
 partikulärer Ansatz wählen
$$y_p(x) = a\cos(x) + b\sin(x)$$

$$\Rightarrow y_p'(x) = -a\sin(x) + b\cos(x), \ y_p''(x) =$$

$$= -a\cos(x) - b\sin(x)$$
 Einsetzen
$$(-a + b + \frac{a}{4})\cos(x) + (-b - a + \frac{1}{4}b)\sin(x)$$

$$= \cos(x)$$
 Koeffizientenvergleich
$$-\frac{3}{4}a + b = 1, \ -a - \frac{3}{4}b = 0$$

DGL: Ansätze zur Bestimmung einer partikulären Lösung

Störfunktion K(t)	Spektralbedingung	Ansatz für $y_p(t)$
const.		const.
t^r	0 ∉ spec L	$A_0 + A_1 t + \dots + A_r t^r$
-	$0 \in spec\ L, m$ -fach	$(A_0 + A_1t + \dots + A_rt^r)t^m$
$b_0 + b_1 t + \cdots + b_r t^r, b_i \in \mathbb{R}$	0 ∉ spec L	$A_0 + A_1 t + \dots + A_r t^r$
3+	λ ∉ spec L	$Ae^{\lambda t}$
$e^{\lambda t}$	$\lambda \in spec\ L, m$ -fach	$At^m e^{\lambda t}$
$t^2e^{\lambda t}$	λ∉ spec L	$(A_0 + A_1 t + A_2 t^2)e^{-t}$
$t^n e^{\lambda t}$		$(At^{n+1} + Bt^n)e^{\lambda t}$
$P(x)e^{\lambda t}$		$Q(x)e^{\lambda t}$
$\cos(\omega t)$ $\sin(\omega t)$	±iω ∉ spec L	$A\cos(\omega t) + B\sin(\omega t)$
$\sin(\omega t) + \cos(\omega t)$	$\pm i\omega \in spec\ L$, einfach	$t(A\cos(\omega t) + B\sin(\omega t))$
$\cosh(\omega t)$	±iω ∉ spec L	$A \cos h(\omega t) + B \sinh(\omega t)$
$\sinh(\omega t)$ $\sinh(\omega t) + \cosh(\omega t)$	$\pm i\omega \in spec\ L$, einfach	$t(A\cos h(\omega t) + B\sinh(\omega t))$
$e^{\lambda t}\cos(\omega t)$	±iω ∉ spec L	$e^{\lambda t}(A\cos(\omega t) + B\sin(\omega t))$
$e^{\lambda t} \sin(\omega t)$ $e^{\lambda t} (\sin(\omega t) + \cos(\omega t))$	$\pm i\omega \in spec\ L$, einfach	$te^{\lambda t}(A\cos(\omega t) + B\sin(\omega t))$
$P(x)\cos(\omega t)$	±iω ∉ spec L	$Q(x)\cos(\omega t) + R(x)\sin(\omega t)$
$P(x)\sin(\omega t) P(x)(\sin(\omega t) + \cos(\omega t))$	$\pm i\omega \in spec\ L$, einfach	$t(Q(x)\cos(\omega t) + R(x)\sin(\omega t))$

Ist $\lambda \in spec$ (Nullstelle des charakteristischen Polynoms), dann ist der entsprechende Ansatz noch mit \mathbf{t} zu multiplizieren (ist in der Tabelle schon erledigt).

Liegt eine Linearkombination der Störfunktionen vor, so hat man auch als Ansatz eine entsprechende Linearkombination zu wählen.

Teil IV

Tables

1.3 Elementare Integrale

Substitutionen

$\int f(ax+b)$	u = ax + b	dx = du/a
$\int f(g(x)\cdot g'(x))$	u = g(x)	dx = du/g'(x)
$\int f(x, \sqrt{ax^2 + bx + x})$	$x = \alpha u + \beta$	$dx = \alpha \ du$
$\int f(x,\sqrt{1-x^2})$	$x = \sin(u)$	$dx = du\sqrt{1 - x^2}$
$\int f\left(x,\sqrt{1+x^2}\right)$	$x = \sinh(u)$	$dx = du\sqrt{1 + x^2}$
$\int f(x, \sqrt{x^2 - 1})$	$x = \cosh(u)$	$dx = du\sqrt{x^2 - 1}$
$\int f(e^x, \sinh(x), \cosh(x))$	$u = e^x$	$dx = e^x dx$
$\int f(\sin(x),\cos(x))$	$u = \tan\left(\frac{x}{2}\right)$	$dx = 2\cos^2\left(\frac{x}{2}\right)du$
$\int f\left(\frac{1}{\sqrt{a^2 - x^2}}\right)$	$u = \frac{x}{a}$	dx = a du
$\int f\left(\sqrt{1+\frac{1}{x^2}}\right)$	$u = \sqrt{x^2 - 1}$	$dx = \frac{\sqrt{x^2 - 1}}{x} du$, PBZ

f'(x)	f(x)	F(x)
$\frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$	$\frac{f(x)}{g(x)}$	
0	c	cx
$r \cdot x^{r-1}$	x^r	$\frac{x^{r+1}}{r+1}$ $\ln x $
$-\frac{1}{x^2} = -x^{-2}$	$\frac{1}{x} = x^{-1}$	$\ln x $
$-\frac{1}{x^2} = -x^{-2}$ $\frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-\frac{1}{2}}$	$\sqrt{x} = x^{\frac{1}{2}}$	$\frac{2}{3}x^{\frac{3}{2}}$
$\cos(x)$	$\sin(x)$	$-\cos(x)$
$-\sin(x)$	$\cos(x)$	$\sin(x)$
$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$	$\tan(x)$	$-\ln \cos(x) $
e^x	e^x	e^x
$c \cdot e^{cx}$	e^{cx}	$\frac{1}{c} \cdot e^{cx}$
$\ln(c) \cdot c^x$	c^x	$\frac{c^x}{\ln(c)}$
$\frac{1}{x}$	$\ln x $	$x(\ln x -1)$
$\frac{1}{\ln(a)\cdot x}$	$\log_a x $	$\frac{x}{\ln(a)}(\ln x -1)$
$ \frac{\frac{1}{\ln(a) \cdot x}}{\frac{1}{\sqrt{1 - x^2}}} \\ -\frac{1}{\sqrt{1 - x^2}} \\ 1 $	$\arcsin(x)$	$x \cdot \arcsin(x) + \sqrt{1 - x^2}$
$-\frac{1}{\sqrt{1-x^2}}$	$\arccos(x)$	$x \cdot \arccos(x) - \sqrt{1 - x^2}$
$\frac{1}{1+x^2}$	$\arctan(x)$	$x \cdot \arctan(x) - \frac{1}{2}\ln(1+x^2)$
$\cosh(x)$	$\sinh(x) = \frac{e^x - e^{-x}}{2}$	$\cosh(x)$
$\sinh(x)$	$\cosh(x) = \frac{e^x + e^{-x}}{2}$	$\sinh(x)$
$\frac{1}{\cosh^2(x)}$	tanh(x)	$\log(\cosh(x))$

1.4 Wichtige Grenzwerte

$$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x \qquad \qquad \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a \qquad \qquad \lim_{x \to 0} \frac{\log_a(1 + x)}{x} = \frac{1}{\ln a}$$

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0 \qquad \qquad \lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{\tan(x)}{x} = 1 \qquad \qquad \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\lim_{n \to \infty} \frac{n!}{n^n} = 0 \qquad \qquad \lim_{n \to \infty} \frac{e^n - 1}{n} = 1$$

$$\lim_{n \to \infty} \sqrt[n]{n!} = \infty \qquad \qquad \lim_{n \to \infty} \sqrt[n]{n} = 1$$

$$\lim_{n \to \infty} \ln(n) = \infty \qquad \qquad \lim_{x \to 0} \frac{\log_a(1 + x)}{x} = \frac{1}{\ln a}$$

2 **Formeltafel**

Binomialkoeffizient 2.1

$$\binom{n}{k} = \frac{n!}{k! \, (n-k)!} \quad \text{für } \ 0 \le k \le n$$

2.2 Ableitungen

2.2.1 Regeln

• (Summerregel)
$$(f+g)'(x) = f'(x) + g'(x)$$

• (Produktregel)
$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

(1 Total Kireger)
$$(jg)(x) = j(x)g(x) + j(x)g(x)$$

$$f'(x)g(x) = f(x)g'(x)$$

• (Quotientenregel)
$$(\frac{f}{g})'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

• (Kettenregel)
$$(g \circ f)'(x) = (g(f(x)))' = g'(f(x))f'(x)$$

• (Umkehrfunktion) $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} = (f^{-1})'(f(x)) = \frac{1}{f'(x)}$

2.3 Integrale

Integralregeln

Es gelte: $\int f(x) dx = F(x)$

$$\bullet \int u' \cdot v dx = uv - \int u \cdot v' dx$$

•
$$\int f(x)dx = \int f(g(t)) \cdot g'(t)dt, \ x = g(t), dx = g'(t)dt$$

•
$$\int f(a+x) dx = F(a+x)$$

•
$$\int f(a-x) \, dx = -F(a-x)$$

•
$$\int f(\alpha x) dx = \frac{1}{\alpha} F(\alpha x)$$

$$\bullet \int \frac{g'(x)}{g(x)} dx = \ln|g(x)|$$

•
$$\int g(x)g'(x) dx = \frac{1}{2}g(x)^2$$

• $\int f(-x) dx = -F(-x)$

•
$$|\int f(x)| \le \int |f(x)|$$
 (wenn f, Riemann-Integrable ist)

trionometrische Funktionen

 $\bullet \int \cos^2(ax) \, dx = \frac{x}{2} + \frac{\sin(2ax)}{4a}$

•
$$\int \sin(ax) dx = -\frac{1}{a} \cos(ax)$$

•
$$\int \sin(ax) dx = -\frac{1}{a}\cos(ax)$$
•
$$\int \cos(ax) dx = \frac{1}{a}\sin(ax)$$

$$\frac{1}{a}\sin(ax)$$

$$a = a \sin(ax)$$

$$x = \frac{x}{2} - \frac{\sin x}{2}$$

$$x = \frac{x}{x} = \frac{\sin x}{x}$$

$$=\frac{1}{a}\sin(ax)$$

$$\frac{1}{a}\sin(ax)$$

$$\frac{1}{a}\sin(ax)$$

$$-\frac{1}{a}\cos(ax)$$

 $\frac{1}{2}\sin(ax)$

$$-\frac{1}{a}\cos(ax)$$

$$\frac{1}{a}\sin(ax)$$

$$\frac{1}{2}\sin(ax)$$

$$\frac{1}{a}\cos(ax)$$

$$\frac{1}{a}\cos(ax)$$

$$\sin(ax)$$

• $\sum_{n=0}^{\infty} (-1)^n q^n = \frac{1}{1-q}$ für |q| < 1 ("geometrische Reihe")

$$\cos(ax)$$

$$\sin(ax)$$

$$\sin(ax)$$

$$\sin(ax)$$

$$\frac{1}{a}\cos(ax)$$
$$\sin(ax)$$

$$\frac{1}{a}\cos(aa)$$

$$\int_{\mathbf{C}} \mathbf{t}$$

$$\int_{\mathcal{C}}$$

$$\int \mathbf{t}$$

$$\sin(a)$$

$$\int \sin(a)$$

• $\int \cos(ax) \, dx = \frac{\cos(ax)}{a^2} + \frac{x \sin(ax)}{a}$ • $\int \sin(ax) \cos(ax) \, dx = -\frac{\cos^2(ax)}{2a}$

• $\int \cos(ax) \, dx = \frac{\pi}{a} \sin(ax)$ • $\int \sin(ax)^2 \, dx = \frac{x}{2} - \frac{\sin(2ax)}{4a}$ • $\int \frac{1}{\sin^2 x} \, dx = -\cot x$ • $\int x \sin(ax) \, dx = \frac{\sin(ax)}{a^2} - \frac{\sin(ax)}{a^2}$ • $\int \cos(ax) \, dx = \frac{-\cos^2(ax)}{a^2} + \frac{\pi}{a}$ • $\int \sin(ax) \cos(ax) \, dx = -\frac{\cos^2(ax)}{2a}$ • $\int \tan(ax) \, dx = -\frac{1}{a} \ln|\cos(ax)|$ • $\int \arcsin(x) \, dx = x \arcsin(x) + \sqrt{1 - x^2}$

• $\int \arccos(x) dx = x \arccos(x) - \sqrt{1 - x^2}$ • $\int \arctan(x) dx = x \arctan(x) - \frac{1}{2} \ln(1 + x^2)$

• $\int x \ln(x) dx = \frac{1}{2}x^2 (\ln(x) - \frac{1}{2})$ • $\int_{-\infty}^{\infty} e^{-\frac{1}{a}x^2} dx = \sqrt{a\pi}$

• $\int \frac{1}{\cos^2(x)} dx = \tan x$ Exponentialfunktion

•
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 divergiert ("harmonische Reihe")

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = \ln$$

•
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = \ln \frac{1}{2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n} = \ln \frac{1}{n}$$

$$\sum_{n=1}^{\infty} \frac{1}{n} \text{ konverg}$$

•
$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$
 konvergiert für $\alpha > 1$, divergiert für $\alpha \le 1$

•
$$\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$$
 für $|q| < 1$ ("geometrische Reihe")

•
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots$$

• $\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{(n+1)} \frac{x^n}{n}$
• $-\ln(1-x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$
• $\ln x = \sum_{n=0}^{\infty} \frac{2}{2n+1} \cdot \left(\frac{x-1}{x+1}\right)^{2n}$
• $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \text{ für } |x| < 1 \text{ (Geom. Reihe)}$

•
$$\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} nx^{(n-1)}$$
•
$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$$
•
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots + \cdots$$
•
$$\sinh x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$

•
$$\arccos x = \frac{\pi}{2} - \arcsin x$$

• $\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{(2n+1)}}{2n+1}$ für $|x| < 1$
2.6 Linienintegral

• 2. Art: $\int_{\gamma} \vec{f}(\vec{x}) d\vec{x} := \int_{a}^{b} \left\langle \vec{f}(\gamma(t)), \gamma(t)' \right\rangle dt$ • 1. Art: $\int_{\gamma} f ds := \int_a^b f(\gamma(t)) \|\gamma(t)'\|_2 dt$

• $\cosh x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$

• $\arcsin x = \sum_{k=0}^{\infty} {2k \choose k} \frac{x^{2k+1}}{4^k (2k+1)}$

2.7 Kreuzprodukt
$$\vec{a} \times \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

• $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

 $\bullet \ \sum_{n=1}^{m} n = \frac{m(m+1)}{2}$

• $\sum_{n=0}^{m} n^2 = \frac{1}{6}m(m+1)(2m+1)$

Reihenentwicklung

• $\sum_{n=0}^{m} n^3 = \frac{1}{4}m^2(m+1)^2$

$$\vec{a} \times \vec{b} = \left(\begin{array}{c} a_2 \\ a_3 \end{array}\right) \times$$

2.8

$$a^n a^m = a^{n+m}$$

$$(a^n)^m = a^{nm}$$

Exponent

•
$$(ab)^n = a^n b^n$$

• $(\frac{a}{b})^n = \frac{a^n}{b^n}$
• $a^{-n} = \frac{1}{a^n}$
• $(\frac{a}{b})^{-n} = (\frac{b}{a})^n$

•
$$a^{\frac{n}{m}} = (a^{\frac{1}{m}})^n = (a^n)^{\frac{1}{m}}$$

2.10

•
$$a < b \Rightarrow a + c < b + c \text{ und } a - c < b - c$$

$$a < b \Rightarrow a + c < b + c \text{ und}$$

•
$$a < b \text{ und } c > 0 \Rightarrow \frac{a}{c} < \frac{b}{c}$$

• $a < b \text{ und } c < 0 \Rightarrow \frac{a}{c} > \frac{b}{c}$

2.9 Wurzel

• $\sqrt[n]{a} = a^{\frac{1}{n}}$ • $\sqrt[n]{ab} = \sqrt[n]{a}\sqrt[n]{b}$ • $\sqrt[m]{\sqrt[n]{a}} = \sqrt[nm]{a}$ • $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$

2.11 Logarithmen

- $e^{-\infty} = 0$
- $e^0 = 1$
- $e^1 = e = 2.718281828$
- $e^{\infty} = \infty$
- $y = \log_a x \Leftrightarrow x = a^y$
- $\log_a 1 = 0$
- $\log_a a^x = x$ $a^{\log_a x} = x$
- $\log_a xy = \log_a x + \log_a y$ $\log_a \frac{1}{x} = -\log_a x$

- $\log_a x^r = r \log_a x$ $\log_a x = \frac{\log_b x}{\log_b a}$

- $\log_a x = \frac{\ln x}{\ln a}$ $\log_a (x+y) = \log_a x + \log_a (1 + \frac{y}{x})$ • $\log_a(x-y) = \log_a x + \log_a (1-\frac{y}{x})$
- $e^{a+bi} = e^a(\cos(b) + i\sin(b))$ (Euler
 - Identität)
- $\bullet \ e^{b\ln(a)} = a^b$ $\bullet \ e^{-\ln(b)} = \frac{1}{\kappa}$

Teil V

Beispiele

Aufgabe 2: Residuensatz [16 Punkte] Berechnen Sie das Integral

$$\int_{-\infty}^{\infty} \frac{1}{(x^2 - 6x + 10)^2} \, \mathrm{d}x$$

mit Hilfe des Residuensatzes

Hinweis: Sollte ein Kurvenintegral gegen Null konvergieren in Ihrer Berechnung, so argumentieren Sie warum dies der Fall ist.

Lösung. Wir betrachten die Wege $\gamma_R^{(0)}, \gamma_R^{(1)} : [0,1] \to \mathbb{C}$ gegeben durch

$$\gamma_R^{(0)}(t)=2Rt-R, \qquad \gamma_R^{(1)}(t)=R\mathrm{e}^{\pi\mathrm{i}t}, \qquad t\in[0,1].$$

Es gilt

$$\begin{split} \lim_{R \to \infty} \int_{\gamma_R^{(0)}} \frac{1}{(z^2 - 6z + 10)^2} \, \mathrm{d}z &= \lim_{R \to \infty} \int_0^1 \frac{2R}{((2Rt - R)^2 - 12Rt + 6R + 10)^2} \, \mathrm{d}t \\ &= \lim_{R \to \infty} \int_{-R}^R \frac{1}{(x^2 - 6x + 10)^2} \, \mathrm{d}x = \int_{-\infty}^\infty \frac{1}{(x^2 - 6x + 10)^2} \, \mathrm{d}x, \end{split}$$

mit der Substitution x=2Rt-R. Ausserdem hatten wir in der Vorlesung gesehen, dass

$$\lim_{R \to \infty} \int_{\gamma_B^{(1)}} \frac{1}{(z^2 - 6z + 10)^2} dz = 0$$

gilt, da $(z^2-6z+10)^{-2}$ sich schreiben lässt als p(z)/q(z), mit p(z)=1 und $q(z)=(z^2-6z+10)^2$ zwei Polynomen, welche deg $p+2=2<4=\deg q$ erfüllen. Wir werden im Folgenden den Residuensatz anwenden. Ist $R > \sqrt{10}$, so hat

$$\frac{1}{(z^2 - 6z + 10)^2} = \frac{1}{(z - 3 - i)^2 (z - 3 + i)^2}$$

innerhalb des Weges $\gamma_R^{(0)} * \gamma_R^{(1)}$ nur eine Singularität: Einen Pol zweiter Ordnung an der Stelle $z_0 = 3 + i$. Wir berechnen das Residuum an z_0 mit der aus der Übung bekannten Formel

$$\operatorname{Res}\left(\frac{1}{(z^2 - 6z + 10)^2}, z_0\right) = \frac{\mathrm{d}}{\mathrm{d}z} \bigg|_{z_0} \frac{1}{(z - 3 + \mathrm{i})^2} = \frac{-2}{(2\mathrm{i})^3} = \frac{1}{4\mathrm{i}}.$$

Damit gilt laut dem Residuensatz, dass

$$\int_{-\infty}^{\infty} \frac{1}{(x^2 - 6x + 10)^2} dx = \lim_{R \to \infty} \int_{\gamma^{(0)} * \gamma^{(1)}} \frac{1}{(z^2 - 6z + 10)^2} dz = 2\pi i \cdot \text{Res}\left(\frac{1}{(z^2 - 6z + 10)^2}, z_0\right) = \frac{\pi}{2}.$$

Aufgabe 4: Laplacetransformation [16 Punkte] Lösen Sie folgende Differentialgleichung mit Hilfe der Laplacetransformation:

$$\ddot{y}(t) + \dot{y}(t) - 2y(t) = 1 - t^2,$$
 $t > 0,$
 $\dot{y}(0) = -1,$ $y(0) = 1.$

Hinweis: Sind $n \in \mathbb{N}$ und $a \in \mathbb{R}$, so gilt

$$\mathcal{L}[t^{n}](s) = \frac{n!}{s^{n+1}},$$

für alle $s \in \mathbb{C}$, mit Re s > 0, und

$$\mathcal{L}[e^{at}](s) = \frac{1}{s-a},$$

für alle $s \in \mathbb{C}$, mit Re s > a.

Lösung. Sei $Y(s) := \mathcal{L}[y](s)$. Laut dem Differentiationssatz aus der Vorlesung gilt

$$\mathcal{L}[\dot{y}](s) = s\mathcal{L}[y](s) - y(0) = sY(s) - 1$$

und

$$\mathcal{L}[\ddot{y}](s) = s\mathcal{L}[\dot{y}](s) - \dot{y}(0) = s^2Y(s) - s + 1.$$

Mit diesen Berechnungen und mit Hilfe des Hinweises oben, berechnen wir

$$s^2Y(s) - s + 1 + sY(s) - 1 - 2Y(s) = \frac{1}{s} - \frac{2}{s^3} = \frac{s^2 - 2}{s^3}$$

sodass

$$Y(s) = \frac{s^4 + s^2 - 2}{s^3(s^2 + s^2 - 2)} = \frac{(s^2 - 1)(s^2 + 2)}{s^3(s - 1)(s + 2)} = \frac{(s + 1)(s^2 + 2)}{s^3(s + 2)} = \frac{s^3 + s^2 + 2s + 2}{s^3(s + 2)}$$

Wir benutzen nun die Partialbruchzerlegung

$$\frac{s^3 + s^2 + 2s + 2}{s^3(s+2)} = \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s^3} + \frac{D}{s+2},$$

welche

$$s^3 + s^2 + 2s + 2 = A(s^3 + 2s^2) + B(s^2 + 2s) + C(s + 2) + Ds^3$$

impliziert. Wir lösen das lineare Gleichungssystem $A+D=1,\ 2A+B=1,\ 2B+C=2,\ 2C=2$ durch $A=1/4,\ B=1/2,\ C=1,\ D=3/4.$ Damit folgt

$$Y(s) = \frac{1}{4s} + \frac{1}{2s^2} + \frac{1}{s^3} + \frac{3}{4(s+2)}$$

Wir benutzen nun den Hinweis ein weiteres Mal zusammen mit der Eindeutigkeit der Laplacetransformation (Satz von Lerch), um zu schliessen, dass

$$y(t) = \frac{1}{4} + \frac{1}{2}t + \frac{1}{2}t^2 + \frac{3}{4}e^{-2t}.$$

Aufgabe 3: Fourierreihe [16 Punkte] Sei $f : \mathbb{R} \to \mathbb{R}$ die gerade 2π -periodische Funktion, die durch

$$f(t) = \sinh(t) = \frac{e^t - e^{-t}}{2}$$

für $t \in [0, \pi]$, gegeben ist.

(3.a) [4 Punkte] Skizzieren Sie den Graphen der Funktion f.

(3.b) [10 Punkte] Weisen Sie nach, dass die Koeffizienten an der reellen Fourierreihe

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nt) + b_n \sin(nt)$$

von f gegeben sind durch

$$a_n = \frac{2(-1)^n \cosh(\pi) - 2}{\pi(n^2 + 1)}, \quad n \ge 0.$$

Hinweis: Es gilt

$$\cosh(t) = \frac{e^t + e^{-t}}{2}, \quad t \in \mathbb{R}.$$

(3.c) [2 Punkte] Berechnen Sie nun auch die Koeffizienten bn

Lösung. (3.a) Wir zeichnen die Skizze in Abbildung 2.

(3.b) Wir berechnen

$$\begin{split} a_n &= \frac{2}{\pi} \cdot \int_0^\pi f(t) \cos(nt) \, \mathrm{d}t = \frac{2}{\pi} \cdot \int_0^\pi \sinh(t) \cos(nt) \, \mathrm{d}t = \frac{1}{2\pi} \cdot \int_0^\pi \left(\mathrm{e}^{t} - \mathrm{e}^{-t} \right) \left(\mathrm{e}^{\mathrm{i}nt} + \mathrm{e}^{-\mathrm{i}nt} \right) \, \mathrm{d}t \\ &= \frac{1}{2\pi} \cdot \int_0^\pi \left(\mathrm{e}^{t+\mathrm{i}nt} - \mathrm{e}^{-t+\mathrm{i}nt} + \mathrm{e}^{t-\mathrm{i}nt} - \mathrm{e}^{-t-\mathrm{i}nt} \right) \, \mathrm{d}t \\ &= \frac{1}{2\pi} \cdot \left(\frac{\mathrm{e}^{t+\mathrm{i}nt}}{1+\mathrm{i}n} \Big|_0^\pi + \frac{\mathrm{e}^{-t+\mathrm{i}nt}}{1-\mathrm{i}n} \Big|_0^\pi + \frac{\mathrm{e}^{-t-\mathrm{i}nt}}{1+\mathrm{i}n} \Big|_0^\pi \right) \\ &= \frac{1}{2\pi} \cdot \left(\frac{\mathrm{e}^{\pi+\pi\mathrm{i}n} - 1}{1+\mathrm{i}n} + \frac{\mathrm{e}^{-\pi+\pi\mathrm{i}n} - 1}{1-\mathrm{i}n} + \frac{\mathrm{e}^{\pi-\pi\mathrm{i}n} - 1}{1+\mathrm{i}n} \right) \\ &= \frac{1}{2\pi} \cdot \left(\frac{(-1)^n \mathrm{e}^\pi - 1}{1+\mathrm{i}n} + \frac{(-1)^n \mathrm{e}^{-\pi} - 1}{1-\mathrm{i}n} + \frac{(-1)^n \mathrm{e}^{-\pi} - 1}{1+\mathrm{i}n} \right) \\ &= \frac{1}{\pi} \cdot \left(\frac{(-1)^n \cosh(\pi) - 1}{1+\mathrm{i}n} + \frac{(-1)^n \cosh(\pi) - 1}{1-\mathrm{i}n} \right) = \frac{2(-1)^n \cosh(\pi) - 2}{\pi(1+n^2)}, \end{split}$$

für $n \ge 0$.

(3.c) Da f gerade ist, folgt, dass b_n = 0, für n ≥ 1.

Aufgabe 1 [9 Punkte] Berechnen Sie das definite Integral

$$\int_{0}^{\infty} \frac{x}{x^4 + 1} dx.$$

Begründen Sie dabei alle Rechenschritte.

Hinweis: Der Weg, welcher in Abbildung 1 gegeben ist, kann hilfreich sein.

Abbildung 1: Ein Integrationsweg.

Lösung: Wir betrachten die Wegstücke $\gamma_R^{(0)}:[0,R]\to\mathbb{C}, \gamma_R^{(1)}:[0,1]\to\mathbb{C}$ und $\gamma_R^{(2)}:[0,R]\to\mathbb{C}$ gegeben durch

$$\gamma_R^{(0)}(t) := t, \qquad \gamma_R^{(1)}(t) := R \mathrm{e}^{\frac{\pi \mathrm{i} t}{2}} \qquad \text{und} \qquad \gamma_R^{(2)}(t) := \mathrm{i} R - \mathrm{i} t.$$

Damit gilt

$$\lim_{R \to \infty} \int_{\gamma_R^{(0)}} \frac{z}{z^4 + 1} \, \mathrm{d}z = \lim_{R \to \infty} \int_0^R \frac{t}{t^4 + 1} \, \mathrm{d}t = \int_0^\infty \frac{x}{x^4 + 1} \, \mathrm{d}x$$

und

$$\lim_{R \to \infty} \int_{\gamma_R^{(2)}} \frac{z}{z^4 + 1} \, \mathrm{d}z = \lim_{R \to \infty} \int_0^R \frac{(R - t)}{(R - t)^4 + 1} \, \mathrm{d}t = \int_0^\infty \frac{x}{x^4 + 1} \, \mathrm{d}x.$$

Ausserdem lässt sich leicht abschätzen, dass

$$\lim_{R\to\infty}\left|\int_{\gamma_R^{(1)}}\frac{z}{z^4+1}\,\mathrm{d}z\right|\leq \lim_{R\to\infty}\frac{\pi R}{2}\cdot\frac{R}{R^4-1}=0.$$

Laut dem Residuensatz gilt nun also

$$2 \cdot \int_0^\infty \frac{x}{x^4 + 1} \, \mathrm{d}x = \lim_{R \to \infty} \int_{\gamma_p^{(0)} * \gamma_p^{(1)} * \gamma_p^{(2)}} \frac{z}{z^4 + 1} \, \mathrm{d}z = 2\pi \mathrm{i} \cdot \sum_i \mathrm{Res} \left(\frac{z}{z^4 + 1}; z_i \right),$$

wobei $\{z_i\}_i$ die Singularitäten der Funktion $z/(z^4+1)$ innerhalb des Integrationsgebietes beschreibt. Man sieht leicht, dass $z_0=\exp(\pi i/4)$ die einzige Nullstelle des Polynoms z^4+1 innerhalb des von $\gamma_R^{(0)}*\gamma_R^{(1)}*\gamma_R^{(2)}$ umrandeten Gebietes ist. Damit folgt also

$$\int_0^\infty \frac{x}{x^4+1} \, \mathrm{d}x = \pi \mathbf{i} \cdot \mathrm{Res} \left(\frac{z}{z^4+1}; z_0 \right) = \pi \mathbf{i} \cdot \lim_{z \to z_0} (z-z_0) \frac{z}{z^4+1} = \frac{\pi \mathbf{i}}{4z_0^2} = \frac{\pi}{4}.$$

Aufgabe 4: Laplacetransformation [16 Punkte]

(4.a) [4 Punkte] Sei $a \in \mathbb{R}$. Berechnen Sie, dass

$$\mathcal{L}[e^{at}](s) = \frac{1}{s-a}$$
,

für alle $s \in \mathbb{C}$, mit Re s > a.

(4.b) [12 Punkte] Lösen Sie folgende Differentialgleichung mit Hilfe der Laplacetransformation:

$$\ddot{y}(t) + \dot{y}(t) - 2y(t) = e^{-t}, t > 0$$

 $\dot{y}(0) = 0, y(0) = -1.$

Lösung. (4.a) Wir berechnen

$$\mathcal{L}[e^{at}](s) = \int_0^\infty e^{at} e^{-st} dt = \lim_{R \to \infty} \int_0^R e^{(a-s)t} dt = \lim_{R \to \infty} \frac{e^{(a-s)t}}{a-s} \Big|_0^R = \lim_{R \to \infty} \frac{e^{(a-s)R} - 1}{a-s}$$

$$= \frac{1}{a-s},$$

für $\operatorname{Re} s>\operatorname{Re} a,$ da in diesem Falle

$$\lim_{R \to \infty} \left| e^{(a-s)R} \right| = \lim_{R \to \infty} e^{Re(a-s)R} = 0,$$

weil $\operatorname{Re}(a-s) = \operatorname{Re} a - \operatorname{Re} s < 0$.

(4.b) Sei $Y(s) := \mathcal{L}[y](s)$. Laut dem Differentiationssatz aus der Vorlesung gilt

$$\mathcal{L}[\dot{y}](s) = s\mathcal{L}[y](s) - y(0) = sY(s) + 1$$

und

$$\mathcal{L}[\ddot{y}](s) = s\mathcal{L}[\dot{y}](s) - \dot{y}(0) = s^2 Y(s) + s.$$

Mit diesen Berechnungen und mit der Aufgabestellung von Aufgabe (4.a), berechnen wir

$$s^{2}Y(s) + s + sY(s) + 1 - 2Y(s) = \frac{1}{s+1},$$

sodass

$$Y(s) = \frac{1 - (s+1)^2}{(s+1)(s^2 + s - 2)} = \frac{-s^2 - 2s}{(s+1)(s-1)(s+2)} = \frac{-s}{(s+1)(s-1)}.$$

Wir benutzen nun die Partialbruchzerlegung

$$\frac{-s}{(s+1)(s-1)} = \frac{A}{s+1} + \frac{B}{s-1},$$

welche

$$-s = A(s-1) + B(s+1)$$

impliziert. Wir lösen das lineare Gleichungssystem A+B=-1, -A+B=0 durch A=B=-1/2.

$$Y(s) = -\frac{1}{2} \cdot \frac{1}{s+1} - \frac{1}{2} \cdot \frac{1}{s-1}.$$

Wir benutzen nun die Aufgabestellung von Aufgabe (4.a) ein weiteres Mal zusammen mit der Eindeutigkeit der Laplacetransformation (Satz von Lerch), um zu schliessen, dass

$$y(t) = -\frac{1}{2}e^{-t} - \frac{1}{2}e^{t} = -\cosh(t).$$

Aufgabe 10. Lösen Sie folgende Differentialgleichung mit Hilfe der Laplacetransformation:

$$\ddot{y}(t) + 9y(t) = t^2, t > 0,$$

 $\dot{y}(0) = 0, y(0) = 1.$

Lösung. Wir definieren $Y(s) := \mathcal{L}[y](s)$. Es gilt

$$\mathcal{L}[\ddot{y}](s) = s\mathcal{L}[\dot{y}] - \dot{y}(0) = s(s\mathcal{L}[y](s) - y(0)) - \dot{y}(0) = s^2Y(s) - s.$$

Ausserdem lesen wir in einer Laplacetransformationstabelle ab, dass

$$\mathcal{L}[t^2](s) = \frac{2}{s^3}$$
.

Damit erhalten wir

$$s^{2}Y(s) - s + 9Y(s) = \frac{2}{s^{3}}$$

und somit

$$Y(s) = \frac{2}{s^3(s^2+9)} + \frac{s}{s^2+9}.$$

Wir benutzen eine Partialbruchzerlegung:

$$\frac{2}{s^3(s^2+9)} = \frac{As^2 + Bs + C}{s^3} + \frac{Ds + E}{s^2+9}$$

Wir erhalten damit

$$2 = As^{2}(s^{2} + 9) + Bs(s^{2} + 9) + C(s^{2} + 9) + Ds^{4} + Es^{3}$$

und deswegen

$$A + D = 0$$
, $B + E = 0$, $9A + C = 0$, $9B = 0$, $9C = 2$

Es folgt, dass $A=-2/81,\,B=0,\,C=2/9,\,D=2/81$ und E=0. Wir erhalten also

$$Y(s) = \frac{-2}{81s} + \frac{2}{9s^3} + \frac{2s}{81(s^2 + 9)} + \frac{s}{s^2 + 9} = \frac{-2}{81s} + \frac{2}{9s^3} + \frac{83s}{81(s^2 + 9)}.$$

Ein weiterer Blick in die Laplacetransformationstabelle zeigt uns, dass

$$\mathcal{L}[1](s) = \frac{1}{s}, \qquad \mathcal{L}[\cos(3t)](s) = \frac{s}{s^2 + 9}$$

und deswegen

$$y(t) = \frac{-2}{81} + \frac{t^2}{9} + \frac{83}{81}\cos(3t), \quad t > 0.$$

Residue

ii. Es gilt

$$\lim_{R \to \infty} \int_{\gamma_R^{(0)}} \frac{1}{1 + z^4} \, \mathrm{d}z = \lim_{R \to \infty} \int_0^1 \frac{1}{1 + (2Rt - R)^4} \cdot 2R \, \mathrm{d}t = \lim_{R \to \infty} \int_{-R}^R \frac{1}{1 + x^4} \, \mathrm{d}x$$

$$= \int_{-\infty}^\infty \frac{1}{1 + x^4} \, \mathrm{d}x$$

mit der Substitution x=2Rt-R. Wenn wir bemerken, dass

$$\frac{1}{1+x^4} = \frac{p(x)}{q(x)},$$

wobei p(x)=1 und $q(x)=1+x^4$ zwei Polynome mit deg $q=4>2=\deg p+2$ sind, daraus können wir schliessen, dass

$$\lim_{R\to\infty}\int_{\gamma_R^{(1)}}\frac{1}{1+z^4}\,\mathrm{d}z=\lim_{R\to\infty}\int_{\gamma_R^{(1)}}\frac{p(z)}{q(z)}\,\mathrm{d}z=0.$$

Damit folgt, dass

$$\int_{-\infty}^{\infty} \frac{1}{1+x^4} \, \mathrm{d}x = \lim_{R \to \infty} \int_{\gamma_{-\infty}^{(0)} * \gamma_{-\infty}^{(1)}} \frac{1}{1+z^4} \, \mathrm{d}z$$

und das Integral auf der rechten Seite kann mit Hilfe des Residuensatzes berechnet werden. Dazu bemerken wir, dass der Integrand isolierte Singularitäten an den Stellen $z_k = \exp(\pi \mathrm{i}/4 + \pi \mathrm{i} k/2)$ für $k = 0, \ldots, 3$, hat. Alle vier isolierte Singularitäten sind Pole erster Ordnung, aber lediglich die Singularitäten an z_0 und z_1 liegen im Integrationsgebiet. Wir berechnen

$$\operatorname{Res}\left(\frac{1}{1+z^4}, z_k\right) = \lim_{z \to z_k} \frac{z - z_k}{1+z^4} = \lim_{z \to z_k} \frac{1}{4z^3} = \frac{1}{4z_k^3}$$

mit Hilfe des Satzes von de l'Hospital. Es gilt damit, dass für R>1

$$\begin{split} \int_{\gamma_R^{(0)}*\gamma_R^{(1)}} \frac{1}{(1+z^2)^2} \, \mathrm{d}z &= 2\pi \mathrm{i} \cdot \left(\frac{1}{4\mathrm{e}^{3\pi \mathrm{i}/4}} + \frac{1}{4\mathrm{e}^{9\pi \mathrm{i}/4}}\right) = \pi \mathrm{i} \cdot \left(\frac{\mathrm{e}^{\pi \mathrm{i}/4} + \mathrm{e}^{3\pi \mathrm{i}/4}}{2\mathrm{e}^{\pi \mathrm{i}}}\right) &= \pi \mathrm{i} \cdot \left(\frac{\sqrt{2}\mathrm{i}}{-2}\right) \\ &= \frac{\pi}{\sqrt{2}}, \end{split}$$

so dass

$$\int_{-\infty}^{\infty} \frac{1}{1+x^4} \, \mathrm{d}x = \frac{\pi}{\sqrt{2}}.$$