7 Занятие 29/03/2021: конформные отображения элементарными функциями

Пусть $t \in \mathbb{R}$. Рассмотрим на области $G = \mathbb{C} \setminus [0, +\infty)$ функцию $w = |z|^t e^{it} \arg z$, $\arg z \in (0, 2\pi)$. Функция w регулярна на G и при $t \neq 0$ однолистна на области $D \subset G$ если D не содержит двух различных точек z_1 , z_2 таких, что $z_2 = z_1 e^{2\pi i k/t}$, $k \in \mathbb{Z}$.

При t>0 функция w осуществляет конформное отображение угловой области $G_{0,\varphi_0}=\{z\colon |z|>0, 0<\arg z<\varphi_0\},\ \varphi_0\leq 2\pi,\ |t|\varphi_0\leq 2\pi$ на угловую плоскость $G_{0,t\varphi_0}.$ Например, $w=z^2$ конформно отображает

- 1. $\{z: \text{ Im } z > 0\}$ на $\mathbb{C} \setminus [0, +\infty)$;
- 2. $\{z: |z| < 1, \text{Im } z > 0\}$ на $\{w: |w| < 1\} \setminus [0, 1)$;
- 3. $\{z \colon \operatorname{Im} z > a > 0\}$ на $\{w \colon (\operatorname{Im} w)^2 > 4a^2(\operatorname{res} w + a^2)\}$.

Экспоненциальная функция

Функция $w=e^z$ осуществляет конформное отображение в области $D\subset \mathbb{C}$ тогда и только тогда, когда D не содержит двух различных точек z_1, z_2 таких, что $z_2=z_1+2\pi ki$, $k\in \mathbb{Z}$.

Например, $w = e^z$ конформно отображает

- 1. $\{z: 0 < \text{Im } z < \pi\}$ на $\{w: \text{Im } w > 0\}$;
- 2. $\{z \colon \text{res } z < 0, 0 < \text{Im } z < \pi\}$ на $\{w \colon |w| < 1, \text{Im } w > 0\}$;
- 3. $\{z \colon \operatorname{res} z > 0, 0 < \operatorname{Im} z < \pi\}$ на $\{w \colon |w| > 1, \operatorname{Im} w > 0\}$.

Логарифмическая функция

Многозначная функция w = Log z распадается на регулярные вветви во всякой одосвязной области $G \subset \overline{\mathbb{C}}$, не содержащей 0 и ∞ . Каждая регулярная ветвь $f(z) \in \text{Log} z$ является в области G однозначной функцией, поэтому эта ветвь осуществляет конформное отображение в области G на область f(G), которое является обратным к $w = e^z$.

Например, регулярная ветвь f(z) многозначной функции ${\rm Log}z$ конформно отображает

- 1. $\mathbb{C} \setminus [0, +\infty)$ на $\{w : 0 < \text{Im } w < 2\pi\}$ если $f(-1) = \pi i$;
- 2. $\{z \colon \operatorname{Im} z > 0, |z| > 1\}$ на $\{w \colon 0 < \operatorname{Im} w < \pi, \operatorname{res} w > 0\}$ если $f(2+i0) = \log 2$.

Функция Жуковского

Функция Жуковского w=(z+1/z)/2 осуществляет конформное отображение в области $D\subset\mathbb{C}$ тогда и только тогда, когда D не содержит ± 1 и для любой точки $z\in D$ точка $1/z\notin D$.

Например, w = (z + 1/z)/2 конформно отображает

- 1. $\{z: \text{ Im } z > 0\}$ на $\mathbb{C} \setminus ([-\infty, 1] \cup [1, +\infty));$
- 2. $\{z : \text{Im } z < 0\} \text{ Ha } \mathbb{C} \setminus ([-\infty, -1] \cup [1, +\infty));$
- 3. $\{z : |z| < 1$ на $\mathbb{C} \setminus [-1, 1];$
- 4. $\{z \colon |z| > 1$ на $\mathbb{C} \setminus [-1, 1];$
- 5. $\{z \colon \operatorname{Im} z > 0, |z| > 1 \text{ Ha } \{w \colon \operatorname{Im} w > 0\};$

- 6. $\{z \colon \operatorname{Im} z < 0, |z| < 1 \text{ Ha } \{w \colon \operatorname{Im} w > 0\};$
- 7. $\{z\colon |z|>\rho>1$ и $\{z\colon |z|<1/\rho\}$ на $\{w=u+iv\colon u^2/a_\rho^2+v^2/b_\rho^2>1\}$, где $a_\rho=(\rho+1/\rho)/2,\,b_\rho=|\rho-1/\rho|/2;$
- 8. $\{z\colon \alpha<\arg z<\pi-\alpha\},\,\alpha\in(0,\pi/2)$ на внешность гиперболы $u^2/\cos^2\alpha-v^2/\sin^2\alpha=1;$
- 9. $\{z\colon 0<\arg z<\alpha\},\ \alpha\in(0,\pi/2)$ на внутреннюю часть правой ветвви гиперболы $u^2/\cos^2\alpha-v^2/\sin^2\alpha=1$ с разрезом по лучу $[1,+\infty);$
- 10. $\{z\colon 0<\arg z<\pi-\alpha, |z|>1\},\ \alpha\in(0,\pi/2)$ на $\{w=u+iv\colon u^2/\cos^2\alpha-v^2/\sin^2\alpha>1, u>0, v>0\}.$

Обратная к функции Жуковского

Многозначная функция $w=z+\sqrt{z^2-1}$ в любой односвязной области $G\subset \overline{\mathbb{C}}$, не содержащем кривых, соединяются ± 1 , распадается на две регулярные ветви. Например, регулярные ветви $f_1(z)$ и $f_2(z)$ многозначною функции w=(z+1/z)/2 конформно отображают

- 1. $\mathbb{C}\setminus([-1,1]$ на внешность единичного круга если $f_1(\infty)=\infty$ или на внутренность если $f_2(\infty)=0$;
- 2. $\mathbb{C}\setminus([-\infty,-1]\cup[1,+\infty))$ на верхнюю полуплоскость если $f_1(0)=i$ и на нижнюю полуплоскость если $f_2(z)=-i;$
- 3. $\{z\colon \operatorname{Im} z>0$ на $\{w\colon \operatorname{Im} w>0, |w|>1\}$ если $f_1(0+i0)=i$ и на $\{w\colon |w|<1, \operatorname{Im} w<0\}$ если $f_2(0+i0)=-i$.

Тригонометрические и гиперболические функции

Данные функции можно разложить в композицию уже описанных. Например, w(z)= ch $z=(e^z+e^{-z})/2$ является композицией $\zeta(z)=e^z$ и $w(\zeta)=(\zeta+1/\zeta)/2$. Функция

$$w(z) = \operatorname{tg} z = \frac{\sin z}{\cos z} = (-i)\frac{e^{2iz} - 1}{e^{2iz} + 1}$$

является композицией

$$\zeta(z) = 2iz, \quad \eta(\zeta) = e^{\zeta}, \quad w(\eta) = (-i)\frac{\eta - 1}{\eta + 1}.$$

Задачи для решения на практике

- (1) Найти конформное отображение $D = \{z \colon \text{Im}\, z > 0\} \setminus [0,ih], \, h > 0$ на $\{w \colon \text{Im}\, w > 0\}.$
- (2) Найти конформное отображение $D = \{z \colon \operatorname{Im} z > 0\} \setminus \{z \colon |z| = 1, 0 \le \arg z \le \alpha\}$ на $\{w \colon \operatorname{Im} w > 0\}.$
- (3) Найти конформное отображение $D=\{z\colon \operatorname{Re} z>0, |z-1|>1\}\backslash [2,3]$ на $\{w\colon \operatorname{Im} w>0\}.$
- (4) Найти конформное отображение $D = \{z \colon 0 < \operatorname{Im} z < \pi, \operatorname{Re} z > 0\} \setminus [\pi i/2, \pi i/2 + 1]$ на $\{w \colon \operatorname{Im} w > 0\}.$

Hints

- (1) Заметить, что при помощи степенной функции можно перейти в верхнюю полуплоскость из $\mathbb{C}\setminus [0,+\infty]$. Далее нашу область можно перевести $f(z)=z^2$ в $\mathbb{C}\setminus [-h^2,+\infty)$. Остается применить сдвиг на h^2 .
- (2) Применить к исходной области функцию Жуковского, которая переведет ее в $\mathbb{C}\setminus((-\infty,-1)\cup(\cos\alpha,+\infty))$. Далее использовать дробно-линейную функцию для перевода в $\mathbb{C}\setminus[0,+\infty)$ и применить степенную функцию как в прошлой задаче.
- (3) Использовать f(z) = 1/z и отобразить исходную область в полосу с разрезом $\{\xi\colon 0<\operatorname{res}\xi<1/2\}\setminus[1/3,1/2]$. Затем применить $\eta=f_2(\xi)=\pi i(1-2\xi)$ для перехода в полосу с вертикальным разрезом $\{\eta\colon 0<\operatorname{Im}\eta<\pi\}\setminus[0,\pi i/3]$. Остается воспользоваться степенной функцией как в задачах ранее.
- (4) Применить экспоненциальную функцию и функцию Жуковского, а затем воспользоваться задачей 1.

Задачи на дом

- (1) Вычислить $\int_{|z|=1} |z-a|^{-2} |dz|$.
- (2) Применяя теорему о вычетах, вычислить интеграл $I = \int_0^{+\infty} \frac{\sqrt[3]{x}}{(x+8)^2} dx$.
- (3) Применяя теорему о вычетах, вычислить интеграл $I = \int_1^2 \sqrt[5]{\frac{(2-x)^3}{(x-1)^3}} dx$.
- (4) Применяя теорему о вычетах, вычислить интеграл $I = \int_0^{+\infty} \frac{\log x}{(x+1)(x+2)^2} dx$.