9.15. CONFRONTO TRA DUE DISTRIBUZIONI OSSERVATE: IL METODO DI KOLMOGOROV-SMIRNOV PER 2 CAMPIONI INDIPENDENTI CON DATI ORDINALI DISCRETI O A GRUPPI E CON DATI CONTINUI

Una tabella $2 \times N$, in cui siano riportate le classi di frequenza di due distribuzioni osservate, può essere analizzata mediante il test di Kolmogorov-Smirnov. A differenza del test χ^2 e del test G, come condizione di validità non richiede che il numero minimo di osservazioni sia N > 30 e che in ogni classe sia $n_i \ge 5$.

Il test di Kolmogorov-Smirnov, necessario per piccoli campioni, è utile anche per grandi campioni, quando si abbia un numero elevato di classi od intervalli, poiché in tali condizioni ha una potenza maggiore del test chi quadrato e del test G. Ovviamente la potenza massima è con dati in una scala continua, che rappresenta la proposta originale di Kolmogorov e Smirnov.

Le distribuzioni di frequenza possono riguardare qualunque variabile, da quelle classiche di peso ed altezza, per le quali possono essere applicati anche test parametrici, Alle misure espresse come rapporti, percentuali, valori angolari, colorazioni, indici, punteggi assoluti o relativi, ecc., purché esse possano essere tradotte in ranghi, cioè ordinate per dimensioni o intensità.

Le indicazioni bibliografiche sono uguali a quelle già riportate nel test di Kolmogorov-Smirnov per un campione. Differiscono le indicazioni per le tabelle dei valori critici, che ovviamente per il metodo ora illustrato devono considerare una casistica più complessa, in particolare se i due campioni non sono bilanciati.

Il test di Kolmogorov-Smirnov per due campioni indipendenti è utilizzato per verificare l'ipotesi alternativa se le distribuzioni di frequenza di due campioni appartengano a popolazioni differenti.

E' un test generalista, cioè permette di valutare la significatività complessiva dovuta a differenze

- sia nella tendenza centrale,
- sia nella dispersione,
- sia nella simmetria e,
- sebbene in modo meno evidente, nella curtosi.

Non è un test specifico per nessuno di questi fattori. Quindi non deve essere utilizzato se l'ipotesi verte su un parametro specifico, come la media e la varianza oppure la simmetria. Tuttavia non tutti i parametri pesano nello stesso modo; è più sensibile alle differenze nelle tendenze centrali, perché incidono sulla differenza complessiva tra le due distribuzioni in modo più marcato.

Se il test risulta significativo, per individuare con esattezza quale caratteristica della distribuzione determini la differenza riscontrata, occorre di conseguenza ricorrere anche all'uso di altri test, che ne verifichino solamente una e che, ovviamente, per quell'uso specifico sono più potenti.

Sotto l'aspetto della ricerca applicata, è utile quando si intende verificare se due serie di valori possono o meno appartenere alla stessa popolazione. Infatti, se hanno origine diversa, è logico supporre che le due serie di dati campionari differiscano in almeno un parametro, senza che a priori sia noto quale.

Il test di Kolmogorov-Smirnov per due campioni può essere utilizzato

- sia con dati misurati su una scala ordinale discreta o con dati continui raggruppati in classi,
- sia con dati continui di una scala di rapporti oppure a intervalli oppure ordinale.

PER DATI DISCRETI O RAGGRUPPATI

Tra i testi internazionali, questo metodo è riportato in

- Siegel Sidney e N. John jr. Castellan del 1988 (*Nonparametric Statistics for the Behavioral Sciences*, (McGraw-Hill, London), tradotto in italiano nel 1992 *Statistica non parametrica* 2° ed., McGraw-Hill Libri Italia, Milano, 472 pp.)

del quale sono seguite le indicazioni nella presentazione del metodo e della logica.

In modo analogo al test per un campione, questo per 2 campioni richiede

- che dapprima sia effettuata la trasformazione delle frequenze assolute in frequenze relative entro ogni campione, mediante il rapporto della frequenza di ogni classe con il numero totale di osservazioni;
- successivamente, che entro gli stessi intervalli sia attuato il confronto tra le due frequenze cumulate, per quantificare la deviazione o differenza massima.

Sulla base dell'**ipotesi** formulata, se unilaterale oppure bilaterale, la differenza massima può essere considerata con il segno oppure in valore assoluto.

Indicando con $O_1(X_i)$ ogni valore della sommatoria dei dati osservati nel primo campione e con $O_2(X_i)$ ogni valore della sommatoria dei dati osservati nel secondo campione,

- nel caso di un **test ad una coda** si deve calcolare la deviazione massima D con il segno

$$D = diff.$$
 mass. ($O_1(Xi) - O_2(Xi)$)

- per un **test a due code** non è importante conoscere la direzione della differenza; lo scarto massimo è quindi calcolato in valore assoluto

$$D = diff. mass. | O_1(Xi) - O_2(Xi) |$$

Nel caso di <u>piccoli campioni</u>, quando le due distribuzioni hanno al massimo 25 osservazioni (altri testi definiscono i campioni come piccoli fino ad un massimo di 40 osservazioni), si può ricorrere a tabelle

specifiche per verificare se la differenza massima tra le cumulate delle frequenze relative supera il valore critico e quindi sia significativa. Sulle tabelle di significatività, le proposte in letteratura sono numerose, in quanto questo test è stato tra quelli che hanno suscitato un dibattito scientifico maggiore. Quelle riportate in queste dispense sono tra le più semplici.

Il valore da confrontare (J) è ottenuto moltiplicando la differenza massima D per le dimensioni dei due campioni n_1 e n_2 .

$$\mathbf{J} = D \cdot n_1 \cdot n_2$$

I valori critici sono differenti

- per test a una coda, riportati nella prima tabella
- per **test a due code**, riportati nella seconda tabella.

La loro impostazione è uguale. Per il loro uso, ricordare che

- sulla prima riga si trova il numero di osservazioni del primo (n₁) campione e sulla prima colonna
 il numero di osservazioni del secondo (n₂) campione,
- alla loro intersezione si trovano i tre valori J critici in colonna, associati rispettivamente dall'alto al basso alla probabilità $\alpha = 0.10$, alla probabilità $\alpha = 0.05$ e a quella $\alpha = 0.01$.

Il valore J calcolato ($J = D \cdot n_1 \cdot n_2$) indica una differenza significativa quando è uguale o superiore a quello critico riportato nella tabella.

Nel caso di un **test ad una coda**, per esempio

- con 10 osservazioni nel campione 1 e con 12 osservazioni nel campione 2, la differenza tra le due distribuzioni cumulate è significativa
- alla probabilità $\alpha = 0.10$ quando $J \ge 52$,
- alla probabilità $\alpha = 0.05$ quando $J \ge 60$,
- alla probabilità $\alpha = 0.01$ quando $J \ge 74$.

E' possibile osservare che la distribuzione dei valori critici è simmetrica. Alle stesse probabilità sono identici, quando si hanno 12 osservazioni nel campione 1 e 10 osservazioni nel campione 2.

Valori critici (J) nel test, <u>ad una coda</u>, di Kolmogorov-Smirnov per 2 campioni indipendenti. Il valore superiore è per $\alpha = 0.10$; quello centrale per $\alpha = 0.05$ e quello inferiore per $\alpha = 0.01$.

												n ₂											
n ₁	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
3	9	10	11	15	15	16	21	19	22	24	25	26	30	30	32	36	36	37	42	40	43	45	46
	9	10	13	15	16	19	21	22	25	27	28	31	33	34	35	39	40	41	45	46	47	51	52
4	** 10	** 16	** 13	** 16	19 18	22 24	27 21	28 24	31 26	33 32	34 29	37 32	42 34	43 40	43 37	48 40	49 41	52 48	54 45	55 48	58 49	63 56	64 53
	10	16	16 17	18 22	21 25	24 32	25 29	28 34	29 37	36 40	33 41	38 46	38 46	44 52	44 53	46 56	49 57	52 64	52 64	56 66	57 69	60 76	61 73
5	11	13	20	19	21	23	26	30	30	32	35	37	45	41	44	46	47	55	51	54	56	58	65
	13	16	20	21	24	26	28	35	35	36	40	42	50	46	49	51	56	60	60	62	65	67	75
ć	**	17	25	26	29	33	36	40	41	46	48	51	60	56	61	63	67	75	75	76	81	82	90
6	15	16	19	24	24	26	30	32	33	42	37	42	45	48	49	54	54	56	60	62	63	72	67
	15	18	21	30	25	30	33	36	38	48	43	48	51	54	56	66	61	66	69	70	73	78	78
7	** 15	22 18	26 21	36 24	31 35	38 28	42 32	44 34	49 38	54 40	54 44	60 49	63 48	66 51	68 54	78 56	77 59	80 61	84 70	88 68	91 70	96 72	96 74
	16	21	24	25	35	34	36	40	43	45	50	56	56	58	61	64	68	72	77	77	79	83	85
	19	25	29	31	42	42	46	50	53	57	59	70	70	71	75	81	85	87	98	9 7	99	103	106
8	16	24	23	26	28	40	33	40	41	48	47	50	52	64	57	62	64	72	71	74	76	88	81
	19	24	26	30	34	40	40	44	48	52	53	58	60	72	65	72	73	80	81	84	89	96	95
9	22 21	32 21	33 26	38 30	42 32	48 33	49 45	56 43	59 45	64 51	66 51	72 54	75 60	88 61	81 65	88 72	91 70	100 73	100 78	106 79	107 82	120 87	118 88
	21	25	28	33	36	40	54	46	51	57	57	63	69	68	74	81	80	83	90	91	94	99	101
	27	29	36	42	46	49	63	61	62	69	73	77	84	86	92	99	99	103	111	111	117	123	124
10	19	24	30	32	34	40	43	50	48	52	55	60	65	66	69	72	74	90	80	86	88	92	100
	22	28	35	36	40	44	46	60	57	60	62	68	75	76	77	82	85	100	91	98	101	106	110
11	28 22	34 26	40 30	44 33	50 38	56 41	61 45	70 48	69 66	74 54	78 59	84 63	90 66	94 69	97 72	104 76	104 79	120 84	118 85	120 99	125 95	130 98	140 100
11	25	29	35	38	43	48	51	57	66	64	67	72	76	80	83	87	92	95	101	110	108	111	116
	31	37	41	49	53	59	62	69	88	77	85	89	95	100	104	108	114	117	124	143	132	138	143
12	24	32	32	42	40	48	51	52	54	72	61	68	72	76	77	84	85	92	93	98	100	108	106
	27	36	36	48	45	52	57	60	64	72	71	78	84	88	89	96	98	104	108	110	113	132	120
	33	40	46	54	57	64	69	74	77	96	92	94	102	108	111	120	121	128	132	138	138	156	153
13	25	29	35	37	44	47	51	55	59	61	78	72	75	79	81	87	89	95	97	100	105	109	111
	28	33	40	43	50	53	57	62	67	71	91	78	86	90	94	98	102	108	112	117	120	124	131
14	34 26	41 32	48 37	54 42	59 49	66 50	73 54	78 60	85 63	92 68	104 72	102 84	106 80	112 84	118 87	121 92	127 94	135 100	138 112	143 108	150 110	154 116	160 119
	31	38	42	48	56	58	63	68	72	78	78	98	92	96	99	104	108	114	126	124	127	132	136
	37	46	51	60	70	72	77	84	89	94	102	112	111	120	124	130	135	142	154	152	157	164	169
15	30	34	45	45	48	52	60	65	66	72	75	80	90	87	91	99	100	110	111	111	111	123	130
	33	38	50	51	56	60	69	75	76	84	86	92	105	101	105	111	113	125	126	130	134	141	145
16	42 30	46 40	60 41	63 48	70 51	75 64	84 61	90 66	95 69	1 02 76	106 79	111 84	135 87	120 112	130 94	138 100	142 104	150 112	156 114	160 118	165 122	174 136	180 130
	34	44	46	54	58	72	68	76	80	88	90	96	101	112	109	116	120	128	130	136	140	152	148
	43	52	56	66	71	88	86	94	100	108	112	120	120	144	139	142	149	156	162	168	174	184	185
17	32	37	44	49	54	57	65	69	72	77	81	87	91	94	119	102	108	113	118	122	128	132	137
	35	44	49	56	61	65	74	77	83	89	94	99	105	109	136	118	125	130	135	141	146	150	156
18	43 36	53	61 46	68 54	75 56	81 62	92 72	97 72	104 76	111 84	118 87	124 92	130 99	139 100	153 102	150 126	157	162 120	168 126	175 128	181 133	187	192 142
16	39	46	51	66	64	72	51	82	87	96	98	104	111	116	118	144	127	136	144	148	151	162	161
	48	56	63	78	81	88	99	104	108	120	121	130	138	142	150	180	160	170	177	184	189	198	201
19	36	41	47	54	59	64	70	74	79	85	89	94	100	104	108	116	133	125	128	132	137	142	148
	40	49	56	61	68	73	80	85	92	98	102	108	113	120	125	127	152	144	147	151	159	162	168
	49	57	67	77	85	91	99	104	114	121	127	135	142	149	157	160	190	171	183	189	197	204	211
20	37	48	55	56	61	72	73	90	84	92	95	100	110	112	113	120	125	140	134	138	143	152	155
	41	52	60	66	72	80	83	100	95	104	108	114	125	128	130	136	144	160	154	160	163	172	180
21	52 42	64 45	75 51	80 60	87 70	100 71	103 78	120 80	117 85	128 93	135 97	142 112	150 111	156 114	162 118	170 126	171 128	200 134	193 147	196 142	203 147	212 156	220 158
	45	52	60	69	77	81	90	91	101	108	112	126	126	130	135	144	147	154	168	163	170	177	182
	54	64	75	84	98	100	111	118	124	132	138	154	156	162	168	177	183	193	210	205	212	222	225
22	40	48	54	62	68	74	79	86	99	98	100	108	111	118	122	128	132	138	142	176	151	158	163
	46	56	62	70	77	84	91	98	110	110	117	124	130	136	141	148	151	160	163	198	173	182	188
23	55 43	66	76 56	88 63	97 70	106 76	111 82	120 88	143 95	138 100	143 105	152	160	168	175 128	184 133	189	196 143	205 147	242 151	217 184	228 160	234 169
43	47	57	65	73	79	89	94	101	108	113	120	127	134	140	146	151	159	163	170	173	207	183	194
	58	69	81	91	99	107	117	125	132	138	150	157	165	174	181	189	197	203	212	217	253	228	242
24	45	56	58	72	72	88	87	92	98	108	109	116	123	136	132	144	142	152	156	158	160	192	178
	51	60	67	78	83	96	99	106	111	132	124	132	141	152	150	162	162	172	177	182	183	216	204
	63	76	82	96	103	120	123	130	138	156	154	164	174	184	187	198	204	212	222	228	228	264	254
25	46	53	65	67	74	81	88	100	100	106	111	119	130	130	137	142	148	155	158	163	169	178	200
	52	61	75	78	85	95	101	110	116	120	131	136	145	148	156	161	168	180	182	188	194	204	225
	64	73	90	96	106	118	124	140	143	153	160	169	180	185	192	201	211	220	225	234	242	254	275

Valori critici nel test, <u>a due code</u>, di Kolmogorov-Smirnov per 2 campioni indipendenti. Il valore superiore è per $\alpha=0.10$; quello centrale per $\alpha=0.05$ e quello inferiore per $\alpha=0.01$.

	n ₂₋																								
n ₁	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
2					10	12	14	16 16	18 18	18 20	20 22	22 24	24 26	24 26	26 28	28 30	30 32	32 34	32 36 38	20 34 38 40	21 36 38 42	22 38 40 44	23 38 42 46	24 40 44 48	25 42 46 50
3			9	12	15 15	15 18	18 21	21 21	21 24 27	24 27 30	27 30 33	27 30 36	30 33 39	33 36 42	33 36 42	36 39 45	36 42 48	39 45 51	42 45 54	42 48 57	45 51 57	48 51 60	48 54 63	51 57 66	54 60 69
4			12 0	16 16	16 20	18 20 24	21 24 28	24 29 32	27 28 36	28 30 36	29 33 40	36 36 44	35 39 48	38 42 48	40 44 52	44 48 56	44 48 60	46 50 60	49 53 64	52 60 68	52 59 72	56 62 72	57 64 76	60 68 80	63 68 84
5		10	15 15	16 20	20 25 25	24 24 30	25 28 35	27 30 35	30 35 40	35 40 45	35 39 45	36 43 50	46 45 52	42 46 56	50 55 60	48 54 64	50 55 68	52 60 70	56 61 71	60 65 80	60 69 80	63 70 83	65 72 87	67 76 90	75 80 95
6		12	15 18	18 20 24	24 24 30	30 30 36	28 30 36	30 34 40	33 39 45	36 40 48	38 43 54	48 48 60	46 52 60	48 54 64	51 57 69	54 60 72	56 62 73	66 72 84	64 70 83	66 72 88	69 75 90	70 78 92	73 80 97	78 90 102	78 88 107
7		14	18 21	21 24 28	25 28 35	28 30 36	35 42 42	34 40 48	36 42 49	40 46 53	44 48 59	46 53 60	50 56 65	56 63 77	56 62 75	59 64 77	61 68 84	65 72 87	69 76 91	72 79 93	77 91 105	77 84 103	80 89 108	84 92 112	86 97 115
8		16 16	21 21	24 28 32	27 30 35	30 34 40	34 40 48	40 48 56	40 46 55	44 48 60	48 53 64	52 60 68	54 62 72	58 64 76	60 67 81	72 80 88	68 77 88	72 80 94	74 82 98	50 88 104	81 89 107	84 94 112	89 98 115	96 104 128	95 104 125
9		18 18	21 24 27	27 28 36	30 35 40	33 39 45	36 42 49	40 46 55	54 54 63	50 53 63	52 59 70	57 63 75	59 65 78	63 70 84	69 75 90	69 78 94	74 82 99	81 90 108	80 89 107	84 93 111	90 99 117	91 101 122	94 106 126	99 111 132	101 114 135
10		18 20	24 27 30	28 30 36	35 40 45	36 40 48	40 46 53	44 48 60	50 53 63	60 70 80	57 60 77	60 66 80	64 70 84	68 74 90	75 80 100	76 84 100	79 89 106	82 92 108	85 94 113	100 110 130	95 105 126	98 108 130	101 114 137	106 118 140	110 125 150
11		20 22	27 30 33	29 33 40	35 39 45	38 43 54	44 48 59	48 53 64	52 59 70	57 60 77	66 77 88	64 72 86	67 75 91	73 82 96	76 84 102	80 89 106	85 93 110	88 97 118	92 102 122	96 107 127	101 112 134	110 121 143	108 119 142	111 124 150	117 129 154
12		22 24	27 30 36	36 36 44	36 43 50	48 48 60	46 53 60	52 60 68	57 63 75	60 66 80	64 72 86	72 84 96	71 81 95	78 86 104	84 93 108	88 96 116	90 100 119	96 108 126	99 108 130	104 116 140	108 120 141	110 124 148	113 125 149	132 144 168	120 138 165
13		24 26	30 33 39	35 39 48	40 45 52	46 52 60	50 56 65	54 62 72	59 65 78	64 70 84	67 75 91	71 81 95	91 91 117	78 89 104	87 96 115	91 101 121	96 105 127	99 110 131	104 114 138	108 120 143	113 126 150	117 130 156	120 135 161	125 140 166	131 145 172
14		24 26	33 36 42	38 42 48	42 46 56	48 54 64	56 63 77	58 64 76	63 70 84	68 74 90	73 82 96	78 86 104	78 89 104	98 112 126	92 98 123	96 106 126	100 111 134	104 116 140	110 121 148	114 126 152	126 140 161	124 138 164	127 142 170	132 146 176	136 150 182
15		26 28	33 36 42	40 44 52	50 55 60	51 57 69	56 62 75	60 67 81	69 75 90	75 80 100	76 84 102	84 93 108	87 96 115	92 98 123	105 120 135	101 114 133	105 116 142	111 123 147	114 127 152	125 135 160	126 138 168	130 144 173	134 149 179	141 156 186	145 160 195
16		28 30	36 39 45	44 48 56	48 54 64	54 60 72	59 64 77	72 80 88	69 78 94	76 84 100	80 89 106	88 96 116	91 101 121	96 106 126	101 114 133	112 128 160	109 124 143	116 128 154	120 133 160	128 140 168	130 145 173	136 150 180	141 157 187	152 168 200	149 167 199
17		30 32	36 42 48	44 48 60	50 55 68	56 62 73	61 68 84	68 77 88	74 82 99	79 89 106	85 93 110	90 100 119	96 105 127	100 111 134		109 124 143	136 136 170	118 133 164	126 141 166	132 146 175	136 151 180	142 157 187	146 163 196	151 168 203	156 173 207
18		32 34	39 45 51	46 50 60	52 60 70	66 72 84	65 72 87	72 80 94	81 90 108	82 92 108	88 97 118	96 108 126	99 110 131	104 116 140	111 123 147	116 128 154	118 133 164	144 162 180	133 142 176	136 152 182	144 159 189	148 164 196	152 170 204	162 180 215	162 180 216
19	19	32 36 38	42 45 54	49 53 64	56 61 71	64 70 83	69 76 91	74 82 98	80 89 107	85 94 113	92 102 122	99 108 130	104 114 138	110 121 148	114 127 152	120 133 160	126 141 166	133 142 176	152 171 190	144 160 187	147 163 199	152 169 204	159 177 209	164 183 218	168 187 224
20	20	34 38 40	42 48 57	52 60 68	60 65 80	66 72 88	72 79 93	80 88 104	84 93 111	100 110 130	96 107 127	104 116 140	108 120 143	114 126 152	125 135 160	128 140 168	132 146 175	136 152 182	144 160 187	160 180 220	154 173 199	160 176 212	164 184 219	172 192 228	180 200 235
21	21	36 38 42	45 51 57	52 59 72	60 69 80	69 75 90	77 91 105	81 89 107	90 99 117	95 105 126	101 112 134	108 120 141	113 126 150	126 140 161	126 138 168	130 145 173	136 151 180	144 159 189	147 163 199	154 173 199	168 189 231	163 183 223	171 189 227	177 198 237	182 202 244
22	22	38 40 44	48 51 60	56 62 72	63 70 83	70 78 92	77 84 103	84 94 112	91 101 122	98 108 130	110 121 143	110 124 148	117 130 156	124 138 164	130 144 173	136 150 180	142 157 187	148 164 196	152 169 204	160 176 212	163 183 223	198 198 242	173 194 237	182 204 242	189 209 250
23	23	38 42 46	48 54 63	57 64 76	65 72 87	73 80 97	80 89 108	89 98 115	94 106 126	101 114 137	108 119 142	113 125 149	120 135 161	127 142 170	134 149 179	141 157 187	146 163 196	152 170 204	159 177 209	164 184 219	171 189 227	173 194 237	207 230 253	183 205 249	195 216 262
24	24	40 44 48	51 57 66	60 68 80	67 76 90	78 90 102	84 92 112	96 104 128	99 111 132	106 118 140	111 124 150	132 144 168	125 140 166	132 146 176	141 156 186	152 168 200	151 168 203	162 180 216	164 183 218	172 192 228	177 198 237	182 204 242	193 205 249	216 240 288	204 225 262
25	25	42 46 50	54 60 69	63 68 84	75 80 95	78 88 107	86 97 115	95 104 125	101 114 135	110 125 150	117 129 154	120 138 165	131 145 172	136 150 182	145 160 195	149 167 199	156 173 207	162 180 216	168 187 224	180 200 235	182 202 244	189 209 250	195 216 262	204 225 262	225 250 300

Anche nel caso di **grandi campioni**, si devono calcolare valori critici differenti se l'ipotesi è a una coda oppure a due code.

Se il test è a una coda, secondo la proposta di L. A. Goodman del 1954 (vedi *Kolmogorov-Smirnov* tests for psychological research in Psychological Bulletin Vol. 51, pp. 160-168)

il valore critico viene determinato mediante

$$\chi^2_{(2)} = 4D^2 \frac{n_1 \cdot n_2}{n_1 + n_2}$$

che ha una distribuzione bene approssimata dal χ^2 con 2 gradi di libertà.

Se il test è a due code, il valore critico

- alla probabilità $\alpha = 0.05$ è dato da

$$1,36 \cdot \sqrt{\frac{n_1 + n_2}{n_1 \cdot n_2}}$$

- alla probabilità $\alpha = 0.01$ è

$$1,63 \cdot \sqrt{\frac{n_1 + n_2}{n_1 \cdot n_2}}$$

- alla probabilità $\alpha = 0.005$ è

$$1,73 \cdot \sqrt{\frac{n_1 + n_2}{n_1 \cdot n_2}}$$

- alla probabilità $\alpha = 0.001$ è

$$1,95 \cdot \sqrt{\frac{n_1 + n_2}{n_1 \cdot n_2}}$$

Alcuni esempi illustrano la metodologia in modo semplice, ma completo nei suoi passaggi logici.

ESEMPIO 1. (CAMPIONI PICCOLI)

Mediante le cartine al tornasole è possibile misurare il pH di alcuni campioni d'acqua. Metodi analoghi di colorazione vengono usati per confrontare la quantità di fosfati e di nitrati.

Su una scala ordinale con intensità crescente, suddivisa in 8 livelli, sono state riportate le frequenze osservate durante una giornata di rilevazioni in due serie differenti di campioni, raccolti all'ingresso ed all'uscita di un depuratore.

All'ingresso sono stati raccolti 10 campioni e all'uscita 12 campioni, secondo la distribuzione dei valori riportata nella tabella sottostante.

DISTRIBUZIONE OSSERVATA

	Intensità della colorazione													
	I	I II III IV V VI VII VIII												
Ingresso	0	0	0	3	6	0	1	0						
Uscita	1	4	4	1	1	1	0	0						

Questi dati dimostrano che la quantità di sostanza inquinante contenuta nell'acqua all'uscita del depuratore ha frequenze maggiori di valori bassi? (può dipendere da una media inferiore, da una varianza minore, da variazioni nella simmetria)

Risposta. E' il confronto di 2 piccoli campioni, con un test ad una coda. Infatti in esso si ipotizza che la differenza massima sia nella prima parte della distribuzione, cioè per valori bassi a vantaggio dell'uscita.

1 - Dapprima si trasformano le frequenze assolute in frequenze relative (riga 1 e riga 3)

CALCOLO DELLA DIFFERENZA MASSIMA TRA LE DISTRIBUZIONI CUMULATE

	Intensità della colorazione										
	I	II	III	IV	V	VI	VII	VIII			
1) <u>Ingresso</u> freq. Relativa.	0,000	0,000	0,000	0,300	0,600	0,000	0,100	0,000			
2) Distribuzione cumulata Ingr.	0,000	0,000	0,000	0,300	0,900	0,900	1,000	1,000			
3) <u>Uscita</u> freq. Relativa	0,084	0,333	0,333	0,084	0,083	0,083	0,000	0,000			
4) Distribuzione cumulata Usc.	0,084	0,417	0,750	0,834	0,917	1,000	1,000	1,000			
5) Differenza tra cumulate	0,084	0,417	0,750	0,534	0,017	0,100	0,000	0,000			

- 2) Successivamente si calcolano le cumulate Riga 2 e riga 4);
- 3) Infine, mediante la serie di differenze tra le due cumulate, si individua lo scarto massimo (riga 5), che risulta uguale a 0,750 (nella classe di colorazione III).
- 4) Il valore J da confrontare con la tabella è

$$J = 0.750 \cdot 10 \cdot 12 = 90$$

5) La tabella sinottica che riporta i valori critici per test ad una coda in piccoli campioni,

per
$$n_1 = 10$$
 e $n_2 = 12$

(anche se è indifferente, perché la tabella dei valori critici è simmetrica)

come valore massimo riporta 74 alla probabilità $\alpha = 0.01$.

6) Il valore calcolato (J = 90) è superiore; quindi, la probabilità che la differenza riscontrata sia imputabile al caso è P < 0.01. Si rifiuta l'ipotesi nulla, accettando l'ipotesi alternativa che la distribuzione dei dati in entrata e in uscita siano statisticamente differenti.

ESEMPIO 2. (CAMPIONI PICCOLI)

Sovente, all'ambientalista si pone il problema di analizzare la distribuzione territoriale di specie animali o vegetali, per rispondere al quesito se sono più concentrate o più rare in alcune zone oppure se sono distribuite in modo uniforme. Altro quesito importante è se due specie che vivono sullo stesso

territorio hanno distribuzione simile o differente, cioè se occupano le stesse aree con la stessa frequenza, quando esse abbiano un **gradiente di distribuzione**.

Lungo un percorso approssimativamente lineare dalla pianura alla montagna, è stata rilevata la presenza degli individui della specie A e della specie B suddividendo il tragitto in 8 zone consecutive. Si sono raccolte le osservazioni riportate nella tabella sottostante, con il campione della specie A che ha 19 osservazioni e il campione della specie B della quale si sono contati 17 individui.

DISTRIBUZIONE OSSERVATA

	Zone												
	I	II	III	IV	V	VI	VII	VIII					
Specie A	4	5	0	2	0	0	1	7					
Specie B	1	4	4	6	1	1	0	0					

Si può sostenere che le due specie hanno un gradiente di distribuzione differente?

Risposta. E' un test a 2 code e si dispone di piccoli campioni.

1) Dapprima si calcola la differenza massima tra le due cumulate senza considerare il segno, dopo trasformazione delle frequenze assolute in frequenze relative.

CALCOLO DELLA DIFFERENZA MASSIMA TRA LE DISTRIBUZIONI CUMULATE (in valore assoluto)

				Zo	one			
	I	II	III	IV	V	VI	VII	VIII
Specie A freq. Relativa	0,211	0,263	0,000	0,105	0,000	0,000	0,053	0,368
Distribuzione cumulata A	0,211	0,474	0,474	0,579	0,579	0,579	0,632	1,000
Specie B freq. Relativa	0,059	0,235	0,235	0,353	0,059	0,059	0,000	0,000
Distribuzione cumulata B	0,059	0,294	0,529	0,882	0,941	1,000	1,000	1,000
Differenza tra cumulate	0,152	0,180	0,055	0,303	0,362	0,421	0,368	0,000

- 2) La differenza massima è D = 0.421 (nella zona VI) con $n_1 = 19$ e $n_2 = 17$.
- 3) Il valore da confrontare con la tabella dei valori critici

$$J = D \cdot n_1 \cdot n_2 = 0.421 \cdot 19 \cdot 17 = 135.98$$

e J = 135,98.

4) Per un test a due code

con $n_1 = 19$ e $n_2 = 17$ alla probabilità $\alpha = 0.05$ essa riporta 141.

5) Il valore calcolato è inferiore: la probabilità che le differenze siano imputabili al caso è P > 0.05. Non è possibile rifiutare l'ipotesi nulla.

ESEMPIO 3 (CAMPIONI GRANDI E CONFRONTO TRA TASSI DI SOPRAVVIVENZA).

Con un primo esperimento si è voluto valutare l'effetto di un tossico alla concentrazione del 2%, immettendo in un acquario 150 dafnie per 10 giorni. Con un altro esperimento, si è valutato l'effetto della stessa sostanza alla concentrazione 3% e sono state immesse 200 dafnie.

Nella tabella sottostante, sono riportati i decessi contati ogni giorno nei due differenti esperimenti.

NUMERO OSSERVATO DI DECESSI PER GIORNO

	Giorno I	Giorno II	Giorno III	Giorno IV	Giorno V	oltre V G.
Concentr. 2%	22	43	15	18	16	36
Concentr. 3%	19	39	31	52	59	0

Dai due esperimenti di laboratorio è dimostrato che la concentrazione maggiore abbia una letalità significativamente maggiore, come appare logico attendersi?

Risposta. E' un test ad una coda, con due campioni di grandi dimensioni. Occorre verificare se la concentrazione al 3% ha una frequenza relativa maggiore nei valori bassi e quindi una frequenza relativa minore nei valori alti.

1) Si deve calcolare la differenza massima tra le due distribuzione cumulate osservate, dopo trasformazione nelle frequenze relative.

FREQUENZE RELATIVE DI DECESSI PER GIORNO

	Giorno I	Giorno II	Giorno III	Giorno IV	Giorno V	Oltre V
Concentr. 2%						
Freq. Relativa	0,147	0,287	0,100	0,120	0,106	0,240
Distr. Cumulata	0,147	0,434	0,534	0,654	0,760	1,000
Concentr. 3%						
Freq. Relativa	0,095	0,195	0,155	0,260	0,295	0,000
Distr. Cumulata	0,095	0,290	0,445	0,705	1,000	1,000
Differenza	0,052	0,144	0,089	-0,051	-0,240	0,000

2) Per un test ad una coda, la differenza massima nella direzione dell'ipotesi alternativa è 0,240. La sua significatività è stimata dalla distribuzione χ^2 con 2 gradi di libertà

$$\chi^{2}_{(2)} = 4 \cdot D^{2} \frac{n_{1} \cdot n_{2}}{n_{1} + n_{2}}$$

dove con D = -0.240; $n_1 = 150$; $n_2 = 200$

$$\chi^{2}_{(2)} = 4 \cdot 0,240^{2} \frac{150 \cdot 200}{150 + 200} = 0,2304 \frac{30000}{350} = 19,75$$

si ottiene $\chi_{(2)}^2 = 19,75$.

- 3) Alla probabilità $\alpha = 0.001$ il valore critico per 2 gradi di libertà riportato nella tabella sinottica del χ^2 è uguale a 13,82.
- 4) Il valore calcolato con i dati dell'esempio è superiore: si rifiuta l'ipotesi nulla e si accetta l'ipotesi alternativa di una maggiore letalità del tossico alla concentrazione 3%.

- 5) Se il confronto fosse stato tra due tossici diversi A e B per un test a due code, in cui verificare le differenze nella distribuzione del numero di cavie decedute per giorno, la stima della significatività della differenza massima (uguale a 0,240) avrebbe dovuto essere confrontata,
- per la probabilità $\alpha = 0.05$, con il valore critico ottenuto dalla relazione

$$1,36 \cdot \sqrt{\frac{n_1 + n_2}{n_1 \cdot n_2}} = 1,36 \cdot \sqrt{\frac{150 + 200}{150 \cdot 200}} = 0,147$$

che è uguale a 0,147

- e alla probabilità $\alpha = 0.001$ con il valore critico

$$1,95 \cdot \sqrt{\frac{n_1 + n_2}{n_1 \cdot n_2}} = 1,95 \cdot \sqrt{\frac{150 + 200}{150 \cdot 200}} = 0,211$$

che è uguale a 0,211.

Per entrambe le formule, $n_1 = 150$ e $n_2 = 200$ osservazioni.

La differenza massima riscontrata tra le due distribuzioni cumulate sarebbe risultata significativa.

In un test unilaterale, la differenza è significativa con probabilità P < 0.001

Come accennato in precedenza, il test proposto originariamente da Kolmogorov nel 1933 per un campione è stato esteso da Smirnov nel 1939 a due campioni (*On the estimation of the discrepancy between empirical curves of distribution for two independent samples*, pubblicato su Bull. Moscow Univ. Intern. Ser. (Math) Vol. 2, pp.3-16), ma sempre per una scala continua.

A motivo delle sue applicazioni numerose e importanti, è stato sviluppato anche per gruppi e/o variabili discrete da vari autori. Tra essi,

- W.J. R. Eplett nel 1982 (con The distributions of Smirnov type two-sample rank tests for discontinuous distributions functions pubblicate su Journal of the Royal Statistical Society B 44 pp. 361 – 369),
- G. P. Steck nel 1969 (con *The Smirnov two sample tests as rank tests*, in Ann. Math. Statist. Vol. 40, pp. 1449 1466)

PER DATI CONTINUI

E' la sua proposta originale. Tra i testi internazionali è riportato in

Hollander Myles, Wolfe Douglas A., 1999, Nonparametric Statistical Methods, 2nd ed. John Wiley & Sons, New York, 787 pp.

La metodologia può essere illustrata con un esempio.

1) Si supponga di avere rilevato la quantità di una proteina nel sangue di persone affette (A) da una malattia e del gruppo di Controllo (C), per valutare se le due distribuzioni di dati differiscono. In varie condizioni, la malattia incide sulla media, in altre aumenta sensibilmente la variabilità o la diminuisce oppure modifica la forma della distribuzione, accentuandone l'asimmetria, per la presenza di valori anomali in funzione della gravità della malattia.

A	0,15	1,20	2,30	3,10	3,21	3,58	3,71	4,03	5,22	7,13
С	0,94	0,96	0,99	1,65	1,80	1,99	2,22	2,42	2,48	3,45

Quando due distribuzioni sono differenti, non importa per quale parametro, è logico dedurne che la causa o fattore che le determina siano differenti. Diventa una indicazione importante per individuarli, anche se l'interpretazione e la spiegazione è compito del medico o biologo.

2) Con i valori riportati si costruisce una distribuzione unica: colonna 1 e colonna 2.

(1)	(2)	(3)	(4)	(5)
A	C	Cum. A	Cum. C	d
0,15		0,1	0,0	0,1
	0,94	0,1	0,1	0,0
	0,96	0,1	0,2	0,1
	0,99	0,1	0,3	0,2
1,20		0,2 0,2 0,2 0,2 0,2 0,3 0,3	0,3	0,1 0,2
	1,65	0,2	0,4	0,2
	1,80	0,2	0,5	0,3
	1,99	0,2	0,6	0,4
	2,22	0,2	0,7	0,5
2,30		0,3	0,7	0,4
	2,42	0,3	0,8	0,5
	2,48	0,3	0,9	0,6
3,10		0,4	0,9	0,5
3,21		0,5	0,9	0,4
	3,45	0,5	1,0	0,5
3,58		0,6	1,0	0,4
3,71		0,7	1,0	0,4 0,3
4,03		0,8	1,0	0,2
5,22		0,9	1,0	0,1
7,13		1,0	1,0	0,0

3) Per ognuna delle due distribuzioni si calcola la cumulata fino a quel punto, con le frequenze relative (Per motivi didattici è stata scelta una forma molto semplice; quindi i due campioni hanno 10 dati ognuno).

La colonna 3 rappresenta la cumulata fino a quel dato dei valori continui riportati nella colonna 1. La colonna 4 rappresenta la cumulata fino a quel dato dei valori continui riportati nella colonna 2.

4) Si calcolano tutte le differenze tra le due cumulate, come nella colonna 5.

La differenza massima è in coincidenza dal valore 2,48 e $d_{\text{max}} = 0,6$

5) Per i valori critici è possibile utilizzare la tabella riportata (anche se esistono proposte molto più sofisticate) A questo scopo si calcola J

$$J = D \cdot n_1 \cdot n_2 = 0.6 \cdot 10 \cdot 10 = 60$$

ottenendo J = 135,98.

- Nella tabella, per un test bilaterale, con $n_1 = 10$ e $n_2 = 10$ sono riportati
- alla probabilità $\alpha = 0.10$ quando $J \ge 60$,
- alla probabilità $\alpha = 0.05$ quando $J \ge 70$,
- alla probabilità $\alpha = 0.01$ quando $J \ge 80$.

Di conseguenza, il test non risulta significativo, avendo una probabilità P = 0.10

6) Utilizzando la formula per grandi campioni, il valore critico alla probabilità α = 0.05 è ottenuto dalla relazione

$$1,36 \cdot \sqrt{\frac{n_1 + n_2}{n_1 \cdot n_2}} = 1,36 \cdot \sqrt{\frac{10 + 10}{10 \cdot 10}} = 1,36 \cdot \sqrt{0,2} = 0,608$$

e risulta uguale a 0,608.

Poiché la differenza massima (0,6) è inferiore al valore critico calcolato, con P > 0.05 non è possibile rifiutare l'ipotesi nulla. Ma si potrebbe affermare che è molto vicino al valore critico. In realtà la situazione è differente.

A<u>vvertenza importante.</u> Con la probabilità stimata leggermente superiore a 0.05, si sarebbe potuto affermare che la risposta è tendenzialmente significativa. Purtroppo è ottenuta con la **formula approssimata** che, come spesso avviene, determina probabilità inferiori alla realtà. Quindi con essa aumenta la probabilità di trovare una differenza, quando nella realtà essa non esiste. Tra le due

possibilità d'errore (probabilità minore o maggiore del reale) per lo statistico quella è più grave, che non dovrebbe mai commettere, in quanto induce ad una scelta errata e afferma una cosa non corretta. Usando i computer, che possono avere in memoria tabelle molto complesse, la probabilità fornita dovrebbe non avere questi errori di **approssimazione asintotica**.