BF28W_M7ECOV

MRIP Forage Fish Index as an environmental covariate on catchability

DATA PLOTS

Age Comps for Catch for Fleet 1

Age Comps for Catch for Fleet 2

Annual Weight-at-Age for January 1 Biomass

Annual Weight-at-Age for Total Catch

Maturity

BF28W_M7ECOV

MRIP Forage Fish Index as an environmental covariate on catchability

DIAGNOSTIC PLOTS

m7EM1_ar

Model years: 1985-2021

Projection years: none

Number of fleets: 2

Fleet Age Comp Models: Multinomial, Multinomial

Number of indices: 9

o Models: Multinomial, Multinom

Recruitment model: Random about mean

Environmental covariate 1: MRIPff modeled as AR1. Effects on q for index 3 estimated.

Number of Selectivity blocks: 14

\ge-specific, Age-specific, Age-specific, Age-specific, Age-specific, Logistic(+), Age-specific, Age

Fleet 1 Selectivity Blocks: c(1, 2)

Fleet 2 Selectivity Blocks: c(3, 4, 5)

Index 1 Selectivity Blocks: 6

Index 2 Selectivity Blocks: 7

Index 3 Selectivity Blocks: 8

Index 4 Selectivity Blocks: 9

Index 5 Selectivity Blocks: 10

Conditional log-likelihood components Model: m7EM1_ar 2022-10-22 11:05:28

Fleet 1 Catch

Ecov 1: MRIPff

Catch for Fleet 1 Observed

Catch for Fleet 1 Predicted

Catch for Fleet 2 Observed

Catch for Fleet 2 Predicted

Index 1 Observed

Index 1 Predicted

Index 2 Observed

Index 2 Predicted

Index 3 Observed

Index 3 Predicted

Index 4 Observed

Index 4 Predicted

Index 6 Observed

Index 6 Predicted

Index 8 Observed

Index 8 Predicted

Year Class

-1.0

Year Class

Year Class

Conditional Expected and Posterior Estimates of Age 1 Abundance

Conditional Expected and Posterior Estimates of Age 2 Abundance

Conditional Expected and Posterior Estimates of Age 3 Abundance

Conditional Expected and Posterior Estimates of Age 4 Abundance

Conditional Expected and Posterior Estimates of Age 5 Abundance

Conditional Expected and Posterior Estimates of Age 6 Abundance

Conditional Expected and Posterior Estimates of Age 7 Abundance

Age Comp Residuals (Observed-Predicted) for Fleet 1

Age Comp Residuals (Observed-Predicted) for Fleet 2

BF28W_M7ECOV

MRIP Forage Fish Index as an environmental covariate on catchability

RESULTS PLOTS

Fleet 1

Fleet 2

Index 1

Index 2

Index 3

Index 4

Index 5

Index 6

Index 7

Index 9

Ecov 1: MRIPff

BF28W_M7ECOV

MRIP Forage Fish Index as an environmental covariate on catchability

REFERENCE POINT PLOTS

SPR Target Reference Points (Years Avg = 5)

% SPR	F(%SPR)	YPR
0.2	0.4196	0.1608
0.25	0.3486	0.1603
0.3	0.2939	0.1575
0.35	0.2499	0.1529
0.4	0.2134	0.1467
0.45	0.1824	0.1392
0.5	0.1556	0.1305
0.55	0.1321	0.1208
0.6	0.1112	0.1101
0.65	0.0925	0.0986
0.7	0.0756	0.0863
0.75	0.0603	0.0734
0.8	0.0462	0.0598

Frequencies of Annual F_{MSPR} Reference Points

Frequencies of Annual YPR(F_{NSPR}) Reference Points

YPR-SPR Reference Points (Years Avg = 5)

YPR-SPR Reference Points (Years Avg = 5)

F	YPR	SPR	F	YPR	SPR	F	YPR	SPR
0	0	1	0.35	0.1603	0.2488	0.7	0.1516	0.0938
0.01	0.0152	0.9514	0.36	0.1605	0.2409	0.71	0.1512	0.0916
0.02	0.0291	0.906	0.37	0.1607	0.2334	0.72	0.1508	0.0894
0.03	0.0417	0.8635	0.38	0.1608	0.2261	0.73	0.1504	0.0874
0.04	0.0532	0.8236	0.39	0.1609	0.2191	0.74	0.15	0.0853
0.05	0.0636	0.7861	0.4	0.1609	0.2124	0.75	0.1496	0.0834
0.06	0.0732	0.7509	0.41	0.1609	0.206	0.76	0.1492	0.0815
0.07	0.0818	0.7178	0.42	0.1608	0.1998	0.77	0.1488	0.0797
0.08	0.0897	0.6866	0.43	0.1607	0.1938	0.78	0.1485	0.0779
0.09	0.0969	0.6571	0.44	0.1606	0.1881	0.79	0.1481	0.0762
0.1	0.1035	0.6293	0.45	0.1604	0.1826	8.0	0.1477	0.0745
0.11	0.1094	0.603	0.46	0.1602	0.1773	0.81	0.1473	0.0728
0.12	0.1149	0.5782	0.47	0.16	0.1722	0.82	0.147	0.0713
0.13	0.1198	0.5547	0.48	0.1597	0.1673	0.83	0.1466	0.0697
0.14	0.1243	0.5324	0.49	0.1594	0.1625	0.84	0.1462	0.0682
0.15	0.1284	0.5113	0.5	0.1592	0.158	0.85	0.1459	0.0668
0.16	0.1321	0.4913	0.51	0.1589	0.1536	0.86	0.1455	0.0654
0.17	0.1354	0.4723	0.52	0.1585	0.1494	0.87	0.1452	0.064
0.18	0.1385	0.4542	0.53	0.1582	0.1453	0.88	0.1448	0.0627
0.19	0.1412	0.437	0.54	0.1579	0.1413	0.89	0.1445	0.0614
0.2	0.1437	0.4207	0.55	0.1575	0.1375	0.9	0.1442	0.0602
0.21	0.146	0.4051	0.56	0.1571	0.1339	0.91	0.1438	0.0589
0.22	0.148	0.3903	0.57	0.1568	0.1303	0.92	0.1435	0.0577
0.23	0.1498	0.3762	0.58	0.1564	0.1269	0.93	0.1432	0.0566
0.24	0.1514	0.3627	0.59	0.156	0.1236	0.94	0.1429	0.0555
0.25	0.1529	0.3499	0.6	0.1556	0.1204	0.95	0.1426	0.0544
0.26	0.1542	0.3376	0.61	0.1552	0.1173	0.96	0.1422	0.0533
0.27	0.1553	0.3259	0.62	0.1548	0.1144	0.97	0.1419	0.0523
0.28	0.1563	0.3147	0.63	0.1544	0.1115	0.98	0.1416	0.0513
0.29	0.1572	0.3041	0.64	0.154	0.1087	0.99	0.1413	0.0503
0.3	0.1579	0.2938	0.65	0.1536	0.106	1	0.141	0.0493
0.31	0.1586	0.284	0.66	0.1532	0.1034	1.01	0.1408	0.0484
0.32	0.1591	0.2747	0.67	0.1528	0.1009	1.02	0.1405	0.0475
0.33	0.1596	0.2657	0.68	0.1524	0.0984	1.03	0.1402	0.0466
0.34	0.16	0.2571	0.69	0.152	0.0961	1.04	0.1399	0.0458