

WHAT IS CLAIMED IS:

1 1. A method of debugging code that executes in a
2 multithreaded processor having a plurality of microengines
3 comprises:

4 receiving a program instruction and an identification
5 representing a selected one of the plurality of microengines
6 from a remote user interface connected to the processor

7 pausing program execution in the threads executing in the
8 selected microengine;

9 inserting a breakpoint after a program instruction in the
10 selected microengine that matches the program instruction
11 received from the remote user interface;

12 resuming program execution in the selected microengine;

13 executing a breakpoint routine if program execution in
14 the selected microengine encounters the breakpoint; and

15 resuming program execution in the microengine.

16 2. The method of claim 1 wherein pausing comprises disabling
17 a processor enable bit associated with the selected
18 microengine.

19 3. The method of claim 1 wherein pausing comprises:

20 determining when a context swap between the threads
21 occurs in the selected microengine; and

22 disabling a processor enable bit associated with the
23 selected microengine in response to the context swap.

1 4. The method of claim 1 wherein executing comprises:
2 sending an interrupt to a controlling processor register;
3 and
4 processing the interrupt.

1 5. The method of claim 4 wherein processing comprises:
2 sending the identification to an interrupt handler; and
3 executing the breakpoint routine in the microengine
4 represented by the identification.

1 6. The method of claim 1 wherein the breakpoint routine
comprises:

 writing data to a register.

7. The method of claim 6 wherein the data are representative
of the state of the threads in the selected microengine.

8. The method of claim 4 wherein the controlling processor
register comprises a 32-bit register.

9. The method of claim 8 wherein bits 6:0 of the 32-bit
register represent thread numbers corresponding to the threads
in the selected microengine.

10. The method of claim 8 where bits 9:7 of the 32-bit
register represent whether the interrupt is a breakpoint
interrupt.

11. The method of claim 1 wherein the breakpoint routine
resides in a store of a controlling processor.

1 12. A processor that can execute multiple contexts and that
2 comprises:

3 a register stack;
4 a program counter for each executing context;
5 an arithmetic logic unit coupled to the register stack
6 and a program control store that stores a breakpoint command
7 that causes the processor to:

8 perform a breakpoint routine residing in a debug
9 library in one of the contexts; and
10 resume program execution.

13. The processor of claim 12 wherein a breakpoint in the
context points to the breakpoint routine.

14. The processor of claim 13 wherein the breakpoint is
inserted into the context in response to a user request
received through a remote user interface connected to the
processor.

15. The processor of claim 13 wherein an end of the
breakpoint routine points to a program counter of the context.

1 16. The processor of claim 12 wherein the breakpoint routine
2 performs at a context switch.

1 17. The processor of claim 13 wherein the breakpoint causes
2 an interrupt.

1 18. The processor of claim 17 wherein an interrupt handler
2 services the interrupt.

1 19. The processor of claim 18 wherein the interrupt handler
2 identifies the context from the interrupt.

1 20. The processor of claim 18 wherein the interrupt handler
2 identifies a processor identification.

1 21. A computer program product, disposed on a computer
2 readable medium, the product including instructions for
3 causing a multithreaded processor having a plurality of
4 microengines to:

5 receive a program instruction and an identification
6 representing a selected one of the plurality of microengines
7 from a remote user interface connected to the processor;

8 pause program execution in the threads executing in the
9 selected microengine;

10 insert a breakpoint after a program instruction in the
11 selected microengine that matches the program instruction
12 received from the remote user interface;

13 resume program execution in the selected microengine;

14 execute a breakpoint routine if program execution in the
15 selected microengine encounters the breakpoint; and

16 resume program execution in the microengine.