判断题:

1-5: TFFFF 6-10: FTFFF 11-16: FTTFTF

问答题:

- 1. (1) 属于减可变规模变种的应用。(2) 当节点个数等于二叉查找树的高度时表现出最差的效率。(3) 此时查找和插入算法在最坏情况的时间复杂度都是 O(n)。
- 2. (1) 伪多项式时间算法是一种在 L 值的多项式时间内运行的算法,其中 L 是输入实例中的最大数值。
- (2) Monte Carlo 算法每次都能得到问题的解,但不保证所得解的准确性; Las Vegas 算法是每次不一定得到问题的解,只要得到的解一定是正确的解; 可以在 Monte Carlo 算法后加上一个验证算法,如果正确就得到解,如果错误就不能生成问题的解,这样 Monte Carlo 算法便转化为了 Las Vegas 算法。
- 3. AVL 树和 2-3 树能够维持树的平衡,避免树的退化,它们在最坏情况下插入和查找的时间复杂度均为 O(log₂n)。
- **4.0/1** 背包问题的一个多项式等价判定问题是给定价值为 V1, V2, ..., Vn, 重量为 V1, V2, ..., Vn 的 n 个项和两个整数 v*和 w*,问是否存在一个子集 S,使得 $\sum_{i \in s} v(i) \ge v^*$,且 $\sum_{i \in s} w(i) \le w^*$ 。

若存在 0/1 背包问题的多项式算法,则可用其在多项式时间内求解该判定问题,令背包容量等于 W^* ,求出 0/1 背包问题的最优子集 S,则可以通过判断 S 是否满足 $\sum_{i \in s} v(i) \ge v^*$ 来确定判定问题的解。

若存在该判定问题的多项式算法,则可以在可能的价值范围内进行二分搜索,在各搜索点上解判定问题以确定 0/1 背包问题的最优解,令 $v \ge_{i \le v} v(i)$ 可在 $O(\log(v))$ 时间内求得解。

5. 属于 NP 问题。因为可以在多项式的时间验证一个候选路径是否符合条件。

分治题:

```
1.// num : 逆序数
num <- 0;
Merge(Type a[], Type left, Type mid, Type right)
{
    i <- left, j <- right;
    while( i < mid && j < right)
    {
        if(a[j]) > a[i])
        {
            num += mid - i;
        }
    }
}
MergeSort(Type a[], Type left, Type right)
{
    if(left < right)
    {
        if(left + right) / 2;
```

```
MergeSort(a, left, i);
   MergeSort(a, mid + 1, right);
   Merge(a, left, i, right);
}
```

算法思路:以归并排序为基础,在两两集合合并的时候如果前一个集合的元素 a[i]>a[j],那么说明需要调整次序,逆序数 num=num+mid-i。

时间复杂度的迭代公式为 $T(\mathbf{n})=$ $\begin{cases} 1 & n=1;\\ 2T(\mathbf{n}/2)+O(\mathbf{n}) & \mathbf{p} \end{cases}$ 因此算法的时间复杂度为

T(n)=O(nlogn);

蛮力法的时间复杂度为 $O(n^2)$, 当 n 数目较大时,分治法计算规模远小于蛮力法。

```
2. num <- src[0];
  count <- 0;
  for i <- 0 to n-1 do
  {
    if(num == src[i])
    {
       count++;
    }
    else
    {
       count--;
       if(count < 0)
       {
            num <- src[i];
       }
    }
}</pre>
```

采用减治的思想每一个减去一个元素,时间复杂度为O(n),蛮力法的时间复杂度为 $O(n^2)$ 。

动态规划题:

1.

k=1

month=1	2	3	4	5	6
cost	5	6. 5	8	9. 5	11
reservation	0	1	2	3	4

k=2

	2	3	4	5	6
0				9. 5	11.5
1			12	14	17. 5

2		11.5	13. 5	15. 5	19		
3	11	13	15	17	20. 5		
4	12.5	14.5	16. 5	18.5			
5	14	16	18	20	23. 5		
6	16. 5	17. 5	19.5	21.5			
curproduction	5	6	7	8	9	10	11
curmincost	9. 5	11.5	14	16	17. 5	19. 5	21.5
reservation	0	1	2	3	4	5	6

month=3

monen o							
	5	6	7	8	9	10	11
0			14	16. 5	18.5	21	23.5
1		15. 5	18.5		23	25. 5	
2	14. 5	17	20	22.5			
3	16	18.5	21.5				
4	17. 5	20			•		
5	19	21.5					
6	20. 5		•				
curproduction	7	8	9	10	11		
curmincost	14	16	17. 5	19	20. 5		
reservation	0	1	2	3	4		

month=4

monon i					
	7	8	9	10	11
0					20.5
1				23	
2			22.5		
3		22			
4	21				
5					
6					

故最小生产投入为 20.5 (千元), 其中投入策略如下表格:

month	1	2	3	4
input	5	0	6	0

2.

K: 项目的编号, k=1,2,3;

Xk: 投资的数目,显然 xk=0,1,2,3,4,5,6,7,8;

gk(xk): 把数目为 xk 钱投资到项目 k 得到的收益;

fk(xk): 把数目为 xk 的钱投资得到的最大收益(可以投资的范围为项目 k~n);

状态变量 xk: 表示投资的数目;

决策变量 uk: 表示投给项目 k 的投资额;

状态转移方程: fk(xk)=max{gk(uk)+fk+1(xk-uk)}, uk=0,1,······,xk; fn(xn)= gn(xn)

项目个数 n=3, xk 最大取 8, 问题划分为三个阶段:

k=3

	0	1	2	3	4	5	6	7	8
1	0	4	26	40	45	50	51	52	53

k=2

IX 2									
	0	1	2	3	4	5	6	7	8
0	0	4	26	40	45	50	51	52	53
1	5	9		45		55	56	57	
2	15		41		60	65	66		
3	40	44		80	85	90			
4	60		86	100	105				
5	70		96	110					
6		77	99						
7	74	78							
8	75								

k=1

由上表可知:最大获益为140万元,其中对项目1投资4万,项目2投资4万,项目3投资0元。

分支限界题: