Norms and distances associated to an inner product:

Ex.
$$(v, w) = \sum_{i=1}^{n} v_i w_i$$
 on \mathbb{R}^n
Then $|v| = \left(\sum_{i=1}^{n} v_i^2\right)^{\frac{1}{n}} = \sqrt{(v, v)}$

Euclidean length: |v-w| = dist. betw. v, w

Def. If (,) is an inner product on V, then $||v|| = \sqrt{(v,v)}$ (norm/length of v) llv-wll is the distance between v and w. Ex. f, g & C([a, b], R) $(f,g)_{L^2} = \int_a^b f(x)g(x)dx$

$$\|f\|_{L^2} = \sqrt{(f,f)_{L^2}} = \left(\int_a^b |f(x)|^2 dx\right)^k$$

$$L^2 = \text{norm of } f$$

$$||f-g||_{L^2} = \left(\int_0^L |f(x)-g(x)|^2 dx\right)^{\frac{1}{2}}$$

mean square distance / error

$$|\widetilde{f} - \text{Fourier series}|^{2}(x)$$

$$= 0 \quad \text{if } x \neq -\pi, \pi$$
but $||\widetilde{f} - \text{Fourier series}||_{L^{2}} = 0$

Prop. If (,) is an inner product on V, then (a) $||v|| = \int (v, v)$ is a norm i.e.

- · || c. v|| = |c| || v||
- · ||v+w|| & ||v|| + ||w|| triangle inequality
- · ||v|| 20 and ||v|| = 0 () v=0
- (b) Cauchy Schwarz inequality

|(v, w)| = ||v|| ||w|| cos * (v, w)

Ex. For (,), we have

- (i) $(\int_{a}^{b} |f(x)|^{2} dx)^{1/2} \leq (\int_{a}^{b} |f(x)|^{2} dx)^{1/2} + (\int_{a}^{b} |g(x)|^{2} dx)^{1/2}$ Minkowski inequality
- (ii) $|\int_{a}^{b}f(x)g(x)dx| \leq (\int_{a}^{b}|f(x)|^{2}dx)^{\frac{1}{2}}(\int_{a}^{b}|g(x)|^{2}dx)^{\frac{1}{2}}$ Cauchy Schwarz inequality

The space L^2 of square integrable functions

Recall: $(f,g)_{L^2} = \int_a^b f(x)g(x)dx$ is an inner product on C(La,b1,R).

On the other hand, by Cauchy-Schwarz, $(f,g)_{L^2}$ is finite already if $\|f\|_{L^2} < \infty$, $\|g\|_{L^2} < \infty$.

Def. $L^2([a,b]) = \{f:[a,b] \rightarrow \mathbb{R} \mid \int_a^b |f(x)|^2 dx < \infty \}$ = $\{f:[a,b] \rightarrow \mathbb{R} \mid \|f\|_{L^2} < \infty \}$ space of square integrable f(x)H. Lebesgue

Rmk. On L^2 , $(\cdot, \cdot)_{L^2}$ satisfies all properties of an inner product except: $||f||=0 \Leftrightarrow f=0$ For example, if f(x)=0 except at finitely many points $x_0, \dots x_n$, then $||f||_{L^2}=0$

but f is NOT identically zero.

Def. A function $f \in L^2$ with $||f||_{L^2} = 0$ is called a null function.

Rmk.
$$D(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$
Dirichlet function
$$|D||_{\mathcal{C}} = 0$$

Equality in
$$L^2$$
: $f=g$ in $L^2 \Leftrightarrow \|f-g\|_{L^2}=0$
 $\Leftrightarrow f-g$ is a null function

(not necessarily $f=g$ for all x)

Convergence in L^2 : $f_n \rightarrow f$ as $n \rightarrow \infty$ in L^2 $\Leftrightarrow \|f_n - f\|_{L^2} = \left(\int_a^b |f_n(x) - f(x)|^2 dx\right)^{\frac{1}{2}}$ $\rightarrow 0 \text{ as } n \rightarrow \infty$ and in this case we write: $\lim_{n \to \infty} f_n = f \text{ in } L^2$

Approximation of functions in L²

Rmk. The following works for any (possibly ∞-dim.) vector space V with an (arbitrary) inner product (,) and any sequence [Φ.] of ON functions.

We'll always think about $(V, (,)) = (L^2(-\pi, \pi), (,))$ and the ON functions $\{\Phi_n\} = \{\Phi_0, \Phi_{1k}, \Phi_{2k}\}$ $= \{\frac{L}{\sqrt{2\pi}}, \frac{\cos(kx)}{\sqrt{\pi}}, \frac{\sin(kx)}{\sqrt{\pi}}\}$