

CLAIM AMENDMENTS

1 1. (currently amended) A method of exchanging data
2 within a direct memory access [[(DMA)]] arrangement including a
3 plurality of IP blocks, the method comprising (A, B, C),
4 characterized in that it includes the steps of: [-]

5 associating with said IP blocks [[(A, B, C)]] respective
6 DMA modules (~~IDMA A, IDMA B, IDMA C~~), each ~~of said DMA modules~~
7 including an input buffer [[(11A, 11B, 11C)]] and an output buffer
8 [[(12A, 12B, 12C)]]; [-]

9 coupling said respective DMA modules [[(IDMA A, IDMA B,
10 IDMA C)]] over a data transfer facility [[(BUS)]] in a chain
11 arrangement where [[in]] each [[said]] DMA module, other than the
12 last in the chain, has at least one of its respective output
13 buffers [[(12A, 12B)]] coupled to the input buffer [[(11B, 11C)]]
14 of another of said DMA modules downstream in the chain and each of
15 said DMA modules, other than the first in the chain, has its
16 respective input buffer [[(11B, 11C)]] coupled to the output buffer
17 [[(12A, 12B)]] of another of said DMA modules upstream in the
18 chain; [-]

19 causing each of said DMA modules [[(IDMA A, IDMA B, IDMA
20 C)]] to interact with the respective IP block [[(A, B, C)]] by
21 writing data from the input buffer [[(11A, 11B, 11C)]] of the
22 [[I]] DMA module into the respective IP block [[(A, B, C)]] and
23 reading data from the respective IP block [[(A, B, C)]] into the
24 output buffer [[(12A, 12B, 12C)]] of the DMA module; and [-]

25 operating said input [[(11A, 11B, 11C)]] and output
26 [[(12A, 12B, 12C)]] buffers in such a way that: [[-]]
27 said writing of data from the input buffer [[(11A,
28 11B, 11C)]] of the DMA module into the
29 respective IP block [[(A, B, C)]] is started
30 when [[said]] the respective input buffer
31 [[(11A, 11B, 11C)]] is at least partly filled
32 with data; and [[-]]
33 when said reading of data from the respective IP
34 block [[(A, B, C)]] into the output buffer of
35 the DMA module is completed, the data in the
36 output buffer of the DMA module are transferred
37 to the input buffer [[(11B, 11C)]] of the DMA
38 module downstream in the chain or, in the case
39 of the last DMA module in the chain, are
40 provided as output data.

1 2. (currently amended) The method of claim 1, charac-
2 terized in that it includes further comprising the steps of: [[-]]
3 associating [[to]] said output buffers [[(12A,
4 12B)]] and input buffers [[(11B, 11C)]] coupled in the chain at
5 least one intermediate block [[(16A, 16B)]] to control data
6 transfer between said coupled buffers; [[-]] and
7 controlling transfer of data between said coupled buffers
8 over said data transfer facility by [[: -]] issuing at least one
9 request of a requesting buffer for a buffer coupled therewith to

10 indicate at least one transfer condition selected out of the group
11 consisting of:

12 data existing to be transferred and enough space
13 existing for receiving said data when
14 transferred; [-]

15 issuing at least one corresponding acknowledgment
16 towards said requesting buffer confirming that
17 the said at least one transfer condition is
18 met; and [-]

19 transferring data between said requesting buffer and
20 said coupled buffer, whereby said data transfer
21 facility [(BUS)] is left free between said at
22 least one request and said at least one
23 acknowledgement.

1 3. (currently amended) The method of either of claims 1
2 or 2, characterized in that it comprises further comprising the
3 steps of: [-]

4 including a CPU in said arrangement; [and -]
5 using said CPU for transferring data to be processed into
6 the input buffer [(11A)] of the first DMA module [(IDMA A)] in
7 said chain; and [-]

8 using said CPU for collecting said output data from the
9 output buffer [(12C)] of the last DMA module [(IDMA C)] in said
10 chain.

1 4. (currently amended) The method of claim 3,
2 ~~characterized in that it includes further comprising~~ the step of
3 configuring said DMA modules [[(IDMA A, IDMA B, IDMA C)]]
4 via said CPU.

1 5. (currently amended) Architecture of a direct memory
2 access module [[(DMA)]] for exchanging data between a plurality of
3 ~~IP blocks, characterized in that it includes the architecture~~
4 ~~comprising:~~ [[-]]

5 a data transfer facility [[(BUS)]]; [[-]]
6 a plurality of respective DMA modules [[(IDMA A, IDMA B,
7 IDMA C)]] associated with said IP blocks, the DMA modules being
8 coupled over said data transfer facility [[(BUS)]], each DMA module
9 including: [[-]]

10 an input buffer [[(11)]] arranged for writing data
11 into a respective IP block [[(A, B, C)]] and
12 exchanging data with said data transfer
13 facility [[(BUS)]], and [[-]]

14 an output buffer [[(12)]] arranged for reading data
15 from said respective IP block [[(A, B, C)]] and
16 exchanging data with said data transfer [[s]]
17 facility, ~~(BUS)~~, wherein said DMA modules
18 [[are]] being arranged in a chain so that each
19 of said DMA modules, other than the last in the
20 chain, has ~~at least one of its~~ respective
21 output buffer [[(12A, 12B)]] coupled to the

22 input buffer [[(11B, 11C)]] of another of said
23 DMA modules downstream in the chain and each of
24 said DMA modules, other than the first in the
25 chain, has its input buffer [[(11B, 11C)]]
26 coupled to the output buffer [[(12A, 12B)]] of
27 another of said DMA modules upstream in the
28 chain.

1 6. (currently amended) The architecture of claim 5 ~~7~~
2 characterized in that wherein at least one of said input [[(11)]]
3 and output [[(12)]] buffers has a fixed data width with respect to
4 said data transfers facility [[(BUS)]] and a selectively variable
5 data width with respect to said respective IP blocks [[(A, B, C)]].

1 7. (currently amended) The architecture of either of
2 claim [[s]] 5 or 6, characterized in that it includes further
3 comprising

4 a slave interface module [[(18)]] configured for reading
5 from outside the architecture data relating to at least one
6 parameter selected from the group consisting of: [[-]]
7 how many bits are available for reading in said
8 input buffer [[(11)]], [[-]]
9 how many bits are present in said input buffer
10 [[(11)]], [[-]]
11 how many bits are available for reading in said
12 output buffer [[(12)]], and [[-]]

13 how many bits are present in said output buffer
14 [[[12]]].

1 8. (currently amended) The architecture of any of
2 claims claim 5 to 7, characterized in that it includes further
3 comprising

4 a reprogrammable finite state machine [[(13)]] arranged
5 for driving operation of said architecture by taking data from said
6 input buffer [[(11)]], downloading data into said respective IP
7 block [[(A, B, C)]], receiving data from said respective IP block
8 [[(A, B, C)]], and storing data in said output buffer [[(12)]].

1 9. (currently amended) The architecture of any of
2 claims claim 5 to 8, characterized in that to wherein at least one
3 of said input buffers [[(11)]] and output buffers [[(12)]]
4 [[there]] is associated with a respective master block [[(15,16)]]
5 for exchanging data between the associated buffer [[(11,12)]] and
6 said data transfer facility [[(BUS)]], said master block
7 [[(15,16)]] being adapted to be coupled in a data exchange
8 relationship to a buffer in a homologous direct memory access
9 module [[(IDMA)]] in an arrangement wherein said master block
10 [[(15,16)]] and said buffer coupled thereto are configured for:
11 [[-]]

12 issuing at least one request of a requesting buffer for a
13 buffer coupled therewith to indicate at least one transfer
14 condition selected out of the group consisting of [[:]])

15 data existing to be transferred and enough space existing
16 for receiving said data when transferred; [-]
17 issuing at least one corresponding acknowledgement
18 towards said requesting buffer confirming that the said at least
19 one transfer condition is met; and [-]
20 transferring data between said requesting buffer and said
21 coupled buffer, whereby said data transfer facility [(BUS)] is
22 left free between said at least one request and said at least one
23 acknowledgement.

10. (canceled)