Exercise 1

Since V(I(X)) is closed by definition and onctains X by 1.10(a), the inclusion $\overline{X} \subseteq V(I(X))$ is clear. For the converse, let $\overline{X} = V(J)$ for some ideal J. Then $J \subseteq I(V(J))$ by 1.10(a), and applying V to this yields

$$V(I(X)) \subseteq V(I(\overline{X})) = V(I(V(J))) \subseteq V(J) = \overline{X}.$$

Exercise 2

We proceed by induction. For n=1, if we had f(x)=0 for all $x\in K$, then X-x would need to be a factor, which is absurd. Now let n be arbitrary and let $0\neq f=\sum_{i=0}^m f_i(x_1,\ldots,x_{n-1})x_n^i\in K[x_1,\ldots,x_n]$ be some nonzero polynomial such that f(c)=0 for all $c\in K^n$. Fix $c_1,\ldots,c_{n-1}\in K$. Then $f(c_1,\ldots,c_{n-1},x_n)$ is a polynomial in one variable that vanishes for all $x_n\in K$, hence by the n=1 case $f_i(c_1,\ldots,c_{n-1})=0$. This is true for all c_1,\ldots,c_{n-1} , so by induction $f_i=0$ and thus f=0.

The contrapositive of the proven statement is that if f vanishes everywhere, then f = 0. This is exactly what $I(\mathbb{A}^n_K) = (0)$ says.

Exercise 3

We claim that

$$X = V(X^2 - YZ, XZ - X) = \underbrace{V(X,Y)}_{=:X_1} \cup \underbrace{V(X,Z)}_{=:X_2} \cup \underbrace{V(Z-1,X^2-Y)}_{=:X_3}$$

is the desired decomposition into irreducible components. First we show the above equality. Let $(x,y,z)\in X$. Then 0=xz-x=x(z-1), so either x=0 or z=1. In the first case, we have $0=x^2-yz=-yz$, so either y=0 or z=0, corresponding to X_1 and X_2 , respectively. If, on the other hand, z=1, then $0=x^2-y$, and $(x,y,z)\in X_3$. The converse inclusions $X_i\subseteq X$ are clear.

Now we have to show that the X_i are irreducible. Let $I_1=(X,Y)$, $I_2=(X,Z)$ and $I_3=(Z-1,X^2-Y) \triangleleft K[X,Y,Z]$. We claim that $I(X_i)=I_i$ and that all the I_i are prime, which shows irreducibility according to the lecture. By Hilbert's Nullstellensatz we have $I(V(I_i))=\sqrt{I_i}$, so it suffices to show primality, since prime ideals are radical. For that, note that $K[X,Y,Z]/I_1\cong K[Z]$ and $K[X,Y,Z]/I_2\cong K[Y]$ are clearly integral domains. For I_3 , consider the ring morphism defined by

$$\varphi: K[X,Y,Z] \mapsto K[X], \qquad X \mapsto X, Y \mapsto X^2, Z \mapsto 1.$$

It is clearly surjective, so it remains to show that $\ker \varphi = I_3$, where \supseteq is clear. So let $f \in \ker \varphi$. Using division with remainder twice, we may write $f = g \cdot (Z-1) + h \cdot (Y-X^2) + k$ with $g \in K[X,Y,Z], h \in K[X,Y]$ and $k \in K[X]$. Now $0 = \varphi(f) = \varphi(k) = k$, hence $f \in I_3$.

Geometrically, X_1 is the Z-axis, X_2 the Y-axis, and X_3 is a standard parabola $y = x^2$ over z = 1.

Exercise 4

(a) $Y_1=\{(t,t^2)\mid t\in K\}=V(Y-X^2).$ Further, $Y-X^2\in K[X,Y]$ is irreducible (e.g. by Eisenstein), hence $(Y-X^2)$ is a prime ideal. As before, this implies $I(Y_1)=I(V(Y-X^2))=\sqrt{(Y-X^2)}=(Y-X^2).$

(b) $Y_2 = \{(t^2, t^3) \mid t \in K\} = V(Y^2 - X^3)$: " \subseteq " is clear, for the converse let $(x, y) \in V(Y^2 - X^3)$. Since K is algebraically closed, there is $t \in K$ such that $t^2 = x$. Then $y^2 = x^3 = t^6$, so $y = \pm t^3$, and either $(x, y) = (t^2, t^3)$ or $(x, y) = ((-t)^2, (-t)^3) \in Y_2$. Again it suffices to show that $Y^2 - X^3$ is irreducible in K[X, Y] to conclude $I(Y_2) = (Y^2 - X^3)$. So let $Y^2 - X^3 = fg$. If $\deg_Y f = 0$, then comparing coefficients of Y^2 we must have $f \mid 1$, i.e. f is a unit. The only other possibility is $\deg_Y f = \deg_Y g = 1$. As before the leading coefficients must be units, so wlog we may take them to be one. Hence write f = Y - h(X), g = Y - k(X) for $h, k \in K[X]$. Comparing linear terms we see h = k, and thus $X^3 = h^2$, which is impossible since the right hand side has even degree.

(c) We will show $Y_3=\{(t^3,t^4,t^5)\mid t\in K\}=V(X^4-Y^3,X^5-Z^3,Y^5-Z^4)$. Again " \subseteq " is clear. Let $(x,y,z)\in V(X^4-Y^3,X^5-Z^3,Y^5-Z^4)$. Let t be such that $x=t^3$. Then $y^3=x^4=t^{12}$, so $y=\omega t^4$ for some third root of unity ω . Similarly, $z=\zeta t^5$. Now from

$$0 = y^5 - z^4 = \omega^2 t^{20} - \zeta t^{20} = (\omega^2 - \zeta)t^{20}$$

we see that $\zeta = \omega^2$, hence

$$(x, y, z) = ((\omega t)^3, (\omega t)^4, (\omega t)^5) \in Y_3.$$

Further, the map $\mathbb{A}^1 \to Y_3$, $t \mapsto (t^3, t^4, t^5)$ is regular, hence continuous, hence maps irreducible spaces to irreducible spaces. Since \mathbb{A}^1 is irreducible and the map is surjective, it follows that Y_3 is a variety.