

Section 13.8

B.H.

Section 13.8 Extrema of Functions of Two Variables

MATH211 Calculus III

Instructor: Ben Huang

DEPARTMENT OF COMPUTING, MATHEMATICS AND PHYSICS

Relative Extrema

Section 13.8

Relative Extrema

Section 13.8

Critical points

Section 13.8 B.H.

Where are the critical points?

Critical points

Section 13.8 B.H.

Second Derivative Test From Calculus I

Section 13.8 B.H.

f(c) is a local maximum

Classification of Critical Points

Section 13.8

 $f_{xx} < 0 \ \& \ f_{yy} < 0$ at the critical point local maximum

 $f_{xx} > 0 \& f_{yy} > 0$ at the critical point local minimum

Classification of Critical Points

Section 13.8

 $f_{\rm xx} > 0$ & $f_{\rm yy} < 0$ at the critical point saddle point

Classification of Critical Points

Section 13.8

 $f_{xx} > 0$ & $f_{yy} > 0$ at the critical point saddle point

The Second Partials Test

Section 13.8 B.H.

The tool to systematically classify critical points: The Second Partials Test

Failure of the Second Partials Test

Section 13.8

B.H.

When $d(x,y) = f_{xx}f_{yy} - f_{xy}^2 = 0$ at the critical point in question, the Second Partials Test is **inconclusive**.

Figure 1:
$$z = y^2$$

Figure 2: $z = -x^2$

Figure 3: $z = \frac{1}{50}x^3$