Скалярное произведение и ко

Определение 1. Пусть даны три вектора \overrightarrow{e} , $\overrightarrow{e'}$ и \overrightarrow{b} , такие что $\overrightarrow{e} \perp \overrightarrow{e'}$ и оба имеют единичную длину. Тогда $\overrightarrow{b} = x\overrightarrow{e} + y\overrightarrow{e'}$. Число x называется проекцией вектора \overrightarrow{b} на направение \overrightarrow{e} . Обозначение $x = \Pr_{\overrightarrow{e}}(\overrightarrow{b})$.

Упражнение 1. а) Когда выполнены следующие равенства $\Pr_{\overrightarrow{e}}(\overrightarrow{b}) = 0$, $\Pr_{\overrightarrow{e}}(\overrightarrow{b}) = |\overrightarrow{b}|$?

(b) Докажите, что для любых векторов $\overrightarrow{e} \neq \overrightarrow{0}$, $\overrightarrow{b_1}$, $\overrightarrow{b_2}$ верно равенство $\Pr_{\overrightarrow{e}}(\overrightarrow{b_1} + \overrightarrow{b_2}) = \Pr_{\overrightarrow{e}}(\overrightarrow{b_1}) + \Pr_{\overrightarrow{e}}(\overrightarrow{b_2})$.

в) Докажите равенство для $\overrightarrow{e} \neq \overrightarrow{0}$, $\overrightarrow{b} \neq \overrightarrow{0}$ $\Pr_{\overrightarrow{e}}(\overrightarrow{b}) = |\overrightarrow{b}| \cdot \cos(\angle(\overrightarrow{e}, \overrightarrow{b}))$.

Определение 2. Скалярным произведением векторов \overrightarrow{a} и \overrightarrow{b} называется число $(\overrightarrow{b}, \overrightarrow{b}) = |\overrightarrow{a}| \cdot \Pr_{\overrightarrow{a}} \overrightarrow{b}$.

Упражнение 2. (a) Когда выполнено $(\overrightarrow{a}, \overrightarrow{b}) = 0$?

б) $\stackrel{\cdot}{\text{Чему}}$ равно $(\overrightarrow{a}, \stackrel{\cdot}{\overrightarrow{a}})$?

в) Докажите равенство $(\overrightarrow{a}, \overrightarrow{b} + \overrightarrow{c}) = (\overrightarrow{a}, \overrightarrow{b}) + (\overrightarrow{a}, \overrightarrow{c}).$

- г) Пусть дана координатная плоскость с базисными единичными векторами $\overrightarrow{e_1}$ и $\overrightarrow{e_2}$. Вектора \overrightarrow{a} , \overrightarrow{b} имеют координаты в этом базисе (x_1,y_1) и (x_2,y_2) . Найдите $(\overrightarrow{a},\overrightarrow{b})$.
- **1.** Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону. Докажите, что сумма длин всех отмеченных сторон не может быть меньше 1.
- **2.** Докажите неравенство $(x_1x_2 + y_1y_2)^2 \leqslant (x_1^2 + y_1^2)(x_2^2 + y^2)$.
- **3.** Выпуклый 2n-угольник $A_1A_2\dots A_{2n}$ вписан в окружность радиуса 1. Докажите, что

 $|\overrightarrow{A_1A_2} + \overrightarrow{A_3A_4} + \ldots + \overrightarrow{A_{2n-1}A_{2n}}| \leqslant 2$

4. Правильный n-угодьник $A_1A_2\dots A_n$ вписан в окружность радиуса R и X — произвольная точка. Докажите

$$A_1X^2 + \ldots + A_nX^2 = n(R^2 + d^2).$$

5. На окружности радиуса 1 с центром O дано 2n+1 точек P_1,\ldots,P_{2n+1} , лежащих по одну сторону от некоторого диаметра. Докажите, что

$$\left|\overline{OP_1} + \dots + \overline{OP_{2n+1}}\right| \ge 1.$$

6. Пусть O – центр описанной окружности, H — ортоцентр и M — точка пересечения медиан треугольника ABC. а) Докажите, что $\overline{OH} = \overline{OA} + \overline{OB} + \overline{OC}$. б) Выведите из этого, что точки M, H, O лежат на одной прямой (прямая Эйлера), причем MH = 2OM. в) Докажите, что $OH^2 = 9R^2 - (a^2 + b^2 + c^2)$.