Bayesian Inference: normal-normal model

Overview

- We have seen how to perform Bayesian inference for binomial data
- Now we are going to look at data from a normal distribution
- Recall that we have already discussed how to model this data using a frequentist approach
- Even in this simple situation we will run into some difficulties

Normal distribution - recap

- Dbserve data $y=y_1,\ldots,y_n$ (i.i.d) from a normal distribution, $y_i\sim \mathcal{N}(\mu,\sigma^2),$ for each i.
- \blacktriangleright The pdf for each observation y_i :

$$f(y_i|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2} \left(\frac{y_i-\mu}{\sigma}\right)^2\right\}$$

▶ The likelihood takes the form:

$$L(y) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2} \left(\frac{y_i - \mu}{\sigma}\right)^2\right\}$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2} \sum_{i=1}^{n} \left(\frac{y_i - \mu}{\sigma}\right)^2\right\}.$$

Previously we saw that the mle estimates were $\hat{\mu} = \bar{y}$ and $\hat{\sigma} = \sqrt{\sum_{i=1}^{n} \frac{(y_i - \bar{y})^2}{1}}$.

Normal data – simulated example $n=20, y \sim \mathcal{N}(60, 12^2)$

Bayesian inference

- How do we perform Bayesian inference for this model?
- lacktriangle It's convenient to work with precision au instead of variance σ^2
 - Recall $\tau = \sigma^{-2}$
 - $\qquad \qquad \textbf{ Can write } y \sim \mathcal{N}(\mu, \tau^{-1}),$
- Then

$$p(y|\mu,\tau) = (2\pi)^{-n/2} \tau^{n/2} \exp\left\{\frac{-\tau}{2} \sum_{i=1}^{n} (y_i - \mu)^2\right\}.$$

- Let's focus on one parameter at a time
 - First mean μ , then precision τ

Unknown mean μ , known precision τ

- Let's assume that the variance τ is fixed and known.
- lackbox We want to infer $p(\mu|y,\tau)$, the posterior for the mean $\mu.$
- Our basic approach is to specify a prior $p(\mu)$, and then use Bayes's rule to find the posterior:

$$p(\mu|y,\tau) \propto p(y|\mu,\tau)p(\mu)$$
.

Unknown μ , known τ – choosing prior $p(\mu)$

- \blacktriangleright What prior $p(\mu)$ should we use?
- The posterior will take the form

$$\begin{split} &p(\mu|y,\tau) \propto p(y|\mu,\tau)p(\mu) \\ &\propto p(\mu) \exp\left\{-\frac{\tau}{2} \sum_{i=1}^n \left(y_i - \mu\right)^2\right\} \\ &\propto p(\mu) \exp\left\{-c_1 \left(\mu - c_2\right)^2\right\}. \end{split}$$

Unknown μ , known τ – choosing $p(\mu)$

- If $p(\mu)$ is proportional to an exponentiated quadratic function, $p(\mu)$ and $p(\mu|y,\tau^{-1})$ will be conjugate.
- ▶ Hence setting $p(\mu) \sim \mathcal{N}(\mu_0, \tau_0^{-1})$ should result in a posterior with recognisable form.
- So we have that

$$p(\mu|\mu_0,\tau_0) \propto \exp\left\{-\frac{\tau_0}{2} \left(\mu-\mu_0\right)^2\right\}.$$

We will still need to choose μ_0 and au_0 – more on this later.

Then we have:

$$\begin{split} &p(\mu|y,\tau,\mu_0,\tau_0) \propto p(y|\mu,\tau)p(\mu|\mu_0,\tau_0) \\ &\propto \exp\left\{-\frac{\tau}{2}\sum_{i=1}^n\left(y_i-\mu\right)^2\right\} \times \exp\left\{-\frac{\tau_0}{2}\left(\mu-\mu_0\right)^2\right\} \\ &= \exp\left\{-\frac{1}{2}\left[\tau\sum_{i=1}^n\left(y_i-\mu\right)^2+\tau_0\left(\mu-\mu_0\right)^2\right]\right\}. \end{split}$$

- Our goal now is to re-express these terms into a single (exponentiated) quadratic expression
- \blacktriangleright Remember that we can ignore any terms that don't involve μ
- We can write

$$\tau \sum_{i=1}^{n} \left(y_i - \mu\right)^2 + \tau_0 \left(\mu - \mu_0\right)^2$$

$$= \tau \sum_{i=1}^{n} y_i^2 - 2\tau \mu \sum_{i=1}^{n} y_i + n\tau \mu^2 + \tau_0 \mu^2 - 2\tau_0 \mu_0 \mu + \tau_0 \mu_0^2$$
$$= a\mu^2 - 2b\mu + c.$$

- Here we have set:

 - $\begin{array}{l} \bullet \quad a = n\tau + \tau_0; \\ \bullet \quad b = \tau \sum_{i=1}^n y_i + \tau_0 \mu_0 = n\tau \bar{y} + \tau_0 \mu_0; \end{array}$
 - $c = \tau \sum_{i=1}^{n} y_i^2 + \tau_0 \mu_0^2$.
- \blacktriangleright We can ignore c.
- Notice that

$$a\mu^2 - 2b\mu = a\left(\mu^2 - 2\frac{b}{a}\mu\right)$$

$$=a\left(\mu-\frac{b}{a}\right)^2-a\left(\frac{b^2}{a^2}\right).$$

So we can write

$$\begin{split} p(\mu|y,\tau,\mu_0,\tau_0) &\propto \exp\left\{-\frac{1}{2}\left[a\mu^2 - 2b\mu + c\right]\right\} \\ &\propto \exp\left\{-\frac{1}{2}\left[a\mu^2 - 2b\mu\right]\right\} \\ &\propto \exp\left\{-\frac{1}{2}\left[a\left(\mu - \frac{b}{a}\right)^2 - a\left(\frac{b^2}{a^2}\right)\right]\right\} \\ &\propto \exp\left\{-\frac{1}{2}\left[a\left(\mu - \frac{b}{a}\right)^2 - a\left(\frac{b^2}{a^2}\right)\right]\right\}. \end{split}$$

Finding $p(\mu|y,\tau)$

We have shown that the kernel of $p(\mu|y,\tau)$ has an exponentiated quadratic form,

$$p(\mu|y,\tau,\mu_0,\tau_0) \propto \exp\left\{-\frac{\tau_n}{2} \left(\mu-\mu_n\right)^2\right\},$$

- Where:
 - $\blacktriangleright \mu_n = \frac{b}{a} = \frac{n\tau \bar{y} + \tau_0 \mu_0}{n\tau + \tau_0};$
- We say that $\mu|y,\tau,\mu_0,\tau_0 \sim \mathcal{N}(\mu_n,\tau_n^{-1})$.
- A normal distribution is a conjugate prior for the mean μ of normal data, **conditional** on the precision (or variance).

Simulated data – set $\tau = 1/12^2, \mu_0 = 50, \tau_0 = 1/25^2$

Interpreting μ_n and au_n

We can interpret μ_n and τ_n as a trade-off between the information contained in the data and the prior:

$$\mu_n = \frac{n\tau \bar{y} + \tau_0 \mu_0}{n\tau + \tau_0}$$
$$\tau_n = a = n\tau + \tau_0.$$

- If n and/or τ is large, or τ_0 is small, then the parameters will mainly be estimated from the data and $\mu_n \approx \bar{y}$;
- If n and/or τ is small, or τ_0 is large, then the parameters will mainly be informed from the prior: $\mu_n \approx \mu_0$.
- lacktriangle Remember, if au is small, this means that the data are noisy
- \blacktriangleright If τ is large, the data are stable

Choosing μ_0 and τ_0

- We can interpret μ_0 as our prior best guess of the data mean
 - For example, if we know the data occur in some range (e.g., 0-100), could set μ_0 to be half way point
- lacktriangle We can interpret au_0 as a reflection of our uncertainty
 - Smaller values mean higher uncertainty
 - lacktriangle Or could choose au_0 so that au_0 covers some suitable range
 - lacktriangle Can be easier to specify σ_0 and set $au_0=1/\sigma_0^2$
- For simulated example, assuming that data range was (0-100), setting $\mu_0=50$ and $\tau_0=1/25^2$ is conservative

Unknown precision au, known mean μ

- Now assume that the the mean μ is fixed and known.
- lackbox We want to infer $p(au|y,\mu)$, the posterior for precision au
- Recall that the likelihood has the form

$$p(y|\mu,\tau) = (2\pi)^{-n/2} \tau^{n/2} \exp\left\{\frac{-\tau}{2} SSE\right\},\,$$

where we set $SSE = \sum_{i=1}^{n} \left(y_i - \mu\right)^2$.

Prior for au

 \blacktriangleright We can specify a Gamma $\mathcal{G}(a,b)$ prior for τ :

$$p(\tau|a,b) = \frac{b^a}{\Gamma(a)} \tau^{a-1} \exp(-\tau b)$$

$$\propto \tau^{a-1} \exp(-\tau b)$$
.

For simplicity later on, let's set $a=\frac{\nu_0}{2}$ and $b=\frac{\nu_0}{2}\kappa$:

$$p(\tau|\nu_0,\kappa) = \propto \tau^{\frac{\nu_0}{2}-1} \exp(-\frac{\tau}{2}\nu_0\kappa).$$

$$p(\tau|y,\mu)$$

▶ The posterior $p(\tau|y,\mu)$ will take the form

$$\begin{split} p(\tau|y,\mu,\nu_0,\kappa) &\propto p(y|\mu,\tau) p(\tau|\nu_0,\kappa) \\ &\propto \tau^{n/2} \exp\left\{-\frac{\tau}{2} SSE\right\} \times \tau^{\frac{\nu_0}{2}-1} \exp(-\frac{\nu_0}{2} \kappa \tau) \\ &\propto \tau^{a_n-1} \exp\left\{-b_n \tau\right\}. \end{split}$$

$$a_n = \frac{1}{2} (n + \nu_0)$$

$$b_n = \frac{1}{2} \{ SSE + \nu_0 \kappa \}.$$

Posterior for au

- ▶ This means that if $\tau \sim \mathcal{G}(a,b)$ then $\tau|y,\mu,a,b \sim \mathcal{G}(a_n,b_n)$.
- ▶ A gamma distribution is a conjugate prior for the precision of normal data, conditional on the mean.
- We also say that, conditional on the mean, an inverse-gamma distribution is a conjugate prior for the variance σ^2 of normal data.

Simulated data – set $\mu=60, \nu_0=1, \kappa=400$

Posterior for au

 \blacktriangleright We can again interpret a_n and b_n as a trade-off between the data and the prior:

$$a_n = \frac{1}{2} \left(n + \nu_0 \right)$$

$$b_n = \frac{1}{2} \left\{ \sum_{i=1}^n (y_i - \mu)^2 + \nu_0 \kappa \right\}.$$

- If n is large (or ν_0 is small) then a_n will mainly be estimated from the data, $a_n\approx n/2$
- If SSE is large (or $\kappa\nu_0$ is small) then b_n will mainly be estimated from the data, $b_n \approx SSE/2$
- For a Gamma distribution, we have that $\mathbb{E}[\tau] = a_n/b_n \approx n/SSE \approx \hat{\sigma}^{-2}$ for large sample sizes.
- ▶ If the converse is true, the parameters will mainly be informed by the prior.

Choosing ν_0 and κ

- lacktriangle The interpretation of u_0 and κ is not too difficult
- \blacktriangleright We can interpret ν_0 as our prior weight of evidence.
- A small value of ν_0 means a weak prior, whereas larger values indicate a higher degree of certainty
- We can interpret κ as our prior estimate of the variance σ^2
- For the simulated data, we set $\nu_0=1$ (i.e., a weak prior) and $\kappa=20^2=400$, a reasonable choice if data range is (0, 100)

Going further: unknown μ and unknown au

If neither μ nor τ are known, we construct a joint distribution:

$$\begin{split} & p(\mu,\tau|y) \propto p(y|\mu,\tau)p(\mu)p(\tau) \\ & \propto \tau^{n/2} \exp\left\{-\frac{\tau}{2} \sum_{i=1}^n \left(y_i - \mu\right)^2\right\} \times p(\mu)p(\tau). \end{split}$$

- Unfortunately, we don't have an obvious choice of conjugate priors $p(\mu)$ and $p(\tau)$ in this case
- So we can't find a closed form posterior distribution for both parameters
- However we can exploit the conditional distributions using computational (Monte Carlo) methods

Summary and review

- ▶ We have seen how to perform Bayesian inference on normal data.
- If μ is unknown but τ is known, then a normal distribution $p(\mu)$ is a conjugate prior for $p(y|\mu,\sigma^2)$;
 - If τ is unknown but μ is known, then a gamma distribution $p(\tau)$ is a conjugate prior for $p(y|\mu,\tau)$;
- If μ and τ are both unknown, then a conjugate prior does not exist to jointly estimate both parameters.
- Unfortunately we can't yet fit a full model to the data. To do this, we need to use computational methods