Math 500: Homework 9

Caitlin Beecham

1. Let $p: E \to B$ be a covering map. Prove that $p^{-1}(\{b\})$ is a discrete subspace of E (i.e., that the subspace topology on $p^{-1}(\{b\})$ is the discrete topology).

So, we want to show that every singleton $\{a\} \subseteq p^{-1}(\{b\})$ is open in the subspace topology on $p^{-1}(\{b\}) \subseteq E$, which will imply that every subset of $p^{-1}(\{b\})$ is open in the subspace topology, i.e. the subspace topology is the discrete topology on $p^{-1}(\{b\})$.

By definition, the singleton set $\{a\} \subseteq p^{-1}(\{b\})$ open in the subspace topology if $\{a\} = V_{\alpha} \cap p^{-1}(\{b\})$ for some open set $V_{\alpha} \subseteq E$.

We show this by double inclusion.

First, we show that $\{a\} \subseteq V_{\alpha} \cap p^{-1}(\{b\})$ for some open set $V_{\alpha} \subseteq E$.

That means that, since we picked $\{a\} \subseteq p^{-1}(\{b\})$, we just need to show that $\{a\} \subseteq V_{\alpha}$ for some open set $V_{\alpha} \subseteq E$. How? Note that $\{b\} \subseteq U$ implies $p^{-1}(\{b\}) \subseteq p^{-1}(U)$ (since inverse functions preserve inclusion).

Now, $p:E\to B$ a covering map means that

- (a) $p^{-1}(U) = \coprod_{\alpha} V_{\alpha}$ for disjoint open sets $V_{\alpha} \subseteq E$ and
- (b) $p|_{V_{\alpha}}: V_{\alpha} \to U$ is a homeomorphism,

so

$$\{a\} \subseteq p^{-1}(\{b\}) \subseteq p^{-1}(U) = \bigsqcup_{\alpha} V_{\alpha},$$

That means $\{a\}$ belongs to exactly one open set $V_{\alpha} \in E$. So we have proven $\{a\} \subseteq V_{\alpha} \cap p^{-1}(\{b\})$. That's one inclusion.

We now show that $V_{\alpha} \cap p^{-1}(\{b\}) \subseteq \{a\}$. That is, we show that $\{y\} \subseteq V_{\alpha} \cap p^{-1}(\{b\}) \Rightarrow \{y\} = \{a\}$.

Well, $\{y\} \subseteq V_{\alpha} \cap p^{-1}(\{b\})$ if and only if $\{y\} \subseteq V_{\alpha}$ and $\{y\} \subseteq p^{-1}(\{b\})$ or equivalently, if and only if $\{y\} \subseteq V_{\alpha}$ and $p(\{y\}) \subseteq p(p^{-1}(\{b\}))$ (since both functions and inverse functions preserve inclusions). Also, $p(p^{-1}(\{b\})) = \{b\}$ because p is surjective. So yet another equivalent statement is that $\{y\} \subseteq V_{\alpha}$ and $p(\{y\}) = \{b\}$, which can be concisely stated as $p|_{V_{\alpha}}(\{y\}) = \{b\}$.

So, it suffices to show that $\left(p\big|_{V_{\alpha}}(\{y\})=\{b\}\right)\Rightarrow (\{y\}=\{a\}).$

By hypothesis, $p|_{V_{\alpha}}(\{y\}) = \{b\}$, and like show above for $\{y\}$, $\{a\} \subseteq V_{\alpha} \cap p^{-1}(\{b\})$ implies $p|_{V_{\alpha}}(\{a\}) = \{b\}$, so we have

$$p\big|_{V_\alpha}(\{y\})=\{b\}=p\big|_{V_\alpha}(\{a\}),$$

but since $p|_{V_{\alpha}}$ is injective, that implies $\{y\} = \{a\}$, as desired, and we are done.

2. Let $p: E \to B$ be a covering map. Let α and β be paths in B with $\alpha(1) = \beta(0)$; let $\widetilde{\alpha}$ and $\widetilde{\beta}$ be liftings of them such that $\widetilde{\alpha}(1) = \widetilde{\beta}(0)$. Show that $\widetilde{\alpha} * \widetilde{\beta}$ is a lifting of $\alpha * \beta$.

We want to show that $\widetilde{\alpha} * \widetilde{\beta}$ is a lifting of $\alpha * \beta$, i.e. that $p \circ (\widetilde{\alpha} * \widetilde{\beta}) = \alpha * \beta$. Well, what is $(\alpha * \beta)(x)$?

$$(\alpha * \beta)(x) = \begin{cases} \alpha(2x) \text{ for } x \in [0, \frac{1}{2}) \\ \beta(2x - 1) \text{ for } x \in [\frac{1}{2}, 1]. \end{cases}$$

What is $\left(p \circ (\widetilde{\alpha} * \widetilde{\beta})\right)(x)$? Well it is $p((\widetilde{\alpha} * \widetilde{\beta})(x))$.

What is $(\widetilde{\alpha} * \widetilde{\beta})(x)$?

$$(\widetilde{\alpha} * \widetilde{\beta})(x) = \begin{cases} \widetilde{\alpha}(2x) \text{ for } x \in [0, \frac{1}{2}) \\ \widetilde{\beta}(2x - 1) \text{ for } x \in [\frac{1}{2}, 1]. \end{cases}$$

That means

$$p((\widetilde{\alpha} * \widetilde{\beta})(x)) = \begin{cases} p(\widetilde{\alpha}(2x)) \text{ for } x \in [0, \frac{1}{2}) \\ p(\widetilde{\beta}(2x-1)) \text{ for } x \in [\frac{1}{2}, 1], \end{cases}$$

but since $\widetilde{\alpha}$ and $\widetilde{\beta}$ are liftings of α and β respectively, we know that $p \circ \widetilde{\alpha} = \alpha$ and $p \circ \widetilde{\beta} = \beta$. That implies

$$p((\widetilde{\alpha} * \widetilde{\beta})(x)) = (\alpha * \beta)(x) = \begin{cases} \alpha(2x) \text{ for } x \in [0, \frac{1}{2}) \\ \beta(2x - 1) \text{ for } x \in [\frac{1}{2}, 1], \end{cases}$$

and we are done.

3. Consider the covering map $p \times p : \mathbb{R} \times \mathbb{R} \to S^1 \times S^1$ defined by

$$(p \times p) (x \times x) = (\cos(2\pi x), \sin(2\pi x)) \times (\cos(2\pi x), \sin(2\pi x)).$$

Consider the path

$$f(t) = (\cos(2\pi t), \sin(2\pi t)) \times (\cos(4\pi t), \sin(4\pi t))$$

in $S^1 \times S^1$. Sketch what f looks like when $S^1 \times S^1$ is identified with the doughnut surface D. Find a lifting \widetilde{f} of f to $\mathbb{R} \times \mathbb{R}$ and sketch it. Well, in order to sketch f, we calculate some values of f.

$$f(0) = (1,0) \times (1,0)$$

$$f\left(\frac{1}{4}\right) = (0,1) \times (-1,0)$$

$$f\left(\frac{1}{2}\right) = (-1,0) \times (1,0)$$

$$f\left(\frac{3}{4}\right) = (0,-1) \times (-1,0)$$

$$f(1) = (1,0) \times (1,0)$$

Here is my picture:

To account for my lack of drawing skills I will make clear that f goes around one copy of S^1 once and goes around the other copy twice.

Now, we need to find a function $\widetilde{f}:[0,1]\to\mathbb{R}\times\mathbb{R}$ such that $(p\times p)(\widetilde{f}(x))=f(x)$. I claim that $\widetilde{f}(x)=x\times 2x$ is such a function. Why? Because $(p\times p)(\widetilde{f}(x))=(p\times p)(x\times 2x)=(\cos(2\pi t),\sin(2\pi t))\times(\cos(4\pi t),\sin(4\pi t))=f(x)$.

Here is a picture of $\widetilde{f}(x)$ in $\mathbb{R} \times \mathbb{R}$:

4. Generalize the proof of Theorem 54.5 to show that the fundamental group of the torus is isomorphic to the group $\mathbb{Z} \times \mathbb{Z}$.

We will give an isomorphism. Namely, define $\Phi: \mathbb{Z} \times \mathbb{Z} \to \pi_1(T^2, q)$ (where $q = (1, 0) \times (1, 0)$) by $\Phi(n, m) = [(cos(2\pi ns), sin(2\pi ns)) \times (cos(2\pi ms), sin(2\pi ms))]$. We need to show that this a bijective homomorphism.

First, is it a homomorphism? i.e. is it true that $\Phi((n,m) + (a,b)) = \Phi((n,m)) * \Phi((a,b))$? Well,

$$\begin{split} \Phi((n,m) + (a,b)) &= \Phi((n+a,m+b)) \\ &= \Big[\big(cos(2\pi(n+a)s), sin(2\pi(n+a)s) \big) \times \big(cos(2\pi(m+b)s), sin(2\pi(m+b)s) \big) \Big]. \end{split}$$

Also,

$$\Phi((n,m)) * \Phi((a,b)) = \left[\left(\cos(2\pi ns), \sin(2\pi ns) \right) \times \left(\cos(2\pi ms), \sin(2\pi ms) \right) \right]$$

$$* \left[\left(\cos(2\pi as), \sin(2\pi as) \right) \times \left(\cos(2\pi bs), \sin(2\pi bs) \right) \right]$$

$$= \left[\left(\left(\cos(2\pi ns), \sin(2\pi ns) \right) \times \left(\cos(2\pi ms), \sin(2\pi ms) \right) \right)$$

$$* \left(\left(\cos(2\pi as), \sin(2\pi as) \right) \times \left(\cos(2\pi bs), \sin(2\pi bs) \right) \right) \right]$$

So the question is:

Are the homotopy classes
$$\left[\left(\cos(2\pi(n+a)s),\sin(2\pi(n+a)s)\right)\times\left(\cos(2\pi(m+b)s),\sin(2\pi(m+b)s)\right)\right]$$
 and $\left[\left(\left(\cos(2\pi ns),\sin(2\pi ns)\right)\times\left(\cos(2\pi ms),\sin(2\pi ms)\right)\right)*\left(\left(\cos(2\pi as),\sin(2\pi as)\right)\times\left(\cos(2\pi bs),\sin(2\pi bs)\right)\right)\right]$ equal?

i.e. are $f(s) := (\cos(2\pi(n+a)s), \sin(2\pi(n+a)s)) \times (\cos(2\pi(m+b)s), \sin(2\pi(m+b)s))$ and $g(s) := ((\cos(2\pi ns), \sin(2\pi ns)) \times (\cos(2\pi ms), \sin(2\pi ms))) * ((\cos(2\pi as), \sin(2\pi as)) \times (\cos(2\pi bs), \sin(2\pi bs)))$ homotopic? I claim they are. Why is that? That is because they both wrap around one copy of S^1 n+a times and wrap around the other copy m+b times. So, Φ is a homomorphism.

Is it bijective? Yes, it is. Why? Well, it turns out that Φ is the lifting correspondence derived from the covering map $p \times p$ (because $p^{-1}(q) = p^{-1}((1,0) \times (1,0)) = \mathbb{Z} \times \mathbb{Z}$), and since $\mathbb{R} \times \mathbb{R}$ is simply connected (and path connected) Φ is bijective.