Data Structures Hashing – Introduction

Team Emertxe

Hashing -Introduction (Part 2)

Data Structure –Hashing Concept

.int arr[SIZE]

Concept

.int arr[SIZE]

arr[0]	arr[1]	arr[2]	arr[3]	arr[4]	arr[5]	arr[6]	arr[7]	arr[8]	arr[9]

Concept

.int arr[SIZE]

8, 5, 3, 7, 2

arr[0]	arr[1]	arr[2]	arr[3]	arr[4]	arr[5]	arr[6]	arr[7]	arr[8]	arr[9]

Concept

.int arr[SIZE]

8, 5, 3, 7, 2

		2	3		5		7	8	
arr[0]	arr[1]	arr[2]	arr[3]	arr[4]	arr[5]	arr[6]	arr[7]	arr[8]	arr[9]

Concept

.int arr[SIZE]

8, 5, 3, 7, 2

$$Key = 3$$

		2	3		5		7	8	
arr[0]	arr[1]	arr[2]	arr[3]	arr[4]	arr[5]	arr[6]	arr[7]	arr[8]	arr[9]

Concept

.int arr[SIZE]

8, 5, 3, 7, 2

Key = 3

Key = 6

		SIZE =10)
--	--	----------	---

		2	3		5		7	8	
arr[0]	arr[1]	arr[2]	arr[3]	arr[4]	arr[5]	arr[6]	arr[7]	arr[8]	arr[9]

Concept

.int arr[SIZE]

SIZE =10

8, 5, 3, 7, 2

$$Key = 3$$

Time Complexity =
$$O(1)$$

$$Key = 6$$

		2	3		5		7	8	
arr[0]	arr[1]	arr[2]	arr[3]	arr[4]	arr[5]	arr[6]	arr[7]	arr[8]	arr[9]

Concept

.int arr[SIZE]

SIZE =10

8, 5, 3, 7, 2, 50

Time Complexity =
$$O(1)$$

		2	3		5		7	8	
arr[0]	arr[1]	arr[2]	arr[3]	arr[4]	arr[5]	arr[6]	arr[7]	arr[8]	arr[9]

Concept

.int arr[SIZE]

SIZE =10

8, 5, 3, 7, 2, 50

Time Complexity =
$$O(1)$$

EMERTXE

Concept

Concept

SIZE =10

Data Pool

8, 5, 3, 7, 2

Concept

SIZE =10

Data Pool

$$\cdot h(x) = x$$

[0]	[1]	[2]	[3]	<u>[4]</u>	[5]	[6]	[7]	[8]	[9]

Concept

SIZE =10

Data Pool

$$\cdot h(x) = x$$

		2	3		5		7	8	
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]

Concept

SIZE =10

Data Pool

$$\cdot h(x) = x$$

Hash Table

[50]

50

Concept

SIZE =10

Data Pool

8, 5, 3, 7, 2

Hash Function

h(x) = x % SIZE

$$\cdot h(x) = x$$

		2	3		5		7	8	
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]

SIZE =10

Data Pool

8, 5, 3, 7, 2

Hash Function

h(x) =dat%%\$\$ZE

Concept

Data Pool 8 5

8, 5, 3, 7, 2

SIZE =10

Hash Function

h(x) =data % SIZE

$$h(x) = 8 \% 10 = 8$$

Concept

Data Pool

8, 5, 3, 7, 2

SIZE =10

Hash Function

h(x) =data % SIZE

$$h(x) = 8 \% 10 = 8$$

$$h(x) = 5 \% 10 = 5$$

Concept

SIZE =10

Data Pool 8, 5, 3, 7, 2

Hash Function

h(x) =data % SIZE

$$h(x) = 8 \% 10 = 8$$

$$h(x) = 5 \% 10 = 5$$

$$h(x) = 3 \% 10 = 3$$

$$h(x) = 7 \% 10 = 7$$

			3		5		7	8	
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]

Concept

SIZE =10

Data Pool

8, 5, 3, 7, 2

Hash Function

h(x) =data % SIZE

$$h(x) = 8 \% 10 = 8$$

$$h(x) = 5 \% 10 = 5$$

$$h(x) = 3 \% 10 = 3$$

$$h(x) = 7 \% 10 = 7$$

$$h(x) = 2 \% 10 = 2$$

		2	3		5		7	8	
[0]	 [1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]

Concept

SIZE =10

Data Pool

8, 5, 3, 7, 2,50

Hash Function

h(x) =data % SIZE

$$h(x) = 8 \% 10 = 8$$

$$h(x) = 5 \% 10 = 5$$

$$h(x) = 3 \% 10 = 3$$

$$h(x) = 7 \% 10 = 7$$

$$h(x) = 2 \% 10 = 2$$

$$h(x) = 50 \% 10 = 0$$

50		2	3		5		7	8	
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]

Concept

SIZE =10

Data Pool

8, 5, 3, 7, 2,50

Hash Function

h(x) =data % SIZE

$$h(x) = 8 \% 10 = 8$$

$$h(x) = 5 \% 10 = 5$$

$$h(x) = 3 \% 10 = 3$$

$$h(x) = 7 \% 10 = 7$$

$$h(x) = 2 \% 10 = 2$$

$$h(x) = 50 \% 10 = 0$$

$$h(x) = 22 \% 10 = 2$$

50		2	3		5		7	8	
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]

Concept

Data Pool 8 5 3

8, 5, 3, 7, 2,50

SIZE =10

Hash Function

h(x) =data % SIZE

$$h(x) = 8 \% 10 = 8$$

$$h(x) = 5 \% 10 = 5$$

$$h(x) = 3 \% 10 = 3$$

$$h(x) = 7 \% 10 = 7$$

$$h(x) = 2 \% 10 = 2$$

$$h(x) = 50 \% 10 = 0$$

$$h(x) = 22 \% 10 = 2$$

Collision

50		2	3		5		7	8	
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]

Components

.Hash Table:

Hash Table is a data structure which stores data in an associative manner.

.Hash Function:

It is function used to map a data sets of an arbitrary size to a data set of fixed size which falls into the hash table

.Collision:

It is a state that occurs when pair of elements are mapped to same hash value.

.Collision Resolution Technique:

- Open Addressing
- Direct Chaining

Hashing -Collision Resolution Technique