The Quadratic Sieve Integer Factorization Algorithm

Preliminary Examples (Trial Division)

What's the super naive way to find the prime factors of n = 8051?

$$8051 \div 2 = 4025.5 \text{ X}$$

 $8051 \div 3 = 2683.67 \text{ X}$
 $8051 \div 4 = 2012.75 \text{ X}$
 $8051 \div 5 = 1610.2 \text{ X}$
 \vdots
 $8051 \div 83 = 97 \text{ \checkmark}$
 $8051 = 83 \cdot 97$

But this is slow! In the worst case, we would have to trial divide up to $|\sqrt{n}|$ (89 trial divisions for n=8051).

Preliminary Examples (Fermat's Factorization)

What is the slightly less naive way?

Use
$$n = a^2 - b^2 = (a - b)(a + b)$$
.

$$n = 8051$$

$$= 8100 - 49$$

$$= 90^2 - 7^2$$

$$= (90 - 7)(90 + 7)$$

$$= 83 \cdot 97$$
.

Much faster! But this only works well for n = xy if x and y are close to \sqrt{n} .

What is the Quadratic Sieve?

- It is an integer factorization algorithm.
- Currently the second fastest factorization method, next to the number field sieve.
- But it's still the fastest for integers under 100 digits [Lan01].
- Running time to factor an integer n: $O(e^{\sqrt{\ln(n) \ln(\ln(n))}})$ [Pom96] .

The General Idea of Quadratic Sieve

Given n as the integer that needs to be factored, Quadratic Sieve attempts to find x, y such that

$$x^{2} \equiv y^{2} \pmod{n}$$

$$\implies x^{2} - y^{2} \equiv 0 \pmod{n}$$

$$\implies (x - y)(x + y) \equiv 0 \pmod{n}$$

Then we can just compute $gcd(x \pm y, n)$ to find the two factors!

Remark

We might get a trivial solution that we don't care about, i.e. when $gcd(x \pm y, n) = 1$ or n.

The General Idea of Quadratic Sieve

The Kraitchik function is defined as

$$Q(x) = (x + \lfloor \sqrt{n} \rfloor)^2 - n.$$

We want to compute Kraitchik's sequence,

$$K = (Q(x_1), Q(x_2), ..., Q(x_i)),$$

with the values of $x \in \mathbb{Z}$ from a given interval [-M, M], called the **sieving interval**.

The General Idea of Quadratic Sieve

Then choose a subsequence of K such that the products of the elements of that subsequence, $Q(x_{K_1}) \cdot Q(x_{K_2}) \cdot \ldots \cdot Q(x_{K_j})$, is a perfect square.

Furthermore, note that

$$Q(x) = (x + \lfloor \sqrt{n} \rfloor)^2 - n$$

$$\implies Q(x) \equiv (x + \lfloor \sqrt{n} \rfloor)^2 \pmod{n}.$$

This means that

$$\underbrace{Q(x_{K_1})Q(x_{K_2})\ ...\ Q(x_{K_j})}_{x^2} \equiv \underbrace{(x_{K_1}\ x_{K_2}\ ...\ x_{K_j})^2}_{y^2} \ (mod\ n),$$

which is precisely what we want.

Quadratic Sieve Algorithm Outline

- Data Collection
 - Generate a factor base
 - Sieving to get smooth numbers
- 2 Data Processing
 - Build the matrix
 - Process the matrix
 - Factor n

Data Collection: Factor Base

Q: How do we find the product $Q(x_{K_1}) \cdot Q(x_{K_2}) \cdot ... \cdot Q(x_{K_j})$ and make sure it's a perfect square?

A: We must first find the prime factors of each element of K. The product $Q(x_{K_1}) \cdot Q(x_{K_2}) \cdot \ldots \cdot Q(x_{K_j})$ is a perfect square if the sum of the exponents of a given base from their prime factorization are all even.

Data Collection: Factor Base

Example

Q: Is 29 · 782 · 22678 a perfect square? First, calculate the prime factors of 29, 782, and 22678:

$$29 = 29^{1}$$

$$782 = 2^{1} \cdot 17^{1} \cdot 23^{1}$$

$$22678 = 2^{1} \cdot 17^{1} \cdot 23^{1} \cdot 29^{1}$$

Next, add the exponents of the matching bases:

(

All of the exponents are even, therefore $29 \cdot 782 \cdot 22678$ is a perfect square.

To speed up calculations, we factor over a fixed set of primes, called the **factor base**.

The criteria for choosing a factor base:

- **1** The factor base should always include -1 to handle cases when Q(x) is negative.
- **2** Each prime p should be less than or equal to a bound B, called the smoothness bound. This value is dependent on the size of n.
- **3** The prime p must satisfy the Legendre symbol $\left(\frac{n}{p}\right) = 1$.

Definition of the Legendre Symbol

$$\left(\frac{n}{p}\right) \equiv n^{\frac{p-1}{2}} \; (mod \; p)$$

Data Collection: Factor Base

Generally, the size of the factor base should increase with the size of n, meaning that the size of B also increases. For small n, it often suffices to use trial and error when choosing B because the run-time of quadratic sieve will be insignificant.

However, in order to optimize efficiency in the case for a large n, the most optimal size of the factor base (**not** the smoothness bound) is approximately

$$\left(e^{\sqrt{\ln{(n)}\ln{(\ln{(n)})}}}\right)^{\sqrt{2}/4}[\mathsf{Lan01}].$$

Similar to factor bases, the sieving interval [-M, M] should also increase with the size of n. Using trial and error when choosing M suffices for small n.

For large n, the most optimal value for the size of the sieving interval is approximately the cube of the factor base size:

$$\left(e^{\sqrt{\ln(n)\ln(\ln(n))}}\right)^{3\sqrt{2}/4}[\text{Lan01}].$$

Since [-M, M] is symmetric about zero, we can say that the optimal value for M is

$$M = \frac{1}{2} \left(e^{\sqrt{\ln(n)\ln(\ln(n))}} \right)^{3\sqrt{2}/4}.$$

Data Collection: Sieving

Sieving begins by calculating Kraitchik's function $Q(x_i)$ for all integers x_i in the sieving interval [-M, M].

- If a given $Q(x_i)$ does factor completely over the factor base, it is said to be B-smooth. We store the values of $Q(x_i)$ and $x_i + \lfloor \sqrt{n} \rfloor$ for further use in the data processing portion of the algorithm.
- If $Q(x_i)$ does not factor completely over the factor base, we throw this number away and move on to $Q(x_{i+1})$.

Data Processing: Building the Matrix

After all elements of K have been processed, we now have a list of $Q(x_i)$ that are B-smooth along with a list of their respective values for $x_i + \lfloor \sqrt{n} \rfloor$.

In the data processing part of the algorithm, the goal is to find a subsequence of K such that the product of the elements of that subsequence $Q(x_{K_1}) \cdot Q(x_{K_2}) \cdot \ldots \cdot Q(x_{K_i})$ is a perfect square.

Reminder

Recall that $Q(x_{K_1}) \cdot Q(x_{K_2}) \cdot ... \cdot Q(x_{K_j})$ is a perfect square if the sum of the exponents of matching bases in their prime factorization are all even.

Data Processing: Building the Matrix

An easy way to do this is to first calculate the prime factorization of each element $Q(x_i) \in K$. Then, create an exponent matrix from each prime factorization.

Example

Let $K = \{19343, 114376, 225998\}$. The prime factorization of each element is:

$$19343 = 2^{0} \cdot 17^{0} \cdot 23^{1} \cdot 29^{2}$$
$$114376 = 2^{3} \cdot 17^{1} \cdot 23^{0} \cdot 29^{2}$$
$$225998 = 2^{1} \cdot 17^{3} \cdot 23^{1} \cdot 29^{0}$$

The resulting exponent matrix is $\begin{bmatrix} 0 & 0 & 1 & 2 \\ 3 & 1 & 0 & 2 \\ 1 & 3 & 1 & 0 \end{bmatrix}$.

Data Processing: Building the Matrix

We can simplify calculations by working in (mod 2) since all we care about is finding even sums. For example, the previously calculated matrix becomes:

$$\begin{bmatrix} 0 & 0 & 1 & 2 \\ 3 & 1 & 0 & 2 \\ 1 & 3 & 1 & 0 \end{bmatrix} \equiv \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix} \pmod{2}.$$

Data Processing: Processing the Matrix

Now that we have created the matrix, we can finally process the matrix to attempt to find the subsequence whose product is a square.

We do this by observing the exponent matrix, and choosing rows whose sum is the zero vector in (mod 2).

Data Processing: Processing the Matrix

Example

Given the previous matrix $\begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$, we can see that

$$R_0 + R_1 + R_2 = \vec{0}.$$

 R_0 corresponds to 19343, R_1 corresponds to 114376, R_2 corresponds to 225998.

Thus, we know that 19343 · 114376 · 225998 is square.

If we check just to make sure, we can see that

$$19343 \cdot 114376 \cdot 225998 = 22360508^2$$
.

We finally have what we've been wanting this whole time:

$$\underbrace{Q(x_{K_1})Q(x_{K_2}) \dots Q(x_{K_j})}_{x^2} \equiv \underbrace{(x_{K_1} \ x_{K_2} \dots x_{K_j})^2}_{y^2} \pmod{n}.$$

Now, we calculate $gcd(x \pm y, n)$ to find the two factors of n.

Remark

There is a 50% chance that you find a trivial factor, i.e. n or 1. If this happens, just choose another subsequence of K whose product is a square. If another square-product subsequence does not exist, try adjusting the smoothness bound B or the sieving interval [-M, M].

What is the factorization of n = 87463?

Factor Base:

Since n is small, we can just choose the smoothness bound B=37. Below is a table of the Legendre symbol $\left(\frac{n}{p}\right)$ calculations for every prime less than or equal to 37:

2	3	5	7	11	13	17	19	23	29	31	37
1	1	-1	-1	-1	1	1	1	-1	1	-1	-1

Recall that -1 is included in the factor base, and that we want $\left(\frac{n}{p}\right) = 1$.

Thus, our factor base is $\{-1, 2, 3, 13, 17, 19, 29\}$.

Sieving:

We choose the sieving interval to be [-30, 30] because of how small n is. For each integer value x_i in [-30, 30], we calculate the Kraitchik function

$$Q(x_i) = (x_i + \lfloor \sqrt{n} \rfloor)^2 - n$$

and see if $Q(x_i)$ factors completely over the factor base. If it does, we keep track of the values $Q(x_i)$ and $x_i + \lfloor \sqrt{n} \rfloor$.

Sieving (cont.):

For the sake of brevity, $Q(x_i)$ calculations for every x_i in [-30, 30] are not shown. Only the ones that factor completely over the factor base are shown below:

$x_i + \lfloor \sqrt{n} \rfloor$
265
278
296
299
307
316

Building the Matrix:

We calculate the prime factorization of each $Q(x_i)$ in the table from the previous slide, and build the exponent matrix (mod 2) from that.

$$-17238 = -1^{1} \cdot 2^{1} \cdot 3^{1} \cdot 13^{2} \cdot 17^{1} \cdot 19^{0} \cdot 29^{0}$$

$$-10179 = -1^{1} \cdot 2^{0} \cdot 3^{3} \cdot 13^{1} \cdot 17^{0} \cdot 19^{0} \cdot 29^{1}$$

$$153 = -1^{0} \cdot 2^{0} \cdot 3^{2} \cdot 13^{0} \cdot 17^{1} \cdot 19^{0} \cdot 29^{0}$$

$$1938 = -1^{0} \cdot 2^{1} \cdot 3^{1} \cdot 13^{0} \cdot 17^{1} \cdot 19^{1} \cdot 29^{0}$$

$$6786 = -1^{0} \cdot 2^{1} \cdot 3^{2} \cdot 13^{1} \cdot 17^{0} \cdot 19^{0} \cdot 29^{1}$$

$$12393 = -1^{0} \cdot 2^{0} \cdot 3^{6} \cdot 13^{0} \cdot 17^{1} \cdot 19^{0} \cdot 29^{0}$$

Building the Matrix (cont.):

From those prime factorizations we get the resulting exponent matrix (mod 2):

$Q(x_i)$	-1	2	3	13	17	19	29
-17238	1	1	1	0	1	0	0
-10179	1	0	1	1	0	0	1
153	0	0	0	0	1	0	0
1938	0	1	1	0	1	1	0
6786	0	1	0	1	0	0	1
12393	0	0	0	0	1	0	0

Processing the Matrix:

Now, we find a combination of rows in the matrix that sum to the zero vector in (mod 2). Given the exponent matrix from the previous slide

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix},$$

we can observe that $R_0 + R_1 + R_2 + R_4 = \vec{0}$.

Processing the Matrix (cont.):

Since

 R_0 corresponds to -17238, R_1 corresponds to -10179, R_2 corresponds to 153, and R_4 corresponds to 6786,

we know that $-17238 \cdot -10179 \cdot 153 \cdot 6786$ is a perfect square.

Finding the Factors:

In the end, we get the congruence

$$-17238 \cdot -10179 \cdot 153 \cdot 6786 \equiv (265 \cdot 278 \cdot 296 \cdot 307)^2 \pmod{87463}.$$

Therefore,

$$x = \sqrt{-17238 \cdot -10179 \cdot 153 \cdot 6786}$$
$$y = 265 \cdot 278 \cdot 296 \cdot 307.$$

We then calculate the factors gcd(x - y, n) = 149 and gcd(x + y, n) = 587. Thus, we get our result:

$$n = 87463 = 149 \cdot 587$$
.

References

- [Lan01] Eric Landquist. The Quadratic Sieve Factoring Algorithm. Paper. Charlottesville VA: University of Virginia, 2001.
- [Pom96] Carl Pomerance. "A Tale of Two Sieves". In: *Notices of the American Mathematical Society* 43.12 (1996), pp. 1473–85.