

2102447 ETRON ENG LAB

ELECTRONICS ENGINEERING LABORATORY (ปฏิบัติการวิศวกรรมอิเล็กทรอนิกส์)

ภาคการศึกษาต้น ปีการศึกษา 2567

ผศ. ดร.อาภรณ์ ธีรมงคลรัศมี ผศ. ดร.อภิวัฒน์ เล็กอุทัย

บล็อกไดอะแกรมของการตรวจวัดคลื่นไฟฟ้าหัวใจ

RA = Right-Arm

LA = Left-Arm

RL = Right-Leg → common ของวงจร

<u>หมายเหตุ</u>: ควรทำงานที่ได้รับมอบหมายให้เสร็จในเวลาแล็ป

ECG Machine from the Early 1900s → Today

Characteristics of Biopotential Signals

Instrumentation Amplifier แบบ 3 OpAmp

(1) Voltage-follower + (2) Differential amplifier

(1) Voltage-follower

(2) Differential amplifier*

โดยปกติจะเลือกให้ค่า $R_1 = R_2 = R_3 = R_4$ เพื่อให้อัตราขยาย เท่ากับ 1

$$v_{out} = (1 + \frac{2R}{R_g})(v_2 - v_1) + V_{ref}$$

$$Adm = 5$$
Vref = 0

6

5

Common-Mode Rejection Ratio (CMRR)

 \rightarrow Ratio of the differential gain (A_{dm}) over the common-mode gain (A_{cm}) , measured in dB.

$$CMRR = 20 \log_{10} \left(\frac{A_{dm}}{A_{cm}} \right)$$

- ในอุดมคติ CMRR $ightarrow \infty$ เนื่องจาก $A_{dm} = 1 + 2R/Rg$ และ $A_{cm} = 0$
- ในทางปฏิบัติ CMRR < ∞ เป็นตัวบอกประสิทธิภาพของ Instrumentation Amp
- CMRR ควรมีค่าอย่างน้อย 10,000 เท่า (> 80 dB)

7

CMRR & Resistor Mismatch

 \rightarrow A_{cm} \uparrow \rightarrow CMRR \downarrow

Worst case (6σ) CMRR from Diff-Amp resistor matching

Resistor	Worst Case (6σ)
Tolerance	CMRR
1%	34dB
0.50%	40dB
0.10%	54dB
0.01%	74dB

Assignment

การทดลองที่ 1: ต่อวงจรและวัดค่า A_{dm}, A_{cm}, CMRR

การทดลองที่ 2: นำวงจร Instrumentation Amp ต่อกับ Bandpass Filter

แล้ววัด Frequency Response (รวม)

การทดลองที่ 3: วัดสัญญาณคลื่นไฟฟ้าหัวใจ + บันทึกสัญญาณจาก Scope

ไว้ใช้ต่อในสัปดาห์หน้า

9

IA Module: Experimental section

- ให้ออกแบบและจำลองวงจรขยายแบบอินสตรูเมนเตชัน ที่ใช้ออปแอมป์ 3 ตัว กำหนดให้วงจรขยายแบบอินสตรูเมนเตชัน มีอัตราขยาย เท่ากับ 5
- ใช้แรงดันอ้างอิง (V_{ref}) เท่ากับ <mark>0 โวลต์</mark>
- แรงดันของแหล่งจ่าย (เหมือนแล็ป #1): ±9 V
- ค่าความต้านทานที่ใช้ในวงจร (±5%): 10 kΩ 500 kΩ***
- ไอซีของออปแอมป์ที่ใช้ในการทดลอง: TL064

ตัวต้านทาน	ค่าที่ออกแบบไว้ (kΩ)	ค่าที่วัดด้วยมัลติมิเตอร์ (kΩ)
2 x (R)		
R_g		
R_1		
R_2		
R_3		
R_4		

Exp 1: วงจรสำหรับวัดอัตราขยาย<u>โหมดต่าง</u> (A_{dm})

ต่อวงจรขยายอินสตรูเมนเตชัน โดยใช้ค่าความต้านทานที่ได้ออกแบบไว้

- ์ตั้ง v_{in} เป็นแหล่งกำเนิดสัญญาณไซน์ ความถี่ 1000 Hz
- ปรับค่าแรงดันของ ∨_{in} ตามที่กำหนดในการทดลอง ใช้ออสซิลโลสโคปวัดแรงดันค่ายอดของ v_{in} และ v_{out}
- พล็อตกราฟระหว่าง v_{out} กับ v_{in}
- หาอัตราขยายผลต่างจากความชั้นของกราฟ

11

Exp 1: วงจรสำหรับวัดอัตราขยาย<u>โหมดร่วม</u>

- ์ ตั้ง v_{in} เป็นแหล่งกำเนิดสัญญาณไซน์ <mark>ความถี่ 50 Hz</mark> ตั้งขนาดของสัญญาณ
- เพิ่มขนาดของสัญญาณไซน์ของสัญญาณขาเข้า v_{in} จนกระทั่งสามารถสังเกตเห็นสัญญาณ ขาออก v_{out} ที่ขั้วออก วัดขนาดจากยอดถึงยอด (Peak-to-peak value) ของสัญญาณขา เข้าและขาออกเพื่อใช้คำนวณหาอัตราขยายผลร่วม
- นำค่า Adm และ Acm ที่วัดได้ไปคำนวณค่า CMRR

Exp 2: วงจรวัดผลตอบสนองเชิงความถี่ (รวม)

- สร้างวงจรขยายคลื่นไฟฟ้าหัวใจ โดยนำวงจรขยายแบบอินสตรูเมนเตชันมาต่อเข้ากับวงจรกรองที่ได้จากการ ทดลองในสัปดาห์แรก
- ต่อวงจรแบ่งแรงดัน ที่มีอัตราส่วนการแบ่งแรงดันประมาณ 50 เท่า คำนวณค่าความต้านทานที่ต้องนำมาใช้ สาเหตุที่ต้องแบ่งแรงดันเนื่องจากเครื่องกำเนิดสัญญาณที่ใช้ในห้องปฏิบัติการฯ สามารถกำเนิดสัญญาณได้ขนาด เล็กสุด 100 mVpp ซึ่งถ้าป้อนเข้าวงจรโดยตรงจะเกิดการอิ่มตัวของวงจรได้ $Atten = \frac{R_B}{R_A + R_B}$
- ต่อขาเข้าของวงจรขยายแบบอินสตรูเมนเตชันเข้ากับเครื่องกำเนิดสัญญาณ ผ่านทางวงจระเบ่งแรงดัน
- วัดแรงดันขาเข้าและขาออก โดยต่อ CH1 ของ DSO เข้ากับขาเข้าของวงจรขยาย และ CH2 เข้ากับขาออกของ
 วงจรกรอง
- ป้อนสัญญาณไซน์ที่ความถี่ตั้งแต่ $0.1-1000~{
 m Hz}$ คำนวณค่าอัตราขยาย $Gain(dB)=20\log\left(\frac{v_{out}}{v_{in}\times Atten}\right)$
- พล็อตกราฟของอัตราขยายเทียบกับความถื่

13

วิธีการหาค่าความถี่ตัดผ่าน ($f_{ m cut-off}$) จากกราฟ*

* ไม่ใช้นิยาม -3dB

เป็นจุดตัดระหว่างเส้นกำกับ (asymptote) 2 เส้นดังนี้

- (1) เส้นกำกับในแนวนอนให้สัมผัสกับแนวจุดข้อมูลที่วัดได้ (ซึ่งเป็นอัตราขยายในช่วง pass band)
- (2) เส้นตรงอีกเส้นในช่วง stop band ที่มีความชั้นเป็นบวกหรือลบ แล้วแต่กรณี

14

Exp 3: วัดและบันทึกสัญญาณคลื่นไฟฟ้าหัวใจ

ใช้วงจรขยายคลื่นไฟฟ้าหัวใจวัดสัญญาณคลื่นไฟฟ้าหัวใจ

- ให้สมาชิกในกลุ่ม 1 คนเป็น อาสาสมัคร ในการวัดสัญญาณคลื่นไฟฟ้าหัวใจ
- นำสายสัญญาณและขั้วอิเล็กโทรดที่เตรียมให้ ต่อเข้ากับแขนซ้าย (LA) แขนขวา (RA) และ ขาขวา (RL) ต่อขาออกของวงจรเข้ากับสโคป CH1
- ปรับสเกลแกนนอนของสโคป ให้เห็นรูปคลื่นไฟฟ้าหัวใจ ประมาณ 2-4 รูปคลื่น
- ปรับสเกลแกนตั้งของสโคป ให้เห็นรูปคลื่นไฟฟ้าหัวใจอย่างสวยงามและชัดเจน
- บันทึกรูปคลื่นสัญญาณคลื่นไฟฟ้าหัวใจลงใน USB flash-drive โดยบันทึกแบบเป็นไฟล์
 (1) รูปภาพ (นามสกุล .png หรือ .jpg) และ บันทึกเป็น (2) ไฟล์ข้อมูล (นามสกุล .CSV)

15

ส่งรายงานใน CourseVille

Sec วันศุกร์ ส่งงานภายใน

* ให้ส่งรายงานในรูปแบบ pdf

วันพฤหัสที่ 12 ก.ย. 67 เวลา 23.59น

* ใส่ชื่อกลุ่ม สมาชิกให้ครบถ้วน

