Application No. 09/847,326 Docket No.: 20260-00044-US4 Amendment filed February 16, 2006

Reply to Office Action of November 18, 2005

AMENDMENTS TO THE CLAIMS

This listing of claims replaces all previous versions and listings of claims in this application.

Claim Listing:

Claims 1-28: (Cancelled).

- 29. (Previously presented) A device according to claim 41, wherein the CAN-system produces a first signal between the first modules to perform the particular process of the control system, and a first activation of the portable control unit at the first location gives rise to activation of circuits in the second module, generating the signal activation in the second module to produce said first signal.
- 30. (Previously presented) A device according to claim 29, wherein the signal activation initiates a message in the second module for transmission over the digital serial communication connection to the first modules.
- 31. (Previously presented) Device according to claim 41, wherein the second module transmits a message over said serial communication connection according to a predetermined order of priority in the ordinary exchange of messages between the first modules.
- 32. (Previously presented) A device according to claim 31, wherein the second module causes an interruption in the ordinary exchange of messages or signals within the CAN-system, and the signal activation in the second module controls generation and dispatch of one or more test messages via a communication circuit to the first modules.
- 33. (Previously presented) A device according to claim 32, wherein the second module, when a signal is activated imitates a control or supervisory function, which normally

Application No. 09/847,326 Amendment filed February 16, 2006

Reply to Office Action of November 18, 2005

occurs in the CAN system and generates a supervisory control operation for a testing or faultsearching function.

Docket No.: 20260-00044-US4

- (Previously presented) A device according to claim 41, wherein the 34. radiocommunication means operates with two-way connections such that a stimulation of a controlled or supervised component at a first module produces a feedback from the first module via the digital serial connection to the second module, whereby an information signal representing the stimulation is generated and transferred via the radiocommunication means to the portable control unit at the first module location.
- (Previously presented) A device according to claim 41, wherein the operation of 35. equipment connected to said first modules are observable.
- (Previously presented) A device according to claim 41, wherein the 36. radiocommunication means operates at frequencies of 2.4 GHz or higher.
- 37. (Previously presented) A device according to claim 41, wherein the radiocommunication means part at the first module location is connected to a control or supervisory equipment part served by the first module.
 - 38. (Cancelled).
- 39. (Previously Presented) A device according to claim 34, wherein the information in said messages makes it possible for a user to evaluate said control of said component.
- (Previously Presented) A device according to claim 39, wherein the control of 40. said component induces a signal emission via a fixed connection established between the first module means and an information-supplying unit at one of said locations A, and in that the information and signal-emission can be compared at the information-supplying unit in order to

Docket No.: 20260-00044-US4

discover any defectiveness in the communication path via the serial communication, the second module and the radiocommunication channel.

41. (Currently amended) A testing device in a CAN-system including a plurality of modules connected via a digital serial communication connection, bus, the testing device comprising:

a group of first modules connected to said digital serial communication eonnection <u>bus</u> at different locations (A) for controlling equipment at each location (A);

a second module connected to said digital serial communication <u>connection bus</u> at a location (B), spaced from said locations (A),

said second module including a radio communication means and means for generating an activation message in the a complete CAN message format in response to a received message which has a partial CAN message format retaining substantially all of the CAN message format for signaling.

wherein said partial CAN message signals one of said first modules over said digital serial connection; and

a portable control unit having a radio communication means for establishing a radio communication link with said second module, and for generating commands for activating said equipment at each of said locations (A),

said portable control unit having an interface <u>means</u> for generating a partial CAN message representing said <u>command-commands</u> and having a substantially CAN message format, and

<u>said portable control unit</u> transferring said partial CAN message via said <u>radio</u> communication link to said second module, which generates

<u>said second module generating</u> said complete CAN message <u>from responsive to said</u> partial CAN message and <u>forwards forwarding</u> said <u>complete CAN</u> message via said serial communication connection to said first group of modules, <u>permitting the response to</u>

wherein said commands to be are capable of being observed at each of said locations (A) in response to said complete CAN message.

42. (Currently amended) A testing device in a CAN-system having a plurality of modules connected by a digital serial communication connection bus, the testing device comprising:

a first group of module means connected to said digital serial communication eonnection bus at a first group of locations (A), respective ones of said first group of module means being connected to control equipment at each of said location;

a second module means connected to said digital serial communication <u>connection bus</u> at a second location (B), and having a radio communication interface <u>means</u> for creating partial CAN messages which retain a substantially CAN message format from complete CAN messages on said digital serial communication—link bus; and

portable radio communication means for linking each location of said <u>first</u> group of locations (A) to said second module at location (B), whereby complete CAN messages from said first module means relating to the connection of said equipment are sent via said digital serial communication <u>eonnection bus</u> to said second module <u>means</u>, <u>and means</u> and transferred as a partial CAN message via said radio link to said portable radio communication means.

43. (Currently amended) A testing device which permits testing at a first plurality of locations of a CAN-system, the testing device comprising:

a module at each of said <u>first plurality</u> of locations <u>for operating that operates</u> connected equipment;

a portable control panel connected to a radio communication terminal which can be that is positioned at each of said first plurality of locations for receiving so as to receive information related to the functioning of said equipment; and

a second module at a second location, said second module receiving and creating being configured to receive and create partial CAN messages which retain a substantially CAN message format from complete CAN messages on said CAN system,

said control panel at each of said first plurality of locations.

Reply to Office Action of November 18, 2005

said CAN-system CAN messages containing information relating to the operation of said connected equipment, said second module including a radio communication terminal for forwarding configured to forward said partial CAN messages to said control panel, whereby wherein the information relating to operation of said equipment may be is monitored by

44. (Currently amended) A testing device for verifying operations of a CAN-system comprising a plurality of modules interconnected on a serial digital communication connection where bus, wherein at least one of said modules at a first location has equipment connected thereto, the testing device comprising:

a control panel which can be adapted to be moved from module to module, said control panel having a radio terminal for receiving and transmitting that receives and transmits information; and

a second module connected to said digital communication-connection-bus at a second location, said second module having a radio terminal for receiving configured to receive partial CAN messages which retain a substantially CAN message format from said control panel, and establishing

wherein said radio terminal establishes a complete CAN messages from said partial message, and transferring CAN messages and transfers information received from said serial digital communication connection bus as a partial CAN message to said control panel, whereby commands may be

wherein commands are issued to said equipment from said control panel, and information generated by said equipment-may be is monitored by said control panel.