

ЭТИКЕТКА

<u>УПЗ.487.310 ЭТ</u> Микросхема интегральная 564 ЛЕ10В Функциональное назначение – Три 3-х входовых элемента «ИЛИ-НЕ»

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Вход	8	Вход
2	Вход	9	Выход
3	Вход	10	Выход
4	Вход	11	Вход
5	Вход	12	Вход
6	Выход	13	Вход
7	Общий	14	Питание, U _{и.п.}

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C)

Таблица 1

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма		
паименование параметра, единица измерения, режим измерения	обозначение	не менее	не более	
1	2	3	4	
1. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5.0 \; B$ $U_{CC} = 10.0 \; B$	U _{ОН}	4,99 9,99	-	
2. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5,0 \; B$ $U_{CC} = 10,0 \; B$	Uol	- -	0,01 0,01	
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC}=5,0$ B, $U_{IH}=3,5$ B $U_{CC}=10,0$ B, $U_{IH}=7,0$ B	U _{OL max}		0,8 1,0	
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC} = 5.0$ B, $U_{IL} = 1.5$ B $U_{CC} = 10.0$ B, $U_{IL} = 3.0$ B	U _{OH min}	4,2 9,0	-	
5. Ток потребления, мкА, при: $U_{CC} = 5,0 \text{ B}$ $U_{CC} = 10,0 \text{ B}$ $U_{CC} = 15,0 \text{ B}$	I _{CC}	- - -	0,05 0,1 1,0	
6. Входной ток низкого уровня, нА, при: U_{CC} = 15,0 В	$I_{\rm IL}$	-	/-100/	

Продолжение таблицы 1					
1	2	3	4		
7. Входной ток высокого уровня, нА, при: $U_{CC} = 15,0 \; B$	I_{IH}	-	100		
8. Выходной ток высокого уровня, мА, при: $U_{CC} = 5.0 \; B, \; U_{OH} = 2.5 \; B$ $U_{CC} = 10.0 \; B, \; U_{OH} = 9.5 \; B$	I_{OH}	/-1,0/ /-1,0/			
9. Выходной ток низкого уровня, мА, при: $U_{CC} = 5.0 \; B, \; U_{OL} = 0.4 \; B$ $U_{CC} = 10.0 \; B, \; U_{OL} = 0.5 \; B$	I_{OL}	0,5 1,0	- -		
10. Время задержки распространения при выключении, нС, при: $U_{CC}=5.0$ В, $C_{L}=50$ пФ $U_{CC}=10.0$ В, $C_{L}=50$ пФ	t _{PLH}	- -	150 90		
11. Время задержки распространения при включении, нС, при: $U_{CC}=5,0$ В, $C_L=50$ пФ $U_{CC}=10,0$ В, $C_L=50$ пФ	t _{PHL}	- -	140 90		
12. Время перехода при выключении, нС, при: $U_{CC}=5,0$ В, $C_L=50$ пФ $U_{CC}=10,0$ В, $C_L=50$ пФ	t _{TLH}	- -	200 100		
13. Время перехода при включении, нС, при: $U_{CC}=5,0$ В, $C_L=50$ пФ $U_{CC}=10,0$ В, $C_L=50$ пФ	t _{THL}	- -	200 100		
14. Входная емкость, пФ	C _I	-	5		

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ С не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC}=5$ В \pm 10% - не менее $120000\,$ ч.

 Γ амма – процентный ресурс ($T_{p\gamma}$) микросхем устанавливают в ТУ при γ = 95% и приводят в разделе " Справочные данные" ТУ.

2.2 Минимальный срок сохраняяемости микросхем (T _{см}) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- $3.1\ \Gamma$ арантии предприятия изготовителя по ОСТ В $11\ 0398 2000$:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

...

Микросхемы 564	1 11F10B coo	тветствуют те	хническим з	СПОВИЯМ	0KU.347.U64	1 9 2 1	и признаны	годными .	для эксплу	⁄аташии.
r · · · · · · · · · · · · · · · · · · ·		5		,			r			,

Приняты по		OT		_	
	(извещение, акт и др.)		(дата)		
Место для шт	гампа ОТК			Место для шта	імпа ВП
Место для шт	гампа «Перепроверка	произ	ведена	(дата)	»
Приняты по	(извещение, акт и др.)	ОТ	(дата)	_	
Место для шт	гампа ОТК			Место для шта	ампа ВГ

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.