Сложные случаи: PALC, S5CD, PALCD

Мини-курс «Эпистемическая логика: исчисления и модели»

Виталий Долгоруков, Елена Попова

Международная лаборатория логики, лингвистики и формальной философии НИУ ВШЭ

Летняя школа «Логика и формальная философия» Факультет свободных искусств и наук сентябрь 2022

PALC

Утверждение

Формула $[!\varphi]C_G\psi\leftrightarrow (\varphi\to C_G[!\varphi]\psi)$ не является общезначимой.

Доказательство.

Рассмотрим модель M, x

- 1. $M, x \models [!p]C_{ab}q$
- 2. $M, x \models p$
- 3. $M,x \not\models C_{ab}[!p]q$, поскольку $M,x \models \hat{K}_a\hat{K}_b\langle !p \rangle \neg q$

Публичные объявления и общее знание

Лемма

$$\frac{\models \chi \to [!\varphi]\psi \quad \models (\chi \land \varphi) \to E_G \chi}{\models \chi \to [!\varphi]C_G \psi}$$

Публичные объявления и общее знание

Докажем по индукции.

- $M, x \models \chi$
- $(\chi \wedge \varphi) \rightarrow E_G \chi$
- $x(\bigcup_{i \in G} \sim_i^{!\varphi})^* y$
- $x\sim_{i_1}^{!\varphi}y_1\sim_{i_2}^{!\varphi}\cdots\sim_{i_{n-1}}^{!\varphi}y_{n-1}\sim_{i_n}^{!\varphi}y_n=y$ т.ч. $\{i_1,\ldots i_n\}\subseteq G$
- БИ $M, x \models \chi$
- ПИ $M, y_{n-1} \models \chi$
- $M, y_{n-1} \models \varphi$
- $M, y_{n-1} \models E_G \chi$
- $M, y_{n-1} \models K_{i_n} \chi$
- $M, y_n \models \chi$

Публичные объявления и общее знание

1	\models (a) $\chi \to [!\varphi]\psi$, (b) \models ($\chi \land \varphi$) $\to E_G \chi$	
2	$M, x \not\models \chi$	$\rhd M, x \models [!\varphi]C_G\psi \Leftrightarrow \rhd M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G\psi$
3	$M, x \models \varphi$	$\triangleright M^{!\varphi}, x \models C_G \psi \Leftrightarrow \triangleright \forall y (x (\bigcup_{i \in G} \sim_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi)$
4	$\bigvee_{i \in G} x(\bigcup_{i \in G} \sim_i^{!\varphi})^* y$	$ hinspace M^{!\varphi}, y \models \psi$
5	$M, y \models \chi$	по утв. на слайде 4 из 1b 2, 4
6	$M,y\models [!arphi]\psi$	из 1а, 5
7	$M, y \models \varphi \Rightarrow M^{!\varphi}, y \models \psi$	из 7 по опр.
8	$M,y \models \varphi$	из 5
9	$M^{!arphi},y\models\psi$	8,9 MP
10	$M^{!\varphi}, x \models C_G \psi$	4–9
11	$M, x \models [!\varphi]C_G\psi$	3–10
12	$\models \chi \to [!\varphi] C_G \psi$	2–11

Исчисление PALC

Полнота и корректность

Теорема о полноте: схема доказательства

- Замыкание
- Случай $[!\varphi] C_G \psi$

Определение

Определение (G-путь, $x \sim_G y$)

Пусть $x, y \in W$, $G \subseteq Ag$. Будем говорить, что существует G-путь из x в y (обозначение: $x \sim_G y$), если найдутся такие $y_1, \ldots y_n \in W$ и $i_1, \ldots, i_n \in G$, что $x \sim_{i_1} y_1 \sim_{i_2} \cdots \sim_{i_n} y_n = y$.

Определение ($G-\varphi$ -путь)

Пусть $x,y \in W$, $G \subseteq Ag$. Будем говорить, что существует $G - \varphi$ -путь из x в y (обозначение: $x \sim_{G,\varphi} y$), если $x \sim_{G} y$ и $M, x, y_{1}, \ldots, y_{n} \models \varphi$.

Что значит $[!\varphi]C_G\psi$?

Утверждение

$$M,x\models [!arphi] \mathit{C}_{\mathit{G}}\psi$$
 е.т.е. $orall y(x\sim_{\mathit{G},arphi}y\Rightarrow M,y\models [!arphi]\psi)$

Утверждение: $\vdash [!\varphi]C_G\psi \to (\varphi \to K_i[!\varphi]C_G\psi)$ для $i \in G$

- 1. $C_G \psi \rightarrow K_i C_G \psi$
- 2. $[!\varphi]C_G\psi \rightarrow [!\varphi]K_iC_G\psi$
- 3. $[!\varphi]K_iC_G\psi \rightarrow (\varphi \rightarrow K_i[!\varphi]C_G\psi)$
- 4. $[!\varphi]C_G\psi \rightarrow (\varphi \rightarrow K_i[!\varphi]C_G\psi)$

Лемма: $[!\varphi]C_G\psi \in X \Rightarrow \forall Y(X \sim_{G,\varphi}^{\Phi} Y \Rightarrow [!\varphi]\psi \in Y)$

1
$$[!\varphi]C_G\psi \in X$$
2 $Y \times {}^{\Phi}_{G,\varphi} Y$ $\rhd [!\varphi]\psi \in Y$
3 $X \sim {}^{\Phi}_{i_1} Y_1 \sim {}^{\Phi}_{i_2} \cdots \sim {}^{\Phi}_{i_n} Y_n = Y$ τ.ч. $\varphi \in X, \varphi \in Y_i$ и $i_1, \ldots, i_n \in G$ из 2 по опр.
4 $\varphi \to K_i [!\varphi]C_G\psi \in X$ по утв. на сл. 10 и $\varphi \to K_i [!\varphi]C_G\psi \in X \in \Phi$
5 $\varphi \in X$ из 3
6 $K_{i_1} [!\varphi]C_G\psi \in X$ из 4,5 по MP
7 $X \sim {}^{\Phi}_{i_1} Y_1$ из 3
8 $[!\varphi]C_G\psi \in Y_1$ из 6,7 по опр.
9 повторяем шаги 5–8 для Y_2 и т.д. до $Y_n = Y$
10 $[!\varphi]C_G\psi \in Y$ из 9
11 $[!\varphi]\psi \in Y$ из 10, $\vdash C_G\psi \to [!\varphi]\psi$ и $[!\varphi]\psi \in \Phi$
12 $\forall Y(X \sim {}^{\Phi}_{G,\varphi} Y \Rightarrow [!\varphi]\psi \in Y)$