INTRO TO ALGEBRAIC TOPOLOGY

COLTON GRAINGER (TOPOLOGY MATH 6210)

7. ASSIGNMENT DUE 2018-11-30

7.1. **[1, No. 53.4].** Given. Let $q: X \to Y$ and $r: Y \to Z$ be covering maps. Let $p = r \circ q$. Suppose $r^{-1}(z)$ is finite for each $z \in Z$.

To prove. p is a covering map.

Proof. Let $z \in Z$ and $r^{-1}(z) = \{y_i\}_{i=1}^n$. There's a neighborhood of z evenly covered by (a finite collection) $\{U_i\}$, each open in Y and indexed by $y_i \in U_i$.

For each $i \in \{1, \ldots, n\}$ there's a neighborhood O_i of y_i such that $O_i \cap U_i$ can be evenly covered by (an arbitrary collection) $\{V_{\alpha_i}\}$ indexed by $x_{\alpha_i} \in V_{\alpha_i}$ where $q^{-1}(y_i) = \{x_{\alpha_i}\}$. Since r is an open map, $\bigcap_{i=1}^n r(O_i \cap U_i)$ is a neighborhood of z.

Because q and r are both single valued,

$$p^{-1}(z) = \bigsqcup_{i=1}^n \bigsqcup_{\alpha_i} x_{\alpha_i}.$$

I claim z is evenly covered under $p = r \circ q$ by

$$\sqcup_{i=1}^n\sqcup_{\alpha_i}V_{\alpha_i},$$

observing that

- $\bullet \ \ V_{\alpha_i} \text{ is homeomorphic by a restriction of } q \text{ to } O_i \cap U_i \text{ that is homeomorphic to } r(O_i \cap U_i) \text{ containing } \textbf{z.}$
- ullet The V_{α_i} are disjoint because both
 - for each i, $V_{\alpha_i} \cap V_{\beta_i} = \varnothing$ for all indices $\alpha_i \neq \beta_i$
 - for each $i \neq j$, if V_{β_i} met V_{β_j} nontrivially, then $q \mid_{V_{\beta_i} \cap V_{\beta_i}}$ would be multivalued, which is absurd.

We've shown that $p = r \circ q$ is a covering map $p: X \to Z$. \square

7.2. **[1, No. 53.6].** Given. Let $p \colon E \to B$ be a covering map.

To prove.

- If B is Hausdorff,
- If B is regular, then so is E.
- If B is completely regular, then so is E.
- If B is locally compact Hausdorff, then so is E.
- If B is compact and $p^{-1}(b)$ is finite for each $b \in B$, then E is compact.

Proof. We state the hypothesized topological property assumed for the base space B, and prove that it holds for the total space E.

Date: 2018-11-28. Compiled: 2018-11-30. **Fréchet separation** (T₁). Suppose singletons are closed in B. For any $x \in E$, $\{p(x)\}$ is closed in B. There's a neighborhood $U_{p(x)}$ of p(x) with pullback $p^{-1}(U)$ that's partitioned into slices V_{α} . Check $x \in p^{-1}(x) \cap V_{\alpha'}$ for a unique index α' . Since $\{p(x)\}$ is closed in B, $\{x\} = p^{-1}(x) \cap V_{\alpha'}$ is closed in E.

Hausdorff separation (T₂**).** Say $x \neq y$ in E. If p(x) = p(y), there's a neighborhood U of p(x) such that $p^{-1}(U)$ is the disjoint union of slices V_{α} and $x \in V_{\beta}$ and $y \in V_{\gamma}$ is a (unique) separation of x and y into disjoint open sets. Else if $p(x) \neq p(y)$, then because B is Hausdorff, there exist disjoint neighborhoods $U_{p(x)}$ and $U_{p(y)}$. Because B is the base of a total cover, there also exist neighborhoods $O_{p(x)}$ and $O_{p(y)}$ with slices $\{V_{\alpha_x}\}$ and $\{V_{\alpha_y}\}$. We obtain a separation of x and y in E with

$$x \in \mathfrak{p}^{-1}(U_{\mathfrak{p}(x)} \cap (\sqcup V_{\alpha_x}) \quad \text{and} \quad y \in \mathfrak{p}^{-1}(U_{\mathfrak{p}(y)} \cap (\sqcup V_{\alpha_y}).$$

Lemma. Suppose $b \in B$ and U is a neighborhood of b such that $\{V_{\alpha}\}$ is a partition of $p^{-1}(U)$ into slices. Let C be a closed set of B such that $C \subset U$. Then $p^{-1}(C)$ is closed. Moreover, $p^{-1}(C) \cap V_{\alpha}$ contains its limit points, and is closed as well.

Regular separation (T₃**).** Let $w \in E$ and W a neighborhood of w. Then $p(w) \in p(W)$ is open in B. There's a neighborhood O of p(w) evenly covered by p. Let $U = p(W) \cap O$. Since B is regular, there's a neighborhood A of p(w) such that

$$p(w) \in Cl(A) \subset U$$
.

Say $p^{-1}(U)$ has slices $\{V_{\alpha}\}$. Then $w \in V_{\alpha'} \cap p^{-1}(A) \subset V_{\alpha'} \cap p^{-1}(Cl(A)) \subset V_{\alpha'}$, by the lemma. We conclude E is regular.

Completely regular separation ($T_{3\frac{1}{2}}$). Let $K\subset E$ be closed and take $x\in E\setminus K$. Then $p(E\setminus K)$ is open in B, with obviously $p(x)\in p(E\setminus K)$. There's a neighborhood U of p(x) contained in $p(E\setminus K)$ (intersecting two open sets if necessary to construct U) such that $p^{-1}(U)$ is partitioned into slices $\{V_{\alpha}\}$. Now $B\setminus U$ is closed and disjoint from p(x). Because B is completely regular, there exists a map $f\colon B\to I$ such that $f(B\setminus U)=\{0\}$ and f(p(x))=1. Since $p\mid_{V_{\alpha'}}$ is a homeomorphism onto U from the unique $V_{\alpha'}$ containing x, we may define a map $g\colon E\to I$ as follows:

$$g(z) = \begin{cases} 0 & \text{if } z \in E \setminus V_{\alpha'} \\ \left(f \circ p \mid_{V_{\alpha'}}\right)(z) & \text{if } z \in V_{\alpha'}. \end{cases}$$

I claim g can be defined as two piecewise continuous maps (verify) that evaluate to 0 on the closed set $\partial V_{\alpha'}$. By the piecing lemma for maps, g is continuous on E. As desired, g(x)=1. Moreover, because

$$V_{\alpha'} \subset \mathfrak{p}^{-1}(U) \subset E \setminus K$$
 and $U \subset \mathfrak{p}(E \setminus K)$,

we have $K \subset E \setminus V_{\alpha'}$. Thus $q(K) = \{0\}$. So E is completely regular.

Locally compact Hausdorff. Suppose B is locally compact and Hausdorff. We've shown E is Hausdorff. Now let $x \in E$ and $p(x) \in B$ with U a neighborhood of p(x) evenly covered by $\{V_{\alpha}\}$. B is locally compact so there's a neighborhood W of p(x) such that Cl(W) is compact and $p(x) \in Cl(W) \subset U$. Let $V_{\alpha'}$ be the slice over U containing x. Then $p\mid_{V_{\alpha'}}$ is a homeomorphism from $V_{\alpha'}$ to U. As Cl(W) is a compact subspace of U, so too $p\mid_{V_{\alpha'}}^{-1}(Cl(W))$ is a compact subspace of $V_{\alpha'}$ containing x. So E is locally compact.

Compact with finite fibers. Suppose B is compact and $p\colon E\to B$ has finite fibers for each $b\in B$. Let $\mathscr W$ be an open cover of E. For each $b\in B$, there are finitely many W_i in $\mathscr W$ such that the fiber $f^{-1}(b)\in \cup_{i=1}^n W_i$. For each $b\in B$, define U_b to be $\cup_1^{n_b}W_i$ containing the fiber over b. Observe $p(E\setminus U_b)$ is closed in B and doesn't contain b. So $\{(p(E\setminus U_b))^c\}_{b\in B}$ is an open cover of compact B. There then exist finitely many b_i such that

$$(\mathfrak{p}(\mathsf{E}\setminus \mathsf{U}_{\mathfrak{b}_1}))^c \cup \dots \cup (\mathfrak{p}(\mathsf{E}\setminus \mathsf{U}_{\mathfrak{b}_m}))^c = \mathsf{B.}$$

Equivalently,

$$\begin{split} \varnothing &= \cap_1^m \mathfrak{p}(E \setminus U_{\mathfrak{b}_{\mathfrak{j}}}) \\ &\supset \mathfrak{p}(\cap_1^m (E \setminus U_{\mathfrak{b}_{\mathfrak{j}}})) \\ &= \mathfrak{p}(E \setminus (\cup_1^m U_{\mathfrak{b}_{\mathfrak{j}}})). \end{split}$$

So

$$E = \bigcup_{j=1}^m U_{b_j} = \bigcup_{j=1}^m \bigcup_{i=1}^{n_{b_j}} W_i,$$

which demonstrates \mathscr{W} has a finite subcover. We conclude the total space E is compact. \Box

7.3. **[1, No. 54.3].** Given. Let $p: E \to B$ be a covering map, let α and β be paths in B with $\alpha(1) = \beta(0)$, and let $\tilde{\alpha}$ and $\tilde{\beta}$ be liftings of them such that $\tilde{\alpha}(1) = \tilde{\beta}(0)$.

To prove. $\tilde{\alpha} * \tilde{\beta}$ is a lifting of $\alpha * \beta$.

Proof. To verify that the paths $\alpha * \beta = p \circ (\tilde{\alpha} * \tilde{\beta})$, clearly both have the same domain I and codomain B. Moreover, they have the same graph as evinced by

$$\begin{split} (\alpha*\beta)(t) &= \begin{cases} \alpha(t), & t \in [0,\frac{1}{2}]\\ \beta(t), & t \in [\frac{1}{2},1]; \end{cases} \\ p \circ (\tilde{\alpha}*\tilde{\beta})(t) &= \begin{cases} (p \circ \tilde{\alpha})(t), & t \in [0,\frac{1}{2}]\\ (p \circ \tilde{\beta})(t), & t \in [\frac{1}{2},1]. \end{cases} \end{split}$$

We've shown one lift of concatenated paths is the concatenation of the lifts of the individual segments. \Box

7.4. **[1, No. 54.4].** Given. Let
$$p\colon R\times R_+\to R^2\setminus 0$$
 be defined
$$p\colon (\theta,r)\mapsto r\exp(2\pi i\theta).$$

To demonstrate. We parametrize and sketch the lifts of the paths $t \in \left[0,1\right]$

- f(t) = (2 t, 0)
- $g(t) = ((1+t)\cos 2\pi t, (1+t)\sin 2\pi t)$
- h(t) = f * g.

7.5. **[1, No. 54.5].** Given. Let $\mathfrak{p}\colon R^2\to T^2$ be a covering map defined by

$$p\colon \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \exp(2\pi i x) \\ \exp(2\pi i y) \end{pmatrix}.$$

Consider the path

$$\mathsf{f}(\mathsf{t}) = \begin{pmatrix} \mathsf{exp}(2\pi \mathsf{i} \mathsf{t}) \\ \mathsf{exp}(4\pi \mathsf{i} \mathsf{t}) \end{pmatrix}.$$

To demonstrate.

- $\bullet\,$ Sketch f when T^2 is identified with the doughnut surface D.
- Find a lifting \bar{f} of f to \mathbf{R}^2 .
- Sketch f.

7.6. **[1, No. 54.7].** Given. The torus T^2 .

To prove. Without Seifert van Kampen's theorem, $\pi_1(T^2) \cong \mathbf{Z}^2$.

Proof. (Adapted from JP May [2, Ch. 1].) Consider \mathbf{T}^2 as $S^1 \times S^1 \subset \mathbf{C}$. For each $\binom{m}{n} \in \mathbf{Z}^2$, define a loop $f_{m,n}$ in \mathbf{T}^2 by

$$f_{m,n}(s) = \begin{pmatrix} \exp 2\pi i sm \\ \exp 2\pi i sn \end{pmatrix}$$
.

It is easy to check $[f_{\mathfrak{m},\mathfrak{n}}][f_{k,\ell}]=[f_{\mathfrak{m}+k,\mathfrak{n}+\ell}].$ Define a group homomorphism $\mathfrak{i}\colon \mathbf{Z}^2\to\pi_1\left(\mathbf{T}^2,\begin{pmatrix}1\\1\end{pmatrix}\right)$ by $\mathfrak{i}\begin{pmatrix}\mathfrak{m}\\\mathfrak{n}\end{pmatrix}=[f_{\mathfrak{m},\mathfrak{n}}].$ Now to argue \mathfrak{i} is an isomorphism of groups.

- $\bullet \ \, \text{Consider the cover } \mathfrak{p} \colon \mathbf{R}^2 \to \mathbf{T}^2 \text{ defined by } \mathfrak{p} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \exp 2\pi \mathrm{i} x \\ \exp 2\pi \mathrm{i} y \end{pmatrix}.$
- For each representative $f_{m,n}$ in each loop class $[f_{m,n}] \in i(\mathbf{Z}^2) \subset \pi_1\left(\mathbf{T}^2, \begin{pmatrix} 1\\1 \end{pmatrix}\right)$, there's a unique lift $\tilde{f}_{m,n}(s) = \begin{pmatrix} sm\\sn \end{pmatrix}$ such that $\tilde{f}_{m,n}(0) = \begin{pmatrix} 0\\0 \end{pmatrix}$. (Apply the path lifting lemma.)
- Define $j \colon \pi_1\left(\mathbf{T}^2, \begin{pmatrix} 1 \\ 1 \end{pmatrix}\right) \to \mathbf{Z}^2$ by $j[f] = \tilde{f}(1)$, a vector in \mathbf{Z}^2 as $p(\tilde{f}(1)) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
- j[f] is independent of representative from [f] as if g is path homotopic to f, then $\tilde{g}(1) = \tilde{f}(1)$. (Apply the homotopy lifting lemma.)
- $j[f_{m,n}] = {m \choose n}$ from explicit definition of

$$\tilde{f}_{m,n}(s) = \begin{pmatrix} sm \\ sn \end{pmatrix},$$

so $j\circ i\colon {\bf Z}^2\to {\bf Z}^2$ is the identity.

- If suffices to check that j is one-to-one for then i is a bijective homomorphism of groups.
 - Suppose j[f]=j[g]. Then $\tilde{f}(1)=\tilde{g}(1)$. Thus $\tilde{g}^{-1}*\tilde{f}$ is a loop at $\vec{0}$ in \mathbf{R}^2 . Now \mathbf{R}^2 is contractible, therefore $[\tilde{g}^{-1}*\tilde{f}]=[c_{\vec{0}}]$.
 - Applying the induced group homomorphism p_* , $[g^{-1}][f] = [g^{-1} * f] = [c_{\vec{1}}]$, the identity in $\pi_1\left(\mathbf{T}^2,\begin{pmatrix}1\\1\end{pmatrix}\right)$.
 - Therefore [g] = [f], and j is one-to-one. \square

7.7. **[1, No. 54.8].** Given. Let $p \colon E \to B$ be a covering map, with E path connected. Suppose B is simply connected.

To prove. p is a homeomorphism.

For each $b \in B$, let p(e) = b. As B is simply connected, $\pi_1(B, b_0) = \{1\}$. As E is path connected, the induced isomorphism of sets

$$\Phi \colon \pi_1(B, b_0)/p_*(\pi_1(E, e_0)) \to p^{-1}(b)$$

shows that the fiber over b is the singleton $\{e\}$. Letting b run through B, we see the fibers of p over each b are all singletons. Thus p is injective. We already knew p was an open surjection as a covering map, and thus we conclude p is a homeomorphism. \square

6

7.8. **[1, No. 71.3].** Given. $X \cong S^1$ and $Y \cong S^2$.

To prove. $\pi_1(X \vee Y) = \mathbf{Z}$. (As \mathbf{Z} is abelian, we'll have a canonical isomorphism between any two based fundamental groups on $X \vee Y$.)

Proof. Let $X \cap Y = \{x\}$. Now $\pi_1(X \cap Y, x)$ and $\pi(Y, x)$ are trivial (both spaces $X \cap Y$ and Y are simply connected). By Seifert van Kampen,

$$\pi_1(X\vee Y,x)\cong \frac{\pi_1(X,x)*\pi_1(Y,x)}{\{e\}}\cong \pi_1(X,x)\cong \pi_1(S_1,1)\cong \mathbf{Z},$$

noting homotopy groups are preserved under homeomorphism. \Box

REFERENCES

- [1] J. Munkres, Topology. Prentice Hall, Inc., 2000.
- [2] J. P. May, A concise course in algebraic topology. Chicago; London: University of Chicago Press, 1999.