Limit sets of Anosov representations

 ${\rm Giorgos}$

April 7, 2024

Contents

1	Introduction	2
2	Upper bound	9

Chapter 1

Introduction

Definition 1.0.1. For $p \in \{2, ..., d\}$, $s \in \mathbb{R}$ and $g \in SL(d, \mathbb{R})$ we denote with $\Psi^p_s(g) : \mathfrak{a}^+ \to \mathbb{R}$ the functional:

$$\Psi_{s}^{p}(g) = \alpha_{12}(a(g)) + \dots + \alpha_{1(p-1)}(a(g)) + (s - (p-2))\alpha_{1p}(a(g))$$

$$\tilde{\Psi}_{s}^{p}(g) = \left(\frac{\sigma_{2}}{\sigma_{1}} \cdots \frac{\sigma_{p-1}}{\sigma_{1}}(g)\right) \left(\frac{\sigma_{p-1}}{\sigma_{1}}(g)\right)^{s - (p-2)}$$

Remark 1.0.1. We have $\alpha_{ij}(a) = a_i - a_j$, $a_i(g) = \log(\sigma_i(g))$ and

$$\Psi_s^p(g) = \log \tilde{\Psi}_s^p(g)$$

and that

$$\min_{p \in [\![2,d]\!]} \left\{ \sum_{|\gamma| = T} \frac{\sigma_2}{\sigma_1} \cdots \frac{\sigma_{p-1}}{\sigma_1}(g) \left(\frac{\sigma_{p-1}}{\sigma_1}(g) \right)^{s - (p-2)} \right\} = \sum_{|\gamma| = T} e^{-\max_{p \in [\![2,d]\!]} \Psi^p_s(g)}$$

The following definition comes from [1], in the special case of projective Anosov representations (P=1):

Definition 1.0.2. For $s \geq 0$ we consider the Falconer functional $F_s : \mathrm{SL}(d,\mathbb{R}) \to \mathbb{R}$ by:

$$F_s(g) = \min \left\{ \sum_{j=2}^d s_j \alpha_{1j}(a(g)) : s_j \in (0,1], \sum_{j=2}^d s_j = s \right\}$$

Remark 1.0.2. Using elementary computations one may prove that for all $s \ge 0$:

$$F_s(g) = \min_{p \in [2,d]} \Psi_s^p(g)$$

Chapter 2

Upper bound

Lemma 2.0.1 (Upper bound for dimension). Let $\rho : \Gamma \to \mathrm{SL}(d,\mathbb{R})$ be a projective Anosov representation.

$$\dim_{H}(\xi^{1}(\partial\Gamma)) \leq \inf \left\{ s : \sum_{|\gamma|=T} e^{-\max_{p \in [2,d]} \Psi^{p}_{s}(\rho(\gamma))} < \infty \right\}$$

The following can be found in [2, Proposition 3.3]:

Proposition 2.0.1. Let $\rho: \Gamma \to SL(d, mathbb{R})$ be projective Anosov and $\alpha > 0$ Then there exist $c_0, c_1 > 0$ that depends only on α and ρ such that for all $\gamma \in \Gamma$:

$$(\xi^1)^{-1}(B_{\alpha_1,\alpha}(\rho(\gamma))) \subseteq C^{\infty}_{c_0,c_1}(\gamma)$$

Proof. We begin by noting that it suffices to show this for all but finitely many $\gamma \in \Gamma$, since then we may alter the constants to satisfy the wanted inclusion also for the finitely many remaining $\gamma \in \Gamma$. Given this, we shall assume that $|\gamma| \geq l_0$ where $l_0 > 0$ is such that $Ce^{-\mu l_0} < 1$ and $C, \mu > 0$ are the constants appearing in the definition of the Anosov property of ρ ..

Suppose $x \in \partial \Gamma$ such that $\xi^1(x) \in B_{\alpha_1,\alpha}(\rho(\gamma))$, and consider a geodesic ray $a_j \to x$ starting from $a_0 = e$. To prove the result, it suffices to find constants c_0, c_1 independent of γ and a (c_0, c_1) -quasi-geodesic from γ^{-1} to x that passes through e and stays at a bounded distance from $(a_j)_{j=0}^{\infty}$

Using [2, Proposition 2.5] we have that $d(\xi^1(a_j), U_{d-1}(\rho(\gamma^{-1}))) \leq Ce^{-\mu j}$, so there exists some L > 0 that depends only on α such that for all $j \geq L : U_1(\rho(a_j)) \in B_{\alpha_1,\alpha}(\rho(\gamma))$ and in particular

$$d(\xi^1(a_j),\gamma^{-1}) = d(U_1(\rho(a_j)),U_1(\rho(\gamma^{-1}))) \geq d(U_1(\rho(a_j)),U_{d-1}(\rho(\gamma^{-1}))) > \sin\alpha.$$

Along with the uniform continuity of $\xi^1: \Gamma \cup \partial \Gamma \to \mathbb{P}(\mathbb{R}^d)$ this implies there exists some $\alpha' > 0$ and L > 0 such that for all $j \geq L$:

$$d(a_j, \gamma^{-1}) \ge \alpha'.$$

Upon considering a large L, we may also assume that $|a_L| = L > l_0$. Note that both α' and L do not depend on each γ but only on ρ and α .

Using some geometric group theory, we can show that for all $j \geq L$

$$d(\gamma^{-1}, a_j) > \alpha' \Rightarrow d([\gamma^{-1}, a_j], e) < \alpha''$$

for some α'' that depends only on Γ and α' , where $[a_j, \gamma^{-1}]$ denotes the geodesic segment connecting γ^{-1} and a_j .

Consider the concatenation $(a'_j)_{j=L-K}^{\infty}$ of $[\gamma^{-1}, a_L]$ and $[a_L, x]$. To find quasi-geodesic-constants that are uniform in γ , we note that for any $c_0 \geq 1, c_1 \geq 0$:

$$|c_0^{-1}|i-j|-c_1 \le d(a_i',a_i') = d(a_i,a_j) \le d(a_i)c_0^{\dagger}i-j+c_1$$
 when $i,j \ge L$ or $i,j \le L$

and that the upper bound follows trivially by the triangle inequality.

For the lower bound we proceed in two steps. First we bound the distance of $\gamma^- 1 = a'_{L-K}$ to a_{L+j} for $j \ge 0$:

$$d(a'_{L-K}, a'_{L+j}) \ge \nu(|a_{L+j}| - |\gamma^{-1}|) - c'_0 - c'_1 |\log(d(U_1(\rho(a_{L+j})), U_1(\rho(\gamma^{-1}))))| \ge$$

$$\ge \nu((L+j) + (K-L)) - c'_0 - c'_1 |\log(\sin a)| \ge$$

$$= c_0^{-1}(j+K) - c_1$$

for $c_0 = \nu^{-1}$, $c_1 = c_0' + c_1' |\log(\sin \alpha)|$. The first inequality comes from [2, Lemma 3.9]. For the second inequality we estimate $|\gamma^{-1}|$ from below using the triangle inequality. We are now ready to show that the concatenation $(a_i')_j$ is indeed a (c_0, c_1) -geodesic:

$$d(a_{L+j}, a_{L-i}) \ge d(a_{L+j}, a_{LK}) - d(a_{LK}, a_{L-i}) \ge c_0^{-1}(j+K) - c_1 - (K-i) \ge c_0^{-1}(j+i) - c_1.$$

Note however that (a_j') does not necessarily lie in $C_{\infty}^{c_0,c_1}$ since it may not pass through e. For this reason we some $L-K \leq i_0 \leq L$ such that $|a_{i_0}| < \alpha''$, the existence of which is guaranteed by the fact that $d([\gamma^{-1}, a_L], \epsilon) < \alpha''$. We then consider alter (a_j') at i_0 so that it passes through e to obtain

$$a_j'' = \begin{cases} a_j & \text{for } j \neq i_0 \\ e & \text{for } j = i_0 \end{cases}$$

which is a $(c_0, c_1 + \alpha'')$ -quasigeodesic passing from e and converging to x.

Bibliography

- [1] François Ledrappier and Pablo Lessa. "Dimension gap and variational principle for Anosov representations". In: (Dec. 2023). arXiv:2310.13465 [math] version: 3 (cit. on p. 2).
- [2] Beatrice Pozzetti, Andrés Sambarino, and Anna Wienhard. "Anosov representations with Lipschitz limit set". In: *Geometry & Topology* 27.8 (Nov. 2023). arXiv:1910.06627 [math], pp. 3303–3360. ISSN: 1364-0380, 1465-3060 (cit. on pp. 3, 4).