NLP Project

Neural Machine Translation

AI VIET NAM Nguyen Quoc Thai

Outline

- > Introduction
- > NMT using Transformer
- > NMT using Pre-trained LMs

(!)

Translate a sentence $w^{(s)}$ in a **source language (input)** to a sentence $w^{(t)}$ in the **target language (output)**

Translate a sentence $w^{(s)}$ in a **source language (input)** to a sentence $w^{(t)}$ in the **target language (output)**

- Translate a sentence $w^{(s)}$ in a **source language (input)** to a sentence $w^{(t)}$ in the **target language (output)**
- > Can be formulated as an optimization problem:

$$\widehat{w}^{(t)} = \underset{w^{(t)}}{\operatorname{argmax}} \, \theta(w^{(s)}, w^{(t)})$$

Where θ is a scoring function over source and target sentences

- Requires two components:
 - \Box Learning algorithm to compute parameters of θ
 - Decoding algorithm for computing the best translation $\widehat{w}^{(t)}$

Evaluating translation quality

- Human judgement
 - ☐ Given: machine translation output
 - ☐ Given: source / reference translation
 - Task: assess the quality of machine translation output
- Different translations of "A Vinay le gusta Python"

To Vinay it like Python Vinay debugs memory leaks Vinay likes Python

Evaluating translation quality

- Two main criteria:
 - \square Adequacy: Translation $w^{(t)}$ should adequately reflect the linguistic content of $w^{(s)}$
 - \square Fluency: Translation $w^{(t)}$ should be fluent text in the target language
- Different translations of "A Vinay le gusta Python"

	Adequate?	Fluent?
To Vinay it like Python	yes	no
Vinay debugs memory leaks	no	yes
Vinay likes Python	yes	yes

Evaluating translation quality

- > Two main criteria:
 - Adequacy: Translation $w^{(t)}$ should adequately reflect the linguistic content of $w^{(s)}$
 - \Box Fluency: Translation $w^{(t)}$ should be fluent text in the target language
- > Adequacy and fluency:

Adequacy			
5	5 All meaning		
4	Most meaning		
3	Much meaning		
2	Little meaning		
1	1 None		

Fluency			
5	Flawless English		
4	Good English		
3	Non-native English		
2	Disfluent English		
1	Incomprehensible		

Evaluating Metrics

- Manual evaluation is most accurate, but expensive
- Automated evaluation metrics:
 - Compare system hypothesis with reference translations
 - BLEU Score (BiLingual Evaluation Understudy): Modified n-gram Precision
 - □ SacreBLEU Score (A Call for Clarity in Reporting BLEU Scores)

Evaluating Metrics

Precision and Recall of words

System A	<u>A</u>	<u>officials</u>	responsibility	of	<u>airport</u>	safety	
Reference	A	officials	are	responsible	for	airport	security

Precision:

$$\frac{\text{correct}}{\text{output} - \text{length}} = \frac{3}{6} = 50\%$$

F-measure:

$$\frac{P \times R}{(P+R)/2} = \frac{0.5 \times 0.43}{(0.5+0.43)/2} = 46\%$$

Recall:

$$\frac{\text{correct}}{\text{reference} - \text{length}} = \frac{3}{7} = 43\%$$

Evaluating Metrics

Precision and Recall of words

Flaw: no penalty for reordering

System A	<u>A</u>	officials	responsibility	of	<u>airport</u>	safety	
Reference	A	officials	are	responsible	for	airport	security
System B	<u>airport</u>	security	<u>A</u>	<u>officials</u>	are	responsible	

Metric	System A	System B
Precision	50%	100%
Recall	43%	86%
F-measure	46%	92,5%

Evaluating Metrics

BLEU

- N-gram overlap between machine translation output and reference translation
- Compute precision for n-grams of size 1 to 4
- * Add brevity penalty (for too short translations)

BLEU = min
$$\left(1, \frac{\text{output - length}}{\text{reference - length}}\right) \left(\prod_{i=1}^{4} \text{precision}_{1}\right)^{1/4}$$

Typically computed over the entire corpus, not single sentences

Evaluating Metrics

BLEU 1-gram

System A	<u>A</u>	officials	responsibility	of	<u>airport</u>	safety	
Reference	A	officials	are	responsible	for	airport	security
System B	airport	security	<u>A</u>	<u>officials</u>	are	responsible	

Metric	System A	System B
Precision (1 gram)	3/6	6/6
Precision (2 gram)		
Precision (3 gram)		
Precision (4 gram)		
Brevity penalty		
BLEU		

Evaluating Metrics

BLEU

System A	4	<u>A</u>	officials	responsibility	of	airport	safety	
Referenc	ee	A	officials	are	responsible	for	airport	security
System I	В	airport	security	A	officials	are	responsible	

2 -gram

Metric	System A	System B
Precision (1 gram)	3/6	6/6
Precision (2 gram)	1/5	4/5
Precision (3 gram)	0/4	2/4
Precision (4 gram)	0/3	1/4
Brevity penalty	6/7	6/7
BLEU	0	0.52

Evaluating Metrics

BLEU

$$logBLEU = min\left(1 - \frac{r}{c}, 0\right) + \sum_{n=1}^{N} w_n logp_n$$

r: reference-length, c: output (candidate)-length

n: n-gram (1,2,3,4), w_n : weight of n-gram

uniform weights $w_n = 1/n$

 p_n : precision n-gram

SacreBLEU (A Call for Clarity in Reporting BLEU)

Evaluating Metrics

BLEU Score	Interpretation
< 10	Almost useless
10 - 19	Hard to get the gist
20 - 29	The gist is clear, but has significant grammatical errors
30 - 40	Understandable to good translations
40 - 50	High quality translations
50 - 60	Very high quality, adequate, and fluent translations
> 60	Quality often better than human

The following color gradient can be used as a general scale interpretation of the BLEU score:

Outline

- > Introduction
- > NMT using Transformer
- > NMT using Pre-trained LMs

Sequence to Sequence

- A single neural network is used to translate from source to target
- Architecture: Encoder-Decoder
- Encoder: Convert source sentence (input) into a vector/matrix (State)
- Decoder: Convert encoding into a sentence in target language (output)

Transformer Model

Greedy Decoding

Outline

- > Introduction
- > NMT using Transformer
- > NMT using Pre-trained LMs

!

Pre-trained LMs

Pre-trained LMs

Pre-trained LMs

Pre-trained LMs: BERT

- BERT: An encoder-only model
- \diamond Maps an input sequence to a contextualized sequence: $f_{\theta_{BERT}}: X_{1:n} \to \overline{X}_{1:n}$

Pre-trained LMs: BERT

Pre-trained LMs: GPT2

- GPT2: A decoder-only model, use uni-directional (causal) self-attention
- Maps an input sequence to a "next word" logit vector sequence:

 $f_{\theta_{GPY2}}: X_{0:m-1} \longrightarrow L_{1:m}$

Model Dimensionality: 768

Model Dimensionality: 1024

Model Dimensionality: 1280

Model Dimensionality: 1600

Pre-trained LMs: GPT2

GPT2 Block GPT2-Block GPT2 Block

Encoder-Decoder with BERT and GPT2

BERT for Encoder

BERT for Decoder

GPT2 for Decoder

1

Experiment

Dataset: IWSLT'15 English-Vietnamese

Training: 133 317 Validation: 1 553 Test: 1 269

Experiment	Model	ScareBLEU
#1	Standard Transformer (Greedy Search)	24.66 55.9/30.3/18.5/11.8
#2	BERT-to-BERT (Greedy Search)	25.41 53.8/31.8/19.8/12.3
#3	BERT-to-GPT2 (Greedy Search)	23.56 49.1/28.5/18.4/12.0

Thanks!

Any questions?