4 半導體元件物理與製程——理論與實務

		6.1.5	薄膜沉積 (thin film deposition)	194
	6.2	CMOS	製造流程介紹	196
		6.2.1	前段製程 (FEOL)	
		6.2.2	後段製程 (BEOL)	
	6.3		3題	
	參考	文獻・		217
7	製稻	整合		219
-	7.1	元件發	養展需求	220
		7.1.1	摩爾定律	
		7.1.2	CMOS 元件發展需求	
	7.2	基板コ	工程(substrate engineering)	223
		7.2.1	晶片選擇	
		7.2.2	淺溝槽隔離 (STI)	
		7.2.3	井工程 (well engineering)	
		7.2.4	元件隔離工程(isolation engineering) ······	
		7.2.5	通道工程 (Channel Engineering)	
		7.2.6	噪音隔離 (noise isolation) ······	
	7.3	閘極_	工程	233
		7.3.1	閘極氧化層需求 ·····	
		7.3.2	閘電極工程	
		7.3.3	製程考量	
	7.4	源/沒	及極工程(Source/Drain engineering)	239
		7.4.1	源/汲極工程需求 ······	
		7.4.2	源/汲極延伸(S/D extension)	240
		7.4.3	袋植入工程(Halo Engineering) ······	243
		7.4.4		244
		7.4.5		· 246
		7.4.6	自動對準矽化物(Salicide) ······	247