Linear Regression

December 2019

Mark Okello

Regression

- Is a technique used for studying dependence or prediction of Continuous a real variable
- Regression has been used more and more in "analytics"
- There are two types; linear and non linear Regression

Simple Linear Regression

$$Y = mX + c$$
 sse

Minimising SSE - Ordinary Least Square Method

$$\frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2}$$

Multiple Linear Regression

$$y = c + m_1 x_1 + m_2 x_2 + \cdots + m_k x_k$$

Polynomial Regression

$$Y = C + m_1 X + m_2 X^2 + ... + m_k X^k$$

Logistic Regression

Break

Classification KNN

Naive Bayes

- Bayes Theorem
- P(A/B) = (P(B/A) * P(A)) / P(B)

Decision Tree

Image Source : Machine Learning for Language Technology

Random Forest

Image Source : Forest Stock 40 by Sed-rah-Stock

Clustering - K Means

Dimensionality Reduction

- DR is a data science method for reducing the number of dimensions(number of columns in a dataframe) while maintaining most of the information from the original set
- DR is essential when tackling modern DS problems where the number of features is high
- Many problems involve thousands of features for each training instance. Meaning extremely slow training and much harder to find a good solution curse of dimensionality

Why Dimensionality Reduction

- Several features making it harder to train
- Reducing noisy signals
- Improve performance

Disclaimer

 Reducing dimensionality Can lead to some information (just like compressing an image to JPEG can degrade its quality), so even though it will speed up training, it may also make your system perform slightly worse. It also makes your pipelines a bit more complex and thus harder to maintain

Feature Selection

- Select a significance level for the model e.g 0.05
- Fit the model with all the variables
- Look for the variable with the highest p value and > significance level, otherwise finish
- Remove that Variable
- Fit the model without that/those variables

Feature Extraction PCA Highly Correlated Clustered

Practical Process Flow

- Define the problem to solve
- clean, manipulate, understand, feature scale and split the data (data preprocessing or wrangling)
- Train the model
- Visualize the predictions
- Evaluate model performance
- Model Improvement