0.1 基本的渐进估计与求极限方法

0.1.1 基本极限计算

0.1.1.1 基本想法

裂项、作差、作商的想法是解决极限问题的基本想法.

例题 0.1 对正整数 v, 求极限 $\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k(k+1)\cdots(k+v)}$.

解

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k(k+1)\cdots(k+\nu)} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\nu} \left[\frac{1}{k(k+1)\cdots(k+\nu-1)} - \frac{1}{(k+1)(k+2)\cdots(k+\nu)} \right]$$
$$= \lim_{n \to \infty} \frac{1}{\nu} \left[\frac{1}{\nu!} - \frac{1}{n(n+1)\cdots(n+\nu)} \right] = \frac{1}{\nu!\nu}.$$

例题 0.2 设 $p_0 = 0, 0 \le p_j \le 1, j = 1, 2, \cdots$ 求 $\sum_{i=1}^{\infty} \left(p_j \prod_{i=0}^{j-1} (1 - p_i) \right) + \prod_{i=1}^{\infty} (1 - p_j)$ 的值.

🕏 笔记 遇到求和问题, 可以先观察是否存在裂项的结构

解 记 $q_i = 1 - p_i$, 则有

$$\sum_{j=1}^{\infty} p_j \prod_{i=0}^{j-1} (1-p_i) + \prod_{j=1}^{\infty} (1-p_j) = \sum_{j=1}^{n} (1-q_j) \prod_{i=0}^{j-1} q_i + \prod_{i=0}^{\infty} q_i = \sum_{j=1}^{\infty} \left(\prod_{i=0}^{j-1} q_i - \prod_{i=0}^{j} q_i \right) + \prod_{i=0}^{\infty} q_i = q_0 - \prod_{i=0}^{\infty} q_i + \prod_{i=0}^{\infty} q_i = q_0.$$

例题 **0.3** 设 |x| < 1, 求极限 $\lim_{n \to \infty} (1+x)(1+x^2)\cdots(1+x^{2^n})$.

 $\mathbf{\dot{i}}$ 如果把幂次 $1,2,2^2,\cdots$ 改成 $1,2,3,\cdots$, 那么显然极限存在, 但是并不能求出来, 要引入别的特殊函数, 省流就是: 钓鱼题.

🔮 笔记 平方差公式即可

解

$$\lim_{n \to \infty} (1+x)(1+x^2) \cdots (1+x^{2^n}) = \lim_{n \to \infty} \frac{(1-x)(1+x)(1+x^2) \cdots (1+x^{2^n})}{1-x}$$

$$= \lim_{n \to \infty} \frac{(1-x^2)(1+x^2) \cdots (1+x^{2^n})}{1-x}$$

$$= \cdots = \lim_{n \to \infty} \frac{1-x^{2^{n+1}}}{1-x} = \frac{1}{1-x}.$$

例题 0.4 对正整数 n, 方程 $\left(1+\frac{1}{n}\right)^{n+t}=e$ 的解记为 t=t(n), 证明 t(n) 关于 n 递增并求极限 $(t\to +\infty)$. 解 解方程得到

$$\left(1+\frac{1}{n}\right)^{n+t}=e \Leftrightarrow (n+t)\ln\left(1+\frac{1}{n}\right)=1 \Leftrightarrow t=\frac{1}{\ln\left(1+\frac{1}{n}\right)}-n.$$

读 $f(x) = \frac{1}{\ln\left(1 + \frac{1}{x}\right)} - x, x > 0$, 则

$$f'(x) = \frac{1}{\ln^2\left(1 + \frac{1}{x}\right)} \frac{1}{x^2 + x} - 1 > 0 \Leftrightarrow \ln^2\left(1 + \frac{1}{x}\right) < \frac{1}{x^2 + x} \Leftrightarrow \ln\left(1 + t\right) < \frac{t}{\sqrt{1 + t}}, t = \frac{1}{x} \in (0, 1).$$

最后的不等式由关于 \ln 的常用不等式可知显然成立,于是 f(x) 单调递增,故 t(n)=f(n) 也单调递增.再来求极限

$$\lim_{n\to\infty}t\left(n\right)=\lim_{n\to\infty}\left(\frac{1}{\ln\left(1+\frac{1}{n}\right)}-n\right)=\lim_{n\to\infty}\frac{1-n\ln\left(1+\frac{1}{n}\right)}{\ln\left(1+\frac{1}{n}\right)}=\lim_{x\to+\infty}\frac{1-x\ln\left(1+\frac{1}{x}\right)}{\ln\left(1+\frac{1}{x}\right)}=\lim_{x\to+\infty}\frac{1-x\ln\left(1+\frac{1}{x}\right)}{\frac{1}{x}}=\frac{1}{2}.$$

命题 0.1

$$\prod_{k=1}^{n} \left(1 + \frac{1}{k} \right)^k = \frac{n!}{(n+1)^n} \sim \frac{\sqrt{2\pi n}}{e^{n+1}}.$$

证明

$$\prod_{k=1}^{n} \left(1 + \frac{1}{k} \right)^{k} = \prod_{k=1}^{n} \left(\frac{1+k}{k} \right)^{k} = \left(\frac{2}{1} \right) \left(\frac{3}{2} \right)^{2} \left(\frac{4}{3} \right)^{3} \cdots \left(\frac{n+1}{n} \right)^{n}$$

$$= \frac{n!}{(n+1)^{n}} \sim \frac{\sqrt{2\pi n} n^{n}}{(n+1)^{n} e^{n}} = \frac{\sqrt{2\pi n}}{\left(1 + \frac{1}{n} \right)^{n} e^{n}} \sim \frac{\sqrt{2\pi n}}{e^{n+1}}.$$

例题 **0.5** 计算极限 $\lim_{n\to+\infty} \sqrt{n} \prod_{k=1}^{n} \frac{e^{1-\frac{1}{k}}}{(1+\frac{1}{k})^{k}}$.

解 因为

$$\sqrt{n} \prod_{k=1}^{n} \frac{e^{1-\frac{1}{k}}}{(1+\frac{1}{k})^{k}} = \sqrt{n} \frac{e^{n-(1+\frac{1}{2}+\cdots+\frac{1}{n})}}{(\frac{2}{1})(\frac{3}{2})^{2}(\frac{4}{3})^{3}\cdots(\frac{n+1}{n})^{n}} = \frac{\sqrt{n}n!e^{n}}{(n+1)^{n}e^{1+\frac{1}{2}+\cdots+\frac{1}{n}}}$$

由 Stirling 公式 $n! \sim \sqrt{2\pi n} (\frac{n}{\rho})^n (n \to +\infty)$ 及

$$1 + \frac{1}{2} + \dots + \frac{1}{n} = \ln n + \gamma + o(1), \quad n \to +\infty$$

得

$$\lim_{n \to +\infty} \sqrt{n} \prod_{k=1}^n \frac{e^{1-\frac{1}{k}}}{(1+\frac{1}{k})^k} = \lim_{n \to +\infty} \frac{\sqrt{2\pi}n}{(1+1/n)^n e^{\ln n + \gamma}} = \sqrt{2\pi}e^{-(1+\gamma)}$$

命题 0.2 (数列常见的转型方式)

数列常见的转型方式:

(1)
$$a_n = a_1 + \sum_{k=1}^{n-1} (a_{k+1} - a_k);$$

(2)
$$a_n = a_1 \prod_{k=1}^{n-1} \frac{a_{k+1}}{a_k};$$

(3)
$$a_n = S_n - S_{n-1}, \, \sharp \, \psi S_n = \sum_{k=1}^n a_k.$$

从而我们可以得到

1. 数列
$$\{a_n\}_{n=1}^{\infty}$$
 收敛的充要条件是 $\sum_{n=1}^{\infty} (a_{n+1} - a_n)$ 收敛.

2. 数列
$$\{a_n\}_{n=1}^{\infty}$$
 $(a_n \neq 0)$ 收敛的充要条件是 $\prod_{n=1}^{\infty} \frac{a_{n+1}}{a_n}$ 收敛.

注 在关于数列的问题中, **将原数列的等式或不等式条件转化为相邻两项的差或商的等式或不等式条件**的想法是 非常常用的.

笔记 这个命题给我们证明数列极限的存在性提供了一种想法: 我们可以将数列的收敛性转化为级数的收敛性,或者将数列的收敛性转化为累乘的收敛性. 而累乘可以通过取对数的方式转化成级数的形式, 这样就可以利用级数的相关理论来证明数列的收敛性.

这种想法的具体操作方式:

(i) 先令数列相邻两项作差或作商, 将数列的极限写成其相邻两项的差的级数或其相邻两项的商的累乘形

式.(如果是累乘的形式. 那么可以通过取对数的方式将其转化成级数的形式.)

(ii) 若能直接证明累乘或级数收敛、就直接证明即可. 若不能, 则再利用级数的相关理论来证明上述构造的级 数的收敛性, 从而得到数列的极限的存在性, 此时, 我们一般会考虑这个级数的通项, 然后去找一个通项能够控制 住所求级数通项的收敛级数 (几何级数等), 最后利用级数的比较判别法来证明级数收敛

证明

1. 必要性 (⇒) 和充分性 (⇐) 都可由
$$\lim_{n\to\infty} a_n = a_1 + \lim_{n\to\infty} \sum_{k=1}^{n-1} (a_{k+1} - a_k)$$
 直接得到.

2. 必要性 (⇒) 和充分性 (⇐) 都可由
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} a_1 \prod_{k=1}^{n-1} \frac{a_{k+1}}{a_k}$$
 直接得到.

例题 **0.6** 设 $a_n = \left(\frac{(2n)!!}{(2n-1)!!}\right)^2 \frac{1}{2n+1}$, 证明: 数列 a_n 收敛到一个正数.

$$\frac{a_{n+1}}{a_n} = \frac{\left(\frac{(2n+2)!!}{(2n+1)!!}\right)^2 \frac{1}{2n+3}}{\left(\frac{(2n)!!}{(2n-1)!!}\right)^2 \frac{1}{2n+1}} = \frac{(2n+2)^2}{(2n+1)^2} \cdot \frac{2n+1}{2n+3} = \frac{(2n+2)^2}{(2n+1)(2n+3)} = 1 + \frac{1}{(2n+1)(2n+3)} > 1.$$

从而 $\forall n \in \mathbb{N}_+$, 都有

$$a_n = \prod_{k=1}^{n-1} \left[1 + \frac{1}{(2k+1)(2k+3)} \right] = e^{\sum_{k=1}^{n-1} \ln\left[1 + \frac{1}{(2k+1)(2k+3)}\right]}.$$
 (1)

注意到

$$\ln\left[1 + \frac{1}{(2n+1)(2n+3)}\right] \sim \frac{1}{(2n+1)(2n+3)}, n \to \infty.$$

而
$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)(2n+3)}$$
 收敛, 故 $\lim_{n\to\infty} \sum_{k=1}^{n-1} \ln \left[1 + \frac{1}{(2k+1)(2k+3)}\right]$ 存在. 于是由 (1)式可知

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} e^{\sum_{k=1}^{n-1} \ln\left[1 + \frac{1}{(2k+1)(2k+3)}\right]} = e^{\lim_{n \to \infty} \sum_{k=1}^{n-1} \ln\left[1 + \frac{1}{(2k+1)(2k+3)}\right]}$$

也存在.

0.1.1.2 带 ln 的极限计算

通常, 带着一堆 In 的极限算起来都非常烦人, 并不是简单的一个泰勒就秒杀的, 比如这种题. 这种题不建议用 泰勒, 很多时候等价无穷小替换、拆项和加一项减一项会方便不少.

注 另外,做这种题一定要严格处理余项,不要想当然. 例题 **0.7** 求极限
$$\lim_{x \to +\infty} \left(\frac{(2x^2 + 3x + 1) \ln x}{x \ln(1 + x)} \arctan x - \pi x \right)$$
.

一定要严格处理余项, 不要想当然, 比如下面的做法就是错的(过程和答案都不对)

$$\frac{(2x^2 + 3x + 1)\ln x}{x\ln(1+x)} \arctan x - \pi x \approx (2x+3)\frac{\ln x}{\ln(1+x)} \arctan x - \pi x \approx (2x+3) \cdot 1 \cdot \frac{\pi}{2} - \pi x = \frac{3\pi}{2}.$$

解 根据洛必达法则, 显然 $\lim_{x\to +\infty} \frac{\ln x}{\ln(1+x)} = \lim_{x\to +\infty} \frac{\frac{1}{x}}{\frac{1}{x}} = 1$, 拆分一下有

$$\lim_{x \to +\infty} \left(\frac{(2x^2 + 3x + 1) \ln x}{x \ln(1 + x)} \arctan x - \pi x \right)$$

$$= \lim_{x \to +\infty} \left((2x + 3) \frac{\ln x}{\ln(1 + x)} \arctan x - \pi x \right) + \lim_{x \to +\infty} \frac{\ln x}{x \ln(1 + x)} \arctan x$$

$$= \lim_{x \to +\infty} \left(\frac{2x \ln x}{\ln(1 + x)} \arctan x - \pi x \right) + 3 \lim_{x \to +\infty} \frac{\ln x}{\ln(1 + x)} \arctan x$$

$$= 2 \lim_{x \to +\infty} x \left(\frac{\ln x}{\ln(1 + x)} \arctan x - \frac{\pi}{2} \right) + \frac{3}{2} \pi$$

$$= 2 \left(\lim_{x \to +\infty} \frac{x \ln x}{\ln(1+x)} \left(\arctan x - \frac{\pi}{2} \right) + \frac{\pi}{2} \lim_{x \to +\infty} x \left(\frac{\ln x}{\ln(1+x)} - 1 \right) \right) + \frac{3}{2}\pi$$

$$= 2 \left(\lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) - \frac{\pi}{2} \lim_{x \to +\infty} \frac{x \ln(1 + \frac{1}{x})}{\ln(1+x)} \right) + \frac{3}{2}\pi$$

$$= 2 \left(\lim_{x \to +\infty} \frac{\arctan x - \frac{\pi}{2}}{\frac{1}{x}} - \frac{\pi}{2} \lim_{x \to +\infty} \frac{1}{\ln(1+x)} \right) + \frac{3}{2}\pi$$

$$= 2 \lim_{x \to +\infty} \frac{\frac{-1}{1+x^2}}{\frac{1}{1+x^2}} + \frac{3}{2}\pi = \frac{3}{2}\pi - 2.$$

0.1.1.3 幂指函数的极限问题

幂指函数的极限问题,一律写成 e^{\ln} 形式,并利用等价无穷小替换和加一项减一项去解决,方便.

注 不要用泰勒做这个题, 因为你需要分别展开好几项直到余项是高阶无穷小才可以, 等价无穷小替换则只需要看 Taylor 展开的第一项并且是严谨的, 泰勒则需要展开好几项, 计算量爆炸.

例题 0.8 求极限 $\lim_{x\to 0^+} \frac{x^{\sin x} - (\sin x)^x}{x^3 \ln x}$. 注 不要用泰勒做这个题, 因为你需要分别展开好几项直到余项是高阶无穷小才可以, 等价无穷小替换则只需要看 第一项并且是严谨的, 泰勒则至少需要展开三项, 计算量爆炸, 大致如下

$$x^{\sin x} = e^{\sin x \ln x} = 1 + \sin x \ln x + \frac{1}{2} \sin^2 x \ln^2 x + \frac{1}{6} \sin^3 x \ln^3 x + O(x^4 \ln^4 x)$$

$$(\sin x)^x = e^{x \ln \sin x} = 1 + x \ln \sin x + \frac{1}{2} x^2 \ln^2 \sin x + \frac{1}{6} x^3 \ln^3 \sin x + O(x^4 \ln^4 \sin x)$$

然后你不仅需要看第一项,还要检查并验证平方项,三次方项作差后对应的极限是零,麻烦.

笔记 先说明写成 eln 形式后, 指数部分都是趋于零的, 然后等价无穷小替换即可. 解 注意到

 $\lim_{x \to 0^+} \sin x \ln x = \lim_{x \to 0^+} x \ln x = 0, \lim_{x \to 0^+} x \ln \sin x = \lim_{x \to 0^+} \sin x \ln \sin x = \lim_{x \to 0^+} x \ln x = 0.$

从而

$$\lim_{x \to 0^+} (\sin x)^x = \lim_{x \to 0^+} e^{x \ln \sin x} = 1.$$

于是我们有

$$\lim_{x \to 0^+} \frac{x^{\sin x} - (\sin x)^x}{x^3 \ln x} = \lim_{x \to 0^+} (\sin x)^x \frac{e^{\sin x \ln x - x \ln \sin x} - 1}{x^3 \ln x} = \lim_{x \to 0^+} \frac{e^{\sin x \ln x - x \ln \sin x} - 1}{x^3 \ln x}$$

$$= \lim_{x \to 0^+} \frac{\sin x \ln x - x \ln \sin x}{x^3 \ln x} = \lim_{x \to 0^+} \frac{\sin x \ln x - x \ln x + x \ln x - x \ln \sin x}{x^3 \ln x}$$

$$= \lim_{x \to 0^+} \frac{\sin x - x}{x^3} + \lim_{x \to 0^+} \frac{\ln x - \ln \sin x}{x^2 \ln x} = -\frac{1}{6} - \lim_{x \to 0^+} \frac{\ln \frac{\sin x}{x}}{x^2 \ln x} (\frac{\sin x}{x} - 1 - \frac{1}{6}x^2, x \to 0^+)$$

$$= -\frac{1}{6} - \lim_{x \to 0^+} \frac{\ln(1 + \frac{\sin x - x}{x})}{x^2 \ln x} = -\frac{1}{6} - \lim_{x \to 0^+} \frac{\sin x - x}{x^3 \ln x} = -\frac{1}{6} + \frac{1}{6} \lim_{x \to 0^+} \frac{1}{\ln x} = -\frac{1}{6}.$$

例题 **0.9** 求极限 $\lim_{x\to 0} x^2 \left(e^{(1+\frac{1}{x})^x} - \left(1+\frac{1}{x}\right)^{ex}\right)$.

解 注意到

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e, \lim_{x \to \infty} ex \ln \left(1 + \frac{1}{x} \right) = e.$$

从而

$$\lim_{x \to 0^+} \left(1 + \frac{1}{x} \right)^{ex} = \lim_{x \to 0^+} e^{ex \ln\left(1 + \frac{1}{x}\right)} = e^e.$$

于是我们有

$$\begin{split} &\lim_{x \to \infty} x^2 \left(e^{(1 + \frac{1}{x})^x} - \left(1 + \frac{1}{x} \right)^{ex} \right) = \lim_{x \to \infty} x^2 \left(1 + \frac{1}{x} \right)^{ex} \left(e^{(1 + \frac{1}{x})^x - ex \ln(1 + \frac{1}{x})} - 1 \right) \\ &= e^e \lim_{x \to \infty} x^2 \left(e^{(1 + \frac{1}{x})^x - ex \ln(1 + \frac{1}{x})} - 1 \right) = e^e \lim_{x \to \infty} x^2 \left(\left(1 + \frac{1}{x} \right)^x - ex \ln\left(1 + \frac{1}{x}\right) \right) \\ &= e^e \lim_{x \to \infty} x^2 \left(e^{x \ln(1 + \frac{1}{x})} - ex \ln\left(1 + \frac{1}{x}\right) \right) = e^{e+1} \lim_{x \to \infty} x^2 \left(e^{x \ln(1 + \frac{1}{x}) - 1} - x \ln\left(1 + \frac{1}{x}\right) \right) \\ &= \frac{Taylor \cancel{R} \cancel{\pi}}{e} e^{e+1} \lim_{x \to \infty} x^2 \frac{1}{2} \left(x \ln\left(1 + \frac{1}{x}\right) - 1 \right)^2 = \frac{e^{e+1}}{2} \lim_{x \to \infty} \left(x^2 \ln\left(1 + \frac{1}{x}\right) - x \right)^2 = \frac{e^{e+1}}{8} \end{split}$$

0.1.1.4 拟合法求极限

例题 **0.10** 求极限 $\lim_{n\to\infty} \frac{\ln^3 n}{\sqrt{n}} \sum_{i=1}^{n-2} \frac{1}{\ln k \ln(n-k) \ln(n+k) \sqrt{n+k}}$.

笔记 核心想法是**拟合法**, 但是最后的极限估计用到了**分段估计**的想法. 证明 注意到 $\frac{\ln n}{\ln(2n)} \to 1$, 所以

$$\lim_{n \to \infty} \frac{\ln^3 n}{\sqrt{n}} \sum_{k=2}^{n-2} \frac{1}{\ln k \ln(n-k) \ln(n+k) \sqrt{n+k}} = \lim_{n \to \infty} \frac{\ln^2 n}{\sqrt{n}} \sum_{k=2}^{n-2} \frac{1}{\ln k \ln(n-k) \sqrt{n+k}}$$

显然

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{k=2}^{n-2} \frac{1}{\sqrt{n+k}} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=2}^{n-2} \frac{1}{\sqrt{1+\frac{k}{n}}} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{\sqrt{1+\frac{k}{n}}} = \int_0^1 \frac{1}{\sqrt{1+x}} dx = 2\sqrt{2} - 2\sqrt{n}$$

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{k=2}^{n-2} \frac{1}{\sqrt{n+k}} \left(\frac{\ln^2 n}{\ln k \ln(n-k)} - 1 \right) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=2}^{n-2} \frac{1}{\sqrt{1+\frac{k}{n}}} \left(\frac{\ln^2 n}{\ln k \ln(n-k)} - 1 \right) = 0$$

注意求和里面的每一项都是正的, 并且 $\frac{1}{\sqrt{1+\frac{k}{2}}} \in \left[\frac{1}{\sqrt{2}}, 1\right]$, 所以只需证

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=2}^{n-2} \left(\frac{\ln^2 n}{\ln k \ln(n-k)} - 1 \right) = 0$$

注意对称性,证明 $\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{\frac{n}{2}}\left(\frac{\ln^2 n}{\ln k\ln(n-k)}-1\right)=0$ 即可, 待定一个 m 来分段放缩. 首先容易看出数列 $\ln k\ln(n-k)$ k) 在 $2 \le k \le \frac{n}{2}$ 时是单调递增的, 这是因为

$$f(x) = \ln x \ln(n-x), f'(x) = \frac{\ln(n-x)}{x} - \frac{\ln x}{n-x} > 0$$

$$\Leftrightarrow (n-x)\ln(n-x) > x \ln x, \forall x \in \left(2, \frac{n}{2}\right)$$

显然成立,所以待定 $m \in [2, \frac{n}{2}]$,于是

$$\frac{1}{n} \sum_{k=2}^{m} \left(\frac{\ln^2 n}{\ln k \ln(n-k)} - 1 \right) \le \frac{1}{n} \sum_{k=2}^{m} \left(\frac{\ln^2 n}{\ln 2 \ln(n-2)} - 1 \right) = \frac{m}{n} \left(\frac{\ln^2 n}{\ln 2 \ln(n-2)} - 1 \right)$$

$$\frac{1}{n} \sum_{k=m}^{\frac{n}{2}} \left(\frac{\ln^2 n}{\ln k \ln(n-k)} - 1 \right) \le \frac{1}{n} \sum_{k=m}^{\frac{n}{2}} \left(\frac{\ln^2 n}{\ln m \ln(n-m)} - 1 \right) \le \frac{\ln^2 n}{\ln m \ln(n-m)} - 1$$

为了让第一个趋于零,可以取 $m = \frac{n}{2 \ln^2 n}$, 然后代入检查第二个极限

$$\lim_{n\to\infty}\frac{\ln^2 n}{\ln m\ln(n-m)}-1=\lim_{n\to\infty}\frac{\ln^2 n}{\ln\frac{n}{2\ln^2 n}\ln\left(n-\frac{n}{2\ln^2 n}\right)}-1=0$$

所以结论得证(过程中严格来讲应补上取整符号,这里方便起见省略了).

0.1.2 Taylor 公式

定理 0.1 (带 Peano 余项的 Taylor 公式)

设f在x = a是n阶右可微的,则

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k + o((x - a)^n), x \to a^+.$$
 (2)

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x - a)^k + O((x - a)^n), x \to a^+.$$
 (3)

章 笔记 用 Taylor 公式计算极限, 如果展开 n 项还是不方便计算, 那么就多展开一项或几项即可.

★ 1 (2) 第 1 (3) 第 1 (4) 第

证明 (1) 要证明(2)式等价于证明

$$\lim_{x \to a^{+}} \frac{f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k}}{(x - a)^{n}} = 0.$$

对上式左边反复使用 n-1 次 L'Hospital'rules, 可得

$$\lim_{x \to a^{+}} \frac{f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k}}{(x - a)^{n}} = \frac{L' Hospital' rules}{\sum_{x \to a^{+}}} \lim_{x \to a^{+}} \frac{f'(x) - \sum_{k=1}^{n} \frac{f^{(k)}(a)}{(k - 1)!} (x - a)^{k - 1}}{n (x - a)^{n - 1}}$$

$$\frac{L' Hospital' rules}{\sum_{x \to a^{+}}} \lim_{x \to a^{+}} \frac{f''(x) - \sum_{k=2}^{n} \frac{f^{(k)}(a)}{(k - 2)!} (x - a)^{k - 2}}{n (n - 1) (x - a)^{n - 2}}$$

$$\frac{L' Hospital' rules}{\sum_{x \to a^{+}}} \dots \frac{L' Hospital' rules}{\sum_{x \to a^{+}}} \lim_{x \to a^{+}} \frac{f^{(n - 1)}(x) - f^{(n - 1)}(a) - f^{(n)}(a) (x - a)}{n! (x - a)}$$

$$= \frac{1}{n!} \lim_{x \to a^{+}} \frac{f^{(n - 1)}(x) - f^{(n - 1)}(a)}{\sum_{x \to a^{+}}} - \frac{f^{(n - 1)}(a)}{\sum_{x \to a^{+}}} \frac{n!}{\sum_{x \to a^{+}}} 0$$

故(2)式成立.

(2) 要证明(3)式等价于证明: 存在 C > 0 和 $\delta > 0$, 使得

$$\left| \frac{f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k}}{(x - a)^{n}} \right| \le C, \forall x \in [a, a + \delta].$$

0.1.2.1 直接利用 Taylor 公式计算极限

例题 **0.11** 设
$$\lim_{n \to +\infty} \frac{f(n)}{n} = 1$$
, 计算

$$\lim_{n \to +\infty} \left(1 + \frac{1}{f(n)} \right)^n.$$

 $rac{\hat{\mathbf{Y}}}{n}$ 笔记 由 $\frac{f(n)}{n}=1+o(1), n \to +\infty$, 可得 $f(n)=n+o(n), n \to +\infty$. 这个等式的意思是: f(n)=n+o(n) 对 $\forall n \in \mathbb{N}_+$ 都成立. 并且当 $n \to +\infty$ 时,有 $\lim_{n \to +\infty} \frac{f(n)}{n} = \lim_{n \to +\infty} \frac{n+o(n)}{n} = 1 + \lim_{n \to +\infty} \frac{o(n)}{n} = 1$. 其中 o(n) 表示一个 (类) 数列,只

П

不过这个(类)数列具有 $\lim_{n\to +\infty} \frac{o(n)}{n} = 0$ 的性质. 解 解法一(一般解法):

$$\lim_{n\to +\infty} \left(1+\frac{1}{f(n)}\right)^n = \lim_{n\to +\infty} e^{n\ln\left(1+\frac{1}{f(n)}\right)} = e^{\lim_{n\to +\infty} n\ln\left(1+\frac{1}{f(n)}\right)} = e^{\lim_{n\to +\infty} \frac{n}{f(n)}} = e.$$

解法二 (渐进估计):
由
$$\lim_{n\to+\infty} \frac{f(n)}{n} = 1$$
, 可知

$$\frac{f(n)}{n} = 1 + o(1), n \to +\infty.$$

$$\left(1 + \frac{1}{f(n)}\right)^n = \left[1 + \frac{1}{n} \cdot \frac{1}{1 + o(1)}\right]^n = \left[1 + \frac{1}{n}(1 + o(1))\right]^n = \left[1 + \frac{1}{n} + o\left(\frac{1}{n}\right)\right]^n = e^{n\ln\left[1 + \frac{1}{n} + o\left(\frac{1}{n}\right)\right]}, n \to +\infty.$$

$$\lim_{n\to +\infty} \left(1+\frac{1}{f(n)}\right)^n = \lim_{n\to +\infty} e^{n\ln\left[1+\frac{1}{n}+o\left(\frac{1}{n}\right)\right]} = \lim_{n\to +\infty} e^{n\left[\frac{1}{n}+o\left(\frac{1}{n}\right)\right]} = \lim_{n\to +\infty} e^{1+o(1)} = e.$$

例题 0.12 计算:

1.
$$\lim_{x \to 0} \frac{\cos \sin x - \cos x}{x^4}$$
.
2. $\lim_{x \to +\infty} \left[\left(x^3 - x^2 + \frac{x}{2} \right) e^{\frac{1}{x}} - \sqrt{1 + x^6} \right]$.

2.

例题 **0.13** 求极限 $\lim_{n\to+\infty} (\sqrt[4]{n}-1)^{\frac{1}{(\ln n)^{\alpha}}} (\alpha>0).$

笔记 利用 Taylor 公式即可得到结果. 类似 $\ln(xe^{-x}-1) \sim \ln(xe^{-x}+o(xe^{-x})) \sim \ln(xe^{-x})$ 的等价关系可以直接凭 直觉写出,要严谨证明的话,只需要利用L'Hospital 法则即可.

$$(\sqrt[n]{n}-1)^{\frac{1}{(\ln n)^\alpha}}=e^{\frac{\ln(\sqrt[n]{n}-1)}{(\ln n)^\alpha}}$$

从而

$$\lim_{n \to +\infty} \frac{\ln(\sqrt[q]{n} - 1)}{(\ln n)^{\alpha}} = \lim_{x \to +\infty} \frac{\ln(e^{xe^{-x}} - 1)}{x^{\alpha}} = \lim_{x \to +\infty} \frac{\ln(xe^{-x})}{x^{\alpha}}$$

$$= \lim_{x \to +\infty} \frac{\ln x - x}{x^{\alpha}} = \lim_{x \to +\infty} \left(\frac{\ln x}{x^{\alpha}} - \frac{1}{x^{\alpha - 1}}\right) = -\lim_{x \to +\infty} \frac{1}{x^{\alpha - 1}}$$

$$= \begin{cases} 0, & \alpha > 1, \\ -1, & \alpha = 1, \\ -\infty, & 0 < \alpha < 1. \end{cases}$$

于是

$$\lim_{n \to +\infty} (\sqrt[n]{n} - 1)^{\frac{1}{(\ln n)^{\alpha}}} = \begin{cases} 1, & \alpha > 1, \\ e^{-1}, & \alpha = 1, \\ 0, & 0 < \alpha < 1. \end{cases}$$

例题 0.14 计算 $(1 + \frac{1}{x})^x$, $x \to +\infty$ 的渐进估计.

解 由带 Peano 余项的 Taylor 公式, 可得

$$\left(1 + \frac{1}{x}\right)^x = e^{x \ln\left(1 + \frac{1}{x}\right)} = e^{x \left[\frac{1}{x} - \frac{1}{2x^2} + \frac{1}{3x^3} + o\left(\frac{1}{x^3}\right)\right]} = e^{1 - \frac{1}{2x} + \frac{1}{3x^2} + o\left(\frac{1}{x^2}\right)} = e \cdot e^{-\frac{1}{2x} + \frac{1}{3x^2} + o\left(\frac{1}{x^2}\right)}$$

$$\begin{split} &= e\left[1 - \frac{1}{2x} + \frac{1}{3x^2} + o\left(\frac{1}{x^2}\right) + \frac{1}{2}\left(-\frac{1}{2x} + \frac{1}{3x^2} + o\left(\frac{1}{x^2}\right)\right)^2 + o\left(-\frac{1}{2x} + \frac{1}{3x^2} + o\left(\frac{1}{x^2}\right)\right)^2\right] \\ &= e\left[1 - \frac{1}{2x} + \frac{1}{3x^2} + \frac{1}{8x^2} + o\left(\frac{1}{x^2}\right)\right] \\ &= e\left[\frac{1}{2x} + \frac{1}{3x^2} + \frac{1}{8x^2} + o\left(\frac{1}{x^2}\right)\right] \\ &= e\left[\frac{1}{2x} + \frac{1}{3x^2} + \frac{1}{8x^2} + o\left(\frac{1}{x^2}\right)\right] \end{split}$$

故

$$\left(1+\frac{1}{x}\right)^x = e - \frac{e}{2x} + \frac{11e}{24x^2} + o\left(\frac{1}{x^2}\right), x \to +\infty.$$

于是

$$\lim_{x \to +\infty} x \left[e - \left(1 + \frac{1}{x} \right)^x \right] = \frac{e}{2}, \lim_{x \to +\infty} x \left[x \left(e - \left(1 + \frac{1}{x} \right)^x \right) - \frac{e}{2} \right] = -\frac{11e}{24}. \tag{4}$$

注 反复利用上述(4)式构造极限的方法, 再求出相应极限, 就能得到 e 的更精确的渐进估计. 这也是计算渐进估计 的一般方法.

例题 0.15 计算

$$\lim_{x \to 0} \frac{1 - \cos x \cos(2x) \cdots \cos(nx)}{x^2}.$$

解 记 $I = \lim_{x \to 0} \frac{1 - \cos x \cos(2x) \cdots \cos(nx)}{x^2}$, 则由带 Peano 余项的 Taylor 公式, 可得

$$\cos x \cos(2x) \cdots \cos(nx) = \left[1 - \frac{1}{2}x^2 + o(x^2)\right] \left[1 - \frac{(2x)^2}{2} + o(x^2)\right] \cdots \left[1 - \frac{(nx)^2}{2} + o(x^2)\right]$$
$$= 1 - \frac{1^2 + 2^2 + \dots + n^2}{2}x^2 + o(x^2) = 1 - \frac{n(n+1)(2n+1)}{2 \cdot 6}x^2 + o(x^2), x \to 0.$$

故
$$I = \frac{n(n+1)(2n+1)}{12}$$
.
例题 **0.16** 计算

$$\lim_{x\to 0} \frac{x - \overbrace{\sin\sin\cdots\sin x}^{n \text{ in } }}{x^3}.$$

解 先证明 $\underbrace{\sin(\sin(\sin(\cdots(\sin x))\cdots))}_{n \times 2} = x - \frac{n}{6}x^3 + o(x^3), x \to 0.$

当 n=1 时, 由 Taylor 公式结论显然成立. 假设 n=k 时, 结论成立. 则当 n=k+1 时, 我们有

$$\sin\left(x - \frac{n}{6}x^3 + o(x^3)\right)$$

$$= x - \frac{n}{6}x^3 + o(x^3) - \frac{1}{6}\left(x - \frac{n}{6}x^3 + o(x^3)\right)^3 + o\left(\left(x - \frac{n}{6}x^3 + o(x^3)\right)^3\right)$$

$$= x - \frac{n+1}{6}x^3 + o(x^3), x \to 0.$$

由数学归纳法得
$$\underbrace{\sin(\sin(\sin(\cdots(\sin x))\cdots))}_{n \not = 2} = x - \frac{n}{6}x^3 + o(x^3), x \to 0.$$
 故 $\lim_{x \to 0} \frac{x - \underbrace{\sin\sin\cdots\sin x}}{x^3} = \frac{n}{6}.$

例题 0.17 计算

 $\lim_{n\to\infty} n\sin(2\pi e n!).$

解 由带 Lagrange 余项的 Taylor 展开式可知

$$e^x = \sum_{k=0}^{n+1} \frac{x^k}{k!} + \frac{e^{\theta} x^{n+2}}{(n+2)!}, \theta \in (0, x).$$

从而

$$e = \sum_{k=0}^{n+1} \frac{1}{k!} + \frac{e^{\theta}}{(n+2)!}, \theta \in (0,1).$$

于是

$$2\pi e n! = 2\pi n! \sum_{k=0}^{n+1} \frac{1}{k!} + \frac{2\pi n! e^{\theta}}{(n+2)!}, \theta \in (0,1).$$

而
$$n! \sum_{k=0}^{n} \frac{1}{k!} \in \mathbb{N}$$
, 因此

$$\begin{split} n\sin(2\pi e n!) &= n\sin\left(2\pi n! \sum_{k=0}^{n+1} \frac{1}{k!} + \frac{2\pi n! e^{\theta}}{(n+2)!}\right) = n\sin\left(\frac{2\pi n!}{(n+1)!} + \frac{2\pi n! e^{\theta}}{(n+2)!}\right) \\ &= n\sin\left(\frac{2\pi}{n+1} + \frac{2\pi e^{\theta}}{(n+1)(n+2)}\right) \sim n\left[\frac{2\pi}{n+1} + \frac{2\pi e^{\theta}}{(n+1)(n+2)}\right] \to 2\pi, n \to +\infty. \end{split}$$

0.1.3 利用 Lagrange 中值定理求极限

Lagrange 中值定理不会改变原数列或函数的阶, 但是可以更加精细地估计原数列或函数的阶. 以后利用 Lagrange 中值定理处理数列或函数的阶的过程都会直接省略.

例题 0.18 计算

$$\lim_{n\to\infty} [\sin(\sqrt{n+1}) - \sin(\sqrt{n})].$$

解 由 Lagrange 中值定理, 可知对 $\forall n \in \mathbb{N}_+$, 存在 $\theta_n \in (\sqrt{n+1}, \sqrt{n})$, 使得

$$\sin(\sqrt{n+1}) - \sin(\sqrt{n}) = (\sqrt{n+1} - \sqrt{n})\cos\theta_n = \frac{1}{\sqrt{n+1} + \sqrt{n}} \cdot \cos\theta_n.$$

从而当 $n \to +\infty$ 时, 有 $\theta_n \to +\infty$. 于是

$$\lim_{n \to \infty} \left[\sin(\sqrt{n+1}) - \sin(\sqrt{n}) \right] = \lim_{n \to \infty} \left[\frac{1}{\sqrt{n+1} + \sqrt{n}} \cdot \cos \theta_n \right] = 0.$$

例题 0.19 计算

$$\lim_{n\to\infty} n^2 \left(\arctan \frac{2024}{n} - \arctan \frac{2024}{n+1}\right).$$

证明 由 Lagrange 中值定理, 可知对 $\forall n \in \mathbb{N}$, 存在 $\theta_n \in (\frac{2024}{n}, \frac{2024}{n+1})$, 使得

$$\arctan \frac{2024}{n} - \arctan \frac{2024}{n+1} = \frac{1}{1+\theta^2} \cdot \left(\frac{2024}{n} - \frac{2024}{n+1}\right).$$

并且 $\lim_{n\to +\infty} \theta_n = 0$. 故

$$\lim_{n \to \infty} n^2 \left(\arctan \frac{2024}{n} - \arctan \frac{2024}{n+1} \right) = \lim_{n \to \infty} \frac{n^2}{1 + \theta_n^2} \cdot \left(\frac{2024}{n} - \frac{2024}{n+1} \right) = 2024 \lim_{n \to \infty} \frac{n^2}{n(n+1)} = 2024.$$

例题 0.20

- 1. 对 $\alpha \neq 0$, 求 $(n+1)^{\alpha} n^{\alpha}$, $n \rightarrow \infty$ 的等价量;
- 2. 求 $n \ln n (n-1) \ln(n-1), n \rightarrow \infty$ 的等价量.
- 笔记 熟练这种利用 Lagrange 中值定理求极限的方法以后, 这类数列或函数的等价量我们应该做到能够快速口算出来. 因此, 以后利用 Lagrange 中值定理计算数列或函数的等价量的具体过程我们不再书写, 而是直接写出相应的等价量.

注 不难发现利用 Lagrange 中值定理计算数列或函数的等价量,并不改变原数列或函数的阶.

解 1. 根据 Lagrange 中值定理, 可知对 $n \in \mathbb{N}$, 都有

$$(n+1)^{\alpha} - n^{\alpha} = \alpha \cdot \theta_n^{\alpha-1}, \theta_n \in (n, n+1).$$

$$\alpha = \lim_{n \to \infty} \frac{\alpha n^{\alpha - 1}}{n^{\alpha - 1}} \leqslant \lim_{n \to \infty} \frac{\alpha \theta_n^{\alpha - 1}}{n^{\alpha - 1}} \leqslant \lim_{n \to \infty} \frac{\alpha (n + 1)^{\alpha - 1}}{n^{\alpha - 1}} = \alpha.$$

因此 $(n+1)^{\alpha} - n^{\alpha} \sim \alpha n^{\alpha-1}, n \to \infty$.

2. 由 Lagrange 中值定理, 可知对 $n \in \mathbb{N}$, 都有

$$\lim_{n\to\infty}\frac{n\ln n-(n-1)\ln(n-1)}{\ln n}=\lim_{n\to\infty}\frac{(n-(n-1))\cdot(1+\ln\theta_n)}{\ln n}=\lim_{n\to\infty}\frac{1}{\ln n}+\lim_{n\to\infty}\frac{\ln\theta_n}{\ln n}=\lim_{n\to\infty}\frac{\ln\theta_n}{\ln n}, n-1<\theta_n< n.$$

$$\mathbb{X}\cdot\frac{\ln(n-1)}{\ln n}<\frac{\ln\theta_n}{\ln n}<\frac{\ln n}{\ln n}=1, \text{ if }\lim_{n\to\infty}\frac{\ln\theta_n}{\ln n}=1$$

又
$$\frac{\ln(n-1)}{\ln n} < \frac{\ln \theta_n}{\ln n} < \frac{\ln n}{\ln n} = 1$$
,故 $\lim_{n \to \infty} \frac{\ln \theta_n}{\ln n} = 1$,从而

$$\lim_{n\to\infty} \frac{n\ln n - (n-1)\ln(n-1)}{\ln n} = \lim_{n\to\infty} \frac{\ln \theta_n}{\ln n} = 1.$$

于是 $n \ln n - (n-1) \ln (n-1) \sim \ln n, n \rightarrow +\infty$.

例题 0.21 计算

$$\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{(1 - \cos x)\sin^2 x}.$$

证明 由 Lagrange 中值定理, 可知对 $\forall x \in U(0)$, 都有

$$\cos(\sin x) - \cos x = (x - \sin x)\sin\theta, \theta \in (\sin x, x).$$

从而

$$\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{(1 - \cos x)\sin^2 x} = \lim_{x \to 0} \frac{(x - \sin x)\sin\theta}{\frac{1}{2}x^2 \cdot x^2} = \lim_{x \to 0} \frac{\frac{1}{6}x^3 \cdot \sin\theta}{\frac{1}{2}x^4} = \frac{1}{3}\lim_{x \to 0} \frac{\sin\theta}{x}.$$

又由 $\sin x < \theta < x, \forall x \in U(0)$ 可知

$$1 = \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\sin (\sin x)}{x} < \lim_{x \to 0} \frac{\sin \theta}{x} \leqslant \lim_{x \to 0} \frac{\theta}{x} < \lim_{x \to 0} \frac{x}{x} = 1.$$

故
$$\sin \theta \sim \theta \sim x, x \to 0$$
. 因此 $\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{(1 - \cos x)\sin^2 x} = \frac{1}{3} \lim_{x \to 0} \frac{\sin \theta}{x} = \frac{1}{3} \lim_{x \to 0} \frac{x}{x} = \frac{1}{3}$.

0.1.4 L'Hospital'rules

定理 0.2 (上下极限 L'Hospital 法则)

设 f,g 满足洛必达法则的适用条件,则有

$$\underline{\lim} \frac{f'}{g'} \leqslant \underline{\lim} \frac{f}{g} \leqslant \overline{\lim} \frac{f}{g} \leqslant \overline{\lim} \frac{f'}{g'}.$$
 (5)

且

$$\underline{\lim} \left| \frac{f'}{g'} \right| \leqslant \underline{\lim} \left| \frac{f}{g} \right| \leqslant \overline{\lim} \left| \frac{f}{g} \right| \leqslant \overline{\lim} \left| \frac{f'}{g'} \right|. \tag{6}$$

笔记 此定理第一部分(5)可以直接使用且以后可以不必再担心分子分母同时求导之后极限不存在而不能使用洛 必达法则的情况. 但(6)一般是不能直接用的, 需要给证明.

证明 以 → +∞ 为例, 事实上, 固定 x, 由 Cauchy 中值定理, 我们有

$$\frac{f(y) - f(x)}{g(y) - g(x)} = \frac{f'(\xi)}{g'(\xi)}, x < \xi < y.$$

我们断言对 $A \in \mathbb{R} \cup \{+\infty\}$, 必有

$$\lim_{n \to \infty} \left| \frac{f(y_n)}{g(y_n)} \right| = A \Leftrightarrow \lim_{n \to \infty} \left| \frac{f(y_n) - f(x)}{g(y_n) - g(x)} \right| = A. \tag{7}$$

若 $\lim_{n\to\infty} \left| \frac{f(y_n)}{g(y_n)} \right| = A$. 首先利用极限的四则运算, 我们有

$$\lim_{n\to\infty} \left| \frac{f(y_n) - f(x)}{g(y_n) - g(x)} \right| = \lim_{n\to\infty} \left| \frac{\frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)}}{1 - \frac{g(x)}{g(y_n)}} \right| = \lim_{n\to\infty} \left| \frac{1}{1 - \frac{g(x)}{g(y_n)}} \right| \cdot \lim_{n\to\infty} \left| \frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)} \right| = \lim_{n\to\infty} \left| \frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)} \right|.$$

利用

$$\left| \frac{f(y_n)}{g(y_n)} \right| - \left| \frac{f(x)}{g(y_n)} \right| \le \left| \frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)} \right| \le \left| \frac{f(y_n)}{g(y_n)} \right| + \left| \frac{f(x)}{g(y_n)} \right|, \lim_{n \to \infty} g(y_n) = \infty,$$

我们知道

$$\lim_{n\to\infty} \left| \frac{f(y_n) - f(x)}{g(y_n) - g(x)} \right| = \lim_{n\to\infty} \left| \frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)} \right| = A.$$

反之设 $\lim_{n\to\infty} \left| \frac{f(y_n) - f(x)}{g(y_n) - g(x)} \right| = A$, 同样的由四则运算, 我们有

$$\lim_{n \to \infty} \left| \frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)} \right| = A.$$

于是由

$$\left|\frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)}\right| - \left|\frac{f(x)}{g(y_n)}\right| \leqslant \left|\frac{f(y_n)}{g(y_n)}\right| \leqslant \left|\frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)}\right| + \left|\frac{f(x)}{g(y_n)}\right|, \lim_{n \to \infty} |g(y_n)| = \infty,$$

我们知道

$$\lim_{n \to \infty} \left| \frac{f(y_n)}{g(y_n)} \right| = A.$$

现在就证明了(7).

于是结合 $x \to +\infty$, 我们容易得到7

$$\overline{\lim}_{y \to +\infty} \left| \frac{f(y)}{g(y)} \right| = \overline{\lim}_{y \to +\infty} \left| \frac{f(y) - f(x)}{g(y) - g(x)} \right| = \overline{\lim}_{y \to +\infty} \left| \frac{f'(\xi)}{g'(\xi)} \right| \leqslant \overline{\lim}_{y \to +\infty} \left| \frac{f'(y)}{g'(y)} \right| \\
\underline{\lim}_{y \to +\infty} \left| \frac{f(y)}{g(y)} \right| = \underline{\lim}_{y \to +\infty} \left| \frac{f(y) - f(x)}{g(y) - g(x)} \right| = \underline{\lim}_{y \to +\infty} \left| \frac{f'(\xi)}{g'(\xi)} \right| \geqslant \underline{\lim}_{y \to +\infty} \left| \frac{f'(y)}{g'(y)} \right|$$

这就完成了证明.

例题 0.22 若 $f \in D^1[0, +\infty)$.

(1) 设

$$\lim_{x \to +\infty} [f(x) + f'(x)] = s \in \mathbb{R},$$

证明 $\lim_{x \to +\infty} f(x) = s$.

(2) 设

$$\lim_{x \to +\infty} \left[f'(x) + \frac{2x}{\sqrt[3]{1+x^3}} f(x) \right] = s \in \mathbb{R},$$

证明 $\lim_{x \to +\infty} f(x) = \frac{s}{2}$.

笔记 (2) 中的构造思路: 根据条件构造相应的微分方程, 然后求解这个微分方程, 再常数变易得到我们需要构造的函数. 具体步骤如下:

构造微分方程: $y'+\frac{2x}{\sqrt[3]{1+x^3}}y=0$,整理可得 $\frac{y'}{y}=-\frac{2x}{\sqrt[3]{1+x^3}}$,再对其两边同时积分得到 $\ln y=-\int_0^x\frac{2x}{\sqrt[3]{1+x^3}}dx+C_0$. 从而 $y=Ce^{-\int_0^x\frac{2x}{\sqrt[3]{1+x^3}}dx}$,于是 $C=ye^{\int_0^x\frac{2x}{\sqrt[3]{1+x^3}}dx}$.故我们要构造的函数就是 $C(x)=f(x)e^{\int_0^x\frac{2x}{\sqrt[3]{1+x^3}}dx}$.并且此时 C(x) 满足 $C'(x)=f'(x)+\frac{2x}{\sqrt[3]{1+x^3}}f(x)$.

证明

(1)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^x f(x)}{e^x} = \lim_{x \to +\infty} \frac{e^x [f(x) + f'(x)]}{e^x} = \lim_{x \to +\infty} [f + f'] = s.$$

П

(2) 注意到 $\lim_{r\to +\infty} e^{\int_0^x \frac{2t}{\sqrt[3]{t+3}} dt} = +\infty$, 从而由 L'Hospital'rules 可得

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{f(x) \cdot e^{\int_0^x \frac{2t}{\sqrt[3]{1+t^3}}} dt}{e^{\int_0^x \frac{2t}{\sqrt[3]{1+t^3}}} dt} \xrightarrow{\text{L'Hospital'rules}} \lim_{x \to +\infty} \frac{\left[f'(x) + \frac{2x}{\sqrt[3]{1+x^3}} f(x) \right] e^{\int_0^x \frac{2t}{\sqrt[3]{1+t^3}}} dt}{\frac{2x}{\sqrt[3]{1+x^3}} e^{\int_0^x \frac{2t}{\sqrt[3]{1+t^3}}} dt}$$

$$= \lim_{x \to +\infty} \frac{\sqrt[3]{1+x^3}}{2x} \left[f(x) + \frac{2x}{\sqrt[3]{1+x^3}} f'(x) \right] = \frac{s}{2}.$$

0.1.5 与方程的根有关的渐近估计

0.1.5.1 可以解出 n 的类型

例题 **0.23** 设 $x^{2n+1} + e^x = 0$ 的根记为 x_n , 计算

$$\lim_{n\to\infty} x_n, \lim_{n\to\infty} n(1+x_n)$$

解 注意到 $0^{2n+1} + e^0 > 0$, $(-1)^{2n+1} + e^{-1} < 0$ 且 $x^{2n+1} + e^x$ 严格单调递增, 所以由零点存在定理可知, 对每个 $n \in \mathbb{N}$, 存在唯一的 $x_n \in (-1,0)$, 使得

$$x_n^{2n+1} + e^{x_n} = 0 \Rightarrow \frac{x_n}{\ln(-x_n)} = 2n + 1 \to +\infty, n \to +\infty.$$

任取 $\{x_n\}$ 的一个收敛子列 $\{x_{n_k}\}$,又 $x_n \in (-1,0)$,因此可设 $\lim_{k \to \infty} x_{n_k} = c \in [-1,0]$,则 $\lim_{k \to +\infty} \frac{x_{n_k}}{\ln(-x_{n_k})} = \frac{c}{\ln(-c)}$. 又 因为 $\lim_{k \to +\infty} \frac{x_n}{\ln(-x_{n_k})} = \lim_{k \to +\infty} \frac{x_n}$

因为 $\lim_{n\to +\infty}\frac{x_n}{\ln{(-x_n)}}=+\infty$,所以由 Heine 归结原则可知 $\lim_{k\to +\infty}\frac{x_{n_k}}{\ln{(-x_{n_k})}}=+\infty$. 从而

$$\lim_{k \to +\infty} \frac{x_{n_k}}{\ln\left(-x_{n_k}\right)} = \frac{c}{\ln(-c)} = +\infty,$$

故 c = -1. 于是由子列极限命题 (a) 知 $\lim_{n \to \infty} x_n = -1$. 因此

$$\lim_{n \to \infty} n(1+x_n) = \frac{1}{2} \lim_{n \to \infty} (2n+1)(1+x_n) = \frac{1}{2} \lim_{n \to \infty} \frac{x_n(1+x_n)}{\ln(-x_n)} = \frac{1}{2} \lim_{x \to -1^+} \frac{x(1+x)}{\ln(-x)} = \frac{1}{2}.$$

例题 0.24 设 $a_n \in (0,1)$ 是 $x^n + x = 1$ 的根, 证明

$$a_n = 1 - \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right).$$

证明 注意到 $0^n + 0 - 1 < 0, 1^n + 1 - 1 > 0$, 且 $x^n + x - 1$ 在 (0,1) 上严格单调递增, 所以由零点存在定理可知, 对 $\forall n \in \mathbb{N}_+$, 存在唯一的 $a_n \in (0,1)$, 使得

$$a_n^n + a_n = 1 \Rightarrow \frac{\ln(1 - a_n)}{\ln a_n} = n \to +\infty, n \to +\infty.$$
 (8)

任取 $\{a_n\}$ 的一个收敛子列 $\{a_{n_k}\}$,又 $a_n \in (0,1)$,因此可设 $\lim_{k \to +\infty} a_{n_k} = c \in [0,1]$,则 $\lim_{k \to +\infty} \frac{\ln(1-a_{n_k})}{\ln a_{n_k}} = \frac{\ln(1-c)}{\ln c}$. 又由 (1.1) 式可知 $\lim_{n \to +\infty} \frac{\ln(1-a_n)}{\ln a_n} = +\infty$,所以由 Heine 归结原则可知 $\lim_{k \to +\infty} \frac{\ln(1-a_{n_k})}{\ln a_{n_k}} = +\infty$. 从而

$$\lim_{k\to+\infty}\frac{\ln(1-a_{n_k})}{\ln a_{n_k}}=\frac{\ln(1-c)}{\ln c}=+\infty.$$

故 c=1, 于是由子列极限命题 (a) 可知

$$\lim_{n \to +\infty} a_n = c = 1. \tag{9}$$

而要证 $a_n = 1 - \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right), n \to +\infty$, 等价于证明 $\lim_{n \to +\infty} \frac{a_n - 1 + \frac{\ln n}{n}}{\frac{\ln n}{n}} = \lim_{n \to +\infty} \frac{na_n - n + \ln n}{\ln n} = 0$. 利用(8)(9)式

可得

$$\lim_{n \to +\infty} \frac{na_n - n + \ln n}{\ln n} = \lim_{n \to +\infty} \left[\frac{\frac{\ln(1 - a_n)}{\ln a_n} \cdot a_n - \frac{\ln(1 - a_n)}{\ln a_n}}{\ln \frac{\ln(1 - a_n)}{\ln a_n}} + 1 \right] = \lim_{n \to +\infty} \left[\frac{(a_n - 1)\ln(1 - a_n)}{\ln a_n \left(\ln \frac{\ln(1 - a_n)}{\ln a_n}\right)} + 1 \right]$$

$$= \lim_{x \to 1^-} \left[\frac{(x - 1)\ln(1 - x)}{\ln x \left(\ln \frac{\ln(1 - x)}{\ln x}\right)} + 1 \right] = \lim_{x \to 0^-} \left[\frac{x \ln(-x)}{\ln(1 + x) \left(\ln \frac{\ln(-x)}{\ln(1 + x)}\right)} + 1 \right]. \tag{10}$$

由 L'Hospital's rules 可得

$$\lim_{x \to 0^{-}} \frac{x \ln(-x)}{\ln(1+x) \left(\ln \frac{\ln(-x)}{\ln(1+x)}\right)} = \lim_{x \to 0^{-}} \frac{\ln(-x)}{\ln \frac{\ln(-x)}{\ln(1+x)}} \xrightarrow{\frac{\text{L'Hospital's rules}}{\text{L'Hospital's rules}}} \lim_{x \to 0^{-}} \frac{\frac{1}{x}}{\frac{\ln(1+x)}{\ln(1+x)} \cdot \frac{\frac{1}{x} \ln(1+x) - \frac{1}{1+x} \ln(-x)}}{\frac{\ln(1+x)}{\ln(1+x)}}$$

$$= \lim_{x \to 0^{-}} \frac{\ln(-x) \cdot \ln(1+x)}{\ln(1+x) - \frac{x}{1+x} \ln(-x)} = \lim_{x \to 0^{-}} \frac{x \ln(-x)}{\ln(1+x) - \frac{x}{1+x} \ln(-x)}$$

$$= \lim_{x \to 0^{-}} \frac{x}{\frac{\ln(1+x)}{\ln(-x)} - \frac{x}{1+x}} = \lim_{x \to 0^{-}} \frac{x}{\frac{1}{1+x}} = -1. \tag{11}$$

于是结合(10)(11)式可得

$$\lim_{n \to +\infty} \frac{na_n - n + \ln n}{\ln n} = \lim_{x \to 0^-} \left[\frac{x \ln(-x)}{\ln(1+x) \left(\ln \frac{\ln(-x)}{\ln(1+x)} \right)} + 1 \right] = -1 + 1 = 0.$$

故
$$a_n = 1 - \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right), n \to +\infty.$$

例题 **0.25** 设 $f_n(x) = x + x^2 + \dots + x^n, n \in \mathbb{N}, f_n(x) = 1$ 在 [0, 1] 的根为 x_n . 求 $\lim_{n \to \infty} x_n$.

解 注意到 $f_n(x)-1$ 严格单调递增, 且 $f_n(0)-1=-1<0$, $f_n(1)-1=n-1>0$, $\forall n \geqslant 2$. 故由零点存在定理可知, 当 $n\geqslant 2$ 时, 存在唯一的 $x_n\in (0,1)$, 使得 $f_n(x_n)=1$. 从而

$$f_n(x_n) = \frac{x_n - x_n^{n+1}}{1 - x_n} = 1 \Rightarrow x_n - x_n^{n+1} = 1 - x_n \Rightarrow x_n^{n+1} = 2x_n - 1 \Rightarrow n + 1 = \frac{\ln(2x_n - 1)}{\ln x_n}.$$
 (12)

由上式(12)可知 $x_n^{n+1} = 2x_n - 1$ 且 $x_n \in (0,1)$, 因此

$$0 \leqslant x_n^{n+1} = 2x_n - 1 \leqslant 1 \Rightarrow x_n \in \left(\frac{1}{2}, 1\right).$$

任取 $\{x_n\}$ 的收敛子列 $\{x_{n_k}\}$, 设 $\lim_{k\to+\infty}x_{n_k}=a\in\left[\frac{1}{2},1\right]$, 则由 (1.1) 式和 Heine 归结原则可知

$$\lim_{k\to +\infty}\frac{\ln(2x_{n_k}-1)}{\ln x_{n_k}}=\frac{\ln(2a-1)}{\ln a}=+\infty.$$

故 $a=\frac{1}{2}$, 再由子列极限命题 (a) 可知 $\lim_{n\to +\infty} x_n = a = \frac{1}{2}$.

0.1.5.2 迭代方法

例题 0.26 设 x_n 是 $x = \tan x$ 从小到大排列的全部正根, 设

$$\lim_{n \to \infty} n(x_n - An - B) = C,$$

求 A, B, C.

笔记 主要想法是结合 $\arctan x$ 的性质: $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}, x > 0$, 再利用迭代法计算渐近展开. $(n\pi, n\pi + \frac{\pi}{2})$ 上严格单调递增, 其中 $n = 1, 2, \cdots$. 又注意到 $\lim_{x \to (n\pi)^+} (\tan x - x) = -n\pi < 0$, $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = +\infty > 0$. 故由零点存在定理可知,存在唯一的 $x_n \in (n\pi, n\pi + \frac{\pi}{2}), n = 1, 2, \dots$,使得 $\tan x_n = x_n$.

从而 $x_n - n\pi \in (0, \frac{\pi}{2})$, 于是

$$x_n = \tan x_n = \tan(x_n - n\pi) \Rightarrow x_n = \arctan x_n + n\pi.$$
 (13)

又因为 $x_n \in (n\pi, n\pi + \frac{\pi}{2}), n = 1, 2, \cdots$, 所以当 $n \to +\infty$ 时, 有 $x_n \to +\infty$. 再结合(13)式可得

$$x_n = \arctan x_n + n\pi = n\pi + \frac{\pi}{2} + o(1), n \to +\infty.$$
 (14)

注意到 $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}, x > 0$, 从而 $\arctan x = \frac{\pi}{2} - \arctan \frac{1}{x}$. 于是利用(14)式可得

$$x_n = \arctan x_n + n\pi = \frac{\pi}{2} + n\pi - \arctan \frac{1}{x_n} = \frac{\pi}{2} + n\pi - \arctan \frac{1}{n\pi + \frac{\pi}{2} + o(1)}$$

$$= \frac{\pi}{2} + n\pi - \arctan \left(\frac{1}{n\pi} \frac{1}{1 + \frac{1}{2n} + o(\frac{1}{n})}\right) = \frac{\pi}{2} + n\pi - \arctan \left[\frac{1}{n\pi} \left(1 + O(\frac{1}{n})\right)\right]$$

$$= \frac{\pi}{2} + n\pi - \arctan \left[\frac{1}{n\pi} + O(\frac{1}{n^2})\right] = \frac{\pi}{2} + n\pi - \frac{1}{n\pi} + O(\frac{1}{n^2}), n \to +\infty.$$

因此
$$\lim_{n\to+\infty} n\left(x_n - \frac{\pi}{2} - n\pi\right) = -\frac{1}{\pi}$$
.