- a) No. Parsing C requires
 resolving ambiguities that
 are dependent on context
 (where they appear).
- h) A language with an ambiguous grammar will have more than one parse tree. This does not preclude the language having some unambiguous grammar with only one parse tree so yes, A language can have looth at the same time.
- c) An ambiguous language has more than one parse tree and so cannot be LL or LR by definition.
- d) LRLI is more powerful than LL(1) because LR(1) parsing uses a bottom-up approach while LL(1) uses a top-down approach. The bottom-up approach allows for evaluation of successive input tokens (shifting in an effort to find a proper mon-terminal representation (reducing). This gives LR(1) parsers the ability to parse more grammars than U(1).

- 1. (16 points) Answer the following questions about languages and grammars.
 - a) Is the C programming language a context free language? Why or why not?
 - b) Can a language have ambiguous and unambiguous grammars at the same time? Why or why not?
 - c) Explain in your own words why ambiguous grammars can never be LL or LR.
 - d) Explain in your own words why LR(1) is more powerful than LL(1)
- 2. (12 points) Answer the following questions about context free and regular grammars.
 - a) Write a grammar for non-empty strings with matching quotes where Σ = {a, b, '}. E.g. 'aba', aba''bb, aa'a'a'a'.
 - b) Write a grammar for non-empty strings with matching parentheses \sum = {a, b, (,)}. E.g. (aba), aba()bb, aa(a(a)a).
 - c) Is the language expressed in a) a regular language? If not, explain why not. If so, modify grammar so that it is a regular grammar (if not already).
 - d) Is the language expressed in b) a regular language? If not, explain why not. If so, modify grammar so that it is a regular grammar (if not already).
- 3. (10 points) Given the following grammar, construct the *First* sets for each RHS (right hand side) and *Follow* sets for each non-terminal symbol.

```
side) and Follows
A \to BAc \mid FH
B \to bEF \mid g
E \to e \mid \varepsilon
F \to f \mid EH
H \to b
```

- 4. (16 points) For each of the below grammars, answer the following questions:
- Is the grammar LL(1)? If so, write the LL(1) parse table. If not, point out the conflict using First and Follow sets.
- 2) Is the grammar LL(k)? If so, show how extra lookahead resolves the conflict. If not, point out the unresolved conflict using First and Follow sets.
- * Note: LL(k) is LL with a finite amount of lookahead.
- 3) Is the grammar ambiguous? If yes, find the input that produces two or more left-derivations. \star Noge $LL(1) \subset LL(k) \subset L(Unambiguous)$. So, (2) needs answering only if (1) is false. (3) needs answering only if both (1) and (2) are false.

$$A \rightarrow [A] \mid \varepsilon$$
b) $S \rightarrow ABc$
 $A \rightarrow a \mid \varepsilon$
 $B \rightarrow b \mid \varepsilon$
c) $S \rightarrow ABBA$
 $A \rightarrow a \mid \varepsilon$
 $B \rightarrow b \mid \varepsilon$
d) $S \rightarrow aAbc \mid bAc$
 $A \rightarrow b \mid \varepsilon$

5. (16 points) Given the following grammar, answer the below questions: E = E + E + iJ

$$E \rightarrow E + E \mid id$$

- a) Write a new grammar after performing left-recursion removal.
- b) Is the grammar in a) LL(1)? If not, point out the conflict using First and Follow sets.
- c) Modify the original grammar such that the + operator is left associative, and then perform left-recursion removal. Write the new grammar.
- d) Is the grammar in c) LL(1)? If not, point out the conflict using First and Follow sets
- 6. (30 points) For each of the below grammars, answer the following questions:
- (3) points) For each of the below grammars, answer the following questions:
 (1) Is the grammar SLR(1)? If so, draw a DFA and the corresponding parse table. If not, point out the conflict.
- (2) Is the grammar LALR(1)? If so, show how the lookahead component resolves the conflict. If not, show why it is not resolved.
- (3) Is the grammar LR(1)? If so, show how state splitting resolves the conflict. If not, show why it is not resolved.
- why its last consorted: * Note $SLR(1) \subset LALR(1) \subset LR(1)$. So, (2) needs answering only if (1) is false. (3) needs answering only if both (1) and (2) are false.

a)
$$(10 \text{ points}) \Sigma = \{v, =, :, +, (,)\}$$
.
 $S \rightarrow v = A;$
 $A \rightarrow P E$
 $P \rightarrow P v = | \varepsilon$
 $E \rightarrow E + T | T$
 $T \rightarrow v | (A)$
b) $(10 \text{ points}) \Sigma = \{a, b, c\}$.

- $$\begin{split} \mathbf{S} &\rightarrow b\mathbf{A}b \mid \mathbf{A}c \mid ab \\ \mathbf{A} &\rightarrow a \end{split}$$
 c) (10 points) $\Sigma = \{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\}.$ $\mathbf{S} &\rightarrow \mathbf{A}a \mid b\mathbf{A}c \mid \mathbf{B}c \mid b\mathbf{B}a \end{split}$
 - $A \rightarrow d$ $B \rightarrow d$

a)
$$["aa^*u]^*["bb^*"]^* \Rightarrow S \rightarrow AC$$

$$A \rightarrow "aB"$$

$$B \rightarrow aBlE$$

$$C \rightarrow "bD"$$

$$D \rightarrow bDlE$$

b)
$$[(aa^*)J^*[(bb^*)]^* \Rightarrow S \rightarrow AC$$

$$A \rightarrow (aB)$$

$$B \rightarrow aBlz$$

$$C \rightarrow (bD)$$

$$D \rightarrow bDlz$$

() No, all rules are not of the form 1) A> 2) A> 9 3) A> B or 4) A> aB. The language cannot be represented with a DFA since we must "keep track" of how many quotes we've seen.

d) No, all rules are not of the form i) A> 2) A> 9 3) A> B or 4) A> aB. The language cannot be represented with a DFA since we must "keep track" of how many parentheses of a certain type we've seen.

$$A = \{b,g,f,e,E,h\}$$
 $E = \{e,E\}$
 $A = \{b,g\}$ $B = \{b,g\}$

$$F = \xi f, e, \epsilon, h3$$

$$A = \{\$, c\}$$
 $B = \{b, g, f, e, h\}$ $G = \{h, f, e, \$, c\}$
 $F = \{e, b, g, f, h, \$, c\}$ $H = \{e, b, g, f, h, \$, c\}$

4)

a) First sets!
$$A = \{C, \xi\}$$
 $S = \{C, \xi\}$
Follow sets! $S = \{\}$ $A = \{\}$, $\{\}$

	C]	\$
Д			
5	[s/cn		

No, this is not LL(1) since we have multiple cell entries

b) First sets!
$$S = \{c, a, \epsilon, b\}$$
, $A = \{a, \epsilon\}$, $B = \{b, \epsilon\}$
Follow sets! $S = \{\{\}\}$, $A = \{C, b\}$, $B = \{C\}$

				. <i>I</i> .	
	9	Ь	C	\$	
Д	a	٤	٤		Yes, thi
5	ABC			٤	,
В		Ь	٤		

() First sets!
$$S = \{a, b, z\}$$
, $A = \{a, z\}$, $B = \{b, z\}$
Follow sets! $S = \{\$\}$, $A = \{b, a, \$\}$, $B = \{b, a, \$\}$

	۹	Ь	\$		
Д	9/2	٤	,		_ N6,
5	ABBA				
B		6/8			

No, this is not LLCI)

d) First sets!
$$S = \{a,b\}$$
, $A = \{b, E\}$
Follow sets! $S = \{\$\}$, $A = \{b,c\}$

	۹	Ь	C	\$
Д		5/2	2	
5	9 Aloc	b Ac		
В				

No, this is not U(i)

a)
$$E \rightarrow id E'$$

 $E' \rightarrow \xi [+EE']$

b) First sets!
$$E = \{id\}$$
, $E' = \{\xi, +\}$

follow sets! $E = \{\xi, +\}$, $E' = \{\xi, +\}$
 $\begin{vmatrix} id & + & \downarrow \\ E \ id E' & & \\ & & + & \in E' \end{vmatrix}$

No, this is not $U(i)$

$$cf \in \rightarrow + \in \in [id]$$

 $f \in \rightarrow + \in \in [id]$
 $f \in \rightarrow \in [id]$
 $f \in \rightarrow id$

d) First sets!
$$E = \{1, id\}$$
, $E' = \{2, +, id\}$

Follow sets! $E = \{3, +, id\}$, $E' = \{3, +, id\}$
 $= \{id \mid + \}$
 $= \{id \mid +$

- a) (10 points) $\Sigma = \{v, =, ;, +, (,)\}$. $S \rightarrow v = A;$ $A \rightarrow P E$ $P \rightarrow P v = |\varepsilon|$ $E \rightarrow E + T | T$ $T \rightarrow v | (A)$
- b) (10 points) $\Sigma = \{a, b, c\}$. $S \rightarrow bAb \mid Ac \mid ab$ $A \rightarrow a$
- c) (10 points) $\Sigma = \{a, b, c, d\}$. $S \rightarrow Aa \mid bAc \mid Bc \mid bBa$ $A \rightarrow d$ $B \rightarrow d$

Firsts:
$$S = \{b_1 a\}, A = \{a\}$$

Follow! $S = \{\beta\}, A = \{b,c\}$

Firsts!
$$S = \{b, d\}, A = \{d\}, B = \{d\}$$

Follow: $S = \{\$\}, A = \{a, c\}, B = \{c, a\}$