Un sottoprogramma, avente x come parametro di ingresso, è modellato dal grafo di controllo seguente:

L'istruzione 2 è condizionale a tre vie.

- 1. Scrivere le equazioni di flusso per calcolare le definizioni raggiungenti ogni punto del programma.
- 2. Calcolare la soluzione e scrivere gli insiemi nella figura precedente.
- 3. (facoltativa) L'istruzione 2 sia il test a tre vie

if
$$y-z>0$$
 go to 3 else if $y-z=0$ go to 5 else if $y-z<0$ go to 1

Si supponga inoltre che i valori di y e di z letti dalla 1 siano sempre interi positivi.

Si calcolino con esattezza le definizioni raggiungenti l'uscita del nodo 5.

Soluzione

1. Dall'esterno entra nel nodo 1 la definizione della variabile x passata come parametro, indicata come x_7 .

Prima di scrivere le equazioni di flusso, si elencano i termini costanti:

nodo		def	sop
1	read(y, z)	y_1, z_1	y_3
2	y-z	Ø	Ø
3	y := y + x	y_3	y_1
4	$x := y \times z$	x_4	$x_{?}$
5	return	Ø	Ø

Seguono le equazioni di flusso:

$$\begin{array}{lll} in(1) & = & \{x_?\} \cup out(2) \\ out(1) & = & \{y_1, z_1\} \cup (in(1) \setminus \{y_3\}) \\ in(2) & = & out(1) \cup out(4) \\ out(2) & = & \emptyset \cup (in(2) \setminus \emptyset) = in(2) \\ in(3) & = & out(2) \\ out(3) & = & \{y_3\} \cup (in(3) \setminus \{y_1\}) \\ in(4) & = & out(3) \\ out(4) & = & \{x_4\} \cup (in(4) \setminus \{x_?\}) \\ in(5) & = & out(4) \cup out(2) \\ out(5) & = & \emptyset \cup (in(5) \setminus \emptyset) = in(5) \end{array}$$

2. Partendo dalla approssimazione iniziale $in(1) = \{x_?\}$ e $\forall j: in(j) = out(j)$, si ottengono gli insiemi sotto riportati:

	in = out	in	out	$\mid in \mid$	out
1	$in = \{x_?\}, out = \emptyset$	$x_{?}$	$x_{?}y_{1}z_{1}$	$x_{?}y_{1}z_{1}$	$x_{?}y_{1}z_{1}$
2	Ø	$x_{?}y_{1}z_{1}$	$\leftarrow x_{?}y_{1}z_{1}$	$x_{1}x_{4}y_{1}y_{3}z_{1}$	$\leftarrow x_{?}x_{4}y_{1}y_{3}z_{1}$
3	Ø	$x_{?}y_{1}z_{1}$	$x_{?}y_{1}z_{1}$	$x_{1}x_{4}y_{1}y_{3}z_{1} \nearrow$	$x_{?}x_{4}y_{3}z_{1}$
4	0	$x_{?}y_{3}z_{1} \nearrow$	$x_4y_3z_1$	$x_{?}x_{4}y_{3}z_{1} \nearrow$	$x_4y_3z_1$
5	0	$x_{?}y_{1}y_{3}z_{1}$	$\leftarrow x_{?}y_{1}y_{3}z_{1}$	$x_{1}x_{4}y_{1}y_{3}z_{1}$	$\leftarrow x_{?}x_{4}y_{1}y_{3}z_{1}$

Le frecce puntano a un insieme da ricopiare identicamente.

Al primo punto fisso dell'iterazione si raggiunge la convergenza con la soluzione (insiemi out) riportata nella figura:

3. Poiché si entra in 3 se, e solo se y > z, e la 3 incrementa y, una volta entrati nel ciclo 2342 non se ne esce più. Di conseguenza il passaggio da 4 a 5 non è mai eseguito. I calcoli realmente eseguibili sono:

$$125, 12125, (12)^+5$$

Lungo tali calcoli le definizioni raggiungenti l'uscita di 5 sono $\{x_{?}, y_{1}, z_{1}\}$.