Classification of Supernovae

Amit Gal

Goal

Which supernovae **types** can we classify by their host galaxy mass distributions?

Project outline

Data organization

690 objects with (host galaxy) mass distributions

Data reduction – Sampling (bootstrapping)

Data reduction

For each object

PTF09axi

(Host galaxy) Mass	Probability
9.91671180725	2.60337117197e-07
9.74561214447	2.06141994568e-05
9.82774162292	0.000296088197501
9.56758975983	0.00087340985192
9.52915382385	0.00168778956868

random sampling of one mass value

For 1 transient type

Data reduction – Sampling (bootstrapping)

Mass distributions of host galaxies

= 1 bootstrap sample

Model

Mass distribution of host galaxies

Mass function $\Phi(M)$

Number **density** of galaxies as a function of their **mass**.

The single-Schechter function (1976)

$$\Phi(M)dM = \ln(10) \cdot \Phi^* \cdot 10^{(1+\alpha)(\log M - \log M^*)} \cdot \exp(-10^{(\log M - \log M^*)}) dM$$

$\log M^*$	Φ^*	α
10.81	$11.34 \cdot 10^{-4}$	-1.34

Muzzin et al. (2013)

Mass

Star formation main-sequence (SFR)

The relationship between a galaxy's **star formation rate** (SFR) and its stellar **mass**.

$$\log(\mathbf{SFR}) = \alpha(z)(\log(\mathbf{M}) - 10.5) + \beta(z)$$

$$\alpha(z) = 0.70 - 0.13z$$

$$\beta(z) = 0.38 + 1.14z - 0.19z^2$$

z - redshift

Whitaker et al. (2014)

The mass function weighted by SFR

How to differentiate between transient types?

Star formation efficiency function

$$\Phi^{\rm SFR}(M) \longrightarrow \underbrace{\rho(M; M_0, \beta.C)}_{\rm efficiency} \cdot \Phi^{\rm SFR}(M)$$

$$\rho(M; M_0, \beta, C) = C \exp \left\{ -\left(\frac{M}{M_0}\right)^{\beta} \right\}$$

 M_0 cut-off mass

 β cut-off strength

C fudge factor

Final expression of the model

Model **fitting** to

with 3 free parameters: M_0 , β , C

Model fitting

Fitting the cut-off mass M_0 and strength eta

with random bin centers

Labeling unsuccessful fitting

Successful fitting

 $MSE_1 < MSE_0$

Using 1 bootstrap sample

1 bootstrap sample

Transient type (# of objects)

Mass

Fitting for every transient type

For every transient type:

f 1 pair of values for M_0 and eta

Using **N** bootstrap sample

Transient type (# of objects) SNIB (39) SNIB (39) SNIB (39) SSNIB (39) SS

Fitting for every transient type

For every transient type:

N pairs of values for M_0 and β

Model fitting - Results

Fitting results

successful/total

1000 bootstrap samples

Cut-off mass

Fitting results — Cut-off mass M_0

Summary

Data analysis – creating python package and notebook

Results:

– Only 4 transient types show prominent suppression at high mass galaxies:

SLSN-I, SLSN-II, GRB, SNIc-BL

Cut-off metallicity can be calculated using mass-metallicity relation

Further directions:

- Deriving hypothesis testing H_0 , H_1 will have different M_0 values, where $\ln \mathcal{L}(M_0) = \sum_{i=1}^n \ln \Phi^{\rm SFR}(m_i | M_0)$
- Using different data luminosity instead of mass
- Re-estimation when new data arrives