定义域、值域与像集

Domain, Range and Image

刘铎

liuduo@bjtu.edu.cn

- 假设 $A \times B$ 是集合, $R \subseteq A \times B$ 是 $A \ni B$ 的一个二元关系,
- R 的定义域(domain)为集合 $Dom(R) = \{ a \mid a \in A, \text{ 存在 } b \in B \text{ 使得 } (a,b) \in R \},$ 即R中所有有序对的第一元素构成的集合;
- R 的值域(range)为集合 $Ran(R) = \{b \mid b \in B, \text{ 存在 } a \in A \text{ 使得 } (a,b) \in R \},$ 即R中所有有序对的第二元素构成的集合。

- \bullet Dom(R)=
 - $\{ a \mid a \in A, \exists b \in B \text{ such that } (a, b) \in R \}$
- $\operatorname{Ran}(R)$ =
 - $\{b \mid b \in B, \exists a \in A \text{ such that } (a, b) \in R \}$

$$\bullet A = \{1, 2, 3, 4\}$$

•
$$R = \{ (111), (12), (14), (21), (32), (34) \}$$

- $Dom(R) = \{1, 2, 3\}$
- $Ran(R) = \{1, 2, 4\}$

$$\bullet$$
 $A = \{ 1, 2, 3, 4 \}$

•
$$R = \{ (1, 1), (1, 2), (1, 4), (2, 1), (3, 2), (3, 4) \}$$

	1	2	3	4
1	1	1	0	1
2	1	0	0	0
3	0	1	0	1
4	0	0	0	0

- 假设 $A \times B$ 是集合, $R \subseteq A \times B$ 是 A 到 B 的一个二元关系,
- 对于A 中任一元素x,可定义x 的像集 (image)为

$$R(x) = \{ y \in B \mid xRy \};$$

• 对于A的任一子集 A_1 ,可定义 A_1 的像集为 $R(A_1) = \{ y \in B \mid xRy \ 对某 x \in A_1 \ 成立 \}$,且定义 $R(\emptyset) = \emptyset$ 。

$$\bullet R(x) = \{ y \in B \mid xRy \}$$

•
$$R(A_1) = \{ y \in B \mid xRy$$
且存在 $x \in A_1 \}$
$$R(A_1) = \bigcup R(x), \text{ 对所有 } x \in A_1$$

$$R(\emptyset) = \emptyset$$

$$\bullet$$
 $A = \{1, 2, 3, 4\}$

•
$$R = \{ (1, 1), (1, 2), (1, 4), (2, 1), (3, 2), (3, 4) \}$$

•
$$R(2) = ?$$

•
$$R(3) = ?$$

•
$$R(\{2,3\}) = ?$$

•
$$R(2) = \{1\}$$

$$\bullet$$
 $R(3) = \{2, 4\}$

$$\bullet$$
 $R(\{2,3\}) = \{1,2,4\}$

●定理:

假设A、B 是集合,R、S 是 A 到B 的二元关系,若对于所有 $a \in A$ 都有R(a) = S(a) 成立,则 R = S。

- 证明:
 - \bullet ① $R \subseteq S$
 - \circ $S \subset R$

● 证明:

①
$$R \subseteq S$$

若 $(a,b) \in R$
则 $b \in R(a) = S(a)$
于是 $(a,b) \in S$.
因此 $R \subseteq S$.

.

 $\bigcirc S \subseteq R$

End