```
In[4]:= (* Adam Beck *)
      (* Problem 1*)
      (* hosp-heart.nb data *)
      (* {M,V} M = one year mortality rate,
      percentage of patiuents that died within one year of the
       transplant operation,
      V = average annual number of transplants at that center during the same 4 years *)
      heart = \{\{17.9, 27\}, \{23.1, 4\}, \{40, 3\}, \{6.5, 35\}, \{14.9, 17\}, \{12.5, 4\}, \{15.7, 45\},
          \{9.8, 28\}, \{24, 6\}, \{5.0, 10\}, \{15.4, 13\}, \{4.8, 7\}, \{0, 1\}, \{19.1, 47\}, \{4.5, 6\},
          \{15, 56\}, \{12.5, 4\}, \{33.9, 8\}, \{10.7, 9\}, \{13, 14\}, \{28.3, 12\}, \{57.1, 2\}, \{6.3, 4\},
          \{10, 3\}, \{8.3, 12\}, \{17.5, 10\}, \{20, 3\}, \{29.3, 10\}, \{21.4, 7\}, \{27.3, 8\}, \{13.6, 6\},
          \{21.8, 30\}, \{36.4, 3\}, \{18.2, 11\}, \{33.3, 2\}, \{20, 4\}, \{38.5, 7\}, \{20.8, 18\}, \{12.2, 19\},
          \{22.2, 18\}, \{29, 8\}, \{0, 9\}, \{5.7, 9\}, \{50, 2\}, \{21.7, 15\}, \{66.7, 4\}, \{29.4, 17\},
          \{12.1, 27\}, \{10.7, 14\}, \{6.3, 4\}, \{16.2, 9\}, \{21.1, 5\}, \{17.4, 33\}, \{23.9, 17\},
          \{42.9, 2\}, \{40, 2\}, \{6.7, 15\}, \{44.4, 3\}, \{18.7, 34\}, \{14.7, 24\}, \{7.4, 7\}, \{12.6, 24\},
          \{9.7, 26\}, \{44.4, 2\}, \{16.7, 6\}, \{15.8, 14\}, \{83.3, 2\}, \{10.9, 22\}, \{13.3, 5\},
          \{11.1, 5\}, \{75, 2\}, \{19, 20\}, \{14, 13\}, \{60, 1\}, \{21.2, 8\}, \{9.7, 8\}, \{50, 2\}, \{25, 14\},
          \{18.6, 15\}, \{0.0, 1\}, \{35.3, 9\}, \{23.5, 85\}, \{15.6, 11\}, \{37.5, 2\}, \{14.3, 28\},
          \{14.3, 4\}, \{16.7, 6\}, \{20.0, 15\}, \{13.0, 17\}, \{9.6, 26\}, \{66.7, 3\}, \{30.8, 3\},
          {14.0, 13}, {27.5, 10}, {37.5, 8}, {18.9, 13}, {0.0, 4}, {12.2, 44}, {57.1, 4},
          \{21.4, 35\}, \{23.4, 16\}, \{10.9, 12\}, \{15.6, 8\}, \{16.7, 2\}, \{13.9, 9\}, \{18.2, 11\},
          \{11.5, 26\}, \{18.4, 13\}, \{16.7, 3\}, \{20.4, 14\}, \{40.0, 5\}, \{20.7, 56\}, \{19.6, 13\},
          \{13.5, 9\}, \{29.9, 36\}, \{8.4, 21\}, \{28.4, 24\}, \{7.7, 23\}, \{19.3, 29\}, \{0.0, 1\},
          \{22.2, 20\}, \{30.0, 5\}, \{7.0, 11\}, \{23.8, 7\}, \{18.8, 29\}, \{14.5, 16\}, \{17.0, 16\},
          {20.0, 15}, {6.7, 15}, {11.4, 20}, {100.0, 1}, {31.4, 9}, {17.6, 26}, {19.6, 14}};
 In[5]:= (* Split this M and V data into separate
       lists via Transpose[] in order to parse through *)
      heartTranspose = Transpose[heart];
      MData = heartTranspose[[1]];
      VData = heartTranspose[[2]];
 In[8]:= (* Define mean, median, quantile, and variance functions *)
 ln[0]:= mean[x_] := Sum[x[[i]], \{i, 1, Length[x]\}] / Length[x];
      (* Sum elements, divide by length *)
In[10]:= median[x_] := (s = Sort[x]; s[[IntegerPart[.5 * Length[s]]]]);
      (* Sort list, take element at index 1/2*length *)
ln[ii]= quantile[x_, alpha_] := (s = Sort[x]; s[[IntegerPart[alpha*Length[s]]]])
       (* Sort list, take element at index .alpha*length *)
log(12) = variance[x_] := (m = mean[x]; Sum[(x[[i]] - m)^2, {i, 1, Length[x]}]/Length[x]);
      (* difference of every element from mean, squared, times 1/length *)
In[13]:= (* Find the mean, median, q1 and q3, and variance *)
      hospMeanM = mean[MData]
Out[13]= 21.9045
```

```
In[14]:= hospMeanV = N[mean[VData]]
Out[14]= 13.8657
In[15]:= hospMedianM = median[MData]
Out[15]= 18.2
In[16]:= hospMedianV = median[VData]
Out[16]= 10
In[17]:= hospQ1M = quantile[MData, .25]
Out[17]= 12.2
In[18]:= hospQ1V = quantile[VData, .25]
Out[18]= 4
In[72]:= hospQ3M = quantile[MData, .75]
Out[72]= 25
In[73]:= hospQ3V = quantile[VData, .75]
Out[73]= 17
In[21]:= hospVarianceM = variance[MData]
Out[21]= 268.634
In[22]:= hospVarianceV = N[variance[VData]]
Out[22]= 166.46
      (* Histograms using two difference bin sizes *)
      (* I will use a bin size Length/2 for a very large bin count,
      and Length/10 for a smaller bin count *)
      (* MData large bin count *)
     Histogram[MData, IntegerPart[Length[MData] / 2]]
      12
      10
Out[23]=
```


(* VData, large bin count *) Histogram[VData, IntegerPart[Length[VData] / 2]]

(* VData, small bin count*) ${\tt Histogram}\big[{\tt VData,\ IntegerPart}\big[{\tt Length}\big[{\tt VData}\big] \, \big/ \, {\tt 10}\big]\big]$


```
(* Produce plots of quantile functions, moment functions, and CDFs *)
      (* Define functions for moments and CDF *)
      (* Sum elements raised to the kth power, divide by length *)
     moment[x_, k_] := N[Sum[x[[i]]^k, {i, 1, Length[x]}]/Length[x]];
ln[28] = cdf[x_, xi_] := N[Sum[If[x[[i]] <= xi, 1, 0], {i, 1, Length[x]}]];
      (* Count that an element is less than or equal to a given element *)
In[29]:= (* Plot the quantile functions *)
      (* MData *)
     Plot[quantile[MData, i], {i, 0, 1}]
     60
     50
     40
Out[29]=
     30
     20
      10
                 0.2
                                                          1.0
                           0.4
                                     0.6
                                                8.0
In[30]:= (* VData *)
     Plot[quantile[VData, i], {i, 0, 1}]
     50
     40
     30
Out[30]=
     20
      10
                 0.2
                                                          1.0
                           0.4
                                     0.6
                                                8.0
In[31]:= (* Plot moment functions *)
      (* Get the first 10 moments for MData and VData in a Table *)
     momMData = Table[moment[MData, i], {i, 1, 10}];
In[32]:= momVData = Table[moment[VData, i], {i, 1, 10}];
```

```
In[33]:= (* Plot the two moments *)
      ListPlot[{momMData, momVData}, PlotStyle → PointSize[.03], PlotRange → {0, 9.9 * 10^17}]
      (* Blue is MData, Orange is VData*)
      8 \times 10^{17}
      6 \times 10^{17}
Out[33]=
      4 \times 10^{17}
      2\times10^{17}
      (* Plot CDF functions *)
      (* MData from range 0 to maximum element in the data set *)
      Plot[cdf[MData, i], {i, 0, Max[MData]}]
      140 [
      120
      100
       80
Out[34]=
       60
       40
       20
                                                                100
      (* VData *)
      (* VData from range 0 to maximum element in the data set *)
      Plot[cdf[VData, i], {i, 0, Max[VData]}]
      140
      120
      100
       80
Out[35]=
       60
       40
       20
```

40

(∗ MData from range minimum element to maximum element in the data set ∗)

In[104]:= Plot[cdf[MData, i], {i, Min[MData], Max[MData]}]

(* MData from range minimum element to maximum element in the data set *)
Plot[cdf[VData, i], {i, Min[VData], Max[VData]}]

(* Although the instructions do not say to compare
any box and whisker and QQ plots for this hospital data
against other sets of data, I will product them anyways. QQ
will be MData(x axis) against VDaya (y axis) *)

- (* Box an whisker plots *)
- (* A box and whisker plot takes a min, q1, q2 (median), q3, and max *)

(* Box and whisker, MData and VData, outliers not shown *)
BoxWhiskerChart[{MData, VData}]

In[47]:= (* Box and whisker, MData and VData, outliers shown *)
BoxWhiskerChart[{MData, VData}, "Outliers"]

In[54]:= (* Parametric Plots (QQ Plots), MData on x axis, VData on y axis *)
ParametricPlot[{quantile[MData, i], quantile[VData, i]}, {i, 0, 1}]


```
In[63]= (* If the two sets come from a population with the same distribution,
    the points should fall approximately
      along a 45 degree reference line. As we can see,
    the 2 batches do not appear to have come from populations with
      a common distribution, as they do not fit along a 45 degree line *)
     (* resistor.nb data *)
     (* The data represents a listing of the resistances
      (in ohms) of 200 resistors which are all rated at 10 kiloohms. *)
     resistors = {9.97910927, 9.833997401, 10.48797923, 9.778286587, 10.4127049, 9.729651074,
        10.34005333, 9.894176108, 10.07983211, 9.933230947, 9.977783398, 10.13141411,
        10.1266421, 9.37852757, 10.26785423, 9.907086669, 9.744503691, 9.971603949,
        9.693939764, 9.620137112, 12.28072506, 10.0580338, 10.33764317, 9.757096213,
        9.593230848, 9.713741738, 9.432574293, 9.62099431, 9.802732952, 9.971484578,
        10.22548428, 10.3352728, 9.989841592, 10.29860424, 9.52298034, 10.08499861,
        9.394148142, 9.944944954, 10.21438162, 10.36193691, 10.02987499, 9.603449021,
        9.742946181, 9.875414084, 10.05078967, 10.12314509, 10.15281111, 5.870566193,
        9.484863417, 9.973958404, 9.94911044, 9.374762262, 9.788310356, 10.06500849,
        9.77439594, 10.03864565, 10.32397119, 9.916142963, 9.967350072, 10.09860352,
        9.987682395, 10.15563395, 9.537918791, 9.945042157, 10.02686399, 9.74540807,
        10.26915708, 9.696347652, 10.13930795, 9.51572712, 9.367227099, 9.831637831,
        10.1807235, 9.88921993, 9.923452458, 9.944225885, 9.779727284, 10.26538836, 10.2298635,
        10.2461264, 9.694717951, 9.771545526, 9.679096242, 10.15118993, 10.25894345,
        9.613968464, 10.14607857, 10.3809408, 10.00425765, 10.30422606, 9.938641588,
        10.14989447, 9.62901378, 6.613345698, 10.48706974, 10.10426569, 10.15476425,
        9.839152246, 9.74229305, 9.712882265, 10.09355753, 9.655283966, 10.01073951,
        10.23032052, 9.896222755, 9.646005983, 10.22741355, 9.916736976, 9.853518852,
        9.797304974, 9.542975581, 9.582644329, 10.06420074, 10.1110437, 9.09833499,
        9.694181349, 10.0837185, 9.990310834, 9.680224016, 9.544769559, 10.12220661,
        10.35625939, 9.68922915, 9.816272486, 9.838797828, 9.787675983, 10.01512384,
        9.672549018, 9.166747182, 9.839861368, 10.0490497, 9.9589975, 9.707653239, 9.642065029,
        10.14670044, 9.704657023, 9.851454583, 9.92931813, 10.05903936, 9.749898131,
        10.12904658, 9.776733909, 9.956306817, 10.10913774, 9.25291271, 9.823820724,
        9.581313056, 9.84027462, 9.738894951, 9.923279654, 9.815685862, 9.754906605,
        10.19531748, 9.718578829, 9.830784043, 9.860661512, 9.665515781, 9.956836598,
        10.06308718, 9.401201273, 10.10992616, 9.738494773, 9.991823154, 9.877411846,
        10.23755441, 10.04556889, 9.978626954, 10.06519891, 9.774786454, 10.26202664,
        10.10298671, 9.558598995, 9.352852535, 9.611078544, 9.807194024, 9.684415081,
        10.17326848, 9.683191811, 10.03918111, 9.891267714, 9.707087079, 9.68933829,
        10.10867702, 9.770431111, 9.697278747, 10.15024178, 10.17638293, 9.676198933,
        9.765484028, 9.952918381, 10.15444308, 10.03372073, 9.607316647, 9.856609145,
        9.805244863, 9.728007162, 9.951510938, 10.03217857, 10.19504918, 10.23059564};
     (* Find the mean, median, q1 and q3, and variance *)
     (* functions were defined above for the hospital data *)
     resistorMean = mean[resistors]
```

```
In[71]:= resistorMedian = median[resistors]
Out[71] = 9.91674
In[74]:= resistorQ1 = quantile[resistors, .25]
Out[74] = 9.71288
In[75]:= resistorQ3 = quantile[resistors, .75]
Out[75]= 10.1043
In[79]:= resistorVariance = variance[resistors]
Out[79]= 0.229448
In[80]:= (* Histograms using two difference bin sizes *)
      (* I will use a bin size Length/2 for a very large bin count,
      and Length/10 for a smaller bin count*)
      (* Large bin count*)
     Histogram[resistors, IntegerPart[Length[resistors] / 2]]
      15
      10
Out[80]=
      5
                                    10.0
In[81]:= (* Small bin count *)
     Histogram[resistors, IntegerPart[Length[resistors] / 10]]
     50
      40
     30
Out[81]=
     20
      10
      0
                                                            11.0
                        9.5
                                                10.5
                                    10.0
```

```
(∗ Produce plots of quantile functions, moment functions, and CDFS ∗)
      (* functions were defined above for the hospital data *)
In[82]:= (* Plot the quantile functions *)
      Plot[quantile[resistors, i], {i, 0, 1}]
      10.5
      10.0
Out[82]=
       9.5
                   0.2
                               0.4
                                          0.6
                                                     0.8
                                                                1.0
In[96]:= (* Plot the moment functions *)
      (* Get the first 10 moments for the resistor data in a table *)
      momResistorData = Table[moment[resistors, i], {i, 1, 10}];
      (* Plot the two moments *)
      ListPlot[momResistorData, PlotStyle \rightarrow PointSize[.03], PlotRange \rightarrow {0, 9.9 * 10^9}]
      8 \times 10^{9}
      6 \times 10^{9}
Out[97]=
      4 \times 10^{9}
      2 \times 10^{9}
                                                                10
```

```
(* Plot the CDF functions *)
      (* CDF for range 0 to the maximum element in the data set *)
     Plot[cdf[resistors, i], {i, 0, Max[resistors]}]
     200
     150
Out[98]= 100
      50
      (* CDF for range minimum element to maximum element in the data set *)
In[99]:= Plot[cdf[resistors, i], {i, Min[resistors], Max[resistors]}]
     200
     150
Out[99]= 100
      50
                         8
                                        10
                                                11
```

(* A box and whisker plot takes a min, q1, q2 (median), q3, and max *)

(* Box an whisker plots *)

ln[111]:= (* Box and whisker, resistor data, outliers not shown *) BoxWhiskerChart[resistors]

(* Box and whisker, resistor data, outliers shown *)

In[112]:= BoxWhiskerChart[resistors, "Outliers"]

(★ Parametric plot comparison with drips and resistor data will be later ★)

(* drips.nb data *)