圆锥曲线的定义与性质

曲线名称		圆(Circle)	椭圆 (Ellipse)	双曲线(Hyperbola)	抛物线(Parabola)	
标准方程		$x^2 + y^2 = r^2 (r > 0)$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 (a, b > 0)$	$y^2 = 2px \ (p > 0)$	
体系一	定义	$\frac{ PF_1 }{ PF_2 } = \lambda \ (\lambda > 0 \boxtimes \lambda \neq 1)$	$ PF_1 + PF_2 = 2a$ ($2a > F_1F_2 $) 焦点三角形面积 $S_{\triangle PF_1F_2} = b^2 \tan \frac{\theta}{2}$	$\ PF_1 - PF_2\ = 2a$ ($0 < 2a < F_1F_2 $) 焦点三角形面积 $S_{\triangle PF_1F_2} = b^2 \cot \frac{\theta}{2}$	M_2 抛物线的切点弦性质 抛物线的切点弦中点与极 热连线的中点在抛物线上; 特别地,若切点弦过抛物线 焦点 F ,则 $\angle APB$ 为直角且 $PF \perp AB$	
	光学性质	切线方程 $x_0x+y_0y=r^2$ 从圆心射出的光线的反射光线仍经过 圆心	切线方程 $\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1$ 从一个焦点射出的光线的反射光线过另一个焦点	F_2 切线方程 $\frac{x_0x}{a^2} - \frac{y_0y}{b^2} = 1$ 从一个焦点射出的光线的反射光线的反向延长线经过另一个焦点	切线方程 $y_0y=p(x+x_0)$ 从焦点射出的光线的反射光线与对称轴平行	
		等张角线	极坐标方程 $\rho = \frac{ep}{1 - e\cos\theta}$			
体系二		对线段 AB 张 角相同的点的 轨迹	$\frac{ PF }{ PH } = e$ 通径长 $d = \frac{2b^2}{a} = 2ep$	$\frac{ PF }{ PH } = e$ 通径长 $d = \frac{2b^2}{a} = 2ep$	PF = PH 通径长 d = 2p	
体系三	定义	$k_{PA} \cdot k_{PB} = -1$	$k_{PA} \cdot k_{PB} = -\frac{b^2}{a^2}$	$k_{PA} \cdot k_{PB} = \frac{b^2}{a^2}$	直线与圆锥曲线 弦长公式 $l = \sqrt{1+k^2} \left x_1 - x_2 \right = \sqrt{1+m^2} \left y_1 - y_2 \right = \left \vec{n} \right \cdot \left t_1 - t_2 \right $ 面积公式	
	垂径定理	$k_{OM} \cdot k_{AB} = -1$	$k_{OM} \cdot k_{AB} = -\frac{b^2}{a^2}$	$k_{OM} \cdot k_{AB} = \frac{b^2}{a^2}$	$S=rac{1}{2}$ 底×高 $=rac{1}{2}$ 水平宽×铅直高 $=rac{1}{2}l_1l_2\sin\theta$ 位置关系 椭圆的等效判别式 $\Delta=a^2A^2+b^2B^2-C^2$ 双曲线的等效判别式 $\Delta=C^2-\left(a^2A^2-b^2B^2\right)$	

圆锥曲线的解题常见思路

关键词	一般情况	过定点的直线	弦长	面积	点与曲线的位置关系
提示	★ 引入参数控制运动,以交点坐标为中间变量表示其他所有几何量 ★ 利用直线方程消去纵(横)坐标 →将直线方程代入曲线方程(联立) →通过韦达定理消去另一坐标 有时也直接求解坐标	定点在 y 轴上时用斜截式表示 定点在 x 轴上时用倒斜横截式表示 定点不在轴上时用参数方程表示	★ 弦长公式 ★ 两点间距离公式 ★ 若方程 $Px^2 + Qx + R = 0$ 的两根 时 , 两根之差为 $ x_1 - x_2 = \frac{\sqrt{\Delta}}{ P }$ ★ 注意参数的取值范围 , 需要保证 直线与圆锥曲线相交	 ★ 利用共线或平行条件进行等积变换 ★ 三角形面积公式 ★ 四边形的面积公式 ½ l₁l₂ sin θ ★ 四边形的对角线往往是相关的 ★ 面积比往往转化为共线线段比 	★ 将点代入圆锥曲线方程中再将 方程改写为不等式
关键词	直线与圆锥曲线的位置关系	焦点	中点	定比分点	共线、平行、垂直
提示	★ 联立直线与曲线方程后通过判别式判断★ 直接利用等效判别式判断	 ★ 两个焦点 → 体系— ★ 一个焦点 → 补焦点 → 体系— → 补准线 → 体系二 ★ 注意利用极坐标方程 	★ 注意取中点构造中位线 ★ 中点坐标公式 $x = \frac{x_1 + x_2}{2} , y = \frac{y_1 + y_2}{2}$	★ 弦所在直线过焦点时,可补对应 准线后构造相似三角形 ★ 利用定比分点坐标公式或利用 直线的参数方程转化. ★ " $x_2 = \alpha x_1 \ (\alpha \ne -1)$ " $\Leftrightarrow x_1 x_2 = \alpha \left(\frac{x_1 + x_2}{\alpha + 1}\right)^2$.	★ 利用斜率或向量表示★ 共线也可以利用点在另外两点 所确定的直线上表示
关键词	以 AB 为直径的圆过 C	垂直平分线	关于直线对称	关于原点对称的两点	与原点连线相互垂直
提示	★ 以 AB 为直径的圆过 C ⇔ $\angle ACB = 90^{\circ}$ ⇔ $MC = MA$ (M 为 AB 中点)	 ★ P 在 AB 的垂直平分线上 ⇔ PA = PB ⇔ PM ⊥ AB (M 为 AB 中点) 	★ A、B关于I对称⇔ I是 AB 的垂直平分线★ 注意对称变换下的几何不变量	★ 有关斜率的问题 → 体系三★ 注意取中点构造中位线★ 斜率的比值计算可以平方后用圆锥曲线的方程进行整理	 ★ 利用相关直线设直线斜率 ★ 化齐次联立 ★ 注意 "姐妹圆"
关键词	与定点的两连线垂直	向量的运算	成锐角(直角、钝角)	过…与…交点的曲线	其他
提示	★ 利用相关直线设直线斜率★ 平移坐标系转化为与原点的连 线相互垂直的问题	★ 向量数乘 → 共线 向量和差 → 平行四边形法则 向量相等 → 形成平行四边形 向量数量积 → 投影长度 ★ 在求形如 $(x_1-t)(x_2-t)$ 的值时, 可以将方程整理为形如 $A(x-t)^2 + B(x-t) + C = 0$ 的形式	★ 转化为向量夹角 借助向量数量积的符号判断	★ 利用交点曲线系得到曲线方程	 ★ 当运动由圆锥曲线上的单点驱动时注意利用圆锥曲线的参数方程 ★ 极限思想,利用切线方程得到定点或定值的具体数据 ★ 利用仿射变换改造椭圆为圆改造斜交直线为垂直直线