CLASS 21, WEDNESDAY APRIL 18TH: Tor_i^R

We have already noted the importance of flat modules; they allow us to conclude all modules inject into an injective R-module. Today we will study how close a module is to being flat. We will use some homological methods.

Definition 0.1. If M is an R-module, we have already talked about how we can take a free resolution of M producing an exact sequence

$$\cdots \xrightarrow{\psi_3} R^{\lambda_2} \xrightarrow{\psi_2} R^{\lambda_1} \xrightarrow{\psi_1} R^{\lambda_0} \longrightarrow M \to 0$$

We can tensor this sequence with N and produce

$$\cdots \xrightarrow{\psi_3 \otimes 1_N} R^{\lambda_2} \otimes_R N \xrightarrow{\psi_2 \otimes 1_N} R^{\lambda_1} \otimes_R N \xrightarrow{\psi_1 \otimes 1_N} R^{\lambda_0} \otimes_R N \xrightarrow{\psi_0 \otimes 1_N} 0$$

This sequence is no longer exact (unless N was flat to begin with). However, we do maintain the inclusion $\ker(\psi_i \otimes 1_N) \supseteq \operatorname{im}(\psi_{i+1} \otimes 1_N)$. Therefore, we measure

$$\operatorname{Tor}_{i}^{R}(M,N) = \ker(\psi_{i} \otimes 1) / \operatorname{im}(\psi_{i+1} \otimes 1)$$

An important note is that this is independent of the chosen free resolution. The primary advantage of Tor is that it defines a LES for the tensor product:

Theorem 0.2. If $0 \to M' \to M \to M'' \to 0$ is a SES, then the following is exact:

$$\begin{array}{cccc} & \cdots \longrightarrow & \operatorname{Tor}_2^R(M,N) \longrightarrow & \operatorname{Tor}_2^R(M'',N) \longrightarrow \\ & \operatorname{Tor}_1(M',N) \longrightarrow & \operatorname{Tor}_1^R(M,N) \longrightarrow & \operatorname{Tor}_1^R(M'',N) \longrightarrow \\ & M' \otimes_R N \longrightarrow & M \otimes_R N \longrightarrow & M'' \otimes_R N \longrightarrow & 0 \end{array}$$

This theorem allows us complete the SES corresponding to a tensor, since it is only in general right exact. The proof of this theorem requires us to use the snake lemma and complete a free resolution of M' and M'' to one for M. I recommend reading about this proof independently.

To make this more succinct, I make the following note:

Proposition 0.3. Consider R-modules M, N. Then

$$M \otimes_R N \cong \operatorname{Tor}_0^R(M,N)$$

Proof. Note that we have a right exact sequence

$$R^{\lambda_1} \xrightarrow{\psi_1} R^{\lambda_0} \longrightarrow M \to 0$$

Therefore, tensoring with N maintains this:

$$R^{\lambda_1} \otimes_R N \stackrel{\psi_1 \otimes 1_N}{\longrightarrow} R^{\lambda_0} \otimes_R N \to M \otimes N \to 0$$

This implies

$$M \otimes N \cong R^{\lambda_0} / \operatorname{im}(\psi_1 \otimes 1_N) \cong \ker(\psi_0 \otimes 1_N) / \operatorname{im}(\psi_1 \otimes 1_N) = \operatorname{Tor}_0^R(M, N)$$

Here is the theorem that represents the importance of Tor explicitly.

Theorem 0.4. The following are equivalent:

- 1) N is a flat R-module.
- 2) $\operatorname{Tor}_{1}^{R}(M, N) = 0$ for all R-modules M. 3) $\operatorname{Tor}_{i}^{R}(M, N) = 0$ for all R-modules M and $i \geq 1$.

Proof. 1) \Leftrightarrow 2): Given Theorem 0.2, we have an exact sequence

$$\operatorname{Tor}_1(M'', N) \to M' \otimes_R N \to M \otimes_R N \to M'' \otimes_R N \to 0$$

Therefore, the desired SES holds if and only if $Tor_1(M'', N) = 0$. Additionally, every M''can be surjected onto by a free module, so M'' can always appear in such a SES sequence.

- $3) \Rightarrow 2)$ Obvious.
- 1) \Rightarrow 3) Given M is flat, we see that

$$\cdots \xrightarrow{\psi_3 \otimes 1_N} R^{\lambda_2} \otimes_R N \xrightarrow{\psi_2 \otimes 1_N} R^{\lambda_1} \otimes_R N \xrightarrow{\psi_1 \otimes 1_N} R^{\lambda_0} \otimes_R N \to M \otimes N \to 0$$

is an exact sequence. Therefore, $\ker(\psi_i \otimes 1_N) = \operatorname{im}(\psi_{i+1} \otimes 1_N)$ for all $i \geq 1$, or equivalently, $\operatorname{Tor}_{i}^{R}(M, N) = \ker(\psi_{i} \otimes 1_{N}) / \operatorname{im}(\psi_{i+1} \otimes 1_{N}) = 0.$

Another important remark is that Tor, is symmetric:

Proposition 0.5.

$$\operatorname{Tor}_{i}^{R}(M,N) \cong \operatorname{Tor}_{i}^{R}(N,M)$$

This requires tensoring together a free resolution of M with one for N, then taking the total complex. This shares homology with both complexes simultaneously, and therefore allows one to conclude the desired isomorphism. Now onto some examples:

Example 0.6. \mathbb{Q} is a flat \mathbb{Z} -module which is not projective (not locally-free). However, \mathbb{Q} is a flat Z-module since it is torsion-free over a PID. So we can look at the short exact sequence

$$0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$$

which induces an exact sequence

$$0 = \operatorname{Tor}_1^R(\mathbb{Q}, D) \to \operatorname{Tor}_1(\mathbb{Q}/\mathbb{Z}, D) \to \mathbb{Z} \otimes D \to \mathbb{Q} \otimes D \to \mathbb{Q}/\mathbb{Z} \otimes D \to 0$$

for a given module D. Therefore, $\operatorname{Tor}_1(\mathbb{Q}/\mathbb{Z}, D) = \ker(\mathbb{Z} \otimes D \to \mathbb{Q} \otimes D)$. This is precisely the torsion subgroup of D.