Monotone Class Theorem

Crosby Collins crosbyqcollins@gmail.com

Theorem 1.1. Let Ω be a set and \mathcal{A} an algebra of subsets of Ω such that $\Omega, \emptyset \in \mathcal{A}$. Then, there exists a smallest monotone class S containing \mathcal{A} such that it is also the smallest σ -algebra containing \mathcal{A} .

Proof. Let S be the intersection of all monotone classes containing \mathcal{A} , namely the smallest monotone class containing \mathcal{A} . Clearly, since σ -algebras are closed under countable unions and intersections, and in particular, closed under increasing and decreasing countable unions and intersections respectively, σ -algebras are monotone classes. Thus, we have that $\sigma(\mathcal{A}) \supseteq S$. From here, it suffices to show that S is closed under finite intersections and complementation.

Define the set

$$C(A) =: \{ B \in S : A \in S, B \cup A \in S \}.$$

Thus, we have that $\mathcal{C}(A) \supseteq \mathcal{A}$, since \mathcal{A} is an algebra. Define an increasing sequence $B_i \subset \mathcal{C}(A)$. Since S is a monotone class and $A \cup B_i \uparrow$ in S

$$\bigcup_{i=1}^{\infty} A \cup B_i \in S,$$

by definition. Similarly, for a decreasing sequence of sets B_i ,

$$\bigcap_{i=1}^{\infty} A \cup B_i \in S.$$

Now, we conclude that C(A) is a monotone class and that C(A) = S. Therefore, S is closed under finite unions.

Now, we prove the latter requirement. Define

$$\mathcal{N} =: \{ B \in S : B^c \in S \}.$$

Similar to before, we have that $N \supseteq \mathcal{A}$ since algebras are closed under relative complementation. If $B_i \subset \mathcal{N}$ is increasing, then the sequence $B_i^c \downarrow$ and

$$\bigcap_{i=1}^{\infty} B_i^c \in S.$$

On the contrary, for a decreasing set B_i^c , we have

$$\bigcup_{i=1}^{\infty} B_i^c \in S.$$

We see that $\mathcal{N} = S$ and thus, $\sigma(\mathcal{A}) \subseteq S$.