EEEN313/ECEN405

Electromagnetics

CAPITAL THINKING. GLOBALLY MINDED.

1

Design Example - Actuator

- Design to pull 1 kg mass upward
- We need to find the number of turns of wire we need to lift it.

$$\mathfrak{F} = Ni = 1N$$
 A-turns

$$A_{gap} = \pi \left(\frac{2 \times 10^{-2}}{2} \right)^2 = 10^{-4} \pi \text{ m}^2$$

Force in the airgap

$$F = \frac{(1)(4\pi \times 10^{-7})(10^{-4}\pi)N^2}{(2)(3\times 10^{-3})^2} = 21.93\times 10^{-6}N^2 \text{ newtons} = \frac{\mu_r \mu_0 A(Ni)^2}{2x^2} \text{ newtons (N)}$$

CAPITAL THINKING. GLOBALLY MINDED. BALLY BINDED.

Design Example

The force necessary to just move the mass is

$$F = 1 \times 9.8$$
 newtons

Equating the required force to the available force and solving for the number of turns:

$$9.8 = 21.93 \times 10^{-6} N^2$$

$$N = \sqrt{\frac{9.8}{21.93 \times 10^{-6}}} = 668 \text{ turns}$$

Notice that the force equation contains the term Ni. If we want to use just half the current, we need twice the turns, and so on.

CAPITAL THINKING. GLOBALLY MINDED.

3

Basic relations

CAPITAL THINKING. GLOBALLY MINDED.

FARADAY'S LAW: INDUCED VOLTAGE IN A COIL DUE TO TIME-RATE OF CHANGE OF FLUX LINKAGE

$$e(t) = \frac{d}{dt}\lambda(t) = N\frac{d}{dt}\phi(t)$$

$$\phi(t) = \phi(0) + \frac{1}{N} \int_{0}^{t} e(\tau) \cdot d\tau$$

CAPITAL THINKING. GLOBALLY MINDED.

5

Some Background

• B-H curve

 $B = \mu H$ where, B: flux density [Wb / m^2] or [T] μ : permeability [H / m] where, $\mu = \mu_0 \cdot \mu_r$

where, $\mu = \mu_0 \cdot \mu_r$ $(\mu_0 = 4\pi \times 10^{-7}, \mu_r = 500 \sim 3000, iron)$

- H: Magnetic Field Strength
- Permeability: degree of magnetization that a material obtains in response to an applied magnetic field

CAPITAL THINKING. GLOBALLY MINDED. MAI I TE IHO KI TE PAE

Types

- Various types of converters with electrical isolation.
 Two main types based on the way they utilise the transformer core:
 - Unidirectional core excitation where only positive part (Q1) of B-H loop is used
 - Bidirectional core excitation where both the positive (Q1) and the negative (Q3) part of B-H loop is utilised

CAPITAL THINKING GLOBALLY MINDED.

8

Types

- Unidirectional:
 - · Based on the non-isolation topologies
 - Flyback Converter (from Buck-Boost)
 - Forward Converter (from Step-Down)
- Bidirectional:
 - Inverter topologies
 - Push-pull
 - Half Bridge
 - Full Bridge

AMPERE-TURNS AND FLUX

$$H_{m}\ell_{m} + H_{g}\ell_{g} = Ni \qquad H = \frac{B}{\mu}$$

$$\phi(\frac{\ell_{m}}{A_{m}\mu_{m}} + \frac{\ell_{g}}{A_{g}\mu_{o}}) = Ni \qquad B = \frac{\Phi}{A}$$

$$\phi = \frac{Ni}{\Re} \qquad \Re = \Re_{m} + \Re_{g}$$

CAPITAL THINKING. GLOBALLY MINDED. MAI 1 TE 1HO KI TE PAE

10

INDUCTANCE

$$\lambda_{_{m}}=N\phi_{_{m}}=L_{_{m}}i$$

Flux Linkage

Flux

$$i \frac{\times \left(\frac{N}{\ell_m}\right)}{\ell_m} H_m \frac{\times (\mu_m)}{\ell_m} B_m \frac{\times (A_m)}{\ell_m} A_m \frac{\times (N)}{\ell_m} A_m$$

CAPITAL THINKING. GLOBALLY MINDED.

Design of High-Frequency Inductors and Transformers

CAPITAL THINKING. GLOBALLY MINDED.

19

BASICS OF MAGNETIC DESIGN

- The peak flux density B_{\max} in the magnetic core to limit core losses, and
- \bullet The peak current density $J_{\mbox{\tiny max}}$ in the winding conductors to limit conduction losses

CAPITAL THINKING. GLOBALLY MINDED. MAI I TE IHO KI TE PAE

Popular Materials

Material	Permeability (relative)	Bsat (tesla)	Loss @ 0.1 T, 100 kHz (mW/cm3)	Usage
Ferrite (Mag. Inc. P)	2500	0.5	80	Power Transformers Filter Inductors (gapped) PFC Inductors (gapped)
Ferrite (Mag. Inc. W)	10,000	0.42	250	EMI Filters (common-mode only)
Molypermalloy (Mag. Inc. MPP)	60	0.75	340	Filter Inductors PFC Inductors
Sendust (Mag. Inc. Kool-Mu)	60	1	850	Filter Inductors PFC Inductors
Powdered iron (Micrometals 52)	75	1.4	3200	Filter Inductors PFC Inductors
80% Cobalt tape (Honeywell 2714A)	100,000	0.55	90	Mag. Amps

CAPITAL THINKING. GLOBALLY MINDED.

21

INDUCTOR AND TRANSFORMER CONSTRUCTION

CAPITAL THINKING. GLOBALLY MINDED.

AREA-PRODUCT METHOD

Core Window Area A_{window}

$$A_{window} = \frac{1}{k_w} \sum_{y} \left(N_y A_{cond,y} \right)$$

$$A_{cond,y} = \frac{I_{rms,y}}{J_{max}}$$

$$A_{window} = \frac{\sum_{y} \left(N_{y} I_{rms,y}\right)}{k_{w} J_{\text{max}}}$$

CAPITAL THINKING. GLOBALLY MINDED. MAI I TE IHO KI TE PAE

23

Core Cross-Sectional Area A_{core}

$$A_{core} = \frac{\hat{\phi}}{B_{\max}}$$

inductor:

$$\hat{\phi} = \frac{L\hat{I}}{N}$$

$$A_{core} = \frac{L\hat{I}}{NB_{\text{max}}}$$

transformer:

$$\hat{\phi} = \frac{k_{conv} V_{in}}{N_1 f_s}$$

$$A_{core} = \frac{k_{conv}V_{y}}{N_{y}f_{s}B_{\text{max}}}$$

Core Area-Product $A_p = A_{core} A_{window}$

inductor:
$$A_p = \frac{L\hat{I}I_{rms}}{k_w J_{max} B_{max}}$$

transformer:
$$A_p = \frac{k_{conv} \sum V_y I_{y,rms}}{k_w B_{max} J_{max} f_s}$$
 note: $\frac{V_1}{N_1} = \frac{V_2}{N_2} = etc$

Design Procedure Based on Area-Product A_p

inductor:
$$N = \frac{L\hat{I}}{B_{\text{max}}A_{core}}$$
 $\mathbb{Z} = \frac{N^2}{\mathfrak{R}_g}$ $\mathfrak{R}_g = \frac{N^2\mu_oA_{core}}{L}$

transformer:
$$N_y = \frac{k_{conv}V_y}{A_{core}f_sB_{max}}$$

CAPITAL THINKING. GLOBALLY MINDED.

25

Databases

Core No.	Material		$\Delta T = 60$ °C	P _{sp} @ ΔΤ=600°C	J _{rms} @ ΔT= <u>60</u> °C & P _{sp}	B _{ac} @ ΔT=60 °C & 100 kHz	A A
8	3F3	2.1 cm ⁴	9.8 °C/W	237 mW/cm ³	$3.3/\sqrt{k_{cu}}$	170 mT	$0.0125\sqrt{k_{cu}}$

	Core No.	Material	$AP = A_w A_c$	R _θ ΔT=60 °C	P _{sp} @ T _s =100 °C	J _{rms} @ T _s =100 °C & P _{sp}	B̂ _{rated} @ T _s =100 °C & 100 kHz	$\frac{2.22 \text{ k}_{\text{cu}} \text{ f J}_{\text{rms}} \hat{\beta} \text{ AP}}{\text{(f = 100kHz)}}$
	8	3F3	2.1 cm ⁴	9.8 °C/W	237 mW/cm ³	$(3.3/\sqrt{k_{cu}})$ $\sqrt{\frac{R_{dc}}{R_{ac}}}$ A/mm^2	• 170 mT	$ \begin{array}{c} \bullet \\ 2.6 \times 10^3 \bullet \\ \sqrt{\frac{k_{cu}R_{dc}}{R_{ac}}} \\ [V-A] \end{array} $
1								

Some Points

- This design ignores eddy current losses in windings
 - Can be substantial due to proximity
 - To minimise loss, inductors with single layer construction is suggested
- Temperature rise is an another important factor
- Core saturation

CAPITAL THINKING. GLOBALLY MINDED.

27

Thermal considerations – A glimpse

- Winding and core losses rise core temperature limit to 100-125C
 - Core losses increase above 100C
 - Saturation flux decreases with temp increase
 - Effect on other components
- Copper resistivity changes with temperature

Design Problem Summary

- Challenge conversion of component operating specs in converter circuit into component design parameters.
- Goal simple, easy-to-use procedure that produces component design specs that result in an acceptable design having a minimum size, weight, and cost.
- Inductor electrical (e.g.converter circuit) specifications.
 - Inductance value L
 - Inductor currents rated peak current I, rated rms current I_{ms}, and rated dc current (if any) I_{dc} Operating frequency f.

 Allowable power dissipation in inductor or

 - equivalently maximum surface temperature of the inductor T_s and maximum ambient temperature T_a.
- Transformer electrical (converter circuit) specifications.
 - Rated rms primary voltage V_{pri}

- Rated rms primary current I pri
 Turns ratio N_{pri}/N_{sec}
 Operating frequency f
 Allowable power dissipation in transformer or equivalently maximum temperatures T_s and T_a

- Design procedure outputs.
 - Core geometry and material.
 - Core size (A_{core}, A_{w})
 - Number of turns in windings.
 - Conductor type and area Acu.
 - Air gap size (if needed).
- · Three impediments to a simple design procedure.
 - 1. Dependence of J_{rms} and B on core size.
 - 2. How to chose a core from a wide range of materials and geometries.
 - 3. How to design low loss windings at high operating frequencies.
- Detailed consideration of core losses, winding losses, high frequency effects (skin and proximity effects), heat transfer mechanisms required for good design procedures.

Single Pass Tx Design

CAPITAL THINKING. GLOBALLY MINDED. MAI I TE IHO KI TE PAE

31

Design Example

- Design inputs
- $V_{pri} = 300 \text{ V rms}$; $I_{rms} = 4 \text{ A rms}$
- Turns ratio n = 4
- Operating frequency f = 100 kHz
- $T_s = 100 \,^{\circ}\text{C}$ and $T_a = 40 \,^{\circ}\text{C}$
- V I rating S = (300 V rms)(4 A rms) = 1200 watts
- · Core material, shape, and size.
 - Use 3F3 ferrite because it has largest performance factor at 100 kHz.
 - Use double-E core. Relatively easy to fabricate winding.
- Core volt-amp rating = 2,600 $\sqrt{k_{cu}} \sqrt{\frac{R_{dc}}{R_{ac}}}$
 - Use solid rectangular conductor for windings because of high frequency.
 Thus k_{cu} = 0.6 and R_{ac}/R_{dc} = 1.5.
 - Core volt-amp capability = 2,600 $\sqrt{\frac{0.6}{1.5}}$ = 1644 watts. > 1200 watt transformer rating. Size is adequate.

- Using core database, $R_{\theta} = 9.8$ °C/W and $P_{sp} = 240$ mW/cm³.
- Flux density and number of primary and secondary turns.
 - From core database, $B_{ac} = 170 \text{ mT}.$
 - N_{pri} = $\frac{300\sqrt{2}}{(1.5x10^{-4}m^2)(2\pi)(10^5\text{Hz})(0.17\text{ T})}$ = 26.5 \approx 24. Rounded down to 24 to increase flexibility in designing sectionalized transformer winding.
 - $N_{\text{sec}} = \frac{24}{6} = 6$.
- From core database $J_{rms} = \frac{3.3}{\sqrt{(0.6)(1.5)}}$
 - $= 3.5 \text{ A/mm}^2.$
 - $A_{cu,pri} = \frac{4 \text{ A rms}}{3.5 \text{ A rms/mm}^2} = 1.15 \text{ mm}^2$
 - $A_{cu,sec} = (4)(1.15 \text{ mm}^2) = 4.6 \text{ mm}^2$

- Primary and secondary conductor areas proximity effect/eddy currents included.
 Assume rectangular (foil) conductors with
 k_{cu} = 0.6 and layer factor F₁ = 0.9.
 - Iterate to find compatible foil thicknesses and number of winding sections.
 - 1st iteration assume a single primary section and a single secondary section and each section having single turn per layer. Primary has 24 layers and secondary has 6 layers.
- Primary layer height $h_{pri} = \frac{A_{cu,pri}}{F_1 h_W}$

$$= \frac{1.15 \text{ mm}^2}{(0.9)(20 \text{ mm})} = 0.064 \text{ mm}$$

· Normalized primary conductor height

$$\begin{split} \varphi &= \frac{\sqrt{F_1\,^h pri}}{d} = \frac{\sqrt{0.9~(0.064~mm)}}{(0.24~mm)} = 0.25~;\\ \delta &= 0.24~mm~in~copper~at100~kHz~and~100~^{\circ}C. \end{split}$$

• Optimum normalized primary conductor height $\phi = 0.3$ so primary winding design is satisfactory.

• Secondary layer height $h_{sec} = \frac{A_{cu,sec}}{F_1 h_w}$

$$= \frac{4.6 \text{ mm}^2}{(0.9)(20 \text{ mm})} \approx 0.26 \text{ mm}.$$

· Normalized secondary conductor height

$$\phi = \frac{\sqrt{F_1 \, h_{sec}}}{d} = \frac{\sqrt{0.9 \, (0.26 \, mm)}}{(0.24 \, mm)} = 1$$

- However a six layer section has an optimum
 φ = 0.6. A two layer section has an optimum
 φ = 1. 2nd iteration needed.
- 2nd iteration sectionalize the windings.
 - Use a secondary of 3 sections, each having two layers, of height h_{sec} = 0.26 mm.
 - Secondary must have single turn per layer.
 Two turns per layer would require h_{sec} = 0.52 mm and thus φ= 2. Examination of normalized power dissipation curves shows no optimum φ= 2.

CAPITAL THINKING. GLOBALLY MINDED. MAI I TE IHO KI TE PAE

33

Summary

- Magnetics Basics
- Design of High-Frequency Inductors and Transformers

Concept Quiz

In inductors and transformers discussed here, the window fill-factor is generally as follows:

- A. Close to 0.5
- B. Close to 1.0

CAPITAL THINKING.
GLOBALLY MINDED.
MAI I TE IHO KI TE PAE

