Package 'nimblewomble'

April 9, 2025

Description A software package to perform Wombling, or boundary analysis, using the 'nim-

Type Package

Version 0.1.0

Title Bayesian Wombling using 'nimble'

ble' Bayesian hierarchical modeling environment. Wombling is used widely to track regions of rapid change within the spatial reference domain. Specific functions in the package implement Gaussian process models for point-referenced spatial data followed by predictive inference on rates of change over curves using line integrals. We demonstrate model based Bayesian inference using posterior distributions featuring simple analytic forms while offering uncertainty quantification over curves. For more details on wombling please see, Banerjee and Gelfand (2006) <doi:10.1198 016214506000000041=""> and Halder, Banerjee and Dey (2024) <doi:10.1080 01621459.2023.2177166="">.</doi:10.1080></doi:10.1198>
License MIT + file LICENSE
Encoding UTF-8
Imports nimble, ggplot2, MBA, metR, ggspatial, sf, terra, sp, coda, methods
RoxygenNote 7.3.2
NeedsCompilation no
Author Aritra Halder [aut, cre], Sudipto Banerjee [aut]
Maintainer Aritra Halder <aritra.halder@drexel.edu></aritra.halder@drexel.edu>
Repository CRAN
Date/Publication 2025-04-09 10:00:10 UTC
Contents
curvatures_gaussian 2 curvatures_matern2 3 gamma1.mcov1 4 gamma1n2.gauss 5 gamma1n2.mcov2 6 gamma_int 7

2 curvatures_gaussian

gaussian	
gradients_matern1	 10
materncov1	 11
materncov2	 12
pnorm_nimble	 13
significance	 14
sprates	 15
spwombling	 17
sp_ggplot	 20
wombling_gaussian	 21
wombling_matern1	 22
wombling_matern2	 24
zbeta_gaussian	 25
zbeta_matern1	 26
zbeta_matern2	 27
zbeta_samples	 28
zXbeta	 29
Index	31

 ${\tt curvatures_gaussian}$

Posterior samples of rates of change (gradients and curvatures) for the Matern kernel with $\nu \to \infty$ producing the squared exponential kernel.

Description

For internal use only.

Usage

```
curvatures_gaussian(dists.1, dists.2, dists.3, z, phi, sigma2)
```

Arguments

dists.1	distance matrix generated from coordinates
dists.2	distance of grid from coordinates
dists.3	delta = coordinate - grid
z	posterior samples of $Z(s)$
phi	posterior samples of ϕ
sigma2	posterior samples of σ^2

Value

A matrix of posterior samples for the gradient and curvatures. For internal use only.

curvatures_matern2 3

Author(s)

Aritra Halder <aritra.halder@drexel.edu>, Sudipto Banerjee <sudipto@ucla.edu>

Examples

curvatures_matern2

Posterior samples of rates of change (gradients and curvatures) for the Matern kernel with $\nu=5/2$

Description

For internal use only.

Usage

```
curvatures_matern2(dists.1, dists.2, dists.3, z, phi, sigma2)
```

Arguments

```
dists.1 distance matrix generated from coordinates dists.2 distance of grid from coordinates dists.3 delta = coordinate - grid z posterior samples of Z(s) phi posterior samples of \phi sigma2 posterior samples of \sigma^2
```

Value

A matrix of posterior samples for the gradient and curvatures. For internal use only.

gamma1.mcov1

Author(s)

Aritra Halder <aritra.halder@drexel.edu>, Sudipto Banerjee <sudipto@ucla.edu>

Examples

gamma1.mcov1

Cross-covariance terms for the posterior distribution of wombling measures for Matern $\nu=3/2$.

Description

For internal use only. Performs one-dimensional quadrature using integral as a limit of a sum.

Usage

```
gamma1.mcov1(coords, t, u, s0, phi)
```

Arguments

coords	coordinates
t	value of t
u	vector of u
s0	starting point on curve s_0
phi	posterior sample of ϕ

Value

A matrix of cross-covariance terms. For internal use only.

gamma1n2.gauss 5

Author(s)

Aritra Halder <aritra.halder@drexel.edu>, Sudipto Banerjee <sudipto@ucla.edu>

Examples

gamma1n2.gauss

Cross-covariance terms for the posterior distribution of wombling measures for Matern $\nu \to \infty$, the squared exponential kernel.

Description

For internal use only. Performs one-dimensional quadrature using integral as a limit of a sum.

Usage

```
gamma1n2.gauss(coords, t, u, s0, phi)
```

Arguments

coords	coordinates
t	value of t
u	vector of u
s0	starting point on curve s_0
phi	posterior sample of ϕ

Value

A matrix of cross-covariance terms. For internal use only.

Author(s)

6 gamma1n2.mcov2

Examples

gamma1n2.mcov2

Cross-covariance terms for the posterior distribution of wombling measures for Matern $\nu=5/2$, the squared exponential kernel.

Description

For internal use only. Performs one-dimensional quadrature using integral as a limit of a sum.

Usage

```
gamma1n2.mcov2(coords, t, u, s0, phi)
```

Arguments

coords	coordinates
t	value of t
u	vector of u
s0	starting point on curve s_0
phi	posterior sample of ϕ

Value

A matrix of cross-covariance terms. For internal use only.

Author(s)

gamma_int 7

Examples

gamma_int

Incomplete Gamma Function

Description

For internal use only. Use integration as a limit of a sum to numerically compute the incomplete gamma integral

Usage

```
gamma_int(x, a, b)
```

Arguments

x gamma quantilea shape parameterb scale parameter

Value

A scalar value of the integral. For internal use only.

Author(s)

Aritra Halder <aritra.halder@drexel.edu>, Sudipto Banerjee <sudipto@ucla.edu>

8 gaussian

gaussian

Squared Exponential Covariance kernel

Description

Computes the Matern covariance matrix with fractal parameter $\nu \to \infty$.

Usage

```
gaussian(dists, phi, sigma2, tau2)
```

Arguments

dists distance matrix
phi spatial range
sigma2 spatial variance
tau2 nugget variance

Details

Has the option to compute $\Sigma_{d\times d} + \tau^2 I_d$.

Value

A matrix of covariance terms. For internal use only.

Author(s)

Aritra Halder <aritra.halder@drexel.edu>, Sudipto Banerjee <sudipto@ucla.edu>

gp_fit 9

```
cGaussian = compileNimble(gaussian)
cGaussian(dists = dists[1:N, 1:N], phi = 1, sigma2 = 1, tau2 = 0)
```

gp_fit

Fit a Gaussian process

Description

Fits a Gaussian process with the choice of three kernels. Uses 'nimble' to generate posterior samples.

Usage

```
gp_fit(
  coords = NULL,
  y = NULL,
  X = NULL,
  kernel = c("matern1", "matern2", "gaussian"),
  niter = NULL,
  nburn = NULL
)
```

Arguments

coords	spatial coordinats (supply as a matrix)
У	response
X	covariates (supply as a matrix without the intercept)
kernel	choice of kernel; must be one of "matern1", "matern2", "gaussian"
niter	number of iterations
nburn	burn-in

Value

A list of MCMC samples containing the covariance parameters and the parameter estimates with associated 95

Author(s)

```
Aritra Halder <aritra.halder@drexel.edu>,
Sudipto Banerjee <sudipto@ucla.edu>
```

10 gradients_matern1

Examples

```
require(nimble)
require(nimblewomble)

set.seed(1)
# Generated Simulated Data
N = 1e2
tau = 1
coords = matrix(runif(2 * N, -10, 10), ncol = 2)
colnames(coords) = c("x", "y")
y = rnorm(N, mean = 20 * sin(sqrt(coords[, 1]^2 + coords[, 2]^2)), sd = tau)
# Posterior samples for theta
mc_sp = gp_fit(coords = coords, y = y, kernel = "matern2")
mc_sp$estimates
```

gradients_matern1

Posterior samples of rates of change (gradients) for the Matern kernel with $\nu=3/2$

Description

For internal use only.

Usage

```
gradients_matern1(dists.1, dists.2, dists.3, z, phi, sigma2)
```

Arguments

dists.1	distance matrix generated from coordinates
dists.2	distance of grid from coordinates
dists.3	delta = coordinate - grid
z	posterior samples of $Z(s)$
phi	posterior samples of ϕ
sigma2	posterior samples of σ^2

Value

Returns a matrix of gradients. For internal use only.

Author(s)

materncov1 11

Examples

materncov1

Matern Covariance kernel with $\nu = 3/2$

Description

Computes the Matern covariance matrix with fractal parameter $\nu=3/2$. Has the option to compute $\Sigma_{d\times d}+\tau^2I_d$.

Usage

```
materncov1(dists, phi, sigma2, tau2)
```

Arguments

dists distance matrix
phi spatial range
sigma2 spatial variance
tau2 nugget variance

Value

A matrix of covariance terms. For internal use only.

Author(s)

12 materncov2

Examples

```
######################
# Internal use only #
########################
# Used across multiple functions
# Example usage
require(nimble)
require(nimblewomble)
set.seed(1)
# Generated Simulated Data
N = 1e2
tau = 1
coords = matrix(runif(2 * N, -10, 10), ncol = 2)
colnames(coords) = c("x", "y")
dists = as.matrix(dist(coords))
cMaterncov1 = compileNimble(materncov1)
cMaterncov1(dists = dists[1:N, 1:N], phi = 1, sigma2 = 1, tau2 = 0)
```

materncov2

Matern Covariance kernel with $\nu = 5/2$

Description

Computes the Matern covariance matrix with fractal parameter $\nu=5/2$. Has the option to compute $\Sigma_{d\times d}+\tau^2I_d$.

Usage

```
materncov2(dists, phi, sigma2, tau2)
```

Arguments

dists distance matrix
phi spatial range
sigma2 spatial variance
tau2 nugget variance

Value

A matrix of covariance terms. For internal use only.

Author(s)

pnorm_nimble 13

Examples

```
# Internal use only #
########################
# Used across multiple functions
# Example usage
require(nimble)
require(nimblewomble)
set.seed(1)
# Generated Simulated Data
N = 1e2
tau = 1
coords = matrix(runif(2 * N, -10, 10), ncol = 2)
colnames(coords) = c("x", "y")
dists = as.matrix(dist(coords))
cMaterncov1 = compileNimble(materncov1)
cMaterncov1(dists = dists[1:N, 1:N], phi = 1, sigma2 = 1, tau2 = 0)
```

pnorm_nimble

Computes the Cumulative Distribution Function (CDF) for the standard Gaussian probability distribution

Description

For internal use only.

Usage

```
pnorm_nimble(x)
```

Arguments

Х

standard Gaussian quantile

Value

A numeric value of the CDF. For internal use only.

Author(s)

14 significance

Examples

significance

Determines significance for posterior estimates

Description

For internal use only.

Usage

```
significance(data_frame = NULL)
```

Arguments

data_frame

data frame consisting of median, lower and upper confidence interval for estimates

Value

A data frame consisting median, lower and upper confidence interval for estimates and significance (0 or 1). For internal use only.

Author(s)

Aritra Halder <aritra.halder@drexel.edu>, Sudipto Banerjee <sudipto@ucla.edu>

sprates 15

sprates

Posterior samples for rates of change

Description

Posterior samples for rates of change

Usage

```
sprates(
  coords = NULL,
  grid = NULL,
  model = NULL,
  kernel = c("matern1", "matern2", "gaussian")
)
```

Arguments

coords coordinates $\begin{array}{ll} \text{grid} & \text{grid for sampling the rates of change} \\ \text{model} & \text{posterior samples of } Z(s), \, \phi, \, \sigma^2 \\ \text{kernel} & \text{choice of kernel; must be one of "matern1", "matern2", "gaussian"} \\ \end{array}$

Value

A list containing MCMC samples for gradients and curvatures and the associated estimates and 95

Author(s)

Aritra Halder <aritra.halder@drexel.edu>, Sudipto Banerjee <sudipto@ucla.edu>

```
require(nimble)
require(nimblewomble)

set.seed(1)
# Generated Simulated Data
N = 1e2
tau = 1
coords = matrix(runif(2 * N, -10, 10), ncol = 2); colnames(coords) = c("x", "y")
y = rnorm(N, mean = 20 * sin(sqrt(coords[, 1]^2 + coords[, 2]^2)), sd = tau)

# Create equally spaced grid of points
xsplit = ysplit = seq(-10, 10, by = 1)[-c(1, 21)]
grid = as.matrix(expand.grid(xsplit, ysplit), ncol = 2)
colnames(grid) = c("x", "y")
```

16 sprates

```
# Process for True Rates of Change #
# Gradient along x
true_sx = round(20 * cos(sqrt(grid[,1]^2 + grid[,2]^2)) *
               grid[,1]/sqrt(grid[,1]^2 + grid[,2]^2), 3)
# Gradient along y
true_sy = round(20 * cos(sqrt(grid[,1]^2 + grid[,2]^2)) *
               grid[,2]/sqrt(grid[,1]^2 + grid[,2]^2), 3)
# Curvature along x
true_sxx = round(20 * cos(sqrt(grid[,1]^2 + grid[,2]^2))/
                 sqrt(grid[,1]^2 + grid[,2]^2) -
                20 * cos(sqrt(grid[,1]^2 + grid[,2]^2)) *
                grid[,1]^2/(grid[,1]^2 + grid[,2]^2)^(3/2) -
                20 * sin(sqrt(grid[,1]^2 + grid[,2]^2)) *
                grid[,1]^2/(grid[,1]^2 + grid[,2]^2), 3)
# Mixed Curvature
true_sxy = round(-20 * (cos(sqrt(grid[,1]^2 + grid[,2]^2)) -
                sin(sqrt(grid[,1]^2 + grid[,2]^2))) * grid[,1]
                 * grid[,2]/(grid[,1]^2 + grid[,2]^2), 3)
# Curvature along y
true\_syy = round(20 * cos(sqrt(grid[,1]^2 + grid[,2]^2))/
                 sqrt(grid[,1]^2 + grid[,2]^2) -
                20 * cos(sqrt(grid[,1]^2 + grid[,2]^2)) *
                grid[,2]^2/(grid[,1]^2 + grid[,2]^2)^(3/2) -
                20 * sin(sqrt(grid[,1]^2 + grid[,2]^2)) *
                grid[,2]^2/(grid[,1]^2 + grid[,2]^2), 3)
# Create the plots
p1 = sp_ggplot(data_frame = data.frame(coords, z = y))
p2 = sp_ggplot(data_frame = data.frame(grid[-which(is.nan(true_sx)),],
              z = true_sx[-which(is.nan(true_sx))]))
p3 = sp_ggplot(data_frame = data.frame(grid[-which(is.nan(true_sy)),],
              z = true_sy[-which(is.nan(true_sy))]))
p4 = sp_ggplot(data_frame = data.frame(grid[-which(is.nan(true_sxx)),],
              z = true_sxx[-which(is.nan(true_sxx))]))
p5 = sp_ggplot(data_frame = data.frame(grid[-which(is.nan(true_sxy)),],
              z = true_sxy[-which(is.nan(true_sxy))]))
p6 = sp_ggplot(data_frame = data.frame(grid[-which(is.nan(true_syy)),],
              z = true_syy[-which(is.nan(true_syy))]))
####################################
# Fit a Gaussian Process #
# Posterior samples for theta
mc_sp = gp_fit(coords = coords, y = y, kernel = "matern2")
# Posterior samples for Z(s) and beta
model = zbeta_samples(y = y, coords = coords,
                     model = mc_sp$mcmc,
                     kernel = "matern2")
######################
# Rates of Change #
```

spwombling 17

```
######################
gradients = sprates(grid = grid,
                    coords = coords,
                    model = model,
                    kernel = "matern2")
p8 = sp_ggplot(data_frame = data.frame(grid,
                z = gradients$estimate.sx[,"50%"],
               sig = gradients$estimate.sx$sig))
p9 = sp_ggplot(data_frame = data.frame(grid,
               z = gradients$estimate.sy[,"50%"],
               sig = gradients$estimate.sy$sig))
p10 = sp_ggplot(data_frame = data.frame(grid,
                 z = gradients$estimate.sxx[,"50%"],
                sig = gradients$estimate.sxx$sig))
p11 = sp_ggplot(data_frame = data.frame(grid,
                 z = gradients$estimate.sxy[,"50%"],
                 sig = gradients$estimate.sxy$sig))
p12 = sp_ggplot(data_frame = data.frame(grid,
                z = gradients$estimate.syy[,"50%"],
                sig = gradients$estimate.syy$sig))
```

spwombling

Posterior samples for wombling measures

Description

Posterior samples for wombling measures

Usage

```
spwombling(
  coords = NULL,
  curve = NULL,
  model = NULL,
  kernel = c("matern1", "matern2", "gaussian")
)
```

Arguments

Value

A list containing posterior samples of wombling measures and associated estimates and their 95

18 spwombling

Author(s)

Aritra Halder <aritra.halder@drexel.edu>, Sudipto Banerjee <sudipto@ucla.edu>

```
## Not run:
require(nimble)
require(nimblewomble)
set.seed(1)
# Generated Simulated Data
N = 1e2
tau = 1
coords = matrix(runif(2 * N, -10, 10), ncol = 2)
colnames(coords) = c("x", "y")
y = rnorm(N, mean = 20 * sin(sqrt(coords[, 1]^2 + coords[, 2]^2)), sd = tau)
# Create equally spaced grid of points
xsplit = ysplit = seq(-10, 10, by = 1)[-c(1, 21)]
grid = as.matrix(expand.grid(xsplit, ysplit), ncol = 2)
colnames(grid) = c("x", "y")
# Fit a Gaussian Process #
# Posterior samples for theta
mc_sp = gp_fit(coords = coords, y = y, kernel = "matern2")
# Posterior samples for Z(s) and beta
model = zbeta_samples(y = y, coords = coords,
                     model = mc_sp$mcmc,
                     kernel = "matern2")
###########
# Wombling #
############
# Pick any curve (contour) of your choice
# curve = your contour
tvec = sapply(1:(nrow(curve) - 1), function(x){
sqrt(sum((curve[(x + 1),] - curve[x,])^2))))
umat = as.matrix(t(sapply(1:(nrow(curve) - 1), function(x){
(curve[(x + 1),] - curve[x,])))/tvec)
wm = spwombling(coords = coords,
               curve = curve,
               model = model,
               kernel = "matern2")
# Total wombling measure for gradient
colSums(wm$estimate.wm.1[,-4]); colSums(wm$estimate.wm.1[,-4])/sum(tvec)
# Total wombling measure for curvature
colSums(wm$estimate.wm.2[,-4]); colSums(wm$estimate.wm.2[,-4])/sum(tvec)
```

spwombling 19

```
# Color code points based on significance
col.pts.1 = sapply(wm\$estimate.wm.1\$sig, function(x){}
 if(x == 1) return("green")
 else if(x == -1) return("cyan")
 else return(NA)
 })
 col.pts.2 = sapply(wm$estimate.wm.2$sig, function(x){
 if(x == 1) return("green")
 else if(x == -1) return("cyan")
 else return(NA)
 })
p13 = sp_ggplot(data_frame = data.frame(coords, y))
p14 = p13 + geom_path(curve, mapping = aes(x, y), linewidth = 2)
p15 = p13 + geom_path(curve, mapping = aes(x, y), linewidth = 2) +
geom_path(curve, mapping = aes(x, y),
          colour = c(col.pts.1, NA), linewidth = 1, na.rm = TRUE)
p16 = p13 + geom_path(curve, mapping = aes(x, y), linewidth = 2) +
            geom_path(curve, mapping = aes(x, y),
            colour = c(col.pts.2, NA), linewidth = 1, na.rm = TRUE)
################
# True Values #
################
truth = matrix(0, nrow = nrow(curve) - 1, ncol = 2)
rule = seq(0, 1, by = 0.01)
for(i in 1:(nrow(curve) - 1)){
 u.perp = c(umat[i, 2], - umat[i, 1])
 s0 = curve[i,]
truth.lsegment = sapply(rule * tvec[i], function(x){
 s.t = s0 + x * umat[i,]
 true_sx = 20 * cos(sqrt(s.t[1]^2 + s.t[2]^2)) * s.t[1]/
            sqrt(s.t[1]^2 + s.t[2]^2)
 true_{sy} = 20 * cos(sqrt(s.t[1]^2 + s.t[2]^2)) * s.t[2]/
            sqrt(s.t[1]^2 + s.t[2]^2)
 true_sx * u.perp[1] + true_sy * u.perp[2]
 })
truth[i, 1] = sum(truth.lsegment * (tvec[i]/101))
truth.lsegment = sapply(rule * tvec[i], function(x){
 s.t = s0 + x * umat[i,]
 true_sxx = 20 * cos(sqrt(s.t[1]^2 + s.t[2]^2))/sqrt(s.t[1]^2 + s.t[2]^2) -
    20 * cos(sqrt(s.t[1]^2 + s.t[2]^2)) *
            s.t[1]^2/(s.t[1]^2 + s.t[2]^2)^(3/2) -
   20 * \sin(\sqrt{s.t[1]^2 + s.t[2]^2}) * s.t[1]^2/(s.t[1]^2 + s.t[2]^2)
 true_sxy = -20 * (cos(sqrt(s.t[1]^2 + s.t[2]^2)) -
                sin(sqrt(s.t[1]^2 + s.t[2]^2))) *
```

sp_ggplot

sp_ggplot

Spatial Plot Function

Description

Spatial Plot Function

Usage

```
sp_ggplot(
  data_frame = NULL,
  sp = FALSE,
  shape = NULL,
  legend.key.height = 0.7,
  legend.key.width = 0.4,
  text.size = 10,
  point.size = 0.7,
  clr.pt = "black",
  palette = "Spectral",
  extend = TRUE,
  title = NULL,
  bound.box = NULL
)
```

Arguments

```
data_frame data frame consisting of coordinates and data

sp logical parameter indicating whether to make a spatial plot

shape if sp = TRUE shape file should be provided (should be an sf object)

legend.key.height
    height of legend (defaults to .7)

legend.key.width
    width of legend (defaults to .4)
```

wombling_gaussian 21

text.size	size of legend text (defaults to 10)
point.size	size of points to be plotted (defaults to 0.7)
clr.pt	color of point to be plotted (defaults to black)
palette	(optional) color palette
extend	logical parameter indicating whether to extend the interpolation (defaults to TRUE)
title	title of the plot (defaults to NULL)
bound.box	bounding box for spatial maps (leave as NULL if not known)

Value

A ggplot object.

Author(s)

```
Aritra Halder <aritra.halder@drexel.edu>,
Sudipto Banerjee <sudipto@ucla.edu>
```

Examples

```
require(nimblewomble)

set.seed(1)
# Generated Simulated Data
N = 1e2
tau = 1
coords = matrix(runif(2 * N, -10, 10), ncol = 2)
colnames(coords) = c("x", "y")
y = rnorm(N, mean = 20 * sin(sqrt(coords[, 1]^2 + coords[, 2]^2)), sd = tau)

sp_ggplot(data_frame = data.frame(coords, z = y))
```

 $\begin{tabular}{ll} wombling_gaussian & Posterior samples for wombling measures for the squared exponential \\ & kernel \end{tabular}$

Description

For internal use only.

Usage

```
wombling_gaussian(coords, curve, dists, tvec, umat, z, phi, sigma2)
```

22 wombling_matern1

Arguments

coords	coordinates
curve	curve coordinates
dists	distance matrix
tvec	vector of t's
umat	matrix of u's
z	posterior samples of $Z(s)$
phi	posterior samples of ϕ
sigma2	posterior samples of σ^2

Value

A matrix of wombling measures. For internal use only.

Author(s)

Aritra Halder <aritra.halder@drexel.edu>, Sudipto Banerjee <sudipto@ucla.edu>

Examples

wombling_matern1

Posterior samples for wombling measures from the Matern kernel with $\nu=3/2$

Description

For internal use only.

wombling_matern1 23

Usage

```
wombling_matern1(coords, curve, dists, tvec, umat, z, phi, sigma2)
```

Arguments

coords	coordinates
curve	curve coordinates
dists	distance matrix
tvec	vector of t's
umat	matrix of u's
z	posterior samples of $Z(s)$
phi	posterior samples of ϕ
sigma2	posterior samples of σ^2

Value

A matrix of wombling measures. For internal use only.

Author(s)

Aritra Halder <aritra.halder@drexel.edu>, Sudipto Banerjee <sudipto@ucla.edu>

24 wombling_matern2

wombling_matern2	Posterior samples for wombling measures from the Matern kernel with
	$\nu = 5/2$

Description

For internal use only.

Usage

```
wombling_matern2(coords, curve, dists, tvec, umat, z, phi, sigma2)
```

Arguments

coords	coordinates
curve	curve coordinates
dists	distance matrix
tvec	vector of t's
umat	matrix of u's
z	posterior samples of $Z(s)$
phi	posterior samples of ϕ
sigma2	posterior samples of σ^2

Value

A matrix of wombling measures. For internal use only.

Author(s)

```
Aritra Halder <aritra.halder@drexel.edu>,
Sudipto Banerjee <sudipto@ucla.edu>
```

zbeta_gaussian 25

```
phi = phi,
     sigma2 = sigma2)
## End(Not run)
```

zbeta_gaussian

Posterior samples of spatial effects and intercept for the squared exponential kernel

Description

For internal use only.

Usage

```
zbeta_gaussian(y, dists, phi, sigma2, tau2)
```

Arguments

У	response
dists	distance matrix derived from coordinates
phi	posterior samples of ϕ
sigma2	posterior samples of σ^2
tau2	posterior samples of τ^2

Value

A matrix of spatial effects and intercept. For internal use only.

Author(s)

```
Aritra Halder <aritra.halder@drexel.edu>,
Sudipto Banerjee <sudipto@ucla.edu>
```

zbeta_matern1

zbeta_matern1	Posterior samples of spatial effects and intercept for the Matern kernel with $nu=3/2$

Description

For internal use only.

Usage

```
zbeta_matern1(y, dists, phi, sigma2, tau2)
```

Arguments

У	response
dists	distance matrix derived from coordinates
phi	posterior samples of ϕ
sigma2	posterior samples of σ^2
tau2	posterior samples of τ^2

Value

A matrix of spatial effects and intercept. For internal use only.

Author(s)

```
Aritra Halder <aritra.halder@drexel.edu>,
Sudipto Banerjee <sudipto@ucla.edu>
```

zbeta_matern2 27

zbeta_matern2	Posterior samples of spatial effects and intercept for the Matern kernel with $\nu=5/2$

Description

For internal use only.

Usage

```
zbeta_matern2(y, dists, phi, sigma2, tau2)
```

Arguments

У	response
dists	distance matrix derived from coordinates
phi	posterior samples of ϕ
sigma2	posterior samples of σ^2
tau2	posterior samples of τ^2

Value

A matrix of spatial effects and intercept. For internal use only.

Author(s)

Aritra Halder <aritra.halder@drexel.edu>, Sudipto Banerjee <sudipto@ucla.edu>

zbeta_samples

zbeta_samples $\begin{array}{ll} \textit{Posterior samples of spatial effects and intercept for Matern with} \\ nu = 3/2 \\ \end{array}$

Description

For internal use only.

Usage

```
zbeta_samples(
  coords = NULL,
  y = NULL,
  X = NULL,
  model = NULL,
  kernel = c("matern1", "matern2", "gaussian")
)
```

Arguments

coords	coordinates
у	response
Χ	covariates (supply as a matrix without intercept)
model	matrix of posterior samples of ϕ , σ^2 and τ^2
kernel	choice of kernel; must be one of "matern1", "matern2", "gaussian"

Value

A matrix containing posterior samples of spatial effects and the intercept.

Author(s)

Aritra Halder <aritra.halder@drexel.edu>, Sudipto Banerjee <sudipto@ucla.edu>

```
require(nimble)
require(nimblewomble)

set.seed(1)
# Generated Simulated Data
N = 1e2
tau = 1
coords = matrix(runif(2 * N, -10, 10), ncol = 2); colnames(coords) = c("x", "y")
y = rnorm(N, mean = 20 * sin(sqrt(coords[, 1]^2 + coords[, 2]^2)), sd = tau)
```

zXbeta 29

```
# Posterior samples for theta
mc_sp = gp_fit(coords = coords, y = y, kernel = "matern2")
# Posterior samples for Z(s) and beta
model = zbeta_samples(y = y, coords = coords,
                      model = mc_sp$mcmc,
                      kernel = "matern2")
estimates = t(round(apply(model, 2, quantile,
              probs = c(0.5, 0.025, 0.975)), 3))
yfit = estimates[paste0("z[", 1:N, "]"), "50%"] +
            estimates["beta[0]", "50%"]
ylow = estimates[paste0("z[", 1:N, "]"), "2.5%"] +
          estimates["beta[0]", "2.5%"]
yhigh = estimates[paste0("z[", 1:N, "]"), "97.5%"] +
            estimates["beta[0]", "97.5%"]
fit_frame = data.frame(true = round(y, 3),
                        est = yfit, `2.5%` = ylow, `97.5%` = yhigh)
fit_frame$sig = significance(data_frame = data.frame(fit_frame[,-1]))
# Plot
sp_ggplot(data_frame = data.frame(coords, z = yfit, sig = fit_frame$sig))
```

zXbeta

Posterior samples of spatial effects and intercept for all kernels in the presence of covariates

Description

For internal use only.

Usage

```
zXbeta(y, X, beta)
```

Arguments

y response

X covariates (supply as a matrix without intercept)

beta posterior samples of β (supply as a matrix)

Value

A matrix of spatial effects and intercept. For internal use only.

Author(s)

30 zXbeta

Index

* curvatures_gaussian	zbeta_gaussian, 25	
curvatures_gaussian, 2	* zbeta_matern1	
* curvatures_matern2	zbeta_matern1,26	
curvatures_matern2, 3	* zbeta_matern2	
* gamma1.mcov1	zbeta_matern2,27	
gamma1.mcov1,4	* zbeta_samples	
* gamma1n2.gauss	zbeta_samples, 28	
gamma1n2.gauss,5		
* gamma1n2.mcov2	curvatures_gaussian, 2	
gamma1n2.mcov2, 6	curvatures_matern2, 3	
* gamma_int	gamma1 mcov1 4	
gamma_int, 7	gamma1.mcov1, 4 gamma1n2.gauss, 5	
* gp_fit	gamma1n2.mcov2, 6	
gp_fit,9	gamma_int, 7	
* gradients_matern1	gaussian, 8	
gradients_matern1, 10	gp_fit, 9	
* materncov1	gradients_matern1, 10	
materncov1, 11	gradients_materni, io	
* materncov2	materncov1, 11	
gaussian, 8	materncov2, 12	
materncov2, 12		
* pnorm_nimble	pnorm_nimble, 13	
pnorm_nimble, 13		
* significance	significance, 14	
significance, 14	sp_ggplot, 20	
* sp_plot	sprates, 15	
sp_ggplot, 20	spwombling, 17	
* sprates	wombling_gaussian, 21	
sprates, 15	wombling_matern1, 22	
spwombling, 17	wombling_matern2, 24	
* wombling_gaussian	wombiling_materinz, 24	
wombling_gaussian, 21	zbeta_gaussian, 25	
* wombling_matern1	zbeta_matern1, 26	
wombling_matern1, 22	zbeta_matern2, 27	
* wombling_matern2	zbeta_samples, 28	
wombling_matern2, 24	zXbeta, 29	
* zXbeta		
zXbeta, 29		
* zbeta_gaussian		