Graph Basics

Charles Aunkan Gomes
Lecturer, Dept. of CSE
United International University
charles@cse.uiu.ac.bd

What is a Graph?

- A graph is a pair (V, E), where
 - ■V is a set of nodes, called vertices
 - E is a collection of pairs of vertices, called edges
- V(G) and E(G) represent the sets of vertices and edges of G, respectively
- Example:

A tree is a special type of graph!

Applications

Electronic circuits

- Printed circuit board
- ■Integrated circuit

Transportation networks

- ■Highway network
- Flight network

Computer networks

- ■Local area network
- ■Internet
- ■Web

Databases

■Entity-relationship diagram

What can we do with graph?

- Find a path from one place to another
- Find the shortest path from one place to another
- Determine connectivity
- Find the "weakest link" (min cut)
 - check amount of redundancy in case of failures
- Find the amount of flow that will go through them

Edge and Graph Types

- Directed edge
 - ■ordered pair of vertices (*u*,*v*)
 - ■first vertex *u* is the origin
 - ■second vertex **v** is the destination
- Undirected edge
 - ■unordered pair of vertices (*u,v*)
- Directed graph (Digraph)
 ■all the edges are directed
 - ■e.g., route network
- Undirected graph
 - ■all the edges are undirected
 - ■e.g., flight network
- Mixed graph

 - ■some edges are undirected and some edges are directed

- End vertices (or endpoints) of an edge
 - u and v are the endpoints of a
- Edges incident to a vertex
 - a, d, and b are incident to v
- Adjacent vertices
 - u and v are adjacent
- Degree of a vertex
 - ■x has degree 5
- Parallel edges
 - ■h and i are parallel edges
- Self-loop
 - ■j is a self-loop

- Out-degree : Outgoing edges of a vertex
 - (a, b) and (a, c) are outgoing edges of vertex a
- In-degree : Incoming edges of a vertex
 - (b, c), (d, c) and (a, c) are incoming edges of vertex c
- In-degree of a vertex
 - ■c has in-degree 3
 - ■b has in-degree 1
- Out-degree of a vertex
 - ■a has out-degree 2
 - ■b has out-degree 1

- Path
 - ■sequence of alternating vertices and edges
 - ■begins with a vertex
 - ■ends with a vertex
 - each edge is preceded and followed by its endpoints
- Simple path
 - ■path such that all its vertices and edges are distinc
- Examples
 - $P_1 = (V, b, X, h, Z)$

is a simple path

■P₂=(U, c, W, e, X, g, Y, f, W, d, V)

is a path that is not simple

- Cycle
 - ■A cycle is a path whose start and end vertices are the same
 - each edge is preceded and followed by its endpoints
- Simple cycle
 - ■A cycle is simple if each edge is distinct and each vertex is distinct,
 - except for the first and the last one
- Examples
 - ${f C}_1=(V, b, X, g, Y, f, W, c, U, a, V)$ is a simple cycle
 - ■C₂=(U,c,W,e,X,g,Y,f,W,d,V,a,U) is a cycle that is not simple

- Dense graph: |E| 2 |V|2; Sparse graph: |E| 2 |V|
- A weighted graph associates weights with either the edges or the vertices
- A complete graph is a graph that has the maximum number of edges
 - ■for undirected graph with n vertices, the maximum number of edges is n(n-1)/2
 - ■for directed graph with n vertices, the maximum number of edges is n(n-1)

- A subgraph of G is a graph G' such that
 - ■V(G') is a subset of V(G) [V(G') ② V(G)] and
 - \blacksquare E(G') is a subset of E(G) [E(G') \boxdot E(G)]
- A spanning subgraph G' of G is a subgraph of G that contains all the vertices of G, that is
 - $\blacksquare V(G')$ is equal to V(G)[V(G') = V(G)] and
 - **■**E(G') is a subset of E(G) [E(G') ② E(G)]
- A forest is a graph without cycles.
- A tree is a connected forest, that is, a connected graph without cycles.
- A spanning tree of a graph G is a spanning subgraph that is a (free) tree.

- •In a graph G, two vertices, v_0 and v_1 , are connected if there is a path in G from v_0 to v_1
- •A graph is connected if, for every pair of distinct vertices v_i and v_j , there is a path from v_i to v_j
- •A connected component of an undirected graph is a maximal connected subgraph.
- A tree is a graph that is connected and acyclic.
- •A directed graph is strongly connected if there is a directed path from v_i to v_i and also from v_i to v_i .
- •A strongly connected component is a maximal subgraph that is strongly connected.

Properties

Property 1

For an undirected graph $S_v \deg(v) = 2m$

Proof: each edge is counted twice

Property 2

For a directed graph $S_v \text{ indeg}(v) = S_v \text{ outdeg}(v) = m$

Proof: each for out-degreeedge is counted once for in-degree and once

Property 3

If G is a simple undirected graph, then $m \le n(n - 1)/2$, and if G is a simple directed graph, then $m \le n(n - 1)$.

Proof: each vertex has degree at most (n - 1). Then use Property 1 and Property 2.

Graph Representations

- •For graphs to be computationally useful, they have to be conveniently represented in programs
- There are two computer representations of graphs:
 - Adjacency matrix representation
 - Adjacency lists representation

- Assume $V = \{1, 2, ..., n\}$
- An adjacency matrix represents the graph as a n xn matrix A:
- ■A[i, j] = 1 if edge (i, j) \in E (or weight of edge) = 0 if edge (i, j) \notin E

- Assume $V = \{1, 2, ..., n\}$
- An adjacency matrix represents the graph as a n xn matrix A:
- ■A[i, j] = 1 if edge (i, j) \in E (or weight of edge) = 0 if edge (i, j) \notin E

	1	2	3	4	5	6
1	0	1	О	1	О	О
2	0	O	O	O	1	O
3	0	O	O	O	1	1
4	0	1	O	O	O	O
5	0	O	O	1	O	O
6	0	O	O	O	O	1

The adjacency matrix for an undirected graph is symmetric; The adjacency matrix for a digraph need not be symmetric

Pros:

- ■Simple to implement
- ■Easy and fast to tell if a pair (i, j) is an edge: simply check if A[i, j] is 1 or 0
- ■Can be very efficient for small graphs

Cons:

■No matter how few edges the graph has, the matrix takes O(n²) in memory

Α	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

Adjacency List Representation

A graph is represented by a one-dimensional array L of linked lists, where

■L[i] is the linked list containing all the nodes adjacent to node i.

Adjacency List Representation

Pros:

- ■Saves on space (memory): the representation takes O(|V|+|E|) memory.
- ■Good for large, sparse graphs (e.g., planar maps)

Cons:

■It can take up to O(n) time to determine if a pair of nodes (i, j) is an edge: one would have to search the linked list L[i], which takes time proportional to the length of L[i].

Asymptotic Perfromance

Assumptions: (1) n vertices, m edges, (2) simple graph

Operations	Adjacency List	Adjacency Matrix	
Space	O(n+m)	$O(n^2)$	
incidentEdges(v)	$O(\deg(v))$	O(n)	
areAdjacent(v, w)	$O(\min(\deg(v), \deg(w)))$	O (1)	
insertVertex(v)	O (1)	O(n2)	
insertEdge(e)	O (1)	O (1)	
removeVertex(v)	$O(\deg(v))$	$O(n^2)$	
removeEdge(e)	O (1)	O (1)	

THANK YOU

