Corrigé exercice 26:

1.
$$f(x) = 2x - 3x^2 - 1$$
: forme développée

$$\operatorname{Avec}: a = -3, b = 2 \operatorname{et} c = -1$$

2.
$$f(x) = 4(x-3)(x+2)$$
: forme factorisée

Avec :
$$a = 4$$
, $x_1 = 3$ et $x_2 = -2$

3.
$$f(x) = -\pi x^2 + 2x$$
 ; forme développée

$$\mathrm{Avec}: a = -\pi, \, b = 2 \, \mathrm{et} \, c = 0$$

4.
$$f(x) = -2x^2$$
: formes développée, factorisée et canonique

Avec :
$$a = -2$$
, $b = c = 0$

Et:
$$a = -2$$
 , $x_1 = x_2 = 0$

Et enfin :
$$a=-2$$
, $\alpha=0$ et $\beta=0$

5.
$$f(x) = 5 - 6(x+2)^2$$
: forme canonique

Avec :
$$a=-6$$
, $\alpha=-2$ et $\beta=5$

6.
$$f(x) = 6(x+1)(4-x)$$
: forme factorisée

Avec :
$$a = -6$$
, $x_1 = -1$ et $x_2 = 4$

Corrigé exercice 27:

1.
$$f$$
 est donnée par sa forme factorisée : $a=-1<0$, $x_1=2$ et $x_2=-3$. D'après le signe de a , f est associée à la courbe C_3 .

$$g$$
 est donnée par sa forme développée : $a=3>0, b=5$ et $c=-1.$ La courbe passant par le point de coordonnées $(0;-1)$ est la courbe $C_{1\!.}$

$$h$$
 est donnée par sa forme canonique : $a=7>0$, $\alpha=1$ et $\beta=2$. La courbe ayant pour sommet le point de coordonnées $(1;2)$ est la courbe C_2 .

2. Pour déterminer l'ordonnée du point d'intersection entre C_2 et l'axe des ordonnées, il faut calculer h(0) .

On a :
$$h(0) = 7(0-1)^2 + 2$$

= $7 \times 1^2 + 2$
 $7 \times 1 + 2$
= $7 + 2$
= 9

L'ordonnée du point d'intersection entre C_2 et l'axe des ordonnées est donc 9.

Corrigé exercice 28 :

Toutes les fonctions sont données par la forme canonique de leur expression.

Fonction	a	α	β	Extremum	Sommet
f	6	1	1	minimum	S(1;1)
g	6	- 1	1	minimum	S(-1;1)
h	6	- 1	- 1	minimum	S(-1;-1)

On peut donc conclure que:

 C_1 est associée à la fonction \mathcal{G} .

 C_2 est associée à la fonction h.

 C_3 est associée à la fonction f.

Corrigé exercice 29 :

$$(x-2)^2 = x^2 - 4x + 2^2 = x^2 - 4x + 4$$

2.
$$x^2 + 2x + 1^2 = (x+1)^2$$

$$x^2 + 2x + 1 = (x+1)^2$$

3.
$$x^{2} + 6x = \left(x + \frac{6}{2}\right)^{2} - \left(\frac{6}{2}\right)^{2}$$
$$x^{2} + 6x = (x+3)^{2} - 3^{2}$$
$$x^{2} + 6x = (x+3)^{2} - 9$$

4.
$$x^{2} - 4x = \left(x - \frac{4}{2}\right)^{2} - \left(\frac{4}{2}\right)^{2}$$
$$x^{2} - 4x = (x - 2)^{2} - 2^{2}$$
$$x^{2} - 4x = (x - 2)^{2} - 4$$

Corrigé exercice 30 :

1. On résout :
$$(x-4)^2=144$$

$$x-4=-\sqrt{144} \text{ ou } x-4=\sqrt{144}$$

$$x-4=-12 \text{ ou } x-4=12$$

$$x=-12+4 \text{ ou } x=12+4$$

$$x=-8 \text{ ou } x=16$$

Donc:
$$S = \{-8; 16\}.$$

2. On résout :
$$(x+2)^2+5=6$$
 $(x+2)^2=6-5$ $(x+2)^2=1$ $x+2=-\sqrt{1}$ ou $x+2=\sqrt{1}$ $x+2=-1$ ou $x+2=1$ $x=-1-2$ ou $x=1-2$ $x=-3$ ou $x=-1$

Donc:
$$S = \{-3; -1\}$$
.

3. On résout :
$$3(x+1)^2-7=5$$

$$3(x+1)^2=5+7$$

$$3(x+1)^2=12$$

$$(x+1)^2=\frac{12}{3}$$

$$(x+1)^2=4$$

$$x+1=-\sqrt{4} \text{ ou } x+1=\sqrt{4}$$

$$x+1=-2 \text{ ou } x+1=2$$

$$x=-2-1 \text{ ou } x=2-1$$

$$x=-3 \text{ ou } x=1$$

Donc:
$$S = \{-3; 1\}$$
.

4. On résout :
$$-5(x+1)^2 - 10 = 0$$

 $-5(x+1)^2 = 10$

$$(x+1)^2 = -2$$

Dans \mathbb{R} , un carré est toujours positif.

Donc, l'équation n'admet pas de solution : $S=\emptyset$.

Corrigé exercice 31 :

1. La fonction f est donnée par sa forme canonique avec a=-1<0, $\alpha=-7$ et $\beta=2$. On peut donc dresser le tableau de variations de f :

2. La fonction f est donnée par sa forme canonique avec a=-2<0, $\alpha=0$ et $\beta=\frac{2}{5}$. On peut donc dresser le tableau de variations de f :

x	$-\infty$	0	$+\infty$
f		$\frac{2}{5}$	

Corrigé exercice 32 :

Dans la suite, on considère que les fonctions affines sont de la forme $x\mapsto mx+p$ avec m et p réels.

1. Déterminons le signe de g(x) = (x-7)(x+3). On résout :

$$x-7=0$$
 si et seulement si $x=7$ (avec $m=1>0$) $x+3=0$ si et seulement si $x=-3$ (avec $m=1>0$)

On peut dresser le tableau de signes suivant :

x	$-\infty$		-3		7		$+\infty$
x-7		_		_	0	+	
x + 3		_	0	+		+	
g(x)		+	0	_	0	+	

2. Déterminons le signe de h(x) = 5(x-9)(x-1).

On résout :

$$x-9=0$$
 si et seulement si $x=9$ (avec $m=1>0$) $x-1=0$ si et seulement si $x=1$ (avec $m=1>0$)

On peut dresser le tableau de signes suivant :

x	$-\infty$		1		9		$+\infty$
x - 9		_		_	0	+	
x-1		_	0	+		+	
(x-9)(x-1)		+	0	_	0	+	
h(x)		+	0	_	0	+	

3. Déterminons le signe $\frac{1}{\operatorname{de} k(x)} = -3(x+1)(x-2)$

On résout :
$$x+1=0 \text{ si et seulement si } x=-1 \text{ (avec } m=1>0 \text{)} \\ x-2=0 \text{ si et seulement si } x=2 \text{ (avec } m=1>0 \text{)}$$

On peut dresser le tableau de signes suivant :

x	$-\infty$		-1		2		$+\infty$
x + 1		_	0	+		+	
x-2		_		-	0	+	
(x+1)(x-2)		+	0	_	0	+	
k(x)		_	0	+	0	_	

4. Déterminons le signe de $\ell(x)=(6-4x)(5x+1)$.

Déterminons le signe de
$$\ell(x)=(6-4x)(5x+1)$$
. On résout :
$$6-4x=0 \text{ si et seulement si } -4x=-6$$

$$x=\frac{-6}{-4}$$
 si et seulement si
$$x=\frac{3}{2} \text{ (avec } m=-4<0)$$

$$5x+1=0 \text{ si et seulement si } 5x=-1$$

$$5x+1=0$$
 si et seulement si $5x=-1$ si et seulement si $x=-\frac{1}{5}$ (avec $m=5>0$)

On peut dresser le tableau de signes suivant :

x	$-\infty$		$-\frac{1}{5}$		$\frac{3}{2}$		$+\infty$
6 - 4x		+		+	0	_	
5x + 1		_	0	+		+	
l(x)		_	0	+	0	_	