Алибеков Аслан

A-13a-20

Лабораторная работа №4

https://www.kaggle.com/datasets/teejmahal20/airline-passenger-satisfaction/data

Набор данных содержит опрос об удовлетворенности пассажиров авиакомпаний. Необходимо предсказать удовлетворенность пассажиров.

```
In [1]:
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as ses
        from sklearn.preprocessing import LabelEncoder
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import StandardScaler
        from sklearn.impute import SimpleImputer
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.linear_model import LogisticRegression
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.metrics import accuracy_score
        from sklearn.model_selection import cross_val_score
        from sklearn.metrics import confusion_matrix
        import warnings
```

Загрузка данных для обучения и тестирования

```
In [2]: train_df=pd.read_csv("train.csv", index_col = 0)
  test_df=pd.read_csv("test.csv", index_col = 0)
```

- 1. Пол: Пол пассажиров (женщина, мужчина)
- 2. Тип клиента: Тип клиента (лояльный клиент, нелояльный клиент)
- 3. Возраст: Фактический возраст пассажиров
- 4. Тип путешествия: Цель полета пассажиров (личная поездка, деловая поездка)
- 5. Класс: Класс проезда в самолете пассажиров (Бизнес, Эко, Эко Плюс)
- 6. Дальность полета: Расстояние перелета в рамках данного путешествия
- 7. **Услуга Wi-Fi на борту:** Уровень удовлетворенности услугой Wi-Fi на борту (0: Неприменимо; 1-5)
- 8. **Удобное время отправления/прибытия:** Уровень удовлетворенности удобным временем отправления/прибытия

- 9. Простота онлайн-бронирования: Уровень удовлетворенности онлайн-бронированием
- 10. **Местоположение выхода на посадку:** Уровень удовлетворенности местоположением выхода на посадку
- 11. Еда и напитки: Уровень удовлетворенности едой и напитками
- 12. Онлайн-посадка: Уровень удовлетворенности онлайн-посадкой
- 13. Комфорт сиденья: Уровень удовлетворенности комфортом сиденья
- 14. Развлечения в полете: Уровень удовлетворенности развлечениями в полете
- 15. Обслуживание на борту: Уровень удовлетворенности обслуживанием на борту
- 16. Обслуживание в номере: Уровень удовлетворенности обслуживанием в номере
- 17. Обработка багажа: Уровень удовлетворенности обработкой багажа
- 18. Услуга регистрации: Уровень удовлетворенности услугой регистрации
- 19. Обслуживание в полете: Уровень удовлетворенности обслуживанием в полете
- 20. Чистота: Уровень удовлетворенности чистотой
- 21. Задержка вылета в минутах: Задержка вылета на несколько минут
- 22. Задержка прибытия в минутах: Задержка прибытия на несколько минут
- 23. **Удовлетворенность:** Уровень удовлетворенности авиакомпанией (удовлетворенность, нейтральная или неудовлетворенность)

FDΔ

EDA	
[3]: train_df.isnull().sum()	
id:[3]: Candan	0
Gender	0
Customer Type	0
Age	0
Type of Travel	0
Class	0
Flight Distance	0
Inflight wifi service	0
Departure/Arrival time convenient	0
Ease of Online booking	0
Gate location	0
Food and drink	0
Online boarding	0
Seat comfort	0
Inflight entertainment	0
On-board service	0
Leg room service	0
Baggage handling	0
Checkin service	0
Inflight service	0
Cleanliness	0
Departure Delay in Minutes	0
Arrival Delay in Minutes	310
satisfaction	0
dtype: int64	

```
In [4]: test_df.isnull().sum()
                                               0
Out[4]:
                                               0
        Gender
                                               0
        Customer Type
                                               0
        Age
        Type of Travel
                                               0
        Class
                                               0
                                               0
        Flight Distance
        Inflight wifi service
                                               0
        Departure/Arrival time convenient
                                               0
        Ease of Online booking
                                               0
        Gate location
                                               0
        Food and drink
                                               0
                                               0
        Online boarding
                                               0
        Seat comfort
        Inflight entertainment
                                               0
        On-board service
                                               0
        Leg room service
                                               0
                                               0
        Baggage handling
                                               0
        Checkin service
        Inflight service
                                               0
        Cleanliness
                                               0
        Departure Delay in Minutes
                                               0
        Arrival Delay in Minutes
                                              83
        satisfaction
                                               0
        dtype: int64
In [5]: train_df.shape
        (103904, 24)
Out[5]:
        test_df.shape
In [6]:
        (25976, 24)
Out[6]:
        train_df.head()
In [7]:
```

Out[7]:

0		id	Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	Inflight wifi service	Departure/Arrival time convenient	Ease of Online booking	•••	ente
	0	70172	Male	Loyal Customer	13	Personal Travel	Eco Plus	460	3	4	3		
	1	5047	Male	disloyal Customer	25	Business travel	Business	235	3	2	3		
	2	110028	Female	Loyal Customer	26	Business travel	Business	1142	2	2	2		
	3	24026	Female	Loyal Customer	25	Business travel	Business	562	2	5	5		
	4	119299	Male	Loyal Customer	61	Business travel	Business	214	3	3	3		

5 rows × 24 columns

In [8]: test_df.head()

_		
\cap	101	
Uut		

	id	Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	Inflight wifi service	Departure/Arrival time convenient	Ease of Online booking	 entei
0	19556	Female	Loyal Customer	52	Business travel	Eco	160	5	4	3	
1	90035	Female	Loyal Customer	36	Business travel	Business	2863	1	1	3	
2	12360	Male	disloyal Customer	20	Business travel	Eco	192	2	0	2	
3	77959	Male	Loyal Customer	44	Business travel	Business	3377	0	0	0	
4	36875	Female	Loyal Customer	49	Business travel	Eco	1182	2	3	4	

5 rows × 24 columns

→

```
In [9]: train_df.info()
```

<class 'pandas.core.frame.DataFrame'>
Index: 103904 entries, 0 to 103903
Data columns (total 24 columns):

#	Column	Non-Null Count	Dtype
0	id	103904 non-null	
1	Gender	103904 non-null	3
2	Customer Type	103904 non-null	object
3	Age	103904 non-null	int64
4	Type of Travel	103904 non-null	object
5	Class	103904 non-null	object
6	Flight Distance	103904 non-null	int64
7	Inflight wifi service	103904 non-null	int64
8	Departure/Arrival time convenient	103904 non-null	int64
9	Ease of Online booking	103904 non-null	int64
10	Gate location	103904 non-null	int64
11	Food and drink	103904 non-null	int64
12	Online boarding	103904 non-null	int64
13	Seat comfort	103904 non-null	int64
14	Inflight entertainment	103904 non-null	int64
15	On-board service	103904 non-null	int64
16	Leg room service	103904 non-null	int64
17	Baggage handling	103904 non-null	int64
18	Checkin service	103904 non-null	int64
19	Inflight service	103904 non-null	int64
20	Cleanliness	103904 non-null	int64
21	Departure Delay in Minutes	103904 non-null	int64
22	Arrival Delay in Minutes	103594 non-null	float64
23	satisfaction	103904 non-null	object
			-

dtypes: float64(1), int64(18), object(5)

memory usage: 19.8+ MB

In [10]: train_df.describe()

	id	Age	Flight Distance	Inflight wifi service	Departure/Arrival time convenient	Ease of Online booking	Gate lo
count	103904.000000	103904.000000	103904.000000	103904.000000	103904.000000	103904.000000	103904.0
mean	64924.210502	39.379706	1189.448375	2.729683	3.060296	2.756901	2.9
std	37463.812252	15.114964	997.147281	1.327829	1.525075	1.398929	1.2
min	1.000000	7.000000	31.000000	0.000000	0.000000	0.000000	0.0
25%	32533.750000	27.000000	414.000000	2.000000	2.000000	2.000000	2.0
50%	64856.500000	40.000000	843.000000	3.000000	3.000000	3.000000	3.0
75%	97368.250000	51.000000	1743.000000	4.000000	4.000000	4.000000	4.0
max	129880.000000	85.000000	4983.000000	5.000000	5.000000	5.000000	5.0

Визуализация переменных относительно уровня удовлетворенности

```
In [12]: warnings.filterwarnings("ignore")
In [13]: label_data = ["Gender", "Customer Type", "Type of Travel", "Class", "Age", "Departure/Arrival ses.set(style="whitegrid")
fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(18, 12))
for i, col in enumerate(label_data):
    row_index, col_index = divmod(i, 3)
    ses.countplot(x=col, hue='satisfaction', data=train_df, palette='Set2', ax=axes[row_index axes[row_index, col_index].set_xlabel('Удовлетворенность', fontsize=14)
    axes[row_index, col_index].set_ylabel('Количество', fontsize=14)
    axes[row_index, col_index].set_title(f'Распределение {col} по Удовлетворенности', fontsiz axes[row_index, col_index].legend(title='Удовлетворенность', loc='upper right', labels=['plt.tight_layout()
    plt.show()
```


Преобразование переменных в категориальные

Восстановление пропущенных значений

```
In [16]: imputer = SimpleImputer(strategy='mean')
X_train_imputed = imputer.fit_transform(X_train)
X_test_imputed = imputer.transform(X_test)
```

Стандартизация

```
In [17]: scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train_imputed)
    X_test_scaled = scaler.transform(X_test_imputed)
```

Проверка корректности стандартизации

```
Out[19]: 1.0008098281587432
```

Random Forest Classifier

```
In [20]: rfc=RandomForestClassifier()
    rfc.fit(X_train_scaled,y_train)
    accuracy=rfc.score(X_test_scaled, y_test)
    print("accuracy =", round(accuracy * 100, 2), "%")

accuracy = 96.42 %
```

Logistic Regression

```
In [21]: logreg = LogisticRegression()
    logreg.fit(X_train_scaled, y_train)
    accuracy = logreg.score(X_test_scaled, y_test)
    print("Accuracy =", round(accuracy * 100, 2), "%")
Accuracy = 87.8 %
```

KNN

Кросс-валидация с количеством разбиений выборки = 5

```
In [22]:
         k_values = list(range(1, 16))
          cv_scores = []
          for k in k_values:
              knn = KNeighborsClassifier(n_neighbors=k)
              scores = cross_val_score(knn, X_train_scaled, y_train, cv=5, scoring='accuracy')
              cv_scores.append(scores.mean())
          optimal_k = k_values[cv_scores.index(max(cv_scores))]
In [23]:
         optimal k
         11
Out[23]:
In [24]:
          knn = KNeighborsClassifier(n_neighbors=optimal_k)
          knn.fit(X_train_scaled, y_train)
          y_pred = knn.predict(X_test_scaled)
          accuracy = accuracy_score(y_test, y_pred)
          print("Accuracy: {:.2f}%".format(accuracy * 100))
         Accuracy: 93.05%
         Результаты:
         Random Forest: Точность - 96.42%
         Logistic Regression: Точность - 87.8%
         KNN: Точность - 93.05%
```

Матрицы ошибок

```
In [27]: rfc_pred = rfc.predict(X_test_scaled)
    rfc_cm = confusion_matrix(y_test, rfc_pred)
    logreg_pred = logreg.predict(X_test_scaled)
```

```
logreg_cm = confusion_matrix(y_test, logreg_pred)
knn pred = knn.predict(X test scaled)
knn_cm = confusion_matrix(y_test, knn_pred)
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(18, 6))
ses.heatmap(rfc_cm, annot=True, fmt='g', cmap='Blues', cbar=False, ax=axes[0])
axes[0].set title('Random Forest')
axes[0].set_xlabel('Predicted')
axes[0].set ylabel('True')
ses.heatmap(logreg_cm, annot=True, fmt='g', cmap='Blues', cbar=False, ax=axes[1])
axes[1].set_title('Logistic Regression')
axes[1].set_xlabel('Predicted')
axes[1].set_ylabel('True')
ses.heatmap(knn cm, annot=True, fmt='g', cmap='Blues', cbar=False, ax=axes[2])
axes[2].set_title('KNN')
axes[2].set xlabel('Predicted')
axes[2].set_ylabel('True')
plt.tight_layout()
plt.show()
```


In []: