Solution To find the vertex, we look at the coefficients in the function $\mathsf{n}\left(\mathsf{m}\right) = \mathsf{am}^2 + \mathsf{bm} + \mathsf{c}$

in this equation, a=2 and b=3The first coordinate of the vertex has the formula: $\frac{-b}{2a}$ now, plugging into formula to get:

 $\frac{-b}{2a} = -\frac{3}{2(2)} = -\frac{3}{4}$

$$-\frac{3}{2(2)} = -\frac{3}{4}$$
second coordinate of the vertex is $n(-\frac{3}{2}) = 2(-\frac{3}{2})^2 \cdot 3(-\frac{3}{2}) = 6$

The second coordinate of the vertex is
$$n\left(-\frac{3}{4}\right) = 2\left(-\frac{3}{4}\right)^2 + 3\left(-\frac{3}{4}\right) - 6$$

18 Second Coordinate of the vertex 15
$$\Pi(-\frac{1}{4}) = 2(-\frac{1}{4}) + 3(-\frac{1}{4}) - 6$$

Therefore, the vertex of the graph of f is $(-\frac{3}{4}, -\frac{57}{8})$