Quadrature

Fabio Cannizzo

Please do not distribute without explicit permission

Definition of Integral

Definition

$$I = \int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(\widetilde{x}_i) \Delta x, \quad \widetilde{x}_i \in [a+i \Delta x, a+(i+1)\Delta x], \quad \Delta x = \frac{b-a}{n}$$

normally computed via the Fundamental Theorem of Calculus

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

where F(x) is some function such that :

$$\frac{dF(x)}{dx} = f(x)$$

Math Review: Advanced Derivatives Rules

Liebniz rule

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x, y) dy = \int_{a(x)}^{b(x)} \frac{d}{dx} f(x, y) dy + f(x, b(x)) \frac{d}{dx} b(x) - f(x, a(x)) \frac{d}{dx} a(x)$$

As a special case, the fundamental theorem of calculus

$$\frac{d}{dx} \int_{a}^{x} f(y) dy = f(x)$$

Math Review: Mean Value Theorem

Mean Value Theorem

$$f(b)-f(a)=(b-a)f'(\xi), \quad \xi \in [a,b]$$

2nd Mean Value Theorem for Definite Integrals
 If g(x) has constant sign in [a,b]

$$\int_{a}^{b} f(x)g(x)dx = f(\xi)\int_{a}^{b} g(x)dx, \quad \xi \in [a,b]$$

Math Review: Properties of Integrals

$$\int_{a}^{b} f(x) + g(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

$$\int_{a}^{b} af(x)dx = a \int_{a}^{b} f(x)dx$$

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Why Numerical

- It may just be more convenient
- We may not know the function f(x) in closed form
- In some cases a primitive F(x) in closed form may not exist.

$$\int e^{-x^2} dx$$

Polynomial Integration

 A simple approach is to replace the function being integrated with the approximating polynomial of degree n

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} p_{n}(x)dx$$

 For greater accuracy, we could use high order polynomials, but they oscillate, so the typical approach is to break the integral (composite) and use low order polynomial. If we have n+1 points:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} p_{n}(x)dx$$

Rectangle Rule

- We can simply use the definition
- We can choose the position of the x in the intervals [x_i,x_{i+1}] as x=x_i

$$I = f(a)(b-a)$$
 (SINGLE INTERVAL)

$$I = \int_{a}^{b} f(x)dx \approx \sum_{i=0}^{m-1} f(a+ih)h, \quad h = \frac{b-a}{m}$$
 (COMPOSITE)

 Note that this is the same as constructing an interpolation piecewise constant, then compute its integral

Rectangle Rule: Example

$$\int_0^{\frac{3}{4}\pi} \frac{1}{4} + \frac{3}{2} \sin(x) dx = \frac{3}{16}\pi + \left(\frac{\sqrt{2}}{2} + 1\right) \frac{3}{2} \approx 3.1497$$

>> RectangleDemo(@myfun, 0, 0.75*pi(), 4)
ans = 2.7628

Rectangle Rule: Source Code

```
function I = Rectangle( f, a, b, m )
h = (b-a)/m;
yi = f( a+[0:m-1]*h );
I=h*sum(yi);
endfunction
```

Fabio Cannizzo Quadrature 10

Rectangle Rule: Convergence

On one single interval [a,b]

$$|E| \le \frac{1}{2} ||f'(x)||_{\infty}^{[a,b]} (b-a)^2$$

Composite interval:

if we break [a,b] in equally spaced sub-intervals of size h=(b-a)/m

$$|E| \le \left(\sum_{i=0}^{m-1} \left\| f^{(1)}(x) \right\|_{\infty}^{[a+ih,a+(i+1)h]} \right) \frac{h^2}{2} \le m \left\| f^{(1)}(x) \right\|_{\infty}^{[a,b]} \frac{h^2}{2} = O(h) = O(m^{-1})$$

Rectangle Rule Summary

- Very simple to implement
- Robust
- Computation cost: n evaluations of f(x)
- Composite convergence: O(m-1)
- If f(x) is increasing, the rectangle rule underestimates, otherwise it overestimates

Mid-Point Rule

 Similar to the rectangle rule, but we take the mid point of the interval [x_i,x_{i+1}]

$$I = \int_{a}^{b} f(x)dx \approx f\left(\frac{b+a}{2}\right)(b-a)$$

$$I = \int_{a}^{b} f(x)dx \approx \sum_{i=0}^{m-1} f(\widetilde{x}_{i})h, \quad \widetilde{x}_{i} = a + \left(i + \frac{1}{2}\right)h, \quad h = \frac{b-a}{m}$$
(COMPOSITE)

 Note that this is the same as constructing an interpolation piecewise constant, then compute its integral

Mid-Point Rule: Example

$$\int_0^{\frac{3}{4}\pi} \frac{1}{4} + \frac{3}{2} \sin(x) dx = \frac{3}{16}\pi + \left(\frac{\sqrt{2}}{2} + 1\right) \frac{3}{2} \approx 3.1497$$

>> RectangleDemo(@myfun, 0, 0.75*pi(), 4)
ans = 3.1871

Mid-Point Rule: Source Code

```
function I = MidPoint( f, a, b, m )
h = (b-a)/m;
yi = f( a+([0:m-1]+0.5)*h );
I=h*sum(yi);
endfunction
```

Fabio Cannizzo Quadrature 15

Mid-Point Rule: Convergence

On one single interval [a,b]

$$|E| \le \frac{1}{24} \|f^{(2)}(\xi)\|_{\infty}^{[a,b]} (b-a)^3$$

Composite interval:

If we break [a,b] in equally spaced sub-intervals of size h=(b-a)/m

$$|E| \le \left(\sum_{i=0}^{m-1} \left\| f^{(2)}(x) \right\|_{\infty}^{[a+ih,a+(i+1)h]} \right) \frac{h^3}{24} \le m \left\| f^{(2)}(x) \right\|_{\infty}^{[a,b]} \frac{h^3}{24} = O(h^2) = O\left(\frac{1}{m^2}\right)$$

Mid-Point Rule Summary

- Very simple to implement
- Robust
- Computation cost: n evaluations of f(x)
- Composite convergence: O(m-2)
- Superior to the rectangle rule at roughly the same cost

Trapezoid Rule

 Instead of choosing one point in [x_i,x_{i+1}], we can use the average of f(x_i) and f(x_{i+1})

$$I = \int_{a}^{b} f(x)dx \approx \frac{f(a) + f(b)}{2}(b - a),$$

$$I = \int_{a}^{b} f(x)dx \approx \sum_{i=0}^{m-1} \frac{f(x_i) + f(x_{i+1})}{2}h, \quad h = \frac{b - a}{n}$$
(COMPOSITE)

- Note that this is the same as constructing an interpolation piecewise linear, then compute its integral
- In other words, we are summing the areas of the trapezoids delimited by $f(x_i)$ and $f(x_{i+1})$

Trapezoid Rule: Example

$$\int_0^{\frac{3}{4}\pi} \frac{1}{4} + \frac{3}{2} \sin(x) dx = \frac{3}{16}\pi + \left(\frac{\sqrt{2}}{2} + 1\right) \frac{3}{2} \approx 3.1497$$

>> TrapezoidDemo(@myfun, 0, 0.75*pi(), 4)
ans = 3.0752

Trapezoid Rule: Source Code

$$I_{m} = \sum_{i=0}^{m-1} \frac{f(x_{i}) + f(x_{i+1})}{2} h = \left[\frac{f(x_{0}) + f(x_{m})}{2} + \sum_{i=1}^{m-1} f(x_{i}) \right] h$$

```
function I = Trapezoid( f, a, b, m )

h = (b-a)/m;

yi = f( a+[0:m]*h );

I = h * ( 0.5 *(yi(1)+yi(m+1)) + sum(yi(2:m)) );
endfunction
```

Fabio Cannizzo Quadrature 20

Trapezoid Rule: Convergence

On 1 single interval [a,b]

$$|E| \le \frac{1}{12} ||f^{(2)}(x)||_{\infty}^{[a,b]} (b-a)^3$$

Composite interval:

If we break [a,b] in equally spaced sub-intervals of size h=(b-a)/m

$$|E| \le \left(\sum_{i=0}^{m-1} \left\| f^{(2)}(x) \right\|_{\infty}^{[a+ih,a+(i+1)h]} \right) \frac{h^3}{12} \le m \left\| f^{(2)}(x) \right\|_{\infty}^{[a,b]} \frac{h^3}{12} = O(h^2) = O(m^{-2})$$

Trapezoid Rule Summary

- Very simple to implement
- Robust
- Computation cost: n+1 evaluations of f(x)
- Composite convergence: O(m-2)
 - Same as the Mid-Point rule. This is not because the trapezoid rule is poor, it is because the Mid-Point rule, thanks to symmetry, does very well. The intuition is that the mid point is not that different from the average of the two points

Error

- if the integrand is concave up, the trapezoidal rule overestimates the true value.
- Similarly, a concave-down function yields an underestimate.
- If the interval of the integral being approximated includes an inflection point, the error is harder to identify

Simpson Rule

- Given an even number of intervals, on every pair of intervals we approximate the function with a parabola
- I.e. we are defining an interpolation scheme piecewise quadratic

(SINGLEINTERVAL)

$$I = \int_{a}^{b} f(x)dx \approx \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] \frac{b-a}{6}$$

(COMPOSITE)

$$I = \int_{a}^{b} f(x)dx \approx \sum_{i=0}^{m/2-1} \frac{f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2})}{3}h, \quad h = \frac{b-a}{m}$$

Simpson Rule: Example

$$\int_0^{\frac{3}{4}\pi} \frac{1}{4} + \frac{3}{2} \sin(x) dx = \frac{3}{16}\pi + \left(\frac{\sqrt{2}}{2} + 1\right) \frac{3}{2} \approx 3.1497$$

>> SimpsonDemo(@myfun, 0, 0.75*pi(), 4)
ans = 3.1515

Simpson Rule: Source Code

$$I_m = \frac{h}{3} \left(f(x_0) + f(x_m) + 4 \sum_{i=0}^{m/2-1} f(x_{2i+1}) + 2 \sum_{i=1}^{m/2-1} f(x_{2i}) \right)$$

```
function I = Simpson( f, a, b, m )
    assert(mod(m,2)==0); # requires an even number of points
    h = (b-a)/m;
    yi = f( a+[0:m]*h );
    I=h*( yi(1)+yi(m+1) + 4*sum(yi(2:2:m)) + 2*sum(yi(3:2:m-1)) )/3;
endfunction
```

Fabio Cannizzo

Simpson Rule: Convergence

On one single interval [a,b]:

$$|E| \le \frac{1}{2880} ||f^{(4)}(\xi)||_{\infty}^{[a,b]} (b-a)^5$$

Composite interval:

If we break [a,b] in equally spaced sub-intervals of size h=(b-a)/m, and apply the rule to pairs of intervals

$$|E| \le \left(\sum_{i=0}^{m/2-1} \left\| f^{(4)}(x) \right\|_{\infty}^{[a+2ih,a+2(i+1)h]} \right) \frac{(2h)^5}{2880} \le m \left\| f^{(4)}(x) \right\|_{\infty}^{[a,b]} \frac{h^5}{180} = O(h^4) = O\left(\frac{1}{m^4}\right)$$

Simpson Rule Summary

- Very simple to implement
- Robust
- Computation cost: n+1 evaluations of f(x)
- Composite convergence: O(m-4)
- Simpson is exact for polynomial of order 3 or lower (error is O(h4))

27

Richardson Extrapolation

As an example, we apply it to the Simpson rule

$$I = S(h) + a h^{4} + O(h^{5})$$

$$I = S\left(\frac{h}{2}\right) + a\left(\frac{h}{2}\right)^{4} + O(h^{5})$$

$$15I = 16 S\left(\frac{h}{2}\right) - S(h) + O(h^{5})$$

$$I = \frac{16 S\left(\frac{h}{2}\right) - S(h)}{15} + O(h^{5})$$

```
>> s2=Simpson(@myfun, 0, 0.75*pi(), 2)

s2 = 3.1824

>> s4=Simpson(@myfun, 0, 0.75*pi(), 4)

s4 = 3.1515

>> (16*s4-s2)/15

ans = 3.1494
```

Convergence Comparison

The weird scarlet segment connects just two points, the second of which is at machine precision

>> ConvergenceTest(@myfun, 0, 0.75*pi(), I)

Newton Cotes

- Mid-Point, Trapezoid and Simpson belong to the family of Newton Cotes formula, which use equally spaced points in [a,b]
- We distinguish between OPEN and CLOSED type, depending on if a and b are included (semi-closed formulas also exists)
- Let n be the number of sub-intervals (do not confuse with m, in the composite formulas)

$$\int_{a}^{b} f(x)dx \approx (b-a)\sum_{i=0}^{n} A_{i}f(x_{i}), \text{ where } A_{i} = \frac{\int_{0}^{1} \prod_{j=0, j\neq i}^{n} (ny-j)dy}{\prod_{j=0, j\neq i}^{n} (i-j)}$$
(CLOSED)
$$\int_{a}^{b} f(x)dx \approx (b-a)\sum_{i=1}^{n-1} B_{i}f(x_{i}), \text{ where } B_{i} = \frac{\int_{0}^{1} \prod_{j=1, j\neq i}^{n-1} (ny-j)dy}{\prod_{j=1, j\neq i}^{n-1} (i-j)}$$
(OPEN)

Newton Cotes Coefficients

 Newton Cotes integration means approximating the function f(x) in [a,b] with a polynomial p(x)

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} p(x)dx$$

passing by a number of points equally spaced in [a,b]

let
$$\Delta = \frac{b-a}{n}$$
, $x = \{a, a+\Delta, a+2\Delta, ..., (n-1)\Delta, b\}$

- The extreme points a and b are used in closed formulas, not used in open formulas
- Such polynomial can be written in Lagrange form as

$$p(x) = \sum_{i=0}^{n} \frac{\prod_{j=0, j\neq i}^{n} (x - x_{j})}{\prod_{j=0, j\neq i}^{n} (x_{i} - x_{j})} f(x_{i}) \quad \text{where it is trivial to verify that } l_{i}(x_{j}) = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$

Newton Cotes Coefficients

Newton Cotes coefficients can be simply obtained integrating the l_i(x)

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} p(x)dx = \int_{a}^{b} \sum_{i=0}^{n} l_{i}(x)f(x_{i})dx = \sum_{i=0}^{n} f(x_{i}) \int_{a}^{b} l_{i}(x)dx$$
where

$$\int_{a}^{b} l_{i}(x)dx = \int_{a}^{b} \frac{\prod_{j=0, j\neq i}^{n} (x-x_{j})}{\prod_{j=0, j\neq i}^{n} (x_{i}-x_{j})} dx = (b-a) \frac{\int_{0}^{1} \prod_{j=0, j\neq i}^{n} (ny-j) dy}{\prod_{j=0, j\neq i}^{n} (i-j)} = (b-a)A_{i} \quad \text{(CLOSED)}$$

Fabio Cannizzo Quadrature 32

Newton Cotes Error

- The error below refers to Δ =**b-a**, i.e. they are for <u>one single interval</u> (not for the composite formula).
- **n** is the <u>number of sub-intervals</u> (e.g. in Simpson or MidPoint n=2, in Trapezoid n=1)
- For the composite formula the order of convergence is expressed with respect to h=(b-a)/m, and it decreases by 1
- Note that, even number of sub-interval leads to superior convergence

SINGLE INTERVAL

CLOSED, n even: $O(\Delta^{n+3})$

CLOSED, n odd: $O(\Delta^{n+2})$

OPEN, n even: $O(\Delta^{n+1})$

OPEN, n odd: $O(\Delta^n)$

COMPOSITE FORMULA

CLOSED, n even: $O(h^{n+2})$

CLOSED, n odd: $O(h^{n+1})$

OPEN, n even: $O(h^n)$

OPEN, n odd: $O(h^{n-1})$

Newton Cotes Example: Mid-Point Rule

- Focusing on one single interval [a,b] we have: ∆=b-a
 - there are 3 points $x_0=a$, $x_1=(a+b)/2$, $x_2=b$, i.e. 2 sub-intervals (so n=2)
 - points at the boundary are not used, so the formula is of type
 OPEN
 - Error is $O(\Delta^{n+1})$, e.g. $O(\Delta^3)$
 - Formula is:

$$\int_{a}^{b} f(x)dx \approx (b-a)\sum_{i=1}^{1} B_{i}f(x_{i}) = (b-a)B_{1}f(x_{1})$$

where
$$B_1 = \int_0^1 \frac{\prod_{j=1, j \neq 1}^{2-1} (y-j)}{\prod_{j=1, j \neq 1}^{2-1} (1-j)} dy = \int_0^1 dy = 1$$

hence
$$\int_{a}^{b} f(x)dx \approx (b-a)f(x_1)$$

Newton Cotes Example: Simpson Rule

- Focusing on one single interval [a,b] we have: ∆=b-a
 - there are 3 points $x_0=a$, $x_1=(a+b)/2$, $x_2=b$, i.e. 2 sub-intervals (so n=2).
 - points at the boundary are used, so the formula is of type CLOSED
 - Error is $O(\Delta^{n+3})$, e.g. $O(\Delta^5)$

$$\int_{a}^{b} f(x)dx \approx (b-a) \sum_{i=1}^{1} \widetilde{A}_{i} f(x_{i}) = (b-a) \left[\widetilde{A}_{0} f(x_{0}) + \widetilde{A}_{1} f(x_{1}) + \widetilde{A}_{2} f(x_{2}) \right] \text{ where:}$$

$$\widetilde{A}_{0} = \frac{\int_{0}^{1} \prod_{j=0, j\neq 0}^{n} (ny-j) dy}{\prod_{j=0, j\neq i}^{n} (0-j)} = \frac{\int_{0}^{1} (2y-1)(2y-2) dy}{(0-1)(0-2)} = \frac{1}{6}$$

$$\widetilde{A}_{1} = \frac{\int_{0}^{1} \prod_{j=0, j\neq i}^{n} (ny-j) dy}{\prod_{j=0, j\neq i}^{n} (1-j)} = \frac{\int_{0}^{1} (2y-0)(2y-2) dy}{(1-0)(1-2)} = \frac{4}{6}$$

$$\widetilde{A}_{2} = \frac{\int_{0}^{1} \prod_{j=0, j\neq i}^{n} (ny-j) dy}{\prod_{j=0, j\neq i}^{n} (2-j)} = \frac{\int_{0}^{1} (2y-0)(2y-1) dy}{(2-0)(2-1)} = \frac{1}{6}$$

Adaptive Simpson Rule

- At iteration 1 we start with Simpson with exactly 3 points in [a,b]: {a,c,b}, where c=(b+a)/2
- We compute Simpson in [a,c] and [c,b], adding a central point in each interval
- We check if S(a,b) [S(a,c)+S(c,b)] is below a certain tolerance. If yes we stop, otherwise we keep bisecting and we now repeat the process individually on [a,c] and [c,b]
- The idea is that we add point only where it is necessary, i.e. where the error is larger

Adaptive Simpson Rule

We observe that the density of point is not

uniform

Adaptive Simpson Rule

- Simpson error terms are of order O(h4)
- Combining the estimates S₂=[S(a,c)+S(c,b)] with the one obtained combining S₂ and S₁=S[a,b] via Richardson extrapolation, we get the stopping criteria:

```
|S_2-[16 S_2 - S_1]/15| < \epsilon \implies |S_2 - S_1| < 15 \epsilon where \epsilon is the accuracy criteria for the portion of interval [a,b]
```

- if we stop, we return Richardson extrapolation
- if we continue, we return S₂, as we do not have an estimate of the error and we cannot apply Richardson

```
>> [Ias,n]=AdaptiveSimpson(@myfun,0,0.75*pi(),1e-8)
Ias = 3.14970879432736
n = 121
```

- In Newton Cotes formula, we fix the position of the points and we compute weights for each point
- If we choose also the position of the points arbitrarily, we have more degrees of freedom to minimize the error
- An n-point Gaussian quadrature rule is constructed to yield an exact result for polynomials of degree 2n – 1 or less by a suitable choice of the points x_i and weights w_i for i = 1,...,n
- This is way more accurate than Newton Cotes!
- The domain of integration for such a rule is, without loss of generality, conventionally taken as [−1, 1]
- The catch is that high order is not always good. In order to obtain high accuracy, the function must behave like a poynomial (i.e. very smooth)

- The catch is that in order to obtain high accuracy, the function need to behave similarly to a polynomial
- If we can write f(x) as w(x)g(x), where g(x) behaves like a polynomial, then

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} w(x)g(x)dx \approx \sum_{i=1}^{n} A_{i}g(x_{i})$$

$$\sum_{i=1}^{n} A_{i} x_{i}^{j} = \int_{a}^{b} w(x)x_{i}^{j} dx, \quad j = 0...2n-1 \quad \text{non-linear system 2n x 2n}$$

- i.e. the weights A_i are chosen so that if g(x) was indeed a polynomial,
 the formula would be exact
- Newton Cotes are exact if f(x) is a polynomial, here we can achieve exact results also for a polynomial multiplied by some weight function, which can be chosen to improve smoothness of f(x), but if not chosen properly could turn a smooth f(x) into a non-smooth g(x)!

- For some special weight functions, the points x_i
 are the roots of some special polynomials and
 the values of the weights A_i are tabulated
- Once we get xi and Ai from the tables, we simply apply the formula:

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} w(x)g(x)dx \approx \sum_{i=1}^{n} A_{i}g(x_{i})$$
 Note that g(x) is not the same as f(x)

W(x)	[a,b]	Polynomial
1	$\begin{bmatrix} -1,1 \end{bmatrix}$	Legendre
$\frac{1}{\sqrt{1-x^2}}$	(-1,1)	Chebishev 1
$\sqrt{1-x^2}$	[-1,1]	Chebishev 2
$\frac{1}{\sqrt{x}}$	[0,1]	Related to Legendre
\sqrt{x}	[0,1]	Related to Legendre
$\frac{x}{\sqrt{1-x}}$	[0,1]	Related to Chebishev 1
$x^{\alpha}e^{-x}$	$[0,\infty]$	Laguerre
e^{-x^2}	$\left[-\infty,\infty\right]$	Hermite
$-x^{\alpha}\left(1+x^{\beta}\right)$	(-1,1)	Jacobi

Polynomial roots (x_i) and weights (A_i) can be found tabulated

Gauss-Legendre Roots and Weights Table Example

n = 2

i	weight - w _i	abscissa - x _i
1	1.000000000000000000	-0.5773502691896257
2	1.0000000000000000000000000000000000000	0.5773502691896257

n = 3

i	weight - w	abscissa - x _i
1	0.888888888888888	0.0000000000000000
2	0.55555555555556	-0.7745966692414834
3	0.5555555555555	0.7745966692414834

n = 4

i	weight - w _i	abscissa - x _i
1	0.6521451548625461	-0.3399810435848563
2	0.6521451548625461	0.3399810435848563
3	0.3478548451374538	-0.8611363115940526
4	0.3478548451374538	0.8611363115940526

Gaussian Integration: Example

$$\int_0^{\frac{3}{4}\pi} \frac{1}{4} + \frac{3}{2} \sin(x) dx$$

We use Gauss Legendre with 4 points

(same computational cost as in previous examples)

First we transform into [-1,1], with the transformation y = ax + b

$$\begin{cases} y(0) = -1 \\ y\left(\frac{3}{4}\pi\right) = 1 \end{cases} \Rightarrow y = \frac{8}{3\pi}x - 1, \ dx = \frac{3\pi}{8}dy$$

$$\int_0^{\frac{3}{4}\pi} \frac{1}{4} + \frac{3}{2}\sin(x)dx = \int_{-1}^{+1} \left[\frac{1}{4} + \frac{3}{2}\sin\left(\frac{3\pi}{8}(y+1)\right) \right] \frac{3\pi}{8}dy$$

$$\approx \sum_{i=1}^4 w_i \left[\frac{1}{4} + \frac{3}{2}\sin\left(\frac{3\pi}{8}(y_i+1)\right) \right] \frac{3\pi}{8} = 3.1497 \quad \text{(very accurate!)}$$

```
>> f=@(x)(1/4+3/2*\sin(3*pi/8*(x+1)))*3*pi/8;
>> w=[0.6521451548625461, 0.6521451548625461, 0.3478548451374538, 0.3478548451374538];
>> y=[-0.3399810435848563, 0.3399810435848563, -0.8611363115940526, 0.8611363115940526];
>> w*f(y')
ans = 3.1497
```

Comparison with Newton Cotes

- Suppose we use Gauss-Legendre with 3 points
- Convergence on single interval
 - This is expected to be exact for a polynomial of order 3x2-1=5,
 i.e. O((b-a)⁷)
 - Simpson also uses 3 points, but it is only exact for a polynomial up to order 3, i.e. O((b-a)⁵)
- When we transform to composite, if we divide [a,b] in m intervals,
 - Simpson requires roughly 2n evaluations, because at the boundary of every interval it uses common points
 - Gauss instead requires 3n evaluations
- Computation cost is O(n) in both cases, but accuracy is O(h⁶) vs O(h⁴)

Warnings

- Same issues discussed with interpolation: high order schemes can give bad surprises with nonsmooth functions
- Beware discontinuities and singularities!
 - Non adaptive method will lead to very poor accuracy (they rely on f(x) to ne smooth)
 - Adaptive method will keep bisecting, becoming very expensive, and with poor accuracy (the interval could become smaller than machine precision). There needs to be a guard to avoid bisecting too much.
- Identify discontinuities and break the integral
- Fast and frequent changes of slope can be as bad as discontinuities

Modern Methods

- Most modern methods are adaptive
- They are combination of more basic methods
- A key performance requirement of adaptive method is to be able to reuse previously computed points (e.g. in Simpson, at every bisection, we only need 2 new extra points)

Multiple Integrals

- Very expensive: computational cost grows exponentially with number of dimensions
- If I need n points for a 1-D integral, I may need n³ for a 3-D integral
- When possible we should reduce the order of the integral
 - e.g. if we start from a double integral and we can solve the inner integral analytically, we are left with a 1-D integral
- A good technique for high dimensionality is Monte Carlo integration

Further Readings

- Prof Amos Rons' lecture notes
 - http://pages.cs.wisc.edu/~amos/412/lecture-notes/lecture17.pdf http://pages.cs.wisc.edu/~amos/412/lecture-notes/lecture18.pdf http://pages.cs.wisc.edu/~amos/412/lecture-notes/lecture19.pdf
- Prof Saltzman's lecture notes
 http://www.dirac.org/numerical/gaussian_quadrature/gaussian.pdf
- Numerical Recipes in C++

Fabio Cannizzo Quadrature 49