

§ 10.3: GRAPH REPRESENTATIONS & ISOMORPHISM

- Graph representations:
 - Adjacency lists.
 - Adjacency matrices.
 - Incidence matrices(undirected graph).
- Graph isomorphism:
 - Two graphs are isomorphic iff they are identical except for their node names.

ADJACENCY LISTS邻接表

A table with 1 row per vertex, listing its adjacent vertices.

adjacency fist

Vertex	Vertices
a	<i>b</i> , <i>c</i>
b	a, c, e, f
\boldsymbol{c}	a, b, f
d	
e	b
f	c, b

College of Computer Science & Technology, BUPT -- © Copyright Yang Juan

DIRECTED ADJACENCY LISTS

- 1 row per node, listing the terminal nodes of each edge incident from that node.
- P669

FIGURE 2 A Directed Graph.

TABLE 2 An Adjacency List for a Directed Graph.		
Initial Vertex	Terminal Vertices	
а	b, c, d, e	
b	b, d	
c	a, c, e	
d		
e	b, c, d	

ADJACENCY MATRICES邻接

矩阵 adjacency mostrices to the Man

- A way to represent simple graphs
 - possibly with self-loops.
- Matrix $A = [a_{ij}]$, where a_{ij} is 1 if $\{v_{ii}, v_{j}\}$ is an edge of G, and is 0 otherwise.
- Can extend to pseudographs by letting each matrix elements be the number of links (possibly >1) between the nodes.

NOTE

- An adjacency matrix of a graph is based on the ordering chosen for the vertices.
- The adjacency matrix of a simple graph is symmetric.
- a_{ii}=0
- Sparse matrix(稀疏矩阵)

 Use an adjacency matrix to represent the graph shown in Figure 3.

FIGURE 3
Simple Graph.

EXAMPLE 4

Draw a graph with the adjacency matrix

$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ \end{bmatrix}$$

with respect to the ordering of vertices *a*, *b*, *c*, *d*.

 Use an adjacency matrix to represent the pseudograph shown in Figure 5.

FIGURE 5 A Pseudograph.

Adjacency matrix for a directed graph

$$a_{ij} = \begin{cases} 1 & \text{if } (v_i, v_j) \text{ is an edge of } G, \\ 0 & \text{otherwise.} \end{cases}$$

Adjacency matrix for a directed multigraph

INCIDENCE MATRICES关联矩

阵

• Let G=(V,E) be an <u>undirected graph</u>. Suppose that $v_1, v_2, ..., v_n$ are the vertices and $e_1, e_2, ..., e_m$ are the edges of G. Then the incidence matrix with respect to this ordering of V and E is the n*mmatrix $M=[m_{ij}]$, where

$$m_{ij} = \begin{cases} 1 \text{ when edge } e_j \text{ is incident with } v_i \\ 0 \text{ otherwise} \end{cases}$$

EXAMPLE 6

Represent the graph shown in Figure 6 with an incidence matrix.

FIGURE 6 An Undirected Graph.

EXAMPLE 7

 Represent the pseudograph shown in Figure 7 using an incidence matrix.

FIGURE 7
A Pseudograph.

- The Greek root "iso" means "same". The Greek root "morphism" means "form".
- Two molecules with the same chemical formula are called *isomers*.

 # #

butane

isobutane

GRAPH ISOMORPHISM

Formal definition:

- Simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are *isomorphic* iff \exists a bijection $f: V_1 \rightarrow V_2$ such that $\forall a, b \in V_1$, a and b are adjacent in G_1 iff f(a) and f(b) are adjacent in G_2 .
- f is the "renaming" function between the two node sets that makes the two graphs identical.
- This definition can easily be extended to other types of graphs.

The graph mapping f is an isomorphism.

GRAPH INVARIANTS UNDER ISOMORPHISM图形不变量

Necessary but not sufficient conditions for $G_1 = (V_1, E_1)$ to be isomorphic to $G_2 = (V_2, E_2)$:

- We must have that $|V_1| = |V_2|$, and $|E_1| = |E_2|$.
- The degree sequence is the same in both graphs.
- For every proper subgraph G_1 of G_1 , there is a proper subgraph G_2 of G_2 that is isomorphic to G_1 .

If isomorphic, label the 2nd graph to show the isomorphism, else identify difference.

 If isomorphic, label the 2nd graph to show the isomorphism, else identify

difference.

- Same # of vertices
- Same # of edges
- Different # of verts of degree 2! (1 vs 3)

 Determine whether the graphs shown in Figure 10 are isomorphic.

note:degree=3 subgraph

FIGURE 10 The Graphs G and H.

EXAMPLE 11

 Determine whether the graphs G and H displayed in Figure 12 are isomorphic.

FIGURE 12 Graphs G and H.

Nonisomorphic Graph For N=1,2,3,4

```
3 · · · · · · ·
Z Z Z = Z
```


- § 10.3
 - **28**, 46, 52, 60, 68

§ 10.4: CONNECTIVITY连通

- 性
- Defination:(Paths in Relation)
- Let R be a relation on a set A.
- A path of length n in R from a to b is a finite sequence π : a, $x_1, x_2, ..., x_{n-1}, b$, such that $aRx_1, x_1Rx_2, ..., x_{n-1}Rb$.
- A path that begins and ends at the same vertex is called a circle.

§ 10.4: CONNECTIVITY连通

- 性
- Defination: (Paths in Graphe Theory)
- In an undirected graph G=(V, E), a path of length n from $u(=v_0)$ to $v(=v_n)$
- is a sequence of adjacent edges $e_1, e_2, ..., e_n$, going from vertex u to vertex v, such that $e_i = \{v_{i-1}, v_i\}$ for $1 \le i \le n$.
- is a sequence of vertex $v_0, v_1, ..., v_n$ such that $\{v_i, v_{i+1}\} \in E$ for $0 \le i \le n-1$.

§ 10.4: CONNECTIVITY连通

性

- A path is a *circuit* if *u=v*.回路
- A path pass through the vertices or traverses the edges. 途经、遍历
- A path is simple if it contains no edge more than once.简单通路
- Lemma: <u>The shortest path connecting two</u> vertices is simple.

PATHS IN DIRECTED GRAPHS

 Same as in undirected graphs, but the path must go in the direction of the arrows.

CONNECTEDNESS连通图

- An undirected graph is *connected* if there is a path between every pair of distinct vertices in the graph.连通图
- Example 4, p681

FIGURE 2 The Graphs G_1 and G_2 .

■ **Theorem:** There is a *simple* path between every pair of distinct vertices of a connected undirected graph.连通图中任意两点间存在简单通路

THEROEM

• If G is disconnected, then its complement G is connected.

CONNECTED COMPONENT连 通分支/独立子图

A Connected component of a graph G is a connected subgraph of G that is not a proper subgraph of another connected subgraph of G.

A graph G that is not connected has two or

more connected components

that are disjoint and

have G as their union.

割点、割边

A cut vertex or cut edge (bridge)
 separates 1 connected component into 2 if removed.

- Vertex Connectivity
 - Nonseparable graphs: without cut vertices.
 - Vertex cut: G-V' is disconnected.
 - Vertex connectivity: κ(G)=min| V' |
- Edge Connectivity
 - Edge cut: G-E' is disconnected.
 - Edge connectivity: λ(G)=min|E'|

THEROEM

Let $\kappa(G)$ be the vertex connectivity of a graph G, $\lambda(G)$ be the edge connectivity, and $\delta(G)$ be the minumum degree, then for every graph,

$$\kappa(G) \leq \lambda(G) \leq \delta(G)$$

DIRECTED CONNECTEDNESS

- A directed graph is *strongly connected* (强连通)if there is a <u>path</u> from *a* to *b* and from *b* to *a* whenever *a* and *b* are vertices in the graph.
- It is weakly connected(弱连通) if there is a <u>path</u> between every two vertices in the <u>underlying undirected</u> graph.
- Note strongly implies weakly but not vice-versa.

EXAMPLE 11

Strongly connected components or strong components

FIGURE 5 The Directed Graphs G and H.

Note that connectedness, and the existence of a circuit or simple circuit of length k are graph invariants with respect to isomorphism.

Example 13

FIGURE 6 The Graphs G and H.

沿着相同的通路(同点数、途经各点同度数)

- Use paths to find mappings
- Example 14,P687

FIGURE 7 The Graphs G and H.

COUNTING PATHS BY ADJACENCY MATRICES计算两点间通路数

- Let A be the adjacency matrix of graph
 G.
- The number of paths of length k from v_i to v_j is equal to $(\mathbf{A}^k)_{i,j}$.
 - The notation $(\mathbf{M})_{i,j}$ denotes $m_{i,j}$ where $[m_{i,j}] = \mathbf{M}$.
 - note: b_{i1}a_{1j}+b_{i2}a_{2j}+...+b_{in}a_{nj}

How many paths of length four are there from a to d in the simple graph G in Figure 8?

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}.$$

$$\mathbf{A}^4 = \begin{bmatrix} 8 & 0 & 0 & 8 \\ 0 & 8 & 8 & 0 \\ 0 & 8 & 8 & 0 \\ 8 & 0 & 0 & 8 \end{bmatrix},$$

FIGURE 8 Graph G.

§ 10.4: 14,28,36,60