

Fundamentals of Accelerated Data Science

NVIDIA

Workshop Overview

An introduction to data science with a focus on speed and efficiency

Learning objectives:

- Understand the fundamental concepts of data science and parallel computing
- Explore practical examples of accelerated data science pipelines
- Examine the methods used to achieve acceleration in data science and discuss their broader implications

This workshop will not cover statistical analysis, neural networks, and distributed computing

	Workshop Outline
Task 1	Data science overview Data manipulation
Task 2	Graph analytics
Task 3	Machine Learning
Coding Assessment	Biodefense

Section 2 Agenda

- Graph 101
- Graph Analytics
- Hands-On Lab

Anatomy of a Graph

Edges

Directed, undirected, weighted, and unweighted

Degree and Neighborhood In-degree, out-degree, 1-hop, and 2-hop

Common Graph Data Use Cases

Usage extends across industries

Advance Graph Data Use Cases

Used to gather information about relationships between objects

KNOWLEDGE GRAPHS

SOCIAL NETWORKS & RECOMMENDER SYSTEMS

Representing Graphs

Adjacency matrix shows the neighborhood of each node

	A	В	C	D		F
A	0	1	0	0	0	0
В	1	0	1	0	0	0
C	0	1	0	1	0	0
D	0	0	1	0	1	1
Ε	0	0	0	1	0	1
F	0	0	0	1	1	0

Note: The adjacency matrix is symmetric for undirected graphs

Representing Graphs

Adjacency matrix can also be used for a weighted graph

	A	В	C	D		
A	0	0.5	0	0	0	0
В	0.5	0	0.7	0	0	0
C	0	0.7	0	0.1	0	0
D	0	0	0.1	0	0.4	0.5
E	0	0	0	0.4	0	0.9
F	0	0	0	0.5	0.9	0

Note: The adjacency matrix is symmetric for undirected graphs

Representing Graphs

Degree matrix counts number of connections to each node

	A	В	C	D	Ε	
A	1	0	0	0	0	0
В	0	2	0	0	0	0
C	0	0	2	0	0	0
D	0	0	0	3	0	0
Ε	0	0	0	0	2	0
F	0	0	0	0	0	2

Note: Illustration assumes unweighted and undirected graph

Representing Graphs

Laplacian matrix shows the smoothness of the graph

	A	В	C	D		
A	1	-1	0	0	0	0
В	-1	2	-1	0	0	0
C	0	-1	2	-1	0	0
D	0	0	-1	3	-1	-1
E	0	0	0	-1	2	-1
E	0	0	0	-1	-1	2

Note: Illustration assumes unweighted and undirected graph

Represented as L, where

 $L = \{ D - A \}$

D = Degree Matrix and A = Adjacency Matrix

Representing Graphs

Graphs can also be represented by an adjacency list

Adjacency	Edges	Nodes
[[1, 2],	[0.5,	[0.7,
[2, 3],	0.7,	0.4,
[3, 4],	0.1,	0.9,
[4, 5],	0.4,	0.3,
[4, 6],	0.5,	0.9,
[5, 6]]	0.9]	0.5]

Note: Representing graph structure as adjacency lists can be more efficient

Single-Source Shortest Path

Computes the shortest path from a designated source node to all other reachable nodes in a weighted graph

Input: Graph (w/o negative-weight cycles), Node ID

Output: Vertex, Distance, Predecessor columns

Vertex	Distance	Predecessor
0	0	-1
1	2	0
2	1	0
3	3	2

Use cases: road networks, logistics, communications, and network analysis.

Centrality

Measuring different aspects of importance of nodes within a network

RAPIDS Transforms Data Science

An optimized hardware-to-software stack for the entire data science pipeline

NetworkX backend that provides GPU acceleration to many popular graph analytics algorithms

- Aims to bridge the gap between the ease of use of NetworkX and the high-performance capabilities of GPUaccelerated graph analytics
- Works by leverages GPUs to perform graph computations in parallel
 - Leads to faster processing, especially for large graphs and complex algorithms
 - Uses more efficient data structures than NetworkX's dictionary-based approach
 - Minimizes data movement between CPU and GPU
 - o Integrates with other RAPIDS libraries like cuDF for efficient data loading and preprocessing on GPUs
- There are 3 ways to utilize nx-cugraph
 - Environment variable at runtime
 - Backend keyword argument
 - Type-based dispatching

Enable no-code acceleration using an environment variable

The **NX_CUGRAPH_AUTOCONFIG** environment variable can be used to have NetworkX automatically dispatch to specified backends. This also works in Jupyter Notebooks by using the %env magic to set the variable.

```
user@machine:/# ipython demo.ipy
CPU times: user 7min 36s, sys: 5.22 s, total: 7min 41s
Wall time: 7min 41s

user@machine:/# NX_CUGRAPH_AUTOCONFIG=True ipython demo.ipy
CPU times: user 4.14 s, sys: 1.13 s, total: 5.27 s
Wall time: 5.32 s
```


Explicitly specify the cugraph backend

Backend keyword argument: NetworkX also supports explicitly specifying a particular backend for supported APIs with the **backend** keyword argument

nx.betweenness_centrality(cit_patents_graph, k=k, backend="cugraph")

Type-based dispatching

Type-based dispatching: for users wanting to ensure a particular behavior, without the potential for runtime conversions, NetworkX offers type-based dispatching. To utilize this method, users must import the desired backend and create a Graph instance for it.

```
import networkx as nx
import nx_cugraph as nxcg

G = nx.Graph()

# populate the graph
# ...

nxcg_G = nxcg.from_networkx(G)  # conversion happens once here
nx.betweenness_centrality(nxcg_G, k=1000)  # nxcg Graph type causes cugraph backend
# to be used, no conversion necessary
```


