INSTITUTO TECNOLÓGICO DE AERONÁUTICA

MP-208: Optimal Filtering with Aerospace Applications Computational Exercise 3

Prof. Davi Antônio dos Santos

November 16, 2020

Consider a system described by:

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), u(t)) + \mathbf{w}(t),$$

$$y_{k+1} = h\left(\mathbf{x}_{k+1}\right) + v_{k+1},$$

where $\mathbf{x}(t) \triangleq [x_1(t) \ x_2(t)]^{\mathrm{T}} \in \mathbb{R}^2$ is the state vector at the continuous time t, $\mathbf{x}_k \triangleq \mathbf{x}(t_k)$ is the state vector at the discrete time k, $u(t) \in \mathbb{R}$ is the control input, $\{\mathbf{w}(t) \in \mathbb{R}^2\}$ is the state noise, $y_k \in \mathbb{R}$ is the measured output, $\{v_k \in \mathbb{R}\}$ is the measurement noise, and

$$\mathbf{f}(\mathbf{x}(t), u(t)) \triangleq \begin{bmatrix} -x_1(t) + x_2(t) \\ -0.1x_1(t)^2 - 1 + u(t) \end{bmatrix}, \tag{1}$$

$$h(\mathbf{x}) = x_1. \tag{2}$$

For the sake of convenience, consider the control input

$$u(t) = -10y(t) + 10, (3)$$

where $y(t) \in \mathbb{R}$ is the continuous-time counterpart of y_k .

Let us adopt the parameters presented in Table 1.

Table 1: System parameters.

Description	Value
Covariance of the state noise	$\mathbf{Q}(t) = 0.01\mathbf{I}_2$
Covariance of the measurement noise	$R_k = 0.01$
Statistics of the initial state	$\bar{\mathbf{x}} = 0_2, \bar{\mathbf{P}} = \mathbf{I}_2$
Sensor sampling time	$T_s = 0.1 \text{ s}$

- a. Simulate the system described above using a MATLAB script and the 4th-order Runge-Kutta method.
- b. Design and implement (in a MATLAB script) a CDEKF for estimating $\{\mathbf{x}(t)\}$. This script has to contain an outer Monte Carlo loop allowing for an arbitrary number N of runs (or realizations).
- c. Using the MATLAB scripts implemented in the above questions, conduct a simulation study to evaluate the performance of the CDEKF over 100 realizations. For each of the two state components (say, the *i*th component), this study must include one graphic containing:
 - all the realizations of $\tilde{X}_i \triangleq X_i \hat{X}_i$ vs time; and
 - the filtered standard deviation computed by the filter (i.e., the ith diagonal element of $\sqrt{P_{k|k}}$.) vs time
- d. Write a report to objectively present the obtained results, together with the respective analysis.