Continuidad en Topologías

Juan Felipe Rodríguez Córdoba

Definición de Continuidad

Sea $f: X \to Y$ una función entre dos espacios topológicos (X, τ_X) y (Y, τ_Y) . Decimos que f es continua si para cada conjunto abierto $V \in \tau_Y$, su preimagen $f^{-1}(V)$ es un conjunto abierto en X, es decir, $f^{-1}(V) \in \tau_X$.

Definición Función Inversa

La función inversa de f, denotada como f^{-1} , es una función que asigna a cada conjunto $V \subseteq Y$ su preimagen en X:

$$f^{-1}(V) = \{ x \in X \mid f(x) \in V \}.$$

Topología de Semirrectas Derechas

La topología de semirrectas derechas en $\mathbb R$ está definida por la base de conjuntos abiertos de la forma (a,∞) .

Ejemplo en Topología de Semirrectas Derechas

Consideremos los espacios topológicos (X, τ_X) y (Y, τ_Y) donde:

- $X = \mathbb{R}$ con la topología de semirrectas derechas.
- $Y = \mathbb{R}$ con la topología de semirrectas derechas.

Definimos el conjunto abierto en Y:

$$A = (a, \infty)$$

- f(x) = 2x $f^{-1}(A) = (\frac{a}{2}, \infty)$ es abierto en X. Por lo tanto, f es continua.
- f(x) = -x $f^{-1}(A) = (-\infty, -a)$ no es abierto en X. Por lo tanto, f no es continua.

- $f(x)=x^2$ $f^{-1}(A)=(-\infty,-\sqrt{a})\cup(\sqrt{a},\infty)$ no es abierto en X. Por lo tanto, f no es continua.
- $f(x) = x^3$ $f^{-1}(A) = (\sqrt[3]{a}, \infty)$ es abierto en X. Por lo tanto, f es continua.

Topología de Sorgenfrey

La topología de Sorgenfrey en $\mathbb R$ está definida por la base de conjuntos abiertos de la forma [a,b) donde a < b.

Ejemplo en Topología de Sorgenfrey

Consideremos los espacios topológicos (X, τ_X) y (Y, τ_Y) donde:

- $X = \mathbb{R}$ con la topología de Sorgenfrey.
- $Y = \mathbb{R}$ con la topología de Sorgenfrey.

Definimos el conjunto abierto en Y:

$$A = [a, b)$$

- f(x) = 2x $f^{-1}(A) = [\frac{a}{2}, \frac{b}{2})$ es abierto en X. Por lo tanto, f es continua.
- f(x) = -x $f^{-1}(A) = (-b, -a]$ no es abierto en X. Por lo tanto, f no es continua.
- $f(x) = x^2$ $f^{-1}(A) = (-\sqrt{b}, -\sqrt{a}] \cup [\sqrt{a}, \sqrt{b})$ no es abierto en X. Por lo tanto, f no es continua.
- $f(x)=x^3$ $f^{-1}(A)=[\sqrt[3]{a},\sqrt[3]{b})$ es abierto en X. Por lo tanto, f es continua.

Topología Cofinita

La topología cofinita en un conjunto X está definida por la colección de conjuntos abiertos que son X y todos los subconjuntos cuyo complemento en X es finito.

Ejemplo en Topología Cofinita

Todas las funciones $f:X\to Y$ entre espacios topológicos con la topología cofinita son continuas excepto las periodicas. Esto se debe a que la preimagen de cualquier conjunto abierto en Y (que es Y o tiene complemento finito) tendrá un complemento finito en X, asegurando que la preimagen sea abierta en X.