	st Important PYQs stions				Complex No JEE Main Crash	
1.	The least positive integer n such that $\frac{(2i)^n}{(1-i)^{n-2}}, i=\sqrt{-1}$, is a positive integer	mathongo er, is				
	For two non-zero complex number z_1 and z_2 , if $\operatorname{Re}(z_1z_2)=0$ and $\operatorname{Re}(z_1+z_2)=0$ and $\operatorname{Im}(z_1)>0$ and $\operatorname{Im}(z_2)>0$ mathons (B) $\operatorname{Im}(z_1)<0$ and $\operatorname{Im}(z_2)>0$	$(z_2) = 0$, then which	of the following are	possible?		
	(C) $\operatorname{Im}(z_1) > 0$ and $\operatorname{Im}(z_2) < 0$ (D) $\operatorname{Im}(z_1) < 0$ and $\operatorname{Im}(z_2) < 0$ methons with the options given below:					
	(1) B and D (3) A and B (4) mathongo (4) mathongo (4) mathongo	(2) B and C (4) A and C				
3.	3. If the set $\left\{Re\left(\frac{z-\bar{z}+z\bar{z}}{2-3z+5\bar{z}}\right):z\in\mathbb{C},\;Re\left(\mathbf{z}\right)=3\right\}$ is equal to the interval $(lpha,\;eta]$, then $24(eta-lpha)$ is equal to					
	(1) 36ongo /// mathongo /// mathongo /// mathongo ///	(2) 27 thongo (4) 42				
4. ///.	Let $u=\frac{2z+i}{z-ki}, z=x+iy$ and $k>0$. If the curve represented by $\operatorname{Re}(u)+\operatorname{In}(1)$ $\frac{3}{2}$ mathons $\frac{3}{2}$ mathons $\frac{3}{2}$ mathons $\frac{3}{2}$	$m(u) = 1 \text{ intersects}$ $(2) \frac{1}{2}$ $(4) 2$	s the y-axis at points mathonge	P and Q where PQ	Q = 5 then the value of mothongo	of k is
5.	Let for some real numbers $lpha$ and $eta,a=lpha-ieta$. If the system of equations	4ix + (1+i)y = 0	and $8\left(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\right)$	$\left(-rac{2\pi}{3} ight) x+ar{a}y=0$ ha	as more than one solu	ıtion
	then $\frac{\alpha}{\beta}$ is equal to		77. Ciditorigo	, mathongo		
	(1) $2-\sqrt{3}$ (3) $-2+\sqrt{3}$ /// mathongo /// mathongo /// mathongo	(2) $2 + \sqrt{3}$ (4) $-2 - \sqrt{3}$				
6.	Let a complex number $z, z \neq 1$, satisfy $\log_{\frac{1}{\sqrt{2}}} \left(\frac{ z +11}{(z -1)^2} \right) \leq 2$. Then, the largest value of $ z $ is equal to					
	(1) 8 nongo /// mathongo /// mathongo /// mathongo (3) 6	(2) 7 athongo (4) 5				
7.	Let $z = \left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^5 + \left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right)^5$. If $R(z)$ and $I(z)$ respectively denote the	ne real and imagina	ry parts of z , then			
	(1) $I(z) = 0$ (3) $R(z) > 0$ and $I(z) > 0$	(2) $R(z) < 0$ and (4) $R(z) = -3$	$\mid I(z)>0$			
	Let $S=\{z\in\mathbb{C}:\bar{z}=i(z^2+\mathrm{Re}(\bar{z}))\}$. Then $\sum_{z\in S} z ^2$ is equal to (1) $\frac{5}{2}$ (3) $\frac{7}{2}$	(2) 4				
9.	If $z \neq 0$ be a complex number such that $\left z - \frac{1}{z}\right = 2$, then the maximum value	ue of $ z $ is				
	$(1) \sqrt{2}$	(2) 1				
10.	(3) $\sqrt{2}-1$ mathons mathons mathons which is a stair with the minimum value v_0 of $v= z ^2+ z-3 ^2+ z-6i ^2, z\in\mathbb{C}$ is attain the stair of the	(4) $\sqrt{2} + 1$ ned at $z = z_0$. Then	$ \left \frac{2z_0^2 - \bar{z}_0^3 + 3}{2z_0^2 + z_0^3 + 3} \right ^2 + v $	/// mothongo $_0^2$ is equal to		
	(1) 1000 (3) 1105 go /// mathongo /// mathongo /// mathongo	(2) 1024				
11.	For $z \in \mathbb{C}$ if the minimum value of $\left(\left z-3\sqrt{2}\right +\left z-p\sqrt{2}i\right \right)$ is $5\sqrt{2}$, then $z \in \mathbb{C}$					
	(1) 3 mathongo /// mathongo /// mathongo /// mathongo					

12. Let n denote the number of solutions of the equation $z^2 + 3\overline{z} = 0$, where z is a complex number. Then the value of $\sum_{k=0}^{\infty} \frac{1}{n^k}$ is equal to

(1) 1 hongo /// mathongo // mathongo /// mathongo // ma

13. Let z=a+ib, $b\neq 0$ be complex numbers satisfying $z^2=\bar{z}\cdot 2^{1-|z|}$. Then the least value of $n\in N$, such that $z^n=(z+1)^n$, is equal to _____.

14. Let $S=\left\{z\in\mathbb{C}-\left\{i,2i\right\}: \frac{z^2+8iz-15}{z^2-3iz-2}\in\mathbb{R}\right\}$. $\alpha-\frac{13}{11}i\in S, \alpha\in\mathbb{R}-\left\{0\right\}$, then $242\alpha^2$ is equal to

15. Let $p, q \in \mathbb{R}$ and $\left(1 - \sqrt{3}i\right)^{200} = 2^{199} \left(p + iq\right), i = \sqrt{-1}$. Then, $p + q + q^2$ and $p - q + q^2$ are roots of the equation.

(1) $x^2 + 4x - 1 = 0$

(2) x - 4x + 1 = 0 (4) $x^2 - 4x - 1 = 0$ 16. The value of $\left(\frac{1+\sin\frac{2\pi}{9}+i\cos\frac{2\pi}{9}}{1+\sin\frac{2\pi}{9}-i\cos\frac{2\pi}{9}}\right)^3$ is " mathongo " mathon

- Questions JEE Main Crash Course 17. If z and ω are two complex numbers such that $|z\omega|=1$ and $\arg(z)-\arg(\omega)=\frac{3\pi}{2}$, then $\arg\left(\frac{1-2\bar{z}\omega}{1+3\bar{z}\omega}\right)$ is: (Here arg(z) denotes the principal argument of complex number z) (1) $\frac{\pi}{4}$ mathongo /// math 18. Let $z = \frac{1 - i\sqrt{3}}{2}$, $i = \sqrt{-1}$. Then the value of $21 + \left(z + \frac{1}{z}\right)^3 + \left(z^2 + \frac{1}{z^2}\right)^3 + \left(z^3 + \frac{1}{z^3}\right)^3 + \dots + \left(z^{21} + \frac{1}{z^{21}}\right)^3$ is _____. **19.** If $z^2 + z + 1 = 0$, $z \in C$, then $\left| \sum_{n=1}^{15} \left(z^n + \left(-1 \right)^n \frac{1}{z^n} \right)^2 \right|$ is equal to ____
- **20.** If f(x) and g(x) are two polynomials such that the polynomial $P(x) = f(x^3) + xg(x^3)$ is divisible by $x^2 + x + 1$, then P(1) is equal to _____ mathons
- **21.** The number of elements in the set $\{z=a+ib\in\mathbb{C}:a,b\in\mathbb{Z}\text{ and }1<|z-3+2i|<4\}$ is _ 22. Let $w=z\bar{z}+k_1z+k_2iz+\lambda(1+i), k_1,k_2\in\mathbb{R}$. Let Re(w)=0 be the circle C of radius 1 in the first quadrant touching the line y=1 and the y-axis. If the
- curve Im(w) = 0 intersects C at A and B, then $30(AB)^2$ is equal to ______. mathons a mathons a mathons a23. If the center and radius of the circle $\left|\frac{z-2}{z-3}\right|=2$ are respectively (α,β) and γ , then $3(\alpha+\beta+\gamma)$ is equal to
- (3) 10 ongo /// mathongo // mathongo /// mathongo /// mathongo /// mathongo /// mathongo // mathongo /// mathongo // m
- $\textbf{24. For } n \in N, \text{ let } S_n = \left\{z \in C: |z-3+2i| = \frac{n}{4}\right\} \text{ and } T_n = \left\{z \in C: |z-2+3i| = \frac{1}{n}\right\}. \text{ Then the number of elements in the set } \left\{n \in N: S_n \cap T_n = \phi\right\} \text{ is } T_n = \left\{z \in C: |z-3+2i| = \frac{n}{4}\right\}.$
- (1) Onongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo
- $(3) \ 3$ **25.** The area of the polygon, whose vertices are the non-real roots of the equation $\bar{z}=iz^2$ is
- (2) $\frac{3\sqrt{3}}{4}$ hongo /// mathongo /// mathongo /// mathongo /// (3) $\frac{\sqrt{3}}{4}$
- $\textbf{26. Let } A = \left\{z \in C: \left|\frac{z+1}{z-1}\right| < 1\right\} \text{ and } B = \left\{z \in C: \arg\left(\frac{z-1}{z+1}\right) = \frac{2\pi}{3}\right\}. \text{ Then } A \cap B \text{ is mathongo} \\ \\ \textbf{ mathongo} \\ \textbf{$ (1) a portion of a circle centred at $\left(0, -\frac{1}{\sqrt{3}}\right)$ that lies in the second and third(2) a portion of a circle centred at $\left(0, -\frac{1}{\sqrt{3}}\right)$ that lies in the second quadrant quadrants only
- (3) an empty set (4) a portion of a circle of radius $\frac{2}{\sqrt{2}}$ that lies in the third quadrant only 27. Let z_1, z_2 be the roots of the equation $z^2 + az + 12 = 0$ and z_1, z_2 form an equilateral triangle with origin. Then, the value of |a| is
- **28.** Let $S_1 = \left\{ z_1 \in C : |z_1 3| = \frac{1}{2} \right\}$ and $S_2 = \left\{ z_2 \in C : |z_2 |z_2 + 1|| = |z_2 + |z_2 1|| \right\}$. Then, for $z_1 \in S_1$ and $z_2 \in S_2$, the least value of $|z_2 z_1|$ is (1) 0
- (2) $\frac{1}{2}$ (4) $\frac{5}{2}$ (2) $\frac{1}{2}$ (3) $\frac{5}{2}$ (4) $\frac{5}{2}$ (5) $\frac{1}{2}$ (7) $\frac{1}{2}$ (8) $\frac{1}{2}$ (9) $\frac{1}{2}$ (9) $\frac{1}{2}$ (10) $\frac{1}{2}$ (11) $\frac{1}{2}$ (12) $\frac{1}{2}$ (13) $\frac{1}{2}$ (14) $\frac{1}{2}$ (15) $\frac{1}{2}$ (15) $\frac{1}{2}$ (17) $\frac{1}{2}$ (17) $\frac{1}{2}$ (17) $\frac{1}{2}$ (17) $\frac{1}{2}$ (18) $\frac{1}{2}$ (19) $\frac{1}{2}$ (3) $\frac{3}{2}$ 29. Let $S = \{z \in C : |z-2| \le 1, z(1+i) + \bar{z}(1-i) \le 2\}$. Let |z-4i| attains minimum and maximum values, respectively, at $z_1 \in S$ and $z_2 \in S$. If $5(|z_1|^2+|z_2|^2)=\alpha+\beta\sqrt{5}$, where α and β are integers, then the value of $\alpha+\beta$ is equal to _
- **30.** Let S_1 , S_2 and S_3 be three sets defined as $S_1=\left\{z\in\mathbb{C}:\left|z-1
 ight|\leq\sqrt{2}
 ight\},$
 - $S_2 = \{z \in \mathbb{C} : Re((1-i)z) \geq 1\}$ and mathongo /// mathongo // mathong $S_3=\{z\in\mathbb{C}:Im(z)\leq 1\}.$
 - Then, the set $S_1 \cap S_2 \cap S_3$ (1) is a singleton /// mathongo /// mathongo /// has exactly two elements ongo /// mathongo /// mathongo /// mathongo
 - (3) has infinitely many elements