STAT 525 — Spring 2020 — Section A1

Homework 5 Solution

- 1. The sequential importance sampling algorithm with the state equation as the proposal can be described as following:
 - Set $w_0 = 1$
 - Sample μ_1 from the proposal distribution (state equation) $f(\mu_1) = f(mu_1|\mu_0)$, and update the weight $w_1 = w_0 \cdot g(Y_1|\mu_1)$. Here g denotes the observation equation
 - For $t \geq 2$, sample μ_t from the proposal $f(\mu_t | \mu_{t-1})$, and update the weight $w_t = w_{t-1} \cdot g(Y_t | \mu_t)$
 - Repeat the steps above for m times, and for each t, estimate $E(\mu_t|Y_{1:t})$ by

$$\hat{h}_t = \frac{\sum_{j=1}^m \mu_t^{(j)} w_t^{(j)}}{\sum_{j=1}^m w_t^{(j)}}$$

By implementing the following code, we get the following results for the filtering problem

t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\hat{h}_t	0.0022	-0.1482	0.0469	-0.0061	0.0669	0.0299	0.1834	0.1508	0.1111	0.2583	0.6366	0.6487	0.3460	0.4621	0.5583

```
m = 10000
y = c(-0.4, -1.4, 1.1, -0.3, 0.7, -0.1, 1.3, 0.3, 0.1, 1.2, 2.0, 0.9, -0.4, 0.9, 1.0)
T = length(y)
x = matrix(0, m, T)
w = matrix(0, m, T)
for (i in 1:m) {
         for (t in 1:T)
                  if (t==1)
                           x[i,1] = ifelse(runif(1) < 0.9, 0, rnorm(1))
                           w[i, 1] = dnorm(y[1] - x[1, t])
                  else {
                           x[i,t] = ifelse(runif(1) < 0.9, x[i,t-1], rnorm(1))
                           w[i, t] = w[i, t-1]*dnorm(y[t]-x[i, t])
                  }
         }
apply(w*x,2,sum)/apply(w,2,sum)
```

2. We first estimate b by using the sample version of variance and covariance, which gives $b^* = -0.5476$. Then we estimate the mean of $X(b^*)$, where

$$X(b) = \frac{1}{1+X^3} - b\left[(1+X^3) - \frac{5}{4}\right].$$

The estimate of μ and the variance of the estimate are reported in the following table.

	Control variates	Naive Monte Carlo
$\hat{\mu}$	0.8364	0.8449
variance of the estimate	7.2619e-07	2.4831e-05

R code:

$$n = 1000$$

$$x = runif(n)$$

$$mu.\,hat.mc \,=\, mean(1/(1+x\,\hat{\,\,}3)) \ \# \ naive \ Monte \ Carlo$$

$$var.mc = var(1/(1+x^3))/n$$

b. star =
$$cov(1/(1+x^3),1+x^3)/var(1+x^3)$$

$$\label{eq:muhat.cv} \text{mu.hat.cv} \ = \ \operatorname{mean}(1/(1+x\,\hat{\ }3) \ - \ b.\,\operatorname{star}*(x\,\hat{\ }3-1/4))$$

$$var.cv = var(1/(1+x^3) - b.star*(x^3-1/4))/n$$

3. The CDF of the Pareto distribution is

$$F(x) = \int_{2}^{x} 160s^{-6}ds = 1 - 32x^{-5}, \quad x \ge 2.$$

The inverse CDF is given by

$$F^{-1}(u) = 2(1-u)^{-1/5}, \quad 0 \le u \le 1.$$

Let m = 1000. The antithetic variates method to estimate the mean of the Pareto distribution can be described as following:

- Calculate $x_1^{(i)} = F^{-1}(u^{(i)}) = 2(1 u^{(i)})^{-1/5}$, and $x_2^{(i)} = F^{-1}(1 u^{(i)}) = 2(u^{(i)})^{-1/5}$
- Calculate $x^{(i)} = (x_1^{(i)} + x_2^{(i)})/2$
- The mean of this Pareto distribution is estimated by

$$\hat{\mu} = \frac{2}{m} \sum_{i=1}^{m/2} x^{(i)}$$

• The variance of the estimate is given by $\hat{\sigma}^2/(m/2)$, where $\hat{\sigma}^2$ is the sample variance of $\{x^{(i)}\}_{i=1}^{m/2}$

	Antithetic variates	Naive inversion method
$\hat{\mu}$	2.4805	2.5057
variance of the estimate	1.5167e-04	4.2205e-04

Results are reported in the following table.

R code: