Business Case: Target SQL Scaler DS ML

Shayantan Dey

30th July

Context:

Target is a globally renowned brand and a prominent retailer in the United States. Target makes itself a preferred shopping destination by offering outstanding value, inspiration, innovation and an exceptional guest experience that no other retailer can deliver.

This particular business case focuses on the operations of Target in Brazil and provides insightful information about 100,000 orders placed between 2016 and 2018. The dataset offers a comprehensive view of various dimensions including the order status, price, payment and freight performance, customer location, product attributes, and customer reviews.

By analyzing this extensive dataset, it becomes possible to gain valuable insights into Target's operations in Brazil. The information can shed light on various aspects of the business, such as order processing, pricing strategies, payment and shipping efficiency, customer demographics, product characteristics, and customer satisfaction levels.

Dataset:

The data is available in 8 csv files at Google Drive

- 1. customers.csv
- 2. sellers.csv
- 3. order items.csv
- 4. geolocation.csv
- 5. payments.csv
- 6. reviews.csv
- 7. orders.csv
- 8. products.csv

The column description for these csv files is given below.

The **customers.csv** contain following features:

Features	Description
customer_id	ID of the consumer who made the purchase
$customer_unique_id$	Unique ID of the consumer
customer_zip_code_prefix	Zip Code of consumer's location
customer_city	Name of the City from where order is made
customer_state	State Code from where order is made (Eg. são paulo - SP)

The $\mathbf{sellers.csv}$ contains following features:

Features	Description
seller_id	Unique ID of the seller registered
$seller_zip_code_prefix$	Zip Code of the seller's location
seller_city	Name of the City of the seller
$seller_state$	State Code (Eg. são paulo - SP)

The ${\bf order_items.csv}$ contain following features:

Features	Description
order_id	A Unique ID of order made by the consumers
$order_item_id$	A Unique ID given to each item ordered in the order
product_id	A Unique ID given to each product available on the site
seller_id	Unique ID of the seller registered in Target
shipping_limit_date	The date before which the ordered product must be shipped
price freight_value	Actual price of the products ordered Price rate at which a product is delivered from one point to another

The ${\bf geolocations.csv}$ contain following features:

Features	Description
geolocation_zip_code_prefix	First 5 digits of Zip Code
geolocation_lat	Latitude
geolocation_lng	Longitude
geolocation_city	City
geolocation_state	State

The **payments.csv** contain following features:

Features	Description
order_id	A Unique ID of order made by the consumers
payment_sequential	Sequences of the payments made in case of EMI
payment_type	Mode of payment used (Eg. Credit Card)
payment_installments	Number of installments in case of EMI purchase
payment_value	Total amount paid for the purchase order

The ${\bf orders.csv}$ contain following features:

Features	Description
order_id	A Unique ID of order made by the consumers
$\operatorname{customer_id}$	ID of the consumer who made the purchase
order_status	Status of the order made i.e. delivered, shipped, etc.
$order_purchase_timestamp$	Timestamp of the purchase
order_delivered_carrier_date	Delivery date at which carrier made the delivery
order_delivered_customer_date order_estimated_delivery_date	Date at which customer got the product Estimated delivery date of the products

The ${\bf reviews.csv}$ contain following features:

Features	Description
review_id	ID of the review given on the product ordered by the order id
order_id	A Unique ID of order made by the consumers
review_score	Review score given by the customer for each order on a scale of 1-5
$review_comment_title$	Title of the review
review_comment_message	Review comments posted by the consumer for each order
review_creation_date review_answer_timestamp	Timestamp of the review when it is created Timestamp of the review answered

The $\mathbf{products.csv}$ contain following features:

Features	Description
product_id	A Unique identifier for the proposed project
product_category_name	Name of the product category
product_name_lenght	Length of the string which specifies the name given to the products ordered
product_description_lenght	Length of the description written for each product ordered on the site
product_photos_qty	Number of photos of each product ordered available on the shopping portal
product_weight_g	Weight of the products ordered in grams
product_length_cm	Length of the products ordered in centimeters
product_height_cm	Height of the products ordered in centimeters
$product_width_cm$	Width of the product ordered in centimeters

Dataset schema:

Observations in the dataset

Two files, order_reviews.csv and geolocation.csv had unclean data.

Issues Identified in the order_reviews.csv file:

Encoding Issue: The file had to be read with ISO-8859-1 encoding instead of UTF-8.

Null Values: The review_comment_title column has many null values.

Date and Time Formatting: The review_creation_date and review_answer_timestamp columns are in string format and not properly parsed as datetime objects.

Steps to Correct Issues:

- 1. Ensure consistent encoding.
- 2. Handle null values in review_comment_title.
- 3. Convert date and time columns to proper datetime format.

Cleaning Data:

- 1. Strip leading/trailing spaces in text fields.
- 2. Replace any special characters or non-UTF-8 characters in text fields.
- 3. Check for null or empty values and handle them appropriately.

4. Convert date and time columns to datetime format.

Issues Identified in the geolocation.csv file:

Encoding Issue: The file had to be read with ISO-8859-1 encoding instead of UTF-8.

Null Values: The review_comment_title column has many null values.

Date and Time Formatting: The review_creation_date and review_answer_timestamp columns are in string format and not properly parsed as datetime objects.

Steps to Correct Issues:

- 1. Special characters in text fields.
- 2. Trailing or leading spaces.
- 3. Null or empty values.
- 4. Ensure that the file does not have any rows that might cause issues.

Cleaning Data:

- 1. Strip leading/trailing spaces in text fields.
- 2. Replace any special characters or non-UTF-8 characters in text fields.
- 3. Check for null or empty values and handle them appropriately.

All the 27 geolocation_state listed in the geolocations.csv file and customer_state in customers.csv are 26 states and 1 federal territory of Brazil. Hence, the data is specific to Brazil customers.

Problem Statement:

Assuming you are a data analyst/ scientist at Target, you have been assigned the task of analyzing the given dataset to extract valuable insights and provide actionable recommendations.

What does 'good' look like?

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:
- 1.1. Data type of all columns in the "customers" table.

DESCRIBE customers;

Table 9: 5 records

Field	Type	Null	Key	Default	Extra
customer_id	text	YES		NA	
customer_unique_id	text	YES		NA	
$customer_zip_code_prefix$	text	YES		NA	
customer_city	text	YES		NA	
$customer_state$	text	YES		NA	

1.2. Get the time range between which the orders were placed.

```
SELECT
   MIN(order_purchase_timestamp) AS order_start_date,
   MAX(order_purchase_timestamp) AS order_end_date,
   DATEDIFF(MAX(order_purchase_timestamp), MIN(order_purchase_timestamp))
   AS order_time_range_days
FROM
   orders;
```

Table 10: 1 records

order_start_date	order_end_date	order_time_range_days
2016-09-04 21:15:19	2018-10-17 17:30:18	773

1.3. Count the Cities & States of customers who ordered during the given period.

```
SELECT DISTINCT c.customer_city, c.customer_state, COUNT(*) AS customer_count
FROM orders AS o

JOIN customers AS c
ON o.customer_id = c.customer_id
GROUP BY c.customer_city, c.customer_state
ORDER BY customer_count DESC
```

Table 11: Displaying records 1 - 10

customer_city	$customer_state$	customer_count
sao paulo	SP	15540
rio de janeiro	RJ	6882
belo horizonte	MG	2773
brasilia	DF	2131
curitiba	PR	1521
campinas	SP	1444
porto alegre	RS	1379
salvador	BA	1245
guarulhos	SP	1189
sao bernardo do campo	SP	938

2. In-depth Exploration:

2.1 Is there a growing trend in the no. of orders placed over the past years?

The purchases were made in the year 2016, 2017 and 2018.

```
SELECT DISTINCT YEAR(order_purchase_timestamp) AS year_of_orders
FROM orders
ORDER BY year_of_orders;
```

Table 12: 3 records

year_	_of_	_orders
2016		
2017		
2018		

Trend for 2016 does not show conclusive evidence of a growing trend.

Table 13: 3 records

month	order_count	month_number
September 2016 October 2016	4 324	9 10
December 2016	1	12

Trend for 2017 shows growth in month-on-month sale throughout the year.

Table 14: Displaying records 1 - 10

month	$order_count$	$month_number$
January 2017	800	1
February 2017	1780	2
March 2017	2682	3
April 2017	2404	4
May 2017	3700	5
June 2017	3245	6
July 2017	4026	7
August 2017	4331	8
September 2017	4285	9
October 2017	4631	10

Trend for 2018 shows growth in month-on-month sale throughout the year.

Table 15: Displaying records 1 - 10

month	$order_count$	month_number
January 2018	7269	1
February 2018	6728	2
March 2018	7211	3
April 2018	6939	4
May 2018	6873	5
June 2018	6167	6
July 2018	6292	7
August 2018	6512	8
September 2018	16	9
October 2018	4	10

Finding the sales per year shows a year-on-year growing trend.

Table 16: 3 records

year	count_of_orders
2016	329
2017	45101
2018	54011

2.2. Can we see some kind of monthly seasonality in terms of the no. of orders being placed? Highest monthly sales in the given data is as follows, but it fails to show any seasonal trend:

Table 17: Displaying records 1 - 10

year	month	order_count
2017	November	7544
2018	January	7269
2018	March	7211
2018	April	6939
2018	May	6873
2018	February	6728
2018	August	6512
2018	July	6292
2018	June	6167
2017	December	5673

While checking the year-wise monthly sales data, we do not see any monthly seasonality:

Table 18: 3 records

month	month_number	order_count
October 2016	10	324
September 2016	9	4
December 2016	12	1

Table 19: Displaying records 1 - $10\,$

month	$month_number$	order_count
November 2017	11	7544
December 2017	12	5673
October 2017	10	4631
August 2017	8	4331
September 2017	9	4285
July 2017	7	4026
May 2017	5	3700

month	month_number	order_count
June 2017 March 2017	6 3	3245 2682
April 2017	4	2404

Table 20: Displaying records 1 - 10

month	$month_number$	order_count
January 2018	1	7269
March 2018	3	7211
April 2018	4	6939
May 2018	5	6873
February 2018	2	6728
August 2018	8	6512
July 2018	7	6292
June 2018	6	6167
September 2018	9	16
October 2018	10	4

2.3. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

0-6 hrs: Dawn 7-12 hrs: Mornings 13-18 hrs: Afternoon 19-23 hrs: Night

As per the data, Brazilian customers prefer placing their orders during afternoon.

```
WITH d AS (SELECT customer_id, order_purchase_timestamp,

CASE

WHEN FLOOR(EXTRACT(HOUR FROM order_purchase_timestamp)) BETWEEN 0 AND 6 THEN

"Dawn"

WHEN FLOOR(EXTRACT(HOUR FROM order_purchase_timestamp)) BETWEEN 7 AND 12 THEN

"Mornings"

WHEN FLOOR(EXTRACT(HOUR FROM order_purchase_timestamp)) BETWEEN 13 AND 18 THEN

"Afternoon"

WHEN FLOOR(EXTRACT(HOUR FROM order_purchase_timestamp)) BETWEEN 19 AND 23 THEN

"Night"

END AS time_of_day

FROM orders)

SELECT DISTINCT d.time_of_day, COUNT(d.time_of_day) OVER(PARTITION BY d.time_of_day)

AS count_of_orders
```

```
FROM d
ORDER BY count_of_orders DESC;
```

Table 21: 4 records

time_of_day	count_of_orders
Afternoon	38135
Night	28331
Mornings	27733
Dawn	5242

3. Evolution of E-commerce orders in the Brazil region:

3.1. Get the month on month no. of orders placed in each state.

```
SELECT c.customer_state,
    EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
    MONTHNAME(o.order_purchase_timestamp) AS month_name,
    EXTRACT(MONTH FROM o.order_purchase_timestamp) AS month_number,
    COUNT(o.order_id) AS order_count
FROM customers AS c
JOIN orders AS o
ON c.customer_id = o.customer_id
GROUP By c.customer_state,
    EXTRACT(YEAR FROM o.order_purchase_timestamp),
    MONTHNAME(o.order_purchase_timestamp),
    EXTRACT(MONTH FROM o.order_purchase_timestamp)
ORDER BY c.customer_state, year, month_number;
```

Table 22: Displaying records 1 - 10

customer_state	year	$month_name$	$month_number$	order_count
$\overline{\mathrm{AC}}$	2017	January	1	2
AC	2017	February	2	3
AC	2017	March	3	2
AC	2017	April	4	5
AC	2017	May	5	8
AC	2017	June	6	4
AC	2017	July	7	5
AC	2017	August	8	4
AC	2017	September	9	5
AC	2017	October	10	6

3.2. How are the customers distributed across all the states?

Distribution of customers across states is as follows:

Table 23: Displaying records 1 - 10

$customer_state$	$count_of_customers$
$\overline{\mathrm{AC}}$	81
AL	413
AM	148
AP	68
BA	3380
CE	1336
DF	2140
ES	2033
GO	2020
MA	747

Distribution of customers across cities in those states is as follows:

Table 24: Displaying records 1 - 10

$customer_state$	$customer_city$	$count_of_customers$
$\overline{\mathrm{AC}}$	brasileia	1
AC	cruzeiro do sul	3
AC	epitaciolandia	1
AC	manoel urbano	1
AC	porto acre	1
AC	rio branco	70
AC	senador guiomard	2
AC	xapuri	2
AL	agua branca	1
AL	anadia	2

4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

4.1. Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only). You can use the "payment_value" column in the payments table to get the cost of orders.

Table 25: 1 records

2017_payment_value	2018_payment_value	$2017_to_2018_percentage_increase$
3645107	8694670	138.53

Analyzing the *order_status* we find the following status. Including or excluding orders with certain status will change the percentage increase.

```
SELECT DISTINCT order_status FROM orders;
```

Table 26: 8 records

order_status
delivered
invoiced
shipped
processing
unavailable
canceled
created
approved

Foe example, excluding the orders with canceled status changes the results as follows:

```
WITH d AS (SELECT EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
    p.payment_value
    FROM orders AS o
    JOIN payments AS p
    ON o.order_id = p.order_id
    WHERE ((o.order_purchase_timestamp BETWEEN '2017-01-01' AND '2017-08-31')
    OR (o.order_purchase_timestamp BETWEEN '2018-01-01' AND '2018-08-31'))
    AND (o.order_status <> "canceled")),
```

Table 27: 1 records

$2017_to_2018_percentage_increase$	$2018_payment_value$	$2017_payment_value$
139.29	8624465	3604147

4.2. Calculate the Total & Average value of order price for each state.

```
SELECT DISTINCT c.customer_state,

ROUND(SUM(p.payment_value) OVER(PARTITION BY c.customer_state), 2)

AS total_order_price,

ROUND(AVG(p.payment_value) OVER(PARTITION BY c.customer_state), 2)

AS average_order_price

FROM customers AS c

JOIN orders AS o

ON c.customer_id = o.customer_id

JOIN payments AS p

ON o.order_id = p.order_id

ORDER BY c.customer_state;
```

Table 28: Displaying records 1 - 10

customer_state	total_order_price	average_order_price
$\overline{\mathrm{AC}}$	19680.62	234.29
AL	96962.06	227.08
AM	27966.93	181.60
AP	16262.80	232.33
BA	616645.82	170.82
CE	279464.03	199.90
DF	355141.08	161.13
ES	325967.55	154.71
GO	350092.31	165.76
MA	152523.02	198.86

4.3. Calculate the Total & Average value of order freight for each state.

```
SELECT DISTINCT c.customer_state,

ROUND(SUM(oi.freight_value) OVER(PARTITION BY c.customer_state), 2)

AS total_freight_price,

ROUND(AVG(oi.freight_value) OVER(PARTITION BY c.customer_state), 2)

AS average_freight_price

FROM customers AS c

JOIN orders AS o

ON c.customer_id = o.customer_id

JOIN order_items AS oi

ON o.order_id = oi.order_id

ORDER BY c.customer_state;
```

Table 29: Displaying records 1 - 10

customer_state	total_freight_price	average_freight_price
$\overline{\mathrm{AC}}$	3686.75	40.07
AL	15914.59	35.84
AM	5478.89	33.21
AP	2788.50	34.01
BA	100156.68	26.36
CE	48351.59	32.71
DF	50625.50	21.04
ES	49764.60	22.06
GO	53114.98	22.77
MA	31523.77	38.26

5. Analysis based on sales, freight and delivery time.

5.1. Find the no. of days taken to deliver each order from the order's purchase date as delivery time. Also, calculate the difference (in days) between the estimated & actual delivery date of an order. Do this in a single query.

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

```
time_to_deliver = order_delivered_customer_date - order_purchase_timestamp
diff estimated delivery = order delivered customer date - order estimated delivery date
```

Checking for the missing values, we find that <code>order_delivered_customer_date</code> is is missing in the dataset for many rows across all <code>order_status</code>. This should be considered as unclean data and it will adversely affect the analysis.

```
SELECT DISTINCT order_status,

COUNT(CASE WHEN order_delivered_customer_date = "" THEN 1 END)

OVER (PARTITION BY order_status ORDER BY order_delivered_customer_date)

AS null_delivered_date,

COUNT(CASE WHEN order_purchase_timestamp = "" THEN 1 END)

OVER (PARTITION BY order_status ORDER BY order_purchase_timestamp)

AS null_purchase_timestamp,

COUNT(CASE WHEN order_estimated_delivery_date = "" THEN 1 END)

OVER (PARTITION BY order_status ORDER BY order_estimated_delivery_date)

AS null_estimated_delivery

FROM orders;
```

Table 30: 8 records

order_status	$null_delivered_date$	null_purchase_timestamp	null_estimated_delivery
approved	2	0	0
canceled	619	0	0
created	5	0	0
delivered	8	0	0
invoiced	314	0	0
processing	301	0	0
shipped	1107	0	0
unavailable	609	0	0

Calculating $time_to_deliver$ and $diff_estimated_delivery$, we observe that time to deliver and estimated delivery are a major concern that requires improvement.

```
SELECT order_id, order_status,

DATEDIFF(order_delivered_customer_date, order_purchase_timestamp)

AS time_to_deliver,

DATEDIFF(order_delivered_customer_date, order_estimated_delivery_date)

AS diff_estimated_delivery

FROM orders

ORDER BY diff_estimated_delivery DESC;
```

Table 31: Displaying records 1 - 10

order_id	$order_status$	$time_to_deliver$	diff_estimated_delivery
1b3190b2dfa9d789e1f14c05b647a14a	delivered	208	188
ca 07593549 f1816 d26 a572 e06 dc1 eab6	delivered	210	181
47 b 40 429 e d 8 c c e 3 a e e 9199792275433 f	delivered	191	175
2 fe 3 24 feb f 907 e 3 e a 3 f 2 a a 9 6 5 0 8 6 9 fa 5	delivered	190	167
285 ab 9426 d6982034523 a855 f55 a885 e	delivered	195	166
440 d0 d17 af 552 815 d15 a 9 e 41 ab e 49359	delivered	196	165
c27815f7e3dd0b926b58552628481575	delivered	188	162
d24e8541128cea179a11a65176e0a96f	delivered	175	161
0f4519c5f1c541ddec9f21b3bddd533a	delivered	194	161
2 d7561026 d542 c8 db d8 f0 dae a df 67 a 43	delivered	188	159

6535 orders had actual delivery later than the estimated delivery. Estimation of delivery date should be revised.

```
SELECT COUNT(*) AS delivery_estimate_miss
FROM orders
WHERE DATEDIFF(order_delivered_customer_date, order_estimated_delivery_date) >= 1;
```

Table 32: 1 records

$\overline{\text{delivery}_{-}}$	_estimate_	_miss
		6535

5.2. Find out the top 5 states with the highest & lowest average freight value.

Table 33: 5 records

$customer_state$	$highest_5_avg$
RR	42.98442
PB	42.72380
RO	41.06971
AC	40.07337
PI	39.14797

```
SELECT DISTINCT c.customer_state,

AVG(oi.freight_value) OVER (PARTITION BY c.customer_state) AS lowest_5_avg

FROM order_items AS oi

JOIN orders AS o

ON oi.order_id = o.order_id

JOIN customers AS c

ON o.customer_id = c.customer_id

ORDER BY lowest_5_avg

LIMIT 5;
```

Table 34: 5 records

customer_state	lowest_5_avg
SP	15.14728
PR	20.53165
MG	20.63017
RJ	20.96092
DF	21.04135

5.3. Find out the top 5 states with the highest & lowest average delivery time.

```
SELECT DISTINCT c.customer_state,

AVG(DATEDIFF(order_delivered_customer_date, order_purchase_timestamp))

OVER (PARTITION BY c.customer_state) AS highest_5_avg

FROM orders AS o

JOIN customers AS c

ON o.customer_id = c.customer_id

ORDER BY highest_5_avg DESC

LIMIT 5;
```

Table 35: 5 records

```
SELECT DISTINCT c.customer_state,

AVG(DATEDIFF(order_delivered_customer_date, order_purchase_timestamp))

OVER (PARTITION BY c.customer_state) AS lowest_5_avg

FROM orders AS o

JOIN customers AS c

ON o.customer_id = c.customer_id

ORDER BY lowest_5_avg

LIMIT 5;
```

Table 36: 5 records

customer_state	lowest_5_avg
SP	8.7005
PR	11.9380
MG	11.9465
DF	12.8990
SC	14.9075

5.4. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

```
SELECT DISTINCT c.customer_state,

AVG(DATEDIFF(order_estimated_delivery_date, order_delivered_customer_date))

OVER (PARTITION BY c.customer_state) AS top_5_fastest_delivery

FROM orders AS o

JOIN customers AS c

ON o.customer_id = c.customer_id

ORDER BY top_5_fastest_delivery

LIMIT 5;
```

Table 37: 5 records

customer_state	top_5_fastest_delivery
$\overline{\mathrm{AL}}$	8.7078
MA	9.5718
SE	10.0209
ES	10.4962
BA	10.7945

6. Analysis based on the payments:

6.1. Find the month on month no. of orders placed using different payment types.

The various payment types in the dataset is as follows:

```
SELECT DISTINCT payment_type, COUNT(payment_type) AS count_payment_type
FROM payments
GROUP BY payment_type
HAVING payment_type <> "not_defined"
```

Table 38: 4 records

payment_type	count_payment_type
credit_card	76795
UPI	19784
voucher	5775
$debit_card$	1529

Payment type is not defined for 3 entries in the dataset.

```
SELECT payment_type, COUNT(payment_type) AS count_payment_type
FROM payments
GROUP BY payment_type
HAVING payment_type = "not_defined"
```

Table 39: 1 records

payment_type	count_payment_type
not_defined	3

Month on month no. of orders placed using different payment types is as follows

```
WITH d AS (
  SELECT p.payment_type, o.order_purchase_timestamp, p.order_id,
         EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
         MONTHNAME(o.order_purchase_timestamp) AS month,
        EXTRACT (MONTH FROM o.order purchase timestamp) AS month number
 FROM payments AS p
  JOIN orders AS o
  ON p.order_id = o.order_id
SELECT
 d.year,
  d.month,
  COUNT(CASE WHEN d.payment_type = 'credit_card' THEN d.order_id ELSE NULL END)
        AS credit_card,
  COUNT(CASE WHEN d.payment_type = 'UPI' THEN d.order_id ELSE NULL END)
  COUNT(CASE WHEN d.payment_type = 'voucher' THEN d.order_id ELSE NULL END)
        AS voucher,
```

```
COUNT(CASE WHEN d.payment_type = 'debit_card' THEN d.order_id ELSE NULL END)

AS debit_card,
d.month_number

FROM d

GROUP BY d.year, d.month, d.month_number

ORDER BY d.year, d.month_number;
```

Table 40: Displaying records 1 - 10

year	month	$\operatorname{credit_card}$	UPI	voucher	debit_card	month_number
2016	September	3	0	0	0	9
2016	October	254	63	23	2	10
2016	December	1	0	0	0	12
2017	January	583	197	61	9	1
2017	February	1356	398	119	13	2
2017	March	2016	590	200	31	3
2017	April	1846	496	202	27	4
2017	May	2853	772	289	30	5
2017	June	2463	707	239	27	6
2017	July	3086	845	364	22	7

6.2. Find the no. of orders placed on the basis of the payment installments that have been paid.

Table 41: Displaying records 1 - 10

payment_installments	count_orders
0	2
1	52546
2	12413
3	10461
4	7098
5	5239
6	3920
7	1626
8	4268
9	644

7. Actionable Insights & Recommendations

- 7.1. The data set has data from the year 2016, 2017 and 2018.
- 7.2. For 2016, only the data for September, October and December is included in the dataset.
- 7.3. For 2017, January to December data is available.
- 7.4. For 2018, January to October data is available.
- 7.5. Two files, order_reviews.csv and geolocation.csv had unclean data.
- 7.6. The dataset represents the data for 25 states and 1 federal territory of Brazil.

7.7. The sales data does not show any seasonal trends but shows year on year growth. Plotting the sales data:

7.8. The sales trend plot in the dataset:

```
day
##
                            order count
           :2016-09-04
##
    Min.
                          Min.
                                      1.0
    1st Qu.:2017-05-28
                           1st Qu.:
                                     96.0
##
    Median :2017-11-02
                          Median : 148.0
##
    Mean
            :2017-10-31
                          Mean
                                  : 156.8
    3rd Qu.:2018-04-09
                          3rd Qu.: 215.8
##
    Max.
            :2018-10-17
                          Max.
                                  :1176.0
```


The plot reveals the following aspects of the data.

a. The plot shows gaps in between dates when orders were placed.

Further analysis shows the gaps between dates in the dataset as follows:

Table 42: Displaying records 1 - 10

date	next_date	gap_between_dates
2016-10-22	2016-12-23	62
2016-09-15	2016-10-02	17
2016-12-23	2017-01-05	13
2018-10-03	2018-10-16	13
2016-10-10	2016-10-22	12
2016-09-05	2016-09-13	8

date	next_date	gap_between_dates
2018-09-20	2018-09-25	5
2018-09-06	2018-09-10	4
2018-09-13	2018-09-17	4
2018-08-31	2018-09-03	3

- b. The trend shoots up during the 4th quarter of 2017 and the order placed per day sees a steep rise.
- c. One data point shows extreme deviation of 1176 orders on a single day on 24th November 2017. This count deviated greatly from the Median of 148 orders and Mean of 156 orders.

Table 43: Displaying records 1 - 10

date	count_orders
2017-11-24	1176
2017-11-25	499
2017-11-27	403
2017-11-26	391
2017-11-28	380
2018-05-07	372
2018-08-06	372
2018-08-07	370
2018-05-14	364
2018-05-16	357

Hence we can conclude that the data reported through orders.csv is not conducive for creating a predictive model.

7.8. Reviewing the location wise distribution of data:

```
customer_state
                      customer_id_count customer_unique_id_count
   Length:27
                            :
                                 46.0
                                        Min.
                                                   46.0
##
                      Min.
                                               :
##
   Class :character
                      1st Qu.:
                                381.5
                                        1st Qu.:
                                                  381.5
##
   Mode :character
                      Median : 907.0
                                        Median: 907.0
                            : 3683.0
##
                      Mean
                                        Mean : 3683.0
##
                      3rd Qu.: 2760.0
                                        3rd Qu.: 2760.0
##
                      Max.
                             :41746.0
                                        Max.
                                               :41746.0
```

Customers per State

Table 44: Displaying records 1 - 10

customer_state	$customer_id_count$	$customer_unique_id_count$
SP	41746	41746
RJ	12852	12852
MG	11635	11635
RS	5466	5466
PR	5045	5045
SC	3637	3637
BA	3380	3380
DF	2140	2140
ES	2033	2033

customer_state	$customer_id_count$	$customer_unique_id_count$
GO	2020	2020

Table 45: Displaying records 1 - 10

${\rm customer}_$	state	$orders_{_}$	_per_state
SP			41746
RJ			12852
MG			11635
RS			5466
PR			5045
SC			3637
BA			3380
DF			2140
ES			2033
GO			2020

- 7.9. Exploratory analysis reveals the following information regarding product deliveries.
 - a. There is a high deviation in estimated delivery dates and actual delivery to the customer. The estimated delivery dates require further analysis for more realistic estimates.
 - b. There is a high deviation in delivery as per carrier and actual delivery to the customer. Further investigation is required to drill into the issue.
 - c. There is a high deviation in delivery as per carrier and estimated delivery to the customer. Further investigation is required to drill into the issue.

```
WITH d AS (

SELECT c.customer_state,

COUNT(o.order_id) OVER (PARTITION BY c.customer_state)

AS total_orders,

(DATEDIFF(DATE(o.order_estimated_delivery_date),

DATE(o.order_purchase_timestamp))) AS purchase_estimated_delivery,

(DATEDIFF(DATE(o.order_delivered_carrier_date),

DATE(o.order_purchase_timestamp))) AS purchase_delivered_carrier,

(DATEDIFF(DATE(o.order_delivered_customer_date),

DATE(o.order_purchase_timestamp))) AS purchase_delivered_customer
```

```
FROM customers AS c

JOIN orders AS o

ON c.customer_id = o.customer_id
)

SELECT DISTINCT d.customer_state, d.total_orders,

ROUND(AVG(d.purchase_estimated_delivery) OVER (PARTITION BY d.customer_state), 2)

AS avg_estimated_delivery,

ROUND(AVG(d.purchase_delivered_carrier) OVER (PARTITION BY d.customer_state), 2)

AS avg_delivered_carrier,

ROUND(AVG(d.purchase_delivered_customer) OVER (PARTITION BY d.customer_state), 2)

AS avg_delivered_customer

FROM d

ORDER BY d.total_orders DESC
```

Table 46: Displaying records 1 - 10

customer_state	total_orders	avg_estimated_delivery avg	g_delivered_carrier	avg_delivered_customer
SP	41746	19.81	3.15	8.70
RJ	12852	27.00	3.30	15.24
MG	11635	25.22	3.23	11.95
RS	5466	29.22	3.23	15.25
PR	5045	25.25	3.21	11.94
SC	3637	26.42	3.33	14.91
BA	3380	30.04	3.29	19.28
DF	2140	25.06	3.19	12.90
ES	2033	26.27	3.37	15.72
GO	2020	27.75	3.16	15.54

d. The following states require attention as they deviate from the average delivery time. Further investigation is required to drill into the issue.

```
WITH d AS (
   SELECT c.customer state,
           COUNT(o.order_id) OVER (PARTITION BY c.customer_state)
              AS total orders,
           (DATEDIFF(DATE(o.order_estimated_delivery_date),
              DATE(o.order_purchase_timestamp))) AS purchase_estimated_delivery,
           (DATEDIFF(DATE(o.order_delivered_carrier_date),
              DATE(o.order_purchase_timestamp))) AS purchase_delivered_carrier,
           (DATEDIFF(DATE(o.order_delivered_customer_date),
              DATE(o.order_purchase_timestamp))) AS purchase_delivered_customer
   FROM customers AS c
    JOIN orders AS o
   ON c.customer_id = o.customer_id
   ),
  d2 AS (
  SELECT DISTINCT d.customer_state, d.total_orders,
      ROUND(AVG(d.purchase_estimated_delivery) OVER (PARTITION BY d.customer_state), 2)
          AS avg estimated delivery,
      ROUND(AVG(d.purchase_delivered_carrier) OVER (PARTITION BY d.customer_state), 2)
```

```
AS avg_delivered_carrier,
   ROUND(AVG(d.purchase_delivered_customer) OVER (PARTITION BY d.customer_state), 2)
   AS avg_delivered_customer

FROM d
),
d3 AS (
SELECT customer_state, total_orders, avg_delivered_customer,
   AVG(d2.avg_delivered_customer) OVER () AS avg_delivery_Country

FROM d2
)

SELECT customer_state, total_orders, avg_delivered_customer AS avg_delivery_State,
   ROUND(avg_delivery_Country, 2) AS avg_delivery_Country

FROM d3

WHERE ((avg_delivery_Country) - (avg_delivered_customer)) < 0

ORDER BY total_orders DESC
```

Table 47: Displaying records 1 - 10

customer_state	$total_orders$	avg_delivery_State	avg_delivery_Country
BA	3380	19.28	18.72
CE	1336	21.20	18.72
PA	975	23.73	18.72
MA	747	21.51	18.72
PB	536	20.39	18.72
PI	495	19.40	18.72
RN	485	19.22	18.72
AL	413	24.50	18.72
SE	350	21.46	18.72
RO	253	19.28	18.72

e. The following bubble chart shows total orders vs average delivery time. The size of the circle depicts order count. Colour gradient towards Blue indicates better delivery time. Colour gradient towards Red indicates worse delivery time. This chart will assist in identifying the states that requires attention to improve customer experience by improving delivery time.

For example, Sau Paulo has the largest volume of order and the best average delivery time.

```
##
   customer_state
                        total_orders
                                         avg_estimated_delivery
##
   Length:27
                       Min.
                                  46.0
                                         Min.
                                                :19.81
##
   Class : character
                       1st Qu.: 381.5
                                         1st Qu.:26.80
##
   Mode :character
                       Median : 907.0
                                         Median :31.11
##
                              : 3683.0
                                                :32.08
                       Mean
                                         Mean
##
                       3rd Qu.: 2760.0
                                         3rd Qu.:33.41
##
                       Max.
                              :41746.0
                                         Max.
                                                 :47.17
##
   avg_delivered_carrier avg_delivered_customer
##
   Min.
           :2.820
                          Min.
                                 : 8.70
                          1st Qu.:15.39
##
   1st Qu.:3.185
## Median :3.300
                          Median :19.22
## Mean
           :3.343
                          Mean
                                :18.72
##
   3rd Qu.:3.460
                          3rd Qu.:21.33
   Max.
           :4.530
                          Max.
                                 :29.34
```

Total Orders and Average Delivery Time by State

7.10. Analysis of products:

a. Top 2 selling products in each state is given by:

```
WITH d AS (
    SELECT DISTINCT c.customer_state, p.`product category`,
           COUNT('product category') OVER (PARTITION BY customer_state, 'product category')
              AS count product
   FROM customers AS c
   JOIN orders AS o
   ON c.customer_id = o.customer_id
   JOIN order_items AS oi
   ON o.order_id = oi.order_id
   JOIN products AS p
   ON oi.product_id = p.product_id
   ),
 d2 AS (
   SELECT d.customer_state, d.`product category`, d.count_product,
       DENSE_RANK() OVER (PARTITION BY d.customer_state ORDER BY count_product DESC)
          AS product_rank
   FROM d
   )
SELECT d2.customer_state, d2.`product category`, d2.count_product, d2.product_rank
FROM d2
WHERE d2.product rank <= 2 AND d2.count product > 500
ORDER BY d2.customer_state, d2.product_rank, d2.count_product DESC
```

Table 48: 9 records

customer_state	product category	count_product	product_rank
$\overline{\mathrm{MG}}$	bed table bath	1331	1
MG	HEALTH BEAUTY	1086	2
PR	Furniture Decoration	520	1
RJ	bed table bath	1644	1
RJ	Furniture Decoration	1090	2
RS	bed table bath	614	1
RS	Furniture Decoration	561	2
SP	bed table bath	5235	1
SP	HEALTH BEAUTY	4204	2

b. Top selling products in the dataset are as follows:

Table 49: Displaying records 1 - 10

product_category	count_product_category
bed table bath	11115
HEALTH BEAUTY	9670
sport leisure	8641
Furniture Decoration	8334
computer accessories	7827
housewares	6964
Watches present	5991
telephony	4545
Garden tools	4347
automotive	4235

c. Sales trend in the data set for top selling product category:

```
ON o.order_id = oi.order_id
    JOIN products AS p
        ON oi.product_id = p.product_id
 ),
  d2 AS (
   SELECT d.product_category, d.count_product_category,
           DENSE_RANK() OVER (ORDER BY d.count_product_category DESC)
                AS rank_category
   FROM d
  ),
 top_prod_cat AS (
   SELECT d2.product_category
   FROM d2
   WHERE d2.rank_category = 1
)
SELECT DISTINCT DATE(o.order_purchase_timestamp) as day,
       COUNT(o.order_id) OVER (PARTITION BY DATE(o.order_purchase_timestamp))
            AS order count
FROM customers AS c
  JOIN orders AS o
        ON c.customer_id = o.customer_id
  JOIN order_items AS oi
        ON o.order_id = oi.order_id
  JOIN products AS p
        ON oi.product_id = p.product_id
WHERE p.`product category` IN (SELECT product_category FROM top_prod_cat)
```

Table 50: Displaying records 1 - 10

day	$order_count$
2016-10-04	2
2016-10-05	1
2016-10-06	1
2016-10-09	4
2017-01-08	1
2017-01-10	2
2017-01-13	1
2017-01-14	1
2017-01-15	1
2017-01-17	1

```
## day order_count
## Min. :2016-10-04 Min. : 1.00
## 1st Qu.:2017-06-06 1st Qu.: 10.00
## Median :2017-11-02 Median : 18.00
## Mean :2017-11-01 Mean : 18.59
## 3rd Qu.:2018-03-31 3rd Qu.: 24.00
## Max. :2018-08-28 Max. :195.00
```

Number of orders per day - bed table bath

d. Sales trend in the data set for top 5 selling product category:

```
day
                          order_count
##
##
    Min.
           :2016-09-04
                         Min. : 1.00
    1st Qu.:2017-05-28
                         1st Qu.: 43.00
##
    Median :2017-10-28
                         Median : 67.00
           :2017-10-26
                               : 74.61
##
    Mean
                         Mean
    3rd Qu.:2018-03-29
                         3rd Qu.: 99.50
##
    Max.
           :2018-08-29
                         Max.
                                :582.00
```


Programming environment for analysis of the dataset is as follows

- 1. RStudio for markdown and plotting.
- 2. MySQL as database server.
- 3. Docker for hosting RStudio and MySQL server.
- 4. Link to the GitHub Repository for the case study.