CS6210: Homework 5

Christopher Mertin

November 22, 2016

- 1. An $n \times n$ linear system of equations $A\mathbf{x} = \mathbf{b}$ is modified in the following manner: For each $i = \{1, \ldots, n\}$, the value b_i on the right-hand side of the i^{th} equation is replaced by $b_i x_i^3$. Obviously, the modified system of equations (for the unknowns x_i) is now nonlinear.
 - (a) Find the corresponding Jacobian Matrix

Solution:

(b) Given that A is strictly diagonally dominant with positive elements on its diagonal, state whether or not it is guarenteed that the Jacobian matrix at each iterate is nonsingular.

Solution:

(c) Suppose that A is symmetric positive definition (not necessarily diagonally dominant) and that Newton's method is applied to solve the nonlinear system. Is it guarenteed to converge?

Solution:

2.

(a) Suppose Newton's method is applied to a linear system $A\mathbf{x} = \mathbf{b}$. How does the iterative formula look and how many iterations does it take to converge?

Solution:

(b) Suppose the Jacobian matrix is singular at the solution of a nonlinear system of equations. Speculate what can occur in terms of convergence and the rate of convergence. Specifically, is it possible to have a situation where the newton iteration converges but convergence is not quadratic?

Solution:

3. Consider minimizing the function $\phi(\mathbf{x}) = \mathbf{c}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T H \mathbf{x}$, where $\mathbf{c} = (5.04, -59.4, 146.4, -96.6)^T$ and

$$H = \begin{pmatrix} 0.16 & -1.2 & 2.4 & -1.4 \\ -1.2 & 12.0 & -27.0 & 16.8 \\ 2.4 & -27.0 & 64.8 & -42.0 \\ -1.4 & 16.8 & -42.0 & 28.0 \end{pmatrix}$$

Try both Newton and BFGS methods, starting from $\mathbf{x}_0 = (-1, 3, 3, 0)^T$. Explain why the BFGS method requires significantly more iterations than Newton's.

Solution:

- 4. Wit the notation of Exercise 21, for p=2 the problem can be solved as in Example 9.15 using SVD. But it can also be solved using the techniques of constrained optimization:
 - (a) Explain why it is justified to replace the objective function by $\frac{1}{2}||y||_2^2$.

Solution:

(b) Form the KKT conditions of the resulting constrained optimization problem, obtaining a linear system of equations.

Solution:

(c) Devise an example and solve it using the method developed as well as the one from Example 9.15. Compare and discuss.

Solution:

- 5. Given the four data points (-1,1), (0,1), (1,2), (2,0), determine the interpolating cubic polynomial
 - Using the monomial basis
 - Using the Lagrange basis
 - Using the Newton basis

Show that the three representations give the same polynomial.

Solution:

6. Suppose we are given 137 uniformly spaced data pairs at distinct abscissae: (x_i, y_i) , $i = 0, 1, \ldots, 136$. These data are thought to represent a function which is piecewise smooth; that is, the unknown function f(x) which gave rise to these data values has many bounded derivatives everywhere expect for a few points where it jups discontinuously. (Imagine drawing a curve smoothly from left to right, mixed with lifting the pen and moving it vertically a few times.) For each sub interval $[x_{i-1}, x_i]$ we want to pass the hopefully best cubic $p_3(x)$ for an accurate interpolation of f(x) at points $x_{i-1} < x < x_i$. This involves choosing good neighbors to interpolate at.

Propose an algorithm for this task. Justify.

Solution:

7. A popular technique arising in methods for minimizing functions in several variables involves a weak line search, where an approximate minimum \tilde{x} is found for a function in one variable, f(x), for which the values of f(0), f'(0), and f(1) are given. The function f(x) is defined for all nonnegative x, has a continuous second derivative, and satisfies f(0) < f(1) and f'(0) < 0. We then interpolate the given values by a quadratic polynomial and set \tilde{x} as the minimum of the interpolant.

- (a) Find \widetilde{x} for the values of f(0) = 1, f'(0) = -1, f(1) = 2 Solution:
- (b) Show that the quadratic interpolant has a unique minimum satisfying $0 < \tilde{x} < 1$. Can you show the same for the function f itself?

Solution:

- 8. Let $f \in C^3[a,b]$ be given at equidistant points $x_i = a + ih$, $i = \{0,1,\ldots,n\}$, where nh = b a. Assume further that f'(a) is given as well.
 - (a) Construct an algorithm for C^1 piecewise quadratic interpolation of the given values. Thus, the interpolating function is written as

$$v(x) = s_i(s) = a_i + b_i (x - x_i) + c_i (x - x_i)^2, \quad x_i \le x \le x_{i+1}$$

for $i = \{0, ..., n-1\}$, and your job is to specify an algorithm for determining the 3n coefficients a_i , b_i , and c_i .

Solution:

- (b) How accurate do you expect this approximation to be as a function of h? Justify. Solution:
- 9. Derive a B-spline basis representation for piecewise linear interplation and for piecewise Hermite cubic interpolation.

Solution:

10. Consider interpolating the data $(x_0, y_0), \ldots, (x_6, y_6)$ given by

Construct the five interpolants specified below (you may use available software for this), evaluate them at the points $\{0.05, 0.06, \dots, 0.80\}$, plot, and comment on their respective properties:

(a) Polynomial Interpolant

Solution:

(b) Cubic Spline Interpolant

Solution:

(c) The Interpolant

$$v(x) = \sum_{j=0}^{n} c_j \phi_j(x)$$

where n = 7, $\phi_0(x) = 1$, and

$$\phi_j(x) = \sqrt{(x - x_{j-1})^2 + \epsilon^2} - \epsilon$$

In addition to the *n* interpolation requirements, the condition $c_0 = -\sum_{j=1}^n c_j$ is imposed. Construct this interpolant with

- i. $\epsilon = 0.1$
 - Solution:
- ii. $\epsilon = 0.01$
 - Solution:
- iii. $\epsilon = 0.001$
 - **Solution:**

Make as many observations as you can. What will happen if we let $\epsilon \to 0$? Solution: