#### **Course on Virtual Reality**

3-D Vision





# Exact correspondence of visual perception in the real world and in the virtual world





#### The Human Eye







#### **Physiological & Psychological Clues**

#### **Traditional CG:**

- Psychological clues
  - Perspective shortening
  - Occlusion of objects
  - Light and shadows
  - Texture gradients
  - Atmospheric perspective

#### **Virtual Reality:**

- Physiological clues
  - Stereopsis
  - Ocular motor factors
    - Accomodation
    - Convergence







#### **Perspective**

Drawing: Goldstein (WWW)







#### **Optical Illusion based on Perspective**

Drawing: Anonymous (WWW)











#### **The Ames Room**

Pictures: Goldstein, Levine & Shefner (WWW)







#### **Occlusion**

Pictures: Hübner (WWW)







#### Light & Shadows

Pictures: Levine & Shefner (WWW)









#### **Atmospheric Perspective**

Picture: Lappe (2009)







#### Convergence



Drawing: Goldstein (WWW)





#### **Accomodation**







#### **Motion Parallax**







Tom Vaughan, www.cyberlink.com





#### **Stereoscopy**

http://www.more3d.com/3-D/Stereoskopie.html

- Interocular distance (about 6 cm)
- Disparity of images projected onto the retina
- Processing in the visual cortex of the brain
- Works for distances up to 7 m











#### **Field of View**

Riecke (2006)

Oval shape

At eye level:

Horizontal: About 90° to both sides

Vertical: About 120° (h 50° and i70°)

FOV center is being perceived by both eyes

Stereoscopic field: 100° - 120°





#### **Auto-Stereograms**

Drawing: Irtel (WWW)









#### Auto-Stereograms (cont;-)



Picture: WWW

Look for several seconds at the pic and you may recognize a giraffe!





#### **Stereo in Head-Mounted & Room-Mounted Displays**











#### **Stereo Parallax on Room-Mounted Displays**



Tom Vaughan, www.cyberlink.com





#### **Stereograms**





#### **Distortions in Static Stereograms**







#### Adaptation of projection to the viewpoint







#### Motion Parallax & Viewer Centered Projection

#### stereo parallax



#### motion parallax













#### **The Effect of Motion Parallax**

Courtesy of Bill Sherman







#### **Video: Viewer Centered Projection**

Video: Courtesy of VRVis, Vienna

### Tracked Virtual Table tiltable BARON table optically tracked real-time recalibration extended working volume



#### **Diagonal Projection**





#### **Goal: Canonical View Volume**







#### **Derivation of the Projection Matrix (I)**

#### Step 1: Shearing of view volume

$$P_1 = SH_{xy}(\frac{-E_x}{E_z}, \frac{-E_y}{E_z}) = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ \frac{-E_x}{E_z} & \frac{-E_y}{E_z} & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$



#### Step 2: Translation of E to the origin

$$P_2 = T(0, 0, -E_z) = \left( egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & -E_z & 1 \end{array} 
ight)$$



Step 3: Scaling of the window to the unit rectangular 
$$P_{3} = S(\frac{2}{right - left}, \frac{2}{top - bottom}, 1, 1) = \begin{pmatrix} \frac{2}{right - left} & 0 & 0 & 0 \\ 0 & \frac{2}{top - bottom} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$







#### **View Volume**







#### **Z-Buffering**

#### **Z-Buffer**

- Special memory on graphics hardware, 1 entry for every pixel
- Updated with the highest z value of 3-D object points that cover its pixel
- Accuracy depends on
  - Length of memory words ("depth") (usually 24 bits/pixel)
  - Z-value of front and back clipping plane
- Compare points lying on the same projector (OpenGL: parallel projection!)









#### **Derivation of the Projection Matrix (II)**

#### Step 4: Scaling as a function in z

$$P_4 = SZ \left( egin{array}{cccc} E_z & 0 & 0 & 0 \ 0 & E_z & 0 & 0 \ 0 & 0 & 0 & -1 \ 0 & 0 & 1 & 0 \end{array} 
ight)$$

#### Step 5: Scaling of the view volume in z

$$P_5 = S(1, 1, \frac{2(far - E_z)(near - E_z)}{far - near}, 1)$$

#### Step 6: Translation in the direction of z

$$P_6 = T(0, 0, \frac{-2E_z - far - near}{far - near})$$







#### **The Projection Matrix**

#### Parameters:

- Position of the view window: left, right, top, bottom
- Near and far clipping plane: near, far
- Eye position E

$$\mathbf{P} = \begin{pmatrix} \frac{2e_z}{r-l} & 0 & 0 & 0\\ 0 & \frac{2e_z}{o-u} & 0 & 0\\ \frac{-2(e_x - \frac{r+l}{2})}{r-l} & \frac{-2(e_y - \frac{o+u}{2})}{o-u} & \frac{2e_z - f - n}{f - n} & -1\\ -\frac{r+l}{r-l}e_z & -\frac{o+u}{o-u}e_z & \frac{-e_z(2e_z - f - n) + 2(f - e_z)(n - e_y)}{f - n} & e_z \end{pmatrix}$$





## Exact correspondence of visual perception in the real world and in the virtual world





#### **Physiological Clues with VCP**

#### **Virtual Reality:**

- Physiological clues
  - Stereopsis
  - Ocular motor factors
    - Accomodation
    - Convergence
  - Motion parallax







#### **Perception of Distances in VR**

#### Distances are typically under-estimated in virtual environments:

- Influence candidates:
  - Rendering Quality
    - Illumination model
    - Positions of light sources
    - Resolution / aliasing
  - Framerate
  - Display hardware characteristics / quality
    - Brightness Uniformity
    - Accomodation / Convergence
- Distance estimation "nearly" independent from rendering /display technology
- Many contradictory studies
- No explanation for under-estimation



