Липецкий государственный технический университет

Факультет автоматизации и информатики Кафедра автоматизированных систем управления

ЛАБОРАТОРНАЯ РАБОТА №4 по дисциплине Архитектура вычислительных систем

Студент Глубоков Г.В.

Группа АИ-20

Руководитель Болдырихин О. В.

Цель работы

Изучение сегментирования и обработки прерываний в защищенном режиме процессоров IA-32

Задание кафедры

Написать на языке ассемблера программу, выполняющую ввод, обработку и вывод в защищенном режиме.

Как и в предыдущей работе программа должна включать подпрограммы. Хотя бы одна из подпрограмм должна быть дальней.

Главная программа выполняет необходимую инициализацию, в том числе готовит необходимые структуры данных: глобальную таблицу дескрипторов и таблицу дескрипторов прерываний – и переключает процессор защищенный Далее В защищенном режим. режиме вызывается подпрограмма ввода с клавиатуры, которая последовательно заполняет массив исходных данных в памяти. Главная программа последовательно передает исходные данные подпрограмме преобразования через стек. Подпрограмма проверяет исходные данные на допустимость или корректность, при положительном исходе проверки осуществляет преобразование и возвращает результат главной программе. Главная программа размещает результаты в другой области памяти также в виде массива. Результаты выводятся на дисплей с помощью соответствующей подпрограммы.

Исследовать работу программы в обычном режиме, ввести исходные данные, получить результаты, сделать скриншот.

Исследовать работу программы в отладчике до загрузки регистра таблицы дескрипторов прерываний. По результатам исследования определить поля базы дескрипторов сегментов глобальной таблицы дескрипторов, значения регистров GDTR и IDTR.

По листингу определить моменты переключения процессора в защищенный и реальный режим, перехода в код защищенного режима и возврата в код реального режима.

Выполнить необходимые сравнения, сделать выводы.

No	Задача,	Расположение GDT в	Расположение
	выполняемая	программе	обработчика прерываний
	программой		клавиатуры
8	Преобразование из	В отдельном	В сегменте кода
	кода с контролем по четности	сегменте	защищенного режима

Листинг программы

```
1
                                           ;tasm /m PM4IO.asm
 2
                                           ;tlink
                                                       /3 PM4I0.obj
                                           .386p
 3
 4
                                           00000000
                                                                      SSeg segment stack
 5
                                           0000000 0100*(??)
                                                                      Sbegin
                                                                                   db 100h
                                           dup(?)
 6
                                           =0100
                                                                      Ssize = $ - Sbegin
 7
                                           00000100
                                                                      SSeg ends
 9
        00000000
                                   DSeg32
                                                 segment use32
 10
        00000000
                  02*(???????)
                                                 X dd 2
                                                              dup(?)
 11
        80000008
                  02*(???????)
                                                 Y dd 2
                                                              dup(?)
 12
        00000010
                                   DSeg32
                                                 ends
      13
 14
                 0000000
                                          GDT_Seg segment use32
 15
                 0000000
                                                 GDT label byte
                 0000000 08*(00)
                                                        db 8 dup(0)
 16
                 00000008 FF FF 00 00 00 9A 00+
 17
                                                               CS16Dsc db
 0FFh,0FFh,0,0,0,10011010b,0,0
 18
                 99
                 00000010 FF FF 00 00 00 9A CF+
                                                               CS32Dsc db
 19
 0FFh,0FFh,0,0,0,10011010b,11001111b,0
                 00
                 00000018 FF FF 00 00 00 92 CF+
                                                               DS32Dsc db
 0FFh,0FFh,0,0,0,10010010b,11001111b,0
 22
 23
                 00000020 FF FF 00 00 00 92 CF+
                                                               SS32Dsc db
 0FFh,0FFh,0,0,0,10010010b,11001111b,0
                 00
                 00000028 FF FF 00 80 0B 92 CF+
                                                               VSegDsc db
 0FFh,0FFh,0,80h,0Bh,10010010b,11001111b,0
 26
 27
                 00000030 FF FF 00 00 00 9A CF+
                                                               GDT_Dsc
                                                                         db
 0FFh,0FFh,0,0,0,10011010b,11001111b,0
 28
 29
                 00000038 FF FF 00 00 00 9A CF+
                                                                         dh
                                                               CSPrDsc
 0FFh,0FFh,0,0,0,10011010b,11001111b,0
                 00
 31
                 =0040
                                                        GDT 1 = \$-GDT
      32
             00000040 003F
                                                        gdtr dw GDT_l-1
                                          dd?
 34
      00000042 ????????
                 =0008
                                                 CS16Sel equ 0000000000001000b
 35
 36
                 =0010
                                                 CS32Sel equ 000000000010000b
                 =0018
                                                 DS32Sel equ 0000000000011000b
 37
 38
                 =0020
                                                 SS32Sel equ 000000000100000b
 39
                 =0028
                                                 VSegSel equ 000000000101000b
 40
                 =0030
                                                 GDT Sel
                                                           equ 000000000110000b
                                                 CSPrSel
 41
                 =0038
                                                           equ 000000000111000b
      42
     43
             00000046
                                          GDT_Seg ends
      44
                                            0000
 45
                                                                      CSeg16
                                                                                    segment
                                            use16
 46
                                            assume
                                                        CS:CSeg16, DS:CSeg32,
SS:SSeg,
             ES:GDT_Seg
      47
 48
            0000 68 0000s
                                   start:
                                                 push CSeg32
```

```
49
          0003 1F
                                      pop ds
          0004 68 0000s
50
                                      push GDT_Seg
51
          0007 07
                                      pop es
    52
53
          0008 E4 92
                                                        92h
                                            in al,
          000A 0C 02
                                            or al,
54
                                                        2
55
          000C E6 92
                             out 92h, al
    56
          000E 66| 33 C0
57
                                      xor eax, eax
          0011 8C C8
58
                                       mov ax, cs
          0013 66 C1 E0 04
59
                                            shl eax, 4
          0017 26: 67 A3 0000000Ar
                                      mov word ptr CS16Dsc+2, ax
60
61
          001E 66 C1 E8 10
                                       shr eax, 16
          0022 26: 67 A2 0000000Cr
                                      mov byte ptr CS16Dsc+4, al
62
63
          0029 B8 0000s
                                      mov ax, CSeg32
          002C 66 | C1 E0 04
                                            shl eax, 4
64
          0030 66 50
65
                                      push eax
          0032 26: 67 A3 00000012r
                                      mov word ptr CS32Dsc+2, ax
66
67
          0039 66 C1 E8 10
                                          shr eax, 16
          003D 26: 67 A2 00000014r
                                      mov byte ptr CS32Dsc+4, al
68
          0044 B8 0000s
                                      mov ax, DSeg32
69
          0047 66 C1 E0 04
                                       shl eax, 4
70
71
          004B 26: 67 A3 0000001Ar
                                      mov word ptr DS32Dsc+2, ax
72
          0052 66 C1 E8 10
                                       shr eax, 16
          0056 26: 67 A2 0000001Cr
73
                                      mov byte ptr DS32Dsc+4, al
          005D B8 0000s
74
                                      mov ax, SSeg
75
          0060 66 C1 E0 04
                                       shl eax, 4
          0064 26: 67 A3 00000022r
76
                                      mov word ptr SS32Dsc+2, ax
77
          006B 66 C1 E8 10
                                       shr eax, 16
78
          006F 26: 67| A2 00000024r
                                      mov byte ptr SS32Dsc+4, al
79
          0076 B8 0000s
                                      mov ax, GDT_Seg
80
          0079 66 C1 E0 04
                                            shl eax, 4
          007D 66 50
81
                                      push eax
82
          007F 26: 67 A3 00000032r
                                      mov word ptr GDT Dsc+2, ax
83
          0086 66 C1 E8 10
                                           shr eax, 16
          008A 26: 67 A2 00000034r
                                      mov byte ptr GDT_Dsc+4, al
84
          0091 B8 0000s
85
                                      mov ax, CSegPr
          0094 66 C1 E0 04
86
                                       shl eax, 4
                                      mov word ptr CSPrDsc+2, ax
87
          0098 26: 67 A3 0000003Ar
          009F 66 C1 E8 10
                                            shr eax, 16
88
          00A3 26: 67 A2 0000003Cr
89
                                      mov byte ptr CSPrDsc+4, al
    90
    91
    92
93
               00AA 66| 58
                                            pop eax
               00AC 66 | 05 00000000r
94
                                            add eax, offset GDT
95
               00B2 66 26: 67 A3
                                     +
                                            mov dword ptr gdtr+2, eax
               00000042r
96
    97
98
               00BA 26: 67 0F 01
                                     15
                                                         lgdt fword ptr
                                                                          gdtr
               00000040r
99
   100
101
           00C3 68 0000s
                                      push CSeg32
           00C6 07
102
                                      pop es
   103
   104
105
           00C7 66 58
                                      pop eax
106
           00C9 66 05 00000000r
                                      add eax, offset IDT
107
           00CF 66 67 A3 00000802r
                                            mov dword ptr idtr+2, eax
   108
```

109 110 111	00D6 67 0F 01 00000800r	1D + lidt fword ptr idtr
112	00DE 68 0000s	push GDT_Seg
113	00E1 1F	pop ds
114	OOEI IF	pop us
114	00E2 FA	cli
116	OOLZ TA	CII
117		
118	00E3 0F 20	C0 mov eax, cr0
119	00E6 0C 01	or al, 1
120		C0 mov cr0, eax
120	0018 01 22	co mov cro, eax
122	00EB 66	db 66h
123	00EC EA	db 0EAh
124	00ED 0000089Dr	dd offset PMentry
125	00F1 0010	dw CS32Sel
126	0011 0010	uw CSS2SEI
120	00F3 0F 20 C0	RMret: mov eax, cr0
128	00F6 24 FE	and al, OFEh
129	00F8 0F 22 C0	mov cr0, eax
130	00FB EA	db 0EAh
131	00FC 0100r	dw \$+4
132	00FE 0000s	dw CSeg16
133	001 E 00003	uw coegio
134	0100 BA 0000s	mov dx, SSeg
135	0103 8E D2	mov ss, dx
136	0105 BC 0100	mov sp, SSize
137	6163 BC 6166	1110V 3p, 3312e
138	0108 B8 0000s	mov ax, CSeg32
139	0108 BE D8	mov ds, ax
140	010D 67 0F 01	
140	idtr_real	True (word per
141	00000806r	
142	0000000.	
143	0115 FB	sti
144	0113	342
145	0116 B4 00	mov ah, 0
146	0118 CD 16	int 16h
147	0110 65 10	1110 1011
148	011A B4 4C	mov ah, 4Ch
149	011C CD 21	int 21h
150	011E	CSeg16 ends
151		
152		00000000 CSegPr segment
_		use32
153		assume cs:CSegPr, ds:DSeg32
154		00000000 outnum proc
155		00000000 50 push eax
156		00000001 53 push ebx
157		00000002 AD lodsd
158		00000003 BB 80000000 mov ebx,
		8000000h
159		00000008 85 C3 olloop: test eax,
		ebx
160		0000000A 75 08 jnz bit1
161		0000000C 66 26: C7 07 0730 mov word ptr
		es:[edi], 0730h
162		00000012 EB 06 jmp NxtBit
		5 .

```
163
                                    00000014 66 26: C7 07
                                                             0731 bit1: mov word
                                    ptr es:[edi],
                                                     0731h
164
                                    0000001A 47
                                                             NxtBit: inc edi
                                    0000001B 47
                                                                   inc edi
165
166
                                    0000001C D1 EB
                                                                           shr ebx, 1
                                    0000001E 73 E8
                                                                           jnc olloop
167
168
                                    00000020 66 26: C7 07
                                                                   0720
                                                                          mov word ptr
                                    es:[edi],
                                                     0720h
169
                                    00000026 47
                                                                    inc edi
170
                                    00000027 47
                                                                    inc edi
                                    00000028 5B
                                                                    pop ebx
171
172
                                    00000029 58
                                                                    pop eax
                                    0000002A CB
                                                                    db 0CBh
173
174
                                    0000002B
                                                             outnum
                                                                         endp 175
                                       0000002B
                                                                    CSegPr
                                                                                ends
    176
    177
                                               00000000
                                                                          CSeg32
                                               segment use32
    178
                                                             cs:CSeg32, ds:DSeg32
                                               assume
    179
    180
            00000000
                                         IDT label byte
    181
                                    ;INT 00 - 07
182
                                    00000000 08*(080Cr 0010 8E00 +
183
                                                                         dw 8 dup(small
                                       offset int_handler,CS32Sel,8E00h,0)
184
                                    0000)
185
                                    ;INT 08 (irq0)
                                    00000040 080Dr 0010 8E00 0000
186
                                                                                 dw
                                    small offset irq0_7_handler,CS32Sel,8E00h,0
187
                                    ;INT 09 (irq1)
                                    00000048 0814r 0010 8E00 0000
188
                                                                                 dw
                                    small offset
irq1_handler,CS32Sel,8E00h,0
                                        ;INT 0Ah - 0Fh
                                                            (IRQ2 -
                                                                         IRQ8)
    189
            00000050 06*(080Dr 0010 8E00 +
                                                     dw 6 dup(small
                                                                         offset
irq0 7 handler,CS32Sel,8E00h,0)
191
                                    0000)
192
                                    ;INT 10h - 6Fh
193
                                    00000080 61*(080Cr 0010 8E00 +
                                    dup(small offset
                                                            int_handler,CS32Sel,8E00h,0)
194
                                    0000)
                                                                         IRQ15)
    195
                                        ;INT 70h - 78h
                                                            (IRQ8 -
    196
            00000388 08*(0845r 0010 8E00 +
                                                     dw 8 dup(small
                                                                         offset
irq8_15_handler,CS32Sel,8E00h,0)
197
                                    0000)
198
                                    ;INT 79h - FFh
199
                                    000003C8 87*(080Cr 0010 8E00 +
                                       dup(small offset int handler,CS32Sel,8E00h,0)
200
                                    0000)
                                    =0800
                                                             idt_size = $-IDT
201
    202
            00000800 07FF
                                               idtr dw idt size-1
    203
204 00000802 ????????
                                 dd?
   205
    206
            00000806 03FF 0000 0000 idtr_real dw 3FFh,0,0
207
208
        0000080C
                                  int handler:
209
        0000080C CF
                                        iretd
    210
                                  irq0 7 handler:
211
        0000080D
```

```
212
        0000080D 50
                                          push eax
213
        0000080E B0 20
                                                 mov al, 20h
214
        00000810 E6 20
                                                 out 20h, al
215
        00000812
                  58
                                          pop eax
216
        00000813 CF
                                          iretd
    217
  218
            00000814
                                          irq1_handler:
    219
220
        00000814 50
                                          push eax
221
        00000815 06
                                          push es
222
        00000816 E4 60
                                                 in al,
                                                              60h
                                                 cmp al, 02h
223
        00000818 3C 02
224
        0000081A 74 0E
                                                 je num1
225
                 3C 0B
                                                 cmp al, 0Bh
        0000081C
226
        0000081E
                  75 18
                                                 jne skip
227
        00000820 D1 E2
                                                 shl edx, 1
228
        00000822 66 26: C7 07 0730
                                          mov word ptr es:[edi],
                                                                     0730h
229
        00000828 EB 0B
                                                 jmp NxtNum
230
        0000082A
                  D1 E2
                                                 num1: shl edx,
231
        0000082C
                  83 CA
                          01
                                                 or edx, 1
232
                  66 | 26: C7 07 0731
                                          mov word ptr es:[edi],
        0000082F
                                                                     0731h
233
        00000835
                  47
                                          NxtNum: inc edi
234
        00000836
                  47
                                          inc edi
                                          dec ecx 236 00000838
235
        00000837
                  49
                                                                                    skip:
            00000838
                                                        in al,
                                                                     61h
    237
                      E4 61
                      0C 80
                                                                     80h
    238
            0000083A
                                                        or al,
                                         out 61h, al
    239
            0000083C
                      E6 61
    240
241
        0000083E
                   B<sub>0</sub> 20
                                                 mov al, 20h
242
        00000840
                  E6 20
                                                 out 20h, al
243
        00000842
                   07
                                          pop es
244
        00000843
                  58
                                          pop eax
        00000844
                  CF
245
                                          iretd
    246
247
        00000845
                                   irq8 15 handler:
248
        00000845
                   50
                                          push eax
                                                 mov al, 20h
249
        00000846
                   B0 20
250
        00000848
                  E6 A1
                                                 out 0A1h, al
251
        0000084A
                   58
                                          pop eax
252
        0000084B
                  CF
                                          iretd
    253
254
        0000084C
                                   inpp
                                         proc
255
        0000084C 52
                                          push edx
256
        0000084D 51
                                          push ecx
257
                                          push eax
        0000084E 50
258
        0000084F
                   33 D2
                                                 xor edx, edx
259
        00000851
                  33 C9
                                                 xor ecx, ecx
260
        00000853
                  B9 00000020
                                                 mov ecx, 20h
261
        00000858 83 F9
                          00
                                          inn: cmp ecx, 0
262
        0000085B
                  75 FB
                                                 jne inn
263
        0000085D
                  89 16
                                                 mov ds:[esi], edx
                                                 add esi, 4
264
        0000085F
                  83 C6
                          94
                          02
                                                 add edi, 2
265
        00000862
                  83 C7
266
        00000865
                                          pop eax
267
        00000866
                  59
                                          pop ecx
268
        00000867 5A
                                          pop edx
        00000868 C3
269
                                          ret
270
        00000869
                                   inpp endp
    271
272
        00000869
                                   mainproc
                                                 proc
```

```
273
       00000869 8B EC
                                             mov ebp, esp
274
       0000086B 51
                                       push ecx
       0000086C 8B 45
275
                                             mov eax, [ebp + 4]
276
       0000086F 33 DB
                                             xor ebx, ebx
277
       00000871 85 C0
                                       c1: test eax, eax
       00000873 74 07
278
                                             je end_c1
       00000875 D1 E8
279
                                             shr eax, 1
280
       00000877 83 D3 00
                                             adc ebx, 0
                                                            281 0000087A EB F5
                                    282
                                            0000087C
                         jmp c1
                                                                       end_c1:
283
       0000087C 8B C3
                                             mov eax, ebx
284
       0000087E A9 00000001
                                             test eax, 1b
285
       00000883 74 02
                                             jz tr
       00000885 75 0C
286
                                             jnz fal
       00000887 8B 45 04
287
                                       tr: mov eax, [ebp + 4]
       0000088A 25 7FFFFFF
                                            and eax, 7FFFFFFh
288
       0000088F 8B D8
                                             mov ebx, eax
289
                                             jmp ext
290
       00000891 EB 05
       00000893 BB 00000000
291
                                       fal: mov ebx, 0
292
       00000898
                               ext:
   293
 294
         00000898 89 5D
                               04
                                                    mov [ebp+4], ebx
 295
         0000089B 59
                                       pop ecx
         0000089C C3
 296
                                       ret
  297
         0000089D
                                       mainproc endp
   298
   299
           0000089D
                                       PMentry:
   300
 301
         0000089D 66 BA 0018
                                             mov dx, DS32Sel
         000008A1 8E DA
                                                   mov ds, dx
 302
         000008A3 66 BA 0020
 303
                                  mov dx, SS32Sel
         000008A7 8E D2
 304
                                                    mov ss, dx
         000008A9 BC 00000100
                                             mov esp, Ssize
 305
 306
         000008AE 66 BA 0028
                                             mov dx, VSegSel
         000008B2 8E C2
 307
                                                    mov es, dx
 308
         000008B4 33 FF
                                                    xor edi, edi
   309
310
       000008B6 B8 07200720
                                             mov eax, 07200720h
       000008BB B9 000003E8
                                             mov ecx, 80*25*2/4
311
312
       000008C0 F3> AB
                                       rep stosd
313
       000008C2 33 FF
                                             xor edi, edi
   314
  315
           000008C4 FB
                                             sti
       000008C5 BE 00000000r
                                             lea esi, X
317
       000008CA B9 00000002
                                             mov ecx, 2
318
       000008CF 33 D2
                                             xor edx, edx
319
       000008D1 E8 FFFFF76
320
                                       ixloop: call inpp
321
       000008D6 E2 F9
                                             loop ixloop
   322
323
       000008D8 66 BA 0018
                                             mov dx, DS32Sel
       000008DC 8E C2
                                             mov es, dx
324
   325
326
       000008DE BE 00000000r
                                             lea esi, x
       000008E3 BF 00000008r
327
                                             lea edi, y
                                                            328 000008E8
                                       mov ecx, 2 329 000008ED
       B9 00000002
                  mloop:
330
       000008ED AD
                                       lodsd
331
       000008EE 50
                                       push eax
       000008EF E8 FFFFF75
332
                                             call mainproc
333
       000008F4 58
                                       pop eax
```

334	000008F5	AB	stosd	
335	000008F6	E2 F5	loop mloop	
33	36			
337	000008F8	66 BA 0028	mov dx,VSegSel	
338	000008FC	8E C2	mov es,dx	
339	000008FE	33 FF	xor edi, edi	
34	10			
341	00000900	BE 00000008r	lea esi, y	
342	00000905	33 FF	xor edi, edi	
343	00000907	BF 00000140	mov edi, 80*4	
344	0000090C	BB 8000000	mov ebx, 80000000h	
345	00000911	B9 00000002	mov ecx, 2	
346	00000916		obloop: ;call outnum	
347	00000916	9A	db 9Ah	
348	00000917	00000000r	dd offset outnum	
349	0000091B	0038	dw CSPrSel	
350	0000091D	E2 F7	oloop:loop obloop	
35	51			
352			0000091F EA	db 0EAh
353			00000920 000000F3r	dd offset
			RMret	
354			00000924 0008	dw
			CS16Sel	
355			00000926	CSeg32 ends
356			end start	

Исследование работы программы

Процесс выполнения кода реального режима приведен в таблице 1.

Таблица 1 - Состояния системы после выполнения каждой команды

No	Адрес команд ы	Команда на машинном языке	Команда на языке ассемблер а	IP	IR	Содержимое изменившихся регистров, ячеек памяти и портов ввода-вывода
	0000	68A408	push 08A4	0003	68	SP=00FE
1						SS[00FE]=08A4
	0003	1F	pop ds	0004	1F	DS=08A7
2						SP=0100
	0004	688A08	push 088A	0007	68	SP=00FE
3						SS[00FE]=088A

	0007	07	pop es	0008	07	DS=088A
4						SP=0100
5	0008	E492	in al, 92	000A	E4	AX=0002
	000A	0C02	or al, 02	000C	0C	C=0 Z=0 S=0
6						O=0 P=0 A=0
7	000C	E692	out 92, al	000E	E6	Порт 92h=02
	000E	6633C0	xor eax, eax	0011	6633C0	EAX=00000000
						C=0 Z=1 S=0
8						O=0 P=1 A=0
9	0011	8CC8	mov ax, cs	0013	8CC8	AX=088F
	0013	66C1E004	shl eax, 04	0017	66C1E	EAX=000088F0
					0	C=0 Z=0 S=0
10						O=0 P=1 A=1
	0017	67A30A	mov [0000	001E	67A3	DS[0000
11		000000	000A], ax			000A]=88F0
	001E	66C1E810	shr eax, 10	0022	66C1E	EAX=0
	OOIL	OOCILOIO	Sin cax, 10	0022	8	C=1 Z=1 S=0
					0	O=0 P=1 A=1
12						0-01-1 A-1
	0022	67A20C	mov [0000	0029	67A2	DS[000000C]=
13		000000	0000C], al			0
	0029	B8A408	mov ax,	002C	B8	AX=08A4
14			08A4			

	002C	66C1E004	shl eax, 04	0030	66C1E	EAX=00008A40
					0	C=0 Z=0 S=0
15						O=0 P=1 A=1
	0030	6650	push eax	0032	6650	SP=00FC
						SS[00FE]=0000
16						SS[00FC]=8A40
	0032	67A312	mov [0000	0039	67A3	DS[0000
17		000000	0012], ax			0012]=8A40
	0039	66C1E810	shr eax, 10	003D	66C1E	EAX=0
					8	C=1 Z=1 S=0
18						O=0 P=1 A=1
	003D	67A214	mov [0000	0044	67A2	
19		000000	0014], al			DS[00000014]=0
	0044	B88908	mov ax,	0047	B8	
20			0889			AX=0889
	0047	66C1E004	shl eax, 04	004B	66C1E	EAX=00008890
					0	C=0 Z=0 S=0
21						O=0 P=1 A=1
	004B	67A31A	mov [0000	0052	67A3	DS[0000
22		000000	001A], ax			001A]=8890
	0052	66C1E810	shr eax, 10	0056	66C1E	
23					8	EAX=0
						C=1 Z=1 S=0
						O=0 P=1 A=1

	0056	67A21C	mov [0000	005D	67A2	DS[0000001C]=
24		000000	001C], al			0
	005D	B87908	mov ax,	0060	B8	
25			0879			AX=0879
	0060	66C1E004	shl eax, 04	0064	66C1E	EAX=00008790
					0	C=0 Z=0 S=0
26						O=0 P=1 A=1
	0064	67A322	mov [0000	006B	67A3	DS[0000
27		000000	0022], ax			0022]=8790
	006B	66C1E810	shr eax, 10	006F	66C1E	EAX=0
					8	C=1 Z=1 S=0
28						O=0 P=1 A=1
	006F	67A224	mov [0000	0076	67A2	DS[0000024]=0
29		000000	0024], al			
	0076	B88A08	mov ax,	0079	B8	AX=088A
30			088A			
	0079	66C1E004	shl eax, 04	007D	66C1E	EAX=000088A0
					0	C=0 Z=0 S=0
31						O=0 P=0 A=1
	007D	6650	push eax	007F	6650	SP=00F8
						SS[00F8]=88A0
32						SS[00FA]=0000
	007F	2667A332	mov es:	0086	2667A3	ES[0000
		000000	[0000]			0032]=88A0
33			0032], ax			

	0086	66C1E810	shr eax, 10	008A	66C1E	EAX=0
34					8	
						C=1 Z=1 S=0
						O=0 P=1 A=1
	008A	2667A234	mov es:	0091	2667A2	ES[0000034]=0
		000000	[0000]			
35			0034], al			
	0091	B8A108	mov ax,	0094	В8	AX=08A1
36			08A1			
	0094	66C1E004	shl eax, 04	0098	66C1E	EAX=00008BA1
					0	C=0 Z=0 S=0
37						O=0 P=0 A=1
	0098	2667A33A	mov es:	009F	2667A3	ES[0000
		000000	[0000]			003A]=8BA1
38			003A], ax			
	009F	66C1E810	shr eax, 10	00A3	66C1E	EAX=0
					8	C=1 Z=1 S=0
39						O=0 P=1 A=1
	00A3	2667A23C	mov [0000	00A	2667A2	DS[000003C]=
40		000000	003C], al	A		0
	00AA	6658	pop eax	00AC	6658	EAX=000088A0
41						SP=00FC
	00AC	660500	add eax,	00B2	6605	EAX=000088A0
		000000	00000000			C=0 Z=0 S=0
42						O=0 P=1 A=0

	00B2	662667	mov [0000	00BA	6626	DS[0000042]=
43		A342000000	0042], eax		67A3	000088A0
	00BA	26670F01154	1~dt [0000	00C3	26670F	GDTR=0000
	UUDA		lgdt [0000	0003		
44		0 000000	0040]		0115	88A0003F
	00C3	68A408	push 08A4	00C6	68	SP=00FA
45						SS[00FA]=08A4
	00C6	07	pop es	00C7	07	ES=08A4
46						SP=00FC
40	00C7	6658	non any	00C9	6658	SP=0100
	0007	0038	pop eax	000	0038	EAX=00008A40
47						EAX=00008A40
	00C9	660500	add eax,	00CF	6605	EAX=00008A40
		000000	00000046			C=0 Z=0 S=0
48						O=0 P=0 A=0
	00CF	6667A302	mov [0000	00D6	6667A3	DS[00000802]=
49		080000	0802], eax			00008A40
	00D6	670F011D	lidt [0000	00DE	670F01	IDTR=00008A
50		00080000	0800]		1D	4007FF
	00DE	688A08	push 088A	00E1	688D08	SP=00FE
51						SS[00FE]=088A
	00E1	1F	pop ds	00E2	1F	DS=088A
52						SP=100
53	00E2	FA	cli	00E3	FA	I=0
	00E3	0F20C0	mov eax,	00E6	0F20	
54			cr0			

55	00E6	0C01	or al, 01	00EB	0C	
56	00E8	0F22C0	mov cr0, eax	00F3	0F22C0	Бит РЕ=1
	00EB	66EA9D08 00001000	jmp 0010: 0000089D	0010:	66EA	
57		00001000	0000089D	0893		
		Работа прог	раммы в защ	ищенно	м режиме	
58	00F3	0F20C0	mov eax, cr0	00F6	0F20C0	
59	00F6	24FE	and al, FE	00F8	24	
60	00F8	0F22C0	mov cr0, eax	00FB	0F22C0	Бит РЕ=0
61	00FB	EA00019208	jmp 088F:0100	0100	EA	
62	0100	BA7908	mov dx, 0879	0103	BA	DX=0879
63	0103	8ED2	mov ss, dx	0105	8ED2	SS=0879
	0105	BC0001	mov sp,	0108	BC	SP=0100
64			0100			
65	0108	B8A408	mov ax, 08A4	010B	В8	AX=08A7
66	010B	8ED8	mov ds, ax	010D	8ED8	DS=08A7

	010D	670F011D	lidt	0115	670F01	IDTR=00000000
67		06080000	[00000806]		1D	03FF
68	0115	FB	sti	0116	FB	I=1
69	0116	B400	mov ah, 00	0118	B4	AH=00
70	0118	CD16	int 16	011A	CD	
71	011C	B44C	mov ah, 4C	011E	B4	AH=4C
72	011E	CD21	int 21		CD	

Пример работы программы приведен на рисунке 1.

Рисунок 1 – Пример работы программы

Значения полей базы дескрипторов сегментов и регистров GDTR и IDTR:

• CSeg16Dsc: 000088F0

• CSeg32Dsc: 00008A40

• DSeg32Dsc: 00008890

SSegDsc: 00008790GDT_Dsc: 000088A0

• CSegPrDsc: 00008BA1 🗆 GDTR: 000088A0003F

• IDTR: 00008A4007FF

Анализ результатов исследования

Переключение процессора в защищенный режим осуществляется установкой бита РЕ:

mov eax, cr0 or al, 1 mov cr0, eax

Переключение процессора обратно в реальный режим осуществляется сбросом бита PE: mov eax, cr0 and al, 0FEh mov cr0, eax

Переход в код защищенного режима осуществляется командами:

db 66h db 0EAh ;код команды JMP FAR

dd offset PMentry ;смещение внутри сегмента dw CS32Sel

;адрес сегмента кода защищенного режима

Возврат в код реального режима осуществляется командами:

db 0EAh

;код команды JMP FAR

dd offset RMret ;смещение внутри сегмента dw CS16Sel

;адрес сегмента кода реального режима

Схема перехода процессора к обработчику прерывания клавиатуры от нажатия клавиши до выполнения первой команды обработчика выглядит следующим образом:

Работой клавиатуры управляет специальная электронная схема — контроллер клавиатуры. В его функции входит распознавание нажатой клавиши и помещение закрепленного за ней кода в свой выходной регистр (порт) с номером 60h. Код клавиши, поступающий в порт, называется сканкодом и является, по существу, порядковым номером клавиши.

Как нажатие, так и отпускание любой клавиши вызывает сигнал аппаратного прерывания, заставляющий процессор прервать выполняемую программу и перейти на программу системного обработчика прерываний от клавиатуры.

Вначале процессор получает номер прерывания, который представляет собой индекс соответствующего дескриптора в IDT. Затем процессор читает из шлюза прерывания селектор сегмента кода, в котором находится обработчик прерывания и смещение обработчика прерывания от начала этого сегмента. По селектору он находит дескриптор, из которого извлекает базу сегмента и, таким образом, определяет полный логический адрес обработчика, он же является адресом первой команды обработчика.

Сравнения:

1. GDT (Global Descriptor Table) и LDT (Local Descriptor Table) - таблицы глобальных и локальных дескрипторов. Это таблицы 8-байтных структур, называемых дескрипторами сегментов, где находится начальный адрес сегмента вместе с другой необходимой информацией. При адресации в защищенном режиме в сегментных регистрах находятся специальные 16битные структуры, называемые селекторами. Бит 2 селектора является индикатором использования одной из таблиц дескрипторов. Если данный бит равен 0, то используется GDT, а если данный бит равен 1, то используется LDT.

Операционная система собирает все таблицы дескрипторов, чтобы процессор знал, где искать дескрипторы, и при необходимости загружает их при помощи привилегированных команд процессора. При этом GDT может быть только одна, а LDT – на каждую задачу.

Внешние прерывания, программные прерывания, исключения обрабатываются с использованием таблицы дескрипторов прерываний

(Interrupt Descriptor Table, IDT). Исключение — это событие, которое происходит, если команда вызывает ошибку. Например, попытка деления на ноль генерирует исключение. Однако есть исключения, например, контрольные точки, которые происходят при других условиях. IDT содержит множество дескрипторов различных шлюзов: прерываний, ловушек и задач — которые предоставляют доступ к обработчикам прерываний и исключений. Так же как и GDT, IDT не является сегментом. Линейный базовый адрес и лимит IDT содержатся в регистре таблицы дескрипторов прерываний (Interrupt Descriptor Table Register).

2. Дескрипторы могут быть несистемными (дескриптор сегмента кода или сегмента данных) и системными, среди которых можно выделить специальные (дескрипторы шлюзов): шлюз вызова, ловушки, прерывания или задачи.

Если в дескрипторе бит четвертого байта доступа равен 0, дескриптор называется системным. В этом случае биты от нулевого до третьего байта доступа определяют один из 16 возможных типов дескриптора.

Шлюзы прерываний и ловушек используются для вызова обработчиков соответственно прерываний и исключений типа ловушки. Они указывают точку входа обработчика, его разрядность и уровень привилегий. При передаче управления обработчику процессор помещает в стек флаги и адрес возврата так же, как и в реальном режиме, но после этого для некоторых исключений в стек помещается дополнительный код ошибки, откуда следует, что не все обработчики можно завершать простой командой IRETD (IRET). Единственное различие между шлюзом прерывания и ловушки состоит в том, что при передаче управления через шлюз прерывания автоматически запрещаются дальнейшие прерывания, пока обработчик не выполнит IRETD (IRET).

3. При внутрисегментном (ближнем) вызове подпрограммы при переходе в сегмент с теми же привилегиями в реальном режиме, режиме x86 или в защищенном режиме в стек помещается только смещение команды, следующей за командой CALL, от начала сегмента кода, то есть текущее значение регистра IP, а при дальнем вызове — полный логический адрес (пара CS:IP или CS:EIP).

Вывод

При выполнении лабораторной работы я написал на языке ассемблера программу, выполняющую преобразование числа из кода с контролем по четности в защищенном режиме. Исходные данные вводятся в память с клавиатуры, результаты выводятся на дисплей также в защищенном режиме. Вывод результатов на экран выполняет дальняя подпрограмма.

В результате выполнения лабораторной работы я узнала следующее:

Надежность системы, функционирующей в защищенном режиме, обусловлена следующим:

- 1) возможность задания необходимого размера сегмента и контролем адресации памяти вне пределов сегментов.
- 2) байт доступа дескриптора сегмента кода содержит бит разрешения чтения сегмента (бит 1). Если этот бит установлен в 1, программа может считывать содержимое сегмента кода. В противном случае процессор может только выполнять этот код, т. е. программа не может модифицировать сегмент кода. Это означает невозможность создания самомодифицирующихся программ для защищенного режима. Впрочем, возможность модификации кода остается. Для сегмента кода можно создать еще один, алиасный дескриптор, в котором этот сегмент отмечен как сегмент данных. Для него можно разрешить запись, установив тот же самый бит 1, и модифицировать код программы во время ее выполнения.