

Linear Algebra (5th edition)

Stephen Friedberg, Arnold Insel, Lawrence Spence

Chapter 03: Elementary matrix operations and systems of linear equations

Assignments

Jihwan Moon

Table of Contents

- 3.1 Elementary matrix operations and elementary matrices
- 3.2 The rank of a matrix and matrix inverses

3.1 Elementary matrix operations and elementary matrices

Problems

- 1. Label the following statements as true or false.
 - (a) An elementary matrix is always square.
 - (b) The only entries of an elementary matrix are zeros and ones.
 - (c) The $n \times n$ identity matrix is an elementary matrix.
 - (d) The product of two n × n elementary matrices is an elementary matrix.
 - (e) The inverse of an elementary matrix is an elementary matrix.
 - (f) The sum of two $n \times n$ elementary matrices is an elementary matrix.
 - (g) The transpose of an elementary matrix is an elementary matrix.
 - (h) If B is a matrix that can be obtained by performing an elementary row operation on a matrix A, then B can also be obtained by performing an elementary column operation on A.
 - (i) If B is a matrix that can be obtained by performing an elementary row operation on a matrix A, then A can be obtained by performing an elementary row operation on B.

3.1 Elementary matrix operations and elementary matrices

- Problems
 - 2. Let

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 3 \\ 1 & -2 & 1 \\ 1 & -3 & 1 \end{pmatrix}, \text{ and } C = \begin{pmatrix} 1 & 0 & 3 \\ 0 & -2 & -2 \\ 1 & -3 & 1 \end{pmatrix}.$$

Find an elementary operation that transforms A into B and an elementary operation that transforms B into C. By means of several additional operations, transform C into I_3 .

Use the proof of Theorem 3.2 to obtain the inverse of each of the following elementary matrices.

(a)
$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$