## Silicon PIN Photodiode

### **Description**

BP104 is a high speed and high sensitive PIN photodiode in a miniature flat plastic package. Its top view construction makes it ideal as a low cost replacement of TO–5 devices in many applications.

The epoxy package itself is an IR filter, spectrally matched to GaAs or GaAs on GaAlAs IR emitters ( $\lambda_p$ =950nm). The large active area combined with a flat case gives a high sensitivity at a wide viewing angle.



#### **Features**

- Large radiant sensitive area (A=7.5 mm<sup>2</sup>)
- Wide angle of half sensitivity  $\varphi = \pm 65^{\circ}$
- High photo sensitivity
- Fast response times
- Small junction capacitance
- Plastic case with IR filter ( $\lambda$ =950 nm)

# **Applications**

High speed photo detector

## **Absolute Maximum Ratings**

 $T_{amb} = 25^{\circ} C$ 

| Parameter                           | Test Conditions             | Symbol            | Value   | Unit |
|-------------------------------------|-----------------------------|-------------------|---------|------|
| Reverse Voltage                     |                             | $V_{R}$           | 60      | V    |
| Power Dissipation                   | $T_{amb} \le 25  ^{\circ}C$ | $P_{V}$           | 215     | mW   |
| Junction Temperature                |                             | $T_j$             | 100     | °C   |
| Storage Temperature Range           |                             | T <sub>stg</sub>  | -55+100 | °C   |
| Soldering Temperature               | $t \leq 3 s$                | $T_{sd}$          | 260     | °C   |
| Thermal Resistance Junction/Ambient |                             | R <sub>thJA</sub> | 350     | K/W  |

### **Basic Characteristics**

 $T_{amb} = 25^{\circ}C$ 

| Parameter                      | Test Conditions                                                 | Symbol                 | Min | Тур                 | Max | Unit   |
|--------------------------------|-----------------------------------------------------------------|------------------------|-----|---------------------|-----|--------|
| Breakdown Voltage              | $I_R = 100  \mu A,  E = 0$                                      | V <sub>(BR)</sub>      | 60  |                     |     | V      |
| Reverse Dark Current           | $V_R = 10 \text{ V, } E = 0$                                    | I <sub>ro</sub>        |     | 2                   | 30  | nA     |
| Diode Capacitance              | $V_R = 0 V, f = 1 MHz, E = 0$                                   | $C_{D}$                |     | 70                  |     | pF     |
| Diode Capacitance              | $V_R = 3 \text{ V, } f = 1 \text{ MHz, } E = 0$                 | $C_{D}$                |     | 25                  | 40  | pF     |
| Open Circuit Voltage           | $E_e = 1 \text{ mW/cm}^2$ , $\lambda = 950 \text{ nm}$          | V <sub>o</sub>         |     | 350                 |     | mV     |
| Short Circuit Current          | $E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$             | $I_k$                  |     | 38                  |     | μΑ     |
| Reverse Light Current          | $E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}, \ V_R = 5V$ | $I_{ra}$               | 40  | 45                  |     | μΑ     |
| Angle of Half Sensitivity      |                                                                 | φ                      |     | ±65                 |     | deg    |
| Wavelength of Peak Sensitivity |                                                                 | $\lambda_{\mathrm{p}}$ |     | 950                 |     | nm     |
| Range of Spectral Bandwidth    |                                                                 | $\lambda_{0.5}$        |     | 8701050             |     | nm     |
| Noise Equivalent Power         | V <sub>R</sub> =10V, λ=950nm                                    | NEP                    |     | 4x10 <sup>-14</sup> |     | W/√ Hz |
| Rise Time                      | $V_R=10V$ , $R_L=1k\Omega$ , $\lambda=820$ nm                   | t <sub>r</sub>         |     | 100                 |     | ns     |
| Fall Time                      | $V_R=10V$ , $R_L=1k\Omega$ , $\lambda=820$ nm                   | $t_{\mathrm{f}}$       |     | 100                 |     | ns     |

TEMIC **BP** 104

### **Typical Characteristics** ( $T_{amb} = 25^{\circ}C$ unless otherwise specified)



**TELEFUNKEN Semiconductors** 

Figure 1: Reverse Dark Current vs. Ambient Temperature



Figure 3: Reverse Light Current vs. Irradiance





Figure 2: Relative Reverse Light Current vs. Ambient Temperature



Figure 4: Reverse Light Current vs. Reverse Voltage



Figure 5 : Diode Capacitance vs. Reverse Voltage

Figure 6: Relative Spectral Sensitivity vs. Wavelength



Figure 7: Relative Radiant Sensitivity vs. Angular Displacement

### **Dimensions in mm**



#### We reserve the right to make changes to improve technical design without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax Number: 49 (0)7131 67 2423