Statistical Connectomics: On Making Decision Theoretic Statements for clustering SBMs

Michelle Chyn

February 17, 2015

- 1. Sample Space ...Set of potential observations
 - $Adj \in \{0,1\}^{n \times m}$
 - $y \in \{0,1\}^n$
- 2. Model $P = \{P_{\theta} : \theta \in \Theta\}$ collection of probability distributions ex. SBM
 - $SBM_n^k\left(\overrightarrow{\rho},\overrightarrow{\beta}\right)$

 - $\bullet \overrightarrow{\rho} \epsilon \triangle_2$ $\bullet \overrightarrow{\beta} \epsilon (0,1)^{2\times 2}$
- 3. Action Space $A = \{a_1, a_2, ..., a_n\}$ assigning each vertex to a cluster, label switching when needed
 - $A = \{ y \in (0,1)^n \}$
- 4. Decision Rule Class $\Phi:\phi...\to A$ set of functions that maps sample space to action space
- 5. Loss Function $l: P \times A \rightarrow R_+$ mapping from model and action space to R
 - $l: G_n \times A \to R_+$ with permutations or
 - $l:ARI(\hat{y},y)$
- 6. Risk Functional $R: L \times \Phi \times P \rightarrow R_+$ expected loss under true distribution
 - \bullet $R: A \times A \times P$
 - $E_p[l]$