Universidade do Minho Departamento de Matemática e Aplicações **MIECOM**

Análise Matemática B

— folha 5 — Integrais de Linha — 2011'12 — 201

- 1. Faça um esboço das curvas C com as seguintes parametrizações:
 - (a) $\vec{r}(t) = (t, t^2)$, com $t \in [0, 2]$;
 - (b) $\vec{r}(t) = (2t, 4t^2)$, com $t \in [0, 1]$;
 - (c) $\vec{r}(t) = (-\frac{t}{2} + 1, t + 2)$, com $t \in \mathbb{R}$;
 - (d) $\vec{r}(t) = (-\frac{t}{2} + 1, t + 2)$, com $t \in [-1, 2]$;
 - (e) $\vec{r}(t) = (\sec t, \cos t)$, com $t \in [0, 2\pi]$;
 - (f) $\vec{r}(t) = (2\cos t, \sin t)$, com $t \in [0, 2\pi]$.
- 2. Encontre uma parametrização para cada uma das seguintes curvas, nos sentidos indicados:
 - (a) Circunferência de centro (0,0) e raio 2 percorrida em sentido horário;
 - (b) Circunferência de centro (0,0) e raio 2 percorrida em sentido anti-horário;
 - (c) O segmento de recta no plano desde o ponto (1,2) até ao ponto (-2,1);
 - (d) O segmento de recta no espaço desde o ponto (1,2,0) até ao ponto (-2,1,3).
- 3. Considere as curvas com as seguintes parametrizações:
 - (a) $\vec{r}(t) = (3t^2, t^3 + 1)$, com $t \in \mathbb{R}$;
 - (b) $\vec{r}(t) = (3\text{sen}(t^2) 1, 3\text{cos}(t^2)), \text{ com } t \in [0, \sqrt{2\pi}];$
 - (c) $\vec{r}(t) = (3\sin^2 t, \cos t 1, t^2), \text{ com } t \in \mathbb{R};$
 - (d) $\vec{r}(t) = (t^2, \pi^2)$, com $t \in \mathbb{R}$.

Para cada uma das curvas apresentadas, determine:

- i) O vector velocidade $\vec{r}'(t)$;
- ii) A velocidade $||\vec{r}'(t)||$;
- iii) Os tempos t em que ocorre uma paragem da partícula.

- 4. Determine os integrais de linha $\int_C \vec{F} d\vec{r}$, quando:
 - (a) $\vec{F}(x,y) = x\vec{i} + y\vec{j}$ e C é o segmento de recta do ponto (0,0) até ao ponto (3,3);
 - (b) $\vec{F}(x,y)=-y{\rm sen}\,x\vec{i}+{\rm cos}\,x\vec{j}$ e C é a parábola $y=x^2$ desde o ponto (0,0) até ao ponto (2,4);
 - (c) $\vec{F}(x,y,z)=y\vec{i}+(x+2z^2)\vec{j}+4yz\vec{k}$ e $C=C_1+C_2$ onde C_1 é o segmento de recta do ponto (1,1,0) até ao ponto (0,0,0) e C_2 é o segmento de recta do ponto (0,0,0) até ao ponto $(0,0,\sqrt{2})$;
 - (d) $\vec{F}(x,y,z)=y\vec{i}+(x+2z^2)\vec{j}+4yz\vec{k}$ e C é um arco de circunferência, no plano y=x, desde o ponto (1,1,0) até ao ponto $(0,0,\sqrt{2})$;
 - (e) $\vec{F}(x,y)=x^2\vec{i}+xy\vec{j}$ e C é a curva que percorre a parábola $y=x^2$ desde o ponto (0,0) até ao ponto (1,1) e, depois, percorre o segmento de reta desde o ponto (1,1) até ao ponto (0,0);
 - (f) $\vec{F}(x,y,z)=x\vec{i}+y\vec{j}+(xz-y)\vec{k}$ e C é o segmento de reta que une o ponto (0,0,0) ao ponto (1,2,4).
- 5. Para cada um dos campos de vectores que se segue, represente uma curva orientada cujo integral de linha ao longo dessa curva seja:
 - (a) positiva;
 - (b) negativa;
 - (c) zero.

- 6. Considere a função real $f(x, y, z) = x \operatorname{sen} z + yx$.
 - (a) Determine $\vec{F} = \nabla f$;
 - (b) Determine $\int_C \vec{F} d\vec{r}$, onde $\vec{r}(t) = \left(\sin^2(t), \frac{4t}{\pi}, \cos^2 t \right)$, $0 \le t \le \frac{\pi}{2}$.
- 7. Calcule o trabalho realizado pela força $\vec{F}(x,y)=y\vec{i}-x\vec{j}$, sobre uma partícula que se desloca, em sentido horário, ao longo da circunferência de centro (0,0) e raio 1. O campo de forças $\vec{F}(x,y)=y\vec{i}-x\vec{j}$ é conservativo? Justifique.
- 8. Utilize o Teorema de Green para calcular $\int_C \vec{F} \cdot d\vec{r}$ em que $\vec{F}(x,y) = y^2 \vec{i} + x \vec{j}$ e a curva C, parametrizada no sentido direto, delimita:
 - (a) o quadrado cujos vértices são: (0,0), (2,0), (2,2), (0,2);
 - (b) o quadrado cujos vértices são: (2,0), (-2,0), (0,-2), (0,2);
 - (c) o círculo de raio 2 e centro na origem.
- 9. Use o Teorema de Green para determinar a área de uma circunferência de raio ${\cal R}>0.$