

Preet Kanwal

Department of Computer Science & Engineering

Unit 1

Preet Kanwal

Department of Computer Science & Engineering

Automata Formal Languages and Logic Unit 1 - Deterministic Finite Acceptor/Automata

Approach to Construct a DFA that recognises a language L:

Step I: Enumerate Strings in the language:

- * Specify the minimal String
- * Enumerate Strings in the order of increasing length
- * Discover a Pattern

Step II: Draw a DFA skeleton of the Automata (Machine) based on the

Pattern

Discovered.

Step III: Complete the DFA

Unit 1 - Deterministic Finite Acceptor/Automata

Transition Function for a DFA

$$\delta: Q \times \Sigma \rightarrow Q$$

- For each state in the DFA, there must be exactly one transition defined for each symbol in Σ .
- This is the "deterministic" part of DFA
- At every point in the computation, there is exactly one choice that can be made.

M - Machine/Automata

Q - Set of States (finite)

Σ - Set of Input Symbols δ - Transition Function

q₀ - Start State

F - Set of Final States

F⊆Q

Automata Formal Languages and Logic Unit 1 - Deterministic Finite Acceptor/Automata

PES UNIVERSITY ONLINE

Acceptance by a FA:

- A finite automaton does not accept as soon as it enters an accepting state.
- A finite automaton accepts if it ends in an accepting state.

Unit 1 - Deterministic Finite Acceptor/Automata

Example 1:

Construct DFA for the Language of strings of length 2, over $\Sigma = \{a,b\}$.

Unit 1 - Deterministic Finite Acceptor/Automata

Example 2:

Construct DFA for the language of strings of length ≤ 2 , over $\Sigma = \{a,b\}$.

Unit 1 - Deterministic Finite Acceptor/Automata

Example 3:

Construct DFA for the language of strings of length >=2, over $\Sigma = \{a,b\}$.

Unit 1 - Deterministic Finite Acceptor/Automata

Example 4:

Construct DFA for the language of strings which start with a ,over Σ ={a,b}.

Unit 1 - Deterministic Finite Acceptor/Automata

Example 5:

Construct DFA for the language with strings which start with a and end in b over $\Sigma = \{a,b\}$.

Solutic

Unit 1 - Deterministic Finite Acceptor/Automata

Example 6:

The language with strings over $\Sigma = \{a,b\}$ where every string starts with ab and ends in ab, over $\Sigma = \{a,b\}$.

Unit 1 - Deterministic Finite Acceptor/Automata

Example 7:

The language of strings over $\Sigma = \{a,b\}$ where every a is followed by bb.

Unit 1 - Deterministic Finite Acceptor/Automata

Example 8:

The language of strings over $\Sigma = \{a,b\}$ where every string must contain "aa" as the substring.

Unit 1 - Deterministic Finite Acceptor/Automata

Example 9:

Construct DFA for the language of strings over $\Sigma = \{a,b\}$ of the form $a^nb^m|n,m>=1$.

Unit 1 - Deterministic Finite Acceptor/Automata

Example 10:

Construct DFA for the language of strings over $\Sigma = \{a,b\}$ of the form $a^nb^m|n,m>=0$.

Unit 1 - Deterministic Finite Acceptor/Automata

Example 11:

Construct DFA for the language of strings over $\Sigma = \{a,b\}$ where, $n_a(w) \mod 2 = 0$.

Unit 1 - Deterministic Finite Acceptor/Automata

Example 12:

Construct DFA for the language of strings over $\Sigma = \{a,b\}$ where, $n_a(w) \mod 2 = 0$ and $n_b(w) \mod 2 = 0$

Unit 1 - Deterministic Finite Acceptor/Automata

Example 13:

Construct DFA for the language of strings over $\Sigma = \{a,b\}$ where, $n_a(w) \mod 3 = 0$ and $n_b(w) \mod 2 = 0$.

Unit 1 - Deterministic Finite Acceptor/Automata

Example 14:

Construct DFA for the language of strings over $\Sigma = \{a,b\}$ where,

 $n_a(w) \mod 3=0 \text{ and } n_b(w) \mod 3=0$

Unit 1 - Deterministic Finite Acceptor/Automata

Example 15:

Construct DFA for the language of strings over $\Sigma = \{a,b\}$ where,

 $n_a(w) \mod 3 = 2$ and $n_b(w) \mod 3 = 1$

Unit 1 - Deterministic Finite Acceptor/Automata

Example 16:

Construct DFA for binary number divisible by 2(w mod 2=0).

Unit 1 - Deterministic Finite Acceptor/Automata

Example 17:

Construct DFA for binary number divisible by 3(w mod 3=0).

THANK YOU

Preet Kanwal

Department of Computer Science & Engineering

preetkanwal@pes.edu

+91 80 6666 3333 Extn 724