Where We Are

ML Era (roughly starts from 2008, even before Spark has taken off)

• ML wes still very diverse (a.k.a. in a mess) in 2012

Spark mllib

Torch (lua) / Theano / distbelief

Diversity -> Good News or Bad New?

- ML is so diverse
 - Cons:
 - There is no unified model / computation
 - Hard to build a programming model / interface that cover a diverse range of applications
 - No idea where the system bottlenect is
 - Pros:
 - A lot of opportunities: Gold mining era

ML Systems Plan in DSC 204A

- ML System history: history of unification
- First Unification: iterative-convergence algorithm
 - Parameter server
- Second unification: Neural networks
 - Autodiff libraries: tensorflow, pytorch, etc.
- Third unification: scaling up transformers and LLMs
 - Flash attention, paged attention, and how to scale up
- Want to dive into each topic? Enroll DSC 299 offered next quarter

ML System history

 ML Systems evolve as more and more ML components (models/optimization algorithms) are unified

Ad-hoc: diverse model family, optimization algos, and data

Opt algo: iterative-convergent

Model family: neural nets

Model: CNNs/transformers/GNNs

LLMs: transformer decoders

More and more unified yet scope becoming narrower and narrower

The first Unified component: Iterative-convergence Algo

EM Algorithm

Coordinate descent

Gradient descent

Example: Gradient Descent

Gradient / backward computation

Recall collective

Recall collective communication
$$m{ heta}^{(t)} = m{ heta}^{(t-1)} + m{ar{arepsilon}} m{ heta}^{(t-1)}, m{D}^{(t)})$$

- The first unification:
 - Most ML algorithms are iterative-convergent
 - iterative-convergent is the master equation behind

How to Distribute this Equation?

Gradient / backward computation

$$oldsymbol{ heta}^{(t)} = oldsymbol{ heta}^{(t-1)} + oldsymbol{arepsilon} oldsymbol{ heta}_{\mathcal{L}}(oldsymbol{ heta}^{(t-1)}, oldsymbol{D}^{(t)})$$

$$m{ heta}^{(t+1)} = m{ heta}^{(t)} + m{arepsilon} \sum_{p=1}^P
abla_{\mathcal{L}}(m{ heta}^{(t)}, D_p^{(t)})$$
How to perform this sum?

Problems if expressing this in Spark

 ML is too diverse; hard to express their computation in coarsegrained data transformations.

```
map(f: T \Rightarrow U) : RDD[T] \Rightarrow RDD[U]
          filter(f: T \Rightarrow Bool) : RDD[T] \Rightarrow RDD[T]
     flatMap(f: T \Rightarrow Seq[U]) : RDD[T] \Rightarrow RDD[U]
      sample(fraction : Float) : RDD[T] \Rightarrow RDD[T] (Deterministic sampling)
                 groupByKey() : RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])]
reduceByKey(f:(V,V) \Rightarrow V) : RDD[(K,V)] \Rightarrow RDD[(K,V)]
                       union() : (RDD[T], RDD[T]) \Rightarrow RDD[T]
                                      (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))]
                         join() :
                                      (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (Seq[V], Seq[W]))]
                     cogroup():
                                      (RDD[T], RDD[U]) \Rightarrow RDD[(T, U)]
                crossProduct():
       mapValues(f : V \Rightarrow W) : RDD[(K, V)] \Rightarrow RDD[(K, W)] (Preserves partitioning)
      sort(c : Comparator[K]) : RDD[(K, V)] \Rightarrow RDD[(K, V)]
partitionBy(p : Partitioner[K]) : RDD[(K, V)] \Rightarrow RDD[(K, V)]
```

Problems if expressing this in Spark

$$oldsymbol{ heta}^{(t+1)} = oldsymbol{ heta}^{(t)} + oldsymbol{arepsilon} \sum_{p=1}^P
abla_{\mathcal{L}}(oldsymbol{ heta}^{(t)}, D_p^{(t)})$$

- Very heavy communication per iteration
- Compute: communication = 1:10 in the era of 2012

Consistency

$$oldsymbol{ heta}^{(t+1)} = oldsymbol{ heta}^{(t)} + oldsymbol{arepsilon} \sum_{p=1}^P
abla_{\mathcal{L}}(oldsymbol{ heta}^{(t)}, D_p^{(t)})$$

BSP's Weakness: Stragglers

BSP suffers from stragglers

- Slow devices (stragglers) force all devices to wait
- More devices → higher chance of having a straggler
- Stragglers are usually transient, e.g.
 - Temporary compute/network load in multi-user environment
 - Fluctuating environmental conditions (temperature, vibrations)
- BSP's throughput is greatly decreased in large clusters/clouds, where stragglers are unavoidable

An interesting property of Gradient Descent (ascent)

$$oldsymbol{ heta}^{(t+1)} = oldsymbol{ heta}^{(t)} + oldsymbol{arepsilon} \sum_{p=1}^P
abla_{\mathcal{L}}(oldsymbol{ heta}^{(t)}, D_p^{(t)})$$

Machine Learning is Error-tolerant (under certain conditions)

Background: Strict Consistency

- Baseline: Bulk Synchronous Parallel (BSP)
 - MapReduce, Spark, many DistML Systems
- Devices compute updates Δ_L () between global barriers (iteration boundaries)
 - Messages M exchanged only during barriers
- Advantage: Execution is serializable
 - Same guarantees as sequential algo!
 - Provided that aggregation F() is agnostic to order of messages \mathcal{M} (e.g. in SGD)

Background: Asynchronous Communication (No Consistency)

- Asynchronous (Async): removes all communication barriers
 - Maximizes computing time
 - Transient stragglers will cause messages to be extremely stale
 - Ex: Device 2 is at t = 6, but Device 1 has only sent message for t = 1
- Some Async software: messages can be applied while computing F(), $\Delta_L()$
 - Unpredictable behavior, can hurt statistical efficiency!

Background: Bounded Consistency

Bounded consistency models: Middle ground between BSP and fully-asynchronous (no-barrier)

e.g. Stale Synchronous Parallel (SSP): Devices allowed to iterate at different speeds

- Fastest & slowest device must not drift > s iterations apart (in this example, s = 3)
 - s is the maximum staleness

SSP: "Lazy" Communication

SSP: devices avoid communicating unless necessary

- i.e. when staleness condition is about to be violated
- Favors throughput at the expense of statistical efficiency

Impacts of Consistency/Staleness: Unbounded Staleness

Theory: SSP Expectation Bound

• Goal: minimize convex $f(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} f_t(\mathbf{x})$

(Example: Stochastic Gradient)

- L-Lipschitz, problem diameter bounded by F^2
- Staleness s, using P parallel devices
- Use step size $\eta_t = \frac{\sigma}{\sqrt{t}}$ with $\sigma = \frac{F}{L\sqrt{2(s+1)P}}$
- (E)SSP converges according to
 - Where T is the number of iterations

Parameter Server Naturally emerges

How to Implement Parameter Server?

- Key considerations:
 - Server: Communication bottleneck
 - Fault tolerance
 - Programming Model
 - Handling GPUs

Parameter Server Implementation

- Sharded parameter server: sharded KV stores
 - Avoid communication bottleneck
 - Redundancy across different PS shards

Parameter Servers

Programming Model

- Client:
 - Push()
 - Pull()
 - Compute()
- Server:
 - Update()
- Very similar to the spirit of Map Reduce
- A lot of flexibility for users to customize
 - Recall Mapreduce vs. Spark

Summary: Parameter Server

- Why does it emerge?
 - Unification of iterative-convergence optimization algorithm
- What problems does it address and how?
 - Heavy communication, via flexible consistency
- Pros?
 - Cope well with iterative-convergent algo
- Cons?
 - Extension to GPUs?
 - Strong assumption on communication bottleneck

The Second Unified Component: Neural Networks

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Deep learning Emerges

- Still iterative-convergent: because of using SGD
- GPU becomes a must
- Neural network architecture itself can be very diverse
 - But less diverse than the whole spectrum of all ML models
 - Still needs a sufficiently expressive lib to program various architectures
 - Map-reduce, Push/Pull are too coarse grained
- It starts with a relatively small model
 - Spark is too bulky
 - Spark op lib does not align well with neural network ops

Outline

- Deep Learning as Dataflow Graphs
- Auto-differentiable Libraries

A Computational Layer in DL

- A layer in a neural network is composed of a few finer computational operations
 - A layer l has input x and output z, and transforms x into z following: y = Wx + b, z = ReLU(y)
 - Denote the transformation of layer l as f_l , which can be represented as a dataflow graphs: the input x flow though the layer

From Layers to Networks

- A neural network is thus a few stacked layers $l=1,\dots,L$, where every layer represents a function transform f_l
 - The forward computation proceeds by sequentially executing $f_1, f_2, f_3, ..., f_L$

• Training the neural network involves deriving the gradient of its parameters with a backward pass (next slides)

A Computational Layer in DL

- ullet Denote the backward pass through a layer l as b_l
 - b_l derives the gradients of the input x(dx), given the gradient of z as dz, as well as the gradients of the parameters W, b
 - dx will be the backward input of its previous layer l-1

Backward pass can be thought as a backward dataflow where the gradient

flow through the layer

Backpropagation through a NN

The backward computation proceeds by sequentially executing

$$b_L, b_{L-1}, b_{L-2}, \dots, b_1$$

A Layer as a Dataflow Graph

- Give the forward computation flow, gradients can be computed by auto differentiation
 - Automatically derive the backward gradient flow graph from the forward dataflow graph

A Network as a Dataflow Graph

Gradients can be computed by auto differentiation

Automatically derive the gradient flow graph from the forward

dataflow graph

Photo from TensorFlow website

Dataflow Graph Programming Model Today

- Define a neural network
 - Define operations and layers: fully-connected? Convolution?
 Recurrent?
 - Define the data I/O: read what data from where?
 - Define a loss function/optimization objective: L2 loss? Softmax?
 Ranking Loss?
 - Define an optimization algorithm: SGD? Momentum SGD? etc
- Auto-differential Libraries will then take over
 - Connect operations, data I/O, loss functions and trainer.
 - Build forward dataflow graph and backward gradient flow graphs.
 - Perform training and apply updates

Compare this vs. Spark, parameter server, XGBoost?

Outline

- Deep Learning as Dataflow Graphs
- Auto-differentiable Libraries

Auto-differential Libraries

- Auto-differential Library automatically derives the gradients following the backpropagation rule.
- A lot of auto-differentiation libraries have been developed:
- So-called Deep Learning toolkits

They are roughly adopted by different domains

- They are also designed differently
 - Symbolic v.s. imperative programming

- Symbolic vs. imperative programming
 - Symbolic: write symbols to assemble the networks first, evaluate later
 - Imperative: immediate evaluation

```
A = Variable('A')
B = Variable('B')
C = B * A
D = C + Constant(1)
# compiles the function
f = compile(D)
d = f(A=np.ones(10), B=np.ones(10)*2)
```

```
import numpy as np
a = np.ones(10)
b = np.ones(10) * 2
c = b * a
d = c + 1
```

Symbolic

Imperative

- Symbolic
 - Good
 - easy to optimize (e.g. distributed, batching, parallelization) for developers
 - More efficient
 - Bad
 - The way of programming might be counter-intuitive
 - Hard to debug for user programs
 - Less flexible: you need to write symbols before actually doing anything
- Imperative:
 - Good
 - More flexible: write one line, evaluate one line
 - Easy to program and easy to debug: because it matches the way we use C++ or python
 - Bad
 - Less efficient
 - More difficult to optimize

Good and Bad of Dataflow Graphs

- Dataflow graphs seems to be a dominant choice for representing deep learning models
 - What's good for dataflow graphs
 - Good for **static** workflows: define once, run for arbitrary batches/data
 - Programming convenience: easy to program once you get used to it.
 - Easy to parallelize/batching for a fixed graph
 - Easy to optimize: a lot of off-the-shelf optimization techniques for graph
 - What's bad for dataflow graphs
 - Not good for dynamic workflows: need to define a graph for every training sample -> overheads
 - Hard to program dynamic neural networks: how can you define dynamic graphs using a language for static graphs? (e.g. LSTM, tree-LSTM).
 - Not easy for debugging.
 - Difficult to parallelize/batching across multiple graphs: every graph is different, no natural batching.

Static vs. Dynamic Dataflow Graphs

- Static Dataflow graphs
 - Define once, execute many times
 - For example: convolutional neural networks
 - Execution: Once defined, all following computation will follow the defined computation
 - Advantages
 - No extra effort for batching optimization, because it can be by nature batched
 - It is always easy to handle a static computational dataflow graphs in all aspects, because of its fixed structure
 - Node placement, distributed runtime, memory management, etc.
 - Benefit the developers

Static vs. Dynamic Dataflow Graphs

- Dynamic Dataflow graphs
 - When do we need?
 - In all cases that static dataflow graphs do not work well
 - Variably sized inputs
 - Variably structured inputs
 - Nontrivial inference algorithms
 - Variably structured outputs
 - Etc.

Static vs. Dynamic Dataflow Graphs

- Can we handle dynamic dataflow graphs? Using static methods (or declaration) will have a lot of problems
 - Difficulty in expressing complex flow-control logic
 - Complexity of the computation graph implementation
 - Difficulty in debugging

Questions

- Is CNN training static or dynamic graph?
- Is CNN inference static or dynamic graph?
- Is GPT-3 training static graph or dynamic?
- Is GPT-3 inference with batch size = 1 static or dynamic graph
- Is GPT-3 serving static or dynamic graph

DL Dataflow Graph Optimization (advanced)

(a) Associativity of matrix multiplication.

(b) Fusing two matrix multiplications using concatenation and split.

DL Graph Compilation (advanced)

High-level IR Optimizations and Transformations

Tensor Operator Level Optimization

Direct code generation

