

09-29-00

A/Rcs

PTO/SB/50 (12/97)

Approved for use through 09/30/00. OMB 0651-0033

Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

JC916 U.S. PRO
09/672523

09/27/00

REISSUE PATENT APPLICATION TRANSMITTAL

Attorney Docket No. 005214.P002R

First Named Inventor Kuriacose JOSEPH

Original Patent No. 5,819,034

Original Patent Issue Date October 6, 1998

(Month/Day/Year)

Express Mail Label No. EL471466794US Total Pages 3

ADDRESS TO: Assistant Commissioner for Patents
Box Patent Application
Washington, D.C. 20231APPLICATION FOR REISSUE OF: Utility Patent Design Patent Plant Patent
(check applicable box)

APPLICATION ELEMENTS

1. Fee Transmittal Form (PTO/SB/56) (Submit an original, and a duplicate for fee processing)2. Specification (amended, if appropriate)3. Drawings(s) (proposed amendments, if appropriate)

4. _____ Reissue Oath/Declaration (original or copy) (37 CFR 1.175) (PTO/SB/51 or 52)

5. Original U.S. Patent

 Offer to Surrender Original Patent (37 CFR 1.178) (PTO/SB/53 or PTO/SB/54) (unsigned)OR Ribboned Original Patent Grant Affidavit/Declaration of Loss (PTO/SB/55)

6. Original U.S. patent currently assigned?

 Yes No

(If Yes, check applicable box(es))

 Written Consent of all Assignees (PTO/SB/53 or 54) (unsigned) 37 CFR 3.73(b) Statement (unsigned) Declaration/Power of Attorney (unsigned)

7. Transfer drawings from Patent File

ACCOMPANYING APPLICATION PARTS

8. _____ Foreign Priority Claim (35 USC 119) (if applicable)

9. _____ a. Information Disclosure Statement (IDS)/PTO-1449

_____ b. Copies of IDS Citations

10. _____ English Translation of Reissue Oath/Declaration (if applicable)

11. _____ a. Small Entity Statements(s)

_____ b. Statement filed in prior application, Status still proper and desired

12. _____ Preliminary Amendment

13. Return Receipt Postcard (MPEP 503) (Should be specifically itemized)

14. Other: Associate Power of Attorney

Letter Regarding Limited Recognition

15. CORRESPONDENCE ADDRESS

Customer Number or Bar Code Label

(Insert Customer No. or Attach Bar Code Label here)

or

Correspondence Address Below

NAME André L. Marais

BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN LLP

ADDRESS 12400 Wilshire Boulevard

Seventh Floor

CITY Los Angeles STATE California ZIP CODE 90025-1026

Country U.S.A. TELEPHONE (408) 720-8598 FAX (408) 720-9397

Respectfully submitted,

BLAKELY SOKOLOFF TAYLOR & ZAFMAN

Date: 09/27/00

By

André L. Marais
Under 37 CFR § 10.9(b)

12400 Wilshire Boulevard
Seventh Floor
Los Angeles, California 90025
(408) 720-8598

"Express Mail" mailing label number: EL471466974US

Date of Deposit: September 27, 2000

I hereby certify that I am causing this paper or fee to be deposited with the United States Postal Service "Express Mail Post Office to Addressee" service on the date indicated above and that this paper or fee has been addressed to the Assistant Commissioner for Patents, Washington, D. C. 20231

Lindy Vajretti

(Typed or printed name of person mailing paper or fee)

Lindy Vajretti

(Signature of person mailing paper or fee)

09/27/00

(Date signed)

UNITED STATES PATENT APPLICATION

FOR

**APPARATUS FOR TRANSMITTING AND RECEIVING EXECUTABLE
APPLICATIONS AS FOR A MULTIMEDIA SYSTEM, AND METHOD AND
SYSTEM TO ORDER AN ITEM USING A DISTRIBUTED COMPUTING SYSTEM**

INVENTORS:

Joseph Kuriacose

Ainsley Wayne Jessup, Jr.

Vincent Dureau

Alain Delpuch

Prepared by:

BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN
12400 WILSHIRE BOULEVARD
SEVENTH FLOOR
LOS ANGELES, CALIFORNIA 90025
(408) 720-8598

Attorney's Docket No. 005214.P001R

"Express Mail" mailing label number: EL471466794US

Date of Deposit: September 27, 2001

I hereby certify that I am causing this paper or fee to be deposited with the United States Postal Service "Express Mail Post Office to Addressee" service on the date indicated above and that this paper or fee has been addressed to the Assistant Commissioner for Patents, Washington, D. C.

20231

Lindy Vjaretti

(Typed or printed name of person mailing paper or fee)

9/27/01

(Signature of person mailing paper or fee)
(Date signed)

1 APPARATUS FOR TRANSMITTING AND RECEIVING EXECUTABLE APPLICATIONS AS FOR A MULTIMEDIA SYSTEM

The present invention relates to a client-server distributed computer system. Such a computer system has application in broadcast multimedia applications. 5

Early computer systems were standalone systems, consisting generally of mainframe computers. Later, several mainframe computer systems were closely connected, or clustered, to handle larger computing jobs, such as a large number of time sharing users. With the advent of personal computers, large numbers of relatively low power standalone computer systems were controlled directly by their users. Soon these large numbers of personal computers were coupled together into networks of computers, providing shared resources and communications capabilities to the users of the individual personal computers and between those users and the preexisting mainframe computers.

One form of such a network includes a central computer, 20 called a server, which generally includes a large amount of mass storage. Programs used by the network users are centrally stored in the mass storage on the server. When a user desires to run a program, the user's computer requests that a copy of that program be sent to it from the server. In 25 response to that request, the server transfers a copy of the program from its mass storage to the main memory of the personal computer of that user, and the program executes on that personal computer. Data also may be centrally stored in the server and shared by all the users on the network. The 30 data is stored on the mass storage of the server, and is accessible by all the network users in response to a request. The server also serves as a hub for communications of messages (electronic mail) between network users. The server in such a system handles the storage and distribution 35 of the programs, data and messages, but does not contribute any processing power to the actual computing tasks of any of the users. I.e. a user cannot expect the server computer to perform any of the processing tasks of the program executing on the personal computer. While such networks perform a valuable function, they are not distributed computing systems, in which interconnected computers cooperate to 40 perform a single computing task.

In an improvement to such networks, the network may be configured in such a manner that a user on the network may request that the server, or other personal computer connected to the network, execute a program. This is termed remote execution because a computer (server or other personal computer) remote from the requester is executing a program in response to a request from the requester. In such a system, the program of which remote execution is requested is either sent from the requester to the remote computer, or retrieved from the server in response to a request by the remote computer. When the program is received, it is executed. In this manner several computers may be enlisted to cooperate in performing a computing function.

Recently, there have been programs which distribute the actual computing tasks necessary for performing a single computing function. For example, in such a data base program, where the data base is stored in the mass storage of the server, if a user desires to make a query of the data base, the portion of the data base management program on that user's personal computer will generate a query request, which is forwarded to the server. The portion of the data base management program on the server performs the query processing, e.g. parsing the query request, locating where the data specified in the query request resides on its mass

storage device, accessing that data, and sending the results back to the requesting personal computer over the network. The portion of the data base management program on the personal computer then processes the data received from the server, e.g. formatting it, and displaying it on the screen or printing it on a printer. While the server is processing the query request, the personal computer is free to perform other processing, and while the personal computer is generating the query request, and processing the resulting data received from the server, the server is free to process query requests from other personal computers.

Other types of programs are also amenable to this type of distributed computing, termed client-server computing. The sharing of the processing tasks between the personal computer and the server improves the overall efficiency of computing across the network. Such client-server computer systems, and remote execution networks, may be termed distributed computing systems because several computers (the server and/or the respective peripheral computers) cooperate to perform the computing function, e.g. data base management.

Recently, broadcast multimedia programs, more specifically, interactive television (TV) programs, have been proposed. Interactive TV programs will allow a viewer of a television program to interact with that program. In an interactive TV system, the central broadcast location (TV network, local TV studio, cable system, etc.) will have a central computer, corresponding to the server computer, which will produce signals related to the interactive TV program to be broadcast simultaneously with the TV (video and audio) signals. These signals carry data representing the interactive TV program and may include commands, executable program code and/or data for controlling the viewer interaction. Each viewer location will have a computer, corresponding to the client computer, which will receive the commands, executable code and/or data from the central computer, execute the executable code, process the received data, accept input from the user and provide data to the user by means of the TV screen. The input from the user may be sent back to the computer at the broadcast location, allowing the user to interact with the interactive TV program.

U.S. Pat. No. 4,965,825, SIGNAL PROCESSING APPARATUS AND METHODS, issued Oct. 23, 1990 to Harvey et al., describes an interactive TV system in which a central broadcast location includes signals carrying commands, executable code and data in, for example, the vertical blanking interval of the television signal for receipt by the computer systems at the viewer locations. A computer at the viewer location extracts the commands, executable code and data and executes the code to process the data and interact with the user. Such a system is comparable to the remote execution function of distributed computer systems, described above, in that the viewer computer is enlisted into the interactive TV program, and is controlled by the central location.

In all of the above systems, a central computer controls or responds to requests from peripheral computers attached to it through a network. I.e. the peripheral computer (personal computer) requests remote execution of a program, requests a file or message from, or sends a query request to, another computer. Only in response to a request does the other computer provide a response, e.g. remote execution, the requested file, message or retrieved data. In addition, in general, the peripheral computer is required to have all the resources necessary to completely, or almost completely, execute the desired program, with the server acting only as another storage mechanism or at most sharing a portion of the computing tasks.

3

The inventors propose a distributed computing system in which a server computer continuously produces a data stream. This data stream acts a mass storage device for the client computers receiving it. This data stream repetitively includes data representing a distributed computing application in which the client computer may participate, including executable code and data. A transport mechanism, including a high speed, one-way, communication path, carries the data stream from the server to the client. The client receives the data stream, extracts the distributed computing representative data and executes the distributed computing application. 5 10

In accordance with principles of the present invention, a distributed computer system comprises a source of a continuous data stream repetitively including data representing a distributed computing application and a client computer, 15 receiving the data stream, for extracting the distributed computing application representative data from the data stream, and executing the extracted distributed computing application.

In a distributed computing system according to the 20 invention, the client computer system need not include all the resources, in particular, main memory and mass storage, necessary to perform the entire program. Instead, no mass storage is required because the data stream provides the function of the mass storage device, and the main memory 25 requirement is modest because only the currently executing portion of the program need be stored in memory. When the currently executing portion has completed, its memory space is freed up, and the next executing portion is extracted from the data stream, stored in the freed memory space, and 30 that portion begins execution.

In addition, a distributed computing system according to the present invention allows the user of the client computer to have the option participating in the distributed computing task. If it is desired to participate, the client computer 35 extracts the data representing the distributed computing application and executes the distributed computing application, as described above. If it is desired not to participate, the data stream is merely ignored, and the processing desired by the user, or none at all, is performed. 40 Such a distributed computing system also allows each participating client computer to join the distributed computing function at any time and to proceed at its own pace in performing its own computing function.

A distributed computing system according to the present 45 invention is particularly amenable to interactive TV applications because it allows a viewer to tune into an interactive TV channel at any time, join in the interactivity whenever desired (or not at all), and allows all the viewers to proceed at their different paces. This is especially advantageous in an 50 environment when an interactive commercial, with its own executable code and data, may be presented within an interactive program, or when the viewer wishes to change channels.

In the drawing:

55

FIG. 1 is a block diagram of a distributed computing system according to the present invention;

FIG. 2 is a block diagram of a server computer as illustrated in FIG. 1;

FIG. 3 is a timing diagram illustrating the data streams 60 produced by a server computer in a distributed computing system as illustrated in FIG. 1;

FIG. 4 is a block diagram of a client computer as illustrated in FIG. 1.

FIG. 1 is a block diagram of a distributed computing 65 system according to the present invention. In FIG. 1, a server computer 10, which may include a large computer system,

is coupled to a plurality of client computers 20 through a transport mechanism 30. The server computer 10 may be coupled to more than the three client computers 20 illustrated in FIG. 1, and the client computers 20 may be geographically widely dispersed. Client computer 22 is bidirectionally coupled to a local computer 40, to an auxiliary data processing system 50 and to a central processing facility 60. The central processing facility 60 is bidirectionally coupled to the server computer 10. The central processing facility 60 may also be connected to facilities other than the server computer 10 illustrated in FIG. 1. The local computer 40 is further bidirectionally coupled to a mass storage device 70. The client computer 22 interacts with a user 80 by providing information to the user via a display screen or other output device (not shown) and by accepting information from the user via a keyboard or other input device (also not shown).

Client computers 24 and 26 also interact with their users, (not shown in order to simplify the drawing). In addition, client computers 24 and 26 are bidirectionally coupled to the central processing facility 60. Such links are optional, however. The only requirements for any client computer 20 is a way to interact with a user, and a connection to the transport mechanism 30. Links to local computers, auxiliary data processing systems, and the central processing facility 60 are all optional, and need not be present in every one of the client computers 20.

The transport mechanism 30 includes a unidirectional high speed digital data link, such as a direct fiber optic or digital satellite link from the server 10 to the client computers 20. The data may be transported over the transport system 30 by a packet data system. In such a system, a stream of data packets, each including identification information indicating, among other things, the type of data contained in that packet and the actual data, is transmitted through the data link. Such a packet data system allows several independent streams of data, each identified by identification information in their packets, to be time multiplexed within a single stream of packets.

In addition, it is possible to multiplex a plurality of such packet data streams over respective channels on the same physical medium (fiber optic or satellite radio link) making up the transport mechanism 30. For example, different data streams may be modulated on carrier signals having different frequencies. These modulated carriers may be transmitted via respective transponders on a satellite link, for example. Further, if a particular transponder has sufficient capacity, it is possible to time multiplex several data streams on a single modulated carrier.

The client computers 20 each contain a data receiver for selecting one of the streams of packets being transported over the transport mechanism 30, receiving the selected stream of packets and extracting the data contained in them. Continuing the above example, the data receiver may include a tunable demodulator for receiving one of the respective modulated carriers from the satellite link. In addition, the data receiver may include circuitry for time demultiplexing the respective data streams being carried by that modulated carrier.

In operation, the server 10 produces a continuous data stream in the form of a stream of packets for the client computers 20. The server 10 repetitively inserts a packet, or successive packets, containing data representing the distributed computing application, including at least one executable code module, into the data stream. This code module contains executable code for the client computers 20. The data receiver in, for example, client computer 22, continu-

ously monitors the packets in the data stream on transport mechanism 30. When a packet including identification information indicating that it contains the code module (or a portion of the code module) required by the client computer 22 is present in the data stream, the client computer 22 detects its presence, extracts the code module (or the portion of the code module) from that packet and stores it in the main memory. When the code module is completely received, the client computer 22 begins to execute it.

There may be more than one code module placed in the continuous data stream, each containing a different portion of the distributed computing application. For example, it is possible to divide the distributed computing application into small portions in such a manner that only one portion at a time need be executed at a time. The portion of the distributed computing application currently needed to execute is loaded into the memory of the client computer 22. When that portion has completed its execution, then a code module containing the executable code for the next portion of the distributed computing application is extracted from the data stream, stored in memory and executed. Each portion is extracted from the data stream as needed. If there is sufficient memory in the client computer 22, it is possible to load several code modules into the memory and switch between them, without extracting them from the data flow, but this is not necessary. By structuring a distributed computing application in this manner, the required memory size of the client computer 22 may be minimized.

The server 10 may also repetitively include a packet or packets containing one or more data modules in the data stream. The data modules contain data to be processed by the executable code in the code module. Prior to, or during the execution of the code from a previously extracted code module, the client computer 22 may require access to the data in the data module or modules. If so, the client computer 22 monitors the data stream for the required data module or modules. When packets containing the data module or modules (or portions of the data module or modules) are present in the data stream, they are extracted, and the contents stored in the main memory of the client computer 22. When all the required data modules have been completely received, the client computer 22 begins or continues execution of the code from the code module to process the data from the received data module or modules. As is the case for code modules, it is possible for more than one data module to be stored in memory, if there is sufficient memory in client computer 22.

The server 10 may further repetitively include in the data stream a packet or packets containing a directory of the code and data modules currently being included in the data stream. The directory includes a list of all the code and data modules which are present in the data stream, along with information about those modules. If a directory is present in the data stream, then, prior to extraction of any code or data modules from the data stream, the client computer 22 monitors the data stream for the directory. When packets containing the directory (or portions of the directory) are present in the data stream, they are extracted, and their data stored in the main memory of the client computer 22. When the directory has been completely received, the client computer 22 evaluates the entries in the directory, then requests the first code and/or data module from the data stream and execution proceeds as described above.

Any of the client computers 20 may join the distributed computing function represented by the packet stream at any time, and each of the client computers 20 may operate at its own speed, generally in response to the user 80. In order to

allow for this, the server 10 repetitively places the directory and all the code and data modules which the client computers 20 may require to perform their portion of the distributed computing function into the data stream on the transport mechanism 30. Whenever one of the client computers 20 joins the distributed computing function, it monitors the newly selected packet stream on the transport mechanism 30 for the directory module, extracts it, and processes it as described above. During execution, whenever one of the client computers 20 requires a new code and/or data module, it monitors the data stream on the transport mechanism 30 for the newly required code and/or data module, extracts it and either executes it, if it is a code module, or processes it if it is a data module, as described above.

The packet data stream may also include packets of auxiliary data. This data is not required by the client computer 22 for execution of the code, although it may be related to the execution because the user 80 may interact with the executing program on the client computer 22 based on received auxiliary data. The data stream receiver in the client computer 22 recognizes the auxiliary data packets in the data stream on the transport mechanism 30 and passes them directly to the auxiliary data processor 50. The auxiliary data processor 50 processes its packets independently of the client computer 22. If the auxiliary data must be presented to the user 80, the auxiliary data processor 50 may provide its own display device (not shown) which may be shared with the client computer 22, or the display device (not shown) associated with the client computer 22 may be shared with the auxiliary data processor 50, to provide a single information display to the user 80. The auxiliary data processor 50 may have links to other illustrated elements in (not shown), but that is dependent upon the type of data.

In an interactive TV system, for example, the auxiliary data includes the video and audio portions of the underlying television signal. For example, the auxiliary data would include video packets containing MPEG, or MPEG-like, encoded data representing the television image and audio packets containing digitally encoded audio. Further, there may possibly be several different audio packet streams carrying respective audio channels for stereo, second audio program (SAP) or multilanguage capability. In an auxiliary data processor 50 in such a system, the video packets would be supplied to a known MPEG (or similar) decoder (not shown) which would generate standard video signals, which would be supplied to a television receiver or video monitor (not shown). The audio packets would be supplied to a known audio decoder (not shown) which would generate standard audio signals for the television receiver or speakers (not shown).

In such an interactive TV system, the client computer 22 may, in response to execution of the executable code module, generate graphic displays to supply information to the user 80. These graphic displays may be combined with the standard video signal from the MPEG decoder in a known manner, and the combined image displayed on the television receiver or video monitor. The client computer 22 may also generate sounds to provide other information to the viewer. The generated sounds may be combined, in known manner, with the standard audio signals from the audio decoder, and the combined sound played through the television receiver or speakers.

Furthermore, time code data may be included in either or both of the television auxiliary packet data stream and the packet data stream representing the interactive TV application. This permits synchronization of any graphic images or sounds generated by the client computer 22 with the tele-

vision signal from the auxiliary data. In this case, the client computer 22 would have access to the time code data, and would control the generation of the graphic image and/or sound to occur at the desired time, as supplied by the time code data.

5

In such an interactive TV system, both the client computer 22 and the auxiliary data processor 50 may be contained in a single enclosure, such as a television receiver, or television set-top decoder box. A television receiver, or decoder box would include connectors for attaching to a local computer or other equipment.

10

The user 80 provides input to the program running on the client computer 22 during its execution. This data may be required by the server 10 in order to effect the distributed computing function. In an interactive TV system, for example, user 80 may provide input to the client computer 15 through a handheld remote control unit.

The user data is transferred to the server computer 10 via the central processing facility 60. In one embodiment, data is sent from the client computers 20 to the server computer 10 via modems through the telephone system acting as the 20 central processing facility 60. The server computer 10 receives and processes the data received from the client computers 20 during execution of its portion of the distributed computing function.

Server computer 10 may generate new, or modify 25 existing, code and/or data modules in the data stream on the transport mechanism 30, in a manner described below, based on that received data. Alternatively, the server computer 10 may immediately return information to the client computers 20 in the other direction through the central processing 30 facility 60. The information in newly generated code and/or data modules is processed by all client computers 20 participating in the distributed computing function, while information passed from the server computer 10 to the client computers 20 through the central processing facility 60 is 35 specifically related to the client computer (22, 24, 26) to which that information was sent.

In another embodiment, the central processing facility 60 may include its own computer system, separately connected by modem to both the client computers 20 and the server 40 computer 10 through the telephone system. In either of the above embodiments, the central computing facility 60 provides access to other computers or processing facilities (not shown) via the telephone system. Thus, if information from other computer systems is needed to perform the distributed 45 computing function, those computer systems may be accessed via modem through the telephone system by either the client computers 20 or the server computer 10.

An input/output (I/O) port on the client computer 22 is coupled to a corresponding port on the local computer 40. 50 Local computer 40 is collocated with the client computer 22. Local computer 40 may be a personal computer used by the user 80 of the client computer 22, or may be a larger computer, or computer network located at the same site as the client computer 22. This allows the client computer 22 55 to access data on the attached mass storage 70 of the personal computer or a computer on the network located at the client computer 22 site. In addition, the client computer 22 may use the mass storage 70 of the local computer 40 for storage of data to be retrieved later. It is likely that the local 60 computer 40 will include both an output device (not shown) such as a computer monitor and an input device (also not shown) such as a computer keyboard. Both of these may be shared with the client computer 22 and/or the auxiliary data processor 50, as described above.

65

For example, the distributed computing system illustrated in may be part of a widespread corporate computing

system, and the server 10 may be located at a central location of that corporation. The client computer 22 may be located a remote location, and the local computer 40 may be coupled to the personal computer network at that location. Workers 5 at that location may store shared data (e.g. financial information) on the server connected to that network. The distributed computing function may include gathering local financial data from the client computers at the remote locations, processing that financial data and returning over- 10 all financial results to the client computers. In such an application, the executable code executing on the client computer 22 accesses the data from the local computer 40 (either from its attached mass storage 70 or through the network) through the I/O port, and sends it to the server 15 computer 10 through the central processing facility 60. The server computer 10 continues its processing based on the information received from client computer 22 (and other client computers 20), and returns the results of that processing to the client computers 20 either through the central processing facility 60 or via the data stream on the transport mechanism 30.

In another example, the distributed computing system may be an interactive television system, broadcasting a home shopping show as the distributed computing application. 25 In such a case, the auxiliary data carries the video and audio portion of the television signal, which may show and describe the items being offered for sale, and may include both live actors and overlaid graphics generated at the central studio. Code and data modules making up the 30 interactive television application may include data about the products which will be offered for sale during this show, or portion of the show, and executable code to interact with the user in the manner described below.

When a viewer wishes to order an item, a button is 35 pressed on the TV remote control. This button signals the client computer 22 to display a series of instructions and menus necessary to solicit the information necessary to place the order, e.g. the item number, name and address of the viewer, the method of payment, the credit card number 40 (if needed), etc. These instructions are generated in the client computer as graphics which are overlaid on the television video image. It is also possible for a computer generated voice to be generated and combined with the television audio either by voice-over, or by replacing the television 45 audio. The viewer responds to the instruction by providing the requested information via the TV remote control. When the information requested by the on-screen display and/or voice instructions has been entered by the viewer, it is sent to a central computer via the modem in the client computer. 50 An order confirmation may be sent in the other direction from the central computer.

It is also possible that permanent information about the viewer (i.e. the name, address, method of payment and credit card number) may be preentered once by the viewer, so it is 55 not necessary to solicit that information each time an order is placed. The information is stored in permanent memory in the client computer. In such a case, when an order is placed, that information is retrieved from the permanent memory, appended to the item number and transmitted to the central 60 computer. It is further possible that, by means of time codes, or other commands, inserted into the data stream, the client computer will know which item is currently being offered for sale. In such a case, the viewer will be able to order it by simply pressing one button on the TV remote control. In 65 response, the client computer can combine the previously received information related to the item currently being offered for sale with the previously stored personal infor-

mation related to the viewer, and transmit the order to the central computer and receive the confirmation in return.

Because the code and data modules related to the home shopping program are repetitively inserted into the data stream, a viewer may tune into the program at any time and be able to participate interactively. Similarly, it is not necessary for the viewer to participate interactively, but may simply ignore the interactive portion of the show. 5

It is also possible for the client computer 22 to receive control information from the local computer 40. For 10 example, the user 80, using the local computer 40, could control the client computer 22 via the I/O port to select a desired one of the data streams on transport mechanism 30, and process the program currently being broadcast on that data stream, with interaction with the user 80 through the 15 input and output devices (not shown) connected to the local computer 40.

It is further possible for the user 80 to cause the client computer 22 to access the server computer 10 through the central processing facility 60, instead of via the data stream 20 on transport mechanism 30, and receive code and data modules via this bidirectional link.

FIG. 2 is a block diagram illustrating a server computer 10 as illustrated in FIG. 1. In FIG. 2, a source of distributed computing application code and data 101 includes an application compiler, and software management module (not shown) and has an output terminal coupled to an input terminal of a flow builder 102. An output terminal of flow builder 102 is coupled to an input terminal of a transport packetizer 104. An output terminal of transport packetizer 30 104 is coupled to a first input terminal of a packet multiplexer 106. An output terminal of packet multiplexer 106 is coupled to an input terminal of a transport multiplexer 110. An output terminal of transport multiplexer 110 is coupled to the physical medium making up the transport mechanism 35 30 (of FIG. 1). A second input terminal of packet multiplexer 106 is coupled to a source of auxiliary data packets 107. A clock 109 has respective output terminals coupled to corresponding input terminals of the transport packetizer 104 and auxiliary data source 107. A data transceiver 103 has a first 40 bidirectional terminal coupled to the central processing facility 60 (of FIG. 1) and a second bidirectional data terminal coupled to the application code and data source 101. Application code and data source 101, flow builder 102, transport packetizer 104, auxiliary data source 107, clock 109 and 45 packet multiplexer 106, in combination, form a channel source 108 for the transport mechanism, illustrated by a dashed box in. Other channel sources, including similar components as those illustrated in channel source 108 but not shown in FIG. 1, are represented by another dashed box 50 108a. The other channel sources (108a) have output terminals coupled to other input terminals of the transport multiplexer 110, and may have input terminals coupled to central processing facilities through data transceivers.

In operation, data representing the distributed computing 55 application program, and data related to the transmission of the program over the transport mechanism 30 are supplied to the flow builder 102 from the application source 101. This data may be supplied either in the form of files containing data representing the code and data modules, or by scripts 60 providing information on how to construct the code and data modules, or other such information. The code and data modules may be constant or may change dynamically, based on inputs received from the client computers 20 via the central computing facility 60 and/or other sources. The 65 executable code and data module files may be generated by a compiler, interpreter or assembler in a known manner in

response to source language programming by an application programmer. The data file related to the transmission of the modules includes such information as: the desired repetition rates for the directory and the code and data modules to be included in the data stream; the size of main memory in the client computers 20 required to store each module, and to completely execute the application program; a priority level for the module, if it is a code module, etc.

Flow builder 102 processes the data from the application source 101. In response, flow builder 102 constructs a directory module, giving an overall picture of the application program. The information in the directory module includes e.g. the identification of all the code and data modules being repetitively transmitted in the data stream, their size and possibly other information related to those modules. Then the application program representative data is processed to generate the code and data modules. The directory, code and data modules thus constructed are formatted by adding module headers and error detection and/or correction codes to each module. A transmission schedule is also generated. After this processing is complete, the data representing the directory module and the code and data modules are repetitively presented to the transport packetizer 104 according to the schedule previously generated.

The transport packetizer 104 generates a stream of packets representing the directory module and the code and data modules as they are emitted from the flow builder 102. Each packet has a constant predetermined length, and is generated by dividing the data stream from the flow builder into groups of bits, and adding a packet header with information identifying the information contained in the packet, and an error detection and/or correction code, etc., to each group, such that each packet is the same predetermined length. (If there is insufficient data from the flow builder 102 to completely fill a packet, the packet is padded with null data.) These packets are time multiplexed with the auxiliary data packets, in a known manner, to form a single packet stream in the packet multiplexer 106. It is also possible for the generated packets to have varying lengths. In this case, the packet header for each packet will contain the length of that packet. In addition, time code data packets are placed in the data stream packets and/or the auxiliary data packets based on data received from the clock 109.

Packet streams from all of the channel sources (108, 108a) are multiplexed into a single transport channel, which is transmitted through transport mechanism 30. As described above, the packet streams may be frequency multiplexed by having each packet stream modulate a carrier signal at a different frequency, with all of the carriers being carried by a satellite link to the client computers 20, in a known manner. In addition, if there is sufficient capacity within one carrier channel, several packet streams may be statistically time multiplexed, and used to modulate a single carrier, also in a known manner. For example, it has been proposed to time multiple up to eight interactive television data streams through a single satellite link.

Data from the client computers 20 via the central processing facility 60 (of FIG. 1) is received at the server computer 10 by the data transceiver 103, which may include its own processor (not shown). If an immediate response is generated, the transceiver 103 processor returns that response via the central processing facility 60 to a specific client computer (22-26), a specific set of the client computers 20 or to all client computers 20 in their turn. If, however, a common response to all client computers 20 is desired, the application programmer may amend the code and data files in the application code and data source 101 using the

application compiler. These amended files are then processed by the flow builder again to generate another flow. It is further possible that the code and data files in the application source 101 may be amended automatically and dynamically (i.e. in real time) in response to data received from the transceiver 103, and the flow updated as the data is being received from the client computers 20.

FIG. 3 is a timing diagram illustrating the data streams produced by the server computer 10 in a distributed computing system as illustrated in FIG. 1. In FIG. 3 server 10 computer 10 is shown as simultaneously producing a plurality of packet streams 32-38. Each packet stream (32-38) is shown as a horizontal band divided into packets having the same duration and number of bits. As described above, it is possible that the size of the packets within any packet stream vary with the amount of data to be carried. In FIG. 3 it can be seen that the starting times of the packets are not synchronized. It is possible to synchronize the packets, but it is not necessary. In FIG. 3, packets carrying data representing directories are designated DIR, packets carrying data representing code modules are designated CM, packets carrying data representing data modules are designated DM, and packets carrying auxiliary data are designated AUX.

In the top series of packets 32, the leftmost packet contains data representing a code module, CM. This is followed by three packets containing auxiliary data, AUX, followed by another packet containing data representing the code module, CM. From the series of packets 32 it can be seen that the code module is repetitively produced. There may be more or fewer packets in between successive repetitions of the code module packets CM. The rate of repetition may be specified by the programmer when the application is programmed, and may be varied during the execution of the application.

In the next series of packets 34, the leftmost packet 35 contains auxiliary data, AUX. The next two packets contain respective portions of a code module (CM1,CM2). The last packet contains auxiliary data, AUX. From the series of packets 34 it can be seen that if a code module is too large to be contained in a single packet, it may be carried by more than one, with each packet containing a portion of the code module. Although two packets are illustrated in the series of packets 34 as containing the code module (CM1,CM2), any number of packets may be used to carry the code module, depending upon its size. The two packets carrying the code 45 module, (CM1,CM2) are repetitively transmitted (not shown) in the series of packets 34, as described above.

In the series of packets 36, the leftmost packet contains data representing a code module (CM). The next packet (DM1) is a first packet containing data representing a data module. The next packet contains auxiliary data, AUX. The next packet (DM2) is a second packet containing the remaining data representing the data module. From the series of packets 36 it may be seen that a data module (DM1,DM2), associated with the code module (CM), may also be included 55 in the packet stream. Both the code module (CM) and the data module (DM1,DM2) are repetitively transmitted (not shown) in the series of packets 36. The rate of repetition of the code module (CM) may be different from that of the data module (DM1,DM2), and both rates may be specified by the 60 application programmer and varied during the execution of the application.

It may further be seen that if the data module is too large to be contained in a single packet, it may be carried by more than one packet, with each packet containing a portion of the 65 data module. Although two packets are illustrated in the series of packets 36 as containing the data module (DM1,

DM2), any number of packets may be used to carry the data module, depending upon its size. It may be further seen that the packets carrying the data module need not be transmitted sequentially, but may have intervening packets in the packet stream. The same is true for multiple packets carrying a code module or directory module (not shown).

In the bottommost series of packets 38, the leftmost packet contains data representing the directory (DIR). The next packet contains data representing a code module (CM), followed by a packet containing auxiliary data (AUX) and a 10 packet containing data representing a data module (DM). In the series of packet 38 all of a directory module (DIR), a code module (CM) and a data module (DM) in a single packet stream may be seen. The respective repetition rates of these three modules may be different, as specified by the 15 programmer of the application, and may be varied during the execution of the application.

FIG. 4 is a block diagram of a client computer 22 as illustrated in FIG. 1. In FIG. 4, transport mechanism 30 (of FIG. 1) is coupled to an input terminal of a stream selector 202. An output terminal of stream selector 202 is coupled to respective input terminals of an auxiliary data extractor 204 and a packet data extractor 206. An output terminal of auxiliary data extractor 204 is coupled to the auxiliary data processor 50 (of FIG. 1). A bidirectional terminal of packet data extractor 206 is coupled to a corresponding terminal of a stream I/O adapter 208. A control output terminal of stream I/O adapter 208 is coupled to a corresponding control input terminal of stream selector 202. The combination of stream selector 202, auxiliary data extractor 204 and packet data extractor 206 form a data stream receiver 207 for client computer 22, illustrated by a dashed line in FIG. 4.

Stream I/O adapter 208 forms a part of a processing unit 224 in client computer 22, illustrated by a dashed line in FIG. 4. In addition to the stream I/O adapter 208, processing unit 224 includes a processor 210, read/write memory (RAM) 212 and read-only memory (ROM) 214 coupled together in a known manner via a system bus 216. Further input and output facilities are provided by an I/O port 218, coupled to the local processor 40 (of FIG. 1); user I/O adapter 220, for communicating with user 80; and modem 222, coupled to the central processing facility 60 (of FIG. 1); all also coupled to the system bus 216 in a known manner. Other adapters (not shown) may be coupled to system bus 216 to provide other capabilities to the processing unit 224.

45 As described above, auxiliary data extractor 204, I/O port 218 and modem 222 are not required in a client computer 20 according to the present invention. They are illustrated in FIG. 1 and FIG. 4 to show optional additional functionality.

In operation, processor 210 of processing unit 224 retrieves program instructions permanently stored in ROM 214, or temporarily stored in RAM 212, and executes the retrieved instructions to read data from ROM 212 and/or RAM 214, write data to RAM 212 and/or receive data from or supply data to outside sources via the I/O port 218, user 50 I/O adapter 220 and/or modem 222, in a known manner. Under program control, processor 210 may also request a code and/or data module from the data stream supplied to the client computer 22 via the transport mechanism 30 (of FIG. 55 1). To retrieve this data, processor 210 first instructs stream I/O adapter 208 to send a selection control signal to the stream selector 202, possibly in response to user input from user I/O adapter 220. Then processor 210 issues a request for 60 a specific code or data module to the stream I/O adapter 208. Stream I/O adapter 208 relays this request to the packet data 65 extractor 204.

Transport mechanism 30 (of FIG. 1) supplies all of the plurality of packet streams (32-38 of) it carries to the

stream selector 202, which passes only the selected packet stream. Auxiliary data extractor 204 monitors the selected packet stream, extracts the auxiliary data packets from it and supplies them directly to the auxiliary data processor 50 (of FIG. 1). Packet data extractor 206 similarly monitors the selected packet stream, extracts the directory, code and/or data module packets requested by the stream I/O adapter 208 and supplies them to the stream I/O adapter 208. The data in the packets returned to the stream I/O adapter 208 is supplied to the RAM 212. When the entire module has been retrieved from the packet stream (which may require several packets, as described above), processor 210 is notified of its receipt by the stream I/O adapter 208. Processor 210 may then continue execution of its program.

The data stream in a distributed computing system illustrated in FIG. 1 is similar to a mass storage system in prior art systems. An application program executing on the processor 210 makes a request for a module listed in the directory in the same manner that such a program would make a request for a file containing a code or data module previously stored on a mass storage device in a prior art system. The data stream receiver 207 is similar to a mass storage device, and stream I/O 208 acts in a similar manner to a mass storage adapter on a prior art system by locating the desired data, transferring it to a predetermined location (I/O buffer) in the system memory and informing the processor of the completion of the retrieval. However, the stream I/O adapter 208 can only retrieve code and data from the data stream; data cannot be written to the data stream.

As described above, the distributed computing application may be divided into more than one code module, each containing executable code for a different portion of the distributed computing application. When a particular code module is desired, processor 210 requests that code module from stream I/O adapter 208. When execution of that module has completed, processor 210 requests the next module from stream I/O 208. Because code and data modules are repetitively carried on the data stream, a module may be deleted from RAM 212 when it is not currently needed without the necessity of temporarily being stored, because if it is required later, it may again be retrieved from the data stream when needed. However, if RAM 212 has sufficient capacity, processor 210 may request stream I/O adapter to simultaneously load several code modules into RAM 212. If this can be done, then processor 210 may switch between code modules without waiting for stream I/O adapter 208 to extract them from the data stream.

As described above, other I/O adapters may be coupled to the system bus 216 in a known manner. For example, in an interactive TV system, a graphics adapter may be coupled to system bus 216. The graphics adapter generates signals representing graphical images, in a known manner, in response to instructions from the processor 210. Further, these signals may be combined with the standard video signal produced by the video decoder (described above) in the auxiliary data processor 50 of an interactive TV system. When the graphical image representative signal and the standard video signal are combined, the resulting signal represents an image in which the image generated by the graphics adapter is superimposed on the image represented by the broadcast video signal. It is also possible to selectively combine these two image representative signals under the control of the processor 210.

An interactive TV system, may also include a sound adapter coupled to the system bus 216. The sound adapter generates a signal representing a computer generated sound (such as music, synthesized voice or other sound), in a

- known manner, in response to instructions from the processor 210. Further, these signals may be combined with the standard audio signal produced by the audio decoder (described above) in the auxiliary data processor 50 of an interactive TV system. When the sound representative signal and the standard audio signal are combined, the resulting signal represents the combination of the sound generated by the sound adapter and the broadcast audio signal. It is also possible to selectively combine these two sound representative signals under the control of the processor 210.
- 10 The timing of the generation and display of the graphical image and sound representative signals, may be controlled by receipt of the time code data from the data stream. This enables an executable code module to synchronize the display of processor generated image and presentation of processor generated sound to the broadcast video and audio. It is further possible to synchronize the operation of the interactive TV application by the insertion of specialized packets into the data stream which cause an interrupt of the code currently executing in processor 210. Stream I/O 208 monitors the data stream for such specialized packets, and generates an interrupt, in a known manner, for the processor 210. Processor 210 responds to that interrupt, also in known manner, by executing an interrupt service routine (ISR). This ISR may be used for synchronization of the interactive TV application, or other purposes.
- 15 A client computer 22 in a distributed computing system as illustrated in FIG. 1 does not need a mass storage device, nor a large amount of RAM 212. Such a system decreases the cost of a client computer, and increases the functionality of the lower cost client computers. In addition, such a client computer has the option of participating in a distributed computing function, may join in the distributed computing function at any time (or may drop out and return later), and may participate at its own pace.
- 20 What is claimed is:
- 25 1. A distributed computer system comprising:
- 30 a source of a data stream providing a series of time division multiplexed packets, ones of which contain auxiliary data that represent a video program, and others of which represent a distributed computing application associated with said video program, and wherein said distributed computing application is repetitively transmitted independent of receiving client computer apparatus during times that said video program is transmitted;
- 35 a client computer, which includes a packet selector connected to said source for selecting and directing packets containing said auxiliary data representing said video program to a video signal processor and selecting and directing packets containing said associated distributed computing application to a further processor; and
- 40 said further processor including means to assemble said distributed computing application and execute said distributed computing application to form an interactive video program in which execution of said distributed computing application alters said video program.
- 45 2. The distributed computer system of claim 1 wherein said further processor includes a graphics adapter for creating graphical images and interactively combining said graphical images with said video program.
- 50 3. The distributed computer system of claim 1 wherein said video program is a television program and said further processor includes a graphics adapter for creating graphical images and interactively combining said graphical images with said television program.
- 55 4. The distributed computer system of claim 1 wherein said further processor includes a sound adapter for creating

15

synthesized sound and interactively combining said synthesized sound with said video program.

5. The distributed computer system of claim 1 wherein said further processor includes memory for storing program controls and responsive thereto requests of said packet selector a code and/or data module from the data stream. 5

6. A distributed computer system comprising: ✓
a source of a time division multiplexed packet signal including a plurality of distributed computing applications, each distributed computing application 10 being repetitively transmitted independent of receiving client computer apparatus, and each of said distributed computing applications being in a form of a series of packets;

a first one of packets of a respective series containing data representing an executable code module and including identification information indicating that the first one of packets of said series contains data representing said executable code module; 15

a second one of packets of the series contains data representing a data module and includes identification information indicating that said second one of packets contains data representing the data module; and 20

a third one of packets of the series contains auxiliary data 25 and includes identification information indicating that the third one of packets contains auxiliary data;

a client computer including a data receiver for selecting packets of one of the plurality of distributed computing applications, and extracting the corresponding distributed computing application representative data included in the selected packets and applying it to computer program controlled apparatus for executing the extracted distributed computing application, said data receiver extracting auxiliary data from auxiliary 35 packets in the data stream and supplying it to an auxiliary data processor.

7. A distributed computer system comprising: ✓

a data stream source producing a data stream including a series of packets representing a plurality of time division multiplexed signals, one of said signals including data representing a distributed computing application, which distributed computing application is repetitively transmitted independent of receiving client computer apparatus, and at least one of the packets of the signal 40 representing the distributed computing application includes a directory module containing information inter-relating packets associated with said distributed computing application; 45

a client computer, receiving the data stream, extracting the distributed computing application representative data from the data stream, and executing the extracted distributed computing application; and wherein 50

the client computer extracts said directory module from the data stream and using data contained in the directory module extracts packets associated with said distributed computing application and builds said distributed computing application and executes said distributed computing application. 55

8. The computer system of claim 7, wherein:

a first one of the series of packets contains data representing an executable code module and includes iden- 60

tification information indicating that the first one of the series of packets contains data representing an executable code module;

- 5 a second one of the series of packets contains data representing a data module and includes identification information indicating that the second one of the series of packets contains data representing a data module;
- 10 a third one of the series of packets contains data representing said directory module inter-relating respective transmitted modules associated with a single distributed computing application, and includes identification information indicating that the third one of the series of packets contains data representing said directory module; and
- 15 a fourth one of the series of packets contains auxiliary data and includes identification information indicating that the fourth one of the series of packets contains auxiliary data.
- 20 9. In a distributed computer system, a client computer, comprising:
 - an input terminal for receiving a packet data stream including packets of video signal time multiplexed with packets of data representing a distributed computing application which distributed computing application is repetitively transmitted independently of said client computer and at least one of the packets representing the distributed computing application includes a directory containing information inter-relating ones of the packets containing said distributed computing application;
 - 25 a data stream receiver, coupled to said input terminal, for receiving the data stream, providing separate data streams of said video signal and said distributed computing application, extracting said directory packet and responsive to the directory, extracting packets containing said distributed computing application representative data; and
 - 30 a processing unit, coupled to the data stream receiver, for assembling said distributed computing application and executing the distributed computing application comprising:
 - 40 a system bus;
 - 45 read/write memory, coupled to the system bus;
 - 50 a data stream input/output adapter, coupled between the data stream receiver and the system bus, for receiving the extracted distributed computing application representative data from the data stream receiver, and storing it in the read/write memory, and having a control output terminal coupled to the selection control input terminal of the data stream selector, for producing the selection control signal; and
 - 55 a processor, coupled to the system bus, for controlling the data stream input/output device to generate a selection control signal selecting a specified one of the plurality of data streams, and for assembling and executing the distributed computing application stored in the read/write memory.

10. A method of ordering an item using a distributed computing system including at least one client (20) and at least one server (10), the method comprising:

showing and/or describing an item offered for sale to a user (80) via the client;

enabling the user to order the item by a single interaction with the client; and

in response to the single interaction with the client (20), placing an order for the offered item.

11. The method of claim 10, wherein the single interaction is by one of the group including:

a pressing of a single button; and

a pressing of a single button on a TV remote control.

12. The method of claim 10, wherein placing the order is achieved by using:

information related to the item being offered for sale; and

user related personal information.

13. The method of claim 12, wherein the personal information includes at least one of the group including a user's name, address, method of payment and credit card number.

14. The method of claim 12, wherein the personal information is stored in memory in the client.

15. The method of claim 10, wherein the distributed computing system is an interactive television system and wherein the showing and/or describing of the item is, at least in part, by television signal.

16. The method of claim 10, wherein the client (20) includes an auxiliary data processor (50) and a client computer (22,24,26).

17. The method of claim 12, wherein the client (20) is associated with at least a set top box, and wherein the personal information is stored at the set top box.

18. The method of claim 17, wherein the set top box is in communication with a local computer (40) and associated storage (70) and wherein the method further comprises:

the client (20) retrieving information from one or more of the local computer (40) and the mass storage (70).

19. The method of claim 18, wherein the method further comprises:

controlling the client (20) by means of the local computer (40).

20. The method of claim 18, wherein the local computer (40) is part of a local area network.

21. The method of claim 10, wherein the system further includes a central processing facility (60) in communication with the server (10) and wherein the method comprises:

sending information used in processing the order from the client (20) to the central processing facility (60).

22. The method of claim 10, further comprising:

sending an order confirmation to the user (80) to confirm the order.

23. The method of claim 21, further comprising:

communicating information between the client (20) and the server (10) via the central processing facility (60).

24. The method of claim 23, wherein a telephone system acts as the central processing facility (60).

25. The method of claim 10 including receiving at the client (20) a data stream including:

(a) information to show and/or describe the item offered for sale via the client; and

(b) an application, executable by the client, to enable the user to order the item by a single interaction with the client.

26. The method of claim 25 wherein the data stream further includes an item identifier to identify the item offered for sale.

27. The method of claim 26 wherein the item identifier includes any one a group of identifiers including a time code and a command.

28. A method of ordering an item, the method comprising: ✓

providing a client with information to show and/or describe an item offered for sale to a user; and

providing the client with an application to enable the user to order the item by a single interaction with a client, responsive to which an order is placed for the offered item.

29. The method of claim 28, wherein the single interaction comprises any one of the group including:

a pressing of a single button; and

a pressing of a single button on a TV remote control.

30. The method of claim 28, including receiving the order from the client, the order including:

information related to the item being offered for sale; and

user related personal information.

31. The method of claim 30, wherein the personal information comprises any one of the group including a user's name, address, method of payment and credit card number.

32. The method of claim 30, wherein application is to retrieve the personal information from a memory associated with the client.

33. The method of claim 28, including providing the information in the form of a television signal.

34. The method of claim 28 including communicating with a central processing facility (60) and wherein the client sends the order to the central processing facility (60) for receipt via a transceiver (103).

35. The method of claim 34 wherein a telephone system acts as the central processing facility (60).

36. The method of claim 28 including providing an order confirmation to the client to confirm the order.

37. The method of claim 28 including multiplexing the provision of the information and the application to the client to thereby generate a data stream for transmission to the client.

38. A computer system to order an item, the system comprising: ✓

a data processing system (50) to show and/or describe an item offered for sale to a user (80); and

a client (22, 24, 26, 50) to enable the user to order the item by a single interaction with the client and, in response to the single interaction, to place an order for the offered item.

39. The system of claim 38, wherein the single interaction comprises any one of the group including:

a pressing of a single button; and

a pressing of a single button on a TV remote control.

40. The system of claim 38, wherein the client is to place the order using:

information related to the item being offered for sale; and

user related personal information.

41. The system of claim 40, wherein the personal information comprises any one of the group including a user's name, address, method of payment and credit card number.

42. The system of claim 40, wherein the personal information is stored in memory of the client.

43. The system of claim 38, wherein the distributed computing system is an interactive television system and wherein the showing and/or describing of the item by the data processing system (50) is, at least in part, performed utilizing a television signal.

44. The system of claim 38, wherein the client (20) includes a client computer (22).

45. The system of claim 38, wherein the client computer (22) is associated with at least a set top box, and wherein the personal information is stored at the set top box.

46. The system of claim 45, wherein the set top box is in communication with a local computer (40) and associated storage (70) and wherein the client computer (22) is to retrieve information from one or more of the local computer (40) and the mass storage (70).

47. The system of claim 46, wherein the local computer (40) controls the client computer (22).

48. The system of claim 46, wherein the local computer (40) is part of a local area network.

49. The system of claim 38, including a central processing facility (60) in communication with a server (10) and wherein the client (20) sends information used in processing to the central processing facility (60).

50. The system of claim 49 wherein the server (10) is to send an order confirmation to the user (80) to confirm the order.

51. The system of claim 49, wherein the central processing facility (60) is to communicate information between the client and the server (10).

52. The system of claim 51 wherein a telephone system acts as the central processing facility (60).

53. The system of claim 38 including a data stream receiver (207) to receive a data stream including:

information to show and/or describe the item offered for sale via the client; and

an application, executable by the client, to enable the user to order the item by a single interaction with the client.

54. The system of claim 53 wherein the data stream receiver (207) includes an auxiliary data extractor (204) to extract the information from the data stream and a packet data extractor (206) to extract the application from the data stream.

55. The system of claim 54 wherein the auxiliary data extractor (204) provides the information to the data processing system (50) and the packet data extractor (200) provides the application to the client (224).

56. The system of claim 53 wherein the data stream further includes an item identifier to identify the item offered for sale.

57. The system of claim 56 wherein the item identifier includes any one a group of identifiers including a time code and a command.

58. A computer system to facilitate ordering an item, the system comprising:

a data source (107) to provide a client with information to show and/or describe an item offered for sale to a user; and

an application source (101) to provide a client with an application to enable the user to order the offered item by a single interaction with a client, responsive to which an order is placed for the offered item.

59. The system of claim 58, wherein the single interaction comprises any one of the group including:

a pressing of a single button; and

a pressing of a single button on a TV remote control.

60. The system of claim 58, including a data receiver (103) to receive the order from the client, the order including:

information related to the offered item; and

user related personal information.

61. The system of claim 60, wherein the personal information comprises any one of the group including a user's name, address, method of payment and credit card number.

62. The system of claim 60, wherein application is to retrieve the personal information from a memory associated with the client.

63. The system of claim 58, wherein the data source (107) is to provide the information in the form of a television signal.

64. The system of claim 58 including a data transceiver (103) to communicate with a central processing facility (60) and wherein the client sends the order to the central processing facility (60) for receipt via the data transceiver (103).

65. The system of claim 64 wherein a telephone system acts as the central processing facility (60).

66. The system of claim 58 wherein the data source (107) is to provide an order confirmation to the client to confirm the order.

67. The system of claim 58 including a multiplexer to multiplex the provision of the information and the application to the client to thereby generate a data stream for transmission to the client.

68. A method of ordering an item using an interactive television system including at least one client (22, 50) and at least one server (10), the method comprising:

using the server (10) to provide data, some of which represents video and some of which represents a computing application, to the client;

at the client, causing the video to be displayed, and executing the computing application to cause display of interactive information;

using one or more of the displayed video and the interactive information to show and/or describe an item offered for sale to a television viewer (80);

enabling the viewer (80) to select the item by interacting with the client (22,50); and

in response to the viewer interaction, placing an order for the displayed item.

69. The method of claim 68, wherein the user interaction causes display of instructions to solicit information necessary to place the order.

70. The method of claim 69, wherein the information is solicited using one or more of an on-screen display and voice instructions.

71. The method of claim 68, wherein the viewer interaction is by way of a single command.

72. The method of claim 71, wherein the single command is by one of the group of:

the pressing of a single button; and

the pressing of a single button on a TV remote control.

73. The method of claim 68, wherein placing the order is achieved by using: information related to the item being offered for sale and viewer related personal information.

74. The method of claim 73, wherein the personal information includes at least one of the group consisting of the viewer's name, address, method of payment and credit card number.

75. The method of claim 74, wherein the personal information is stored in memory at the client (22, 50).

76. The method of claim 74, wherein the system further includes a local computer (40) and associated storage (70) and wherein the method further comprises:

using the client (22, 50) to retrieve information from one or more of the local computer (40) and the mass storage (70).

77. The method of claim 76, wherein the method further comprises:
controlling the client (20, 50) by means of the local computer (40).

78. The method of claim 76, wherein the local computer (40) is part of a local area network.

79. The method of claim 68, wherein the system further includes a central processing facility (60) in communication with the server (10) and wherein the method comprises:

sending information used in processing the order from the client computer (22) to the central processing facility (60).

80. The method of claim 79, further comprising:

communicating information between the client (22, 50) and the server (10) via the central processing facility (60).

81. The method of claim 79, wherein a telephone system acts as the central processing facility (60).

82. The method of claim 68, further comprising:

sending an order confirmation to the user (80) to confirm the order.

83. The method of claim 68, wherein the server (10) provides data in a series of multiplexed packets, ones of which contain data representing the video, and others of which represent the computing application.

84. The method of claim 83, wherein the computing application is repetitively transmitted during times that the video is transmitted.

85. The method of claim 83, wherein the client (22,50) includes a client computer (22) and an auxiliary processor (50), the method comprising:

using the auxiliary data processor (50) to process data representing the video, and

using the client computer (22) to execute the computing application.

86. The method of claim 85, wherein the client computer and the auxiliary data processor are contained in a set top box.

87. A method of ordering an item using an interactive television system, the method comprising:

receiving data, some of which represents video and some of which represents a computing application;

causing the video to be displayed;

executing the computing application to cause display of interactive information;

using one or more of the displayed video and the interactive information to show and/or describe an item offered for sale to a television user (80);

enabling the user (80) to select the item by way of an interaction; and

in response to the interaction, placing an order for the displayed item.

88. The method of claim 87, wherein the viewer interaction causes display of instructions to solicit information necessary to place the order.

89. The method of claim 88, wherein the information is solicited using one or more of an on-screen display and voice instructions.

90. The method of claim 87, wherein the viewer interaction is by way of a single command.

91. The method of claim 90, wherein the single command is by one of the group of:

the pressing of a single button; and

the pressing of a single button on a TV remote control.

92. The method of claim 87, wherein placing the order is achieved by using:
information related to the item being offered for sale and user related personal information.

93. The method of claim 92, wherein the personal information includes at least one of the group consisting of the user's name, address, method of payment and credit card number.

94. The method of claim 93, wherein the personal information is stored in local memory.

95. The method of claim 87, further comprising:
communicating information via a central processing facility (60).

96. The method of claim 95, wherein a telephone system acts as the central processing facility (60).

97. The method of claim 87, further comprising receiving an order confirmation to the user (80) to confirm the order.

98. The method of claim 87, wherein the data comprises a series of multiplexed packets, ones of which contain data representing the video, and others of which represent the computing application.

99. The method of claim 87, wherein a client (22,50) includes a client computer (22) and an auxiliary processor (50), the method comprising:

using the auxiliary data processor (50) to process data representing the video, and

using the client computer (22) to execute the computing application.

100. The method of claim 99, wherein the client computer and the auxiliary data processor are contained in a set top box.

101. A method of ordering an item using an interactive television system, the method comprising:

providing data, some of which represents video to be displayed and some of which represents a computing application to be executed to display interactive information, to the client, the client to use one or more of the displayed video and the interactive information to show and/or describe an item offered for sale to a television user (80) and to enable the user (80) to select the item by interacting with the client (22, 50); and

in response to the interaction, receiving an order for the displayed item.

102. The method of claim 101, wherein the received order includes: information related to the item being offered for sale and user related personal information.

103. The method of claim 102, wherein the personal information includes at least one of the group consisting of the user's name, address, method of payment and credit card number.

104. The method of claim 101, including providing the data in a series of multiplexed packets, ones of which contain data representing the video, and others of which represent the computing application.

105. The method of claim 101, wherein the computing application is repetitively transmitted during times that the video is transmitted.

106. An interactive television system comprising:

a server (10) to provide data, some of which represents video and some of which represents a computing application, to the client;

a client to:

cause the video to be displayed;

execute the computing application to cause display of interactive information;

use one or more of the displayed video and the interactive information to show and/or describe an item offered for sale to a television user (80);

enable the user (80) to select the item by interacting with the client (22,50); and

in response to the interaction, place an order for the displayed item.

107. The system of claim 106, wherein the user interaction causes display of instructions to solicit information necessary to place the order.

108. The system of claim 107, wherein the information is solicited using one or more of an on-screen display and voice instructions.

109. The system of claim 106, wherein the interaction is by way of a single command.

110. The system of claim 109, wherein the single command is by one of the group of:

the pressing of a single button; and

the pressing of a single button on a TV remote control.

111. The system of claim 106, wherein placing the order is achieved by using: information related to the item being offered for sale and user related personal information.

112. The system of claim 111, wherein the personal information includes at least one of the group consisting of the user's name, address, method of payment and credit card number.

113. The system of claim 111, wherein the personal information is stored in memory at the client (22, 50).

114. The system of claim 111, wherein the system further includes a local computer (40) and associated storage (70) and wherein the method further comprises:

using the client (22, 50) to retrieve information from one or more of the local computer (40) and the mass storage (70).

115. The system of claim 106, wherein the client (20, 50) is to be controlled by means of the local computer (40).

116. The system of claim 115, wherein the local computer (40) is part of a local area network.

117. The system of claim 106, wherein the system further includes a central processing facility (60) in communication with the server (10) and wherein the client is to send information used in processing the order to the central processing facility (60).

118. The system of claim 117, wherein the client (22, 50) is to communicate with the server (10) via the central processing facility (60).

119. The system of claim 118, wherein a telephone system acts as the central processing facility (60).

120. The system of claim 106, wherein the server is to send an order confirmation to the user (80) to confirm the order.

121. The system of claim 106, wherein the server provides data in a series of multiplexed packets, ones of which contain data representing the video, and others of which represent the computing application.

122. The system of claim 106, wherein the computing application is repetitively transmitted during times that the video is transmitted.

123. The system of claim 106, wherein the client (22,50) includes a client computer (22) and an auxiliary processor (50), and:

the auxiliary data processor (50) is to process data representing the video,
and

the client computer (22) is to execute the computing application.

124. The system of claim 123, wherein the client computer and the auxiliary data processor are contained in a set top box.

125. An interactive television system to order an item, the system comprising:

a receiver (207) to receive data, some of which represents video and some of which represents a computing application; and

a processing unit (224) to:

execute the computing application to cause display of interactive information;

using the interactive information, show and/or describe an item offered for sale to a television user (80);

enable the user (80) to select the item by way of an interaction; and

in response to the interaction, place an order for the displayed item.

126. The system of claim 125, wherein the interaction causes the processing unit to display instructions to solicit information necessary to place the order.

127. The system of claim 126, wherein the information is solicited using one or more of an on-screen display and voice instructions.

128. The system of claim 125, wherein the interaction is by way of a single command.

129. The system of claim 128, wherein the single command is by one of the group of:

the pressing of a single button; and

the pressing of a single button on a TV remote control.

130. The system of claim 125, wherein the processing unit places the order using:

information related to the item being offered for sale and user related personal information.

131. The system of claim 130, wherein the personal information includes at least one of the group consisting of the user's name, address, method of payment and credit card number.

132. The system of claim 130, including a local memory to store the personal information memory.

133. The system of claim 125, further comprising a central processing facility (60) to communicate information.

134. The system of claim 133, wherein a telephone system acts as the central processing facility (60).

135. The system of claim 125, further comprising a receiver to receive an order confirmation to confirm the order.

136. The system of claim 125, wherein the data comprises a series of multiplexed packets, ones of which contain data representing the video, and others of which represent the computing application, the system including a first extractor to extract the video and a second extractor to extract the computing application from the data.

137. The system of claim 125, including:

an auxiliary data processor (50) to process the video, and
a client computer (22) to execute the computing application.

138. The system of claim 137, wherein the client computer and the auxiliary data processor are contained in a set top box.

139. An interactive television system to order an item, the system comprising:

a server (10) to provide data, some of which represents video to be displayed and some of which represents a computing application to be executed to display interactive information, to a client, the client to use one or more of the displayed video and the interactive information to show and/or describe an item offered for sale to a television user (80) and to enable the user (80) to select the item by interacting with the client (22,50); and

a receiver, in response to the interaction, to receive an order for the displayed item.

140. The system of claim 139, wherein the received order includes:

information related to the item being offered for sale and user related personal information.

141. The system of claim 140, wherein the personal information includes at least one of the group consisting of the user's name, address, method of payment and credit card number.

142. The system of claim 139, wherein the server is to provide the data in a series of multiplexed packets, ones of which contain data representing the video, and others of which represent the computing application.

143. The system of claim 16, wherein the server is to repetitively transmit the computing application during times that the video is transmitted.

144. A method of placing an order for an item, the method comprising:

using a server system:

communicating a data stream to a client system, the data stream including information related to an item offered for sale; and

using a client system:

receiving an order request from a user;

automatically determining an item identity for an item to which the order request pertains utilizing the information related to the item offered for sale;

automatically retrieving personal information of the user previously stored in a storage device; and

placing an order, including the item identity and the retrieved personal information.

145. The method of claim 144 wherein the order request is received at the client system through detection of a purchase action by the user utilizing the client system.

146. The method of claim 145 wherein the purchase action is performed during the showing and/or describing of the item via the client system utilizing the information related to the item offered for sale.

147. The method of 145 wherein the purchase action includes input of the item identity into the client system.

148. The method of claim 145 wherein the automatic determination of the item identity includes relating the purchase action to the information related to the item.

149. The method of claim 148 wherein the relating includes the detecting of the purchase action during an offer of the item as specified any one of a group including by a time code and a command included within the information relate to the item.

150. The method of claim 144 wherein the item identity is received within the data stream transmitted from the server system to the client system.

151. The method of claim 144 wherein the data stream includes multiplexed first and second streams of packets, the first stream of packets including display information to generate an image on a display of the client system, and the second stream of packets including a computing application.

152. The method of claim 149 wherein the time code is received within the data stream transmitted from the server system to the client system.

153. The method of claim 145 including prompting the user to perform the purchase action utilizing the client system.

154. The method of claim 153 wherein the prompting includes displaying a visual prompt on a display of the client system.

155. The method of claim 154 wherein the visual prompt includes any of a group including an indicia, instructions and a menu.

156. The method of claim 153 wherein the prompting includes generating an audio prompt via an audio reproduction unit of the client system

157. The method of claim 156 wherein the audio prompt comprises any one of a group including instructions, options and a menu.

158. The method of claim 145 wherein the detection of the purchase action includes detecting an interaction by the user with a control device of the client system.

159. The method of claim 158 wherein the interaction comprises a single action operation performed by the user.

160. The method of claim 159 wherein the single action operation comprises a single selection of a button of a remote control device.

161. The method of claim 144 wherein the storage device is associated with the client system and wherein the order is placed by the client system and communicated to the server system.

162. The method of claim 144 including receiving a client application program at the client system from the server system, the client application program to place the order.

163. The method of claim 162 wherein the client application program is received as part of the data stream.

164. The method of claim 144 including receiving, at the client system from the server system, an order confirmation responsive to a processing of the order by the server system.

165. A method of placing an order for an item, the method comprising:

receiving an order request from a user at a client system;

automatically determining an item identity for an item to which the order request pertains;

automatically retrieving personal information of the user previously stored in a storage device; and

placing an order, including the item identity and the retrieved personal information, for processing by a server system in communication with the client system.

166. The method of claim 165 wherein the order request is received at the client system through detection of a purchase action by the user utilizing the client system.

167. The method of claim 166 wherein the purchase action is performed during the showing and/or describing of the item via the client system.

168. The method of 166 wherein the purchase action includes input of the item identity into the client system.

169. The method of claim 166 including receiving information, at the client system from the server system, related to the item and wherein the automatic determination of the item identity includes relating the purchase action to the received information related to the item.

170. The method of claim 169 wherein the relating includes the detecting of the purchase action during an offer of the item as specified any one of a group including by a time code and a command included within the received information relate to the item.

171. The method of claim 165 wherein the item identity is received within a data stream transmitted from the server system to the client system.

172. The method of claim 171 wherein the data stream includes multiplexed first and second streams of packets, the first stream of packets including display information to generate an image on a display of the client system, and the second stream of packets including an computing application.

173. The method of claim 170 wherein the time code is received within a data stream transmitted from the server system to the client system.

174. The method of claim 166 including prompting the user to perform the purchase action utilizing the client system.

175. The method of claim 175 wherein the prompting includes displaying a visual prompt on a display of the client system.

176. The method of claim 175 wherein the visual prompt includes any of a group including an indicia, instructions and a menu.

177. The method of claim 174 wherein the prompting includes generating an audio prompt via an audio reproduction unit of the client system

178. The method of claim 177 wherein the audio prompt comprises any one of a group including instructions, options and a menu.

179. The method of claim 166 wherein the detection of the purchase action includes detecting an interaction by the user with a control device of the client system.

180. The method of claim 179 wherein the interaction comprises a single action operation performed by the user.

181. The method of claim 180 wherein the single action operation comprises a single selection of a button of a remote control device.

182. The method of claim 165 wherein the storage device is associated with the client system and wherein the order is placed by the client system and communicated to the server system.

183. The method of claim 165 including receiving a client application program at the client system from the server system, the client application program to receive the order request and to place the order.

184. The method of claim 183 wherein the client application program is received as part of a data stream including content for display by the client system.

185. The method of claim 165 including receiving, at the client system from the server system, an order confirmation responsive to the processing of the order by the server system.

186. A method of facilitating placing of an order for an item, the method comprising communicating a data stream to a client system, the data stream including:

information related to an item offered for sale; and

an application program for execution by the client system to receive an order request from a user, automatically to determine an item identity for an item to which the order request pertains utilizing the information related to the item offered for sale, automatically to retrieve personal information of the user previously stored in a storage device, and to place an order, including the item identity and the retrieved personal information.

187. The method of claim 186 including inserting a time code and/or a command into the information related to the item.

188. The method of claim 186 including inserting the item identity into the information related to the item.

189. The method of claim 186 including generating the data stream to include multiplexed first and second streams of packets, the first stream of packets including display information to generate an image on a display of the client system, and the second stream of packets including the computing application.

190. The method of claim 186 comprising including a visual prompt within the information related to the item offered for sale.

191. The method of claim 190 wherein the visual prompt includes any of a group including an indicia, instructions and a menu.

192. The method of claim 186 comprising including an audio prompt within the information related to the item offered for sale.

193. The method of claim 190 wherein the audio prompt comprises any one of a group including instructions, options and a menu.

194. The method of claim 186 wherein the application program is for execution by the client system to detect an interaction by the user with a control device of the client system as a purchase action.

195. The method of claim 194 wherein the interaction comprises a single action operation performed by the user.

196. The method of claim 195 wherein the single action operation comprises a single selection of a button of a remote control device.

197. The method of claim 186 wherein a storage device is associated with the client system and wherein the order is placed by the client system and communicated to the server system.

198. The method of claim 186 generating an order confirmation responsive to the processing of the order.

199. A system to place an order for an item, the system comprising:

a server system to transmit a data stream, the data stream including information related to an item offered for sale; and

a client system to:

receive the data stream;

receive an order request from a user;

automatically determine an item identity for an item to which the order request pertains utilizing the information related to the item offered for sale;

automatically retrieve personal information of the user previously stored in a storage device; and

place an order, including the item identity and the retrieved personal information.

200. The system of claim 199 wherein the client system is to receive the order request through detection of a purchase action by the user.

201. The system of claim 200 wherein client system is to detect the purchase action during the showing and/or describing of the item by the client system utilizing the information related to the item offered for sale.

202. The system of claim 200 wherein the client system is to receive input of the item identity into the client system as part of the purchase action.

203. The system of claim 200 wherein the client system is to relate the purchase action to the information related to the item.

204. The system of claim 203 wherein the clients system is to detect the purchase action during an offer of the item as specified any one of a group including by a time code and a command included within the information relate to the item.

205. The system of claim 199 wherein the data stream includes multiplexed first and second streams of packets, the first stream of packets including display information to generate an image on a display of the client system, and the second stream of packets including an computing application.

206. The system of claim 200 wherein the client system is to prompt the user to perform the purchase action utilizing the client system.

207. The system of claim 206 wherein the client system is to display a visual prompt on a display of the client system.

208. The system of claim 207 wherein the visual prompt includes any of a group including an indicia, instructions and a menu.

209. The system of claim 206 wherein the clients system is to generate an audio prompt via an audio reproduction unit of the client system

210. The system of claim 209 wherein the audio prompt comprises any one of a group including instructions, options and a menu.

211. The system of claim 200 wherein the clients system is to detect the purchase action by detecting an interaction by the user with a control device of the client system.

212. The system of claim 211 wherein the interaction comprises a single action operation performed by the user.

213. The system of claim 212 wherein the single action operation comprises a single selection of a button of a remote control device.

214. The system of claim 199 wherein the storage device is associated with the client system and wherein the order is placed by the client system and communicated to the server system.

215. The system of claim 199 wherein the client system is to receive a client application program from the server system, the client application program being executable by the client system to place the order.

216. The system of claim 215 wherein the client application program is received as part of the data stream.

217. The system of claim 199 wherein the client system is to receive an order confirmation responsive to the processing of the order by the server system.

218. A client system including:

a receiver (207) to receive the data stream including information related to an item offered for sale; and

a processing unit (224) to:

receive an order request from a user;

automatically determine an item identity for an item to which the order request pertains utilizing the information related to the item offered for sale;

automatically retrieve personal information of the user previously stored in a storage device; and

place an order, including the item identity and the retrieved personal information.

219. The system of claim 218 wherein the processing unit (224) is to receive the order request through detection of a purchase action by the user.

220. The system of claim 219 wherein processing unit (224) is to detect the purchase action during the showing and/or describing of the item by the client system utilizing the information related to the item offered for sale.

221. The system of claim 219 wherein the processing unit (224) is to receive input of the item identity as part of the purchase action.

222. The system of claim 219 wherein the processing unit (224) is to relate the purchase action to the information related to the item.

223. The system of claim 219 wherein the processing unit (224) to detect the purchase action during an offer of the item as specified any one of a group including by a time code and a command included within the information relate to the item.

224. The system of claim 218 wherein the receiver (207) is to receive the data stream as multiplexed first and second streams of packets, the first stream of packets including display information to generate an image on a display of the client system, and the second stream of packets including an computing application, the receiver further including a first extractor (204) to extract the first stream of packets from the data stream and a second extractor (206) to extract the second stream of packets from the data stream.

225. The system of claim 219 wherein the processing unit (224) and/or the receiver (207) is to prompt the user to perform the purchase action utilizing the client system.

226. The system of claim 225 wherein the processing unit (224) and/or the receiver (207) is to display a visual prompt on a display of the client system.

227. The system of claim 226 wherein the visual prompt includes any of a group including an indicia, instructions and a menu.

228. The system of claim 228 wherein the processing unit (224) and/or the receiver (207) is to generate an audio prompt via an audio reproduction unit of the client system

229. The system of claim 228 wherein the audio prompt comprises any one of a group including instructions, options and a menu.

230. The system of claim 219 wherein the processing unit (224) is to detect the purchase action by detecting an interaction by the user with a control device of the client system.

231. The system of claim 230 wherein the interaction comprises a single action operation performed by the user.

232. The system of claim 231 wherein the single action operation comprises a single selection of a button of a remote control device.

233. The system of claim 218 including storage device is associated with the client system and wherein the order is placed by the client system and communicated to a server system.

234. The system of claim 218 wherein the receiver (207) to receive a client application program from a server system, the client application program being executable by the processing unit (224) to receive the order request and to place the order.

235. The system of claim 234 wherein the receiver is to receive the client application program as part of the data stream.

236. The system of claim 218 wherein the receiver (207) is to receive an order confirmation responsive to the processing of the order by the server system.

237. A server system to facilitate placing of an order for an item, the system comprising:

a data source (107) to provide information related to an item offered for sale; and

an application source (101) to provide an application program for execution by the client system to receive an order request from a user, automatically to determine an item identity for an item to which the order request pertains, automatically to retrieve personal information of the user previously stored in a storage device, and to place an order, including the item identity and the retrieved personal information; and

a multiplexer (106) to communicate the information and the application program to a client system.

238. The system of claim 237 wherein the multiplexer is to generate the data stream to include multiplexed first and second streams of packets, the first stream of packets including display information to generate an image on a display of the client system, and the second stream of packets including the computing application.

239. The system of claim 237 wherein the application source and/or data source is to include a visual prompt within the information related to the item offered for sale.

240. The system of claim 239 wherein the visual prompt includes any of a group including an indicia, instructions and a menu.

241. The method of claim 237 wherein the application source and/or data source is to include an audio prompt within the information related to the item offered for sale.

242. The method of claim 241 wherein the audio prompt comprises any one of a group including instructions, options and a menu.

243. The method of claim 237 wherein a detection of a purchase action by the application program includes detecting an interaction by the user with a control device of the client system.

244. The method of claim 243 wherein the interaction comprises a single action operation performed by the user.

245. The method of claim 244 wherein the single action operation comprises a single selection of a button of a remote control device.

FIG. 1

FIG. 2

FIG. 3

RE-35025 D1

FIG. 4

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

**REISSUE APPLICATION BY THE ASSIGNEE,
OFFER TO SURRENDER PATENT**

Docket Number (Optional)

005214.P001R

This is part of the application for a reissue patent based on the original patent identified below.

Name of Patentee(s):

Kuriacose Joseph, et al.

Patent Number

5,819,034

Date Patent Issued

October 6, 1998

Title of Invention Apparatus for Transmitting and Receiving Executable Applications
 as for a Multimedia System, and Method and System to Order an
 Item Using a Distributed Computing System

OpenTV, Inc. is the assignee of the entire interest in the original patent.

I offer to surrender the original patent.

 A certificate under 37 CFR 3.73(b) is attached.

I am authorized to act on behalf of the assignee.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. 1001 and that such willful false statements may jeopardize the validity of the application, any patent issued thereon, or any patent to which this declaration is directed.

Name of assignee

OpenTV. Inc.

Signature of person signing for assignee

Date

Typed or printed name and title of person signing for assignee

Umesh Desai, Associate General Counsel - IP

005214.P001R

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Reissue Application of:)
Kuriacose JOSEPH, et al.) Examiner: Not yet assigned
Serial No.: New application) Art Unit: Not yet assigned
Filing Date: Herewith)
For: APPARATUS FOR TRANSMITTING)
AND RECEIVING EXECUTABLE)
APPLICATIONS AS FOR A)
MULTIMEDIA SYSTEM, AND)
METHOD AND SYSTEM TO ORDER)
AN ITEM USING A DISTRIBUTED)
COMPUTING SYSTEM)

Assistant Commissioner for Patents
Washington, D.C. 20231

CERTIFICATION UNDER 37 C.F.R. 3.73

Sir:

OPENTV, INC. certifies that it has ownership of U.S. Patent no. 5,819,034, issued October 6, 1998 by way of an assignment to OPENTV, Inc. (Assignee) from THOMAS CONSUMER ELECTRONICS, INC. (Assignor), recorded September 27, 1999 at reel 010263, frame 0580, by way of an assignment from the inventors (Kuriacose Joseph, Ainsley Wayne Jessup, Jr., Vincent Dureau and Alain Delpuch (Assignors) to THOMAS CONSUMER ELECTRONICS, INC. (Assignee), recorded April 28, 1994 at reel 6978 and frame 0789.

OPENTV, INC.

Date: _____

By: _____

Umesh Desai
Associate General Counsel - IP
OpenTV, Inc.

DECLARATION AND POWER OF ATTORNEY FOR REISSUE PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below, next to my name.

I believe I am the original, first, and sole inventor (if only one name is listed below) or an original, first, and joint inventor (if plural names are listed below) of the subject matter which is described and for which a reissue patent is sought on the invention entitled

APPARATUS FOR TRANSMITTING AND RECEIVING EXECUTABLE APPLICATIONS
AS FOR A MULTIMEDIA SYSTEM, AND METHOD AND SYSTEM TO ORDER AN ITEM
USING A DISTRIBUTED COMPUTING SYSTEM

the specification of which is attached hereto and was issued on October 6, 1998 as U.S. Patent no. 5,189,034 ("the original patent") based on serial no. 08/233,908 ("the application"), filed on April 28, 1994.

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claim(s), as amended by any amendment referred to above. I do not know and do not believe that the claimed invention was ever known or used in the United States of America before my invention thereof, or patented or described in any printed publication in any country before my invention thereof or more than one year prior to the effective filing date, that the same was not in public use or on sale in the United States of America more than one year prior to the effective filing date, and that the invention was has not been patented or made the subject of an inventor's certificate issued prior to the effective filing date in any country foreign to the United States of America on an application filed by me or my legal representatives or assigns more than twelve moths (for a utility patent application) or six moths (for a design patent application) prior to the effective filing date.

I acknowledge the duty to disclose all information known to me to be material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, Section 119(a)-(d), of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

<u>Prior Foreign Application(s)</u>	<u>Priority Claimed</u>			
Number	Country	Day/Month/Year Filed	Yes	No
Number	Country	Day/Month/Year Filed	Yes	No
Number	Country	Day/Month/Year Filed	Yes	No

I hereby claim the benefit under Title 35, United States Code, Section 119(e) of any United States provisional application(s) listed below:

Application Number	Filing Date
--------------------	-------------

Application Number	Filing Date
--------------------	-------------

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, Section 112, I acknowledge the duty to disclose all information known to me to be material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56 which became available between the filing date of the prior application and the national or PCT international filing date of this application:

Application Number	Filing Date	Status -- patented, pending, abandoned
Application Number	Filing Date	Status -- patented, pending, abandoned

I verily believe the original patent to be wholly or partially inoperative by reason that the original patent claims less than I had a right to claim in the patent. The claims fail to cover embodiments of the invention and inventions as claimed in the above-identified reissue application. The error arose without any deceptive intention on my part. The error arose during the drafting of the application and during subsequent amendments in connection with the prosecution of the application which resulted in the issuance of the original patent. The error occurred as a result of the attorney prosecuting the application and I failing to appreciate the scope of the invention and/or to properly identify the invention(s). The error was discovered subsequent to issuance of the original patent during a review of the original patent by the assignee and/or its representatives. I further acknowledge my duty to disclose information which is material to the examination of the application under 37 CFR § 1.56.

I reserve the right to file broadening claims for the present reissue application beyond the two year limit, and in any continuation or divisional reissue application based on the present reissue application.

I hereby appoint the persons listed on Appendix A hereto (which is incorporated by reference and a part of this document) as my respective patent attorneys and patent agents, with full power of substitution and revocation, to prosecute this application and to transact all business in the Patent and Trademark Office connected herewith.

Send correspondence to André L. Marais, BLAKELY, SOKOLOFF, TAYLOR &
(Name of Attorney or Agent)
ZAFMAN LLP, 12400 Wilshire Boulevard 7th Floor, Los Angeles, California 90025 and direct
telephone calls to André L. Marais, (408) 720-8300.
(Name of Attorney or Agent)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these

States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Full Name of Sole/First Inventor Kuriacose JOSEPH

Inventor's Signature _____ Date _____

Residence c/o Mountain View, California Citizenship U.S.A.
(City, State) (Country)

Post Office Address c/o 401 East Middlefield Road
Mountain View, CA 94043-4005

Full Name of Second/Joint Inventor Ansley Wayne JESSUP, Jr.

Inventor's Signature _____ Date _____

Residence c/o Mountain View, California Citizenship U.S.A.
(City, State) (Country)

Post Office Address c/o 401 East Middlefield Road
Mountain View, CA 94043-4005

Full Name of Third/Joint Inventor Vincent DUREAU

Inventor's Signature _____ Date _____

Residence c/o Mountain View, California Citizenship U.S.A.
(City, State) (Country)

Post Office Address c/o 401 East Middlefield Road
Mountain View, CA 94043-4005

Full Name of Fourth/Joint Inventor Alain DELPUCH

Inventor's Signature _____ Date _____

Residence c/o Mountain View, California Citizenship U.S.A.
(City, State) (Country)

Post Office Address c/o 401 East Middlefield Road
Mountain View, CA 94043-4005

APPENDIX A

William E. Alford, Reg. No. 37,764; Farzad E. Amini, Reg. No. P42,261; Aloysius T. C. AuYeung, Reg. No. 35,432; William Thomas Babbitt, Reg. No. 39,591; Carol F. Barry, Reg. No. 41,600; Jordan Michael Becker, Reg. No. 39,602; Lisa N. Benado, Reg. No. 39,995; Bradley J. Bereznak, Reg. No. 33,474; Michael A. Bernadicou, Reg. No. 35,934; Roger W. Blakely, Jr., Reg. No. 25,831; R. Alan Burnett, Reg. No. 46,149; Gregory D. Caldwell, Reg. No. 39,926; Andrew C. Chen, Reg. No. 43,544; Thomas M. Coester, Reg. No. 39,637; Donna Jo Coningsby, Reg. No. 41,684; Florin Corie, Reg. No. 46,244; Dennis M. deGuzman, Reg. No. 41,702; Stephen M. De Clerk, Reg. No. 46,503; Michael Anthony DeSanctis, Reg. No. 39,957; Daniel M. De Vos, Reg. No. 37,813; Robert Andrew Diehl, Reg. No. 40,992; Sanjeet Dutta, Reg. No. P46,145; Matthew C. Fagan, Reg. No. 37,542; Tarek N. Fahmi, Reg. No. 41,402; George Fountain, Reg. No. 37,374; Paramita Ghosh, Reg. No. 42,806; James Y. Go, Reg. No. 40,621; James A. Henry, Reg. No. 41,064; Libby N. Ho, Reg. No. P46,774; Willmore F. Holbrow III, Reg. No. P41,845; Sheryl Sue Holloway, Reg. No. 37,850; George W Hoover II, Reg. No. 32,992; Eric S. Hyman, Reg. No. 30,139; William W. Kidd, Reg. No. 31,772; Sang Hui Kim, Reg. No. 40,450; Walter T. Kim, Reg. No. 42,731; Eric T. King, Reg. No. 44,188; Erica W. Kuo, Reg. No. 42,775; George Brian Leavell, Reg. No. 45,436; Kurt P. Leyendecker, Reg. No. 42,799; Gordon R. Lindeen III, Reg. No. 33,192; Jan Carol Little, Reg. No. 41,181; Joseph Lutz, Reg. No. 43,765; Michael J. Mallie, Reg. No. 36,591; Andre L. Marais, under 37 C.F.R. § 10.9(b); Paul A. Mendonsa, Reg. No. 42,879; Clive D. Menezes, Reg. No. 45,493; Chun M. Ng, Reg. No. 36,878; Thien T. Nguyen, Reg. No. 43,835; Thinh V. Nguyen, Reg. No. 42,034; Dennis A. Nicholls, Reg. No. 42,036; Daniel E. Ovanezian, Reg. No. 41,236; Kenneth B. Paley, Reg. No. 38,989; Marina Portnova, Reg. No. P45,750; William F. Ryann, Reg. 44,313; James H. Salter, Reg. No. 35,668; William W. Schaal, Reg. No. 39,018; James C. Scheller, Reg. No. 31,195; Jeffrey Sam Smith, Reg. No. 39,377; Maria McCormack Sobrino, Reg. No. 31,639; Stanley W. Sokoloff, Reg. No. 25,128; Judith A. Szepesi, Reg. No. 39,393; Vincent P. Tassinari, Reg. No. 42,179; Edwin H. Taylor, Reg. No. 25,129; John F. Travis, Reg. No. 43,203; Joseph A. Twarowski, Reg. No. 42,191; Tom Van Zandt, Reg. No. 43,219; Lester J. Vincent, Reg. No. 31,460; Glenn E. Von Tersch, Reg. No. 41,364; John Patrick Ward, Reg. No. 40,216; Mark L. Watson, Reg. No. P46,322; Thomas C. Webster, Reg. No. P46,154; Steven D. Yates, Reg. No. 42,242; and Norman Zafman, Reg. No. 26,250; my patent attorneys, and Firasat Ali, Reg. No. 45,715; and Justin M. Dillon, Reg. No. 42,486; my patent agents, of BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN LLP, with offices located at 12400 Wilshire Boulevard, 7th Floor, Los Angeles, California 90025, telephone (310) 207-3800, and James R. Thein, Reg. No. 31,710, my patent attorney with full power of substitution and revocation, to prosecute this application and to transact all business in the Patent and Trademark Office connected herewith.

APPENDIX B

Title 37, Code of Federal Regulations, Section 1.56 Duty to Disclose Information Material to Patentability

(a) A patent by its very nature is affected with a public interest. The public interest is best served, and the most effective patent examination occurs when, at the time an application is being examined, the Office is aware of and evaluates the teachings of all information material to patentability. Each individual associated with the filing and prosecution of a patent application has a duty of candor and good faith in dealing with the Office, which includes a duty to disclose to the Office all information known to that individual to be material to patentability as defined in this section. The duty to disclosure information exists with respect to each pending claim until the claim is cancelled or withdrawn from consideration, or the application becomes abandoned. Information material to the patentability of a claim that is cancelled or withdrawn from consideration need not be submitted if the information is not material to the patentability of any claim remaining under consideration in the application. There is no duty to submit information which is not material to the patentability of any existing claim. The duty to disclosure all information known to be material to patentability is deemed to be satisfied if all information known to be material to patentability of any claim issued in a patent was cited by the Office or submitted to the Office in the manner prescribed by §§1.97(b)-(d) and 1.98. However, no patent will be granted on an application in connection with which fraud on the Office was practiced or attempted or the duty of disclosure was violated through bad faith or intentional misconduct. The Office encourages applicants to carefully examine:

- (1) Prior art cited in search reports of a foreign patent office in a counterpart application, and
 - (2) The closest information over which individuals associated with the filing or prosecution of a patent application believe any pending claim patentably defines, to make sure that any material information contained therein is disclosed to the Office.
- (b) Under this section, information is material to patentability when it is not cumulative to information already of record or being made or record in the application, and
- (1) It establishes, by itself or in combination with other information, a prima facie case of unpatentability of a claim; or
 - (2) It refutes, or is inconsistent with, a position the applicant takes in:
 - (i) Opposing an argument of unpatentability relied on by the Office, or
 - (ii) Asserting an argument of patentability.

A prima facie case of unpatentability is established when the information compels a conclusion that a claim is unpatentable under the preponderance of evidence, burden-of-proof standard, giving each term in the claim its broadest reasonable construction consistent with the specification, and before any consideration is given to evidence which may be submitted in an attempt to establish a contrary conclusion of patentability.

- (c) Individuals associated with the filing or prosecution of a patent application within the meaning of this section are:
- (1) Each inventor named in the application;
 - (2) Each attorney or agent who prepares or prosecutes the application; and
 - (3) Every other person who is substantively involved in the preparation or prosecution of the application and who is associated with the inventor, with the assignee or with anyone to whom there is an obligation to assign the application.
- (d) Individuals other than the attorney, agent or inventor may comply with this section by disclosing information to the attorney, agent, or inventor.

005214.P001R

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Reissue Application of:)
Kuriacose JOSEPH, et al.) Examiner: Not yet assigned
Serial No.: New application) Art Unit: Not yet assigned
Filing Date: Herewith)
For: APPARATUS FOR TRANSMITTING AND)
RECEIVING EXECUTABLE APPLICATIONS)
AS FOR A MULTIMEDIA SYSTEM, AND)
METHOD AND SYSTEM TO ORDER AN)
ITEM USING A DISTRIBUTED COMPUTING)
SYSTEM)

Assistant Commissioner for Patents
Washington, D.C. 20231

APPOINTMENT OF ASSOCIATE ATTORNEY

Sir:

I hereby appoint André L. Marais as my associate attorney in the above-entitled application, to prosecute this application, to make alterations and amendments therein, and to transact all business in the Patent and Trademark Office connected therewith.

Please continue to address all future communications to Blakely, Sokoloff, Taylor & Zafman LLP, 12400 Wilshire Blvd., Seventh Floor, Los Angeles, CA 90025-1026.

Respectfully submitted,

BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN, LLP

Date: 9/27, 2000

12400 Wilshire Boulevard
Seventh Floor
Los Angeles, CA 90025-1026
(408) 720-8598

Jordan M. Becker

Registration No. 39,602

United States Patent & Trademark Office
Office of Initial Patent Examination -- Scanning Division

Application deficiencies were found during scanning:

Page(s) 17 - 20 of the specification were not present:
(Document title)
for scanning.

Page(s) _____ of _____ were not present:
(Document title)
for scanning.

Scanned copy is best available.