

ESAND THAILAND CODING & AI ACADEMY

โครงการวิจัยโมเดลระบบนิเวศการเรียนรู้ที่บูรณาการ CODING & AI **สำหรับเยาวชน** Model of Learning Ecosystem Platform integrate with Coding & Al for Youth

โครงการย่อยที่ 6

การพัฒนาเยาวชนเพื่อเข้าสู่วิชาชีพขั้นสูงด้าน Coding & Al ร่วมกับ Coding Entrepreneur & Partnership: Personal Al

BiTNet: AI for Ultrasound Image Classification

ผศ.ดร.ธนพงศ์ อินทระ ผู้เชี่ยวชาญด้าน Computer Vision

Model of Learning Ecosystem Platform integrate with Coding & Al for Youth

Data preparation

2.11MR R18.0 G58 C12

Hand positions of 16 scanning positions

-5AU THAILAND โครงการวิจัยโมเดลระบบนิเวศการเรียนรู้ที่บูรณาเ CODING & AI ACADEMY Model of Learning Ecosystem Platform in

Naming - Metadata

14AB+Normal Classes -> PUMUTBAMIAGOUJ

120 J29 J26 M

Viewing angle

Classes

Patient case

Ab1 A1

Ab1 A4

P3-1.Case A8

Ab1 A1

Ab1 A5

Ab1 A9 P3-1.Case A8,JPG P4-2.Case A8

Ab1 A2

Ab1 A5

Ab1 A6

Ab1 A2

P4-2.Case A8.JPG

Ab1 A3

Ab1 A6

Ab1 A3

Ab1 A7

Ab1 A4 P3-1.Case A4

Ab1 A7 P3-1.Case A7.JPG

US Images name

Ab1 A1 P4-2. Case A1. jpg Ab1 A6 P3-1. Case A6. jpg Ab1 A2 P3-1.Case A2.jpg

Ab1 A9 P4-2.Case A8.jpg

Path Full	Sub Position	Sub_class	Case
/media/tohn/HDD/VISION_dataset/USAI/ABnormal01	P1	AB01	40
/media/tohn/HDD/VISION_dataset/USAI/ABnormal01	P2	AB01	40
/media/tohn/HDD/VISION_dataset/USAI/ABnormal01	P41	AB01	40
/media/tohn/HDD/VISION_dataset/USAI/ABnormal01	P51	AB01	40
/media/tohn/HDD/VISION_dataset/USAI/ABnormal01	P31	AB01	40
/media/tohn/HDD/VISION_dataset/USAI/US images	P32	Normal	350
/media/tohn/HDD/VISION_dataset/USAI/US images	P42	Normal	350
/media/tohn/HDD/VISION_dataset/USAI/US images	P52	Normal	350
/media/tohn/HDD/VISION_dataset/USAI/US images	P61	Normal	350
/media/tohn/HDD/VISION_dataset/USAI/US images	P8	Normal	350

E SAN THAILAND โครงการวิจัยโมเดลระบบนิเวศการเรียนรู้ที่บูรณาการ coding & Al สำหรับเยาวชน CODING & AI ACADEMY Model of Learning Ecosystem Platform integrate with Coding & Al for Youth

Path Full	Sub Position	Sub_class	Case
/media/tohn/HDD/VISION_dataset/USAI/ABnormal01	P1	AB01	40
/media/tohn/HDD/VISION_dataset/USAI/ABnormal01	P2	AB01	40
/media/tohn/HDD/VISION_dataset/USAI/ABnormal01	P41	AB01	40
/media/tohn/HDD/VISION_dataset/USAI/ABnormal01	P51	AB01	40
/media/tohn/HDD/VISION_dataset/USAI/ABnormal01	P31	AB01	40
/media/tohn/HDD/VISION_dataset/USAI/US images	P32	Normal	350
/media/tohn/HDD/VISION_dataset/USAI/US images	P42	Normal	350
/media/tohn/HDD/VISION_dataset/USAI/US images	P52	Normal	350
/media/tohn/HDD/VISION_dataset/USAI/US images	P61	Normal	350
/media/tohn/HDD/VISION_dataset/USAI/US images	P8	Normal	350

Fold

Train Test

	Class	Case	US images count		
Train	Abnormal	366	1,823	5,257	
	Normal	289	3,434		
Test	Abnormal	91	455	1,312	
	Normal	71	857		
Total		817	6,569		

Class number	Label	FP-A	FP-B	FP-C	FP-D	FP-E	Total
1	AB01	105	164	100			369
2	AB02	128	123	77			328
3	AB03	53	31	24	_		108
4	AB04	105	46	46	3		200
5	AB05	44	78	5			127
6	AB06	76	9				85
7	AB07	3	67	25			95
8	AB081	27	72	57			156
9	AB082	32	56	49			137
10	AB083	11	27	16			54
11	AB09		2	122			124
12	AB10			53			53
13	AB11			73	203		276
14	AB12			1	165		166
Abnormal (Class r	number 1-14)	584	675	648	371	0	2,278
Normal (Class nur	nber 1-14)	748	1,329	1,261	605	348	4,291
Tota	.1	1,332	2,004	1,909	976	348	6,569

Remove BG Information

Input Size

456x456x3

ราย THAILAND โครงการวิจัยโมเดลระบบนิเวศการเรียนรู้ที่บูรณาการ co CODING & AI ACADEMY | Model of Learning Ecosystem Platform integra

Data Augmentation

PONDIFICIO 90) 669 12 Augment

-5AU THAILAND โครงการวิจัยโมเดลระบบนิเวศการเรียนรู้ที่บูรณาการ co CODING & AI ACADEMY Model of Learning Ecosystem Platform integra

E 5 THAILAND โครงการวิจัยโมเดลระบบนิเวศการเรียนรู้ที่บูรณาการ co CODING & AI ACADEMY Model of Learning Ecosystem Platform integra

https://machinelearningmastery.com/how-to-configure-image-data-augmentation-when-trainingdeep-learning-neural-networks/

How to Configure Image Data Augmentation in Keras

by Jason Brownlee on July 5, 2019 in Deep Learning for Computer Vision

lmage data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Training deep learning neural network models on more data can result in more skillful models, and the augmentation techniques can create variations of the images that can improve the ability of the fit models to generalize what they have learned to new images.

The Keras deep learning neural network library provides the capability to fit models using image data augmentation via the ImageDataGenerator class.

In this tutorial, you will discover how to use image data augmentation when training deep learning neural

Never miss a tutorial:


```
# example of horizontal shift image augmentation
2 from numpy import expand_dims
   from keras.preprocessing.image import load_img
 4 from keras.preprocessing.image import img_to_array
   from keras.preprocessing.image import ImageDataGenerator
6 from matplotlib import pyplot
   # load the image
 8 img = load_img('bird.jpg')
  # convert to numpy array
10 data = img_to_array(img)
11 # expand dimension to one sample
12 samples = expand_dims(data, 0)
# create image data augmentation generator
14 datagen = ImageDataGenerator(width_shift_range=[-200,200])
15 # prepare iterator
16 it = datagen.flow(samples, batch_size=1)
17 # generate samples and plot
18 for i in range(9):
   # define subplot
    pyplot.subplot(330 + 1 + i)
    # generate batch of images
22 batch = it.next()
    # convert to unsigned integers for viewing
    image = batch[0].astype('uint8')
    # plot raw pixel data
26 pyplot.imshow(image)
27 # show the figure
28 pyplot.show()
```


