Cours du 21 janvier

K. Destagnol Université Paris Saclay

21 janvier 2021

Séries de Fourier

Chapitre 3

Un nombre complexe z=x+iy avec $(x,y)\in\mathbb{R}^2$ peut s'écrire sous la forme $z=re^{i heta}$ où

 $r=\sqrt{x^2+y^2}$ est le module de z et θ l'argument de z vérifiant pour z
eq 0

$$\begin{cases} \cos(\theta) = \frac{x}{r} \\ \sin(\theta) = \frac{y}{r}. \end{cases}$$

La partie réelle de z est x et sa partie imaginaire est y.

$$\forall \theta \in \mathbb{R}, \quad e^{i\theta} = \cos(\theta) + i\sin(\theta) \quad \text{et} \quad \forall (z_1, z_2) \in \mathbb{C}^2, \quad e^{z_1 + z_2} = e^{z_1} \times e^{z_2}$$

et
$$\mathsf{Re}(e^{i heta}) = \cos(heta)$$
 et $\mathsf{Im}(e^{i heta}) = \sin(heta)$. Pour $z = x + iy$ avec $(x,y) \in \mathbb{R}^2$, on a

$$e^{z} = e^{x+iy} = e^{x}e^{iy} = e^{x}(\cos(y) + i\sin(y)).$$

On a que

$$\forall \theta \in \mathbb{R}, \quad e^{i\theta} = \cos(\theta) + i\sin(\theta) \quad \text{et} \quad \forall (z_1, z_2) \in \mathbb{C}^2, \quad e^{z_1 + z_2} = e^{z_1} \times e^{z_2}$$

et
$$\mathsf{Re}(e^{i heta}) = \cos(heta)$$
 et $\mathsf{Im}(e^{i heta}) = \sin(heta)$. Pour $z = x + iy$ avec $(x,y) \in \mathbb{R}^2$, on a

$$e^{z} = e^{x+iy} = e^{x}e^{iy} = e^{x}(\cos(y) + i\sin(y)).$$

Par ailleurs,

$$\cos(a+b)=\cos(a)\cos(b)-\sin(a)\sin(b)$$

On a que

$$\forall \theta \in \mathbb{R}, \quad e^{i\theta} = \cos(\theta) + i\sin(\theta) \quad \text{et} \quad \forall (z_1, z_2) \in \mathbb{C}^2, \quad e^{z_1 + z_2} = e^{z_1} \times e^{z_2}$$

et
$$\mathsf{Re}(e^{i heta}) = \cos(heta)$$
 et $\mathsf{Im}(e^{i heta}) = \sin(heta)$. Pour $z = x + iy$ avec $(x,y) \in \mathbb{R}^2$, on a

$$e^{z} = e^{x+iy} = e^{x}e^{iy} = e^{x}(\cos(y) + i\sin(y)).$$

Par ailleurs,

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b) \quad \text{et} \quad \sin(a+b) = \cos(a)\sin(b) + \cos(b)\sin(a)$$

$$\cos(a)\cos(b) = \frac{1}{2}\left(\cos(a+b) + \cos(a-b)\right) \quad \text{et} \quad \sin(a)\sin(b) = \frac{1}{2}\left(-\cos(a+b) + \cos(a-b)\right)$$

et

$$\cos(a)\sin(b)=\frac{1}{2}\left(\sin(a+b)-\sin(a-b)\right).$$

$$\cos(a)\cos(b) = \frac{1}{2}(\cos(a+b) + \cos(a-b))$$
 et $\sin(a)\sin(b) = \frac{1}{2}(-\cos(a+b) + \cos(a-b))$

et

$$\cos(a)\sin(b)=\frac{1}{2}\left(\sin(a+b)-\sin(a-b)\right).$$

Pour conclure ces rappels, une fonction $f:I\to\mathbb{C}$ s'écrit sous la forme f(t)=x(t)+iy(t) avec $x,y:I\to\mathbb{R}$ et on dira que f est dérivable sur I si, et seulement si, x et y le sont auquel cas

$$\forall t \in I, \quad f'(t) = x'(t) + iy'(t).$$

Fonction périodique

Fonction périodique

Fonction périodique

Soient T>0 et $f:\mathbb{R}\to\mathbb{R}$ ou $\mathbb{C}.$ On dit que f est T-périodique si

$$\forall t \in \mathbb{R}, \quad f(t+T) = f(t).$$

Régularité d'une fonction

Fonction continue

Soit $f:\mathbb{R} \to \mathbb{R}$ ou \mathbb{C} . On dit que f est continue sur \mathbb{R} si pour tout $t_0 \in \mathbb{R}$, on a

$$\lim_{\substack{t \to t_0 \\ t < t_0}} f(t) = \lim_{\substack{t \to t_0 \\ t > t_0}} f(t) = f(t_0).$$

Autrement dit, on peut tracer le graphe de f sans "lever le crayon'

Régularité d'une fonction

Fonction continue

Soit $f: \mathbb{R} \to \mathbb{R}$ ou \mathbb{C} . On dit que f est continue sur \mathbb{R} si pour tout $t_0 \in \mathbb{R}$, on a

$$\lim_{\substack{t \to t_0 \\ t < t_0}} f(t) = \lim_{\substack{t \to t_0 \\ t > t_0}} f(t) = f(t_0).$$

Autrement dit, on peut tracer le graphe de f sans "lever le crayon"

Fonction continue par morceaux

Soit $f: \mathbb{R} \to \mathbb{R}$ ou \mathbb{C} . On dit que f est continue par morceaux sur \mathbb{R} si pour tout intervalle [a,b] de \mathbb{R} , il existe $x_0=a < x_1 < \cdots < x_n=b$ tel que la restriction de f à $|x_i,x_{i+1}|$ soit continue pour tout $i \in \{0,\ldots,n-1\}$.

Autrement dit, on peut tracer le graphe de f en "levant le crayon" un nombre fini

fois sur la feui

ldée derrière les séries de Fourier

Soit x un nombre réel. On peut associer à x la suite $(x_n)_{n\in\mathbb{N}}$ de ses décimales avec $x_n\in\{0,\cdots,9\}.$

ldée derrière les séries de Fourier

Soit x un nombre réel. On peut associer à x la suite $(x_n)_{n\in\mathbb{N}}$ de ses décimales avec $x_n\in\{0,\cdots,9\}$.

On a alors
$$x=x_0+\frac{x_1}{10}+\frac{x_2}{100}+\frac{x_3}{1000}+\cdots=\sum_{n=0}^{+\infty}\frac{x_n}{10^n}$$
 et les sommes tronquées de plus en plus loin $\sum_{n=0}^N\frac{x_n}{10^n}$ donnent des approximations de x .

ldée derrière les séries de Fourier

Soit x un nombre réel. On peut associer à x la suite $(x_n)_{n\in\mathbb{N}}$ de ses décimales avec $x_n\in\{0,\cdots,9\}$.

On a alors
$$x=x_0+\frac{x_1}{10}+\frac{x_2}{100}+\frac{x_3}{1000}+\cdots=\sum_{n=0}^{+\infty}\frac{x_n}{10^n}$$
 et les sommes tronquées de plus en plus loin $\sum_{n=0}^{N}\frac{x_n}{10^n}$ donnent des approximations de x .

$$x \in \mathbb{R} \quad \leadsto \quad$$

$$(x_n)_{n\in\mathbb{N}}$$

$$\Rightarrow \sum_{n\in\mathbb{N}}\frac{x_n}{10^n} \Rightarrow$$

$$x = \sum_{n=0}^{+\infty} \frac{x_n}{10^n}$$

suite des décimales de X $n{\in}\mathbb{N}$ la série converge et sa somme vaut X

Coefficients de Fourier complexes

Coefficients de Fourier complexes

Soit $f:\mathbb{R}\to\mathbb{R}$ ou \mathbb{C} continue par morceaux et T-périodique. Pour $n\in\mathbb{Z}$, le n-ième coefficient de Fourier complexe de f est

$$c_n(f) = \frac{1}{T} \int_0^T f(t) e^{-\frac{2i\pi nt}{T}} dt.$$

On appelle alors coefficients de Fourier complexes de f la suite $(c_n(f))_{n\in\mathbb{Z}}$.

Coefficients de Fourier complexes

Coefficients de Fourier complexes

Soit $f: \mathbb{R} \to \mathbb{R}$ ou \mathbb{C} continue par morceaux et T-périodique. Pour $n \in \mathbb{Z}$, le n-ième coefficient de Fourier complexe de f est

$$c_n(f) = \frac{1}{T} \int_0^T f(t) e^{-\frac{2i\pi nt}{T}} dt.$$

On appelle alors coefficients de Fourier complexes de f la suite $(c_n(f))_{n\in\mathbb{Z}}$.

Calculer les coefficients de Fourier complexes d'une fonction T-périodique f, c'est calculer pour tout $n \in \mathbb{Z}$, l'intégrale

$$c_n(f) = rac{1}{T} \int_0^T f(t) e^{-rac{2i\pi nt}{T}} \mathrm{d}t.$$

Soit f une fonction continue par morceaux et T-périodique. Alors,

$$\forall a \in \mathbb{R}, \quad \int_0^T f(t) dt = \int_a^{a+T} f(t) dt.$$

Soit f une fonction continue par morceaux et T-périodique. Alors,

$$\forall a \in \mathbb{R}, \quad \int_0^T f(t) dt = \int_a^{a+T} f(t) dt.$$

On a donc en particulier que pour tout $a \in \mathbb{R}$ et $n \in \mathbb{Z}$,

$$c_n(f) = rac{1}{T} \int_a^{a+T} f(t) \mathrm{e}^{-rac{2i\pi nt}{T}} \mathrm{d}t.$$

Soit f une fonction continue par morceaux et T-périodique.

- (i) Si f est à valeurs réelles, alors $\overline{c_n(f)} = c_{-n}(f)$ pour tout $n \in \mathbb{Z}$.
- (ii) Si f est paire, $c_n(f) = c_{-n}(f)$ pour tout $n \in \mathbb{Z}$.
- (iii) Si f est impaire, $c_n(f) = -c_{-n}(f)$ pour tout $n \in \mathbb{Z}$.
- (iv) Soient g une autre fonction continue par morceaux et T-périodique et $\lambda \in \mathbb{C}$. Alors, pour tout $n \in \mathbb{Z}$, on a

$$c_n(f+g) = c_n(f) + c_n(g), \quad c_n(\lambda f) = \lambda c_n(f).$$

Soit f une fonction continue par morceaux et T-périodique.

- (i) Si f est à valeurs réelles, alors $\overline{c_n(f)} = c_{-n}(f)$ pour tout $n \in \mathbb{Z}$.
- (ii) Si f est paire, $c_n(f) = c_{-n}(f)$ pour tout $n \in \mathbb{Z}$.
- (iii) Si f est impaire, $c_n(f) = -c_{-n}(f)$ pour tout $n \in \mathbb{Z}$.
- (iv) Soient g une autre fonction continue par morceaux et T-périodique et $\lambda \in \mathbb{C}$. Alors, pour tout $n \in \mathbb{Z}$, on a

$$c_n(f+g) = c_n(f) + c_n(g), \quad c_n(\lambda f) = \lambda c_n(f).$$

Coefficients de Fourier réels

Coefficients de Fourier réels

Soit $f:\mathbb{R} \to \mathbb{R}$ continue par morceaux et T-périodique. On pose

$$a_0(f) = \frac{1}{T} \int_0^T f(t) dt$$

et pour $n \in \mathbb{N}^*$, les n-ième coefficients de Fourier réels de f sont

$$a_n(f) = \frac{2}{T} \int_0^T f(t) \cos \left(\frac{2\pi nt}{T} \right) \mathrm{d}t \quad \text{et} \quad b_n(f) = \frac{2}{T} \int_0^T f(t) \sin \left(\frac{2\pi nt}{T} \right) \mathrm{d}t.$$

On appelle alors coefficients de Fourier réels de f les suite $(a_n(f))_{n\in\mathbb{N}}$ et $(b_n(f))_{n\in\mathbb{N}^*}$.

Calculer les coefficients de Fourier réels d'une fonction T-périodique f, c'est calculer $a_0(f)$ et pour tout $n \in \mathbb{N}$, les intégrales

$$a_n(f) = \frac{2}{T} \int_0^T f(t) \cos\left(\frac{2\pi nt}{T}\right) \mathrm{d}t \text{ et } b_n(f) = \frac{2}{T} \int_0^T f(t) \sin\left(\frac{2\pi nt}{T}\right) \mathrm{d}t.$$

Soit f une fonction réelle continue par morceaux et T-périodique. Si f est paire, alors pour tout $n \in \mathbb{N}^*$, $b_n(f) = 0$ et si f est impaire, alors pour tout $n \in \mathbb{N}$, $a_n(f) = 0$. Par ailleurs, si g est une autre fonction à valeurs réelles continue par morceaux et T-périodique et si $\lambda \in \mathbb{R}$, on a

$$\forall n \in \mathbb{N}, \quad a_n(f+g) = a_n(f) + a_n(g) \quad \text{et} \quad a_n(\lambda f) = \lambda a_n(f)$$

et

$$\forall n \in \mathbb{N}^*, \quad b_n(f+g) = b_n(f) + b_n(g) \quad \text{et} \quad b_n(\lambda f) = \lambda b_n(f).$$

Lien entre coefficients complexes et réels

Proposition

Soit f une fonction continue par morceaux et T-périodique. Pour tout $n\in\mathbb{Z}$, on a

$$c_n(f) = \begin{cases} a_0(f) \text{ si } n = 0 \\ \frac{1}{2}(a_n(f) - ib_n(f)) \text{ si } n > 0 \\ \frac{1}{2}(a_{-n}(f) + ib_{-n}(f)) \text{ si } n < 0. \end{cases}$$

Réciproquement, on a $c_0(f) = a_0(f)$,

$$\forall n \in \mathbb{N}^*, \quad a_n(f) = 2 \text{Re}(c_n(f)) = c_n(f) + c_{-n}(f)$$

et

$$\forall n \in \mathbb{N}^*, \quad b_n(f) = -2 \operatorname{Im}(c_n(f)) = i(c_n(f) - c_{-n}(f)).$$

Coefficients de Fourier et dérivation

Proposition

Soit f une fonction T-périodique, continue et \mathcal{C}^1 par morceaux On a alors

$$\forall n \in \mathbb{Z}, \quad c_n(f') = \frac{2i\pi n}{T} c_n(f), \quad a_0(f') = 0, \quad \forall n \geqslant 1, \quad \begin{cases} a_n(f') = \frac{2n\pi}{T} b_n(f) \\ b_n(f') = -\frac{2n\pi}{T} a_n(f). \end{cases}$$

En particulier, si on à déjà calculé les coefficients de Fourier d'une fonction f et que

l'on vous demande de calculer ceux de f^\prime , on ne se ${\sf Fatisue}$ pas à les calculer

