CORON: Plate-forme d'Extraction de Connaissances dans les Bases de Données

Baptiste Ducatel¹ Mehdi Kaytoue¹ Florent Marcuola¹ Amedeo Napoli¹ Laszlo Szathmary²

Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Campus Scientifique – BP 239 – 54506 Vandœuvre-lès-Nancy Cedex (France)
Département d'Informatique – Université du Québec à Montréal (UQAM)
C.P. 8888 – Succ. Centre-Ville, Montréal H3C 3P8 (Canada)
{Baptiste.Ducatel, KaytoueM, MarcuolF, Napoli}@loria.fr, Szathmary.L@gmail.com

Résumé

Conçu à l'origine pour une étude de cohorte, CORON est devenu une plate-forme de fouille de données à part entière, qui incorpore une riche collection d'algorithmes pour l'extraction de motifs (fréquents, fermés, générateurs, etc.) et la génération de règles d'association à partir de données binaires, ainsi que divers outils de pré- et post-traitements.

Mots Clef

Extraction de connaissances, fouille de données, motifs fréquents et rares, règles d'association

1 Aperçu

Né d'un besoin logiciel pour une étude de cohorte [1], CORON est maintenant une plate-forme logicielle d'extraction de connaissances à part entière, utilisée dans divers domaines, voir par exemple [4, 5, 6]. Destinée à un usage scientifique et pédagogique, la plate-forme CORON s'articule autour de plusieurs modules pour la préparation puis la fouille de données, le filtrage et l'interprétation des unités extraites. Ainsi, à partir de données binaires (possiblement issues d'une discrétisation), CORON permet d'extraire des motifs (fréquents, fermés, etc.) puis de générer des règles d'association (non redondantes, informatives, etc.). Le système englobe ainsi des algorithmes classiques mais aussi spécifiques et propres à la plateforme [9, 11]. CORON est librement disponible au téléchargement à http://coron.loria.fr. Essentiellement programmé en Java 6.0 et rédigé en anglais, il est compatible avec Unix/Mac/Windows et s'utilise en ligne de commande.

2 Architecture

CORON est structuré en divers modules dédiés à chaque étape du processus d'extraction de connaissances (Fig. 1).

Modules de pré-traitement. Ces modules offrent de nombreux outils de formatage et de manipulation des données brutes. Les données sont décrites par des tables binaires matérialisées sous forme tabulaire dans des fichiers

textes bruts : des individus en lignes possèdent ou non des propriétés en colonnes. Les opérations possibles sont principalement : (i) la discrétisation de données numériques, (ii) la conversion de format de fichiers, (iii) la création du complément et du transposé d'une table binaire, ou encore (iv) diverses opérations de projection de la table.

Modules de fouille de données. Découvrir des motifs ou des règles d'association est une tâche très populaire en fouille de données et plus généralement en intelligence artificielle. Par exemple, $A \to BE$, accompagnée de mesures comme le support et la confiance, permet de refléter les conditions dans lesquelles il est licite de dire "les individus qui ont la propriété A ont également les propriétés B et E". Pour construire ces règles, il faut généralement d'abord extraire des motifs d'intérêt. Un motif reflète les conditions dans lesquelles un ensemble de propriétés apparaît. Par exemple, le motif ABE peut être à l'origine de $A \to BE$.

Ainsi, les modules de fouille de données de CORON permettent respectivement

 l'extraction de motifs : fréquents, fermés fréquents, rares, générateurs, etc. à l'aide d'une collection d'algorithmes de la littérature s'appuyant sur différentes stratégies de parcours de l'espace de recherche (par niveau,

FIGURE 1 – Architecture de la plate-forme CORON, en relation avec les étapes du processus d'extraction de connaissances.

- profondeur, hybride).
- la génération de règles d'association : fréquentes, rares, fermées, informatives, minimales non redondantes réduites, de la base de Duquenne-Guigues, etc. Ces règles sont associées à un ensemble de mesures comme le support, la confiance, le lift et la conviction.
- la construction d'un treillis, structure sous-jacente de l'ensemble des motifs extraits, à partir d'une table binaire.

Modules de post-traitement. Les unités extraites dans l'étape précédente peuvent être très nombreuses et cacher de ce fait des unités intéressantes. Ainsi, diverses étapes permettent de les filtrer, de préférence en interaction avec un expert du domaine des données. L'analyste peut ainsi évaluer les résultats en utilisant un outil de filtrage (syntaxique ou fonction de la longueur des prémisses et conséquents des règles obtenues) ou en se concentrant sur les k meilleures unités extraites, en regard d'une mesure qu'il aura jugé pertinente. Un focus syntaxique est également possible par le biais d'un outil de colorisation des propriétés ciblées.

Boîte-à-outils. Finalement, des modules auxiliaires permettent, par exemple, la visualisation de classes d'équivalence, la génération aléatoire de jeux de données ou l'optimisation de la mémoire à solliciter pour le fonctionnement du programme.

3 CORON en pratique

Application aux études de cohorte. Le suivi de la cohorte "STANISLAS" a été conduit à Nancy, conjointement par une équipe de médecins (INSERM) et par des membres associés à la conception du système CORON. L'objectif de l'analyse était de caractériser le profil génétique associé au syndrome métabolique, un trouble regroupant des facteurs de risque prédisposant aux maladies cardiovasculaires et au diabète de type II. L'utilisation de la plate-forme CORON a permis de faire émerger un profil inédit : une personne possédant l'allèle rare pour le polymorphisme APOB71Thr/Ile serait plus fréquemment atteinte par le syndrome métabolique [1]. La méthodologie mise en place autour de cette première expérience est aujourd'hui affinée dans le cadre d'une seconde étude de cohorte. L'objectif est ici d'évaluer la valeur prédictive d'un acide aminé, l'homocystéine, dans l'apparition de maladies liées au vieillissement. Les données sont recueillies auprès d'une population rurale méditerranéenne, la cohorte OASI.

Autres applications. CORON est utilisé pour des tâches comme l'extraction de connaissances d'adaptation en raisonnement à partir de cas [4], l'étude de données d'expression de gènes [5], la comparaison de méthodes de construction de treillis de concepts à partir de données numériques avec et sans binarisation [10], la classification dynamique pour la recherche d'information sur le web [7], la recommandation de publicité sur internet [6], l'intégration de donnés biologiques [8] et bien sûr l'étude de cohortes [1].

4 Travaux en cours

Les travaux en cours concernent principalement l'intégration de CORON dans la plateforme de fouille Knime [2], dont la popularité est croissante. Ainsi, CORON bénéficiera de nombreux avantages (voir http://www.knime.org). L'intégration de méthodes d'extraction d'unités à partir de données complexes, sans discrétisation comme dans [10] pour les données numériques, est à l'étude. Enfin, un forum est mis en place pour recueillir lers retours d'expériences des utilisateurs de CORON (http://coron.loria.fr/forum/).

Références

- [1] L. Szathmary, S. Maumus, P. Petronin, Y. Toussaint et A. Napoli, Vers l'extraction de motifs rares. Actes de *Extraction et Gestion de connaissances (EGC), RNTI-E-6, Cépaduès-Éditions Toulouse*, pages 499–510, 2006
- [2] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Koetter, T. Meinl, P. Ohl, C. Sieb, and B. Wiswedel, Knime: The Konstanz Information Miner. Démonstration à *Knowledge Discovery in Databases (KDD)*, 2006
- [3] L. Szathmary, A. Napoli et P. Valtchev, Towards Rare Itemset Mining, IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pages 305–312, 2007
- [4] M. d'Aquin, F. Badra, S. Lafrogne, J. Lieber, A. Napoli et L. Szathmary, Case Base Mining for Adaptation Knowledge Acquisition. Actes de *International Joint Conference on Ar*tificial Intelligence (IJCAI), pages 750–755, 2007
- [5] M. Kaytoue, S. Duplessis et A. Napoli, Using Formal Concept Analysis for the Extraction of Groups of Coexpressed Genes. Actes de International Conference on Modelling, Computation and Optimization in Information Systems and Management Sciences (MCO), CCIS, Springer, 439–449, 2008
- [6] D. I. Ignatov et S. O. Kuznetsov, Concept-based Recommendations for Internet Advertisement. Actes de Concept Lattices and Their Applications (CLA), pages 157–166, 2008
- [7] E. Nauer et Y. Toussaint, Classification dynamique par treillis de concepts pour la recherche d'information sur le web. Actes de *5ème conférence de recherche en information et applications (CORIA)*, pages 71–86, 2008
- [8] A. Coulet, M. Smaïl-Tabbone, P. Benlian, A. Napoli et M.-D. Devignes, Ontology-guided data preparation for discovering genotype-phenotype relationships. *BMC Bioinformatics*, Vol. 9, 2008
- [9] L. Szathmary, P. Valtchev, A. Napoli et R. Godin, Constructing Iceberg Lattices from Frequent Closures Using Generators, Actes de *International Conference on Discovery Science (DS), LNCS 5255, Springer*, pages 136–147, 2008
- [10] M. Kaytoue, S. Duplessis, S. O. Kuznetsov et A. Napoli, Two FCA-Based Methods for Mining Gene Expression Data, Actes de *International Conference on Formal Concept Analysis (ICFCA)*, LNCS 5548, Springer, pages 251–266, 2009
- [11] L. Szathmary, P. Valtchev, A. Napoli et R. Godin, Efficient Vertical Mining of Frequent Closures and Generators, Actes de *International Symposium on Intelligent Data Analysis (IDA), LNCS, Springer*, pages 393–404, 2009