Voice Coil Actuator

Suresh Devasahayam Department of Bioengineering Christian Medical College, Vellore

Lecture - Outline

- Magnetic Circuits
- Voice Coil

Force Actuators - Electromagnetic actuator

- EMF in a coil
- EMF in a moving conductor
- Force on a conductor
- Magnetomotive force

$$V = -N \frac{d\phi}{dt}$$

$$V = -Bul$$

$$F=B I l$$

$$M=N I$$

Magnetic Circuit equivalent

Electrical quantity			Magnetic quantity		
Name	Symbol	Unit	N am e	Symbol	Unit
Electromotive force	V	V, (volts)	Magnetomotive force	M	Amp-turns
Electric field	E = V/l	V/m	Magnetic field intensity	H=M / l	Amp-turns/m
Current density	J = I/A	Am p/ m ²	Magnetic flux density	В	Weben/m²
Current	I	Amp	Magnetic flux	$\Phi = B.A$	Weber
Resistance	$R = V/I$ $R = \rho \frac{l}{A}$	Ω=Ohm=Volt/Amp	Reluctance	$R = M/\Phi$ 1. $R = \frac{1}{\mu} \frac{l}{A}$ 2. $R = \frac{H_c l_m}{B_r A_m}$	Amp-turns/Weber

Field-Flux characteristics of a permanent magnet

 B_s =Saturation flux density

 B_r = Retentivity flux density

 H_c = Coercive field intensity

- Permanent magnets B_rH_c = figure of merit (is large)
 - Steel, Ferrite: B_rH_c=9
 - Alnico: $B_r H_c = 62400$
 - Ne-Fe-B: B_rH_c=240000
- For electromagnets hysteresis (B_rH_c) should be small

Magnetic circuits

$$\phi = \frac{M_m}{R_m + R_g} \cdot R_g$$

$$R_m = \frac{M_m}{\Phi} = \frac{H_c l_m}{B_m A_m}$$

$$R_{m} = \frac{M_{m}}{\Phi} = \frac{NI}{B_{m}A_{m}}$$

$$R_g = \frac{1}{\mu_o} \frac{l_g}{A_g}$$

Voice coil - actuator

Magnetic circuit of voice coil

Reluctance of magnet

$$R_m = \frac{H_c}{B_r} \frac{l_m}{A_m}$$

Reluctance of pole piece

$$R_p = \frac{1}{\mu} \frac{l_p}{A_p} \qquad A_p = \pi d_1^2$$

Reluctance of air gap

$$R_g = \frac{1}{\mu_o} \frac{l_g}{A_g}$$

$$A_g = \pi d_g h_g$$

Flux in air gap

$$\phi_g = \frac{H_c l_m}{R_m + R_p + R_g}$$

Flux density in air gap

$$B_{g} = \frac{\Phi_{g}}{A_{g}} = \frac{H_{c} l_{m}}{R_{m} + R_{p} + R_{g}} \frac{1}{A_{g}}$$

Force developed by the voice coil

Force on the coil

$$F(t) = B_g \cdot I_c(t) \cdot l_c$$

Laplace transform

$$F(s) = B_g \cdot l_c \cdot I_c(s)$$

Length of conductor in coil

$$l_c = \pi d_g N$$

Electrical Excitation of voice coil

Excitation voltage

$$V_e(s) = I(s) Z_e(s)$$

 $V_b(s) = B_a l_c u(s)$

- Back emf due to movement
- Total Applied Voltage

$$V(s) = V_e(s) + V_b(s)$$

= $I(s)Z_e(s) + B_s l_c u(s)$

Electrical Equivalent

$$F(t) = m\dot{u}(t) + k_b u(t) + k_1 \int u(t) dt$$

$$u(s) = F(s) / [ms + k_b + k_1 / s]$$

$$u(s) = \frac{B_g l_c I(s)}{ms + k_b + k_1 / s}$$

$$V(s) = V_e(s) + V_b(s) = I(s)Z_e(s) + I(s)\frac{B_g^2 l_c^2}{ms + k_b + k_1/s}$$

Equivalent Electrical Impedance due to mechanical components

$$\frac{V_b(s)}{I(s)} = -B_g^2 l_c^2 Z_m(s)$$

Using a transformer representation

$$V_2 = k V_1$$
, $I_2 = \frac{I_1}{k}$, $\frac{V_2}{I_2} = k^2 \frac{V_1}{I_1}$, $Z_L = \frac{V_2}{I_2}$, $\frac{V_1}{I_1} = \frac{Z_L}{k^2}$

Servo Motor

Application of Servo motor in Haptics

Haptics – Feeling in Medical Devices

End of Lecture