

Calcolo Differenziale

Eugenio Montefusco

24. Ottimizzazione in più variabili

Ottimizzazione

Teorema di Weierstrass.

Sia $D \subseteq \mathbb{R}^2$ un insieme chiuso e limitato e sia $f: D \longrightarrow \mathbb{R}$ una funzione continua,

Teorema di Weierstrass.

Sia $D \subseteq \mathbb{R}^2$ un insieme chiuso e limitato e sia $f:D \longrightarrow \mathbb{R}$ una funzione continua, allora esistono due punti $x^*, x_* \in D$ tali che

$$f(x^*) = \max_{D}(f)$$
 $f(x_*) = \min_{D}(f)$

Ottimizzazione in più variabili

Teorema.

Sia $f:D\subseteq \mathbb{R}^2\longrightarrow \mathbb{R}$ una funzione differenziabile, se $P_0=(x_0,y_0)\in D$ è un punto stazionario di f allora

Ottimizzazione in più variabili

Teorema.

Sia $f:D\subseteq \mathbb{R}^2\longrightarrow \mathbb{R}$ una funzione differenziabile, se $P_0=(x_0,y_0)\in D$ è un punto stazionario di f allora

$$\nabla f(P_0) = 0$$
 oppure $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$

Esercizio. Si determini il punto del piano $\pi : \{z = x + y - 1\} \subseteq \mathbb{R}^3$ più vicino al punto Q(2, 1, -1).

$$\pi: \{z = x + y - 1\} \subseteq \mathbb{R}^3$$
 più vicino al punto $Q(2, 1, -1)$.

$$d(P(x, y, z), Q) = \sqrt{(x-2)^2 + (y-1)^2 + (z+1)^2}$$
, inoltre $P(x, y, x+y-1)$ da cui

$$\pi: \{z = x + y - 1\} \subseteq \mathbb{R}^3$$
 più vicino al punto $Q(2, 1, -1)$.

$$d(P(x, y, z), Q) = \sqrt{(x-2)^2 + (y-1)^2 + (z+1)^2}$$
, inoltre $P(x, y, x+y-1)$ da cui

$$d^{2}(P,Q) = F(x,y) = (x-2)^{2} + (y-1)^{2} + (x+y)^{2} \quad (x,y) \in \mathbb{R}^{2}$$

$$\pi: \{z = x + y - 1\} \subseteq \mathbb{R}^3$$
 più vicino al punto $Q(2, 1, -1)$.

$$d(P(x, y, z), Q) = \sqrt{(x-2)^2 + (y-1)^2 + (z+1)^2}$$
, inoltre $P(x, y, x + y - 1)$ da cui

$$d^{2}(P,Q) = F(x,y) = (x-2)^{2} + (y-1)^{2} + (x+y)^{2} \quad (x,y) \in \mathbb{R}^{2}$$

$$F_x(x, y) = 0$$
 $2(x-2) + 2(x + y) = 0$
 $F_y(x, y) = 0$ $2(y-1) + 2(x + y) = 0$
 $x = 1$ $y = 0$

$$\pi: \{z = x + y - 1\} \subseteq \mathbb{R}^3$$
 più vicino al punto $Q(2, 1, -1)$.

$$d(P(x, y, z), Q) = \sqrt{(x-2)^2 + (y-1)^2 + (z+1)^2}$$
, inoltre $P(x, y, x+y-1)$ da cui

$$d^{2}(P,Q) = F(x,y) = (x-2)^{2} + (y-1)^{2} + (x+y)^{2} \quad (x,y) \in \mathbb{R}^{2}$$

$$F_x(x, y) = 0$$
 $2(x-2) + 2(x + y) = 0$
 $F_y(x, y) = 0$ $2(y-1) + 2(x + y) = 0$
 $x = 1$ $y = 0$

quindi $P_{min}(1,0,0)$

Esercizi

Esercizio. Determinare la scatola (senza coperchio) di volume massimo ricavabile da $12m^2$ di cartone?

Esercizi

Esercizio. Determinare la scatola (senza coperchio) di volume massimo ricavabile da 12m² di cartone?

Siano x, y, z > 0 le dimensioni della scatola, cerchiamo il massimo di V(x, y, z) = xyz sapendo che xy + 2xz + 2yz = 12

Esercizio. Determinare la scatola (senza coperchio) di volume massimo ricavabile da 12m² di cartone?

Siano x, y, z > 0 le dimensioni della scatola, cerchiamo il massimo di V(x, y, z) = xyz sapendo che xy + 2xz + 2yz = 12

$$F(x,y) = V\left(\frac{2(6-yz)}{y+2z}, y, z\right) = \frac{2yz(6-yz)}{y+2z} \quad (y,z) \in \mathbb{R}^2$$

Esercizio. Determinare la scatola (senza coperchio) di volume massimo ricavabile da 12m² di cartone?

Siano x, y, z > 0 le dimensioni della scatola, cerchiamo il massimo di V(x, y, z) = xyz sapendo che xy + 2xz + 2yz = 12

$$F(x,y) = V\left(\frac{2(6-yz)}{y+2z}, y, z\right) = \frac{2yz(6-yz)}{y+2z} \quad (y,z) \in \mathbb{R}^2$$

$$\nabla F(x,y) = \left(\frac{2z^2(12-y^2-4yz)}{(y+2z)^2}, \frac{4y^2(3-z^2-yz)}{(y+2z)^2}\right) = (0,0)$$

Esercizio. Determinare la scatola (senza coperchio) di volume massimo ricavabile da 12m² di cartone?

Siano x, y, z > 0 le dimensioni della scatola, cerchiamo il massimo di V(x, y, z) = xyz sapendo che xy + 2xz + 2yz = 12

$$F(x,y) = V\left(\frac{2(6-yz)}{y+2z}, y, z\right) = \frac{2yz(6-yz)}{y+2z} \quad (y,z) \in \mathbb{R}^2$$

$$\nabla F(x,y) = \left(\frac{2z^2(12-y^2-4yz)}{(y+2z)^2}, \frac{4y^2(3-z^2-yz)}{(y+2z)^2}\right) = (0,0)$$

la cui soluzione è $(x_{max}, y_{max}, z_{max}) = (2, 2, 1)$

Siccome $P(x, x^2)$ e Q(y, y - 2) abbiamo che

$$H(x, y) = (x - y)^2 + (x^2 - y + 2)^2$$
 $(x, y) \in \mathbb{R}^2$

Siccome $P(x, x^2)$ e Q(y, y - 2) abbiamo che

$$H(x, y) = (x - y)^2 + (x^2 - y + 2)^2 \quad (x, y) \in \mathbb{R}^2$$

 $\nabla H(x, y) = (4x^3 - 4xy + 10x - 2y, 4y - 2x^2 - 2x - 4) = (0, 0)$

Siccome $P(x, x^2)$ e Q(y, y - 2) abbiamo che

$$H(x,y) = (x-y)^2 + (x^2 - y + 2)^2 \quad (x,y) \in \mathbb{R}^2$$
$$\nabla H(x,y) = (4x^3 - 4xy + 10x - 2y, 4y - 2x^2 - 2x - 4) = (0,0)$$

da cui si trova $P_{min}(1/2, 1/4)$ e $Q_{min}(11/8, -5/8)$

Esercizi

Esercizio. Assegnata un insieme di punti nel piano $\{P_k\}_{k01,...,n}$ si trovi il punto Q tale che sia minima la somma delle distanze dai punti assegnati.

Esercizio. Assegnata un insieme di punti nel piano $\{P_k\}_{k01,...,n}$ si trovi il punto Q tale che sia minima la somma delle distanze dai punti assegnati.

Supponiamo che $P_k(x_k, y_k)$, allora abbiamo che

$$d(x,y) = \sum_{k=1}^{n} \left[(x - x_k)^2 + (y - y_k)^2 \right] \qquad (x,y) \in \mathbb{R}^2$$

Esercizio. Assegnata un insieme di punti nel piano $\{P_k\}_{k01,...,n}$ si trovi il punto Q tale che sia minima la somma delle distanze dai punti assegnati.

Supponiamo che $P_k(x_k, y_k)$, allora abbiamo che

$$d(x,y) = \sum_{k=1}^{n} \left[(x - x_k)^2 + (y - y_k)^2 \right] \qquad (x,y) \in \mathbb{R}^2$$

$$\nabla d(x,y) = 2 \left(nx - \sum_{k=1}^{n} x_k, ny - \sum_{k=1}^{n} y_k \right)$$

Esercizio. Assegnata un insieme di punti nel piano $\{P_k\}_{k01,\dots,n}$ si trovi il punto Q tale che sia minima la somma delle distanze dai punti assegnati.

Supponiamo che $P_k(x_k, y_k)$, allora abbiamo che

$$d(x,y) = \sum_{k=1}^{n} \left[(x - x_k)^2 + (y - y_k)^2 \right] \qquad (x,y) \in \mathbb{R}^2$$

$$\nabla d(x,y) = 2\left(nx - \sum_{k=1}^{n} x_k, ny - \sum_{k=1}^{n} y_k\right)$$

quindi il punto ottimale è
$$Q_{min} = \left(\frac{1}{n}\sum_{k=1}^{n}x_k, \frac{1}{n}\sum_{k=1}^{n}y_k\right)$$

Esercizi

Esercizio. Tra tutte le scatole aventi lunghezza degli spigoli *L*, si individui quella di volume massimo.

Esercizio. Tra tutte le scatole aventi lunghezza degli spigoli *L*, si individui quella di volume massimo.

Detti x, y, z > 0 gli spigoli, cerchiamo il massimo di V(x, y, z) = xyz, sapendo che x + y + z = L e che x, y > 0 e che z = L - x - y > 0 cioè x + y < L

Esercizio. Tra tutte le scatole aventi lunghezza degli spigoli *L*, si individui quella di volume massimo.

Detti x, y, z > 0 gli spigoli, cerchiamo il massimo di V(x, y, z) = xyz, sapendo che x + y + z = L e che x, y > 0 e che z = L - x - y > 0 cioè x + y < L

$$F(x,y) = (L - x - y)xy \qquad (x,y) \in \mathbb{R}^2$$
$$\nabla F(x,y) = (y(L - 2x - y), x(L - x - 2y)) = (0,0)$$

Esercizio. Tra tutte le scatole aventi lunghezza degli spigoli *L*, si individui quella di volume massimo.

Detti x, y, z > 0 gli spigoli, cerchiamo il massimo di V(x, y, z) = xyz, sapendo che x + y + z = L e che x, y > 0 e che z = L - x - y > 0 cioè x + y < L

$$F(x,y) = (L - x - y)xy \qquad (x,y) \in \mathbb{R}^2$$
$$\nabla F(x,y) = (y(L - 2x - y), x(L - x - 2y)) = (0,0)$$

la cui soluzione è $(x_{max}, y_{max}, z_{max}) = (L/3, L/3, L/3)$

$$V_{\text{max}} = \frac{L^3}{27}$$

Esercizi

Esercizio. Si trovi il punto del triangolo di vertici (0,0), (1,0) e (0,1) più lontano dall'origine degli assi.

Esercizio. Si trovi il punto del triangolo di vertici (0,0), (1,0) e (0,1) più lontano dall'origine degli assi.

$$d(x, y) = x^2 + y^2$$
 $T = \{x, y \ge 0, x + y \le 1\}$
 $\nabla d = 2(x, y) = (0, 0)!!!$

Esercizio. Si trovi il punto del triangolo di vertici (0,0), (1,0) e (0,1) più lontano dall'origine degli assi.

$$d(x, y) = x^2 + y^2$$
 $T = \{x, y \ge 0, x + y \le 1\}$
 $\nabla d = 2(x, y) = (0, 0)!!!$

