Tarea 13 - Métodos numéricos Giovanni Gamaliel López Padilla

Problema 1

Implementa y evalúa las siguientes integrales usando la regla compuesta de Simpson 3/8 para $n=\{3,6,9,12,15\}$ y muestra una gráfica de n contra el valor absoluto del error.

El integrando de f(x) puede aproximarse como:

$$\int_{a}^{b} f(x) = \frac{3h}{8} \sum_{i=1}^{n/3} f(x_{3i-3}) + 3f(x_{3i-2}) + 3f(x_{3i-1}) + f(x_{3i})$$
 (1)

$$\int_{-1}^{1} e^x dx \tag{2}$$

Usando la aproximación de Simpson (ecuación 1) se obtuvieron los resultados mostrados en la tabla 1 y en la figura 1.

Puntos	Resultado	Diferencia
3	2.355648	0.005246
6	2.350756	0.000354
9	2.350473	0.000071
12	2.350425	0.000023
15	2.350412	0.000010

Tabla 1: Resultados y diferencia absoluta del algoritmo de la regla compuesta de Simpson 3/8 para diferentes valores de puntos dados.

(a) Resultados de la integral usando el algoritmo de la regla compuesta de Simpson.

(b) Diferencia absoluta entre el algoritmo de Simpson y el valor análitico.

Figura 1: Resultados usando el algoritmo de la regla compuesta de Simpson 3/8 con la ecuación 2.

$$\int_{-1}^{1} \frac{1}{x^2 + 1} dx \tag{3}$$

Usando la aproximación de Simpson (ecuación 1) se obtuvieron los resultados mostrados en la tabla 2 y en la figura 2.

Puntos	Resultado	Diferencia
3	1.600000	2.920367e-02
6	1.569231	1.565327e-03
9	1.570850	5.367321e-05
12	1.570792	4.326795 e-06
15	1.570796	3.267949e-07

Tabla 2: Resultados y diferencia absoluta del algoritmo de la regla compuesta de Simpson 3/8 para diferentes valores de puntos dados.

(a) Resultados de la integral usando el algorit- (b) Diferencia absoluta entre el algoritmo de mo de la regla compuesta de Simpson. Simpson y el valor análitico.

Figura 2: Resultados usando el algoritmo de la regla compuesta de Simpson 3/8 con la ecuación 3.

Considerando las figuras 1 y 2 se observa que a un mayor número de puntos se obtiene una mejor aproximación al valor análitico de la integral.

Problema 2

Implementa el algoritmo de Newton para calcular las raices del polinomio de Legendre $P_n(x)$

$$x_{i+1} = x_i - \frac{P_n(x_i)}{P'_n(x_i)}$$

Usando como puntos iniciales

$$x_0 = \cos\left(\frac{\pi(k+0.75)}{n+0.5}\right)$$
 $k = 0, 1, 2, \dots, n$

Problema 3

Implemente el algorito de cuadratura de Gauss-Legendre y evalua las integrales usando $2,\,4$ y 10 nodos.

Figura 3

Figura 4