Model Building on the Chicago Redline Dataset: Predicting FAIR Plan Renewals

Oscar Sucre: Team Coordinator, Abstract, Results Anisha Lal: Models, Work Cited, Methods Alan Wu: Code, Discussion Avi Kodali: Introduction, Code

12/6/22

Abstract

Our goal for this project was to find the best model to predict the FAIR model plan for chicago insurance redlining. We used the chredlin dataset from the faraway library package. This dataset is from a 1970's study on the relationship between insurance redlining in Chicago with the variables of race, fire, theft, age, income, side (north or south), and involact which is the response for our models being the new FAIR plan policies and renewals per 100 housing units. This insurance is for housing units in Chicago that are at risk for redlining, which means they are rejected for insurance because they are in a high risk/low income area. We utilized partial regression plots and residuals vs fitted values to analyze the full model. The models were built using all possible regressions, best subset regressions, and stepwise regression procedures. K-fold cross validation was used to validate the models.

Introduction

Using race, fire, theft, age, income, and sides, we wanted to build the best model that would predict the number of new FAIR plan policies and renewals per 100 housing units(involact). To identify the best model, we wanted to find the model that maximized adjusted R^2 and minimized MSE(mean squared error). Adjusted R^2 explains how much of the variance in involact is explained by the regressors we use (while also accounting for the number of regressors included in the model). MSE is the average of the square of the errors, the error being the difference between the values predicted by the model and the actual values. So the best model would be one that explains as much variance in the model as possible, while not deviating from the actual trends in the data. The first step in finding the best model was first to build a

model that included all of the regressors (the full model). Then, we used various regression techniques to find which regressors are more important in predicting involact. The first procedure was the all possible regressions procedure, which outputs all possible regression models with one regressor, then all possible regression models with two regressors, then all possible regression models with three regressors, and so on until all possible combinations of regressors are found and outputted. The next procedure was the best subsets regression, which outputs the best model with one regressor, the best model with two regressors, the best model with three regressors, and so on until the full model is reached. The final regression technique was the stepwise regression procedures. Stepwise regression involves adding and/or removing regressors to the model based on some threshold and parameter until the best model is reached. Within stepwise regression, we used forward selection, backward elimination, and bidirectional regression. To analyze the resulting models, we looked at the residual plots for each model, as well as the corresponding diagnostic measures (adjusted R^2 , Mallow's Cp, Akaike information criterion, etc.). After identifying the best models from the regression analysis, we used k-folds cross-validation to see the out-of-sample performance of the model and make sure there was no overfitting.

Materials and Methods

Variables and Regressors

Response Variable Y: involact (new FAIR plan policies and renewals per 100 housing units)

X1: race (racial composition in percent minority)

X2: fire (fires per 100 housing units)

X3: theft (theft per 1000 population)

X4: age (percent of housing units built before 1939)

X5: income (median family income in thousands of dollars)

X6: sides (North or South side of Chicago)

Procedure

- 1. Conduct exploratory analysis on the full model
- 2. Look through all possible regressions and best subset regressions
- 3. Perform forward, backward, and stepwise regression methods
- 4. Select best two models and utilize K-fold Cross Validation to validate model

Methods

OLS Regression: This is used to determine the coefficients of a linear regression equation to describe the relationship between our independent variables (race, fire, theft, age, income, and side) against our dependent variable (involact).

Forward Selection: This is a type of stepwise regression where an independent variable is added to improve the model at each step. This process was performed in R using the function ols_step_forward_p.

Backward Elimination: This is a type of stepwise regression where an independent variable is removed from a full starting model at each step. This process is repeated until removing variables does not make the model better anymore. This process was performed in R using the function ols_step_backwards_p.

Both Directions: This is a stepwise regression that is a combination of forward and backward selection. We start with a blank model and then add variables at each step if it makes the model better. This process was performed in R using the function ols step both p.

All Possible Regressions: This is a regression with all possible variations of the model that are possible to exist. Since there are 8 variables in the data set there are 2⁶ possible combinations to be tested.

RMSE: This is the standard deviation of the residuals to show the spread of these data points from the regression line.

Adjusted R^2 : This is a modified version of R^2 that is adjusted for the number of predictors in the model.

K-Fold Cross Validation: This is a resampling procedure where there are k number of groups that the data sample is split into. This method evaluates the performance of model on different subsets of training data then calculates the average prediction error.

K-Fold Repeated Cross Validation: This is a K-Fold Cross Validation where we repeat the process of splitting the data into K-folds multiple times and take the mean error to give you the final model error. We did 10 repeats with 5 folds.

Results

```
call:
lm(formula = involact ~ race + fire + theft + age + income +
    side, data = chredlin)
Residuals:
              1Q
                   Median
                                3Q
-0.83562 -0.16506 -0.02719 0.17675 0.80848
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.629092  0.511993 -1.229  0.22636
                                3.374 0.00166 **
4.523 5.33e-05 ***
                      0.002638
race
            0.008900
fire
                      0.008638
            0.039070
theft
           -0.010210
                      0.002922 -3.494 0.00118 **
            0.008419
                     0.002919 2.884 0.00629 **
age
            0.024696 0.032092 0.770 0.44609
income
sides
            0.024031
                     0.125054
                                0.192 0.84859
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3391 on 40 degrees of freedom
Multiple R-squared: 0.7511, Adjusted R-squared: 0.7137
F-statistic: 20.11 on 6 and 40 DF, p-value: 1.124e-10
```

#resiudals vs fitted values, leverage, normal qq plot
plot(lmod)

#plot of partial regression plots
avPlots(lmod,print_plot=TRUE)

Model Selection and Building

#find the best subsets model for each number of regressors
bestsubset <- ols_step_best_subset(lmod)
bestsubset</pre>

> bestsubset

Best Subsets Regression

Model Index	Predictors
1 2	race race fire
3	race fire theft
4	race fire theft age
5	race fire theft age income
6	race fire theft age income side

Subsets Regression Summary

Model	R-Square	Adj. R-Square	Pred R-Square	C(p)	AIC	SBIC	SBC	MSEP	FPE	HSP	APC
1	0.5094	0.4985	0.4611	35.8205	62.0324	-73.2887	67.5828	9.4685	0.2100	0.0046	0.5342
2	0.6303	0.6135	0.5361	18.4083	50.7436	-83.9771	58.1442	7.3026	0.1652	0.0036	0.4202
3	0.6932	0.6718	0.6211	10.2921	43.9701	-89.7865	53.2208	6.2033	0.1431	0.0031	0.3639
4	0.7472	0.7231	0.6717	3.6204	36.8759	-94.9831	47.9767	5.2367	0.1231	0.0027	0.3130
5	0.7508	0.7204	0.6628	5.0369	38.1959	-93.1578	51.1469	5.2905	0.1266	0.0028	0.3221
6	0.7511	0.7137	0.6518	7.0000	40.1525	-90.8389	54.9537	5.4212	0.1321	0.0029	0.3361

#find all possible regressions

allpossible <- ols_step_all_possible(lmod) allpossible</pre>

	-						
	Index		Predictors			Adj. R-Square	
1	1	1				0.4985435890	35.820540
2	2	1			49426488		38.259595
5		1	income	0.	44202173		
4	4				22631819		
6	5				03815180	0.0167773947	111.546108
3	6				02238939	0.0006647144	114.078752
7	7		race fire			0.6134546099	
9	8				60351278	0.5854906358	
14	9		fire income			0.5638384994	26.033780
12	10		fire theft			0.5594955201	
10	11		race income			0.5418762647	29.409162
13	12				53590745	0.5148123307	
15	13		fire side			0.5112053620	
11	14		race side			0.5033284395	
8	15		race theft			0.4883223366	
19	16		age income			0.4390577220	45.211372
21	17		income side			0.4216718836	47.883406
17	18		theft income			0.4179539978	48.454809
20	19				32366083	0.2929181401	67.671604
16	20		theft age			0.1911533627	
18	21		theft side			0.0321990809	
22	22		race fire theft			0.6718178973	10.292070
23	23		race fire age			0.6476771705	
24	24		race fire income			0.6194476213	
32	25		fire theft age			0.6106633586	
33	26		fire theft income			0.6066138963	
25	27		race fire side			0.6044708531	
26	28		race theft age			0.5915661077	
29	29		race age income			0.5833015794	
30	30		race age side			0.5759034315	24.698165
36	31		fire age side			0.5728576283	25.155636
37	32		fire income side			0.5710064328	25.433681
34	33		fire theft side			0.5681008530	25.870091
35	34		fire age income			0.5638212283	26.512879
31	35		race income side			0.5391081678	
27	36		race theft income			0.5322731683	
28	37		race theft side			0.4988201493	
41	38		age income side			0.4464907154	
38	39		theft age income			0.4260350083	
40	40		theft income side			0.4111760383	
39	41	3	theft age side	0.	32512689	0.2780427248	69.436042

forward <- ols_step_forward_p(lmod) plot(forward)</pre>

Selection Summary

Step	Variable Entered	R-Square	Adj. R-Square	C(p)	AIC	RMSE		
1 2 3 4	race fire theft age	0.5094 0.6303 0.6932 0.7472	0.4985 0.6135 0.6718 0.7231	35.8205 18.4083 10.2921 3.6204	62.0324 50.7436 43.9701 36.8759	0.4488 0.3941 0.3631 0.3335		

backward <- ols_step_backward_p(lmod)plot(backward)

Elimination Summary

Step	Variable Removed	R-Square	Adj. R-Square 	AIC RMSE		
1	side	0.7508	0.7204	5.0369	38.1959	0.3351
2	income	0.7472	0.7231	3.6204	36.8759	0.3335

stepwise <- ols_step_both_p(lmod) plot(stepwise)</pre>

Model validation with models that seem satisfactory using repeated 5 fold cross validation. Compare the model chosen from the forward/stepwise/backward and the model with the second lowest mallow's Cp

```
> modela <- lm(involact ~ race + fire + theft + age, data=chredlin)</pre>
> modelb <- lm(involact ~ race + fire + theft + age + income, data = chredlin)
> train.control <- trainControl(method="repeatedcv", number = 5, repeats = 10)</pre>
> cva <- train(involact ~ race + fire + theft + age, data=chredlin,</pre>
                    method="lm",trControl = train.control)
> cvb <- train(involact ~ race + fire + theft + age + income, data=chredlin,</pre>
                    method="lm", trControl = train.control)
> cva
Linear Regression
47 samples
4 predictor
No pre-processing
Resampling: Cross-Validated (5 fold, repeated 10 times)
Summary of sample sizes: 38, 37, 39, 37, 38, ...
Resampling results:
  RMSE
             Rsquared
                        MAE
  0.3511793 0.7171805 0.2706628
Tuning parameter 'intercept' was held constant at a value of TRUE
> cvb
Linear Regression
47 samples
 5 predictor
No pre-processing
Resampling: Cross-Validated (5 fold, repeated 10 times)
Summary of sample sizes: 38, 37, 38, 38, 37, 38, ...
Resampling results:
  RMSE
             Rsquared
                        MAE
  0.3646109 0.7204078 0.2817486
Tuning parameter 'intercept' was held constant at a value of TRUE
```

Discussion

When choosing a satisfactory model to predict the Chicago FAIR plan renewals to combat redlining, we took into consideration metrics adjusted R^2 , Mallow's Cp, and RMSE. Having three metrics removes the bias of R^2 increasing when adding more regressors to the model and Mallow's Cp allows us to analyze the effect of bias on the model we choose. The initial full model yielded an adjusted R^2 of 0.7137 and Cp value of 7.0. This means that about 70% of the variation in the data can be explained by the model. And since p + 1 = 7, the Mallow's Cp shows no bias. However, when taking a deeper look at the regressors and their impact on the model, we realized that we did not need all regressors.

When performing forwards selection, backwards elimination, and stepwise selection, the result was the same with 4 regressors: race, fire, theft, and age. The RMSE of this model was 0.35. While this model was clearly the best model to use, since it was the same model selected by all three selection procedures and also included in the best subset regressions selection, we wanted to validate and compare this model to another model. The second lowest Mallow's Cp value close to the number of predictors in that model was the model that had all regressors except sides.

We conducted k-fold repeated cross validation with 5 folds and 10 repeats to eliminate error in resampling. We compared model A, the model with 4 regressors, and model B, the model with 5 predictors. Although the R^2 for model B was slightly greater than model A, we can attribute this to model B having a greater amount of regressors, which would make R^2 increase. This is true because when we look at both RMSE and MAE for model A, they are lower than model B, indicating model A has greater predictive power and fits the data better than model B.

Ultimately, we decided to go with model A as it yielded the greatest values for metrics RMSE, adjusted R^2 , and Mallow's Cp when compared to other models in all possible regressions.

Works Cited

Chapter 10.pdf, Lecture 10 (October 22 2022)

CrossValidationOverview.pdf, Lecture 10 (November 1 2022)

James, Gareth, et al. An Introduction to Statistical Learning: with Applications in R Springer, 2017.

Linear Models with R, Julian J. Faraway, (Taylor, 2nd, 2014)