



الما من المنطب ا



## I Excel



## IN

# **Mathematics Geometry**

Name: Class: G8

## Second Term

**Prepared by:** 

**Math Department** 



#### Lesson 1

#### The equality of areas of parallelogram

## Complete each of the following:

If the area of  $\triangle 7$  ABCD = 400 cm<sup>2</sup>, ١.





If the area of  $\square$  ABCD = 600 cm<sup>2</sup>.

then 
$$CD = \cdots cm$$
.

$$BE = \cdots cm$$
.

۲.



## In the opposite figure:

ABCD is a parallelogram and  $E \in \overrightarrow{AD}$ 

#### ٣. Complete the following:

- 1 The area of  $\triangle$  EBC = ..... the area of  $\square$  ABCD



## In the opposite figure:

- ABCD is a parallelogram, AE = 4 cm., ED = 3 cm.٤.  $_{9}$  m ( $\angle$  AED) = 90° and E  $\in$  BC Complete :
  - 1 The area of  $\triangle$  AED = ...... cm<sup>2</sup>



## In the opposite figure:

ABCD is a parallelogram in which, BC = 6 cm.,  $\overline{DB} \perp \overline{BC}$ , such that DB = 8 cm. and  $E \in \overline{AD}$ 

## Complete:

٥.

1 The area of  $\triangle$  ABCD = ....... cm<sup>2</sup> The area of  $\triangle$  EBC = ...... cm<sup>2</sup>.



| C | choose the                                                                                                                 | correct ansv                                                                                                           | ver :                    |                 |                        |  |  |
|---|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|------------------------|--|--|
|   | If the base length of a parallelogram is 7 cm. and the corresponding height is 4 cm., then its area =                      |                                                                                                                        |                          |                 |                        |  |  |
|   | (a) 11 cm <sup>2</sup> .                                                                                                   | (b) 14 cm <sup>2</sup> .                                                                                               | (c) 22 (                 | cm <sup>2</sup> | (d) 28 cm <sup>2</sup> |  |  |
|   | If the area of a parallelogram is 35 cm <sup>2</sup> and its height is 5 cm., then the length of the corresponding base is |                                                                                                                        |                          |                 |                        |  |  |
|   | (a) 5 cm.                                                                                                                  | (b) 7 cm.                                                                                                              | (c) 9 cm                 | n.              | (d) 30 cm.             |  |  |
|   | _                                                                                                                          | oarallelogram in which                                                                                                 |                          | C = 10 cm       | . and its smaller      |  |  |
|   | (a) 2 cm.                                                                                                                  | (b) 4 cm.                                                                                                              | (c) 8 c                  | m.              | (d) 10 cm.             |  |  |
|   | corresponding                                                                                                              | m whose area = 50 cm<br>height, then this height                                                                       | ght =                    | -               |                        |  |  |
|   | (a) 50 cm.                                                                                                                 | (b) 25 cm.                                                                                                             | (c) 10 c                 | cm.             | (d) 5 cm.              |  |  |
|   |                                                                                                                            | een the area of the pa<br>n and are included be                                                                        | _                        |                 | •                      |  |  |
|   | (a) 1:2                                                                                                                    | (b) 1:3                                                                                                                | (c) 2:1                  | (d)             | 2:3                    |  |  |
|   |                                                                                                                            | If the area of the triangle is 42 cm <sup>2</sup> and its height = 7 cm. • then the length of the corresponding base = |                          |                 |                        |  |  |
|   | (a) 15 cm.                                                                                                                 | (b) 12 cm.                                                                                                             | (c) 8 cm.                | (d) 4           | 4 cm.                  |  |  |
|   | The area of a right-angled triangle in which the lengths of the sides of the right angle are 6 cm. and 9 cm. equals        |                                                                                                                        |                          |                 |                        |  |  |
|   | (a) 54 cm <sup>2</sup>                                                                                                     | (b) $60 \text{ cm}^2$                                                                                                  | (c) 27 cm <sup>2</sup> . | (d)             | 15 cm <sup>2</sup>     |  |  |
|   | The area of the rectangle whose dimensions are 6 cm. and 4 cm the area of                                                  |                                                                                                                        |                          |                 |                        |  |  |
|   |                                                                                                                            |                                                                                                                        |                          |                 |                        |  |  |
|   | the triangle wh                                                                                                            | ose base length is 12                                                                                                  | cm. and the corresp      | onding hei      | ght is 4 cm.           |  |  |

## Essay problems:

#### In the opposite figure:

ABCD is a parallelogram in which m ( $\angle$  ABC) = 150°,

AD = 12 cm.

, AB = 8 cm.,  $E \in \overrightarrow{CB}$  and  $\overrightarrow{AE} \perp \overrightarrow{CB}$ 

Find: The area of ABCD



2)

#### In the opposite figure:

ABCD and EBCF are two parallelograms,

 $E \in \overrightarrow{AD}$  and  $F \in \overrightarrow{AD}$ 

**Prove that:** The area of  $\triangle$  ABE = the area of  $\triangle$  DCF



3)

## In the opposite figure:

ABCD is a rectangle  $\sqrt{AE} // \overline{DF}$ 

#### Prove that:

The area of the figure ABCM = the area of the figure DMEF



4)

## In the opposite figure:

ABC is a right-angled triangle at A,

 $\overline{AD} \perp \overline{BC}$ , AB = 4 cm. and AC = 3 cm.

Find:  $\blacksquare$  The area of  $\triangle$  ABC

<sup>2</sup> The length of AD



 $\square$  In the opposite figure :

ABCD is a rectangle and  $E \in \overrightarrow{BC}$ 

**Prove that :** The area of  $\triangle$  DAE = the area of  $\triangle$  ABC



6)

In the opposite figure :

ABCD and ABMN are two parallelograms and  $M \in \overline{CD}$ 

Prove that:

The area of  $\triangle$  EBC =  $\frac{1}{2}$  the area of  $\triangle$ 7 ABMN



7)

 $\square$  In the opposite figure :

ABCD is a parallelogram  $, E \subseteq \overline{AD}$  and  $\overline{BE} \cap \overline{CD} = \{F\}$ 

**Prove that:** The area of  $\triangle$  AFD = the area of  $\triangle$  EFC



8)

In the opposite figure :

 $\overrightarrow{AB} / \overrightarrow{DE} \cdot X$  and  $Y \in \overrightarrow{AB}$ 

- , XDEY is a rectangle and  $\overline{AD} // \overline{BE}$
- 1 Find the area of the figure ABED
- If: AD = 30 cm., find the length of the perpendicular from B to  $\overline{AD}$



« 288 cm<sup>2</sup> > 9.6 cm. »

#### In the opposite figure:

ABCD is a rectangle, ABEF is a parallelogram

- $,D \in \overline{CF}, X \in \overline{BE}, E \in \overline{CF}$
- AB = 4 cm. and BC = 10 cm.

Find by proof:

- 1 The area of  $\square$  ABEF
- 2 The area of Δ XAF



10)

## igspace In the opposite figure :

ABCD and EBCF are two parallelograms ,  $\overline{BE} \cap \overline{CD} = \{L\}$  ,  $D \in \overline{AF}$  and  $E \in \overline{AF}$ 

Prove that:

- 1 The area of  $\triangle$  ABL = the area of  $\triangle$  FCL
- The area of the figure ABCL = the area of the figure FCBL



#### Lesson 2

## The equality of the areas of two triangles

## Complete each of the following:

If ABC is a triangle, D is the midpoint of  $\overline{BC}$ , then:

The area of  $\triangle$  ABD = the area of  $\triangle$  .......

- If  $\overline{XL}$  is a median in  $\Delta XYZ$ , then the area of  $\Delta XYZ = \cdots$  the area of  $\Delta XYL$
- The triangle XYZ in which  $L \subseteq \overline{YZ}$  such that  $YL = \frac{1}{2} LZ$ , then: The area of  $\Delta XYL = \cdots$  the area of  $\Delta XYZ$
- The two triangles drawn on a common base and their vertices located on a straight line parallel to the base are .........
- Triangles with congruent bases and drawn between two parallel lines are .........
- The median in the triangle divides its area into ........

## Essay problems:

## In the opposite figure:

D is the midpoint of  $\overline{AB}$  and E is the midpoint of  $\overline{AC}$ 

**Prove that:** The area of  $\triangle$  BDE equals the area of  $\triangle$  CDE



2)

## In the opposite figure:

ABCD is a quadrilateral in which  $\overrightarrow{AD} / / \overrightarrow{BC}$  and  $\overrightarrow{BA} \cap \overrightarrow{CD} = \{E\}$ 

such that BA = AE

**Prove that :** The area of  $\triangle$  ADC = the area of  $\triangle$  ADE



 $\square$  In the opposite figure :

 $\overline{AC}$  //  $\overline{XY}$  and F is the midpoint of  $\overline{XY}$ 

**Prove that :** The area of  $\triangle$  ABF = the area of  $\triangle$  CBF



4)

In the opposite figure :

ABCD is a parallelogram.  $E \subset \overrightarrow{CB}$  where BC = BE

**Prove that :** The area of  $\triangle$  FEC = the area of  $\triangle$  ABCD



5)

 $\square$  In the opposite figure :

ABCD is a quadrilateral whose diagonals intersect at M,

 $\overline{AD} // \overline{BC}$  and E is the midpoint of  $\overline{AB}$ ,

N is the midpoint of  $\overline{MC}$ 

**Prove that :** The area of  $\triangle$  AEM = the area of  $\triangle$  DNC



6)

In the opposite figure :

 $\overrightarrow{AD}$  //  $\overrightarrow{BC}$ ,  $\overrightarrow{E} \in \overrightarrow{BC}$  and  $\overrightarrow{AC}$  //  $\overrightarrow{DE}$ ,

 $\overline{AC} \cap \overline{BD} = \{M\}$ 

Prove that:

**1** The area of  $\triangle$  ABM = the area of  $\triangle$  DCM = the area of  $\triangle$  EMC

**2** The area of  $\triangle$  DBC = the area of  $\triangle$  EBM



## Lesson 3

## The area of some geometric figures

## Complete each of the following:

| ١.  | The area of rhombus whose perimeter is 20 cm. and height 4 cm. =                                         |
|-----|----------------------------------------------------------------------------------------------------------|
| ۲.  | The length of the diagonal of a square of area 50 cm <sup>2</sup> equals cm.                             |
| ٣.  | The length of side of a square whose area equals the area of a rectangle with dimensions 9 cm., 16 cm. = |
| ٤.  | The length of the middle base of a trapezium whose area = 30 cm <sup>2</sup> and height 5 cm. equals     |
| ٥.  | The area of the rhombus = the side length $\times \cdots = \frac{1}{2}$ of the product of                |
| ٦.  | The area of the square = the square of the length of $\frac{2}{1}$ $\frac{2}{1}$                         |
| ٧.  | The length of the middle base of the trapezium equals                                                    |
| ۸.  | The area of the trapezium = half of the sum of lengths of the two parallel bases ×                       |
| ۹.  | The base angles of the isosceles trapezium are                                                           |
| ١٠. | The diagonals of an isosceles trapezium are                                                              |

| ١.       | If the area of a square is 50 cm <sup>2</sup> , then the length of its diagonal =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                           |                                                           |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------|--|--|
|          | (a) 25 cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (b) 5 cm.                                                                                                      | (c) 10 cm.                | (d) 20 cm.                                                |  |  |
| ۲.       | If the perimeter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of a rhombus is 24                                                                                             | cm. and its area = 30 cm  | n. <sup>2</sup> then its height =                         |  |  |
| ٠.       | (a) 4 cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b) 5 cm.                                                                                                      | (c) 6 cm.                 | (d) 12 cm.                                                |  |  |
|          | If the product of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | If the product of the lengths of the diagonals of a rhombus = 96 cm <sup>2</sup> and its height is             |                           |                                                           |  |  |
| ٠.       | 6 cm., then its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | side length = ······                                                                                           | •                         | •                                                         |  |  |
|          | (a) 12 cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (b) 8 cm.                                                                                                      | (c) 6 cm.                 | (d) 4 cm.                                                 |  |  |
|          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | If the area of a trapezium is 32 cm <sup>2</sup> and its height is 4 cm., then the length of its middle base = |                           |                                                           |  |  |
|          | (a) 4 cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b) 8 cm.                                                                                                      | (c) 14 cm.                | (d) 16 cm.                                                |  |  |
| ۰.       | <b>-</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                              | of one of its parallel ba | ses is 15 cm., and its area ther base is                  |  |  |
|          | (a) 15 cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (b) 4 cm.                                                                                                      | (c) 12 cm.                | (d) 27 cm.                                                |  |  |
|          | The trapezium whose middle base length is $x$ cm. and its height = $\frac{1}{2}$ the length of the middle base, its area = cm <sup>2</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                |                           |                                                           |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                           | height = $\frac{1}{2}$ the length of                      |  |  |
| -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                           | height = $\frac{1}{2}$ the length of  (d) $\frac{x^2}{8}$ |  |  |
|          | the middle base  (a) $X^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (b) $\frac{x^2}{2}$                                                                                            | cm <sup>2</sup>           | (d) $\frac{x^2}{8}$                                       |  |  |
|          | the middle base  (a) $x^2$ ind the ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b) $\frac{x^2}{2}$                                                                                            | following fig             | (d) $\frac{x^2}{8}$                                       |  |  |
| <b>F</b> | the middle base  (a) $x^2$ ind the ar  A rhombus of significant in the middle base in the area in the | te, its area =                                                                                                 | following fig             | (d) $\frac{x^2}{8}$ wres:  « 30 cm <sup>2</sup> »         |  |  |

A trapezium whose middle base length is 7 cm. and its height = 6 cm.

A trapezium whose bases lengths are 8 cm. and 10 cm. and its height = 5 cm. «  $45 \text{ cm}^2$  »

« 42 cm<sup>2</sup> »

| A square whose area equals the area of the rectangle whose dimens<br>Find the length of its diagonal.                                                                            | sions are 2 cm. and 9 cm. « 6 cm. »                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|                                                                                                                                                                                  |                                                             |
|                                                                                                                                                                                  |                                                             |
| Two pieces of land have equal areas, one of them has the si                                                                                                                      | hape of a rhombus                                           |
| whose diagonals are 18 m. and 24 m., and the other one has the                                                                                                                   | e shape of a trapezium                                      |
| whose height is 12 m. Find the length of its middle base.                                                                                                                        | « 18 m. »                                                   |
|                                                                                                                                                                                  |                                                             |
|                                                                                                                                                                                  |                                                             |
|                                                                                                                                                                                  |                                                             |
| The area of a trapezium is 180 cm <sup>2</sup> and its height is 12 cm.                                                                                                          | Find the lengths of its                                     |
| parallel bases if the ratio between their lengths is 3:2                                                                                                                         | « 18 cm. » 12 cm. »                                         |
| Two land misses are revel in ones, the first is in the shore of a                                                                                                                |                                                             |
| Two land pieces are equal in area, the first is in the shape of a in the shape of a rhombus whose diagonals lengths are 8 metres. Find the perimeter of the square-shaped piece. | square and the second is<br>es and 16 metres.<br>« 32 cm. » |
| in the shape of a rhombus whose diagonals lengths are 8 metres. Find the perimeter of the square-shaped piece.                                                                   | square and the second is<br>es and 16 metres.<br>« 32 cm. » |
| in the shape of a rhombus whose diagonals lengths are 8 metres. Find the perimeter of the square-shaped piece.                                                                   | square and the second is as and 16 metres. « 32 cm. »       |
| in the shape of a rhombus whose diagonals lengths are 8 metres.  Find the perimeter of the square-shaped piece.                                                                  | square and the second is as and 16 metres. « 32 cm. »       |
| in the shape of a rhombus whose diagonals lengths are 8 metre.  Find the perimeter of the square-shaped piece.  I Find the area of the rhombus whose perimeter is 52 cm. are     | square and the second is as and 16 metres.  « 32 cm. »      |
| in the shape of a rhombus whose diagonals lengths are 8 metre.  Find the perimeter of the square-shaped piece.  I Find the area of the rhombus whose perimeter is 52 cm. are     | square and the second is as and 16 metres.  « 32 cm. »      |
| in the shape of a rhombus whose diagonals lengths are 8 metre.  Find the perimeter of the square-shaped piece.  I Find the area of the rhombus whose perimeter is 52 cm. are     | square and the second is as and 16 metres.  « 32 cm. »      |
| in the shape of a rhombus whose diagonals lengths are 8 metre.  Find the perimeter of the square-shaped piece.  I Find the area of the rhombus whose perimeter is 52 cm. are     | square and the second is as and 16 metres.  « 32 cm. »      |

## Lesson 4 (Similarity)

## Complete each of the following:

- If the measures of the corresponding angles in the two triangles are equal, then the two triangles are ........
- If the ratio between the lengths of two corresponding sides in two similar triangles is equal to 1, then the two triangles are .........
- If two polygons are similar and the ratio between the lengths of two corresponding sides is 3:4, then the ratio between their perimeters is .........
- o. If two polygons are similar, then the corresponding ...... are equal in measure.
- If two polygons are similar, then the corresponding ...... are proportional.
- V. If each of two polygons is similar to a third, then they are .........
- A. The two triangles are similar if the corresponding ...... are proportional.

## Choose the correct answer:

- If the ratio between the lengths of two corresponding sides of two squares is 1 and the perimeter of one of them is 20 cm., then the area of the other square = .........
  - (a)  $20 \text{ cm}^2$
- (b) 25 cm<sup>2</sup>.
- (c)  $16 \text{ cm}^2$
- (d) 25 cm.

## In the opposite figure:

- If  $\triangle$  ABC  $\sim$   $\triangle$  DEF, then m ( $\angle$  A) = ......
- (a) 20°

۲.

- (b) 60°
- (c) 80°
- (d) 100°



## In the opposite figure:

If 
$$\triangle$$
 ABC  $\sim$   $\triangle$  AXY,

$$AX = XB = 6 \text{ cm}.$$

- XY = 7 cm., then  $BC = \cdots$
- (a) 6 cm.
- (b) 7 cm.
- (c) 12 cm.
- (d) 14 cm.



If  $\triangle$  ABC  $\sim$   $\triangle$  DEF and AB =  $\frac{1}{5}$  DE, then perimeter of  $\triangle$  ABC = ..... perimeter of  $\Delta$  DEF

(a) 5

(a) 1, 2

٤.

(b) 1

(c)  $\frac{1}{5}$ 

(d)  $\frac{2}{5}$ 

In the following figures, there are two similar triangles, they are ......





(b) 1,3



(c) 1,4



(d) 2, 4

In the following figures, there are two similar triangles, they are .........



(1)



(2)



(3)



**(4)** 

- (a) 1, 2
- (b) 1,3

- (c) 2,4
- (d) 1,4

In the opposite figure:

If  $\triangle$  ABC  $\sim$   $\triangle$  DEF, then EF = ........

- (a) 5 cm.
- (b) 6 cm.
- (c) 8 cm.
- (d) 10 cm.



## Essay problems:

In the opposite figure:

 $\triangle$  ABC  $\sim$   $\triangle$  XYZ

Find: AC and XY

« 14 cm. • 3 cm. »



## In the opposite figure:

**1 Prove that :**  $\triangle$  ABC and  $\triangle$  XYZ are similar.

2 If:  $m (\angle B) + m (\angle C) = 60^{\circ}$ ,

find:  $m (\angle X)$ 

« 120°»



3)

## In the opposite figure:

If  $\triangle AXY \sim \triangle ABC$ 

XY = 5 cm. and BC = 10 cm.,

Prove that :  $1 \overline{XY} / \overline{BC}$ 

 $\mathbf{Z}$  Y is the midpoint of  $\overline{\mathbf{AC}}$ 



4)

## In the opposite figure:

The polygon ABCD ~ the polygon XYZL

If AB = 10.5 cm., BC = 8 cm., CD = 5 cm.

DA = 6 cm. and LX = 3 cm.

Find the length of each of :  $\overline{XY}$ ,  $\overline{YZ}$  and  $\overline{ZL}$ 





« 5.25 cm. • 4 cm. • 2.5 cm. »

5)

## In the opposite figure:

 $\triangle ABC, D \in \overline{AB}, E \in \overline{AC}$ 

AE = 4 cm. EC = 5 cm. BC = 7.5 cm.

, AD = 3 cm., m ( $\angle$  AED) = m ( $\angle$  B) and m ( $\angle$  C) = 93°

**1** Prove that :  $\triangle$  AED  $\sim$   $\triangle$  ABC

**2** Find the length of each of :  $\overline{BD}$  and m ( $\angle ADE$ )



« 9 cm. • 93° »

## In the opposite figure :

ABC is a right-angled triangle at B in which:

AB = 3 cm., BC = 4 cm. and  $\overline{BD} \perp \overline{AC}$ 

**1** Prove that :  $\triangle$  BAC  $\sim$   $\triangle$  DAB

**2** Find the length of each of :  $\overline{AD}$  and  $\overline{DC}$ 



« 1.8 cm. • 3.2 cm. »

7)

## In the opposite figure :

 $m (\angle AED) = m (\angle B)$ , AD = 3 cm.

AE = 4.5 cm. and BD = 6 cm.

1 Prove that :  $\triangle$  ADE  $\sim$   $\triangle$  ACB

**2** Find the length of :  $\overline{EC}$ 



« 1.5 cm. »

## **Lesson 5** (the converse of Pythagorean theorem)

## Complete each of the following:

Complete and show which of the following triangles is a right-angled triangle:

1



$$(DF)^2 = \cdots$$

$$(DE)^2 + (EF)^2 = \cdots$$

... The triangle is ........

2



$$(MN)^2 = \cdots$$

$$(ML)^2 + (NL)^2 = \cdots$$

.. The triangle is .....

3



$$(XY)^2 = (\sqrt{34})^2 = \cdots$$

$$(\mathbf{YZ})^2 + (\mathbf{ZX})^2 = \cdots$$

:. The triangle is .....

4



$$(AC)^2 = \cdots$$

$$(AB)^2 + (BC)^2 = \cdots$$

.. The triangle is ......

## Essay problems:

## In the opposite figure:

 $m (\angle B) = 90^{\circ}, AB = 4 \text{ cm.}, BC = 3 \text{ cm.}$ 

AD = 13 cm. and DC = 12 cm.

Find: The area of the figure ABCD



## <u>2)</u>

#### In the opposite figure:

ABCD is a quadrilateral in which:  $m (\angle B) = 90^{\circ}$ ,

AB = 12 cm., BC = 16 cm., CD = 15 cm. and DA = 25 cm.

**1** Find: The length of  $\overline{AC}$ 

Prove that:  $m (\angle ACD) = 90^{\circ}$ 



« 20 cm. »

## <u>3)</u>

## In the opposite figure:

ABCD is a quadrilateral in which:  $m (\angle ABC) = 90^{\circ}$ ,

AB = 7 cm., BC = 24 cm., CD = 20 cm. and DA = 15 cm.

**Prove that :**  $m (\angle ADC) = 90^{\circ}$ 



#### 4)

## In the opposite figure :

ABCD is a quadrilateral in which:  $m (\angle B) = 90^{\circ}$ ,

AB = 9 cm., BC = 12 cm.,

CD = 17 cm. and DA = 8 cm.

Prove that:  $m (\angle DAC) = 90^{\circ}$ ,

then find: The area of the figure ABCD «114 cm<sup>2</sup>.»



## Lesson 6 (Projection)

## Complete each of the following:

|                  | Example 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                      |                                                                                                         | A                                                                                                            |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|
| ١.               | In the opposite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | figure :                                                                                                                                                                                             |                                                                                                         |                                                                                                              |  |  |
|                  | $\triangle$ ABC is right-angled at A and $\overline{AD} \perp \overline{BC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |                                                                                                         |                                                                                                              |  |  |
|                  | Complete the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                      |                                                                                                         |                                                                                                              |  |  |
|                  | ===                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ction of AB on BC is                                                                                                                                                                                 |                                                                                                         | tion of AC on BC is                                                                                          |  |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ction of BC on AC is                                                                                                                                                                                 |                                                                                                         | tion of BC on AB is                                                                                          |  |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ction of $\overline{AC}$ on $\overline{AD}$ is                                                                                                                                                       |                                                                                                         | tion of $\overrightarrow{AD}$ on $\overrightarrow{BC}$ is                                                    |  |  |
|                  | 7 The proje                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ction of AB on AD is                                                                                                                                                                                 | •••                                                                                                     |                                                                                                              |  |  |
| ۲.               | If X ∈ $\overrightarrow{AB}$ , th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | en the projection of X or                                                                                                                                                                            | AB is                                                                                                   |                                                                                                              |  |  |
| ٣.               | If $\overline{AB} \perp \overline{BC}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | then the projection of $\overline{\mathbf{A}}$                                                                                                                                                       | on BC is                                                                                                |                                                                                                              |  |  |
| ٤.               | In A ABC, if r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $n(\angle B) = 90^{\circ}$ , then the                                                                                                                                                                | projection of C or                                                                                      | 1 AB is                                                                                                      |  |  |
| ٥.               | ABC is a right-angled triangle at A, then the projection of BA on AC is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                      |                                                                                                         |                                                                                                              |  |  |
| $\boldsymbol{C}$ | Choose the correct answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                      |                                                                                                         |                                                                                                              |  |  |
| C                | noose me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | correct answer                                                                                                                                                                                       | •                                                                                                       |                                                                                                              |  |  |
|                  | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of a ray on a straight lin                                                                                                                                                                           |                                                                                                         | lar to it is ·······                                                                                         |  |  |
| ١.               | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                      |                                                                                                         | lar to it is (d) a straight line.                                                                            |  |  |
|                  | The projection  (a) a point.  The length of | of a ray on a straight lir                                                                                                                                                                           | e not perpendicu<br>(c) a ray.                                                                          | (d) a straight line.                                                                                         |  |  |
| ١.               | The projection  (a) a point.  The length of | of a ray on a straight ling (b) a line segment.  the projection of a line segment are segment.                                                                                                       | e not perpendicu<br>(c) a ray.                                                                          | (d) a straight line.                                                                                         |  |  |
| ۲.               | The projection (a) a point.  The length of the li (a) ≤  The length of the li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | to of a ray on a straight line (b) a line segment.  the projection of a line segment itself.  (b) >  the projection of a line segment itself.                                                        | (c) ≥                                                                                                   | (d) a straight line.                                                                                         |  |  |
| ١.               | The projection (a) a point.  The length of the li (a) ≤  The length of the li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of a ray on a straight line (b) a line segment.  the projection of a line segment itself.  (b) >                                                                                                     | (c) ≥                                                                                                   | (d) a straight line.  straight line the  (d) =                                                               |  |  |
| ۲.               | The projection (a) a point.  The length of the li (a) ≤  The length of  | to of a ray on a straight line (b) a line segment.  the projection of a line segment itself.  (b) >  the projection of a line segment line segment.  (b) >                                           | c) a ray.  gment on a given  (c) ≥  gment on a straig  (c) =                                            | (d) a straight line.  straight line ······ the  (d) =  ght line parallel to it ······  (d) ≠                 |  |  |
| ۲.               | The projection  (a) a point.  The length of the lingth of the length of | to of a ray on a straight line (b) a line segment.  the projection of a line segment itself.  (b) >  the projection of a line segment line segment.  (b) >                                           | (c) ≥  gment on a given  (c) ≥  gment on a straig  (c) =                                                | (d) a straight line.  straight line the  (d) =                                                               |  |  |
| ۲.               | The projection  (a) a point.  The length of the lingth of the length of | to of a ray on a straight line (b) a line segment.  the projection of a line segment itself.  (b) >  the projection of a line segment line segment.  (b) >                                           | c) a ray.  gment on a given  (c) ≥  gment on a straig  (c) =  tent on a straight line segment.          | (d) a straight line.  straight line ······ the  (d) =  ght line parallel to it ······  (d) ≠                 |  |  |
| ۲.               | The projection  (a) a point.  The length of the lingth of the length of | to of a ray on a straight line (b) a line segment.  the projection of a line segment itself.  (b) >  the projection of a line segment line segment.  (b) >  the projection of a line segment.  (b) > | c) a ray.  gment on a given  (c) ≥  gment on a straig  (c) =  ent on a straight line segment.  segment. | (d) a straight line.  I straight line the  (d) =  ght line parallel to it  (d) ≠  ine perpendicular to it is |  |  |

## Essay problems:

## In the opposite figure :

ABCD is a trapezium in which  $\overline{AD}$  //  $\overline{BC}$  and m ( $\angle$  ABC) = 90° If AD = 9 cm., DC = 10 cm. and CB = 15 cm.

#### Find:

- 1 The length of the projection of  $\overline{DC}$  on  $\overline{BC}$
- The length of the projection of  $\overline{DC}$  on  $\overrightarrow{AB}$



«6 cm., 8 cm.»

2)

## In the opposite figure :

 $\overrightarrow{AD}$  //  $\overrightarrow{BC}$ ,  $\overrightarrow{AB} = 13$  cm.,  $\overrightarrow{BC} = 5$  cm.,  $\overrightarrow{CD} = 15$  cm. and m ( $\angle ACB$ ) = m ( $\angle DAC$ ) = 90°

#### Find:

- 1 The length of the projection of  $\overline{AB}$  on  $\overline{AC}$
- The length of the projection of  $\overline{CD}$  on  $\overline{AD}$



« 12 cm., 9 cm. »

## **Lesson 7** (Eucledian theorem )

## Complete each of the following:

#### In the opposite figure:

 $\triangle$  ABC is right-angled at A,  $\overline{AD} \perp \overline{BC}$ 

#### Complete each of the following:

$$(AC)^2 = \cdots + \cdots$$

$$(AC)^2 = \cdots \times \cdots$$



4 
$$(AD)^2 = \cdots \times \cdots$$

 $2 \text{ AD} = \cdots \text{ cm}$ .

2)

#### In the opposite figure :

ABC is a triangle in which m ( $\angle$  ABC) = 90°, AB = 4 cm.,

 $AC = 5 \text{ cm. and } \overline{BD} \perp \overline{AC}$ 

#### Complete:

$$\mathbf{BC} = \cdots \cdots \mathbf{cm}$$
.

The area of 
$$\triangle$$
 DBC = ...... cm<sup>2</sup>.



## Essay problems:

#### $\square$ In the opposite figure :

ABC is a triangle in which m ( $\angle$  BAC) = 90°,  $\overline{AD} \perp \overline{BC}$ 

AB = 8 cm. and AC = 6 cm.

Find: BD, CD and AD



4)

## In the opposite figure :

ABCD is a quadrilateral where

$$m (\angle BCD) = m (\angle BAD) = 90^{\circ}$$
,

$$\overline{AE} \perp \overline{BD}$$
, BC = 7 cm., CD = 24 cm.

and AB = 15 cm.



The length of the projection of 
$$\overrightarrow{AB}$$
 on  $\overrightarrow{BD}$ 

The length of the projection of 
$$\overrightarrow{AD}$$
 on  $\overrightarrow{AE}$ 



« 25 cm. , 20 cm. , 9 cm. , 12 cm. »

## In the opposite figure:

 $\Delta$  ABC is right-angled at B

 $,\overline{DE} \perp \overline{AC}, AB = 6 \text{ cm}.$ 

, ED = 3 cm. and CD = 5 cm.

Prove that :  $\triangle$  CED  $\sim$   $\triangle$  CBA and find : The length of  $\overline{AC}$ 

and the length of the projection of  $\overline{AB}$  on  $\overline{AC}$ 



« 10 cm. • 3.6 cm. »

6)

## In the opposite figure:

 $\Delta$  ABC is right-angled at B and  $\overline{BD} \perp \overline{AC}$ 

If AD = 4.5 cm. and DC = 8 cm.,

find: The length of each of  $\overline{AB}$ ,  $\overline{BC}$  and  $\overline{BD}$ 



## Lesson 8 (classifying triangles according to angles)

## Complete each of the following:

| ١. | In $\triangle$ ABC, if $(AB)^2 = (AC)^2 - (BC)^2$ , then $\angle$ C is |
|----|------------------------------------------------------------------------|
|----|------------------------------------------------------------------------|

In 
$$\triangle$$
 ABC, if  $(AC)^2 - (AB)^2 = (BC)^2 - 3$ , then  $\triangle$  B is ......

In 
$$\triangle$$
 ABC, if  $(AB)^2 + (BC)^2 = 48$  cm<sup>2</sup>, AC = 7 cm., then  $\angle$  B is ......

i. In 
$$\triangle XYZ$$
, if  $90^{\circ} < m (\angle Y) < 180^{\circ}$ , then  $(XZ)^2 \cdots (XY)^2 + (YZ)^2$ 

•. If 
$$\angle$$
 A complements  $\angle$  B in  $\triangle$  ABC, then  $(AB)^2 \cdots (AC)^2 + (BC)^2$ 

- If the two lengths of two sides in a triangle are 3 cm. and 5 cm, then the length of the third side is between ........
- ABC is a triangle whose sides lengths are 6 cm., 8 cm. and 11 cm.

  Δ ABC is similar to the triangle XYZ, then Δ XYZ is ..... according to its angles.

## Choose the correct answer:

| `                                                                                      | Atriangle whose side lengths are: 5 cm, 12 cm and 13 cm. its area = cm? |          |        |        |  |  |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------|--------|--------|--|--|
| ١.                                                                                     | (a) 30                                                                  | (b) 32.5 | (c) 78 | (d) 60 |  |  |
| ABC is an obtuse-angled triangle at A, if AB = 4 cm., BC = 7 cm., then A be equals cm. |                                                                         |          |        |        |  |  |
|                                                                                        | (a) 5                                                                   | (b) 6    | (c) 7  | (d) 8  |  |  |

- ABC is a triangle in which:  $(BC)^2 = (AB)^2 + (AC)^2$ ,  $m (\angle B) = 40^\circ$ , then  $m (\angle C) = \cdots$ 
  - (a) 40° (b) 50°
- (c) 90°
- (d) 140°

ABC is an obtuse-angled triangle at B if AB = 5 cm., BC = 3 cm., then AC can be equals ......... cm.

- (a) 4
- (b) 5

- (c) 7
- (d) 8

ABC is an acute-angled triangle in which AB = 6 cm. , BC = 8 cm. , then the length of  $\overline{AC}$  can be equals ...... cm.

- (a) 2
- (b) 6

- (c) 10
- (d) 14

## Essay problems:

Identify the type of  $\angle$  A in  $\triangle$  ABC if AB = 6 cm., BC = 10 cm. and AC = 8 cm.

7)

Identify the type of  $\angle$  B in  $\triangle$  ABC if AB = 10 cm.  $\Rightarrow$  BC = 12 cm. and AC = 15 cm.

8)

## In the opposite figure:

ABCD is a quadrilateral in which AB = 8 cm., BC = 9 cm., CD = 12 cm., AD = 17 cm.

and  $\overline{DB} \perp \overline{AB}$ 

- 1 Find the length of the projection of  $\overline{AD}$  on  $\overline{BD}$
- 2 Determine the type of  $\triangle$  BCD according to its angles.



« 15 cm. »

9)

Identify the type of  $\angle Y$  in  $\triangle XYZ$  if XY = 4 cm.  $\Rightarrow YZ = 5$  cm. and XZ = 7 cm.

10)

## 

ABCD is a parallelogram in which

BC = 15 cm., CD = 8 cm. and AC = 19 cm.

**Prove that**:  $\angle$  ABC is an obtuse angle.

