© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°02

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – Centrale Supélec 2009 Maths I PSI

On rappelle le résultat suivant : toute partie X non vide de $\mathbb N$ possède un plus petit élément noté min X.

On dira qu'une série à termes réels est semi-convergente si elle converge sans converger absolument.

On dira qu'une suite $(a_n)_{n\in\mathbb{N}}$ à valeurs complexes vérifie la propriété (P_1) si pour toute suite complexe $(u_n)_{n\in\mathbb{N}}$ bornée, la série $\sum a_n u_n$ converge.

On dira qu'une suite $(a_n)_{n\in\mathbb{N}}$ à valeurs réelles vérifie la propriété (P_2) si pour toute suite réelle $(u_n)_{n\in\mathbb{N}}$, la convergence de la série $\sum u_n$ entraı̂ne celle de la série $\sum a_n u_n$.

L'objectif du problème est d'étudier, en particulier à l'aide de méthodes algorithmiques, des propriétés et des contre-exemples de la théorie des suites et des séries et de caractériser simplement les suites qui vérifient (P_1) ou (P_2) .

Les parties I et II sont indépendantes.

I Réorganisation des termes d'une série semi-convergente

On se donne un réel x. On note, pour $n \in \mathbb{N}^*$,

$$u_n = \frac{(-1)^n}{n}$$

et on se propose de construire une bijection $s: \mathbb{N}^* \to \mathbb{N}^*$ telle que

$$\sum_{n=1}^{+\infty} u_{s(n)} = x.$$

- On définit simultanément par récurrence trois suites d'entiers naturels $(p_n)_{n\geq 0}$, $(q_n)_{n\geq 0}$ et $(s_n)_{n\geq 1}$ et une suite $(S_n)_{n\geq 0}$ de réels de la manière suivante :
 - $p_0 = q_0 = 0$, $S_0 = 0$.
 - Pour tout $n \in \mathbb{N}$:

si
$$S_n > x$$
 $p_{n+1} = p_n$ $q_{n+1} = 1 + q_n$ $s_{n+1} = 2q_{n+1} - 1$
sinon $p_{n+1} = 1 + p_n$ $q_{n+1} = q_n$ $s_{n+1} = 2p_{n+1}$

Dans les deux cas : $S_{n+1} = S_n + u_{S_{n+1}}$.

On aura intérêt à comprendre la construction précédente sous forme algorithmique.

- **1.a** Écrire une fonction suite qui prend en argument x et l'entier n et qui renvoie la liste $[s_1, s_2, \dots, s_n]$.
- **1.b** En modifiant la fonction précédente pour qu'elle retourne le dessin simultané des points $(n, S_n)_{n \le 70}$ et de la droite horizontale y = x, on obtient pour x = -1, n = 70 la figure suivante (graphique fourni).

1

Que constate-t-on pour la suite $(S_n)_{n\in\mathbb{N}}$? Expliquer le principe de l'algorithme.

On pose $s(n) = s_n$. Prouver, pour $n \ge 1$, les propriétés suivantes :

$$\{s(1), s(2), \dots, s(n)\} = \{2, 4, \dots, 2p_n\} \cup \{1, 3, \dots, 2q_n - 1\}$$
 $p_n + q_n = n$ $S_n = u_{s(1)} + \dots + u_{s(n)}$

En déduire que s est injective.

- 3.a Démontrer qu'une suite d'entiers convergente est constante à partir d'un certain rang.
 - **3.b** On se propose de démontrer que la suite $(p_n)_{n\in\mathbb{N}}$ croît vers $+\infty$.
 - **3.b.i** On suppose dans un premier temps que cette suite est majorée. Utiliser la question **3.a** pour démontrer qu'il existe un entier n_0 tel que pour $n > n_0$,

$$S_n > x$$
 et $S_n = S_{n_0} - \sum_{k=n_0}^{n-1} \frac{1}{2q_{n_0} + 2k - 2n_0 + 1}$.

En déduire une contradiction.

- **3.b.ii** Déduire du raisonnement précédent que la suite $(p_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$.
- **3.c** Justifier rapidement que $(q_n)_{n\in\mathbb{N}}$ tend vers $+\infty$.
- **3.d** Déduire de ce qui précède que *s* est une bijection de \mathbb{N}^* sur lui-même.
- **4 4.a** Démontrer que, pour tout entier n > 0, on a :

$$|S_{n+1} - x| \le |S_n - x|$$
 ou $|S_{n+1} - x| \le |u_{s(n+1)}|$.

4.b En déduire que pour tout $N \in \mathbb{N}$, il existe un entier n > N tel que

$$|S_{n+1} - x| \le |u_{s(n+1)}|.$$

- **4.c** Justifier l'existence d'un entier n_0 tel que pour $n \ge n_0$, $p_n \ge 1$ et $q_n \ge 1$.
- **4.d** Soit $n \ge n_0$. On note

$$v_n = \max\{|S_n - x|, |u_{2p_n+1}|, |u_{2q_n+1-1}|\}$$

Démontrer que $(v_n)_{n\geq n_0}$ est décroissante. En déduire qu'elle converge vers 0.

- **4.e** Démontrer que $(S_n)_{n\in\mathbb{N}}$ converge vers x et conclure.
- | 5 | 5.a Démontrer l'existence d'une constante $\gamma > 0$ telle que

$$\sum_{k=1}^{n} \frac{1}{k} = \lim_{n \to +\infty} \ln n + \gamma + o(1)$$

© Laurent Garcin MP Dumont d'Urville

5.b Donner un développement analogue pour

$$\sum_{k=1}^{n} \frac{1}{2k-1}$$

en fonction de γ.

5.c. 5.c.i Justifier, pour tout n tel que $p_n \ge 1$ et $q_n \ge 1$, l'égalité :

$$S_n = \sum_{k=1}^{p_n} \frac{1}{2k} - \sum_{k=1}^{q_n} \frac{1}{2k-1}.$$

5.c.ii En déduire que

$$S_n = \frac{1}{n \to +\infty} \frac{1}{2} \ln \left(\frac{p_n}{n - p_n} \right) - \ln 2 + o(1).$$

5.c.iii En déduire un équivalent simple de p_n et de q_n .

5.c.iv Déterminer la limite de

$$\frac{|u_{s(1)}|+\cdots+|u_{s(n)}|}{|u_1|+\cdots+|u_n|} \quad \text{quand } n \to +\infty.$$

II Suites vérifiant (P_1) et (P_2)

- **6** Montrer qu'une suite complexe $(a_n)_{n\in\mathbb{N}}$ telle que la série $\sum a_n$ converge absolument vérifie (P_1) .
- 7 Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle telle que la série $\sum |a_{n+1}-a_n|$ converge.
 - **7.a** Prouver que la suite $(a_n)_{n\in\mathbb{N}}$ possède une limite.
 - **7.b** Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que la série $\sum u_n$ converge. On note $U_n=u_0+u_1+\cdots+u_n$. Prouver, pour tout $N\in\mathbb{N}$, la relation :

$$\sum_{n=0}^{N} a_n u_n = \sum_{n=0}^{N-1} (a_n - a_{n+1}) U_n + a_N U_N.$$

En déduire que la suite $(a_n)_{n\in\mathbb{N}}$ vérifie (P_2) .

- Soit $(a_n)_{n\in\mathbb{N}}$ une suite complexe telle que la série $\sum |a_n|$ diverge. Construire une suite $(u_n)_{n\in\mathbb{N}}$ de nombres complexes de module 1 telle que la série $\sum a_n u_n$ diverge. Caractériser les suites $(a_n)_{n\in\mathbb{N}}$ vérifiant (P_1) .
- Soit $(a_n)_{n\in\mathbb{N}}$ une suite de réels positifs telle que la série $\sum a_n$ diverge. On se propose de construire une suite $(\varepsilon_n)_{n\in\mathbb{N}}$ tendant vers 0 telle que la série $\sum a_n\varepsilon_n$ diverge. On définit par récurrence $(p_n), (\varepsilon_n), (A_n)_{n\in\mathbb{N}}$:

$$p_0 = 0 \qquad \qquad \epsilon_0 = 1 \qquad \qquad A_0 = a_0$$

et pour $n \ge 1$:

si
$$A_{n-1} > p_{n-1}$$
 $p_n = 1 + p_{n-1}$ $\varepsilon_n = \frac{\varepsilon_{n-1}}{2}$
sinon $p_n = p_{n-1}$ $\varepsilon_n = \varepsilon_{n-1}$

Dans les deux cas, $A_n = A_{n-1} + a_n \varepsilon_n$.

9.a Dans cette question seulement, on suppose $a_0 = 1$ et $a_n = \frac{9}{4(n+1)}$ pour $n \ge 1$. Déterminer les 6 premiers termes des suites $(p_n), (\varepsilon_n), (A_n)_{n \in \mathbb{N}}$. Écrire une fonction exemple qui prend n et retourne la liste :

$$[(0, p_0, \varepsilon_0, A_0), (1, p_1, \varepsilon_1, A_1), \dots, (n, p_n, \varepsilon_n, A_n)].$$

9.b. 9.b.i Démontrer que pour tout entier naturel N, il existe un entier n > N tel que $p_n = 1 + p_{n-1}$ (on pourra raisonner par l'absurde).

En déduire qu'on peut définir une suite d'entiers (n_k) strictement croissante par

$$n_0 = 0$$

$$n_{k+1} = \min\{n \in \mathbb{N} \mid n > n_k \text{ et } p_n = 1 + p_{n-1}\} \quad \text{pour } k \ge 0$$

9.b.ii Dans le cas général, déterminer p_{n_k} , ε_{n_k} .

Prouver que $(\varepsilon_n)_{n\in\mathbb{N}}$ tend vers 0 et que la série $\sum a_n \varepsilon_n$ diverge.

- **9.b.iii** Déterminer n_1 , n_2 et n_3 pour l'exemple de la question **9.a**.
- **9.c** Dans cette question seulement, on suppose que $\forall n \in \mathbb{N}, \ a_n = \frac{1}{n+1}$.

Écrire une fonction indexer qui prend en argument l'entier n et qui retourne la liste

$$[(0, n_0), (1, n_1), \dots, (q, n_q)],$$

où q est le plus grand entier des entiers k tel que $n_k \le n$. Par exemple, l'appel de indexer(10000) retourne [(0,0),(1,1),(2,2),(3,51)].

9.d. Soit $k \ge 3$ un indice tel que $n_k - 2 > n_{k-1}$. Prouver l'inégalité

$$k-1 \le A_{n_k-1} \le k-1 + \frac{1}{2^{k-1}n_k}$$

En déduire $n_{k+1} - 2 > n_k$.

9.d.ii Calculer explicitement la différence $A_{n_{k+1}-1} - A_{n_k-1}$ en fonction de k, n_k, n_{k+1} . En déduire, pour $k \ge 3$, l'inégalité

$$\frac{1}{2^k} \ln \left(\frac{n_{k+1}+1}{n_k+1} \right) \leq \mathbf{A}_{n_{k+1}-1} - \mathbf{A}_{n_k-1} \leq \frac{1}{2^k} \ln \left(\frac{n_{k+1}}{n_k} \right)$$

9.d.iii Déduire des deux questions précédentes, pour $k \ge 3$, l'inégalité

$$2^k - \frac{2}{n_k} \le \ln\left(\frac{n_{k+1}}{n_k}\right) \le 2^k + \frac{1}{n_{k+1}} - \ln\left(1 + \frac{1}{n_{k+1}}\right) + \ln\left(1 + \frac{1}{n_k}\right)$$

9.d.iv En utilisant une série convenable, étudier la convergence de la suite de terme général $(\ln n_k - 2^k)$ puis prouver l'existence d'une constante C > 0 tel que

$$n_k \sim Ce^{2^k}$$

En déduire que

$$A_{n_k} \underset{k \to +\infty}{\sim} \frac{\ln(\ln n_k)}{\ln 2}$$

puis que

$$A_n \sim \frac{\ln(\ln n)}{\ln 2}$$

Que peut-on penser de l'exécution de la fonction indexer?

- Soit $(a_n)_{n\in\mathbb{N}}$ une suite de réels quelconque telle que, pour toute suite $(\varepsilon_n)_{n\in\mathbb{N}}$ de réels tendant vers 0, la série $\sum \varepsilon_n a_n$ converge.
 - **10.a** Prouver que la série $\sum \varepsilon_n |a_n|$ converge.
 - **10.b** En déduire que la série $\sum |a_n|$ converge.
- Soit maintenant $(a_n)_{n\in\mathbb{N}}$ une suite de réels telle que, pour toute suite $(x_n)_{n\in\mathbb{N}}$, la convergence de la série $\sum x_n$ entraı̂ne la convergence de la série $\sum a_n x_n$.
 - **11.a** Prouver que la suite $(a_n)_{n\in\mathbb{N}}$ est bornée.
 - 11.b Soit $(\varepsilon_n)_{n\in\mathbb{N}}$ une suite réelle de limite nulle. Prouver la convergence de $\sum \varepsilon_n (a_{n+1} a_n)_{n\in\mathbb{N}}$.
 - **11.c** Prouver que la série $\sum |a_{n+1} a_n|$ converge.
 - 11.d Caractériser les suites vérifiant (P2).