

Description

The series of devices uses **Super Trench II** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

Application

- DC/DC Converter
- •Ideal for high-frequency switching and synchronous rectification

General Features

- V_{DS} =85V, I_D =200A $R_{DS(ON)}$ =2.55m Ω , typical (TO-220)@ V_{GS} =10V $R_{DS(ON)}$ =2.4m Ω , typical (TO-263)@ V_{GS} =10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating

TO-263 Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package Reel Siz		Tape width	Quantity		
VST08N025-TC	VST08N025	TO-220C	-	-	-		
VST08N025-T3	VST08N025	TO-263	-	-	-		

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _D s		V	
Gate-Source Voltage	Vgs	V _{GS} ±20		
Drain Current-Continuous	I _D	200	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	150	А	
Pulsed Drain Current	I _{DM}	800	А	
Maximum Power Dissipation	P _D	245	W	
Derating factor		1.63	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	1767	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C	

Thermal Characteristic

Thermal Resistance, Junction-to-Case Rejc 0.61 °C/W

Electrical Characteristics (T_c=25°Cunless otherwise noted)

Parameter	Symbol	Condition		Min	Тур	Max	Unit
Off Characteristics				•		•	,
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA		85		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =85V,V _{GS} =0V		-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V		-	-	±100	nA
On Characteristics (Note 3)				· ·			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_D=250\mu A$		2.0	3.0	4.0	V
Dunin Course On Otata Basistana	Б	1014 1 4004	TO-220	-	2.55	2.8	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =100A	TO-263		2.4	2.8	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =1	V _{DS} =5V,I _D =100A		200	-	S
Dynamic Characteristics (Note4)				•		•	•
Input Capacitance	C _{Iss}	- V _{DS} =40V,V _{GS} =0V, - F=1.0MHz		-	7680	-	PF
Output Capacitance	Coss			-	1472	-	PF
Reverse Transfer Capacitance	C _{rss}			-	60	-	PF
Switching Characteristics (Note 4)				· ·			
Turn-on Delay Time	t _{d(on)}	V_{DD} =40V, I_{D} =100A V_{GS} =10V, R_{G} =1.6 Ω		-	25	-	nS
Turn-on Rise Time	t _r			-	15	-	nS
Turn-Off Delay Time	$t_{d(off)}$			-	52	-	nS
Turn-Off Fall Time	t _f			-	17	-	nS
Total Gate Charge	Qg	1011 1001		-	124	-	nC
Gate-Source Charge	V_{DS} =40V, I_{D} =100A, purce Charge Q_{gs}		•	-	37		nC
Gate-Drain Charge	Q_{gd}	- V _{GS} =10V		-	33		nC
Drain-Source Diode Characteristics				•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =100A		-		1.2	V
Diode Forward Current Is				-	-	200	А
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F = 100A		-	98	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)		-	280	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,VDD=40V,VG=10V,L=0.5mH,Rg=25 Ω

Typical Electrical and Thermal Characteristics

Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

T_J-Junction Temperature(°C)

Figure 4 Rdson-Junction Temperature

Qg Gate Charge (nC)

Figure 5 Gate Charge

Vsd Source-Drain Voltage (V)

Figure 6 Source- Drain Diode Forward

Figure 11 Normalized Maximum Transient Thermal Impedance

Square Wave Pluse Duration(sec)