

Epreuve de Mathématiques A

Durée 4 h

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, d'une part il le signale au chef de salle, d'autre part il le signale sur sa copie et poursuit sa composition en indiquant les raisons des initiatives qu'il est amené à prendre.

L'usage de calculatrices est interdit.

AVERTISSEMENT

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies. En particulier, les résultats non justifiés ne seront pas pris en compte. Les candidats sont invités à encadrer les résultats de leurs calculs.

Problème d'Algèbre linéaire

Partie I

On considère l'espace vectoriel \mathbb{R}^4 . On note (e_1, e_2, e_3, e_4) la base canonique de \mathbb{R}^4 . On considère la matrice $A \in \mathcal{M}_4(\mathbb{R})$ définie par

$$A = \begin{pmatrix} -7 & -16 & 7 & -4 \\ 9 & -3 & -4 & -7 \\ 7 & -4 & -7 & -16 \\ -4 & -7 & 9 & -3 \end{pmatrix}.$$

On note f l'endomorphisme de \mathbb{R}^4 dont la matrice dans la base canonique est A.

- 1. (a) Calculer $f(e_1), f^2(e_1)$.
 - (b) Montrer que la famille $(e_1, f(e_1), f^2(e_1))$ est liée.
- 2. Montrer de même que la famille $(e_2, f(e_2), f^2(e_2))$ est liée.
- 3. Montrer que la famille $\mathcal{B} = (e_1, f(e_1), e_2, f(e_2))$ forme une base de \mathbb{R}^4 .
- 4. En déduire que, pour tout $x \in \mathbb{R}^4$, $f^2(x) + 10f(x) + 100x = 0$.
- 5. Ecrire la matrice de f dans la base \mathcal{B} .
- 6. La matrice A est-elle diagonalisable dans \mathbb{R} ?

Partie II

Soit $d \in \mathbb{N}^*$. On se place maintenant dans l'espace vectoriel \mathbb{R}^d et on considère un endomorphisme f de \mathbb{R}^d .

Soit x un vecteur non nul de \mathbb{R}^d . On considère la suite $(x_n)_{n\in\mathbb{N}}$ définie par récurrence

$$\begin{cases} x_0 = x \\ \forall n \ge 0 \quad x_{n+1} = f(x_n) \end{cases}$$

et on note $E_x = Vect(x_n, n \in \mathbb{N}).$

- 1. Montrer que E_x est stable par f.
- 2. Soit F un sous-espace vectoriel de \mathbb{R}^d contenant x et stable par f. Montrer que $E_x \subset F$.
- 3. Soit p le plus grand entier tel que $(x_0, x_1, \dots, x_{p-1})$ soit une famille libre.
 - (a) Justifier l'existence d'un tel entier p.
 - (b) Montrer qu'il existe des réels a_0, a_1, \dots, a_{p-1} tels que

$$x_p = \sum_{i=0}^{p-1} a_i x_i.$$

- (c) On note $E'_x = Vect(x_0, \dots, x_{p-1})$. Montrer que E'_x est stable par f.
- (d) En déduire que $E_x = E_x'$ et que la famille $\mathcal{B}_p = (x_0, \dots, x_{p-1})$ est une base de E_x .
- 4. On note \hat{f} l'endomorphisme de E_x obtenu comme restriction de f à E_x . Donner la matrice de \hat{f} dans la base \mathcal{B}_p .
- 5. Montrer que la famille $(Id, \hat{f}, \hat{f}^2, \dots, \hat{f}^{p-1})$ est une famille libre de $\mathcal{L}(E_x)$.
- 6. (a) Montrer que pour tout entier naturel k tel que k < p,

$$\hat{f}^p(x_k) = a_0 x_k + a_1 \hat{f}(x_k) + \dots + a_{p-1} \hat{f}^{p-1}(x_k).$$

(b) En déduire que l'on a

$$\hat{f}^p - a_{p-1}\hat{f}^{p-1} - \dots - a_0 Id = 0.$$

Partie III

Soit E un espace vectoriel sur \mathbb{R} de dimension finie et f un endomorphisme de E. On note λ_i $(1 \le i \le p)$ les valeurs propres réelles deux à deux distinctes de f, et E_i les sous-espaces propres associés. On suppose que f est diagonalisable.

- 1. Soit x un vecteur non nul de E.
 - (a) Montrer qu'il existe des vecteurs $x_i \in E_i$ tels que

$$x = \sum_{i=1}^{p} x_i.$$

Cette décomposition est-elle unique?

- (b) Notons q le nombre de vecteurs x_i non nuls dans la décomposition précédente et supposons pour simplifier que ce sont les q premiers. Montrer que (x_1, \ldots, x_q) forme une famille libre.
- (c) Exprimer $f^k(x)$ pour tout entier k tel que $1 \le k \le q-1$ en fonction des $(x_i, 1 \le i \le q)$.
- (d) Supposons qu'il existe des réels $\alpha_1, \alpha_2, \dots, \alpha_q$ tels que

$$\alpha_1 x + \alpha_2 f(x) + \dots + \alpha_q f^{q-1}(x) = 0.$$

Montrer que le polynôme

$$P(X) = \alpha_1 + \alpha_2 X + \dots + \alpha_q X^{q-1}$$

admet $\lambda_1, \ldots, \lambda_q$ comme racines.

- (e) Montrer que la famille $(x, f(x), \dots, f^{q-1}(x))$ est libre.
- (f) Montrer que $E_x = Vect(x, f(x), \dots, f^{q-1}(x))$ puis que $E_x = Vect(x_1, \dots, x_p)$.

2. Soit F un sous-espace stable par f. On note $F_i = F \cap E_i$. Soit $x \in F$. On décompose x comme précédemment

$$x = \sum_{i=1}^{p} x_i$$

avec $x_i \in E_i$.

Déduire de la question précédente que $x_i \in F_i$.

3. On suppose ici que $E=\mathbb{R}^3$ et que la matrice de f dans la base canonique est donnée par

$$B = \left(\begin{array}{rrr} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right).$$

- (a) L'endomorphisme f est-il diagonalisable?
- (b) Déterminer les sous-espaces propres de f.
- (c) Déterminer tous les sous-espaces stables par f.

Exercice de Probabilités

Soit X et Y deux variables aléatoires entières positives ou nulles vérifiant

$$\mathbb{P}(X=i,Y=j) = \begin{cases} \frac{\lambda^i e^{-\lambda} \alpha^j (1-\alpha)^{i-j}}{j! (i-j)!} & \text{si } 0 \le j \le i \\ 0 & \text{si } 0 \le i < j \end{cases}$$

où α et λ sont des constantes fixées vérifiant $0<\alpha<1$ et $\lambda>0$.

- 1. Quelle est la loi de X?
- 2. Quelle est la loi de Y?
- 3. Les variables X et Y sont-elles indépendantes?
- 4. On pose Z = X Y. Déterminer la loi de Z.
- 5. Soient j et n deux entiers naturels. Calculer la probabilité conditionnelle $\mathbb{P}(Y=j \mid Z=n)$.
- 6. Que peut-on en déduire pour les variables Y et Z?
- 7. On suppose que le nombre d'enfants d'une famille française est une variable aléatoire de loi de Poisson de paramètre 2,2. On admet que la probabilité d'avoir un garçon est égale à 1/2 et que les naissances successives sont indépendantes. Trouver la probabilité que cette famille ait i enfants dont j garçons.