A Book of Abstract Algebra (2nd Edition)

Chapter AA, Problem 19E

Bookmark

Show all steps: ON

Problem

If S is a set, and A is a subset of S, then the *complement* of A in S is the set of all the elements of S which are not in A. The complement of A is denoted by A':

$$A' = \{x \in S : x \not\in A\}$$

Prove the following'.

If $A \subseteq B$, then $A \cap B' = 0$, and conversely.

Step-by-step solution

Step 1 of 4

Objective:-

The objective is to prove that if $A \subseteq B$, then $A \cup B' = 0$. Conversely, if $A \cup B' = 0$, then $A \subseteq B$.

Comment

Step 2 of 4

Proof:-

Let *A* and *B* are two sets. Let $x \in A \subseteq B$.

Subsets:-If sets A and B are such that every elements of A are also elements of B, then A is said to be subset of B.

 $A \subseteq B \Leftrightarrow \{x \in A \Rightarrow x \in B\}$

So the set B contains the set A and set A completely lies within set B.

If S is a set and A is a subset of S, then complementary of set A is defined as:-

$$A' = \left\{ x \in S : x \notin A \right\}$$

According to this definition:-

$$B' = \left\{ x \in S : x \notin B \right\}$$

The B' is shown by the yellow color in the figure.

The intersection of two sets A and B is:-

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

According to this definition:-

$$A \cap B' = \left\{ x : x \in A \text{ and } x \in B' \right\}$$

Hence,

If
$$A \subseteq B$$
, then $A \cup B' = 0$.

Proved

Comment

Conversely:-

The union of two sets A and B is:-

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

According to this definition:-

$$A \cap B' = \{x : x \in A \text{ and } x \in B'\}$$

The B' is shown by the yellow color in the figure.

If $A \cup B' = 0$, then there is no common elements in set A and B'. So set B completely contains the set A.

Comment

Step 4 of 4

Subsets:-If sets *A* and *B* are such that every elements of *A* are also elements of *B*, then *A* is said to be subset of *B*.

$A \subseteq B \Leftrightarrow \{x \in A \Rightarrow x \in B\}$
According to this definition A is subset of B.
Hence,
$A \cup B' = 0$, then $A \subseteq B$.
Proved
Comment