Blockchain Enabled Secure Medical Record Management with Optimization Algorithm based Diagnosis model

Thesis to be submitted in partial fulfilment of the Requirement for the degree

Of

M.Sc. in Computer Science

By

KUMARJIT GUPTA Roll No.: 573

Under the guidance of

Advisor:

Dr. Arindam Sarkar (HoD), Assistant Professor. Ramakrishna Mission Vidyamandira

Supervisor:

Prof. Sarbajit Manna, Assistant Professor, Ramakrishna Mission Vidyamandira.

Department of Computer Science and Electronics Ramakrishna Mission Vidyamandira, Belur Math

Department of Computer Science and Electronics, Ramakrishna Mission Vidyamandira, Belur Math, Kolkata 711202

CERTIFICATE

This is to certify that we have examined the thesis entitled "Blockchain Enabled Secure Medical Record Management with Optimization Algorithm based Diagnosis model", submitted by Kumarjit Gupta (Roll Number: 573) a post-graduate student of Department of Computer Science and Electronics in partial fulfilment for the award of degree of M.Sc. in Computer Science. We hereby accord our approval of it's as a study carried out under the guidance of Dr. Arindam Sarkar, Head of Department, Department of Computer Science and Electronics, Assistant Professor of Ramakrishna Mission Vidyamandira and supervised by Prof. Sarbajit Manna, Assistant Professor at the Department of Computer Science, Ramakrishna Mission Vidyamandira, Belur Math and presented in a manner required for its acceptance in partial fulfilment for the Post Graduate Degree for which it has been submitted. The thesis has fulfilled all the requirement as per the regulation of the Institute and has reached the standard needed for submission.

The work presented in this report is an authentic record of our own efforts. The matter presented in this Project Report has not been submitted for the award of any other degree elsewhere

Signature of the Student This is to certify that the above statement knowledge.	t made by the students is true to the best of my
Official Address with Seal:	
	Signature of the Supervisor Date:
Signature of the External Examiner Place: Howrah Date: 10-05-2023	Signature of the Head of Department Date:

ACKNOWLEDGEMENTS

I feel privileged and grateful to have completed my M.Sc. in Computer Science degree from Ramakrishna Mission Vidyamandira, which is an autonomous college under the University of Calcutta. I couldn't have achieved this without the support and guidance of several people and institutions.

I want to express my sincere gratitude to my advisor, Prof. Sarbajit Manna, and my supervisor, Dr. Arindam Sarkar, for providing me with invaluable guidance and insights throughout my research journey. Their intellectual acumen, unwavering support, and encouragement have been instrumental in shaping my research and personal growth.

I am also thankful to Swami Mahaprajnananda, Principal Maharaj, Ramakrishna Mission Vidyamandira, for giving me the opportunity to pursue my M.Sc. in Computer Science degree under their esteemed institution. Their continuous support and encouragement have motivated me to strive for academic excellence.

I would like to express my appreciation to Sri Sanjib Kumar Basu, our laboratory attendant, for his tireless efforts and dedication. His support and guidance kept us motivated during difficult times, and we are grateful for his invaluable contributions to our project.

The faculty members of the Department of Computer Science and Electronics, Ramakrishna Mission Vidyamandira, Belur Math, have also been a source of guidance, constructive feedback, and intellectual support throughout my research journey. Their valuable insights, expertise, and encouragement have been instrumental in shaping my academic growth.

My family and friends have been a constant source of support, love, and encouragement throughout my research journey. Their unwavering support and encouragement have kept me motivated and focused during challenging times.

Finally, I would like to express my gratitude to the Almighty for the blessings and guidance that have led me to this point in my academic journey.

ABSTRACT

The healthcare industry has seen significant advancements in recent times, leading to the creation of vast amounts of electronic health records (EHRs). To manage this huge amount of data and ensure its security, a new Blockchain Enabled Secure Medical Record Management with Optimization Algorithm based Diagnosis (BESMRM-OAD) model has been developed. This model employs various stages, including encryption, key generation, Hyperledger blockchain-based secure data management, and diagnosis using machine or deep learningbased techniques with hyperparameter optimization Algorithm. The Proposed model enables the user to manage data access, allow hospital administrators to read and write data, and notify emergency contacts. It uses the SPECK block cipher algorithm for encryption and the Nutcracker Optimization algorithm (NOA) for the best key generation at the same time to increase the effectiveness of encryption. Moreover, the exchange of medical data occurs via the multi-channel Hyperledger blockchain, which uses a blockchain to store information about patient visits as well as linkages to EHRs that are stored in other databases. Finally, a optimization algorithm based diagnostic model is used to detect the presence of the illnesses once the data have been decrypted at the receiving end. Using two benchmark medical dataset, the BESMRM-OAD model's performance is validated, and the results are examined using a variety of performance metrics. The experimental data demonstrates the superiority of the Proposed methodology over state-of-the-art approaches.

Keywords: Blockchain, Electronic health records, SPECK Cipher, Machine Learning, Deep learning, Optimization Algorithm

LIST OF FIGURES

Figure 2.1: 'Flowchart A' for Securing the Medical records	7
Figure 2.2: Diagnosis process	8
Figure 2.3: Speck encryption round function	22
Figure 2.4: Speck round function decomposed into Feistel-like steps	22
Figure 2.5: Speck key expansion	23
Figure 2.6: Flowchart of NOA	30
Figure 2.7: Hyperledger blockchain in healthcare	37
Figure 3.1: Comparison Analysis of Encryption and Decryption time	42
Figure 3.2: Pie plot of the Dependent variable	43
Figure 3.3: Pearson Correlation of features w.r.t each other	44
Figure 3.3.1: Pearson's Correlation of features w.r.t target	45
Figure 3.4: Comparative analysis of all model basis on dataset splitting	46
Figure 3.5: Comparative analysis of all model basis on cross-validation	48
Figure 3.6: Comparative analysis of all model basis on Hyperparameter tuning	50
Figure 3.7: Comparative Analysis with existing model	51
Figure 4.1: Comparison Analysis of Encryption and Decryption time	55
Figure 4.2: Count plot for target feature	56
Figure 4.3: Pearson's Correlation of features w.r.t target	58
Figure 4.4: Comparative analysis of all model basis on dataset splitting	59
Figure 4.5: Comparative analysis of all model basis on cross-validation	61
Figure 4.6: Comparative analysis of all model basis on Hyperparameter tuning	63
Figure 4.7: Comparative Analysis with existing model	64

LIST OF TABLES

Table 1.1: Literature Survey	2
Table 2.1: Speck Parameters	21
Table 3.1: Encryption and Decryption time analysis and Comparison	41
Table 3.2: Dataset Descriptions	43
Table 3.3: Splitting Evaluation Metrics on validation data	46
Table 3.4: Cross Validation evaluation metrics	47
Table 3.5: Model Optimization using Hyperparameter Tuning	50
Table 3.6: Comparative analysis with existing model	51
Table 4.1: Encryption and Decryption time analysis	55
Table 4.2: Dataset's feature Descriptions	57
Table 4.3: Splitting Evaluation Metrics on validation data	59
Table 4.4: Cross Validation evaluation metrics	60
Table 4.5: Model Optimization using Hyperparameter Tuning	63
Table 4.6: Comparative analysis of our model	64

CONTENTS

CHA	APTER 1: INTRODUCTION	1
1.1	Introductory Discussion	1
1.2	Literature Review	
1.3	Objective	
1.4	Organization of the Thesis	
	8	
CHA	APTER 2: METHODOLOGY AND TECHNIQUES	7
2.1	Flowchart/ Block Diagram	
2.2	Algorithm of the work	
	2.2.1 Machine Learning and Ensemble Models Description	
	2.2.1.1 K-Nearest Neighbor Classifier	10
	2.2.1.2 Logistic Regression	11
	2.2.1.3 Random Forest Classifier	11
	2.2.1.4 Logit Boost Classifier	12
	2.2.2 Deep Learning Models Description	
	2.2.2.1 Multi-layer Perceptron	
	2.2.2.2 Bidirectional LSTM	
	2.2.2.3 Supervised Variational Autoencoder	
	2.2.3 Feature Selection	
	2.2.3.1 Pearson Correlation	16
	2.2.4 Feature Scaling	
	2.2.4.1 Robust Scaling	
	2.2.5 Cross Validation Techniques	
	2.2.5.1 K-Fold	
	2.2.5.2 Stratified K-Fold	
	2.2.5.3 Shuffle Split	
	2.2.6 Metrices for Evaluation	
	2.2.7 Data Encryption Algorithm	
	2.2.7.1 Speck Cipher	
	2.2.8 Optimization Algorithms	
	2.2.8.1 Nutcracker Optimization Algorithm	
	2.2.8.2 HyperOpt	
	2.2.8.3 Optuna	
	2.2.8.4 Cuckoo Search	
	2.2.9 Hyperledger Blockchain	
	J1 U	

CHA	APTER 3:	EYE	STATE CLASSIFICATION	39
3.1	Introduction			39
3.2	Implementation			
	-		Description	
	3.2.2 System Configuration			
			Encryption and Decryption time analysis	
	3.2	2.3.2		
	3.2	2.3.3	Correlation Matrix and Feature Selection	43
	3.2	2.3.4	Dataset Splitting	45
	3.2	2.3.5	Cross Validation	
	3.2	2.3.6	Hyperparameter Tuning	
	3.2	2.3.7	Comparative Study	
CH <i>A</i> 4.1			ENT TREATMENT CLASSIFICATION	
4.2	Implementation			
	4.2.1 Dataset Description			
	4.2.2 System Configuration			
	4.2.3 Results Analysis and Discussion			
	4.2	2.3.1	Encryption and Decryption time analysis	55
	4.2	2.3.2	Dataset Overview	56
	4.2	2.3.3	Correlation Matrix and Feature Selection	57
	4.2	2.3.4	Dataset Splitting	58
	4.2	2.3.5	Cross Validation	60
	4.2	2.3.6	Hyperparameter Tuning	61
	4.2	2.3.7	Comparative Study	64
CHA	APTER 5:	CON	CLUSION AND FUTURE SCOPE	65
DEL	'EDENÆE	C/ DI	BLIOGRAPHY	67
	TO IN THE TOTAL OF A	17/ 17	131 /13 /3 TIS /3 I I I I	/