Inference for fMRI

Jeanette Mumford University of Wisconsin - Madison

Overview

- Step 1
 - What is type I error?
- Step 2
 - Understand different statistics we can use
 - Understand the types of error rates
- Step 3
 - Parametric vs Nonparametric

Type I error

 Assuming the null is true, the probability that we reject the null

Type I error

 Assuming the null is true, the probability that we reject the null

• 5% of the time, we'll have a false positive

	Declared active	Declared inactive	Total
Non-active			
Active			
Total			

What we know (test results)

	Declared active	Declared inactive	Total
Non-active			
Active			
Total			

What we don't know (truth)

	Declared active	Declared inactive	Total
Non-active			
Active			
Total	•		

- 1100 total voxels
- 100 voxels have signal (null is false)
- 1000 voxels have no signal (null)

	Declared active	Declared inactive	Total
Non-active			1000
Active			100
Total			1100

- 1100 total voxels
- 100 voxels have signal (null is false)
 - 80% power -> 80 voxels detected
- 1000 voxels have no signal (null)

	Declared active	Declared inactive	Total
Non-active			1000
Active	80	20	100
Total			1100

- 1100 total voxels
- 100 voxels have signal (null is false)
 - 80% power -> 80 voxels detected
- 1000 voxels have no signal (null)

	Declared active	Declared inactive	Total
Non-active			1000
Active	80 (Power)	20 (Type II err.)	100
Total			1100

- 1100 total voxels
- 100 voxels have signal (null is false)
 - 80% power -> 80 voxels detected
- 1000 voxels have no signal (null)
 - 5% type I error -> 50 false positives

	Declared active	Declared inactive	Total
Non-active	50	950	1000
Active	80 (Power)	20 (Type II err.)	100
Total			1100

- 1100 total voxels
- 100 voxels have signal (null is false)
 - 80% power -> 80 voxels detected
- 1000 voxels have no signal (null)
 - 5% type I error -> 50 false positives

	Declared active	Declared inactive	Total
Non-active	50 (Type I err.)	950 (Correct)	1000
Active	80 (Power)	20 (Type II err.)	100
Total			1100

- 1100 total voxels
- 100 voxels have signal (null is false)
 - 80% power -> 80 voxels detected
- 1000 voxels have no signal (null)
 - 5% type I error -> 50 false positives

	Declared active	Declared inactive	Total
Non-active	50	950	1000
Active	80	20	100
Total	130	970	1100

- 1100 total voxels
- 100 voxels have signal (null is false)
 - 80% power -> 80 voxels detected
- 1000 voxels have no signal (null) focus is on
 - − 5% type I error -> 50 false positives controlling this✓ number

	Declared active Declared inactive		
Non-active	50	950	1000
Active	80	20	100
Total	130	970	1100

Implication of type I error

- If you run enough tests, you'll find something that is significant
 - This doesn't mean it is truly significant
 - If you run 20 tests with a 5% threshold on type I errors, you expect to have at least 1 significant test
 - This would be a false positive

• What type of error rate does the researcher want to control?

What statistic does the researcher want to use?

- What type of error rate does the researcher want to control?
 - Per comparison error
 - Use p < 0.05 for each statistic

What statistic does the researcher want to use?

- What type of error rate does the researcher want to control?
 - Per comparison error
 - Use p < 0.05 for each statistic
 - Family wise error
 - Probability of *any* false positives

What statistic does the researcher want to use?

- What type of error rate does the researcher want to control?
 - Per comparison error
 - Use p < 0.05 for each statistic
 - Family wise error
 - Probability of *any* false positives
 - False discovery rate
 - Proportion of voxels found to be active that are false activations
- What statistic does the researcher want to use?

- What type of error rate does the researcher want to control?
 - Per comparison error
 - Use p < 0.05 for each statistic
 - Family wise error
 - Probability of *any* false positives
 - False discovery rate
 - Proportion of voxels found to be active that are false activations
- What statistic does the researcher want to use?
 - Voxelwise

- What type of error rate does the researcher want to control?
 - Per comparison error
 - Use p < 0.05 for each statistic
 - Family wise error
 - Probability of *any* false positives
 - False discovery rate
 - Proportion of voxels found to be active that are false activations
- What statistic does the researcher want to use?
 - Voxelwise
 - Clusterwise

- What type of error rate does the researcher want to control?
 - Per comparison error
 - Use p < 0.05 for each statistic
 - Family wise error
 - Probability of *any* false positives
 - False discovery rate
 - Proportion of voxels found to be active that are false activations
- What statistic does the researcher want to use?
 - Voxelwise
 - Clusterwise
 - Peakwise

- What type of error rate does the researcher want to control?
 - Per comparison error
 - Use p < 0.05 for each statistic
 - Family wise error
 - Probability of *any* false positives
 - False discovery rate
 - Proportion of voxels found to be active that are false activations
- What statistic does the researcher want to use?
 - Voxelwise
 - Clusterwise
 - Peakwise

Error Rate Illustration:

Noise

Signal

Signal+Noise

Control of Per Comparison Rate at 10%

Percentage of Null Pixels that are False Positives

Control of Per Comparison Rate at 10%

11.3%

11.3%

12.5%

10.8% 11.5% 10.0% 10.7%

11.2%

10.2%

9.5%

Percentage of Null Pixels that are False Positives

Control of Familywise Error Rate at 10%

FWE

Occurrence of Familywise Error

Control of Per Comparison Rate at 10%

11.3%

11.3%

12.5%

10.8% 11.5%

10.0% 10.7%

11.2%

10.2%

9.5%

Percentage of Null Pixels that are False Positives

Control of Familywise Error Rate at 10%

FWE

Occurrence of Familywise Error

Control of False Discovery Rate at 10%

6.7%

10.4%

14.9%

9.3%

16.2%

13.8% 14.0%

10.5%

8.7%

Percentage of Activated Pixels that are False Positives

Levels of inference

Voxel level

Cluster level

Peak level

Voxel-level Inference

- Retain voxels above α -level threshold u_{α}
- Gives best spatial specificity
 - The null hyp. at a single voxel can be rejected

Voxel-level Inference

- Retain voxels above α -level threshold u_{α}
- Gives best spatial specificity
 - The null hyp. at a single voxel can be rejected

Voxel-level Inference

- Retain voxels above α -level threshold u_{α}
- Gives best spatial specificity
 - The null hyp. at a single voxel can be rejected

Cluster-level Inference

- Two step-process
 - Define clusters by arbitrary threshold $u_{\rm clus}$

Cluster-level Inference

- Two step-process
 - Define clusters by arbitrary threshold $u_{\rm clus}$
 - Retain clusters larger than lpha-level threshold k_lpha

Peak level inference

Again start with a cluster forming threshold

Peak level inference

- Again start with a cluster forming threshold
- Instead of cluster size, focus on peak height

Peak level inference

- Again start with a cluster forming threshold
- Instead of cluster size, focus on peak height

Peak level inference

- Again start with a cluster forming threshold
- Instead of cluster size, focus on peak height
- Similarly to cluster level inference, significance applies to a set of voxels
 - The peak and its neighbors

What gets used?

- Most common
 - Cluster-based statistics thresholded to control
 FWER with random field theory
- Also common
 - Peak-wise inference controlling FWER with random field theory

Permutation test

- Parametric methods
 - Assume distribution of statistic under null hypothesis
- Nonparametric methods
 - Use data to find distribution of statistic under null hypothesis

Parametric Null Distribution

Nonparametric Null Distribution

Very quick overview of parametric methods

Random field theory assumptions

- Spatial smoothness of signal is constant over the brain
- Spatial autocorrelation follows a specific distribution (squared exponential)
- Cluster forming threshold needs to be high

Very quick overview of parametric methods

- Cluster forming threshold must be "high enough"
 - Main issue in Eklund paper (Cluster failure)
 - 3.1 is high enough in FSL
- Faster than nonparametric

Usually run by default if you're using Feat

Nonparametric approach

randomise is the FSL tool

Takes longer to run

- Fewer assumptions
 - Exchangeability
 - There still is one and it can still be violated!
 - Is not a magic fix for outliers

Data from voxel in visual stim. experiment
 A: Active, flashing checkerboard
 B: Baseline, fixation
 blocks, ABABAB
 Just consider block averages...

Α	В	Α	В	Α	В
103.00	90.48	99.93	87.83	99.76	96.06

- Null hypothesis H_o
 - No experimental effect, A & B labels arbitrary
- Statistic
 - Mean difference

- Under H_o
 - Consider all equivalent relabelings

AAABBB	ABABAB	BAAABB	BABBAA
AABABB	ABABBA	BAABAB	BBAAAB
AABBAB	ABBAAB	BAABBA	BBAABA
AABBBA	ABBABA	BABAAB	BBABAA
ABAABB	ABBBAA	BABABA	BBBAAA

- Under H_o
 - Consider all equivalent relabelings
 - Compute all possible statistic values

AAABBB 4.82	ABABAB 9.45	BAAABB -1.48	BABBAA -6.86
AABABB -3.25	ABABBA 6.97	BAABAB 1.10	BBAAAB 3.15
AABBAB -0.67	ABBAAB 1.38	BAABBA -1.38	BBAABA 0.67
AABBBA -3.15	ABBABA -1.10	BABAAB -6.97	BBABAA 3.25
ABAABB 6.86	ABBBAA 1.48	BABABA -9.45	BBBAAA -4.82

- Under H_o
 - Consider all equivalent relabelings
 - Compute all possible statistic values
 - Find 95%ile of permutation distribution

AAABBB 4.82	ABABAB 9.45	BAAABB -1.48	BABBAA -6.86
AABABB -3.25	ABABBA 6.97	BAABAB 1.10	BBAAAB 3.15
AABBAB -0.67	ABBAAB 1.38	BAABBA -1.38	BBAABA 0.67
AABBBA -3.15	ABBABA -1.10	BABAAB -6.97	BBABAA 3.25
ABAABB 6.86	ABBBAA 1.48	BABABA -9.45	BBBAAA -4.82

- Under H_o
 - Consider all equivalent relabelings
 - Compute all possible statistic values
 - Find 95%ile of permutation distribution

AAABBB 4.82	ABABAB 9.45	BAAABB -1.48	BABBAA -6.86
AABABB -3.25	ABABBA 6.97	BAABAB 1.10	BBAAAB 3.15
AABBAB -0.67	ABBAAB 1.38	BAABBA -1.38	BBAABA 0.67
AABBBA -3.15	ABBABA -1.10	BABAAB -6.97	BBABAA 3.25
ABAABB 6.86	ABBBAA 1.48	BABABA -9.45	BBBAAA -4.82

- Under H_o
 - Consider all equivalent relabelings
 - Compute all possible statistic values
 - Find 95%ile of permutation distribution

Small Sample Sizes

- Permutation test doesn't work well with small sample sizes
 - Possible p-values for previous example:
 - 0.05, 0.1, 0.15, 0.2, etc
 - Tends to be conservative for small sample sizes

What should you use?

- Typically Cluster-based approaches
 - Voxelwise approaches are very conservative
 - Peakwise is harder to interpret and not used as much
- Parametric with a cluster forming threshold of Z=3.1 or p=0.001 is fine
- Nonparametric with any cluster forming threhold (or threshold free cluster enhancement in randomise) is also fine!

Thank you

• Questions?