Rozdział 1

Wprowadzenie teoretyczne

1.1 Teoria ewolucji

Teoria zaprezentowana przez uczonego przyrodnika i geologa Charlesa Darwina w 1859 w pierwszym wydaniu jego książki, "The Origin of Species", podsumowującej lata pracy i zebrane doświadczenia na temat rozwoju gatunków. W ogólności teoria ewolucji głosi, że wszystkie organizmy żywe są ze sobą spokrewnione i pochodzą od jednego wspólnego przodka. Świat istot żywych podlega ciągłym i stopniowym zmianom, dążącym do adaptacji organizmów, a wszystkie zmiany te są wynikiem doboru naturalnego. [1]

Teoria Darwina opiera się na pewnym zbiorze zasad [1], [2]:

- Prawo zmienności powszechnej i bezkierunkowej
 Wyjaśnia, iż jedynie zmienność dziedziczna ma wpływ na ewolucję. Zmienność niedziedziczna, nie wpływa na jej przebieg.
- Prawo różnorodności gatunków
 Głosi, że gatunki dzielą się na podgatunki potomne, lub w procesie pączkowania wytwarzają innego rodzaju organizmy potomne.
- Prawo walki o byt
 Jest to mechanizm redukujący nadmiar populacji, będący czynnikiem napędzającym proces ewolucji. Walka o byt może się odbywać między różnymi gatunkami w układzie ofiara drapieżnik lub w obrębie jednego
 gatunku w wyniku konkurencji o tę samą niszę ekologiczną.

• Prawo doboru naturalnego

Przeżywają jedynie osobniki najlepiej przystosowane, a formy pośrednie wymierają, co prowadzi do coraz większej rozbieżności cech w następnych pokoleniach i powstania z czasem form bardzo różniących się od pra-przodka i powstawania nowych gatunków.

Prawo dziedziczenia

Bezpośrednio łączy się z powyższym prawem. Osobniki słabsze, częściej padające ofiarą, mają mniejsze szanse na rozmnażanie, a co za tym idzie na przekazanie swojego zestawu cech. Powstają organizmy potomne, dziedziczące jedynie cechy od silnych osobników, które przetrwały.

Wszystkie tezy zostały potwierdzone dzięki badaniom z dziedziny biologii molekularnej, ekologii oraz biogeografii.

1.2 Ewolucja Organiczna

Ewolucja to proces stopniowej przemiany osobników (zarówno zwierząt jak i roślin), który w ostateczności może doprowadzić do powstania nowych gatunków. Przemiana ta może dotyczyć zarówno cech morfologicznych jak i fizjologicznych. Jej istotą jest zmiana składu materiału genetycznego organizmów potomnym w stosunku do organizmów rodzicielskich. [3] Zmiany te mogą być wynikiem różnych mechanizmów:

1.2.1 Mutacje i zmienność rekombinacyjna

Występowanie tych dwóch mechanizmów ma charakter losowy. Zmienność rekombinacyjna jest wynikiem mieszania się materiału genetycznego, natomiast mutacje spowodowane są zmianami w obrębie jednego organizmu. Mutacje być typu punktowego (dotyczące jednego nukleotydu) lub obejmować większy odcinek DNA (chromosomowe). Wśród nich wyróżniamy:

- substytucję,
- delecję,
- insercję,
- tranzycję,
- transwersję
- inwersję,

- deficjencję,
- translokację. [4]

Zmienność rekombinacyjna zachodzi dzięki zjawiskom takim jak: crossing over, niezależna segregacja chromosomów i połączenie gamet.

Crossing-over

Crossing-over, inaczej krzyżowanie, jest zjawiskiem wymiany materiału genetycznego między chromatydami nie siostrzanymi chromosomów homologicznych podczas procesu mejozy. [5] Schemat zachodzenia crossing-over zaprezentowano na grafice rys. 1.1. Chromosomami homologicznymi nazywamy parę chromosomów pochodzących, po jednym, od osobników rodzicielskich.

Rys. 1.1 Profaza mejozy - crossing-over

1.2.2 Dobór naturalny

To czynnik nadający ewolucji kierunkowy i przystosowawczy charakter. Ma na celu zwiększenie stopnia przystosowania (adaptacji) do warunków środowiskowych zarówno na poziomie osobniczym jak i genowym. Organizmy posiadające korzystne cechy mają większą szansę na przeżycie i rozmnażanie, co prowadzi do zwiększania częstości występowania korzystnych genów w populacji.

1.2.3 Dryft genetyczny (zjawisko Wrighta)

Dryftem genetycznym nazywa się wahania częstotliwości występowania genu nie wynikające z działania doboru naturalnego, migracji, czy mutacji. Jest efektem losowych zmian w ilości alleli w kolejnych pokoleniach. [6]

1.2.4 Hybrydyzacja (krzyżowanie)

Hybrydyzacja to proces polegający na krzyżowaniu się osobników, będących przedstawicielami różnych genetycznie populacji, w wyniku którego może powstać potomstwo mieszańcowe. Może to doprowadzić do powstania nowych gatunków, lub przyczynić się do zwiększenia różnorodności genetycznej populacji, bądź pojawienia się w populacji nowych korzystnych cech. [7]

1.3 Strategie ewolucyjne (ES)

Pojęcie strategii ewolucyjnych powstało w latach pięćdziesiątych XX wieku, gdy naukowcy postawili sobie za cel wykorzystanie teorii ewolucji Darwina oraz zasady doboru naturalnego na zbiorze potencjalnych wyników do ich optymalizacji. [8] W 1975 roku profesor J.H. Holland jako pierwszy opracował koncept algorytmów genetycznych, które zaprezentowano w książce "Adaption in Natural and Artificial Systems". Zaproponował on, by zamodelować chromosomy w postaci ciągów zer i jedynek. Tak przygotowany zbiór wejściowy z łatwością ulegać może "ewolucji" poprzez mutację, selekcję, czy też crossing-over. [8] Słownik pojęć niezbędnych do poruszania się po temacie zaprezentowano w tabeli 1.1

1.3.1 Algorytm ewolucyjny (EA), Algorytm Genetyczny (GA)

Algorytmem ewolucyjnym nazywamy algorytm probabilistyczny, opierającego się na zasadach obowiązujących w ewolucji organicznej [9], dla którego generowany jest zbiór osobników $P(t) = \{x_1^t,...,x_n^t\}$ w każdej iteracji t. Każdy osobnik przedstawia potencjalne rozwiązanie zadanego problemu i posiada swoją reprezentację jako struktura danych S. Obiekty zbioru oceniane są w oparciu o ich "dopasowanie". W iteracji t+1 tworzy się nową populację osobników. Jest ona wynikiem selekcji najlepiej "dopasowanych" obiektów z iteracji t. Niektóre z wybranych podlegają transformacji (mutacja / crossing-over) dając nowe rozwiązania. Po zakończeniu działania algorytmu oczekuje się, iż najlepsze możliwe osobniki znajdą się w zbiorze końcowym i reprezentują rozwiązanie znajdujące

Pojęcie	Objaśnienie		
Chromosom	Zakodowana forma potencjalnego rozwiązania zadanego problemu. Ciąg uporządkowanych genów.		
Gen	Element składowy chromosomu.		
Osobnik	Dla algorytmów genetycznych, równoważny z pojęciem chromosomu. Niekiedy jednak prezentowany jako zespół chromosomów (genotyp).		
Fenotyp	Odpowiednik genotypu w przestrzeni odkodowanej.		
Populacja	Zbiór osobników o określonej liczebności.		
Przystosowanie	Przystosowanie osobników do zadanego problemu. Oceniane za pomocą funkcji przystosowania. Im większy stopień przystosowania, tym lepsze rozwiązanie.		
Selekcja	Proces filtracji najlepiej dopasowanych osobników z pośród populacji. Wybrane chromosomy trafiają do populacji rodzicielskiej, przygotowywanej do rekombinacji genów.		
Krzyżowanie	Rekombinacja genów chromosomów rodzicielskich, której wynikiem jest chromosom potomnym o zmienionym składzie. Patrz 1.2.4		
Rodzic	Chromosom wybrany do krzyżowania.		
Potomek	Wynik krzyżowania pary rodziców.		
Mutacja	Proces zamiany genów w obrębie jednego chromosomu bez wpływu chromosomów rodzicielskich. Patrz 1.2.1		

Tab. 1.1 Słownik pojęć podstawowych

się blisko optymalnego (rozwiązanie rozsądne).[[10]] W ten sposób unika się przeszukiwania całej przestrzeni w poszukiwaniu rozwiązania, a jedynie wybierana zostaje niewielka populacja jej przedstawicieli. A dzięki mutacjom otrzymuje się rozwiązania coraz lepsze, bliskie optimum. Ogólny schemat blokowy działania algorytmu przedstawiono na rysunku 1.2.

 $\mathbf{Rys.}\ \mathbf{1.2}$ Struktura programu ewolucyjnego

Podczas analizy literatury stwierdzono, iż nazwy "algorytm ewolucyjny" oraz "algorytm genetyczny" stosuje się zamiennie i poniższym tekście również przyjęto taką koncepcję.

1.3.2 Algorytm genetyczny a program ewolucyjny

Na podstawie algorytmów ewolucyjnych powstały programy ewolucyjne. Ich struktura pozostaje taka sama, jednak różnice widać na niższym poziomie. Dla algorytmów przyjęto zapis w postaci skończonego, uporządkowanego ciągu jasno zdefiniowanych czynności, koniecznych do wykonania pewnego zadania. Konieczny do rozszyfrowania tego zapisu jest specjalny parser, który zamienia ciąg

w wykonalną funkcję oraz rozpoznaje ewentualne zmiany stanu (wywołane mutacją, bądź crossing-over), które mogłyby zagrażać jego działaniu. W porównaniu do tego program ewolucyjny jest przedstawiony jako struktura drzewiasta czynności i wartości. Również niezbędny jest parser, jednak pomniejszony o świadomość stanów (te ukryte są wewnątrz struktury).

Poza tym znaczącą różnicę stanowi reprezentacja chromosomów. Dla algorytmów ewolucyjnych/genetycznych chromosomy muszą być w formie binarnej, natomiast program pozwala nam na zdefiniowanie dowolnych struktur. Związane z tym jest również zapotrzebowanie na wprowadzenie spersonalizowanych operatorów genetycznych, odpowiednich dla zadanej struktury i zadania, podczas gdy algorytmy korzystają z podstawowych operatorów.

Algorytmy genetyczne wymagają modyfikacji zadania (przetworzenie na łańcuch binarny). Nie jest to zadaniem łatwym i niekiedy może wymagać użycia parserów, czy też algorytmów naprawy. Np. Reprezentacja indeksów liczby z zakresu od 1 - 5, możliwa jest dzięki 3 bitom. Jednak podczas procesu mutacji mogą powstać indeksy wykraczające poza zakres (6-8). Zmienienie ich wartości do zgodnych z zakresem wymaga użycia specjalnego algorytmu naprawy. Programy ewolucyjne, w odróżnieniu, wymagają zmiany reprezentacji chromosomowej potencjalnych rozwiązań oraz wytworzenia odpowiednich operatorów genetycznych do działania na wytworzonych strukturach. Zależności te w sposób schematyczny przedstawiono na rysunkach rys. 1.3, rys. 1.4.

1.3.3 Wymagania

Zarówno program jak i algorytm posiadają listę wymagań, które muszą zostać spełnione, by zapewnić ich poprawne działanie. [10] Musi istnieć:

- zbiór z reprezentacją możliwych rozwiązań problemu,
- metoda generowania początkowej populacji potencjalnych rozwiązań,
- funkcja oceniająca, do oceny "dopasowania" rozwiązań,
- operator "genetyczny", wpływający na populację,
- parametr populacji niezbędny algorytmowi (np. rozmiar populacji, prawdopodobieństwo mutacji, długość wykonywania się algorytmu itp.)

 ${\bf Rys.}~{\bf 1.3}$ Schemat działania algorytmu genetycznego.

 ${\bf Rys.}~{\bf 1.4}$ Schemat działania programu ewolucyjnego.

Spis treści

12 Spis treści

Bibliografia

- [1] A. Alzohairy. Darwin's theory of evolution. 04 2009.
- [2] J. Kominek. Prawa ewolucji Darwina. http://wiw.org/~jkominek/lojban/9402/msg00074.html, 1994. [Online; dostęp 09.02.19].
- [3] Encyklopedia Powszechna PWN. PWN, 1973.
- [4] Typy mutacji. https://evolution.berkeley.edu/evolibrary/article/%3C?%20echo%20\$baseURL;%20?%3E/mutations_031. [Online; dostep 09.02.19].
- [5] Definicja crossing-over. https://biologydictionary.net/crossing-over/. [Online; dostep 09.02.19].
- [6] Encyklopedia Biologiczna. GREG Krakow, 2017. Wydanie drugie, poprawione.
- [7] K.A. Jadwiszczak A.Chrzanowska. Rola hybrydyzacji międzygatunkowej w kształtowaniu zmienności genetycznej oraz morfologicznej brzóz (betula l.). 2015.
- [8] B. Kanber L. Jackobson. Genetic Algorithms in Java Basics. Apress, 2015.
- [9] O algorytmach genetycznych. https://www.toptal.com/algorithms/genetic-algorithms. [Online; dostęp 09.02.19].
- [10] Z.Michalewicz. $Genetic\ Algorithms + Data\ Structures = Evolution\ Programs.$ Wydawnictwo Naukowo-Techniczne, 1999.