

Single cell multi-modal integrative analysis with autoencoder

Team: Amateur

Qiao Liu, Wanwen Zeng Chencheng Xu Stanford University Tsinghua University

What we did in the NeurIPS single cell competition

 We designed two autoencoder models to participate in Joint embedding and Modality prediction tasks

- Results
 - Rank 1st in Joint embedding track of both Multiome and CITE-seq (with pretrain)
 - Mean metrics: 0.8039 for CITE-seq, 0.8424 for multiome
 - Rank 2rd in ATAC2GEX subtask in Modality prediction

RMSE: 0.2266

Dataset for Joint Embedding task

- Multiome
 - Phase 1: 22463 cells
 - s1d1: 5616, s1d2: 6069, s2d1: 3811, s2d4: 5456, s3d6: 1511
 - Phase 2 training: 42492 cells (same as Phase1-v2)
 - s1d1: 5616, s1d2: 6069, s1d3: 3875, s2d1: 3811, s2d4: 5456, s2d5: 4395, s3d10: 3909, s3d3: 1496, s3d6: 1771, s3d7: 6094
- CITE-seq
 - Phase1: 43890 cells
 - s1d1: 4721, s1d2: 4451, s2d1: 9353, s2d4: 5026, s3d6: 9977, s3d7: 10362
 - Phase2 training: 66175 cells (same as Phase1-v2)
 - s1d1: 4721, s1d2: 4464, s1d3: 5484, s2d1: 9353, s2d4: 5026, s2d5: 8206, s3d1: 8582, s3d6: 9977, s3d7: 10362

Single cell Joint embedding with autoencoder

Autoencoder with latent feature regularization

- First applied SVD to each modality (100 dim), then concatenate them and fed to an autoencoder model
- Autoencoder model aims at learn a low-dimensional representation in the latent space
- In the mean while, we desire that the latent feature could predict cell type, batch id and cell cycle phase score (S and G2M)
 - For batch label, we match the distribution with a Uniform distribution (for eliminating batch effect)

Model architecture

- Modified from scDEC model (Nat Mach Intell 3, 536–544, 2021) for single cell representation learning
- Compared to scDEC, we remove all discriminators, and add additional constrains in the latent space

Data preprocessing

- We started with the raw reads count (.layers["counts"])
- Step1: L1-normalize the across cells (normalize sequencing depth)

 API: sklearn.preprocessing.normalize
- Step2: Scaling (10⁴) and log₁₀(1+x) normalized

API: scipy.sparse.csr_matrix.log1p

 Step3: SVD transformation, reduced to 100 dimension for each modality (except ADT)

API: sklearn.decomposition.TruncatedSVD

Hyperparameter setting

- For encoder, we use fully connected layers with residual connections, fully connected layers were used for decoder
- For Multiome, embedding dim is set to 33 (5+21+5+2)
- For CITE-seq, embedding dim is set to 58 (5+45+6+2)

Model pretrain

- Three predictors in the latent space for predicting cell type, batch id, and cell cycle phase score, respectively
- For the exploration data, containing cell type, and batch information, the AE losses have four loss terms.
 - $loss_{rec}$: reconstruction loss
 - loss_{ce c}: cross entropy loss for cell type
 - $loss_{ce\ b}$: cross entropy loss for batch
 - $loss_{phase}$: MSE loss for cell cycle phase score
- To eliminate batch effect, we want the classifier to be as random as possible
 - Instead of using true batch label, we used a uniform distribution instead.

Total loss: $loss = 0.7 loss_{rec} + 0.2 loss_{ce_c} + 0.05 loss_{ce_b} + 0.05 loss_{phase}$

Pretrain visualization results

- Joint embedding for the JAE with Multiome exploration data
- Baseline method: Only SVD and concatenation

(our method)

(baseline method)

Online fine-tune

- Fine tune strategy:
 - Only fine tune with the AE reconstruction loss $loss_{rec}$
- For Multiome
 - Set a smaller learning rate (from 10⁻⁴ to 2*10⁻⁵)
 - We finetune online test data for 2 epochs
- For CITE-seq
 - We finetune online test data for only 1 epoch

Summary

- Pros
 - Easy and flexible to incorporate the annotation information (e.g., cell type label) to achieve a better embedding
- Cons
 - The dimension of latent feature directly relates to meta data (e.g., number of cell types)
- A more complicated version of JAE (with adversarial training) could be found in our recent work (scDEC, Nat Mach Intell 3, 536–

544, 2021)

Acknowledgement

Assoc. Prof. Rui Jiang

Postdoc Wanwen Zeng

PhD student Chencheng Xu

 I would like to thank the organizers for their continuous support and quick response in discord, especially Robrecht Cannoodt

Contact: liuqiao@Stanford.edu

Project URL: https://github.com/kimmo1019/JAE