МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №6 по дисциплине «Качество и метрология программного обеспечения» Тема: «Оценка характеристик надежности программ по структурным схемам надежности»

Студент гр. 8304	Нам Ё Себ
Преподаватель	Ефремов М. А.

Санкт-Петербург

Цель работы.

Выполнить расчет характеристик надёжности вычислительной системы по структурной схеме надежности, выбранной из таблицы в соответствии с номером студента в списке группы.

Ход работы.

По списку был выбран варианта № 19 (см Таблица 1).

Таблица 1 – Исходные данные.

		<i>N</i> ₁			N_{2}	2	N_{3}	
комбинат. соединения	λ_1	λ ₂	λ ₃	λ_4	комб. соедин.	λ	комб. соедин.	λ
C(4)	3.8	2.28	2.85	4.0	(1, 0)	4.0	(2, 2)	2.0

Был построен граф программы, результат работы представлен на рисунке 1.

Рисунок 1 – Граф программы

Структура графа: N_1 – блок, состоящий из 4-х последовательных эл-тов; N_2 блок, состоящий из двух параллельных ветвей (один элемент на верхней ветви, два на нижней); N_3 – блок, состоящий из двух параллельных ветвей (два элемент на верхней ветви, два на нижней); 2 дополнительные вершины: первая – связь между N_2 и N_3 , вторая – конченая вершина.

Расчетный способ.

Ручной расчет вероятностей для блоков и для целого графа представлен ниже ($t=2,\ \lambda_{_{5}}=4.0,\ \lambda_{_{6}}=2.0$)

• Первый блок:

$$R_{N_1} = e^{-\left(\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4\right)t} = e^{-(3.8 + 2.28 + 2.8 + 4.0)*2*10^{-5}} \approx 0.9997414334$$
 Второй блок:
$$R_{N_2} = 1 - \left(1 - e^{-\lambda_5 t}\right) = 1 - \left(1 - e^{-\lambda_5 t}\right) = 1 - \left(1 - e^{-4.0*2*10^{-5}}\right) = 0.9999200031999147$$

• Третий блок:

Вероятность безотказной работы системы в заданный момент времени: 0.9996614509, среднее время до отказа системы: 5544. 4302 часа.

Программный способ.

Был выполнен программный расчет, XML-описание графа представлено вместе с отчетом. Полученная схема представлена на рисунке 2.

Рисунок 2 – Полученная схема

Программные результаты представлены на рисунке 3.

	Ţ	R	T
2.0		0.999661450921189	5539.548160685659

Рисунок 3 – Программные результаты

Выводы.

В ходе выполнения лабораторной работы был выполнен расчет характеристик надёжности вычислительной системы по структурной схеме надежности, выбранной из таблицы в соответствии с номером студента в списке группы.