BIG DATA ANALYSIS 04/09/2018

NOME	
COGNOME	
MATRICOLA	

Parte 0: Il Dataset

Il file weather.csv () contiene dati meteo rilevati in alcune città australiane. Si vuole predire se il giorno successivo pioverà.

Lo schema del dataset è il seguente

- Month: mese in cui avviene la rilevazione del dato
- Location: città in cui avviene la rilevazione
- MinTemp, MaxTemp: temperature minima e massima
- Rainfall: quantitativo di pioggia caduta
- WindGustSpeed, WindSpeed9am, WindSpeed3pm: misurazioni relative al vento
- Humidity9am, Humidity3pm: misurazioni relative all'umidità
- Pressure9am, Pressure3pm: misurazioni relative alla pressione
- Cloud3pm: nuvolosità in ottavi: https://it.wikipedia.org/wiki/Okta
- Temp9am, Temp3pm: misurazioni relative alla temperatura
- RainToday, Yes/No
- RainTomorrow, la classe da predire

Note:

Durata della prova:2 ore. Rispondere nel file notebook. Creare una cartella esame e scaricare in essa il file csv che si trova al link http://bit.ly/BDAweather2018

Salvare frequentemente il file notebook creato attribuendogli il proprio nome-cognome. Al termine della prova spedire a <u>francesco.guerra@unimore.it</u> il file della prova o il notebook direttamente o la versione html (file / download as / HTML).

.

Parte 1: Analisi (10 punti)

1. Caricare il dataset introducendo un opportuno nome per le colonne e denominarlo con una variabile chiamata "dataset"
2. Quante sono le istanze contenute nel dataset? Il dataset è completo (cioè non esistono valori nulli)? Il dataset è bilanciato per quanto riguarda la classe da predire? Il numero di rilevazioni per città è bilanciato? (punti 2)
3. Rappresentare in un grafico la frequenza delle rilevazioni mensili per città. (punti 3)
4. Calcolare per ogni città e per ogni mese l'umidità minima e la massima. (punti 2)
5. Creare un nuovo attributo "TemperatureRange" che mostri l'escursione termica giornaliera. Rappresentare in un grafico l'escursione massima mensile. (punti 3)
Parte 2: Trasformazione e Predizione (20 punti)
1. Si vuole predire la possibilità di avere pioggia il giorno successivo (RainTomorrow è la classe da predire). Trasformare i valori degli attributi RainToday e RainTomorrow da No a 0, e da Yes a 1. Creare un nuovo dataset chiamato reduce con le istanze del dataset per le quali c'è un valore di Cloud3pm maggiore o uguale a 0.
Dividere il dataset in modo che 4/5 degli elementi siano contenuti in un nuovo dataset "train" e 1/5 in un dataset "test". Valutare l'accuracy ottenuta con il classificatore Logistic Regression e il Decision Tree
Il valore di accuratezza ottenuto è pari a La confusion matrix evidenzia delle peculiarità? (punti 4)
2. Che valore di accuratezza si ottiene con un 5 Fold cross validation e il classificatore basato su Decision Tree e quello basato su Logistic Regression Il valore di accuratezza maggiormente rappresentativo è quello che si ottiene con questa tecnica o con quella attuata in precedenza? (punti 2)
3. Si introduca un attributo che sostituisca per ogni rilevazione i due valori di temperatura "MinTemp, MaxTemp" con il valore medio delle registrazioni. Si faccia lo stesso con vento (WindSpeed9am, WindSpeed3pm). Che valore di accuratezza si ottiene? (punti 4)
4. Si riparta dal dataset originario e si considerino due nuovi dataset ottenuti rimuovendo dal dataset di partenza gli elementi con Cloud3pm minore di 0. Il dataset con i valori negativi si chiamerà cloudP, l'altro cloudT. Si alleni un regressore su cloudT per predire i valori di Cloud3pm. Si usi il modello per sostituire in cloudP il valore predetto per Cloud3pm. (punti 4)
5. Si consideri il dataset ottenuto concatenando cloudP e cloudT in un unico dataset e si confronti l'accuratezza che si ottiene con un 10 Fold cross validation e il classificatore basato su Decision Tree e quello basato su Logistic Regression con quella ottenuta al punto 3. (punti 3)

6. Utilizzare un algoritmo di regressione da applicarsi al dataset del punto 1 per effettuare la predizione. Arrotondare i valori predetti all'intero. Confrontare i risultati ottenuti con quelli

ottenuti nei punti precedenti (punti 3).