Цели учебной дисциплины

Таблица 1

После изучения дисциплины студент будет

	ния дисциплины студент будет
иметь	
представление	O 1 11 V
1	О классификации дифференциальных уравнений в частных производных
	(линейных второго порядка) и приведении этих уравнений к
2	каноническому виду.
2	О существовании и единственности решений, их непрерывной
	зависимости от исходных данных, основные теоремы.
3	О классических и обобщенных решениях уравнений математической физики.
4	Об обратных задачах и методах их решения
знать	
5	Основные типы уравнений математической физики.
6	Метод разделения переменных (метод Фурье) для решения
O	гиперболических, параболических и эллиптических уравнений.
7	Методы решения краевых задач с помощью функций Грина.
8	Теорию потенциала: объема, двойного и простого слоев.
9	Интегральные уравнения и методы их решения.
10	Численные методы решения уравнений математической физики: метод
	конечных разностей, метод конечных элементов, метод конечных
	объемов.
11	Методы решения сеточных уравнений, ориентированные на системы
	линейных алгебраических уравнений (СЛАУ) с разреженными
	матрицами.
уметь	
12	Строить дискретные аналоги двумерных задач на основании конечно-
	разностных аппроксимаций на прямоугольных сетках и
	конечноэлементных аппроксимаций на прямоугольных и треугольных
	сетках.
13	Исследовать дискретные модели на сходимость, определять порядок
	аппроксимации.
14	Выписать эквивалентную вариационную постановку для краевых задач
	эллиптического типа, учитывающую три типа краевых условий.
15	Вычислять локальные матрицы жесткости и массы для
	конечноэлементных аппроксимаций.
16	Собирать глобальные матрицу и вектор правых частей систем
10	конечноэлементных уравнений из локальных матриц и векторов.
17	Решать СЛАУ с разреженной матрицей (симметричной и
1 /	несимметричной) итерационными методами.
HMOTH OHLIT	песимметричной) итерационными методами.
иметь опыт	
<u>(владеть)</u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18	методами аппроксимации дифференциальных уравнений в частных
10	производных
19	методами решения линейных и нелинейных краевых и начально-краевых
	задач