

Université Paris Dauphine - PSL

Stochastic Calculus

Ryan TIMEUS

November 7, 2024

Contents

1	Bro	Brownian Motion					
	1.1	Definition	3				
	1.2	Properties of Brownian Sample Paths	3				
	1.3	Markov property of Brownian Motion	3				
2	Sto	pping times and Martingales	4				
	2.1	Stopping times	4				
	2.2	Martingales	4				
	2.3	Local Martingales	4				
	2.4	Finite variation processes	4				
	2.5	Quadratic variation	4				
	2.6	Semi-Martingales	5				
3 St	Sto	ochastic Integration					
	3.1	Construction of stochastic integrals	7				
	3.2	Itô's formula	7				
	3.3	Girsanov's theorem	8				
4	Sto	chastic differential equations	10				
5	Exe	ercises	11				
	5.1	Brownian motion	11				
	5.2	Stopping times and martingales	13				
	5.3	Stochastic integration	18				
	5 4		22				

Brownian Motion

- 1.1 Definition
- 1.2 Properties of Brownian Sample Paths
- 1.3 Markov property of Brownian Motion

Stopping times and Martingales

2.1 Stopping times

2.2 Martingales

2.3 Local Martingales

Definition 2.1. An adapted process $M = (M_t)_{t \geqslant 0}$ with continuous sample paths and such that $M_0 = 0$ a.s. is called a continuous local martingale if there exists a nondecreasing sequence $(T_n)_{n\geqslant 0}$ of stopping times such that $T_n \uparrow \infty$ and, for every n, the stopped process M^{T_n} is a uniformly integrable martingale.

More generally, when we do not assume that $M_0 = 0$ a.s., we say that M is a continuous local martingale if the process $N_t = M_t - M_0$ is a continuous local martingale.

In all cases, we say that the sequence of stopping times (T_n) reduces M if $T_n \uparrow \infty$ and, for every n, the stopped process M^{T_n} is a uniformly integrable martingale.

Proposition 2.2.

- (i) A nonnegative continuous local martingale M such that $M_0 \in L^1$ is a supermartingale.
- (ii) A continuous local martingale M such that there exist a random variable $Z \in L^1$ with $|M_t| \leq Z$ for every $t \geq 0$ (in particular a bounded continuous local martingale) is a uniformly integrable martingale.
- (iii) If M is a continuous local martingale and $M_0 = 0$ (or more generally $M_0 \in L^1$), the sequence of stopping times

$$\tau_n := \inf\{t \geqslant 0 : |M_t| \geqslant n\}$$

reduces M.

2.4 Finite variation processes

2.5 Quadratic variation

Definition 2.3. Let M be a continuous local martingale, then there exist a unique finite variation process denoted $\langle M \rangle$ such that the process $M^2 - \langle M \rangle$ is a continuous local martingale. Moreover we

have, for every $t \ge 0$,

$$\sum_{i=1}^{p_n} (M_{t_i^n} - M_{t_{i-1}^n})^2 \xrightarrow[n \to \infty]{\mathbb{P}} \langle M \rangle_t,$$

where $0 = t_0^n < \cdots < t_{p_n}^n = t$ is a sequence of subdivision of [0, t] whose mesh tend to 0.

Proposition 2.4. Let M be a continuous local martingale such that $M_0 = 0$. Then we have $\langle M, M \rangle = 0$ if and only if M = 0.

Theorem 2.5. Let M be a continuous local martingale with $M_0 \in L^2$.

- (i) The following are equivalent:
 - (a) M is a martingale bounded in L^2 .
 - (b) $\mathbb{E}\left[\langle M, M \rangle_{\infty}\right] < \infty$.

Furthermore, if these properties hold, the process $M^2 - \langle M, M \rangle$ is a uniformly integrable martingale.

- (ii) The following are equivalent:
 - (a) M is a L^2 martingale.
 - (b) $\mathbb{E}\left[\langle M, M \rangle_t\right] < \infty$ for every $t \geqslant 0$.

Furthermore, if these properties hold, the process $M^2 - \langle M, M \rangle$ is a martingale.

Definition 2.6. If M and N are two continuous local martingales, the bracket $\langle M, N \rangle$ is the finite variation process defined by setting, for every $t \ge 0$,

$$\langle M,N\rangle_t = \frac{1}{2}\left(\langle M+N,M+N\rangle_t - \langle M,M\rangle_t - \langle N,N\rangle_t\right)$$

Definition 2.7. Two continuous local martingales M and N are said to be orthogonal if $\langle M, N \rangle = 0$, which holds if and only if MN is a continuous local martingale.

Proposition 2.8 (Kunita-Watanabe). Let M and N be two continuous local martingales and let H and K be two measurable processes. Then, a.s.,

$$\int_0^\infty |H_s| |K_s| |d\langle M, N\rangle_s| \leqslant \left(\int_0^\infty H_s^2 d\langle M, M\rangle_s \right)^{1/2} \left(\int_0^\infty K_s^2 d\langle N, N\rangle_s \right)^{1/2}.$$

2.6 Semi-Martingales

Definition 2.9. A process $X = (X_t)_{t \ge 0}$ is a continuous semimartingale if it can be written in the form

$$X_t = M_t + A_t,$$

where M is a continuous local martingale and A is a finite variation process.

The decomposition X = M + A is then unique up to indistinguishability. We say that this is the canonical decomposition of X.

Definition 2.10. Let X = M + A and X' = M' + A' be the canonical decompositions of two continuous semimartingales X and X'. The bracket $\langle X, X' \rangle$ is the finite variation process defined by

$$\langle X, X' \rangle_t = \langle M, M' \rangle_t$$
.

In particular, we have $\langle X,X\rangle_t=\langle M,M\rangle_t.$

Stochastic Integration

3.1 Construction of stochastic integrals

3.2 Itô's formula

Theorem 3.1 (Itô's formula). Let $X = (X^1, ..., X^d)$ be d continuous semi-martingales, and let F be a twice continuously differentiable real function on \mathbb{R}^d . Then for every $t \ge 0$,

$$F(X_t) = F(X_0) + \sum_{i=1}^d \int_0^t \frac{\partial F}{\partial x^i}(X_s) dX_s^i + \frac{1}{2} \sum_{i,j=1}^d \int_0^t \frac{\partial^2 F}{\partial x^i \partial x^j}(X_s) d\langle X^i, X^j \rangle_s.$$

Corollary 3.2 (Integration by part). Taking d = 2 and F(x,y) = xy, then if X and Y are two continuous semi-martingales,

$$X_t Y_t = X_0 Y_0 + \int_0^t Y_s dX_s + \int_0^t X_s dY_s + \langle X, Y \rangle_t.$$

Corollary 3.3 (Itô's formula for functions depending on time). By taking $X_t^1 = t$ and $X_t^2 = B_t$, we also get for every $F : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R} \in \mathscr{C}^2$

$$F(t, B_t) = F(0, B_0) + \int_0^t \frac{\partial F}{\partial x}(s, B_s) dB_s + \int_0^t \left(\frac{\partial F}{\partial t} + \frac{1}{2} \frac{\partial^2 F}{\partial x^2}\right)(s, B_s) ds.$$

Proposition 3.4. Let M be a continuous local martingale and, for every $\lambda \in \mathbb{C}$, let

$$\mathscr{E}(\lambda M)_t = \exp\left(\lambda M - \frac{\lambda^2}{2} \langle M, M \rangle_t\right).$$

The the process $\mathcal{E}(\lambda M)$ is a complex continuous local martingale, which can be written in the form

$$\mathscr{E}(\lambda M)_t = e^{\lambda M_0} + \lambda \int_0^t \mathscr{E}(\lambda M)_s dM_s.$$

A Few Consequences of Itô's Formula

Theorem 3.5 (Lévy's Characterization of Brownian Motion). Let $X = (X^1, ..., X^d)$ be an adapted process with continuous sample paths. The following are equivalent:

- (i) X is a d-dimensional (\mathscr{F}_t) -Brownian motion.
- (ii) The processes X^1, \ldots, X^d are continuous local martingales, and $\langle X^i, X^j \rangle_t = \delta_{ij}t$ for every $i, j \in \{1, \ldots, d\}$.

In particular, a continuous local martingale M is an (\mathcal{F}_t) -Brownian motion if and only if $\langle M, M \rangle_t = t$, for every $t \ge 0$, or equivalently if and only if $M_t^2 - t$ is a continuous local martingale.

Theorem 3.6 (Dambis-Dubins-Schwarz). Let M be a continuous local martingale such that almost surely $\langle M, M \rangle_{\infty} = \infty$. There exists a Brownian motion β such that

a. s.
$$\forall t \geq 0$$
, $M_t = \beta_{\langle M, M \rangle_t}$.

Theorem 3.7 (Burkholder-Davis-Gundy inequalities). For every real p > 0, there exist two constants $c_p, C_p > 0$ depending only on p such that, for every continuous local martingale M with $M_0 = 0$, and every stopping time T,

$$c_p \mathbb{E}\left[\langle M, M \rangle_T^{p/2}\right] \leqslant \mathbb{E}\left[(M_T^*)^p\right] \leqslant C_p \mathbb{E}\left[\langle M, M \rangle_T^{p/2}\right].$$

Corollary 3.8. Let M be a continuous local martingale such that $M_0 = 0$. The condition

$$\mathbb{E}\left[\langle M,M\rangle_{\infty}^{1/2}\right]<\infty$$

implies that M is a uniformly integrable martingale.

3.3 Girsanov's theorem

Proposition 3.9. Assume that \mathbb{Q} is a probability measure on (Ω, \mathscr{F}) , which is absolutely continuous with respect to \mathbb{P} on the σ -field \mathscr{F}_{∞} . For every $t \in [0, \infty]$, let

$$D_t = \left. \frac{d\mathbb{Q}}{d\mathbb{P}} \right|_{\mathscr{F}_t}$$

be the Radon-Nikodym derivative of \mathbb{Q} with respect to \mathbb{P} on the σ -field \mathscr{F}_t . The process $(D_t)_{t\geqslant 0}$ is a uniformly integrable martingale. Furthermore, for every stopping time T, we have

$$D_T = \left. \frac{d\mathbb{Q}}{d\mathbb{P}} \right|_{\mathscr{F}_T}.$$

Finally, if we assume that \mathbb{P} and \mathbb{Q} are mutually absolutely continuous on \mathscr{F}_{∞} , we have

$$\inf_{t>0} D_t > 0, \quad \mathbb{P} - \text{a. s.}$$

Proposition 3.10. Let D be a continuous local martingale taking positive values. There exists a unique continuous local martingale L such that

$$D_t = \exp\left(L_t - \frac{1}{2}\langle L, L \rangle_t\right) = \mathscr{E}(L)_t.$$

Moreover, L is given by the formula

$$L_t = \log D_0 + \int_0^t \frac{1}{D_s} dD_s.$$

Theorem 3.11 (Girsanov). Assume that the probability measures \mathbb{P} and \mathbb{Q} are mutually absolutely continuous on \mathscr{F}_{∞} . Let $(D_t)_{t\geqslant 0}$ be the martingale with càdlàg sample paths such that, for every $t\geqslant 0$,

$$D_t = \left. \frac{d\mathbb{Q}}{d\mathbb{P}} \right|_{\mathscr{F}_t}$$

Assume that D has continuous sample paths, and let L be the unique continuous local martingale such that $D = \mathcal{E}(L)$. Then, if M is a continuous local martingale under \mathbb{P} , the process

$$\tilde{M} := M - \langle M, L \rangle$$

is a continuous local martingale under \mathbb{Q} .

Theorem 3.12. Let L be a continuous local martingale such that $L_0 = 0$. Consider the following properties:

- (i) $\mathbb{E}\left[\exp\frac{1}{2}\langle L,L\rangle_{\infty}\right]<\infty$ (Novikov's criterion);
- (ii) L is a uniformly integrable martingale, and $\mathbb{E}\left[\exp\frac{1}{2}L_{\infty}\right]<\infty$ (Kazamaki's criterion);
- (iii) $\mathcal{E}(L)$ is a uniformly integrable martingale.

Then,
$$(i) \implies (ii) \implies (iii)$$
.

Stochastic differential equations

Example 4.1 (Langevin equation).

$$dX_t = -bX_t dt + \sigma dB_t$$

Exercises

5.1 Brownian motion

Exercise 1.1

Justify that $B_t - B_s$ is independent of B_1 for all $1 \le s \le t$ and determine its law.

Exercise 1.2

Compute the conditional expectations $\mathbb{E}[B_t]\mathscr{F}_s$ and $\mathbb{E}[B_t^2]\mathscr{F}_s$ for all $t \ge 1$.

Exercise 1.3

Let $\xi = \int_0^1 B_s ds$. What is the law of ξ ?

Exercise 1.4

Let $\eta = \int_0^2 B_s ds$. Compute the conditional expectation $\mathbb{E}[B_1] \eta$.

Exercise 1.5

Let $T := \inf \{t \ge 0 \mid B_t = 1\}$. Show that $\mathbb{P}(T < \infty) \ge \frac{1}{2}$.

Exercise 1.6

Let $T := \inf \{ t \ge 0 \mid |B_t| = 1 \}.$

- 1. Prove that $T < \infty$ a.s.
- **2.** Show that T and $\mathbb{1}_{B_T=1}$ are independent.

Exercise 1.7

Justify that almost surely, $(B_t)_{t\geqslant 0}$ is not monotone on any interval.

Exercise 1.8

- **1.** Show that for all a > 0, $(\frac{1}{\sqrt{a}}B_{at})_{t \ge 0}$ is a Brownian motion.
- **2.** Show that for all a > 0, $(B_a B_{a-t})_{0 \le t \le a}$ is a Brownian motion.
- **3.** Define $X_0 = 0$ and $X_t = tB_{1/t}$ for all t > 0. Show that $(X_t)_{t \ge 0}$ is a Brownian motion.
- **4.** Deduce that $\lim_{t\to\infty} \frac{B_t}{t} = 0$ a.s.

Exercise 1.9

Prove that $\int_0^\infty |B_s| ds = \infty$ a.s.

Exercise 1.10

Prove that for all a > 0, $(B_{t+a} - B_a)_{t \ge 0}$ is a Brownian motion independent of \mathscr{F}_a .

Exercise 1.11

- 1. Show that for all $t \ge 0$, $|B_t|$ has the same distribution as $\sqrt{t}|B_1|$.
- **2.** Do the processes $(|B_t|)_{t\geq 0}$ and $(\sqrt{t}|B_1|)_{t\geq 0}$ have the same distribution?

Exercise 1.12

- **1.** Show that $\int_0^1 \frac{B_s}{s} ds$ is well-defined a.s.
- **2.** Let $\beta_t := B_t \int_0^1 \frac{B_s}{s} ds$. Show that $(\beta_t)_{t \ge 0}$ is a Brownian motion.

Exercise 1.13 (Brownian bridge)

We define the Brownian bridge as the process $Z_t := B_t - tB_1$ for all $0 \le t \le 1$.

- 1. Show that Z is a Gaussian process independent of B_1 .
- 2. Prove that Z has the same law as the process Y defined by

$$Y_t = \begin{cases} (1-t)B_{\frac{t}{1-t}} & \text{if } 0 \le t < 1, \\ 0 & \text{if } t = 1. \end{cases}$$

Exercise 1.14

Let T be a random variable distributed according to the exponential distribution of mean 1. What is the law of B_T ?

Exercise 1.15

In this exercise, **B** is a *d*-dimensional $(d \in \mathbb{N})$ standard Brownian motion, that is $\mathbf{B}_t = (B_t^1, \dots, B_t^d)$, where B^i 's are independent standard Brownian motions. Let $U \in \mathbb{R}^{d \times d}$ be an orthogonal matrix. Prove that the process $(\mathbf{W}_t)_{t \geq 0} = (U\mathbf{B}_t)_{t \geq 0}$ is a *d*-dimensional standard Brownian motion.

Exercise 1.16

Let τ be a stopping time that is almost surely finite. Show that the process $(B_{t+\tau} - B_{\tau})_{t \geq 0}$ is a Brownian motion independent of \mathscr{F}_{τ} .

Exercise 1.17

Prove that almost surely, $\sup_{0 \le t \le s} B_t > 0$ for all s > 0 and $\sup_{t \ge 0} B_t = \infty$.

Exercise 1.18

- **1.** Show that for all $a \ge 0$, $\tau_a = a^2 \tau_1$ in distribution.
- **2.** Let $0 \le a \le b < \infty$. Justify that $\tau_b \tau_a$ has the same distribution as τ_{b-a} and is independent of \mathscr{F}_{τ_a} .

5.2 Stopping times and martingales

For each $x \in \mathbb{R}$, we define the stopping time $\tau_x := \inf\{t \ge 0 : B_t = x\}$.

Exercise 2.1

- 1. Show that $(B_t^2 t)_{t \ge 0}$ is a martingale.
- **2.** Construct a martingale from $(B_t^3)_{t\geqslant 0}$. Same question with B_t^4 .
- **3.** Prove that $(e^{\lambda B_t \frac{\lambda^2}{2}t})_{t \ge 0}$ is a martingale for all $\lambda \in \mathbb{R}$.

Solution

1. To show that $(B_t^2 - t)$ is a martingale, we compute the conditional expectation:

$$\mathbb{E}\left[B_t^2 \mid \mathscr{F}_s\right] = \mathbb{E}\left[\left(B_t - B_s + B_s\right)^2 \mid \mathscr{F}_s\right] = B_s^2 + \mathbb{E}\left[\left(B_t - B_s\right)^2\right] = B_s^2 + (t - s),$$

since $B_t - B_s$ is independent of \mathscr{F}_s and normally distributed with mean zero and variance t - s. Therefore, we have

$$\mathbb{E}\left[B_t^2 - t \,\middle|\, \mathscr{F}_s\right] = B_s^2 - s,$$

confirming that $(B_t^2 - t)_{t \ge 0}$ is indeed a martingale.

2. For all t > s, we expand B_t^3 using $B_t = B_s + (B_t - B_s)$:

$$B_t^3 = (B_s + (B_t - B_s))^3 = B_s^3 + 3B_s^2(B_t - B_s) + 3B_s(B_t - B_s)^2 + (B_t - B_s)^3.$$

Taking the conditional expectation given \mathscr{F}_s , we find:

$$\mathbb{E}\left[B_t^3 \mid \mathscr{F}_s\right] = B_s^3 + 3B_s \mathbb{E}\left[(B_t - B_s)^2\right] = B_s^3 + 3B_s(t - s).$$

Therefore, the process $(B_t^3 - 3B_s t)_{t \ge 0}$ is a martingale.

Similarly, for B_t^4 , we expand:

$$B_t^4 = (B_s + (B_t - B_s))^4 = B_s^4 + 4B_s^3(B_t - B_s) + 6B_s^2(B_t - B_s)^2 + 4B_s(B_t - B_s)^3 + (B_t - B_s)^4.$$

Taking the conditional expectation, we obtain:

$$\mathbb{E}[B_t^4 \mid \mathscr{F}_s] = B_s^4 + 6B_s^2(t-s) + 3(t-s)^2.$$

Thus, $(B_t^4 - 6B_t^2t + 3t^2)_{t \ge 0}$ is a martingale.

3. Let $\lambda \in \mathbb{R}$. We compute the conditional expectation:

$$\mathbb{E}\left[e^{\lambda B_t - \frac{\lambda^2}{2}t} \,\middle|\, \mathscr{F}_s\right] = e^{\lambda B_s - \frac{\lambda^2}{2}s} \mathbb{E}\left[e^{\lambda(B_t - B_s) - \frac{\lambda^2}{2}(t - s)} \,\middle|\, \mathscr{F}_s\right]$$
$$= e^{\lambda B_s - \frac{\lambda^2}{2}s} \mathbb{E}\left[e^{\lambda(B_t - B_s) - \frac{\lambda^2}{2}(t - s)}\right]$$
$$= e^{\lambda B_s - \frac{\lambda^2}{2}s},$$

since $B_t - B_s$ is independent of \mathscr{F}_s and $\mathbb{E}\left[e^{\lambda(B_t - B_s) - \frac{\lambda^2}{2}(t-s)}\right] = 1$ due to the properties of the normal distribution. This confirms that $(e^{\lambda B_t - \frac{\lambda^2}{2}t})_{t\geqslant 0}$ is a martingale.

Exercise 2.2

Let a > 0 and define $T_a^* := \inf \{ t \ge 0 : |B_t| = a \}.$

- 1. Using the martingale $(B_t^2 t)_{t \ge 0}$ compute the expectation of T_a^{\star} .
- 2. Using a well-chosen martingale, compute the variance of T_a^{\star} and its Laplace transform.
- **3.** Compute the Laplace transform of τ_a and find that it has the law as $(a/B_1)^2$. What is the value of $\mathbb{E}[\tau_a]$?

Solution

1. Since T_a^{\star} is almost surely finite, the stopped martingale $(B_{t \wedge T_a^{\star}}^2 - t \wedge T_a^{\star})$ converges almost surely to $B_{T_a^{\star}}^2 - T_a^{\star} = a^2 - T_a^{\star}$. Moreover, $B_{t \wedge T_a^{\star}}^2$ is bounded by a^2 , ensuring L^1 convergence by the dominated convergence theorem. In the other hand, $t \wedge T_a^{\star}$ converge in L^1 to T_a^{\star} by monotone convergence. Therefore,

$$0 = \mathbb{E}\left[B_{t \wedge T_a^{\star}}^2 - t \wedge T_a^{\star}\right] \xrightarrow[t \to \infty]{} a^2 - \mathbb{E}\left[T_a^{\star}\right].$$

Hence, $\mathbb{E}\left[T_a^{\star}\right] = a^2$.

2. To compute the variance, we consider the martingale $(B_t^4 - 6B_t^2t + 3t^2)_{t \ge 0}$. Applying similar reasoning as before, we have:

$$\mathbb{E}\left[B_{t\wedge T_a^{\star}}^4 - 6B_{t\wedge T_a^{\star}}^2(t\wedge T_a^{\star}) + 3(t\wedge T_a^{\star})^2\right] = 0.$$

Taking the limit as $t \to \infty$ and using $B_{T_a^*}^2 = a^2$, we get:

$$a^4 - 6a^2 \mathbb{E} [T_a^{\star}] + 3 \mathbb{E} [(T_a^{\star})^2] = 0.$$

Substituting $\mathbb{E}\left[T_a^{\star}\right] = a^2$, we solve for $\mathbb{E}\left[(T_a^{\star})^2\right]$:

$$a^4 - 6a^4 + 3\mathbb{E}\left[(T_a^{\star})^2 \right] = 0 \quad \Longrightarrow \quad \mathbb{E}\left[(T_a^{\star})^2 \right] = \frac{5}{3}a^4.$$

Therefore, the variance is:

$$\operatorname{Var}(T_a^*) = \mathbb{E}\left[(T_a^*)^2 \right] - \left(\mathbb{E}\left[T_a^* \right] \right)^2 = \frac{5}{3}a^4 - a^4 = \frac{2}{3}a^4.$$

For the Laplace transform, consider the martingale for $\lambda > 0$ (check it):

$$M_t = \exp\left(\sqrt{2\lambda}B_t - \lambda t\right) + \exp\left(-\sqrt{2\lambda}B_t - \lambda t\right).$$

The stopped martingale $M^{T_a^*}$ is dominated in L^1 by $2e^{\sqrt{2\lambda}a}$, and thus uniformly integrable. Therefore, $\mathbb{E}\left[M_{T_a^*}\right]=2$. Evaluating $M_{T_a^*}$, we have:

$$2 = \mathbb{E}\left[M_{T_a^{\star}}\right] = \mathbb{E}\left[e^{-\lambda T_a^{\star}}(e^{\sqrt{2\lambda}a} + e^{-\sqrt{2\lambda}a})\mathbb{1}_{\{B_{T_a^{\star}} = a\}}\right] + \mathbb{E}\left[e^{-\lambda T_a^{\star}}(e^{-\sqrt{2\lambda}a} + e^{\sqrt{2\lambda}a})\mathbb{1}_{\{B_{T_a^{\star}} = -a\}}\right]$$
$$= 2\cosh(\sqrt{2\lambda}a)\mathbb{E}\left[X\right]$$

Hence
$$\mathbb{E}\left[e^{-\lambda T_a^{\star}}\right] = \frac{1}{\cosh(\sqrt{2\lambda}a)}$$
.

3. To compute the Laplace transform of τ_a , we utilize the martingale $M_t = e^{\sqrt{2\lambda}B_t - \lambda t}$. At the stopping time τ_a , we have $B_{\tau_a} = a$, so:

$$M_{\tau_a} = e^{\sqrt{2\lambda}a - \lambda \tau_a}$$

Since M_t is a martingale, $\mathbb{E}[M_{\tau_a}] = M_0 = 1$. Therefore,

$$\mathbb{E}\left[e^{-\lambda\tau_a}\right] = e^{-\sqrt{2\lambda}a}.$$

Exercise 2.3

1. Let M be a continuous martingale such that $M_0 = x \ge 0$. Suppose that $M_t \ge 0$ for all $t \ge 0$ and that $M_t \to 0$ as $t \to \infty$, a.s. Show that, for all y > x,

$$\mathbb{P}\left(\sup_{t\geqslant 0}M_t\geqslant y\right)=\frac{x}{y}.$$

2. Deduce the law of

$$\sup_{t\leqslant T_0}B_t,$$

when B is a Brownian motion started at x > 0 and $T_0 = \inf\{t \ge 0 : B_t = 0\}$.

3. Suppose now that is started at 0, and let $\mu > 0$. Using a well-chosen exponential martingale, prove that

$$\sup_{t\geqslant 0}(B_t-\mu t)$$

follows the exponantial distribution of parameter 2μ .

Exercise 2.4

Let a < 0 < b and set $T = \tau_a \wedge \tau_b$.

1. Prove that, for all $\lambda > 0$,

$$\mathbb{E}\left[\exp\left(-\lambda T\right)\right] = \frac{\cosh\left(\frac{b+a}{2}\sqrt{2\lambda}\right)}{\cosh\left(\frac{b-a}{2}\sqrt{2\lambda}\right)}.$$

(Hint: introduce the martingale

$$M_t = \exp\left(\sqrt{2\lambda}(B_t - \alpha) - \lambda t\right) + \exp\left(-\sqrt{2\lambda}(B_t - \alpha) - \lambda t\right),$$

with a well-chosen α .)

2. Similarly, prove that, for all $\lambda > 0$,

$$\mathbb{E}\left[\exp\left(-\lambda T\right)\mathbb{1}_{\left\{T=\tau_{a}\right\}}\right] = \frac{\sinh\left(b\sqrt{2\lambda}\right)}{\sinh\left((b-a)\sqrt{2\lambda}\right)}.$$

3. With the help of question 2, give an expression of $\mathbb{P}(\tau_a < \tau_b)$.

Exercise 2.5

Let $M = (M_t)_{0 \le t \le 1}$ be a sub-martingale. Let $(\mathcal{G}_s)_{s \ge 0}$ be a sub-filtration of $(\mathcal{F}_s)_{s \ge 0}$. Prove that $N_t = \mathbb{E}[M_t | \mathcal{G}_t]$ is a (\mathcal{G}_s) -sub-martingale.

Solution

First note that N is clearly adapted and integrable. We prove the martingale property, let $0 \le s \le t$:

$$\begin{split} \mathbb{E}\left[N_t \,|\, \mathcal{G}_s\right] &= \mathbb{E}\left[\mathbb{E}\left[M_t \,|\, \mathcal{G}_t\right] \,|\, \mathcal{G}_s\right] \\ &= \mathbb{E}\left[M_t \,|\, \mathcal{G}_s\right] \\ &= \mathbb{E}\left[\mathbb{E}\left[M_t \,|\, \mathcal{F}_s\right] \,|\, \mathcal{G}_s\right] \\ &\geqslant \mathbb{E}\left[M_s \,|\, \mathcal{G}_s\right] = N_s. \end{split}$$

Exercise 2.6

Let $\sigma \leqslant \tau$ be two bounded stopping times. Show that

$$\mathbb{E}\left[(B_{\tau} - B_{\sigma})^{2}\right] = \mathbb{E}\left[B_{\tau}^{2}\right] - \mathbb{E}\left[B_{\sigma}^{2}\right] = \mathbb{E}\left[\tau - \sigma\right].$$

Exercise 2.7

Let $M = (M_t)_{0 \le t \le 1}$ be a sub-martingale such that $\mathbb{E}[M_0] = \mathbb{E}[M_1]$. Prove that M is a martingale.

Solution

Since M is a sub-martingale we have for all $t \in [0,1]$, $\mathbb{E}[M_0] \leq \mathbb{E}[M_t] \leq \mathbb{E}[M_1]$, hence $\mathbb{E}[M_0] = \mathbb{E}[M_t]$ for all t. Let $0 \leq s \leq t \leq 1$, M is a sub-martingale so that $\mathbb{E}[M_t - M_s \mid \mathscr{F}_s]$ is non negative and of expectation 0, therefore $\mathbb{E}[M_t - M_s \mid \mathscr{F}_s] = 0$ and M is a martingale.

Exercise 2.8

Let M be a càd martingale. Let $t \ge 0$. Prove that $M_{t+\varepsilon} \xrightarrow[\varepsilon \to 0]{L^1} M_t$.

Solution

The càd property give us $M_{t+\varepsilon} \xrightarrow[\varepsilon \to 0]{\text{a.s.}} M_t$. For every $n \ge 1$ we have

$$\mathbb{E}\left[M_{t+1} \,\middle|\, \mathscr{F}_{t+\frac{1}{n}}\right] = M_{t+\frac{1}{n}}.$$

Hence the sequence $(M_{t+1/n})_{n\geqslant 1}$ is uniformly integrable and $M_{t+1/n} \xrightarrow[n\to\infty]{L^1} M_t$.

Exercise 2.9

Let M be a local continuous martingale such that $M_0 = 0$ a.s.

1. Let a > 0 and let $\sigma_a := \inf\{t \ge 0 : \langle M, M \rangle_t \ge a^2\}$. Show that

$$\mathbb{P}\left(\sup_{s\in[0,\sigma_a]}|M_s|>a\right)\leqslant \frac{1}{a^2}\mathbb{E}\left[a^2\wedge\langle M,M\rangle_{\infty}\right].$$

- **2.** Show that $\mathbb{P}\left(\sup_{t\geq 0}|M_t|>a\right)\leqslant \mathbb{P}(\langle M,M\rangle_{\infty}\geqslant a^2)+a^{-2}\mathbb{E}\left[a^2\wedge\langle M,M\rangle_{\infty}\right].$
- **3.** Show that $\mathbb{E}\left[\sup_{t\geq 0}|M_t|\right]\leqslant 3\mathbb{E}\left[\sqrt{\langle M,M\rangle_{\infty}}\right]$.
- **4.** Show that if $\mathbb{E}\left[\sqrt{\langle M, M \rangle_{\infty}}\right] < \infty$, then M is a uniformly integrable martingale.
- **5.** Show that if $\mathbb{E}\left[\sqrt{\langle M,M\rangle_t}\right]<\infty$ for every $t\geqslant 0$, then M is a integrable martingale.

Solution

1. We observe that $\mathbb{P}\left(\sup_{s\in[0,\sigma_a]}|M_s|>a\right)=\mathbb{P}\left(\sup_{t\geqslant 0}|M_{t\wedge\sigma_a}|>a\right)$ and since $\mathbb{E}\left[\langle M\rangle_{t\wedge\sigma_a}\right]\leqslant a^2$, M^{σ_a} and $(M^{\sigma_a})^2-\langle M^{\sigma_a}\rangle$ are uniformly integrable martingales. Therefore we can apply Doob maximal inequality:

$$a^{2}\mathbb{P}\left(\sup_{t\geqslant 0}|M_{t\wedge\sigma_{a}}|>a\right)\leqslant \sup_{t\geqslant 0}\mathbb{E}\left[M_{t\wedge\sigma_{a}}^{2}\right]\leqslant \mathbb{E}\left[\langle M\rangle_{\sigma_{a}}\right]\leqslant \mathbb{E}\left[a^{2}\wedge\langle M\rangle_{\infty}\right].$$

Indeed, $\langle M \rangle_{\sigma_a} = a^2 \mathbb{1}_{\sigma_a < \infty} + \langle M \rangle_{\infty} (1 - \mathbb{1}_{\sigma_a < \infty}) \leqslant a^2 \text{ and } a^2 \mathbb{1}_{\sigma_a < \infty} + \langle M \rangle_{\infty} (1 - \mathbb{1}_{\sigma_a < \infty}) \leqslant \langle M \rangle_{\infty}$.

2. We have

$$\mathbb{P}\left(\sup_{t\geqslant 0}|M_t|>a\right) = \mathbb{P}\left(\sup_{t\geqslant 0}|M_t|>a, \sigma_a<\infty\right) + \mathbb{P}\left(\sup_{t\geqslant 0}|M_t|>a, \sigma_a=\infty\right)$$

$$\leqslant \mathbb{P}(\sigma_a<\infty) + \mathbb{P}\left(\sup_{t\in [0,\sigma_a]}|M_t|>a\right).$$

3. By integrating with respect to a we have

$$\mathbb{E}\left[\sup_{t\geqslant 0}|M_t|\right]\leqslant \int_0^\infty \mathbb{P}(\langle M,M\rangle_\infty\geqslant a^2)+a^{-2}\mathbb{E}\left[a^2\wedge\langle M,M\rangle_\infty\right]da$$

$$\leqslant \int_0^\infty \mathbb{P}(\sqrt{\langle M,M\rangle_\infty}\geqslant a)da+\mathbb{E}\left[\int_0^\infty 1\wedge\frac{\langle M,M\rangle_\infty}{a^2}da\right]$$

$$\leqslant \mathbb{E}\left[\sqrt{\langle M,M\rangle_\infty}\right]+\mathbb{E}\left[\int_0^{\sqrt{\langle M,M\rangle_\infty}}da\right]+\mathbb{E}\left[\langle M,M\rangle_\infty\int_{\sqrt{\langle M,M\rangle_\infty}}^\infty a^{-2}da\right]$$

$$\leqslant 3\mathbb{E}\left[\sqrt{\langle M,M\rangle_\infty}\right].$$

- **4.** Using the previous question we have that $\sup_{t\geq 0}|M_t|=C<\infty$ which implies that the local martingale M is dominated in L^1 and thus a uniformly integrable martingale.
- **5.** By the same reasoning we that for every T > 0, the process $(M_t)_{t \in [0,T]}$ is dominated in L^1 , that is a martingale on [0,T] for every T > 0 and thus a martingale on \mathbb{R}_+ .

5.3 Stochastic integration

Exercise 3.1

Let M be a local martingale. Show that the family $\{M_{\tau}, \ \tau < \infty\}$ is uniformly integrable if, and only if, M is a uniformly integrable martingale.

Solution

Assume first that M is a uniformly integrable martingale, therefore for all stopping time τ we have that $M_{\tau} = \mathbb{E}[M_{\infty} | \mathscr{F}_{\tau}]$ hence $\{M_{\tau}, \ \tau < \infty\}$ is uniformly integrable.

Assume now that the family $\{M_{\tau}, \ \tau < \infty\}$ is uniformly integrable, in particular the family $\{M_t\}_{t \geq 0}$ is uniformly integrable, we have to prove the martingale property. Let τ_n be a localizing sequence, for every $0 \leq s \leq t$ and every $A \in \mathscr{F}_{s \wedge \tau_n} \subseteq \mathscr{F}_s$, we know that

$$\mathbb{E}\left[M_{s \wedge \tau_n} \mathbb{1}_A\right] = \mathbb{E}\left[M_{t \wedge \tau_n} \mathbb{1}_A\right].$$

By assumption, we have that $(M_{x \wedge \tau_n})_{x \geqslant 0}$ is uniformly integrable, so we have L^1 converge in both terms, we have

$$\mathbb{E}\left[M_s\mathbb{1}_A\right] = \mathbb{E}\left[M_t\mathbb{1}_A\right]$$

for all $A \in \mathcal{F}_s$ and M is a uniformly integrable martingale.

Exercise 3.2

Let M be a bounded local martingale. Show that $\langle M \rangle_{\infty} < \infty$ a.s.

Solution

Clearly, M is a bounded martingale. Hence $\lim_{t\to\infty} M_t^2 = M_\infty^2$ in L^1 and $\lim_{t\to\infty} \mathbb{E}\left[\langle M\rangle_t\right] = \mathbb{E}\left[\langle M\rangle_\infty\right]$ by monotone convergence. We obtain

$$0 = \mathbb{E}\left[M_t^2 - \langle M \rangle_t\right] \xrightarrow[t \to \infty]{} \mathbb{E}\left[M_\infty^2 - \langle M \rangle_\infty\right].$$

This implies that $\mathbb{E}\left[\langle M\rangle_{\infty}\right] = \mathbb{E}\left[M_{\infty}^2\right] < \infty$.

Exercise 3.3

Let B be a standard Brownian motion with $B_0 = x > 0$. Set $T = \inf\{t \ge 0 : B_t = 0\}$. Let $f : \mathbb{R}_+ \to \mathbb{R}$ compactly supported. Compute $\mathbb{E}\left[\int_0^T f(B_s)ds\right]$.

Exercise 3.4

Let $\alpha : \mathbb{R}_+ \to \mathbb{R}$ be a continuous function. With the help of the stochastic integration by parts formula, check that the process

$$X_t := \int_0^t \exp\left(\int_s^t \alpha(u)du\right) dB_s,$$

satisfies the stochastic differential equation $dX_t = \alpha(t)X_tdt + dB_t$.

Solution

First, we have for every $t \ge 0$

$$X_{t} = \int_{0}^{t} \exp\left(\int_{0}^{t} \alpha(u)du - \int_{0}^{s} \alpha(u)du\right) dB_{s}$$

$$= \exp\left(\int_{0}^{t} \alpha(s)ds\right) \int_{0}^{t} \exp\left(-\int_{0}^{s} \alpha(u)du\right) dB_{s}$$

$$= e^{Y_{t}} \int_{0}^{t} e^{-Y_{s}} dB_{s}$$

Where $Y_t = \int_0^t \alpha(s) ds$. Now using integration by part we obtain

$$dX_t = d\left(e^{Y_t}\right) \int_0^t e^{-Y_s} dB_s + e^{Y_t} d\left(\int_0^t e^{-Y_s} dB_s\right)$$
$$= \alpha(t)e^{Y_t} dt \int_0^t e^{-Y_s} dB_s + e^{Y_t} e^{-Y_t} dB_t.$$

Hence, $dX_t = \alpha(t)X_tdt + dB_t$.

Exercise 3.5

Let $f: \mathbb{R} \to \mathbb{R}$ be continuously twice-differentiable. Show that the process

$$X_t := f(B_t) - \frac{1}{2} \int_0^t f''(B_s) ds,$$

is a continuous local martingale. Give a sufficient condition for X to be a martingale.

Exercise 3.6

Let $\varphi: \mathbb{R}_+ \to \mathbb{R}$ be a (deterministic) function in $L^2_{\text{loc}}(\mathbb{R}_+)$ (i.e. $\int_0^t \varphi^2(s) ds < \infty$ for every $t \geqslant 0$) and $Z^{\varphi} = (Z^{\varphi}_t)_{t \geqslant 0}$ the associated Doléans-Dade exponential process. Check that Z^{φ} is a martingale.

Solution

Since, $\varphi \in L^2_{loc}$, $\int_0^t \varphi(s) dB_s$ is well-defined and is a centered gaussian random variable with variance $\int_0^t \varphi(s)^2 ds < \infty$, this implies that $Z_t^{\varphi} \in L^1$ for every $t \ge 0$. Let $0 \le s \le t$ we have

$$\mathbb{E}\left[e^{\int_0^t \varphi(u)dB_u - \frac{1}{2}\int_0^t \varphi(u)^2 du} \,\middle|\, \mathscr{F}_s\right] = \mathbb{E}\left[e^{\int_0^t \varphi(u)dB_u - \int_0^s \varphi(u)dB_u} \,\middle|\, \mathscr{F}_s\right]e^{\int_0^s \varphi(u)dB_u - \frac{1}{2}\int_0^t \varphi(u)^2 du} \,e^{\int_0^s \varphi(u)dB_u - \frac{1}{2}\int_0^t \varphi(u)^2 du}\right]$$

Recall that, $\int_0^t \varphi(u)dB_u - \int_0^s \varphi(u)dB_u = \int_s^t \varphi(u)dB_u$ is independent of \mathscr{F}_s and is a centered gaussian variable with variance $\int_s^t \varphi(s)^2 ds$, we thus obtain

$$\mathbb{E}\left[e^{\int_0^t \varphi(u)dB_u - \frac{1}{2}\int_0^t \varphi(u)^2 du} \,\middle|\, \mathscr{F}_s\right] = \mathbb{E}\left[e^{\int_s^t \varphi(u)dB_u}\right] e^{\int_0^s \varphi(u)dB_u - \frac{1}{2}\int_0^t \varphi(u)^2 du}$$

$$= e^{\frac{1}{2}\int_s^t \varphi(s)^2 ds} \cdot e^{\int_0^s \varphi(u)dB_u - \frac{1}{2}\int_0^t \varphi(u)^2 du}$$

$$= e^{\int_0^s \varphi(u)dB_u - \frac{1}{2}\int_0^s \varphi(u)^2 du}.$$

Hence the result.

Exercise 3.7

Find a progressive process $X = (X_t)_{t \ge 0}$ such that the process $Z = (Z_t)_{t \ge 0}$ defined by $Z_t = \exp(X_t - B_t^2)$ is a martingale.

Solution

Assume that the process X has the form

$$X_t = \int_0^t b_s ds + \int_0^t \sigma_s dB_s,$$

and $X_0 = 0$, then by Itô's formula we have

$$Z_{t} = 1 + \int_{0}^{t} Z_{s} dX_{s} - 2 \int_{0}^{t} Z_{s} B_{s} dB_{s} + \frac{1}{2} \int_{0}^{t} Z_{s} d\langle X, X \rangle_{s} - 2 \int_{0}^{t} Z_{s} B_{s} d\langle X, B \rangle_{s} + \int_{0}^{t} Z_{s} (2B_{s}^{2} - 1) ds$$

$$= 1 + \int_{0}^{t} Z_{s} (\sigma_{s} - 2B_{s}) dB_{s} + \int_{0}^{t} Z_{s} \left(\frac{1}{2} \sigma_{s}^{2} - 2B_{s} \sigma_{s} + 2B_{s}^{2} - 1 + b_{s} \right) ds.$$

Then, by taking $X_t = \int_0^t (1 - B_s^2/2) ds + \int_0^t B_s dB_s$, $Z_t = 1 - \int_0^t Z_s B_s dB_s$ is a local martingale. Using the fact that $B_t^2 - t = 2 \int_0^t B_s dB_s$, we have

$$Z_t = e^{-\int_0^t B_s dB_s - \frac{1}{2} \int_0^t B_s^2 ds}.$$

Exercise 3.8

Let X and Y be two (\mathscr{F}_t) independent Brownian motions and let H be a progressive process. We set

$$\beta_t = \int_0^t \cos(H_s) dX_s - \int_0^t \sin(H_s) dY_s,$$
$$\gamma_t = \int_0^t \sin(H_s) dX_s + \int_0^t \cos(H_s) dY_s.$$

Show that β and γ are independent (\mathscr{F}_t) Brownian motions.

Exercise 3.9

Let B be a Brownian motion. Show that $\int_0^t \mathbb{1}_{\{B_s=0\}} dB_s = 0$.

Exercise 3.10

1. Let $g: \mathbb{R}_+ \to \mathbb{R}_+$ be a continuous function. Let $f: \mathbb{R}_+ \to (0, \infty)$ be a \mathscr{C}^2 function such that f'' = 2gf on \mathbb{R}_+ and f(0) = 1, f'(1) = 0. We set

$$u(t) := \frac{f'(t)}{2f(t)}, \quad t \geqslant 0.$$

Show that $u' + 2u^2 = g$ on \mathbb{R}_+ .

2. Let β a (\mathscr{F}_t) standard Brownian motion. Let $x_0 \ge 0$, $a \ge 0$ and X an adapted, continous and non negative process such that

$$X_t = x_0 + 2 \int_0^t \sqrt{X_s} d\beta_s + at.$$

Show that $u(t)X_t - \int_0^t g(s)X_s ds = u(0)X_0 + \int_0^t u(s)dX_s - 2\int_0^t u(s)^2 X_s ds, t \ge 0.$

3. Set $M_t := u(0)x_0 + 2\int_0^t u(s)\sqrt{X_s}d\beta_s, \ t \geqslant 0$. Show that

$$f(t)^{-a/2} \exp\left(u(t)X_t - \int_0^t g(s)X_s ds\right) = \mathscr{E}(M)_t.$$

4. Show that f is non increasing on [0,1] and show that

$$\mathbb{E}\left[\exp\left(-\int_0^1 g(s)X_s ds\right)\right] = f(1)^{a/2} e^{x_0 f'(0)/2}.$$

5. Show that

$$\mathbb{E}\left[\exp\left(-\frac{\theta^2}{2}\int_0^1 X_s ds\right)\right] = \frac{1}{\cosh(\theta)^{a/2}}\exp\left(-\frac{x_0}{2}\theta\tanh(\theta)\right), \quad \forall \theta \in \mathbb{R}.$$

6. Let B be a standard Brownian motion. For every $x \in \mathbb{R}$, show that,

$$\mathbb{E}\left[\exp\left(-\frac{\theta^2}{2}\int_0^1 (B_s+x)^2 ds\right)\right] = \frac{1}{\cosh(\theta)^{1/2}}\exp\left(-\frac{x^2}{2}\theta\tanh(\theta)\right), \quad \forall \theta \in \mathbb{R}.$$

7. Let B and \tilde{B} be two independent standard Brownian motions. For every t>0 show that inf $\{s\geqslant 0: |B_s|=t\}=\int_0^t B_s^2 ds+\int_0^t \tilde{B}_s^2 ds$ in law.

Solution

4. Use definition of f, that is, we have domination in L^1 for every $t \in [0,1]$ $(X \ge 0, u \le 0)$.

5. Take $f(t) = \frac{\cosh(\theta(t-1))}{\cosh(\theta)}$.

Exercise 3.11

Let B be a Brownian motion and let $S_t := \sup_{s \in [0,t]} B_s$. We set $X_t := S_t - B_t$.

- **1.** Show that $\int_0^t \mathbb{1}_{\{X_u \neq 0\}} dS_u = 0$.
- **2.** Show that $Y_t := X_t^2 t$ is a martingale.
- **3.** Let $\tau := \inf\{t \geq 0 : X_t = 1\}$. Compute $\mathbb{E}[\tau]$.

5.4 Stochastic Differential Equations

Exercise 4.1

Let $M_t := \frac{1}{2}(B_t^2 - t), t \ge 0.$

- 1. Justify that M is a martingale and express M as a stochastic integral.
- **2.** Show that for all $b \ge 0$, the exponential local martingale $\mathscr{E}(-bM)$ is a martingale. For all T > 0, justify that $\mathbb{Q} := \mathscr{E}(-bM)_T \cdot \mathbb{P}$ defines a probability measure.
- **3.** Determine the SDE satisfied by $(B_t)_{t\in[0,T]}$ on \mathbb{Q} . Deduce the distribution of B_t , $t\in[0,T]$ on \mathbb{Q} .
- **4.** Deduce that for all $a, b \ge 0$,

$$\mathbb{E}\left[\exp\left\{-aB_t^2 - \frac{b^2}{2}\int_0^t B_s^2 ds\right\}\right] = \left(\frac{b}{b\cosh(bt) + 2a\sinh(bt)}\right)^{1/2}.$$

5. Using that for all $\alpha, \beta > 0$ and $s \ge 0$,

$$\frac{1}{\Gamma(\alpha)} \int_0^\infty \beta^\alpha x^{\alpha - 1} e^{-(\beta + s)x} dx = \left(\frac{\beta}{s + \beta}\right)^\alpha,$$

compute

$$\mathbb{E}\left[\exp\left\{-\frac{b^2}{2}\int_0^t B_s^2 ds\right\} \middle| B_t = y\right], \quad b > 0, y \in \mathbb{R}.$$

Solution

- 1. By Itô's formula we have that $B_t^2 = 2 \int_0^t B_s dB_s + t$, hence $M_t = \int_0^t B_s dB_s$ is a local martingale. Moreover, $\mathbb{E}\left[\langle M \rangle_t\right] = \mathbb{E}\left[\int_0^t B_s^2 ds\right] = \int_0^t \mathbb{E}\left[B_s^2\right] ds = \frac{t^2}{2} < \infty$, hence M is a martingale.
- **2.** For every $T \geqslant 0$, $t \in [0,T]$, we have $\mathscr{E}(-bM)_t = e^{-\frac{b}{2}B_t^2 + \frac{bt}{2} \frac{b^2}{2}\langle M \rangle_t} \leqslant e^{\frac{bT}{2}}$. Hence, $\mathscr{E}(-bM)$ is a martingale, $\mathbb{E}\left[\mathscr{E}(-bM)_T\right] = 1$ and thus \mathbb{Q} define a probability measure.
- **3.** By Girsanov theorem we have that $\beta_t := B_t + b \langle B, M \rangle_t$ is a Brownian motion under \mathbb{Q} , i.e. B solve

$$dB_t = d\beta_t - bB_t dt.$$

We recognize the SDE satisfied by the Ornstein-Uhlenbeck process and thus,

$$B_t = \int_0^t e^{-b(t-s)} d\beta_s.$$

Therefore, B is a centered gaussian process with variance $\frac{1-e^{-2bt}}{2b}$.

4. For every $a, b \ge 0$ we have

$$\mathbb{E}\left[\exp\left\{-aB_t^2 - \frac{b^2}{2} \int_0^t B_s^2 ds\right\}\right] = \mathbb{E}\left[e^{-aB_t^2 + b(B_t^2 - t)} \mathscr{E}(-bM)_t\right]$$
$$= \mathbb{E}_{\mathbb{Q}}\left[e^{(\frac{b}{2} - a)B_t^2 - \frac{b}{2}t}\right]$$
$$= \mathbb{E}_{\mathbb{Q}}\left[e^{(\frac{b}{2} - a)(\frac{1 - e^{-2bt}}{2b})Z - \frac{b}{2}t}\right]$$

Where $Z \sim \mathcal{X}^2(1)$, and the expectation is well defined if $(\frac{b}{2} - a)(\frac{1 - e^{-2bt}}{2b}) < \frac{1}{2}$, indeed

$$\left(\frac{b}{2} - a\right) \left(\frac{1 - e^{-2bt}}{2b}\right) \leqslant \frac{b - 2a}{4b} < \frac{1}{2}.$$

Therefore,

$$\mathbb{E}_{\mathbb{Q}}\left[e^{(\frac{b}{2}-a)(\frac{1-e^{-2bt}}{2b})Z-\frac{b}{2}t}\right] = \frac{e^{-\frac{bt}{2}}}{\sqrt{1-(\frac{b}{2}-a)(\frac{1-e^{-2bt}}{b})}}$$

$$= \frac{1}{\sqrt{e^{bt}(1-(\frac{b}{2}-a)(\frac{1-e^{-2bt}}{b}))}}$$

$$= \left(\frac{b}{be^{bt}-(\frac{b}{2}-a)(e^{bt}-e^{-bt})}\right)^{1/2}$$

$$= \left(\frac{b}{b\cosh(bt)+2a\sinh(bt)}\right)^{1/2}.$$

Exercise 4.2

1. Justify that for all T < 1 and $x \in \mathbb{R}$, there exists almost surely a solution to the SDE:

$$X_t^x = x + B_t - \int_0^t \frac{X_s^x}{1 - s} ds, \quad t \in [0, T].$$

- **2.** By applying the Itô formula to $(\frac{X_t^0}{1-t})_{t\in[0,T]}$, find an explicit formula for $(X_t^0)_{t\in[0,T]}$.
- **3.** Show that $X_t^x = X_t^0 + x(1-t), t \in [0,T]$ and determine its distribution.
- **4.** Show that X^x can be extented to a continuous process on [0,1].
- **5.** What does $(X_t^x)_{t\in[0,1]}$ represent ?

Solution

- 1. The coefficients $\sigma(t,x)=1$ and $b(t,x)=-\frac{x}{1-t}$ are Lipschitz in space and bounded in time, thus there exists a unique solution.
- 2. By Itô formula we have

$$\frac{X_t^0}{1-t} = \int_0^t \frac{1}{1-s} dX_s^0 + \int_0^t \frac{X_s^0}{(1-s)^2} ds = \int_0^t \frac{1}{1-s} dB_s.$$

Hence, $X_t^0 = \int_0^t \frac{1-t}{1-s} dB_s$ and $X_t^0 \sim \mathcal{N}\left(0, \int_0^t (\frac{1-t}{1-s})^2 ds\right) = \mathcal{N}(0, t(1-t))$ for every $t \in [0, T]$.

3. Let $t \in [0, T]$,

$$x + B_t - \int_0^t \frac{X_t^0 + x(1-t)}{1-s} ds = B_t - \int_0^t \frac{X_t^0}{1-s} ds + x - \int_0^t x ds = X_t^0 + x(1-t).$$

 $X_t^0 + x(1-t)$ solve the SDE and by uniqueness we have that $X_t^x = X_t^0 + x(1-t)$. Moreover $X_t^x \sim \mathcal{N}(x(1-t), t(1-t))$.

4. It suffices to show that X^0 extend to a continous process on [0,1]. We know that $\frac{X_t^0}{t-1}$ is a centered gaussian process with covariance $\min\left(\frac{t}{1-t},\frac{s}{1-s}\right)$, thus $X_t^0=(1-t)B_{\frac{t}{1-t}}$ as processes on [0,T]. And by time inversion we have that

$$\lim_{t \to 1} (1 - t) B_{\frac{t}{1 - t}} = \lim_{t \to \infty} \frac{B_t}{t} = 0.$$

5. X^x is a Brownian bridge between x and 0.

Exercise 4.3

Let $b \in \mathbb{R}$, a > 0 and set $X_t = B_t - bt$. Let $T = \inf\{t \ge 0 : B_t = a\}$.

- **1.** Find a probability measure \mathbb{Q} on \mathscr{F}_{∞} such that $(X_t)_{t\geqslant 0}$ is a Brownian motion.
- **2.** Deduce the value of $\mathbb{P}(T \leq t)$ and the distribution of $Z = \sup_{t \geq 0} X_t$ under \mathbb{P} .

Exercise 4.4

1. Let $X = (X_t)_{t \ge 0}$ solution to $E(\sigma, b)$ with value in an open set $D \subset \mathbb{R}^d$. Let $\lambda \in \mathbb{R}$. Let $f : D \to \mathbb{R}$ be twice continuously differentiable and such that $\mathscr{L}f = \lambda f$, where

$$(\mathscr{L}f)(x) := b(x)^{\top} \nabla f(x) + \frac{1}{2} \operatorname{tr} \left((\sigma \sigma^{\top})(x) D^2 f(x) \right).$$

Show that $(f(X_t)e^{-\lambda t})_{t\geqslant 0}$ is a continuous local martingale.

- **2.** Let $B = (B^1, B^2, B^3)$ be a Brownian motion with value in \mathbb{R}^3 , and $B_0 := a \in \mathbb{R}^3 \setminus \{0\}$. Let $X = ||B||^2$. Show that X solves some SDE $E(\sigma, b)$ and give the coefficients σ and b.
- **3.** We now assume that $\lambda \geqslant 0$. Show that $2tf''(t) + 3f'(t) = \lambda f(t), \ t > 0$, for $f(t) = \frac{\sinh(\sqrt{2\lambda t})}{\sqrt{2\lambda t}}$.
- **4.** Let $x > ||a||^2$, and let $T_x = \inf\{t \ge 0 : X_t = x\}$. Show that for every $\lambda \ge 0$, we have

$$\mathbb{E}\left[e^{-\lambda T_x}\right] = \frac{\sinh(\sqrt{2\lambda}\|a\|^2)}{\sqrt{2\lambda}\|a\|^2} \frac{\sqrt{2\lambda}x}{\sinh(\sqrt{2\lambda}x)}.$$

Exercise 4.5

1. Let H, Z and X be continuous semimartingales, such that $X_t = H_t + \int_0^t X_s dZ_s$. Express X as a function of H and Z.

Hint: start with $H \equiv 1$ and use a variation of the constant method as in classical ODE.

2. Solve $X_t = x + B_t - \beta \int_0^t X_s ds$, where $x \in \mathbb{R}$ and $\beta \ge 0$ are constants. The process X is called Ornstein-Uhlenbeck process.

Solution

1. By setting $H \equiv 1$, we have that $X = \mathscr{E}(Z)$, so we need to find a process Y such that $X_t = Y_t \mathscr{E}(Z)_t$. First by Itô formula we have

$$\frac{1}{\mathscr{E}(Z)_t} = 1 - \int_0^t \frac{1}{\mathscr{E}(Z)_s^2} d\mathscr{E}(Z)_s + \int_0^t \frac{1}{\mathscr{E}(Z)_s^3} d\langle \mathscr{E}(Z) \rangle_s$$
$$= 1 - \int_0^t \frac{1}{\mathscr{E}(Z)_s} dZ_s + \int_0^t \frac{1}{\mathscr{E}(Z)_s} d\langle Z \rangle_s.$$

Therefore, using again Itô formula, we have

$$\begin{split} dY_t &= d\left(\frac{X_t}{\mathscr{E}(Z)_t}\right) = X_t d\left(\frac{1}{\mathscr{E}(Z)_t}\right) + \frac{dX_t}{\mathscr{E}(Z)_t} + d\left\langle X, \frac{1}{\mathscr{E}(Z)}\right\rangle_t \\ &= X_t \left(-\frac{1}{\mathscr{E}(Z)_t} dZ_t + \frac{1}{\mathscr{E}(Z)_t} d\left\langle Z\right\rangle_t\right) + \frac{1}{\mathscr{E}(Z)_t} \left(dH_t + X_t dZ_t\right) + d\left\langle X, \frac{1}{\mathscr{E}(Z)}\right\rangle_t \\ &= \frac{1}{\mathscr{E}(Z)_t} (dH_t + X_t d\left\langle Z\right\rangle_t) + d\left\langle X, \frac{1}{\mathscr{E}(Z)}\right\rangle_t \\ &= \frac{1}{\mathscr{E}(Z)_t} (dH_t + X_t d\left\langle Z\right\rangle_t) - \frac{1}{\mathscr{E}(Z)_t} d\left\langle H, Z\right\rangle_t - \frac{X_t}{\mathscr{E}(Z)_t} d\left\langle Z\right\rangle_t \\ &= \frac{dH_t - d\left\langle H, Z\right\rangle_t}{\mathscr{E}(Z)_t}. \end{split}$$

We deduce that

$$X_t = \mathscr{E}(Z)_t \left(H_0 + \int_0^t \frac{1}{\mathscr{E}(Z)_s} dH_s - \int_0^t \frac{1}{\mathscr{E}(Z)_t} d\langle H, Z \rangle_s \right).$$

2. Taking $H_t = x + B_t$ and $Z_t = -\beta t$ in the previous question, we obtain

$$X_t = e^{-\beta t} \left(x + \int_0^t e^{\beta s} dB_s \right).$$