Shape and Topology Optimization of Plane Frame Structure Using Force Density Method

Wei Shen, Makoto Ohsaki Kyoto University, Japan

Date : 2019.05.21

Reporter : Wei Shen

Optimization of Frames

Characteristics 1

Ground structure method

Source: Ge Gao, Research on theory and application of truss structure, 2016, PhD Thesis.

Topology optimization

Size optimization

Challenge: Influence of initial nodes and elements

Possible approach

• Simultaneous Optimization

Simultaneous optimization of shape and topology

Location of Nodes

Cross-section area of element

Characteristics 2

Melting nodes

Desirable to avoid existence of extremely short member

Possible approach

Force density method(FDM)

Widely used in tension and tensegrity structure

Force density
$$q = \frac{N}{L}$$
 Axial force

Member length

Determine

q for each element

Structural Shape

Characteristic 3

Nonlinear Programming

 $\mathbf{Min}\ f(\mathbf{x})$

$$s.t. h(x) = 0$$
$$g(x) \le 0$$

Shape optimization \rightarrow Nodal location

Nonlinear

Structure Stiffness Matrix

Sensitivity analysis

Sequential quadratic programming (SQP)

Problem Formulation

 $Minimize: U^TKU$

Subject to: $V \leq V_{upper}$

Euler-Bernoulli beam element

Minimize: $U^{T}(X,Y,d)K(X,Y,d)U(X,Y,d)$

Subject to: $V(X,Y,d) \le V_{upper}(X,Y,d), d_{lower} \le d \le d_{upper},$

$$\boldsymbol{X}_{lower} \leq \boldsymbol{X} \leq \boldsymbol{X}_{upper}, \boldsymbol{Y}_{lower} \leq \boldsymbol{Y} \leq \boldsymbol{Y}_{upper}$$

Introducing FDM

Truss structure

Shape optimization: optimal nodal location

Only force equilibrium

Determined by q

Introducing FDM

Denote the connectivity matrix as C, where

$$C_{(i,p)} = \begin{cases} 1 & p = j \\ -1 & p = k \\ 0 & \text{other case} \end{cases}$$
 $i=1,2, ..., m; j, k=1, 2, ..., n$

$$i=1,2,...,m; j, k=1,2,...,n$$

Divide nodes to free and fix nodes And rearrange the matrix C

$$C = \begin{bmatrix} C_{1,1} & \cdots & C_{1,nfree} & \cdots & C_{1,n} \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ C_{m,1} & \cdots & \cdots & C_{m,n} \end{bmatrix} = \begin{bmatrix} C_{\text{free}} & C_{\text{fix}} \end{bmatrix}$$

Introducing FDM

Denote the force density matrix as Q, where

$$Q = (C_{\text{free}}, C_{\text{fix}})^{T} \operatorname{diag}(q)(C_{\text{free}}, C_{\text{fix}}) = \begin{bmatrix} C_{\text{free}}^{T} \operatorname{diag}(q) C_{\text{free}} & C_{\text{free}}^{T} \operatorname{diag}(q) C_{\text{fix}} \\ C_{\text{fix}}^{T} \operatorname{diag}(q) C_{\text{free}} & C_{\text{fix}}^{T} \operatorname{diag}(q) C_{\text{fix}} \end{bmatrix}$$

Force density vector

$$q = (q_d, q_e, q_f, q_g, q_h, q_i)$$

Nodal location

Determination of nodal location

By introducing FDM, the location of free nodes can be derived from the following equation

$$C_{\text{free}}^{T} \operatorname{diag}(q) C_{\text{free}} x_{\text{free}} = -C_{\text{free}}^{T} \operatorname{diag}(q) C_{\text{fix}} x_{\text{fix}} + P_{x,\text{free}}$$

$$C_{\text{free}}^{T} \operatorname{diag}(q) C_{\text{free}} y_{\text{free}} = -C_{\text{free}}^{T} \operatorname{diag}(q) C_{\text{fix}} y_{\text{fix}} + P_{y,\text{free}}$$

No external load on free nodes

$$C_{\text{free}}^{T} \operatorname{diag}(q) C_{\text{free}} x_{\text{free}} = -C_{\text{free}}^{T} \operatorname{diag}(q) C_{\text{fix}} x_{\text{fix}}$$
 $C_{\text{free}}^{T} \operatorname{diag}(q) C_{\text{free}} y_{\text{free}} = -C_{\text{free}}^{T} \operatorname{diag}(q) C_{\text{fix}} y_{\text{fix}}$

Functions of q

Problem Reformulation

Same discretization with Truss

Optimal shape of Frame

Minimize: $U^{T}(X(q),Y(q),d)K(X(q),Y(q),d)U(X(q),Y(q),d)$

Subject to: $V(X(q),Y(q),d) \le V_{upper}, d_{lower} \le d \le d_{upper}, q_{lower} \le q \le q_{upper}$

Sensitivity Analysis

For objective function

$$\frac{\partial \boldsymbol{U}^{T}\boldsymbol{K}\boldsymbol{U}}{\partial q_{i}} = \sum_{j=1}^{n} \frac{\partial \boldsymbol{U}^{T}\boldsymbol{K}\boldsymbol{U}}{\partial X_{j}} \times \frac{\partial X_{j}}{\partial q_{i}} + \frac{\partial \boldsymbol{U}^{T}\boldsymbol{K}\boldsymbol{U}}{\partial Y_{j}} \times \frac{\partial Y_{j}}{\partial q_{i}}; \quad \frac{\partial \boldsymbol{U}^{T}\boldsymbol{K}\boldsymbol{U}}{\partial d_{i}} = \boldsymbol{U}^{T} \frac{\partial \boldsymbol{K}}{\partial d_{i}} \boldsymbol{U}$$

$$\frac{\partial \boldsymbol{U}^{T}\boldsymbol{K}\boldsymbol{U}}{\partial X_{j}} = \boldsymbol{U}^{T} \frac{\partial \boldsymbol{K}}{\partial X_{j}} \boldsymbol{U}; \frac{\partial \boldsymbol{U}^{T}\boldsymbol{K}\boldsymbol{U}}{\partial Y_{j}} = \boldsymbol{U}^{T} \frac{\partial \boldsymbol{K}}{\partial Y_{j}} \boldsymbol{U}; \quad \mathbf{Adjoint variable method}$$

$$\frac{\partial X_j}{\partial q_i}$$
, $\frac{\partial Y_j}{\partial q_i}$: Only free nodes are considered

Sensitivity Analysis

$$\frac{\partial X_{free}}{\partial q_i} = -\left(\boldsymbol{C}_{free}^T \boldsymbol{Q} \boldsymbol{C}_{free}\right)^{-1} \left(\frac{\partial \left(\boldsymbol{C}_{free}^T \boldsymbol{Q} \boldsymbol{C}_{free}\right)}{\partial q_i} X_{free} + \frac{\partial \left(\boldsymbol{C}_{free}^T \boldsymbol{Q} \boldsymbol{C}_{fix}\right)}{\partial q_i} X_{fix}\right)$$

$$\frac{\partial Y_{free}}{\partial q_{i}} = -\left(\boldsymbol{C}_{free}^{T}\boldsymbol{Q}\boldsymbol{C}_{free}\right)^{-1} \left(\frac{\partial \left(\boldsymbol{C}_{free}^{T}\boldsymbol{Q}\boldsymbol{C}_{free}\right)}{\partial q_{i}}Y_{free} + \frac{\partial \left(\boldsymbol{C}_{free}^{T}\boldsymbol{Q}\boldsymbol{C}_{fix}\right)}{\partial q_{i}}Y_{fix}\right)$$

For Volume constraint

$$\frac{\partial V\left(X\left(\boldsymbol{q}\right),Y\left(\boldsymbol{q}\right),\boldsymbol{d}\right)}{\partial q_{i}} = \sum_{i=1}^{n} A_{i} \left(\sum_{i_{k}=1}^{s} \frac{\partial L_{i}}{\partial X_{i_{k}}} \cdot \frac{\partial X_{i_{k}}}{\partial q_{i}} + \frac{\partial L_{i}}{\partial Y_{i_{k}}} \cdot \frac{\partial Y_{i_{k}}}{\partial q_{i}}\right); \quad \frac{\partial V\left(X\left(\boldsymbol{q}\right),Y\left(\boldsymbol{q}\right),\boldsymbol{d}\right)}{\partial d_{i}} = \frac{\partial A_{i}}{\partial di} L_{i}$$

Further Improvement

Minimize:
$$U^{T}(X(q),Y(q),d)K(X(q),Y(q),d)U(X(q),Y(q),d)$$

Subject to:
$$V(X(q),Y(q),d) \le V_{upper}, d_{lower} \le d \le d_{upper}, q_{lower} \le q \le q_{upper}$$

Optimal result with thin element and closely spaced nodes

Minimize:
$$U^{T}(X,Y,d)K(X,Y,d)U(X,Y,d)$$

Subject to:
$$V(X,Y,d) \le V_{upper}, d_{lower} \le d \le d_{upper},$$

$$\boldsymbol{X}_{lower} \leq \boldsymbol{X} \leq \boldsymbol{X}_{upper}, \boldsymbol{Y}_{lower} \leq \boldsymbol{Y} \leq \boldsymbol{Y}_{upper}$$

Flow chart

Initial information of structure

Set initial value for force density and element diameter

Calculate the sensitivities

Obtain the converge result

Obtain the distinct structural layout of the optimal solution

Delete the thin element and merge the closely spaced nodes for further improvement

> Cantilever beam

$$d_{
m lower}$$
 = 0.001 and $d_{
m upper}$ = ∞ $q_{
m lower}$ = -1000 and $q_{
m upper}$ = 1000 $V_{
m upper}$ = 1

Pin support

Solution	Volume	Compliance
Before	1	83.1183
After	1	82.0866

> Bridge beam

$$d_{\mathrm{lower}} = 0.001$$
 and $d_{\mathrm{upper}} = \infty$; $q_{\mathrm{lower}} = -1000$ and $q_{\mathrm{upper}} = 1000$; $V_{\mathrm{upper}} = 1$

Solution	Volume	Compliance
Before	1	1221.0307
After	1	1219.2239

Source: Ohsaki M, Hayashi K. Force density method for simultaneous optimization of geometry and topology of trusses. Struct Multidiscip Optim, 2017

Conclusion

> Brief Summary

The proposed method includes:

- Shape and topology optimization
- Force density method
- Further optimization (Filter)

And has the following conclusion:

- Melting nodes can be avoid by restricting q
- Stable optimal result can be obtained by using beam element

Thanks for your kind attention

Date : 2019.05.21

Reporter: Wei Shen