

BAKALÁŘSKÁ PRÁCE

Anna Gajdová

Jonesův polynom

Katedra algebry

Vedoucí bakalářské práce: doc. RNDr. Stanovský David, Ph.D.

Studijní program: Matematika

Studijní obor: obecná matematika

	zalářskou práci vypracoval(a) samostatně a výhradně enů, literatury a dalších odborných zdrojů.
zákona č. 121/2000 Sb., auto	noji práci vztahují práva a povinnosti vyplývající ze orského zákona v platném znění, zejména skutečnost, rávo na uzavření licenční smlouvy o užití této práce odst. 1 autorského zákona.
V dne	Podpis autora

Poděkování.

Název práce: Jonesův polynom

Autor: Anna Gajdová

Katedra: Katedra algebry

Vedoucí bakalářské práce: doc. RNDr. Stanovský David, Ph.D., Katedra algebry

Abstrakt: Abstrakt.

Klíčová slova: klíčová slova

Title: Jones polynomial

Author: Anna Gajdová

Department: Department of Algebra

Supervisor: doc. RNDr. Stanovský David, Ph.D., Department of Algebra

Abstract: Abstract.

Keywords: key words

Obsah

U,	vod		2						
1	Defi 1.1 1.2 1.3	inice a vlastnosti Jonesova polynomu Základní pojmy	3 3 4						
2	Výp	oočet Jonesova polynomu	7						
	2.1 2.2	Výpočetní složitost problému Algoritmus	7 7 7 8 8						
		2.2.4Průběžné rozmotávání	9 9 10						
	2.3	2.2.7 ImplementaceAnalýza složitosti algoritmu2.3.1 Horní odhad2.3.2 Dolní odhad	10 10 10 11						
3	Tře	tí	13						
	3.1	Co v ní	13						
Zá	ivěr		14						
Se	znan	n použité literatury	15						
Se	znan	n obrázků	16						
Se	znan	n tabulek	17						
Seznam použitých zkratek									
\mathbf{A}	Příl ∆ 1	ohy První příloha	19						

$\mathbf{\acute{U}vod}$

Studium uzlových invariantů a polynomů

1. Definice a vlastnosti Jonesova polynomu

Vhodné věci tučně, Zmínit původní definici?, Nekonzistentní používání V(t), V? Dvojtečky po platí

Původní definice Jonesova polynomu vycházela z operátorových algeber. A že tady to je na lincích.

1.1 Základní pojmy

Při definování Jonesova polynomu je důležité rozlišovat mezi linkem a jeho diagramem. Link je vnoření ... Diagram je vhodné rovinné nakreslení nějaké linkové projekce, v němž je rozlišeno, jestli křížení vedou zvrchu nebo zespodu. Každý link má nekonečně mnoho diagramů.

V diagramu orientovaného linku rozlišujeme křížení s kladnou a zápornou orientací, viz obrázek.

Obrázek 1.1: Orientace křížení

Pro popis polynomů na uzlech a lincích se často používají tzv. skein (česky přadenové) vztahy. Skein vztahy určují, jaká je spojitost mezi polynomy tří linků L_+ , L_- a L_0 , jejichž diagramy jsou identické až na oblast jednoho křížení. V linku L_+ má toto křížení kladnou orientaci, v L_- zápornou a v L_0 je křížení rozpojené, viz obrázek.

1.2 Definice

Definice 1. Jonesův polynom orientovaného linku L je Laurentův polynom v proměnné \sqrt{t} (tj. polynom v $Z[\sqrt{t}, \sqrt{t^{-1}}]$), značený $V_L(t)$, který

- i. je linkový invariant,
- ii. je normalizovaný, tedy polynom V_{\circlearrowleft} triviálního uzlu má hodnotu 1,
- iii. splňuje skein vztah

$$\frac{1}{t}V_{L_{+}} - tV_{L_{-}} = (\sqrt{t} - \frac{1}{\sqrt{t}})V_{L_{0}}.$$

Lemma 1. Buď L link, který se skládá z k neprotínajících se orientovaných triviálních uzlů. Pak $V_L(t) = (-\sqrt{t} - \frac{1}{\sqrt{t}})^{k-1}$.

 $D\mathring{u}kaz$. Libovolně orientované triviální linky jsou ekvivalentní, stačí tedy vztah dokázat na diagramu zobrazujícím k souhlasně orientovaných disjunktních kružnic.

Pro k=2 je $L_0=$, $L_-=$ a $L_+=$. Diagramy L_+ a L_- zobrazují triviální uzly, takže $V_{L+}=V_{L-}=1$. Použitím skein vztahu získáme $V_L=V_{L_0}=-\sqrt{t}-\frac{1}{\sqrt{t}}$. Pro k>2 jsou L_- a L_+ diagramy linků s k-1 kružnicemi, ze skein vztahu dostaneme $V_L=V_{L_0}=(-\sqrt{t}-\frac{1}{\sqrt{t}})^{k-1}$.

Poznámka. Z každého diagramu uzlu lze změnou několika křížení vedených zvrchu na křížení vedených zespodu získat diagram triviálního uzlu. Z každého diagramu linku tedy můžeme změnou křížení získat diagram sjednocení triviálních uzlů, jejichž Jonesův polynom je podle předchozího lemmatu známý. Jonesův polynom každého linku lze tedy pomocí skein vztahu rekurzivně spočítat z jeho libovolného diagramu. Definice je tím pádem korektní.

Definice Jonesova polynomu pomocí skein vztahů není vhodná pro algoritmický výpočet, neboť rozpoznat, jestli diagram odpovídá triviálnímu uzlu, je složitý problém. K výpočtu použijeme ekvivalentní definici založenou na použití tzv. závorkového polynomu.

1.3 Závorkový polynom

Závorkový polynom (taktéž Kauffmanova závorka, angl. bracket polynomial) je definován pouze pro diagramy neorientovaných linků (tedy nikoli pro samotné linky).

Definice 2. Závorkový polynom neorientovaného diagramu D, značený $\langle D \rangle$, je Laurentův polynom v proměnné A definovaný třemi odvozovacími pravidly:

- i. $\langle \bigcirc \rangle = 1,\; kde \;\bigcirc\; značí \; diagram \; s \; jednou \; komponentou \; bez křížení$
- ii. $\langle \times \rangle = A \langle \times \rangle + A^{-1} \langle \times \rangle$, kde krizeni značí diagram obsahující křížení; vert je diagram, který je shodný až na dané křížení, které je zde vertikální rozpojeno; a hor je diagram, v němž je křížení rozpojeno horizontálně.
- iii. $\langle D \cup \bigcirc \rangle = (-A^2 A^{-2})\langle D \rangle$, kde $D \cup \bigcirc$ značí sjednocení diagramu D a diagramu s jednou komponentou bez křížení.

Důsledek.
$$\langle \times \rangle = A \langle \times \rangle + A^{-1} \langle \times \rangle$$

Lemma 2. Pro závorkové polynomy linků, jejichž diagramy obsahují smyčku, platí

$$i. \langle \rangle \rangle = -A^{-3} \langle \rangle \rangle$$

$$ii. \langle \rangle \rangle = -A^3 \langle \rangle \rangle$$

Důkaz.

i.
$$\langle \rangle \rangle = A \langle \rangle \cup \langle \rangle + A^{-1} \langle \rangle \rangle = A(-A^2 - A^{-2}) \langle \rangle \rangle + A^{-1} \langle \rangle$$

$$\rangle = -A^{-3} \langle \rangle \rangle$$

ii. Analogicky.

Dva diagramy znázorňují stejný link (jsou ekvivalentní), pokud mezi nimi existuje série Reidemeisterových pohybů (kde dokázané? + obrázek). Předchozí lemma říká, že závorkový polynom není invariantní vůči Reidemeisterovu pohybu typu I. Je ovšem invariantní Reidemeisterovým pohybům typu II a III.

Tvrzení 3. Závorkový polynom je invariantní vůči Reidemeisterovým pohybům typu II a III.

Důkaz. Par obrazku Pak důsledek

Aby byl závorkový polynom invariantní i vůči Reidemeisterovu pohybu typu I, je nutné vynásobit ho výrazem, který vyjadřuje míru zakroucení.

Definice 3. Zakroucení (writhe) orientovaného diagramu D je součet znamení všech křížení v D. Zakroucení značíme w(D).

Lemma 4. Zakroucení je invariantní vůči Reidemeisterovým pohybům typu II a III.

Důkaz. Důkaz se provede rozborem případů.

Definice 4. Normalizovaný závorkový polynom $X_L(A)$ orientovaného linku L definijeme $X_L(A) = (-A^3)^{-w(D)} \langle D \rangle$, kde D je libovolný diagram linku L.

Definice je korektní, neboť následující tvrzení ukazuje, že nezáleží na volbě diagramu.

Tvrzení 5. Normalizovaný závorkový polynom je linkový invariant.

Důkaz. Závorkový polynom i zakroucení jsou invariantní vůči Reidemeisterovým pohybům typu II a III, invarientní je tedy i jejich součin.

Invariance vůči typu I plyne z Lemmatu 2 a faktu, že křížení v \nearrow je vždy

kladné a křížení v 🔀 záporné.

Věta 6. Při substituce proměnné $A = t^{1/4}$ je normalizovaný závorkový polynom $X_L(A)$ roven Jonesovu polynomu $V_L(t)$.

 $D\mathring{u}kaz$. Ověříme, že $X_L(t^{1/4})$ splňuje podmínky v Definici 1.

i. Podle předchozího tvrzení je linkový invariant.

ii.
$$X_{\circlearrowleft} = (-A^3)^0 \langle \bigcirc \rangle = 1$$

iii. fd

Vlastnosti: uzly mají jen celočíselné, Amphichiral knots,

Zminit, jake polynomy jsou zobecněním Jonesova?

Měla bych také říct, že je otevřená otázka, jestli má nějaký ne unknot polynom jedna.

2. Výpočet Jonesova polynomu

Je to v tride number P Popis algoritmu, vypocet horniho odhadu, dolní odhad pro nějakou třídu uzlů, na které se to rozbije, skripta z počítačové algebry, důkaz správnosti algoritmu Odhad složitosti?

Bylo by zajímavé identifikovat, pro které typy uzlů je algoritmus efektivní a pro které naopak dosahuje nejhorších výsledků. Rychle na kanonickych nakreslenich torus uzlu a preclikovych uzlu.

Jak se používá velké O? Už jsem viděla, že můžu použít O(0.83). Ale co s tím spodním? Co problém, co algoritmus.

2.1 Výpočetní složitost problému

Podle (On the computational complexity of the Jones and Tutte polynomials) patří problém určení Jonesova polynomu alternujího uzlu do třídy složitosti #P, dokonce je tento problém # P-těžký.

Třída #P obsahuje problémy, jejichž cílem je určit počet přijímacích cest nedeterministického Turingova stroje, jedná se tedy o rozšíření problémů třídy NP. Například problém # SAT znamená nejen určit, jestli existuje pravdivostní ohodnocení Boolovské formule, ale i spočítat, kolik takových ohodnocení existuje celkem.

Říct, co z toho plyne. Jako že nemůžu najít lineární algoritmus. Nebo bych jako byla fakt dobrá, kdyby ano.

2.2 Algoritmus

Nejdriv chcu popsat, že to tak jde. Pak dodat pseudokód.

Do jakých detailů? Jak popsat implementaci? Python? Důkaz správnosti - vždy se zastaví. Vstup s počtem křížení. Vstup je PD notace (to až nějak v implementaci). Podkapitola na implementační detaily a vychytávky?

Náš algoritmus dostane na vstupu diagram orientovaného linku snkříženími zapsaný v PD notaci.

2.2.1 PD notace

PD notace je zápis sestávajací ze čtveřice čísel pro každé křížení a jednoznačně popisuje daný diagram. Zápis diagramu v PD notaci se získá následovně: úseky mezi kříženími se očíslují po směru orientace linku čísly od 1 do 2n. Každé křížení se označí čtyřmi přilehlými úseky, přičemž se začne úsekem, který do křížení vstupuje spodem, a pokračuje se s úseky navazujícími proti směru hodinových ručiček. Viz obrázek.

Linky

2.2.2 Výpočet Jonesova polynomu ze závorkového polynomu

Jak již bylo řečeno, k výpočtu Jonesova polynomu používáme závorkový polynom. Podle věty se Jonesův polynom získá z normalizovaného závorkového polynomu substitucí proměnné.

Algoritmus 1: Jonesův polynom

V PD notaci lze jednoduše určit, jestli je křížení kladné, či záporné orientace, tedy zamotání spočítáme v $\mathcal{O}(n)$ čase. spočítáme v lineárním čase vzhledem k počtu křížení.

Dále se budeme zabývat výpočtem závorkový polynom.

2.2.3 Přímočarý výpočet závorkového polynomu

Možná to celé nahradit diagramy.

Z definice závorkového polynomu plyne jednoduchý rekurzivní algoritmus.

Budu tomu říkat rozpojení křížení. Synové s n-1.

Háčky jsou možné, ale nesmí být jednoslovné názvy. Polynomy rovnou psát v jake jsou proměnné.

Algoritmus 2: Závorkový polynom

```
Function Bracket(L)
    Data: Diagram linku s n kríVL zeními
    Result: Závorkový polynom v promenne A
    if link L je kruznice then
     ∟ return 1
    vyber krizeni linku L
    \mathsf{HL} \leftarrow \mathsf{link}\ L, kde krizeni je rozpojeno horizontálne
    VL \leftarrow link L, kde krizeni je rozpojeno vertikálne
    if v linku HL vznikla disjunktni kruznice then
     \parallel Hk \leftarrow 1
    else
     \perp Hk \leftarrow 0
    if v linku VL vznikla disjunktni kruznice then
     Vk \leftarrow 1
    else
     \perp Vk \leftarrow 0
    {\sf zavorkPoly} \leftarrow A(-A^2-A^{-2})^{\sf Hk} \; {\tt Bracket(HL)} \, + A^{-1}(-A^2-A^{-2})^{\sf Vk}
     Bracket(VL)
    return zavorkPoly
```

Závorkový polynom linku s n kříženími se vypočte ze dvou závorkových polynomů linků s n-1 kříženími. Algoritmus má tedy časovou složitost $\mathcal{O}(2^n)$.

Stejnou časovou složitost má i výpočet Jonesova polynomu používající tento postup. Zastaví + koretnost.

2.2.4 Průběžné rozmotávání

Algoritmus na výpočet závorkového polynomu zrychlíme, pokud se link pokusíme v každém kroku rozmotat, tedy pokud nalezneme diagram ekvivalentního uzlu s menším množstvím křížení.

V PD notaci jsou snadno naleznutelné případy, kdy lze link rozmotat použitím prvního či druhého Reidemastrova pohybu.

Při použití prvního Reidemastrova pohybu odmotáme jednu smyčkua zbavíme se jednoho křížení, ovšem výsledný závorkový polynom se změní o mocninu A^3 podle lemmatu.

Použitím druhého Reidematrova pohybu se zbavíme dvou křížení a polynom zůstane podle lemmatu stejný.

Algoritmus 3: Závorkový polynom s rozmotáváním

Function Bracket(L)

Rozmotej link L prvnim Reid pohybem

if neco rozmotano then

 $\mathsf{e} \leftarrow \mathsf{soucet}$ znaminek rozmotanych krizeni

return A^{3e} Bracket (rozmotany link)

Rozmotej link L druhym Reid pohybem

Jeste jednou rozmotej link L prvnim Reid pohybem

if neco rozmotano then

 $e \leftarrow$ soucet znaminek rozmotanych krizeni

return A^{3e} Bracket(rozmotany link)

Jeste kolik vzniklo samostatnych kruznic . . .

return zavorkPoly

Zastaví + koretnost. Rozmotávání běží v lineárním čase vzhledem k n, celková časová složitost tedy zůstává $\mathcal{O}(2^n)$.

2.2.5 Vhodná volba křížení

Tady nějak nezáleží na orientaci.

Algoritmus dále můžeme zlepšit vhodnou volbou křížení, které rozpojíme. Dokážeme, že ke vzniku linku, který lze částečně rozmotat způsobem popsaným v předchozí části, je vždy potřeba rozpojit nejvýše dvě křížení. Algoritmus bude volit právě ta křížení, jejichž rozpojení nám v dalších krocích zajistí možnost rozmotání.

Diagram jako rovinný graf

Každý linkový diagram odpovídá rovinnému grafu, v němž křížení představují vrcholy (vždy stupně čtyři) a úseky mezi kříženími hrany. Diagram s n kříženími odpovídá grafu s n vrcholy a 2n hranami. Dále budeme v této sekci k popisu diagramů používat grafovou terminologii. Předpokládejme také, že pracujeme s diagramem, který už je rozmotaný ve smyslu rozmotávání v sekci bla.

Eulerova formule pro rovinné grafy říká, že v - e + f = 2, kde v značí počet vrcholů, e počet hran a f počet stěn.

V našem případě tedy dostáváme vzorec pro počet stěn f = n + 2.

Každá hrana náleží dvěma stěnám, rozdělujeme tedy 4n hran mezi n+2. Z toho plyne, že musí existovat stěna, která je ohraničená méně než čtyřmi hranami.

Typy stěn

Stěna s jednou hranou by v linku odpovídala smyčce, ty jsou ovšem podle předpokladu už odstraněny rozmotáním.

Stěna se dvěma hranami, která není rozmotatelná, musí v diagramu odpovídat jedné ze situací na obrázku. Všimněme si, že rozpojením křížení a_1 i a_2 buď ve vertikálním, nebo horizontálním směru vznikne smyčka. Volbou křížení a_1 nebo a_2 je tedy zaručeno, že jeden syn má po rozmotání nejvýše n-2 křížení.

Stěna se třemi hranami v diagramu odpovídá buď typu B, nebo C zobrazeným na obrázku.

Ve stěně typu B získáme horizontálním rozpojením křížení b_1 syna, jenž jde rozmotat druhým Reidematrovým pohybem. Jeho diagram tedy bude mít nejvýše n-3 křížení.

Ve stěně typu C není rozpojením žádného křížení rozmotání zaručeno. Ovšem rozpojením kterého koli křížení získáme jednoho syna se stěnou typu A. Existuje tedy prasyn s nejvýše n-3 kříženími.

Jelikož chceme maximalizovat rozmotání synů, jsou preference algoritmu na volbu křížení $b_1 < a_i < c_i$. Z předchozího rozboru plyne, že alespoň jedno z těchto křížení musí existovat.

V PD notaci je možné toto křížení nalézt v lineárním čase vzhledem k n.

2.2.6 Konečný algoritmus

Pseudokód toho celého.

Vždy se zjevně zastaví. Je korektní, bo to platilo pořád. Každopádně tady uvést pseudokód.

2.2.7 Implementace

Python? Práce, záludnosti? Rozdělování? Rychlá práce s PD notací? Jak jsem toho docílila?

2.3 Analýza složitosti algoritmu

2.3.1 Horní odhad

Rychlost algoritmu je závislá na počtu křížení n a na míře rozmotávávaní. Například na diagramu, který je můžné absolutně rozmotat použitím prvních dvou Reidemasterových pohybů poběží nejhůř v kvadratickém čase. Zdůvodnit?

Horní odhad rychlosti tedy provedeme na případu diagramu, v němž dojde k pouze k minimálnímu rozmotávání. Tedy nejdode k rozmotání jiných křížení než těch, která jsou zaručená rozborem v sekci Volba vhodného křížení. Také v

případech, kdy není předchozí volbou křížení zaručena existence stěny typu A, bude existovat pouze stěna typu C, která zaručuje rozmotání pouze u vnuka.

Průběh algoritmu zakreslíme jako binární strom, kde číslo ve vrcholu je počet křížení diagramu. V kořeni máme diagram s n kříženími, v němž rozmotáme křížení stěny C, takže jeho synové jsou diagramy s n-1 kříženími obsahující stěnu typu A. Jejich synové budou tedy diagramy velikosti n-2 a n-3. V lichých hladinách stromu má tedy vrchol syny o jedna menší, v sudých hladinách je jeden syn o dva menší.

Získáme rekurentní rovnici na počet operací výpočtu závorkového polynomu diagramu velikosti n.

$$T(n) = 2T(n-2) + 2T(n-3) + C_L n + 2C_L (n-1)$$

Člen $C_L n + 2C_L (n-1)$, kde C_L je konstanta, vyjadřuje, že na rozdělení každého diagramu na syny (rozmotání a volba křížení) je potřeba lineární počet operací vzhledem k počtu křížení.

Rekurence lze řešit pomocí vytvořujících funkcí a rozkladu na parciální zlomky. Výpočtem získáme vzorec

$$T(n) \approx C_1 2^{0.82n} + C_2 n 2^{0.09n} + C_3 2^{0.09n} + C_4 n + C_5 = \mathcal{O}(2^{0.82n}),$$

kde C_i jsou jisté konstanty.

Podle sekce je na výpočet Jonesova polynomu ze závorkového pouze lineární počet operací. Dohromady má tedy náš algoritmus na výpočet Jonesova polynomu časovou složitost $\mathcal{O}(2^{0.82n})$.

2.3.2 Dolní odhad

Provedeme analýzu průběhu algoritmu na linku L s diagramem, který vznikne z diagramu Borromeovských kruhů přidáváním kružnic. Kružnice přidáváme tak, aby vždy protla dva další kruhy celkem ve čtyřech bodech a vzniklý diagram byl alternující, tj. aby se střídala křížení vedená zdola a zvrchu. Příklad na obrázku.

Diagram skládající se z k kružnic má 4k-6 křížení.

Na obrázku je znázorněn možný průběh výpočtu závorkového polynomu na tomto diagramu takový, že jsou postupně odpojovány krajní kružnice.

Z obrázku plyne, že časová složitost algoritmu na diagramu s n kříženími splňuje rekurenci

$$T(n) = 8T(n-4) + C_1 n + C_0$$

pro jisté konstanty C_0, C_1 . A tedy $T(n)=\Omega(8^{\frac{n}{4}})=\Omega O(2^{0.75n})$. Nebo i tady omega? To velké o je tu divné.

Dokázali jsme, že náš algoritmus na výpočet Jonesova polynomu má časovou složitost $\Omega(2^{0.75n})$.

3. Třetí

3.1 Co v ní

Experiment, náhodné uzly, experimenty na jinych uzlech, různé algoritmy? Zatim urcite nechat probehnout na dvanacti uzlech, Pak na velkych nahodnych uzlech Pak na nejakych specialnich uzlech podle meho uvazeni Jak generuji nahodne uzly, alternující uzly, linky,... Bylo by zajímavé identifikovat, pro které typy uzlů je algoritmus efektivní a pro které naopak dosahuje nejhorších výsledků.

Rychlý na torus: vzít těch 36. Pokusit se naprogramovat ta spojení koleček.

Nezapomenou dělat závěry.

Co náhodné alternující uzly?

Neměl by být experiment pouze na náhodných alternujících uzlech? Udělám oboje dohromady!

Takže zvládne můj generátor ještě tohle? Já už nevím, jak to dělal! Ale řekla bych, že by to mohl zvládnout.

Závěr

Nezapomenout dělat závěry průběžně. Shrnovat to. Já vím, co to znamená, ale oni ne! Takže do toho.

Takže hlavně shrnovat ty složitosti. Že to na některých uzlech běží dobře. Nachám to běžet na torus.

Myslet meta - co mi tak ještě chybí, aby to dobře shrnulo Jonesův polynom? Jakože je to práce o něm? Nebo mám jenom studovat?

Seznam použité literatury

- Anděl, J. (1998). *Statistické metody*. Druhé přepracované vydání. Matfyzpress, Praha. ISBN 80-85863-27-8.
- Anděl, J. (2007). Základy matematické statistiky. Druhé opravené vydání. Matfyzpress, Praha. ISBN 80-7378-001-1.
- Cox, D. R. (1972). Regression models and life-tables (with Discussion). *Journal* of the Royal Statistical Society, Series B, **34**(2), 187–220.
- DEMPSTER, A. P., LAIRD, N. M. a RUBIN, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society, Series B*, **39**(1), 1–38.
- Genberg, B. L., Kulich, M., Kawichai, S., Modiba, P., Chingono, A., Kilonzo, G. P., Richter, L., Pettifor, A., Sweat, M. a Celentano, D. D. (2008). HIV risk behaviors in sub-Saharan Africa and Northern Thailand: Baseline behavioral data from project Accept. *Journal of Acquired Immune Deficiency Syndrome*, 49, 309–319.
- Kaplan, E. L. a Meier, P. (1958). Nonparametric estimation from incomplete observations. *Journal of the American Statistical Association*, **53**(282), 457–481.
- LEHMANN, E. L. a CASELLA, G. (1998). Theory of Point Estimation. Second Edition. Springer-Verlag, New York. ISBN 0-387-98502-6.
- STUDENT (1908). On the probable error of the mean. Biometrika, 6, 1–25.

Seznam obrázků

1.1	Orientace křížení															3

Seznam tabulek

Seznam použitých zkratek

A. Přílohy

A.1 První příloha