第二次期中考解答

第一題

• Discuss the advantages of the two different 4-bit adders mentioned in the class

	Advantage	Disadvantage
Ripple adder	成本低	速度慢
Carry look ahead adder	速度快	成本高

第二題

- A. combinational circuit vs. sequential circuit
 - 沒有記憶單元,輸出與目前輸入有關
- B. synchronous sequential circuit vs. asynchronous sequential circuit
 - 有記憶單元,輸出與現在的 input 與現在的 state(或是先前輸出) 有關

第三題

- A. even parity
 - 加入一個額外的 bit ,讓所有位元 1 的個數為偶數個
- B. priority encoder
 - 優先權編碼器,較高位的位元優先權高於較低的位元

第四題

A. 此 circuit 為 4-bit 的加減法器 當 M = 0 時,為 A+B 當 M = 1 時,為 A-B (需舉例說明)

B. 此 XOR 用來檢查是否 overflow (需舉例說明)

V=0 ♣ no overflow V=1 ♣ overflow

Fig. 4-13 4-Bit Adder Subtractor

第五題

• A. F(A,B,C) = A' B' C' + AB' C' + A' BC + ABC'

第五題

• B. F(A,B,C) = ABC + A' B' C' + A' BC' + AB' C'

第六題

Design an active-high one bit 2-1multiplexer with an active-high enable signal. Please draw its Function Table and Logic Diagram

Е	S	Output Y0
0	Χ	All 0's
1	0	Select A0
1	1	Select B0

第六題

第七題

• Design an active-high 2-to-4 decoder with an active-low enable signal. Please draw its Function Table and Logic

Diagrai	m					
E	A	В	D0	D1	D2	D3
1	X	X	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	1	0	0
0	1	0	0	0	1	0
0	1	1	0	0	0	1

第七題

第八題

- Design a 3-bit comparator which can output 1 if C > D. Please write its Boolean function and draw its Logic Diagram
 - (exclusive-nor)
 - •
 - $C>D = C_1D_1'+x_1C_2D_2'+x_1x_2C_3D_3'$

第八題

第九題

此電路為 two-to-one multiplexer (4bits)

E S output Y

1 X all 0's

0 0 select A

0 1 select B

第九題

此為 8-to-3 Encoder

Table 4.7 *Truth Table of an Octal-to-Binary Encoder*

Inputs							Outputs			
Do	D_1	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇	x	Y	z
1	O	O	O	O	O	O	О	O	O	О
O	1	O	O	O	O	O	O	O	O	1
O	O	1	O	O	O	O	O	O	1	O
O	O	O	1	O	O	O	O	O	1	1
O	O	O	O	1	O	O	O	1	O	O
O	O	O	O	O	1	O	O	1	O	1
O	O	O	O	O	O	1	O	1	1	O
O	O	O	O	O	O	O	1	1	1	1

第十題

• Design a nor circuit to convert the 4-bit binary code to the 4-bit gray code

B_1B_0 B_3B_2	00	01	11	10	B_1B_2	00	01	11	10
00	0	0	0	0	00	_		0	0
01	Û	Û	Û	Û	01	1	1	1	_1
11	1	1	1	1	11	0			0
					10	1	1	1	1
$G_3^{10} =$	B_3^{\perp}	T	1	\mathbf{t}_2	$= ((B_3)$	+ B ₂)' +	(B_3)	'+ B ₂

第十題

第十題

