

1. Linear Applications 3

Exercise 1 Let $f : \mathbb{R}_2[x] \longrightarrow \mathbb{R}^3$ be the linear transformation defined as $f(a + bx + cx^2) = (b + c, b, 0, a)$.

- a) Compute the matrix of f referred to the standard basis in both spaces.
- b) Find out the kernel of f. Is f injective?
- c) Find out the range of f. Is f surjective?
- d) Is f bijective? Does f^{-1} exist? Compute $f^{-1}(1,2,3)$.

Exercise 2 Let $f : \mathbb{R}_2[x] \longrightarrow \mathbb{R}^4$ be the linear transformation defined by $f(a + bx + cx^2) = (b + c, b, 0, a)$. Compute the matrix referred to the basis $B_1 = \{1, 1 - x, 1 + x + x^2\}$ in $\mathbb{R}_2[x]$ and $B_2 = \{(1, 0, 0, 0), (1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 0, 1)\}$ in \mathbb{R}^4 .

Exercise 3 Considering the linear application $f: \mathbb{R}_3[x] \longrightarrow \mathscr{M}_2(\mathbb{R})$ defined by

$$f(a_3x^3 + a_2x^2 + a_1x + a_0) = \begin{pmatrix} 3a_3 - a_2 & a_1 \\ 2a_2 + a_0 & a_2 \end{pmatrix}.$$

Obtain the matrix of f in the basis:

$$B = \{1, 1+x, 1+x+x^2, 1+x+x^2+x^3\}$$

and

$$C = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ -1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & -1 \end{array} \right) \right\}$$

Exercise 4 Considering the linear transformation $f : \mathbb{R}^4 \longrightarrow \mathbb{R}_2[x]$ with f(1,0,0,0) = 1+x, f(1,1,0,0) = 2x, f(1,1,1,0) = -1-x, $f(0,0,0,-1) = 2+3x-x^2$.

Compute:

- *a)* The matrix of f referred to the standard basis in both spaces.
- b) f(1,-1,1,-2)
- c) The Kernel and the Image space of f, and classify f.
- d) Let $p = 1 + x^2$. Does p belong to Im(f)? Considering the linear system AX = p, classify the system and give a solution.