MAT 194 MOCK MIDTERM II

Prepared by David Simons and Marc Goudge (NΨ1T6) for Peer Assisted Study Sessions. We imagine this will be somewhat representative of your midterm, but make no guarantees!

- 1. Find the following antiderivatives:
 - a) 3x⁴
- b) cos(5x)
- c) 3/x
- d) $3x \exp(x^2/3)$
- e) $x(2x+5)^8$

2. a) Find dy/dx for

$$y(x) = \int_{2x-1}^{3x^2} \sin(t^4) \, dt$$

b) Given that f is continuous and C is a constant, find f(x) and C satisfying:

$$\int_0^x f(t) dt = \cos(x) + C + \int_0^x \frac{f(t)}{1+t} dt \quad \text{ for all } x$$

- 3. Find the area bounded by the following three curves:
 - the x-axis
 - the line x=e
 - the curve implicitly defined by $y = \begin{cases} 0, & x = 0\\ \sqrt{\ln(\frac{x}{y})}, & x > 0 \end{cases}$
- 4. Find the volume formed by rotating the area bounded by the following three curves **around the line y = -2**:
 - the x –axis
 - the line x = 1
 - the curve $y = x^2$
 - a) Use the washer method
- b) Use the shell method
- 5. a) A 1600-lbm elevator is suspended by a 200-ft cable that weighs 10 lbm/ft. How much work is required to raise the elevator from the basement to the third floor, a distance of 30 ft? (Note: *lbm* means "pound-mass", equivalent to approximately 0.454 kg, whereas *lbf* means "pound-force", equivalent to approximately 4.448 N)
 - b) Find the average value of $f(t) = t \sin(t^2)$ on the interval [0,10].
- 6. a) Show that $f(x) = \int_1^x \sqrt{1+t^3} \ dt$ is a bijection and find $(f^{-1})'(0)$
 - b) If f is a twice differentiable bijection with inverse function g, show that $g''(x) = -\frac{f''(g(x))}{[f'(g(x))]^3}$
- 7. Use Riemann sums to show that $\int_0^1 x^2 dx = \frac{1}{3}$. Hint: $\sum_1^n i^2 = \frac{n(n+1)(2n+1)}{6}$
- 8. Sketch all points (x,y) $\in \mathbf{R}$ such that $|x + y| \le e^x$