

Introduction to Navigation & Guidance

(Course Code: AE 410/641)

Department of Aerospace Engineering
Indian Institute of Technology Bombay
Tutorial - 1

Instructor: Shashi Ranjan Kumar August 29, 2020

Learning Goals

- To be very explicit about the choice of coordinate system
- When a coordinate transformation is needed and how to do that
- Understanding of frames and vectors
- 1. If the consecutive rotations are performed in the order ψ , θ and ϕ i.e., (yaw, pitch and roll) on reference frame **XYZ** then we obtain the another reference frame xyz. This rotation can be performed using a transformation matrix D. For such a transformation:
 - (a) What are the range for the angles ψ , θ and ϕ ?
 - (b) Can $\pi/2 < |\theta| < \pi$? If not, Why?
 - (c) If $|\theta| < \pi$, what would be the resultant transformation matrix \hat{D} ?
- 2. Prove that the sum of the squares of direction cosines is 1.
- 3. Consider two right hand orthogonal, unit vectors, $(\vec{m1}, \vec{m2}, \vec{m3})$ and $(\vec{n1}, \vec{n2}, \vec{n3})$, associated with a DCM, $\mathbf{C} = [C_{ij}]$.

$$\begin{bmatrix} \vec{m1} \\ \vec{m2} \\ \vec{m3} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} \begin{bmatrix} \vec{n1} \\ \vec{n2} \\ \vec{n3} \end{bmatrix}$$

- (a) Check for Orthonormality of the DCM
- (b) Prove the correctness of $\mid \mathbf{C} \mid = 1$
- 4. Recall that a conic section is represented by the general formula

$$C: ax^2 + bxy + cy^2 + dx + ey + f = 0, \ a, b, c, d, e, f \in \mathbb{R}.$$

(a) Suppose that a rotation of 45° is applied to the above conic in counter-clockwise direction. What would be the representation (equation) of new conic so obtained? Denote this by \mathcal{C}' .

- (b) Suppose \mathcal{C}' is again rotated by 45° in counter-clockwise direction. What would be the representation (equation) of new conic so obtained? Denote this by \mathcal{C}'' .
- (c) Suppose a counter-clockwise rotation of 90° is directly applied to the conic C to obtain C^* . What would be the representation (equation) of new conic so obtained?
- (d) Are C'' and C^* identical? Why/Why not?

5. Food for thought!

Can we have trigonometric and hyperbolic representations of quaternions? Put differently, how can we formally *define*

$$\sin(\mathbf{q}), \cos(\mathbf{q}), \tan(\mathbf{q}), \cosh(\mathbf{q}), \sinh(\mathbf{q}), \tanh(\mathbf{q})$$

for a quaternion $\mathbf{q} = q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k} = q_0 + \mathbf{v}$?

Think of this in polar form, $\mathbf{q} = re^{\theta \mathbf{u}}$, where r = |q| denotes the magnitude evaluated using $|\mathbf{q}|^2 = q_0^2 + q_1^2 + q_2^2 + q_3^2$ and $\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$. The angle, θ , is a convex angle $(\theta \in [0, \pi))$. Note that this form is unique for $\mathbf{q} \neq 0, \pm 1$.

AE 410/641 End of Tutorial 1