Lagrangian density
$-\frac{1}{2} a_0 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\chi\alpha} + \frac{1}{2} a_0 \Gamma^{\alpha}_{\alpha}^{\beta} \Gamma^{\chi}_{\beta\chi} - \frac{1}{2} a_0 \Gamma^{\alpha\beta\chi} \partial_{\beta}h_{\alpha\chi} -$
$\frac{1}{4} a_0 \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\beta} h^{\chi}_{\chi} + \frac{1}{4} a_0 \Gamma^{\alpha\beta}_{\alpha} \partial_{\beta} h^{\chi}_{\chi} - \frac{1}{4} a_0 h^{\chi}_{\chi} \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} + \frac{1}{4} a_0 h^{\chi}_{\chi} \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} -$
$\frac{1}{2} a_0 h_{\alpha\chi} \partial_{\beta} \Gamma^{\alpha\beta\chi} + \frac{11}{2} c_1 \partial^{\alpha} \Gamma^{\chi\delta}_{\delta} \partial_{\beta} \Gamma_{\chi\alpha}^{\beta} + \frac{1}{2} c_1 \partial^{\alpha} \Gamma_{\chi\alpha}^{\beta} \partial_{\beta} \Gamma^{\chi\delta}_{\delta} -$
$19 c_1 \partial^{\alpha} \Gamma^{\chi \delta}_{\chi} \partial_{\beta} \Gamma_{\delta \alpha}^{\beta} + \frac{1}{4} a_0 h^{\alpha \beta} \partial_{\beta} \partial_{\alpha} h^{\chi}_{\chi} - \frac{1}{8} a_0 \partial_{\beta} h^{\chi}_{\chi} \partial^{\beta} h^{\alpha}_{\alpha} +$
$\frac{1}{2} a_0 \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\chi} h_{\beta}{}^{\chi} + \frac{1}{4} a_0 \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\chi} h_{\beta}{}^{\chi} + \frac{37}{4} c_1 \partial_{\beta} \partial_{\alpha} h^{\delta}_{\delta} \partial_{\chi} \Gamma^{\alpha\beta\chi} +$
$\frac{3}{4} c_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\chi} \partial_{\alpha} h^{\delta}_{\delta} - \frac{1}{2} a_0 h^{\alpha\beta} \partial_{\chi} \partial_{\beta} h^{\chi}_{\alpha} + \frac{1}{4} a_0 h^{\alpha}_{\alpha} \partial_{\chi} \partial_{\beta} h^{\beta\chi} +$
$\frac{1}{4} a_0 h^{\alpha\beta} \partial_{\chi} \partial^{\chi} h_{\alpha\beta} - \frac{1}{4} a_0 h^{\alpha}_{\alpha} \partial_{\chi} \partial^{\chi} h^{\beta}_{\beta} - \frac{1}{4} a_0 \partial_{\beta} h_{\alpha\chi} \partial^{\chi} h^{\alpha\beta} +$
$\frac{1}{8} a_0 \partial_{\chi} h_{\alpha\beta} \partial^{\chi} h^{\alpha\beta} + \frac{1}{2} a_0 h_{\beta\chi} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} - \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\delta}_{\chi} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} -$
$\frac{1}{2} c_1 \partial_{\beta} \Gamma^{\delta}_{\delta\chi} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} + \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta}_{\delta} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} - \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta}_{\beta\delta} \partial^{\chi} \Gamma^{\alpha}_{\beta}{}^{\beta} -$
$\frac{1}{2} c_1 \partial_\chi \Gamma^{\delta}_{\delta\beta} \partial^\chi \Gamma^{\alpha}_{\alpha}{}^{\beta} - \frac{3}{4} c_1 \partial_\chi \partial_\beta h^{\delta}_{\delta} \partial^\chi \Gamma^{\alpha}_{\alpha}{}^{\beta} - \frac{11}{2} c_1 \partial_\beta \Gamma^{\delta}_{\delta} \partial^\chi \Gamma^{\alpha\beta}_{\alpha} +$
$\frac{19}{2} c_1 \partial_{\beta} \Gamma^{\delta}_{\chi \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\alpha} + \frac{11}{2} c_1 \partial_{\chi} \Gamma^{\delta}_{\beta \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\alpha} - \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta}_{\beta \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\alpha} -$
$\frac{37}{4} c_1 \partial_{\chi} \partial_{\beta} h^{\delta}_{ \delta} \partial^{\chi} \Gamma^{\alpha\beta}_{ \alpha} + c_1 \partial_{\alpha} \Gamma^{ \delta}_{\chi \delta} \partial^{\chi} \Gamma^{\alpha\beta}_{ \beta} - c_1 \partial_{\chi} \Gamma^{ \delta}_{ \delta} \partial^{\chi} \Gamma^{\alpha\beta}_{ \beta} -$
$\frac{9}{2} c_1 \partial_{\chi} \partial_{\beta} h^{\delta}_{ \delta} \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} + \frac{17}{8} c_1 \partial_{\chi} \partial_{\beta} h^{\delta}_{ \delta} \partial^{\chi} \partial^{\beta} h^{\alpha}_{ \alpha} - \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\alpha\beta}^{ \delta} -$
$\frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\alpha\chi}^{ \delta} - \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} + \frac{19}{2} c_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\beta\alpha}^{ \delta} +$
$c_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \Gamma^{\delta}_{\beta}{}^{\chi}_{\chi} + \frac{1}{2} c_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \Gamma^{\delta}_{\chi\beta} + \frac{1}{2} c_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \Gamma^{\delta}_{\chi\beta} -$
$\frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\chi \alpha}^{\ \delta} + \frac{1}{2} c_1 \partial^{\chi} \Gamma_{\beta\alpha}^{\ \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta\alpha} + c_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \Gamma_{\chi \beta}^{\ \delta} -$
$\frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \Gamma^{\chi}_{\chi}{}^{\delta} + c_1 \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \Gamma^{\chi\delta}_{\chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \Gamma^{\chi\delta}_{\chi} -$
$\frac{37}{4} c_1 \partial_\chi \Gamma^{\alpha\beta\chi} \partial_\delta \partial_\alpha h_\beta^{\delta} - \frac{3}{4} c_1 \partial_\beta \Gamma^{\alpha\beta\chi} \partial_\delta \partial_\alpha h_\chi^{\delta} - \frac{37}{4} c_1 \partial_\chi \Gamma^{\alpha\beta\chi} \partial_\delta \partial_\beta h_\alpha^{\delta} +$
$\frac{3}{8}c_1\partial_{\chi}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial_{\beta}h_{\alpha}^{} + \frac{37}{8}c_1\partial_{\alpha}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\delta} + \frac{3}{4}c_1\partial^{\chi}\Gamma^{\alpha}_{\alpha}^{\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\delta} +$
$\frac{37}{4} c_1 \partial^{\chi} \Gamma^{\alpha\beta}{}_{\alpha} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} - \frac{3}{8} c_1 \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} + \frac{13}{4} c_1 \partial^{\chi} \partial^{\beta} h^{\alpha}{}_{\alpha} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} -$
$\frac{3}{4} c_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\chi} h_{\alpha}^{\ \delta} - \frac{43}{8} c_1 \partial_{\alpha} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h_{\beta}^{\ \delta} + \frac{3}{4} c_1 \partial^{\chi} \Gamma^{\alpha}_{\ \alpha}^{\ \beta} \partial_{\delta} \partial_{\chi} h_{\beta}^{\ \delta} +$
$\frac{37}{4} c_1 \partial^\chi \Gamma^{\alpha\beta}{}_{\alpha} \partial_\delta \partial_\chi h_{\beta}{}^{\delta} + \frac{77}{8} c_1 \partial^\chi \partial_\alpha h^{\alpha\beta} \partial_\delta \partial_\chi h_{\beta}{}^{\delta} - \frac{29}{4} c_1 \partial^\chi \partial^\beta h^{\alpha}{}_{\alpha} \partial_\delta \partial_\chi h_{\beta}{}^{\delta} +$
$c_1 \partial_\beta \Gamma^\alpha_{\ \alpha}{}^\beta \partial_\delta \partial_\chi h^{\chi\delta} - c_1 \partial_\beta \Gamma^{\alpha\beta}_{\ \alpha} \partial_\delta \partial_\chi h^{\chi\delta} - \tfrac{1}{2} c_1 \partial_\beta \partial_\alpha h^{\alpha\beta} \partial_\delta \partial_\chi h^{\chi\delta} + \\$
$c_1 \partial_\beta \partial^\beta h^\alpha_{\ \alpha} \partial_\delta \partial_\chi h^{\chi\delta} + \tfrac{37}{4} c_1 \partial_\chi \Gamma^{\alpha\beta\chi} \partial_\delta \partial^\delta h_{\alpha\beta} + \tfrac{17}{8} c_1 \partial_\chi \partial^\chi h^{\alpha\beta} \partial_\delta \partial^\delta h_{\alpha\beta} +$
$\frac{3}{4}c_1\partial_{\beta}\Gamma^{\alpha\beta\chi}\partial_{\delta}\partial^{\delta}h_{\alpha\chi} + \frac{1}{4}c_1\partial_{\alpha}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial^{\delta}h_{\beta\chi} - \frac{3}{4}c_1\partial^{\chi}\Gamma^{\alpha}_{\ \alpha}{}^{\beta}\partial_{\delta}\partial^{\delta}h_{\beta\chi} -$
$\frac{37}{4} c_1 \partial^{\chi} \Gamma^{\alpha\beta}{}_{\alpha} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - \frac{73}{8} c_1 \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h_{\beta\chi} + \frac{17}{4} c_1 \partial^{\chi} \partial^{\beta} h^{\alpha}{}_{\alpha} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - \frac{11}{4} c_1 \partial^{\chi} \partial^{\beta} h^{\alpha}{}_{\alpha} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - \frac{11}{4} c_1 \partial^{\chi} \partial^{\beta} h^{\alpha}{}_{\alpha} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - \frac{11}{4} c_1 \partial^{\chi} \partial^{\beta} h^{\alpha}{}_{\alpha} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - \frac{11}{4} c_1 \partial^{\chi} \partial^{\beta} h^{\alpha}{}_{\alpha} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - \frac{11}{4} c_1 \partial^{\chi} \partial^{\beta} h^{\alpha}{}_{\alpha} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - \frac{11}{4} c_1 \partial^{\chi} \partial^{\beta} h^{\alpha}{}_{\alpha} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - \frac{11}{4} c_1 \partial^{\chi} \partial^{\beta} h^{\alpha}{}_{\alpha} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - \frac{11}{4} c_1 \partial^{\chi} \partial^{\beta} h^{\alpha}{}_{\alpha} \partial^{\delta} \partial^{\delta} h_{\beta\chi} - \frac{11}{4} c_1 \partial^{\chi} \partial^{\beta} h^{\alpha}{}_{\alpha} \partial^{\delta} \partial^{\delta} h_{\beta\chi} - \frac{11}{4} c_1 \partial^{\chi} \partial^{\beta} h^{\alpha}{}_{\alpha} \partial^{\delta} \partial^{\delta} h_{\beta\chi} - \frac{11}{4} c_1 \partial^{\chi} \partial^{\beta} h^{\alpha}{}_{\alpha} \partial^{\delta} \partial^{\delta} h_{\beta\chi} - \frac{11}{4} c_1 \partial^{\chi} \partial^{\beta} h^{\alpha}{}_{\alpha} \partial^{\delta} \partial^{\delta} h_{\beta\chi} - \frac{11}{4} c_1 \partial^{\chi} \partial^{\beta} h^{\alpha}{}_{\alpha} \partial^{\delta} \partial^{\delta} h_{\beta\chi} - \frac{11}{4} c_1 \partial^{\chi} \partial^{\beta} h^{\alpha}{}_{\alpha} \partial^{\delta} \partial^{\delta} h_{\beta\chi} - \frac{11}{4} c_1 \partial^{\chi} \partial^{\beta} h^{\alpha}{}_{\alpha} \partial^{\delta} \partial^{\delta} h_{\beta\chi} - \frac{11}{4} c_1 \partial^{\chi} \partial^{\delta} h^{\alpha}{}_{\alpha} \partial^{\delta} \partial^{\delta} h_{\beta\chi} - \frac{11}{4} c_1 \partial^{\chi} \partial^{\delta} h^{\alpha}{}_{\alpha} \partial^{\delta} \partial^{\delta} h_{\beta\chi} - \frac{11}{4} c_1 \partial^{\chi} \partial^{\delta} h^{\alpha}{}_{\alpha} \partial^{\delta} \partial^{\delta} h_{\beta\chi} - \frac{11}{4} c_1 \partial^{\chi} \partial^{\delta} h^{\alpha}{}_{\alpha} \partial^{\delta} \partial^{\delta} \partial^{\delta} \partial^{\delta} h^{\alpha}{}_{\alpha} \partial^{\delta} \partial^{\delta} \partial^{\delta} h^{\alpha}{}_{\alpha} \partial^{\delta} \partial^{\delta} \partial^{\delta} h^{\alpha}{}_{\alpha} \partial^{\delta} \partial$
$c_1 \partial_\beta \Gamma^\alpha_{\ \alpha}{}^\beta \partial_\delta \partial^\delta h^\chi_{\ \chi} + c_1 \partial_\beta \Gamma^{\alpha\beta}_{\ \alpha} \partial_\delta \partial^\delta h^\chi_{\ \chi} - \frac{1}{2} c_1 \partial_\beta \partial^\beta h^\alpha_{\ \alpha} \partial_\delta \partial^\delta h^\chi_{\ \chi} +$
$\frac{1}{2} c_1 \partial_{\alpha} \Gamma_{\beta \chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} + c_1 \partial_{\alpha} \Gamma_{\beta \delta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} + c_1 \partial_{\alpha} \Gamma_{\chi \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} +$
$\frac{1}{2} c_1 \partial_{\alpha} \Gamma_{\chi \delta \beta} \partial^{\delta} \Gamma^{\alpha \beta \chi} + c_1 \partial_{\alpha} \Gamma_{\delta \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} + c_1 \partial_{\alpha} \Gamma_{\delta \chi \beta} \partial^{\delta} \Gamma^{\alpha \beta \chi} -$
$\frac{1}{2} c_1 \partial_{\beta} \Gamma_{\alpha \chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\alpha \delta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha \delta \chi} \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma^$
$\frac{3}{2} c_1 \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\chi} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\chi} \Gamma_{\beta \alpha \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} +$
$c_1 \partial_{\chi} \Gamma_{\beta \delta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} + \frac{3}{2} c_1 \partial_{\chi} \partial_{\alpha} h_{\beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \gamma \lambda} \partial^{\delta} \Gamma^{\alpha$
$c_1 \partial_{\delta} \Gamma_{\alpha \chi \beta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \alpha \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\alpha \chi \alpha} \partial^{\delta} \Gamma^{\alpha \lambda \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\alpha \chi \alpha} \partial^{\delta} \Gamma^{\alpha \lambda \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\alpha \chi \alpha} \partial^{\delta} \Gamma^{\alpha \lambda \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\alpha \chi \alpha} \partial^{\delta} \Gamma^{\alpha \lambda \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\alpha \chi \alpha} \partial^{\delta} \Gamma^{\alpha \lambda \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\alpha \chi \alpha} \partial^{\delta} \Gamma^{\alpha \lambda \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\alpha \chi \alpha} \partial^{\delta} \Gamma^{\alpha \lambda \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\alpha \chi \alpha} \partial^{\delta} \Gamma^{\alpha \lambda \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\alpha \chi \alpha} \partial^{\delta} \Gamma^{\alpha \lambda \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\alpha \chi \alpha} \partial^{\delta} \Gamma^{\alpha \lambda \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\alpha \chi \alpha} \partial^{\delta} \Gamma^{\alpha \lambda \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\alpha \chi \alpha} \partial^{\delta} \Gamma^{\alpha \lambda \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma^{\alpha \lambda \chi} \partial^{\delta} \Gamma^{\alpha \lambda \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma^{\alpha \lambda \chi} \partial^{\delta} \Gamma^{\alpha \lambda \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma^{\alpha \lambda \chi} \partial^{\delta} \Gamma^{\alpha \lambda \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma^{\alpha \lambda \chi} \partial^{\delta} \Gamma^{\alpha \lambda$
$\frac{1}{2}c_1\partial_{\delta}\Gamma_{\chi\beta\alpha}\partial^{\delta}\Gamma^{\alpha\beta\chi} + \frac{3}{2}c_1\partial_{\delta}\partial_{\beta}h_{\alpha\chi}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{3}{2}c_1\partial_{\delta}\partial_{\chi}h_{\alpha\beta}\partial^{\delta}\Gamma^{\alpha\beta\chi} -$
$\frac{11}{2}c_1\partial_{\beta}\Gamma_{\delta\alpha}^{\beta}\partial^{\delta}\Gamma^{\alpha\chi}_{\chi} - \frac{1}{2}c_1\partial^{\alpha}\Gamma_{\delta\alpha}^{\beta}\partial^{\delta}\Gamma_{\beta}^{\chi}_{\chi} + \frac{1}{2}c_1\partial_{\beta}\Gamma_{\delta\alpha}^{\beta}\partial^{\delta}\Gamma^{\chi\alpha}_{\chi} -$
$\frac{\frac{3}{4}c_1\partial_{\beta}\partial_{\alpha}h_{\chi\delta}\partial^{\delta}\partial^{\chi}h^{\alpha\beta} + \frac{3}{2}c_1\partial_{\chi}\partial_{\beta}h_{\alpha\delta}\partial^{\delta}\partial^{\chi}h^{\alpha\beta} - \frac{3}{4}c_1\partial_{\delta}\partial_{\chi}h_{\alpha\beta}\partial^{\delta}\partial^{\chi}h^{\alpha\beta}}{\alpha\beta}$
Added source term: $h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi} \Delta_{\alpha\beta\chi}$

					$\frac{(k^2)}{a_0^2 - 33 a_0 c_1 k^2}$	$\frac{a_{0-28c_1}k^2}{a_{0}}$ - $\frac{a_{0-28c_1}k^2}{6a_0^2-198a_0c_1k^2}$	$-\frac{\sqrt{5}}{6(a_0-33c_1k^2)}$	$\frac{c_1^2 k^4}{3 \sqrt{2} a_0 (a_0 - 33c_1 k^2)}$	$\frac{5}{3(a_0-33c_1k^2)}$	
$\Delta_{1}^{\#5}{}_{\alpha}$	0	0	0	0	$\frac{10c_1 k^2 (-11a_0 + 118c_1 k^2)}{\sqrt{3} a_0^2 (a_0 - 33c_1 k^2)}$	$-\frac{a_0^2 - 118 a_0 c_1 k^2 + 2560 c_1^2 k^4}{6 \sqrt{2} a_0^2 (a_0 - 33 c_1 k^2)}$	$-\frac{\sqrt{\frac{5}{2}} (a_0-82c_1 k^2)}{6 a_0 (a_0-33c_1 k^2)}$	$\frac{17a_0^2 - 236a_0c_1 k^2 + 1280c_1^2 k^4}{6a_0^2 (a_0 - 33c_1 k^2)}$	$-\frac{7(a_0+2c_1k^2)}{3\sqrt{2}a_0(a_0-33c_1k^2)}$	0
$\Delta_{1^{-}\alpha}^{\#4}$	0	0	0	0	$-\frac{5\sqrt{\frac{10}{3}}c_1k^2}{a_0^2-33a_0c_1k^2}$	$\frac{\sqrt{5} (5a_0 - 164c_1 k^2)}{12a_0 (a_0 - 33c_1 k^2)}$	$\frac{1}{12 a_0 - 396 c_1 k^2}$	$-\frac{\sqrt{\frac{5}{2}} (a_0-82c_1 k^2)}{6a_0 (a_0-33c_1 k^2)}$	$-\frac{\sqrt{5}}{6(a_0-33c_1k^2)}$	0
$\Delta_{1^{-}\alpha}^{\#3}$	0	0	0	0	$\frac{5\sqrt{\frac{2}{3}}c_1k^2(7a_0-236c_1k^2)}{a_0^2(a_0-33c_1k^2)}$	$\frac{-19a_0^2 + 472a_0c_1k^2 + 5120c_1^2k^4}{12a_0^2(a_0 - 33c_1k^2)}$	$\frac{\sqrt{5} (5a_0 - 164c_1 k^2)}{12a_0 (a_0 - 33c_1 k^2)}$	$-\frac{a_0^2 - 118 a_0 c_1 k^2 + 2560 c_1^2 k^4}{6 \sqrt{2} a_0^2 (a_0 - 33 c_1 k^2)}$	$-\frac{a_0-28c_1k^2}{6a_0^2-198a_0c_1k^2}$	0
$\Delta_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{2\sqrt{2}}{a_0}$	$\frac{2(a_0^2 - 30a_0c_1 k^2 + 401c_1^2 k^4)}{a_0^2 (a_0 - 33c_1 k^2)}$	$\frac{5\sqrt{\frac{2}{3}}c_1k^2(7a_0-236c_1k^2)}{a_0^2(a_0-33c_1k^2)}$	$-\frac{5\sqrt{\frac{10}{3}}c_1k^2}{a_0^2-33a_0c_1k^2}$	$\frac{10c_1 k^2 (-11a_0 + 118c_1 k^2)}{\sqrt{3} a_0^2 (a_0 - 33c_1 k^2)}$	$\frac{50 \sqrt{\frac{2}{3}} c_1 k^2}{a_0^2 - 33 a_0 c_1 k^2}$	0
$\Delta_{1^{^{-}}\alpha}^{\#1}$	0	0	0	0	$\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0
$\Delta_{1}^{\#3}_{+\alpha\beta}$	0	$\frac{40\sqrt{2}c_1k^2}{a_0^2-29a_0c_1k^2}$	$\frac{4}{a_0-29c_1k^2}$	0	0	0	0	0	0	0
$\Delta_{1}^{\#2}_{\alpha\beta}$	$-\frac{2\sqrt{2}}{a_0}$	$\frac{2(a_0^2-14a_0c_1k^2-35c_1^2k^4)}{a_0^2(a_0-29c_1k^2)}$	$\frac{40 \sqrt{2} c_1 k^2}{a_0^2 - 29 a_0 c_1 k^2}$	0	0	0	0	0	0	0
$\Delta_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0	0	0	0
	$\Delta_{1}^{\#1} + \alpha \beta$	$\Delta_1^{\#_2} + \alpha \beta$	$\Delta_1^{\#3} + ^{lphaeta}$	$\Delta_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\Delta_{1}^{\#2} +^{\alpha}$	$\Delta_1^{\#3} +^{lpha}$	$\Delta_{1^{-}}^{\#4} +^{\alpha}$	$\Delta_1^{\#5} +^{\alpha}$	$\Delta_{1}^{\#6} +^{\alpha}$	$\mathcal{T}_{1}^{\#_{1}} \dagger^{\alpha}$

$h_{1}^{\#1}$	0	0	0	0	0	0	0	0	0	0
$\lceil r_1^{\#6} \rceil_{\alpha}$	0	0	0	$-\frac{5c_1k^2}{\sqrt{3}}$	0	$\frac{1}{6} (-a_0 + 20 c_1 k^2)$	$-\frac{1}{6}\sqrt{5}(a_0-5c_1k^2)$	$\frac{a_0 + 40c_1 k^2}{6 \sqrt{2}}$	$\frac{5}{12} (a_0 - 17 c_1 k^2)$	0
$\Gamma_1^{\#5}$	0	0	0	$5\sqrt{\frac{3}{2}}c_1k^2$	0	$-\frac{a_0}{6\sqrt{2}}$	$-\frac{1}{6} \sqrt{\frac{5}{2}} (a_0 + 16c_1 k^2) \left -\frac{1}{6} \sqrt{5} (a_0 - 5c_1 k^2) \right $	3 <u>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</u>	$\frac{a_0+40c_1k^2}{6\sqrt{2}}$	0
$\Gamma_{1}^{\#4}$	0	0	0	$-\frac{5}{2}\sqrt{\frac{5}{3}}c_1k^2$	0	$\frac{1}{6} \sqrt{5} (a_0 - 8 c_1 k^2)$	$\frac{1}{3}(a_0 + 7c_1 k^2)$	$-\frac{1}{6}\sqrt{\frac{5}{2}}(a_0+16c_1k^2)$	$-\frac{1}{6}\sqrt{5}(a_0-5c_1k^2)$	0
$\Gamma_{1}^{#3}$	0	0	0	$\frac{5}{2}\sqrt{3}c_1k^2$	0	- 3 - 3	$\frac{1}{6} \sqrt{5} (a_0 - 8c_1 k^2)$	$-\frac{a_0}{6\sqrt{2}}$	$\frac{1}{6} \left(-a_0 + 20 c_1 k^2 \right)$	0
$\Gamma_{1}^{\#2}$	0	0	0	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0
$\Gamma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{4} (-a_0 - 3c_1 k^2)$	$\frac{a_0}{2\sqrt{2}}$	$\frac{5}{2} \sqrt{3} c_1 k^2$	$-\frac{5}{2}\sqrt{\frac{5}{3}}c_1k^2$	$5\sqrt{\frac{3}{2}}c_1k^2$	$-\frac{5c_1k^2}{\sqrt{3}}$	0
$\Gamma_{1}^{\#3}$	$5c_1k^2$	0	$\frac{1}{4} (a_0 - 29 c_1 k^2)$	0	0	0	0	0	0	0
$\Gamma_1^{\#2}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0	0
$\Gamma_{1}^{\#1}_{\alpha\beta}$	$\frac{1}{4} (-a_0 - 15 c_1 k^2)$	$-\frac{a_0}{2\sqrt{2}}$	$5c_1k^2$	0	0	0	0	0	0	0
	$\Gamma_1^{#1} + \alpha \beta$	$\Gamma_1^{\#_2} + \alpha \beta$	$\Gamma_1^{#3} + \alpha \beta$	$\Gamma_{1}^{#1} + ^{\alpha}$	$\Gamma_1^{\#2} + \alpha$	$\Gamma_1^{\#3} + ^{\alpha}$	$\Gamma_1^{\#4} + ^{\alpha}$	$\Gamma_1^{\#5} +^{\alpha}$	$\Gamma_1^{\#6} +^{\alpha}$	$h_1^{#1} + \alpha$

	Massive partic	cle	
? $J^P = 2^{-/}$	Pole residue:	$\frac{4}{c_1} > 0$	
2	Polarisations:	5	
k^{μ}	Square mass:	$\frac{a_0}{c_1} > 0$	
. ,	Spin:	2	
·	Parity:	Odd	
2			
? k^{μ}	Quadratic pole		
	Pole residue:	$-\frac{1}{a_0} > 0$	
?	Polarisations:	2	

Unitarity conditions
(Unitarity is demonstrably impossible)

$\Delta_{2^{\text{-}}}^{\#1}\alpha\beta\chi$	0	0	0	0	$\frac{4}{a_0 \cdot c_1 k^2}$	0	
${\cal T}_{2}^{\#1}_{\alpha\beta}$	$-\frac{44 i \sqrt{2} c_1 k}{a_0^2}$	$-\frac{80ic_1k}{\sqrt{3}a_0^2}$	$-\frac{80 i \sqrt{\frac{2}{3}} c_1 k}{a_0^2}$	$-\frac{8(a_0+11c_1k^2)}{a_0^2k^2}$	0	0	
$\Delta_2^{\#3}$	$-\frac{80c_1 k^2}{\sqrt{3} a_0^2}$	$-\frac{2\sqrt{2}c_1k^2}{3a_0^2}$	$\frac{4(3a_0 - c_1 k^2)}{3a_0^2}$	$\frac{80 i \sqrt{\frac{2}{3}} c_1 k}{a_0^2}$	0	0	
$\Delta_2^{\#_2^2}$	$-\frac{40\sqrt{\frac{2}{3}}c_1k^2}{a_0^2}$	$-\frac{2(3a_0+c_1k^2)}{3a_0^2}$	$-\frac{2\sqrt{2}c_1k^2}{3a_0^2}$	$\frac{80ic_1k}{\sqrt{3}a_0^2}$	0	0	
$\Delta_{2}^{\#1}{}_{\alpha\beta}$	$\frac{4(a_0-11c_1k^2)}{a_0^2}$	$-\frac{40 \sqrt{\frac{2}{3}} c_1 k^2}{a_0^2}$	$-\frac{80c_1k^2}{\sqrt{3}a_0^2}$	$\frac{44 i \sqrt{2} c_1 k}{a_0^2}$	0	0	
	$\Delta_{2}^{#1} + \alpha \beta$	$\Delta_{2+}^{#2} +^{\alpha\beta}$	$\Delta_{2}^{#3} + ^{lphaeta}$	${\mathcal T}_{2}^{\#1} +^{lphaeta}$	$\Delta_{2}^{#1} +^{lphaeta\chi}$	$\Delta_{2}^{#2} + ^{\alpha \beta \chi}$	

 $\Gamma_{0+}^{\#1} + \left| \frac{1}{2} \left(-a_0 + 25 c_1 k^2 \right) \right| \quad 0 \quad \left| 10 \sqrt{\frac{2}{3}} c_1 k^2 \right|$

 $10 \sqrt{\frac{2}{3}} c_1 k^2$

 $\frac{25 i c_1 k^3}{2 \sqrt{2}}$

 $h_{0}^{\#2}$ †

0

 $-\frac{a_0}{2\sqrt{2}}$

0

0

0

 $-\frac{3a_0+46c_1k^2}{6\sqrt{2}}$

0

0

0

0

0

0

 $-\frac{10\,c_1\,k^2}{\sqrt{3}}$

 $-\frac{a_0}{2\sqrt{2}}$

 $-\frac{3a_0+46c_1k^2}{}$

6 √2

 $(3a_0 + 23c_1k^2)$

 $-5\,i\,\sqrt{\tfrac{2}{3}}\,c_1\,k^3$

0

0

 $-\frac{25 i c_1 k^3}{2 \sqrt{2}}$

 $-\frac{10\,i\,c_1\,k^3}{\sqrt{3}}$

 $5 i \sqrt{\frac{2}{3}} c_1 k^3$

 $\frac{1}{4}k^2(a_0+25c_1k^2)$

0

0

0

0

0

 $0 \frac{1}{2} (-a_0 + c_1 k^2)$

$\Gamma_{2}^{\#2}$	0	0	0	0	0	$\frac{1}{4}(a_0 - 5)$
$\Gamma_{2}^{\#1}$ $_{\alpha eta \chi}$	0	0	0	0	$\frac{1}{4} (a_0 - c_1 k^2)$	0
$h_{2}^{\#1}_{\alpha\beta}$	$-\frac{11ic_1k^3}{4\sqrt{2}}$	$\frac{5ic_1k^3}{\sqrt{3}}$	$-\frac{5ic_1k^3}{\sqrt{6}}$	$-\frac{1}{8}k^{2}(a_{0}-11c_{1}k^{2})$	0	0
$\Gamma_{2}^{\#3}$	5 _{C1 k} 2 √3	$-\frac{c_1 k^2}{6 \sqrt{2}}$	$\frac{1}{12} (3 a_0 + c_1 k^2)$	<u>5ic1 k³</u> √6	0	0
$\Gamma_{2}^{\#2}$	$-5\sqrt{\frac{2}{3}}c_1k^2$	$\frac{1}{6} \left(-3 a_0 + c_1 k^2 \right)$	$-\frac{c_1 k^2}{6 \sqrt{2}}$	$-\frac{5ic_1k^3}{\sqrt{3}}$	0	0
$\Gamma_{2}^{\#1}_{\alpha\beta}$	$\Gamma_{2+}^{\#1} + ^{\alpha\beta} \frac{1}{4} (a_0 + 11c_1 k^2)$	$-5\sqrt{\frac{2}{3}}c_1k^2$	$\frac{5c_1k^2}{\sqrt{3}}$	$\frac{11ic_1k^3}{4\sqrt{2}}$	0	0
·	$\Gamma_{2}^{#1} + \alpha \beta$	$\Gamma_2^{#2} + \alpha \beta$	$\Gamma_{2}^{#3} + \alpha \beta$	$h_2^{#1} + \alpha \beta$	$\Gamma_{2}^{#1} + \alpha \beta \chi$	$\Gamma_2^{#2} + \alpha \beta \chi$
- #1						
Γ ₀ ^{#1}						
0						