

Lenguajes de programación - Clase 2 *Arreglos*

Los arreglos son una estructura de datos de longitud finita, en el cual se almacenan elementos (de un mismo tipo de dato) de forma consecutiva en memoria.

Unidimensionales

Multidimensionales

Arreglos en C

Para declarar un arreglo en C debemos realizar lo siguiente:

Arreglos en C

Ejemplos:

```
int mi_arreglo_mult [33][8];
char mi string [10];
mi string='c';
int mi arreglo[] = \{0,1,1,2,3,5,8,13\};
int mi_arreglo[2][4] = \{\{0,1,1,2\},\{3,5,8,13\}\};
int mi arreglo[2][4] = \{\{0,1,1,2\},
                        {3,5,8,13}};
```


Recorrer un arreglo en C

```
#include <stdio.h>
int main(){
      int mi_arreglo[] = \{0,1,1,2,3,5,8,13\};
      int i;
      int tamanio_arreglo = (sizeof(mi_arreglo) / sizeof(mi_arreglo[0]));
      for (i = 0; i < tamanio_arreglo; i++)</pre>
             printf("mi_arreglo[%i] = %i \n ", i, mi_arreglo[i]);
      return 0;
```


Recorrer un arreglo bidimensional

```
#include <stdio.h>
                                                          arreglo en la posicion[0][0]=0
                                                          arreglo en la posicion[0
                                                          arreglo en la posicion[0
int main(){
                                                          arreglo en la posicion
                                                                lo en la posicion
                                                                  en la posicion
     int mi_arreglo[2][4] = {{0,1,1,2},{3,5,8,13}};
                                                          arreglo en la posicion[1]
                                                          arreglo en la posicion[1]
     int i,j;
     for (i = 0; i < 2; i++)
          for (j = 0; j < 4; j++)
                printf("arreglo en la posición[%i][%i]=%i \n",i,j,mi_arreglo[i][j]);
```


Arreglos y funciones (ejemplo)

```
#include <stdio.h>
#include <time.h>
void mostrar(int arreglo∏,int n);
int* generar(int n);
int main(){
       int n=5;
       int i,random;
       int* arreglo = generar(n);
       mostrar(arreglo,n);
       /*for (i = 0; i < n; i++)
              printf("%d \n",*arreglo++);
       //generar(n);
       return 0;
```

```
int* generar(int n){
       static int arreglo[100];
       int i, random;
       srand (time(NULL));
       for (i = 0; i < n; i++)
              random = rand() \% 33;
              arreglo[i]=random;
       return arreglo;
void mostrar(int arreglo[], int n ){
                                       (program exited with code: 0)
       int i:
                                      Presione una tecla para continuar . . .
       for (i = 0; i < n; i++)
              printf("%d \n",arreglo[i]);
```


Arreglo de caracteres

```
char mi_cadena[] = "Hola";
char mi_cadena[] = {'H','o','l','a',0};
char mi_cadena[] = {'H','o','l','a','\0'};
char mi_cadena[5] = "Hola";
char mi_cadena[5] = {'H','o','l','a',0};
char mi_cadena[5] = {'H','o','l','a','\0'};
```

*Los arreglos de caracteres siempre terminan con el carácter especial '\0' **Debido a este carácter, cuando declaramos nuestro arreglo debemos considerarlo en el tamaño de éste (es decir el tamaño debe ser n+1).

Arreglos de caracteres (ejemplo)

```
#include <stdio.h>
int main(){
       char mi_string[]="Hola !!";
       int n = (sizeof(mi_string)/sizeof(mi_string[0]));
       printf("Las letras de mi cadena son: \n");
       for (int i = 0; i < n; i++)
               printf("%c \n", mi_string[i]);
       printf("=======\n"):
       printf("y \n\n");
       printf("Mi cadena en ascii es: \n");
       for (int i = 0; i < n; i++)
               printf("%i \n", mi_string[i]);
       return 0;
```

```
letras de mi cadena son:
Mi cadena en ascii es:
(program exited with code: 0)
resione una tecla para continuar . . .
```


Ejercicio 2:

Resta de arreglos

Instrucciones:

- 1. Genere un arreglo de caracteres con la cadena que desee.
- Genere un arreglo de enteros cuyo largo debe ser el mismo que el de su arreglo de caracteres.
- 3. El arreglo de enteros debe ser llenado con los números fibonacci desde 0 hasta el largo de su arreglo.
- 4. Puede implementar la función Fibonacci de forma recursiva o iterativa.
- 5. Muestre por pantalla el código ASCII correspondiente a su cadena de caracteres.
- 6. Muestre por pantalla la secuencia Fibonacci obtenida.
- 7. Realice la resta entre el ASCII de su cadena de caracteres y la secuencia Fibonacci.
- 8. Muestre los números resultantes por pantalla.

No olvidar!

