

Profesor: Pedro Montero Ayudante: Sebastián Fuentes

Ayudantía 11 Estructuras Algebraicas

6 de junio de 2023

Problema 1. Sea $\varphi^{\bullet}: M^{\bullet} \to N^{\bullet}$ morfismo de complejos de A-módulos.

- 1. Demuestre que φ^{\bullet} induce morfismos entre los grupos de cohomología $H^{i}(\varphi^{\bullet}): H^{i}(M^{\bullet}) \to H^{i}(N^{\bullet})$ para todo $i \in \mathbb{Z}$.
- 2. Pruebe que las colecciones $\ker(\varphi^{\bullet}) := \{(\ker(\varphi^i), d_M^i)\}, \operatorname{Im}(\varphi^{\bullet}) := \{(\operatorname{Im}(\varphi^i), d_N^i)\}$ son complejos.
- 3. Considere un segundo morfismo de complejos $\psi^{\bullet}: M^{\bullet} \to N^{\bullet}$ y denotemos los morfismos d_M^i, d_N^i simplemente por d^i . Decimos que φ^{\bullet} , ψ^{\bullet} son morfismos homotópicos si para todo $n \in \mathbb{Z}$ existe un morfismo de A-módulos $s_n:M^{i+1}\to N^i$ de tal modo que:

$$\varphi^i - \psi^i = d^i s^{i-1} + s^i d^{i+1}$$

Demuestre que si $\varphi^{\bullet}, \psi^{\bullet}$ son homotópicos entonces inducen el mismo morfismo entre grupos de cohomología.

Problema 2. (Five Lemma) Considere el siguiente diagrama conmutativo de A-módulos:

Suponga que las filas del diagrama anterior son exactas.

- 1. Muestre que si β , δ son invectivos y α sobrevectivo entonces γ es invectivo.
- 2. Demuestre que si β , δ son sobrevectivos y ε invectivo entonces γ es sobrevectivo.

En particular si β , δ son isomorfismos, α es sobreyectivo y ε invectivo, entonces γ es isomorfismo.

Definición. Sea A anillo y M un A-módulo. Decimos que M es finitamente presentado, o de presentación finita, si es que existe una sucesión exacta $A^m \to A^n \to M \to 0$ para ciertos $m, n \in \mathbb{N}^{\geq 1}$. Nos referimos a la sucesión anterior como presentación.

Problema 3. Sea A anillo, M un A-módulo finitamente presentado y $0 \to M_1 \stackrel{\alpha}{\to} M_2 \stackrel{\beta}{\to} M \to 0$ una sucesión exacta de A-módulos. El objetivo es demostrar que si M_2 es un A-módulo finitamente generado, entonces M_1 es también finitamente generado.

- 1. Sea $A^m \stackrel{\psi}{\to} A^n \stackrel{\varphi}{\to} M \to 0$ una presentación de M y e_1, \dots, e_n una base de A^n . Muestre que existen $b_1, \dots, b_n \in$ M_2 de modo que $\beta(b_i) = \varphi(e_i)$ para $i = 1, \ldots, n$.
- 2. Si f es el morfismo de A^n a M_2 definido por $f(e_i) = b_i$ para i = 1, ..., n, muestre que $f(\psi(A^m)) \subseteq \ker \beta$. Construya un diagrama conmutativo de A-módulos con filas exactas de la siguiente forma:

$$A^{m} \xrightarrow{\psi} A^{n} \xrightarrow{\varphi} M \xrightarrow{} 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

3. Demuestre que $\operatorname{coker}(g) \cong \operatorname{coker}(f)$ y concluya que M_1 es finitamente generado. Indicación: Utilice el lema de la serpiente