BT2101 Tutorial 6 Clustering

• K-means (e.g., k=3)

x	y
6.8	12.6
0.8	9.8
1.2	11.6
2.8	9.6
3.8	9.9
4.4	6.5
4.8	1.1
6.0	19.9
6.2	18.5
7.6	17.4
7.8	12.2
6.6	7.7
8.2	4.5
8.4	6.9
9.0	3.4
9.6	11.1

	Initial	
	x	y
Centroid 1	3.8	9.9
Centroid 2	7.8	12.2
Centroid 3	6.2	18.5

)

0	5	10	15	20
20 -		•}	Ima	ginary
15 -	``	'		
10 - (() () () () () () () () () ()	© >2		
5 -		•) 1		
0	``\`\\ <u>\</u>			

10

5

15

20

	Initial		Initial After first iteration		t iteration
	x	y	x	y	
Centroid 1	3.8	9.9	4.6	7.1	
Centroid 2	7.8	12.2	8.2	10.7	
Centroid 3	6.2	18.5	6.6	18.6	

Iteration 2 n

Repeat...until the centroids no longer move

	Initial		After first iteration		After second iteration	
	x	y	\boldsymbol{x}	y	x	y
Centroid 1	3.8	9.9	4.6	7.1	5.0	7.1
Centroid 2	7.8	12.2	8.2	10.7	8.1	12.0
Centroid 3	6.2	18.5	6.6	18.6	6.6	18.6

• Agglomerative Hierarchical Clustering (Bottom-Up Approach)

	\boldsymbol{a}	\boldsymbol{b}	c	d	e	f
\boldsymbol{a}	0	12	6	3	25	4
\boldsymbol{b}	12	0	19	8	14	15
c	6	19	0	12	5	18
d	3	8	12	0	11	9
e	25	14	5	11	0	7
\overline{f}	4	15	18	9	7	0

	ad	\boldsymbol{b}	c	e	f
ad	0	8	6	11	4
b	8	0	19	14	15
c	6	19	0	5	18
e	11	14	5	0	7
f	4	15	18	7	0

	adf	\boldsymbol{b}	c	e
adf	0	8	6	7
b	8	0	19	14
c	6	19	0	5
e	7	14	5	0

	adf	b	ce
adf	0	8	6
b	8	0	14
ce	6	14	0

	adfce	b
adfce	0	8
b	8	0

Distance matrix

Distance Matrix

- 1. Single-link (min. distance)
- 2. Complete-link (max. distance)
- 3. Average-link (avg. distance)
- 4. Wald's ($\Delta\Sigma$ distance b/a join)

Complete link : max d(c1, c2)

Average link : average of every distance between c1 and c2

Dendrogram

Single link: min d(c1, c2)

- Divisive Hierarchical Clustering (Top-Down Approach)
 - K-means in each single cluster when k=2

• Agglomerative Hierarchical Clustering & Divisive Hierarchical Clustering

Evaluation:

- Compactness (e.g., within-groups/clusters sum of squares)
- Seperation (e.g., group-average euclidean distance between cluster centroids)

Compact and separate clusters

Clustering Evaluation: Alternative Metrics

- Silhouette index
- Davies-Bouldin
- Calinski-Harabasz
- Dunn index
- R-squared index
- Hubert-Levin (C-index)
- Krzanowski-Lai index
- Hartigan index

- Root-mean-square standard deviation (RMSSTD) index
- Semi-partial R-squared (SPR) index
- Distance between two clusters (CD) index
- weighted inter-intra index
- Homogeneity index
- Separation index

Data Standardization

- When do we need **Data Standardization/Scaling?**
 - Balancing the dimensions
 - Easy to calculate distance

Example: Person=(age, marathon distance)

A. (22, 10000m)

B. (22, 20000m)

C. (80, 5000m)

Question: Based on your reasonable intuition, who is more similar to A? B or C?

Data Standardization

• Decimal scaling $x'_{ij} = \frac{x_{ij}}{10^h}$,

• Min-max
$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

• z-index

$$x'_{ij} = \frac{x_{ij} - \bar{\mu}_j}{\bar{\sigma}_j},$$

How to choose k?

Choose k based on the how results will be used

- e.g., "How many market segments do we want?"

Also experiment with slightly different k's

- Initial partition into clusters can be random, or based on domain knowledge
- If random partition, repeat the process with different random partitions

Elbow Method

- (Average) Within-groups/clusters sum of squares (WSS)

The within-groups/clusters sum of squares (WSS):

$$WSS(k) = \sum_{i=1}^{n} \sum_{j=0}^{p} (x_{ij} - mean(x_{kj}))^{2}$$

where, k is the cluster, x_{ij} is the value of the j^{th} variable for the i^{th} observation, and $mean(x_{kj})$ is the mean of the j^{th} variable for the k^{th} cluster.

How to choose k?

Elbow method

- Gauge how the heterogeneity within clusters changes for various of k.
- The heterogeneity within clusters is expected to decreases with more clusters.
- The heterogeneity is measured by withinclusters/groups sum of squares (WSS)
- Is this a measure of compactness or separation?

Thank you!