Name:		

SEMIFINAL

Math 237 – Linear Algebra

Version 3

Fall 2017

Choose up to 6 problems to work. Work each problem on one of the attached pages; write the standard in the upper left corner. Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write an augmented matrix corresponding to the following system of linear equations.

$$x_1 + 3x_2 - 4x_3 + x_4 = 5$$
$$3x_1 + 9x_2 + x_3 - 7x_4 = 0$$
$$x_1 - x_3 + x_4 = 1$$

E2. Find the reduced row echelon form of the matrix below.

$$\begin{bmatrix} 2 & 1 & -1 & 0 & 5 \\ 3 & -1 & 0 & -2 & 0 \\ -1 & 0 & 5 & 0 & -1 \end{bmatrix}$$

E3. Solve the following linear system.

$$3x + 2y + z = 7$$
$$x + y + z = 1$$
$$-2x + 3z = -11$$

E4. Find a basis for the solution set to the homogeneous system of equations given by

$$3x + 2y + z = 0$$
$$x + y + z = 0$$

V1. Let V be the set of all pairs of real numbers with the operations, for any $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $c \odot (x_1, y_1) = (c^2 x_1, c^3 y_1)$

- (a) Show that scalar multiplication **distributes scalars** over vector addition: $c \odot ((x_1, y_1) \oplus (x_2, y_2)) = c \odot (x_1, y_1) \oplus c \odot (x_2, y_2).$
- (b) Determine if V is a vector space or not. Justify your answer.
- **V2.** Determine if $\begin{bmatrix} 0 \\ -1 \\ 2 \\ 6 \end{bmatrix}$ can be written as a linear combination of the vectors $\begin{bmatrix} 3 \\ -1 \\ -1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 0 \\ 1 \\ 2 \end{bmatrix}$.
- **V3.** Determine if the vectors $\begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}$, $\begin{bmatrix} 3\\3\\6\\3 \end{bmatrix}$, $\begin{bmatrix} 3\\-1\\3\\-2 \end{bmatrix}$, and $\begin{bmatrix} 7\\-1\\8\\-3 \end{bmatrix}$ span \mathbb{R}^4 .

 ${\bf V4.}$ Let W be the set of all polynomials of even degree. Determine if W is a subspace of the vector space of all polynomials.

- **S1.** Determine if the set of vectors $\left\{ \begin{bmatrix} 3\\-1\\0\\4 \end{bmatrix}, \begin{bmatrix} 1\\2\\-2\\1 \end{bmatrix}, \begin{bmatrix} 3\\-8\\6\\5 \end{bmatrix} \right\}$ is linearly dependent or linearly independent.
- **S2.** Determine if the set $\{x^3 3x^2 + 2x + 2, -x^3 + 4x^2 x + 1, -x^3 + 2x + 1, 3x^2 + 3x + 9\}$ is a basis of \mathcal{P}^3 or not.
- **S3.** Let W be the subspace of \mathcal{P}^3 given by $W = \text{span} \left(\left\{ x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 x^2 + 3x 2, 7x^3 x^2 + 8x 3 \right\} \right)$. Find a basis for W.
- **S4.** Let $W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\-1\\3\\-3\end{bmatrix},\begin{bmatrix}2\\0\\1\\1\end{bmatrix},\begin{bmatrix}3\\-1\\4\\-2\end{bmatrix},\begin{bmatrix}1\\1\\1\\-7\end{bmatrix}\right\}\right)$. Compute the dimension of W.
- **A1.** Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \\ 7x \end{bmatrix}.$$

Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R}^4 .

- **A2.** Determine if the map $T: \mathcal{P}^3 \to \mathcal{P}^4$ given by T(f(x)) = xf(x) f(x) is a linear transformation or not.
- **A3.** Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).
- (a) $S: \mathbb{R}^2 \to \mathbb{R}^2$ given by the standard matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.
- (b) $T: \mathbb{R}^4 \to \mathbb{R}^3$ given by the standard matrix $\begin{bmatrix} 2 & 3 & -1 & -2 \\ 0 & 1 & 3 & 1 \\ 2 & 1 & -7 & -4 \end{bmatrix}$
- **A4.** Let $T: \mathcal{P}^3 \to \mathcal{P}^3$ be the linear transformation given by

$$T\left(ax^3 + bx^2 + cx + d\right) = (a + 3b + 3c + 7d)x^3 + (a + 3b - c - d)x^2 + (2a + 6b + 3c + 8d)x + (a + 3b - 2c - 3d)x^2 + (a + 3b + 3c + 7d)x^3 + (a + 3b - c - d)x^2 + (2a + 6b + 3c + 8d)x + (a + 3b - 2c - 3d)x^2 + (a + 3$$

Compute a basis for the kernel and a basis for the image of T.

M1. Let

$$A = \begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & -1 & 3 & -3 \\ 2 & 1 & -1 & 2 \end{bmatrix} \qquad C = \begin{bmatrix} 2 & -1 \\ 0 & 4 \\ 3 & 1 \end{bmatrix}$$

Exactly one of the six products AB, AC, BA, BC, CA, CB can be computed. Determine which one, and compute it.

M2. Determine if the matrix $\begin{bmatrix} 3 & -1 & 0 & 4 \\ 2 & 1 & 1 & 1 \\ 0 & 1 & 1 & -1 \\ 1 & -2 & 0 & 3 \end{bmatrix}$ is invertible.

M3. Find the inverse of the matrix
$$\begin{bmatrix} 2 & -1 & -3 \\ -14 & 9 & 24 \\ 3 & -2 & -5 \end{bmatrix}$$
.

G1. Compute the determinant of the matrix

$$\begin{bmatrix} 1 & 3 & 2 & 4 \\ -2 & 3 & -1 & 1 \\ 5 & 0 & -4 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}.$$

- **G2.** Compute the eigenvalues, along with their algebraic multiplicities, of the matrix $\begin{bmatrix} 8 & -3 & 2 \\ 23 & -9 & 5 \\ -7 & 2 & -3 \end{bmatrix}$.
- **G3.** Compute the eigenspace associated to the eigenvalue 2 in the matrix $\begin{bmatrix} -1 & 1 & 0 \\ -9 & 5 & 0 \\ 15 & -5 & 2 \end{bmatrix}$.
- **G4.** Compute the geometric multiplicity of the eigenvalue -1 in the matrix $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$.

Standard:	

Standard:	