REDE 1 - HUB

Testes de Conectividade:

- Ping para broadcast (10.255.255.255): Primeira tentativa falhou; segunda teve resposta de todos.
- Ping para 10.0.0.2: Sucesso.

Interpretação:

• O Hub replica pacotes para todas as portas, gerando tráfego desnecessário e reduzindo desempenho.

REDE 2 - BRIDGE

Testes de Conectividade:

• Comunicação entre dispositivos de lados diferentes: Sucesso.

Interpretação:

• A Bridge filtra tráfego com base em MACs, reduzindo colisões, mas ainda opera na camada 2.

REDE 3 - SWITCH

Testes de Conectividade:

• Ping entre dispositivos: Sucesso. O Switch aprendeu MACs e encaminhou corretamente.

Interpretação:

• Encaminha pacotes apenas para a porta de destino, melhorando eficiência e reduzindo colisões.

Recurso	HUB	BRIDGE	SWITCH
Camada OSI	Física (1)	Enlace (2)	Enlace (2)
Inteligência	Nenhuma	Média (MACs)	Alta (MACs)
Eficiência	Baixa	Média	Alta
Domínio colisão	Único	Por segmento	Por porta
Broadcast	Total	Parcial	Parcial

3. Diferenças entre Hub, Bridge e Switch na camada 2 do OSI

- Hub: Opera na camada 1 (Física), não possui inteligência para análise de quadros. Replica todos os pacotes para todas as portas, criando um único domínio de colisão e gerando tráfego redundante.
- Bridge: Atua na camada 2 (Enlace), filtra quadros com base em endereços MAC e segmenta a rede em domínios de colisão separados. Reduz colisões, mas tem capacidade limitada de portas.
- Switch: Também opera na camada 2 (Enlace), mas é mais eficiente. Cria domínios de colisão por porta, aprende MACs dinamicamente e encaminha pacotes apenas ao destino correto, minimizando tráfego desnecessário.

4. Relação entre CSMA/CD e CSMA/CA

- CSMA/CD: Usado em redes com fio (ex.: Ethernet).
 - Funcionamento: Dispositivos "ouvem" o meio antes de transmitir. Se houver colisão, ela é detectada, e os dispositivos aguardam um tempo aleatório para retransmitir.
 - Relacionamento com Hubs/Bridges/Switches: Fundamental em redes com Hubs (domínio único de colisão), mas menos crítico com Switches/Bridges (que isolam colisões).
- CSMA/CA: Usado em redes sem fio (ex.: Wi-Fi).
 - Funcionamento: Prioriza a prevenção de colisões. Os dispositivos reservam o canal antes de transmitir e usam backoff aleatório.
 - Diferença-chave: Enquanto o CSMA/CD reage a colisões, o CSMA/CA previne colisões, sendo mais adequado para ambientes sem fio, onde a detecção de colisões é difícil.
- Resumo: Ambos são protocolos de acesso ao meio, mas o CSMA/CD é reativo (focado em detectar colisões) e o CSMA/CA é proativo (focado em evitá-las), refletindo as diferenças entre redes cabeadas e sem fio.