Recursive Methods

Mathematical Methods for Economics (771)

Stellenbosch University

Contents:

Readings

Introduction
Why dynamic programming?

A simple problem and an alternative approach to its solution The canonical problem Recursive methods

A General Version

Readings

- Krusell, Per. (2014). Real Macroeconomic Theory, Chapter 4 "Dynamic Optimization"
- ▶ Judd, Kenneth, L. (1991). "A Review of Recursive Methods in Economic Dynamics by Stockey, N., Lucas Jr., R., and Prescott, E.," Journal of Economic Literature, 29(1), 69–77

Additional:

Namay L. Stockey, Robert E. Lucas Jr., and Edward C. Prescott, 1989. Recursive methods in economic dynamics. Harvard university press (CH 4, 5).

Why Dynamic Programming?

- ☐ Most macro models involve a dynamic optimization problem and a resulting (infinite) sequence of real numbers that solves it.
 - ▶ Dynamic decisions are made recursively (time period by time period) and not once-and-for-all. For example, savings between t and t+1 are decided on at t, and not 0
 - But: the nature/structure of the optimization problem that a decision maker faces does not depend on the period in which they are making their decisions: it is identical (stationary) at every point in time.
 - What changes from period to period are the initial conditions → the values of the variables that have been determined by the past or by "nature".
- ☐ The search for a sequence is sometimes impractical, and not always intuitive. An alternative approach is often available: *dynamic programming*

Why Dynamic Programming?

- ☐ Recursive methods (dynamic programming) is a fundamental tool of dynamic economic analysis:
 - Useful conceptually as well as for analytical and, especially, numerical computation.
 - ► Allows for comparative dynamic exercises, in dynamic models with uncertainty (e.g., a counterfactual policy intervention)
 - Permit the inclusion of the stochastic shocks (i.e., a non-deterministic system).
 - But the reduction of a dynamic model to a recursive model must be done carefully.
- \square We will go over the basics of this approach.
- $\hfill\Box$ The focus will be on concepts, as opposed to mathematical rigor or formal proofs

Recursive methods in economic dynamics

In general, we turn away from looking for a sequence of prices and allocations that satisfy equilibrium conditions, and instead look for a collection of policy functions, independent of time, which express current decisions and prices as functions of the state variables, which in turn are sufficient statistics of the past.

— Judd (1991, p.71)

Preliminaries

- \square We are looking for a function $q(\cdot)$ that does not vary with time: a decision or policy rule ☐ The critical step is defining the state variable variables whose values are already determined in period t (predetermined) ☐ The choice of control variables can matter in how easily we can solve the model. decision variables whose values decision makers explicitly choose in period t with the goal of optimizing their objective function.
- \Box Whatever the choice, there must be enough constraints (market conditions) such that the values of the rest of the relevant variables in period t are determined.

We consider the finite horizon dynamic optimization problem:

$$\max_{\substack{\{k_{t+1}\}_{t=0}^T \\ \text{s.t.}}} \quad \sum_{t=0}^T \beta^t F(k_t, k_{t+1})$$
 (1)

where we want to find the sequence $\{k_{t+1}\}_{t+0}^T$ that maximizes the objective function (1).

Assume $F(k_t,k_{t+1})=u(c_t)$ is a concave utility function, and β is the stationary discount factor. Let k_t be the capital stock at *the beginning of period* t, $y_t=f(k_t)$ a neoclassical production function, and c_t consumption in period t chosen at *the end of the period*.

Then a social planner for this economy will solve the problem

$$\max_{\{c_t\}} \sum_{t=0}^{T} \beta^t u(c_t) \tag{2}$$

where the choice path for c_t is constrained by production possibilities, represented by the law of motion

$$k_{t+1} = \underbrace{y_t - c_t}_{\text{Investment}} = f(k_t) - c_t, \tag{3}$$

where $k_0 > 0$ is the initial endowment of capital.

To make our lives simple we assume:

- the resource constraint (3) is binding;
- $ightharpoonup c_t$ and k_t are nonnegative for all t;
- ▶ $\lim_{c\to 0} u'(c) = \infty$ (i.e., $c_t = 0$ at any t cannot be optimal). So we ignore $c_t \ge 0$, but we still consider the inequality $k_{t+1} \ge 0$ (Krussel, p.44); and,
- $\delta = 1$ implies that the capital stock depreciates 100%.

We now have a consumption-savings decision problem, with the following Lagrangian function:

$$\mathcal{L} = \sum_{t=0}^{T} \beta^{t} [u[f(k_{t}) - k_{t+1}] + \mu k_{t+1}]$$
 (4)

The next step involves taking the derivative w.r.t the decision variable k_{t+1} . The first-order conditions are:

$$\frac{\partial \mathcal{L}}{\partial k_{t+1}} : -\beta^t u'(c_t) + \beta^t \mu_t + \beta^{t+1} u'(c_{t+1}) f'(k_{t+1}) = 0, \quad t = 0, \dots, T - 1$$

$$\frac{\partial \mathcal{L}}{\partial k_{T+1}} : -\beta^T u'(c_T) + \beta^T \mu_T = 0, \quad \text{for period } T$$

Finally, the Kuhn-Tucker conditions include:

$$\mu_t k_{t+1} = 0, \quad t = 0, \dots, T$$
 $k_{t+1} \ge 0, \quad t = 0, \dots, T$
 $\mu_t \ge 0, \quad t = 0, \dots, T$

The summary statement of the first-order conditions is then the "Euler equation":

$$u'[f(k_t) - k_{t+1}] = \beta u'[f(k_{t+1}) - k_{t+2}]f'(k_{t+1}), \quad t = 0, \dots, T-1$$

 k_0 given, $k_{T+1} = 0$,

where the capital sequence is what we need to solve for.1

The following conditions ensure a unique solution, such that the FOCs are sufficient:²

- ▶ The objective $U = \sum_{t=0}^{T} u(c_t)$ is (strictly) concave
- ▶ The constraint (choice) set is convex in $\{c_t, k_{t+1}\}$
- 1Recall the optimization problem (1).
- 2 That is, computing the equilibrium policy function in a recursive model is valuable because it is a sufficient description of equilibrium, and from it one can derive any economic quantity (Judd, 1991).

Note: From $\partial \mathcal{L}/\partial k_{T+1}$, and since u'(c)>0 \forall c, we conclude that $\mu_T>0$. This implies that $k_{T+1}=0$: the consumer leaves no capital for after the last period.

Let's interpret the key equation for optimization, the Euler equation:

$$\underbrace{u'(c_t)}_{\text{Utility lost if you}} = \underbrace{\beta u'(c_{t+1})}_{\text{Utility increase}} \cdot \underbrace{f'(k_{t+1})}_{\text{Return on the invested unit}} \tag{5}$$

Thus, because of the concavity of u, equalizing the marginal cost of saving (LHS) to the marginal benefit of saving (RHS) is a condition for an optimum.

How do the primitives affect savings behaviour? Three components:

- (i) Consumption "smoothing" via strictly concave utility function \boldsymbol{u}
- (ii) Impatience via discount factor β
- (iii) Income and substitution effects via the return to savings $f'(k_{t+1}) = R_t$

Example 4.1: Logarithmic utility (p. 47)

Example 4.2: CIES (constant intertemporal elasticity of substitution) utility function (p. 49)

Infinite Horizon & Sufficient conditions

Why should macroeconomists study the case of an infinite horizon?

- Altruism: people do not live forever, but they may care about their descendants
- Simplicity: with a long time horizon, finite- and infinite-horizon models show very similar results. Infinite horizon models are stationary in nature.

The infinite horizon only requires one additional condition to that in the finite case: the *transversality condition*. Both ensure the capital stock is zero in the limit. See Proposition 4.4, p. 56:

An alternative approach

- Our approach up to now has been to look for a sequence of real numbers $\{k_{t+1}\}_0^{\infty}$ that generates an optimal consumption plan.
- The solution was a difference (functional) equation: the Euler equation.
- The search for a sequence is sometimes impractical, and not always intuitive.
- An alternative approach that is intuitive and useful for both analytic and numerical computation, is dynamic programming using recursive methods

The value function

Using the canonical (neoclassical) model as an example, assume we can derive the individual's discounted value of utility in period t as:

$$V(k_t) \equiv \max_{\{k_{t+1+i}\}_{i=0}^{\infty}} \sum_{i=0}^{\infty} \beta^i u[f(k_{t+i}) - k_{t+1+i}]$$
 (6)

Given the current state (k_t) , $V(k_t)$ gives the supremum over all possible policies of the present values of current and future utility.

The value function in period t + 1:

$$V(k_{t+1}) = \max_{\{k_{t+1+i}\}_{i=1}^{\infty}} \sum_{i=1}^{\infty} \beta^{i-1} u[f(k_{t+i}) - k_{t+1+i}]$$
 (7)

We now separate the period t problem (6) from that of future periods \dots

The value function

... using maximisation-by-steps:

$$V(k_{t}) = \max_{k_{t+1} \in [0, f(k_{t})]} \left\{ \underbrace{u[f(k_{t}) - k_{t+1}]}_{i=0} + \max_{\{k_{t+1+i}\}_{i=1}^{\infty}} \sum_{i=1}^{\infty} \beta^{i} u[f(k_{t+i}) - k_{t+1+i}] \right\}$$

$$V(k_{t}) = \max_{k_{t+1} \in [0, f(k_{t})]} \left\{ u[f(k_{t}) - k_{t+1}] + \beta \max_{\{k_{t+1+i}\}_{i=1}^{\infty}} \sum_{i=1}^{\infty} \beta^{i-1} u[f(k_{t+i}) - k_{t+1+i}] \right\}$$

$$(8)$$

By definition of (7), (8) equals:

$$V(k_t) = \max_{k_{t+1} \in [0, f(k_t)]} \{ u[f(k_t) - k_{t+1}] + \beta V(k_{t+1}) \}$$

The value function

$$V(k_t) = \max_{k_{t+1} \in [0, f(k_t)]} \{ u[f(k_t) - k_{t+1}] + \beta V(k_{t+1}) \}$$
 (9)

- (9) is the dynamic programming formulation.
- It presents exactly the same problem as that shown in (6), but written in a recursive form;
- It is known as the Bellman equation, and it is a functional equation: the unknown is a function V
- If we find a V that satisfies (9) for any value of k_t , then all the maximizations on the RHS are well-defined
- ▶ The decision rule for $k_{t+1} = g(k_t)$, alluded to earlier, follows:

$$g(k_t) = \underset{k_{t+1}}{\operatorname{argmax}} \{ u[f(k_t) - k_{t+1}] + \beta V(k_{t+1}) \}$$
 (10)

- ▶ To proceed, we need to assume that the value function $V(\cdot)$ exists, that a maximum exists and it is unique;
- Moreover, we need the *envelope theorem* to derive the functional Euler equation.

Example 4.5 Solving a parametric dynamic programming problem (work from the "guess" that the value function has the form $V(k) = a + b \log k$ to obtain the decision rule: $k' = \alpha \beta A k^{\alpha}$).

Simple steps to solving a dynamic optimization problem using the envelope theorem

$$V(k_t) = \max_{c_t, k_{t+1}} \left\{ u(c_t) + \beta V(k_{t+1}) \right\} \,, \quad \text{s.t.} \quad c_t = f(k_t) - k_{t+1} \qquad \text{(11)}$$

Assume the constraint binds, as before, and take FOC w.r.t k_{t+1} :

$$\frac{\partial V(k_t)}{\partial k_{t+1}} \quad : \quad \underbrace{\frac{\partial u(c_t)}{\partial c_t}}_{\text{Chain rule}} + \beta \frac{\partial V(k_{t+1})}{\partial k_{t+1}} = 0$$

$$\therefore \quad u'(c_t)(-1) + \beta V'(k_{t+1}) = 0$$

$$\therefore \quad u'(c_t) = \beta V'(k_{t+1}) \tag{12}$$

We need to find $V'(k_{t+1}) \dots$

Simple steps to solving a dynamic optimization problem using the envelope theorem

We can use the envelope theorem, by taking FOC w.r.t k_t and then iterating forward by one period:

$$\frac{\partial V(k_t)}{\partial k_t} : \frac{\partial u(c_t)}{\partial c_t} \frac{\partial c_t}{\partial f(k_t)} \frac{\partial f(k_t)}{\partial k_t} + \beta \frac{\partial V(k_{t+1})}{\partial k_t}$$

$$\therefore u'(c_t)(1)f'(k_t) + \beta(0)$$

$$\therefore \frac{\partial V(k_{t+1})}{\partial k_{t+1}} = V'(k_{t+1}) = u'(c_{t+1})f'(k_{t+1})$$
(13)

Substitute (13) into (12) to get the functional Euler equation, as in our "canonical problem":

$$\underbrace{u'(c_t)}_{\text{Utility lost if you}} = \underbrace{\beta u'(c_{t+1})}_{\text{Utility increase}} \cdot \underbrace{f'(k_{t+1})}_{\text{Return on the invested unit}} \tag{14}$$

A General Version (similiar to Krussel, Ch 4.3.)

In a general form, for the model economy, the social-planning problem or, equivalently, the competitive equilibrium involves solving the following dynamic programming problem:

$$V(x_t, z_t) = \max_{y_t} [F(x_t, y_t, z_t) + \beta E_t V(x_{t+1}, z_{t+1})]$$
 (15)

$$s.t. x_{t+1} = G(x_t, y_t, z_t)$$
 (16)

where,

- \triangleright x_t : a vector of state variables in t;
- \triangleright y_t : a vector of control variables in t;
- \triangleright z_t : a vector of stochastic state variables in t;
- ightharpoonup $F(\cdot,\cdot)$: objective function to be maximized;
- ▶ (16): budget constraint. We include the expectations operator because of the presence of uncertainty z_t .

A General Version

The solution to this problem:

$$y_t = H(x_t, z_t) \tag{17}$$

(17) is the so called policy function (or decision rule) which describes how the control variable behaves as a function of the state variables in t.

Since the policy function optimizes the choice of the control variables for every permitted value of x_t , it must fulfill the following condition:

$$V(x_t, z_t) = F(x_t, H(x_t, z_t), z_t) + \beta E_t V(G(x_t, H(x_t, z_t), z_t), z_{t+1})$$
(18)

A General Version

To find the policy function $H(x_t, z_t)$, we need the FOCs of (15) and its envelope condition,

$$\frac{\partial V(x_{t+1},z_{t+1})}{\partial x_t} \frac{\partial x_{t+1}}{\partial G(\cdot)} \frac{\partial G(\cdot)}{\partial y_t}$$

$$\frac{\partial V(\cdot_t)}{\partial y_t} : 0 = F_y(x_t,y_t,z_t) + \beta E_t [V_x(G(x_t,y_t,z_t),z_{t+1})G_y(x_t,y_t,z_t)] \quad (19)$$

$$\frac{H(\cdot_t)}{\text{satisfies}} : 0 = F_y(H) + \beta E_t [V_x(G(H))G_y(H))] \quad (20)$$

$$\text{But, } V_x(\cdot_{t+1}) \text{ is unknown}$$

$$\frac{\partial V(\cdot_t)}{\partial x_t} = F_x + \beta E_t V_x G_x + H_x [F_y + \beta E_t V_x G_y] \quad (21)$$

where,

- ▶ $F_y(x_t, y_t, z_t)$, $F_x(x_t, y_t, z_t)$: vector of derivatives of the objective function w.r.t. the control variables and state variables;
- ▶ $V_x(G(x_t, y_t, z_t), z_{t+1})$: vector of derivatives of the objective function w.r.t. the state variables in t + 1;
- ▶ $G_y(x_t, y_t, z_t)$, $G_x(x_t, y_t, z_t)$: vector of derivatives of the budget constraints w.r.t. the control variables and state variables.

A General Version

 \square Optimizing (15) such that (16) holds, implies that $G_x(\cdot)=0$, and (21), iterated forward, becomes:

$$\therefore \frac{\partial V(\cdot_{t+1})}{\partial x_{t+1}} : V_x(x_{t+1}, z_{t+1}) = F_x(x_{t+1}, y_{t+1}, z_{t+1})$$
 (22)

Therefore, the FOCs (19) give the following functional Euler equation:

$$0 = F_y(x_t, y_t, z_t) + \beta E_t[F_x(G(x_t, y_t, z_t), y_{t+1}, z_{t+1})G_y(x_t, y_t, z_t)]$$
 (23)

Solving for y_t gives the policy function (17).

Self-study

Work through examples 4.1 (p. 47), 4.2 (p. 49), 4.5. (p. 63), and Ch 4.3 (pp. 67-69).