Tarea 11

Hecho por

DAVID GÓMEZ

UNIVERSIDAD

Estudiante de Matemáticas
Escuela Colombiana de Ingeniería Julio Garavito
Colombia
28 de octubre de 2022

Tarea 11

UNIVERSIDAD

${\bf \acute{I}ndice}$

Seccion	6.1																					4
	Punto 4		 	 						 			•	 	•							4
Sección	6.2																					4
Secolon	Punto 2																					4
																						_
	Punto 3	• •	 	 	•		 •		 •	 	•		•	 	•	•	 •		•	 •	•	5
Sección	6.3																					5
	8		 	 						 				 								5
	a		 	 						 				 								5
	b		 	 						 				 								5
	c		 	 						 				 								5
	d		 	 						 				 								5
	e		 	 						 				 								6
	f					-		-	-		-		-			-	-		-	 -	-	6
	10																					6
	a																					6
	а b		 	 	-		 -			 				 								6
	~		 	 						 				 	-				-		•	
	c																					6
	d																					6
	e		 	 						 				 								6
	f		 	 			 -		 -	 			-	 						 -		7
	g		 	 	•		 •		 •	 			•	 	•	•	 •		•	 •	•	7
	h		 	 						 				 	•	•					•	7
	i		 	 						 				 	•				•		•	7
	j		 	 						 				 								7
	11		 	 						 				 								7
	a		 	 						 				 								7
	b		 	 						 				 								7
	c		 	 						 				 								7
	d		 	 						 				 								8
	12		 	 						 				 								8
	a		 	 						 				 								8
	b																					8
	14		 	 						 				 	-				-		•	8
	a																					8
	а b		 	 						 				 								8
																						8
	c d																					8
	16																					9
																						9
	a																					_
	b																					9
	c																					9
	d																					9
	19		 	 	•		 •		 ٠	 	•	٠.	•	 ٠.	•	•	 ٠		٠	 ٠		9
Sección	6.4																					10
	Punto 3		 	 						 				 								10
	a																					10
	b																					10
	c																					10
	d																					10
	α		 	 	•		 •		 •	 	•		•	 	•	•	 •	•	•	 •	•	10
			 	 			 			 				 								/

David Gómez

UNIVERSIDAD

Punto 4	 10
a	 10
b	 10
c	 10
d	 10
e	 11
f	 11
g	 11
h	 11
Punto 5	 11
a	 11
b	 12
c	 12
d	 12
e	 12
f	 12
Punto 6	 13

Sección 6.1

Punto 4

Lógica aristotélica

La lógica aristotélica tiene únicamente 4 posibles fórmulas, y en ellas se usa únicamente una variable junto a una propiedad que cumple o no.

$$\mathcal{L} = (\mathcal{F}, \mathcal{P}, \mathcal{X})$$

$$\mathcal{F} = \varnothing$$

$$\mathcal{P} = P$$

$$\mathcal{X} = S$$

Ejemplo:

Universal afirmativo(A) = Todo S es P que escrito como fórmula queda: $\forall S(P(S))$

Sección 6.2

Punto 2

Arbol de sintaxis de n Ejemplo 6.3

n

Árbol de sintaxis de g(f(n),n) Ejemplo 6.3 $\begin{array}{c|c} g \\ \hline f & n \end{array}$

Árbol de sintaxis de f(g(f(n), n)), Ejemplo 6.3 f

Ejemplo 6.3

Sea $\mathcal{F}=\{n,f,g\}$ con $ar(n)=0,\ ar(f)=1$ y ar(g)=2. Entonces $n,\ g(f(n),n)$ y f(g(f(n),n)) son términos. Sin embargo las expresiones n(f), g(f(n)) y g(f(n),n,n) no lo son ¿Por qué?

Punto 3

3

a b

c

Sección 6.3

8

a

8.a

María admira a todos los profesores.

$$(\forall x \,|\, P(x) : A(m,x))$$

b

8.b

Algún profesor admira a María.

$$(\exists x \,|\, P(x) : A(x,m))$$

 \mathbf{c}

8.c

 \mathbf{d}

8.d

No todos los estudiantes asisten a todas las clases.

$$(\forall x \mid C(x) : (\exists y \mid E(x) : \neg B(y, x)))$$

UNIVERSIDAD

Tarea 11

 \mathbf{e}

8.e

Ninguna clase tuvo como asistentes a todos los estudiantes

$$\forall x \exists y (C(x) \land E(y) \land \neg B(y, x))$$

 \mathbf{f}

8.f

Ninguna clase tuvo como asistentes a estudiante alguno

$$(\forall x \forall y \,|\, C(x) \land E(y) : \neg B(y,x))$$

10

 \mathbf{a}

Todos tienen una madre

$$\forall x \exists y (M(y,x))$$

 \mathbf{b}

Todos tienen una madre y un padre

$$\forall x \exists y \exists z (M(y,x) \land P(z,x))$$

 \mathbf{c}

Quien sea que tiene una madre tiene un padre

$$(\forall x \mid M(y, x) : P(z, x))$$

 \mathbf{d}

Juan es abuelo

$$\begin{aligned} & \operatorname{Juan}: j \\ & P(x,y) \wedge P(j,x) \end{aligned}$$

e

Ana y Jaime son primos

Ana :
$$a$$

$$\mbox{Jaime}: j$$

$$(A(x,y) \vee H(x,y)) \wedge (M(x,a) \vee P(x,a)) \wedge (M(y,j) \vee P(y,j))$$

 \mathbf{f}

Algunas madres son tias

$$(\exists x \,|\, (M(y,z) \vee P(y,z)) : A(x,y) \wedge M(x,w))$$

 \mathbf{g}

Ningún tío es padre

$$(\forall x \,|\, ((P(y,z) \vee M(y,z)) \wedge H(x,y)) : \neg P(x,w))$$

 \mathbf{h}

La abuela de nadie es padre de alguien

$$\forall x \exists y (M(x,z) \land \neg M(z,w) \land P(x,y))$$

i

Juan y Juana son marido y mujer

 $\begin{aligned} & \text{Juan}: j \\ & \text{Juana}: ja \\ & E(j, ja) \end{aligned}$

j

Carlos es el cuñado de Mónica

 $\begin{aligned} & \text{Carlos}: c \\ & \text{M\'onica}: m \\ & (H(x,m) \vee A(x,m)) \wedge E(c,m) \end{aligned}$

11

 \mathbf{a}

Hay al menos dos elementos

 $\exists x \exists y$

b

Hay a lo sumo dos elementos

 $\forall x(\exists y \land \neg \exists w)$

 \mathbf{c}

Hay exactamente tres elementos

 $\forall x \forall y \forall z (\neg \exists w)$

ESCUELA

UNIVERSIDAD

Tarea 11

 ${\bf d}$

Para cualquier par de elementos, hay otro elemento distinto a ellos

$$\forall x, \forall y (\exists w \land \neg P(x, w) \land \neg P(y, w))$$

12

a

Exactamente un elemento tiene la propiedad R

$$(\exists x \,|\, P(x) : \neg \exists y \,|\, : P(x))$$

b

Todos, excepto dos elementos tienen la propiedad R

$$\exists y, z (\neg P(y) \wedge \neg P(z))$$

14

 \mathcal{L}

$$\mathcal{F} = \emptyset$$

$$\mathcal{P} = \{E\}$$

Donde ar(E)=1 y E(x) simboliza "la persona x es egoísta"

 \mathbf{a}

Todos los humanos son egoístas

$$(\forall x \mid : E(x))$$

 \mathbf{b}

Ningún humano es egoísta

$$(\forall x \mid : \neg E(x))$$

 \mathbf{c}

Algunos humanos son egoístas

$$(\exists x \mid : E(x))$$

 \mathbf{d}

Algunos humanos no son egoístas

$$(\exists x \mid : \neg E(x))$$

16

 \mathcal{L}

$$\mathcal{F} = \emptyset$$
$$\mathcal{P} = \{E, O\}$$

Donde $ar(E)=1,\ ar(O)=1,\ E(y)$ simboliza "Usted engaña a y" y O(x) simboliza "x es una ocasión".

a

Usted puede engañar a algunos algunas veces

$$\exists x \,|\, O(x) : E(y)$$

 \mathbf{b}

Usted puede engañar a todos algunas veces

$$\forall x \exists y (O(y) \land E(x))$$

 \mathbf{c}

Usted no puede engañarlos a todos algunas veces

$$\forall x \exists y (\neg E(x) \land O(y))$$

 \mathbf{d}

Usted no puede engañar a alguien todas las veces

$$\forall x \exists y (\neg E(y) \land O(x))$$

19

19

Tomando \mathcal{L}_{19}

$$(\forall t_0 \mid T(t_0) \land s_0 = \text{tarea}(t_0) : s_1 = \text{inicio}(t_0) \land (\forall t_1 \mid t_1 \in \text{prer}(t_0) : C(t_1)))$$

 \mathcal{L}_{19}

$$\mathcal{F} = \{ \text{tarea, inicio, prer} \}$$

$$\mathcal{P} = \{ T, C \}$$

Tarea 11

Sección 6.4

Punto 3

 \mathbf{a}

 \mathbf{b}

```
S(m,x)
x es libre
```

 \mathbf{c}

```
B(m, f(m))
No hay variables
```

 \mathbf{d}

```
B(x,y) \to \exists z S(z,y)

x, y son libres

z es acotada
```

 \mathbf{e}

```
S(x,y) \to S(y, f(f(x)))
Todas las variables son libres
```

Punto 4

a

```
P(c,c,d) \vee \forall x P(f(d),h(h(c,x),d),y)
todas las apariciones de x son acotadas y todas las de y son libres
el alcance de \forall es a x
```

b

```
\exists y (P(x,y,x) \to \exists z Q(z,y,f(z)))
todas las apariciones de y son acotadas por \exists y
todas las apariciones de z son acotadas por \exists z
todas las apariciones de x son libres
```

 \mathbf{c}

```
\exists y P(x,y,Z) \not\equiv \forall y Q(z,y,f(z))
y es acotada en un momento por \exists y y luego por \forall y
Todas las apariciones de x,z son libres
```

 \mathbf{d}

```
\exists y (P(x, y, x) \not\equiv \forall y Q(z, y, f(z)))
y es acotada en un momento por \exists y y luego por \forall y
Todas las apariciones de x, z son libres
```

UNIVERSIDAD

David Gómez

 \mathbf{e}

```
\forall x \exists y P(x, y, x) \to \exists z Q(z, y, f(x))

x es acotada por \forall x y luego es libre

z es acotada por \exists z

y es libre
```

 \mathbf{f}

```
\forall z \exists y P(x, y, x) \to \exists z Q(z, y, f(x))

y es acotada por \exists y y luego es libre

z es acotada por \exists z

x es libre
```

 \mathbf{g}

```
 \forall x (\exists y P(x, y, x) \land \exists z Q(z, y, f(x))) 
x \text{ es acotada por } \forall x
y \text{ es acotada por } \exists y \text{ y luego es libre}
z \text{ es acotada por } \exists z
```

 \mathbf{h}

```
\forall z (\exists y P(x, y, x) \land \exists z Q(z, y, f(x)))

x es libre

y es acotada por \exists y y luego es libre

z es acotada por \exists z
```

Punto 5

 \mathbf{a}

UNIVERSIDAD

Tarea 11

b

apariciones libres y acotadas

- x es acotada por $\exists x$
- yes libre y luego acotada por $\forall y$
- \boldsymbol{z} es libre

 \mathbf{c}

 \mathbf{c}

Sí, y pues primero no se ve afectada en P(y,z) por ningún cuantificador, sin embargo, luego se ve afectada en $\neg Q(y,x) \lor P(y,z)$ por $\forall y$

 \mathbf{d}

 d

El alcance de $\exists x$ es $P(y,z) \wedge \forall y (\neg Q(y,x) \vee P(y,z))$

 \mathbf{e}

e

El alcance de $\forall y$ es $\neg Q(y, x) \lor P(y, z)$

 \mathbf{f}

Punto 6

Definición de $quant(x, \phi)$

Sea
$$\mathbb{C} = \{ \equiv, \not\equiv, \land, \lor, \rightarrow, \leftarrow \}$$

Sea fun(x) una función que encuentre el cuantificador más cercano a la izquierda de x que tenga a x

Sea op() una función que encuentre cualquier $c \in \mathbb{C}$

Sea par(x) una función que encuentra la parentización de la sub-fórmula en la que se encuentra x Si op() retorna verdadero en el recorrido que hace fun(x) y la posición retornada por fun(x) no se encuentra inmediatamente a la izquierda de el primer paréntesis encontrado por par(x), entonces x es libre.