CSE 100: Algorithm Design and Analysis Chapter 24: Single-Source Shortest Paths

Sungjin Im

University of California, Merced

Last Update: 4-21-2023

Single-Source Shortest Paths

Problem definition

Single-pair shortest-path problem:

Input: Directed graph G = (V, E) with weight/distance w(u, v) on each edge $(u, v) \in E$, and a pair of vertices v.

Output: A shortest path from s to t.

Single-destination shortest-paths problem:

Input: G and w as above, and a destination vertex t.

Output: A shortest path to t from each vertex v.

nput: G and w as above, and a source vertex (s).

Output: A shortest path from s to each vertex \check{v} .

Preliminaries

Terminology:

- Path: a sequence of edges that connect a sequence of vertices. So a path P can be represented as $(v_0, v_1, ..., (v_k))$ where $v_0, v_1, ..., v_k \in V$ and $(v_0, v_1), (v_1, v_2), ..., (v_{k-1}, v_k) \in E$.
 - Simple Path: a path P is said to be simple if no vertex appears more than once on the path.
 - * It is a convention that a path refers to a simple path; however, this is not necessarily the case in the textbook.
- ▶ The weight/distance of path P, w(P) is defined as the total weight/distance of edges of the path P:

$$\underline{w(P)} := w(v_0, v_1) + w(v_1, v_2) + ... + w(v_{k-1}, v_k)$$

Preliminaries

 $u \rightsquigarrow v$: v is reachable from u. (sometimes, a path from u to v) $u \rightsquigarrow P$ v: P is a path from u to v.

Shortest-path weight (u, v) from u to v is defined as

A shortest path from u to v is any path P from u to v such that $\underline{w(P)} = \underbrace{\delta(u,v)}_{}.$

Key Lemma

Lemma (24.1. Optimality of Subpaths)

If $P = \langle v_0, v_1, ..., v_k \rangle$ is a shortest path from v_0 to v_k , then for any $0 \le i \le j \le k$, $\langle v_i, v_{i+1}, ..., v_j \rangle$ is a shortest path from v_i to v_j . In other words, subpaths of shortest paths are also shortest paths.

Proof.

Cut-and-paste. Otherwise, one could get a 'better' shortest path from v_0 to v_k by replacing $\langle v_i, v_{i+1}, ..., v_j \rangle$ with a better path from v_i to v_j .

Some Issues

What is the shortest distance from *s* to each vertex? unreachable verter If there is a part of the virtually a regarder neight cycle. f(s,v) is not well defined,

Some Issues

If there is a path from s to a vertex u that includes a negative-weight cycle, then a shortest path from s to v is not well-defined, and we have $\delta(s,v)=-\infty$.

Lemma

If there is a shortest path from u to v, then there is such a path that is simple.

Proof.

If the path contains a negative-weight cycle:

If the path contains a positive-weight cycle:

If the path contains a 0-weight cycle:

We can assume without loss of generality that a shortest path contains no cycles.

Some Issues

Corollary

If there is a shortest path from u to v, then there is such a path that is simple, therefore consists of at most |V|-1 edges.

A shortest path can be encoded by π : $v.\pi$ means v's predecessor. In path $\langle v_0=s,v_1,v_2,...,v_k\rangle$, $v_0.\pi=\mathit{NIL}$, $v_1.\pi=v_0$, ..., $v_k.\pi=v_{k-1}$.

Definition

A shortest-paths tree rooted at s is a directed subraph G' = (V', E') where $V' \subseteq V$ adn $E' \subseteq E$ such that

- 1. V' is the set of vertices reachable from s in G.
- 2. G' forms a rooted tree with root s, and
- 3. for all $v \in V'$, the unique simple path from s to $v \in G'$ is a shortest path from s to v in G.

Lemma

Let G = (V, E) be a weighted, directed graph with no negative-weight cycles reachable from source vertex $s \in V$. Then, there exists a shortest-paths tree rooted at s (over all reachable vertices from s).

Lemma

Let G = (V, E) be a weighted, directed graph with no negative-weight cycles reachable from source vertex $s \in V$. Then, there exists a shortest-paths tree rooted at s (over all reachable vertices from s).

Proof.

Use the optimality of subpaths lemma.

* Not necessarily unique.

To compute the shotest path from source s to each vertex v (along with its distance), we only need to compute v.d and $v.\pi$. * $v.d = \infty$ implies that v is not reachable from s.

First, initialize:

INITIALIZE-SINGLE-SOURCE (G, s)

- 1 **for** each vertex $v \in G.V$
- $(v.d) = \infty$
- $v.\pi = NIL$
- $4 \quad s.d = 0$

Think of (v.d) as the shortest path (distance) estimate to v from s.

Relaxing edge (u, v): if we can improve the (current) shortest path to v by replacing it with the (current) shortest path to u followed by (u, v), then update v.d and $v.\pi$ accordingly.

RELAX
$$(u, v, w)$$

1 **if** $v.d > u.d + w(u, v)$
2 $v.d = u.d + w(u, v)$
3 $v.\pi = u$

Relaxing edge (u, v): if we can improve the (current) shortest path to v by replacing it with the (current) shortest path to u followed by (u, v), then update v.d and $v.\pi$ accordingly.

Most algorithms are based on relaxing edges (after the initialization).

- Dijkstra's algorithm and the shortest-paths algorithm for DAGs relax each edge exactly once.
- ▶ Bellman-Ford algorithm relaxes each edge |V| 1 times.

Useful Properties

Lemma (24.10. Triangle Inequality)

For any edge (u, v), $\delta(s, v) \leq \delta(s, u) + w(u, v)$.

Suppose we first set $v.d = \infty$ for all $v \in V$ except the source vertex, and update v.d only via relaxing some edges. Then we have the following properties:

Lemma (24.11. Upper-bound Property)

We always have $v.d \ge \delta(s, v)$ for all $v \in V$, and once v.d achieves value $\delta(s, v)$, it never changes.

Corollary (24.12. No-path Property)

If there is no path from s to v, then we always have $v.d = \delta(s, v) = \infty$.

Useful Properties

Lemma (24.14. Convergence Property)

If $s \rightsquigarrow u \rightarrow v$ is a shortest path in G for some $u, v \in G$, and if $u.d = \delta(s, u)$ at any time prior to relaxing edge (u, v), then $v.d = \delta(s, v)$ at all times afterward.

Lemma (24.15. Path-relaxation Property)

If $P = \langle v_0, v_1, ..., v_k \rangle$ is a shortest path from $s = v_0$ to v_k , and the sequence of relaxations includes $(v_0, v_1), (v_1, v_2), ..., (v_{k-1}, v_k)$ as a subsequence, then $v_k.d = \delta(s, v_k)$.

Lemma (24.17. Predecessor-subgraph Property)

Once $v.d = \delta(s, v)$ for all $v \in V$, the predcessor subgraph is a shortest-paths tree rooted at s.

- Solves the single-source shortest-paths problem in the general case in which edges can have negative weights.
- ▶ Returns false if there is a negative-weight cycle reachable from s. Otherwise returns true along with the shortest paths and their distances.

Example

At any point in time, v.d = D means there's a path of distance D from s to v. if $v.d = \infty$ means we haven't found a path from s to v.

Example

At any point in time, v.d = D means there's a path of distance D from s to v. if $v.d = \infty$ means we haven't found a path from s to v.

Correctness: True case

At any point in time, v.d = D means there's a path of distance D from s to v. if $v.d = \infty$ means we haven't found a path from s to v.

As claimed before all algorithms in this chapter are based on edge relaxation:

Lemma (24.11. Upper-bound Property)

We always have $v.d \ge \delta(s, v)$ for all $v \in V$, and once v.d achieves value $\delta(s, v)$, it never changes.

Corollary (24.12. No-path Property)

If there is no path from s to v, then we always have $v.d = \delta(s, v) = \infty$.

Correctness: True case

For any shortest (simple) path $P = \langle v_0 = s, v_1, v_2, ..., v_k = u$ from s to u, there is a relaxation subsequence of $(v_0, v_1), (v_1, v_2), (v_2, v_3), ..., (v_{k-1}, v_k)$ generated by the BF.

Correctness: True case

For any shortest (simple) path $P = \langle v_0 = s, v_1, v_2, ..., v_k = u$ from s to u, there is a relaxation subsequence of $(v_0, v_1), (v_1, v_2), (v_2, v_3), ..., (v_{k-1}, v_k)$ generated by the BF. Note that $k \leq |V| - 1$.

Correctness: True case

For any shortest (simple) path $P = \langle v_0 = s, v_1, v_2, ..., v_k = u$ from s to u, there is a relaxation subsequence of $(v_0, v_1), (v_1, v_2), (v_2, v_3), ..., (v_{k-1}, v_k)$ generated by the BF. Note that $k \leq |V| - 1$. Do you see why?

Correctness: True case

For any shortest (simple) path $P = \langle v_0 = s, v_1, v_2, ..., v_k = u$ from s to u, there is a relaxation subsequence of $(v_0, v_1), (v_1, v_2), (v_2, v_3), ..., (v_{k-1}, v_k)$ generated by the BF. Note that $k \leq |V| - 1$. Do you see why?

Lemma (24.15. Path-relaxation Property)

If $P = \langle v_0, v_1, ..., v_k \rangle$ is a shortest path from $s = v_0$ to v_k , and the sequence of relaxations includes $(v_0, v_1), (v_1, v_2), ..., (v_{k-1}, v_k)$ as a subsequence, then $v_k.d = \delta(s, v_k)$.

Thanks to the observation and Lemma 24.15, we have $u.d = \delta(s, u)$ for all $u \in V$ at the end.

Correctness: True case

We have $u.d = \delta(s, u)$ for all $u \in V$ at the end. So, $v.d \le u.d + w(u, v)$ for all (u, v) by Triangle Inequality. So the BF returns True.

Correctness: False case

For the sake of contradiction, suppose the BF returns True for the False case.

Say $c=\langle v_0,v_1,...,v_k=v_0\rangle$ be a negative-weight cycle (reachable from s), so we have,

$$w(v_0, v_1) + w(v_1, v_2) + ... + w(v_k, v_0) < 0.$$

 $v_1.d < v_0.d + w(v_0, v_1)$

But we know

$$v_2.d \leq v_1.d + w(v_1, v_2)$$
...
 $v_k.d \leq v_{k-1}.d + w(v_{k-1}, v_k)$
 $v_0.d \leq v_k.d + w(v_k, v_0)$

So, we have $0 \le w(v_0, v_1) + w(v_1, v_2) + ... + w(v_k, v_0)$, a contradiction.

Running Time

```
BELLMAN-FORD(G, w, s)
   INITIALIZE-SINGLE-SOURCE (G, s)
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E

RELAX(u, v, w)
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
            return FALSE
   return TRUE
```

Running Time

```
BELLMAN-FORD(G, w, s)
   INITIALIZE-SINGLE-SOURCE (G, s)
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
            Relax(u, v, w)
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
6
            return FALSE
   return TRUE
```


Questions

Q. Suppose that there is an integer m > 0 such that there is a shortest path from s to each vertex v consisting of at most m edges. Further, we know the value of m. How many times do you need to iterate Lines 3 and 4?

```
BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 for i = 1 to |G.V| - 1

3 for each edge (u, v) \in G.E

4 RELAX(u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE

8 return TRUE
```

Questions

Q. We would like to find a shortest path from the single source to each vertex. If we see no change of v.d for any vertex v, we can stop. True or False?

```
BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 for i = 1 to |G.V| - 1

3 for each edge (u, v) \in G.E

4 RELAX(u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE

8 return TRUE
```

Single-source Shortest Paths in <u>DAGs</u> Questions

A DAG has no cycle. So no worries about negative-weight cycles.

```
DAG-SHORTEST-PATHS (G, w, s)

1 topologically sort the vertices of G

2 INITIALIZE-SINGLE-SOURCE (G, s)

3 for each vertex u, taken in topologically sorted order

4 for each vertex v \in G.Adj[u]

5 RELAX (u, v, w)
```

Single-source Shortest Paths in DAGs

 ${\sf Eaxmple}$

Single-source Shortest Paths in DAGs Eaxmple

Single-source Shortest Paths in DAGs

Correctness

Say $P = \langle v_0 = s, v_1, v_2, ..., v_k = v \rangle$ is a shortest path from s to v. Then $v_0, v_1, ..., v_k$ must appear in the topological ordering in this order.

The relaxation sequence includes $(v_0, v_1), (v_1, v_2), ...(v_{k-1}, v_k)$ as a subsequence.

Hence if a vertex v is reachable from s, then $v.d = \delta(s, v)$ by the path-relaxation property.

Single-source Shortest Paths in DAGs

Running time

```
DAG-SHORTEST-PATHS (G, w, s)

1 topologically sort the vertices of G

2 INITIALIZE-SINGLE-SOURCE (G, s)

3 for each vertex u, taken in topologically sorted order

4 for each vertex v \in G.Adj[u]

5 RELAX (u, v, w)
```

Single-source Shortest Paths in DAGs

Running time

```
DAG-SHORTEST-PATHS (G, w, s)

1 topologically sort the vertices of G

2 INITIALIZE-SINGLE-SOURCE (G, s)

3 for each vertex u, taken in topologically sorted order f

4 for each vertex v \in G.Adj[u]

5 RELAX (u, v, w)
```

Topological sort: O(E+V). Each edge is relaxed exactly once. So, O(E) for all relaxations. Thus, O(E+V).

Single-source Shortest Paths when Edges Have Non-negative Weights

No worries about negative weight cycles since we have no negative-weight edges.

The Dijkstra algorithm

- maintains a set S of vertices whose shortest distances have been determined.
- ▶ grows S by adding a vertex $u \in V S$ with the shortest distance estimate, u.d (and relaxing all edges leaving u).
- is similar to Prim's algorithm.

Dijkstra Algorithm's Pseudocode

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

RELAX(u, v, w)
```

The Dijkstra algorithm: conceptual illustration Example

The Dijkstra algorithm: actual illustration Example

Dijkstra Algorithm's correctness

Proof sketch:

Want to show: when u is extracted from Q, we have $u.d = \delta(s, u)$, assuming that S consists of vertices whose shortest distances have been determined.

If u = s or u is unreachable from s: Otherwise, what happens if $u.d \neq \delta(s, u)$?

Where do we use the fact that edge weights are non-negative?

```
Running Time: Dijkstra Algorithm performs O(V) Extract-Min and O(E) Decrease-key.
```

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```

Running Time:

Dijkstra Algorithm performs |V| Extract-Min and |E| Decrease-key. If min-priority queue is implemented by array,

- ightharpoonup Extract-Min: O(V).
- ▶ Decrease-Key: O(1).

$$O(V^2 + E) = O(V^2).$$

Running Time:

Dijkstra Algorithm performs |V| Extract-Min and |E| Decrease-key. If min-priority queue is implemented by binary heap,

- ightharpoonup Extract-Min: $O(\log V)$.
- ▶ Decrease-Key: $O(\log V)$.

$$O(V \log V + E \log V) = O(E \log V).$$

Running Time:

Dijkstra Algorithm performs |V| Extract-Min and |E| Decrease-key. If min-priority queue is implemented by Fibonacci heap,

- ► Extract-Min: $O(\log V)$.
- ▶ Decrease-Key: O(1) (in an amortized sense).

$$O(V \log V + E)$$
.