

Platform for RObotic modeling and Transformations for End-Users and Scientific communities

A Robotic Ontology

S. Dhouib¹, J.L. Farges², B. Patin³, S. Stinckwich⁴ (Speaker)

¹CEA, ²ONERA, ³DASSAULT-AVIATION, ⁴GREYC

IEEE ORA group, Tokyo November, 3, 2013

Outline

- Structure
- Kernel layer
- Information layer
- System layer
- Environment layer
- Robot layer
- Humanoid layer
- Ontology and RobotML meta-model
- Supplementary data

OpenCyc: Upper ontology used for inferences Wikipedia: References used for description guideline DEVS

RobotML ontologies' structure

ROBOT

It describes robots

... Robot, ManipulatorRobot, MobileRobot, UnmannedSystem, ...

SYSTEM

what are the possible systems of a robot

... DeviceSystem,ActuatorSystem, SensorSystem,PowerSystem,, ...

MISSION

It describes a mission that can be used by the components

.. MissionObjective, MissionType,, ...

EXPERIMENT

It describes experiments process ...Problem, Solution, Assessment...

SIMULATION

It describes how system can live inside software, hardware, etc ... Simulation, Probe, providesLifeTo, ...

ENVIRONMENT

It describes were the robots evolve and defines the interactions propagation

It describe data pieces that can be used in different parts / differents modules

KERNEL

Generic concepts necessary to describe a scenario

...PhysicalObject, Interaction, System...

agreements. Before using, reproducing, modifying or disclosing the information contained in that document, it is under the user responsibility to check its rights and if mandatory ask to the Intellectual Property Owner the authorisation to use, reproduce, modify or disclose the information.

KERNEL – 1 / 2

System boundaries Capability to get / send info Information Uses impacts isReceivedOn hasPort isPortOf

System evolution Capability to live Abstraction animates givesNextState Asstate Variable hasState State

eus

KERNEL – 1 / 2

document, it is under the user responsibility to check its rights and if mandatory ask to the Intellectual

Property Owner the authorisation to use, reproduce, modify or disclose the information.

KERNEL – 1 / 2

Composition Capability to build imbricated blocs System isA aggregates

System evolution <u>Capability to live</u>

animates System

≵eus

RULES ARE DEFINED THAT PROVIDE MORE SEMAN	ITIC
Interaction(?z), PhysicalObject(?x1), PhysicalObject(?x1, PhysicalObject(?x1, ?z) -> Joint(?z)	?@80
Application(?z), ComputationalHardware(?y), ComputationalSystem(?x), aggregates(?x, ?y), aggregates(?x, ?z) -> executesOn(?z, ?y)	?@ X O
Software(?x) -> ComputationalHardware(?y), executesOn(?x, ?y)	?@ X O
Build(?y), PhysicalObject(?x), triggers(?x, ?y) -> Human(?x)	?@ X O
definesAFrame(?x, ?z), isPositionedIn(?x, ?y) -> DifferentFrom (?y, ?z)	?@ X O
Action(?y), PhysicalObject(?x), triggers(?x, ?y) -> Agent(?x)	?@ X O
System(?x), System(?y), aggregates(?x, ?y) -> isAtomic(?x, false)	?@ X O
Frame(?a), Frame(?b), PhysicalInteraction(?z), PhysicalObject(?x), PhysicalObject(?y), definesAFrame(?x, ?a), definesAFrame(?y, ?b), impacts(?z, ?y), triggers(?x, ?z) -> constrainsFrame(?a constrainsFrame(?b, ?a)	, ?b), ?@&O
Interaction(?y), Port(?z), System(?x), emits(?z, ?y), hasPort Asserted in: http://www.anr-proteus.fr/sites/default/files/download/Ontology/kernel.owl	?@ × 0

KERNEL – 2 / 2

INFORMATION

document, it is under the user responsibility to check its rights and if mandatory ask to the Intellectual

Property Owner the authorisation to use, reproduce, modify or disclose the information.

8

ENVIRONMENT

SYSTEM - 1 / 2

SYSTEM - 2 / 2

agreements. Before using, reproducing, modifying or disclosing the information contained in that document, it is under the user responsibility to check its rights and if mandatory ask to the Intellectual Property Owner the authorisation to use, reproduce, modify or disclose the information.

ROBOT – some key concepts

Validation – An example: part of Air-ground scenario

From Ontology to RobotML DSL

Ontology / DSL relationships

Ontology (OWL)	Domain model (UML class diagram)
Concept	Class
subClassOf	G eneralization
Property	A ssociation
Property: Is A	In h e ritan c e
Property: Has A	Composition
C ard in a lity	M ultiplicity

RobotML Meta-Model

RobotML Modelling Environment

Some Conclusions

- This ontology includes more than:
 - 364 classes
 - 185 properties
 - 31 data types
- Nothing actually new, but common frame:
 - Able to describe some scenarios
 - Shareable by robotic community
 - Able to ground a Domain Specific Language (DSL) for robotics
 - Automatic simulation assembly
 - Robotic middleware projection
 - G. Lortal, S. Dhouib and S. Gérard (2011) Integrating Ontological Domain Knowlege into a Robotic DSL, Models in Software Engineering, Lecture Notes in Computer Science, Volume 6627, 401-414
- Work in progress because of expected feedback from:
 - Language developers
 - Challenge providers and challengers
 - Alignment to existing efforts such as ORA
 - New field such as "Humanoid robotics"
 - New expected project to integrate explicitly <u>"knowledge"</u>

Questions?

PROTEUS

PROTEUS is a Platform for organizing exchanges between industry and academics in the robotic domain

Use of a common language

Development of a theory grounding the vocabulary

Specification of the theory with an ontology*

* Ontology : formal representation of knowledge describing a domain

State of the art* of ontologies for the robotic domain

Gives Ontology	(Objective	and Scope)
MLCOF	To help object recognition by robot	Robot context
OMRKF	To organize robot knowledge	Robot context
OCOA	To develop a control architecture	Control architecture of a model with components
Deplanques	To assess decisional autonomy	Robotics and environment
Schlenoff and Messina	To support development, test and certification of robotic technologies	Urban search and rescue missions
RoSta	To standardize	Mobile, handling and service robotics
PROTEUS	To support exchanges	Mobile Robotics

^{*} not exhaustive, see for example
http://lists.w3.org/Archives/Public/public-xg-ssn/2009Aug/att-0037/SSN-XG_StateOfArt.pdf&usg=AFQjCNGMxl0CHy4FJuxquXVneXfJF6k2tg

