TRIGONOMÉTRIE

Capacités attendues

- Maitriser les différentes formules de transformation;
- Résoudre les équations et les inéquations trigonométriques se ramenant à la résolution d'équations et d'inéquations fondamentales;
- Représenter et lire les solutions d'une équation et d'une inéquation sur le cercle trigonométrique.

7	TRIGONOMÉTRIE · · · · · · · · · · · · · · · · · · ·	2
ı.	Formules de transformation:	4
	1 Formules d'addition :	4
	2 Formules de duplication :	6
	Transformation des produits aux sommes et transformation des sommes aux produits	
	 1 Lien entre coordonnées polaires et coordonnées cartésiennes : 2 Formules de transformation :	7
	2 Formules de transformation :	8
w	Équations et inéquations trigonométriques	9
		44

Rappel

1 Compléter le tableau suivant par le signe de $cos(\theta)$, $sin(\theta)$ et $tan(\theta)$:

θ	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π
$\sin(\theta)$					
$\cos(\theta)$					
$tan(\theta)$					

2 Compléter le tableau suivant :

ooproto.	on proto to tubiodu ou ruint									
θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	
$sin(\theta)$										
$\cos(\theta)$										
$tan(\theta)$										

3 Compléter les transformations suivantes :

Pour tout réel θ , on a :

$$\cos(-\theta) = \dots$$
, $\sin(-\theta) = \dots$

$$\cos(\pi + \theta) = \dots$$
, $\sin(\pi + \theta) = \dots$

$$\cos(\pi - \theta) = \dots$$
, $\sin(\pi - \theta) = \dots$

$$\cos\left(\frac{\pi}{2}-\theta\right) = \dots \qquad , \qquad \sin\left(\frac{\pi}{2}-\theta\right) = \dots$$

$$\cos\left(\frac{\pi}{2} + \theta\right) = \dots$$
, $\sin\left(\frac{\pi}{2} + \theta\right) = \dots$

$$\cos^2(\theta) + \sin^2(\theta) = \dots$$
, $\frac{\sin(\theta)}{\cos(\theta)} = \dots$ $/\theta \neq \frac{\pi}{2} + k\pi; k \in \mathbb{Z}$

- Formules de transformation :
- Formules d'addition :
- 1 Activité nř1

Soient (P) un plan rapporté à un repère orthonormé direct $(O; \overrightarrow{i}; \overrightarrow{j})$ et soient (U) le cercle trigonométrique et a et b deux réels.

On considère les points A et B du cercle (U) tels que :

$$(\overrightarrow{i};\overrightarrow{OA}) \equiv a[2\pi] \text{ et } (\overrightarrow{i};\overrightarrow{OB}) \equiv b[2\pi].$$

- 1 Montrer que : $(\overrightarrow{\overrightarrow{OA}}; \overrightarrow{\overrightarrow{OB}}) \equiv (b-a)[2\pi].$
- **2** Calculer $\overrightarrow{OA} \cdot \overrightarrow{OB}$ et déduire que $\cos(b-a) = \cos(a)\cos(b) + \sin(a)\sin(b)$.
- 3 Montrer que : cos(a + b) = cos(a)cos(b) sin(a)sin(b).
- 4 Montrer que : sin(a b) = sin(a)cos(b) cos(a)sin(b).
- **5** Déduire que : sin(a + b) = sin(a)cos(b) + cos(a)sin(b).
- **6** Montrer que : $\cos(2a) = 2\cos^2(a) 1$ et $\sin(2a) = 2\sin(a)\cos(a)$.
- Montrer que : $tan(a b) = \frac{tan(a) tan(b)}{1 + tan(a).tan(b)}$. En déduire que : $tan(a + b) = \frac{tan(a) + tan(b)}{1 - tan(a).tan(b)}$ et $tan(2a) = \frac{2tan(a)}{1 - tan^2(a)}$

Propriétés

- $\cos(a-b) = \cos a \cos b + \sin a \sin b$
- $2 \sin(a-b) = \sin a \cos b \cos a \sin b$
- $4 \cos(a+b) = \cos a \cos b \sin a \sin b$
- $| \mathbf{5} | \sin(a+b) = \sin a \cos b + \cos a \sin b$
- **6** $\tan(a+b) = \frac{\tan a + \tan b}{1 \tan a \times \tan b}$ $(a+b) \in \mathbb{R} \setminus \left\{ \frac{k\pi}{2}; \quad k \in \mathbb{Z} \right\}$

Démonstration

1 Montrons que cos(a - b) = cos(a)cos(b) + sin(a)sin(b). En effet :

Dans le repère orthonormé on considère deux vecteurs unitaires \overrightarrow{u} et \overrightarrow{v} tel que $(\overrightarrow{i}, \overrightarrow{u}) = a$ et $(\overrightarrow{i}, \overrightarrow{v}) = b$.

D'une part $\overrightarrow{u} \cdot \overrightarrow{v} = \cos\left(\widehat{\overrightarrow{u}}, \overrightarrow{v}\right)$ car les deux vecteurs sont unitaires.

D'autre part en se basant sur la relation de Chasles, on a :

$$\left(\widehat{\overrightarrow{u}}, \widehat{\overrightarrow{v}}\right) = \left(\widehat{\overrightarrow{u}}, \widehat{\overrightarrow{i}}\right) + \left(\widehat{\overrightarrow{i}}, \widehat{\overrightarrow{v}}\right) = b - a, \operatorname{donc} \cos\left(\widehat{\overrightarrow{u}}, \widehat{\overrightarrow{v}}\right) = \cos(b - a) = \cos(a - b)$$
 (1).

Les composantes des deux vecteurs sont : $\overrightarrow{u} \begin{pmatrix} \cos a \\ \sin a \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} \cos b \\ \sin b \end{pmatrix}$.

Or $\overrightarrow{u} \cdot \overrightarrow{v} = \cos(a)\cos(b) + \sin(a)\sin(b)$ (2).

Finalement d'après (1) et (2) on obtient cos(a - b) = cos(a)cos(b) + sin(a)sin(b)

Remplacer b par (-b) dans l'équation précédente.

$$\cos(a+b) = \cos(a - (-(b))) = \cos(a)\cos(-b) + \sin(a)\sin(-b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

3 Il suffit de remplacer b par $\left(\frac{\pi}{2} - b\right)$ dans la deuxième formule. On aura alors :

$$\cos\left(a - \left(\frac{\pi}{2} - b\right)\right) = \cos\left(a - \frac{\pi}{2} + b\right) = \cos\left(a + b - \frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2} - (a + b)\right) = \sin(a + b)$$

D'autre part on a :

$$\cos\left(a - \left(\frac{\pi}{2} - b\right)\right) = \cos a \cos\left(\frac{\pi}{2} - b\right) + \sin a \sin\left(\frac{\pi}{2} - b\right) = \cos a \sin b + \sin a \cos b$$

D'où on obtient le résultat : sin(a + b) = sin a cos b + cos a sin b

4

$$\sin(a-b) = \sin(a+(-b)) = \cos a \sin(-b) + \sin a \cos(-b) = -\cos a \sin b + \sin a \cos b$$
$$= \sin a \cos b - \cos a \sin b$$

5 Soit $(a+b) \in \mathbb{R} \setminus \left\{ \frac{k\pi}{2}; \quad k \in \mathbb{Z} \right\}$.

$$\tan(a+b) = \frac{\sin(a+b)}{\cos(a+b)} = \frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b} = \frac{\frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b}}{\frac{\cos a \cos b - \sin a \sin b}{\cos a \cos b}} = \frac{\frac{\sin a \cos b}{\cos a \cos b} + \frac{\cos a \sin b}{\cos a \cos b}}{\frac{\cos a \cos b}{\cos a \cos b}} = \frac{\frac{\sin a \cos b}{\cos a \cos b} + \frac{\cos a \sin b}{\cos a \cos b}}{\frac{\cos a \cos b}{\cos a \cos b}} = \frac{\tan a + \tan b}{1 - \tan a \times \tan b}$$

6 Remplacer b par (-b), on obtient :

$$\tan(a-b) = \tan(a+(-b)) = \frac{\tan a + \tan(-b)}{1 - \tan a \times \tan(-b)} = \frac{\tan a - \tan b}{1 + \tan a \times \tan b}$$

Propriétés

$$\cos(2a) = \cos^2(a) - \sin^2(a)$$

$$\cos(2a) = 2\cos^2(a) - 1$$

$$3 \cos(2a) = 1 - 2\sin^2(a)$$

$$4 \sin(2a) = 2\sin(a)\cos(a)$$

5
$$\tan(2a) = \frac{2\tan(a)}{1-\tan^2(a)}$$

Démonstration

$$\cos(2a) = \cos(a+a) = \cos a \cos a - \sin a \sin a = \cos^2 a - \sin^2 a$$

3
$$\cos(2a) = \cos^2 a - \sin^2 a = (1 - \sin^2(a)) - \sin^2(a) = 1 - \sin^2(a) - \sin^2(a) = 1 - 2\sin^2(a)$$
.

4

$$\sin(2a) = \sin(a+a) = \sin a \cos a + \cos a \sin a = 2\sin(a)\cos(a)$$

5

$$\tan(2a) = \tan(a+a) = \frac{\tan a + \tan a}{1 - \tan a \times \tan a} = \frac{2\tan a}{1 - \tan^2 a}$$

Transformation des produits aux sommes et transformation des sommes aux produits

2 Activité 2

- Calculer cos(a+b) + cos(a-b), sin(a+b) + sin(a-b) et cos(a+b) cos(a-b).
- On pose p = a + b et q = a b. Vérifier que : $a = \frac{p+q}{2}$ et $b = \frac{p-q}{2}$
- 3 En déduire cos(p) + cos(q), sin(p) + sin(q), cos(p) cos(q) et sin(p) sin(q).

Propriétés

Transformation des produits aux sommes :

- 1 $\cos(a) \cdot \cos(b) = \frac{1}{2}(\cos(a+b) + \cos(a-b))$
- 2 $\sin(a) \cdot \cos(b) = \frac{1}{2} (\sin(a+b) + \sin(a-b))$
- 3 $\sin(a) \cdot \sin(b) = -\frac{1}{2}(\cos(a+b) \cos(a-b))$

Transformation des sommes aux produits :

- **1** $\cos(p) + \cos(q) = 2\cos(\frac{p+q}{2}).\cos(\frac{p-q}{2})$
- **2** $\sin(p) + \sin(q) = 2\sin(\frac{p+q}{2}).\cos(\frac{p+q}{2})$
- 3 $\cos(p) \cos(q) = -2\sin(\frac{p+q}{2}).\sin(\frac{p+q}{2})$
- $4 \sin(p) \sin(q) = 2\cos(\frac{p+q}{2}).\sin(\frac{p+q}{2})$

Lien entre coordonnées polaires et coordonnées cartésiennes :

Soit $(O; \overrightarrow{i}; \overrightarrow{j})$ un repère orthonormal direct.

Propriété

Si M est un point ayant pour coordonnées cartésiennes (x;y) dans le repère $(O; \overrightarrow{i}; \overrightarrow{j})$ et pour coordonnées polaires $(r;\theta)$ alors :

$$r = \sqrt{x^2 + y^2}$$
; $x = r \cos \theta$; $y = r \sin \theta$

Démonstration

Notons (*U*) le cercle trigonométrique de centre *O*. La demi-droite [OM) coupe (U) en N.

On a donc $\overrightarrow{OM} = r \overrightarrow{ON}$.

 $N \in (U)$ donc ses coordonnées cartésiennes sont $(\cos \theta; \sin \theta)$. Celles de M sont donc $(r\cos\theta; r\sin\theta)$.

Par unicité des coordonnées, $x = r \cos \theta$ et $y = r \sin \theta$. De plus $OM^2 = x^2 + y^2$ et OM = r donc $r^2 = x^2 + y^2$. D'où:

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ x = r\cos\theta \\ y = r\sin\theta \end{cases}$$

Application

- **1** Écriver les coordonnées polaires du point $A\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.
- **2** Écriver les coordonnées cartésiennes du point $B\left(2\sqrt{3}, \frac{5\pi}{6}\right)$.

Solution

1 Écrivons les coordonnées polaires du point $A\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.

En effet :
$$r = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1$$
.

$$\begin{cases}
\cos \theta = \frac{x}{r} = -\frac{1}{2} \\
\sin \theta = \frac{y}{r} = \frac{\sqrt{3}}{2}
\end{cases}$$
 d'où $\theta = \frac{2\pi}{3}[2\pi]$. Ainsi $A\left(1, \frac{2\pi}{3}\right)$.

2 Écrivons les coordonnées cartésiennes du point $B\left(2\sqrt{3}, \frac{5\pi}{6}\right)$.

En effet :
$$\begin{cases} \cos \theta = \frac{x}{r} \Longrightarrow x = r \cos \theta = 2\sqrt{3} \cos \left(\frac{5\pi}{6}\right) = 2\sqrt{3} \times \frac{1}{2} = \sqrt{3} \\ \sin \theta = \frac{y}{r} \Longrightarrow y = r \sin \theta = 2\sqrt{3} \sin \left(\frac{5\pi}{6}\right) = 2\sqrt{3} \times \frac{\sqrt{3}}{2} = -3 \end{cases}$$
Ainsi $B(\sqrt{3}, -3)$.

Formules de transformation :

On veut transformer l'écriture suivante $a\cos x + b\sin x$ en $r\cos(x-\varphi)$ où r et φ à déterminer au fur et à mesure.

En effet, on sait que $\begin{cases} r = \sqrt{a^2 + b^2} \\ a = r \cos \varphi \\ b = r \sin \varphi \end{cases}$

D'où: $a\cos x + b\sin x = r\cos x\cos \varphi + r\sin x\sin \varphi = r(\cos x\cos \varphi + \sin x\sin \varphi) = r\cos(x - \varphi)$

Théorème

$$a\cos x + b\sin x = r\cos(x - \varphi).$$
 où
$$\begin{cases} r = \sqrt{a^2 + b^2} \\ a = r\cos\varphi \\ b = r\sin\varphi \end{cases}$$

Application

- Transformer l'écriture $\sqrt{3}\cos x + \sin x$.
- **2** Transformer l'écriture $-\sqrt{3}\cos\left(\frac{x}{3}\right) + \sin\left(\frac{x}{3}\right)$.

Solution

- Transformons l'écriture $\sqrt{3}\cos x + \sin x$. En effet $r = \sqrt{\sqrt{3}^2 + 1^2} = 2$; $\cos \varphi = \frac{\sqrt{3}}{2}$ et $\sin \varphi = \frac{\sqrt{1}}{2}$ D'où $\varphi = \frac{\pi}{6}[2\pi]$. Ainsi $\sqrt{3}\cos x + \sin x = 2\cos\left(x - \frac{\pi}{6}\right)$
- Transformons l'écriture $-\sqrt{3}\cos\left(\frac{x}{3}\right) + \sin\left(\frac{x}{3}\right)$. En effet $r = \sqrt{\left(-\sqrt{3}\right)^2 + 1^2} = 2$; $\cos\varphi = \frac{-\sqrt{3}}{2}$ et $\sin\varphi = \frac{\sqrt{1}}{2}$ D'où $\varphi = \frac{5\pi}{6}[2\pi]$. Ainsi $-\sqrt{3}\cos\left(\frac{x}{3}\right) + \sin\left(\frac{x}{3}\right) = 2\cos\left(\left(\frac{x}{3}\right) - \frac{5\pi}{6}\right)$

l Équations et inéquations trigonométriques

Propriétés

- Soit a et b deux réels : $sin a = sin b \Leftrightarrow (a = b + 2k\pi)$; $k \in \mathbb{Z}$ ou $a = \pi b + 2k\pi$; $k \in \mathbb{Z}$)
- Soit a et b deux réels : $\cos a = \cos b \Leftrightarrow (a = b + 2k\pi)$; $k \in \mathbb{Z}$ ou $a = -b + 2k\pi$; $k \in \mathbb{Z}$)
- **3** Soit a et b deux réels de $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + 2k\pi; k \in \mathbb{Z} \right\}$: $\tan a = \tan b \Leftrightarrow a = b + k\pi; k \in \mathbb{Z}$

Remarque

$$\sin x = 1 \Leftrightarrow x = \frac{\pi}{2} + 2k\pi$$

$$\sin x = -1 \Leftrightarrow x = -\frac{\pi}{2} + 2k\pi$$

$$\sin x = 0 \Leftrightarrow x = k\pi$$

Application

Résoudre dans] – π ; π [l'équation $\sin\left(x - \frac{\pi}{3}\right) = \frac{1}{2}$

Solution

$$\sin\left(x + \frac{\pi}{3}\right) = \frac{1}{2} \Leftrightarrow \sin\left(x - \frac{\pi}{3}\right) = \sin\frac{\pi}{6} \Leftrightarrow \begin{vmatrix} x - \frac{\pi}{3} & \frac{\pi}{6} + k \times 2\pi \\ \text{ou} \\ x - \frac{\pi}{3} & \frac{\pi}{6} + k \times 2\pi \end{vmatrix}$$

$$\Leftrightarrow \begin{vmatrix} x & \frac{\pi}{2} + k \times 2\pi \\ \text{ou} \\ x & \frac{7\pi}{6} + k \times 2\pi \end{vmatrix}$$

Sur l'intervalle] – π ; π [, on a $S = {\frac{\pi}{2}; -\frac{5\pi}{6}}$ }

IV Exercices

- 01
- 1 Vérifier que : $\frac{\pi}{12} = \frac{\pi}{3} \frac{\pi}{4}$ puis calculer $\cos(\frac{\pi}{12})$, $\sin(\frac{\pi}{12})$ et $\tan(\frac{\pi}{12})$.
- **2** Vérifier que : $\frac{7\pi}{12} = \frac{\pi}{3} + \frac{\pi}{4}$ puis calculer $\cos(\frac{7\pi}{12})$, $\sin(\frac{7\pi}{12})$ et $\tan(\frac{7\pi}{12})$.
- **3** Vérifier que : $\frac{\pi}{4} = 2 \times \frac{\pi}{8}$ puis calculer $\cos(\frac{\pi}{8})$, $\sin(\frac{\pi}{8})$ et $\tan(\frac{\pi}{8})$.
- 02
- Montrer que : $\sin(\frac{\pi}{3} x)$. $\sin(\frac{\pi}{6} x) = -\frac{1}{2} \left(\sin(2x) \frac{\sqrt{3}}{2} \right)$.
- **2** Montrer que : $\cos(x)\cos(2x) = \frac{1}{2}(\cos(3x) + \cos(x))$.
- 3 Montrer que : $\cos(x)\cos(2x)\cos(3x) = \frac{1}{4}(1+\cos(2x)+\cos(4x)+\cos(6x)).$
- Montrer que : $1 \sin(x) = 2\cos\left(\frac{\pi + 2x}{4}\right)\sin\left(\frac{\pi 2x}{4}\right)$.
- **5** Montrer que : cos(7x) cos(5x) = -2sin(6x)sin(x).
- Montrer que, pour tous réels a et b: $\sin(a+b)\sin(a-b) = \sin^2 a \sin^2 b$
- Montrer que, pour tout réel $x : \cos^4 x \sin^4 x = \cos(2x)$
- Montrer que, pour tout réel x différent de $k\frac{\pi}{2}$, où $k \in \mathbb{Z}$: $\frac{\sin 3x}{\sin x} \frac{\cos 3x}{\cos x} = 2$
- **06** Résoudre dans R les équations suivantes :
 - $2\sin^3 x 17\sin^2 x + 7\sin x + 8 = 0$;
 - $2\cos^3 x 7\cos^2 x + 3 = 0$;
 - $2\sin^3 x + \cos^2 x 5\sin x 3 = 0$.

- Dans cet exercice, on dispose de la donnée suivante : $\tan \frac{\pi}{8} = \sqrt{2} 1$.

 On rappelle que $\tan x = \frac{\sin x}{\cos x}$ pour tout $x \in D = \mathbb{R} \left\{ \frac{\pi}{2} + k\pi \right\}$ où $k \in \mathbb{Z}$.
 - Démontrer que pour tout $x \in D$: $\tan(\pi + x) = \tan x$. En déduire la valeur exacte de $\tan \frac{9\pi}{8}$.
 - Démontrer que pour tout $x \in D$: $1 + \tan^2 x = \frac{1}{\cos^2 x}$. En déduire la valeur exacte de $\cos \frac{\pi}{8}$ puis de $\sin \frac{\pi}{8}$.
 - **3** Calculer la valeur exacte de $\cos \frac{5\pi}{8}$.
- Dans cet exercice, on dispose de la donnée suivante : $\tan \frac{\pi}{12} = 2 \sqrt{3}$.
 - 1 Soit $x \in \left]0; \frac{\pi}{2}\right[$. Démontrer que $\tan\left(\frac{\pi}{2} x\right) = \frac{1}{\tan x}$.
 - **2** En déduire que tan $\frac{5\pi}{12} = 2 + \sqrt{3}$.
- Dans cet exercice on donne : $\cos \frac{\pi}{5} = \frac{1+\sqrt{5}}{4}$. Calculer la valeur exacte de $\cos \frac{2\pi}{5}$ puis de $\cos \frac{3\pi}{5}$
- Démontrer que, pour tout $x \in \left]0; \frac{\pi}{2}\right[: \tan x = \frac{1 \cos(2x)}{\sin(2x)}$. En déduire les valeurs exactes de $\tan \frac{\pi}{8}$ et $\tan \frac{\pi}{12}$.
- 11 ABC est un triangle non rectangle.
 - Démontrer que $tan(A + B) = \frac{tan A + tan B}{1 tan A tan B}$.
 - **2** Démontrer que tan(A + B) = -tan C.
 - **3** En déduire la relation : $\tan A + \tan B + \tan C = \tan A \times \tan B \times \tan C$

- 12
- 1 On considère le polynôme P définie par $P(x) = 4x^3 2x^2 3x + 1$.
 - **a.** Calculer P(1).
 - **b.** Résoudre l'équation P(x) = 0.
- **a.** Montrer que pour tout réel *x* on a :
 - i. $cos(2x) = 2cos^2(x) 1$;
 - ii. $cos(3x) = 4cos^3(x) 3cos(x)$.
 - **b.** Résoudre l'équation trigonométrique $4\cos^3(x) 2\cos^2(x) 3\cos(x) + 1 = 0$ dans $]-\pi,\pi]$ et représenter les images des solutions sur le cercle trigonométrique.
- **3** En déduire des questions 1 et 2 les valeurs exactes de $\cos\left(\frac{2\pi}{5}\right)$ et $\cos\left(\frac{4\pi}{5}\right)$.
- Pour tout $x \in \mathbb{R}$, on pose $f(x) = \cos(2x) + \sin(2x)$
 - **1** Calculer: $f\left(\frac{\pi}{12}\right)$ et $f\left(\frac{3\pi}{8}\right)$.
 - Montrer que $f(x) = 2\cos\left(2x \frac{\pi}{4}\right)$. En déduire que $\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2} + \sqrt{6}}{4}$
 - Montrer que $f(x) = 2\sqrt{2}\cos(x)\cos\left(x \frac{\pi}{4}\right) 1$. En déduire que $\cos\left(x - \frac{\pi}{8}\right)\cos\left(\frac{3\pi}{8}\right) = \frac{\sqrt{2}}{4}$
 - **4** Résoudre dans $]0;\pi]$ l'inéquation $f(x) \le \frac{\sqrt{6}}{2}$
- Pour tout $x \in \mathbb{R}$, on pose $g(x) = \sin(3x) + \sin\left(x \frac{2\pi}{3}\right)$.
 - **1** Résoudre dans \mathbb{R} l'équation g(x) = 0.
 - **2 a.** Montrer que $g(x) = 2\cos\left(x + \frac{\pi}{3}\right) \times \sin\left(2x \frac{\pi}{3}\right)$.
 - **b.** Résoudre dans $\left[-\frac{\pi}{3}; \frac{2\pi}{3}\right]$ l'inéquation $g(x) \le 0$.
 - **3 a.** Montrer que $2g(x) = 5\sin(x) \sqrt{3}\cos(x) 8\sin^3(x)$.
 - **b.** Calculer $g\left(\frac{\pi}{4}\right)$. En déduire la valeur de $\sin\left(\frac{5\pi}{12}\right)$.

15

Soit $x \in \mathbb{R} \setminus \left\{ \frac{k\pi}{2} / k \in \mathbb{Z} \right\}$.

- 1 Montrer que $\tan^2(x) + \frac{1}{\tan^2(x)} = \frac{4}{\sin^2(2x)} 2$.
- **2** En déduire que $\tan^2\left(\frac{\pi}{8}\right) + \tan^2\left(\frac{3\pi}{8}\right) = 6$.

16

1 Écrire les expressions suivantes en fonction de sin(x) et cos(x):

•
$$A(x) = \cos\left(x + \frac{\pi}{4}\right)\cos(\pi - x) + \sin\left(x + \frac{\pi}{4}\right)\sin(\pi - x)$$

- $B(x) = \sin\left(x + \frac{\pi}{3}\right)\sin\left(x \frac{\pi}{3}\right) \sin^2(x)$
- **2** Déterminer les valeurs exactes de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$ en remarquant que $\frac{\pi}{6} = 2 \times \frac{\pi}{12}$
- **3** On se propose de résoudre l'équation trigonométrique :

$$(E): \cos\left(x + \frac{\pi}{6}\right) - \sqrt{3}\sin\left(x + \frac{\pi}{6}\right) = \sqrt{2}$$

- **a.** Montrer que $\cos\left(x + \frac{\pi}{6}\right) \sqrt{3}\sin\left(x + \frac{\pi}{6}\right) = A\sin\left(x + B\right)$ où A et B sont deux nombres réels à déterminer.
- **b.** Résoudre dans \mathbb{R} l'équation (E).
- **c.** Résoudre dans $[0, 2\pi]$ l'inéquation $\cos\left(x + \frac{\pi}{6}\right) \sqrt{3}\sin\left(x + \frac{\pi}{6}\right) \le \sqrt{2}$.

17

- Montrer que pour tout nombre réel on a $\sin^6(x) + \cos^6(x) = 1 \frac{3}{4}\sin^2(2x)$.
- **2** Résoudre dans $]-\pi;\pi[$ l'équation : $\sin^6(x) + \cos^6(x) = \frac{7}{16}$.
- 3 Placer les points images sur un cercle trigonométrique.
- Soit x est un nombre réel tel que $x \neq \frac{k\pi}{2}$; $k \in \mathbb{Z}$
 - **a.** Calculer $\frac{\sin(3x)}{\sin(x)} \frac{\cos(3x)}{\cos(x)}$.
 - **b.** Calculer $\cos(x)$ sachant que $\tan(x) = \frac{1+\sqrt{3}}{1-\sqrt{3}}$ et $x \in \left[\frac{-\pi}{2}; 0 \right[$.

- On considère l'équation : (E) : $(2\sin^2(x) + \sqrt{3}\sin(x) 3)(\sqrt{3}\cos(x) + \sin(x) 1) = 0$.
 - Résoudre dans \mathbb{R} l'équation : $2t^2 + \sqrt{3}t 3 = 0$. En déduire les solutions de l'équation $2\sin^2(x) + \sqrt{3}\sin(x) 3 = 0$
 - **2** Déterminer deux nombres r et α tels que $\sqrt{3}\cos(x) + \sin(x) = r\cos(x + \alpha)$.
 - **3** Résoudre dans $]-\pi;\pi]$ l'équation (*E*).
 - 4 Placer les images des solutions de l'équation (*E*) sur le cercle trigonométriques.
- 19 Démontrer que pour tout nombre réel $a : \cos(5a) = 16\cos^5(a) 20\cos^3(a) + 5\cos(a)$
 - **2** Vérifier que pour tout nombre réel $x: 16x^5 20x^3 + 5x + 1 = (x+1)(4x^2 2x 1)^2$
 - On pose $t = \cos\left(\frac{\pi}{5}\right)$.

 Démontrer que le nombre réel t est solution de l'équation $4x^2 2x 1 = 0$, puis que $t = \frac{1+\sqrt{5}}{4}$
 - **4** En déduire $\sin\left(\frac{\pi}{5}\right)$, $\cos\left(\frac{2\pi}{5}\right)$, $\sin\left(\frac{2\pi}{5}\right)$, $\cos\left(\frac{\pi}{10}\right)$, $\sin\left(\frac{\pi}{10}\right)$.