Summary

Sink States: $0(0 \times 10^0)$

Table 1: Sip4J Analysis Summary

Classes	Methods	States	Unreachable clauses	Unreachable states	Possible concurrent methods	Total. no. of method pairs	No. of concurrent method pairs	Percentage of concurrent methods pairs
StdRandom	25	1	0	0	1	325	1	0
MersenneTwisterFast	6	1	0	0	0	21	0	0
StdOut	5	1	0	0	0	15	0	0
Gaussian	8	1	0	0	7	36	23	64
SeqBlackScholes	5	1	0	0	1	15	1	7
BlackScholes	1	1	0	0	0	1	0	0
Total Classes=6	50	6	0	0	9	413	25	6

Contents

1	StdRandom	3
2	MersenneTwisterFast	5
3	StdOut	6
4	Gaussian	7
5	SeqBlackScholes	8
6	BlackScholes	9
7	Abbreviation	10
8	Annotated version of the input program generated by Sip4J	11

1 StdRandom

 ${\it Table 2: Method's Satisfiability} ({\it Code Reachability Analysis}$

Method	Satisfiability
StdRandom	/
	V
setSeed	V
getSeed	
uniformO1	$$
uniformO2	
random	$\sqrt{}$
uniformO3	\checkmark
uniform	
bernoulliO1	$\sqrt{}$
bernoulliO2	\checkmark
gaussianO1	\checkmark
gaussianO2	\checkmark
geometric	\checkmark
poisson	
pareto	
cauchy	
discrete	$\sqrt{}$
exp	$\sqrt{}$
shuffleO1	$\sqrt{}$
shuffleO2	$\sqrt{}$
shuffleO3	$\sqrt{}$
shuffleO4	$\sqrt{}$
shuffleO5	$\sqrt{}$
shuffleO6	√ ·
main	$\sqrt{}$

Table 3: State Transition Matrix

Table 4: Methods Concurrency Matrix

	StdRandom	setSeed	getSeed	uniformO1	uniformO2	random	uniformO3	uniform	bernoulliO1	bernoulliO2	gaussianO1	gaussianO2	geometric	poisson	pareto	cauchy	discrete	exp	shuffleO1	shuffleO2	shuffleO3	shuffleO4	shuffleO5	shuffleO6	main
StdRandom	#	#	#	#	#	#	#	#	#	¥	#	#	#	\parallel	#	#	#	#	#	#	#	#	#	\parallel	#
setSeed	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	\parallel	#
getSeed	#	#		#	#	#	#	#	#	#	#	\parallel	#	\parallel	#	#	#	#	#	#	#	#	#	#	#
uniformO1	#	#	#	#	#	#	#	#	#	#	#	\parallel	#	\parallel	#	#	#	#	#	#	#	#	#	\parallel	#
uniformO2	#	#	#	#	#	#	#	#	#	ł	#	#	#	#	#	#	#	#	#	#	#	#	#	\parallel	#
random	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	\parallel	#
uniformO3	#	#	#	\parallel	¥	\parallel	#	#	¥	#	#	#	#	#	#	#	#	\parallel	#	\parallel	#	\parallel	#	*	#

uniform	#	#	\parallel	#	#	#	#	#	#	#	#	#	*	\parallel	#	#	#	*	#	#	ł	#	#	\parallel	\parallel
bernoulliO1	#	#	#	#		#	#	#	#	#	#	#	#	#	*	#	#	*	#	#	#	#	#	#	\parallel
bernoulliO2	#	#	#	1		#	#	#	#	#	\parallel	#	#	\parallel	 	#	#	#	#	#	#	#	#	#	\forall
gaussianO1	#	#	#	#	#	#	#	#	¥	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#
gaussianO2	#	#	#	#	#	#	#	#	\parallel	#	\parallel	#	#	\parallel	#	#	#	#	#	#	#	#	#	#	\parallel
geometric	#	#	#	#	#	#	#	#	#	#	\parallel	#	#	\parallel	*	#	#	*	#	#	#	#	#	#	#
poisson	#	#	#	#	#	#	#	#	#	#	\parallel	#	#	\parallel	#	#	#	#	#	#	#	#	#	#	\parallel
pareto	#	#	#	#	#	#	#	#	#	#	#	#	#	#	*	#	#	*	#	#	#	#	#	#	\parallel
cauchy	#	#	 	 	#	#	#	#	#	 	#	#	\parallel	#	*	#	#	*	#	#	#	#	#	#	#
discrete	#	#	#	#	#	#	#	#	#	#	#	#	#	\parallel	*	#	#	*	#	#	#	#	#	#	\parallel
exp	#	#	 			#	#	#	#	 	#	#	 	#	*	#	#	*	#	#	#	#	#	#	#
shuffleO1	#	#	#	#		#	#	#	#	#	#	#	#	#	*	#	#	*	#	#	#	#	#	#	\parallel
shuffleO2	#	#	#	#	#	#	#	#	#	#	#	#	#	\parallel	#	#	#	#	#	#	#	#	#	#	\parallel
shuffleO3	#	#	#	#	#	#	#	#	¥	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#
shuffleO4	#	#	#	#	#	#	#	#	#	#	#	#	#	\parallel	#	#	#	#	#	#	#	#	#	#	\parallel
shuffleO5	#	#	#	#	#	#	#	#	#	#	#	#	#	#	 	#	#	*	#	#	#	#	#	#	1
shuffleO6	#	#	1	1	#	#	#	#	1	#	\parallel	#	1	#	1	#	1	#	1	#	#	#	#	#	1
main	\parallel	 	#	1		\parallel	#	\parallel	#		#	#	 	#	 	#	1	#	\parallel	 	\parallel	\parallel	#	\parallel	1

2 MersenneTwisterFast

 ${\it Table 5: Method's Satisfiability} ({\it Code Reachability Analysis}$

Method	Satisfiability
MersenneTwisterFast	\checkmark
setSeed	\checkmark
nextDouble	$\sqrt{}$
nextInt	\checkmark
nextShort	$\sqrt{}$
nextBoolean	

Table 6: State Transition Matrix

	alive
alive	↑

Table 7: Methods Concurrency Matrix

	MersenneTwisterFast	setSeed	nextDouble	nextInt	nextShort	nextBoolean
MersenneTwisterFast	#	#	#	#	#	#
setSeed	#	#	#	#	#	*
nextDouble	#	#	#	#	#	#
nextInt	#	#	#	#	#	#
nextShort	#	#	#	#	#	#
nextBoolean	#	#	#	#	#	#

3 StdOut

 ${\it Table~8:~Method's~Satisfiability} ({\it Code~Reachability~Analysis}$

Method	Satisfiability
StdOut	
println	
printf	
print	
close	

Table 9: State Transition Matrix

	alive
alive	1

Table 10: Methods Concurrency Matrix

	StdOut	println	printf	print	close
StdOut	#	#	#	#	#
println	#	#	#	#	*
printf	#	#	#	#	#
print	#	#	#	#	#
close	*	#	#	#	\parallel

4 Gaussian

Table 11: Method's Satisfiability(Code Reachabiity Analysis

Method	Satisfiability
Gaussian	\checkmark
phi	\checkmark
phiOverload	\checkmark
PhiOverload	\checkmark
Phi	\checkmark
PhiInverse	\checkmark
PhiInverseOverload	\checkmark
main	$\sqrt{}$

Table 12: State Transition Matrix

	alive
alive	↑

Table 13: Methods Concurrency Matrix

	Gaussian	phi	phiOverload	PhiOverload	Phi	PhiInverse	PhiInverseOverload	main
Gaussian	#	#	#	#	#	#	#	#
phi	#							H
phiOverload	#							\forall
PhiOverload	#							\parallel
Phi	#							
PhiInverse	#							
PhiInverseOverload	#							#
main	\parallel	#	#	\parallel			\parallel	*

5 SeqBlackScholes

Table 14: Method's Satisfiability(Code Reachability Analysis

Method	Satisfiability
SeqBlackScholes	
callPrice	
call	
call2	
main	

Table 15: State Transition Matrix

	alive
alive	↑

Table 16: Methods Concurrency Matrix

	SeqBlackScholes	callPrice	call	call2	main
SeqBlackScholes	#	#	#	#	#
callPrice	#		#	#	\parallel
call	#	#	#	#	#
call2	#	#	#	#	\parallel
main	#	#	#	#	#

6 BlackScholes

Table 17: Method's Satisfiability(Code Reachabiity Analysis

Method	Satisfiability
BlackScholes	$$

Table 18: State Transition Matrix

	alive
alive	↑

7 Abbreviation

Table 19: Used Abbreviation

Symbol	Meaning
	requires clause of the method is satisfiable
×	requires clause of the method is unsatisfiable
↑	The row-state can be transitioned to the column-state
×	The row-state cannot be transitioned to the column-state
	The row-method can be possibly executed parallel with the column-method
#	The row-method cannot be executed parallel with the column-method

8 Annotated version of the input program generated by Sip4J

```
package outputs;
import edu.cmu.cs.plural.annot.*;
    @ClassStates({@State(name = "alive")})
    class StdRandom {
   @Perm(ensures="unique(this) in alive")
StdRandom() { }
    @Perm(requires="unique(this) in alive",
   ensures="unique(this) in alive")
void setSeed(long s) {
   Perm(requires="pure(this) in alive",
ensures="pure(this) in alive")
long getSeed() {
return 0;
   @Perm(requires="share(this) in alive",
ensures="share(this) in alive")
double uniform01() {
23
     return 0;
   GPerm(requires="share(this) in alive",
ensures="share(this) in alive")
int uniform02(int N) {
     return 0;
29
   }
@Perm(requires="share(this) in alive",
   ensures="share(this) in alive")
double random() {
     return 0;
   @Perm(requires="share(this) in alive",
   ensures="share(this) in alive")
int uniform03(int a, int b) {
   @Perm(requires="share(this) in alive",
   ensures="share(this) in alive")
double uniform(double a, double b) {
    return 0;
   @Perm(requires="share(this) in alive",
   ensures="share(this) in alive")
    boolean bernoulli01(double p) {
return 0;
   @Perm(requires="share(this) in alive",
   ensures="share(this) in alive")
boolean bernoulli02() {
    return 0;
   Perm(requires="share(this) in alive",
   ensures="share(this) in alive")
  double gaussianO1() {
  return 0;
  Perm(requires="share(this) in alive",
ensures="share(this) in alive")
double gaussian02(double mean, double stddev) {
   OPerm(requires="share(this) in alive",
ensures="share(this) in alive")
int geometric(double p) {
     return 0:
```

```
@Perm(requires="share(this) in alive",
     ensures="share(this) in alive")
int poisson(double lambda) {
       return 0;
     @Perm(requires="share(this) in alive",
     ensures="share(this) in alive")
  double pareto(double alpha) {
  return 0;
     OPerm(requires="share(this) in alive",
ensures="share(this) in alive")
double cauchy() {
       return 0;
     OPerm(requires="share(this) in alive",
ensures="share(this) in alive")
int discrete(double[] a) {
       return 0:
101
     gPerm(requires="share(this) in alive",
ensures="share(this) in alive")
  double exp(double lambda) {
  return 0;
104
106
107
109
     @Perm(requires="share(this) in alive",
110
     ensures="share(this) in alive")
void shuffleO1(Object[] a) {
112
114
     OPerm(requires="share(this) in alive",
ensures="share(this) in alive")
void shuffle02(double[] a) {
115
117
     GPerm(requires="share(this) in alive",
ensures="share(this) in alive")
void shuffle03(int[] a) {
120
12
122
     GPerm(requires="share(this) in alive",
ensures="share(this) in alive")
void shuffle04(Object[] a, int lo, int hi) {
125
126
129
     OPerm(requires="share(this) in alive",
ensures="share(this) in alive")
void shuffleO5(double[] a, int lo, int hi) {
131
132
134
     @Perm(requires="share(this) in alive",
        ensures="share(this) in alive")
void shuffle06(int[] a, int lo, int hi) {
136
     ensures=
137
139
     @Perm(requires="unique(this) in alive",
     ensures="unique(this) in alive")
void main(String[] args) {
142
144 }
146 }ENDOFCLASS
148 @ClassStates({@State(name = "alive")})
     class MersenneTwisterFast {
150
     @Perm(ensures="unique(this) in alive")
MersenneTwisterFast() {
}
15
152
     @Perm(requires="unique(this) in alive",
     ensures="unique(this) in alive")
void setSeed(final long seed) {
155
156
     @Perm(requires="share(this) in alive",
```

```
160 ensures="share(this) in alive")
161 double nextDouble() {
       return 0;
162
164
     @Perm(requires="share(this) in alive",
     ensures="share(this) in alive")
int nextInt(final int n) {
166
167
168
      return 0;
    @Perm(requires="share(this) in alive",
ensures="share(this) in alive")
    short nextShort() {
    return 0;
171
172
174
176
     @Perm(requires="share(this) in alive",
177
     ensures="share(this) in alive")
boolean nextBoolean() {
179
      return 0;
180
182 }
184 }ENDOFCLASS
    @ClassStates({@State(name = "alive")})
    class StdOut {
188
    @Perm(ensures="unique(this) in alive")
StdOut() { }
190
    @Perm(requires="share(this) in alive",
ensures="share(this) in alive")
void println(Object x) {
193
194
196
     @Perm(requires="share(this) in alive",
     ensures="share(this) in alive")

void printf(String format, Object... args) {
198
199
201
    OPerm(requires="share(this) in alive",
ensures="share(this) in alive")
void print(Object x) {
202
203
204
206
    OPerm(requires="share(this) in alive",
ensures="share(this) in alive")
void close() {
207
209
211 }
213 }ENDOFCLASS
215 @ClassStates({@State(name = "alive")})
    class Gaussian {
217
    @Perm(ensures="unique(this) in alive")
Gaussian() {
    }
218
     @Perm(requires="pure(this) in alive",
    ensures="pure(this) in alive")
  double phi(double x) {
  return 0;
222
223
    226
228
229
230
    @Perm(requires="pure(this) in alive",
ensures="pure(this) in alive")
double PhiOverload(double z) {
233
234
      return 0:
236
238 }
        double Phi(double z, double mu, double sigma) {
```

```
241 return 0;
         double PhiInverse(double y, double delta, double lo, double hi) {
245
    @Perm(requires="pure(this) in alive",
ensures="pure(this) in alive")
double PhiInverseOverload(double y) {
250
252
      return 0:
     Perm(requires="unique(this) in alive",
ensures="unique(this) in alive")
void main(String[] args) {
255
256
261 }ENDOFCLASS
263 @ClassStates({@State(name = "alive")})
     class SeqBlackScholes {
     @Perm(ensures="unique(this) in alive")
SeqBlackScholes() {
}
266
    @Perm(requires="immutable(this) in alive",
ensures="immutable(this) in alive")
double_callPrice(double S, double X, double r, double sigma, double T) {
269
27
      return 0;
272
274
     Perm(requires="share(this) in alive",
ensures="share(this) in alive")
double call(double S, double X, double r, double sigma, double T, long N) {
275
277
280
     OPerm(requires="share(this) in alive",
ensures="share(this) in alive")
double call2(double S, double X, double r, double sigma, double T, long N) {
282
28
      return 0:
     OPerm(requires="unique(this) in alive",
ensures="unique(this) in alive")
void main(String[] args) {
287
288
291 }
293 }ENDOFCLASS
295 @ClassStates({@State(name = "alive")})
     class BlackScholes {
     @Perm(ensures="unique(this) in alive")
BlackScholes() { }
298
299
302 }ENDOFCLASS
```