

1. Stromdichte

Bestimmen Sie die Länge eines Konstantan-Drahtes mit ρ_K = 0.5 Ω mm²/m, so dass die Stromdichte J = 1800 A/cm² bei einer Spannung von 180 V beträgt. [20m]

2. Strom über Ladung bestimmen

Die folgende Ladungsmenge Q wird über einen Leiter transportiert: $O(t) = (9mC/s^2)t^2 + 5mC$ $0 \le t \le 10s$

- a) Bestimmen Sie die Gleichung für den Momentanwert des Stromes i(t).
- b) Berechnen Sie den Strom zum Zeitpunkt t = 5s. [90mA]

3. Schichtdicke

Die Dicke einer Silberschicht, die auf eine Glasplatte gesputtert wurde, soll über eine Widerstandsmessung bestimmt werden. Die Abmessungen der Glasplatte sind $\ell=31$ mm und a = 5.6 mm. Der Widerstand ist R = 19 Ω . Es gilt ρ =0.016 Ω mm²/m.

a) Berechnen Sie die Schichtdicke.[4,66nm]

b) Bestimmen Sie den Widerstand einer Silberschicht gleicher Dicke, aber mit doppelter Breite a und doppelter Länge ℓ im Vergleich zu a). [19 Ω]

4. Temperaturkoeffizient

Ein Widerstand hat eine Temperaturabhängigkeit, die durch R(9) = R₂₀(1 + α_{20} (9 - θ_{20})) beschrieben wird. Durch eine Messung ergibt sich: R(40°C) = 107 Ω R(100°C) = 138 Ω

Bestimmen Sie den Temperaturkoeffizienten α_{20} . [5.34·10⁻³/K]

5. Wirkungsgrad

Der Wirkungsgrad einer Halogenleuchte (12 V, 20 W) wird mit 3% angegeben. Diese soll durch einen LED Spot (betrieben an 12 V mit 350 mA) ersetzt werden, bei der die LED einen Wirkungsgrad von 30% aufweist und an einem Vorschaltgerät mit einem Wirkungsgrad von 85% betrieben wird.

Bestimmen Sie jeweils die elektrische Leistungsaufnahme und die resultierende Lichtleistung.

[Halogen: $P_{in} = 20 \text{ W}$, $P_{out} = 0.6 \text{ W}$; LED: $P_{in} = 4.2 \text{ W}$, $P_{out} = 1.1 \text{ W}$]