Class Documentation Contents

Contents

Class Documentation List of Tables

List of Figures

List of Tables

Class Documentation Neural Nets Overview

Neural Nets Overview

This section covers the basic workings and theory behind a neural net. It is divided up into 3 sections; vocabulary, structure, and updating.

Vocabulary

This section goes over the nomenclature used in this chapter. Variables are all defined as well as other terminology.

- **Performance Function** $(g(x,\theta))$: The performance function defines how close the output of the neural net is to the expected value. This is used with a gradient descent to help train the net.
- Gradient descent: A mathematical procedure used to find the local minima based on a derivative. The derivative is subtracted from the total and then rerun again. Once the derivative equals zero, a minima has been located.
- Step Size (μ):a coefficient used to control how large the step size will be in the gradient descent function.
- theta (θ) : a vector representing both the weights (\mathbf{x}) and the bias term b_0
- A: the result of a single layer neuron before the non-linear function is applied.
- Z: the result of applying the non-linear function to A

The nueral network structre is seen in the images below:

Figure 1: Multi Neuron Network