针对时间序列分类(TSC)的深度模型

Deep Learning for Time Series Classification¹

Xinyi Li

2019年11月20日

¹Hassan Ismail Fawaz et al. "Deep learning for time series classification: a review". In: *Data Mining and Knowledge Discovery* 33.4 (2019), pp. 917–963.

Overview

问题背景描述

Strong Baseline

TSC 社区生态

深度模型结构

MLP/DNN

FCN

ResNet

Encoder

MCNN

Time Le-Net

MCDCNN

Time-CNN

TWIESN

Different Learning Tasks

Univariate

Multi-variate

MTS

- ► different measurements of the **same** instance
- **▶** high correlation
- ► feeding features

panel data

- the same measurements on different instances
- ▶ i.i.d. assumption
- ► feeding sku/store/...

Problem Description

univariance/multi-variance/panel

HIVE-COTE²:

 $\textbf{SOTA} \ classic \ algorithm^3 \colon \ Collective \ of \ Transformation \ based \ \textbf{Ensembles} \ (COTE) \ with \ a \ Hierarchical \ Vote \ system$

- 1. Elastic Ensemble(**EE**): combination of 1-NN classifiers using different measurements
- 2. Shapelet Transform Ensemble(ST): top k shaplets (independent phase short pattern)
- 3. Bag-of-SFA-Symbols (BOSS) Ensemble: shapelets based on presence or absence
- 4. Time Series Forest (**TSF**): trained on selected $3\sqrt{m}$ features
- 5. Random Interval Features (RIF): spectral component of Flat-COTE

² Jason Lines, Sarah Taylor, and Anthony Bagnall. "Hive-cote: The hierarchical vote collective of transformation-based ensembles for time series classification". In: *2016 IEEE 16th international conference on data mining (ICDM)*. IEEE. 2016, pp. 1041–1046.

³Anthony Bagnall et al. "The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances". In: *Data Mining and Knowledge Discovery* 31.3 (2017), pp. 606–660.

HIVE-COTE Algorithm⁴

ensemble of ensembles: ref to Flat-COTE

Algorithm 1 ProportionalEnsemble(classifiers, train, test)

```
1. trainAccs = \emptyset.
2: for i \leftarrow 1 to |classifiers| do
      trainAccs_i = loocv(train, classifiers[i])
      classifiers_i.buildClassifier(train)
5: testPreds = \emptyset
6: for i \leftarrow 1 to |test| do
    votes = \emptyset
    bsfWeight = -1;
     bsfClass = -1;
      for c \leftarrow 1 to |classifiers| do
     p = classifiers_c.classifv(test_i)
11:
        votes_p = votes_p + trainAccs_c;
         if votes_p > bsfWeight then
            bsfWeight = votes_n
            bsfClass = p
         testPreds_i = bsfClass
17: return testPreds
```

⁴https://github.com/TonyBagnall/py-hive-cote

Libraries/Implements/Community

sktime⁵ & its extensions

Sktime

- ► based on classic models (shallow)
- ► scikit-learn interface compatible

Sktime-dl

- ▶ use Keras to implement all 9 **SOTA** deep models above
- ▶ 暂时**不能**直接安装(MacOS)

UEA & UCR Time Series Classification Repository

- ► 128 TSC datasets + 30 MTS datasets
- ► Collect a bunch of **classic** algorithms

⁵Markus Löning et al. *sktime: A Unified Interface for Machine Learning with Time Series*. 2019. eprint: arXiv:1909.07872.

MLP/DNN

Multi Layer Perceptrons/Fully-Connected(FC) Network

The Simplest DNN (e.g. keras.Layers.Dense)

$$\mathbf{X}_{i+1} = \sigma(\mathbf{W}_i \mathbf{X}_i + b_i)$$

Final (*I*-th) layer activate function: softmax

$$\hat{y}_k(\mathbf{X}_{l-1}) = (e^{\mathbf{W}_k \mathbf{X}_{l-1} + b_k}) / (\sum_{i=1}^K e^{\mathbf{W}_i \mathbf{X}_{l-1} + b_i})$$

Objective loss: categorical cross entropy

$$Loss(\mathbf{X}) = -\sum_{i=1}^{K} y_i \log \hat{y}_i$$

minimized to learn the weights using gradient descent method

FCN⁶

Fully Convolutional Neural Network

convolution layer (\forall time stamp t shares filter ω with length l)

$$\mathbf{C}_t = \sigma(\omega * \mathbf{X}_{t-1/2:t+1/2} + \mathbf{b}) | \forall t \in [1, T]$$

⁶John Cristian Borges Gamboa. "Deep learning for time-series analysis". In: *arXiv preprint arXiv:1701.01887* (2017).

ResNet⁷

Residual Network

⁷Zhiguang Wang, Weizhong Yan, and Tim Oates. "Time series classification from scratch with deep neural networks: A strong baseline". In: *2017 international joint conference on neural networks (IJCNN)*. IEEE. 2017, pp. 1578–1585.

Encoder⁸

Hybrid deep CNN based on FCN

Modified from ECN

- ► GAP layer → attention layer (careful design for pre-train)
- normalization for each Conv layer output:
 - 1. $ReLU \rightarrow PReLU$ activation function (+ parameter)
 - $2. \ + \ dropout \ regularization$
 - 3. + max pooling

⁸Joan Serrà, Santiago Pascual, and Alexandros Karatzoglou. "Towards a Universal Neural Network Encoder for Time Series.". In: *CCIA*. 2018, pp. 120–129.

MCNN⁹

Multi-scale Convolutional Neural Network

Similar to Traditional CNN:

- 1. 2 Conv layer (with max pooling)
- 2. 1 Fully-connected layer
- 3. final softmax layer

Heavy data pre-preprocessing step:

Window Slicing(WS)

for data augmentation:

- 1. slide a window over raw input
- 2. extract subsequences

Before training, \forall subsequence

Transformations (parallel)

- 1. identity mapping
 - lacktriangle keep unchanged ightarrow 1-st Conv
- 2. down-sampling
 - ► → different shorter lengths subsequences
 - ightharpoonup ightharpoonup 1-st Conv
- 3. smoothing:
 - ► equal length one
 - ightharpoonup ightharpoonup 1-st Conv
 - ightharpoonup ightharpoonup 2-nd Conv

⁹Zhicheng Cui, Wenlin Chen, and Yixin Chen. "Multi-scale convolutional neural networks for time series classification". In: arXiv preprint arXiv:1603.06995 (2016).

MCNN

Framework

Time Le-Net¹⁰

Inspired by Le-Net¹¹, like CNN: 2 Conv + FC + final softmax

Compared to FCN:

 $\mathsf{GAP} \to \mathsf{FC}$

Local max pooling

- ► take max in a local pooling
- ► + invariance to small perturbations
- ► shorten a time series

Still #parameters ↑ #invariance ↓

Data augmentation to prevent overfitting especially on relatively small datasets

Window Slicing(WS)

= method used in MCNN

Window Warping (WW)

For a time series with length /

- 1. dilate $(\times 2) \rightarrow 2I$
- 2. squeeze $(\times \frac{1}{2}) \rightarrow \frac{1}{2}I$

¹⁰Arthur Le Guennec, Simon Malinowski, and Romain Tavenard. "Data augmentation for time series classification using convolutional neural networks". In: 2016.

¹¹Yann LeCun et al. "Gradient-based learning applied to document recognition". In: *Proceedings of the IEEE* 86.11 (1998), pp. 2278–2324.

Window Warping (WW)

Then feed all data (length= $l, 2l, \frac{1}{2}l$) into network

MCDCNN¹²

Multi Channel Deep Convolutional Neural Network: Independent Conv specified for MTS

¹²Yi Zheng et al. "Time series classification using multi-channels deep convolutional neural networks". In: *International Conference on Web-Age Information Management*. Springer. 2014, pp. 298–310.

Time-CNN¹³

both for univariate and multivariate

Main differences compared to previous models:

- 1. loss function: categorical cross-entropy \rightarrow MSE
- 2. activate function of final layer: softmax \rightarrow sigmoid

$$\sum_{i=1}^{K} p(\hat{Y}_i) \neq 1$$

3. throughout CNN: local max pooling ightarrow local average pooling

Compared to some models:

- ► apply 1 Conv for all dimensions (unlike MCDCNN)
- lacktriangle Conv directly fully connected to final layer (modify FCN: GAP ightarrow FC)

¹³Bendong Zhao et al. "Convolutional neural networks for time series classification". In: *Journal of Systems Engineering and Electronics* 28.1 (2017), pp. 162–169.

TWIFSN¹⁴

Time Warping Invariant Echo State Network

¹⁴Pattreeya Tanisaro and Gunther Heidemann. "Time series classification using time warping invariant echo state networks". In: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE. 2016, pp. 831–836.

Thanks

All codes, slides and papers available Oli-xin-yi/deep_time_series_share_slide