TECHNICAL NOTES

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

No. 189

TORSIONAL STRENGTH OF NICKEL STEEL AND DURALUMIN TUBING AS AFFECTED BY THE RATIO OF DIAMETER TO GAGE THICKNESS.

By N. S. Otey, U.S. Naval Aircraft Factory.

FILE COPY

To be returned to the files of the National Advisory Committee for Aeronautics Washington, D. C. NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

TECHNICAL NOTE NO. 189.

TORSIONAL STRENGTH OF NICKEL STEEL AND DURALUMIN TUBING
AS AFFECTED BY THE RATIO OF DIAMETER TO GAGE THICKNESS.*
By N. S. Otey.

Introduction.

This investigation was made at the request of the Bureau of Aeronautics. Since the ordinary torsion formula is based on elastic resistance to deformation, it is inaccurate for determination of ultimate stresses in thin wall tubing subjected to torsional loads. It has been found that the torsional modulus of rupture varies with the ratio of diameter to gage thickness and the object of these tests was to determine the extent of these variations for subject materials. This is somewhat of a prorogation of work** done by the Army Air Service at McCook Field.

Conclusions.

- 1. The torsional modulus of rupture of nickel steel (2330) and duralumin tubing varies with the ratio of diameter to gage thickness (D/t) as follows:
 - (a) Nickel steel heat-treated for 125,000 Psi ultimate tensile strength

^{*} Originally prepared as Report No. 6T23-5, U. S. Naval Aircraft Factory.

^{**} Air Service Information Circular No. 263, Volume III, dated July 20, 1921.

Modulus of rupture (M) =
$$\frac{135.500}{5\sqrt{D/t}}$$

(b) Duralumin treated for 55,000 Psi ultimate tensile strength.

Modulus of rupture (M)
$$\frac{127,500}{\sqrt{D/t}}$$
.

Materials.

2. The steel tubing used in this investigation was taken from stock having the following specified analysis:

Steel No.	% C.	% Mn.	% P.	% S.	% Ni.
2330	.2535	.4080	.40 Max.	.045 Max-	3.25-3.75

The heat treatment given this tubing was that of quenching in oil at 1525° F. and drawing at 800 to 1100° F. depending on the brinell hardness after quenching.

3. The duralumin tubing was standard stock material and since it had been heat-treated by the manufacturer, no further treatment was given. The specified chemical analysis is:

% A1.	% Cu.	% Mg.	% Mn.	% Fe.	% Si.	% Ca.
92 Min	3.5-5.0	.275	.4-1-0	.6 Max.	.4 Max.	.4 Max.

Procedure.

4. Twelve steel and ten duralumin tubes of diameters and gages shown in Table I were supplied in 60-inch lengths. From each of these a 12-inch specimen was cut for tensile tests and the 48-inch lengths used for torsion tests. In the case of steel, the tensile specimens had to be cut before heat treatment due to size of furnace available, which, through heat treatment, resulted in variations in physical properties of the tensile and torsion specimens as will be shown later. The torsion specimens were tested in an Olsen torsion machine at Drexel Institute. The set-up used is shown in photographs (Figures 1 and 2).

Data.

- 5. Complete results of these tests are shown in Table I and Figures 8 to 15 inclusive.
- 6. The curves in Figures 5 and 6 show graphically the changes in moduli of rupture as affected by the D/t ratio. These curves were plotted under the following procedure:
 - (a) Average curves were drawn through the empirical points for convenience in obtaining the final curves.
 - (b) Values taken from these average curves were plotted to log scale as shown in Figure 7, from which the slope of the average curves was determined.

- (c) Using the slopes thus determined, equations were found from which the final curves shown on Figures 5 and 6 were plotted. These final curves were found to agree very favorably with the original average curves.
- 7. In Figures 8 to 15 inclusive, the torsional load/
 deformation data is plotted. Curve Gl, (Fig. 13), shows irregularities in the region of the yield point which is characteristic of duralumin.
- 8. Photographs (Figures 3 and 4) show torsion specimens after test. It will be noted that in all cases but three, failure occurred by buckling or collapsing rather than shear.

Discussion.

- 9. In the case of the steel tubing, it will be noted that the empirical values are erratic as shown in Figure 5. This may be due to two causes:
 - (a) Variations in physical properties of the material.
 - (b) Failure by crinkling or collapsing rather than shear.

The first cause is not considered entirely responsible as examination of brinell hardness and moduli of rupture of the torsion specimens indicate more uniform physical properties than the tensile values shown in Table I, would suggest. Although the tensile and torsion specimens were heat-treated in

the same furnace and at the same time, their differences in size likely caused considerable variations in physical properties. With due consideration for these erratic results and their causes, the curve is considered sufficiently accurate for reliable design data.

Much credit is due Drexel Institute for courtesies extended in permitting the use of their torsion testing equipment and for generous aid in conducting these tests.

Table I.

STEEL TUBING							
	Tensile Properties.						
No.	Size	Size Y.P. Ult. Stress Psi		Elong. 2"			
A1 A2 B1 B2 C1 C2 D1 D2 E1 E2 F1 F2	1.000" × .032"Ga. 1.000 × .032 1.250 × .049 1.250 × .052 1.410 × .065 1.410 × .066 1.500 × .192 1.500 × .192 2.250 × .065 2.250 × .065 2.620 × .084 2.620 × .082	146800 121300 109000 140700 132200 113600 108700	129000 136800 150500 124300 112200 149200 138300 128700 129600	11.5 15.0 12.5 18.5 21.0 10.0 10.0 10.3 10.8			
-	DURALUMIN TUBING						
RS 11 13 11 13 11 13 11 12 11	0.751 × .057 0.749 × .057 0.998 × .057 0.995 × .057 1.375 × .040 1.370 × .039 1.495 × .042 1.490 × .040 1.500 × .057 1.500 × .059	39300 38450 36800 39900 31000 38900 36700 37000 38500 38200	66700 59700 57100 61700 51100 59300 58600 58200 62000 61500	27.5 27.5 17.0 27.0 16.0 20.5 24.0 26.0 25.0 26.5			

Notes: 1. J = polar moment of inertia.

 ^{2.} c = distance from polar axis to extreme fiber or D/2.
 3. Load P. limit is torque in inch pounds.
 4. Ult. load is torque in inch pounds to rupture.
 5. Torsion formula is S x J/C = Pp where Pp = torque in inch pounds.

Table I (Contd.)

	STEEL TUBING					
Torsional Properties.						
No-	Brinall Hardness	D/t	J	С	J/C	
A1 A2 B1 B2 C1 C2 D1 D2 E1 E2 F1 F2	314 239 266 239 248 239 248 236 256 289 222 239	31.25 31.25 25.50 24.05 21.70 21.35 7.81 7.81 34.62 34.62 31.20 31.95	.0228 .0228 .0667 .0703 .1245 .1261 .3445 .3445 .5330 .5330 1.0766 1.0521	0.500 0.500 0.625 0.625 0.705 0.705 0.750 1.125 1.125 1.310 1.310	.0456 .0456 .1067 .1124 .1766 .1788 .4593 .4593 .4737 .4737 .8218 .8031	
	Shore DURALUMIN TUBING Hardness					
G1 G2 H1 H2 I1 I2 J1 J2 K1 K2	30.0 28.5 27.5 28.5 24.5 24.5 25.5 24.5 25.0 27.0	13.17 13.13 17.52 17.46 34.35 35.15 35.60 37.25 26.30 25.45	.0151 .0149 .0374 .0370 .0748 .0723 .1034 .0957 .1347 .1389	0.375 0.374 0.499 0.497 0.687 0.685 0.747 0.745 0.750	.0403 .0398 .0749 .0744 .1088 .1055 .1384 .1284 .1286	

Table I (Cont.)

STEEL TUBING						
	Torsional Properties.					
No.	Load at P. Limit	Load at Modulus Rupture of Rupture P. Lim		Modulus of Rupture at Ult.		
Al A2 B1 B2 C1 C2 D1 D2 E1 E2 F1	3125 3225 7800 8150 11200 11100 35600 3360 3800 5040	3340 3350 8200 8490 11500 11700 41800 42800 33700 34355 49800 52400	68500 70750 73100 73200 63400 62100 77500 71000 46200 62750	73200 73400 77000 75500 65100 65500 91000 93200 71300 72500 60600 65250		
DURALUMIN TUBING						
G1 G2 H1 H2 I1 I2 J1 K1 K1	32 855 1220 41 1400 2310 42 1450 2455 11 1700 2375 12 1690 2420 31 2500 3000 32 2500 2950 4600 4600		21800 21500 18700 19500 15600 16000 18050 19450 18200 17250	40100 30600 30850 33000 21800 22900 21550 22950 25750 24550		

Fig.1.

Fig. 2. Set-up for test at Drexel Institute.

N.A.C.A.S.

Fig.3. Torsion test on 2330 steel tubing.

Fig.4. Torsion test on duralumin tubing.

