Homework 2 Solutions

- Group Members: Yu Wang(wangy52 661834351)
- Collaborators: no

Problem 1

(a)

If $a \equiv b \mod n$, then $\exists t \in \mathcal{Z}$ (\mathcal{Z} is a set containing all integer numbers) such that $a = t \cdot n + b$. We now have $b - t \cdot n = a$ which means $(b - t \cdot n) \mod n = b \mod n = a \mod n$, that is $b \equiv a \mod n$

(b)

If $a \equiv b \mod n$ and $b \equiv c \mod n$ then $\exists t, k \in \mathcal{Z}$ such that

$$a + tn = b$$

$$c + kn = b.$$
(1-1)

Date: October 1, 2018

Then

$$a + tn = c + kn$$

$$\Rightarrow a = c + (k - t)n$$

$$\Leftrightarrow a \equiv c \mod n.$$
(1-2)

Problem 2

(a)

4321	1234	Q	(1,0)	(0,1)
4321- 3*1234=619	1234	3	(1,0)-3*(0,1)=(1,-3)	(0,1)
619	1234-1*619=615	1	(1,-3)	(0,1)-1*(1,-3)=(-1,4)
619-1*615=4	615	1	(1,-3)-1*(-1,4)=(2,-7)	(-1,4)
4	615-153*4=3	153	(2,-7)	(-1,4)-153*(2,-7)=(-307,1075)
4-1*3=1	3	1	(2,-7)- $(-307,1075)$ = $(309,-1082)$	(-307,1075)

We now have

$$1 = 309 * 4321 - 1082 * 1234. (2-1)$$

Apply module 4321 to both side, we have

$$1 = \underbrace{-1082}_{1234^{-1}} *1234 \mod 4321. \tag{2-2}$$

So

$$1234^{-1} \mod 4321 = -1082 \mod 4321 = \boxed{3239} \mod 4321.$$
 (2-3)

(b)

40902	24140	Q	(1, 0)	(0, 1)
16762	24140	1	(1, -1)	(0, 1)
16762	7378	1	(1, -1)	(-1,2)
2006	7378	2	(3,-5)	(-1,2)
2006	1360	3	(3,-5)	(-10,17)
646	1360	1	(13,-22)	(-10,17)
646	68	2	(13,-22)	(-36,61)
34	68	9	(337, -571)	(-36,61)
34	0	2	(337, -571)	(-710,1203)

We see reminder to be 0, which means 24150 is NOT multiplicative inversable in GF(40902)

(c)

1769	550	Q	(1, 0)	(0,1)
119	550	3	(1,-3)	(0,1)
119	74	4	(1,-3)	(-4,13)
45	74	1	(5,-16)	(-4,13)
45	29	1	(5,-16)	(-9,29)
16	29	1	(14,-45)	(-9,29)
16	13	1	(14,-45)	(-23,74)
3	13	1	(37,-119)	(-23,74)
3	1	4	(37,-119)	(-171,550)

We have

$$1 = -171 * 1769 + 550 * 550 \mod 1769 = 550 * 550 \mod 1769 \tag{2-4}$$

So, $550^{-1} \mod 1769 = \boxed{550} \mod 1769$.

Problem 3

(a)

Let
$$f(x) = x^3 + 1$$
.

f(1) = 1 + 1 = 0, which means x + 1 is one of the factor of f(x). Apply the polynomial division, $x^3 + 1 = (x + 1)(x^2 + x + 1)$. So $f(x) = x^3 + 1$ is NOT an irreducible polynomial over GF(2).

(b)

Let
$$f(x) = x^3 + x^2 + 1$$
.
 $f(1) = 1 + 1 + 1 = 1 \neq 0$ and $f(0) = 0 + 0 + 1 \neq 0$, so $f(x) = x^3 + x^2 + 1$ IS an irreducible polynomial.

(c)

Let
$$f(x) = x^4 + 1$$
.

Because f(1) = 1 + 1 = 0, x + 1 is one of the factor of f(x). Apply the polynomial division, $x^4 + 1 = (x + 1)(x^3 + x^2 + x + 1)$. So $f(x) = x^4 + 1$ is NOT an irreducible polynomial over GF(2).

Problem 4

(a)

In GF(2),
$$x^3 - x + 1 = x^3 + x + 1$$
.
Apply $GCD(a, b) = GCD(\mod(a, b), b)$.

$$(x^3 + x + 1)/(x^2 + 1) = x \cdots 1, \tag{4-1}$$

so
$$GCD(x^3 + x + 1, x^2 + 1) = GCD(1, x^2 + 1) = \boxed{1}$$

(b)

If GF(3),
$$x^5 + x^4 + x^3 - x^2 - x + 1 = x^5 + x^4 + x^3 + 2x^2 + 2x + 1$$
.

$$(x^5 + x^4 + x^3 + 2x^2 + 2x + 1)/(x^3 + x^2 + x + 1) = x^2 \cdots x^2 + 2x + 1,$$
(4-2)

so $GCD(x^5 + x^4 + x^3 + 2x^2 + 2x + 1, x^3 + x^2 + x + 1) = GCD(x^2 + 2x + 1, x^3 + x^2 + x + 1).$

$$(x^3 + x^2 + x + 1)/(x^2 + 2x + 1) = x + 2 \cdots 2x + 2,$$
(4-3)

so $GCD(x^2 + 2x + 1, x^3 + x^2 + x + 1) = GCD(x^2 + 2x + 1, 2x + 2).$

$$(x^{2} + 2x + 1)/(2x + 2) = 2x + 2 \cdots 0,$$
(4-4)

so
$$GCD(x^5 + x^4 + x^3 + 2x^2 + 2x + 1, x^3 + x^2 + x + 1) = \boxed{2x + 2}$$

Problem 5

The formula for conditional entropy is

$$H(K|C) = \sum_{k} \sum_{c} p(k,c) \log \frac{p(c)}{p(k,c)}.$$
 (5-1)

Our task turns to compute p(c) and p(k, c).

1. p(c)

$$\begin{split} Pr(C=1) = & Pr(P=a, K=k1) + Pr(P=c, K=k1) + Pr(P=c, K=k2) \\ = & 1/4*1/2 + 1/2*1/2 + 1/2*1/4 = 1/2 \\ Pr(C=2) = & Pr(P=b, K=k1) + Pr(P=a, K=k2) + Pr(P=b, K=k3) \\ = & 1/4*1/2 + 1/4*1/4 + 1/4*1/4 = 1/4 \\ Pr(C=3) = & Pr(P=b, K=k2) + Pr(P=a, K=k3) + Pr(P=a, K=k4) \\ = & 1/4*1/4 + 1/4*1/4 + 1/4*0 = 1/8 \\ Pr(C=4) = & Pr(P=c, K=k3) + Pr(P=b, K=k4) + Pr(P=c, K=k4) \\ = & 1/2*1/4 + 1/4*0 + 1/2*0 = 1/8 \end{split}$$

2. p(k, c)

$$Pr(K = k1, C = 1) = Pr(K = k1, P = a) + Pr(K = k1, P = c) = 1/2 * 1/4 + 1/2 * 1/2 = 3/8$$

$$Pr(K = k1, C = 2) = Pr(K = k1, P = b) = 1/2 * 1/4 = 1/8$$

$$Pr(K = k1, C = 3) = Pr(K = k1, C = 4) = 0$$

$$Pr(K = k2, C = 1) = Pr(K = k2, P = c) = 1/4 * 1/2 = 1/8$$

$$Pr(K = k2, C = 2) = Pr(K = k2, P = a) = 1/4 * 1/4 = 1/16$$

$$Pr(K = k2, C = 3) = Pr(K = k2, P = b) = 1/4 * 1/4 = 1/16$$

$$Pr(K = k2, C = 4) = 0$$

$$Pr(K = k3, C = 1) = 0$$

$$Pr(K = k3, C = 2) = Pr(K = k3, P = b) = 1/4 * 1/4 = 1/16$$

$$Pr(K = k3, C = 3) = Pr(K = k3, P = a) = 1/4 * 1/4 = 1/16$$

$$Pr(K = k3, C = 4) = Pr(K = k3, P = a) = 1/4 * 1/4 = 1/16$$

$$Pr(K = k3, C = 4) = Pr(K = k3, P = c) = 1/4 * 1/2 = 1/8$$

$$Pr(K = k4, C = 1) = Pr(K = k4, C = 2) = Pr(K = k4, C = 3) = Pr(K = k4, C = 4) = 0$$

Now we have all the building blocks to compute the conditional entropy.

$$H(K|C) = \sum_{k} \sum_{c} p(k,c) \log \frac{p(c)}{p(k,c)}$$

$$= 3/8 \log \frac{1/2}{3/8} + 1/8 \log \frac{1/4}{1/8} + 1/8 \log \frac{1/2}{1/8} + 1/16 \log \frac{1/4}{1/16}$$

$$+ 1/16 \log \frac{1/8}{1/16} + 1/16 \log \frac{1/4}{1/16} + 1/16 \log \frac{1/8}{1/16} + 1/8 \log \frac{1/8}{1/8}$$

$$= \boxed{0.9056}$$
(5-2)