

DEPARTAMENTO DE MATEMÁTICA

Álgebra Linear - 1º ano - 1º semestre Engenharia Informática - (D+PL)

Ano letivo: 2017/2018 Prova Escrita 2: 11/01/2018 Duração: 1h 30min

• Prova sem consulta.

• Não é permitido o uso de máquinas de calcular.

• O rigor e a clareza das resoluções são elementos importantes na apreciação das respostas.

• Nas questões de escolha múltipla não é para apresentar cálculos.

• Prazo limite para afixação dos resultados no moodle: 18 de janeiro de 2018.

1. (7.5 val.) Considere a matriz real $A = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$.

(a) Selecione, de entre as opções seguintes, a única opção correta. O elemento da linha 2 e da coluna 3 da inversa da matriz A é:

(A)
$$a_{23}^{-1} = 0$$
.

(B)
$$a_{23}^{-1} = -4$$
.

(C)
$$a_{23}^{-1} = -1$$
.

(b) Usando a regra de Cramer, calcule a primeira componente da solução do sistema de equações lineares $AX = \begin{bmatrix} 1 & 1 & 2 & 0 \end{bmatrix}^T$, onde $X = \begin{bmatrix} x & y & z & w \end{bmatrix}^T$.

(c) Determine os valores próprios da matriz A e as suas respetivas multiplicidades algébricas.

(d) Calcule o subespaço próprio associado ao valor próprio $\lambda = 1$.

(e) Indique o valor lógico da afirmação seguinte, justificando convenientemente. "Existem três vetores próprios, da matriz A associados ao valor próprio $\lambda=2$, linearmente independentes."

2. (6.5 val.) Sejam t, u, v e w vetores de $M_{2\times 2}(\mathbb{R})$ e S o subespaço vetorial de $M_{2\times 2}(\mathbb{R})$ dados por:

$$t = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}, \quad u = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}, \quad v = \begin{bmatrix} -2 & k-5 \\ -4 & k-3 \end{bmatrix}, \quad w = \begin{bmatrix} 1 & 0 \\ 2 & 5 \end{bmatrix} \quad e$$

$$S = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2 \times 2} \left(\mathbb{R} \right) : c - 2a = 0 \land d = 0 \right\}.$$

- (a) Selecione, de entre as opções seguintes, a única opção correta. Os vetores t,u e v são linearmente dependentes para:
 - (A) k = 3.
 - (B) $k \neq 3$.
 - (C) $k \neq 3 \land k \neq 5$.
- (b) Determine uma base para S e mostre que a dimensão de S é igual a 2.
- (c) Selecione, de entre as opções seguintes, a única opção correta. O conjunto:
 - (A) $\{t, w\}$ é uma base para S.
 - (B) $\{t, 2u\}$ é uma base para S.
 - (C) $\{t, u, 3w\}$ é uma base para S.
- (d) Para k=3, mostre que o subespaço vetorial gerado pelos vetores t,2u e v é igual a S.
- 3. (4.5 val.) Considere a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ definida por:

$$T(x,y) = (2x - 4y, 0, 0).$$

- (a) Determine o núcleo de T.
- (b) Calcule, se possível, o(s) valor(es) de k de modo que o vetor $u = (0, k^2 4, k + 2)$ pertença à imagem de T.
- (c) Usando o teorema das dimensões, justifique se T é sobrejetiva.
- 4. (1.5 val.) Seja E um espaço vetorial real e $\{v_1, v_2, \ldots, v_n\} \subset E$. Mostre que os vetores v_1, v_2, \ldots, v_n são linearmente dependentes se e só se pelo menos um deles é combinação linear dos restantes.