Statistics

laserluc

October 2016

Standard tests

In general, a test statistic Γ is based on an estimator. Often this yields a suitable test.

Tests

- Gauss test: $\hat{\mu} = \bar{X}$
- $T = \sqrt{n} \frac{\bar{X} \mu_0}{\sigma}$
- Exponential (shifted): $\hat{\theta} = X_{(1)}$
- $T = X_{(1)}$

Here : several test that are based on normality (due to Central Limit Theorem which warrants normality for large n)

Two new distributions

Definition

The random variable has the χ^2_n distribution. (n = degrees of freedom) if W is identically distributed to $\sum\limits_{i=1}^n Z_i^2 \ Z_i \sim N(0,1)$ independent identically distributed. For small n non-symmetric, symmetric for large n.

Definition

The random variable has the t_n distribution if T is identically distributed to $\frac{Z_0}{\sqrt{\frac{W}{n}}}$ with $Z_0 \sim N(0,1)$. and $W \sim \chi_n^2$ and Z_0, W independent.

Theorem

let $X_1, \ldots X_n$ independent identically distributed. Then:

- \bullet $\bar{X} \sim N(\mu, \sigma^2)$
- $n 1/\sigma^2 * S_x^2 \sim \chi_{n-1}^2$
- \odot \bar{X} and S_x^2 are mutually independent

Proof of 4

$$\sqrt{n}*\frac{\bar{X}-\mu}{S_x} \sim t_{n-1} = (\sqrt{n}*(\bar{X}-\mu)/\sigma)/((n-1)S_x^2/(\sigma^2(n-1))) \sim \chi_n^2$$

T-test

Example

Suppose $X_1 \dots X_n \sim N(\mu, \sigma^2)$ with μ, σ^2 unknown. $H_0: \mu \leq \mu_0$ vs $H_a: \mu > \mu_0$ Test statistic: $T = \sqrt{n} * \frac{\bar{X} - \mu}{S_X}$ and $K_t = [c_{a_0}, \infty)$. Determine c_{a_0} . $\alpha_0 = \sup_{\mu \leq \mu_0, \sigma^2 > \sigma} P(T \in K_t) = \sup_{\mu = \mu_0, \sigma^2 > \sigma} P(T \in K_t) = \sup_{\mu = \mu_0, \sigma^2 > \sigma} P(T \geq c_{a_0})$ As $T \sim t_{n-1}$, take $c_{a_0} = t_{n-1} \cdot t_{n-1}$

But $t_{n-1,1-\alpha_0} \geq \xi_{1-\alpha_0}$: critical region has shrunken. Reason: t-test takes into account uncertainty of σ . For $n \to \infty$, then $t_{n,\alpha} \to \xi_{\alpha}$ and $S^2 \to \sigma^2$ thus both tests are 'asymptotically equivalent'.

Remark

The t-test is a test on the location, not on the spread. Hence, not $H_0:\sigma^2\geq\sigma_0^2$ vs $H_a:\sigma^2<\sigma_0^2$ Use $(n-1)S_x^2/\sigma^2\sim\chi_{n-1}^2$: reject if $S_x^2\geq\sigma^2*\chi_{n-1,1-\alpha/n-1}^2$

Let $X_1 ldots X_n$ continuous random variables from some distribution. Interest centers around the median v. Wish to test whether v is larger then some $v_0 ext{ } H_0 : v \leq v_0 ext{ } vs H_a : v > v_0.$ Use a test statistic $T = \#\{X_i ext{ such that} X_i > v\}$. Or, how many positive $X_i - v_i$ difference? It suffices to study the signs of the differences, but this is the binomial test applied to the signs. Parameters n and $P_v(X_i > v_0)$.

If indeed $v=v_0$ then $P_{v_0}=1/2$ corresponds to H_0 . Testing $H_0: v \leq v_0$ is equivalent to $H_0: p \leq p_0=1/2$.

Remark

Effectively, the data have been dichotomized. A considerable loss of information. Consequence: if normality is reasonable, the t-test has far superior power.

Example

Suppose we observe $(X_1, Y_1) \dots (X_n, Y_n)$ a paired sample. Still we wish to test for a location difference $E(X_i) = E(Y_i)$? Test statistic based $\bar{Z} = \bar{X} - \bar{Y}$ with $Z_i = X_i - Y_i$.

Assumption

 $Z_1 \dots Z_n \sim \mathcal{N}(\mu, \sigma^2)$ with μ, σ^2 unknown. Or differences are identically distributed.

Then a t-test on the Z_i with $H_0: \mu = 0$ vs $H_a: \mu \neq 0$ uses $T = \sqrt{n} * \frac{\bar{Z} - 0}{S_z} \sim t_n$ under H_0 and $K_t = (-\infty, t_{n-1,\alpha_0/2}] \cup [t_{n-1,\alpha_0}, \infty)$.

Paired sign test: apply to $X_i - Y_i > 0$.

Note

 $Var(Z_i) = Var(X_i) + Var(Y_i) - 2Cov(X_i, Y_i) \le Var(X_i) + Var(Y_i)$ If X_i and Y_i positively correlated, we gain by pairing.

Example

Let $X_i \dots X_m$ and $Y_1 \dots Y_n$ be two unpaired samples.

Assume $X_i \sim N(\mu, \sigma^2)$ and $Y_j \sim N(\nu, \sigma)$ with μ, ν, σ^2 unknown but variances are equal.

$$H_0: \mu - \nu = \ge 0 \text{ vs } H_a: \mu - \nu < 0.$$

Base test statistic on $\bar{X} - \bar{Y}$.

Then
$$Var(\bar{X} - \bar{Y}) = (\frac{1}{m} + \frac{1}{n}) * \sigma^2$$

$$T = \frac{\bar{X} - \bar{Y}}{S_{x,y} * \sqrt{\frac{1}{m} + \frac{1}{n}}} \text{ with } S_{x,y} = \frac{1}{n + m - 2} * (\sum_{i=1}^{m} (x_i - \bar{X}) + \sum_{i=1}^{n} (y_i - \bar{Y}))$$

as estimator of σ^2 ?

Note

 $ar{X} - ar{Y} \sim \mathcal{N}(0,1)$ with appropriate normalization. χ^2 in denominator (sum of 'independent χ^2 are χ^2 ') Under $\mu = \nu$, then $T \sim t_{m+n-2}$, $\mathcal{K}_t = (-\infty, t_{m+n-2,\alpha_0}]$

Example

Measure the content (grams) of 20 packages of de Ruyter chocolate sprinkles and 18 packages of Venz chocolate sprinkles. Both packages say 300 grams.

Observe: $\bar{x} = 299.04$, $\bar{y} = 299.77$, $s_x^2 = 104$, $s_y^2 = 0.92$

Question 1: Enough sprinkles in de Ruyter packages?

Question 2: Equal amount of sprinkels in packes from both

producers?

Answer 1

 $X_1 \dots X_{20}$ content de Ruyter, $Y_1 \dots Y_{18}$ observations of Venz.

 $X_i \sim N(\mu, \sigma^2)$ independent identically distributed $\mu, \sigma^2 > 0$ unknown.

 H_0 : $\mu \geq$ 300 and H_a : $\mu <$ 300 and $\alpha_0 =$ 0.05

Test statistic: $T = \sqrt{n} * \frac{\bar{x} - 300}{s_x} \sim t_{n-1}$. Substitute values gives:

$$T_{ruyt} = \sqrt{20} * \frac{299.04 - 300}{\sqrt{1.04}} = -4.20$$

$$K_t = (-\infty, t_{n-1,\alpha_0}] = (-\infty, -1.73].$$

 $T_{ruyt} \in K_t$ so reject H_0 , de Ruyter does not pack enough.

Answer 2

$$X_i \sim N(\mu, \sigma^2)$$
 and $Y_i \sim N(v, \sigma^2)$ and μ, v, σ^2 unknown. $H_0: \mu = v$ vs $H_a: \mu \neq v$ under $\alpha = 0.05$ $T = \frac{\bar{X} - \bar{Y}}{S_{x,y}\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{n+m-2}$ gives $K_t = (-\infty, t_{n+m-2,\alpha/2}] \cup [t_{n+m-2,\alpha/2}, \infty) = (-\infty, -2.03] \cup [2.03, \infty)$ $S_{x,y}^2 = 1/36(19*1.04 + 17*0.92) = 0.98$ $T = \frac{299.04 - 299.77}{\sqrt{0.98}*\sqrt{\frac{1}{20} + \frac{1}{18}}} = -2.77 \in K_t$

Conclusion: Ruyter and Venz do not provide equal amount.

1-sample

- Gauss-test $T = \sqrt{n} something something \sim N(0,1)$
- ullet t-test $T=somethingsomething <math>\sim t_{n-1}$
- sign-test

2-sample

- paired t-test
- unpaired t-test
- paired sign-test