Machine Learning

1 Introduction

1.1 Binary Classification problem

Find a binary classifier : $h: \mathbb{R}^n \to \{-1, 1\}$ $x \mapsto h(x)$

So that $\mathbb{P}_{(x,y)\sim D}[h(x)\neq y]$ is small.

With

- X : space of input data (image, text, sound, etc.)
- Y: space of label (e.g. $Y = \{-1, 1\}$)
- D: joint probability distribution of $(x, y) \in X \times Y$

 \rightarrow Objectif of ML : Risk Minimization for $h \in {\cal H}$

Définition - Test error of h

Let $h \in H$, the test error of h is defined as:

$$R_D(h) = \mathbb{E}_{(x,y)\sim D}[\mathbb{1}_{h(x)\neq y}]$$
$$= \int_{X\times Y} \mathbb{1}_{h(x)\neq y} D(dx,y)$$

Propriété - Bayes Classifier

The minimal risk is given by the Bayes Classifier:

$$h_{\text{Bayes}} = \operatorname*{argmax}_{y \in \{-1,1\}} \mathbb{P}_{(x,y) \sim D}[y|x] \in \{-1,1\}$$

Example: $\mathbb{P}(y|x)$ with gaussians mixitures

Let
$$\mathbb{P}(y = -1) = \pi_0$$
, $\mathbb{P}(y = 1) = 1 - \pi_0$ with $\pi_0 \in [0, 1]$ $\mathbb{P}(x|y = -1) = \mathcal{N}(\mu_1, \Sigma_1)$, $\mathbb{P}(x|y = 1) = \mathcal{N}(\mu_2, \Sigma_2)$

$$\mathbb{P}(y = -1|x) = \frac{\mathbb{P}(x|y = -1)\mathbb{P}(y = -1)}{\mathbb{P}(x)}$$
(Bayes' rule)
$$= \frac{\mathbb{P}(x|y = -1)\mathbb{P}(y = -1)}{\mathbb{P}(x|y = -1)\mathbb{P}(y = -1) + \mathbb{P}(x|y = 1)\mathbb{P}(y = 1)}$$

$$\mathbb{P}(y=1|x) = 1 - \mathbb{P}(y=-1|x)$$

Therefore,

$$h_{\text{Bayes}}(x) = \begin{cases} 1 & \text{if } \mathbb{P}(y=1|x) > \mathbb{P}(y=-1|x) \\ -1 & \text{if } \mathbb{P}(y=1|x) < \mathbb{P}(y=-1|x) \\ \pm 1 & \text{if } \mathbb{P}(y=1|x) = \mathbb{P}(y=-1|x) \end{cases}$$

$$\Leftrightarrow h_{\text{Bayes}}(x) = \text{sign}(\mathbb{P}(x|y=-1)\pi_0 - \mathbb{P}(x|y=1)(1-\pi_0))$$

Théorème

Let H be all measurable functions from X to $\{-1, 1\}$. Then, $R_D(h) \ge R_D(h_{\text{Bayes}})$ for all $h \in H$.

Assume $D(dx, y) = \mathbb{P}(x|y)dx \cdot \mathbb{P}(y) = \mathbb{P}(y|x)\mathbb{P}(x)dx$

Then:
$$R_D(h) = \mathbb{E}_{(x,y)\sim D}[\mathbbm{1}_{h(x)\neq y}]$$

 $= \sum_{y\in\{-1,1\}} \int_X \mathbbm{1}_{h(x)\neq y} D(dx,y)$
 $= \sum_{y\in\{-1,1\}} \int_X \mathbbm{1}_{h(x)\neq y} \mathbb{P}(y|x) \mathbb{P}(x) dx$
 $= \int_X \mathbb{P}(y=1|x) \mathbbm{1}_{h(x)\neq 1} \mathbb{P}(x) dx + \int_X \mathbb{P}(y=-1|x) \mathbbm{1}_{h(x)\neq -1} \mathbb{P}(x) dx$

Texte manquant

1.2 Linear Classification problem

In general, D is unknown and $\mathbb{P}(x|y)$ is hard to model, $\mathbb{P}(y)$ prior to choose. Start from "simple" H: linear classifiers on $x \in \mathbb{R}^n$.

Définition - Linear classifier

A linear classifier is a function $h: \mathbb{R}^n \to \{-1, 1\}$ of the form :

$$h(x) = \operatorname{sign}(\langle w, x \rangle + b)$$
$$= \operatorname{sign}(\sum_{i=1}^{n} w_i x_i + b)$$

with $w \in \mathbb{R}^n$ and $b \in \mathbb{R}$.

```
Remarque: Labels:
+1 if w^T x + b > 0
-1 if w^T x + b < 0
±1 if w^T x + b = 0
```

```
Given a set of training samples iid from D: S = \{(x_1, y_1), \dots, (x_m, y_m)\} \in (X \times Y)^m
Find a classifier h_S \in H such that the generalization error R_D(h_S) is small.
```

Algorithm 1: Perceptron

```
1 Initialize k = 0 and w_0 \in \mathbb{R}^n
2 repeat
3 | for i = 1, ..., m do
4 | if sign(w_k^T x_i) = y_i then
5 | else
7 | if y_i = 1 then
8 | | w_{k+1} = w_k + x_i
else
10 | w_{k+1} = w_k - x_i
11 | k = k + 1
12 until;
```

Remarque: k is the number of iterations or the number of errors made by the algorithm.

Remarque: S can be separated by some $h \in H$. i.e. $\exists w^* \in \mathbb{R}^n$ so that $||w^*|| = 1$ and $\forall i \in \{1, \dots, m\}, y_i(w^{*T}x_i) > 0$.

Théorème

On linear separable data S and $w_0 = 0$, the Perceptron algorithm generates $(w_k)_{k\geq 0}$ which converges in finite number of error corrections.

Let
$$\forall i \leq m, y_i = \operatorname{sign}(\langle w^*, x_i \rangle)$$

Let $R = \max_{i \leq m} ||x_i|| < \infty$ and $M = \min_{i \leq m} y_i \langle w^*, x_i \rangle > 0$
We have to show that $\langle w_{k+1}, w^* \rangle \geq \langle w_k, w^* \rangle + M$
Indeed, if $y_i = 1$ and $\operatorname{sign}(\langle w_k, x_i \rangle) = -1$ then:

$$w_{k+1} = w_k + x_i \text{ and } \langle w^*, x_i \rangle \geq M$$

$$\Rightarrow \langle w_{k+1}, w^* \rangle = \langle w_k, w^* \rangle + \langle x_i, w^* \rangle \geq \langle w_k, w^* \rangle + M$$

Similarly, if $y_i = -1$.

Therefore,
$$\langle w_k, w^* \rangle \geq kM$$
 and $||w_k|| \sim \mathcal{O}(\sqrt{k})$.
Then, $\frac{\langle w_k, w^* \rangle}{||w_k||} \geq \frac{kM}{\sqrt{k}R} \geq \frac{M}{R}\sqrt{k}$ and $\langle w_k, w^* \rangle \leq ||w_k|| \cdot ||w^*|| \leq ||w_k||$.
So, $k \leq \left(\frac{R}{M}\right)^2$.

Remarque: M is the margin of the data.

$$M = \min_{i \le m} y_i \langle w^*, x_i \rangle \qquad M \nearrow \Rightarrow k_{\text{max}} \searrow$$

Remarque: Unclear if the Perceptron algorithm finds h_{Bayes} which minimize the test error.

Unclear if S non linear separable $(M \leq 0)$.

Extend algo to $H = \{\bar{x} \mapsto \operatorname{sign}(\bar{w}^T \bar{x}) + \bar{b} | \bar{w} \in \mathbb{R}^n, \bar{b} \in \mathbb{R} \}.$ Consider $\bar{x} = (x, 1) \in \mathbb{R}^{n+1}$ and $\bar{w} = (w, b) \in \mathbb{R}^{n+1}$.

2 Support Vector Machine

Find a linear classification which has a maximal margin. \Rightarrow Smallest test error.

Définition - Margin

Let $w \in \mathbb{R}^n$ and $b \in \mathbb{R}$, the margin of (w, b) is :

$$\phi_h = \min_{i \le m} \frac{||w^T x_i + b||}{||w||}$$

2.1 Problem formulation

2.1.1 Linearly separable case

$$\max_{w \in \mathbb{R}^n, b \in \mathbb{R}} \phi_h \quad \text{ so that } \quad \forall i \le m, y_i(w^T x_i + b) > 0$$

Feasible solution exists: $\exists w \in \mathbb{R}^n, b \in \mathbb{R}$ so that $\forall i \leq m, y_i(w^T x_i + b) > 0$.

Reformulation of SVM:

$$\max_{w \in \mathbb{R}^n, b \in \mathbb{R}} \min_{i \le m} \frac{y_i(w^T x_i + b)}{||w||}$$

Remarque: Invariance by scaling: $\forall \lambda > 0, (w, b)$ solution $\Rightarrow (\lambda w, \lambda b)$ solution.

$$\Rightarrow$$
 Set $\min_{i \le m} y_i(w^T x_i + b) = 1$.

Formulation of SVM:

(P)
$$\max_{w \in \mathbb{R}^n, b \in \mathbb{R}} \frac{1}{||w||} \quad \text{so that} \quad \min_{i \le m} y_i(w^T x_i + b) = 1$$
 (1)

$$(P') \qquad \max_{w \in \mathbb{R}^n, b \in \mathbb{R}} \frac{1}{||w||} \quad \text{so that} \quad \forall i \le m, y_i(w^T x_i + b) \ge 1$$
 (2)

Propriété

- (P) and (P') are equivalent.
 - If (\bar{w}, \bar{b}) is a solution of (P'), then it is a feasible solution of (P).

- If
$$\min_{i \le m} y_i(\bar{w}^T x_i + \bar{b}) = 1$$
, then $(P') \Rightarrow (P)$.

- If
$$\min_{i \le m} y_i(\bar{w}^T x_i + \bar{b}) > 1$$
:

Let
$$\phi_{\bar{w},\bar{b}} = \min_{i < m} \frac{y_i(\bar{w}^T x_i + \bar{b})}{||\bar{w}||} > \frac{1}{||\bar{w}||}$$

Let
$$\hat{w} = \frac{\bar{w}}{\|\bar{w}\|} \frac{1}{\phi_{\bar{w}\bar{b}}}$$
 and $\hat{b} = \frac{\bar{b}}{\|\bar{w}\|} \frac{1}{\phi_{\bar{w}\bar{b}}}$

Let $\phi_{\bar{w},\bar{b}} = \min_{i \le m} \frac{y_i(\bar{w}^T x_i + \bar{b})}{||\bar{w}||} > \frac{1}{||\bar{w}||}.$ Let $\hat{w} = \frac{\bar{w}}{||\bar{w}||} \frac{1}{\phi_{\bar{w},\bar{b}}}$ and $\hat{b} = \frac{\bar{b}}{||\bar{w}||} \frac{1}{\phi_{\bar{w},\bar{b}}}$ Then, $\min_{i \le m} y_i(\hat{w}^T x_i + \hat{b}) = 1$ and $\frac{1}{||\hat{w}||} < \frac{1}{||\bar{w}||}.$ So (\bar{w},\bar{b}) is not optimal for (P'): absurd.

• $\forall (w,b)$ so that $\min_{i\leq m} y_i(w^Tx_i+b)=1$ (solution of (P)), we have : $\frac{1}{\|\bar{w}\|} \ge \frac{1}{\|w\|}$ (by optimality of (P')). So (\bar{w}, \bar{b}) is a solution of (P').

Primal problem:

$$(P'') \qquad \min_{w \in \mathbb{R}^n, b \in \mathbb{R}} \frac{1}{2} ||w||^2 \quad \text{so that} \quad \forall i \le m, y_i(w^T x_i + b) \ge 1$$
 (3)

Remarque : $(P'') \Leftrightarrow (P')$

(P'') is a quadratic programming with linear constraints.

Remarque: We can deduce the dual problem of (P'') with KKT.

2.1.2 Extension to non-linearly separable data

$$\min_{w \in \mathbb{R}^n, b \in \mathbb{R}, \xi \in \mathbb{R}^m} \frac{1}{2} ||w||^2 + C \sum_{i=1}^m \xi_i^p \quad \text{so that} \quad \forall i \le m, y_i(w^T x_i + b) \ge 1 - \xi_i \quad (4)$$

With:

• C > 0: regularization parameter

• $\xi_i \ge 0$: slack variable

• $p \ge 1$: norm of the slack variable

3 Generalisation theory in binary classification

Find $h \in H$ so that $R_D(h) = \mathbb{P}_{(x,y)\sim D}[h(x) \neq y]$ is small.

Given a set of training samples iid from $D: S = \{(x_1, y_1), \dots, (x_m, y_m)\} \in (X \times Y)^m$

 $h_s \in H$ is the classifier learned from an algorithm (Perceptron, SVM, etc.)

Propriété

$$\min_{h \in H} \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{h(x_i) \neq y_i} \xrightarrow{\text{Loi des Grands Nombres}} R_D(h)$$
 (5)

Classical picture of ML theory:

Overfitting:

$$R_D(h_S)$$
 big but $\frac{1}{m} \sum_{i=1}^m \mathbb{1}_{h(x_i) \neq y_i} \approx 0$

Texte manquant

How to analyse $R_D(h_S)$?

 \overline{S} iid from $D \Rightarrow h_S$ is a random variable $\Rightarrow R_D(h_S)$ is a random variable.

- 1. Control of $\mathbb{E}_{S \sim D^m}[R_D(h_S)]$
- 2. Confidence interval for $R_D(h_S)$

3.1 Control of $\mathbb{E}_{S \sim D^m}[R_D(h_S)]$

Leave-one-out cross-validation analysis for linear separable data : $\mathbb{P}_{S\sim D^m}[S \text{ linear separable}]=1.$

Leave-one-out algo A : $h_S = A(S)$

$$\hat{R}_{\text{LOO}}(A) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{h_{S \setminus \{x_i\}}(x_i) \neq y_i}$$

Propriété

If $m \geq 2$, then $\mathbb{E}_{S \sim D^m}[\hat{R}_{LOO}(A)] = \mathbb{E}_{S' \sim D^{m-1}}[R_D(h'_S)]$

$$\mathbb{E}_{S \sim D^m}[\hat{R}_{LOO}(A)] = \mathbb{E}_{S \sim D^m} \left[\frac{1}{m} \sum_{i=1}^m \mathbb{1}_{h_{S \setminus \{x_i\}}(x_i) \neq y_i} \right] \\
= \frac{1}{m} \sum_{i=1}^m \mathbb{E}_{S \sim D^m} [\mathbb{1}_{h_{S \setminus \{x_i\}}(x_i) \neq y_i}] \\
= \mathbb{E}_{S \sim D^m} [\mathbb{1}_{h_{S \setminus \{x_1\}}(x_1) \neq y_1}] \quad \text{(by independence)} \\
= \mathbb{E}_{S' \sim D^{m-1}} [\mathbb{E}_{(x,y) \sim D} [\mathbb{1}_{h_{S'}(x) \neq y}]] \quad (S' = S \setminus \{x_1\}) \\
= \mathbb{E}_{S' \sim D^{m-1}} [R_D(h_{S'})]$$

Théorème

Assume S is linearly separable (almost surely). Let $N_{\rm sn}(S) = |\{x_i|y_i(w^Tx_i+b)=1, i\leq m\}|$ (number of support vectors). Then, $\mathbb{E}_{S\sim D^m}[\hat{R}_{\rm LOO}(A)]\leq \mathbb{E}_{S\sim D^m}[\frac{N_{\rm sn}(S)}{m}]$

▶ Let $(x, y) \in S$. If x is not a support vector of $h_S : h_{S\setminus\{x\}} = h_S$. Therefore, if $h_{S\setminus\{x\}}(x) \neq y$ then x is a support vector of h_S . So, $\hat{R}_{LOO}(h_S) \leq \frac{N_{sn}(S)}{m}$.