MOCIÍ O AKFLHWLMSVYVVELLRSFFYVTETTFQKNR ISEIEWLVLGKRSNAKMCLSDFEKRKQIFAEFIYWLYNSFIIPILQSFFYITESSDLRNR LKDFRWLFISDIWFTKHNFENLNQLAICFISWLFRQLIPKIIQTFFYCTEISSTVT- TREISWMQVET-SAKHFYYFDHEN-IYVLWKLLRWIFEDLVVSLIRCFFYVTEQQKSYSK *** **	MOLIÍ 1 LFFYRKSVWSKLQSIGIRQHLKRVQLRDVSEAEVRQHREARPALLTSRLRFIPKPDGL TVYFRKDIWKLLCRPFI-TSMKMEAFEKINENNVRMDTQK-TTLPPAVIRLLPKKNTF IVYFRHDTWNKLITPFIVEYFKTYLVENNVCRNHNSYTLSNFNHSKMRIIPKKSNNEF TYYYRKNIWDVIMKMSI-ADLKKETLAEVQEKEVEEWKKS-LGFAPGKLRLIPKKTTF	MOCIÍ 2 RPIVNMDYVVGARTFRREKRAERLTSRVKALF-SVLNYERA RLITN-LRKRFLIKMGSNKKMLVSTNQTLRPVASILKHLINEESSGIPFNLEVYMKLLTF RLITN-LRKRFLIKMGSNKKMLVSTNQTLRPVASILKHLINEESSGIPFNLEVYMKLLTF RLIAIPCRGADEEEFTIYKENHKNAIQPTQKILEYLRNKRPTSFTKIYSPTQIADRIKEF RPIMTFNKKIVNSDRKTTKLTTNTKLLNSHLMLKTLKN-RMFKDPFGFAVFNYDDVMKKY * *	MOLIÍ 3 (A) KKDLLKHRMFGR-KKYFVRIDIKSCYDRIKQDLMFRIVKK-KLKDPEFVIRKYATIHATS KQRLLKKFNNVLPELYFMKFDVKSCYDSIPRMECMRILKD-ALKNENGFFVRSQYFFNTN EEFVCKWKQVGQPKLFFATMDIEKCYDSVNREKLSTFLKTTKLLSSDFWIMTAQILKRKN
human tezl EST2 p123	human tez1 EST2 p123	human tezl EST2 p123	tez1 EST2 p123

T 1 2 A B' CD E	
	msDNAs Mito.plasmid/RTL Group II introns Non-LTR Retrotransposons Hepadnaviruses LTR Retrotransposons (Gypsy-Ty1) LTR Retrotransposons (Gypsy-Ty3) Caulimoviruses Retroviruses
A	

ı

3/103

FIG. 5

	4	4/103		
			181 197 179 146	
	82 87 100 68	25	S FSV LLL ISI SST	YNI VIL TTL
	K KL K D I I KP I KLL	YISD ILPY FTIP	OCIFE WGS KKRRMPFFGFSV HGLFPWCGLLL QDYCDWIGISI KELEVWKHSST	hlg h ETPARFLGYNI ESKQSYLGVIL EPPFLWMGITL
	hhK IVKK VIAS FLKT ILKD	EL K R KLAK KYTA	Motif E W KKRMPFI HGLFPW QDYCDWI KELEVWI	ETPA ESKQ EPPF
	LMFR	LIIK SLLL EDFR	17 19 23 20	25 0
	I [KQD] [PQD] /NRE]	rSHD) VWHE(VPLD)	K KTVI KTVV KLQT KILA	K h KTLI KTGH KHQK
	A CYD CYDR: AYDT: CYDS: CYDS: AF	GY] KCFDT: EAFDR:	N CI FSLED NALRI FNIK	Gh h cK GLTMNEEKT GISVNAAKT GLTTPDKKH
	Motif A hDh CY. IDIKSCY. VDVTGAY. MDIEKCY. FDVKSCY.	h D h (EV D LKKO FL D ISE VL D VGD)	Motif D c p l EKHNFSTS PEYGCVVI	Gh]
	Motif A PCLYFh hDh CYD I hhK K FGRKKYFVRIDIKSCYDRIKQDLMFRIVKKKLKD PPPELYFVKVDVTGAYDTIPQDRLTEVIASIIKP GQPKLFFATWDIEKCYDSVNREKLSTFLKTTKLL VLPELYFWKFDVKSCYDSIPRMECMRILKDALKN AF	h hDh GY h FGGSNWFIEVDLKKCFDTISHDLIIKELKRYISD RKEYCSAVFLDISEAFDRVWHEGLLLKLAKILPY LKKKKSVTVLDVGDAYFSVPLDEDFRKYTAFTIP	Motif D h G c p N cK LRGFEKHNFSTSLEK VRGVPEYGCVVNLRK LINVSRENGFKFNMKK	.NS-1 VADKI ILLRI
	PCLYI KKKYI PELYI PKLFI	SSNWI SYCSZ CKKSY	h C LSLRC TLVRC CLIN	INNF1 FFSDV SILRQI
			Motif D A F h G c p N cK AKKFLNLSLRGFEKHNFSTSLEKTVI AKTFLRTLVRGVPEYGCVVNLRKTVV AVLFIEKLINVSRENGFKFNMKKLQT VINIKKLAMGGFQKYNAKANRKLLQT	Gh h c k h KMIKRDLNNFLNS-LGLTMNEEKTLI NENYLKTFSDWADKWGISVNAAKTGH HRTKIEELRQHLLRWGLTTPDKKHQK
	4444	3 8	A 0 A KF 0 A KT 0 A VI 0 VIN	2 KM 6 NEN 1 HR
10 8 8	OCIÍ 2 FRAI h h K FRLITNLRKRFLIKMGSNKKMLVSTNQTL LRPIVNMDYVVGARTFRREKRAERLTSRV FRPIMTENKKIVNSDRKTTKLTTNTKLLN RAITAIPCRGADEEEFTIYKENHKNAIQP R	hr h IRPLSVGNPRDKIVQEVMRMILDTIFDKK YRPISLLSGLSKMFERLLLKRLFRVDLFK WRKLVDFRELNKRTQDFWEVQLGIPHPAG		
K SMKM QHL K OLK K	CCRAEN CRAEN CLTTN CENHI	(ILD) CRLFF 7QLG)	Motif C LLRL DDFLhIT LLRVVDDFLFITVNKKD LLRLVDDFLLVTPHLTH LMRLTDDYLLITTQENN F	h Y DD hhh YVRYA DD ILIGVLGSKN LSTYA DD TIVLSSDILA IYQYM DD LYGSDLEIG
PFITS GIRC MSIAL	ESNKI FRREI KKTTI	SVMRN SLLLE DFWEN	C OFLH OFLL OFLL OYLL OFLL	ohhh orric orrivi A
L hallower	IKMC SARTE NSDE	CIVO CATOL	Motif C LLRL DDFLhIT LLRVVDDFLFIT LLRLVDDFLLVT: LMRLTDDYLLIT ILKLADDFLIIST	h Y DDhhh YVRYADDILI LSTYADDILV IYQYMDDLYV
Y RK W L h I YFRKDIWKLLCRPFI FYRRSVWSKLQSIGI YYRKNIWDVIMKMSI YFRHDTWNKLITPFI	h KKRFL DYVVG VKKIV CRGAD	APRDI SGLSI RELNI		
C RK FYRKI FYRKS FYRKS FYRKS FYRKN	otif 2 FRhi h FRLITNL! LRPIVNMI FRPIMTEP	r SSVGN SSLLS	Н	ហ
p) UNRTVY UNRLF! (SKTYY)	Motif 2 FRhI FRLITN LRPIVN FRPIMT	hR h IRPLS YRPIS WRKLV	TYLSI KLFAC SSLGI	TLVDNWLEDYI SDMPLPHIYHP TKILEPFKKQN
SDLRN FFQKD ZKSYS	0001	3G 0 XS 6 ST 1	DL SDLIDI SDMENI VTLEEK	CVDNI OMPLI KILEI
TE E	PKK PKRN PKPD(K PKPK(LKPG) KKKD)	n Y I FYMEI JCYGI FYYA: JVYDI	h IVMT] IFSSI SSMT]
Notif T hh hh pery TE TIPILLSEFFYTE VVELLRSFFYVTE VVSLIRGFFYVTE	MOCIF 1 HRNIPKK PAVIRLIPKK TSRLRFIPKP FGKLRLIPKK HSKMRIIPKK	p hh h K MRIVNIPKE IAQVKMILKE ITPVFAIKK	hL FLCH LLCS LLSS PLVD	hh ILCN ILYS AIFO
hh j PILQ! ELLR! SLIR! KIIQ'	Mot PPAV LTSR APGK NHSK	P] KPMR: KHAQ' YNTP'	Motif B' PQGS LS B PQGSILSS PQGSILST PQGSLCVSS FQGSSLSA	PP LISP NLGP KGSP
hh SFIII VYVVJ OLVV3 QLIPI	h KTTL: RPAL: SLGF: LSNF!	KFKF) PDAW) PENP'	Moti Pogs Pogs Pogs Fogs	PQG PQGS PQGS PQGW
WL hh hh pery tep p y rk w l h i r WLYNSFIIPILQSFFYITESSDLRNRTVYFRRDIWKLLCRPFITSMKM WLMSVYVVELLRSFFYYTETFOKNRLFFYRKSVWSKLQSIGIRQHLK WIFEDLVVSLIRÇFFYVTEQQKSYSKTYYYRKNIWDVIMKMSIADLKK WLFRQLIPKIIQTFFYCTEISSTVT-IVYFRHDTWNKLITPFIVEYFR	MDTQ HREA EWKK NSYT	LGTG IGYY SKIG	GI KVGI CQGI TKGI EDGI	h MLGL GAGV YNVL
429 546 441 366	MOCIF 1 h hRhIPKK p NNVRMDTQKTTLPPAVIRLLPKKNT- EVRQHREARPALLTSRLRFIPKPDG- KEVEWKKSLGFAPGKLRLIPKKTT- CRNHNSYTLSNFNHSKMRIIPKKSNN	p hh h K LSNELGTGKFKFKPMRIVNIPKPKGG SILRIGYYPDAWKHAQVKMILKPGKS EGKISKIGPENPYNTPVFAIKKKDST	Motif B' K Y Q GIPQGS LS hL h Y DL F SQYLQKVGIPQGSILSFLCHFYMEDLIDEYLSFT KSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGI KSYVQCQGIPQGLCVSSILSSFYYATLEESSLGFL KCYIREDGLFQGSSLSAPIVDLVYDDLLEFYSEFK	hPQG pP hh h TYHKPMLGLPQGSLISPILCNIVM RAGQIGAGVPQGSNLGPILYSIFS GIRYQYNVLPQGWKGSPALFQSSM
			20 K 11p S 12p K 13 K 12p K	
TRT con Sp_Trt1p hTRT Ea_p123 Sc_Est2p	TRT con Sp_Trtlp hTRT Ea_p123 Sc_Est2p	RT con Sc al Dm_TART HIV-1	TRT con K Y Q GIPQGS LS hL h Y DL F SP_Trtlp SQYLQKVGIPQGSILSFLCHFYMEDLIDEYLSFT hTRT KSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGI Ea_pl23 KFYKQTKGIPQGLCVSSILSSFYYATLEESSLGFL Sc_Est2p KCYIREDGLFQGSSLSAPIVDLVYDDLLEFYSEFK	RT con Sc al Dm TART HIV-1
E & H B X	E & H B &	ក្ ល់ៗដ	E WITH W	ជល់ពីដ

F/G: 4

7

FIG. 6

FIG. 7

FIG. 8

TB-> <--Signal-> -SEAP--> SV40polyA(L)->

<-AmpR <-Ampsig --<-Amppro-Flori->

FIG. 10A

FIG. 10B

Motifs	
Specific	
elomerase	

> NFkB_CS1 GGGRQTYYQC NFkB-MHC-I.2 TGGGCTTCCCC

Intron1

301 GCTGGGGTTGAGGGCGGCGGGGGGAACCAGCGACATGCGGAGAGCAGCGCAGCGACTCCGACCCCAACTCCCGCCGGCCCCCTTGGTCGCTTACGCCTCTCGTCGCGTCCGCTGAG

NFkB_CS1
GGGRQTYYQC
NFkB_CS2
RGGGRMTYYCC
Topo_II_cleavage_site
RNYNNCNNGYNGKTNYNY

+

361 AGGGCGCTTCCCCCGCAGGTGTCCTGCCTGAAGGAGCTGGTGGCCCGAGTGCTGCAGAGG TCCCGCGAAGGGGGCGTCCACAGGACGGACTTCCTCGACCACCGGGCTCACGACGTCTCC

FIG. 12

1	AAAACCCCAA	AACCCCAAAA	CCCCTTTTAG	AGCCCTGCAG	TTGGAAATAT
51	AACCTCAGTA	TTAATAAGCT	CAGATTTTAA	ATATTAATTA	CAAAACCTAA
101	ATGGAGGTTG	ATGTTGATAA	TCAAGCTGAT	AATCATGGCA	TTCACTCAGC
151	TCTTAAGACT	TGTGAAGAAA	TTAAAGAAGC	TAAAACGTTG	TACTCTTGGA
201	TCCAGAAAGT	TATTAGATGA	AGAAATCAAT	CTCAAAGTCA	TTATAAAGAT
251	TTAGAAGATA	TTAAAATATT	TGCGCAGACA	AATATTGTTG	CTACTCCACG
301	AGACTATAAT	GAAGAAGATT	TTAAAGTTAT	TGCAAGAAAA	GAAGTATTTT
351	CAACTGGACT	AATGATCGAA	CTTATTGACA	AATGCTTAGT	TGAACTTCTT
401		ATGTTTCAGA	TAGACAAAAA	CTTCAATGAT	TTGGATTTCA
451	ACTTAAGGGA		CAAAGACCCA	TTTATTAACA	GCTCTTTCAA
501		GTATTTCTTT	CAAGACGAAT	GGAACCAAGT	TAGAGCAATG
551	ATTGGAAATG	AGCTCTTCCG	ACATCTCTAC	ACTAAATATT	TAATATTCCA
601	GCGAACTTCT	GAAGGAACTC	TTGTTCAATT	TTGCGGGAAT	AACGTTTTTG
651	ATCATTTGAA		AAGTTTGACA	AAAAGCAAAA	AGGTGGAGCA
701		ATGAACCTCG	ATGTTGATCA	ACCTGCAAAT	ACAATGTCAA
751	GAATGAGAAA	GATCACTTTC	TCAACAACAT	CAACGTGCCG	AATTGGAATA
801	ATATGAAATC	AAGAACCAGA		GCACTCATTT	TAATAGAAAT
851	AACCAATTCT	TCAAAAAGCA	TGAGTTTGTG	AGTAACAAAA	ACAATATTTC
901	AGCGATGGAC	AGAGCTCAGA	CGATATTCAC	GAATATATTC	AGATTTAATA
951	GAATTAGAAA		GATAAGGTTA	TCGAAAAAAT	TGCCTACATG
1001	CTTGAGAAAG	TCAAAGATTT	TAACTTCAAC	TACTATTTAA	CAAAATCTTG
1051	TCCTCTTCCA	GAAAATTGGC	GGGAACGGAA	ACAAAAAATC	GAAAACTTGA
1101	TAAATAAAAC	TAGAGAAGAA	AAGTCGAAGT	ACTATGAAGA	GCTGTTTAGC
1151	TACACAACTG	ATAATAAATG		TTTATTAATG	AATTTTTCTA
1201	CAATATACTC	CCCAAAGACT	TTTTGACTGG	AAGAAACCGT	AAGAATTTTC
1251	AAAAGAAAGT	TAAGAAATAT	GTGGAACTAA	ACAAGCATGA	ACTCATTCAC
1301	AAAAACTTAT	TGCTTGAGAA	GATCAATACA	AGAGAAATAT	CATGGATGCA
1351	GGTTGAGACC	TCTGCAAAGC	ATTTTTATTA	TTTTGATCAC	GAAAACATCT
1401	ACGTCTTATG	GAAATTGCTC	CGATGGATAT	TCGAGGATCT	CGTCGTCTCG
1451	CTGATTAGAT	GATTTTTCTA	TGTCACCGAG	CAACAGAAAA	GTTACTCCAA
1501	AACCTATTAC	TACAGAAAGA	ATATTTGGGA	CGTCATTATG	AAAATGTCAA
1551	TCGCAGACTT	AAAGAAGGAA		AGGTCCAAGA	AAAAGAGGTT
1601	GAAGAATGGA	AAAAGTCGCT	TGGATTTGCA	CCTGGAAAAC	TCAGACTAAT
1651	ACCGAAGAAA		GTCCAATTAT	GACTTTCAAT	AAGAAGATTG
1701	TAAATTCAGA	CCGGAAGACT	ACAAAATTAA	CTACAAATAC	GAAGTTATTG
1751	AACTCTCACT	TAATGCTTAA			TTAAAGATCC
1801	TTTTGGATTC	GCTGTTTTTA	ACTATGATGA	TGTAATGAAA	AAGTATGAGG
1851	AGTTTGTTTG		CAAGTTGGAC	AACCAAAACT	CTTCTTTGCA
1901	ACTATGGATA	TCGAAAAGTG		GTAAACAGAG	AAAAACTATC
1951	AACATTCCTA	AAAACTACTA		TTCAGATTTC	TGGATTATGA
2001	CTGCACAAAT	-	AAGAATAACA	TAGTTATCGA	TTCGAAAAAC
2051		AAGAAATGAA		AGACAGAAAT	TCCAGAAGAT
2101			ATCCAACCTT	ATTCAGTGTT	CTTGAAAATG
2151	AACAAAATGA	CTTAAATGCA	AAGAAAACAT	TAATTGTTGA	AGCAAAGCAA
2201	AGAAATTATT	TTAAGAAAGA	TAACTTACTT	CAACCAGTCA	TTAATATTTG
2251	CCAATATAAT	TACATTAACT	TTAATGGGAA	GTTTTATAAA	CAAACAAAAG
2301	GAATTCCTCA	AGGTCTTTGA	GTTTCATCAA	TTTTGTCATC	ATTTTATTAT
2351		AGGAAAGCTC	CTTAGGATTC		AATCAATGAA

FIG. 13

2401	CCCTGAAAAT	CCAAATGTTA	ATCTTCTAAT	GAGACTTACA	GATGACTATC
2451	TTTTGATTAC	AACTCAAGAG	AATAATGCAG	TATTGTTTAT	TGAGAAACTT
2501	ATAAACGTAA	GTCGTGAAAA	TGGATTTAAA	TTCAATATGA	AGAAACTACA
2551	GACTAGTTTT	CCATTAAGTC	CAAGCAAATT	TGCAAAATAC	GGAATGGATA
2601	GTGTTGAGGA	GCAAAATATT	GTTCAAGATT	ACTGCGATTG	GATTGGCATC
2651	TCAATTGATA	TGAAAACTCT	TGCTTTAATG	CCAAATATTA	ACTTGAGAAT
2701	AGAAGGAATT	CTGTGTACAC	TCAATCTAAA	CATGCAAACA	AAGAAAGCAT
2751	CAATGTGGCT	CAAGAAGAAA	CTAAAGTCGT	TTTTAATGAA	TAACATTACC
2801	CATTATTTTA	GAAAGACGAT	TACAACCGAA	GACTTTGCGA	ATAAAACTCT
2851	CAACAAGTTA	TTTATATCAG	GCGGTTACAA	ATACATGCAA	TGAGCCAAAG
2901	AATACAAGGA	CCACTTTAAG	AAGAACTTAG	CTATGAGCAG	TATGATCGAC
2951	TTAGAGGTAT	CTAAAATTAT	ATACTCTGTA	ACCAGAGCAT	TCTTTAAATA
3001	CCTTGTGTGC	AATATTAAGG	ATACAATTTT	TGGAGAGGAG	CATTATCCAG
3051	ACTTTTTCCT	TAGCACACTG	AAGCACTTTA	TTGAAATATT	CAGCACAAAA
3101	AAGTACATTT	TCAACAGAGT	TTGCATGATC	CTCAAGGCAA	AAGAAGCAAA
3151	GCTAAAAAGT	GACCAATGTC	AATCTCTAAT	TCAATATGAT	GCATAGTCGA
3201	CTATTCTAAC	TTATTTTGGA	AAGTTAATTT	TCAATTTTTG	TCTTATATAC
3251	TGGGGTTTTG	GGGTTTTGGG	GTTTTGGGG		

FIG. 13 (CONTINUED)

```
MEVDVDNQAD NHGIHSALKT CEEIKEAKTL YSWIQKVIRC RNQSQSHYKD
      LEDIKIFAQT NIVATPRDYN EEDFKVIARK EVFSTGLMIE LIDKCLVELL
  51
      SSSDVSDRQK LQCFGFQLKG NQLAKTHLLT ALSTQKQYFF QDEWNQVRAM
 101
      IGNELFRHLY TKYLIFQRTS EGTLVQFCGN NVFDHLKVND KFDKKQKGGA
 151
      ADMNEPRCCS TCKYNVKNEK DHFLNNINVP NWNNMKSRTR IFYCTHFNRN
 201
      NQFFKKHEFV SNKNNISAMD RAQTIFTNIF RFNRIRKKLK DKVIEKIAYM
 251
      LEKVKDFNFN YYLTKSCPLP ENWRERKQKI ENLINKTREE KSKYYEELFS
 301
      YTTDNKCVTQ FINEFFYNIL PKDFLTGRNR KNFQKKVKKY VELNKHELIH
KNLLLEKINT REISWMQVET SAKHFYYFDH ENIYVLWKLL RWIFEDLVVS
 351
 401
      LIRCFFYVTE QQKSYSKTYY YRKNIWDVIM KMSIADLKKE TLAEVQEKEV
 451
      EEWKKSLGFA PGKLRLIPKK TTFRPIMTFN KKIVNSDRKT TKLTTNTKLL
 501
      NSHLMLKTLK NRMFKDPFGF AVFNYDDVMK KYEEFVCKWK QVGQPKLFFA
 551
      TMDIEKCYDS VNREKLSTFL KTTKLLSSDF WIMTAQILKR KNNIVIDSKN
 601
       FRKKEMKDYF RQKFQKIALE GGQYPTLFSV LENEQNDLNA KKTLIVEAKQ
 651
      RNYFKKDNLL QPVINICQYN YINFNGKFYK QTKGIPQGLC VSSILSSFYY
ATLEESSLGF LRDESMNPEN PNVNLLMRLT DDYLLITTQE NNAVLFIEKL
INVSRENGFK FNMKKLQTSF PLSPSKFAKY GMDSVEEQNI VQDYCDWIGI
 701
 751
 8.0.1
       SIDMKTLALM PNINLRIEGI LCTLNLNMQT KKASMWLKKK LKSFLMNNIT
 851
      HYFRKTITTE DFANKTLNKL FISGGYKYMQ CAKEYKDHFK KNLAMSSMID
 901
      LEVSKIIYSV TRAFFKYLVC NIKDTIFGEE HYPDFFLSTL KHFIEIFSTK
 951
1001
      KYIFNRVCMI LKAKEAKLKS DQCQSLIQYD A
```

FIG. 14

-16. 15

1529 148	1601 155	1661 175	1721 195	1781 215	1841 235	1907 245	1967 265	2027 285	2087 305	2147 325	2207 345	2267 365
CAA Q	2 GGC G	GAC	GTG V	AAA K	TAT Y	AAC N	AGG R	GTA V	ACA T	ATT I	GCG A	ATA I
TGG ₩	T ATC I	AAT N	ACT T	CGC R	TCC S	TTT AZ F N	CCA P	CTG L	CAA Q	TAT Y	TTT F	AGG R
AAT N		CCA P	gaa E	GCC	TCA S	TAT TT Y F	TTT F	CCA P	GAA E	CCA P	GTG V	CAA Q
AAA K	ıgtat	CTT L	GAG E	AGC S	AGG R	CTA TP L Y	ATT I	ATT I	ATT I	TGC C	CAG Q	AAC N
TCA	Jacaa	GCT A	TTT F	AAA K	TAC Y	AT CT	TGG W	GTG V	$_{\rm L}^{\rm TTA}$	$_{\rm Y}^{\rm TAT}$	AAC N	GGT G
GAG E	gtaaataccggttaagatgttgcgcactttgaacaagactgacaagtatag	GAG E	GTG V	AAT N	TTT F	ag P	CAA	AAA K	CCT P	CAT H	CCG P	TGG ¥
CTT L	เตลลอ	TTT F	AAT N	CAA Q	ATT I	G gtaactaatactgttatccttcataactaattttag D	CTT	CAC H	${\tt TAC}_{\rm Y}$	AAC N	AAG K	ATC I
ATA I	tgae	ATT I	AAT N	ACT T	AGC S	ıctas	TGG W	$_{\rm L}^{\rm TTG}$	GTA V	TAC Y	TTA L	TTA L
TCT S	actt	AGT S	AAA K	ATT I	$_{\rm F}^{\rm TTT}$	atae	ATG M	CAA Q	AAG K	GTT V	TCC	AAA K
ATA I	ენენე	GGA G	TTT F	TCC S	AGG R	ctto	CAC H	AAG K	CTA L	AAA K	TAT Y	CCT P
$_{\rm L}^{\rm CTT}$	ıtgtt	AAA K	CTT L	ACA T	AGT S	tato	GTA V	GTG V	$_{ m L}^{ m CTC}$	TCA S	AGT S	TTT F
$_{\rm Y}^{\rm TAC}$	aage	TCC	CCA P	GAA E	ATT I	ıctgt	ACA T	CAA	CGT R	CTA L	$_{\rm L}^{\rm CTT}$	GTG V
AAT N	ggtt	TTA L	ATA I	ATT I	TCA S	aata	AAC N	TTT F	AAA K	TCT	ATC I	CGA R
CCT	ıtacc	TTA L	9 9	ACC	ATT I	aact	CGG R	GCA A	CCC	ATT I	AAA K	GTT V
$_{\rm F}^{\rm TTT}$	ytaaa	TAC Y	TCT S	CGA R	AGC S		GAT D	AAC N	GTG V	CGT R	GAA E	CTT
ACT T	AT	CAT H	ATT I	AAG K	AAT N	CAA	TGT C	ATA I	GTT V	CAT H	GAT D	ATT I
TCT	GAA E	ATG M	CAG Q	AGA R	TGG W	AAG K	ATT I	$_{\rm L}^{\rm CTT}$	ACA T	CTC	GAT D	TCC S
	TTA	_გ-⊄_ ე	CTT		S	F F	S		AGT S	CGA R	CAC	CG-R
CTC	$\mathop{\mathrm{TTG}}_{\mathrm{L}}$	GAT D	TAC Y	AAA K	GTT V	AAG K	CAC H	TTT F	CAG Q	AAG K	ACC	CTT
GAT D	CTT L	AGT S	AAT N	TCA S	GAA E	AAG K	TTA L	CAA	TCA S	GCA	GAC D	TTT F
1470 129	1530 149	1602 156	1662 176	1722 196	1782 216	1842 236	1908 246	1968 266	2028 286	2088 306	2148 326	2208 346
	-											

CONTINUED

2336 375	2396 395	2465 405	2525 425	2585 445	2645 465	2705 485	2775 495	2835 515	2906 524	2967 542	3027 562	3088 581
GAA ACT E T	A AAG K	r GGA G	r GCG A	r TAT Y	3 AAA K	C GAG E	AAA ACT K T	r ACG T	gtattaatttttggtcatcaatgtactttacttctaatctatta	r GTG V	G GAG E	gtaat
	ATA I	$_{\rm L}^{\rm CTT}$	TTT F	$_{\rm F}^{\rm TT}$	TGG W	AAC N	₹¥ .υ	ATT I	aat	CCT P	$_{\rm L}^{\rm TTG}$	ი ი
CTC	AAC N	GTC V	ATA I	TTT F	ATT I	ATA I	r cag Q	CTC	ttct	CGA R	AAC N	$_{\rm F}^{\rm TT}$
Ag A(AGT S	CTA L	CAA	TCT S	GAT D	AAA K	r ACT T	CGT R	taci	TTA L	$_{ m F}^{ m TTT}$	ATG M
acce	ATG M	TGG W	AAG K	CAA O	AAA K	GAA E	GAT D	TTT F	cacti	ACT T	CCA P	CGA R
ıttt	TTA L	GAA E	CGC R	TTA L	AGA R	TTT F	ATG M	ACC T	atgt	CAA Q	ATT I	CAC H
lacge	TAT Y	ATT I	AAA K	ATT I	TTT F	GCG A	r AGG	AAT N	atca	AAC N	GGT G	AAG K
G gtattgtataaaatttattaccactaacgattttaccag AC D	CAT H	GAA E	GAG E	CCT P	TAT Y	GAA E	r GTT V	AAG K	ggt	ACG T	AGT S	$_{\rm L}^{\rm CTT}$
tacc	TTA L	TCA S	TTT F	ATA I	GTT V	ATG M	AAT N	AAG K	tttt	AGT S	AGT S	$_{\rm L}^{\rm CTT}$
ttat	AGT S	ATT I	GAT D	ATA I	ACT T	AAA K	AA(N	CCT	taat	GTC V	GAA E	GAT D
ıaaat	TTT F	cag	AGT S	$ ext{TTT}$	CGA R	ATG M	tcag	$_{\rm L}^{\rm TTA}$		$_{\rm L}^{\rm TTA}$	GAA E	AAG K
jtata	TCT S	ıcaat	TTA L	TCG S	AAT N	TCA S	attt	CTA L	AAG K	ATG M	AAT N	AAG K
atto	GAG E	ıttaa	TGC	AAT N	CGA R	ACA T	taat	CGT R	ATA I	AAA K	ATC I	TTT F
	TAC Y	ittaa	ATG M	TAC Y	TTA L	ATT I	aaago	ATT I	TTA L	AAA K	TTA L	ACT
AAA K	AGA R	cacca	AAA K	CTA L	GAT D	TTT F	gcaae	GTT V	$_{\bar{F}}^{\rm TTC}$	AAC N	CAT H	$_{\rm L}^{\rm CTT}$
TTA L	TCG S	tttt	gcg A	TGG W	AGT S	CCC P	ttt	GCA G	AGA R	TCA S	AAA K	$_{\rm L}^{\rm CTT}$
ATA I	TTA L	aattt	AAT N	TAC Y	TCA S	CGA R	attt	CCA P	AAA K	GGT G	CTG L	AAG K
ATA	-K-A-	င 	-R-R-	ĀTC	-Б-д-	-G -G -G	a	CCT	AGA R	ATG	ATA	ATG M
GAG . E	TTG	gtaatatgccaaatttttttaccattaattaacaatcag	AGG R	TTC	ACT	TTG	ttta	TTG	TTA		TCG	TAC
TTT F	TTC	gtaa	AAA K	GAA E	ATC I	CTC	gtattttaa agtattttttgcaaaagctaatatttcag AAC	ACT T	AAT N	ttagcag	GCA A	GTT V
2268 366	2337 376	2397 396	2466 406	2526 426	2586 446	2646 466	2706 486	2776 496	2836 516	2907 525	2968 543	3028 563

(CONTINUED)

3532 692

3593 708

3653 728

3405 659

ACA T

AAA K

ATG M

TCT S

GTC GTG (V V

AAA K

3465 679

ATT I

TCT S

TCT S

AGT S

AAA K

ACC

1
1

3215 611

CTC L

GTT AAA AAG AAA V K K K

GAT TTG ATG TTT CGG ATT D L M F R I

AAG K

TAT Y

AAA K

GTA CGG ATA GAT ATA V R I D I

AAG AAG TAT K K Y

3089 tatataatgcgcgattcctcattattaattttgcag G CGT 582

3275 631

GCT A

CGA R

GAC

TAT GCA ACC ATA CAT GCA ACA AGT Y A T I H A T S

CGA AAG 1 R K N

GTA ATT V I

GAA E

CCC P

3216 AAG GAT 612 K D

3343 643

TCC TAT T gtaagtttattttttcattggaattttttaacaa S Y ${
m F}$

GCG A

GAG E

AGT S

AAC

3276 ACA AAA 632 T K

3840 778

3900 798

3713 748

3777 764

(CONTINUED)

98	20	8 8	4 8	4209 888	74 3	39	01	68	4528 966	88	65	
3960 818	4020 838	4089	4149 868	88 88	4274	4339	4401 935	4468 946	45 96	4588 986	989	
TGT		A TCG	TCT	AAA K	G gtgagtacttattttaactaga D	aaagtcattaattaaccttag AT CTT TTG AAT GTT ATT GGA AGA AAA ATT TGG AAA AAG TTG GCC	gtacgtgtc	TTG AAA L K	ACT T	ATA I	TAA tgtcattttcaatttattatatacatcctttattactggtgtcttaaacaatattattactaagtata *	
GCA A	ATG M	cag 1	AAT N	TTA	ctaad	3 TT(L	gtaci	$_{\rm L}^{\rm TTG}$	TTG L	AGA R	ctaa	
TTA L	CAT H	caato	TTC	TAC	catti	A AAC	T ⊠	GGT G	TCA S	AGA R	atta	
$\mathop{\mathrm{TTG}}_{\mathbb{L}}$	ACG AAA T K	caaat	TCA AAA S K	GCA A	tacti	AA.	AAA K	GAT D	CAG Q	CAT H	tatt	
ACA	ACG T	ctgad	TCA S	CAA GCA Q A	tgagt	T TG(GTC	AGA R	TTT F	TTA L	acaat	
GAT D	CTG	gtatactgtgtaactgaataatagctgacaaataatcag	ATT GAC ATT ACC CAC AAT I D I T H N	GCA A	ρ D	A AT' I	GAA	ATG M	CAA O	TTT F	ttaa	
CTT L	GTA GAG V E	aata	CAC H	ATG AGA M R	ACG	A AA	GCA	GGA G	TAC Y	$_{\rm L}^{\rm TTA}$	tgtc	
TCT	GTA V	actg	ACC T	ATG M	ATA	A AG	TCT	CTT L	ATA I	GTG V	ctgg.	
AGG R	TCT	tgta	ATT I	TGT	TTC	T G	TCC	TGT	CTA	CAG Q	atta	Ļ
ATG M	ACA	actgi	GAC D	ATG M	ATG M	r AT' I	$_{\rm L}^{\rm TTG}$	TTT F	CAG Q	CGA R	cttt	7
AAC	TCT	gtati	ATT I	TCT	AGA R	T GT	TTC	$_{\rm L}^{\rm CTT}$	GAA E	$\mathop{\mathrm{TTG}}_{\mathrm{L}}$	cato	ì
GTG V	AAC N	AG R	TTT F	TAC Y	CAA Q	G A A	CGT R	ag G	TGC TTC	GTT V	tata	
ICI	TTT F	CTA L	GTA V	GGA G	CCC	T TT	AGG R	cato	TGC C	CCA P	atta	
TTC F	TTA L	ATT I	CAA Q	CTA L	ATT I	r CŢ	AGT S	gaca	CCA P	AGA R	attt	
GGT	GCC	AAA K	GCA A	AGG R	TTT F	ag A'	ACG T	tatte	TAT CAT CCA Y H P	CCG CTA A	ttca	
TTC	GAA E	TAC Y	TTT F	TAT Y	GAT ATA D I	cctt	TAT Y	gcaa	TAT Y	CCG P	catt	
TTC	GAT D	$_{\rm F}^{\rm TTT}$	TCC	ATA I	GAT D	ttaa	GGA G	ttca	TTC AAA F K	AAG K	tgt	
CCA P	ATT	- TT	A	AAT N	AAG K	 ロ ロ ロ 	LTA	—ფ- – -	-F	ATC	-*	
ATG (AAA K	TCT	CTT (TGC	ATG /	tcati	ATA TTA GGA TAT ACG AGT AGG CGT I L G Y T S R R	tcga	TCT	CTT	GAT 7 D	
AGA R	CCT	AAA K	AGC	TGC	AGG R	aaag	GAA E	ggtctcgagacttcagcaatattgacacatcag G	CCC	GAT D	GCT	
3901 799	3961 819	4021 839	4090	4150 869	4210 889	4275 904	4340 918	4402 936	4469 947	4529 967	4589 987	

(CONTINUED)

FIG. 15 (CONTINUED)

+

1 qeaqeqetqe qteetgetge geacgtggga agecetggee ceggecacce cegegatgee 61 gegegeteec egetgeegag cegtgegete cetgetgege agecactace gcgaggtgct 121 geogetggee acgtiegige ggegeeiggg geoccaggge iggeggeigg igeagegegg 181 ggacccggcg gettteegeg egetggtgge ceagtgeetg gtgtgegtge eetgggaege 241 acggccgccc cccgccgccc cctccttccg ccaggtgtcc tgcctgaagg agctggtggc 301 ccgagtgctg cagaggctgt gcgagcgcgg cgcgaagaac gtgctggcct teggettege 361 getgetggae ggggeeege ggggeeeee egaggeette accaccageg tgegeageta 421 octgoccaac acggtgaccg acgcactgcg ggggagcggg gcgtgggggc tgctgctgcg 481 cogogtggge gacgacgtge tggtteacet getggeacge tgegegetet tigtgetggt 541 ggctcccage tgcgcctace aggtgtgcgg gccgccgctg taccagctcg gcgctgccac 601 traggeregg recergerar accetagtgg accetgaagg cgtctgggat gcgaacggge 661 ctggaaccat agcgtcaggg aggccggggt ccccctgggc ctgccagccc cgggtgcgag 721 gaggegeggg ggeagtgeea geegaagtet geegttgeee aagaggeeea ggegtggege 781 tgcccctgag ccggagcgga cgcccgttgg gcaggggtcc tgggcccacc cgggcaggac 841 gegtggaceg agtgacegtg gtttetgtgt ggtgteacet geeagaceeg eegaagaage 901 caccicttig gagggtgcgc tetetggcac gegecactee cacccateeg tgggcegeca 961 geaccaegeg ggeececat ceacategeg geeaccaegt eeetgggaca egeettgtee 1021 cccggtgtac gccgagacca agcacttcct ctactcctca ggcgacaagg agcagctgcg 1081 qccctccttc ctactcagct ctctgaggcc cagcctgact ggcgctcgga ggctcgtgga 1141 gaccatettt etgggtteea ggeeetggat geeagggaet eeeegeaggt tgeeeegeet 1201 gccccagcgc tactggcaaa tgcggcccct gtttctggag ctgcttggga accacgcgca 1261 gtgccctac ggggtgctcc tcaagacgca ctgcccgctg cgagctgcgg tcaccccage 1321 agceggtgte tgtgeeeggg agaageeeea gggetetgtg geggeeeeeg aggaggagga 1381 cacagacccc cgtcgcctgg tgcagctgct ccgccagcac agcagcccct ggcaggtgta 1441 cggcttcgtg cgggcctgcc tgcgccggct ggtgccccca ggcctctggg gctccaggca 1501 caacgaacgo cgottootoa ggaacaccaa gaagttoato toootgggga agoatgocaa 1561 getetegetg caggagetga egtggaagat gagegtgegg gaetgegett ggetgegeag 1621 gageceaggg gttggetgtg tteeggeege agageacegt etgegtgagg agateetgge 1681 caagtteetg caetggetga tgagtgtgta egtegtegag etgeteaggt etttetttta 1741 tgtcacggag accacgtttc aaaagaacag gctctttttc taccggaaga gtgtctggag 1801 caagttgcaa agcattggaa tcagacagca cttgaagaga gtgcagctgtc 1861 ggaagcagag gtcaggcagc atcgggaagc caggcccgcc ctgctgacgt ccagactccg 1921 cttcatcccc aagectgacg ggetgeggee gattgtgaac atggactacg tegtgggage 1981 cagaacgttc cgcagagaaa agagggccga gcgtctcacc tcgagggtga aggcactgtt 2041 cagcgtgctc aactacgage gggcgcggcg ccccggcctc ctgggcgcct ctgtgctggg 2101 cctggacgat atccacaggg cctggcgcac cttcgtgctg cgtgtgcggg cccaggaccc 2161 gccgcctgag ctgtactttg tcaaggtgga tgtgacgggc gcgtacgaca ccatcccca 2221 ggacaggete acggaggtea tegecageat cateaaacee cagaacaegt actgegtgeg 2281 teggtatgee gtggteeaga aggeegeeca tgggeaegte egeaaggeet teaagageea 2341 cgtetetace tigacagace tecageegta catgegacag tiegtggete acetgeagga 2401 gaccageceg etgagggatg cegtegteat egageagage teeteeetga atgaggeeag 2461 cagtggeete ttegaegtet teetaegett catgtgeeac caegeegtge geateaggg 2521 caagteetae greeagree aggggateee geagggetee areeteteea egergeterg 2581 caqcetqtqc tacqqcqaca tqqaqaacaa gctqtttgcg gggattcggc gggacgggct 2641 gctcctgcgt ttggtggatg atttcttgtt ggtgacacct cacctcaccc acgcgaaaac 2701 cttcctcagg accetggtce gaggtgtcce tgagtatgge tgegtggtga acttgeggaa 2761 gacagtggtg aactteectg tagaagacga ggeeetgggt ggeaeggett ttgttcagat 2821 gccggcccac ggcctattcc cctggtgcgg cctgctgctg gatacccgga ccctggaggt 2881 gcagagegac tactccagct atgcccggac ctccatcaga gccagtctca ccttcaaccg 2941 cggcttcaag gctgggagga acatgcgtcg caaactcttt ggggtcttgc ggctgaagtg 3001 tcacagectg tttetggatt tgeaggtgaa cageeteeag aeggtgtgea eeaacateta 3061 caagateete etgetgeagg egtacaggtt teaegeatgt gtgetgeage teeeatttea 3121 teageaagtt tggaagaace eeacattttt eetgegegte atetetgaca eggeeteeet -3181-ctgctactcc-atcctgaaag-ccaagaacgc-agggatgtcg-ctgggggcca-agggcgccgc 3241 cggcctctg ccctccgagg ccgtgcagtg gctgtgccac caagcattcc tgctcaagct 3301 gactcgacac cgtgtcacct acgtgccact cctggggtca ctcaggacag cccagacgca 3361 getgagtegg aageteeegg ggaegaeget gaetgeeetg gaggeegeag ceaaceegge 3421 aetgeeetea gaetteaaga ceateetgga etgatggeea eeegeeeaca geeaggeega 3481 gagcagacac cagcagccct gtcacgccgg gctctacgtc ccaggggaggg agggggcgcc 3541 cacacccagg cccgcaccgc tgggagtctg aggcctgagt gagtgtttgg ccgaggcctg 3601 catgtccggc tgaaggctga gtgtccggct gaggcctgag cgagtgtcca gccaagggct 3661 gagtgtecag cacacetgee gtetteaett eeccacagge tggegetegg etccacecca 3721 gggccagett tteeteacea ggageeegge tteeactee cacataggaa tagteeatee 3781 ccagattege cattetteac cectegeet geetteett geetteeace eccaceatee 3841 aggtggagac cctgagaagg accctgggag ctctgggaat ttggagtgac caaaggtgtg 3901 ccctgtacac aggcgaggac cctgcacctg gatgggggtc cctgtgggtc aaattggggg 3961 gaggtgctgt gggagtaaaa tactgaatat atgagttttt cagttttgaa aaaaa

MPRAPRCRAVRSLLRSHYREVLPLATFVRRLGPQGWRLVQRGDP AAFRALVAOCLVCVPWDARPPPAAPSFRQVSCLKELVARVLQRL CERGAKNVLAFGFALLDGARGGPPEAFTTSVRSYLPNTVTDALR GSGAWGLLLRRVGDDVLVHLLARCALFVLVAPSCAYQVCGPPLY OLGAATOARPPPHASGPRRRLGCERAWNHSVREAGVPLGLPAPG ARRRGGSASRSLPLPKRPRRGAAPEPERTPVGQGSWAHPGRTRG PSDRGFCVVSPARPAEEATSLEGALSGTRHSHPSVGROHHAGPP STSRPPRPWDTPCPPVYAETKHFLYSSGDKEQLRPSFLLSSLRP SLTGARRLVETIFLGSRPWMPGTPRRLPRLPQRYWQMRPLFLEL LGNHAQCPYGVLLKTHCPLRAAVTPAAGVCAREKPQGSVAAPEE EDTDPRRLVQLLRQHSSPWQVYGFVRACLRRLVPPGLWGSRHNE RRFLRNTKKFISLGKHAKLSLQELTWKMSVRDCAWLRRSPGVGC VPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQKNR LFFYRKSVWSKLOSIGIROHLKRVOLRELSEAEVROHREARPAL LTSRLRFIPKPDGLRPIVNMDYVVGARTFRREKRAERLTSRVKA LFSVLNYERARRPGLLGASVLGLDDIHRAWRTFVLRVRAQDPPP ELYFVKVDVTGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQ KAAHGHVRKAFKSHVSTLTDLQPYMRQFVAHLQETSPLRDAVVI ${\tt EQSSSLNEASSGLFDVFLRFMCHHAVRIRGKSYVQCQGIPQGSI}$ LSTLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTPHLTHA KTFLRTLVRGVPEYGCVVNLRKTVVNFPVEDEALGGTAFVQMPA HGLFPWCGLLLDTRTLEVQSDYSSYARTSIRASLTFNRGFKAGR NMRRKLFGVLRLKCHSLFLDLQVNSLQTVCTNIYKILLLQAYRF HACVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKNAGMSL GAKGAAGPLPSEAVOWLCHOAFLLKLTRHRVTYVPLLGSLRTAQ TQLSRKLPGTTLTALEAAANPALPSDFKTILD

FIG. 17

TTATGTCACGGAGACCACGTTTCAAAAGAACAGGCTCTTTTTCTACCGGAAGAGTGTCTG GAGCAAGTTGCAAAGCATTGGAATCAGACAGCACTTGAAGAGGGTGCAGCTGCGGGAGCT CCGCTTCATCCCCAAGCCTGACGGGCTGCGGCCGATTGTGAACATGGACTACGTCGTGGG AGCCAGAACGTTCCGCAGAGAAAAGAGGGCCGAGCGTCTCACCTCGAGGGTGAAGGCACT GTTCAGCGTGCTCAACTACGAGCGGGCGCGCGCCCCGGCCTCCTGGGCGCCTCTGTGCT GGGCCTGGACGATATCCACAGGGCCTGGCGCACCTTCGTGCTGCGTGTGCGGGCCCAGGA $\tt CCCGCCGCCTGAGCTGTACTTTGTCAAGGTGGATGTGACGGGCGCGTACGACACCATCCC$ CCAGGACAGGCTCACGGAGGTCATCGCCAGCATCATCAAACCCCAGAACACGTACTGCGT GCGTCGGTATGCCGTGGTCCAGAAGGCCGCCCATGGGCACGTCCGCAAGGCCTTCAAGAG CCACGTCCTACGTCCAGTGCCAGGGGATCCCGCAGGGCTCCATCCTCCACGCTGCTCT GCAGCCTGTGCTACGGCGACATGGAGAACAAGCTGTTTGCGGGGGATTCGGCGGGACGGGC TGCTCCTGCGTTTGGTGGATGATTTCTTGTTGGTGACACCTCACCTCACCCCACGCGAAAA CCTTCCTCAGGACCCTGGTCCGAGGTGTCCCTGAGTATGGCTGCGTGGTGAACTTGCGGA AGACAGTGGTGAACTTCCCTGTAGAAGACGAGGCCCTGGGTGGCACGGCTTTTGTTCAGA TGCCGGCCCACGGCCTATTCCCCTGGTGCGGCCTGCTGGATACCCGGACCCTGGAGG TGCAGAGCGACTACTCCAGCTATGCCCGGACCTCCATCAGAGCCAGTCTCACCTTCAACC GCGGCTTCAAGGCTGGGAGGAACATGCGTCGCAAACTCTTTGGGGTCTTGCGGCTGAAGT GTCACAGCCTGTTTCTGGATTTGCAGGTGAACAGCCTCCAGACGGTGTGCACCAACATCT ACAAGATCCTCCTGCTGCAGGCGTACAGGTTTCACGCATGTGTGCTGCAGCTCCCATTTC ATCAGCAAGTTTGGAAGAACCCCACATTTTTCCTGCGCGTCATCTCTGACACGGCCTCCC TCTGCTACTCCATCCTGAAAGCCAAGAACGCAGGGATGTCGCTGGGGGCCCAAGGGCGCCG CCGGCC7TCTGCCCTCCGAGGCCGTGCAGTTGCTGTGCCACCAAGCATTCCTGCTCAAGC TGACTCGACACCGTGTCACCTACGTGCCACTCCTGGGGTCACTCAGGACAGCCCAGACGC AGCTGAGTCGGAAGCTCCCGGGGACGACGCTGACTGCCCTGGAGGCCGAGCCAACCCGG CACTGCCCTCAGACTTCAAGACCATCCTGGACTGATGGCCACCCGCCCACAGCCAGGCCG GCATGTCCGGCTGAAGGCTGAGTGTCCGGCTGAGGCCTGAGCGAGTGTCCAGCCAAGGGC TGAGTGTCCAGCACACCTGCCGTCTTCACTTCCCCACAGGCTGGCGCTCGGCTCCACCCC AGGGCCAGCTTTTCCTCACCAGGAGCCCGGCTTCCACTCCCCACATAGGAATAGTCCATC CCCAGATTCGCCATTGTTCACCCCTCGCCCTGCCCTCCTTTGCCTTCCACCCCCACCATC CAGGTGGAGACCCTGAGAAGGACCCTGGGAGCTCTGGGAATTTGGAGTGACCAAAGGTGT GCCCTGTACACAGGCGAGGACCCTGCACCTGGATGGGGGTCCCTGTGGGTCAAATTGGGG AAAAAAAAAAAA

--

MetSerValTyrValValGluLeuLeuArgSerPhePhe TyrValThrGluThrThrPheGlnLysAsnArgLeuPhe PheTyrArgLysSerValTrpSerLysLeuGlnSerIle GlyIleArgGlnHisLeuLysArgValGlnLeuArgGlu LeuSerGluAlaGluValArgGlnHisArgGluAlaArg ProAlaLeuLeuThrSerArgLeuArgPheIleProLys ProAspGlyLeuArgProIleValAsnMetAspTyrVal ValGlyAlaArgThrPheArgArgGluLysArgAlaGlu ArgLeuThrSerArgValLysAlaLeuPheSerValLeu AsnTyrGluArgAlaArgArgProGlyLeuLeuGlyAla SerValLeuGlyLeuAspAspIleHisArgAlaTrpArg ThrPheValLeuArgValArgAlaGlnAspProProPro GluLeuTyrPheValLysValAspValThrGlyAlaTyr AspThrIleProGlnAspArgLeuThrGluValIleAla SerIleIleLysProGlnAsnThrTyrCysValArgArg TyrAlaValValGlnLysAlaAlaHisGlyHisValArg LysAlaPheLysSerHisValLeuArgProValProGly AspProAlaGlyLeuHisProLeuHisAlaAlaLeuGln ProValLeuArgArgHisGlyGluGlnAlaValCysGly AspSerAlaGlyArgAlaAlaProAlaPheGlyGly

FIG. 19

GCA	GCGC	rgcg	rccro	GCTG(CGCAC	CGTGC	GGAA(GCCI	rggco	CCCGC	GCCAC	cccc	CGCG	1 met ATG
pro CCG	arg CGC	ala GCT	pro CCC	arg CGC	cys TGC	arg CGA	ala GCC	10 val GTG	arg CGC	ser TCC	leu CTG	leu CTG	arg CGC	ser AGC
his CAC	tyr TAC	arg CGC	20 glu GAG	val GTG	leu CTG	pro CCG	leu CTG	ala GCC	thr ACG	phe TTC	val GTG	arg CGG	30 arg CGC	leu CTG
gly GGG	pro CCC	gln CAG	gly GGC	trp TGG	arg CGG	leu CTG	val GTG	40 gln CAG	arg CGC	gly GGG	asp GAC	pro CCG	ala GCG	ala GCT
phe TTC	arg CGC	ala GCG	50 leu CTG	val GTG	ala GCC	gln CAG	cys TGC	leu CTG	val GTG	cys TGC	val GTG	pro CCC	60 trp TGG	asp GAC
ala GCA	arg CGG	pro CCG	pro CCC	pro CCC	ala GCC	ala GCC	pro CCC	70 ser TCC	phe TTC	arg	gln CAG	val GTG	ser TCC	cys TGC
leu CTG	lys AAG	glu GAG	80 leu CTG	val GTG	ala GCC	arg CGA	val GTG	leu CTG	gln CAG	arg AGG	leu CTG	cys TGC	90 glu GAG	arg CGC
gly GGC	ala GCG	lys AAG	asn AAC	val GTG	leu CTG	ala GCC	phe TTC	100 gly GGC	phe TTC	ala GCG	leu CTG	leu CTG	asp GAC	gly GGG
ala GCC	arg CGC	gly GGG	110 gly GGC	pro CCC	pro CCC	glu GAG	ala GCC	phe TTC	thr ACC	thr ACC	ser AGC	val GTG	120 arg CGC	ser AGC

tyr leu pro asn thr val thr asp ala leu arg gly ser gly ala TAC CTG CCC AAC ACG GTG ACC GAC GCA CTG CGG GGG AGC GGG GCG trp gly leu leu arg arg val gly asp asp val leu val his TGG GGG CTG CTG CGC CGC GTG GGC GAC GAC GTG CTG GTT CAC 160 leu leu ala arg cys ala leu phe val leu val ala pro ser cys CTG CTG GCA CGC TGC GCG CTC TTT GTG CTG GTG GCT CCC AGC TGC ala tyr gln val cys gly pro pro leu tyr gln leu gly ala ala GCC TAC CAG GTG TGC GGG CCG CCG CTG TAC CAG CTC GGC GCT GCC thr gln ala arg pro pro pro his ala ser gly pro arg arg ACT CAG GCC CGG CCC CCG CCA CAC GCT AGT GGA CCC CGA AGG CGT 200 leu gly cys glu arg ala trp asn his ser val arg glu ala gly CTG GGA TGC GAA CGG GCC TGG AAC CAT AGC GTC AGG GAG GCC GGG 220 val pro leu gly leu pro ala pro gly ala arg arg gly gly GTC CCC CTG GGC CTG CCA GCC CCG GGT GCG AGG AGG CGC GGG GGC 230 ser ala ser arg ser leu pro leu pro lys arg pro arg arg gly AGT GCC AGC CGA AGT CTG CCG TTG CCC AAG AGG CCC AGG CGT GGC 250 ala ala pro glu pro glu arg thr pro val gly gln gly ser trp GCT GCC CCT GAG CCG GAG CGG ACG CCC GTT GGG CAG GGG TCC TGG 260 ala his pro gly arg thr arg gly pro ser asp arg gly phe cys GCC CAC CCG GGC AGG ACG CGT GGA CCG AGT GAC CGT GGT TTC TGT 280 val val ser pro ala arg pro ala glu glu ala thr ser leu glu GTG GTG TCA CCT GCC AGA CCC GCC GAA GAA GCC ACC TCT TTG GAG 300 290 gly ala leu ser gly thr arg his ser his pro ser val gly arg GGT GCG CTC TCT GGC ACG CGC CAC CCA TCC GTG GGC CGC 310 gln his his ala gly pro pro ser thr ser arg pro pro arg pro CAG CAC CAC GCG GGC CCC CCA TCC ACA TCG CGG CCA CCA CGT CCC trp asp thr pro cys pro pro val tyr ala glu thr lys his phe TGG GAC ACG CCT TGT CCC CCG GTG TAC GCC GAG ACC AAG CAC TTC

FIG. 20 (CONTINUED)

leu tyr ser ser gly asp lys glu gln leu arg pro ser phe leu CTC TAC TCC TCA GGC GAC AAG GAG CAG CTG CGG CCC TCC TTC CTA 350 leu ser ser leu arg pro ser leu thr gly ala arg arg leu val CTC AGC TCT CTG AGG CCC AGC CTG ACT GGC GCT CGG AGG CTC GTG 370 glu thr ile phe leu gly ser arg pro trp met pro gly thr pro GAG ACC ATC TTT CTG GGT TCC AGG CCC TGG ATG CCA GGG ACT CCC 380 arg arg leu pro arg leu pro gln arg tyr trp gln met arg pro CGC AGG TTG CCC CGC CTG CCC CAG CGC TAC TGG CAA ATG CGG CCC 400 leu phe leu glu leu leu gly asn his ala gln cys pro tyr-gly CTG TTT CTG GAG CTG CTT GGG AAC CAC GCG CAG TGC CCC TAC GGG 410 val leu leu lys thr his cys pro leu arg ala ala val thr pro GTG CTC CTC AAG ACG CAC TGC CCG CTG CGA GCT GCG GTC ACC CCA ala ala gly val cys ala arg glu lys pro gln gly ser val ala GCA GCC GGT GTC TGT GCC CGG GAG AAG CCC CAG GGC TCT GTG GCG ala pro glu glu glu asp thr asp pro arg arg leu val gln leu GCC CCC GAG GAG GAG GAC ACA GAC CCC CGT CGC CTG GTG CAG CTG leu arg gln his ser ser pro trp gln val tyr gly phe val arg CTC CGC CAG CAC AGC CCC TGG CAG GTG TAC GGC TTC GTG CGG 470 ala cys leu arg arg leu val pro pro gly leu trp gly ser arg GCC TGC CTG CGC CGG CTG GTG CCC CCA GGC CTC TGG GGC TCC AGG 490 his asn glu arg arg phe leu arg asn thr lys lys phe ile ser CAC AAC GAA CGC CGC TTC CTC AGG AAC ACC AAG AAG TTC ATC TCC 500 __leu_gly_lys_his_ala_lys_leu_ser_leu_gln -glu_leu-thr-trp_lys---CTG GGG AAG CAT GCC AAG CTC TCG CTG CAG GAG CTG ACG TGG AAG 520 met ser val arg asp cys ala trp leu arg arg ser pro gly val ATG AGC GTG CGG GAC TGC GCT TGG CTG CGC AGG AGC CCA GGG GTT gly cys val pro ala ala glu his arg leu arg glu glu ile leu GGC TGT GTT CCG GCC GCA GAG CAC CGT CTG CGT GAG GAG ATC CTG

FIG. 20 (CONTINUED)

550 ala lys phe leu his trp leu met ser val tyr val val glu leu GCC AAG TTC CTG CAC TGG CTG ATG AGT GTG TAC GTC GTC GAG CTG leu arg ser phe phe tyr val thr glu thr thr phe gln lys asn CTC AGG TCT TTC TTT TAT GTC ACG GAG ACC ACG TTT CAA AAG AAC 580 arg leu phe phe tyr arg lys ser val trp ser lys leu gln ser AGG CTC TTT TTC TAC CGG AAG AGT GTC TGG AGC AAG TTG CAA AGC 590 ile gly ile arg gln his leu lys arg val gln leu arg glu leu ATT GGA ATC AGA CAG CAC TTG AAG AGG GTG CAG CTG CGG GAG CTG 610 ser glu ala glu val arg gln his arg glu ala arg pro ala leu TCG GAA GCA GAG GTC AGG CAG CAT CGG GAA GCC AGG CCC GCC CTG leu thr ser arg leu arg phe ile pro lys pro asp gly leu arg CTG ACG TCC AGA CTC CGC TTC ATC CCC AAG CCT GAC GGG CTG CGG pro ile val asn met asp tyr val val gly ala arg thr phe arg CCG ATT GTG AAC ATG GAC TAC GTC GTG GGA GCC AGA ACG TTC CGC arg glu lys arg ala glu arg leu thr ser arg val lys ala leu AGA GAA AAG AGG GCC GAG CGT CTC ACC TCG AGG GTG AAG GCA CTG phe ser val leu asn tyr glu arg ala arg arg pro gly leu leu TTC AGC GTG CTC AAC TAC GAG CGG GCG CGC CGC GGC CTC CTG 680 gly ala ser val leu gly leu asp asp ile his arg ala trp arg GGC GCC TCT GTG CTG GGC CTG GAC GAT ATC CAC AGG GCC TGG CGC 700 thr phe val leu arg val arg ala gln asp pro pro pro glu leu ACC TTC GTG CTG CGT GTG CGG GCC CAG GAC CCG CCT GAG CTG __tyr_phe_val_lys_val_asp_val_thr_gly-ala_tyr-asp_thr_ile_pro--TAC TTT GTC AAG GTG GAT GTG ACG GGC GCG TAC GAC ACC ATC CCC 730 gln asp arg leu thr glu val ile ala ser ile ile lys pro gln CAG GAC AGG CTC ACG GAG GTC ATC GCC AGC ATC ATC AAA CCC CAG 740 asn thr tyr cys val arg arg tyr ala val val gln lys ala ala AAC ACG TAC TGC GTG CGT CGG TAT GCC GTG GTC CAG AAG GCC GCC

FIG. 20 (CONTINUED)

760 his gly his val arg lys ala phe lys ser his val leu arg pro CAT GGG CAC GTC CGC AAG GCC TTC AAG AGC CAC GTC CTA CGT CCA val pro gly asp pro ala gly leu his pro leu his ala ala leu GTG CCA GGG GAT CCC GCA GGG CTC CAT CCT CTC CAC GCT GCT CTG gln pro val leu arg arg his gly glu gln ala val cys gly asp CAG CCT GTG CTA CGG CGA CAT GGA GAA CAA GCT GTT TGC GGG GAT 807 800 ser ala gly arg ala ala pro ala phe gly gly OP TCG GCG GGA CGG GCT GCT CCT GCG TTT GGT GGA TGA TTTCTTGTTGGT GACACCTCACCTCACCCACGCGAAAACCTTCCTCAGGACCCTGGTCCGAGGTGTCCCTGA GTATGGCTGCGTGAACTTGCGGAAGACAGTGGTGAACTTCCCTGTAGAAGACGAGGC CCTGGGTGGCACGGCTTTTGTTCAGATGCCGGCCCACGGCCTATTCCCCTGGTGCGGCCT GCTGCTGGATACCCGGACCCTGGAGGTGCAGAGCGACTACTCCAGCTATGCCCGGACCTC CATCAGAGCCAGTCTCACCTTCAACCGCGGCTTCAAGGCTGGGAGGAACATGCGTCGCAA ACTCTTTGGGGTCTTGCGGCTGAAGTGTCACAGCCTGTTTCTGGATTTGCAGGTGAACAG CCTCCAGACGGTGTGCACCAACATCTACAAGATCCTCCTGCTGCAGGCGTACAGGTTTCA CGCATGTGTGCTGCAGCTCCCATTTCATCAGCAAGTTTGGAAGAACCCCACATTTTTCCT GCGCGTCATCTCTGACACGGCCTCCCTCTGCTACTCCATCCTGAAAGCCAAGAACGCAGG GATGTCGCTGGGGGCCAAGGGCGCCGCCGCCTCTGCCCTCCGAGGCCGTGCAGTGGCT GTGCCACCAAGCATTCCTGCTCAAGCTGACTCGACACCGTGTCACCTACGTGCCACTCCT GGGGTCACTCAGGACAGCCCAGACGCAGCTGAGTCGGAAGCTCCCGGGGACGACGCTGAC TGCCCTGGAGGCCGCAGCCAACCCGGCACTGCCCTCAGACTTCAAGACCATCCTGGACTG CTACGTCCCAGGGAGGGGGGGCCCACACCCAGGCCCGCACCGCTGGGAGTCTGAGG CCTGAGTGAGTGTTTGGCCGAGGCCTGCATGTCCGGCTGAAGGCTGAGTGTCCGGCTGAG GCCTGAGCGAGTGTCCAGCCAAGGGCTGAGTGTCCAGCACACCTGCCGTCTTCACTTCCC _CACAGGCTGGCGCTCGGCTCCACCCGAGGGCGAGCTTTTCCTCACGAGGAGGCGGGGTTC CACTCCCCACATAGGAATAGTCCATCCCCAGATTCGCCATTGTTCACCCCTCGCCCTGCC CTCCTTTGCCTTCCACCCCCACCATCCAGGTGGAGACCCTGAGAAGGACCCTGGGAGCTC TGGGAATTTGGAGTGACCAAAGGTGTGCCCTGTACACAGGCGAGGACCCTGCACCTGGAT GGGGGTCCCTGTGGGTCAAATTGGGGGGGGGGTGCTGTGGGAGTAAAATACTGAATATATG

FIG. 20 (CONTINUED)

+

1 CCATGGGACCCACTGCAGGGCAGCTGGGAGGCTGCAGGCTTCAGGTCCCAGTGGGGTTG GGTACCCTGGGTGACGTCCCGTCGACCTCCGACGTCCGAAGTCCAGGGTCACCCCAAC 61 CCATCTGCCAGTAGAAACCTGATGTAGAATCAGGGCGCGAGTGTGGACACTGTCCTGAAT GGTAGACGGTCATCTTTGGACTACATCTTAGTCCCGCGCTCACACCTGTGACAGGACTTA 121 CTCAATGTCTCAGTGTGTGCTGAAACATGTAGAAATTAAAGTCCATCCCTCCTACTCTAC GAGTTACAGAGTCACACACGACTTTGTACATCTTTAATTTCAGGTAGGAGGATGAGATG 181 TGGGATTGAGCCCCTTCCCTATCCCCCCCAGGGGCAGAGGAGTTCCTCTCACTCCTGTG ACCCTAACTCGGGGAAGGGATAGGGGGGGGTCCCCGTCTCCTCAAGGAGAGTGAGGACAC 241 GAGGAAGGAATGATACTTTGTTATTTTCACTGCTGGTACTGAATCCACTGTTTCATTTG CTCCTTCCTTACTATGAAACAATAAAAGTGACGACCATGACTTAGGTGACAAAGTAAAC ********** 361 TGCAATGGCGCGATCTTGGCTTACTGCAGCCTCTGCCTCCCAGGTTCAAGTGATTCTCCT ACGTTACCGCGCTAGAACCGAATGACGTCGGAGACGGAGGGTCCAAGTTCACTAAGAGGA ******************** 421 GCTTCCGCCTCCCATTTGGCTGGGATTACAGGCACCCGCCACCATGCCCAGCTAATTTTT CGAAGGCGGAGGTAAACCGACCCTAATGTCCGTGGGCGGTGGTACGGGTCGATTAAAAA 481 TGTATTTTAGTAGAGACGGGGGTGGGGGTGGGGTTCACCATGTTGGCCAGGCTGGTCTC ACATAAAATCATCTCTGCCCCCACCCCACCCCAAGTGGTACAACCGGTCCGACCAGAG CAP ========> ************* 541 GAACTTCTGACCTCAGATGATCCACCTGCCTCTGCCTCCTAAAGTGCTGGGATTACAGGT CTTGAAGACTGGAGTCTACTAGGTGGACGGAGACGGAGGATTTCACGACCCTAATGTCCA ****** __6.01__GTGAGCCACCATGCCCAGGCTCAGAATTTACTCTGTTTAGAAACATCTGGGTCTGAGGTAG CACTCGGTGGTACGGGTCGAGTCTTAAATGAGACAAATCTTTGTAGACCCAGACTCCATC CCAAT 721 TGTTAGAACACTCTTGATGTTTTACACTGTGATGACTAAGACATCATCAGCTTTTCAAAG ACAATCTTGTGAGAACTACAAAATGTGACACTACTGATTCTGTAGTAGTCGAAAAGTTTC

FIG. 21

_

CAP ***** 781 ACACACTAACTGCACCCATAATACTGGGGTGTCTTCTGGGTATCAGCGATCTTCATTGAA TGTGTGATTGACGTGGGTATTATGACCCCACAGAAGACCCATAGTCGCTAGAAGTAACTT CAP 841 TGCCGGGAGGCGTTTCCTCGCCATGCACATGGTGTTAATTACTCCAGCATAATCTTCTGC ACGCCCTCCGCAAAGGAGCGGTACGTGTACCACAATTAATGAGGTCGTATTAGAAGACG ***> 901 TTCCATTTCTTCTCTCTCTTTTAAAATTGTGTTTTCTATGTTGGCTTCTCTGCAGAG AAGGTAAAGAAGAGAGAGAGAAAATTTTAACACAAAAGATACAACCGAAGAGACGTCTC CAP ****** 961 AACCAGTGTAAGCTACAACTTAACTTTTGTTGGAACAAATTTTCCAAACCGCCCCTTTGC TTGGTCACATTCGATGTTGAATTGAAAACAACCTTGTTTAAAAGGTTTGGCGGGGAAACG 1021 CCTAGTGGCAGAGACAATTCACAAACACAGCCCTTTAAAAAAGGCTTAGGGATCACTAAGG GGATCACCGTCTCTGTTAAGTGTTTGTGTCGGGAAATTTTTTCCGAATCCCTAGTGATTCC 1081 GGATTTCTAGAAGAGGGACCCGTAATCCTTAAGTATTTACAAGACGAGGCTAACCTCCAG CCTAAAGATCTTCTCGCTGGGCATTAGGAATTCATAAATGTTCTGCTCCGATTGGAGGTC 1201 AGCAAATTTCCTCCGGCAGTTTCTGGAAAGTAGGAAAGGTTAACATTTAAGGTTGCGTTT TCGTTTAAAGGAGGCCGTCAAAGACCTTTCATCCTTTCCAATTGTAAATTCCAACGCAAA 1261 GTTAGCATTTCAGTGTTTGCCGACCTCAGCTAACAGCATCCCTGCAAGGCCTCGGGAGAC CAATCGTAAAGTCACAAACGGCTGGAGTCGATTGTCGTAGGGACGTTCCGGAGCCCTCTG 1321 CCAGAAGTTTCTCGCCCCTTAGATCCAAACTTGAGCAACCCGGAGTCTGGATTCCTGGGA GGTCTTCAAAGAGCGGGGAATCTAGGTTTGAACTCGTTGGGCCTCAGACCTAAGGACCCT TopoII 1381 AGTCCTCAGCTGTCCTGCGGTTGTGCCGGGGCCCCAGGTCTGGAGGGGACCAGTGGCCGT TCAGGAGTCGACAGGACGCCAACACGGCCCCGGGGTCCAGACCTCCCCTGGTCACCGGCA 1441 GTGGCTTCTACTGCTGGGCTGGAAGTCGGGCCTCCTAGCTCTGCAGTCCGAGGCTTGGAG CACCGAAGATGACGACCCGACCTTCAGCCCGGAGGATCGAGACGTCAGGCTCCGAACCTC 1501 CCAGGTGCCTGGACCCGAGGCTGCCCTCCACCCTGTGCGGCGGGATGTGACCAGATGT 1561 TGGCCTCATCTGCCAGACAGAGTGCCGGGGCCCAGGGTCAAGGCCGTTGTGGCTGTGTG

FIG. 21 (CONTINUED)

+

1621 AGGCGCCGGTGCGCGGCCAGCAGGAGCGCCTGGCTCCATTTCCCACCCTTTCTCGACGG TCCGCGGGCCACGCGCCGGTCGTCCTCGCGGACCGAGGTAAAGGGTGGGAAAGAGCTGCC

ACCGGAGTAGACGGTCTGTCTCACGGCCCCGGGTCCCAGTTCCGGCAACACCGACCACAC

1681 GACCGCCCGGTGGTGATTAACAGATATTGGGGTGGTTTGCTCATGGTGGGGACCCCTT CTGGCGGGCCACCACTAATTGTCTATAACCCCACCAAACGAGTACCACCCCTGGGGAA 1741 CGCCGCTGAGAACCTGCAAAGAGAAATGACGGGCCTGTGTCAAGGAGCCCAAGTCGCGG GCGGCGGACTCTTGGACGTTTCTCTTTACTGCCCGGACACAGTTCCTCGGGTTCAGCGCC 1801 GGAAGTGTTGCAGGGAGGCACTCCGGGAGGTCCCGCGTGCCCGTCCAGGGAGCAATGCGT CCTTCACAACGTCCCTCCGTGAGGCCCTCCAGGGCGCACGGGCAGGTCCCTCGTTACGCA 1861 CCTCGGGTTCGTCCCCAGCCGCGTCTACGCGCCTCCGTCCTCCCCTTCACGTCCGGCATT GGAGCCCAAGCAGGGGTCGGCGCAGATGCGCGGAGGCAGGAGGGGAAGTGCAGGCCGTAA GCACCACGGGCTCGGGCTGCGGGCCCAGGCCTGGACCTCCGTCGGGACCCAGAGGCCT 1981 TCAGGCCAGCGGCCAAAGGGTCGCCGCACCTGTTCCCAGGGCCTCCACATCATGGC AGTCCGGTCGCCGGTTTCCCAGCGGCGTGCGTGGACAAGGGTCCCGGAGGTGTAGTACCG 2041 CCCTCCTCGGGTTACCCCACAGCCTAGGCCGATTCGACCTCTCTCCGCTGGGGCCCTCG GGGAGGGAGCCCAATGGGGTGTCGGATCCGGCTAAGCTGGAGAGAGGCGACCCCGGGAGC Spl 2101 CTGGCGTCCCTGCACCCTGGGAGCGCGAGCGCGCGCGCGGGGGAAGCGCGGCCCAGAC GACCGCAGGGACGTGGGACCCTCGCGCTCGCCGCGCCCCCTTCGCGCCGGGTCTG 2161 CCCCGGGTCCGCCCGGAGCAGCTGCGCTGTCGGGGCCAGGCCGGGCTCCCAGTGGATTCG GGGGCCCAGGCGGGCCTCGTCGACGCGACAGCCCCGGTCCGGCCCGAGGGTCACCTAAGC 2221 CGGGCAACAGACGCCCAGGACCGCGCTTCCCACGTGGCGGAGGGACTGGGGACCCGGGCA GCCCGTTGTCTGCGGGTCCTGGCGCGAAGGGTGCACCGCCTCCCTGACCCCTGGGCCCGT Sp1 ======= E2F ****** 2281 CCGGTCCTGCCCTTCACCTTCCAGCTCCGCCTCGTCCGCGCGGGAACCCCGCCCCGTCCC 2341 GAACCCTTCCCGGGTCCCCGGCCCAGCCCCTTCCGGGCCATCCCAGCCCGTCCCGTTCCT $\tt CTTGGGAAGGGCCCAGGGGCCGGGTCGGGGAAGGCCCGGTAGGGTCGGGCAGGGCAAGGA$ Sp1 ======= E2F NFkB _24.01_TTTCCGCGGCCCCGCCCTCTCCTCGCGCGCGGGTTTCAGGCAGCGCTGCGTCCTGCTGC AAAGGCGCCGGGGCGGAGAGAGGACGCCGCGCTCAAAGTCCGTCGCGACGCAGGACGACG hTRT5' ******* 2461 GCACGTGGGAAGCCCTGGCCCCGGCCACCCCGCGATGCCGCGCGCTCCCCGCTGCCGAG CGTGCACCCTTCGGGACCGGGGCCGGTGGGGGGCGCTACGGCGCGAGGGGCGACGGCTC 2521 CCGTGCGCTCCTGCTGCGCAGCCACTACCGCGAGGTGCTGCCGCTGGCCACGTTCGTGC GGCACGCGAGGGACGCGTCGGTGATGGCGCTCCACGACGCGACCGGTGCAAGCACG

FIG. 21 (CONTINUED)

E2F 2581 GGCGCCTGGGGCCCCAGGGCTGGCGGCTGGTGCAGCGCGGGGACCCGGCGGCTTTCCGCG CCGCGGACCCCGGGGTCCCGACCGCCGACCACGTCGCGCCCCTGGGCCGCCGAAAGGCGCNFkB ========= *************** 2701 CCTCCTTCCGCCAGGTGGGCCTCCCCGGGGTCCGGCTCCGGCTGGGGTTGAGGGCCGCCG GGAGGAAGGCGTCCACCCGGAGGGGCCCCAGCCGCAGCCGACCCCAACTCCCGCCGGC Topo II cleavag ::::::::::::::: NFkB +++++++++ NFkB Intron1 ****************** 2761 GGGGGAACCAGCGACATGCGGAGAGCAGCGCAGGCGACTCAGGGCGCTTCCCCCGCAGGT CCCCTTGGTCGCTGTACGCCTCTCGTCGCGTCCGCTGAGTCCCGCGAAGGGGGCGTCCA e site :::: CAGGACGGACTTCCTCGACCACCGGGCTCACGACGTCTCCGACACGCTCGCCGCCGCTT 2881 GAACGTGCTGGCCTTCGGCTTCGCGCTGGACGGGCCCGCGGGGCCCCCCGAGGC 2941 CTTCACCACCAGCGTGCGCAGCTACCTGCCCAACACGGTGACCGACGCACTGCGGGGGAG GAAGTGGTGGTCGCACGCGTCGATGGACGGGTTGTGCCACTGGCTGCGTGACGCCCCCTC 3001 CGGGGCGTGGGGGCTGCTGCTGCGCCGCGTGGGCGACGACGTGCTGGTTCACCTGCTGGC GCCCGCACCCCGACGACGACGCGCGCGCCCCCCTGCTGCACGACCAAGTGGACGACCG 3061 ACGCTGCGCGCTCTTTGTGCTGGTGGCTCCCAGCTGCGCCTACCAGGTGTGCGGGCCGCC TGCGACGCGAGAAACACGACCACCGAGGGTCGACGCGGATGGTCCACACGCCCGGCGG -3121-GCTGTACCAGCTCGGCGCTGCCACTCAGGCCCGGCCCCGCCACACGCTAGTGGACCCCG CGACATGGTCGAGCCGCGACGGTGAGTCCGGGCCGGGGCGGTGTGCGATCACCTGGGGC 3181 AAGGCGTCTGGGATGCGAACGGGCCTGGAACCATAGCGTCAGGGAGGCCGGGGTCCCCCT TTCCGCAGACCCTACGCTTGCCCGGACCTTGGTATCGCAGTCCCTCCGGCCCCAGGGGGA 3241 GGGCCTGCCAGCCCGGGTGCGAGGAGGCGCGGGGGGCAGTGCCAGCCGAAGTCTGCCGTT CCCGGACGGTCGGGGCCACGCTCCTCCGCGCCCCCGTCACGGTCGGCTTCAGACGGCAA 3301 GCCCAAGAGGCCCAGGCGTGGCGCTGCCCCTGAGCCGGAGCGGACGCCCGTTGGGCAGGG

FIG. 21 (CONTINUED)

CGGGTTCTCCGGGTCCGCACCGCGACGGGGACTCGGCCTCGCCTGCGGGCAACCCGTCCC

3361	GTCCTGGGCCCACCCGGGCAGGACGCGTGGACCGAGTGACCGTGGTTTCTGTGTGTG
3421	ACCTGCCAGACCCGCCGAAGAAGCCACCTCTTTGGAGGGTGCGCTCTCTGGCACGCGCCATGGACGGTCTGGGCGGCTTCTTCGGTGGAGAAACCTCCCACGCGAGAGACCGTGCGCGGT
3481	CTCCCACCCATCCGTGGGCCGCCAGCACCACGCGGGCCCCCATCCACATCGCGGCCACCGAGGGTGGGT
3541	ACGTCCCTGGGACACGCCTTGTCCCCCGGTGTACGCCGAGACCAAGCACTTCCTCTACTCTGCAGGGACCCTGTGCGGAACAGGGGGCCACATGCGGCTCTGGTTCGTGAAGGAGATGAG
3601	CTCAGGCGACAAGGAGCAGCTGCGGCCCTCCTTCCTACTCAGCTCTCTGAGGCCCAGCCTGAGTCCGCTGTTCCTCGTCGACGCCGGGAGGAAGGA
3661	GACTGGCGCTCGGAGGCTCGTGGAGACCATCTTTCTGGGTTCCAGGCCCTGGATGCCAGGCCTGACCGCGAGCCTCCGAGCACCTCTGGTAGAAAGACCCAAGGTCCGGGACCTACGGTCC
3721	GACTCCCGCAGGTTGCCCCGCCTGCCCCAGCGCTACTGGCAAATGCGGCCCCTGTTTCTCTGAGGGGCGTCCAACGGGGCGGACGGGGTCGCGATGACCGTTTACGCCGGGGACAAAGA
3781	GGAGCTGCTTGGGAACCACGCGCAGTGCCCCTACGGGGTGCTCCTCAAGACGCACTGCCCCCTCGACGAACCCTTGGTGCGCGTCACGGGGATGCCCCACGAGGAGTTCTGCGTGACGGG
3841	GCTGCGAGCTGCGGTCACCCCAGCAGCCGGTGTCTGTGCCCGGGAGAAGCCCCAGGGCTCCGACGCTCGACGCCAGTGGGGTCGTCGGCCACAGACACGGGCCCTCTTCGGGGTCCCGAG
3901	TGTGGCGGCCCCGAGGAGGAGGACACAGACCCCCGTCGCCTGGTGCAGCTGCTCCGCCAACACCGCCGGGGGCTCCTCCTCTGTGTCTGGGGGCAGCGGACCACGTCGACGAGGCGGT
3961	GCACAGCAGCCCTGGCAGGTGTACGGCTTCGTGCGGGCCTGCCT
4021	CCCAGGCCTCTGGGGCTCCAGGCACAACGAACGCCGCTTCCTCAGGAACACCAAGAAGTTGGGTCCGGAGACCCCGAGGTCCGTGTTGCTTGC
4081	CATCTCCCTGGGGAAGCATGCCAAGCTCTCGCTGCAGGAGCTGACGTGGAAGATGAGCGTGTAGAGGGACCCCTTCGTACGGTTCGAGAGCGACGTCCTCGACTGCACCTTCTACTCGCA
4141	**************************************
4201	Intron2 ***********************************
4261	**************************************
4321	*****> GTGATCGAGGTCGAC CACTAGCTCCAGCTG

FIG. 21 (CONTINUED)

FIG. 22

tatgtcacggagaccacgtttcaaaagaacaggctctttttctaccggaagagtgtctgg agcaagttgcaaagcattggaatcagacagcacttgaagagggtgcagctgcgggacgtg toggaagcagaggtcaggcagcatcgggaagccaggcccgcctgctgacgtccagactc cqcttcatccccaagcctgacggctgcggccgattgtgaacatggactacgtcgtggga gccagaacgttccgcagagaaaaagaggccgagcgtctcacctcgagggtgaaggcactg ttcagcgtgctcaactacgagcgggcgcg

FIG. 23

TCTACCTTGACAGACCTCCAGCCGTACATGCGACAGTTCGTGGCTCACCTGCAGGAG ACCAGCCGCTGAGGGATGCCGTCGTCATCGAGCAGAGCTCCTCCCTGAATGAGGCC ${\tt AGCAGTGGCCTCTTCGACGTCTTCCTACGCTTCATGTGCCACCACGCCGTGCGCATC}$ AGGGGCAAGTC

FIG. 24

--Internal-Control---

Approximate Cell No. 5,000 5,000 5,000 5,000

FIG. 25

FIG. 28

FIG. 29

FIG. 31

FIG. 32

1	CCCCAAAACC	CCAAAACCCC	AAAACCCCTA	TAAAAAAAGA	AAAAATTGAG
51	GTAGTTTAGA	AATAAAATAT	TATTCCCGCA	CAAATGGAGA	TGGATATTGA
101	TTTGGATGAT	ATAGAAAATT	TACTTCCTAA	TACATTCAAC	AAGTATAGCA
151	GCTCTTGTAG	TGACAAGAAA	GGATGCAAAA	CATTGAAATC	TGGCTCGAAA
201	TCGCCTTCAT	TGACTATTCC	AAAGTTGCAA	AAACAATTAG	AGTTCTACTT
251	CTCGGATGCA	AATCTTTATA	ACGATTCTTT	CTTGAGAAAA	TTAGTTTTAA
301	AAAGCGGAGA	GCAAAGAGTA	GAAATTGAAA	CATTACTAAT	GTTTAAATAA
351	AATCAGGTAA	TGAGGATTAT	TCTATTTTTT	AGATCACTTC	TTAAGGAGCA
401	TTATGGAGAA	AATTACTTAA	TACTAAAAGG	TAAACAGTTT	GGATTATTTC
451	CCTAGCCAAC	AATGATGAGT	ATATTAAATT	CATATGAGAA	TGAGTCAAAG
501	GATCTCGATA	CATCAGACTT	ACCAAAGACA	AACTCGCTAT	AAAACGCAAG
551	AAAAAGTTTG	ATAATCGAAC	AGCAGAAGAA	CTTATTGCAT	TTACTATTCG
601	TATGGGTTTT	ATTACAATTG	TTTTAGGTAT	CGACGGTGAA	CTCCCGAGTC
651	TTGAGACAAT	TGAAAAAGCT	GTTTACAACT	GAAGGAATCG	CAGTTCTGAA
701	AGTTCTGATG	TGTATGCCAT	TATTTTGTGA	ATTAATCTCA	AATATCTTAT
751	CTCAATTTAA	TGGATAGCTA	TAGAAACAAA	CCAAATAAAC	CATGCAAGTT
801	TAATGGAATA	TACGTTAAAT	CCTTTGGGAC	AAATGCACAC	TGAATTTATA
851	TTGGATTCTT	AAAGCATAGA	TACACAGAAT	GCTTTAGAGA	CTGATTTAGC
901	TTACAACAGA	TTACCTGTTT	TGATTACTCT	TGCTCATCTC	TTATATCTTT
951	AAAAGAAGCA	GGCGAAATGA	AAAGAAGACT	AAAGAAAGAG	ATTTCAAAAT
1001	TTGTTGATTC	TTCTGTAACC	GGAATTAACA	ACAAGAATAT	TAGCAACGAA ,
1051	AAAGAAGAAG	AGCTATCACA	ATCCTGATTC	TTAAAGATTT	CAAAAATTCC
1101	AGGTAAGAGA	GATACATTCA	TTAAAATTCA	TATATTATAG	TTTTTCATTT
1151	CACAGCTGTT	ATTTTCTTTT	ATCTTAACAA	TATTTTTTGA	TTAGCTGGAA
1201	GTAAAAAGTA	TCAAATAAGA	GAAGCGCTAG	ACTGAGGTAA	CTTAGCTTAT
1251	TCACATTCAT	AGATCGACCT	TCATATATCC	<u>AATACGATGA</u>	TAAGGAAACA_
1301	GCAGTCATCC	GTTTTAAAAA	TAGTGCTATG	AGGACTAAAT	TTTTAGAGTC
1351	AAGAAATGGA	GCCGAAATCT	TAATCAAAAA	GAATTGCGTC	GATATTGCAA
1401	AAGAATCGAA	CTCTAAATCT	TTCGTTAATA	AGTATTACCA	ATCTTGATTG
1451	ATTGAAGAGA	TTGACGAGGC	AACTGCACAG	AAGATCATTA	AAGAAATAAA
1501	GTAACTTTTA	TTAATTAGAG	AATAAACTAA	ATTACTAATA	TAGAGATCAG
1551	CGATCTTCAA	TTGACGAAAT	AAAAGCTGAA	CTAAAGTTAG	ACAATAAAAA
1601	ATACAAACCT	TGGTCAAAAT	ATTGAGGAAG	GAAAAGAAGA	CCAGTTAGCA
1651	AAAGAAAAAA	TAAGGCAATA	AATAAAATGA	GTACAGAAGT	GAAGAAATAA
1701	AAGATTTATT	TTTTTCAATA	ATTTATTGAA	AAGAGGGGTT	TTGGGGTTTT
1751	GGGGTTTTGG	GG			

FIG. 34

FIG. 33

4-

1	CCCCAAAACCCCAAAACCCCTATAAAAAAAAAAAAATTGAGGTAGTTTAGA	60
-	GGGGTTTTGGGGGTTTTGGGGGATATTTTTTTTTTTTTAACTCCATCAAATCT	
a b c	P Q N P K T P K P L * K K K K L R * F R - P K T P K P Q N P Y K K R K N * G S L E - P K P Q N P K T P I K K E K I E V V * K -	
61	AATAAAATATTATTCCCGCACAAATGGAGATGGATATTGATTTGGATGATATAGAAAATT	120
01	TTATTTTATAATAAGGGCGTGTTTACCTCTACCTATAACTAAACCTACTATATCTTTTAA	
a b c	N K I L F P H K W R W I L I W M I * K I - I K Y Y S R T N G D G Y * F G * Y R K F - * N I I P A Q M E M D I D L D D I E N L -	
404	TACTTCCTAATACATTCAACAAGTATAGCAGCTCTTGTAGTGACAAGAAAGGATGCAAAA	180
121	ATGAAGGATTATGTAAGTTGTTCATATCGTCGAGAACATCACTGTTCTTTCCTACGTTTT	100
a b c	Y F L I H S T S I A A L V V T R K D A K - T S * Y I Q Q V * Q L L * C Q E R M Q N - L P N T F N K Y S S S C S D K K G C K T -	
101	CATTGAAATCTGGCTCGAAATCGCCTTCATTGACTATTCCAAAGTTGCAAAAACAATTAG	240
181	GTAACTTTAGACCGAGCTTTAGCGGAAGTAACTGATAAGGTTTCAACGTTTTTGTTAATC	210
a b c	H * N L A R N R L H * L F Q S C K N N * - I E I W L E I A F I D Y S K V A K T I R - L K S G S K S P S L T I P K L Q K Q L E -	•
0.41	AGTTCTACTTCTCGGATGCAAATCTTTATAACGATTCTTTCT	300
241	TCAAGATGAAGACCTACGTTTAGAAATATTGCTAAGAAAGA	500
a b c	S S T S R M Q I F I T I L S * E N * F * - V L L L G C K S L * R F F L E K I S F K - F Y F S D A N L Y N D S F L R K L V L K -	
301	AAAGCGGAGAGCAAAGAGTAGAAATTGAAACATTACTAATGTTTAAATAAA	360
a b c	K A E S K E * K L K H Y * C L N K I R * - K R R A K S R N * N I T N V * I K S G N - S G E Q R V E I E T L L M F K * N Q V M - M -	•
361	TGAGGATTATTCTATTTTTTAGATCACTTCTTAAGGAGCATTATGGAGAAAATTACTTAA L+ ACTCCTAATAAGATAAAAAATCTAGTGAAGAATTCCTCGTAATACCTCTTTTAATGAATT	420
a b c	* G L F Y F L D H F L R S I M E K I T * - E D Y S I F * I T S * G A L W R K L L N - R I I L F F R S L L K E H Y G E N Y L I -	-

	TACTAAAAGGTAAACAGTTTGGATTATTTCCCTAGCCAACAATGATGAGTATATTAAATT	480
421	ATGATTTTCCATTTGTCAAACCTAATAAAGGGATCGGTTGTTACTACTCATATAATTTAA	400
a i b c	Y * K V N S L D Y F P S Q Q * * V Y * I - T K R * T V W I I S L A N N D E Y I K F - L K G K Q F G L F P * P T M M S I L N S -	-
481	CATATGAGAATGAGTCAAAGGATCTCGATACATCAGACTTACCAAAGACAAACTCGCTAT+ GTATACTCTTACTCAGTTTCCTAGAGCTATGTAGTCTGAATGGTTTCTGTTTGAGCGATA	540
h	H M R M S Q R I S I H Q T Y Q R Q T R Y I * E * V K G S R Y I R L T K D K L A I Y E N E S K D L D T S D L P K T N S L *	- - -
541	AAAACGCAAGAAAAGTTTGATAATCGAACAGCAGAAGAACTTATTGCATTTACTATTCG+ TTTTGCGTTCTTTTTCAAACTATTAGCTTGTCGTCTTCTTGAATAACGTAAATGATAAGC	600
a b c	K T Q E K V * * S N S R R T Y C I Y Y S K R K K K F D N R T A E E L I A F T I R N A R K S L I I E Q Q K N L L H L L F V	-
601	TATGGGTTTTATTACAATTGTTTTAGGTATCGACGGTGAACTCCCGAGTCTTGAGACAAT+ ATACCCAAAATAATGTTAACAAAATCCATAGCTGCCACTTGAGGGCTCAGAACTCTGTTA	660
a b c	Y G F Y Y N C F R Y R R * T P E S * D N M G F I T I V L G I D G E L P S L E T I W V L L Q L F * V S T V N S R V L R Q L	_
661	TGAAAAAGCTGTTTACAACTGAAGGAATCGCAGTTCTGAAAGTTCTGATGTGTATGCCAT+ ACTTTTTCGACAAATGTTGACTTCCTTAGCGTCAAGACTTTCAAGACTACACATACGGTA	720
a b c	* K S C L Q L K E S Q F * K F C C V C H E K A V Y N * R N R S S E S S D V Y A I K K L F T T E G I A V L K V L M C M P L	- - -
721	TATTTTGTGAATTAATCTCAAATATCTTATCTCAATTTAATGGATAGCTATAGAAACAAA+ ATAAAACACTTAATTAGAGTTTATAGAATAGAGTTAAATTACCTATCGATATCTTTGTTT	780
h	Y F V N * S Q I S Y L N L M D S Y R N K I L * I N L K Y L I S I * W I A I E T N F C E L I S N I L S Q F N G * L * K Q T	-
_781	CCAAATAAACCATGCAAGTTTAATGGAATATACGTTAAATCCTTTGGGACAAATGCACAC 	840
a b c	P N K P C K F N G I Y V K S F G T N A H Q I N H A S L M E Y T L N P L G Q M H T K * T M Q V * W N I R * I L W D K C T L	-
841	TGAATTTATATTGGATTCTTAAAGCATAGATACACAGAATGCTTTAGAGACTGATTTAGC+++++++	900
a b	* I Y I G F L K H R Y T E C F R D * F S E F I L D S * S I D T Q N A L E T D L A	-

FIG. 35 (CONTINUED)

	TTACAACAGATTACCTGTTTTGATTACTCTTGCTCATCTCTTATATCTTTTAAAAGAAGCA	160
901	AATGTTGTCTAATGGACAAAACTAATGAGAACGAGTAGAGAATATAGAAATTTTCTTCGT	,00
a I b c	L Q Q I T C F D Y S C S S L I S L K E A - Y N R L P V L I T L A H L L Y L * K K Q - T T D Y L F * L L L I S Y I F K R S R -	
961	GGCGAAATGAAAAGAAGACTAAAGAAAGAGATTTCAAAATTTGTTGATTCTTCTGTAACC+ CCGCTTTACTTTCTTCTGATTTCTTCTCTAAAGTTTTAAACAACTAAGAAGACATTGG	.020
a (b c	G E M K R R L K K E I S K F V D S S V T - A K * K E D * R K R F Q N L L I L L * P - R N E K K T K E R D F K I C * F F C N R -	
1021	GGAATTAACAACAAGAATATTAGCAACGAAAAAGAAGAAGAGCTATCACAATCCTGATTC+++++++	080
a b c	G I N N K N I S N E K E E E L S Q S * F - E L T T R I L A T K K K K S Y H N P D S - N * Q Q E Y * Q R K R R R A I T I L I L -	
1081	TTAAAGATTTCAAAAATTCCAGGTAAGAGAGATACATTCATT	L140
a b c	L K I S K I P G K R D T F I K I H I L * - * R F Q K F Q V R E I H S L K F I Y Y S - K D F K N S R * E R Y I H * N S Y I I V -	
1141	TTTTTCATTTCACAGCTGTTATTTTCTTTTATCTTAACAATATTTTTTTGATTAGCTGGAA+ AAAAAGTAAAGTGTCGACAATAAAAGAAAAATAGAATTGTTATAAAAAAACTAATCGACCTT	1200
a b c	F F I S Q L L F S F I L T I F F D * L E - F S F H S C Y F L L S * Q Y F L I S W K - F H F T A V I F F Y L N N I F * L A G S -	
1201	GTAAAAAGTATCAAATAAGAGAAGCGCTAGACTGAGGTAACTTAGCTTATTCACATTCAT+ CATTTTTCATAGTTTATTCTCTTCGCGATCTGACTCCATTGAATCGAATAAGTGTAAGTA	1260
a b c	V K S I K * E K R * T E V T * L I H I H - * K V S N K R S A R L R * L S L F T F I - K K Y Q I R E A L D * G N L A Y S H S * -	
1261	AGATCGACCTTCATATATCCAATACGATGATAAGGAAACAGCAGTCATCCGTTTTAAAAA+ TCTAGCTGGAAGTATATAGGTTATGCTACTATTCCTTTGTCGTCAGTAGGCAAAATTTTT	1320
a b c	R S T F I Y P I R * * G N S S H P F * K - D R P S Y I Q Y D D K E T A V I R F K N - I D L H I S N T M I R K Q Q S S V L K I -	
1321	TAGTGCTATGAGGACTAAATTTTTAGAGTCAAGAAATGGAGCCGAAATCTTAATCAAAAA+ ATCACGATACTCCTGATTTAAAAAATCTCAGTTCTTTACCTCGGCTTTAGAATTAGTTTTT	1380
a b	* C Y E D * I F R V K K W S R N L N Q K - S A M R T K F L E S R N G A E I L I K K - V L * G L N F * S Q E M E P K S * S K R -	

FIG. 35 (CONTINUED)

1381	GAATTGCGTCGATATTGCAAAAGAATCGAACTCTAAATCTTTCGTTAATAAGTATTACCA+ 1440 CTTAACGCAGCTATAACGTTTTCTTAGCTTGAGATTTAGAAAGCAATTATTCATAATGGT
a l b c	ELRRYCKRIEL*IFR**VLP- NCVDIAKESNSKSFVNKYYQ- IASILQKNRTLNLSLISITN-
1441	ATCTTGATTGATGAAGAGATTGACGAGGCAACTGCACAGAAGATCATTAAAGAAATAAA
a : b c	L I D C R D C R G N C T E D H * R N K - S * L I E E I D E A T A Q K I I K E I K - L D * L K R L T R Q L H R R S L K K * S -
1501	GTAACTTTTATTAATTAGAGAATAAACTAAATTACTAATATAGAGATCAGCGATCTTCAA+
a ^v b c	TFIN*RIN*ITNIEISDLQ - *LLLIRE*TKLLI*RSAIFN- NFY*LENKLNY*YRDQRSSI-
1561	TTGACGAAATAAAAGCTGAACTAAAGTTAGACAATAAAAAATACAAACCTTGGTCAAAAT++ 1620 AACTGCTTTATTTTCGACTTGATTTCAATCTGTTATTTTTATGTTTGGAACCAGTTTTA
a 1 b c	T K * K L N * S * T I K N T N L G Q N - * R N K S * T K V R Q * K I Q T L V K I - D E I K A E L K L D N K K Y K P W S K Y -
1621	ATTGAGGAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAA
a : b c	I E E G K E D Q L A K E K I R Q * I K * - L R K E K K T S * Q K K K * G N K * N E - * G R K R P V S K R K N K A I N K M S -
1681	GTACAGAAGTGAAGAATAAAAGATTTATTTTTTCAATAATTTATTGAAAAGAGGGGTT
b	VQK*RNKRFIFFNNLLKRGV- YRSEEIKDLFFSIIY*KEGF- TEVKK*KIYFFQ*FIEKRG-F-
1741	TTGGGGTTTTGGGG
a 1 b c	GFWGFG - WGFGVLG - GVLGFW -

FIG. 35 (CONTINUED)

2	EVDVQNQADNHGIHSALKTCEEIKEAKTLYSWIQKVIRCRNQSQSHYKDL	51
19	::: :.:: : : .:: :: . ELELEMQENQNDIQVRVKIDDPKQYLVNVTAACLLQEGSYYQDK	62
52	EDIKIFAQTNIVATPRDYNEEDFKVIARKEVF.STGLMIELIDKCLVELL ::: : :	100
63	DERRYIITKALLEVAESDPEFICQLAVYIRNELYIRTTTNYIVAF.	107
101	SSSDVSDRQKLQCFGFQLKGNQLAKTHLLTALSTQKQYFFQDEWNQVRAM:: . : .:: :. ::	150
108		144
151	<pre>IGNELFRHLYTKYLIFQRTSEGTLVQFCGNNVFDHLKVNDKFDKKQKGGA . </pre>	200
145	:: :	181
201	ADMNEPRCCSTCKYNVKNEKDHFLNNINVPNWNNMKSRTRIFYCTHF .:: .:: : . :: .:	247
182	SEFNEYQLGKYCTESQRKKTMFRYLSVTNKQKWDQTKKK	220
248	NRNNQFFKKHEFVSNKNNISAMDRAQTIFTNIFRFNRIRKKLKDKVIEKI	297
221	.: ::: .::: :.:: .:: :: : : : :	264
298		347
265	: : : . :	294
348	LFSYTTDNKCVTQFINEFFYNILPKDFLTGRNRKNFQKKVKKYVELNKHE : :	397
295		338
398	LIHKNLLLEKINTREISWMQVETSAKHFYYFDHENIYVLWKLLRWIFEDL .	447
339	LAGKRMKIEISKTWENELSAKGNTAEVWDNLISSNQLPYMAMLRNLSN	386
448	VVSLIRCFFYVTEQQKSYSKTYYYRKNIWDVIMKMSIADLKKETLAEVQE	497
387	ilkagvsb	394
498	KEVEEWKKSLGFAPGKLRLIPKKTTFRPIMTFNKKIVNSDRKTTKLTTNT : .	547
395	·····································	398
548	KLLNSHLMLKTLKNRMFKDPFGFAVFNYDDVMKKYEEFVCKWKQVGQPKL : . . . : . :	597
399	IVINKiĊEPKAVENSKM	415
598	FFATMDIEKCYDSVNREKLSTFLKTTKLLSSDFWIMTAQILKRKNNIVID	647
416	:: :: .: :.: : :: FPLQFFSAIEAVN.EAVTKGFKAKKRENMNLKGQIEAVKEVVE	457
648	SKNFRKKEMKDYFRQKFQKIALEGGQYPTLFSVLENEQNDLNAKKTLIVE	697
458	: : . : : :. KTDEEKKDMELEQTEEGEFVKVNEGIGKQYINSIELAIK	496
698	AKQRNYFKKDNLLQPVINICQYNYINFNGKFYKQTKGIPQGLCVSSILSS : ::: : . :: . : :	747
497	IAVNKNLDEIKGHTAIFSDVSGSMSTSMSGGAKKYGSVRTCLECALVLGL	546
748	FYYATLEESSLGFLRDESMNPENPNVNLLMRLTDDYLLITTQENNAVLFI : . . .	797
547	MVKQRCEKSSFYIFSSPSSQCNKCYLEVDL	576

798	EKLINVSRENGFKFNMKK.LQTSFPLSPSKFAKYGMDSVEEQNIVQDYCD	846
577	.::::: ::: ::::	617
847	WIGISIDMKTLALMPNINLRIEGILCTLNLNMQTKKASMWLKKKLKSFLM	896
618		653
897	NNITHYFRKTITTEDFANKTLNKLFISGGYKYMQCAKEYKD.HFKKNLAM	945
654	. : . : . : : : . : : : : : : : : PNIKIF AVDLEGYG	687
946	SSMIDLEVSKIIYSVTRAFFKYLVCNIKDTIFGEEHYPDFFLSTLKHFIE	995
688	.	706
996	IFSTKKYIFNRVC 1008 :: .: :.::	
707		
	FIG. 36	
	(CONTINUED)	
	(00.0111.023)	
132	LSTQKQYFFQDEWNQVRAMIGNEL.FRHLYTKYLIFQRTSEGTLVQFC	178
1	: : : : :	43
179	GNNVFDHLKVNDKFDKKQKGGAADMNEPRCCSTCKYNVKNEKDHFLNNIN	228
44	:::: .::: . .::: .:: KEEDLKLLKFKNQDQDGNSGNDDDDEENNSNKQQELLRRVN	84
229	VPNWNNMKSRTRIFYCTHFNRNNQFFKKHEFVSNKNNISAMDRAQTIFTN :: :: :. :	278
85	QIKQQVQLIKKVGSKVEKDLNLNEDENKKN	114
279	<pre>IFRFNRIRKKLKDKVIEKIAYMLEKVKDFNFNYYLTKSCPLPENWRERKQ :: : :::: :: </pre>	328
115	GLSEQQVKEEQLRTITEEQVKYQNLVFNMDYQLDLNESGGHRRHRRETDY	164
329	KIENLINKTREEKSKYYEELFSYTTDNKCVTQFINE.FFYNILPKDFLTG	377
165	.:::.:: .: .:. : ::. DTEKWFEISHDQKNYVSIYANQKTSYCWWLKDYFNK	200
378	RNRKNFQKKVKKYVELNKHELIHKNLLLEKINTREISWMQVETSAKHFYY	427
201	NNYDHLNVSINRLE. TEAEFYAFDDFSQTIKLTNNSYQTVNID	242
428	FDHENIYVLWKLLRWIFEDLVVSLIRCFFYVTEQQKSYSKTYYYRKNI .: : :: : : : : .	475
243	VNFDNNLCILALLRFLLSLERFNILNIRSSYTRNQYNFEKIGELLETI	290
476	WDVIMKMSIADLKKETLAEVQEKEVEEWKKSLGFAPGKLRLIPKKTTFRP	525
291	:. : : : :: :: :: . FAVVFSHR HLQGIHLQVPCEAFQYLVNSSSQISVKDSQLQ	330
526	<pre>IMTFNKKIVNSDRKTTKLTTNTKLLNSHLMLKTLKNRMFKDPFGFAVFNY : : . : . : . : .</pre>	575
331	VYSFSTDLKLVD. TNKVQDYFKFLQEFPRLTHVSQQAIPVSATNAVENL	378

+

576	DDVMKKYEEFVCKWKQVGQPKLF FATMDIEKCYDS VNREK	615
379	: .: . .	426
516	LSTFLKTTKLLSSDFWIMTAQILKRKNNIVIDSKNFRKKEMK	657
427	LENLLLSIKQSKNLKFLRLNFYTYVAQETSRKQILKQATTIKNLKNNKNQ	476
558	DYFRQKFQKIALEGGQYPTLFSVLENEQNDLNAKKTLIVEAKQRNYFK : : : : :	705
477	EETPETKDETPSESTSGMKFFDHLSELTELEDFSVNLQATQEIY	520
706	KDNLLQPVINICQYNYINFNGKFYKQTKGIPQGLCVSSILSSFYYATLEE	755
521		564
756	SSLGFLRDESMNPENPNVNLLMRLTDDYLLITTQENNAVLFIEKLINVSR	305
565	: . : : .::: LKRCSVNISNPHGNISYELTNKDSTFYKFKLTLNQE	500
806	ENGFKFNMKKLQTSFPLSPSKFAKYGMDSVEEQNIVQDYCDWIGISIDMK	855
601	:.: Î .:. .:. : .::: ::::. LQHAKYTFKQNEFQFNNVKSAKIESSSLESLEDIDSLCKSIASCKNLQ	648
856	TLALMPNINLRIEGILCTLNLNMQTKKASMWLKKKLKSFLMNNITH	901
649	.:.: :: :. : ::: .: . . NVNIIASLLYPNNIQKNPFNKPNLLFFKQFEQLKNLENVSINC	691
902	YFRKTITTEDFANKTLNKLFISGGYKYMQCAKEYKDHFKKNLAMSSM	948
692	.:. : .: : : :: ILDQHILNSISEFLEKNKKIKAFILKRYYLLQYYLDYTKLFKTLQQLPEL	741
949	IDLEVSKIIYSVTRAFFKYLVCNIKDTIFGEEHY	982
742	:: : : :. . :: .: NQVYINQQLEELTVSEVHKQVWENHKQKAFYEPLCEFIKESSQTLQLIDF	791
983	PDFFLS TLKHFIEIFSTKKY IFNRVCMILKAKEAKLKSDQCQSLIQ	1028
792	.: : . : . : :	840

FIG. 37 (CONTINUED)

4	DIDLDDIENLLPNTFNKYSSSCSDKKGCKTLKSGSKSPSLTIPK	47
617	NVKSAKİESSSLESLEDIDSLCKSIASCKNLQNVNIIASLLYPNNIQKNP	666
48	LQKQLEFYFSDANLYNDSFLRKLVLKSGEQRVEIETLLM : : :: : . . : : : :	86
667	FNKPNLLFFKQFEQLKNLENVSINCILDQHILNSISEFLEKNKKIKAFIL	716

FIG. 38

+

1	MEMDIDLDDIENLLPNTFNKYSSSCSDKKGCKTLKSGSKSPS	42
491	: : : . : IELAIKIAVNKNLDEIKGHTAIFSDVSGSMSTSMSGGAKKYGSVRTCLEC	540
43	.LTIPKLQKQLEFYFSDANLYNDSFLRKLVLKSGEQRVEIETLL	85
541	.: : : :: : .:: .:: : ALVIGIMUKORCEKSSEYIESSPSSOCNKCYL, EVDLPGDELRPSMOKLL	589

FIG. 39

telomerase p43	LOKOLEFYFSDANLYNDSFURKLVI	
human La	ICHQUEYYFGDFNLPRDKFLKEQI.	
Xenopus LaA	ICEQIEYYFGDHNLPRDKFUKQQI.	LLDDGWMPLETMIK
Drosophila La	ILROVEYYFGDANLNROKFUREQIO	
S. c. Lhp1p	CLKOVEFYFSEFNFPYDRFLRTTAE	EK.NDGWMPISTIAT

FIG. 41

```
1 aactcattta attactaatt taatcaacaa gattgataaa aagcagtaaa taaaacccaa
  61 tagatttaat ttagaaagta tcaattgaaa aatggaaatt gaaaacaact aagcacaata
 121 gccaaaagcc gaaaaattgt ggtgggaact tgaattagag atgcaagaaa accaaaatga
 181 tatataaqtt aqqqttaaqa ttqacqatcc taagcaatat ctcqtgaacg tcactgcagc
 241 atgtttgttg taggaaggta gttactacta agataaagat gaaagaagat atatcatcac
 301 taaagcactt cttgaggtgg ctgagtctga tcctgagttc atctgctagt tggcagtcta
 361 catcogtaat gaactttaca toagaactac cactaactac attgtagcat tttgtgttgt 421 ccacaagaat actcaaccat toatcgaaaa gtacttcaac aaagcagtac ttttgcctaa
 481 tgacttactg gaagtetgtg aatttgcata ggttetetat attittgatg caactgaatt
 541 caaaaatttg tatcttgata ggatactttc ataagatatt cgtaaggaac tcactttccg
 601 taagtgttta caaagatgcg tcagaagcaa gttttctgaa ttcaacgaat actaacttgg
661 taagtattgc actgaatcct aacgtaagaa aacaatgttc cgttacctct cagttaccaa
 721 caagtaaaag tgggattaaa ctaagaagaa gagaaaagag aatctcttaa ccaaacttta
 781 ggcaataaag gaatctgaag ataagtccaa gagagaaact ggagacataa tgaacgttga
841 agatgcaatc aaggctttaa aaccagcagt tatgaagaaa atagccaaga gatagaatgc
 901 catgaagaaa cacatgaagg cacctaaaat tcctaactct accitggaat caaagtacit
 961 gaccttcaag gatctcatta agttctgcca tatttctgag cctaaagaaa gagtctataa
1021 gatccttggt aaaaaatacc ctaagaccga agaggaatac aaagcagcct ttggtgattc
1081 tgcatctgca cccttcaatc ctgaattggc tggaaagcgt atgaagattg aaatctctaa
1141 aacatgggaa aatgaactca gtgcaaaagg caacactgct gaggtttggg ataatttaat
1201 ttcaagcaat taactcccat atatggccat gttacgtaac ttgtctaaca tcttaaaagc
1261 cggtgtttca gatactacac actctattgt gatcaacaag atttgtgagc ccaaggccgt 1321 tgagaactcc aagatgttcc ctcttcaatt ctttagtgcc attgaagctg ttaatgaagc
1381 agttactaag ggattcaagg ccaagaagag agaaaatatg aatcttaaag gtcaaatcga
1441 agcagtaaag gaagttgttg aaaaaaccga tgaagagaag aaagatatgg agttggagta
1501 aaccgaagaa ggagaatttg ttaaagtcaa cgaaggaatt ggcaagcaat acattaactc
1561 cattgaactt gcaatcaaga tagcagttaa caagaattta gatgaaatca aaggacacac
1621 tgcaatcttc-tctgatgttt-ctggttctat-gagtacctca-atgtcaggtg-gagccaagaa
1681 gtatggttcc gttcgtactt gtctcgagtg tgcattagtc cttggtttga tggtaaaata
1741 acgttgtgaa aagtcctcat tctacatctt cagttcacct agttctcaat gcaataagtg
1801 ttacttagaa gttgatctcc ctggagacga actccgtcct tctatgtaaa aacttttgca
1861 agagaaagga aaacttggtg gtggtactga tttcccctat gagtgcattg atgaatggac
1921 aaagaataaa actcacgtag acaatatcgt tattttgtct gatatgatga ttgcagaagg
1981 atattcagat atcaatgtta gaggcagttc cattgttaac agcatcaaaa agtacaagga
2041 tgaagtaaat cctaacatta aaatctttgc agttgactta gaaggttacg gaaagtgcct 2101 taatctaggt gatgagttca atgaaaacaa ctacatcaag atattcggta tgagcgattc
2161 aatettaaag tteattteag eeaageaagg aggageaaat atggtegaag ttateaaaaa
2221 ctttgccctt caaaaaatag gacaaaagtg agtttcttga gattcttcta taacaaaaat 2281 ctcaccccac tttttgttt tattgcatag ccattatgaa atttaaatta ttatctattt 2341 atttaagtta cttacatagt ttatgtatcg cagtctatta gcctatcaa atgattctgc
2401 aaagaacaaa aaagattaaa a
```

Consensus telomerase p123 Dong (LINE) a1 S.c. (groupII) HIV-RT L8543.12	hhDhhh GQPKLFFATMDIEKCYDSVNREKLSTFLKTTKLL-100-KFYKQTKGIPQGLCVSSILSSFYYATLEESSLGFL KNRNLHCTYDDYKKAFDSIPHSWLIQVLEIYKIN- 28-RQIAIKKGIYQGDSLSPLWFCLALNPLSHQLHNDR FGGSNWFREVDLKKCFDTISHDLIIKELKRYISD- 26-HVPVGPRVCVQGAPTSPALCNAVLLRLDRRLAGLA LKKKKSVTVLDVGDAYFSVPLDEDFRKYTAFTIP- 7-GIRYQYNVLPQGWKGSPAIFQSSMTKILEPFRKQN VLPELYFMKFDVKSCYDSIPRMECMRILKDALKN- 68-KCYIREDGLFQGSSLSAPIVDLVYDDLLEFYSEFK	h+-QGSP 100-KFYKQTKGIPQGLCVSS: 28-RQIAIKKGIYQGDSLSPI 26-HVPVGPRVCVQGAPTSPX 7-GIRYQYNVLPQGWKGSPX 68-KCYIREDGLFQGSSLSAI	SP SSILSSFYYATLEESSLGFL SPLWFCLALNPLSHQLHNDR SPALCNAVLLRLDRRLAGLA SPAIFQSSMTKILEPFRKQN SAPIVDLVYDDLLEFYSEFK
	Motif C	Motif D	Motif E
Consensus telomerase p123 Dong (LINE) a1 S.c. (groupII) HIV-RT L8543.12	Consensus h Yhddhh telomerase p123 -14-LMRLTDDYLLITTQENN-0-AVLFIEKLINVSRENGFKFNMKKLQT-23-QDYCDWIGISI Dong (LINE) -16-HLIYMDDIKLYAKNDKE-0-MKKLIDTTTIFSNDISMQFGLDKCKT-25-KCLYKYLGFQQ al S.c. (groupII) -55-YVRYADDILIGVLGSKN-2-KIIKRDLNNFLNS.LGLTINEEKTLI- 4-ETPARFLGYNI HIV-RT - 4-IYQYMDDLYVGSHLEIG-1-HRTKIEELRQHLLRWGLTTDKKHQK- 0-EPPFLWMGYEL L8543.12 - 8-ILKLADDFLIISTDQQQVINIKKLAMGGFQKYNAKANR-41-IRSKSSKGIFR	Gh-hK SRENGFKFNMKKLQT-23-(SNDISMQFGLDKCKT-25- SLGLTINEEKTLI- 4- JLRWGLTTPDKKHQK- 0-	h-hlGh-h QDYCDWIGISI KCLYKYLGFQQ ETPARFLGYNI EPPFLWMGYEL IRSKSSKGIFR
	C		

+

MEIENNQAQQPKAEKLWWELELEMQENQNDIQVRVKIDDPKQYL VNVTAACLLQEGSYYQDKDERRYIITKALLEVAESDPEFICQLA VYIRNELYIRTTTNYIVAFCVVHKNTQPFIEKYFNKAVLLPNDL LEVCEFAOVLYIFDATEFKNLYLDRILSQDIRKELTFRKCLQRC VRSKFSEFNEYQLGKYCTESQRKKTMFRYLSVTNKQKWDQTKKK RKENLLTKLQAIKESEDKSKRETGDIMNVEDAIKALKPAVMKKI AKRONAMKKHMKAPKIPNSTLESKYLTFKDLIKFCHISEPKERV YKILGKKYPKTEEEYKAAFGDSASAPFNPELAGKRMKIEISKTW ENELSAKGNTAEVWDNLISSNQLPYMAMLRNLSNILKAGVSDTT HSIVINKICEPKAVENSKMFPLQFFSAIEAVNEAVTKGFKAKKR ENMNLKGQIEAVKEVVEKTDEEKKDMELEQTEEGEFVKVNEGIG KQYINSIELAIKIAVNKNLDEIKGHTAIFSDVSGSMSTSMSGGA KKYGSVRTCLECALVLGLMVKQRCEKSSFYIFSSPSSQCNKCYL EVDLPGDELRPSMQKLLQEKGKLGGGTDFPYECIDEWTKNKTHV DNIVILSDMMIAEGYSDINVRGSSIVNSIKKYKDEVNPNIKIFA VDLEGYGKCLNLGDEFNENNYIKIFGMSDSILKFISAKQGGANM VEVIKNFALQKIGQK

FIG. 43

MSRRNQKKPQAPIGNETNLDFVLQNLEVYKSQIEHYKTQQQQIK EEDLKLLKFKNQDQDGNSGNDDDDEENNSNKQQELLRRVNQIKQ QVQLIKKVGSKVEKDLNLNEDENKKNGLSEQQVKEEQLRTITEE QVKYQNLVFNMDYQLDLNESGGHRRHRRETDYDTEKWFEISHDQ KNYVSIYANOKTSYCWWLKDYFNKNNYDHLNVSINRLETEAEFY AFDDFSQTIKLTNNSYQTVNIDVNFDNNLCILALLRFLLSLERF NILNIRSSYTRNOYNFEKIGELLETIFAVVFSHRHLQGIHLQVP CEAFQYLVNSSSQISVKDSQLQVYSFSTDLKLVDTNKVQDYFKF LQEFPRLTHVSQQAIPVSATNAVENLNVLLKKVKHANLNLVSIP TQFNFDFYFVNLQHLKLEFGLEPNILTKQKLENLLLSIKQSKNL KFLRLNFYTYVAQETSRKQILKQATTIKNLKNNKNQEETPETKD ETPSESTSGMKFFDHLSELTELEDFSVNLQATQEIYDSLHKLLI RSTNLKKFKLSYKYEMEKSKMDTFIDLKNIYETLNNLKRCSVNI SNPHGNISYELTNKDSTFYKFKLTLNOELOHAKYTFKONEFOFN NVKSAKIESSSLESLEDIDSLCKSIASCKNLQNVNIIASLLYPN NIOKNPFNKPNLLFFKQFEQLKNLENVSINCILDQHILNSISEF $\verb|LEKNKKIKAFILKRYYLLQYYLDYTKLFKTLQQLPELNQVYINQ|$ QLEELTVSEVHKQVWENHKQKAFYEPLCEFIKESSQTLQLIDFD QNTVSDDSIKKILESISESKYHHYLRLNPSQSSSLIKSENEEIQ ELLKACDEKGVLVKAYYKFPLCLPTGTYYDYNSDRW

FIG. 45

MKILFEFIQDKLDIDLQTNSTYKENLKCGHFNGLDEILTTCFAL PNSRKIALPCLPGDLSHKAVIDHCIIYLLTGELYNNVLTFGYKI ARNEDVNNSLFCHSANVNVTLLKGAAWKMFHSLVGTYAFVDLLI NYTVIQFNGQFFTQIVGNRCNEPHLPPKWVQRSSSSSATAAQIK QLTEPVTNKQFLHKLNINSSSFFPYSKILPSSSSIKKLTDLREA IFPTNLVKIPQRLKVRINLTLQKLLKRHKRLNYVSILNSICPPL EGTVLDLSHLSROSPKERVLKFIIVILQKLLPQEMFGSKKNKGK IIKNLNLLLSLPLNGYLPFDSLLKKLRLKDFRWLFISDIWFTKH NFENLNQLAICFISWLFRQLIPKIIQTFFYCTEISSTVTIVYFR HDTWNKLITPFIVEYFKTYLVENNVCRNHNSYTLSNFNHSKMRI IPKKSNNEFRIIAIPCRGADEEEFTIYKENHKNAIQPTQKILEY LRNKRPTSFTKIYSPTQIADRIKEFKQRLLKKFNNVLPELYFMK FDVKSCYDSIPRMECMRILKDALKNENGFFVRSQYFFNTNTGVL KLFNVVNASRVPKPYELYIDNVRTVHLSNQDVINVVEMEIFKTA LWVEDKCYIREDGLFQGSSLSAPIVDLVYDDLLEFYSEFKASPS ODTLILKLADDFLIISTDQQQVINIKKLAMGGFQKYNAKANRDK ILAVSSQSDDDTVIQFCAMHIFVKELEVWKHSSTMNNFHIRSKS SKGIFRSLIALFNTRISYKTIDTNLNSTNTVLMQIDHVVKNISE CYKSAFKDLSINVTQNMQFHSFLQRIIEMTVSGCPITKCDPLIE YEVRFTILNGFLESLSSNTSKFKDNIILLRKEIQHLQAYIYIYI HIVN

```
1 tcaatactat taattaataa ataaaaaaaa gcaaactaca aagaaaatgt caaggcgtaa
  61 ctaaaaaaag ccataggctc ctataggcaa tgaaacaaat cttgattttg tattacaaaa
 121 totagaagtt tacaaaagco agattgagca ttataagaco tagtagtaat agatcaaaga
 181 ggaggatete aagettttaa agtteaaaaa ttaagattag gatggaaact etggeaaega
 241 tgatgatgat gaagaaaaca actcaaataa ataataagaa ttattaagga gagtcaatta
 301 gattaagtag caagtttaat tgataaaaaa agttggttct aaggtagaga aagatttgaa
 361 tttqaacqaa qatqaaaaca aaaaqaatqq actttctgaa tagcaagtga aagaagagta
 421 attaagaacg attactgaag aataggttaa gtattaaaat ttagtattta acatggacta
 481 ccagttagat ttaaatgaga gtggtggcca tagaagacac agaagagaaa cagattatga
 541 tactgaaaaa tggtttgaaa tatctcatga ccaaaaaaat tatgtatcaa tttacgccaa
 601 ctaaaagaca tcatattgtt ggtggcttaa agattatttt aataaaaaca attatgatca
 661 tottaatgta agcattaaca gactagaaac tgaagccgaa ttotatgcct ttgatgattt
 721 ttcacaaaca atcaaactta ctaataattc ttactagact gttaacatag acgttaattt
 781 tgataataat ctctgtatac tcgcattgct tagattttta ttatcactag aaagattcaa
 841 tattttgaat ataagatett ettataeaag aaattaatat aattttgaga aaattggtga
901 gctacttgaa actatcttcg cagttgtctt ttctcatcgc cacttacaag gcattcattt
961 acaagttcct tgcgaagcgt tctaatattt agttaactcc tcatcataaa ttagcgttaa
1021 agatagetaa ttataggtat actetttete tacagaetta aaattagttg acaetaacaa
1081 agtccaagat tattttaagt tettataaga attecetegt ttgaeteatg taagetagta
1141 ggctátccca gttagtgcta ctaacgctgt agagaacctc aatgttttac ttaaaaaggt
1201 caagcatgct aatcttaatt tagtttctat ccctacctaa ttcaattttg atttctactt
1261 tgttaattta taacatttga aattagagtt tggattagaa ccaaatattt tgacaaaaca
1321 aaaqcttqaa aatctacttt tqaqtataaa ataatcaaaa aatcttaaat ttttaagatt
1381 aaacttttac acctacgttg cttaagaaac ctccagaaaa cagatattaa aacaagctac
1441 aacaatcaaa aatctcaaaa acaataaaaa tcaaqaaqaa actcctgaaa ctaaagatga
1501 aactccaagc gaaagcacaa gtggtatgaa attttttgat catctttctg aattaaccga
1561 gettgaagat tteagegtta aettgtaage taeceaagaa atttatgata gettgeacaa
1621 acttttgatt agatcaacaa atttaaagaa gttcaaatta agttacaaat atgaaatgga
1681 aaagagtaaa atggatacat tcatagatct taagaatatt tatgaaacct taaacaatct
1741 taaaagatge teligitaata tateaaatee tealiggaaae attiettatg aactgacaaa
1801 taaagattot actitttata aatttaaget gaccitaaac taagaattat aacacgetaa
1861 qtatactttt aaqtaqaacq aattttaatt taataacgtt aaaagtgcaa aaattgaatc
1921 ttcctcatta gaaagettag aagatattga tagtetttge aaatetattg ettettgtaa
1981 aaatttacaa aatgttaata ttatcgccag tttgctctat cccaacaata tttagaaaaa
2041 teettteaat aageeeaate ttetattttt caageaattt gaataattga aaaatttgga
2101 aaatgtatct atcaactgta ttcttgatca gcatatactt aattctattt cagaattctt
2161 agaaaagaat aaaaaaaataa aagcattcat tttgaaaaga tattatttat tacaatatta
2221 tottgattat actaaattat ttaaaacact tcaatagtta cotgaattaa attaagttta
2281 cattaattag caattagaag aattgactgt gagtgaagta cataagtaag tatgggaaaa
2341 ccacaagcaa aaagctttct atgaaccatt atgtgagttt atcaaagaat catcctaaac
2401 cctttagcta atagattttg accaaaacac tgtaagtgat gactctatta aaaagatttt
2461 agaatctata totgagtota agtatoatoa ttatttgaga ttgaaccota gttaatctag
2521 caqtttaatt aaatctgaaa acgaagaaat ttaagaactt ctcaaagctt gcgacgaaaa
2701 tgaatatttc tttgcttatt atttgaataa tacatacaat agtcattttt agtgttttga
2761 atatattta gttatttaat toattatttt aagtaaataa ttattttoa atoattttt
2821 aaaaaatcq
```

FIG. 44

Oxytricha Euplotes

+

LCVSYILSSFYYANLEENALQFLRKESMDPEKPETNLLMRLT LCVSSILSSFYYATLEESSLGFLRDESMNPENPNVNLLMRLT

FIG. 47

ATTTATACTCATGAAAATCTTATTCGAGTTCATTCAAGACAAGCTTGACATTGATCTACA GACCAACAGTACTTACAAAGAAAATTTAAAATGTGGTCACTTCAATGGCCTCGATGAAAT TCTAACTACGTGTTTCGCACTACCAAATTCAAGAAAAATAGCATTACCATGCCTTCCTGG TGACTTAAGCCACAAAGCAGTCATTGATCACTGCATCATTTACCTGTTGACGGGCGAATT ATACAACAACGTACTAACATTTGGCTATAAAATAGCTAGAAATGAAGATGTCAACAATAG TCTTTTTTGCCATTCTGCAAATGTTAACGTTACGTTACTGAAAGGCGCTGCTTGGAAAAT GTTCCACAGTTTGGTCGGTACATACGCATTCGTTGATTATTGATCAATTATACAGTAAT TCAATTTAATGGGCAGTTTTTCACTCAAATCGTGGGTAACAGATGTAACGAACCTCATCT GCCGCCAAATGGGTCCAACGATCATCCTCATCATCCGCAACTGCTGCGCAAATCAAACA ACTTACAGAACCAGTGACAAATAAACAATTCTTACACAAGCTCAATATAAATTCCTCTTC TTTTTTTCCTTATAGCAAGATCCTTCCTTCATCATCATCTATCAAAAAGCTAACTGACTT GAGAGAAGCTATTTTCCCACAAATTTGGTTAAAATTCCTCAGAGACTAAAGGTACGAAT TAATTTGACGCTGCAAAAGCTATTAAAGAGACATAAGCGTTTGAATTACGTTTCTATTTT GAATAGTATTTGCCCACCATTGGAAGGGACCGTATTGGACTTGTCGCATTTGAGTAGGCA ATCACCAAAGGAACGAGTCTTGAAATTTATCATTGTTATTTTACAGAAGTTATTACCCCA AGAAATGTTTGGCTCAAAGAAAAATAAAGGAAAAATTATCAAGAATCTAAATCTTTTATT AAGTTTACCCTTAAATGGCTATTTACCATTTGATAGTTTGTTGAAAAAGTTAAGATTAAA GGATTTTCGGTGGTTGTTCATTTCTGATATTTGGTTCACCAAGCACAATTTTGAAAACTT GAATCAATTGGCGATTTGTTTCATTTCCTGGCTATTTAGACAACTAATTCCCAAAATTAT ACAGACTTTTTTTTACTGCACCGAAATATCTTCTACAGTGACAATTGTTTACTTTAGACA TGATACTTGGAATAAACTTATCACCCCTTTTATCGTAGAATATTTTAAGACGTACTTAGT CGAAAACAACGTATGTAGAAACCATAATAGTTACACGTTGTCCAATTTCAATCATAGCAA AATGAGGATTATACCAAAAAAAAGTAATAATGAGTTCAGGATTATTGCCATCCCATGCAG AGGGGCAGACGAAGAATTCACAATTTATAAGGAGAATCACAAAAATGCTATCCAGCC CACTCAAAAAATTTTAGAATACCTAAGAAACAAAAGGCCGACTAGTTTTACTAAAATATA TTCTCCAACGCAAATAGCTGACCGTATCAAAGAATTTAAGCAGAGACTTTTAAAGAAATT TAATAATGTCTTACCAGAGCTTTATTTCATGAAATTTGATGTCAAATCTTGCTATGATTC CATACCAAGGATGGAATGTATGAGGATACTCAAGGATGCGCTAAAAAATGAAAATGGGTT TTTCGTTAGATCTCAATATTTCTTCAATACCAATACAGGTGTATTGAAGTTATTTAATGT TGTTAACGCTAGCAGAGTACCAAAACCTTATGAGCTATACATAGATAATGTGAGGACGGT TCATTTATCAAATCAGGATGTTATAAACGTTGTAGAGATGGAAATATTTAAAACAGCTTT GTGGGTTGAAGATAAGTGCTACATTAGAGAAGATGGTCTTTTTCAGGGCTCTAGTTTATC TGCTCCGATCGTTGATTTGGTGTATGACGATCTTCTGGAGTTTTATAGCGAGTTTAAAAGC CAGTCCTAGCCAGGACACATTAATTTTAAAACTGGCTGACGATTTCCTTATAATATCAAC AGACCAACAGCAAGTGATCAATATCAAAAAGCTTGCCATGGGCGGATTTCAAAAATATAA TGCGAAAGCCAATAGAGACAAAATTTTAGCCGTAAGCTCCCAATCAGATGATGATACGGT TATTCAATTTTGTGCAATGCACATATTTGTTAAAGAATTGGAAGTTTGGAAACATTCAAG CACAATGAATAATTTCCATATCCGTTCGAAATCTAGTAAAGGGATATTTCGAAGTTTAAT AGCGCTGTTTAACACTAGAATCTCTTATAAAACAATTGACACAAATTTAAATTCAACAAA CACCGTTCTCATGCAAATTGATCATGTTGTAAAGAACATTTCGGAATGTTATAAATCTGC TTTTAAGGATCTATCAATTAATGTTACGCAAAATATGCAATTTCATTCGTTCTTACAACG CATCATTGAAATGACAGTCAGCGGTTGTCCAATTACGAAATGTGATCCTTTAATCGAGTA TGAGGTACGATTCACCATATTGAATGGATTTTTGGAAAGCCTATCTTCAAACACATCAAA ATTTAAAGATAATATCATTCTTTTGAGAAAGGAAATTCAACACTTGCAAGC

FIG. 48

AKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVWSKLQSIGIRQHLKR VQLRDVSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYVVGARTFRREK RAERLTSRVKALFSVLNYERA

FIG. 49

GCCAAGTTCCTGCACTGGCTGATGAGTGTGTACGTCGTCGAGCTGCTCAGGTC
TTTCTTTTATGTCACGGAGACCACGTTTCAAAAGAACAGGCTCTTTTTCTACC
GGAAGAGTGTCTGGAGCAAGTTGCAAAGCATTGGAATCAGACAGCACTTGAAG
AGGGTGCAGCTGCGGGACGTGTCGGAAGCAGAGGTCAGGCAGCATCGGGAAGC
CAGGCCCGCCTGCTGACGTCCAGACTCCCCAAGCCTGACGGC
TGCGGCCGATTGTAACATGGACTACGTCGTGGGAGCCAGAACGTTCCGCAGA
GAAAAGAGGGCCGAGCGTCTCACCTCGAGGGTGAAGGCACTGTTCAGCGTGCT
CAACTACGAGCGGGCGC

FIG. 50

MTEHHTPKSRILRFLENQYVYLCTLNDYVQLVLRGSPASSYSNICERLRSDVQTSFSIFLHSTVVGF
DSKPDEGVQFSSPKCSQSELIANVVKQMFDESFERRRNLLMKGFSMNHEDFRAMHVNGVQNDLVSTF
PNYLISILESKNWQLLLEIIGSDAMHYLLSKGSIFEALPNDNYLQISGIPLFKNNVFEETVSKKRKR
TIETSITQNKSARKEVSWNSISISRFSIFYRSSYKKFKQDLYFNLHSICDRNTVHMWLQWIFPRQFG
LINAFQVKQLHKVIPLVSQSTVVPKRLLKVYPLIEQTAKRLHRISLSKVYNHYCPYIDTHDDEKILS
YSLKPNQVFAFLRSILVRVFPKLIWGNQRIFEIILKDLETFLKLSRYESFSLHYLMSNIKISEIEWL
VLGKRSNAKMCLSDFEKRKQIFAEFIYWLYNSFIIPILQSFFYITESSDLRNRTVYFRKDIWKLLCR
PFITSMKMEAFEKINENNVRMDTQKTTLPPAVIRLLPKKNTFRLITNLRKRFLIKMGSNKKMLVSTN
QTLRPVASILKHLINEESSGIPFNLEVYMKLLTFKKDLLKHRMFGRKKYFVRIDIKSCYDRIKQDLM
FRIVKKKLKDPEFVIRKYATIHATSDRATKNFVSEAFSYFDMVPFEKVVQLLSMKTSDTLFVDFVDY
WTKSSSEIFKMLKEHLSGHIVKIGNSQYLQKVGIPQGSILSSFLCHFYMEDLIDEYLSFTKKKGSVL
LRVVDDFLFITVNKKDAKKFLNLSLRGFEKHNFSTSLEKTVINFENSNGIINNTFFNESKKRMPFFG
FSVNMRSLDTLLACPKIDEALFNSTSVELTKHMGKSFFYKILRSSLASFAQVFIDITHNSKFNSCCN
IYRLGYSMCMRAQAYLKRMKDIFIPQRMFITDLLNVIGRKIWKKLAEILGYTSRRFLSSAEVKWLFC
LGMRDGLKPSFKYHPCFEQLIYQFQSLTDLIKPLRPVLRQVLFLHRRIAD

FIG. 51

 ${\sf ttaacatgg}$ agcettacaetttagatgagtcaegtegeatgatggagtatttggtateatecatecaaegtttgeettgaaaag ccaaatatgtatcatctcgtattaggcttttttccgttttactcctggaatcgtacctttttcactattccccctaatga ataatotaaaattagtttogottataattgatagtagtagaaagattggtgattotaotogtgtaatgttattagtttaaa $\mathtt{ATGCTCACACTCAGAGG}$ tatatatttttttttt $\mathtt{CTGTLTLTGTLTCTGTTCGGGGG}$ AATTGGCAACTTTTGTTAGAAATgtaaataccggttaagatgttgcgcactttgaacaagactgacaagtatagTATCGG CAAAATAAAAGCGCCCGCAAAGAAGTTTCCTGGAATAGCATTTCAATTAGTAGGTTTTAGCATTTTTACAGGTCATCCTA AAATTAATCTGGGGTAACCAAAGGATATTTGAGATAATATTAAAAGGtattgtataaaatttattaccactaacgatttt catgccaaattttttttaccattaattaaccaatcagATTTCAGAAATTGAATGGCTAGTCCTTGGAAAAAGGTCAAATGCG acctgtggcatcgatactgaaacatttaatcaatgaagaaagtagtggtattccatttaacttggaggtttacatgaagc actcaataakcaataccaagtcaaattccaatatgaaggtgttattagtggtgatcgataatatttctattttatcggtcgtta ccaagtata|aggacaaaaagaacaacttccttcccctaaagacttttactttaatttaattttacttttcaaatatatttcg agctettggagtageteacagaaateettacaaatettetgatgagactatatgattagttagatteattacagteegtgeatatte gttgataattatttgcaaaatcatgtccttagtggtggtaatccgcgaaagttttttgatgcttgcacacgtctagcatg attgagata/ttcaaaaatttctatccactacaactcctttaacgcgggttttatttttctattttctattctcatgttgtt a igtacaacittetttigagaggetceccgccaaccicgtatagcaatatatecgaacgcttgagaagcgatetacaaacg ICCTTITCTATTITICITCATTCGACTGTAGTCGGCTTCGACAGTAAGCCCAGAIGAAGGTGTTCAATTTTCTTCTCCAAA attotaattytgaaatatttacotgoaattactgtttcaaagagattgtatttaaccgataaagAATCATGAAGATTTTC GAGCCATGCÀTGTAAACGGAGTACAAAATGATCTCGTTTTCTACTTTTCCTAATTACCTTATATCTATACTTGAGAAA CAGTGATGCCATGCATTACTTATTATCCAAAGGAAGTATTTTTGAGGCTCTTCCAAATGACAATTACCTTCAGATTTCTG GTGATCGGAACACACACACATGTGGCTTCAATGGATTTTTTCCAAGGCAATTTGGACTTATAAACGCATTTCAAGTGAAG CAATTGCACAAGTGATTCCACTGGTATCACAGAGTACAGTTGTGCCCAAACGTCTCCTAAAGGTATACCCTTTAATTGA atgaaaaaatccttagttattccttaaagccgaaccaggtgtttgcgtttcttcgatccattcttgtgtgctttcct accagACCTCGAAACTTTCTTGAAATTATCGAGATACGAGTCTTTTAGTTTACATTATTTAATGAGTAACATAa ttqcaaaaaqctaatatttcaqAACAATGTTAGGATGGATGCAGAAAACTACTTTGCCTCCAGCAGTATTCGTC PATTACCTAAGAAGAATACCTTTCGTCTCATTACGAATTTTAAGAAAAAGATTCTTAATAAAGGtattaatttttggtcat caatgtact¢tacttctaatctattattagcagATGGGTTCAAACAAAAAAATGTTAGTCAGTACGAACCAAACTTTACG ggttcgcttacttttaatcgtggtactgttttagctgctacttctagccaaccgcgtgtttctaccccgtcattggatat ${\tt actatttat}$ than an optication of the second of the s GACCGAACACCATACCCCCAAAAGCAGGATTCTTCGCTTTCTAGAGAATCAATATGTATACCTATGTACCTTAAATGATT GAATGTTGTÄAAACAGATGTTCGATGAAAGTTTTTGAGCGTCGAAGGAATCTACTGATGAAAGGGTTTTCCATGGtaaggt ACCTATITTÀCAATCTTTTTTTTATATCACTGAATCAAGTGATTTACGAAATCGAACTGTTTATTTTAGAAAGATATTT ggtaccgatttactttccttcttcataagctaattgcttcctcgaacgctcctaaatctctggaaatatttttacaaga PAGGAAGTTTAAGCAAGgtaactaatactgttatccttcataactaattttagATCTATATTTTAACTTACACTCTATTT

F/G. 52

CTCTGTGAAGATGAGGTCTCTTGATACATTGTTAGCATGTCCTAAAATTGATGAAGCCTTATTTAACTCTACATCTGTAG AGCTGACGAÀACATATGGGGAAATCTTTTTTTTACAAAATTCTAAGgtatactgtgtaactgaataatagctgacaaata TGTTCATAA@GGgtgagtacttattttaactagaaaagtcattaattaaccttagATCTTTGAATGTTATTGGAAGAAA cggtctcgagacttcagcaatattgacacatcagGCTTTTTGTCTTGGAATGAGATGGTTGGAAACCCTCTTTCAĀA TATCATCCATGCTTCGAACAGCTAATATACCAATTTCAGTCATTGACTGATCTTATCAAGCCGCTAAGACCAGTTTTGCG **ACAGGTGTTÄTTTTTACATAGAAGAATAGCTGATTAALGLCattttcaattttatatatacatcctttattactggtgtc** gtattagtittgattgacttgtctttatccttatacttttaagaaagattgacagtggttgctgactactgcccacatg cccattaaacgggagtggttaaacattaaaagtaatacatgaggctaatctcctttcatttagaataaggaaagtggttt tctataatgaataatgcccgcactaatgcaaaagacgaagattatcttctaaaacaagggggattaagcatatccgaagg aqtttqaatactaataqctcatttaatqtcttatataaqqttttqtttttcctgacttcaattttgcatgggtgaaaag atagtgttlaagccattattggattccgaaatagccaaatttcttggttcctcaaagcggaagtctaaagaaacttattg aagcttatgalggcttcaaaaactcctcctgatttaaaggaggaatcttccaccgatgaggaaatggatagcttatcagct ctgaggaga^lagcctaattttttgcaaaaaagaaaatatcattgggagagacatctttgatgaatcagatgcggagagtat GACCAAAAGTTCTTCTGAAATTTTTAAAATGCTCAAGGAACATCTCTCTGGACACACTGGACACTGGACACATTGTTAAGGtataccaattgttga attgtaataạcactaatgaaactagATAGGAAATTCTCAATACCTTCAAAAAGTTGGTATCCCTČAGGGCTCAATĬCTĞT ${ t tgagttgctdtcattcctaagttctaaccgttgaagGATTTGAGAAACACAAATTTTTCTACGAGCCTGGAGAAAACAGTar{ t A}$ atcaqATCGAGCCTTGCATCCTTTGCACAGTATTTATTGACATTACCCACAATTCAAAATTCTAATTCTTGCTGCAATAT aatttggaaaaagttggccgaaatattaggatataacgagtaggcgtttcttgtcctctgcagaagtcaaatgtacgtg aaaaqaqaqtaatatacccaqtqttqttqaaqaaaqcaaqgataatttggaacaagcttctgcagatgacaggctaaatt ctccagcggaltccttgatgtcaataacttctatttctgaaatgtatggtcctactgtcgcttcgacttctcgtagctcta FTCTTACTTTTTAAGAAGGATCTTCTTAAGCACCGAATGTTTGGqtaattatataatgcggattcctcattattaatttt qcaqGCGTAAGAAGTATTTTGTACGGATAGATATAAAATCCTGTTATGATCGAATAAAGCAAGATTTTGATGTTTTCGGATT GTTAAAAAGAAACTCAAGGATCCCGAATTTGTAATTCGAAAGTATGCAACCATACATGCAACAAGAGTGACCAGAGTGACCGAGCTACAAA AAACTTTGTȚAGTGAGGCGTTTTCCTATTgtaagtttatttttcattggaattttttaacaaattctttttggTTGAT cgcagttaagtgaccaaaggtacc

FIG. 52 (CONTINUED)

4 4 4 4	20	79 78 92	100	129 120 130	150	157 155 158	186
FFYCTEISST VTIVYFRHDT WNKLIT PFIVE YFK-TYLVEN FFYVTEQQKS YSKTYYYRKN IWDVI-MKMS IADLKK ETLAEVQE KHKE GSQIFYYRKP IWKLVSKLTI VKVRIQFSEK NKQMKNNFYQ	FFY.TEK. SYYYRK. IWKLFKV	NVCRNHNSY TLSNFNHSKM RIIPKKSNNE FRIIAIPCRG KEVEEWKKSLGFAPGKG RLIPKKTT FRPIMTFNKK KIQLEEENLE KVEEKLIPED SFQKYPQGKL RIIPKKGS FRPIMTFLRK	FGKL RILPKK FRPIMTF.RK	ADEEEFTIYK ENHKNAIQPT QKILEYLRNK RPTSFTKIYS PTQIADRIKE IVNSDRKTTK LTTNTKLINS HLMLKTLKNRMFK -DPFGFAVFN DKQKNIK LNLNQILMDS QLVFRNLKDML-G -QKIGYSVFD	K.K LN.NLS QL.LLKNIGVF.	FKQRLLKKKEN NVL PELYFMKFD VKSCYD YD-DVMKKKYE EFVCKWKQVH CPKLFFATMD IEKCYD NK-QISEKFA QFIEKWKNKG RPCLYYVTL	$(\mathbf{K}^{-}, \ldots, \mathbf{K}^{-}_{\mathbf{K}}\mathbf{F}, \ldots, \mathbf{F}, \ldots, \mathbf{K}^{-}_{\mathbf{K}}\mathbf{F}, \ldots, \mathbf{G})$
	FFY.TEK		KE	71	K		. K KK
EST2 pep Euplotes pep Trans of tetrahymen	Consensus	EST2 pep Euplotes pep Trans of tetrahymen	Consensus	EST2 pep Euplotes pep Trans of tetrahymen	Consensus	EST2 pep Euplotes pep Trans of tetrahymen	Consensus

FIG. 53

S-1: FFY VTE TTF QKN RLF FYR KSV WSK S-2: RQH LKR VQL RDV SEA EVR QHR EA S-3: ART FRR EKR AER LTS RVK ALF SVL NYE

A-1: AKF LHW LMS VYV VEL LRS FFY VTE TTF Q
A-2: LFF YRK SVW SKL QSI GIR QHL KRV QLR DVS
A-3: PAL LTS RLR FIP KPD GLR PIV NMD YVV

FIG. 54

FIG. 56

FIG. 55A

FIG. 55B

Determine the policy of the poly and acc again and a cc again and	V gtt gaaaa	G	р р н ф ф	LCVSYILSSFYYANLEENALQFLRKESMDPEKPETNLLMRLT GGLCVSSILSSFYYATLEESSLGFLRDESMNPENPNVNLLMRLT SILSSFLCHFYMEDLIDEYLSFTKKKGSVLLRVV GSSLSAPIVDLVYDDLLEFYSEFKASPSQDTLILKLA * . * . *	/SYILSSFY /SSILSSFY LSAPIVDLV .* P Q CCt Cag CCt Cag t c g cca taa	YYAUI (YATII (YADII /YDDI , g G G G G G	LEESS LIDEY LLEEY LLEEY *	LLOFE SLGFE SEFK *	RKES RDES KKK-	MDPE	KPET NPNV GD	NLLM NLLM SVLL TLIL 	RLT RLTD RVV KLAD 	RKESMDPEKPETNLLMRLT RDESMNPENPVNNLLMRLTDDYLLIT KKKGSVLLRVV ASPSQDTLILKLADDFLIIS	II IS nce.			
ag acc tc tgg	aaa ttt	C	att	att cca tca ggC TCA ATT CTG TCA TCT TTT TTG taa ggt agt ccG AGT TAA GAC AGT AGA AAA AAC	tca	99 000	TCA	ATT TAA	CTG TCA GAC AGT	TCA	TCT TTT TTG AGA AAA AAC	TTT AAA	TTG	TGT ACA	CAT	TTC	TAT	ATG
	×	ტ_	н	д	S	ტ	ß	н	ᄓ	ß	ß	Ĺτι	П	ບ	н	Ēτι	×	Σ
								FIC	FIG. 58	~								

CGA	CK					
TTA AAT	ц					
TTG	ы				ace	
GTG	>				equei	
TCA	ഗ				<actual genomic="" sequence<="" td=""><td></td></actual>	
GGA	೮				:moue	
AAA AAG AAA TTT TTC TTT	×				3 G	
AAG TTC	×				Actua	
AAA TTT	×				}	~ (Q:
ACG TGC	E				:	FIG. 58 ONTINUE
TTT AAA	Ĺτι					<i>FIG. 58</i> (CONTINUED)
TCG	ഗ	acc tgg	₽	tgg a t c C	aca.	ڪ
CTA GAT	H	atc tag	н	tag tç a t c Poly	ata I	
TAC ATG	≯	ctc gag	ы	gag tag tgg a a a a t t t c c	ctc ttt L F	
GAA	臼	ctc gag	ъ	atg gag a a a t	ctc L	
GAT	Ω	tac atg	⋈	a t a	ដ ជ ល	
ATT	н	gac ctg	_A		gat D	
TTG	ы	gac ctg	Д	ctg a	gac D	
GAT	Ω	GTC CAG	>	ctg a	gac D D	
GAA	团	GTA	>	Ÿ	•	

FIG. 61

 \perp

MOCLIF O (429). WLYNSFIIPILQSFFYITESSDLRNRTVYFRKDIW(35) (366). WLFRQLIPKIIQTFFYCTEISSTVT-IVYFRHDTW(35) (441). WIFEDLVVSLIRCFFYVTEQQKSYSKTYYYRKNIW(35)		E XHX	MOCII 4 (B') hPQG PP hh h YLQKVGIPQGSILSSFLCHFYMEDLIDEYLSF YIREDGLFQGSSLSAPIVDLVYDDLLEFYSEF YKQTKGIPQGLCVSSILSSFYYATLEESSLGF * ** *	Y Motif 5(C) h F DDhh VLLRVVDDFLFITVNKKDAKKFLNLSLRGFEKHNFSTSLEKTVINFENS .(205) LILKLADDFLIISTDQQQVINIKKLAMGGFQKYNAKANRDKILAVSSQS .(173) LLMRLTDDYLLITTQENNAVLFIEKLINVSRENGFKFNMKKLQTSFPLS .(209)
S.p. Tezlp S.c. Est2p E.a. p123	S.p. Tezlp S.c. Est2p E.a. p123	Tezlp Est2p p123	Tezlp Est2p p123	Tezlp Est2p p123
ος Τος Τος Τος Τος Τος Τος Τος Τος Τος Τ	о о ы о о а	ου ω Ου υ σ Ου υ σ	လ လ ည တ ဂ ဖ 	လ လ မ တ ပ ဖ

FIG. 63

	1MTEHHTPKSRILRFLENQYVYLCT 24 1MKILFEF 7 1 MEVDVDNQADNHGIHSALKTCEEIKEAKTLYSW 33	LNDYVQLVLRGSPASSYSNICERLRSDVQTSFS 57 RIQDKLDIDLQTN - STYK ENLKCGHFNGLD 35 LQKVIRCRNQSQ SHYK DLEDIKIFAQTN 61	58 IFLHSTVVGFDSKPDEGVQFSSPKCSQSELIAN 90 36 EILTTCFALPNSR-KIALPCLPGDLSHKAVIDH 67 62 IVATPRDYNEEDFKVIARKEVFSTGLMIELIDK 94	VVKQMFDESFERRR-NLLMKGFSMNHEDFRAMH 122 SB CIIYLLTGELYN NVLTFGYKIARNED 93 CLVELLSSSDVSDRQKLQCFGFQLKGNQ 122	VNGVQNDLVSTFPNYLISILESKNWQLLLEIIG 155 94VNNSLFCHSANVNVTLLKGAAWKMFHSLVG 123 23LAKTHLLTALSTQKQYFFQDEWNQVRAMIG 152	S6 SDAMHYLLSKGSIFEALPNDNYLQISGIPLFKN 188 24 TYAFVDLLINYTVIQFN - GQFFTQIVGNRCNEP 155 53 NELFRHLYTKYLIFQRTSEGTLVQFCGNNVFDH 185	NVFEETVSKKRKTIETSITQN KSARKEVS 218 56 HLPPKWVQ RSSSSATAAQI KQLTEPVT 183 56 LKVNDKFDK - KQKGGAADMNEPRCCSTCKYNVK 217
Ą	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p 1	Sp_Tip1p 1	Sp_Tip1p 1
	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p 1	Sc_Est2p 1
	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123 1	Ea_p123 1	Ea_p123 1

FIG. 64

	WNSISISRFSIFYRSSYKKFKQDLYFNLHSICD 251 184 N KQFLHKLNINSSSFFP 200 218 NEK DHFLNNINVPNWNNMKSRTRIFYCTHEN 248	2 RNTVHMWLQWIFPRQFGLINAFQVKQLHKVIPL 284 1YSKILPSSSSIKKLTDLREAIFP 223 9 RNNQFFKHEFVSNKNNISAMDRAQTI 275	5 VSQSTVVPKRLLKVYPLIEQTAKRLHRIS 313 4 TNLVKIPQRLKVRINLTLQKLLKRHKRLN 252 6 FTNIFRFNRIRKKLKDKVIEKIAYMLEKVKDFN 308	LSKVYNHYCPYID - THDDEKILSYSLKPNQ 342 3 YVSILNSICPPLEGTVLDLSHLSRQSPKER 282 9 FNYYLTKSCPLPENWRERKQKIENLINKTREEK 341	343VFAFLRSILVRVEPKLI 359 283VLKFIIVILQKLLPQEM 299 342 SKYYEELFSYTTDNKCVTQFINEFFYNILPKDF 374	0 WGNQRIFEIILKDLETFLKLSRYESFSLHYLMS 392 0 FGSKKNKGKIIKNLNLLLSLPLNGYLPFDSLLK 332 5 LTG-RNRKNFQKKVKKYVELNKHELIHKNLLLE 406	3 NIK I SE I EWL VLGKR SNAKMCL SDF EKRKQIFA 425 3 KLRLKDFRWLF I S D I WFTKHNFENLNQLA I 362 7 KINTRE I SWMQVETS - AKHEYYFDHEN - I YVLW 437
ď	Sp_Tip1p 2 Sc_Est2p 1 Ea_p123 2	Sp_Tip1p 2 Sc_Est2p 2 Ea_p123 2	Sp_Tip1p 2 Sc_Est2p 2 Ea_p123 2	Sp_Tip1p 3 Sc_Est2p 2 Ea_p123 3	Sp_Tip1p 3 Sc_Est2p 2 Ea_p123 3	Sp_Tip1p	Sp_Tip1p 3 Sc_Est2p 3 Ea_p123 4

CONTINUED)

426 EFIYWLYNSFIIPILQSFFYITESSDLRNRTVY 458 363 CFISWLFRQLIPKIIQTFFYCTEISSTVT - IVY 394 438 KLLRWIFEDLVVSLIRCFFYVTEQQKSYSKTYY 470	FRKD I WKLLCRPFITSMKMEAFEKINENNVRMD 491 FRHDTWNKLITPFIVEYFKTYLVENNVCRNHNS 427 TRKNIWDVIMKMSIADLKKETLAEVQEKEVEEW 503	2 TQKTTLPPAVIRLLPKK NTFRLITNLRKRFL 522 8 YTLSNFNHSKMRLIPKKSNNEFRIIAIPCRGAD 460 4 KKSLGFAPGKLRLIPKK TTFRPIMTFNKKIV 534	3 IKMGSNKKMLVSTNQTLRPVASILKHLINE 552 1 EEE FTIYKENHKNAIQPTQKILEYLRNKRPT 491 5 NSD RKTTKLTTNTKLLNSHLMLKTLKNR - MF 564	3 ESSGIPFNLEVYMKLLTFKKDLLKHRMFGR-KK 584 2 SFTKIYSPTQIADRIKEFKQRLLKKFNNVLPEL 524 5 KDPFGFAVFNYDDVMKKYEEFVCKWKQVGQPKL 597	Y F V R I D I K S C Y D R I K C Y F M K F D V K S C Y D S I P F F A T M D I E K C Y D S V N F	V L R K Y A W L M L M L A Q Y
A. Sp_Tip1p 4: Sc_Est2p 3: Ea_p123 4:	Sp_Tip1p 4 Sc_Est2p 3 Ea_p123 4	Sp_Tip1p 48 Sc_Est2p 44 Ea_p123 56	Sp_Tip1p 55 Sc_Est2p 46 Ea_p123 55	Sp_Tip1p 56 Sc_Est2p 4 Ea_p123 56	Sp_Tip1p 58 Sc_Est2p 55 Ea_p123 58	Sp_Tip1p 6 Sc_Est2p 56 Ea_p123 6

(CONTINUED)

GGQYPTLFSVLENEQNDLNAKKTLIV KSSSEIFKMLKEHLSGHIVKIGNSQY TKSNQDVINVVEMEIFKTALWVEDKCY FKKDNLLQPVINICQYNYINFNGKFY FKKDNLLQPVINICQYNYINFNGKFY GGSILSAPIVDLVYDDLLEFYSEFKA OGGLCVSSILSAPIVDLLEFYSEFKA OGGLCVSSILSAPIVDALLITTOENNAVL OGGLCVSSILSAPIVDFLFITVNKKDAKK OGGLCVSSILSAPIVDFLFITVNKKDAKK OGGLCVSSILSAPIVDFLFITVNKKDAKK OGGLCVSSILSAPIVDFLFITVNKKDAKK OGGLCVSSILSAPIVDFLFITVNKKDAKK OGGLCVSSILSAPIVDFLFITVNKKDAKK OGGLCVSSILSAPIVDFLITTOENNAVL OGGLCVSSILSAPIVDFLITTOENNAVL OGGLCVSSILSAPIVDFLITTOENNAVL OGGLCVSSILSAPIVDFLITTOENNAVL OGGLCVSSILSAPIV

CONTINUED)

¥.			
Sp_Tip1p Sc_Est2p Ea_p123	850 773 895	LASFAQVFIDITHNSKFNSCCNIYRLGYSMCMR 882 LNSTNTVLMQIDHVVKNISEC 793 LMNNITHYFRKTITTEDFANKTLNKLFISGGYK 927	
Sp_Tip1p Sc_Est2p Ea_p123		AQAYLKRMKDIFIPQRMFITDLLNVIGRKIWKK 915 YKSAFKDLSINVTQNMQFHSFLQRIIEM 821 YMQCAKEYKDHFKKNLAMSSMIDLEVSKIIYSV 960	
Sp_Tip1p Sc_Est2p Ea_p123	916	LAEILGYTSRRFLSSAEVKWLFCLGMRDGLKPS 948 TVSGCPITKCDPLIEYEVRFTILNGFLESLSSN 854 TRAFFKYLVCNIKDTIFGEEHYPDFFLSTLKHF 993	
Sp_Tip1p Sc_Est2p Ea_p123	94 994 994	FKYHPCFEQLIYQFQSLTDLIKPLRPVLRQVLF 981 TSKFKDNI1LLRKEIQHLQAYIY 877 IEIFSTKKYIFNRVCMILKAKEAKLKSDQC 1023	က
Sp_Tip1p Sc_Est2p Ea_p123	982 878 1024	LHRRIAD - 988 YIHIVN - 884 QSLIQYDA 1031	5.

7/G. 04 CONTINUED)

	MTEHHTPKSRILRFLENQYVYLCT 24	LNDYVQLVLRGSPASSYSNICERLRSDVQTSFS 57	I FLHSTVVGFDSKPDEGVQFSSPKCSQSEL11AN 90	VVKQMFDESFERRR-NLLMKGFSMNHEDFRAMH 122	VNGVQNDLVSTFPNYLISILESKNWQLLLEIIG 155	SDAMHYLLSKGSIFEALPNDNYLQISGIPLFKN 188	N V F E E T V S K K R K R T I E T S I T Q N K S A R K E V S 218
	MKILFEF 7	IQDKLDIDLQTN STYK ENLKCGHFNGLD 35	E I LTTCFALPNSR - KIALPCLPGDLSHKAVIDH 67	CIIYLLTGELYNNVLTFGYKIARNED 93	VNNSLFCHSANVNVTLLKGAAWKMFHSLVG 123	TYAFVDLLINYTVIQFN-GQFFTQIVGNRCNEP 155	H L P P K W V Q R S S S S A T A A Q I K Q L T E P V T 183
	MEVDVDNQADNHGIHSALKTCEEIKEAKTLYSW 33	IQKVIRCRNQSQ SHYK DLEDIKIFAQTN 61	I VATPRDYNEEDFKVIARKEVFSTGLMIEL11DK 94	CLVELLSSSDVSDRQKLQCFGFQLKGNQ 122	LAKTHLLTALSTQKQYFFQDEWNQVRAMIG 152	NELFRHLYTKYLIFQRTSEGTLVQFCGNNVFDH 185	L K V N D K F D K - K Q K G G A A D M N E P R C C S T C K Y N V K 217
		25 L N 8 I G	58 – F 36 E I 62 – 7	>00	> ' '	ω⊢z	ZIJ
œ	Sp_Tip1p	Sp_Tip1p 2	Sp_Tip1p 5	Sp_Tip1p 9	Sp_Tip1p 12	Sp_Tip1p 15	Sp_Tip1p 18
	Sc_Est2p	Sc_Est2p	Sc_Est2p 3	Sc_Est2p 6	Sc_Est2p 9	Sc_Est2p 12	Sc_Est2p 15
	Ea_p123	Ea_p123	Ea_p123 6	Ea_p123	Ea_p123 12	Ea_p123 15	Ea_p123 18

FIG. 64 (CONTINUED)

œ.

WNSISISRFSIFYRSSYKKFKQDLYFNLHSICD 251	RNTVHMWLQWIFPRQFGLINAFQVKQLHKVIPL 284	VS QSTVVPKRLLKVYPLIEQTAKRLHRIS 313	LSKVYNHYCPYID - THDDEKILSYSLKPNQ 342		WGNQRIFEIILKDLETFLKLSRYESFSLHYLMS 392	NIKISEIEWLVLGKRSNAKMCLSDFEKRKQIFA 425
N KQFLHKLNINSSSFFP 200	YSKILPSSSSIKKLTDLREAIFP 223	TN LVKIPQRLKVRINLTLQKLLKRHKRLN 252	YVSILNSICPPLEGTVLDLSHLSRQSPKER 282		FGSKKNKGKIIKNLNLLLSLPLNGYLPFDSLLK	KLRLKDFRWLFIS DIWFTKHNFENLNQLAI 362
NEK DHFLNNINVPNWNNMKSRTRIFYCTHFN 248	RNNQFFKKHEFVSNKNNISAMDRAQTI 275	FTNIFRFNRIRKKLKDKVIEKIAYMLEKVKDFN 308	FNYYLTKSCPLPENWRERKQKIENLINKTREEK 341		LTG-RNRKNFQKKVKKYVELNKHELIHKNLLLE 406	KINTREISWMQVETS - AKHFYYFDHEN - IYVLW 437
	252 201 249	, -			360 V	
Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p
Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p
Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123

(CONTINUED)

	EFIYWLYNSFIIPILQSFFYITESSDLRNRTVY 458	RKD IWKLLCRPFITSMKMEAFEKINENNVRMD 491	FQKTTLPPAVIRLLPKK NTFRLITNLRKRFL 522	IKMGSNKKMLVSTNQTLRPVASILKHLINE 552	ESSGIPFNLEVYMKLLTFKKDLLKHRMFGR-KK 584	YFVRIDIKSCYDRIKQDLMFRIVKKKLKDPE-F 616	VIRKYATIHATSDRATKN 634
	SFISWLFRQLIPKIIQTFFYCTEISSTVT-IVY 394	RHD TWNKLITPFIVEYFKTYLVENNVCRNHNS 427	FTLSNFNHSKMRIIPKKSNNEFRIIAIPCRGAD 460	EEE FTIYKENHKNAIQPTQKILEYLRNKRPT 491	SFTKIYSPTQIADRIKEFKQRLLKKFNNVLPEL 524	YFMKFDVKSCYDSIPRMECMRILKDALKNENGF 557	- VRSQYFFNTNTG 570
	KLLRWIFEDLVVSLIRCFFYVTEQQKSYSKTYY 470	RKN IWDVIMKMSIADLKKETLAEVQEKEVEEW 503	KKSLGFAPGKLRLIPKK TTFRPIMTFNKKIV 534	NSD RKTTKLTTNTKLLNSHLMLKTLKNR - MF 564	KDPFGFAVFNYDDVMKKYEEFVCKWKQVGQPKL 597	= FATMDIEKCYDSVNREKLSTFLKTTKLLSSDF 630	VIMTAQILKRKNNIVIDSKNFRKKEMKDYFRQK 663
	ПΟХ	ш ш >	⊢≻⊻	— W Z	шαх	585 525 ∀	> ╙ ≷
_	Sp_Tip1p 42	Sp_Tip1p 48	Sp_Tip1p 48	Sp_Tip1p 5	Sp_Tip1p 50	Sp_Tip1p 58	Sp_Tip1p 6
	Sc_Est2p 36	Sc_Est2p 36	Sc_Est2p 42	Sc_Est2p 4	Sc_Est2p 40	Sc_Est2p 58	Sc_Est2p 56
	Ea_p123 43	Ea_p123 43	Ea_p123 50	Ea_p123 5	Ea_p123 50	Ea_p123 58	Ea_p123 66

(CONTINUED)

	PFEKVVQLLS MKTSDTLFV KLFNVVNASR VPKPYELY I TLFSVLENEQNDLNAKKTLIV	I FKMLKEHLSGH I VK I GN SQY V I N V V EME I FK TA LW V EDKCY L L Q P V I N I C Q Y N Y I N F N G K F Y	SSFLCHFYMEDLIDEYLSFTK SAPIVDLVYDDLLEFYSEFKA SSILSSFYYATLEESSLGFLR	VLLRVVDDFLFITVNKKDAKK LILKLADDFLIISTDQQQVIN LLMRLTDDYLLITTQENNAVL	NFSTSLEKTVINFENSNG NAKANRDKILAVSSQSD GFKFNMKKLQTSFPLSPSKFA	SKKRMPFFGFSVNMRSLDTLL A MHIFVKELEVWKHSSTM VQDYCDWIGISIDMKTLALMP	TSVELTKHMGKSFFYKILRSSIFRSLIALFNTRISYKTIDTNLNENMQTKKASMWLKKKLKSF
	5 FVSEAFSYFDMV 1VL 4 FQKIALEGGQYP	6 DFVDYWTKSSSE 2 DNVRTVHLSNQD 7 EAKQRNYFKKDN	9 LQKVGIPQGSIL 5 IREDGLFQGSSL 0 KQTKGIPQGLCV	KKG S B SPSQD T C DESMNPENPNVN	7 FLNLSLRGFEKH 5 IKKLAMGGFQKY 6 FIEKLINVSREN	7 I INNTFFNE 4 DDTVIQFC 9 KYGMDSVEEQNI	ACPKIDEALFNS NNFHIRSKSSKG NNFHIRSKSSKG
oći	Sp_Tip1p 635 Sc_Est2p 571 Ea_p123 664	Sp_Tip1p 666 Sc_Est2p 592 Ea_p123 697	Sp_Tip1p 699 Sc_Est2p 625 Ea_p123 730	Sp_Tip1p 732 Sc_Est2p 658 Ea_p123 763	Sp_Tip1p 757 Sc_Est2p 685 Ea_p123 796	Sp_Tip1p 787 Sc_Est2p 714 Ea_p123 829	Sp_Tip1p 817 Sc_Est2p 740 Ea_p123 862

(CONTINUED)

Sp_Tip1p	850	LASFAQVFIDITHNSKFNSCCNIYRLGYSMCMR 882
Sc_Est2p	773	LNSTNTVLMQIDHVVKNISEC793
Ea_p123	895	LMNNITHYFRKTITTEDFANKTLNKLFISGGYK 927
Sp_Tip1p	883	AQAYLKRMKD I FIPQRMFITDLLNVIGRKIWKK 915
Sc_Est2p	794	YKSAFKDLSINVTQNMQFHSFLQRIIEM 821
Ea_p123	928	YMQCAKEYKDHFKKNLAMSSMIDLEVSKIIYSV 960
Sp_Tip1p	916	LAEILGYTSRRFLSSAEVKWLFCLGMRDGLKPS 948
Sc_Est2p	822	TVSGCPITKCDPLIEYEVRFTILNGFLESLSSN 854
Ea_p123	961	TRAFFKYLVCNIKDTIFGEEHYPDFFLSTLKHF 993
Sp_Tip1p Sc_Est2p Ea_p123	949 994	KYHPCFEQLIYQFQSLTDLIKPLRPVLRQVLF S KFKDNIILLRKEIQHLQAYIY EIFS TKKYIFNRVCMILKAKEAKLKSDQC
Sp_Tip1p Sc_Est2p Ea_p123	982 878 1024	LHRRIAD - 988 YIHIVN - 884 QSLIQYDA 1031

ю

(These cells will show a senescence phenotype if the disrupted gene encodes a telomerase subunit.)

+

FIG. 65

FIG. 67

met ser val tyr val val glu leu leu ATG AGT GTG TAC GTC GAG CTG CTC GCCAAGTTCCTGCACTGGCTG arg ser phe phe tyr val thr glu thr thr phe gln lys asn arg AGG TCT TTC TTT TAT GTC ACG GAG ACC ACG TTT CAA AAG AAC AGG 30 leu phe phe tyr arg lys ser val trp ser lys leu gln ser ile CTC TTT TTC TAC CGG AAG AGT GTC TGG AGC AAG TTG CAA AGC ATT 40 gly ile arg gln his leu lys arg val gln leu arg glu leu ser GGA ATC AGA CAG CAC TTG AAG AGG GTG CAG CTG CGG GAG CTG TCG 60 glu ala glu val arg gln his arg glu ala arg pro ala leu leu GAA GCA GAG GTC AGG CAG CAT CGG GAA GCC AGG CCC GCC CTG CTG thr ser arg leu arg phe ile pro lys pro asp gly leu arg pro ACG TCC AGA CTC CGC TTC ATC CCC AAG CCT GAC GGG CTG CGG CCG 90 ile val asn met asp tyr val val gly ala arg thr phe arg arg ATT GTG AAC ATG GAC TAC GTC GTG GGA GCC AGA ACG TTC CGC AGA 110 100 glu lys ala glu arg leu thr ser arg val lys ala leu phe GAA AAG ARG GCC GAG CGT CTC ACC TCG AGG GTG AAG GCA CTG TTC 120 ser val leu asn tyr glu arg ala arg arg pro gly leu leu gly AGC GTG CTC AAC TAC GAG CGG GCG CGC CCC GGC CTC CTG GGC 140 ala ser val leu gly leu asp asp ile his arg ala trp arg thr GCC TCT GTG CTG GGC CTG GAC GAT ATC CAC AGG GCC TGG CGC ACC phe val leu arg val arg ala gln asp pro pro pro glu leu tyr TTC GTG CTG CGT GTG CGG GCC CAG GAC CCG CCG CCT GAG CTG TAC phe val lys val asp val thr gly ala tyr asp thr ile pro gln TTT GTC AAG GTG GAT GTG ACG GGC GCG TAC GAC ACC ATC CCC CAG 180 asp arg leu thr glu val ile ala ser ile ile lys pro gln asn GAC AGG CTC ACG GAG GTC ATC GCC AGC ATC ATC AAA CCC CAG AAC thr tyr cys val arg arg tyr ala val val gln lys ala ala met ACG TAC TGC GTG CGT CGG TAT GCC GTG GTC CAG AAG GCC GCC ATG

FIG. 68

210 gly thr ser ala arg pro ser arg ala thr ser tyr val gln cys GGC ACG TCC GCA AGG CCT TCA AGA GCC ACG TCC TAC GTC CAG TGC gln gly ile pro gln gly ser ile leu ser thr leu leu cys ser CAG GGG ATC CCG CAG GGC TCC ATC CTC TCC ACG CTG CTC TGC AGC 240 leu cys tyr gly asp met glu asn lys leu phe ala gly ile arg CTG TGC TAC GGC GAC ATG GAG AAC AAG CTG TTT GCG GGG ATT CGG arg asp gly leu leu leu arg leu val asp asp phe leu leu val CGG GAC GGG CTG CTC CTG CGT TTG GTG GAT GAT TTC TTG TTG GTG 270 thr pro his leu thr his ala lys thr phe leu arg thr leu val ACA CCT CAC CTC ACC CAC GCG AAA ACC TTC CTC AGG ACC CTG GTC 280 290 arg gly val pro glu tyr gly cys val val asn leu arg lys thr CGA GGT GTC CCT GAG TAT GGC TGC GTG GTG AAC TTG CGG AAG ACA 300 val val asn phe pro val glu asp glu ala leu gly gly thr ala GTG GTG AAC TTC CCT GTA GAA GAC GAG GCC CTG GGT GGC ACG GCT 320 phe val gln met pro ala his gly leu phe pro trp cys gly leu TTT GTT CAG ATG CCG GCC CAC GGC CTA TTC CCC TGG TGC GGC CTG 330 leu leu asp thr arg thr leu glu val gln ser asp tyr ser ser CTG CTG GAT ACC CGG ACC CTG GAG GTG CAG \cdot AGC GAC TAC TCC AGC tyr ala arg thr ser ile arg ala ser leu thr phe asn arg gly TẤT GCC CGĞ ACC TCC ATC AGĂ GCC AGT CTC ACC TTC AAC CGC GGC 360 phe lys ala gly arg asn met arg arg lys leu phe gly val leu TTC AAG GCT GGG AGG AAC ATG CGT CGC AAA CTC TTT GGG GTC TTG __ ___3.8.0-arg leu lys cys his ser leu phe leu asp leu gln val asn ser CGG CTG AAG TGT CAC AGC CTG TTT CTG GAT TTG CAG GTG AAC AGC 390 leu gln thr val cys thr asn ile tyr lys ile leu leu gln CTC CAG ACG GTG TGC ACC AAC ATC TAC AAG ATC CTC CTG CTG CAG 410 ala tyr arg phe his ala cys val leu gln leu pro phe his gln GCG TAC AGG TTT CAC GCA TGT GTG CTG CAG CTC CCA TTT CAT CAG

FIG. 68 (CONTINUED)

420 gln val trp lys asn pro his phe ser cys ala ser ser leu thr CAA GTT TGG AAG AAC CCA CAT TTT TCC TGC GCG TCA TCT CTG ACA arg leu pro leu leu his pro glu ser gln glu arg arg asp CGG CTC CCT CTG CTA CTC CAT CCT GAA AGC CAA GAA CGC AGG GAT 450 val ala gly gly gln gly arg arg pro ser ala leu arg gly GTC GCT GGG GGC CAA GGG CGC CGC CGG CCC TCT GCC CTC CGA GGC arg ala val ala val pro pro ser ile pro ala gln ala asp ser CGT GCA GTG GCT GTG CCA CCA AGC ATT CCT GCT CAA GCT GAC TCG thr pro cys his leu arg ala thr pro gly val thr gln asp ser ACA CCG TGT CAC CTA CGT GCC ACT CCT GGG GTC ACT CAG GAC AGC pro asp ala ala glu ser glu ala pro gly asp asp ala asp cys CCA GAC GCA GCT GAG TCG GAA GCT CCC GGG GAC GAC GCT GAC TGC 510 pro gly gly arg ser gln pro gly thr ala leu arg leu gln asp CCT GGA GGC CGC AGC CAA CCC GGC ACT GCC CTC AGA CTT CAA GAC 520 530 his pro gly leu met ala thr arg pro gln pro gly arg glu gln CAT CCT GGA CTG ATG GCC ACC CGC CCA CAG CCA GGC CGA GAG CAG 540 thr pro ala ala leu ser arg arg ala tyr thr ser gln gly gly ACA CCA GCA GCC CTG TCA CGC CGG GCT TAT ACG TCC CAG GGA GGG 560 arg gly gly pro his pro gly leu his arg trp glu ser glu ala AGG GGC GGC CCA CAC CCA GGC CTG CAC CGC TGG GAG TCT GAG GCC 564 OP TGA GTGAGTGTTTGGCCGAGGCCTGCATGTCCGGCTGAAGGCTGAGTGTCCGGCTGAGGC ${\tt CTGAGCGAGTGTCCAGCCAAGGGCTGAGTGTCCAGCACACCTGCGTTTTCACTTCCCCAC}$ AGGCTGGCGTTCGGTCCACCCCAGGGCCAGCTTTTCCTCACCAGGAGCCCGGCTTCCACT CCCCACATAGGAATAGTCCATCCCCAGATTCGCCATTGTTCACCCTTCGCCCTGCCTTCC TTTGCCTTCCACCCCCACCATTCAGGTGGAGACCCTGAGAAGGACCCTGGGAGCTTTGGG AATTTGGAGTGACCAAAGGTGTGCCCTGTACACAGGCGAGGACCCTGCACCTGGATGGGG GTCCCTGTGGGTCAAATTGGGGGGAGGTGCTGTGGGAGTAAAATACTGAATATATGAGTT

> FIG. 68 (CONTINUED)

```
Motif -1
Ep p123
               ...LVVSLIRCFFYVTEQQKSYSKT...
               ...FIIPILQSFFYITESSDLRNRT...
Sp Tez1
               ...LIPKIIQTFFYCTEISSTVTIV...
Sc Est2
               ...YVVELLRSFFYVTETTFQKNRL...
Hs TCP1
                          FFY TE
consensus
                                                  K
                         p hhh K
Motif 0
                                      hR h
               ...KSLGFAPGKLRLIPKKT--TFRPIMTFNKKIV...
Ep p123
               ...QKTTLPPAVIRLLPKKN--TFRLITNLRKRFL...
Sp Tezl
               ...TLSNFNHSKMRIIPKKSNNEFRIIAIPCRGAD...
Sc Est2
               ... ARPALLTSRLRFIPKPD--GLRPIVNMDYVVG...
Hs TCP1
                            R PK
consensus
                              ΑF
                      h hDh GY h
Motif A
               ... PKLFFATMDIEKCYDSVNREKLSTFLK...
Ep p123
Sp Tez1
               ...RKKYFVRIDIKSCYDRIKQDLMFRIVK...
Sc Est2
               ...PELYFMKFDVKSCYDSIPRMECMRILK...
               ... PELYFVKVDVTGAYDTIPQDRLTEVIA...//...
Hs TCP1
consensus
                      F
                          D
                            hPQG
                                   pS hh
Motif B
Ep p123
               ...NGKFYKQTKGIPQGLCVSSILSSFYYA...
Sp Tez1
Sc Est2
               ... GNSQYLQKVGIPQGSILSSFLCHFYME...
               ... EDKCYIREDGLFQGSSLSAPIVDLVYD...
               ...RATSYVQCQGIPQGSILSTLLCSLCYG...
Hs TCP1
                           G QG
consensus
                          Y
                       h F DD hhh
Motif C
               ... PNVNLLMRLTDDYLLITTQENN...
Ep p123
Sp Tez1
               ...KKGSVLLRVVDDFLFITVNKKD...
               ...SQDTLILKLADDFLIISTDQQQ...
Sc Est2
Hs TCP1
               ... RRDGLLLRLVDDFLLVTPHLTH...
                            DD L
consensus
Motif D
                        Gh h cK
               ... NVSRENGFKFNMKKL...
Ep_p123_
               ...LNLSLRGFEKHNFST...
Sp Tezl
               ...KKLAMGGFQKYNAKA...
Sc Est2
               ...LRTLVRGVPEYGCVV...
Hs TCP1
consensus
```

FIG. 69

	aaraaamaa	amaamaamaa	~~~~~~~		~~~~~~~
1	GCAGCGCTGC	GTCCTGCTGC	GCACGTGGGA		CCGGCCACCC
51	CCGCGATGCC	GCGCGCTCCC	CGCTGCCGAG	CCGTGCGCTC	CCTGCTGCGC
101	AGCCACTACC	GCGAGGTGCT	GCCGCTGGCC	ACGTTCGTGC	GGCGCCTGGG
151	GCCCCAGGGC	TGGCGGCTGG	TGCAGCGCGG	GGACCCGGCG	GCTTTCCGCG
201	CGNTGGTGGC	CCANTGCNTG	GTGTGCGTGC	CCTGGGANGN	ANGGCNGCCC
251	CCCGCCGCCC	CCTCCTTCCG	CCAGGTGTCC	TGCCTGAANG	ANCTGGTGGC
301	CCGAGTGCTG	CANANGCTGT	GCGANCGCGG	CGCGAANAAC	GTGCTGGCCT
351	TCGGCTTCGC	GCTGCTGGAC	GGGGCCCGCG	GGGGCCCCCC	CGAGGCCTTC
401	ACCACCAGCG	TGCGCAGCTA	CCTGCCCAAC	ACGGTGACCG	ACGCACTGCG
451	GGGGAGCGGG	GCGTGGGGGC	TGCTGCTGCG	CCGCGTGGGC	GACGACGTGC
501	TGGTTCACCT	GCTGGCACGC	TGCGCGNTNT	TTGTGCTGGT	GGNTCCCAGC
551	TGCGCCTACC	ANGTGTGCGG	GCCGCCGCTG	TACCAGCTCG	GCGCTGCNAC
601	TCAGGCCCGG	CCCCCGCCAC	ACGCTANTGG	ACCCGAANGC	GTCTGGGATC
651	CAACGGGCCT	GGAACCATAG	CGTCAGGGAG	GCCGGGGTCC	CCCTGGGCTG
701	CCAGCCCCGG	GTGCGAGGAG	GCGCGGGGGC	AGTGCCAGCC	GAAGTCTGCC
751	GTTGCCCAAG	AGGCCCAGGC	GTGGCGCTGC	CCCTGAGCCG	GAGCGGACGC
801	CCGTTGGGCA	GGGGTCCTGG	GCCCACCCGG	GCAGGACGCC	TGGACCGAGT
851	GACCGTGGTT	TCTGTGTGGT	GTCACCTGCC	AGACCCGCCG	AAGAAGCCAC
901	CTCTTTGGAG	GGTGCGCTCT	CTGGCACGCG	CCACTCCCAC	CCATCCGTGG
951	GCCGCCAGCA	CCACGCGGGC	CCCCCATCCA	CATCGCGGCC	ACCACGTCCT
1001	GGGACACGCC	TTGTCCCCCG	GTGTACGCCG	AGACCAAGCA	CTTCCTCTAC
			TGCGNCCCTC	CTTCCTACTC	AATATATCTG
1051	TCCTCAGGCG	ACAAGNACAC			
1101	AGGCCCAGCC	TGACTGGCGT	TCGGGAGGTT	CGTGGAGACA	NTCTTTCTGG
1151	TTCCAGGCCT	TGGATGCCAG	GATTCCCCGC	AGGTTGCCCC	GCCTGCCCCA
1201	GCGNTACTGG	CAAATGCGGC	CCCTGTTTCT	GGAGCTGCTT	GGGAACCACG
1251	CGCAGTGCCC	CTACGGGGTG	TTCCTCAAGA	CGCACTGCCC	GCTGCGAGCT
1301	GCGGTCACCC	CAGCAGCCGG	TGTCTGTGCC	CGGGAGAAGC	CCCAGGGCTC
1351	TGTGGCGGCC	CCCGAGGAGG	AGGAACACAG	ACCCCCGTCG	CCTGGTGCAG
1401	CTGCTCCGCC	AGCACAGCAG	CCCCTGGCAG	GTGTACGGCT	TCGTGCGGGC
1451	CTGCCTGCGC	CGGCTGGTGC	CCCCAGGCCT	CTGGGGCTCC	AGGCACAACG
1501	AACGCCGCTT	CCTCAGGAAC	ACCAAGAAGT	TCATCTCCCT	GGGGAAGCAT
1551	GCCAAGCTCT	CGCTGCAGGA	GCTGACGTGG	AAGATGAGCG	TGCGGGACTG
1601	CGCTTGGCTG	CGCAGGAGCC	CAGGGGTTGG	CTGTGTTCCG	GCCGCAGAGC
1651	ACCGTCTGCG	TGAGGAGATC	CTGGCCAAGT	TCCTGCACTG	GCTGATGAGT
1701	GTGTACGTCG	TCGAGCTGCT	CAGGTCTTTC	TTTTATGTCA	CGGAGACCAC
1751	GTTTCAAAAG	AACAGGCTCT	TTTTCTACCG	GAAGAGTGTC	TGGAGCAAGT
1801	TGCAAAGCAT	TGGAATCAGA	CAGCACTTGA	AGAGGGTGCA	GCTGCGGGAG
1851	CTGTCGGAAG	CAGAGGTCAG	GCAGCATCGG	GAAGCCAGGC	CCGCCCTGCT
1901	GACGTCCAGA	CTCCGCTTCA	TCCCCAAGCC	TGACGGGCTG	CGGCCGATTG
1951	TGAACATGGA	CTACGTCGTG	GGAGCCAGAA	CGTTCCGCAG	AGAAAAGAGG
2001	GCCGAGCGTC	TCACCTCGAG	GGTGAAGGCA	CTGTTCAGCG	TGCTCAACTA
2051	CGAGCGGGCG	CGGCGCCCG	GCCTCCTGGG	CGCCTCTGTG	CTGGGCCTGG
2101	ACGATATCCA	CAGGGCCTGG	CGCACCTTCG	TGCTGCGTGT	GCGGGCCCAG
2151	GACCCGCCGC	CTGAGCTGTA	CTTTGTCAAG	GTGGATGTGA	CGGGCGCGTA
2201	CGACACCATC	CCCCAGGACA	GGCTCACGGA	GGTCATCGCC	AGCATCATCA
2251	AACCCCAGAA	CACGTACTGC	GTGCGTCGGT	ATGCCGTGGT	CCAGAAGGCC
2301	GCCCATGGGC	ACGTCCGCAA	GGCCTTCAAG	AGCCACGTCT	CTACCTTGAC
2351	AGACCTCCAG	CCGTACATGC	GACAGTTCGT	GGCTCACCTG	CAGGANAACA
2401	GCCCGCTGAG	GGATGCCGTC	GTCATCGAGC	AGAGCTCCTC	CCTGAATGAG
2451	GCCAGCAGTG	GCCTCTTCGA	CGTCTTCCTA	CGCTTCATGT	GCCACCACGC

FIG. 71

2501	CGTGCGCATC	AGGGGCAAGT	CCTACGTCCA	GTGCCAGGGG	ATCCCGCAGG
2551	GCTCCATCCT	CTCCACGCTG	CTCTGCAGCC	TGTGCTACGG	CGACATGGAG
2601	AACAAGCTGT	TTGCGGGGAT	TCGGCGGGAC	GGGCTGCTCC	TGCGTTTGGT
2651	GGATGATTTC	TTGTTGGTGA	CACCTCACCT	CACCCACGCG	AAAACCTTCC
2701	TCAGGACCCT	GGTCCGAGGT	GTCCCTGAGT	ATGGCTGCGT	GGTGAACTTG
2751	CGGAAGACAG	TGGTGAACTT	CCCTGTAGAA	GACGAGGCCC	TGGGTGGCAC
2801	GGCTTTTGTT	CAGATGCCGG	CCCACGGCCT	ATTCCCCTGG	TGCGGCCTGC
2851	TGCTGGATAC	CCGGACCCTG	GAGGTGCAGA	GCGACTACTC	CAGCTATGCC
2901	CGGACCTCCA	TCAGAGCCAG	TCTCACCTTC	AACCGCGGCT	TCAAGGCTGG
2951	GAGGAACATG	CGTCGCAAAC	TCTTTGGGGT	CTTGCGGCTG	AAGTGTCACA
3001	GCCTGTTTCT	GGATTTGCAG	GTGAACAGCC	TCCAGACGGT	GTGCACCAAC
3051	ATCTACAAGA	TCCTCCTGCT	GCAGGCGTAC	AGGTTTCACG	CATGTGTGCT
3101	GCAGCTCCCA	TTTCATCAGC	AAGTTTGGAA	GAACCCCACA	TTTTTCCTGC
3151	GCGTCATCTC	TGACACGGCC	TCCCTCTGCT	ACTCCATCCT	GAAAGCCAAG
3201	AACGCAGGGA	TGTCGCTGGG	GGCCAAGGGC	GCCGCCGGCC	CTCTGCCCTC
3251	CGAGGCCGTG	CAGTGGCTGT	GCCACCAAGC	ATTCCTGCTC	AAGCTGACTC
3301	GACACCGTGT	CACCTACGTG	CCACTCCTGG	GGTCACTCAG	GACAGCCCAG
3351	ACGCAGCTGA	GTCGGAAGCT	CCCGGGGACG	ACGCTGACTG	CCCTGGAGGC
3401	CGCAGCCAAC	CCGGCACTGC	CCTCAGACTT	CAAGACCATC	CTGGACTGAT
3451	GGCCACCCGC	CCACAGCCAG	GCCGAGAGCA	GACACCAGCA	GCCCTGTCAC
3501	GCCGGGCTCT	ACGTCCCAGG	GAGGGAGGGG	CGGCCCACAC	CCAGGCCCGC
3551	ACCGCTGGGA	GTCTGAGGCC	TGAGTGAGTG	TTTGGCCGAG	GCCTGCATGT
3601	CCGGCTGAAG	GCTGAGTGTC	CGGCTGAGGC	CTGAGCGAGT	GTCCAGCCAA
3651	GGGCTGAGTG	TCCAGCACAC	CTGCCGTCTT	CACTTCCCCA	CAGGCTGGCG
3701	CTCGGCTCCA	CCCCAGGGCC	AGCTTTTCCT	CACCAGGAGC	CCGGCTTCCA
3751	CTCCCCACAT	AGGAATAGTC	CATCCCCAGA	TTCGCCATTG	TTCACCCCTC
3801	GCCCTGCCCT	CCTTTGCCTT	CCACCCCCAC	CATCCAGGTG	GAGACCCTGA
3851	GAAGGACCCT	GGGAGCTCTG	GGAATTTGGA	GTGACCAAAG	GTGTGCCCTG
3901	TACACAGGCG	AGGACCCTGC	ACCTGGATGG	GGGTCCCTGT	GGGTCAAATT
3951	GGGGGGAGGT	GCTGTGGGAG	TAAAATACTG	AATATATGAG	TTTTTCAGTT
4001	TTGAAAAAAA	AAAAAAAAA	AAAAAAAA		

FIG. 71 _(CONTINUED)__

		BCAGCGCTGCGTCCTGCTGCGCACGTGGGAAGCCCTGGCCCCGGGCCACCCCCGCGATGCC	C 0
	1	CGTCGCGACGCAGGACGCGTGCACCCTTCGGGACCGGGGCCGGTGGGGGCGCTACGG	60
a b c		A A L R P A A H V G S P G P G H P R D A Q R C V L L R T W E A L A P A T P A M P S A A S C C A R G K P W P R P P P R C R	- - -
	61	GCGCGCTCCCCGCTGCCGAGCCGTGCGCTCCCTGCTGCGCAGCCACTACCGCGAGGTGCT	120
	01	CGCGCGAGGGCGACGCTCGGCACGCGAGGGACGACGCGTCGGTGATGGCGCTCCACGA	120
a b c		A R S P L P S R A L P A A Q P L P R G A R A P R C R A V R S L L R S H Y R E V L A L P A A E P C A P C C A A T T A R C C	- - -
	121	GCCGCTGGCCACGTTCGTGCGGCGCCCTGGGGCCCCAGGGCTGGCGGCGCGG	180
		CGGCGACCGGTGCAAGCACGCCGGGGACCCCGGGGTCCCGACCGCCGACCACGTCGCGCC	
a b c		A A G H V R A A P G A P G L A A G A A R P L A T F V R R L G P Q G W R L V Q R G R W P R S C G A W G P R A G G W C S A G	- - -
	181	GGACCCGGCGGCTTTCCGCGCGNTGGTGGCCCANTGCNTGGTGTGCGTGCCCTGGGANGN	240
a b c		G P G G F P R ? G G P ? ? G V R A L G ? D P A A F R A ? V A ? C ? V C V P W ? ? T R R L S A R W W P ? A W C A C P G ? ?	- - -
	241	ANGGCNGCCCCCGCCGCCCCCTCCTTCCGCCAGGTGTCCTGCCTGAANGANCTGGTGGC+ TNCCGNCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	300
a	241	TNCCGNCGGGGGGGGGGGGGGGAGGAAGGCGGTCCACAGGACGGAC	300
a b c	241		- -
b		TNCCGNCGGGGGGGGGGGGGGAGAAGGCGGTCCACAGGACGACTTNCTNGACCACCG ? A A P R R P L L P P G V L P E ? ? G G ? ? P P A A P S F R Q V S C L ? ? L V A G ? P P P P P P S A R C P A * ? ? W W P CCGAGTGCTGCANANGCTGTGCGANCGCGGCGCGAANAACGTGCTGGCCTTCGGCTTCGC	- - -
b		TNCCGNCGGGGGGGGGGGGGAGGAAGGCGGTCCACAGGACGACTTNCTNGACCACCG ? A A P R R P L L P P G V L P E ? ? G G ? ? P P A A P S F R Q V S C L ? ? L V A G ? P P P P P P S A R C P A * ? ? W W P	- - -
b		TNCCGNCGGGGGGGGGGGGGAGAAGGCGGTCCACAGGACGACTTNCTNGACCACCG ? A A P R R P L L P P G V L P E ? ? G G ? ? P P A A P S F R Q V S C L ? ? L V A G ? P P P P P S A R C P A * ? ? W W P CCGAGTGCTGCANANGCTGTGCGANCGCGGCGCGAANAACGTGCTGGCCTTCGC	- - 360 - -
b c a b	301	TNCCGNCGGGGGGGGGGGGGGGAGAAGGCGGTCCACAGGACGACTTNCTNGACCACCG ? A A P R R P L L P P G V L P E ? ? G G ? ? P P A A P S F R Q V S C L ? ? L V A G ? P P P P P P S A R C P A * ? ? W W P CCGAGTGCTGCANANGCTGTGCGANCGCGGCGCGCAANAACGTGCTGGCCTTCGGC GGCTCACGACGTNTNCGACACGCTNGCGCCGCGCGTTNTTGCACGACCGGAAGCCGAAGCG P S A A ? A V R ? R R E ? R A G L R L R R V L ? ? L C ? R G A ? N V L A F G F A E C C ? ? C A ? A A R ? T C W P S A S R GCTGCTGGACGGGGGCCCCCCCGAGGCCTTCACCACCAGCGTGCGCAGCTA	- - 360 - -
b c a b	301	TNCCGNCGGGGGGGGGGGGGGGAGGAGGCGGTCCACAGGACGGACTTNCTNGACCACCG ? A A P R R P L L P P G V L P E ? ? G G ? ? P P A A P S F R Q V S C L ? ? L V A G ? P P P P P S A R C P A * ? ? W W P CCGAGTGCTGCANANGCTGTGCGANCGCGGCGCGAANAACGTGCTGGCCTTCGGCTTCGC GGCTCACGACGTNTNCGACACGCTNGCGCCGCGCTTNTTGCACGACCGGAAGCCGAAGCG P S A A ? A V R ? R R E ? R A G L R L R R V L ? ? L C ? R G A ? N V L A F G F A E C C ? ? C A ? A A R ? T C W P S A S R	- - 360 - - -
b c a b	301	TNCCGNCGGGGGGGGGGGGGGGAGAGGCGGTCCACAGGACGACTTNCTNGACCACCG ? A A P R R P L L P P G V L P E ? ? G G ? ? P P A A P S F R Q V S C L ? ? L V A G ? P P P P P P S A R C P A * ? ? W W P CCGAGTGCTGCANANGCTGTGCGANCGCGGCGCGCAANAACGTGCTGGCCTTCGGC GGCTCACGACGTNTNCGACACGCTNGCGCCGCGCTTNTTGCACGACCGGAAGCCGAAGCG P S A A ? A V R ? R R E ? R A G L R L R R V L ? ? L C ? R G A ? N V L A F G F A E C C ? ? C A ? A A R ? T C W P S A S R GCTGCTGGACGGGCCCGCGGGGGCCCCCCCGAGGCCTTCACCACCACCAGCGTGCGAGCTA	- - 360 - - - 420
b c a b c	301	TNCCGNCGGGGGGGGGGGGGGGAGAGGCGGTCCACAGGACGACTTNCTNGACCACCG ? A A P R R P L L P P G V L P E ? ? G G ? ? P P A A P S F R Q V S C L ? ? L V A G ? P P P P P P S A R C P A * ? ? W W P CCGAGTGCTGCANANGCTGTGCGANCGCGGCGCGAANAACGTGCTGGCCTTCGGC GGCTCACGACGTNTNCGACACGCTNGCGCCGCGCTTNTTGCACGACCGGAAGCCGAAGCG P S A A ? A V R ? R R E ? R A G L R L R R V L ? ? L C ? R G A ? N V L A F G F A E C C ? ? C A ? A A R ? T C W P S A S R GCTGCTGGACGGGGGGGGCCCCCCGGAGGCCTTCACCACCACCAGCGTGCGCAGCTA	- - 360 - - - 420 -
b c a b c	301	TNCCGNCGGGGGGGGGGGGGGGAGAGGCGGTCCACAGGACGACTTNCTNGACCACCG ? A A P R R P L L P P G V L P E ? ? G G ? ? P P A A P S F R Q V S C L ? ? L V A G ? P P P P P P S A R C P A * ? ? W W P CCGAGTGCTGCANANGCTGTGCGANCGCGGCGCGCAANAACGTGCTGGCCTTCGGC GGCTCACGACGTNTNCGACACGCTNGCGCCGCGCGCTTNTTGCACGACCGGAAGCCGAAGCG P S A A ? A V R ? R R E ? R A G L R L R R V L ? ? L C ? R G A ? N V L A F G F A E C C ? ? C A ? A A R ? T C W P S A S R GCTGCTGGACGGGGGCCCCCCGGAGGCCTTCACCACCAGCGTGCGCAGCTA	- - 360 - - - 420 -

+.

a b c		P R G R R A G S P A G T L R ? ? C A G R V G D D V L V H L L A R C A ? F V L V A W A T T C W F T C W H A A R ? L C W W	- -
	541	GGNTCCCAGCTGCGCCTACCANGTGTGCGGGCCGCCGCTGTACCAGCTCGGCGCTGCNAC CCNAGGGTCGACGCGGGATGGTNCACACGCCCGGCGGCGACATGGTCGAGCCGCGACGNTG	600
a b c		G S Q L R L P ? V R A A A V P A R R C ? ? P S C A Y ? V C G P P L Y Q L G A A T ? P A A P T ? C A G R R C T S S A L ? L	- - -
	601	$\label{top:condition} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	660
a b c		S G P A P A T R ? W T R ? R L G S N G P Q A R P P P H A ? G P E ? V W D P T G L R P G P R H T L ? D P ? A S G I Q R A W	- - -
	661	GGAACCATAGCGTCAGGGAGGCCGGGGTCCCCCTGGGCTGCCAGCCCCGGGTGCGAGGAG++ CCTTGGTATCGCAGTCCCTCCGGCCCCAGGGGGACCCGACGGTCGGGGCCCACGCTCCTC	720
a b c		G T I A S G R P G S P W A A S P G C E E E P * R Q G G R G P P G L P A P G A R R N H S V R E A G V P L G C Q P R V R G G	- - -
	721	GCGCGGGGCAGTGCCAGCCGAAGTCTGCCGTTGCCCAAGAGGCCCAGGCGTGGCGCTGC	780
a b c		A R G Q C Q P K S A V A Q E A Q A W R C R G G S A S R S L P L P K R P R R G A A A G A V P A E V C R C P R G P G V A L P	- - -
	781	CCCTGAGCCGGAGCGGACGCCCGTTGGGCAGGGGTCCTGGGCCCACCCGGGCAGGACGCC GGGACTCGGCCTGCGGGCAACCCGTCCCCAGGACCCGGGTGGGCCCGTCCTGCGG	840
a b c		P * A G A D A R W A G V L G P P G Q D A P E P E R T P V G Q G S W A H P G R T P L S R S G R P L G R G P G P T R A G R L	- -
	841	TGGACCGAGTGACCGTGGTTTCTGTGTGTGTCACCTGCCAGACCCGCCGAAGAAGCCAC+ ACCTGGCTCACTGGCACCAAAGACACACACAGTGGACGGTCTGGGCGCTTCTTCGGTG	900
a b c		W T E * P W F L C G V T C Q T R R R S H G P S D R G F C V V S P A R P A E E A T D R V T V V S V W C H L P D P P K K P P	<u>-</u> -
	901	CTCTTTGGAGGGTGCGCTCTCTGGCACGCGCCACTCCCACCCA	960
a b c		L F G G C A L W H A P L P P I R G P P A S L E G A L S G T R H S H P S V G R Q H L W R V R S L A R A T P T H P W A A S T	- - -
	961	CCACGCGGGCCCCCATCCACATCGCGGCCACCACGTCCTGGGACACGCCTTGTCCCCCG	1020
	70 T	GGTGCGCCCGGGGGTAGGTGTAGCGCCGGTGGTGCAGGACCCTGTGCGGAACAGGGGGC	1020

FIG. 72 (CONTINUED)

a b c		PRGPPIHIAATTSWDTPCPP- HAGPPSTSRPPRPGTRLVPR- TRAPHPHRGHHVLGHALSPG-
	1021	GTGTACGCCGAGACCAAGCACTTCCTCTACTCCTCAGGCGACAAGNACACTGCGNCCCTC+ 1080 CACATGCGGCTCTGGTTCGTGAAGGAGATGAGGAGTCCGCTGTTCNTGTGACGCNGGGAG
a b c		V Y A E T K H F L Y S S G D K ? T A ? L - C T P R P S T S S T P Q A T ? T L R P S - V R R D Q A L P L L L R R Q ? H C ? P P -
	1081	CTTCCTACTCAATATATCTGAGGCCCAGCCTGACTGGCGTTCGGGAGGTTCGTGGAGACA+
a b c		L P T Q Y I * G P A * L A F G R F V E T - F L L N I S E A Q P D W R S G G S W R ? - S Y S I Y L R P S L T G V R E V R G D ? -
	1141	NTCTTTCTGGTTCCAGGCCTTGGATGCCAGGATTCCCCGCAGGTTGCCCCGCCTGCCCCA+ 1200 NAGAAAGACCAAGGTCCGGAACCTACGGTCCTAAGGGGGCGTCCAACGGGGCGGACGGGGT
a b c		? F L V P G L G C Q D S P Q V A P P A P - S F W F Q A L D A R I P R R L P R L P Q - L S G S R P W M P G F P A G C P A C P S -
	1201	GCGNTACTGGCAAATGCGGCCCCTGTTTCTGGAGCTGCTTGGGAACCACGCGCAGTGCCC
a b c		A ? L A N A A P V S G A A W E P R A V P - R Y W Q M R P L F L E L L G N H A Q C P - ? T G K C G P C F W S C L G T T R S A P -
	1261	CTACGGGGTGTTCCTCAAGACGCACTGCCGCTGCGAGCTGCGGTCACCCCAGCAGCCGG+ 1320 GATGCCCCACAAGGAGTTCTGCGTGACGGGCGACGCTCGACGCCAGTGGGGTCGTCGGCC
a b c		L R G V P Q D A L P A A S C G H P S S R - Y G V F L K T H C P L R A A V T P A A G - T G C S S R R T A R C E L R S P Q Q P V -
	1321	TGTCTGTGCCCGGGAGAAGCCCCAGGGCTCTGTGGCGGCCCCCGAGGAGGAGGAACACAG+ 1380 ACAGACACGGGCCTCTTCGGGGTCCCGAGACACCGCGGGGGCTCCTCCTCCTTGTGTC
a b c	· - ·	C L C P G E A P G L C G G P R G G G T Q - V C A R E K P Q G S V A A P E E E H R - S V P G R S P R A L W R P P R R N T D -
	1381	ACCCCCGTCGCCTGGTGCAGCTGCTCCGCCAGCACAGCA
a b c		T P V A W C S C S A S T A A P G R C T A - P P S P G A A A P P A Q Q P L A G V R L - P R R L V Q L L R Q H S S P W Q V Y G F -
	1441	TCGTGCGGGCCTGCCCGGCCGGCTGGTGCCCCCAGGCCTCTGGGGCTCCAGGCACAACG

a b c		S C G P A C A G W C P Q A S G A P G T T R A G L P A P A G A P R P L G L Q A Q R V R A C L R R L V P P G L W G S R H N E	
	1501	AACGCCGCTTCCTCAGGAACACCAAGAAGTTCATCTCCCTGGGGAAGCATGCCAAGCTCT+ TTGCGGCGAAGGAGTCCTTGTGGTTCTTCAAGTAGAGGGACCCCTTCGTACGGTTCGAGA	1560
a b c		N A A S S G T P R S S S P W G S M P S S T P L P Q E H Q E V H L P G E A C Q A L R R F L R N T K K F I S L G K H A K L S	- - -
	1561	CGCTGCAGGAGCTGAAGATGAGCGTGCGGGACTGCGCTTGGCTGCGCAGGAGCC	1620
a b c		R C R S * R G R * A C G T A L G C A G A A A G A D V E D E R A G L R L A A Q E P L Q E L T W K M S V R D C A W L R R S P	- - -
	1621	CAGGGGTTGGCTGTGTTCCGGCCGCAGAGCACCGTCTGCGTGAGGAGATCCTGGCCAAGT+ GTCCCCAACCGACACAAGGCCGGCGTCTCGTGGCAGACGCACTCCTCTAGGACCGGTTCA	1680
a b c		Q G L A V F R P Q S T V C V R R S W P S R G W L C S G R R A P S A * G D P G Q V G V G C V P A A E H R L R E E I L A K F	
	1681	TCCTGCACTGGCTGATGAGTGTTACGTCGTCGAGCTGCTCAGGTCTTTCTT	1740
a b c		S C T G * * V C T S S S C S G L S F M S P A L A D E C V R R R A A Q V F L L C H L H W L M S V Y V V E L L R S F F Y V T	- - -
	1741	CGGAGACCACGTTTCAAAAGAACAGGCTCTTTTTCTACCGGAAGAGTGTCTGGAGCAAGT+ GCCTCTGGTGCAAAGTTTTCTTGTCCGAGAAAAAGATGGCCTTCTCACAGACCTCGTTCA	1800
a b c		R R P R F K R T G S F S T G R V S G A S G D H V S K E Q A L F L P E E C L E Q V E T T F Q K N R L F F Y R K S V W S K L	<u>-</u> -
	1801	TGCAAAGCATTGGAATCAGACAGCACTTGAAGAGGGTGCAGCTGCGGGAGCTGTCGGAAG+ ACGTTTCGTAACCTTAGTCTGTCGTGAACTTCTCCCACGTCGACGCCCTCGACAGCCTTC	1860
a b c		C	<u>-</u>
	1861	CAGAGGTCAGGCAGCATCGGGAAGCCAGGCCCGCCCTGCTGACGTCCAGACTCCGCTTCA+ GTCTCCAGTCCGTCGTAGCCCTTCGGTCCGGCCGGGACGACTGCAGGTCTGAGGCGAAGT	1920
a b c		Q R S G S I G K P G P P C * R P D S A S R G Q A A S G S Q A R P A D V Q T P L H E V R Q H R E A R P A L L T S R L R F I	- - -
	1921	TCCCCAAGCCTGACGGCTGCGGCCGATTGTGAACATGGACTACGTCGTGGGAGCCAGAA+	1980

a b c		S P S L T G C G R L * .T W T T S W E P E P Q A * R A A A D C E H G L R R G S Q N P K P D G L R P I V N M D Y V V G A R T	- - -
	1981	CGTTCCGCAGAGAAAAGAGGGCCGAGCGTCTCACCTCGAGGGTGAAGGCACTGTTCAGCG+ GCAAGGCGTCTCTTTTCTCCCGGCTCGCAGAGTGGAGCTCCCACTTCCGTGACAAGTCGC	2040
a b c		R S A E K R G P S V S P R G * R H C S A V P Q R K E G R A S H L E G E G T V Q R F R R E K R A E R L T S R V K A L F S V	
	2041	TGCTCAACTACGAGCGGGCGCGGGCCCCCGGCCTCCTGGGCCTCTGTGCTGGGCCTGG++ ACGAGTTGATGCTCGCCCGCGCGCGGGGCCGGAGACACGACCCGGACC	2100
a b c		C S T T S G R G A P A S W A P L C W A W A Q L R A G A A P R P P G R L C A G P G L N Y E R A R R P G L L G A S V L G L D	-
	2101	ACGATATCCACAGGGCCTGGCGCACCTTCGTGCTGCGTGTGCGGGCCCAGGACCCGCCGC TGCTATAGGTGTCCCGGACCGCGTGGAAGCACGACGACGCCCGGGTCCTGGGCGGCG	2160
a b c		T I S T G P G A P S C C V C G P R T R R R Y P Q G L A H L R A A C A G P G P A A D I H R A W R T F V L R V R A Q D P P P	-
	2161	CTGAGCTGTACTTTGTCAAGGTGGATGTGACGGCGCGTACGACACCATCCCCCAGGACA+ GACTCGACATGAAACAGTTCCACCTACACTGCCCGCGCATGCTGTGGTAGGGGGTCCTGT	2220
a b c		L S C T L S R W M * R A R T T P S P R T * A V L C Q G G C D G R V R H H P P G Q E L Y F V K V D V T G A Y D T I P Q D R	-
	2221	GGCTCACGGAGGTCATCGCCAGCATCATCAAACCCCAGAACACGTACTGCGTGCG	2280
a b c		G S R R S S P A S S N P R T R T A C V G A H G G H R Q H H Q T P E H V L R A S V L T E V I A S I I K P Q N T Y C V R R Y	-
	2281	ATGCCGTGGTCCAGAAGGCCGCCCATGGGCACGTCCGCAAGGCCTTCAAGAGCCACGTCT+ TACGGCACCAGGTCTTCCGGCGGGTACCCGTGCAGGCGTTCCGGAAGTTCTCGGTGCAGA	2340
a b c		M P W S R R P P M G T S A R P S R A T S C R G P E G R P W A R P Q G L Q E P R L A V V Q K A A H G H V R K A F K S H V S	-
	2341	CTACCTTGACAGACCTCCAGCCGTACATGCGACAGTTCGTGGCTCACCTGCAGGANAACA+ GATGGAACTGTCTGGAGGTCGGCATGTACGCTGTCAAGCACCGAGTGGACGTCCTNTTGT	2400
a b c		L P * Q T S S R T C D S S W L T C R ? T Y L D R P P A V H A T V R G S P A G ? Q T L T D L Q P Y M R Q F V A H L Q ? N S	-
	2401	GCCCGCTGAGGGATGCCGTCGTCATCGAGCAGAGCTCCTCCCTGAATGAGGCCAGCAGTG	

a b c		A R * G M P S S S S R A P P * M R P A V P A E G C R R H R A E L L P E * G Q Q W P L R D A V V I E Q S S S L N E A S S G	- - -
	2461	GCCTCTTCGACGTCTTCCTACGCTTCATGTGCCACCACGCCGTGCGCATCAGGGGCAAGT	2520
a b c		A S S T S S Y A S C A T T P C A S G A S P L R R L P T L H V P P R R A H Q G Q V L F D V F L R F M C H H A V R I R G K S	- - -
	2521	CCTACGTCCAGTGCCAGGGGATCCCGCAGGGCTCCATCCTCTCCACGCTGCTCTGCAGCC GGATGCAGGTCACGGTCCCCTAGGGCGTCCCGAGGTAGGAGAGGTGCGACGAGACGTCGG	2580
a b c		P T S S A R G S R R A P S S P R C S A A L R P V P G D P A G L H P L H A A L Q P Y V Q C Q G I P Q G S I L S T L L C S L	- - -
	2581	TGTGCTACGGCGACATGGAGAACAAGCTGTTTGCGGGGGATTCGGCGGGACGGGCTGCTCC+ ACACGATGCCGCTGTACCTCTTGTTCGACAAACGCCCCCTAAGCCGCCCTGCCCGACGAGG	2640
a b c		C A T A T W R T S C L R G F G G T G C S V L R R H G E Q A V C G D S A G R A A P C Y G D M E N K L F A G I R R D G L L L	
	2641	$\label{thm:control} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	2700
a b c		C V W W M I S C W * H L T S P T R K P S A F G G * F L V G D T S P H P R E N L P R L V D D F L L V T P H L T H A K T F L	- - -
	2701	$\label{totalgaccct} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	2760
a b c		S G P W S E V S L S M A A W * T C G R Q Q D P G P R C P * V W L R G E L A E D S R T L V R G V P E Y G C V V N L R K T V	- - -
	2761	TGGTGAACTTCCCTGTAGAAGACGAGGCCCTGGGTGGCACGGCTTTTGTTCAGATGCCGG++ ACCACTTGAAGGGACATCTTCTGCTCCGGGACCCACCGTGCCGAAAACAAGTCTACGGCC	2820
a b c		W * T S L * K T R P W V A R L L F R C R G E L P C R R R G P G W H G F C S D A G V N F P V E D E A L G G T A F V Q M P A	-
	2821	CCCACGGCCTATTCCCCTGGTGCGGCCTGCTGCTGGATACCCGGACCCTGGAGGTGCAGA+ GGGTGCCGGATAAGGGGACCACGCCGGACGACGACCTATGGGCCTGGGACCTCCACGTCT	2880
a b c		P T A Y S P G A A C C W I P G P W R C R P R P I P L V R .P A A G Y P D P G G A E H G L F P W C G L L L D T R T L E V Q S	-
	2881	GCGACTACTCCAGCTATGCCCGGACCTCCATCAGAGCCAGTCTCACCTTCAACCGCGGCT+ CGCTGATGAGGTCGATACGGGCCTGGAGGTAGTCTCGGTCAGAGTTGGAAGTTGGCGCCGA	2940

a b c		A T T P A M P G P P S E P V S P S T A A R L L Q L C P D L H Q S Q S H L Q P R L D Y S S Y A R T S I R A S L T F N R G F	- - -
	2941	TCAAGGCTGGGAGGAACATGCGTCGCAAACTCTTTGGGGTCTTGCGGCTGAAGTGTCACA+ AGTTCCGACCCTCCTTGTACGCAGCGTTTGAGAAACCCCAGAACGCCGACTTCACAGTGT	3000
a b c		S R L G G T C V A N S L G S C G * S V T Q G W E E H A S Q T L W G L A A E V S Q K A G R N M R R K L F G V L R L K C H S	<u>-</u> -
	3001	GCCTGTTTCTGGATTTGCAGGTGAACAGCCTCCAGACGGTGTGCACCAACATCTACAAGA + CGGACAAAGACCTAAACGTCCACTTGTCGGAGGTCTGCCACACGTGGTTGTAGATGTTCT	3060
a b c		A C F W I C R * T A S R R C A P T S T R P V S G F A G E Q P P D G V H Q H L Q D L F L D L Q V N S L Q T V C T N I Y K I	
	3061	TCCTCCTGCŢGCAGGCGTACAGGTTTCACGCATGTGTGCTGCAGCTCCCATTTCATCAGC+ AGGAGGACGACGTCCGCATGTCCAAAGTGCGTACACACGACGTCGAGGGTAAAGTAGTCG	3120
a b c		S S C C R R T G F T H V C C S S H F I S P P A A G V Q V S R M C A A A P I S S A L L L Q A Y R F H A C V L Q L P F H Q Q	- - -
	3121	AAGTTTGGAAGAACCCCACATTTTCCTGCGCGTCATCTCTGACACGGCCTCCCTC	3180
a b c		K F G R T P H F S C A S S L T R P P S A S L E E P H I F P A R H L * H G L P L L V W K N P T F F L R V I S D T A S L C Y	- - -
	3181	ACTCCATCCTGAAAGCCAAGAACGCAGGGATGTCGCTGGGGGCCAAGGGCGCCGGCCCGCCC	3240
a b c		T P S * K P R T Q G C R W G P R A P P A L H P E S Q E R R D V A G G Q G R R R P S I L K A K N A G M S L G A K G A A G P	- - -
	3241	CTCTGCCCTCCGAGGCCGTGCAGTGGCTGTGCCACCAAGCATTCCTGCTCAAGCTGACTC+ GAGACGGGAGGCTCCGGCACGTCACCGACACGGTGGTTCGTAAGGACGAGTTCGACTGAG	3300
a b c		L C P P R P C S G C A T K H S C S S * L S A L R G R A V A V P P S I P A Q A D S L P S E A V Q W L C H Q A F L L K L T R	
	3301	GACACCGTGTCACCTACGTGCCACTCCTGGGGTCACTCAGGACAGCCCAGACGCAGCTGA+ CTGTGGCACAGTGGATGCACGGTGAGGACCCCAGTGAGTCCTGTCGGGTCTGCGTCGACT	3360
a b c		D T V S P T C H S W G H S G Q P R R S * T P C H L R A T P G V T Q D S P D A A E H R V T Y V P L L G S L R T A Q T Q L S	- - -
	3361	GTCGGAAGCTCCCGGGGACGACGCTGACTGCCCTGGAGGCCGAGCCAACCCGGCACTGC+ CAGCCTTCGAGGGCCCCTGCTGCGACTGACGGGACCTCCGGCGTCGGTTGGGCCGTGACG	3420

FIG. 72 (CONTINUED)

a b c		V G S S R G R R * L P W R P Q P T R H C S E A P G D D A D C P G G R S Q P G T A R K L P G T T L T A L E A A A N P A L P	- -
	3421	CCTCAGACTTCAAGACCATCCTGGACTGATGGCCACCCGCCCACAGCCAGGCCGAGAGCA+ GGAGTCTGAAGTTCTGGTAGGACCTGACTACCGGTGGGCGGGTGTCGGTCCGGCTCTCGT	3480
a b c		P Q T S R P S W T D G H P P T A R P R A L R L Q D H P G L M A T R P Q P G R E Q S D F K T I L D * W P P A H S Q A E S R	- - -
	3481	GACACCAGCAGCCCTGTCACGCCGGGCTCTACGTCCCAGGGAGGG	3540
a b c		D T S S P V T P G S T S Q G G R G G P H T P A A L S R R A L R P R E G G A A H T H Q Q P C H A G L Y V P G R E G R P T P	- - -
	3541	CCAGGCCCGCACCGCTGGGAGTCTGAGGCCTGAGTGAGTG	3600
a b c		P G P H R W E S E A * V S V W P R P A C Q A R T A G S L R P E * V F G R G L H V R P A P L G V * G L S E C L A E A C M S	- - -
	3601	CCGGCTGAAGGCTGAGTGTCCGGCTGAGGCCTGAGCGAGTGTCCAGCCAAGGGCTGAGTG+ GGCCGACTTCCGACTCACAGGCCGACTCCGGACTCGCTCACAGGTCGGTTCCCGACTCAC	3660
a b c		P A E G * V S G * G L S E C P A K G * V R L K A E C P A E A * A S V Q P R A E C G. * R L S V R L R P E R V S S Q G L S V	- - -
	3661	TCCAGCACACCTGCCGTCTTCACTTCCCCACAGGCTGGCGCTCGGCTCCACCCCAGGGCC+ AGGTCGTGTGGACGGCAGAAGTGAAGGGGTGTCCGACCGCGAGCCGAGGTGGGGTCCCGG	3720
a b c		S S T P A V F T S P Q A G A R L H P R A P A H L P S S L P H R L A L G S T P G P Q H T C R L H F P T G W R S A P P Q G Q	
	3721	AGCTTTTCCTCACCAGGAGCCCGGCTTCCACTCCCCACATAGGAATAGTCCATCCCCAGA+ TCGAAAAGGAGTGGTCCTCGGGCCGAAGGTGAGGGGTGTATCCTTATCAGGTAGGGGTCT	3780
a b c		S F S S P G A R L P L P T * E * S I P R A F P H Q E P G F H S P H R N S P S P D _L F L T R S P A S T P H I G I V H P Q I	- -
	3781	TTCGCCATTGTTCACCCCTCGCCCTGCCCTCCTTTGCCTTCCACCCCCACCATCCAGGTG	3840
a b c		F A I V H P S P C P P L P S T P T I Q V S P L F T P R P A L L C L P P P P S R W R H C S P L A L P S F A F H P H H P G G	-
	3841	GAGACCCTGAGAAGGACCCTGGGAGCTCTGGGAATTTGGAGTGACCAAAGGTGTGCCCTG	3900

```
E T L R R T L G A L G I W S D Q R C A L - R P * E G P W E L W E F G V T K G V P C - D P E K D P G S S G N L E * P K V C P V -
b
        {\tt TACACAGGCGAGGACCCTGGATGGGGGGTCCCTGTGGGTCAAATTGGGGGGGAGGT}
   3901 -----+ 3960
        {\tt ATGTGTCCGCTCCTGGGACGTGGACCTACCCCCAGGGACACCCAGTTTAACCCCCCTCCA}
        Y T G E D P A P G W G S L W V K L G G G -
T Q A R T L H L D G G P C G S N W G E V -
H R R G P C T W M G V P V G Q I G G R C -
а
b
        3961 -----+ 4020
        A V G V K Y * I Y E F F S F E K K K K K - L W E * N T E Y M S F S V L K K K K K K - C G S K I L N I * V F Q F * K K K K K K -
b
С
        AAAAAAAA
   4021 ----- 4029
        TTTTTTTTT
        K K K
а
         K K
K K
b
```

FIG. 72 (CONTINUED)

1 met GCAGCGCTGCGTCCTGCCGCACGTGGGAAGCCCTGGCCCCGGCCACCCCCGCG ATG pro arg ala pro arg cys arg ala val arg ser leu leu arg ser CCG CGC GCT CCC CGC TGC CGA GCC GTG CGC TCC CTG CTG CGC AGC his tyr arg glu val leu pro leu ala thr phe val arg arg leu CAC TAC CGC GAG GTG CTG CCG CTG GCC ACG TTC GTG CGG CGC CTG gly pro gln gly trp arg leu val gln arg gly asp pro ala ala GGG CCC CAG GGC TGG CGG CTG GTG CAG CGC GGG GAC CCG GCG GCT phe arg ala leu val ala gln cys leu val cys val pro trp asp TTC CGC GCG CTG GTG GCC CAG TGC CTG GTG TGC GTG CCC TGG GAC 70 ala arg pro pro pro ala ala pro ser phe arg gln val ser cys GCA CGG CCG CCC CCC GCC CCC TCC TTC CGC CAG GTG TCC TGC leu lys glu leu val ala arg val leu gln arg leu cys glu arg CTG AAG GAG CTG GTG GCC CGA GTG CTG CAG AGG CTG TGC GAG CGC 100 gly ala lys asn val leu ala phe gly phe ala leu leu asp gly GGC GCG AAG AAC GTG CTG GCC TTC GGC TTC GCG CTG CTG GAC GGG 110 ala arg gly gly pro pro glu ala phe thr thr ser val arg ser GCC CGC ĞGĞ ĞGC CCC CCC ĞAG GCC TTC ACC ACC AGC GTG CGC AGC 130 tyr leu pro asn thr val thr asp ala leu arg gly ser gly ala TÂC CTG CCC AAC ACG GTG ACC GAC GCA CTG CGG GGG AGC GGG GCG trp gly leu leu arg arg val gly asp asp val leu val his TGG GGG CTG CTG CGC CGC GTG GGC GAC GAC GTG CTG CTT CAC ___160____ leu leu ala arg cys ala leu phe val leu val ala pro ser cys CTG CTG GCA CGC TGC GCG CTC TTT GTG CTG GTG GCT CCC AGC TGC 170 ala tyr gln val cys gly pro pro leu tyr gln leu gly ala ala GCC TAC CAG GTG TGC GGG CCG CCG CTG TAC CAG CTC GGC GCT GCC 190 thr gln ala arg pro pro his ala ser gly pro arg arg arg ACT CAG GCC CGG CCC CCG CCA CAC GCT AGT GGA CCC CGA AGG CGT

FIG. 74

leu gly cys glu arg ala trp asn his ser val arg glu ala gly CTG GGA TGC GAA CGG GCC TGG AAC CAT AGC GTC AGG GAG GCC GGG 220 val pro leu gly leu pro ala pro gly ala arg arg gly gly GTC CCC CTG GGC CTG CCA GCC CCG GGT GCG AGG AGG CGC GGG GGC ser ala ser arg ser leu pro leu pro lys arg pro arg arg gly AGT GCC AGC CGA AGT CTG CCG TTG CCC AAG AGG CCC AGG CGT GGC ala ala pro glu pro glu arg thr pro val gly gln gly ser trp GCT GCC CCT GAG CCG GAG CGG ACG CCC GTT GGG CAG GGG TCC TGG ala his pro gly arg thr arg gly pro ser asp arg gly phe cys GCC CAC CCG GGC AGG ACG CGT GGA CCG AGT GAC CGT GGT TTC TGT val val ser pro ala arg pro ala glu glu ala thr ser leu glu GTG GTG TCA CCT GCC AGA CCC GCC GAA GAA GCC ACC TCT TTG GAG 290 gly ala leu ser gly thr arg his ser his pro ser val gly arg GGT GCG CTC TCT GGC ACG CGC CAC TCC CAC CCA TCC GTG GGC CGC gln his his ala gly pro pro ser thr ser arg pro pro arg pro CAG CAC CAC GCG GGC CCC CCA TCC ACA TCG CGG CCA CCA CGT CCC 320 trp asp thr pro cys pro pro val tyr ala glu thr lys his phe TGG GAC ACG CCT TGT CCC CCG GTG TAC GCC GAG ACC AAG CAC TTC leu tyr ser ser gly asp lys glu gln leu arg pro ser phe leu CTC TAC TCC TCA GGC GAC AAG GAG CAG CTG CGG CCC TCC TTC CTA leu ser ser leu arg pro ser leu thr gly ala arg arg leu val CTC AGC TCT CTG AGG CCC AGC CTG ACT GGC GCT CGG AGG CTC GTG 370 glu thr ile phe leu gly ser arg pro trp met pro gly thr pro GAG ACC ATC TTT CTG GGT TCC AGG CCC TGG ATG CCA GGG ACT CCC 380 arg arg leu pro arg leu pro gln arg tyr trp gln met arg pro CGC AGG TTG CCC CGC CTG CCC CAG CGC TAC TGG CAA ATG CGG CCC 400 leu phe leu glu leu leu gly asn his ala gln cys pro tyr gly CTG TTT CTG GAG CTG CTT GGG AAC CAC GCG CAG TGC CCC TAC GGG 410 val leu leu lys thr his cys pro leu arg ala ala val thr pro GTG CTC CTC AAG ACG CAC TGC CCG CTG CGA GCT GCG GTC ACC CCA

> FIG. 74 (CONTINUED)

ala ala gly val cys ala arg glu lys pro gln gly ser val ala GCA GCC GGT GTC TGT GCC CGG GAG AAG CCC CAG GGC TCT GTG GCG ala pro glu glu glu asp thr asp pro arg arg leu val gln leu GCC CCC GAG GAG GAC GAC ACA GAC CCC CGT CGC CTG GTG CAG CTG leu arg gln his ser ser pro trp gln val tyr gly phe val arg CTC CGC CAG CAC AGC CCC TGG CAG GTG TAC GGC TTC GTG CGG 470 ala cys leu arg arg leu val pro pro gly leu trp gly ser arg GCC TGC CTG CGC CGG CTG GTG CCC CCA GGC CTC TGG GGC TCC AGG 490 his asn glu arg arg phe leu arg asn thr lys lys phe ile ser CAC AAC GAA CGC CGC TTC CTC AGG AAC ACC AAG AAG TTC ATC TCC leu gly lys his ala lys leu ser leu gln glu leu thr trp lys CTG GGG AAG CAT GCC AAG CTC TCG CTG CAG GAG CTG ACG TGG AAG 520 met ser val arg asp cys ala trp leu arg arg ser pro gly val ATG AGC GTG CGG GAC TGC GCT TGG CTG CGC AGG AGC CCA GGG GTT 530 gly cys val pro ala ala glu his arg leu arg glu glu ile leu GGC TGT GTT CCG GCC GCA GAG CAC CGT CTG CGT GAG GAG ATC CTG 550 ala lys phe leu his trp leu met ser val tyr val val qlu leu GCC AAG TTC CTG CAC TGG CTG ATG AGT GTG TAC GTC GTC GAG CTG 560 leu arg ser phe phe tyr val thr glu thr thr phe gln lys asn CTC AGG TCT TTC TTT TAT GTC ACG GAG ACC ACG TTT CAA AAG AAC 580 arg leu phe phe tyr arg pro ser val trp ser lys leu gln ser AGG CTC TTT TTC TAC CGG CCG AGT GTC TGG AGC AAG TTG CAA AGC 590 ile gly ile arg gln his leu lys arg val gln leu arg glu leu ATT GGA ATC AGA CAG CAC TTG AAG AGG GTG CAG CTG CGG GAG CTG 610 ser glu ala glu val arg gln his arg glu ala arg pro ala leu TCG GAA GCA GAG GTC AGG CAG CAT CGG GAA GCC AGG CCC GCC CTG leu thr ser arg leu arg phe ile pro lys pro asp gly leu arg CTG ACG TCC AGA CTC CGC TTC ATC CCC AAG CCT GAC GGG CTG CGG 640 pro ile val asn met asp tyr val val gly ala arg thr phe arg CCG ATT GTG AAC ATG GAC TAC GTC GTG GGA GCC AGA ACG TTC CGC

arg glu lys arg ala glu arg leu thr ser arg val lys ala leu AGA GAA AAG AGG GCC GAG CGT CTC ACC TCG AGG GTG AAG GCA CTG phe ser val leu asn tyr glu arg ala arg arg pro gly leu leu TTC AGC GTG CTC AAC TAC GAG CGG GCG CGC CCC GGC CTC CTG 680 gly ala ser val leu gly leu asp asp ile his arg ala trp arg GGC GCC TCT GTG CTG GGC CTG GAC GAT ATC CAC AGG GCC TGG CGC 700 thr phe val leu arg val arg ala gln asp pro pro pro glu leu ACC TTC GTG CTG CGT GTG CGG GCC CAG GAC CCG CCT GAG CTG tyr phe val lys val asp val thr gly ala tyr asp thr ile pro TÃC TTT GTC AÃG GTG GAT GTG ACG ĞGC GCG TÂC GAC ACC ATC CCC 730 gln asp arg leu thr glu val ile ala ser ile ile lys pro gln CAG GAC AGG CTC ACG GAG GTC ATC GCC AGC ATC ATC AAA CCC CAG asn thr tyr cys val arg arg tyr ala val val gln lys ala ala AAC ACG TAC TGC GTG CGT CGG TAT GCC GTG GTC CAG AAG GCC GCC 760 his gly his val arg lys ala phe lys ser his val ser thr leu CAT GGG CAC GTC CGC AAG GCC TTC AAG AGC CAC GTC TCT ACC TTG thr asp leu gln pro tyr met arg gln phe val ala his leu gln ACA GAC CTC CAG CCG TAC ATG CGA CAG TTC GTG GCT CAC CTG CAG glu thr ser pro leu arg asp ala val val ile glu gln ser ser GAG ACC AGC CCG CTG AGG GAT GCC GTC GTC ATC GAG CAG AGC TCC 800 ser leu asn glu ala ser ser gly leu phe asp val phe leu arg TCC CTG AAT GAG GCC AGC AGT GGC CTC TTC GAC GTC TTC CTA CGC 820 phe met cys his his ala val arg ile arg gly lys ser tyr val TTC ATG TGC CAC CAC GCC GTG CGC ATC AGG GGC AAG TCC TAC GTC 830 gln cys gln gly ile pro gln gly ser ile leu ser thr leu leu CAG TGC CAG GGG ATC CCG CAG GGC TCC ATC CTC ACG CTG CTC cys ser leu cys tyr gly asp met glu asn lys leu phe ala gly TGC AGC CTG TGC TAC GGC GAC ATG GAG AAC AAG CTG TTT GCG GGG ile arg arg asp gly leu leu leu arg leu val asp asp phe leu ATT CGG CGG GAC GGG CTG CTC CTG CGT TTG GTG GAT GAT TTC TTG

FIG. 74 (CONTINUED)

880 leu val thr pro his leu thr his ala lys thr phe leu arg thr TTG GTG ACA CCT CAC CTC ACC CAC GCG AAA ACC TTC CTC AGG ACC leu val arg gly val pro glu tyr gly cys val val asn leu arg CTG GTC CGA GGT GTC CCT GAG TAT GGC TGC GTG GTG AAC TTG CGG lys thr val val asn phe pro val glu asp glu ala leu gly gly AAG ACA GTG GTG AAC TTC CCT GTA GAA GAC GAG GCC CTG GGT GGC thr ala phe val gln met pro ala his gly leu phe pro trp cys ACG GCT TTT GTT CAG ATG CCG GCC CAC GGC CTA TTC CCC TGG TGC 940 gly leu leu asp thr arg thr leu glu val gln ser asp tyr GGC CTG CTG GAT ACC CGG ACC CTG GAG GTG CAG AGC GAC TAC 950 ser ser tyr ala arg thr ser ile arg ala ser val thr phe asn TCC AGC TAT GCC CGG ACC TCC ATC AGA GCC AGT GTC ACC TTC AAC arg gly phe lys ala gly arg asn met arg arg lys leu phe gly CGC GGC TTC AAG GCT GGG AGG AAC ATG CGT CGC AAA CTC TTT GGG val leu arg leu lys cys his ser leu phe leu asp leu gln val GTC TTG CGG CTG AAG TGT CAC AGC CTG TTT CTG GAT TTG CAG GTG 1000 asn ser leu gln thr val cys thr asn ile tyr lys ile leu leu AAC AGC CTC CAG ACG GTG TGC ACC AAC ATC TAC AAG ATC CTC CTG 1010 leu gln ala tyr arg phe his ala cys val leu gln leu pro phe CTG CAG GCG TAC AGG TTT CAC GCA TGT GTG CTG CAG CTC CCA TTT 1030 his gln gln val trp lys asn pro thr phe phe leu arg val ile CAT CAG CAA GTT TGG AAG AAC CCC ACA TTT TTC CTG CGC GTC ATC 1040 ser asp thr ala ser leu cys tyr ser ile leu lys ala lys asn TCT GAC ACG GCC TCC CTC TGC TAC TCC ATC CTG AAA GCC AAG AAC 1060 ala gly met ser leu gly ala lys gly ala ala gly pro leu pro GCA GGG ATG TCG CTG GGG GCC AAG GGC GCC GCC CCT CTG CCC ser glu ala val gln trp leu cys his gln ala phe leu leu lys TCC GAG GCC GTG CAG TGG CTG TGC CAC CAA GCA TTC CTG CTC AAG 1090 leu thr arg his arg val thr tyr val pro leu leu gly ser leu CTG ACT CGA CAC CGT GTC ACC TAC GTG CCA CTC CTG GGG TCA CTC

FIG. 74 (CONTINUED)

-

103/103

\$1100\$ arg thr ala gln thr gln leu ser arg lys leu pro gly thr thr AGG ACA GCC CAG ACG CTG AGT CGG AAG CTC CCG GGG ACG ACG

1120

leu thr ala leu glu ala ala ala asn pro ala leu pro ser asp CTG ACT GCC CTG GAG GCC GCA GCC AAC CCG GCA CTG CCC TCA GAC

> FIG. 74 (CONTINUED)

AAAAAAAA

FIG. 75