

Prerequisites

Professional Data Science Background with Python

Basics of Deep Learning – Have trained a DNN

Agenda

- Introduction to Anomaly Detection
- Supervised Learning with XGBoost
- Break
- Unsupervised Learning with Autoencoders
- Unsupervised Learning with GANs
- Assessment: Apply one technique to a new dataset

Introduction to Anomaly Detection

WHAT IS AN ANOMALY?

A *data point* which differs significantly from other *data points*

- An observation that is likely generated by a different mechanism
- Finding anomalies can be useful in telecom/sp networks, cyber security, finance, industry, IOT, healthcare, autonomous driving, video surveillance, robotics.
- Many other problems can be framed as anomaly detection: customer retention, targeted advertising.

SPOT THE ANOMALY

SPOT THE ANOMALY

EXERCISE

- What are some of the scenarios that produce anomalies in your organization/domain?
- What data sources might affect or record those anomalous activities?
- What kind of data analytics techniques could be applied or have been applied to detect those events?

Why is Anomaly Detection Important?

Case Study

Programmable Logic Controllers (PLCs)

Supervisory control and data acquisition (SCADA)

The Stuxnet Worm

Case Study

A 500-kilobyte malicious computer worm that targets SCADA systems.

Spread:

Through infected removable drives such as <u>USB flash drives</u>.

Operation:

- Analyzed and targeted Windows networks and computer systems.
- Compromised the Step7 software, the worm gained access to 45 S7 to the PLCs.
- Virus modified project communication configurations for the PLC's Ethernet ports

Result:

- Infected over 100,000 computers & 22 Manufacturing sites
- Appears to have impacted Natanz nuclear facility destroying 984 uranium enriching centrifuges.

DATASET

At a glance!

Name	KDD99 Intrusion Detection Dataset Publicly available at http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html	
Size	743 Mb	
No. of Features	Numeric = 22 ; Categorical = 9	
No. of Rows	18 Million	
No. of Classes	23 (Including the Normal category)	
Variable Types	Numeric & Categorical	
Goal	Detect Anomalies by studying Network Packet logs	

DATASET

Basic Features	Content Features	Traffic Features	
duration	hot	count	
protocol_type	num_failed_logins	serror_rate	Numerical
service	logged_in	rerror_rate	
src_bytes	num_compromised	same_srv_rate	Categorical
dst_bytes	root_shell	diff_srv_rate	
flag	su_attempted	srv_count	
land	num_root	srv_serror_rate	
wrong_fragment	num_file_creations	srv_rerror_rate	
urgent	num_shells	srv_diff_host_rate	
	num_access_files		
	num_outbound_cm		
	is_hot_login	Detailed Description @	
	is_guest_login	https://kdd.ics.uci.edu/databases/	<u>/kddcup99/task.html</u>

DATASET

Visualization by class

Handling Time Series Data

For Classification

Averaging Features

Time	Feature 1	Feature 2	Feature 3
00:00:00	Val_1	Val_2	Val_3
00:00:01	Val_4	Val_5	Val_6
00:00:02	Val_7	Val_8	Val_9
00:00:03	Val_10	Val_11	Val_12

Duration	Feature 1	Feature 2	Feature 3
1	Avg(Val_1,Val_4)	Avg(Val_2,Val_5)	Avg(Val_3,Val_6)
1	Avg(Val_7,Val_10)	Avg(Val_8,Val_11)	Avg(Val_9,Val_12)

Sampling Features

Duration	Feature 1	Feature 2	Feature 3
1	Val_4	Val_5	Val_6
1	Val_10	Val_11	Val_12

IN THE NEWS

Telecom

Operators beware: DDoS attacks—large and small—keep increasing

by Brian Santo | Jun 6, 2017 12:19pm

Telecoms industry and DNS attacks: attacked the most, slowest to fix

Networks are a prized target for hackers, as each attack costs £460,000 on average to remediate

https://www.information-age.com/telecoms-industry-dns-attacks-attacked-slowest-fix-123469037/

Telecom operators are not properly prepared for cyber-attacks: A10 Networks

Mobile network operators are not properly prepared for cyber attacks, and the core of 3G and 4G networks is generally not protected.

ETTelecom | Updated: January 15, 2018, 13:41 IST

https://telecom.economictimes.indiatimes.com/news/telecom-operators-are-not-properly-prepared-for-cyber-attacks-a10-networks/62504221

Hackers Are Tapping Into Mobile Networks' Backbone, New Research Shows

Parmy Olson Forbes Staff

AI, robotics and the digital transformation of European business.

https://www.forbes.com/sites/parmyolson/2015/10/14/hackers-mobile-network-backbone-ss7/#59d777f85142

Hack Attack: Sony Confirms PlayStation Network Outage Caused By 'External Intrusion'

Rip Empson @npemp / Byears ago.

Comment

https://techcrunch.com/2011/04/23/hack-attack-sony-confirms-playstation-network-outage-caused-by-external-intrusion/

ANDY GREENBERG SECURITY 04.16.18 07:52 PM

THE WHITE HOUSE WARNS ON RUSSIAN ROUTER HACKING, BUT MUDDLES THE MESSAGE

https://www.wired.com/storv/white-house-warns-russian-router-hacking-muddles-message/

ANOMALY DETECTION IN NETWORKS

Why do we need it in Telecom?

What sort of data can we leverage?

DETECTION METHODS IN THIS COURSE

Anomaly Detection

Supervised (When you have Labels)

Unsupervised (When you don't have labels for your data)

XGBoost

Autoencoders

Generative Adversarial Networks

Definition

XGBoost is an implementation of gradient boosted decision trees designed for speed and performance.

It is a powerful tool for solving classification and regression problems in a supervised learning setting.

PREDICT: WHO ENJOYS COMPUTER GAMES

Example of Decision Tree

Source: https://goo.gl/eTxVtA

ENSEMBLED DECISION TREES

GRADIENT BOOSTED TREES FOR STRONGER PREDICTIONS

Prediction

Build trees one at a time, where each new tree helps to correct errors made by previously trained tree.

Complexity of the Trees $Obj = \sum_{i=1}^n l(y_i, \hat{y}_i) + \sum_{k=1}^K \Omega(f_k)$ Training Loss

Intuitive Example for Tree Construction

Step 1: Start as a single leaf Input all residuals

Step 2: Calculate similarity score
For all residuals

Set Threshold @ Arbitrary
Drug Dosage 15

-10.5, 6.5, 7.5, -7.5

Sum of residuals squared

No. of residuals + Regularization

-10.5, 6.5, 7.5, -7.5

S0 = 4Setting Reg = 0

Intuitive Example for Tree Construction

G1 = 120.33

Intuitive Example for Tree Construction

Step 6: Calculate Gain
Lower Leaves cluster similar
residuals than root?

Gain = Left Similarity + Right Similarity - Root Similarity

$$G2 = 4$$

Since G2 = 4 < G1 = 120.33 Tree 1 had better split

Intuitive Example for Tree Construction

Step 6: Calculate Gain Lower Leaves cluster similar residuals than root?

Gain = Left Similarity + Right Similarity - Root Similarity

G3 = 56.33

Since G3 = 56.33 < G1 = 120.33Tree 1 had better split

Intuitive Example for Tree Construction

Step 9: Calculate Gain
Lower Leaves cluster similar
residuals than root ?

G12 = 42.25 - 14.0 = 28.17

Intuitive Example for Tree Construction

Intuitive Example for Tree Construction

Re - Calculate Residuals : Assuming Gradient Multiplier = 0.3

• R1:
$$0.5 + 0.3 (-10.5) = -2.65$$

- R2: 0.5 + 0.3(7) = 2.6
- R3: 0.5 + 0.3(7) = 2.6
- R4: 0.5 + 0.3(-7.5) = -1.75

Step 13:
Construct new tree with updated
Residuals

TRAINED MODELS VISUALIZATION

Single Decision Tree vs Ensembled Decision Trees

Models fit to the Boston Housing Dataset

Source: https://goo.gl/GWNdEm

Construction

Move Threshold

			Actual	
			Anomaly	Not Anomaly
Predic	cted	Anomaly	TP	FP
		Not Anomaly	FN	TN

True Positive Rate
TP / (TP+FN) = Sensitivity

False Positive Rate FP / (FP +TN)

https://www.youtube.com/watch?v=4jRBRDbJemM

Construction

Move Threshold

	Actual		tual
		Anomaly	Not Anomaly
Predicted	Anomaly	TP	FP
	Not Anomaly	FN	TN

True Positive Rate
TP / (TP+FN) = Sensitivity

False Positive Rate FP / (FP +TN)

Interpretation

Interpretation

WHICH ML ALGORITHM PERFORMED BEST

Average rank across 165 ML datasets

Source: https://goo.gl/R8Y8Pp

RAPIDS

End-to-End Accelerated GPU Data Science

TIME TO TRAIN

Rapid Data Science

Size of Training Data

Model Selection and Hyper-Parameter Tuning

best_model = init_model

for (m,h) in zip(models, hyperparams):

my_model = train(m,h)

if acc(my_model) >
acc(best_model):

best_model = my_model

RAPIDS WITH XGBOOST

Multi-GPU, Multi-Node, Scalability

XGBoost:

- Algorithm tuned for eXtreme performance and high efficiency
- Multi-GPU and Multi-Node Support

RAPIDS:

- End-to-end data science & analytics pipeline entirely on GPU
- User-friendly Python interfaces
- Relies on CUDA primitives, exposes parallelism and high-memory bandwidth
- Benefits from DGX system designs (NVLINK, NVSWITCH, dense compute platform)
- Dask integration for managing workers & data in distributed environments

Work through the first reflection

1.2 Dataset Modification

Notice that the dataset has more anomalies than normal data. Reflect for a moment about the implications of having more anomalies might be. Reflect either here in the notebook, on a piece of paper, or with a peer sitting next to you.

Reflection:

We'll come back to test your hypothesis shortly.

Section 3: Impact of Skewed Data

As we prepared our data, we pointed out that there were more anomalies than normal data and considered the implications of this dataset skew that doesn't match the real world. Take a moment now see how adjusting our dataset impacts performance.

```
In [2]:

def reduce_anomalies(df, pct_anomalies=.01):
    labels = df['label'].copy()
    is_anomaly = labels!= 'normal.'
    num_normal = np.sum(~is_anomaly)
    num_anomalies = int(pct_anomalies * num_normal)
    all_anomalies = labels[labels!= 'normal.']
    anomalies_to_keep = np.random.choice(all_anomalies.index, size=num_anomalies, replace=False)
    anomalous_data = df.iloc[anomalies_to_keep].copy()
    normal_data = df[-is_anomaly].copy()
    new_df = pd.concat([normal_data, anomalous_data], axis=0)
    return new_df
```

```
In [ ]: df = reduce_anomalies(df)
```

Let's see what anomalies we have after the reduction.

```
In [ ]: pd.DataFrame(df['label'].value_counts())
```

Return to <u>data preprocessing</u> and rerun cells to this point, comparing and contrasting performance. Again, reflect below, on paper, or with a peer. Reflect on why the reduction of anomalies had the impact that it did.

What was the impact of reducing anomalies in the dataset and why do you think that is?

```
Answer:
```

Multi-Class Classifier Challenge

In the field below, set up dtrain, dtest, evals, and model as exemplified when we trained our binary classifier.

Note: Multiclass labels are in y_train and y_test. Hint: Control F will help you find dtrain, dtest, evals and model.

You can see how adding multiple classes doesn't increase the complexity in training this type of model.

```
dtrain = ##SEE BINARY CLASSIFIER FOR HINT##

dtest = ##SEE BINARY CLASSIFIER FOR HINT##

evals = ##SEE BINARY CLASSIFIER FOR HINT##

model = ##SEE BINARY CLASSIFIER FOR HINT##
```