Under the guidance of D.RAMESH Assistant Proffesor, CSE

Through deep learning

TEAM-29

TEAM MEMBERS

19K41A0506 VONTELA DHANUSH

19K41A0590 AMOGH VARSH RAJU AMBATI

19K41A05E3 SARDAR KAMALJEETH SINGH

MOHD AMAAN

THALLAPALLY VINAY PRAKASH

TEAM-29

19K41A05G3

19K41A05H2

CONTENTS

- INTRODUCTION
- DATA-SET
- PRE-PROCCESING
- MODELS & IMPLEMENTATION
- Result & Output

INTRODUCTION

INTRODUCTION

THE PROBLEM

Source: IHME, Global Burden of Disease (2019)

Note: Deaths from 'clinical pneumonia', which refers to a diagnosis based on disease symptoms such as coughing and difficulty breathing and may include other lower respiratory diseases.

DATA

The data suggests the amount of deaths is considerably declined yet it is still an mas problem

MORTALITY RATE

In Need of Effective diagnosis

DATA-SET Details

DATA-SET INSIGHTS

CHALLENGES WITH THE DATASET

PRE-PROCESSING

PRE-PROCESSING

APPEND THE LABEL

WHEN A DISEASE IS FOUND OR NORMAL IMAGE IS FOUND APPEND IT TO THE ARRAY AND LABELS BASED ON THE CONDITIOON MENTIONED

LOOP FOR DISEASED IMAGES

WE ARE GOING TO SEARCH FOR THE WHOLE IMAGES AND THEN APPEND IT BASED ON ITS CLASSIFICATION

FLOW

MODEL IMPLEMENTATION

CUSTOM CNN

ADDED 16 filters of size 7*7 and used non-linear activation fiunction called RELU

VGG-16

Converted the 4D output tensor into 2D and connected with 3 new nodes with the pretrained VGG-16 layer with SOFTMAX activation function

TRANSFER LEARNING

Transfer learning is a machine learning technique where a pre-trained model is used as a starting point for a new task or problem.

RESNET-152

Followed the same technique as VGG-16 and used ADAM OPTIMIZER

Hardware elements playing crucial role

COMPUTE CAPABILITY

Geforce RTX 2070	7.5	Geforce RTX 2060	7.5
Geforce RTX 2060	7.5	GeForce GTX 1080	6.1
NVIDIA TITAN V	7.0	GeForce GTX 1070	6.1
NVIDIA TITAN Xp	6.1	GeForce GTX 1060	6.1
NVIDIA TITAN X	6.1	GeForce GTX 980	5.2
GeForce GTX 1080 Ti	6.1	GeForce GTX 980M	5.2
GeForce GTX 1080	6.1	GeForce GTX 970M	5.2
GeForce GTX 1070 Ti	6.1	GeForce GTX 965M	5.2
GeForce GTX 1070	6.1	GeForce GTX 960M	5.0
GeForce GTX 1060	6.1	GeForce GTX 950M	5.0
GeForce GTX 1050	6.1	GeForce 940M	5.0

The Results.

S.NO	Model Used	ACCURACY			Precision			Recall		
		Train	Test	Val	Train	Test	Val	Train	Test	Val
1	Custom CNN	0.7601	0.5817	0.875	0-0.94	0-0.99	0-1.0	0-0.99	0-0.47	0-0.88
					1-0.96	1-0.80	1-0.00	1-0.10	1-0.15	1-0.00
					1-0.90	1-0.00	1-0.00	1-0.10	1-0.13	1-0.00
					2-0.68	2-0.48	2-0.88	2-0.81	2-0.65	2-0.88
2	VGG-16	0.8932	0.6474	0.875	0-1.00	0-0.99	0-1.00	0-1.00	0-0.38	0-0.88
					1-0.97	1-0.52	1-0.00	1-0.61	1-0.51	1-0.00
					2-0.83	2-0.62	2-0.88	2-0.99	2-0.99	2-0.88
3	RESNET 152	0.7875	0.6762	0.875	0-1.83	0-0.88	0-0.80	0-0.99	0-0.51	0-1.00
					1-0.80	1-0.64	1-0.00	1-0.36	1-0.44	1-0.00
					2-0.76	2-0.61	2-1.00	2-0.91	2-0.98	2-0.86

The Output.

3 Classes diseas percentage

We are able to successfully potray the result of the disease present in the x-ray and the different classes of it along with the kernel output on the layer of which the model is able to see.

THE OUTPUT

Viral Pneumonia: 0.04 Bacterial Pneumonia: 0.96 Normal: 0.00

THANK YOU

TEAM - 29

