Box Counting Dimension of the Middle- λ Cantor Set

Matt McCarthy

April 2016

Theorem. Let C denote the middle- λ Cantor set with $0 < \lambda < 1$. Then the box counting dimension of C is

$$\dim_B C = \frac{\ln 2}{\ln \left(\frac{2}{1-\lambda}\right)}.$$

1 Background

1.1 Fractal Analysis

We begin by defining a δ -cover of a set.

Definition 1. Let $X \subset \mathbb{R}^n$ and $\delta > 0$. Then a δ -cover of X is a set $D = \{D_i\}_{i=1}^{n_D}$ such that $X \subseteq \bigcup_{D_i \in D} D_i$ and diam $D_i \leq \delta$ for all $D_i \in D$. We denote the collection of all such covers as $\mathcal{D}_{\delta}(X)$.

Now that we have δ -covers, we can define the box-counting dimension of a set.

Definition 2. Let X be a subset of \mathbb{R}^n . Then the box-counting dimension of X, denoted $\dim_B(X)$, is defined as

$$\lim_{\delta \to 0} \frac{\ln N_{\delta}(X)}{-\ln \delta}$$

where

$$N_{\delta}(X) = \min_{D \in \mathcal{D}_{\delta}(X)} \operatorname{card} D.$$

Note that the box-counting dimension of a set does not necessarily exist, however when it does exist it is usually easier to find.

Theorem 1 (Squeeze Theorem). Let $(a_n), (b_n), (c_n)$ be real valued sequences such that $\lim a_n = \lim c_n = x$ and $a_n \leq b_n \leq c_n$ for all n greater than some $n \in \mathbb{N}$. Then b_n converges to x.

1.2 The Cantor Set

We will now talk about the middle third Cantor set. Begin by defining $C_0 = [0, 1]$. We now remove the middle third from C_0 yielding, $C_1 = [0, 1/3] \cup [2/3, 1]$. We then remove the middle third from each subinterval of C_1 , yielding $C_2 = [0, 1/9] \cup [2/9, 3/9] \cup [6/9, 7/9] \cup [8/9, 1]$. We iterate this process by removing the middle-third from each subinterval of C_n and labeling the remaining set C_{n+1} . Finally, we define the Cantor set as $C = \bigcap_{n \in \mathbb{N}} C_n$. We can similarly construct the middle- λ Cantor set by performing the same construction but removing λ instead of one third in each step. Furthermore, C is an uncountable set that has no length left to it.

2 Solution

Theorem 2. Let C denote the middle- λ Cantor set with $0 < \lambda < 1$. Then the box counting dimension of C is

$$\dim_B C = \frac{\ln 2}{\ln \left(\frac{2}{1-\lambda}\right)}.$$

Proof. Consider removing an interval of length $a\lambda$ from the middle of the interval [0, a] for some a > 0. Since we have removed $a\lambda$ from the interval, the length of this new set is exactly $a - a\lambda = a(1 - \lambda)$. Moreover, since we removed it from the middle of the interval, this length is equally distributed among the two resultant subintervals. Thus the subintervals must have length $a((1 - \lambda)/2)$. Furthermore, the leftmost interval must be $[0, a((1 - \lambda)/2)]$.

We now need to find the length of any subinterval of C_n . Since $C_0 = [0,1]$, $l_0 = 1$. This tells us that $l_1 = (1 - \lambda)/2$ and that the leftmost interval in C_1 is $[0, (1 - \lambda)/2]$. We know from the above logic that $l_{n+1} = l_n(1 - \lambda)/2$ and its leftmost interval will be $[0, l_n(1 - \lambda)/2]$. Solving this recursion yields that

$$l_n = \left(\frac{1-\lambda}{2}\right)^n$$

and the leftmost interval of C_n is $[0,((1-\lambda)/2)^n]$. Thus if we were to cover C_n we would need 2^n sets of diameter $((1-\lambda)/2)^n$.

Suppose $\delta > 0$. Thus, we can find an n such that $l_{n+1} \leq \delta < l_n$. Since $\delta < l_n$, we need no fewer than 2^n sets of diameter δ to cover $C_n \supset C$. Since $\delta \geq l_{n+1}$, we need no more than 2^{n+1} sets of diameter δ to cover $C_{n+1} \supset C$. Thus, we can glean the following inequality.

$$2^n \le N_{\delta}(C) \le 2^{n+1}.$$

Since ln is a monotone increasing function, we get

$$n \ln 2 < \ln N_{\delta}(C) < (n+1) \ln 2.$$
 (1)

Furthermore, since $l_{n+1} \leq \delta < l_n$,

$$\frac{1}{-\ln l_{n+1}} \le \frac{1}{-\ln \delta} \le \frac{1}{-\ln l_n}.\tag{2}$$

Take Equation 1 and multiply it by $1/(-\ln \delta)$.

$$\frac{n \ln 2}{-\ln \delta} \le \frac{\ln N_{\delta}(C)}{-\ln \delta} \le \frac{(n+1) \ln 2}{-\ln \delta}$$

By Equation 2, we have

$$\frac{n\ln 2}{-\ln l_{n+1}} \le \frac{\ln N_{\delta}(C)}{-\ln \delta} \le \frac{(n+1)\ln 2}{-\ln l_n}.$$

Consider $\ln l_n$.

$$\ln l_n = \ln \left(\left(\frac{1-\lambda}{2} \right)^n \right) = -n \ln \left(\frac{2}{1-\lambda} \right)$$

Thus, our inequality becomes.

$$\frac{n\ln 2}{(n+1)\ln\left(\frac{2}{1-\lambda}\right)} \le \frac{\ln N_{\delta}(C)}{-\ln \delta} \le \frac{(n+1)\ln 2}{n\ln\left(\frac{2}{1-\lambda}\right)}.$$

If we want to find $\lim_{\delta \to 0} \ln N_{\delta}(C)/(-\ln \delta)$, we need to find the limits of the far left and far right as $n \to \infty$. On the lefthand side we get

$$\frac{n\ln 2}{(n+1)\ln\left(\frac{2}{1-\lambda}\right)} = \frac{n\ln 2}{n\ln\left(\frac{2}{1-\lambda}\right) + \ln\left(\frac{2}{1-\lambda}\right)} \to \frac{\ln 2}{\ln\left(\frac{2}{1-\lambda}\right)}$$

by l'Hôpital's rule. On the righthand side we get

$$\frac{(n+1)\ln 2}{n\ln\left(\frac{2}{1-\lambda}\right)} = \frac{n\ln 2 + \ln 2}{n\ln\left(\frac{2}{1-\lambda}\right)} \to \frac{\ln 2}{\ln\left(\frac{2}{1-\lambda}\right)}$$

again by l'Hôpital's rule. Thus by squeeze theorem, $\dim_B(C)=\frac{\ln 2}{\ln\left(\frac{2}{1-\lambda}\right)}.$