homework4

Name: 徐晓刚

Student ID: 3140102480

1/6

专业:信息工程 姓名:徐晓刚 学院:信电学院

学号: 3140102480 日期: May 17, 2017 地点: 玉泉 5 舍

Artificial intelligence Homework4

Problem 1

14.14

- a. For (i), we can see that B,I,M can influence each other so they will never be independent. For (ii), G is the only parent of J, so the network assert (ii). For (iii), G,B,I is the Markov blanket of M, so the network assert (iii).
- **b.** According to the independent relation in the network, we can get the equation:

$$P(b, i, \neg m, g, j) = P(b)P(\neg m)P(i|b, \neg m)P(g|b, i, \neg m)P(j|g) = 0.2916$$

• c. Since B,I,M are fixed true in the evidence we can treat G as having a prior of 0.9:

$$\begin{aligned} &P(J|b,i,m) = \alpha \mathop{\textstyle \sum}_{g} P(J,g) = \alpha [P(J,g) + P(J,\neg g)] \\ = &< 0.81, 0.19 > \end{aligned}$$

So the probability of going to jail is 0.81

- **d.**Intuitively, a person cannot be found guilty if not indicted, regardless of whether they broke the law and regardless of the prosecutor. so G is context-specifically independent of B and M given I = false.
- e. It's obvious that I and G are parents of P. Because a pardon is more likely if the person is actually innocent and if the prosecutor is politically motivated, so B and M as parents of P. The pardon may not be jailed, so P is a parent of J. The new network can be see as following:

The new network

Problem 2

14.15

$$\begin{array}{l} \bullet \text{ a. } P(B|j,m) \\ &= \alpha P(B) \sum\limits_{e} P(e) \sum\limits_{a} P(a|b,e) P(j|a) P(m|a) \\ &= \alpha P(B) \sum\limits_{e} P(e) [0.9 \times 0.7 \times (\begin{pmatrix} 0.95 & 0.29 \\ 0.94 & 0.001 \end{pmatrix}) + 0.05 \times 0.01 \times (\begin{pmatrix} 0.05 & 0.71 \\ 0.06 & 0.999 \end{pmatrix}))] \\ &= \alpha P(B) \sum\limits_{e} P(e) (\begin{pmatrix} 0.598525 & 0.183055 \\ 0.59223 & 0.0011295 \end{pmatrix}) \\ &= \alpha (\begin{pmatrix} 0.001 \\ 0.999 \end{pmatrix}) \times (\begin{pmatrix} 0.59224259 \\ 0.001493351 \end{pmatrix}) \\ &= < 0.284, 0.716 > \end{array}$$

- **b.** There are 7 additions, 16 multiplications, and 2 divisions. The enumeration algorithm has two extra multiplications.
- c. If we compute $P(X_1|X_n=true)$ using enumeration, we have to evaluate two complete binary trees, each of depth n-1, so the tota work is $O(2^n)$.

homework4 Student ID: 3140102480 Name: 徐晓刚 3/6

If we use the method of variable elimination instead, the factors never grow beyond two variables. The total work is O(n).

• **d.** Prove:

First, based on the inductive hypothesis, we can assume that any polytree with n nodes can be evaluated in time proportional to the size of the polytree.

Next, consider a polytree with n + 1 nodes. To eliminate any leaf node, we have to do work proportional to the size of its CPT. Then, because the network is a polytree, we are left with independent subproblems, one for each parent.

Each subproblem takes total work proportional to the sum of its CPT sizes, so the total work for n + 1 nodes is proportional to the sum of CPT sizes

Problem 3

15.13

We can see that there are three variables:

 S_t , whether the student gets enough sleep;

 R_t , whether they have red eyes in the class;

 C_t , whether the student sleeps in class. It's obvious that S_t is a parent of S_{t+1} , R_t , C_t

The CPT are given as following:

$$P(s_0) = 0.7, P(s_{t+1}|s_t) = 0.8, P(s_{t+1}|\neg s_t) = 0.3,$$

 $P(r_t|s_t) = 0.2, P(r_t|\neg s_t) = 0.7,$

$$P(c_t|s_t) = 0.1, P(c_t|\neg s_t)$$

To reformulate as an HMM with a single observation node, simply combine the 2-valued variables "having red eyes" and "sleeping in class" into a single 4-valued variable. The Probability table are as following:

S_0	$P(S_0)$
S	0.7
$\neg s$	0.3

homework4 Name: 徐晓刚 Student ID: 3140102480 4/6

R_t	S_t	$P(R_t S_t)$	S_{t+1}	S_t	$P(S_{t+1} S_t)$	C_t	S_t	$P(C_t S_t)$
r	S	0.2	s_{t+1}	s_t	0.8	c	s	0.1
$\neg r$	S	0.8	$ eg s_{t+1} eg$	s_t	0.2	$\neg c$	s	0.9
r	$\neg s$	0.7	s_{t+1}	$\neg s_t$	0.3	c	$\neg s$	0.3
$\neg r$	$\neg s$	0.3	$ eg s_{t+1} eg$	$\neg s_t$	0.7	$\neg c$	$\neg s$	0.7

If we reformulate this model into HMM, we can set the observation as O_t

O_t	S_t	$P(O_t S_t)$
r,c	s	0.02
r, eg c	s	0.18
eg r, c	s	0.08
$\neg r, \neg c$	s	0.72
r, c	$\neg s$	0.21
$r, \neg c$	$\neg s$	0.49
$\neg r, c$	$\neg s$	0.09
$\neg r, \neg c$	$\neg s$	0.21

Problem4

a.

Y	P(Y)	X_1	$P(X_1 Y=-1)$	$P(X_1 Y=+1)$
-1	0.5	0	1/3	2/3
+1	0.5	1	2/3	1/3

X_2	$P(X_2 Y=-1)$	$P(X_2 Y=+1)$
0	2/3	2/3
1	1/3	1/3

b.

In this problem we assume k = 1

Y	P(Y)	X_1	$P(X_1 Y=-1)$	$P(X_1 Y=+1)$
-1	0.5	0	2/5	3/5
+1	0.5	1	3/5	2/5

X_2	$P(X_2 Y=-1)$	$P(X_2 Y=+1)$
0	3/5	3/5
1	2/5	2/5

c.

$$P(Y, X_1 = 0, X_2 = 0) = \left(P(Y = +1) imes P(X_1 = 0 | Y = +1) imes P(X_2 = 0 | Y = +1)
ight) = \left(0.18
ight) = \left(P(Y = -1) imes P(X_1 = 0 | Y = -1) imes P(X_2 = 0 | Y = -1)
ight) = \left(0.18
ight) = \left$$

d.

As
$$k \to \infty$$

$$P(Y, X_1 = 0, X_2 = 0) = \begin{pmatrix} 1/8 \\ 1/8 \end{pmatrix}$$

$$P(X_1 = 0, X_2 = 0) = \frac{2+k}{6+4k} = 1/4$$

$$P(Y|X_1 = 0, X_2 = 0) = < 0.5, 0.5 >$$

e.

The sets that would enable a linear binary classifier include (v),(viii)

Problem5

We first draw the four examples using axes x1, x2, denoting class by \pm -. Label them (p1, ..., p4).

we will set a transformation that will make these points linearly separable:

$$y_1 = x_1,$$

 $y_2 = (x_1 - x_2)^2$

The margin is 2. For the transformation above, the max-margin separator is at y2 = 2. We get the separating line :

$$x_1 - x_2 = \sqrt{2}$$
 or $x_1 - x_2 = -\sqrt{2}$

homework4 Name: 徐晓刚 Student ID: 3140102480 6/6

