Math 201B, Homework 2 (Integration, Differentiation, Density)

Problem1. Let $f: \mathbb{R} \to \mathbb{R}$ be increasing. Define the function $\nu: 2^{\mathbb{R}} \to [0, \infty]$ as follows:

1. For any open set $U = \bigcup_{i=1}^{\infty} (a_i, b_i)$ where (a_i, b_i) are disjoint, set

$$\nu(U) = \sum_{i=1}^{\infty} (f(b_i) - f(a_i)),$$

where

$$f(x+) = \lim_{y \to x+} f(y)$$
 and $f(x-) = \lim_{y \to x-} f(y)$ for $x \in \mathbb{R}$

(the two limits obviously exist as f increases).

2. For any $A \subset \mathbb{R}$ define

$$\nu(A) = \inf \{ \nu(U) : A \subset U, U - open \}.$$

Prove that ν is a measure on \mathbb{R} .

Problem2. Let m be Lebesgue measure on \mathbb{R} .

1. Construct an m-integrable function $f: \mathbb{R} \to [-\infty, \infty]$ for which there exists a set $A \subset \mathbb{R}$ such that m(A) > 0 and for any $x \in A$ the limit

$$\lim_{r\to 0} \frac{1}{m(B_r(x))} \int_{B_r(x)} f(y) dy$$

exists but is different from f(x).

2. Prove that in fact for any $\epsilon > 0$ one can reach $m(\mathbb{R} - A) < \epsilon$ in the first part.

Problem3. Let $\alpha \in (0,1)$ and let m be Lebesgue measure on \mathbb{R} . Construct a Borel set $E \subset [-1,1]$ such that

$$\lim_{r\to 0}\frac{m(E\cap [-r,r])}{2r}=\alpha.$$

Problem4. For a function $f:[a,b]\to\mathbb{R}$ define for every $x\in[a,b)$

$$D^+f(x) = \limsup_{h \to 0+} \frac{f(x+h) - f(x)}{h}.$$

Prove that if $f:[a,b]\to\mathbb{R}$ is continuous and $D^+f(x)\geq 0$ for all $x\in[a,b)$, then $f(b)\geq f(a)$.

Problem5. Let the function $f:[a,b] \to \mathbb{R}$ be differentiable at every point $x \in [a,b]$. Is f necessarily absolutely continuous on [a,b]?