PHY1202

Assignment 1

Due Date: 11:59 pm Tuesday, September 29th, 2020 Please submit your assignment:

1) To the Collection Box outside PHY GO Yeung G6702

2) Upload the softcopy of your assignment to Canvas

Lecture 01: Vectors

L01- (8 marks) What is the sum of the following four vectors in (a) unit-vector notation? For that sum, what are the (b) the magnitude, (c) the angle in degrees, and (d) the angle in radian.

 \vec{E} : 6.00 m at + 0.900 rad

 \vec{F} : 5.00 m at -75.0°

 \vec{G} : 4.00 m at +1.20 rad

 \vec{H} : 6.00 m at -210°

- L01- (6 marks) If \vec{B} is added to \vec{A} , the result is $6.0\hat{i} + 1.0\hat{j}$. If \vec{B} is subtracted from \vec{A} , the result is $-4.0\hat{i} + 7.0\hat{j}$. Find \vec{A} and \vec{B} .
- L01-03 (10 marks) Vector \vec{A} and \vec{B} lie in xy plane (with no z components), \vec{A} has magnitude 8.00 and angle 130°, \vec{B} has component $B_x = -7.72$ and $B_y = -9.20$.
 - a) What is $5\vec{A} \cdot \vec{B}$?
 - b) What is $4\vec{A} \times 3\vec{B}$ in unit-vector notation?
 - c) What is the angle between \vec{A} and $4\vec{A} \times 3\vec{B}$?
 - d) What is $\vec{A} + 3.00 \,\hat{k}$ in unit-vector notation and in magnitude-angle notation with spherical coordinates R, θ, ϕ .

Lecture 02: Electric Charge

- L02- (10 marks) Point charges of $q_1 = +6.0 \,\mu\text{C}$ and $q_2 = -4.0 \,\mu\text{C}$ are placed on an x axis, at $x = 8 \,\text{m}$ and $x = 16 \,\text{m}$, respectively. What charge q_3 must be placed at $x = 24 \,\text{m}$ so that any charge q placed at the origin would experience no electrostatic force?
- 102-02 (12 marks) Three identical conducting spheres as shown in the diagram form an equilateral triangle of side length $d=30.0\,cm$. The sphere radii are much smaller than d, so that they can be considered as point charges with $q_A=-2.00\,\mathrm{nC}$, $q_B=-4.00\,\mathrm{nC}$, and $q_C=+8.00\,\mathrm{nC}$. The following steps are then taken:
 - i. A and B are connected by a thin wire and then disconnected
 - ii. B is then grounded
 - iii. B and C are connected by a thin wire and then disconnected.
 - a) What was the electrostatic force between spheres *A* and *C* before step (i), (before A and B were connected by the thin wire)?
 - b) What are the new charges on A, B and C, after steps (i), (ii) and (iii)?
 - c) What is the magnitude of the electrostatic force between A and C after step (iii)?
 - d) What is the magnitude of the electrostatic force between A and B after step (iii)?

L02- (10 marks) We know that the negative <u>charge</u> on the electron and the positive charge on the proton are equal. Suppose, however, that these magnitudes differ from each other by 0.00010%. With what force would two copper coins, placed 1.0 m apart, repel each other? Assume that each coin contains 3×10^{22} copper atoms. (*Hint:* A neutral copper atom contains 29 protons and 29 electrons.) What do you conclude?

L03-01 (10 marks) Four particles form a square of edge length $a=5.00\,\mathrm{cm}$ and have charges $q_1=+10.0\,\mathrm{nC}$, $q_2=-20.0\,\mathrm{nC}$, $q_3=+20.0\,\mathrm{nC}$, and $q_4=-10.0\,\mathrm{nC}$. In unit-vector notation, what net electric field do the particles produce at the square's center?

L03- (12 marks) Calculate the direction and magnitude of the <u>electric field</u> at point *P* in the figure, due to the three point charges.

 $^{L03}_{03}$ (12 marks) The Figure below shows three circular arcs centered on the origin of a coordinate system. On each arc, the uniformly distributed charge is given in terms of $Q = 2.00 \ \mu\text{C}$. The radii are given in terms of $R = 100 \ \text{cm}$. What are a) magnitude and b) direction (relative to the positive x direction) of the net electric field at the origin due to the arcs?

