الوحدة التعليمية: الدارات الكهربائية في التيار المستمر الوضعية التعليمية: تحليل الدارات الكهربائية

نتحصل على دارة كهربائية بتركيب مولدات (مصدر الطاقة) و مستقبلات (مستهلكة للطاقة + اسلاك التوصيل) . يمكن التركيب ان يكون تفرعيا او تسلسليا او مختلطا

- تعريف العقدة: العقدة هي نقطة من دارة كهربائية تلتقي فيها مجموعة من النواقل.
- تعریف الفرع: هو جزء من دارة کهربائیة بین عقدتین یحتوی علی عنصر کهربائی و احد علی الأقل.
 - تعريف العروة: هي دارة كهربائية مغلقة تتكون من فرعين على الأقل.

نشاط: بين في الدارة الكهربائية التالية كل من العقد، الفروع والعروات وما عدد كل منها؟

العقد : عددها : 2 عقدة في A و B

العروات : عددها : 2 العروة ACDB و العروة عددها

1- قانون العقد (قانون كيرشوف الأول):

مجموع التيارات التي تصل إلى عقدة تساوي مجموع التيارات التي تخرج منها.

 $I_1 = 3A$, $I_2 = 5A$, $I_3 = 2A$: التيارات التالية التيارات التالية

- أحسب شدة التيار I₄ في العقدة A.
 - عين اتجاه التيار I₂ في العقدة B.

I1+I4=I2+I3 خساب شدة التيار I_4 في العقدة A:

I4=I2+I3-I1

I4=5+2-3=4A

2- قانون العروات (قانون كيرشوف الثاني):

 $\sum U_n = 0$. المجموع الجبري للتوترات في عروة يساوي الصفر

ملاحظة: يجب اختيار اتجاه موجب داخل العروة. التوترات التي تكون في نفس الاتجاه الموجب تأخذ نفس الإشارة الموجبة والأخرى المعاكسة تأخذ الإشارة السالبة

نشاط: ليكن التركيب التالي:

- حدد اتجاهات التيارات والتوترات.
 - أكتب معادلات العروات.

معادلات العروات:

العروة 1 : E-U_{R1}-U_{R2}=0

 U_{R2} - U_{R1} =0 : 2 العروة

العروة 3 : E-U_{R1}-U_{R3}=0

تمرین تطبیقی:

.E=10v, R_1 =10 Ω , R_2 =20 Ω , R_3 =30 Ω نعطى: في التركيب السابق نعطى:

- أحسب شدة التيار المار في كل مقاومة.
 - أحسب التوتر بين طرفى كل مقاومة.
- باستعمال برنامج التقليد تحقق من النتائج.

الحل: - حساب شدة التيار المار في كل مقاومة

 $E=Req.I_1$ ثم حساب المقاومة الكلية المكافئة Req ثم حساب I_1 بقانون العروة $I_1=I_2+I_3$ ثم حساب I_3 بقانون العروة $E-U_{R1}-U_{R2}=0$

- حساب التوترات: تطبيق قانون اوم على كل مقاومة U=RI

3- قاسم التوتر:

تستعمل هذه القاعدة في دارة تحتوي على مقاومات مربوطة على التسلسل (أي في دارة يسري فيها نفس التيار).

$$U_1 = E \frac{R_1}{R_1 + R_2}$$

$$U_2 = E \frac{R_2}{R_1 + R_2}$$

4- قاسم التيار:

تستعمل هذه القاعدة في تركيب يحتوي على مقاومات مربوطة على التوازي.

$$I_1 = I \frac{R_2}{R_1 + R_2}$$

$$I_2 = I \frac{R_1}{R_1 + R_2}$$

تمرین تطبیقی 02

باستعمال قانوني كيرشوف برهن على قاعدتي قاسم التوتر وقاسم التيار.

الحل: قاسم التوتر

$$E = \frac{U_{R1}}{R_{\rm l}}({\rm R_1} + R_2)$$

$$U_{R1} = E \frac{R_{\rm l}}{R_{\rm l} + R_2}$$

$$U_{R1} = E \frac{R_{\rm l}}{R_{\rm l} + R_2}$$

$$U_{R1} = R_{\rm l} I$$

$$I = U_{R1}/R_{\rm l}$$

$$E = U_{R1} + U_{R2}$$

$$E = R_{\rm l} . I + R_2 . I$$

$$E = I(R_{\rm l} + R_2)$$

قاسم التيار

$$\begin{split} R_2.I_1 &= R_3(I-I_1) \\ R_2.I_1 &= R_3.I - R_3.I_1 \\ I_1 &= I\frac{R_3}{R_2 + R_2} \end{split} \qquad \begin{aligned} & I &= I_1 + I_2 \\ & & \\ & I_2 &= I - I_1 \end{aligned} \qquad \begin{aligned} & U_{R2} &= U_{R3} \\ & I_2 &= I - I_1 \end{aligned}$$

5- نظرية تفنين (Théorème de Thévenin):

كل دارة كهربائية محصورة بين نقطتين A و B تكافئ ثنائي قطب يتكون من مقاومة مربوطة على التسلسل مع مولد للتوتر. (أنظر الشكل)

$${
m B}$$
 . ${
m B}$. (توتر تفنين) مأخوذ في الفراغ بين ${
m A}$ و ${
m B}$. ${
m R}_{
m th}$

$R_{Th} \ U_{Th} \ \underline{U_{Th} \ U_{Th}} \ \underline{U_{Th} \ U_{Th}}$

عزل الحمولة بين المرابط A و B

 (U_{Th}) Bو A حساب التوتر الموجود بين المرابط

رسم تخطيطي اخر لإزالة مصادر التوتر بواسطة عملية التقصير

حساب المقاومة التي تنظر اليها بين المرابط A و B و B

وضع مولد تيفنين المكافئ وإعادة تركيب الحمولة

تمرين تطبيقي: 03

نعطي في التركيب التالي:

$$\cdot R_1 = R_2 = R_3 = 1 \text{K}\Omega$$
, $R = 50 \text{K}\Omega$, $E = 12 \text{v}$

- أحسب نموذج تفنين المكافئ $(\mathrm{E_{th}/R_{th}})$.
 - أحسب التوتر بين طرفى المقاومة R.
 - أحسب التيار المار في المقاومة R.

عزل الحمولة E_{Th} حساب

$$U_{R3} = 0 \Longleftarrow R_3$$
 لا يوجد تيار يمر في

$$Eth=U_{AB}=\frac{R2}{R1+R2}E=6V$$

$$R_{AB} = R1//R2 + R3 = RTh = 1.5k$$

وضع مولد تيفنين المكافئ وإعادة تركيب الحمولة

- حساب التوتر بين طرفي المقاومة R:

$$U_{AB} = \frac{R}{R + R_{Th}} E_{Th} = 5.8V$$

- حساب التيار I المار عبر المقاومة I : $U_{AB}=R.I$ تطبيق قانون اوم

تمرين تطبيقي 04 (واجب منزلي):

ليكن التركيب التالي
$$E1=9v$$
 $E2=6v$ $R1=20\Omega$ $R2=10\Omega$ $R3=15\Omega$

- احسب عناصر مولد تفنين بين النقطتين A و Uth, Rth)

الحل:

6- نظریة نورتن (Théorème de Norton):

كل دارة كهربائية محصورة بين نقطتين A و B تكافئ ثنائي قطب يتكون من مقاومة مربوطة على النفرع مع مولد للنيار. (أنظر الشكل)

 I_N : (تيار نورتن) التيار المار عند الربط بين A و B . R_N : (مقاومة نورتن) المقاومة المكافئة بين A و B .

$R_N \, I_N$ طريقة حساب عناصر المولد نورطن المكافئ

عزل الحمولة بين المرابط A و B

 I_N حساب تيار القصر بين A و B و الذي يمثل

رسم تخطيطي اخر لإزالة مصادر التوتر بواسطة عملية التقصير

 (R_N) B و A حساب المقاومة التي تنظر اليها بين المرابط

وضع مولد نورطن المكافئ وإعادة تركيب الحمولة

تمرین تطبیقی 05:

نعطي في التركيب التالي:

 $R_1 = R_2 = R_3 = R_4 = 1K\Omega$, E=9v

أحسب التيار المار في المقاومة R_4 باستعمال نظرية نورتن.

الحل:

تمرين تطبيقي 06 : (واجب منزلي)

ليكن التركيب التالي

E1=9v E2=6v R1= 2Ω

 $R2 = 1\Omega$ $R3 = 10\Omega$

- احسب التيار الذي يعبر المقاومة R3 باستعمال نظرية نورتن

<u>الحل</u> :

7- التحويل من نموذج نورتن إلى نموذج تفنين والعكس:

<u>تمرين تطبيقي 07 :</u> ليكن التركيب التالي R=10Ω

وجد مولد تيفنين المكافئ بين المرابط A و B بطريقة التقابل بين مولد نورتون ومولد تيفنين و العكس ثم استنتج قيمة التيار المار في المقاومة B

الحل:

