Departamento de Sistemas e Computação – FURB Curso de Ciência da Computação Disciplina de Teoria dos Grafos

Árvore geradora

Bibliografia

Márcia A. Rabuske. **Introdução à Teoria dos Grafos**. Editora da UFSC. 1992

Thomas Cormen et al. Algoritmos: teoria e prática. Ed. Campus. 2004.

Joan M. Aldous, Robin J. Wilson. **Graphs and Applications**: as introductory approach. Springer. 2001

Definições

Uma árvore é:

- um grafo conexo com n vértices e n-1 arestas
- um grafo conexo sem ciclos
- um grafo no qual cada par de vértices é ligado por um e somente um caminho simples
- um grafo conexo onde todas as arestas são "pontes"

Árvores - exemplos

Definições

- Uma floresta é um conjunto de árvores;
- Uma árvore dirigida é um digrafo acíclico onde o grau de entrada de cada vértice é 1, exceto o da raiz, que possui grau de entrada zero;
- a raiz de uma árvore dirigida T é um vértice r tal que qualquer outro vértice de T pode ser alcançado a partir de r.

Exemplos

Árvore de decisão

Codificação de Hoffman

Árvore geradora (spanning tree)

Definição:

Seja G um grafo conexo. Então uma árvore geradora em G é um subgrafo de G que inclui todos os seus vértices e também é uma árvore.

Teorema de Cayley

O número de árvores rotuladas com n vértices é igual a nⁿ⁻²

Árvore geradora

Método construtivo:

- selecione uma aresta de cada vez, de forma que não sejam criados ciclos;
- continue este procedimento até que todos os vértices sejam incluídos

Método de redução:

- escolha qualquer ciclo e remova uma de suas arestas
- repita o procedimento até que não reste mais nenhum ciclo.

Exercícios

1. Use cada um dos métodos anteriores para construir uma árvore geradora num grafo completo K₅

 O grafo ao lado possui 125 árvores geradoras. Encontre tantas quantas você conseguir.

 Encontre três árvores geradoras no Grafo de Petersen.

Problema do conector mínimo (minimum spanning tree)

Suponha que precisamos projetar um sistema de canais de irrigação interconectando determinado número de localidades. O custo de construção de cada canal é conhecido. Por alguns motivos, alguns pares de localidades não podem ser conectados diretamente. Como podemos projetar o sistema que interconecte todas as localidades com custo total mínimo?

Problema do conector mínimo (minimum spanning tree)

Definição:

Seja T uma árvore geradora do grafo valorado G com custo total mínimo. Então T é uma árvore geradora de custo mínimo, ou um conector mínimo em G.

- Métodos de solução:
 - -Algoritmo de Kruskal
 - -Algoritmo de Prim

Árvore geradora mínima

Algoritmo de Prim:

- gera uma árvore única
- ao longo do algoritmo, o conjunto X sempre é uma árvore

Algoritmo de Kruskal:

- gera uma floresta, antes de gerar a AGM
- existe garantia de ser apenas uma árvore apenas depois da última iteração

Ideia

 Para construir uma árvore geradora de custo mínimo em um grafo valorado conexo G, escolha sucessivamente arestas de G com custo mínimo de tal forma que não se formem ciclos, até que uma árvore geradora seja encontrada

- O algoritmo de Kruskal utiliza estrutura auxiliar de conjuntos (SET) com as seguintes operações:
- MAKE-SET(v): cria um conjunto contendo o vértice v, e atribui um identificador único a este conjunto
- FIND-SET(v): retorna o identificador do conjunto que contém o vértice v
- UNION(u,v): une os conjuntos que contém os vértices u e v, e atribui um identificador ao conjunto resultante

Exercícios

KRUSKAL(G, w) 01. A $\leftarrow \emptyset$

- 02. para cada vértice v ∈ V|G| faça
- 03. MAKE-SET (V);
- 04. ordene as arestas de E em ordem crescente de custo w
- 05. para cada aresta(u,v) \in E, em ordem crescente de custo faça
- 06. se FIND-SET(u) ≠ FIND-SET(v) então
- 07. $A \leftarrow A \cup [u, v]$
- 08. UNION(u, v)
- 09. retorna A

Exemplo:

Subárvores

$$c(F) = 15$$

e	c(e)
(C,F)	2
(E,F)	2
(A,D)	3
(CE)	3
(A,B)	4
(A,E)	4
(B,F)	5
(D,F)	7
(B,C)	8
(B,E)	9
(C,D)	9

Lista L

Subárvores

```
{ A, B, C, D, E, F, G, J, L }
{ H, I }
```


Lista L

Para construir uma árvore geradora de custo mínimo T em um grafo valorado conexo G, proceda passo a passo da seguinte forma:

- coloque um vértice arbitrário em T;
- sucessivamente adicione arestas com custo mínimo juntando um vértice em T com outro vértice fora de T, até obter a árvore geradora.

Elementos do algoritmo de Prim:

- r: vértice inicial (root, raiz)
- Q: fila de prioridades
- chave(v): custo mínimo (atual) para conectar o vértice v à árvore
- Π(v): vértice predecessor de v na árvore. Indica em qual vértice ele deve se conectar à árvore em custo atual chave(v)

```
PRIM(G, w)

01. Q ← V[G]

02. para cada vértice u ∈ Q faça

03. chave[u] ← ∞;

04. chave[r] ← 0;

05. Π[r] ← NIL

06. enquanto Q ≠ Ø faça

07. u ← REMOVE-MINIMO(Q)

08. para cada v ∈ Adj[u] faça

09. se v ∈ Q E w(u, v) < chave[v] então

10. Π[v] ← u

11. chave[v] ← w(u, v)
```

```
20
                                                                  70
                                                                                300
                                             10
PRIM(G, w)
                                                                        55
                                                45
01. Q \leftarrow V[G]
02. para cada vértice u ∈ Q faça
03. chave[u] \leftarrow \infty;
                                            55
04. chave[r] \leftarrow 0;
05. \Pi[r] \leftarrow NIL
06. enquanto Q \neq \emptyset faça
07. u \leftarrow REMOVE-MINIMO(Q)
08. para cada v ∈ Adj[u] faça
09.
               se v \in Q \to w(u,v) < chave[v] então
10.
                   \Pi[v] \leftarrow u
11.
                   chave[v] \leftarrow w(u,v)
```

Exercício

