Całka Riemanna

Niech dana będzie funkcja ograniczona $f\colon [a,b] \to \mathbb{R}$ Sumą częściową (Riemanna) nazywa się liczbę

$$R_{f,P(q_1,\dots,q_n)} = \sum_{i=1}^n f(q_i) \cdot \Delta p_i$$

Funkcję f nazywa się całkowalną w sensie Riemanna lub krótko R-całkowalną, jeśli dla dowolnego ciągu normalnego (P^k) podziałów przedziału [a,b] istnieje (niezależna od wyboru punktów pośrednich) granica[b]

$$R_f = \lim_{k \to \infty} R_{f, P^k \left(q_1^k, \dots, q_{n_k}^k\right)}$$

nazywana wtedy całką Riemanna tej funkcji. Równoważnie: jeżeli istnieje taka liczba R_f , że dla dowolnej liczby rzeczywistej $\varepsilon>0$ istnieje taka liczba rzeczywista $\delta>0$ że dla dowolnego podziału $P(q_1,\ldots,q_n)$ o średnicy diam $P(q_1,\ldots,q_n)<\delta$; bądź też w języku rozdrobnień: że dla dowolnej liczby rzeczywistej $\varepsilon>0$ istnieje taki podział $S(t_1,\ldots,t_m)$

Przykład sum Riemanna przy wyborze punktu pośredniego w prawym końcu podprzedziału (niebieski), w wartości minimalnej (czerwony) i maksymalnej (zielony) funkcji w podprzedziałe i lewego końca podprzedziału (żółty). Wartość wszystkich czterech przypadków zbliża się do 3,76 przy powiększaniu liczby podprzedziałów od 2 do 10 (w domyśle, również nieograniczenie).

przedziału[a,b], że dla każdego podziału $P(q_1,\ldots,q_n)$ rozdrabniającego $S(t_1,\ldots,t_m)$ zachodzi

$$\left| R_{f,P(q_1,\ldots,q_n)} - R_f \right| < \varepsilon.$$

Funkcję f nazywa się wtedy całkowalną w sensie Riemanna (R-całkowalną), a liczbę R_f jej całką Riemanna.