

CMPE 258, Deep Learning

Convolutional layer

March 22, 2018

DMH 149A

Taehee Jeong

Ph.D., Data Scientist

Mid-term Exam_2

12th April to 15th April

Assignment_5

Due to 8th April

Group Project Proposal

Due to 9th April

- Project title
- Members
- Preferred presentation day: 4/12 or 4/24

Today's lesson

- Convolution calculation
- Convolution on RGB images
- Multiple filters
- Size of matrix in convolution layers
- Pooling
- CNN architectures

Convolution

Input matrix

X ₁	X_2	X_3	X_4
X ₅	X_6	X ₇	X ₈
X ₉	X ₁₀	X ₁₁	X ₁₂
X ₁₃	X ₁₄	X ₁₅	X ₁₆

Size: 4 x 4

filter

W_1	W_2	W ₃
W ₄	W_5	W_6
W ₇	W ₈	W_9

Size: 3 x 3

Output matrix

	Z_1	Z ₂
=	Z_3	Z_4

convolution

Size: 2 x 2

Convolution

Input matrix

X ₁	X_2	X ₃	X_4
X ₅	X_6	X ₇	X ₈
X ₉	X ₁₀	X ₁₁	X ₁₂
X ₁₃	X ₁₄	X ₁₅	X ₁₆

Size: 4 x 4

filter

W_1	W ₂
W_3	W_4

Size: 2 x 2

Output matrix

=

convolution

Size: 3 x 3

Z_1	Z_2	Z ₃
Z_4	Z ₅	Z_6
Z ₇	Z ₈	Z ₉

Convolution calculation

Kernel Matrix

105	102	100	97	96
103	99	103	101	102
101	98	104	102	100
99	101	106	104	99
104	104	104	100	98

0	-1	0
-1	5	-1
0	-1	0

Image Matrix

$$105 * 0 + 102 * -1 + 100 * 0$$

+ $103 * -1 + 99 * 5 + 103 * -1$
+ $101 * 0 + 98 * -1 + 104 * 0 = 89$

Output Matrix

<image Convolution>
Machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html

Convolution calculation

Kernel Matrix

96	97	100	102	105
102	101	103	99	103
100	102	104	98	101
99	104	106	101	99
98	100	104	104	104

0	-1	0
-1	5	-1
0	-1	0

Image Matrix

$$102 * 0 + 100 * -1 + 97 * 0$$

+99 * -1 + 103 * 5 + 101 * -1
+98 * 0 + 104 * -1 + 102 * 0 = 111

Output Matrix

<image Convolution>
Machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html

Convolution calculation:preactivation

X ₁	X ₂	X ₃	X_4
X ₅	X_6	X ₇	X ₈
X ₉	X ₁₀	X ₁₁	X ₁₂
X ₁₃	X ₁₄	X ₁₅	X ₁₆

$$Z_1 = X_1 \times W_1 + X_2 \times W_2 + X_3 \times W_3$$

 $+X_5 \times W_4 + X_6 \times W_5 + X_7 \times W_6$
 $+X_9 \times W_7 + X_{10} \times W_8 + X_{11} \times W_9$

$$Z_2 = X_2 \times W_1 + X_3 \times W_2 + X_4 \times W_3$$

 $+X_6 \times W_4 + X_7 \times W_5 + X_8 \times W_6$
 $+X_{10} \times W_7 + X_{11} \times W_8 + X_{12} \times W_9$

$$Z_3 = X_5 \times W_4 + X_6 \times W_5 + X_7 \times W_6$$

 $+X_9 \times W_7 + X_{10} \times W_8 + X_{11} \times W_9$
 $+X_{13} \times W_{14} + X_{10} \times W_8 + X_{15} \times W_9$

$$Z_4 = X_6 \times W_4 + X_7 \times W_5 + X_8 \times W_6$$

 $+X_{10} \times W_7 + X_{11} \times W_8 + X_{12} \times W_9$
 $+X_{14} \times W_7 + X_{15} \times W_8 + X_{16} \times W_9$

Convolution: activation

Input matrix

X ₁	X_2	X ₃	X_4
X ₅	X_6	X ₇	X ₈
X ₉	X ₁₀	X ₁₁	X ₁₂
X ₁₃	X ₁₄	X ₁₅	X ₁₆

convolution *

filter

W_1	W_2	W ₃
W_4	W_5	W_6
W_7	W_8	W_9

Size: 3 x 3

Size: 4 x 4

g: activation function

b: bias

$g(Z_1 + b)$	$g(Z_2 + b)$
$g(Z_3 + b)$	$g(Z_4 + b)$

Output matrix

a_1	a ₂
a_3	a_4

Size: 2 x 2

Padding

0	0	0	0	0	0
0	Х ₁	χ_2	χ_3	χ_4	0
0	Х ₅	χ_6	X ₇	Χ ₈	0
0	Х ₉	X ₁₀	X ₁₁	X ₁₂	0
0	X ₁₃	X ₁₄	X ₁₅	X ₁₆	0
0	0	0	0	0	0

W_1	W ₂	W_3
W ₄	W_5	W_6
W ₇	W ₈	W_9

*

Convolution calculation on borders

0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	7
0	101	98	104	102	100	
0	99	101	106	104	99	7
0	104	104	104	100	98	
				-		

Kernel	Matrix

0	-1	0
-1	5	-1
0	-1	0

Image Matrix

$$0 * 0 + 105 * -1 + 102 * 0$$

+0 * -1 + 103 * 5 + 99 * -1
+0 * 0 + 101 * -1 + 98 * 0 = 210

Output Matrix

<image Convolution>
Machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html

Convolution calculation on borders

0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	P
0	101	98	104	102	100	h
0	99	101	106	104	99	7
0	104	104	104	100	98	

Kernei Matrix				
0	-1	0		
-1	5	-1		
0	-1	0		

Kernel Matrix

320				
210	89	111		
		9		

Image Matrix

$$0*0+0*-1+0*0$$

$$+0*-1+105*5+102*-1$$

$$+0*0+103*-1+99*0=320$$

Output Matrix

<image Convolution>
Machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html

Padding: 1 zero padding

0	0	0	0	0	0
0	Х ₁	χ_2	Х ₃	χ_4	0
0	χ_5	Х ₆	X ₇	Х ₈	0
0	X ₉	X ₁₀	X ₁₁	X ₁₂	0
0	X ₁₃	X ₁₄	X ₁₅	X ₁₆	0
0	0	0	0	0	0

$$Z_1 = 0 \times W_1 + 0 \times W_2 + 0 \times W_3 + 0 \times W_4 + X_1 \times W_5 + X_2 \times W_6 + 0 \times W_7 + X_5 \times W_8 + X_6 \times W_9$$

$$Z_4 = 0 \times W_1 + 0 \times W_2 + 0 \times W_3 + X_3 \times W_4 + X_4 \times W_5 + 0 \times W_6 + X_7 \times W_7 + X_8 \times W_8 + 0 \times W_9$$

Padding: 2 zero padding

<u> </u>								
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	Х ₁	χ_2	χ_3	χ_4	0	0
	0	0	X_5	X ₆	X ₇	X ₈	0	0
	0	0	Х ₉	X ₁₀	X ₁₁	X ₁₂	0	0
	0	0	X ₁₃	X ₁₄	X ₁₅	X ₁₆	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	<u> </u>							

Padding

To detect the information of edge or border

To prevent shrinking(compression) of size of next layer

Valid convolution: without padding

$$(n \times n) * (f \times f) \rightarrow (n-f+1) \times (n-f+1)$$

 $(6 \times 6) * (3x3) \rightarrow (4 \times 4)$

Same convolution: with zero padding, output size is the same as the input size

$$(n \times n) * (f \times f) \rightarrow (n+2p-f+1) \times (n+2p-f+1)$$

 $(6 \times 6) * (3x3) \rightarrow (6 \times 6)$

Stride

Input matrix

X_1	X ₂	X ₃	X_4	X ₅
X ₆	X ₇	X ₈	X 9	X ₁₀
X ₁₁	X ₁₂	X ₁₃	X ₁₄	X ₁₅
X ₁₆	X ₁₇	X ₁₈	X ₁₉	X ₂₀
X ₂₁	X ₂₂	X ₂₃	X ₂₄	X ₂₅

filter

*

Stride 2

W_1	W_2
W_3	W_4

Output matrix

Size: 2 x 2

Convolution calculation with stride 1

0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	لم
0	101	98	104	102	100	
0	99	101	106	104	99	7
0	104	104	104	100	98	
				-		7

Remenvativ					
0	-1	0			
-1	5	-1			
0	-1	0			

Kernel Matrix

320	206	198	188	
210	89	111		

Image Matrix

$$102 * \frac{0}{1} + 100 * \frac{-1}{1} + 97 * \frac{0}{1} + 99 * \frac{-1}{1} + 103 * \frac{5}{1} + 101 * \frac{-1}{1} + 102 * \frac{0}{1} = 111$$

Output Matrix

<understanding convolutional layers in convolutional neural networks>
Machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.html

Convolution calculation with stride 2

0	-1	0			
-1	5	-1			
0	-1	0			

Kernel Matrix

Image Matrix

$$0*0+0*-1+0*0$$

+97*-1+96*5+99*-1
+101*0+102*-1+101*0=182

Output Matrix

<understanding convolutional layers in convolutional neural networks>
Machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.html

Stride

To compress the size of next layer

Summary of convolutions

- n x n image
- f x f filter
- padding p
- stride s

Output size:

$$\left[\frac{n+2p-f}{s}+1\right]\times\left[\frac{n+2p-f}{s}+1\right]$$

f is usually odd number in computer vision.

Convolutions on RGB images

<understanding convolutional layers in convolutional neural networks>
Machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.html

Multiple filters (channels)

<deep learning, Andrew Ng>

Multiple filters (channels)

<deep learning, Andrew Ng>

Summary of convolution

If layer l is a convolution layer:

f[1] = filter size

p^[l] = padding

 $s^{[l]} = stride$

Weights: $f^{[l]} \times f^{[l]} \times n_c^{[l-1]} \times n_c^{[l]}$

bias: $1 \times 1 \times 1 \times n_c^{[l]}$

Input size:
$$n_H^{[l-1]} \times n_W^{[l-1]} \times n_c^{[l-1]}$$

output size:
$$n_H^{[l]} \times n_W^{[l]} \times n_c^{[l]}$$

$$n_H^{[l]} = \frac{n_H^{[l-1]} + 2p^{[l]} - f^{[l]}}{s^{[l]}} + 1$$

$$n_W^{[l]} = \frac{n_W^{[l-1]} + 2p^{[l]} - f^{[l]}}{S^{[l]}} + 1$$

How do convolutions work?

SJSU SAN JOSÉ STATE UNIVERSITY

Types of layer in a convolutional network

- Convolution (CONV)
- Pooling (POOL)
- Fully connected (FC)

Pooling layers

No parameters to learn

- To subsample (shrink) the input image in order to reduce the computational load, the memory usage, the number of parameters (reduce overfitting)
- Max Pooling: more commonly use
- Average Pooling

2	3	1	9
4	7	3	5
8	2	2	2
1	3	4	5

<Deep Learning, Andrew Ng>

1	3	2	1
2	9	1	1
1	4	2	3
5	6	1	2

(4 x 4)

s=2

What will be the value?

1	3	2	1
2	9	1	1
1	4	2	3
5	6	1	2

Hyperparameters f=2 s=2 9 2 6 3 (2 x 2)

 (4×4)

1	3	2	1	3
2	9	1	1	5
1	3	2	3	2
8	3	5	1	0
5	6	1	2	9

(5 x 5)

1	3	2	1	3
2	9	1	1	5
1	3	2	3	2
8	3	5	1	0
5	6	1	2	9

(5 x 5)

What will be the value?

1	3	2	1	3
2	9	1	1	5
1	3	2	3	2
8	3	5	1	0
5	6	1	2	9

 (5×5)

9	9	5
9	9	5
8	6	9

 (3×3)

Average Pooling

2	3	1	9
4	7	3	5
8	2	2	2
1	3	4	5

<Deep Learning, Andrew Ng>

Average Pooling

1	3	2	1
2	9	1	1
1	4	2	3
5	6	1	2

Hyperparameters f=2 s=2 What will be the value?

 (4×4)

Average Pooling

1	3	2	1
2	9	1	1
1	4	2	3
5	6	1	2

Hyperparameters

s=2

3.75 1.25 4 2

 (2×2)

Summary of Pooling

- Hyperparameters
 - f: filter size
 - s:stride
 - p : padding (usually p=0)
- Max or average pooling
- No parameters to learn

Input size: $n_H^{[l-1]} \times n_W^{[l-1]} \times n_c^{[l-1]}$

output size: $n_H^{[l]} \times n_W^{[l]} \times n_c^{[l]}$

$$n_H^{[l]} = \frac{n_H^{[l-1]} - f^{[l]}}{s^{[l]}} + 1$$

$$n_W^{[l]} = \frac{n_W^{[l-1]} - f^{[l]}}{S^{[l]}} + 1$$

Convolution and Pooling

<Deep Learning, Andrew Ng>

CNN Architectures

Typical CNN architecture

<Deep Learning, Andrew Ng>

LeNet-5

<Deep Learning, Andrew Ng>

LeCun et al., 1998. Gradient-based learning applied to document recognition

LeNet-5

created by Yann LeCun in 1998 and widely used for handwritten digit recognition (MNIST)

Layer	Туре	Maps	Size	Kernel size	Stride	Activation
Out	Fully Connected	-	10	-	-	RBF
F6	Fully Connected	-	84	_	-	tanh
C5	Convolution	120	1×1	5×5	1	tanh
S4	Avg Pooling	16	5×5	2×2	2	tanh
C 3	Convolution	16	10×10	5×5	1	tanh
S2	Avg Pooling	6	14×14	2×2	2	tanh
C1	Convolution	6	28×28	5×5	1	tanh
In	Input	1	32×32	-	-	_

<Hands-on ML, Aurelien Geron>

AlexNet

<Deep Learning, Andrew Ng>

AlexNet

won the 2012 ImageNet ILSVRC challenge with 83% accuracy.

Layer	Туре	Maps	Size	Kernel size	Stride	Padding	Activation
Out	Fully Connected	-	1,000	-	-	-	Softmax
F9	Fully Connected	_	4,096	_	-	_	ReLU
F8	Fully Connected	-	4,096	_	-	_	ReLU
C7	Convolution	256	13×13	3×3	1	SAME	ReLU
C 6	Convolution	384	13×13	3×3	1	SAME	ReLU
C 5	Convolution	384	13×13	3×3	1	SAME	ReLU
S4	Max Pooling	256	13×13	3×3	2	VALID	_
C 3	Convolution	256	27×27	5 × 5	1	SAME	ReLU
S2	Max Pooling	96	27×27	3×3	2	VALID	-
C1	Convolution	96	55 × 55	11 × 11	4	SAME	ReLU
In	Input	3 (RGB)	224×224	_	_	-	_

<Hands-on ML, Aurelien Geron>

[&]quot;ImageNet Classification with Deep Convolutional Neural Networks," A. Krizhevsky et al. (2012)

VGG-16

Simonyan & Zisserman 2015. Very deep convolutional networks for large-scale image recognition

ResNet (residual network)

won the ILSVRC 2015 challenge with 96.4% accuracy.

He et al., 2015. Deep residual networks for image recognition

GoogLeNet

won the ILSVRC 2014 challenge with 93% accuracy.

<Hands-on ML, Aurelien Geron>

"Going Deeper with Convolutions," C. Szegedy et al. (2015)

Summary

- Convolution calculation
- Convolution on RGB images
- Multiple filters
- Size of matrix in convolution layers
- Pooling
- CNN architectures

