Process for the electropemical graining of aluminium for printing plates

Patent number:

EP0292801

Publication date:

1988-11-30

Inventor:

PLIEFKE ENGELBERT DR DIPL-CHEM

Applicant:

HOECHST AG (DE)

Classification:

- international:

B41N1/08; C25F3/04

- european:

B41N3/03E; C25F3/04

Application number:

EP19880107659 19880513

Priority number(s):

DE19873717654 19870526

Also published as:

到阿阿阿

US4840713 (A1) JP63306094 (A) EP0292801 (A3)

DE3717654 (A1) EP0292801 (B1)

Cited documents:

GB2100751 GB2028724

Abstract not available for EP0292801

Abstract of corresponding document: US4840713

A process is disclosed for the electrochemical roughening of aluminum for use in printing plate supports, which is carried out by means of an electrolyte containing sulfate ions and aluminum chloride; preference is given to sulfuric acid and aluminum chloride. Printing plate supports roughened by the process according to the present invention show a particularly uniform, pit-free and overall roughening structure.

Data supplied from the esp@cenet database - Worldwide

0 292 801 A2

12

EUROPÄISCHE PATENTANMELDUNG

(2) Anmeldenummer: 88107659.0

(5) Int. Cl.4: C25F 3/04 , B41N 1/08

- 2 Anmeldetag: 13.05.88
- 3 Priorität: 26.05.87 DE 3717654
- Veröffentlichungstag der Anmeldung: 30.11.88 Patentblatt 88/48
- Benannte Vertragsstaaten:
 DE FR GB IT NL

- 7) Anmelder: HOECHST AKTIENGESELLSCHAFT Postfach 80 03 20 D-6230 Frankfurt am Main 80(DE)
- Erfinder: Pliefke, Engelbert, Dr.,Dipl.-Chem.
 Drususstrasse 52
 D-6200 Wiesbaden(DE)
- (9) Verfahren zur elektrochemischen Aufrauhung von Aluminium für Druckplattenträger.
- Die Erfindung betrifft ein Verfahren zur elektrochemischen Aufrauhung von Aluminium für Druckplattenträger, wobei man mit einem Sulfationen und Aluminiumchlorid enthaltenden Elektrolyten arbeitet; bevorzugt werden Schwefelsäure und Aluminiumchlorid.

Die mittels des Verfahrens aufgerauhten Druckplattenträger besitzen eine besonders gleichmäßige, narbenfreie und flächendeckende Aufrauhstruktur.

EP 0 292 801 A2

Verfahren zur elektrochemischen Aufrauhung von Aluminium für Druckplattenträger

Die Erfindung betrifft ein Verfahren zur elektrochemischen Aufrauhung von Aluminium für Druckplattenträger, das mit Wechselstrom bevorzugt in einem Schwefelsäure, Chlorid- und Aluminiumionen enthaltenden Elektrolyten durchgeführt wird.

Druckplatten (mit diesem Begriff sind im Rahmen der vorliegenden Erfindung Offsetdruckplatten gemeint) bestehen in der Regel aus einem Träger und mindestens einer auf diesem angeordneten strahlungs(licht)empfindlichen Reproduktionsschicht, wobei diese Schicht entweder vom Verbraucher (bei nicht-vorbeschichteten Platten) oder vom industriellen Hersteller (bei vorbeschichteten Platten) auf den Schichtträger aufgebracht wird.

Als Schichtträgermaterial hat sich auf dem Druckplattengebiet Aluminium oder eine seiner Legierungen durchgesetzt. Diese Schichtträger können prinzipiell auch ohne eine modifizierende Vorbehandlung eingesetzt werden, sie werden im allgemeinen jedoch in bzw. auf der Oberfläche modifiziert, beispielsweise durch eine mechanische, chemische und/oder elektrochemische Aufrauhung (im einschlägigen Schrifttum gelegentlich auch Körnung oder Ätzung genannt), eine chemische oder elektrochemische Oxidation und/oder eine Behandlung mit Hydrophilierungsmitteln.

In den modernen kontinuierlich arbeitenden Hochgeschwindigkeitsanlagen der Hersteller von Druckplattenträgern und/oder vorbeschichteten Druckplatten wird oftmals eine Kombination der genannten Modifizierungsarten angewandt, insbesondere eine Kombination aus elektrochemischer Aufrauhung und anodischer Oxidation, gegebenenfalls mit einer nachfolgenden Hydrophilierungsstufe.

Das Aufrauhen wird beispielsweise in wäßrigen Säuren wie wäßrigen HCl- oder HNO₃-Lösungen oder in wäßrigen Salzlösungen wie wäßrigen NaCl- oder Al(NO₃)₃-Lösungen unter Einsatz von Wechselstrom durchgeführt. Die so erzielbaren Rauhtiefen (angegeben beispielsweise als mittlere Rauhtiefen R₂) der aufgerauhten Oberfläche liegen im Bereich von etwa 1 bis 15 µm, insbesondere im Bereich von 2 bis 8 µm. Die Rauhtiefe wird nach DIN 4768 (in der Fassung vom Oktober 1970) ermittelt. Als Rauhtiefe R₂ wird dann das arithmetische Mittel aus den Einzelrauhtiefen fünf aneinandergrenzender Einzelmeßstrecken bezeichnet.

Die Aufrauhung wird u. a. deshalb durchgeführt, um die Haftung der Reproduktionsschicht auf dem Schichtträger und die Wasserführung der aus der Druckplatte durch Bestrahlen (Belichten) und Entwickeln entstehenden Druckform zu verbessern. Durch das Bestrahlen und Entwickeln (bzw. Entschichten bei elektrophotographisch arbeitenden Reproduktionsschichten) werden auf der Druckplatte die beim späteren Drucken farbführenden Bildstellen und die wasserführenden Nichtbildstellen (im allgemeinen die freigelegte Trägeroberfläche) erzeugt, wodurch die eigentliche Druckform entsteht. Auf die spätere Topographie der aufzurauhenden Aluminiumoberfläche haben sehr verschiedene Parameter einen Einfluß. Beispielsweise geben die folgenden Literaturstellen hierüber Auskunft:

In dem Aufsatz "The Alternating Current Etching of Aluminum Lithographic Sheet" von A. J. Dowell in Transactions of the Institute of Metal Finishing, 1979, Vol. 57, S. 138 bis 144 werden grundsätzliche Ausführungen zur Aufrauhung von Aluminium in wäßrigen Salzsäurelösungen gemacht, wobei die folgenden Verfahrensparameter variiert und die entsprechenden Auswirkungen untersucht wurden. Die Elektrolytzusammensetzung wird bei mehrmaligem Gebrauch des Elektrolyten beispielsweise hinsichtlich der H -(H₃O)-lonenkonzentration (meßbar über den pH-Wert) und der Al^{3 +}-lonenkonzentration verändert, wobei Auswirkungen auf die Oberflächentopographie zu beobachten sind. Die Temperaturvariation zwischen 16° C und 90°C zeigt einen verändernden Einfluß erst ab etwa 50°C, der sich beispielsweise durch den starken Rückgang der Schichtbildung auf der Oberfläche äußert. Die Aufrauhdauer-Veränderung zwischen 2 und 25 min führt bei zunehmender Einwirkzeit auch zu einer zunehmenden Metallauflösung. Die Variation der Stromdichte zwischen 2 und 8 A/dm² ergibt mit steigender Stromdichte auch höhere Rauhigkeitswerte. Wenn die Säurekonzentration im Bereich 0,17 bis 3,3 % an HCl liegt, dann treten zwischen 0,5 und 2 % an HCl nur unwesentliche Veränderungen in der Lochstruktur auf, unter 0,5 % an HCl findet nur ein lokaler Angriff an der Ober fläche und bei den hohen Werten ein unregelmäßiges Auflösen von Aluminium statt. Wird statt Wechselstrom ein Gleichstrom verwendet, zeigt sich, daß offensichtlich beide Halbwellenarten für eine gleichmäßige Aufrauhung erforderlich sind. Schon in diesem Aufsatz wird darauf hingewiesen, daß die Addition von Sulfationen zunehmend zu unerwünschten, groben, nicht homogenen Aufrauhstrukturen führt, die für lithographische Zwecke nicht geeignet sind.

Die Verwendung von Salzsäure zum Aufrauhen von Substraten aus Aluminium ist demnach grundsätzlich als bekannt vorauszusetzen. Es kann eine gleichmäßige Körnung erhalten werden, die für lithographische Platten geeignet ist und innerhalb eines brauchbaren Rauhigkeitsbereiches liegt. Schwierig gestaltet sich in reinen Salzsäureelektrolyten die Einstellung einer flachen und gleichmäßigen Oberflächentopogra-

Der Einfluß der Zusammensetzung des Elektrolyten auf die Aufrauhqualität wird beispielsweise auch in den folgenden Veröffentlichungen beschrieben:

- die DE-A 22 50 275 (= GB-A 1 400 918) nennt als Elektrolyten bei der Wechselstrom-Aufrauhung von Aluminium für Druckplattenträger wäßrige Lösungen eines Gehalts von 1,0 bis 1,5 Gew.-% an HNO₃ oder von 0,4 bis 0,6 Gew.-% an HCl und gegebenenfalls 0,4 bis 0,6 Gew.-% an H₃PO₄,
- die DE-A 28 10 308 (= US-A 4 072 589) nennt als Elektrolyten bei der Wechselstrom-Aufrauhung von Aluminium wäßrige Lösungen eines Gehalts von 0,2 bis 1,0 Gew.-% an HCl und 0,8 bis 6,0 Gew.-% an HNO₃.

Zusätze zum HCI-Elektrolyten haben die Aufgabe, einen nachteiligen, lokalen Angriff in Form von tiefen Löchern zu verhindern. So beschreibt

- die DE-A 28 16 307 (= US-A 4 172 772) den Zusatz von Monocarboxysäuren, wie Essigsäure zu Salzsäureelektrolyten,
- die US-A 3 963 594 von Gluconsäure.
- die EP-A 0 036 672 von Citronen- und/oder Malonsäure und
 - die US-A 4 052 275 von Weinsäure.

Alle diese organischen Elektrolytbestandteile haben den Nachteil, bei hoher Strombelastung (Spannung) elektrochemisch instabil zu sein und sich zu zersetzen.

Inhibierende Zusätze, wie in der US-A 3 887 447 mit Phosphor- und Chromsäure, in der DE-A 25 35 142 (= US-A 3 980 539) mit Borsäure beschrieben, haben den Nachteil, daß lokal die Schutzwirkung häufig zusammenbricht und dort einzelne, besonders ausgeprägte Narben entstehen können.

Die JP-A 17 580/80 beschreibt eine Wechselstromaufrauhung in einer Kombination aus Salzsäure und einem Alkalihalogenid zur Erzeugung eines lithographischen Trägermaterials.

Die DE-A 16 21 115 (= US-A 3 632 486 und US-A 3 766 043) beschreibt eine Gleichstromaufrauhung z. B. für dekorative Verkleidungen in verdünnter Flußsäure unter kathodischer Schaltung des Aluminiums

Die DE-C 120 061 beschreibt eine Behandlung zur Erzeugung einer wasseranziehenden Schicht durch Verwendung von Strom, die auch in Flußsäure erfolgen kann.

Die DE-A 29 34 597 (= US-A 4 201 836, 4 242 417 und 4 324 841) beschreibt die gegebenenfalls elektrochemische Aufrauhung von Aluminium unter Verwendung einer gesättigten Aluminiumsalzlösung. der noch bis zu 10 % einer Mineralsäure zugesetzt werden können. In den Beispielen wird von Aluminiumchlorid als Salz ausgegangen und gegebenenfalls Salzsäure zugesetzt.

Eine solche gesättigte Aluminiumchloridiösung (≥500 g/l AlCl₃ x 6 H₂O) stellt, insbesondere ım sauren Bereich, eine extrem hohe Korrosionsgefährdung für die verwendeten Werkstoffe dar. Im besonderen ware die unter Verwendung von in den Beispielen nicht belegter Schwefelsäure als zugesetzter Mineralsaure erzielbare Oberflächenqualität, wie die Vergleichsbeispiele V24 bis V33 zeigen, sehr narbig und lür lithographische Anwendungen nicht brauchbar.

Die JP-B 006 571/76 beschreibt die Wechselstromaufrauhung eines Aluminiumblechs für lithographische Druckplatten in Elektrolyten, die 1 bis 4 % HCl und 0,1 bis 1 % H₂SO₄ enthalten. In diesem Elektrolytkonzentrationsbereich lassen sich, wie die Vergleichsbeispiele V34 bis V53 zeigen, nur unregelmäßig aufgerauhte Oberflächenprofile erzielen, die nicht dem Stand der Technik entsprechen.

Die GB-A 1 392 191 beschreibt den Sulfationeneinfluß in Konzentrationen von mehr als 10 bis 15 ppm in Salzsäureelektrolyten für die Herstellung eines lithographischen Trägermaterials als schädlich und verwendet einen Phosphorsäurezusatz zur Abhilfe.

Für die Anwendung als Druckplattenträgermaterial beschreibt die EP-A 132 787 eine Aufrauhung von Aluminium in 1000 bis 40000 ppm Salpetersäure, die 50 bis 4000 ppm (bis 0,4 %) Sulfationen enthalt, wieder wird vom schädlichen Einfluß höherer Konzentrationen gesprochen. Ab 5000 ppm wird eine Aufrauhung sogar verhindert.

In der US-A 1 376 366 ist das elektrochemische Senken von Metallen im besonderen Stahl mit Gleichstrom in einer Lösung aus Ammoniumchlorid, Schwefelsäure und Salpetersäure beschrieben Daben wird eine formgebende Bearbeitung eines Werkstücks angestrebt. Ziel einer Aufrauhung für lithographische Oberflächen ist dagegen eine sehr feine (1 bis 10 µm), belagfreie Strukturierung der Oberfläche. die eine gute Kopierschichtverankerung und ein Festhalten des Feuchtwassers während des Druckpro zesses zur Aufgabe hat. Der Belag während der Aufrauhung kann durch Anwendung von Wechselstrom unterdrückt werden.

Die US-A 3 284 326 beschreibt die Aufrauhung einer Aluminiumfolie für die Kondensatorherstellung unter Verwendung von Gleichstrom zur Erzielung einer hohen Kapazität. Als Elektrolyt wird eine Lösung von Chlorid und Phosphat verwendet, wobei die Art des Kations für die Kondensatorfolienaufrauhung - mit Ausnahme des nachteiligen Aluminiums - unwesentlich ist. Bis zu 10 mol-% des Kations können auch

durch H* ersetzt werden; dabei wird jedoch im Text betont, daß es nicht gut ist, mit einem säurehaltigen Elektrolyten zu starten.

Zur Anwendung als Kondensatorfolie wird in folgenden Veröffentlichungen eine Aufrauhung in aluminiumchlorid- und sulfathaltigen Systemen durchgeführt: US-A 4 427 506, US-A 4 395 305, JP-A 76 100/80, JP-B 39 169/78, JP-A 141 444/77 und JP-B 25 142/74.

Im Gegensatz zum alleinigen Ziel einer starken Oberflächenvergrößerung bei der Anwendung in Kondensatoren dient aber die grundsätzlich verschiedenartige Aufrauhung für Druckplattenträger der Schichtverankerung und der Wasserführung und muß damit In einem engen Rauhtiefebereich sehr homogen und narbenfrei sein.

In der US-A 4 427 506 wird zur Herstellung von Kondensatorfolien ausdrücklich darauf hingewiesen, daß ein Sulfationengehalt von > 500 ppm schädlich ist.

Eine andere bekannte Möglichkeit, die Gleichmäßigkeit der elektrochemischen Aufrauhung zu verbessem, ist die Modifizierung der eingesetzten Stromform, dazu zählen beispielsweise

- der Einsatz von Wechselstrom, bei dem die Anodenspannung und der anodische coulombische Eingang größer als die Kathodenspannung und der kathodische coulombische Eingang sind, gemäß der DE-A 26 50 762 (= US-A 4 087 341), wobei im allgemeinen die anodische Halbperiodenzeit des Wechselstroms geringer als die kathodische Halbperiodenzeit eingestellt wird; auf diese Methode wird beispielsweise auch in der DE-A 29 12 060 (= US-A 4 301 229), der DE-A 30 12 135 (= GB-A 2 047 274) oder der DE-A 30 30 815 (= US-A 4 272 342) hingewiesen,
- der Einsatz von Wechselstrom, bei dem die Anodenspannung deutlich gegenüber der Kathodenspannung erh
 öht wird, gem
 äß der DE-A 14 46 026 (= US-A 3 193 485),
 - die Unterbrechung des Stromflusses während 10 bis 120 sec und ein Stromfluß während 30 bis 300 sec, wobei Wechselstrom und als Elektrolyt eine wäßrige 0,75 bis 2 n HCl-Lösung mit NaCl- oder MgCl₂-Zusatz eingesetzt werden, gemäß der GB-A 879 768. Ein ähnliches Verfahren mit einer Unterbrechung des Stromflusses in der Anoden- oder Kathodenphase nennt auch die DE-A 30 20 420 (= US-A 4 294 672).

Die genannten Methoden können zwar zu relativ gleichmäßig aufgerauhten Aluminiumoberflächen führen, sie erfordern jedoch bisweilen einen verhältnismäßig großen apparativen Aufwand und sind auch nur in sehr engen Parametergrenzen anwendbar.

Aufgabe der vorliegenden Erfindung ist es deshalb, ein Verfahren zur elektrochemischen Aufrauhung von Aluminium für Druckplattenträger mit Wechselstrom vorzuschlagen, das eine gleichmäßige, narbenfreie und flächendeckende Aufrauhstruktur zum Ergebnis hat und wobei auf einen großen apparativen Aufwand sowie spezielle Werkstoffauswahl aus Korrosionsschutzgründen und/oder besonders enge Parametergrenzen verzichtet werden kann.

Gelöst wird die gestellte Aufgabe durch ein Verfahren zur elektrochemischen Aufrauhung von Aluminium oder dessen Legierungen für Druckplattenträger mittels Wechselstrom in einem sulfat- und chloridionenhaltigen Elektrolyten, wobei der saure, sulfathaltige Elektrolyt Chloridionen in Form von Aluminiumchlorid enthält.

Wie die Vergleichsbeispiele V58-59 und Beispiel 57 zeigen, ist für das erfindungsgemäße Verfahren zur Herstellung von Druckplattenträgern die Anwesenheit von Aluminiumionen zur Vergleichmäßigung der Oberfläche unbedingt von Vorteil. Die Anwendung von Gleichstrom führt, wie die Beispiele V60 und V61 zeigen, ebenfalls zu sehr narbigen, für lithographische Zwecke absolut ungeeigneten Oberflächen. Dazu tritt ein unerwünschter weißer Belag auf, und die Bleche sind nicht flächendeckend aufgerauht.

Überraschend gelingt die elektrochemische Aufrauhung zur Erzeugung von lithographischen Druckplatten mit Sulfationen in einer relativ hohen Konzentration von 5 bis 100 g/l durch Zusatz von Chloriden in Form von Aluminiumchlorid. Niedrigere Konzentrationen von z. B. Schwefelsäure bewirken eine ungleichmäßige Oberflächenstruktur.

In einer bevorzugten Ausführungsform arbeitet man mit einem H₂SO₄-Elektrolyten, wobei die Sulfationenkonzentration zwischen 5 und 100 g/l, besonders bevorzugt zwischen 20 und 50 g/l, und die Konzentration der Chloridionen zwischen 1 und 100 g/l, besonders bevorzugt zwischen 10 und 70 g/l liegt.

Chloridionen werden in einer bevorzugten Ausführungsform als $AICl_3 \times 6 H_2O$ in einer Konzentration zwischen 20 und 250 g/l, besonders bevorzugt zwischen 50 und 200 g/l eingesetzt.

Höhere Chloridionenkonzentrationen verstärken den lokalen Angriff in Form unerwünschter Narben. Im Rahmen der Erfindung ist auch vorgesehen, Kombinationen aus verschiedenen Chloridionen enthaltenden Verbindungen einzusetzen.

Im Anschluß an die elektrochemische Aufrauhung findet in einem bevorzugten Behandlungsschritt noch ein chemischer Abtrag durch eine Beize statt, die die Oberfläche von eventuellem Belag reinigt. Besonders bevorzugt wird dabei eine schwefelsäurehaltige Lösung oder ein Abtrag in Natronlauge.

Das Ergebnis einer nach dem erfindungsgemäßen Verfahren erzeugten Oberfläche ist eine in weiten

25

Rauhtiefebereichen ($R_z = 2$ bis 5 μ m) variierbare, hochgleichmäßige Trägeroberfläche mit ausgezeichneten lithographischen Eigenschaften.

Das erfindungsgemäße Verfahren wird entweder diskontinuierlich oder bevorzugt kontinuierlich mit Bändern aus Aluminium oder seinen Legierungen durchgeführt. Im allgemeinen liegen die Verfahrensparameter in kontinuierlichen Verfahren während des Aufrauhens in folgenden Bereichen: die Temperatur des Elektrolyten zwischen 20 und 60 °C, die Stromdichte zwischen 3 und 180 A/dm², die Verweilzeit eines aufzurauhenden Materialpunktes im Elektrolyten zwischen 10 und 300 sec und die Elektrolytströmungsgeschwindigkeit an der Oberfläche des aufzurauhenden Materials zwischen 5 und 100 cm/sec. Durch die kontinuierliche Fahrweise und die gleichzeitige Freisetzung von Al-ionen und den Verbrauch an H wird dabei eine ständige Nachführung der Elektrolytzusammensetzung durch die entsprechenden verdünnten Säuren notwendig.

In diskontinuierlichen Verfahren liegen die erforderlichen Stromdichten eher im unteren Teil und die Verweilzeiten eher im oberen Teil der jeweils angegebenen Bereiche; auf die Strömung des Elektrolyten kann dabei auch verzichtet werden.

Neben den bei der Darstellung zum Stand der Technik genannten Stromformen können auch überlagerter Wechselstrom und Ströme niedriger Frequenz eingesetzt werden.

Im erfindungsgemäßen Verfahren können als aufzurauhende Materialen beispielsweise die folgenden eingesetzt werden, die entweder als Platte, Folie oder Band vorliegen:

- "Reinaluminium" (DIN-Werkstoff Nr. 3.0255), d. h. bestehend aus mehr als 99,5 % Al und den folgenden zulässigen Beimengungen von (maximale Summe von 0,5 %) 0,3 % Si, 0,4 % Fe, 0,03 % Ti, 0,02 % Cu, 0,07 % Zn und 0,03 % Sonstigem, oder
- "Al-Legierung 3003" (vergleichbar mit DIN-Werkstoff Nr. 3.0515), d. h. bestehend aus mehr als 98,5 % Al, den Legierungsbestandteilen 0 bis 0,3 % Mg und 0,8 bis 1,5 % Mn und den folgenden zulässigen Beimengungen von 0,5 % Si, 0,5 % Fe, 0,2 % Ti, 0,2 % Zn, 0,1 % Cu und 0,15 % Sonstigem.

Jedoch läßt sich das erfindungsgemäße Verfahren auch auf andere Aluminiumlegierungen übertragen.

Nach dem erfindungsgemäßen elektrochemischen Aufrauhverfahren kann sich dann in einer weiteren anzuwendenden Verfahrensstufe eine anodische Oxidation des Aluminiums anschließen, um beispielsweise die Abrieb- und die Haftungseigenschaften der Oberfläche des Trägermaterials zu verbessern.

Zur anodischen Oxidation können die üblichen Elektrolyte wie H₂SO₄, H₃PO₄, H₂C₂O₄, Amidosulfonsäure, Sulfobernsteinsäure, Sulfosalicylsäure oder deren Mischungen ein gesetzt werden. Es wird beispielsweise auf folgende Standardmethoden für die anodische Oxidation von Aluminium hingewiesen (siehe dazu z. B. M. Schenk, Werkstoff Aluminium und seine anodische Oxydation, Francke Verlag, Bern 1948, Seite 760; Praktische Galvanotechnik, Eugen G. Leuze Verlag, Saulgau 1970; Seiten 395 ff. und Seiten 518/519; W. Hübner und C. T. Speiser, Die Praxis der anodischen Oxidation des Aluminiums, Aluminium Verlag, Düsseldorf 1977, 3. Auflage, Seiten 137 ff.):

- Das Gleichstrom-Schwefelsäure-Verfahren, bei dem in einem wäßrigen Elektrolyten aus üblicherweise ca. 230 g H₂SO₄ pro 1 Liter Lösung bei 10 bis 22 °C und einer Stromdichte von 0,5 bis 2,5 A/dm² während 10 bis 60 min anodisch oxidiert wird. Die Schwefelsäurekonzentration in der wäßrigen Elektrolytlösung kann dabei auch bis auf 8 bis 10 Gew.-% H₂SO₄ (ca. 100 g/l H₂SO₄) verringert oder auch auf 30 Gew.-% (365 g/l H₂SO₄) und mehr erhöht werden.
- Die "Hartanodisierung" wird mit einem wäßrigen H₂SO₄ enthaltenden Elektrolyten einer Konzentration von 166 g/l H₂SO₄ (oder ca. 230 g/l H₂SO₄) bei einer Betriebstemperatur von 0 bis 5 °C, bei einer Stromdichte von 2 bis 3 A/dm², einer steigenden Spannung von etwa 25 bis 30 V zu Beginn und etwa 40 bis 100 V gegen Ende der Behandlung und während 30 bis 200 min durchgeführt.

Neben den im vorhergehenden Absatz bereits genannten Verfahren zur anodischen Oxidation von Druckplattenträgerma terialien können beispielsweise noch die folgenden Verfahren zum Einsatz kommen: z. B. kann die anodische Oxidation von Aluminium in einem wäßrigen H₂SO₄ enthaltenden Elektrolyten, dessen Al³+-lonengehalt auf Werte von mehr als 12 g/l eingestellt wird (nach der DE-A 28 11 396 = US-A 4 211 619), in einem wäßrigen, H₂SO₄ und H₃PO₄ enthaltenden Elektrolyten (nach der DE-A 27 07 810 = US-A 4 049 504) oder in einem wäßrigen, H₂SO₄, H₃PO₄ und Al³-lonen enthaltenden Elektrolyten (nach der DE-A 28 36 803 = US-A 4 229 226) durchgeführt werden.

Zur anodischen Oxidation wird bevorzugt Gleichstrom verwendet, es kann jedoch auch Wechselstrom oder eine Kombination dieser Stromarten (z. B. Gleichstrom mit überlagertem Wechselstrom) eingesetzt werden. Die Schichtgewichte an Aluminiumoxid bewegen sich im Bereich von 1 bis 10 g/m², entsprechend einer Schichtdicke von etwa 0,3 bis 3,0 µm. Nach der Stufe der elektrochemischen Aufrauhung und vor der einer anodischen Oxidation kann auch eine einen Flächenabtrag von der aufgerauhten Oberfläche bewirkende Modifizierung angewendet werden, so wie sie beispielsweise in der DE-A 30 09 103 beschrieben ist. Eine solche modifizierende Zwischenbehandlung kann u. a. den Aufbau abriebfester Oxidschichten und eine

geringere Tonneigung beim späteren Drucken ermöglichen.

Der Stufe einer anodischen Oxidation des Druckplattenträgermaterials aus Aluminium können auch eine oder mehrere Nachbehandlungsstufen nachgestellt werden. Dabei wird unter Nachbehandeln insbesondere eine hydrophilie rende chemische oder elektrochemische Behandlung der Aluminiumoxidschicht verstanden, beispielsweise eine Tauchbehandlung des Materials in einer wäßrigen Polyvinylphosphonsäure-Lösung nach der DE-C 16 21 478 (= GB-A 1 230 447), eine Tauchbehandlung in einer wäßrigen Alkalisilikat-Lösung nach der DE-B 14 71 707 (= US-A 3 181 461) oder eine elektrochemische Behandlung (Anodisierung) in einer wäßrigen Alkalisilikat-Lösung nach der DE-A 25 32 769 (= US-A 3 902 976). Diese Nachbehandlungsstufen dienen insbesondere dazu, die bereits für viele Anwendungsgebiete ausreichende Hydrophilie der Aluminiumoxidschicht noch zusätzlich zu steigern, wobei die übrigen bekannten Eigenschaften dieser Schicht mindestens erhalten bleiben.

Als lichtempfindliche Reproduktionsschichten sind grundsätzlich alle Schichten geeignet, die nach dem Belichten, gegebenenfalls mit einer nachfolgenden Entwicklung und/oder Fixierung, eine bildmäßige Fläche liefern von der gedruckt werden kann und/oder die ein Reliefbild einer Vorlage darstellt. Sie werden entweder beim Hersteller von vorsensibilisierten Druckplatten oder von sogenannten Trockenresists oder direkt vom Verbraucher auf eines der üblichen Trägermaterialien aufgebracht.

Zu den lichtempfindlichen Reproduktionsschichten zählen solche, wie sie z. B. in "Light-Sensitive Systems" von Jaromir Kosar, John Wiley & Sons Verlag, New York 1965, beschrieben werden: Die ungesättigte Verbindungen enthaltenden Schichten, in denen diese Verbindungen beim Belichten isomerisiert, umgelagert, cyclisiert oder vernetzt werden (Kosar, Kapitel 4), wie z.B. Cinnamate; die photopolymerisierbare Verbindungen enthaltenden Schichten, in denen Monomere oder Präpolymere gegebenenfalls mittels eines Initiators beim Belichten polymerisieren (Kosar, Kapitel 5); und die o-Diazo-chinone wie Naphthochinondiazide, p-Diazo-chinone oder Diazoniumsalz-Kondensate enthaltenden Schichten (Kosar, Kapitel 7).

Zu den geeigneten Schichten zählen auch die elektrophotographischen Schichten, d. h. solche die einen anorganischen oder organischen Photoleiter enthalten. Außer den lichtempfindlichen Substanzen können diese Schichten selbstverständlich noch andere Bestandteile wie z.B. Harze, Farbstoffe, Pigmente, Netzmittel, Sensibilisatoren, Haftvermittler, Indikatoren, Weichmacher oder andere übliche Hilfsmittel enthalten. Insbesondere können die folgenden lichtempfindlichen Massen oder Verbindungen bei der Beschichtung der Trägermaterialien eingesetzt werden:

positiv arbeitende, o-Chinondiazid-, bevorzugt o-Naphthochinondiazid-Verbindungen, die beispielsweise in den DE-C 854 890, 865 109, 879 203, 894 959, 938 233, 1 109 521, 1 144 705, 1 118 606, 1 120 273 und 1 124 817 beschrieben werden;

negativ arbeitende Kondensationsprodukte aus aromatischen Diazoniumsalzen und Verbindungen mit aktiven Carbonylgruppen, bevorzugt Kondensationsprodukte aus Diphenylamindiazoniumsalzen und Formaldehyd, die beispielsweise in den DE-C 596 731, 1 138 399, 1 138 400, 1 138 401, 1 142 871, 1 154 123, den US-A 2 679 498 und 3 050 502 und der GB-A 712 606 beschrieben werden;

negativ arbeitende, Mischkondensationsprodukte aromatischer Diazoniumverbindungen, beispielsweise nach der DE-A 20 24 244, die mindestens je eine Einheit der allgemeinen Typen A(-D)_n und B verbunden durch ein zweibindiges, von einer kondensationsfähigen Carbonylverbindung abgeleitetes Zwischenglied aufweisen. Dabei sind diese Symbole wie folgt definiert: A ist der Rest einer mindestens zwei aromatische carbound/oder heterocyclische Kerne enthaltenden Verbindung, die in saurem Medium an mindestens einer Position zur Kondensation mit einer aktiven Carbonylverbindung befähigt ist. D ist eine an ein aromatisches Kohlenstoffatom von A gebundene Diazoniumsalzgruppe; n ist eine ganze Zahl von 1 bis 10 und B der Rest einer von Diazoniumgruppen freien Verbindung, die in saurem Medium an mindestens einer Position des Moleküls zur Kondensation mit einer aktiven Carbonylverbindung befähigt ist;

positiv arbeitende Schichten nach der DE-A 26 10 842, die eine bei Bestrahlung Säure abspaltende Verbindung, eine Verbindung, die mindestens eine durch Säure abspaltbare C-O-C-Gruppe aufweist (z. B. eine Orthocarbonsäureestergruppe oder eine Carbonsäureamidacetalgruppe) und gegebenenfalls ein Bindemittel enthalten;

negativ arbeitende Schichten aus photopolymerisierbaren Monomeren, Photoinitiatoren, Bindemitteln und gegebenenfalls weiteren Zusätzen. Als Monomere werden dabei beispielsweise Acryl- und Methacrylsäureester oder Umsetzungsprodukte von Diisocyanaten mit Partialestern mehrwertiger Alkohole eingesetzt, wie es beispielsweise in den US-A 2 760 863 und 3 060 023 und den DE-A 20 64 079 und 23 61 041 beschrieben wird. Als Photoinitiatoren eignen sich u.a. Benzoin, Benzoinether, Mehrkernchinone, Acridinderivate, Phenazinderivate, Chinoxalinderivate, Chinazolinderivate oder synergistische Mischungen. Als Bindemittel können eine Vielzahl löslicher organischer Polymere Einsatz finden, z. B. Polyamide, Polyester, Alkydharze, Polyvinylalkohol, Polyvinylpyrrolidon, Polyethylenoxid, Gelatine oder Celluloseether;

negativ arbeitende Schichten gemäß der DE-A 30 36 077, die als lichtempfindliche Verbindung ein Diazoniumsalz-Polykondensationsprodukt oder eine organische Azidoverbindung und als Bindemittel ein hochmolekulares Polymeres mit seitenständigen Alkenylsulfonyl- oder Cycloalkenylsulfonylurethan-Gruppen enthalten.

Es können auch photohalbleitende Schichten, wie sie z.B. in den DE-C 11 17 391, 15 22 497, 15 72 312, 23 22 046 und 23 22 047 beschrieben werden, auf die Trägermaterialien aufgebracht werden, wodurch hochlichtempfindliche, elektrophotographische Schichten entstehen.

Die nach dem erfindungsgemäßen Verfahren aufgerauhten Materialien für Druckplattenträger weisen eine sehr gleichmäßige Topographie auf, was in positiver Weise die Auflagestabilität und die Wasserführung beim Drucken von aus diesen Trägern hergestellten Druckformen beeinflußt. Es treten weniger häufig unerwünschte "Narben" (mit der Umgebungsaufrauhung verglichen: markante Vertiefungen) auf, diese können sogar vollständig unterdrückt sein; besonders gelingt es mit den erfindungsgemäßen Verfahren auch flache, narbenfreie Träger zu erzeugen. Die Vergleichsbeispiele V24 bis V33 und V34 bis V53 zeigen im Vergleich mit den übrigen Beispielen die Wirkung des erfindungsgemäßen Elektrolytsystems zur Erzielung flacher und trotzdem gleichmäßiger Oberflächen. Diese Oberflächeneigenschaften lassen sich ohne besonders großen apparativen Aufwand realisieren.

Beispiele

Ein Aluminiumblech (DIN-Werkstoff Nr. 3.0255) wird zunächst während 60 sec in einer wäßrigen Lösung eines Gehalts von 20 g/l NaOH bei Raumtemperatur gebeizt. Die Aufrauhung erfolgt in den jeweils angegebenen Elektrolytsystemen bei 40 °C.

Eine Einschränkung auf die Ausführungsbeispiele besteht jedoch nicht.

Die Einordnung in die Qualitätsklassen (Oberflächentopographie in bezug auf Gleichmäßigkeit, Narbenfreiheit und Flächendeckung) erfolgt durch visuelle Beurteilung unter dem Mikroskop, wobei einer homogenaufgerauhten und narbenfreien Oberfläche die Qualitätsstufe "1" (bester Wert) zugeteilt wird. Einer Oberfläche mit dicken Narben einer Größe von mehr als 30 µm und/oder einer extrem ungleichmäßig aufgerauhten bzw. fast walzblanken Oberfläche wird die Qualitätsstufe "10" (schlechtester Wert) zugeteilt.

30

20

25

35

40

45

50

55

Tabelle I

	Tabelle				-						L::+c-			
5	Bei- spiel	Schwefe säureke zentra g/	tion	AlCl konz tion	13x6H ₂ O- zentra- n g/1	stro dich	,,,,,	zei	13	klass	sehr gut extrem schlecht		·	¢
10	1 2 3 4 5 6	40 40 40 40			60 60 60		10 10 40 40 60	3	0 25 30 10		2 2 2 1 - 2 2			
15	7	40 40 40 4))		60 60 100 100		40 40 60		13 15 20 10		1 - 2 1 - 2 1 - 2			
20	8 9 10 11	4	0 10 40 40		100 100 150 150		60 40 40 60		13 15 20 10		1 - 2 1 - 2 1 - 2			
25	12 13 14 15		40 50 50		150 100 100		60 60 100			6	· 2 2 2 2			
30	10	7	60 60 50		100 100 200		100 60 60		1	8 LO LO	2 2 2	·		
35		.8 L9 20 21 22 23	60 60 20 25 30		200 200 150 150 150		100 100 100	1		17 8 8 8 8	$1 - \frac{2}{1}$			
41	V24 V25 V26 V27 V28		50 50 50 50 50)))	500 500 500 50 50 50	0 0 0	40 40 60 60 100 100				5 - 6 5 - 6 5 - 6			
	50	V30 100 V31 100 V32 100		0)0	50	500 500 500 500		40 40 80 80	-	15 20 10 15	6 6 6 - 7			

55 ·

Tabelle II

5 .	Bei- spiel Nr.	Schwefel- säurekon- zentration g/l	Salzsäure- konzentra- tion g/l	Stron- dichte A/dm ²	Zeit	Qualitäts- klassen 1 = sehr gut 10 = extrem schlecht
15	V34 V35 V36 V37	1 1 1	10 10 10 10	40 40 80 80	15 25 10 15	4 - 5 5 6 6 - 7
20	V38 V39 V40 V41	1 1 1	40 40 40 40	40 40 80 80	15 25 10 15	6 - 7 6 5 - 6
25	V42 V43 V44 V45	10 10 10 10	10 10 10 10	40 40 80 80	15 25 10 15	5 - 6 6 6
30	V46 V47 V48 V49	10 10 10 10	40 40 40 40	40 40 80 80	15 25 10 15	5 - 6 6 7 7 - 8
35	V50 V51 V51 V53	5 5 5	25 25 25 25	40 40 80 80	15 25 10 15	8 7 · 5 - 6 5 - 6

40

45

50

. 55

5		gut	n cht			- gut	il 3ht		
10		Qualitäts- klassen 1 = sehr gut 10 = extrem schlecht		1		alitäts. assen = sehr	10 = extrem schlecht	8887	
15		Zeit	Sec	10 12 30 30		Zeit	ດ	30 30 90 90 90	
20		Strom- dichte	A/dm ²	100 100 100 40		Strom- dichte	A/dm^2	40 40 40* 40*	
25	•	Salzsäure- konzentra- tion	9/1	15 15 20 -	·	Salzsäure- konzentra- tion	9/1	1111	
35		AlCl ₃ x6H ₂ O- konzentra- tion	9/1	100 100 100 60		NaCl- Konzentra- tion	g/1	43,3 60 60 60	
40 45	e III	Schwefel- säurekon- zentration	9/1	40 40 40 40	e IV	Schwefel- säurekon- zentration	9/1	40 40 40	hstrom
	Tabelle	Bei- spiel	Nr.	555 57	Tabelle	Bei- spiel	Nr.	V58 V59 V61	*Gleichstrom

Ansprüche

50

Verfahren zur elektrochemischen Aufrauhung von Aluminium oder dessen Legierungen für Druckplattenträger mittels Wechselstrom in einem sulfat- und chloridionenhaltigen Elektrolyten, dadurch gekennzeichnet, daß der saure, sulfathaltige Elektrolyt Chloridionen in Form von Aluminiumchlorid enthält.

^{2.} Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als sulfationenhaltigen Elektrolyten Schwefelsäure einsetzt.

- 3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß man die Sulfationenkonzentration im Elektrolyten zwischen 5 und 100 g/l einstellt.
- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man die Schwefelsäurekonzentration zwischen 20 und 50 g/l einstellt.
- 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man die Konzentration der Chloridionen auf 1 bis 100 g/l einstellt.
- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß man die Konzentration der Chloridionen. auf 10 bis 70 g/l einstellt.
- 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man zusätzlich 10 Aluminiumsalz in einer Konzentration von 20 bis 200 g/l, bezogen auf den Elektrolyten, einsetzt.
 - 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß man mit einer Stromdichte größer als 40 A/dm² arbeitet.
 - 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß man die Aufrauhung während eines Zeitraums von 3 bis 30 sec durchführt.
 - 10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß man dem Elektrolyten weitere Säuren und/oder Salze zusetzt.
 - 11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß nach der elektrochemischen Aufrauhung und vor der Anodisierung gegebenenfalls ein Zwischenschritt durchgeführt wird.
- 12. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der pH-Wert des Elektrolyten kleiner als 2 ist.

25

30

35

-40

45

50

55