Stochastic of Finance Lecture 1

Contents

1 Recap 1

2 Content 2

1 Recap

Definition 1

Axiomatic definition of probability spaces

Let Ω be the set of all possible outcomes of a random experiment. Let $\mathcal{F} \subseteq 2^{\Omega}$ be a σ -algebra on Ω , i.e., the following hold:

- 1. $\Omega \in \mathcal{F}$.
- $2. A \in \mathcal{F} \implies \Omega \setminus A \in \mathcal{F}.$
- 3. \mathcal{F} is closed under countable union, that is, if $A_i \in \mathcal{F}$ for i = 1, 2, ..., then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Let P be a function (measure) $P: \mathcal{F} \to [0,1]$ such that the following hold:

- 1. $P(A) \ge 0$ (trivially holds due to range).
- 2. P is σ -additive, i.e., if $\{A_i\}_{i=1}^{\infty} \subseteq \mathcal{F}$ is a countable collection of disjoint subsets, then we have $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.
- 3. $P(\Omega) = 1$.

Then (Ω, F, P) is a probability space.

The classical probability comes from the formal definition when Ω is finite, $|\Omega| = n$, $P(\{\omega\}) = \frac{1}{n}$ where $\omega \in \Omega$, \mathcal{F} is the power set of Ω , which also turns out to be a σ -field on Ω .

Definition 2

Random variables:

Given a probability space (Ω, \mathcal{F}, P) , if $X : \Omega \to \mathbb{R}$ is a function such that $X^{-1}((-\infty, x]) \in \mathcal{F} \ \forall x \in \mathbb{R}$, then X is a random variable, or a measurable function w.r.t. \mathcal{F} .

Example 1

If F is the largest σ -field (power set but maybe for infinite sets), then any real-function is a random variable.

Example 2

A constant function is always a random variable.

Definition 3

Stochastic processes:

A stochastic process $\{X(t), t \in T\}$ is a collection of random variables defined on the probability space (Ω, \mathcal{F}, P) .

Example 3

Examples of real-life stochastic processes:

- 1. Price of some stock at the end of the day.
- 2. Number of trades made every second.
- 3. Market index at time t.
- 4. Number of companies registered in stock market at the end of the week.
- 5. Variance in a stock price in a day measure on the random variables (since computed from the data). Usually we call observed information (and not computed information) a random variable. Note also time series. Nothing wrong with calling this a random variable, but this won't be the focus of the course.

Some stochastic processes have some important properties, as follows:

- 1. Independence (mutual, not pairwise) can verify such assumptions.
- 2. Stationary many times we can assume that data is stationary. Two types:
 - (a) Wide sense
 - (b) Strict sense (by default)
- 3. Memoryless property.
- 4. Martingale property also useful with conditional expectations.

For more, revisit MTL106. Time homogeneous is similar to stationary.

Example 4

Poisson process

 $\{N(t), t \geq 0\}$ - number of events occurring upto and including time t. Suppose $N(t) \sim \mathcal{P}(\lambda t)$ where \mathcal{P} is the Poisson distribution, and λ is a fixed parameter. This stochastic process is called a Poisson process. Some properties:

- 1. Increments are independent.
- 2. Increments are stationary.
- 3. Satisfies the memoryless property.
- 4. Doesn't satisfy the martingale property.

We can derive a random variable that satisfies the martingale property from any random variable.

Example 5

Brownian motion/Wiener process

Let $\{W(t), t \ge 0\}$ be a stochastic process which satisfies the following conditions:

- 1. W(0) = 0
- 2. For fixed t, $W(t) \sim \mathcal{N}(0, t)$
- 3. Increments are independent.
- 4. Increments are stationary.

2 Content

Definition 4

Filtration: Let (Ω, \mathcal{F}, P) be a probability space. A family $\{\mathcal{F}_t \mid t \geq 0\}$ of sub σ -fields of \mathcal{F} is called a

filtration if $\mathcal{F}_s \subset \mathcal{F}_t$ if $s \leq t$.

HW: create some examples of filtrations.

Definition 5

If Ω is a space of functions on $T \subset \mathbb{R}^+$, then it comes with a natural filtration $\mathcal{F}_t = \sigma\{x(s), s \leq t\}$ where x is a stochastic process. That is, consider the set of all possible values of x(s) where $s \leq t$, and generate a σ -field out of it.

Definition 6

Given a probability space (Ω, \mathcal{F}, P) and a filtration $\mathcal{F}_t \subset F$, a family $\{M(t), t \geq 0\}$ (this is a stochastic process) is called a martingale wrt $(\Omega, \mathcal{F}_t, P)$ if

- 1. For almost all $w \in \Omega$, we have M(t, w) has left and right limits at every t and is continuous from the right.
- 2. For each $t \geq 0$, M(t) (random variable) is a measurable function wrt \mathcal{F}_t and integrable.
- 3. For $0 \le s \le t$, $\mathbb{E}[M(t) \mid \mathcal{F}_s] = M(s)$ almost everywhere/surely.

Example 6

Example for filtration:

The random experiment is tossing an unbiased coin infinitely many times.

We have $\Omega = \{HHH..., HTH..., ...\}.$

Let A_H be the collection of samples starting with H in the first toss.

Let A_T be the collection of samples starting with T in the second toss.

Let A_{HH} be the collection of samples starting with H in the first toss and H in the second toss.

Let A_{HT} be the collection of samples starting with H in the first toss and T in the second toss.

Consider the trivial σ -field $\mathcal{F}_0 = \{\emptyset, \Omega\}$.

Using the first toss, we construct the σ -field $\mathcal{F}_1 = \{\emptyset, A_H, A_T, \Omega\}$.

Using the second toss, we construct the σ -field $\mathcal{F}_2 = \{\emptyset, A_{HH}, A_{HT}, A_{TH}, A_{TH}, A_{HH} \cup A_{HT}, \dots, A_{HH}^c, \dots, \Omega\}$.

Note that $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$. Also note that $\lim_{n \to \infty} \mathcal{F}_n = \mathcal{F}_\infty = \mathcal{F}$.

Example 7

Non-example for martingale:

Let $\{N(t), t \geq 0\}$ be a Poisson process on (Ω, \mathcal{F}, P) .

Now that the parameter space is contained in \mathbb{R}^+ , we have a natural filtration $\mathcal{F}_t = \sigma\{N(s), s \leq t\}$.

Note the following properties:

- 1. N(t, w) is right continuous at t for $w \in \Omega$.
- 2. N(t) is a measurable function wrt \mathcal{F}_t and integrable.
- 3. $\mathbb{E}[N(t) \mid \mathcal{F}_s] = \mathbb{E}[N(t) N(s) + N(s) \mid \mathcal{F}_s] = N(s) + \lambda(t s)$.

Therefore this is not a martingale wrt the given filtration.

Example 8

 $\{W(t), t \geq 0\}$ on (Ω, \mathcal{F}, P) with the natural filtration. The first two conditions hold as usual. The third condition:

 $\mathbb{E}[W(t)\mid \mathcal{F}_s] = \mathbb{E}[W(t) - W(s) + W(s)\mid \mathcal{F}_s] = \mathbb{E}[W(t) - W(s)] + \mathbb{E}[W(s)\mid \mathcal{F}_s] = 0 + \mathbb{E}[W(s)] \text{ since } W(t) \sim \mathcal{N}(0,t) \text{ and } \mathbb{E}[W(s)\mid \mathcal{F}_s] = \mathbb{E}[W(s)].$

Hence brownian motion is a martingale wrt the natural filtration $\{\mathcal{F}(t), t \geq 0\}$.

Definition 7

Sub-martingale: If $\mathbb{E}[X(t) \mid \mathcal{F}(s)] \geq X(s)$ a.e., then it is called a sub-martingale.

Definition 8

Super-martingale: If $\mathbb{E}[X(t) \mid \mathcal{F}(s)] \leq X(s)$ a.e., then it is called a super-martingale.

Poisson process is a sub-martingale.

Example 9

Let $\{X_n \mid n=0,1,2,\ldots\}$, where X_n = the amount at the end of the n^{th} game. Y_i is the payoff of the i^{th} game, where $P[Y_i=1]=P[Y_i=-1]=\frac{1}{2}$. Suppose $X_0=A$.

We have $\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] = \mathbb{E}[X_n + Y_{n+1} \mid \mathcal{F}_n] = \mathbb{E}[X_n \mid \mathcal{F}_n] + \mathbb{E}[Y_{n+1} \mid \mathcal{F}_n] = \mathbb{E}[X_n] + \mathbb{E}[Y_{n+1}] = \mathbb{E}[X_n]$. So this stochastic process is a martingale. Also note that $\mathbb{E}[X_n] = \mathbb{E}[X_0 + Y_1 + \dots + Y_n] = A + 0 + \dots + 0 = A$.

Definition 9

Markov Property

Let $\{X(t) \mid t \geq 0\}$ be a stochastic process defined on (Ω, \mathcal{F}, P) . If for $0 \leq s \leq t$, $P(X(t) \mid X(u), 0 \leq u \leq s) = P(X(t) \mid X(s))$, then this stochastic process is a Markov process, and is said to have the Markov property.

The same can be done for discrete processes.

For instance, verify that $P(X_{n+1} = x_{n+1} \mid X_0 = A, X_1 = x_1, \dots, X_n = x_n) = P(X_{n+1} = x_{n+1} \mid X_n = x_n)$, which gives us that the random walk is also a Markov process.

Example 10

Consider the Poisson process $\{N(t) \mid t \geq 0\}$. Then we have $P(N(t) = k \mid N(u), 0 \leq u \leq s) = P(N(t) = k \mid N(s))$ due to independent increments, so this is a Markov process.

Any process with independent increments is a Markov process.

A Markov process is a 1st order dependent process.

More generally, an auto-regressive process AR(r) is a process where X_n depends on X_{n-1}, \ldots, X_{n-r} .

Example 11

Consider Brownian motion $\{W(t) \mid t \geq 0\}$. This has independent increments, so this is a Markov process.

More properties: Nowhere differentiable property and so on.