Mixed FEM for Brinkman Flow in Free Fluid over Porous Medium

Huaijin Wang

June 23, 2021

Brinkman Equation

We consider the one-domain approach based on the macroscopic Brinkman equation for a viscous flow in porous medium:

$$\nabla p - \nabla \cdot (\mu_{\text{eff}} \nabla \boldsymbol{u}) + \mu \boldsymbol{K}^{-1} \boldsymbol{u} = \boldsymbol{f}$$
 (1)

where \boldsymbol{u} and p stand for the velocity and pressure, \boldsymbol{f} is related to body forces, and \boldsymbol{K} is the permeability tensor of Darcy's law. We study the behavior of the solution of the (1) when the thickness ϵ of the transition region goes to zero.

Free fluid flow over porous medium

One-Domain Approach

Based on the Brinkman equation (1) in the porous medium, we start with description of the model by one-domain approach.

$$\nabla p - \nabla \cdot \left(\mu \phi_1 \left(\frac{y}{\epsilon}\right) \nabla \boldsymbol{u}\right) + \mu \boldsymbol{K}^{-1} \phi_2 \left(\frac{y}{\epsilon}\right) \boldsymbol{u} = \boldsymbol{f} \quad \text{in } \Omega$$

$$\nabla \cdot \boldsymbol{u} = 0 \quad \text{in } \Omega$$

$$\boldsymbol{u} = 0 \quad \text{on } y = H$$

$$\nabla \boldsymbol{u} \cdot \boldsymbol{n} = 0 \quad \text{on } y = -L,$$

where the small parameter ϵ is denoted for ϵ/H . The variations of permeability and effective viscosity in the transition region can be obtained by choosing ϕ_1 and ϕ_2 such that

$$\phi_1 \to \left\{ \begin{array}{ll} \frac{\mu_{\text{eff}}}{\mu}, & y \to -\infty, \\ 1, & y \to +\infty, \end{array} \right. \quad \phi_2 \to \left\{ \begin{array}{ll} 1, & y \to -\infty, \\ 0, & y \to +\infty. \end{array} \right.$$

So, we could choose ϕ_1 and ϕ_2 as

$$\begin{array}{l} \phi_1\left(\frac{y}{\epsilon}\right) = \frac{1}{2}\left(1 - \frac{\mu_{\rm eff}}{\mu}\right)\tanh\left(\frac{\theta y}{\epsilon}\right) + \frac{1}{2}\left(1 + \frac{\mu_{\rm eff}}{\mu}\right) \\ \phi_2\left(\frac{y}{\epsilon}\right) = -\frac{1}{2}\tanh\left(\frac{\theta y}{\epsilon}\right) + \frac{1}{2} \end{array}$$

This allows the model (2) to approach rapidly to the Stokes-Brinkman model away from the thin transition region.

- In the free fluid region Ω_f , $\mu\phi_1$ tends to μ and ϕ_2 tends to zero rapidly for any $x \in \Omega_f$ as $\varepsilon \to 0$, hence the Darcy term in (2) is zero and (2) reduces to the Stokes equation.
- In the porous medium region Ω_p , it is easy to see that (2) reduces to the Brinkman equation (1).

Two-Domain Approach

For the standard two-domain approach, the Darcy-Stokes equations with appropriate interface conditions are written as:

Darcy model:
$$\begin{cases} \mu K^{-1} \bar{\boldsymbol{u}}_{D} + \nabla p_{D} = \boldsymbol{f} & \text{in } \Omega_{p} \\ \nabla \cdot \bar{\boldsymbol{u}}_{D} = 0 & \text{in } \Omega_{p} \\ \bar{\boldsymbol{u}}_{D} \cdot \boldsymbol{n}_{D} = \boldsymbol{g}_{p} & \text{on } \Gamma_{D}^{d} \end{cases}$$
 (3)

Stokes model:
$$\begin{cases} \nabla p_{S} - \mu \Delta \overline{\boldsymbol{u}}_{S} = \boldsymbol{f} & \text{in } \Omega_{f}, \\ \nabla \cdot \overline{\boldsymbol{u}}_{S} = 0 & \text{in } \Omega_{f}, \\ (\mu \nabla \overline{\boldsymbol{u}}_{S} - p \boldsymbol{I}) \cdot \boldsymbol{n}_{S} = \boldsymbol{g}_{n} & \text{on } \Gamma_{S}^{n}, \\ \overline{\boldsymbol{u}}_{S} = \boldsymbol{g}_{d} & \text{on } \Gamma_{S}^{d}, \end{cases}$$
 (4)

Interface conditions:
$$\begin{cases} (\overline{\boldsymbol{u}}_{S} - \overline{\boldsymbol{u}}_{D}) \cdot \boldsymbol{n}_{S} = 0 \\ p_{S} - p_{D} = \mu \boldsymbol{n}_{S} \cdot \nabla \overline{\boldsymbol{u}}_{S} \cdot \boldsymbol{n}_{S} \\ -\boldsymbol{n}_{S} \cdot \nabla \overline{\boldsymbol{u}}_{S} \cdot \tau = \frac{\alpha}{\sqrt{K}} \overline{\boldsymbol{u}}_{S} \cdot \tau \end{cases}$$
(5)

Analysis in One-dimension

If we consider a simplified one-dimensional case, we assume that $\mathbf{u} = (u(y), 0), \mathbf{f} = (f(y), 0)$. Thus, for the one-domain approach, the problem (2) reduces to:

$$\frac{\partial p}{\partial x} - \frac{d}{dy} \left(\mu \phi_1 \left(\frac{y}{\epsilon} \right) \frac{du}{dy} \right) + \frac{\mu}{K} \phi_2 \left(\frac{y}{\epsilon} \right) u = f(y), \quad y \in (-L, H)$$
$$u(H) = 0, \quad \frac{du}{dy} (-L) = 0$$

Let u_S and u_B be the solutions for y > 0 and y < 0. We consider the asymptotic expansions of u_S in the free fluid region and u_B in porous medium respectively:

$$u_S = u_S^0 + \epsilon u_S^1 + \epsilon^2 u_S^2 + \cdots$$

$$u_B = u_B^0 + \epsilon u_B^1 + \epsilon^2 u_B^2 + \cdots$$

For two-domain approach, we assume that $\overline{\boldsymbol{u}}_S=(\bar{u}_S(y),0)$ in Stokes domain and $\overline{\boldsymbol{u}}_D=(\bar{u}_D(y),0)$ in Darcy domain. Then we suppose that the corresponding solutions \bar{u}_S and \bar{u}_D satisfy:

$$\frac{\partial p}{\partial x} - \mu \frac{d^2 \bar{u}_S}{dy^2} = f(y), \quad 0 < y < H$$

$$\frac{\partial p}{\partial x} + \frac{\mu}{K} \bar{u}_D = f(y), \quad -L < y < 0$$

$$\frac{d\bar{u}_S}{dy} (0^+) = \frac{\sqrt{\frac{\mu_{\text{eff}}}{\mu}}}{\sqrt{K}} \bar{u}_S (0^+)$$

Theorem 1

Let $I_f = (0, H)$, and $I_p = (-L, 0)$, then we have

$$\left\|u_S^0 - \bar{u}_S\right\|_{L^2(I_{\varepsilon})} \leqslant O(K)$$

$$\|u_{B}^{0} - \bar{u}_{D}\|_{L^{2}(I_{p})} \leq O(K) + \left(O\left(K^{\frac{3}{4}}\right) + O\left(K^{\frac{5}{4}}\right)\right) \left(1 - e^{-2L\sqrt{\frac{\mu}{K\mu_{eff}}}}\right)^{\frac{1}{2}}$$

200

Numerical Schemes

We consider the model (2) with Dirichlet boundary Γ_d and Neumann boundary Γ_n such that $\partial\Omega = \Gamma_d \cup \Gamma_n$ as follows:

$$\nabla p - \nabla \cdot \left(\mu \phi_1 \left(\frac{y}{\epsilon}\right) \nabla \boldsymbol{u}\right) + \mu \boldsymbol{K}^{-1} \phi_2 \left(\frac{y}{\epsilon}\right) \boldsymbol{u} = \boldsymbol{f} \quad \text{in } \Omega,$$

$$\nabla \cdot \boldsymbol{u} = 0 \text{ in } \Omega,$$

$$(\mu \phi_1 \nabla \boldsymbol{u} - p \boldsymbol{I}) \cdot \boldsymbol{n} = \boldsymbol{g}_n \quad \text{on } \Gamma_n,$$

$$\boldsymbol{u} = \boldsymbol{g}_d \text{ on } \Gamma_d,$$

where $\mathbf{f} \in (L^2(\Omega))^2$, $g_n \in (L^2(\Gamma_n))^2$, $g_d \in (L^2(\Gamma_d))^2$, $\mathbf{K} = K\mathbf{I}$ with a constant K, and assume that $\epsilon = \varepsilon/H = O(\sqrt{K})$.

Let

$$H_{\Gamma_d}(\operatorname{div},\Omega)=\{oldsymbol{v}\in H(\operatorname{div},\Omega):oldsymbol{v}=0 \text{ on } \Gamma_d\}$$

and

$$L_0^2(\Omega) = \left\{ q \in L^2(\Omega) : \int_{\Omega} q = 0 \right\}$$

The weak formulation of the above problem could be written as:

$$\begin{cases} \operatorname{find}(\boldsymbol{u},p) \in H(\operatorname{div},\Omega) \times L_0^2(\Omega) \\ a(\boldsymbol{u},\boldsymbol{v}) + b(\boldsymbol{v},p) = (\boldsymbol{f},\boldsymbol{v}) + \langle \boldsymbol{g}_n,\boldsymbol{v} \rangle_{\Gamma_n} & \forall \boldsymbol{v} \in H_{\Gamma_d}(\operatorname{div},\Omega) \\ b(\boldsymbol{u},q) = 0 & \forall q \in L_0^2(\Omega) \end{cases}$$

where

$$a(\boldsymbol{u}, \boldsymbol{v}) = (\mu \phi_1 \nabla \boldsymbol{u}, \nabla \boldsymbol{v}) + (\mu \boldsymbol{K}^{-1} \phi_2 \boldsymbol{u}, \boldsymbol{v})$$

and

$$b(\mathbf{v}, p) = -(p, \nabla \cdot \mathbf{v})$$

Numerical Result 1

We consider the one-domain model (2) in the domain

$$\Omega = [0,1] \times [-1,1]$$
 with $\Gamma_n = [0,1] \times \{-1\}$ and $\Gamma_d = \partial \Omega \backslash \Gamma_n$

The transition region is chosen as $\epsilon = \sqrt{K} \to 0$, and the free fluid region and the porous medium region lie in $\Omega_f = [0,1] \times (0,1]$ and $\Omega_p = [0,1] \times [-1,0)$, respectively.

Let
$${m f}=0, {m g}_n=0$$
 and ${m g}_d=\left(egin{array}{c} {m g}_d \\ 0 \end{array}
ight)$ with

$$g_d = \begin{cases} -\frac{1}{2} \left(y^2 - 1 \right) + \left(\frac{1}{2} - K \right) \left(y - 1 \right) / \left(\sqrt{K \phi_p} + 1 \right) & \text{if } y > 0 \\ \Phi(0) e^{y \sqrt{\phi_p / K}} - \frac{K}{\mu} \tanh \left(y \sqrt{\phi_p / K} \right) & \text{if } y \leqslant 0 \end{cases}$$

In this example we use the porosity $\phi_p=0.4$, the viscosity $\mu=1$ and the parameter $\theta=100$ in the functions ϕ_1 and ϕ_2 .

In this example, we apply mixed P2P1-FEM in uniform mesh:

Press Solution

Numerical Result 2

We consider the one-domain model (2) in the domain

$$\Omega = [0,2] \times [0,2] \text{ with } \Gamma_d = [0,2] \times \{2\} \cup \{2\} \times [0,2] \text{ and } \Gamma_n = \partial \Omega \backslash \Gamma_d$$

Let
$$\mathbf{g}_d = \begin{pmatrix} g_d \\ 0 \end{pmatrix}$$
 with $g_d = \frac{y}{2}(y-2)$ on Γ_d and $\mathbf{g}_n = 0$ on Γ_n .

The source term f , porosity ϕ_p , viscosity μ and the parameter θ in functions ϕ_1, ϕ_2 are all chosen as the numberical example 1.

4 D > 4 A > 4 B > 4 B > B = 900

Press Solution

Thanks!

Bibliography

Huangxin Chen and Xiao-Ping Wang *A one-domain approach* for modeling and simulation of free fluid over a porous medium, Journal of Computational Physics 259 (2014) 650-671