Дисклеймер.

Автор не несет ответственности за любой ущерб, причиненный Вам при использовании данного документа. Автор напоминает, что данный документ может содержать ошибки и опечатки, недостоверную и/или непроверенную информацию. Если Вы желаете помочь в развитии проекта или сообщить об ошибке/опечатке/неточности:

 $\operatorname{Git} \operatorname{Hub}$ проекта

Автор в ВК

Содержание

1	Метрические пространства. Определение, примеры	3
2	Сходимость в метрическом пространстве. Фундаментальные последовательности. Полнота метрического пространства	3
3	Открытые и замкнутые множества. Предельные и внутренние точки множества. Замыкание множества	4
4	Принцип сжимающих отображений. Неподвижная точка оператора	4
5	Линейные пространства. Линейно независимая система. Размерность	5
6	Нормированные пространства. Банаховы пространства. Определение, примеры. Сходимость в нормированном пространстве	5
7	Линейные, непрерывные операторы. Норма оператора	6
8	Гильбертово пространство. Ортонормированный базис. Ряд Фурье	6
9	Подпространство Гильбертова пространства. Задача наилучшего приближения в гильбертовом пространстве	6
10	Процесс ортогонализации Грамма-Шмилта	6

Метрические пространства. Определение, примеры 1

Определение 1.1. Пространство X называется метрическим, если $\forall x, y \in X \; \exists ! \rho(x, y) \in \mathbb{R}$, такое, что:

- 1) $\rho(x,y) \geq 0$, при этом $\rho(x,y) = 0 \Leftrightarrow x = y$;
- 2) $\rho(x,y) = \rho(y,x)$ (симметричность);
- 3) $\rho(x,y) \le \rho(x,z) + \rho(y,z)$ (неравенство треугольника); $\forall x, y, z \in X$.

Пример 1.1.

 $X = \mathbb{R}$, тогда $\rho(x, y) = |x - y|$.

 $X = \mathbb{R}^n$, тогда:

- 1) $\rho(x,y) = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$ (сферическая метрика);
- 2) $\rho(x,y) = \max_{i=\overline{1,n}} |x_i y_i|$ (параллелепипедальная);
- 3) $\rho(x,y) = \sum_{i=1}^{n} |x_i y_i|;$ 4) $\rho(x,y) = (\sum_{i=1}^{n} |x_i y_i|^p)^{1/p}.$

Пример 1.2. Пусть X = C[a, b].

- 1) $\rho(f(x), g(x)) = \max_{[a,b]} |f(x) g(x)|$
- 2) $\rho(x,y) = \int_a^b |f(x) g(x)| dx$.

2 Сходимость в метрическом пространстве. Фундаментальные последовательности. Полнота метрического пространства

Определение 2.1. Пусть $\{x^{(k)}\}_{k=1}^{\infty}$ — последовательность элементов в X. И пусть $x^* \in X$. Тогда $x^{(k)} \to x^*$, если $\rho(x^{(k)}, x^*) \xrightarrow{k \to \infty} 0$.

Определение 2.2. Последовательность $\{x^{(k)}\}_{k=1}^{\infty}$ фундаментальна, если для нее выполнен критерий Коши: $\forall \varepsilon > 0 \; \exists N > 0 : \; \forall k, n \geq N \;$ выполняется $\rho(x^{(k)}, x^{(n)}) < \varepsilon$.

Теорема 2.1. Если последовательность сходится, то она фундаментальна.

Доказательство. Рассмотрим $0 \le \rho(x^{(k)}, x^{(n)}) \le \rho(x^{(k)}, x^*) + \rho(x^*, x^{(n)}) \to_{k \to \infty} 0$. Теорема о двух милиционерах.

Определение 2.3. Пространство X — полное, если любая фундаментальная последовательность в нем сходится к элементу этого пространства: У фундаментальной последовательности $\{x^{(k)}\} \in X \; \exists x^* \in X$, такое, что $x^{(k)} \to_{k \to \infty} x^*$.

Пример 2.1. $X = \mathbb{R}$ — полное. $X = \mathbb{Q}$ — не полное, так как $x^{(k)} = (1 + \frac{1}{k})^k \in \mathbb{Q}$ сходится к e, но $e \notin Q$.

Замечание 2.1. Полнота пространства зависит, вообще говоря, от введенной метрики.

Пример 2.2. $X = C[a,b], \, \rho_1(f(x),g(x)) = \max_{[a,b]} |f(x) - g(x)| \, \text{и} \, \rho_2(f(x),g(x)) = \int_a^b |f(x) - g(x)| \, dx$ g(x)|dx. Если рассматривать $\rho_1(f_k(x),g(x)) \to_{k\to\infty} 0 \Rightarrow f_k(x) \rightrightarrows_{k\to0}^{[a,b]} f(x) \Rightarrow f(x) \in X$, но $\rho_2(f_k(x), g(x)) \to_{k \to \infty} 0 \not\Rightarrow f(x) \in X.$

Теорема 2.2. (Бэра) Полное пространство не может быть представлено в виде счетного объединения нигде не плотных множеств.

Вывод 2.1. Полное пространство не может быть счетным.

Если пространство не полное, то его можно пополнить.

Определение 2.4. X^* называется пополнением пространства X, если:

- 1) $X \subset X^*$;
- 2) X всюду плотно в X^* .
- 3) X^* полное.

Операция пополнения эквивалентна опрерации замыкания, но замыкают чем-то известным, а пополняют чем-то новым.

3 Открытые и замкнутые множества. Предельные и внутренние точки множества. Замыкание множества

Определение 3.1. ε -окрестность точки x: $V_{\varepsilon}(x) = \{y \in X : \rho(x,y) < \varepsilon\}$ — шар с центром в точке x и радиусом ε . Также ε -окрестность эквивалентна открытому шару $B_{\varepsilon}(x_0)$.

Определение 3.2. Закрытый шар $\overline{B}_{\varepsilon}(x_0)$: $x: \rho(x,x_0) \leq \varepsilon$.

Определение 3.3. $E \subset X$. x_0 — внутренняя точка, если $B_{\varepsilon}(x_0) \in E$.

Определение 3.4. Открытое множество — множество, состоящее только из внутренних точек.

Определение 3.5. $E \subset X$. x_0 — предельная точка для E, если $\forall \varepsilon > 0$ выполняется $B_{\varepsilon}(x_0) \cap E \neq \varnothing$.

Определение 3.6. Замыкание множества — процесс присоединения к нему всех его предельных точек: $\overline{E} = E \cup \{$ предельные точки $\}$.

4 Принцип сжимающих отображений. Неподвижная точка оператора

Пусть X, Y — два метрических пространства. Пусть ρ_1, ρ_2 — метрики в пространствах X и Y соответственно. И пусть задано отображение $\mathcal{A}: X \to Y \ (\forall x \in X \ \exists y = \mathcal{A}x \in Y)$.

Определение 4.1. Отображение \mathcal{A} называется непрерывным в точке $x_0 \in X$, если $\forall \{x_k\} \in X: x_k \to_{k\to\infty} x_0 \Rightarrow \mathcal{A}x_k \to_{k\to\infty} \mathcal{A}x_0$.

Или, что то же самое: $\forall \varepsilon > 0 \ \exists \delta > 0$, такое, что если $\rho_1(x, x_0) < \delta$, то $\rho_2(\mathcal{A}x, \mathcal{A}x_0) < \varepsilon$.

Предположим далее, что X=Y, то есть $\mathcal{A}:X\to X$ и $\rho_1=\rho_2=\rho$.

Определение 4.2. Точка $x^* \in X$ — неподвижная точка отображения \mathcal{A} , если $\mathcal{A}x^* = x^*$.

Определение 4.3. Отображение $A: X \to X$ называется сжимающим, если $\exists \alpha \in [0,1)$, такая, что $\forall x, y \in X$ верно $\rho(Ax, Ay) \leq \alpha \rho(x, y)$.

Лемма 4.1. \mathcal{A} сжимающее $\Rightarrow \mathcal{A}$ непрерывное на X.

Доказательство. $\forall x_0 \in X, \forall \{x_k\} \in X: x_k \to_{k \to \infty} x_0 \Rightarrow 0 \leq \rho(\mathcal{A}x_k, \mathcal{A}x_0) \leq \alpha \rho(x_k, x_0) \to_{k \to \infty} 0$

Теорема 4.1. (о неподвижной точке, она же Каччапалья-Банаха, она же принцип сжимающих отображений)

Пусть X — полное метрическое пространство, $\mathcal{A}: X \to X$. Тогда у отображения \mathcal{A} $\exists !$ неподвижная точка.

Доказательство. $\forall x_0 \in X$:

$$x_1 = \mathcal{A}x_0;$$

 $x_2 = \mathcal{A}x_1 = \mathcal{A}(\mathcal{A}x_0) = \mathcal{A}^2x_0;$

 $X_k = \mathcal{A}^k x_0;$

Докажем, что эта последовательность является фундаментальной:

 $\forall n > m > 1$

$$\rho(x_{n}, x_{m}) = \rho(\mathcal{A}^{n} x_{0}, \mathcal{A}^{m} x_{0}) \leq \alpha \rho(\mathcal{A}^{n-1} x_{0}, \mathcal{A}^{m-1} x_{0}) \leq \dots \leq \alpha^{m} \rho(\mathcal{A}^{n-m} x_{0}, x_{0}) \leq$$

$$\leq \alpha^{m} \left(\rho(\mathcal{A}^{n-m} x_{0}, \mathcal{A}^{n-m-1} x_{0}) + \dots + \rho(\mathcal{A}^{n-m-1} x_{0}, \mathcal{A}^{n-m-2} x_{0}) + \dots + \rho(\mathcal{A} x_{0}, x_{0}) \right) \leq$$

$$\leq \alpha^{m} \left(\alpha^{n-m-1} \rho(\mathcal{A} x_{0}, x_{0}) + \alpha^{n-m-2} \rho(\mathcal{A} x_{0}, x_{0}) + \dots + \rho(\mathcal{A} x_{0}, x_{0}) \right) \leq$$

$$\leq \alpha^{m} \rho(x_{0}, x_{1}) \left(1 + \alpha + \alpha^{2} + \dots + \alpha^{n-m-1} + \dots \right) = \frac{\alpha^{m} \rho(x_{0}, x_{1})}{1 - \alpha} \rightarrow_{m \to \infty} 0$$

следовательно, последовательность является фундаментальной.

X полное, следовательно, $\exists x^* \in X: \ x_k \to_{k \to \infty} x^*.$ Покажем, что x^* будет неподвижной точкой:

$$\mathcal{A}x^* = \mathcal{A}\lim_{k\to\infty} x_k = (A \text{ сжим, непр}) = \lim_{k\to\infty} \mathcal{A}x^* = \lim_{k\to\infty} x_{x+1} = x^*$$

Докажем, что точка единственная. От противного:

 x^*, y^* — неподвижные точки \mathcal{A} . Тогда:

$$0 \le \rho(x^*, y^*) = \rho(\mathcal{A}x^*, \mathcal{A}y^*) \le \underbrace{\alpha}_{\le 1} \rho(x^*, y^*)$$

To ecte
$$\rho(x^*, y^*) = 0$$
.

Замечание 4.1. В доказательстве содержится алгоритм поиска неподвижной точки. Выберем любую точку, применим к ней несколько раз отображение и предел данной последовательности будет неподвижной точкой.

- 5 Линейные пространства. Линейно независимая система. Размерность
- 6 Нормированные пространства. Банаховы пространства. Определение, примеры. Сходимость в нормированном пространстве

Определение 6.1. Норма — функция $||\cdot||: X \to \mathbb{R}$, удовлетворяющая свойствам:

```
1) ||x|| > 0;
2) ||x|| = 0 \Leftrightarrow x = 0;
3) ||\alpha x|| = \alpha ||x||;
4) ||x + y|| \le ||x|| + ||y||;
где x \in X.
```

Определение 6.2. Нормированное пространство — линейное пространство, на котором введена норма.

Определение 6.3. Банахово пространство — ...

Пример 6.1. Пусть пространство имеет вид:

- 1) C[a,b]: f непрерывна, $||f|| = \max_{x \in [a,b]} |f(x)|$; 2) $C^k[a,b]$: ||f||: $\max_{x \in [a,b]} |f(x)| + \sum_{n=1}^k \max |f^{(n)}(x)|$;
- 3) $L_1[a,b]: f$ интегрируема по Лебегу на $[a,b], ||f|| = \int_a^b |f(x)| dx;$
- 4) $L_p[a,b]: ||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p};$
- 5) $l_p(\mathbb{N}) := \{$ последовательности $x = \{x_n\} : \sum_n |x_n|^p < +\infty\}: ||x||_p = (\sum_n |x_n|^p)^{1/p} < +\infty\}$ $+\infty$.
- 7 Линейные, непрерывные операторы. Норма оператора
- Гильбертово пространство. Ортонормированный базис. 8 Ряд Фурье
- Подпространство Гильбертова пространства. Задача 9 наилучшего приближения в гильбертовом пространстве
- 10 Процесс ортогонализации Грамма-Шмидта