${\bf begindocument/before}$

 ${\it file/translations-basic-dictionary-english.trsl/after}$

Московский Физико-Технический Институт

(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

Кафедра ОБЩей физики Лабораторная работа №4.1.2

Моделирование оптических приборов и определение их увеличения

Студент

Маил МАМЕДОВ группа Б01-006

Цель работы: изучить модели зрительных труб (астрономической трубы Кеплера и земной трубы Галилея) и микроскопа, определить их увеличения.

В работе используются: оптическая скамья, набор линз, экран, осветитель со шкалой, зрительная труба, линейка.

1. Теоретическая часть

Оптические приборы, которые моделируются в данной работе: астрономическая труба Кеплера, земная труба Галилея и микроскоп.

Опишем каждую в общих чертах.

1.1. Микроскоп

Микроскоп состоит из двух собирающих систем линз — объектива и окуляра, расположенных на расстоянии l_{12} друг от друга в трубе, называемой тубусом. Предмет помещается на малом расстоянии перед передним фокусом объектива.

Рис. 1: Ход лучей в микроскопе

Объектив Π_1 даёт действительное перевёрнутое увеличенное изображение A предмета P, которое рассматривается через окуляр Π_2 , действующий как лупа. Мнимое изображение B, даваемое окуляром, располагается на некотором расстоянии d от окуляра. Наводя микроскоп, как и любой другой оптический прибор, на резкость, наблюдатель автоматически устанавливает такое расстояние d, которое удобно для аккомодации глаза.

В микроскопе фокусные расстояния f_1 и f_2 , а также оптический интервал Δ — положительны. Фокусное расстояние f_M всей системы, а с ним и увеличение N_M — отрицательны, так что изображение, получаемое в микроскопе, — перевёрнутое (обратное).

1.2. Зрительные трубы

Зрительные трубы, основными элементами которых, как и в случае микроскопа, являются объектив и окуляр, предназначены для наблюдения удалённых предметов. Уменьшенное обратное изображение A удалённого предмета, даваемое объективом, находится практически в его фокальной плоскости. Мнимое изображение B, даваемое окуляром, располагается на расстоянии d от окуляра. В теории зрительных труб для определённости считается, что глаз аккомодирован на бесконечность. При этом мнимое изображение B должно располагаться в бесконечности, и, следовательно, промежуточное изображение A должно находиться в фокальной плоскости окуляра, а задний фокус объектива должен быть совмещён с передним фокусом окуляра.

Отношение фокусных расстояний может иметь разный знак. Объективом зрительной трубы всегда является собирающая система, для которой переднее фокусное расстояние $f_1>0$. Окуляром трубы Кеплера является собирающая система, переднее фокусное расстояние которой $f_2>0$, так что труба Кеплера даёт перевёрнутое изображение предмета. Окуляром трубы Галилея , напротив, является рассеивающая система, переднее фокусное расстояние которой $f_2<0$, так что труба Галилея даёт прямое изображение. Поэтому бытовые зрительные трубы, бинокли и т. д. делаются по схеме Галилея.

Рис. 2: Ход лучей в зрительной трубе Кеплера

Рис. 3: Ход лучей в зрительной трубе Галилея

Рис. 4: Ход лучей в телескопе

2. Работа и обработка результатов

1. Отцентрируем элементы оптической системы и определим приближенные значения фокусных расстояний линз:

$$f_1 = 9 \text{ cm}, \qquad f_2 = 11 \text{ cm}, \qquad f_3 = 21 \text{ cm}, \qquad f_4 = 28.5 \text{ cm}, \qquad f_5 = -10 \text{ cm}$$

2. Определим точные значения фокусных расстояний линз:

$$f_1 = 8.5 \text{ cm}, \qquad f_2 = 11 \text{ cm}, \qquad f_3 = 19.5 \text{ cm}, \qquad f_4 = 28 \text{ cm}$$

Для рассеивающей линзы по формуле $f = l - a_0$, измерив l:

$$l = 15.6 \text{ cm}, \quad a_0 = 25 \text{ cm} \quad \Rightarrow \quad f_5 = -9.4 \text{ cm}$$

3. Изучение телескопа Кеплера.

Определим размер изображения h_1 одного миллиметра шкалы осветителя в делениях окулярной шкалы зрительной трубы без телескопа. $h_1 = k \tan \alpha_1 \approx k \alpha_1$, где k – некоторый коэффициент, характеризующий увеличение зрительной трубы, α_1 – угловой размер изображения миллиметрового деления шкалы осветителя, наблюдаемого через коллиматор.

$$h_1 = \frac{15}{20}$$
 дел

Рассчитаем увеличение исследуемой модели телескопа по формуле:

$$N_T = -\frac{f_4}{f_2} = -\frac{28}{11} = -2.55 \pm 0.12$$

Определим размер изображения h_2 одного миллиметра шкалы осветителя в делениях окулярной шкалы зрительной трубы при наблюдении через телескоп. $h_2 = k \tan \alpha_2 \approx k\alpha_2$, где α_2 – угловой размер изображения миллиметрового деления шкалы осветителя, наблюдаемого через коллиматор.

$$h_2 = \frac{2.0}{1} = 2$$
 дел

Рассчитаем увеличение исследуемой модели телескопа по формуле:

$$N_T = \frac{\alpha_1}{\alpha_2} = -\frac{h_2}{h_1} = -\frac{2 \cdot 20}{15} = -2.67 \pm 0.22$$

Измерим диаметр оправы объектива и диаметр изображения этой оправы в окуляре:

$$D_1 = 3.7 \text{ cm}, \qquad D_2 = 1.4 \text{ cm}$$

Рассчитаем увеличение исследуемой модели телескопа по формуле:

$$N_T = -\frac{D_1}{D_2} = -2.64 \pm 0.20$$

4. Изучили модель трубы Галилея.

Аналогично:

$$h_1=rac{15}{20}$$
 дел $h_2=rac{2.3}{1}$ дел $N_T=-rac{f_4}{f_5}=-rac{28}{9.4}=-2.98\pm0.17$ $N_T=-rac{lpha_1}{lpha_2}=-rac{h_2}{h_1}=rac{2.3\cdot20}{15}=-3.07\pm0.24$

5. Создадим модель микроскопа с увеличением $N_{M}=5$.

Рассчитали необходимый оптический интервал Δ и длину тубуса l_{12} по формулам:

$$N_M = N_1 \cdot N_2 = -\frac{\Delta}{f_1} \cdot \frac{L}{f_2}$$
 $\Delta = l_{12} - f_1 - f_2 = 14.3 \text{ cm}$ $l_{12} = 39.8 \text{ cm}$

Считаем L = 25 см.

$$h_2 = \frac{3.2}{1}$$

- неточно, т.к. клетка полностью не влезала в видимое пространство

Измерили величину изображения h_2 миллиметрового деления предметной шкалы в делениях окулярной шкалы зрительной трубы и рассчитали увеличение по формуле

$$N_M = -\frac{h_2}{h_1} \frac{L}{f_3} = \frac{3.2 \cdot 20 \cdot 25}{15 \cdot 19.5} = 5.47 \pm 0.79$$

3. Вывод

Полученные значения увеличений систем достаточно неплохо согласуются между собой и различные методы дают очень близкие значения одних и тех же величин. Какие из методов оказались точнее видно из полученных ошибок в величинах.