MSO201A (Quiz 2)

Time: 40 minutes. Maximum Points = 13.

> Name: Roll Number:

1. Let X and Y be independently and identically distributed standard normal random variables $(f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, x \in \mathbb{R}$ is the probability density function of the standard normal random variable). Find the probability density function of $\frac{X}{|Y|}$.

Solution:

Let us denote $Z = \frac{X}{|Y|}$ Note that $Z = \frac{X}{|Y|}$

Since Y~ N(0,1), this implies that Y2/1 ~ X2 distribution with 1

degree of forcedom.

So, using this fact along with that X is indep of Y, by definition, $Z \sim t$ distribution with 1 degree of Hence, $f_Z(z) = \frac{1}{\pi(1+\overline{J}^2)}$, $\overline{J} \in \mathbb{R}$. forcedom

Probability density for of 2

2. Let $\{X_n\}_{n\geq 1}$ be i.i.d sequence of random variables with normal distribution having mean = μ and variance = 1. Let c be a function of μ such that $\frac{1}{(n-1)} \sum_{i=1}^{n} X_i^2$ converges to c in probability as $n \to \infty$. Find c.

Note that
$$\frac{1}{n-113} \sum_{i=1}^{n} x_i^2$$

$$= \left(\frac{1}{n} \sum_{i=1}^{n} x_i^2\right) \times \left(\frac{m}{n-113}\right) \longrightarrow (*)$$

Now, observe that $\frac{1}{n} \sum_{i=1}^{n} x_i^2 \xrightarrow{P} E(x_i^2) = u^2 + 1$ as $n \to \infty$ by Weak law of large number.

1 points Further, observe that $\frac{n}{n-113} \rightarrow 1$ as $n \rightarrow \infty$

Hence, $(R) \rightarrow (u^2+1) \times 1 = u^2+1$ 2 points $n \rightarrow \infty$ in perobability. Therefore, $C = u^2+1$.