Homework 02 - Steve Mazza

Table of Contents

Problem 1]
Problem 2	1
Problem 3	
Problem 4	

Problem 1

```
In wolframalpha.com: 38+(120-38)e^{(-0.45*t)} for t=0..3
```

```
close all
clc
clear all
% declare variables prior to use
Tf = 0;
               % result
Tc = 38;
               % temperature of the closed container
Ti = 120;
               % temperature of the soda at t=0
k = 0.45;
               % constant (given)
t = 3;
                % duration of experiment
% output result to user
Tf = Tc + (Ti - Tc) * exp(-k * t);
fprintf(...
    '\nThe temperature of the soda after %d hours is %f degrees F.\n',...
    t, Tf);
```

The temperature of the soda after 3 hours is 59.257701 degrees F.

Problem 2

```
% find and zero all elements > 20.
R(find(R > 20)) = 0;
if (DEBUG)
    disp(R)
end
% find and zero all remaining even numbers.
R(find(mod(R,2) == 0)) = 0;
if (DEBUG)
    disp(R)
end
% find the largest remaining element(s) and print their indices
% NOTE: my method fails to find multiple matching values, only returning
        the first.
% Start by finding the latgest value of the matrix (converted to a vector).
[max_value, max_value_index] = max(R(:));
% Now convert the index to a row/column value pair.
[i,j] = ind2sub(size(R),max_value_index);
fprintf(...
    '\nThe largest value remaining in R (%d) is located at (%d,%d).\n',...
    max_value,i,j);
```

The largest value remaining in R (19) is located at (4,1).

Problem 3

```
close all
clc
clear all
% user configurable variables
               % number of years
t = 17;
P = 5000;
                % principal
r = 0.085;
                % annual interest rate
n = 1;
                % number of times per year interest is compounded
% First, calclate the balance of the 2nd account after 17 years.
B = P * (1+(r/n))^{(n*t)};
fprintf(...
    '\nThe balance of the 2nd account after %d years is: $%.2f\n',...
% Now change our compounding from yearly to monthly.
n = 12;
% Next we use the time value of money to find t given present and future
        value.
t = (\log(B/P))/(\log(1+(r/n)))/12;
% Convert t from a decimal value to years/months.
```

```
years = fix(t);
months = ceil((t - years) * 12);

% Output result to user.
% NOTE: strcat() is used for output legibility.
fprintf(strcat('The balance of the 1st account will reach ', ...
    ' $%.2f in %d years and %d months.\n'), B,years,months);

The balance of the 2nd account after 17 years is: $20011.31
The balance of the 1st account will reach $20011.31 in 16 years and 5 month
```

Problem 4

```
close all
clc
clear all
DEBUG = 0;
                         % used for testing purposes
% Create initial vector.
n = [1 \ 10 \ 100 \ 500 \ 1000 \ 2000 \ 4000 \ 8000];
if (DEBUG)
    disp(n')
end
% Compute new vector using element-wise operations.
y = (1 + 1 ./ n).^n;
if (DEBUG)
    disp(y')
end
% Compute the difference vector.
e = exp(1);
                      % strictly for convenience
d = abs(y-e)/e*100;
if (DEBUG)
    disp(d')
end
% Build output matrix.
m = [n' y' d'];
% Output results to user.
fprintf('\n\n');
format shortq;
disp(m);
                                           26.424
                     1
                    10
                             2.5937
                                           4.5815
                             2.7048
                   100
                                          0.49546
                   500
                             2.7156
                                         0.099817
                  1000
                             2.7169
                                         0.049954
```

2000	2.7176	0.024989
4000	2.7179	0.012497
8000	2.7181	0.0062493

Published with MATLAB® R2013a