Programmering B – Kabeltræ Opgave

Rev. A

Dato: 22-Sep-2024

Af: Peter Rex la Cour Silvernale, Ribe Katedralskole

Indledning

Denne opgave har som overordnet mål at bestemme den længste 'gren' i et såkaldt 'kabeltræ'.

Formålet med dette projekt er, at lave de grundlæggende arbejde i forhold til en såkaldt 'impedans-beregning' – der handler om at bestemme vekselstrømsmodstanden i et vekselstrømskredsløb. I denne forbindelse, handler det om en 230 VAC-installation ombord på en offshore platform – specifikt en bestemt sikring og afbryder, hvor den tilsluttede belysningsinstallation skal sikres mod den situation, at sikringen ikke afbryder i tilfælde af en kortslutning – men i stedet fortsætter med at forsyne kredsløbet med energi på grund af en for kraftigt dimensioneret sikring.

Baggrund

Selve kredsløbet er benævnt =BGA10 EA363 og består af følgende komponenter:

- En centralt placeret kombineret Afbryder og Sikring benævnt =BGA10 EA363-XD01
- I alt 14 kabel-forbindelser mellem forskelligt udstyr (Kolonne B i regnearket
- I alt 14 lysarmaturer (Kolonne R i regnearket)
- Hver kabelforbindelse er trukket med en given kabelspecifikation og har en given længde (Kolonne G i regnearket)

Eksempelvis

Det første kabel – benævnt =BGA10 EA363-WD01 – starter ved afbryderen =BGA10 EA363-XD01 og forbinder lysarmaturet =BGA10 EA363-EA01 til kredsløbet med et 14 meter langt kabel.

Bemærk, at nogle lysarmaturer er en såkaldt 'Junction Box' – det vil sige et samlingspunkt, hvorfra der sker en afgrening.

Projektet

Der skal nu fremstilles et Python program, der indlæser data fra det leverede regneark og herefter beregner den 'længste gren' i det kabetræ, der er beskrevet.

Det vil sige, at hele 'træet' skal indlæses, hvorefter det gennemsøges for den længste 'vej' fra afbryderen =BGA10 EA363-XD01 til det lysarmatur, der sidder som 'blad' på denne gren.

Organisering

Der dannes grupper med 2 personer i hver og gruppen samarbejder om problemløsningen.

Der skal benyttes en digital platform – eks. GitHub – som fælles arbejdsområde for gruppens medlemmer.

Tid til rådighed

Denne opgave er stillet som en 'ekstra' opgave i forhold til den almindelige undervisning i Programmering. Der er således ingen forudbestemt tidsmæssig ramme for denne opgave

Krav til projektets løsning

Der skal udarbejdes en 'metodebeskrivelse' – også benævnt en synopsis, hvori programmets virkemåde og benyttede data beskrives i et sprog og med en detaljeringsgrad, der gør at en fagperson kan læse det og genskabe arbejdsmetoden på baggrund af synopsis – og altså ikke på baggrund af koden – men på baggrund af synopsis alene.

Det fremstillede program skal:

- 1. Indlæse Excel-filen i sit 'native' format ved hjælp af et passende modul
- 2. Udskrive en overskuelig model af 'træet' gerne grafisk og denne model skal kunne udskrives og lagres til brug for dokumentation
- 3. Udskrive listen, der angiver den 'længste' vej i træet.

Alle hjælpemidler er tilladt.

Figur 1 - Demonstration af Kabeltræ for BGA10 EA363

Data til brug for opgaven

Der udleveres et Excel-ark med data – Specifikt Kaskasi BGA10-EA263 kredsløbet.

Såfremt det ønskes, kan der leveres yderligere data.

Peter Rex er til rådighed i de skemalagte lektioner i forhold til vejledning.

Rigtig god fornøjelse 😊