MATH 611 PROBLEM SET 1 (DUE 9/4)

HIDENORI SHINOHARA

Exercise 0.1. (Exercise 4, Chapter 0) A deformation retraction in the weak sense of a space X to a subspace A is a homotopy $f_t: X \to X$ such that $f_0 = \operatorname{Id}, f_1(X) \subset A$, and $f_t(A) \subset A$ for all t. Show that if X deformation retracts to A in this weak sense, then the inclusion $A \to X$ is a homotopy equivalence.

Proof. Let $i: A \to X$ denote the inclusion. Let $F: X \times I \to X$ denote the associated map $(x,t) \to f_t(x)$. Then F is a continuous function by the definition of a homotopy.

Let $f: X \to A$ be defined by $f(x) = F(x, 1) = f_1(x)$. This definition makes sense because $f_1(X) \subset A$. We claim that $f_1 \circ i \simeq \operatorname{Id}_A$ and $i \circ f_1 \simeq \operatorname{Id}_X$.

Consider $G: A \times I \to A$ such that G(a,t) = F(a,t) for all $(a,t) \in A \times I$. This definition makes sense because $f_t(A) \subset A$ for all t.

Then G is a homotopy in A between $f \circ i$ and Id_A because:

- G is a restriction of F, so G is continuous.
- $\forall a \in A, G(a, 0) = F(a, 0) = f_0(a) = \mathrm{Id}_X(a) = \mathrm{Id}_A(a).$
- $\forall a \in A, G(a, 1) = F(a, 1) = f(a) = f(i(a)) = (f \circ i)(a).$

Therefore, $f \circ i \simeq \mathrm{Id}_A$.

F is a homotopy between f_0 and f_1 .

- We are given that $f_0 = \mathrm{Id}_X$.
- For any $x \in X$, $(i \circ f)(x) = i(f(x)) = f(x) = f_1(x)$, so $i \circ f = f_1$.

Therefore, F is a homotopy between Id_X and $i \circ F$, so $i \circ f \simeq \mathrm{Id}_X$.

In conclusion, i is indeed a homotopy equivalence.

Exercise 0.2. (Exercise 9, Chapter 0) Show that a retract of a contractible space is contractible.

Proof. Let X be a contractible space. Then Id_X is homotopic to a constant map. This implies the existence of a fixed point $p \in X$ and a continuous function $F: X \times I \to X$ such that

- $\forall x \in X, F(x,0) = x$,
- $\bullet \ \forall x \in X, F(x,1) = p.$

Let $A \subset X$ be a retract of X, and let $r: X \to A$ denote a retraction. In other words, r(X) = A and $r \mid_A = \mathrm{Id}_A$. Let $G: A \times I \to A$ be the restriction of $r \circ F$ to $A \times I$. This makes sense because F maps $A \times I$ into X, and r maps X into A. We claim that G is a homotopy between Id_A and the constant map $e_{r(p)}$ such that $e_{r(p)}(a) = r(p)$ for all $a \in A$.

- $r \circ F$ is continuous since it is a composition of continuous functions. G is a restriction of a continuous function, so G is continuous
- $G(a,0) = r(F(a,0)) = r(a) = a = \mathrm{Id}_A(a)$.
- $G(a,1) = r(F(a,1)) = r(p) = e_{r(p)}(a)$.

Therefore, G is indeed a homotopy between Id_A and the constant map at r(p). Since the identity map is homotopic to a constant map, A is contractible.