THI Übungsblatt 1 [Lösungen]

Christoph Bühler

October 6, 2019

Aufgabe 1:

In dieser Aufgabe betrachten wir aussagenlogische Formeln über die atomaren Formeln $Var = \{A, B, C, D\}$. Beachten Sie dabei die formale Definition der Syntax der Aussagenlogik aus der Vorlesung.

- (a) Entscheiden Sie ob die folgenden Formeln syntaktisch korrekte aussagenlogische Formeln für die atomaren Formeln $Var = \{A, B, C, D\}$ sind und begründen Sie ihre Hypothese.
 - (i) $(((A \land \neg B) \lor \neg D) \lor C)$
 - (ii) $(A \wedge C \vee (\neg \wedge BD))$
 - (iii) $(A \to B \to (C \land D))$
 - (iv) $(A \lor (B \to \neg (D \lor C)))$

Aufgabe 2:

. . .

Aufgabe 3:

...

Aufgabe 4:

Beweisen Sie (i) mittels Wahrheitstafel und (ii) mittels Umformungen auf Basis des Ersetzungssatzes und der in der Vorlesung präsentieren Äquivalenzen, dass die folgenden Formeln semantisch äquivalent sind:

$$\underbrace{A \wedge (C \vee D \vee \neg E)}_{\text{und}}$$

$$\underbrace{(A \wedge C) \vee (A \wedge D) \vee (A \wedge \neg E)}_{G}$$

(i) Wahrheitstafel

A	С	D	Е	\mathbf{F}	$A \wedge C$	$A \wedge D$	$A \wedge \neg E$	G
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0
0	1	1	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0
1	0	0	0	1	0	0	1	1
1	0	0	1	0	0	0	0	0
1	0	1	0	1	0	1	1	1
1	0	1	1	1	0	1	0	1
1	1	0	0	1	1	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	1	1	1	1	1
1	1	1	1	1	1	1	0	1

 $2^4 = 16$ Möglichkeiten für Argumente.

(ii) Umformungen

$$(A \land C) \lor (A \land D) \lor (A \land \neg E) \to A \land (C \lor D \lor \neg E)$$

Welche Methode erscheint Ihnen besser geeignet? Die zweite Methode.

Aufgabe 5:

Ist die folgende Aussagenmenge widerspruchsfrei?

- 1. Wenn ein Bier zu lange offen steht, dann trinke ich es nicht.
 - "Ein Bier steht zu lange offen." \rightarrow "Ich trinke es nicht."
- 2. Wenn ich kein Bier trinke, dann kann ich Autofahren.
 - "Ich trinke kein Bier." \rightarrow "Ich kann Autofahren."
- 3. Ich kann nicht Autofahren.
 - "Ich kann nicht Autofahren."
- 4. Das Bier war zu lange offen.
 - "Das Bier war zu lange offen."

Die Aussagenmenge ist widerspruchsfrei.

Aufgabe 6:

Formaliseren Sie folgende Sätze mittels Aussagenlogik und überprüfen Sie, ob der Schluss von (1),(2),(3) auf (4) korrekt ist.

- 1. Wenn ich schlafe, dann träume ich.
 - "Ich schlafe." \rightarrow "Ich träume."
- 2. Wenn ich esse, dann schlafe ich nicht.
 - "Ich esse." $\rightarrow \neg$ "Ich schlafe."
- 3. Ich träume nicht.
 - "Ich träume nicht."
- 4. Ich träume nicht und ich esse oder lerne.
 - ¬ "Ich träume." ∧ ("Ich esse." ∨ "Ich lerne.")

Schluss: "Ich lerne."