In [2]:

```
#importing required libraries
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder

#reading the dataset
df = pd.read_csv("output.csv")
df.head()
```

Out[2]:

	age	job	marital	education	smoker	monthlyincome	houseowner	loan	contact
0	30	unemployed	married	primary	no	6787	no	no	cellphone
1	33	services	married	secondary	no	9789	yes	yes	cellphone
2	35	services	single	Graduate	no	6350	yes	no	cellphone
3	59	blue-collar	married	secondary	no	5000	yes	no	unknown
4	36	self- employed	married	Graduate	no	5307	yes	no	cellphone
4									•

In [3]:

```
#Label encoding for categorical variables
labelencoder = LabelEncoder()
df['job'] = labelencoder.fit_transform(df['job'].astype(str))
df['marital'] = labelencoder.fit_transform(df['marital'].astype(str))
df['education'] = labelencoder.fit_transform(df['education'].astype(str))
df['smoker'] = labelencoder.fit_transform(df['houseowner'].astype(str))
df['loan'] = labelencoder.fit_transform(df['loan'].astype(str))
df['houseowner'] = labelencoder.fit_transform(df['houseowner'].astype(str))
df['contact'] = labelencoder.fit_transform(df['contact'].astype(str))
df['target_buy'] = labelencoder.fit_transform(df['target_buy'].astype(str))
df.head()
```

Out[3]:

	age	job	marital	education	smoker	monthlyincome	houseowner	loan	contact	MOD	mo
0	30	11	1	1	0	6787	0	0	0	79	
1	33	8	1	2	1	9789	1	1	0	220	
2	35	8	2	0	1	6350	1	0	0	185	
3	59	1	1	2	1	5000	1	0	2	226	
4	36	7	1	0	1	5307	1	0	0	341	
4											-

```
In [4]:
```

```
#data separation
features = df.iloc[:,:-1].values
labels = df.iloc[:,-1].values
print("Features\n",features[:5,:],'\n')
print("Labels\n",labels[:5])
Features
                                                             79 6915]
 [[
      30
            11
                   1
                         1
                               0 6787
                                            a
                                                  a
                                                        0
     33
            8
                  1
                        2
                              1
                                 9789
                                           1
                                                 1
                                                       0
                                                           220 10049]
 [
 35
            8
                  2
                        0
                                                           185
                              1
                                 6350
                                           1
                                                 0
                                                       0
                                                                6587]
 59
            1
                  1
                        2
                              1
                                 5000
                                           1
                                                 0
                                                       2
                                                           226
                                                                5193]
            7
                  1
                                                           341
 36
                        0
                              1
                                 5307
                                           1
                                                 0
                                                       0
                                                                5326]]
Labels
 [1\ 1\ 1\ 1\ 1]
In [5]:
#onehotencoding
onehotencoder = OneHotEncoder(categorical_features = [1])
features = onehotencoder.fit_transform(features).toarray()
features = features[:,1:]
                                     #avoiding the dummy variable trap
onehotencoder = OneHotEncoder(categorical features = [13])
features = onehotencoder.fit_transform(features).toarray()
features = features[:,1:]
                                     #avoiding the dummy variable trap
onehotencoder = OneHotEncoder(categorical_features = [15])
features = onehotencoder.fit_transform(features).toarray()
features = features[:,1:]
                                     #avoiding the dummy variable trap
onehotencoder = OneHotEncoder(categorical_features = [22])
features = onehotencoder.fit transform(features).toarray()
features = features[:,1:]
                                     #avoiding the dummy variable trap
print(features[0,:])
  0.00000000e+00
                    0.00000000e+00
                                     1.00000000e+00
                                                       0.00000000e+00
   0.00000000e+00
                    1.00000000e+00
                                      0.00000000e+00
                                                       0.00000000e+00
   0.00000000e+00
                    0.0000000e+00
                                      0.00000000e+00
                                                       0.0000000e+00
   0.00000000e+00
                    0.0000000e+00
                                      0.0000000e+00
                                                       0.00000000e+00
   0.00000000e+00
                    1.00000000e+00
                                      0.0000000e+00
                                                       3.00000000e+01
   0.00000000e+00
                    6.78700000e+03
                                      0.0000000e+00
                                                       0.00000000e+00
   7.90000000e+01
                    6.91500000e+03]
In [6]:
#splitting the dataset into train and test set
x_train, x_test, y_train, y_test = train_test_split(features, labels, test_size = 0.3, rand
print('x_train shape: ',x_train.shape)
print('x_test shape: ',x_test.shape)
print('y train shape: ',y train.shape)
print('y_test shape: ',y_test.shape)
x train shape:
                (3150, 26)
x_test shape:
                (1350, 26)
y_train shape:
                (3150,)
                (1350,)
y_test shape:
```

In []:						
In []:						