הפקולטה להנדסת חשמל הטכניון - מכון טכנולוגי לישראל 046195 - מערכות לומדות אביב תשעייט (2019)

: 4 תרגיל בית

אופטימיזציה, פרספטרון, עצים

11.06.19 : <u>תאריך הגשה</u>

מוריאל בן משה 300546172, דניאל אנגלסמן 300546173

פרספטרון

שאלה 1

.t א. הנחיה כל האיטרציות עבור השתמש בטור הנחיה ($\left\langle w^{*},w^{(t+1)}\right\rangle \geq t$ א. הוכח כי

$$\left\|w^{(t+1)}\right\|^2 \leq \left\|w^{(t)}\right\|^2 + R^2$$
 הוכח כי $R = \max_i \left\|x_i\right\| :$ ב. נסמן

$$\left\|w^{(t+1)}\right\|^2 \le tR^2$$
 ג. הראה כי מתקיים

1

1.1

Let dot product satisfy $y_i\langle w^*,\ x_i\rangle \geq 1,$ and the subtraction :

$$\langle w^*, w^{t+1} \rangle - \langle w^*, w^t \rangle = \langle w^*, w^{t+1} - w^t \rangle$$
 Hence,
$$\langle w^*, w^{t+1} \rangle = \langle w^*, w^{t+1} - w^t \rangle + \langle w^*, w^t \rangle$$

We'll take t = [1, t] to be the number of iterations until reaching convergence :

$$\langle w^*, w^{t+1} \rangle = \left(\langle w^*, w^{t+1} - w^t \rangle + \langle w^*, w^t \rangle \right)_{1:t} = (1.1)$$

$$= \left(\langle w^*, w^2 - \mathscr{A} \rangle + \langle w^*, \mathscr{A} \rangle \right)_{t=1} + \left(\langle w^*, w^3 - \mathscr{A} \rangle + \langle w^*, \mathscr{A} \rangle \right)_{t=2} + \dots$$

$$\dots + \left(\langle w^*, w^{t+1} - \mathscr{A} \rangle + \langle w^*, \mathscr{A} \rangle \right)_{t=t} = \sum_{t=2}^{t+1} \langle w^*, w^t \rangle = \sum_{t=1}^{t} \langle w^*, w^{t+1} \rangle \ge \underbrace{\sum_{t=1}^{t} 1 = t}_{t=1}$$

1.2

Express the norm function such as (Recall - $x_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$):

$$\|w^{t+1}\|^{2} = \|w^{t} + y_{i}x_{i}\|^{2} = \langle w^{t} + y_{i}x_{i}, w^{t} + y_{i}x_{i} \rangle = (w^{t})^{T}w + 2y_{i}w^{t}x_{i} + (y_{i}x_{i})^{T}(y_{i}x_{i})$$

$$y_{i}^{2} = \{-1, 1\}^{2} = 1 \quad \forall i \quad \Rightarrow \quad \|w^{t}\|^{2} + 2\langle w^{t}, y_{i}x_{i} \rangle + \|x_{i}\|^{2}$$

$$y_{i}\langle w^{t}, x_{i} \rangle \leq 0, \quad \|x_{i}\|^{2} \Leftrightarrow \max\|x_{i}\| \equiv R \quad \Rightarrow \quad \|w^{t+1}\|^{2} \leq \underline{\|w^{t}\|^{2} + R^{2}} \quad (1.2)$$

1.3

Using the previous proof recursively:

: ברצוננו להוכיח שהאלגוריתם מתכנס ל- w^* , כלומר שמתקיים

$$\cos \theta_{t+1} = \frac{\left\langle w^*, w^{(t+1)} \right\rangle}{\left\| w^* \right\|_2 \left\| w^{(t+1)} \right\|_2} \xrightarrow{t \to \infty} 1$$

ד. הסבר במילים את המשמעות הגאומטרית של תנאי זה.

1.4

In the Euclidean space, dot (\subset inner) product is defined as the product of their norms by the cosine angle between them - $\cos(w^*, w^{t+1}) = \cos\theta_{t+1}$. Therefore, vectors pointing the same angle will perform similar classification due to $(y_i = \{\pm 1\})$.

(1.4)

$$B = \min\{\|w\| : \forall 1 \le i \le m \ y_i \langle w, x_i \rangle \ge 1\}$$
 נסמן:

 ${
m B}$ ונסמן את ${
m w}^*$ להיות הוקטור אשר משיג את המינימום של

- ה. חבר את הסעיפים הקודמים יחדיו. מה החסם התחתון שמצאתם על פים יחדיו. מה. חבר את הסעיפים הקודמים יחדיו. מה החסם העליון הטריוויאלי על $\cos\theta_{t+1}$ י
- ו. הסבר איך החסמים שהוכחתם מוכיחים את התכנסות האלגוריתם. מצא חסם על מספר האיטרציות עד להתכנסות.

1.5

$$\cos \theta_{t+1} = \frac{\langle w^*, w^{t+1} \rangle}{\|w^*\|_2 \|w^{t+1}\|_2} \le \frac{t}{B \sqrt{tR^2}} = \frac{\sqrt{t}}{BR} \quad \Rightarrow \quad \frac{\sqrt{t}}{BR} \le \underline{\frac{\cos \theta_{t+1}}{BR}} \le 1$$
 (1.5)

1.6

Convergence is obtained for monotonic increasing t index, such that :

$$\frac{\sqrt{t}}{BR} \le 1 \quad \Rightarrow \quad t \le (BR)^2 \tag{1.6}$$

Using the entropy criterion for all H(S) and each $H(S \mid prop.)$ of the samples :

$$\hat{p}_j = \frac{1}{N} \sum_{k=1}^N I\{d_k = c_j\} = \frac{4}{8}$$

$$H(S) = -\sum_j \hat{p}_j \log_2(\hat{p}_j) = -\frac{1}{2} \log_2(\frac{1}{2}) - \frac{1}{2} \log_2(\frac{1}{2}) = 1$$

Let us concentrate the data, ignoring the *Sometimes* option when calculating:

ID	Family Heart attack events	Male	Smokes	Exercises	Result (Heart Attack)		Inc	lex	
1	Yes	Yes	No	Yes	No		Yes	No	Some.
2	Yes	Yes	Yes	No	Yes	Yes			
3	No	No	Yes	No	No	No			
4	No	Yes	Sometimes	Yes	No	Some.			
5	Yes	No	Yes	Yes	Yes				
6	No	No	Yes	Yes	No				
7	Yes	No	Sometimes	No	Yes				
8	No	Yes	Yes	Yes	Yes				

#	His	tory	Σ_1	Male Σ_2		Σ_2	Smo	okes	Σ_3	Exer	cises	Σ_4
Yes	1	3	4	3	1	4	3	2	5	2	3	5
No	1	3	4	1	3	4	0	1	1	2	1	3
Some.	0	0	0	0	0	0	1	1	2	0	0	0
						P	(j)					
#	Hist	tory	Σ/N_j	Ma	ale	Σ/N_j	Smo	okes	Σ/N_j	Exer	cises	Σ/N_j
Yes	0.25	0.75	0.5	0.75	0.25	0.5	0.6	0.4	0.625	0.4	0.6	0.625
No	0.25	0.75	0.5	0.25	0.75	0.5	0	1	0.125	0.6667	0.3333	0.375
Some.	0	0	0	0	0	0	0.5	0.5	0.25	0	0	0
#	Hist	tory	<u>ΣH_</u> 1j	Ma	ale	ΣH_2 j	Smo	okes	<u>ΣH_</u> 3j	Exer	cises	<u>ΣH_4j</u>
Yes	0.500	0.311	0.811	0.311	0.500	0.811	0.442	0.529	0.971	0.529	0.442	0.971
No	0.500	0.311	0.811	0.500	0.311	0.811	0.000	0.000	0.000	0.390	0.528	0.918
Some.	0.000	0.000	0.000	0.000	0.000	0.000	0.500	0.500	1.000	0.000	0.000	0.000
H(S_j)		0.8113		0.8113			0.6068			0.9512		
H-ΔH		0.1887			0.1887		0.3932		0.0488			

The optimal property (= smoke) is the one that maximizes $\Delta H(S) = H(S) - H(S|A)$.

Calculating the next branch based on the smokes property:

$$\hat{p}_j = \frac{1}{N} \sum_{k=1}^N I\{d_k = c_j\} = \frac{3}{5}$$

$$H(S) = -\sum_j \hat{p}_j \log_2(\hat{p}_j) = -\frac{3}{5} \log_2(\frac{3}{5}) - \frac{2}{5} \log_2(\frac{2}{5}) = 0.971$$

ID	Family Heart attack events	Male	Exercises	Result (Heart Attack)			
2	Yes	Yes	No	Yes		Yes	No
3	No	No	No	No	Yes		
5	Yes	No	Yes	Yes	No		
6	No	No	Yes	No			
8	No	Yes	Yes	Yes			

As previously seen, when person does not smoke, there's no correlation to cancer. Therefore, we get maximal Entropy and no further split is needed (= criterion is reduced):

#	His	tory	Σ_1	Ma	ale	Σ_2	Exer	cises	Σ_4	
Yes	2	0	2	2	0	2	2	1	3	
No	1	2	3	1	2	3	1	1	2	
		P(j)								
#	His	tory	Σ/N_j	Ma	ale	Σ/N_j	Exercises		Σ/N_j	
Yes	1	0	0.4	1	0	0.4	0.6667	0.3333	0.6	
No	0.3333	0.6667	0.6	0.3333	0.6667	0.6	0.5	0.5	0.4	
#	His	tory	Σ H_1j	Ma	ale	Σ H_2j	Exer	cises	<u>ΣH_4j</u>	
Yes	0.000	0.000	0.000	0.000	0.000	0.000	0.390	0.528	0.918	
No	0.528	0.390	0.918	0.528	0.390	0.918	0.500	0.500	1.000	
H(S_j)	0.5510				0.5510			0.9510		
Н-ДН	0.4200			0.4200			0.0200			

Now we can see that History (Family heart attack) and Male gained the same maximal entroy ($\Delta H(S|A)$). Both exhibit maximal entropy at the Yes-Yes condition, meaning that no further split is needed. Thus we'll reduce each of them and check the next branches:

ID	Male	Exercises	Result (Heart
			Attack)
3	No	No	No
6	No	Yes	No
8	Yes	Yes	Yes

#	Ma	ale	Σ_2	Exer	cises	Σ_4	
Yes	1	0	1	1	1	2	
No	0	2	2	0	1	1	
			P	(j)			
#	Male		Σ/N_j	Exer	cises	Σ/N_j	
Yes	1	0	0.2	0.5	0.5	0.4	
No	0	1	0.4	0	1	0.2	
#	Ma	ale	ΣH_2j	Exer	cises	ΣH_4j	
Yes	0.000	0.000	0.000	0.500	0.000	0.500	
No	0.000	0.000	0.000	0.000	0.000	0.000	
H(S_j)		0.0000		0.2000			
Η-ΔΗ		0.9710		0.7710			

ID	Family Heart attack events	Exercises	Result (Heart Attack)	
3	No	No	No	
5	Yes	Yes	Yes	
6	No	Yes	No	

#	His	tory	Σ_2	Exer	cises	Σ_4	
Yes	1	0	1	1	1	2	
No	0	2	2	0	1	1	
			Р	(j)			
#	Hist	History		Exer	cises	Σ/N_j	
Yes	1	0	0.2	0.5	0.5	0.4	
No	0	1	0.4	0	1	0.2	
#	Hist	tory	Σ H_2j	Exer	cises	ΣH_4j	
Yes	0.000	0.000	0.000	0.500	0.500	1.000	
No	0.000	0.000	0.000	0.000	0.000	0.000	
H(S_j)		0.0000		0.4000			
Н-ДН		0.9710		0.5710			

We can see that maximal entropy is gained **either way** such that no further split is needed. Considering 2 maximal entropy cases, the decision tree will be as such:

2.2 Now we get another property (*cholesterol*) which is continuous, and its average value is $(x \sim 220)$. Conveniently, it exhibits:

$$H(S|t > 220) = \frac{3}{5} \cdot \frac{2}{5} + \frac{2}{5} \cdot \frac{3}{5} = 0.48$$
, and $H(S|t \le 220) = 1 \cdot (1-1) = \mathbf{0}$

Which naturally perform the best impurity and thus we can get the following sorted table:

ID	Family Heart attack events	Male	Cholesterol	Blood- pressure	Result (Heart Attack)
1	Yes	Yes	160	High	No
4	No	Yes	170	Normal	No
6	No	Yes	215	Normal	No
5	Yes	No	230	High	Yes
7	Yes	No	235	Normal	No
8	No	Yes	240	High	Yes
3	No	No	245	Normal	No
2	Yes	Yes	260	Normal	Yes

Elaborating only the x > 220 condition, we'll divide the data and get 5 options:

#	History		Σ_1	Male		Σ_2	Blood Pres.		Σ_4
Yes	2	1	3	2	0	2	2	0	2
No	1	1	2	1	2	3	1	2	3
					P(j)				
#	History		Σ/N_j	Male		Σ/N_j	Blood Pres.		Σ/N_j
Yes	0.6667	0.3333	0.6	1	0	0.4	1	0	0.4
No	0.5	0.5	0.4	0.3333	0.6667	0.6	0.3333	0.6667	0.6
#	His	tory	Σ H_1j	Ma	ale	Σ H_2j	Blood	Pres.	ΣH_4j
Yes	0.222	0.222	0.444	0.000	0.000	0.000	0.000	0.000	0.000
No	0.250	0.250	0.500	0.222	0.222	0.444	0.222	0.222	0.444
$Q(S_j)$	0.4667			0.2667			0.2667		

Once again we get an optimal **Gini Index** value for 2 criteria (*Male & Blood Pressure*). We'll focus this time only on Blood Pressure, so after division and sorting:

ID	Family Heart	Male	Result (Heart
	attack events		Attack)
7	Yes	No	No
3	No	No	No
2	Yes	Yes	Yes

#	His	tory	Σ_1	Ma	ale	Σ_2
Yes	1	1	2	1	0	1
No	0	1	1	0	2	2
			P	(j)		
#	History		Σ/N_j	Ma	ale	Σ/N_j
Yes	0.5	0.5	0.6667	1	0	0.3333
No	0	1	0.2	0	1	0.6667
#	His	tory	ΣH_1j	Ma	ale	ΣH_2j
Yes	0.250	0.250	0.500	0.000	0.000	0.000
No	0.000	0.000	0.000	0.000	0.000	0.000
Q(S_j)		0.3333			0.0000	

We can see that the History criterion is irrelevant since Male condition obtains optimallity:

שאלה 3

א. ציין האם הקביעות הבאות נכונות או לא והסבר בקצרה מדוע: שני עצים שונים שמשרים תיוג זהה ובעל שגיאה אפס על מדגם הלימוד ייסוגו כל קלט בצורה זהה

Not True: Similar classification might be caused incidentally due to the **given data**. Further data (beyond our dataset) may result in a different calculation and go through different nodes, resulting in a different classification.

ב. הנח בעיית למידה עבורה נתונים מאפיינים רועשים רבים (כלומר מאפיינים בעלי קורלציה נמוכה לתיוג). איזה אלגוריתם עדיף במקרה זה: עץ החלטה או אלגוריתם שכן קרוב (NN-1)?

Decision Tree: As seen in last question, a tree may be robust to noisy data once an optimal result is obtained, the branch is "cut" and no further splits / calculation will be needed. Contrarily, the 1-NN algorithm calculates each item in the dataset, resulting in lower accuracy and vulnerability to bias.

- ג. הנח בעיית סיווג עם סט אימון מעל R^{100} . סטודנט אי אימן עץ החלטה (כפי שנלמד בכיתה). סטודנט בי קודם נירמל את קבוצת האימון כך שהממוצע של כל קורדינטה הוא 0 וסטיית התקן היא 1, ולאחר מכן אימן עץ בדיוק כמו סטודנט אי. מי מהמשפטים הבאים נכון:
 - 1. שני הסטודנטים יקבלו בהכרח את אותו העץ
 - 2. שני הסטודנטים יקבלו בהכרח עץ שונה
 - 3. שני הסטודנטים יקבלו לעיתים עצים זהים ולעיתים עצים שונים

Same Tree: Let $S = \{x_i, y_i\}$ be a set of classified samples, and probability function be: $\hat{p}_j = \frac{1}{N} \sum_{k=1}^N I\{d_k = c_j\}$. One can tell that the indicator function is insensitive to a normalization.

-fin-