Hw 2

2.7.6] Plot the potential V(X) for x= r+x-x3. Identify equilibria and their stability. (For different values at r)

 $V(x) = -\int f(x) dx = -\int r + x - x^{3} dx = -\left[rx + \frac{1}{4}x^{2} - \frac{1}{4}x^{4}\right] = \frac{1}{4}x^{4} - \frac{1}{2}x^{2} - rx$ $= \frac{1}{4}x \left(x^{3} - 2x - 4r\right)$

3.1.41 x= ++ 1x - x/(1+x)

First we sketch all the quiltatively afford vector fields for to

We know that a saddle bifurcation occurs for two critical values of r because of the different vector fields shown above. What are the critical values for x and r? We must have f(x,r) = 0

$$= \sum_{k=1}^{\infty} \frac{(1+x)_k}{(1+x)_k} = \sum_$$

by Quedretic Formula $X = -1 \pm \sqrt{2}$ and the pointy that are settle vales are $\left(-1 - \sqrt{2}, \frac{3 + 2\sqrt{1}}{2}\right)$ and $\left(-1 + \sqrt{2}, \frac{3 - 2\sqrt{2}}{2}\right)$

We now swatch the bifurcation diagrams:

3.2.41 x = x (r-ex)

First we sketch all the qualitatively different vector fields as a reales

A transcritical Libercation occurs at x100 when r= 1 (by looking ext the vector fields for re(0,1), r=1, and r>1)

To sketch the bifurcation degree, we make X=0 is a shable equilibria for $T \times I$ and unstable for $T \times I$. The other equilibria satisfies $T=e^{X} \Rightarrow X=ln(r)$ which is nonexisten for $T \triangleq 0$ unstable for $T \in (0,1)$, and stable for T > 1

3.2.51 we have the following chemical reactions

$$A + X \xrightarrow{K_1} 2X$$
 $B + X \xrightarrow{k_1} C$

a) Assume that A end B are both weld constant, show that $\dot{x} = c_1 x - c_2 x^2$ for some constants c_1, c_2 .

We how that A+X this 2x induces in a lack - K-1x2, including the second recetion produces

x = k,ax - k2bx - k-,x

x: (x, c - 14, 6) x - K -, x2

x = C, x - c2 x2 for c,= k, a - 16, b, C2 = K-1

b) Show that X*=0 is stable for K26>18,0 and explain why

First note that x=0 is always an equilibria, then x* =0 is stable when f'(0) to

5' (= C, - 7 c = x

C, (0 (4) 16, a - 1676 60 (4) 16, a < 16 26 (4) 6, c

that D+X tes C has a chance to reach, otherwise its effect is negligible. Second, if the second reaction is not negligible the concentration of X tends to D because there is no return from me second reaction. (while the first just oscillates)