Scilab Textbook Companion for Theory Of Machines by B. K. Sarkar¹

Created by
Guntumadugu Chanikya
B. Tech
Others
Sastra university
College Teacher
Dr.anjan Kumar Dash
Cross-Checked by
Chaitanya

June 22, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Theory Of Machines

Author: B. K. Sarkar

Publisher: Tata McGraw Hill

Edition: 1

Year: 2002

ISBN: 0-07-048288-8

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

LIS	List of Schab Codes 4			
1	Basic kinemtics	8		
2	TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS	22		
3	FRICTION	40		
4	Gears and Gear Drivers	58		
5	Inertia Force Analysis in Machines	77		
6	Turning Moment Diagram and Flywheel	86		
7	GOVERNORS	96		
8	balancing of rotating masses	111		
9	cams and followers	117		
10	Brakes and Dynamometers	120		
11	VIBRATIONS	130		
f 12	balancing of reciprocating masses	142		

List of Scilab Codes

Exa 1.1	Length of the stroke	8
Exa 1.2	Ratio of time taken on the cutting to the return stroke	9
Exa 1.3	Ratio of time taken on the cutting to the return stroke	9
Exa 1.4	Angular velocity of connecting rod	0
Exa 1.5	Linear velocity of point P	1
Exa 1.6	velocity of point F	2
Exa 1.7		3
Exa 1.8		4
Exa 1.9	velocity of sliding of the block	5
Exa 1.10	angular acceleration of connecting rod BA	6
Exa 1.11	angular acceleration of AB	7
Exa 1.12	Accelaration of the slider	9
Exa 1.13	angular acceleration	20
Exa 2.1	finding the diameter of the belt	22
Exa 2.2	speed of shafts	23
Exa 2.3	length of belt	24
Exa 2.4		25
Exa 2.5		26
Exa 2.6	width of belt required	28
Exa 2.7	power supplied by drum	29
Exa 2.8		30
Exa 2.9	thickness of belt 3	31
Exa 2.10	stress developed on tight side of belt	32
Exa 2.11	speed of the pulley	33
Exa 2.12	efficiency of drive	34
Exa 2.13		36
Exa 2.14		88
Exa 3.1		10

Exa 3.2	DISTANCE ALONG THE INCLINED PLANE 4
Exa 3.3	workdone
Exa 3.4	FINDING OUT COEFFICIENT OF FRICTION 4
Exa 3.5	EFFORT NEED TO APPLIED
Exa 3.6	EFFICIENCY OF THE MACHINE
Exa 3.7	EFFICIENCY OF MACHINE
Exa 3.8	NO OF TEETH ON PINION
Exa 3.9	TO FIND THE DIAMETER OF HAND WHEEL 4
Exa 3.10	FORCE REQUIRED
Exa 3.11	POWER LOST IN FRICTION
Exa 3.12	NO OF COLLARS REQUIRED
Exa 3.13	POWER ABSORBED IN FRICTION
Exa 3.14	FINDING Radii
Exa 3.15	MAX AXIAL INTENSITY OF PRESSURE
Exa 4.1	Length of arc of contact
Exa 4.2	Addendum of wheel
Exa 4.3	Length of arc of contact
Exa 4.4	Velocity ratio
Exa 4.5	Power transmitted
Exa 4.6	Number of teeth on gear
Exa 4.7	noof teeth on gears
Exa 4.8	Speed of wheel
Exa 4.9	Speed of wheels
Exa 4.10	Speed of wheels
Exa 4.11	speed of the arm
Exa 4.12	Speed of wheel
Exa 4.13	Speed of driven shaft
Exa 4.14	pitch circle diameter
Exa 4.15	Revolution of gears
Exa 4.16	speed of road wheel
Exa 4.17	ratio of torques
Exa 5.1	Maximum velocity of the piston
Exa 5.2	position of crank from inner dead centre position for
	zero acceleration of piston
Exa 5.3	Turning moment on the crank shaft
Exa 5.4	net force on piston
Exa 5.5	Net load on the gudgeon pin
Exa. 5.6	Torque exerted on the crank shaft

Exa 5.7	Effective turning moment on the crank shaft	83
Exa 5.8	Effective turning moment on the crank shaft	84
Exa 6.1	Kinetic energy of flywheel	86
Exa 6.2	Mass of the flywheel required	87
Exa 6.3	Mass of the flywheel required	88
Exa 6.4	Mass of the flywheel	88
Exa 6.5	Mass of the flywheel	89
Exa 6.6	Angular acceleration	90
Exa 6.7	Energy expended in performing each operation	91
Exa 6.8	Amount of Torque required	92
Exa 6.9	Reduction in speed after the pressing is over	93
Exa 6.10	miminum mass moment of inertia of flywheel	94
Exa 7.1	PERCENTAGE CHANGE IN SPEED	96
Exa 7.2	RANGE OF SPEED	97
Exa 7.3	RANGE OF SPEED	98
Exa 7.4	GOVERNOR POWER	99
Exa 7.5	RANGE OF SPEED OF GOVERNOR	101
Exa 7.6	RANGE OF SPEED OF GOVERNOR	102
Exa 7.7	EQUILIBRIUM SPEED CORRESPONDING TO LIFT	103
Exa 7.8	STIFFNESS OF THE SPRING	104
Exa 7.9	ALTERATION IN SPEED	105
Exa 7.10	EQUILIBRIUM SPEED OF GOVERNOR	107
Exa 7.11	TENSION IN UPPER ARM	108
Exa 7.12	MAXIMUM SPEED OF ROTATION	109
Exa 8.1	magnitude of balancing mass	111
Exa 8.2	masses of D and E	112
Exa 8.3	balancing mass and angular position	113
Exa 8.4	balancing mass and angular position	113
Exa 8.5	balancing mass and angular position	114
Exa 8.6	mass of D	115
Exa 8.7	load on each bearing	115
Exa 9.2	maximum velocity and acceleration	117
Exa 9.3	maximum velocity and acceleration	118
Exa 9.5	maximum velocity and acceleration	119
Exa 10.1	Torque transmitted by the block brake	120
Exa 10.2	DISTANCE TRAVELLED BY CYCLE	121
Exa 10.3	Maximum torque absorbed	121
Exa 10.4	The maximum braking torque on the drum	122

Exa 10.5	Tensions in the side
Exa 10.6	Torque required
Exa 10.7	Power TO BD ratio
Exa 10.8	Time required to bring the shaft to the rest from its
	running condition
Exa 10.9	Minimum force required
Exa 10.10	Maximum braking torque
Exa 11.1	FREQUENCY OF TRANSVERSE VIBRATION 130
Exa 11.2	NATURAL FREQUENCY OF TRANSVERSE VIBRA-
	TION
Exa 11.3	FREQUENCY OF TORSIONAL VIBRATION 132
Exa 11.6	FREQUENCY OF TRANSVERSE VIBRATION 134
Exa 11.10	FREQUENCY OF TRANSVERSE VIBRATION 135
Exa 11.11	CRITICAL SPEED OF SHAFT 137
Exa 11.12	FREQUENCY OF FREE TORSIONAL VIBRATION 138
Exa 11.13	THE RANGE OF SPEED 140
Exa 12.1	Magnitude of balance mass required
Exa 12.2	swaying couple
Exa 12.3	swaying couple
Exa 12.4	unbalanced primary couple
Exa 12.5	maximum unbalanced secondary force 145
Exa 12.6	hammer blow
Exa 12.7	swaying couple
Exa 12.8	unbalanced secondary couple

Chapter 1

Basic kinemtics

Scilab code Exa 1.1 Length of the stroke

```
1 //CHAPTER 1 ILLUSRTATION 1 PAGE NO 15
2 //TITLE: Basic kinematics
3 // Figure 1.14
4 clc
5 clear
6 \text{ pi} = 3.141
7 \quad A0 = 200 / /
                              distance between fixed
      centres in mm
                              length of driving crank in
  OB1=100 / /
     mm
9 \text{ AP} = 400 / /
                              length of slotter bar in mm
10 //=====
11 OAB1=asind(OB1/AO)//
                                        inclination of
      slotted bar with vertical in degrees
12 beeta=(90-OAB1)*2//
                                        angle through
      which crank turns inreturn stroke in degrees
13 A=(360-beeta)/beeta//
                                        ratio of time of
      cutting stroke to the time of return stroke
14 L=2*AP*sind(90-(beeta)/2)//
                                        length of the
      stroke in mm
15 printf('Inclination of slotted bar with vertical= %
```

```
.3 f degrees\n Length of the stroke= \%.3\,\mathrm{f} mm',OAB1 ,L)
```

Scilab code Exa 1.2 Ratio of time taken on the cutting to the return stroke

```
1 //CHAPTER 1 ILLUSRTATION 2 PAGE NO 16
2 //TITLE: Basic kinematics
3 //Figure 1.15
4 clc
5 clear
6 \text{ OA} = 300 / /
                            distance between the fixed
      centres in mm
  OB = 150 / /
                              length of driving crank in
     mm
8 //=
9 OAB = asind(OB/OA)//
                                     inclination of
      slotted bar with vertical in degrees
10 beeta=(90-OAB)*2//
                                      angle through which
       crank turns inreturn stroke in degrees
                                       ratio of time of
11 A=(360-beeta)/beeta//
      cutting stroke to the time of return stroke
12 printf ('Ratio of time taken on the cutting to the
      return stroke= \%.0 \, f', A)
```

Scilab code Exa 1.3 Ratio of time taken on the cutting to the return stroke

```
1 //CHAPTER 1 ILLUSRTATION 3 PAGE NO 16
2 //TITLE:Basic kinematics
3 //Figure 1.16
4 clc
5 clear
```

```
6 \quad OB = 54.6 / /
                               distance between the fixed
      centres in mm
7 \text{ OA} = 85 / /
                               length of driving crank in
     mm
8 \quad OA2 = OA
9 CA = 160 / /
                               length of slotted lever in
      mm
                               length of connectin rod in
10 \text{ CD} = 144 / /
      mm
11 //=
12 beeta=2*(acosd(OB/OA2))//
                                        angle through which
       crank turns inreturn stroke in degrees
13 A=(360-beeta)/beeta//
                                         ratio of time of
      cutting stroke to the time of return stroke
14 printf ('Ratio of time taken on the cutting to the
      return stroke= \%.0 \, f', A)
```

Scilab code Exa 1.4 Angular velocity of connecting rod

```
1 //CHAPTER 1 ILLUSRTATION 4 PAGE NO 17
2 //TITLE: Basic kinematics
3 // Figure 1.18,1.19
4 clc
5 clear
6 pi=3.141
7 \, \text{Nao} = 180 / /
                 speed of the crank in rpm
8 wAO=2*pi*Nao/60// angular speed of the crank in rad
     / s
9 \text{ AO} = .5 / /
               crank length in m
10 \text{ AE} = .5
11 Vao=wAO*AO// velocity of A in m/s
12 //======
13 Vb1=8.15// velocity of piston B in m/s by
     measurment from figure 1.19
14 Vba=6.8//
              velocity of B with respect to A in m/s
```

```
15 \quad AB = 2 / /
                  length of connecting rod in m
                         angular velocity of the connecting
16 wBA=Vba/AB//
        rod BA in rad/s
17 ae=AE*Vba/AB//
                          velocity of point e on the
      connecting rod
18 \text{ oe=8.5}//
                          by measurement velocity of point
      \mathbf{E}
19 Do=.05//
                          diameter of crank shaft in m
20 Da=.06//
                          diameter of crank pin in m
21 \text{ Db} = .03 //
                          diameter of cross head pin B m
22 V1 = wA0 * Do / 2 / /
                                  velocity of rubbing at the
      pin of the crankshaft in m/s
23 \quad V2 = wBA * Da/2 / /
                                  velocity of rubbing at the
      pin of the crank in m/s
24 \text{ Vb} = (\text{wAO} + \text{wBA}) * \text{Db} / 2 / /
                                 velocity of rubbing at the
      pin of cross head in m/s
25 \text{ ag} = 5.1 / /
                                by measurement
26 \quad AG = AB * ag / Vba / /
                           position and linear velocity of
       point G on the connecting rod in m
27 / =
28 printf ('Velocity of piston B=\%.3 \text{ f m/s} \land n \text{ Angular}
       velocity of connecting rod= \%.3 f rad/s\n velocity
        of point E=\%.1 f m/s\n velocity of rubbing at the
        pin of the crankshaft=\%.3 f m/s\n velocity of
      rubbing at the pin of the crank =\%.3 \,\mathrm{f} \,\mathrm{m/s} \,\mathrm{n}
       velocity of rubbing at the pin of cross head =\%.3
      f m/s\n position and linear velocity of point G
      on the connecting rod=\%.3 f m', Vb1, wBA, oe, V1, V2, Vb
       , AG)
```

Scilab code Exa 1.5 Linear velocity of point P

```
1 //CHAPTER 1 ILLUSRTATION 5 PAGE NO 19
2 //TITLE: Basic kinematics
3 //Figure 1.20,1.21
```

```
4 clc
5 clear
6 \text{ pi} = 3.141
7 N = 120 / /
                  speed of crank in rpm
8 \quad OA = 10 //
                  length of crank in cm
                  from figure 1.20 in cm
9 \text{ BP} = 48 / /
                  from figure 1.20 in cm
10 BA=40 //
11 / =
12 w = 2 * pi * N / 60 / /
                           angular velocity of the crank OA
       in rad/s
                           velocity of ao in cm/s
13 Vao=w*OA//
                          by measurement from 1.21 in cm
14 ba=4.5//
15 Bp=BP*ba/BA
16 \text{ op=6.8}//
                         by measurement in cm from figure
      1.21
17 s = 20 / /
                           scale of velocity diagram 1cm=20
      cm/s
18 Vp=op*s//
                           linear velocity of P in m/s
19 ob=5.1//
                          by measurement in cm from figure
       1.21
20 Vb=ob*s//
                           linear velocity of slider B
21 printf('Linear velocity of slider B=\%.2 f \text{ cm/s/n}
      Linear velocity of point P = \%.2 \text{ f cm/s}, Vb, Vp)
```

Scilab code Exa 1.6 velocity of point F

```
1
2 //CHAPTER 1 ILLUSRTATION 6 PAGE NO 20
3 //TITLE:Basic kinematics
4 //Figure 1.22,1.23
5 clc
6 clear
7 pi=3.141
8 AB=6.25// length of link AB in cm
9 BC=17.5// length of link BC in cm
```

```
length of link CD in cm
10 CD = 11.25 / /
11 DA = 20 / /
                    length of link DA in cm
12 CE=10
13 N = 100 / /
                    speed of crank in rpm
14 / =
15 \text{ wAB} = 2*pi*N/60//
                            angular velocity of AB in rad/s
16 Vb = wAB * AB / /
                            linear velocity of B with
      respect to A
17 s = 15 / /
               scale for velocity diagram 1 cm 15 cm/s
18 \, dc = 3 / /
                by measurement in cm
19 \text{ Vcd=dc*s}
                         angular velocity of link CD in
20 \text{ wCD=Vcd/CD}//
      rad/s
21 \text{ bc} = 2.5 / /
                by measurement in cm
22 \text{ Vbc=bc*s}
23 \text{ wBC=Vbc/BC//}
                  angular velocity of link BC in rad/
24 \text{ ce=bc*CE/BC}
25 \text{ ae} = 3.66 / /
                      by measurement in cm
26 Ve=ae*s//
                         velocity of point E 10 from c on
      the link BC
27 \text{ af} = 2.94 / /
                      by measurement in cm
28 Vf = af *s //
                      velocity of point F
29 printf ('The angular velocity of link CD= \%.3 f rad/s\
      n The angular velocity of link BC= \%.3 \, f \, rad/s \setminus n
      velocity of point E 10 from c on the link BC= \%.3
      f cm/s\n velocity of point F = \%.3 f \text{ cm/s}, wCD, wBC,
      Ve, Vf)
```

Scilab code Exa 1.7 angular velocity of link BD

```
1 //CHAPTER 1 ILLUSRTATION 7 PAGE NO 21
2 //TITLE:Basic kinematics
3 //Figure 1.24,1.25
4 clc
```

```
5 clear
6 \text{ pi} = 3.141
7 \text{ Noa=} 600 / /
                    speed of the crank in rpm
8 \quad OA = 2.8 //
                    length of link OA in cm
9 \text{ AB} = 4.4 / /
                    length of link AB in cm
10 \ BC=4.9 //
                    length of link BC in cm
11 BD=4.6//
                    length of link BD in cm
12 / =
13 wOA = 2*pi*Noa/60//
                                angular velocity of crank
      in rad/s
14 Vao=wOA*OA//
                                The linear velocity of
      point A with respect to oin m/s
15 s = 50 / /
                                scale of velocity diagram
      in cm
16 od=2.95//
                             by measurement in cm from
      figure
17 Vd=od*s/100//
                                 linear velocity slider in
      m/s
18 bd=3.2//
                            by measurement in cm from
      figure
19 \text{ Vbd=bd*s}
20 \text{ wBD=Vbd/BD}//
                  angular velocity of link BD
21 printf('linear velocity slider D=\%.3 \text{ f m/s/n} angular
       velocity of link BD= %.1f rad/s', Vd, wBD)
```

Scilab code Exa 1.8 Angular velocity of link CD

```
1 //CHAPTER 1 ILLUSRTATION 8 PAGE NO 22
2 //TITLE:Basic kinematics
3 //Figure 1.26,1.27
4 clc
5 clear
6 pi=3.141
7 Noa=60// speed of crank in rpm
8 OA=30// length of link OA in cm
```

```
9 \text{ AB} = 100 / /
                   length of link AB in cm
10 \text{ CD} = 80 / /
                     length of link CD in cm
11 /AC=CB
12 //====
13 wOA = 2 * pi * Noa / 60 / /
                            angular velocity of crank in
      rad/s
14 Vao = w0A * 0A / 100 / /
                            linear velocity of point A
      with respect to O
                     scale for velocity diagram 1 cm 50
15 s = 50 / /
      cm/s
16 \text{ ob} = 3.4 //
                     by measurement in cm from figure
      1.27
17
  od = .9 / /
                     by measurement in cm from figure
      1.27
                     by measurement in cm/s from figure
18 Vcd=160//
      1.27
19 wCD=Vcd/CD// angular velocity of link in rad/s
20 printf('Angular velocity of link CD= %d rad/s', wCD)
```

Scilab code Exa 1.9 velocity of sliding of the block

```
1 //CHAPTER 1 ILLUSRTATION 9 PAGE NO 23
2 //TITLE: Basic kinematics
3 // Figure 1.28,1.29
4 clc
5 clear
6 \text{ pi}=3.141
                            speed of the crank in rpm
7 \text{ Nao} = 120 //
length of link OQ in cm
9 \quad OA = 20 //
                            length of link OA in cm
10 \ QC = 15 //
                            length of link QC in cm
11 CD = 50 / /
                           length of link CD in cm
12 //=====
13 wOA = 2 * pi * Nao / 60 / /
                              angular speed of crank in rad
      / s
```

```
velocity of pin A in m/s
14 Vad=wOA*OA/100//
15 BQ = 41 / /
                             from figure 1.29
                             from firure 1.29
16 BC=26//
17 \text{ bq} = 4.7 / /
                              from figure 1.29
18 \text{ bc=bq*BC/BQ}//
                              from figure 1.29 in cm
19 s = 50 / /
                              scale for velocity diagram in
       cm/s
20 \text{ od} = 1.525 //
                              velocity vector od in cm from
       figure 1.29
                              velocity of ram D in cm/s
21 Vd=od*s//
22 dc=1.925//
                              velocity vector dc in cm from
       figure 1.29
23 Vdc=dc*s//
                              velocity of link CD in cm/s
                              angular velocity of link CD
24 \text{ wCD=Vdc/CD}//
      in cm/s
                              velocity vector of sliding of
  ba=1.8//
       the block in cm
                              velocity of sliding of the
  Vab=ba*s//
      block in cm/s
27 printf ('Velocity of RAM D= \%.3 \text{ f cm/s} \setminus \text{n angular}
      velocity of link CD= \%.3 f rad/s\n velocity of
      sliding of the block= \%.3 \, \text{f cm/s}, Vd, wCD, Vab)
```

Scilab code Exa 1.10 angular acceleration of connecting rod BA

```
11 wAO = 2 * pi * Nao / 60 / /
                                angular velocity of link in
       rad/s
12 Vao=wAO*AO//
                                linear velocity of A with
      respect to 'o'
13 ab=3.4//
                     length of vector ab by measurement
      in m/s
14 Vba=ab
                  length of vector ob by measurement in
15 \text{ ob} = 4 / /
      m/s
16 \text{ oc} = 4.1 / /
                       length of vector oc by measurement
      in m/s
17 fRao = Vao^2/A0//
                         radial component of acceleration
      of A with respect to O
18 fRba=Vba^2/BA//
                          radial component of acceleration
       of B with respect to A
                          angular velocity of connecting
19 wBA = Vba/BA//
      rod BA
20 f Tba = 103 / /
                        by measurement in m/s<sup>2</sup>
21 alphaBA=fTba/BA//
                           angular acceleration of
      connecting rod BA
22 printf ('linear velocity of A with respect to \bigcirc = \%.3 f
       m/s\n radial component of acceleration of A with
       respect to O=\%.3 f m/s<sup>2</sup>\n radial component of
      acceleration of B with respect to A = \%.3 \, \text{f m/s}^2 \, \text{n}
       angular velocity of connecting rod B= \%.3 f rad/s
      \n angular acceleration of connecting rod BA= \%.3
      f \operatorname{rad/s}^2, Vao, fRao, fRba, wBA, alphaBA)
```

Scilab code Exa 1.11 angular acceleration of AB

```
1 //CHAPTER 1 ILLUSRTATION 11 PAGE NO 26
2 //TITLE:Basic kinematics
3 //Figure 1.31(a),1.31(b),1.31(c)
4 clc
5 clear
```

```
6 \text{ pi} = 3.141
7 \text{ wAP} = 10 / /
                         angular velocity of crank in rad
      / s
8 \text{ P1A} = 30 / /
                         length of link P1A in cm
9 P2B = 36 / /
                         length of link P2B in cm
10 \text{ AB} = 36 / /
                         length of link AB in cm
11 P1P2=60//
                         length of link P1P2 in cm
12 \text{ AP1P2=60}//
                         crank inclination in degrees
13 alphaP1A=30//
                         angulare acceleration of crank
      P1A in rad/s^2
14 / =
15 Vap1 = wAP * P1A / 100 / /
                           linear velocity of A with
      respect to P1 in m/s
16 \text{ Vbp2=}2.2//
                           velocity of B with respect to
      P2 in m/s (measured from figure )
  Vba=2.06//
                           velocity of B with respect to
      A in m/s (measured from figure )
18 wBP2=Vbp2/(P2B*100)// angular velocity of P2B in
      rad/s
  wAB=Vba/(AB*100)//
                       angular velocity of AB in
      rad/s
20 fAB1=alphaP1A*P1A/100// tangential component of the
       acceleration of A with respect to P1 in m/s^2
21 frAB1=Vap1^2/(P1A/100)// radial component of the
      acceleration of A with respect to P1 in m/s^2
22 frBA=Vba^2/(AB/100)//
                           radial component of the
      acceleration of B with respect to B in m/s<sup>2</sup>
23 frBP2=Vbp2^2/(P2B/100)// radial component of the
      acceleration of B with respect to P2 in m/s^2
  ftBA=13.62//
                              tangential component of B
24
      with respect to A in m/s<sup>2</sup> (measured from figure)
25
  ftBP2=26.62//
                              tangential component of B
      with respect to P2 in m/s<sup>2</sup> (measured from figure)
  alphaBP2=ftBP2/(P2B/100)// angular acceleration of
       P2B in m/s^2
  alphaBA=ftBA/(AB/100)//
                              angular acceleration of
27
       AB in m/s^2
28 //===
```

```
29 printf('Angular acceleration of P2B=\%.3 \, f \, rad/s^2 n angular acceleration of AB =\%.3 \, f \, rad/s^2 n, alphaBP2, alphaBA)
```

Scilab code Exa 1.12 Accelaration of the slider

```
1 //CHAPTER 1 ILLUSRTATION 12 PAGE NO 28
2 //TITLE: Basic kinematics
3 //Figure 1.32(a),1.32(b),1.32(c)
4 clc
5 clear
6 PI=3.141
7 \text{ AB} = 12 / /
              length of link AB in cm
8 \text{ BC} = 48 / /
               length of link BC in cm
9 \text{ CD} = 18 / /
               length of link CD in cm
10 DE=36 //
             length of link DE in cm
11 EF=12//
              length of link EF in cm
12 FP=36//
              length of link FP in cm
13 Nba=200// roating speed of link BA IN rpm
14 wBA=2*PI*200/60// Angular velocity of BA in rad/s
15 Vba=wBA*AB/100//
                      linear velocity of B with
      respect to A in m/s
16 Vc=2.428// velocity of c in m/s from diagram 1.32(
     b)
17 \text{ Vd} = 2.36 / /
                 velocity of D in m/s from diagram
      1.32(b)
18 Ve=1// velocity of e in m/s from diagram 1.32(b)
19 Vf=1.42//
               velocity of f in m/s from diagram 1.32(
     b)
20 \text{ Vcb=} 1.3 / /
                 velocity of c with respect to b in m/s
      from figure
21 fBA=Vba^2*100/AB// radial component of
      acceleration of B with respect to A in m/s<sup>2</sup>
22 fCB=Vcb^2*100/BC// radial component of
      acceleration of C with respect to B in m/s<sup>2</sup>
```

```
23 fcb=3.52// radial component of acceleration of C with respect to B in m/s^2 from figure
24 fC=19// acceleration of slider in m/s^2 from figure
25 printf('velocity of c=\%.3 f m/s\n velocity of d=\%.3 f m/s\n velocity of f=\%.3 f m/s\n Acceleration of slider=\%f m/s^2', Vc, Vd, Ve, Vf, fC)
```

Scilab code Exa 1.13 angular acceleration

```
1 //CHAPTER 1 ILLUSRTATION 13 PAGE NO 30
2 //TITLE: Basic kinematics
3 // Figure 1.33(a),1.33(b),1.33(c)
4 clc
5 clear
6 PI=3.141
7 N = 120 / /
                    speed of the crank OC in rpm
8 \text{ OC} = 5 / /
                    length of link OC in cm
9 \text{ cp} = 20 / /
                    length of link CP in cm
10 qa=10//
                    length of link QA in cm
11 pa=5//
                    length of link PA in cm
                       velocity of link CP in cm/s
12 CP = 46.9 / /
13 QA=58.3//
                       velocity of link QA in cm/s
                       velocity of link PA in cm/s
14 Pa=18.3//
15 Vc = 2*PI*N*OC/60//
                           velocity of C in m/s
                           centripetal acceleration of C
16 \quad Cco = Vc^2/OC//
      relative to O in cm/s<sup>2</sup>
17 Cpc=CP^2/cp//
                            centripetal acceleration of P
      relative to C in cm/s<sup>2</sup>
18 Caq=QA^2/qa//
                              centripetal acceleration of A
       relative to Q in cm/s<sup>2</sup>
                               centripetal acceleration of
19 Cap=Pa^2/pa//
      A relative to P in cm/s<sup>2</sup>
20 pp1=530
```

```
21 a1a=323
22 a2a=207.5
23 ACP=pp1/cp// angular acceleration of link CP in rad/s^2
24 APA=a1a/qa// angular acceleration of link PA in rad/s^2
25 AAQ=a2a/pa// angular acceleration of link AQ in rad/s^2
26 printf('angular acceleration of link CP=%.3f rad/s ^2\n angular acceleration of link CP=%.3f rad/s ^2\n angular acceleration of link CP=%.3f rad/s ^2\n angular acceleration of link CP=%.3f rad/s ^2\n ACP,APA,AAQ)
```

Chapter 2

TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS

Scilab code Exa 2.1 finding the diameter of the belt

```
//CHAPTER 2 ILLUSRTATION 1 PAGE NO 57
//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS
AND PULLEYS

clc
clear
//INPUT DATA
Na=300;//driving shaft running speed in rpm
Nb=400;//driven shaft running speed in rpm
Da=60;//diameter of driving shaft in mm
t=.8;//belt thickness in mm
s=.05;//slip in percentage(5%)
//
```

```
14 Db=(Da*Na)/Nb;//finding out the diameter of driven
      shaft without considering the thickness of belt
15 Db1 = (((Da+t)*Na)/Nb) - t///considering the thickness
16 Db2=(1-s)*(Da+t)*(Na/Nb)-t//considering slip also
17 //
18 //output
19 printf('the value of Db is %3.0 f cm', Db)
20 printf('\nthe value of Db1 is %f cm', Db1)
21 printf('\nthe value of Db2 is %f cm', Db2)
   Scilab code Exa 2.2 speed of shafts
1 //CHAPTER 2, ILLUSRTATION 2 PAGE NO 57
2 //TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS
     AND PULLEYS
3 clc
4 clear
5 //
6 //input
7 n1=1200/rpm of motor shaft
8 d1=40//diameter of motor pulley in cm
9 d2=70//diameter of 1st pulley on the shaft in cm
10 s=.03//percentage slip (3\%)
11 d3=45//diameter of 2nd pulley
12 d4=65//diameter of the pulley on the counnter shaft
13 //
14 //calculation
15 \text{ n2=n1*d1*(1-s)/d2//rpm of driven shaft}
```

13 //calculation

```
16 n3=n2//both the pulleys are mounted on the same
      shaft
17 n4=n3*(1-s)*d3/d4//rpm of counter shaft
18
19 //output
20 printf ('the speed of driven shaft is %f rpm\nthe
     speed of counter shaft is %f rpm',n2,n4)
   Scilab code Exa 2.3 length of belt
1 //CHAPTER 2 ILLUSTRATION 3 PAGE NO:58
2 //TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS
     AND PULLEYS
3 clc
4 clear
5 //
6 //input
7 d1=30//diameter of 1st shaft in cm
8 d2=50//diameter 2nd shaft in cm
9 \text{ pi} = 3.141
10 c=500//centre distance between the shafts in cm
11 //
12 //calculation
13 L1=((d1+d2)*pi/2)+(2*c)+((d1+d2)^2)/(4*c)/lenth of
      cross belt
14 L2=((d1+d2)*pi/2)+(2*c)+((d1-d2)^2)/(4*c)/lenth of
     open belt
15 r = L1 - L2 / remedy
```

16 //

```
17 //OUTPUT
18 printf ('length of cross belt is \%3.3 fcm \n length of
       open belt is %3.3 f cm \n the length of the belt
      to be shortened is %3.0 f cm', L1, L2, r)
   Scilab code Exa 2.4 power required
1 //CHAPTER 2, ILLUSTRATION 4 PAGE 59
2 //TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS
     AND PULLEYS
3 clc
4 clear
5 //
6 //INPUT
7 D1 = .5 / /
                       DIAMETER OF 1ST SHAFT IN m
8 D2 = .25 //
                       DIAMETER OF 2nd SHAFT IN m
                       CENTRE DISTANCE IN m
9 C=2//
10 N1 = 220 / /
                       SPEED OF 1st SHAFT
11 T1=1250//
                       TENSION ON TIGHT SIDE IN N
12 U = .25 //
                       COEFFICIENT OF FRICTION
13 PI=3.141
14 e = 2.71
15 //
16 //CALCULATION
17 L=(D1+D2)*PI/2+((D1+D2)^2/(4*C))+2*C
18 F = (D1+D2)/(2*C)
19 ALPHA=asind(F)
20 THETA = (180+(2*ALPHA))*PI/180// ANGLE OF CONTACT IN
       radians
21 T2=T1/(e^(U*THETA))//
                                      TENSION ON SLACK
```

SIDE IN N

```
23 P = (T1 - T2) * V / 1000 / /
                                       POWER IN kW
24 //
25 //OUTPUT
26 printf('\nLENGTH OF BELT REQUIRED =%f m',L)
27 printf('\nANGLE OF CONTACT = %f radians', THETA)
28 printf('\nPOWER CAN BE TRANSMITTED=%f kW',P)
   Scilab code Exa 2.5 tension in belt
1 //CHAPTER 2, ILLUSTRATION 5 PAGE 5
2 //TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS
     AND PULLEYS
3 clc
4 clear
5 //
6 //input
7 n1=100// of driving shaft
8 n2=240//speed of driven shaft
9 p=11000//power to be transmitted in watts
10 c=250//centre distance in cm
11 d2=60//diameter in cm
12 b=11.5*10^-2/width of belt in metres
13 t=1.2*10^-2//thickness in metres
14 u=.25//co-efficient of friction
15 \text{ pi} = 3.141
16 e = 2.71
17 //
```

VELOCITY IN m/s

22 V = PI * D1 * N1 / 60 / /

18 //calculation for open bely drive

```
19 d1 = n2 * d2/n1
20 f = (d1-d2)/(2*c)//\sin(alpha) for open bely drive
21 //angle of arc of contact for open belt drive is,
      theta = 180 - 2*alpha
22 alpha=asind(f)
23 teta=(180-(2*alpha))*3.147/180/pi/180 is used to
      convert into radians
24 x=(e^(u*teta))/finding out the value of <math>t1/t2
25 v=pi*d2*10*n2/60//finding out the value of t1-t2
26 y=p*1000/(v)
27 t1 = (y*x)/(x-1)
28 \text{ Fb=t1/(t*b)/1000}
29 //
30 //calculation for cross belt drive bely drive
31 F=(d1+d2)/(2*c)//for cross belt drive bely drive
32 ALPHA=asind(F)
33 THETA = (180 + (2*ALPHA))*pi/180 / pi/180 is used to
      convert into radians
34 X=(e^(u*THETA))/finding out the value of t1/t2
35 V=pi*d2*10*n2/60//finding out the value of t1-t2
36 \text{ Y=p*1000/(V)}
37 T1 = (Y * X) / (X - 1)
38 \text{ Fb2=T1/(t*b)/1000}
39 //
40 //output
41 printf('for a open belt drive:\n')
42 printf('the tension in belt is \%.3 f N\nstress
      induced is \%.3 \text{ f kN/m}^2 \text{ n',t1,Fb}
43 printf('for a cross belt drive:\n')
44 printf ('the tension in belt is \%.3 f N\nstress
      induced is \%.3 \text{ f kN/m}^2 \text{ n',T1,Fb2}
```

Scilab code Exa 2.6 width of belt required

```
1 //CHAPTER 2, ILLUSTRATION 6 PAGE 61
2 //TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS
     AND PULLEYS
3 clc
4 clear
5 //
6 //INPUT
7 D1=80//DIAMETER OF SHAFT IN cm
8 N1=160//SPEED OF 1ST SHAFT IN rpm
9 N2=320//SPEED OF 2ND SHAFT IN rpm
10 C=250 / / CENTRE DISTANCE IN CM
11 U=.3//COEFFICIENT OF FRICTION
12 P=4 / /POWER IN KILO WATTS
13 e = 2.71
14 PI=3.141
15 f=110//STRESS PER cm WIDTH OF BELT
16 //
17 //CALCULATION
18 V=PI*D1*10^-2*N1/60//VELOCITY IN m/s
19 Y = P * 1000 / V / / Y = T1 - T2
20 D2=D1*N1/N2//DIAMETER OF DRIVEN SHAFT
21 F = (D1 - D2) / (2*C)
22 ALPHA=asind(F)
23 THETA = (180 - (2*ALPHA))*PI/180/ANGLE OF CONTACT IN
      radians
24 X=e^(U*THETA)/VALUE OF T1/T2
25 \quad T1 = X * Y / (X - 1)
26 b=T1/f//WIDTH OF THE BELT REQUIRED
```

```
27 //
28 //OUTPUT
29 printf('THE WIDTH OF THE BELT IS %f cm',b)
   Scilab code Exa 2.7 power supplied by drum
1 //CHAPTER 2 ILLUSRTATION 7 PAGE NO 62
2 //TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS
     AND PULLEYS
3 clc
4 clear
5 //
6 //INPUT DATA
7 m = 1000 / /
                                          MASS OF THE
     CASTING IN kg
8 PI=3.141
9 THETA = 2.75*2*PI//
                                          ANGLE OF
     CONTACT IN radians
10 D=.26 //
                                           DIAMETER OF
     DRUM IN m
                                           SPEED OF THE
11 N = 24 / /
     DRUM IN rpm
12 U = .25 / /
                                           COEFFICIENT OF
      FRICTION
13 e = 2.71
14 T1=9810//
                                           TENSION ON
     TIGHTSIDE IN N
15 //
```

16 //CALCULATION

```
17 T2=T1/(e^(U*THETA))//
                                               tension on
      slack side of belt in N
18 \text{ W=m*9.81}//
                                              WEIGHT OF
      CASTING IN N
19 R = D/2//
                                              RADIUS OF DRUM
       IN m
20 P = 2 * PI * N * W * R / 60000 / /
                                              POWER REQUIRED
       IN kW
21 P2 = (T1 - T2) * PI * D * N / 60000 / /
                                                    POWER.
      SUPPLIED BY DRUM IN kW
22 //
23 //OUTPUT
24 printf ('FORCE REQUIRED BY MAN=%f N\n POWER REQUIRED
      TO RAISE CASTING=%f kW\n POWER SUPPLIED BY DRUM=
      \%f kW\n',T2,P,P2)
```

Scilab code Exa 2.8 power capacity of belt

```
15 d=1000/DENSITY IN KG/M^3
16
17 //CALCULATION
18 M=b*10^-3*t*10^-3*d/MASS IN KG
19 V=PI*D*10^-2*N/60/VELOCITY IN m/s
20 Tc=M*V^2//CENTRIFUGAL TENSION
21 Tmax=b*t*Fb//MAX TENSION IN N
21 T1 = Tmax - Tc
23 T2=T1/(e^(U*THETA))
P = (T1 - T2) * V / 1000
25
26 //OUTPUT
27 printf ('THE TENSION ON TIGHT SIDE OF THE BELT IS %f
     N \setminus n', T1)
28 printf ('THE TENSION ON SLACK SIDE OF THE BELT IS %f
     N n', T2)
29 printf ('CENTRIFUGAL TENSION = \%f N\n', Tc)
30 printf('THE POWER CAPACITY OF BELT IS %f KW\n',P)
```

Scilab code Exa 2.9 thickness of belt

```
//CHAPTER 2,ILLUSTRATION 9 PAGE 63
//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS
AND PULLEYS

clc
clear
//INPUT
P=35000//POWER TO BE TRANSMITTED IN WATTS
D=1.5//EFFECTIVE DIAMETER OF PULLEY IN METRES
N=300//SPEED IN rpm
e=2.71
U=.3//COEFFICIENT OF FRICTION
PI=3.141
THETA=(11/24)*360*PI/180//ANGLE OF CONTACT
density=1.1//density of belt material in Mg/m^3
```

```
14 L=1//in metre
15 t=9.5//THICKNESS OF BELT IN mm
16 Fb=2.5//PERMISSIBLE WORK STRESS IN N/mm<sup>2</sup>
17
18 //CALCULATION
19 V=PI*D*N/60/VELOCITY IN m/s
20 \text{ X=P/V/X=}T1-T2
21 Y=e^(U*THETA)//Y=T1/T2
22 \quad T1 = X * Y / (Y - 1)
23 Mb=t*density*L/10^3/value of m/b
24 Tc=Mb*V^2/centrifugal tension/b
25 Tmaxb=t*Fb//max tension/b
26 b=T1/(Tmaxb-Tc)//thickness in mm
27 //output
28 printf('\nTENSION IN TIGHT SIDE OF THE BELT = %f N',
29 printf('\nTHICKNESS OF THE BELT IS =\%f mm',b)
```

Scilab code Exa 2.10 stress developed on tight side of belt

```
//CHAPTER 2,ILLUSTRATION 10 PAGE 64
//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS
AND PULLEYS

clc
clear
//INPUT
t=5//THICKNESS OF BELT IN m
PI=3.141
U=.3
e=2.71
THETA=155*PI/180//ANGLE OF CONTACT IN radians
V=30//VELOCITY IN m/s
density=1//in m/cm^3
L=1//LENGTH
```

```
15 //calculation
16 \text{ Xb} = 80 / /
                        (T1-T2)=80b; so let (T1-T2)/b=Xb
                       LET Y=T1/T2
17 Y=e^(U*THETA)//
                     LET T1/b=Zb; BY SOLVING THE ABOVE
18 Zb = 80 * Y / (Y - 1) / /
      2 EQUATIONS WE WILL GET THIS EXPRESSION
19 Mb=t*L*density*10^-2// m/b in N
20 \text{ Tcb=Mb*V^2}/
                             centrifugal tension/b
21 \quad \mathsf{Tmaxb} = \mathsf{Zb} + \mathsf{Tcb} / /
                             MAX TENSION/b
22 Fb=Tmaxb/t//STRESS INDUCED IN TIGHT BELT
23
24 //OUTPUT
25 printf ('THE STRESS DEVELOPED ON THE TIGHT SIDE OF
      BELT=%f N/cm^2, Fb)
```

Scilab code Exa 2.11 speed of the pulley

```
1 //CHAPTER 2, ILLUSTRATION 11 PAGE 65
2 //TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS
     AND PULLEYS
3 clc
4 clear
5 //INPUT
                CENTRE DISTANCE IN metres
6 C=4.5//
7 D1=1.35//
                DIAMETER OF LARGER PULLEY IN metres
8 D2 = .9 / /
                DIAMETER OF SMALLER PULLEY IN metres
                INITIAL TENSION IN newtons
9 To = 2100 / /
                WIDTH OF BELT IN cm
10 b=12//
11 t=12//
                THICKNESS OF BELT IN mm
12 d=1//
                DENSITY IN gm/cm<sup>3</sup>
13 U = .3 / /
                 COEFFICIENT OF FRICTION
14 L=1//
                 length in metres
15 PI=3.141
16 e = 2.71
17
18 //CALCULATION
```

```
19 M=b*t*d*L*10^-2//
                                        mass of belt per
      metre length in KG
20 V = (To/3/M)^{.5}/
                                         VELOCITY OF FOR MAX
      POWER TO BE TRANSMITTED IN m/s
21 \quad \mathsf{Tc} = \mathsf{M} * \mathsf{V}^2 / /
                                        CENTRIFUGAL TENSION
      IN newtons
22 / /
                                        LET (T1+T2)=X
23 X = 2 * To - 2 * Tc //
                                        THE VALUE OF (T1+T2)
24 F = (D1 - D2) / (2*C)
25 ALPHA=asind(F)
26 \text{ THETA} = (180 - (2*ALPHA))*PI/180//
                                       ANGLE OF CONTACT IN
       radians
27 //
                                         LET T1/T2=Y
                                         THE VALUE OF T1/T2
28 Y=e^(U*THETA)//
                                         BY SOLVING X AND Y
29 \quad T1 = X * Y / (Y + 1) / /
     WE WILL GET THIS EQN
30 T2=X-T1
                                            MAX POWER
31 P = (T1 - T2) * V / 1000 / /
      TRANSMITTED IN kilowatts
                                             SPEED OF LARGER
32 N1 = V * 60 / (PI * D1) / /
      PULLEY IN rpm
33 N2 = V*60/(PI*D2)//
                                             SPEED OF SMALLER
       PULLEY IN rpm
34 //OUTPUT
35 printf('\n MAX POWER TO BE TRANSMITTED = %f KW', P)
36 printf('\n SPEED OF THE LARGER PULLEY = %f rpm', N1)
37 printf('\n SPEED OF THE SMALLER PULLEY = %f rpm', N2)
```

Scilab code Exa 2.12 efficiency of drive

```
1 //CHAPTER 2,ILLUSTRATION 12 PAGE 66
2 //TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS
         AND PULLEYS
3 clc
4 clear
```

```
5 //
```

```
6 //INPUT
7 PI=3.141
8 e = 2.71
                               DIAMETER OF DRIVING SHAFT IN
9 D1 = 1.20 / /
       \mathbf{m}
10 D2=.50 //
                               DIAMETER OF DRIVEN SHAFT IN
      \mathbf{m}
                               CENTRE DISTANCE BETWEEN THE
11 C=4//
      SHAFTS IN m
12 M = .9 / /
                               MASS OF BELT PER METRE
      LENGTH IN kg
                               MAX TENSION IN N
13 Tmax = 2000 / /
                               COEFFICIENT OF FRICTION
14 U = .3 / /
                               SPEED OF DRIVING SHAFT IN
15 \text{ N1} = 200 / /
     rpm
16 N2 = 450 //
                               SPEED OF DRIVEN SHAFT IN rpm
17 //
18 //CALCULATION
19 V = PI * D1 * N1 / 60 / /
                               VELOCITY OF BELT IN m/s
20 \text{ Tc=M*V^2}/
                               CENTRIFUGAL TENSION IN N
                               TENSION ON TIGHTSIDE IN N
21 \quad T1 = Tmax - Tc //
22 F = (D1 - D2) / (2*C)
23 ALPHA=asind(F)
24 THETA = (180 - (2* ALPHA))*PI/180//
                                         ANGLE OF CONTACT IN
       radians
                                         TENSION ON SLACK
25 T2=T1/(e^(U*THETA))//
      SIDE IN N
                                          TORQUE ON THE SHAFT
26 \text{ TL} = (T1 - T2) * D1/2//
       OF LARGER PULLEY IN N-m
                                          TORQUE ON THE SHAFT
27 TS = (T1 - T2) * D2/2//
       OF SMALLER PULLEY IN N-m
28 P = (T1 - T2) * V / 1000 / /
                                         POWER TRANSMITTED
      IN kW
```

```
29 Pi=2*PI*N1*TL/60000//
                                       INPUT POWER
30 \text{ Po} = 2 * PI * N2 * TS / 60000 / /
                                       OUTPUT POWER
31 Pl=Pi-Po//
                                       POWER LOST DUE TO
     FRICTION IN kW
32 n = Po/Pi * 100 / /
                                       EFFICIENCY OF DRIVE
       IN %
33 //
34 //OUTPUT
35 printf('\nTORQUE ON LARGER SHAFT = %f N-m', TL)
36 printf('\nTORQUE ON SMALLER SHAFT = %f N-m', TS)
37 printf('\nPOWER TRANSMITTED =\%f kW',P)
38 printf('\nPOWER LOST DUE TO FRICTION = %f kW', Pl)
39 printf('\nEFFICIENCY OF DRINE = %f percentage',n)
```

Scilab code Exa 2.13 no of belts required

```
1 //CHAPTER 2, ILLUSTRATION 13 PAGE 67
2 //TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS
     AND PULLEYS
3 clc
4 clear
5 //
6 //INPUT
7 PI=3.141
8 e = 2.71
                                 POWER OF A COMPRESSOR IN
9 P = 90 / /
      kW
                                SPEED OF DRIVEN SHAFT IN
10 N2 = 250 / /
      rpm
11 N1 = 750 / /
                                SPEED OF DRIVER SHAFT IN
      rpm
```

```
DIAMETER OF DRIVEN SHAFT
12 D2=1//
     IN m
13 C=1.75 / /
                                   CENTRE DISTANCE IN m
                                   VELOCITY IN m/s
14 V = 1600/60//
15 \quad a = 375 / /
                                   CROSECTIONAL AREA IN mm
                                   BELT DENSITY IN kg/m<sup>3</sup>
16 \text{ density} = 1000//
17 L=1//
                                   length to be considered
18 Fb = 2.5 / /
                                   STRESSS INDUCED IN MPa
                                   THE GROOVE ANGLE OF
19 beeta=35/2//
     PULLEY
20 \quad U = .25 //
                                   COEFFICIENT OF FRICTION
21 //
22 //CALCULATION
23 D1 = N2 * D2 / N1 / /
                                  DIAMETER OF DRIVING
     SHAFT IN m
                            MASS OF THE BELT IN kg
24 \text{ m=a*density*10}^-6*L//
                                  MAX TENSION IN N
25 \text{ Tmax=a*Fb}//
26 \text{ Tc=m*V^2}/
                                   CENTRIFUGAL TENSION IN N
27 T1 = Tmax - Tc //
                                   TENSION ON TIGHTSIDE OF
     BELT IN N
28 F = (D2 - D1) / (2*C)
29 ALPHA=asind(F)
30 THETA = (180 - (2*ALPHA))*PI/180// ANGLE OF CONTACT IN
       radians
31 T2=T1/(e^(U*THETA/sind(beeta)))//TENSION ON
      SLACKSIDE IN N
32 P2 = (T1 - T2) * V / 1000 / /
                               POWER TRANSMITTED
     PER BELT kW
33 N = P/P2//
                                         NO OF V-BELTS
34 N3=N+1
35 //
36 //OUTPUT
```

37 printf('NO OF BELTS REQUIRED TO TRANSMIT POWER=%f

Scilab code Exa 2.14 initial rope tension

```
1 //CHAPTER 2, ILLUSTRATION 14 PAGE 68
2 //TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS
      AND PULLEYS
3
4 clc
5 clear
6 //
7 //INPUT
8 PI=3.141
9 e = 2.71
10 P = 75 / /
                        POWER IN kW
11 D=1.5//
                        DIAMETER OF PULLEY IN m
12 U = .3 / /
                        COEFFICIENT OF FRICTION
13 beeta=45/2//
                        GROOVE ANGLE
14 THETA=160*PI/180// ANGLE OF CONTACT IN radians
15 \text{ m} = .6 / /
                        MASS OF BELT IN kg/m
16 Tmax=800//
                        MAX TENSION IN N
17 N = 200 / /
                        SPEED OF SHAFT IN rpm
18 //
19 //calculation
20 V = PI * D * N / 60 / /
                                  VELOCITY OF ROPE IN m/s
21 \text{ Tc=m*V^2}/
                                  CENTRIFUGAL TENSION IN N
22 T1 = Tmax - Tc / /
                                        TENSION ON TIGHT
      SIDE IN N
23 T2=T1/(e^(U*THETA/sind(beeta)))//TENSION ON
      SLACKSIDE IN N
24 P2 = (T1 - T2) * V / 1000 / /
                                       POWER TRANSMITTED
```

Chapter 3

FRICTION

Scilab code Exa 3.1 finding out the coefficient of friction

```
1 //CHAPTER 3 ILLUSRTATION 1 PAGE NO 102
2 //TITLE:FRICTION
3 //FIRURE 3.16(a),3.16(b)
4 clc
5 clear
6 //
7 //INPUT DATA
8 P1=180//
                                    PULL APPLIED TO THE
     BODY IN NEWTONS
9 theta=30//
                                    ANGLE AT WHICH P IS
     ACTING IN DEGREES
10 P2=220 //
                                    PUSH APPLIED TO THE
     BODY IN NEWTONS
                                    NORMAL REACTION
11 / Rn =
                                    FORCE OF FRICTION IN
12 / F =
      NEWTONS
                                    COEFFICIENT OF
13 //U =
     FRICTION
14 / W =
                                    WEIGHT OF THE BODY
```

```
IN NEWTON
15 //
16 //CALCULATION
17 F1=P1*cosd(theta)//
                                      RESOLVING FORCES
     HORIZONTALLY FROM 3.16(a)
18 F2=P2*cosd(theta)//
                                      RESOLVING FORCES
     HORIZONTALLY FROM 3.16(b)
                                      RESOLVING FORCES
19
  //
      VERTICALLY Rn1=W-P1*sind(theta) from 3.16(a)
                                      RESOLVING FORCES
      VERTICALLY Rn2=W+P1*sind(theta) from 3.16(b)
                                      USING THE RELATION
21 //
      F1=U*Rn1 &
                        F2=U*Rn2 AND SOLVING FOR W BY
      DIVIDING THESE TWO EQUATIONS
22 X = F1/F2//
                                      THIS IS THE VALUE
     OF Rn1/Rn2
23 Y1=P1*sind(theta)
24 \text{ Y2=P2*sind(theta)}
25 W = (Y2 * X + Y1) / (1 - X) / /
                                       BY SOLVING ABOVE
      3 EQUATIONS
26 \quad U=F1/(W-P1*sind(theta))//
                                   COEFFICIENT OF
     FRICTION
27 //
28 //OUTPUT
29 printf ('WEIGHT OF THE BODY = %.3fN\nTHE COEFFICIENT
     OF FRICTION =\%.3 \, \text{f}', W, U)
```

Scilab code Exa 3.2 DISTANCE ALONG THE INCLINED PLANE

```
1 //CHAPTER 3 ILLUSRTATION 2 PAGE NO 103
2 //TITLE:FRICTION
```

```
3 //FIRURE 3.17
4 clc
5 clear
6 //
7 //INPUT DATA
8 THETA = 45//
                                ANGLE OF INCLINATION IN
     DEGREES
9 g = 9.81 / /
                                 ACCELERATION DUE TO
      GRAVITY IN N/mm<sup>2</sup>
10 U = .1 //
                                 COEFFICIENT FRICTION
11 //Rn=NORMAL REACTION
12 //M=MASS IN NEWTONS
13 // f=ACCELERATION OF THE BODY
14 u = 0 / /
                                 INITIAL VELOCITY
15 V = 10 / /
                                 FINAL VELOCITY IN m/s<sup>2</sup>
16 //
17 //CALCULATION
18 //CONSIDER THE EQUILIBRIUM OF FORCES PERPENDICULAR
     TO THE PLANE
19 / \text{Rn=Mgcos} (\text{THETA})
20 //CONSIDER THE EQUILIBRIUM OF FORCES ALONG THE PLANE
21 // Mgsin (THETA) – U∗Rn≡M∗ f . . . . . . . . . . . BY SOLVING THESE
       2 EQUATIONS
22 f=g*sind(THETA)-U*g*cosd(THETA)
23 s=(V^2-u^2)/(2*f)//
                                          DISTANCE ALONG
     THE PLANE IN metres
24 //
25 //OUTPUT
26 printf ('DISTANCE ALONG THE INCLINED PLANE=%3.3 f m', s
```

Scilab code Exa 3.3 workdone

```
1 //CHAPTER 3 ILLUSRTATION 3 PAGE NO 104
2 //TITLE:FRICTION
3 //FIRURE 3.18
4 clc
5 clear
6 //
7 //INPUT DATA
8 W = 500 / /
                                 WEGHT IN NEWTONS
9 THETA = 30 / /
                                 ANGLE OF INCLINATION IN
      DEGRESS
                                 COEFFICIENT FRICTION
10 U=0.2//
11 S = 15 / /
                                 DISTANCE IN metres
12 //
13 Rn=W*cosd(THETA)// NORMAL REACTION IN NEWTONS
14 P=W*sind(THETA)+U*Rn// PUSHING FORCE ALONG THE
      DIRECTION OF MOTION
15 \quad w = P * S
16 //
17 //OUTPUT
18 printf ('WORK DONE BY THE FORCE=\%3.3 f N-m', w)
```

Scilab code Exa 3.4 FINDING OUT COEFFICIENT OF FRICTION

1 //CHAPTER 3 ILLUSRTATION 4 PAGE NO 104

```
2 //TITLE:FRICTION
3 //FIRURE 3.19(a) & 3.19(b)
4 clc
5 clear
6 //
7 //INPUT DATA
8 P1=2000//
                        FORCE ACTING UPWARDS WHEN ANGLE
      =15 degrees IN NEWTONS
9 P2 = 2300 / /
                        FORCE ACTING UPWARDS WHEN ANGLE
     =20 degrees IN NEWTONS
10 THETA1=15//
                        ANGLE OF INCLINATION IN 3.19(a)
11 THETA2=20//
                        ANGLE OF INCLINATION IN 3.19(b)
12 / F1 =
                        FORCE OF FRICTION IN 3.19(a)
13 / \text{Rn1} =
                        NORMAL REACTION IN 3.19(a)
14 / F2 =
                        FORCE OF FRICTION IN 3.19(b)
15 / \text{Rn2} =
                        NORMAL REACTION IN 3.19(b)
16 //U =
                         COEFFICIENT OF FRICTION
17 //
18 //CALCULATION
19 / P1 = F1 + Rn1
                            RESOLVING THE FORCES ALONG
     THE PLANE
20 //Rn1=W*cosd (THETA1) .... NORMAL REACTION IN 3.19(a)
21 / F1 = U * Rn1
22 //BY SOLVING ABOVE EQUATIONS P1=W(U*cosd (THETA1)+
      sind (THETA1) )-----
23 / P2 = F2 + Rn2
                            RESOLVING THE FORCES
     PERPENDICULAR TO THE PLANE
24 //Rn2=W*cosd (THETA2) . . . . NORMAL REACTION IN 3.19(b)
25 / F2 = U * Rn2
26 //BY SOLVING ABOVE EQUATIONS P2=W(U*cosd (THETA2)+
      sind (THETA2))-----
27 //BY SOLVING EQUATIONS 1 AND 2
28 X = P2/P1
29 U=(sind(THETA2)-(X*sind(THETA1)))/((X*cosd(THETA1)-
```

```
cosd(THETA2)))// COEFFICIENT OF FRICTION
30 W=P1/(U*cosd(THETA1)+sind(THETA1))
32 //OUTPUT
33 //printf('%f',X)
34 printf ('COEFFICIENT OF FRICTION=%3.3 f\n WEIGHT OF
     THE BODY=\%3.3 \, f \, N', U, W)
   Scilab code Exa 3.5 EFFORT NEED TO APPLIED
1 //CHAPTER 3 ILLUSRTATION 5 PAGE NO 105
2 //TITLE:FRICTION
3 clc
4 clear
5 //
6 //INPUT DATA
7 d=5//
                              DIAMETER OF SCREW JACK IN
    cm
                              PITCH IN cm
8 p=1.25//
9 1=50//
                              LENGTH IN cm
10 U = .1 / /
                              COEFFICIENT OF FRICTION
11 W = 20000 / /
                              LOAD IN NEWTONS
12 PI=3.147
13 //
14 //CALCULATION
15 ALPHA=atand(p/(PI*d))
16 PY=atand(U)
```

17 P=W*tand(ALPHA+PY)

18 P1=P*d/(2*1)

```
19 //
20 //OUTPUT
21 printf ('THE AMOUNT OF EFFORT NEED TO APPLY = %3.3 f N'
      ,P1)
   Scilab code Exa 3.6 EFFICIENCY OF THE MACHINE
1 //CHAPTER 3 ILLUSRTATION 6 PAGE NO 106
2 //TITLE:FRICTION
3 clc
4 clear
5 //
6 //INPUT DATA
                           DIAMETER OF SCREW IN mm
7 d=50//
8 p=12.5//
                           PITCH IN mm
9 U=0.13 //
                           COEFFICIENT OF FRICTION
10 W = 25000 / /
                           LOAD IN mm
11 PI=3.147
12 //
13 //CALCULATION
14 ALPHA = atand(p/(PI*d))
15 PY=atand(U)
16 P=W*tand(ALPHA+PY)//
                                 FORCE REQUIRED TO RAISE
      THE LOAD IN N
17 T1=P*d/2//
                                 TORQUE REQUIRED IN Nm
18 P1=W*tand(PY-ALPHA)//
                                 FORCE REQUIRED TO LOWER
      THE SCREW IN N
19 T2=P1*d/2//
                                 TORQUE IN N
20 X = T1/T2//
                                  RATIOS REQUIRED
```

```
21 n=tand(ALPHA/(ALPHA+PY))// EFFICIENCY
22 / /
23 printf('RATIO OF THE TORQUE REQUIRED TO RAISE THE
     LOAD, TO THE TORQUE REQUIRED TO LOWER THE LOAD =%
     .3 f ', X)
   Scilab code Exa 3.7 EFFICIENCY OF MACHINE
1 //CHAPTER 3 ILLUSRTATION 7 PAGE NO 107
2 //TITLE:FRICTION
3 clc
4 clear
5 //
6 //INPUT DATA
7 d=39//
                           DIAMETER OF THREAD IN mm
8 p=13//
                           PITCH IN mm
9 U=0.1//
                           COEFFICIENT OF FRICTION
10 W = 2500 / /
                           LOAD IN mm
11 PI=3.147
12 / /
13 //CALCULATION
14 ALPHA = atand(p/(PI*d))
15 PY=atand(U)
16 P=W*tand(ALPHA+PY)//
                                 FORCE IN N
17 T1=P*d/2//
                                 TORQUE REQUIRED IN Nm
                                  TORQUE REQUIRED ON THE
18 T = 2 * T1 / /
      COUPLING ROD IN Nm
19 K = 2 * p / /
                                 DISTANCE TRAVELLED FOR
     ONE REVOLUTION
```

```
20 N=20.8/K//
REQUIRED
21 w=2*PI*N*T/100//
WORKDONE BY TORQUE
22 w1=w*(7500-2500)/2500//
WORKDONE TO INCREASE
THE LOAD FROM 2500N TO 7500N
23 n=tand(ALPHA)/tand(ALPHA+PY)//
EFFICIENCY
24 //
25 //OUTPUT
26 printf('workdone against a steady load of 2500N=%3.3
f N\n workdone if the load is increased from 2500
N to 7500N=%3.3 f N\n efficiency=%.3 f',w,w1,n)
```

Scilab code Exa 3.8 NO OF TEETH ON PINION

```
1 //CHAPTER 3 ILLUSRTATION 8 PAGE NO 107
2 //TITLE:FRICTION
3 clc
4 clear
5 //
6 //INPUT DATA
7 W = 50000 / /
                                      WEIGHT OF THE
     SLUICE GATE IN NEWTON
8 P = 40000 / /
                                      POWER IN WATTS
9 N = 580 / /
                                      MAX MOTOR RUNNING
     SPEEED IN rpm
10 d=12.5//
                                      DIAMETER OF THE
     SCREW IN cm
11 p=2.5//
                                      PITCH IN cm
12 PI=3.147
13 U1=.08//
                                       COEFFICIENT OF
     FRICTION for SCREW
```

```
C.O.F BETWEEN
14 U2=.1//
     GATES AND SCREW
15 Np = 2000000 / /
                                        NORMAL PRESSURE IN
    NEWTON
16 Fl=.15//
                                      FRICTION LOSS
17 n = 1 - F1 / /
                                      EFFICIENCY
18 ng=80//
                                     NO OF TEETH ON GEAR
19 //
20 //CALCULATION
21 \text{ TV=W+U2*Np}//
                                        TOTAL VERTICAL HEAD
 IN NEWTON
22 ALPHA=atand(p/(PI*d))//
23 PY = atand(U1)//
24 P1=TV*tand(ALPHA+PY)//
                                         FORCE IN N
25 T=P1*d/2/100//
                                         TORQUE IN N-m
26 \text{ Ng} = 60000 * n * P * 10^-3/(2 * PI * T) //
                                                   SPEED OF
      GEAR IN rpm
                                         NO OF TEETH ON
27 \text{ np=Ng*ng/N}//
     PINION
28 / /
29 //OUTPUT
30 printf('NO OF TEETH ON PINION = %.2 f say %d',np,np+1)
```

Scilab code Exa 3.9 TO FIND THE DIAMETER OF HAND WHEEL

```
1 //CHAPTER 3 ILLUSRTATION 9 PAGE NO 108
2 //TITLE:FRICTION
3 clc
4 clear
5 //
```

```
6 //INPUT DATA
7 d=5//
                                    MEAN DIAMETER OF SCREW
      IN cm
8 p=1.25//
                                    PITCH IN cm
9 W = 10000 / /
                                    LOAD AVAILABLE IN
     NEWTONS
10 \, dc = 6 / /
                                    MEAN DIAMETER OF
     COLLAR IN cm
11 U = .15 / /
                                    COEFFICIENT OF
     FRICTION OF SCREW
12 \text{ Uc} = .18 //
                                    COEFFICIENT OF
     FRICTION OF COLLAR
13 P1=100//
                                    TANGENTIAL FORCE
     APPLIED IN NEWTON
14 PI=3.147
15 //
16 //CALCULATION
17 ALPHA=atand(p/(PI*d))//
18 PY=atand(U)//
19 T1=W*d/2*tand(ALPHA+PY)/100//
                                            TORQUE ON
     SCREW IN NEWTON
20 \text{ Tc=Uc*W*dc/2/100//}
                                               TORQUE ON
     COLLAR IN NEWTON
                                         TOTAL TORQUE
21 T = T1 + Tc / /
22 D=2*T/P1/2*100//
                                              DIAMETER OF
     HAND WHEEL IN cm
23 //
24 //OUTPUT
25 printf ('SUITABLE DIAMETER OF HAND WHEEL =\%3.3 f cm', D
```

Scilab code Exa 3.10 FORCE REQUIRED

```
1 //CHAPTER 3 ILLUSRTATION 10 PAGE NO 108
2 //TITLE:FRICTION
3 clc
4 clear
5 //
6 //INPUT DATA
7 PI=3.147
8 d=2.5//
                                MEAN DIA OF BOLT IN cm
                                PITCH IN cm
9 p = .6 / /
10 beeta=55/2//
                                VEE ANGLE
11 \, dc = 4 / /
                                DIA OF COLLAR IN cm
                                  COEFFICIENT OF FRICTION
12 U=.1//
      OF BOLT
13 Uc = .18 / /
                                   COEFFICIENT OF
     FRICTION OF COLLAR
                                  LOAD ON BOLT IN NEWTONS
14 W = 6500 / /
15 L=38//
                                  LENGTH OF SPANNER
16 //
17 //CALCULATION
18 / LET X=tan(py)/tan(beeta)
19 //y = tan(ALPHA) *X
20 PY=atand(U)
21 ALPHA=atand(p/(PI*d))
22 X=tand(PY)/cosd(beeta)
23 Y=tand(ALPHA)
24 T1=W*d/2*10^-2*(X+Y)/(1-(X*Y))//
                                                   TORQUE
     IN SCREW IN N-m
25 \text{ Tc=Uc*W*dc/2*10^-2}//
                                                   TORQUE
```

```
ON BEARING SERVICES IN N-m
26 T = T1 + Tc / /
                                                     TOTAL
     TORQUE
27 P1=T/L*100//
     FORCE REQUIRED BY @ THE END OF SPANNER
28 //
29 //OUTPUT
30 printf('FORCE REQUIRED @ THE END OF SPANNER=%3.3 f N'
      ,P1)
   Scilab code Exa 3.11 POWER LOST IN FRICTION
1 //CHAPTER 3 ILLUSRTATION 11 PAGE NO 109
2 //TITLE:FRICTION
3 clc
4 clear
5 //
6 //INPUT DATA
7 d1 = 15 / /
                                              DIAMETER OF
     VERTICAL SHAFT IN cm
8 N = 100 / /
                                              SPEED OF THE
      MOTOR rpm
9 W = 20000 / /
                                               LOAD
     AVILABLE IN N
10 \quad U = .05 //
                                               COEFFICIENT
      OF FRICTION
11 PI=3.147
12 //
                                               FRICTIONAL
13 T=2/3*U*W*d1/2//
```

```
TORQUE IN N-m
14 PL=2*PI*N*T/100/60//
                                                    POWER
     LOST IN FRICTION IN WATTS
15 //
16 //OUTPUT
17 printf ('POWER LOST IN FRICTION=%3.3 f watts', PL)
   Scilab code Exa 3.12 NO OF COLLARS REQUIRED
1 //CHAPTER 3 ILLUSRTATION 12 PAGE NO 109
2 //TITLE:FRICTION
3 clc
4 clear
5 //
6 //INPUT DATA
7 PI=3.147
8 d2 = .30 //
                                           DIAMETER OF
     SHAFT IN m
9 W = 200000 / /
                                           LOAD AVAILABLE
     IN NEWTONS
10 N = 75 / /
                                          SPEED IN rpm
11 U = .05 / /
                                          COEFFICIENT OF
     FRICTION
12 p=300000//
                                          PRESSURE
     AVAILABLE IN N/m<sup>2</sup>
13 P=16200//
                                          POWER LOST DUE
     TO FRICTION IN WATTS
14 //
```

15 //Calculation

```
TORQUE INDUCED
16 T = P * 60/2/PI/N//
      IN THE SHFT IN N-m
17 //\text{LET X} = (r1^3 - r2^3)/(r1^2 - r2^2)
18 X = (3/2 * T/U/W)
19 r2=.15//
                                               SINCE d2=.30 \text{ m}
20 c=r2^2-(X*r2)
21 \ b = r2 - X
22 a = 1
23 r1=( -b+ sqrt (b^2 -4*a*c ))/(2* a);//
                                                 VALUE OF
      r1 IN m
24 d1=2*r1*100//
                                                       d1 IN cm
25 n=W/(PI*p*(r1^2-r2^2))
26 //
27 //OUTPUT
28 printf('\nEXTERNAL DIAMETER OF SHAFT =\%3.3 f cm\nNO
      OF COLLARS REQUIRED =\%.3 \, \text{f} or \%.0 \, \text{f}, d1,n,n+1)
```

Scilab code Exa 3.13 POWER ABSORBED IN FRICTION

```
//CHAPTER 3 ILLUSRTATION 13 PAGE NO 111
//TITLE:FRICTION
clc
clear
//
//INPUT DATA
PI=3.147
W=20000//
NEWTONS
ALPHA=120/2//
ANGLE IN DEGREES
p=350000//
INTENSITY
```

```
OF PRESSURE
11 U=.06
12 N = 120 / /
                                                   SPEED OF
      THE SHAFT IN rpm
13 / d1 = 3d2
14 / r1 = 3r2
15 //
16 //CALCULATION
17 / \text{LET K} = d1/d2
18 k=3
19 Z=W/((k^2-1)*PI*p)
20 r2=Z^.5//
                                                   INTERNAL
     RADIUS IN m
21 r1 = 3 * r2
22 T=2*U*W*(r1^3-r2^3)/(3*sind(60)*(r1^2-r2^2))//
      total frictional torque in N
23 P=2*PI*N*T/60000//
                                                      power
      absorbed in friction in kW
24 //
25 printf('\nTHE INTERNAL DIAMETER OF SHAFT =\%3.3 f cm\
      nTHE EXTERNAL DIAMETER OF SHAFT =\%3.3 f cm\nPOWER
      ABSORBED IN FRICTION =\%.3 \text{ f kW}, r2*100, r1*100, P)
```

Scilab code Exa 3.14 FINDING Radii

```
1 //CHAPTER 3 ILLUSRTATION 14 PAGE NO 111
2 //TITLE:FRICTION
3 clc
4 clear
5 //
```

```
6 //INPUT DATA
7 PI=3.147
8 P = 10000 / /
                                                POWER
      TRRANSMITTED BY CLUTCH IN WATTS
9 N = 3000 / /
                                                SPEED IN rpm
10 p = .09 / /
                                                AXIAL
     PRESSURE IN N/mm<sup>2</sup>
11 / d1 = 1.4 d2
                                                RELATION
      BETWEEN DIAMETERS
                                                D1/D2
12 K = 1.4 / /
13 n = 2
14 U = .3 / /
                                                COEFFICIENT
     OF FRICTION
15 //
16 \text{ T=P*60000/1000/(2*PI*N)} //
      ASSUMING UNIFORM WEAR
                                           TORQUE IN N-m
17 r2=(T*2/(n*U*2*PI*p*10^6*(K-1)*(K+1)))^(1/3)//
                  INTERNAL RADIUS
18
19 //
20 printf ('THE INTERNAL RADIUS = %f cm\n THE EXTERNAL
      RADIUS = \%f cm', r2*100, K*r2*100)
   Scilab code Exa 3.15 MAX AXIAL INTENSITY OF PRESSURE
```

```
1 //CHAPTER 3 ILLUSRTATION 14 PAGE NO 111
2 //TITLE:FRICTION
3 clc
4 //
5 clear
```

```
6 //
7 //INPUT DATA
8 PI=3.147
                                     NO OF DICS ON
9 n1=3//
     DRIVING SHAFTS
                                     NO OF DICS ON DRIVEN
10 n2 = 2 / /
      SHAFTS
11 d1=30//
                                     DIAMETER OF DRIVING
     SHAFT IN cm
12 d2=15//
                                     DIAMETER OF DRIVEN
     SHAFT IN cm
13 r1 = d1/2
14 r2=d2/2
                                      COEFFICIENT FRICTION
15 U = .3 / /
                                      TANSMITTING POWER IN
16 P=30000//
      WATTS
17 N = 1800 / /
                                     SPEED IN rpm
18 //
19 //CALCULATION
20 n = n1 + n2 - 1 / /
                                     NO OF PAIRS OF
     CONTACT SURFACES
21 T=P*60000/(2*PI*N)//
                                     TORQUE IN N-m
22 W=2*T/(n*U*(r1+r2)*10)//
                                        LOAD IN N
23 k=W/(2*PI*(r1-r2))
24 p=k/r2/100//
                                         MAX AXIAL
     INTENSITY OF PRESSURE IN N/mm<sup>2</sup>
25 / /
26 // OUTPUT
27 printf('MAX AXIAL INTENSITY OF PRESSURE = %f N/mm^2',
     p)
```

Chapter 4

Gears and Gear Drivers

Scilab code Exa 4.1 Length of arc of contact

```
1 //Chapter-4, Illustration 1, Page 133
2 //Title: Gears and Gear Drivers
3 //
```

```
4 clc
5 clear
6
7 //INPUT DATA
8 TA=48; //Wheel A teeth
9 TB=30; //Wheel B teeth
10 m=5; //Module pitch in mm
11 phi=20; // Pressure angle in degrees
12 add=m; //Addendum in mm
13
14 //CALCULATIONS
15 R=(m*TA)/2; // Pitch circle radius of wheel A in mm
16 RA=R+add; // Radius of addendum circle of wheel A in mm
17 r=(m*TB)/2; // Pitch circle radius of wheel B in mm
18 rA=r+add; // Radius of addendum circle of wheel B in
```

```
mm
19 lp=(sqrt((RA^2)-((R^2)*(cosd(phi)^2))))+(sqrt((rA^2)
     -((r^2)*(cosd(phi)^2))))-((R+r)*sind(phi));//
     Length of path of contact in mm
20 la=lp/cosd(phi);//Length of arc of contact in mm
21
22 //OUTPUT
23 mprintf('Length of arc of contact is %3.1f mm', la)
24
25
26
27
28
29
30
31
                            END OF PROGRAM
32
```

Scilab code Exa 4.2 Addendum of wheel

```
//Chapter -4, Illustration 2, Page 133
//Title: Gears and Gear Drivers
//Title: Gears and Gear Drivers
//Chapter -4, Illustration 2, Page 133
//Title: Gears and Gear Drivers
//Chapter -4, Illustration 2, Page 133
//Title: Gears and Gear Drivers
//Ti
```

```
13 x=1.75; // Ratio of length of arc of contact to
      circular pitch
14
15 //CALCULATIONS
16 Cp=m*pi;//Circular pitch in mm
17 R=(m*TA)/2;//Pitch circle radius of wheel A in mm
18 r=R; // Pitch circle radius of wheel B in mm
19 la=x*Cp;//Length of arc of contact in mm
20 lp=la*cosd(phi); //Length of path of contact in mm
21 RA = sqrt(((((lp/2) + (R*sind(phi)))^2) + ((R^2)*(cosd(phi)))^2)
      )^2));//Radius of addendum circle of each wheel
22
  add=RA-R; //Addendum in mm
23
24 //OUTPUT
25 mprintf('Addendum of wheel is %3.3 f mm', add)
26
27
28
29
30
31
32
33
34
                              END OF PROGRAM
35
```

Scilab code Exa 4.3 Length of arc of contact

```
1 //Chapter-4, Illustration 3, Page 134
2 //Title: Gears and Gear Drivers
3 //
```

```
4 clc
5 clear
7 //INPUT DATA
8 TA=48; //Gear teeth
9 TB=24; // Pinion teeth
10 m=6; //Module in mm
11 phi=20; // Pressure angle in degrees
12
13 //CALCULATIONS
14 r=(m*TB)/2;//Pitch circle radius of pinion in mm
15 R=(m*TA)/2;//Pitch circle radius of gear in mm
16 RA = sqrt(((((r*sind(phi))/2) + (R*sind(phi)))^2) + ((R^2))
      *(cosd(phi))^2));//Radius of addendum circle of
      gear in mm
17 rA = sqrt(((((R*sind(phi))/2)+(r*sind(phi)))^2)+((r^2)
      *(cosd(phi))^2)); // Radius of addendum circle of
      pinion in mm
18 addp=rA-r; //Addendum for pinion in mm
19 addg=RA-R; //Addendum for gear in mm
20 lp=((R+r)*sind(phi))/2;//Length of path of contact
21 la=lp/cosd(phi); //Length of arc of contact in mm
22
23 //OUTPUT
24 mprintf('Addendum for pinion is %3.3 f mm \n Addendum
       for gear is %3.2 f mm \n Length of arc of contact
       is \%3.3 \text{ f mm}, addp, addg, la)
25
26
27
28
29
30
31
32
33
34
```

Scilab code Exa 4.4 Velocity ratio

```
1 //Chapter-4, Illustration 4, Page 135
2 // Title: Gears and Gear Drivers
3 //
4 clc
5 clear
7 //INPUT DATA
8 x=3.5; //Ratio of teeth of wheels
9 C=1.2; // Centre distance between axes in m
10 DP=4.4; // Diametrical pitch in cm
11
12 //CALCULATIONS
13 D=2*C*100; //Sum of diameters of wheels in cm
14 T=D*DP; //Sum of teeth of wheels
15 TB1=T/(x+1); //Teeth of wheel B
16 TB=floor(TB1);//Teeth of whhel B
17 TA=x*TB; // Teeth of wheel A
18 DA=TA/DP; // Diametral pitch of gear A in cm
19 DB=TB/DP;//Diametral pitch of gear B in cm
20 Ce=(DA+DB)/2;//Exact centre distance between shafts
  TB2=ceil(TB1);//Teeth of wheel B
21
22 TA2=T-TB2; // Teeth of wheel A
23 VR=TA2/TB2; // Velocity ratio
24
25 //OUTPUT
26 mprintf('Number of teeth on wheel A is \%3.0\,\mathrm{f} \n
     Number of teeth on wheel B is %3.0 f \n Exact
```

Scilab code Exa 4.5 Power transmitted

1 //Chapter-4, Illustration 5, Page 136

```
2 //Title: Gears and Gear Drivers
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 C=600;//Distance between shafts in mm
9 Cp=30;//Circular pitch in mm
10 NA=200;//Speed of wheel A in rpm
11 NB=600;//Speed of wheel B in rpm
12 F=18;//Tangential pressure in kN
13 pi=3.141
14
15 //CALCULATIONS
16 a=Cp/(pi*10);//Ratio of pitch diameter of wheel A to teeth of wheel A in cm
```

```
17 b=Cp/(pi*10);//Ratio of pitch diameter of wheel B to
       teeth of wheel B in cm
18 T=(2*C)/(a*10); //Sum of teeth of wheels
19 r=NB/NA; // Ratio of teeth of wheels
20 TB=T/(r+1); // Teeth of wheel B
21 TB1=ceil(TB); // Teeth of wheel B
22 TA=TB1*r; // Teeth of wheel A
23 DA=a*TA; // Pitch diameter of wheel A in cm
24 DB=b*TB1; // Pitch diameter of wheel B in cm
25 CPA=(pi*DA)/TA;//Circular pitch of gear A in cm
26 CPB=(pi*DB)/TB1;//Circular pitch of gear B in cm
27 C1=(DA+DB)*10/2; // Exact centre distance in mm
28 P = (F*1000*pi*DA*NA)/(60*1000*100); //Power
      transmitted in kW
29
  //OUTPUT
30
31 mprintf('Number of teeth on wheel A is %3.0 f \n
     Number of teeth on wheel B is %3.0 f \n Pitch
      diameter of wheel A is %3.2 f cm \n Pitch diameter
       of wheel B is %3.3 f cm \n Circular pitch of
      wheel A is %3.4f cm \n Circular pitch of wheel B
      is %3.4 f cm \n Exact centre distance between
      shafts is %3.2 f mm \n Power transmitted is %3.3 f
     kW', TA, TB1, DA, DB, CPA, CPB, C1, P)
32
33
34
35
36
37
38
39
40
                                   END OF PROGRAM
```

Scilab code Exa 4.6 Number of teeth on gear

```
1 //Chapter-4, Illustration 6, Page 137
2 // Title: Gears and Gear Drivers
3 //
4 clc
5 clear
7 //INPUT DATA
8 r=16; //Speed ratio
9 mA=4; //Module of gear A in mm
10 mB=mA; // Module of gear B in mm
11 mC=2.5; // Mosule of gear C in mm
12 mD=mC; //Module of gear D in mm
13 C=150; // Distance between shafts in mm
14
15 //CALCULATIONS
16 t=sqrt(r); // Ratio of teeth
17 T1=(C*2)/mA;//Sum of teeth of wheels A and B
18 T2=(C*2)/mC;//Sum of teeth of wheels C and D
19 TA=T1/(t+1); // Teeth of gear A
20 TB=T1-TA; // Teeth of gear B
21 TC=T2/(t+1); //Teeth of gear C
22 TD=T2-TC; //Teeth of gear D
23
24 //OUTPUT
25 mprintf('Number of teeth on gear A is \%3.0\,\mathrm{f} \n
      Number of teeth on gear B is %3.0 f \n Number of
      teeth on gear C is %3.0 f \n Number of teeth on
      gear D is \%3.0 \, \text{f}, TA, TB, TC, TD)
26
27
28
29
30
31
```

```
32
33
34
35 //=______END OF PROGRAM
```

Scilab code Exa 4.7 noof teeth on gears

```
1 //Chapter-4, Illustration 7, Page 138
2 // Title: Gears and Gear Drivers
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 \text{ N=4.5;}//\text{No. of turns}
9
10 //CALCULATIONS
11 Vh=N/2; // Velocity ratio of main spring spindle to
     hour hand spindle
12 Vm=12; // Velocity ratio of minute hand spindle to
      hour hand spindle
13 T1=8// assumed no of teeth on gear 1
14 T2=32// assumed no of teeth on gear 2
15 \quad T3 = (T1 + T2) / 4 / /
                    no of teeth on gear 3
16 T4=(T1+T2)-T3// no of teeth on gear 4
17 printf('no of teeth on gear 1=\%d\n no of teeth on
      gear 2=%d\n no of teeth on gear 3=%d\n no of
      teeth on gear 4=\%d', T1, T2, T3, T4)
```

Scilab code Exa 4.8 Speed of wheel

```
1 //Chapter-4, Illustration 8, Page 139
   2 // Title: Gears and Gear Drivers
  3 //
   4 clc
   5 clear
   7 //Input data
   8 Tb=70; // Teeth of wheel B
  9 Tc=25; // Teeth of wheel C
10 Td=80; // Teeth of wheel D
11 Na=-100; //Speed of arm A in clockwise in rpm
12 y=-100//Arm A rotates at 100 rpm clockwise
13
14 // Calculations
15 Te=(Tc+Td-Tb); // Teeth of wheel E
16 x = (y/0.5)
17 Nc = (y - (Td*x)/Tc); //Speed of wheel C in rpm
18
19 // Output
20 {\tt mprintf}(\mbox{'Speed of wheel C is } \%3.0\, f \mbox{ rpm } \mbox{\ \ }
                            of wheel C is anti-clockwise', Nc)
21
22
23
24
25
26
27
28
29
                                                                                                                                                     END OF PROGRAM
30
```

Scilab code Exa 4.9 Speed of wheels

```
1 / Chapter - 4, Illustration 9, Page 140
2 // Title: Gears and Gear Drivers
3 //
4 clc
5 clear
7 //Input data
8 Tb=25; // Teeth of wheel B
9 Tc=40; // Teeth of wheel C
10 Td=10; // Teeth of wheel D
11 Te=25; //Teeth of wheel E
12 Tf=30; // Teeth of wheel F
13 y=-120; //Speed of arm A in clockwise in rpm
14
15 // Calculations
16 x = (-y/4)
17 Nb=x+y; //Speed of wheel B in rpm
18 Nf = (-10/3) *x+y; //Speed of wheel F in rpm
19
20 //Output
21 mprintf('Speed of wheel B is %3.0f rpm \n Direction
      of wheel B is clockwise \n Speed of wheel F is \%3
      .0 f rpm \n Direction of wheel F is clockwise', Nb,
      Nf)
22
23
24
25
26
27
28
29
                                       ≡END OF PROGRAM
30
```

Scilab code Exa 4.10 Speed of wheels

```
1 //Chapter-4, Illustration 10, Page 141
2 // Title: Gears and Gear Drivers
3 //
4 clc
5 clear
6
7 //Input data
8 Ta=96; //Teeth of wheel A
9 Tc=48; //Teeth of wheel C
10 y=-20; //Speed of arm C in rpm in clockwise
11
12 // Calculations
13 x = (y*Ta)/Tc
14 Tb=(Ta-Tc)/2; //Teeth of wheel B
15 Nb=(-Tc/Tb)*x+y;//Speed of wheel B in rpm
16 Nc=x+y; //Speed of wheel C in rpm
17
18 //Output
19 mprintf('Speed of wheel B is %3.0 f rpm \n Speed of
      wheel C is %3.0 f rpm', Nb, Nc)
20
21
22
23
24
25
26
27
28
                                  END OF PROGRAM
29 //=
```

Scilab code Exa 4.11 speed of the arm

```
1 //Chapter-4, Illustration 11, Page 142
2 // Title: Gears and Gear Drivers
3 //
4 clc
5 clear
6 //Input data
7 Ta=40 //
                 no of teeth on gear A
8 Td=90// no of teeth on gear D
10 // Calculations
11 Tb = (Td - Ta)/2//
                    no of teeth on gear B
12 \text{ Tc=Tb}//
                    no of teeth on gear C
13 //
14 / x + y = -1
15 //-40x+90y=45
16 A = [1 1
      -Ta Td]//Coefficient matrix
17
18 B=[-1
     (Td/2)]//Constant matrix
19
20 X=inv(A)*B//Variable matrix
21 //
22 / x+y=-1
23 //-40x+90y=0
24 A1=[1 1
      -Ta Td]//Coefficient matrix
25
26 B1=[-1
      0]//Constant matrix
27
28 X1=inv(A1)*B1//Variable matrix
29
```

```
30 disp(X(2))
31 printf('speed of the arm = %.3f revolution clockwise
',X1(2))
```

Scilab code Exa 4.12 Speed of wheel

```
1 //Chapter-4, Illustration 12, Page 144
2 //Title: Gears and Gear Drivers
3 //
```

```
4 clc
5 clear
6
7 //Input data
8 Te=30; // Teeth of wheel E
9 Tb=24; // Teeth of wheel B
10 Tc=22; //Teeth of wheel C
11 Td=70; // Teeth of wheel D
12 Th=15; // Teeth of wheel H
13 Nv=100; //Speed of shaft V in rpm
14 Nx=300; //Speed of spindle X in rpm
15
16 // Calculations
17 Nh=Nv; //Speed of wheel H in rpm
18 Ne=(-Th/Te)*Nv;//Speed of wheel E in rpm
19 Ta=(Tc+Td-Tb);//Teeth of wheel A
20 / x+y=-50
21 / y = 300
22 x = (Ne - Nx)
23 Nz = (187/210) *x + Nx; //; // Speed of wheel Z in rpm
24
25 // Output
26 mprintf('Speed of wheel Z is \%3.3\,\mathrm{f} rpm \n Direction
      of wheel Z is opposite to that of X', Nz)
```

Scilab code Exa 4.13 Speed of driven shaft

```
1 //Chapter-4, Illustration 13, Page 145
2 // Title: Gears and Gear Drivers
3 //
4 clc
5 clear
6
7 //Input data
8 Tp=20; // Teeth of wheel P
9 Tq=30;//Teeth of wheel Q
10 Tr=10; // Teeth of wheel R
11 Nx=50; //Speed of shaft X in rpm
12 Na=100; //Speed of arm A in rpm
13
14 // Calculations
15 / x + y = -50
16 //y = 100
17 x=(-Nx-Na)
18 y=(-2*x+Na);//Speed of Y in rpm
19
20 //Output
21 mprintf('Speed of driven shaft Y is %3.0f rpm \n
      Direction of driven shaft Y is anti-clockwise', y)
```

Scilab code Exa 4.14 pitch circle diameter

```
1 // Chapter -4, Illustration 14, Page 146
2 // Title: Gears and Gear Drivers
```

```
3 //
```

```
4 clc
5 clear
7 //Input data
8 d=216; //Ring diameter in mm
9 m=4; //Module in mm
10
11 // Calculations
12 Td=(d/m);//Teeth of wheel D
13 Tb=Td/4; //Teeth of wheel B
14 Tb1=ceil(Tb);//Teeth of wheel B
15 Td1=4*Tb1; //Teeth of wheel D
16 Tc1=(Td1-Tb1)/2; //Teeth of wheel C
17 d1=m*Td1; // Pitch circle diameter in mm
18
19 //Output
20 mprintf('Teeth of wheel B is %3.0f \n Teeth of wheel
      C is %3.0 f \n Teeth of wheel D is %3.0 f \n Exact
       pitch circle diameter is %3.0 f mm', Tb1, Tc1, Td1,
     d1)
```

Scilab code Exa 4.15 Revolution of gears

```
1 //Chapter -4, Illustration 15, Page 147
2 //Title: Gears and Gear Drivers
3 //
4 clc
5 clear
6
7 //Input data
```

```
8 \text{ Ta} = 100 / /
                     no of teeth on gear A
9 \text{ Tc} = 101 / /
                     no of teeth on gear C
10 \text{ Td} = 99 / /
                     no of teeth on gear D
11 Tp = 20 / /
                     no of teeth on planet gear
12 y = 1 / /
                     from table 4.9 (arm B makes one
      revolution)
                     as gear is fixed
13 x = -y / /
14
15 // Calculations
                                     Revolution of gear C
16 Nc=(Ta*x)/Tc+y//
17 Nd = (Ta*x)/Td+y//
                                     Revolution of gear D
18
19 // Output
20 printf ('Revolution of gear C = \%f \setminus n Revolution of
      gear D = \%f', Nc, Nd)
```

Scilab code Exa 4.16 speed of road wheel

2 //Title: Gears and Gear Drivers

3 //

 $15 \quad x = (Nb - Nc)$

1 //Chapter-4, Illustration 16, Page 148

```
4 clc
5 clear
6
7 //Input data
8 Ta=12// no of teeth on gear A
9 Tb=60// no of teeth on gear B
10 N=1000// speed of propeller shaft in rpm
11 Nc=210// speed of gear C in rpm
12
13 //Calculations
14 Nb=(Ta*N)/Tb// speed of gear B in rpm
```

```
16 Nd=Nb+x// speed of road wheel driven by D
17
18 //Output
19 printf('speed of road wheel driven by D= %d rpm', Nd)
```

Scilab code Exa 4.17 ratio of torques

```
1 //Chapter-4, Illustration 17, Page 148
2 //Title: Gears and Gear Drivers
3 //
```

```
4 clc
5 clear
6 //Input data
7 Ta=20// no of teeth on pinion A
8 Tb=25// no of teeth on wheel B
9 Tc=50// no of teeth on gear C
10 Td=60// no of teeth on gear D
11 Te=60// no of teeth on gear E
12 Na=200// SPEED of the gear A
13 Nd=100// speed of the gear D
14
15 //calculations
16 //(i)
17 / (5/6) x+y=0
18 / (5/4) x+y=200
19 A1 = [(Tc/Td) 1]
        (Tb/Ta) 1]//Coefficient matrix
20
21 B1=[0
        Na] // Constant matrix
22
23 X1=inv(A1)*B1//Variable matrix
24 \text{ Ne1=X1(2)-(Tc/Td)*X1(1)}
25 T1=(-Ne1/Na)// ratio of torques when D is fixed
26 //(ii)
```

```
27 / (5/4) x+y=200
28 / (5/6) x+y=100
29 A2 = [(Tc/Td) 1]
       (Tb/Ta) 1]//Coefficient matrix
30
31 B2 = [Nd]
       Na]//Constant matrix
32
33 X2=inv(A2)*B2//Variable matrix
34 \text{ Ne2=X2(2)-(Tc/Td)*X2(1)}
35 T2 = (-Ne2/Na) / /
                       ratio of torques when D ratates
      at 100 rpm
36
37 //Output
38 printf ('speed of E=\%.2 f rpm in clockwise direction\
      n speed of E in 2nd case (when D rotates at 100
      rpm)= %d rpm in clockwise direction \n ratio of
      torques when D is fixed= %d \ n ratio of torques
      when D ratates at 100 \text{ rpm} = \%d', Ne1, Ne2, T1, T2)
```

Chapter 5

Inertia Force Analysis in Machines

Scilab code Exa 5.1 Maximum velocity of the piston

```
1 //CHAPTER 5 ILLUSRTATION 1 PAGE NO 160
2 //TITLE: Inertia Force Analysis in Machines
3 clc
4 clear
5 \text{ pi} = 3.141
                     radius of crank in m
6 r = .3 / /
7 1=1//
                     length of connecting rod in m
8 N = 200 / /
                     speed of the engine in rpm
9 n=1/r
10 / =
11 w = 2 * pi * N / 60 / /
                                angular speed in rad/s
12 teeta=acosd((-n+((n^2)+4*2*1)^5.5)/(2*2))//
      angle of inclination of crank in degrees
13 Vp=w*r*(sind(teeta)+(sind(2*teeta))/n)//
      maximum velocity of the piston in m/s
14 printf ('Maximum velocity of the piston = \%.3 \,\mathrm{f} m/s',
      Vp)
```

Scilab code Exa 5.2 position of crank from inner dead centre position for zero acceleration of piston

```
1 //CHAPTER 5 ILLUSRTATION 2 PAGE NO 161
2 //TITLE: Inertia Force Analysis in Machines
3 clc
4 clear
5 PI=3.141
6 r = .3 / /
                              length of crank in metres
7 1=1.5//
                              length of connecting rod in
      metres
8 N = 180 / /
                              speed of rotation in rpm
9 teeta=40//
                              angle of inclination of crank
       in degrees
10 //====
11 n=1/r
12 w = 2 * PI * N / 60 / /
                           angular speed in rad/s
13 Vp=w*r*(sind(teeta)+sind(2*teeta)/(2*n))//
                      velocity of piston in m/s
14 fp=w^2*r*(cosd(teeta)+cosd(2*teeta)/(2*n))//
                   acceleration of piston in m/s<sup>2</sup>
15 costeeta1=(-n+(n^2+4*2*1)^5.5)/(2*2)
16 teeta1=acosd(costeeta1)//
      position of crank from inner dead centre position
       for zero acceleration of piston
17 / =
18 printf ('Velocity of Piston = \%.3 \,\mathrm{f} \,\mathrm{m/s} \,\mathrm{n} Acceleration
       of piston = \%.3 \, \text{f m/s}^2 \setminus \text{n} position of crank from
      inner dead centre position for zero acceleration
      of piston= \%.3 \, f degrees', Vp, fp, teeta1)
```

Scilab code Exa 5.3 Turning moment on the crank shaft

```
1 //CHAPTER 5 ILLUSRTATION 3 PAGE NO 161
2 //TITLE: Inertia Force Analysis in Machines
3 clc
4 clear
5 pi=3.141
6 D = .3 / /
                      Diameter of steam engine in m
7 L = .5 / /
                     length of stroke in m
8 \text{ r=L/2}
9 \text{ mR} = 100 / /
                      equivalent of mass of reciprocating
      parts in kg
10 N = 200 / /
                     speed of engine in rpm
11 teeta=45//
                     angle of inclination of crank in
      degrees
                      gas pressure in N/m<sup>2</sup>
12 p1=1*10^6//
13 p2=35*10<sup>3</sup>/
                         back pressure in N/m<sup>2</sup>
14 n = 4 / /
                         ratio of crank radius to the
      length of stroke
15 //====
16 \text{ w} = 2 * \text{pi} * \text{N} / 60 / /
                               angular speed in rad/s
17 Fl=pi/4*D^2*(p1-p2)// Net load on piston in N
18 Fi=mR*w^2*r*(cosd(teeta)+cosd(2*teeta)/(2*n))//
      inertia force due to reciprocating parts
                               Piston effort
19 Fp=Fl-Fi//
20 T=Fp*r*(sind(teeta)+(sind(2*teeta))/(2*(n^2-(sind(
      teeta))^2)^.5))
21 printf ('Piston effort = \%.3 f N\n Turning moment on
      the crank shaft = \%.3 \, \text{f N-m'}, Fp, T)
```

Scilab code Exa 5.4 net force on piston

```
//CHAPTER 5 ILLUSRTATION 4 PAGE NO 162
//TITLE:Inertia Force Analysis in Machines
clc
clear
pi=3.141
```

```
Diameter of petrol engine in m
6 D = .10 //
                         Stroke length in m
7 L = .12 //
                         length of connecting in m
8 1=.25//
9 \text{ r=L/2}
10 \text{ mR} = 1.2 //
                        mass of piston in kg
11 N = 1800 / /
                         speed in rpm
12 teeta=25//
                              angle of inclination of crank
       in degrees
13 p = 680 * 10^3 / 
                         gas pressure in N/m<sup>2</sup>
14 n=1/r
15 g=9.81//
                         acceleration due to gravity
16 //===
17 w = 2 * pi * N / 60 / /
                                         angular speed in
18 Fl=pi/4*D^2*p//
                                force due to gas pressure
19 Fi=mR*w^2*r*(cosd(teeta)+cosd(2*teeta)/(n))//
      inertia force due to reciprocating parts in N
20 Fp=Fl-Fi+mR*g//
                                  net force on piston in N
21 Fq=n*Fp/((n^2-(sind(teeta))^2)^.5)//
                                                 resultant
      load on gudgeon pin in N
22 Fn=Fp*sind(teeta)/((n^2-(sind(teeta))^2)^.5)//
      thrust on cylinder walls in N
23 fi=F1+mR*g//
                           inertia force of the
      reciprocating parts before the gudgeon pin load
      is reversed in N
24 w1=(fi/mR/r/(cosd(teeta)+cosd(2*teeta)/(n)))^.5
25 \text{ N1} = 60 * \text{w1} / (2 * \text{pi})
26 printf ('Net force on piston = \%.3 f N\n Resultant
      load on gudgeon pin = \%.3 f N\n Thrust on cylinder
       walls = \%.3 \, \text{f} \, \text{N} \setminus \text{n} speed at which other things
      remining same, the gudgeon pin load would be
      reversed in direction m = \%.3 f rpm', Fp, Fq, Fn, N1)
```

Scilab code Exa 5.5 Net load on the gudgeon pin

```
1 //CHAPTER 5 ILLUSRTATION 5 PAGE NO 163
2 //TITLE: Inertia Force Analysis in Machines
3 //Figure 5.3
4 clc
5 clear
6 \text{ pi} = 3.141
7 N = 1800 / /
                       speed of the petrol engine in rpm
8 r = .06 / /
                       radius of crank in m
                       length of connecting rod in m
9 1 = .240 //
                       diameter of the piston in m
10 D=.1//
                     mass of piston in kg
11 \quad mR = 1 //
12 p=.8*10^6//
                        gas pressure in N/m<sup>2</sup>
13 x = .012 //
                        distance moved by piston in m
14 //==
15 \text{ w}=2*pi*N/60//
                                  angular velocity of the
      engine in rad/s
16 n=1/r
17 Fl=pi/4*D^2*p//
                                load on the piston in N
18 teeta=32//
                                by mearument from the
      figure 5.3
19 Fi=mR*w^2*r*(cosd(teeta)+cosd(2*teeta)/(n))//
      inertia force due to reciprocating parts in N
                            net load on the gudgeon pin in
20 \text{ Fp=Fl-Fi}//
       N
21 Fq=n*Fp/((n^2-(sind(teeta))^2)^.5)//
                                                    thrust in
      the connecting rod in N
22 \operatorname{Fn=Fp*sind}(\operatorname{teeta})/((\operatorname{n^2-(sind}(\operatorname{teeta}))^2)^.5)//
      reaction between the piston and cylinder in N
23 w1=(F1/mR/r/(cosd(teeta)+cosd(2*teeta)/(n)))^.5
24 \text{ N1=60*w1/(2*pi)}
25 printf ('Net load on the gudgeon pin= \%.3 f N\n Thrust
       in the connecting rod= \%.3 f N\n Reaction between
       the cylinder and piston= \%.3 f N\n The engine
      speed at which the above values become zero= \%.3 f
       rpm', Fp, Fq, Fn, N1)
```

Scilab code Exa 5.6 Torque exerted on the crank shaft

```
1 //CHAPTER 5 ILLUSRTATION 6 PAGE NO 165
2 //TITLE: Inertia Force Analysis in Machines
3 clc
4 clear
5 \text{ pi} = 3.141
                         diameter of horizontal steam
6 D = .25 //
      engine in m
7 N = 180 / /
                         speed of the engine in rpm
8 d = .05 / /
                         diameter of piston in m
9 P = 36000 / /
                         power of the engine in watts
                          ration of length of connecting
10 n = 3 / /
      rod to the crank radius
11 p1=5.8*10<sup>5</sup>/
                           pressure on cover end side in
     N/m^2
12 p2=0.5*10^5 //
                            pressure on crank end side in
      N/m^2
13 teeta=40//
                           angle of inclination of crank
      in degrees
14 m = 45 / /
                           mass of flywheel in kg
15 k = .65 / /
                           radius of gyration in m
16 //===
17 Fl = (pi/4*D^2*p1) - (pi/4*(D^2-d^2)*p2) //
                                                        load
       on the piston in N
18 phi=asind(sind(teeta)/n)//
      angle of inclination of the connecting rod to the
       line of stroke in degrees
19 r=1.6*D/2
20 T=Fl*sind(teeta+phi)/cosd(phi)*r//
      torque exerted on crank shaft in N-m
21 Fb=Fl*cosd(teeta+phi)/cosd(phi)//
      thrust on the crank shaft bearing in N
22 \text{ TR=P*60/(2*pi*N)//}
```

```
steady resisting torque in N-m

23 Ts=T-TR//
    surplus torque available in N-m

24 a=Ts/(m*k^2)//
    acceleration of the flywheel in rad/s^2

25 printf('Torque exerted on the crank shaft= %.3 f N-m\
    n Thrust on the crank shaft bearing= %.3 f N\n
    Acceleration of the flywheel= %.3 f rad/s^2',T,Fb,
    a)
```

Scilab code Exa 5.7 Effective turning moment on the crank shaft

```
1 //CHAPTER 5 ILLUSRTATION 7 PAGE NO 166
2 //TITLE: Inertia Force Analysis in Machines
3 clc
4 clear
5 \text{ pi} = 3.141
                          diameter of vertical cylinder
6 D = .25 / /
      of steam engine in m
7 L = .45 / /
                          stroke length in m
8 r=L/2
9 n=4
10 N = 360 / /
                            speed of the engine in rpm
                            angle of inclination of crank
11 teeta=45//
      in degrees
12 p = 1050000 / /
                               net pressure in N/m<sup>2</sup>
13 \text{ mR} = 180 / /
                             mass of reciprocating parts
      in kg
14 g=9.81//
                             acceleration due to gravity
15 //===
16 Fl=p*pi*D^2/4//
                                     force on piston due to
       steam pressure in N
17 \ w=2*pi*N/60//
                                    angular speed in rad/s
18 Fi=mR*w^2*r*(cosd(teeta)+cosd(2*teeta)/(n))//
      inertia force due to reciprocating parts in N
```

```
19 Fp=Fl-Fi+mR*g// piston effort in N
20 phi=asind(sind(teeta)/n)// angle of inclination
    of the connecting rod to the line of stroke in
    degrees
21 T=Fp*sind(teeta+phi)/cosd(phi)*r//
    torque exerted on crank shaft in N-m
22 printf('Effective turning moment on the crank shaft=
    %.3 f N-m',T)
```

Scilab code Exa 5.8 Effective turning moment on the crank shaft

```
1 //CHAPTER 5 ILLUSRTATION 8 PAGE NO 166
2 //TITLE: Inertia Force Analysis in Machines
3 //figure 5.4
4 clc
5 clear
6 pi=3.141
7 D = .25 / /
                          diameter of vertical cylinder
      of diesel engine in m
8 L = .40 / /
                          stroke length in m
9 \text{ r=L/2}
10 \quad n=4
11 N = 300 / /
                            speed of the engine in rpm
12 teeta=60//
                            angle of inclination of crank
     in degrees
13 \text{ mR} = 200 / /
                            mass of reciprocating parts
     in kg
14 g=9.81//
                             acceleration due to gravity
15 1=.8//
                             length of connecting rod in m
16 c = 14 / /
                        compression ratio=v1/v2
17 p1=.1*10^6//
                             suction pressure in n/m<sup>2</sup>
18 i = 1.35 / /
                             index of the law of expansion
      and compression
19 //
```

```
20 \text{ Vs=pi/}4*D^2*L//
                                 swept volume in m<sup>3</sup>
21 \ w=2*pi*N/60//
                                      angular speed in rad/s
22 \text{ Vc=Vs/(c-1)}
23 V3 = Vc + Vs / 10 / /
                                volume at the end of
      injection of fuel in m<sup>3</sup>
24 p2=p1*c^i//
                                final pressure in N/m<sup>2</sup>
25 p3=p2//
                                from figure
26 \text{ x=r*}((1-\cos d(\text{teeta})+(\sin d(\text{teeta}))^2/(2*n)))//
                 the displacement of the piston when the
      crank makes an angle 60 degrees with T.D.C
27 \text{ Va=Vc+pi*D}^2 \times x/4
28 pa=p3*(V3/Va)^i
29 p=pa-p1//
                        difference of pressues on 2 sides
       of piston in N/m<sup>2</sup>
30 \text{ Fl=p*pi*D^2/4//}
                         net load on piston in N
31 Fi=mR*w^2*r*(cosd(teeta)+cosd(2*teeta)/(n))//
      inertia force due to reciprocating parts in N
32 \text{ Fp=Fl-Fi+mR*g}//
                                     piston effort in N
33 phi=asind(sind(teeta)/n)// angle of inclination
      of the connecting rod to the line of stroke in
      degrees
34 T=Fp*sind(teeta+phi)/cosd(phi)*r//
      torque exerted on crank shaft in N-m
35 printf ('Effective turning moment on the crank shaft=
       \%.3 f N-m', T)
```

Chapter 6

Turning Moment Diagram and Flywheel

Scilab code Exa 6.1 Kinetic energy of flywheel

```
1 //CHAPTER 6 ILLUSRTATION 1 PAGE NO 175
2 //TITLE: Turning Moment Diagram and Flywheel
3 clc
4 clear
5 k=1//
                  radius of gyration of flywheel in m
6 m = 2000 / /
                  mass of the flywheel in kg
7 T = 1000 / /
                  torque of the engine in Nm
8 \text{ w1} = 0 / /
                   speedin the begining
9 t = 10 / /
                   time duration
10 //=----
11 I = m * k^2 / /
                       mass moment of inertia in kg-m<sup>2</sup>
12 a=T/I//
                       angular acceleration of flywheel
     in rad/s^2
13 \text{ w2=w1+a*t}//
                       angular speed after time t in rad/
14 \text{ K=I*w2^2/2//}
                 kinetic energy of flywheel in Nm
15 / =
16 printf('Angular acceleration of the flywheel= %.3 f
      rad/s^2\n Kinetic energy of flywheel= \%.3 f N-m', a
```

Scilab code Exa 6.2 Mass of the flywheel required

```
1 //CHAPTER 6 ILLUSRTATION 2 PAGE NO 176
2 //TITLE: Turning Moment Diagram and Flywheel
3 clc
4 clear
5 \text{ pi} = 3.141
                           maximum speed of flywheel in
6 \text{ N1} = 225 //
      rpm
                            radius of gyration of flywheel
7 k = .5 / /
       in m
                            no of holes punched per hour
8 n = 720 / /
                            energy required by flywheel in
9 E1 = 15000 / /
       Nm
10 N2 = 200 / /
                           mimimum speedof flywheel in
      rpm
                            time taking for punching a
11 t=2//
      hole
12 //====
13 P=E1*n/3600//
                                 power required by motor
      per sec in watts
14 E2=P*t//
                                 energy supplied by motor
      to punch a hole in N-m
                                 maximum fluctuation of
15 E = E1 - E2 / /
      energy in N-m
16 N = (N1 + N2) / 2 / /
                                 mean speed of the
      flywheel in rpm
17 m=E/(pi^2/900*k^2*N*(N1-N2))
18 printf ('Power of the motor= \%.3 f watts\n Mass of the
       flywheel required = \%.3 f kg', P, m)
```

Scilab code Exa 6.3 Mass of the flywheel required

```
1 //CHAPTER 6 ILLUSRTATION 3 PAGE NO 176
2 //TITLE: Turning Moment Diagram and Flywheel
3 clc
4 clear
5 \text{ pi} = 3.141
                         diameter of hole in cm
6 d=38//
7 t = 32 / /
                         thickness of hole in cm
8 e1=7//
                            energy required to punch one
      square mm
                           mean speed of the flywheel in
  V = 25 / /
     m/s
                             stroke of the punch in cm
10 S = 100 / /
                            time required to punch a hole
11 T = 10 / /
      in s
12 \text{ Cs} = .03 / /
                              coefficient of fluctuation
      of speed
13 //=====
                                sheared area in mm<sup>2</sup>
14 A=pi*d*t//
15 E1=e1*A//
                                energy required to punch
      entire area in Nm
16 P = E1/T//
                               power of motor required in
      watts
17 T1=T/(2*S)*t//
                               time required to punch a
      hole in 32 mm thick plate
18 E2=P*T1//
                              energy supplied by motor in
      T1 seconds
19 E=E1-E2//
                               maximum fluctuation of
      energy in Nm
20 \text{ m=E/(V^2*Cs)}//
                               mass of the flywheel
      required
21 printf ('Mass of the flywheel required = \%.0 f kg',m)
```

Scilab code Exa 6.4 Mass of the flywheel

```
1 //CHAPTER 6 ILLUSRTATION 4 PAGE NO 177
2 //TITLE: Turning Moment Diagram and Flywheel
3 //figure 6.4
4 clc
5 clear
6 //===
7 \text{ pi} = 3.141
8 N = 480 / /
                          speed of the engine in rpm
9 k = .6 / /
                        radius of gyration in m
10 \text{ Cs} = .03 / /
                         coefficient of fluctuaion of
      speed
11 Ts = 6000 / /
                         turning moment scale in Nm per
      one cm
12 C=30//
                         crank angle scale in degrees per
13 a = [0.5, -1.22, .9, -1.38, .83, -.7, 1.07] //
      between the output torque and mean resistance
      line in sq.cm
14 //===
15 \ w=2*pi*N/60//
                                angular speed in rad/s
16 A = Ts * C * pi / 180 / /
                                  1 cm<sup>2</sup> of turning moment
      diagram in Nm
17 E1=a(1)//
                                max energy at B refer
      figure
18 E2=a(1)+a(2)+a(3)+a(4)
19 E = (E1 - E2) *A / /
                                fluctuation of energy in Nm
20 \text{ m=E/(k^2*w^2*Cs)}//
                                 mass of the flywheel in kg
21 printf ('Mass of the flywheel= \%.3 f kg',m)
```

Scilab code Exa 6.5 Mass of the flywheel

```
1 //CHAPTER 6 ILLUSRTATION 5 PAGE NO 178
2 //TITLE:Turning Moment Diagram and Flywheel
3 clc
4 clear
```

```
5 //=====
6 \text{ pi} = 3.141
7 P=500*10^3//
                        power of the motor in N
8 k = .6 / /
                     radius of gyration in m
9 \text{ Cs} = .03 / /
                      coefficient of fluctuation of
     spped
10 \quad OA = 750 / /
                       REFER FIGURE
11 OF=6*pi//
                       REFER FIGURE
12 AG=pi// REFER FIGURE
13 BG=3000-750// REFER FIGURE
14 GH=2*pi// REFER FIGURE
15 CH=3000-750// REFER FIGURE
16 HD=pi// REFER FIGURE
17 LM=2*pi// REFER FIGURE
18 T=OA*OF+1/2*AG*BG+BG*GH+1/2*CH*HD// Torque
      required for one complete cycle in Nm
19 Tmean=T/(6*pi)//
                                      mean torque in Nm
20 \text{ w=P/Tmean}//
                                     angular velocity
      required in rad/s
21 BL=3000-1875// refer figure
22 KL=BL*AG/BG// From similar trangles
23 CM=3000-1875// refer figure
24 MN=CM*HD/CH//from similar triangles
25 E=1/2*KL*BL+BL*LM+1/2*CM*MN//
                                            Maximum
      fluctuaion of energy in Nm
26 m=E*100/(k^2*w^2*Cs) // mass of flywheel in kg
27 printf ('Mass of the flywheel= \%.3 \, \text{f kg',m})
```

Scilab code Exa 6.6 Angular acceleration

```
1 //CHAPTER 6 ILLUSRTATION 6 PAGE NO 179
2 //TITLE:Turning Moment Diagram and Flywheel
3 clc
4 clear
5 pi=3.141
```

```
6 PI=180//in degrees
7 \text{ theta1=0}
8 theta2=PI
9 m = 400 / /
                 mass of the flywheel in kg
10 N = 250 / /
                  speed in rpm
11 k = .4 / /
                  radius of gyration in m
12 n = 2 * 250/60000 / /
                                no of working strokes per
      minute
13 \text{ W}=1000*\text{pi}-150*\text{cosd}(2*\text{theta2})-250*\text{sind}(2*\text{theta2})
      -(1000*theta1-150*cosd(2*theta1)-250*sind(2*theta1))
      theta1))//
                        workdone per stroke in Nm
14 P = W * n / /
                   power in KW
15 Tmean=W/pi//
                            mean torque in Nm
16 twotheta=atand(500/300)//
                                         angle at which T-
      Tmean becomes zero
17 THETA1=twotheta/2
18 THETA2 = (180 + twotheta)/2
19 E=-150*\cos d(2*THETA2)-250*\sin d(2*THETA2)-(-150*\cos d)
      (2*THETA1) - 250*sind(2*THETA1)) / /
                                                FLUCTUATION
      OF ENERGY IN Nm
20 \text{ w} = 2 * \text{pi} * \text{N} / 60 / /
                         angular speed in rad/s
21 Cs1=E*100/(k^2*w^2*m)/
                                fluctuation range
                         tatal percentage of fluctuation
22 \text{ Cs} = \text{Cs} 1/2//
      of speed
23 Theta=60
24 T1=300*sind(2*Theta)-500*cosd(2*Theta)//
      Accelerating torque in Nm(T-Tmean)
25 \quad alpha=T1/(m*k^2)//
      angular acceleration in rad/s^2
26 printf ('Power delivered=\%.3 f kw\nTotal percentage of
       fluctuation speed= %.3 f\nAngular acceleration= %
      .3 f rad/s^2',P,Cs,alpha)
```

Scilab code Exa 6.7 Energy expended in performing each operation

```
1 //CHAPTER 6 ILLUSRTATION 7 PAGE NO 181
2 //TITLE: Turning Moment Diagram and Flywheel
3 clc
4 clear
5 pi=3.141
              mass of the flywheel in kg
6 m = 200 / /
7 k = .5 / /
                radius of gyration in m
8 \text{ N1} = 360 //
                 upper limit of speed in rpm
                 lower limit of speed in rpm
9 N2 = 240 / /
10 //=====
11 I = m * k^2 / 
                mass moment of inertia in kg m<sup>2</sup>
12 \text{ w1} = 2 * \text{pi} * \text{N1} / 60
13 \text{ w}2=2*pi*N2/60
14 E=1/2*I*(w1^2-w2^2)// fluctuation of energy in Nm
15 Pmin=E/(4*1000)// power in kw
16 Eex=Pmin*12*1000// Energy expended in performing
      each operation in N-m
17 printf('Mimimum power required= %.3 f kw\n Energy
      expended in performing each operation = \%.3 f N-m',
      Pmin, Eex)
```

Scilab code Exa 6.8 Amount of Torque required

```
1 //CHAPTER 6 ILLUSRTATION 8 PAGE NO 182
2 //TITLE: Turning Moment Diagram and Flywheel
3 clc
4 clear
5 pi=3.141
6 b=8//
          width of the strip in cm
7 t=2// thickness of the strip in cm
8 \quad w=1.2*10^3//
                          work required per square cm
     cut
9 N1 = 200 / /
                            maximum speed of the
     flywheel in rpm
10 k = .80 / /
                            radius of gyration in m
```

```
11 N2 = (1 - .15) * N1 / /
                            minimum speed of the
      flywheel in rpm
12 T=3//
                             time required to punch a
      hole
13 //=
14 A=b*t//
                      area cut of each stroke in cm<sup>2</sup>
15 W = w * A / /
                       work required to cut a strip in
     Nm
16 \text{ w1=2*pi*N1/60//}
                            speed before cut in rpm
17 w2=2*pi*N2/60//
                            speed after cut in rpm
18 m=2*W/(k^2*(w1^2-w2^2))//
                                mass of the flywheel
      required in kg
19 a = (w1 - w2)/T//
                            angular acceleration in rad/
      s^2
20 \text{ Ta=m*k^2*a}//
                            torque required in Nm
21 printf ('Mass of the flywheel = \%.3 f kg\n Amount of
      Torque required = %.3 f Nm', m, Ta)
```

Scilab code Exa 6.9 Reduction in speed after the pressing is over

```
1 //CHAPTER 6 ILLUSRTATION 9 PAGE NO 182
2 //TITLE: Turning Moment Diagram and Flywheel
3 clc
4 clear
5 pi=3.141
6 P=5*10^3//
                         power delivered by motor in
      watts
7 N1 = 360 / /
                           speed of the flywheel in rpm
8 I = 60 / /
                          mass moment of inertia in kg m
      ^{\hat{}}2
9 E1 = 7500 / /
                           energy required by pressing
      machine for 1 second in Nm
11 Ehr=P*60*60//
                     energy sipplied per hour in Nm
12 n = Ehr/E1
```

```
13 E=E1-P// total fluctuation of energy in Nm
14 w1=2*pi*N1/60// angular speed before pressing in rpm
15 w2=((2*pi*N1/60)^2-(2*E/I))^.5// angular speed after pressing in rpm
16 N2=w2*60/(2*pi)
17 R=N1-N2// reduction in speed in rpm
18 printf('No of pressings that can be made per hour= % .0 f\n Reduction in speed after the pressing is over= %.2 f rpm ',n,R)
```

Scilab code Exa 6.10 miminum mass moment of inertia of flywheel

```
1
3 //CHAPTER 6 ILLUSRTATION 10 PAGE NO 183
4 //TITLE: Turning Moment Diagram and Flywheel
5 clc
6 clear
7 \text{ pi} = 3.141
8 Cs=.02// coefficient of fluctuation of speed
9 N=200// speed of the engine in rpm
10 / T2 = 15000 - 6000 \text{ c o s}
                           Torque required by the
     machine in Nm
                           Torque supplied by the
11 / T1 = 15000 + 8000 \text{ s i n 2}
      engine in Nm
12 / T1 - T2 = 8000 \sin 2 + 6000 \cos  Change in torque
13 theta1=acosd(0)
14 theta2=asind(-6000/16000)
15 theta2=180-theta2
16 //=====
17 //largest area, representing fluctuation of energy
      lies between theta1 and theta2
18 E=6000*sind(theta2)-8000/2*cosd(2*theta2)-(6000*sind)
      (theta1) - 8000/2*cosd(2*theta1))//
```

```
fluctuation of energy in Nm
                   angle with which cycle will be
19 Theta=180//
      repeated in degrees
20 Theta1=0
21 Tmean=1/pi*((15000*pi+(-8000*cosd(2*Theta))/2)
      -((15000*Theta1+(-8000*cosd(2*Theta1))/2)))/
          mean torque of engine in Nm
22 P=2*pi*N*Tmean/60000//
                              power of the engine in
     kw
23 w = 2 * pi * N / 60 / /
                             angular speed of the engine
      in rad/s
24 I = E/(w^2*Cs)//
                             mass moment of inertia of
      flywheel in kg-m<sup>2</sup>
25 printf ('Power of the engine= %.3 f kw\n minimum mass
      moment of inertia of flywheel= \%.3 \, \text{f kg-m^2} = \text{m}
      value calculated in the textbook is wrong. Its
      value is -15,124. In textbook it is given as
      -1370.28', P,-I)
```

Chapter 7

GOVERNORS

Scilab code Exa 7.1 PERCENTAGE CHANGE IN SPEED

```
1 //CHAPTER 7 ILLUSRTATION 1 PAGE NO 196
2 //TITLE:GOVERNORS
3 clc
4 clear
5 //
6 //INPUT DATA
7 L = .4 / /
                               LENGTH OF UPPER ARM IN m
8 THETA = 30 //
                                INCLINATION TO THE
    VERTICAL IN degrees
9 K = .02 / /
                                RISED LENGTH IN m
10 //
11 h2=L*cosd(THETA)//
                                GOVERNOR HEIGHT IN m
12 N2=(895/h2)^.5//
                                SPEED AT h2 IN rpm
                                LENGTH WHEN IT IS RAISED
13 h1=h2-K//
     BY 2 cm
14 N1=(895/h1)^.5//
                                SPEED AT h1 IN rpm
15 n = (N1 - N2) / N2 * 100 / /
                               PERCENTAGE CHANGE IN
```

```
SPEED
16 //
17 printf ('PERCENTAGE CHANGE IN SPEED= %.f PERCENTAGE',
      n)
   Scilab code Exa 7.2 RANGE OF SPEED
1 //CHAPTER 7 ILLUSRTATION 2 PAGE NO 197
2 //TITLE:GOVERNORS
3 / \text{FIGURE } 7.5(A), 7.5(B)
4 clc
5 clear
6 //
7 //INPUT DATA
8 \quad OA = .3 //
                                       LENGTH OF UPPER ARM
      IN m
9 m = 6 / /
                                       MASS OF EACH BALL
     IN Kg
                                       MASS OF SLEEVE IN
10 M = 18 / /
     _{
m Kg}
11 r2=.2//
                                       RADIUS OF ROTATION
     AT BEGINING IN m
12 r1 = .25 / /
                                       RADIUS OF ROTATION
     AT MAX SPEED IN m
13 //
                                      HIEGHT OF GOVERNOR
14 h1=(0A^2-r1^2)^.5//
     AT MAX SPEED IN m
15 N1 = (895*(m+M)/(h1*m))^{.5}// MAX SPEED IN rpm
16 h2 = (0A^2 - r2^2)^.5//
                                     HEIGHT OF GONERNOR
```

```
AT BEGINING IN m
17 N2 = (895*(m+M)/(h2*m))^{.5}// MIN SPEED IN rpm
19 printf ('MAX SPEED = \%.3 \text{ f rpm/n MIN SPEED} = \%.3 \text{ f rpm/n}
      n RANGE OF SPEED = \%.3 \text{ f} rpm ', N1, N2, N1-N2)
   Scilab code Exa 7.3 RANGE OF SPEED
1 //CHAPTER 7 ILLUSRTATION 3 PAGE NO 197
2 //TITLE:GOVERNORS
3 //FIGURE 7.6
4 clc
5 clear
6 //
7 //INPUT DATA
8 \quad OA = .25 //
                                                   LENGHT OF
      UPPER ARM IN m
9 \text{ CD} = .03 / /
                                                   DISTANCE
      BETWEEN LEEVE AND LOWER ARM IN m
                                                   MASS OF
10 \, \text{m=}6 \, / /
      BALL IN Kg
                                                   MASS OF
11 M = 48 / /
      SLEEVE IN Kg
12 AE = .17 / /
                                                    FROM
      FIGURE 7.6
13 AE1=.12//
                                                    FROM
      FIGURE 7.6
14 r1=.2//
                                                    RADIUS OF
      ROTATION AT MAX SPEED IN m
15 \text{ r2} = .15 //
                                                   RADIUS OF
      ROTATION AT MIN SPEED IN m
```

```
16 //
```

```
17 h1 = (OA^2 - r1^2)^5 .5//
                                                     HIEGHT OF
      GOVERNOR AT MIN SPEED IN m
18 TANalpha=r1/h1
19 TANbeeta=AE/(OA^2-AE^2)^.5
20 k=TANbeeta/TANalpha
21 N1 = (895*(m+(M*(1+k)/2))/(h1*m))^{.5}// MIN SPEED IN
       rpm
22 h2 = (0A^2 - r2^2)^.5//
                                                    HIEGHT OF
      GOVERNOR AT MAX SPEED IN m
23 CE = (OA^2 - AE1^2)^5.5
24 TANalpha1=r2/h2
25 TANbeeta1=(r2-CD)/CE
26 k=TANbeeta1/TANalpha1
27 N2 = (895*(m+(M*(1+k)/2))/(h2*m))^{.5}// MIN SPEED IN
       rpm
28 //
29 printf ('MAX SPEED = \%.3 \, \text{f} \, \text{rpm} \, \text{n} \, \text{MIN SPEED} = \%.3 \, \text{f} \, \text{rpm} \, \text{}
      n RANGE OF SPEED = \%.3 \text{ f} rpm ', N1, N2, N1-N2)
```

Scilab code Exa 7.4 GOVERNOR POWER

```
1 //CHAPTER 7 ILLUSRTATION 4 PAGE NO 199
2 //TITLE:GOVERNORS
3 //FIGURE 7.7
4 clc
5 clear
6 //
```

7 //INPUT DATA

```
ACCELERATION DUE TO
8 g=9.81//
     GRAVITY
9 \quad OA = .20 //
                                LENGHT OF UPPER ARM IN m
10 \text{ AC} = .20 //
                                LENGTH OF LOWER ARM IN m
11 CD = .025 / /
                                DISTANCE BETWEEN AXIS AND
     LOWER ARM IN m
                                RADIUS OF ROTATION OF
12 AB = .1 / /
      BALLS IN m
                                SPEED OF THE GOVERNOR IN
13 N2 = 250 / /
      rpm
                                SLEEVE LIFT IN m
14 X = .05 / /
15 \text{ m} = 5 / /
                                MASS OF BALL IN Kg
                                MASS OF SLEEVE IN Kg
16 M = 20 / /
17 //
18 h2 = (OA^2 - AB^2)^5.5
                                         OB DISTANCE IN m
      IN FIGURE
19 h21 = (AC^2 - (AB - CD)^2)^5.5
                                        BD DISTANCE IN m
      IN FIGURE
20 TANbeeta=(AB-CD)/h21//
                                         TAN OF ANGLE OF
      INCLINATION OF THE LINK TO THE VERTICAL
                                         TAN OF ANGLE OF
21 TANalpha=AB/h2//
      INCLINATION OF THE ARM TO THE VERTICAL
22 k=TANbeeta/TANalpha
23 c=X/(2*(h2*(1+k)-X))//
                                         PERCENTAGE
      INCREASE IN SPEED
                                         INCREASE IN SPEED
24 n = c * N2 / /
      IN rpm
25 N1 = N2 + n / /
                                          SPEED AFTER LIFT
     OF SLEEVE
26 \quad E=c*g*((2*m/(1+k))+M)//
                                          GOVERNOR EFFORT
      IN N
27 P = E * X / /
                                          GOVERNOR POWER IN
       N-m
28
29 printf ('SPEED OF THE GOVERNOR WHEN SLEEVE IS LIFT BY
       5 cm = \%.3 f rpm\n GOVERNOR EFFORT = \%.3 f N\n
```

Scilab code Exa 7.5 RANGE OF SPEED OF GOVERNOR

```
1 //CHAPTER 7 ILLUSRTATION 5 PAGE NO 200
2 //TITLE:GOVERNORS
3 //FIGURE 7.8
4 clc
5 clear
6 //
7 //INPUT DATA
8 g=9.81//
                                ACCELERATION DUE TO
     GRAVITY
9 \quad OA = .30 //
                               LENGHT OF UPPER ARM IN m
                               LENGTH OF LOWER ARM IN m
10 AC=.30 //
11 m = 10 / /
                                MASS OF BALL IN Kg
                               MASS OF SLEEVE IN Kg
12 M = 50 / /
13 r = .2 / /
                               RADIUS OF ROTATION IN m
14 \text{ CD} = .04 / /
                               DISTANCE BETWEEN AXIS AND
     LOWER ARM IN m
                               FRICTIONAL LOAD ACTING IN
15 F=15//
     N
16 //
17 h = (OA^2 - r^2)^.5 //
                                 HIEGTH OF THE GOVERNOR
     IN m
18 AE=r-CD//
                                 AE VALUE IN m
19 CE = (AC^2 - AE^2)^5.5//
                                BD DISTANCE IN m
20 TANalpha=r/h//
                                 TAN OF ANGLE OF
      INCLINATION OF THE ARM TO THE VERTICAL
21 TANbeeta=AE/CE//
                                 TAN OF ANGLE OF
      INCLINATION OF THE LINK TO THE VERTICAL
```

```
22 k=TANbeeta/TANalpha
23 N = ((895/h) * (m + (M*(1+k)/2))/m)^{.5}// EQULIBRIUM
     SPEED IN rpm
24 N1 = ((895/h)*((m*g)+(M*g+F)/2)*(1+k)/(m*g))^.5//
             MAX SPEED IN rpm
25 N2 = ((895/h)*((m*g)+(M*g-F)/2)*(1+k)/(m*g))^.5//
             MIN SPEED IN rpm
                                                   RANGE OF
26 R = N1 - N2 / /
       SPEED
27 printf ('EQUILIBRIUM SPEED OF GOVERNOR = \%.3 f rpm\n
     RANGE OF SPEED OF GOVERNOR= %.3 f rpm', N, R)
   Scilab code Exa 7.6 RANGE OF SPEED OF GOVERNOR
1 //CHAPTER 7 ILLUSRTATION 6 PAGE NO 202
2 //TITLE:GOVERNORS
3 //FIGURE 7.9
4 clc
5 clear
6 //
7 //INPUT DATA
8 g=9.81//
                                ACCELERATION DUE TO
     GRAVITY
                               LENGHT OF UPPER ARM IN m
9 \quad \mathsf{DA} = .30 / /
10 AC=.30 //
                               LENGTH OF LOWER ARM IN m
11 m = 5 / /
                               MASS OF BALL IN Kg
12 M = 25 / /
                               MASS OF SLEEVE IN Kg
                               LIFT OF THE SLEEVE
13 X = .05 / /
                               ANGLE OF INCLINATION OF
14 alpha=30//
      THE ARM TO THE VERTICAL
15 / =
```

HEIGHT OF THE GOVERNOR AT

16 h2=0A*cosd(alpha)//

LOWEST POSITION OF SLEEVE

```
HEIGHT OF THE GOVERNOR AT
17 h1=h2-X/2//
      HEIGHT POSITION OF SLEEVE
18 F = ((h2/h1)*(m*g+M*g)-(m*g+M*g))/(1+h2/h1)//
     FRICTION AT SLEEVE IN N
19 N1 = ((m*g+M*g+F)*895/(h1*m*g))^{.5}/
                                                 MAX
     SPEEED OF THE GOVVERNOR IN rpm
20 N2 = ((m*g+M*g-F)*895/(h2*m*g))^{.5}//
                                                 MIN
     SPEEED OF THE GOVVERNOR IN rpm
21 R = N1 - N2 / /
                                                 RANGE OF
      SPEED IN rpm
22
23 printf ('THE VALUE OF FRICTIONAL FORCE= %.3 f F\n
     RANGE OF SPEED OF THE GOVERNOR = %.0 f rpm', F, R)
```

Scilab code Exa 7.7 EQUILIBRIUM SPEED CORRESPONDING TO LIFT

```
1 //CHAPTER 7 ILLUSRTATION 7 PAGE NO 203
2 //TITLE:GOVERNORS
3 clc
4 clear
5 //
6 //INPUT DATA
7 PI=3.147
8 m = 3 / /
                          MASS OF EACH BALL IN Kg
9 a = .12 / /
                          LENGTH OF VERTICAL ARM OF BELL
      CRANK LEVER IN m
10 b = .08 / /
                          LENGTH OF HORIZONTAL ARM OF
     BELL CRANK LEVER IN m
                          RADIUS OF ROTATION OF THE BALL
11 r2=.12//
      FOR LOWEST POSITION IN m
12 N2 = 320 / /
                           SPEED OF GOVERNOR AT THE
     BEGINING IN rpm
13 S = 20000 / /
                              STIFFNESS OF THE SPRING IN
```

```
N/m
14 h = .015 / /
                              SLEEVE LIFT IN m
15 //=====
16 \text{ Fc2=m*(2*PI*N2/60)^2*r2//}
                                            CENTRIFUGAL
     FORCE ACTING AT MIN SPEED OF ROTATION IN N
                                             INITIAL LOAD
17 L=2*a*Fc2/b//
      ON SPRING IN N
18 r1=a/b*h+r2//
                                            MAX RADIUS
     OF ROTATION IN m
19 Fc1=(S*(r1-r2)*(b/a)^2/2)+Fc2//
                                            CENTRIFUGAL
     FORCE ACTING AT MAX SPEED OF ROTATION IN N
20 N1 = (Fc1/(m*r1)*(60/2/PI)^2)^.5
21 printf ('INITIAL LOAD ON SPRING = %.3 f N\n EQUILIBRIUM
      SPEED CORRESPONDING TO LIFT OF 15 cm = %.0 f rpm',
     L,N1)
```

Scilab code Exa 7.8 STIFFNESS OF THE SPRING

```
1 //CHAPTER 7 ILLUSRTATION 8 PAGE NO 204
2 //TITLE:GOVERNORS
3 clc
4 clear
5 //
6 //INPUT DATA
7 \text{ PI} = 3.147
8 m = 3 / /
                                      MASS OF BALL IN Kg
9 r2 = .2 / /
                                      INITIAL RADIUS OF
     ROTATION IN m
                           LENGTH OF VERTICAL ARM OF BELL
10 a = .11 //
      CRANK LEVER IN m
                           LENGTH OF HORIZONTAL ARM OF
11 b=.15//
      BELL CRANK LEVER IN m
12 h = .004 / /
                                SLEEVE LIFT IN m
```

```
13 N2 = 240 / /
                              INITIAL SPEED IN rpm
                                  FLUCTUATION OF SPEED IN \%
14 n=7.5 / /
15 //=====
16 \text{ w2=2*PI*N2/60//}
                                         INITIAL ANGULAR
      SPEED IN rad/s
17 w1 = (100+n)*w2/100//
                                         FINAL ANGULAR SPEED
       IN rad/s
18 F=2*a/b*m*w2^2*r2//
                                        INITIAL COMPRESSIVE
       FORCE IN N
                                         MAX RDIUS OF
19 r1=r2+a/b*h//
      ROTATION IN m
20 S=2*((m*w1^2*r1)-(m*w2^2*r2))/(r1-r2)*(a/b)^2
21 printf ('INITIAL COMPRESSIVE FPRCE = \% . 3 f N\n
      STIFFNESS OF THE SPRING = \%.3 \, \text{f} \, \text{N/m}', \text{F,S/1000}
```

Scilab code Exa 7.9 ALTERATION IN SPEED

1 //CHAPTER 7 ILLUSRTATION 9 PAGE NO 204

```
2 //TITLE:GOVERNORS
3 //FIGURE 7.3(C)
4 clc
5 clear
6 //
7 //INPUT DATA
8 g=9.81//
                                ACCELERATION DUE TO
     GRAVITY
9 \text{ PI} = 3.147
10 r = .14 / /
                                      DISTANCE BETWEEN
     THE CENTRE OF PIVOT OF BELL CRANK LEVER AND AXIS
     OF GOVERNOR SPINDLE IN m
11 r2=.11//
                                      INITIAL RADIUS OF
     ROTATION IN m
12 a = .12 //
                                      LENGTH OF VERTICAL
```

```
ARM OF BELL CRANK LEVER IN m
13 b=.10//
                                         LENGTH OF
      HORIZONTAL ARM OF BELL CRANK LEVER IN m
                                        SLEEVE LIFT IN m
14 h = .05 / /
15 N2 = 240 / /
                                         INITIAL SPEED IN
      rpm
16 F=30//
                                         FRICTIONAL FORCE
      ACTING IN N
                                         MASS OF EACH BALL
17 m = 5 / /
      IN Kg
18 //===
19 r1=r2+a/b*h//
                                         MAX RADIUS OF
      ROTATION IN m
20 \text{ N1} = 41 * \text{N2} / 39 / /
                                     MAX SPEED OF ROTATION
      IN rpm
21 N = (N1 + N2)/2//
                                     MEAN SPEED IN rpm
22 Fc1=m*(2*PI*N1/60)^2*r1//
                                     CENTRIFUGAL FORCE
      ACTING AT MAX SPEED OF ROTATION IN N
23 Fc2=m*(2*PI*N2/60)^2*r2//
                                     CENTRIFUGAL FORCE
      ACTING AT MIN SPEED OF ROTATION IN N
                                     FROM FIGURE 7.3(C) IN
24 c1=r1-r//
25 \quad a1 = (a^2 - c1^2)^.5 //
                                     FROM FIGURE 7.3(C) IN
                                          FROM FIGURE 7.3(C)
26 b1=(b^2-(h/2)^2)^.5//
      IN m
27 c2=r-r2//
                                     FROM FIGURE 7.3(C) IN
      \mathbf{m}
                                     FROM FIGURE 7.3(C) IN
  a2=a1//
      \mathbf{m}
29 b2=b1//
                                     FROM FIGURE 7.3(C) IN
30 \text{ S1}=2*((\text{Fc1}*\text{a1})-(\text{m}*\text{g}*\text{c1}))/\text{b1}//
                                               SPRING FORCE
      EXERTED ON THE SLEEVE AT MAXIMUM SPEED IN NEWTONS
31 S2=2*((Fc2*a2)-(m*g*c2))/b2//
                                                SPRING FORCE
      EXERTED ON THE SLEEVE AT MAXIMUM SPEED IN NEWTONS
32 S = (S1 - S2)/h//
                                       STIFFNESS OF THE
      SPRING IN N/m
```

```
33 \text{ Is=S2/S}//
                                      INITIAL COMPRESSION
     OF SPRING IN m
34 P=S2+(h/2*S)//
                                      SPRING FORCE OF MID
     PORTION IN N
35 n1=N*((P+F)/P)^{.5}/
                                      SPEED, WHEN THE
     SLEEVE BEGINS TO MOVE UPWARDS FROM MID POSITION
      IN rpm
36 \text{ n2=N*((P-F)/P)^.5//}
                                      SPEED, WHEN THE
     SLEEVE BEGINS TO MOVE DOWNWARDS FROM MID POSITION
37 \quad A = n1 - n2 / /
                                       ALTERATION IN SPEED
      IN rpm
38 printf ('INTIAL COMPRESSION OF SPRING= %.3 f cm/n
      ALTERATION IN SPEED = \%.3 \, \text{f} \, \text{rpm}', Is*100, A)
```

Scilab code Exa 7.10 EQUILIBRIUM SPEED OF GOVERNOR

1 //CHAPTER 7 ILLUSRTATION 10 PAGE NO 206

```
2 //TITLE:GOVERNORS
3 //FIGURE 7.10
4 clc
5 clear
6 //
7 //INPUT DATA
8 PI=3.147
9 \text{ AE} = .25 / /
                                 LENGTH OF UPPER ARM IN m
10 CE = .25 //
                                 LENGTH OF LOWER ARM IN m
11 EH=.1//
                                 LENGTH OF EXTENDED ARM IN
     m
                                 RADIUS OF BALL PATH IN m
12 \text{ EF} = .15 / /
13 m = 5 / /
                                 MASS OF EACH BALL IN Kg
14 M = 40 / /
                                 MASS OF EACH BALL IN Kg
15 //
```

```
IN m
17 \quad EM=h
18 \text{ HM} = \text{EH} + \text{EM} / /
                                     FROM FIGURE 7.10
19 N = ((895/h) * (EM/HM) * ((m+M)/m))^.5
20 printf ('EQUILIBRIUM SPEED OF GOVERNOR = \%.3 f rpm', N)
   Scilab code Exa 7.11 TENSION IN UPPER ARM
1 //CHAPTER 7 ILLUSRTATION 11 PAGE NO 207
2 //TITLE:GOVERNORS
3 //FIGURE 7.11
4 clc
5 clear
6 //
7 //INPUT DATA
8 PI=3.147
9 g=9.81//
                                  ACCELERATION DUE TO
      GRAVITY IN N/mm<sup>2</sup>
                                  LENGTH OF UPPER ARM IN m
10 AE = .25 / /
11 CE = .25 / /
                                  LENGTH OF LOWER ARM IN m
                                 FROM FIGURE 7.11
12 ER=.175 //
13 AP=.025//
                                 FROM FIGURE 7.11
14 FR = AP / /
                                 FROM FIGURE 7.11
15 \text{ CQ=FR}//
                                 FROM FIGURE 7.11
                                    MASS OF BALL IN Kg
16 m = 3.2 //
17 M = 25 / /
                                  MASS OF SLEEVE IN Kg
                                  VERTICAL HEIGHT OF
18 h=.2//
```

HEIGHT OF THE GOVERNOR

16 $h = (AE^2 - EF^2)^5.5//$

GOVERNOR IN m

19 EM = h / /

 $20 \quad AF=h//$

FROM FIGURE 7.11

FROM FIGURE 7.11

```
21 N=160// SPEED OF THE GOVERNOR IN

rpm

22 HM=(895*EM*(m+M)/(h*N^2*m))
23 x=HM-EM// LENGTH OF EXTENDED LINK IN

m

24 T1=g*(m+M/2)*AE/AF// TENSION IN UPPER ARM IN N

printf('LENGTH OF EXTENDED LINK = %.3 f m\n TENSION

IN UPPER ARM =%.3 f N',x,T1)
```

Scilab code Exa 7.12 MAXIMUM SPEED OF ROTATION

1 //CHAPTER 7 ILLUSRTATION 12 PAGE NO 208

2 //TITLE:GOVERNORS

```
3 //FIGURE 7.12,7.13
4 clc
5 clear
6 //
7 //INPUT DATA
8 PI=3.147
                             MINIMUM RADIUS OF ROTATION IN
9 \text{ EF} = .20 / /
       \mathbf{m}
                             LENGTH OF EACH ARM IN m
10 AE = .30 / /
                             COMPARING FIRUES 7.12&7.13
11 A1E1=AE//
12 EC=.30 //
                             LENGTH OF EACH ARM IN m
13 E1C1=EC//
                             LENGTH OF EACH ARM IN m
14 ED=.165//
                             FROM FIGURE 7.12 IN m
15 \text{ MC} = \text{ED} / /
                             FROM FIGURE 7.12
                              FROM FIGURE 7.12 IN m
16 EH=.10//
17 m = 8 / /
                             MASS OF BALL IN Kg
                             MASS OF SLEEVE IN Kg
18 M = 60 / /
19 DF=.035//
                             SLEEVE DISTANCE FROM AXIS IN
      \mathbf{m}
20 E1F1=.25//
                             MAX RADIUS OF ROTATION IN m
```

```
23 alpha=asind(EF/AE)//
                                ANGLE OF INCLINATION OF THE
       ARM TO THE VERTICAL IN DEGREES
24 beeta=asind(ED/EC)//
                             ANGLE OF INCLINATION OF THE
       ARM TO THE HORIZONTAL IN DEGREES
25 k=tand(beeta)/tand(alpha)
                                 HEIGHT OF GOVERNOR IN m
26 h = (AE^2 - EF^2)^5.5/
                          FROM FIGURE 7.12 IN m
27 \text{ EM} = (\text{EC}^2 - \text{MC}^2)^.5 //
28 \quad HM = EM + EH
29 N2 = (895 * EM * (m + (M/2 * (1+k))) / (h * HM * m))^{.5} / 
      EQUILIBRIUM SPEED AT MAX RADIUS
                                                   FROM FIGURE
30 \text{ HC} = (\text{HM}^2 + \text{MC}^2)^.5 //
       7.13 IN m
31 H1C1=HC
32 gama=atand(MC/HM)
33 alpha1=asind(E1F1/A1E1)
                                                     FROM
34 E1D1=E1F1-DF//
      FIGURE 7.13 IN m
35 beeta1=asind(E1D1/E1C1)
36 gama1=gama-beeta+beeta1
37 r = H1C1 * sind(gama1) + DF //
                                                        RADIUS
      OF ROTATION IN m
38 \text{ H1M1=H1C1*cosd(gama1)}
39 I1C1=E1C1*cosd(beeta1)*(tand(alpha1)+tand(beeta1))//
       FROM FIGURE IN m
40 \text{ M1C1=H1C1*sind(gama1)}
41 \quad \text{w1} = (((m*g*(I1C1-M1C1))+(M*g*I1C1)/2)/(m*r*H1M1))^{.5}
          ANGULAR SPEED IN rad/s
42 \text{ N1=w1*60/(2*PI)}
                                                    //SPEED IN
       m/s
43 printf ('MINIMUM SPEED OF ROTATION = %.3 f rpm\n
      MAXIMUM SPEED OF ROTATION = \%.3 \, f \, \text{rpm}', N2, N1)
```

21 g = 9.81

22 //

Chapter 8

balancing of rotating masses

Scilab code Exa 8.1 magnitude of balancing mass

```
1 //CHAPTER 8 ILLUSRTATION 1 PAGE NO 221
 2 //TITLE:BALANCING OF ROTATING MASSES
 3 \text{ pi} = 3.141
 4 clc
 5 clear
                        mass of A in kg
 6 \text{ mA} = 12 / /
 7 \text{ mB} = 10 / /
                      mass of B in kg
 8 \text{ mC} = 18 / /
                        mass of C in kg
 9 \text{ mD} = 15 / /
                        mass of D in kg
10 \text{ rA} = 40 / /
                        radius of A in mm
11 rB=50// radius of B in mm
12 rC=60// radius of C in mm
13 rD=30// radius of D in mm
14 theta1=0// angle between A-A in degrees
15 theta2=60// angle between A-B in degrees
                        radius of B in mm
16 theta3=130//
                        angle between A-C in degrees
                        angle between A-D in degrees
17 theta4=270//
18 R=100// radius at which mass to be determined in mm
19 //
```

Scilab code Exa 8.2 masses of D and E

```
1 //CHAPTER 8 ILLUSRTATION 2 PAGE NO 222
2 //TITLE:BALANCING OF ROTATING MASSES
3 pi=3.141
4 clc
5 clear
6 \text{ mA=5//} \text{ mass of A in kg}
7 mB = 10 / /
            mass of B in kg
8 \text{ mC} = 8 / /
               mass of C in kg
            radius of A in cm
9 \text{ rA} = 10 / /
            radius of B in cm
10 rB=15//
               radius of C in cm
11 rC=10//
            radius of D in cm
12 \text{ rD} = 10 / /
13 \text{ rE} = 15 / /
             radius of E in cm
14 //====
15 mD=182/rD// mass of D in kg by mearument
16 mE=80/rE// mass of E in kg by mearument
17 printf ('mass of D= \%.3 \, \text{f kg} \setminus \text{nmass of E} = \%.3 \, \text{f kg}', mD,
```

Scilab code Exa 8.3 balancing mass and angular position

```
1 //CHAPTER 8 ILLUSRTATION 3 PAGE NO 223
2 //TITLE:BALANCING OF ROTATING MASSES
3 \text{ pi} = 3.141
4 clc
5 clear
                    mass of A in kg
6 \text{ mA} = 200 / /
7 \text{ mB} = 300 / /
                    mass of B in kg
8 \text{ mC} = 400 / /
                    mass of C in kg
9 \text{ mD} = 200 / /
                    mass of D in kg
10 \text{ rA=80}//
                    radius of A in mm
11 rB=70//
                     radius of B in mm
12 rC=60//
                    radius of C in mm
                    radius of D in mm
13 \text{ rD} = 80 / /
                    radius of X in mm
14 \text{ rX} = 100 / /
               radius of X in mmr
radius of Y in mm
15 \text{ rY} = 100 / /
16 //=====
17 mY = 7.3/.04//
18 mY = 35/.1//
                       mass of Y in kg by mearurement
18 \text{ mX} = 35/.1//
                      mass of X in kg by mearurement
19 thetaX=146// in degrees by mesurement
20 printf ('mass of X=\%.3 f kg\n mass of Y=\%.3 f kg\n
       angle with mA=\%.0 f degrees', mX, mY, thetaX)
```

Scilab code Exa 8.4 balancing mass and angular position

```
1 //CHAPTER 8 ILLUSRTATION 4 PAGE NO 225
2 //TITLE:BALANCING OF ROTATING MASSES
3 pi=3.141
4 clc
5 clear
6 mB=30// mass of B in kg
7 mC=50// mass of C in kg
8 mD=40// mass of D in kg
9 rA=18// radius of A in cm
```

```
radius of B in cm
10 \text{ rB} = 24 / /
11 rC=12//
                  radius of C in cm
12 rD=15//
                  radius of D in cm
13 //=
14 mA=3.6/.18//
                         mass of A by measurement in kg
15 theta=124//
                         angle with mass B in degrees by
       measurement in degrees
16 y=3.6/(.18*20)//
                         position of A from B
17 printf ('mass of A=%i kg\n angle with mass B=%i
      degrees\n position of A from B=\%i m towards right
       of plane B', mA, theta, y)
```

Scilab code Exa 8.5 balancing mass and angular position

```
1 //CHAPTER 8 ILLUSRTATION 5 PAGE NO 226
2 //TITLE:BALANCING OF ROTATING MASSES
3 \text{ pi} = 3.141
4 clc
5 clear
6 \text{ mB} = 10 / /
                   mass of B in kg
7 \text{ mC} = 5 / /
                   mass of C in kg
8 \text{ mD} = 4 / /
                  mass of D in kg
9 \text{ rA} = 10 / /
                    radius of A in cm
10 \text{ rB} = 12.5 / /
                       radius of B in cm
11 rC=20//
                    radius of C in cm
                    radius of D in cm
12 rD=15//
13 //=====
14 \text{ mA} = 7 / /
                 mass of A in kg by mesurement
15 BC=118 //
                   angle between B and C in degrees by
      mesurement
16 \quad BA = 203.5 / /
                   angle between B and A in degrees by
      mesurement
17 BD = 260 / /
                   angle between B and D in degrees by
      mesurement
18 printf ('Mass of A=%i kg\n angle between B and C=%i
```

Scilab code Exa 8.6 mass of D

```
1 //CHAPTER 8 ILLUSRTATION 6 PAGE NO 228
2 //TITLE:BALANCING OF ROTATING MASSES
3 \text{ pi} = 3.141
4 clc
5 clear
6 \text{ mB} = 36 / /
                    mass of B in kg
7 \text{ mC} = 25 / /
                    mass of C in kg
8 \text{ rA} = 20 / /
                    radius of A in cm
9 \text{ rB} = 15 / /
                    radius of B in cm
                    radius of C in cm
10 rC=15//
11 rD=20//
                    radius of D in cm
12 / =
13 \text{ mA} = 3.9 / .2 / /
                         mass of A in kg by measurement
14 \text{ mD} = 16.5 / /
                        mass of D in kg by measurement
15 theta=252//
                        angular position of D from B by
      measurement in degrees
16 printf ('Mass of A= %.1 f kg\n Mass od D= %.1 f kg\n
      Angular position of D from B= %i degrees', mA, mD,
      theta)
```

Scilab code Exa 8.7 load on each bearing

```
1 //CHAPTER 8 ILLUSRTATION 7 PAGE NO 229
2 //TITLE:BALANCING OF ROTATING MASSES
3
4 clc
5 clear
6 pi=3.141
```

```
mass of A in kg
7 \text{ mA} = 48 / /
8 \text{ mB} = 56 / /
                   mass of B in kg
9 \text{ mC} = 20 / /
                   mass of C in kg
10 \text{ rA} = 1.5 / /
                    radius of A in cm
11 rB=1.5//
                    radius of B in cm
12 rC=1.25//
                      radius of C in cm
13 N = 300 / /
               speed in rpm
               distance between bearing in cm
14 d=1.8//
15 //=====
16 \ w=2*pi*N/60//
                           angular speed in rad/s
17 BA = 164 / /
                 angle between pulleys B&A in degrees by
      measurement
                 angle between pulleys B&C in degrees by
18
  BC=129 //
      measurement
                 angle between pulleys A&C in degrees by
19 AC = 67 / /
      measurement
20 C = .88 * w^2 //
                     out of balance couple in N
21 L=C/d// load on each bearing in N
22 printf ('angle between pulleys B&A=%i degrees \n angle
       between pulleys B&C= %i degrees\n angle between
      pulleys A&C= %i degrees\n out of balance couple=
      \%.3 \text{ f N} \setminus \text{n load on each bearing} = \%.3 \text{ f N', BA, BC, AC, C}
      , L)
```

Chapter 9

cams and followers

Scilab code Exa 9.2 maximum velocity and acceleration

```
1 //CHAPTER 9 ILLUSRTATION 2 PAGE NO 247
2 //TITLE:CAMS AND FOLLOWERS
3 clc
4 clear
5 \text{ pi} = 3.141
6 s=4// follower movement in cm
7 theta=60// cam rotation in degrees
8 THETA=60*pi/180// cam rotation in rad
9 thetaD=45// after outstroke in degrees
10 thetaR=90//....angle with which it reaches its
      original position in degrees
11 THETAR=90*pi/180//
                        angle with which it reaches its
       original position in rad
12 THETAd=360-theta-thetaD-thetaR//
                                      angle after
      return stroke in degrees
13 N = 300 / /
             speed in rpm
14 w=2*pi*N/60// speed in rad/s
15 Vo=pi*w*s/2/THETA// Maximum velocity of follower
      during outstroke in cm/s
16 Vr=pi*w*s/2/THETAR// Maximum velocity of follower
      during return stroke in cm/s
```

Scilab code Exa 9.3 maximum velocity and acceleration

```
1 //CHAPTER 9 ILLUSRTATION 3 PAGE NO 249
2 //TITLE:CAMS AND FOLLOWERS
3 clc
4 clear
5 pi=3.141
                follower movement in cm
6 s = 5 / /
7 theta=120// cam rotation in degrees
8 THETA=theta*pi/180// cam rotation in rad
9 thetaD=30// after outstroke in degrees
10 thetaR=60//....angle with which it reaches its
      original position in degrees
11 THETAR=60*pi/180// angle with which it reaches its
      original position in rad
12 THETAd=360-theta-thetaD-thetaR// angle after
     return stroke in degrees
13 N = 100 / /
            speed in rpm
14 w=2*pi*N/60// speed in rad/s
15 Vo=pi*w*s/2/THETA//
                        Maximum velocity of follower
     during outstroke in cm/s
16 Vr=pi*w*s/2/THETAR// Maximum velocity of follower
     during return stroke in cm/s
17 Fo=pi^2*w^2*s/2/THETA^2/100//Maximum acceleration of
      follower during outstroke in m/s<sup>2</sup>
18 Fr=pi^2*w^2*s/2/THETAR^2/100//Maximum acceleration
     of follower during return stroke in m/s<sup>2</sup>
```

19 printf('Maximum acceleration of follower during
 outstroke = %.3 f m/s^2\nMaximum acceleration of
 follower during return stroke= %.3 f m/s^2', Fo, Fr)

Scilab code Exa 9.5 maximum velocity and acceleration

```
1 //CHAPTER 9 ILLUSRTATION 5 PAGE NO 252
2 //TITLE:CAMS AND FOLLOWERS
3 clc
4 clear
5 \text{ pi} = 3.141
6 N = 1000 / /
             speed of cam in rpm
7 w=2*pi*N/60// angular speed in rad/s
8 \text{ s=} 2.5// \text{ stroke of the follower in cm}
9 THETA=120*pi/180// ANGULAR DISPLACEMENT OF CAM
      DURING OUTSTROKE IN RAD
10 THETAR=90*pi/180//ANGULAR DISPLACEMENT OF CAM DURING
       DWELL IN RAD
11 Vo = 2*w*s/THETA//
                        Maximum velocity of follower
      during outstroke in cm/s
12 Vr=2*w*s/THETAR//Maximum velocity of follower during
       return stroke in cm/s
13 Fo=4*w^2*s/THETA^2//Maximum acceleration of follower
       during outstroke in m/s<sup>2</sup>
14 Fr=4*w^2*s/THETAR^2//Maximum acceleration of
      follower during return stroke in m/s<sup>2</sup>
15 printf ('Maximum acceleration of follower during
      outstroke = \%.3 \, \text{f m/s} \, ^2 \setminus \text{nMaximum acceleration of}
      follower during return stroke= \%.3 \, \text{f m/s}^2, Fo, Fr)
```

Chapter 10

Brakes and Dynamometers

Scilab code Exa 10.1 Torque transmitted by the block brake

```
1 //CHAPTER 10 ILLUSRTATION 1 PAGE NO 268
2 //TITLE: Brakes and Dynamometers
3 clc
4 clear
5 //
6 //INPUT DATA
7 d=0.32; // Diameter of the drum in m
8 qq=90; // Angle of contact in degree
9 P=820; // Force applied in N
10 U=0.35; // Coefficient of friction
11
12
13 U1 = ((4*U*sind(qq/2))/((qq*(3.14/180))+sind(qq))); //
      Equivalent coefficient of friction
14 F = ((P*0.66)/((0.3/U1)-0.06)); //Force value in N
      taking moments
15 TB=(F*(d/2)); // Torque transmitted in N.m
16
17 printf('Torque transmitted by the block brake is %3
```

Scilab code Exa 10.2 DISTANCE TRAVELLED BY CYCLE

```
1 //CHAPTER 10 ILLUSRTATION 2 PAGE NO 269
2 //TITLE: Brakes and Dynamometers
3 clc
4 clear
5 //
6 //INPUT DATA
7 m=120; //Mass of rider in kg
8 v=16.2; //Speed of rider in km/hr
9 d=0.9; // Diameter of the wheel in m
10 P=120; // Pressure applied on the brake in N
11 U=0.06; // Coefficient of friction
12
13 F=(U*P); // Frictional force in N
14 KE=((m*(v*(5/18))^2)/2); //Kinematic Energy in N.m
15 S=(KE/F); // Distance travelled by the bicycle before
      it comes to rest in m
16 N=(S/(d*3.14)); //Required number of revolutions
17
18 printf ('The bicycle travels a distance of %3.2f m
     and makes \%3.2f turns before it comes to rest', S,
     N)
```

Scilab code Exa 10.3 Maximum torque absorbed

```
1 //CHAPTER 10 ILLUSRTATION 3 PAGE NO 270
2 //TITLE: Brakes and Dynamometers
3 clc
```

```
4 clear
5 //
6 //INPUT DATA
7 S=3500; // Force on each arm in N
8 d=0.36; //Diamter of the wheel in m
9 U=0.4; // Coefficient of friction
10 qq=100; //Contact angle in degree
11
12 qqr=(qq*(3.14/180));//Contact angle in radians
13 UU = ((4*U*sind(qq/2))/(qqr+(sind(qq)))); //Equivalent
      coefficient of friction
14 F1=(S*0.45)/((0.2/UU)+((d/2)-0.04));//Force on
     fulcrum in N
15 F2=(S*0.45)/((0.2/UU)-((d/2)-0.04)); //Force on
     fulcrum in N
16 TB=(F1+F2)*(d/2);//Maximum torque absorbed in N.m
17
18 printf ('Maximum torque absorbed is %3.2 f N.m', TB)
```

Scilab code Exa 10.4 The maximum braking torque on the drum

1 //CHAPTER 10 ILLUSRTATION 4 PAGE NO 271

```
//TITLE: Brakes and Dynamometers

clc
clear
//INPUT DATA
a=0.5; // Length of lever in m
d=0.5; // Diameter of brake drum in m
q=(5/8)*(2*3.14); // Angle made in radians
```

10 b=0.1; // Distance between pin and fulcrum in m

```
11 P=2000; // Effort applied in N
12 U=0.25; // Coefficient of friction
13
14 T=exp(U*q); // Ratios of tension
15 T2=((P*a)/b); // Tension in N
16 T1=(T*T2); // Tension in N
17 TB=((T1-T2)*(d/2))/1000; // Maximum braking torque in kNm
18
19 printf('The maximum braking torque on the drum is %3 .3 f kNm', TB)
```

Scilab code Exa 10.5 Tensions in the side

1 //CHAPTER 10 ILLUSRTATION 5 PAGE NO 271

```
2 //TITLE: Brakes and Dynamometers
3 clc
4 clear
5 //
6 //INPUT DATA
7 q=220; // Angle of contact in degree
8 T=340; // Torque in Nm
9 d=0.32; // Diameter of drum in m
10 U=0.3; // Coefficient of friction
11
12 Td=(T/(d/2)); // Difference in tensions in N
13 Tr = exp(U*(q*(3.14/180))); // Ratio of tensions
14 T2=(Td/(Tr-1));//Tension in N
15 T1=(Tr*T2); // Tension in N
16 P = ((T2*(d/2)) - (T1*0.04))/0.5; //Force applied in N
17 b=(T1/T2)*4; // Value of b in cm when the brake is
      self-locking
18
```

```
19 printf('The value of b is %3.2 f cm when the brake is
    self-locking \n Tensions in the sides are %3.3 f
    N and %3.3 f N',b,T1,T2)
```

Scilab code Exa 10.6 Torque required

```
1 //CHAPTER 10 ILLUSRTATION 6 PAGE NO 272
2 //TITLE: Brakes and Dynamometers
3 clc
4 clear
5 //
6 //INPUT DATA
7 d=0.5; //Drum diamter in m
8 U=0.3; // Coefficient of friction
9 q=250; //Angle of contact in degree
10 P=750; // Force in N
11 a=0.1; //Band width in m
12 b=0.8; // Distance in m
13 ft=(70*10^6);//Tensile stress in Pa
14 f = (60*10^6); // Stress in Pa
15 b1=0.1; //Distance in m
16
17 T = \exp(U*(q*(3.14/180))); // Tensions ratio
18 T2=(P*b*10)/(T+1); // Tension in N
19 T1=(T*T2); // Tension in N
20 TB=(T1-T2)*(d/2); //Torque in N.m.
21 t=(\max(T1,T2)/(ft*a))*1000; //Thickness in mm
22 M=(P*b); //bending moment at fulcrum in Nm
23 X=(M/((1/6)*f)); //Value of th^2
\frac{24}{\text{t}} varies from 10mm to 15 mm. Taking t=15mm,
25 h=sqrt(X/(0.015))*1000;//Section of the lever in m
26
27 printf ('Torque required is %3.2 f N.m \nThickness
```

necessary to limit the tensile stress to 70 MPa is %3.3 f mm \n Section of the lever taking stress to 60 MPa is %3.1 f mm', TB,t,h)

Scilab code Exa 10.7 Power TO BD ratio

```
1 //CHAPTER 10 ILLUSRTATION 7 PAGE NO 273
2 //TITLE: Brakes and Dynamometers
3 clc
4 clear
5 //
6 //INPUT DATA
7 P1=30; // Power in kW
8 N=1250; //Speed in r.p.m
9 P=60; // Applied force in N
10 d=0.8; //Drum diameter in m
11 q=310; // Contact angle in degree
12 a=0.03; //Length of a in m
13 b=0.12; //Length of b in m
14 U=0.2; // Coefficient of friction
15 B=10; //Band width in cm
16 D=80; // Diameter in cm
17
18 T=(P1*60000)/(2*3.14*N); // Torque in N.m
19 Td=(T/(d/2));//Tension difference in N
20 Tr = exp(U*(q*(3.14/180))); // Tensions ratio
21 T2=(Td/(Tr-1)); // Tension in N
22 T1=(Tr*T2); // Tension in N
23 x = ((T2*b) - (T1*a))/P; // Distance in m;
24 X = (P1/(B*D)); //Ratio
25
26 printf('Value of x is %3.4 f m \n Value of (Power/bD)
       ratio is \%3.4 \,\mathrm{f}',x,X)
```

Scilab code Exa 10.8 Time required to bring the shaft to the rest from its running condition

1 //CHAPTER 10 ILLUSRTATION 8 PAGE NO 274

```
2 //TITLE: Brakes and Dynamometers
3 clc
4 clear
5 //
6 //INPUT DATA
7 m=80; //Mass of flywheel in kg
8 k=0.5; // Radius of gyration in m
9 N=250; //Speed in r.p.m
10 d=0.32; //Diamter of the drum in m
11 b=0.05; // Distance of pin in m
12 q=260; // Angle of contact in degree
13 U=0.23; // Coefficient of friction
14 P=20; // Force in N
15 a=0.35; // Distance at which force is applied in m
16
17 Tr = \exp(U * q * (3.14/180)); // Tensions ratio
18 T2=(P*a)/b; // Tension in N
19 T1=(Tr*T2);//Tension in N
20 TB=(T1-T2)*(d/2); // Torque in N.m.
21 KE=((1/2)*(m*k^2)*((2*3.14*N)/60)^2); //Kinematic
      energy of the rotating drum in Nm
22 N1=(KE/(TB*2*3.14)); //Speed in rpm
23 aa = ((2*3.14*N)/60)^2/(4*3.14*N1); // Angular
      acceleration in rad/s^2
24 t = ((2*3.14*N)/60)/aa; //Time in seconds
25
26 printf ('Time required to bring the shaft to the rest
       from its running condition is %3.1f seconds',t)
```

Scilab code Exa 10.9 Minimum force required

```
1 //CHAPTER 10 ILLUSRTATION 9 PAGE NO 275
2 //TITLE: Brakes and Dynamometers
3 clc
4 clear
5 //
6 //INPUT DATA
7 n=12; //Number of blocks
8 q=15; //Angle subtended in degree
9 P=185; //Power in kW
10 N=300; // Speed in r.p.m
11 U=0.25; // Coefficient of friction
12 d=1.25; // Diamter in m
13 b1=0.04; // Distance in m
14 b2=0.14; // Distance in m
15 a=1; // Diatance in m
16 m=2400; //Mass of rotor in kg
17 k=0.5; //Radius of gyration in m
18
  Td = (P*60000) / (2*3.14*N*(d/2)); // Tension difference
19
20 T=Td*(d/2); // Torque in Nm
21 Tr = ((1+(U*tand(q/2)))/(1-(U*tand(q/2))))^n; //Tension
       ratio
22 To=(Td/(Tr-1));//Tension in N
23 Tn=(Tr*To); // Tension in N
24 P = ((To*b2) - (Tn*b1))/a; //Force in N
25 aa=(T/(m*k^2)); //Angular acceleration in rad/s^2
26 t = ((2*3.14*N)/60)/aa; //Time in seconds
27
28 printf ('Minimum force required is \%3.0 f N \nTime
```

Scilab code Exa 10.10 Maximum braking torque

```
1 //CHAPTER 10 ILLUSRTATION 10 PAGE NO 275
2 //TITLE: Brakes and Dynamometers
3 clc
4 clear
5 //
6 //INPUT DATA
7 n=12; // Number of blocks
8 q=16; // Angle subtended in degrees
9 d=0.9; // Effective diameter in m
10 m = 2000; //Mass in kg
11 k=0.5; // Radius of gyration in m
12 b1=0.7; // Distance in m
13 b2=0.03; // Distance in m
14 a=0.1; // Distance in m
15 P=180; // Force in N
16 N=360; // Speed in r.p.m
17 U=0.25; // Coefficient of friction
18
19 Tr = ((1+(U*tand(q/2)))/(1-(U*tand(q/2))))^n; //
      Tensions ratio
20 T2=(P*b1)/(a-(b2*Tr)); // Tension in N
21 T1=(Tr*T2); //Tension in N
22 TB=(T1-T2)*(d/2); //Torque in N.m.
23 aa=(TB/(m*k^2));//Angular acceleration in rad/s^2
24 t = ((2*3.14*N)/60)/aa; //Time in seconds
25
26 printf('(i) Maximum braking torque is \%3.4 f Nm \n(ii
      Angular retardation of the drum is %3.4 f rad/s
      ^2 \ln(iii) Time taken by the system to come to
```

Chapter 11

VIBRATIONS

Scilab code Exa 11.1 FREQUENCY OF TRANSVERSE VIBRATION

```
1 //CHAPTER 11 ILLUSRTATION 1 PAGE NO 290
2 //TITLE:VIBRATIONS
3 clc
4 clear
 5 //
6 //INPUT DATA
 7 PI=3.147
 8 D = .1 //
                                       DIAMETER OF SHAFT
     IN m
                                        LENGTH OF SHAFT IN
9 L=1.10//
      \mathbf{m}
10 W = 450 / /
                                       WEIGHT ON THE OTHER
       END OF SHAFT IN NEWTONS
11 E=200*10^9//
                                       YOUNGS MODUKUS OF
      SHAFT MATERIAL IN Pascals
12 //
13 A = PI * D^2 / 4 / /
                                      AREA OF SHAFT IN mm
```

```
14 I = PI * D^4 / 64 / /
                                   MOMENT OF INERTIA
15 delta=W*L/(A*E)//
                                   STATIC DEFLECTION IN
      LONGITUDINAL VIBRATION OF SHAFT IN m
16 Fn=0.4985/(delta)^{.5}/
                                 FREQUENCY OF
     LONGITUDINAL VIBRATION IN Hz
                                    STATIC DEFLECTION
17 delta1=W*L^3/(3*E*I)//
     IN TRANSVERSE VIBRATION IN m
18 Fn1=0.4985/(delta1)^.5//
                                   FREQUENCY OF
     TRANSVERSE VIBRATION IN Hz
19 //
20 //OUTPUT
21 printf ('FREQUENCY OF LONGITUDINAL VIBRATION = %.3 f Hz
     \n FREQUENCY OF TRANSVERSE VIBRATION =\% .3 f Hz ', Fn
      , Fn1)
   Scilab code Exa 11.2 NATURAL FREQUENCY OF TRANSVERSE VI-
   BRATION
1 //CHAPTER 11 ILLUSRTATION 2 PAGE NO 290
2 //TITLE: VIBRATIONS
3 //FIGURE 11.10
4 clc
5 clear
6 //
7 //INPUT DATA
8 PI=3.147
9 L = .9 / /
                                   LENGTH OF THE SHAFT
     IN m
10 m = 100 / /
                                   MASS OF THE BODY IN
     Kg
```

^2

```
LENGTH WHERE THE
11 L2=.3//
     WEIGHT IS ACTING IN m
12 L1=L-L2//
                                    DISTANCE FROM THE
     OTHER END
13 D=.06//
                                    DIAMETER OF SHAFT IN
      \mathbf{m}
                                    WEGHT IN NEWTON
14 W = 9.81 * m / /
                                     YOUNGS MODUKUS OF
15 E = 200 * 10^9 / 
     SHAFT MATERIAL IN Pascals
16 //
17 //CALCULATION
18 I=PI*D^4/64//
                                    MOMENT OF INERTIA IN
      m^4
19 delta=W*L1^2*L2^2/(3*E*I*L)// STATIC DEFLECTION
20 Fn=.4985/(delta)^{\circ}.5// NATURAL FREQUENCY OF
      TRANSVERSE VIBRATION
22 //OUTPUT
23 printf('NATURAL FREQUENCY OF TRANSVERSE VIBRATION=%
      .3 f Hz', Fn)
   Scilab code Exa 11.3 FREQUENCY OF TORSIONAL VIBRATION
1 //CHAPTER 11 ILLUSRTATION 3 PAGE NO 291
2 //TITLE: VIBRATIONS
```

3 //FIGURE 11.11

4 clc 5 clear 6 //

```
7 //INPUT DATA
8 PI=3.147
9 g=9.81//
      ACCELERATION DUE TO GRAVITY IN N /m^2
10 D = .050 / /
      DIAMETER OF SHAFT IN m
11 m = 450 / /
                                                     WEIGHT
      OF FLY WHEEL IN IN Kg
                                                     RADIUS
12 \text{ K} = .5 / /
     OF GYRATION IN m
13 L2 = .6 / /
                                                    FROM
     FIGURE IN m
14 L1=.9//
                                                    FROM
      FIGURE IN m
15 L=L1+L2
                                       YOUNGS MODUKUS OF
16 E=200*10^9 //
      SHAFT MATERIAL IN Pascals
17 C = 84 * 10^9 / 
                                       MODUKUS OF RIDITY
      OF SHAFT MATERIAL IN Pascals
18 //
                                                   AREA OF
19 A = PI * D^2 / 4 / /
     SHAFT IN mm<sup>2</sup>
20 I = PI * D^4/64//
21 m1=m*L2/(L1+L2)//
                                                    MASS OF
      THE FLYWHEEL CARRIED BY THE LENGTH L1 IN Kg
22 DELTA=m1*g*L1/(A*E)/
      EXTENSION OF LENGTH L1 IN m
23 Fn = 0.4985/(DELTA)^{.5}/
     FREQUENCY OF LONGITUDINAL VIBRATION IN Hz
24 DELTA1=(m*g*L1^3*L2^3)/(3*E*I*L^3)//
      DEFLECTION IN TRANSVERSE VIBRATION IN m
25 Fn1=0.4985/(DELTA1)^.5//
      FREQUENCY OF TRANSVERSE VIBRATION IN Hz
26 J=PI*D^4/32//
                                                    POLAR.
     MOMENT OF INERTIA IN m<sup>4</sup>
27 \ Q1 = C * J/L1 //
```

```
28 \ Q2=C*J/L2//
     TORSIONAL STIFFNESS OF SHAFT DUE TO L2 IN N-m
29 Q = Q1 + Q2 / /
     TORSIONAL STIFFNESS OF SHAFT IN Nm
30 \operatorname{Fn2}=(Q/(m*K^2))^5.5/(2*PI)//
     FREQUENCY OF TORSIONAL VIBRATION IN Hz
31 //
32 printf ('FREQUENCY OF LONGITUDINAL VIBRATION = %.3 f
      Hz\n FREQUENCY OF TRANSVERSE VIBRATION = %.3 f Hz\
      n FREQUENCY OF TORSIONAL VIBRATION = \%.3 \, f Hz, fn,
      Fn1,Fn2)
   Scilab code Exa 11.6 FREQUENCY OF TRANSVERSE VIBRATION
1 //CHAPTER 11 ILLUSRTATION 6 PAGE NO 294
2 //TITLE: VIBRATIONS
3 //FIGURE 11.14
4 clc
5 clear
6 //
7 //INPUT DATA
8 PI=3.147
9 g=9.81//
     ACCELERATION DUE TO GRAVITY IN N /m^2
10 D=.06 //
     DIAMETER OF SHAFT IN m
11 L=3//
                                                    LENGTH
      OF SHAFT IN m
12 W1 = 1500 / /
                                                    WEIGHT
      ACTING AT C IN N
```

TORSIONAL STIFFNESS OF SHAFT DUE TO L1 IN N-m

```
13 W2 = 2000 / /
                                                    WEIGHT
      ACTING AT D IN N
14 \quad W3 = 1000 / /
                                                    WEIGHT
      ACTING AT E IN N
15 L1=1//
                                                    LENGTH
      FROM A TO C IN m
16 L2=2//
                                                    LENGTH
      FROM A TO D IN m
17 L3=2.5//
     LENGTH FROM A TO E IN m
18 I = PI * D^4/64
                                     YOUNGS MODUKUS OF
19 E = 200 * 10^9 / 
     SHAFT MATERIAL IN Pascals
20 //
21 DELTA1=W1*L1^2*(L-L1)^2/(3*E*I*L)//
                                                    STATIC
      DEFLECTION DUE TO W1
22 DELTA2=W2*L2^2*(L-L2)^2/(3*E*I*L)//
                                                    STATIC
      DEFLECTION DUE TO W2
23 DELTA3=W2*L3^2*(L-L3)^2/(3*E*I*L)//
                                                   STATIC
      DEFLECTION DUE TO W2
24 Fn=.4985/(DELTA1+DELTA2+DELTA3)^.5//
     FREQUENCY OF TRANSVERSE VIBRATION IN Hz
25 / /
26 printf ('FREQUENCY OF TRANSVERSE VIBRATION = %.3 f Hz'
      ,Fn)
```

Scilab code Exa 11.10 FREQUENCY OF TRANSVERSE VIBRATION

```
1 //CHAPTER 11 ILLUSRTATION 10 PAGE NO 296
2 //TITLE:VIBRATIONS
3 //FIGURE 11.18
```

```
4 clc
5 clear
6 //
7 //INPUT DATA
8 PI=3.147
9 g=9.81//
     ACCELERATION DUE TO GRAVITY IN N /m^2
10 E = 200 * 10^9 / 
                                                      YOUNGS
       MODUKUS OF SHAFT MATERIAL IN Pascals
11 D = .03 / /
     DIAMETER OF SHAFT IN m
12 L = .8 / /
                                                      LENGTH
      OF SHAFT IN m
13 r = 40000 / /
      DENSITY OF SHAFT MATERIAL IN Kg/m<sup>3</sup>
14 W = 10 / /
                                                      WEIGHT
       ACTING AT CENTRE IN N
15 //
16 I = PI * D^4/64//
                                                      MOMENT
       OF INERTIA OF SHAFT IN m<sup>4</sup>
17 m=PI*D^2/4*r//
                                                      MASS
     PER UNIT LENGTH IN Kg/m
18 \text{ w=m*g}
19 DELTA=W*L^3/(48*E*I)//
                                                     STATIC
     DEFLECTION DUE TO W
20 DELTA1=5*w*L^4/(384*E*I)/
                                                     STATIC
     DEFLECTION DUE TO WEIGHT OF SHAFT
21 Fn=.4985/(DELTA+DELTA1/1.27)^.5
22 //
23 printf ('FREQUENCY OF TRANSVERSE VIBRATION = %.3 f Hz'
      ,Fn)
```

Scilab code Exa 11.11 CRITICAL SPEED OF SHAFT

```
1 //CHAPTER 11 ILLUSRTATION 11 PAGE NO 297
2 //TITLE: VIBRATIONS
3 //FIGURE 11.19
4 clc
5 clear
6 //
7 //INPUT DATA
8 PI=3.147
9 g=9.81//
      ACCELERATION DUE TO GRAVITY IN N /m^2
10 E = 210 * 10^9 / 
                                                        YOUNGS
       MODUKUS OF SHAFT MATERIAL IN Pascals
11 D=.18//
      DIAMETER OF SHAFT IN m
12 L=2.5//
                                                        LENGTH
       OF SHAFT IN m
                                                        MASS
13 M1 = 25 / /
      ACTING AT E IN Kg
14 M2 = 50 / /
                                                        MASS
      ACTING AT D IN Kg
15 \quad M3 = 20 / /
                                                        MASS
      ACTING AT C IN Kg
16 \text{ W1} = \text{M1} * \text{g}
17 W2 = M2 * g
18 \ W3 = M3 * g
                                                        LENGTH
19 L1=.6//
       FROM A TO E IN m
20 L2=1.5//
                                                        LENGTH
       FROM A TO D IN m
21 L3=2//
                                                        LENGTH
```

```
FROM A TO C IN m
22 w = 1962 / /
                                                     SELF
     WEIGHT OF SHAFT IN N
23 //
24 I = PI * D^4 / 64 / /
                                                     MOMENT
      OF INERTIA OF SHAFT IN m^4
25 \text{ DELTA1=W1*L1^2*(L-L1)^2/(3*E*I*L)}//
                                                     STATIC
      DEFLECTION DUE TO W1
26 \quad DELTA2 = W2 * L2^2 * (L-L2)^2 / (3*E*I*L) / /
                                                     STATIC
      DEFLECTION DUE TO W2
27 DELTA3=W3*L3^2*(L-L3)^2/(3*E*I*L)//
                                                     STATIC
      DEFLECTION DUE TO W3
28 DELTA4=5*w*L^4/(384*E*I)//
                                                     STATIC
      DEFLECTION DUE TO w
29 Fn = .4985/(DELTA1+DELTA2+DELTA3+DELTA4/1.27) ^ .5
30 \text{ Nc=Fn*}60 //
      CRITICAL SPEED OF SHAFT IN rpm
31 //
32 printf('CRITICAL SPEED OF SHAFT = %.3 f rpm', Nc)
   Scilab code Exa 11.12 FREQUENCY OF FREE TORSIONAL VIBRA-
   TION
1 //CHAPTER 11 ILLUSRTATION 12 PAGE NO 298
2 //TITLE: VIBRATIONS
3 //FIGURE 11.20
```

4 clc 5 clear 6 //

```
7 //INPUT DATA
8 \text{ PI} = 3.147
9 g=9.81//
      ACCELERATION DUE TO GRAVITY IN N /m^2
10 \text{ Na} = 1500 / /
                                                       SPEED
      OF SHAFT A IN rpm
11 Nb=500//
                                                       SPEED
     OF SHAFT B IN rpm
                                                       GERA
12 G=Na/Nb//
     RATIO
13 L1=.18//
     LENGTH OF SHAFT 1 IN m
14 L2=.45//
      LENGTH OF SHAFT 2 IN m
15 D1=.045//
     DIAMETER OF SHAFT 1 IN m
16 D2 = .09 / /
     DIAMETER OF SHAFT 2 IN m
17 C = 84 * 10^9 / 
                                        MODUKUS OF RIDITY
      OF SHAFT MATERIAL IN Pascals
18 Ib=1400//
                                        MOMENT OF INERTIA
      OF PUMP IN Kg-m<sup>2</sup>
                                        MOMENT OF INERTIA
19 Ia=400//
     OF MOTOR IN Kg-m^2
20
21 //
22 J=PI*D1^4/32//
                                                     POLAR.
     MOMENT OF INERTIA IN m<sup>4</sup>
                                        MASS MOMENT OF
23 Ib1 = Ib/G^2//
      INERTIA OF EQUIVALENT ROTOR IN m^2
24 L3=G^2*L2*(D1/D2)^4//
                                        ADDITIONAL LENGTH
     OF THE EQUIVALENT SHAFT
25 L = L1 + L3 / /
                                         TOTAL LENGTH OF
      EQUIVALENT SHAFT
26 La=L*Ib1/(Ia+Ib1)
27 \text{ Fn} = (C*J/(La*Ia))^{.5/(2*PI)} //
                                         FREQUENCY OF FREE
```

```
28 //
29 printf ('FREQUENCY OF FREE TORSIONAL VIBRATION = %.2 f
       Hz', Fn)
   Scilab code Exa 11.13 THE RANGE OF SPEED
1 //CHAPTER 11 ILLUSRTATION 13 PAGE NO 300
2 //TITLE: VIBRATIONS
3 //FIGURE 11.21
4 clc
5 clear
6 //
7 //INPUT DATA
8 PI=3.147
9 g=9.81//
     ACCELERATION DUE TO GRAVITY IN N /m^2
10 D = .015 / /
     DIAMETER OF SHAFT IN m
11 L=1.00//
     LENGTH OF SHAFT IN m
12 \quad M = 15 / /
     MASS OF SHAFT IN Kg
13 \quad W = M * g
14 e = .0003 / /
     ECCENTRICITY IN m
15 E=200*10^9//
                                                      YOUNGS
      MODUKUS OF SHAFT MATERIAL IN Pascals
16 f=70*10^6//
     PERMISSIBLE STRESS IN N/m<sup>2</sup>
17 //
```

TORSIONAL VIBRATION IN Hz

```
18 I=PI*D^4/64//
                                     MOMENT OF INERTIA OF
      SHAFT IN m<sup>4</sup>
19 DELTA=W*L^3/(192*E*I)//
                                     STATIC DEFLECTION IN m
20 Fn=.4985/(DELTA)^.5//
                                         NATURAL FREQUENCY OF
       TRANSVERSE VIBRATION
                                     CRITICAL SPEED OF SHAFT
21 \text{ Nc=Fn*60}//
       IN rpm
22 M1 = 16 * f * I / (D * g * L)
                                     ADDITIONAL LOAD ACTING
23 W1 = M1 * g / /
24 y = W1/W * DELTA //
                                     ADDITIONAL DEFLECTION
      DUE TO W1
25 \text{ N1=Nc/(1+e/y)}^{.5}/
                                         MIN SPEED IN rpm
26 \text{ N2=Nc/(1-e/y)}^{.5}
                                         MAX SPEED IN rpm
27 //
```

28 printf('CRITICAL SPEED OF SHAFT = %.3 f rpm\n THE RANGE OF SPEED IS FROM %.3 f rpm TO %.3 f rpm', Nc, N1,N2)

Chapter 12

balancing of reciprocating masses

Scilab code Exa 12.1 Magnitude of balance mass required

```
1 //CHAPTER 12 ILLUSRTATION 1 PAGE NO 310
2 //TITLE: Balancing of reciprocating of masses
3 clc
4 clear
5 \text{ pi} = 3.141
6 N = 250 / /
                           speed of the reciprocating
      engine in rpm
7 s = 18 / /
                         length of stroke in mm
8 \text{ mR} = 120 //
                          mass of reciprocating parts in
      kg
9 m = 70 / /
                          mass of revolving parts in kg
                             radius of revolution of
10 r = .09 / /
      revolving parts in m
11 b=.15//
                           distance at which balancing
      mass located in m
12 c = 2/3//
                          portion of reciprocating mass
      balanced
13 teeta=30//
                          crank angle from inner dead
      centre in degrees
```

```
14 //
15 B=r*(m+c*mR)/b// balance mass required
    in kg
16 w=2*pi*N/60// angular speed in rad/s
17 F=mR*w^2*r*(((1-c)^2*(cosd(teeta))^2)+(c^2*(sind(teeta))^2))^.5// residual unbalanced forces
    in N
18 printf('Magnitude of balance mass required= %.0 f kg\
    n Residual unbalanced forces= %.3 f N',B,F)
```

Scilab code Exa 12.2 swaying couple

```
1 //CHAPTER 12 ILLUSRTATION 2 PAGE NO 310
2 //TITLE: Balancing of reciprocating of masses
3 clc
4 clear
5 \text{ pi} = 3.141
           acceleration due to gravity approximately
6 g = 10 / /
     in m/s^2
7 mR=240// mass of reciprocating parts per cylinder
     in kg
8 m = 300 / /
           mass of rotating parts per cylinder in
     kg
9 a=1.8//distance between cylinder centres in m
10 c=.67// portion of reciprocating mass to be
     balanced
11 b = .60 / /
               radius of balance masses in m
12 r=24// crank radius in cm
13 R=.8//radius of thread of wheels in m
14 M = 40
15 //===
16 Ma=m+c*mR//
                  total mass to be balanced in
     kg
17 mD=211.9// mass of wheel D from figure in kg
18 mC=211.9//.... mass of wheel C from figure in kg
```

```
19 theta=171// angular position of balancing mass C
    in degrees
20 Br=c*mR/Ma*mC// balancing mass for
    reciprocating parts in kg
21 w=(M*g^3/Br/b)^.5// angular speed in rad/s
22 v=w*R*3600/1000// speed in km/h
23 S=a*(1-c)*mR*w^2*r/2^.5/100/1000// swaying couple
    in kNm
24 printf('speed=%.3f kmph\n swaying couple=%.3f kNm',v
    ,S)
```

Scilab code Exa 12.3 swaying couple

```
1 //CHAPTER 12 ILLUSRTATION 3 PAGE NO 313
2 //TITLE: Balancing of reciprocating of masses
3 clc
4 clear
5 \text{ pi} = 3.141
             acceleration due to gravity approximately
6 g = 10 / /
     in m/s^2
7 a=.70//distance between cylinder centres in m
8 r=60// crank radius in cm
9 m=130//mass of rotating parts per cylinder in kg
10 mR=210// mass of reciprocating parts per cylinder in
11 c=.67// portion of reciprocating mass to be balanced
12 N=300//e2engine speed in rpm
            radius of balance masses in m
13 b = .64 / /
14 //=====
15 Ma=m+c*mR//
                         total mass to be balanced in
     kg
16 mA=100.44// mass of wheel A from figure in
     kg
17 Br=c*mR/Ma*mA// balancing mass for
     reciprocating parts in kg
```

Scilab code Exa 12.4 unbalanced primary couple

```
//CHAPTER 12 ILLUSRTATION 4 PAGE NO 314
//TITLE: Balancing of reciprocating of masses
clc
clear
pi=3.141
mR=900// mass of reciprocating parts in kg
N=90// speed of the engine in rpm
r=.45//crank radius in m
cP=.9*mR*(2*pi*N/60)^2*r*2^.5/1000// maximum unbalanced primary couple in kNm
printf('maximum unbalanced primary couple=%.3 f k Nm', cP)
```

Scilab code Exa 12.5 maximum unbalanced secondary force

```
1 //CHAPTER 12 ILLUSRTATION 5 PAGE NO 315
2 //TITLE:Balancing of reciprocating of masses
3 clc
4 clear
5 pi=3.141
6 mRA=160// mass of reciprocating cylinder A in kg
7 mRD=160// mass of reciprocating cylinder D in kg
```

Scilab code Exa 12.6 hammer blow

```
1 //CHAPTER 12 ILLUSRTATION 6 PAGE NO 316
2 //TITLE: Balancing of reciprocating of masses
3 clc
4 clear
5 \text{ pi} = 3.141
6 rA=.25// stroke length of A piston in m
7 rB=.25// stroke length of B piston in m
8 rC=.25// stroke length C piston in m
9 N=300// engine speed in rpm
10 mRL=280// mass of reciprocating parts in inside
     cylinder kg
11 \text{ mRO} = 240 / /
              mass of reciprocating parts in outside
     cylinder kg
12 c=.5// portion of reciprocating masses to be
     balanced
13 b1=.5// radius at which masses to be balanced in m
14 //=----
15 mA=c*mRO// mass of the reciprocating parts to be
     balanced foreach outside cylinder in kg
```

Scilab code Exa 12.7 swaying couple

```
1 //CHAPTER 12 ILLUSRTATION 7 PAGE NO 318
2 //TITLE: Balancing of reciprocating of masses
3 clc
4 clear
5 \text{ pi} = 3.141
6 mR=300// reciprocating mass per cylinder in kg
7 \text{ r=.3//} crank radius in m
8 D=1.7// driving wheel diameter in m
9 a=.7// distance between cylinder centre lines in m
10 H=40// hammer blow in kN
11 v = 90 / /
          speed in kmph
12 //====
13 R=D/2// radius of driving wheel in m
14 \text{ w} = 90 * 1000 / 3600 / R / /
                                angular velocity in rad/s
15 / Br * b = 69.625 * c by measument from diagram
16 c = H * 1000 / (w^2) / 69.625 / 
                               portion of reciprocating
      mass to be balanced
17 T=2^{.5*(1-c)*mR*w^2*r//} variation in tractive
      effort in N
18 M=a*(1-c)*mR*w^2*r/2^.5// maximum swaying couple
       in N-m
19 printf ('portion of reciprocating mass to be balanced
      =\%.3 \,\mathrm{f} \,\mathrm{n} variation in tractive effort=\%.3 \,\mathrm{f} \,\mathrm{N} \,\mathrm{n}
      maximum swaying couple=\%.3 f N-m', c, T, M)
```

Scilab code Exa 12.8 unbalanced secondary couple

```
1 //CHAPTER 12 ILLUSRTATION 8 PAGE NO 320
2 //TITLE: Balancing of reciprocating of masses
3 clc
4 clear
5 \text{ pi} = 3.141
6 N = 1800 / /
                  speed of the engine in rpm
7 r=6// length of crank in cm
8 l=24// length of connecting
            length of connecting rod in cm
9 m=1.5// mass of reciprocating cylinder in kg
10 / =
11 \ w=2*pi*N/60//
                         angular speed in rad/s
12 UPC=.019*w^2// unbalanced primary couple in N-m
13 n=1/r// ratio of length of crank to the connecting
       rod
14 USC=.054*w^2/n unbalanced secondary couple in N
     -m
15 printf ('unbalanced primary couple= \%.3 f N-m/n
      unbalanced secondary couple=\%.3 f N-m', UPC, USC)
```