Exercise Sheet 9

MAGIC009 - Category Theory

December 3rd, 2023

1. Let $\mathbb C$ be a small category and $c\in\mathbb C$. Recall that we have a contravariant functor

$$\mathbb{C}(-,c)\colon \mathbb{C}^{\mathsf{op}} \to \mathbf{Set}.$$

Prove that, for any presheaf $X: \mathbb{C}^{op} \to \mathbf{Set}$, any natural transformation

$$\phi \colon \mathbb{C}(-,c) \to X$$

is completely determined by the value of its component ϕ_c on the identity map $1_c \in \mathbb{C}(c,c)$. Hint. Use the naturality of ϕ and the fact that we are working with **sets** of maps.

2. Let $\mathbb C$ be a category. For any category $\mathbb B$ and diagram $X\in\mathbb C^{\mathbb B}$, there is a functor

$$\mathsf{Cone}_X(-) \colon \mathbb{C}^\mathsf{op} o \mathbf{Set}$$

mapping an object $C \in \mathbb{C}$ to the set of natural transformations from ΔC to X. Unfold explicitly what it means for this functor to be representable.

- 3. Fix two sets B and C.
 - (i) Check that the function sending a set A to the set of functions $f: A \times B \to C$ extends to a functor

$$\mathsf{Hom}(-\times B,C)\colon \mathbf{Set}^{\mathsf{op}}\to \mathbf{Set}$$

- (ii) Prove that this functor is represented by the set C^B of functions from B to C.
- 4. Define the category of pointed sets **Set*** as follows:
 - Objects are pointed sets, i.e. pairs (X, x) consisting of a set X and an element $x \in X$, called the *basepoint*,
 - Maps $f:(X,x)\to (Y,y)$ are basepoint-preserving functions, i.e. functions $f:X\to Y$ such that f(x)=y.
 - (i) Prove that the function mapping a pointed set (X, x) to its underlying set X extends to a functor

$$U \colon \mathbf{Set}_* \to \mathbf{Set}$$

- (ii) Prove that this functor U is representable.
- 5. Let $F: \mathbb{C} \to \mathbb{D}$ be a functor. For $A \in \mathbb{D}$, define a functor $Q_A: \mathbb{C}^{op} \to \mathbf{Set}$ such that the following conditions are equivalent:
 - (a) Q_A is representable,
 - (b) The comma category $F \downarrow A$ (as defined in Exercise 4 of Exercise Sheet 4) has a terminal object.