BEYOND FULLY-CONNECTED LAYERS WITH QUATERNIONS

Докладчик: Рахматуллин Рамазан Рецензент: Сафонов Иван Практик-исследователь: Медведев Антон Хакер: Степанов Никита

Описание

- Метод для уменьшения потребляемой памяти в Fully-Connected в произвольное целое число (<=10) раз без значимой потери качества и скорости
- Идея: обобщаем произведение кватернионов (4D чисел)
- Пример произведения для 2D (комплексные числа)

$$i^{2} = -1$$

$$(a + bi) \cdot (c + di) = \begin{pmatrix} a - b \\ b & a \end{pmatrix} \cdot \begin{pmatrix} c \\ d \end{pmatrix}$$

Quaternion A Quaternion $Q \in \mathbb{H}$ is a hypercomplex number with one real component and three imaginary components as follows:

$$Q = Q_r + Q_x \mathbf{i} + Q_y \mathbf{j} + Q_z \mathbf{k}, \tag{2.1}$$

whereby $\mathbf{ijk} = \mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = -1$. In (2.1), noncommutative multiplication rules hold: $\mathbf{ij} = \mathbf{k}$, $\mathbf{jk} = \mathbf{i}$, $\mathbf{ki} = \mathbf{j}$, $\mathbf{ji} = -\mathbf{k}$, $\mathbf{kj} = -\mathbf{i}$, $\mathbf{ik} = -\mathbf{j}$. Here, Q_r is the real component, Q_x , Q_y , Q_z are real numbers that represent the imaginary components of the Quaternion Q.

$$\begin{bmatrix} Q_r & -Q_x & -Q_y & -Q_z \\ Q_x & Q_r & -Q_z & Q_y \\ Q_y & Q_z & Q_r & -Q_x \\ Q_z & -Q_y & Q_x & Q_r \end{bmatrix} \begin{bmatrix} P_r \\ P_x \\ P_y \\ P_z \end{bmatrix}$$

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}}_{\mathbf{A}_{1}} \otimes \underbrace{\begin{bmatrix} Q_{r} \end{bmatrix}}_{\mathbf{S}_{1}} + \underbrace{\begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}}_{\mathbf{A}_{2}} \otimes \underbrace{\begin{bmatrix} Q_{x} \end{bmatrix}}_{\mathbf{S}_{2}} + \underbrace{\begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}}_{\mathbf{A}_{3}} \otimes \underbrace{\begin{bmatrix} Q_{y} \end{bmatrix}}_{\mathbf{S}_{3}} + \underbrace{\begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}}_{\mathbf{A}_{4}} \otimes \underbrace{\begin{bmatrix} Q_{z} \end{bmatrix}}_{\mathbf{S}_{4}}$$

$$(3.5)$$

Кватернионы

• Если на вход (вектор Р) больше чем 4 числа, то разобьем их на 4 примерно равных отрезка, а каждое $Q_r,\ Q_x,\ Q_y,\ Q_z$ заменим на матрицы

$$\begin{bmatrix} Q_r & -Q_x & -Q_y & -Q_z \\ Q_x & Q_r & -Q_z & Q_y \\ Q_y & Q_z & Q_r & -Q_x \\ Q_z & -Q_y & Q_x & Q_r \end{bmatrix} \begin{bmatrix} P_r \\ P_x \\ P_y \\ P_z \end{bmatrix}$$

Предлагаемый метод

Произведение Кронекера

$$X \in R^{n \times m}, Y \in R^{p \times q}$$

$$X \otimes Y = \begin{bmatrix} x_{11}Y & \dots & x_{1n}Y \\ \vdots & \ddots & \vdots \\ x_{m1}Y & \dots & x_{mn}Y \end{bmatrix} \in R^{np \times mq}$$

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \otimes \begin{bmatrix} x & y \\ z & s \end{bmatrix} = \begin{bmatrix} ax & ay & bx & by & cx & cy \\ az & as & bz & bs & cz & cs \\ dx & dy & ex & ey & fx & fy \\ dz & ds & ez & es & fz & fs \end{bmatrix}$$

Предлагаемый метод

Хотим построить матрицу H размеров (k x d), пусть k и d делят n

$$\mathbf{H} = \sum_{i=1}^{n} \mathbf{A}_{i} \otimes \mathbf{S}_{i} \qquad A_{i} \in \mathbb{R}^{n \times n}, \ S_{i} \in \mathbb{R}^{\frac{k}{n} \times \frac{d}{n}}$$

Вместо k*d параметров стало $n^3 + kd/n = O(kd/n)$: d = 512, k = 2048, n <= 16

Table 1: Experimental results of natural language inference (accuracy) on five different datasets. The PHM-LSTM reduces the parameters of the standard LSTM model and improves or partially matches performance on four out of five datasets.

Model	#Params	MNLI	QNLI	SNLI	DNLI	SciTail
LSTM Quaternion LSTM	721K 180K (-75.0%)	71.82 / 71.89 71.57 / 72.19	84.44 84.73	84.18 84.21	85.16 86.45	74.36 75.58
PHM-LSTM $(n=2)$	361K (-49.9%)	71.82 / 72.08	84.39	84.38	85.77	77.47
PHM-LSTM $(n = 5)$ PHM-LSTM $(n = 10)$	146K (-79.7%) 81K (-88.7%)	71.80 / 71.77 71.59 / 71.59	83.87 84.25	84.58 84.40	86.47 86.21	74.64 77.84

Table 2: Experimental results of machine translation (BLEU) on seven different datasets. Symbol † represents re-scaling the parameters with a factor of 2 by doubling the hidden size. The PHM-Transformer does not lose much performance despite enjoying parameter savings. Re-scaling can lead to improvement in performance.

Model	#Params	En-Vi	En-Id	De-En	Ro-En	En-Et	En-Mk	En-Ro
Transformer (Tm)	44M	28.43	47.40	36.68	34.60	14.17	13.96	22.79
Quaternion Tm	11M (-75.0%)	28.00	42.22	32.83	30.53	13.10	13.67	18.50
PHM-Tm n = 2	22M (-50.0%)	29.25	46.32	35.52	33.40	14.98	13.60	21.73
PHM-Tm $n=4$	11M (-75.0%)	29.13	44.13	35.53	32.74	14.11	13.01	21.19
PHM-Tm $n=8$	5.5M (-87.5%)	29.34	40.81	34.16	31.88	13.08	12.95	21.66
PHM-Tm $n=16$	2.9M (-93.4%)	29.04	33.48	33.89	31.53	12.15	11.97	19.63
$PHM-Tm^{\dagger} \ n=2$	44M	29.54	49.05	34.32	33.88	14.05	14.41	22.18
PHM-Tm [†] $n=4$	22M (-50.0%)	29.17	46.24	34.86	33.80	14.43	13.78	21.91
$PHM-Tm^{\dagger} \ n=8$	11M (-75.0%)	29.47	43.49	34.71	32.59	13.75	13.78	21.43

Table 3: Training time (seconds per 100 steps) and inference time (seconds to decode test sets) with beam size of 4 and length penalty of 0.6 on the IWSLT'14 German-English dataset.

Model	Transformer (Tm)	Quaternion Tm	PHM-Tm $(n=4)$	PHM-Tm $(n=8)$
Training time	7.61	8.11	7.92	7.70
Inference time	336	293	299	282

Table 4: Experimental results of text style transfer. The PHM-Transformer may reduce the parameters of the standard Transformer model and improve performance.

Model	#Params	BLEU
Transformer (Tm)	44M	11.65
PHM-Tm (n=2)	22M (-50.0%)	12.20
PHM-Tm $(n=4)$	11M (-75.0%)	12.42
PHM-Tm $(n=8)$	5.5M (-87.5%)	11.66
PHM-Tm $(n = 16)$	2.9M (-93.4%)	10.76

Table 5: Experimental results of subject verb agreement. The PHM-Transformer may reduce the parameters of the standard Transformer model and improve performance.

Model	#Params	Acc
Transformer (Tm)	400K	94.80
Quaternion Tm	100K	94.70
PHM-Tm (n=2)	200K (-50.0%)	95.14
PHM-Tm $(n=4)$	101K (-74.8%)	95.05
PHM-Tm $(n=8)$	56K (-86.0%)	95.62

Table 1: Experimental results of natural language inference (accuracy) on five different datasets. The PHM-LSTM reduces the parameters of the standard LSTM model and improves or partially matches performance on four out of five datasets.

Model	#Params	MNLI	QNLI	SNLI	DNLI	SciTail
LSTM	721K	71.82 / 71.89	84.44	84.18	85.16	74.36
Quaternion LSTM	180K (-75.0%)	71.57 / 72.19	84.73	84.21	86.45	75.58
PHM-LSTM $(n=2)$	361K (-49.9%)	71.82 / 72.08	84.39	84.38	85.77	77.47
PHM-LSTM $(n=5)$	146K (-79.7%)	71.80 / 71.77	83.87	84.58	86.47	74.64
PHM-LSTM $(n = 10)$	81K (-88.7%)	71.59 / 71.59	84.25	84.40	86.21	77.84

Table 2: Experimental results of machine translation (BLEU) on seven different datasets. Symbol † represents re-scaling the parameters with a factor of 2 by doubling the hidden size. The PHM-Transformer does not lose much performance despite enjoying parameter savings. Re-scaling can lead to improvement in performance.

Model	#Params	En-Vi	En-Id	De-En	Ro-En	En-Et	En-Mk	En-Ro
Transformer (Tm) Quaternion Tm	44M 11M (-75.0%)	28.43 28.00	47.40 42.22	36.68 32.83	34.60 30.53	14.17 13.10	13.96 13.67	22.79 18.50
$\begin{array}{c} \text{PHM-Tm } n = 2 \\ \text{PHM-Tm } n = 4 \end{array}$	22M (-50.0%) 11M (-75.0%)	29.25 29.13	46.32 44.13	35.52 35.53	33.40 32.74	14.98 14.11	13.60 13.01	21.73 21.19
PHM-Tm $n = 8$ PHM-Tm $n = 16$	5.5M (-87.5%) 2.9M (-93.4%)	29.13 29.34 29.04	40.81	34.16 33.89	31.88 31.53	13.08 12.15	12.95 11.97	21.66 19.63
$\overline{\text{PHM-Tm}^{\dagger} \ n = 2}$	44M	29.54	49.05	34.32	33.88	14.05	14.41	22.18
PHM-Tm † $n=4$	22M (-50.0%)	29.17	46.24	34.86	33.80	14.43	13.78	21.91
PHM-Tm [†] $n = 8$	11M (-75.0%)	29.47	43.49	34.71	32.59	13.75	13.78	21.43

Table 3: Training time (seconds per 100 steps) and inference time (seconds to decode test sets) with beam size of 4 and length penalty of 0.6 on the IWSLT'14 German-English dataset.

Model	Transformer (Tm)	Quaternion Tm	PHM-Tm $(n=4)$	PHM-Tm $(n=8)$
Training time	7.61	8.11	7.92	7.70
Inference time	336	293	299	282

Table 4: Experimental results of text style transfer. The PHM-Transformer may reduce the parameters of the standard Transformer model and improve performance.

Model	#Params	BLEU
Transformer (Tm)	44M	11.65
PHM-Tm $(n=2)$	22M (-50.0%)	12.20
PHM-Tm $(n=4)$	11M (-75.0%)	12.42
PHM-Tm $(n=8)$	5.5M (-87.5%)	11.66
PHM-Tm $(n = 16)$	2.9M (-93.4%)	10.76

Table 5: Experimental results of subject verb agreement. The PHM-Transformer may reduce the parameters of the standard Transformer model and improve performance.

Model	#Params	Acc
Transformer (Tm)	400K	94.80
Quaternion Tm	100K	94.70
PHM-Tm (n=2)	200K (-50.0%)	95.14
PHM-Tm $(n=4)$	101K (-74.8%)	95.05
PHM-Tm $(n=8)$	56K (-86.0%)	95.62

Table 1: Experimental results of natural language inference (accuracy) on five different datasets. The PHM-LSTM reduces the parameters of the standard LSTM model and improves or partially matches performance on four out of five datasets.

Model	#Params	MNLI	QNLI	SNLI	DNLI	SciTail
LSTM	721K	71.82 / 71.89	84.44	84.18	85.16	74.36
Quaternion LSTM	180K (-75.0%)	71.57 / 72.19	84.73	84.21	86.45	75.58
PHM-LSTM $(n=2)$	361K (-49.9%)	71.82 / 72.08	84.39	84.38	85.77	77.47
PHM-LSTM $(n=5)$	146K (-79.7%)	71.80 / 71.77	83.87	84.58	86.47	74.64
PHM-LSTM $(n = 10)$	81K (-88.7%)	71.59 / 71.59	84.25	84.40	86.21	77.84

Table 2: Experimental results of machine translation (BLEU) on seven different datasets. Symbol † represents re-scaling the parameters with a factor of 2 by doubling the hidden size. The PHM-Transformer does not lose much performance despite enjoying parameter savings. Re-scaling can lead to improvement in performance.

Model	#Params	En-Vi	En-Id	De-En	Ro-En	En-Et	En-Mk	En-Ro
Transformer (Tm)	44M	28.43	47.40	36.68	34.60	14.17	13.96	22.79
Quaternion Tm	11M (-75.0%)	28.00	42.22	32.83	30.53	13.10	13.67	18.50
PHM-Tm $n=2$	22M (-50.0%)	29.25	46.32	35.52	33.40	14.98	13.60	21.73
PHM-Tm $n=4$	11M (-75.0%)	29.13	44.13	35.53	32.74	14.11	13.01	21.19
PHM-Tm $n=8$	5.5M (-87.5%)	29.34	40.81	34.16	31.88	13.08	12.95	21.66
PHM-Tm $n=16$	2.9M (-93.4%)	29.04	33.48	33.89	31.53	12.15	11.97	19.63
PHM-Tm † $n=2$	44M	29.54	49.05	34.32	33.88	14.05	14.41	22.18
PHM-Tm † $n=4$	22M (-50.0%)	29.17	46.24	34.86	33.80	14.43	13.78	21.91
PHM-Tm [†] $n = 8$	11M (-75.0%)	29.47	43.49	34.71	32.59	13.75	13.78	21.43

Table 3: Training time (seconds per 100 steps) and inference time (seconds to decode test sets) with beam size of 4 and length penalty of 0.6 on the IWSLT'14 German-English dataset.

Model	Transformer (Tm)	Quaternion Tm	PHM-Tm $(n=4)$	PHM-Tm $(n=8)$
Training time	7.61	8.11	7.92	7.70
Inference time	336	293	299	282

Table 4: Experimental results of text style transfer. The PHM-Transformer may reduce the parameters of the standard Transformer model and improve performance.

Model	#Params	BLEU	
Transformer (Tm)	44M	11.65	
PHM-Tm (n = 2)	22M (-50.0%)	12.20	
PHM-Tm $(n=4)$	11M (-75.0%)	12.42	
PHM-Tm $(n=8)$	5.5M (-87.5%)	11.66	
PHM-Tm $(n=16)$	2.9M (-93.4%)	10.76	

Table 5: Experimental results of subject verb agreement. The PHM-Transformer may reduce the parameters of the standard Transformer model and improve performance.

Model	#Params	Acc
Transformer (Tm)	400K	94.80
Quaternion Tm	100K	94.70
PHM-Tm $(n=2)$	200K (-50.0%)	95.14
PHM-Tm $(n=4)$	101K (-74.8%)	95.05
PHM-Tm $(n=8)$	56K (-86.0%)	95.62

Table 1: Experimental results of natural language inference (accuracy) on five different datasets. The PHM-LSTM reduces the parameters of the standard LSTM model and improves or partially matches performance on four out of five datasets.

Model	#Params	MNLI	QNLI	SNLI	DNLI	SciTail
LSTM	721K	71.82 / 71.89	84.44	84.18	85.16	74.36
Quaternion LSTM	180K (-75.0%)	71.57 / 72.19	84.73	84.21	86.45	75.58
PHM-LSTM $(n=2)$	361K (-49.9%)	71.82 / 72.08	84.39	84.38	85.77	77.47
PHM-LSTM $(n=5)$	146K (-79.7%)	71.80 / 71.77	83.87	84.58	86.47	74.64
PHM-LSTM $(n = 10)$	81K (-88.7%)	71.59 / 71.59	84.25	84.40	86.21	77.84

Table 2: Experimental results of machine translation (BLEU) on seven different datasets. Symbol † represents re-scaling the parameters with a factor of 2 by doubling the hidden size. The PHM-Transformer does not lose much performance despite enjoying parameter savings. Re-scaling can lead to improvement in performance.

Model	#Params	En-Vi	En-Id	De-En	Ro-En	En-Et	En-Mk	En-Ro
Transformer (Tm) Quaternion Tm	44M 11M (-75.0%)	28.43 28.00	47.40 42.22	36.68 32.83	34.60 30.53	14.17 13.10	13.96 13.67	22.79 18.50
PHM-Tm $n=2$	22M (-50.0%)	29.25	46.32	35.52	33.40	14.98	13.60	21.73
PHM-Tm $n = 4$ PHM-Tm $n = 8$	11M (-75.0%) 5.5M (-87.5%)	29.13 29.34	44.13 40.81	35.53 34.16	32.74 31.88	14.11 13.08	13.01 12.95	21.19 21.66
PHM-Tm $n = 8$ PHM-Tm $n = 16$	2.9M (-93.4%)	29.04	33.48	33.89	31.53	12.15	11.97	19.63
$\text{PHM-Tm}^{\dagger} \ n = 2$	44M	29.54	49.05	34.32	33.88	14.05	14.41	22.18
PHM-Tm † $n=4$	22M (-50.0%)	29.17	46.24	34.86	33.80	14.43	13.78	21.91
$PHM-Tm^{\dagger} \ n=8$	11M (-75.0%)	29.47	43.49	34.71	32.59	13.75	13.78	21.43

Table 3: Training time (seconds per 100 steps) and inference time (seconds to decode test sets) with beam size of 4 and length penalty of 0.6 on the IWSLT'14 German-English dataset.

Model	Transformer (Tm)	Quaternion Tm	PHM-Tm $(n=4)$	PHM-Tm $(n=8)$
Training time	7.61	8.11	7.92	7.70
Inference time	336	293	299	282

Table 4: Experimental results of text style transfer. The PHM-Transformer may reduce the parameters of the standard Transformer model and improve performance.

Model	#Params	BLEU
Transformer (Tm)	44M	11.65
PHM-Tm (n=2)	22M (-50.0%)	12.20
PHM-Tm $(n=4)$	11M (-75.0%)	12.42
PHM-Tm $(n=8)$	5.5M (-87.5%)	11.66
PHM-Tm $(n = 16)$	2.9M (-93.4%)	10.76

Table 5: Experimental results of subject verb agreement. The PHM-Transformer may reduce the parameters of the standard Transformer model and improve performance.

Model	#Params	Acc
Transformer (Tm)	400K	94.80
Quaternion Tm	100K	94.70
PHM-Tm $(n=2)$	200K (-50.0%)	95.14
PHM-Tm $(n=4)$	101K (-74.8%)	95.05
PHM-Tm $(n=8)$	56K (-86.0%)	95.62

Table 1: Experimental results of natural language inference (accuracy) on five different datasets. The PHM-LSTM reduces the parameters of the standard LSTM model and improves or partially matches performance on four out of five datasets.

Model	#Params	MNLI	QNLI	SNLI	DNLI	SciTail
LSTM	721K	71.82 / 71.89	84.44	84.18	85.16	74.36
Quaternion LSTM	180K (-75.0%)	71.57 / 72.19	84.73	84.21	86.45	75.58
PHM-LSTM $(n=2)$	361K (-49.9%)	71.82 / 72.08	84.39	84.38	85.77	77.47
PHM-LSTM $(n=5)$	146K (-79.7%)	71.80 / 71.77	83.87	84.58	86.47	74.64
PHM-LSTM $(n = 10)$	81K (-88.7%)	71.59 / 71.59	84.25	84.40	86.21	77.84

Table 2: Experimental results of machine translation (BLEU) on seven different datasets. Symbol † represents re-scaling the parameters with a factor of 2 by doubling the hidden size. The PHM-Transformer does not lose much performance despite enjoying parameter savings. Re-scaling can lead to improvement in performance.

Model	#Params	En-Vi	En-Id	De-En	Ro-En	En-Et	En-Mk	En-Ro
Transformer (Tm)	44M	28.43	47.40	36.68	34.60	14.17	13.96	22.79
Quaternion Tm	11M (-75.0%)	28.00	42.22	32.83	30.53	13.10	13.67	18.50
PHM-Tm n = 2	22M (-50.0%)	29.25	46.32	35.52	33.40	14.98	13.60	21.73
PHM-Tm $n=4$	11M (-75.0%)	29.13	44.13	35.53	32.74	14.11	13.01	21.19
PHM-Tm $n=8$	5.5M (-87.5%)	29.34	40.81	34.16	31.88	13.08	12.95	21.66
PHM-Tm $n=16$	2.9M (-93.4%)	29.04	33.48	33.89	31.53	12.15	11.97	19.63
$PHM-Tm^{\dagger} \ n=2$	44M	29.54	49.05	34.32	33.88	14.05	14.41	22.18
PHM-Tm † $n=4$	22M (-50.0%)	29.17	46.24	34.86	33.80	14.43	13.78	21.91
PHM-Tm † $n=8$	11M (-75.0%)	29.47	43.49	34.71	32.59	13.75	13.78	21.43

Table 3: Training time (seconds per 100 steps) and inference time (seconds to decode test sets) with beam size of 4 and length penalty of 0.6 on the IWSLT'14 German-English dataset.

Model	Transformer (Tm)	Quaternion Tm	PHM-Tm $(n=4)$	PHM-Tm $(n=8)$
Training time	7.61	8.11	7.92	7.70
Inference time	336	293	299	282

Table 4: Experimental results of text style transfer. The PHM-Transformer may reduce the parameters of the standard Transformer model and improve performance.

Model	#Params	BLEU
Transformer (Tm)	44M	11.65
$\overline{\text{PHM-Tm }(n=2)}$	22M (-50.0%)	12.20
PHM-Tm $(n=4)$	11M (-75.0%)	12.42
PHM-Tm $(n=8)$	5.5M (-87.5%)	11.66
PHM-Tm ($n = 16$)	2.9M (-93.4%)	10.76

Table 5: Experimental results of subject verb agreement. The PHM-Transformer may reduce the parameters of the standard Transformer model and improve performance.

Model	#Params	Acc
Transformer (Tm)	400K	94.80
Quaternion Tm	100K	94.70
$\overline{\text{PHM-Tm} (n=2)}$	200K (-50.0%)	95.14
PHM-Tm $(n=4)$	101K (-74.8%)	95.05
PHM-Tm $(n=8)$	56K (-86.0%)	95.62

Результаты

- Новый метод параметризации произведения в многомерных пространствах
- Применимость в LSTM и Трансформерах
- Эмпирическая гибкость (можно использовать разные n)

Рецензент

Краткое описание статьи: в статье предлагается способ уменьшения количества параметров линейного слоя в n раз (без значительного уменьшения качества и увеличения времени работы). Он обобщает метод сжатия в 4 раза с помощью кватернионного умножения. Авторы показали применимость метода для сжатия рекуррентных сетей и трансформера.

Сильные стороны

- Придумано интересное обобщение метода, использующего кватернионы. При n=4 представленный метод с теоретической точки зрения не хуже (то есть является обобщением).
- Показано, что метод сжатия дает небольшое уменьшение качества при п кратном уменьшении количества параметров (на NLP задачах).
- С помощью метода можно настраивать во сколько раз уменьшать количество параметров.
- С помощью метода можно увеличить матрицы внутри трансформера, а затем уменьшить количество параметров методом в n раз (тем самым получить модель с тем же количеством параметров), и это может дать улучшение качества относительно изначального транформера.
- Статью легко читать, все математические выкладки очень хорошо поданы. Идеи были теоретически обоснованы (например переход от метода с кватернионами к именно такому методу).
- С научной точки зрения представлен иной (не похожий на предыдущие) метод уменьшения количества параметров нейронной сети.
- Параметры экспериментов достаточно подробно описаны и код выложен в github.

Слабые стороны

- В экспериментах нет сравнения с очевидным и стандартным методом сжатия с помощью SVD (матрица $k \times d \to k \times r \times r \times d$).
- Возможно можно ускорить умножение на РНМ матрицу в n раз, потому что она имеет специальный вид. В целом возможно можно записать РНМ матрицу в тензорном виде через параметры S, A и это может дать какое-то иное представление метода.
- В методе параметры матрицы получаются перемножениями обучаемых параметров, что на практике может быть нестабильно. Не хватило комментариев по этому поводу.
- Эксперименты вызывают вопросы, в целом было много экспериментов с разными NLP задачами, но многие из них кажутся довольно нестандартными; также большой разброс в результатах разных экспериментов вызывает тревогу относительно возможной случайности результатов и их незначимости.

Итог

- **Насколько хорошо написана статья:** статья написана доходчиво, сложностей в понимании не возникло.
- **Воспроизводимость:** статья написана достаточно подробно, также авторы выложили код экспериментов. При самореализации проблем возникнуть не должно, но есть опасения насчет того, что метод успешно обучится.
- Дополнительные комментарии, предложения по улучшению: хотелось бы добавить другие методы сжатия в эксперименты, а также доверительные интервалы для всех результатов.

Оценка: 7

Уверенность: 4