

Student Name __SOLUTIONS

Eastern Goldfields College

Mathematics Methods

Investigation 1

Shading Squares

Part A

There are two parts to this investigation. Part A is a take-home assignment, of which you have six days to complete. You will be awarded 0, 1 or 2 marks for Part A by your teacher prior to them going through the answers to Part A in class on Tuesday 10th March

Part B is an in-class investigation which is worth 96% of your final mark for this assessment. You will be allowed to use your Part A while completing the validation on Thursday 12th March

Two-fifths $(\frac{2}{5})$ of this shape has been shaded.

How many different ways can $\frac{2}{5}$ of this shape be shaded? 1.

List the possibilities.

(Hint: let the squares be 1, 2, 3, 4 and 5, therefore the shading of the shape above could be coded as 2, 5).

2. Complete the table below for $\frac{2}{n}$ of a shape. (Note: you completed this for homework and one of them is done for you)

n	Possible ways of shading shape	Total number of ways (S) of shading $\frac{2}{n}$ of the shape
2	1,2	1
3	1,2 1,3 2,3	3
4	1,2 1,3 1,4 2,3 2,4 3,4	6
5	1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5	10
6	1,2 1,3 1,4 1,5 1,6 2,3 2,4 2,5 2,6 3,4 3,5 3,6 4,5 4,6 5,6	15

(Remember to do it systematically)

- 3. Write a rule for S in terms of n, ie, $S(n) = ? \frac{1}{2}n(n-1)$ or $\frac{1}{2}n^2 \frac{1}{2}n$
- 4. Complete the table below using your answers above from the table for $\frac{2}{n}$ and calculating the indicated difference patterns.

n	S(n)	1 st Diff	
2			2 nd Diff
3	3	2	1
4	6	3 4	1
5	10	5	1
6	15		

What type of function is S(n)? quadratic - constant second difference pattern

5. Complete the table below for the general quadratic $y = ax^2 + bx + c$

1st Diff

X	У
2	4a+2b+C
3	99+36+6
4	16a+4b+C
5	25g + Sb+C
6	36a+6b+C

1. ΔΙΠ				
	2 nd Diff			
5a+b	29			
7a+6	2			
9a+6	29			
11a+b	29			
10070				

6. Compare your tables from questions 4 and 5 and write down a system of three equations to solve for variables a, b and c

$$4a+2b+C=1$$

$$5a+b=2$$

$$2a=1$$

7. Solve these equations

$$a = \frac{1}{2}$$

$$5 \cdot \frac{1}{2} + b = 2$$

$$6 = -\frac{1}{2}$$

$$4 \cdot \frac{1}{2} + 2 \cdot \frac{1}{2} + c = 1$$

$$2 - 1 + c = 1$$

$$c = 0$$

Make swe you know now to solvie simultaneovis equ^{ns} on CAS calc

Main
Keykoard
2D, calc
50 (hut mice for 3 equins)

Have calculater in standard for fraction results.

8. Use these values of a,b and c to write a quadratic rule for S(n):

$$S(n) = an^{2} + bn + c$$
$$= \frac{1}{2}n^{2} - \frac{1}{2}n$$

9. Factorise your rule from question 8.

10. Compare this rule with the rule you found via another method in question 3. Factor

* Anything you can't understand make sure to see Miss Palmer Wednesday between 8-30 and 12 noon *