

第五章 Taylor公式

§1 函数的微分

问题的提出

实例:正方形金属薄片受热后面积的改变量.

设边长由 x_0 变到 $x_0 + \Delta x$,

::正方形面积
$$A = x_0^2$$
,

$$\therefore \Delta A = (x_0 + \Delta x)^2 - x_0^2$$

$$= \underbrace{2x_0 \cdot \Delta x}_{(1)} + \underbrace{(\Delta x)^2}_{(2)}.$$

- (1): Δx 的线性函数,且为 ΔA 的主要部分;
- (2): Δx 的高阶无穷小, 当 Δx 很小时可忽略.

北京航空航天大学 BEIHANG UNIVERSITY

再例如,设函数 $y = x^3$ 在点 x_0 处的改变量为 Δx 时,求函数的改变量 Δy .

$$\Delta y = (x_0 + \Delta x)^3 - x_0^3$$

$$= 3x_0^2 \cdot \Delta x + 3x_0 \cdot (\Delta x)^2 + (\Delta x)^3.$$
(1)

当 Δx 很小时, (2)是 Δx 的高阶无穷小 $o(\Delta x)$,

∴ $\Delta y \approx 3x_0^2 \cdot \Delta x$. — 既容易计算又是较好的近似值

问题 是否所有函数的增量都可表示为(1)、(2) 这样两部分的和?

二、 微分的定义

定义1.1设函数y = f(x)在 x_0 的邻域内有定义, Δx 是自变量改变量,如果 $\Delta y = f(x_0 + \Delta x) - f(x_0) = A \cdot \Delta x + o(\Delta x)$ 成立(其中A是与 Δx 无关的常数),则称函数 y = f(x)在点 x_0 可微,并且称 $A \cdot \Delta x$ 为函数 y = f(x)在点 x_0 相应于自变量增量 Δx 的微 分,记作 $dy|_{x=x_0}$ 或 $df(x_0)$,即 $dy|_{x=x_0}=A\cdot\Delta x$.

微分dy叫做函数增量Δy的线性主部. (微分的实质)

注 (1) dy是自变量的改变量Δx的线性函数;

- $(2) \Delta y dy = o(\Delta x)$ 是比 Δx 高阶无穷小;
- (3) 当 $A \neq 0$ 时,dy与 Δy 是等价无穷小,

$$\because \frac{\Delta y}{dy} = 1 + \frac{o(\Delta x)}{A \cdot \Delta x} \to 1 \quad (\Delta x \to 0).$$

(4) 当 Δx 很小时, $\Delta y \approx dy$ (线性主部).

三、可微的条件

定理1.1函数 f(x)在点 x_0 可微的充要条件是函数 f(x)在点 x_0 处可导,且 $A = f'(x_0)$.

证明 (1) 必要性

:: f(x)在点 x_0 可微,

$$\therefore \Delta y = A \cdot \Delta x + o(\Delta x), \ \frac{\Delta y}{\Delta x} = A + \frac{o(\Delta x)}{\Delta x}.$$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = A + \lim_{\Delta x \to 0} \frac{o(\Delta x)}{\Delta x} = A.$$

即函数f(x)在点 x_0 可导,且 $A = f'(x_0)$.

(2) 充分性:函数f(x)在点 x_0 可导,

从而
$$\Delta y = f'(x_0) \cdot \Delta x + \alpha \cdot (\Delta x),$$

= $f'(x_0) \cdot \Delta x + o(\Delta x),$

函数f(x)在点 x_0 可微, 且 $f'(x_0) = A$.

∴可导⇔可微,
$$A = f'(x_0)$$
.

函数y = f(x)在任意点x的微分, 称为函数的微分, 记作dy或df(x), 即 $dy = f'(x)\Delta x$.

即函数的微分dy与自变量的微分dx之商等于该函数的导数.导数也叫"微商".

2.微分学所要解决的两类问题:

函数的变化率问题 ————— 导数的概念 函数的增量问题 ————— 微分的概念

3.导数与微分的联系: 可导⇔可微.

例1 求函数 $y = x^3$ 当x = 2, $\Delta x = 0.02$ 时的微分.

$$=3x^2\Delta x$$

$$= 0.24.$$

四、微分的几何意义

$$\Delta y = f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \cdot \Delta x.$$

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \cdot \Delta x. \quad (\Delta x | 很小时)$$

五、基本微分公式与微分运算法则

$$d(c) = 0 d(x^{\mu}) = \mu x^{\mu-1} dx$$

$$d(\sin x) = \cos x dx d(\cos x) = -\sin x dx$$

$$d(\tan x) = \sec^2 x dx d(\cot x) = -\csc^2 x dx$$

$$d(\sec x) = \sec x \tan x dx d(\csc x) = -\csc x \cot x dx$$

$$d(a^x) = a^x \ln a dx d(e^x) = e^x dx$$

$$d(\log_a x) = \frac{1}{x \ln a} dx d(\ln x) = \frac{1}{x} dx$$

$$d(\arcsin x) = \frac{1}{\sqrt{1 - x^2}} dx d(\arccos x) = -\frac{1}{\sqrt{1 - x^2}} dx$$

由导数的四则运算性质,不难得到

定理1.2 (微分的四则运算性质)

设函数 f(x), g(x)在点 x可微,则

(1)
$$d(f(x)+g(x)) = df(x)+dg(x)$$
;

(2)
$$d(f(x)g(x)) = df(x)g(x) + f(x)dg(x)$$
;

(3)
$$d(\frac{f(x)}{g(x)}) = \frac{g(x)df(x) - f(x)dg(x)}{g^2(x)}, (g(x) \neq 0).$$

例2 设
$$y = \ln(x + e^{x^2})$$
, 求 dy .

$$y' = \frac{1 + 2xe^{x^2}}{x + e^{x^2}}, : dy = \frac{1 + 2xe^{x^2}}{x + e^{x^2}} dx.$$

例3 设
$$y = e^{1-3x} \cos x$$
, 求 dy .

$$\mathbf{p} \qquad dy = \cos x \cdot d(e^{1-3x}) + e^{1-3x} \cdot d(\cos x)$$

$$(e^{1-3x})' = -3e^{1-3x}, (\cos x)' = -\sin x.$$

$$\therefore dy = \cos x \cdot (-3e^{1-3x})dx + e^{1-3x} \cdot (-\sin x)dx$$
$$= -e^{1-3x} (3\cos x + \sin x)dx.$$

六、 微分形式的不变性

设函数y = f(x)有导数f'(x),

- (1) 若x是自变量时, dy = f'(x)dx;
- (2) 若x是中间变量时,即另一变量t的可微函数 $x = \varphi(t)$,则 $dy = f'(x)\varphi'(t)dt = f'(x)dx$.

$$=dx$$

结论: 无论 x是自变量还是中间变量,函数 y = f(x)的微分形式总是 dy = f'(x)dx

微分形式的不变性

例4 设 $y = \sin(2x+1)$, 求dy.

解 $: y = \sin u, u = 2x + 1.$

$$\therefore dy = \cos u du = \cos(2x+1)d(2x+1)$$
$$= \cos(2x+1) \cdot 2dx = 2\cos(2x+1)dx.$$

例5 设 $y = e^{-ax} \sin bx$, 求dy.

 $\mathbf{f} \qquad dy = e^{-ax} \cdot \cos bx d(bx) + \sin bx \cdot e^{-ax} d(-ax)$ $= e^{-ax} \cdot \cos bx \cdot b dx + \sin bx \cdot e^{-ax} \cdot (-a) dx$ $= e^{-ax} (b \cos bx - a \sin bx) dx.$

例6 设
$$y = \ln(x + \sqrt{1 + x^2})$$
, 求 dy .

$$My = \frac{1}{x + \sqrt{1 + x^2}} d(x + \sqrt{1 + x^2})$$

$$=\frac{1}{x+\sqrt{1+x^2}}(dx+d\sqrt{1+x^2})$$

$$= \frac{1}{x + \sqrt{1 + x^2}} (dx + \frac{1}{2\sqrt{1 + x^2}} d(1 + x^2))$$

$$= \frac{1}{x + \sqrt{1 + x^2}} (dx + \frac{xdx}{\sqrt{1 + x^2}})$$

$$=\frac{1}{\sqrt{1+x^2}}dx$$

七、高阶微分

二阶微分及高阶微分

一阶微分: dy = df(x) = f'(x)dx (有形式不变性)

二阶微分: $d^2y = d^2f(x) = f''(x)dx^2$ (没有形式不变性)

n阶微分: $d^n y = d^n f(x) = f^{(n)}(x) dx^n$

见后面例子

$$d^{2}f = d(df) = d[f'(x)dx]$$
$$= f''(x)(dx)^{2} = f''(x)dx^{2}$$

例7
$$(1)y = e^x, (2)y = e^x, x = t^2,$$
分别求 d^2y

解(1)
$$d^2y = (e^x)''dx^2 = e^x dx^2$$

(2)
$$d^2y = (e^{t^2})''dt^2 = (2e^{t^2} + 4t^2e^{t^2})dt^2$$

对复合函数有 $dx^2 = (dx)^2 = (2tdt)^2 = 4t^2dt^2$,

$$\therefore d^{2}y = 2e^{t^{2}}dt^{2} + e^{t^{2}}4t^{2}dt^{2} = \frac{e^{x}}{2x}dx^{2} + e^{x}dx^{2}.$$

注: 该例说明高阶微分没有不变性.

 dx^2 指 $(dx)^2$; d^2x 表示x的二阶微分;

八、近似计算

1、计算函数增量的近似值

$$\Delta y \Big|_{x=x_0} \approx dy \Big|_{x=x_0} = f'(x_0) \cdot \Delta x.$$
 (以直代曲)

2、计算函数的近似值

求f(x)在点 $x = x_0$ 附近的近似值;

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \cdot \Delta x$$
. (|\Delta x \right| 很小时)

例8 计算 cos 60° 30′ 的近似值.

解 设 $f(x) = \cos x$, $f'(x) = -\sin x$, (x为弧度)

$$x_0 = \frac{\pi}{3}, \quad \Delta x = \frac{\pi}{360},$$

$$f(\frac{\pi}{3}) = \frac{1}{2}, \quad f'(\frac{\pi}{3}) = -\frac{\sqrt{3}}{2}.$$

$$\therefore \cos 60^{\circ} 30' = \cos(\frac{\pi}{3} + \frac{\pi}{360}) \approx \cos\frac{\pi}{3} - \sin\frac{\pi}{3} \cdot \frac{\pi}{360}$$
$$= \frac{1}{2} - \frac{\sqrt{3}}{2} \cdot \frac{\pi}{360} \approx 0.4924.$$

例9 证明常用的近似公式

(1)
$$\sqrt[n]{1+x} \approx 1 + \frac{1}{n}x;$$
 (2) $\sin x \approx x (x 为弧度);$

- (3) $\tan x \approx x (x 为弧度); (4) e^x \approx 1 + x;$
- $(5) \ln(1+x) \approx x.$

证明 (1) 设
$$f(x) = \sqrt[n]{1+x}$$
, $f'(x) = \frac{1}{n}(1+x)^{\frac{1}{n}-1}$, $f(0) = 1, f'(0) = \frac{1}{n}$.

$$\therefore f(x) \approx f(0) + f'(0)x = 1 + \frac{x}{n}.$$
(2) - (5) 证明方法类似,略.

例10利用微分计算下列各数的近似值.

(1)
$$\sqrt[3]{998.5}$$
; (2) $e^{-0.03}$.

解 (1)
$$\sqrt[3]{998.5} = \sqrt[3]{1000 - 1.5}$$

$$= \sqrt[3]{1000\left(1 - \frac{1.5}{1000}\right)} = 10\sqrt[3]{1 - 0.0015}$$

$$\approx 10(1 - \frac{1}{3} \times 0.0015) = 9.995.$$

$$(2) e^{-0.03} \approx 1 - 0.03 = 0.97.$$

本节小结

微分的概念

微分的几何意义

导数与微分的区别与联系:

微分的性质

微分的计算

习题5.1

1(1,3,5,7,9,11), 2(1,3,5,7,9,11), 3(2,4).