Master Theorem for Dividing Functions

$$T(n) = aT\left(\frac{n}{b}\right) + f(n), a \ge 1 \text{ and } b > 1$$
$$f(n) = \theta(n^k(\log n)^{p+1})$$

Case 1: if $\log_b a > k$, then $\theta(n^{\log_b a})$

Case 2: if
$$\log_b a = k$$
, then

if $p > -1$, $T(n) = \theta(n^k(\log n)^{p+1})$

if $p = -1$, $T(n) = \theta(n^k \log \log n)$

if $p < -1$, $T(n) = \theta(n^k)$

Case 3: if
$$\log_b a < k$$
, then
if $p \ge 0$, $T(n) = \theta(n^k(\log n)^p)$
if $p < 0$, $T(n) = \theta(n^k)$

Master Theorem for Decreasing Functions

$$T(n) = aT(n-b) + f(n), a > 0$$
 and $b > 0$
 $f(n) = \theta(n^k)$

Case 1: if a < 1,
$$T(n) = O(n^k)$$

Case 2: if a = 1,
$$T(n) = O(n^{k+1}) = O(n \cdot f(n))$$

Case 3: if a > 1,
$$T(n) = O(n^k \cdot a^{n/b})$$