Analisi I

Paolo Bettelini

Contents

1	Assiomi di Peano	1
2	Principio di induzione	2

1 Assiomi di Peano

Definizione Assiomi di Peano

Gli assiomi di Peano incudono i numeri naturali:

- il valore 1 è un numero;
- ogni numero n ha il suo successore S(n) = n + 1;
- se $m \neq n$, allora $S(m) \neq S(n)$;
- il numero 1 non è il successore di alcun numero;
- assioma induttivo: sia $E \subseteq \mathbb{N}$ tale che $1 \in E$, allora

$$n \in E \implies S(n) \in E$$

L'insieme E è l'insieme \mathbb{N} .

La funzione successore è initettiva.

Definizione Sottoinsieme finale

Un sottoinsieme $E \subseteq \mathbb{N}$ si dice finale se $E = \{n_0, n_0 + 1, n_0 + 2, \cdots\}$ per qualche $n_0 \in \mathbb{N}$.

Esiste quindi un valore $n \in \mathbb{N}$ tale che

$$E = \{ n \in \mathbb{N} \mid n \ge n_0 \}$$

Proposition

Usando l'assioma indutivo si deduce che se A è un insieme tale che $n_0 \in A$ e $\forall n \in A, S(n) \in A$, allora A è finale.

2 Principio di induzione

Teorema Principio di induzione

Sia P(n) una proposizione dove $n \in \mathbb{N}$, allora

$$P(0) \land (P(n) \implies P(n+1)) \implies \forall n \in \mathbb{N}, P(n)$$

Teorema Equivalenza principio e assioma di induzione

L'assioma induttivo è equivalente al principio di induzione.

Proof Equivalenza principio e assioma di induzione

 (\Longrightarrow) Sia

$$E = \{ n \in \mathbb{N} \,|\, P(n) \}$$

Se P(1) è vera e cioè $1 \in E$, e che per ogni n per cui P(n) è vera, e cioè $n \in E$, abbiamo $n+1 \in E$. Allora $E=\mathbb{N}$, che è la conclusione dell'assioma induttivo.

 (\Leftarrow) TODO: Dimostrare che $E=\mathbb{N}$ sapendo che vale il principio di induzione.

Proposition Principio di induzione forte

Il principio di induzione è equivalente alla seguente forma: sia P(n) una proposizione dove $n \in \mathbb{N}$ tale che

- P(1) è vera;
- P(k) è vera per tutte le $k \le n$, allora P(n+1) è vera.

Allora P(n) è vera per tutte le n.

Esempio Principio di induzione

Dimostrare che per ogni $n \ge 1$, la somma

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

- Il caso base è dato da n = 1 dove $1 = \frac{2}{2} = 1$.
- Il caso induttivo è dato dato da $\xi = n + 1$

$$\frac{n(n+1)}{2} + \xi = \frac{n(n+1)}{2} + \frac{2n}{2} + \frac{2}{2}$$
$$= \frac{n^2 + 3n + 2}{2}$$
$$= \frac{(n+1)(n+2)}{2}$$
$$= \frac{\xi(\xi+1)}{2}$$

Considerando la serie

$$\sum_{k=1}^{n} a_k$$

e impostiamo j = n - k + 1, abbiamo che la sommatoria è pari a

$$\sum_{j=1}^{n} a_{n-j+1}$$

2

Esempio Principio di induzione

 ${\bf Dimostrare~che}$

$$\sum_{k+1}^{n} k^2 = \frac{n(n+1)(n+2)}{6}$$

Esempio Principio di induzione

Per ogni $n\geq 0$ e per ognih>-1,

$$(1+h)^n \ge 1 + nh$$