Skriftlig eksamen på Økonomistudiet Sommeren 2017

MATEMATIK B

Tirsdag den 22. august 2017

3 timers skriftlig prøve med hjælpemidler. Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller cas-værktøjer.

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

OBS: Bliver du syg under selve eksamen på Peter Bangs Vej, skal du kontakte eksamenstilsynet og blive registeret som syg af vedkommende eksamensvagt. Derefter afleverer du en blank besvarelse i systemet og forlader eksamen. Når du kommer hjem, skal du kontakte din læge og indsende en lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Københavns Universitet. Økonomisk Institut

1. årsprøve 2017 S-1B rx

Skriftlig eksamen i Matematik B

Tirsdag den 22. august 2017

3 sider med 4 opgaver.

Løsningstid: 3 timer.

Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller casværktøjer.

Opgave 1. En symmetrisk 3×3 matrix A har egenværdierne 1, 3 og 5 med de tilhørende egenvektorer $v_1 = (1, -1, 0), v_2 = (1, 1, 1)$ og $v_3 = (-1, -1, 2)$. Endvidere oplyses det, at der findes en ortogonal 3×3 matrix Q så ligningen

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix} = Q^T A Q$$

er opfyldt.

- (1) Bestem den ortogonale matrix Q.
- (2) Bestem den symmetriske matrix A.

Lad B være en symmetrisk 3×3 matrix, som har de samme egenvektorer som matricen A.

(3) Hvilke egenværdier har matricen B, når vi ved, at $B^2 = BB = A$?

Opgave 2. Vi betragter den funktion $f: \mathbf{R}^2 \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^5 + (x-y)^2 x^3.$$

(1) Godtgør, at funktionen f er homogen, og angiv homogenitetsgraden.

(2) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.

- (3) Bestem eventuelle stationære punkter for funktionen f.
- (4) Bestem Hessematricen f''(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.
- (5) Undersøg for ethvert af de eventuelle stationære punkter, om det er et maksimumspunkt, et minimumspunkt eller et sadelpunkt for funktionen f.
- (6) Bestem værdimængden for funktionen f.

For ethvert v > 0 betragter vi den kompakte mængde

$$K(v) = \{(x, y) \in \mathbf{R}^2 \mid 0 \le x \le 1 \ \land \ 0 \le y \le v\}.$$

(7) Udregn integralet

$$I(v) = \int_{K(v)} f(x, y) d(x, y).$$

(8) Bestem grænseværdien

$$\lim_{v \to 0+} \frac{I(v)}{\sin\left(\frac{v}{6}\right)}.$$

Opgave 3. Vi betragter differentialligningen

$$(*) \frac{dx}{dt} + \left(5t^4 - 7t^6\right)x = 10t^4e^{t^7}.$$

- (1) Bestem den fuldstændige løsning til differentialligningen (*).
- (2) Bestem den specielle løsning $\tilde{x} = \tilde{x}(t)$ til (*), så betingelsen $\tilde{x}(0) = 12$ er opfyldt.

(3) Bestem differentialkvotienterne

$$\frac{d\tilde{x}}{dt}(0)$$
 og $\frac{d^2\tilde{x}}{dt^2}(0)$.

Opgave 4. Vi betragter den funktion $f: \mathbf{R}^2 \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^2 + e^y + xy.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.

- (2) Bestem Hessematricen f''(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.
- (3) Bestem mængden

$$P = \{(x, y) \in \mathbf{R}^2 \mid f''(x, y) \text{ er positiv definit}\}.$$

(4) En funktion $\phi: \mathbf{R} \to \mathbf{R}$ er givet ved forskriften

$$\forall s \in \mathbf{R} : \phi(s) = f(s, s).$$

Vis, at funktionen ϕ er strengt konveks, og bestem Taylorpolynomiet P_3 af 3. orden for ϕ ud fra punktet $s_0 = 0$.