Bootstraping Spectra

Momchil Nikolov

 Gutachten: Dr.-Ing. Michael Fauss
 Gutachten: Prof. Dr.-Ing. A.M. Zoubir zoubir@spg.tu-darmstadt.de

Outline

Motivation

Spectrum Estimation

Bootstrapping Method

Bootstrap Methods Applied in Signal Processing

Test of Frequency and Time Domain Bootstrap Methods

Conclusion

Motivation

The are many different approaches to spectrum estimation in Signal Processing. The most common technique used for solving this problem is the asymptotic one, but this project seminar explores one method, that can be useful in case:

- the quantity of data is not abundant,
- or the data is non-Gaussian;

The Bootstrap approach

This method uses a re-sampling technique, that can generate numerous new samples from just one realization of a random process.

Outline

Motivation

Spectrum Estimation

Bootstrapping Method

Bootstrap Methods Applied in Signal Processing

Test of Frequency and Time Domain Bootstrap Methods

Conclusion

Spectral Estimation Problem

The main goal of the spectral estimation problem is captured by the following informal expression:

Estimation Problem

From a finite record of a stationary data sequence, estimate how the total power is distributed over frequency

Signal

Let X(t) be a signal, with properties:

- $ightharpoonup X(t) \in \mathbb{R}$
- t = 0, 1, 2, ..., T
- ▶ assume X(t) has finite energy, $\sum_{t=-\infty}^{\infty} |X(t)|^2 < \infty$.
- ▶ possesses a discrete-time Fourier transform (DTFT) $X(\omega) = \sum_{t=-\infty}^{\infty} X(t)e^{-j\omega t}$
- ▶ an energy spectral density: $C(\omega) = |X(\omega)|^2$.

True Spectrum

We will now assume that X(t):

- is a sequence of random variables,
- with zero mean, $\mathbb{E}[X(t)] = 0$,
- ▶ covariance function, $c_{XX}(\tau) = E[X_0X_{\tau}]$
- which implies that X(t) is a second-order stationary sequence(WSS)

Let X(t) have true spectral density:

$$C_{XX}(\omega) = \frac{1}{2\pi} \sum_{\tau=-\infty}^{\infty} c_{XX}(\tau) e^{-j\omega\tau}, -\pi < \omega < \pi,$$

Kernel Estimate Spectrum

Given observations $x_1, ..., x_T$ we construct an estimator of the true spectrum $C_{XX}(\omega)$, as:

$$\hat{C}_{XX}(\omega;h) = \frac{1}{T \cdot h} \sum_{k=-N}^{N} K(\frac{\omega - \omega_k}{h}) I_{XX}(\omega_k)$$

 I_{XX} denotes the periodogram, which is defined as:

$$I_{XX}(\omega) = \frac{1}{N} \left| \sum_{t=1}^{N} X(t) e^{-j\omega t} \right|^{2}$$

and is a candidate estimator for the spectrum $C_{XX}(\omega)$.

Kernel function

Smoothing Example

Mathematical Representation of Spectral Estimation

The spectral estimation problem can now be stated more formally as follows:

Estimation Problem

From a finite-length record X_1,\ldots,X_T of a second-order stationary random process, determine an estimate $\hat{C}_{XX}(\omega)$ of its power spectral density $C_{XX}(\omega)$, for $\omega = [-\pi,\pi]$

Outline

Motivation

Spectrum Estimation

Bootstrapping Method

Bootstrap Methods Applied in Signal Processing

Test of Frequency and Time Domain Bootstrap Methods

Conclusion

Bootstrapping Method

Suppose that we have:

- ▶ a set of measured realizations $x = \{x_1, x_2, ..., x_n\}$,
- ightharpoonup drawn from some unspecified distribution F_X
- ▶ task to construct estimator $\hat{\theta}$ of some parameter θ of F_X , e.g. mean;

Problem: Data is not Gaussian and realizations insufficient for asymptotic approach.

Bootstrap Solution

Substitution of the unknown distribution F_X by the empirical distribution of the data \hat{F}_X with reuse of the original data through re-sampling.

Bootstrapping Procedure

Re-sampling

Outline

Motivation

Spectrum Estimation

Bootstrapping Method

Bootstrap Methods Applied in Signal Processing Frequency domain residual based bootstrap Time domain tapered block bootstrap

Test of Frequency and Time Domain Bootstrap Methods

The residual based bootstrap procedure.

Step Centering. Center $X_1, ..., X_T$ by subtracting the sample mean.

Step Initial Estimate. Compute the periodogram according to Eq. (4). With an initial bandwidth $h_i > 0$, calculate $\hat{C}_{XX}(\omega; h_i)$ according to Eq. (3).

Step Compute and Rescale Residuals. Calculate the residuals

$$\hat{\varepsilon}_k = \frac{I_{XX}(\omega_k)}{\hat{C}_{XX}(\omega_k; h_i)}, \quad k = 1, ..., N$$

and rescale them to obtain $\tilde{\epsilon}_k = \frac{\hat{\epsilon}_k}{\epsilon}, \quad k = 1, ..., N, \quad \epsilon = \frac{1}{N} \sum_{k=1}^{N} \hat{\epsilon}_k.$

b. K=1

Step Bootstrap Residuals. Draw independent bootstrap residuals 4. $\tilde{\epsilon}_1^*, \dots, \tilde{\epsilon}_N^*$ from $\tilde{\epsilon}_1, \dots, \tilde{\epsilon}_N$.

Step 1: Centering X

The residual based bootstrap procedure.

Step Centering. Center X_1, \ldots, X_T by subtracting the sample mean.

Initial Estimate. Compute the periodogram according to Eq.
 (4). With an initial bandwidth h_i > 0, calculate Ĉ_{XX}(ω; h_i) according to Eq. (3).

p Compute and Rescale Residuals. Calculate the residuals

$$\hat{\varepsilon}_k = \frac{I_{XX}(\omega_k)}{\hat{C}_{XX}(\omega_k; h_i)}, \quad k = 1, \dots, N$$

and rescale them to obtain

$$\tilde{\varepsilon}_k = \frac{\hat{\varepsilon}_k}{\varepsilon}, \quad k = 1, \dots, N, \quad \varepsilon_{\cdot} = \frac{1}{N} \sum_{k=1}^{N} \hat{\varepsilon}_k.$$

Step Bootstrap Residuals. Draw independent bootstrap residuals

4. $\tilde{\varepsilon}_1^*, \dots, \tilde{\varepsilon}_N^*$ from $\tilde{\varepsilon}_1, \dots, \tilde{\varepsilon}_N$.

Step 2:

$$I_{XX}(\omega) = \frac{1}{N} \left| \sum_{t=1}^{N} X(t) e^{-j\omega t} \right|^2$$

$$\hat{C}_{XX}(\omega; h_i) = \frac{1}{T \cdot h} \sum_{k=-N}^{N} K(\frac{\omega - \omega_k}{h}) I_{XX}(\omega_k)$$

Periodogram and Kernel Estimate

The residual based bootstrap procedure.

Step Centering. Center $X_1, ..., X_T$ by subtracting the sample mean.

Initial Estimate. Compute the periodogram according to Eq.
 (4). With an initial bandwidth h_l > 0, calculate Ĉ_{XX}(ω; h_l) according to Eq. (3).

Step Compute and Rescale Residuals. Calculate the residuals 3.

$$\hat{\varepsilon}_k = \frac{I_{XX}(\omega_k)}{\hat{C}_{XX}(\omega_k; h_i)}, \quad k = 1, \dots, N$$

and rescale them to obtain

$$\tilde{\varepsilon}_k = \frac{\hat{\varepsilon}_k}{\varepsilon}, \quad k = 1, \dots, N, \quad \varepsilon_n = \frac{1}{N} \sum_{k=1}^N \hat{\varepsilon}_k.$$

Step Bootstrap Residuals. Draw independent bootstrap residuals 4. $\tilde{\varepsilon}_1^*, \dots, \tilde{\varepsilon}_N^*$ from $\tilde{\varepsilon}_1, \dots, \tilde{\varepsilon}_N$.

Step 3:

- ightharpoonup compute residuals $\hat{\varepsilon}_k$
- normalize $\hat{\varepsilon}_k$, by division with the residual mean $\varepsilon = \frac{1}{N} \sum_{t=1}^{N} \hat{\varepsilon}_k$
- re-scaled real valued residuals $\tilde{\varepsilon_k}$ are approximately i.i.d. for N sufficiently large

The residual based bootstrap procedure.

Step *Centering.* Center $X_1, ..., X_T$ by subtracting the sample mean. 1.

Step Initial Estimate. Compute the periodogram according to Eq. (4). With an initial bandwidth $h_i > 0$, calculate $\hat{C}_{XX}(\omega; h_i)$ according to Eq. (3).

Step Compute and Rescale Residuals. Calculate the residuals
3.

$$\hat{\varepsilon}_k = \frac{I_{XX}(\omega_k)}{\hat{C}_{XX}(\omega_k; h_i)}, \quad k = 1, \dots, N$$

and rescale them to obtain

$$\tilde{\varepsilon}_k = \frac{\hat{\varepsilon}_k}{\varepsilon}, \quad k = 1, \dots, N, \quad \varepsilon = \frac{1}{N} \sum_{k=1}^{N} \hat{\varepsilon}_k.$$

Step *Bootstrap Residuals.* Draw independent bootstrap residuals **4.** $\tilde{\varepsilon}_1^*, \dots, \tilde{\varepsilon}_N^*$ from $\tilde{\varepsilon}_1, \dots, \tilde{\varepsilon}_N$.

Bootstrap Estimate. Choose a resampling kernel bandwidth g and define the bootstrap periodogram as $I_{XX}^*(\omega_k) = I_{XX}^*(-\omega_k) = \hat{C}_{XX}(\omega_k; g)\hat{\varepsilon}_k^*$

> setting $I_{\infty}^{*}(0) = 0$. Then find the bootstrap kernel spectral density estimate

$$\hat{C}_{XX}^*(\omega; h; g) = \frac{1}{T \cdot h} \sum_{k=-N}^{N} K\left(\frac{\omega - \omega_k}{h}\right) I_{XX}^*(\omega_k).$$

Step6. Repetition. Repeat Steps 4 and 5 a large number of times. Confidence Interval Estimation, With an arbitrary \(\alpha \) find c\(\alpha \).

$$\mathsf{Prob}^*\left(\sqrt{T \cdot h} \frac{\hat{\boldsymbol{C}}_{XX}^*(\omega; h; g) - \hat{\boldsymbol{C}}_{XX}(\omega; g)}{\hat{\boldsymbol{C}}_{XX}(\omega; g)} \leq c_U^*\right) = \frac{\alpha}{2}$$

and set the upper bound of the 100(1-α)% confidence interval for $C_{yy}(\omega)$ as $\hat{C}_{yy}(\omega; h)/(1+c_{ij}^*(T\cdot h)^{-1/2})$. Herein. Prob*(.) denotes probability conditioned on the measured data. Analogously using a c*, compute the lower bound of the confidence interval.

Step 5:

- ightharpoonup multiply $\tilde{\varepsilon}^*$ with our initial spectral estimate $\hat{C}_{XX}(\omega_k)$ in order to get the bootstrap periodogram $I^*_{XX}(\omega_k)$
- set the $I^*_{XX}(0) = 0$
- estimate the spectrum \hat{C}^*_{XX} with $I^*_{XX}(\omega_k)$

Bootstrap Estimate. Choose a resampling kernel bandwidth g and define the bootstrap periodogram as $I_{XX}^*(\omega_k) = I_{XX}^*(-\omega_k) = \hat{C}_{XX}(\omega_k; g)\hat{\varepsilon}_k^*$

> setting $I_{\infty}^{*}(0) = 0$. Then find the bootstrap kernel spectral density estimate

$$\hat{C}_{XX}^*(\omega;h;g) = \frac{1}{T \cdot h} \sum_{k=-N}^{N} K\left(\frac{\omega - \omega_k}{h}\right) I_{XX}^*(\omega_k).$$

Step6. Repetition. Repeat Steps 4 and 5 a large number of times. Confidence Interval Estimation, With an arbitrary \alpha find ct.

$$\mathsf{Prob}^*\left(\sqrt{T \cdot h} \frac{\hat{C}^*_{XX}(\omega; h; g) - \hat{C}_{XX}(\omega; g)}{\hat{C}_{XX}(\omega; g)} \leq c_U^*\right) = \frac{\alpha}{2}$$

and set the upper bound of the 100(1-α)% confidence interval for $C_{XX}(\omega)$ as $\hat{C}_{XX}(\omega;h)/(1+c_{II}^*(T\cdot h)^{-1/2})$. Herein, Prob*(.) denotes probability conditioned on the measured data. Analogously using a c*, compute the lower bound of the confidence interval.

Outline

Motivation

Spectrum Estimation

Bootstrapping Method

Bootstrap Methods Applied in Signal Processing Frequency domain residual based bootstrap Time domain tapered block bootstrap

Test of Frequency and Time Domain Bootstrap Methods

Time domain tapered block bootstrap Step 1 & Step 2

The tapered block bootstrap procedure.

Step Centering. Center X_1, \ldots, X_T by removing the sample mean.

- Step Spectrum Estimation. Calculate the periodogram $I_{XX}(\omega_k)$ from 2. X_1, \dots, X_T according to Eq. (4) and the corresponding kernel spectral density estimate $\hat{C}_{XX}(\omega_k)$, $k = 1, \dots, N$, as in Eq. (3).
- Step Set the Bootstrap Parameters. Choose a block size b, where b is a positive integer less than T and define k = |T/b| as the number of blocks to draw from, where |-| denotes the integer part.
- Step Draw Bootstrap Resamples. Let the integers i₀, i₁,..., i_{k-1} be 4. drawn independently and identically distributed with distribution uniform on the set (1, 2, ..., T−b+1). Then for m = 0, 1, ..., k−1, compute

$$X_{mb+j}^* = w_b(j) \frac{\sqrt{b}}{\|w_b\|_2} X_{i_m+j-1}, \quad j = 1, 2, \dots, b,$$

Step 1 & Step 2 the same as the frequency domain residual-based bootstrap

Time domain tapered block bootstrap Step 3

The tapered block bootstrap procedure.

Step Centering. Center X_1, \ldots, X_T by removing the sample mean.

Step Spectrum Estimation. Calculate the periodogram $I_{XX}(\omega_k)$ from 2. $X_1, ..., X_T$ according to Eq. (4) and the corresponding kernel spectral density estimate $\hat{C}_{xx}(\omega_k)$ k=1. N as in Eq. (3)

spectral density estimate $\hat{C}_{XX}(\omega_k)$, $k=1,\ldots,N$, as in Eq. (3). Set the Bootstrap Parameters. Choose a block size b, where b is a positive integer less than T and define $k=\lfloor T/b\rfloor$ as the number of blocks to draw from, where $\lfloor \cdot \rfloor$ denotes the integer

Step Draw Bootstrap Resamples. Let the integers i₀, i₁,..., i_{k-1} be drawn independently and identically distributed with distribution uniform on the set (1, 2, ..., T-b+1). Then for m = 0, 1, ..., k-1, compute

$$X_{mb+j}^* = w_b(j) \frac{\sqrt{b}}{\|w_b\|_2} X_{i_m+j-1}, \quad j = 1, 2, \dots, b,$$

Step 3:

- Choose block size b
- define number of blocks to draw as $k = \lfloor T/b \rfloor$
- Note: in most cases kb ≠ T ⇒ draw one more block and truncate

Time domain tapered block bootstrap Step 4

The tapered block bootstrap procedure.

Step Centering. Center $X_1, ..., X_T$ by removing the sample mean.

- **Step** Spectrum Estimation. Calculate the periodogram $I_{XX}(\omega_k)$ from **2.** X_1, \dots, X_T according to Eq. (4) and the corresponding kernel
- spectral density estimate $\hat{C}_{XX}(\omega_k)$, $k=1,\ldots,N$, as in Eq. (3). Set the Bootstrap Parameters. Choose a block size b, where b is **3**. a positive integer less than T and define $k=\lfloor T/b\rfloor$ as the number of blocks to draw from, where $\lfloor \cdot \rfloor$ denotes the integer
- Step Draw Bootstrap Resamples. Let the integers i₀, i₁,..., i_{k−1} be drawn independently and identically distributed with distribution uniform on the set (1, 2, ..., T−b+1). Then for m = 0, 1,..., k−1, compute

$$X_{mb+j}^* = w_b(j) \frac{\sqrt{b}}{\|w_b\|_2} X_{i_m+j-1}, \quad j = 1, 2, \dots, b,$$

Step 4:

- Choose integers i_k as starting point of drawn block
- ightharpoonup make sure $i_{max} = T b + 1$
- Glue blocks together to form bootstrap sample X* of length I
- ightharpoonup truncate, to secure I = kb = T

Time domain tapered block bootstrap

Example Block Draw

Time domain tapered block bootstrap Step 5

which yields the pseudo-series $X_1^*, X_2^*, \dots, X_l^*$ of size $l = k \cdot b$. Herein w_b denotes the tapering window defined in Eq. (9) and $\|w_b\|_2 = (\sum_{l=1}^b w_b(0)^2)^{1/2}$.

Step Construct Boolstrap Estimates. Center the pseudo-series 5. X_1, X_2, \dots, X_l^* and find the bootstrap periodogram $I_{X_k}(\omega_k)$ for $-N^* < k < N^*$, computed as in Eq. (4), replacing T by I and X_1, \dots, X_l^* by $X_1^*, X_2^*, \dots, X_l^*$, where $N^* = |I/2|$ and $I_{X_k}(\omega) = 0$. Then find the corresponding bootstrap kernel spectral density estimate $C_k(\omega)$ as in Eq. (3) with I replacing T.

Step Repetition. Repeat Steps 4 and 5 a large number of times.

Confidence Interval Estimation. Find confidence bounds as in
 Step 7 of Table 1, replacing T by l.

Step 5:

- center X*
- ightharpoonup compute $I^*_{XX}(\omega_k)$
- set the $I^*_{XX}(0) = 0$
- estimate the spectrum \hat{C}^*_{XX} with $I^*_{XX}(\omega_k)$

Outline

Motivation

Spectrum Estimation

Bootstrapping Method

Bootstrap Methods Applied in Signal Processing

Test of Frequency and Time Domain Bootstrap Methods Test Model Results

Test Model

We will use a AR(5) model:

$$X(t) = 0.5X_{t-1} - 0.6X_{t-2} + 0.3X_{t-3} - 0.4X_{t-4} + 0.2X_{t-5} + N_t,$$

with:

- $ightharpoonup N_t$ are independently and uniformly distributed variables on the interval [0, 1]
- ightharpoonup sample size of T = (256, 128)

Outline

Motivation

Spectrum Estimation

Bootstrapping Method

Bootstrap Methods Applied in Signal Processing

Test of Frequency and Time Domain Bootstrap Methods Test Model Results

Frequency Domain Residual based Bootstrap

T = 256, B = 3

Frequency Domain Residual based Bootstrap

Frequency Domain Residual based Bootstrap

T = 256, B = 1000

Confidence interval

T = 256										
bootstrap samples	1	3	6	10	100	1000				
coverage probability in %	50	83.24	95.33	98.81	99.51	99.61				
T = 128										
bootstrap samples	6	50	55	60	100	1000				
coverage probability in %	69.38	94.0	95.84	96.76	98.61	99.23				

Tabelle: Frequency Domain Residual based Bootstrap: Coverage probability for different number of bootstrap samples and length of X_t

Time domain tapered block bootstrap

Time domain tapered block bootstrap

T = 256										
bootstrap samples	1	3	6	10	100	1000				
coverage probability in %	50	67.32	74.88	80.71	96.67	99.32				
T = 128										
bootstrap samples	6	11	16	21	46	1000				
coverage probability in %	89.61	93.40	94.98	95.90	97.57	99.15				

Tabelle: Time domain tapered block bootstrap: Coverage probability for different number of bootstrap samples and length of X_t

Outline

Motivation

Spectrum Estimation

Bootstrapping Method

Bootstrap Methods Applied in Signal Processing

Test of Frequency and Time Domain Bootstrap Methods

Conclusion

Conclusion

Thank you for your attention!