Programação Linear - teoria de jogos Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

12 de novembro de 2020

Teoria de jogos

antes

 A teoria da dualidade estabelece relações entre dois problemas relacionados, o primal e o dual.

Guião

- A teoria de jogos estuda e modela o comportamento de pessoas quando as suas decisões interagem.
- Um exemplo ocorre em jogos de soma zero com dois jogadores.
- A designação advém de "o que um jogador ganha, o outro perde".
- A teoria de jogos não está relacionada com a solução de puzzles.

A programação linear (PL) e teoria da dualidade mostram:

- como os jogadores devem escolher as suas estratégias;
- que existe um ponto de equilíbrio, se usarem as estratégias óptimas.

Conteúdo

- Conceitos elementares de teoria de jogos
- Formulação de PL do jogo de soma zero com dois jogadores
- Relações minmax e dualidade

Exemplo 1: um jogo de soma zero com dois jogadores

- O jogador da coluna (X) escolhe uma opção, C1, C2 ou C3.
- O jogador da linha (Y) escolhe uma opção, L1, L2 ou L3.

A matriz de prémios do jogo (pay-off matrix), designada por $A = [a_{ij}]$,

- representa o resultado da interacção entre as decisões dos jogadores.
- X recebe quando valor é positivo; paga, quando negativo.
- Para Y, é o contrário.

	(C1)	(C2)	(C3)
	papel	pedra	tesoura
papel (L1)	0	-1	1
pedra (L2)	1	0	-1
tesoura (L3)	-1	1	0

• Exemplo: X mostra papel (C1) e Y mostra tesoura (L3); X paga 1.

Estratégias

Tipos de estratégia

- Estratégia pura: o jogador usa sempre a mesma opção fixa.
- Estratégia mista: antes, o jogador estabelece uma distribuição de probabilidades de escolha de cada opção; quando joga, escolhe aleatoriamente as opções, obedecendo à distribuição estabelecida.

Uma estratégia mista é definida por um

- vector de probabilidades ou vector estocástico, um vector de elementos não-negativos cuja soma é a unidade.
- $x = (x_1, ..., x_j, ..., x_n)^{\top}$ é o vector (coluna) de probabilidades de X.
- $y = (y_1, ..., y_i, ..., y_m)$ é o vector (linha) de probabilidades de Y.

	(C1)	(C2)	(C3)	
	papel	pedra	tesoura	Prob.
papel (L1)	0	-1	1	1
pedra (L2)	1	0	-1	0
tesoura (L3)	-1	1	0	0
. ,	<u>1</u> -1	0 1	-1 0	0

Caso 1

 Que estratégia deve X escolher se Y usar a estratégia pura de jogar sempre papel (L1)?

	(C1)	(C2)	(C3)	
	papel	pedra	tesoura	Prob.
papel (L1)	0	-1	1	1
pedra (L2)	1	0	-1	0
tesoura (L3)	-1	1	0	0
()				

Caso 1

- Que estratégia deve X escolher se Y usar a estratégia pura de jogar sempre papel (L1)?
- X deve jogar sempre tesoura (C3).
- O valor esperado de ganho de X é 1.

	(C1) papel	(C2) pedra	(C3) tesoura	Prob.
papel (L1)	0	-1	1	1/2
pedra (L2)	1	0	-1	1/2
tesoura (L3)	-1	1	0	0

Caso 2

 Que estratégia deve X escolher se Y jogar metade das vezes papel (L1) e a outra metade pedra (L2), e nunca jogar tesoura?

	(C1) papel	(C2) pedra	(C3) tesoura	Prob.
papel (L1)	0	-1	1	1/2
pedra (L2)	1	0	-1	1/2
tesoura (L3)	-1	1	0	0

Caso 2

- Que estratégia deve X escolher se Y jogar metade das vezes papel
 (L1) e a outra metade pedra (L2), e nunca jogar tesoura?
- X deve jogar sempre papel (C1): ganhará metade das vezes, empatará a outra metade e nunca perde.
- O valor esperado de ganho de X é 1/2.

Qual o valor esperado de ganho de X (ou valor do jogo)?

- Cada jogada possível ocorre com probabilidade $y_i \times x_j$, dado que os jogadores escolhem de uma forma independente.
- Valor esperado de ganho de X no jogo é:

$$G(x,y) = \sum_{i=1}^{m} \sum_{j=1}^{n} y_i a_{ij} x_j$$
 (= yAx , em notação matricial).

Caso 1: Y sempre papel (L1); X sempre tesoura (C3)

$$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} * \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix} * \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 1 \end{bmatrix} * \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 1$$

Caso 2: Y metade papel (L1), metade pedra (L2); X sempre papel (C1)

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix} * \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix} * \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \end{bmatrix} * \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \frac{1}{2}$$

4) d (4

Estratégias de Y e ganho de X: interpretação geométrica

Estratégias de Y são os pontos do plano.

Estratégias de Y:

- a vermelho: estratégias puras.
- a verde, $(\frac{1}{2}, \frac{1}{2}, 0)$: estratégia metade papel, metade pedra.
- a azul, $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$: estratégia mista óptima de Y.

[Valor esperado do ganho de X]

- quando X escolhe a melhor estratégia para responder a Y (ver slide seguinte).
- O valor esperado do ganho de X não é uma função linear das coordenadas do plano; é 0 se Y usar a estratégia mista óptima.

A função G(x,y) tem forma de uma sela

Cada ponto do domínio é um par de vectores de probabilidade (x,y)

- Se Y escolher um ponto (uma estratégia) não-óptima \hat{y} ,
- e X escolher ponto com valor máximo ao longo dessa coordenada, $x_{\widehat{y}}^*$ (a melhor estratégia para responder a \widehat{y}),
- o ganho de X é $G(x_{\widehat{y}}^*, \widehat{y}) = \widehat{y}Ax_{\widehat{y}}^*$.

Se X e Y usarem estratégias óptimas, há equilíbrio

Objectivo e assumpção: cada jogador

- quer maximizar o valor esperado do seu ganho, e
- é capaz de identificar a sua estratégia óptima, qualquer que seja a estratégia do adversário, mesmo a que lhe é mais adversa.

Em resultado disso, atinge-se um ponto de equilíbrio

- Há equilíbrio num jogo quando nenhum jogador tem vantagem em alterar a sua estratégia se o adversário não o fizer.
- E esse equilíbrio existe sempre:

Teorema (von Neumann (1928))

Qualquer jogo finito de soma zero de dois jogadores com estratégias mistas tem um ponto de equilíbrio.

Vamos ver uma prova que usa a teoria da dualidade.

(*) Há quem questione se é assim que as pessoas decidem. A área de Behavioral Game Theory é uma área actual de investigação.

O ponto de equilíbrio é um ponto de sela

- O ponto de sela tem coordenadas (x^*, y^*) , em que x^* e y^* são as estratégias óptimas de X e Y, respectivamente.
- Aí, X consegue o ganho máximo face à estratégia y^* ,
- ullet e Y consegue o pagamento mínimo face à estratégia x^* .

Exemplo 2

- Equilíbrio não significa que todos os jogos sejam equitativos, i.e., com iguais valores esperados de ganho.
- Se antecipar prémios compensadores, um jogador pode ter interesse em pagar para entrar num jogo não equitativo.

	(C1)	(C2)	(C3)
(L1)	-1	2	-1
(L2)	-1	0	2
(L3)	2	-1	-1

• Se fossem o jogador X, quanto é que estavam dispostos a pagar para entrar neste jogo?

Exemplo 2

- Equilíbrio não significa que todos os jogos sejam equitativos, i.e., com iguais valores esperados de ganho.
- Se antecipar prémios compensadores, um jogador pode ter interesse em pagar para entrar num jogo não equitativo.

	(C1)	(C2)	(C3)
(L1)	-1	2	-1
(L2)	-1	0	2
(L3)	2	-1	-1

- Se fossem o jogador X, quanto é que estavam dispostos a pagar para entrar neste jogo?
- Vamos usar um modelo de PL para determinar o que X espera ganhar.

Exemplo 2: que vector de probabilidades deve X escolher?

	(C1)	(C2)	(C3)
(L1)	-1	2	-1
(L2)	-1	0	2
(L3)	2	-1	-1

Variáveis de decisão

• x_j : percentagem de vezes que X escolhe a opção j, j = 1,2,3.

Valor esperado de ganho de X é:

- $-1x_1 + 2x_2 1x_3$, quando Y usa L1
- $-1x_1$ + $2x_3$, quando Y usa L2
- $2x_1 1x_2 1x_3$, quando Y usa L3

X quer escolher a estratégia que maximiza o seu ganho,

- mas Y vai usar a estratégia que melhor se lhe opõe.
- O ganho de X nunca irá ser superior ao menor destes valores.

Exemplo 2: modelo de PL e solução óptima de X

A solução (estratégia mista) óptima do modelo do jogador X é:

•
$$x_1 = x_2 = 3/8$$
, $x_3 = 2/8$ $v = 1/8$.

	(C1)	(C2)	(C3)
(L1) (L2) (L3)	-1	2	-1
(L2)	-1	0	2
(L3)	2	-1	-1
	$x_1 = 3/8$	$x_2 = 3/8$	$x_3 = 2/8$

Qualquer que seja a estratégia de Y, o ganho esperado de X é 1/8:

• trata-se de um ganho esperado garantido.

Exemplo 2: que vector de probabilidades deve Y escolher?

	(C1)	(C2)	(C3)
(L1)	-1	2	-1
(L2)	-1	0	2
(L3)	2	-1	-1

Variáveis de decisão

• y_i : percentagem de vezes que Y escolhe a opção i, i = 1,2,3.

Valor esperado dos pagamentos de Y a X é:

- $-1y_1 1y_2 + 2y_3$, quando X usa C1
- $2y_1$ $-1y_3$, quando X usa C2
- $-1y_1 + 2y_2 1y_3$, quando X usa C3

Y quer escolher a estratégia que minimiza os seus pagamentos a X,

- mas X vai usar a estratégia que melhor se lhe opõe.
- Os pagamentos a X nunca serão inferiores ao maior destes valores.

Exemplo 2: modelo de PL e solução óptima de Y

A solução (estratégia mista) óptima do modelo do jogador Y é:

•
$$y_1 = 2/8$$
, $y_2 = y_3 = 3/8$, $w = 1/8$.

	(C1)	(C2)	(C3)
(L1)	-1	2	-1
(L2)	-1	0	2
(L3)	2	-1	-1
Pagt.	1/8	1/8	1/8

$$y_1 = 2/8$$

 $y_2 = 3/8$
 $y_3 = 3/8$

• O pagamento esperado mínimo garantido é 1/8.

Estratégias de Y e ganho de X: interpretação geométrica

• Estratégias de Y são os pontos do plano.

Estratégias de Y e [ganhos de X]:

- Pontos a vermelho são as estratégias puras.
- Ponto a azul, $(\frac{2}{8}, \frac{3}{8}, \frac{3}{8})$, é a estratégia mista óptima de Y.

 Nota: verificar no modelo de PL de X que X pode ganhar 2 se Y usar qualquer uma das estratégias puras.

Estratégias de X e ganho de Y: interpretação geométrica

• Estratégias de X são os pontos do plano.

Estratégias de X e [ganhos de Y]:

- Pontos a vermelho são as estratégias puras.
- Ponto a azul, $(\frac{3}{8}, \frac{3}{8}, \frac{2}{8})^{\top}$, é a estratégia mista óptima de X.

 Nota: verificar no modelo de PL de Y que Y pode ganhar 1 (ou seja, pagar -1 a X) se X usar qualquer uma das estratégias puras.

Os problemas de X e Y formam um par primal - dual

- Os valores dos óptimos dos dois problemas, v^* e w^* , são iguais.
- nota: a uma restrição de igualdade, corresponde uma variável dual sem restrição de sinal.

O teorema minmax, de novo

Teorema (von Neumann (1928), Gale, Kuhn, Tucker (1951))

 Qualquer jogo finito de soma zero de dois jogadores com estratégias mistas tem um ponto de equilíbrio, em que o valor maxmin é igual ao valor minmax:

$$\max_{x} \min_{y} yAx = y^*Ax^* = \min_{y} \max_{x} yAx$$

 Prova: é a mesma relação do teorema da dualidade forte, que explicitámos do seguinte modo:

$$\max cx = cx^* = y^*Ax^* = y^*b = \min yb$$

 Como vimos, yAx é a função que representa o ganho de X, que X procura maximizar, e Y minimizar.

Notas - I

- O teorema que von Neumann provou, em 1928, usando o Fixed
 Point Theorem de Brouwer, é hoje conhecido por Teorema Minmax.
- Um dos marcos da fundação da teoria de jogos é a publicação, em 1944, do livro de John von Neumann and Oskar Morgenstern, Theory of Games and Economic Behavior;
- A teoria de jogos tem aplicações na análise de "uma série de fenómenos do mundo real, desde corridas a armamentento a escolhas políticas óptimas de candidatos presidenciais, de políticas de vacinação a negociações salariais da liga principal de beisebol. E hoje está estabelecida tanto nas ciências sociais como numa ampla gama de outras ciências."(*).

^(*)) texto relativo à edição comemorativa do livro, no 60.º aniversário, em 2004: https://press.princeton.edu/books/paperback/9780691130613/theory-of-games-and-economic-behavior

Notas - II

- O desenvolvimento da teoria de programação linear tornou evidentes as relações com a teoria de jogos:
 - Gale, Kuhn, Tucker (1951) apresentaram uma nova prova do Teorema Minmax usando teoria da dualidade.
 - Dantzig (1951) mostrou que programação linear era equivalente a teoria de jogos.
- Há muitos outros tipos de jogos.
- Em 1950, John Nash estabeleceu as bases da teoria de jogos não-cooperativos e provou a existência de um equilíbrio de estratégias mistas, denominado de Equilíbrio de Nash.

Bibliografia

- John von Neumann and Oskar Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, Princeton, NJ, 1944.
- Gale D, Kuhn HW, Tucker AW, Linear programming and the theory of games. In: Koopmans TC (ed) Activity analysis of production and allocation. Wiley, New York, pp 317–329, 1951.
- Dantzig GB, A proof of the equivalence of the programming problem and the game problem. In: Koopmans TC (ed) Activity analysis of production and allocation. Wiley, New York, pp 330–335, 1951
- J. F. Nash Jr., Equilibrium Points in n-person Games. Proceedings of the National Academy of Sciences of the United States of America, pp. 48–49, 1950.
- J. F. Nash Jr., Non-Cooperative Games. PhD. Thesis. Princeton University Press, 1950.
- J. F. Nash Jr., The Bargaining Problem. Econometrica, pp. 155–162, 1950.
- J. F. Nash Jr., Non-Cooperative Games. Annals of Mathematics, pp. 286–295, 1951.

Fim