ARITHMÉTIQUE

L'arithmétique est le domaine des mathématiques qui étudie les nombres et leurs propriétés. Historiquement, elle s'est beaucoup intéressée aux nombres entiers, aux fractions et aux questions de divisibilité.

I) MULTIPLES ET DIVISEURS

1) Division euclidienne dans Z

Dans Z, la somme, la différence et le produit de deux entiers relatifs restent des entiers relatifs. Toutefois, il n'en est pas de même pour la division.

On s'intéresse alors à la division euclidienne (ou division entière) :

Définition:

Pour tous entiers relatifs a et b ($b \ne 0$), il existe un unique entier relatif q (appelé quotient) et un unique entier naturel r (appelé reste) tels que : $a = b \ q + r$ avec $0 \le r < |q|$.

Ex:

Division euclidienne de 27 par 4 : 27 =

Le quotient est et le reste est

Division euclidienne de -25 par -3:-25 =

Le quotient est et le reste est

Division euclidienne de 12 par -4 : 12 =

Le quotient est et le reste est

Avec Python:

Le quotient et le reste d'une division euclidienne avec des <u>entiers</u> naturels s'obtiennent avec « // » et « % ».

Quotient entier: 27//4 = 6

Reste: 27%4 = 3

2) Multiples et diviseurs dans Z

Définition:

Soient a et d deux entiers relatifs. On dit que d divise a si et seulement si il existe un entier k tel que $a = k \times d$.

Les affirmations ci-dessous sont équivalentes :

- d divise a
- d est un diviseur de a
- a est un multiple de d
- a est divisible par d

Ex: $12 = -3 \times -4$ donc -3 et -4 sont des diviseurs de 12.

Remarques:

- Pour tout entier relatif $a: 0 = 0 \times a$. Donc 0 est divisible par n'importe quel entier relatif mais n'admet comme multiple que lui même.
- Pour tout entier relatif $a : a = 1 \times a = -1 \times -a$. Donc 1 et -1 divisent n'importe quel entier relatif. Tout entier relatif est divisible par lui même et par son opposé.
- Tout entier relatif non nul a admet une infinité de multiples : ..., -3 a, -2 a, -a, 0, a, 2 a, 3 a, ..., k a, ...
- Les diviseurs vont en général par paires : Quand on écrit $a = k \times d$, on peut en déduire que d comme k sont des diviseurs de a.

Propriété:

Soit a un entier relatif et n et m deux multiples de a.

Alors la somme, la différence et le produit de n et m sont aussi des multiples de a.

Démonstration pour la somme :

n est un multiple de a donc il existe un entier k tel que n = m est un multiple de a donc il existe un entier k' tel que m = m

Donc n + m =

Or (k + k') est la somme de deux entiers et est donc un entier.

Donc n + m est un multiple de a.

p50 : 39, 40, 44 p52 : 62, 63, 64

p53:66,67

3) Critères de divisibilité

- Un entier relatif est divisible par 2 si et seulement si son chiffre des unités est
- Un entier relatif est divisible par 5 si et seulement si son chiffre des unités est
- Un entier relatif est divisible par 10 si et seulement si son chiffre des unités est
- Un entier relatif est divisible par 4 si et seulement si le nombre formé par ses 2 derniers chiffres est
- Un entier relatif est divisible par 3 si et seulement si la somme de ses chiffres est
- Un entier relatif est divisible par 9 si et seulement si la somme de ses chiffres est

4) Nombres premiers dans IN

Définition:

Un entier naturel *n* est dit premier s'il admet exactement deux diviseurs positifs distincts : 1 et lui-même.

Nombres premiers inférieurs à 100 :

```
2;3;5;7;11;13;17;19;23;29;31;37;41;43;47;53;59;61;67;71;73;79;83;89;97
```

Remarques:

- 0 et 1 ne sont donc pas des nombres premiers.
- Tout entier naturel peut se décomposer de façon unique en produit de nombres premier (à l'ordre des facteurs près).

Ex: $338 = 2 \times 13^2$. (cf fonction « factor » de la Numworks)

p56:84 p53:68,71

II) PARITÉ

1) Définition

On considère un entier relatif n:

- Soit n est divisible par 2 et on dit qu'il est pair et il existe un entier relatif k tel que n = 2 k
- Soit n n'est pas divisible par 2 et on dit qu'il est impair et il existe un entier relatif k tel que n = 2 k + 1

Démonstration:

On effectue le division euclidienne de n par 2.

Il existe donc deux entiers k et r tels que n =

Donc soit r = 0, soit r = 1.

Si r = 0 alors n = 2 k et n est donc pair.

Sinon r = 1 et n = 2 k + 1 et n est donc impair.

Exemple:

338 est pair $(338 = 2 \times 169)$; 339 est impair $(339 = 2 \times 169 + 1)$

2) Parité et opérations

Propriétés:

- La somme ou différence de deux entiers pairs est un entier
- La somme ou différence de deux entiers impairs est un entier
- La somme ou différence d'un entier pair et d'un entier impair est un entier
- Le produit d'un entier pair avec un entier quelconque est un entier
- Le produit de deux entiers impairs est un entier

Démonstration dans le cas du produit de deux entiers impairs :

Soient m et n deux entiers impairs.

Il existe alors deux entiers k et k' tels que $m = m \times n = m \times n$

Or (2kk' + k + k') est entier donc 2(2kk' + k + k') + 1 est impair.

3) Parité d'un carré

Propriété:

Soit n un entier relatif,

Si n est pair alors n^2 est pair et réciproquement.

Si n est impair alors n^2 est impair et réciproquement.

Démonstration:

- Si n est pair alors il existe un entier k tel que n = 2 k. donc $n^2 =$ or $(2 k^2)$ est un entier donc n^2 est pair.
- Si n est impair alors il existe un entier k tel que n = 2 k + 1. donc $n^2 =$ or $(2 k^2 + 2 k)$ est un entier donc n^2 est impair.

Comme un entier est soit pair, soit impair, la réciproque est vraie également!

p50: 42, 43, 47, 49, 50

p54:75,76,77,78

p58:94

algo

p52:61

p53:69 (erreur énoncé!)

p54:73

p55:79

p57:89

plus difficile

p50:41,45

p52:60

p54:72

p55:80,81,83

p56:85,86,87

p58:93,95,97,99