L2-CHEMR

Level 2 Chemistry, 2018

9.30 a.m. Monday 26 November 2018

RESOURCE BOOKLET

Refer to this booklet to answer the questions in your Question and Answer Booklets.

Check that this booklet has pages 2–3 in the correct order and that none of these pages is blank.

YOU MAY KEEP THIS BOOKLET AT THE END OF THE EXAMINATION.

Formulae for 91164: Demonstrate understanding of bonding, structure, properties and energy changes

$$n = cV$$

$$n = \frac{m}{M}$$

Formulae for 91166: Demonstrate understanding of chemical reactivity

$$K_{\rm w} = [H_3 O^+][OH^-] = 1 \times 10^{-14} \text{ at } 25^{\circ}C$$

$$pH = -\log[H_3O^+]$$

PERIODIC TABLE OF THE ELEMENTS

18 2 He 4.0	10 Ne 20.2	18 Ar	36	Kr	83.8	Xe 131	86 Rn	222	118	$\mathbf{o}_{\mathbf{g}}$	
17	9 F 19.0	17 Cl 35.5	35	Br	53	I 127	85	210	117	Ls	
16	8 O 16.0	16 S	34	Se	/9.0 52	Te 128	84 Po	210	116	Lv	
15	7 N 14.0	15 P	33	As	74.9	Sb 122	83 Ri	209	115	Mc	
14	6 C 12.0	Si Si	32	Ge	50	Sn	82 Ph	207	114	F	
13	5 B 10.8	13 Al	31	Ga Ga	69.7	In 115	81 T	204	113	Nh	
		7	30	Zn	48	Cd 112	80 Ha	201	112	$\mathbf{C}\mathbf{n}$	277
			29	Cn	63.6	\mathbf{Ag} 108	97	197	1111	$R_{\mathbf{g}}$	272
0]-1		01	28	Z S	28. / 46	Pd 106	78 P 4	195	110	Ds	271
 Molar mass/g mol ⁻¹		0	27	Co	28.9 45	Rh 103	77	192	109	Mt	268
 Molar n		×	26	Fe	44	Ru	76 Os	190	108	Hs	265
1 H 1.0			25	Mn	54.9 43	Tc 98.9	75 R e	186	107	Bh	264
Atomic number		\circ	24	\mathbf{Cr}	52.0	Mo 95.9	74 W	184	106	S	263
Atomic		<i>ب</i> ر	23	> 3	50.9	Nb 92.9	73 Ta	181	105	Dp	262
		4	22	ΞŢ	47.9	Zr 91.2	72 Hf	179	104	Rf	261
		~	21	Sc	45.0	Y 88.9	71	175	103	Lr	262
\mathcal{C}	4 Be 9.0	12 Mg	20	Ca	40.1	Sr 87.6	56 Ra	137	88	Ra	226
7	3 Li 6.9	11 Na	19	X 5	37.	Rb 85.5	55 Cs	133	87	Fr	223

	57	58	59	09	61	62	63	64	65	99	29	89	69	70
Lanthanide La	La	Ce	Pr	Nd	Pm	Sm	Eu	Сd	$\mathbf{T}\mathbf{b}$	Dy	H_0	Er	Tm	Vb
Series	139	140	141	144	147	150	152	157	159	163	165	167	169	173
	68	06	91	92	93	94	95	96	26	86	66	100	101	102
Actinide	Ac	$\mathbf{T}\mathbf{h}$	Pa	Ω	Np	Pu	Am	Cm	Bk	Ct	Es	Fm	Md	No
	227	227 232	231	238	237	239	241	244	249	251	252	257	258	259