

SISTEMAS OPERATIVOS EN TIEMPO REAL

INTEGRANTES

David Tavera

David Nava

INTRODUCCIÓN

Un SO tradicional prioriza la eficiencia y el manejo de múltiples tareas

Un RTOS prioriza el determinismo y los tiempos de respuesta garantizados

INTRODUCCIÓN

UN RTOS DEBE CUMPLIR PUNTUALMENTE CON LOS PLAZOS A LOS QUE SE COMPROMETE

GESTIÓN DE TAREAS

 Las tareas se gestionan mediante un planificador, que decide qué tarea se ejecuta y cuándo, dependiendo de su prioridad y estado.

MUTEX Y SEMÁFOROS

Diseñados para seguir un comportamiento determinista

Utilizan la herencia de prioridad para evitar una inversión de prioridades

GESTIÓN DE MEMORIA

- Se divide en diferentes secciones, como la pila y heap
- El segmento de pila se utiliza para almacenar variables locales e información de llamadas a funciones
- El segmento heap asigna memoria dinámicamente para variables u objetos durante la ejecución del programa.

INTERRUPCIONES

- Mecanismo básico igual al de un SO
- Un RTOS le da a las interrupciones cierta prioridad a las tareas que ejecuta

 Específicamente, las interrupciones de hardware son las de mas alta prioridad.

EJEMPLOS

- Primer Ejemplo (Multitarea)
- <u>Segundo Ejemplo (Semaforo)</u>
- <u>Ejemplo extra</u>

CONCLUSIONES

• El tiempo y la precisión son factores determinantes

 Capacidad de cumplir estrictamente plazos de tiempo establecidos

Garantizar que procesos críticos se ejecuten

