# DEVELOPMENT PHASE PART 1 Customer Churn Prediction Project

| Date         | 26-09-2023                |
|--------------|---------------------------|
| Team ID      | 1288                      |
| Project Name | Customer Churn Prediction |

#### **DATA PRE-PROCESSING**

Data pre-processing is a component of data preparation, describes any type of processing performed on raw data to prepare it for another data processing procedure. It has traditionally been an important preliminary steps for the data mining process. More recently, data pre-processing techniques have been adapted for training machine learning models and AI models and for running inference against them.

We used the jupyter platform for the data pre-processing phase. In that we initially imported the necessary python library files. The library files were

Pandas - used for working with data sets

Numpy - used for working with arrays

Sklearn - Used machine learning models and statistical modelling



Then we imported the given data set "WA\_Fn-UseC\_-Telco-Customer-Churn.csv" and viewed the first 5 rows of the dataset

| ]: | Customer<br>ID | Gender | Senior<br>Citizen | Partner | Dependents | Tenure | Phone<br>Service | Multiple<br>Lines      | InternetService | Online<br>Security | <br>Device<br>Protection | TechSupport | Streaming<br>TV | StreamingMovie |
|----|----------------|--------|-------------------|---------|------------|--------|------------------|------------------------|-----------------|--------------------|--------------------------|-------------|-----------------|----------------|
| 0  | 7590-<br>VHVEG | Female | 0                 | Yes     | No         | 1      | No               | No<br>phone<br>service | DSL             | No                 | <br>No                   | No          | No              | No             |
| 1  | 5575-<br>GNVDE | Male   | 0                 | No      | No         | 34     | Yes              | No                     | DSL             | Yes                | <br>Yes                  | No          | No              | No             |
| 2  | 3668-<br>QPYBK | Male   | 0                 | No      | No         | 2      | Yes              | No                     | DSL             | Yes                | <br>No                   | No          | No              | No             |
| 3  | 7795-<br>CFOCW | Male   | 0                 | No      | No         | 45     | No               | No<br>phone<br>service | DSL             | Yes                | <br>Yes                  | Yes         | No              | No             |
| 4  | 9237-<br>HQITU | Female | 0                 | No      | No         | 2      | Yes              | No                     | Fiber optic     | No                 | <br>No                   | No          | No              | No             |

We started the data pre-processing steps by copying the given dataset.

```
[36]: #data preprocessing
df_transformed = df.copy()
```

The necessary dependent variables were selected and variable as columns.

```
[37]:

columns1 = ['Gender','Partner','Dependents','Paperless Billing','Churn','Phone Service']
```

Afterwards in the dataset the datum we modified to binary values (0's & 1's)

```
[38]: for i in columns1:
    if i == 'Gender':
        df_transformed[i] = df_transformed[i].map({'Female': 0, 'Male': 1})
    else:
        df_transformed[i] = df_transformed[i].map({'yes': 1, 'No': 0})
```

# All the columns we contained in a variable named as df\_transformed

```
[39]: e Lines','InternetService','Online Security','OnlineBackup','Device Protection','TechSupport','Streaming TV','StreamingMovies','Contract','PaymentMethod']

4
[40]:
```

We created a dummies of the given dataset and stored in the variable named as df\_transformed

```
[40]:

df_transformed = pd.get_dummies(df_transformed, columns = columns2)
```

Again we made a copy of the dataset as df1

```
[42]:
df1 = df_transformed.copy()
```

In this step, a for loop is used and used a fit\_transform library from the sklearn library

```
[43]: for i in df_transformed.columns:
    df1[i] = lenc.fit_transform(df_transformed[i])
```

Then we again printed the first 5 rows from the dataset with head function

| ]:<br>d | f1.head()      |        |                   |         |            |        |                  |                      |                    |              |                        |                                        |              |
|---------|----------------|--------|-------------------|---------|------------|--------|------------------|----------------------|--------------------|--------------|------------------------|----------------------------------------|--------------|
|         | Customer<br>ID | Gender | Senior<br>Citizen | Partner | Dependents | Tenure | Phone<br>Service | Paperless<br>Billing | Monthly<br>Charges | TotalCharges | <br>StreamingMovies_No | StreamingMovies_No<br>internet service | StreamingMov |
| 0       | 5375           | 0      | 0                 | 1       | 0          | 1      | 0                | 1                    | 142                | 2505         | <br>1                  | 0                                      |              |
| 1       | 3962           | 1      | 0                 | 0       | 0          | 34     | 1                | 0                    | 498                | 1466         | <br>1                  | 0                                      |              |
| 2       | 2564           | 1      | 0                 | 0       | 0          | 2      | 1                | 1                    | 436                | 157          | <br>1                  | 0                                      |              |
| 3       | 5535           | 1      | 0                 | 0       | 0          | 45     | 0                | 0                    | 266                | 1400         | <br>1                  | 0                                      |              |
| 4       | 6511           | 0      | 0                 | 0       | 0          | 2      | 1                | 1                    | 729                | 925          | <br>1                  | 0                                      |              |

We used a dropna function to remove the rows which contains null values

```
[45]: df_cleaned = df.dropna()
```

Then the drop\_duplicate function is used is used to remove the duplicate rows.

```
[48]: # Remove duplicate rows
df_cleaned = df.drop_duplicates()
```

Here we replaced the path where we want to save the cleaned data..

```
[49]: output_csv = 'cleaned_file.csv' # Replace with the path where you want to save the cleaned data df_cleaned.to_csv(output_csv, index=False)
```

#### **VISUALIZATION**

The visualization were implemented by the IBM Cognos platfrom. Where we made a many visualization with the given telco dataset by merging lots of columns in that plstform.

#### 1.No. of Cusromer , Churned Customer , Churn Percentage



#### 2.Gender Diversity



#### 3.Churn Rate



#### **4.Count of Customer By Contract Type**



### **5.Churn And Tenure By Contract**



## **6.Customer By Senior Citizen**



#### 7.Churn Count



### 8.Tenure By Partner And Gender



# 9. Paperless Billing By Payment Method



#### **10.Internet Services**

