"Sparknotes" for $Linear\ Algebra$ by Peter Lax

Muthu Chidambaram

Last Updated: May 23, 2019

${\bf Contents}$

1	Fun	damenta	$_{ m ls}$																
	1.1	Exercise	1 .																
	1.2	Exercise	2 .																
	1.3	Exercise	3 .																
	1.4	Exercise	4 .																
	1.5	Exercise	5 .																
	1.6	Exercise	6.																
	1.7	Exercise	7.																
	1.8	Exercise	8.																
	1.9	Exercise	9.																
	1.10	Exercise	10																
	1.11	Exercise	11																
	1.12	Exercise	12																
	1.13	Exercise	13																
	1.14	Exercise	14																
	1.15	Exercise	15																
	1.16	Exercise	16																
	1.17	Exercise	17																
2	Dua	lity																	
	2.1	Exercise	1.																
	2.2	Exercise	2 .																

Preface

"A modern mathematical proof is not very different from a modern machine, or a modern test setup: the simple fundamental principles are hidden and almost invisible under a mass of technical details." - Hermann Weyl

These notes contain short summaries of (my) proof ideas for exercises and some theorems from the book *Linear Algebra* by Peter Lax. I have tried to make the summaries as brief as possible, sometimes only one line or one equation. My hope is that the summaries will give enough information to reconstruct a full proof without bogging the reader down with details. In many cases, I am sure that I inadvertently sacrificed clarity in an attempt to obtain brevity, and would greatly appreciate any feedback.

Also, I like when people include (what they presume to be) relevant quotes from mathematicians of past generations in their notes, so I have to ask you to forgive my haughtiness in starting these notes with a quote from Hermann Weyl.

1 Fundamentals

1.1 Exercise 1

 $x + z = x = x + z' \implies z = z'.$

1.2 Exercise 2

0x + x = (0+1)x = x.

1.3 Exercise 3

Coefficients can be represented as row vectors.

1.4 Exercise 4

Function can be represented as row vector by letting $a_i = f(s_i)$ for each $s_i \in S$.

1.5 Exercise 5

Follows from exercises 3 and 4.

1.6 Exercise 6

 $y_1 + z_1 + y_2 + z_2 = (y_1 + y_2) + (z_1 + z_2)$ and $k(y_1 + z_1) = ky_1 + kz_1$.

1.7 Exercise 7

 $a \in Y \cap Z \implies ka \in Y, ka \in Z \implies ka \in Y \cap Z.$

1.8 Exercise 8

k0 = 0, 0 + 0 = 0.

1.9 Exercise 9

If S contains x_i then it must contain kx_i .

1.10 Exercise 10

If $x_i = 0$, k_i can be anything.

1.11 Exercise 11

 $x = \sum_{i=1}^{m} \sum_{j=1}^{\dim Y_i} y_j^{(i)}.$

1.12 Exercise 12

Complete basis for W to U and V. Use W basis vectors and additional U and V basis vectors to get $\dim X = \dim U - \dim W + \dim V - \dim W + \dim W$.

1.13 Exercise 13

Send i^{th} basis vector to e_i , where e_i is vector of all zeroes except a one in the i^{th} place. Can permute mapping to get different isomorphisms.

1.14 Exercise 14

$$x_1 - x_2 + x_2 - x_3 = x_1 - x_3.$$

1.15 Exercise 15

$$x' = x + z_x, y' = y + z_y \implies x' + y' = x + y + (z_x + z_y).$$

1.16 Exercise 16

$$x \in X_1 \bigoplus X_2 \implies x = (x_1, x_2) = (x_1, 0) + (0, x_2).$$

1.17 Exercise 17

Construct a basis for X from Y: $y_1, ..., y_j, x_{j+1}, ..., x_n$. Then $X/Y = \text{span}\{x_{j+1}, ..., x_n\}$.

2 Duality

Theorem 1

$$x = \sum_{i=1}^{n} a_i x_i \implies k_i(x) = a_i.$$

2.1 Exercise 1

$$l_1, l_2 \in Y^{\perp} \implies l_1(y) + l_2(y) = 0 = (l_1 + l_2)(y).$$

2.2 Exercise 2

$$\forall \xi \in Y^{\perp \perp} \implies \forall l \in Y^{\perp}, \; \xi(l) = 0 = l(y) \; \forall y \in Y.$$