Grundbegriffe der Theoretischen Informatik

Sommersemester 2018 - Thomas Schwentick

Teil D: Komplexitätstheorie

22: Zufallsbasierte Komplexitätsklassen

Version von: 12. Juli 2018 (13:58)

Zufallsbasierte Komplexitätsklassen: Grundlagen (1/3)

- In diesem Kapitel betrachten wir zufallsbasierte Algorithmen aus der Sicht der Komplexitätstheorie
- Wir definieren Komplexitätsklassen, die Probleme enthalten, die sich effizient mit zufallsbasierten Algorithmen lösen lassen
 - Die Laufzeit wird also (fast) immer polynomiell sein
- Durch verschiedene Anforderungen an die Akzeptier-Wahrscheinlichkeiten werden sich unterschiedliche Klassen ergeben

- Wir betrachten die folgenden Varianten zufallsbasierter Algorithmen:
 - einseitiger Fehler oder zweiseitiger Fehler
 - möglicherweise großer Fehler ($<\frac{1}{2}$) oder kleiner Fehler ($<\frac{1}{4}$)
- Die Algorithmen für PRIMES und ZEROCIRC haben einseitigen, kleinen Fehler

(bei genügend häufiger Wiederholung)

Zufallsbasierte Komplexitätsklassen: Grundlagen (2/3)

- Die erste Frage, die wir beantworten müssen:
 - Wie modellieren wir zufallsbasierte Algorithmen durch Turingmaschinen?
- Zur Beantwortung gehen wir ähnlich vor wie bei der Definition des nichtdeterministischen Akzeptierens
- ullet Wir betrachten Berechnungen einer TM mit Eingabe $m{x}$ und $m{Zusatzeingabe}\ m{y}$, wobei die Zusatzeingabe nur polynomiell lang in $|m{x}|$ sein darf
- Die Zusatzeingabe repräsentiert die Zufallsbits
- ullet Wir sagen $oldsymbol{M}(oldsymbol{x},oldsymbol{y})$ akzeptiert, wenn $oldsymbol{M}$ bei Eingabe $oldsymbol{x}$ und Zusatzeingabe $oldsymbol{y}$ akzeptiert
- ullet Der Einfachheit halber betrachten wir nur Eingaben und Zusatzeingaben über dem Alphabet $oldsymbol{\Sigma}=\{0,1\}$

 Die relative Häufigkeit der Zusatzeingaben y, die zum Akzeptieren führen, im Verhältnis zu allen Zusatzeingaben, definiert dann gerade die Akzeptierwahrscheinlichkeit:

Definition (Akzeptierwahrscheinlichkeit, $p_{m{M}}$)

- ullet Sei M eine TM mit Zeitschranke T und $x\in \Sigma^*$
- Dann ist die Akzeptierwahrscheinlichkeit $p_{M}(x)$ von M bei Eingabe x definiert durch $|\{y \in \Sigma^{T(|x|)} \mid M(x,y) \text{ akzeptiert}\}|$ $2^{T(|x|)}$
- Die Zeitschranke hängt dabei wieder nur von |x| ab, es muss also gelten:

$$oldsymbol{t_M}((oldsymbol{x},oldsymbol{y}))\leqslant oldsymbol{T}(|oldsymbol{x}|)$$

Zufallsbasierte Komplexitätsklassen: Grundlagen (3/3)

- ullet Zur Erinnerung: ein zufallsbasierter (f(n),g(n))-Algorithmus für eine Sprache L hat für Eingaben $x\in L$ Fehlerwahrscheinlichkeit $\leqslant f(|x|)$ und für $x\notin L$ Fehlerwahrscheinlichkeit $\leqslant g(|x|)$
- Beobachtung: Zu jeder Sprache gibt es
 - einen polynomiellen $(\frac{1}{2}, \frac{1}{2})$ -Algorithmus:
 - st Wähle zufällig und gleichverteilt ein Bit $m{b} \in \{m{0}, m{1}\}$ und akzeptiere falls $m{b} = m{1}$
 - einen polynomiellen (0, 1)-Algorithmus:
 - * Akzeptiere immer
 - einen polynomiellen (1,0)-Algorithmus:
 - * Lehne immer ab
 - einen polynomiellen (p,q)-Algorithmus, falls p+q=1 und es für jedes n ein k mit $p=rac{k}{2^{T(n)}}$ gibt
- ullet Interessant sind also überhaupt nur Klassen, für die die Summe p+q der beiden Fehler-W-keiten kleiner als $oldsymbol{1}$ ist

Inhalt

- > 22.1 Komplexitätsklassen mit einseitigem Fehler
 - 22.2 Komplexitätsklassen mit kleinem zweiseitigen Fehler
 - 22.3 Komplexitätsklassen mit großem zweiseitigen Fehler
 - 22.4 Komplexitätsklassen-Übersicht

Zufallsbasierte Komplexitätsklassen: RP und co-RP (1/2)

Definition (RP, co-RP)

- ullet $\overset{\mathsf{def}}{=}$ Klasse der Mengen $oldsymbol{L}$ mit Poly-Zeit-TM $oldsymbol{M}$, so dass
 - $x \in L \Rightarrow p_M(x) \geqslant rac{1}{2}$
 - $oldsymbol{-} x
 otin L \Rightarrow p_{oldsymbol{M}}(x) = 0$
- ullet $\overset{ ext{co-RP}}{=}$ Klasse der Mengen $oldsymbol{L}$ mit Poly-Zeit-TM $oldsymbol{M}$, so dass
 - $oldsymbol{-} x \in L \Rightarrow p_{oldsymbol{M}}(x) = 1$
 - $x
 otin L \Rightarrow p_M(x) \leqslant rac{1}{2}$
- Zu beachten: Diese Definitionen verwenden Akzeptierwahrscheinlichkeiten, keine Fehlerwahrscheinlichkeiten
- ullet RP umfasst die Probleme mit polynomiellen $(rac{1}{2},0)$ -Algorithmen
- co-RP umfasst die Probleme mit polynomiellen $(0, \frac{1}{2})$ -Algorithmen

- Die Algorithmen für PRIMES und ZEROCIRC belegen:
 - PRIMES ∈ co-RP

Aber, wie wir wissen, gilt sogar:

PRIMES ∈ P

- ZEROCIRC ∈ co-RP
- Nach Definition gilt: RP ⊆ NP

Zufallsbasierte Komplexitätsklassen: RP und co-RP (2/2)

 Die bei den Algorithmen für PRIMES und ZEROCIRC verwendete Technik der Wahrscheinlichkeitsverstärkung lässt sich für RP und co-RP verallgemeinern

Satz 22.1

- ullet Sei $oldsymbol{L}\in\mathsf{RP},oldsymbol{k}\in\mathbb{N}$
- ullet Dann gibt es eine polynomiell zeitbeschränkte TM M, so dass

–
$$x \in L \Rightarrow p_M(x) \geqslant 1 - rac{1}{2^{|x|^k}}$$

$$-x\notin L\Rightarrow p_{M}(x)=0$$

Beweisidee

- ullet Sei M' eine der Definition von **RP** entsprechende TM für L
- ullet Die TM M simuliert M' hintereinander $|x|^{oldsymbol{k}}$ mal
 - M erwartet eine Zusatzeingabe der Form $y_1\cdots y_{|x|^k}$ und verwendet den String y_i als Zusatzeingabe für die i-te Simulation von M'
- M akzeptiert genau dann, wenn mindestens eine dieser Simulationen zum Akzeptieren führt
- ullet Die W-keit, dass M' für alle diese Zusatzeingaben ablehnt, ist im Falle $x\in L$ höchstens $rac{1}{2^{|x|^k}}$
- ullet Und: M ist polynomiell zeitbeschränkt
- Ein analoges Resultat gilt für co-RP

Zufallsbasierte Komplexitätsklassen: ZPP (1/5)

Definition (**ZPP**)

- $ZPP \stackrel{\text{def}}{=} RP \cap co-RP$
- Probleme in **ZPP** haben also einen polynomiellen $(\frac{1}{2},0)$ -Algorithmus und einen polynomiellen $(0,\frac{1}{2})$ -Algorithmus
- Durch Kombination dieser beiden Algorithmen lassen sich neue Algorithmen mit sehr günstigen Eigenschaften konstruieren
- Erster Algorithmentyp für **ZPP**-Probleme:
 - polynomielle Laufzeit
 - Drei Antwortmöglichkeiten:

"ja", "nein", "weiß-nicht"

- "ja", "nein"-Antworten immer richtig
- Zweiter Algorithmentyp für **ZPP**-Probleme:
 - Zwei Antwortmöglichkeiten: "ja", "nein"
 - Antworten immer richtig
 - im *Durchschnitt* polynomielle Laufzeit

Zufallsbasierte Komplexitätsklassen: ZPP (2/5)

Für den ersten Typ definieren wir das folgende TM-Modell

Definition (Las-Vegas-TM)

- Eine Las-Vegas-TM für eine Sprache L hat folgende Eigenschaften:
 - Sie hat außer "ja" und "nein" einen weiteren Endzustand "weiß-nicht"
 - * Für $m{x} \in m{L}$ endet jede Berechnung (für jede Zusatzeingabe $m{y}$) in "ja" oder "weiß-nicht"
 - * Für $x \notin L$ endet jede Berechnung in "nein" oder "weiß-nicht"
 - Die Antwort "ja" oder "nein" ist also immer richtig
 - Die W-keit, dass $m{M}$ bei Eingabe $m{x}$ im Zustand "weiß-nicht" endet, bezeichnen wir mit $m{p}_{m{M},?}(m{x})$

 Für den zweiten Typ betrachten wir eine andere Art von "Zeitschranke"

Definition (Polynomiell erwartete Laufzeit)

- Eine TM M entscheidet eine Sprache L mit polynomiell erwarteter Laufzeit, falls es c,d gibt, so dass für alle x gelten:
 - Für jede Zusatzeingabe $m{y}$ der Länge $|m{x}|^{m{c}}$ gibt $m{M}$ die richtige Antwort ("ja", falls $m{x} \in m{L}$, "nein", falls $m{x} \notin m{L}$)

$$-rac{1}{2^{|oldsymbol{x}|^{oldsymbol{c}}}}\sum_{oldsymbol{y}\inoldsymbol{\Sigma}^{|oldsymbol{x}|^{oldsymbol{c}}}t_{oldsymbol{M}}(oldsymbol{x},oldsymbol{y})\leqslant |oldsymbol{x}|^{oldsymbol{d}}$$

- Die durchschnittliche Laufzeit (gemittelt über die Zusatzeingaben y) ist also polynomiell beschränkt
- Zu beachten:
 - Die Laufzeit von M kann für einzelne Zusatzeingaben größer als $|x|^d$ sein

Zufallsbasierte Komplexitätsklassen: ZPP (3/5)

Satz 22.2

- ullet Für eine Sprache L sind äquivalent:
 - (a) $L \in \mathsf{ZPP}$
 - (b) Es gibt für L eine Las-Vegas-TM M_1 mit Poly-Laufzeit, so dass für alle x gilt: $p_{M,?}(x) \leqslant rac{1}{2}$
 - (c) Es gibt für L eine zufallsbasierte TM M_2 mit polynomiell erwarteter Laufzeit

Beweisskizze " $(a) \Rightarrow (b)$ "

- ullet Sei $L\in \mathsf{ZPP}$
- ullet Sei A^+ ein $(rac{1}{2},0)$ -Algorithmus für L (RP) und A^- ein $(0,rac{1}{2})$ -Algorithmus für L (co-RP)
- ullet Sei A folgender Algorithmus (bei Eingabe x):
 - Simuliere $oldsymbol{A}^+$ bei Eingabe $oldsymbol{x}$
 - Falls A^+ akzeptiert, Ausgabe "ja"
 - Simuliere A^- bei Eingabe x
 - Falls A^- ablehnt, Ausgabe "nein"
 - Andernfalls Ausgabe: "weiß-nicht"

- ullet A^+ akzeptiert nur, falls $x\in L$
 - → die Ausgabe "ja" von A ist immer richtig
- ullet Analog: A^- lehnt nur ab, falls $x \notin L$
 - ightharpoonup die Ausgabe "nein" von A ist immer richtig
- Schließlich:
 - Falls $x \in L$, gibt A^+ die Antwort "ja" mit W-keit $\geqslant \frac{1}{2}$
 - $ightharpoonup p_{M,?}(x) \leqslant rac{1}{2}$
 - Falls $x \notin L$, gibt A^- die Antwort ",nein" mit W-keit $\geqslant \frac{1}{2}$
 - $\Rightarrow p_{M,?}(x) \leqslant \frac{1}{2}$
- → Aus A lässt sich eine Las Vegas-TM M_1 wie in (b) konstruieren

Zufallsbasierte Komplexitätsklassen: ZPP (4/5)

Beweisskizze "(b) \Rightarrow (c)"

- ullet Sei M_1 Las-Vegas-TM für L gemäß (b) mit Zeitschranke n^j
- ullet Sei ferner M eine TM, die L in Zeit $\mathbf{2}^{n^k}$ entscheidet, für ein $k\in\mathbb{N}$

 \square ZPP \subseteq RP \subseteq NP \subseteq EXPTIME

- Idee für M: Simuliere $M_{1}(x,y)$, für alle Zusatzeingaben y der Länge $|x|^{j}$
- ullet M_2 arbeitet bei Eingabe x wie folgt:
 - Simuliere $|x|^k$ mal M_1
 - Falls eine dieser Simulationen "ja" ausgibt, so akzeptiere
 - Falls eine dieser Simulationen "nein" ausgibt, so lehne ab
 - Falls alle Simulationen "weiß-nicht" ausgeben, simuliere $m{M}$ bei Eingabe $m{x}$, und gib die Antwort, die $m{M}$ geben würde

- ullet Klar: M_2 terminiert immer und gibt immer die korrekte Antwort
- ullet Die W-keit, dass alle Simulationen von M_1 die Antwort "weiß-nicht" haben ist $\leqslant rac{1}{2^{|x|^k}}$
- $lacktriangledaw{}$ Also ist die erwartete Laufzeit $\leqslant |x|^k|x|^j+rac{1}{2^{|x|^k}}2^{|x|^k}=|x|^{j+k}+1$

Zufallsbasierte Komplexitätsklassen: ZPP (5/5)

Beweisskizze "(c) \Rightarrow (a)"

- ullet Sei M_2 eine TM für L mit polynomieller erwarteter Laufzeit
- ullet Seien c, d so gewählt, dass für jedes x gilt:
 - Für jede Zusatzeingabe $m{y}$ der Länge $|m{x}|^{m{c}}$ gibt $m{M_2}$ die richtige Antwort "ja", falls $m{x} \in m{L}$, "nein", falls $m{x} \notin m{L}$
 - $-rac{1}{2^{|oldsymbol{x}|^c}}\sum_{oldsymbol{y}\inoldsymbol{\Sigma}^{|oldsymbol{x}|^c}}t_{M_{oldsymbol{2}}}(x,y)\leqslant|oldsymbol{x}|^d$
- ullet Da die mittlere Laufzeit $\leqslant |x|^d$ ist, ist die W-keit kleiner als $rac{1}{2}$, dass für ein zufällig gewähltes y die Laufzeit größer als $2|x|^d$ ist

- ullet Wir konstruieren eine TM M^+ zum Nachweis, dass $L\in {\sf RP}$
- ullet M^+ arbeitet wie folgt (bei Eingabe x):
 - Simuliere $M_{\mathbf{2}}$ bei Eingabe x für $\mathbf{2}|x|^d$ Schritte
 - Akzeptiere, falls $M_{\mathbf{2}}$ in dieser Zeit akzeptiert
 - Andernfalls lehne ab
- ullet Da M_2 bei jeder Zusatzeingabe die richtige Ausgabe hat, und die W-keit, dass M_2 in Zeit $2|x|^d$ anhält, $\geqslant rac{1}{2}$ ist, gilt:
 - Falls $x\in L$ ist $p_{oldsymbol{M}^+}(x)\geqslant rac{1}{2}$
 - Falls $oldsymbol{x}
 otin oldsymbol{L}$ ist $oldsymbol{p_{M^+}}(oldsymbol{x}) = oldsymbol{0}$
- $ightharpoonup L \in \mathsf{RP}$
 - ullet Die Konstruktion einer TM M^- zum Nachweis, dass $L\in {f co ext{-RP}}$, ist völlig analog

Inhalt

- 22.1 Komplexitätsklassen mit einseitigem Fehler
- > 22.2 Komplexitätsklassen mit kleinem zweiseitigen Fehler
 - 22.3 Komplexitätsklassen mit großem zweiseitigen Fehler
 - 22.4 Komplexitätsklassen-Übersicht

Probabilistische Klassen: kleiner, zweiseitiger Fehler

Definition (BPP)

- ullet BPP sei die Klasse der Mengen L, für die es eine polynomiell zeitbeschränkte TM M gibt, so dass:
 - $x\in L$ \Rightarrow $p_{m{M}}(x)$ \geqslant $rac{3}{4}$
 - $oldsymbol{-} x
 otin oldsymbol{L} \Rightarrow oldsymbol{p_{M}}(x) \leqslant rac{1}{4}$
- BPP umfasst also alle Probleme, die einen polynomiellen $(\frac{1}{4}, \frac{1}{4})$ -Algorithmus haben
- ullet Im Falle von **RP** und **coRP** lässt sich daraus, dass zwei Berechnungen für eine Eingabe x einmal "ja" und einmal "nein" ergeben, jeweils ein eindeutiger Schluss ziehen
 - Das war dort die Grundlage für die Wahrscheinlichkeitsverstärkung
- Für **BPP** können wir nicht so vorgehen, da bei einer "**BPP**-TM" vorkommen kann,
 - dass sie für $oldsymbol{x} \in oldsymbol{L}$ "nein" sagt, und
 - dass sie für $x \notin L$ "ja" sagt

- Aber auch hier lässt sich auf einfache Weise eine W-Verstärkung erreichen:
 - Wiederhole den Algorithmus (mit mehreren Zusatzeingaben) und akzeptiere genau dann, wenn die Mehrheit der Berechnungen akzeptierend ist

Satz 22.3

ullet Ist $L\in exttt{BPP}, k\in \mathbb{N}$, so gibt es eine polynomiell zeitbeschränkte TM M, so dass gilt:

(a)
$$x \in L \Rightarrow p_{M}(x) \geqslant 1 - rac{1}{2^{|x|^{k}}}$$

(b)
$$x
otin L \Rightarrow p_M(x) \leqslant rac{1}{2^{|x|^k}}$$

- ullet Die Fehlerwahrscheinlichkeit kann also nicht nur (in Poly-Zeit) unter jede beliebige feste Zahl $\epsilon>0$ gesenkt werden
- ullet Sondern sie kann sich für große n exponentiell schnell an 0 annähern

Ein hilfreiches Resultat aus der Wahrscheinlichkeitstheorie

- Um Satz 22.3 zu beweisen brauchen wir etwas Wahrscheinlichkeitstheorie
- ullet Wir hatten eben schon verwendet, dass für Zufallsvariable X, die keine negativen Werte annehmen, und den Erwartungswert $m{E}(m{X}) = m{p}$ haben, gilt:
 - Die Wahrscheinlichkeit, dass der Wert von X größer als 2p=2E(X) ist, ist kleiner als $\frac{1}{2}$:

$$* P(X \geqslant 2p) \leqslant \frac{1}{2}$$

 Zum Beweis von Satz 22.3 benötigen wir jedoch eine bessere Abschätzung, die uns das folgende Lemma liefert

Lemma 22.4 [Chernoff-Schranke]

ullet Seien X_1,\ldots,X_n unabhängige, 0-1-wertige Zufallsvariable mit $P(X_i=1)\leqslant p$ für alle i

$$ullet$$
 Sei $X \stackrel{ ext{def}}{=} \sum_{i=1}^n X_i$

• Dann gilt für alle heta mit $0 \leqslant heta \leqslant 1$:

$$P(X\geqslant (1+ heta)pn)\leqslant e^{-rac{ heta^2}{3}pn}$$

 Die W-Keit, dass in 100 Münzwürfen öfter als 75 mal "Kopf" kommt, ist z.B. kleiner als 0,02:

$$-n=100, p=rac{1}{2}, heta=0, 5$$

- Wir verwenden Lemma 22.4 für heta=1 und $p=rac{1}{4}$ und erhalten:
 - Wenn bei n Experimenten jeweils mit W-Keit $\leqslant \frac{1}{4}$ das Ergebnis 1 und mit W-keit $\geqslant \frac{3}{4}$ das Ergebnis 0 ist,
 - dann ist die W-keit, dass die Summe der Ergebnisse größer als n/2 ist, höchstens $e^{-\frac{1}{12}n}$

Wahrscheinlichkeitsverstärkung für BPP

Beweisskizze von Satz 22.3

- ullet Sei $L\in extsf{BPP}$ und sei M eine TM mit Zeitschranke n^l , für die gilt:
 - $x \in L \Rightarrow p_{oldsymbol{M}}(x) \geqslant rac{3}{4}$
 - $x
 otin L \Rightarrow p_M(x) \leqslant rac{1}{4}$
- ullet Wir konstruieren eine TM M' mit Zeitschranke $\sim 24n^{k+l}$
- M' arbeitet wie folgt (bei Eingabe x):
 - M' simuliert $24|x|^k$ mal M bei Eingabe x (und $24|x|^k$ Zusatzeingaben) und zählt die Anzahl m der akzeptierenden Berechnungen
 - -M' hat Ausgabe "ja", falls

$$m\geqslant 12|x|^k$$

- Andernfalls Ausgabe "nein"

- ullet Klar: M' hat polynomielle Laufzeit
- Wir zeigen nun: (b):

$$x
otin L\Rightarrow p_{m{M}'}(x)\leqslant rac{1}{2^{|x|^{m{k}}}}$$

- ullet Sei dazu x
 otin L
- ullet Für $i\leqslant 24|x|^k$ sei X_i die Zufallsvariable mit Wert
 - -1, falls die i-te Simulation akzeptiert
 - 0, falls die i-te Simulation ablehnt
- ullet Also: $oldsymbol{P}(oldsymbol{X_i}=oldsymbol{1})\leqslant rac{1}{4}$, für alle $oldsymbol{i}$

$$ullet$$
 Sei $oldsymbol{X} \stackrel{ ext{def}}{=} \sum_{oldsymbol{i}=oldsymbol{1}}^{oldsymbol{24}|oldsymbol{x}|^k} oldsymbol{X_i}$ und $oldsymbol{ heta}=oldsymbol{1}$

- $lack P(X\geqslant 12|x|^k)\leqslant e^{-2|x|^k}\leqslant 2^{-|x|^k}$
 - (a) kann analog gezeigt werden
- ➡ Behauptung

Zufallsbasierte Algorithmen für 3-SAT: Grenzen

- Interessante Frage: gibt es für 3-SAT einen zufallsbasierten Algorithmus mit polynomieller Laufzeit?
- Als Konsequenz ergäbe sich:
 - NP ⊆ BPP oder sogar
 - $NP \subseteq RP$
- Das wird als unwahrscheinlich erachtet, insbesondere angesichts der verbreiteten Vermutung, dass
 BPP = P sein könnte:
 - Denn dann würde NP = P folgen
- Trotzdem sind Algorithmen wie der von Schöning äußerst nützlich, wie bereits im letzten Kapitel besprochen

Inhalt

- 22.1 Komplexitätsklassen mit einseitigem Fehler
- 22.2 Komplexitätsklassen mit kleinem zweiseitigen Fehler
- > 22.3 Komplexitätsklassen mit großem zweiseitigen Fehler
 - 22.4 Komplexitätsklassen-Übersicht

Probabilistische Klassen: großer, zweiseitiger Fehler

Definition (**PP**)

• PP sei die Klasse der Mengen L, für die es eine polynomiell zeitbeschränkte TM M gibt, so dass:

–
$$x \in L \Rightarrow p_{M}(x) > rac{1}{2}$$

–
$$x
otin L \Rightarrow p_M(x) \leqslant rac{1}{2}$$

Proposition 22.5

- (a) $ZPP \subseteq RP \subseteq BPP \subseteq PP$
- (b) $ZPP \subseteq co-RP \subseteq BPP \subseteq PP$
- (c) $NP \subseteq PP$
 - (a,b) folgen direkt aus den Definitionen

Beweisskizze für (c)

- ullet Sei $L\in {\sf NP}$ und M eine TM, die L nichtdeterministisch entscheidet
- ullet Idee: Konstruiere TM M', die immer mit W-keit $\geqslant rac{1}{2}$ akzeptiert

- ullet Sei M' die folgende TM (Eingabe x):
 - Falls das erste Zeichen der Zusatzeingabe ${f 1}$ ist, so akzeptiert ${m M}'$
 - Falls das erste Zeichen der Zusatzeingabe ${\bf 0}$ ist, so simuliert ${\bf M}'$ die TM ${\bf M}$ bei Eingabe ${\bf x}$ mit dem Rest der Zusatzeingabe, und akzeptiert genau dann, wenn ${\bf M}$ akzeptiert
- ullet Falls $x\in L$ ist die W-keit, dass M' akzeptiert $>rac{1}{2}$:
 - In der Hälfte aller Fälle akzeptiert M^\prime , weil das erste Bit der Zusatzeingabe ${f 1}$ ist
 - Es gibt aber auch mindestens eine Zusatzeingabe $m{y}$, für die $m{M}(m{x},m{y})$ akzeptiert
 - lacktriangleq M' akzeptiert bei Zusatzeingabe 0y
 - $ightharpoonup p_{M'}(x) > rac{1}{2}$
- ullet Klar: Falls $oldsymbol{x}
 otin oldsymbol{L}$, ist $oldsymbol{p_{M'}}(oldsymbol{x}) = rac{1}{2}$

Verhältnis der betrachteten Komplexitätsklassen

 Das folgende Diagramm illustriert die Inklusionsstruktur der betrachteten Klassen:

- Welche Komplexitätsklasse entspricht nun dem intuitiven Begriff des effizient berechenbaren am besten?
- P? Ist ein Problem in P lösbar, wissen wir, dass wir nach polynomieller Zeit die richtige Antwort bekommen
 - und das Problem, dass Polynome untragbar groß sein können, haben wir ja schon besprochen
- **ZPP**? Ist ein Problem in **ZPP** lösbar, wissen wir, dass wir immer die richtige Antwort bekommen und dies mit großer W-keit nach polynomieller Zeit passiert
- BPP? Ist ein Problem in BPP lösbar, können wir zwar nicht sicher sein, dass die Antwort des Algorithmus korrekt ist, aber die Fehler-W-keit kann beliebig klein gemacht werden
- Für jede der drei Möglichkeiten gibt es gute Gründe
- Seit einigen Jahren wird von vielen vermutet, dass die Diskussion überflüssig ist, und P = BPP gilt

Fehler-W-Keit der betrachteten Komplexitätsklassen

Klasse	max. Fehler $oldsymbol{x} \in oldsymbol{L}$	max. Fehler $oldsymbol{x} otin oldsymbol{L}$
Р	0	0
NP	< 1	0
RP	$\leqslant rac{1}{2}$	0
co-RP	0	$\leqslant rac{1}{2}$
BPP	$\leqslant rac{1}{4}$	$\leqslant rac{1}{4}$
PP	$<rac{1}{2}$	$\leqslant rac{1}{2}$

- ullet Bei **RP** und **co-RP** kann $rac{1}{2}$ durch jede beliebige Konstante $c, \, 0 < c < 1$, ersetzt werden
- ullet Bei **BPP** kann $rac{1}{4}$ durch jede Konstante $c, 0 < c < rac{1}{2}$ ersetzt werden
- NP kann also auch als eine probabilistische Komplexitätsklasse aufgefasst werden:
 - Ist $x \in L$ wird dies mit W-keit > 0 erkannt
 - Ist $oldsymbol{x}
 otin oldsymbol{L}$ wird dies mit W-keit $oldsymbol{1}$ erkannt

Inhalt

- 22.1 Komplexitätsklassen mit einseitigem Fehler
- 22.2 Komplexitätsklassen mit kleinem zweiseitigen Fehler
- 22.3 Komplexitätsklassen mit großem zweiseitigen Fehler
- > 22.4 Komplexitätsklassen-Übersicht

Es gibt noch viel mehr Komplexitätsklassen...

Zusammenfassung

- Es gibt Klassen mit einseitigem oder zweiseitigem Fehler, sowie kleinem oder großem Fehler
- Die Probleme in **ZPP**, **RP**, **co-RP**, **BPP** können durchaus als effizient berechenbar gelten

Literaturhinweise

 Christos M. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Massachusetts, 1994