Famous Theorems of Mathematics/Algebra/Linear Transformations

Lemma for the eigenspace

All eigenvectors of the linear transformation A that correspond to the eigenvalue λ form a subspace $L^{(\lambda)}$ in L.

Proof by Shilov (1969)

In fact, if $Ax_1 = \lambda x_1$, and $Ax_2 = \lambda x_2$, then

$$A(\alpha x_1 + \beta x_2) = \alpha A x_1 + \beta A x_2 = \alpha \lambda x_1 + \beta \lambda x_2 = \lambda (\alpha x_1 + \beta x_2)$$

with which the statement in the lemma is proven.

Lemma for linear independence of eigenvectors

Eigenvectors x_1, x_2, \dots, x_n of the (linear) transformation A with respective pairwise distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, are linearly independent.

Proof by Shilov (1969)

This statement is proved by induction to number n. It is obvious that for n = 1 the lemma is true. Suppose that the lemma is true for all n - 1 eigenvalues of the transformation A; it remains to show that it is true for all n eigenvectors of the transformation A. Suppose a linear combination of n eigenvectors of the transformation A is o:

$$\alpha_1 x_1 + \alpha_2 x_2 + ... + \alpha_n x_n = 0.$$

Applying transformation A to this identity, one has

$$\alpha_1\lambda_1x_1+\alpha_2\lambda_2x_2+\dots+\alpha_n\lambda_nx_n=0.$$

Multiply the first equation by λ_n and subtract from the second one; one obtains

$$\alpha_1(\lambda_1 - \lambda_n)x_1 + \alpha_2(\lambda_2 - \lambda_n)x_2 + ... + \alpha_{n-1}(\lambda_{n-1} - \lambda_n)x_{n-1} = 0,$$

from where by induction all coefficients must be zero. Distinct eigenvalues have nonzero difference, so each $\alpha_i = 0$ for i < n; the first equation reduces to

$$\alpha_n x_n = 0$$

which means $\alpha_n = 0$, too. Consequently, all coefficients α_i are o. Therefore, the vectors $x_1, x_2, ..., x_n$ are linearly independent.

Retrieved from "https://en.wikibooks.org/w/index.php? title=Famous_Theorems_of_Mathematics/Algebra/Linear_Transformations&oldid=2567769"

This page was last edited on 17 October 2013, at 21:55.

Text is available under the Creative Commons Attribution-ShareAlike License.; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy.