

Solution

1. Given the following statements, determine if they are logically equivalent using a truth table:

a.) V a	$p \land q) \equiv p$
u.	\sim \sim	P / (9) - P

р	9	рла	p v (p ^ q)	р
Т	Т	Т	Т	Т
Т	F	F	T	Т
F	Т	F	F	F
F	F	F	F	F

Since these two columns have the same truth values, they are logically equivalent.

b. $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

р	9	r	(q V r)	p Λ (q V r)	рла	pΛr	(p ∧ q) ∨ (p ∨ r)
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	F	Т
Т	F	Т	Т	Т	F	Т	Т
Т	F	F	F	F	F	F	F
F	Т	Т	Т	F	F	F	F
F	Т	F	Т	F	F	F	F
F	F	Т	Т	F	F	F	F
F	F	F	F	F	F	F	F

h b

Since columns a and b have the same truth values, then they are logically equivalent.

- 2. Label each predicate and then rewrite the argument using the logical connectors. Determine if this argument is valid or invalid.
 - a. If I go to the movies, then I won't finish my homework.

If I don't finish my homework, then I won't do well on the test tomorrow.

Therefore, if I go to the movies, then I won't do well on my test.

p = Go to the movies

q = Don't finish my homework

r = Won't do well on my test

 $p \rightarrow q$

 $q \rightarrow r$

 $:p \rightarrow r$

Which is valid due to hypothetical syllogism, one of the laws of inference.

3. Use the set of conditional laws to verify the logical equivalences:

$$(p \rightarrow q) \land (p \lor q) \equiv q$$

$(\neg p \lor q) \land (p \lor q)$	conditional law
$(\neg p \land p) \lor q$	distribution law
cVq	negation law
9	identity law

Therefore,
$$p \rightarrow q$$
) \land $(p \lor q) \equiv q$