主専攻実験 A 最終レポート

岡部 純弥

2022年7月25日

概要

本課題では、Google の検索アルゴリズムとして非常に有名な PageRank アルゴリズム [1][2] の理論を理解し、これを用いた計算機実験を行った。実際に、日本国内の主要空港間の移動者数データに対して PageRank アルゴリズムを適用し、各空港の重要度を計算した。

1 はじめに

1.1 PageRank とは

PageRank とは、Brin、Page[1] によって提案された Google の検索システムで用いられているアルゴリズムである。PageRank では、Web ページ間のハイパーリンク関係を用いて、各ページの重要度を計算する。これは、**良い** Web ページは別の良いWeb ページからリンクされているという考え方をもとに実現されている。Facts about Google and Competition *1 によると、

PageRank works by counting the number and quality of links to a page to determine a rough estimate of how important the website is. The underlying assumption is that more important websites are likely to receive more links from other websites

と確かに記載されている。またこの考え方は、論文の引用/被引用数ネットワークや共著ネットワークと非常に似ている。つまり良質な論文は、別な良質な論文からリンクされているという考え方である。 実際に PageRank アルゴリズムを用いた論文の共著システムに関する研究として、Ma et al.[3], Ding et al.[4] などが挙げられる.

1.2 応用先

PageRank は、Web サイトの重要度付けの他にも、(ソーシャル)ネットワーク分析、物理学、化学、生物学など多数の応用先がある。ソーシャルネットワーク分析の事例としては Bahmani et al.[5] などが挙げられる。また、PageRank の応用に関する総説論文としては Gleich[6]、Berkhin[7] が著名である。

2 PageRank

2.1 定義

ここでは基本的な *2 PageRank のアルゴリズムを紹介する.

u をある Web ページとする. また, u **から**リンクする Web ページの集合を F_u , u **に**リンクする Web ページの集合を B_u とする. さらに, F_u の要素数 N_u *3, 正規化するための定数 c を用いると, u のランク R(u) は式 (1) によって定義される.

$$R(u) = c \sum_{v \in B_u} \frac{R(v)}{N_v} \tag{1}$$

 $R(v)/N_v$ は、v のランクを F_u の要素数、すなわち v からリンクするページの総数で割ったものである. つまり、R(u) は u にリンクするすべてのペー

^{*1} https://web.archive.org/web/20111104131332/ https://www.google.com/competition/ howgooglesearchworks.html

 $^{^{*2}}$ Page et al.[2] の論文に基づいた

^{*3} txb5 $N_u = |F_u|$

ジに対して $R(v)/N_v$ を計算し、その総和に c を掛けたものである。したがって、ランクの高いページ からリンクされているページもまたランクが高くなる傾向にある。

式 (1) を別の観点から評価し直してみる. ある正方行列 A を考え, A の (u, v) 成分を

$$A_{u,v} = \begin{cases} 1/N_{u,v} & \text{if edge from u to v exists} \\ 0 & \text{otherwise} \end{cases}$$
 (2)

と定義する. このとき, R をベクトルとして考えると

$$R = cAR \tag{3}$$

と表すことができる.これは R が A の固有ベクトルに他ならないことを示している. *4

しかし式 (1) の定義には少し問題がある。ある 2 つのページ u' と v' が相互にリンクしており,なおかつ他のどのページともリンクしない状況を考えてみる。さらに,別のあるページが u' あるいは v' にリンクしているものとする。このとき,ランクをうまく配分することができない。そこで,式 (1) の定義を,あるベクトル E(u) *5 を用いて式 (4) に再度定義し直す。

$$R'(u) = c \left(\sum_{v \in B_u} \frac{R'(v)}{N_v} + E(u) \right) \tag{4}$$

ただし、式 (4) において $||R'||_1 = 1$ *6を満たすものとする.式 (4) は cE(u) の項によって正則化されているため、前述したような問題が起きることはない.以後、この定義を用いて議論を進める.

PageRank のより詳細な理論, およびその拡張 に関しては, Page et al.[2], Bianchini et al.[8], Langville, Meyer[9] などを参照されたい.

3 計算機実験

本課題では e-stat *7*8 上で入手できる,日本国内の主要空港*9間の令和 2 年 2 月の月間移動者数の旅客数を用いた.このデータでは,各 OD ペアに対する月間の旅客移動数が記載されている.*10

4 結果

空港	重要度
羽田	0.295
成田	0.083
新千歳	0.147
伊丹	0.101
関西	0.076
福岡	0.160
那覇	0.136

Table.1: 各空港の重要度

5 考察

空港	旅客数
羽田	20,606,398
成田	1,984,001
新千歳	$6,\!436,\!335$
伊丹	$5,\!812,\!333$
関西	$2,\!051,\!220$
福岡	$6,\!485,\!437$
那覇	6,588,217

Table.2: 令和 2 年度 年間旅客数 (国内)

 $^{^{*4}}$ さらにこのときの固有値は c である.

 $^{^{*5}}$ E(u) は Web 上のランクのソースに対応している

^{*} 6 ||R'||₁ は、R' の L_{1} 正規化ノルムを表す.

^{*&}lt;sup>7</sup> 政府統計の総合窓口

^{*8} https://www.e-stat.go.jp

^{*9} 東京国際(羽田),成田国際,新千歳,大阪国際(伊丹), 関西国際,福岡,那覇の7空港

 $^{^{*10}}$ ただし、羽田-成田間、伊丹-関西間のデータは見つからなかったため、0 人として扱っている.

空港	重要度順位	旅客数順位
羽田	1	1
成田	6	7
新千歳	3	4
伊丹	5	5
関西	7	6
福岡	2	3
那覇	4	2

Table.3

- [7] Pavel Berkhin. A survey on pagerank computing. *Internet mathematics*, 2(1):73–120, 2005.
- [8] Monica Bianchini, Marco Gori, and Franco Scarselli. Inside pagerank. ACM Transactions on Internet Technology (TOIT), 5(1):92–128, 2005.
- [9] Amy N Langville and Carl D Meyer. Deeper inside pagerank. *Internet Mathematics*, 1(3):335–380, 2004.

6 まとめ

参考文献

- [1] S. Brin and L. Page. The anatomy of a largescale hypertextual web search engine. In Seventh International World-Wide Web Conference (WWW 1998), 1998.
- [2] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab, November 1999. Previous number = SIDL-WP-1999-0120.
- [3] Nan Ma, Jiancheng Guan, and Yi Zhao. Bringing pagerank to the citation analysis. *Information Processing & Management*, 44(2):800–810, 2008.
- [4] Ying Ding, Erjia Yan, Arthur Frazho, and James Caverlee. Pagerank for ranking authors in co-citation networks. *Journal of the Ameri*can Society for Information Science and Technology, 60(11):2229–2243, 2009.
- [5] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. Fast incremental and personalized pagerank. arXiv preprint arXiv:1006.2880, 2010.
- [6] David F Gleich. Pagerank beyond the web. $siam\ REVIEW,\ 57(3):321-363,\ 2015.$