

Mise en service du Control'X [MATLAB]- 20 minutes

10	D1-01 : Mettre en œuvre un système en suivant un protocole D2-01 : Choisir le protocole en fonction de l'objectif visé.	
0bjectifs	□ D2-02 : Choisir les configurations matérielles et logicielles du système en fonction de l'objectif visé par l'expérimentation.	
ō	□ D2-03 : Choisir les réglages du système en fonction de l'objectif visé par l'expérimentation.	
	□ D2-04 : Choisir la grandeur physique à mesurer ou justifier son choix.	
Expérimenter et analyser	Activité 1 Prendre connaissance de la Fiche 1 (Présentation générale). Prendre connaissance de la Fiche 6 (Mise en service avec Matlab-Simulink).	
menter et alyser	Activité 2 Prendre connaissance de la Fiche 4 (Ingénierie Systèmes – Diagramme des exigences). Les exigences 1.4.1 et 1.3.2 sont-elles respectées pour un échelon de 5 mm.	

☐ Réaliser une synthèse dans le but d'une préparation orale :

Expliquer brièvement le contexte industriel du système.

Expliquer brièvement le fonctionnement du système de laboratoire.

Réaliser une synthèse des activités.

Pour XENS – CCINP – Centrale :

Conclure.

garder des copies d'écran dans PowerPoint ou Word

Pour CCMP:

• Rédiger les éléments de synthèse sur feuille, imprimer et annoter les courbes nécessaires.

☐ Les exigences 1.4.1 et 1.3.2 sont-elles respectées pour un échelon de 100 mm.

Modélisation du Control'X – 90 minutes

	S
	ð
	Š
S	
: =	ਠ
₹	:=
	0
Ð	0
-=	0
_0	ŏ
0	
_	ल
	·Φ

☐ B2-06 Établir un modèle de comportement à partir d'une réponse temporelle ou fréquentielle.

☐ B2-07 Modéliser un système par schéma-blocs.

bjectif

En vue de pouvoir corriger le comportement, du système, il est nécessaire de disposer d'un modèle de comportement du système.

DANS LE CADRE DE CE TP LE PILOTAGE DU CONTROL'X SE FAIT EN UTILISANT MATLAB. IL FAUT DONC FERMER LE LOGICIEL CONTROL'DRIVE.

Modéliser

Activité 1

- Ouvrir le fichier ControlX_06_Modelisation_Comportement.slx et lancer la simulation.
- ☐ Quelle est la fonction de transfert, quelle est l'entrée ?
- Expliquer comment, en analysant la courbe, retrouver les caractéristiques de la fonction de transfert.

Activité 2

Expérimenter & Modéliser

- Ouvrir le fichier ControlX_06_Modelisation_Comportement_CX.slx. Lancer la simulation. Cliquer éventuellement sur l'interrupteur pour observer le déplacement du chariot.
 - La partie supérieure du modèle permet de mettre en mouvement le Control'X.
 - La partie inférieure permet de saisir un modèle de comportement.
- ☐ A partir d'une mesure déterminer les caractéristiques da la fonction de transfert.
- ☐ Renseigner le modèle de comportement.
- ☐ Ajuster les coefficients pour que le modèle soit fidèle à l'expérimentation.
- Conclure.

Modéliser & :xpérimenter

Activité 3

- □ Lancer une simulation avec un échelon de 1 V. Que se passe-t-il ? Modifier le modèle pour qu'il s'adapte à ce comportement.
- □ Lancer une simulation avec un échelon de 50 V. Que se passe-t-il ? Modifier le modèle pour qu'il s'adapte à ce comportement.
- Conclure.

Modéliser & Expérimenter

Activité 4

- Réaliser le bouclage du système afin que modéliser (partie basse) et simuler (partie haute) le comportement de la boucle fermée.
- Conclure.

Analyser & Expérimenter

Activité 5

- ☐ Ajouter un gain proportionnel en aval du comparateur.
- ☐ En faisant varier le gain de 1 à 5, expliquer le comportement du système.

☐ Réaliser une synthèse dans le but d'une préparation orale

Pour XENS – CCINP – Centrale :

- Donner l'objectif des activités.
- Présenter les points clés de la modélisation.
- Présenter le protocole expérimental.
- Présenter la courbe illustrant les résultats expérimentaux et ceux de la résolution.
- Analyser les écarts.

Pour CCMP:

- Synthétiser les points précédents sur un compte rendu.
- Imprimer le graphe où les courbes sont superposées.