Demystifying Polygenic Scores

Workshop

BioinfoHub at the Center for Molecular Medicine (CMM)

Clara Albiñana 27/03/2025

About me

Clara Albiñana, PhD

Postdoctoral Researcher at the Big Data Institute, University of Oxford

Aarhus University

- LDpred (Vilhjalmsson et al., 2015)
- LDpred2 (Privé et al., 2020)
- MetaPGS (Albiñana et al. 2021) and MultiPGS (Albiñana et al. 2023)

Table of contents

1- Definition – What is a "polygenic score" / "polygenic risk score" / "genetic score" / "genetic index" / PGS / PRS / GRS / GRI

2- Key concepts:

- Polygenicity & genetic architecture
- Relationship between allele frequency and effect size
- Linkage disequilibrium (LD)

3- Methods

Genetic risk is only one of multiple factors that cause diseases

What is a PGS?

10 individuals with 900 common DNA locations that contribute to risk of disease

0 copies of risk allele
1 copy of risk allele
2 copies of risk allele

Key concepts

- 1) Not <u>all</u> genetic variants contribute to disease risk -> identify causal variants
- 2) Variants do not contribute equally to disease risk -> estimate weights

$$PGS_i = \sum_{j=1}^{M} \hat{\beta}_j G_{ij}$$

The optimal selection of variants (M) and the weights associated with them (β) is an active area of research.

Simplest approach - Pvalue thresholding

Weights can be effect sizes from a genome-wide association study (GWAS)

SCHIZOPHRENIA

76,755 individuals with schizophrenia and 243,649 control Trubetskoy et al. 2022

$$SCZ\ PGS_i = \sum_{j=1}^{M} \hat{\beta}_j \ G_{ij}$$

Simplest approach - Pvalue thresholding

Weights can be effect sizes from a genome-wide association study (GWAS)

SCHIZOPHRENIA

76,755 individuals with schizophrenia and 243,649 control Trubetskoy et al. 2022

$$SCZ\ PGS_i = \sum_{j=1}^{Mthreshold} \hat{\beta}_j \ G_{ij}$$

Complex trait genetics

Mendelian trait

Polygenic trait

1 causal genetic variant100% penetrance

Ear lobe attachment Hitchhiker's thumb Cystic fibrosis Thousands of causal genetic variants

Partial penetrance

Mental disorders Behavioral traits Height

Complex trait genetics

Mendelian trait

Polygenic trait

1 causal genetic variant100% penetrance

Ear lobe attachment Hitchhiker's thumb Cystic fibrosis **Everything in between**

Immune disorders
Blood biomarker levels
etc.

Thousands of causal genetic variants

Partial penetrance

Mental disorders Behavioral traits Height

Most traits show a combination of few variants with strong effect and a polygenic background

Genetic architecture of type 1 diabetes vs. Schizophrenia

TYPE 1 DIABETES

18,942 patients with T1D and 501,638 control Chiou et al. 2021

SCHIZOPHRENIA

76,755 individuals with schizophrenia and 243,649 control Trubetskoy et al. 2022

Relationship between allele frequency and effect size

Mendelian trait

Polygenic trait

Most variants have very small effects

Protein levels in blood Ferkingstad et al. 2021

Height Yengo et al. 2022

Removing other type of noise - Clumping

Linkage Disequilibrium (LD) implies that causal genetic variants are indistinguishable from nearby correlated variants

Clumping algorithms:

- 1. Define a window of SNPs, e.g. 1Mbp
- 2. Calculate correlation between all SNPs in window
- Group ones with correlation greater than, e.g. 0.1
- 4. Rank the clumped SNPs by lowest p-value
- 5. Select lowest p-value SNP to represent group
- Do until no more SNPs left

Clumping + Thresholding

LDpred ~ Modelling LD

Clumping and thresholding is a bit of a "brute force" method.

Bayesian approach that modelS the polygenicity and LD by assuming prior:

$$eta_{j} \sim egin{cases} N\left(0, rac{h_{snp}^{2}}{Mp}
ight) & with probability p \ 0 & with probability 1-p \end{cases}$$

- Where h_{snp}^2 is the heritability captured by the SNPs,
- **M** is the number of SNPs,
- p the proportion of causal SNPs.
- This prior is commonly referred to as the
- spike-and-slab prior
- Note: p = 1 is the infinitesimal model

Practical

STEP1: SIMULATE THE PHENOTYPE from real genotype data.

Create TRAINING and TEST sets

STEP2: GWAS

STEP3: Compare PGS methods for prediction

ALL SNPS

Thresholding

Clumping

Clumping + Thresholding

LDpred

Wray et al. 2020 JAMA Psychiatry