# 4장 딥러닝 시작

| ■ 날짜    | @2025년 3월 12일 → 2025년 3월 17일 |
|---------|------------------------------|
| ※ 진행 상태 | 진행 중                         |

### [목차]

4.1 인공 신경망의 한계와 딥러닝 출현

4.2 딥러닝 구조

4.2.1 딥러닝 용어

4.2.2 딥러닝 학습

순전파(feedforward)

역전파(backpropagation)

4.2.3. 딥러닝의 문제점과 해결 방안

과적합 문제(over-fitting)

기울기 소멸 문제

(NOTE) 옵티마이저 Optimizer

4.2.4 딥러닝을 사용할 때 이점

특성 추출

빅데이터의 효율적 사용

4.3 딥러닝 알고리즘

4.3.1 심층 신경망(DNN)

4.3.2 합성곱 신경망(CNN)

4.3.3 순환 신경망(RNN)

4.3.4. 제한된 볼츠신 머신

4.3.5 심층 신뢰 신경망

# 4.1 인공 신경망의 한계와 딥러닝 출현



#### 퍼셉트론

: 흐름이 있는

**다수의 신호를 입력**받아 **하나의 신호를 출력**하는데, 이 신호를 입력을 받아 '흐른다/안 흐른다(1 or 0)'는 정보를 앞으로 전달하는 원리로 작동

• AND 게이트: 모든 입력이 '1' 일 때 작동

- OR 게이트: 입력 중 둘 중 하나면 '1' 이거나 둘다 '1'일 때 작동
- XOR 게이트: 입력 중 한 개만 '1' 일 떄 작동
- ⇒ XOR 게이트는 데이터가 비선형적으로 분리되어 제대로 된 분류가 어려움 → AND, OR 연산에서는 학습이 가능, XOR 학습 불가
- ⇒ 이를 극복 : 입력층과 출력층 사이의 중간층(은닉층)

심층 신경망: 입력층과 출력층 사이에 은닉층이 여러 개 있는 신경망 = 딥러닝

# 4.2 딥러닝 구조

### 4.2.1 딥러닝 용어



### [가중치]

입력 값이 연산 결과에 미치는 영향력을 조절하는 요소

### [가중합(=전달 함수)]

각 노드에서 들어오는 신호에 가중치를 곱해 다음 노드로 전달하는데, 이 값들을 모두 더한 합계를 가중합이라고 한다.

또한, 노드의 가중합이 계산되면 이 가중합을 활성화 함수로 보내기 때문에 전달함수 (transfer function)이라고도 함

$$\sum_i (w_i x_i + b)$$

• 입력값 x\_i, 가중치 w\_i

#### [활성화 함수]

#### 시그모이드 함수(sigmoid)

- 선형 함수의 결과를 0~1 사이에서 비선형 형태로 변형
- 주로 로지스틱 회귀와 같은 분류 문제를 확률적으로 표현하는데 사용
- '기울기 소멸 문제(vanishing gradient problem)'가 발생하여 딥러닝 모델에서 잘 사용하지 않는 추세
- $f(X) = 1/(1+e^{-x})$

#### 하이퍼볼릭 탄젠트 함수(hyperbolic tangent)

- 선형 함수의 결과를 -1~1 사이에서 비선형 형태로 변형
- 시그모이드에서 결괏값의 평균이 0이 아닌 양수로 편향된 문제를 해결하는데 사용 했지만
- 여전히 기울기 소멸 문제 발생

#### 렐루 함수(ReLU)

- 최근에 활발히 사용됨
- 입력(x)이 음수일 때는 0출력, 양수일 때는 x 출력
- 경사하강법에 영향을 주지 X → 빠른 학습속도, 기울기 소멸 문제 X
- 일반적으로 은닉층에서 사용
- 하이퍼볼릭 탄젠트 함수 대비 학습 속도가 6배 빠름
- 음수값을 받으면 항상 0을 출력해 학습 능력이 감소 하는 문제가 있어 리키 렐루 함수 등을 사용

#### 리키 렐루 함수(Leaky RelU)

• 입력 값이 음수이면 0이 아닌 0.001처럼 매우 작은 수를 반환 → 입력 값이 수렴하는 구간이 제거됨(렐루 문제 해결)

#### 소프트맥스 함수(softmax)

- 입력 값을 0~1 사이에 출력되도록 정규화하여 출력 값들의 총합이 항상 1이 되도록 함
- 보통 딥러닝에서 출력 노드의 활성화 함수로 많이 사용

```
## 렐루 함수와 소프트맥스 함수 구현하기
class Net(torch.nn.Module):
  def __init__(self, n_feature, n_hidden, n_output):
    super(Net, self).__init__()
    # 은닉층
    self.hidden = torch.nn.Linear(n_feature, n_hidden)
    self.relu = torch.nn.ReLu(inplace=True)
    # 출력층
    self.out = torch.nn.Linear(n_hidden, n_output)
    self.softmax = torch.nn.Softmax(dim=n_output)
  def forward(self, x):
    x = self.hidden(x)
    # 은닉층을 위한 렐루 활성화 함수
    x = self.relu(x)
    x = self.out(x)
    # 출력층을 위한 소프트맥스 활성화 함수
    x = self.softmax(x)
    return x
```

#### [손실 함수]

경사 하강법은 학습률과 손실 함수의 순간 기울기를 이용하여 가중치를 업데이트하는 방법 평균제곱오차(Mean Squared Error, MSE)

- MSE: 실제 값과 예측 값의 차이를 제곱하여 평균
- 따라서 값이 작을수록 예측력이 좋음
- 회귀에서 손실함수로 주로 사용됨

### import torch

loss\_fn = torch.nn.MSELoss(reduction='sum')  $y_pred = model(x)$ loss = loss\_fn(y\_pred, y)

### 크로스 엔트로피 오차(CrossEntropy Error)

- 분류문제에서 원-핫 인코딩 했을 때만 사용할 수 있음
- 일반적으로 분류문제에서는 데이터의 출력을 0과 1로 구분하기 위해 시그모이드 함 수를 사용 → 시그모이드 함수에 포함된 자연 상수 e 때문에 평균 제곱 오차를 적용 하면 매끄럽지 못한 그래프가 출력됨. 따라서 크로스 엔트로피 사용
- 경사 하강법에서 학습이 지역 최소점에서 멈출 수 있음 ⇒ 자연로그를 모델의 출력 값에 취함

loss = nn.CrossEntropyL input = torch.randn(5,6, i target = torch.empty(3, coutput.backward()

$$CrossEntropy = -\sum_{i=1}^{n} y_i \log \hat{y}_i$$

 $\hat{y_i}$ : 신경망의 출력(신경망이 추정한 값)  $y_i$ : 정답 레이블

### 4.2.2 딥러닝 학습

### 순전파(feedforward)

: 네트워크에 훈련 데이터가 들어올 때 발생, 데이터를 기반으로 예측 값을 계산하기 위해 전 체 신경망을 교차해 지나감

- 모든 뉴런이 이전 층의 뉴런에서 수신한 정보에 변환(가중합 및 활성함수)을 적용하여
- 다음층 (은닉층)의 뉴런으로 전송
- 모든 뉴런 계산 완료하면 출력층에 도달

### 역전파(backpropagation)



손실함수 :네트워크의 예측 값과 실제 값의 차이(손실, 오차)를 추정

- 손실 함수 비용은 '0'이 이상적
- '0'에 가깝게 하기 위해 훈련을 반복하며 가중치를 조정

: 손실(오차)가 계산되면 그 정보는 (출력층→은닉층→입력층) 순으로 전파됨

- 손실 비용은 은닉층의 모든 뉴런으로 전파됨
- 각 뉴런이 원래 출력에 기여한 가중치에 따라 값이 달라짐
  - = 기존의 가중치 [(예측값-실제값)을 각 뉴런의 가중치로 미분]
  - → 각 값을 순전파의 가중치 값으로 사용

### 4.2.3. 딥러닝의 문제점과 해결 방안



딥러닝의 핵심 : 활성화 함수가 적용된 여러 은닉층을 결합하여 비선형 영역을 표 현

### 과적합 문제(over-fitting)

- : 훈련 데이터를 과하게 학습할 때 발생
  - 일반적으로 훈련 데이터는 실제 데이터의 일부분
  - 훈련데이터 과잉 학습 → (예측값-실제값)인 오차가 갑소 ↔ 검증 데이터에 대한 오차 증가
  - 과소적합(under-fitting) / 적정적합(generalized-fitting) / 과적합(over-fitting)

#### 드롭아웃(dropout)

: 신경망 모델이 과적합되는 것을 피하기 위해 임의로 일부 노드들의 학습을 제외시킴

class DropoutModel(torch.nn.Module):
 def \_\_init\_\_(self):

```
super(DropoutModel, self).__init__()
self.layer1 = torch.nn.Linear(784,1200)
# 50% 노드를 무작위로 선택해 사용하지 않겠다는 의미
self.dropout1 = torch.nn.Dropout(0.5)
self.layer2 = torch.nn.Linear(1200,1200)
self.dropout2 = torch.nn.Dropout(0.5)
self.layer3 = torch.nn.Linear(1200, 10)
def forward(self, x):
x = F.relu(self.layer1(x))
x = self.dropout1(x)
x = F.relu(self.layer2(x))
x = self.dropout2(x)
return self.layer3(x)
```

### 기울기 소멸 문제

: 은닉층이 많은 신경망에서 주로 발생

출력층에서 은닉층으로 전달되는 오차가 크게 줄어들어 학습이 되지 않는 현상

→ 기울기가 소멸되기 때문에 학습되는 양이 '0'에 가까워져 학습이 더디게 진행되다 오차를 줄이지 못하고 그 상태로 수렴하는 현상

#### 배치 경사 하강법(Batch Gradient Descent, BGD)

: 전체 데이터셋에 대한 오류를 구한 후, 기울기를 한 번만 계산하여 모델의 파라미터를 업데 이트

- 전체 훈련 데이터셋에 대해 가중치를 편미분
- 한 스텝에 모든 훈련 데이터셋을 사용해서 학습이 오래 걸림

#### 확률적 경사 하강법(Statistic Gradient Descent, SGD)

: 임의로 선택한 데이터에 대해 기울기를 계산

- 적은 데이터를 사용 → 빠른 계산 가능
- 파라미터 변경 폭이 불안정하고, 때로 정확도가 낮을 수 있지미나 속도가 빠르다는 장점

#### 미니 배치 경사 하강법(mini-batch gradient descent)

: 전체 데이터셋을 미니 배치 여러개로 나눔

• 미니 배치마다 기울기를 구함

- 그것의 평균 기울기를 이용해 모델을 업데이트해서 학습
- 전체 데이터 계산보다 빠르고, 확률적 경사 하강법보다 안정적

```
class CustomDataset(Dataset):
  def __init__(self):
     self.x_data = [[1,2,3]],[4,5,6],[7,8,9]]
     self.y_data = [[12],[18],[11]]
     def __len__(self):
       return len(self.x_data)
    def __getitem__(self, idx):
       x = torch.FloatTensor(self.x_data[idx])
       y = torch.FloatTensor(self.y_data[idx])
       return x,y
  dataset = CustomDataset()
  dataloader = DataLoader(
     dataset,
     batch_size=2,
    shuffle=True
  )
```

### (NOTE) 옵티마이저 Optimizer

: 확률적 경사 하강법의 파라미터 변경 폭이 불안정한 문제를 해결하기 위해 학습 속도와 운 동량을 조절하는 옵티마이저를 적용할 수 있다



### 4.2.4 딥러닝을 사용할 때 이점

### 특성 추출

: 데이터별로 어떤 특징을 가지고 있는지 찾아내고, 그것을 토대로 데이터를 벡터로 변환하는 작업

- 딥러닝에서는 특성 추출 과정을 알고리즘에 통합시킴
- 데이터 특성을 잡아내고자 은닉층을 깊게 쌓는 방식으로 파라미터를 늘린 모델 구조 덕분

### 빅데이터의 효율적 사용

딥러닝 학습을 이용한 특성 추출은 데이터 사례가 많을수록 성능이 향상됨.

# 4.3 딥러닝 알고리즘

## 4.3.1 심층 신경망(DNN)

: 입력층과 출력층 사이에 다수의 은닉층을 포함하는 인공 신경망

• 다양한 비선형적 관계를 학습할 수 있음

- 연산량이 많고, 기울기 소멸 문제 등 발생
- 이를 위해 드롭아웃, 렐루 함수, 배치 정규화 등 필요

# 4.3.2 합성곱 신경망(CNN)

: 합성곱층(convolutional layer)과 풀링층(pooling layer)을 포함하는 이미지 처리 성능이 좋은 인공 신경망 알고리즘

- 영상 및 사진이 포함된 이미지 데이터에서 객체 탐색, 위치 탐지에 유용함
- 이미지에서 객체, 얼굴, 장명을 인식하기 위해 패턴을 찾는 데 유용함



대표적인 CNN: LeNEt-5, AlexNet

층이 더 깊은 신경망: VGG, GoogLeNet, ResNet



- 각 층의 입출력 형상을 유지
- 이미지의 공간 정보를 유지하면서 인접 이미지와 차이가 있는 특징을 효과적으로 인식
- 복수 필터로 이미지의 특성을 추출하고 학습
- 추출한 이미지의 특징을 모으고 강화하는 풀링층
- 필터를 공유 파라미터로 사용하기 때문에 일반 인공 신경망과 비교하여 학습 파라미터가 매우 적음

### 4.3.3 순환 신경망(RNN)

: 시계열 데이터(음악, 영상 등) 같은 시간 흐름에 따라 변화하는 데이터를 학습하기 위한 인 공 신경망

• '순환': 자기 자신을 참조한다는 뜻, 현재 결과가 이전 결과와 연관 있다는 의미





- 시간성(temporal property)을 가진 데이터가 많음
- 시간성 정보를 이용하여 데이터 특징을 잘 다룸
- 시간에 따라 내용이 변하므로 데이터는 동적, 길이가 가변적
- 매우 긴 데이터를 처리하는 연구가 활발히 진행됨
- 순환 신경망은 기울기 소멸문제로 학습이 제대로 되지 않는 문제가 있음
- → 이를 해결하고자 메모리 개념을 도입한 LSTM이 많이 사용됨

### 4.3.4. 제한된 볼츠신 머신

: 가시층(visible layer)와 은닉층(hidden layer)로 구성되는데 가시층은 은닉층과만 연결된 모델 가시층과 가시층, 은닉층과 은닉층 사이 연결 X



- 차원 감소, 분류, 선형 회귀 분석, 협업 필터링, 특성 값 학습, 주제 모델링
- 기울기 소멸 문제를 해결하기 위해 사전 학습 용도로 활용 가능
- 심층 신뢰 신경망(DBN)의 요소로 활용됨

### 4.3.5 심층 신뢰 신경망

- : 입력층과 은닉층으로 구성된 볼츠만 머신을 블록처럼 여러 층으로 쌓은 형태로 연결된 신 경망
- → 사전 훈련된 제한된 볼츠만 머신을 층층히 쌓아 올린 구조로, 레이블이 없는 데이터에 대한 비지도 학습이 가능

#### [학습 절차]

- 1. 가시층과 은닉층 1에 제한된 볼츠만 머신을 사전 훈련
- 2. 첫 번째 층 입력 데이터와 파라미터를 고정하여 두 번째 층 제한된 볼츠만 머신을 사전 훈련
- 3. 원하는 층 개수만큼 제한된 볼츠만 머신을 쌓아 올려 전체 DBN을 완성



- 순차적으로 심층 신뢰 신경망을 학습시켜 계층적 구조를 생성
  - 비지도 학습으로 학습
  - 위로 올라갈수록 추상적 특성을 추출
  - 학습된 가중치를 다중 퍼셉트론의 가중치 초깃값으로 사용