Optimization and Data Science

Lecture 5: Optimality Conditions

Prof. Dr. Thomas Slawig

Kiel University - CAU Kiel Dep. of Computer Science

Summer 2020

- Optimality Conditions
 - Existence Results
 - Optimality conditions for differentiable functions in one dimension
 - Differentiability in \mathbb{R}^n
 - First Order Necessary Condition for Unconstrained Problems
 - First Order Necessary Condition for Constrained Problems

Continuous optimization

Unconstrained continuous optimization problems:

$$X_{ad} = X = \mathbb{R}^n$$

• Constrained continuous optimization problems:

$$X_{ad} \subset X = \mathbb{R}^n, X_{ad} \neq X.$$

- Integer problems can be relaxed:
 - ullet Replace $X=\mathbb{Z}$ by $\hat{X}=\mathbb{R}$
 - \bullet Compute solution in $\mathbb R$
 - Project onto \mathbb{Z} by rounding to (nearest) integer value.
- Similar for $\mathbb{N} \to \mathbb{R}_{\geq 0}, \{0,1\} \to [0,1]$.
- Component-wise for vectors.
- Attention: Continuous optimization problem means $x \in \mathbb{R}^n$
- f continuous means

$$\lim_{x \to \bar{x}} f(x) = f(\bar{x})$$

- Optimality Conditions
 - Existence Results
 - Optimality conditions for differentiable functions in one dimension
 - Differentiability in \mathbb{R}^n
 - First Order Necessary Condition for Unconstrained Problems
 - First Order Necessary Condition for Constrained Problems

Existence result for optimum

Result from mathematical analysis:

Theorem (Weierstrass)

If $f: \mathbb{R}^n \supset X_{ad} \to \mathbb{R}$ is continuous on the closed and bounded set X_{ad} , then there exists at least one global minimizer $x^* \in X_{ad}$ (and also a global maximizer).

• X_{ad} closed: boundary points belong to X_{ad} :

$$(x_k)_{k\in\mathbb{N}}\subset X_{ad}, x_k\to x\Longrightarrow x\in X_{ad}$$

Examples: [0,1] closed, (0,1), [0,1) not closed, \mathbb{R} closed

• X_{ad} bounded subset of \mathbb{R}^n :

$$\exists M \in \mathbb{R} \ \forall x \in X_{ad} : \|x\| \leq M.$$

Example for Weierstrass Theorem

The function $f: \mathbb{R} \to \mathbb{R}, f(x) = x$ is continuous. It has ...

- ... no global minimizer or maximizer on $X_{ad} = X = \mathbb{R}$ (closed, but not bounded)
- ... a global minimizer, but no maximizer on $X_{ad} = \mathbb{R}_{>0}$ (closed, but not bounded)
- ... a global maximizer, but no minimizer on $X_{ad} = \mathbb{R}_{<0}$ (closed, but not bounded)
- ... a global minimizer and maximizer on $X_{ad} = [a, b]$, $a \le b$ (closed and bounded)
- ... no minimizer or maximizer on $X_{ad} = (a, b)$ (bounded, but not closed)

Example for Weierstrass Theorem

The function $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$ is continuous.

- ... a global minimizer, but no maximizer on $X_{ad} = X = \mathbb{R}$ (closed, but not bounded)
- ... a global minimizer, but no maximizer on $X_{ad} = \mathbb{R}_{\geq 0}$ (closed, but not bounded)
- ... a global minimizer, but no maximizer on $X_{ad} = \mathbb{R}_{\leq 0}$ (closed, but not bounded)
- ... a global minimizer and maximizer on $X_{ad} = [a, b]$, $a \le b$ (closed and bounded)
- ... a global minimizer, but no maximizer on $X_{ad} = (a, b)$ (bounded, but not closed)

 \rightsquigarrow The Weierstrass Theorem provides a **sufficient** condition (X_{ad} closed and bounded). It is **not** a **necessary** condition for the existence of a minimizer/maximizer.

Example for Weierstrass Theorem

Consider the function $f: \mathbb{R} \to \mathbb{R}, f(x) = e^x$. Is it continuous? Using the Weierstrass Theorem, what can be said about existence of global minimizers and maximizers ...

• ... on
$$X_{ad} = (-\infty, 0]$$
?

• ... on
$$X_{ad} = (-\infty, 0)$$
?

• ... on
$$X_{ad} = (0, \infty)$$
?

• ... on
$$X_{ad} = [0, \infty)$$
?

• ... on
$$X_{ad} = (0,1]$$
 and $X_{ad} = (0,1)$?

• ... on
$$X_{ad} = [0,1]$$
 and $X_{ad} = [0,1]$?

• ... on
$$X_{ad} = (-1, 0]$$
 and $X_{ad} = (-1, 0)$?

• ... on
$$X_{ad} = [-1, 0]$$
 and $X_{ad} = [-1, 0]$?

Radially unbounded functions

The sets $\mathbb R$ and $\mathbb R^n$ are not bounded \leadsto theorem not useful for unconstrained problems, but ...

Definition

A function $f: \mathbb{R}^n \to \mathbb{R}$ is called **radially unbounded** if

$$\lim_{\|x\|\to\infty}f(x)=+\infty,$$

i.e., for any unbounded sequence, the function value becomes unbounded from above, too.

Corollary

If $f: \mathbb{R}^n \to \mathbb{R}$ is continuous and radially unbounded, then it has at least one global minimizer.

Radially unbounded functions: Examples

Minimum of radially unbounded functions

Corollary

If $f: \mathbb{R}^n \to \mathbb{R}$ is continuous and radially unbounded, then it has at least one global minimizer.

Proof.

- Fix any $\hat{x} \in \mathbb{R}^n$. Define $S := \{x \in \mathbb{R}^n : f(x) \le f(\hat{x})\}$
- *S* is closed:

Continuity of f: For any sequence $(x_k)_k \subset S, x_k \to x$, we have $\lim_{k \to \infty} f(x_k) = f(x)$. $\Rightarrow f(x) = \lim_{k \to \infty} f(x_k) < f(\hat{x}) \Rightarrow x \in S$.

• Moreover, *S* is bounded:

Assume S is unbounded: Then there exists a sequence $(x_k)_k$ in S with $||x_k|| \to \infty$.

f is radially unbounded: $(f(x_k))_k$ is unbounded, i.e., $f(x_k) > f(\hat{x})$ for k big enough.

Thus, $x_k \notin S$. Contradiction.

- Optimality Conditions
 - Existence Results
 - Optimality conditions for differentiable functions in one dimension
 - Differentiability in \mathbb{R}^n
 - First Order Necessary Condition for Unconstrained Problems
 - First Order Necessary Condition for Constrained Problems

Optimality conditions for differentiable functions in 1-D, $X_{ad} = X = \mathbb{R}$

- First order necessary condition $f'(x^*) = 0$
- Example: $f(x) = x^2$ local minimum at $x^* = 0$, there: $f'(x^*) = 2x^* = 0.$
- Second order sufficient condition $f'(x^*) = 0$, $f''(x^*) > 0$.
- $f(x) = x^2$: local minimum at $x^* = 0$, $f''(x^*) = 2 > 0$.
- $f(x) = x^4$: local minimum at $x^* = 0$. $f'(x^*) = 4x^{*3} = 0$. $f''(x^*) = 12x^{*2} = 0$, but $f''(x^*) = 12x^{*2} > 0$.
- If $f'(x^*) = 0$ and $f''(x^*) < 0$, then maximum.
- \rightarrow Second order necessary condition for minimum: $f'(x^*) = 0$ and $f''(x^*) > 0$.
- $X_{ad} \neq X$ (e.g., interval) \rightsquigarrow check boundary points.

 $f(x)=x^2$

- Optimality Conditions
 - Existence Results
 - Optimality conditions for differentiable functions in one dimension
 - Differentiability in \mathbb{R}^n
 - First Order Necessary Condition for Unconstrained Problems
 - First Order Necessary Condition for Constrained Problems

Generalization to \mathbb{R}^n : First order derivative

• The gradient of f at $x \in \mathbb{R}^n$ is defined as

$$\nabla f(x) := \left(\frac{\partial f}{\partial x_k}(x)\right)_{k=1}^n \in \mathbb{R}^n$$

with components (the partial derivatives):

$$\frac{\partial f}{\partial x_k}(x) := \lim_{h \to 0} \frac{f(x + he_k) - f(x)}{h}, \quad k = 1, \dots, n$$

Here $e_k = (0, \dots, 0, 1, 0, \dots, 1)$ is the k-the unit vector.

Example: First order derivative

• Function $f: \mathbb{R}^2 \to \mathbb{R}$:

$$f(x) = f(x_1, x_2) = 4x_1^2 + 5x_1x_2 + 6x_2^2 + 7x_1 + 8x_2 + 9.$$

• Compute the partial derivatives and the gradient.

Example: First order derivative

• Function $f: \mathbb{R}^2 \to \mathbb{R}$:

$$f(x) = f(x_1, x_2) = 4x_1^2 + 5x_1x_2 + 6x_2^2 + 7x_1 + 8x_2 + 9.$$

Partial derivatives:

$$\frac{\partial f}{\partial x_1}(x_1, x_2) = 8x_1 + 5x_2 + 7$$
$$\frac{\partial f}{\partial x_2}(x_1, x_2) = 5x_1 + 12x_2 + 8.$$

• Gradient:

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_k}(x)\right)_{k=1}^2 = \left(\begin{array}{c} 8x_1 + 5x_2 + 7\\ 5x_1 + 12x_2 + 8 \end{array}\right)$$

- Optimality Conditions
 - Existence Results
 - Optimality conditions for differentiable functions in one dimension
 - Differentiability in \mathbb{R}^n
 - First Order Necessary Condition for Unconstrained Problems
 - First Order Necessary Condition for Constrained Problems

First order necessary condition

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ have all partial derivatives in the local minimizer $x^* \in \mathbb{R}^n$. Then $\nabla f(x^*) = 0$.

Proof.

- x^* local minimizer $\Rightarrow f(x^* + he_k) f(x^*) \ge 0$ for h > 0 small.
- Division by $h > 0 \Rightarrow \frac{f(x^* + he_k) f(x^*)}{h} \ge 0$.
- f partially differentiable $\Rightarrow \frac{\partial f}{\partial x_k}(x) = \lim_{h \to 0} \frac{f(x^* + he_k) f(x^*)}{h} \ge 0.$
- Analogously: $f(x^* + he_k) f(x^*) \ge 0$ for h < 0 small, division by h < 0 changes inequality $\Rightarrow \frac{\partial f}{\partial x_k}(x^*) = \lim_{h \to 0} \frac{f(x^* + he_k) f(x^*)}{h} \le 0$.
- $\frac{\partial f}{\partial x_k}(x^*) \ge 0$ and $\frac{\partial f}{\partial x_k}(x^*) \le 0$ gives $\frac{\partial f}{\partial x_k}(x^*) = 0$. This holds for all k.

Example: First order necessary optimality condition

• Function $f: \mathbb{R}^2 \to \mathbb{R}$:

$$f(x) = f(x_1, x_2) = 4x_1^2 + 5x_1x_2 + 6x_2^2 + 7x_1 + 8x_2 + 9.$$

• Gradient:

$$\nabla f(x) = \begin{pmatrix} 8x_1 + 5x_2 + 7 \\ 5x_1 + 12x_2 + 8 \end{pmatrix} = 0$$

• Two linear equations: there exists a (unique) solution.

Example: First order necessary optimality condition

 Gradient: Two linear equations: there exists a (unique) solution.

$$\nabla f(x) = \begin{pmatrix} 8x_1 + 5x_2 + 7 \\ 5x_1 + 12x_2 + 8 \end{pmatrix} = 0$$

• It is a minimum, since the function has no maximum:

- Optimality Conditions
 - Existence Results
 - Optimality conditions for differentiable functions in one dimension
 - Differentiability in \mathbb{R}'
 - First Order Necessary Condition for Unconstrained Problems
 - First Order Necessary Condition for Constrained Problems

Admissible directions

- If X_{ad} is bounded, a minimizer can be on the boundary.
- At the boundary, we cannot compute the limit in the partial derivatives

$$\frac{\partial f}{\partial x_k}(x) := \lim_{h \to 0} \frac{f(x + he_k) - f(x)}{h},$$

• It can only be considered in special directions:

Definition

For $x \in X_{ad} \subset \mathbb{R}^n$ we call $d \in \mathbb{R}^n$ an **admissible direction** (in x), if there exists $h_0 > 0$ with $x + hd \in X_{ad}$ for all $h \in (0, h_0)$.

Directional derivatives

Definition

Let $f: X_{ad} \to \mathbb{R}, x \in X_{ad} \subset \mathbb{R}^n$ and $d \in \mathbb{R}^n$ be an admissible direction (in x). If the limit

$$Df(x;d) := \lim_{h \downarrow 0} \frac{f(x+hd) - f(x)}{h} \tag{1}$$

exists, f is called **differentiable in direction** d, and (1) is called **directional derivative**.

- The directional derivative is a generalization of the partial derivative.
- It is useful at boundary points ...
- and if f is not differentiable in some point x,

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = |x|,$$

• If f has continuous partial derivatives in x, then

$$Df(x; d) = \nabla f(x)^{\top} d$$
 for all $d \in \mathbb{R}^n$.

Generalization of first order necessary condition

Theorem

Let $x^* \in X_{ad}$ be a local minimizer of $f: X_{ad} \to \mathbb{R}$. If f is differentiable at x^* in direction $d \in \mathbb{R}^n$, then $Df(x^*; d) \ge 0$.

Proof.

•
$$Df(x^*; d) = \lim_{h \downarrow 0} \frac{f(x^* + hd) - f(x^*)}{h}$$
 exists.

- \Rightarrow d is admissible direction $\Rightarrow x^* + hd \in X_{ad}$ for small h > 0.
 - x^* local minimizer: $\Rightarrow f(x^* + hd) f(x^*) \ge 0$ for small h > 0.
- $\Rightarrow \frac{f(x^* + hd) f(x^*)}{h} \ge 0$ for small h > 0.
- Let $h \downarrow 0$: $Df(x^*; d) = \lim_{h \downarrow 0} \frac{f(x^* + hd) f(x^*)}{h} \ge 0$.

Prof. Dr. Thomas Slawig

What is important?

- The Weierstrass Theorem gives the existence of global optima in a closed bounded set for continuous functions ...
- ... but it is not directly applicable for unbounded sets, i.e., unconstrained problems.
- Radial boundedness may help to use the theorem also for unconstrained problems.
- Differentiability of the cost function provides a first order necessary condition for minima.
- The concept of differentiability can be extended to *n* dimensions.
- For unconstrained problems, the necessary condition is that the gradient vanishes.
- For constrained problems, we use the directional derivative and admissible directions.
- At a minimizer, the directional derivative is greater or equal to zero in all admissible directions.