# TUGAS OUTLIER

# MATA KULIAH MANAJEMEN DAN ANALISIS DATA DENGAN R



# ASTI OKTOVIANTI SUNMAYA ANANDA PUTRI NPM. 131520220005

PROGRAM STUDI EPIDEMIOLOGI FAKULTAS KEDOKTERAN UNIVERSITAS PADJADJARAN 2023

#### #reading data

pef\_final

# #1. Mengidentifikasi outlier berdasarkan kriteria dan visualisasi grafik boxplot summary(pef\_final\$pef)

| Min. | 1st Qu. | Median          | Mean  | 3rd Qu. | Max.  |
|------|---------|-----------------|-------|---------|-------|
| 10.0 | 280.0   | Median<br>355.0 | 367.4 | 450.0   | 951.0 |

boxplot(pef\_final\$pef,col="aquamarine",main ="PEF Score")

PEF Score

#2. Menentukan cut off outlier (batas atas dan bawah) dari grafik boxplot tersebut.

min(boxplot(pef\_final\$pef, plot = FALSE)\$out)
max(boxplot(pef\_final\$pef, plot = FALSE)\$out)

| Min | Max |
|-----|-----|
| 10  | 951 |

quartiles <- quantile(pef\_final\$pef, probs=c(.25, .75), na.rm=FALSE)
quartiles</pre>

| 25% | 75% |
|-----|-----|
| 280 | 450 |

IQR <- IQR(pef\_final\$pef)</pre>

IQR

| 170 |  |
|-----|--|
|     |  |
|     |  |

Lower <- quartiles[1] - 1.5\*IQR

Lower

| 25% |
|-----|
| 25  |

Upper <- quartiles[2] + 1.5\*IQR

Upper

| 75% |
|-----|
| 705 |

#### #3. Membuat dataset yang tidak berisi outlier sesuai cut off no 2.

pef\_final\_no <- subset(pef\_final, pef\_final\$pef > Lower

summary(pef\_final\_no\$pef)

| Min. 1st Qu. | Median | Mean 3rd Qu. | Max.  |
|--------------|--------|--------------|-------|
| 30.0 280.0   | 350.0  | 366.2 450.0  | 700.0 |

boxplot(pef\_final\_no\$pef, col="aquamarine")



#4. Melakukan tes normalitas pada dataset dengan outlier dan tanpa outlier.

#For Big Sample (Kolmogrov-Smirnov)

library(nortest)

lillie.test(pef\_final\$pef)

```
Lilliefors (Kolmogorov-Smirnov) normality test

data: pef_final$pef

D = 0.055561, p-value < 2.2e-16
```

lillie.test(pef\_final\_no\$pef)

```
Lilliefors (Kolmogorov-Smirnov) normality test

data: pef_final_no$pef

D = 0.053763, p-value < 2.2e-16
```

#5. Membuat grafik QQ line untuk membandingkan visualisasi nilai pef pada dataset dengan outlier dan tanpa outlier.

qqnorm(pef\_final\$pef); qqline(pef\_final\$pef)

(DENGAN OUTLIERS)

#### Normal Q-Q Plot



#### Normal Q-Q Plot



#6. Membuat scatterplot yang memperlihatkan hubungan antara pef dengan height, dengan penambahan garis linear/regresi dan smoothed dengan loes (local regression smoothing).

plot(pef\_final\_no\$pef~pef\_final\_no\$height, xlab = "Tinggi Badan(cm)",
ylab="Peak Expiratory Flow", main="Sebaran PEF berdasarkan Tinggi Badan")

#### Sebaran PEF berdasarkan Tinggi Badan



smoothScatter(pef\_final\_no\$pef~pef\_final\_no\$height, xlab = "Tinggi Badan(cm)",
ylab="Peak Expiratory Flow", main="Sebaran PEF berdasarkan Tinggi Badan")





abline(Im(pef\_final\_no\$pef~pef\_final\_no\$height, data = pef\_final\_no), col = "blue")
lines(lowess(pef\_final\_no\$height, pef\_final\_no\$pef), col = "red")

#### Sebaran PEF berdasarkan Tinggi Badan



#7. Membuat scatterplot yang memperlihatkan hubungan antara pef dengan umur, dengan penambahan garis linear/regresi dan smoothed dengan loes (local regression smoothing).

plot(pef\_final\_no\$pef~pef\_final\_no\$age, xlab = "Usia(Tahun)",
 ylab="Peak Expiratory Flow", main="Sebaran PEF berdasarkan Usia")

#### Sebaran PEF berdasarkan Usia



smoothScatter(pef\_final\_no\$pef~pef\_final\_no\$height, xlab = "Usia(Tahun)",
ylab="Peak Expiratory Flow", main="Sebaran PEF berdasarkan Usia")

#### Sebaran PEF berdasarkan Usia



abline(Im(pef\_final\_no\$pef~pef\_final\_no\$age, data = pef\_final\_no), col = "blue")
lines(lowess(pef\_final\_no\$age, pef\_final\_no\$pef), col = "red")

### Sebaran PEF berdasarkan Usia

