Introduction

This MATLAB code package implements a Kalman filter to estimate the mounting angles of a IMU with respect to the host vehicle, as described in the manuscript "Estimation of IMU Mounting Angles for Land Vehicular GNSS/INS Integrated System" by Qijin Chen *et al.* It is aimed at helping the readers to understand the manuscript and implement the algorithm. This self-contained package includes all required files and data.

How to use this package

- 1) Copy this package including all subdirectories and files to your computer.
- 2) Set the directory as the current path of the MATLAB.
- 3) Run 'main.m' to start the data processing.

Then try to change the data files (cfg.fins) or the segment of trajectory used for mounting angle estimation.

Data format definition.

Table 1 GNSS/INS smoothing result format

column	quantity		unit	
1	Time		s	double
2	position	latitude	deg	double
3		longitude	deg	double
4		height	m	double
5	Horizontal	east	m	double
6	position	north	m	double
7	velocity	north	m/s	double
8		east	m/s	double
9		downward	m/s	double
10	attitude	roll	deg	double
11		pitch	deg	double
12		heading	deg	double
13	position standard	north	m	double
	deviation (STD)			
14		east	m	double
15		height	m	double
16	velocity standard	north	m/s	double
17	deviation (STD)	east	m/s	double
18		downward	m/s	double
19	attitude standard	roll	deg	double
	deviation (STD)			
20		pitch	deg	double
21		heading	deg	double

Table 2 DR input data format (i.e., data_ains matrix)

column	quantity		unit	maurx)
1	Time		S	double
2		latitude	rad	double
3	position	longitude	rad	double
4	'	height	m	double
5	Horizontal	east	m	double
6	position	north	m	double
7		north	m/s	double
8	velocity	east	m/s	double
9	_	downward	m/s	double
10		roll	deg	double
11	attitude	pitch	deg	double
12		heading	deg	double
13	position	north	m	double
14	standard	east	m	double
15	deviation (STD)	height	m	double
16	velocity	north	m/s	double
17	standard	east	m/s	double
18	deviation (STD)	downward	m/s	double
19	attitude	roll	deg	double
20	standard	pitch	deg	double
21	deviation (STD)	heading	deg	double
22	distance		m	double