Q1d.	n	Weighted Avg	Lower Bound	Upper Bound
	1	0	0	0
	2	0	0	0
	3	1	0	1
	4	3	0	3
	5	5	0	6
	6	7	0	10
	7	10	0	15
	8	14	0	21
	9	18	0	36
	10	22	0	45

	Chart Title
50	
45	
40	
35	
30	
25	
20	
15	
10	
5	
0	
	1 2 3 4 5 6 7 8 9 10
	Weighted Avg Lower Bound Upper Bound

It's growing asymtotically because it is within upper and lower bound.

Q1e. The best, average, and worst case for weighted average function is $O(N^2)$. This is the same as the Selection sort algorithm.

		Range		
Q1f.	N	Lower Bound	Upper Bound	
	0	0	0	
	1	0	0	
	2	0	1	
	3	0	3	
	4	0	6	
	5	0	10	
	6	0	15	
	7	0	21	
	8	0	28	
	9	0	36	

b = upper bound general formula: Bn = Bn-1 + (n-1)

<u>Current upper bound = previous upper</u> <u>bound + previous N</u>

10	0	45

Q3a. O(n^2)

Q3b. Faster. Because 2^n is larger than n^2, for example when n = 9: $2^9 = 512$; $9^2 = 81$

2; 9^2 = 81