7. Esercizi riassuntivi

7.1 Esercizio

Una connessione TCP tra l'host A e l'host B nelle rete in figura è caratterizzata dai seguenti parametri: lunghezze di header e ack trascurabili, link bidirezionali simmetrici, MSS = 1250 B, SSTHRESH = 8 MSS.

Si calcoli il tempo necessario a trasferire un file di 30 kB (dall'istante di tempo di attivazione della connessione all'istante di ricezione dell'ACK dell'ultimo segmento).

(nota la soluzione è la stessa se si scambiano di posto il link 1 con il link 2)

Soluzione

$$MSS = 1250 \cdot 8 \ bit = 10.000 \ bit$$

tempi di trasmissione da A, R1 e R2: $T_1 = 1 \text{ ms}, T_2 = 5 \text{ ms}, T_3 = 0.5 \text{ ms}$

$$RTT = T_1 + T_2 + T_3 + 2\tau_1 + 2\tau_2 + 2\tau_3 = 46.5 \text{ ms}$$

Considerando che il link più lento è il link 2

numero di pacchetti della finestra per cui la trasmissione è continua $W_{cont} = \left[\frac{RTT}{T_2}\right] = \left[\frac{46.5}{5}\right] = 10$

dimensione del file da trasferire $F = \frac{30}{1.25} = 24 MSS$

Modalità slow start: (1) - (2) - (4) - (8)

Modalità congestion avoidance: (9)

$$T_{tot} = T_{open} + 4RTT + RTT + 8T_2 = 40 + 5 \cdot 46.6 = 312.5 \text{ ms}$$

 T_{open} è tempo di setup della connessione

4 RTT x il trasferimento in modalità slow start (in totale 15 pacchetti)

8T2 + RTT per gli ultimi 9 pacchetti rimanenti in modalità Cong. Avoidance (domina il link più lento e quindi si considera T2. RTT qui include il tempo di trasferimento dell'ultimo pacchetto e il tempo di arrivo del suo riscontro ad A).

7.2 Esercizio

Si assuma che A sia un server http e B un client http. Occorre trasferire un documento di 100 kB base e 10 immagini di 5 MB. Si consideri che il messaggio usato per aprire una connessione sia trascurabile e il tempo di setup della connessione sia 40 ms. Si calcoli il tempo necessario assumendo il RTT di 46,5 ms e un ritmo medio di trasmissione di 1 Mb/s nel caso di connessione http persistente e non persistente (con trasmissione in parallelo delle immagini).

Soluzione

Caso di connessione persistente:

$$\begin{split} R_{html} &= R_{obj} = 1 \; Mbps \\ T_{tot} &= T_{open} + \left(RTT + \frac{L_{html}}{R_{html}}\right) + 10\left(RTT + \frac{L_{obj}}{R_{obj}}\right) = 401,3515 \; s \end{split}$$

Caso di connessione non-persistente:

$$\begin{split} R_{html} &= 1 \, Mbps \\ R_{obj} &= \frac{C}{10} = 0.1 \, Mbps \\ T_{tot} &= \left(T_{open} + RTT + \frac{L_{html}}{R_{html}}\right) + \left(T_{open} + RTT + \frac{L_{obj}}{R_{obj}}\right) = 400,973 \, s \end{split}$$

7.3 Esercizio

Si completi la figura in accordo alle regole del protocollo Go-back-N con N=3. Si inseriscano i valori di SN ed RN, si indichino gli istati di accettazione delle trame corrette e in sequenza.

Soluzione

7.4 Esercizio

Un ISP possiede il seguente spazio di indirizzamento IP: 29.88.192.0/22 La rete complessiva dell'ISP è rappresentata in figura.

Indicare le sotto-reti IP graficamente nella figura, mettendone in evidenza i confini.

7.5 <u>Esercizio</u>

Un router ha le seguenti interfacce e tabella di routing. Riceve i pacchetti con destinazione indicati sotto. Si dica per ciascuno di essi come si comporta il router: inoltro diretto o indiretto, interfaccia di uscita, riga della tabella.

Eth0 - Address: 131.175.21.254 - Netmask: 255.255.255.128 Eth1: Address: 131.175.20.126 - Netmask: 255.255.255.128

Network	Netmask	Next-hop
131.175.70.0	255.255.254.0	131.175.21.133
131.175.71.128	255.255.255.128	131.175.21.145
131.175.72.0	255.255.254.0	131.175.20.5
0.0.0.0	0.0.0.0	131.175.20.1

131.175.71.72	131.175.73.12	
131.175.20.12 da Eth0		

Soluzione

131.175.71.72	131.175.73.12
Inoltro indiretto riga 1	Inoltro indiretto riga 3
131.175.20.12 da Eth0 Inoltro diretto su Eth1	

7.6 Esercizio

Nella rete a commutazione di pacchetto in figura, al tempo t=0 sono presenti 6 pacchetti in A diretti rispettivamente alle seguenti destinazioni: C, D, E, E, F, E. Calcolare l'istante di fine ricezione di ciascuno dei pacchetti a destinazione assumendo che i pacchetti abbiamo le seguenti dimensioni: pacchetti verso C, L_C = 375 byte; pacchetti verso D, L_D = 250 byte; pacchetti verso E, L_E = 375 byte; pacchetti verso F, L_F = 125 byte.

Soluzione

$$T_{1}^{C} = \frac{L_{C}}{C_{1}} = \frac{375 * 8 \ bit}{200 \ kbps} = 15 \ ms$$

$$T_{3}^{E} = \frac{L_{E}}{C_{3}} = \frac{375 * 8 \ bit}{250 \ kbps} = 12 \ ms$$

$$T_{6}^{E} = \frac{L_{E}}{C_{6}} = \frac{375 * 8 \ bit}{100 \ kbps} = 30 \ ms$$

$$T_{7}^{E} = \frac{L_{E}}{C_{4}} = \frac{375 * 8 \ bit}{100 \ kbps} = 30 \ ms$$

$$T_{1}^{E} = \frac{L_{C}}{C_{1}} = \frac{375 * 8 \ bit}{200 \ kbps} = 10 \ ms$$

$$T_{1}^{F} = \frac{L_{E}}{C_{1}} = \frac{250 * 8 \ bit}{200 \ kbps} = 10 \ ms$$

$$T_{1}^{F} = \frac{L_{F}}{C_{1}} = \frac{125 * 8 \ bit}{200 \ kbps} = 5 \ ms$$

$$T_{1}^{F} = \frac{L_{F}}{C_{1}} = \frac{125 * 8 \ bit}{250 \ kbps} = 4 \ ms$$

$$T_{1}^{F} = \frac{L_{F}}{C_{1}} = \frac{125 * 8 \ bit}{100 \ kbps} = 10 \ ms$$

$$T_{1}^{F} = \frac{L_{F}}{C_{1}} = \frac{125 * 8 \ bit}{100 \ kbps} = 10 \ ms$$

$$T_{1}^{F} = \frac{L_{F}}{C_{1}} = \frac{125 * 8 \ bit}{100 \ kbps} = 10 \ ms$$

$$T_{1}^{F} = \frac{L_{F}}{C_{1}} = \frac{125 * 8 \ bit}{100 \ kbps} = 10 \ ms$$

$$T_{1}^{F} = \frac{L_{F}}{C_{1}} = \frac{125 * 8 \ bit}{100 \ kbps} = 10 \ ms$$

$$T_{1}^{F} = \frac{L_{F}}{C_{1}} = \frac{125 * 8 \ bit}{100 \ kbps} = 10 \ ms$$

$$T_C = T_1^C + \tau_1 + T_3^C + \tau_3 + T_4^C + \tau_4 = 15 + 20 + 12 + 10 + 3 + 50 = 110 \, ms$$

$$T_D = T_1^C + \tau_1 + T_3^C + T_3^D + \tau_3 + T_5^D + \tau_5 = 15 + 20 + 12 + 8 + 10 + 2 + 1 = 68 \ ms$$

$$T_{E1} = T_1^C + T_1^D + T_1^E + \tau_1 + T_3^E + \tau_3 + T_6^E + \tau_6 + T_7^E + \tau_7 \\ = 15 + 10 + 15 + +20 + 12 + 10 + 30 + 5 + 15 + 1 = 133 \; ms$$

$$T_{E2} = T_{E1} + T_6^E = 133 + 30 = 163 \ ms$$

$$T_F = T_1^C + T_1^D + T_1^E + \tau_1 + T_3^E + \tau_3 + 2T_6^E + T_6^F + \tau_6 + T_7^F + \tau_7$$

= 15 + 10 + 15 + 20 + 12 + 10 + 60 + 10 + 5 + 5 + 1 = 163 ms

$$T_{E3} = T_{E2} + T_6^E + T_6^F = 163 + 30 + 10 = 203 \, ms$$

7.7 <u>Esercizio</u>

Si consideri la rete sotto e si assuma siano presenti contemporaneamente 2 trasferimenti file con protocollo TCP da ciascun host (A, B, C, D, E, F) verso il server S. <u>Assumendo di avere raggiunto attraverso TCP una condivisione equa delle risorse</u>, qual è la velocità di ciascuna connessione?

Soluzione

- Per la connessione S-E il link collo di bottiglia è quello tra il nodo R3 ed E. Il testo ci dice che abbiamo 2 flussi (trasferimenti di file) contemporanei per ciascun host verso il server. Quindi significa che ciascun flusso (ciascuna connessione) da E a R3 può avere al massimo una velocità di:

5/2=2.5 Mb/s -> S-E: 2.5 Mb/s Lo stesso per la connessione S-F -> S-F: 2.5 Mb/s

- Per le connessioni S-C e S-D il link collo di bottiglia è quello tra R4 e R2, dove ci sono 4 flussi contemporanei (2 da C e 2 da D). Quindi ciascuna connessione può avere al massimo una velocità di 30/4 = S-C: 7.5 Mb/s -> S-C: 7.5 Mb/s e S-D: 7.5 Mb/s
- Le connessioni S-A e S-B condividono con tutte le altre connessioni il link R1-R2. Quindi per le 4 connessioni da E e F e per le 4 connessioni da C e D avremo: 4(2.5 Mb/s) + 4(7.5 Mb/s) = 40 Mb/s

Nel link R1-R2 abbiamo 100 Mb/s - 40 Mb/s = 60 Mb/s da dividere per 4. Di conseguenza:

S-A: 15 Mb/s S-B: 15 Mb/s

7.8 Esercizio

Nella rete in figura sono rappresentati 4 client (A, B, C e D), 3 router (R1, R2 e R3), un server HTTP (S) e un proxy HTTP (P). Il client C vuole trasferire un documento formato da una pagina HTML di dimensione L_{HTML} = 30 kbyte che richiama 11 oggetti di dimensione L_{OGG} = 75 kbyte. Nella rete sono presenti anche 4 flussi interferenti di lunga durata: 2 da A a D, da A a B. Si supponga che: i) i messaggi di apertura della connessione e di richiesta HTTP siano di lunghezza trascurabile, ii) la connessione TCP tra proxy HTTP e server HTTP sia sempre aperta e non occorra mandare una richiesta di apertura. Assumiamo di avere raggiunto attraverso TCP una condivisione equa delle risorse in tutta la rete.

Si calcoli:

- a) il tempo di trasferimento del documento nel caso in cui il client C <u>senza</u> proxy configurato apra in parallelo in modalità non-persistente tutte le connessioni TCP necessarie.
- b) il tempo di trasferimento del documento nel caso in cui il client C <u>con</u> proxy configurato apra in serie un'unica connessione TCP persistente per scaricare tutti gli oggetti, ipotizzando che solo i primi 6 degli 11 oggetti siano presenti nella cache del proxy
- c) nel caso b), il numero minimo di oggetti che occorre trovare nella cache del proxy per avere un tempo di trasferimento minore di 2 s.

<u>Per semplicità nel calcolo del tempo di trasferimento non si consideri il tempo di</u> ritrasmissione di ciascuno dei router R.

Soluzione

Punto a

Il client manda/riceve messaggi HTTP direttamente al/dal server.

Durante il trasferimento della pagina HTML (1 flusso tra C e S) sul link R2-R3 ci sono 5 flussi che condividono 15 Mb/s (un flusso tra C e S + 4 flussi interferenti indicati nel testo). Il link è collo di bottiglia per tutti i flussi che ottengono 3 Mb/s ciascuno di velocità. Quindi la capacità vista dal trasferimento C-S sarà $C_{eff-5} = 3Mb/s$.

Il tempo di trasferimento della pagina HTML è: $T_{HTML} = \frac{L_{HTML}}{C_{eff-5}} = \frac{30*8 \text{ kbit}}{3 \text{ Mbps}} = 80 \text{ ms } (\text{si considera solo la capacità calcolata per il link collo di bottiglia)}.$

Durante il trasferimento degli oggetti (11 flussi in parallelo tra C e D) sul link R2-R3 ci sono 15 flussi che condividono 15 Mb/s (11 flussi in parallelo tra C e D + i 4 flussi interferenti indicati nel testo). Il link è collo di bottiglia per tutti i flussi che ottengono 1 Mb/s ciascuno. Quindi la capacità vista dal trasferimento C-S sarà $C_{eff-15} = 1Mb/s$.

Il tempo di trasferimento di un oggetto è:
$$T_{OGG} = \frac{L_{OGG}}{C_{eff-15}} = \frac{75*8 \text{ kbit}}{1 \text{ Mbps}} = 600 \text{ ms}$$

Il RTT tra C e S è:
$$RTT_{C-S} = 2(\tau_1 + \tau_2 + \tau_3 + \tau_4) = 2 * 80 = 160 \text{ ms}$$

Il tempo totale di trasferimento (considerando una sola volta il tempo di trasmissione della pagina HTML e di ciascun oggetto JPEG, senza contare quello dovuto ai router, come da ipotesi nel testo) sarà:

$$T_{tot} = RTT + RTT + T_{HTML} + RTT + RTT + T_{OGG} = 4RTT + T_{HTML} + T_{OGG} = 1320 \text{ ms}$$

Punto b

Il client manda/riceve messaggi HTTP al/dal proxy. Per i primi 6, riceve l'oggetto direttamente dal proxy, per gli ultimi 5, il proxy scarica l'oggetto dal server e poi lo invia al client.

La capacità del trasferimento tra client e proxy è determinata dal link P-R2 e dunque pari a $C_{eff} = 60 \ Mb/s$.

Il tempo di trasferimento della pagina HTML (diretta al proxy) è: $T_{HTML} = \frac{L_{HTML}}{C_{eff}} = \frac{30*8 \ kbit}{60 \ Mbps} = 4 \ ms$

Il tempo di trasferimento di un oggetto (in cache) è:
$$T_{OGG-cache} = \frac{L_{OGG}}{C_{eff}} = \frac{75*8 \text{ kbit}}{60 \text{ Mbps}} = 10 \text{ ms}.$$

La capacità del trasferimento tra proxy e server è determinata dal link R2-R3, su cui transitano 5 flussi, dunque pari a $C_{eff-5} = 3 \, Mb/s$.

Il tempo di trasferimento di un oggetto (nel server) è: $T_{OGG-nocache} = \frac{L_{OGG}}{c_{eff-5}} = \frac{75*8 \text{ kbit}}{3 \text{ Mbps}} = 200 \text{ ms}.$

Il RTT tra C e P è:
$$RTT_{C-P}=2(\tau_1+\tau_2+\tau_7)=2*50=100~ms$$
, mentre il RTT tra P e S è: $RTT_{P-S}=2(\tau_7+\tau_3+\tau_4)=2*50=100~ms$

Il tempo totale di trasferimento (considerando una sola volta il tempo di trasmissione della pagina HTML e di ciascun oggetto JPEG, senza contare quello dovuto ai router, come da ipotesi nel testo) è:

$$\begin{split} T_{tot} &= RTT_{C-P} + RTT_{C-P} + T_{HTML} + 6(RTT_{C-P} + T_{OGG-cache}) \\ &+ 5(RTT_{P-S} + T_{OGG-nocache} + RTT_{C-P} + T_{OGG-cache}) \\ &= 100 + 100 + 4 + 6(100 + 10) + 5(100 + 200 + 100 + 10) \\ &= 204 + 660 + 2050 = 2914 \ ms \end{split}$$

Punto c

Dall'ultima espressione del punto b) si può scrivere

$$T_{tot} = 204 + x(110) + (11 - x)(410)$$

dove x è il numero di oggetti trovati in cache.

Quindi da $T_{tot} = 204 + x(110) + (11 - x)(410) < 2000 \, ms$, si ottiene x > 9.046. Occorre trovare in cache almeno 10 oggetti.

7.9 <u>Esercizio</u>

Nella rete in figura sono rappresentati 4 router (R1, R2, R3 e R4), un client A, un HTTP proxy P e un HTTP server S. Accanto ad ogni collegamento è indicata la propria capacità, mentre il tempo di propagazione è pari a 10 ms su ciascun collegamento.

Il client vuole scaricare del server un sito web composto da 1 pagina HTML di dimensione LHTML=80 [kbyte] e 6 oggetti JPEG richiamati nella pagina HTML di dimensione 500 kbyte. Nella rete sono presenti flussi interferenti di lunga durata: 4 tra R1 e R2, 10 tra R3 e R4. Assumiamo di avere raggiunto attraverso TCP una condivisione equa delle risorse in tutta la rete.

Si chiede di calcolare il tempo di trasferimento del sito web a livello applicativo nei seguenti casi:

- a) il client A non ha proxy configurato, apre connessioni non-persistenti in parallello (quando possibile e nel massimo numero possibile)
- b) il client A utilizza il proxy P, apre al massimo una connessione alla volta in modalità nonpersistent.

Solo la pagina HTML ed i primi 2 oggetti JPEG sono presenti nella cache del proxy.

Per semplicità nel calcolo del tempo di trasferimento non si consideri il tempo di ritrasmissione di ciascuno dei router R.

Soluzione

Il client A colloquia direttamente con il server S.

Assumiamo di avere raggiunto una condivisione equa delle risorse in tutta la rete, per la pagina HTML, i collegamenti attraversati hanno le seguenti capacità effettive: A-R1 15 Mb/s, R1-R2 2 Mb/s (4+1 flussi), R2-R3 15Mb/s, R3-R4 1Mb/s (10+1 flussi). Dunque il trasferimento è governato dal collo di bottiglia R3-R4 a 1 Mb/s. Il tempo di trasferimento della pagina HTML è pari a $T_{HTML} = 8*80 \ [kbit] / 1 \ [Mb/s] = 640 \ ms$

Per gli oggetti JPEG, i collegamenti attraversati sono i medesimi, dunque il collo di bottiglia sarà il link R3-R4 con una capacità effettiva di 687.5 kb/s (10+6 flussi). Il tempo di trasferimento di ogni oggetto JPEG è pari a $T_{OGG} = 8*500 \, [kbit] / 687.5 \, [kb/s] = 5.82 \, s$.

Il tempo totale di trasferimento (considerando una sola volta il tempo di trasmissione della pagina HTML e di ciascun oggetto JPEG, senza contare quello dovuto ai router, come da ipotesi nel testo) è pari a $T = T_{\rm open} + T_{\rm get} + T_{\rm HTML} + T_{\rm open} + T_{\rm get} + T_{\rm OGG}$ in accordo con la figura sotto. Considerando 10 ms di tempo di propagazione per ciascun collegamento e tenendo conto di 5 collegamenti in andata e 5 in ritorno, $T_{\rm open} = T_{\rm get} = 100 \ [ms] \rightarrow T = 6.86 \ {\rm s}.$

Punto b)

Il client A colloquia con il proxy P. Il colloquio client-proxy è definito dal collo di bottiglia R1-R2 con una capacità di 2 Mb/s (4+1 flussi), mentre il colloquio proxy-server ha R3-R4 come collo di bottiglia, dunque una capacità di 1 Mb/s (10+1 flussi). I tempi di trasferimento sono:

$$T_{\rm HTML}^{\rm AP} = (640 \text{ kb} / 2 \text{ Mb/s}) = 320 \text{ ms}$$

$$T_{\rm OGG}^{\rm AP} = (4 \text{ Mb} / 2 \text{ Mb/s}) = 2 \text{ s}$$

$$T_{\rm OGG}^{\rm PS} = (4 \text{ Mb} / 1 \text{ Mb/s}) = = 4 \text{ s}$$

rispettivamente per il trasferimento della pagina HTML dal proxy al client, di un oggetto JPEG dal proxy al client e di un oggetto JPEG dal server al proxy.

I tempi di propagazione sono $T_{\text{open}}^{\text{CP}} = T_{\text{get}}^{\text{CP}} = 60 \text{ ms}$ per la connessione client-proxy e sono $T_{\text{open}}^{\text{PS}} = T_{\text{get}}^{\text{PS}} = 80 \text{ ms}$ per la connessione proxy-client.

Il tempo totale di trasferimento (considerando una sola volta il tempo di trasmissione della pagina HTML e di ciascun oggetto JPEG, senza contare quello dovuto ai router, come da ipotesi nel testo) è pari a

$$T = T_{\text{open}}^{\text{AP}} + T_{\text{get}}^{\text{AP}} + T_{\text{HTML}}^{\text{AP}} + 2(T_{\text{open}}^{\text{AP}} + T_{\text{get}}^{\text{AP}} + T_{\text{OGG}}^{\text{AP}}) + 4(T_{\text{open}}^{\text{AP}} + T_{\text{get}}^{\text{AP}} + T_{\text{OGG}}^{\text{AP}} + T_{\text{OGG}}^{\text{AP}}) + T_{\text{open}}^{\text{PS}} + T_{\text{get}}^{\text{PS}} + T_{\text{OGG}}^{\text{PS}}) = 29.8s$$

7.10 <u>Esercizio</u>

Sia dato il pool di indirizzi 131.175.17.0/25. Da questo pool occorre ricavare 2 sottoreti per due reti LAN aziendali L1 e L2 di almeno 50 postazioni ciascuna.

Si indichi l'indirizzo di rete (netid di ciascuna delle 2 reti con il corrispondente netmask).

Soluzione.

L1: 131.175.17.0/26 (netmask 255.255.255192).

L2: 131.175.17.64/26 (netmask 255.255.255.192).

7.11 <u>Esercizio</u>

Un sistema cellulare GSM sfrutta l'accesso multiplo di tipo TDMA con 32 time slot. I pacchetti inviati sono composti da 256 bit di dati con l'aggiunta di 24 bit di header. Viene considerato un tempo di guardia tra i pacchetti Tg=20 □s. Il tempo di trama complessivo è pari a 9,6 ms.

- a) Calcolare la velocità di multiplex W del sistema e la velocità netta (solo dei dati) di ciascun canale di accesso.
- b) Si spieghi l'utilità del tempo di guardia nell'accesso multiplo di tipo TDMA.
- c) Cosa cambierebbe nelle velocità calcolate nel punto a) se non si considerasse il tempo di guardia? Si commentino i risultati ottenuti.

Soluzione.

7.12 <u>Esercizio</u>

Si consideri la rete in figura. Una trasmissione TCP tra l'host S e l'host C nelle rete è caratterizzata dai seguenti parametri:

Lunghezze di header e ack trascurabili, lunghezza dei messaggi di apertura della connessione trascurabili, link bidirezionali simmetrici, MSS=1500 Byte, SSTHRESH=12 kBye.

- a) Si calcoli il tempo necessario per trasferire un file di 0,24 MByte (dall'istante di tempo in cui parte la richiesta di apertura della connessione da parte di S all'istante di ricezione dell'ACK dell'ultimo segmento da parte di S), considerando il meccanismo di invio dei riscontri applicato end-to-end.
- b) Si ripeta il calcolo assumendo che il 25° pacchetto vada perso e il timeout corrispondente sia T_{out}=200 ms (si assuma che il timeout parta all'istante di trasmissione del primo bit di ogni pacchetto).
- c) Cosa accede se i pacchetti fuori sequenza vengono comunque memorizzati? Si ripata il calcolo del caso b) in questo caso.

Non è necessario disegnare la rappresentazione spazio-temporale. Ma può essere d'aiuto per la risoluzione dell'esercizio.

