- 1. Докажите, что функция $f(x,y)=\frac{2xy}{x^2+y^2}$, если $x^2+y^2\neq 0$, и f(0,0)=0, непрерывна по каждой переменной x и y в отдельности (при фиксированном значении другой переменной), но не является непрерывной по совокупности этих переменных.
- 2. Докажите, что если функция f(x,y) непрерывна по каждой переменной x и y в отдельности и монотонна по одной из них, то эта функция непрерывна по совокупности переменных.
- 3. Докажите, что произвольный многочлен $P(x) \in \mathbb{R}[x]$ достигает минимальное по модулю значение на числовой прямой. Верно ли аналогичное утверждение для многочленов от двух переменных?
- 4. Существует ли непрерывная функция $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ такая, что для любой непрерывной функции $g: \mathbb{R} \to \mathbb{R}$ найдётся такое действительное число t, что g(x) = f(t,x) при всех $x \in \mathbb{R}$?
- 5. Пусть $f\colon X\to X$, где $X\subset\mathbb{R}^2$ замкнуто и ограничено. Докажите, что если
 - (a) f не уменьшает расстояние между точками, то f изометрия
 - (b) f является изометрией, то f биекция.

Домашнее задание

- 6. Функция $f(x,y)\colon X\to \mathbb{R}$ непрерывна в круге $X=\{(x,y)\colon x^2+y^2\leq 1\}$. Докажите, что для любого $a\in (0,1]$ существует квадрат $ABCD\subset X$ со стороной a такой, что f(A)+f(C)=f(B)+f(D).
- 7. Функция f(x,y), непрерывная на $[0,1] \times [0,1]$, обладает таким свойством: при всяком фиксированном x минимум f(x,y) достигается ровно в одной точке y = g(x). Докажите, что полученная так функция g(x) непрерывна.
- 8. Существует ли непрерывная инъективная функция $f \colon [0,1]^2 \to [0,1]$?
- 9. Пусть $f \colon [0,1]^2 \to \mathbb{R}$ непрерывная функция. Докажите, что

$$\min_{x} \max_{y} f(x, y) \ge \max_{y} \min_{x} f(x, y).$$

При этом неравенство обращается в равенство тогда и только тогда, когда существует седловая точка (x_0, y_0) функции f, т.е.

$$f(x_0, y) \le f(x_0, y_0) \le f(x, y_0), \quad x, y \in [0, 1].$$