ساختمان داده ها

B-Trees

مدرس: غیاثیشیرازی دانشگاه فردوسی مشهد

هندسه دیسک سخت

AVL Trees

- $n = 2^{30} = 10^9$ (approx).
- 30 <= height <= 43.
- When the AVL tree resides on a disk, up to
 43 disk access are made for a search.
- This takes up to (approx) 4 seconds.
- Not acceptable.

Red-Black Trees

- $n = 2^{30} = 10^9$ (approx).
- 30 <= height <= 60.
- When the red-black tree resides on a disk, up to 60 disk access are made for a search.
- This takes up to (approx) 6 seconds.
- Not acceptable.

B-Trees

- Large degree B-trees used to represent very large dictionaries that reside on disk.
- Smaller degree B-trees used for internal-memory dictionaries to overcome cache-miss penalties.

Map

m-way Search Trees

- Each node has up to m 1 pairs and m children.
- $m = 2 \Rightarrow$ binary search tree.

4-Way Search Tree

Maximum # Of Pairs

- Happens when all internal nodes are m-nodes.
- Full degree m tree.
- # of nodes = $1 + m + m^2 + m^3 + ... + m^{h-1}$ = $(m^h - 1)/(m - 1)$.
- Each node has m 1 pairs.
- So, # of pairs = $(m^h 1)$

7

Capacity Of m-Way Search Tree

	m = 2	m = 200
h = 3	7	$8*10^6-1$
h = 5	31	$3.2*10^{11}-1$
h = 7	127	1.28 * 10 ¹⁶ - 1

Definition Of B-Tree

- Definition assumes external nodes (extended m-way search tree).
- B-tree of order m.

 - Not empty => root has at least 2 children.
 - Remaining internal nodes (if any) have at least ceil(m/2) children. $\sqrt[m]{2} \sqrt[m]{2} \sqrt[m]{2}$
 - External (or failure) nodes on same level.

- B-tree of order m.
 - m-way search tree.
 - Not empty -> root has at least 2 children.
 - Remaining internal nodes (if any) have at least ceil(m/2) children. $\lceil m/2 \rceil = 2$
 - External (or failure) nodes on same level.

- 2-3 tree is B-tree of order 3.
- 2-3-4 tree is B-tree of order 4.

B-Trees Of Order 5 And 2

• B-tree of order m.

- m-way search tree.
- Not empty => root has at least 2 children.
- Remaining internal nodes (if any) have at least ceil(m/2) children.
- External (or failure) nodes on same level.

- B-tree of order 5 is 3-4-5 tree (root may be 2-node though).
- B-tree of order 2 is full binary tree.

Minimum # Of Pairs

- n = # of pairs.
- # of external nodes = n + 1.
- Height = h => external nodes on level h + 1.

ترادرُه المرفارِق

$$n + 1 >= 2*ceil(m/2)^{h-1}, h >= 1$$

2 7 1

۸ تعدار ملاه ا ۱۲ گرد فارج

Minimum # Of Pairs

• m = 200.
$$\begin{array}{c|c} n+1>=2*ceil(m/2)^{h-1}, \ h>=1 \\ \hline \\ m=200. \\ m=200. \\ \hline \\ m=200. \\ \\$$

$$h \le \log_{ceil(m/2)} [(n+1)/2] + 1$$

Choice Of m

- Worst-case search time.
 - (time to fetch a node + time to search node) * height
 - (a + b*m + c * log₂m) * hwhere a, b and c are constants.

Insertion into a full leaf triggers bottom-up node splitting pass.

Split An Overfull Node

m-ceil(m/2) $a_{ceil(m/2)} p_{ceil(m/2)+1} a_{ceil(m/2)+1} \dots p_m a_m$

• p_{ceil(m/2)} plus pointer to new node is inserted in parent.

- Insert a pair with key = 2.
- New pair goes into a 3-node.

Insert Into A Leaf 3-node

• Insert new pair so that the 3 keys are in ascending order.

 Insert middle key and pointer to new node into parent.

• Insert a pair with key = 2.

• Insert a pair with key = 2 plus a pointer into parent.

• Now, insert a pair with key = 18.

16 F 18

Insert Into A Leaf 3-node

• Insert new pair so that the 3 keys are in ascending order.

Split the overflowed node.

• Insert middle key and pointer to new node into parent.

• Insert a pair with key = 18.

• Insert a pair with key = 17 plus a pointer into parent.

• Insert a pair with key = 17 plus a pointer into parent.

• Now, insert a pair with key = 7.

Insert 8 17 2 4 7 2 4 15 20 18 20 40

• Insert a pair with key = 6 plus a pointer into parent.

• Insert a pair with key = 4 plus a pointer into parent.

- Insert a pair with key = 8 plus a pointer into parent.
- There is no parent. So, create a new root.

• Height increases by 1.

- Delete the pair with key = 8.
- Transform deletion from interior into deletion from a leaf.
- Replace by largest in left subtree.

- Delete the pair with key = 16.
- 3-node becomes 2-node.

- Delete the pair with key = 17.
- Deletion from a 2-node.
- Check one sibling and determine if it is a 3-node.
- If so borrow a pair and a subtree via parent node.

- Delete the pair with key = 20.
- Deletion from a 2-node.
- Check one sibling and determine if it is a 3-node.
- If not, combine with sibling and parent pair.

- Delete the pair with key = 30.
- Deletion from a 3-node.
- 3-node becomes 2-node.

- Delete the pair with key = 3.
- Deletion from a 2-node.
- Check one sibling and determine if it is a 3-node.
- If so borrow a pair and a subtree via parent node.

- Delete the pair with key = 6.
- Deletion from a 2-node.
- Check one sibling and determine if it is a 3-node.
- If not, combine with sibling and parent pair.

- Delete the pair with key = 40.
- Deletion from a 2-node.
- Check one sibling and determine if it is a 3-node.
- If not, combine with sibling and parent pair.

- Parent pair was from a 2-node.
- Check one sibling and determine if it is a 3-node.
- If not, combine with sibling and parent pair.

- Parent pair was from a 2-node.
- Check one sibling and determine if it is a 3-node.
- No sibling, so must be the root.
- Discard root. Left child becomes new root.

• Height reduces by 1.