## Physique-Chimie Cycle 4 - Classe de 4ème

ignau sonores et lumineu



#### Si loin et si proche à la fois...



© NASA

## À quelle distance se trouve la Lune de la Terre ?



La Terre et la Lune vus depuis la station spatiale internationale

#### Le sonar...



Sonar d'un bateau et sous-marin





Chauve-souris



Dauphin

### Principe du sonar



## Principe d'un écho



### Le son, de l'émission à la réception



#### Le son



La fréquence se mesure en hertz

Le symbole de l'unité est Hz

Cordes d'un guitare "basse", de la plus grave (à gauche) à la plus aiguë (à droite)

## Les signaux sonores et leurs fréquences



#### Réaliser un sonar avec un microcontrôleur



#### La valeur de la vitesse du son dans l'air

Ils ont mesuré t = 54,6 secondes pour le temps moyen que le son mettait à passer d'une station à l'autre, sous une pression P = 756,4 millimètre de mercure, une température T = 15,9°C et une hygrométrie H =72%.

Les deux canons étaient à une distance d = 9 549,6 toises c'est à dire d = 18612,1 m



La valeur de la vitesse du son dans l'air est de 341 m/s



Mesure de la vitesse du son dans l'air par Arago, Gay-Lussac et Prony. Gravure ancienne.

#### La valeur de la vitesse du son dans l'air

$$V_{son} = 340 \text{ m/s}$$
  $t = 1102 \mu \text{s}$ 



 $\mu$ s signifie microseconde 1  $\mu$ s = 0,000 001 s

$$t = 1/102 \times 0,0000001 s$$
  
 $t = 0,00010001 s$   
 $t = 0,000100001 s$   
 $t = 0,00010001 s$   
 $t = 0,00010001 s$   
 $t = 0,0001001 s$   
 $t = 0,0001001 s$   
 $t = 0,0001001 s$   
 $t = 0,0001001 s$   
La distance est de 0,374 m soit 37,4 cm

#### Principe du sonar



#### La valeur de la vitesse du son dans l'air

$$V_{son} = 340 \text{ m/s}$$
  $t = 1102 \mu \text{s}$ 



µs signifie microseconde

 $1 \mu s = 0,000 001 s$ 

L'aller-retour mesure 0,374 m soit 37,4 cm

La distance d'un aller est de 18,7 cm

## Jusqu'à la Lune...





Météo France

### Condition de propagation du son

© Jordan Becker & Sébastien Thomas, Lycée Erckmann-Chatrian, Phalsbourg







Grande quantité d'air

#### Schéma de l'expérience



#### Le son a besoin d'un milieu matériel







Air Eau

#### Dans les films ...





### Récapitulons



Le signal sonore est une vibration d'un milieu matériel qui se déplace de proche en proche : on dit que le signal sonore se « propage ».

La valeur de sa vitesse est de 340 m/s dans l'air dans les conditions atmosphériques habituelles.

Un signal sonore peut être caractérisé par une fréquence qui se mesure en Hz.



## Quel signal utiliser alors pour traverser le vide ?



## Principe du télémètre laser





Instantanéité?

#### La lumière et sa vitesse



Hippolyte Fizeau



Carte Nord De Paris



Dispositif utilisé par Fizeau

#### La lumière

La valeur de la vitesse de la lumière dans le vide est 299 792 458 m/s



La foudre

Périmètre de la Terre ≈ 40 000 km



© NASA

#### De la lumière dans toutes les directions...



#### Un faisceau de lumière...





## Le laser





## Modèle du rayon lumineux



### Récapitulons

La valeur de la vitesse de la lumière dans le vide est de 299 792 458 m/s

Aucun objet matériel ne peut voir sa vitesse dépasser celle de la lumière dans le vide.

La lumière se propage généralement en ligne droite.

Il est possible de schématiser un faisceau de lumière par une droite fléchée reliant la source au détecteur.





#### Observatoire de la Côte d'Azur



#### **©NASA**



Réflecteurs sur la Lune



#### Collecte des données



# CENTRE D'ANALYSE DES DONNÉES LASER LUNE SyRTE CNRS-UMR 8630



#### Dates Horaires des tirs Durées des allers-retours

|    | Α | В        | С | D  | E  | F       | G          | Н    | I   | J    | K  | L     | M    | N    | 0   | P         |
|----|---|----------|---|----|----|---------|------------|------|-----|------|----|-------|------|------|-----|-----------|
| 1  | 5 | 20091111 | 4 | 14 | 41 | 3855984 | 2,4517E+14 | 1910 | 25  | 2650 | 99 | 86190 | 2349 | 5320 | 600 | GSFC-CSTG |
| 2  | 5 | 20091111 | 4 | 27 | 14 | 3061624 | 2,4509E+14 | 1910 | 76  | 2340 | 99 | 86200 | 2548 | 5320 | 600 | DGFI-CSTG |
| 3  | 5 | 20091111 | 4 | 47 | 5  | 8614999 | 2,4497E+14 | 1910 | 77  | 2411 | 99 | 86205 | 2946 | 5320 | 669 | ARCH-MINI |
| 4  | 5 | 20091111 | 4 | 59 | 33 | 1340151 | 2,4491E+14 | 1910 | 132 | 2230 | 99 | 86200 | 2945 | 5320 | 600 | DGFI-CSTG |
| 5  | 5 | 20091111 | 5 | 18 | 39 | 9403794 | 2,4482E+14 | 1910 | 65  | 2488 | 99 | 86201 | 3244 | 5320 | 679 | ARCH-MINI |
| 6  | 5 | 20091111 | 5 | 29 | 54 | 707852: | 2,4478E+14 | 1910 | 33  | 2310 | 99 | 86200 | 3144 | 5320 | 600 | GSFC-CSTG |
| 7  | 5 | 20091111 | 5 | 40 | 40 | 7120152 | 2,4475E+14 | 1910 | 82  | 2160 | 99 | 86200 | 3144 | 5320 | 600 | GSFC-CSTG |
| 8  | 5 | 20091112 | 6 | 10 | 25 | 4459179 | 2,4657E+14 | 1910 | 21  | 3517 | 56 | 86783 | 1266 | 5320 | 611 | ARCH-MINI |
| 9  | 5 | 20091112 | 6 | 22 | 56 | 3229226 | 2,4653E+14 | 1910 | 30  | 3140 | 47 | 86810 | 1265 | 5320 | 600 | GSFC-CSTG |
| 10 | 5 | 20091112 | 6 | 31 | 26 | 2629638 | 2,4651E+14 | 1910 | 18  | 3029 | 39 | 86836 | 1660 | 5320 | 316 | ARCH-MINI |
| 11 | 5 | 20091209 | 3 | 5  | 50 | 1609939 | 2,4597E+14 | 1910 | 31  | 2660 | 52 | 87259 | 2955 | 5320 | 770 | ARCH-MINI |
| 12 | 5 | 20091209 | 3 | 15 | 26 | 8595413 | 2,4592E+14 | 1910 | 50  | 2390 | 99 | 87260 | 2656 | 5320 | 600 | GSFC-CSTG |
| 13 | 5 | 20091209 | 3 | 31 | 15 | 5368897 | 2,4584E+14 | 1910 | 44  | 2420 | 80 | 87260 | 2760 | 5320 | 600 | DGFI-CSTG |
| 14 | 5 | 20091209 | 3 | 44 | 16 | 2775079 | 2,4577E+14 | 1910 | 9   | 2500 | 49 | 87250 | 2163 | 5320 | 600 | DGFI-CSTG |
| 15 | 5 | 20091209 | 3 | 57 | 8  | 6204580 | 2,4573E+14 | 1910 | 45  | 2630 | 99 | 87250 | 2261 | 5320 | 600 | DGFI-CSTG |
| 16 | 5 | 20091209 | 4 | 19 | 0  | 8133361 | 2,4567E+14 | 1910 | 26  | 2660 | 68 | 87250 | 2361 | 5320 | 600 | GSFC-CSTG |

#### Traitements des données

Trouver la durée mise par la lumière pour aller de la Terre à la Lune en divisant par deux

Utiliser la relation  $d = v \times t$ 

Avec d la distance en km t, la durée d'un aller en s v, la vitesse de la lumière

v = 300 000 km/s

|     | A          | В                                 | C                               | D                           |
|-----|------------|-----------------------------------|---------------------------------|-----------------------------|
| 1   | Date 🔨     | Durée aller-retour en seconde   ▼ | Durée d'un aller en seconde   ▼ | Distance Terre-Lune en km ▼ |
| 520 | 01/08/2018 | 2,62200250202014                  |                                 |                             |
| 521 | 02/08/2018 | 2,59517134962403                  |                                 |                             |
| 522 | 03/08/2018 | 2,56503822913163                  |                                 |                             |
| 523 | 06/08/2018 | 2,44527195346846                  |                                 |                             |
| 524 | 07/08/2018 | 2,42066813998941                  |                                 |                             |
| 525 | 08/08/2018 | 2,38571939784227                  |                                 |                             |
| 526 | 09/08/2018 | 2,37602722207233                  |                                 |                             |
| 527 | 10/08/2018 | 2,34721376593647                  |                                 |                             |
| 528 | 12/08/2018 | 2,36928068395413                  |                                 |                             |
| 529 | 13/08/2018 | 2,39881159606793                  |                                 |                             |
| 530 | 14/08/2018 | 2,43289508956235                  |                                 |                             |
| 531 | 15/08/2018 | 2,47852130495186                  |                                 |                             |
| 532 | 16/08/2018 | 2,52553474133064                  |                                 |                             |
| 533 | 17/08/2018 | 2,56779203442598                  |                                 |                             |
| 534 | 21/08/2018 | 2,67373607956885                  |                                 |                             |
| 535 | 23/08/2018 | 2,67813985355212                  |                                 |                             |
| 536 | 24/08/2018 | 2,67241801505329                  |                                 |                             |
| 537 | 25/08/2018 | 2,66331327281868                  |                                 |                             |
| 538 | 26/08/2018 | 2,64709531662694                  |                                 |                             |
| 539 | 27/08/2018 | 2,63469995880453                  |                                 |                             |
| 540 | 28/08/2018 | 2,62277198203629                  |                                 |                             |
| 541 | 29/08/2018 | 2,59675224970089                  |                                 |                             |
| 542 | 30/08/2018 | 2,5788776352784                   |                                 |                             |
| 543 | 31/08/2018 | 2,55042909623562                  |                                 |                             |
| 544 | 01/09/2018 | 2,52408105293164                  |                                 |                             |
| 545 | 02/09/2018 | 2,49056495095119                  |                                 |                             |
| 546 | 03/09/2018 | 2,45754865991242                  |                                 |                             |
| 547 | 04/09/2018 | 2,43064398954728                  |                                 |                             |
| 548 | 05/09/2018 | 2,4058950286958                   |                                 |                             |
| 549 | 06/09/2018 | 2,38358251115085                  |                                 |                             |
| 550 | 07/09/2018 | 2,37426846242049                  |                                 |                             |
| 551 | 11/09/2018 | 2,4394176479626                   |                                 |                             |
|     |            |                                   |                                 |                             |

#### Traitements des données

Ecrire une formule pour calculer la durée d'un aller



| Cali       | ibri 🔻 11 💌        | $G I \underline{S} \underline{A} \cdot \underline{\mathbb{N}} \cdot \underline{\mathbb{N}}$ | = =   =      | ☑ 霽   示 業 👱   \$ - %         | 0.0 7 |
|------------|--------------------|---------------------------------------------------------------------------------------------|--------------|------------------------------|-------|
| C520       | ▼ f <sub>x</sub> ∑ | =                                                                                           |              |                              |       |
|            | Α                  | В                                                                                           |              | С                            |       |
| 1          | Date 🔻             | Durée aller-retour en seconde                                                               | Ţ            | Durée d'un aller en seconde  | ₩D    |
|            | Dutc .             | Duree aller-retour en seconde                                                               | _ *          | Duree a arrailer err seconde |       |
| 520        | 01/08/2018         |                                                                                             | 200250202014 |                              |       |
| 520<br>521 |                    | 2,622                                                                                       |              | 15                           |       |
|            |                    |                                                                                             |              |                              |       |

|    | С                             |       |
|----|-------------------------------|-------|
| •  | Durée d'un aller en seconde ▼ | Dista |
| 14 | 1,3110012510 207              |       |
| 03 |                               |       |
| 53 |                               |       |
| 46 |                               |       |
| 41 |                               |       |
| 27 |                               |       |
| 33 |                               |       |

Utiliser la poignée de copie pour copier la formule rapidement sur toutes les lignes de données.

#### Traitements des données

Ecrire une formule pour calculer la distance

| <b>/</b>                        |                                 |                             |
|---------------------------------|---------------------------------|-----------------------------|
| В                               | С                               | D                           |
| Durée aller-retour en seconde ▼ | Durée d'un aller en seconde ▼ [ | Distance Terre-Lune en km ▼ |
| 2,62200250202014                | 1,31100125101007                |                             |
| 2,59517134962403                | 1,29758567481202                |                             |
| 2,56503822913163                | 1,28251911456582                |                             |
| 2 44527195346846                | 1 22263597673423                |                             |

|   |     | D                         |           |  |
|---|-----|---------------------------|-----------|--|
|   | ▼   | Distance Terre-Lune en km | •         |  |
| 0 | 07  | 393300,37530302           | 1         |  |
| 2 | 02  |                           |           |  |
| 5 | 82  |                           |           |  |
| 4 | 23  |                           |           |  |
| 4 | 71  |                           | ٦         |  |
| 1 | 1/1 |                           | $\exists$ |  |

Utiliser la poignée de copie pour copier la formule rapidement sur toutes les lignes de données.

### Analyse des courbes obtenues grâce aux données





#### Distance Terre-Lune?

| Σ   | $\sum =   = MOYENNE(D:D) $      |                               |                             |            |  |  |  |
|-----|---------------------------------|-------------------------------|-----------------------------|------------|--|--|--|
|     | В                               | С                             | D                           | E          |  |  |  |
| ▼.  | Durée aller-retour en seconde ▼ | Durée d'un aller en seconde ▼ | Distance Terre-Lune en km ▼ | moyenne    |  |  |  |
| 018 | 2,62200250202014                | 1,31100125101007              | 393300,375303021            | 379714,132 |  |  |  |
| 018 | 2,59517134962403                | 1,29758567481202              | 389275,702443604            |            |  |  |  |





NASA camera - the Deep Space Climate
Observatory (DSCOVR) - satellite

## Les signaux



Observatoire de la Côte d'Azur



Télescope spatial Hubble



L'Univers



Sonar pour cartographier les fonds marins



Echographie



| Une lampe est-elle un émetteur ou un récepteur de lumière ? |          |           |  |  |  |
|-------------------------------------------------------------|----------|-----------|--|--|--|
|                                                             | Α        | В         |  |  |  |
|                                                             | Emetteur | Récepteur |  |  |  |





| Parmi les milieux suivants, dans quel "milieu"<br>le son ne peut-il pas se propager ? |     |      |     |  |  |
|---------------------------------------------------------------------------------------|-----|------|-----|--|--|
| Α                                                                                     | В   | С    | D   |  |  |
| Air                                                                                   | Eau | Vide | Fer |  |  |

| Parmi les milieux suivants, dans quel "milieu" le son ne peut-il pas se propager ? |     |      |     |  |  |
|------------------------------------------------------------------------------------|-----|------|-----|--|--|
| Α                                                                                  | В   | С    | D   |  |  |
| Air                                                                                | Eau | Vide | Fer |  |  |

| Quelle est la valeur de la vitesse du son dans l'air ? |              |         |          |  |  |
|--------------------------------------------------------|--------------|---------|----------|--|--|
| Α                                                      | В            | С       | D        |  |  |
| 300 000 m/s                                            | 300 000 km/s | 340 m/s | 340 km/h |  |  |





| Comment se nomment les signaux sonores dans chaque gamme de fréquences ? |               |           |  |  |  |  |
|--------------------------------------------------------------------------|---------------|-----------|--|--|--|--|
| Α                                                                        | В             | С         |  |  |  |  |
| Infrasons                                                                | Sons audibles | Ultrasons |  |  |  |  |



| Sur quelle image est schématisé le rayon lumineux nous permettant de voir la source de lumière ? |         |
|--------------------------------------------------------------------------------------------------|---------|
| Α                                                                                                | В       |
| Image 1                                                                                          | Image 2 |





#### Merci de nous avoir suivis!

## À bientôt!

