Assignment - 1

EE24BTECH11019 - DWARAK A

SECTION-B — JEE Main/AIEEE

1. A parabola has the origin as its focus and the line x = 2 as the directrix. Then the vertex of the parabola is at

[2008]

(a)
$$(0,2)$$
 (b) $(1,0)$ (c) $(0,1)$ (d) $(2,0)$

2. The ellipse $x^2 + 4y^2 = 4$ is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point (4,0). Then the equation of the ellipse is:

[2009]

(a)
$$x^2 + 12y^2 = 16$$

(b) $4x^2 + 48y^2 = 48$
(c) $4x^2 + 64y^2 = 48$
(d) $x^2 + 16y^2 = 16$

(c)
$$4x^2 + 64y^2 = 48$$
 (d) $x^2 + 16y^2 = 16$

3. If two tangents drawn from a point P to the parabola $y^2 = 4x$ are at right angles, then the locus of P is

[2010]

(a)
$$2x + 1 = 0$$
 (b) $x = -1$ (c) $2x - 1 = 0$ (d) $x = 1$

4. Equation of the ellipse whose axes are the axes of coordinates and which passes through the point (-3,1) and has eccentricity $\sqrt{\frac{2}{5}}$ is

(a)
$$5x^2 + 3y^2 - 48 = 0$$
 (b) $3x^2 + 5y^2 - 15 = 0$ (c) $5x^2 + 3y^2 - 32 = 0$ (d) $3x^2 + 5y^2 - 32 = 0$

5. Statement-1: An equation of a common tangent to the parabola
$$y^2 = 16 \sqrt{3}x$$
 and the ellipse $2x^2 + y^2 = 4$ is $y = 2x + 2\sqrt{3}$

Statement-2: If the line $y = mx + \frac{4\sqrt{3}}{m}$, $(m \neq m)$ 0) is a common tangent to the parabola $y^2 =$ $16\sqrt{3}x$ and the ellipse $2x^2 + y^2 = 4$, then m satisfies $m^4 + 2m^2 = 24$ [2012]

(a) Statement-1 is false, Statement-2 is true.

(b) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.

(c) Statement-1 is true, Statement-2 is true; Statement-2 is **not** a correct explanation for Statement-1.

(d) Statement-1 is true, Statement-2 is false.

6. An ellipse is drawn by taking a diameter of the circle $(x-1)^2 + y^2 = 1$ as its semi-minor axis and a diameter of the circle $x^2 + (y - 2)^2 = 4$ is semi-major axis. If the centre of the ellipse is at the origin and its axes are the coordinate axes, then the equation of the ellipse is:

1

(a)
$$4x^2 + y^2 = 4$$

(b) $x^2 + 4y^2 = 8$
(c) $4x^2 + y^2 = 8$
(d) $x^2 + 4y^2 = 16$

7. The equation of the circle passing through the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$, and have a

[JEE M 2013]

(a)
$$x^2 + y^2 - 6y - 7 = 0$$
 (b) $x^2 + y^2 - 6y + 7 = 0$
(c) $x^2 + y^2 - 6y - 5 = 0$ (d) $x^2 + y^2 - 6y + 5 = 0$

8. Given: A circle, $2x^2 + 2y^2 = 5$ and a parabola, $v^2 = 4 \sqrt{5}x$.

Statement-1: An equation of a common tangent to these curves is $y = x + \sqrt{5}$.

Statement-2: If the line, $y = mx + \frac{\sqrt{5}}{m}(m \neq 0)$ is their common tangent, then m satisfies $m^4 - 3m^2 + 2 = 0$. [JEE M 2013]

- (a) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for
- (b) Statement-1 is true, Statement-2 is true; Statement-2 is **not** a correct explanation for Statement-1
- (c) Statement-1 is true, Statement-2 is false.

- (d) Statement-1 is false, Statement-2 is true.
- 9. The locus of the foot of perpendicular drawn from the centre of the ellipse $x^2 + 3y^2 = 6$ on any tangent to it is

[JEE M 2014]

(a)
$$(x^2 + y^2)^2 = 6x^2 +$$
 (b) $(x^2 + y^2)^2 = 6x^2 -$
 $2y^2$ (c) $(x^2 - y^2)^2 = 6x^2 +$ (d) $(x^2 - y^2)^2 = 6x^2 -$
 $2y^2$ $2y^2$

10. The slope of the line touching both the parabolas $y^2 = 4x$ and $x^2 = -32y$ is

[JEE M 2014]

- (a) $\frac{1}{8}$ (b) $\frac{2}{3}$ (c) $\frac{1}{2}$ (d) $\frac{3}{2}$
- 11. Let O be the vertex and Q be any point on the parabola, x = 8y. If the point P divides the line segment OQ internally in the ratio 1:3, then locus of P is:

[JEE M 2015]

(a)
$$y^2 = 2x$$

(b) $x^2 = 2y$
(c) $x^2 = y$
(d) $y^2 = x$

- 12. The normal to the curve, $x^2 + 2xy 3y^2 = 0$, at (1, 1) [JEE M 2015]
 - (a) meets the curve again in the third quadrant.
 - (b) meets the curve again in the fourth quadrant.
 - (c) does not meet the curve again.
 - (d) meets the curve again in the second quadrant.
- 13. The area (in sq. units) of the quadrilateral formed by the tangents at the end points of the latera recta to the ellipse $\frac{x^2}{9} + \frac{y^2}{5} = 1$, is: [JEE M 2015]

(a)
$$\frac{27}{2}$$
 (b) 27 (c) $\frac{27}{4}$ (d) 18

14. Let P be the point on the parabola, $y^2 = 8x$ which is at a minimum distance from the centre C of the circle, $x^2 + (y + 6)^2 = 1$. Then the equation of the circle, passing through C and having its centre at P is: [JEE M 2016]

(a)
$$x^2 + y^2 - \frac{x}{4} + 2y - 24 = 0$$

(b)
$$x^2 + y^2 - 4x + 9y + 18 = 0$$

(c)
$$x^2 + y^2 - 4x + 8y + 12 = 0$$

(d)
$$x^2 + y^2 - x + 4y - 12 = 0$$

15. The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal to half of the distance between its foci, is:

[JEE M 2016]

(a)
$$\frac{2}{\sqrt{3}}$$
 (b) $\sqrt{3}$ (c) $\frac{4}{3}$ (d) $\frac{4}{\sqrt{3}}$