STATS 206 Applied Multivariate Analysis Lecture 5: Multivariate Linear Regression Models

Prathapasinghe Dharmawansa

Department of Statistics
Stanford University
Autumn 2013

Agenda

- The classical linear regression model
- Least squares estimation
- Inferences about the regression model
- Inference from the estimated regression function
- Model checking and some other aspects of regression
- Multivariate multiple linear regression

The Classical Linear Regression Model (i)

• Let z_1, \ldots, z_r be r predictor variables thought to be related to a response variable Y. The linear regression model with a single response is:

$$Y_{\text{response}} = \underbrace{\beta_0 + \beta_1 z_1 + \ldots + \beta_r z_r}_{\text{mean (depending on } z_1, \ldots, z_r)} + \underbrace{\varepsilon}_{\text{error}}$$

- "Linear": the mean part is linear in unknown parameters $\beta_0, \beta_1, \ldots, \beta_r$

The Classical Linear Regression Model (ii)

ullet With n independent observations on a single response, the complete multiple linear regression model is:

$$Y_i = \beta_0 + \beta_1 z_{i1} + \ldots + \beta_r z_{ir} + \varepsilon_i, \quad i = 1, \ldots, n$$

The error terms $\{\varepsilon_i\}_{i=1}^n$ satisfy:

- 1. $E(\varepsilon_i) = 0$; 2. $Var(\varepsilon_i) = \sigma^2$ (constant); 3. $Cov(\varepsilon_j, \varepsilon_k) = 0, j \neq k$
- In matrix notation

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & z_{11} & z_{12} & \dots & z_{1r} \\ 1 & z_{21} & z_{22} & \dots & z_{2r} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & z_{n1} & z_{n2} & \dots & z_{nr} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_r \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix} \\
\mathbf{Z}_{n \times (r+1)} \qquad \mathbf{\beta}_{(r+1) \times 1} \qquad \mathbf{\varepsilon}_{n \times 1}$$

$$\mathbf{Y} = \mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \quad (\mathbf{Z}: \mathsf{design} \mathsf{matrix})$$

and 1.
$$E(\varepsilon) = 0$$
; 2. $Cov(\varepsilon) = E(\varepsilon \varepsilon') = \sigma^2 I$ (In the above, β , σ^2 are unknown parameters.)

Example 1: Fitting a Straight-line Regression Model

Determine the linear regression model for fitting a straight line: Mean response $= \mathsf{E}(Y) = \beta_0 + \beta_1 z_1$ to the data

• Random errors $\boldsymbol{\varepsilon} = [\varepsilon_1, \varepsilon_2, \dots, \varepsilon_5]' \Longrightarrow \mathbf{Y} = \mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$.

$$\mathbf{Y} = egin{bmatrix} Y_1 \ Y_2 \ dots \ Y_5 \end{bmatrix}, \ \mathbf{Z} = egin{bmatrix} 1 & z_{11} \ 1 & z_{21} \ dots & dots \ 1 & z_{51} \end{bmatrix}, \ oldsymbol{eta} = egin{bmatrix} eta_0 \ eta_1 \end{bmatrix}$$

$$\Rightarrow \mathbf{y} = \begin{bmatrix} 1 \\ 4 \\ 3 \\ 8 \\ 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \end{bmatrix}$$

Least Squares Estimation (i)

- Problem: fitting the linear regression model to observed y_i based on known $1, z_{j1}, \ldots, z_{jr}$.
- ullet Method of least squares: to select eta which minimizes the sum of the squares of differences

$$S(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 z_{i1} - \dots - \beta_r z_{ir})^2$$
$$= (\mathbf{y} - \mathbf{Z}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{Z}\boldsymbol{\beta})$$

- The minimizing β : the least squares estimate of β , denoted as $\widehat{\beta}$
- Define the residuals:

$$\widehat{\varepsilon}_i = y_i - \widehat{\beta}_0 - \widehat{\beta}_1 z_{i1} - \ldots - \widehat{\beta}_r z_{ir}, \quad i = 1, \ldots, n$$

The vector of residuals: $\widehat{\boldsymbol{\varepsilon}} = \mathbf{y} - \mathbf{Z}\widehat{\boldsymbol{\beta}}$

Least Squares Estimation (ii)

The Least Squares Estimate (Main Results)

$$\mathbf{Y} = \mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \quad (\mathbf{Z}: \underline{\mathsf{full rank}} \ (r+1) \leq n)$$

- The least squares estimate of β in the above model is given by: $\widehat{\beta} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y}$
- Orthogonality principle: Let $\widehat{\mathbf{y}} \triangleq \mathbf{Z}\widehat{\boldsymbol{\beta}} = \mathbf{H}\mathbf{y}$, $\mathbf{H} = \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'$ and we have $\widehat{\boldsymbol{\varepsilon}} = \mathbf{y} \widehat{\mathbf{y}} = (\mathbf{I} \mathbf{H})\mathbf{y}$. Then the following holds: $\mathbf{Z}'\widehat{\boldsymbol{\varepsilon}} = \mathbf{0}$, $\widehat{\mathbf{y}}'\widehat{\boldsymbol{\varepsilon}} = 0$
- Further, the residual sum of squares are given by the following

$$\sum_{i=1}^{n} (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 z_{i1} - \dots - \widehat{\beta}_r z_{ir})^2$$

= $\widehat{\varepsilon}' \widehat{\varepsilon} = \mathbf{y}' (\mathbf{I} - \mathbf{H}) \mathbf{y} = \mathbf{y}' \mathbf{y} - \mathbf{y}' \mathbf{Z} \widehat{\boldsymbol{\beta}}$

Least Squares Estimation (iii)

The Least Squares Estimate: Proof

$$\mathbf{Y} = \mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \widehat{\boldsymbol{\beta}} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y}, \quad \mathbf{Z}'\widehat{\boldsymbol{\varepsilon}} = \mathbf{0}, \ \widehat{\mathbf{y}}'\widehat{\boldsymbol{\varepsilon}} = \mathbf{0}$$

• Proof of orthogonality: let $\widehat{\boldsymbol{\beta}} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y}$ as asserted; then

$$\widehat{\varepsilon} = \mathbf{y} - \widehat{\mathbf{y}} = \mathbf{y} - \mathbf{Z}\widehat{\boldsymbol{\beta}} = (\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}')\mathbf{y} = (\mathbf{I} - \mathbf{H})\mathbf{y}$$

 $\mathbf{H} = \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'$: "hat" matrix

(1) Both (I - H) and H are symmetric:

$$(\mathbf{I} - \mathbf{H})' = \mathbf{I} - \mathbf{H}; \qquad \mathbf{H}' = \mathbf{H}$$

(2) Both (I - H) and H are idempotent:

$$(I - H)^2 = (I - H)(I - H) = I - H;$$
 $H^2 = H$

(3) $\mathbf{Z}'(\mathbf{I} - \mathbf{H}) = \mathbf{Z}'[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'] = \mathbf{Z}' - \mathbf{Z}' = \mathbf{0}$

Thus,
$$\mathbf{Z}'\widehat{\boldsymbol{\varepsilon}} = \mathbf{Z}'(\mathbf{y} - \widehat{\mathbf{y}}) = \mathbf{Z}'(\mathbf{I} - \mathbf{H})\mathbf{y} \stackrel{\text{(3)}}{=} \mathbf{0} \Longrightarrow \widehat{\mathbf{y}}'\widehat{\boldsymbol{\varepsilon}} = \widehat{\boldsymbol{\beta}}'\mathbf{Z}'\widehat{\boldsymbol{\varepsilon}} = \mathbf{0}$$

• In addition: $\widehat{\varepsilon}'\widehat{\varepsilon} = \mathbf{y}'(\mathbf{I} - \mathbf{H})'(\mathbf{I} - \mathbf{H})\mathbf{y} \stackrel{(1)(2)}{=} \mathbf{y}'(\mathbf{I} - \mathbf{H})\mathbf{y} = \mathbf{y}'\mathbf{y} - \mathbf{y}'\mathbf{Z}\widehat{\boldsymbol{\beta}}$

Least Squares Estimation (iv)

The Least Squares Estimate: Proof

$$\mathbf{Y} = \mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \widehat{\boldsymbol{\beta}} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y}, \quad \mathbf{Z}'\widehat{\boldsymbol{\varepsilon}} = \mathbf{0}, \ \widehat{\mathbf{y}}'\widehat{\boldsymbol{\varepsilon}} = \mathbf{0}$$

• Proof for $\widehat{\boldsymbol{\beta}} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y}$

Let
$$y - Z\beta = y - Z\widehat{\beta} + Z\widehat{\beta} - Z\beta = y - Z\widehat{\beta} + Z(\widehat{\beta} - \beta)$$

$$\implies S(\beta) = (\mathbf{y} - \mathbf{Z}\beta)'(\mathbf{y} - \mathbf{Z}\beta)$$

$$= \underbrace{(\mathbf{y} - \mathbf{Z}\widehat{\boldsymbol{\beta}})'(\mathbf{y} - \mathbf{Z}\widehat{\boldsymbol{\beta}})}_{\text{not depending on }\boldsymbol{\beta}} + \underbrace{(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})'\mathbf{Z}'\mathbf{Z}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})}_{\text{squared length of } \mathbf{Z}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})}$$

squared length of
$$\mathbf{Z}(\widehat{oldsymbol{eta}} - oldsymbol{eta})$$

$$+2\underbrace{(\mathbf{y}-\mathbf{Z}\widehat{\boldsymbol{\beta}})'\mathbf{Z}}_{\widehat{\boldsymbol{\varepsilon}}'\mathbf{Z}=\mathbf{0}'}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})$$

 ${f Z}$ full-rank \Longrightarrow the 2nd term ${f Z}(\widehat{m eta}-{m eta})
eq {f 0}$ if ${m eta}
eq \widehat{m eta}$

(i.e., the squared length term is 0 (minimum) if and only if $oldsymbol{eta} = \widehat{oldsymbol{eta}}$

Summary: unique minimum $S(\beta)$ achieved at $\beta = \widehat{\beta} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y}$

Least Squares Estimate

Example 2: The LS estimates (a)

Calculate the LS estimates $\widehat{\beta}$, the residuals $\widehat{\varepsilon}$, and the residual sum of squares for a straight-line model $Y_j = \beta_0 + \beta_1 z_{j1} + \varepsilon_j$ to the data (Example 1)

Here

$$\begin{bmatrix}
1 \\
4 \\
3 \\
8 \\
9
\end{bmatrix} = \begin{bmatrix}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4
\end{bmatrix}
\begin{bmatrix}
\beta_0 \\
\beta_1
\end{bmatrix} + \begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\varepsilon_3 \\
\varepsilon_4 \\
\varepsilon_5
\end{bmatrix} \implies \mathbf{Z}'\mathbf{y} = \begin{bmatrix}
25 \\
70
\end{bmatrix}$$

$$(\mathbf{Z}'\mathbf{Z})^{-1} = \begin{bmatrix} 5 & 10 \\ 10 & 30 \end{bmatrix}^{-1} = \begin{bmatrix} 0.6 & -0.2 \\ -0.2 & 0.1 \end{bmatrix}, \ (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Example 2: The LS estimates (b)

• (Cont'd)

$$\textbf{LS estimates}: \widehat{\boldsymbol{\beta}} = \begin{bmatrix} \widehat{\beta}_0 \\ \widehat{\beta}_1 \end{bmatrix} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

 \Longrightarrow Fitted equation : $\widehat{y} = 1 + 2z$

Fitted value :
$$\hat{\mathbf{y}} = \mathbf{Z}\hat{\boldsymbol{\beta}} = \begin{bmatrix} 1\\3\\5\\7\\9 \end{bmatrix}$$
 ; **residuals** : $\hat{\boldsymbol{\varepsilon}} = \mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 0\\1\\-2\\1\\0 \end{bmatrix}$

Residual sum of squares : $\widehat{\pmb{\varepsilon}}'\widehat{\pmb{\varepsilon}} = [0\ 1\ -2\ 1\ 0][0\ 1\ -2\ 1\ 0]' = 6$

Least Squares Estimation (v)

Sum-of-squares Decomposition

$$\mathbf{Y} = \mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$
; Previously shown: $\mathbf{Z}'\hat{\boldsymbol{\varepsilon}} = \mathbf{0}, \ \hat{\mathbf{y}}'\hat{\boldsymbol{\varepsilon}} = \mathbf{0}$

• Since $\hat{\boldsymbol{\varepsilon}} = \mathbf{y} - \hat{\mathbf{y}}$ and $\hat{\mathbf{y}}'\hat{\boldsymbol{\varepsilon}} = 0$

$$\mathbf{y}'\mathbf{y} = (\widehat{\mathbf{y}} + \widehat{\boldsymbol{\varepsilon}})'(\widehat{\mathbf{y}} + \widehat{\boldsymbol{\varepsilon}}) = \widehat{\mathbf{y}}'\widehat{\mathbf{y}} + \widehat{\boldsymbol{\varepsilon}}'\widehat{\boldsymbol{\varepsilon}}$$

• Since $\mathbf{Z}'\widehat{\boldsymbol{\varepsilon}} = \mathbf{0}$ and the first column of \mathbf{Z} is $\mathbf{1}$

$$0 = \mathbf{1}'\widehat{\boldsymbol{\varepsilon}} = \sum_{i=1}^{n} \widehat{\varepsilon}_i = \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} \widehat{y}_i \Longrightarrow \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} \widehat{y}_i \ (\overline{y} = \overline{\widehat{y}})$$

From the above: $\mathbf{y}'\mathbf{y} - n\overline{y}^2 = \widehat{\mathbf{y}}'\widehat{\mathbf{y}} - n\overline{\widehat{y}}^2 + \widehat{\boldsymbol{\varepsilon}}'\widehat{\boldsymbol{\varepsilon}}$, or

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} \widehat{\varepsilon}_i^2$$

total sum of squares about mean

regression sum of squares residual (error) sum of squares

Least Squares Estimation (vi)

Sum-of-squares Decomposition

(Cont'd)

$$\sum_{i=1}^n (y_i - \overline{y})^2 = \sum_{i=1}^n (\widehat{y}_i - \overline{y})^2 + \sum_{i=1}^n \widehat{\varepsilon}_i^2$$
 total sum of squares about mean regression sum of squares residual (error) sum of squares

Coefficient of determination

$$\mathbf{R^2} = 1 - \frac{\sum_{i=1}^n \widehat{\varepsilon}_i^2}{\sum_{i=1}^n (y_i - \overline{y})^2} = \frac{\sum_{i=1}^n (\widehat{y}_i - \overline{y})^2}{\sum_{i=1}^n (y_i - \overline{y})^2}$$

- R^2 is the proportion of the total variation in the y_i 's "explained" by the predictors z_1, z_2, \ldots, z_r ;
- R^2 : measuring the quality of fitting

Least Squares Estimation (vii)

Sampling Properties of the Least Squares Estimators

$$\mathbf{Y} = \mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$
 $(\mathsf{E}(\boldsymbol{\varepsilon}) = \mathbf{0}, \; \mathsf{Cov}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I})$

(1) The least squares estimator $\hat{\beta} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Y}$ satisfies:

$$\mathsf{E}(\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta}, \quad \mathsf{Cov}(\widehat{\boldsymbol{\beta}}) = \sigma^2(\mathbf{Z}'\mathbf{Z})^{-1}$$

$$\mathsf{Proof}:\ \mathsf{E}(\widehat{\boldsymbol{\beta}})=\!(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathsf{E}(\mathbf{Y})=(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Z}\boldsymbol{\beta}=\boldsymbol{\beta}$$

$$\mathsf{Cov}(\widehat{\boldsymbol{\beta}}) = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\underline{\mathsf{Cov}(\mathbf{Y})}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}')'$$

$$= (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'(\underline{\sigma^2}\mathbf{I})\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1} = \sigma^2(\mathbf{Z}'\mathbf{Z})^{-1}$$

(2) The residuals $\hat{\boldsymbol{\varepsilon}} = \mathbf{Y} - \mathbf{Z} \hat{\boldsymbol{\beta}}$ satisfies: [Note: $\hat{\boldsymbol{\varepsilon}} = (\mathbf{I} - \mathbf{H})\mathbf{Y}$]

$$\mathsf{E}(\widehat{\boldsymbol{\varepsilon}}) = \mathbf{0}, \quad \mathsf{Cov}(\widehat{\boldsymbol{\varepsilon}}) = \sigma^2[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'] = \sigma^2(\mathbf{I} - \mathbf{H})$$

Proof:
$$E(\widehat{\varepsilon}) = E(Y) - ZE(\widehat{\beta}) = Z\beta - Z\beta = 0$$

$$\Longrightarrow \mathsf{Cov}(\widehat{\boldsymbol{\varepsilon}}) = (\underline{\mathbf{I}} - \underline{\mathbf{H}}) \underline{\mathsf{Cov}(\mathbf{Y})(\mathbf{I} - \underline{\mathbf{H}})'} = \underline{\underline{\sigma}^2}(\underline{\mathbf{I}} - \underline{\mathbf{H}})$$

Least Squares Estimation (viii)

Sampling Properties of the Least Squares Estimators

(3)
$$\mathsf{E}(\widehat{\varepsilon}'\widehat{\varepsilon}) = (n-r-1)\sigma^2$$
; define $s^2 = \frac{\widehat{\varepsilon}'\widehat{\varepsilon}}{n-r-1} = \frac{\mathbf{Y}'(\mathbf{I}-\mathbf{H})\mathbf{Y}}{n-r-1} \Longrightarrow \mathsf{E}(s^2) = \sigma^2$
Proof: Fact: $\mathsf{trace}(\mathbf{AB}) = \mathsf{trace}(\mathbf{BA})$
 $\mathsf{E}(\widehat{\varepsilon}'\widehat{\varepsilon}) = \mathsf{E}\{\mathsf{trace}(\widehat{\varepsilon}'\widehat{\varepsilon})\} = \mathsf{E}\{\mathsf{trace}(\widehat{\varepsilon}\widehat{\varepsilon}')\} = \mathsf{trace}\{\mathsf{E}(\widehat{\varepsilon}'\widehat{\varepsilon})\}$
 $\stackrel{\mathsf{E}(\widehat{\varepsilon})=0}{=} \mathsf{trace}\{\mathsf{Cov}(\widehat{\varepsilon})\} = \mathsf{trace}\{\sigma^2(\mathbf{I}_n-\mathbf{H})\}$
 $= \sigma^2[\mathsf{trace}(\mathbf{I}_n) - \mathsf{trace}(\mathbf{H})] = \sigma^2(n-(r+1))$ where we used $\mathsf{trace}(\mathbf{H}) \stackrel{\mathsf{H}=\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'}{=} \mathsf{trace}[(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Z}] = \mathsf{trace}(\mathbf{I}_{r+1}) = r+1$

(4) $\widehat{\beta}$ and $\widehat{\varepsilon}$: uncorrelated

Proof:
$$Cov(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\varepsilon}}) = Cov[(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Y}, (\mathbf{I} - \mathbf{H})\mathbf{Y})]$$

= $(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'[Cov(\mathbf{Y})](\mathbf{I} - \mathbf{H})' = \sigma^2(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'(\mathbf{I} - \mathbf{H}) \overset{\mathbf{Z}'(\mathbf{I} - \mathbf{H}) = \mathbf{0}}{=} \mathbf{0}$

Gauss' Least Squares Theorem

$$\mathbf{Y} = \mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$
 $[\mathsf{E}(\boldsymbol{\varepsilon}) = \mathbf{0}, \; \mathsf{Cov}(\boldsymbol{\varepsilon}) = \sigma^2\mathbf{I}; \; \mathbf{Z} : \mathsf{full-rank}\; (r+1)]$ For any \mathbf{c} , the estimator

$$\mathbf{c}'\widehat{\boldsymbol{\beta}} = c_0\widehat{\beta}_0 + c_1\widehat{\beta}_1 + \ldots + c_r\widehat{\beta}_r$$

of $\mathbf{c}'\beta$ has the smallest possible variance among all linear estimators of the form $\mathbf{a}'\mathbf{Y} = a_1Y_1 + a_2Y_2 + \ldots + a_nY_n$ that are unbiased for $\mathbf{c}'\beta$.

Proof:

- 1) For any fixed \mathbf{c} , let $\mathbf{a}'\mathbf{Y}$ be any unbiased estimator of $\mathbf{c}'\boldsymbol{\beta}$. Then $\mathsf{E}(\mathbf{a}'\mathbf{Y}) = \mathbf{a}'\mathbf{Z}\boldsymbol{\beta} = \mathbf{c}'\boldsymbol{\beta} \text{ (regardless the value of } \boldsymbol{\beta}\text{)}$
 - $\Longrightarrow (\mathbf{c} \mathbf{Z}'\mathbf{a})'\boldsymbol{\beta} = \mathbf{0}$ for all $\boldsymbol{\beta}$, including $\boldsymbol{\beta} = \mathbf{c} \mathbf{Z}'\mathbf{a}$
 - $\Longrightarrow \mathbf{c} = \mathbf{Z}'\mathbf{a}$ for any unbiased estimator
- 2) Furthermore, $\mathbf{c}'\widehat{\boldsymbol{\beta}} = \mathbf{c}'(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Y} = \mathbf{a}^{\star'}\mathbf{Y}$ with $\mathbf{a}^{\star} = \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{c}$. From previous results, $\mathsf{E}(\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$ $\implies \mathbf{c}'\widehat{\boldsymbol{\beta}} = \mathbf{a}^{\star'}\mathbf{Y}$ is an unbiased estimator of $\mathbf{c}'\boldsymbol{\beta}$

Gauss' Least Squares Theorem

For any c, the estimator

$$\mathbf{c}'\widehat{\boldsymbol{\beta}} = c_0\widehat{\beta}_0 + c_1\widehat{\beta}_1 + \ldots + c_r\widehat{\beta}_r$$

of $\mathbf{c}'\beta$ has the smallest possible variance among all linear estimators of the form $\mathbf{a}'\mathbf{Y} = a_1Y_1 + a_2Y_2 + \ldots + a_nY_n$ that are unbiased for $\mathbf{c}'\beta$.

Proof: (Cont'd)

3) Due to unbiasedness condition [1) $\mathbf{c}' = \mathbf{a}'\mathbf{Z}$], for any \mathbf{a} , $(\mathbf{a} - \mathbf{a}^*)'\mathbf{Z} = \mathbf{a}'\mathbf{Z} - \mathbf{a}^{*'}\mathbf{Z} = \mathbf{c}' - \mathbf{c}' = \mathbf{0}' \Longrightarrow (\mathbf{a} - \mathbf{a}^*)'\mathbf{a}^* = (\mathbf{a} - \mathbf{a}^*)'\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{c} = 0$ $Var(\mathbf{a}'\mathbf{Y}) = Var(\mathbf{a}'\mathbf{Z}\boldsymbol{\beta} + \mathbf{a}'\boldsymbol{\varepsilon}) = Var(\mathbf{a}'\boldsymbol{\varepsilon}) = \mathbf{a}'(\sigma^2\mathbf{I})\mathbf{a} = \sigma^2\mathbf{a}'\mathbf{a}$ $= \sigma^2(\mathbf{a} - \mathbf{a}^* + \mathbf{a}^*)'(\mathbf{a} - \mathbf{a}^* + \mathbf{a}^*) = \sigma^2[(\mathbf{a} - \mathbf{a}^*)'(\mathbf{a} - \mathbf{a}^*) + \mathbf{a}^{*'}\mathbf{a}^*]$

Since \mathbf{a}^* is fixed and $(\mathbf{a} - \mathbf{a}^*)'(\mathbf{a} - \mathbf{a}^*) > 0$ unless $\mathbf{a} = \mathbf{a}^*$, $\text{Var}(\mathbf{a}'\mathbf{Y})$ is minimized by choosing $\mathbf{a} = \mathbf{a}^*$ and then $\mathbf{a}^{*'}\mathbf{Y} = \mathbf{c}'(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}\mathbf{Y} = \mathbf{c}'\widehat{\boldsymbol{\beta}}$. \blacksquare (The estimator $\mathbf{c}'\widehat{\boldsymbol{\beta}}$: referred to as the best (minimum-variance) linear unbiased estimator (BLUE) of $\mathbf{c}'\boldsymbol{\beta}$)

Inferences about the Regression Model (i)

Inferences Concerning the Regression Parameters

$$\mathbf{Y} = \mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \qquad [\boldsymbol{\varepsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})] \text{ New!}$$

- Previously assumed: $\mathsf{E}(\boldsymbol{\varepsilon}) = \mathbf{0}, \mathsf{Cov}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I}; \; \mathsf{now}: \; \boldsymbol{\varepsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$
- Let $\mathbf{Y} = \mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ [\mathbf{Z} : full-rank (r+1)] and $\boldsymbol{\varepsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$. Then
 - i) Maximum likelihood estimator of $oldsymbol{eta}=$ Least squares estimator $\widehat{oldsymbol{eta}}$
 - ii) $\widehat{\boldsymbol{\beta}} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Y} \sim N_{r+1}(\boldsymbol{\beta}, \sigma^2(\mathbf{Z}'\mathbf{Z})^{-1})$
- iii) $\widehat{m{eta}}$ is independent of the residuals $\widehat{m{arepsilon}} = \mathbf{Y} \mathbf{Z}\widehat{m{eta}}$
- iv) Let $\widehat{\sigma}^2$ be the maximum likelihood estimate of σ^2 . Then

$$n\widehat{\sigma}^2 = \widehat{\varepsilon}'\widehat{\varepsilon} \sim \sigma^2 \chi_{n-r-1}^2$$

Proof: Both $\boldsymbol{\beta}$ and σ^2 are unknown parameters whose ML estimators are given by $\widehat{\boldsymbol{\beta}} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Y}$ and $\widehat{\sigma}^2 = (\mathbf{Y} - \mathbf{Z}\widehat{\boldsymbol{\beta}})'(\mathbf{Y} - \mathbf{Z}\widehat{\boldsymbol{\beta}})/n = \widehat{\boldsymbol{\varepsilon}}'\widehat{\boldsymbol{\varepsilon}}/n$, respectively. The rest is based on the analysis we have used so far.

Inferences about the Regression Model (ii) Inferences Concerning the Regression Parameters

$$\mathbf{Y} = \mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$
 [Z: full-rank $(r+1)$, $\boldsymbol{\varepsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$]

For the Gaussian linear regression model (above):

• A $100(1-\alpha)\%$ confidence region for β is given by

$$(\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}})'(\mathbf{Z}'\mathbf{Z})(\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}}) \le (r+1)s^2 F_{r+1,n-r-1}(\alpha)$$

where $s^2 = \widehat{\varepsilon}'\widehat{\varepsilon}/(n-r-1)$ and $F_{r+1,n-r-1}(\alpha)$ is the upper (100 α)-th percentile of an F dist. with r+1 and n-r-1 d.f.

• Simultaneous $100(1-\alpha)\%$ confidence intervals for the β_i are given by

$$\widehat{\beta}_i \pm \sqrt{\widehat{\mathsf{Var}}(\widehat{\beta}_i)} \sqrt{(r+1)F_{r+1,n-r-1}(\alpha)}, \quad i = 0, 1, \dots, r$$

where $\widehat{\text{Var}}(\widehat{\beta}_i)$: the diagonal element of $s^2(\mathbf{Z}'\mathbf{Z})^{-1}$ corresponding to $\widehat{\beta}_i$.

(Proof: see the next two slides)

Inferences about the Regression Model (iii)

Inferences Concerning the Regression Parameters

$$\mathbf{Y} = \mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$
 [Z: full-rank $(r+1)$, $\boldsymbol{\varepsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$]

A $100(1-\alpha)\%$ confidence region for β :

$$\underbrace{(\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}})'(\mathbf{Z}'\mathbf{Z})(\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}})}_{\mathbf{V}'\mathbf{V}} \le (r+1)s^2 F_{r+1,n-r-1}(\alpha)$$

• Outline of proof:

1) Let
$$\mathbf{V} = (\mathbf{Z}'\mathbf{Z})^{1/2}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \Rightarrow \mathbf{V} \sim N_{r+1}(\mathbf{0}, \sigma^2 \mathbf{I}), \quad \mathbf{V}'\mathbf{V} \sim \sigma^2 \chi_{r+1}^2$$

- 2) Previously: $(n-r-1)s^2 \triangleq \widehat{\varepsilon}'\widehat{\varepsilon} \sim \sigma^2 \chi^2_{n-r-1}$
- 3) Previously: $\widehat{\beta}, \widehat{\varepsilon}$ independent $\Longrightarrow s^2, \mathbf{V'V}$ independent

$$\stackrel{1) \ 2) \ 3)}{\Longrightarrow} \frac{\mathbf{V'V}/(r+1)}{s^2} = \frac{\chi_{r+1}^2/(r+1)}{\chi_{n-r-1}^2/(n-r-1)} \sim F_{r+1,n-r-1}. \quad \blacksquare$$

Inferences about the Regression Model (iv)

Inferences Concerning the Regression Parameters

$$\mathbf{Y} = \mathbf{Z}\boldsymbol{eta} + \boldsymbol{arepsilon}$$
 [Z: full-rank $(r+1)$, $\boldsymbol{arepsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$]

Simultaneous $100(1-\alpha)\%$ confidence intervals for the β_i :

$$\widehat{\beta}_i \pm \sqrt{\widehat{\mathsf{Var}}(\widehat{\beta}_i)} \sqrt{(r+1)F_{r+1,n-r-1}(\alpha)}, \quad i = 0, 1, \dots, r$$

• Outline of proof:

Previous page: A $100(1-\alpha)\%$ confidence region for β :

$$(\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}})'(\mathbf{Z}'\mathbf{Z})(\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}}) \le (r+1)s^2 F_{r+1,n-r-1}(\alpha)$$

$$\Longrightarrow (\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}})' \left[s^2 (\mathbf{Z}'\mathbf{Z})^{-1} \right]^{-1} (\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}}) \le \underbrace{(r+1)F_{r+1,n-r-1}(\alpha)}_{c^2}$$

Take $\mathbf{a}_i = [0,\dots,0,1,0,\dots,0]'$ (1 at the *i*-th position). Then the simultaneous $100(1-\alpha)\%$ confidence intervals are

$$|\beta_i - \widehat{\beta}_i|^2 \le c^2 \left[s^2 (\mathbf{Z}'\mathbf{Z})^{-1} \right]_{ii} \quad \text{or} \quad |\beta_i - \widehat{\beta}_i|^2 \le c^2 \ \widehat{\mathsf{Var}}(\widehat{\beta}_i), \quad \forall i. \quad \blacksquare$$

Inferences about the Regression Model (v) Likelihood Ratio Tests for the Regression Parameters (1)

- Part of regression analysis: to assess the effects of particular predictor variables on the response variable.
- Here our null hypothesis is that $z_{q+1}, z_{q+2}, \ldots, z_r$ do not influence Y:

$$H_0: \beta_{q+1} = \beta_{q+2} = \ldots = \beta_r = 0 \text{ or } \boldsymbol{\beta}_{(2)} = [\beta_{q+1}, \beta_{q+2}, \ldots, \beta_r]' = \mathbf{0}$$

versus $H_1: \beta_i \neq 0$ for some $i, q+1 \leq i \leq r$

Under $H_0: \boldsymbol{\beta}_{(2)} = \mathbf{0}$, the model is $\mathbf{Y} = \mathbf{Z}_1 \boldsymbol{\beta}_{(1)} + \boldsymbol{\varepsilon}$ and under H_1 , the model is $\mathbf{Y} = \mathbf{Z}_1 \boldsymbol{\beta}_{(1)} + \mathbf{Z}_2 \boldsymbol{\beta}_{(2)} + \boldsymbol{\varepsilon}$, where

$$\mathbf{Z} = \left[\begin{array}{c|c} \mathbf{Z}_1 & \mathbf{Z}_2 \\ n \times (q+1) & n \times (r-q) \end{array}\right], \quad \boldsymbol{\beta} = \left[\begin{array}{c|c} \boldsymbol{\beta}_{(1)} \\ \vdots \\ (q+1) \times 1 \\ \vdots \\ (r-q) \times 1 \end{array}\right]$$

Inferences about the Regression Model (vi) Likelihood Ratio Tests for the Regression Parameters (2)

Define the following:

$$\begin{aligned} \mathsf{SS}_{\mathsf{res}}(\mathbf{Z}_1) &\triangleq (\mathbf{y} - \mathbf{Z}_1 \widehat{\boldsymbol{\beta}}_{(1)})' (\mathbf{y} - \mathbf{Z}_1 \widehat{\boldsymbol{\beta}}_{(1)}), \ \widehat{\boldsymbol{\beta}}_{(1)} = (\mathbf{Z}_1' \mathbf{Z}_1)^{-1} \mathbf{Z}_1' \mathbf{y} \\ \mathsf{SS}_{\mathsf{res}}(\mathbf{Z}) &\triangleq (\mathbf{y} - \mathbf{Z} \widehat{\boldsymbol{\beta}})' (\mathbf{y} - \mathbf{Z} \widehat{\boldsymbol{\beta}}) \end{aligned}$$

Main result here:

Consider: $\mathbf{Y} = \mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ [\mathbf{Z} : full-rank (r+1), $\boldsymbol{\varepsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$].

The likelihood ratio test of $H_0: \beta_{(2)} = \mathbf{0}$ rejects H_0 at level α if

$$\frac{[\mathsf{SS}_{\mathsf{res}}(\mathbf{Z}_1) - \mathsf{SS}_{\mathsf{res}}(\mathbf{Z})]/(r-q)}{s^2} > F_{r-q,n-r-1}(\alpha)$$

where as before we have $s^2 = (\mathbf{y} - \mathbf{Z}\widehat{\boldsymbol{\beta}})'(\mathbf{y} - \mathbf{Z}\widehat{\boldsymbol{\beta}})/(n-r-1)$.

Inferences about the Regression Model (vii) Likelihood Ratio Tests for the Regression Parameters (3)

Proof:

1) Given the data and the normality assumption, the likelihood function with unknown β , σ^2 is

$$L(\boldsymbol{\beta}, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{(\mathbf{y} - \mathbf{Z}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{Z}\boldsymbol{\beta})}{2\sigma^2}} \le \max_{\boldsymbol{\beta}, \sigma^2} L(\boldsymbol{\beta}, \sigma^2) = \frac{e^{-n/2}}{(2\pi\widehat{\sigma}^2)^{n/2}}$$

At maximum: $\widehat{\boldsymbol{\beta}} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y}$, $\widehat{\sigma}^2 = (\mathbf{y} - \mathbf{Z}\widehat{\boldsymbol{\beta}})'(\mathbf{y} - \mathbf{Z}\widehat{\boldsymbol{\beta}})/n$

2) Under H_0 , $\mathbf{Y} = \mathbf{Z}_1 \boldsymbol{\beta}_{(1)} + \boldsymbol{\varepsilon}$.

$$L\left(\boldsymbol{\beta}_{(1)}, \sigma^2\right) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{(\mathbf{y} - \mathbf{Z}_1 \boldsymbol{\beta}_{(1)})'(\mathbf{y} - \mathbf{Z}_1 \boldsymbol{\beta}_{(1)})}{2\sigma^2}}$$

$$\leq \max_{\boldsymbol{\beta}_{(1)}, \sigma^2} L\left(\boldsymbol{\beta}_{(1)}, \sigma^2\right) = \frac{e^{-n/2}}{(2\pi \widehat{\sigma}_1^2)^{n/2}}$$

At max.: $\widehat{\boldsymbol{\beta}}_{(1)} = (\mathbf{Z}_1'\mathbf{Z}_1)^{-1} \overline{\mathbf{Z}_1'} \mathbf{y}$, $\widehat{\sigma}_1^2 = (\mathbf{y} - \mathbf{Z}_1 \widehat{\boldsymbol{\beta}}_{(1)})' (\mathbf{y} - \mathbf{Z}_1 \widehat{\boldsymbol{\beta}}_{(1)})/n$

Inferences about the Regression Model (viii) Likelihood Ratio Tests for the Regression Parameters (4)

Proof: (Cont'd)

3) The likelihood ratio is given by

$$\frac{\max_{\boldsymbol{\beta}_{(1)},\sigma^2} L\left(\boldsymbol{\beta}_{(1)},\sigma^2\right)}{\max_{\boldsymbol{\beta},\sigma^2} L(\boldsymbol{\beta},\sigma^2)} = \left(\frac{\widehat{\sigma}_1^2}{\widehat{\sigma}^2}\right)^{-n/2} = \left(1 + \frac{\widehat{\sigma}_1^2 - \widehat{\sigma}^2}{\widehat{\sigma}^2}\right)^{-n/2}$$

which leads to the test statistic $(\widehat{\sigma}_1^2 - \widehat{\sigma}^2)/\widehat{\sigma}^2$ or its scaled version

$$\frac{n(\widehat{\sigma}_1^2 - \widehat{\sigma}^2)/(r - q)}{n\widehat{\sigma}^2/(n - r - 1)} = \frac{\frac{\mathsf{SS}_{\mathsf{res}}(\mathbf{Z}_1) - \mathsf{SS}_{\mathsf{res}}(\mathbf{Z})}{(r - q)}}{s^2} \sim F_{r - q, n - r - 1}. \quad \blacksquare$$

Inferences from the Estimated Regression Function (i)

$$\mathbf{Y} = \mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$
 $(\mathsf{E}(\boldsymbol{\varepsilon}) = \mathbf{0}, \; \mathsf{Cov}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I})$

 $\mathbf{z}_0 = [1, z_{01}, \dots, z_{0r}]'$: selected values for predictor variables (or a specific point in the design matrix space)

- Estimating the regression function at \mathbf{z}_0 Y_0 : the response at $\mathbf{z}_0 \Longrightarrow \mathsf{E}(Y_0|\mathbf{z}_0) = \mathbf{z}_0'\boldsymbol{\beta}$ (LS estimate: $\mathbf{z}_0'\widehat{\boldsymbol{\beta}}$)
 - i) $\mathbf{z}_0'\widehat{\boldsymbol{\beta}}$: the unbiased estimator of $\mathbf{z}_0'\boldsymbol{\beta}$ with minimum variance (due to Gauss' LS theorem)
 - ii) $Var(\mathbf{z}_0'\widehat{\boldsymbol{\beta}}) = \mathbf{z}_0' Cov(\widehat{\boldsymbol{\beta}}) \mathbf{z}_0 = \sigma^2 \mathbf{z}_0' (\mathbf{Z}'\mathbf{Z})^{-1} \mathbf{z}_0$
 - iii) If ε is normal \Rightarrow a $100(1-\alpha)\%$ confidence interval for $\mathsf{E}(Y_0|\mathbf{z}_0)=\mathbf{z}_0'\boldsymbol{\beta}$:

$$\mathbf{z}_0'\widehat{\boldsymbol{\beta}} \pm t_{n-r-1} \left(\frac{\alpha}{2}\right) \sqrt{\left[\mathbf{z}_0'(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{z}_0\right]s^2}$$

Inferences from the Estimated Regression Function (ii)

$$\mathbf{Y} = \mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$
 $(\mathsf{E}(\boldsymbol{\varepsilon}) = \mathbf{0}, \; \mathsf{Cov}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I})$

 $\mathbf{z}_0 = [1, z_{01}, \dots, z_{0r}]'$: selected values for predictor variables (or a specific point in the design matrix space)

• Forecasting a new observation at \mathbf{z}_0 (The model: $Y_0 = \mathbf{z}_0' \boldsymbol{\beta} + \varepsilon_0$) Y_0 , a new observation at \mathbf{z}_0 , is predicted as

$$\mathbf{z}_0'\widehat{\boldsymbol{\beta}} = \widehat{\beta}_0 + \widehat{\beta}_1 z_{01} + \ldots + \widehat{\beta}_r z_{0r}$$

- a) $\mathbf{z}_0'\widehat{\boldsymbol{\beta}}$: unbiased predictor
- b) Forecast error: $(Y_0 \mathbf{z}_0'\widehat{\boldsymbol{\beta}})$, $Var(Y_0 \mathbf{z}_0'\widehat{\boldsymbol{\beta}}) = \sigma^2[1 + \mathbf{z}_0'(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{z}_0]$
- c) If ε is normal \Rightarrow a $100(1-\alpha)\%$ prediction interval for Y_0 :

$$\mathbf{z}_0'\widehat{\boldsymbol{\beta}} \pm t_{n-r-1} \left(\frac{\alpha}{2}\right) \sqrt{\left[1 + \mathbf{z}_0'(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{z}_0\right]s^2}$$

Example 3: Computer Data (a) Interval Estimates for Mean and Future Responses

- Companies considering purchasing computers:
 - Assessing future needs to determine suitable equipment
- Data collected from n=7 companies
 - To develop a forecast equation of hardware requirements for inventory management
- The data (see the table on next page)
 - z_1 : customer orders (in thousands)
 - $-z_2$: add-delete item count (in thousands)
 - -Y: CPU (central processing unit) time (in hours)

Example 3: Computer Data (b) Interval Estimates for Mean and Future Responses

z_1	z_2	Y
(Orders)	(Add-delete items)	(CPU time)
123.5	2.108	141.5
146.1	9.213	168.9
133.9	1.905	154.8
128.5	0.815	146.5
151.5	1.061	172.8
136.2	8.603	160.1
92	1.125	108.5

- Construct a 95% confidence interval for the mean CPU time: $\mathsf{E}(Y_0|\mathbf{z}_0) = \beta_0 + \beta_1 z_{01} + \beta_2 z_{02}$ at $\mathbf{z}_0 = [1,\ 130,\ 7.5]'$
- \bullet Find a 95% prediction interval for a new facility's CPU requirement corresponding to the same \mathbf{z}_0

Table 7.3 in the textbook

Example 3: Computer Data (c) Interval Estimates for Mean and Future Responses

Analysis

1. First construct the estimated regression function:

$$\begin{bmatrix}
141.5 \\
168.9 \\
154.8 \\
146.5 \\
172.8 \\
160.1 \\
108.5
\end{bmatrix} = \begin{bmatrix}
1 & 123.5 & 2.108 \\
1 & 146.1 & 9.213 \\
1 & 133.9 & 1.905 \\
1 & 128.5 & 0.815 \\
1 & 151.5 & 1.061 \\
1 & 136.2 & 8.603 \\
1 & 92 & 1.125
\end{bmatrix}
\xrightarrow{\beta} \begin{bmatrix}
\beta_0 \\
\beta_1 \\
\beta_2
\end{bmatrix} + \begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\varepsilon_3 \\
\varepsilon_4 \\
\varepsilon_5 \\
\varepsilon_6 \\
\varepsilon_7
\end{bmatrix}$$

$$\widehat{\beta} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y} = \begin{bmatrix}
8.42 \\
1.08 \\
0.42
\end{bmatrix} \implies \widehat{y} = 8.42 + 1.08z_1 + 0.42z_2$$

Example 3: Computer Data (d) Interval Estimates for Mean and Future Responses

Analysis (Cont'd)

Estimated regression function: $\hat{y} = 8.42 + 1.08z_1 + 0.42z_2$ and

$$(\mathbf{Z'Z})^{-1} = \begin{bmatrix} 8.1797 & -0.0641 & 0.0883 \\ -0.0641 & 0.0005 & -0.0011 \\ 0.0883 & -0.0011 & 0.0144 \end{bmatrix}$$
 $(n = 7, r = 2)$

$$s^{2} = \frac{(\mathbf{y} - \mathbf{Z}\widehat{\boldsymbol{\beta}})'(\mathbf{y} - \mathbf{Z}\widehat{\boldsymbol{\beta}})'}{7 - 2 - 1} \Longrightarrow s = 1.2039$$

2. Thus

$$\mathbf{z}_0'\widehat{\boldsymbol{\beta}} = 8.42 + 1.08(130) + 0.42(7.5) = 151.97, \ t_4(0.025) = 2.776$$

$$s\sqrt{\mathbf{z}_0'(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{z}_0} = 0.71, \ s\sqrt{1 + \mathbf{z}_0'(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{z}_0} = 1.40$$

Example 3: Computer Data (e) Interval Estimates for Mean and Future Responses

Analysis (Cont'd)

3. The 95% confidence interval for the mean CPU time at z_0 is

$$\mathbf{z}_0' \widehat{\boldsymbol{\beta}} \pm t_4(0.025) s \sqrt{\mathbf{z}_0' (\mathbf{Z}' \mathbf{Z})^{-1} \mathbf{z}_0} = 151.97 \pm 2.776(0.71)$$

or (150.00, 153.94)

4. A 95% prediction interval for the CPU time at a new facility with condition \mathbf{z}_0 is

$$\mathbf{z}_0'\widehat{\boldsymbol{\beta}} \pm t_4(0.025)s\sqrt{1+\mathbf{z}_0'(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{z}_0} = 151.97 \pm 2.776(1.40)$$

or (148.08, 155.86)

Model Checking: A Residual Analysis

The model: $\mathbf{Y} = \mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, $\boldsymbol{\varepsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$

- Need to examine the adequacy of the model before using it
- Check the model by checking <u>the residuals</u>: Recall

$$\widehat{\boldsymbol{\varepsilon}} = \mathbf{Y} - \mathbf{Z}\widehat{\boldsymbol{\beta}} = [\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\mathbf{Y} = (\mathbf{I} - \mathbf{H})\mathbf{Y}$$

$$\mathsf{E}(\widehat{\boldsymbol{\varepsilon}}) = \mathbf{0}, \ \mathsf{Cov}(\widehat{\boldsymbol{\varepsilon}}) = \sigma^2(\mathbf{I} - \mathbf{H}), \ \mathsf{Var}(\widehat{\boldsymbol{\varepsilon}}_i) = \sigma^2(1 - h_{ii}), j = 1, \dots, n$$

where h_{jj} : the j-th diagonal element of ${\bf H}$ (known as leverage)

Use $s^2=\frac{\widehat{\varepsilon}'\widehat{\varepsilon}}{n-r-1}$ as an estimate of σ^2 (recall $\mathsf{E}(s^2)=\sigma^2$):

$$\widehat{\mathsf{Var}}(\widehat{\varepsilon}_j) = s^2(1 - h_{jj}), \ j = 1, 2, \dots, n$$

Studentized residuals :
$$\widehat{\varepsilon}_{j}^{*} = \frac{\widehat{\varepsilon}_{j}}{\sqrt{s^{2}(1-h_{jj})}}, \ j=1,2,\ldots,n$$

 \bullet If the model fits, we expect $\widehat{\varepsilon}_j^*$'s to look like i.i.d N(0,1) random variables

Model Checking: A Residual Analysis

Plotting the Residuals $(\widehat{\varepsilon}_j \text{ or } \widehat{\varepsilon}_j^*)$

- 1. Plot residual $\widehat{\varepsilon}_j$ vs. \widehat{y}_j ($\widehat{y}_j = \widehat{\beta}_0 + \widehat{\beta}_1 z_{j1} + \ldots + \widehat{\beta}_r z_{jr}$); be aware of:
 - (a) Dependence of $\widehat{\varepsilon}_j$ on \widehat{y}_j
 - (b) Non-constant variance

- 2. Plot $\widehat{\varepsilon}_j$ vs. a predictor variable, such as z_1
- 3. Q-Q plots of $\widehat{\varepsilon}_{j}^{*}$ or $\widehat{\varepsilon}_{j}$; check normality; detect unusual observations

Model Checking: A Residual Analysis

Plotting the Residuals $(\widehat{\varepsilon}_j \text{ or } \widehat{\varepsilon}_j^*)$

4. Plot residuals vs. time (i.e., check the assumption of independence)
Assuming chronological data, construct a test of independence from the first-order auto-correlation

$$r_1 = \frac{\sum_{j=2}^n \widehat{\varepsilon}_j \widehat{\varepsilon}_{j-1}}{\sum_{j=1}^n \widehat{\varepsilon}_j^2}$$

Then use the Durbin-Watson test based on the following statistic:

$$\frac{\sum_{j=2}^{n} (\widehat{\varepsilon}_{j} - \widehat{\varepsilon}_{j-1})^{2}}{\sum_{j=1}^{n} \widehat{\varepsilon}_{j}^{2}} \approx 2(1 - r_{1})$$

Compare the obtained result with a table of critical values (details omitted here)

Model Checking: Leverage and Influence

- Residual analysis: useful but may not be enough
 - ⇒ Further check leverage and influential observations
- Leverage: h_{jj} (the j-th diagonal element of $\mathbf{H} = \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'$)
 - Measuring the distance of the j-th observ. to the rest (n-1) ones Example: consider the simple model with one variable z ($\mathbf{Y} = \mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$)

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & z_1 \\ \vdots & \vdots \\ 1 & z_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{bmatrix}, h_{jj} = \frac{1}{n} + \frac{(z_j - \overline{z})^2}{\sum_{k=1}^n (z_k - \overline{z})^2}$$

- Measuring the contribution of y_j^- to \widehat{y}_j (hence the name "leverage") Recall: $\widehat{\mathbf{y}} = \mathbf{Z}\widehat{\boldsymbol{\beta}} = \mathbf{H}\mathbf{y} \Longrightarrow \widehat{y}_j = h_{jj}y_j + \sum_{k \neq j} h_{jk}y_k$; If h_{jj} is large relative to other h_{jk} , then y_j will a major contributor to \widehat{y}_j .
- Influential observations: Methods for assessing influence are typically based on the change in the least squares estimate $\widehat{\beta}$ when observations are deleted from the data. (Details omitted here)

Other Aspects of Linear Regression Predictor Variables Selection

- Methods for selecting predictor variables
 - 1. Mallow's C_p statistic (p: the number of variables)

$$C_p = \left(\frac{\text{residual sum of squares for subset model with}}{\frac{p \text{ parameters}}{\text{residual variance for full model}}}\right) - (n-2p)$$

Plot (p, C_p) for each subset of predictors; choose the one with (p, C_p) coordinates near the 45° line

- 2. If the list of predictors is long, use stepwise regression to select important ones without considering all possibilities.
- 3. Information-criterion based approaches, e.g.: Akaike's information criterion (AIC) for selecting p

$$\operatorname{AIC}(p) = n \ln \left(\frac{\text{residual sum of squares for subset model with}}{p \text{ parameters}} \right) + 2p$$

Select models with smaller AIC values

Multivariate Multiple Linear Regression (i)

• Modeling m multiple linear regressions using the same design matrix \mathbf{Z} The multivariate multiple linear regression model:

$$\begin{bmatrix} Y_{11} & Y_{12} & \dots & Y_{1m} \\ Y_{21} & Y_{22} & \dots & Y_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ Y_{n1} & Y_{n2} & \dots & Y_{nm} \end{bmatrix} = \begin{bmatrix} z_{10} & z_{11} & \dots & z_{1r} \\ z_{20} & z_{21} & \dots & z_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ z_{n0} & z_{n1} & \dots & z_{nr} \end{bmatrix} \begin{bmatrix} \beta_{01} & \beta_{02} & \dots & \beta_{0m} \\ \beta_{11} & \beta_{12} & \dots & \beta_{1m} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{r1} & \beta_{r2} & \dots & \beta_{rm} \end{bmatrix}$$

$$+ \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \dots & \varepsilon_{1m} \\ \varepsilon_{21} & \varepsilon_{22} & \dots & \varepsilon_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \varepsilon_{n1} & \varepsilon_{n2} & \dots & \varepsilon_{nm} \end{bmatrix}$$

(Note: $z_{10} = z_{20} = \ldots = z_{n0} = 1$)

Multivariate Multiple Linear Regression (ii)

(Cont'd) In a more compact form:

$$\mathbf{Y}_{n \times m} = \mathbf{Z}_{n \times (r+1)} \boldsymbol{\beta}_{(r+1) \times m} + \boldsymbol{\varepsilon}_{n \times m}$$

$$\mathbf{Y} = \left[\mathbf{Y}_{(1)} | \mathbf{Y}_{(2)} | \dots | \mathbf{Y}_{(m)}\right]$$

$$\boldsymbol{\beta} = \left[\boldsymbol{\beta}_{(1)} | \boldsymbol{\beta}_{(2)} | \dots | \boldsymbol{\beta}_{(m)}\right], \quad \boldsymbol{\varepsilon} = \left[\boldsymbol{\varepsilon}_{(1)} | \boldsymbol{\varepsilon}_{(2)} | \dots | \boldsymbol{\varepsilon}_{(m)}\right]$$

$$\left[\mathbf{Y}_{(1)} | \mathbf{Y}_{(2)} | \dots | \mathbf{Y}_{(m)}\right] = \mathbf{Z} \left[\boldsymbol{\beta}_{(1)} | \boldsymbol{\beta}_{(2)} | \dots | \boldsymbol{\beta}_{(m)}\right] + \left[\boldsymbol{\varepsilon}_{(1)} | \boldsymbol{\varepsilon}_{(2)} | \dots | \boldsymbol{\varepsilon}_{(m)}\right]$$

In the above,

$$\mathsf{E}(\boldsymbol{\varepsilon}_{(i)}) = \mathbf{0}$$
 and $\mathsf{Cov}(\boldsymbol{\varepsilon}_{(i)}, \boldsymbol{\varepsilon}_{(k)}) = \sigma_{ik}\mathbf{I}, \quad i, k = 1, 2, \dots, m$

From the model: $\mathbf{Y}_{(i)} = \mathbf{Z}\boldsymbol{\beta}_{(i)} + \boldsymbol{\varepsilon}_{(i)}, i = 1, \dots, m$, with $\mathsf{Cov}(\boldsymbol{\varepsilon}_{(i)}) = \sigma_{ii}\mathbf{I}$. But the errors for different responses can be **correlated**.

Multivariate Multiple Linear Regression (iii)

• Thus, assuming \mathbf{Z} : full-rank (rank (r+1) < n)
LS estimate of $\boldsymbol{\beta}_{(i)}$: $\widehat{\boldsymbol{\beta}}_{(i)} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Y}_{(i)}, \quad i=1,2,\ldots,m$

The least squares estimate of matrix
$$\boldsymbol{\beta}$$

$$\widehat{\boldsymbol{\beta}} = \left[\hat{\boldsymbol{\beta}}_{(1)}|\dots|\hat{\boldsymbol{\beta}}_{(m)}\right] = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\left[\mathbf{Y}_{(1)}|\dots|\mathbf{Y}_{(m)}\right] = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Y}$$

Remark:

Choose parameters
$$\mathbf{B} = \left[\mathbf{b}_{(1)} \mid \ldots \mid \mathbf{b}_{(m)}\right] \Longrightarrow$$
 error matrix: $\mathbf{Y} - \mathbf{Z}\mathbf{B}$ $(\mathbf{Y} - \mathbf{Z}\mathbf{B})'(\mathbf{Y} - \mathbf{Z}\mathbf{B})$

$$=\begin{bmatrix} (\mathbf{Y}_{(1)} - \mathbf{Z}\mathbf{b}_{(1)})'(\mathbf{Y}_{(1)} - \mathbf{Z}\mathbf{b}_{(1)}) & \dots & (\mathbf{Y}_{(1)} - \mathbf{Z}\mathbf{b}_{(1)})'(\mathbf{Y}_{(m)} - \mathbf{Z}\mathbf{b}_{(m)}) \\ \vdots & & \vdots & & \vdots \\ (\mathbf{Y}_{(m)} - \mathbf{Z}\mathbf{b}_{(m)})'(\mathbf{Y}_{(1)} - \mathbf{Z}\mathbf{b}_{(1)}) & \dots & (\mathbf{Y}_{(m)} - \mathbf{Z}\mathbf{b}_{(m)})'(\mathbf{Y}_{(m)} - \mathbf{Z}\mathbf{b}_{(m)}) \end{bmatrix}$$

 $\widehat{{\boldsymbol{\beta}}} \ \underline{\mathsf{minimizes}} \ \mathsf{trace}[(\mathbf{Y} - \mathbf{Z}\mathbf{B})'(\mathbf{Y} - \mathbf{Z}\mathbf{B})] \ \mathsf{and} \ |(\mathbf{Y} - \mathbf{Z}\mathbf{B})'(\mathbf{Y} - \mathbf{Z}\mathbf{B})|.$

Multivariate Multiple Linear Regression (iv)

- Using the LS estimate $\widehat{\beta}$, we have

 - Fitted values: $\widehat{\mathbf{Y}} = \mathbf{Z}\widehat{\boldsymbol{\beta}} = \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Y}$ Residuals: $\widehat{\boldsymbol{\varepsilon}} = \mathbf{Y} \widehat{\mathbf{Y}} = [\mathbf{I} \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\mathbf{Y}$
- Important results:

Orthogonality principle: $\mathbf{Z}'\widehat{\pmb{arepsilon}} = \mathbf{0}, \ \ \widehat{\mathbf{Y}}'\widehat{\pmb{arepsilon}} = \mathbf{0}$

– Consequently: $\mathbf{Y}'\mathbf{Y} = \widehat{\mathbf{Y}}'\widehat{\mathbf{Y}} + \widehat{\boldsymbol{\varepsilon}}'\widehat{\boldsymbol{\varepsilon}}$ or $\widehat{\boldsymbol{\varepsilon}}'\widehat{\boldsymbol{\varepsilon}} = \mathbf{Y}'\mathbf{Y} - \widehat{\boldsymbol{\beta}}'\mathbf{Z}'\mathbf{Z}\widehat{\boldsymbol{\beta}}$

Multivariate Multiple Linear Regression (v)

- Sampling properties of the LS estimate $\widehat{\beta}$: Assuming **Z**: full-rank (rank (r+1) < n)

 - $\mathsf{E}(\widehat{\boldsymbol{\beta}}_{(i)}) = \boldsymbol{\beta}_{(i)}$, i.e., $\mathsf{E}(\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$ $\mathsf{Cov}(\widehat{\boldsymbol{\beta}}_{(i)}, \widehat{\boldsymbol{\beta}}_{(k)}) = \sigma_{ik}(\mathbf{Z}'\mathbf{Z})^{-1}, \ i, k = 1, \dots, m$ $\mathsf{E}(\widehat{\boldsymbol{\varepsilon}}_{(i)}) = \mathbf{0}$ and $\mathsf{E}(\widehat{\boldsymbol{\varepsilon}}) = \mathbf{0}$ $\mathsf{E}(\widehat{\boldsymbol{\varepsilon}}'_{(i)}\widehat{\boldsymbol{\varepsilon}}_{(k)}) = (n r 1)\sigma_{ik}$ and $\mathsf{E}(\widehat{\boldsymbol{\varepsilon}}'\widehat{\boldsymbol{\varepsilon}}) = (n r 1)\boldsymbol{\Sigma}$
 - $\widehat{oldsymbol{eta}}$ and $\widehat{oldsymbol{arepsilon}}$: uncorrelated

Note: In the above: $\Sigma_{m \times m} = \{\sigma_{ik}\}\$

Multivariate Multiple Linear Regression (vi)

• Gaussian/Normal multivariate multiple linear regression

Assuming (1) **Z**: full-rank (rank(**Z**) = (r+1), $n \ge (r+1) + m$), (2) ε : multivariate normal and (3) Σ : positive definite

- ullet The LS estimate $\widehat{m{eta}}=({f Z}'{f Z})^{-1}{f Z}{f Y}$ is the ML estimator of $m{eta}$
- $\widehat{\boldsymbol{\beta}}$: normal distribution, $\mathsf{E}(\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$, $\mathsf{Cov}(\widehat{\boldsymbol{\beta}}_{(i)}, \widehat{\boldsymbol{\beta}}_{(k)}) = \sigma_{ik}(\mathbf{Z}'\mathbf{Z})^{-1}$
- $\widehat{\beta}$: independent of $\widehat{\Sigma}$, where $\widehat{\Sigma}$ is the ML estimator of Σ : $\widehat{\Sigma} = \frac{1}{n}\widehat{\varepsilon}'\widehat{\varepsilon} = \frac{1}{n}(\mathbf{Y} \mathbf{Z}\widehat{\beta})'(\mathbf{Y} \mathbf{Z}\widehat{\beta})$ and $n\widehat{\Sigma} \sim \mathbf{W}_{m,n-r-1}(\Sigma)$
- The maximum likelihood $L(\widehat{m{eta}},\widehat{m{\Sigma}})=(2\pi)^{-mn/2}\left|\widehat{m{\Sigma}}\right|^{-n/2}e^{-mn/2}$

Multivariate Multiple Linear Regression (vii) Likelihood Ratio Test for Regression Parameters (1)

$$ullet$$
 Testing $H_0:oldsymbol{eta}_{(2)}=\mathbf{0},$ where $oldsymbol{eta}=egin{bmatrix} \underline{eta_{(1)}} \ (q+1) imes m \ \underline{eta_{(2)}} \ (r-q) imes m \end{bmatrix}$, vs. $H_1:oldsymbol{eta}_{(2)}
eq \mathbf{0}$

Partitioning
$$\mathbf{Z} = [\underbrace{\mathbf{Z}_1}_{n \times (q+1)} \mid \underbrace{\mathbf{Z}_2}_{n \times (r-q)}] \Longrightarrow \mathbf{Y} = \mathbf{Z}_1 \boldsymbol{\beta}_{(1)} + \mathbf{Z}_2 \boldsymbol{\beta}_{(2)} + \boldsymbol{\varepsilon}$$

Under H_0 : $\mathbf{Y} = \mathbf{Z}_1 \boldsymbol{\beta}_{(1)} + \boldsymbol{\varepsilon}$; assuming normality,

$$\widehat{\boldsymbol{\beta}}_{(1)} = (\mathbf{Z}_1'\mathbf{Z}_1)^{-1}\mathbf{Z}_1'\mathbf{Y}, \quad \widehat{\boldsymbol{\Sigma}}_1 = \frac{1}{n}(\mathbf{Y} - \mathbf{Z}_1\widehat{\boldsymbol{\beta}}_{(1)})'(\mathbf{Y} - \mathbf{Z}_1\widehat{\boldsymbol{\beta}}_{(1)})$$

The likelihood ratio:

$$\Lambda = \frac{\max_{\boldsymbol{\beta}_{(1)}, \boldsymbol{\Sigma}} L\left(\boldsymbol{\beta}_{(1)}, \boldsymbol{\Sigma}\right)}{\max_{\boldsymbol{\beta}, \boldsymbol{\Sigma}} L(\boldsymbol{\beta}, \boldsymbol{\Sigma})} = \frac{L(\widehat{\boldsymbol{\beta}}_{(1)}, \widehat{\boldsymbol{\Sigma}}_1)}{L(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\Sigma}})} = \left(\frac{|\widehat{\boldsymbol{\Sigma}}|}{|\widehat{\boldsymbol{\Sigma}}_1|}\right)^{n/2}$$

Multivariate Multiple Linear Regression (viii) Likelihood Ratio Test for Regression Parameters (2)

Main result: Assuming **Z** having full rank $(r+1), (r+1) + m \leq n$, and $\pmb{arepsilon}$: normally distributed. Under $H_0: \pmb{eta}_{(2)} = \pmb{0}, \; n \widehat{\pmb{\Sigma}} \sim \mathbf{W}_{m,n-r-1}(\pmb{\Sigma})$ and $n\widehat{\Sigma}$ is independent of $n(\widehat{\Sigma}_1 - \widehat{\Sigma})$, where $n(\widehat{\Sigma}_1 - \widehat{\Sigma}) \sim \mathbf{W}_{m,r-q}(\Sigma)$. The likelihood ratio test is equivalent to rejecting H_0 for large values of

$$-2\ln\Lambda = -n\ln\frac{|\widehat{\Sigma}|}{|\widehat{\Sigma}_1|} = -n\ln\frac{|n\widehat{\Sigma}|}{|n\widehat{\Sigma} + n(\widehat{\Sigma}_1 - \widehat{\Sigma})|}$$

For large n, the modified statistic

$$-[n-r-1-\frac{1}{2}(m-r+q+1)]\ln\left(\frac{|\widehat{\pmb{\Sigma}}|}{|\widehat{\pmb{\Sigma}}_1|}\right)$$
 can be shown to be approximately $\chi^2_{m(r-q)}$ distributed.

(Remark: Other test statistics used for testing H_0 : e.g., Wilks' lambda, Pillai's trace, Hotelling-Lawley trace, and Roy's greatest root)