TURING MACHINES

Introduction to Turing Machine

CLASSES OF LANGUAGES

Finite Automata

* Regular Languages

Pushdown Automata

* Context-Free Languages

CLASSES OF LANGUAGES

Finite Automata

* Regular Languages

Pushdown Automata

★ Context-Free Languages

TM: Turing Machines

- * A new model of computation
- * Not much more elaborate
- * A "model" for all computers

TM: Turing Machines

- * "decidable" languages
- * "Turing recognizable" languages
- * languages that are not "Turing recognizable"

TURING MACHINE DEFINITION

Note: There are variations in the exact definition from textbook to textbook.

All variations are equivalent.

DATA STRUCTURES

FSM

* the input string

PDA

- * the input string
- ⋆ a stack

TM

* a "tape"

TAPE ALPHABET

Typical: $\Sigma = \{0, 1\}$

But also common: {0, 1, a, b, X, Y, \$}

The "blank" symbol is special

TAPE ALPHABET

The current position (the tape head)

- * initially at the leftmost cell
- * can move left or right
- * can read ("scan") the current symbol
- * can write the symbol to current position

TAPE ALPHABET

The control portion
Similar to a FSM or PDA
The "program"
Deterministic

At each step of the computation:

- * Read the current symbol
- ⋆ Update (i.e. write) the same cell
- Move exactly one cell either left or right
 - If we are at the left end of the tape and trying to move left, then do not move; stay at the left end.

Don't want to update the cell?

★ Just write the same symbol.

- * Control is with a sort of finite state machine.
- ★ Initial state
- ★ Final states: exactly 2 final states
 - The "accept" state
 - The "reject" state

Computation can...

- * halt and "accept"
 - Whenever the machine enters the "accept" state, computation immediately halts
- * halt and "reject"
 - Whenever the machine enters the "reject" state, computation immediately halts
- * "loop"
 - The machine fails to halt

The TM is deterministic.

Turing Machine Examples

$$L = O^n 1^n$$

$$L = O^n 1^n$$

$$L = O^n 1^n$$

$$L = O^n 1^n$$

$$L = O^n 1^n$$

$$L = O^n 1^n$$

$$L = O^n 1^n$$

$$L = O^n 1^n$$

$$L = O^n 1^n$$

$$L = O^n 1^n$$

Accept!

 $L = O^n 1^n$

Algorithm:

- 1. Change 0 to X
- 2. Move right to first 1. If none, reject.
- 3. Change 1 into Y.
- 4. Move left to leftmost 0
- 5. Repeat (1) until no more 0s.
- 6. Make sure no more 1s remain.

$$L = On1n$$

Computation History:

```
00001111
```

$$\Gamma = \{0, 1, X, Y, --\}$$

. . .

000111

L = On1n Qo

000111

X 0 0 1 1 1

XXXYY1

XXXYY1

XXXYY1

Questions:

- ★ Is this machine correct?
- ⋆ Does it work?
- ⋆ Does it contain bugs?
 - TMs model computers
 - In this way they are similar!

Definition of TMs and Related Language Classes

FORMAL DEFINITION

(Q, Σ , Γ , δ , q₀, q_{ACCEPT}, q_{REJECT})

- ⋆ Q = Set of states
- $\star \Sigma = Input alphabet$
- * Γ = Tape Alphabet
 - Often we need a few extra symbols to make computation easier. $\Sigma \subseteq \Gamma$
 - The input cannot contain a blank. $\notin \Sigma$ and $\in \Gamma$
- ★ q₀ = Initial state q₀ ∈ Q
- **★** QACCEPT qaccept ∈ Q
- **★** QREJECT QREJECT ∈ Q
- * $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ Transition Function

CONFIGURATION

- * Gives the entire state of the machine.
- * Snapshot of execution at some step.

CONFIGURATION

Need:

- ★ Contents of the tape
- ★ Location of the "tape head"
- ★ Current state

CONFIGURATION

A configuration is a string like this:

A sequence of configurations, starting with the **start configuration**, and ending with an [Accepting]* **configuration** and containing only legal transitions provide a **computation history**.

* Rejecting

 $L = 0^{n}1^{n}$, given the string 0011.

 $L = 0^{n}1^{n}$, given the string 0011.

 q_00011

 $L = 0^{n}1^{n}$, given the string 0011.

 q_00011 Xq_1011

 $L = 0^{n}1^{n}$, given the string 0011.

 q_00011 Xq_1011 $X0q_111$

 $L = 0^{n}1^{n}$, given the string 0011.

 q_00011 Xq_1011 $X0q_111$ Xq_20Y1

 $L = 0^{n}1^{n}$, given the string 0011.

 q_00011 Xq_1011 $X0q_111$ Xq_20Y1 q_2X0Y1

 $L = 0^{n}1^{n}$, given the string 0011.

 q_00011 Xq_1011 $X0q_111$ Xq_20Y1 q_2X0Y1 Xq_00Y1

 $L = 0^{n}1^{n}$, given the string 0011.

 q_00011 Xq_1011 $X0q_111$ Xq_20Y1 q_2X0Y1 Xq_00Y1 XXq_1Y1

 $L = 0^{n}1^{n}$, given the string 0011.

 q_00011 Xq_1011 $X0q_111$ Xq_20Y1 q_2X0Y1 Xq_00Y1 XXq_1Y1 $XXYq_11$

 $L = 0^{n}1^{n}$, given the string 0011.

 q_00011 Xq_1011 $X0q_111$ Xq_20Y1 q_2X0Y1 Xq_00Y1 XXq_1Y1 $XXYq_11$ $XXYq_1Y$

 $L = 0^{n}1^{n}$, given the string 0011.

 q_00011 Xq_1011 $X0q_111$ Xq_20Y1 q_2X0Y1 Xq_00Y1 XXq_1Y1 $XXYq_11$ $XXYq_11$ XXQ_2YY Xq_2XYY

 $L = 0^{n}1^{n}$, given the string 0011.

 $L = 0^{n}1^{n}$, given the string 0011.

 $L = 0^{n}1^{n}$, given the string 0011.

q₀0011 Xq₁011 X0q111 Xq₂0Y1 q_2X0Y1 Xq₀0Y1 XXq₁Y1 XXYq₁1 XXq₂YY Xq₂XYY XXq_0YY XXYq₃Y XXYYq₃—

 $L = 0^{n}1^{n}$, given the string 0011.

q₀0011 Xq₁011 X0q111 Xq₂0Y1 q_2X0Y1 Xq₀0Y1 XXq₁Y1 XXYq₁1 XXq₂YY Xq₂XYY XXq₀YY XXYq₃Y XXYYq₃— $XXYY-q_4-$

1. Decidable Languages

- * When given a string as input, the TM will always halt.
 - TM will accept if it is in L.
 - TM will reject if it is not in L.
- * also: recursive, computable, solvable

2. Turing Recognizable Languages

- * When given a string that is in the language, the TM will always halt and accept.
- * If not, the TM will either reject or loop.
- * also: recursively enumerable, RE, partially decidable, semi-decidable

3. Not Turing Recognizable Languages

* Cannot recognize members reliably!

 also: not recursively enumerable, not RE, not partially decidable

USES OF TURING MACHINE

- * To decide a language
- * To recognize a language

USES OF TURING MACHINE

- * To decide a language
- ⋆ To recognize a language
- * To compute a function

USES OF TURING MACHINE: TO COMPUTE A FUNCTION

- 1. Computable Function
 - ★ Computable ≅ Decidable
 - ⋆ Totally computable
 - ⋆ Defined on all inputs

USES OF TURING MACHINE: TO COMPUTE A FUNCTION

- 2. Partially Computable Functions
 - * Undefined on some inputs
 - ★ Semi-decidable functions

The Church-Turing Thesis

THE CHURCH-TURING THESIS

Several variations on Turing Machines

- One tape or many?
- Infinite on both ends?
- Tiny alphabet {0, 1} or not?
- Can the head stay in the same place?
- Allow nondeterminism

THE CHURCH-TURING THESIS

Several variations on Turing Machines

- One tape or many?
- Infinite on both ends?
- Tiny alphabet {0, 1} or not?
- Can the head stay in the same place?
- Allow nondeterminism

All variations are equivalent in computing capability!

THE CHURCH-TURING THESIS

Several variations on Turing Machines

- One tape or many?
- Infinite on both ends?
- Tiny alphabet {0, 1} or not?
- Can the head stay in the same place?
- Allow nondeterminism

All variations are equivalent in computing capability!

TMs and Lambda Calculus are also equivalent in power.

CONCLUSION / DEFINITION

Algorithmically Computable = Computable by a TM

TURING MACHINE vs TURING TEST

Turing Machine

#

Turing Test

Turing Machine Programming Techniques

COMMON PROBLEM

How can we recognize the left end of the tape?

COMMON PROBLEM

How can we recognize the left end of the tape?

GOAL: Want to put a special symbol \$ on the left end and shift the input over 1 cell to the right.

COMMON PROBLEM

How can we recognize the left end of the tape?

GOAL: Want to put a special symbol \$ on the left end and shift the input over 1 cell to the right.

COMMON PROBLEM

How can we recognize the left end of the tape?

GOAL: Want to put a special symbol \$ on the left end and shift the input over 1 cell to the right.

TURING MACHINE PROGRAMMING TECHNIQUES

Q: How much TM programming do you need to do?

A: Just enough to get the idea and to convince yourself that all programs or algorithms can be implemented on a Turing Machine.

WRITING PROGRAMS

Machine Code 0110, 1100

Assembly Code ADD R1, R2, R3

C Codei = (2 + k) * n

Algorithms
if SnT=Ø...

No implementation details

WRITING PROGRAMS IN TURING MACHINE

Machine Code 0110, 1100 Assembly Code ADD R1, R2, R3 C Code i = (2 + k) * nAlgorithms if SnT=Ø... No implementation details

Turing Machine
States, Transition Function
(complete TM)

Outline of Algorithm
Still talking about
tape head movement
Data representation

High-level specification of algorithm
No TM specific details

PROGRAMMING TECHNIQUE: SUBROUTINE

Build a TM to recognize the language 0ⁿ1ⁿ0ⁿ.

Build a TM to **decide** the language.

This language is **not** context-free. So this will prove

CONTEXT-FREE C DECIDABLE LANGUAGES

proper subset

We already have a TM to turn 0ⁿ1ⁿ into XⁿYⁿ and to decide that language.

We already have a TM to turn 0ⁿ1ⁿ into XⁿYⁿ and to decide that language.

We already have a TM to turn 0ⁿ1ⁿ into XⁿYⁿ and to decide that language.

Idea: Use that TM as a subroutine!

PROGRAMMING TECHNIQUE: SUBROUTINE

Idea: Use that TM as a subroutine!

```
Step 1:
000011110000
XXXXYYYY0000
```

Step 2:

Build a similar TM to recognize Yn0n

Step 3:

Build the final TM by "gluing" these smaller TMs together into one larger TM.

PROGRAMMING TECHNIQUE: SUBROUTINE

Idea: Use that TM as a subroutine!

```
Step 1:
000011110000
XXXXYYYY0000
```

Step 2:

Build a similar TM to recognize Yn0n

Step 3:

Build the final TM by "gluing" these smaller TMs together into one larger TM.

Solution:

- ⋆ Use a new symbol, such as "x"
- ★ Turn each symbol into an "x" after it has been examined.

PROGRAMMING TECHNIQUE: MARKING SYMBOL

Compare two strings. A TM to decide $\{w\#w \mid w \in \{a, b, c\}.$

```
a a b a c # a a b a c
x a b a c # x a b a c
x x b a c # x x b a c
....
```

X X X X X # X X X X

Problem:

Do it nondestructively, without losing the original strings. (Perhaps this task is part of a larger task.)

Problem:

Do it nondestructively, without losing the original strings. (Perhaps this task is part of a larger task.)

$$a = x$$
, $b = y$, $c = z$

Solution:

Mark each symbol to keep track of what we've already done. Add some new symbols to help.

$$a = x$$
, $b = y$, $c = z$

aabac#aabac

. . .

Later, restore the strings if we need to

"Mark each symbol with a dot."

"Remember this location."

Multitape Turing Machines

THEOREM

Every multitape Turing Machine has an equivalent single-tape Turing Machine.

Equivalent means it decides/ recognizes the same languages. It's not about speed, efficiency or ease of programming.

PROOF

- Given a multitape TM, show how to build a single-tape TM.
 - * Need to store all tapes on a single tape. (Show data representation.)
 - * Each tape has a tape head. (Show how to store that information.)
 - ★ Need to transform a move in the multitape TM into a one or more in the single-tape TM.

PROOF

Multitape TM

An example machine with k = 3 tapes

PROOF

- * Add "dots" to show where head k is.
- To simulate a transition from state Q, we must scan our tape to see which symbols are under the k tape heads.

Nondeterministic Turing Machines

NONDETERMINISM

Nondeterminism means that the TM may have more than one choice of action. As usual, a nondeterministic TM (or NTM) accepts a string if some choice of actions lead to that accept state.

THEOREM: TM vs NTM

Theorem. A nondeterministic TM has the same power as a standard TM.

Proof: We show that the NTM can be simulated by a deterministic one.

We need the concept of configuration. We view the calculations of NTM as a tree. The nodes are the configurations of the NTM, and the children of a node are the possible next steps. The NTM accepts the input if there is a branch that leads to an accepting configuration.

The simulator does breadth-first-search of tree.

Turing Machine as Problem Solvers