CS & IT

Process Synchronization/
Coordination

DPP 01 Discussion Notes

By- Anjnee Bhatnagar ma'am

TOPICS TO BE COVERED

01 Question

02 Discussion

Consider the following statements:

 S_1 : If all jobs have identical run lengths, a RR scheduler provides better average turnaround time than FIFO. Γ_a

 S_2 : With a MLFQ scheduler, high priority jobs have longer timeslices than low priority jobs. $\frac{1}{2}$

Which of the following is true?

- A. Only S₁
- B. Only S₂
- G. Both S₁ and S₂
- None of these

Suppose there is a system operating upon round-robin scheduling, If e denotes time that is been needed to do a process switch and if w denotes round-robin time quantum and if n denotes average time that a process is required to run. Then what will be the CPU efficiency under following circumstances. If round-robin time quantum is greater than the average time i.e. (w > n).

A.

n

В.

1/(n + e)

C.

n/(n+e)

D. None of these

Time Quantum = W

Burst Length = n

7 otal time for execution

A process spends 20% of its execution time waiting for wood completion of I/O operation. If there are 8 processes in memory at once, then the probability of CPU time utilized is _______%. (Assume all I/O operations are overlapped). (Upto 2 decimal places)

Considering the exponential average behavior used to predict the next CPU burst. If $\alpha = 0.70$ and $\tau_0 = 30$ ms and previous (T_0 , T_1 , T2, T3) runs were as 10, 12, 15, 20. The predicted value of $\tau_4 = \frac{18.33}{18.33}$ (up to two decimal places). $\tau_1 = 0.7(10) + 0.3(30)$ [NAT]

$$d = 8 \text{ moothening factor} = 0.70$$
 $T_1 = 7 + 9 = 16 \text{ ms}$
 $T_2 = 0.7(12) + 0.3(16)$
 $T_3 = 10$
 T_{-12}
 T_{-15}
 T_{-15}

$$T_{n+1} = t_0(\alpha) + T_n(1-\alpha)$$

$$C_{1} = 0.7(10) + 0.3(30) \text{ [NAT]}$$

$$C_{1} = 30 \text{ moothening factor} = 0.70$$

$$T_{1} = 7 + 9 = 16 \text{ ms}$$

$$T_{2} = 0.7(12) + 0.3(16)$$

$$= 8.4 + 4.8 \Rightarrow 13.2 \text{ ms}$$

$$T_{3} \Rightarrow 0.7(15) + 0.3(13.2)$$

$$= 30.5 + 3.96 \Rightarrow 14.46 \text{ msec}$$

$$T_{4} \Rightarrow 0.7(20) + 0.3(14.46)$$

$$= 18.338$$

What are the limitations of Single-Ready queue?

All processes have to use same scheduling technique. True

Lots of searching time required to select single process. True

Multiple processes cannot run simultaneously. - a se

In a single-ready queue only single process can reside.

Which of the following is/are correct regarding MLQ(Multi-level queue) scheduling?

[MSQ]

Some processes may suffer from starvation. Tome

Processes are divided into categories and scheduled on different ready queue.

Multiple scheduling algorithms can be implemented simultaneously.

It has minimal scheduling overhead.

Highest	System Process	Round Robin	CPO Scheduling
Triority	Interactive Process	SJF	
Lowest Priority	Background Process	P40 FCFS	

Which process can be affected by other processes executing in

the system?

- A. cooperating process
- B. child process X
- c. parent process X
- D. independent process

A race condition____.

[MSQ]

- Occurs when two threads enter critical section at the same time.
- B. Occurs when one thread is in critical section and another thread cannot access critical section.
- Occurs when two threads access a shared variable at the same time.
 - D. None of these

$$x = 2^{\frac{1}{5}}$$

$$x = 5$$

