NowCasting Indian GDP Growth: Dynamic Factor Model HUL715: Time Series Econometrics

S S K Pavan

2020HES7045

November 29, 2021

Nowcasting

prediction of the present, the very near future and the very recent past¹

- ▶ Key statistics on the state of economy available after lag
- ▶ Aim: Obtain early estimate by exploiting information which is published early

¹Banbura, Giannone, and Reichlin (2013)

Nowcasting

prediction of the present, the very near future and the very recent past¹

- Key statistics on the state of economy available after lag
- Aim: Obtain early estimate by exploiting information which is published early
- Diverse indicators show varied trends in economic activity
- Nowcasting literature builds formal statistical models to assimilate these varying trends

Motivation

Mint Newspaper Plain facts section

- 1st Nov: Coming this week: India PMI data; US, UK monetary policy meets
- ▶ 25th Oct: What to watch: COP26 meeting, auto & pharma earnings
- ▶ 18th Oct: Coming up this week: MPC minutes, FMCG results, UK inflation
- ▶ 11th Oct: Numbers to watch: Inflation, Q2 earnings in India; IMF global outlook
- ▶ 27th Sept: Numbers to watch: Core sector data, PMI in India; GDP in the US, UK

Challenges

- ▶ Large number of variables sampled at wide range of frequencies
- ▶ Data released in non-synchronous manner, with different delays

Challenges

- ► Large number of variables sampled at wide range of frequencies
- ▶ Data released in non-synchronous manner, with different delays

- Sub-challenges:
 - Choice of variables
 - Lead
 - Lag
 - Contemporaneous
 - Signal Extraction

Methods

- ▶ Bridge Equations
- Mixed Data Sampling
- Mixed Frequency VAR
- Dynamic Factor Models
- Bayesian VAR and Bayesian DFM

Literature - I

- Until start of 2000s, bridge equations were popular for short term forecasting (Baffigi, Golinelli, and Parigi, 2004)
- ► Giannone, Reichlin, and Small (2008) devised formal statistical framework for use in nowcasting.

Literature - I

- Until start of 2000s, bridge equations were popular for short term forecasting (Baffigi, Golinelli, and Parigi, 2004)
- ► Giannone, Reichlin, and Small (2008) devised formal statistical framework for use in nowcasting.
- Factor analysis has long history in economics:
 - ► Gweke(1977) captured the co-movements in economic time series
 - ➤ Sargent and Sims (1977), Stock and Watson (1989, 1991, 1993) used dynamic factors to identify business cycles

Literature-II

- ▶ Nearly every central bank has a nowcasting model in place
- ► Two new papers using Bayesian methods:
 - Diaz, Drechsel, Petrella 2021 use Bayesian Dynamic Factor model with novel specifications
 - Cimadomo, Giannone, Lenza, Monti, Sokol 2021 use large Bayesian Vector Autoregressions with a uge dataset

Literature-II

- Nearly every central bank has a nowcasting model in place
- ► Two new papers using Bayesian methods:
 - Diaz, Drechsel, Petrella 2021 use Bayesian Dynamic Factor model with novel specifications
 - Cimadomo, Giannone, Lenza, Monti, Sokol 2021 use large Bayesian Vector Autoregressions with a uge dataset
- Indian context:
 - ▶ RBI 2007 Composite Index of Coincidental Indicators
 - Bragoli and Fosten (2018) use DFM
 - ▶ Rabobank and CEIC publish nowcasts of Indian GDP using proprietary models

Variable Selection: Using Literature

➤ Step 1: Based on literature review of High-frequency indicators of Indian economy, authors choose **28 potential indicators**

Industry	Income	Employment	Services	External Sector	Prices	Misc. Activity	Credit
IIP - Core	IIP-Cons goods	Agri wages	Air cargo	non-oil, gold imports	CPI	Govt Tax receipts	commercial credit
Oil cons	Auto sales		Rail Freight	Exports			Sensex
Power demand			Air passengers	tourist arrival			Treasury yield
Steel prod			Ral passenger	NEER ²			
Cement prod				Forex Reserves			
				CRB index			
				crude prices			
				OECD IP			
				CBOE VIX			

- Step 2: Choose subset which has significant correlation with GDP at t-1, t and t+1
- ► Step 3: Check if the chosen indicators can successfully identify turning points in GDP growth rate

²Nominal Effective Exchange rate

Variable Selection: Dynamic Correlation

Indicators	$GDP_{(t-1)}$	$GDP_{(t)}$	$GDP_{(t+1)}$	Indicator Type
Air cargo	0.17	0.37*	0.27*	С
Auto total	0.17	0.25*	0.24*	C
Bank credit	0.11	0.08	-0.09	X
Exports	0.31*	0.35*	-0.02	C
Foreign tourist	0.19	0.36*	0.12	C
Government receipts	0.21*	0.10	-0.01	L-
IIP consumer goods	0.20*	0.54*	-0.01	C
IIP core	0.25*	0.20*	0.28*	L+
NEER	0.14	0.24*	0.15	C
NONG imports	0.33*	0.19	-0.02	L-
Rail freight	0.20*	0.17	0.15	L-
Sensex	0.25*	0.52*	0.23*	C

Figure: summary of selected variables

Turning Points

LASSO

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

- \triangleright *n* is the number of turning points in from Q1 2003 to Q1 2019
- \triangleright y_i is the quarter-on-quarter annualized growth rate of GDP
- \triangleright x_{ij} is the jth high freq indicator at ith turning point
- $ightharpoonup \lambda$ is the tuning parameter

LASSO

Indicator	Turning-Point Correlation	Lasso	
IIP consumer goods	0.68*	Y	
Auto total	0.55*	Y	
NEER	0.55*	Y	
IIP core	0.58*	Y	
Rail freight	0.24*	Y	
Sensex	0.65*	Y	
Exports	0.65*	Y	
Air cargo	0.57*	N	
NONG imports	0.46*	N	
Bank credit	0.11	N	
Government receipts	0.32*	N	
Foreign tourist	0.57*	N	

Figure: Summary of Selected Variables Using Turning-Point Correlations and Lasso

samples

- ► CEII 6 Domestic economic activity indicators
- ► CEII 9 trade and service sector
- ► CEII 12 financial sector

Basic DFM I

- Variables are log differenced, demeaned and standardised
- ► Model:

$$Y_t = \Lambda f_t + E_t, \quad E_t \quad i.i.d \ N(0, R)$$

$$f_t = \beta f_{t-1} + u_t, \quad u_t \quad i.i.d \ N(0, q)$$

- \triangleright Y_t contains only monthly indicators from a balanced panel
- ightharpoonup Assumption: f_t and v_{it} are mutually uncorrelated at all lags and leads

Basic DFM I

- Variables are log differenced, demeaned and standardised
- ► Model:

$$Y_t = \Lambda f_t + E_t, \quad E_t \quad i.i.d \ N(0, R)$$

$$f_t = \beta f_{t-1} + u_t, \quad u_t \quad i.i.d \ N(0, q)$$

- \triangleright Y_t contains only monthly indicators from a balanced panel
- \triangleright Assumption: f_t and v_{it} are mutually uncorrelated at all lags and leads
- 2-Step procedure:
 - Parameters are estimated using PCA
 - \triangleright Factor f_t is estimated by applying Kalman-smoother to the entire information set

PCA I

▶ Suppose \sum_{yy} is the var-covariance matrix of the observed variables.

$$Y_t = \Lambda F_t + E_t, \quad E_t \quad i.i.d \ N(0,R)$$

- The factors F_t (q x 1) are modelled as mean 0, variance 1 and are orthogonal to each other i.e $F_tF_t'=0$
- \triangleright take the variance of Y_t ,

$$\sum_{yy} = \Lambda F_t F_t' \Lambda' + R$$
$$= \Lambda \Lambda' + R$$

PCA- II

- $ightharpoonup \sum_{yy}$ is a positive definite matrix
- ▶ It can be decomposed as follows:

$$\sum_{yy} = eDe' = eD^{1/2}D^{1/2}'e'$$

• e is the matrix of eigen vectors (p) and D is a diagonal matrix of eigen values

PCA-II

- $ightharpoonup \sum_{yy}$ is a positive definite matrix
- ▶ It can be decomposed as follows:

$$\sum_{yy} = eDe' = eD^{1/2}D^{1/2}'e'$$

- e is the matrix of eigen vectors (p) and D is a diagonal matrix of eigen values
- estimate:

$$\mathcal{S}_{yy}pprox\lambda_1e_1e_1'+...+\lambda_qe_qe_q'=\hat{\Lambda}\hat{\Lambda}'$$

- remaining $\lambda_{q+1}...\lambda_p$ are dropped
- estimate R as the residual

$$R = S_{yy} - \hat{\Lambda}\hat{\Lambda}'$$

State-Space

Original model:

$$Y_t = \Lambda f_t + E_t, \quad E_t \quad i.i.d \ N(0, R)$$

$$f_t = \beta f_{t-1} + u_t, \quad u_t \quad i.i.d \ N(0, q)$$

- ightharpoonup We have estimates of Λ and R. We assumed q=1
- using the kalman smoother to the entire information set, the factors can be estimated.
- ► Estimation done through EM algorithm. Software to implement available in R through the MARSS package and in python through Statsmodels

Factors

Figure: Growth in CEII-6

factors

Figure: Growth in CEII-9

factors

Figure: Growth in CEII-12

Nowcasting

Table 3. Nowcasting Model Estimates

	GDP (Y-0-Y)					
Dependent Variable	Model 1 (6 indicators)	Model 2 (9 indicators)	Model 3 (12 indicators)			
Constant	3.02 (0.69)	3.64 (0.73)	4.60 (0.73)			
CEII (Y-o-Y)	2.94 (0.64)	3.08 (0.70)	1.47 (0.27)			
GDP (Y-o-Y), Lag 1	0.38 (0.10)	0.28 (0.12)	0.27 (0.10)			
Model Diagnostics						
Adjusted R-squared	0.54	0.53	0.59			
B-G Ser. Corr. LM Test	0.19	0.11	0.55			
Out-of-Sample RMSE	0.61	0.65	0.98			

B-G Ser. Corr. LM = Breusch-Godfrey serial correlation Lagrange multiplier, CEII = Coincident Economic Indicators for India, GDP = gross domestic product, RMSE = root mean squared error, Y-o-Y = year-on-year.

Notes: Estimates are based on the sample period Q1 2004 to Q1 2019. The total number of observations is 62. All coefficient estimates are significant at 1%. Standard errors are reported in parentheses. The B-G test is used to assess for serial correlation in errors up to 12 lags. Out-of-sample RMSE pertains to Q1 2017 to O1 2019.

Nowcasting

validation

Conclusion

- ► What did we do?
 - Built a single indicator which extracts common trend underlying high frequency indicators
 - ► Forecasted GDP using common factor