Crowd Scene Understanding with Coherent Recurrent Neural Networks

Hang Su, Yinpeng Dong, Jun Zhu

May 22, 2016

Outline

- 1 Introduction
- 2 LSTM Recap
- 3 Coherent LSTM
- 4 Experimental Results

Outline

- Introduction
- 2 LSTM Recap
- 3 Coherent LSTM
- 4 Experimental Results

• Crowd scene is the scene of public places where a large group of people who have gathered together such as a university campus or the sidewalks of a busy street.

- Crowd scene is the scene of public places where a large group of people who have gathered together such as a university campus or the sidewalks of a busy street.
- Groups are the main entities that make up a crowd.

- Crowd scene is the scene of public places where a large group of people who have gathered together such as a university campus or the sidewalks of a busy street.
- Groups are the main entities that make up a crowd.
- When pedestrians walk in a crowded space, their trajectories are influenced by others and obstacles.

- Crowd scene is the scene of public places where a large group of people who have gathered together such as a university campus or the sidewalks of a busy street.
- Groups are the main entities that make up a crowd.
- When pedestrians walk in a crowded space, their trajectories are influenced by others and obstacles.

Applications

Understanding collective behaviors in crowd scenes has a wide range of applications in

• Video Surveillance

Applications

Understanding collective behaviors in crowd scenes has a wide range of applications in

- Video Surveillance
- Crowd Management

Applications

Understanding collective behaviors in crowd scenes has a wide range of applications in

- Video Surveillance
- Crowd Management
- Avoiding Tragic Accidents

Problem Formulation

• Obtain reliable tracklets from each scene using KLT trackers. At any time-instant t, the i^{th} person is represented by his/her coordinate $(\mathbf{x}_i(t), \mathbf{y}_i(t))$.

Problem Formulation

- Obtain reliable tracklets from each scene using KLT trackers. At any time-instant t, the i^{th} person is represented by his/her coordinate ($\mathbf{x}_i(t), \mathbf{y}_i(t)$).
- Predict future trajectories of pedestrians and use extracted hidden features to do other classification tasks.

Challenge

Challenge

- Crowd spatio-temporal patterns behave nonlinear dynamics
 - Limit cycles
 - Quasi-period
 - Chaos

Challenge

- Crowd spatio-temporal patterns behave nonlinear dynamics
 - Limit cycles
 - Quasi-period
 - Chaos
- Collective effect (or coherent motion)
 - Pedestrian tend to form groups
 - Intra-group properties and inter-group properties.

• Traditional approach such as Social Force model

- Traditional approach such as Social Force model
 - Optimize energy function
 - Hand-crafted functions
 - Hard to generalize

- Traditional approach such as Social Force model
 - Optimize energy function
 - Hand-crafted functions
 - Hard to generalize
- Probabilistic Forecasting such as Gaussian Process

- Traditional approach such as Social Force model
 - Optimize energy function
 - Hand-crafted functions
 - Hard to generalize
- Probabilistic Forecasting such as Gaussian Process
- Recurrent Neural Networks
 - N-LSTM (CVPR 2016)

Outline

- Introduction
- 2 LSTM Recap
- 3 Coherent LSTM
- 4 Experimental Results

• Structure

- Input / Output / Forget gate
- Memory state \mathbf{c}_t

• Structure

- Input / Output / Forget gate
- Memory state \mathbf{c}_t
- Advantage
 - Prevent vanishing gradient problem
 - Nonlinear characteristic
 - Generalization

$$\mathbf{i}_t = \sigma(\mathbf{W}_{xi}\mathbf{x}_t + \mathbf{W}_{hi}\mathbf{h}_{t-1} + \mathbf{W}_{ci}\mathbf{c}_{t-1} + \mathbf{b}_i)$$
(1)

$$\mathbf{f}_t = \sigma(\mathbf{W}_{xf}\mathbf{x}_t + \mathbf{W}_{hf}\mathbf{h}_{t-1} + \mathbf{W}_{cf}\mathbf{c}_{t-1} + \mathbf{b}_f)$$
(2)

$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \tanh(\mathbf{W}_{xc} \mathbf{x}_t + \mathbf{W}_{hc} \mathbf{h}_{t-1} + \mathbf{b}_c)$$
(3)

$$\mathbf{o}_t = \sigma(\mathbf{W}_{xo}\mathbf{x}_t + \mathbf{W}_{ho}\mathbf{h}_{t-1} + \mathbf{W}_{co}\mathbf{c}_t + \mathbf{b}_o)$$
(4)

$$\mathbf{h}_t = \mathbf{o}_t \odot \tanh(\mathbf{c}_t) \tag{5}$$

Outline

- Introduction
- 2 LSTM Recap
- 3 Coherent LSTM
- 4 Experimental Results

• LSTM can model individual behaviors but dose not capture the interaction of people in a group.

- LSTM can model individual behaviors but dose not capture the interaction of people in a group.
- The individuals are always willing to engage with "seed" groups and form spatially coherent structures.

- LSTM can model individual behaviors but dose not capture the interaction of people in a group.
- The individuals are always willing to engage with "seed" groups and form spatially coherent structures.
- When the neighboring relationship of individuals remain invariant over time and correlation of their velocities remain high, they tend to have similar hidden state.

- LSTM can model individual behaviors but dose not capture the interaction of people in a group.
- The individuals are always willing to engage with "seed" groups and form spatially coherent structures.
- When the neighboring relationship of individuals remain invariant over time and correlation of their velocities remain high, they tend to have similar hidden state.
- The trajectories of pedestrians not only follow the *old* trend, but also are influenced by *current* environment.

cLSTM Unit

$$\mathbf{c}_{t} = \mathbf{f}_{t} \odot \mathbf{c}_{t-1} + \sum_{j \in \mathcal{N}} \lambda_{j}(t) \mathbf{f}_{t}^{j} \odot \mathbf{c}_{t-1}^{j} + \mathbf{i}_{t} \odot \tanh(\mathbf{W}_{xc} \mathbf{x}_{t} + \mathbf{W}_{hc} \mathbf{h}_{t-1} + \mathbf{b}_{c})$$
(6)

cLSTM Unit

$$\mathbf{c}_{t} = \mathbf{f}_{t} \odot \mathbf{c}_{t-1} + \sum_{j \in \mathcal{N}} \lambda_{j}(t) \mathbf{f}_{t}^{j} \odot \mathbf{c}_{t-1}^{j} + \mathbf{i}_{t} \odot \tanh(\mathbf{W}_{xc} \mathbf{x}_{t} + \mathbf{W}_{hc} \mathbf{h}_{t-1} + \mathbf{b}_{c})$$
(6)

Coherent Motion Modeling

Use coherent filtering [Zhou et al., 2012a] [Shao et al., 2014] to discover the coherent group.

Coherent Motion Modeling

Use coherent filtering [Zhou et al., 2012a] [Shao et al., 2014] to discover the coherent group.

The dependency relationship between two tracklets within the same group is measured as:

$$\tau_j(t) = \frac{\mathbf{v}_i(t) \cdot \mathbf{v}_j(t)}{\|\mathbf{v}_i(t)\| \|\mathbf{v}_j(t)\|}$$
(7)

Dependency Coefficient

The dependency coefficient between the $i_{\rm th}$ and $j_{\rm th}$ tracklets in Eq. (6) is defined as

$$\lambda_j(t) = \frac{1}{\mathbf{Z}_i} \exp\left(\frac{\tau_j(t) - 1}{2\sigma^2}\right) \in (0, 1], \tag{8}$$

Dependency Coefficient

The dependency coefficient between the $i_{\rm th}$ and $j_{\rm th}$ tracklets in Eq. (6) is defined as

$$\lambda_j(t) = \frac{1}{\mathbf{Z}_i} \exp\left(\frac{\tau_j(t) - 1}{2\sigma^2}\right) \in (0, 1], \tag{8}$$

• \mathbf{Z}_i : normalization constant corresponding to the i_{th} tracklet.

Dependency Coefficient

The dependency coefficient between the $i_{\rm th}$ and $j_{\rm th}$ tracklets in Eq. (6) is defined as

$$\lambda_j(t) = \frac{1}{\mathbf{Z}_i} \exp\left(\frac{\tau_j(t) - 1}{2\sigma^2}\right) \in (0, 1], \tag{8}$$

- \mathbf{Z}_i : normalization constant corresponding to the i_{th} tracklet.
- $\lambda_j(t) \simeq 1$ if $\mathbf{v}_i(t) \simeq \mathbf{v}_j(t)$ which implies that tracklets i and j are similar.

Dependency Coefficient

The dependency coefficient between the $i_{\rm th}$ and $j_{\rm th}$ tracklets in Eq. (6) is defined as

$$\lambda_j(t) = \frac{1}{\mathbf{Z}_i} \exp\left(\frac{\tau_j(t) - 1}{2\sigma^2}\right) \in (0, 1], \tag{8}$$

- \mathbf{Z}_i : normalization constant corresponding to the i_{th} tracklet.
- $\lambda_j(t) \simeq 1$ if $\mathbf{v}_i(t) \simeq \mathbf{v}_j(t)$ which implies that tracklets i and j are similar.
- Coherent regularization encourages the tracklets to learn similar feature distributions by sharing information across tracklets within a coherent group.

Framework

Unsupervised encoder-decoder cLSTM framework:

$$\mathbf{h}_T = cLSTM_e(\mathbf{x}_T, \mathbf{h}_{T-1}), \tag{9}$$

$$\hat{\mathbf{x}}_t = cLSTM_{dr}(\mathbf{h}_t, \hat{\mathbf{x}}_{t+1}), \text{ where } t \in [1, T],$$
 (10)

$$\hat{\mathbf{x}}_t = cLSTM_{dp}(\mathbf{h}_t, \hat{\mathbf{x}}_{t-1}). \text{ where } t > T,$$
 (11)

Crowd Scene Profiling

Solve critical tasks in crowd scene analysis:

- Estimating group state
 - Gas, Solid, Pure Fluid and Impure Fluid
 - Softmax classification using the feature learnt from the unsupervised cLSTM.

Crowd Scene Profiling

Solve critical tasks in crowd scene analysis:

- Estimating group state
 - Gas, Solid, Pure Fluid and Impure Fluid
 - Softmax classification using the feature learnt from the unsupervised cLSTM.
- Crowd video classification

Outline

- Introduction
- 2 LSTM Recap
- 3 Coherent LSTM
- 4 Experimental Results

Datasets and Settings

- CUHK Crowd Dataset
 - http://www.ee.cuhk.edu.hk/~xgwang/CUHKcrowd.html
 - Scene: streets, shopping malls, airports and parks
 - More than 400 sequences and more then 200,000 traklets

Datasets and Settings

- CUHK Crowd Dataset
 - http://www.ee.cuhk.edu.hk/~xgwang/CUHKcrowd.html
 - Scene: streets, shopping malls, airports and parks
 - More than 400 sequences and more then 200,000 traklets
- Settings
 - 128 hidden units in cLSTM
 - 2/3 of tracklets as the input and 1/3 as the predicted tracklets to evaluate the performance.

Future Path Forecasting

Future Path Forecasting

Table 1: Error of Path Prediction(pixels)

Kalman Filter	Un-coherent LSTM	Coherent LSTM
9.32 ± 1.99	6.64 ± 1.76	4.37 ± 0.93

Group State Estimation

- Gas: Particles move in different directions without forming collective behaviors
- Solid: Particles move in the same direction with relative positions unchanged
- Pure Fluid: Particles move towards the same direction with ever-changing relative positions
- Impure Fluid: Particles move in a pure fluid style with invasion of particles from other groups

Group State Estimation

- Gas: Particles move in different directions without forming collective behaviors
- Solid: Particles move in the same direction with relative positions unchanged
- Pure Fluid: Particles move towards the same direction with ever-changing relative positions
- Impure Fluid: Particles move in a pure fluid style with invasion of particles from other groups

(b) Solid

(c) Pure Fluid

(d) Impure Fluid

Group State Estimation

Confusion matrices of estimating group states using different methods: (a) collective transition [Shao et al., 2014]; (b) prediction LSTM; (c) reconstruction LSTM; (d) un-coherent LSTM; and (e) coherent LSTM.

Crowd Video Classification

All video clips are annotated into 8 classes as 1) Highly mixed pedestrian walking; 2) Crowd walking following a mainstream and well organized; 3) Crowd walking following a mainstream but poorly organized; 4) Crowd merge; 5) Crowd split; 6) Crowd crossing in opposite directions; 7) Intervened escalator traffic; and 8) Smooth escalator traffic.

Crowd Video Classification

All video clips are annotated into 8 classes as 1) Highly mixed pedestrian walking; 2) Crowd walking following a mainstream and well organized; 3) Crowd walking following a mainstream but poorly organized; 4) Crowd merge; 5) Crowd split; 6) Crowd crossing in opposite directions; 7) Intervened escalator traffic; and 8) Smooth escalator traffic.

Crowd Video Classification

All video clips are annotated into 8 classes as 1) Highly mixed pedestrian walking; 2) Crowd walking following a mainstream and well organized; 3) Crowd walking following a mainstream but poorly organized; 4) Crowd merge; 5) Crowd split; 6) Crowd crossing in opposite directions; 7) Intervened escalator traffic; and 8) Smooth escalator traffic.

Thanks for your time!

Questions?