1. Find the value of V₁ in the circuit shown below?

Using the superposition theorem the voltage V_1 at non-inverting terminal is $V_1 = V_a/4 + V_b/4 + V_d/4 = [V_a + V_b + V_c + V_d]/4 = [4+(-3v)+6v+(-1v)]/4 = 1.5v$.

2. In the circuit shown, supply voltage = $\pm 15v$, V_a = +3v, V_b = -4v, V_c = +5v, R= R_1 = $1k\Omega$ and R_F = $2k\Omega$. 741 op-amp has A= 2×10^5 and R_1 = $10k\Omega$. Determine the output voltage internal resistance of the circuit?

The output voltage $V_o = [1 + (R_F/R_1)] \times [(V_a + V_b + V_c/3)] = [1 + (2k\Omega/1k\Omega)] \times [(3-4+5)/3] = 2.67$ $\cong 3v$.

Internal resistance of circuit, $R_{iF} = R_i [A \times R_1 / (R_1 + R_F)] = 100 \Omega \times [(200000 \times 1 k\Omega) / (1 k\Omega + 2 k\Omega)] = R_{iF} = 6.67 \text{ M}\Omega$.

3. Consider the entire resistors in the bridge circuit are equal. The resistance and change in resistance are given as $3k\Omega$ and $30k\Omega$. Calculate the output voltage of differential instrumentation amplifier?

The output voltage of the circuit is $V_o = -(R_F/R_1) \times (\triangle R/R) \times V_{dc}$ = $(5.5k\Omega/100\Omega) \times (30k\Omega/3k\Omega) \times 3 = 1.65v$

4. Given voltage to current converter with floating load. Determine the output current?

Output current, $I_o = V_{in}/R_1 = 10/5k\Omega = 2mA$.

5. Find the gain of the voltage to current converter with grounded load?

In voltage to current converter with grounded load all resistor must be equal in value.

: Gain =
$$V_o/V_{in} = [1+(R_F/R_1)] = 1+R/R = 1+1=2$$
.

6. Calculate the base voltage of Q₂ transistor in the log-amp using two op-amps?

The base voltage of Q_2 transistor, $V_B = [R_{TC} / (R_2 + R_{TC})] \times (V_i) = [10k\Omega/(5k\Omega + 10k\Omega)] \times 5v = 3.33v$.

7. Calculate the phase difference between two input signals applied to a multiplier, if the input signals are V_x = 2sin ω t and V_y = 4sin(ω t+ θ). (Take V_{ref} = 12v).

$$V_o = [V_{mx} \times V_{my} / (2 \times V_{ref})] \times \cos\theta$$

=> $(V_o \times 2 \times V_{ref}) / (V_{mx} \times V_{my}) = \cos\theta$
=> $\cos\theta = (10 \times 2 \times 12) / (2 \times 4) = 30$.
=> $\theta = \cos^{-1}30 = 1.019$.

8. Determine the lower frequency limit of integration for the circuit given below.

The lower frequency limit of integration, f= $1/(2\pi R_F C_F) = 1/(2\pi \times 1 k\Omega \times 33 nF) = 4.82 kHz$.

9. A sine wave of $1v_{peak}$ at 1000Hz is applied to a differentiator with the following specification: $R_F = 1k\Omega$ and $C_1 = 0.33\mu F$, find the output waveform?

Given, $V_{in} = V_p \times \sin\omega t = \sin(2\pi \times 1000)t$ The output of differentiator $V_o = -R_F \times C_1 \times (dV_{in}/dt) = (1k\Omega) \times (0.33\mu F) \times d[\sin 2\pi \times 1000t]/dt$ = -3.3×10-4×2 π ×1000 ×[cos2 π (1000)t] =-2.07×[cos2 π (1000)t].

10. Calculate the frequency of oscillation for RC phase shift oscillator having the value of R and C as 35Ω and $3.7\mu F$ respectively.

The frequency of oscillation of RC phase shift oscillator is, $f_\circ=1/(2\pi RC\sqrt{6})=1/(2\times3.14\times\sqrt{6}\times3.7\mu F\times35\Omega)$ => $f_\circ=1/1.9921\times10^3=502Hz$.

11. Calculate the value of capacitance in wein bridge oscillator, such that f_{\circ} =1755Hz and R=3.3k Ω .

The frequency of oscillation is given as $f_o = 0.159/RC$ => $C = 0.159/R \times f_o = 0.159/3.3 k\Omega \times 1755 Hz$ => $C = 0.027 \mu F = 0.03 \mu F$. 12. . What will be the frequency of output waveform of a square wave generator if R_2 = 1.16 R_1 ?

When R_2 = 1.16 R_1 , then f_0 = 1/2RC× ln[(2 R_1 + R_2) / R_2] = 1/2RC ×ln [(2 R_1 + 1.161 R_1)/ (1.161 R_1)] = 1/(2RC×ln2.700)= 1/2RC.

13. A square wave oscillator has f_\circ =1khz. Assume the resistor value to be $10k\Omega$ and find the capacitor value?

Let's take R_2 = 1.16 R_2 , therefore the output frequency f_0 = 1/2RC => C = 1/2R f_0 = 1/ (2×10k Ω ×1khz) = 0.05 μ F.

14. Find the capacitor value for a the output frequency, $f_o = 2kHz \& V_o(pp) = 7v$, in a triangular wave generator. The op-amp is 1458/741 and supply voltage = $\pm 15v$. (Take internal resistor= $10k\Omega$)

Given, $V_{sat} = 15v$

 $V_0(pp) = (2R_2/R_3) \times V_{sat}$

 $=> R_2 = (V_0(pp) \times R_3) / (V_{sat} \times 2) = [7/(2 \times 15)] \times R_3 = 0.233 R_3$

∴ Internal resistor, $R_2 = R_1 = 10kΩ$

 $=> R_3 = 0.233 \times 10 kΩ = 2.33 kΩ$.

So, the output frequency $f_0 = R_3 / (4 \times R_1 \times C_1 \times R_2)$

 \Rightarrow 2khz = 2.33khz/ (4×10k Ω ×10k Ω ×C₁)

=> $C_1 = 2.33 k\Omega / (8 \times 10^{-11}) = 2.9 \times 10^{-9} \cong 3nF$.

14. Determine the upper and lower threshold voltage

Upper threshold voltage, $V_{UT} = [R_1/(R_1 + R_2)] \times (+V_{sat}) = [10k\Omega/(10k\Omega + 250\Omega)] \times (+15v) = +14.63v$.

Lower threshold voltage $V_{LT} = [R_1/(R_1 + R_2)] \times (-V_{sat}) = [10k\Omega/(10k\Omega + 250\Omega)] \times (-15v) = -14.63v$.

15. Calculate the hysteresis voltage for the schmitt trigger from the given specification: R_2 =56k Ω , R_1 = 100 Ω , V_{ref} = 0v & V_{sat} = ±14v

Upper threshold voltage, $V_{UT} = [R_1/(R_1+R_2)] \times (+V_{sat}) = [100k\Omega/(56k\Omega + 100 \Omega)] \times (+14v) = +25mv$.

Lower threshold voltage $V_{LT} = [R_1/(R_1 + R_2)] \times (-V_{sat}) = [100k\Omega/(56k\Omega + 100\Omega)] \times (-14v) = -25$ mv.

- ∴ Hysteresis voltage = V_{UT} - V_{LT} = 25-(-25) = 50mv.
- 16. A monostable multivibrator has R = $120k\Omega$ and the time delay T = 1000ms, calculate the value of C?

Time delay for a monostable multivibrator, T = 1.1RC => $C = T/(1.1R) = 1000ms/(1.1 \times 120k\Omega) = 7.57\mu F$.

17. Astable multivibrator operating at 150Hz has a discharge time of 2.5m. Find the duty cycle of the circuit.

Given f=150Hz. Therefore, T=1/f = 1/150 = 6.67ms.

- : Duty cycle, D%=(t_{Low} /T) x 100% = (2.5ms/6.67ms)x100% = 37.5%.
- 18. Calculate the value of external timing capacitor, if no modulating input signal is applied to VCO. Consider f_\circ =25 kHz and R_τ =5 k Ω .

When modulating input signal is not applied to VCO, the output frequency becomes $f_0=1/(4\times R_T\times C_T)$

 $=> C_T = 1/(4 \times R_T \times f_0) = 1/(4 \times 5 k\Omega \times 25 kHz) = 2 \times 10^{-9} = 2 nF.$

19. Calculate the voltage to frequency conversion factor, where f_0 =155Hz and V_{cc} =10V.

The voltage to frequency conversion factor, $K_v = \triangle f_o / \triangle V_{cc} = 8 \times f_o / V_{cc} = (8 \times 155) / 10 = 124$. 20.