Disciplina: Geometria Analítica (IME0345)

2^a Lista de Exercícios - 08/04/2024

Exercícios

Ex.1 Esboce \overrightarrow{u} e \overrightarrow{v} genérico (que não seja de \mathbf{f}) $\sqrt[3]{|\overrightarrow{u}||} |\overrightarrow{\overrightarrow{v}}|$ mesmo tamanho ou paralelos) a sua escolha. Encontre graficamente $3\overrightarrow{u} + \overrightarrow{v}$ e $\overrightarrow{u} - \overrightarrow{v}$.

cruzam no meio. Admitindo o abuso de notação, obtenha a fórmula para encontrar tal cruzamento. Discuta, porque é um abuso de notação.

Ex.3 Esboce graficamente

a)
$$\overrightarrow{u} = (2,1)(1,-1)$$

b)
$$P + \vec{v}$$
, onde $P = (1, 1), \vec{v} = (-1, 2)$

Ex.4 Seja A = (1,2), B = (-1,1), C = (-1,-2).Encontre o vetor que seja bissetriz do ângulo $\angle BAC$ (vértice está em A), fazendo esboço ilustrativo.

Ex.5 Considere o triângulo com vértices A, B e C. Mostre que a mediana encontra em um único ponto (denominado de baricentro). Admitindo o abuso de notação, obtenha sua expressão em termos de A, B e C. Discuta, porque é um abuso de notação.

Ex.6 Sejam $P = (1, 1, 0), Q = (0, 1, 1), \overrightarrow{u} =$ (1,-1,2) e $\overrightarrow{v}=(-1,-3,1)$. Calcule, se a operação for válida. Justifique, caso contrário.

a)
$$P + \overrightarrow{v}$$

b)
$$P+Q-\overrightarrow{u}$$

c)
$$\overrightarrow{u} - P - Q$$

d)
$$\overrightarrow{PQ} + 2\overrightarrow{QP}$$

e)
$$2\overrightarrow{u} + \frac{\overrightarrow{v}}{2}$$

f)
$$\sqrt[3]{||\overrightarrow{u}||} = \frac{\overrightarrow{v}}{\cancel{u}}$$

g)
$$\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{||\overrightarrow{PQ}||}$$

Ex.2 Mostre que os diagonais do paralelogramo **Ex.7** Sabendo que $\overrightarrow{u} \cdot \overrightarrow{v}$ é um produto (distributivo) comutativo (ab = ba) tal que $\overrightarrow{v} \cdot \overrightarrow{v} = ||\overrightarrow{v}||^2$ onde $||\overrightarrow{v}||$ é a norma euclidiana ("distância").

- a) Mostre que $\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| \cdot ||\overrightarrow{v}|| \cos\theta$ onde θ é o ângulo entre \overrightarrow{u} e \overrightarrow{v} .
- b) Encontre a expressão de $\overrightarrow{u} \cdot \overrightarrow{v}$ em termos da norma.

Ex.8 Sejam $\overrightarrow{u} = (1,2)$ e $\overrightarrow{v} = (3,1)$. Caso exista, encontre os ângulos (caso não exista, justifique) entre

a)
$$\overrightarrow{u}$$
 e \overrightarrow{v}

b)
$$3\overrightarrow{v} \in \overrightarrow{v}$$

c)
$$\overrightarrow{0}e\overrightarrow{v}$$

d)
$$P = (1, -1) e \vec{u}$$

e)
$$\overrightarrow{w} = (-1, 5) e \overrightarrow{v} - \overrightarrow{u}$$

Ex.9 Verifique se o par dos vetores é ortogonal e indique o ângulo entre eles caso possível.

a)
$$(3, -2, 1)$$
 e $(2, 1, -4)$

b)
$$\overrightarrow{0}$$
 e (1, 3)

c)
$$(1,1,-1)(2,-1,1)$$
 e $(3,1)$

e) (1,2,1)e(1,-1,2).

Ex.10 Obtenha o vetor força escalar da direção tangencial (que faz mover) e normal (que pressiona contra a superfície) da força peso, considerando $g = 10m/s^2$.

Ex.11 Obtenha a fórmula de Lagrange para área do paralelogramo com lados \overrightarrow{u} e \overrightarrow{v} : $(\acute{a}rea)^2 = (\overrightarrow{u} \cdot \overrightarrow{v})^2 - \langle \overrightarrow{u}, \overrightarrow{v} \rangle^2$.

Soluções e dicas

Ex.2 Dica: No paralelogramo ABCD, mostre que $A+12\overrightarrow{AC}=B+\frac{1}{2}\overrightarrow{BD}$. Note que $\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC}$ e $\overrightarrow{BD}=\overrightarrow{BC}-\overrightarrow{AB}$. O ponto de intersecção é $\frac{1}{2}(A+C)=\frac{1}{2}(B+D)$.

Ex.4 Dica: No triângulo isósceles, mediana relativa a base é a bissetriz do ângulo oposto. Mediatriz é $(\frac{-3}{2}, \frac{-1}{2})$.

Ex.5 Dica: Mostre que uma mediana encontra a outra mediana num ponto $\frac{2}{3}$ da sua vertice. O baricentro é dado por $\frac{1}{3}(A+B+C)$.

Ex.6

- (a) (0, -2, 1)
- (b) não existe
- (c) não existe
- **(d)** (1, 0, -1)
- (e) $(\frac{3}{2}, \frac{-7}{2}, \frac{9}{2})$
- (f) não existe
- (g) $2\sqrt{2}$

Ex.7

- (a) Use a lei dos cossenos $a^2 = b^2 + c^2 2bc \cos \theta$ onde θ é ângulos entre b e c.
- (b) $||\rightarrow u + \overrightarrow{v}||^2 = (\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} + \overrightarrow{v})$ torna $\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2}(||\overrightarrow{u} + \overrightarrow{v}||^2 ||\overrightarrow{u}||^2 ||\overrightarrow{v}||^2)$

e
$$||\overrightarrow{u} - \overrightarrow{v}||^2 = (\overrightarrow{u} - \overrightarrow{v}) \cdot (\overrightarrow{u} - \overrightarrow{v})$$
 torna $\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2}(||\overrightarrow{u} - \overrightarrow{v}||^2 + ||\overrightarrow{u}||^2 + ||\overrightarrow{v}||^2)$

Ex.8

- (a) $\theta = \arccos \frac{\sqrt{5}\sqrt{10}}{10}$
- (b) $\theta = 0$
- (c) não existe
- (d) não existe
- (e) $\theta = \arccos \frac{-7\sqrt{2}\sqrt{5}}{10}$

Ex.9

- (a) ortogonal, $\theta = 90^{\circ}$
- (b) apenas ortogonal
- (c) não tem relação
- (d) não é ortogonal
- (e) não é ortogonal.

Ex.10 Note que ortogonal a (a,b) pode ser dado por $\pm(-b,a)$. Um dos ortogonais a normal será o tangente. Normal é $\overrightarrow{N} = \frac{60}{13}(-2,-3)$ e tangente é $\overrightarrow{T} = \frac{40}{13}(3,-2)$ em newton.

Ex.11 Use o quadrado da área: $[área]^2 = ([base] \times [altura])^2$ onde [altura] pode ser obtida usando a função seno.