

Varianta 42

Subjectul I.

- $\mathbf{a)} \quad \left| \vec{v} \right| = \sqrt{13} \ .$
- **b**) $\frac{4\sqrt{3}}{3}$.
- c) Ecuația tangentei este x-2y+6=0.
- **d**) Aria triunghiului *LMP* este $S = \frac{3}{2}$.
- **e**) $\cos(\vec{v}, \vec{w}) = 0$. **f**) a = 0, b = 32.

Subjectul II.

- a) Se folosește faptul că $\sqrt{2} \in \mathbf{R} \setminus \mathbf{Q}$.
- **b**) Probabilitatea căutată este $p = \frac{5}{10} = \frac{1}{2}$.
- **c**) g(6)=1.
- **d**) $x \in \{-1, 1\}.$
- **e)** $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 2$

- a) $f'(x) = 4^x \cdot \ln 4 + 1$, $\forall x \in \mathbf{R}$.
- **b**) $\int_{0}^{1} f'(x)dx = 4$.
- c) f''(x) > 0, $\forall x \in \mathbf{R}$, deci funcția f este convexă pe \mathbf{R} .
- **d)** $\lim_{x\to 1} \frac{f(x)-f(1)}{x-1} = 4\ln 4 + 1$.
- e) $\int_{0}^{1} \frac{x^3}{x^4 + 10} dx = \frac{1}{4} \ln \frac{11}{10}$.

Subjectul III.

- $\mathbf{a}) \ \det(A) = 1.$
- **b)** $A^2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ si $A^3 = I_3$.

- **c)** Avem $A^3 = I_3$, deci $A^{-1} = A^2$.
- **d**) Considerăm $U, V \in C(A)$.

Avem: (UV)A = U(VA) = U(AV) = (UA)V = (AU)V = A(UV), deci $UV \in C(A)$.

- e) Se arată prin calcul direct.
- **f**) Considerăm $Y \in C(A)$, astfel încât $Y^3 = O_3$.

Din **e**) deducem că există $a, b, c \in \mathbb{C}$, astfel încât $Y = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$.

Deoarece
$$Y^3 = O_3$$
, obținem
$$\begin{cases} a^3 + b^3 + c^3 + 6abc = 0 \\ 3(a^2c + b^2a + c^2b) = 0 \end{cases}$$
, de unde rezultă uşor
$$3(a^2b + b^2c + c^2a) = 0$$

$$a = b = c = 0$$
.

g) Avem $3^7 = 2187$ și din $Z^{2007} = O_3$ rezultă și $Z^{2187} = O_3$.

$$Z^{2187} = O_3 \iff \left(Z^{3^6}\right)^3 = O_3 \iff Z^{3^6} = O_3 \iff \dots \iff Z^3 = O_3 \iff Z = O_3.$$

Subjectul IV.

- a) Deoarece 2π este perioadă pentru funcția cosinus, este evidentă concluzia.
- **b)** Considerăm șirurile $(x_n)_{n \in \mathbb{N}^*}$ și $(y_n)_{n \in \mathbb{N}^*}$, $x_n = 2n\pi$, $y_n = \frac{\pi}{2} + 2n\pi$, $\forall n \in \mathbb{N}$.

Avem $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = +\infty$, iar $\lim_{n\to\infty} f(x_n) = \frac{1}{4}$ și $\lim_{n\to\infty} f(y_n) = \frac{1}{3}$, de unde rezultă că nu există $\lim_{n\to\infty} f(x)$.

- c) Evident, deoarece $-1 \le \cos x \le 1$.
- **d)** Iese imediat, folosind punctul **c**).
- e) Prin calcul direct.

f) Din
$$f(t) \ge \frac{1}{4}$$
, $\forall t \in \mathbf{R}$ rezultă $\int_{0}^{x} f(t) dt \ge \frac{x}{4}$, $\forall x \in \mathbf{R}$, deci $\lim_{x \to \infty} F(x) = +\infty$.

g) Deoarece $\lim_{x\to\infty} F(x) = +\infty$, graficul funcției F nu are asimptotă orizontală spre $+\infty$.

Din **a**) se obține $F(x+2\pi) = F(x) + F(2\pi)$, $\forall x \in \mathbf{R}$ și se arată că pentru $a = \frac{F(2\pi)}{2\pi}$ funcția $G: \mathbf{R} \to \mathbf{R}$, G(x) = F(x) - ax este periodică, de perioadă 2π și fiind continuă, este mărginită. Obținem $\lim_{x \to \infty} \frac{F(x)}{x} = \lim_{x \to \infty} \left(\frac{G(x)}{x} + a\right) = a$.

Cum $\lim_{x\to\infty} (F(x)-ax) = \lim_{x\to\infty} G(x)$, iar ultima limită nu există (o funcție periodică și neconstantă nu are limită spre $+\infty$), rezultă că graficul lui F nu are asimptotă spre $+\infty$