Stress Orientation Rotation of the 2018 Mw 7.5 Palu Earthquake

Focal Mechanisms Data

Before 2018 Mw7.5 Palu

43 events May 1977 – Sep 2018

After 2018 Mw7.5 Palu

19 events Sep 2018 – Nov 2021

Stress Inversion Result

Before 2018 Mw7.5 Palu

After 2018 Mw7.5 Palu

	σ1 Azimuth	σ1 Plunge	σ2 Azimuth	σ2 Plunge	σ3 Azimuth	σ3 Plunge	SHmax
Before	112.5	33.8	125.2	54.1	19.9	7.8	113.5
After	98.7	39.9	275.7	48.2	6.6	7.2	97.2
Δ	-13.7	6.2	150.5	-5.9	-13.3	-0.6	-16.4

Stress Drop Ratio $\left(\frac{\Delta \tau}{\tau}\right)$ Calculation

To calculate the stress drop ratio, we use equation (4) in Hardebeck 2001

$$\Delta\theta = \tan^{-1}\left(\frac{1 - \frac{\Delta\tau}{\tau}\sin 2\theta - \sqrt{\left(\frac{\Delta\tau}{\tau}\right)^2 + 1 - 2\frac{\Delta\tau}{\tau}\sin 2\theta}}{\frac{\Delta\tau}{\tau}\cos 2\theta}\right) \qquad \qquad \frac{\Delta\tau}{\tau} = -\frac{\sin(2\Delta\theta)}{\cos(2\theta + 2\Delta\theta)}$$

Calculation of θ and $\Delta\theta$

21,874 HARDEBECK AND HAUKSSON: CRUSTAL STRESS FIELD IN CALIFORNIA

Figure 8. Assumed geometry of a stress rotation due to slip on a fault. The postmainshock stress state is equal to the premainshock stress state plus the stress change due to the earthquake. The problem is assumed to be two-dimensional, so it can be represented entirely in the σ_1 - σ_3 plane. θ is the angle from the fault trend to the σ_1 axis, clockwise positive. $\Delta \theta$ is the rotation of the s^* is taken to be positive. The mainshock stress drop, $\Delta \tau$, is taken to be positive for the set A hown and negative for the opposite sense of slip.

Nodal plane 2018 Mw 7.5 Palu 348 · 57 · -15 87 · 77 · -146

$$\theta = 168 - 113.51 = 54.48$$
 $\theta_a = 168 - 97.16 = 70.84$
 $\Delta \theta = 70.84 - 54.48 = 16.36$

Fault | Before | After | $\theta + \Delta \theta$ | θ | $\Delta \theta$

Hardebeck & Hauksson 2001 say that θ and $\Delta\theta$ are calculated on the $\sigma 1 - \sigma 3$ plane. Since the mechanism of the 2018 Mw7.5 Palu earthquake is strike-slip, the $\sigma 1 - \sigma 3$ plane is horizontal, so the angle used is SHmax with respect to the strike of fault.

Model Stress Drop 2018 Mw 7.5 Palu by SHmax

$$\theta_b = 54.5 \pm 8.1 (46.4 - 62.6)$$

 $\Delta \theta = 15.2 \pm 14.7 (0.5 - 30.0)$

$$\frac{\Delta \tau}{\tau} = 0.67 \pm 0.46 \, (0.03 - 0.95)$$