LEWIS STRUCTURES

LEWIS THEORY OF BONDING

- -Atoms & ions are stable if they have a noble-gas like electron structure (stable octet)
- -Electrons are most stable when paired
- -Atoms form chemical bonds to achieve a stable octet of electrons
- -A stable octet may be achieved by:
 - -An exchange of electrons between metal and non-metal atoms (ionic bonding)
 - -A sharing of electrons between 2 non-metal atoms (covalent bonding)

LEWIS STRUCTURES

A Lewis structure communicates the arrangement of electrons and bonds in a chemical substance

LEWIS STRUCTURES

Lewis Dot Diagrams correspond to Hund's rule governing the placement of electrons into orbitals

Element	Mg	N	S
Valence	2+	3-	2-
Lewis Symbol	Mg [·]	· N ·	· S :
Energy-Level Diagram	$ \begin{array}{c} 3s \\ \downarrow \\ 2p \\ \downarrow \\ 2s \\ \downarrow \\ Mg \end{array} $ 1s $\underset{Mg}{\downarrow \downarrow}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Electron Configuration	Mg: 1s ² 2s ² 2p ⁶ 3s ²	N: 1s ² 2s ² 2p ³	S: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁴

Draw: H₂O

H O H

- 1. Decide atom arrangement
 Count ALL valence electrons
 (add electrons and subtract
 electrons based on the
 molecule's charge)
- 3. Place 2 electrons in each bond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
- 6. If the central atom does not have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: H₂O

1 + 6 + 1 = 8 electrons 6. If the central atom does not

- Decide atom arrangement Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in each bond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
- have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: H₂O

H:0:H

4 electrons remaining 1+6+1=8 electrons

- 1. Decide atom arrangement
- Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in each bond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
- 6. If the central atom does not have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: H₂O

H:0:H

4 electrons remaining

The octets on hydrogen are already full.

- 1. Decide atom arrangement
- 2. Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in eachbond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
- 6. If the central atom does not have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: H₂O

0 electrons remaining

- 1. Decide atom arrangement
- 2. Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in each bond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
 - 6. If the central atom does not have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: H₂O

Oxygen has a full octet, so there is no need to form double or triple bonds in this case

- 1. Decide atom arrangement
- 2. Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in each bond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
- 6. If the central atom does not have an octet, form double or triple bonds
 - 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: SO₂

OSO

- Decide atom arrangement
 Count ALL valence electrons
 (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in each bond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
- 6. If the central atom does not have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: SO₂

O + S + O = 18 electrons

- Decide atom arrangement
 Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in each bond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs

 + 6 = 18 electrons. If the central atom does not have an octet, form double or triple bonds
 - 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: SO₂

0:S:O

14 electrons remaining 7. 6+6+6=10 electrons

- 1. Decide atom arrangement
- Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in each bond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
- 6. If the central atom does not have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: SO₂

2 electrons 14 electrons remaining 7.

- 1. Decide atom arrangement
- 2. Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in eachbond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
- 6. If the central atom does not have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: SO₂

2 electrons 0 electrons

- 1. Decide atom arrangement
- 2. Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in each bond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
 - 6. If the central atom does not have an octet, form double or triple bonds
 - 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: SO₂

0 electrons

Now all atoms have a full octet

- 1. Decide atom arrangement
- 2. Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in each bond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
- 6. If the central atom does not have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: SO₂

There should be a formal charge of zero for each atom in a neutral molecule.

This means that this diagram needs to be modified.

- 1. Decide atom arrangement
- 2. Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in each bond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
- 6. If the central atom does not have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: SO₂

$$6 - 2 - 4 = 0$$

$$6 - 4 - 2 = 0$$

$$6 - 4 - 2 = 0$$

Sulfur can exceed the octet because it has empty d orbitals (it is in the 3rd energy level)

- 1. Decide atom arrangement
- 2. Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in each bond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
- 6. If the central atom does not have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: SO₂

There are 3 resonance structures for SO₂

The preferred structure is the one where all formal charges are zero.

- 1. Decide atom arrangement
- Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in each bond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
- 6. If the central atom does not have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: PO₄³⁻

O P O O

- Decide atom arrangement
 Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in each bond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
- 6. If the central atom does not have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: PO₄3

- Decide atom arrangement
 Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in each bond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
- 6. If the central atom does not have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: PO₄³-

- 1. Decide atom arrangement
- Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in each bond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
- 6. If the central atom does not have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

24 electrons 6+6+6+6+5+3=32 electrons

Draw: PO₄³-

0 electrons 24 electrons remaining

- 1. Decide atom arrangement
- 2. Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in eachbond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
- 6. If the central atom does not have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: PO₄3-

0 electrons remaining

There are no electrons left to place

- 1. Decide atom arrangement
- 2. Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in each bond
- Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
 - 6. If the central atom does not have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: PO₄³-

Now all atoms have a full octet

- 1. Decide atom arrangement
- 2. Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in each bond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
- 6. If the central atom does not have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: PO₄³-

[ions must be drawn with square brackets indicating the charge]

- 1. Decide atom arrangement
- Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in each bond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
- 6. If the central atom does not have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: PO₄³-

- 1. Decide atom arrangement
- 2. Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in each bond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
- 6. If the central atom does not have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: PO₄3-

Phosphorus can exceed the octet because it has empty d orbitals

(it is in the 3rd energy level)

- 1. Decide atom arrangement
- 2. Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in each bond
- Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
- 6. If the central atom does not have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw: PO₄³-

There are 5 resonance structures for PO₄³⁻

- 1. Decide atom arrangement
- 2. Count ALL valence electrons (add electrons and subtract electrons based on the molecule's charge)
- 3. Place 2 electrons in each bond
- 4. Complete the octets of the atoms attached to the centre atom by adding electrons in pairs
- 5. Place remaining electrons on the central atom in pairs
- 6. If the central atom does not have an octet, form double or triple bonds
- 7. Use formal charges to determine if more double or triple bonds can be added to the central atom (if in 3rd energy level or higher):

Draw the Lewis Dot Diagram for **SCN**-

But this isn't the only possible way to draw the structure

Draw the 3 possible Lewis Dot Diagrams for **SCN**

Which of these is the most likely resonance structure?

Assigning formal charges:

Assign formal charges to the other structures for **SCN**⁻

S:
$$6 - 2 - 3 = +1$$

C:
$$4 - 0 - 4 = 0$$

N:
$$5 - 6 - 1 = -2$$

$$S: 6 - 4 - 2 = 0$$

C:
$$4 - 0 - 4 = 0$$

$$N: 5-4-2=-1$$

Example #1: Compare the SCN⁻ structures. Which one has the most neutral formal charges?

This is the most preferred structure. There are the most 0 formal charges and the most electronegative atom has the negative charge.

EXCEPTIONS TO THE OCTET RULE

Examples of central atoms that do not obey the octet rule:

Under-filled octets:

Be – 2 bonds (4 electrons)

B - 3 bonds (6 electrons)

Over-filled octets:

P – 5 bonds (10 electrons)

S - 6 bonds (12 electrons)

COORDINATE COVALENT BONDING

Sometimes, when a covalent bond forms between 2 atoms, both shared electrons are donated by 1 atom

Example:
$$NH_4^+$$

$$H - N - H + H^+ \longrightarrow \begin{bmatrix} H \\ H : N : H \\ H \end{bmatrix}^+$$

$$H = H + H^+ \longrightarrow \begin{bmatrix} H \\ H : N : H \\ H \end{bmatrix}$$

Example: Al₂Cl₆

LEWIS STRUCTURES

Homework:

Read pages 194 & 195 (if have not already)

Page 200 #1, 2

Page 204 #1, 2

Page 205 #4, 5