Модели ИС

Под *моделью информационной системы* в общем случае понимается формализованное описание системы на определенном уровне абстракции. Каждая модель определяет конкретный аспект системы, использует набор диаграмм и документов заданного формата, а также отражает точку зрения и является объектом деятельности различных людей с конкретными интересами, ролями или задачами.

Под термином «моделирование» понимается процесс создания формализованного описания системы в виде совокупности моделей. Особенно трудным оказывается описание систем средней сложности, к которым относятся информационные системы управления предприятием. С точки зрения человека, эти системы описать достаточно трудно, потому что они настолько велики, что практически невозможно перечислить все их компоненты со своими взаимосвязями, и в то же время недостаточно велики для применения общих упрощающих предположений (как это принято в физике). Неспособность дать простое описание, а, следовательно, и обеспечить понимание таких систем делает их проектирование и создание трудоемким и дорогостоящим процессом и повышает степень их ненадежности. С ростом технического прогресса адекватное описание систем становится все более актуальной проблемой.

Модель должна давать полное, точное и адекватное описание системы, имеющее конкретное назначение. Это назначение, называемое *целью модели*, вытекает из формального определения модели: М есть модель системы S, если M может быть использована для получения ответов на вопросы относительно S с точностью A.

Целью модели является получение ответов на некоторую совокупность вопросов. Эти вопросы неявно присутствуют (подразумеваются) в процессе анализа и, следовательно, они руководят созданием модели и направляют его. Это означает, что сама модель должна будет дать ответы на эти вопросы с заданной степенью точности. Если модель отвечает не на все вопросы или ее ответы недостаточно точны, то говорят, что модель не достигла своей цели.

По мнению авторитетных специалистов в области проектирования информационных систем, моделирование является центральным звеном всей деятельности по созданию информационной системы. Модели строятся для того, чтобы понять и осмыслить структуру и поведение будущей системы, облегчить управление процессом ее создания и уменьшить возможный риск, а также документировать принимаемые проектные решения.

Цель моделирования - понять и изучить качественную и количественную природу явления, отразить существенные для исследования черты явления в пригодной для использования в практической деятельности форме. При моделировании важно следить за адекватностью отображения свойств системы на построенную модель.

Для информационной системы строится 2 вида моделей:

модели «AS-IS» («как есть»), отражающие существующее на момент обследования положение дел в организации и позволяющие понять, каким образом функционирует данная организация, а также выявить узкие места и сформулировать предложения по улучшению ситуации;

модели «AS-TO-BE» («как должно быть»), отражающие представление о новых процессах и технологиях работы организации.

Сложные системы характеризуются выполняемыми процессами (функциями), структурой и поведением во времени. Для адекватного моделирования этих аспектов в автоматизированных информационных системах различают функциональные, информационные и поведенческие модели, пересекающиеся друг с другом.

Функциональная модель системы описывает совокупность выполняемых системой функций, характеризует, морфологию системы (ее построение) — состав функциональных подсистем, их взаимосвязи.

Информационная модель отражает отношения между элементами системы в виде структур данных (состав и взаимосвязи).

Поведенческая (событийная) модель описывает информационные процессы (динамику функционирования), в ней фигурируют такие категории, как состояние системы, событие, переход из одного состояния в другое, условия перехода, последовательность событий.

Графические (визуальные) модели представляют собой средства для визуализации, описания функциональной структуры системы, последовательности выполняемых действий, передачи информации между функциональными процессами, выявления отношений между данными.

Методы проектирования АИС

Методология создания информационных систем заключается в организации процесса построения информационной системы и в управлении этим процессом для того, чтобы гарантировать выполнение требований, как к самой системе, так и к характеристикам процесса разработки.

Основными задачами, решение которых должна обеспечивать методология создания информационных систем являются:

соответствие создаваемой информационной системы целям и задачам предприятия, а также предъявляемым к ней требованиям по автоматизации бизнес процессов;

гарантирование создания системы с заданными параметрами в течение заданного времени и в рамках оговоренного заранее бюджета;

простота сопровождения, модификации и расширения системы с целью обеспечения ее соответствия постоянно изменяющимся условиям работы предприятия;

соответствие создаваемой информационной системы требованиям открытости, переносимости и масштабируемости;

возможность использования в создаваемой системе разработанных ранее и применяемых на предприятии средств информационных технологий (программного обеспечения, баз данных, средств вычислительной техники, телекоммуникаций).

Методологии, технологии и инструментальные средства проектирования (в основном CASE-средства с поддержкой языка моделирования) составляют основу проекта любой информационной системы. Методология реализуется через конкретные технологии и поддерживающие их стандарты, методики и инструментальные средства, которые

обеспечивают выполнение процессов жизненного цикла информационных систем. Язык моделирования включает:

элементы модели — фундаментальные концепции моделирования и их семантику;

нотацию (систему обозначений) - визуальное представление элементов моделирования;

руководство по использованию - правила применения элементов в рамках построения тех или иных типов моделей информационной системы.

Нотация - (от лат. notatio - записывание, обозначение) — система условных обозначений, принятая в какой-либо области знаний или деятельности. Нотация включает множество символов, используемых для представления понятий и их взаимоотношений, составляющих алфавит нотации, а также правила их применения.

Наиболее важное значение имеет знакомство с нотациями IDEF0, IDEF3, EPC, DFD, ERD так как они являются наиболее распространенными визуальными моделями:

IDEF0 - функциональная модель SADT (Structured Analysis and Design Technique); IDEF0 – нотация графического моделирования, используемая для создания функциональной модели, отображающей структуру и функции системы, а также потоки информации и материальных объектов, связывающие эти функции. Она была разработана на основе методологии структурного анализа и проектирования SADT, утверждена в качестве стандарта США и успешно эксплуатируется во многих проектах, связанных с описанием деятельности предприятий, получила чрезвычайно широкое распространение и является, в частности, стандартом в НАТО и МВФ.

Нотация IDEF3 была разработана с целью более удобного описания рабочих процессов (Workflow), для которых важно отразить логическую последовательность выполнения процедур. IDEF3 является стандартом документирования технологических процессов, происходящих на предприятии, и предоставляет инструментарий для наглядного исследования и моделирования их сценариев. Сценарием (Scenario) мы называем описание последовательности изменений свойств объекта, в рамках рассматриваемого процесса (например, описание последовательности этапов обработки детали в цеху и изменение её свойств после прохождения каждого этапа). Исполнение каждого сценария сопровождается соответствующим документооборотом, который состоит из двух основных потоков: документов, определяющих структуру и последовательность процесса (технологических указаний, описаний стандартов и т.д.), и документов, отображающих ход его выполнения (результатов тестов и экспертиз, отчетов о браке, и т.д.).

Нотация ARIS eEPC расшифровывается следующим образом: extended Event Driven Process Chain — расширенная нотация описания цепочки процесса, управляемого событиями. Нотация разработана специалистами компании IDS Scheer AG (Германия), в частности профессором Шеером.

DFD (Data Flow Diagrams) - диаграммы потоков данных. Нотация DFD предназначена для описания информационных потоков в обследуемой организации.

Модель «сущность - связь» (ERD — Entity-Relationship Diagram) описывает отношения между данными.