PART II: Constraint Propagation & Global Constraints

Constraint Solver

- Enumerates all possible variable-value combinations via a systematic backtracking tree search.
 Ricerca sistematica nell'albero backtracking indovina
 - Guesses a value for each variable.
- During search, examines the constraints to remove incompatible (inconsistent) values from the domains of the future (unexplored) variables, via propagation.
 - Shrinks the domains of the future variables.

Search and Propagation

Search decisions and propagation are interleaved.

Propagation

Le decisioni di ricerca e la propagazione sono interlacciate.

Propagation

Propagation

- $X_1 \in \{1,2\}$ $X_2 \in \{0,1,2,3\}$ $X_3 \in \{2,3\}$
- $X_1 > X_2$ and $X_1 + X_2 = X_3$ and all different ([X_1, X_2, X_3])

- $X_1 = 1, X_2 \in \{0, 1\} X_3 \in \{1, 2\}$
- $X_1 > X_2$ and $X_1 + X_2 = X_3$ and all different ([X_1, X_2, X_3])

- $X_1 \in \{1,2\}$ $X_2 \in \{0,1,2,3\}$ $X_3 \in \{2,3\}$
- $X_1 > X_2$ and $X_1 + X_2 = X_3$ and all different ([X_1, X_2, X_3])

- $X_1 = 2 \ X_2 \in \{0,1\} \ X_3 \in \{2,3\}$
- $X_1 > X_2$ and $X_1 + X_2 = X_3$ and all different ([X_1, X_2, X_3])

Outline

- Local Consistency
 - Generalized Arc Consistency (GAC)
 - Bounds Consistency (BC)
- Constraint Propagation
 - Propagation Algorithms
- Specialized Propagation
 - Global Constraints
- Global Constraints for Generic Purposes

Local Consistency

rileva assegnazioni parziali incoerenti.

- A form of inference which detects inconsistent partial assignments.
 - Local, because we examine <u>individual constraints</u>.
 Le coerenze locali più diffuse sono basate sul dominio:
 Popular local consistencies are domain-based:
- - Generalized Arc Consistency (GAC).
 - Also referred to as Hyper-arc or Domain Consistency;
 - Bounds Consistency (BC).
 - They detect inconsistent partial assignments of the form $X_i = j$, hence:
 - j can be removed from D(X_i) via propagation;
 - propagation can be implemented easily.

Generalized Arc Consistency (GAC)

- A constraint C defined on k variables C(X₁,..., X_k)
 gives the set of allowed combinations of values (i.e.
 allowed tuples).
 - $\quad \textbf{C} \subseteq D(X_1) \; x \; ... \; x \; D(X_k)$

- E.g.,
$$D(X_1) = \{0,1\}$$
, $D(X_2) = \{1,2\}$, $D(X_3) = \{2,3\}$ C: $X_1 + X_2 = X_3$

$$C(X_1, X_2, X_3) = \{(0,2,2), (1,1,2), (1,2,3)\}$$

Each allowed tuple $(d_1,...,d_k) \in \mathbb{C}$ where $d_i \in X_i$ is a support for \mathbb{C} .

GAC

- $C(X_1,...,X_k)$ is GAC iff:
 - for all X_i in $\{X_1, \ldots, X_k\}$, for all $v \in D(X_i)$, v belongs to a support for C.
- Called Arc Consistency (AC) when k = 2.
- A CSP is GAC iff all its constraints are GAC.

- $D(X_1) = \{1,2,3\}, D(X_2) = \{2,3,4\}, C: X_1 = X_2$
 - AC(C)?
 - $1 \in D(X_1)$ and $4 \in D(X_2)$ do not have a support.
 - $X_1 = 1$ and $X_2 = 4$ are inconsistent partial assignments.
- D(X₁) = {1,2,3}, D(X₂) = {1,2}, D(X₃) = {1,2},
 C: alldifferent([X₁, X₂, X₃])
 - GAC(C)?
 - $1 \in D(X_1)$ and $2 \in D(X_1)$ do not have support.
 - $X_1 = 1$ and $X_1 = 2$ are inconsistent partial assignments.

Bounds Consistency (BC)

- Defined for totally ordered (e.g. integer) domains.
- Relaxes the domain of X_i from D(X_i) to [min(X_i)..max(X_i)].
 - E.g., $D(X_i) = \{1,3,5\} \rightarrow [1..5]$
- A bound support is a tuple (d₁,...,dk) ∈ C where di ∈ [min(Xi)..max(Xi)].
- $C(X_1,...,X_k)$ is BC iff:
 - = For all X_i in $\{X_1, ..., X_k\}$, min $\{X_i\}$ and max $\{X_i\}$ belong to a bound support.

BC

- Disadvantage rilevare
 - BC might not detect all GAC inconsistencies in general.
 - We need to search more.
- Advantages

cercare che in un

- Might be easier to look for a support in a range than in a domain.
 raggiungere + economico
- raggiungere + economico Achieving BC is often cheaper than achieving GAC.
 - Of interest in arithmetic constraints defined on integer variables with large domains.

 monotoni
- Achieving BC is enough to achieve GAC for monotonic constraints.

GAC = BC

- All values of D(X) ≤ max(Y) are GAC.
- All values of D(Y) ≥ min(X) are GAC.
- Enough to adjust max(X) and min(Y).
 - max(X) ≤ max(Y)
 - min(X) ≤ min(Y)

GAC > BC

- $D(X_1) = D(X_2) = \{1,2\}, D(X_3) = D(X_4) = \{2,3,5,6\}, X_5 = 5, D(X_6) = \{3,4,5,6,7\},$ all different $([X_1, X_2, X_3, X_4, X_5, X_6])$
- Only 2 ∈ D(X₃) and 2 ∈ D(X₄) have no BC support.

GAC > BC

- $D(X_1) = D(X_2) = \{1,2\}, D(X_3) = D(X_4) = \{2,3,5,6\}, X_5 = 5, D(X_6) = \{3,4,5,6,7\},$ alldifferent($[X_1, X_2, X_3, X_4, X_5, X_6]$)
- $\{2,5\} \in D(X_3)$, $\{2,5\} \in D(X_4)$, $\{3,5,6\} \in D(X_6)$ have no GAC support.

Outline

- Local Consistency
 - Generalized Arc Consistency (GAC)
 - Bounds Consistency (BC)
- Constraint Propagation
 - Propagation Algorithms
- Specialized Propagation
 - Global Constraints
- Global Constraints for Generic Purposes

Constraint Propagation

- Can appear under different names:
 - constraint relaxation
 - filtering
 - local consistency enforcing, ...
- A local consistency notion defines properties that a constraint C must satisfy after constraint propagation.
 The operational behaviour is completely left open.

 - We can develop different algorithms with different complexities to ottenere achieve the same effect.
 - The only requirement is to achieve the required property on C.

Propagation Algorithms

ottenere

- A propagation algorithm achieves a certain level of consistency on a constraint C by removing the inconsistent values from the domains of the variables in C.
- The level of consistency depends on C.
 - GAC if an efficient propagation algorithm can be developed.
 - Otherwise BC or a lower level of consistency.

Propagation Algorithms

- When solving a CSP with multiple constraints:
 - propagation algorithms interact;
 - a propagation algorithm can wake up an already propagated constraint to be propagated again!
 - in the end, propagation reaches a fixed-point and all constraints reach a level of consistency;
 - the whole process is referred as constraint propagation.

- $D(X_1) = D(X_2) = D(X_3) = \{1,2,3\}$ C_1 : all different ([X_1, X_2, X_3]) C_2 : $X_2 < 3$ C_3 : $X_3 < 3$
- Let's assume:
 - the order of propagation is C₁, C₂, C₃;
 - propagation algorithms maintain (G)AC.
- Propagation of C₁:
 - nothing happens, C₁ is GAC.
- Propagation of C₂:
 - 3 is removed from D(X₂), C₂ is now AC.
- Propagation of C₃:
 - 3 is removed from D(X₃), C₃ is now AC.
- C_1 is not GAC anymore, because the supports of $\{1,2\} \in D(X_1)$ in $D(X_2)$ and $D(X_3)$ are removed by the propagation of C_2 and C_3 .
- Re-propagation of C₁:
 - 1 and 2 are removed from $D(X_1)$, C_1 is now AC.

Properties of Propagation Algorithms

- It may not be enough to remove inconsistent values from domains once.
- A propagation algorithm must wake up again when necessary, otherwise may not achieve the desired local consistency property.
- Events that can trigger a constraint propagation:
 - when the domain of a variable changes (for GAC);
 - when the domain bounds of a variable changes (for BC);
 - when a variable is assigned a value;

- ...

Complexity of Propagation Algorithms

- Assume $|D(X_i)| = d$.
- Following the definition of the local consistency property:
 - one time AC propagation on a $C(X_1,X_2)$ takes $O(d^2)$ time.
- We can do better!

- C: $X_1 = X_2$
 - $D(X_1) = D(X_2) = D(X_1) \cap D(X_2)$
 - Complexity: the cost of the set intersection operation
- C: $X_1 \neq X_2$
 - When $D(X_i) = \{v\}$, remove v from $D(X_i)$.
 - Complexity: O(1)
- C: $X_1 \le X_2$
 - $\max(X_1) \le \max(X_2), \min(X_1) \le \min(X_2)$
 - Complexity: O(1)

Outline

- Local Consistency
 - Generalized Arc Consistency (GAC)
 - Bounds Consistency (BC)
- Constraint Propagation
 - Propagation Algorithms
- Specialized Propagation
 - Global Constraints
 - Decompositions
 - Ad-hoc Algorithms
- Global Constraints for Generic Purposes

Specialized Propagation

- Propagation specific to a given constraint.
- Advantages
 - Exploits the constraint semantics.
 - Potentially much more efficient than a general propagation approach.

Specialized BC Propagation

- C: $X_1 = X_2 + X_3$
- Observation
 - $min(X_1)$ cannot be smaller than $min(X_2)$ + $min(X_3)$.
 - $max(X_1)$ cannot be larger than $max(X_2)$ + $max(X_3)$.
 - $min(X_2)$ cannot be smaller than $min(X_1)$ $max(X_3)$.
 - $max(X_2)$ cannot be larger than $max(X_1)$ $min(X_3)$.
 - $-X_3$ analogous to X_2 .
- BC propagation rules
 - $\max(X_1) \le \max(X_2) + \max(X_3), \min(X_1) \ge \min(X_2) + \min(X_3)$
 - $\max(X_2) \le \max(X_1)$ $\min(X_3)$, $\min(X_2) \ge \min(X_1)$ $\max(X_3)$
 - Similarly for X₃

• $D(X_1) = [4,9], D(X_2) = [3,5], D(X_3) = [2,3]$ • $C: X_1 = X_2 + X_3$

- $D(X_1) = [5,8], D(X_2) = [3,5], D(X_3) = [2,3]$ • $C: X_1 = X_2 + X_3$
- Propagation
 - $-\max(X_1) \le \max(X_2) + \max(X_3), \min(X_1) \ge \min(X_2) + \min(X_3)$

- $D(X_1) = [5,8], D(X_2) = [3,5], D(X_3) = [2,3]$ C: $X_1 = X_2 + X_3$
- Propagation
 - $\max(X_1) \le \max(X_2) + \max(X_3), \min(X_1) \ge \min(X_2) + \min(X_3)$
 - $\max(X_2) \le \max(X_1) \min(X_3), \min(X_2) \ge \min(X_1) \max(X_3)$
 - Similarly for X₃

- $X_1 = 5$, $D(X_2) = [3,5]$, $D(X_3) = [2,3]$ • $X_1 = X_2 + X_3$
- Propagation
 - $\max(X_1) \le \max(X_2) + \max(X_3), \min(X_1) \ge \min(X_2) + \min(X_3)$
 - $\max(X_2)$ ≤ $\max(X_1)$ $\min(X_3)$, $\min(X_2)$ ≥ $\min(X_1)$ $\max(X_3)$
 - Similarly for X₃

- $X_1 = 5$, $D(X_2) = [3]$, $D(X_3) = [2]$ • $X_1 = X_2 + X_3$
- Propagation
 - $\max(X_1) \le \max(X_2) + \max(X_3), \min(X_1) \ge \min(X_2) + \min(X_3)$
 - $\max(X_2) \le \max(X_1) \min(X_3), \min(X_2) \ge \min(X_1) \max(X_3)$
 - Similarly for X₃

Specialized Propagation

- Propagation specific to a given constraint.
- Advantages
 - sfrutta
 Exploits the constraint semantics.
 - Potentially much more efficient than a general propagation approach.
- Disadvantages
 - Limited use.
 - Not always easy to develop one.
- Worth developing for recurring constraints.

Global Constraints

- Capture complex, non-binary and recurring combinatorial substructures arising in a variety of applications.
- Embed specialized propagation which exploits the substructure.

Benefits of Global Constraints

Modelling benefits

- Reduce the gap between the problem statement and the model.
- May allow the expression of constraints that are otherwise not possible to state using primitive constraints (semantic).

Solving benefits

- Strong inference in propagation (operational).
- Efficient propagation (algorithmic).

Global Constraints

- Capture complex, non-binary and recurring combinatorial substructures arising in a variety of applications.
- Embed specialized propagation which exploits the substructure.

Benefits of Global Constraints

- Modelling benefits
 - Reduce the gap between the problem statement and the model.
 - May allow the expression of constraints that are otherwise not possible to state using primitive constraints (semantic).
- Solving benefits
 - Strong inference in propagation (operational).
 - Efficient propagation (algorithmic).

Some Groups of Global Constraints

- Counting
- Sequencing
- Scheduling
- Ordering
- Balancing
- Distance
- Packing
- Graph-based
- ...

Counting Constraints

 Restrict the number of variables satisfying a condition or the number of times values are taken.

Alldifferent Constraint

- alldifferent([$X_1, X_2, ..., X_k$]) iff $X_i \neq X_j$ for $i < j \in \{1,...,k\}$
 - permutation constraint with $|D(X_i)| = k$.
 - alldifferent([3,5,2,1,4])
- Useful in a variety of context, like:
 - puzzles (e.g., sudoku and n-queens);
 - timetabling (e.g. allocation of activities to different slots);
 - scheduling (e.g. a team can play at most once in a week);
 - configuration (e.g. a particular product cannot have repeating components).

Nvalue Constraint

- Constrains the number of distinct values assigned to the variables.
- Nvalue($[X_1, X_2, ..., X_k], N$) iff $N = |\{X_i \mid 1 \le i \le k\}|$
 - Nvalue([1, 2, 2, 1, 3], 3).
 - alldifferent when N = k.
- Useful e.g. in:
 - resource allocation (e.g. limit the number of resource types).

Global Cardinality Constraint

- Constrains the number of times each value is taken by the variables.
- $gcc([X_1, X_2, ..., X_k], [v_1, ..., v_m], [O_1, ..., O_m])$ iff for all $j \in \{1,..., m\}$ $O_j = |\{X_i \mid X_i = v_j, 1 \le i \le k\}|$
 - gcc([1, 1, 3, 2, 3], [1, 2, 3, 4], [2, 1, 2, 0])
 - alldifferent when O_i ≤ 1.
- Useful e.g. in:
 - resource allocation (e.g. limit the usage of each resource).

Among Constraint

- Constrains the number of variables taken from a given set of values.
- among([X₁, X₂, ..., X_k], s, N) iff $N = |\{i \mid X_i \in s, 1 \le i \le k \}|$ - among([1, 5, 3, 2, 5, 4], {1,2,3,4}, 4)
- among([X₁, X₂, ..., X_k], s, I, u) iff $| \le | \{ i \mid X_i \in s, 1 \le i \le k \} | \le u among([1, 5, 3, 2, 5, 4], \{1,2,3,4\}, 3, 4) \}$
- Useful in sequencing problems, as we see next.

Sequencing Constraints

 Ensure a sequence of variables obey certain patterns.

Sequence/AmongSeq Constraint

- Constrains the number of values taken from a given set in any subsequence of q variables.
- sequence(I, u, q, [X₁, X₂, ..., X_k], s) iff among([X_i, X_{i+1}, ..., X_{i+q-1}], s, I, u) for 1 ≤ i ≤ k-q+1
 - sequence(1,2,3,[1,0,2,0,3],{0,1})
- Useful e.g. in:
 - rostering (e.g. every employee has 2 days off in any 7 day of period);
 - production line (e.g. at most 1 in 3 cars along the production line can have a sun-roof fitted).

Scheduling Constraints

 Help schedule tasks with respective release times, duration, and deadlines, using limited resources in a time interval.

Disjunctive Resource Constraint

- Requires that tasks do not overlap in time.
 - Known also as noOverlap constraint.
- Given tasks t₁, ..., t_k, each associated with a start time S_i and duration D_i:

```
disjunctive([S_1, ..., S_k], [D_1, ..., D_k]) iff for all i < j
(S_i + D_i \le S_j) \lor (S_j + D_j \le S_i)
```

Useful when a resource can execute at most one task at a time.

Cumulative Resource Constraint

- Constrains the usage of a shared resource.
- Given tasks t₁, ...,t_k, each associated with a start time S_i, duration D_i, resource requirement R_i, and a resource with a capacity C:

cumulative($[S_1, ..., S_k]$, $[D_1, ..., D_k]$, $[R_1, ..., R_k]$, C) iff $\sum_{i|S_i \le u < S_i + D_i} R_i \le C$ for all u in D

 Useful when a resource with a capacity can execute multiple tasks at a time.

Ordering Constraints

 Enforce an ordering between the variables or the values.

Lexicographic Ordering Constraint

- Requires a sequence of variables to be lexicographically less than or equal to another sequence of variables.
- lex≤([X₁, X₂, ..., X_k], [Y₁, Y₂, ..., Y_k]) holds iff:

$$X_1 \le Y_1 \land$$
 $(X_1 = Y_1 \rightarrow X_2 \le Y_2) \land$
 $(X_1 = Y_1 \land X_2 = Y_2 \rightarrow X_3 \le Y_3) \dots$
 $(X_1 = Y_1 \land X_2 = Y_2 \dots X_{k-1} = Y_{k-1} \rightarrow X_k \le Y_k)$
 $- \text{lex} \le ([1, 2, 4], [1, 3, 3])$

- Useful in symmetry breaking.
 - Avoid permutations of (groups of) variables.

Permutation of Variables

- lex≤([X₁, X₂, ..., X_k], π([X₁, X₂, ..., X_k])) for some
 π.
- E.g., with n-Queens:

```
constraint
   lex_lesseq(array1d(qb), [ qb[j,i] | i,j in 1..n ])
/\ lex_lesseq(array1d(qb), [ qb[i,j] | i in reverse(1..n), j in 1..n ])
/\ lex_lesseq(array1d(qb), [ qb[j,i] | i in 1..n, j in reverse(1..n) ])
/\ lex_lesseq(array1d(qb), [ qb[i,j] | i in 1..n, j in reverse(1..n) ])
/\ lex_lesseq(array1d(qb), [ qb[j,i] | i in reverse(1..n), j in 1..n ])
/\ lex_lesseq(array1d(qb), [ qb[i,j] | i,j in reverse(1..n) ])
/\ lex_lesseq(array1d(qb), [ qb[j,i] | i,j in reverse(1..n) ])
;;
```

 Assignments of items to two identical bins can be represented by a matrix of Boolean variables:

Need to avoid the symmetric assignments.

• lex ≤(X, Y).

Need to avoid the symmetric assignments.

• $lex \le (i_3, i_4)$.

Value Precedence Constraint

- Requires a value to precede another value in a sequence of variables.
- value_precede(v_{j1}, v_{j2}, [X₁, X₂, ..., X_k]) holds iff:
 - $-\min\{i \mid X_i = v_{i1} \lor i = k+1\} < \min\{i \mid X_i = v_{i2} \lor i = k+2\}.$
 - value_precede(5, 4, [2, 5, 3, 5, 4])
- Useful in symmetry breaking.
 - Avoid permutations of values.

Specialized Propagation for Global Constraints

- How do we develop specialized propagation for global constraints?
- Two main approaches:
 - constraint decomposition;
 - dedicated ad-hoc algorithm.

Constraint Decomposition

- A global constraint is decomposed into smaller and simpler constraints, each of which has a known propagation algorithm.
- Propagating each of the constraints gives a propagation algorithm for the original global constraint.
 - A very effective and efficient method for some global constraints.

A Decomposition of Among

- among([X₁, X₂, ..., X_k], s, N)
- Decomposition as a conjunction of logical constrains and a sum constraint.
 - B_i with $D(B_i) = \{0, 1\}$ for $1 \le i \le k$
 - C_i : $B_i = 1 \leftrightarrow X_i \in s$ for $1 \le i \le k$
 - $\mathbf{C_{k+1}}: \sum_{i} B_i = N$
- AC(C_i) for all i and BC($\sum_i B_i = N$) ensures GAC on among.

A Decomposition of Lex

- $lex \le ([X_1, X_2, ..., X_k], [Y_1, Y_2, ..., Y_k])$
- Decomposition as a conjunction of disjunctions.
 - B_i with $D(B_i) = \{0, 1\}$ for $1 \le i \le k+1$ to indicate the vectors have been ordered by position i-1.
 - $B_1 = 0$
 - C_i : $(B_i = B_{i+1} = 0 \text{ AND } X_i = Y_i) \text{ OR } (B_i = 0 \text{ AND } B_{i+1} = 1 \text{ AND } X_i < Y_i) \text{ OR } (B_i = B_{i+1} = 1) \text{ for } 1 \le i \le k$
- GAC(C_i) for all i ensures GAC on lex ≤.

Constraint Decompositions

- May not always provide an effective propagation.
- Often GAC on the original constraint is stronger than (G)AC on the constraints in the decomposition.

A Decomposition of Alldifferent

- alldifferent([X₁, X₂, ..., X_k])
- Decomposition as a conjunction of difference constraints.
 - C_{ij} : $X_i \neq X_j$ for $i < j \in \{1,...,k\}$
- AC(C_{ij}) for all i < j is weaker than GAC on alldifferent.
 - E.g., alldifferent($[X_1, X_2, X_3]$) with $D(X_1) = D(X_2) = D(X_3) = \{1,2\}.$
 - alldifferent is not GAC but the decomposition does not prune anything.

A Decomposition of Sequence

- sequence(I, u, q, [X₁, X₂, ..., X_k], s)
- Decomposition as a conjunction of among constraints.
 - C_i : among([X_i , X_{i+1} , ..., X_{i+q-1}], s, l, u) for 1 ≤ i ≤ k-q+1
- GAC(C_i) for all i is weaker than GAC on sequence.
 - E.g., sequence(2, 3, 5, [X_1 , X_2 , ..., X_7], {1}) with $X_1 = X_2 = 1$, $X_6 = 0$, $D(X_i) = \{0,1\}$ for $i \in \{3,4,5,7\}$.
 - sequence is not GAC but the decomposition does not prune anything.

A Decomposition of Sequence

• 1 1 $\{0,1\}$ $\{0,1\}$ $\{0,1\}$ 0 $\{0,1\}$ q=5, I =2, u =3,v= $\{1\}$

• 1 1 {0,1} {0,1} {0,1} 0 {0,1} GAC(among)

• 1 1 {0,1} {0,1} {0,1} 0 {0,1} GAC(among)

• 1 1 {0,1} {0,1} {0,1} 0 {0,1} GAC(among)

A Decomposition of Sequence

• 1 1 {0,1} {0,1} {0,1} 0,1} 0 {0,1} q=5, I =2, u =3,v={1}

• 1 1 {0,1} {0,1} {0,1} 0 {0,1} GAC(among)

• 1 1 {0,1} {0,1} {0,1} 0 {0,1} GAC(among)

• 1 1 {0,1} {0,1} {0,1} 0,1} 0 {\mathred{\psi}},1} GAC(among)

A Decomposition of Lex

- $[ex \le ([X_1, X_2, ..., X_k], [Y_1, Y_2, ..., Y_k])]$
- Decomposition as a conjunction of implications

-
$$X_1 \le Y_1$$
 AND $(X_1 = Y_1 \rightarrow X_2 \le Y_2)$ AND ...
 $(X_1 = Y_1 \text{ AND } X_2 = Y_2 \text{ AND } ... X_{k-1} = Y_{k-1} \rightarrow X_k \le Y_k)$

- AC on the decomposition is weaker than GAC on lex≤.
 - E.g., $lex \le ([X_1, X_2], [Y_1, Y_2])$ with $D(X_1) = \{0,1\}, X_2 = 1, D(Y_1) = \{0,1\}, Y_2 = 0$
 - lex ≤ is not GAC but the decomposition does not prune anything.

Decomposition vs Ad-hoc Algorithm

- Even if a decomposition is effective, may not always provide an efficient propagation.
- Often propagating a constraint via an ad-hoc algorithm is faster than propagating the (many) constraints in the decomposition.
 - Thanks to incremental computation!

Incremental Computation

- A propagation algorithm is often called multiple times.
 - We don't want to re-compute everything each time.
- Incremental computation can improve efficiency.
 - At the first call, some partial results are cached.
 - At the next invoke, we exploit the cached data.
- This requires access to more details about propagation:
 - which variable has been pruned?
 - which values have been pruned?

Dedicated BC Algorithm for Sum

• C: $\sum_{i} X_{i} = N$ where X_{i} and N are integer variables.

```
- \min(N) \ge \sum_{i} \min(X_{i})

- \max(N) \le \sum_{i} \max(X_{i})

- \min(X_{i}) \ge \min(N) - \sum_{j \ne i} \max(X_{j}) for 1 \le i \le n

- \max(X_{i}) \le \max(N) - \sum_{j \ne i} \min(X_{j}) for 1 \le i \le n
```

BC Decomposition for Sum

• C: $\sum_{i} X_{i} = N$ where X_{i} and N are integer variables.

$$- X_1 + X_2 = Y_1$$

$$- Y_1 + X_3 = Y_2$$

$$- Y_{(n-1)} + X_n = N$$

Filtering min(N)

• C: $\sum_{i} X_{i} = N$ where X_{i} and N are integer variables.

```
- \min(X_1) + \min(X_2) \le \min(Y_1)

- \min(Y_1) + \min(X_3) \le \min(Y_2)

- ...

- \min(Y_{(n-1)}) + \min(X_n) \le \min(N)

which is equivalent to
\sum_i \min(X_i) \le \min(N)
```

Number of Operations

• C: $\sum_{i} X_{i} = N$ where X_{i} and N are integer variables.

```
- \min(X_1) + \min(X_2) \le \min(Y_1)
```

$$- \min(Y_1) + \min(X_3) \le \min(Y_2)$$

- ...

$$- \min(Y_{(n-1)}) + \min(X_n) \le \min(N)$$

Read access: 2(n-1)

Write access: n-1

Sum: n-1

 $\sum_{i} \min(X_i) \leq \min(N)$

Read access: n

Write access: 1

Sum: n-1

Number of Operations

• C: $\sum_{i} X_{i} = N$ where X_{i} and N are integer variables.

```
- max(X_1) + max(X_2) \ge max(Y_1) Re

- max(Y_1) + max(X_3) \ge max(Y_2) Wr

- ... Su
```

- $\max(Y_{(n-1)})$ + $\max(X_n)$ ≥ $\max(N)$

Read access: 2(n-1)
Write access: n-1

Sum: n-1

$$\sum_{i} \max(X_i) \geq \max(\mathsf{N})$$

Read access: n

Write access: 1

Sum: n-1

Incremental Computation

- C: $\sum_{i} X_{i} = N$ where X_{i} and N are integer variables.
 - $\max(N) \leq \sum_{i} \max(X_i)$
 - Cache max(N) as max\$(N)
 - Whenever the bounds of a variable X_i is pruned:
 - $\max(N)$ ≤ $\max(N)$ $(old(\max(X_i))$ $\max(X_i))$ O(1)

Incremental Computation

- C: $\sum_{i} X_{i} = N$ where X_{i} and N are integer variables.
 - Complexity reduces to O(1) from O(n)

Classical Sum

Read access: n

Write access: 1

Sum: n-1

Incremental Sum

Read access: 3

Write access: 1

Sum: 2

Dedicated Propagation Algorithms

- Dedicated ad-hoc algorithms provide effective and efficient propagation.
- Often:
 - GAC is maintained in polynomial time;
 - many more inconsistent values are detected compared to the decompositions;
 - computation is done incrementally.

Dedicated Propagation Algorithms

- Dedicated ad-hoc algorithms provide effective and efficient propagation.
- Often:
 - GAC is maintained in polynomial time;
 - many more inconsistent values are detected compared to the decompositions;
 - computation is done incrementally.

A GAC Propagation Algorithm

- Maintains GAC on alldifferent([X₁, X₂, ..., X_k]) and runs in polynomial time.
 - Jean-Charles Régin, "A Filtering Algorithm for Constraints of Difference in CSPs", in the Proc. of AAAI'1994
- Establishes a relation between the solutions of the constraint and the properties of a graph.
 - Maximal matching in a bipartite graph.
- A similar algorithm can be obtained with the use of flow theory.

A GAC Algorithm for all different

 A bipartite graph is a graph whose vertices are divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V.

A GAC Algorithm for all different

- A matching in a graph is a subset of its edges such that no two edges have a node in common.
 - Maximal matching is the largest possible matching.

 In a bipartite graph, maximal matching covers one set of nodes.

A GAC Algorithm for all different

Observation

- Given a bipartite graph G constructed between the variables
 [X₁, X₂, ..., X_k] and their possible values (variable-value graph),
- an assignment of values to the variables is a solution iff it corresponds to a maximal matching in G.
 - A maximal matching covers all the variables.
- By computing all maximal matchings, we can find all the consistent partial assignments.

Example

Variable-value graph

A Maximal Matching

Another Maximal Matching

Matching Notations

- Edge
 - matching if takes part in a matching;
 - free otherwise.
- Node
 - matched if incident to a matching edge;
 - free otherwise.
- Vital edge
 - belongs to every maximal matching.

Free, Matched, Matching

Algorithm

- Compute all maximal matchings.
- No maximal matching exists → failure.
- An edge free in all maximal matchings →
 - Remove the edge.
 - Amounts to removing the corresponding value from the domain of the corresponding variable.
- A vital edge →
 - Keep the edge.
 - Amounts to assigning the corresponding value to the corresponding variable.
- Edges matching in some but not all maximal matchings →
 - Keep the edge.

All Maximal Matchings

- Inefficient to compute them naïvely.
- Use matching theory to compute them efficiently.
 - One maximal matching can describe all maximal matchings!

Alternating Path and Cycle

- Alternating path
 - Simple path with edges alternating free and matching.
- Alternating cycle
 - Cycle with edges alternating free and matching.
- Length of path/cycle
 - Number of edges in the path/cycle.
- Even path/cycle
 - Path/cycle of even length.

Matching Theory

- A result due to Claude Berge in 1970.
- An edge e belongs to a maximal matching iff for some arbitrary maximal matching M:
 - either e belongs to M;
 - or e belongs to even alternating path starting at a free node;
 - or e belongs to an even alternating cycle.

Oriented Graph

- To compute alternating path/cycles, we will orient edges of an arbitrary maximal matching:
 - matching edges → from variable to value;
 - free edges → from value to variable.

An Arbitrary Maximal Matching

Oriented Graph

Even Alternating Paths

- Start from a free node and search for all nodes on directed simple path.
 - Mark all edges on path.
 - Alternation built-in.
- Start from a value node.
 - Variable nodes are all matched.
- Finish at a value node for even length.

Even Alternating Paths

Intuition: edges can be permuted.

Even Alternating Cycles

- Compute strongly connected components (SCCs).
 - Two nodes a and b are strongly connected iff there is a path from a to b and a path from b to a.
 - Strongly connected component: any two nodes are strongly connected.
 - Alternation and even length built-in.
- Mark all edges in all strongly connected components.

Even Alternating Cycles

• Intuition: variables consume all the values.

All Marked Edges

Removing Edges

- Remove the edges which are:
 - free (does not occur in our arbitrary maximal matching) and not marked (does not occur in any maximal matching);
 - marked as black in our example.
- Keep the edge matched and not marked.
 - Marked as red in our example.
 - Vital edge!

Removing Edges

$$D(X_0) = \{0,1\}, D(X_1) = \{1,2\}, D(X_2) = \{0,2\}, D(X_3) = \{1,3\}$$

 $D(X_4) = \{2,3,4,5\}, D(X_5) = \{5,6\}$

Edges Removed

$$D(X_0) = \{0,1\}, D(X_1) = \{1,2\}, D(X_2) = \{0,2\}, D(X_3) = \{1,3\}$$

 $D(X_4) = \{2,3,4,5\}, D(X_5) = \{5,6\}$

Summary of the Algorithm

- Construct the variable-value graph.
- Find a maximal matching M; otherwise fail.
- Orient graph (done while computing M).
- Mark edges starting from free value nodes using graph search.
- Compute SCCs and mark joining edges.
- Remove not marked and free edges.

Incremental Properties

- Keep the variable and value graph between different invocations.
- When re-executed:
 - remove marks on edges;
 - remove edges not in the domains of the respective variables;
 - if a matching edge is removed, compute a new maximal matching;
 - otherwise just repeat marking and removal.

Runtime Complexity

- all different ([X₁, X₂, ..., X_k]) with m = $\sum_{i \in \{1,..k\}} |D(X_i)|$
- First call
 - Consistency check in $O(\sqrt{k}m)$ time.
 - Matching \rightarrow $O(\sqrt{k} \text{ m})$
 - Alternating path → O(m)
 - SCCs \rightarrow O(k+m)
 - Establishing GAC in O(m) time.
- After q variable domains have been modified
 - Matching in O(min{qm, \sqrt{k} m}) time.
 - Establishing GAC in O(m) time.

Dedicated Ad-hoc Algorithms

- Is it always easy to develop a dedicated algorithm for a given constraint?
- A nice semantics often gives us a clue!
 - Graph theory
 - Flow theory
 - Combinatorics
 - Automata theory
 - Dynamic programming
 - Complexity theory, ...

Dedicated Ad-hoc Algorithms

- GAC may as well be NP-hard!
 - E.g., nvalue, sequence+gcc, gcc using variables for occurrences.
 - Algorithms which maintain weaker consistencies are of interest.
 - BC
 - Between GAC and BC
 - GAC on some variables, BC on others
 - ...

Dedicated Ad-hoc Algorithms

- What if it is difficult to:
 - decompose a constraint;
 - build an efficient and effective dedicated algorithm?

Outline

- Local Consistency
 - Generalized Arc Consistency (GAC)
 - Bounds Consistency (BC)
- Constraint Propagation
 - Propagation Algorithms
- Specialized Propagation
 - Global Constraints
 - Decompositions
 - Ad-hoc Algorithms
- Global Constraints for Generic Purposes

Global Constraints for Generic Purposes

- Help propagate a wide range of constraints.
 - Table constraint.
 - Formal language-based constraints.

Table (Extensional) Constraint

- $C(X_1, X_2) = \{(0,0), (0,2), (1,3), (2,1)\}$
- Several algorithms exist to maintain GAC.
 - More efficient than $O(|D(X_1)|^*|D(X_2)|^*...^*|D(X_k)|)$.
 - More effective than the decomposition.
 - E.g., $(X_1 = 0 \text{ AND } X_2 = 2 \text{ AND } X_3 = 2) \text{ OR } (X_1 = 1 \text{ AND } X_2 = 1 \text{ AND } X_3 = 2) \text{ OR } (X_1 = 1 \text{ AND } X_2 = 2 \text{ AND } X_3 = 3)$

Product Configuration Problems

- Compatibility constraints on product components.
 - Often only certain combination of components work together.
- Compatibility may not be a simple pairwise relationship.

A Configuration Problem

 Valid hw products are defined in a table of compatible components (Products):

Products	Motherboard	CPU	Freq	RAM	Hard drive
Product ₁	TypeA	Intel	2GHz	5GB	100GB
Product ₂	ТуреВ	Intel	3GHz	8GB	200GB
Product ₃	ТуреВ	Amd	2GHz	5GB	200GB

- Assume we have products P_i to configure each with 5 components for motherboard, CPU, Freq, RAM and h. drive $[X_{i1}, X_{i2}, X_{i3}, X_{i4}, X_{i5}]$.
- For each product P_i, we post table([X_{i1},X_{i2},X_{i3}, X_{i4}, X_{i5}], Products).

Crossword Puzzles

- Valid words are defined in a table of compatible letters (i.e. dictionary).
 - table([X₁,X₂,X₃], dictionary)
 - $table([X_1,X_{13},X_{16}], dictionary)$
 - $table([X_4,X_5,X_6,X_7], dictionary)$
 - ...
- No simple way to decide acceptable words other than to put them in a table.

Formal Language-based Constraints

- The table constraint requires precomputing all the solutions of a constraint.
 - May not always be possible or practical.
- We can use a deterministic finite-state automaton to define the solutions.
 - Useful especially when valid assignments need to obey certain patterns.

Deterministic Finite State Automaton

- A dfsa is a finite-state machine that accepts or rejects a given string of symbols, by running through a state sequence uniquely determined by the string.
 - Recognizes a regular language.
- E.g., a dfa that accepts binary numbers that are multiples of 3.

- Some accepted strings: 0, 11, 110, 1100, 1001, 10111101, ...
- Not accepted strings: 10, 100, 101, 10100, ...

Regular Constraint

- A dfsa A is defined by a 5-tuple (q, sigma, t, q₀, f) where:
 - q : a finite set of states
 - sigma: a set of symbols (i.e. alphabet)
 - t: a partial transition function q x sigma → q
 - q₀: initial state
 - $f \subseteq q$: accepting (final) states
- regular([X₁, X₂, ..., X_k], A) holds iff <X₁, X₂, ..., X_k> forms a string accepted by a dfsa A.

Rostering Problems

- Shifts are subject to regulations.
 - E.g., successive night shifts must be limited.
- In a nurse rostering problem, suppose:
 - each nurse is scheduled for each day either: (d)
 on day shift, (n) on night shift, or (o) off;
 - in each four day period, a nurse must have at least one day off;
 - no nurse can be scheduled for 3 night shifts in a row.

A Nurse Rostering Problem

- $q = \{q_1, ..., q_6\}$
- sigma = {d, n, o}
- t:

	d	n	0
1	2	3	1
2	4	4	1
3	4	5	1
4	6	6	1
5	6	0	1
6	0	0	1

- $q_0: q_1$
- $f = q = \{q_1, ..., q_6\}$
- Assume nurses N_i to be scheduled for 30 days [D_{i1},..., D_{i30}].
- For each nurse N_i , we post regular($[D_{i1},...,D_{i30}]$, A)

Regular Constraint

- Useful in sequencing and rostering problems.
- Many constraints are instances of regular:
 - among, lex, precedence, stretch, ...
- Efficient GAC propagation with a dedicated algorithm and a decomposition into a sequence of ternary constraints.
 - Another example of the power of decompositions!