

Složeni krugovi istosmjerne struje i načelo superpozicije

IV. tjedan predavanja

1

Mosni spoj (Wheatstoneov most)

 Spoj pet pasivnih elemenata i jednog aktivnog, kakav je prikazan na sl. 4.1, naziva se mosni spoj. Ako su svi pasivni elementi otpori, mosni se spoj pobliže određuje kao Wheatstoneov most.

SI. 4.1

Mosni spoj (Wheatstoneov most) (2)

OSNOVE ELEKTROTEHNIKE

Jednadžbe Kirchhoffovih zakona:

3

Mosni spoj (Wheatstoneov most) (3)

• Rješavanje ovog sustava jednadžbi po I₅ daje:

$$I_{5} = \frac{R_{1} \cdot R_{3} - R_{2} \cdot R_{4}}{\left(R_{1} + R_{2}\right) \cdot \left(R_{3} + R_{4}\right) \cdot \left(\frac{R_{1} \cdot R_{2}}{R_{1} + R_{2}} + \frac{R_{3} \cdot R_{4}}{R_{3} + R_{4}} + R_{5}\right)} \cdot U_{0} \quad (4.7)$$

• Kada je $R_1 \cdot R_3 - R_2 \cdot R_4 = 0$, izraz (4.7) jednak je nuli. Struja I_5 ne teče pa se sl. 4.1 može nadomjestiti sa sl. 4.1a ili sl. 4.1b.

Mosni spoj (Wheatstoneov most) (4)

OSNOVE ELEKTROTEHNIK

SI. 4.1b

Uz $I_5 = 0$ jednadžbe (4.2) i (4.3) reduciraju se na $-I_1 - I_2 = 0$, odnosno $I_3 + I_4 = 0$, što je iz sl. 4.1a-b očito.

5

Mosni spoj (Wheatstoneov most) (5)

Relacija

$$R_1 \cdot R_3 - R_2 \cdot R_4 = 0; \quad \frac{R_1}{R_2} = \frac{R_4}{R_3}$$
 (4.8)

<u>uvjet je ravnoteže mosta</u>. Kada je ona zadovoljena, dopušteno je <u>mosnu granu</u> (grana s R_5) kratko spojiti (sl. 4.1a) ili odspojiti (sl. 4.1b), jer navedeni zahvati ne mijenjaju strujno-naponske prilike u krugu, a mreža se pojednostavljuje na <u>serijsko-paralelni spojotpornika R_1 , R_2 , R_3 i R_4 .</u>

Primjer: Primjena u električkim mjerenjima

OSNOVE ELEKTROTEHNIKE

Otpori R_1 i R_2 su dijelovi npr. otporne žice duljine l po kojoj se može pomicati klizač; položaj klizača (udaljenost od točke a) može se precizno očitati. Otpor R_3 je tzv. normalni otpor, čija je vrijednost stabilna i točno poznata. Otpor $R_4 = R_x$ je otpor čija se vrijednost mjeri. Ukupna vrijednost otporne žice $R_{ab} = R$ također je poznata.

7

Primjena u električkim mjerenjima (2)

• Mjerenje se provodi tako da se klizač pomiče do točke x_0 kada vrlo precizni nul-instrument ne registrira nikakvu struju u mosnoj grani ($I_5=0$). Tada je:

$$R_1 = \frac{x_0}{l} \cdot R = \alpha R, \quad R_2 = \frac{l - x_0}{l} \cdot R = (1 - \alpha) \cdot R \qquad (4.9)$$

Dobiva se:

$$R_4 = R_x = \frac{R_1}{R_2} \cdot R_3 = \frac{x_0}{l - x_0} \cdot R_3 = \frac{\alpha}{1 - \alpha} \cdot R_n$$
 (4.10)

Wheatstoneov mjerni most jednostavna je i precizna metoda za određivanje vrijednosti nepoznatih otpora.

Pretvorba trokut-zvijezda (2)

Ekvivalentnost trokuta i zvijezde slijedi iz zadovoljenja sljedećih naponskih jednadžbi:

$$U_{12} = I_{12} \cdot R_{12} = I_1 \cdot R_1 - I_2 \cdot R_2 \tag{4.11a}$$

$$U_{23} = I_{23} \cdot R_{23} = I_2 \cdot R_2 - I_3 \cdot R_3 \tag{4.11b}$$

$$U_{31} = I_{31} \cdot R_{31} = I_3 \cdot R_3 - I_1 \cdot R_1 \tag{4.11c}$$

4.11(a-c) sustav je triju jednadžbi s tri nepoznanice (R_1 , R_2 , R_3 , odnosno R_{12} , R_{23} , R_{31}) s parametrima (strujama) koje moraju zadovoljavati sljedeće strujne jednadžbe:

čvor 1:
$$+I_1$$
 $-I_{12}$ $+I_{31} = 0$ (4.12a)

čvor 2:
$$+I_2 + I_{12} - I_{23} = 0$$
 (4.12b)

čvor 3:
$$+I_3 + I_{23} - I_{31} = 0$$
 (4.12c)

Pretvorba trokut-zvijezda (3)

📥 osnove elektrotehniki

Iz sustava 4.11(a-c) slijedi:

$$I_{12} \cdot R_{12} + I_{23} \cdot R_{23} + I_{31} \cdot R_{31} = 0 (4.13)$$

Iz sustava 4.12(a-c) slijedi:

$$I_1 + I_2 + I_3 = 0 (4.14)$$

11

Pretvorba trokuta u zvijezdu

- Poznanice: R_{12} , R_{23} , R_{31}
- Nepoznanice: R_1 , R_2 , R_3

U jednadžbi 4.12 eliminacijom struja I_{31} i I_{23} , i to zamjenom $I_{31}=I_{12}-I_1$ (4.12a) i $I_{23}=I_{12}+I_1$ (4.12b), dobiva se:

$$I_{12} = \frac{I_1 \cdot R_{31} - I_2 \cdot R_{23}}{R_{\Lambda}} \tag{4.15}$$

gdje je:

$$R_{\Delta} = R_{12} + R_{23} + R_{31} \tag{4.16}$$

Pretvorba trokuta u zvijezdu (2)

Uvrštavanjem struje I_{12} u jednadžbu 4.11a dobiva se:

$$I_{1} \cdot \frac{R_{12} \cdot R_{31}}{R_{\Lambda}} - I_{2} \cdot \frac{R_{12} \cdot R_{23}}{R_{\Lambda}} = I_{1} \cdot R_{1} - I_{2} \cdot R_{2}$$
 (4.17a)

Analognim postupkom eliminacije i uvrštavanjem u jednadžbe 4.11b i 4.11c dobiva se:

$$I_2 \cdot \frac{R_{12} \cdot R_{23}}{R_A} - I_3 \cdot \frac{R_{23} \cdot R_{31}}{R_A} = I_2 \cdot R_2 - I_3 \cdot R_3$$
 (4.17b)

$$I_{3} \cdot \frac{R_{23} \cdot R_{31}}{R_{\Delta}} - I_{1} \cdot \frac{R_{12} \cdot R_{31}}{R_{\Delta}} = I_{3} \cdot R_{3} - I_{1} \cdot R_{1}$$
 (4.17c)

13

Pretvorba trokuta u zvijezdu (3)

• Sustav jednadžbi 4.11(a-c) prelazi u jednakosti kad je:

$$R_1 = \frac{R_{12} \cdot R_{31}}{R_{\Delta}}; \quad R_2 = \frac{R_{12} \cdot R_{23}}{R_{\Delta}}; \quad R_3 = \frac{R_{23} \cdot R_{31}}{R_{\Delta}}$$
 (4.18)

čije je važno svojstvo:

$$\frac{R_1 \cdot R_2}{R_3} = \frac{R_{12}^2}{R_{\Delta}} \tag{4.18a}$$

$$\frac{R_2 \cdot R_3}{R_1} = \frac{R_{23}^2}{R_{\Lambda}} \tag{4.18b}$$

$$\frac{R_3 \cdot R_1}{R_2} = \frac{R_{31}^2}{R_A} \tag{4.18c}$$

 Relacija 4.18 kazuje kako se s poznatim otporima trokuta dobivaju otpori ekvivalentne zvijezde.

Pretvorba zvijezde u trokut

- Poznanice: R_1 , R_2 , R_3
- Nepoznanice: R_{12} , R_{23} , R_{31}

U jednadžbi 4.11a eliminiraju se struje I_1 i I_2 zamjenom $I_1 = I_{12} - I_{31}$ i $I_2 = I_{23} - I_{12}$ (4.12a i b), te se dobiva:

$$U_{12} = I_{12} \cdot R_{12} = I_{12} \cdot (R_1 + R_2) - (I_{23} \cdot R_2 + I_{31} \cdot R_1)$$
 (4.19)

U drugom dijelu dobivenog izraza zamijeni se

$$R_1 = \frac{R_{12} \cdot R_{31}}{R_{\Delta}}$$
 i $R_2 = \frac{R_{12} \cdot R_{23}}{R_{\Delta}}$ (vidi 4.18), iskoristi

4.13 u obliku $I_{12} \cdot R_{12} = -(I_{23} \cdot R_{23} + I_{31} \cdot R_{31})$, pa se dobiva:

$$I_{23} \cdot R_2 + I_{31} \cdot R_1 = -I_{12} \cdot \frac{R_{12}^2}{R\Delta} = -I_{12} \cdot \frac{R_1 \cdot R_2}{R_3}$$
 (prema 4.18a)

15

Pretvorba zvijezde u trokut (2)

Nakon ovoga sređivanjem 4.19 dobiva se:

$$R_{12} = R_1 + R_2 + \frac{R_1 \cdot R_2}{R_2} \tag{4.19a}$$

Primjenom analognog postupka na U_{23} i U_{31} dobiva se:

$$R_{23} = R_2 + R_3 + \frac{R_2 \cdot R_3}{R_1} \tag{4.19b}$$

$$R_{31} = R_3 + R_1 + \frac{R_3 \cdot R_1}{R_2} \tag{4.19c}$$

Relacije 4.19(a-c) kazuju kako se s poznatim otporima zvijezde dobivaju otpori ekvivalentnog trokuta.

Pretvorba zvijezde u trokut, i obrnuto, omogućuje da se svaki mosni spoj pretvori u serijsko-paralelnu kombinaciju otpora.

Električni krugovi s više izvora

SI. 4.4

lako su u krugu sa sl. 4.4 moguće brojne transformacije zvijezde u trokut (npr. zvijezde $R_1R_2R_5$ ili zvijezde $R_3R_4R_5$), one ne pomažu u rješavanju strujno-naponskih prilika, jer ne eliminiraju izvore u granama (u navedenim primjerima U_4 i U_3).

Električni krugovi s više izvora (2)

Pri rješavanju krugova s više izvora polazište uvijek moraju biti jednadžbe Kirchhoffovih zakona:

Električni krugovi s više izvora (3)

OSNOVE ELEKTROTEHNIKE

One se u matričnom obliku pišu:

$$\begin{bmatrix} 1 & 1 & 0 & 0 & -1 & 0 \\ 0 & -1 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & -1 \\ 0 & R_{1} & 0 & 0 & R_{4} & R_{5} \\ 0 & 0 & -R_{2} & -R_{3} & 0 & -R_{5} \\ R_{0} & -R_{1} & R_{2} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} I_{0} \\ I_{1} \\ I_{2} \\ I_{3} \\ I_{4} \\ I_{5} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ U_{4} \\ -U_{3} \\ U_{0} \end{bmatrix}$$

$$(4.20a)$$
ili
$$R \cdot I = U$$

4.20(a-b) je Ohmov zakon u matričnom obliku. Struje, a time i odgovor na strujno-naponske prilike u krugu, dobivaju se određivanjem matrice \underline{R}^{-1} , inverzne matrice matrici \underline{R} , uz poznate vrijednosti napona izvora $(U_0, U_3 \ i \ U_4)$.

19

Električni krugovi s više izvora (4)

$$\underline{I} = \underline{R}^{-1} \cdot \underline{U} \tag{4.21}$$

U iole složenijim prilikama (već na primjeru sa sl. 4.4) ovo traži pomoć računala.

Metoda superpozicije

Vektor napona $\underline{\textit{U}}$ iz 4.20, odnosno 4.21, može se pisati i ovako:

 $\underline{U} = \underline{U}_0 + \underline{U}_3 + \underline{U}_4$

$$\underline{U_0} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ U_0 \end{bmatrix}, \quad \underline{U_3} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ -U_3 \\ 0 \end{bmatrix}, \quad \underline{U_4} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ U_4 \\ 0 \\ 0 \end{bmatrix}$$

Uvrsti li se ova notacija u 4.21, dobiva se:

$$\underline{I} = \underline{R}^{-1} \cdot (\underline{U}_0 + \underline{U}_3 + \underline{U}_4) = \underline{R}^{-1} \cdot \underline{U}_0 + \underline{R}^{-1} \cdot \underline{U}_3 + \underline{R}^{-1} \cdot \underline{U}_4$$
 (4.22)

Dakle, struja <u>/</u> dobiva se kao zbroj struja

$$\underline{\underline{I}'} = \underline{\underline{R}}^{-1} \cdot \underline{\underline{U}}_{0}; \quad \underline{\underline{I}''} = \underline{\underline{R}}^{-1} \cdot \underline{\underline{U}}_{3}; \quad \underline{\underline{I}'''} = \underline{\underline{R}}^{-1} \cdot \underline{\underline{U}}_{4}$$
 (4.23)

21

Metoda superpozicije (2)

Kako je vektor struje <u>/</u> vektor bez 0-članova, ono što vrijedi za <u>/</u> vrijedi i za svaki član toga vektora:

$$I_{i} = I_{i}' + I_{i}'' + I_{i}''', i = 0, ..., 5$$

gdje su pribrojnici odgovarajući članovi vektora <u>I', I"', I"'</u>.

Promotrimo l'= $\underline{R}^{-1} \cdot \underline{U}_0$. Ovom rješenju odgovara jednadžba $\underline{R} \cdot l' = \underline{U}_0$. Navedenoj jednadžbi pridružuje se krug sa sl. 4.4 u kojem su izvori U_3 i U_4 ugašeni (sl. 4.5).

Gašenje naponskoga izvora: kratki spoj na grani izvora.

Gašenje strujnoga izvora: prazni hod u grani izvora.

Krug sa sl. 4.5 može se riješiti pretvorbom trokut-zvijezda ili, u slučaju ravnoteže mosta, i jednostavnijim postupkom. Dakle i bez upotrebe matričnog računa dadu se odrediti struje I'_i , i = 0, ..., 5, tj. vektor $\underline{I'}$.

Metoda superpozicije (4)

SI. 4.6

Analogno, promatrajući <u>I"</u> i <u>I"</u>, odnosno krugove koje odgovaraju jednadžbama $\underline{R} \cdot \underline{I''} = \underline{U}_3$ (sl. 4.6) i $\underline{R} \cdot \underline{I'''} = \underline{U}_4$ (sl. 4.7), dolazimo do parcijalnih rješenja koja ne traže matrični račun.

Superpozicija: primjer (2)

EHNIKE F

a) Prvi korak

$$I_1' = \frac{U_1}{R_1 + R_3}$$

$$I_2' = 0$$

$$I_{3}' = -\frac{U_{1}}{R_{1} + R_{3}}$$

27

Superpozicija: primjer (3)

b) Drugi korak

$$I_1'' = I \cdot \frac{R_3}{R_1 + R_3}$$

$$I_2^{"}=-I$$

$$I_3'' = I \cdot \frac{R_1}{R_1 + R_3}$$

Superpozicija: primjer (4)

c) Treći korak

$$I_1^{"'} = \frac{U_2}{R_1 + R_3}$$

$$I_{2}^{""}=0$$

$$I_3^{"'} = -\frac{U_2}{R_1 + R_3}$$

Superpozicija: primjer (5)

Završetak superpozicije

$$I_{1} = I_{1}^{'} + I_{1}^{"} + I_{1}^{"} = \frac{U_{1} + U_{2} + I \cdot R_{3}}{R_{1} + R_{3}}$$

$$I_{2} = I_{2}^{'} + I_{2}^{"} + I_{2}^{"} = -I$$

$$I_2 = I_2' + I_2'' + I_2''' = -I$$

$$I_{3} = I_{3} + I_{3} + I_{3} = I + I_{3$$

Metoda superpozicije: zaključak

Metoda superpozicije u električnim krugovima posljedica je načela superpozicije koje vrijedi u svim sustavima koji se dadu opisati linearnim sustavom jednadžbi.