EJERCICIOS RESUELTOS TEMA 1

Números reales

Ejercicio 1. Prueba que si α es irracional y $\frac{p}{q}$ es racional entonces $\alpha + \frac{p}{q}$ es irracional.

Solución: Suponemos por red. al absurdo que siendo α irracional y $\frac{p}{q}$ es racional, sin embargo $\alpha + \frac{p}{q}$ es racional, digamos $\alpha + \frac{p}{q} = \frac{m}{n}$; entonces

$$\alpha = \frac{m}{n} - \frac{p}{q} \in \mathbb{Q}!!!!$$

llegamos a una contradicción. Luego el resultado queda probado.

Ejercicio 2. Decide si las siguientes afirmaciones son ciertas, razonando la respuesta.

1. Para todo α,β números irracionales se tiene que $\alpha+\beta$ es irracional.

Solución: No es cierto puesto que eligiendo, por ejemplo, $x = \sqrt{2} \notin \mathbb{Q}$ y $y = -\sqrt{2} \notin \mathbb{Q}$ sin embargo la suma es $\sqrt{2} + (-\sqrt{2}) = 0 \in \mathbb{Q}$.

2. Sean $x, y \in \mathbb{R}$, si $x^2 = y^2$ entonces x = y.

Solución: El resultado no es cierto. Por ejemplo, eligiendo x=1, y=-1 es claro que $1^2=(-1)^2$ y sin embargo $1\neq -1$.

Ejercicio 3. Encuentra el error en la siguiente demostración: Sea a = b, entonces

$$a^2 = ab$$
,

restando b^2 en los dos lados de la igualdad tenemos que

$$a^2 - b^2 = ab - b^2$$
.

luego

$$(a-b)(a+b) = b(a-b)$$

y simplificando tenemos que a+b=b, y como a=b, se tiene que 2b=b y simplificando de nuevo se obtiene que 2=1.!!!

Solución: La demostración contiene varios errores:

 \triangleright No es cierto que $(a-b)(a+b)=b(a-b)\Longrightarrow a+b=b$ puesto que no podemos dividir entre a-b por ser cero.

ightharpoonup No es cierto que $2b=b\Longrightarrow 2=1$ puesto que si b=0 se tiene que 2b=b pero $2\neq 1$.

Ejercicio 4. Resuelve la ecuación $x^2-1=x-1$ y encuentra el error en las siguientes resoluciones de la ecuación:

1. Puesto que $x^2 - 1 = x - 1$ se tiene que

$$(x+1)(x-1) = x - 1,$$

entonces, simplificando se obtiene x+1=1 y, por tanto , x=0 es la solución !!!.

Solución: La implicación $(x+1)(x-1)=x-1 \Longrightarrow x+1=1$ no es cierta; sólo lo sería si $x-1\neq 0$.

2. Puesto que $x^2 - 1 = x - 1$ se tiene que

$$x^2 = x$$

entonces, simplificando se obtiene que x=1 es la solución !!!. Solución: La implicación $x^2=x \Longrightarrow x=1$ no es cierta; sólo lo sería si $x\neq 0$.

Ejercicio 5. Resuelve las siguientes ecuaciones

$$\begin{array}{c} \mathbf{x}^{3} - 3\mathbf{x} = \mathbf{0} \\ x(x-3) = 0 \\ \hline x = 0, \ \mathbf{x} = 3 \\ \hline \mathbf{x} = 2\mathbf{x}(\mathbf{x} - \mathbf{5}) \\ x = 0 \text{ o} \\ x \neq 0 \Rightarrow 3 = 2(x-5), \\ \hline \mathbf{x} = 6,5, \ \mathbf{x} = 0 \\ \hline \end{array} \qquad \begin{array}{c} \mathbf{x}^{4} - \mathbf{81} = \mathbf{0} \\ \hline \mathbf{x} = \mathbf{0} \\ \mathbf{x} = 3, \ \mathbf{x} = -3 \\ \hline \\ \mathbf{x} = 3, \ \mathbf{x} = -3 \\ \hline \\ \mathbf{x} = 3, \ \mathbf{x} = -3 \\ \hline \\ \mathbf{x} = 3, \ \mathbf{x} = -3 \\ \hline \\ \mathbf{x} = 2\mathbf{x} = -1 \\ \hline \\ \mathbf{x} = -1 \\ \hline \\ \mathbf{x} = 2\mathbf{x} = -1 \\ \hline \\ \mathbf{x} = 2\mathbf{x} = -1 \\ \hline \\ \mathbf{x} = -$$

Resolvemos $\sqrt{x} + \sqrt{x+2} = \frac{6}{\sqrt{x}}$

Puesto que x>0 la ecuación es equivalente a $x+\sqrt{x(x+2)}=6, x>0 \iff \sqrt{x(x+2)}=6-x, x>0.$

$$\sqrt{x(x+2)} = 6 - x \Longrightarrow x(x+2) = 36 + x^2 - 12x \Longleftrightarrow x = \frac{36}{14} = \frac{18}{7}$$

Comprobación: $0 < \frac{18}{7} < 6$ por lo que verifica la ecuación $\sqrt{x(x+2)} = 6 - x$. Resolvemos $\sqrt{x+1} = \sqrt{x-1}$. Esta ecuación tiene sentido si $x \ge -1, x \ge 1$. En ese caso, no hay solución puesto que:

$$\sqrt{x+1} = \sqrt{x-1} \Longleftrightarrow x+1 = x-1!!$$

Resolvemos $\sqrt{\mathbf{x} - \mathbf{5}} = \sqrt{\mathbf{x}(\mathbf{x} - \mathbf{5})}$. En primer lugar $x \ge 5$ por lo que o bien x = 5 que verifica la ecuación o x > 5 en cuyo caso, simplificando se tiene que $1 = \sqrt{x - 5}$, por lo que x = 6. Luego x = 5 y x = 6 son las soluciones.

Ejercicio 6. Resuelve las siguientes ecuaciones

i)
$$(2x-3)^2 - 9 = 8x$$
 ii) $\frac{9}{x} - \frac{x}{3} = 2$ iii) $\frac{7}{x-2} + \frac{8}{x-5} = 3$ iv) $\sqrt{x^2+1} = x-10$ v) $\sqrt{x^2+1} = x^2-5$ vi) $\sqrt{x+5} + \sqrt{2x+8} = 7$

Ejercicio 7. Responde si son verdaderas o falsas las siguientes afirmaciones, justificando la respuesta :

- 1. Para todos $a, b \in \mathbb{R}$ tales que a < b se tiene que $a^2 < b^2$V.... $\boxed{\mathbf{F}}$ Es falso, ya que si a = -2 < -1 = b se tiene que $a^2 = 4 > 1 = b^2$.
- 2. Para todos $a, b \in \mathbb{R}$ tales que a < b se tiene que $\frac{1}{a} > \frac{1}{b}$V...**F**Es falso, ya que si a = -2 < 1 = b se tiene que $\frac{1}{a} = -1/2 < 1 = \frac{1}{b}$.

Falso, ya que si $x=-1+\frac{1}{10}$ se tiene que $\frac{1}{1+(-1+\frac{1}{10})}=10>1.$

Falso; puesto que son positivos

$$\frac{x^2}{1+x^2} \leq \frac{1}{2} \Longleftrightarrow 2x^2 \leq 1+x^2 \Longleftrightarrow x^2 \leq 1 \Longleftrightarrow -1 \leq x \leq 1$$

Ejercicio 8. Resuelve la inecuación $\frac{x+1}{x-1} \ge 1$ y encuentra el error en las siguiente resolución:

Para resolver $\frac{x+1}{x-1} \ge 1$:

$$\frac{x+1}{x-1} \ge 1 \Leftrightarrow x+1 \ge x-1 \Leftrightarrow 1 \ge -1,$$

como esto es cierto para todo $x \in \mathbb{R}$, se tiene que todo número real es solución de la ecuación anterior. En particular x = -1 será una solución y se tiene:

$$0 = \frac{-1+1}{-1-1} \ge 1 \quad (!!!)$$

Ejercicio 9. Resuelve las siguientes ecuaciones:

i)
$$(2x-3)^2 - 9 = 8x$$
 ii) $\frac{9}{x} - \frac{x}{3} = 2$

ii)
$$\frac{9}{x} - \frac{x}{3} = 2$$

$$iii) \quad \sqrt{x} + \sqrt{x+1} = 1$$

iv)
$$\sqrt{2 + \sqrt{x - 5}} = \sqrt{13 - x}$$

iv)
$$\sqrt{2+\sqrt{x-5}} = \sqrt{13-x}$$
 v) $\sqrt{3+\sqrt{x}} + \sqrt{4-\sqrt{x}} = \sqrt{7+2\sqrt{x}}$ vi) $\sqrt{x^2+9} = 21-x^2$

vi)
$$\sqrt{x^2+9} = 21-x^2$$

iii)
$$\sqrt{x} + \sqrt{x+1} = 1$$
 Puesto que $x \ge 0$ se tiene que, o bien, $x = 0$ o bien $x > 0$ y por tanto $\sqrt{x} + \sqrt{x+1} > 1$ con lo cual no es solución. Por tanto, la única solución es $x = 0$.

i)
$$\sqrt{2 + \sqrt{x - 5}} = \sqrt{13 - x}$$
.

$$\sqrt{2 + \sqrt{x - 5}} = \sqrt{13 - x} \Longrightarrow 2 + \sqrt{x - 5} = 13 - x \Longrightarrow \sqrt{x - 5} = 11 - x \Longrightarrow x - 5 = 121 + x^2 - 22x \Longleftrightarrow x^2 - 23x + 126 = 0 \Longleftrightarrow x = 14, x = -1$$

Compobación:

 $\triangleright x = 14$ no es solución de $\sqrt{2 + \sqrt{x - 5}} = \sqrt{13 - x}$

 $\triangleright x = -1$ no es solución de $\sqrt{2 + \sqrt{x - 5}} = \sqrt{13 - x}$

v) $\sqrt{3+\sqrt{\mathbf{x}}}+\sqrt{4-\sqrt{\mathbf{x}}}=\sqrt{7+2\sqrt{\mathbf{x}}}$. Por comodidad hacemos el cambio $t=\sqrt{x}$ obteniendo la ecuación $\sqrt{3+t}+\sqrt{4-t}=\sqrt{7+2t}$.

Luego si $0 \le t \le 4$ se tiene que:

$$\sqrt{3+t} + \sqrt{4-t} = \sqrt{7+2t} \text{(positivos)} \iff 3+t+4-t+2\sqrt{3+t}\sqrt{4-t} = 7+2t \iff \sqrt{3+t}\sqrt{4-t} = t$$
$$\implies (3+t)(4-t) = t^2 \iff 2t^2 - t - 12 = 0 \iff$$

Puesto que $t > \sqrt{x} > 0$ la única solución es $\sqrt{x} = \frac{11}{4}$, es decir, $x = \frac{1+\sqrt{97}}{4}$ y es solución puesto que $0 < \frac{1+\sqrt{97}}{4} < 4$.

Ejercicio 10. Resuelve las siguientes desigualdades

i)
$$-5(2-x) \le 15 \iff 10+5x \le 15 \iff 5x \le 5 \iff x \le 1$$

ii)
$$x^2 - 1 < 0 \iff x^2 < 1 \text{ (positivos)} \iff |x| = \sqrt{x^2} < 1 \iff -1 < x < 1$$

iii)
$$(x-2)^2 > 0 \Leftrightarrow x \neq 2$$

iii)
$$(x-2)^2 > 0 \Leftrightarrow x \neq 2$$

iv) $x^3(x-2)(x+3)^2 > 0 \iff x \neq -3$, y $x^3(x-2) > 0$

$$\Longleftrightarrow x \neq -3, \text{ y } x \in (-\infty, 0) \cup (2, \infty) \Longleftrightarrow x \in (-\infty, -3) \cup (-3, 0) \cup (0, 2)$$

$$\text{v) } \frac{1}{x-3} < 2 \Longleftrightarrow \frac{1}{x-3} - 2 < 0 \Longleftrightarrow \frac{7-2x}{x-3} < 0 \Longleftrightarrow x \in (-\infty,3) \cup (\frac{7}{2},\infty)$$

vi)
$$\frac{1}{1+x^2} < 1$$
(positivos) $\Leftrightarrow 1+x^2 > 1 \Leftrightarrow x^2 > 0 \Leftrightarrow x \neq 0$

Ejercicio 11. Resuelve las siguientes desigualdades

ii)
$$|3x+1| \ge 1$$

i)
$$|x| < 1$$
 ii) $|3x + 1| \ge 1$ iii) $|x^2 - x| > 2$

iv)
$$|x+4| < 2$$
 v) $|x+1| < |x-3|$ vi) $|x-1| |x+2| \le 4$

$$|x-3|$$
 vi) $|x-1| |x-1|$

Ejercicio 12. Representa los siguientes conjuntos y estudia si están acotados inferior o superiormente, encuentra cotas y el supremo y el ínfimo, en el caso de que existan.

$$A = (-\infty, 3) B = (2, 8] C = \{\frac{1}{n} | n \in \mathbb{Z}, n \neq 0\}$$

$$D = [3, 10] E = \{\frac{1}{n} | n \in \mathbb{N}\} F = \{1 + \frac{1}{n} | n \in \mathbb{N}\} \cup \{1\}$$

	representación	cota sup	cota inf	Máx	mín	Sup	Inf
A							
В							
С							
D							
E							
F							

Ejercicio 13. Resuelve las siguientes desigualdades, representa gráficamente el conjunto de soluciones e indica si es acotado y si tiene máximo, mínimo, supremo, infimo.

1.
$$-3 \le -6x$$

$$-3 \le -6x \iff 3 \ge 6x \iff x \ge \frac{3}{2}$$

2. ii)
$$|x+1| \le 5$$

$$|x+1| \le 5 \Longleftrightarrow -5 \le x+1 \le 5 \Longleftrightarrow -6 \le x \le 5$$

3. iii)
$$x > \frac{1}{x}$$

$$x > \frac{1}{x} \Longleftrightarrow x - \frac{1}{x} > 0 \Longleftrightarrow \frac{x^2 - 1}{x} > 0 \Longleftrightarrow \frac{(x - 1)(x + 1)}{x} > 0$$

$$\frac{(x-1)(x+1)}{x} > 0 \Longleftrightarrow x > 0 \text{ y } (x-1)(x+1) > 0 \text{ o } x < 0 \text{ y}(x-1)(x+1) < 0 \Longleftrightarrow x \in (1,\infty) \cup (-1,0)$$

4.
$$\left| \frac{x+1}{x-1} \right| \le 1$$

• Una forma de resolverlo:

$$-1 \le \frac{x+1}{x-1} \le 1 \Longleftrightarrow \begin{cases} -1 \le \frac{x+1}{x-1} \Longleftrightarrow \frac{x+1}{x-1} + 1 \ge 0 \Longleftrightarrow \frac{2x}{x-1} \ge 0 \Longleftrightarrow \begin{cases} x \ge 0 \text{ y} x > 1 \Longleftrightarrow x \in (1,\infty) \\ 0 \\ x \le 0 \text{ y} x < 1 \Longleftrightarrow x \in (-\infty,0) \end{cases}$$

Luego la solución es $(-\infty, 0)$.

• Otra forma de resolverlo: Si $x \neq 1$

$$\left|\frac{x+1}{x-1}\right| \le 1 \Longleftrightarrow |x+1| \le |x-1| \Longleftrightarrow (x+1)^2 \le (x-1)^2 \Longleftrightarrow x \le 0$$

	Conjunto	cota sup	cota inf	Máx	mín	Sup	Inf
	$(-\infty, \frac{3}{2})$	$2, 3, \ldots,$	No hay	No hay	No hay	$\frac{3}{2}$	No hay
i)	-					_	
	(-6, 5)	9	-7	No hay	No hay	5	-6
ii)							
	$(-1,0)\cup(1,\infty)$	No hay	-1,0,	No hay	No hay	No hay	-1
iii)							
	$(-\infty,0)$	1,2,	No hay	No hay	No hay	0	No hay
iv)							

Ejercicio 14. Sea A el conjunto

$$A = \{x \in \mathbb{R} : x^2 < 16\} \cup \{x \in \mathbb{R} : |x - 3| \le 1\}$$

Representa el conjunto A, y calcula su mínimo, ínfimo, máximo y supremo, si existen.

Ejercicio 15. Calcula y representa los siguientes conjuntos y completa el cuadro.

$$A = \{x \in \mathbb{R} : 0 < |x - 3| \le |x|\}$$

$$B = \{x \in \mathbb{R} : 6x^2 < x\} \cup \{\frac{1}{k} : k = 1, \dots, 5\}$$

$$C = \{x \in \mathbb{R} : \sqrt{2x - 1} < x\} \cup \{\frac{1}{k^2} : k \in \mathbb{N} \ y \ k \ge 3\}$$

$$D = \{x \in \mathbb{R} : x^2(x - 3) \le 0\}$$

$$E = \{x \in \mathbb{R} : |x - 3| < |x|\} \cup \{\frac{1}{k} : k \in \mathbb{N} \ y \ 1 \le k \le 3\}$$

$$F = \{x \in \mathbb{R} : |x(x - 5)| \le |x|\}$$

	representación	cota sup	cota inf	Máx	mín	Sup	Inf
A							
В							
C							
D							
E							
F							

Ejercicio 16. Representa los conjuntos

$$F = \{x \in \mathbb{R} : |x(x-5)| \le |x|\} \quad B = \{7 - \frac{1}{n} : n \in \mathbb{N}\} \bigcup \{\frac{-1}{n} : n \in \mathbb{N}\},\$$

y estudia si están acotados inferior o superiormente, encuentra cotas y el supremo y el ínfimo, en el caso de que existan, completando el cuadro siguiente.

Ejercicio 17. En cada una de las siguientes intersecciones infinitas, halla el conjunto y razona si se puede aplicar o no el "Principio de los intervalos encajados".

$$i) \bigcap_{n=1}^{\infty} \left[-\frac{5^n}{9^n}, \frac{1}{3^n} \right]$$
 $ii) \bigcap_{n=1}^{\infty} (0, \frac{1}{2^n})$ $iii) \bigcap_{n=1}^{\infty} [0, 1 + \frac{1}{2^n}]$

Solución:

$$\bigcap_{n=1}^{\infty} \left[-\frac{5^n}{9^n}, \frac{1}{3^n} \right] = \{0\}$$

Se puede aplicar el principio de los intervalos encajados y puesto todos los intervalos son cerrados y acotados y están encajados puesto que $\left[-\frac{5^{n+1}}{9^{n+1}},\frac{1}{3^{n+1}}\right]\subset\left[-\frac{5^n}{9^n},\frac{1}{3^n}\right]$ para todo $n\in\mathbb{N}$. Además puesto que inf $\left\{(\frac{1}{3^n}-(-\frac{5^n}{9^n}),n\in\mathbb{N}\}=\inf\{\frac{1}{3^n}+\frac{5^n}{9^n},n\in\mathbb{N}\}=0$ la intersección se reduce a un punto y $0\in\left[-\frac{5^n}{9^n},\frac{1}{3^n}\right]$ para todo $n\in\mathbb{N}$.

$$\bigcap_{n=1}^{\infty} (0, \frac{1}{2^n}) = \emptyset$$

No se puede aplicar puesto que se trata de intervalos abiertos. Nótese que si $x \in (0, \frac{1}{2^n})$ para todo $n \in \mathbb{N}$ se tendría que x > 0 y que:

$$x < \frac{1}{2^n}$$
 para todo $n \in \mathbb{N} \Rightarrow x < \frac{1}{n}$ para todo $n \in \mathbb{N}$

lo cual contradice la propiedad arquimediana!!

$$\bigcap_{n=1}^{\infty} [0, 1 + \frac{1}{2^n}] = [-1, 1]$$

Se puede aplicar la propiedad de los intervalos encajados puesto que todos los intervalos son cerrados y acotados y están encajados $[0,1+\frac{1}{2^{n+1}}]\subset [0,1+\frac{1}{2^n}]$ para todo $n\in\mathbb{N}$