Linear Regression Questions (Make Sure to watch the videos 1st)

Quiz Question
Which of the following are related to bias in machine learning
Images, text, video, and speech are all types of data that can contain bias
Since the data we used to train the model can contain bias, that could be reflected in the model.
Statistical validation can offset the bias reflected in the real-world validation of your models.
Write A, B, or C here (you can choose more than one answer if there is):A and B
Let's say that we have a line whose equation is $\mathbf{y} = -0.6\mathbf{x} + 4$. For the point $(\mathbf{x}, \mathbf{y}) = (-5, 3)$, apply the absolute trick to get the new equation for the line, using a learning rate of $alpha = 0.1$. Report your answer in the form $\mathbf{y} = \mathbf{w}_1\mathbf{x} + \mathbf{w}_2$, substituting appropriate values for \mathbf{w}_1 and \mathbf{w}_2 .
Enter your response here: _ y = -0.1x + 3.9
Let's say that we have a line whose equation is $\mathbf{y} = -0.6\mathbf{x} + 4$. For the point $(\mathbf{x}, \mathbf{y}) = (-5, 3)$, apply the square trick to get the new equation for the line, using a learning rate of $alpha = 0.01$. Report your answer in the form $\mathbf{y} = \mathbf{w}_1\mathbf{x} + \mathbf{w}_2$, substituting appropriate values for \mathbf{w}_1 and \mathbf{w}_2 .
report your answer in the form y - w_ix + w_z , substituting appropriate values for w_1 and w_z .
Enter your response here: _ y = - 0.4x + 3.96

Quiz Question						
Which of the following are true about gradient descent?						
Gradient descent is a strategy that helps minimize the error between points of the actual data and the "best-fit line"						
Gradient descent is a strategy that helps isolate outliers in the data.						
We use gradient descent to update the parameters of our model as we train						
Submit						
Write A, B, or C here (you can choose more than one answer if there is): A and C						
Quiz Question						
Which of the following are accurate statements about 'mean absolute error'?						
It is the sum of all the errors divided by m						
It is the average of all points above the line						
It is the average error of all points						
Submit						
Write A, B, or C here (you can choose more than one answer if there is): A and C						
Compute the mean absolute error for the following line and points:						
• line: y = 1.2x + 2						
• points: (2, -2), (5, 6), (-4, -4), (-7, 1), (8, 14)						
Enter your response here: MAE = 3.88						

Quiz for Mean Squared Error
Compute the mean squared error for the following line and points: • line: y = 1.2x + 2 • points: (2, -2), (5, 6), (-4, -4), (-7, 1), (8, 14)
Enter your response here: MSE = 21.384
Quiz Question There are 2 major ways to fit a line in machine learning. Which of the following are ways to fit a line? Minimize the error function using mean-squared or mean-absolute Try every possible position and slope of the line by hand until you get it right Using any of the tricks such as the absolute and the square trick Write A, B, or C here (you can choose more than one answer if there is):A and C
Quiz Question Which of the following could be possible new dimensions for the house price dataset Number of bedrooms Age of house Opinions of neighbors Distance to shopping Types of restaurants nearby Submit

Write A, B, C, D, or E here (you can choose more than one answer if there is): $_$ A, B, D, and E $_$ $_$