Automatic Labeling of News Articles

A Natural Language Processing Case Study

Rasoul Asaee

Motivation

- Text is one of the fastest growing data types
- Generally a subject matter expert label the text data
- People use cellphones to quickly access the latest news
- Automatic labeling enable:
 - Journalists to further promote their articles
 - Audience to quickly access the content

Methodology

- Large corpus of news articles
- Text pre-processing
- Natural language processing
- Model evaluation
- Containerization and deployment
- Maintenance

Methodology

U.K. Jobless Claims Surged in April as Lockdown Kicked In

David Goodman & Andrew Atkinson

Posted On 11:40 AM IST, 19 May 2020 Updated On 02:31 AM IST, 19 May 2020

(Bloomberg) --

The number of Britons seeking jobless benefits spiked the most on last month as the coronavirus lockdown sent shock waves through economy.

Jobless claims rose 856,500 to more than 2 million in April, the Office National Statistics said Tuesday. The claimant count rate climbed to the highest in more than two decades. The figures include some pare still working but have experienced a loss of earnings.

The shutdown of the economy since March 23 is taking a heavy to the U.K. into what could be its deepest recession for three centurie unemployment is forecast to rise, the government's furlough progressaved about 8 million jobs, limiting the damage to the labor market

Data

- Covid-19 Public Media Dataset by Anacode
- Non-medical impacts of Covid-19, especially in terms of the social, political, economic and technological dimensions
- Over 350,000 online articles with full texts

Markets

Business

Research Reports

Economy & Fina

U.K. Jobless Claims Surged in April as Lockdown Kicked In

David Goodman & Andrew Atkinson

Posted On 11:40 AM IST, 19 May 2020 Updated On 02:31 AM IST, 19 May 2020

(Bloomberg) --

The number of Britons seeking jobless benefits spiked the most of last month as the coronavirus lockdown sent shock waves through economy.

Jobless claims rose 856,500 to more than 2 million in April, the Off National Statistics said Tuesday. The claimant count rate climbed to the highest in more than two decades. The figures include some pare still working but have experienced a loss of earnings.

The shutdown of the economy since March 23 is taking a heavy to the U.K. into what could be its deepest recession for three centurie unemployment is forecast to rise, the government's furlough progressived about 8 million jobs, limiting the damage to the labor market

Data – collection

- Scraped from online media in the time span January 1 - December 31, 2020
- Data collection strategy
 - Articles from English-language highimpact blogs and news websites
 - Scraping the 65 websites continuously every day,
 - Filtered them on Covid19-related keywords to keep only relevant articles in the dataset

Markets

Business

Research Reports

Economy & Fina

U.K. Jobless Claims Surged in April as Lockdown Kicked In

David Goodman & Andrew Atkinson

Posted On 11:40 AM IST, 19 May 2020 Updated On 02:31 AM IST, 19 May 2020

(Bloomberg) --

The number of Britons seeking jobless benefits spiked the most on last month as the coronavirus lockdown sent shock waves through economy.

Jobless claims rose 856,500 to more than 2 million in April, the Off National Statistics said Tuesday. The claimant count rate climbed to the highest in more than two decades. The figures include some pare still working but have experienced a loss of earnings.

The shutdown of the economy since March 23 is taking a heavy to the U.K. into what could be its deepest recession for three centurie unemployment is forecast to rise, the government's furlough progressaved about 8 million jobs, limiting the damage to the labor market

Data – attributes

- Author
- Date
- Domain
- Title
- URL
- Content
- Topic_area

Text pre-processing

- Noise Cleaning: remove html tags, accented text, and special characters
- Spell Checking: correct misspelled words, and remove meaningless string
- Contraction Mapping
- Lemmatization
- 'Stop Words' Identification
- Case Conversion

EDA and Feature Engineering – length analysis

- Word count: counts the number of tokens in the text (separated by a space)
- Character count: sum the number of characters of each token
- Sentence count: count the number of sentences (separated by a period)
- Average word length: sum of words length divided by the number of words (character count/word count)
- Average sentence length: sum of sentences length divided by the number of sentences (word count/sentence count)

	title	topic_area	content	word_count	char_count	avg_word_length
0	Three Industrial Giants You Should Own In 2020	business	end year around corner past time think come ea	564	3156	5.595745
1	Labor Stocks Are Going To Break Out In 2020	business	labor market one closely watch segment economy	623	3539	5.680578
2	Tesla (TSLA) Breaks Shipment Record, Beats Est	business	could forgive might think little big pile pie \dots	603	3424	5.678275
3	On the road to Al adoption, execs grapple with	tech	kick ai item watch competition agenda adoption	160	965	6.031250
4	Red Carpet Sustainability After Coronavirus Sh	consumer	pandemic life return normal celebrity walk red	738	4144	5.615176

EDA and Feature Engineering – length analysis

- What's the distribution of those new variables with respect to the target?
 - If the distributions are different with regard to the label then the new variable is predictive
 - The upper limit for the length of articles

EDA and Feature Engineering – NER

- Named-Entity Recognition (NER) is the process to tag named entities mentioned in unstructured text with pre-defined categories
- One of the best open source NER tools is SpaCy

PERSON: People, including fictional. LAW: Named documents made into laws.

NORP: Nationalities or religious or political groups. LANGUAGE: Any named language.

FAC: Buildings, airports, highways, bridges, etc. DATE: Absolute or relative dates or periods.

ORG: Companies, agencies, institutions, etc.

TIME: Times smaller than a day.

GPE: Countries, cities, states.

PERCENT: Percentage, including "%".

LOC: Non-GPE locations, mountain ranges, bodies of water. MONEY: Monetary values, including unit.

PRODUCT: Objects, vehicles, foods, etc. (Not services.)

QUANTITY: Measurements, as of weight or distance.

EVENT: Named hurricanes, battles, wars, sports events, etc. ORDINAL: "first", "second", etc.

WORK_OF_ART: Titles of books, songs, etc. CARDINAL: Numerals that do not fall under another type.

EDA and Feature Engineering – word cloud

- A nice way to visualize the text information is with a word cloud
- The frequency of each tag is shown with:
 - font size
 - color
- Using the wordcloud module

```
wide segment for gives eason remain to week corner atch report past island come movie next yarray due labor might to closely we ear of morning to time economy specific good at the atter yark property of the past of the pas
```



```
motor first quarter sylvante lose money ayalmost employee sylvante lose money ayalmost employee sylvante sylvan
```

Text Vectorization

 Machine learning algorithms operate on a numeric feature space, expecting input as a two-dimensional array where rows are instances and columns are features.

Text Vectorization

Vectorization	Function	Good For	Considerations
Frequency	Counts term frequencies	Bayesian models	Most frequent words not always most informative
One-Hot Encoding	Binarizes term occurrence (0, 1)	Neural networks	All words equidistant, so normalization extra important
TF-IDF	Normalizes term frequencies across documents	General purpose	Moderately frequent terms may not be representative of document topics
Distributed Representations	Context-based, continuous term similarity encoding	Modeling more complex relationships	Performance intensive; difficult to scale without additional tools (e.g., Tensorflow)

Reference: https://www.oreilly.com/library/view/applied-text-analysis/9781491963036/ch04.html

Text Vectorization - TF-IDF

- Normalizes the frequency of tokens in a document with respect to the rest of the corpus.
- Generally both the term frequency and inverse document frequency are scaled logarithmically to prevent bias of longer documents or terms that appear much more frequently relative to other terms

1	title	topic_area	ability	able	accelerate	access	accord	accordance	account	accounting	 worker	world	worth	would	write	year	yet	yield	york	young
	Three Industrial 0 Giants You Should Own In 2020	business	0.00	0.00	0.0	0.0	0.00	0.0	0.0	0.0	 0.00	0.00	0.0	0.03	0.02	0.12	0.03	0.11	0.00	0.0
	Labor Stocks Are Going To Break Out In 2020	business	0.03	0.00	0.0	0.0	0.04	0.0	0.0	0.0	 0.06	0.00	0.0	0.02	0.03	0.17	0.00	0.12	0.00	0.0
	Tesla (TSLA) Breaks Shipment Record, Beats Est	business	0.00	0.02	0.0	0.0	0.02	0.0	0.0	0.0	 0.00	0.00	0.0	0.11	0.02	0.05	0.08	0.00	0.00	0.0
	On the road to Al adoption, execs grapple with	tech	0.00	0.00	0.0	0.0	0.00	0.0	0.0	0.0	 0.09	0.06	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	Red Carpet Sustainability 4 After Coronavirus Sh	consumer	0.00	0.00	0.0	0.0	0.03	0.0	0.0	0.0	 0.03	0.05	0.0	0.04	0.00	0.05	0.10	0.00	0.03	0.0

Classification - NaiveBayes

- Since the number of articles per topic area are not balanced, the tags with low frequency were not included in the prototype.
- The data is divided to %70 for train and %30 for test
- The multinomial Naive Bayes classifier is used.
- The multinomial distribution normally requires integer feature counts. However, in practice, fractional counts such as tf-idf may also work.

Label	Count
business	244422
general	84921
finance	22386
tech	8676
science	3478
consumer	1451
healthcare	1340
automotive	925
environment	777
construction	305
ai	239

- ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis.
- This means that the top left corner of the plot is the "ideal" point - a false positive rate of zero, and a true positive rate of one.
- A larger area under the curve (AUC) is usually better.

Classification - NaiveBayes

- The results indicate that the model struggles to classify the under-represented class.
- Intuitively, precision is the ability of the classifier not to label as positive a sample that is negative, and recall is the ability of the classifier to find all the positive samples.
- The recall score of 0.00 for finance class indicates that almost none of the finance articles could be correctly classified.

Classification - NaiveBayes

- Hyper-parameter Tuning with BayesSearchCV
 - In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter settings (n_iter) is sampled from the specified distributions.
 - alpha: Additive (Laplace) smoothing parameter (0 for no smoothing).
- Since the prototype analysis indicated that the models had difficulty with under-represented classes, the topic areas with low samples were merged to create fewer classes with higher number of samples.
- A wide range of values for vectorization and NaiveBayes model were used, the model struggles to classify the classes with lower number of data points. It is proven that the low performance of NaiveBayes in this project is associated with the imbalance in the dataset.

business finance general science tech	precision 0.80 1.00 0.62 0.90 0.00	recall 0.85 0.00 0.77 0.01 0.00	f1-score 0.82 0.00 0.69 0.01 0.00	support 73696 6716 25912 1678 2674
accuracy macro avg weighted avg	0.66 0.75	0.32 0.75	0.75 0.30 0.77	110676 110676 110676

```
pipeline = Pipeline([
    ('vect', CountVectorizer()),
        ('tfidf', TfidfTransformer()),
        ('clf', MultinomialNB())
])
parameters:
{'clf_alpha': (0.0001, 1.0, 'log-uniform'),
   'tfidf_use_idf': (True, False),
   'vect_max_df': (0.5, 0.75, 1.0),
   'vect_max_features': [10000, 30000, None]}
```


Classification – Logistic Regression

- Hyper-parameter Tuning with BayesSearchCV
 - Regularization with C: Inverse of regularization strength; smaller values specify stronger regularization.
- Liblinear solver was used for the logistic regression to avoid an error associated with the Scikit-Learn trying to decode an already decoded string.
- Observations
 - The recall score for the "finance" class has improved, which means the model could correctly classify over %50 third of finance articles.
 - The f1-score for every labels have improved as well.
 - The precision and recall score for the artificially formed classes are comparable with the scores of the finance class.
 - I believe the current results are the among the best scores that can be achieved with classical ML algorithms for the existing dataset.

	precision	recall	f1-score	support
business	0.89	0.95	0.92	73696
finance	0.80	0.55	0.65	6716
general	0.87	0.83	0.85	25912
science	0.74	0.51	0.60	1678
tech	0.75	0.52	0.61	2674
accuracy			0.88	110676
macro avg	0.81	0.67	0.73	110676
weighted avg	0.87	0.88	0.87	110676

```
pipeline = Pipeline([
    ('vect', CountVectorizer()),
        ('tfidf', TfidfTransformer()),
        ('clf', LogisticRegression(solver='liblinear')
)

parameters:
{'clf_C': (1e-05, 100.0, 'log-uniform'),
   'clf_dual': (True, False),
   'clf_max_iter': [100, 110, 120, 130, 140],
   'tfidf_use_idf': (True, False),
   'vect_max_df': (0.5, 0.75, 1.0),
   'vect_max_features': [10000, 30000, None]}
```


Classification - Support Vector Machine

- SVC and NuSVC implement the "one-versus-one" approach for multi-class classification.
- In total, n_classes * (n_classes 1) / 2 classifiers are constructed and each one trains data from two classes.
- The SVM had a relatively high performance for the classification of the articles with the subset of the data.
- While the results are encouraging the model too a long time for the training phase. Since, I was working with a subset of the articles and feature space, it would be very challenging to extend this method to the whole dataset.

	precision	recall	f1-score	support
business	0.90	0.97	0.94	73389
finance	0.91	0.50	0.64	6628
general	0.92	0.81	0.86	25502
accuracy			0.90	105519
macro avg	0.91	0.76	0.81	105519
weighted avg	0.91	0.90	0.90	105519

Text Vectorization – distributed representation

- Frequency models:
 - Encode similarities between documents in the context of that same vector space
 - Fail to compare documents that don't share items even if they are semantically similar
- Distributed representation:
 - Encode text along a continuous scale with a distributed representation
 - The document is represented in a feature space that has been embedded to represent word similarity.

Text Vectorization – Word2Vec

Project words into a latent space

- Continuous Bag of Words (CBOW)
 - The distributed representations of context (or surrounding words) are combined to predict the word in the middle.
- Skip-gram
 - The distributed representation of the input word is used to predict the context

Text Vectorization – Doc2Vec

Project a document into a latent space

- Distributed Memory
 - Randomly sample consecutive words from a paragraph and predict a center word from the randomly sampled set of words by taking as input — the context words and a paragraph id
- Distributed Bag of Words (DBOW)
 - Ignores the context words in the input, but force the model to predict words randomly sampled from the paragraph in the output.

Text Vectorization – Doc2Vec

- Splitting the data in train and test groups:
 - Used the Scikit-Learn train-test split model with a ratio of 30% test data.
- Tokenizing and tagging the articles:
 - Gensim has a tokenizer to which create word tokens.
 - Article index as the tag for each entry. Tags are unique IDs for each article used to look-up the learned vectors after training.
- Initializing the model:
 - Training a Doc2Vec model is a memory intensive process. I had to adopt measures to fit the data in memory. A tool for managing the size of the model is the *vector_size* which indicates the dimensionality of the feature vectors. I set it to 100 for the base case.
 - The default number of iterations (epochs) over the corpus is 10 for Doc2Vec. Typical iteration counts in the published Paragraph Vector paper results, using 10s-of-thousands to millions of docs, are 10-20. More iterations take more time and eventually reach a point of diminishing returns. I used 15 epochs for the base case
 - Tested different values with Bayes search.
- Building the vocabulary dictionary:
 - The vocabulary is a list of all of the unique words extracted from the training corpus.
- Training the Doc2Vec NN:
 - Use the *model.train* to fit the create embedding for each article.
- Infer vectors:
 - Use the trained model to infer a vector for any piece of text by passing a list of words to the *model.infer_vector* method. This vector can then be compared with other vectors via cosine similarity.

Classification - Logistic Regression

- In order to use the BayesSearchCV
 - Created a wrapper around the Gensim's Doc2Vec model that uses a similar structure as native Scikit-Learn classes.
 - Passed the Doc2Vec parameters to __init__
 - Defined the tagging, tokenization, building vocabulary, and training in the fit method.
 - The transform method returns the infer_vector for train and test data.
- Doc2Vec hyper-parameters
 - window The maximum distance between the current and predicted word within a sentence.
 - dm Defines the training algorithm. If dm=1, 'distributed memory' (PV-DM) is used. Otherwise, distributed bag of words (PV-DBOW) is employed.
 - vector_size Dimensionality of the feature vectors.
 - min_count Ignores all words with total frequency lower than this.
 - epochs Number of iterations (epochs) over the corpus. Defaults to 10 for Doc2Vec.
- Running a BayesSearchCV is very time intensive step. The results of BayesSearch do not improve the classification results. So, I will not explore a more focused hyper-parameter space and will move to another model to investigate performance of DL for the given dataset.

	precision	recall	f1-score	support
business	0.70	0.96	0.81	73674
finance	0.00	0.00	0.00	6763
general	0.62	0.22	0.33	25951
science	0.00	0.00	0.00	1614
tech	0.00	0.00	0.00	2674
accuracy			0.69	110676
macro avg	0.26	0.24	0.23	110676
weighted avg	0.61	0.69	0.62	110676

Deep Learning – text processing

- Merge labels to create five classes
- Data split strategy:
 - %30 for test
 - %70 for training
 - %20 for validation
 - %80 for training
- Text vectorization with Keras:
 - The Tokenizer class vectorizes a text corpus into a list of integers. Each integer maps to a value in a dictionary that encodes the entire corpus, with the keys in the dictionary being the vocabulary terms themselves.
 - The pad_sequences class adds padding to the end of each article to ensure all entries are the same length


```
{...
  "give": 702,
  "post": 703,
  "cause": 704,
  "rules": 705,
  "capacity": 706,
  "forecast": 707,
  "systems": 708,
  "received": 709,
  "items": 710,
  ...}
```

Deep Learning - CNN

Deep Learning - CNN

- The model tend to overfit to the training data. To prevent this issue
 - Added dropout layers
 - Added early stopping
- The CNN model outperform the previous models including logistic regression and Doc2Vec
- The CNN model is the candidate for the deployment
- Saved the tokenizer, model architecture, and weights for the deployment

	precision	recall	f1-score	support
business	0.92	0.97	0.94	73935
finance	0.89	0.74	0.81	6788
general	0.91	0.87	0.89	25646
science	0.47	0.09	0.15	1690
tech	0.52	0.52	0.52	2617
accuracy			0.91	110676
macro avg	0.74	0.64	0.66	110676
weighted avg	0.90	0.91	0.90	110676

Deep Learning – CNN + LSTM

Corpus Embedding Convolution layer Average pooling Bi-directional LSTM Dropout Dense Output

Deep Learning – CNN + LSTM

- The model tend to overfit to the training data. To prevent this issue
 - Added dropout layers
 - Added early stopping
- The LSTM model tend to overfit very quickly
- The recall for under represented labels are not as high as the results of the CNN model

Training Accuracy: 0.9743
Validation Accuracy: 0.8926

	precision	recall	f1-score	support
business	0.93	0.95	0.94	73935
finance	0.70	0.74	0.72	6788
general	0.89	0.87	0.88	25646
science	0.00	0.00	0.00	1690
tech	0.37	0.43	0.40	2617
accuracy			0.89	110676
macro avg	0.58	0.60	0.59	110676
weighted avg	0.88	0.89	0.89	110676

Deep Learning – BERT

- Small BERTs have the same general architecture but fewer and/or smaller Transformer blocks, which lets you explore tradeoffs between speed, size and quality.
- Text inputs need to be transformed to numeric token ids and arranged in several Tensors before being input to BERT. TensorFlow Hub provides a matching preprocessing model for each of the BERT models

Deep Learning – BERT

- Assembled all pieces required in my BERT model including the preprocessing module, BERT encoder, data, and classifier.
- Loss function: SparseCategoricalCrossentropy
- Optimizer: Adam
- The current configuration do not show a significant accuracy gain for the present dataset.
 I will use the CNN model for use in the next step.

	precision	recall	f1-score	support
business	0.95	0.92	0.93	73935
finance	0.71	0.81	0.76	6788
general	0.83	0.89	0.86	25646
science	0.84	0.60	0.70	1690
tech	0.68	0.67	0.68	2617
accuracy			0.89	110676
macro avg	0.80	0.78	0.79	110676
weighted avg	0.90	0.89	0.89	110676

Deployment Strategy

FastAPI

Predict Get the text Load model Initialize the probability Load Load Process Return from the fastapi class of each probabilities tokenizer architecture weights input text endpoint label

Containerization

- TensorFlow used as the base image
- Copy the saved model, api, and requirements to the Docker image
- Install the requirements
- Exposed the target port
- Run the api with uvicorn

[{"business":0.9900700449943542,"finance":0.007418029475957155,"general":0.0011921471450477839,"science":0.0003415150276850909,"tech":0.0009782133856788278}]

Dockerhub Registry CI/CD GitHub Actions ECS Code repo Dev Push Commit Build ECR Registry **AWS**

build

succeeded 7 hours ago in 1m 19s

- > 🕝 Set up job
- Checkout code
- > 🥝 Run git lfs pull
- > 🥝 Set up QEMU
- > Set up Docker Buildx
- Build image and push to Docker Hub
- Post Build image and push to Docker Hub
- Post Login to DockerHub
- Post Set up Docker Buildx
- Post Checkout code
- > 🛭 Complete job

CI/CD

- Used Docker image workflow By GitHub Actions
 - For each new push the actions automatically build the image and push that to Docker Hub

CI/CD

- Used the Deploy to Amazon ECS workflow to push the container to AWS ECS
 - For each new push the actions automatically build the image and push that to AWS ECR
 - Downloads the task definition from ECS, update the image info and deploy to the ECS

Deploy

succeeded 2 hours ago in 3m 35s

- > 🛭 Set up job
- Checkout
- Run git Ifs pull
- Configure AWS credentials
- > 🐶 Build, tag, and push image to Amazon ECR
- Download task definition
- Fill in the new image ID in the Amazon ECS task definition
- Deploy Amazon ECS task definition
- Post Login to Amazon ECR
- Post Configure AWS credentials
- Post Checkout
- 🔈 🥝 Complete job

