北京邮电大学 2022-2023 学年第 I 学期

《通信原理 I》期中考试(A卷)

注意事项	闭卷考试,不使用计算器,手机关机并放在指定位置					
考试课程	通信原理 I		考试时间		2022年11月6日	
题号	-		三	四	五	总分
满分	40	15	15	15	15	100
得分						
阅卷教师						_

一. 单项选择(每题1分,共40分)

将最佳答案写在下面的答题表中,写在别处不得分

			• •							
空格号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
答案										
空格号	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
答案										
空格号	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)
答案										
空格号	(31)	(32)	(33)	(34)	(35)	(36)	(37)	(38)	(39)	(40)
答案										

1. 设有 AM 信号 $s(t) = \cos(2\pi \times 10^4 t) + 4\cos(2.2\pi \times 10^4 t) + \cos(2.4\pi \times 10^4 t)$,此 AM 信号的功率是(1),载波频率(2)kHz,复包络是 $s_L(t) = (3)$,调幅系数是(4),调制效率是(5)。

(1)(2)	(A) 6	(B) 9	(C) 11	(D) 12	
(2)	(A) $4 + 2\cos(2000\pi t)$		(B) $4 + \cos(2000\pi t)$		
(3)	(C) $4 + 2\cos(1000\pi)$	rt)	(D) $4 + \cos(1000\pi t)$		
(4)(5)	(A) 1/9	(B) 1/6	(C) 1/4	(D) 1/2	

2. 下 图 中 的 输 入 是 功 率 为 2W 的 平 稳 窄 带 高 斯 过 程 $n(t) = n_c(t)\cos(2\pi f_c t) - n_s(t)\sin(2\pi f_c t)$,其中 f_c 充分大,理想低通滤波器 LPF 的幅度增益是 1、截止频率大于n(t)的带宽但远小于 f_c 。图中 LPF 的输出是(6),其功率是(7)W。

(6)	(A) 循环平稳的高其	听过程	(B) 平稳高斯过程	
(6)	(C) 循环平稳的非高	5斯过程	(D) 平稳非高斯过程	Ē
(7)	(A) 1/2	(B) 1	(C) 2	(D) 4

3. 将双边功率谱密度为 $N_0/2$ 的高斯白噪声通过一个冲激响应为h(t)的带通滤波器后成为 n(t) , 己 知 h(t) 的 能 量 是 1 , 傅 氏 变 换 是 H(f) 。 可 将 n(t) 表 示 成 $n(t) = n_{\rm c}(t)\cos(2\pi f_{\rm c}t) - n_{\rm s}(t)\sin(2\pi f_{\rm c}t)$,其中 $n_{\rm c}(t)$ 是n(t)的(8), $n_{\rm s}(t)$ 是n(t)的(9), $n_{\rm c}(t)$ + j · $n_{\rm s}(t)$ 是n(t)的(10), $\sqrt{n_{\rm c}^2(t) + n_{\rm s}^2(t)}$ 是n(t)的(11)。 n(t)的功率谱密度是(12)、功率是(13)。 对于任意给定的时刻 $t = t_0$, $n_{\rm c}(t_0)$ 、 $n_{\rm s}(t_0)$ 是两个零均值高斯变量,方差都是(14),且 $n_{\rm c}(t_0)$ 与 $n_{\rm s}(t_0)$ (15)。

(8)(9)(10)(11)	(A) 包络	(B) 复包络	(C) 同相分量	(D) 正交分量
(12)	$(A) \frac{N_0}{2} H(f) ^2$	(B) $\frac{N_0}{2}H^2(f)$	(C) $\frac{N_0}{2}H(f)$	(D) $\frac{N_0}{2}$
(13)(14)	(A) 1/2	(B) 1	(C) N ₀	(D) $\frac{N_0}{2}$
(15)	(A) 正相关	(B) 负相关	(C) 统计独立	(D) 相等

4. 某 FM 系统的调制指数是 5,基带调制信号m(t)的自相关函数是 $R_m(\tau)$ =16sinc² (1000 τ)。基带信号m(t)的功率是(16) W,带宽是(17) kHz,FM 已调信号的带宽近似是(18) kHz。

(16) (17)	(A) 1	(B) 4	(C) 8	(D) 16
(18)	(A) 8	(B) 10	(C) 12	(D) 14

5. 与 DSB-SC 相比, 采用标准调幅 AM 的优点是(19)。

(10)	(A) 可降低对环境的电磁干扰	(B) 可降低接收机的成本
(19)	(C) 可实现相干解调	(D) 可提高频带利用率

6. 设有 PAM 信号 $s(t) = \sum_{n=-\infty}^{\infty} a_n \cdot \operatorname{sinc}\left(\frac{t}{T_s} - n\right)$,其中 $\{a_n\}$ 是平稳不相关序列。当 a_n 的<u>(20)</u>时,

s(t)的功率谱密度 $P_s(f)$ 没有离散谱分量; 当 a_n 的(21)时, $P_s(f)$ 有离散谱分量,且离散谱的频率是(22)。

(20) (21)	(A) 二阶矩为1	(B) 方差为 1	(C) 均值为1	(D) 均值为 0
	(A) $f = \frac{k}{T_s}, k = 0, \pm 1,$	±2,···	(B) $f = 0$	
(22)	(C) $f = \frac{k}{2T_s}, k = 0, \pm$	1,±2,···	(D) $f = \frac{k}{T_s}, k = \pm 1$,±3,±5,

7. 设有幅度为 ± 1 的双极性 NRZ 信号s(t),已知其数据独立等概,比特间隔是 $T_{\rm b}=1$ s。令 $y(t)=s(t)+s(t-T_{\rm b})$,y(t)的主瓣带宽是 $\underline{(23)}$ Hz。

-						
	(23)	(A) 0.25	(B) 0.5	(C) 1	(D) 2	

8. 设某 8 进制 PAM 系统的数据速率是 120bit/s,发送信号功率是P = 3W,传输此信号占用的信道带宽是B = 24Hz,则其符号速率是(24)Baud、比特间隔是(25)ms、符号间隔是(26)ms、比特能量是(27)mJ、符号能量是(28)mJ、频带利用率是(29)bit/s/Hz 或(30)Baud/Hz。

(24)(25)(26)(27)(28)	(A) 25/3	(B) 25	(C) 40	(D) 75
(29)(30)	(A) 5/3	(B) 2	(C) 5	(D) 6

9. 若信号h(t)的能量是 2J,则信号 $g(t) = \frac{1}{\sqrt{2}} h(t_0 - t)$ 的能量是<u>(31)</u> J 。

(31)	(A) 1/4	(B) 1/2	(C) 1	(D) 2

10. 若实信号m(t)的自相关函数是 $R_m(\tau)$,则其希尔伯特变换 $\hat{m}(t)$ 与m(t)的互相关函数 $R_{\hat{m}m}(\tau)$ 在 $\tau=0$ 处的值等于(32)。

(32)	(A) 0	(B) $R_m(0)$	(C) $m(0)$	(D) $m(0)\hat{m}(0)$
------	-------	--------------	------------	----------------------

11. 以下调制方式中,频带利用率最高的是(33),抗噪声能力最强的是(34),实现同样抗噪能力消耗功率最大的是(35)。

	(33)(34)(35)	(A) SSB	(B) DSB-SC	(C) AM	(D) FM
--	--------------	---------	------------	--------	--------

12. 要传输 12 路带宽为 4kHz 的话音信号,如果按 SSB 方式进行频分复用,需要的信道带宽至少是(36) kHz。如果采用 DSB 调制方式进行频分复用,同样的信道带宽最多能传输是(37)路话音信号。

(36)	(A) 48	(B) 96	(C) 192	(D) 384
(37)	(A) 4	(B) 6	(C) 8	(D) 12

13. $\sin(10\pi t)\cos(100\pi t)$ 的希尔伯特变换是(38)。

(38)	(A) $\cos(10\pi t)\sin(100\pi t)$	(B) $\sin(10\pi t)\sin(100\pi t)$
(36)	(C) $\sin(10\pi t)\cos(100\pi t)$	(D) $\cos(10\pi t)\cos(100\pi t)$

14. 下列框图中, (39)是差分编码。

15. 数据 10001100001100001 经过 HDB3 编码后是(40)。

(40)	(A) +000-+000+-+000+-	(B) +000-+000+-+-00-+
(40)	(C) +000-+000+-+000-+	(D) +000+-+-00-+-000-

二.(15 分)模拟基带信号m(t)通过下图(a)所示的调制器后成为已调信号s(t)。已知m(t)的频谱如图下图(b)所示。令 $s_L(t)$ 表示s(t)的复包络, $S_L(f)$ 表示复包络的傅氏变换。

- (1) 若H(f)是带宽为W 的理想低通滤波器,分别写出 $s_L(t)$ 、s(t)、 $S_L(f)$ 的表达式,并画出振幅谱 $|S_L(f)|$;
- (2) 若 $H(f) = -j \cdot \text{sign}(f)$,分别写出 $s_L(t) \cdot s(t) \cdot S_L(f)$ 的表达式,并画出振幅谱 $|S_L(f)|$ 。 【注:答题时不要求根据M(f)求m(t)的表达式,也不用写出M(f)的表达式】

三. (15 分) 设某模拟调制系统的基带调制信号 m(t) 带宽为 W=10 kHz,峰值功率与平均功率之比为 $C_m=8$,发射功率 $P_{\rm T}=36$ W,发送端与接收端之间的路径损耗是 30dB,接收端白高斯噪声的双边功率谱密度为 $\frac{N_0}{2}=10^9$ W/Hz,试求接收功率 $P_{\rm R}$,并求 SSB、调幅系数为 a=1的 AM、调频指数为 $\beta_{\rm f}=4$ 的 FM 这三种调制方式的解调输出信噪比。

【注:FM 解调输出信噪比公式为 $rac{3eta_{
m f}^2}{C_m}\cdotrac{P_{
m R}}{N_0W}$ 】

四. (15 分) 设有双极性 NRZ 信号 $s_1(t) = \sum_{n=-\infty}^{\infty} a_n g(t - nT_s)$ 、 $s_2(t) = \sum_{n=-\infty}^{\infty} b_n g(t - nT_s)$, 其中

g(t)是持续时间为 T_s 、能量为 1 的矩形脉冲,序列 $\{a_n\}$ 的元素以独立等概方式取值于 $\{\pm 1\}$,序列 $\{b_n\}$ 的元素以独立等概方式取值于 $\{\pm 2\}$ 。令 $s(t)=s_1(t)-2s_2(t)$,试:

- (1) 求 $s_2(t)$ 的功率谱密度;
- (2) 若 $\{a_n\}$ 与 $\{b_n\}$ 相互独立,求s(t)的功率谱密度;
- (3) 若对所有 n, 恒有 $b_n = 2a_n$, 求s(t)的功率谱密度;
- (4) 若 $\mathrm{E}[a_n b_m] = \left\{ egin{array}{ll} -1\,, & m=n \\ 0\,, & m
 eq n \end{array}, \, orall n, \, \, 求 s(t)$ 的功率谱密度。

五. (15 分) 某基带系统在[0, T_b]内等概发送+1或-1两种电压。发送信号叠加了双边功率谱密度为 $\frac{N_0}{2}$ 的高斯白噪声,然后通过一个冲激响应为h(t)的滤波器后在 $t=T_b$ 时刻采样得到样值y。判决器根据y的极性判断发送的是+1还是-1。(图中A=1)

- (1) 若h(t)是匹配滤波器,试画出h(t)的冲激响应,写出发送+1条件下y的均值、方差,写出为决输出的误比特率表达式;
- (2) 若 $h(t) = \begin{cases} 1, & 0 \le t \le 2T_b \\ 0, & \text{else} \end{cases}$,试写出发送+1条件下y的均值、方差,写出判决输出的误比特率表达式。