Universidad Adolfo Ibáñez Facultad de Ingeniería y Ciencias

Modelamiento Predictivo Regresión Logística: Créditos con garantía Hipotecaria

Profesor: Rolando de la Cruz Ayudante: Ismael Valdivia

Alumna: Carolina Iturriaga Bernal

Fecha: 05/01/2020

ÍNDICE

OBJETIVO, ATRIBUTOS Y VARIABLE TARGET	3
ANÁLISIS DESCRIPTIVO	4
NA	4
NA Correlaciones Variables numéricas	5
Gráficas Univariadas	6
	10
VISUALIZACIÓN DE LA RELACIÓN DE BAD CON LA DEMÁS VARIABLES	11
ELECCIÓN DEL MODELO A DESARROLLAR	18
CONSTRUCCIÓN DEL MODELO	18
I MODELOS UNIVARIADOS	18
II Modelo Multivariado	19
III SELECCIÓN DE VARIABLES	19
IV Regularización	22
V WOE E IV	
CALIDAD PREDICTIVA MODELO ELEGIDO	27
INTERPRETACIÓN PESO DE LOS ATRIBUTOS	28
USO MODELO PREDICTIVO	29

Objetivo, atributos y variable target

El objetivo de este trabajo es poder desarrollar un modelo que ayude en la detección de clientes bancarios que pudiesen caer en morosidad al solicitar un crédito con garantía hipotecaria. Para esto, se cuenta con un data set del historial d e 5960 créditos otorgados, los cuales ya se encuentran clasificados, según tuvieron incumplimiento o no.

La importancia de este tipo de decisión radica en que el banco necesita poder minimizar 2 tipos de riesgos. El primero, no aprobar un crédito a alguien que, si tiene alta probabilidad de pagar y segundo, dar el crédito a alguien que probablemente caerá en incumplimiento.

El data set cuenta con 13 variables descritas a continuación:

	Variable	Descripción
1	BAD	Variable binaria, 1 = incumplimiento crédito, 0 = pagó el
		crédito
2	LOAN	Numérica. Monto de crédito solicitado
3	MORTDUE	Numérica. Monto adeudado de la hipoteca existente
4	VALUE	Numérica. Valor de la propiedad
5	REASON	Categórica. Motivo del crédito
6	JOB	Categórica. Ocupación del cliente
7	YOJ	Numérica. Años en trabajo actual
8	DEROG	Numérica. Cantidad de reportes de créditos no pagados
9	DELINQ	Numérica. Cantidad de líneas de crédito que no ha pagado
10	CLAGE	Numérica. Antigüedad de línea crédito más antigua en meses
11	NINQ	Numérica. Numero de consultas por créditos recientes
12	CLNO	Numérica. Cantidad de líneas de crédito
13	DEBTINC	Numérica. Ratio Deuda/Ingreso

A continuación, un resumen de las variables y sus principales valores.

BAD	LOAN	MORTDUE	VALUE	REASON	JOB	YOJ
Min. :0.0000	Min. : 1100	Min. : 2063	Min. : 8000	DebtCon:3928	Mgr : 767	Min. : 0.000
1st Qu.:0.0000	1st Qu.:11100	1st Qu.: 46276	1st Qu.: 66076	HomeImp:1780	Office : 948	1st Qu.: 3.000
Median :0.0000	Median :16300	Median : 65019	Median : 89236	NA's : 252	Other :2388	Median : 7.000
Mean :0.1995	Mean :18608	Mean : 73761	Mean :101776		ProfExe:1276	Mean : 8.922
3rd Qu.:0.0000	3rd Qu.:23300	3rd Qu.: 91488	3rd Qu.:119824		Sales : 109	3rd Qu.:13.000
Max. :1.0000	Max. :89900	Max. :399550	Max. :855909		Self : 193	Max. :41.000
		NA's :518	NA's :112		NA's : 279	NA's :515
DEROG	DELINQ	CLAGE	NINQ	CLN0	DEBTINC	
Min. : 0.0000	Min. : 0.0000	Min. : 0.	0 Min. : 0.00	00 Min. : 0.0	0 Min. : 0	1.5245
1st Qu.: 0.0000	1st Qu.: 0.0000	1st Qu.: 115.	1 1st Qu.: 0.00	00 1st Qu.:15.0	0 1st Qu.: 29	1400
Median : 0.0000	Median : 0.0000	Median : 173.	5 Median : 1.00	00 Median :20.0	0 Median: 34	1.8183
Mean : 0.2546	Mean : 0.4494	Mean : 179.	8 Mean : 1.18	36 Mean :21.	3 Mean : 33	3.7799
3rd Qu.: 0.0000	3rd Qu.: 0.0000	3rd Qu.: 231.	6 3rd Qu.: 2.00	00 3rd Qu.:26.0	0 3rd Qu.: 39	0.0031
Max. :10.0000	Max. :15.0000	Max. :1168.	2 Max. :17.00	00 Max. :71.0	0 Max. :203	3.3121
NA's :708	NA's :580	NA's :308	NA's :510	NA's :222	NA's :126	57

Análisis Descriptivo

NA

Al cargar la data, lo primero que se hace es revisar la cantidad de valores NA que contiene. Además se observa que la data tiene celdad vacías, las cuales también son reemplazadas por NA.

	Variable		Cant. NA	% NA
13	DEBTINC	1	267	21.2%
8	DEROG	7	08	11.9%
9	DELINQ	5	80	9.7%
3	MORTDUE	5	18	8.7%
7	YOJ	5	15	8.6%
11	NINQ	5	10	8.5%
10	CLAGE	3	08	5.1%
6	JOB	2	79	4.7%
5	REASON	2	52	4.2%
12	CLNO	2	22	3.7%
4	VALUE	1	12	1.9%
1	BAD	0		0%
2	LOAN	0		0%

Dado estos altos valores de Na, se decide hacer dos cosas.

- 1.- Eliminar aquellas filas que tienen más de un 50% de sus valores NA, ya que se considera que no aportan información.
- 2.- Para aquellas que tienen menos de un 50% con Na, se hará imputación de datos mediantes la librería MICE.

Luego de esto, el nuevo data set sin valores de Na tiene un total de 5834 observaciones.

El primer análisis de los valores en el data set, es ver que proporción de estos están clasificados con BAD = 1 y BAD = 0. En total hay 4673 BAD = 1 y 1161 BAD = 0, lo cual representa un 80% y 20% respectivamente.

Correlaciones Variables numéricas

De todas las variables numérica, solo MORTDUE y VALUE, se encuentran altamente correlacionadas.

Gráficas Univariadas

Se observa que LOAN distribuye de forma asimétrica hacia la derecha, y estamos en presencia de valores outliers.

El 50% de los datos se encuentra entre 11200 y 23500, por lo que valores de casi 90 mil, está bastante alejado.

MORTDUE, tiene una distribución que se asemeja mucho al la de LOAN, lo cual hace sentido, ya que el monto del crédito tiene directa relación con el valor de la hipoteca y valor de la propiedad.

El 50% de los valores están concentrados entre 43mil y 89 mil.

Min. 1st Qu. Median Mean 3rd Qu. Max. 8000 66258 89654 102217 120000 855909

Se confirma lo observado en las dos variables anteriores, ya que el valor de la propiedad es básicamente el que dicta que tan grande puede ser el monto solicitado, y por ende valor de la hipoteca.

Se observan un par de valores muy aislados de la distribución, cercanos a 850 mil, pero el 75% de los casos totales son menores o iguales que 120 mil.

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000 3.000 7.000 9.025 13.000 41.000

Los años en el trabajo actual de los solicitantes de crédito, tienen una distribución que es bastante lógica, partiendo del cero y disminuyendo a medida que avanzan los años.

El 50% de los casos, está entre 0 y 7 años, ya después de esos valores se comienza a ver una mayor dispersión, y algunos outliers por sobre los 13 años.

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0000 0.0000 0.0000 0.2556 0.0000 10.0000

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0000 0.0000 0.0000 0.4434 0.0000 15.0000

Con DELINQ, pasa exactamente lo mismo que con DEROG, ya que el tercer cuartil sigue siendo cero.

Luego hay personas que tienen entre 1 y 15 líneas de créditos no pagadas.

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0 114.3 172.2 178.9 230.3 1168.2

La antigüedad de línea de crédito se concentra entre 114 y 230 meses.

Existen muy pocos valores que se encuentran bastante alejados, sobretodo si se compara la mediana = 172.2 y el máximo valor de 1168.2

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00 0.00 1.00 1.18 2.00 17.00

El 75% de las personas tiene a lo más 2 consultas por crédito recientes.

De hecho, un 25% de los casos, tiene 0 consultas.

Luego el 25% superior en de distribución se distribuye en valores de entre 2 y 17

La distribución de CLNO, se ve muy similar a una Normal.

La media y mediana son muy cercanas con valores de 20 y 21.3 respectivamente.

El 50% de las observaciones están entre 15 y 26, por ende, se ve que hay una alta concentración.

Nuevamente hay presencia de outliers, los cuales van desde 40 a 71 líneas de crédito aprox.

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.5245 29.6722 35.3376 34.4674 39.5418 203.3122

El ratio de deuda/ingreso, está muy concentrado en valores entre 29 y 39.

En este caso, se observa valores outliers que están hacia la izquierda de la distribución, con valores incluso menores a 1, lo cual puede ser indicador de personas que tiene un record de deuda sana respecto de sus ingresos.

Al igual que con las demás variables, hay outliers hacia la derecha con personas que superan incluso un ratio de 100.

Visualización de la relación de BAD con la demás variables

Γ	Min.	1st Qu.	Median	Mean :	3rd Qu.	Max.	Min. :	1st Qu.	Median	Mean 3	3rd Qu.	Max.
١,	1700	11800	17000	19144	23600	89900	1100	9300	15000	17036	21900	77400

Hipoteca Existente (MORTDUE)

		Median		3rd Qu.			1st Qu.		Mean 3		Max.	
2619	44355	63833	71867	90154	371003	2063	37200	58204	68459	84843	399550	

Valor propuedad actual (VALUE)

Años en trabajo actual (YOJ)

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.000	3.000	8.000	9.265	14.000	41.000	0.000	2.000	6.000	8.056	12.000	41.000

Reportes de créditos no pagados (DEROG)

Líneas de créditos no pagados (DELINQ)

Min. 1st Qu. Median Mean 3rd Qu. Max. Min. 1st Qu. Median Mean 3rd Qu. Max. 0.4867 119.0831 179.8333 186.0801 239.4333 649.7471 0.00 95.37 132.16 149.98 192.67 1168.23

Número de consultas por créditos recientes (NINQ)

Min. 1st Qu. Median Mean 3rd Qu. Max. Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000 2.000 11.000 0.000 0.000 1.000 1.034 0.000 1.000 1.765 3.000 17.000

Número de líneas de crédito (CLNO)

Min	. 1st Qu.	Median	Mean :	3rd Qu.	Max.	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.0	0 15.00	20.00	21.32	26.00	56.00	0.00	13.00	20.00	21.19	27.00	71.00

Ratio Deuda/Ingreso (DEBTINC)

	1st Qu.			3rd Qu.			1st Qu.			3rd Qu.	Max.
0.7203	29.0641	34.6449	33.4063	38.8476	65.1436	0.5245	32.9088	38.1390	38.7382	42.6667	203.3122

Con respecto a las variables numéricas, la mayoría no tiene al menos visualmente una diferencia que sea muy significativa a la hora de explicar a la variable dependiente BAD.

Las que destacan son:

DEROG, donde se ve que para quienes incurrieron en falta (BAD=1), hay mayor cantidad de observaciones de Reportes de créditos no pagados y con valores más altos.

DELINQ, es mismo caso que DEROG, pero relacionado a líneas de créditos no pagadas, lo cual hace sentido ya que una persona que no ha pagado sus obligaciones, debiese tender a una mayor probabilidad de no pago en el crédito.

CLAGE, la antiguedad en meses de línea de crédito más antigua, se observa que tiene un efecto inverso, ya que posiblemente quienes tengas líneas hace más tiempo, tiendan a tener una mayor estabilidad económica.

NINQ, se observa que el 75% de las personas, están concentradas en mayor número de solicitudes de crédito, en el caso de quienes no pagaron crédito, lo cual debe tender a quienes poseen mayor número de deudas caen en no pagar ciertas obligaciones.

YOJ, se observa que quienes no pagaron, tiene menor cantidad de años en su trabajo actual, lo cual se relaciona igualmente con la estabilidad económica que pueda tener ese individuo.

Ahora, se muestran gráficamente las variables categóricas

Estos gráficos muestran la variable REASON, la cual indica el motivo por el cual se solicitó el crédito, donde predominan quienes toman la deuda para consolidar otras deudas, versus quienes lo solicitan para hacer mejoras en el hogar.

Por otro lado, se observa que la proporción de quienes no pagaron el crédito en el grupo "Homelmp", es un poco mayor que en el otro, con respecto del total de la categoría.

Por último, la variable JOB, que indica la categoría de tipo de trabajo que tiene el solicitante del crédito, lo que más destaca, es que quienes tienen un trabajo en ventas, "sales", tienen mayor probabilidad de caer en imcumplimiento de pago, ya que versus las otras categorías, tienen mayor concentración de BAD=1. Tal vez esto se pudiese explicar, por que en ventas los sueldos por lo general son variables y eso puede afectar en que no todos los meses tendrá la misma capacidad de pago.

Elección del Modelo a desarrollar

El modelo a desarrollar será el de Regresión Logística Binario, ya que lo que se quiere lograr es clasificar a los clientes entre dos clases, 1 o 0, siendo 1 un cliente altamente probable de caer en incumplimiento de pago y 0, un cliente que probablemente va a pagar la deuda y es buen negocio para el banco.

Construcción del Modelo

Lo Primero, se hace la división de la data en entrenamiento y validación, en una proporción 80/20.

I.- Modelos Univariados

Se hace el desarrollo de Modelos Univariados, y para todos, la comparación de valores AUC y KS en muestras de entrenamiento y validación.

Variable	AUC Train	AUC Test	KS Train	KS Test
DELINQ	0.67943570965683	0.65015136971129	0.3738	0.3115
DEBTINC	0.654978176385935	0.671779240197889	0.2407	0.2822
CLAGE	0.637219590094342	0.624748486302887	0.2221	0.1916
DEROG	0.618089200873693	0.58775289817618	0.2864	0.2592
NINQ	0.597319413588075	0.608674684338773	0.1938	0.2122
LOAN	0.575790456454828	0.589421195451524	0.1238	0.1638
JOB	0.575370854614512	0.590048825961751	0.171	0.1823
VALUE	0.548204118518016	0.554017758251496	0.089	0.1046
YOJ	0.54233991290131	0.546760780476999	0.0944	0.1031
MORTDUE	0.541906924106909	0.553048622904823	0.0715	0.1046
REASON	0.514268477811196	0.550510411282581	0.0794	0.1662
CLNO	0.512125845429334	0.509737502768958	0.0753	0.0738

Observamos que las variables con mayor AUC son DELINQ y DEBTINC.

Además se se que todos los modelos univariables tienen un AUC superior a 0.5 lo cual es un buen indicador, los KS son bajos, ya que una sola variables está permitiendo hacer una buena separación entre ambas clases.

II.- Modelo Multivariado

Desarrollo del modelo logístico con todas las variables. A continuación resumen del modelo.

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.379e+00 2.837e-01 -11.911 < 2e-16 ***
LOAN -2.438e-05 5.019e-06 -4.857 1.19e-06 ***
MORTDUE -8.165e-06 2.287e-06 -3.570 0.000357 ***
VALUE 6.830e-06 1.637e-06 4.173 3.01e-05 ***
VALUE
                6.830e-06 1.637e-06 4.173 3.01e-05 ***
REASONHomeImp 1.926e-01 9.867e-02 1.952 0.050933 .
JOBOffice -6.355e-01 1.709e-01 -3.718 0.000201 ***
                4.715e-02 1.334e-01 0.353 0.723737
5.539e-02 1.541e-01 0.359 0.719292
J0B0ther
JOBProfExe 5.539e-02 1.541e-01
JOBSales 8.089e-01 3.090e-01 2.552e-01 1.355 0.175573 1.447 0.147769
                8.089e-01 3.098e-01 2.611 0.009028 **
YOJ
              -9.227e-03 6.375e-03 -1.447 0.147769
DEROG
               5.170e-01 5.217e-02 9.909 < 2e-16 ***
               7.341e-01 4.247e-02 17.286 < 2e-16 ***
DELINQ
CLAGE -5.748e-03 6.259e-04 -9.184 < 2e-16 ***
NINQ 1.424e-01 2.338e-02 6.093 1.11e-09 ***
CLNO -1.637e-02 4.983e-03 -3.285 0.001021 **
DEBTINC 8.030e-02 6.439e-03 12.471 < 2e-16 ***
              -5.748e-03 6.259e-04 -9.184 < 2e-16 ***
               1.424e-01 2.338e-02 6.093 1.11e-09 ***
               8.030e-02 6.439e-03 12.471 < 2e-16 ***
```

Se observa que la variable YOJ no es significativa, además hay algunas categorías dentro de REASON y JOB que no son significativas respecto de la categoría de referencia.

Con respecto a los coeficientes, los que tienen un valor positivo, indican que, a mayor valor, la probabilidad de que No se otorgue un crédito es mayor, y viceversa con quieres tienen signo negativo.

III.- Selección de Variables

Se utiliza el método Step para hacer selección de variables del modelo. En este caso, se hará, proceso Forward, Backward y Stepwise, y se hará comparación para ver que modelo entrega mejor resultado o en caso de ser similar, quien lo hace con menor número de variables.

```
Forward (AIC = 3467)
glm(formula = BAD ~ DELINQ + DEBTINC + CLAGE + DEROG + JOB +
LOAN + NINQ + CLNO + REASON + VALUE + MORTDUE, family = binomial,
data = data_train)

Backward (AIC = 3467)
glm(formula = BAD ~ LOAN + MORTDUE + VALUE + REASON + JOB + DEROG +
DELINQ + CLAGE + NINQ + CLNO + DEBTINC, family = binomial,
data = data_train)

Stepwise (AIC = 3467)
glm(formula = BAD ~ DELINQ + DEBTINC + CLAGE + DEROG + JOB +
LOAN + NINQ + CLNO + REASON + VALUE + MORTDUE, family = binomial,
data = data_train)
```

Los 3 métodos entregaron mismo resultado, dejando fuera solo la variable YOJ, similar a lo visto en el modelo multivariado que indicaba esa variable como no significativa. Más abajo el modelo final y el resumen donde se ven que todas las variables quedan como significativas.

Modelo Final $glm(formula = BAD \sim DELINQ + DEBTINC + CLAGE + DEROG + JOB + LOAN + NINQ + CLNO + REASON + VALUE + MORTDUE, family = binomial, data = data_train)$

Coefficients:					
	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-3.418e+00	2.808e-01	-12.175	< 2e-16	***
DELINQ	7.520e-01	4.316e-02	17.424	< 2e-16	***
DEBTINC	8.150e-02	6.342e-03	12.851	< 2e-16	***
CLAGE	-6.461e-03	6.309e-04	-10.241	< 2e-16	***
DEROG	5.103e-01	5.100e-02	10.006	< 2e-16	***
J0B0ffice	-5.365e-01	1.704e-01	-3.149	0.001637	**
J0B0ther	1.603e-03	1.337e-01	0.012	0.990430	
JOBProfExe	1.453e-01	1.533e-01	0.948	0.343237	
JOBSales	1.019e+00	3.016e-01	3.377	0.000732	***
JOBSelf	6.377e-01	2.488e-01	2.563	0.010364	*
LOAN	-2.681e-05	5.042e-06	-5.318	1.05e-07	***
NINQ	1.445e-01	2.318e-02	6.234	4.54e-10	***
CLN0	-1.847e-02	4.972e-03	-3.715	0.000203	***
REASONHomeImp	2.389e-01	9.837e-02	2.428	0.015178	
VALUE	6.158e-06	1.645e-06	3.743	0.000182	***
MORTDUE	-6.302e-06	2.260e-06	-2.789	0.005294	**

AUC Train	AUC Test	KS Train	KS Test
0.8231358	0.8162257	0.5175	0.4866

Los valores de AUC y Ks son aceptables, el modelo estaría haciendo una buena clasificación, aunque idealmente sería tener un valor de KS superior a 0.5, ya que ahorá en la muestra de test está un poco por debajo, lo cual sigue siendo tolerable para este modelo.

Matriz de confusión Modelo Final, Entrenamiento y Test.

```
Reference
                                                    Reference
Prediction 0
                                          Prediction 0 1
        0 3645 102
                                                   0 892 34
                                                   1 153 87
        1 578 343
              Accuracy: 0.8543
                                                        Accuracy: 0.8396
                95% CI: (0.8439, 0.8643)
                                                           95% CI: (0.8173, 0.8602)
                                              No Information Rate: 0.8962
   No Information Rate : 0.9047
                                              P-Value [Acc > NIR] : 1
   P-Value [Acc > NIR] : 1
                                                           Kappa: 0.3991
                 Kappa : 0.4288
                                           Mcnemar's Test P-Value : <2e-16
Mcnemar's Test P-Value : <2e-16
                                                      Sensitivity: 0.8536
           Sensitivity: 0.8631
                                                      Specificity: 0.7190
           Specificity: 0.7708
                                                   Pos Pred Value: 0.9633
        Pos Pred Value : 0.9728
                                                   Neg Pred Value: 0.3625
        Neg Pred Value : 0.3724
                                                       Prevalence: 0.8962
            Prevalence: 0.9047
                                                   Detection Rate: 0.7650
        Detection Rate: 0.7808
                                             Detection Prevalence: 0.7942
  Detection Prevalence : 0.8027
                                                Balanced Accuracy: 0.7863
     Balanced Accuracy: 0.8170
                                                 'Positive' Class: 0
       'Positive' Class : 0
```

El modelo muestra una buena precisión de 85% y 84% en cada muestra. La sensitividad muestra valores muy similares de 86% y 85%. El problema se observa en la especificidad, donde se ve que el modelo está teniendo algunos problemas para clasificar a los clientes con probabilidad de incumplimiento.

Interpretación de algunos coeficientes del modelo:

DELIQ

OR = 2.121238, por cada línea de crédito no pagada que tenga el cliente, este tendrá 2.12 veces más probabilidad de que NO le den el crédito

DEBTINC

OR = 1.084913, por cada unidad que aumente en su ratio de deuda/ingreso, el cliente tiene 1 vez más de probabilidad de que NO le den el crédito

CLAGE

OR = 0.9935598, este or al ser un valor entre 0 y 1 se calcula en 1-0.9935598 = 0.0064402. lo cual indica que a mayor antiguedad de la línea de crédito más antigua en meses, tiene un 0.6% más de propabilidad de que si le den el crédito

DEROG

OR = 1.665791, por cada reporte de crédito no pagado, tiene 1.66 veces más opciones de que que NO le otorguen el crédito

IV.- Regularización

Siguiendo con el análisis, se utilizó también modelos de regularización, para ver si es posible llegar a un modelo que ajuste mejor y tenga mayor poder de clasificación mediante la penalización de los coeficientes.

Lo primero acá es transformar las variables categóricas a variables dummy, escalar las que son numéricas y llevarlas a un formato de matriz.

- Regresión Logística con Ridge (alpha = 0)

Visualización de los coeficientes de todas las variables del modelo, para los distintos valores de lambda. Luego mediante validación cruzada, se busca el valor de lambda que minimiza el error de testeo.

Coeficientes del Modelo Ridge

(Intercept)	-1.64665875
REASONDebtCon	-0.12607541
REASONHomeImp	0.12622134
JOBOffice	-0.45606374
J0B0ther	0.01994174
JOBProfExe	0.06658683
JOBSales	0.91485874
JOBSelf	0.55903712
LOAN	-0.22244738
MORTDUE	-0.11335099
VALUE	0.17414364
YOJ	-0.04507260
DEROG	0.38392832
DELINQ	0.72209879
CLAGE	-0.45406078
NINQ	0.22918997
CLN0	-0.15181387
DEBTINC	0.59828786

Este modelo, solo penaliza coeficientes, pero no lleva a cero sus valores, por lo que este conserva todas las variables y aquellas que tienen menor poder predictivo, aparecen con coeficientes mucho menores. Por ejemplo, YOJ que anteriormente se encontró como no significativa, ahora tiene un coeficiente de -0.04, lo cual indica que los años en el trabajo actual en muy baja medida afectan en la probabilidad de que un cliente tenga incumplimiento

Matriz de confusión Modelo Ridge, Entrenamiento y Test

Reference Prediction 0 0 3664 617 1 83 304

Accuracy: 0.85

95% CI: (0.8395, 0.8602)

No Information Rate : 0.8027 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.3941

Mcnemar's Test P-Value : < 2.2e-16

Sensitivity: 0.9778 Specificity: 0.3301 Pos Pred Value : 0.8559 Neg Pred Value : 0.7855 Prevalence: 0.8027 Detection Rate: 0.7849 Detection Prevalence : 0.9171 Balanced Accuracy: 0.6540

'Positive' Class : 0

Reference Prediction 0 1 0 900 160 1 26 80

Accuracy: 0.8405

95% CI: (0.8182, 0.861)

No Information Rate: 0.7942 P-Value [Acc > NIR] : 3.341e-05

Kappa: 0.3848

Mcnemar's Test P-Value : < 2.2e-16

Sensitivity: 0.9719 Specificity: 0.3333 Pos Pred Value: 0.8491 Neg Pred Value: 0.7547 Prevalence: 0.7942 Detection Rate: 0.7719 Detection Prevalence: 0.9091 Balanced Accuracy: 0.6526

'Positive' Class: 0

Con respecto al modelo anterior, la sensitividad aumenta mucho, teniendo para ambas muestras un valor de 97%, pero la especificidad se ve muy disminuída, con un valor de 33%, por lo cual el modelo no está pudiendo diferenciar entre clases. El. accuracy se mantiene, pero es por la capacidad de clasificar correctamente los valores positivos solamente.

AUC Train	AUC Test	KS Train	KS Test
0.8242045	0.8159017	0.5094	0.4866

Los valores de AUC y KS para ambas muestras, prácticamente no varían comparado con el modelo logístico analizado antes.

- Regresión Logística con Lasso (alpha = 1)

Visualización de los coeficientes de todas las variables del modelo, para los distintos valores de lambda. Luego mediante validación cruzada, se busca el valor de lambda que minimiza el error de testeo.

Coeficiente del modelo Lasso

(Intercept)	-1.596356e+00
REASONDebtCon	-2.405868e-01
REASONHomeImp	9.072084e-15
JOBOffice	-5.369122e-01
JOBOther	
JOBProfExe	1.216378e-01
JOBSales	9.837215e-01
JOBSelf	6.052147e-01
LOAN	-2.791312e-01
MORTDUE	-2.551587e-01
VALUE	3.282788e-01
YOJ	-4.004850e-02
DEROG	4.231463e-01
DELINQ	8.352454e-01
CLAGE	-5.398405e-01
NINQ	2.452999e-01
CLN0	-1.832123e-01
DEBTINC	7.348997e-01

A diferencia de Ridge, acá los coeficientes si se pueden llevar a cero, de hecho, se tiene que la variable JOBOther, ya no forma parte del modelo, y el valor de lambda óptimo, lleva a tener 16 en vez de 17 variables.

A demás la, variable REASONHomeImp, queda dentro del modelo, pero con un coeficiente muy penalizado, llegando casi a ser cero.

Reference Reference Prediction 0 1 Prediction 0 1 0 894 150 0 3646 580 1 32 90 1 101 341 Accuracy: 0.8439 Accuracy: 0.8541 95% CI: (0.8218, 0.8643) 95% CI : (0.8437, 0.8641) No Information Rate: 0.7942 No Information Rate : 0.8027 P-Value [Acc > NIR] : 8.66e-06 P-Value [Acc > NIR] : < 2.2e-16 Kappa : 0.4162 Kappa : 0.4271 Mcnemar's Test P-Value : < 2.2e-16 Mcnemar's Test P-Value : < 2.2e-16 Sensitivity: 0.9654 Sensitivity: 0.9730 Specificity: 0.3750 Specificity: 0.3702 Pos Pred Value : 0.8563 Pos Pred Value : 0.8628 Neg Pred Value : 0.7377 Neg Pred Value : 0.7715 Prevalence: 0.7942 Prevalence: 0.8027 Detection Rate: 0.7667 Detection Rate : 0.7811 Detection Prevalence: 0.8954 Detection Prevalence: 0.9053 Balanced Accuracy: 0.6702 Balanced Accuracy : 0.6716 'Positive' Class: 0 'Positive' Class: 0

AUC Train	AUC Test	KS Train	KS Test
0.8235803	0.8153843	0.5134	0.4818

Con respecto a Ridge, la única diferencia es que aumenta levemente la especificidad, pasando de 33% a 37%, lo cual sigue siendo muy bajo, respecto de lo que se espera en el modelo, ya que tampoco estaría diferenciando bien entre las clases.

V.- WOE e IV

1 LOAN	0.821
2 DELINQ	0.666
3 DEROG	0.396
4 CLNO	0.26
5 NINQ	0.176
6 DEBTINC	0.145
7 JOB	0.089
8 MORTDUE	0.067
9 CLAGE	0.042
10 VALUE	0.035
11 REASON	0.008
	2 DELINQ 3 DEROG 4 CLNO 5 NINQ 6 DEBTINC 7 JOB 8 MORTDUE 9 CLAGE 10 VALUE

1 LOAN 2 DELINQ	0.821 0.666	Ahora se observa como, la variable YOJ tiene un IV que indicaría que tiene fuerte poder predictivo y
3 DEROG	0.396	que REASON sigue estando muy por debajo de
4 YOJ	0.319	0.02. Esto se puede deber a que este método tiene
5 CLN0	0.26	la capacidad de capturar relaciones no lineales.
6 NINQ	0.176	
7 DEBTINC	0.145	Con esto, se hace nuevamente calculo de los WOE
8 JOB	0.089	pero dejando fuera solamente a la variable
9 MORTDUE	0.067	REASON.
10 CLAGE	0.042	Luego se guardan estos valores como variables,
11 VALUE	0.035	tanto para el set de entrenamiento como para el
12 REASON	0.008	de validación.

Abajo el resumen del modelo WOE, primero con todas las variables guardadas, y luego dejando fuera "MORTDUE_woe", ya que no es significativa.

En el segundo modelo, se obtiene que todas las variables son significativas.

Calidad Predictiva Modelo Elegido

Reference Prediction 0 1 0 882 44 1 135 105

Accuracy: 0.8465

95% CI: (0.8245, 0.8667)

No Information Rate : 0.8722 P-Value [Acc > NIR] : 0.9955

Kappa: 0.4537

Mcnemar's Test P-Value : 1.733e-11

Sensitivity: 0.8673
Specificity: 0.7047
Pos Pred Value: 0.9525
Neg Pred Value: 0.4375
Prevalence: 0.8722
Detection Rate: 0.7564
Detection Prevalence: 0.7942
Balanced Accuracy: 0.7860

'Positive' Class: 0

Reference Prediction 0 1 0 3597 150 1 525 396

Accuracy: 0.8554

95% CI: (0.845, 0.8654)

No Information Rate : 0.883 P-Value [Acc > NIR] : 1

Kappa: 0.4607

Mcnemar's Test P-Value : <2e-16

Sensitivity: 0.8726
Specificity: 0.7253
Pos Pred Value: 0.9600
Neg Pred Value: 0.4300
Prevalence: 0.8830
Detection Rate: 0.7706
Detection Prevalence: 0.8027
Balanced Accuracy: 0.7990

'Positive' Class : 0

AUC Train	AUC Test	KS Train	KS Test
0.8561323	0.8486389	0.5486	0.5544

Finalmente el modelo elegido para predecir es el modeloWOE, ya que si bien comparado con el modelo Final visto al principio, tienen valores de accuracy muy similares, también para los valores de sensitividad y especificidad, los valores de AUC y KS son mejores, de hecho en la muestra de validación para el modelo Final, está por debajo de 0.5 y woe es un 0.55.

Interpretación peso de los atributos

Variables	Coeficiente
Intercept	-1.4003998
LOAN_woe	0.9198262
VALUE_woe	0.9496922
JOB_woe	0.6403076
YOJ_woe	0.6607527
DEROG_woe	0.7153499
DELINQ_woe	0.9933460
CLAGE_woe	0.9423604
NINQ_woe	0.5436387
CLNO_woe	0.7957126
DEBTINC_woe	1.0300047

La interpretación de los atributos del modelo WOE, está dada por el impacto que genera el cambio de una categoría a la siguiente, ya que lo que se hace en un principio es categorizar las variables de manera que de una categoría a otra haya suficiente diferencia.

Más abajo, algunas de las variables con sus respectivas categorizaciones, donde se ve el corte de cada una y las diferencias entre la razón de malos vs buenos de cada una

Por ejemplo DELINQ, donde se divide la variable en 3 categorías, siendo el grupo de 3 o más líneas de crédito no pagadas, el de mayor concentración de malos.

Lo mísmo se observa con DEBTINC, cuando la variable toma un valor de 43 o más.

Por otro lado y como ya se había mencionado anteriormente, la variable CLAGE, tiene un comportamiento inverso, lo cual también se evidencia en cada una de sus categorías, ya que a mayor antigüedad, disminuye la proporción de malos.

Con respecto a VALUE, esta relación no es tan directa ni tan clara, ya que primero se observa una disminución en la concentación de malos, y luego un aumento para dos categorías.

Si es importante notar que mientras menor es el valor de la propiedad, más es la probabilidad de incumplimiento.

```
$DELINQ
                 bin count count_distr good bad
                                                  badprob
  variable
                                                                 woe
                                                                        bin iv total iv breaks
                             0.7808483 3160 485 0.1330590 -0.4709277 0.1491615 0.611816
1: DELINO [-Inf,1) 3645
    DELINQ [1,3) 774
                             0.1658098 506 268 0.3462532 0.7677011 0.1197204 0.611816
                                                                                              3
2:
    DELINQ [3, Inf) 249 0.0533419 81 168 0.6746988 2.1327656 0.3429341 0.611816
                                                                                            Tnf
$VALUE
  variable
                     bin count count_distr good bad
                                                  badprob
                                                                 woe
                                                                          bin_iv total_iv breaks
    VALUE [-Inf,40000) 240 0.05141388 152 88 0.3666667 0.85670706 0.0471039223 0.1352331 40000
     VALUE [40000,50000) 246 0.05269923 176 70 0.2845528 0.48126201 0.0139726883 0.1352331
2:
     VALUE [50000,90000) 1884 0.40359897 1517 367 0.1947983 -0.01587737 0.0001012548 0.1352331 90000
3:
4:
     VALUE [90000,125000) 1246 0.26692374 1067 179 0.1436597 -0.38196968 0.0345328016 0.1352331 125000
     VALUE [125000,170000) 534 0.11439589 407 127 0.2378277 0.23862466 0.0069853467 0.1352331 170000
5:
     VALUE [170000,200000) 254 0.05441302 229 25 0.0984252 -0.81159542 0.0275708303 0.1352331 200000
6:
     VALUE [200000, Inf) 264 0.05655527 199 65 0.2462121 0.28433321 0.0049662512 0.1352331
7:
$CLAGE
  variable
                  bin count count_distr good bad badprob
                                                                woe
                                                                        bin iv total iv breaks
     CLAGE [-Inf,70) 268 0.05741217 162 106 0.3955224 0.9790935 0.07035541 0.2395325
1:
     CLAGE [70,170) 2026 0.43401885 1520 506 0.2497532 0.3033218 0.04360098 0.2395325
                                                                                            170
2:
     CLAGE [170,240) 1338 0.28663239 1137 201 0.1502242 -0.3295928 0.02808187 0.2395325
                                                                                            240
3:
4:
     CLAGE [240, Inf) 1036 0.22193659 928 108 0.1042471 -0.7476497 0.09749424 0.2395325
                                                                                            Inf
$DEBTINC
                 bin count count_distr good bad
  variable
                                                 badprob
                                                                        bin_iv total_iv breaks
                                                               woe
1: DEBTINC Γ-Inf,30) 1237 0.26499572 1099 138 0.1115602 -0.6716515 0.096357929 0.5915139
2: DEBTINC [30,43] 3130 0.67052271 2562 568 0.1814696 -0.1031713 0.006915164 0.5915139
                                                                                             43
3: DEBTINC [43, Inf) 301 0.06448158 86 215 0.7142857 2.3195415 0.488240791 0.5915139
                                                                                           Inf
```

Uso Modelo Predictivo

Para el uso del modelo predictivo elegido se crea un scorecard, con el objetivo de poder tener un puntaje para cada cliente y poder definir en base a este si se le otorga o no un crédito con garantía hipotecaria.

La propuesta en este caso para el uso del modelo, es en base a 3 puntos de corte.

La línea roja representa el cuartil 25 = 519, y bajo ese umbral, se deben rechazar todos los clientes. La línea azul, representa el cuartil 75 = 573 y sobre ese umbral, se debe dar el crédito a todos los clientes.

Luego en el rango intercuartil dependiendo del tipo de cliente y evaluación del banco, se puede tomar a todos quienes están entre la mediana = 552(linea amarilla) y el cuartil 75 y darles el crédito, y quienes caen entre la linea amarilla y roja deben pasar a revisión por parte del banco.