Course Name: **Principles of Data Communications**Course Code: **CS200**

Date: 06/12/2021 Time: 9.30 AM - 12.30 PM

Duration: 3 Hours Max. Marks: 100

ANSWER ALL QUESTIONS

- 1. (a) Assume ten devices are arranged in a mesh topology. How many cables are needed? How many ports are needed for each device? [3]
 - (b) Draw a hybrid topology with star and bus networks. [3]
 - (c) Assume we have an isolated link (not connected to any other link) such as a private network in a company. Do we still need addresses in both the network layer and the data-link layer? Justify your answer. [4]
- 2. (a) Assume we have created a packet-switched internet. Using the TCP/IP protocol suite, we need to transfer a huge file. What are the advantage and disadvantage of sending large packets? [5]
 - (b) The Internet is made up of a large number of networks. Their arrangement determines the topology of the Internet. Write a short note on the Internet topology. [5]
- (a) Assume that SNR(dB) is 48 and the channel bandwidth is 2 MHz. Calculate the theoretical channel capacity.
 - (b) Let a bandwidth of 2000 Hz (100 to 2100 Hz) be assigned for data communication. The SNR is 4020. What will be the capacity for this channel? [3]
 - (c) We need to send 500 Mbps over a noiseless channel with a bandwidth of 100 kHz. How many signal levels do we need? [4]
- 4. (a) If a binary signal is sent over a 5-kHz channel whose signal-to-noise ratio is 10 dB, what is the maximum achievable data rate? [3]
 - (b) What are the advantages of fiber optics over copper as a transmission medium? Is there any downside of using fiber optics over copper? [3]
 - (c) Five signals, each requiring 500 Hz, are multiplexed onto a single channel using FDM. What is the minimum bandwidth required for the multiplexed channel? Assume that the guard bands are 50 Hz wide. [4]

5.	(a)	A signal has a fundamental frequency of 1000 Hz. What is its period?	[2]
	(b)	For the bit stream 1000010111, sketch the waveforms of:	
		i. NRZ-L	
		ii. NRZ-I	
		iii. Manchester	
		iv. Differential Manchester	[8]
6.	(a)	Five 1-kbps connections are multiplexed together. A unit is 1 bit. Find (i) the duration of 1 b	bit
		before multiplexing, (ii) the transmission rate of the link, (iii) the duration of a time slot, as	nd
		(iv) the duration of a frame.	[5]
	(b)	Distinguish between synchronous and statistical TDM.	[5]
7.	(a)	Calculate the Hamming distance between the following codewords:	
		i. 011100, 011011	
		ii. 1110101, 0010110	[5]
	(b)	Assuming even parity, find the parity bit for each of the following data units: 001101, 11010)1,
		1100, 0000, 11011	[5]
8.	(a)	Suppose that a message FF32 E321 1543 BB21 A142 is transmitted using Internet Checksun	m.
	, ,	•	[5]
	(b)	Compute the frame check sequence if the data to send $D = 1011010010$ (10 bits) and predefine	ed
		pattern $P = 110010(6 \text{ bits})$. Receiver receives 101101001000110 . Identify if any error occurrence	ed
		while transmission.	[5]
9.	(a)	Apply Shannon Fano coding procedure for the following message ensemble.	
		[x] = [x1; x2; x3; x4; x5; x6; x7; x8]	
		[P] = [1/16; 1/16; 1/4; 1/8; 1/16; 1/8; 1/4; 1/16]	
		ſ	[5]
	(b)	Apply Huffman coding on the following text:	
	(0)		[5]
10.	(2)	Consider a scenario where there are 'n' stations on a link and all are waiting to transfer da	ata
10.	(a)	through that channel. In this case, all 'n' stations would want to access the link/channel	
		transfer their own data. Problem arises when more than one station transmits the data at the	
		moment. How is this problem solved in wired LAN?	[5]
	(b)	In WLANs, the hidden terminal problem is a transmission problem that arises when two or mo	re
		stations who are out of range of each other transmit simultaneously to a common recipient. Ho	w
		is hidden node problem handled?	[5]