1

A 3 m high and 5 m wide wall consists of long 32 cm 22 cm cross section horizontal bricks (k = 0.72 W/m°C) separated by 3 cm thick plaster layers (k = 0.22 W/m°C). There are also 2 cm thick plaster layers on each side of the brick and a 3 cm thick rigid foam (k = 0.026 W/m°C) on the inner side of the wall. The indoor and the outdoor temperatures are 20°C and -10°C, and the convection heat transfer coefficients on the inner and the outer sides are $h_1 = 10 \text{ W/m}^2$ °C and $h_2 = 40 \text{ C}$ W/m2°C, respectively. Assuming one-dimensional heat transfer and disregarding radiation, determine the

rate of heat transfer through the wall.

	WOOD	INSULATION
Outside	0.03	0.03
Wood Bevel	14	14
Plywood	0.11	0.11
Urethane Rigid Foam	no	0.98*0.90/25 = 3.53
Wood Studs	0.63	no
Gypsum Board	0.079	0.079
Inside	0.12	0.12

Determine the overall unit thermal resistance (the *R*-value) of a wood frame wall that is built around 38-mm 90-mm wood studs with a center-to-center distance of 400 mm. The 90-mm-wide cavity between the studs is filled with urethane rigid foam insulation. The inside is finished with 13-mm gypsum wallboard and the outside with 13 mm plywood and 13-mm 200-mm wood bevel lapped siding.

The insulated cavity constitutes 75 percent of the heat transmission area while the studs, plates, and sills constitute 21 percent. The headers constitute 4 percent of the area, and they can be treated as studs (this means 75% of area is insulation and 25% can be considered wood).

$$\begin{split} R_{wood} &= (0.03 + 14 + 0.11 + 0.63 + 0.079 + 0.12) = 1.11 \text{ W/m}^2 ^\circ \text{C} \\ R_{insulation} &= (0.03 + 14 + 0.11 + 3.53 + 0.079 + 0.12) = 4 \text{ W/m}^2 ^\circ \text{C} \end{split}$$