Beräkningar inlämningsuppgift 1

Erik Ödmann, David Carlsson

Exponentialfördelningen

Täthetsfunktionen för exponentialfunktionen är

$$p_X(x) = \lambda e^{-\lambda x}, \quad x \ge 0$$

Likelihood funktionen för en observation blir då

$$L(\lambda) = \lambda e^{-\lambda x}$$

Vi applicerar den naturliga logaritmen på likelihood funktionen vilket ger oss log-likelihood funktionen för en observation

$$l(\lambda) = \ln(\lambda e^{-\lambda x})$$

$$= \ln(\lambda) + \ln(e^{-\lambda x})$$

$$= \ln(\lambda) - \lambda x \ln(e)$$

$$= \ln(\lambda) - \lambda x$$

Log-likelihood funktionen för hela urvalet får vi genom att ta summan av log-likehood funktionen för en observation

$$l_n(\lambda) = \sum_{i=1}^{n} (\ln(\lambda) - \lambda x_i)$$
$$= n \ln(\lambda) - \lambda \sum_{i=1}^{n} x_i$$

Nästa steg är att derivera likelihood funktionen för urvalet

$$l'_n(\lambda) = \frac{d}{d\lambda} (n \ln(\lambda) - \lambda \sum_{i=1}^n x_i)$$
$$= n\lambda^{-1} - \sum_{i=1}^n x_i$$
$$= \frac{n}{\lambda} - n\bar{x}$$
$$= n(\lambda^{-1} - \bar{x})$$

ML skattningen ges utav att lösa ekvationen

$$l'_n(\lambda) = n\lambda^{-1} - \sum_{i=1}^n x_i = 0$$

$$\Leftrightarrow \sum_{i=1}^n x_i = \frac{n}{\lambda}$$

$$\Leftrightarrow \hat{\lambda} = \frac{n}{\sum_{i=1}^n x_i}$$

För att beräkna fisherinformationen behöver vi andraderivatan utav log-likelihood funktionen som ges utav

$$l_n''(\lambda) = \frac{d}{d\lambda} (n\lambda^{-1} - \sum_{i=1}^n x_i)$$
$$= -n\lambda^{-2}$$

Fisherinformationen för urvalet blir då

$$I_n(\lambda) = -E[l''_n(\lambda)]$$

= $-E[-n\lambda^{-2}]$
= $n\lambda^{-2}$

Vi kan nu beräkna medelfelet för ML-skattningen som

$$Sd(\hat{\lambda}) = I_n(\hat{\lambda})^{-1/2}$$
$$= (n\hat{\lambda}^{-2})^{-1/2}$$
$$= \hat{\lambda}n^{-1/2}$$

Score-testet

Vi börjar med att härleda konfidensintervallet baserat på score-testet

$$T_{\text{score}} = \frac{l'_n(\lambda_0)}{\sqrt{I_n(\lambda_0)}} \approx N(0, 1)$$

Från tidigare beräkningar vet vi att detta är lika med

$$T_{\text{score}} = \frac{n(\lambda_0^{-1} - \bar{x})}{\sqrt{n\lambda_0^{-2}}}$$
$$= \frac{\lambda_0}{\sqrt{n}} \times n(\frac{1}{\lambda_0} - \bar{x})$$
$$= \sqrt{n}(1 - \bar{x}\lambda_0)$$

Vi kan nu härleda 100(1 – α)%-igt konfidensintervall för λ_0

$$\begin{split} 1 - \alpha &= P(-z_{\alpha/2} < T < z_{\alpha/2}) \\ &= P(-z_{\alpha/2} < \sqrt{n}(1 - \bar{x}\lambda_0) < z_{\alpha/2}) \\ &= P(-z_{\alpha/2} \frac{1}{\sqrt{n}} < 1 - \bar{x}\lambda_0 < z_{\alpha/2} \frac{1}{\sqrt{n}}) \\ &= P(-1 - z_{\alpha/2} \frac{1}{\sqrt{n}} < -\bar{x}\lambda_0 < -1 + z_{\alpha/2} \frac{1}{\sqrt{n}}) \\ &= P(-\frac{1}{\bar{x}} - z_{\alpha/2} \frac{1}{\bar{x}\sqrt{n}} < -\lambda_0 < -\frac{1}{\bar{x}} + z_{\alpha/2} \frac{1}{\bar{x}\sqrt{n}}) \\ &= P(\frac{1}{\bar{x}} - z_{\alpha/2} \frac{1}{\bar{x}\sqrt{n}} < \lambda_0 < \frac{1}{\bar{x}} + z_{\alpha/2} \frac{1}{\bar{x}\sqrt{n}}) \end{split}$$

Vilket ger oss ett konfidensintervall för λ_0 baserat på score-testet

Wald-testet

Här ges tesstatistikan utav

$$T_{\text{wald}} = \frac{\hat{\lambda} - \lambda_0}{Sd(\hat{\lambda})} \approx N(0, 1)$$

Från tidigare beräkningar vet vi att vi kan skriva detta som

$$T_{\text{wald}} = \frac{\hat{\lambda} - \lambda_0}{\sqrt{\hat{\lambda}n^{-1/2}}} \approx N(0, 1)$$

Vi kan nu härleda 100(1 – α)%-igt konfidensintervall för λ_0

$$\begin{split} 1 - \alpha &= P(-z_{\alpha/2} < T < z_{\alpha/2}) \\ &= P(-z_{\alpha/2} < \frac{\hat{\lambda} - \lambda_0}{\sqrt{\hat{\lambda}n^{-1/2}}} < z_{\alpha/2}) \\ &= P(-z_{\alpha/2} \sqrt{\hat{\lambda}n^{-1/2}} < \hat{\lambda} - \lambda_0 < z_{\alpha/2} \sqrt{\hat{\lambda}n^{-1/2}}) \\ &= P(-\hat{\lambda} - z_{\alpha/2} \sqrt{\hat{\lambda}n^{-1/2}} < -\lambda_0 < -\hat{\lambda} + z_{\alpha/2} \sqrt{\hat{\lambda}n^{-1/2}}) \\ &= P(\hat{\lambda} - z_{\alpha/2} \sqrt{\hat{\lambda}n^{-1/2}} < \lambda_0 < \hat{\lambda} + z_{\alpha/2} \sqrt{\hat{\lambda}n^{-1/2}}) \end{split}$$

Eftersom att $\hat{\lambda} = \frac{1}{\bar{x}}$ får vi

$$1 - \alpha = P(\frac{1}{\bar{x}} - z_{\alpha/2} \frac{1}{\bar{x}\sqrt{n}} < \lambda_0 < \frac{1}{\bar{x}} + z_{\alpha/2} \frac{1}{\bar{x}\sqrt{n}})$$

Vilket ger oss ett konfidensintervall för λ_0 baserat på wald-testet

Resultat

I figuren nedan ser vi resultatet för exponentialfördelningen.

Table 1: Resultatet av testerna på exponentialfördelningen

	n	lambda	Score-testet	Wald-testet
	10	0.1	0.9543	0.9543
	50	0.1	0.9533	0.9533
-	100	0.1	0.9510	0.9510
	10	1.0	0.9539	0.9539
	50	1.0	0.9549	0.9549
-	100	1.0	0.9495	0.9495
	10	10.0	0.9555	0.9555
	50	10.0	0.9489	0.9489
-	100	10.0	0.9501	0.9501

För exponentialfördelningen ser vi att båda tester producerar exakt samma resultat. Detta var förväntat då vi i härledningen fann att uttrycken för konfidensintervallen var identiska. Då n blir större ser vi att täckningsandelen kommer närmare och närmare 95%.

Binomialfördelningen

Täthetsfunktionen för binomialfördelningen är

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = \text{Antal utfall}$$

Likelihood funktionen för hela urvalet ges utav

$$L_n(p) = \binom{n}{k} p^k (1-p)^{n-k}$$

Log-likelihood för hela urvalet kan vi då beräkna till

$$l_n(p) = \ln(\binom{n}{k} p^k (1-p)^{n-k})$$

$$= \ln(\binom{n}{k}) + \ln(p^k) + \ln((1-p)^{n-k})$$

$$= \ln(\binom{n}{k}) + k \ln(p) + (n-k) \ln(1-p)$$

Första derivatan utav log-likelihood funktionen för hela urvalet. Vi vet att $k = \sum_{i=1}^{n} x_i = n\bar{x}$ vilket ger oss

$$l'_n(p) = \frac{d}{dp} (\ln(\binom{n}{k}) + k \ln(p) + (n-k) \ln(1-p))$$

$$= kp^{-1} - (n-k)(1-p)^{-1}$$

$$= \frac{k(1-p) - p(n-k)}{p(1-p)}$$

$$= \frac{k-pn}{p(1-p)}$$

$$= \frac{n}{p(1-p)} (\bar{x} - p)$$

ML-skattningen ges utav att lösa ekvationen för p

$$l'_n(p) = kp^{-1} - (n-k)(1-p)^{-1} = 0$$

$$\Leftrightarrow kp^{-1} = (n-k)(1-p)^{-1}$$

$$\Leftrightarrow (1-p)k = p(n-k)$$

$$\Leftrightarrow k - pk = pn - pk$$

$$\Leftrightarrow k = pn$$

$$\Leftrightarrow \hat{p} = \frac{k}{n} = \bar{x}$$

För att beräkna fisherinformationen behöver vi andraderivatan utav log-likelihood funktionen

$$l_n''(p) = \frac{d}{dp}(kp^{-1} - (n-k)(1-p)^{-1})$$
$$= -kp^{-2} - (n-k)(1-p)^{-2}$$

Fisherinformationen för hela urvalet blir då

$$I_n(p) = -E[l''_n(p)]$$

$$= -E[-kp^{-2} - (n-k)(1-p)^{-2}]$$

$$= -E[\frac{-k + 2kp - np^2}{p^2(1-p)^2}]$$

Eftersom E[k] = np får vi

$$I_n(p) = \frac{np + np^2}{p^2(1-p)^2}$$

= $\frac{n}{p(1-p)}$

Medelfelet för ML-skattningen ges då utav

$$Sd(\hat{p}) = I_n(\hat{p})^{-1/2}$$
$$= \sqrt{\hat{p}(1-\hat{p})/n}$$

Score-testet

Vi börjar härleda konfidensintervallet baserat på score-testet. Teststatistikan ges utav

$$T_{\text{score}} = \frac{l'_n(p_0)}{\sqrt{I_n(p_o)}} \approx N(0, 1)$$

Första derivatan av likelihood funktionen samt fisherinformationen beräknade vi tidigare vilket ger oss

$$T_{\text{score}} = \frac{l'_n(p_0)}{\sqrt{I_n(p_o)}}$$

$$= \frac{\frac{n}{p_0(1-p_0)}(\bar{x} - p_0)}{\sqrt{\frac{n}{p_0(1-p_0)}}}$$

$$= \sqrt{\frac{p_0(1-p_0)}{n}} \times \frac{n}{p_0(1-p_0)}(\bar{x} - p_0)$$

$$= \sqrt{\frac{n}{p_0(1-p_0)}}(\bar{x} - p_0)$$

$$= \frac{\bar{x} - p_0}{\sqrt{p_0(1-p_0)/n}} \approx N(0, 1)$$

$$= \frac{(\bar{x} - p_0)^2}{p_0(1-p_0)/n} \approx \chi_1^2$$

Vi kan nu härleda $100(1-\alpha)\%$ -igt konfidensintervall för p_0 . Vi utgår från

$$\frac{(\bar{x} - p_0)^2}{p_0(1 - p_0)/n} = z_{\alpha/2}^2$$

$$\Leftrightarrow (\bar{x} - p_0)^2 = \frac{p_0(1 - p_0)}{n} z_{\alpha/2}^2$$

$$\Leftrightarrow \bar{x}^2 - 2\bar{x}p_0 + p_0^2 = \frac{p_0(1 - p_0)}{n} z_{\alpha/2}^2$$

Samlar vi nu alla termer i vänsterledet får vi

$$p_0^2 + \frac{z_{\alpha/2}^2}{n}p_0^2 - 2\bar{x}p_0 - \frac{z_{\alpha/2}^2}{n}p_0 + \bar{x}^2 = 0$$

$$\Leftrightarrow (1 + \frac{z_{\alpha/2}^2}{n})p_0^2 + (-2\bar{x} - \frac{z_{\alpha/2}^2}{n})p_0 + \bar{x}^2 = 0$$

Vilket vi applicerar rotformeln-formeln på. Detta ger oss

$$\begin{split} p_0 &= \frac{\bar{x} + \frac{1}{2n} z_{\alpha/2}^2}{1 + \frac{1}{n} z_{\alpha/2}^2} \pm \frac{\sqrt{(2\bar{x} + \frac{1}{n} z_{\alpha/2}^2)^2 - 4\bar{x}^2 - \frac{4}{n} \bar{x}^2 z_{\alpha/2}^2}}{2 + \frac{2}{n} z_{\alpha/2}^2} \\ &= \frac{\bar{x} + \frac{1}{2n} z_{\alpha/2}^2}{1 + \frac{1}{n} z_{\alpha/2}^2} \pm \frac{1}{2 + \frac{2}{n} z_{\alpha/2}^2} \sqrt{4\bar{x}^2 + \frac{4}{n} \bar{x} z_{\alpha/2}^2 + \frac{1}{n^2} (z_{\alpha/2}^2)^2 - 4\bar{x}^2 - \frac{4}{n} \bar{x}^2 z_{\alpha/2}^2} \end{split}$$

Som vi kan skriva om till

$$p_0 = \frac{\bar{x} + \frac{1}{2n} z_{\alpha/2}^2}{1 + \frac{1}{n} z_{\alpha/2}^2} \pm \frac{z_{\alpha/2}}{1 + \frac{1}{n} z_{\alpha/2}^2} \sqrt{\frac{\bar{x}(1 - \bar{x})}{n} + \frac{1}{4n^2} z_{\alpha/2}^2}$$

Vilket ger oss ett konfidensintervall för p_0 baserat på score-testet med gränserna

$$\left[\frac{\bar{x}+\frac{1}{2n}z_{\alpha/2}^2}{1+\frac{1}{n}z_{\alpha/2}^2}-\frac{z_{\alpha/2}}{1+\frac{1}{n}z_{\alpha/2}^2}\sqrt{\frac{\bar{x}(1-\bar{x})}{n}+\frac{1}{4n^2}z_{\alpha/2}^2},\frac{\bar{x}+\frac{1}{2n}z_{\alpha/2}^2}{1+\frac{1}{n}z_{\alpha/2}^2}+\frac{z_{\alpha/2}}{1+\frac{1}{n}z_{\alpha/2}^2}\sqrt{\frac{\bar{x}(1-\bar{x})}{n}+\frac{1}{4n^2}z_{\alpha/2}^2}\right]$$

Wald-testet

Här ges tesstatistikan utav

$$T_{\text{wald}} = \frac{\hat{p} - p_0}{Sd(\hat{p})} \approx N(0, 1)$$

Från tidigare beräkningar vet vi att vi kan skriva detta som

$$T_{\text{wald}} = \frac{\hat{p} - p_0}{\sqrt{\hat{p}(1-\hat{p})/n}} \approx N(0,1)$$

Vi kan nu härleda $100(1-\alpha)\%$ -igt konfidensintervall för p_0

$$\begin{split} 1 - \alpha &= P(-z_{\alpha/2} < T < z_{\alpha/2}) \\ &= P(-z_{\alpha/2} < \frac{\hat{p} - p_0}{\sqrt{\hat{p}(1 - \hat{p})/n}} < z_{\alpha/2}) \\ &= P(-z_{\alpha/2}\sqrt{\hat{p}(1 - \hat{p})/n} < \hat{p} - p_0 < z_{\alpha/2}\sqrt{\hat{p}(1 - \hat{p})/n}) \\ &= P(-\hat{p} - z_{\alpha/2}\sqrt{\hat{p}(1 - \hat{p})/n} < -p_0 < -\hat{p} + z_{\alpha/2}\sqrt{\hat{p}(1 - \hat{p})/n}) \\ &= P(\hat{p} - z_{\alpha/2}\sqrt{\hat{p}(1 - \hat{p})/n} < p_0 < \hat{p} + z_{\alpha/2}\sqrt{\hat{p}(1 - \hat{p})/n}) \end{split}$$

Eftersom $\hat{p} = \bar{x}$ blir detta

$$1 - \alpha = P(\bar{x} - z_{\alpha/2}\sqrt{\bar{x}(1-\bar{x})/n} < p_0 < \bar{x} + z_{\alpha/2}\sqrt{\bar{x}(1-\bar{x})/n})$$

Vilket ger oss ett konfidensintervall för p_0 baserat på wald-testet

Resultat

I figuren nedan ser vi resultatet för binomialfördelningen.

Table 2: Resultatet av testerna på binomialfördelningen

n	p	Score-testet	Wald-testet
10	0.1	0.9282	0.6437
50	0.1	0.9718	0.8779
100	0.1	0.9375	0.9366
10	0.3	0.9245	0.8348
50	0.3	0.9577	0.9329
100	0.3	0.9368	0.9501
10	0.5	0.9791	0.8946
50	0.5	0.9357	0.9357
100	0.5	0.9455	0.9455

Vi kan se att för score-testet så ligger täckningsandelen kring 95% vilket är förväntat givet vår signifikansnivå. Vi noterar en tendens av att andelen kommer närmare 95% då stickprovsstorleken blir större. Vi kan också se att parametervärdet p_0 har en relativt stor påverkan på just wald-testet eftersom att det är en del utav medelfelsberäkningen vilket vi såg i vår tidigare härledning. Tex när $p_0=0.1$ så kommer intervallbredden att minska i jämförelse med då $p_0=0.5$ vilket gör att vi får en lägre täckningsandel. Tabellen visar att för stora n har wald- och score-testet en liknande täckningsandel.