TD11: Introduction à la physique statistique quantique

Alice Sinatra, Fabio Pietrucci, Sorbonne Université

23 avril 2024

1 Système à trois états : classique ou quantique

Nous considérons un système de particules identiques sans interactions qui peuvent se trouver dans trois états distincts d'énergie $\epsilon_n = n\epsilon$, avec $\epsilon > 0$, n = 1, 2, 3. Le système est en équilibre thermique avec un thermostat à la température T.

1.1

Pour commencer, considérons le cas d'une seule particule. Exprimez la fonction de partition canonique $Z_1(\rho)$ en fonction de $\rho \equiv e^{-\beta\epsilon}$. Quelle est la probabilité $q_1(\rho)$ que l'état n=2 soit vide? Tracez $q_1(\rho)$ en fonction de ρ et donnez des expressions explicites dans les régimes de haute et basse température. Donnez une interprétation physique de vos résultats.

1.2

Nous avons maintenant deux particules. Énumérez les états possibles du système à deux particules et leurs énergies dans le cas bosonique puis fermionique. Exprimez les fonctions de partition $Z_2^B(\rho)$ et $Z_2^F(\rho)$ correspondantes et les probabilités $q_2^B(\rho)$ et $q_2^F(\rho)$ que l'état n=2 soit vide dans les deux cas.

1.3

Tracez $q_2^B(\rho)$ et $q_2^F(\rho)$ en fonction de ρ et donnez des expressions explicites dans les régimes de haute et basse température. Donnez une interprétation physique de vos résultats. En particulier, commentez les différences entre les bosons et les fermions à haute et basse température.

2 Calcul des nombres d'occupation des fermions et des bosons

2.1

Démontrez que, dans le cas de photons dans un mode d'énergie ϵ_s , la moyenne thermique de n_s (nombre de photons dans le mode) est donnée par $(e^{\beta \epsilon_s} - 1)^{-1}$ (distribution de Planck).

2.2

En partant de la fonction de partition dans l'ensemble grand-canonique de potentiel chimique μ , et en introduisant les nombres d'occupation $n_{\bf s}$ des états à une particule d'énergie $\epsilon_{\bf s}$, démontrer les expressions $[e^{\beta(\epsilon_{\bf s}-\mu)}\pm 1]^{-1}$ des nombres d'occupation moyens $\langle n_{\bf s}\rangle$ pour des fermions ou des bosons. Calculer aussi la variance ${\rm Var}\,n_{\bf s}$ à l'équilibre thermique et comparer au cas d'une loi de Poisson.