Name:	
VIP ID:	

- Write your name and VIP ID in the space provided above.
- The test has six (6) pages, including this one.
- Enter your answers in the boxes provided.
- You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given in parentheses at the right of the problem number.
- No books, notes or calculators may be used on this test.

Page	Max. points	Your points
2	20	
3	20	
4	20	
5	20	
6	20	
Total	100	

Problem 1 (5 pts—all or nothing). Find the domain of $f(x) = \sqrt{(1-x)(2-x)}$.

Problem 2 (5 pts—all or nothing). Let $f(x) = x^2 + 4$, $g(x) = \sqrt{x}$. Find $g \circ f$

$$(g \circ f)(x) =$$

Problem 3 (5pts). Evaluate the following limit:

$$\lim_{N\to\infty}\frac{1}{N^2}\sum_{n=1}^N 5n$$

Problem 4 (5 pts). Assume y is a function of x given implicitly by $\sin(x+y) = x+y$. Find y'.

Problem 5 (10 pts). Use logarithmic differentiation to find the derivative of the function

$$y = \frac{\tan^2 x \sin^4 x}{e^{3x}(x^2 + 1)}$$

$$y' =$$

Problem 6 (10 pts). Find an equation of the tangent line to the curve $y = \ln(xe^x)$ at the point (1,1).

Problem 7 (20 pts). Sketch the graph of the rational function $f(x) = \frac{x^2}{1 - x^2}$.

Indicate clearly: Domain; x- and y-intercepts; vertical and horizontal asymptotes; intervals of increase, decrease and different concavity. Indicate also the location of relative extrema, if any.

Problem 8 (10 pts). The volume of a cube is increasing	g at a rate of	$300 \text{ cm}^3/\text{min}.$	How fast	are
the edges increasing when the length of an edge is $10~\mathrm{cm}$	n?			
The edges are increasing at	a speed of			

Problem 9 (10 pts). A farmer wants to fence an area of 1.5 million square feet in a rectangular field and then divide it in half with a fence parallel to one of the sides of the rectangle. How can he do this so as to minimize the cost of the fence?

Dimensions of most economic fence:

Problem 10 (1/2/3/4 pts). Compute the following limits:

(a)
$$\lim_{x \to -\infty} \frac{x^2 - 2x - 8}{x^2 - 4} =$$

(b)
$$\lim_{x\to 2} \frac{x^2 + 2x - 8}{x^2 - 4} =$$

(c)
$$\lim_{x \to -2} \frac{x^2 - 2x - 8}{x^2 - 4} =$$

(d)
$$\lim_{x\to 0} x^{1/x} =$$

Problem 11 (2/4/4 pts). Evaluate each integral:

(a)
$$\int \left(\frac{1}{x} - 2^x + 3\sin x\right) dx =$$

(b)
$$\int 4x \sin x^2 dx =$$

(c)
$$\int_{1}^{2} \left(5x + \frac{2}{3x^5} - \sqrt{2}e^x\right) dx =$$