

研究の目的

- ディジタルシティ
 - 都市の情報の再構成と発信
 - インターネット内に公共空間(Public Space)を 実現

Home

Office

Public Space

- 方法論
 - 実証実験(パイロットアプリケーション)と基盤・ 基礎研究を並行に進める
 - 新しいシステム設計法(社会指向設計)を模索

デジタルシティ研究の経緯

- 1998年-2001年
 - NTTオープンラボ デジタルシティ京都
 - デジタルシティ京都・実験フォーラム
- 2000年-2004年
 - JST CREST デジタルシティのユニバーサルデザイン

プロジェクトの概要

成果展開

- ▶ 京都・ソウルでの 地域ウェブ検索
- 富山県山田村に おける環境の可視化
- ▶ Stanford大学との 社会心理共同コース
- ▶地下鉄京都駅での 避難誘導
- ▶ 京都市商店街 Webサイトとの連携
- ▶ 京都市稲荷小学校 での環境学習
- ▶ 北京大学との デジタル北京開発

実証実験

- 都市での危機管理
- 郊外での環境学習

基盤技術

- 地図情報システム
- 仮想都市システム
- 映像都市システム

基礎研究

- ◆ デジタルシティの認知
- ◆ デジタルシティの心理

外部発表

- ▶出版・報道
 - CACM
 - IEEE Computer
 - MIT Press(準備中)
 - •新聞報道12件
 - テレビ報道3件
- ▶ソフトウェア
- 仮想都市システム

(FreeWalk/Q)

・映像都市システム

(TownDigitizing)

・地図情報システム

(Kyoto Search)

・異文化協調システム (TransBBS, TransWEB)

- ▶会議
- デジタルシティ国際会議

基盤技術

地図情報システム

Kyoto Searchは韓国へ展開

KYONGGI21 SEARCH

京都大学情報学研究科 上林研究室

Webデータから ランドマークを分類・抽出

	デ格	二格	比
京都大学	2700	2900	0.931
同志社大学	946	976	0.969
立命館大学	1190	1330	0.895
桂川	723	1540	0.469
宇治川	523	1070	0.489
賀茂川	165	384	0.430
京都駅	6940	9620	0.721
大阪駅	5490	6360	0.863
東京駅	21000	25100	0.837
金閣寺	880	2290	0.384
銀閣寺	257	1260	0.204
清水寺	1810	3870	0.468

基盤技術

仮想都市システム

京都大学情報学研究科 石田研究室

Q: エージェントのシナリオ記述言語

- 多数のエージェントのシナリオの並列実行

実行結果

実行の指示

FreeWalk:仮想都市空間

- シナリオに従って歩行アニメーション生成
- 衝突回避や対象指示的コミュニケーション

基盤技術

映像都市システム

大阪大学工学研究科 石黒研究室

実証実験

パイロットアプリケーション

都市での危機管理 京都市地下鉄

成果展開

社会・環境シミュレーション デジタル北京

基盤技術

仮想都市システム 映像都市システム

京都大学情報学研究科 石田研究室 大阪大学 工学研究科 石黒研究室 NTTコミュニケーション科学基礎研究所 state に

|都市での危機管理

多数の自律エージェントにインターネットユーザが混じって行う 仮想避難訓練を実現するために、仮想都市シミュレータFreeWalk/Oを 開発しました。このシステムは、エージェント群の社会的インタラクションを 設計するためのシナリオ記述言語Qと、マルチユーザマルチエージェント シミュレーションが可能な仮想都市空間FreeWalkから構成されています。

FreeWalk/Oによる仮想京都駅での避難訓練に向けて、京都駅の 3次元モデルを作成しました。そして、この中で行動するエージェント群を 設計するため、京都駅地下鉄に28台の視覚センサー群を設置し、 群集行動の分析を開始しました.

また、仮想避難訓練の学習効果を評価する実験を実施しました。 シミュレートされた避難行動全体を上方の視点から眺める場合と 実際に避難群集の中に混じって体験する場合とを比較したところ。 まず全体を眺めた後で実際に体験するのが効果的であることを

この結果を踏まえて、現実世界の災害現場を仮想的に上から眺めながら 避難誘導を行うことのできるシステムを、FreeWalkと視覚センサー群を 連結することで構築しました。

E-Mail: nuka@i.kyoto-u.ac.jp

石田亨、中西英之、高田司郎、デジタルシティにおける危機管理シミュレー ション.システム制御情報学会誌, Vol.46, No.9, pp.524-531, 2002. 中西英之、小泉智史、石黒浩、石田亨、市民参加による避難シミュレー ションに向けて、人工知能学会誌、Vol.18, No.6, 2003 (to appear).

大阪大学工学研究科 NTTコミュニケーション

Collaboration with 京都大学総合人間学部 京都市交通局 京都市情報化推進室 NTTサイバーソリューション

2人のエージェントが待ち合わせする②シナリオ (defscenario Kaoru

(scene1 (lwalk :route '(PLACE A PLACE B)) (!turn :to Yoko)))

(defscenario Yoko

(scene1 (!walk :route '(PLACE B)

(?position :name Kaoru :distance 2) (go scene2))

(scene2 (!turn :to Kaoru)

(!speak :to Kaoru :sentence "こんにちは")))

デジタルシティ研究センター E-Mail: info@digitalcity.jst.go.jp

実証実験

パイロットアプリケーション

郊外での環境学習 京都大学演習林

成果展開

京都市立稲荷小学校山田村

基盤技術

映像都市システム

京都大学情報学研究科 酒井研究室 大阪大学 工学研究科 石黒研究室

郊外での環境学習

京都大学情報学研究和 大阪大学工学研究科

Collaboration with 京都市立稲荷小学校 京都市教育委員会

都市近郊林などでの自然体験学習の支援と、デジタルシティの 仮想環境を利用したメディア学習を統合した新たな環境学習の ためのシステムを構築しています。

屋外での体験学習支援では、GPSで測位した位置情報をキーとしてと特定の場所でPDAに教材を表示し、観察・学習を促す 仕組みを実装しました。また。その場で作成した観察記録等を 位置情報とともに無線LAN経由で送信することにより、新たな コンテンツとして閲覧可能としました。位置情報をキーにコンテ ンツを統一的に管理することで、さまざまな人が経験の共有。 再構築、統合をおこなうことができる場を来現しています。

さらに、デジタルシティの仮想環境を利用したメディア学習として、 全方位カメラで撮影した関像をベースにした仮想空間の中で自由に Walk Throughすることにより、実体験を補完するシステムを構築しました。

社会人を対象とした実験の成果を踏まえ、現在、京都市立稲荷 小学校及び京都市教育委員会の協力の下に、「総合的な学習の 明 において、このシステムを用いた地域の自然環境の理解・情報 活用能力の育成を目指した取り組みを開始しております。

位置情報をキーに 情報の融合

経験の共有、再構築、統合、

メディア学習

全方位画像

画像ベースの仮想環境 コンテンツ ブラウザ

メディア学習プラットフォーム

連絡先 酒井撤朗 京都大学情報学研究科 E-Mail: sakai@i.kyoto-u.ac.jp

体験学習用機材

授業実践の様子 科学技術振興機構 デジタルシティ研究センター E-Mail: info@digitalcity.jst.go.jp

デジタルシティのシステム設計

デジタルシティのロードマップ

システム設計の変化

- 大型計算機の時代
 - Computer Roomにおける情報システムの設計
 - ウォーターフォール
- デスクトップ・ネットワークの時代
 - Office, Homeにおける情報システムの設計
 - オブジェクト指向設計, 人間中心設計
- モバイル・ユビキタスの時代
 - Public Spaceにおける情報システムの設計
 - 社会指向設計

社会指向設計のモデル

都市での危機管理

参加型シミュレーション

シナリオ記述の例

『YokoがKaoruと待ち合わせ場所(X:123 Y:2)で会った後,目的地(X:95 Y:11)に向かう.』


```
(defagent Yoko scenario-yoko
 :location '(127 -2) :shape "f1.wrl")
(defagent Kaoru scenario-kaoru
 :location '(117 10) :shape "f2.wrl")
(defscenario scenario-yoko
 (scene1;;Kaoruを待つ
   (!walk :route '((123 2)))
   (!turn :to Kaoru)
   (?position :name Kaoru :distance 2)
   (go scene2))
 (scene2 ; 目的地に向かう
  (!walk :route '((112 13) (95 11)))))
(defscenario scenario-kaoru
 (scene1 ::待ち合わせ場所に行く
   (!walk :route '((123 4)))
   (go scene2))
 (scene2; 目的地に向かう
  (!walk :route '((112 13) (95 11)))))
```

システムアーキテクチャ

避難誘導のシナリオ記述

6.5m 4m a 出口A 0 0 偽の出口 出口B 誘導したい出口 0 b 9m 0 0 Y地点 ●誘導者 〇男子被験者 ▲女子被験者 出入口C

実験が行われた地下室の平面図

杉万 俊夫(京都大学総合人間学部) 応用心理学講座 第3巻「自然災害の行動科学」 第8章, pp.110-122, 1988 福村出版

実験結果:4名吸着が最も有効

マルチエージェントシミュレーション

2次元空間

吸着誘導 4名の誘導者

誘導者,避難者個々のシナリオを記述

参加型シミュレーション

3次元空間

指差誘導 4名の誘導者 シミュレーションに 市民がインターネット 経由で参加

IPC (インタラクションパターンカード)

シナリオのパターンを抽出しカード化

■ 避難	IPC.xls				×	
	A B	С	D	Е	F	
1	カード ID 1	カード名	吸着誘導	カード定義名	誘導カード	
2		観察対象	状況	誘導動作		
3				帽子を被る		
4	誘導の開始	l .			択する(一番近くにいる人)	
5 6	-	出□a	開く	近づく(誘導対	J家者) 付いて来て下さい。)	
7				<u> </u>		
8	誘導[条件]	誘導対象者の 位置/向き	自分の位置/向き	誘導動作		
9						
10		誘導対象者の 位置/向き	自分の位置/向き	誘導動作		
11		自分から3.0m以		立ち止まる		
12	 誘導	上離れている		向<(誘導対象	(者)	
13	[繰り返し]		左の部屋にいる	歩き始める(Y	地点, 出□B)	
14			右の部屋にいる	 歩き始める(出		
15		出口B		[繰り返し終了]	
16	無道の数 フ	誘導動作				
17	誘導の終了	歩く(部屋の外)				
18						
HIL	I					

コンピュータの非専門家によるシミュレーションが可能

シナリオ設計の流れ

都市での危機管理

拡張エクスペリメンツ

京都駅実験

40,000,000 Visitors / Year

実空間と仮想空間を連結

仮想都市の認知

建築学岡崎研究室提供

仮想空間

仮想地下鉄今出川駅での注視の分析

京都駅実験

• 実験場所

- 地下鉄京都駅 中央改札口1付近
- 地下鉄京都駅 中央改札口1付近階下ホーム

• 実験機材

- 自由曲面ミラーカメラ 28台
- 画像処理用計算機 7台
- 解析用計算機 1台
- 映像記録装置 7台

自由曲面ミラーカメラによって 撮影された映像

京都駅実験

シミュレー 避難 ションモデル 誘導

超越的視点からの誘導

今後の予定

仮想京都駅 数十アバター (市民) インターネットから参加 数百エージェント(ソフト) 2004年 秋

他組織との連携

物理シミュレータとの結合

消防研究所 ホテルニュージャパンの火災の再現

フランス国際農業開発研究センター 環境シミュレータCORMAS

環境シミュレータとの結合

まとめ

Eitherine (shister (Eds.)

・ソフトウェア

- 地図情報システム Kyoto Search
- 仮想都市システム FreeWalk/Q
- 映像都市システム Town Digitizing
- 会議
 - デジタルシティワークショップ(京都,アムステルダム)
- 出版
 - 書籍 MIT Press
 - 論文集 Springer "Digital City"
 - 論文 CACM, IEEE Computerなど
- ・ 学際研究の人材育成

謝辞

- 科学技術振興機構
- デジタルシティ研究センター
- 京都大学情報学研究科 社会情報学専攻
- 大阪大学 工学研究科 知能・機能創成工学専攻
- ・ 和歌山大学システム工学研究科
- ・ NTT コミュニケーション科学基礎研究所
- · NTT サイバーソリューション研究所
- 京都市情報化推進室
- 京都市 交通局
- 京都高度技術研究所
- 京都大学 工学研究科 建築学専攻
- 京都大学 人間 · 環境学研究科
- 京都大学 防災研究所
- 福井大学 工学研究科 建築学専攻
- 京都市立 稲荷小学校
- 独立行政法人 消防研究所
- · Stanford大学 コミュニケーション学専攻
- ・ パリ第六大学 情報学研究所
- ・ 株式会社 数理システム
- 株式会社 キャドセンター
- ・ 株式会社 CRCソリューションズ