Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

CLASE 17 - 02/10/2025

Integrales impropias de primera especie

Definición 4.14

Decimos que la integral impropia $\int_a^{+\infty} f(x)dx$ es absolutamente convergente sii:

• $\int_a^{+\infty} |f(x)| dx$ es convergente

Teorema 4.15

Si $\int_a^{+\infty} f(x)dx$ es absolutamente convergente, entonces también es convergente.

La demostración es "análoga" a la versión de series de este teorema, cambiando lo que haya que cambiar.

Ejemplos 4.17

Ejemplo 1

Clasifiquemos la integral impropia $\int_1^{+\infty} \frac{\sin(x)}{x^2} dx$.

Observemos que tenemos la siguiente desigualdad:

$$\bullet \quad \left| \frac{\sin(x)}{x^2} \right| \le \frac{1}{x^2}$$

Entonces podemos usar comparación, y como $\int_1^{+\infty} \frac{1}{x^2} dx$ es convergente, también lo es $\int_1^{+\infty} |\frac{\sin(x)}{x^2}| dx$.

Por lo tanto probamos que $\int_1^{+\infty} \frac{\sin(x)}{x^2} dx$ es absolutamente convergente, lo que implica que también converge por el teorema anterior.

Ejemplo 2

La integral $\int_0^{+\infty} \sin(x^2) dx$ se denomina la integral de Fresnel y tiene muchas aplicaciones en física, especialmente en óptica.

Para clasificarla (primero entre 1 y $+\infty$), podemos realizarlo con el siguiente truco:

Figura 1

Figure 1: Figura 1

$$\begin{split} &\int_{1}^{+\infty} \sin(x^2) dx \\ &= \\ &\int_{1}^{+\infty} \frac{1}{2x} \sin(x^2) 2x dx \\ &= &(\text{integración por partes } (*_1)) \\ &\frac{-\cos(x^2)}{2x} \Big|_{1}^{+\infty} - \int_{1}^{+\infty} \frac{\cos(x^2)}{2x^2} dx \end{split}$$

Observación $(*_1)$: Lo que hacemos es lo siguiente:

$$\begin{cases} u = \frac{1}{2x} \to du = -\frac{1}{2x^2} \\ dv = \sin(x^2) 2x dx \to v = -\cos(x^2) \end{cases}$$

Ahora queremos verificar si los dos términos de la integral que hallamos convergen o no para determinar la convergencia de la integral original.

Primer término: converge

$$\begin{split} & \frac{-cos(x^2)}{2x} \Big|_1^{+\infty} \\ &= \\ & \left(\lim_{n \to \infty} \frac{-cos(x^2)}{2x} \right) + \frac{cos(1)}{2} \\ &= (\lim_{n \to \infty} \frac{-cos(x^2)}{2x} \to 0) \\ & \frac{cos(1)}{2} \end{split}$$

Segundo término: converge

$$\int_{1}^{+\infty} \frac{\cos(x^{2})}{2x^{2}} dx \text{ es absolutamente convergente}$$

$$\iff$$

$$\int_{1}^{+\infty} \Big| \frac{\cos(x^{2})}{2x^{2}} \Big| dx \text{ es convergente}$$

$$\iff$$

$$\frac{1}{2} \int_{1}^{+\infty} \Big| \frac{\cos(x^{2})}{x^{2}} \Big| dx \text{ es convergente}$$

Y esto último se cumple por criterio de comparación, pues:

$$\bullet \quad \left| \frac{\cos(x^2)}{x^2} \right| \le \frac{1}{x^2}$$

Y cómo $\int_1^{+\infty} \frac{1}{x^2} dx$ es convergente, $\int_1^{+\infty} \frac{\cos(x^2)}{2x^2} dx$ es absolutamente convergente. Y por lo tanto también es convergente.

Resumiendo: Con esto último podemos concluir que la integral de 1 a $+\infty$ es convergente, y observando que la integral de 0 a 1 es una integral que no tiene inconvenientes (continua y en un intervalo acotado), podemos afirmar que:

• $\int_0^{+\infty} \sin(x^2) dx$ es convergente.

Integrales impropias de segunda especie

Definición 4.19

Sea $f:(a,b]\to\mathbb{R}$ una función continua, y $F(x)=\int_x^b f(t)dt$. Entonces si el límite $\lim_{x\to a^+}F(x)=L<\infty$, decimos que la integral impropia $\int_a^b f(x)dx$ es convergente, y su valor es L. Si por el contrario el límite es infinito o no existe, decimos que la integral impropia diverge u oscila, respectivamente.

La definición cuando el dominio es [a, b) es análoga.

Ejemplo 4.20

Comencemos con $\frac{1}{x^{\alpha}}$ en (0,1]. Es decir, queremos clasificar $\int_0^1 \frac{1}{x^{\alpha}} dx$. Calculamos entonces la primitiva:

$$F(x)$$

$$=$$

$$\int_{x}^{1} \frac{1}{t^{\alpha}} dt$$

$$=$$

$$\left\{ \frac{t^{1-\alpha}}{1-\alpha} \Big|_{x}^{1} \text{ si } \alpha \neq 1 \right.$$

$$-\log(x) \text{ si } \alpha = 1$$

$$=$$

$$\left\{ \frac{1-x^{1-\alpha}}{1-\alpha} \text{ si } \alpha \neq 1 \right.$$

$$-\log(x) \text{ si } \alpha = 1$$

Por lo tanto, tenemos que:

$$\lim_{x \to 0^+} F(x) = \begin{cases} \frac{1}{1-\alpha} & \text{si } \alpha < 1 \\ +\infty & \text{si } \alpha \geq 1 \end{cases}$$

Y entonces la integral impropia $\int_0^1 \frac{1}{x^{\alpha}} dx$ converge solamente para $\alpha < 1$

Observación

Para integrales impropias de segunda especie, tenemos los mismos resultados de comparación, equivalentes y convergencia absoluta que teníamos para las de primera especie.

Ejemplo 4.21

Estudiemos la integral impropia $\int_0^1 \frac{1}{\sqrt{x-\sin(x)}} dx$.

El único punto donde se anula el denominador es x = 0, por lo que vamos a estudiar la función en ese punto para clasificar la integral. Por Taylor tenemos lo siguiente:

•
$$\sin(x) \sim x - \frac{x^3}{3!}$$

Entonces tenemos el siguiente razonamiento para el integrando:

$$\int_{0}^{1} \frac{1}{\sqrt{x - \sin(x)}} dx$$

$$\sim$$

$$\int_{0}^{1} \frac{1}{\sqrt{x - (x - \frac{x^{3}}{3!})}} dx$$

$$\sim$$

$$\int_{0}^{1} \frac{1}{\sqrt{\frac{x^{3}}{3!}}} dx$$

$$\sim$$

$$\int_{0}^{1} \frac{1}{\sqrt{x^{3}}} dx$$

$$\sim$$

$$\int_{0}^{1} \frac{1}{\sqrt{x^{3}}} dx$$

Por lo tanto, de acuerdo a lo visto en el ejemplo 4.20, esta integral diverge por el criterio de equivalentes.

Integrales mixtas

Cuando en una integral aparece mas de punto problemático (o dominio infinito), debemos partir la integral en suma de integrales que contengan solamente uno de esos puntos, y decimos que la integral original es convergente sii cada uno de los sumandos lo es.

Ejemplo 4.23

La integral impropia $\int_0^{+\infty} \frac{1}{x^{\alpha}} dx$ tiene que partirse en dos (pues en 0 no es acotada y el dominio es infinito). Entonces:

•
$$\int_0^{+\infty} \frac{1}{x^{\alpha}} dx = \int_0^1 \frac{1}{x^{\alpha}} dx + \int_1^{+\infty} \frac{1}{x^{\alpha}} dx$$

Pero observemos que la primera solo converge si $\alpha<1,$ y la segunda solo si $\alpha>1$

Ejemplo 4.24

Queremos clasificar $\int_{-\infty}^{+\infty} x dx$, por lo tanto por la definición tenemos que separar en:

•
$$\int_{-\infty}^{+\infty} x dx = \int_{-\infty}^{0} x dx + \int_{0}^{+\infty} x dx$$

De donde claramente podemos verificar que la integral diverge, pues ambos sus integrandos divergen.