浙江水学

本科实验报告

课程名称:		计算机网络基础
实验名称:		动态路由协议 OSPF 配置
姓	名:	彭子帆
学	院:	计算机学院
系:		软件工程
专	业:	软件工程
学	号:	3170105860
指导	教师:	陆系群

2019年 12 月 22 日

浙江大学实验报告

一、实验目的

- 1. 理解链路状态路由协议的工作原理。
- 2. 理解 OSPF 协议的工作机制。
- 3. 掌握配置和调试 OSPF 协议的方法。

二、 实验内容

- 使用网线连接 PC 和路由器,并配置 PC 和路由器各端口的 IP 地址, 让 PC 彼此能够与路由器接口互相 Ping 通;
- 用网线连接多个路由器,并配置互联端口的 IP 地址,使直接连接的 2 个路由器能相互 Ping 通;
- 在 Area 0 的路由器上启用 OSPF 动态路由协议,让各路由器能够互相学习到新的路由信息,进 而使区域内的 PC 能够相互 Ping 通;
- 在 Area 1 的路由器上启用 OSPF 动态路由协议,让区域内和区域间各路由器能够互相学习到新的路由信息;
- 在 Area 2 的路由器上启用 OSPF 动态路由协议,在 NBMA (非广播多路访问) 网络拓扑上配置 OSPF 协议,让区域内和区域间各路由器能够互相学习到新的路由信息;
- 在 Area 3(不与 Area 0 直接连接)的路由器上启用 0SPF 动态路由协议,在边界路由器上建立 虚链路,让 Area 3 的路由器能够学习到新的路由信息,进而使 Area 3 的路由器能够学习到其 他区域的路由信息;
- 在上述各种情况下,观察各路由器上的路由表和 OSPF 运行数据,并验证各 PC 能够相互 Ping 通;
- 断开某些链路,观察 OSPF 事件和路由表变化;
- 在 Area 边界路由器上配置路由聚合。

三、 主要仪器设备

PC 机、路由器、Console 连接线、直联网络线、交叉网络线(如果物理设备不足,可以使用模拟软件)。

四、 操作方法与实验步骤

- 按照拓扑图连接 PC 和路由器,其中 R1-R2 之间采用串口连接,数据链路层协议使用 HDLC; R5、R7、R8 之间采用 Frame Relay 交换机连接(Frame Relay 交换机的配置请参考 GNS3 指南)。
- 设计好 PC 和路由器各端口的 IP 地址、子网掩码。分配地址时请遵循下面的规则:
 - a) Area 0 使用 10.0.0.0/16 的网络地址进行扩展,每个子网分别使用 10.0.0.0/24、10.0.1.0/24、10.0.2.0/24 等子网地址。其中点对点连接的路由器之间的子网使用 10.0.123.240/28 进行扩展,可以最大程度的节约地址,例如使用串行掩码方案,网络地址 部分为 30 位,每个子网刚好有 2 个可用地址(去掉 1 个主机地址部分全 0 的和 1 个主机地址部分全 1 的),可以按如下方式进行分配:

R1-R2 互联接口: 10.0.123.241/30、10.0.123.242/30, 子网地址: 10.0.123.240/30;

R1-R3 互联接口: 10. 0. 123. 245/30、10. 0. 123. 246/30,子网地址: 10. 0. 123. 244/30;依次类推,R2、R3、R4、R6 之间的子网为(只需要 4 个地址): 10. 0. 123. 248/29,去掉全 0 全 1 地址后,还有 6 个地址可用。

b) Area 1、Area 2、Area 3 使用 10. X. 0. 0/16 的网络地址进行扩展,其中 X 为 Area 编号,例 如 Area 1 的 3 个子网分别使用 10. 1. 0. 0/24、10. 1. 1. 0/24、10. 1. 2. 0/24 等子网地址(同一个交换机上的多台路由器的接口属于同一个子网)。

- 配置各 PC 的的默认网关,分别设置为所连路由器的相应端口 IP 地址;
- 配置各路由器互联端口的 IP 地址, 使直连的 2 个路由器能相互 Ping 通;
- 先后给路由器 R1、R2、R3 配置 RIP 协议和 OSPF 协议,比较两者选择的路由差别(RIP 不考虑线路带宽,只考虑经过的路由器个数,OSPF 考虑线路 cost,带宽越大,cost 越小);
- 给 Area 1、Area 2 的路由器配置 OSPF 协议,观察区域间路由信息交换;
- 给 Area 3 的路由器配置 OSPF 协议。由于 Area 3 没有物理上直接与 Area 0 连接,所以需要利用 Area 1 作为中介,在 R4 和 R9 之间为 Area 3 建立一个虚链路。
- 观察各路由器的路由表,查看路由器做出的选择是否符合预期;
- 通过 Ping 检查各 PC 之间的联通性;
- 实时显示路由器之间交换的路由信息事件,理解 OSPF 协议交互过程;
- 断开某些网络连接,查看 OSPF 的数据变化以及路由表的变化,并测试 PC 间的联通性;

RIP相关命令参考

● 在路由器上启用 RIP 协议

Router(config)# router rip

将路由器各接口(子网)加入路由宣告:

Router(config-router)# network <ip_net>

OSPF 相关命令参考

● 给路由器的回环接口配置地址

Router(config)# interface loopback 0

Router(config-if)# ip address <ip> <mask>

● 在路由器上启用 OSPF 协议

Router(config)# router ospf process-id>

● 配置路由器接口(子网)所属 Area ID

Router(config-router)# network <ip net> <mask> area <area-id>

● 查看路由器的 OSPF 数据库 (可以查看 Router ID)

Router# show ip ospf database

● 手工指定 Router ID

Router(config-router)# router-id x. x. x. x

更换 Router ID 需要重启路由器或清除 OSPF 状态才能生效,其中

重启路由器命令:

Router# reload

清除 OSPF 状态命令:

Router# clear ip ospf process

● 观察各路由器的 OSPF 邻居关系,在广播网络中,为减少通信量,会自动选出一个 DR(Designated Router) 和一个 BDR (Backup Designated Router),其他路由器只与 DR、BDR 成为邻接关系。

Router# show ip ospf neighbor detail

● 观察路由器的 OSPF 接口状态 (可以查看 cost 值)

Router# show ip ospf interface

● 打开事件调试,实时显示路由器之间交换的路由信息事件

Router# debug ip ospf events

观察完毕后,可以关闭调试信息显示:

Router# no debug ip ospf events

● 在两个区域边界路由器之间建立虚链路,〈area-id〉填写用于传递数据的区域 ID,〈router ID〉 分别设为对方的 Router ID:

Router(config-router)# area <area-id> virtual-link <router ID>

● 在区域边界路由器上手工进行路由合并:

Router(config-router)# area <area-id> range <ip_net> <mask>

五、 实验数据记录和处理

以下实验记录需结合屏幕截图进行文字标注和描述,图片应大小合适、关键部分清晰可见(本文档中的截图仅用于示例,请更换成你自己的)。记录输入的命令时,直接粘帖文字即可(保留命令前面的提示符,如 R1#)。

1. 参考实验操作方法的说明,设计好每个 PC、路由器各接口的 IP 地址及掩码,并标注在拓扑图上。 设计的拓扑图(参考 GNS3 指南,在 FrameRelay 交换机上配置 R5-R7, R5-R9 之间的数据链路,每路由器 1 个物理端口):

2. 给路由器 R1、R2、R3 各接口配置 IP 地址并激活。配置 PC1、PC2 的 IP 地址和默认网关,测试 PC1 与 R1、PC2 与 R2 的连通性。

R1 配置命令(此处为截图形式,请使用文本形式,下同):

R1(config)#interface f0/0

R1(config-if)#ip address 10.0.0.1 255.255.255.0

R1(config-if)#no shutdown

R1(config-if)#exit

R1(config)#interface f0/1

R1(config-if)#ip address 10.0.123.245 255.255.255.252

R1(config-if)#no shutdown

R1(config-if)#exit

R1(config)#interface s0/0

R1(config-if)#ip address 10.0.123.241 255.255.255.252

R1(config-if)#encapsulation hdlc

```
R1(config-if)#clock rate 128000
R1(config-if)#no shutdown
R1(config-if)#exit
R2 配置命令:
R2(config)#interface f0/0
R2(config-if)#ip address 10.0.1.1 255.255.255.0
R2(config-if)#no shutdown
R2(config-if)#exit
R2(config)#interface f1/0
R2(config-if)#ip address 10.0.123.249 255.255.255.248
R2(config-if)#no shutdown
R2(config-if)#exit
R2(config)#interface s0/0
R2(config-if)#ip address 10.0.123.242 255.255.255.252
R2(config-if)#encap hdlc
R2(config-if)#no shutdown
R2(config-if)#exit
R3 配置命令:
R3(config)#interface f0/1
R3(config-if)#ip address 10.0.123.246 255.255.255.252
R3(config-if)#no shutdown
R3(config-if)#interface f1/0
R3(config-if)#ip address 10.0.123.250 255.255.255.248
R3(config-if)#no shutdown
R3(config-if)#exit
Ping 测试结果截图
```

PC1**→**R1:

```
PC-1> ping 10.0.0.1
84 bytes from 10.0.0.1 icmp_seq=1 tt1=255 time=18.797 ms
84 bytes from 10.0.0.1 icmp_seq=2 tt1=255 time=8.173 ms
84 bytes from 10.0.0.1 icmp_seq=3 tt1=255 time=9.447 ms
84 bytes from 10.0.0.1 icmp_seq=4 tt1=255 time=3.074 ms
84 bytes from 10.0.0.1 icmp_seq=5 tt1=255 time=9.379 ms
```

PC2→R2:

```
PC-2> ping 10.0.1.1
84 bytes from 10.0.1.1 icmp_seq=1 tt1=255 time=20.367 ms
84 bytes from 10.0.1.1 icmp_seq=2 tt1=255 time=7.784 ms
84 bytes from 10.0.1.1 icmp_seq=3 tt1=255 time=6.340 ms
84 bytes from 10.0.1.1 icmp_seq=4 tt1=255 time=0.729 ms
84 bytes from 10.0.1.1 icmp_seq=5 tt1=255 time=8.319 ms
```

---Part 1: 配置 RIP (用于和 OSPF 进行比较) ---

3. 在 R1、R2、R3 上启用 RIP 动态路由协议,并宣告各接口所在子网地址(版本要设置成 2):

R1 配置命令:

```
R1(config)#router rip
R1(config-router)#network 10.0.0.0
R1(config-router)#version 2
R1(config-router)#exit
```

R2 配置命令:

```
R2(config)#router rip
R2(config-router)#network 10.0.0.0
R2(config-router)#version 2
R2(config-router)#exit
```

R3 配置命令:

```
R3(config)#router rip
R3(config-router)#network 10.0.0.0
R3(config-router)#version 2
R3(config-router)#exit
```

4. 查看 R1、R2、R3 的路由表, 跟踪 PC1 到 PC2 的路由;

R1 路由表 (标出到 PC2 子网的路由,下一跳是哪个路由器):

```
10.0.0.0/8 is variably subnetted, 5 subnets, 3 masks

C 10.0.0.0/24 is directly connected. FastEthernet0/0

R 10.0.1.0/24 [120/1] via 10.0.123.242, 00:00:01, Serial0/0

C 10.0.123.240/30 is directly connected, Serial0/0

C 10.0.123.244/30 is directly connected, FastEthernet0/1

R 10.0.123.248/29 [120/1] via 10.0.123.246, 00:00:17, FastEthernet0/1

[120/1] via 10.0.123.242, 00:00:01, Serial0/0
```

R2 路由表 (标出到 PC1 子网的路由,下一跳是哪个路由器):

R3 路由表:

```
10.0.0.0/8 is variably subnetted, 5 subnets, 3 masks

R 10.0.0.0/24 [120/1] via 10.0.123.245, 00:00:03, FastEthernet0/1

R 10.0.1.0/24 [120/1] via 10.0.123.249, 00:00:07, FastEthernet1/0

R 10.0.123.240/30 [120/1] via 10.0.123.249, 00:00:07, FastEthernet1/0

[120/1] via 10.0.123.245, 00:00:03, FastEthernet0/1

C 10.0.123.244/30 is directly connected, FastEthernet0/1

C 10.0.123.248/29 is directly connected, FastEthernet1/0
```

PC1→PC2 的路由跟踪: (经过的路由器顺序是 R1 、 R2)

```
PC-1> trace 10.0.1.60
trace to 10.0.1.60, 8 hops max, press Ctrl+C to stop
1 10.0.0.1 9.921 ms 9.287 ms 9.169 ms
2 10.0.123.242 9.425 ms 9.375 ms 9.639 ms
3 * * *
4 *10.0.1.60 19.935 ms (ICMP type:3, code:3, Destination port unreachable)
```

---Part 2: 配置单域 OSPF (Area 0) ---

5. 启用路由器 R1 的 OSPF 动态路由协议,并配置各接口所属区域(为 Area 0), 其中进程 ID 请设置为学 号的后 2 位(全 0 者往前取值)。

R1 配置命令:

R1(config)#router ospf 60
R1(config-router)#network 10.0.0.0 0.0.255.255 area 0
R1(config-router)#exit

6. 先给 R2 的回环接口配置 IP 地址。然后再启用路由器 R2 的 OSPF 动态路由协议,设置包括回环接口在内的各接口所属区域(为 Area 0)。

R2 配置命令:

R2(config)#interface loopback 0
R2(config-if)#ip address 10.0.20.1 255.255.255.252
R2(config-if)#exit
R2(config)#router ospf 60
R2(config-router)#network 10.0.0.0 0.0.255.255 area 0
R2(config-router)#exit

7. 启用路由器 R3 的 OSPF 动态路由协议,手工指定 Router ID,并设置各接口所属区域为 Area 0。

R3 配置命令:

R3(config)#router ospf 60
R3(config-router)#router-id 10.0.30.1
R3(config-router)#network 10.0.0.0 0.0.255.255 area 0

8. 查看 OSPF 数据库,并标出各路由器的 Router ID。

R1 的 OSPF 数据库:

```
Rl#sh ip ospf database
            OSPF Router with ID (10.0.123.245) (Process ID 60)
                Router Link States (Area 0)
Link ID
               ADV Router
                                Age
                                                       Checksum Link count
                                            Seq#
10.0.20.1
                10.0.20.1
                                1568
                                            0x80000002 0x00E5B3 5
10.0.30.1
                10.0.30.1
                                1568
                                            0x80000001 0x003F90 2
10.0.123.245
                10.0.123.245
                               1567
                                            0x80000003 0x001756 4
                Net Link States (Area 0)
Link ID
                ADV Router
                                Age
                                            Seq#
                                                       Checksum
10.0.123.245
                10.0.123.245
                                1567
                                            0x80000001 0x00DFC1
10.0.123.249
                                1568
                                            0x80000001 0x00FC5D
```

从上图可知, R1 的 Router ID 为 10.0.123.245 (取自接口 <u>f0/1</u> 的 IP); 与 R1 连接的有 <u>2</u> 个路由器,其 ID 分别是 <u>10.0.20.1</u> 、 <u>10.0.30.1</u> ,有 <u>2</u> 条链路,其 ID 分别是 <u>10.0.123.245</u> 、 <u>10.0.123.250</u> 。 R2 的 OSPF 数据库:

R2#sh ip ospf database								
OSPF Router with ID (10.0.20.1) (Process ID 60)								
Router Link States (Area 0)								
Link ID	ADV Router	Age	Seq#	Checksum	Link	count		
10.0.20.1	10.0.20.1	617	0x80000003	0x00E3B4	5			
10.0.30.1	10.0.30.1	590	0x80000002	0x003D91	2			
10.0.123.245	10.0.123.245	724	0x80000004	0x001557	4			
	Net Link States (Area 0)							
Link ID	ADV Router	Age	Seq#	Checksum				
10.0.123.245	10.0.123.245	724	0x80000002	0x00DDC2				
10. <mark>0</mark> .123.249	10.0.20.1	617	0x80000002	0x00FA5E				

从上图可知, R2 的 Router ID 为 10.0.20.1 (取自接口 loopback 0 的 IP); 与 R1 连接的有 2 个 路由器,其 ID 分别是 10.0.30.1 、10.0.123.245 ,有 2 条链路,其 ID 分别是 10.0.123.245 、10.0.123.250 。

R3 的 OSPF 数据库:

```
R3#sh ip ospf database
            OSPF Router with ID (10.0.30.1) (Process ID 85)
                Router Link States (Area 0)
Link ID
                ADV Router
                                                        Checksum Link count
                                 Age
                                             Seq#
10.0.20.1
                                             0x80000004 0x00E1B5 5
                10.0.20.1
                                 1378
10.0.30.1
                                             0x80000003 0x003B92 2
                                 1342
10.0.123.245
                10.0.123.245
                                1480
                                             0x80000005 0x001358 4
                Net Link States (Area 0)
Link ID
                ADV Router
                                             Seq#
                                                         Checksum
                                 Age
                                             0x80000003 0x00DBC3
10.0.123.245
                10.0.123.245
                                 1479
                                             0x80000003 0x00F85F
10.0.123.249
                                 1377
```

从上图可知,R3 的 Router ID 为 10.0.30.1; 与 R3 连接的有 2 个路由器,其 ID 分别是 10.0.20.1、 10.0.123.245 , 有 2 条链路,其 ID 分别是 10.0.123.245 、 10.0.123.250 。

9. 在路由器 R1 上显示 OSPF 接口数据(命令: show ip ospf interface),标记各接口的 cost 值,网络类型,邻接关系及其 Router ID,广播类型的网络再标出 DR (Designed Router)或者 BDR (Backup Designed Router)角色。

R1 的 s0/0: (从图可知, s0/0 连接的网络类型为 POINT_TO_POINT, Cost= 64, 邻居 Router ID= 10.0.20.1)

```
SerialO/O is up, line protocol is up
Internet Address 10.0.123.241/30, Area 0
Process ID 60, Router ID 10.0.123.245, Network Type POINT_TO_POINT, Cost: 64
Transmit Delay is 1 sec, State POINT_TO_POINT
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
oob-resync timeout 40
Hello due in 00:00:09
Supports Link-local Signaling (LLS)
Index 2/2, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 1, maximum is 1
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1, Adjacent neighbor count is 1
Adjacent with neighbor 10.0.20.1
```

R1 的 f0/1:(f0/1 连接的网络类型为_BOARDCAST_, Cost=<u>10</u>_, 邻居 Router ID=<u>10.0.30.1</u>_, DR 的 Router ID 是<u>10.0.123.245</u>_, 接口 IP 是<u>10.0.123.245</u>_, BDR 的 Router ID 是<u>10.0.30.1</u>_, 接口 IP 是<u>10.0.123.246</u>_)

```
FastEthernet0/1 is up, line protocol is up
 Internet Address 10.0.123.245/30, Area 0
 Process ID 60, Router ID 10.0.123.245, Network Type BROADCAST, Cost: 10
 Transmit Delay is 1 sec, State DR, Priority 1
 Designated Router (ID) 10.0.123.245, Interface address 10.0.123.245
 Backup Designated router (ID) 10.0.30.1, Interface address 10.0.123.246
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   oob-resync timeout 40
   Hello due in 00:00:05
 Supports Link-local Signaling (LLS)
 Index 3/3, flood queue length 0
 Next 0x0(0)/0x0(0)
 Last flood scan length is 0, maximum is 2
 Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1. Adjacent neighbor count is 1
   Adjacent with neighbor 10.0.30.1 (Backup Designated Router)
 Suppress hello for 0 neighbor(s)
```

R1 的 f0/0: (f0/1 连接的网络类型为<u>BOARDCAST</u>, Cost=<u>10</u>, DR 的 Router ID 是<u>10.0.123.245</u>, 接口IP 是 10.0.0.1)

```
FastEthernet0/0 is up, line protocol is up
Internet Address 10.0.0.1/24, Area 0
Process ID 60, Router ID 10.0.123.245, Network Type BROADCAST, Cost: 10
Transmit Delay is 1 sec, State DR, Priority 1
Designated Router (ID) 10.0.123.245, Interface address 10.0.0.1
No backup designated router on this network
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
oob-resync timeout 40
Hello due in 00:00:06
Supports Link-local Signaling (LLS)
Index 1/1, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 0, maximum is 0
Last flood scan time is 0 msec, maximum is 0
Suppress hello for 0 neighbor(s)
```

10. 查看 R1、R2、R3 的路由表,与 RIP 比较,OSPF 所选择的路由有何不同,谁的优先级高? 跟踪 PC1 到 PC2 的路由。

R1 路由表: (从图可知,对于 PC2 的网络,OSPF 选择的下一跳 IP 地址是 10.0.123.246 ,由于 OSPF 的路由管理距离为 110,比 RIP 的管理距离 120 优先级更高,所以把之前 RIP 选择的路由替换了)

```
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      El - OSPF external type 1, E2 - OSPF external type 2
      i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
      ia - IS-IS inter area, * - candidate default, U - per-user static route
      o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
    10.0.0.0/8 is variably subnetted, 7 subnets, 4 masks
       10.0.0.0/24 is directly connected, FastEthernet0/0
       10.0.1.0/24 [110/21] via 10.0.123.246, 02:06:56, FastEthernet0/1
       10.0.20.0/30 [120/1] via 10.0.123.242, 00:00:17, Serial0/0
0
C
       10.0.20.1/32 [110/12] via 10.0.123.246, 02:06:56, FastEthernet0/1
       10.0.123.244/30 is directly connected, FastEthernet0/1
       10.0.123.248/29 [110/11] via 10.0.123.246, 02:06:58, FastEthernet0/1
```

R2 路由表: (从图可知,对于 PC1 的网络,OSPF 选择的下一跳 IP 地址是 10.0.123.250)

```
R2#sh ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
        D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
        N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        El - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
        ia - IS-IS inter area, * - candidate default, U - per-user static route
        o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 6 subnets, 3 masks
0        10.0.0.0/24 [110/21] via 10.0.123.250, 02:07:14, FastEthernet1/0
C        10.0.1.0/24 is directly connected, FastEthernet0/0
C        10.0.20.0/30 is directly connected, Loopback0
C        10.0.123.240/30 is directly connected, Serial0/0
O        10.0.123.244/30 [110/11] via 10.0.123.250, 02:07:14, FastEthernet1/0
C        10.0.123.248/29 is directly connected, FastEthernet1/0
```

R3 路由表:

```
PC-1> trace 10.0.1.60

trace to 10.0.1.60, 8 hops max, press Ctrl+C to stop

1 10.0.0.1 15.475 ms 21.428 ms 15.771 ms

2 10.0.123.246 50.369 ms 47.415 ms 49.356 ms

3 10.0.123.249 81.546 ms 80.888 ms 79.603 ms

4 * * *

5 *10.0.1.60 75.277 ms (ICMP type:3, code:3, Destination port unreachable)
```

- 11. 断开 R1 和 R3 的接口(在 R1 或 R3 上 shutdown 该接口),再次显示 R1 的路由表,标记到达 PC2 所在子 网的下一跳。
- R1 的路由表:

```
Rl#sh ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/24 is directly connected, FastEthernet0/0

10.0.1.0/24 [110/74] via 10.0.123.242, 00:00:04, Serial0/0

R 10.0.20.0/30 [120/1] via 10.0.123.242, 00:00:24, Serial0/0

0 10.0.123.240/30 is directly connected, Serial0/0

10.0.123.248/29 [110/65] via 10.0.123.242, 00:00:04, Serial0/0
```

12. 保存 R1 配置后(在 R1 上输入命令: write)重启路由器(右键菜单 reload),查看 R1 的 Router ID 是否发生变化,变成了 10.0.123.241 ,取自 s0/0 接口的 IP 地址。原因是由于接口 f0/1 断开了,故其上的 IP 地址也暂时不可用,OSPF于是选择了另一个可用 IP 地址作为 Router ID,而原来的 Router ID 也未消失,看上去是来自另一台不存在的路由器。而 R2 配置了回环接口,OSPF 会优先选择不会断开的回环接口的 IP 地址作为 Router ID,就不会出现上述情况。

R1的OSPF数据库:

```
Rl#sh ip ospf database
            OSPF Router with ID (10.0.123.241) (Process ID 60)
                Router Link States (Area 0)
Link ID
                ADV Router
                                Age
                                                       Checksum Link count
                                            0x80000008 0x005146 5
10.0.20.1
                10.0.20.1
                                11
10.0.30.1
                10.0.30.1
                                            0x80000006 0x00E069 2
10.0.123.241
                10.0.123.241
                                            0x80000003 0x004243 3
10.0.123.245
                10.0.123.245
                                243
                                            0x80000008 0x00F780 3
               Net Link States (Area 0)
Link ID
               ADV Router
                                Age
                                            Seg#
                                                       Checksum
10.0.123.249
                                1366
                                            0x80000005 0x00F461
```

- 13. 在 R1 上打开 OSPF 事件调试 (命令: debug ip ospf events), 然后重新连接 R1 和 R3 的接口 (在 R1 或 R3 上 no shutdown 该接口), 等与 R3 的邻居关系为 Full 后关闭 debug, 最后查看邻居关系。
- R1 和 R3 重新建立邻接关系的事件记录: (从图可知,邻接关系建立经历了 5 个状态,分别是 INIT 、

<u>2WAY</u> <u>EXSTART</u> <u>EXCHANGE</u> <u>FULL</u>

```
*Mar 1 00:03:37.031: OSFF: Rcv hello from 10.0.30.1 area 0 from FastEthernet0/1 10.0.123.246
*Mar 1 00:03:37.031: OSFF: 2 Way Communication to 10.0.30.1 on FastEthernet0/1, state 2WAY
*Mar 1 00:03:37.035: OSFF: Elect BDR 10.0.123.241
*Mar 1 00:03:37.035: OSFF: Elect BDR 10.0.20.1
*Mar 1 00:03:37.035: OSFF: Elect DR 10.0.30.1
*Mar 1 00:03:37.039: OSFF: Send DBD to 10.0.30.1 (Id) BDR: 10.0.123.241 (Id)
*Mar 1 00:03:37.039: OSFF: Send DBD to 10.0.30.1 on FastEthernet0/1 seq 0x2137 opt 0x52 flag 0x7 len 32
*Mar 1 00:03:37.039: OSFF: Send bBD to 10.0.30.1 on FastEthernet0/1 seq 0x2137 opt 0x52 flag 0x7 len 32
*Mar 1 00:03:37.039: OSFF: Send bBD to 10.0.123.246 area 0 on FastEthernet0/1 from 10.0.123.245
*Mar 1 00:03:37.043: OSFF: End of hello processing
*RI(config)#
*Mar 1 00:03:37.043: OSFF: End of hello processing
*RI(config)#
*Mar 1 00:03:39.995: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up
*Mar 1 00:03:39.995: %LINK-3-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up
*Mar 1 00:03:40.111: OSFF: Send hello to 224.0.0.5 area 0 on FastEthernet0/0 from 10.0.0.1
*Mar 1 00:03:40.115: OSFF: Send hello to 224.0.0.5 area 0 on Serial/0/0 from 10.0.123.241
*Mar 1 00:03:42.039: OSFF: Send bBD to 10.0.30.1 on FastEthernet0/1 seq 0x2137 opt 0x52 flag 0x7 len 32
*Mar 1 00:03:42.039: OSFF: Send BBD to 10.0.30.1 on FastEthernet0/1 seq 0x2137 opt 0x52 flag 0x7 len 32
*Mar 1 00:03:42.039: OSFF: First DBD and we are not SLAVE
*Mar 1 00:03:42.057: OSFF: Rcv DBD from 10.0.30.1 on FastEthernet0/1 seq 0x2137 opt 0x52 flag 0x7 len 32 mtu
*1500 state EXSTART
*Mar 1 00:03:42.075: OSFF: First DBD and we are not SLAVE
*Mar 1 00:03:42.075: OSFF: Rcv DBD from 10.0.30.1 on FastEthernet0/1 seq 0x2137 opt 0x52 flag 0x1 len 32
*Mar 1 00:03:42.075: OSFF: Rcv DBD from 10.0.30.1 on FastEthernet0/1 seq 0x2138 opt 0x
```

R1 的 OSPF 邻居详细信息:

```
Rl#sh ip ospf neighbor detail

Neighbor 10.0.30.1, interface address 10.0.123.246

In the area 0 via interface rastEthernet0/1

Neighbor priority is 1, State is FULL, 6 state changes

DR is 10.0.123.246 BDR is 10.0.123.245

Options 1s 0x12 in Hello (E-bit L-bit)

Options is 0x52 in DBD (E-bit L-bit)

Options is 0x52 in DBD (E-bit L-bit)

LLS Options is 0x1 (LR)

Dead timer due in 00:00:38

Neighbor is up for 00:07:29

Index 2/2, retransmission queue length 0, number of retransmission 0

First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)

Last retransmission scan length is 0, maximum is 0

Last retransmission scan time is 0 msec, maximum is 0 msec

Neighbor 10.0.20.1, interface address 10.0.123.242

In the area 0 via interface Serial0/0

Neighbor priority is 0, State is FULL, 12 state changes

DR is 0.0.0.0 BDR is 0.0.0.0

Options is 0x12 in Hello (E-bit L-bit)

Options is 0x52 in DBD (E-bit L-bit)

Options is 0x52 in DBD (E-bit L-bit)

LLS Options is 0x1 (LR)

Dead timer due in 00:00:37

Neighbor is up for 00:10:33

Index 1/1, retransmission queue length 0, number of retransmission 0

First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)

Last retransmission scan length is 0, maximum is 0

Last retransmission scan time is 0 msec, maximum is 0 msec
```

14. 给 R4、R6 的回环接口、f0/0 接口配置 IP 地址并激活,启用 OSPF 协议,接口均属于 Area 0。过一会儿查看 R4 和 R6 的邻居信息(由于 R2、R3、R4、R6 在同一个广播网络中,四台路由器并不会都成为邻接关系,而是选出 DR、BDR,然后各路由器与 DR、BDR 进行路由信息交换)。

R4 配置命令:

```
R4#config t
```

R4(config)#interface loopback 0

R4(config-if)#ip address 10.0.40.1 255.255.255.252

R4(config-if)#exit

R4(config)#interface f0/0

R4(config-if)#ip address 10.0.123.251 255.255.255.248

R4(config-if)#no shutdown

R4(config-if)#exit

R4(config)#router ospf 60

R4(config-router)#network 10.0.0.0 0.0.255.255 area 0

R4(config-router)#exit

R6 配置命令:

R6#config t

R6(config)#interface loopback 0

R6(config-if)#ip address 10.0.60.1 255.255.255.252

R6(config-if)#exit

R6(config)#interface f0/0

R6(config-if)#ip address 10.0.123.252 255.255.255.248

R6(config-if)#no shutdown

R6(config-if)#exit

R6(config)#router ospf 60

R6(config-router)#network 10.0.0.0 0.0.255.255 area 0

R6(config-router)#exit

R4 上查看邻居关系(与 R6 是邻居,但不建立邻接关系,重启后可能会变化):

R4#sh ip ospf neighbor Neighbor ID Pri State Dead Time Address Interface FULL/DR 00:00:39 10.0.123.249 FastEthernet0/0 10.0.20.1 FULL/BDR 10.0.123.250 FastEthernet0/0 2WAY/DROTHER

R6 上查看邻居关系(与 R4 是邻居,但不建立邻接关系,重启后可能会变化):

R6#sh ip ospf	neighbo	or			
Neighbor ID	Pri	State	Dead Time	Address	Interface
10.0.20.1	1	FULL/DR	00:00:37	10.0.123.249	FastEthernet0/0
10.0.30.1	1	FULL/BDR	00:00:30	10.0.123.250	FastEthernet0/0
10.0.40.1	1	2WAY/DROTHER	00:00:39	10.0.123.251	FastEthernet0/0

---Part 3: 配置多域 OSPF---

15. 给 R4 的 f0/1 接口、R5 的回环接口、f0/1 和 f0/0 接口配置 IP 地址、激活端口,并启用 OSPF 协议,各 接口均属于 Area 1。配置 PC3 的 IP 地址和默认路由。过一会儿,查看 R2、R5 上的路由表,标出区域 间路由(IA),测试PC3与PC1的连通性。

R4 配置命令(替换成文本形式):

```
R4(config)#interface f0/1
R4(config-if)#ip address 10.1.0.1 255.255.255.0
R4(config-if)#no shutdown
R4(config-if)#router ospf 60
R4(config-router)#network 10.1.0.0 0.0.255.255 area 1
R4(config-router)#exit
```

```
R5 配置命令:
R5(config)#interface f0/1
R5(config-if)#ip address 10.1.0.3 255.255.255.0
R5(config-if)#no shutdown
R5(config)#interface f0/0
R5(config-if)#ip address 10.1.1.5 255.255.255.0
R5(config-if)#no shutdown
R5(config)#interface loopback 0
R5(config-if)#ip address 10.1.50.1 255.255.255.252
R5(config)#router ospf 60
R5(config-router)#network 10.1.0.0 0.0.255.255 area 1
```

PC3 配置命令:

PC-3> ip 10.1.1.60 255.255.255.0 10.1.1.5

R2 的路由表: 目标为 Area 1 中的子网的下一跳 IP 地址均为 10.0.123.251 , 从 f1/0 接口发出。

```
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
            i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
            ia - IS-IS inter area, * - candidate default, U - per-user static route
            o - ODR, P - periodic downloaded static route
              10.1.1.0/24 [110/21] via 10.0.123.251, 00:11:16, FastEthernet1/0 10.0.0.0/24 [110/21] via 10.0.123.250, 00:12:56, FastEthernet1/0 10.1.0.0/24 [110/11] via 10.0.123.251, 00:12:56, FastEthernet1/0 10.0.1.0/24 is directly connected, FastEthernet0/0
O IA
              10.0.20.0/30 is directly connected, Loopback0
              10.0.60.1/32 [110/2] via 10.0.123.252, 00:12:57, FastEthernet1/0 10.1.50.1/32 [110/12] via 10.0.123.251, 00:11:18, FastEthernet1/0 10.0.123.240/30 is directly connected, Serial0/0
```

R5 的路由表: 目标为 Area 0 中的子网的下一跳 IP 地址均为 10.1.0.1 , 从 f0/1 接口发出。

```
R5#sh ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted, 11 subnets, 4 masks
        10.1.1.0/24 is directly connected, FastEthernet0/0
        10.0.0.0/24 [110/40] via 10.1.0.1, 00:12:36, FastEthernet0/1
        10.1.0.0/24 is directly connected, FastEthernet0/1
O IA
        10.0.1.0/24 [110/30] via 10.1.0.1, 00:12:36, FastEthernet0/1
O IA
        10.0.20.1/32 [110/21] via 10.1.0.1, 00:12:36, FastEthernet0/1
        10.0.40.1/32 [110/11] via 10.1.0.1, 00:12:36, FastEthernet0/1
        10.0.60.1/32 [110/21] via 10.1.0.1, 00:12:38, FastEthernet0/1 10.1.50.0/30 is directly connected, Loopback0
O IA
O IA
        10.0.123.240/30 [110/84] via 10.1.0.1, 00:12:38, FastEthernet0/1
O IA
        10.0.123.244/30 [110/30] via 10.1.0.1, 00:12:38, FastEthernet0/1
        10.0.123.248/29 [110/20] via 10.1.0.1, 00:12:38, FastEthernet0/1
O IA
```

PC3→PC1 的连通性:

```
PC-3> ping 10.0.0.60

10.0.0.60 icmp_seq=1 timeout

84 bytes from 10.0.0.60 icmp_seq=2 ttl=60 time=52.203 ms

84 bytes from 10.0.0.60 icmp_seq=3 ttl=60 time=59.682 ms

84 bytes from 10.0.0.60 icmp_seq=4 ttl=60 time=42.200 ms

84 bytes from 10.0.0.60 icmp_seq=5 ttl=60 time=83.181 ms
```

16. 分别在 R2、R4、R5 上显示 OSPF 数据库信息,关注是否出现其他 Area 的信息。

R2: 没有 Area 1 的具体信息,但是该区域的子网地址 10.1.0.0 、 10.1.1.0 、 10.1.50.1 由路由器 R4 汇聚 后以区域间链路的形式进行通告。

R2#sh ip ospf d	atabase					
. OSP	F Router with ID	(10.0.20.1)	(Process I	D 60)		
	Router Link Sta	tes (Area 0)				
Link ID	ADV Router	Age	Seq#			count
10.0.20.1	10.0.20.1	107	0x80000009	0x004F47		
10.0.30.1	10.0.30.1	59	0x80000008	0x004780	2	
10.0.40.1	10.0.40.1	1258	0x80000004	0x005C1E	2	
10.0.60.1	10.0.60.1	1428	0x80000002	0x00C27D	2	
10.0.123.241	10.0.123.241	12	0x80000006	0x005B16	4	
10.0.123.245	10.0.123.245	2228	0x80000008	0x00F780	3	
	Net Link States	(Area 0)				
Link ID	ADV Router	Age	Seq#	Checksum		
10.0.123.246	10.0.30.1	59	0x80000002	0x0030C5		
10.0.123.249	10.0.20.1	1362	0x80000008	0x0018B8		
	Summary Net Lin	k States (Are	ea 0)			
Link ID	ADV Router	Age	Seg#	Checksum		
	10.0.40.1		0x80000001	0x00E50F		
10.1.1.0	10.0.40.1	1153	0x80000001	0x003FAA		
10.1.50.1	10.0.40.1	1173	0x80000001	0x00BD03		

R5: 没有 Area <u>0</u>的具体信息,但是该区域的子网地址全部由路由器 <u>R4</u> 汇聚后以区域间链路的形式进行通告。

R5#sh ip osp	f database			
	OSPF Router with I	D (10.1.50	.1) (Process ID 60)	
	Router Link St	ates (Area	1)	
10.0.40.1		1253	Seq# Checksum Link cou 0x80000002 0x00B0F8 1 0x80000002 0x00F527 3	int
	Net Link State	s (Area 1)		
			Seq# Checksum	
10.1.0.1	10.0.40.1	1253	0x80000001 0x005C2D	
	Summary Net Li	nk States	(Area 1)	
Link ID	ADV Router	Age	Seq# Checksum	
10.0.0.0	10.0.40.1	1354	0x80000001 0x00BA27	
10.0.1.0	10.0.40.1	1354	0x80000001 0x004B9F	
10.0.20.1	10.0.40.1	1354	0x80000001 0x0015CA	
10.0.40.1	10.0.40.1	1354	0x80000001 0x00D302	
10.0.60.1	10.0.40.1	1354	0x80000001 0x005B5C	
			0x80000001 0x00AAA1	
		1354	0x80000001 0x00641A	
10.0.123.248	10.0.40.1	1361	0x80000001 0x00BFC8	

R4: 有 Area 1 和 Area 0 的具体信息,由于 R4 是区域边界路由器 (ABR),所以对区域内的链路进行了汇聚,然后以区域间路由的形式向其他区域进行链路状态通告 (LSA),其中:

向 Area 0 通告的属于 Area 1 的链路有 <u>10.1.0.0</u> 、 <u>10.1.1.0</u> 、 <u>10.1.50.1</u> ;
向 Area 1 通告的属于 Area 0 的链路有 <u>10.0.0.0</u> 、 <u>10.0.1.0</u> 、 <u>10.0.20.1</u> 、 <u>10.0.40.1</u> 、
<u>10.0.60.1</u> 、 <u>10.0.123.240</u> 、 <u>10.0.123.244</u> 、 <u>10.0.123.248</u> 。

R4#sh ip ospf da	atabase	_				
OSPI	F Router with ID	(10.0.40.1)	(Process II	D 60)		
	Router Link Star	tes (Area 0)				
Link ID	ADV Router	Age	Seq#	Checksum	Link	count
10.0.20.1		264	0x80000009			
10.0.30.1	10.0.30.1	215	0x80000008	0x004780	2	
10.0.40.1	10.0.40.1	1413	0x80000004	0x005C1E	2	
10.0.60.1	10.0.60.1	1587	0x80000002	0x00C27D	2	
10.0.123.241	10.0.123.241	169	0x80000006	0x005B16	4	
10.0.123.245	10.0.123.245	2386	0x800000008	0x00F780	3	
	Net Link States	(Area 0)				
Link ID	ADV Router	Age	Seq#	Checksum		
10.0.123.246	10.0.30.1	215	0x80000002	0x0030C5		
10.0.123.249	10.0.20.1	1520	0x80000008	0x0018B8		
	Summary Net Lin	k States (Are	ea 0)			
Link ID	ADV Router	Age	Seq#	Checksum		
10.1.0.0		1409	0x80000001			
10.1.1.0	10.0.40.1	1309	0x80000001	0x003FAA		
10.1.50.1	10.0.40.1	1319	0x80000001	0x00BD03		

	Router Link Sta	tes (Area 1)		
Link ID 10.0.40.1 10.1.50.1	ADV Router 10.0.40.1 10.1.50.1	Age 1324 1373		Checksum Link count 0x00B0F8 1 0x00F527 3
	Net Link States	(Area 1)		
Link ID 10.1.0.1	ADV Router 10.0.40.1	Age 1372	Seq# 0x80000001	
	Summary Net Lin	k States (Ar	ea 1)	
10.0.123.240 10.0.123.244	10.0.40.1 10.0.40.1	1475 1475 1475 1475	Seq# 0x80000001 0x80000001 0x80000001 0x80000001 0x80000001 0x80000001 0x80000001	0x00BA27 0x004B9F 0x0015CA 0x00D302 0x005B5C 0x00AAA1 0x00641A

- 17. 分别在 R1、R5 上查看区域边界路由器(ABR)信息(命令: show ip ospf border-routers)
- R1: 当前已知的区域 0 内的 ABR 的 IP 地址为 10.0.40.1 , 下一跳 IP 地址为 10.0.123.246 。

```
Rl#show ip ospf border-routers

OSPF Process 60 internal Routing Table

Codes: i - Intra-area route, I - Inter-area route

i 10.0.40.1 [11] via 10.0.123.246, FastEthernet0/1, ABR, Area 0, SPF 9
```

R5: 当前已知的区域 1 内的 ABR 的 IP 地址为 10.0.40.1 , 下一跳 IP 地址为 10.1.0.1 。

```
R5#show ip ospf border-routers

OSPF Process 60 internal Routing Table

Codes: i - Intra-area route, I - Inter-area route

i 10.0.40.1 [10] via 10.1.0.1, FastEthernet0/1, ABR, Area 1, SPF 2
```

18. 给 R6 的 f0/1、R8 的各接口配置 IP 地址并激活,启用 OSPF 协议,各接口均属于 Area 2。配置 PC4 的 IP 地址和默认路由。过一会,查看 R8 上的路由表,标出 Area 1 的区域间路由,测试 PC4 与 PC1、PC3 的连通性。

R6 配置命令:

```
R6(config)#interface f0/1
R6(config-if)#ip address 10.2.0.1 255.255.255.0
R6(config-if)#no shutdown
R6(config-if)#exit
R6(config)#router ospf 60
R6(config-router)#network 10.2.0.0 0.0.255.255 area 2
R6(config-router)#exit
```

R8 配置命令:

```
R8(config)#interface f0/1
R8(config-if)#ip address 10.2.0.3 255.255.255.0
R8(config-if)#no shutdown
R8(config)#interface f0/0
R8(config-if)#ip address 10.2.2.1 255.255.255.0
R8(config-if)#no shutdown
R8(config)#interface f1/0
R8(config-if)#ip address 10.2.1.1 255.255.255.0
R8(config-if)#no shutdown
R8(config-if)#no shutdown
R8(config-if)#no shutdown
R8(config-if)#no shutdown
R8(config-if)#ip address 10.2.80.1 255.255.255.255.255
```

R8(config)#router ospf 60
R8(config-router)#network 10.2.0.0 0.0.255.255 area 2

R8 的路由表: 如图所示,区域间路由包含了 Area 1 和 Area 0 的地址,其中 Area 1 的子网地址有 10.0.20.0、

10.0.60.0 \ 10.0.123.148 \ \cdot

```
R8#sh ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
        D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
        N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2
            - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
        o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
         10.2.1.0/24 is directly connected, FastEthernet1/0
         10.1.0.0/24 [110/30] via 10.2.0.1, 00:04:53, FastEthernet0/1
O IA
         10.0.1.0/24 [110/30] via 10.2.0.1, 00:04:53, FastEthernet0/1
         10.0.20.1/32 [110/21] via 10.2.0.1, 00:04:54, FastEthernet0/1 10.0.40.1/32 [110/21] via 10.2.0.1, 00:04:54, FastEthernet0/1 10.0.60.1/32 [110/11] via 10.2.0.1, 00:04:54, FastEthernet0/1 10.1.50.1/32 [110/31] via 10.2.0.1, 00:04:54, FastEthernet0/1
O IA
O IA
O IA
         10.2.80.0/30 is directly connected, Loopback0
         10.0.123.240/30 [110/84] via 10.2.0.1, 00:04:56, FastEthernet0/1
O IA
         10.0.123.244/30 [110/30] via 10.2.0.1, 00:04:56, FastEthernet0/1
         10.0.123.248/29 [110/20] via 10.2.0.1, 00:04:57, FastEthernet0/1
```

PC4→PC1 的连通性:

```
PC-4> ping 10.0.0.60

10.0.0.60 icmp_seq=1 timeout

10.0.0.60 icmp_seq=2 timeout

84 bytes from 10.0.0.60 icmp_seq=3 ttl=60 time=47.568 ms

84 bytes from 10.0.0.60 icmp_seq=4 ttl=60 time=51.504 ms

84 bytes from 10.0.0.60 icmp_seq=5 ttl=60 time=42.987 ms
```

PC4→PC3 的连通性:

```
PC-4> ping 10.1.1.60

10.1.1.60 icmp_seq=1 timeout

10.1.1.60 icmp_seq=2 timeout

84 bytes from 10.1.1.60 icmp_seq=3 tt1=60 time=135.666 ms

84 bytes from 10.1.1.60 icmp_seq=4 tt1=60 time=133.311 ms

84 bytes from 10.1.1.60 icmp_seq=5 tt1=60 time=134.346 ms
```

19. 如果之前未配置 Frame Relay 数据链路,请在此时进行配置(参考 GNS3 指南)。

FR 交换机的虚链路配置表截图:

Х

20. 给 R5 的 s0/2 接口配置封装协议为 Frame Relay(命令: encapsulation frame-relay,由于 GNS3 自带的 FR 交换机只支持 ANSI 模式,而路由器默认的是 Cisco,所以需再加一句 frame-relay lmi-type ANSI)并 激活,然后创建 2 个子接口,配置其 IP 地址、接口 DLCI(命令: frame-relay interface-dlci 〈dlci〉,dlci 值等于 Frame Relay 交换机上定义的数据链路相关 DLCI 值),最后配置 R5 的 s2/0 接口属于 Area 1。

R5 配置命令:

R5(config)#interface s0/2

R5(config-if)#encapsulation frame-relay

R5(config-if)#frame-relay lmi-type ANSI

R5(config-if)#no shutdown

R5(config-if)#exit

R5(config)#interface s0/2.1

R5(config-subif)#ip address 10.1.2.5 255.255.25.0

R5(config-subif)#frame-relay interface-dlci 101

R5(config-fr-dlci)#exit

R5(config-subif)#exit

R5(config)#interface s0/2.2

R5(config-subif)#ip address 10.1.2.6 255.255.255.0

R5(config-subif)#frame-relay interface-dlci 102

R5(config-fr-dlci)#exit

R5(config-subif)#exit

21. 给 R7 的各接口配置 IP 地址、激活,其中回环接口和 f0/0 接口属于 Area 2, s2/0 接口属于 Area 1,配置 s2/0 封装协议为 Frame Relay, DLCI 值设为 Frame Relay 交换机上 R5-R7 之间数据链路的相关 DLCI 值。

R7 配置命令:

```
R7(config)#interface f0/0
R7(config-if)#ip address 10.2.2.3 255.255.255.0
R7(config-if)#no shutdown
R7(config)#interface s0/0
R7(config-if)#ip address 10.1.2.7 255.255.255.0
R7(config-if)#encapsulation frame-relay
R7(config-if)#frame-relay lmi-type ANSI
R7(config-if)#frame-relay interface-dlci 202
R7(config-if)#no shutdown
R7(config-if)#no shutdown
R7(config)#interface loopback 0
R7(config-if)#ip address 10.2.70.1 255.255.252
R7(config)#router ospf 60
R7(config-router)#network 10.2.0.0 0.0.255.255 area 2
R7(config-router)#network 10.1.0.0 0.0.255.255 area 1

在 R7 上查看 Frame Relay 映射(命令: show frame-relay map):
```

```
R7#show frame-relay map
Serial0/0 (up): ip 10.1.2.5 dlci 202(0xCA,0x30A0), dynamic,
broadcast,, status defined, active
```

在 R5 上查看 Frame Relay 映射 (命令: show frame-relay map):

```
R5#show frame-relay map
Serial0/1.1 (up): point-to-point dlci, dlci 101(0x65,0x1850), broadcast
status defined, active
Serial0/1.2 (up): point-to-point dlci, dlci 102(0x66,0x1860), broadcast
status defined, active
```

在 R7 上测试到 R5 的连通性(由于 R5-R7 采用的是点对点 Frame Relay 连接,只有 R5 的 1 个子接口地址可以通):

```
Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.2.5, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 20/49/68 ms

R7#ping 10.1.2.6

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.2.6, timeout is 2 seconds:
....

Success rate is 0 percent (0/5)
```

22. 给 R9 的各接口配置 IP 地址、激活,其中回环接口和 f0/1 接口属于 Area 3, s2/0 接口属于 Area 1,配置 s2/0 封装协议为 Frame Relay, DLCI 值设为 Frame Relay 交换机上 R5-R9 之间数据链路的相关 DLCI 值。

R9 配置命令:

```
R9(config)#interface f0/1
R9(config-if)#ip addr 10.3.0.1 255.255.255.0
R9(config-if)#no shut
R9(config)#interface s0/0
R9(config-if)#ip addr 10.1.2.9 255.255.255.0
R9(config-if)#encap frame-relay
R9(config-if)#frame-relay lmi-type ANSI
R9(config-if)#frame-relay interface-dlci 203
R9(config-if)#no shut
R9(config)#interface loopback 0
R9(config-if)#ip addr 10.3.90.1 255.255.255.252
R9(config)#router ospf 9
R9(config-router)#network 10.3.0.0 0.0.255.255 area 3
R9(config-router)#network 10.1.0.0 0.0.255.255 area 1
R9(config-router)#exit
在 R9 上查看 Frame Relay 映射 (命令: show frame-relay map):
```

```
R9#show frame-relay map
Serial0/0 (up): ip 10.1.2.6 dlci 203(0xCB,0x30B0), dynamic,
broadcast,, status defined, active
```

在 R9 上测试到 R5 的连通性(由于 R5-R9 采用的是点对点 Frame Relay 连接,只有 R5 的 1 个子接口地址可以通。如果在 R5 上测试,需要加上参数 source s2/0 指定接口):

```
Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.2.5, timeout is 2 seconds:
....

Success rate is 0 percent (0/5)

R9#ping 10.1.2.6

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.2.6, timeout is 2 seconds:
T!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms
```

在 R9 上测试到 R7 的连通性 (R5、R7、R9 通过帧中继交换机连接的形式称为非广播式多路访问,虽然路由器在同一个 IP 子网,但由于数据链路不是广播式的,所以在没有建立点对点数据链路的情况下,是不能通信的):

```
R9#ping 10.1.2.7

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.2.7, timeout is 2 seconds:
.....

Success rate is 0 percent (0/5)
```

23. 分别在 R5、R7、R9 上查看 OSPF 邻居关系(此时 OSPF 认为当前链路属于广播式,需要先竞选出 DR, 而实际网络为非广播式的,因此三者之间的邻居关系暂时不能建立)

在 R5 上查看邻居关系:

R5#show ip ospf neighbor Neighbor ID Pri State Dead Time Address Interface 10.0.40.1 1 FULL/DR 00:00:32 10.1.0.1 FastEthernet0/1

在 R7 上查看邻居关系:

```
R7#show ip ospf neighbor

Neighbor ID Pri State Dead Time Address Interface

10.2.80.1 1 FULL/DR 00:00:38 10.2.2.1 FastEthernet0/0
```

在 R9 上查看邻居关系:

R9#show ip ospf neighbor

24. 分别在 R5、R7、R9 上配置 s2/0 的接口为点对多点的网络类型 (命令: ip ospf network point-to-mulitpoint), 然后再次查看邻居关系:

R5 配置命令:

R5(config)#interface s2/0.1
R5(config-subif)#ip ospf network point-to-multipoint
R5(config)#interface s2/0.2
R5(config-subif)#ip ospf network point-to-multipoint
R5(config-subif)#exit
R5(config)#exit

R7 配置命令:

R7(config)#interface s0/0
R7(config-if)#ip ospf network point-to-multipoint
R7(config-if)#exit

R9 配置命令:

R9(config)#interface s0/0
R9(config-if)#ip ospf network point-to-multipoint
R9(config-if)#exit

在 R5 上查看邻居关系:

R5#sh ip ospf	neighbo	or			
Neighbor ID	Pri	State	Dead Time	Address	Interface
10.3.90.1	0	FULL/ -	00:01:43	10.1.2.9	Serial0/1.2
10.2.70.1	0	FULL/ -	00:01:57	10.1.2.7	Serial0/1.1
10.0.40.1	1	FULL/DR	00:00:36	10.1.0.1	FastEthernet0/1

在 R7 上查看邻居关系:

R7#sh ip ospf	neighbo	r			
Neighbor ID	Pri	State	Dead Time	Address	Interface
10.1.50.1 10.2.80.1	1	FULL/ - FULL/DR	00:01:48 00:00:33	10.1.2.5 10.2.2.1	Serial0/0 FastEthernet0/0

在 R9 上查看邻居关系:

R9#sh ip ospf	neighbo	r			
Neighbor ID	Pri	State	Dead Time	Address	Interface
10.1.50.1	0	FULL/	00:01:50	10.1.2.6	Serial0/0

25. 分别在 R5、R8、R7 上查看 OSPF 数据库(命令: show ip ospf database),观察 Summary Net Link 部分,你发现了什么现象?

R5 的 OSPF 数据库: 观察得知, Area 1 所有的的聚合路由都是由区域边界路由器(ABR) 10.0.40.1(R4) 宣告的,而 R7 作为 Area 1 和 Area 2 的 ABR, 却没有向 Area 1 宣告 Area 2 的路由信息,是因为所有的 Area 都只和 Area 0 进行路由信息交换。

R8 的 OSPF 数据库: 观察得知, Area 2 所有的的聚合路由都是由区域边界路由器(ABR) 10.0.60.1(R6) 宣告的,而 R7 作为 Area 1 和 Area 2 的 ABR,也没有向 Area 2 宣告 Area 1 的路由信息。

R8#sh ip ospf d	latabase			
OSE	PF Router with ID	(10.2.80.1)	(Process I	D 85)
	Router Link Sta	+00 (7,000 2)		
	Router Link Sta	ites (Area 2)		
Link ID	ADV Router	Age	Seq#	Checksum Link count
10.0.60.1	10.0.60.1	796		0x005925 1
10.2.70.1	10.2.70.1	1641		0x000CF1 2
10.2.80.1	10.2.80.1	1645	0x80000003	0x00BECE 4
	Net Link States	(Area 2)		
Link ID	ADV Router	Age	Seq#	Checksum
10.2.0.1	10.0.60.1	796	0x80000002	0x000A36
10.2.2.1	10.2.80.1	1645	0x80000001	0x009B81
	Summary Net Lin	k States (Ar	ea 2)	
Link ID	ADV Router	Age	Seq#	Checksum
10.0.0.0	10.0.60.1	1053	0x80000002	0x002CA0
10.0.1.0	10.0.60.1	1053	0x80000002	0x00BC19
10.0.20.1	10.0.60.1	1053	0x80000002	0x008644
10.0.40.1	10.0.60.1	1053	0x80000002	
10.0.60.1	10.0.60.1	1053	0x80000002	
10.0.123.240	10.0.60.1	1054	0x80000002	
10.0.123.244	10.0.60.1	1054	0x80000002	
10.0.123.248	10.0.60.1	1054	0x80000002	
10.1.0.0	10.0.60.1	1054	0x80000002	
10.1.1.0	10.0.60.1	1054	0x80000002	
10.1.2.5	10.0.60.1	698	0x80000001	
10.1.2.6	10.0.60.1	688	0x80000001	
10.1.2.7 10.1.2.9	10.0.60.1	358	0x80000001 0x80000001	
10.1.2.9	10.0.60.1 10.0.60.1	280 1054	0x80000001	
10.1.30.1	10.0.00.1	1034	0X00000002	0X00930E

R7的 OSPF 数据库: 观察得知, Area 1 所有的的聚合路由都是由区域边界路由器(ABR) 10.0.40.1(R4) 宣告的, Area 2 所有的的聚合路由都是由区域边界路由器(ABR) 10.0.60.1(R6) 宣告的。

	Net Link States	(Area 2)		
Link ID 10.2.0.1 10.2.2.1	ADV Router 10.0.60.1 10.2.80.1	Age 893 1744	Seq# 0x80000002 0x80000001	
	Summary Net Lin	k States (Ar	ea 2)	
Link ID 10.0.0.0 10.0.1.0 10.0.20.1 10.0.40.1 10.0.60.1 10.0.123.240 10.0.123.244	ADV Router 10.0.60.1 10.0.60.1 10.0.60.1 10.0.60.1 10.0.60.1 10.0.60.1	Age 1151 1153 1153 1153 1153 1153 1153	Seq# 0x80000002 0x80000002 0x80000002 0x80000002 0x80000002 0x80000002	0x00BC19 0x008644 0x00A90D 0x006844 0x001C1B
10.0.123.248 10.1.0.0 10.1.1.0 10.1.2.5 10.1.2.6 10.1.2.7 10.1.2.9 10.1.50.1	10.0.60.1 10.0.60.1 10.0.60.1 10.0.60.1 10.0.60.1 10.0.60.1 10.0.60.1	1153 1153 1153 796 786 456 378 1154	0x80000002 0x80000002 0x800000001 0x80000001 0x80000001 0x80000001 0x80000001	0x00BB1A 0x0015B5 0x00755A 0x006B63 0x00E3A9 0x00CFBB

R7#sh ip ospf database								
os	PF Router with I	D (10.2.70.1)	(Process I	D 85)				
	Router Link States (Area 1)							
Link ID	ADV Router	Age	Seq#	Checksum	Link count			
10.0.40.1	10.0.40.1	1459	0x80000003	0x00AEF9	1			
10.1.50.1	10.1.50.1	783	0x80000006	0x0073E2	7			
10.2.70.1	10.2.70.1	454	0x80000003	0x005F76	2			
10.3.90.1	10.3.90.1	377	0x80000003	0x002A7D	2			
	Net Link States (Area 1)							
Link ID	ADV Router	Age	Seq#	Checksum				
10.1.0.1	10.0.40.1	1459	0x80000002	0x005A2E				
	Summary Net Li	Summary Net Link States (Area 1)						
Link ID	ADV Router	Age	Seq#	Checksum				
10.0.0.0	10.0.40.1	1459	0x80000002	0x00B828				
10.0.1.0	10.0.40.1	1459	0x80000002	0x0049A0				
10.0.20.1	10.0.40.1	1459	0x80000002	0x0013CB				
10.0.40.1	10.0.40.1	1459	0x80000002	0x00D103				
10.0.60.1	10.0.40.1	1459	0x80000002	0x00595D				
10.0.123.240	10.0.40.1	1463	0x80000002	0x00A8A2				
10.0.123.244	10.0.40.1	1463	0x80000002	0x00621B				
10.0.123.248	10.0.40.1	1463	0x80000002	0x00BDC9				
10.2.0.0	10.0.40.1	967	0x80000002	0x003CAC				
10.2.1.0	10.0.40.1	967	0x80000002	0x003BAB				
10.2.2.0	10.0.40.1	967	0x80000002	0x008A52				
10.2.70.1	10.0.40.1	1729	0x80000001					
10.2.80.1	10.0.40.1	967	0x80000002	0x00C8CD				
	Router Link States (Area 2)							
Link ID	ADV Router	Age	Seq#	Checksum	Link count			
10.0.60.1	10.0.60.1	893	0x80000003	0x005925	1			
10.2.70.1	10.2.70.1	1737	0x80000002	0x000CF1	2			
10.2.80.1	10.2.80.1	1743	0x80000003	0x00BECE	4			

26. 在 R8 上查看去往 PC3 所在网络的路由信息(命令: show ip route <ip network>)

R8 的路由信息:观察得知,前往子网 10.1.1.0 的下一跳 IP 地址是 10.0.60.1 ,是路由器 R6。

```
R8#show ip route 10.1.1.60
Routing entry for 10.1.1.0/24

Known via "ospf 85", distance 110, metric 40, type inter area Last update from 10.2.0.1 on FastEthernet0/1, 00:32:57 ago Routing Descriptor Blocks:

* 10.2.0.1, from 10.0.60.1, 00:32:57 ago, via FastEthernet0/1 Route metric is 40, traffic share count is 1
```

27. 断开路由器 R6 的 f0/0 接口(命令: shutdown),等候片刻,在 R8 上再次查看路由信息:

R8 的路由信息:观察得知,前往子网_10.1.1.0_的路由已经不存在。

```
R8#sh ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 6 subnets, 3 masks

C 10.2.0.0/24 is directly connected, FastEthernet0/1

C 10.2.1.0/24 is directly connected, FastEthernet1/0

O 10.2.2.0/24 is directly connected, FastEthernet1/0

O IA 10.0.60.1/32 [110/11] via 10.2.0.1, 00:34:13, FastEthernet0/1

O 10.2.70.1/32 [110/11] via 10.2.2.3, 00:34:13, FastEthernet0/0

O 10.2.80.0/30 is directly connected, Loopback0
```

看看 R7 有没有 PC3 的路由信息: 观察得知,前往子网 10.1.0.0 的路由是存在的,但是由于 Area 2 和 Area 1 不直接交换路由信息, R7 没有向 Area 2 宣告路由的存在。

```
R7#sh ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
    D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
    N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
    E1 - OSPF external type 1, E2 - OSPF external type 2
    i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
    ia - IS-IS inter area, * - candidate default, U - per-user static route
    o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 20 subnets, 4 masks

0    10.1.2.9/32 [110/128] via 10.1.2.5, 00:12:29, Serial0/0

0    10.2.0.0/24 [110/20] via 10.2.2.1, 00:35:06, FastEthernet0/0

10.2.1.0/24 [i10/71] via 10.2.2.1, 00:35:06, FastEthernet0/0

10.1.2.0/24 is directly connected, Serial0/0

10.1.1.0/24 [110/74] via 10.1.2.5, 00:12:29, Serial0/0

0    10.1.1.0/24 [110/74] via 10.1.2.5, 00:12:29, Serial0/0

0    10.1.0.0/24 [110/74] via 10.1.2.5, 00:12:30, Serial0/0

0    10.1.0.0/24 [110/74] via 10.1.2.5, 00:12:30, Serial0/0

0    10.1.2.6/32 [110/64] via 10.1.2.5, 00:12:30, Serial0/0

0    10.1.2.6/32 [110/64] via 10.1.2.5, 00:12:30, Serial0/0

0    10.1.2.6/32 [110/64] via 10.1.2.5, 00:10:3, Serial0/0

0    1A    10.0.20.1/32 [110/55] via 10.1.2.5, 00:01:03, Serial0/0

0    1A    10.0.20.1/32 [110/55] via 10.1.2.5, 00:01:03, Serial0/0

0    1A    10.0.20.1/32 [110/55] via 10.1.2.5, 00:01:03, Serial0/0

0    1D.1.5.0.1/32 [110/65] via 10.1.2.5, 00:01:03, Serial0/0

0    10.1.2.80.1/32 [110/61] via 10.1.2.5, 00:01:03, Serial0/0

0    10.2.80.1/32 [110/61] via 10.1.2.5, 00:01:03, Serial0/0

10.2.70.0/30 is directly connected, Loopback0

10.2.80.1/32 [110/11] via 10.2.2.1, 00:35:08, FastEthernet0/0

10    1A    10.0.123.240/30 [110/148] via 10.1.2.5, 00:01:03, Serial0/0

10    1A    10.0.123.240/30 [110/94] via 10.1.2.5, 00:01:03, Serial0/0

10    1A    10.0.123.240/30 [110/94] via 10.1.2.5, 00:01:03, Serial0/0

10    1A    10.0.123.240/30 [110/94] via 10.1.2.5, 00:01:03, Serial0/0

10    1A    10.0.123.240/30 [11
```

重新打开 R6 的 f0/0 接口,稍候再次查看 R8 的路由信息是否恢复。

```
R8#sh ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static rour

o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 20 subnets, 4 masks

O IA 10.1.2.9/32 [110/94] via 10.2.0.1, 00:00:16, FastEthernet0/1

C 10.2.1.0/24 is directly connected, FastEthernet1/0

C 10.2.1.0/24 is directly connected, FastEthernet1/0

O IA 10.1.1.0/24 [110/40] via 10.2.0.1, 00:00:16, FastEthernet0/1

O IA 10.1.1.0/24 [110/40] via 10.2.0.1, 00:00:16, FastEthernet0/1

O IA 10.1.0.0/24 [110/30] via 10.2.0.1, 00:00:16, FastEthernet0/1

O IA 10.1.2.5/32 [110/30] via 10.2.0.1, 00:00:17, FastEthernet0/1

O IA 10.1.2.5/32 [110/30] via 10.2.0.1, 00:00:17, FastEthernet0/1

O IA 10.1.2.6/32 [110/30] via 10.2.0.1, 00:00:17, FastEthernet0/1

O IA 10.1.2.7/32 [110/21] via 10.2.0.1, 00:00:17, FastEthernet0/1

O IA 10.0.40.1/32 [110/21] via 10.2.0.1, 00:00:17, FastEthernet0/1

O IA 10.0.40.1/32 [110/21] via 10.2.0.1, 00:00:17, FastEthernet0/1

O IA 10.50.1/32 [110/11] via 10.2.0.1, 00:00:18, FastEthernet0/1

O IA 10.0.20.1/32 [110/11] via 10.2.0.1, 00:00:18, FastEthernet0/1

O IA 10.0.20.0/30 is directly connected, Loopback0

O IA 10.0.123.244/30 [110/30] via 10.2.0.1, 00:00:18, FastEthernet0/1

O IA 10.0.123.244/30 [110/30] via 10.2.0.1, 00:00:18, FastEthernet0/1

O IA 10.0.123.244/30 [110/30] via 10.2.0.1, 00:00:18, FastEthernet0/1
```

28. 给 R10 的 f0/0、f0/1 接口配置 IP 地址并激活,启用 OSPF 协议,各接口均属于 Area 3。配置 PC5 的 IP 地址和默认路由。过一会,查看 R10 上的路由表和 OSPF 数据库。

R10配置命令:

```
R10(config)#interface f0/1
R10(config-if)#ip addr 10.3.0.3 255.255.255.0
R10(config-if)#no shut
R10(config)#interface f0/0
R10(config-if)#ip addr 10.3.1.1 255.255.255.0
R10(config-if)#no shut
R10(config)#interface loopback 0
R10(config-if)#ip addr 10.3.10.1 255.255.255.252
R10(config)#router ospf 60
R10(config-router)#network 10.3.0.0 0.0.255.255 area 3
R10(config-router)#exit
```

R10 的 OSPF 数据库: 观察可知,数据库中没有其他 Area 的信息,因为 Area 3 和 Area 1 不直接交换信息

```
R10#sh ip ospf database
            OSPF Router with ID (10.3.10.1) (Process ID 60)
                Router Link States (Area 3)
Link ID
                ADV Router
                                                        Checksum Link count
                                Age
                                             Seq#
10.3.10.1
                10.3.10.1
                                             0x80000002 0x00DFA9 3
10.3.90.1
                10.3.90.1
                                             0x80000002 0x00E6DB 2
                Net Link States (Area 3)
Link ID
                ADV Router
                                                        Checksum
                                Age
                                             Seq#
10.3.0.1
                10.3.90.1
                                             0x80000001 0x00B68C
```

R10的路由表:观察可知,路由表中没有其他 Area 的信息,因为 OSPF 数据库中缺乏相关数据。

```
R10#sh ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

0 - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 4 subnets, 3 masks

C 10.3.10.0/30 is directly connected, Loopback0

C 10.3.1.0/24 is directly connected, FastEthernet0/0

10.3.0.0/24 is directly connected, FastEthernet0/1

10.3.90.1/32 [110/11] via 10.3.0.1, 00:00:15, FastEthernet0/1
```

29. 在 Area 1 上的两个边界路由器 R9、R4 之间为 Area 3 和 Area 0 创建虚链路(命令: area 〈area-id〉 virtual-link RID),这样 Area 3 就能和 Area 0 进行路由信息交换了。其中,area-id 写 1,RID 写对方的 Router ID,稍候查看虚链路建立情况(命令: show ip ospf virtual-links)和邻居信息(命令: show ip ospf neighbor)。

R4 配置命令:

R4(config)#router ospf 43
R4(config-router)#area 1 virtual-link 10.3.90.1

R9 配置命令:

R9(config)#router ospf 9
R9(config-router)#area 1 virtual-link 10.0.40.1

查看 R4 虚链路: 观察得知, R4 通过区域 <u>area 1</u> 的接口 <u>f0/1</u> 与 R9(RID 是 <u>10.3.90.1</u>)建立了虚链路,使用的 Cost 值为 74 。

```
R4#sh ip ospf virtual-links
Virtual Link OSPF_VLO to router 10.3.90.1 is up
Run as demand circuit
DoNotAge LSA allowed.
Transit area 1, via interface FastEthernetO/1, Cost of using 74
Transmit Delay is 1 sec, State POINT_TO_POINT,
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:00
Adjacency State FULL (Hello suppressed)
Index 3/4, retransmission queue length 0, number of retransmission 0
First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)
Last retransmission scan length is 0, maximum is 0
Last retransmission scan time is 0 msec, maximum is 0 msec
```

查看 R9 虚链路: 观察得知,R9 通过区域_area 1_的接口_s0/0_与 R4(RID 是_10.0.40.1_)建立了虚链路,使用的 Cost 值为_74_。

```
Note that the state of the suppose of the sup of the su
```

查看 R4 邻居信息: 观察得知, R4 通过接口 OSPF VL0 与 R9 (RID 是 10.3.90.1) 建立了邻接关系。

```
R4#sh ip ospf neighbor
                Pri
                                       Dead Time
                                                    Address
                                                                     Interface
                       FULL/
                       FULL/BDR
                                       00:00:38
                                                    10.0.123.249
                                                                     FastEthernet0/0
                                        00:00:36
                                                                     FastEthernet0/0
                       FULL/DR
                       2WAY/DROTHER
                                       00:00:34
                                                    10.0.123.252
                                                                     FastEthernet0/0
                                                                     FastEthernet0/1
                       FULL/BDR
```

查看 R9 邻居信息: 观察得知, R9 通过接口 OSPF VL0 与 R4 (RID 是 10.0.40.1) 建立了邻接关系。

R9#sh ip ospf	neighbo	r			
Neighbor ID	Pri O	State FULL/ -	Dead Time	Address	Interface OSPF VL0
10.1.50.1	0 1	FULL/ - FULL/BDR	00:01:37 00:00:36	10.1.2.6	Serial0/0 FastEthernet0/1

30. 再次显示 R10 的路由表和 OSPF 数据库,标出 PC1、PC2、PC3 所在的子网相关记录。

R10的路由表:

R10#sh ip ospf	database							
OSPF Router with ID (10.3.10.1) (Process ID 85)								
	Bouter Link Sta	tes (Area 2)						
	Router Link States (Area 3)							
Link ID	ADV Router	Age	Seq#	Checksum Link count				
10.3.10.1	10.3.10.1	594	0x80000002	0x00DFA9 3				
10.3.90.1	10.3.90.1	386	0x80000004	0x00E5D9 2				
	Not Tible Shakes	(3 2)						
	Net Link States (Area 3)							
Link ID	ADV Router	Age	Seq#	Checksum				
10.3.0.1	10.3.90.1	600	0x80000001	0x00B68C				
	Summary Net Lir	ık States (Ar	ea 3)	$\supset \Box$				
Link ID	ADV Router	Age	Seq#	Checksum				
10.0.0.0	10.3.90.1	372	0x80000001					
10.0.1.0	10.3.90.1	372	0x80000001					
10.0.20.1	10.3.90.1	372	0x80000001					
10.0.40.1	10.3.90.1	372	0x80000001	0x004313				
10.0.60.1	10.3.90.1	372	0x80000001	0x00CA6D				
10.0.123.240	10.3.90.1	3 <mark>72</mark>	0x80000001	0x001AB2				
10.0.123.244	10.3.90.1	3 <mark>72</mark>	0x80000001	0x00D32B				
10.0.123.248	10.3.90.1	374	0x80000001	0x002FD9				
10.1.0.0	10.3.90.1	<mark>3</mark> 89	0x80000001					
10.1.1.0	10.3.90.1	<mark>3</mark> 89	0x80000001					
10.1.2.5	10.3.90.1	<mark>389</mark>	0x80000001					
10.1.2.6	10.3.90.1	389	0x80000001					
10.1.2.7	10.3.90.1	389	0x80000001					
10.1.2.9	10.3.90.1	389	0x80000001					
10.1.50.1	10.3.90.1	389	0x80000001					
10.2.0.0	10.3.90.1	374	0x80000001					
10.2.1.0 10.2.2.0	10.3.90.1	374 374	0x80000001 0x80000001					
10.2.70.1	10.3.90.1	374	0x80000001					
10.2.70.1	10.3.90.1	374	0x80000001					
10.2.00.1	10.3.50.1	3/1	0.000000001	ONOGADD				

- 31. 在 R9 上手工合并 Area 0 上的子网路由 (命令: area 0 range <ip_net> <mask>, 其中 ip_net 写成 10.0.0.0, mask 写成 255.255.0.0, 表示 10.0.x.x 这些网络都在 area 0 上), 然后显示 R9 和 R10 的路由表, 看看所指定的子网是否合并了路由
- R9的路由表:标出合并的那条路由,这条路由采用了特殊的接口_Null0_作为下一跳。

```
R9fsh ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
NI - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
O - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 25 subnets, 5 masks
O 10.3.10.1/32 [110/11] via 10.3.0.3, 00:00:12, FastEthernet0/1
O IA 10.2.0.0/24 [110/94] via 10.3.0.3, 00:00:12, FastEthernet0/1
O IA 10.2.0.0/24 [110/94] via 10.1.2.6, 00:00:12, Serial0/0
C 10.3.0.0/24 is directly connected, FastEthernet0/1
O IA 10.2.1.0/24 [110/95] via 10.1.2.6, 00:00:12, Serial0/0
C 10.1.2.0/24 is directly connected, Serial0/0
O IA 10.2.2.0/24 [110/104] via 10.1.2.6, 00:00:12, Serial0/0
O 10.1.1.0/24 [110/74] via 10.1.2.6, 00:00:14, Serial0/0
O 10.0.0.0/24 [110/74] via 10.1.2.6, 00:00:14, Serial0/0
O 10.0.0.0/24 [110/74] via 10.1.2.6, 00:00:14, Serial0/0
O 10.1.0.0/24 [110/74] via 10.1.2.6, 00:00:14, Serial0/0
O 10.1.2.5/32 [110/64] via 10.1.2.6, 00:00:14, Serial0/0
O 10.1.2.5/32 [110/64] via 10.1.2.6, 00:00:16, Serial0/0
O 10.1.2.6/32 [110/64] via 10.1.2.6, 00:00:16, Serial0/0
O 10.0.40.1/32 [110/75] via 10.1.2.6, 00:00:16, Serial0/0
O 10.0.40.1/32 [110/75] via 10.1.2.6, 00:00:16, Serial0/0
O 10.0.50.1/32 [110/75] via 10.1.2.6, 00:00:16, Serial0/0
O 10.1.2.70.1/32 [110/75] via 10.1.2.6, 00:00:16, Serial0/0
O 10.0.20.1/32 [110/75] via 10.1.2.6, 00:00:16, Serial0/0
O 10.0.20.1/32 [110/75] via 10.1.2.6, 00:00:16, Serial0/0
O 10.0.23.240/30 [10/148] via 10.1.2.6, 00:00:16, Serial0/0
O 10.0.123.244/30 [110/94] via 10.1.2.6, 00:00:16, Serial0/0
O 10.0.123.244/30 [110/94] via 10.1.2.6, 00:00:16, Serial0/0
O 10.0.123.244/30 [110/94] via 10.1.2.6, 00:00:16, Serial0/0
```

R10 的路由表: 标出合并的那条路由,这条路由下一跳的 IP 地址是 10.3.0.1 ,是路由器 R9 的接口。

```
R10#sh ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
    D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
    N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
    E1 - OSPF external type 1, E2 - OSPF external type 2
    i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
    ia - IS-IS inter area, * - candidate default, U - per-user static rout
    o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 17 subnets, 4 masks
O IA    10.1.2.9/32 [110/10] via 10.3.0.1, 00:10:44, FastEthernet0/1
C    10.3.10.0/30 is directly connected, Loopback0
C    10.3.1.0/24 is directly connected, FastEthernet0/0
O IA    10.2.0.0/24 [110/104] via 10.3.0.1, 00:10:34, FastEthernet0/1
C    10.3.0.0/24 is directly connected, FastEthernet0/1
O IA    10.2.1.0/24 [110/105] via 10.3.0.1, 00:10:34, FastEthernet0/1
O IA    10.2.2.0/24 [110/114] via 10.3.0.1, 00:10:34, FastEthernet0/1
O IA    10.1.0.0/24 [110/84] via 10.3.0.1, 00:10:45, FastEthernet0/1
O IA    10.1.0.0/24 [110/84] via 10.3.0.1, 00:10:45, FastEthernet0/1
O IA    10.1.2.5/32 [110/74] via 10.3.0.1, 00:10:45, FastEthernet0/1
O IA    10.1.2.6/32 [110/74] via 10.3.0.1, 00:10:46, FastEthernet0/1
O IA    10.1.2.6/32 [110/74] via 10.3.0.1, 00:10:46, FastEthernet0/1
O IA    10.1.50.1/32 [110/75] via 10.3.0.1, 00:10:46, FastEthernet0/1
O IA    10.2.70.1/32 [110/75] via 10.3.0.1, 00:10:46, FastEthernet0/1
O IA    10.3.90.1/32 [110/715] via 10.3.0.1, 00:10:46, FastEthernet0/1
O IA    10.3.90.1/32 [110/715] via 10.3.0.1, 00:10:46, FastEthernet0/1
O IA    10.3.90.1/32 [110/715] via 10.3.0.1, 00:10:46, FastEthernet0/1
```

32. 整理各路由器的当前运行配置,选择与本实验相关的内容记录在文本文件中,每个设备一个文件,分别命名为 R1.txt、R2.txt 等,随实验报告一起打包上传。

详见附加文件夹一配置文件。

六、 实验结果与分析

根据你观察到的实验数据和对实验原理的理解,分别解答以下问题:

在一个网络中各路由器的 OSPF 进程号是否一定要相同?一个路由器上可以配置多个进程号吗?

Solution:

一个网络中各个网路由器的 OSPF 进程号不一定要相同。一个路由器上可以配置多个进程号,但是不同进程号学习到的路由信息不能相互传递。

未手工指定 Router ID 时,如果没有给回环接口配置 IP 地址,会从哪一个接口选取地址作为 Router ID? 如果给回环接口配置了 IP 地址,又会从哪一个接口选取地址作为 Router ID? Solution:

会从当前活跃接口中选择优先级高的,如果优先级相同,那么会选择最高 IP 地址作为 Router ID。如果回环接口配置了 IP 地址,那么会先选择回环接口的地址作为 Router ID。

如果 Router ID 对应的接口 down 了,路由器会自动重新选择另一个接口地址作为新的 Router ID 吗?

Solution:

会自动重新选择另一个接口地址作为新的 Router ID。但是原来 down 了的 Router ID,仍然存在,仿佛来自于不存在的路由器。

宣告网络属于哪个 area 的命令中,网络地址后面的参数是子网掩码吗?为什么要写成0.0.255.255,而不是255.255.0.0?

Solution:

不是子网掩码。**是通配掩码**(**反掩码**)。此如 10. 0. 0. 0. 0. 0. 255. 255 **指的是** 10. 0. xx. xx。 是不是所有其他 Area 上的路由器都只和 Area 0 上的路由器进行路由信息交换?虚链路的作用 是什么?

Solution:

所有其他 Area 上的路由器都只和 Area 0 上的路由器进行路由信息交换。虚链路的作用主要是将与 Area 0 非物理邻接的区域在逻辑上与 Area 0 邻接,从而实现区域和主干区域的路由信息交互。

为什么要在区域边界路由器上进行路由合并?

Solution:

为了減少路由表中的信息,增加网络的伸缩性。

七、讨论、心得

在完成本实验后,你可能会有很多待解答的问题,你可以把它们记在这里,接下来的学习中,你也许会逐渐得到答案的,同时也可以让老师了解到你有哪些困惑,老师在课堂可以安排针对性地解惑。等到课程结束后,你再回头看看这些问题时你或许会有不同的见解:

Q1: 在查看网络类型时,我们发现网络类型有 POINT-TO-POINT (点对点) 类型,还有 Boardcast (广播) 类型。它们有什么区别?

Q2: 动态路由协议 (本实验中使用的是 OSPF 协议) 是如何工作的?背后的工作原理是什么?

Q3: 什么机制使得端口从打开到关闭再到打开之后,OSPF 协议仍然能主动学习到相关的路由变更信息? 在实验过程中你可能会遇到的困难,并得到了宝贵的经验教训,请把它们记录下来,提供给其他人参考吧:

首先,在进行实验的过程之中,我遇到了虚拟机内存不足的问题,这是因为我们在进行本次实验的过程中,引入的虚拟设备过多所导致的,就如同虚拟机的运行原理一样,虚拟设备在运行的过程之中也需要消耗电脑主机的资源,如果我们预设的资源量不足的话,就有可能遇到这样的问题。但是令我困惑的是,资源不足并不会干扰我们进行实验,但是当实验进行了一段时间之后,就有可能发生一些其他的问题。

你对本实验安排有哪些更好的建议呢?欢迎献计献策:

本实验是我们第一次接触到动态路由协议,其工作原理较为复杂,涉及到的命令也比较繁琐。希望实验指导能够加强对这一部分的理论说明,这会有助于我们开展实验。