#### RF

- Alphabet Σ = finite set of symbols
- Σ = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
- String s = finite sequence of symbols from alphabet
- Empty string  $\varepsilon$  = special string of length zero
- · Language L = set of strings over an alphabet = { 6001, 6002, 6003, 6004, 6035 6891 ... }

#### We Know:

- L(r | s) is the **union** of L(r) and L(s)
- L(r · s) is the concatenation of L(r) and L(s)
- L(r\*) is the Kleene closure of L(r)
  - · "zero or more occurrence of"
  - It includes a

# Few additional ones

- "one or more occurrence of"  $r+=r \cdot r^*$
- "zero or one occurrence of" r? = r | ε

# RF -> NFΔ -Owo r? r+

#### NFΔ -> DFΔ





|   | 0 | 1   |
|---|---|-----|
| Α | Α | A,B |
| В | В | В   |

|    | 0  |    |
|----|----|----|
|    | 0  | 1  |
| Α  | Α  | AB |
| AB | AB | AB |

DFA -> min DFA



|   | 0 | 1 |
|---|---|---|
| Α | В | С |
| В | В | D |
| C | В | С |
| D | В | Ε |
| Е | В | С |

**0eq**: {A,B,C,D} **1eq**: {A,B,C} {D} {E} 2eq: {A,C} {B} {D} {E} **3eq**: {A,C} {B} {D} {E}

# CFG

A context free grammar  $G = (\Sigma, N, S, P)$  is defined by:

- $\Sigma$  set of *terminal* symbols;
- N set of non-terminal symbols;
- $S \subseteq N$  initial symbol:
  - ${\it P}$  set of de *production rules*  ${\it X} 
    ightarrow \alpha$  where:
    - X is non-terminal;
    - $\blacktriangleright \ \alpha$  is a sequence (maybe empty ) of terminal or non-terminal symbols

# Left-factoring

$$A \to \alpha A'$$

$$A \to \alpha \beta \mid \alpha \gamma \ A' \to \beta \mid \gamma$$

## **Ambiguity**

A grammar is ambiguous if it produces words with different syntax trees.

G is ambiguous

$$S \stackrel{1}{\Rightarrow} aSB \stackrel{1}{\Rightarrow} aaSBB \stackrel{2}{\Rightarrow} aaBB \stackrel{4}{\Rightarrow} aaBbB \stackrel{5}{\Rightarrow} aabbB \stackrel{5}{\Rightarrow} aabbb$$
 
$$S \stackrel{1}{\Rightarrow} aSB \stackrel{1}{\Rightarrow} aaSBB \stackrel{3}{\Rightarrow} aaBBB \stackrel{5}{\Rightarrow} aabBB \stackrel{5}{\Rightarrow} aabbb$$

because the two previous derivations correspond to two different syntax trees.

# Note:

- ▶ different derivations may correspond to the same syntax tree
- ▶ an ambiguous grammar must produce different syntax tree and not only different derivations

# Parsing algorithms

top-down begin by the root (non-terminal initial symbol S) and find the leftmost derivation

bottom-up begin by the tokens and find the reversed rightmost derivation.

# Semantic

- Semantics of a language provide meaning to its constructs, like tokens and syntax structure. Semantics help interpret symbols, their types, and their relations with each other.
- Semantic analysis judges whether the syntax structure constructed in the source program derives any meaning or not.
  - CFG + semantic rules = Syntax Directed 0 **Definitions**
- For example:
  - 0 int a = "value";
  - Should not issue an error in lexical and syntax analysis phase, as it is lexically and structurally correct, but it should generate a semantic error as the type of the assignment differs.
- These rules are set by the grammar of the language and evaluated in semantic analysis.

# Syntax-Directed Translation Schemes (SDT)

SDT embeds program fragments called semantic actions within production bodies. The position of semantic action in a production body determines the order in which the action is executed.

# LL Parsing

- 1. Eliminate left-recursion
- Left-factoring 2.
- 3. FIRST () and FOLLOW () functions
- 4. Predictive parsing table
- 5. Parse input string

#### FIRST():

- $FIRST(\varepsilon) = \{\}$
- FIRST(a) = {a}, a is a terminal symbol
- FIRST (ABC...) =  $FIRST(A) \cup FIRST(B) \cup FIRST(C) \cup$ 
  - ... while the FIRST (x) includes  $\varepsilon$

# FOLLOW():

- If A ->  $\alpha$ B $\beta$  then, FOLLOW(B) = FIRST( $\beta$ ) except  $\epsilon$  else if A ->  $\alpha$ B or A ->  $\alpha$ B $\beta$ where  $FIRST(\beta)$  includes  $\epsilon$ , FOLLOW(B) = FOLLOW(A)

# Parsing Table:

- M[A,a] = A->a, a is in FIRST(A)
- M[A,a] = A->a, if  $\varepsilon$  is in FIRST(A) and a is in FOLLOW(A)

| E -> TE'       | <b>FIRST</b> (E) = {(, id} |
|----------------|----------------------------|
| E' -> ε   +TE' | $FIRST(E') = \{\epsilon,$  |
| T -> FT'       | +}                         |
| T' -> ε   *FT' | $FIRST(T) = \{(, id)\}$    |
| F -> (E)   id  | $FIRST(T') = \{\epsilon,$  |
|                | *}                         |
|                | $FIRST(F) = \{(, id)\}$    |

FOLLOW(E) = {\$,)} (Start symbol + FIRST(')')) **FOLLOW**  $(E') = \{\$,\}$  (FOLLOW(E))**FOLLOW** (T) =  $\{\$, \}$ ,  $+\}$  (FIRST(E') + FOLLOW(E')) **FOLLOW** (T') = {\$,), +} (FOLLOW(T)) **FOLLOW** (F) = {\$,), +, \*} (FIRST(T') + FOLLOW(T) + FOLLOW(T'))

|    | +        | *          | (      | )      | id     | \$      |
|----|----------|------------|--------|--------|--------|---------|
| E  | -        | -          | E->TE' | -      | E->TE' | -       |
| E' | E'->+TE' | -          | -      | E'-> ε | -      | E' -> ε |
| Т  | -        | -          | T->FT' | -      | T->FT' | -       |
| T' | T' -> ε  | T' -> *FT' | -      | T'-> ε | -      | T'-> ε  |
| F  | -        | -          | F->(E) | -      | F-> id | -       |

W = id \* id + id

| \$E id*id+<br>\$E'T id*id+<br>\$E'T'F id*id+ | rid\$ T->FT'<br>rid\$ F->id<br>rid\$ |
|----------------------------------------------|--------------------------------------|
|                                              | +id\$ F->id<br>+id\$                 |
| \$E'T'F id*id+                               | id\$                                 |
|                                              |                                      |
| \$E'T'id id*id+                              |                                      |
| \$E'T' *id+ic                                | 1\$ T'->FT'                          |
| \$E'T'F* *id+ic                              | 1\$                                  |
| \$E'T'F id+id\$                              | F->id                                |
| \$E'T'id id+id\$                             |                                      |
| \$E'T' +id\$                                 | T' -> ε                              |
| \$E' +id\$                                   | E' -> +TE'                           |
| \$E'T+ +id\$                                 |                                      |
| \$E'T id\$                                   | T->FT'                               |
| \$E'T'F id\$                                 | F->id                                |
| \$E'T'id id\$                                |                                      |
| \$E'T' \$                                    | Τ'-> ε                               |
| \$E' \$                                      | Ε΄ -> ε                              |
| \$ \$                                        |                                      |

#### Attribute Grammar

- Attribute grammar is a special form of context-free grammar where some additional information (attributes) are appended to one or more of its non-terminals in order to provide context-sensitive information.
- Each attribute has well-defined domain of values, such as integer, float, character, string, and expressions.
- Attribute grammar is a medium to provide semantics to the context-free grammar and it can help specify the syntax and semantics of a programming language.
- Attribute grammar (when viewed as a parse-tree) can pass values or information among the nodes of a tree.

# Example

## $E \rightarrow E + T \{E.value = E.value + T.value\}$

- The right part of the CFG contains the semantic rules that specify how the grammar should be interpreted.
- Here, the values of non-terminals E and T are added together, and the result is copied to the non-terminal E.
- Semantic attributes may be assigned to their values from their domain at the time of parsing and evaluated at the time of assignment or conditions.
- Based on the way the attributes get their values, they can be broadly divided into two categories
  - 0. Synthesized attributes
  - 1. Inherited attributes.

# Synthesized Attributes

These attributes get values from the attribute values of their child nodes. To illustrate, assume the following production:

# $S \rightarrow ABC$

- If S is taking values from its child nodes (A, B, C), then it is said to be a synthesized attribute, as the values of ABC are synthesized to S.
- As in our previous example (E → E + T), the parent node E gets its value from its child node. Synthesized attributes never take values from their parent nodes or any sibling nodes.
- Bottom-up parsing
- L-attributed and S-attributed

#### Inherited Attributes

• In contrast to synthesized attributes, inherited attributes can take values from parent and/or siblings. As in the following production,

#### $S \rightarrow ABC$

- A can get values from S, B and C. B can take values from S, A, and C. Likewise, C can take values from S, A, and B.
- Top-down sideways parsing
- L-attributed only





