Lab 3

Lagrange interpolation

Using the barycentric form of the Lagrange interpolation polynomial, solve the following problems:

Problems:

1. The table below contains the population of the USA from 1930 to 1980 (in thousands of inhabitants):

Approximate the population in 1955 and 1995.

- **2.** Approximate $\sqrt{115}$ with Lagrange interpolation, using the known values for three given nodes.
- **3.** Plot the graphics of the function $f:[0,10] \to \mathbb{R}$, $f(x) = \frac{1+\cos(\pi x)}{1+x}$ and of the Lagrange interpolation polynomial that interpolates the function f at 21 equally spaced points in the interval [0,10].

Facultative: 4. Plot the graphs of the function $f:[-5,5]\to\mathbb{R}, f(x)=\frac{1}{1+x^2}$ and of the corresponding Lagrange interpolation polynomial obtained using 15 equally spaced points in the interval [-5,5]. In the same window (use subplot), plot the same graphics but using 15 nodes obtained by lineary transformation $\frac{1}{2}((b-a)x_i+a+b)$ of Chebyshev zeros $x_i=\cos(\frac{(2j-1)\pi}{2n}), i=1,...,n$ from the interval [-1,1] to the interval [a,b].