K- Means

Presented By:
Avinash Kumar Singh
Research Scholar
Robotics & Artificial Intelligence Lab
IIIT Allahabad

Introduction

k-means clustering is a method of cluster analysis which aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean.

□ Notations:

- Patterns: $x_1, x_2, ..., x_n \in \mathbb{R}^m$
- Cluster Centers: $c_1, c_2, ..., c_k \in \mathbb{R}^m$
- Euclidean distance: $||\mathbf{x}_i \mathbf{c}_j||^2$

MacQueen, J. B. (1967). "Some Methods for classification and Analysis of Multivariate Observations", Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press. pp. 281–297.

Partition

Based on minimum within cluster measurement. Let there are A1,A2,A3,.... Ac Clusters/partition Then they should satisfies these constraints

$$\square A_i \cap A_j = \emptyset \quad \forall i \neq j$$

$$\square \cup_{1}^{c} A_{i} = S \qquad s = (x1, x2, x3, \dots xn)$$

$$\square A_i \neq \emptyset$$

Algorithm

There are 4 steps in the algorithm.

- Randomly select k centers from the given data.
- Assign each object to the cluster with the nearest center point. Compute the centers of the clusters of the current partition (i.e., mean point, of the cluster).
- Go back to Step 2, stop when no more new assignment.

New Centers will be calculated by

Center1=
$$(x1+x2+x3+x4+x5)/5$$

Center2= $(x6+x7+x8+x9+x10+x11)/6$

Algorithm

```
We have given S=\{x1,x2,x3,\ldots,Xn\} \in \mathbb{R}^m
Step 1: Choose c points y 11, y 12, y 13,... y 1c \in \mathbb{R}^m
Step2: A_{2i} = \{ x \in S: d(\underline{x}, y_{1i}) \le d(x, y_{1i}) \forall j \ne i \}
Step3: y_{2i} = Mean(A_{2i}), i=1,2,3,... c
Step4: if ||y_{1i} - y_{2i}|| \le \epsilon
                    then
                    STOP with the output A_{2i}
                    else
                    A_{1i} = A_{2i}
                    A_{2i} = \emptyset
                    y_{1i} = y_{2i}
                    GO TO Step2
```


C-Mean Classfier When C=2

C-Mean Classfier When C=5

Remarks

- ✓ Algorithm usually converges
- ✓ Two different sets of initial seed point may sometimes give rise to two different final clustering.
- ✓ The algorithm tries to implement the Minimum Within Cluster Distance Criteria.
- ✓ We can start with the initial partition of the dataset (instead of the seed point)

Thanks