DavydovAlexA 30112024-110053

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью минус 1.3 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 35 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 16.4 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 1.)

Рисунок 1 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

1) 7.8 дБ 2) 8.4 дБ 3) 9 дБ 4) 9.6 дБ 5) 10.2 дБ 6) 10.8 дБ 7) 11.4 дБ 8) 12 дБ 9) 12.6 дБ

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 2. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 2?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 2 – Экран анализатора спектра

Варианты ОТВЕТА:

- 1) $\{11; -28\}$ 2) $\{11; 2\}$ 3) $\{11; -43\}$ 4) $\{9; -43\}$ 5) $\{9; -43\}$ 6) $\{7; -33\}$ 7) $\{5; -8\}$ 8) $\{3; -23\}$
- 9) $\{5; 17\}$

На рисунке 3 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1 = r_2$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно мгновенно.

Рисунок 3 – Двойной балансный смеситель

Частота гетеродина 439 МГц, частота ПЧ 33 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 33 ΜΓ_{ΙΙ}
- 1284 MΓ_Ц
- 3) 1756 MΓ_{II}
- 4) 472 МГц.

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

 $s_{21} = 0.39013 - 0.2297i, \ s_{31} = 0.23099 + 0.39233i.$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

1) -37 дБн 2) -39 дБн 3) -41 дБн 4) -43 дБн 5) -45 дБн 6) -47 дБн 7) -49 дБн 8) -51 дБн 9) 0 дБн

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 1694 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 3 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 307 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 1 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 3680 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 2002 МГц до 2044 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

1) -52 дБм 2) -55 дБм 3) -58 дБм 4) -61 дБм 5) -64 дБм 6) -67 дБм 7) -70 дБм 8) -73 дБм 9) -76 дБм

Для выделения только **нижней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный Т-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная минус 33 градусов.

Чему равна ёмкость компонента фазовращателя, если частота ПЧ равна 180 МГц?

Варианты ОТВЕТА:

1) 21.1 $\pi\Phi$ 2) 14.8 $\pi\Phi$ 3) 32.6 $\pi\Phi$ 4) 9.6 $\pi\Phi$