Category Theory Study Group

Second Session

For the second session, read 1.5 - 1.6.

1. Every category **C**, with sets of arrows between objects is isomorphic to a subcategory of **Set** (Theorem 1.6). This theorem places all such categories on equal footings. Furthermore, we can apply reasoning tools for the category **Set** to the Cayley representation of a category and the results reflect back into the original category (the Yoneda principle). For now, let us try to understand the Cayley representation itself. Consider the diagram of the category **C** below.

How many objects and arrows does the Cayley representation $\overline{\mathbf{C}}$ of \mathbf{C} have? How does the set \overline{E} , \overline{C} , and \overline{A} look like? What is the result of $\overline{f}_6(id_E)$, $\overline{f}_6(f_{10})$, $\overline{f}_2(id_C)$ and $\overline{f}_2(f_6 \circ f_{10})$?

Given a diagram in \mathbb{C} commutes, is there an corresponding commuting diagram in $\overline{\mathbb{C}}$? Show that if $f_1 \circ f_5 = f_3 \circ f_8$, then $\overline{f}_1 \circ \overline{f}_5 = \overline{f}_3 \circ \overline{f}_8$.

Show that the Cayley representation can be defined as a functor from $\mathbb{C} \to \mathbf{Set}$.

2. A contravariant functor is a functor $F: \mathbf{C} \to \mathbf{D}$ that maps arrows $f: A \to B$ in \mathbf{C} to $F(f): F(B) \to F(A)$ in \mathbf{D} . Show that functors $F: \mathbf{C^{op}} \to \mathbf{D}$ give rise to a contravariant functor $\mathbf{C} \to \mathbf{D}$. Show that there is a dual Cayley representation defined by a functor from $\mathbf{C^{op}} \to \mathbf{Set}$.

- 3. Consider the category \mathbf{C} of exercise 1 and that the upper and the lower side of the cube commutes. Draw a diagram of the opposite category \mathbf{C}^{op} , the arrow category \mathbf{C}^{\to} and the slice category \mathbf{C}/A . Do not draw objects and arrows containing identities.
- 4. Draw a diagram of the product category of the following two categories.

5. For two functors $F: \mathbf{C} \to \mathbf{D}$, and $G: \mathbf{C} \to \mathbf{E}$, define a functor $H: \mathbf{C} \to \mathbf{D} \times \mathbf{E}$, such that $\pi_1 \circ H = F$ and $\pi_2 \circ H = G$.

Prove that H is the only functor that satisfies these conditions by showing that for all other functors $H': \mathbf{C} \to \mathbf{D} \times \mathbf{E}$ with $\pi_1 \circ H' = F$ and $\pi_2 \circ H' = G$, it follows H = H'.

Use the previous lemma to construct a functor called the diagonal functor $\Delta: \mathbf{C} \to \mathbf{C} \times \mathbf{C}$ and a functor from the arrow category into the product category that make the following diagrams commute.

- 6. Prove a few simple facts about the opposite categories:
 - $(\mathbf{C^{op}})^{\mathbf{op}} \cong \mathbf{C}$
 - $(\mathbf{C} \times \mathbf{D})^{\mathbf{op}} \cong \mathbf{C}^{\mathbf{op}} \times \mathbf{D}^{\mathbf{op}}$
 - $(\mathbf{C}^{\rightarrow})^{\mathbf{op}} \cong (\mathbf{C}^{\mathbf{op}})^{\rightarrow}$
 - for all objects X of C, $(\mathbf{C^{op}}/X)^{op} \cong X/\mathbf{C}$ and $(X/\mathbf{C^{op}})^{op} \cong \mathbf{C}/X$