

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès Ecole Nationale d'Ingénieurs de Gabès

EPREUVE D'EVALUATION

Année Universitaire:	2022-2023	Date de l'Examen:	13 Jan 2023
Nature:	Examen	Durée:	2h
Diplôme:	Ingénieur	Nombre de pages:	
Section:	GCR1/GCP1	Enseignant:	Nadia Sraieb
Niveau d'études:	2 année	Doc autorisés:	Non
Matière:	Mathématique de l'ingé- nieur	Remarque:	

Exercice. 1. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction mesurable et $x_0 \in \mathbb{R}$

Et soit
$$F(x) = \int_0^{+\infty} e^{-tx} f(t) dt$$
.

- I) On suppose que
- a) f est integrable sur tout intervalle borné de IR+,
- b) $t \to e^{-tx_0} f(t)$ est bornée au voisinage de $+\infty$.
- 1) Montrer que F est définie et continue sur $x_0, +\infty$.
- 2) Montrer que $\lim_{x\to +\infty} F(x) = 0$.
- 3) Montrer que F est de classe C^1 sur $]x_0, +\infty[$, et que

$$F'(x) = \int_0^{+\infty} -t e^{-tx} f(t) dt.$$

- II) On suppose que f est integrable sur $[0, +\infty]$.
- 1) Montrer que F est continue sur IR+ et dérivable sur IR+.
- 2) On prend $f(t) = \frac{1}{\sqrt{t(1+t)}}, t > 0.$
- i) Montrer que F est solution de l'equation differentielle

(E):
$$y' - y = \frac{-A}{\sqrt{x}}$$
, avec $A = \int_0^{+\infty} \frac{e^{-u}}{\sqrt{u}} du$.

ii) Résoudre (E), En déduire la valeur de A et retrouver alors la valeur de

$$\int_0^{+\infty} e^{-x^2} dx.$$

Page 1 / 2

Exercice. 2. On donne $\int_{-a}^{+\infty} e^{-ax^2} = \sqrt{\frac{\pi}{a}} \ a > 0$

1) Soit a > 0, f une fonction définie sur \mathbb{R} par : $f(x) = e^{-ax^2}$

a) Vérifier que f est une solution de l'equation differentielle

$$(E): f'(x) + 2xaf(x) = 0$$

b) En applicant la transformation de Fourier à l'equation (E), montrer que f est une solution de l'equation differentielle qu'on déterminera. On notera (\widehat{E}) cette equation.

2) Résoudre (\widehat{E}) et déterminer \widehat{f} .

3) Déduire de ce qui precède que les fonctions

$$x \mapsto e^{-\pi x^2} et x \mapsto \pi x e^{-\pi x^2}$$

sont des veteurs propres de l'opérateur de transformation de Fourier F.

Exercice. 3. 1) H désigne la fonction de Heaviside définie sur R par

$$H(x) = 1$$
, $\forall x > 0$, et $H(x) = 0$ sinon

et L est latransformation de Laplace pour tout p > 0.

1) Calculer $L(\sin(2x)H)(p)$.

2) Calculer $L(e^{ax}sin(2x)H)(p)$ où $a \in \mathbb{R}$

3) On note par f_1 et f_2 les deux fonctions définies par :

$$f_1(x) = e^{-x} sinx H(x)$$
 et $f_2(x) = e^{-x} sin(2x) H(x)$

Calculer $f_1 * f_2(x)$.

4) Soit l'equation differentielle (E) :

$$y" + 2y' + 5y = e^{-x}sinx$$

avec la condition y(0) = 0, y'(0) = 1.

a) En appliquant la transformation de Laplaceà (E) montrer que L(y) est de la forme :

$$L(y)(p) = \frac{\alpha}{(p+1)^2 + 4} + \frac{\beta}{((p+1)^2 + 4)((p+1)^2 + 1)}$$

où α, β sont deux conslantes à déterminer.

b) En déduire l'expression de la solution de (E). On donne $L(f^{(n)})(p) = p^n L(f)(p) - p^{n-1} f(0^+) - p^{n-2} f'(0^+) - \dots - f^{(n-1)}(0^+)$.

Bonne chance!