Desafío: Exploración del Movimiento Armónico Simple con un Péndulo Virtual

Planteamiento del desafío

¿Puede un simple péndulo contarte toda una historia de oscilaciones, energía y precisión matemática? Este desafío te propone usar la simulación interactiva de PhET para analizar con rigor cómo varía la posición angular del péndulo con el tiempo, y cómo su periodo depende de la longitud de la cuerda. Serás responsable de medir, graficar, modelar y presentar tus resultados como un verdadero investigador científico.

Conexiones

- Ciencia: Análisis del movimiento oscilatorio y verificación empírica de modelos físicos.
- Tecnología: Uso de simulaciones interactivas para hacer mediciones precisas sin laboratorio físico.
- Ingeniería: Aplicación del MAS en el diseño de sistemas oscilantes, como sensores y relojes.
- Matemáticas: Ajuste de funciones periódicas, análisis de gráficos y linealización de relaciones.

Recursos

• Simulación a usar: Phet

Objetivos

- Analizar la dependencia temporal de la posición angular del péndulo (en radianes) usando el cronómetro paso a paso.
- Determinar experimentalmente cómo varía el periodo con la longitud de la cuerda.
- Ajustar la curva de posición angular en función del tiempo a una función armónica.
- Estimar los instantes de velocidad máxima y nula, y validarlos con la simulación.
- Desarrollar habilidades de observación, modelado matemático y comunicación científica.

Preparación previa del estudiante

Antes de la primera sesión, cada estudiante debe:

- Investigar qué es el movimiento armónico simple (MAS).
- Conocer la ecuación del péndulo simple para pequeños ángulos:

$$\theta(t) = \theta_0 \cos(\omega t + \phi)$$
 con $\omega = \sqrt{\frac{g}{L}}$

- Entender qué significan: periodo T, frecuencia angular ω , amplitud θ_0 y fase ϕ .
- Leer cómo medir el tiempo con precisión utilizando el cronómetro de la simulación.

Actividades de la Sesión 1 (1.5 h)

- 1. Selecciona una longitud de cuerda fija (ej. 1 m) y un ángulo inicial pequeño (ej. 10°).
- 2. Utiliza el cronómetro paso a paso para registrar el ángulo (en radianes) en intervalos regulares de tiempo (por ejemplo, cada 0.15 s).
- 3. Grafica el ángulo θ en función del tiempo t y ajusta los datos a una función coseno o seno.
- 4. Repite el experimento variando la longitud de la cuerda (0.5 m, 1 m, 1.5 m, 2 m, etc.) y mide el periodo para cada caso.
- 5. Construye la gráfica T^2 v
sL y verifica que sea lineal.
- 6. Identifica visualmente los puntos donde la velocidad angular es máxima (paso por el equilibrio) y donde es nula (amplitud máxima).

Sesión 2 (1.5 h)

- Entrega del informe final por grupos.
- Exposición oral de 10 minutos por grupo, con presentación de resultados, gráficas, conclusiones y validación del modelo matemático.

Preguntas orientadoras

- ¿Qué función matemática describe la posición angular del péndulo como función del tiempo?
- ¿Cómo puedes ajustar tus datos experimentales a esa función?
- ¿Cómo se verifica, usando la simulación, que la velocidad es máxima en el paso por la vertical y nula en los extremos?
- \blacksquare ¿ Qué tipo de gráfica obtienes al representar T^2 vs L? ¿Cómo interpretas su pendiente?
- ¿Qué condiciones debe cumplir el ángulo inicial para que el movimiento sea armónico simple?

Rúbrica para el informe (2.5 puntos)

Criterio	Puntaje Máximo
Presentación clara de datos experimenta-	0.5
les y gráficas	
Análisis correcto de la función $\theta(t)$ y ajus-	0.5
te experimental	
Gráfica y análisis de T^2 vs L , interpreta-	0.5
ción de pendiente	
Discusión sobre velocidad máxima y nula	0.5
con validación visual	
Conclusiones fundamentadas y redacción	0.5
clara	
Total	2.5

Rúbrica para la sustentación (2.5 puntos)

Criterio	Puntaje Máximo
Claridad en la presentación y uso adecua-	0.5
do del lenguaje técnico	
Dominio del tema y respuestas acertadas	0.5
a preguntas orientadoras	
Explicación correcta de la relación $\theta(t)$ y	0.5
sus parámetros	
Interpretación experimental de velocida-	0.5
des nulas y máximas	
Participación equitativa de todos los	0.5
miembros del grupo	
Total	2.5

Nota final: Suma de informe (2.5) + sustentación (2.5) = 5.0 puntos

Enlace de Simulación: https://phet.colorado.edu/sims/html/pendulum-lab/latest/pendulum-lab_es.html