An Introduction to Neural Networks

James Campbell

October 10, 2018

@JamesCampbell95

Intro

- Who am I?
- What will I be talking about?

What is a Neural Network?

What is a Neural Network?

What is this Function?

What is this Function?

What are Neurons?

What are Neurons?

What are Neurons?

$$z = x_1 \cdot w_1 + x_2 \cdot w_2 + x_3 \cdot w_3$$

Activation Functions

Activation Functions

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Finding the best Weights

Cost Function

$$C(W) = \frac{1}{2} \sum_{x_i \in X} (f(x_i) - y_i)^2$$

where f is our neural network, X is our training set, and y_i is the target of x_i

Gradient Descent

The Full Process

Full Process

- A Neural Network is just many small functions linked together.
- These small functions are just linear multiplication followed by an activation.
- We created a cost function to assess the performance of a set of weights.
- We came up with a method to iteratively improve our choice of weights.

Let's see some code...

Next Steps

- https://pythonmachinelearning.pro/free-ebook-deep-learningwith-python/
- https://eu.udacity.com/course/deep-learning-ud730
- http://www.deeplearningbook.org/

Thank You...Any Questions?