MARKING KEY Sample examination Stage 3 Physics

PHYSICS

Section one: Short answer

Question 1 Spectra

	Description	Mark
	A torch and B laser	1
Γ	laser light is monochromatic ie one frequency only unlike a incandescent filament	1

Question 2 Gravity on Everest

Gravity on Evolution	
Description	Mark
A	1
Explanation can be verbal and/or mathematical, e.g. g at any point depends on the square of the distance from that point to the centre of the earth (g is proportional to $\frac{1}{r^2}$).	1
The height of Mt Everest (about 9000 m) is very much less than the radius of the Earth. The two distances are about 6 409 000 m and 6 400 000 m, and so g will be not very different from what it is at sea level. ($\mathbf{g}_{\text{Everest}} = 99.7\% \ \mathbf{g}_{\text{sea level}}$)	1

Question 3 Quasars

Description	Mark
Large redshift means that the object is receding from us at high speed	1
Hubble's law suggests that high recession rates mean great distances	1

Question 4 Screwdrivers

Description	Mark
Q is better	1
there is a greater torque for the same applied force as torque is proportional to the	1
radius of the handle $\tau = r \times F$	+

Question 5(a) Orbital velocity

Description	Mark
$v = \frac{2\pi r}{T}$	1
$=\frac{2\pi(1.85\times10^6)}{119(60)}=1.63\times10^3\mathrm{ms^{-1}}$	1

Question 5(b) Moon mass

moon mass	
Description	Mark
$F = \frac{mv^2}{r} = \frac{Gmm_m}{r^2}$	1
$m_{\rm m} = \frac{v^2 r}{G} = \frac{(1.63 \times 10^3)^2 (1.85 \times 10^6)}{6.67 \times 10^{-11}} = 7.35 \times 10^{22} \mathrm{kg}$	1

Question 6(a) Magnet

Question 6(b) Magnetic field

Question 7(a) Enclose magnetic flux

=ggg	
Description	Mark
Plane of the rim must be vertical	1
and in the east-west direction	1

Question 7(b)

Estimate magnetic flux

Description	Mark
Reasonable estimate of radius of wheel eg 0.3 m	1
$\Phi = B A$	1
= $55 \times 10^{-6} \times \pi \times 0.3^{2}$ Wb = 2×10^{-5} Wb	1

Question 8 Waves in a pulse

Description	Mark
frequency is number of pulses or vibrations each second	1
substitute time to be 0.10 μ s, so number is [3.3 x 10 ⁹] x 0.1 x 10 ⁻⁶ = 330	1

Question 9(a)

Question 9(b) Current change

_	Description		Mark
It decreases to zero			1

Question 10(a) Directions of forces

Question 10(b) Magnitudes of forces

Question 11 Particle motion in magnetic field

Description X X X X X X X X X X X X X X X X X X X	r article motion in magnetic neid	Description	Morle
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Jescription	Mark
R (1^{-}) Directions of paths of Q, R = 1 each = 2 marks Relative curvature = 1 mark	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X X X X X Q X X X X X X Q X X X X X X X Y X X Y X Y X Y X X X X X	3

Question 12

Free body diagram and force calculation

Description	Mark
T 7 Tleg 37° T \(\frac{37^{\circ}}{T} \)	1
For equilibrium: $\Sigma F = 0$	1
$\therefore \Sigma F_{left} = \Sigma F_{right}$	
$T_{leg} = 2 T_{rope} \cos 37^{\circ}$ = 2 x 20 x 9.8 cos 37° = 313 N (=310 N)	1

Question 13 Gravitational null point

$\begin{split} g_E &= g_m \\ \frac{Gm_E}{r^2} &= \frac{Gm_M}{r^2} \\ \frac{m_E}{(R-d)^2} &= \frac{m_M}{d^2} \\ \frac{m_E}{m_M} &= \frac{(R-d)^2}{d^2} \end{split}$	1
$\frac{5.98 \times 10^{24}}{7.34 \times 10^{22}} = \left(\frac{R - d}{d}\right)^{2}$ $\sqrt{81.4} = \frac{R - d}{d}$ $\frac{d}{R - d} = \frac{1}{9}$ $\therefore \frac{d}{R} = \frac{1}{10} = 10\%$	1

Question 14

Cancelling electric and magnetic fields

Description	Mark
Electric force given by $F = Eq$ and magnetic force given by $F = qvB$	1
In order to cancel these must be numerically equal i.e. $Eq = qVB$	1
Hence $v = \frac{Eq}{qB} = \frac{E}{B}$	1

Question 15

Track of recoiling nucleus

This particle does not produce visible tracks so is unlikely to be charged or to have a mass comparable to an electron mass.

Description

Mark

Mark

Path of unknown
particle

Path of unknown
particle

Track of recoiling
nucleus

1

Section two: Problem-solving

Question 16(a) Fundamental and harmonic

Description	Mark
Fundamental	1
Next possible harmonic	1
Chimney is open at one end and closed at the other	1
Open end is a displacement antinode, closed end is a displacement node	1

Question 16(b) Length of chimney

Description	Mark
Assume that speed of sound in air is 342 m s ⁻¹	1
$V = f\lambda$	1
$\lambda = \frac{V}{f} = \frac{342}{30} = 114 \text{ m}$	1
Open pipe so length= $\frac{1}{4}\lambda = \frac{114}{4} = 28 \text{ m}$	1

Question 17(a)(i) Electron transitions

Description		Mark
Completed all 6 transitions to high degree of accuracy or		2
Has at least three transitions correctly identified, correct arrow direction		1
	maximum	2

Question 17(a)(ii)

Electron transition calculation

Description	Mark
$\Delta E_{3->1} = \frac{hc}{\lambda}$	1
$=\frac{(6.63\times10^{-34})(3\times10^{8})}{102.6\times10^{-9}}=1.939\times10^{-18}\mathrm{J}$	1

Question 17(b)(i)

Phenomenon

Description	Mark
Fluorescence	1

Question 17(b)(ii)

Occurrence

Description	Mark
Atom excited by UV light to a higher energy level	1
Electrons drop to the ground state in a series of transitions.	1
At least one of these transitions emits coloured light.	1

Question 17(b)(iii) Colour of rabbit

Description	Mark
Peak wavelength of emitted light is about 510 nm.	1
This corresponds to green light—from spectrum chart at beginning of question 17	1

Question 18(a)

Slip rings

Description	Mark
Enables alternating current to be withdrawn from the generator. Maintains constant)
contact between a particular side of the coil and a given terminal for the external circuit.	1
[Students should indicate this on the diagram.]	

Question 18(b)(i) Graph of emf

	Description	Mark
sinusoidal output		1
Period shown correctly		1

Question 18(b)(ii)

Graph of new emf

Description	Mark
Voltage is doubled	1
Period is halved	1

Question 18(c)(i) Emf calculation

Description	Mark
3000 rpm = 50 Hz	1
Using 'quarter turn' method A = $0.14 \times 0.09 = 0.0126 \text{m}^2$ and t = 0.005 s	1
$V = -N \frac{(\Phi_2 - \Phi_1)}{t} = -N \frac{B(A_2 - A_1)}{t} = -200 \frac{0.15(0 - 0.0126)}{0.005} = 76 \text{ V}$	1

Question 18(c)(ii)

Maximum or average

Description	Mark
This is an 'average' voltage. (student's statement must agree with the method used) [Maximum voltage would be given by NAB(2π f)]	1
OR	
(Students can also calculate rms value given by $\sqrt{2}\pi BANf$)	1

Question 18(d)

Ways to increase emf: any two of

Description	Mark
Number of turns can be increased, increasing the length of the wire in the coil	2
Magnetic field can be increased, greater magnetic fields produce greater induced emfs	2
Area of coil can be increased, greater area means the flux change is greater.	2
maximum	4

Question 19(a)(i) Wavelength calculation

Descripti	on	Mark
$E = h f = \frac{h c}{\lambda}$		1
$\lambda = \frac{h c}{E} = \frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{2.3 \times 10^{6} \times 1.6 \times 10^{-19}}$ $= 5.40 \times 10^{-13} \text{ m}$		1

Question 19(a)(ii)

spectrum

Description	Mark
X-rays (It is acceptable to have gamma rays).	1

Question 19(b)

Using radiation

Description	Mark
Yes	1
Short wavelength means it penetrates solids well	1
More radiation would pass through a crack so highlighting its presence	1

Question 19(c)(i) Radius of circle

Description	Mark
KE = $\frac{1}{2}$ m $v^2 \Rightarrow v = \sqrt{\frac{2E}{m}}$	1
$r = \frac{mv}{qB} = m\sqrt{\frac{\left(\frac{2E}{m}\right)}{qB}}$	1
$r = \sqrt{\frac{2 \times 1.67 \times 10^{-28} \times 2.3 \times 10^{6} \times 1.6 \times 10^{-19}}{1.6 \times 10^{-19} \times 0.35}}$ = 198 mm	1

Question 19(c)(ii) Radius change

Description	Mark
If kinetic energy increases then speed increases	1
From the formula $r = \frac{mv}{qB}$, then radius would increase	1

Question 20(a)

Maximum height and range

Description	Mark
$v_H = 40 \cos 60^{\circ}$ $v_V = 40 \sin 60^{\circ}$	1
$v^2 = u^2 + 2as$	
$s = h = \frac{v^2 - u^2}{2g} = \frac{0 - (40 \sin 60^\circ)^2}{2 \times (-9.8)} = 61.2 \text{m} \text{(max height above nozzle)}$	1
v = u + at	
$\therefore t = \frac{v - u}{g} = \frac{0 - 40 \sin 60^{\circ}}{-9.8} = 3.53 \mathrm{s}$	1
$v = \frac{s}{t}$	
$s = R = v_H t = 40 \cos 60^{\circ} \times 2 \times 3.53 = 141 m$ (range)	

Question 20(b) Helicopter height

Description	Mark
Horizontal: $s_H = 150 \text{ m}$ $v_H = 22 \text{ m s}^{-1}$ $v = \frac{s}{t}$	1
hence $t = \frac{s_H}{v_H} = \frac{150}{22} = 6.82 s$	1
Vertical: $s = ut + \frac{1}{2}at^2 = 0 + \frac{1}{2}(9.8)(6.82)^2 = 228 \text{ m}$ (= minimum height)	1

Question 20(c)(i) Height and range from graph

Question 20(c)(ii) Angles and speed

Description	Mark
Best angle = 60° Best velocity = 30 m s ⁻¹	1
Explanation may include any of the following:	
Maximum height should be around 35 m	
Launch speed = 20 m s ⁻¹ won't reach required height	1
Launch speed = 30 m s ⁻¹ but angles \leq 50° and \geq 60° won't reach required height	
Launch speed = 40 m s ⁻¹ at angle of 70-80° is possible but reaches too great a height	

Question 21(a)(i) Distance travelled

	Description	Mark
Distance = v.T		1

Question 21(a)(ii) Number of particles

Description	Mark
number of particles in a length $\ell = \frac{n}{\ell}$	1
number of particles in a length v.T = $\frac{nvT}{\ell}$	1

Question 21(b) Current equivalence

Description	Mark
charge on particles (in a length ℓ) = Q $\left(\frac{\text{nvT}}{\ell}\right)$	1
$current = \frac{charge}{time} = \frac{Q}{T}$	1
but charge $=Q\left(\frac{nvT}{\ell}\right)$	
$\therefore I = \frac{Q\left(\frac{nvT}{\ell}\right)}{T} = \frac{vnQ}{\ell}$	1

Question 21(c)(i) Direction of electric force

		Description	Mark
to the left, eg	← ○		1

Question 21(c)(ii) Particle path

Question 21(d)(i) Magnetic field direction

Description	Mark
Out of the page or	2
Into the page	1

Question 21(d)(ii) Magnetic force equivalence

Description	Mark
since $v = \frac{\ell}{T}, \therefore BvQ = \frac{B\ell Q}{T}$	1
$BvQ = \frac{B\ell Q}{T} = B\ell \left(\frac{Q}{T}\right)$	1
but $\frac{Q}{T} = I$ $\therefore BVQ = B\ell I = I\ell B$	1

Section three: Comprehension

Question 22(a)

Resonant frequency of bubbles

Description	Mark
$f_0 = \frac{1}{2\pi} \sqrt{\frac{3\gamma P_0}{\rho R_0^2}}$	1
$=\frac{1}{2\pi}\sqrt{\frac{3(1.4)(100\times10^{3})}{(1\times10^{3})(3\times10^{-3})^{2}}}$	1
≈ 1100 Hz	1

Question 22(b)(i) Cavitation location

	Description	Mark
$f = \frac{300}{60} = 5 \text{ Hz}$ $v = 14 \text{ m s}^{-1}$		1
$v = \frac{2\pi r}{T} = 2\pi rf$		1
$r = \frac{v}{2\pi f} = \frac{14}{2\pi (5)} = 0.45 \text{ m}$ i.e. 0.45 m along blade from centre.		1

Question 22(b)(ii)

Cavitation damage

Description	Mark
The tips of the blades or where water speed (relative to blade) is greatest	1

Question 22(c)(i) Snapping shrimp bubbles

	Description	Mark
From figure 1: radius \approx 3.5 mm		1

Question 22(c)(ii) Bubble collapse time

	Description	Mark
From either figure:	time ≈ 0.3 ms	1

Question 23(a)

Photon momentum

r liotoli ilioliicittalii	
Description	Mark
Photons have momentum	1
change in momentum (on reflection) creates a force	1
photon (1 mark if angles not approximately correct)	2

Question 23(b)

Compton scattering

Description	Mark
Particle property	1
Possible reasons are momentum is a property of particles, or collisions are	1
characteristic of particles	_

Question 23(c)

Momentum units

Description	Mark
Particle: $p = m v = kg m s^{-1}$	1
Photon: $p = \frac{h}{\lambda} = \frac{Js}{m}$	1
$=\frac{\text{kg m}^2 \text{ s}}{\text{s}^2 \text{ m}} = \text{kg m s}^{-1}$	1

Question 23(d)(i) Higher momentum

Description	Mark
X-ray photon has the larger momentum	1
Reason : It has a smaller wavelength	1

Question 23(d)(ii)

Momentum calculation

Description	Mark
$E = \frac{hc}{\lambda} \qquad \lambda = \frac{hc}{E}$	1
$p = \frac{h}{\lambda} = \frac{hE}{hc} = \frac{E}{c}$	1
$p = \frac{110 \times 10^{3} \times 1.6 \times 10^{-19}}{3 \times 10^{8}} = 5.87 \times 10^{-23} \text{ kg m s}^{-1}$	1

Question 23(d)(iii) Scattering angle

Description	Mark
Needs to be scattered through 180°	1
cos (180°) = -1 so change in wavelength is greatest	1

Question 23(e)

Energy of scattered electron

Description	Mark
$\lambda' = \lambda + \frac{h}{mc} (1 - \cos \theta) = \frac{hc}{E} + \frac{h}{mc} (1 - \cos \theta)$ $= 1.251 \times 10^{-11} \text{ m}$	1
$E' = \frac{hc}{\lambda'} = 1.59 \times 10^{-14} J = 99.2 \text{ keV}$ = 99.2 keV	1
Hence scattered electron energy is 19.8 keV or 3.17 x 10 ⁻¹⁵ J	1

Overall - units

Description	Mark
Consistent, appropriate use of units in final answers (no more than two unit errors in entire paper) or	2
Inconsistent or inappropriate use of units in final answers (three or four unit errors in entire paper) or	1
Poor use of units in final answers (five or more unit errors in entire paper)	0

Overall – significant digits

Description	Mark
Consistent, appropriate use of significant digits in final answers (no more than two SD errors in entire paper) or	2
Inconsistent or inappropriate use of significant digits in final answers (three or four SD errors	1
in entire paper) or	
Poor use of significant digits in final answers (five or more SD errors in entire paper)	0

Physics Stage 3 exam

Working in physics Motion and forces in a gravitational field Motion and forces in a gravitational gravitational field Motion and forces in a gravitational gra			3A		3B					
1			forces in a gravitational	and		waves and	forces in electric and magnetic			
Dpt 9										
2 Dpt 9 3 Dpt 12 5 Dpt 10 6 Dpt 2, 3 7 Dpt 8 8 Dpt 1 9 Dpt 3, 13 10 Dpt 3, 13 11 Dpt 2, 3 13 Dpt 2, 9 14 Dpt 11 SECT Dpt 3, 4 17 Dpt 3, 4 18 Dpt 9, 10, 16 18 Dpt 8, 9 19 Dpt 6, 10, 16 Dpt 4 20 X Dpt 5, 5 Dpt 5 21 Dpt 5 Dpt 5 Dpt 3, 4, 6 SECT 3 Dpt 5 X Dpt 3, 4, 6 22 X Dpt 5 Dpt 5, 6 overall Dpt 5, 6 Opt 5, 6	1					Dpt 7				
3 Dpt 12 5 Dpt 10 6 Dpt 2, 3 7 Dpt 8 8 Dpt 1 9 Dpt 3, 13 11 Dpt 2, 3 13 Dpt 2, 3 13 Dpt 2, 9 14 Dpt 2, 9 15 Dpt 11 SECT 2 Dpt 3, 4 16 Dpt 3, 4 17 Dpt 9, 10, 16 18 Dpt 9, 10, 16 19 Dpt 8, 9 20 X 21 Dpt 5 22 X 21 Dpt 5 22 X 23 Dpt 5 0 overall X			Dpt 9							
5 Dpt 10 Dpt 2, 3 Dpt 8 Dpt 1 Dpt 8 Dpt 1 Dpt 2 Dpt 2 Dpt 3, 13 Dpt 4 Dpt 4 Dpt 4 Dpt 4 Dpt 4 Dpt 4 Dpt 6 Dpt 7 Dpt 6 Dpt 7 Dpt 6 Dpt 7 Dpt 6 Dpt 7			•			Dpt 15				
6 Dpt 2, 3 7 Dpt 8 8 Dpt 1 9 Dpt 3, 13 10 Dpt 3, 13 11 Dpt 2, 3 13 Dpt 2, 9 14 Dpt 6 15 Dpt 11 SECT 2 Dpt 3, 4 16 Dpt 3, 4 17 Dpt 9, 10, 16 18 Dpt 8, 9 19 Dpt 6, 10, 16 20 X 21 Dpt 5 21 Dpt 5 SECT 3 Dpt 3, 4, 6 22 X 23 Dpt 5 Overall N	4		Dpt 12							
7	5		Dpt 10							
8 Dpt 1 9 Dpt 3, 13 10 Dpt 3, 13 11 Dpt 2, 3 13 Dpt 2, 9 14 Dpt 11 SECT Dpt 11 SECT Dpt 3, 4 17 Dpt 9, 10, 16 18 Dpt 8, 9 19 Dpt 6, 10, 16 Dpt 4 20 X Dpt 5, 0 Dpt 5 21 Dpt 5 Dpt 5 Dpt 3, 4, 6 SECT 3 Dpt 5 X Dpt 5, 6 overall Opt 5, 6 Opt 5, 6 Opt 5, 6				Dpt 2, 3						
9				Dpt 8						
10						Dpt 1				
11				Dpt 9						
12 Dpt 2, 3 13 Dpt 2, 9 14 Dpt 6 15 Dpt 11 SECT Dpt 3, 4 17 Dpt 9, 10, 16 18 Dpt 8, 9 19 Dpt 6, 10, 16 Dpt 4 20 X Dpt 5 Dpt 5 21 Dpt 5 Dpt 5 Dpt 3, 4, 6 SECT 3 Dpt 5 X Dpt 5, 6 overall Overall Dpt 5, 6 Dpt 5, 6			Dpt 3, 13							
13							Dpt 4			
14 Dpt 6 15 Dpt 11 SECT 2 Dpt 3, 4 16 Dpt 9, 10, 16 18 Dpt 9, 10, 16 19 Dpt 6, 10, 16 Dpt 4 20 X Dpt 5 Dpt 5 Dpt 3, 4, 6 SECT 3 X Dpt 5 Dpt 5, 6 Dpt 5, 6 overall Overall Dpt 5, 6 Dpt 5, 6										
15			Dpt 2, 9							
SECT 2 Dpt 3, 4 16 Dpt 3, 4 17 Dpt 9, 10, 16 18 Dpt 8, 9 19 Dpt 6, 10, 16 Dpt 4 20 X Dpt 5 Dpt 5 Dpt 3, 4, 6 SECT 3 X Dpt 5 Dpt 3, 4, 6 22 X Dpt 5, 6 Dpt 5, 6 overall Overall Overall Dpt 5, 6							Dpt 6			
2 Dpt 3, 4 16 Dpt 3, 4 17 Dpt 9, 10, 16 18 Dpt 8, 9 19 Dpt 6, 10, 16 Dpt 4 20 X Dpt 1, 2, 5 Dpt 5 Dpt 3, 4, 6 SECT SECT X Dpt 5 X Dpt 5, 6 overall Dpt 5 X Dpt 5, 6						Dpt 11				
16 Dpt 3, 4 17 Dpt 9, 10, 16 18 Dpt 8, 9 19 Dpt 6, 10, 16 Dpt 4 20 X Dpt 1, 2, 5 Dpt 5 Dpt 3, 4, 6 21 Dpt 5 Dpt 5 Dpt 3, 4, 6 SECT 3 X Dpt 5 X Dpt 5, 6 overall Overall Dpt 5, 6 Dpt 5, 6										
17 Dpt 9, 10, 16 18 Dpt 8, 9 X 19 Dpt 6, 10, 16 Dpt 4 20 X Dpt 5 Dpt 3, 4, 6 SECT Dpt 3 X Dpt 3, 4, 6 22 X Dpt 5 X Dpt 5, 6 overall Dpt 5 X Dpt 5, 6	16					Dpt 3, 4				
19 Dpt 6, 10, 16 Dpt 4 20 X Dpt 5, 5 Dpt 3, 4, 6 21 Dpt 5 Dpt 3, 4, 6 SECT 3 X Dpt 5, 6 22 X Dpt 5, 6 overall Overall Dpt 5, 6	17									
20 X Dpt 1, 2, 5 21 Dpt 5 Dpt 5 SECT 3 X 22 X 23 Dpt 5 overall X Dpt 5, 6	18			Dpt 8, 9	Х	· ·				
21 Dpt 5 Dpt 5 SECT X 22 X Dpt 5, 6 Overall Dpt 5 X Dpt 5, 6	19					Dpt 6, 10, 16	Dpt 4			
SECT 3 22 X 23 Dpt 5 overall Dpt 5, 6		Х	Dpt 1, 2, 5							
3			Dpt 5	Dpt 5			Dpt 3, 4, 6			
22 X Dpt 5, 6 overall										
23	22				X					
overall			Dpt 5		X	Dpt 5. 6				
			200							
		X			Х					

Sample physics exam (2008/18609) design brief fit analysis

		section 1	section 1 marks	section 2	section 2 marks	section 3	section 3 marks	overall marks*	total marks	total %	total allowed
15– 20%	Working in Physics	nil	0	20c	4	22a, 22b(ii), 22c, 23c, 23d, 23e	19	4	27	19.3	15-20%
20– 25%	Motion and forces in a gravitational field	2, 4, 5, 10, 12, 13	19	20a, 20b, 21a	9	23a, 22b(i)	7		35	25	20-25%
15-20%	Electricity and magnetism	6, 7, 9	10	18a, 18b, 18c, 18d,	13			·	23	16.4	15-20%
20– 25%	Particles, waves and quanta	1, 3, 8, 15	8	16a, 16b, 17a, 17b, 19a, 19b	24	23b	2		34	24.3	20-25%
15– 20%	Motion and forces in electric and magnetic fields	11, 14	6	19c, 21b, 21c, 21d, 21e,	15	-	-		21	15	15-20%
	totals total %	13 items	43 30.7	6 items	65 46.4	2 items	28 20	4 2.9	140	100	
	total allowed	items	25-35%	6-8 items	45-55%	1-2 items	15-25%	2-3%			

^{* &#}x27;overall marks' refers to an allocation for appropriate use of units and significant digits.