Feuille d'exercices nº 2 – Espace dual, opérations élémentaires, déterminant

Révision

1. Dans chacun des cas suivants, les produits matriciels AB et BA sont-ils bien définis? Si oui, les calculer.

(a)
$$A = \begin{pmatrix} 1 & 2 & 1 \ 3 & 4 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \ 2 & 1 \ 0 & 1 \end{pmatrix}$. (c) $A = \begin{pmatrix} 1 & 2 \ 3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \ 2 & 1 \ 0 & 1 \end{pmatrix}$.
(b) $A = \begin{pmatrix} 0 & 1 \ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \ 1 & -1 \end{pmatrix}$. (d) $A = \begin{pmatrix} 1 & 0 & 1 \ 1 & 2 & -1 \ 3 & 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & -1 \ 0 & 1 & 2 \ -1 & -2 & 0 \end{pmatrix}$.

- 2. Démontrer que $\dim_{\mathbb{Q}} \mathbb{R} = \infty$.
- 3. Soit $\mathbf{k} \in \{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$. Soit E un \mathbf{k} -espace vectoriel, id_E l'endomorphisme identité et ϕ un endomorphisme nilpotent (pour simplicité, on suppose $\psi^3 = 0$). Démontrer qu'il existe un endomorphisme nilpotent ψ tel que $\mathrm{id}_E + \phi = (\mathrm{id}_E + \psi)^2$.

Matrice d'un endomorphisme. Changement de base

- 4. Dans $\mathbb{R}_2[t]$ considerons les bases $\mathcal{B}_{\lambda} = \{1, t \lambda, (t \lambda)^2\}$, où $\lambda \in \mathbb{R}$.
 - (a) Démontrer que \mathcal{B}_{λ} est une base de $\mathbb{R}_2[t]$.
 - (b) Expliciter la matrice P_{λ} de passage de \mathcal{B}_0 à \mathcal{B}_{λ} .
 - (c) Ecrire la matrice D_{λ} de l'opérateur $\partial_t : P \mapsto \frac{dP}{dt}$ dans la base \mathcal{B}_{λ} .
- 5. On désigne par \mathcal{B} la base canonique de \mathbb{R}^2 . Considérons aussi la base $\mathcal{B}' = \{\binom{1}{2}, \binom{-1}{3}\}$.
 - (a) Expliciter la matrice P de passage de $\mathcal B$ à $\mathcal B'$. Que vaut la matrice P' de passage de $\mathcal B'$ à $\mathcal B$?
 - (b) Soit $x = \binom{x^1}{x^2} \in \mathbb{R}^2$. Déterminer les coordonnées de x dans la base \mathcal{B}' .
 - (c) Soit f un endomorphisme de \mathbb{R}^2 dont la matrice M dans la base canonique est

$$M = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$$

Déterminer la matrice M' de f dans la base \mathcal{B}' .

L'espace dual

Definition 1. Soit E un \mathbf{k} -espace vectoriel. Une application \mathbf{k} -linéaire $E \to \mathbf{k}$ s'appelle une forme linéaire sur E, et $\mathrm{Hom}_{\mathbf{k}}(E,\mathbf{k})$ s'appelle l'espace dual de E et se note E^* ou E^\vee .

L'espace $(\mathbb{R}^n)^*$. Chaque forme linéaire f sur \mathbb{R}^n s'écrit comme $f(t(x^1,\ldots,x^n))=f_1x^1+\cdots+f_nx^n$ pour $f_1,\ldots,f_n\in\mathbb{R}$. On identifie $(\mathbb{R}^n)^*$ avec l'ensemble de tous les vecteurs-lignes $(f_1,\ldots,f_n),\,f_1,\ldots,f_n\in\mathbb{R}^n$. L'action de $f\in(\mathbb{R}^n)^*$ sur $x\in\mathbb{R}^n$ est donnée par multiplication de matrices : $f(x)=f\cdot x$.

6. Soient $n \in \mathbb{N}$, $E = \mathbb{R}_n[X]$ et \mathcal{B} la base $(1, X, ..., X^n)$ de E. Notons ∂ l'endomorphisme de E qui, à tout polynôme $P \in E$, associe son polynôme dérivé P'. On pose alors $\partial^0 = \mathrm{id}_E$, puis, pour tout $i \in \mathbb{N}$, $\partial^{i+1} = \partial \circ \partial^i$. Pour i = 0, ..., n on considère la forme linéaire :

$$\phi_i \colon E \to \mathbb{R}, \quad P \mapsto \frac{1}{i!} (\partial^i P)(0).$$

Montrer que la famille (ϕ_0, \ldots, ϕ_n) est la base duale de \mathcal{B} .

- 7. On se place dans le \mathbb{R} -espace vectoriel $E = \mathbb{R}^2$.
 - (a) Montrer que la famille $\mathcal{B} = \{b_1, b_2\}$, $b_1 = \binom{3}{1}$, $b_2 = \binom{2}{1}$, forme une base de \mathbb{R}^2 , puis déterminer la base duale $\mathcal{B}^{\vee} = \{b^1, b^2\}$ de $(\mathbb{R}^2)^*$.
 - (b) Déterminer la matrice de passage P de la base \mathcal{B} à la base $\mathcal{B}' = \{b'_1, b'_2\}, b'_1 = \binom{16}{7}, b'_2 = \binom{9}{4}$.
 - (c) Déterminer la matrice P^{\vee} de passage de \mathcal{B}^{\vee} à $(\mathcal{B}')^{\vee}$ sans calculer $(\mathcal{B}')^{\vee}$. Trouver $(\mathcal{B}')^{\vee} = \{b^{1'}, b^{2'}\}$ en utilisant P^{\vee} .
 - (d) Soit $\omega \in (\mathbb{R}^2)^*$ une forme linéaire dont les coordonnées dans la base \mathcal{B}^{\vee} sont $\begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix}$. Déterminer les coordonnées $\begin{pmatrix} \omega_1' \\ \omega_2' \end{pmatrix}$ de ω dans la base $(\mathcal{B}')^{\vee}$.
 - (e) Soit $\mathcal{T} \in \operatorname{End}_{\mathbb{R}}((\mathbb{R}^2)^*)$ est l'endomorphisme dont la matrice dans la base \mathcal{B}^{\vee} est $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Déterminer la matrice T' de \mathcal{T} dans la base $(\mathcal{B}')^{\vee}$.
- 8. On se place dans le \mathbb{R} -espace vectoriel $E = \mathbb{R}^3$.
 - (a) Montrer que la famille $\mathcal{B} = \{b_1, b_2, b_3\},\$

$$b_1 = {}^{t}(1,0,-1), \quad b_2 = {}^{t}(-1,-1,2), \quad b_3 = {}^{t}(-2,1,-2),$$

forme une base de \mathbb{R}^3 , puis déterminer la base duale $\mathcal{B}^{\vee} = (b^1, b^2, b^3)$ de $(\mathbb{R}^3)^*$.

(b) Ecrire la matrice P de passage de la base \mathcal{B} à la base $\mathcal{B}' = \{b'_1, b'_2, b'_3\},$

$$b'_1 = {}^t(1,0,0), \quad b'_2 = {}^t(1,1,0), \quad b'_3 = {}^t(0,1,1).$$

- (c) Déterminer la matrice P^{\vee} de passage de \mathcal{B}^{\vee} à $(\mathcal{B}')^{\vee}$ sans calculer $(\mathcal{B}')^{\vee}$. Trouver $(\mathcal{B}')^{\vee}$ en utilisant P^{\vee} .
- (d) Soit $\omega \in (\mathbb{R}^3)^*$ une forme linéaire dont les coordonnées dans la base \mathcal{B}^{\vee} sont $^t(\omega_1, \omega_2, \omega_3)$. Déterminer les coordonnées $^t(\omega_1', \omega_2', \omega_3')$ de ω dans la base $(\mathcal{B}')^{\vee}$.
- (e) Soit $\mathcal{T} \in \operatorname{End}_{\mathbb{R}}((\mathbb{R}^3)^*)$ un endomorphisme dont la matrice dans la base \mathcal{B}^{\vee} est

$$T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Déterminer la matrice T' de \mathcal{T} dans la base $(\mathcal{B}')^{\vee}$.

- 9. Soient f_1, \ldots, f_n des formes linéaires sur \mathbf{k}^n telles qu'il existe $x \in \mathbf{k}^n$, $x \neq 0$, tel que $f_1(x) = f_2(x) = \cdots = f_n(x) = 0$. Montrer que la famille $\{f_1, \ldots, f_n\}$ est liée.
- 10. Soit $\mathcal{E} = (e_1, e_2, e_3, e_4)$ la base canonique du \mathbb{R} -espace vectoriel $E = \mathbb{R}^4$, $\mathcal{E}^* = (e_1^*, e_2^*, e_3^*, e_4^*)$ la base duale de \mathcal{E} , et P le plan de E engendré par les vecteurs $v_1 = e_1 + 2e_2 + e_3 + e_4$ et $v_2 = e_2 + e_3 + e_4$.
 - (a) Soit $f = a_1 e_1^* + a_2 e_2^* + a_3 e_3^* + a_4 e_4^* \in E^*$, où $a_1, a_2, a_3, a_4 \in \mathbb{R}$. À quelle(s) condition(s) a-t-on $f_{|P|} = 0$?
 - (b) Notons $P^{\perp}=\{f\in V^*\mid \forall\,v\in P,\,f(v)=0\}.$
 - i. Montrer que P^{\perp} est un sous-espace vectoriel de E^* , puis déterminer une base de P^{\perp} et sa dimension d.
 - ii. De façon équivalente, déterminer d équations linéairement indépendantes définissant P.
 - (c) Considérons maintenant les formes linéaires $\phi = e_1^* + e_2^* e_3^*$ et $\psi = e_1^* + e_4^*$ de E^* . Montrer que l'ensemble $F = \{v \in E \mid \phi(v) = \psi(v) = 0\}$ est un sous-espace vectoriel de E, puis déterminer une base de F.

Opérations élémentaires

11. On considère la matrice :

$$A = \begin{pmatrix} 1 & 1 & 1 & -1 \\ 0 & 1 & 1 & 1 \\ 2 & 2 & 2 & -2 \end{pmatrix} \in M_{3,4}(\mathbb{R}).$$

En faisant des opérations élémentaires sur les colonnes, déterminer le rang de A, ainsi que des bases de im A et ker A.

12. On considère la matrice :

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 4 & 5 \\ 2 & 1 & 5 & 4 \end{pmatrix} \in M_{3,4}(\mathbb{R}).$$

En faisant des opérations élémentaires sur les colonnes, déterminer le rang de A, ainsi que des bases de im A et ker A.

13. On se place dans le \mathbb{R} -espace vectoriel $E = \mathbb{R}^5$, où l'on considère L le sous-espace vectoriel de E engendré par les vecteurs $v_1 = {}^t(1,-1,1,-1,1), \ v_2 = {}^t(1,3,1,3,1), \ v_3 = {}^t(1,1,1,1,2),$ et M le sous-espace vectoriel de E engendré par les vecteurs $u_1 = {}^t(3,1,3,1,3), \ u_2 = {}^t(1,2,1,2,1), \ u_3 = {}^t(1,2,0,2,0)$. En faisant des opérations sur les colonnes de la ou les matrice(s) appropriée(s), déterminer des bases de L + M et $L \cap M$.

Trace et déterminant

14. On rappelle que la trace sur $M_n(\mathbf{k})$ est définie par

$$\operatorname{tr}: M_n(\mathbf{k}) \to \mathbf{k}, \quad \begin{pmatrix} m_{11} & m_{12} & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & m_{nn} \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \cdots & m_{nn} \end{pmatrix} \mapsto m_{11} + m_{22} + \cdots + m_{nn}.$$

- (a) Montrer que tr est une forme linéaire vérifiant, pour tout $A, B \in M_n(\mathbf{k}), \operatorname{tr}(AB) = \operatorname{tr}(BA)$.
- (b) Soit ϕ une forme linéaire vérifiant, pour tout $A, B \in M_n(\mathbf{k})$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$. Montrer que ϕ est proportionnelle à la trace.
- (c) Soit $A \in M_n(\mathbb{R})$. On suppose que $\operatorname{tr}({}^t AA) = 0$. Que dire de la matrice A?
- 15. En faisant des opérations élémentaires, calculer les déterminants :

$$V = \begin{vmatrix} 3 & 3 & -3 \\ 3 & 4 & -4 \\ 2 & -3 & -5 \end{vmatrix}, \quad W = \begin{vmatrix} 1 & 0 & 2 & -1 \\ 3 & 0 & 0 & 5 \\ 2 & 1 & 4 & -3 \\ 1 & 0 & 5 & 0 \end{vmatrix}.$$

16. Demontrer que la matrice A est inversible,

$$A = \begin{pmatrix} 32413 & 21314 & 981256 & 13542 \\ 1732 & 12743 & 34312 & 4374 \\ 2312 & 32434 & 7695423 & 843432 \\ 23948 & 2342346 & 23420 & 198477 \end{pmatrix}.$$

3

17. (a) Soit $a = {}^t(a_1, \ldots, a_n) \in \mathbb{R}^n$. Calculer le déterminant

$$\det(I + a^t a) = \begin{vmatrix} a_1^2 + 1 & a_1 a_2 & \cdots & a_1 a_n \\ a_2 a_1 & a_2^2 + 1 & \cdots & a_2 a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_n a_1 & a_n a_2 & \cdots & a_n^2 + 1 \end{vmatrix}.$$

(b) Calculer les déterminants :

$$\Delta_{1} = \begin{vmatrix} 2 & 1 & \cdots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & 2 \end{vmatrix}, \quad \Delta_{2} = \begin{vmatrix} a & b & \cdots & b \\ b & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \cdots & b & a \end{vmatrix}, a > b > 0.$$

- 18. (a) Soit $A \in M_n(\mathbb{R})$, ${}^tA = -A$. Démontrer que $\det(I A^2) \ge 0$.
 - (b) Soit $A \in M_n(\mathbb{R})$. Démontrer que $\det(A^2 + I) \geq 0$.
- 19. (a) Calculer le déterminant de Vandermonde :

$$V[x_0, \dots, x_n] = \begin{vmatrix} 1 & x_0 & \cdots & x_0^n \\ 1 & x_1 & \cdots & x_1^n \\ \vdots & \vdots & & \vdots \\ 1 & x_n & \cdots & x_n^n \end{vmatrix}.$$

- (b) Démontrer que les fonctions $f_{\alpha}(t) = e^{\alpha t}$, $\alpha \in \mathbb{R}$, sont linéairement indépendantes sur \mathbb{R} .
- (c) Démontrer que les fonctions $g_{\alpha}(t) = \sin(\alpha t)$, $\alpha > 0$, sont linéairement indépendantes sur \mathbb{R} .
- 20. Calculer $\det(zI C)$, où

$$C = \begin{pmatrix} 0 & 0 & \cdots & 0 & -c_0 \\ 1 & 0 & \cdots & 0 & -c_1 \\ 0 & 1 & \cdots & 0 & -c_2 \\ \vdots & \vdots & & & & \\ 0 & 0 & \cdots & 1 & -c_{n-1}. \end{pmatrix}$$