

WO 99/61614

SEQUENCE LISTING

<110> INCYTE PHARMACEUTICALS, INC.
LAL, Preeti
HILLMAN, Jennifer L.
GORONE, Gina
CORLEY, Neil C.
PATTERSON, Chandra
YUE, Henry
TANG, Y. Tom
AZIMZAI, Yalda

<120> HUMAN SOCS PROTEINS

<130> PF-0525 PCT

<140> To Be Ass

<140> 11

<150> 60/087,104; 09/216,006

<150> 30,000,000
<151> 1998-05-28; 1998-12-17

<160> 18

<170> PERL Program

<210> 1

<211> 288

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 1758450

```

<400> 1
Met Ser Ser Ser Met Trp Tyr Ile Met Gln Ser Ile Gln Ser Lys
10 15
      5
Tyr Ser Leu Ser Glu Arg Leu Ile Arg Thr Ile Ala Ala Ile Arg
20 30
      25
Ser Phe Pro His Asp Asn Val Glu Asp Leu Ile Arg Gly Gly Ala
35 45
      40
Asp Val Asn Cys Thr His Gly Thr Leu Lys Pro Leu His Cys Ala
50 60
      55
Cys Met Val Ser Asp Ala Asp Cys Val Glu Leu Leu Leu Glu Lys
65 75
      70
Gly Ala Glu Val Asn Ala Leu Asp Gly Tyr Asn Arg Thr Ala Leu
80 90
      85
His Tyr Ala Ala Glu Lys Asp Glu Ala Cys Val Glu Val Leu Leu
95 105
      100
Glu Tyr Gly Ala Asn Pro Asn Ala Leu Asp Gly Asn Arg Asp Thr
110 120
      115
Pro Leu His Trp Ala Ala Phe Lys Asn Asn Ala Glu Cys Val Arg
125 135
      130
Ala Leu Leu Glu Ser Gly Ala Ser Val Asn Ala Leu Asp Tyr Asn
140 150
      145

```

WO 99/61614

<210> 2
<211> 423
<212> PRT
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte clone 1834242

<400> 2
 Met Lys Leu Thr Pro Arg Thr Ala Gly Arg Ala Trp Ala Gln Ser
 1 5 10 15
 Arg Lys Gly Lys Arg Ser Ser Trp Gly Gly Thr Ala Ala Val Ala
 20 25 30
 Glu Leu Lys Pro Gly Arg Pro His Gln Phe Asp Trp Lys Ser Ser
 35 40 45
 Cys Glu Thr Trp Ser Val Ala Phe Ser Pro Asp Gly Ser Trp Phe
 50 55 60
 Ala Trp Ser Gln Gly His Cys Ile Val Lys Leu Ile Pro Trp Pro
 65 70 75
 Leu Glu Glu Gln Phe Ile Pro Lys Gly Phe Glu Ala Lys Ser Arg
 80 85 90
 Ser Ser Lys Asn Glu Thr Lys Gly Arg Gly Ser Pro Lys Glu Lys
 95 100 105
 Thr Leu Asp Cys Gly Gln Ile Val Trp Gly Leu Ala Phe Ser Pro
 110 115 120
 Trp Pro Ser Pro Pro Ser Arg Lys Leu Trp Ala Arg His His Pro
 125 130 135
 Gln Val Pro Asp Val Ser Cys Leu Val Leu Ala Thr Gly Leu Asn
 140 145 150
 Asp Gly Gln Ile Lys Ile Trp Glu Val Gln Thr Gly Leu Leu Leu
 155 160 165
 Leu Asn Leu Ser Gly His Gln Asp Val Val Arg Asp Leu Ser Phe
 170 175 180

WO 99/61614

Thr Pro Ser Gly Ser Leu Ile Leu Val Ser Ala Ser Arg Asp Lys
 185 190 195
 Thr Leu Arg Ile Trp Asp Leu Asn Lys His Gly Lys Gln Ile Gln
 200 205 210
 Val Leu Ser Gly His Leu Gln Trp Val Tyr Cys Cys Ser Ile Ser
 215 220 225
 Pro Asp Cys Ser Met Leu Cys Ser Ala Ala Gly Glu Lys Ser Val
 230 235 240
 Phe Leu Trp Ser Met Arg Ser Tyr Thr Leu Ile Arg Lys Leu Glu
 245 250 255
 Gly His Gln Ser Ser Val Val Ser Cys Asp Phe Ser Pro Asp Ser
 260 265 270
 Ala Leu Leu Val Thr Ala Ser Tyr Asp Thr Asn Val Ile Met Trp
 275 280 285
 Asp Pro Tyr Thr Gly Glu Arg Leu Arg Ser Leu His His Thr Gln
 290 295 300
 Val Asp Pro Ala Met Asp Asp Ser Asp Val His Ile Ser Ser Leu
 305 310 315
 Arg Ser Val Cys Phe Ser Pro Glu Gly Leu Tyr Leu Ala Thr Val
 320 325 330
 Ala Asp Asp Arg Leu Leu Arg Ile Trp Ala Leu Glu Leu Lys Thr
 335 340 345
 Pro Ile Ala Phe Ala Pro Met Thr Asn Gly Leu Cys Cys Thr Phe
 350 355 360
 Phe Pro His Gly Gly Val Ile Ala Thr Gly Thr Arg Asp Gly His
 365 370 375
 Val Gln Phe Trp Thr Ala Pro Arg Val Leu Ser Ser Leu Lys His
 380 385 390
 Leu Cys Arg Lys Ala Leu Arg Ser Phe Leu Thr Thr Tyr Gln Val
 395 400 405
 Leu Ala Leu Pro Ile Pro Lys Lys Met Lys Glu Phe Leu Thr Tyr
 410 415 420
 Arg Thr Phe

<210> 3
 <211> 349
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1849725

<400> 3
 Met Glu Asp Pro Gln Ser Lys Glu Pro Ala Gly Glu Ala Val Ala
 1 5 10 15
 Pro Ala Leu Leu Glu Ser Pro Arg Pro Glu Gly Gly Glu Pro
 20 25 30
 Pro Arg Pro Ser Pro Glu Glu Thr Gln Gln Cys Lys Phe Asp Gly
 35 40 45
 Gln Glu Thr Lys Gly Ser Lys Phe Ile Thr Ser Ser Ala Ser Asp
 50 55 60
 Phe Ser Asp Pro Val Tyr Lys Glu Ile Ala Ile Thr Asn Gly Cys
 65 70 75
 Ile Asn Arg Met Ser Lys Glu Glu Leu Arg Ala Lys Leu Ser Glu

WO 99/61614

80	85	90
Phe Lys Leu Glu Thr Arg Gly Val Lys Asp Val Leu Lys Lys		Arg
95	100	105
Leu Lys Asn Tyr Tyr Lys Lys Gln Lys Leu Met Leu Lys Glu	Ser	
110	115	120
Asn Phe Ala Asp Ser Tyr Tyr Asp Tyr Ile Cys Ile Ile Asp	Phe	
125	130	135
Glu Ala Thr Cys Glu Glu Gly Asn Pro Pro Glu Phe Val His	Glu	
140	145	150
Ile Ile Glu Phe Pro Val Val Leu Leu Asn Thr His Thr Leu	Glu	
155	160	165
Ile Glu Asp Thr Phe Gln Gln Tyr Val Arg Pro Glu Ile Asn	Thr	
170	175	180
Gln Leu Ser Asp Phe Cys Ile Ser Leu Thr Gly Ile Thr Gln	Asp	
185	190	195
Gln Val Asp Arg Ala Asp Thr Phe Pro Gln Val Leu Lys Lys	Val	
200	205	210
Ile Asp Trp Met Lys Leu Lys Glu Leu Gly Thr Lys Tyr Lys	Tyr	
215	220	225
Ser Leu Leu Thr Asp Gly Ser Trp Asp Met Ser Lys Phe Leu	Asn	
230	235	240
Ile Gln Cys Gln Leu Ser Arg Leu Lys Tyr Pro Pro Phe Ala	Lys	
245	250	255
Lys Trp Ile Asn Ile Arg Lys Ser Tyr Gly Asn Phe Tyr Lys	Val	
260	265	270
Pro Arg Ser Gln Thr Lys Leu Thr Ile Met Leu Glu Lys Leu	Gly	
275	280	285
Met Asp Tyr Asp Gly Arg Pro His Cys Gly Leu Asp Asp Ser	Lys	
290	295	300
Asn Ile Ala Arg Ile Ala Val Arg Met Leu Gln Asp Gly Cys	Glu	
305	310	315
Leu Arg Ile Asn Glu Lys Met His Ala Gly Gln Leu Met Ser	Val	
320	325	330
Ser Ser Ser Leu Pro Ile Glu Gly Thr Pro Pro Pro Gln Met	Pro	
335	340	345
His Phe Arg Lys		

<210> 4
<211> 355
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2547840

<400> 4
Met Ala Arg Arg Pro Arg Asn Ser Arg Ala Trp His Phe Val Leu
1 5 10 15
Ser Ala Ala Arg Arg Asp Ala Asp Ala Arg Ala Val Ala Leu Ala
20 25 30
Gly Ser Thr Asn Trp Gly Tyr Asp Ser Asp Gly Gln His Ser Asp
35 40 45
Ser Asp Ser Asp Pro Glu Tyr Ser Thr Leu Pro Pro Ser Ile Pro

WO 99/61614

50	55	60
Ser Ala Val Pro Val Thr Gly Glu Ser Phe Cys Asp Cys Ala Gly	70	75
65	85	90
Gln Ser Glu Ala Ser Phe Cys Ser Ser Leu His Ser Ala His Arg	100	105
Gly Arg Asp Cys Arg Cys Gly Glu Glu Asp Glu Tyr Phe Asp Trp	115	120
80	95	110
Val Trp Asp Asp Leu Asn Lys Ser Ser Ala Thr Leu Leu Ser Cys	125	130
Asp Asn Arg Lys Val Ser Phe His Met Glu Tyr Ser Cys Gly Thr	140	145
140	155	160
Ala Ala Ile Arg Gly Thr Lys Glu Leu Gly Glu Gly Gln His Phe	170	175
Trp Glu Ile Lys Met Thr Ser Pro Val Tyr Gly Thr Asp Met Met	185	190
185	200	205
Ser Tyr Thr Gly Leu Leu His His Lys Gly Asp Lys Thr Ser Phe	210	215
Ser Ser Arg Phe Gly Gln Gly Ser Ile Ile Gly Val His Leu Asp	220	225
225	230	235
Thr Trp His Gly Thr Leu Thr Phe Phe Lys Asn Arg Lys Cys Ile	240	245
Gly Val Ala Ala Thr Lys Leu Gln Asn Lys Arg Phe Tyr Pro Met	250	255
255	260	265
Cys Ala Ser Ala Thr Ser Leu Gln Tyr Leu Cys Cys His Arg Leu	270	275
275	280	285
Arg Gln Leu Arg Pro Asp Ser Gly Asp Thr Leu Glu Gly Leu Pro	290	295
290	305	310
Leu Pro Pro Gly Leu Lys Gln Val Leu His Asn Lys Leu Gly Trp	310	315
315	320	325
Val Leu Ser Met Ser Cys Ser Arg Arg Lys Ala Pro Val Ser Asp	330	335
335	340	340
Pro Gln Ala Ala Thr Ser Ala His Pro Ser Ser Arg Glu Pro Arg	345	355
355	350	350

<210> 5
<211> 421
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 3071986

<400> 5
Met Ala Ser Phe Pro Pro Arg Val Asn Glu Lys Glu Ile Val Arg
1 5 10 15

Leu Arg Thr Ile Gly Glu Leu Leu Ala Pro Ala Ala Pro Phe Asp
 20 25 30
 Lys Lys Cys Gly Arg Glu Asn Trp Thr Val Ala Phe Ala Pro Asp
 35 40 45
 Gly Ser Tyr Phe Ala Trp Ser Gln Gly His Arg Thr Val Lys Leu
 50 55 60
 Val Pro Trp Ser Gln Cys Leu Gln Asn Phe Leu Leu His Gly Thr
 65 70 75
 Lys Asn Val Thr Asn Ser Ser Leu Arg Leu Pro Arg Gln Asn
 80 85 90
 Ser Asp Gly Gly Gln Lys Asn Lys Pro Arg Glu His Ile Ile Asp
 95 100 105
 Cys Gly Asp Ile Val Trp Ser Leu Ala Phe Gly Ser Ser Val Pro
 110 115 120
 Glu Lys Gln Ser Arg Cys Val Asn Ile Glu Trp His Arg Phe Arg
 125 130 135
 Phe Gly Gln Asp Gln Leu Leu Leu Ala Thr Gly Leu Asn Asn Gly
 140 145 150
 Arg Ile Lys Ile Trp Asp Val Tyr Thr Gly Lys Leu Leu Leu Asn
 155 160 165
 Leu Val Asp His Thr Glu Val Val Arg Asp Leu Thr Phe Ala Pro
 170 175 180
 Asp Gly Ser Leu Ile Leu Val Ser Ala Ser Arg Asp Lys Thr Leu
 185 190 195
 Arg Val Trp Asp Leu Lys Asp Asp Gly Asn Met Met Lys Val Leu
 200 205 210
 Arg Gly His Gln Asn Trp Val Tyr Ser Cys Ala Phe Ser Pro Asp
 215 220 225
 Ser Ser Met Leu Cys Ser Val Gly Ala Ser Lys Ala Val Phe Leu
 230 235 240
 Trp Asn Met Asp Lys Tyr Thr Met Ile Arg Lys Leu Glu Gly His
 245 250 255
 His His Asp Val Val Ala Cys Asp Phe Ser Pro Asp Gly Ala Leu
 260 265 270
 Leu Ala Thr Ala Ser Tyr Asp Thr Arg Val Tyr Ile Trp Asp Pro
 275 280 285
 His Asn Gly Asp Ile Leu Met Glu Phe Gly His Leu Phe Pro Pro
 290 295 300
 Pro Thr Pro Ile Phe Ala Gly Gly Ala Asn Asp Arg Trp Val Arg
 305 310 315
 Ser Val Ser Phe Ser His Asp Gly Leu His Val Ala Ser Leu Ala
 320 325 330
 Asp Asp Lys Met Val Arg Phe Trp Arg Ile Asp Glu Asp Tyr Pro
 335 340 345
 Val Gln Val Ala Pro Leu Ser Asn Gly Leu Cys Cys Ala Phe Ser
 350 355 360
 Thr Asp Gly Ser Val Leu Ala Ala Gly Thr His Asp Gly Ser Val
 365 370 375
 Tyr Phe Trp Ala Thr Pro Arg Gln Val Pro Ser Leu Gln His Leu
 380 385 390
 Cys Arg Met Ser Ile Arg Arg Val Met Pro Thr Gln Glu Val Gln
 395 400 405
 Glu Leu Pro Ile Pro Ser Lys Leu Leu Glu Phe Leu Ser Tyr Arg
 410 415 420

Ile

<210> 6
<211> 278
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 3484619

<400> 6
Met Glu Pro Arg Ala Ala Asp Gly Cys Phe Leu Gly Asp Val Gly
1 5 10 15
Phe Trp Val Glu Arg Thr Pro Val His Glu Ala Ala Gln Arg Gly
20 25 30
Glu Ser Leu Gln Leu Gln Gln Leu Ile Glu Ser Gly Ala Cys Val
35 40 45
Asn Gln Val Thr Val Asp Ser Ile Thr Pro Leu His Ala Ala Ser
50 55 60
Leu Gln Gly Gln Ala Arg Cys Val Gln Leu Leu Ala Ala Gly
65 70 75
Ala Gln Val Asp Ala Arg Asn Ile Asp Gly Ser Thr Pro Leu Cys
80 85 90
Asp Ala Cys Ala Ser Gly Ser Ile Glu Cys Val Lys Leu Leu Leu
95 100 105
Ser Tyr Gly Ala Lys Val Asn Pro Pro Leu Tyr Thr Ala Ser Pro
110 115 120
Leu His Glu Ala Cys Met Ser Gly Ser Ser Glu Cys Val Arg Leu
125 130 135
Leu Ile Asp Val Gly Ala Asn Leu Glu Ala His Asp Cys His Phe
140 145 150
Gly Thr Pro Leu His Val Ala Cys Ala Arg Glu His Leu Asp Cys
155 160 165
Val Lys Val Leu Leu Asn Ala Gly Ala Asn Val Asn Ala Ala Lys
170 175 180
Leu His Glu Thr Ala Leu His His Ala Ala Lys Val Lys Asn Val
185 190 195
Asp Leu Ile Glu Met Leu Ile Glu Phe Gly Gly Asn Ile Tyr Ala
200 205 210
Arg Asp Asn Arg Gly Lys Lys Pro Ser Asp Tyr Thr Trp Ser Ser
215 220 225
Ser Ala Pro Ala Lys Cys Phe Glu Tyr Tyr Glu Lys Thr Pro Leu
230 235 240
Thr Leu Ser Gln Leu Cys Arg Val Asn Leu Arg Lys Ala Thr Gly
245 250 255
Val Arg Gly Leu Glu Lys Ile Ala Lys Leu Asn Ile Pro Pro Arg
260 265 270
Leu Ile Asp Tyr Leu Ser Tyr Asn
275

<210> 7
<211> 281
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1275743

<400> 7
Met Gly Ser Gln Gly Ser Pro Val Lys Ser Tyr Asp Tyr Leu Leu
1 5 10 15
Lys Phe Leu Leu Val Gly Asp Ser Asp Val Gly Lys Gly Glu Ile
20 25 30
Leu Glu Ser Leu Gln Asp Gly Ala Ala Glu Ser Pro Tyr Ala Tyr
35 40 45
Ser Asn Gly Ile Asp Tyr Lys Thr Thr Ile Leu Leu Asp Gly
50 55 60
Arg Arg Val Lys Leu Glu Leu Trp Asp Thr Ser Gly Gln Gly Arg
65 70 75
Phe Cys Thr Ile Phe Arg Ser Tyr Ser Arg Gly Ala Gln Gly Ile
80 85 90
Leu Leu Val Tyr Asp Ile Thr Asn Arg Trp Ser Phe Asp Gly Ile
95 100 105
Asp Arg Trp Ile Lys Glu Ile Asp Glu His Ala Pro Gly Val Pro
110 115 120
Arg Ile Leu Val Gly Asn Arg Leu His Leu Ala Phe Lys Arg Gln
125 130 135
Val Pro Thr Glu Gln Ala Arg Ala Tyr Ala Glu Lys Asn Cys Met
140 145 150
Thr Phe Phe Glu Val Ser Pro Leu Cys Asn Phe Asn Val Ile Glu
155 160 165
Ser Phe Thr Glu Leu Ser Arg Ile Val Leu Met Arg His Gly Met
170 175 180
Glu Lys Ile Trp Arg Pro Asn Arg Val Phe Ser Leu Gln Asp Leu
185 190 195
Cys Cys Arg Ala Ile Val Ser Cys Thr Pro Val His Leu Ile Asp
200 205 210
Lys Leu Pro Leu Pro Val Thr Ile Lys Ser His Leu Lys Ser Phe
215 220 225
Ser Met Ala Asn Gly Met Asn Ala Val Met Met His Gly Arg Ser
230 235 240
Tyr Ser Leu Ala Ser Gly Ala Gly Gly Ser Lys Gly Asn
245 250 255
Ser Leu Lys Arg Ser Lys Ser Ile Arg Pro Pro Gln Ser Pro Pro
260 265 270
Gln Asn Cys Ser Arg Ser Asn Cys Lys Ile Ser
275 280

<210> 8
<211> 635
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1722533

<400> 8
Met Ala Thr Gln Ile Ser Thr Arg Gly Ser Gln Cys Thr Ile Gly
1 5 10 15

Gln Glu Glu Tyr Ser Leu Tyr Ser Ser Leu Ser Glu Asp Glu Leu
 20 25 30
 Val Gln Met Ala Ile Glu Gln Ser Leu Ala Asp Lys Thr Arg Gly
 35 40 45
 Pro Thr Thr Ala Glu Ala Thr Ala Ser Ala Cys Thr Asn Arg Gln
 50 55 60
 Pro Ala His Phe Tyr Pro Trp Thr Arg Ser Thr Ala Pro Pro Glu
 65 70 75
 Ser Ser Pro Ala Arg Ala Pro Met Gly Leu Phe Gln Gly Val Met
 80 85 90
 Gln Lys Tyr Ser Ser Ser Leu Phe Lys Thr Ser Gln Leu Ala Pro
 95 100 105
 Ala Asp Pro Leu Ile Lys Ala Ile Lys Asp Gly Asp Glu Glu Ala
 110 115 120
 Leu Lys Thr Met Ile Lys Glu Gly Lys Asn Leu Ala Glu Pro Asn
 125 130 135
 Lys Glu Gly Trp Leu Pro Leu His Glu Ala Ala Tyr Tyr Gly Gln
 140 145 150
 Val Gly Cys Leu Lys Val Leu Gln Arg Ala Tyr Pro Gly Thr Ile
 155 160 165
 Asp Gln Arg Thr Leu Gln Glu Glu Thr Ala Val Tyr Leu Ala Thr
 170 175 180
 Cys Arg Gly His Leu Asp Cys Leu Leu Ser Leu Leu Gln Ala Gly
 185 190 195
 Ala Glu Pro Asp Ile Ser Asn Lys Ser Arg Glu Thr Pro Leu Tyr
 200 205 210
 Lys Ala Cys Glu Arg Lys Asn Ala Glu Ala Val Lys Ile Leu Val
 215 220 225
 Gln His Asn Ala Asp Thr Asn His Arg Cys Asn Arg Gly Trp Thr
 230 235 240
 Ala Leu His Glu Ser Val Ser Arg Asn Asp Leu Glu Val Met Gln
 245 250 255
 Ile Leu Val Ser Gly Gly Ala Lys Val Glu Ser Lys Asn Ala Tyr
 260 265 270
 Gly Ile Thr Pro Leu Phe Val Ala Ala Gln Ser Gly Gln Leu Glu
 275 280 285
 Ala Leu Arg Phe Leu Ala Lys Tyr Gly Ala Asp Ile Asn Thr Gln
 290 295 300
 Ala Ser Asp Asn Ala Ser Ala Leu Tyr Glu Ala Cys Lys Asn Glu
 305 310 315
 His Glu Glu Val Val Glu Phe Leu Leu Ser Gln Gly Ala Asp Ala
 320 325 330
 Asn Lys Thr Asn Lys Asp Gly Leu Leu Pro Leu His Ile Ala Ser
 335 340 345
 Lys Lys Gly Asn Tyr Arg Ile Val Gln Met Leu Leu Pro Val Thr
 350 355 360
 Ser Arg Thr Arg Ile Arg Arg Ser Gly Val Ser Pro Leu His Leu
 365 370 375
 Ala Ala Glu Arg Asn His Asp Glu Val Leu Glu Ala Leu Leu Ser
 380 385 390
 Ala Arg Phe Asp Val Asn Thr Pro Leu Ala Pro Glu Arg Ala Arg
 395 400 405
 Leu Tyr Glu Asp Arg Arg Thr Ser Ala Leu Tyr Phe Ala Val Val
 410 415 420
 Asn Asn Asn Val Tyr Ala Thr Glu Leu Leu Leu Gln His Gly Ala
 425 430 435
 Asp Pro Asn Arg Asp Val Ile Ser Pro Leu Leu Val Ala Ile Arg

WO 99/61614

440	445	450
His Gly Cys Leu Arg Thr Met Gln Leu Leu Leu Asp His Gly Ala		
455	460	465
Asn Ile Asp Ala Tyr Ile Ala Thr His Pro Thr Ala Phe Pro Ala		
470	475	480
Thr Ile Met Phe Ala Met Lys Cys Leu Ser Leu Leu Lys Phe Leu		
485	490	495
Met Asp Leu Gly Cys Asp Gly Glu Pro Cys Phe Ser Cys Leu Tyr		
500	505	510
Gly Asn Gly Pro His Pro Pro Ala Pro Gln Pro Ser Ser Arg Phe		
515	520	525
Asn Asp Ala Pro Ala Ala Asp Lys Glu Pro Ser Val Val Gln Phe		
530	535	540
Cys Glu Phe Val Ser Ala Pro Glu Val Ser Arg Trp Ala Gly Pro		
545	550	555
Ile Ile Asp Val Leu Leu Asp Tyr Val Gly Asn Val Gln Leu Cys		
560	565	570
Ser Arg Leu Lys Glu His Ile Asp Ser Phe Glu Asp Trp Ala Val		
575	580	585
Ile Lys Glu Lys Ala Glu Pro Pro Arg Pro Leu Ala His Leu Cys		
590	595	600
Arg Leu Arg Val Arg Lys Ala Ile Gly Lys Tyr Arg Ile Lys Leu		
605	610	615
Leu Asp Thr Leu Pro Leu Pro Gly Arg Leu Ile Arg Tyr Leu Lys		
620	625	630
Tyr Glu Asn Thr Gln		
635		

<210> 9
<211> 518
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1759763

<400> 9		
Met Asp Phe Thr Glu Ala Tyr Ala Asp Thr Cys Ser Thr Val Gly		
1	5	10
Leu Ala Ala Arg Glu Gly Asn Val Lys Val Leu Arg Lys Leu Leu		
20	25	30
Lys Lys Gly Arg Ser Val Asp Val Ala Asp Asn Arg Gly Trp Met		
35	40	45
Pro Ile His Glu Ala Ala Tyr His Asn Ser Val Glu Cys Leu Gln		
50	55	60
Met Leu Ile Asn Ala Asp Ser Ser Glu Asn Tyr Ile Lys Met Lys		
65	70	75
Thr Phe Glu Gly Phe Cys Ala Leu His Leu Ala Ala Ser Gln Gly		
80	85	90
His Trp Lys Ile Val Gln Ile Leu Leu Glu Ala Gly Ala Asp Pro		
95	100	105
Asn Ala Thr Thr Leu Glu Glu Thr Thr Pro Leu Phe Leu Ala Val		
110	115	120

Glu Asn Gly Gln Ile Asp Val Leu Arg Leu Leu Leu Gln His Gly
 125 130 135
 Ala Asn Val Asn Gly Ser His Ser Met Cys Gly Trp Asn Ser Leu
 140 145 150
 His Gln Ala Ser Phe Gln Glu Asn Ala Glu Ile Ile Lys Leu Leu
 155 160 165
 Leu Arg Lys Gly Ala Asn Lys Glu Cys Gln Asp Asp Phe Gly Ile
 170 175 180
 Thr Pro Leu Phe Val Ala Ala Gln Tyr Gly Lys Leu Glu Ser Leu
 185 190 195
 Ser Ile Leu Ile Ser Ser Gly Ala Asn Val Asn Cys Gln Ala Leu
 200 205 210
 Asp Lys Ala Thr Pro Leu Phe Ile Ala Ala Gln Glu Gly His Thr
 215 220 225
 Lys Cys Val Glu Leu Leu Leu Ser Ser Gly Ala Asp Pro Asp Leu
 230 235 240
 Tyr Cys Asn Glu Asp Ser Trp Gln Leu Pro Ile His Ala Ala Ala
 245 250 255
 Gln Met Gly His Thr Lys Ile Leu Asp Leu Leu Ile Pro Leu Thr
 260 265 270
 Asn Arg Ala Cys Asp Thr Gly Leu Asn Lys Val Ser Pro Val Tyr
 275 280 285
 Ser Ala Val Phe Gly Gly His Glu Asp Cys Leu Glu Ile Leu Leu
 290 295 300
 Arg Asn Gly Tyr Ser Pro Asp Ala Gln Ala Cys Leu Val Phe Gly
 305 310 315
 Phe Ser Ser Pro Val Cys Met Ala Phe Gln Lys Asp Cys Glu Phe
 320 325 330
 Phe Gly Ile Val Asn Ile Leu Leu Lys Tyr Gly Ala Gln Ile Asn
 335 340 345
 Glu Leu His Leu Ala Tyr Cys Leu Lys Tyr Glu Lys Phe Ser Ile
 350 355 360
 Phe Arg Tyr Phe Leu Arg Lys Gly Cys Ser Leu Gly Pro Trp Asn
 365 370 375
 His Ile Tyr Glu Phe Val Asn His Ala Ile Lys Ala Gln Ala Lys
 380 385 390
 Tyr Lys Glu Trp Leu Pro His Leu Leu Val Ala Gly Phe Asp Pro
 395 400 405
 Leu Ile Leu Leu Cys Asn Ser Trp Ile Asp Ser Val Ser Ile Asp
 410 415 420
 Thr Leu Ile Phe Thr Leu Glu Phe Thr Asn Trp Lys Thr Leu Ala
 425 430 435
 Pro Ala Val Glu Arg Met Leu Ser Ala Arg Ala Ser Asn Ala Trp
 440 445 450
 Ile Leu Gln Gln His Ile Ala Thr Val Pro Ser Leu Thr His Leu
 455 460 465
 Cys Arg Leu Glu Ile Arg Ser Ser Leu Lys Ser Glu Arg Leu Arg
 470 475 480
 Ser Asp Ser Tyr Ile Ser Gln Leu Pro Leu Pro Arg Ser Leu His
 485 490 495
 Asn Tyr Leu Leu Tyr Glu Asp Val Leu Arg Met Tyr Glu Val Pro
 500 505 510
 Glu Leu Ala Ala Ile Gln Asp Gly
 515

097023-070502

WO 99/61614

<210> 10
<211> 1117
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte clone 1758450

<400> 10
 cacgccttga cagcggctt caaccccccac ctcagccccag caattcggca gtttggagca 60
 tgtgaacacc ttgagcccttg atgagttcca gtatgtggta tattatgcag agcattcaga 120
 gcaaataactc tctctcccgag cgcttaatcc gaacaattgc tgccatccgt tccttcccac 180
 atgataatgt agaggacctc atcagagggg gagcagatgt gaaactgcact catggcacac 240
 tgaagccctt gcactgtgcc tgtatggtgt cagatgtcga ctgtgtggag ttacttctgg 300
 aaaaaggagc cgaggtgaat gcccctggatg ggtataaccg aacagccctc cactatgcag 360
 cagagaaga tgaggcttgt gtggagggtcc tattggagta tggtgcaaac cccaaatgcctt 420
 tggatggcaa cagagatacc ccacttcaact gggcagccctt taagaacaat gctgagtg 480
 tgcgggctct cctagagagc gggggcctctg tcaatgcctt ggattacaac aatgatacac 540
 cgctcagctg ggctgccatg aaggggaaatc ttgagagtgt cagcatccctt ctggattatg 600
 ggcgcagaggt cagagtcatc aacctaatacg gccagacacc catctccgc ctgggtggctc 660
 tgcttagtcag gggacttggaa acagagaaaag aggactcttg ctttgagctc ctccacagag 720
 ctgttggaca ctttgaatttggaaaatg gcacccatgcc acgagaggtg gccagagacc 780
 cgcagctatg tgaaaaaaactg actgttctgt gctcagctcc aggaactcta aaaacactcg 840
 ctcgctatgc cgtgcgccgt agcctgggac tccagtatct ccccgatgca gtgaaggggcc 900
 ttccactgccc agtttctttt aaggaataacc ttttactttt agaatacgcc gagaagatgt 960
 ttgcaccatc gtgcaggccag ctctgggtga ggttgccttgcagttactcc ttgtcaca 1020
 aaacagaaaa acagttgttt cctgtatgtgt gggttataga tttcgaagca acatgtcaca 1080
 acaataaacct gcatagcaac tcccccttcc aaacaaaa 1117

<210> 11
<211> 2589
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte clone 1834242

gcttctctcc	ggaaggcttg	taccttgcca	cggggcaga	tgacagactc	ctcaggatct	1020
gggccttgg	actgaaaact	cccattgcat	ttgtccctat	gaccaatggg	ctttgctgca	1080
catttttcc	acatggtgg	gtcattgcca	caggacaag	agatggccac	gtccagttct	1140
ggacagctcc	tagggtcctg	tcctcaactg	agcaacttatg	ccggaaaagcc	cttcgaagtt	1200
tccttaacaac	ttaccaagtc	ctagcactgc	caatccccaa	gaaaatgaaa	gagttcctca	1260
catacaggac	ttttaagca	acaccacatc	ttgtgtttct	ttgttagcagg	gtaaatcgctc	1320
ctgtcaaaagg	gagttgctgg	aataatgggc	caaacatctg	gtcttgatt	gaaatagcat	1380
ttctttggga	ttgtgaatag	aatgttagcaa	aaccagattc	cagtgtacta	gtcatggatc	1440
tttctctccc	tgccatgtga	aagtcaagtct	tagaggaaga	gattccactt	gcacggcaac	1500
agagccttac	gttaaatctt	cagtccagtt	atgaacagca	agtgttgaac	tctttctgtc	1560
tgttttgcatt	caaagtgcag	ttactgtatgt	tgttttgatt	atgcaactaa	gtaggcctcc	1620
agagcctctc	tagtggcaga	gcagctcaca	ctccctccgc	tgggaacgat	ggcttctgccc	1680
tagtacctat	ccttgtgtt	ctgatgcagt	ggtagcattt	gttcaagttc	tctcctgtgc	1740
tggtcagagt	tgtttcgatg	ttggccaagt	gtttttcttc	ttgggctccc	ttctgacctg	1800
caggacagtt	ttcttggagc	catttggtat	gaggattaa	tttagcttaa	ctaaattaca	1860
ggggactcag	aggccgtgct	cctgaccgat	ccagacacta	ttactggctt	tttttttttt	1920
tttttaacaa	ttgtgtgcatt	gtgcaggaaaa	tgacaaattt	gtatgtcaga	ttatacaagg	1980
atgtattctt	aaaccgcatt	actattcaga	tggctactga	gttacgttg	gccattttatt	2040
agcatcatat	ttatgttat	tttctcaaca	gatgttaagg	tacaactgtg	tttttctcgaa	2100
ttatctaaaa	accatagtagc	ttaaattgaa	cagttgaaaa	gatgtcttaa	ttgtgttaaag	2160
aattgggtta	gtcatgactt	tagctgatac	tcttatgtac	gagatctgtc	tctgtctgttt	2220
aacttcattt	gattaatcag	ctggtttcaa	ctctactgcg	aaacaaaaat	agctccttaa	2280
aagtactgtt	ctcccttcagt	ggcatgttagt	tatctaatac	agacacccca	ttcaaacaacaa	2340
acctgcctta	ggaaaattta	atatatttta	aattttttta	aaagaaaatac	aacatcttat	2400
tcttagctt	tcttaatcgg	tgctttatgg	aggccagtgt	aacgttacat	gactcgttga	2460
gaaagttgag	gaatttcctc	taccacctt	gttgcttggaa	gaaaaacatg	tcttttcaaa	2520
atgagaggct	ttcattgaag	aaaagaaaaa	aacaacagtt	aaaagctaaa	aaaaaaaaaa	2580
aaaaaaaaaa						2589

```
<210> 12
<211> 2038
<212> DNA
<213> Homo sapiens
```

<220>
<221> misc_feature
<223> Incyte clone 1849725

<400> 12
 cgggaacgcg agcccggtaa ttttcaacg gagaaaggcg aggcttcgg gctctgcaga 60
 gtgagagttt gcaagtgtcc ggctccagca actctctct ggcgtgacag ccggcatgga 120
 ggatccacag agtaaagagc ctggccggca ggcgtggct cccgcgtgc tggagtgcgc 180
 gcggccggag ggccgggagg agccggcg tcccaggatccc gaggaaactc aacagtgtaa 240
 atttgtatggc caggagacaa aaggatccaa gttcattacc tccagtgcga gtgacttcag 300
 tgaccgggtt tacaagaga ttgcattac gaatggctgt attaatagaa tgagtaagga 360
 agaactcaga gctaaagctt cagaattcaa gcttggaaact agaggagtaa aggtatgtct 420
 aaagaagaga ctgaaaaact attataagaa gcagaagctg atgctgaaag agagcaattt 480
 tgctgacagt tattatgact acatttttat tattgacttt gaagccactt gtgaagaagg 540
 aaaccacact gagttgtac atgaaataat tgaatttccg gttttttac tgaatacgc 600
 tactttagaa atagaagaca cgtttcagca gtatgtaa ccagagatta acacacagct 660
 gtctgatttc tgcatcagtc taactggaa tactcaggat caggtagaca gagctgatac 720
 ctccccctcag gtactaaaaa aagtaattga ctggatgaaa ttgaaggaaat taggaacaaa 780
 gtataaatac tcacttttaa cagatggttc ttgggatatg agtaaggct tgaacattca 840
 gtgtcaactc agcaggctca aataccctcc ttttgcggaaa aagtggatca atattcgaa 900
 gtcataatggaa aatttttaca aggttcttag aagccaaacc aaactgacaa taatgttgc 960
 aaaatttagga atggattatg atggccggcc tcaactgtggt cttgtatgact ctaagaatat 1020

WO 99/61614

cgccccata gcagttcgaa tgcttcagga tgggtgtgaa ctccgaatca acgagaaaaat 1080
 gcatgcagga cagctaattgt gttgttcctc ttcccttacca atagaggcga ctccaccacc 1140
 acaaattgcca catttttagaa agtaacagtt ttgtgtgtgg atcattccaa ttgaagttgc 1200
 tatgaagagg tagcagatgt atctcattgt attagtcctg tagtgcacac tttaagcacc 1260
 taaaacatt taaaatcttta ttacaggtga tagagataga tacatgtatg tgaacagatt 1320
 ttgttaggaag gcatactgaa ttctttgtca ccaagcactt ttgataatgg acaggaatcc 1380
 ggtaacctag ataaccagg tcctgtctc acacaatggg atattttat aattttaaag 1440
 agggggttcc acaggttata aattccctt tttgggtgt taaaaaaaat gccccaaaaa 1500
 tctcttaat atggggcctt ggtgttcctc gttttggaaa atggggcaac aatccctt 1560
 aactcggggg tgggtgttta acaaataaaat gggtagaaaat ggggtgggt ttcccccctt 1620
 taaattttaa accatttcca ccttaaggga ttggtaaaca ccccccctta atccccctta 1680
 aaaaaattgg tcccgaaaat aattttggatt tgggggcaaa agggtaagga attcctgtaa 1740
 tccctaaagg cctcttttgggaaat tccccaggga gaatatacc ccttaaggtg 1800
 ccccccctt gtggaaat tttccccaaa aggggtttat aataaatgtt gggaaaagtt 1860
 ttccacccccc aaggggaaat ggggtgggt gggaaaattt tccggtaaaa gaggtgacac 1920
 tttgggttag atgacccata aatacttgcg cctcaagggg gtttgcctt atttcaaaa 1980
 aactccctta aaaatttggg gggaggagaa ttttatttgg attagggggg tttatata 2038

<210> 13
 <211> 1537
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2547840

<400> 13
 tgggtcgac gcgtggcgg aaagtgggtc agggccgggc cggcggagcg cgcagcgggg 60
 cagccagatt ctttccacca tggccagacg ccccccggaaac agcaggccct ggcacttcgt 120
 cctgagtgcgca gcccgcgag acgcagatgc cggggccgtg gctctagcag gctccactaa 180
 ctggggctac gactctgtatg ggcagcacag cgactcggac tccgaccccg agtactccac 240
 gctgcccggca tccatccccca gtgcggtgcc cgtgacccggc gacttcttgcgtactgtgc 300
 tgggcagacg gaggccctt tctgttagcag cctgcactcg gcccacccggg gcagggactg 360
 ccgcgtcgga gaggaagacg agtatttcga ctgggtctgg gatgacttaa ataagtcatc 420
 agccaccctt ctgagctgtg acaaccgtaa ggtcagttc cacatggagt acagctgcgg 480
 cacagcggcc atccggggca ccaaggagct gggggagggc cagcacttct gggagatcaa 540
 gatgacctct cccgtctacg gcaccgacat gatgggtggc atcgggacgt cggatgtgga 600
 cctggacaaa taccggcaca cgttctgcag cctgtggc agggatgagg acagctgggg 660
 cctctctac acgggcctcc tccaccacaa gggcgacaaag accagcttct cgtcgccgtt 720
 cggccaggggc tccatcatttgcgtgcaccc tggacacctgg cacggcacac tcacccctt 780
 caagaacagg aagtgtatag gtgtggcagc caccaagctg cagaacaaga gattctaccc 840
 gatgggtgtc tccacggcgg cccggagcag catgaaggtc acccgcttct gtgcacgc 900
 cacttccctc cagtacctgt gtcgcacccg cctgcgcacccg ctgcggcccg actcgggaga 960
 cacgctggag ggtctggcgc tgccggccgg cctcaagcag gtgtctacaca acaagctggg 1020
 ctgggtctgt agcatgagtt gcagccggcc caaggctcca gtgtccgatc cccaggcagc 1080
 gacctccggcc caccggcaca gtcgcgagcc tcggccctgc cagagggaaac gctgcggccg 1140
 gacctgactg acttccctgt ggaactgcct tcttggctg ggacagcccc tttctctgt 1200
 cccttcttc tctgtccctt cttccggcc acactccagg gcggagttgg atgaggcccc 1260
 tccggagggc gccatctttt gtcggcggagg ctgggacagt ctttctgtt ggggctctag 1320
 gggccctctg ctgtgtgtc ggggtggggaa ggggtggcc tggggccacag gtcttgcgg 1380
 agggctggag gacgagagcc tggctggagc cccgcgttgc gttccacac ggcctcggtt 1440
 tttcttaact tgcgtctgcat gtcgtcagcg gtcggccgc cgtcatagac taaaaggact 1500
 gcaataaaat tagagttgtat gtcataacaaa aaaaaaaa 1537

WO 99/61614

<210> 14
 <211> 2203
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 3071986

<400> 14
 ctgtcttcctt ccgcagcgcg aggctggta cagggtctat tgtctgtgg tgactccgta 60
 ctttggctcg aggcccttcgg gagcttccc gaggcagttt gcagaagccg cagccggccgc 120
 ccccgcccg ttcctctgtc cctggggcccg ggagggacca acttggcgac acgccccctca 180
 ggggtcgccca ctctcttctc tgggttggg tccgcacatgtt attcccccggaa tcagacgggt 240
 ccccatagat ggcgcagctt ccccgaggg tcaacgagaa agagatcggt agattacgta 300
 ctataggtga acttttagct cctgaagctc ctttgacaa gaaatgtggt cgtgaaaatt 360
 ggactgttgc ttttgcctca gatggttcat actttgtttt gtcacaagga catcgacac 420
 taaagcttgc tccgtggtcc cagtcgccttc agaactttctt cttgcacatggc accaagaatg 480
 ttaccaattt aagcagtttta agattgcacaa gacaaaatag tgatgtggt cagaaaaata 540
 agcctcgta acatattata gactgtggag atatagtctg gagttttgttctt tttgggtcat 600
 cagttccaga aaaacagagt cgctgtgtaa atatagaatg gcatcgcttc agatttggac 660
 aagatcagct acttcttcctt aacttggtag atcatactgtt agtggtcaga gatttaactt 720
 atacaggaaa acttccttcctt aacttggtagt atcatactgtt agtggtcaga gatttaactt 780
 ttgtccaga tggaaagctt atccctgggtt cagttcaag agacaaaactt ctcagagtat 840
 gggacctgaa agatgttgc aacatgttgc aacttgggtt gatcaatgggac aattgggtgt 900
 acagctgtgc attctcttcctt gactttcttca tgctgtgtt agtggagcc agtaaagcag 960
 ttttccttcgtt gatatgttgc aaatacaccatc tgatgtggaa actagaagga catcaccatg 1020
 atgtggtagc ttgtgactttt ttcctgtatc gaggcattact ggctactgca tcttatgata 1080
 ctctggatata tatctggatcc acataatg gagacattt gatggatattt gggcacctgt 1140
 ttccccccacc tactccaaata tttgtggatcc gagcaatgttcc cccgggggtt cgtatctgtat 1200
 ctttttagccca tgatggacttgc catgttgcacaa gccttgcgtt tgataaaatg gtgagggttct 1260
 ggagaatttgc tgaggattat ccagtgcacat ttgcacccat gggcacatggt ctttgcgtgt 1320
 ctttctctac tgatggacttgc gttttagcttgc ctgggacaca tgacggaaatgtt gtgtat 1380
 gggccactcc acggcaggcttgc ctttagcttgc aacattttatg tcgcacatgtca atccgaagag 1440
 tgatggccac ccaagaagttt caggagctgc cgatcccttc caagctttt gatgttctct 1500
 cgtatctgtat tttagaagattt ctgccttcctt tagtagttagt gactgacaga atacactttaa 1560
 cacaacccctt aagcttactt gactcaattt atctgtttt aaagacgttag aagattttattt 1620
 taatttgata tggtctgttgc ctgcattttt atcagttgttgc ctttttttt atttttttata 1680
 gacaatagaa gtatctgttgc acatatcaaa tataaattttt tttaaagatc taactgtgaa 1740
 aacatacata cctgtacata ttttagatata agctgtatata tggttaatgg acccttttgc 1800
 ttttctgtattttt ttttagtcttgc acatgtatattt atgttttttgc tagagccaca atatgtatct 1860
 ttgtctgttgc ttgtcaaggaa attttttttcttgc acatgtatattt atgttttttgc tagagccaca atatgtatct 1920
 acttacgaaa gttgaatttgc ttgtcaaggaa attttttttcttgc acatgtatattt atgttttttgc tagagccaca atatgtatct 1980
 agcctggcaaa acatgtatattt atgttttttgc tagagccaca atatgtatct 2040
 ccaggcgttgc ttgtcaaggaa attttttttcttgc acatgtatattt atgttttttgc tagagccaca atatgtatct 2100
 gttgaaccc aggggttgc ttgtcaaggaa attttttttcttgc acatgtatattt atgttttttgc tagagccaca atatgtatct 2160
 ggacaacaga gcgagacttcc atctcaaaaaa aaaaataaaaaa agg 2203

<210> 15
 <211> 1622
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 3484619

WO 99/61614

<400> 15

ccgcatggag cccccggcgg cggacggctg cttcctggc gacgtgggtt tctgggtgga 60
 gcggaccct gtgcacgagg cagccacgcg gggtagagc ctgcagctgc aacagctgat 120
 cgagagggc gctgcgtga accaggtcac cgtggactcc atcacgcccc tgcacgcgc 180
 cagtcgtcag ggccaggcgc ggtgtgtca gctgctgtg gccgctgggg cccaggtgga 240
 tgctcgcaac atcgacggca gcacccgcct ctgcgtatgc tgccctcg gcaagcatcga 300
 gtgtgtgaag ctcttgcgt cctacgggc caaggtcaac cctccctgt acacagcg 360
 cccccgtcac gaggcgtgca tgagcgggag ttccgaatgt gtgaggcttc ttattgacgt 420
 cggggccaat ctggaaagcgc acgatgcac ttttgggacc cctctgcacg ttgcctgtgc 480
 cggggagcat ctggactgtg tcaaagtgt gctcaatgca ggggccaacg tgaatgcggc 540
 aaagttcat gagactgccc ttcaccacgc ggccaagggtc aagaatgtt acctcatcga 600
 gatgttatac gagtttggcg gcaacatcta cggccgggac aaccgcggga agaagccgtc 660
 tgactacacg tggagcagca ggcgtccgc caagtgttgc gaggactacg aaaagacacc 720
 tctgactctg tcacagcttgc gcaagggtgaa cttgaggaag gccaactggcg tccgagggtc 780
 ggagaagatt gccaagttaa acatcccgcc cggctcatt gattacctt cctacaactg 840
 aattgcagggt ggggtccggc cctgtactgc ccccttgcgtt cccagcattt cccgggtgag 900
 ggctctgcct gttccctgtca agcagcgtga ttgctgtaga tagacaacg ctccttcgag 960
 tcccttcctg cgatcctgtt taggttctc tcctggatcc tggataatgt ttccagggtg 1020
 ttggaaaggc ctgcgtctca ggtcacagtt gtgggtgtgg ccctgcgtc ttctacagaa 1080
 cctacccttcaatggcact gggcccaacc atccagttt cctcttttac ggaccatct 1140
 caaaggcact ctcaggacag acggcggtgg gggcccaacc atccagttt cctcttttac ggaccatct 1200
 ctgagggcat tggactgtat tctacttcac cggggcagcc tgccgcagat gcacaggccc 1260
 caggtgcagg ccaccaccc cgggtcggca ccaggactgc cctcggtgtt catagggat 1320
 ggctggggcc acggaaggcc ggcctggat gtggctgggactgtgtc tgctggctgc 1380
 tgggtggatg ctttcctgg agcactttcc aaggcatccc ccagcccaaa gcctgcgcgc 1440
 atctgtcaact cagggacttt ctatgggtct ttgtggggaa aggccctggc tttgtattcc 1500
 cacaagtagc actgagttt ttagaaatt tgtcttcact attaagtctc caactcttgc 1560
 aaaaagtttataatgttaggat aaaaaccttt tagaggacac gtggcggtt ccactaaggt 1620
 tt

<210> 16

<211> 1385

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 1275743

<400> 16

cgcaacgggc gcaggtgcgg ggcgcgggct ctctcacgc gccgcctcac cggcggtgc 60
 ttcggcaggc ggcggcggc gggcgaggc ggcgcggca tgggctcgca gggcagtcgg 120
 gtgaagagct acgactacact gtcacgttc ctgtgggtgg ggcacagcga cgtggcaag 180
 ggcgcggatcc tggagggct gcaggacggc gggcagagt ccccgatcgc ctacagtaac 240
 gggatcgact acaagaccac caccatctg ctggacggcc ggcgcgtgaa gctggagctc 300
 tgggacacgt cggccaggc cgggttctgc accatttca ggtcctactc cagggcgct 360
 cagggatccc tcttgggttga tgacatcacc aaccgtgtt ctttgcggc catcgaccgc 420
 tggatcaagg agatcgatga gcatgcaccc ggatccccggatcttgggt tggaaaccgg 480
 ctgcacctgg ctttcaagcg gcagggtcccg acggaggcagg cccgcgtgaa cgcagagaag 540
 aactgtatca ctttcttgc gtcagcccc ctgtgcact tcaacgtcat cgagtccctc 600
 acggagctat cccgcacgtt gtcacgtggc cggcgttgg agaagatctg gaggccaaac 660
 cgagtgttca gcctgcaggc cctctgtgc cggccatcg ttcctgcac ccccgatcgc 720
 ctcatcgaca agcttccact gcccgtcacc atcaagagcc acctcaagtc cttctcgatg 780
 gccaacggca tgaacgcggc catgtatgcac ggcgttccctt actccctggc cagcggggcc 840
 gggggcggcgc gcagcaaggg caacgcctc aagaggttcca agtccatccg tccaccccaac 900
 agccccccccca agaactgttc gcgaggtaac tgcaagatct cctagcggggg atggggcg 960

WO 99/61614

ccgcctgtgc agatgccagg agggctcgag ctggacactc ctggctggac gccaggccag 1020
 tgcgcctac gtggagactg tccacacagc tgcctcagaa gcgcgggct ttccacac 1080
 ctgagccggg tgcgaggagg agcatgcacg gaccaagcgc ggcaggccgg aggagggggc 1140
 gcggctggc tgctggctc tccggaaatc ttggtcggaa acaagccggg cctccccagc 1200
 tgcctggct tgaccggcgg ggagcctgg tggccttct tatttatata gagaacactt 1260
 cacttttg tacatttta agggccctc agggaaagcct gggtgtggcc cggtgtgggt 1320
 gcactggta cttcatggcc acgccagctg cggggacgca cttggactc ctcgagaggg 1380
 1385
 gactc

<210> 17
 <211> 2790
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1722533

<400> 17
 cccggaggaa cggaaggcag gattgcagct tcctcagtgc aacctccaaa cagggaaatct 60
 gagatgtata acatcttata gtttggcttg tcaacgttgg tcatgcggtg gccccaaaat 120
 aaactccctg cttcaaagga cagcgttca gaactgcctg gcagagcagc cagaagcttg 180
 gggccagggc agaaggaaaaa ctcggggagc atgttctgaa ttaagacact ttcaagaaaa 240
 tccttgtat taccctgtaa ttgtaccctt gttcagagc ctaacagggg tttctgatt 300
 gctgtccct cctcccoact ggggtctgt tctggaggcc agggtgagag gtggaggagg 360
 atggccacgc agatcagcac tcggggcagc cagtgtacca ttggcagga ggagtacagc 420
 ctgtacagca gcctgagcga ggatgaactg gtgcagatgg ccatacgagca gaggctagcg 480
 gacaagacaa gggggccaaac cactgctgag gccaccgcgt ctgcatgtac caaccgccaa 540
 cctgcccatt tctaccatg gaccaggcactc actgcacccctc ctgagagttc gccggcccg 600
 gccccaaatgg gcttgttcca aggggtcatg cagaaataca gcagcagctt gttcaagacc 660
 tcccagctgg cgcctgcca ccccttgata aaggccatca aggatggcga tgaagagcc 720
 ttgaagacca tcatcaagga agggaaagaaat ctcgcagagc ccaacaagga gggctggctg 780
 ccgctgcacg aggccgcata ctatggccag gtgggctgcc taaaagtctt gcagcgagcg 840
 taccaggga ccatcgacca ggcacccctg caggaggaaa cagccgttta ctggcaacg 900
 tgcaggggcc acctggactg tctcctgtca ctgcctcaag cagggcaga gccggacatc 960
 tccaacaaat cccgagagac accgccttac aaagcctgtg agcgaagaaa cgccggaggcc 1020
 gtgaagattc tggtgcagca caacgcagac accaaccacc gctgcacccg cgctggacc 1080
 gctctgcacg agtctgtgtc tcgcaatgac ctggaggtca tgcagatctt ggtgagcgg 1140
 ggagccaaagg tggaaatccaa gaacgcctac ggcataccccc cttgttctgt gggcccccag 1200
 agtggacagt tggaggcctt gaggttctta gccaagtagc gtgctgacat caacacgcag 1260
 gccagcgaca acgcgtctgc cctctacgag gcctgcagaatgagcatga ggaggtgggt 1320
 gagtttctgc tgcacaggc tgccgacgccc aacaagacca acaaggacgg ctgtccccc 1380
 ctgcacatcg cttccaagaa gggcaactac aggatcgctc agatcgctctt gcccgtgacc 1440
 agccgcacgc gcatacgccg tagcgccgtc agtccgctgc acctggccgc cgagcgcaac 1500
 cacgacgagg tgctggaggc gtcgtgcagc ggcgcgttc acgtgaacac gccgctggcg 1560
 cccgaacgcg cgccgcctcta cgaagacccgg cgacgtccg cgctgtactt cgccggggc 1620
 aacaacaacg tgcacccac cgagctgtctt ctgcacacacg ggcgcaccc caaccgcac 1680
 gtcatcagcc cttgtctgtt ggccatccgc caegggtgcc tgcgcacaat gcaagctgt 1740
 ctggaccacg ggcgcgaacat cgacgcctat atgcacccgc accccacccg cttcccccc 1800
 accatcatgt tgcacatgaa gtgcctgtcg ctgcctcaat tgcacatggaa cttggctgc 1860
 gacggcgagc cttgtttctc atgcctctac ggcaacggcc cgaccccgcc ggcccccgac 1920
 ccctccagca gttcaacga cgcgcggcgg gcccacaagg agcccacgc ggtgcagttc 1980
 tgcgtggatcg tatctgcccc agaggtgagc cgctggccgg ggcccatcat cgatgcctc 2040
 ctggactacg tggcaacgt gcagctctgc tgcgcgtcga aggaacacat cgacagctt 2100

gaggactggg	ccgtcatcaa	ggagaaggca	gaacctccaa	gacctctggc	tcacctttgc	2160
cgactgcggg	ttcgaaaggc	cattggaaaa	taccgtataa	aactcttaga	caccttgcgg	2220
ctcccaggca	ggctgattag	atacctgaaa	tacgagaaca	cccagtaact	ggggccacgg	2280
ggagagagga	gtagccctc	agactcttct	tactaagtct	caggacgtcg	gtgtcccaa	2340
ctccaaggggg	acctgggtac	agacgaggct	gcaggctgcc	tccctctcag	cctggacagc	2400
taccaggatc	tcactgggtc	tcagggccca	gagctttggc	cagagcagag	aacagaatgt	2460
gtcaaggaga	agaatcattt	gttacaaac	tgatgagcag	atcccagacc	ttctctacct	2520
tcaggaatgg	cagaaaacctc	tattccctggg	gccaggcag	agtttgaggt	gttctgggga	2580
aggtggtgct	cagagccttc	cctgtcccc	tccacttggt	ctggaaaact	caccacttga	2640
cttcagagct	ttctctccaa	agactaagat	gaagacgtgg	cccaaggtag	ggggtagggg	2700
gagcctgggt	cttggagggc	tttggtaagt	attaatataa	taaatgttac	acatgtgaca	2760
cctqcccagt	gaaaaaaactaa	aaaaaaaaaa				2790

<210> 18
<211> 2263
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte clone 1759763

<400> 18
cgaccgtcc gcctacgggg gccgggacgt cgccgtcgac tctctcggtt tcggacggc 60
gcagcatcg ggtgggatc gaaagcgggg gcttctggg cgcagctcg gagacgcggc 120
ctcgaccag ccatttcgt gtagaagttt cagcacggca gactggtcaa acaaatggat 180
tttacagagg cttacgcgg aacgtgtct acagttggac ttgtgcggag ggaaggcaat 240
gttaaagtct taaggaaact gctaaaaag ggccgaagtgc tgatgttgc tgataacagg 300
ggatggatgc caattcatga agcagcttat cacaactctg tagaatgttt gcaaatgtta 360
attaatgcag attcatctga aaactacatt aagatgaaga ccttgaagg tttctgtgct 420
ttgcattctcg ctgcaagtca aggacattgg aaaatcgatc agattctttt agaaagctggg 480
gcagatccta atgcaactac tttagaagaa acgacaccat tggttttagc tggtaaaaat 540
ggacagatag atgtgttaag gctgttgctt caacacggag caaatgtta tggtatccat 600
tctatgtgtg gatggaaactc cttgcaccag gcttctttc agggaaaatgc tgagatcata 660
aaattgttcc tttagaaaaagg agcaaaacaag gaatgccagg atgacttgg aatcacacct 720
ttatgttgg ctgctcagta tggcaagcta gaaagcttga gcataacttat ttcatcagg 780
gcaaatgtca attgtcaagc cttggacaaa gctacaccct tgttcattgc tgctcaagag 840
ggacacacaaa aatgtgttga gctttgtctc tccagtgggg cagatcctga tctttactgt 900
aatgaggaca gttggcagtt acctattcat gcagctgcac aaatgggcca taaaaatc 960
ttggacttgt taataccact tactaaccgg gcctgtgaca ctgggctaaa caaagttaagc 1020
cctgtttact cagcagtgtt tgggggacat gaagattgcc tagaaatatt actccggaat 1080
ggctacagcc cagacgcccc ggcgtgcctt gttttggat tcagttctcc tggcgtcattg 1140
gctttccaaa aggactgtga gttcttggaa attgtgaaca ttctttgaa atatggagcc 1200
cagataaaatg aacttcattt ggcataactgc ctgaagttac agaagtttc gatatttcgc 1260
tacttttga gggaaagggtt ctcattgggaa ccatggaaacc atatatatga atttgtaaat 1320
catgcatttta aagcacaagg aaaaatataag gagtggtgc cacatcttgc gtttgcgttga 1380
tttgacccac tgattctact gtgcatttgc tgattgtact cagtcagcat tgacaccctt 1440
atcttcactt tggagtttac taatttggaa acacttgcac cagctgttgc aaggatgttc 1500
tctgtcgtg cctcaaacgc ttggattctt cagcaacata ttgcactgt tccatccctg 1560
accatctttt gtcgttggaa aattcgggttcc agtctaaaat cagaacgtct acggctcgac 1620
agttatatta gtcagctgcc acattcccaaa agcctacata attatttgc ctatgaagac 1680
gttctgagga tttatgttgc tccagaactgc gcaacttgc aagatggata aatcagtgaa 1740
actacttaac acagctaatt tttttctgtt aaaaatcatac gagacaaaag agccacacag 1800
tacaagttttt tttatgttgc tagtccaaaag atgatttttgc attgtcagat aggttaggtt 1860
ttggggggcc agtagttcag tgagaatgtt tttatgttaca actagccttc ccagtaaaaa 1920
aaaaaaaaaaaaaaa aattgttac acatcttata ttacttttattt gcaagcttcatt 1980

caccagtaca ttatatgtt taatatttat ttacctgate attttgcata ttttctgctt 2040
tattttgcta ataaaactgtg atgttacttc tagtgctaaa catggcatat ttccacctat 2100
gattcgtgtt tacctggat taggagctca gaatggaatg cataaagctt cactggaagt 2160
gtataacaact gtgggttaga atctgttattt attatcatta ttattttattt tagacttgac 2220
tatctcttat gtttattaaa gaacatgttt tcctaaaaaaaaaaa aaa 2263