Лабораторной работе №2. Задача о погоне

Вариант № 19

Коне Сирики. НФИбд-01-20

Содержание

1	Цель лабораторной работы:	5
2	Задача лабораторной работы:	6
3	Ход работы:	7
4	Ход работы:	8
5	Ход работы: 5.1 Условие задачи:	10 10 10 11 12 13
6	Выводы	15
7	Список литературы	16

Список иллюстраций

5.1	Код программы 1	11
5.2	Код программы 2	11
5.3	Код программы 3	12
5.4	Код программы 4	12
5.5	Результат c julia 5	13
5.6	траектории для первого случая	13
5.7	траектории для второго случая	14

Список таблиц

1 Цель лабораторной работы:

Цель работы - разобраться в алгоритме построения математической модели на примере задачи о погоне. Нам необходимо провести теоритические рассуждение и вывести дифференциальные уравнения, с помощью которых мы сможем определить точку пересечения лодки и катера из задачи. Для более наглядного примера нам были выданы варианты, с помощью которых можно будет смоделировать траектории движения лодки и катера. Условия задачи: "На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии к км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в п раза больше скорости браконьерской лодки. Необходимо определить по какой траектории необходимо двигаться катеру, чтоб нагнать лодку."

2 Задача лабораторной работы:

1.Изучить условия задачи. Провести теоритические рассуждения используя данные из варианта 2.Вывести дифференциальное уравнение, соответствующее условиям задачи 3.Написать программу для расчета траетории движения катера и лодки. 4.Построить модели. 5.Определить по моделям точку пересечения катера и лодки.

3 Ход работы:

Начнем с теоритических рассуждений: Принимаем за $t_0=0$, $X_0=0$ - место нахождения лодки браконьеров в момент, когда их обнаруживают катера береговой охраны. Также $X_0=k$ - место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки браконьеров. После введем полярные координаты. Будем считать, что полюс - это точка обнаружения лодки браконьеров x_0 =0(θ = $x_0=0$), а полярная ось г проходит через точку нахождения катера береговой охраны. Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса, а за это время лодка пройдет x, в то время как катер x-x0 или x + x1 в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как x2 или x2 (для второго случая x3. Так как время одно и то же, то эти величины одинаковы.

4 Ход работы:

Тогда неизвестное расстояние можно найти из следующего уравнения: $\frac{x}{v}=\frac{x+k}{v}$ - в первом случае, $\frac{x}{v}=\frac{x-k}{v}$ во втором случае. Отсюда мы найдем два значения x_1 и x_2 , задачу будем решать для двух случаев :

$$x_1=rac{k}{n+1}$$
,при $(heta=0)$ $x_2=rac{k}{n-1}$,при $(heta=-\pi)$

5 Ход работы:

После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: v_r - радиальная скорость и v_t - тангенциальная скорость. Радиальная скорость - это скорость, с которой катер удаляется от полюса $v_r=\frac{dr}{dt}$. Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем $v=\frac{dr}{dt}$. Тангенциальная скорость – это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости $\frac{d\theta}{dt}$ на радиус r , $v_r=r\frac{dr}{dt}$ Найдем тангенциальную скорость для нашей задачи $v_t=r\frac{d\theta}{dt}$. Вектора образуют прямоугольный треугольник, откуда по теореме Пифагора можно найти тангенциальную скорость $v_t=\sqrt{(nv_r)^2-v^2}$. Поскольку, радиальная скорость равна $v_t=\sqrt{(nv)^2-v^2}$, то тангенциальную скорость находим из уравнения . Следовательно, $v_\tau=v\sqrt{(n)^2-1}$

Тогда получаем:

$$r\frac{d\theta}{dt} = v\sqrt{(n)^2 - 1}$$

Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений, которые будут описаны в коде программы.

$$rac{dr}{dt}=v$$
 ; $rrac{d heta}{dt}=v\sqrt{(10,56}$ Начало условие : - $heta_0=0, r_0=rac{k}{4.4}$

$$\theta_0 = 0, r_0 = \frac{k}{2.4}$$

Тогда:
$$\frac{dr}{d\theta} = \frac{r}{\sqrt{10,56}}$$

5.1 Условие задачи:

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 10 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 3.4 раза больше скорости браконьерской лодки.

5.2 Произведение теоретических рассчетов:

5.2.1 Теоретические рассчеты и вивод дифференциальных уровнений в соответствии с условием задачи

$$\begin{aligned} k &= 10km, t_0 = 0, x_0 = 0, x_k o = k \\ t_n &= \frac{x_1}{v}, t_k = \frac{k - x_1}{3.4 * v} \end{aligned}$$

Первый способ:

$$\frac{x_1}{v} = \frac{k - x_1}{3, 4 * v} => 3, 4 * v * x_1 = v * (k - x_1) => 3, 4 * x_1 = k - x_1 => 4, 4 * x1 = k => x_1 = \frac{k}{4.4}$$

Второе способ:

$$\begin{array}{l} \frac{x_2}{v} \, = \, \frac{k + x_2}{3,4 * v} \, = > \, 3,4 * v * x_2 \, = \, v * (k + x_2) \, = > \, 3,4 * x_1 \, = \, k + x_2 \, = > \\ 2,4 * x2 \, = \, k \, = > \, x_2 \, = \, \frac{k}{2,4} \\ v_r \, = \, \frac{dr}{dt} \, = \, v; v_\tau \, = \, r \frac{d\theta}{dt} \\ v_\tau \, = \, -\sqrt{(3,4 * v)^2 - v^2} \, \, = \, \sqrt{11,56 v^2 - v^2} \, = \sqrt{(10,56 v^2)}; r \frac{d\theta}{dt} \, = \, v \sqrt{10,56} \end{array}$$

Начало условие: -

$$\begin{array}{l} \theta_0 = 0, r_0 = \frac{k}{4,4} \\ \theta_0 = -\pi, r_0 = \frac{k}{2,4} \\ \frac{dr}{d\theta} = \frac{r}{\sqrt{10,56}} \end{array}$$

5.3 Код программы:

(рис. 5.1).

Рис. 5.1: Код программы 1

(рис. 5.2).

Рис. 5.2: Код программы 2

(рис. 5.3).

Рис. 5.3: Код программы 3

(рис. 5.4).

Рис. 5.4: Код программы 4

5.4 Результаты работы программы

Точка пересечения красного и зеленого графиков является точкой пересечения катера береговой охраны и лодки браконьеров. Исходя из этого графика, мы имеем координаты: Координаты точки пересечения - (10.616 , -7.507) (рис. 5.5).

Катер с бандитами

Рис. 5.5: Результат с julia 5

(рис. 5.6).

Рис. 5.6: траектории для первого случая

5.5 Результаты работы программы

Точка пересечения красного и зеленого графиков является точкой пересечения катера береговой охраны и лодки браконьеров. Исходя из этого графика, мы

имеем координаты: Координаты точки пересечения - (51.175 , -36.186) рис. 5.7).

Рис. 5.7: траектории для второго случая

6 Выводы

Мы рассмотрели задачу о погоне, также провели анализ с помощью данных которые нам были даны, составили и решили дифференциальные уравнения. Смоделировали ситуацию и сделали вывод, что в первом случае погоня завершиться раньше.

7 Список литературы

::: Julia 1.8 Documentation :::