Math 3101 HW # 4

Mario L. Gutierrez Abed

Section 9

In exercises 1 through 6, find all orbits of the given permutation.

$$(\#1) \ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 3 & 6 & 2 & 4 \end{pmatrix}$$

Solution:

The orbits are {1, 5, 2}, {4, 6}, and {3}.

$$(#2) \ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 2 & 4 & 8 & 3 & 1 & 7 \end{pmatrix}$$

Solution:

The orbits are {1, 5, 8, 7}, {2, 6, 3}, and {4}.

(#3)
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 5 & 1 & 4 & 6 & 8 & 7 \end{pmatrix}$$

Solution:

The orbits are {1, 2, 3, 5, 4}, {7, 8}, and {6}.

*

$$(#4)$$
 $\sigma: \mathbb{Z} \longrightarrow \mathbb{Z}$, where $\sigma(n) = n + 1$

Solution:

There's only one orbit $\{..., -1, 0, 1, ...\} = \mathbb{Z}$.

*

(#5)
$$\sigma: \mathbb{Z} \longrightarrow \mathbb{Z}$$
, where $\sigma(n) = n + 2$

Solution:

There are two orbits, $\{2 n : n \in \mathbb{Z}\}\$ and $\{2 n + 1 : n \in \mathbb{Z}\}\$. *

(#6)
$$\sigma: \mathbb{Z} \longrightarrow \mathbb{Z}$$
, where $\sigma(n) = n - 3$

Solution:

There are three orbits, $\{3 n : n \in \mathbb{Z}\}$, $\{3 n + 1 : n \in \mathbb{Z}\}$ and $\{3 n + 2 : n \in \mathbb{Z}\}$. *

In exercises 7 through 9, compute the indicated product of cycles that are permutations of $\{1, 2, 3, 4, 5, 6, 7, 8\}.$

$$(#7)$$
 (1, 4, 5) (7, 8) (2, 5, 7)

Solution:

Solution:

$$(1, 4, 5) (7, 8) (2, 5, 7) = (1, 4, 5) \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 8 & 7 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 5 & 3 & 4 & 7 & 6 & 2 & 8 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 2 & 3 & 5 & 1 & 6 & 7 & 8 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 5 & 3 & 4 & 8 & 6 & 2 & 7 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 1 & 3 & 5 & 8 & 6 & 2 & 7 \end{pmatrix}$$

$$(#8)$$
 (1, 3, 2, 7) (4, 8, 6)

Solution:

Solution:
$$(1, 3, 2, 7) (4, 8, 6) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 4 & 5 & 6 & 1 & 8 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 8 & 5 & 4 & 7 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 8 & 5 & 4 & 1 & 6 \end{pmatrix}$$

$$(#9)$$
 (1, 2) (4, 7, 8) (2, 1) (7, 2, 8, 1, 5)

Solution:

$$(1, 2) (4, 7, 8) (2, 1) (7, 2, 8, 1, 5)$$

$$= (1, 2) (4, 7, 8) \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 8 & 3 & 4 & 7 & 6 & 2 & 1 \end{pmatrix}$$

$$= (1, 2) \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 7 & 5 & 6 & 8 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 8 & 3 & 4 & 7 & 6 & 1 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 3 & 7 & 8 & 6 & 2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 3 & 7 & 8 & 6 & 2 & 1 \end{pmatrix}$$

(#36) Let G be a group and let a be a fixed element of G. Show that the map $\lambda_a: G \longrightarrow G$, given by $\lambda_a(g) = ag$ for $g \in G$, is a permutation of the set G.

Proof:

Let G be a group and fix $a \in G$. Then the map λ_a is given by $\lambda_a(g) = \{a g : g \in G\}$. We need to show that this map is bijective:

Showing that the map is injective is trivial; if we pick two images $\lambda_a(g_1) = a g_1$ and $\lambda_a(g_2) = a g_2$ such that $ag_1 = ag_2$, we have that $g_1 = g_2$ by the cancellation law, where $g_1, g_2 \in G$. Hence λ_a is injective. This map is obviously surjective as well, since by definition for each image $ag \in G$ we have a preimage $g \in G$.

Since λ_a is bijection from the group G onto itself, we have that λ_a is a permutation on G.

(#37) Referring to exercise 36, show that $H = \{\lambda_a : a \in G\}$ is a subgroup of S_G , the group of all permutations of *G*.

Proof:

To show that H is a subgroup of S_G , we need to show that the identity element and inverse element of S_G are in H, and we also need to show that H is closed under the binary operation defined on G (permutation multiplication):

▶ To show closure, let $\lambda_a(g)$, $\lambda_b(g) \in H$, where $a, b, g \in G$. Then,

$$\lambda_a \circ \lambda_b(g) = \lambda_a(\lambda_b(g)) = \lambda_a(b g) = a b g = \lambda_{ab}(g) \in H$$

Hence H is closed under permutation multiplication. \checkmark

- Since G is a group, for any $a \in G \exists a^{-1} \in G$. Thus the map $\lambda_{aa^{-1}} = \lambda_{\ell}$ represents our identity on H, since $\lambda_e(g) = e g = g$.
- ▶ For a, a^{-1} , $g \in G$ and $\lambda_a \in H$, we have

$$\lambda_a \circ \lambda_{a^{-1}}(g) = \lambda_a(\lambda_{a^{-1}}(g)) = \lambda_a(a^{-1}g) = a a^{-1}g = eg = \lambda_e(g).$$

Hence $\lambda_{a^{-1}}$ is the inverse element of H.

Since H is closed under the binary operation defined on S_G , and it contains the identity and inverse elements of S_G , we have that H is a subgroup of S_G .