

Home Equity Loan

Oleh:

Ramzy Mohammad

OUTLINE

- Pendahuluan
- Data Pre-processing 2
 - **Exploration Data Analysis**
- **Model Machine Learning** 4
 - 5 Dashboard
 - Kesimpulan 6

Pendahuluan

Home Equity Loan

- Penyedian uang yang memungkinkan pemilik rumah untuk meminjam berdasarkan ekuitas dari rumah mereka.
- Ekuitas rumah berfungsi untuk jaminan bagi pemberi pinjaman
- Peminjam wajib melunasi pinjaman/utangya setelah jangka waktu tertentu beserta bunganya
- Jika utangnya tidak dilunasi, rumah bisa disita dan dijual oleh pihak pemberi pinjar memenuhi sisa utang.

Keuntungan Home Equity Loan

- Menjadi sumber pinjaman uang yang besar
- Memperoleh pinjaman lebih mudah karena merupakan hutang terjamin
- Walaupun tingkat bunga lebih tinggi daripada tingkat bunga hipotek pertama tetapi jauh lebih rendah daripada tingkat bunga pada kartu kredit dan pinjaman konsumen lainnya.
- pinjaman ekuitas rumah suku bunga tetap dapat digunakan untuk melunasi saldo kartu kredit.

Masalah

- Ketika institusi finansial memberikan pinjaman ke sejumlah pemohon, pada saat itu juga institusi tersebut harus siap ketika peminjam tidak dapat melunasi hutangnya yang disebabkan berbagai hal diluar kendali institusi tersebut.
- Walaupun peminjam menggunakan jaminan rumah untuk melunasi hutangnya, akan lebih baik bagi institusi tersebut untuk mengidentifikasi dan menyeleksi dari awal secara cepat,tepat, dan akurat mana saja pemohon yang layak untuk diberi pinjaman, sehingga masalah gagal bayar dapat diminimalisir.
- Oleh karena itu diperlukan suatu metode atau model yang dapat mengatasi hal tersebut

Tujuan

Mencari model machine learning terbaik yang dapat memprediksi serta menyeleksi para pemohon pinjaman, sehingga yang diterima pengajuannya adalah pemohon yang layak diberi pinjaman.

Data Pre-processing

DataSet Home Equity Loan

	BAD	LOAN	MORTDUE	VALUE	REASON	JOB	YOJ	DEROG	DELINQ	CLAGE	NINQ	CLNO	DEBTINC
0	1	1100	25860.0	39025.0	HomeImp	Other	10.5	0.0	0.0	94.366667	1.0	9.0	NaN
1	1	1300	70053.0	68400.0	HomeImp	Other	7.0	0.0	2.0	121.833333	0.0	14.0	NaN
2	1	1500	13500.0	16700.0	HomeImp	Other	4.0	0.0	0.0	149.466667	1.0	10.0	NaN
3	1	1500	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	0	1700	97800.0	112000.0	HomeImp	Office	3.0	0.0	0.0	93.333333	0.0	14.0	NaN

Fitur-fitur Dataset

- BAD: 1 = applicant defaulted on loan or seriously delinquent; 0 = applicant paid loan
- LOAN: Amount of the loan request
- MORTDUE: Amount due on existing mortgage
- VALUE: Value of current property
- REASON: DebtCon = debt consolidation; HomeImp = home improvement
- JOB: Occupational categories
- YOJ: Years at present job
- DEROG: Number of major derogatory reports
- DELINQ: Number of delinquent credit lines
- CLAGE: Age of oldest credit line in months
- NINQ: Number of recent credit inquiries
- CLNO: Number of credit lines
- DEBTINC: Debt-to-income ratio

Statistik Deskriptif

Kolom Numerik

	BAD	LOAN	MORTDUE	VALUE	YOJ	DEROG	DELINQ	CLAGE	NINQ	CLNO	DEBTINC
count	5960.000000	5960.000000	5442.000000	5848.000000	5445.000000	5252.000000	5380.000000	5652.000000	5450.000000	5738.000000	4693.000000
mean	0.199497	18607.969799	73760.817200	101776.048741	8.922268	0.254570	0.449442	179.766275	1.186055	21.296096	33.779915
std	0.399656	11207.480417	44457.609458	57385.775334	7.573982	0.846047	1.127266	85.810092	1.728675	10.138933	8.601746
min	0.000000	1100.000000	2063.000000	8000.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.524499
25%	0.000000	11100.000000	46276.000000	66075.500000	3.000000	0.000000	0.000000	115.116702	0.000000	15.000000	29.140031
50%	0.000000	16300.000000	65019.000000	89235.500000	7.000000	0.000000	0.000000	173.466667	1.000000	20.000000	34.818262
75%	0.000000	23300.000000	91488.000000	119824.250000	13.000000	0.000000	0.000000	231.562278	2.000000	26.000000	39.003141
max	1.000000	89900.000000	399550.000000	855909.000000	41.000000	10.000000	15.000000	1168.233561	17.000000	71.000000	203.312149

Statistik Deskriptif

Kolom Kategorik

	REASON	JOB
count	5708	5681
unique	2	6
top	DebtCon	Other
freq	3928	2388

Drop Data Duplikat

df[df.duplicated(subset=None, keep=False) == True].head()

BAD LOAN MORTDUE VALUE REASON JOB YOJ DEROG DELINQ CLAGE NINQ CLNO DEBTINC

Tidak ada data duplikat

Missing Value

```
df.isna().sum()
BAD
                0
LOAN
                0
MORTDUE
              518
VALUE
              112
REASON
              252
              279
JOB
YOJ
              515
DEROG
              708
DELINQ
              580
CLAGE
              308
NINQ
              510
CLNO
              222
DEBTING
            1267
dtype: int64
```

```
df.isna().sum()/len(df)*100
BAD
            0.000000
LOAN
            0.000000
MORTDUE
            8.691275
VALUE
            1.879195
REASON
            4.228188
JOB
            4.681208
YOJ
            8.640940
DEROG
           11.879195
DELINO
            9.731544
CLAGE
            5.167785
NINO
            8.557047
CLNO
            3.724832
DEBTINC
           21.258389
dtype: float64
```

- telihat dari info di atas, terdapat beberapa kolom yang memiliki missing value
- missing value masih di bawah 50%.
- sehingga keputusan yang diambil yaitu melakukan I

- Secara visualisasi, telihat kolom MORTDUE dan CLNO mengikuti distribusi Normal
- Untuk memastikan bahwa kolom MORTDUE dan CLNO berdistribus


```
# Uji Normalitas untuk kolom MORTDUE
test, pval = stats.shapiro(df['MORTDUE'])
if pval < 0.05:</pre>
    print('normal')
else:
    print('not normal')
not normal
c:\users\asus\appdata\local\programs\python\py
UserWarning: p-value may not be accurate for N
  warnings.warn("p-value may not be accurate f
# Uji Normalitas untuk kolom CLNO
test, pval = stats.shapiro(df['CLNO'])
if pval < 0.05:</pre>
    print('normal')
else:
    print('not normal')
not normal
```

- Berdasarkan Uji Normalitas, ternyata kolom MORTDUE dan CLNO tidak berdisahan Normalitas, ternyata kolom Normalitas, ternyata kolom
- kesimpulannya, kolom-kolom yang bertipe float dan memiliki missing value tersebut
- kolom-kolom yang bertipe objek dan memiliki missing value akan diisi oleh

Kolom Numerik

	BAD	LOAN	MORTDUE	VALUE	REASON	JOB	YOJ	DEROG	DELINQ	CLAGE	NINQ	CLNO	DEBTING
0	1	1100	25860.0	39025.0	HomeImp	Other	10.5	0.0	0.0	94.366667	1.0	9.0	34.818262
1	1	1300	70053.0	68400.0	HomeImp	Other	7.0	0.0	2.0	121.833333	0.0	14.0	34.818262
2	1	1500	13500.0	16700.0	HomeImp	Other	4.0	0.0	0.0	149.466667	1.0	10.0	34.818262
3	1	1500	65019.0	89235.5	NaN	NaN	7.0	0.0	0.0	173.466667	1.0	20.0	34.818262
4	0	1700	97800.0	112000.0	HomeImp	Office	3.0	0.0	0.0	93.333333	0.0	14.0	34.818262
	***	2220			222		***	222					
955	0	88900	57264.0	90185.0	DebtCon	Other	16.0	0.0	0.0	221.808718	0.0	16.0	36.112347
956	0	89000	54576.0	92937.0	DebtCon	Other	16.0	0.0	0.0	208.692070	0.0	15.0	35.859971
957	0	89200	54045.0	92924.0	DebtCon	Other	15.0	0.0	0.0	212.279697	0.0	15.0	35.556590
958	0	89800	50370.0	91861.0	DebtCon	Other	14.0	0.0	0.0	213.892709	0.0	16.0	34.340882
959	0	89900	48811.0	88934.0	DebtCon	Other	15.0	0.0	0.0	219.601002	0.0	16.0	34.571519

Kolom kategorik

<pre>imp_mode = SimpleImputer(strategy='most_frequent') df[['REASON', 'JOB']] = imp_mode.fit_transform(df[['REASON', 'JOB']]) df</pre>														
		BAD	LOAN	MORTDUE	VALUE	REASON	JOB	YOJ	DEROG	DELINQ	CLAGE	NINQ	CLNO	DEBTINC
	_	- 1	1100	25060.0	20025.0	Hamalma	Othor	40 E	0.0	0.0	94.366667	1.0	0.0	34.818262

									D	O_AO_		02.10	D_D0
0	1	1100	25860.0	39025.0	HomeImp	Other	10.5	0.0	0.0	94.366667	1.0	9.0	34.818262
1	1	1300	70053.0	68400.0	HomeImp	Other	7.0	0.0	2.0	121.833333	0.0	14.0	34.818262
2	1	1500	13500.0	16700.0	HomeImp	Other	4.0	0.0	0.0	149.466667	1.0	10.0	34.818262
3	1	1500	65019.0	89235.5	DebtCon	Other	7.0	0.0	0.0	173.466667	1.0	20.0	34.818262
4	0	1700	97800.0	112000.0	HomeImp	Office	3.0	0.0	0.0	93.333333	0.0	14.0	34.818262
5955	0	88900	57264.0	90185.0	DebtCon	Other	16.0	0.0	0.0	221.808718	0.0	16.0	36.112347
5956	0	89000	54576.0	92937.0	DebtCon	Other	16.0	0.0	0.0	208.692070	0.0	15.0	35.859971
5957	0	89200	54045.0	92924.0	DebtCon	Other	15.0	0.0	0.0	212.279697	0.0	15.0	35.556590
5958	0	89800	50370.0	91861.0	DebtCon	Other	14.0	0.0	0.0	213.892709	0.0	16.0	34.340882
5959	0	89900	48811.0	88934.0	DebtCon	Other	15.0	0.0	0.0	219.601002	0.0	16.0	34.571519

Exploratory Data Analysis

Tabel Korelasi

Berdasarkan tabel HeatMap, dapat dilihat bahwa fitur VALUE dan MORTDUE terjadi Multikolerasi.

Fitur Target

- Jumlah yang layak mendapat pinjaman 1189
- Jumlah yang tidak layak mendapat pinj
- Data tidak seimbang

Fitur Reason

- 1.Berdasarkan data yang kita miliki, orang-orang yang memohon pinjaman karena dua tujuan yaitu DebitCon dan HomeImp
- 2.Terlihat dari Piechart, orang-orang yang momohon pinjaman dengan tujuan untuk DebitCon sekitar 70.13% dan sisanya yaitu 20.87% memohon pinjaman dengan tujuan untuk Homelmp.

FITUR LOAN dan MORTDUE

Berdasarkan grafik di atas,

- 1. berdasarkan grafik di atas, rata-rata besar pinjaman yang dibutuhkan dari seluruh sample pemohon berada pada USD18607
- 2. terlihat data tidak berdistribusi normal dan memiliki skewness.
- 3. Terdapat juga outlier yang lumayan banyak, outlier ini cukup beralasan karena setiap pemohon memiliki tingkatan ekuitas rumah yang berbedabeda yang menyebabkan pemohon dapat meminjaman uang dengan jumlah yang berbeda-

Berdasarkan grafik di atas,

- 1. berdasarkan grafik di atas, rata-rata besar hipotek ydari seluruh sample pemohon berada pada USD73001
- 2. terlihat data tidak berdistribusi normal dan memiliki skewness.
- 3. Terdapat juga outlier yang lumayan banyak, outlier ini cukup masuk akal karena hipotek setiap pemohon berbeda-beda

FITUR VALUE dan YOJ

Berdasarkan grafik di atas,

- 1. berdasarkan grafik di atas, rata-rata harga properti rumah dari seluruh sample pemohon berada pada USD101540
- 2. terlihat data tidak berdistribusi normal dan memiliki skewness.
- 3. Terdapat juga outlier yang lumayan banyak, hal ini cukup masuk akal karena setiap pemohon memiliki harga properti rumah yang berbeda-beda
- 1. berdasarkan grafik di atas, rata-rata lama berkarir dari seluruh sample pemohon sekitar 8 tahun
- 2. terlihat data tidak berdistribusi normal dan memiliki skewness.
- 3. Terdapat juga beberapa outlier, hal ini cukup masuk karena baik yang tidak bekerja dan yang bekerja boleh mengajukan pinjaman.

FITUR CLAGE

Berdasarkan grafik di atas,

- 1. berdasarkan grafik di atas, dari seluruh sample pemohon memiliki rata-rata sekitar 179 bulan lamanya menggunakan kartu kredit
- 2. terlihat data tidak berdistribusi normal dan memiliki skewness.
- 3. Terdapat juga beberapa outlier, kita perhatikan outlier yang mendekati 1200 bulan jika kita kalkulasi 1200 bulan/12 bulan = 100 tahun, outlier ini tidak masuk akal, sehingga outlier kemungkinan akan ini dihapus.
- 1. berdasarkan grafik di atas, rata-rata jumlah kredit line dari seluruh sample pemohon sekitar 21

FITUR DEROG dan DELINQ

Berdasarkan countplot di atas, paling banyak pemohon yang mengajukan pinjaman dengan jumlah laporan derogatori yang masih nol. Hal tersebut masuk akal karena seseorang yang memiliki jumlah laporan derogatori cukup banyak sudah lebih memahami jika pengajuannya kemungkinan besar akan ditolak.

Berdasarkan countplot di atas, paling banyak pemohon yang mengajukan pinjaman dengan jumlah laporan tunggakan yang masih nol. Hal tersebut masuk akal karena menurut seseorang yang memiliki jumlah laporan tunggakan cukup banyak sudah lebih memahami jika pengajuannya kemungkinan besar akan ditolak.

FITUR DEROG, NINQ, dan TARGET

jika kita perhatikan kelas dengan jumlah 0 derogatori, persentase pemohon untuk diterima sekitar 85% dari total sample pada kelas tersebut dan jika kita perhatikan secara umum bahwa semakin besar jumlah laporan derogatori maka persentase untuk diterima semakin kecil

jika kita perhatikan kelas jumlah 0 kredit inkuiri, persentase pemohon untuk diterima sekitar 83% dari total sample pada kelas tersebut dan jika kita perhatikan kelas dengan jumlah kredit inkuiri >= 12, persentase untuk ditolak hampir 100%.

FITUR DELINQ dan TARGET

jika kita perhatikan kelas jumlah 0 delinquent, persentase pemohon untuk diterima sekitar 85% dari total sample pada kelas tersebut dan jika kita perhatikan semakin besar jumlah laporan delinquent maka persentase untuk diterima semakin kecil.

FITUR CLAGE dan TARGET

Jika kita perhatikan pada saat nilai CLAGE > 200, total pemohon yang diterima lebih besar dibandingkan dengan yang ditolak karena pemohon yang telah lama melakukan transaksi kredit dengan bijaksana lebih berpeluang besar pengajuannya diterima, salah satunya faktornya pemohon tersebut dapat mengatur keuangannya dengan baik.

FITUR DEBTINC dan TARGET

Terlihat dari grafik di atas, jika pemohon memiliki rasio utang terhadap pendapatan > 40% akan ditolak. Salah satu sebabnya pemohon tidak bisa mengatur keuangannya dengan baik, Debtinc juga mempengaruhi skor kredit.

karena semakin besar rasio utang pemohon terhadap penghasilan maka semakin rendah skor kredit yang pemohon miliki. Skor kridit menjadi faktor utama diterimanya pinjaman melalui Home Equity Loan.

FITUR DEROG, DEBTINC, dan TARGET

- Walaupun jumlah 0 laporan derogatori tetapi Debt-to-income ratio besar maka peluang untuk diterima semakin kecil
- Walaupun Debt-to-income ratio statabil tetapi jumlah laporan derogatori besar maka peluang untuk diterima semakin kecil

Model Machine Learning

Model Machine Learning

Kasus HOME EQUITY LOAN termasuk klasifikasi, oleh karena itu akan digunakan beberapa model klasifikasi, yaitu:

- Logistic Regression
- Decision Tree Classifier
- Random Forest Classifier
- KNN Classifier
- Voting Classifier
- Ada Boost
- Gradient Boost

Langkah-langkah dalam mendapatkan model terbaik:

- 1. Membuat banchmark dengan Resampling ROS, RUS, dan SMOTE pada masing-masing algoritma
- 2. Memilih model dengan mencari nilai cross validation yang paling tinggi di masing-masing algoritma
- 3. Melakukan Hyperparameter pada model yang telah dipilih melalui cross validation
- 4. Mencari model terbaik melalui nilai skor yang paling tinggi dari model yang telah dituning
- 5. Mencari Threshold terbaik
- 6. Menyimpan model terbaik

Model Machine Learning

Tujuan dari kasus ini adalah mengidentifikasi dan menyeleksi secara cepat, akurat, serta tepat pemohon mana saja yang layak diberi pinjaman sehingga meminimalisir kerugian perusahaan karena adanya salah identifikasi dengan memberi pinjaman kepada yang tidak layak, maka yang menjadi fokus adalah mengecilkan peluang lolosnya pemohon yang tidak layak diberi pinjaman. Oleh karena itu matriks evaluasi yang tepat digunakan adalah Recall.

Evaluation Matriks Benchmark

```
Cross Validation
RandomForest benchmark rus
                                      0.847561
RandomForest benchmark smote
                                      0.764486
RandomForest benchmark ros
                                      0.714009
                                   Cross Validation
K-NearestNeighbor benchmark smote
                                           0.769738
K-NearestNeighbor benchmark ros
                                           0.740276
K-NearestNeighbor benchmark rus
                                           0.719256
                                        Cross Validation
DecisionTreeClassifier benchmark rus
                                                0.806503
DecisionTreeClassifier benchmark smote
                                                0.668757
DecisionTreeClassifier benchmark ros
                                                0.607842
                                    Cross Validation
LogisticRegression benchmark rus
                                            0.647721
LogisticRegression benchmark ros
                                            0.642458
LogisticRegression benchmar smotek
                                            0.640369
```

Berdasarkan hasil yang didapat dengan membandingkan nilai cross validation didapat 4 model terbaik dari setiap algoritmanya.

ke-4 model tersebut akan dilakukan Hyperparameter Tunning

Evaluation Matriks Tunning

	Recall Score
RandomForest_tunned_rus	0.827731
VotingClassifier_tunned	0.819328
DecisionTree_tunned_rus	0.794118
Adaptive_tree_tunned	0.773109
GradientBoosting_tunned	0.773109
KNN_tunned_smote	0.764706
Adaptive_logit_tunned	0.739496
VotingClassifier_benchmark	0.735294
AdaptiveBoosting_tunned	0.710084
LogisticRegression_tunned_rus	0.655462

Berdasarkan tabel di atas, terlihat bahwa model RandomForest_tunned_rus memiliki Recall Score yang paling tinggi. Sehingga model tersebut akan digunakan untuk model prediksi HOME EQUITY LOAN.

RandomForest_tunned_rus

Model RandomForest Benchmark

Model RandomForest_tunned_rus

Berdasarkan confusion table di atas, walaupun recall score semakin membaik tetapi hanya ada perubahan kecil pada FN maka akan dicari "Best Threshold" menggunakan model RandomForest_tunned_rus.

Memilih Threshold

```
: p, r, t = precision_recall_curve(y_test, rfc_tuned.predict_proba(X_test)[:,1])
  len(p[:-1]), len(r[:-1]), len(t)
  pr_df = pd.DataFrame({'precision': p[:-1], 'recall': r[:-1], 'threshold': t})
  pr_df
        precision
                    recall threshold
      0 0.218148 1.000000 0.038083
      1 0.217431 0.995798
                         0.038679
      2 0.217631 0.995798 0.038718
      3 0.217831 0.995798
                         0.039464
      4 0.218031 0.995798 0.039833
   1083 0.800000 0.016807
                         0.979167
   1084 0.750000 0.012605 0.980250
   1085 0.666667 0.008403 0.982869
        1.000000 0.008403 0.983917
   1087 1.000000 0.004202 0.985821
  1088 rows × 3 columns
```


Memilih Threshold

Tujuan mencari model machine learning pada kasus ini untuk menyeleksi dan mengklasifikasi secara cepat, tepat,serta akurat pemohon mana saja yang layak mendapatkan pinjaman sehingga meminimalisir kerugian perusahaan yang disebabkan oleh para pemohon yang gagal membayar pinjaman. Oleh karena itu, fokus pada kasus ini adalah meminimalkan False Negative atau menaikkan recall setinggi mungkin dengan Presisi yang masih toleran. Jadi dipilihlah threshold baru yaitu 0.458710

Dashboard

HOME

PREDIKSI

RESULT

INPUT DATA BARU

SUKSES INPUT DATA

VISUALISASI DATASET

Kesimpulan

- Kasus ini menggunakan model Random Forest Classifier Tunning
- Fitur-fitur seperti MORTDUE, DEROG, DELINQ, NINQ, dan DEBTINC disarankan untuk pemohon dijaga jumlah/nilainya tetap kecil agar pengajuannya berpeluang besar diterima
- Fitur-fitur seperti CLAGE dan VALUE disarankan untuk pemohon diperbesar nilainya agar pengajuannya berpeluang besar diterima

Terima Kasih

Daftar Pustaka

DATASETS PRIVATE2 (creditriskanalytics.net)

https://www.harmony.co.id/blog/apa-itu-ekuitas-pengertian-dan-peran-penting-dalam-perusahaan

https://ms.zpbusiness.com/86084-heloc-home-equity-loan-finance-business-95

https://ind.line-magazine.com/what-you-need-know-about-home-equity-loans-453286

https://finansial.bisnis.com/read/20190225/90/893036/opini-mengenal-karakter-keuangan-melalui-credit-scoring

https://www.modalrakyat.id/blog/7-cara-untuk-memperbaiki-skor-kredit

https://pocketsense.com/definition-delinquent-line-credit-6675570.html

https://www.nerdwallet.com/article/finance/credit-age-length-of-credit-history

https://www.investopedia.com/terms/c/credit-inquiry.asp

