THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Practice Class 4

MATH2069: Discrete Mathematics and Graph Theory

Semester 1, 2023

- 1. Give recursive definitions of the following sequences.
 - (a) The sequence of powers of 2: $2^0 = 1$, and for $n \ge 1$,

(b) The Catalan numbers: $c_0 = 1$, and for $n \ge 1$,

 $c_n =$

2. The following is meant to be a proof by induction that

$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

for all $n \geq 1$, but the lines are jumbled.

Suppose
$$n \ge 2$$
 and the claim holds for $n-1$. (1)

$$=\frac{n-1}{n}+\frac{1}{n(n+1)}=\frac{(n-1)(n+1)+1}{n(n+1)}$$
 (2)

(3)The base case is true because

This establishes the inductive step and completes the proof. (4)

Then
$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{(n-1)n} + \frac{1}{n(n+1)}$$
 (5)

$$\frac{1}{1 \times 2} = \frac{1}{2} = \frac{1}{1+1}
= \frac{n^2}{n(n+1)} = \frac{n}{n+1}$$
(6)

$$=\frac{n^2}{n(n+1)} = \frac{n}{n+1} \tag{7}$$

What is the correct order of the lines?

Copyright © 2023 The University of Sydney

	(a)	Unravelling	gives the non	-closed formula	ı	
			$a_n =$		for all $n \ge 0$	
	(b)	Summing t	he arithmetic	progression give	es the closed formu	la
			$a_n =$		for all $n \geq 0$.	
	(c)	Check that	the formula in	the previous p	part satisfies the rec	
					is in	deed true.
4.	Consi	ider the recu	rrence relation	$a_n = a_{n-1} + 6$	$5a_{n-2}$, for $n \ge 2$.	
	(a)	What is the	e characteristic	e polynomial?		
	(b)	What are t	he roots of thi	s polynomial?	x =	
	(c)	Write down	the general s	olution:		
		$a_n =$				
	(d)	Find the so	lution when a	$a_1 = 1$ $a_2 = -1$		

3. Consider the sequence defined by $a_0 = 0$, $a_n = a_{n-1} + 2n$ for $n \ge 1$.

 $a_n =$

5 .	. Consider the recurrence relation $a_n = -2a_{n-1} - a_{n-2}$, for $n \ge 2$.				
	(a)	What is the characteristic polynomial?			
	(b)	What are the roots of this polynomial? $x =$			
	(c)	Write down the general solution:			
		$a_n =$			
	(d)	Find the solution when $a_0 = 1$, $a_1 = -3$:			
		$a_n =$			
6.	Consider the recurrence relation $a_n = -a_{n-2}$, for $n \ge 2$.				
	(a)	What is the characteristic polynomial?			
	(b)	What are the roots of this polynomial? $x =$			
	(c)	Write down the general solution:			
		$a_n =$			
	(d)	If $a_0 = 0$ and $a_1 = 1$, what is a_7 ?			

 $a_7 =$

7. For each of the following statements, write T for true or F for false.

- (a) Apart from 0 and 1, every Fibonacci number is prime.
- (b) For all $n \geq 7$, we have $3^n < n!$.
- (c) If $a_0 = 3$ and $a_n = 2a_{n-1}$ for $n \ge 1$, then $a_n = 3 \times 2^n$.
- (d) $1+3+5+7+\cdots+99=99^2$.
- (e) $1^3 + 2^3 + 3^3 + \dots + 99^3$ is a perfect square.
- (f) $a_n = 3a_{n-2}$ is a second-order homogeneous linear recurrence.
- (g) The roots of the quadratic $x^2 x 1$ are $\pm (\frac{1 + \sqrt{5}}{2})$.
- (h) If $a_0 = 4$ and $a_n = 2a_{n-1} + 1$ for $n \ge 1$, then $a_5 = 159$.
- (i) If $a_0 = 2$, $a_1 = 0$, and $a_n = a_{n-2}$ for $n \ge 2$, then $a_n = 1 + (-1)^n$.
- (j) $a_n = n^2 2^n$ is a solution of $a_n = 4a_{n-1} 4a_{n-2}$ $(n \ge 2)$.