WHAT IS CLAIMED IS:

l	1. A method of controlling a temperature of an applicator body, the
2	method comprising:
3	providing an applicator body that comprises at least one contact surface;
1	delivering a coolant through a conduit in at least a portion of the applicator
5	body at a substantially constant rate;
5	delivering energy to at least one of the distal end of an applicator body and
7	coolant through one or more heating elements so that the contact surface of the applicator
3	body is cooled to a desired temperature.
l	2. The method of claim 1 comprising contacting the contact surfaces
2	against a surface adjacent pelvic support tissue.
l	3. The method of claim 2 wherein the cooled contact surface cools the
2	contacted tissue that is adjacent the pelvic support tissue to a temperature between 0°C and
3	40°C.
l	4. The method of claim 1 wherein the desired temperature is between
2	about - 5°C and about 3°C.
l	5. The method of claim 3 wherein the desired temperature is about -2°C.
l	6. The method of claim 1 wherein the coolant comprises a R134a
2	refrigerant gas.
1	7. The method of claim 1 wherein the contact surface comprises one or
)	more electrodes.
	more electrodes.
l	8. The method of claim 7 comprising reducing a power level of the
2	energy delivered to the heating element when a therapeutic heating energy is delivered to the
3	one or more electrodes.
	9. The method of claim 1 comprising:
2	monitoring a temperature of the one or more electrodes; and
3	adjusting a power level of the energy delivered to the heating element to
ļ	maintain the contact surface of the applicator body at substantially the desired temperature.

1	10. The method of claim 1 wherein the heating element comprises a
2	plurality of resistive heating elements positioned within the applicator body.
1	11. The method of claim 10 wherein the resistive heating element(s)
2	contact a portion of the applicator body surrounding the coolant.
1	12. The method of claim 10 wherein the resistive heating element(s) may
2	be positioned in such as way as to minimize a flow related spatial distribution of temperature
3	across the contact surface.
1	13. The method of claim 12 wherein the spatial distribution of temperature
2	across the contact surface is reduced to less than about 2 degrees Celsius.
1	14. The method of claim 12 wherein the resistors are chosen to be at
2	different wattage values in such a way as to reduce a flow related spatial distribution of
3	temperature across the contact surface while still permitting use of a single power source.
1	15. The method of claim 1 wherein providing the applicator body
2	comprises providing the coolant in a path for distributing the coolant substantially evenly
3	over the contact surface.
1	16. The method of claim 15 wherein the path is a serpentine path.
1	17. An applicator that delivers energy comprising:
2	an applicator body comprising a proximal portion and a distal portion;
3	a contact surface on the distal portion of the applicator body;
4	a conduit that delivers a coolant on a path through at least a part of the distal
5	portion of the applicator body; and
6	one or more heating elements coupled to the distal portion of the applicator
7	body to deliver a heating energy to the coolant in the conduit, wherein the energy is sufficient
8	to heat the coolant so that the applicator contact surface is at a desired temperature.
1	18. The applicator of claim 17 wherein the contact surface comprises at
2	least one electrode.
1	19. The applicator of claim 18 further comprising an RF power source
2	coupled to the electrodes.

1 20. The applicator of claim 18 further comprising a control assembly that 2 controls the delivery of the coolant and the heating element(s). 21. 1 The applicator of claim 18 wherein the heating energy delivered to the 2 heating element(s) is discontinued when a therapeutic energy is delivered to the electrodes. 22. 1 The applicator of claim 17 further comprising a power supply coupled 2 to the heating element(s), wherein the power supply is controlled with a temperature control 3 algorithm. 1 23. The applicator of claim 17 wherein the heating element(s) comprises 2 resistive heating elements. 1 24. The applicator of claim 23 wherein the heating elements are positioned 2 to reduce a temperature differential across the contact surface to less than about 2 degrees Celsius. 3 1 25. The applicator of claim 23 wherein the contact surface defines a 2 proximal end and a distal end, wherein the heating elements are positioned to deliver more 3 energy toward the proximal end of the contact surface. 1 26. The applicator of claim 17 wherein a flow of the coolant is 2 substantially constant. 1 27. The applicator of claim 17 wherein the desired temperature of the contact surface is between about - 5°C and about 3°C. 2 1 28. The applicator of claim 17 wherein the coolant comprises a R134a 2 refrigerant gas. 1 29. The applicator of claim 17 wherein the coolant path through the distal 2 portion of the applicator is a serpentine path. 1 30. The applicator of claim 17 further comprising a temperature sensor that 2 monitors a temperature of the contact surface.

1

2

31.

system comprising:

A system for heating a target tissue adjacent an intermediate tissue, the

3	a body comprising one or more electrodes oriented for contacting the
4	intermediate tissue;
5	a control system coupled to a power source and to the electrode(s), the control
6	system adapted to selectively energize the electrode(s) so as to deliver a therapeutic heating
7	energy through the intermediate tissue to the target tissue;
8	a cooling assembly configured to control a temperature of the contact surface,
9	wherein the cooling assembly comprises:
10	a flow conduit positioned in the body to deliver a coolant adjacent the
11	electrode(s);
12	a heating element positioned adjacent the electrode(s) and flow conduit
13	to deliver energy to the flow conduit;
14	a temperature sensor positioned adjacent the electrode that measures a
15	temperature of the electrode; and
16	a control assembly to selectively control the delivery of energy to the heating
17	element and energy to the electrode(s).
1	32. The system of claim 31 further comprising the power source, wherein
2	the power source is an RF power source.
1	33. The system of claim 31 wherein the temperature sensor comprises a
2	thermocouple.
1	34. The system of claim 31 wherein the coolant comprises a R134a gas.
1	35. A system for controlling a temperature of an intermediate tissue
2	contacted by a contact surface of an applicator, the system comprising:
3	a processor;
4	a memory coupled to the processor, the memory configured to store a plurality
5	of code modules for execution by the processor, the plurality of code modules comprising:
6	a code module for delivering a coolant through a conduit in the
7	applicator;
8	a code module for monitoring a temperature of the contact surface; and
9	a code module for controlling delivery of energy to a heating element
10	that controls a temperature of the coolant adjacent the contact surface.