NGANGA CAROLINE KANUTHU

BSC IN COMPUTER SCIENCE

SCT211-0020/2017

SCIENTIFIC COMPUTING

ASSIGNMENT LAB 01

In [15]: import matplotlib.pyplot as plt import numpy as np

In [16]: #displaying my dataset

c=pd.read_csv('all-ages.csv')

Out[16]: Major_code Major Major_category Total Employed Employed_full_time_year_round Une Agriculture & **GENERAL** 128148 0 1100 90245 74078 Natural **AGRICULTURE** Resources **AGRICULTURE** Agriculture & 1101 PRODUCTION AND Natural 95326 76865 64240 MANAGEMENT Resources Agriculture & **AGRICULTURAL** 2 26321 22810 1102 33955 Natural **ECONOMICS** Resources Agriculture & 1103 ANIMAL SCIENCES 64937 3 Natural 103549 81177 Resources Agriculture & 4 1104 **FOOD SCIENCE** 24280 17281 12722 Natural Resources Agriculture & PLANT SCIENCE AND 5 1105 51077 Natural 79409 63043

In [17]: #slicing data to reduce the number of entries to 100 CROPPED_DATA=c.head(100)

Out[17]:	Major_cod	de	Major	Major_category	Total	Employed	Employed_full_time_year_	_round
	0 110	00	GENERAL AGRICULTURE	Agriculture & Natural Resources	128148	90245		74078
	1 110	01	AGRICULTURE PRODUCTION AND MANAGEMENT	Agriculture & Natural Resources	95326	76865		64240
	2 110	02	AGRICULTURAL ECONOMICS	Agriculture & Natural Resources	33955	26321		22810
	3 110	03	ANIMAL SCIENCES	Agriculture & Natural Resources	103549	81177		64937
	4 110	04	FOOD SCIENCE	Agriculture & Natural Resources	24280	17281		12722
	5 110	05	PLANT SCIENCE AND AGRONOMY	Agriculture & Natural Resources	79409	63043		51077
	6 110	06	SOIL SCIENCE	Agriculture & Natural Resources	6586	4926		4042
	7 119	99	MISCELLANEOUS AGRICULTURE	Agriculture & Natural Resources	8549	6392		5074
	8 130	01	ENVIRONMENTAL SCIENCE	Biology & Life Science	106106	87602		65238
	9 130	02	FORESTRY	Agriculture & Natural Resources	69447	48228		39613
	10 130	03	NATURAL RESOURCES MANAGEMENT	Agriculture & Natural Resources	83188	65937		50595
	11 140	01	ARCHITECTURE	Engineering	294692	216770	•	163020
	12 150	01	AREA ETHNIC AND CIVILIZATION STUDIES	Humanities & Liberal Arts	103740	75798		50530
	13 190	01	COMMUNICATIONS	Communications & Journalism	987676	790696	Ę	595739
	14 190	02	JOURNALISM	Communications & Journalism	418104	314438	2	235407
	15 190	03	MASS MEDIA	Communications & Journalism	211213	170474		125489
	16 190	04	ADVERTISING AND PUBLIC RELATIONS	Communications & Journalism	186829	147433		111552
	17 200	01	COMMUNICATION TECHNOLOGIES	Computers & Mathematics	62141	49609		37261
	18 210	00	COMPUTER AND INFORMATION SYSTEMS	Computers & Mathematics	253782	218248		189950
	19 210	01	COMPUTER PROGRAMMING AND DATA PROCESSING	Computers & Mathematics	29317	22828		18747
	20 210	02	COMPUTER SCIENCE	Computers & Mathematics	783292	656372	Ę	561052
	21 210	05	INFORMATION SCIENCES	Computers & Mathematics	77805	66393		57604

18-Jun-19, 10:44 PM 2 of 6

SCATTER PLOT

```
In [20]: #SCATTER PLOT two display the relationship between the employed students and the numb
    x=CROPPED_DATA.Total
    y=CROPPED_DATA.Employed
    colors=(0,0,0)
    area = np.pi*5
    plt.scatter(x, y, s=area, c=colors, alpha=0.5)
    plt.title('SCATTER PLOT SHOWING RELATIONSHIP BETWEEN EMPLOYED STUDENTS AND THE TOTAL
    plt.xlabel('TOTAL STUDENTS')
    plt.ylabel('EMPLOYED STUDENTS')
```

'c' argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with 'x' & 'y'. Please use a 2-D array with a single row if you really want to specify the same RGB or RGBA value for all points.

SCATTER PLOT SHOWING RELATIONSHIP BETWEEN EMPLOYED STUDENTS AND THE TOTAL STUDENTS WHO TAKE THE MAJOR

POLYNOMIAL FITS

```
In [122]: #plotting polynomial fits
    x=CROPPED_DATA['Employed_full_time_year_round'].values
    y=CROPPED_DATA['Total'].values
    #plot the polynomials and points
    p4=np.polyfit(x,y,4)
    p4=np.polyfit(x,y,4)
    #creating an abstraction for the math operation
    xp4=np.polyld(p4)
    xp2=np.polyld(p4)
    xx=np.linspace(0,100,4)
    #plot the polynomials and points
    plt.plot(xx,np.polyval(p4,xx),"r*",label='degree 4')
    plt.plot(x,y,'bo',markersize=2)
    plt.legend(loc='upper left')
```

Out[122]: Text(0.5, 1.0, 'Polynomial Fitting')

HISTOGRAM

```
In [36]: #plotting a histogram using the hist()function
x=CROPPED_DATA['P25th'].values
y=CROPPED_DATA['P75th'].values
sorted_x=np.sort(x)
mu=np.mean(sorted_x)
sigma=np.std(sorted_x)
X=mu+sigma*x
bins=15
fig, ax = plt.subplots()
# the histogram of the data

plt.hist(y,20,normed=1)
```


NORMAL DISTRIBUTION

```
In [103]:
    mu=np.mean(x)
    sigma=np.std(x)
    x_array=np.linspace(0,100,100)
    plt.plot(x_array,(1/np.sqrt(2*np.pi*sigma**2))*np.exp(-(x_array-mu)**2/(2*sigma**2)),
    plt.xlabel('')
    plt.ylabel('')
    plt.title('Histogram with $\mu={}, \quad\sigma={}$\'.format(mu,sigma))
    # Tweak spacing to prevent clipping of ylabel
    fig.tight_layout()
    plt.show()
```


6 of 6