Машинная графика Computer Graphics

Лекция 4.

«Растеризация окружности и эллипса»

План лекции

- Алгоритм Брезенхема для построения окружности
- Построение эллипса

Окружность

Окружность определяется как геометрическое место точек на плоскости, равноудалённых на заданное расстояние r от её центра (x_c, y_c) .

Соответственно, координаты любой точки (х,у) окружности можно получить по т. Пифагора:

$$(x - x_c)^2 + (y - y_c)^2 = r^2$$

Простейший способ найти точки на окружности — это перемещаться по оси ОХ от x_c — r до x_c + r с единичным шагом и вычислять y:

$$y = y_c$$
 sqrt($r^2 - (x - x_c)^2$)

Но помимо значительного объёма вычислений, конечный результат будет далёк от ожидаемого — промежутки между положениями изображаемых пикселей будут неравномерными.

Окружность

Другой вариант — аппроксимация окружности прямыми линиями. Не самый худший по результату, но и не самый лучший по производительности.

Окружность обладает центром симметрии и бесконечным количеством осей симметрии. Не использовать данный факт глупо. Соответственно нет необходимости строить всю окружность, достаточно построить некоторую ее часть и последовательным применением преобразований симметрии получить из нее полную окружность. Рассмотрим построение 1/8 части окружности, расположенной во втором октанте.

Каждая точка построенного фрагмента (1/8 часть окружности) может быть отображена (7 раз) с помощью преобразований симметрии для получения полной окружности. Преобразование может быть записано в следующем виде:

Рассмотрим построение 1/8 части окружности, расположенной во втором октанте.

Реальная окружность может быть расположена относительно точек Т и S одним из пяти способов 1-5.

Если мы выбираем точку S, то тем самым говорим, что $(x_i+1)^2+(y_i-1)^2 \approx R^2$.

Если же выбираем точку Т, то допускаем, что $(x_i+1)^2+(y_i)^2\approx R^2$.

Рассмотрим две погрешности D_1^i и D_2^i :

$$\Delta_{1}^{i} = (x_{i}+1)^{2} + (y_{i}-1)^{2} - R^{2}$$
$$\Delta_{2}^{i} = (x_{1}+1)^{2} + (y_{i})^{2} - R^{2}$$

и контрольную величину $\Delta^{i} = \Delta^{i}_{1} + \Delta^{i}_{2}.$

При выборе точки, следующей за (x_i, y_i) , станем руководствоваться следующим критерием:

если $\Delta^{i} > 0$, выберем точку S; если $\Delta^{i} \leq 0$, выберем точку T.

Обоснуем разумность такого выбора. Рассмотрим знаки погрешностей D_1^i и D_2^i и их влияние на знак контрольной величины Δ^i для всех пяти возможных положений окружности.

контрольная величина $\Delta^{i} = \Delta^{i}_{1} + \Delta^{i}_{2}$.

Для положения 1.

 $\Delta^{i}_{1} < 0, \Delta^{i}_{2} < 0 \Rightarrow \Delta^{i}_{1} + \Delta^{i}_{2} < 0$ \Rightarrow выбирается Т.

Для положения 2.

$$\Delta^{i}_{1} < 0, \, \Delta^{i}_{2} = 0 \Rightarrow \Delta^{i}_{1} + \Delta^{i}_{2} < 0$$
 \Rightarrow выбирается Т.

Контрольная величина $\Delta^{i} = \Delta^{i}_{1} + \Delta^{i}_{2}.$

Для положения 3 возможны варианты (учитывая, что $\Delta^i_1 < 0$, $\Delta^i_2 > 0$).

Вариант 3.1. $|\Delta^{i}_{1}| \ge |\Delta^{i}_{2}| \Rightarrow \Delta^{i}_{1} + \Delta^{i}_{2}$ < 0 \Rightarrow выбирается Т.

Вариант 3.2. $|\Delta^{i}_{1}| < |\Delta^{i}_{2}| \Rightarrow \Delta^{i}_{1} + \overline{\Delta^{i}_{2}} > 0 \Rightarrow$ выбирается **S**.

Контрольная величина $\Delta^{i} = \Delta^{i}_{1} + \Delta^{i}_{2}.$

Для положения 4.

 $\Delta_1^i = 0, \Delta_2^i > 0 \Rightarrow \Delta_1^i + \Delta_2^i > 0$ \Rightarrow выбирается S.

Для положения 5.

 $\Delta_1^i > 0$, $\Delta_2^i > 0 \Rightarrow \Delta_1^i + \Delta_2^i > 0$ \Rightarrow выбирается S.

Контрольная величина $\Delta^{i} = \Delta^{i}_{1} + \Delta^{i}_{2}$.

Получим выражение для контрольной величины Δ^i

$$\Delta^{i} = \Delta^{i}_{1} + \Delta^{i}_{2} = (x_{i}+1)^{2} + (y_{i}-1)^{2} - R^{2} + (x_{i}+1)^{2} + (y_{i})^{2} - R^{2} = 2x_{i}^{2} + 2y_{i}^{2} + 4x_{i} - 2y_{i} + 3 - 2R^{2}.$$

Выражение для Δ^{i+1} существенным образом зависит от выбора следующей точки. Необходимо рассмотреть два случая: $y_{i+1} = y_i$ и $y_{i+1} = y_i-1$.

Контрольная величина
$$\Delta^i = \Delta^i_{\ 1} + \Delta^i_{\ 2}.$$

Выражение для Δ^{i+1} существенным образом зависит от выбора следующей точки. Необходимо рассмотреть два случая: $y_{i+1} = y_i$ и $y_{i+1} = y_i-1$.

$$\Delta^{i+1} \left[\text{при } y_{i+1} = y_i \right] = 2x_{i+1}^2 + 2y_{i+1}^2 + 4x_{i+1} - 2y_{i+1} + 3 - 2R^2 = 2(x_i + 1)^2 + 2y_i^2 + 4(x_i + 1) - 2y_i + 3 - 2R^2 = \Delta^i + 4x_i + 6.$$

Обозначим: $u = 4x_i + 6$

$$\Delta^{i+1} \left[\text{при } y_{i+1} = y_i - 1 \right] = 2x_{i+1}^2 + 2y_{i+1}^2 + 4x_{i+1} - 2y_{i+1} + 3 - 2R^2 = 2(x_i + 1)^2 + 2(y_i - 1)^2 + 4(x_i + 1) - 2(y_i - 1) + 3 - 2R^2 = \Delta^i + 4(x_i - y_i) + 10.$$

Обозначим: $V = 4(x_i - y_i) + 10$

Теперь, когда получено рекуррентное выражение для Δ^{i+1} через Δ^i , остается получить Δ^1 (контрольную величину в начальной точке.) Она не может быть получена рекуррентно, ибо не определено предшествующее значение, зато легко может быть найдена непосредственно

$$x_1 = 0, y_1 = R \Rightarrow \Delta^1_1 = (0+1)^2 + (R-1)^2 - R^2 = 2-2R,$$

$$\Delta^1_2 = (0+1)^2 + R^2 - R^2 = 1$$

$$\Delta^1 = \Delta^1_1 + \Delta^1_2 = 3-2R$$
.

Алгоритм Брезенхема для построения окружности

Таким образом, алгоритм построения окружности, реализованный, основан на последовательном выборе точек; в зависимости от знака контрольной величины Δ^i выбирается следующая точка и нужным образом изменяется сама контрольная величина. Процесс начинается в точке (0, r), а первая точка имеет координаты (xc, yc+r). При x = y процесс заканчивается.

Пока контрольная величина Δ^i отрицательна следует продвигаться вдоль оси X и выбирать соответственно пиксель Ті

Если контрольная величина Δ^i положительна, то следует двигаться в диагональном направлении и выбирать пиксель Si

Алгоритм Брезенхема для построения окружности

Т.е. алгоритм можно записать в виде двух строк:

T: if
$$(\Delta^i \le 0)$$
, then $\{x=x+1,\}$

S: if
$$(\Delta^i > 0)$$
, then $\{x=x+1,y=y-1\}$

Вычисление ошибки на следующем шаге:

T:
$$u = 4x_i + 6$$
, $\Delta^{i+1} = \Delta^i + u$

S:
$$V = 4(x_i - y_i) + 10$$
, $\Delta^{i+1} = \Delta^i + V$

Алгоритм Брезенхема для построения окружности

Блок-схема алгоритма ->

Достоинством данного алгоритма является его целочисленность и простота аппаратной реализации.

К недостаткам следует отнести необходимость задания координат центра окружности и ее радиуса целыми числами.

Алгоритм построения эллипса

Блок-схема алгоритма ->

Данный алгоритм с точки зрения производительности близок к алгоритму Брезенхема, однако следует отметить, что для его правильной работы необходимо представлять его переменные с достаточной разрядностью.

Алгоритм построения эллипса

Окружность, генерируемая этим алгоритмом, может иметь радиус не более 512, что является серьезным ограничением. Конечно, мы можем демасштабировать переменные, однако это внесет погрешность в работу алгоритма. В результате сгенерируется эллипс, близкий исходному, но не идентичный ему.

