Digital Building Blocks: Adders

Acknowledgment: Slides are adapted from Harris and Harris and Hennessy and Patterson textbooks

Introduction

Digital building blocks:

• Gates, multiplexers, decoders, registers, arithmetic circuits, counters, memory arrays, logic arrays

Building blocks demonstrate hierarchy, modularity, and regularity:

- Hierarchy of simpler components
- Well-defined interfaces and functions
- Regular structure easily extends to different sizes

1-Bit Adder

Any fan-in gates:

$$t_{\text{Cout}} = t_{\text{AND2}} + t_{\text{OR3}}$$

$$t_{\rm S} = t_{\rm XOR3}$$

$$A_{\rm FA} = 3A_{\rm AND2} + A_{\rm OR3} + A_{\rm XOR3}$$

Only fan-in two gates:

$$t_{\rm Cout} = t_{\rm AND2} + 2t_{\rm OR2}$$

$$t_{\rm S} = 2t_{\rm XOR2}$$

$$A_{\rm FA} = 3A_{\rm AND2} + 2A_{\rm OR2} + 2A_{\rm XOR2}$$

Full Adder

Cin = 0 for "half adder"

C_{in}	Α	В	C_{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

Multibit Adders (CPAs)

- Types of carry propagate adders (CPAs):
 - Ripple-carry (slow)
 - Carry-lookahead (fast)
 - Prefix (faster)
- Carry-lookahead & prefix adders faster for large adders but require more hardware
 Symbol

Ripple-Carry Adder

- Chain 1-bit adders together
- Carry ripples through entire chain
- Disadvantage: slow

Ripple-Carry Adder Delay and Complexity

$$A_{\text{ripple}} = NA_{FA}$$

where A_{FA} is the area of a 1-bit full adder

$$t_{\text{ripple}} = Nt_{FA}$$

where t_{FA} is the delay of a 1-bit full adder

- This is a crude estimation in terms of delays and complexity of subblocks. Sometimes (e.g. for clock cycle calculation) more accurate estimates are needed.

Ripple-Carry Adder (More Accurate) Delay

 $t_{\rm AND2} = t_{\rm OR2} = 1$ ns, $t_{\rm XOR2} = 2$ ns only fan-in-two gates

$$C_0 = A_0 B_0 + A_0 C_{in} + B_0 C_{in}$$
 takes 3 ns

$$C_1 = A_1 B_1 + A_1 C_0 + B_1 C_0$$
 takes 6 ns

$$S_{31} = 31*3 \text{ ns} + 4 \text{ ns} = 97 \text{ ns}$$
 (not accurate)
 $S_{31} = 31*3 \text{ ns} + 2 \text{ ns} = 95 \text{ ns}$ (considering overlap)
 $C_{\text{out}} = 31*3 \text{ ns} = 96 \text{ ns} \rightarrow \text{critical path}$

LICSB FCF 154A

A Better (FA) Design for Ripple-Carry Adder

$$C_{\text{out}}$$
 A_{31} A_{30} A_{30}

- Big idea here is to manipulate Boolean formulas and compute subexpressions as soon as Boolean variables are available. The same idea will be used for faster adders

A Hint on What Can be Improved Further

 $t_{\rm AND2} = t_{\rm OR2} = 1$ ns, $t_{\rm XOR2} = 2$ ns only fan-in-two gates

$$C_0 = A_0 B_0 + (A_0 + B_0) C_{in}$$
 takes 3 ns

$$C_1 = A_1 B_1 + (A_1 + B_1) C_0$$
 takes 5 ns

Plug C_0 into the expression for C_1

$$C_1 = A_1 B_1 + (A_1 + B_1) (A_0 B_0 + (A_0 + B_0) C_{in}) =$$

= $A_1 B_1 + (A_1 + B_1) (A_0 B_0) + (A_1 + B_1) (A_0 + B_0) C_{in}$
now takes 1 ns + 1 ns + 1 ns + 1 ns = 4 ns

Carry-Lookahead Adder

- Compute carry out (C_{out}) for k-bit blocks using generate and propagate signals
- Some definitions:
 - Column i produces a carry out by either generating a carry out or propagating a carry in to the carry out
 - Generate (G_i) and propagate (P_i) signals for each column:
 - Column *i* will generate a carry out if A_i AND B_i are both 1.

$$G_i = A_i B_i$$

• Column i will propagate a carry in to the carry out if A_i OR B_i is 1.

$$P_i = A_i + B_i$$

• The carry out of column $i(C_i)$ is:

$$C_i = A_i B_i + (A_i + B_i) C_{i-1} = G_i + P_i C_{i-1}$$

Carry-Lookahead Addition

- Step 1: Compute G_i and P_i for all columns
- Step 2: Compute G and P for k-bit blocks
- Step 3: C_{in} propagates through each k-bit propagate/generate block
 - Example: 4-bit blocks $(G_{3:0} \text{ and } P_{3:0})$:

$$G_{3:0} = G_3 + P_3 (G_2 + P_2 (G_1 + P_1 G_0))$$

$$P_{3:0} = P_3 P_2 P_1 P_0$$

Generally,

$$G_{i:j} = G_i + P_i (G_{i-1} + P_{i-1} (G_{i-2} + P_{i-2}G_j))$$

$$P_{i:j} = P_i P_{i-1} P_{i-2} P_j$$

$$C_i = G_{i:j} + P_{i:j} C_{i-1}$$

32-bit CLA with 4-bit Blocks

 $\boldsymbol{P}_{i:j} = \boldsymbol{P}_i \boldsymbol{P}_{i-1} \, \boldsymbol{P}_{i-2} \boldsymbol{P}_j$

 $C_i = G_{i:j} + P_{i:j} C_{j-1}$

Ripple-Carry

UCSB **ECIMAE**A

Carry-Lookahead

Carry-Lookahead Adder (Crude) Delay

For *N*-bit CLA with *k*-bit blocks:

$$t_{CLA} = t_{pg} + t_{pg_block} + (N/k - 1)t_{AND_OR} + kt_{FA}$$

- $-t_{pg}$: delay to generate all P_i , G_i
- $-t_{pg_block}$: delay to generate all $P_{i:j}$, $G_{i:j}$
- $-t_{\mathrm{AND~OR}}$: delay from C_{in} to C_{out} of final AND/OR gate in k-bit CLA block

An N-bit carry-lookahead adder is generally much faster than a ripple-carry adder for N > 16

Carry-Lookahead Adder (Crude) Complexity

For *N*-bit CLA with *k*-bit blocks:

$$A_{CLA} \approx (N/k - 1)(A_{AND_OR} + A_{pg} + A_{pg_block}) + NA_{FA}$$

- $-A_{pg}$: Area of circuit generating all P_i , G_i
- $-A_{pg_block}$: Area of circuit generating all $P_{i:j}$, $G_{i:j}$
- $-A_{\rm AND~OR}$: Area of AND/OR gates for carry computation in k-bit CLA block
- Approximate because some FA does not have to generate C_{out}

A carry-lookahead adder is higher complexity compared to ripple carry adder (scaling is still linear)

Main Idea of Parallel Prefix Adder

• Computes carry in (C_{i-1}) for each column, then computes sum:

$$S_i = (A_i \oplus B_i) \oplus C_{i-1}$$

- Computes G and P for 1-, 2-, 4-, 8-bit blocks, etc. until all G_i (carry in) known
- $\log_2 N$ stages

Parallel Prefix Adder: (Notation) Trick #1

- Carry in either *generated* in a column or *propagated* from a previous column
- Assume that column -1 holds C_{in} , so

$$G_{-1} = C_{\rm in}, P_{-1} = 0$$

• Carry in to column i = carry out of column i-1:

$$C_{i-1} = G_{i-1:-1}$$

 $G_{i-1:-1}$: generate signal spanning columns i-1 to -1

• Sum equation:

$$S_i = (A_i \oplus B_i) \oplus G_{i-1:-1}$$

- This trick allows to replace all Cs with corresponding Gs
- Goal: Quickly compute $G_{0:-1}$, $G_{1:-1}$, $G_{2:-1}$, $G_{3:-1}$, $G_{4:-1}$, $G_{5:-1}$, ... (called *prefixes*)

Parallel Prefix Adder: Trick #2

• Generate and propagate signals for a block spanning bits *i*:*j*:

$$G_{i:j} = G_{i:k} + P_{i:k} G_{k-1:j}$$

$$P_{i:j} = P_{i:k} P_{k-1:j}$$

- In words:
 - **Generate:** block *i:j* will generate a carry if:
 - upper part (*i*:*k*) generates a carry or
 - upper part propagates a carry generated in lower part (k-1:j)
 - Propagate: block i:j will propagate a carry if both the upper and lower parts propagate the carry

16-bit Parallel Prefix Adder

Prefix Adder (Crude) Delay and Complexity

$$t_{PA} = t_{pg} + \log_2 N(t_{pg_prefix}) + t_{XOR}$$

- t_{pg} : delay to produce $P_i G_i$ (AND or OR gate)
- t_{pg_prefix} : delay of black prefix cell (AND-OR gate)

$$A_{PA} = NA_{pg} + N/2\log_2N (A_{pg_prefix}) + NA_{XOR}$$

- A_{pg} : area of circuit to produce P_i G_i (AND or OR gate)
- $A_{pg prefix}$: area of black prefix cell (AND-OR gate)
- $-A_{XOR}$: area of 2 XOR gates

Adder (Crude) Delay Comparisons

Compare delay of: 32-bit ripple-carry, carry-lookahead, and prefix adders

- CLA has 4-bit blocks
- 2-input gate delay = 100 ps; full adder delay = 300 ps

$$t_{\text{ripple}} = Nt_{FA} = 32(300 \text{ ps})$$

 $= 9.6 \text{ ns}$
 $t_{CLA} = t_{pg} + t_{pg_block} + (N/k - 1)t_{AND_OR} + kt_{FA}$
 $= [100 + 600 + (7)200 + 4(300)] \text{ ps}$
 $= 3.3 \text{ ns}$
 $t_{PA} = t_{pg} + \log_2 N(t_{pg_prefix}) + t_{XOR}$
 $= [100 + \log_2 32(200) + 100] \text{ ps}$
 $= 1.2 \text{ ns}$

Adder (Crude) Area Comparisons

Compare areas of: 32-bit ripple-carry, carry-lookahead, and prefix adders

- CLA has 4-bit blocks
- All logic gates have the same area A

$$A_{\text{ripple}} = NA_{FA} = 32 \times 6A$$

 $= 192A$
 $A_{CLA} = (N/k - 1)(A_{\text{AND_OR}} + A_{pg} + A_{pg_block}) + NA_{FA}$
 $= (7)(2+2+7)A+192A$
 $= 269A$
 $A_{PA} = NA_{pg} + N/2\log_2N (A_{pg_prefix}) + NA_{XOR}$
 $= 32 \times 2A + 16\log_2 32 \times 3A + 32 \times 2A$
 $= 368A$

Important Concepts to Remember

- Three types of adders: ripple-carry, carry-look ahead and prefix adder
- Different adders come with unique area-latency metrics
 - highlights typical area-latency tradeoffs in digital circuits
 - simple adders used in todays high-performance processors
 - FO4 delay: \sim 100 ps in 180 nm vs. \sim 1 ps in 5 nm

