Better Decremental and Fully Dynamic Sensitivity Oracles for Subgraph Connectivity

Yaowei Long

University of Michigan

Yunfan Wang

Tsinghua University, IIIS

- Graph G = (V, E).
- Divide V into activated vertices Von and inactivated Voff.

- Graph G = (V, E).
- Divide V into activated vertices Von and inactivated Voff.
- A single update -- Change the status of up to d vertices.

- Graph G = (V, E).
- Divide V into activated vertices Von and inactivated Voff.
- A single update -- Change the status of up to d vertices.
- Task: Given $D \subseteq V$ with size up to d, make all vertices in D flipped.
- We need to maintain a data structure that can quickly determine the connectivity between any two vertices in the graph induced by the activated vertices.

- Graph G = (V, E).
- Divide V into activated vertices Von and inactivated Voff.
- A single update -- Change the status of up to d vertices.
- Task: Given $D \subseteq V$ with size up to d, make all vertices in D flipped.
- We need to maintain a data structure that can quickly determine the connectivity between any two vertices in the graph induced by the activated vertices.

- There are three phases: Preprocessing, Update, Query
- Preprocessing: In this phase, we are given G, Von, Voff, and d.

- There are three phases: Preprocessing, Update, Query
- Preprocessing: In this phase, we are given G, Von, Voff, and d.
- Update: In this phase, we are given $D \subseteq V$.

- There are three phases: Preprocessing, Update, Query
- Preprocessing: In this phase, we are given G, Von, Voff, and d.
- **Update:** In this phase, we are given $D \subseteq V$.
- Query: In this phase, we will receive subsequent query. Each query will give a pair of vertices u, v in the subgraph induced by the new activated vertices, and ask the connectivity of u and v.

- There are three phases: Preprocessing, Update, Query
- Preprocessing: In this phase, we are given G, Von, Voff, and d.
- **Update:** In this phase, we are given $D \subseteq V$.
- Query: In this phase, we will receive subsequent query. Each query will give a pair of vertices u, v in the subgraph induced by the new activated vertices, and ask the connectivity of u and v.
- We aim to construct a sensitivity oracles for subgraph connectivity with S space, tp preprocessing time, tu update time, and tq query time upper bounds.

- There are three phases: Preprocessing, Update, Query
- Preprocessing: In this phase, we are given G, Von, Voff, and d.
- **Update:** In this phase, we are given $D \subseteq V$.
- Query: In this phase, we will receive subsequent query. Each query will give a pair of vertices u, v in the subgraph induced by the new activated vertices, and ask the connectivity of u and v.
- We aim to construct a sensitivity oracles for subgraph connectivity with S space, t_p preprocessing time, t_u update time, and t_q query time upper bounds.
- Hardness: We require that tu and tq can only rely on d.

- There are three phases: Preprocessing, Update, Query
- Preprocessing: In this phase, we are given G, Von, Voff, and d.
- **Update:** In this phase, we are given $D \subseteq V$.
- Query: In this phase, we will receive subsequent query. Each query will give a pair of vertices u, v in the subgraph induced by the new activated vertices, and ask the connectivity of u and v.
- We aim to construct a sensitivity oracles for subgraph connectivity with S space, tp preprocessing time, tu update time, and tq query time upper bounds.
- Hardness: We require that tu and tq can only rely on d.

Decremental v.s. Fully Dynamic

- Decremental Setting (Vertex-Failure)
- There are no inactivated vertices initially, i.e., $V_{\text{off}} = \emptyset$.

- Fully Dynamic Setting
- No constraints

Example

Red Vertices: Voff

Green Vertices: Von

Example

Red Vertices: Voff

Green Vertices: Von

Example

Red Vertices: Voff

Green Vertices: Von

History (Decremental)

	Det./ Rand.	Space	Preprocessing	Update	Query
Block trees, SQRT trees, and [KTDBC91] only when $d_{\star} \leq 3$	Det.	O(n)	$\widetilde{O}(m)$	O(1)	O(1)
Duan & Pettie [DP10] for $c \ge 1$	Det.	linear in preprocessing time	$\widetilde{O}(md_{\star}^{1-\frac{2}{c}}n^{\frac{1}{c}-\frac{1}{c\log(2d_{\star})}})$	$\widetilde{O}(d^{2c+4})$	O(d)
Duan & Pettie [DP20]	Det.	$O(md_{\star}\log n)$	$O(mn\log n)$	$O(d^3 \log^3 n)$	O(d)
	Rand.	$O(m \log^6 n)$	$O(mn\log n)$	$\bar{O}(d^2 \log^3 n)$ w.h.p.	O(d)
Brand & Saranurak [vdBS19]	Rand.	$O(n^2)$	$O(n^{\omega})$	$O(d^{\omega})$	$O(d^2)$
Pilipczuk et al. [PSS ⁺ 22]	Det.	$m2^{2^{O(d_{\star})}}$	$mn^22^{2^{O(d_\star)}}$	$2^{2^{O(d_{\star})}}$	$2^{2^{O(d_{\star})}}$
	Det.	$n^2 \text{poly}(d_{\star})$	$\operatorname{poly}(n)2^{O(d_{\star}\log d_{\star})}$	$\operatorname{poly}(d_\star)$	$\operatorname{poly}(d_{\star})$
Long & Saranurak [LS22]	Det.	$O(m\log^3 n)$	$O(mn\log n)$	$\bar{O}(d^2\log^3 n\log^4 d)$	O(d)
	Det.	$O(m \log^* n)$	$\widehat{O}(m) + \widetilde{O}(d_{\star}m)$	$\widehat{O}(d^2)$	O(d)
Kosinas [Kos23]	Det.	$O(d_{\star}m\log n)$	$O(d_{\star}m\log n)$	$O(d^4 \log n)$	O(d)
This paper	Det.	$O(m \log^3 n)$	$\widehat{O}(m) + O(d_{\star} m \log^3 n)$	$O(d^2(\log^7 n + \log^5 n \log^4 d))$	O(d)

History (Fully Dynamic)

	Det./ Rand.	Space	Preprocessing	Update	Query
Henzinger & Neumann [HN16]	Det.	$\widetilde{O}(n_{ ext{off}}^2 m)$	$\widehat{O}(n_{\mathrm{off}}^2 m) + \widetilde{O}(d_{\star} n_{\mathrm{off}}^2 m)$	$\widehat{O}(d^4)$	$O(d^2)$
Hu, Kosinas & Polak [HKP23]	Det.	$\widetilde{O}((n_{\mathrm{off}}+d_{\star})m)$	$\widetilde{O}((n_{\mathrm{off}}+d_{\star})m)$	$\widetilde{O}(d^4)$	O(d)
This paper	Det.	$O(\min\{(n_{\text{off}} + d_{\star})m\log^2 n, n^2\})$	$\widehat{O}(m) + O(\min\{(n_{\text{off}} + d_{\star})m, n^{\omega}\} \log^{2} n)$	$O(d^2 \log^7 n)$	O(d)

- Low Degree Hierarchy, which can reduced to O(log n) calls to the low-degree Steiner forest decomposition.[DP20, LS22]
- We say a forest $F \subseteq E(G)$, is a spanning forest of U in G if F spans the whole U (may also span vertices not in U).

- Low Degree Hierarchy, which can reduced to O(log n) calls to the low-degree Steiner forest decomposition.[DP20, LS22]
- We say a forest $F \subseteq E(G)$, is a spanning forest of U in G if F spans the whole U (may also span vertices not in U).
- Key Lemma Let $U \subseteq V(G)$, there is an almost-linear-time algorithm that computes a separator $X \subseteq V(G)$ of size $|X| \le |U|/2$, and a low-degree Steiner forest of U/X in G/X with maximum degree Δ .

- Low Degree Hierarchy, which can reduced to O(log n) calls to the low-degree Steiner forest decomposition.[DP20, LS22]
- We say a forest $F \subseteq E(G)$, is a spanning forest of U in G if F spans the whole U (may also span vertices not in U).
- Key Lemma Let $U \subseteq V(G)$, there is an almost-linear-time algorithm that computes a separator $X \subseteq V(G)$ of size $|X| \le |U|/2$, and a low-degree Steiner forest of U/X in G/X with maximum degree Δ .
- We improve Δ from $n^{o(1)}$ [LS22] to $O(\log^2 n)$.

- Low Degree Hierarchy, which can reduced to O(log n) calls to the low-degree Steiner forest decomposition.[DP20, LS22]
- We say a forest $F \subseteq E(G)$, is a spanning forest of U in G if F spans the whole U (may also span vertices not in U).
- Key Lemma Let $U \subseteq V(G)$, there is an almost-linear-time algorithm that computes a separator $X \subseteq V(G)$ of size $|X| \leq |U|/2$, and a low-degree Steiner forest of U/X in G/X with maximum degree Δ .
- We improve Δ from $n^{o(1)}$ [LS22] to $O(\log^2 n)$.

- Low Degree Hierarchy: a laminar set C of components.
- Components form a tree hierarchy.
- $X_i = Decomp(G, X_{i-1})$

- How do we get low degree hierarchy?
- Idea: Do Vertex Expander Decomposition![LS22]

- How do we get low degree hierarchy?
- Idea: Do Vertex Expander Decomposition![LS22]
- Cut Matching Game

- How do we get low degree hierarchy?
- Idea: Do Vertex Expander Decomposition![LS22]
- Cut Matching Game
- 1. Find a balanced sparse vertex cut OR
- 2. Cetify the graph is an expander.

- How do we get low degree hierarchy?
- Idea: Do Vertex Expander Decomposition![LS22]
- Cut Matching Game
- 1. Find a balanced sparse vertex cut OR
- 2. Cetify the graph is an expander.
- Can we do better?

- How do we get low degree hierarchy?
- Idea: Do Vertex Expander Decomposition![LS22]
- Cut Matching Game
- 1. Find a balanced sparse vertex cut OR
- 2. Cetify the graph is an expander.
- Can we do better?
- Weak version of cut matching game

- How do we get low degree hierarchy?
- Idea: Do Vertex Expander Decomposition![LS22]
- Cut Matching Game
- 1. Find a balanced sparse vertex cut OR
- 2. Cetify the graph is an expander.
- Can we do better?
- Weak version of cut matching game
- 1. Find a balanced sparse vertex cut OR
- 2. A low-degree Steiner tree covering a large fraction of terminals.

- How do we get low degree hierarchy?
- Idea: Do Vertex Expander Decomposition![LS22]
- Cut Matching Game
- 1. Find a balanced sparse vertex cut OR
- 2. Cetify the graph is an expander.
- Can we do better?
- Weak version of cut matching game
- 1. Find a balanced sparse vertex cut OR
- 2. A low-degree Steiner tree covering a large fraction of terminals.

Cut Matching Game

- Let G be a undirected graph with a terminal set U. Given a parameter ϕ and a partition (A, B) of U, there is a deterministic algorithm that computes either
- 1. A vertex cut (L, S, R) with $|R \cap U| \ge |L \cap U| \ge \min\{|A|, |B|\}/3$ and $S \le \phi \cdot |L \cap U|$
- 2. A matching M between A and B with size $|M| \ge \min\{|A|, |B|\}/3$ s.t. there is an embedding of M into G with congestion $O(1/\phi)$

Figure Left: Low Degree Steiner Tree Right: Balanced Vertex Cut

- Why we need low degree hierarchy?
- Reason: It allows us to consider semi-bipartite graph. We can assume that $G[V_{on}] = (L, R, E)$, where there is no edge between R.

- Why we need low degree hierarchy?
- Reason: It allows us to consider semi-bipartite graph. We can assume that $G[V_{on}] = (L, R, E)$, where there is no edge between R.
- Moreover, L is spanned by a path T, and T is given to us.

- Why we need low degree hierarchy?
- Reason: It allows us to consider semi-bipartite graph. We can assume that $G[V_{on}] = (L, R, E)$, where there is no edge between R.
- Moreover, L is spanned by a path τ , and τ is given to us.

• High level idea: maintain all vertices in L and ignore the vertices in R

- Deleting Vertices will divide L into at most d+1 intervals. For the new activated vertices, we simply add them into the abstract graph.
- There are O(d) vertices in the abstract graph after an update.

- Deleting Vertices will divide L into at most d+1 intervals. For the new activated vertices, we simply add them into the abstract graph.
- There are O(d) vertices in the abstract graph after an update.
- For any two vertices u and v in the abstrach graph, we can determine whether they are still connected by computing their edge weights in the abstract graph and subtracting the weights of all affected artificial edges.

- Deleting Vertices will divide L into at most d+1 intervals. For the new activated vertices, we simply add them into the abstract graph.
- There are O(d) vertices in the abstract graph after an update.
- For any two vertices u and v in the abstrach graph, we can determine whether they are still connected by computing their edge weights in the abstract graph and subtracting the weights of all affected artificial edges.
- Through preprocessing, we can obtain the edge weights in the abstract graph in O(1) time and the weights of all affected artificial edges in O(d) time.

- Deleting Vertices will divide L into at most d+1 intervals. For the new activated vertices, we simply add them into the abstract graph.
- There are O(d) vertices in the abstract graph after an update.
- For any two vertices u and v in the abstrach graph, we can determine whether they are still connected by computing their edge weights in the abstract graph and subtracting the weights of all affected artificial edges.
- Through preprocessing, we can obtain the edge weights in the abstract graph in O(1) time and the weights of all affected artificial edges in O(d) time.

Borůvka-based algorithm

- For any two vertices, we can detect whether they are connected in $\tilde{O}(d)$ time. A naive algorithm can compute all pairs connectivity in $\tilde{O}(d^3)$ time. To achieve $\tilde{O}(d^2)$, we need to consider a Borůvka-based algorithm.
- Idea: "Hook and Track", Each phase we find a neighbor of all the sets, and contract them with their neighbors.

Borůvka-based algorithm

- For any two vertices, we can detect whether they are connected in $\tilde{O}(d)$ time. A naive algorithm can compute all pairs connectivity in $\tilde{O}(d^3)$ time. To achieve $\tilde{O}(d^2)$, we need to consider a Borůvka-based algorithm.
- Idea: "Hook and Track", Each phase we find a neighbor of all the sets, and contract them with their neighbors.

Conditional Lower Bound

- If t_u + t_p = f(d) · n^{o(1)}, then S = Ω(n²).
 If t_u + t_p = f(d) · n^{o(1)}, then t_u = Ω((n_{off} + d)m). [HKP23]
 If t_u + t_p = f(d) · n^{o(1)}, then t_u = Ω(n^{ω_{bool}}).
 If t_p = poly(n), then t_u + t_q = Ω(d²). [LS22]
 If t_p = poly(n) and t_u = poly(dn^{o(1)}), then t_q = Ω(d). [HKNS15]
- The f(d) above can be an arbitrary growing function, and ω_{bool} is the exponent of Boolean matrix multiplication.

Acknowledgement

• We thank Thatchaphol Saranurak for helpful discussions.

Thank you!