# Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

# Телекоммуникационные технологии

Отчет по лабораторной работе №6 Цифровая модуляция

> Работу выполнил:

Чугунов А.А. Группа: 33501/4 **Преподаватель:** 

Богач Н.В.

# Содержание

| 1. | Цель работы                  | 2  |
|----|------------------------------|----|
| 2. | Постановка задачи            | 2  |
| 3. | Теоретическая информация     | 2  |
|    | 3.1. Модуляция               | 2  |
|    | 3.2. Типы цифровой модуляции | 2  |
|    | 3.2.1. BPSK, PSK             | 3  |
|    | 3.2.2. genQAM, OQPSK         | 3  |
|    | 3.2.3. MSK                   | 5  |
|    | 3.2.4. MFSK                  | 7  |
| 4. | Ход работы                   | 7  |
|    | 4.1. BPSK-модуляция          | 9  |
|    | 4.2. PSK-модуляция           | 10 |
|    | 4.3. OQPSK-модуляция         | 11 |
|    | 4.4. genQAM-модуляция        | 13 |
|    | 4.5. MSK-модуляция           | 14 |
|    | 4.6. MFSK-модуляция          | 16 |
| 5. | Выволы                       | 17 |

# 1. Цель работы

Изучение методов модуляции цировых сигналов.

## 2. Постановка задачи

- 1. Получить сигналы BPSK, PSK, OQPSK, genQAM, MSK, M-FSK модуляторов.
- 2. Построить их сигнальные созвездия.
- 3. Провести сравнение изученных методов модуляции цифровых сигналов.

# 3. Теоретическая информация

#### 3.1. Модуляция

Перенос спектра сигналов из низкочастотной области на заданную частоту, т.е. в выделенную для их передачи область высоких частот выполняется операцией модуляции. Обозначим низкочастотный сигнал, подлежащий передаче по какому-либо каналу связи, s(t).

Исходный информационный сигнал s(t) называют модулирующим, результат модуляции – модулированным сигналом. Обратную операцию выделения модулирующего сигнала из модулированного колебания называют демодуляцией или детектированием.

## 3.2. Типы цифровой модуляции

Цифровая модуляция и демодуляция включают в себя две стадии. При модуляции цифровое сообщение сначала преобразуется в аналоговый модулирующий сигнал с помощью функции modmap, а затем осуществляется аналоговая модуляция. При демодуляции сначала получается аналоговый демодулированный сигнал, а затем он преобразуется в цифровое сообщение с помощью функции demodmap.

Аналоговый несущий сигнал модулируется цифровым битовым потоком. Существуют три фундаментальных типа цифровой модуляции (или шифтинга) и один гибридный:

- 1. ASK Amplitude shift keying (Амплитудная двоичная модуляция).
- 2. FSK Frequency shift keying (Частотая двоичная модуляция).
- 3. PSK Phase shift keying (Фазовая двоичная модуляция).
- 4. ASK/PSK.

Одна из частных реализаций схемы ASK/PSK - QAM - Quadrature Amplitude Modulation (квадратурная амплитудная модуляция (KAM). Это метод объединения двух АМ-сигналов в одном канале. Он позваляет удвоить эффективную пропускную способность. В QAM используется две несущих с одинаковой частотой но с разницей в фазе на четверть периода. Частотная модуляция представляет логическую единицу интервалом с большей частотой, чем ноль. Фазовый сдвиг представляет «0» как сигнал без сдвига, а «1» как сигнал со сдвигом. ВРЅК использует единственный сдвиг фазы между «0» и «1» — 180 градусов, половина периода. QРЅК использует 4 различных сдвига фазы (по четверти периода) и может кодировать 2 бита в символе (01, 11, 00, 10).

#### 3.2.1. BPSK, PSK

BPSK и PSK - модуляция со сдвиглм фазы сигнала без изменения амплитуды. В PSK их может быть множество, в BPSK - один (на  $\pi$ ).

Изображения сигнального созвездия и схемы модулятора BPSK приведены ниже на следующих рисунках:



Рис. 3.2.1. Схема устройства модулятора BPSK.



Рис. 3.2.2. Сигнальное созвездие BPSK.

#### 3.2.2. genQAM, OQPSK

При квадратурной амплитудной модуляции (КАМ) изменяется как фаза, так и амплитуда несущего сигнала. Это позволяет увеличить количество кодируемых в единицу времени бит и при этом повысить помехоустойчивость их передачи по каналу связи. В настоящее время число кодируемых информационных бит на одном интервале может

достигать 8-9, а число состояний сигнала в сигнальном пространстве, соответственно – 256...512. Квадратурное представление сигнала заключается в выражении колебания линейной комбинацией двух ортогональных составляющих – квадратурной и синфазной:

$$S(t) = x(t)\sin(\omega t + \varphi)\cos(\omega t + \varphi) \tag{1}$$

где x(t) и y(t) – биполярные дискретные сигналы.

Четырехфазная ФМ со сдвигом (OQPSK – Offset QPSK) позволяет избежать скачков фазы на  $180^{\circ}$  и, следовательно, глубокой модуляции огибающей. Формирование сигнала в модуляторе OQPSK происходит так же, как и в модуляторе ФМ-4, за исключением того, что манипуляционные элементы информационных последовательностей x(t) и y(t) смещены во времени на длительность одного элемента , рис. 3.2.3 Изменение фазы при таком смещении модулирующих потоков определяется лишь одним элементом последовательности, а не двумя, как при ФМ 4. В результате скачки фазы на  $180^{\circ}$  отсутствуют, так как каждый элемент последовательности, поступающий на вход модулятора синфазного или квадратурного канала, может вызвать изменение фазы на  $0, +90^{\circ}$  или  $-90^{\circ}$ .



Рис. 3.2.3. Формирование манипулирующих сигналов

Преобразованные таким образом сигналы передаются в одном канале. Поскольку один и тот же физический канал используется для передачи двух сигналов, то скорость передачи КАМ-сигнала в отличие от АМ-сигнала в два раза выше. Ниже показана структурная схема модулятора и диаграмма состояний (сигнальное созвездие) системы КАМ-16, в которой x(t) и y(t) принимают значения  $\pm 1, \pm 3$  (4-х уровневая КАМ).



Рис. 3.2.4. Модуляция КАМ-16 и ее сигнальное созвездие

#### 3.2.3. MSK

Частотная манипуляция с минимальным сдвигом (англ. Minimal Shift Keying (MSK)) представляет собой способ модуляции, при котором не происходит скачков фазы и изменение частоты происходит в моменты пересечения несущей нулевого уровня. МSK характеризуется тем, что значение частот соответствующих логическим «0» и «1» отличаются на величину равную половине скорости передачи данных. Другими словами, индекс модуляции равен 0,5.

Изображения сигнального созвездия и схемы модулятора MSK приведены ниже на риунках:



Рис. 3.2.5. Структурная схема формирования МSK на основе FM модулятора.



Рис. 3.2.6. Полная фазовая диаграмма при MSK для 4-х бит информации.



Рис. 3.2.7. Сигнальное созвездие MSK.

#### 3.2.4. MFSK

Можно построить и модулятор многопозиционной частотной модуляции. В этом случае будет использовано большее количество синусоидальных генераторов, а для управления коммутатором потребуется многоразрядное двоичное число.

Сигналы в многопозиционной частотной модуляции могут быть описаны в соответствии со следующим выражением:

$$s_1(t) = cos(\omega_1 t); s_2(t) = cos(\omega_2 t); ...; s_N(t) = cos(\omega_N t);$$
 (2)

формула сигнала 1 многопозиционной частотной модуляции, формула сигнала 2 многопозиционной частотной модуляции, ..., формула сигнала N многопозиционной частотной модуляции (3) где  $s_1$  используется для передачи первого состояния символа;  $s_2$  — для передачи второго состояния символа:  $s_N$  — для передачи N-го состояния символа.

## 4. Ход работы

Реализация различных типов модуляций в программе MatLab:

Листинг 1: Код в MatLab

```
1 % %BPSK
2 \mid \% h = modem.pskmod('M', 2);
3 \mid \% g = \text{modem.pskdemod}('M', 2);
 4|\% \text{ msg} = \text{randi}(2,10,1) - 1;
5 \mid \% \mod Signal = \mod ulate(h, msg);
6 | \% \text{ errSignal} = (\text{randerr} (1, 10, 3) . / 30);
7 | \% \mod Signal = \mod Signal + err Signal;
8 \%_demodSignal_=_demodulate(g, modSignal);
9 \% scatterplot (modSignal);
10 %_figure
11 \%_{\sim}  plot (msg);
12 \%_legend ('The input message');
13 \%_figure
14 \%_plot (modSignal);
15 \%_figure
16 \%_plot (demodSignal);
17 \%_legend ('The demodulated message');
18
19
20 %_%PSK_modulation
21 | \%_h = \mod (M', 8);
22|\%_g = \mod \operatorname{modem} \cdot \operatorname{pskdemod} ('M', 8);
23|\%_{msg} = randi(8,10,1) = 1;
24 | \% \mod Signal = \mod ulate(h, msg);
25 | \% \_ \operatorname{errSignal} \_ = \_ (\operatorname{randerr} (1, 10, \_3) \_ . / \_30)';
26|% modSignal = modSignal + errSignal;
27 | % demodSignal = demodulate(g, modSignal);
28 | % scatterplot (modSignal);
29 % figure
30\% plot (msg);
31 | % legend ('The_input_message');
32 % figure
33 % plot (modSignal);
34 | % figure
35 \% plot (demodSignal);
36 \% legend ('The_demodulated_message');
37
```

```
38 | % WOQPSK modulation
39\% h = modem.oqpskmod;
40\% g = modem.oqpskdemod;
41 | \% \text{ msg} = \text{randi}(4,200,1) - 1;
42 \mid \% \mod Signal = \mod ulate(h, msg);
43\% \text{ errSignal} = (\text{randerr}(1,400, 100) ./ 30);
44 \% \mod Signal = \mod Signal + err Signal;
45 \\ demodSignal_=_demodulate(g, modSignal);
46 \% scatterplot (modSignal);
47 %_figure
48 | %_ plot (msg);
49 \%_legend ('The input message');
50 | %_figure
51 \%_plot (modSignal);
52 %_figure
53|\%_plot (demodSignal);
54 \%_legend('The demodulated message');
55|\%
56 %genQAM
57 \% M_{=} 10;
58 \( \int_h_=\) modem. genqammod ('Constellation', \) exp (j*2*pi*[0:M-1]/M));
59 \( \sigma_g = \sum \text{modem. genqamdemod} \) ('Constellation', \( \sigma \text{exp} \) (j*2* pi* \[ 0 : M-1 \] / M));
60 | \% \text{_msg} = \text{_randi} (8, 10, 1) = \text{_1};
61 \mid \% \mod Signal = \mod ulate(h, msg);
62 | \% \_ err Signal \_ = \_ (randerr (1, 10, \_3) \_ . / \_30);
63 | % modSignal = modSignal + errSignal;
64 \% demodSignal = demodulate(g, modSignal);
65 | % scatterplot (modSignal);
66 | % figure
67\% plot (msg);
68 % legend ('The_input_message');
69 % figure
70 % plot (modSignal);
71 % figure
72 |% plot (demodSignal);
73 \ legend ('The_demodulated_message');
74 %
75 | \%
76 MSK modulation
77 h = modem.mskmod('SamplesPerSymbol', 10);
78 g = modem.mskdemod('SamplesPerSymbol', 10);
79 | \text{msg} = \text{randi}(2, 10, 1) - 1;
80 modSignal = modulate(h, msg);
81 | \operatorname{errSignal} = (\operatorname{randerr}(1,100, 3) ./ 30);
82 | modSignal = modSignal + errSignal;
83 | demodSignal = demodulate(g, modSignal);
84 scatterplot (modSignal);
85 figure
86 plot (msg);
87 legend ('The input message');
88 figure
89 plot (modSignal);
90 figure
91 plot (demodSignal);
92 legend ('The demodulated message');
```

Результаты выполнения представлены на рисунках ниже.

# 4.1. ВРЅК-модуляция

Код, соответствующий графикам ниже, расположен в строках 1-17 в листинге 1.



Рис. 4.1.1. Входной сигнал BPSK.



Рис. 4.1.2. Сигнальное созвездие BPSK.



Рис. 4.1.3. Демодулированный сигнал BPSK.

## 4.2. PSK-модуляция

Код, соответствующий графикам ниже, расположен в строках 20-36 в листинге 1.



Рис. 4.2.1. Входной сигнал PSK.



Рис. 4.2.2. Сигнальное созвездие PSK.



Рис. 4.2.3. Демодулированный сигнал PSK.

# 4.3. ОQPSK-модуляция

Код, соответствующий графикам ниже, расположен в строках 38-54 в листинге 1.



Рис. 4.3.1. Входной сигнал OQPSK.



Рис. 4.3.2. Сигнальное созвездие OQPSK.



Рис. 4.3.3. Демодулированный сигнал OQPSK.

# 4.4. genQAM-модуляция

Код, соответствующий графикам ниже, расположен в строках 56-73 в листинге 1.



Рис. 4.4.1. Входной сигнал genQAM.



Рис. 4.4.2. Сигнальное созвездие genQAM.



Рис. 4.4.3. Демодулированный сигнал genQAM.

## 4.5. МЅК-модуляция

Код, соответствующий графикам ниже, расположен в строках 76-92 в листинге 1.



Рис. 4.5.1. Входной сигнал MSK.



Рис. 4.5.2. Сигнальное созвездие MSK.



Рис. 4.5.3. Демодулированный сигнал MSK.

Как можно видеть, при использовании MSK выходной сигнал имеет задержку при демодуляции.

### 4.6. MFSK-модуляция

В Simulink была построена модель MFSK-модулятора, результаты работы совпали с ожидаемыми, входная последовательность совпала с выходной.



Рис. 4.6.1. Simulink-модель MFSK.



Рис. 4.6.2. Графики входного сигнала, задержанного сигнала, модулированного сигнала, сигнала ошибки с задержанным сигналом, выходного сигнала MFSK (слева направо сверху вниз)

# 5. Выводы

В данной работе мы рассмотрели различные виды модуляций цифровых сигналов, а так же увидели их отличия построив сигнальные созвездия. Стоит отметить, что различные виды модуляций могут отличаться измением как фазы и амплитуды отдельно, так и изменением этих двух параметров одновременно, тогда одним состоянием сигнала мы сможем увеличить количество передаваемой информации.

Частотная манипуляция с минимальным сдвигом (MSK) представляет собой способ модуляции, при котором не происходит скачков фазы и изменение частоты происходит в моменты пересечения несущей нулевого уровня. Принцип MSK таков, что значение частот соответствующих логическим «0» и «1» отличаются на величину равную половине скорости передачи данных.

Уровень модуляции определяет количество состояний несущей, используемых для передачи информации. Чем выше этот уровень, тем большими скоростными возможностями и меньшей помехоустойчивостью обладает модуляция. Число бит, передаваемых одним состоянием, определяется как Log(N), где N — уровень модуляции.