

Aanleiding onderzoek nanofiltratie voor technologisch systeem PWN

September 2019

Technologisch systeem PWN

- 1. Uitbreiding/vervanging van PS Heemskerk
- 2. Ontharding, biologische stabiliteit en OMV verwijdering op PS Andijk
- 3. Nieuwe bronnen
 - 1. WAAG
 - 2. WRK zuivering Overveen

Duurzaamheidsdoelstellingen

 Op weg naar een klimaatbestendige, CO2-neutrale en circulaire organisatie in 2050 heeft PWN in 2030 de helft van haar CO2voetafdruk gereduceerd, worden assets en natuur klimaatbestendig ontworpen en beheerd en zijn onze ketens voor 50% gesloten.

RO heemskerk

- Totale recovery is 80% (=16 Mm³/J)
- Werkdruk 10 bar = 100 mWk ≈ € 550.000 p/j
- Antiscalant BD 30: ≈ € 270.000 p/j
- Permeaat conditioneren naar SI 0,3 t.b.v. beschermen betonnen leiding naar PS Bergen
 - NaOH 1 mmol/L ≈ € 450.000 p/j
 - CO₂ ≈ € 50.000 p/j
 - 50 m³/h drinkwater

Scenario 1.0 of 2.0 tbv extra capaciteit Heemskerk

- Naast 0-alternatief 'verdubbelen UF-RO in de huidige setting van Heemskerk
- Concept bestaat uit:
 - HF vervangen door NF (bedrijfseconomisch)
 - Deelstroom van UV AOP opwerken om samen met NF filtraat drinkwater tbv PSH te maken (bedrijfseconomisch en capaciteitsuitbreiding, obv bypass duin)
- Verkennend technologisch onderzoeksprogramma om haalbaarheid van
- scenario 2.0 (NF ipv HF én directe zuivering obv deelstroom UV AOP en NF bijmengen) te toetsen tov scenario 0.0 (UF HF uitbreiden) en scenario 1.0 (directe zuivering obv deelstroom UV AOP en HF bijmengen) is urgent
- Uitgangspunt is uitbreiding capaciteit via WRK (WPJ en WCB) met risicomitigatie WPJ / WCB waterkwaliteit voor UF.

Hyperfiltratie (HF)

- Totale recovery is 80% dus 20% reststroom
- Werkdruk 10 bar = 100 mWk ≈ € 550.000 p/j
- Antiscalant BD 30: ≈ € 270.000 p/j
- Puur H₂O permeaat conditioneren naar SI 0,3 t.b.v. beschermen betonnen leiding naar PS Bergen
 - NaOH 1 mmol/L ≈ € 450.000 p/j
 - CO₂ ≈ € 50.000 p/j
 - 50 m³/h drinkwater

Nanofiltratie

- Totale recovery is mogelijk 90% dus 10% reststroom
- Zelfde configuratie mogelijk
- Werkdruk 5 bar = 50 mWk ≈ € 275.000 p/j
- Antiscalant BD 30: ≈ € 150.000 p/j ??
- HCO₂ en CO₂ in permeaat dus beperkte conditionering
 - NaOH 0,25 mmol/L ≈ € 125.000 p/j

Zout

Periode	Productie		Chlo	oride	FeCl ₃	FeCISO ₄
	WPJ	WCB	WPJ	WCB	PSB/PSM	PSB/PSM
	Mm3/j	Mm3/j	mg/L	mg/L	mg/L	mg/L
2000	60	15	145	90*	134	106
2018	60	15	160	90	146	118
Max. dag (2018)	60	15	280	125	249	221

Periode	Productie		Natr	ium	Condi	Ont.+ Condi
	WPJ	WCB	WPJ	WCB	PSB/PSH	PSM
	Mm3/j	Mm3/j	mg/L	mg/L	mg/L	mg/L
2000	60	15	79	49	78	98
2018	60	15	89	49	86	106
Max. dag (2018)	60	15	159	71	146	166

Onderzoek en strategie

- NF: Recovery, flux, werkdruk, retentie mono- en divalente ionen, retentie organische microverontreinigingen (OMV)
- Direct drinkwater: AKF en MF
 - Mix WCB en WPJ aanvoer
 - Biologische stabiliteit
 - OMV verwijdering → stand tijd kool
- WPJ: kwaliteit en kwantiteit omhoog
 - 'Enhanced' coagulation
 - Neerwaartse filtratie
 - FeCISO₄ ipv FeCI₃
- Strategie "nieuw" concept:
 - Retentie zout deel losgelaten
 - Geen duinpassage

UF uitbreiden, NF installeren, na UV AOP een AKF CMF stap tbv directe DW productie tbv PSH

Kansen

- Meer drinkwater uit huidige systeem / concept
- Bedrijfseconomisch voordeel (conditioneren beperkter)
- Directe zuivering binnen gegeven concepten van PWN in Heemskerk
 - Biologisch stabiel drinkwater uit directe zuivering (25% NF en 75% met eindstandige CMF)
- Handelingsperspectief in scenarios waarbij duin gebypassed (moet) worden (klimaatverandering, verplaatsing infiltratiegebieden ed)
- Modulair uitbreidbaar concept dat kan meegroeien met de vraag als het eenmaal ge-engineerd is
- Verfrissing / perspectief relatie onderzoeksvelden biologische stabiliteit- (membraan)technologie en capaciteit
- Impuls voor technologisch onderzoek ten dienste van PWN
- Voorkomt opharding duin dus gunstiger onthardwater ratio

RisicosA

- Alkanititeit?
- Retentie micro's
- Barrière chloride natrium
 - Relatie met de noodzaak voor een bekken op het lisselmeer
 - Noodscenario is implementatie van HF, technologisch niet complex
 - FeCISO₄ op WPJ (+300 k)
- Stabiele hogere (3x) flux tov HF
- Minder en een andere samenstelling concentraat bij NF ipv HF
- Extra capaciteit WRK = WPJ uitbreiding
- Grotere by-pass UV duin?

RESULTAAT 8-15 Mm³/jaar EN lange termijn technologisch scenario in de snelst groeiende regio van ons voorzieningsgebied

Nano

Haamalaada l	la atallia a	11	l	1-1-1-11
Heemskerk I	Instelling	Hoeveeineid	kosten per m3	totale Kosten
RO		verlies		
Productie	21.600.000	21%		
verlies	4.628.571	21%		
Elektrische stroom	mWk			
Energie (n=70%)	100		€ 0,027	€ 588.600
Chemicalien	[mg/L]	ton/j	eur/m3	eur/j
Aquacare 4AQUA OSM BD 30	1,9	41	€ 0,013	€ 270.864
Conditioneren	[mg/L]	ton/j	eur/m3	eur/j
NaOH [50%]	42	1426	€ 0,028	€ 477.576
CO ₂	39	662	€ 0,003	€ 48.318
_				
Totaal			€ 0,071	€ 1.385.358

Heemskerk I	Instelling	Hoeveelheid	kosten per m3	totale kosten
NF		verlies		
Productie	21.600.000	10%		
verlies	2.160.000	10%		
Elektrische stroom	mWk			
Energie (n=70%)	50		€ 0,014	€ 294.300
Chemicalien	[mg/L]	ton/j	eur/m3	eur/j
Aquacare 4AQUA OSM BD 30	0,9	19	€ 0,006	€ 128.304
Conditioneren	[mg/L]	ton/j	eur/m3	eur/j
NaOH [50%]	8	311	€ 0,005	€ 104.198
CO2	0	0	€ 0,000	€0
Totaal			€ 0,025	€ 526.802
Kosten WPJ FeCISO ₄				€ 300.000
OPEX AKF + MF				700.000
12.000.000 euro inv.				€ 1.500.000

Besparing 1.400.000 - 826.000 = 600.000 euro

Zout

Scenario	Eenheid	Norm	WPJ	WCB	Westerhout
Chloride jaargemiddelde (2000)	[mg/L]	150	145	90	120
Chloride jg 2018	[mg/L]	150	160	90	128
Chloride max. 2018	[mg/L]	250	280	125	210
Natrium jaargemiddelde (2000)	[mg/L]	150	79	49	66
Natrium jg 2018	[mg/L]	150	89	49	71
Natrium max. 2018	[mg/L]	250	159	71	119

	Productie		Chloride		FeCl3	FeCISO4
	WPJ	WCB	WPJ	WCB	PSB/PSM	PSB/PSM
	Mm3/j	Mm3/j	mg/L	mg/L	mg/L	mg/L
2000	60	15	145	90	134	106
2018	60	15	160	90	146	118
2018 dag	60	15	280	125	249	221

	Productie		Natrium		Condi	Ont.+ Condi
	WPJ	WCB	WPJ	WCB	PSB/PSH	PSM
	Mm3/j	Mm3/j	mg/L	mg/L	mg/L	mg/L
2000	60	15	79	49	78	98
2018	60	15	89	49	86	106
2018 dag	60	15	159	71	146	166

UF uitbreiden, NF installeren, na UV AOP een AKF CMF stap tbv directe DW productie tbv PSH

Kansen

- Meer drinkwater uit huidige systeem / concept
- Bedrijfseconomisch voordeel (conditioneren beperkter)
- Directe zuivering binnen gegeven concepten van PWN in Heemskerk
 - Biologisch stabiel drinkwater uit directe zuivering (25% NF en 75% met eindstandige CMF)
- Handelingsperspectief in scenarios waarbij duin gebypassed (moet) worden (klimaatverandering, verplaatsing infiltratiegebieden ed)
- Modulair uitbreidbaar concept dat kan meegroeien met de vraag als het eenmaal ge-engineerd is
- Verfrissing / perspectief relatie onderzoeksvelden biologische stabiliteit- (membraan)technologie en capaciteit
- Impuls voor technologisch onderzoek ten dienste van PWN
- Voorkomt opharding duin dus gunstiger onthardwater ratio

RisicosA

- Alkanititeit?
- Retentie micro's
- Barrière chloride natrium
 - Relatie met de noodzaak voor een bekken op het lisselmeer
 - Noodscenario is implementatie van HF, technologisch niet complex
 - FeCISO₄ op WPJ (+300 k)
- Stabiele hogere (3x) flux tov HF
- Minder en een andere samenstelling concentraat bij NF ipv HF
- Extra capaciteit WRK = WPJ uitbreiding
- Grotere by-pass UV duin?

RESULTAAT 8-15 Mm³/jaar EN lange termijn technologisch scenario in de snelst groeiende regio van ons voorzieningsgebied

Onderzoek

- Flux
- Recovery
- Retentie OMV
- Praktisch: inpasbaarheid
- Casestudy: bio. stab.

Puur water & natuur

Hardheid

• Hardheid duin in, uit, WCB en WPJ

n=	13 in	52 mensink	52 bergen		in	mensink	bergen		in	mensink	bergen
	Ca	Ca	Ca		Th	Th	Th		Mg	Mg	Mg
2018	58,93	71,98	71,69	2018	1,98	2,30	2,23	2018	12,28	12,16	10,70
2019	55,80	70,68	71,78	2019	1,91	2,28	2,26	2019	12,19	12,54	11,42
2020	57,11	69,57	72,06	2020	1,91	2,23	2,24	2020	12,44	11,88	10,74

Zout

Scenario	Eenheid	Norm	WPJ	WCB	Westerhout
Chloride jaargemiddelde (2000)	[mg/L]	150	145	90	120
Chloride jg 2018	[mg/L]	150	160	90	128
Chloride max. 2018	[mg/L]	250	280	125	210
Natrium jaargemiddelde (2000)	[mg/L]	150	79	49	66
Natrium jg 2018	[mg/L]	150	89	49	71
Natrium max. 2018	[mg/L]	250	159	71	119

UF-HF

UV - Duin

Wpj associaties capaciteitsuitbreiding WPJ van 60 Mm3naar 70 of 75 Mm3 en wq verbetering

- Wpj zandfilter downflow (en uitbreiden) en AKF eruit
- Enhanced coagulation en/of flocs bijbouwen (electrocoagulatie, BM deelt ervaringen waterfabriek Wilp)
- Toepassing FeCISO₄ ipv FeCI3
- Rationaler downflow is controleren mangaan en iets betere filtraatkwaliteit, lager filtratiesnelheid, loslaten oude WPJ concept met upflow)
- Eenduidige en robuuste bedrijfsvoering zonder limiterende factoren zoals KF water voor Heemskerk oid.
- Onderzoeksvraag: als de downflow betere wq geeft, en het mangaan risico voor de UF wegneemt, is er geen technologische noodzaak voor AKF WPJ

Systeemopzet en hoeveelheden

Jaargemiddelde WRK 2018

	Aandeel Koolfiltraat	Aandeel WPJ
Ontvangstreservoir UF	80%	100%
Ontvangstreservoir UV	16%	55%

Parameter	Eenheid	Inf. besluit	WPJ	WCB	WPJ enh.
					coa.
Ammonium	mg/l N	-	0,03	0,01	
Calcium	mg/l Ca	-	56,9	67,5	
Chloride	mg/l Cl	200	189,2	90,1	
EGV (elek. geleid.verm., 20 °C)	mS/m	-	86,6	61,4	
Gesuspendeerde stoffen	mg/l	0,5	0,00	0,29	
Magnesium	mg/l Mg	-	14,95	11,15	
Mangaan	μg/l Mn	-	0,34	0,22	
Natrium	mg/l Na	120	104,4	49,4	
Ortho-fosfaat	mg/l PO₄	2,0	0,01	0,03	
Sulfaat	mg/I SO ₄	150	67,5	58,5	
Totale hardheid	mmol/l	-	2,04	2,15	
Troebelingsgraad (afleeswaarde)	FTE		0,05	0,08	
UV Transmissie	%		85,6	89,2	93,2
UV-extinctie, 254 nm	ext/m		6,77	4,99	3,06
TOC	mg/l C		3.30	1.90	1.99
Verzadigingsindex	SI		0.04	0.22	
Waterstofcarbonaat	mg/I HCO ₃		136	166	
Zuurgraad	pH		7.81	7.84	
Zuurstof, opgelost	mg/I O ₂		9.19	8.53	

Infiltratiebesluit bodembescherming. Geldend van 22-12-2009 t/m heden
Infiltratiebesluit bodembescherming. Geldend van 22-12-2009 t/m heden
In het infiltratiewater mag 70 dagen per jaar een concentratie aanwezig zijn boven de hier genoemde, waarbij de volgende maxima niet overschreden mogen worden: zwevende stof 2 n

Zuiveringsdoel waterkwaliteit

- Deeltjes en MFI (DWAT en UF)
- Natuurlijk organisch materiaal (biologische stabiliteit/biofouling en UV-t)
- Mangaan (UF)

Mangaan

		PPJ-TK	PPJ-TL2-INF2		PPJ-TL1-INF		PS Andijk	
		influent	RSF	%	80% kool	%	ter ref.	
n		27	13		13			
gem	μg/L	41,46	0,35	99,0%	0,18	99,6%	4,02	9,7%
min	μg/L	18,45	0,20		0,06		1,26	
max	μg/L	131,30	0,70		0,28		28,99	
median	μg/L	32,25	0,31	98,9%	0,19	99,7%	3,05	9,5%

IJzer

Tabel 8 ijzerconcentratie effluent snelfilters van 18-7-2018 tot 10-7-2019

	Eenheid	1	2	3	4	5
Gem.	mg Fe/l	0.022	0.022	0.025	0.025	0.023
Min.	mg Fe/l	0.009	0.007	0.010	0.008	0.011
Max.	mg Fe/l	0.046	0.070	0.059	0.055	0.048
median	mg Fe/l	0.020	0.020	0.022	0.024	0.021

	1	2	3	4	5	PSA
gem	22	22	25	25	23	40
min	9	7	10	8	11	9
max	46	70	59	55	48	943
median	20	20	22	24	21	17

Enhanced coagulation

- Coaguleren bij lagere pH (6.3 i.p.v. 8)
- NaOH na flocculatie proces doseren

Capaciteit

	1000 m ³ /h / 0.7 m ³ /m ² /h	1400 m ³ /h / 0.97 m ³ /m ² /h
pH 6.3	0.10 FTU ≈ 0.13 mg Fe/L	0.15 FTU ≈ 0.2 mg Fe/L
pH 8.0	0.18 FTU ≈ 0.23 mg Fe/L	0.35 FTU ≈ 0.45 mg Fe/L

Partitioning of Organic Carbon (OC)						Chromatographic Fractionation of Organic Carbon (CDOC)							
Approx. Molecular Weights in g/mol: →			>>20.000	~1000 (see separate HS-Diagram)					300-500	<350	<350		
TOC=DOC	+POC DOC	=CDOC+HC	С		+		+				¥	+	
Note: POC, hence TOC may be too low		~	Bio-		Humic				Building	Neutrals	Acids		
TOC	DOC	POC	HOC	CDOC	Polymers	DON	Subst.	DON	A romaticity	M o I-Weight	Blocks		
total OC	dissolved	particul.	hydrophob.	hydro phil.		(Norg)	(HS)	(Norg)	(SUVA-HS)	(M n)			
ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-N	ppb-C	ppb-N	L/(mg*m)	g/moI	ppb-C	ppb-C	ppb-C
% TOC	% TOC	% TOC	% TOC	% TOC	% TOC		% TOC				% TOC	% TOC	% TOC

2009

VOOR	HET AFZET	TEN Na	ОН		Tw = 16,4°		בימש כש.∠	
Waterverdelin9	Straat	11	12	13	14	15	16	HELP
6006m3/h	Debiet m3/h	1165	1212	1260	999	1382	14	
Zuur9raad	PН	8.42	8.45	8.53	8.51	8.25	8.35	
Troebelheid	FTU	0.16	0.17	0.17	0.18	0.35	0.36	OVER-
								VIEW
FeCl3 195.9r/l	Inst. 9r∕m3	24.0	24.0	24.0	24.0	24.0	24.0	O I L W
	Debiet m3/h	0.146	0.148	0.156	0.123	0.169	0.000	
	KlePstand %	38	40	40	34	42	M 0	UNIT
Wispro Inst.	Inst. 9r∕m3	0.15	0.15	0.20	0.15	0.15	0.20	TREND
Wispro Inst. 3711 0.767k9/h 0.20% 3712 0.375k9/h 1:1.5	Debiet m3/h	0.220	0.230	0.315	0.188	0.257	0.002	TREND
ึ่ง.์3่75kg/h 1:1.5	KlePstand %	14	11	22	11	16	M 0	
NaOH	Zuur9r. PH	8.60	8.61	8.63	8.56	8.31	7.98	
Gewenste verh.	Debiet m3/h	0.19	0.20	0.21	0.17	0.22	-0.00	
NaOH/FeCl 195.	KlePstand %	55	45	54	51	55	M 0	•
Filters	FTU	1	2	3	4	5	6	ONLIN
30-Serie 0.0	3	0.39	0.30	0.27	0.40	1.03	1.26	ONDER
1-43 44-46 0.0	2 0.03	0.06	0.23	0.24	0.94	0.37	0.31	
50-Serie 0.0	2	1.25	0.76	1.08	1.47	1.29	0.46	
Waterleverin9	Lokatie	AKE	UF	но	ETIL AKE	ETIL HE	MFI PFL	
waterleveriny 5586m3/h	Debiet m3/h	3360	3582	1979	0.04	0.06	6.13	
3300m37H	GEDURENDE 7	LEGE SLiB-	4					

23-09-2009

		Trommelz eef	Trommelz eef	Straat 14	Straat 14	1000 m3/h	Straat 15	Straat 15	1400 m3/h
		PPJ-MZ-	PPJ-MZ-	PPJ-VV4-	PPJ-VV4-		PPJ-VV5-	PPJ-VV5-	
Component name	eenheid	EFF 09:00	EFF 13:00	EFF 09:00	EFF 13:00		EFF 09:00	EFF 13:00	l
		uur	uur	uur	uur		uur	uur	
acids	[µg/l C]	0	0	0	0		0	0	
biopolymers	[µg/l C]	1219	1221	300	152	12%	280	126	13%
building blocks	[µg/l C]	915	867	765	619	12%	669	630	0%
CDOC	[µg/l C]	5703	5695	3208	1702	26%	3125	1616	26%
HOC	[µg/l C]	461	412	170	39	27%	-70	80	-35%
humic substances	[µg/l C]	2829	2881	1622	473	41%	1641	441	43%
neutrals	[µg/l C]	741	726	521	457	7%	536	419	15%
organisch koolstof	[µg/l C]	6,052	5,949	3,523	1,913	26%	3,356	1,893	24%
POC	[µg/l C]	244	447	349	252	87%	212	171	49%
TOC	[µg/l C]	6408	6555	3727	1993	28%	3267	1867	23%
DOC	[mg/l]	6164	6108	3378	1741	26%	3055	1696	22%
uv-extinctie	[ext/m]	9.92	9.96	6.61	3.06	36%	6.3	2.9	34%
zuurgraad	[pH]	8.09	8.1	8.63	6.32	29%	8.35	6.27	26%
UV-transmissie	[%]	79.6	79.5	85.9	93.2	-9%	86.5	93.5	-9%

Kwaliteit

Component	eenheid	Trommelzeef	Straat 14	Straat 14	Extra verwijdering
Zuurgraad	[pH]	8.09	8.63	6.32	29%
Troebelheid	FTU		0.18	0.1	[-]
Biopolymers	[µg/l C]	1219	300	152	12%
building blocks	[µg/l C]	915	765	619	12%
CDOC	[µg/l C]	5703	3208	1702	26%
НОС	[µg/l C]	461	170	39	27%
Humic substances	[µg/l C]	2829	1622	473	41%
neutrals	[µg/l C]	741	521	457	7%
organisch koolstof	[µg/l C]	6,052	3,523	1,913	26%
POC	[µg/l C]	244	349	252	87%
TOC	[µg/l C]	6408	3727	1993	28%
DOC	[µg/l C]	6164	3378	1741	26%
uv-extinctie	[ext/m]	9.92	6.61	3.06	36%
UV-transmissie	[%]	79.6	85.9	93.2	-9%

Besparing

PSHV

		Conventioneel	Enhanced
benodigde energie	kWh/m3	0.55	0.34
productie	m3/jaar	52,560,000	52,560,000
electriciteitprijs	euro/kWh	0.08	0.08
	euro per jaar	€ 2,312,640	€ 1,429,632
BESPARING			€ 883,008

Ordegrootte 30.000 zonnepanelen

PSHK

		UF-INF	HF-INF	HF-EFF
Totaal organisch koolstof (TOC)	mg/L C	3.26	3.05	80.0
UV-extinctie, 254 nm	ext/m	6.80	6.76	n.m.
Biopolymers	μg/l C	280	66	9

Capaciteit

	1000 m ³ /h / 0.7 m ³ /m ² /h	1400 m ³ /h / 0.97 m ³ /m ² /h
pH 6.3	0.10 FTU ≈ 0.13 mg Fe/L	0.15 FTU ≈ 0.2 mg Fe/L
pH 8.0	0.18 FTU ≈ 0.23 mg Fe/L	0.35 FTU ≈ 0.45 mg Fe/L

Koolfilters WPJ

Tijdelijk in kelder gebouwd

Kosten sloop max. 400.000 euro

Waterkwaliteit?

Parameter	Locatie	Eenheid Gem.		Min.	Max.
Troebelingsgraad	Koolfiltraat	[FTU]	0.09	0.00	0.57
	Zandfiltraat	[FTU]	0.06	0.00	0.52
Mangaan	Koolfiltraat	[µg/L]	0.18	-0.05	1.12
	Zandfiltraat	[µg/L]	0.28	0.02	1.13
UV-t	Koolfiltraat	[%]	84.5	77.8	88.7
	Zandfiltraat	[%]	84.1	77.9	88.2
DOC	Koolfiltraat	[µg/L]	3168	2883	3358
	Zandfiltraat	[µg/L]	3326	3247	3383

Vergelijk EC

Nanofiltratiemodules toepassen in HF-installatie

- Uit literatuur 3x meer capaciteit bij de helft van de druk (6x hoger rendement)
- Besparing conditionering: geen drinkwater meer nodig, geen CO₂ en minder NaOH
- Natuurlijk moment voor aanpassing omdat huidige HF-membranen uit productie zijn
- Aandachtspunt: natrium, chloride en organische microverontreinigingen concentratie in onthardwater

Zoutretentie

- Natrium geen probleem meer
- Chloride

	Eenheid	WRK aa	nvoer	Infiltrere	∍n	PS Berg	jen	PS Men	sink
		WCB	WPJ	WCB 47%	WCB 28%	WCB 47%	WCB 28%	WCB 47%	WCB 28%
Chloride 20- jaargemiddelde	mg/L	90	145	119	130	71	78	104	113
Chloride 2018	mg/L	90	160	127	140	76	84	111	123
Chloride piek 2018	mg/L	125	280	206	237	124	142	180	207
Natrium 20- jaargemiddelde	mg/L	49	79	65	71				
Natrium 2018	mg/L	49	89	70	78			+25	+25
Natrium piek 2018	mg/L	71	159	125	146				

Zandfilters

Distributie

40 %

PS Bergen

Zandfilters

Distributie

12,5 %

PS Mensink

25 km Betonnen leiding naar PS Bergen

Conditioneren!

50 m3/h drinkwater

NaOH

• CO₂

Chemicalienbesparing

Conditioneren HF	[Mm³]	[ton]	[euro/ton]	[euro/jaar]
NaOH 50%	16	1748	337	€ 590.000
CO ₂	16	640	72	€ 46.000

- Organische micros
 - MWCO 400 dalton
 - Nog steeds retentie ZZS o.a. PFAS +/- 400 dalton? (onderzoek!)

Operationele kosten RO en conditioneren

Heemskerk I	Instelling	Hoeveelheid	kosten per m3	totale kosten
RO		verlies		
Productie	21.600.000	21%		
verlies	4.628.571	21%		
Elektrische stroom	m			
Energie (n=70%)	100		€ 0,027	€ 588.600
Chemicalien	[mg/L]	ton/j	eur/m3	eur/j
Aquacare 4AQUA OSM BD 30	1,9	41	€ 0,013	€ 270.864
Vervanging				
Membranen				
Onderhoud				
Conditioneren	[mg/L]	ton/j	eur/m3	eur/j
NaOH [50%]	42	1426	€ 0,028	€ 477.576
CO2	39	662	€ 0,003	€ 48.318
Totaal			€ 0,071	€ 1.385.358

- 1/3 loog
- 50% energie
- Antiscalant ???
- 100 C(4) doorlaat
- Geen CO2 dosering

Heemskerk I	Instelling	Hoeveelheid	kosten per m3	totale kosten
RO		verlies		
Productie	21.600.000	21%		
verlies	4.628.571	21%		
Elektrische stroom	m			
Energie (n=70%)	50		€ 0,014	€ 294.300
Chemicalien	[mg/L]	ton/j	eur/m3	eur/j
Aquacare 4AQUA OSM BD 30	1,9	41	€ 0,013	€ 270.864
Vervanging				
Membranen				
Onderhoud				
Conditioneren	[mg/L]	ton/j	eur/m3	eur/j
NaOH [50%]	14	475	€ 0,009	€ 159.192
CO2	0	0	€ 0,000	€0
Totaal			€ 0,036	€ 724.356

- 600.000 euro besparen te Heemskerk
- 300.000 FeCISO₄ meerkosten WPJ
- 300.000 netto besparing

Direct drinkwater Heemskerk

- Direct drinkwater maken door extra productiecapaciteit van 18 miljoen m³ per jaar van WPJ te benutten
- In de plannen voor 2020 staat 60 miljoen m³, maar productiecapaciteit ligt hoger +/- 78 miljoen m³
- Zeker in in combinatie met oeverfiltratie te Andijk, in te richten als zeer robuuste multi-barriere zuivering voor bacteriën, virussen, protozoa en organische microverontreinigingen

Direct drinkwater Heemskerk

Waterbehandelingsschema's tot en met PSHV en PS Andijk zijn bijna identiek, na PSHV gaat het de duinen in terwijl na PSA gaat het water direct het distributienet ingaat

Aandachtspunten:

- Aeromonas/biologische stabiliteit
- Chloride en natrium

