Clenti; wing

PN - DE19707109 C 19980625

PD - 1998-06-25

PR - DE19971007109 19970222

OPD - 1997-02-22

TI - Optical vibraneter for measuring object oscillation in perpendicular directions

AB - The optical vibronists uses a modulated laser device (L1,L2,L3), with provision of two partial beams (SX1,SX2,SY1,SY2,SZ1,SZ2) for each oscillation direction, one of which is directed onto the oscillating object. One partial beam of each pair is directed through a common delay prism (1) for both measuring directions. The arrangement produces interference between the partial beams, which is detected by a photodetector coupled to an evaluation circuit.

IN - DRABAREK PAWEL (DE)

PA - BOSCH GMBH ROBERT (DE)

EC - G01H9/00

IC - G01H9/00; G01J9/04; G01M7/02; H01S3/103

CT - DE19535743 A[]; DE19522272 A1 []; DE3114355 A1 [];

EP0420897 B1 []

WHI / DERWENT

TI - Optical vibremeter for measuring object oscillation in perpendicular directions - has laser device providing two partial beams for each measuring direction, with one of each pair passed through common delay prism for interference between partial beams

PR - DE19971007109 19970222

PN - DE19707109 C1 19980625 DW199829 G01H9/00 005pp

PA - (BOSC) BOSCH GMBH ROBERT

IC - G01H9/00 ;G01J9/04 ;G01M7/02 ;H01S3/103

IN - DRABAREK P

- AB DE19707109 The optical differences uses a modulated laser device (L1,L2,L3), with provision of two partial beams (SX1,SX2,SY1,SY2,SZ1,SZ2) for each oscillation direction, one of which is directed onto the oscillating object. One partial beam of each pair is directed through a common delay prism (1) for both measuring directions.
- The arrangement produces interference between the partial beams, which is detected by a photodetector coupled to an evaluation circuit.
- USE For heterodyne interferometric measurement of escillation of object in two orthogonal directions, e.g. for measuring escillation of internal combustion engine relative to vehicle chassis...
- ADVANTAGE Compact device with minimum number of components for easy adjustment.(Dwg.1/2)

OPD - 1997-02-22

AN - 1998-323828 [29]

® BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAMT

Description<l

- (a) Aktenzeichen:
- 197 07 109.0-52
- Anmeldeteg:
- 22. 2.97
- Offenlegungstag:
- (5) Veröffentlichungstag der Patenterteilung: 25. 6.98

(5) Int. Cl.⁶: G 01 H 9/00

> G 01 J 9/04 G 01 M 7/02 H 01 S 3/103

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(3) Patentinhaber:

Robert Bosch GmbH, 70469 Stuttgart, DE

(1) Erfinder:

Drabarek, Pawel, 75233 Tiefenbronn, DE

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

DE 1 95 35 743 A DE 1 95 22 272 A1 DE 31 14 355 A1 EP 04 20 897 B1

- (A) Optisches Vibrometer
- Die Erfindung bezieht sich auf ein optisches Vibrometer zur heterodyn-interferometrischen Messung von Schwingungen eines Meßobjekts (O). Das optische Vibrometer weist eine modulierbere Lasereinrichtung (L1, L2, L3) sowie einen optischen Umweg für die heterodyn-interferometrische Messung auf. Ein einfach zu justierender, kompakter Aufbau, der eine gute Handhabung ermöglicht, wird dadurch erzielt, daß zur Bildung der optischen Umwege für die Messung in zwei senkrecht zueinander verlaufenden, lateralen Schwingungsrichtungen (x, y) ein gemeinsames Verzögerungsprisma (1), mit dem in jeder der beiden Schwingungsrichtungen (x, y) zwei Teilstrahlen (SX1, SX2, SY1, SY2, SZ1, SZ2) gebildet sind, von denen einer über den optischen Umweg geführt ist.

Beschreibung

Die Erfindung geht aus von einem optischen Vibrometer zu einer heterodyn-interferometrischen Messung von Schwingungen in zwei senkrecht zueinander verlaufenden, lateralen Schwingungsrichtungen eines Meßohjekts nach der Gattung des Anspruchs!

Aus der DE 31 14 355 A1 ist eine optische Anordnung zum Messen der Schwingungen eines Gegenstands mit reflektierender Oberfläche bekannt, bei der bis zu drei Mcßstrahlen auf einen Punkt des Gegenstands gerichtet sind. Die in diesem Punkt reflektieren Strahlungen werden mit Interferenzstrahlungen zur Interferenz gebracht. Die überlagerten Strahlungen werden Photodetektoren zugeleitet, die ein Ausgangssignal zur weiteren Auswertung bereitstellen. Die 15 vorbekannte Anordnung ermöglicht die Messung der Schwingungskomponenten sowohl in zwei senkrecht zueinander verlaufenden, lateralen Schwingungsrichtungen als auch eine Messung in axialer Schwingungsrichtung.

Aus der DE 195 22 272 A1 ist ein Vibrometer bekannt, 20 bei dem die Schwingungen eines Meßobjekts in axialer Richtung mit einem Heterodyn-Interferometer mit frequenzmodulierter Laserdiode und einem optischen Umweg als Verzögerungselement vorgenommen ist. Dieses Vibrometer ist jedoch nicht für eine mehrdimensionale Schwin-25 gungsmessung ausgebildet.

In der EP 0 420 897 B1 ist ein Verfahren und eine Vorrichtung zur Weg- und Winkelmessung vorgeschlagen, das ebenfalls heterodyn-interferometrisch mit frequenzmodulierter Laserdiode und einem optischen Umweg als Verzögerungselement arbeitet. Diese Vorrichtung besitzt relativ viele Einzelelemente und ist insbesondere zur Unterdrükkung von Fehlern durch Umgebungseinflüsse ausgelegt. Es geht nicht um den Gebrauch der Vorrichtung als Vibrometer.

In der DE 195 35 743 A1 ist ein Verzögerungselement 35 vorgeschlagen, das in einem Heterodyn-Interferometer mit frequenzmodulierter Laserdiode und einem optischen Unweg die Funktion eines Strahlteilers und des optischen Umwegs übernimmt. Hierbei geht es nicht um eine mehrdimensionale Messung.

Der Erfindung liegt die Aufgabe zugrunde, ein optisches Vibrometer der eingangs genannten Art bereitzustellen, das bei einfachem Aufbau und einfacher Handhabung eine mehrdimensionale Vibrationsmessung ermöglicht.

Diese Aufgabe wird mit den Merkmalen des Anspruches 45 1 gelöst. Hiernach ist also vorgeschen, daß zur Bildung der optischen Umwege für die Messung in zwei senkrecht zueinander verlaufenden, lateralen Schwingungsrichtungen ein gemeinsames Verzögerungsprisma, mit dem in jeder der beiden Schwingungsrichtungen zwei Teilstrahlen gebildet 50 sind, von denen jeweils einer über den optischen Umweg geführt ist.

Dadurch, daß für die beiden senkrecht zueinander verlaufenden lateralen Schwingungsrichtungen ein gemeinsames Verzögerungsprisma verwendet wird, das gleichzeitig die 55 Aufgabe der Strahlteilung und der Bildung eines verzögerten und eines unverzögerten Teilstrahls überninunt, werden etliche optische Bauelemente eingespart, und gleichzeitig werden die Justierung und Handhabung einfach und eine geringe Baugröße erzielt.

Eine vorteilhaste Ausbildung des Vibrometers ergibt sich dadurch, daß das Verzögerungsprisma eine quadratische Eintrittssläche und eine dazu planparallele quadratische Austrittssläche besitzt, daß auf der Eintrittssläche im Eintrittsbereich des der jeweiligen Schwingungsrichtung zugeordneten Laserstrahls und auf der Austrittsbereich der jeweiligen Teilstrahlen Kippelemente angeordnet sind, daß der jeweilige verzögerte Teilstrahl in dem

Verzögerungsprisma mehrfach abgelenkt ist, und daß der unverzögerte und der zugehörige verzögerte Teilstrahl mittels eines Ablenkelements auf dieselbe Stelle des Meßobjekts gerichtet sind. Das einfach aufgebaute Verzögerungsprisma läßt sich leicht im Strahlengang anordnen.

Eine weitere günstige Maßnahme besteht darin, daß das Kippelement ein Prisma oder Gitter ist und daß das Ablenkelement eine Sammellinse ist. Für eine Messung in der dritten, axialen Schwingungsrichtung zusätzlich zu den lateralen Schwingungsrichtungen sind die Maßnahmen vorteilhaft, daß von der modulierbaren Lasereinrichtung ein weiterer Laserstrahl für eine Messung in axialer Schwingungsrichtung erzeugbar ist, der zum Erzeugen zweier axialer Teilstrahlen auf einen Strahlteiler gerichtet ist, daß der eine axiale Teilstrahl als verzögerter Teilstrahl auf das McBobjekt gerichtet ist, während der andere axiale Teilstrahl an einer Umlenkfläche des Strahlteilers umgelenkt und mit dem vom MeBobjekt reflektierten axialen Teilstrahl zur Interferenz gebracht ist. Dabei ist als zusätzliches Bauelement im optischen Weg lediglich der Strahlteiler erforderlich. Eine günstige Anordnung besteht dabei darin, daß der Strahlteiler zwischen dem McBobjekt und dem Verzögerungsprisma angeordnet ist und daß der axiale Laserstrahl senkrecht zur Eintrittsfläche des Verzögerungsprismas ausgerichtet ist und dieses geradlinig durchläuft.

Für die Justierung und den einfachen Aufbau des Vibrometers ist weiterhin die Maßnahme vorteilhaft, daß alle auf das McBobjekt fallenden Teilstrahlen in eine gemeinsame Richtung reflektiert und auf einen gemeinsamen Photodetektor gerichtet sind.

Verschiedene vorteilhafte Möglichkeiten zur Erfassung und zur Auswertung der Meßergebnisse bestehen darin, daß die Auswerteeinrichtung zur sequentiellen Aussteuerung der den Schwingungsrichtungen zugeordneten Laserdioden ausgelegt ist und die Auswertung über einen gemeinsanne oder getrennte Auswertekanäle erfolgt oder daß die Auswerteeinrichtung zur gleichzeitigen Ansteuerung der Laserdioden ausgelegt ist und die Auswertung mittels des Multi-Heterodyn-Verfahrens erfolgt.

Eine weitere Möglichkeit zur eintachen Auswertung besteht darin, daß die Lasereinrichtung für jede zu messende Schwingungsrichtung Laserdioden für Laserstrahlen unterschiedlicher Wellenlängen aufweist und daß den Schwingungsrichtungen jeweils ein Photodetektor zugeordnet ist.

Die letztgenannte Maßnahme sowie die beiden vorstehenden Maßnahmen zur Auswertung lassen sieh auch miteinander kombinieren, wobei z. B. für die laterale Messung eine gemeinsame Photodiode vorgesehen ist, während tür die axiale Messung eine davon getrennte Photodiode vorgesehen ist.

Zur gleichzeitigen Erfassung dreidimensionaler Schwingungen zweier verschiedener Körper oder zur Erfassung zusätzlicher Schwingungsrichtungen eines Körpers, etwa der drei rotatorischen und der drei translatorischen Schwingungsrichtungen, besteht ein vorteilhafter Aufhau darin, daß die Lasereinrichtung drei Laserdioden umfaßt, deren Laserstrahlen in eine zweite Gruppe von Laserstrahlen aufgeteilt sind, und daß beide Gruppen von Laserstrahlen zur Messung ie dreier Schwingungsrichtungen herangezogen sind und 60 daß die Auswerteeinrichtung zur gemeinsamen Auswertung der Heterodyn-Interferenz-Signale ausgebildet ist. Beispielsweise kann mit einem derartigen Aufbau eine Differenzmessung zwischen Karosserie und Motor eines Kraftfahrzeuges vorgenommen werden. Eine günstige Strahlführung wird dabei dadurch erhalten, daß die Laserstrahlen über Lichtleiter geführt sind und daß ein Lichtleiterkoppler zum Aufteilen der beiden Gruppen von Laserstrahlen im Weg der Lichtleiter vorgesehen ist.

1

4

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen näher erläutert. Es zeigen:

Fig. 1 eine schematische Ansicht eines Vibrometers in seitlicher Ansicht, in Draufsicht sowie in Vorderansicht und Fig. 2 ein zweites Ausführungsbeispiel eines Vibrometers mit Lichtleitern.

In Fig. 1 ist der Aufbau eines Vibrometers schematisch in Draufsicht, Seitenansicht und Vorderansicht wiedergegeben, und für die Messung der Vibrationen eines McBobjek- 10 tes O in zwei lateralen Schwingungsrichtungen x, y und einer axialen Schwingungsrichtung z sind drei Laserdioden L1, L2, L3 zur Abgabe von Laserstrahlen SX, SY, SZ vorgesehen. Die Laserstrahlen SX, SY, SZ treffen auf ein Verzögerungsprisma 1 mit quadratischer Eintrittsfläche 1.1 und verlassen dieses auf einer dazu planparallelen Austrittsfläche 1.3. Im Strahlengang hinter dem Verzögerungsprisma 1 ist ein Strahlteiler 3 für den axialen Lascrstrahl SZ angeordnet, hinter dem eine konvexe Linse 2 folgt. Die von dem Meßobjekt O reflektierten Strahlen gelangen schließlich 20 nach Ablenkung an dem Strahlteiler 3 auf einen Photodetektor 4, dessen Ausgangssignale in einer (nicht dargestellten) Auswerteeinrichtung ausgewertet werden. Die beiden lateralen Lichtstrahlen SX, SY treffen zunächst auf ein auf der Eintrittsfläche 1.1 angeordnetes Kippelement 1.2, beispiels- 25 weise ein Prisma oder Gitter, und verlaufen von dort gegenüber der Eintrittsfläche 1.1 oder der Austrittsfläche 1.3 geneigt durch das Verzögerungsprisma I zur Austrittsfläche 1.3. An dieser Stelle ist ein weiteres Kippelement vorgeschen, mit dem ein Teilstrahl SX1 bzw. SY1 senkrecht zur 30 Austrittsfläche ausgekoppelt wird, während ein zweiter Teilstrahl SX2 bzw. SY2 in dem Verzögerungsprisma 1 zurückgeworten wird und in diesem zickzackförmig bis zum Rand weiterverläuft, wo er dann von einer Spiegelungsfläche 1.4 auf die Austrittsfläche 1.3 gerichtet wird. An dieser Stelle 35 der Austrittsfläche 1.3 befindet sich ein weiteres Kippelement mit dem der Teilstrahl SX2 bzw. SY2 senkrecht zur Austrittsfläche 1.3 ausgekoppelt wird Auf diese Weise durchläuft jeweils einer der beiden Teilstrahlen SX2, SY2 der jeweiligen Schwingungsrichtung x, y gegenüber den zu- 40 geordneten anderen Teilstrahlen SX1, SY1 einen optischen Umweg, der von dem Verzögerungsprisma 1 gebildet wird, wobci dieses gleichzeitig als Strahlteiler wirkt. Die vier Teilstrahlen SX1, SX2, SY1, SY2 gelangen anschließend auf die Linse 2 und werden von dieser an einen zumindest 45 bezüglich der jeweiligen Schwingungsrichtung x bzw. y gemeinsamen Auftressort des McBobjekts O in der Objektebene sokussiert. Die auf dem Meßobjekt O gebeugten Lichtstrahlen interferieren und beleuchten den Photodetektor 4, nachdem sie an einer Ablenkfläche des Strahlteilers 3 50 widerum abgelenkt worden sind.

Der der axialen Richtung zugeordnete Laserstrahl SZ. verläuft von der Laserdiode L2 auf den Strahlteiler 3, nachdem er das Verzögerungsprisma 1 senkrecht durchlaufen hat und wird in dem Strahlteiler 3 in zwei Teilstrahlen SZ1 und SZ2 saufgeteilt. Der eine Teilstrahl SZ2 fällt auf das McBobjekt O während der andere Teilstrahl SZ1 in dem Strahlteiler 3 senkrecht abgelenkt und an einem Spiegel 3.1 an einer Außenseite des Strahlteilers 3 reflektiert wird. Die beiden axialen Teilstrahlen SZ2 und SZ1 interferieren an der Ablenkfläche des Strahlteilers 3 und die beiden interferierenden Teilstrahlen SZ1, SZ2 beleuchten ebenfalls den Photo-

Um die elektrische Auswertung zuverlässig vornehmen zu können, wird die heterodyn-interferometrische Meßmethode angewandt, wozu die drei Laserdioden L1, L2, L3 in ihrer Frequenz geeignet moduliert werden, wie z. B. in den eingangs genannten Druckschriften DE 195 22 272 A1 und

EP 0 420 897 B1 näher erläutert.

Die Trennung und Erkennung der Schwingungen in den Schwingungsrichtungen x, y, z lassen sich dadurch realisieren, daß die Laserdioden sequentiell eingeschaltet werden und dann die Messung in der entsprechenden Schwingungsrichtung vorgenommen wird. Da die Messungen nacheinander in den drei Schwingungsrichtungen x, y, z vorgenommen werden, reicht in diesem Fall ein Kanal der Auswerteeinrichtung aus.

Eine andere Möglichkeit der Auswertung besteht darin, daß die Laserdioden L1, L2, L3 sequentiell und zyklisch eingeschaltet werden und die Auswertung getrennt nach den Schwingungsrichtungen x, y, z im Zeitmultiplex-Verfahren über entsprechende Kanäle der Auswertweinrichtung vorgenommen wird. Hierbei gentigt als Empfänger ein Photodetektor 4

Eine weitere Möglichkeit der Auswertung besteht im gleichzeitigen Betrieb der Laserdioden L1, L2, L3 in Verbindung mit dem von der Anmelderin bereits beschriebenen Multi-Heterodyn-Verfahren, wobei die Trennung auf der Grundlage der verschiedenen Heterodyn-Frequenzen erfolgt. Schließlich können die Messungen in den verschiedenen Schwingungsrichtungen x, y, z durch Verwendung dreier Laserdioden mit unterschiedlichen Wellenlängen und drei Photodetektoren vorgenommen werden. Auch Kombinationen der beschriebenen Auswerteverfahren sind möglich, wobei z. B. die Messungen in den lateralen Schwingungsrichtungen x, y mit einem gemeinsamen Photodetektor 4 vorgenommen wird, während die Messung in der axialen Schwingungsrichtung z mit einem separaten Photodetektor 4 durchgeführt wird.

In der Fig. 2 ist ein weiteres Ausführungsbeispiel für ein Vibrometer gezeigt, wobei der Aufbau zwei McBköpfe besitzt, die jeweils von einer Gruppe aus drei Laserstrahlen gespeist werden. Die Laserstrahlen fallen jeweils auf ein Verzögerungsprisma 1 und gelangen von dort aus entsprechend den obigen Ausführungen zu einem jeweiligen Photodetektor 4. Als Lichtquellen dienen für die drei unterschiedlichen Schwingungsrichtungen ebenfalls drei Laserdioden L1, L2, 1.3 von denen beide Gruppen von Laserstrahlen gespeist werden. Die Zuführung der Laserstrahlen bis zu den beiden Verzögerungsprismen 1 erfolgt von den Laserdioden L1, L2, L3 aus über Licht leiter 6, die in einem Lichtleiterkoppler 5 auf zwei Gruppen von Lichtleitern 6 aufgeteilt werden. Die Signale der Photodetektoren 4 können in einer gemeinsamen Auswerteeinrichtung einander in Beziehung gesetzt und verarbeitet werden.

Mit den beiden Meßköpfen können z. B. Differenzmessungen zweier schwingender Körper, z. B. eines Motors und einer Karosserie eines Kraftfahrzeuges, vorgenommen werden. Oder es können Schwingungsmessungen eines Meßobjektes O nicht nur in den drei translatorischen Schwingungsrichtungen x. y. z sondern auch in den drei rotatorischen Schwingungsrichtungen vorgenommen werden.

Patentansprüche

1. Optisches Vibrometer zur heterodyn-interferometrischen Messung von Schwingungen eines Meßobjekts in zwei senkrecht zueinander verlaufenden, lateralen Schwingungsrichtungen, mit einer modulierbaren Lasereinrichtung, einer Vorrichtung zur Bildung zweier einer Schwingungsrichtung zugeordneter Teilstrahlen, von denen einer gegenüher dem anderen einen optischen Umweg durchläuft und zumindest einer der Teilstrahlen auf das Meßobjekt gerichtet ist und mit dem anderen Teilstrahl zur Interferenz gebracht ist, und mit einer Photodetektor- und Auswerteeinrichtung zum Er-

fassen von Vibrationen aus der empfangenen Strahlung, dadurch gekennzeichnet, daß zur Bildung der optischen Umwege ein gemeinsames Verzögerungsprisma (1) vorgesehen ist, mit dem in jeder der beiden Schwingungsrichtungen (x, y) zwei Teilstrahlen (SX1, 5 SX2; SY1, SY2) gebildet sind, von denen jeweils einer über den optischen Umweg geführt ist.

2. Vibrometer nach Anspruch 1, dadurch gekennzeichnet

daß das Verzögerungsprisma (1) eine quadratische Eintitusfläche (1.1) und eine dazu planparallele quadratische Austrittsfläche (1.3) besitzt,

daß auf der Eintrittsfläche (1.1) im Eintrittsbereich des der jeweiligen Schwingungsrichtung (x, y) zugeordneten Laserstrahls (SX, SY) und auf der Austrittsfläche 15 (1.3) im Austrittsbereich der jeweiligen Teilstrahlen (SX1, SX2; SY1, SY2) Kippelemente (1.2) angeordnet sind.

daß der jeweilige verzögerte Teilstrahl (SX2, SY2) in dem Verzögerungsprisma (1) mehrfach abgelenkt ist, 20 und

daß der unverzögerte und der zugehörige verzögerte Teilstrahl (SX1, SX2; SY1, SY2) mittels eines Ablenkelements (2) auf dieselbe Stelle des Meßobjekts (O) gerichtet sind.

 Vibrometer nach Anspruch 1 oder 2, dadurch gekennzeichnet.

daß das Kippelement (1.2) ein Prisma oder Gitter ist

daß das Ablenkelement eine Sammellinse (2) ist.

4. Vibrometer nach einem der vorherigen Ansprüche, dadurch gekennzeichnet,

daß von der modulierbaren Lasereinrichtung (L1, L2, L3) ein weiterer Laserstrahl (SZ) für eine Messung in axialer Schwingungsrichtung (Z) erzeugbar ist, der 35 zum Bilden zweier axialer Teilstrahlen (SZ1, SZ2) auf einen Strahlteiler (3) gerichtet ist.

daß der eine axiale Teilstrahl (SZ2) als verzögerter Tellstrahl auf das Meßobjekt (O) gerichtet ist, während der andere axiale Teilstrahl (SZ1) an einer Umlenkfläche (31) des Strahlteilers (3) umgelenkt und mit dem vom Meßobjekt (O) reflektierten axialen Teilstrahl (SZ2) zur Interferenz gebracht ist.

5. Vibrometer nach Anspruch 4, dadurch gekennzeich-

daß der Strahlwiler (3) zwischen dem Meßobjekt (O) und dem Verzögerungsprisma (1) angeordnet ist und daß der axiale Laserstrahl (SZ) senkrecht zur Eintrittsfläche (1.1) des Verzögerungs prismas (1) ausgerichtet ist und dieses geradlinig durchläuft.

6. Vibrometer nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß alle auf das Meßobjekt (O) fallenden Teilstrahlen (SX1, SX2; SY1, SY2; S72) in eine gemeinsame Richtung reflektiert und auf einen gemeinsamen Photodetektor (4) gerichtet sind.

7. Vibrometer nach einem der vorherigen Ansprüche, dadurch gekennzeichnet,

daß die Auswerteeinrichtung zur sequentiellen Ansteuerung der den Schwingungsrichtungen (x, y, z) zugeordneten Laserdioden (I.1, L2, I.3) ausgelegt ist und die Auswertung über einen gemeinsamen Auswertekanal oder getrennte Auswertekanäle erfolgt oder daß die Auswertenichtung zur gleichzeitigen Ansteuerung der Laserdioden (I.1, I.2, I.3) ausgelegt ist und die Auswertung mittels des Multi-Heterodyn-Verfahrens erfolgt.

8. Vibrometer nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet,

daß die Lasereinrichtung für jede zu messende Schwingungsrichtung (x, y, z) Laserdioden (L1, L2, L3) für Laserstrahlen (SX, SY, SZ) unterschiedlicher Wellenlängen aufweist und

daß den Schwingungsrichtungen (x, y, z) jeweils ein Photodetektor (4) zugeordnet ist.

9. Vibrometer nach einem der vorhengen Ansprüche, dadurch gekennzeichnet,

daß die Lasereinrichtung drei Laserdioden (L1, L2, L3) umfaßt, deren Laserstrahlen (SX, SY, SZ) in eine zweite Gruppe von Laserstrahlen aufgeteilt sind, und daß beide Gruppen von Laserstrahlen zur Messung je dreier Schwingungsrichtungen (X, Y, Z) herangezogen sind und

daß die Auswerteeinrichtung zur gemeinsamen Auswertung der Heterodyn-Interferenz-Signale ausgebildet ist

10. Vibrometer nach Anspruch 9, dadurch gekennzeichnet.

daß die Laserstrahlen (SX, SY, SZ) über Lichtleiter (6) geführt sind und

daß ein Lichtleiterkoppler (5) zum Austeilen in die beiden Gruppen von Laserstrahlen im Weg der Lichtleiter (6) vorgesehen ist.

Hierzu 1 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.⁵: Veröffentlichungstag: DE 197 07 109 C1 G 01 H 9/00 25. Juni 1998

