

AIAP Batch 12 Mini Project 18 Apr 2023

Hugging Face Model Recommender System (HFMRS)

By Bryan, Jia Hao, Kok Wai, Wan Ying

Table of Contents

- 1. Problem Statement
- 2. Introduction
- 3. Exploratory Data Analysis
- 4. Data Visualization with K-means Clustering
- 5. Preprocessing / Feature Engineering
- 6. Graph Neural Network (GNN)
- 7. Demo
- 8. Conclusion

Problem Statement

- Challenge to identify the appropriate models from vast number of Al models available
- Evolution of Al technology and the emergence of new models adds to the complexity
- Limitation with existing model search on Hugging Face

Introduction

from huggingface_hub import HfApi
hf_api = HfApi()
models = hf_api.list_models()

Field	Description	Example
modelld	Unique identifier for the model.	albert-large-v1
tags	Additional information about the model, such as programming languages, tasks, language, datasets, and license.	['pytorch', 'tf', 'albert', 'fill-mask', 'en', 'dataset:bookcorpus', 'dataset:wikipedia', 'arxiv:1909.11942', 'transformers', 'license:apache-2.0', 'autotrain_compatible', 'has_space']
pipeline_tag	Type of task the model was specifically trained for.	fill-mask
config	Technical information about the model's architecture and type.	{'architectures': ['AlbertForMaskedLM'], 'model_type': 'albert'}
pdownloads	The number of downloads the model has received.	357
library_name	The name of the library that hosts the model.	transformers

Exploratory Data Analysis

Exploratory Data Analysis

Exploratory Data Analysis

Data Visualization with K-means Clustering

Silhouette Score:
$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$
, if $|C_I|$

Silhouette analysis for KMeans clustering on sample data with n_clusters = 6

Data Visualization with K-means Clustering

Useful information from EDA

- Features contain lists.
- Repeated information in tags & datasets.
- NaN represented by [].
- 140k/170k rows less than 10 downloads.

Steps:

- col.apply(str)
- lowercase & remove punctuation
- Handle exceptions []
- Limit samples

- Concatenate features.
- Create feature "soup".
- Essentially a corpus of information for each row

import SentenceTransformer

- Pre-trained Word Embeddings
- Encode into vectors which capture the semantic meaning of corpus

Baseline Modelling

Cosine Similarity

$$ext{cosine similarity} = S_C(A,B) := \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}},$$

Jaccard Similarity

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}.$$

Graph Neural Network (GNN)

- 1. Overview of Graph Neural Network
- 2. Context of HFMRS
- 3. Implementation

1. Overview of Graph Neural Network

- Type of neural network which operates on graph-structured data
- Can handle complex relationship between data points represented as a graph
- Useful in domains such as Recommender System, Social Network Analysis and Bioinformatics

2. Context of HFMRS

2. Context of HFMRS

- Input graph is a <u>similarity graph</u> where each node is connected to every other node in the graph through edges with corresponding edge weights (cosine similarity score)
- By leveraging information from this graph structure, our GNN model can capture interactions and relationships between each nodes to provide recommendations based on the learned representations

Graph Convolutional Network (GCN)

- Work by propagation information from a node's neighbours to update the node's representation
- In practice, each node is presented by a vector and the vector is updated by aggregating the vectors of the node's neighbours
- Aggregation function can be mean/sum/weighted mean/weighted sum.
- Each GCN can have multiple layers with each layer updating the node presentations.

Graph Attention Network (GAT)

- Uses attention mechanisms to weight the contribution of each neighbour node to the update of a node's representation which allows GAT to focus on the most relevant neighbour for each node
- In GAT, each node computes an attention coefficient for each of its neighbours based on a learned weight matrix and a non-linear activation function
- The attention coefficients are used to to compute a weighted sum of the neighbour vectors to update the node's representations

3. Implementation - Limitations

1. Cold start problem

- Requires further user data such as click-through rate or interactions to train and tune the model
- Lack of access to user data can be addressed through our web implementation

2. Limited scalability

- Computational complexity increases as number of nodes and edges increases
- Utilise sampling techniques to address scalability issue
- Utilise graph analysis techniques to identify subgraphs

3. Lack of explainability

- Learned representations and output recommendations lack transparency and explainability
- Utilise explainability techniques such as Explainable GNNs

System Architecture

Demo

Challenges

Lack of User-Model Interactions

Lack of Universal Metrics

Lack of Gold Label Dataset

Future Work

Data Updates

Imbalanced Representation

Conclusion

- Explored different recommender techniques for users to try
- Git clone our repository and experience it yourself!

Thank you

www.aisingapore.org