Lect 2: Word Embedding

- Word embedding or word vector is an approach with which we represent documents and words.
- It is defined as a numeric vector input that allows words with similar meanings to have the same representation.
- It can approximate meaning and represent a word in a lower dimensional space.

Why Do We Need Word Representation?

Any algorithm for solving a task

Word representation - vector (input for your model/algorithm)

Sequence of tokens

Text (your input)

https://github.com/yandexdataschool/nlp_course/tree/2020/week01_embeddings

How it works: Look-up Table (Vocabulary)

Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols:

Words can be represented by one-hot vectors:

```
hotel = [000000000010000]
motel = [00001000000000]
```

Vector dimension = number of words in vocabulary (e.g., 500,000)

Problem with one-hot vectors

- These two vectors are orthogonal.
- There is no natural notion of similarity for one-hot vectors!
- These vectors do not contain information about the meaning of a word.

```
hotel = [000000000010000]
motel = [000010000000000]
```

Hotel &motel have the same meaning

Solution: learn to encode similarity in the vectors themselves.

Representing Words By Their Context

 Distributional semantics: A word's meaning is given by the words that frequently appear close-by.

"you shall know a word by the company it keeps" (J.R.Firth 1957:11)

Dense Word Vector By Contexts

• We will build a dense vector for each word, so that it is similar to vectors of words that appear in similarity contexts.

Visualization

```
need
                    come
                           take
              keep
               make
                       get
  meet
                          continue
           see
                 want
                                    become
     expect
  think
                                          remain
say
                                                   are is
                                         be
                                                  wergas
                                  being
                                       been
                                            have
```


Learning Embeddings (Dense Vectors)

Two (main) types of models:

- Count-based models
 - Distributed semantics models
- Predictive models
 - Neural network models

1. Bag of words

Corpus:

I Love Shanghai

I Love Hangzhou

I Love Beijing TianAnMen

	Shanghai	Beijing	TianAnMen	1	Hangzhou	Love
d1	1	0	0	1	0	1
d2	0	0	0	1	1	1
d3	0	1	1	1	0	1

Example

Ι	think	therefore	am	love	dogs	cats
1	2	3	4	5	6	7

think therefore

sentence 1: I think

therefore I am

sentence 2: I love dogs

sentence 3: I love cats

Sentence 1:

Sentence 2:

(2) (1

1,

1,

0,

0. 1. 1. 0

love

Sentence 3: [1,

Λ

Ω

1,

1

dogs cats

Issues

- For large dictionaries, the vector length becomes huge.
- It doesn't preserve ordering.

"The food was good, not bad at all."

"The food was bad, not good at all."

Contents from:

- https://towardsdatascience.com/from-words-to-vectors-e24f0977193e
- MIT 6.S191, 2017

2. TF-IDF (Term Frequency-Inverse Document Frequency

TF-IDF (Term Frequency–Inverse Document Frequency) is a statistical method used in natural language processing and information retrieval to evaluate how important a word is to a document in relation to a larger collection of documents. TF-IDF combines two components:

1. Term Frequency (TF): Measures how often a word appears in a document. A higher frequency suggests greater importance. If a term appears frequently in a document, it is likely relevant to the document's content.

$$TF(t,d) = \frac{\text{Number of times term t appears in document d}}{\text{Total number of terms in document d}}$$

2. Inverse Document Frequency (IDF): Reduces the weight of common words across multiple documents while increasing the weight of rare words. If a term appears in fewer documents, it is more likely to be meaningful and specific.

This balance allows TF-IDF to highlight terms that are both frequent within a specific document and distinctive across the text document, making it a useful tool for tasks like search ranking, text classification and keyword extraction.

TF-IDF Example

Calculate the TF-IDF score for specific terms in these documents.

Document 1: "The cat sat on the mat."

Document 2: "The dog played in the park."

Document 3: "Cats and dogs are great pets."

Our goal is to calculate the TF-IDF score for specific terms in these documents. Let's focus on the word "cat" and see how TF-IDF evaluates its importance.

Step 1: Calculate Term Frequency (TF)

For Document 1:

The word "cat" appears 1 time.

The total number of terms in Document 1 is 6 ("the", "cat", "sat", "on", "the", "mat"). So, TF(cat,Document 1) = 1/6

For Document 2:

The word "cat" does not appear. So, TF(cat,Document 2)=0.

For Document 3:

The word "cat" appears 1 time. The total number of terms in Document 3 is 6 ("cats", "and", "dogs", "are", "great", "pets"). So TF (cat,Document 3)=1/6

Step 2: Calculate Inverse Document Frequency (IDF)

Total number of documents in the corpus (D): 3

Number of documents containing the term "cat": 2 (Document 1 and Document 3).

$$IDF(cat, D) = log \frac{3}{2} \approx 0.176$$

Step 3: Calculate TF-IDF

The TF-IDF score is the product of TF and IDF:

$$TF - IDF(t, d, D) = TF(t, d) \times IDF(t, D)$$

For Document 1: TF-IDF (cat, Document 1, D)= 0.167 * 0.176 = 0.029

For Document 2: TF-IDF(cat, Document 2, D)= 0x 0.176=0

For Document 3: TF-IDF (cat, Document 3, D)= 0.167 x 0.176 = 0.029

To create TF-IDF vectors, we use Scikit-learn's TF-IDF Vectorizer. After applying it to the previous 4 sample tweets, we obtain -

	ablaze	accident	car	caught	fire	jam	kind	sadly	set	swear	true	up	world
0	0.00	0.00	0.00	0.0	0.0	0.00	0.67	0.53	0.00	0.00	0.53	0.0	0.00
1	0.47	0.00	0.00	0.0	0.0	0.47	0.00	0.00	0.47	0.37	0.00	0.0	0.47
2	0.00	0.59	0.47	0.0	0.0	0.00	0.00	0.00	0.00	0.47	0.47	0.0	0.00
3	0.00	0.00	0.64	0.4	0.4	0.00	0.00	0.32	0.00	0.00	0.00	0.4	0.00

3. What is a Co-occurrence Matrix?

- A co-occurrence matrix is a mathematical representation that captures the frequency with which pairs of words appear together within a specified context, such as a sentence, paragraph, or document.
- It is a square matrix where rows and columns represent unique words in the corpus, and each cell (i, j) contains the number of times word i appears in the context of word j.
- Given a vocabulary of N unique words, a co-occurrence matrix C is an N x N matrix, where: C[I][I] =the number of times word j appears in the context of word i.

Example corpus:

I like deep learning

I like nlp

I enjoy flying

counts	1	like	enjoy	deep	learning	NLP	flying	-
1	0	2	1	0	О	0	0	0
like	2	0	0	1	О	1	0	0
enjoy	1	0	0	0	О	0	1	0
deep	0	1	0	0	1	0	0	O
learning	0	О	0	1	О	0	0	1
NLP	0	1	0	0	O	0	0	1
flying	0	0	1	0	О	0	0	1
	0	o	0	0	1	1	1	O

Singular Value Decomposition

Latent semantic analysis (LSA)

SVD and Embedding: Latent Semantic Analysis

 If, instead of keeping all m dimensions, we just keep the top-k singular values, we obtain a low-rank approximation of the original matrix X.

Dumais, S. T. (2004). Latent semantic analysis. *Annual review of information science and technology*, 38(1), 188-230

SVD and Embedding: Latent Semantic Analysis

ullet Instead of multiplying, we just make use of the matrix U.

In this way, we obtain the following matrix:

- Each row of U:
 - A k-dimensional vector,
 - Representing a word in the vocabulary.
- 300 dimensions are commonly used.
 - $\cdot k = 300$

SVD applied to term-context matrix

		V						
						learning	NLP	flying
	I	0	2	1	0	0	0	0
	like	2	0	0	1	0	1	0
	enjoy	1	0	0	0	0	0	1
v _	deep	0	1	0	0	1	0	0
Λ —	learning	0	0	0	1	0	0	0
X =	NLP	0	1	0	0	0	0	0
	flying	0	0	1	0	0	0	0

SVD applied to term-context matrix

$$\begin{bmatrix} X \\ V \end{bmatrix} = \begin{bmatrix} U \\ V \\ |V| \times |V| \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \end{bmatrix} \begin{bmatrix} V^T \\ V^T \\ V | \times |V| \end{bmatrix}$$

SVD applied to term-context matrix

$$\begin{bmatrix} X \\ V \end{bmatrix} = \begin{bmatrix} U \\ U \\ |V| \times |V| \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \sigma_k \end{bmatrix} \begin{bmatrix} V^T \\ k \times |V| \end{bmatrix}$$

SVD applied to term-context matrix

Simple SVD word vectors in Python

· Corpus: I like deep learning. I like NLP. I enjoy flying.

U, s, Vh = la.svd(X, full_matrices=False)

Simple SVD word vectors in Python

 Printing first two columns of U corresponding to the 2 biggest singular values

Singular Value Decomposition

Drawbacks:

 The dimensions of the matrix change very often (new words are added very frequently and corpus changes in size).

 The matrix is extremely sparse since most words do not cooccur.