第一章 普通点集拓扑

1.1 拓扑空间与连续函数

1.1.1 拓扑空间

定义 1.1.1. 集合 X 上的一个拓扑 T 谓 X 的一满足如下条件的子集族:

- 1. $\{\emptyset, X\} \in \mathcal{T}$;
- 2. T 中元素的任意并仍在 T 中;
- 3. T 中元素的有限交仍在 T 中。

定义 1.1.2. X 的所有子集构成的拓扑谓离散拓扑。

定义 1.1.3. 由 X 和 \emptyset 构成的拓扑谓密着拓扑。

定义 1.1.4. 由 X 本身与所有满足 X-U 为有限集的 U 构成的拓扑谓有限补拓扑。

定义 1.1.5. $T' \supset T$ 则 T' 细于 T, 反之则谓粗于。

如果把开集比做石子, 把石子打碎就得到更细的拓扑。

1.1.2 拓扑的基

定义 1.1.6. 基 B 谓满足如下条件的子集族:

- 1. 对任意 $x \in X$, 存在 $B \in \mathcal{B}$ 满足 $x \in B$;
- 2. 对任意 $x \in B_1 \cap B_2$, 存在 B 满足 $x \in B$ 且 $B \subset B_1 \cap B_2$ 。

注意此定义不针对具体的拓扑。

例 1.1.1. 平面上的圆域和矩形域构成的集族都构成基。

定义 1.1.7. 满足定义1.1.6的 \mathcal{B} 生成的拓扑为所有满足对 $x \in U$,存在 $x \in \mathcal{B} \subset U$ 的 U 的集族。

可以直接验证上述定义构成一个拓扑。对所有x取对应的 $x \in B_x$ 后将诸 B_x 并起,可得等价的表述

定理 1.1.1. 若 \mathcal{B} 为 \mathcal{T} 的基,则 \mathcal{T} 为 \mathcal{B} 中元素并的族。

定理 1.1.2. 设 C 为开集族,若对于任意开集 U 中任意 x,存在 $C \in C$ 满足 $x \in C \subset U$,则 C 为 T 的基。

证明. 容易验证 \mathcal{C} 为基。再分别证 $\mathcal{C} \subset \{U\}$ 与 $\{\cup C\} \supset \{U\}$ 。

定理 1.1.3. 设 \mathcal{B} 于 \mathcal{B}' 分别生成 \mathcal{T} 与 \mathcal{T}' , 则 \mathcal{T}' 细于 \mathcal{T} 当且仅当对任意 $x \in \mathcal{B}$ 存在 $x \in \mathcal{B}' \subset \mathcal{B}$ 。

证明. 强行带入定义,即任意 U 均在 T' 内即可。

定义 1.1.8. $\mathbb R$ 上的 (a,b) 生成的拓扑谓标准拓扑。

定义 1.1.9. \mathbb{R} 上 [a,b) 生成的拓扑谓下限拓扑,记作 \mathbb{R}_{ℓ} 。

定义 1.1.10. \mathbb{R} 上 (a,b) 与 (a,b) – $\left\{\frac{1}{n}\right\}$ 生成的拓扑谓 K-拓扑,记作 \mathbb{R}_K 。

引理 1.1.1. \mathbb{R}_{ℓ} 与 \mathbb{R}_{K} 严格细于标准拓扑,但它们之间不可比较。

证明. \mathbb{R}_K 严格细于的证明只需考虑 x=0 与 $B=(-1,1)-\{1/n\}$,同一个集合可证 \mathbb{R}_ℓ 不细于 R_K 。

定义 1.1.11. 子基 S 谓满足 $\cup S = X$ 的集族。

定义 1.1.12. 子基生成的拓扑谓 S 中有限交的所有并。

可以直接验证 $\{\cap S\}$ 为一个基,故其确实生成一拓扑。

1.1.3 序拓扑

定义 1.1.13. 具有全序关系的 X 上的序拓扑谓所有 (a,b), $(a, \max X]$, $[\min X,b)$ 生成的拓扑。

例 1.1.2. \mathbb{Z}_+ 上的序拓扑是离散拓扑。然而 $X=\{1,2\}\times\mathbb{Z}_+$ 的字典序拓扑下单点集 1×1 并非开集。

定义 1.1.14. 全序集 X 中 a 决定的射线谓开射线 $(a,+\infty)$, $(-\infty,a)$, $[a,+\infty)$, $(-\infty,a]$ 。

所有开射线构成 X 的序拓扑的子基。

1.1.4 积拓扑

定义 1.1.15. $X \times Y$ 上的积拓扑谓所有 $U \times V$ 的集族 \mathcal{B} 生成的拓扑, 其中 $U \to V$ 为 $X \to Y$ 中的开集。

定理 1.1.4. 若 \mathcal{B} 与 \mathcal{C} 分别为 \mathcal{X} 与 \mathcal{Y} 的基、则 $\mathcal{B} \times \mathcal{C}$ 为 $\mathcal{X} \times \mathcal{Y}$ 的基。

定义 1.1.16. 投射 $\pi_1(x,y) = x$, $\pi_2(x,y) = y$ 。

定理 1.1.5. 如下的 S 构成 $X \times Y$ 的一子基,其中 U 和 V 分别为 X 与 Y 中的开集。

$$S = \{\pi_1^{-1}(U)\} \cup \{\pi_2^{-1}(V)\}.$$

1.1.5 子空间拓扑

定义 1.1.17. 对 X 的子集 Y 定义子空间拓扑, 其中 U 为 X 中的开集。

$$\mathcal{T}_Y = \{Y \cap U\}.$$

定理 1.1.6. 若 \mathcal{B} 为 X 的一个基,则

$$\mathcal{B}_Y = \{ B \cap Y \mid B \in \mathcal{B} \}$$

谓 Y 的子空间拓扑的一个基。

引理 1.1.2. 若 Y 为 X 中开集而 U 为 Y 中开集,则 U 为 X 中开集。

定理 1.1.7. 若 $A \subset X$, $B \subset Y$, 则 $A \times B$ 的积拓扑与其自 $X \times Y$ 继承的子空间拓扑相符。

然而,对于序拓扑无类似结论。

例 1.1.3. 考虑 $X = \mathbb{R}$ 而 Y = [0,1], Y 上的序拓扑与子空间拓扑相符。

例 1.1.4. 考虑 $X = \mathbb{R}$ 而 $Y = [0,1) \cup \{2\}$,子空间拓扑中 $\{2\}$ 为开集,二者不符。

例 1.1.5. 考虑 $X = \mathbb{R}^2$ 而 $Y = [0,1] \times [0,1]$,则 $\frac{1}{2} \times \left(\frac{1}{2},1\right]$ 为子空间拓扑的开集但不是序拓扑的开集。

定义 1.1.18. 子集 Y 称为凸的,如果对 Y 中 a < b 皆有 $(a,b) \subset Y$ 。

定理 1.1.8. 设 X 为全序集, Y 为凸子集, 则子空间拓扑与序拓扑一致。

证明. 借助开射线构造子基后证明其相互包含即可。

1.1.6 闭集与极限点

定义 1.1.19. 若 X - A 为开集,则 A 为闭集。

例 1.1.6. \mathbb{R} 中 [a,b] 为闭集, \mathbb{R}^2 中 \mathbb{R}^2_+ 为闭集,有限补拓扑中 X、 \varnothing 、有限集为闭集。

例 1.1.7. 离散拓扑每一个集合都是开集也都是闭集, $Y = [0,1] \cup (2,3)$ 中两个分量都同时是开集和闭集。

定义 1.1.20. 对于拓扑空间 X, 成立

- 1. \emptyset 、X 都是闭集;
- 2. 闭集的任意交仍为闭集;
- 3. 闭集的有限并仍为闭集。

定理 1.1.9. $A \rightarrow X$ 的子空间 Y 的闭集当且仅当有闭集 C 满足 $A = Y \cap C$ 。

定理 1.1.10. $A \neq Y$ 的闭集, $Y \neq X$ 的闭集, 则 $A \neq X$ 的闭集。

Hausdorff 空间

定义 1.1.21. 集合的内部 \mathring{A} 是包含于其内的所有开集的并,闭包 \overline{A} 是其外所有闭集的交。

显然开集的内部是本身,闭集的闭包也是本身。注意 (0,1) 在其本身中的闭包和在 $\mathbb R$ 中的闭包不同,所称闭包都是指父空间闭包。

定理 1.1.11. $Y 中 \overline{A}^Y = \overline{A} \cap X$ 。

定义 1.1.22. 两集合相交,如果它们的交非空。

定义 1.1.23. 含有 x 的开集称为其邻域。

定理 1.1.12. $x \in \overline{A}$ 当且仅当每一个邻域与 A 相交。

证明. 如果存在反例 U, 则 X - U 会成为包含 A 的闭集。

推论 1.1.1. $x \in \overline{A}$ 当且仅当含有 x 的每一个基元素与 A 相交。

例 1.1.8. $A = \{0,1\}, \overline{A} = [0,1], A = \mathbb{Q}, \overline{A} = \mathbb{R}, \overline{\{1/n\}} = \{1/n\} \cup \{0\}, \overline{A} = \mathbb{R}$

极限点

定义 1.1.24. 若 x 的任何一个邻域包含 A 中其他点,则 x 为 A 的极限点。

例 1.1.9. A = (0,1], [0,1] 中的点均为其极限点。 $A = \mathbb{Q}$, \mathbb{R} 中的点均为其极限点。 $A = \{1/n\}$, 0 为其极限点。

定理 1.1.13. $\overline{A} = A \cup A'$, 其中 A' 为极限点集合。

证明. 参考定理1.1.12。

推论 1.1.2. A 为闭集当且仅当 $A' \subset A$ 。

Hausdorff 空间

定义 1.1.25. 如果对于x 的任意邻域 U, 存在N, 使得当 n > N, $x_n \in U$, 则 $\{x_n\}$ 收敛到点 x。

 \mathbb{R}^2 和 \mathbb{R} 中的序列最多收敛至一点,然而其他拓扑空间不一定。

定义 1.1.26. 若 X 中任意两不同点存在无交邻域,则称 X 为一 Hausdorff 空间(Hausdorff space)。

定理 1.1.14. Hausdorff 空间中有限集为闭集。

证明. 只证单点集。由于隔离邻域的存在,易见其他点都不在闭包内。 \Box 比 Hausdorff 条件更弱的,有 T_1 公理。

定义 1.1.27. 若 X 中有限集为闭,则 X 满足 T_1 公理。

定理 1.1.15. 若 X 满足 T_1 公理,则 x 为 A 的极限点当且仅当 x 的任意 邻域与 A 有无限交点。

证明. 如果有一个邻域只有有限交点, 挖掉还是开集, 但不再与 A 相交。 \Box

定理 1.1.16. 若 X 为 Hausdorff 空间,则 X 中的序列最多收敛至一点。

证明. 如果有两个点, 在定义中取隔离邻域即可。

定理 1.1.17. 每一个具有序拓扑的全序集,两个 Hausdorff 空间的积, Hausdorff 空间的子空间是 Hausdorff 空间。

证明. 全序集可选取中间元分割,中间元不存在的直接射线可分割。

1.1.7 连续函数

函数的连续性

定义 1.1.28. 函数 $f: X \to Y$ 称为连续的,如果开集的原像为开集。

为了证明函数连续,只需要证明基的原像为开集即可。

例 1.1.10. 上述定义等价于 $\epsilon - \delta$ 定义。

证明. 如果 $\epsilon - \delta$ 定义成立,则 f(x) 的 ϵ -邻域的原像包含 x 的 δ -邻域,故任意开集的原像均为开集。如果拓扑定义成立,则显而易见。

例 1.1.11. $f: \mathbb{R} \to \mathbb{R}_{\ell}$ 的 f(x) = x 不是连续函数,但其逆连续。

定理 1.1.18. 对于 $f: X \to Y$, 下列条件等价:

- 1. f 连续;
- 2. 对 X 的任意子集 A 有 $f(\overline{A}) \subset \overline{f(A)}$;
- 3. 对 Y 中任意闭集 B 有 $f^{-1}(B)$ 为闭集;
- 4. 对任意 x 与 f(x) 的邻域 V, 存在 x 的邻域 U 满足 $f(U) \subset V$ 。

证明. $1 \Rightarrow 2$: 若 y 在 f(A) 外一开集内,则原像为 f(A) 外一开集。 $2 \Rightarrow 3$: 闭集 $f(A) = \overline{f(A)} \supset f(\overline{A})$,故 $A = \overline{A}$ 。 $3 \Rightarrow 1 与 1 \Rightarrow 4 \Rightarrow 1$ 显然。

同胚

定义 1.1.29. 如果一个一一映射和它的逆都连续,则称之为同胚。

定义 1.1.30. 如果 X 的性质于与之同胚的 Y 都成立,则称之为拓扑性质。

定义 1.1.31. 映入子空间的同胚称为嵌入。

例 1.1.12. $F(x) = x/(1-x^2)$ 与 $G(y) = 2y/\left(1+(1+4y^2)^{1/2}\right)$ 为 (-1,1) 与 $\mathbb R$ 问同胚。

例 1.1.13. [0,1) 弯曲到圆周的映射连续而非同胚。其扩张连续而非嵌入。

构造连续函数

定理 1.1.19. 下列函数皆连续:

- 1. 常值函数;
- 2. 子空间到父空间的内射;
- 3. 连续函数的复合;
- 4. 连续函数限制定义域到一子空间的结果;
- 5. 连续函数限制或扩大值域至包含像集的子空间或父空间的结果;
- 6. 若 X 可写为开集的并, 且 f 在每个分量上连续。

定理 1.1.20 (黏结引理). 设 $X = A \cup B$ 且二者为闭集,并且 $f: A \to Y$ 与 $g: B \to Y$ 连续且在 $A \cap B$ 上相等,则 h 连续,

$$h(x) = \begin{cases} f(x), x \in A, \\ g(x), x \in B. \end{cases}$$

证明. 由定理1.1.18, 注意闭集被映回闭集即可。

例 1.1.14. 对 x > 0, h(x) = x, x < 0, h(x) = x/2, 则 h 连续。

定理 1.1.21. $f: A \to X \times Y$ 连续的充分必要条件为 f_X 与 f_Y 连续。

证明. 注意连续的拓扑定义等价于对基连续即可。

例 1.1.15. 向量场连续当且仅当分量连续。

1.1.8 积拓扑

定义 1.1.32. X 的元素的 J-串为 $x: J \to X$, 其全体记作 X^J 。

例如, $\mathbb{R}^3 \cong \mathbb{R}^{\{1,2,3\}}$ 。

定义 1.1.33. A_i 的笛卡尔积 $\prod A_i$ 为各取一元构成之 J-串的集合。

定义 1.1.34. 基由 $\prod U_{\alpha}$ 构成 $\prod X_{\alpha}$ 的称为箱拓扑。

定义 1.1.35. 子基由 $\{\pi^{-1}(U_{\alpha})\}$ 构成的称为积拓扑。

定理 1.1.22. 箱拓扑的基由所有 $\prod U_{\alpha}$ 构成,积拓扑的基由 $\prod U_{\alpha}$ 构成但 U_{α} 中只有有限个非 X_{α} 。

定理 1.1.23. $\prod B_{\alpha}$ 构成箱拓扑的积, $\prod B_{\alpha}$ 中若 B_{α} 中只有有限个非 X_{α} 则构成积拓扑的基。

例 1.1.16. \mathbb{R}^n 的积拓扑与箱拓扑一致。

定理 1.1.24. $\prod A_{\alpha}$ 在两种拓扑下都是 $\prod X_{\alpha}$ 的同种拓扑的子空间。

定理 1.1.25. 若每个 X_{α} 都是 Hausdorff 的,则两拓扑下 $\prod X_{\alpha}$ 都如此。

定理 1.1.26. 在 $\prod X_{\alpha}$ 的两种拓扑下都有 $\prod \overline{A_{\alpha}} = \overline{\prod A_{\alpha}}$.

证明. 若 x 在 $\prod \overline{A_{\alpha}}$ 内,则诸 $\prod U_{\alpha}$ 均有 $\prod A_{\alpha}$ 的元素,故 x 在 $\overline{\prod A_{\alpha}}$ 内。若 x 在 $\overline{\prod A_{\alpha}}$ 外 U_{α} 内,则 $\pi^{-1}(U_{\alpha})$ 包含 x 且为开集,故在 $\overline{\prod A_{\alpha}}$ 外。 \square

定理 1.1.27. 积拓扑下 $f: A \to \prod X_{\alpha}$ 连续当且仅当各个分量连续。

证明. 注意连续的拓扑定义等价于对基成立即可。

例 1.1.17. 对箱拓扑下 $\mathbb R$ 的可数无限积 $\mathbb R^\omega$, $f(t)=(t,t,t,\cdots)$ 不连续。注 意 $(-1,1)\times (-1/2,1/2)\times (-1/3,1/3)$ 被映回 0 即可。

1.1.9 度量拓扑

定义 1.1.36. 集合 X 的一个度量 d 是一个函数 $d: X \times X \to \mathbb{R}$, 满足正定、对称与三角不等式。

定义 1.1.37. 以全体 ϵ -球为基的拓扑称为度量拓扑。

容易验证全体 ϵ -球构成基。由这一定义,开集可视作满足任意 $y \in U$ 都有某 $B(x,\epsilon) \subset U$ 的集合 U。

例 1.1.18. 若 x = y, d(x,y) = 1, 否则 d(x,y) = 0 诱导出离散拓扑。

例 1.1.19. d(x,y) = |x-y| 诱导 \mathbb{R} 上的序拓扑。

定义 1.1.38. 若 X 的拓扑由某度量诱导,则称 X 为度量空间。

定义 1.1.39. 度量空间的子集 A 为有界的, 若 $d(a_1, a_2)$ 一致有界。A 的直径谓 $\dim A = \sup \{d(a_1, a_2)\}$ 。

定理 1.1.28. 由度量 d 诱导的度量

$$\bar{d}(x,y) = \min \left\{ d(x,y), 1 \right\}$$

谓标准有界度量, 它和 d 诱导同一拓扑。

证明. 分类验证三角不等式即可。

定义 1.1.40. 对 \mathbb{R}^n 中的点, $d(x,y) = \|x - y\| = \left(\sum (x_i - y_i)^2\right)^{1/2}$ 诱导 欧氏度量, $\rho(x,y) = \max\{|x_i - y_i|\}$ 诱导平方度量。

欧式度量的三角不等式是熟知的结论。平方度量由

$$d_3 = |x_k - z_k| \le |x_k - y_k| + |y_k - z_k| \le d_1 + d_2$$

验证三角不等式。注意同理可证若 X 上度量 d_1 和 Y 上度量 d_2 可以生成 $X \times Y$ 上一度量 $d_3 = \max\{d_1, d_2\}$ 。

欧式度量和平方度量的基元素分别为圆域和方域。由定理1.1.3立得

定理 1.1.29. 度量拓扑 T' 细于 T 当且仅当对于任意 x 与 ϵ , 存在 ϵ' 满足

$$B'(x,\epsilon') \subset B(x,\epsilon)$$
.

定理 1.1.30. 欧氏度量和平方度量诱导 \mathbb{R}^n 上的积拓扑。

证明. 直接验证不难, 但由 $\rho < r < \sqrt{n\rho}$ 可立得欧式与平方拓扑等价。 \square

定义 1.1.41. 对 \mathbb{R}^J 中的点定义

$$\rho\left(\boldsymbol{x},\boldsymbol{y}\right) = \sup\left\{\bar{d}\left(x_{\alpha},y_{\alpha}\right) \mid \alpha \in J\right\},\,$$

可得一致度量,诱导出一致拓扑。

定理 1.1.31. 一致拓扑细于积拓扑,粗于箱拓扑。J 为无限集则两两不同。

证明. 玩弄基元素的大小可证其粗细。J 无限时, $(-1,1)^J$ 在一致拓扑下为开,积拓扑下非开。 $\prod (-1/n,1/n)$ 在箱拓扑下为开,一致拓扑下非开。 \square

定理 1.1.32. 对 \mathbb{R} 的可数无限积 \mathbb{R}^{ω} 定义

$$D\left(\boldsymbol{x},\boldsymbol{y}\right)=\sup\left\{ \frac{\bar{d}\left(x_{i},y_{i}\right)}{i}\right\} ,$$

可诱导 \mathbb{R}^{ω} 上的积拓扑。

证明. 设 \mathbb{R}^{ω} 的某基 B 的分量在 j 后均为 \mathbb{R} ,则某 $B(x,\epsilon/j)$ 包含其内。反 之也可以选择这样的基包含于 B(x,1/j) 内。

类似证明可仿照得到

定理 1.1.33. 可度量化空间的可数积仍可度量化。

例 1.1.20. 在 $X \times Y = \mathbb{R}^2$ 上定义 $d = \min\{y_2 - y_1, 1\}$, 如果两点共 x, 否则 $d = 1 + (x_1 - x_2)$, 则 d 诱导字典序拓扑。

例 1.1.21. 易见度量空间的子空间仍为度量空间,且子空间的度量直接限制定义域可得。

1.1.10 连续函数与度量拓扑

定理 1.1.34. 度量空间到度量空间的 $f: X \to Y$ 的连续性等价于 ϵ - δ 条件。证明. 仿照例1.1.10可得。

推论 1.1.1. 度量为连续函数。

引理 1.1.3 (序列引理). 若 A 中有收敛于 x 的序列,则 $x \in \overline{A}$ 。若 X 为度量空间,逆命题成立。

定理 1.1.35. 度量空间之间的 $f: X \to Y$ 连续的充要条件谓 $x_n \to x$ 等价于 $f(x_n) \to f(x)$ 。

证明. 若拓扑条件成立,则 f(x) 的小邻域原像都会包含 x 的邻域,故包含 $\{x_n\}_{n>N}$ 。若序列条件成立,结合序列引理与定理1.1.18即可。

注意上述定理对满足下列条件的空间也可以直接适用。

定义 1.1.42. 如果 x 有邻域 $\{U_n\}$ 满足任意邻域 U 都有某 U_n 含于其内,则称 X 在 x 处有可数基。如果处处都有则称 X 满足第一可数性公理。

引理 1.1.4. 加减乘除是其定义域内的连续函数。

定理 1.1.36. 连续函数加减乘的结果连续, 恒非零的除亦连续。

定义 1.1.43. 若 $\{f_n\}$ 关于度量 $d(f,g) = \sup\{|f-g|\}$ 收敛于 f,则称其一致收敛。

定理 1.1.37. 一致收敛的连续函数列收敛于连续函数。

证明. 对给定的 ϵ , 存在 δ 和 N 使得当 $|x-y| < \delta$, 诸变差皆小于 δ 。

$$|f(x) - f(y)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(y)| + |f(y) - f_N(y)|.$$

推论 1.1.3. 若 $x_n \to x$ 而 $\{f_n\}$ 一致收敛于 f, 则 $f_n(x_n) \to f(x)$ 。

例 1.1.22. 箱拓扑的 \mathbb{R}^{ω} 不满足序列引理因此不可度量化。 $0 \in \mathbb{R}_{+}^{\omega}$ 但 $\prod (-x_{ii}, x_{ii})$ 排斥所有 x_i 。

例 1.1.23. 不可数个 ℝ 的积空间不可度量化。

证明. 考虑 \mathbb{R}^J 由那些知有有限个零分量的 $\{0,1\}$ 序列的子空间,易见 0 在 其内。然而,能有幸为零的分量指标仅有可数个,故存在恒 1 的指标。 \square

1.1.11 商拓扑

定义 1.1.44. 满射 $p: X \to Y$ 称为商映射,如果 $U \neq Y$ 的开集当且仅当 $p^{-1}(U) \neq X$ 的开集。

易见开集也可以改为闭集。

定义 1.1.45.~X 的子集 C 为饱和的,如果它是纤维的并。

商映射等价于饱和开集映射到开集。易见开映射和闭映射(把开集映射到开集或者把闭集映射到闭集)都是商映射。

例 1.1.24. $[0,1] \cup [2,3]$ 到 [0,2] 的黏贴映射是闭映射但不是开映射。

例 1.1.25. $\pi_1: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ 是开映射但不是闭映射, 因为 $\{y = 1/x\}$ 被映射到开集。

例 1.1.26. π_1 在 $A = \mathbb{R} \times 0 \cup [0, \infty) \times \mathbb{R}$ 上的限制是商映射,但不是开映射或者闭映射。 $A - (-\infty, 0] \times 0$ 是开集,但是被映射到闭集。 $\{y = \pm \tan x\}$ 图像左侧是闭集,但被映射到开集。

定义 1.1.46. 满射 $p: X \to A$ 的像 A 上存在一拓扑使得 X 为商映射,此 拓扑谓商拓扑。

例 1.1.27. $y = \operatorname{sgn}(x)$ 在点集上可以诱导一个商拓扑 $\{\{\{-1\}, \{1\}\}, 0\}$ 。

定义 1.1.47. X^* 为 X 的分拆,则 $\pi: X \to X^*$ 诱导的商拓扑使 X^* 为商空间。

例 1.1.28. 将单位圆盘将圆周视为等价类,则商空间同胚于球面。

例 1.1.29. 将矩形四角和对边上对应点视为等价类,则商空间同胚于环面。

由例1.1.26知商映射在子空间的限制未必是商映射,但仍然有

定理 1.1.38. 设商映射 $p: X \to Y$ 与饱和子空间 A, 则 p 在其上的限制 $q: A \to p(A)$ 仍为商映射,如果

- 1. A 为开集或闭集;
- 2. 或者 p 为开映射或闭映射。

证明. 先验证,如果 $V \subset p(A)$,则 $q^{-1}(V) = p^{-1}(V)$ 。如果 $U \subset X$,则 $p(U \cap A) = p(U) \cap p(A)$ 。都有 $q^{-1}(V)$ 是开的 $\Rightarrow V$ 在 p(A) 中为开。 \square

商映射的复合仍为商映射,但乘积不一定,Hausdorff 空间的商空间也不一定是 Hausdorff 空间。

定理 1.1.39. 商映射 p 与纤维上的映射 g 诱导 f 满足 $f \circ p = g \circ f$ 连续当 且仅当 g 连续, f 为商映射当且仅当 g 为商映射。

证明. 若 p 和 g 为商映射,证明 $f^{-1}(V)$ 为开集 $\Rightarrow V$ 为开集即可。

推论 1.1.2. 设 $g: X \to Z$ 为连续满射, X^* 为各纤维的集, 取商拓扑, 则

1. g 诱导的 $f: X^* \to Z$ 一一连续, 其为同胚当且仅当 g 为商映射;

2. 若 Z 为 Hausdorff 空间,则 X^* 为 Hausdorff 空间。

证明. 注意一一的商映射等价于同胚。

例 1.1.30. 设 $X = [0,1] \times \{1,2,\cdots\}$, $Z = x \times (x/n)$ 其中 $x \in [0,1]$, 则 $g(x \times n) = x \times (x/n)$ 诱导出 X^* 为将 X 诸左端点粘合的空间,但 $f: X^* \to Z$ 不是同胚。

证明. 考虑 $x_n = (1/n) \times n$,则 $\{x_n\}$ 为闭集但是 $z_n = (1/n) \times 1/n^2$ 不是,因此 g 不是商映射。

例 1.1.31. 设 $p: X \to X^*$ 是将 \mathbb{R} 的 \mathbb{Z}_+ 粘合为 b 形成的商空间, $i: \mathbb{Q} \to \mathbb{Q}$ 为恒等映射,则 $p \times i$ 不是商映射。

证明. 假设 U_n 为 $n \times (\sqrt{2}/n)$ 附加其上方和下方的条带, $U = \cup U_n$,则 U 饱和但 $p \times i(U)$ 不是开集,因为某 $I_b \times I_\delta$ 的原像包含条带的缝隙。

1.2 连通性与紧致性

1.2.1 连通空间

定义 1.2.1. 拓扑空间 X 的一个分割,谓其一对无交非空开集其并为 X。

引理 1.2.1. 若 $Y \in X$ 的子空间,则其分割的分量彼此不包含对方的极限点。若存在一对并为 Y 的非空集合彼此不包含对方极限点,则亦构成分割。

证明. 注意分量既开又闭,故极限点自含。若存在这样的一对,则 A 中任意元素都存在小邻域在 B 外,故在 A 内,故 A 为开集。

例 1.2.1. 密着拓扑是连通的。

例 1.2.2. \mathbb{R} 的子空间 $[-1,0) \cup (0,1]$ 不是连通的。

例 1.2.3. ℚ 不是连通的。

例 1.2.4. $\{y=1/x\}$ 其中 x>0 和 $\{y=0\}$ 作为 \mathbb{R}^2 的子空间不是连通的。

引理 1.2.2. 连通子空间包含在分割的二者中一个内。

定理 1.2.1. 含有一个公共点的连通子空间族的并是连通的。

定理 1.2.2. A 为连通子空间,则 $A \subset B \subset \overline{A}$ 的 B 是连通的。

证明. 若 \overline{A} 被分拆为 $C \cup D$, 则 $A \subset C$ 而 D 为一个与 A 无交的邻域。 \square

定理 1.2.3. 连通空间的连续映射的像是连通的。

定理 1.2.4. 有限多个连通空间的积是连通的。

证明. 注意每个十字形是含有公共点的连通空间的并, 再将十字形并起。 □

例 1.2.5. 箱拓扑的 \mathbb{R}^{ω} 不连通,后者可分为有界序列和无界序列两开集。

例 1.2.6. 积拓扑的 \mathbb{R}^{ω} 连通,因为 $\mathbb{R}^{\omega} = \overline{\mathbb{R}^{\infty}}$,而 $\mathbb{R}^{\infty} \cong \bigcap (\mathbb{R}^n + (0,0,\cdots))$,被并的元素均连通且具有原点为公共点。

1.2.2 实直线上的连通子空间

定义 1.2.2. 若 L 是多于一个元素的全序集,且 L 具有上确界性质,且 $x < y \Rightarrow$ 存在 x < z < y,则 L 谓线性连续统。

定理 1.2.5. 若 L 为序拓扑的线性连续统,则 L 及其区间和射线都连通。

证明. L 的凸子集 Y 若分拆为 A 和 B,则其中的(不妨设)a < b 有 [a,b] 被分割为 $A_0 \cup B_0$ 。inf $B_0 \in B_0$ 或 inf $B_0 \in A_0$ 都会导致矛盾。

推论 1.2.1. ℝ 及其区间和射线都是连通的。

定理 1.2.6 (介值定理). 连通空间到序拓扑的全序集的映射 $f: X \to Y$,任何 f(a) 与 f(b) 之间的 r 存在 c 满足 f(c) = r。

例 1.2.7. 有序矩形是连通的, 只需验证上确界性质。分 $\sup \pi_1(A)$ 在 $\pi_1(A)$ 内或外取 $b \times c$ 或 $b \times 0$ 即可。

例 1.2.8. 良序集 X 有 $X \times [0,1)$ 关于字典序为线性连续统。

定义 1.2.3. X 中 x 到 y 到一条道路是连续的 $f:[a,b] \to X$ 满足 f(a)=x 与 f(b)=y。若 X 中任意两点之间都存在道路,则称之道路连通的。

显然道路连通蕴含连通。

例 1.2.9. \mathbb{R}^n 中的球是道路连通的, f(t) = (1-t)x + ty 是一条道路。

例 1.2.10. $\mathbb{R}^n - \{0\}$ 是连通的。

例 1.2.11. 单位球面是连通的,因为它可以从球由 $f: x \to x/||x||$ 得到。

例 1.2.12. 有序矩形 I_o^2 连通而非道路连通。在每个被映射到竖线的 $[a_i,b_i]$ 中选取有理数、只能得到可数竖线。

例 1.2.13. $S = \{x \times \sin(1/x)\}$ 的闭包 \overline{S} 连通而非道路连通。任何 S 到 $0 \times [-1,1]$ 的路径都必然震荡 $t_n \times (-1)^n$,故无法收敛,不可能连续。

1.2.3 分支与局部连通性

定义 1.2.4. X 中的连通等价类谓分支。

定理 1.2.7. X 的所有分支是 X 中无交的连通子空间,其并为 X,且任意连通子空间必定包含在某分量内。

证明. 如果某连通子空间和两个分量相交, 那么 $x_1 \sim x_2$ 。

定义 1.2.5. X 中的道路连通等价类谓道路连通分支。

可以证明这是一个等价关系。

定理 1.2.8.~X 的道路连通分支是无交的道路连通子空间,其并为 X,且任意道路连通子空间必定包含在某分量内。

连通分支的闭包也是连通的,因此它们是闭集。如果只有有限分支,它们还会是开集。但道路连通不一定。

例 1.2.14. ℚ 的每个分支为单点集,但不是开集。

例 1.2.15. 拓扑学家的正弦曲线,两个道路分支一个纯开一个纯闭。

定义 1.2.6. 空间谓局部连通的,如果处处给定 U 有连通邻域 $V \subset U$ 。谓局部道路连通的,如果处处给定 U 有道路连通邻域 $V \subset U$ 。

例 1.2.16. 这里的定义不能改成「每个x都存在连通邻域」,因为连通邻域的子开集不一定连通。见局部连通与无穷扫帚。

例 1.2.17. 区间的并是局部连通的, ◎ 不是局部连通的。

定理 1.2.9. 空间是局部连通的当且仅当任何开集的每一个分支都是开的。

证明. 后半句成立则显然, 前半句成立则对邻域取交可得内含的开集。

定理 1.2.10. 空间是局部道路连通的当且仅当开集的所有道路连通分量都 是开的。

定理 1.2.11. 道路分支包含在分支内。局部道路连通则分支与道路分支同。 证明. 前句显然。后句若分支内有多个道路分支都是开的,则构成分割。□

1.2.4 紧致空间

定义 1.2.7. A 成员的并为 X,称之为覆盖。包含子空间 Y 亦称为覆盖。

定义 1.2.8. X 任何开覆盖包含有限子族覆盖,则称之紧致的。

例 1.2.18. \mathbb{R} 不是紧致的, $\{0,1\}$ 或 $\{0,1\}$ 也不是,而 $\{0\} \cup \{1/n\}$ 紧致。

引理 1.2.3. 子空间 Y 是紧致的,当且仅当 X 的开集组成的每一个 Y 的 覆盖都有有限子族覆盖 Y。

定理 1.2.12. 紧致空间的闭子集紧致。

证明. 注意子集的每个覆盖都可以并上子集的补称为 X 的开覆盖。 \square

定理 1.2.13. Hausdorff 空间的每一个紧致子空间都是闭的。

证明. 只证其补为开。Y 内所有点都和外点 z 有无交邻域,并起取有限族,相应 z 取有限交可得 z 与 Y 的无交邻域。

引理 1.2.4. 紧致空间和其外一点可以分别被无交开集包含。

例 1.2.19. 半开区间和开区间不是紧致的。

例 1.2.20. 有限补拓扑的每个集合都是紧致的, 但只有有限集是闭的。

定理 1.2.14. 紧致空间的连续像是紧致的。

定理 1.2.15. 连续双射 $f: X \to Y, X$ 紧致 Y 为 Hausdorff,则 f 为同胚。证明. 结合定理1.2.13和定理1.2.14证明闭集映射到闭集即可。

引理 1.2.5 (管状引理). 积空间 $X \times Y$ 中若 Y 为紧致, N 为包含 $x \times Y$ 的开集, 则 N 包含 x 的一个邻域 $W \times Y$ 。

定理 1.2.16. 紧致空间的有限积是紧致的。

证明. 对每个x选一条管道,从中选出有限条,每个管道选择有限覆盖。 \square

例 1.2.21. 若 Y 非紧致,则考虑正态分布下方部分,显然不包含管道。

定义 1.2.9. X 的子集族 \mathcal{C} 称为具有有限交性质 (finite intersection property),如果 \mathcal{C} 的任意有限子族交非空。

定理 1.2.17. X 是紧致的当且仅当 X 中具有有限交性质的每一个闭集族 \mathcal{C} , 其交非空。

证明. 这些集合的补是一堆开集,这些开集中的任意有限个都不能覆盖 X,但 X 是紧致的,所以它们合起来也不能覆盖 X。

1.2.5 实直线上的紧致子空间

定理 1.2.18. 设 X 是具有上确界性质和序拓扑的全序集,则闭区间紧致。

证明. a 以上存在 c 满足 [a,c] 可以被有限覆盖,假设 c_0 是这些 $\{c\}$ 的上确界,则显然 $c_0 \in \{c\}$,并且注意 $c_0 \neq b$ 会引发矛盾。

推论 1.2.2. ℝ 中的每一个闭区间紧致。

定理 $1.2.19. \mathbb{R}^n$ 的子集紧致,当且仅当为闭的且欧氏度量或平方度量有界。

证明. Hausdorff 空间的紧致集合是闭的,且诸开球 B_n 可以覆盖之,故有界。反之若为闭且有界,则为紧致立方体的子空间故亦紧致。

注意这不意味着「度量空间的紧致集合是有界闭集」,因为由定理1.1.28, 一个欧氏无界的集合在同一拓扑下可以有界。

例 1.2.22. 球面和闭球是紧致的,双曲线是闭的但不是紧致的。 $\{1/n\}$ 不是闭的故不是紧致的。

定理 1.2.20 (极值定理). $f: X \to Y \stackrel{.}{\to} X$ 为紧致而 Y 具有序拓扑,则存在极大值和极小值。

证明. 只证序拓扑下的紧致集合包含最大元。否则 $\{(-\infty,a) \mid a \in A\}$ 是覆盖,存在有限覆盖 $\{(-\infty,a_n)\}$,则最大的 $a_n \notin A$,矛盾。

定义 1.2.10. x 到集合 A 的距离定义为 $d(x,A) = \inf d(x,a)$ 。

容易验证这是一个连续函数。

引理 1.2.6 (Lebesgue 数引理). A 为紧致度量空间 X 的开覆盖,则存在 δ 使每个直径小于它的子集都包含在某 A 中,称此 δ 为 Lebesgue 数。

证明. 令 $\{C_i\}$ 为有限的诸 $\{A_i\}$ 之补,则 $f(x) = \sum d(x, C_i) > 0$,故存在最小值 ϵ ,则 $\delta = \epsilon/n$ 。因为 $\max d(x, C_i) \geq \epsilon/n$ 。

定义 1.2.11. $f: X \to Y$ 是度量空间之间的映射,若对于任意的 $\epsilon > 0$,存在 $\delta > 0$ 使得

$$|x_0 - x_1| < \delta \Rightarrow |f(x_0) - f(x_1)| < \epsilon,$$

则称之一致连续的。

定理 1.2.21. 若 X 为紧致的而 f 连续,则 f 一致连续。

证明. 把每处的 δ 邻域并起,取 δ 为 Lebesgue 数即可。

定义 1.2.12. 孤立点谓单点开集。

定理 1.2.22. 非空紧致 Hausforff 空间 X, 若无孤立点则不可数。

证明. 对于 X 的任意元素 x 和非空开集 U,由 Hausdorff 性质皆可以选取 一非空开集 $V\subset U$,满足 $x\not\in \overline{V}$ 。

假设有 $f: \mathbb{Z}_+ \to X$,则可以选取 V_1 其闭包不包含 x,且可选取 $V_2 \subset V_1$ 其闭包不包含 x_2 ,以此类推。考虑

$$\overline{V}_1 \supset \overline{V}_2 \supset \cdots$$

由 x 的紧致性与定理1.2.17,知其交非空故有元素 x 在诸 x_n 之外。 \Box

1.2.6 极限点紧致性

定义 1.2.13. 如果 X 的任意无穷子集都有极限点,称 X 为极限点紧致的。 定理 1.2.23. 紧致性蕴含极限点紧致。

证明. 假设紧致性而一个集合没有极限点,故其为闭集从而紧致。选取诸点的小邻域覆盖,可以取得有限多个小邻域,故仅有有限多点。 □

例 1.2.23. $\mathbb{Z}_+ \times Y$ 其中 Y 为两点密着拓扑集,则其为极限点紧致(每个子集都有极限点)但显然非紧致。

例 1.2.24. 具有序拓扑的极小不可数良序集 S_{Ω} 非紧致,但每个可数集合都包含在一个闭区间内,闭区间是紧致的,故存在极限点,故 S_{Ω} 极限点紧致。

定义 1.2.14. 若每个序列都有收敛的子序列, 称空间为列紧的。

定理 1.2.24. 对于度量空间、紧致、极限点紧致与列紧等价。

证明. 极限点的存在性意味着收敛子列存在。如果列紧,则 Lebesgue 数引理成立,否则会有 $\{r_i\} \to 0$ 使得诸球皆不包含于 A 内。然而诸球的的球心存在极限点,存在此点的邻域在 A 内而包含诸球,矛盾。

下证对任意 ϵ 都存在有限 ϵ -球覆盖。否则取 $B(x_1,\epsilon)$,并在其外取 x_2 ,在 $B_1 \cup B_2$ 外取 x_3 ,以此类推。则最终 $\{x_n\}$ 两两距离 $\geq \epsilon$,故无极限点。

对任意开覆盖,选取 Lebesgue 数以及相应开球有限覆盖的父集 A。 \square

由有限 ϵ -球覆盖的存在性知

推论 1.2.3. 可度量化的紧致空间具有有限直径。

例 1.2.25. $\overline{S_{\Omega}}$ 不是可度量化的,因为 Ω 为极限点但不满足序列引理。 S_{Ω} 满足序列引理但它也不可度量化。

定义 1.2.15. 度量空间内的映射 f, 若

$$d\left(f\left(x\right), f\left(y\right)\right) < d\left(x, y\right),$$

则称 f 为收紧映射 (shrinking map)。

定义 1.2.16. 度量空间内的映射 f, 若

$$d\left(f\left(x\right),f\left(y\right)\right) \leq \alpha d\left(x,y\right),$$

其中 $\alpha < 1$, 则称 f 为压缩映射 (contraction map)。

定理 1.2.25. 若 X 为完备度量空间、则压缩映射存在唯一不动点。

证明. 注意
$$|x_n - x_{n+1}| < d|x_n - x_{n-1}|$$
 即可。

原书上此处仅证紧致空间,然而由定理1.2.24紧致的度量空间是完备的。

1.2.7 局部紧致性

定义 1.2.17. 空间 X 在 x 处局部紧致,如果存在紧致子空间包含其邻域。如果处处如此,则空间局部紧致。

例 1.2.26. \mathbb{R}^n 是局部紧致的,但 \mathbb{R}^ω 不是。

例 1.2.27. 具有上确界性质的全序集是局部紧致的。

定义 1.2.18. 若 Y 是紧致的 Hausdorff 空间, $\overline{X} = Y$ 且 X 为 Y 的真子空间,则 Y 为 X 的紧致化。若相差单点集则谓单点紧致化。

定理 1.2.26. 空间局部紧致的 Haudorff 空间当且仅当存在单点紧致化。在此情形下,诸紧致化同胚且在 X 上恒等。

证明. 同胚性验证开集映射到开集,分 $\infty \in U$ 与 $\infty \notin U$ 即可。构造 $Y = X \cup \{\infty\}$ 的拓扑为 $\{U\} \cup \{Y - C\}$ 其中 C 紧致可得单点紧致化。若已 知单点紧致化存在,则取 ∞ 的邻域的补知为紧致空间的闭子集故紧致。 \square

例 1.2.28. ℝ 的单点紧致化同胚于圆周。ℂ 的单点紧致化同胚于球。

定理 1.2.27. 设 X 为 Hausdorff 空间,则 X 在某处局部紧致当且仅当其任意邻域 U 包含邻域 V 且 \overline{V} 紧致, $\overline{V} \subset U$ 。

证明. 若 X 局部紧致,取单点紧致化后 Y-U 为闭集,由定理1.2.13的证明知存在无交邻域分开 x 与 Y-U,故 $\overline{V} \subset U$ 紧致。

推论 1.2.4. 局部紧致空间的闭子集或开子集局部紧致。

证明. 闭子集由定义知局部紧致, 开子集借前开定理知局部紧致。

推论 1.2.5. 空间同胚于一个紧致的 Hausdorff 空间的开子集当且仅当其为局部紧致的 Hausdorff 空间。

1.3 完备度量空间与函数空间

1.3.1 完备度量空间

定义 1.3.1. 度量空间中若序列 $\{x_n\}$ 对任意给定的 ϵ 有 N 使 $n, m \geq N \Rightarrow d(x_n, x_m) < \epsilon$, 则谓之 Cauchy。空间谓完备的, 若 Cauchy 序列皆收敛。

显然收敛序列必定是 Cauchy 的。显然完备空间的闭子集皆完备。显然 空间关于一度量完备当且仅当其关于相应的标准有界度量完备。

引理 1.3.1. 若空间中每一个 Cauchy 序列皆有收敛子序列则空间完备。

引理 1.3.2. 对于通常的度量, \mathbb{R}^n 完备。

证明. 借助定理1.2.24选取收敛子列。

引理 1.3.3. 积空间中的序列收敛当且仅当其分量收敛。

定理 1.3.1. 积空间 \mathbb{R}^{ω} 关于诱导积拓扑的度量完备。

证明. 诱导积拓扑的度量见定理1.1.32, 只证分量 Cauchy⇒ 列 Cauchy。 □

例 1.3.1. \mathbb{Q} 和 (-1,1) 不是完备的,可见完备性不是拓扑性质。

定义 1.3.2. 设 \bar{d} 为度量空间 Y 的标准有界度量,则

$$\bar{\rho}(\boldsymbol{x}, \boldsymbol{y}) = \sup \{\bar{d}(x_{\alpha}, y_{\alpha})\}\$$

谓一致度量。

定理 1.3.2. 如果 Y 关于度量 d 完备,则 Y^J 关于 $\bar{\rho}$ 完备。

下文中用 $\mathcal{C}(X)Y$ 表示连续函数, $\mathcal{B}(X,Y)$ 表示有界函数。

定理 1.3.3. 对于度量空间 Y, C(X,Y) 和 $\mathcal{B}(X,Y)$ 都是闭集。

证明. 前者为定理1.1.37,后者注意存在有界函数一致接近极限点即可。□

推论 1.3.1. 若 Y 是完备的,则 $\mathcal{C}(X,Y)$ 和 $\mathcal{B}(X,Y)$ 都是完备的。

定义 1.3.3. 设有度量空间 Y, 则 $\mathcal{B}(X,Y)$ 上定义

$$\rho(f,g) = \sup \left\{ d\left(f\left(x\right), g\left(x\right)\right) \right\}.$$

谓之上确界度量。

定理 1.3.4. 度量空间存在到完备度量空间的等距嵌入。

借助度量函数. $\phi_a(x) = d(x,a) - d(x,x_0)$ 连续而有界,故 $\Phi(a) = \phi_a$ 是 X 到完备度量空间 \mathcal{B} 的嵌入,显然 $\rho(\phi_a,\phi_b) = d(a,b)$ 故为等距嵌入。

借助 Cauchy 序列. Y 为所有 X 中等价 Cauchy 列的集, $d_Y \leftarrow d(x_n, y_n)$, 则 $h(x) = (x, x, \cdots)$ 等距。h(X) 在 Y 中稠密,再借助下述引理。

引理 1.3.4. A 在度量空间 Z 中稠密, A 中 Cauchy 列皆收敛则 Z 完备。

证明. 对 $\{z_n\}$ 选取 $\{a_n\}$ 满足 $d(a_n, z_n) \leq 1/n$ 。

定义 1.3.4. $h: X \to Y$ 等距嵌入完备空间,则 $\overline{h(X)}$ 为完备,谓完备化。

1.3.2 Peano 曲线

定理 1.3.5. 设 I = [0,1], 存在连续满射 $f: I \to I^2$ 。

证明. 对正方形定义 \land -形道路 f_1 , f_2 由多段 \land -形拼成,形同 $> \land \land <$,类推定义 f_3 等。由推论1.3.1, $\mathcal{C}(I,I^2)$ 完备,又显然 $\{f_n\}$ 为 Cauchy,收敛于 f。又显然 $x \in I^2$ 的任意邻域都与 f 相交,而 f(I) 为闭集,故为满射。 \square

1.4 数列与级数

1.4.1 收敛序列

定义 1.4.1 (平行于定义1.1.25). 度量空间的序列 $\{p_n\}$ 收敛,如果存在 $p \in X$ 满足对于任意 $\epsilon > 0$,存在 N 使 $n \ge N$ 时 $d(p_n, p) < \epsilon$ 。

定理 1.4.1. 设 $\{p_n\}$ 是度量空间 X 中的序列,

- 1. $\{p_n\}$ 收敛于 $p \in X$, 当且仅当 p 的每个邻域都能包含 $\{p_n\}$ 除有限项意外的其他项;
- 2. (平行于定理1.1.16) 如果 $p \in X$, $p' \in X$, $\{p_n\}$ 收敛于 p 和 p', 则 p' = p;
- 3. 如果 $\{p_n\}$ 收敛, 那么 $\{p_n\}$ 有界。
- 4. (平行于引理1.1.3) 如果 $E \subset X$ 而 p 是 E 的极限点,那么 E 中有 $\{p_n\}$ 收敛于 p_o

定理 1.4.2 (平行于定理1.1.35与平行于引理1.1.4). 若 $t_n \to t$ 而 $s_n \to s$, 则

1. $t_n + s_n \rightarrow s + t$;

- 2. $cs_n \rightarrow cs$, $c+s_n \rightarrow c+s$;
- 3. $s_n t_n \to st$;
- 4. 若 $s_n \neq 0$ 且 $s \neq 0$ 则 $1/s_n \rightarrow 1/s_o$

证明. 注意第三点可以先证明 $p_n \to p \Rightarrow p_n^2 \to p^2$, 即

$$|p_n^2 - p^2| = |p_n - p||p_n + p| \to 0.$$

定理 1.4.3 (平行于例1.1.15或平行于定理1.1.30). \mathbb{R}^n 中的序列收敛当且仅当其诸分量收敛,在此情形下,若 $\beta_n \to \beta$,

- 1. $\boldsymbol{x}_n + \boldsymbol{y}_n \rightarrow \boldsymbol{x} + \boldsymbol{y}$;
- 2. $\boldsymbol{x}_n \cdot \boldsymbol{y}_n \to \boldsymbol{x} \cdot \boldsymbol{y}$;
- 3. $\beta_n \boldsymbol{x}_n \to \beta \boldsymbol{x}_\circ$

证明. 对各分量调用前开定理即可。

1.4.2 子序列

定义 1.4.2. $\{p_{n_k}\}$ 中若 $\{n_k\}$ 严格递增则谓子序列。若收敛则谓部分极限。

定理 1.4.4 (平行于定理1.2.23). 紧致度量空间中的序列存在收敛子列。

推论 1.4.1. \mathbb{R}^n 中的有界序列包含收敛子列。

定理 1.4.5 (平行于定理1.1.13). 度量空间中 $\{p_n\}$ 的部分极限组成闭集。

证明. 用闭集 C 排斥所有孤立点, 从而所有部分极限, 即 $\overline{O} \cap C$ 为闭集。 \square

1.4.3 Cauchy 序列

定义 1.4.3 (平行于定义1.3.1). $\{p_n\}$ 谓 Cauchy 序列,若对于任意 $\epsilon>0$,存在 N 使得任意 $n,m\geq N$ 都有 $d(p_n,p_m)<\epsilon$ 。

 $\{p_n\}$ 是 Cauchy 序列,等价于 diam $\{p_n, p_{n+1}, \dots\} \to 0$ 。

定理 1.4.6 (平行于推论1.1.1与平行于定理1.1.18). diam $E = \operatorname{diam} \overline{E}$ 。

定理 1.4.7 (定理1.2.17). 若 $\{K_n\}$ 为紧集的递降序列且 $\operatorname{diam} K_n \to 0$,则 $\cap K_n$ 为单点集。

定理 1.4.8. 度量空间中的收敛序列都是 Cauchy 序列。

定理 1.4.9. 紧致的度量空间中 Cauchy 序列收敛。

证明. 由定理1.4.7可得。或由于存在收敛子序列,故 Cauchy 序列收敛。 □

定理 1.4.10. \mathbb{R}^n 中 Cauchy 序列收敛。

定义 1.4.4. 若度量空间的每个 Cauchy 序列在其中收敛,则称之完备的。

推论 1.4.2. 紧度量空间完备, \mathbb{R}^n 完备, 完备度量空间的闭子集完备。

定理 1.4.11. 单调序列收敛当且仅当有界。

证明. 有界单调序列存在收敛子列, 即子 Cauchy 列, 故为 Cauchy 序列。 □

1.4.4 上极限和下极限

定义 1.4.5. 若 $\{p_n\}$ 满足对任意实数 M,存在 N 使得 $n \ge N \Rightarrow s_n \ge M$,则谓 $s_n \to +\infty$ 。类似定义 $s_n \to -\infty$ 。

定义 1.4.6. $\{p_n\}$ 为实数序列而 E 为其所有部分极限的扩展 (必要时包含 ∞),则 $p^* = \sup E$ 为上极限, $p_* = \inf E$ 谓下极限。

定理 1.4.12. 符号定义如上,则

- 1. $p^* \in E$;
- $2. x > p^*$ 则存在 N 使得 $n \ge N \Rightarrow p_n < x$;
- 3. p* 是唯一具有上述二性质的数。

对 p_* , 类似结论成立。

证明. 由部分极限构成闭集知第一点成立。若 p^* 以上仍然存在无限多点,则矛盾,知第二点成立。若 $p < p^*$,则第二点不能成立,知第三点成立。 \square

定理 1.4.13. $s_n \to s$ 当且仅当 $s_* = s = s_*$ 。

1.4.5 特殊序列

定理 1.4.14. 当 p > 0, $\alpha \in \mathbb{R}$, 下列极限成立:

- 1. $1/n^p \to 0$;
- 2. $p^{1/n} \to 1$;
- 3. $n^{1/n} \to 1$;
- 4. $n^{\alpha}/(1+p)^{n} \to 0$;
- 5. |x| < 1 时, $x^n \to 0$ 。

证明. 取 $N = (1/\epsilon)^{(1/p)}$ 可得第一点。若 p > 1,令 $x_n = p^{1/n} - 1$, $(1 + x_n)^n = p$ 后展开取前二项知成立第二点。展开取第三项成立第三点。

1.4.6 级数

定义 1.4.7. $s_n = \sum^n a_n$ 谓部分和, 若 $s_n \to s$ 则谓级数收敛。

定理 1.4.15. $\sum a_n$ 收敛当且仅当对任意的 $\epsilon > 0$,存在整数 N 使得 $m \ge n \ge N$ 时,

$$\left| \sum_{k=n}^{m} a_k \right| \le \epsilon.$$

定理 1.4.16. $\sum a_n$ 收敛则 $a_n \to 0$ 。

定理 1.4.17. 正项级数收敛当且仅当 s_n 有界。

定理 1.4.18. 如果 $|a_n| \leq c_n$ 而 $\sum c_n$ 收敛则 $\sum a_n$ 收敛。

定理 1.4.19. 若 $a_n \ge d_n \ge 0$ 而 $\sum d_n$ 发散,则 $\sum a_n$ 发散。

证明. 由前开定理反证得。

1.4.7 正项级数

定理 **1.4.20.** 若 $0 \le x < 1$,则 $\sum x^n = 1/(1-x)$ 。

定理 1.4.21. 单调递减的正项序列 $\{a_n\}$, 其和收敛当且仅当 $\sum 2^k a_{2k}$ 收敛。

推论 1.4.3. p > 1 时 $\sum 1/n^p$ 收敛, 否则发散。

推论 1.4.4. p > 1 时 $\sum 1/n (\log n)^p$ 收敛, 否则发散。

可以继续这种手段,证明 $\sum 1/n \log n (\log \log n)^p$ 的敛散性。

定义 1.4.8. $e=\sum 1/n!$ 。

定理 1.4.22. $(1+1/n)^n \to e_o$

证明. 设 $a_n = (1 + 1/n)^n$, 二项式展开立得

$$1 + \frac{1}{1!} + \frac{1}{2!} + \dots > \left(1 + \frac{1}{n}\right)^n, \quad \sup a_n \le e.$$

$$\lim \inf a_n \ge 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{m!}, \quad \inf a_n \ge e.$$

 $\sum_{n=0}^{\infty} 1/n! - e < 1/n!n$ 可知级数逼近的误差。

定理 1.4.23. e 是无理数。

证明. 假设
$$e = p/q$$
, 则 $0 < q! (e - s_q) < 1/q$ 是整数,矛盾。

1.4.8 审敛法

定理 1.4.24 (根值审敛法). 令 $\alpha = \limsup |a_n|^{1/n}$,则

 $1. \alpha > 1$ 时 $\sum a_n$ 发散;

 $2. \alpha < 1$ 时 $\sum a_n$ 收敛。

证明. 由定理1.4.12,选取一条猛增的 $\{a_n\}$ 子列即可。

例 1.4.1. $a_n = 1/n$ 与 $a_n = 1/n^2$ 同样满足 $\alpha = 1$ 但前者发散后者收敛。

定理 1.4.25 (比值审敛法). 令 $\alpha = \limsup |a_{n+1}/a_n|$,

 $1. \alpha < 1$ 时 $\sum a_n$ 收敛;

2. 若存在 N 满足 $n \ge N \Rightarrow |a_{n+1}/a_n| \ge 1$ 则它发散。

例 1.4.2. 对于 $(1/2+1/3)+(1/2^2+1/3^2)+(1/2^3+1/3^3)+\cdots$,根值审 敛法成功而比值审敛法失败。

例 1.4.3. 对于 $(1/2+1)+(1/8+1/4)+(1/32+1/16)+\cdots$ 同样如此。

定理 1.4.26. 对任意正数序列 $\{c_n\}$, 有

$$\liminf \frac{c_{n+1}}{c_n} \le \liminf c_n^{1/n},$$
$$\limsup c_n^{1/n} \le \limsup \frac{c_{n+1}}{c_n}.$$

证明. 只证第二个,设左边的上界为 α ,则对于充分大的 n,

$$c_n \le c\alpha^n$$
.

定理 1.4.27. 对于 $\sum c_n z^n$, 设 $\alpha = \limsup |c_n|^{1/n}$, $R = 1/\alpha$ 为收敛半径。

1.4.9 分部求和

定理 1.4.28 (Abel 求和). 令 $A_n = \sum_{0}^{n} a_n$ 而 $A_{-1} = 0$, 则

$$\sum_{n=p}^{q} a_n b_n = \sum_{n=p}^{q-1} A_n (b_n - b_{n+1}) + A_q b_q - A_{p-1} b_p.$$

定理 1.4.29. 假设

- 1. $\{A_n\}$ 构成有界序列;
- 2. $b_n \searrow 0$;

那么 $\sum a_n b_n$ 收敛。

证明. 借助 Abel 求和发现余项满足 Cauchy 即可。

定理 1.4.30. 如果 $|c_n| \searrow 0$ 而 $\operatorname{sgn} c_n = (-1)^{n+1}$,则 $\sum c_n$ 收敛。

定理 1.4.31. 若 $\sum c_n z^n$ 的收敛半径为 1 而 $c_n \setminus 0$,则它在单位圆上可能除了 z=1 外每个点收敛。

证明. 取
$$A_n = \sum^n z^k$$
 即可。

1.4.10 绝对收敛

定义 1.4.9. 如果 $\sum |a_n|$ 收敛则谓 $\sum a_n$ 绝对收敛。

定理 1.4.32. 绝对收敛的级数收敛。

1.4.11 级数的加乘

由极限的加乘立刻得到

定理 1.4.33.
$$\sum a_n + b_n = \sum a_n + \sum b_n$$
 而 $\sum ca_n = c \sum a_n$ 。

定义 1.4.10. 令 $c_n = \sum_{0}^{n} a_k b_{n-k}$ 则谓 $\sum c_n$ 为两个级数的积。

例 1.4.4. $\sum_{0}^{\infty} (-1)^{n} / \sqrt{n+1}$ 收敛, 自乘的结果发散。

定理 1.4.34. 若 $\sum a_n$ 绝对收敛, $\sum b_n$ 收敛, c_n 定义如上, 则

$$\sum c_n = AB.$$

证明.参考上图,

$$C_n = A_n B_n - {n \choose n} B a_1 - {n \choose n-1} B a_2 - \dots - {n \choose 1} B a_n.$$

由于 $\{B_n\}$ 为 Cauchy 列,可以选取 M 使得 $n \geq m \geq M$ 时有 ${}^n_m B < \epsilon$,

$$|C_n - A_n B_n| \le \epsilon \sum_{i \le M} |a_n| + \max_{i \le M} |B_i| (a_{n-M} + \dots + a_n).$$

1.4.12 级数重排

定义 1.4.11. 设 $f: \mathbb{Z}_+ \to \mathbb{Z}_+$ 为双射,则 $\sum a_{f(n)}$ 为 $\sum a_n$ 的重排。

定理 1.4.35. 对于收敛而非绝对收敛的级数和任意 $-\infty \le \alpha \le \beta \le +\infty$,存在重排满足 $\inf s_n' = \alpha$ 而 $\sup s_n' = \beta$ 。

证明. 正负分出来, 正项累加到刚好过 α , 累加负项到刚好低于 β , 循环。 \square

定理 1.4.36. 绝对收敛的级数其任意重排收敛。

1.5 连续函数

1.5.1 函数的极限

定义 1.5.1. 谓 $\lim_{x\to p}f(x)=q$,如果对于任意 $\epsilon>0$,存在 $\delta>0$ 满足 $0< d(x,p)<\delta\Rightarrow d(f(x),q)<\epsilon$ 。

定理 1.5.1 (平行于定理1.1.35). 前开定义等价于 $p_n \to p \Rightarrow f(p_n) \to f(p)$, 其中 $p_n \neq p$ 。

证明. 如果定义成立,则显然。若定义不成立,可反证。

推论 1.5.1. 如果 f 在 p 处的极限存在,则极限唯一。

定理 1.5.2. 若 $f(x \to p) = A$, $g(x \to p) = B$, 则 $(f \star g)(x \to p) = A \star B$ 。 其中 \star 为任意四则运算,对除法假设 B = 0。

定义 1.5.2 (连续性的 ϵ -δ 定义). 谓 f 在 p 处连续,如果对任意 $\epsilon > 0$,总 存在 $\delta > 0$ 满足 $d(x,p) < \delta \Rightarrow d(f(x),f(p)) < \epsilon$ 。

定理 1.5.3 (平行于定理1.1.35). 定义等价于 $x \to p \Rightarrow f(x \to p) = f(p)$ 。

定理 1.5.4 (平行于定理1.1.19). (在某点) 连续函数的复合函数仍然连续。

定理 1.5.5 (平行于定理1.1.34). 连续性等价于 V 为开 $\Rightarrow f^{-1}(V)$ 为开。

定理 1.5.6 (平行于定理1.1.18). 连续性等价于 V 为闭 $\Rightarrow f^{-1}(V)$ 为闭。

定理 1.5.7 (平行于定理1.1.36). 连续函数的加减乘除(在非零部分)连续。

定理 1.5.8 (平行于定理1.1.21). 连续函数的有限 Cartesian 乘积连续。

例 1.5.1. 投射、单项式以及定义域内的有理函数连续。

1.5.2 连续性和紧性

定义 1.5.3. 映入 \mathbb{R}^k 的函数谓有界的,如果其像集有界。

定理 1.5.9 (平行于定理1.2.14). 紧致度量空间的连续像紧致。

定理 1.5.10. 紧致度量空间上的连续函数有界。

定理 1.5.11 (平行于定理1.2.20). 紧度量空间上的连续实函数可取得最值。

定理 1.5.12 (平行于定理1.2.15). 紧度量空间到度量空间的双射之逆连续。

定义 1.5.4 (平行于定义1.2.11). 一致连续的定义。

定义 1.5.5 (平行于定理1.2.21). 紧度量空间上的连续函数一致连续。

证明. 选取 $p_n \to q_n$ 而 $|f(p_n) - f(q_n)| > \epsilon$ 矛盾。

定理 1.5.13. 若 E 为 \mathbb{R} 中非紧的集,则

- 1. 存在在 E 连续而非有界的函数;
- 2. 存在在 E 上连续有界而无最大值的函数;
- 3. 若 E 有界,则存在 E 上连续而非一致连续的函数。

证明. 在极限点处做文章即可。

例 1.5.2. 定理1.5.12中紧性不可缺少,例1.1.13即是一例。

1.5.3 连续性与连通性

定理 1.5.14 (平行于定理1.2.3). 连通空间的连续像是连通的。

定理 1.5.15 (平行于定理1.2.6). 介值定理。

1.5.4 间断

定义 1.5.6. $\{t_n > x\} \Rightarrow f(t_n \to x) = q$, 则谓 f(x+) = q。 类似有 f(x-)。

定义 1.5.7. 谓第一类间断者, $f(x\pm)$ 皆存在而不等。否则谓第二类。

注意 f(x) 可能等于或不等于 $f(x\pm)$ 。

例 1.5.3. $\chi_{\mathbb{Q}}$ 在每个点发生第二类间断。

例 1.5.4. $x\chi_{\mathbb{Q}}$ 在 x=0 连续,其他点发生第二类间断。

例 1.5.5. $f(x) = \sin 1/x || 0$ 在 x = 0 处发生第二类间断。

1.5.5 单调函数

定义 1.5.8. 若 $x < y \Rightarrow f(x) \le f(y)$ 则谓之单调递增, 类似有单调递减。

定理 1.5.16. 设 $f:(a,b)\to\mathbb{R}$ 单调递增,则下列极限存在且

$$\sup_{a < t < x} f(t) = f(x-) \le f(x) \le f(x+) = \inf_{x < t < b} f(t).$$

推论 1.5.2. 单调函数没有第二类间断。

定理 1.5.17. 单调函数最多只有可数间断。

定理 1.5.18. 对于给定的可数集 $\{x_n\}$, 存在函数恰好在其上间断, 其他地方连续。

证明. 选取收敛的正项级数 $\sum c_n$ 后取

$$f = \sum_{x_n < x} c_n.$$

1.5.6 无穷远处的极限

定义 1.5.9. $+\infty$ 的邻域谓形如 $(c,+\infty)$ 的区间。

定义 1.5.10. 设 A 在广义实数系中,若对 A 的邻域 U 皆存在 x 的邻域 V 满足 $f(V)\subset U$,则谓 $f(t\to x)=A$ 。

定理 1.5.19. 函数极限的四则运算在广义实数系内仍然成立。

注意广义实数系可视为 ℝ 的两点紧致化。