Chinese Remainder Theorem

John Leo

December 11, 2023

1 Instrumentation

- 1. Xiaoluo [small gong] (30 bar phrases)
- 2. Paigu [drums] (7 bar phrases)
- 3. Yanqin (5 bar phrase)
- 4. Plucked Strings (3 bar phrases)
 - (a) Zhongruan
 - (b) Pipa
- 5. Bowed Strings (2 bar phrases)
 - (a) Erhu
 - (b) Zhonghu

2 Musical Structure

- There are $2 \cdot 3 \cdot 5 \cdot 7 = 210$ bars of music.
- Tempo is 120 bpm. 4/4 time, so 840 beats and exactly 7 minutes of music. Divide into 7 one-minute sections of 30 bars of music.
- The key signature is G major. However they key could also be viewed as D major, as C/C# is avoided.
- All instruments play only scale tones.
 - Yangqin was originally to play the pentatonic scale omitting 4 and 7 (G, A, B, D, E).
 (Major Pentatonic: https://ianring.com/musictheory/scales/661)
 However it ended up playing the same hexatonic scale as the others.
 - All non-percussion instruments play a hexatonic scale omitting only 4 (G, A, B, D, E, F#).
 (https://ianring.com/musictheory/scales/2709)
 If the key is viewed as D major then 7 is omitted and the scale is the major diatonic hexachord (https://ianring.com/musictheory/scales/693)

3 Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem). Let I_1, \ldots, I_N be pairwise comaximal ideals of commutative ring R $(I_i + I_j = R \text{ for all } i \neq j)$. Then there is a ring isomorphism $R/(\cap_k I_k) \simeq \prod_k (R/I_k)$. In particular if $n_k \in \mathbb{Z}$ are pairwise coprime then $\mathbb{Z}/[(\prod_k n_k)\mathbb{Z}] \simeq \prod_k (\mathbb{Z}/n_k\mathbb{Z})$.

Proof Outline. The primary source for the proof is Serge Lang, *Algebra*, *Revised Third Edition* (2002), pages 94-95.

- 1. Bézout's Lemma: Coprime implies comaximal. If (m, n) = 1, then $\exists a, b \text{ s.t. } 1 = am + bn$.
- 2. Surjectivity. Base case n=2. Given $(c,d) \in \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$, let x=dam+cbn.
- 3. Induction: For all k, $n_k \mathbb{Z}$ is comaximal to the product of the other $n_i \mathbb{Z}$: $n_k \mathbb{Z} + \prod_{i \neq k} n_k \mathbb{Z} = \mathbb{Z}$.
- 4. By the theorem with n=2, for all k we can find y_k satisfying $y_k \equiv 1 \mod n_k$, $y_k \equiv 0 \mod \prod_{i \neq k} n_i$.
- 5. Then given $(x_1, \ldots, x_N) \in \prod_k (\mathbb{Z}/nk\mathbb{Z})$, $\sum_k x_k y_k$ maps to (x_1, \ldots, x_N) .
- 6. Injectivity. The kernel of the homomorphism is $(\prod_k n_k)\mathbb{Z}$.
- 7. Todo

4 Musical Realization

Xiaoluo introduces each 30 bar section, counting the section number. Paigu plays patterns changing every 7 bars so that the full cycle is completed in 210 bars. Each section is described below.

- 1. Bézout's Lemma (EuclideanDomain.gcd_eq_gcd_ab) is illustrated by the special case m=2, n=3 following the extended Euclidean algorithm (EuclideanDomain.xgcd). Erhu/Zhonghu represent 2, Pipa/Zhongruan represent 3, and Yangqin does additional work. The sequence (following EuclideanDomain.xgcdAux) is:
 - (a) $2 = 1 \cdot 2 + 0 \cdot 3$
 - (b) $3 = 0 \cdot 2 + 1 \cdot 3$
 - (c) $2 = 1 \cdot 2 + 0 \cdot 3$
 - (d) $1 = (-1) \cdot 2 + 1 \cdot 3$

Each step takes 6 bars. The final 6 bars is devoted to a special case of the surjectivity base case: $2 = (-2) \cdot 2 + 2 \cdot 3$

- 2. Surjectivity. Base case n = 2. Again for m = 2, n = 3, five of the six cases (omitting only (0,0)) are illustrated using different themes in this order:
 - (a) $2 = 1 \cdot 2 + 0 \cdot 3 \ [2 \leftrightarrow (0, 2)]$
 - (b) $4 = 2 \cdot 2 + 0 \cdot 3 \left[4 \leftrightarrow (0, 1) \right]$
 - (c) $3 = 0 \cdot 2 + 1 \cdot 3 \ [3 \leftrightarrow (1,0)]$
 - (d) $5 = 1 \cdot 2 + 1 \cdot 3 \left[5 \leftrightarrow (1, 2) \right]$
 - (e) $7 = 2 \cdot 2 + 1 \cdot 3 \ [1 \leftrightarrow (1, 1)]$

- 3. Illustration of the beginning of induction using 2, 3, 5: Each number is comaximal to the product of the other two.
 - (a) $1 = (-1) \cdot 5 + 1 \cdot 6$
 - (b) $1 = (-3) \cdot 3 + 1 \cdot 10$
 - (c) $1 = (-7) \cdot 2 + 1 \cdot 15$

The sections are 5, 10, 15 measures long respectively. The basic idea is that the "lone" instrument (or pair) plays in opposition to the other two.

- 4. Inductive hypothesis with n=2 illustrated for five of the thirty cases for m=5, n=6.
 - (a) $11 = 1 \cdot 5 + 1 \cdot 6 \ [11 \leftrightarrow (1, 5)]$
 - (b) $16 = 2 \cdot 5 + 1 \cdot 6 \ [16 \leftrightarrow (1,4)]$
 - (c) $17 = 1 \cdot 5 + 2 \cdot 6 [17 \leftrightarrow (2, 5)]$
 - (d) $22 = 2 \cdot 5 + 2 \cdot 6 \ [22 \leftrightarrow (2,4)]$
 - (e) $27 = 3 \cdot 5 + 2 \cdot 6 [27 \leftrightarrow (2,3)]$
- 5. 5
- 6. 6
- 7. 7