Statistics for Business and Economics 6th Edition

Chapter 7

Sampling and Sampling Distributions

Chapter Goals

After completing this chapter, you should be able to:

- Describe a simple random sample and why sampling is important
- Explain the difference between descriptive and inferential statistics
- Define the concept of a sampling distribution
- Determine the mean and standard deviation for the sampling distribution of the sample mean, \overline{X}
- Describe the Central Limit Theorem and its importance
- Determine the mean and standard deviation for the sampling distribution of the sample proportion, p̂
- Describe sampling distributions of sample variances

Tools of Business Statistics

Descriptive statistics

Collecting, presenting, and describing data

Inferential statistics

 Drawing conclusions and/or making decisions concerning a population based only on sample data

Populations and Samples

 A Population is the set of all items or individuals of interest

Examples:	All likely voters in the next election		
	All parts produced today		
	All sales receipts for November		

A Sample is a subset of the population

Examples:	1000 voters selected at random for interview
	A few parts selected for destructive testing
	Random receipts selected for audit

Population vs. Sample

Population

ab cd
ef ghijkl m n
opq rstuvw
x y z

Sample

Why Sample?

- Less time consuming than a census
- Less costly to administer than a census
- It is possible to obtain statistical results of a sufficiently high precision based on samples.

Simple Random Samples

- Every object in the population has an equal chance of being selected
- Objects are selected independently
- Samples can be obtained from a table of random numbers or computer random number generators

 A simple random sample is the ideal against which other sample methods are compared

Inferential Statistics

 Making statements about a population by examining sample results

Inferential Statistics

Drawing conclusions and/or making decisions concerning a population based on sample results.

Estimation

 e.g., Estimate the population mean weight using the sample mean weight

Hypothesis Testing

 e.g., Use sample evidence to test the claim that the population mean weight is 120 pounds

Sampling Distributions

 A sampling distribution is a distribution of all of the possible values of a statistic for a given size sample selected from a population

Chapter Outline

Sampling Distributions

Sampling
Distribution of
Sample
Mean

Sampling
Distribution of
Sample
Proportion

Sampling
Distribution of
Sample
Variance

Sampling Distributions of Sample Means

Sampling Distributions

Sampling
Distribution of
Sample
Mean

Sampling
Distribution of
Sample
Proportion

Sampling
Distribution of
Sample
Variance

- Assume there is a population ...
- Population size N=4
- Random variable, X, is age of individuals
- Values of X:

18, 20, 22, 24 (years)

(continued)

Summary Measures for the Population Distribution:

$$\mu = \frac{\sum X_i}{N}$$

$$= \frac{18 + 20 + 22 + 24}{4} = 21$$

$$\sigma = \sqrt{\frac{\sum (X_i - \mu)^2}{N}} = 2.236$$

(continued)

Now consider all possible samples of size n = 2

1 st	2 nd Observation				
Obs	18	20	22	24	
18	18,18	18,20	18,22	18,24	
20	20,18	20,20	20,22	20,24	
22	22,18	22,20	22,22	22,24	
24	24,18	24,20	24,22	24,24	

16 possible samples (sampling with replacement)

(continued)

Sampling Distribution of All Sample Means

16 Sample Means

2nd Observation Obs

Sample Means Distribution

(continued)

Summary Measures of this Sampling Distribution:

$$E(\overline{X}) = \frac{\sum_{i} \overline{X}_{i}}{N} = \frac{18 + 19 + 21 + \dots + 24}{16} = 21 = \mu$$

$$\begin{split} \sigma_{\overline{X}} &= \sqrt{\frac{\sum (\overline{X}_i - \mu)^2}{N}} \\ &= \sqrt{\frac{(18 - 21)^2 + (19 - 21)^2 + \dots + (24 - 21)^2}{16}} = 1.58 \end{split}$$

Comparing the Population with its Sampling Distribution

Population N = 4 $\mu = 21 \quad \sigma = 2.236$

Sample Means Distribution n = 2

$$\mu_{\overline{X}} = 21 \quad \sigma_{\overline{X}} = 1.58$$

Expected Value of Sample Mean

- Let X₁, X₂, . . . X_n represent a random sample from a population
- The sample mean value of these observations is defined as

$$\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$$

Standard Error of the Mean

- Different samples of the same size from the same population will yield different sample means
- A measure of the variability in the mean from sample to sample is given by the Standard Error of the Mean:

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

 Note that the standard error of the mean decreases as the sample size increases

If the Population is Normal

 If a population is normal with mean μ and standard deviation σ, the sampling distribution of X is also normally distributed with

$$\mu_{\overline{X}} = \mu$$
 and

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

Z-value for Sampling Distribution of the Mean

• Z-value for the sampling distribution of $\overline{\chi}$:

$$Z = \frac{(\overline{X} - \mu)}{\sigma_{\overline{X}}} = \frac{(\overline{X} - \mu)}{\frac{\sigma}{\sqrt{n}}}$$

where: X = sample mean

 μ = population mean

 σ = population standard deviation

n = sample size

Finite Population Correction

- Apply the Finite Population Correction if:
 - a population member cannot be included more than once in a sample (sampling is without replacement), and
 - the sample is large relative to the population (n is greater than about 5% of N)
- Then

$$Var(\overline{X}) = \frac{\sigma^2}{n} \frac{N-n}{N-1}$$

or

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$$

Finite Population Correction

 If the sample size n is not small compared to the population size N, then use

$$Z = \frac{(\overline{X} - \mu)}{\frac{\sigma}{\sqrt{n}} \sqrt{\frac{N - n}{N - 1}}}$$

Sampling Distribution Properties

$$\mu_{\bar{x}} = \mu$$

(i.e. X is unbiased)

Sampling Distribution Properties

(continued)

For sampling with replacement:

If the Population is not Normal

- We can apply the Central Limit Theorem:
 - Even if the population is not normal,
 - ...sample means from the population will be approximately normal as long as the sample size is large enough.

Properties of the sampling distribution:

$$\mu_{\bar{x}} = \mu$$
 and

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

Central Limit Theorem

As the sample size gets large enough...

If the Population is not Normal

(continued)

Sampling distribution properties:

Central Tendency

$$\mu_{\bar{x}} = \mu$$

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

How Large is Large Enough?

- For most distributions, n > 25 will give a sampling distribution that is nearly normal
- For normal population distributions, the sampling distribution of the mean is always normally distributed

Example

- Suppose a population has mean $\mu = 8$ and standard deviation $\sigma = 3$. Suppose a random sample of size n = 36 is selected.
- What is the probability that the sample mean is between 7.8 and 8.2?

Example

(continued)

Solution:

- Even if the population is not normally distributed, the central limit theorem can be used (n > 25)
- ... so the sampling distribution of \overline{X} is approximately normal
- ... with mean $\mu_{\bar{x}} = 8$
- ...and standard deviation $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{3}{\sqrt{36}} = 0.5$

Example

(continued)

Solution (continued):

$$P(7.8 < \mu_{\overline{X}} < 8.2) = P\left(\frac{7.8 - 8}{3/\sqrt{36}} < \frac{\mu_{\overline{X}} - \mu}{\sigma/\sqrt{n}} < \frac{8.2 - 8}{3/\sqrt{36}}\right)$$
$$= P(-0.5 < Z < 0.5) = 0.3830$$

Acceptance Intervals

- Goal: determine a range within which sample means are likely to occur, given a population mean and variance
 - By the Central Limit Theorem, we know that the distribution of \overline{X} is approximately normal if n is large enough, with mean μ and standard deviation $\sigma_{\overline{X}}$
 - Let $z_{\alpha/2}$ be the z-value that leaves area $\alpha/2$ in the upper tail of the normal distribution (i.e., the interval $z_{\alpha/2}$ to $z_{\alpha/2}$ encloses probability 1 α)
 - Then

$$\mu \pm z_{\alpha\!/2} \sigma_{\overline{X}}$$

is the interval that includes \overline{X} with probability $1 - \alpha$

Sampling Distributions of Sample Proportions

Sampling Distributions

Sampling
Distribution of
Sample
Mean

Sampling
Distribution of
Sample
Proportion

Sampling
Distribution of
Sample
Variance

Population Proportions, P

P = the proportion of the population having some characteristic

Sample proportion (P) provides an estimate of P:

$$\hat{P} = \frac{X}{n} = \frac{\text{number of items in the sample having the characteristic of interest}}{\text{sample size}}$$

- $0 \le \hat{P} \le 1$
- $\stackrel{\hat{P}}{}$ has a binomial distribution, but can be approximated by a normal distribution when nP(1-P) > 9

Sampling Distribution of P

Normal approximation:

Properties:

$$E(\hat{P}) = p$$
 and

$$\sigma_{\hat{P}}^2 = Var\left(\frac{X}{n}\right) = \frac{P(1-P)}{n}$$

(where P = population proportion)

Z-Value for Proportions

Standardize P to a Z value with the formula:

$$Z = \frac{\hat{P} - P}{\sigma_{\hat{P}}} = \frac{\hat{P} - P}{\sqrt{\frac{P(1 - P)}{n}}}$$

Example

• If the true proportion of voters who support Proposition A is P = .4, what is the probability that a sample of size 200 yields a sample proportion between .40 and .45?

• i.e.: if
$$P = .4$$
 and $n = 200$, what is $P(.40 \le \hat{P} \le .45)$?

Example

(continued)

if
$$P = .4$$
 and $n = 200$, what is $P(.40 \le \hat{P} \le .45)$?

Find
$$\sigma_{\hat{P}}$$
:

Find
$$\sigma_{\hat{P}}$$
: $\sigma_{\hat{P}} = \sqrt{\frac{P(1-P)}{n}} = \sqrt{\frac{.4(1-.4)}{200}} = .03464$

Convert to standard normal:

$$P(.40 \le \hat{P} \le .45) = P\left(\frac{.40 - .40}{.03464} \le Z \le \frac{.45 - .40}{.03464}\right)$$
$$= P(0 \le Z \le 1.44)$$

Example

(continued)

if p = .4 and n = 200, what is
$$P(.40 \le \hat{P} \le .45)$$
?

Use standard normal table: $P(0 \le Z \le 1.44) = .4251$

Sampling Distributions of Sample Proportions

Sampling Distributions

Sampling
Distribution of
Sample
Mean

Sampling
Distribution of
Sample
Proportion

Sampling
Distribution of
Sample
Variance

Sample Variance

 Let x₁, x₂, . . . , x_n be a random sample from a population. The sample variance is

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

- the square root of the sample variance is called the sample standard deviation
- the sample variance is different for different random samples from the same population

Sampling Distribution of Sample Variances

• The sampling distribution of s^2 has mean σ^2

$$\mathsf{E}(\mathsf{s}^2) = \sigma^2$$

If the population distribution is normal, then

$$Var(s^2) = \frac{2\sigma^4}{n-1}$$

If the population distribution is normal then

$$\frac{(n-1)s^2}{\sigma^2}$$

has a χ^2 distribution with n – 1 degrees of freedom

The Chi-square Distribution

- The chi-square distribution is a family of distributions, depending on degrees of freedom:
- d.f. = n 1

Text Table 7 contains chi-square probabilities

Degrees of Freedom (df)

Idea: Number of observations that are free to vary after sample mean has been calculated

Example: Suppose the mean of 3 numbers is 8.0

Here, n = 3, so degrees of freedom = n - 1 = 3 - 1 = 2

(2 values can be any numbers, but the third is not free to vary for a given mean)

Chi-square Example

- A commercial freezer must hold a selected temperature with little variation. Specifications call for a standard deviation of no more than 4 degrees (a variance of 16 degrees²).
- A sample of 14 freezers is to be tested
- What is the upper limit (K) for the sample variance such that the probability of exceeding this limit, given that the population standard deviation is 4, is less than 0.05?

Finding the Chi-square Value

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$$

Is chi-square distributed with (n - 1) = 13 degrees of freedom

Use the chi-square distribution with area 0.05 in the upper tail:

$$\chi^2_{13} = 22.36$$
 ($\alpha = .05$ and $14 - 1 = 13$ d.f.)

Chi-square Example

(continued)

$$\chi^2_{13} = 22.36$$
 ($\alpha = .05$ and $14 - 1 = 13$ d.f.)

So:
$$P(s^2 > K) = P\left(\frac{(n-1)s^2}{16} > \chi_{13}^2\right) = 0.05$$

or
$$\frac{(n-1)K}{16} = 22.36$$

so
$$K = \frac{(22.36)(16)}{(14-1)} \neq 27.52$$

(where n = 14)

If s^2 from the sample of size n = 14 is greater than 27.52, there is strong evidence to suggest the population variance exceeds 16.

Chapter Summary

- Introduced sampling distributions
- Described the sampling distribution of sample means
 - For normal populations
 - Using the Central Limit Theorem
- Described the sampling distribution of sample proportions
- Introduced the chi-square distribution
- Examined sampling distributions for sample variances
- Calculated probabilities using sampling distributions