

Ajinkya Werulkar Chaitrali Duse Guru Kalyan Jayasingh Sagar Kumar Gupta

Introduction

Crisis at Fukushima nuclear power plant

Tens of thousands evacuated from 20km radius of the plant, people living within a further 10km of the zone urged to stay indoors

TOKYO .

 $^{235}_{92}U +^{1}_{0}n \rightarrow \text{fission fragments} + \gamma + \nu_e + 193 MeV$

- Great East Japan earthquake: 11
 March 2011, 2:46 pm
- SCRAM shutdown
- Tsunami destroyed emergency generators
- Overheating of cores
- Zircaloy fuel rods -> Zr oxidation:
 liberation of hydrogen + heat

Activity Calculations

Key radioactive isotopes:

¹³¹I (8 days), ¹³⁷Cs (30 years), ¹³⁴Cs (2 years), ⁹⁰Sr (29 years)

$$A(t) = A_0 e^{-\lambda t} = A_0 e^{-\ln 2(t/t_{1/2})}$$

Nuclide	Initial Activity	Half-Life
^{131}I	150 PBq	8.02 days
$^{137}\mathrm{Cs}$	12 PBq	30.17 years

News Release

April 12, 2011

INES (the International Nuclear and Radiological Event Scale) Rating on the Events in Fukushima Dai-ichi Nuclear Power Station by the Tohoku District - off the Pacific Ocean Earthquake

Time	Time (hours)	Cesium-137	lodine-131
	0	12	150
2 hrs	2	11.9999371	148.9131566

11.9998742

11.9998113

11.99962261

11 99924523

11.99849051

11.99773584

11.99622664

11.99245447

11.98491368

4 hrs 6 hrs

12 hrs 1 day

2 days

3 days

5 days 10 days

20 days

1 month

3 months

6 months

1 year

24 48

72 120 240

12

480 720

11.97737764 2160 4320

11.93226078 11.86490394

0.00002261528154

147.834188

146.7630372

143.5959272

137.4652687

125.9780007

115.4506648

96.9616262

62.67704638

26.18941428

10.94316756

0.05824338787

11.4614615

8760 11.72763992

17520 2 years 5 years 43800 10.69862908

Calculated Activities vs Time

Theoretical Modelling of Concentration Profile

 N_0 : initial concentration of radioactive nuclei

λ: rate constant for that element

 $\sigma(t) = d_0 + vt$: time-dependent standard deviation of Gaussian radial distribution where d0 = 1 mile characterizes the initial extended source and v the sped with which the nuclei spread (eg: if via air, then v is wind speed)

$$C = \frac{N_0 e^{-\lambda t}}{2\pi\sigma^2} e^{-\frac{r^2}{\sigma^2}} Bq/m^2$$

Cesium-137

Similarly for Tellurium-129m (meta-stable isotope)

Activity Profiles: Spatial Variation

Goal: Understand how radiation spread over various distances.

Credit:

https://wolfemouth.wordpress.com/2011/ 04/19/quiet-niseko-spring-snow/distance-tofukushima-map/

Theoretical Estimate

 Simplified Model: particles travel radially out from a point source, emitting S particles per second isotropically.

$$\Phi(r) = \frac{\alpha}{r^2}$$

where flux is Φ and α is a constant.

- We ignore interparticle scattering (and with atmospheric particulates) Can be included.
- Isotropic spread assumption Not entirely true. Reasons?
- Inclusion of Scattering:

$$\Phi(r) \; = \; lpha \cdot rac{e^{-eta r}}{r^2} \; .$$

Iodine-131

Thus we expect that

Fukushima radiation

Decays faster than $\,r^{-2}$

- Reality:
 - Winds,
 - Obstructions
 - o rainfall....

Actual Plot:

$$y=a\cdotrac{e^{-br}}{r^2}+c \ b=7.0568e-3$$

Comparison with literature

Plots of Radiation vs distance: Fit with $\frac{1}{r^p}$

Spatial Variation for elements:

- 15/03 30/03
- 1/4 15/4
- 15/4-30/4

Plots of spatial Variations for many elements

Exponential Decay and Reactor Proximity

Radiation vs Distance near the Reactor November 15, 2011 25000 20000 Radiation (nGy/h) 10000 5000 20 Distance from the reactor (km) →

Steep rise

Aspects of Impact:-

A. On the General Public:

- a. Significant contributors: Radionuclides from Plume of smoke, deposition on ground, internal exposure of the thyroid gland, due to the intake of iodine-131, Cs-137 deposition
- b. Estimated dosages before and during evacuation:
 - Adults: less than 10 mSv and about half of that level for those evacuated early on 12 March 2011.
 - ii. Infants: twice that for adults, major Infant contribution is from ingesting radioactivity through food
- c. No radiation-related deaths or acute diseases were observed. A health survey (FHMS), beginning in Oct 2011, is planned to continue for 30yrs.

B. On Children:

- For a given radiation dose, children are generally at more risk of tumour induction(I-131).
- Data from similar screening protocols in areas not affected by the accident imply that the apparent increased rates of detection among children in Fukushima Prefecture are unrelated to radiation exposure.

C. On Power Station Workers:

- Average effective dose : 12mSv
- Large variation 35% of the workforce received total doses of more than 10 mSv over that period (Oct 2012), while 0.7% of the workforce received doses of more than 100 mSv.
- Mostly due to inhaling I-131.

Direction dependence of radioactivity profiles

- Fukushima has uneven topography and close proximity to coastline.
- Spread is governed by geographical factors such as rainfall, water bodies, wind patterns, presence of mountains, etc.
- So, we expect some directional dependence (no radial symmetry as assumed earlier)

Plots for 7th April 2011 in various directions

Plots for 7th April 2011 in various directions (r⁻² fit)

Radiation as a function of both distance and time

Impact on Non-Human Biota

- Animals, birds, marine life: Data from June 2011 (late phase of the accident)
- Terrestrial mammals and birds exposure was estimated at dose rates between 1.2 and 2.2 μ Gy/h in areas encompassing most of the range of ¹³⁷Cs deposition densities. (Approx 10x more than natural)
- 300 μGy/h have been estimated for soil-dwelling organisms in areas of high deposition density such as Okuma Town during the earlier intermediate phase.
- Effects on non-human biota in the marine environment would be confined to areas close to where highly radioactive water was released into the ocean.
- While higher than the benchmark level of 100 µGy/h, these dose rates are unlikely to have resulted in observable effects on populations and any effects would have been transient in nature.

Impact on Land, Infrastructure and Soil

- After contamination plume passes, ground is main source of radiation.
- Dominant radionuclides: ¹³⁷Cs & ¹³⁴Cs (make the ground shine!)
- Deposition in soil took place predominantly in the NW direction.
- Combined Cs deposition was 1.8 x 107 Bq/m² near the plant and 1 x 106 Bq/m² about 20 kms from the plant in the same direction.
- Therefore, about 20 kms from the plant, the exposure is comparable to average background radiation in Japan (3.8 mSv/year), but higher than 1 mSv/year exposure limit for the public.

Dose Profiles from Real Data

Overall dose profile

Dose Profile from Real Data

- This figure has something specific to Fukushima Explosions
- No exponential decay
- We see a small bump in the dose at around 220 hrs
- Approximately 4 days from the first reading
- Time between the two explosions?

Dose Profile from Real Data

- Data taken 111km from Fukushima
- Clear exponential decay visible
- Can clearly identify 2 different peaks corresponding to 2 explosions
- Fit an exponential decay curve to this data
- Closely matches decay constant of I-131

Impact on Air and Water Supply

- Main radionuclides I-131 (half life 8 days) and Cs-137 (half life 30 years).
- Cs-137 is easily carried and can contaminate land for some time.
- Cs-134 (half life 2 years) is also produced in small amounts and can be taken into body because of its soluble nature, but it is not lethal.
- Most of the Cs-137 produced was released into the ocean.
- While most of I-131 was present in the atmosphere.
- I-131 had the most radioactivity because of its lower half life.
- Dose commitment from breathing is around 1.5e-8 Sv/Bq for I-131.
- Uncertainties are large for dose commitment because of the presence of other radioactive nuclides.

Impact on Food Supply

- Early measurements showed more than provisional regulation values of concentration of I-131 in vegetables in affected areas.
- 3.3% of food from Fukushima region had above limit contamination.
- Arrangements were made for controlling food and drinking water.
- Levels of radioactive lodine decreased significantly during the first few weeks because of low half life.
- Provisional regulations were added for activity concentrations of radioactive lodine in fishery products.
- In 2012, Japanese standard for Cs was dropped from 500 to 100 Bq/kg.
- Only 0.6% fishes caught off shore exceeded this lower limit in 2014 when compared to 53% in months following the disaster.

Thank you!