Applications of Differential Geometry to Physics

Part III Lent 2019 Lectures by Maciej Dunajski

Report typos to: uco21@cam.ac.uk
More notes at: uco21.user.srcf.net

January 20, 2020

Contents

0.1 Kepler / Newton Orbits

$$\ddot{\mathbf{r}} = -\frac{GMv}{r^3}\mathbf{r} \quad \leftrightarrow \quad \text{conic sections} \tag{1}$$

General conic section is

$$ax^{2} + by^{2} + cxy + dx + ey + f = 0$$
 (2)

This is nowadays more generally studied in what we now call *algebraic geometry* rather than differential geometry.

Apolonius of Penge (?) asked 'what is the unique conic thorugh five points, no three of which are co-linear?'

The space of conics is $\mathbb{R}^6 - \{0\} / n = \mathbb{RP}^5$ (projective 5-space).

$$[a, b, c, d, e, f] \sim [\gamma a, \gamma b, \gamma c, \gamma d, \gamma c, \gamma f], \gamma \in \mathbb{R}^*$$
(3)

This is an application of geometry, rather than an application of differential geometry.

Remark: Apolonius proved this geometrically.

In this course however, we will look at the following.

1) Hamiltonian mechanics (mid 19th). This is an elegant way of reformulating Newton's mechanics, turning second order differential equations into first order differential equations with the use of a function H(p,q). The system of ODEs is

$$\dot{q} = \frac{\partial H}{\partial p}$$
 $\dot{q} = -\frac{\partial H}{\partial q}$ (4)

This led to the development of symplectic geometry (1960s). The connection is that the phase-space to which p and q belong has a 2-form $dp \wedge dq$. Using the Hamiltonian function, one can find a vector field

$$X_{H} = \frac{\partial H}{\partial p} \frac{\partial}{\partial q} - \frac{\partial H}{\partial q} \frac{\partial}{\partial p} \tag{5}$$

and looks for a one-parameter group of transformations, called symplectomorphisms, generated by this vector field. Under these symplectomorphisms, the 2-form is unchanged meaning that the area illustrated in F2 is preserved. Details of this are going to come within the course.

2) General Relativity (1915) ← Riemannian Geometry (1850)

Figure 1

3) Gauge theory (Maxwell, Yang Mills) \leftrightarrow Connection on Principal Bundle (U(1) (Maxwell), SU(2), SU(3))

$$A_{+} = A_{-} + dg \qquad g = \psi_{+} - \psi_{-} \qquad \omega = \begin{cases} A_{+} + d\psi_{+} \\ A_{-} + d\psi_{-} \end{cases}$$
 (6)

Figure 2

This course: cover 1, 2, 3 in some detail. Unifying feature: Lie groups.

- Prove some theorems, *lots of* examples (often instead of proofs)
- Want to be able to do calculations; compute characteristic classes etc.

We will assume that you took either Part III General Relativity, or Part III Differential Geometry, or some equivalent course.

1 Manifolds

Definition 1 (manifold): An n -dimensional *smooth manifold* is a set M and a collection² of open sets U_{α} , labelled by $\alpha=1,2,3,...$, called *charts* such that

- U_{α} cover M
- \exists 1-1 maps $\phi_{\alpha}: U_{\alpha} \to V_{\alpha} \in \mathbb{R}^n$ such that

$$\phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \phi_{\beta}(U_{\alpha} \cap U_{\beta})$$

$$\tag{1.1}$$

is a smooth map from \mathbb{R}^n to \mathbb{R}^n .

Figure 1.1: Manifold

As such, manifolds are topological spaces with additional structure, allowing us to do calculus.

Example $(M = \mathbb{R}^n)$: There is the *trivial manifold*, which can be covered by only one open set. There are other possibilities. In fact, there are infinitely many smooth structures on \mathbb{R}^4 (Proof by Donaldson in 1984 in his PhD. He used Gauge theory).

²In all examples that we will look at, there will be finitely α .

Example (sphere $S^n = \{ \mathbf{r} \in \mathbb{R}^{n+1}, |\mathbf{r}| = 1 \}$): Have two open sets

$$U = S^{n}/\{0, 0, 0, \dots, 0, 1\} \qquad \widetilde{U} = S^{n}/\{0, 0, 0, \dots, 0, -1\}$$
(1.2)

We then define charts, where $\mathbb{R}^n = (x_1, ..., x_n)$:

Figure 1.2

$$\phi(r_1, \dots, r_{n+1}) = \left(\frac{r_1}{1 - r_{n+1}}, \dots, \frac{r_n}{1 - r_{n+1}}\right)$$
on \widetilde{U} , $\widetilde{\phi}(r_1, \dots, r_{n+1}) = \left(\frac{r_1}{1 - r_{n+1}}, \dots, \frac{r_n}{1 - r_{n+1}}\right) = (\widetilde{x}_1, \dots, \widetilde{x}_n).$ (1.3)

On $U \cap \widetilde{U}$,

$$\frac{r_k}{1+r_{n+1}} = \frac{1-r_{n+1}}{1+r_{n+1}} \frac{r_k}{1-r_{n+1}}, \qquad k = 1, \dots, n$$
(1.4)

$$\frac{r_k}{1+r_{n+1}} = \frac{1-r_{n+1}}{1+r_{n+1}} \frac{r_k}{1-r_{n+1}}, \qquad k = 1, \dots, n$$

$$\frac{1-r_{n+1}}{1+r_{n+1}} = \frac{(1-r_{n+1})^2}{r_1^2+r_2^2+\dots+r_n^2} = \frac{1}{x_1^2+x_2^2+\dots+x_n^2}$$
(1.4)

So on $\phi(U \cap \widetilde{U})$,

$$(\widetilde{x}_1, \dots, \widetilde{x}_n) = \left(\frac{x_1}{x_1^2 + \dots + x_n^2}, \dots, \frac{x_n}{x_1^2 + \dots + x_n^2}\right)$$
 (1.6)

are smooth maps from $\mathbb{R}^n \to \mathbb{R}^n$

Example: A Cartesian product of manifolds is a manifold, for example we have the *n*-torus $T^n = T^n$ $S^1 \times S^1 \times \cdots \times S^1$.