

CLAIMS

What is claimed is:

5 1. A compound of the formula (I):

(I)

or a stereoisomer or a pharmaceutically acceptable salt
10 form thereof, wherein:

b is a single bond wherein the bridging hydrogens are
either cis or trans;

15 X is a bond, -CH₂-, -O-, -S-, -S(=O)-, -S(=O)₂-, -NR¹⁰-,
-CH₂CH₂-, -OCH₂-, -SCH₂-, -S(=O)CH₂-, -S(=O)₂CH₂-,
-CH₂O-, -CH₂S-, -CH₂S(=O)-, -CH₂S(=O)₂-, -NR¹⁰CH₂-,
-CH₂NR¹⁰-, -NHC(=O)-, or -C(=O)NH-;

20 R¹ is selected from

H,
C(=O)R²,
C(=O)OR²,
C₁₋₈ alkyl,

25 C₂₋₈ alkenyl,

C₂₋₈ alkynyl,

C₃₋₇ cycloalkyl,

C₁₋₆ alkyl substituted with Z,

C₂₋₆ alkenyl substituted with Z,

30 C₂₋₆ alkynyl substituted with Z,

C₃₋₆ cycloalkyl substituted with Z,

aryl substituted with Z,

5-6 membered heterocyclic ring system containing at
least one heteroatom selected from the group

consisting of N, O, and S, said heterocyclic ring system substituted with Z;

5 C₁₋₃ alkyl substituted with Y,
 C₂₋₃ alkenyl substituted with Y,
 C₂₋₃ alkynyl substituted with Y,
 C₁₋₆ alkyl substituted with 0-2 R²,
 C₂₋₆ alkenyl substituted with 0-2 R²,
 C₂₋₆ alkynyl substituted with 0-2 R²,
 aryl substituted with 0-2 R², and
10 5-6 membered heterocyclic ring system containing at least one heteroatom selected from the group consisting of N, O, and S, said heterocyclic ring system substituted with 0-2 R²;

15 Y is selected from
 C₃₋₆ cycloalkyl substituted with Z,
 aryl substituted with Z,
 5-6 membered heterocyclic ring system containing at least one heteroatom selected from the group consisting of N, O, and S, said heterocyclic ring system substituted with Z;
20 C₃₋₆ cycloalkyl substituted with -(C₁₋₃ alkyl)-Z,
 aryl substituted with -(C₁₋₃ alkyl)-Z, and
 5-6 membered heterocyclic ring system containing at least one heteroatom selected from the group consisting of N, O, and S, said heterocyclic ring system substituted with -(C₁₋₃ alkyl)-Z;
25 Z is selected from H,
 -CH(OH)R²,
 -C(ethylenedioxy)R²,
 -OR²,
 -SR²,
 -NR²R³,
30 -C(O)R²,
 -C(O)NR²R³,
 -NR³C(O)R²,

35

5 -C(O)OR²,
-OC(O)R²,
-CH(=NR⁴)NR²R³,
-NHC(=NR⁴)NR²R³,
-S(O)R²,
-S(O)₂R²,
-S(O)₂NR²R³, and -NR³S(O)₂R²;

10 R², at each occurrence, is independently selected from
halo,

C₁₋₃ haloalkyl,

C₁₋₄ alkyl,

C₂₋₄ alkenyl,

C₂₋₄ alkynyl,

C₃₋₆ cycloalkyl,

aryl substituted with 0-5 R⁴²;

C₃₋₁₀ carbocyclic residue substituted with 0-3 R⁴¹, and

5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R⁴¹;

20 R³, at each occurrence, is independently selected from
H, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, and

C₁₋₄ alkoxy;

alternatively, R² and R³ join to form a 5- or 6-membered
ring optionally substituted with -O- or -N(R⁴)-;

30 R⁴, at each occurrence, is independently selected from H
and C₁₋₄ alkyl;

R^{6a} is H or C₁₋₄ alkyl;

35 R^{6b} is H;

alternatively, R^{6a} and R^{6b} are taken together to form =O or =S;

R⁷ and R⁹, at each occurrence, are independently selected
from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂, -NR⁴⁶R⁴⁷,
C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ haloalkyl,
C₁₋₈ alkoxy, (C₁₋₄ haloalkyl)oxy,
C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,
C₁₋₄ alkyl substituted with 0-2 R¹¹,
C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,
5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³,
NR¹⁴C(O)R¹², C(O)OR¹², OC(O)R¹², OC(O)OR¹²,
CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹², S(O)₂R¹²,
S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹²,
NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and
NR¹²C(O)NHR¹⁵;

R⁸ is selected from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂,
C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ haloalkyl,
C₁₋₈ alkoxy, (C₁₋₄ haloalkyl)oxy,
C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,
C₁₋₄ alkyl substituted with 0-2 R¹¹,
C₂₋₄ alkenyl substituted with 0-2 R¹¹,
C₂₋₄ alkynyl substituted with 0-1 R¹¹,
C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,
5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group

consisting of N, O, and S substituted with 0-3 R³¹;

5 OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³,
NR¹⁴C(O)R¹², C(O)OR¹², OC(O)R¹², OC(O)OR¹²,
CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹², S(O)₂R¹²,
S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹²,
NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and
NR¹²C(O)NHR¹⁵;

10

R¹⁰ is selected from H,
C₁₋₄ alkyl substituted with 0-2 R^{10A},
C₂₋₄ alkenyl substituted with 0-2 R^{10A},
C₂₋₄ alkynyl substituted with 0-1 R^{10A}, and
15 C₁₋₄ alkoxy;

20 R^{10A} is selected from
C₁₋₄ alkoxy,
C₃₋₆ carbocyclic residue substituted with 0-3 R³³,
phenyl substituted with 0-3 R³³, and
5-6 membered heterocyclic ring system containing 1, 2,
or 3 heteroatoms selected from the group
25 consisting of N, O, and S; substituted with 0-2 R⁴⁴;

25

R¹¹ is selected from
H, halo, -CF₃, -CN, -NO₂,
C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ haloalkyl,
30 C₁₋₈ alkoxy, C₃₋₁₀ cycloalkyl,
C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,
5-10 membered heterocyclic ring system containing from
35 1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³,
NR¹⁴C(O)R¹², C(O)OR¹², OC(O)R¹², OC(O)OR¹²,
CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹², S(O)₂R¹²,
S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹²,
5 NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and
NR¹²C(O)NHR¹⁵;

10 R¹², at each occurrence, is independently selected from
C₁₋₄ alkyl substituted with 0-1 R^{12a},
C₂₋₄ alkenyl substituted with 0-1 R^{12a},
C₂₋₄ alkynyl substituted with 0-1 R^{12a},
C₃₋₆ cycloalkyl substituted with 0-3 R³³,
aryl substituted with 0-5 R³³;
C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and
15 5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R³¹;

20 R^{12a}, at each occurrence, is independently selected from
phenyl substituted with 0-5 R³³;
C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and
5-10 membered heterocyclic ring system containing from
25 1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R³¹;

30 R¹³, at each occurrence, is independently selected from
H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;

alternatively, R¹² and R¹³ join to form a 5- or 6-membered
ring optionally substituted with -O- or -N(R¹⁴)-;

35 alternatively, R¹² and R¹³ when attached to N may be
combined to form a 9- or 10-membered bicyclic
heterocyclic ring system containing from 1-3
heteroatoms selected from the group consisting of N,

O, and S, wherein said bicyclic heterocyclic ring system is unsaturated or partially saturated, wherein said bicyclic heterocyclic ring system is substituted with 0-3 R¹⁶;

5

R¹⁴, at each occurrence, is independently selected from H and C₁₋₄ alkyl;

10 R¹⁵, at each occurrence, is independently selected from H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;

15 R¹⁶, at each occurrence, is independently selected from H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ haloalkyl, C₁₋₃ haloalkyl-oxy-, C₁₋₃ alkyloxy-, and =O;

20 R³¹, at each occurrence, is independently selected from H, OH, halo, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, C₁₋₄ alkyl, and =O;

25 R³³, at each occurrence, is independently selected from H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H, =O, phenyl, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₆ cycloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyl-oxy-, C₁₋₄ alkyloxy-, C₁₋₄ alkylthio-, C₁₋₄ alkyl-C(=O)-, C₁₋₄ alkyl-C(=O)NH-, C₁₋₄ alkyl-OC(=O)-, C₁₋₄ alkyl-C(=O)O-, C₃₋₆ cycloalkyl-oxy-, C₃₋₆ cycloalkylmethyl-oxy-; C₁₋₆ alkyl substituted with OH, methoxy, ethoxy, propoxy, butoxy, -SO₂R⁴⁵, -NR⁴⁶R⁴⁷, NR⁴⁶R⁴⁷C(=O)-, or (C₁₋₄ alkyl)CO₂-; and C₂₋₆ alkenyl substituted with OH, methoxy, ethoxy, propoxy, butoxy, -SO₂R⁴⁵, -NR⁴⁶R⁴⁷, NR⁴⁶R⁴⁷C(=O)-, or (C₁₋₄ alkyl)CO₂-;

35 R⁴¹, at each occurrence, is independently selected from H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, =O; C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl

C₁₋₄ alkyl substituted with 0-1 R⁴³,
aryl substituted with 0-3 R⁴², and
5 5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R⁴⁴;

R⁴², at each occurrence, is independently selected from
H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, SOR⁴⁵, SR⁴⁵, NR⁴⁶SO₂R⁴⁵,

10 NR⁴⁶COR⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, CH(=NH)NH₂,
NHC(=NH)NH₂,

C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl,
C₃₋₆ cycloalkyl,

15 C₁₋₄ alkyl substituted with 0-1 R⁴³,

aryl substituted with 0-3 R⁴⁴, and

5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R⁴⁴;

20 R⁴³ is C₃₋₆ cycloalkyl or aryl substituted with 0-3 R⁴⁴;

R⁴⁴, at each occurrence, is independently selected from H,
halo, -OH, NR⁴⁶R⁴⁷, CO₂H, SO₂R⁴⁵, -CF₃, -OCF₃, -CN, -
25 NO₂, C₁₋₄ alkyl, and C₁₋₄ alkoxy;

R⁴⁵ is C₁₋₄ alkyl;

R⁴⁶, at each occurrence, is independently selected from H
30 and C₁₋₄ alkyl;

R⁴⁷, at each occurrence, is independently selected from H,
C₁₋₄ alkyl, -C(=O)NH(C₁₋₄ alkyl), -SO₂(C₁₋₄ alkyl),
-C(=O)O(C₁₋₄ alkyl), -C(=O)(C₁₋₄ alkyl), and -C(=O)H;

35

n is 1 or 2;

m is 1 or 2; and

n plus m is 2, 3, or 4;

provided when n is 1, m is 2, and R⁷, R⁸, and R⁹ are independently selected from H, halogen, C₁₋₄ alkyl, C₁₋₄

5 alkoxy, C₁₋₄ alkylthio or trifluoromethyl; then X is not a bond.

2. A compound of Claim 1 wherein:

10 X is a bond, -CH₂-, -O-, -S-, -S(=O)-, -S(=O)₂-, -NR¹⁰-,
-CH₂CH₂-, -OCH₂-, -SCH₂-, -CH₂O-, -CH₂S-, -NR¹⁰CH₂-, or
-CH₂NR¹⁰-;

R¹ is selected from

15 H,

C(=O)R²,

C(=O)OR²,

C₁₋₈ alkyl,

C₂₋₈ alkenyl,

C₂₋₈ alkynyl,

C₃₋₇ cycloalkyl,

C₁₋₆ alkyl substituted with 0-2 R²,

C₂₋₆ alkenyl substituted with 0-2 R²,

C₂₋₆ alkynyl substituted with 0-2 R²,

20 aryl substituted with 0-2 R², and

25 5-6 membered heterocyclic ring system containing at least one heteroatom selected from the group consisting of N, O, and S, said heterocyclic ring system substituted with 0-2 R²;

30

R², at each occurrence, is independently selected from

F, Cl, CH₂F, CHF₂, CF₃,

C₁₋₄ alkyl,

C₂₋₄ alkenyl,

35 C₂₋₄ alkynyl,

C₃₋₆ cycloalkyl,

phenyl substituted with 0-5 R⁴²;

C₃₋₁₀ carbocyclic residue substituted with 0-3 R⁴¹, and
5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
5 R⁴¹;

R^{6a} is H or C₁₋₄ alkyl;

R^{6b} is H;

10 alternatively, R^{6a} and R^{6b} are taken together to form =O or
=S;

15 R⁷ and R⁹, at each occurrence, are independently selected
from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂, -NR⁴⁶R⁴⁷,
C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ haloalkyl,
C₁₋₈ alkoxy, (C₁₋₄ haloalkyl)oxy,

20 C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,

C₁₋₄ alkyl substituted with 0-2 R¹¹,

C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,

25 5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R³¹;

30 OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³,
NR¹⁴C(O)R¹², C(O)OR¹², OC(O)R¹², OC(O)OR¹²,
CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹², S(O)₂R¹²,
S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹²,
NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and
NR¹²C(O)NHR¹⁵;

35 R⁸ is selected from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂,

C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ haloalkyl,
C₁₋₈ alkoxy, (C₁₋₄ haloalkyl)oxy,
C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,
C₁₋₄ alkyl substituted with 0-2 R¹¹,

5 C₂₋₄ alkenyl substituted with 0-2 R¹¹,
C₂₋₄ alkynyl substituted with 0-1 R¹¹,
C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,

10 5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R³¹;

15 OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³,
NR¹⁴C(O)R¹², C(O)OR¹², OC(O)R¹², OC(O)OR¹²,
CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹², S(O)₂R¹²,
S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹²,
NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and
NR¹²C(O)NHR¹⁵;

20 R¹⁰ is selected from H, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄
alkynyl, and C₁₋₄ alkoxy;

25 R¹¹ is selected from
H, halo, -CF₃, -CN, -NO₂,
C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ haloalkyl,
C₁₋₈ alkoxy, C₃₋₁₀ cycloalkyl,
C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,

30 5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R³¹;

35 OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³,
NR¹⁴C(O)R¹², C(O)OR¹², OC(O)R¹², OC(O)OR¹²,
CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹², S(O)₂R¹²,

S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹²,
NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and
NR¹²C(O)NHR¹⁵;

5 R¹², at each occurrence, is independently selected from
C₁₋₄ alkyl substituted with 0-1 R^{12a},
C₂₋₄ alkenyl substituted with 0-1 R^{12a},
C₂₋₄ alkynyl substituted with 0-1 R^{12a},
C₃₋₆ cycloalkyl substituted with 0-3 R³³,
10 aryl substituted with 0-5 R³³;
C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and
5-10 membered heterocyclic ring system containing from
15 1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R³¹;

20 R^{12a}, at each occurrence, is independently selected from
phenyl substituted with 0-5 R³³;
C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and
5-10 membered heterocyclic ring system containing from
25 1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R³¹;

30 R¹³, at each occurrence, is independently selected from
H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;
alternatively, R¹² and R¹³ join to form a 5- or 6-membered
ring optionally substituted with -O- or -N(R¹⁴)-;

35 alternatively, R¹² and R¹³ when attached to N may be
combined to form a 9- or 10-membered bicyclic
heterocyclic ring system containing from 1-3
heteroatoms selected from the group consisting of N,
O, and S, wherein said bicyclic heterocyclic ring
system is unsaturated or partially saturated, wherein

said bicyclic heterocyclic ring system is substituted with 0-3 R¹⁶;

5 R¹⁴, at each occurrence, is independently selected from H and C₁₋₄ alkyl;

R¹⁵, at each occurrence, is independently selected from H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;

10 R¹⁶, at each occurrence, is independently selected from H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ haloalkyl, C₁₋₃ haloalkyl-oxy-, C₁₋₃ alkyloxy-, and =O;

15 R³¹, at each occurrence, is independently selected from H, OH, halo, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, C₁₋₄ alkyl, and =O;

20 R³³, at each occurrence, is independently selected from H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H, =O, phenyl, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₆ cycloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyl-oxy-, C₁₋₄ alkyloxy-, C₁₋₄ alkylthio-, C₁₋₄ alkyl-C(=O)-, C₁₋₄ alkyl-C(=O)NH-, C₁₋₄ alkyl-OC(=O)-, C₁₋₄ alkyl-C(=O)O-, C₃₋₆ cycloalkyl-oxy-, C₃₋₆ cycloalkylmethyl-oxy-; C₁₋₆ alkyl substituted with OH, methoxy, ethoxy, propoxy, butoxy, -SO₂R⁴⁵, -NR⁴⁶R⁴⁷, NR⁴⁶R⁴⁷C(=O)-, or (C₁₋₄ alkyl)CO₂-; and C₂₋₆ alkenyl substituted with OH, methoxy, ethoxy, propoxy, butoxy, -SO₂R⁴⁵, -NR⁴⁶R⁴⁷, NR⁴⁶R⁴⁷C(=O)-, or (C₁₋₄ alkyl)CO₂-;

30 R⁴¹, at each occurrence, is independently selected from H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN; C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl C₁₋₄ alkyl substituted with 0-1 R⁴³, aryl substituted with 0-3 R⁴², and

5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
 R^{44} ;

5

R^{42} , at each occurrence, is independently selected from
H, CF_3 , halo, OH, CO_2H , SO_2R^{45} , $NR^{46}R^{47}$, NO_2 , CN,
 $CH(=NH)NH_2$, $NHC(=NH)NH_2$,

10 C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-4} alkoxy, C_{1-4} haloalkyl,
 C_{3-6} cycloalkyl,

C_{1-4} alkyl substituted with 0-1 R^{43} ,
aryl substituted with 0-3 R^{44} , and

15 5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
 R^{44} ;

R^{43} is C_{3-6} cycloalkyl or aryl substituted with 0-3 R^{44} ;

20 R^{44} , at each occurrence, is independently selected from H,
halo, -OH, $NR^{46}R^{47}$, CO_2H , SO_2R^{45} , $-CF_3$, $-OCF_3$, $-CN$, -
 NO_2 , C_{1-4} alkyl, and C_{1-4} alkoxy;

25 R^{45} is C_{1-4} alkyl;

30 R^{46} , at each occurrence, is independently selected from H
and C_{1-4} alkyl;

R^{47} , at each occurrence, is independently selected from H
and C_{1-4} alkyl;

n is 1 or 2;

m is 1 or 2; and

n plus m is 2, 3, or 4;

35

provided when n is 1, m is 2, and R^7 , R^8 , and R^9 are
independently selected from H, halogen, C_{1-4} alkyl, C_{1-4}

alkoxy, C₁₋₄ alkylthio or trifluoromethyl; then X is not a bond.

5 3. A compound of Claim 2 wherein:

X is a bond, -CH₂-, -O-, -S-, -CH₂CH₂-, -OCH₂-, -SCH₂-, -CH₂O-, or -CH₂S-;

10 R¹ is selected from

H,

C(=O)R²,

C(=O)OR²,

C₁₋₆ alkyl,

15 C₂₋₆ alkenyl,

C₂₋₆ alkynyl,

C₃₋₆ cycloalkyl,

C₁₋₄ alkyl substituted with 0-2 R²,

20 C₂₋₄ alkenyl substituted with 0-2 R², and

C₂₋₄ alkynyl substituted with 0-2 R²;

R², at each occurrence, is independently selected from

C₁₋₄ alkyl,

25 C₂₋₄ alkenyl,

C₂₋₄ alkynyl,

C₃₋₆ cycloalkyl,

phenyl substituted with 0-5 R⁴²;

30 C₃₋₁₀ carbocyclic residue substituted with 0-3 R⁴¹, and

5-10 membered heterocyclic ring system containing from

1-4 heteroatoms selected from the group

35 consisting of N, O, and S substituted with 0-3

R⁴¹;

R^{6a} is H or C₁₋₄ alkyl;

35

R^{6b} is H; .

alternatively, R^{6a} and R^{6b} are taken together to form =O or =S;

R⁷ and R⁹, at each occurrence, are independently selected
from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂, -NR⁴⁶R⁴⁷,
C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ haloalkyl,
C₁₋₆ alkoxy, (C₁₋₄ haloalkyl)oxy,

C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,

C₁₋₄ alkyl substituted with 0-2 R¹¹,

C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,

5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³,
NR¹⁴C(O)R¹², C(O)OR¹², OC(O)R¹², OC(O)OR¹²,
CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹²,
S(O)₂R¹², S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹²,
and NR¹⁴S(O)₂R¹²;

R⁸ is selected from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂,
C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ haloalkyl,
C₁₋₆ alkoxy, (C₁₋₄ haloalkyl)oxy,

C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,

C₁₋₄ alkyl substituted with 0-2 R¹¹,

C₂₋₄ alkenyl substituted with 0-2 R¹¹,

C₂₋₄ alkynyl substituted with 0-1 R¹¹,

C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³,

aryl substituted with 0-5 R³³,

5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³,
NR¹⁴C(O)R¹², C(O)OR¹², OC(O)R¹², OC(O)OR¹²,
CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹², S(O)₂R¹²,
5 S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹²,
NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and
NR¹²C(O)NHR¹⁵;

R¹¹ is selected from

10 H, halo, -CF₃, -CN, -NO₂, C₁₋₆ alkyl,
C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₄ haloalkyl, C₁₋₆ alkoxy,
C₃₋₁₀ cycloalkyl,
C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,
15 5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R³¹;

20 OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³,
NR¹⁴C(O)R¹², C(O)OR¹², OC(O)R¹², OC(O)OR¹²,
CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹²,
S(O)₂R¹², S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹²,
and NR¹⁴S(O)₂R¹²;

25 R¹², at each occurrence, is independently selected from
C₁₋₄ alkyl substituted with 0-1 R^{12a},
C₂₋₄ alkenyl substituted with 0-1 R^{12a},
C₂₋₄ alkynyl substituted with 0-1 R^{12a},
30 C₃₋₆ cycloalkyl substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,
C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and
5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
35 consisting of N, O, and S substituted with 0-3
R³¹;

R^{12a}, at each occurrence, is independently selected from phenyl substituted with 0-5 R³³, C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and 5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³¹;

R¹³, at each occurrence, is independently selected from H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;

alternatively, R¹² and R¹³ join to form a 5- or 6-membered ring optionally substituted with -O- or -N(R¹⁴)-;

alternatively, R¹² and R¹³ when attached to N may be combined to form a 9- or 10-membered bicyclic heterocyclic ring system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S, wherein said bicyclic heterocyclic ring system is unsaturated or partially saturated, wherein said bicyclic heterocyclic ring system is substituted with 0-3 R¹⁶;

R¹⁴, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R¹⁵, at each occurrence, is independently selected from H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;

R¹⁶, at each occurrence, is independently selected from H, OH, F, Cl, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, trifluoromethoxy, and =O;

R³¹, at each occurrence, is independently selected from H, OH, halo, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, C₁₋₄ alkyl, and =O;

R³³, at each occurrence, is independently selected from H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H, =O, phenyl, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₆ cycloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyl-oxy-, 5 C₁₋₄ alkyloxy-, C₁₋₄ alkylthio-, C₁₋₄ alkyl-C(=O)-, C₁₋₄ alkyl-C(=O)NH-, C₁₋₄ alkyl-OC(=O)-, C₁₋₄ alkyl-C(=O)O-, C₃₋₆ cycloalkyl-oxy-, C₃₋₆ cycloalkylmethyl-oxy-; C₁₋₆ alkyl substituted with OH, methoxy, ethoxy, 10 propoxy, butoxy, -SO₂R⁴⁵, -NR⁴⁶R⁴⁷, NR⁴⁶R⁴⁷C(=O)-, or (C₁₋₄ alkyl)CO₂-; and C₂₋₆ alkenyl substituted with OH, methoxy, ethoxy, propoxy, butoxy, -SO₂R⁴⁵, -NR⁴⁶R⁴⁷, NR⁴⁶R⁴⁷C(=O)-, or (C₁₋₄ alkyl)CO₂-;

15 R⁴¹, at each occurrence, is independently selected from H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl C₁₋₄ alkyl substituted with 0-1 R⁴³, 20 aryl substituted with 0-3 R⁴², and 5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

25 R⁴², at each occurrence, is independently selected from H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, CH(=NH)NH₂, NHC(=NH)NH₂, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, 30 C₃₋₆ cycloalkyl, C₁₋₄ alkyl substituted with 0-1 R⁴³, aryl substituted with 0-3 R⁴⁴, and 5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴³ is C₃₋₆ cycloalkyl or aryl substituted with 0-3 R⁴⁴;

R⁴⁴, at each occurrence, is independently selected from H,
halo, -OH, NR⁴⁶R⁴⁷, CO₂H, SO₂R⁴⁵, -CF₃, -OCF₃, -CN, -
5 NO₂, C₁₋₄ alkyl, and C₁₋₄ alkoxy;

R⁴⁵ is C₁₋₄ alkyl;

R⁴⁶, at each occurrence, is independently selected from H
10 and C₁₋₄ alkyl;

R⁴⁷, at each occurrence, is independently selected from H
and C₁₋₄ alkyl;

15 n is 1 or 2;
m is 1 or 2; and
n plus m is 2, 3, or 4;

20 provided when n is 1, m is 2, and R⁷, R⁸, and R⁹ are
independently selected from H, halogen, C₁₋₄ alkyl, C₁₋₄
alkoxy, C₁₋₄ alkylthio or trifluoromethyl; then X is not a
bond.

4. A compound of Claim 2 wherein:

25 X is a bond, -CH₂-, -O-, -S-, -OCH₂-, or -SCH₂-;

R¹ is selected from

30 H,
C₁₋₄ alkyl,
C₂₋₄ alkenyl,
C₂₋₄ alkynyl,
C₃₋₄ cycloalkyl,
C₁₋₃ alkyl substituted with 0-1 R²,
35 C₂₋₃ alkenyl substituted with 0-1 R², and
C₂₋₃ alkynyl substituted with 0-1 R²;

R², at each occurrence, is independently selected from
C₁₋₄ alkyl,
C₂₋₄ alkenyl,
C₂₋₄ alkynyl,
5 C₃₋₆ cycloalkyl,
phenyl substituted with 0-5 R⁴²;
C₃₋₆ carbocyclic residue substituted with 0-3 R⁴¹, and
5-6 membered heterocyclic ring system containing 1, 2,
or 3 heteroatoms selected from the group
10 consisting of N, O, and S substituted with 0-3
R⁴¹;

R^{6a} is H, methyl, ethyl, propyl, or butyl;

15 R^{6b} is H;

alternatively, R^{6a} and R^{6b} are taken together to form =O or
=S;

20 R⁷ and R⁹, at each occurrence, are independently selected
from
H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂, -NR⁴⁶R⁴⁷,
C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ haloalkyl,
C₁₋₄ alkoxy, (C₁₋₄ haloalkyl)oxy,
25 C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,
C₁₋₄ alkyl substituted with 0-2 R¹¹,
C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³,
aryl substituted with 0-5 R³³, and
5-6 membered heterocyclic ring system containing 1, 2,
30 or 3 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R³¹;

R⁸ is selected from

35 H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂,
C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ haloalkyl,
C₁₋₄ alkoxy, (C₁₋₄ haloalkyl)oxy,

C₃-10 cycloalkyl substituted with 0-2 R³³,
C₁-4 alkyl substituted with 0-2 R¹¹,
C₂-4 alkenyl substituted with 0-2 R¹¹,
C₂-4 alkynyl substituted with 0-1 R¹¹,
5 C₃-10 carbocyclic residue substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,
5-6 membered heterocyclic ring system containing 1, 2,
or 3 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R³¹;

10 OR¹², SR¹², NR¹²R¹³, NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵,
NR¹²S(O)₂R¹⁵, NR¹²C(O)NHR¹⁵, NR¹⁴C(O)R¹²,
NR¹⁴C(O)OR¹², and NR¹⁴S(O)₂R¹²;

15 R¹¹ is selected from
H, halo, -CF₃, -CN, -NO₂,
C₁-4 alkyl, C₂-4 alkenyl, C₂-4 alkynyl, C₁-4 haloalkyl,
C₁-4 alkoxy, (C₁-4 haloalkyl)oxy,
C₃-10 cycloalkyl substituted with 0-2 R³³,
20 C₃-10 carbocyclic residue substituted with 0-3 R³³,
aryl substituted with 0-5 R³³, and
5-6 membered heterocyclic ring system containing 1, 2,
or 3 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R³¹;

25 R¹², at each occurrence, is independently selected from
C₁-4 alkyl substituted with 0-1 R^{12a},
C₂-4 alkenyl substituted with 0-1 R^{12a},
30 C₂-4 alkynyl substituted with 0-1 R^{12a},
C₃-6 cycloalkyl substituted with 0-3 R³³,
aryl substituted with 0-5 R³³;
C₃-10 carbocyclic residue substituted with 0-3 R³³, and
35 5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R³¹;

R^{12a}, at each occurrence, is independently selected from phenyl substituted with 0-5 R³³; C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and 5 5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³¹;

10 R¹³, at each occurrence, is independently selected from H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl; alternatively, R¹² and R¹³ join to form a 5- or 6-membered ring optionally substituted with -O- or -N(R¹⁴)-;

15 alternatively, R¹² and R¹³ when attached to N may be combined to form a 9- or 10-membered bicyclic heterocyclic ring system containing from 1-3 heteroatoms selected from the group consisting of one N, two N, three N, one N one O, and one N one S; wherein said bicyclic heterocyclic ring system is unsaturated or partially saturated, wherein said bicyclic heterocyclic ring system is substituted with 0-2 R¹⁶;

20 R¹⁴, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

25 R¹⁵, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

30 R¹⁶, at each occurrence, is independently selected from H, OH, F, Cl, CN, NO₂, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, and trifluoromethoxy;

35 R³¹, at each occurrence, is independently selected from H, OH, halo, CF₃, methyl, ethyl, and propyl;

R³³, at each occurrence, is independently selected from H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H, phenyl, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl,
5 C₃₋₆ cycloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyl-oxy-, C₁₋₄ alkyloxy-, C₁₋₄ alkylthio-, C₁₋₄ alkyl-C(=O)-, C₁₋₄ alkyl-C(=O)NH-, C₁₋₄ alkyl-OC(=O)-, C₁₋₄ alkyl-C(=O)O-, C₃₋₆ cycloalkyl-oxy-, C₃₋₆ cycloalkylmethyl-oxy-;
10 C₁₋₆ alkyl substituted with OH, methoxy, ethoxy, propoxy, butoxy, -SO₂R⁴⁵, -NR⁴⁶R⁴⁷, NR⁴⁶R⁴⁷C(=O)-, or (C₁₋₄ alkyl)CO₂-; and
C₂₋₆ alkenyl substituted with OH, methoxy, ethoxy, propoxy, butoxy, -SO₂R⁴⁵, -NR⁴⁶R⁴⁷, NR⁴⁶R⁴⁷C(=O)-, or (C₁₋₄ alkyl)CO₂-;

15 R⁴¹, at each occurrence, is independently selected from H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₃ alkoxy, C₁₋₃ haloalkyl,
20 and C₁₋₃ alkyl;

25 R⁴², at each occurrence, is independently selected from H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, CH(=NH)NH₂, NHC(=NH)NH₂, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₃ alkoxy, C₁₋₃ haloalkyl, C₃₋₆ cycloalkyl, and C₁₋₃ alkyl;

30 R⁴³ is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, or pyridyl, each substituted with 0-3 R⁴⁴;

35 R⁴⁴, at each occurrence, is independently selected from H, halo, -OH, NR⁴⁶R⁴⁷, CO₂H, SO₂R⁴⁵, -CF₃, -OCF₃, -CN, -NO₂, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, and butoxy;

R⁴⁵ is methyl, ethyl, propyl, or butyl;

R⁴⁶, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R⁴⁷, at each occurrence, is independently selected from
5 from H, methyl, ethyl, propyl, and butyl;

n is 1 or 2;

m is 1 or 2; and

n plus m is 2 or 3;

10

provided when n is 1, m is 2, and R⁷, R⁸, and R⁹ are independently selected from H, halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ alkylthio or trifluoromethyl; then X is not a bond.

15

5. A compound of Claim 2 wherein:

X is a bond, -CH₂-, -O-, -S-, -OCH₂-, or -SCH₂-;

20

R¹ is selected from

H,

C₁₋₄ alkyl,

C₂₋₄ alkenyl,

25

C₂₋₄ alkynyl,

C₃₋₄ cycloalkyl,

C₁₋₃ alkyl substituted with 0-1 R²,

C₂₋₃ alkenyl substituted with 0-1 R², and

C₂₋₃ alkynyl substituted with 0-1 R²;

30

R², at each occurrence, is independently selected from

C₁₋₄ alkyl,

C₂₋₄ alkenyl,

C₂₋₄ alkynyl,

35

C₃₋₆ cycloalkyl,

phenyl substituted with 0-5 R⁴²;

C₃₋₆ carbocyclic residue substituted with 0-3 R⁴¹, and

5-6 membered heterocyclic ring system containing 1, 2,
or 3 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
 R^{41} ;

5

R^{6a} is H;

R^{6b} is H;

10 alternatively, R^{6a} and R^{6b} are taken together to form =O;

15 R^7 and R^9 , at each occurrence, are independently selected
from

H, F, Cl, -CH₃, -OCH₃, -CF₃, -OCF₃, -CN, and -NO₂,

20 R^8 is selected from

H, F, Cl, Br, -CF₃, -OCF₃, -OH, -CN, -NO₂,

C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ haloalkyl,
C₁₋₄ alkoxy, (C₁₋₄ haloalkyl)oxy,

25 C₃₋₁₀ cycloalkyl substituted with 0-2 R^{33} ,

C₁₋₄ alkyl substituted with 0-2 R^{11} ,

C₂₋₄ alkenyl substituted with 0-2 R^{11} ,

C₂₋₄ alkynyl substituted with 0-1 R^{11} ,

30 C₃₋₁₀ carbocyclic residue substituted with 0-3 R^{33} ,

aryl substituted with 0-5 R^{33} ,

35 5-6 membered heterocyclic ring system containing 1, 2,
or 3 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
 R^{31} ;

OR¹², SR¹², NR¹²R¹³, NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵,

NR¹²S(O)₂R¹⁵, NR¹²C(O)NHR¹⁵, NR¹⁴C(O)R¹²,

NR¹⁴C(O)OR¹², and NR¹⁴S(O)₂R¹²;

35 R^{11} is selected from

H, halo, -CF₃, -CN, -NO₂,

C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ haloalkyl,
C₁₋₄ alkoxy, (C₁₋₄ haloalkyl)oxy,

C₃-10 cycloalkyl substituted with 0-2 R³³,
C₃-10 carbocyclic residue substituted with 0-3 R³³,
aryl substituted with 0-5 R³³, and
5-6 membered heterocyclic ring system containing 1, 2,
5 or 3 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R³¹;

R¹², at each occurrence, is independently selected from

10 C₁-4 alkyl substituted with 0-1 R^{12a},
C₂-4 alkenyl substituted with 0-1 R^{12a},
C₂-4 alkynyl substituted with 0-1 R^{12a},
C₃-6 cycloalkyl substituted with 0-3 R³³,
aryl substituted with 0-5 R³³;

15 C₃-10 carbocyclic residue substituted with 0-3 R³³, and
5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R³¹;

20 R^{12a}, at each occurrence, is independently selected from
phenyl substituted with 0-5 R³³;

25 C₃-10 carbocyclic residue substituted with 0-3 R³³, and
5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R³¹;

30 R¹³, at each occurrence, is independently selected from
H, C₁-4 alkyl, C₂-4 alkenyl, and C₂-4 alkynyl;

alternatively, R¹² and R¹³ join to form a 5- or 6-membered
ring optionally substituted with -O- or -N(R¹⁴)-;

35 alternatively, R¹² and R¹³ when attached to N may be
combined to form a 9- or 10-membered bicyclic
heterocyclic ring system containing from 1-3

heteroatoms selected from the group consisting of N,
O, and S; wherein said bicyclic heterocyclic ring
system is selected from indolyl, indolinyl, indazolyl,
benzimidazolyl, benzimidazolinyl, benztriazolyl,
5 quinolinyl, tetrahydroquinolinyl, isoquinolinyl, and
tetrahydroisoquinolinyl; wherein said bicyclic
heterocyclic ring system is substituted with 0-1 R¹⁶;

R¹⁴, at each occurrence, is independently selected from H,
10 methyl, ethyl, propyl, and butyl;

R¹⁵, at each occurrence, is independently selected from H,
methyl, ethyl, propyl, and butyl;

15 R¹⁶, at each occurrence, is independently selected from
H, OH, F, Cl, CN, NO₂, methyl, ethyl, methoxy, ethoxy,
trifluoromethyl, and trifluoromethoxy;

20 R³¹, at each occurrence, is independently selected from
H, OH, halo, CF₃, methyl, ethyl, and propyl;

25 R³³, at each occurrence, is independently selected from
H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H,
phenyl, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl,
C₃₋₆ cycloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyl-oxy-,
C₁₋₄ alkyloxy-, C₁₋₄ alkylthio-, C₁₋₄ alkyl-C(=O)-,
C₁₋₄ alkyl-C(=O)NH-, C₁₋₄ alkyl-OC(=O)-,
C₁₋₄ alkyl-C(=O)O-, C₃₋₆ cycloalkyl-oxy-,
C₃₋₆ cycloalkylmethyl-oxy-;
30 C₁₋₆ alkyl substituted with OH, methoxy, ethoxy,
propoxy, butoxy, -SO₂R⁴⁵, -NR⁴⁶R⁴⁷, NR⁴⁶R⁴⁷C(=O)-, or
(C₁₋₄ alkyl)CO₂-; and
C₂₋₆ alkenyl substituted with OH, methoxy, ethoxy,
35 propoxy, butoxy, -SO₂R⁴⁵, -NR⁴⁶R⁴⁷, NR⁴⁶R⁴⁷C(=O)-, or
(C₁₋₄ alkyl)CO₂-;

R⁴¹, at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN,
C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₃ alkoxy, C₁₋₃ haloalkyl,
and C₁₋₃ alkyl;

5 R⁴², at each occurrence, is independently selected from
H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN,
CH(=NH)NH₂, NHC(=NH)NH₂,
C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₃ alkoxy, C₁₋₃ haloalkyl,
C₃₋₆ cycloalkyl, and C₁₋₃ alkyl;

10

R⁴³ is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl,
phenyl, or pyridyl, each substituted with 0-3 R⁴⁴;

15 R⁴⁴, at each occurrence, is independently selected from H,
halo, -OH, NR⁴⁶R⁴⁷, CO₂H, SO₂R⁴⁵, -CF₃, -OCF₃, -CN, -
NO₂, methyl, ethyl, propyl, butyl, methoxy, ethoxy,
propoxy, and butoxy;

20 R⁴⁵ is methyl, ethyl, propyl, or butyl;

25 R⁴⁶, at each occurrence, is independently selected from H,
methyl, ethyl, propyl, and butyl;

R⁴⁷, at each occurrence, is independently selected from
from H, methyl, ethyl, propyl, and butyl;

n is 1; and

m is 1.

30 6. A compound of Claim 2 wherein:

X is a bond, -CH₂-, -O-, -S-, -OCH₂-, or -SCH₂-;

R¹ is selected from H,

35 C₁₋₅ alkyl substituted with 0-1 R²,
C₂₋₅ alkenyl substituted with 0-1 R², and
C₂₋₃ alkynyl substituted with 0-1 R²;

R² is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, or phenyl;

5 R^{6a} is H;

R^{6b} is H;

10 R⁷ and R⁹, at each occurrence, are independently selected from H, F, Cl, -CH₃, -OCH₃, -CF₃, -OCF₃, -CN, and -NO₂;

15 R⁸ is selected from R¹¹;

methyl substituted with R¹¹;

phenyl substituted with 0-3 R³³;

pyridyl substituted with 0-2 R³³;

OR¹², SR¹², NR¹²R¹³, NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵,

NR¹²S(O)₂R¹⁵, NR¹²C(O)NHR¹⁵, NR¹⁴C(O)R¹²,

NR¹⁴C(O)OR¹², and NR¹⁴S(O)₂R¹²;

20 R¹¹ is selected from

phenyl- substituted with 0-5 fluoro;

pyridyl substituted with 0-2 R³³;

naphthyl- substituted with 0-2 R³³;

2-(H₃CCH₂C(=O))-phenyl- substituted with R³³;

25 2-(H₃CC(=O))-phenyl- substituted with R³³;

2-(HC(=O))-phenyl- substituted with R³³;

2-(H₃CCH(OH))-phenyl- substituted with R³³;

2-(H₃CCH₂CH(OH))-phenyl- substituted with R³³;

2-(HOCH₂)-phenyl- substituted with R³³;

30 2-(HOCH₂CH₂)-phenyl- substituted with R³³;

2-(H₃COCH₂)-phenyl- substituted with R³³;

2-(H₃COCH₂CH₂)-phenyl- substituted with R³³;

2-(H₃CCH(OMe))-phenyl- substituted with R³³;

2-(H₃COC(=O))-phenyl- substituted with R³³;

35 2-(HOCH₂CH=CH)-phenyl- substituted with R³³;

2-((MeOC=O)CH=CH)-phenyl- substituted with R³³;

2-(methyl)-phenyl- substituted with R³³;

(continued)

2 - (ethyl) - phenyl - substituted with R³³;
2 - (i-propyl) - phenyl - substituted with R³³;
2 - (F₃C) - phenyl - substituted with R³³;
2 - (NC) - phenyl - substituted with R³³;
5 2 - (H₃CO) - phenyl - substituted with R³³;
2 - (fluoro) - phenyl - substituted with R³³;
2 - (chloro) - phenyl - substituted with R³³;
3 - (NC) - phenyl - substituted with R³³;
3 - (H₃CO) - phenyl - substituted with R³³;
10 3 - (fluoro) - phenyl - substituted with R³³;
3 - (chloro) - phenyl - substituted with R³³;
3 - (H₃C) - phenyl - substituted with R³³;
3 - (F₃C) - phenyl - substituted with R³³;
3 - (H₃CS) - phenyl - substituted with R³³;
15 4 - (NC) - phenyl - substituted with R³³;
4 - (fluoro) - phenyl - substituted with R³³;
4 - (chloro) - phenyl - substituted with R³³;
4 - (H₃CS) - phenyl - substituted with R³³;
4 - (H₃CO) - phenyl - substituted with R³³;
20 4 - (ethoxy) - phenyl - substituted with R³³;
4 - (i-propoxy) - phenyl - substituted with R³³;
4 - (i-butoxy) - phenyl - substituted with R³³;
4 - (H₃CCH₂CH₂C(=O)) - phenyl - substituted with R³³;
4 - ((H₃C)₂CHC(=O)) - phenyl - substituted with R³³;
25 4 - (H₃CCH₂C(=O)) - phenyl - substituted with R³³;
4 - (H₃CC(=O)) - phenyl - substituted with R³³;
4 - (H₃CCH₂CH₂CH(OH)) - phenyl - substituted with R³³;
4 - ((H₃C)₂CHCH(OH)) - phenyl - substituted with R³³;
4 - (H₃CCH₂CH(OH)) - phenyl - substituted with R³³;
30 4 - (H₃CCH(OH)) - phenyl - substituted with R³³;
4 - (cyclopropyloxy) - phenyl - substituted with R³³;
4 - (cyclobutyloxy) - phenyl - substituted with R³³; and
4 - (cyclopentyloxy) - phenyl - substituted with R³³;
35 R¹² is selected from
methyl substituted with R¹¹;
phenyl substituted with 0-5 fluoro;

REAGENTS AND CONDITIONS

pyridyl substituted with 0-2 R³³;
naphthyl substituted with 0-2 R³³;
2-(H₃CCH₂C(=O))-phenyl- substituted with R³³;
2-(H₃CC(=O))-phenyl- substituted with R³³;
5 2-(HC(=O))-phenyl- substituted with R³³;
2-(H₃CCH(OH))-phenyl- substituted with R³³;
2-(H₃CCH₂CH(OH))-phenyl- substituted with R³³;
2-(HOCH₂)-phenyl- substituted with R³³;
2-(HOCH₂CH₂)-phenyl- substituted with R³³;
10 2-(H₃COCH₂)-phenyl- substituted with R³³;
2-(H₃COCH₂CH₂)-phenyl- substituted with R³³;
2-(H₃CCH(OMe))-phenyl- substituted with R³³;
2-(H₃COC(=O))-phenyl- substituted with R³³;
15 2-(HOCH₂CH=CH)-phenyl- substituted with R³³;
2-((MeOC=O)CH=CH)-phenyl- substituted with R³³;
2-(methyl)-phenyl- substituted with R³³;
2-(ethyl)-phenyl- substituted with R³³;
2-(i-propyl)-phenyl- substituted with R³³;
2-(F₃C)-phenyl- substituted with R³³;
20 2-(NC)-phenyl- substituted with R³³;
2-(H₃CO)-phenyl- substituted with R³³;
2-(fluoro)-phenyl- substituted with R³³;
2-(chloro)-phenyl- substituted with R³³;
3-(NC)-phenyl- substituted with R³³;
25 3-(H₃CO)-phenyl- substituted with R³³;
3-(fluoro)-phenyl- substituted with R³³;
3-(chloro)-phenyl- substituted with R³³;
3-(H₃C)-phenyl- substituted with R³³;
3-(F₃C)-phenyl- substituted with R³³;
30 3-(H₃CS)-phenyl- substituted with R³³;
4-(fluoro)-phenyl- substituted with R³³;
4-(chloro)-phenyl- substituted with R³³;
4-(H₃CS)-phenyl- substituted with R³³;
4-(H₃CO)-phenyl- substituted with R³³;
35 4-(ethoxy)-phenyl- substituted with R³³;
4-(i-propoxy)-phenyl- substituted with R³³;
4-(i-butoxy)-phenyl- substituted with R³³;

4 - (H₃CCH₂CH₂C(=O)) -phenyl- substituted with R³³;
4 - ((H₃C)₂CHC(=O)) -phenyl- substituted with R³³;
4 - (H₃CCH₂C(=O)) -phenyl- substituted with R³³;
4 - (H₃CC(=O)) -phenyl- substituted with R³³;
5 4 - (H₃CCH₂CH₂CH(OH)) -phenyl- substituted with R³³;
4 - ((H₃C)₂CHCH(OH)) -phenyl- substituted with R³³;
4 - (H₃CCH₂CH(OH)) -phenyl- substituted with R³³;
4 - (H₃CCH(OH)) -phenyl- substituted with R³³;
4 - (cyclopropyloxy)-phenyl- substituted with R³³;
10 4 - (cyclobutyloxy)-phenyl- substituted with R³³; and
4 - (cyclopentyloxy)-phenyl- substituted with R³³;

R¹³ is H, methyl, or ethyl;

15 alternatively, R¹² and R¹³ join to form a 5- or 6-membered ring selected from pyrrolyl, pyrrolidinyl, imidazolyl, piperidinyl, piperizinyl, methylpiperizinyl, and morpholinyl;

20 alternatively, R¹² and R¹³ when attached to N may be combined to form a 9- or 10-membered bicyclic heterocyclic ring system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S; wherein said bicyclic heterocyclic ring system is selected from indolyl, indolinyl, indazolyl, benzimidazolyl, benzimidazolinyl, benztriazolyl, 25 quinolinyl, tetrahydroquinolinyl, isoquinolinyl, and tetrahydroisoquinolinyl; wherein said bicyclic heterocyclic ring system is substituted with 0-1 R¹⁶;

30 R¹⁵ is H, methyl, ethyl, propyl, or butyl;

35 R¹⁶, at each occurrence, is independently selected from H, OH, F, Cl, CN, NO₂, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, and trifluoromethoxy;

R³³, at each occurrence, is independently selected from

H, F, Cl, -CH₃, -OCH₃, -SCH₃, -CF₃, -OCF₃, -CN, and -NO₂;

n is 1; and

5 m is 1.

7. A compound of Claim 2 of Formula (I-a)

10

wherein:

b is a single bond wherein the bridging hydrogens are
either cis or trans;

X is a bond, -CH₂-, -O-, -S-, -OCH₂-, or -SCH₂-;

R¹ is selected from

20 hydrogen, methyl, ethyl, n-propyl, n-butyl, s-butyl,
t-butyl, n-pentyl, n-hexyl, 2-propyl, 2-butyl, 2-pentyl,
2-hexyl, 2-methylpropyl, 2-methylbutyl, 2-methylpentyl,
2-ethylbutyl, 3-methylpentyl, 3-methylbutyl,
4-methylpentyl, 2-fluoroethyl, 2,2-difluoroethyl,
25 2,2,2-trifluoroethyl,

2-propenyl, 2-methyl-2-propenyl, trans-2-butenyl,
3-methyl-2-butenyl, 3-butenyl, trans-2-pentenyl,
cis-2-pentenyl, 4-pentenyl, 4-methyl-3-pentenyl,
30 3,3-dichloro-2-propenyl, trans-3-phenyl-2-propenyl,

cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl,
cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl,
cyclohexylmethyl,

benzyl, 2-methylbenzyl, 3-methylbenzyl, 4-methylbenzyl,
2,5-dimethylbenzyl, 2,4-dimethylbenzyl, 3,5-dimethylbenzyl,

5 2,4,6-trimethylbenzyl, 3-methoxybenzyl, 3,5-dimethoxybenzyl, pentafluorobenzyl, 2-phenylethyl, 1-phenyl-2-propyl, 4-phenylbutyl, 4-phenylbenzyl, 2-phenylbenzyl,

10 (2,3-dimethoxy-phenyl)C(=O)-, (2,5-dimethoxy-phenyl)C(=O)-, (3,4-dimethoxy-phenyl)C(=O)-, (3,5-dimethoxy-phenyl)C(=O)-, cyclopropyl-C(=O)-, isopropyl-C(=O)-, ethyl-CO₂-, propyl-CO₂-, t-butyl-CO₂-,
2,6-dimethoxybenzyl, 2,4-dimethoxybenzyl,
2,4,6-trimethoxybenzyl, 2,3-dimethoxybenzyl,
15 2,4,5-trimethoxybenzyl, 2,3,4-trimethoxybenzyl,
3,4-dimethoxybenzyl, 3,4,5-trimethoxybenzyl,
(4-fluoro-phenyl)ethyl,

20 -CH=CH₂, -CH₂-CH=CH₂, -CH=CH-CH₃, -C≡CH, -C≡C-CH₃, and
-CH₂-C≡CH; and

R^{6a} is H;

R^{6b} is H;

25 alternatively, R^{6a} and R^{6b} are taken together to form =O;

R⁷, R⁸, and R⁹, at each occurrence, are independently selected from

30 hydrogen, fluoro, chloro, bromo, cyano, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, nitro, trifluoromethyl, methoxy, ethoxy, isopropoxy, trifluoromethoxy, phenyl;

35 2-Cl-phenyl; 2-F-phenyl; 2-Br-phenyl; 2-CN-phenyl;

2-Me-phenyl; 2-CF₃-phenyl; 2-MeO-phenyl; 2-CF₃O-phenyl;
2-NO₂-phenyl; 2-MeS-phenyl; 2-CHO-phenyl; 2-HOCH₂-phenyl;

5 3-Cl-phenyl; 3-F-phenyl; 3-Br-phenyl; 3-CN-phenyl;
3-Me-phenyl; 3-Et-phenyl; 3-n-Pr-phenyl; 3-isopropyl-phenyl;
3-n-Bu-phenyl; 3-CF₃-phenyl; 3-MeO-phenyl; 3-MeS-phenyl;
3-isopropoxyphenyl; 3-CF₃O-phenyl; 3-NO₂-phenyl;
3-CHO-phenyl; 3-HOCH₂-phenyl; 3-MeOCH₂-phenyl;
10 3-Me₂NCH₂-phenyl;

15 4-Cl-phenyl; 4-F-phenyl; 4-Br-phenyl; 4-CN-phenyl;
4-Me-phenyl; 4-Et-phenyl; 4-n-Pr-phenyl;
4-isopropyl-phenyl; 4-n-Bu-phenyl; 4-CF₃-phenyl;
4-MeO-phenyl; 4-isopropoxyphenyl; 4-CF₃O-phenyl;
4-MeS-phenyl;

20 4-acetylphenyl; 3-acetamidophenyl; 4-pyridyl;
2-furanyl; 2-thiophenyl; 2-naphthyl; 1-pyrrolidinyl,

25 2,3-diCl-phenyl; 2,3-diF-phenyl; 2,3-diMe-phenyl;
2,3-diCF₃-phenyl; 2,3-diMeO-phenyl; 2,3-diCF₃O-phenyl;
2,4-diCl-phenyl; 2,4-diF-phenyl; 2,4-diMe-phenyl;
2,4-diCF₃-phenyl; 2,4-diMeO-phenyl; 2,4-diCF₃O-phenyl;

30 2,5-diCl-phenyl; 2,5-diF-phenyl; 2,5-diMe-phenyl;
2,5-diCF₃-phenyl; 2,5-diMeO-phenyl; 2,5-diCF₃O-phenyl;

35 3,4-diCl-phenyl; 3,4-diF-phenyl; 3,4-diMe-phenyl;
3,4-diCF₃-phenyl; 3,4-diMeO-phenyl; 3,4-diCF₃O-phenyl;
2,4,6-triCl-phenyl; 2,4,6-triF-phenyl;
2,4,6-triMe-phenyl; 2,4,6-triCF₃-phenyl;

2,4,6-triMeO-phenyl; 2,4,6-triCF₃O-phenyl;
2,4,5-triMe-phenyl; 2,3,4-trifF-phenyl;
2-Me-4-MeO-5-F-phenyl; 2,6-diCl-4-MeO-phenyl;
2,4-diMeO-6-F-phenyl; 2,6-difF-4-Cl-phenyl;
5 2,3,4,6-tetraF-phenyl; 2,3,4,5,6-pentaF-phenyl;

2-Cl-4-F-phenyl; 2-Cl-6-F-phenyl; 2-Cl-3-Me-phenyl;
2-Cl-4-MeO-phenyl; 2-Cl-4-EtO-phenyl;
2-Cl-4-iPrO-phenyl; 2-Cl-4-CF₃-phenyl;
10 2-Cl-4-CF₃O-phenyl; 2-Cl-4-(CHF₂)O-phenyl;
2-F-3-Cl-phenyl; 2-F-4-MeO-phenyl; 2-F-5-Me-phenyl;

2-Me-3-Cl-phenyl; 2-Me-3-CN-phenyl; 2-Me-4-Cl-phenyl;
2-Me-4-F-phenyl; 2-Me-4-CN-phenyl; 2-Me-4-MeO-phenyl;
15 2-Me-4-EtO-phenyl; 2-Me-4-MeS-phenyl;
2-Me-4-H₂NCO-phenyl; 2-Me-4-MeOC(=O)-phenyl;
2-Me-4-CH₃C(=O)-phenyl; 2-Me-5-F-phenyl;
2-Et-4-MeO-phenyl; 2-MeO-5-F-phenyl;
2-MeO-4-isopropyl-phenyl; 2-CF₃-4-Cl-phenyl;
20 2-CF₃-4-F-phenyl; 2-CF₃-4-MeO-phenyl;
2-CF₃-4-EtO-phenyl; 2-CF₃-4-iPrO-phenyl;
2-CF₃-4-CN-phenyl; 2-CF₃-6-F-phenyl;
2-CHO-4-MeO-phenyl; 2-MeOC(=O)-3-MeO-phenyl;
2-CH₃CH(OH)-4-MeO-phenyl; 2-CH₃CH(OH)-4-F-phenyl;
25 2-CH₃CH(OH)-4-Cl-phenyl; 2-CH₃CH(OH)-4-Me-phenyl;
2-CH₃CH(OMe)-4-MeO-phenyl; 2-CH₃C(=O)-4-MeO-phenyl;
2-CH₃C(=O)-4-F-phenyl; 2-CH₃C(=O)-4-Cl-phenyl;
2-CH₃C(=O)-4-Me-phenyl; 2-H₂C(OH)-4-MeO-phenyl;
2-H₂C(OMe)-4-MeO-phenyl; 2-H₃CCH₂CH(OH)-4-MeO-phenyl;
30 2-H₃CCH₂C(=O)-4-MeO-phenyl; 2-CH₃CO₂CH₂CH₂-4-MeO-phenyl;
(Z)-2-HOCH₂CH=CH-4-MeO-phenyl;
(E)-2-HOCH₂CH=CH-4-MeO-phenyl;
(Z)-2-CH₃CO₂CH=CH-4-MeO-phenyl;
(E)-2-CH₃CO₂CH=CH-4-MeO-phenyl;
35 2-CH₃OCH₂CH₂-4-MeO-phenyl;

3-CN-4-F-phenyl; 3-H₂NCO-4-F-phenyl;

(2-Cl-phenyl)-CH=CH-; (3-Cl-phenyl)-CH=CH-;
(2,6-diF-phenyl)-CH=CH-; phenyl-CH=CH-;
(2-Me-4-MeO-phenyl)-CH=CH-;

5 cyclohexyl; cyclopentyl; cyclohexylmethyl; benzyl;
2-F-benzyl; 3-F-benzyl; 4-F-benzyl; 3-MeO-benzyl;
3-OH-benzyl; 2-MeO-benzyl; 2-OH-benzyl;
tetrahydroquinolin-1-yl;
tetrahydroindolin-1-yl;
10 tetrahydroisoindolin-1-yl;

phenyl-S-; phenyl-NH-; pyrid-3-yl-NH-;
(4-Me-pyrid-3-yl)-NH-; (4-Cl-pyrid-3-yl)-NH-;
(1-naphthyl)-NH-; (2-naphthyl)-NH-;
15 (2-Me-naphth-1-yl)-NH-; (4-Me-naphth-1-yl)-NH-;
(3-quinolinyl)-NH-;

(2-[1,1'-biphenyl])-NH-; (3-[1,1'-biphenyl])-NH-;
(4-[1,1'-biphenyl])-NH-; (2-F-phenyl)-NH-;
20 (2-Cl-phenyl)-NH-; (2-CF₃-phenyl)-NH-;
(2-CH₃-phenyl)-NH-; (2-OMe-phenyl)-NH-;
(2-CN-phenyl)-NH-; (2-OCF₃-phenyl)-NH-;
(2-SMe-phenyl)-NH-; (3-F-phenyl)-NH-;
(3-Cl-phenyl)-NH-; (3-CF₃-phenyl)-NH-;
25 (3-CH₃-phenyl)-NH-; (3-OMe-phenyl)-NH-;
(3-CN-phenyl)-NH-; (3-OCF₃-phenyl)-NH-;
(3-SMe-phenyl)-NH-; (4-F-phenyl)-NH-;
(4-Cl-phenyl)-NH-; (4-CF₃-phenyl)-NH-;
(4-CH₃-phenyl)-NH-; (4-OMe-phenyl)-NH-;

30 (4-CN-phenyl)-NH-; (4-OCF₃-phenyl)-NH-;
(4-SMe-phenyl)-NH-; (2,3-diCl-phenyl)-NH-;
(2,4-diCl-phenyl)-NH-; (2,5-diCl-phenyl)-NH-;
(2,6-diCl-phenyl)-NH-; (3,4-diCl-phenyl)-NH-;
(3,5-diCl-phenyl)-NH-; (2,3-diF-phenyl)-NH-;

35 (2,4-diF-phenyl)-NH-; (2,5-diF-phenyl)-NH-;
(2,6-diF-phenyl)-NH-; (3,4-diF-phenyl)-NH-;
(3,5-diF-phenyl)-NH-; (2,3-diCH₃-phenyl)-NH-;

(2,4-diCH₃-phenyl)-NH-; (2,5-diCH₃-phenyl)-NH-;
 (2,6-diCH₃-phenyl)-NH-; (3,4-diCH₃-phenyl)-NH-;
 (3,5-diCH₃-phenyl)-NH-; (2,3-diCF₃-phenyl)-NH-;
 (2,4-diCF₃-phenyl)-NH-; (2,5-diCF₃-phenyl)-NH-;
 5 (2,6-diCF₃-phenyl)-NH-; (3,4-diCF₃-phenyl)-NH-;
 (3,5-diCF₃-phenyl)-NH-; (2,3-diOMe-phenyl)-NH-;
 (2,4-diOMe-phenyl)-NH-; (2,5-diOMe-phenyl)-NH-;
 (2,6-diOMe-phenyl)-NH-; (3,4-diOMe-phenyl)-NH-;
 (3,5-diOMe-phenyl)-NH-; (2-F-3-Cl-phenyl)-NH-;
 10 (2-F-4-Cl-phenyl)-NH-; (2-F-5-Cl-phenyl)-NH-;
 (2-F-6-Cl-phenyl)-NH-; (2-F-3-CH₃-phenyl)-NH-;
 (2-F-4-CH₃-phenyl)-NH-; (2-F-5-CH₃-phenyl)-NH-;
 (2-F-6-CH₃-phenyl)-NH-; (2-F-3-CF₃-phenyl)-NH-;
 (2-F-4-CF₃-phenyl)-NH-; (2-F-5-CF₃-phenyl)-NH-;
 15 (2-F-6-CF₃-phenyl)-NH-; (2-F-3-OMe-phenyl)-NH-;
 (2-F-4-OMe-phenyl)-NH-; (2-F-5-OMe-phenyl)-NH-;
 (2-F-6-OMe-phenyl)-NH-; (2-Cl-3-F-phenyl)-NH-;
 (2-Cl-4-F-phenyl)-NH-; (2-Cl-5-F-phenyl)-NH-;
 (2-Cl-6-F-phenyl)-NH-; (2-Cl-3-CH₃-phenyl)-NH-;
 20 (2-Cl-4-CH₃-phenyl)-NH-; (2-Cl-5-CH₃-phenyl)-NH-;
 (2-Cl-6-CH₃-phenyl)-NH-; (2-Cl-3-CF₃-phenyl)-NH-;
 (2-Cl-4-CF₃-phenyl)-NH-; (2-Cl-5-CF₃-phenyl)-NH-;
 (2-Cl-6-CF₃-phenyl)-NH-; (2-Cl-3-OMe-phenyl)-NH-;
 (2-Cl-4-OMe-phenyl)-NH-; (2-Cl-5-OMe-phenyl)-NH-;
 25 (2-Cl-6-OMe-phenyl)-NH-; (2-CH₃-3-F-phenyl)-NH-;
 (2-CH₃-4-F-phenyl)-NH-; (2-CH₃-5-F-phenyl)-NH-;
 (2-CH₃-6-F-phenyl)-NH-; (2-CH₃-3-Cl-phenyl)-NH-;
 (2-CH₃-4-Cl-phenyl)-NH-; (2-CH₃-5-Cl-phenyl)-NH-;
 (2-CH₃-6-Cl-phenyl)-NH-; (2-CH₃-3-CF₃-phenyl)-NH-;
 30 (2-CH₃-4-CF₃-phenyl)-NH-; (2-CH₃-5-CF₃-phenyl)-NH-;
 (2-CH₃-6-CF₃-phenyl)-NH-; (2-CH₃-3-OMe-phenyl)-NH-;
 (2-CH₃-4-OMe-phenyl)-NH-; (2-CH₃-5-OMe-phenyl)-NH-;
 (2-CH₃-6-OMe-phenyl)-NH-; (2-CF₃-3-F-phenyl)-NH-;
 (2-CF₃-4-F-phenyl)-NH-; (2-CF₃-5-F-phenyl)-NH-;
 35 (2-CF₃-6-F-phenyl)-NH-; (2-CF₃-3-Cl-phenyl)-NH-;
 (2-CF₃-4-Cl-phenyl)-NH-; (2-CF₃-5-Cl-phenyl)-NH-;
 (2-CF₃-6-Cl-phenyl)-NH-; (2-CF₃-3-CH₃-phenyl)-NH-;

(2-CF₃-4-CH₃-phenyl)-NH-; (2-CH₃-5-CF₃-phenyl)-NH-;
(2-CF₃-6-CH₃-phenyl)-NH-; (2-CF₃-3-OMe-phenyl)-NH-;
(2-CF₃-4-OMe-phenyl)-NH-; (2-CF₃-5-OMe-phenyl)-NH-;
(2-CF₃-6-OMe-phenyl)-NH-; (2-OMe-3-F-phenyl)-NH-;

5 (2-OMe-4-F-phenyl)-NH-; (2-OMe-5-F-phenyl)-NH-;
(2-OMe-6-F-phenyl)-NH-; (2-OMe-3-Cl-phenyl)-NH-;
(2-OMe-4-Cl-phenyl)-NH-; (2-OMe-5-Cl-phenyl)-NH-;
(2-OMe-6-Cl-phenyl)-NH-; (2-OMe-4-CN-phenyl)-NH-;
(2-OMe-4-CHO-phenyl)-NH-; (2-OMe-3-CH₃-phenyl)-NH-;

10 (2-OMe-4-CH₃-phenyl)-NH-; (2-OMe-5-CH₃-phenyl)-NH-;
(2-OMe-6-CH₃-phenyl)-NH-; (2-OMe-3-CF₃-phenyl)-NH-;
(2-OMe-4-CF₃-phenyl)-NH-; (2-OMe-5-CF₃-phenyl)-NH-;
(2-OMe-6-CF₃-phenyl)-NH-; (2-acetyl-4-Cl-phenyl)-NH-;
(2-acetyl-4-Me-phenyl)-NH-; (2-acetyl-4-MeO-phenyl)-NH-;

15 (2-CH₃CH(OH)-4-Cl-phenyl)-NH-;
(2-CH₃CH(OH)-4-Me-phenyl)-NH-;
(2-CH₃CH(OH)-4-MeO-phenyl)-NH-;

(3-CF₃-4-Cl-phenyl)-NH-; (3-F-4-CHO-phenyl)-NH-;

20 (3-CH₃-4-CN-phenyl)-NH-; (3-CH₃-4-MeO-phenyl)-NH-;
(3-CH₃-4-Cl-phenyl)-NH-; (3-CH₃-4-F-phenyl)-NH-;
(3-F-5-CF₃-phenyl)-NH-;

(3-CH₃-4-CO₂Me-phenyl)NH-; (3-CF₃-4-C(O)CH₃-phenyl)NH-;

25 (3-CHO-4-OMe-phenyl)-NH-; (4-F-3-CF₃-phenyl)-NH-;

(2,3,5-triCl-phenyl)-NH-; (2,4,5-triF-phenyl)-NH-;
(2,6-diCl-3-Me-phenyl)-NH-; (3,5-diMe-4-MeO-phenyl)-NH-;
(2-F-3-Cl-6-CF₃-phenyl)-NH-;

30 benzyl-NH-; (3-quinolinyl)CH₂NH-; (2-F-phenyl)CH₂NH-;
(2-Cl-phenyl)CH₂NH-; (2-CF₃-phenyl)CH₂NH-;
(2-CH₃-phenyl)CH₂NH-; (2-OMe-phenyl)CH₂NH-;
(2-CN-phenyl)CH₂NH-; (2-OCF₃-phenyl)CH₂NH-;

35 (2-SMe-phenyl)CH₂NH-; (3-F-phenyl)CH₂NH-;
(3-Cl-phenyl)CH₂NH-; (3-CF₃-phenyl)CH₂NH-;
(3-CH₃-phenyl)CH₂NH-; (3-OMe-phenyl)CH₂NH-;

(3-CN-phenyl)CH₂NH-; (3-OCF₃-phenyl)CH₂NH-;
(3-SMe-phenyl)CH₂NH-; (4-F-phenyl)CH₂NH-;
(4-Cl-phenyl)CH₂NH-; (4-CF₃-phenyl)CH₂NH-;
(4-CH₃-phenyl)CH₂NH-; (4-OMe-phenyl)CH₂NH-;
5 (4-CN-phenyl)CH₂NH-; (4-OCF₃-phenyl)CH₂NH-;
(4-SMe-phenyl)CH₂NH-; (2,3-diCl-phenyl)CH₂NH-;
(2,4-diCl-phenyl)CH₂NH-; (2,5-diCl-phenyl)CH₂NH-;
(2,6-diCl-phenyl)CH₂NH-; (3,4-diCl-phenyl)CH₂NH-;
(3,5-diCl-phenyl)CH₂NH-; (2,3-diF-phenyl)CH₂NH-;
10 (2,4-diF-phenyl)CH₂NH-; (2,5-diF-phenyl)CH₂NH-;
(2,6-diF-phenyl)CH₂NH-; (3,4-diF-phenyl)CH₂NH-;
(3,5-diF-phenyl)CH₂NH-; (2,3-diCH₃-phenyl)CH₂NH-;
(2,4-diCH₃-phenyl)CH₂NH-; (2,5-diCH₃-phenyl)CH₂NH-;
(2,6-diCH₃-phenyl)CH₂NH-; (3,4-diCH₃-phenyl)CH₂NH-;
15 (3,5-diCH₃-phenyl)CH₂NH-; (2,3-diCF₃-phenyl)CH₂NH-;
(2,4-diCF₃-phenyl)CH₂NH-; (2,5-diCF₃-phenyl)CH₂NH-;
(2,6-diCF₃-phenyl)CH₂NH-; (3,4-diCF₃-phenyl)CH₂NH-;
(3,5-diCF₃-phenyl)CH₂NH-; (2,3-diOMe-phenyl)CH₂NH-;
(2,4-diOMe-phenyl)CH₂NH-; (2,5-diOMe-phenyl)CH₂NH-;
20 (2,6-diOMe-phenyl)CH₂NH-; (3,4-diOMe-phenyl)CH₂NH-;
(3,5-diOMe-phenyl)CH₂NH-; (2-F-3-Cl-phenyl)CH₂NH-;
(2-F-4-Cl-phenyl)CH₂NH-; (2-F-5-Cl-phenyl)CH₂NH-;
(2-F-6-Cl-phenyl)CH₂NH-; (2-F-3-CH₃-phenyl)CH₂NH-;
25 (2-F-4-CH₃-phenyl)CH₂NH-; (2-F-5-CH₃-phenyl)CH₂NH-;
(2-F-6-CH₃-phenyl)CH₂NH-; (2-F-3-CF₃-phenyl)CH₂NH-;
(2-F-4-CF₃-phenyl)CH₂NH-; (2-F-5-CF₃-phenyl)CH₂NH-;
(2-F-6-CF₃-phenyl)CH₂NH-; (2-F-3-OMe-phenyl)CH₂NH-;
30 (2-F-4-OMe-phenyl)CH₂NH-; (2-F-5-OMe-phenyl)CH₂NH-;
(2-F-6-OMe-phenyl)CH₂NH-; (2-Cl-3-F-phenyl)CH₂NH-;
(2-Cl-4-F-phenyl)CH₂NH-; (2-Cl-5-F-phenyl)CH₂NH-;
(2-Cl-6-F-phenyl)CH₂NH-; (2-Cl-3-CH₃-phenyl)CH₂NH-;
(2-Cl-4-CH₃-phenyl)CH₂NH-; (2-Cl-5-CH₃-phenyl)CH₂NH-;
(2-Cl-6-CH₃-phenyl)CH₂NH-; (2-Cl-3-CF₃-phenyl)CH₂NH-;
35 (2-Cl-4-CF₃-phenyl)CH₂NH-; (2-Cl-5-CF₃-phenyl)CH₂NH-;
(2-Cl-6-CF₃-phenyl)CH₂NH-; (2-Cl-3-OMe-phenyl)CH₂NH-;
(2-Cl-4-OMe-phenyl)CH₂NH-; (2-Cl-5-OMe-phenyl)CH₂NH-;
(2-Cl-6-OMe-phenyl)CH₂NH-; (2-CH₃-3-F-phenyl)CH₂NH-;

(2-CH₃-4-F-phenyl)CH₂NH-; (2-CH₃-5-F-phenyl)CH₂NH-;
 (2-CH₃-6-F-phenyl)CH₂NH-; (2-CH₃-3-Cl-phenyl)CH₂NH-;
 (2-CH₃-4-Cl-phenyl)CH₂NH-; (2-CH₃-5-Cl-phenyl)CH₂NH-;
 (2-CH₃-6-Cl-phenyl)CH₂NH-; (2-CH₃-3-CF₃-phenyl)CH₂NH-;
 5 (2-CH₃-4-CF₃-phenyl)CH₂NH-; (2-CH₃-5-CF₃-phenyl)CH₂NH-;
 (2-CH₃-6-CF₃-phenyl)CH₂NH-; (2-CH₃-3-OMe-phenyl)CH₂NH-;
 (2-CH₃-4-OMe-phenyl)CH₂NH-; (2-CH₃-5-OMe-phenyl)CH₂NH-;
 (2-CH₃-6-OMe-phenyl)CH₂NH-; (2-CF₃-3-F-phenyl)CH₂NH-;
 (2-CF₃-4-F-phenyl)CH₂NH-; (2-CF₃-5-F-phenyl)CH₂NH-;
 10 (2-CF₃-6-F-phenyl)CH₂NH-; (2-CF₃-3-Cl-phenyl)CH₂NH-;
 (2-CF₃-4-Cl-phenyl)CH₂NH-; (2-CF₃-5-Cl-phenyl)CH₂NH-;
 (2-CF₃-6-Cl-phenyl)CH₂NH-; (2-CF₃-3-CH₃-phenyl)CH₂NH-;
 (2-CF₃-4-CH₃-phenyl)CH₂NH-; (2-CH₃-5-CF₃-phenyl)CH₂NH-;
 (2-CF₃-6-CH₃-phenyl)CH₂NH-; (2-CF₃-3-OMe-phenyl)CH₂NH-;
 15 (2-CF₃-4-OMe-phenyl)CH₂NH-; (2-CF₃-5-OMe-phenyl)CH₂NH-;
 (2-CF₃-6-OMe-phenyl)CH₂NH-; (2-OMe-3-F-phenyl)CH₂NH-;
 (2-OMe-4-F-phenyl)CH₂NH-; (2-OMe-5-F-phenyl)CH₂NH-;
 (2-OMe-6-F-phenyl)CH₂NH-; (2-OMe-3-Cl-phenyl)CH₂NH-;
 (2-OMe-4-Cl-phenyl)CH₂NH-; (2-OMe-5-Cl-phenyl)CH₂NH-;
 20 (2-OMe-6-Cl-phenyl)CH₂NH-; (2-OMe-4-CN-phenyl)CH₂NH-;
 (2-OMe-4-CHO-phenyl)CH₂NH-; (2-OMe-3-CH₃-phenyl)CH₂NH-;
 (2-OMe-4-CH₃-phenyl)CH₂NH-; (2-OMe-5-CH₃-phenyl)CH₂NH-;
 (2-OMe-6-CH₃-phenyl)CH₂NH-; (2-OMe-3-CF₃-phenyl)CH₂NH-;
 (2-OMe-4-CF₃-phenyl)CH₂NH-; (2-OMe-5-CF₃-phenyl)CH₂NH-;
 25 (2-OMe-6-CF₃-phenyl)CH₂NH-; (2-acetyl-4-Cl-phenyl)CH₂NH-;
 (2-acetyl-4-Me-phenyl)CH₂NH-;
 (2-acetyl-4-MeO-phenyl)CH₂NH-;
 (2-CH₃CH(OH)-4-Cl-phenyl)CH₂NH-;
 (2-CH₃CH(OH)-4-Me-phenyl)CH₂NH-;
 30 (2-CH₃CH(OH)-4-MeO-phenyl)CH₂NH-;

 (3-CF₃-4-Cl-phenyl)CH₂NH-; (3-F-4-CHO-phenyl)CH₂NH-;
 (3-CH₃-4-CN-phenyl)CH₂NH-; (3-CH₃-4-MeO-phenyl)CH₂NH-;
 (3-CH₃-4-Cl-phenyl)CH₂NH-; (3-CH₃-4-F-phenyl)CH₂NH-;
 35 (4-F-3-CF₃-phenyl)CH₂NH-; (3-CH₃-4-CO₂Me-phenyl)CH₂NH-;
 (3-CF₃-4-C(O)CH₃-phenyl)CH₂NH-;
 (3-CHO-4-OMe-phenyl)CH₂NH-;

(2,3,5-triCl-phenyl)CH₂NH-;
(2,4,5-triF-phenyl)CH₂NH-;
(2,6-diCl-3-Me-phenyl)CH₂NH-;
5 (3,5-diMe-4-MeO-phenyl)CH₂NH-; and
(2-F-3-Cl-6-CF₃-phenyl)CH₂NH-;

provided that two of R⁷, R⁸, and R⁹, are independently selected from hydrogen, fluoro, chloro, bromo, cyano,
10 methyl, ethyl, propyl, isopropyl, butyl, t-butyl, nitro, trifluoromethyl, methoxy, ethoxy, isopropoxy, and trifluoromethoxy.

8. A compound of Claim 7 of Formula (II)

wherein:

20 b is a single bond, wherein the bridge hydrogens are in a cis or trans position;

R¹ is selected from

hydrogen, methyl, ethyl, n-propyl, n-butyl, s-butyl,
25 t-butyl, n-pentyl, n-hexyl, 2-propyl, 2-butyl, 2-pentyl,
2-hexyl, 2-methylpropyl, 2-methylbutyl, 2-methylpentyl,
2-ethylbutyl, 3-methylpentyl, 3-methylbutyl,
4-methylpentyl, 2-fluoroethyl, 2,2-difluoroethyl,
2,2,2-trifluoroethyl, 2-propenyl, 2-methyl-2-propenyl,
30 trans-2-butenyl, 3-methyl-2-butenyl, 3-butenyl,
trans-2-pentenyl, cis-2-pentenyl, 4-pentenyl,
4-methyl-3-pentenyl, 3,3-dichloro-2-propenyl,

trans-3-phenyl-2-propenyl, cyclopropyl, cyclobutyl,
cyclopentyl, cyclohexyl, cyclopropylmethyl,
cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl,
-CH=CH₂, -CH₂-CH=CH₂, -CH=CH-CH₃, -C≡CH, -C≡C-CH₃,
5 and -CH₂-C≡CH;

R^{6a} is H;

R^{6b} is H;

10

alternatively, R^{6a} and R^{6b} are taken together to form =O;

R⁷ and R⁹, at each occurrence, are independently selected
from hydrogen, fluoro, methyl, trifluoromethyl, and
methoxy;

15 R⁸ is selected from

hydrogen, fluoro, chloro, bromo, cyano, methyl, ethyl,
propyl, isopropyl, butyl, t-butyl, nitro,
trifluoromethyl, methoxy, ethoxy, isopropoxy,
trifluoromethoxy, phenyl;

20 2-Cl-phenyl; 2-F-phenyl; 2-Br-phenyl; 2-CN-phenyl;
2-Me-phenyl; 2-CF₃-phenyl; 2-MeO-phenyl; 2-CF₃O-phenyl;
25 2-NO₂-phenyl; 2-MeS-phenyl; 2-CHO-phenyl; 2-HOCH₂-
phenyl;

30 3-Cl-phenyl; 3-F-phenyl; 3-Br-phenyl; 3-CN-phenyl;
3-Me-phenyl; 3-Et-phenyl; 3-n-Pr-phenyl; 3-isopropyl-phenyl;
3-n-Bu-phenyl; 3-CF₃-phenyl; 3-MeO-phenyl; 3-MeS-phenyl;
3-isopropoxyphenyl; 3-CF₃O-phenyl; 3-NO₂-phenyl;
3-CHO-phenyl; 3-HOCH₂-phenyl; 3-MeOCH₂-phenyl;
3-Me₂NCH₂-phenyl;

35

4-Cl-phenyl; 4-F-phenyl; 4-Br-phenyl; 4-CN-phenyl;
4-Me-phenyl; 4-Et-phenyl; 4-n-Pr-phenyl; 4-isopropyl-phenyl;

4-n-Bu-phenyl; 4-CF₃-phenyl; 4-MeO-phenyl;
4-isopropoxyphenyl; 4-CF₃O-phenyl; 4-MeS-phenyl;

4-acetylphenyl; 3-acetamidophenyl; 4-pyridyl;
5 2-furanyl; 2-thiophenyl; 2-naphthyl; 1-pyrrolidinyl,

2,3-diCl-phenyl; 2,3-diF-phenyl; 2,3-diMe-phenyl;
2,3-diCF₃-phenyl; 2,3-diMeO-phenyl; 2,3-diCF₃O-phenyl;

10 2,4-diCl-phenyl; 2,4-diF-phenyl; 2,4-diMe-phenyl;
2,4-diCF₃-phenyl; 2,4-diMeO-phenyl; 2,4-diCF₃O-phenyl;

2,5-diCl-phenyl; 2,5-diF-phenyl; 2,5-diMe-phenyl;
2,5-diCF₃-phenyl; 2,5-diMeO-phenyl; 2,5-diCF₃O-phenyl;

15 2,6-diCl-phenyl; 2,6-diF-phenyl; 2,6-diMe-phenyl;
2,6-diCF₃-phenyl; 2,6-diMeO-phenyl; 2,6-diCF₃O-phenyl;

3,4-diCl-phenyl; 3,4-diF-phenyl; 3,4-diMe-phenyl;
20 3,4-diCF₃-phenyl; 3,4-diMeO-phenyl; 3,4-diCF₃O-phenyl;

2,4,6-triCl-phenyl; 2,4,6-triF-phenyl;
2,4,6-triMe-phenyl; 2,4,6-triCF₃-phenyl;
2,4,6-triMeO-phenyl; 2,4,6-triCF₃O-phenyl;

25 2,4,5-triMe-phenyl; 2,3,4-triF-phenyl;
2-Me-4-MeO-5-F-phenyl; 2,6-diCl-4-MeO-phenyl;
2,4-diMeO-6-F-phenyl; 2,6-diF-4-Cl-phenyl;
2,3,4,6-tetraF-phenyl; 2,3,4,5,6-pentaF-phenyl;

30 2-Cl-4-F-phenyl; 2-Cl-6-F-phenyl; 2-Cl-3-Me-phenyl;
2-Cl-4-MeO-phenyl; 2-Cl-4-EtO-phenyl;
2-Cl-4-iPrO-phenyl; 2-Cl-4-CF₃-phenyl;
2-Cl-4-CF₃O-phenyl; 2-Cl-4-(CHF₂)O-phenyl;
2-F-3-Cl-phenyl; 2-F-4-MeO-phenyl; 2-F-5-Me-phenyl;

35 2-Me-3-Cl-phenyl; 2-Me-3-CN-phenyl; 2-Me-4-Cl-phenyl;
2-Me-4-F-phenyl; 2-Me-4-CN-phenyl; 2-Me-4-MeO-phenyl;

2-Me-4-EtO-phenyl; 2-Me-4-MeS-phenyl;
 2-Me-4-H₂NCO-phenyl; 2-Me-4-MeOC(=O)-phenyl;
 2-Me-4-CH₃C(=O)-phenyl; 2-Me-5-F-phenyl;
 2-Et-4-MeO-phenyl; 2-MeO-5-F-phenyl;
 5 2-MeO-4-isopropyl-phenyl; 2-CF₃-4-Cl-phenyl;
 2-CF₃-4-F-phenyl; 2-CF₃-4-MeO-phenyl;
 2-CF₃-4-EtO-phenyl; 2-CF₃-4-iPrO-phenyl;
 2-CF₃-4-CN-phenyl; 2-CF₃-6-F-phenyl;
 2-CHO-4-MeO-phenyl; 2-MeOC(=O)-3-MeO-phenyl;
 10 2-CH₃CH(OH)-4-MeO-phenyl; 2-CH₃CH(OH)-4-F-phenyl;
 2-CH₃CH(OH)-4-Cl-phenyl; 2-CH₃CH(OH)-4-Me-phenyl;
 2-CH₃CH(OMe)-4-MeO-phenyl; 2-CH₃C(=O)-4-MeO-phenyl;
 2-CH₃C(=O)-4-F-phenyl; 2-CH₃C(=O)-4-Cl-phenyl;
 2-CH₃C(=O)-4-Me-phenyl; 2-H₂C(OH)-4-MeO-phenyl;
 15 2-H₂C(OMe)-4-MeO-phenyl; 2-H₃CCH₂CH(OH)-4-MeO-phenyl;
 2-H₃CCH₂C(=O)-4-MeO-phenyl; 2-CH₃CO₂CH₂CH₂CH₂-4-MeO-phenyl;
 (Z)-2-HOCH₂CH=CH-4-MeO-phenyl;
 (E)-2-HOCH₂CH=CH-4-MeO-phenyl;
 (Z)-2-CH₃CO₂CH=CH-4-MeO-phenyl;
 20 (E)-2-CH₃CO₂CH=CH-4-MeO-phenyl;
 2-CH₃OCH₂CH₂-4-MeO-phenyl;

 3-CN-4-F-phenyl; 3-H₂NCO-4-F-phenyl;
 (2-Cl-phenyl)-CH=CH-; (3-Cl-phenyl)-CH=CH-;
 25 (2,6-diF-phenyl)-CH=CH-; phenyl-CH=CH-;
 (2-Me-4-MeO-phenyl)-CH=CH-;

 cyclohexyl; cyclopentyl; cyclohexylmethyl; benzyl;
 2-F-benzyl; 3-F-benzyl; 4-F-benzyl; 3-MeO-benzyl;
 30 3-OH-benzyl; 2-MeO-benzyl; 2-OH-benzyl;
 tetrahydroquinolin-1-yl;
 tetrahydroindolin-1-yl;
 tetrahydroisoindolin-1-yl;

 35 phenyl-S-; phenyl-NH-; pyrid-3-yl-NH-;
 (4-Me-pyrid-3-yl)-NH-; (4-Cl-pyrid-3-yl)-NH-;
 (1-naphthyl)-NH-; (2-naphthyl)-NH-;

(2-Me-naphth-1-yl)-NH-; (4-Me-naphth-1-yl)-NH-;
(3-quinolinyl)-NH-;

5 (2-[1,1'-biphenyl])-NH-; (3-[1,1'-biphenyl])-NH-;
(4-[1,1'-biphenyl])-NH-; (2-F-phenyl)-NH-;
(2-Cl-phenyl)-NH-; (2-CF₃-phenyl)-NH-;
(2-CH₃-phenyl)-NH-; (2-OMe-phenyl)-NH-;
(2-CN-phenyl)-NH-; (2-OCF₃-phenyl)-NH-;
(2-SMe-phenyl)-NH-; (3-F-phenyl)-NH-;
10 (3-Cl-phenyl)-NH-; (3-CF₃-phenyl)-NH-;
(3-CH₃-phenyl)-NH-; (3-OMe-phenyl)-NH-;
(3-CN-phenyl)-NH-; (3-OCF₃-phenyl)-NH-;
(3-SMe-phenyl)-NH-; (4-F-phenyl)-NH-;
(4-Cl-phenyl)-NH-; (4-CF₃-phenyl)-NH-;

15 (4-CH₃-phenyl)-NH-; (4-OMe-phenyl)-NH-;
(4-CN-phenyl)-NH-; (4-OCF₃-phenyl)-NH-;
(4-SMe-phenyl)-NH-; (2,3-diCl-phenyl)-NH-;
(2,4-diCl-phenyl)-NH-; (2,5-diCl-phenyl)-NH-;
(2,6-diCl-phenyl)-NH-; (3,4-diCl-phenyl)-NH-;

20 (3,5-diCl-phenyl)-NH-; (2,3-diF-phenyl)-NH-;
(2,4-diF-phenyl)-NH-; (2,5-diF-phenyl)-NH-;
(2,6-diF-phenyl)-NH-; (3,4-diF-phenyl)-NH-;
(3,5-diF-phenyl)-NH-; (2,3-diCH₃-phenyl)-NH-;
(2,4-diCH₃-phenyl)-NH-; (2,5-diCH₃-phenyl)-NH-;

25 (2,6-diCH₃-phenyl)-NH-; (3,4-diCH₃-phenyl)-NH-;
(3,5-diCH₃-phenyl)-NH-; (2,3-diCF₃-phenyl)-NH-;
(2,4-diCF₃-phenyl)-NH-; (2,5-diCF₃-phenyl)-NH-;
(2,6-diCF₃-phenyl)-NH-; (3,4-diCF₃-phenyl)-NH-;
(3,5-diCF₃-phenyl)-NH-; (2,3-diOMe-phenyl)-NH-;

30 (2,4-diOMe-phenyl)-NH-; (2,5-diOMe-phenyl)-NH-;
(2,6-diOMe-phenyl)-NH-; (3,4-diOMe-phenyl)-NH-;
(3,5-diOMe-phenyl)-NH-; (2-F-3-Cl-phenyl)-NH-;
(2-F-4-Cl-phenyl)-NH-; (2-F-5-Cl-phenyl)-NH-;
(2-F-6-Cl-phenyl)-NH-; (2-F-3-CH₃-phenyl)-NH-;

35 (2-F-4-CH₃-phenyl)-NH-; (2-F-5-CH₃-phenyl)-NH-;
(2-F-6-CH₃-phenyl)-NH-; (2-F-3-CF₃-phenyl)-NH-;
(2-F-4-CF₃-phenyl)-NH-; (2-F-5-CF₃-phenyl)-NH-;

(2-F-6-CF₃-phenyl)-NH-; (2-F-3-OMe-phenyl)-NH-;
 (2-F-4-OMe-phenyl)-NH-; (2-F-5-OMe-phenyl)-NH-;
 (2-F-6-OMe-phenyl)-NH-; (2-Cl-3-F-phenyl)-NH-;
 (2-Cl-4-F-phenyl)-NH-; (2-Cl-5-F-phenyl)-NH-;
 5 (2-Cl-6-F-phenyl)-NH-; (2-Cl-3-CH₃-phenyl)-NH-;
 (2-Cl-4-CH₃-phenyl)-NH-; (2-Cl-5-CH₃-phenyl)-NH-;
 (2-Cl-6-CH₃-phenyl)-NH-; (2-Cl-3-CF₃-phenyl)-NH-;
 (2-Cl-4-CF₃-phenyl)-NH-; (2-Cl-5-CF₃-phenyl)-NH-;
 (2-Cl-6-CF₃-phenyl)-NH-; (2-Cl-3-OMe-phenyl)-NH-;
 10 (2-Cl-4-OMe-phenyl)-NH-; (2-Cl-5-OMe-phenyl)-NH-;
 (2-Cl-6-OMe-phenyl)-NH-; (2-CH₃-3-F-phenyl)-NH-;
 (2-CH₃-4-F-phenyl)-NH-; (2-CH₃-5-F-phenyl)-NH-;
 (2-CH₃-6-F-phenyl)-NH-; (2-CH₃-3-Cl-phenyl)-NH-;
 (2-CH₃-4-Cl-phenyl)-NH-; (2-CH₃-5-Cl-phenyl)-NH-;
 15 (2-CH₃-6-Cl-phenyl)-NH-; (2-CH₃-3-CF₃-phenyl)-NH-;
 (2-CH₃-4-CF₃-phenyl)-NH-; (2-CH₃-5-CF₃-phenyl)-NH-;
 (2-CH₃-6-CF₃-phenyl)-NH-; (2-CH₃-3-OMe-phenyl)-NH-;
 (2-CH₃-4-OMe-phenyl)-NH-; (2-CH₃-5-OMe-phenyl)-NH-;
 (2-CH₃-6-OMe-phenyl)-NH-; (2-CF₃-3-F-phenyl)-NH-;
 20 (2-CF₃-4-F-phenyl)-NH-; (2-CF₃-5-F-phenyl)-NH-;
 (2-CF₃-6-F-phenyl)-NH-; (2-CF₃-3-Cl-phenyl)-NH-;
 (2-CF₃-4-Cl-phenyl)-NH-; (2-CF₃-5-Cl-phenyl)-NH-;
 (2-CF₃-6-Cl-phenyl)-NH-; (2-CF₃-3-CH₃-phenyl)-NH-;
 (2-CF₃-4-CH₃-phenyl)-NH-; (2-CH₃-5-CF₃-phenyl)-NH-;
 25 (2-CF₃-6-CH₃-phenyl)-NH-; (2-CF₃-3-OMe-phenyl)-NH-;
 (2-CF₃-4-OMe-phenyl)-NH-; (2-CF₃-5-OMe-phenyl)-NH-;
 (2-CF₃-6-OMe-phenyl)-NH-; (2-OMe-3-F-phenyl)-NH-;
 (2-OMe-4-F-phenyl)-NH-; (2-OMe-5-F-phenyl)-NH-;
 (2-OMe-6-F-phenyl)-NH-; (2-OMe-3-Cl-phenyl)-NH-;
 30 (2-OMe-4-Cl-phenyl)-NH-; (2-OMe-5-Cl-phenyl)-NH-;
 (2-OMe-6-Cl-phenyl)-NH-; (2-OMe-4-CN-phenyl)-NH-;
 (2-OMe-4-CHO-phenyl)-NH-; (2-OMe-3-CH₃-phenyl)-NH-;
 (2-OMe-4-CH₃-phenyl)-NH-; (2-OMe-5-CH₃-phenyl)-NH-;
 (2-OMe-6-CH₃-phenyl)-NH-; (2-OMe-3-CF₃-phenyl)-NH-;
 35 (2-OMe-4-CF₃-phenyl)-NH-; (2-OMe-5-CF₃-phenyl)-NH-;
 (2-OMe-6-CF₃-phenyl)-NH-; (2-acetyl-4-Cl-phenyl)-NH-;
 (2-acetyl-4-Me-phenyl)-NH-; (2-acetyl-4-MeO-phenyl)-NH-;

(2-CH₃CH(OH)-4-Cl-phenyl)-NH-;
(2-CH₃CH(OH)-4-Me-phenyl)-NH-;
(2-CH₃CH(OH)-4-MeO-phenyl)-NH-;

5 (3-CF₃-4-Cl-phenyl)-NH-; (3-F-4-CHO-phenyl)-NH-;
(3-CH₃-4-CN-phenyl)-NH-; (3-CH₃-4-MeO-phenyl)-NH-;
(3-CH₃-4-Cl-phenyl)-NH-; (3-CH₃-4-F-phenyl)-NH-;
(3-F-5-CF₃-phenyl)-NH-;

10 (3-CH₃-4-CO₂Me-phenyl)NH-; (3-CF₃-4-C(O)CH₃-phenyl)NH-;
(3-CHO-4-OMe-phenyl)-NH-; (4-F-3-CF₃-phenyl)-NH-;

15 (2,3,5-triCl-phenyl)-NH-; (2,4,5-triF-phenyl)-NH-;
(2,6-diCl-3-Me-phenyl)-NH-; (3,5-diMe-4-MeO-phenyl)-NH-;
(2-F-3-Cl-6-CF₃-phenyl)-NH-;

benzyl-NH-; (3-quinolinyl)CH₂NH-; (2-F-phenyl)CH₂NH-;
(2-Cl-phenyl)CH₂NH-; (2-CF₃-phenyl)CH₂NH-;
(2-CH₃-phenyl)CH₂NH-; (2-OMe-phenyl)CH₂NH-;

20 (2-CN-phenyl)CH₂NH-; (2-OCF₃-phenyl)CH₂NH-;
(2-SMe-phenyl)CH₂NH-; (3-F-phenyl)CH₂NH-;
(3-Cl-phenyl)CH₂NH-; (3-CF₃-phenyl)CH₂NH-;
(3-CH₃-phenyl)CH₂NH-; (3-OMe-phenyl)CH₂NH-;
(3-CN-phenyl)CH₂NH-; (3-OCF₃-phenyl)CH₂NH-;

25 (3-SMe-phenyl)CH₂NH-; (4-F-phenyl)CH₂NH-;
(4-Cl-phenyl)CH₂NH-; (4-CF₃-phenyl)CH₂NH-;
(4-CH₃-phenyl)CH₂NH-; (4-OMe-phenyl)CH₂NH-;
(4-CN-phenyl)CH₂NH-; (4-OCF₃-phenyl)CH₂NH-;
(4-SMe-phenyl)CH₂NH-; (2,3-diCl-phenyl)CH₂NH-;

30 (2,4-diCl-phenyl)CH₂NH-; (2,5-diCl-phenyl)CH₂NH-;
(2,6-diCl-phenyl)CH₂NH-; (3,4-diCl-phenyl)CH₂NH-;
(3,5-diCl-phenyl)CH₂NH-; (2,3-diF-phenyl)CH₂NH-;
(2,4-diF-phenyl)CH₂NH-; (2,5-diF-phenyl)CH₂NH-;
(2,6-diF-phenyl)CH₂NH-; (3,4-diF-phenyl)CH₂NH-;

35 (3,5-diF-phenyl)CH₂NH-; (2,3-diCH₃-phenyl)CH₂NH-;
(2,4-diCH₃-phenyl)CH₂NH-; (2,5-diCH₃-phenyl)CH₂NH-;
(2,6-diCH₃-phenyl)CH₂NH-; (3,4-diCH₃-phenyl)CH₂NH-;

(3,5-diCH₃-phenyl)CH₂NH-; (2,3-diCF₃-phenyl)CH₂NH-;
(2,4-diCF₃-phenyl)CH₂NH-; (2,5-diCF₃-phenyl)CH₂NH-;
(2,6-diCF₃-phenyl)CH₂NH-; (3,4-diCF₃-phenyl)CH₂NH-;
(3,5-diCF₃-phenyl)CH₂NH-; (2,3-diOMe-phenyl)CH₂NH-;
5 (2,4-diOMe-phenyl)CH₂NH-; (2,5-diOMe-phenyl)CH₂NH-;
(2,6-diOMe-phenyl)CH₂NH-; (3,4-diOMe-phenyl)CH₂NH-;
(3,5-diOMe-phenyl)CH₂NH-; (2-F-3-Cl-phenyl)CH₂NH-;
(2-F-4-Cl-phenyl)CH₂NH-; (2-F-5-Cl-phenyl)CH₂NH-;
(2-F-6-Cl-phenyl)CH₂NH-; (2-F-3-CH₃-phenyl)CH₂NH-;
10 (2-F-4-CH₃-phenyl)CH₂NH-; (2-F-5-CH₃-phenyl)CH₂NH-;
(2-F-6-CH₃-phenyl)CH₂NH-; (2-F-3-CF₃-phenyl)CH₂NH-;
(2-F-4-CF₃-phenyl)CH₂NH-; (2-F-5-CF₃-phenyl)CH₂NH-;
(2-F-6-CF₃-phenyl)CH₂NH-; (2-F-3-OMe-phenyl)CH₂NH-;
15 (2-F-4-OMe-phenyl)CH₂NH-; (2-F-5-OMe-phenyl)CH₂NH-;
(2-F-6-OMe-phenyl)CH₂NH-; (2-Cl-3-F-phenyl)CH₂NH-;
(2-Cl-4-F-phenyl)CH₂NH-; (2-Cl-5-F-phenyl)CH₂NH-;
(2-Cl-6-F-phenyl)CH₂NH-; (2-Cl-3-CH₃-phenyl)CH₂NH-;
20 (2-Cl-4-CH₃-phenyl)CH₂NH-; (2-Cl-5-CH₃-phenyl)CH₂NH-;
(2-Cl-6-CH₃-phenyl)CH₂NH-; (2-Cl-3-CF₃-phenyl)CH₂NH-;
(2-Cl-4-CF₃-phenyl)CH₂NH-; (2-Cl-5-CF₃-phenyl)CH₂NH-;
(2-Cl-6-CF₃-phenyl)CH₂NH-; (2-Cl-3-OMe-phenyl)CH₂NH-;
25 (2-Cl-4-OMe-phenyl)CH₂NH-; (2-Cl-5-OMe-phenyl)CH₂NH-;
(2-Cl-6-OMe-phenyl)CH₂NH-; (2-CH₃-3-F-phenyl)CH₂NH-;
(2-CH₃-4-F-phenyl)CH₂NH-; (2-CH₃-5-F-phenyl)CH₂NH-;
30 (2-CH₃-6-F-phenyl)CH₂NH-; (2-CH₃-3-Cl-phenyl)CH₂NH-;
(2-CH₃-4-Cl-phenyl)CH₂NH-; (2-CH₃-5-Cl-phenyl)CH₂NH-;
(2-CH₃-6-Cl-phenyl)CH₂NH-; (2-CH₃-3-CF₃-phenyl)CH₂NH-;
(2-CH₃-4-CF₃-phenyl)CH₂NH-; (2-CH₃-5-CF₃-phenyl)CH₂NH-;
35 (2-CH₃-6-CF₃-phenyl)CH₂NH-; (2-CH₃-3-OMe-phenyl)CH₂NH-;
(2-CH₃-4-OMe-phenyl)CH₂NH-; (2-CF₃-3-F-phenyl)CH₂NH-;
(2-CF₃-4-F-phenyl)CH₂NH-; (2-CF₃-5-F-phenyl)CH₂NH-;
(2-CF₃-6-F-phenyl)CH₂NH-; (2-CF₃-3-Cl-phenyl)CH₂NH-;
(2-CF₃-4-Cl-phenyl)CH₂NH-; (2-CF₃-5-Cl-phenyl)CH₂NH-;
40 (2-CF₃-6-Cl-phenyl)CH₂NH-; (2-CF₃-3-CH₃-phenyl)CH₂NH-;
(2-CF₃-4-CH₃-phenyl)CH₂NH-; (2-CH₃-5-CF₃-phenyl)CH₂NH-;
(2-CF₃-6-CH₃-phenyl)CH₂NH-; (2-CF₃-3-OMe-phenyl)CH₂NH-;

(2-CF₃-4-OMe-phenyl)CH₂NH-; (2-CF₃-5-OMe-phenyl)CH₂NH-;
(2-CF₃-6-OMe-phenyl)CH₂NH-; (2-OMe-3-F-phenyl)CH₂NH-;
(2-OMe-4-F-phenyl)CH₂NH-; (2-OMe-5-F-phenyl)CH₂NH-;
(2-OMe-6-F-phenyl)CH₂NH-; (2-OMe-3-Cl-phenyl)CH₂NH-;
5 (2-OMe-4-Cl-phenyl)CH₂NH-; (2-OMe-5-Cl-phenyl)CH₂NH-;
(2-OMe-6-Cl-phenyl)CH₂NH-; (2-OMe-4-CN-phenyl)CH₂NH-;
(2-OMe-4-CHO-phenyl)CH₂NH-; (2-OMe-3-CH₃-phenyl)CH₂NH-;
(2-OMe-4-CH₃-phenyl)CH₂NH-; (2-OMe-5-CH₃-phenyl)CH₂NH-;
(2-OMe-6-CH₃-phenyl)CH₂NH-; (2-OMe-3-CF₃-phenyl)CH₂NH-;
10 (2-OMe-4-CF₃-phenyl)CH₂NH-; (2-OMe-5-CF₃-phenyl)CH₂NH-;
(2-OMe-6-CF₃-phenyl)CH₂NH-; (2-acetyl-4-Cl-phenyl)CH₂NH-;
(2-acetyl-4-Me-phenyl)CH₂NH-;
(2-acetyl-4-MeO-phenyl)CH₂NH-;
15 (2-CH₃CH(OH)-4-Cl-phenyl)CH₂NH-;
(2-CH₃CH(OH)-4-Me-phenyl)CH₂NH-;
(2-CH₃CH(OH)-4-MeO-phenyl)CH₂NH-;

(3-CF₃-4-Cl-phenyl)CH₂NH-; (3-F-4-CHO-phenyl)CH₂NH-;
(3-CH₃-4-CN-phenyl)CH₂NH-; (3-CH₃-4-MeO-phenyl)CH₂NH-;
20 (3-CH₃-4-Cl-phenyl)CH₂NH-; (3-CH₃-4-F-phenyl)CH₂NH-;
(4-F-3-CF₃-phenyl)CH₂NH-; (3-CH₃-4-CO₂Me-phenyl)CH₂NH-;
(3-CF₃-4-C(O)CH₃-phenyl)CH₂NH-;
(3-CHO-4-OMe-phenyl)CH₂NH-;

25 (2,3,5-triCl-phenyl)CH₂NH-;
(2,4,5-triF-phenyl)CH₂NH-;
(2,6-diCl-3-Me-phenyl)CH₂NH-;
(3,5-diMe-4-MeO-phenyl)CH₂NH-; and
(2-F-3-Cl-6-CF₃-phenyl)CH₂NH-.

30 9. A compound of Claim 1, 2, 3, 4, 5, 6, or 7, wherein X
is a bond.

35 10. A compound of Claim 1, 2, 3, 4, 5, 6, or 7, wherein X
is -O- or -S-.

11. A compound of Claim 1, 2, 3, 4, 5, 6, or 7, wherein X is -OCH₂- or -SCH₂-.

12. A compound of Claim 1, 2, 3, 4, 5, 6, or 7, wherein X
5 is -CH₂-.

13. A compound of Claim 1 wherein:

10 X is a bond, -CH₂- , -O-, -S-, -S(=O)-, -S(=O)₂- , -NR¹⁰- ,
-CH₂CH₂- , -OCH₂- , -SCH₂- , -CH₂O- , -CH₂S- , or -CH₂NR¹⁰- ;

R¹ is selected from

C₁₋₆ alkyl substituted with Z,

C₂₋₆ alkenyl substituted with Z,

C₂₋₆ alkynyl substituted with Z,

C₃₋₆ cycloalkyl substituted with Z,

aryl substituted with Z,

5-6 membered heterocyclic ring system containing at

least one heteroatom selected from the group

consisting of N, O, and S, said heterocyclic ring system substituted with Z;

C₁₋₆ alkyl substituted with 0-2 R²,

C₂₋₆ alkenyl substituted with 0-2 R²,

C₂₋₆ alkynyl substituted with 0-2 R²,

aryl substituted with 0-2 R², and

5-6 membered heterocyclic ring system containing at

least one heteroatom selected from the group

consisting of N, O, and S, said heterocyclic ring system substituted with 0-2 R²;

Z is selected from H,

-CH(OH)R²,

-C(ethylenedioxy)R²,

35 -OR²,

-SR²,

-NR²R³,

5 -C(O)R²,
-C(O)NR²R³,
-NR³C(O)R²,
-C(O)OR²,
-OC(O)R²,
-CH(=NR⁴)NR²R³,
-NHC(=NR⁴)NR²R³,
-S(O)R²,
-S(O)₂R²,
10 -S(O)₂NR²R³, and -NR³S(O)₂R²;

R², at each occurrence, is independently selected from
C₁₋₄ alkyl,
C₂₋₄ alkenyl,
15 C₂₋₄ alkynyl,
C₃₋₆ cycloalkyl,
aryl substituted with 0-5 R⁴²;
C₃₋₁₀ carbocyclic residue substituted with 0-3 R⁴¹, and
5-10 membered heterocyclic ring system containing from
20 1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R⁴¹;

R³, at each occurrence, is independently selected from
25 H, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, and
C₁₋₄ alkoxy;

alternatively, R² and R³ join to form a 5- or 6-membered
ring optionally substituted with -O- or -N(R⁴)-;

30 R⁴, at each occurrence, is independently selected from H,
methyl, ethyl, propyl, and butyl;

R^{6a} is H or C₁₋₄ alkyl;
35 R^{6b} is H;

alternatively, R^{6a} and R^{6b} are taken together to form =O or =S;

R⁷, R⁸, and R⁹, at each occurrence, are independently

5 selected from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂, -NR⁴⁶R⁴⁷,

C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ haloalkyl,

C₁₋₈ alkoxy, (C₁₋₄ haloalkyl)oxy,

C₁₋₄ alkyl substituted with 0-2 R¹¹,

10 C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³,

aryl substituted with 0-5 R³³,

5-10 membered heterocyclic ring system containing from

1-4 heteroatoms selected from the group

consisting of N, O, and S substituted with 0-3

15 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³,

NR¹⁴C(O)R¹², C(O)OR¹², OC(O)R¹², OC(O)OR¹²,

CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹², S(O)₂R¹²,

20 S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹²,

NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and

25 NR¹²C(O)NHR¹⁵;

R¹⁰ is selected from H, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄

25 alkynyl, and C₁₋₄ alkoxy;

R¹¹ is selected from

H, halo, -CF₃, -CN, -NO₂,

C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ haloalkyl,

30 C₁₋₈ alkoxy, C₃₋₁₀ cycloalkyl,

C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³,

aryl substituted with 0-5 R³³,

5-10 membered heterocyclic ring system containing from

1-4 heteroatoms selected from the group

35 consisting of N, O, and S substituted with 0-3

R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³,
NR¹⁴C(O)R¹², C(O)OR¹², OC(O)R¹², OC(O)OR¹²,
CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹²,
S(O)₂R¹², S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹²,
and NR¹⁴S(O)₂R¹²;

5

R¹², at each occurrence, is independently selected from
C₁₋₄ alkyl,
C₂₋₄ alkenyl,
10 C₂₋₄ alkynyl,
C₃₋₆ cycloalkyl,
phenyl substituted with 0-5 R³³;
C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and
5-10 membered heterocyclic ring system containing from
15 1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R³¹;

15

R¹³, at each occurrence, is independently selected from
20 H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;

20

alternatively, R¹² and R¹³ join to form a 5- or 6-membered
ring optionally substituted with -O- or -N(R¹⁴)-;

25

R¹⁴, at each occurrence, is independently selected from H
and C₁₋₄ alkyl;

30

R³¹, at each occurrence, is independently selected from
H, OH, halo, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, methyl, ethyl, and
propyl;

30

R³³, at each occurrence, is independently selected from
H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷,
C₁₋₃ alkyl, C₂₋₃ alkenyl, C₂₋₃ alkynyl, C₃₋₅ cycloalkyl,
35 C₁₋₃ haloalkyl, C₁₋₃ haloalkyl-oxy-, C₁₋₃
alkyloxy-, C₁₋₃ alkylthio-, C₁₋₃ alkyl-C(=O)-, and
C₁₋₃ alkyl-C(=O)NH-;

R⁴¹, at each occurrence, is independently selected from
H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, =O,
C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl
5 C₁₋₄ alkyl substituted with 0-1 R⁴³,
aryl substituted with 0-3 R⁴², and
5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
10 R⁴⁴;

R⁴², at each occurrence, is independently selected from
H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, SR⁴⁵, NR⁴⁶R⁴⁷, OR⁴⁸,
NO₂, CN, CH(=NH)NH₂, NHC(=NH)NH₂,
15 C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl,
C₃₋₆ cycloalkyl,
C₁₋₄ alkyl substituted with 0-1 R⁴³,
aryl substituted with 0-3 R⁴⁴, and
5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
20 consisting of N, O, and S substituted with 0-3
R⁴⁴;

R⁴³ is C₃₋₆ cycloalkyl or aryl substituted with 0-3 R⁴⁴;

25 R⁴⁴, at each occurrence, is independently selected from H,
halo, -OH, NR⁴⁶R⁴⁷, CO₂H, SO₂R⁴⁵, -CF₃, -OCF₃, -CN, -
NO₂, C₁₋₄ alkyl, and C₁₋₄ alkoxy;

30 R⁴⁵ is C₁₋₄ alkyl;

R⁴⁶, at each occurrence, is independently selected from H
and C₁₋₄ alkyl;

35 R⁴⁷, at each occurrence, is independently selected from H,
C₁₋₄ alkyl, -C(=O)NH(C₁₋₄ alkyl), -SO₂(C₁₋₄ alkyl),

-SO₂(phenyl), -C(=O)O(C₁₋₄ alkyl), -C(=O)(C₁₋₄ alkyl), and -C(=O)H;

R⁴⁸, at each occurrence, is independently selected from H,
5 C₁₋₄ alkyl, -C(=O)NH(C₁₋₄ alkyl), -C(=O)O(C₁₋₄ alkyl),
-C(=O)(C₁₋₄ alkyl), and -C(=O)H;

n is 1 or 2;

m is 1 or 2; and

10 n plus m is 2, 3, or 4;

provided when n is 1, m is 2, and R⁷, R⁸, and R⁹ are independently selected from H, halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ alkylthio or trifluoromethyl; then X is not a
15 bond.

14. A compound of Claim 12 wherein:

X is -CH₂-, -O-, -S-, -CH₂CH₂-, -OCH₂-, -SCH₂-, -CH₂O-,
20 or -CH₂S-;

R¹ is selected from

C₂₋₅ alkyl substituted with Z,

C₂₋₅ alkenyl substituted with Z,

25 C₂₋₅ alkynyl substituted with Z,

C₃₋₆ cycloalkyl substituted with Z,

aryl substituted with Z,

5-6 membered heterocyclic ring system containing at least one heteroatom selected from the group

30 consisting of N, O, and S, said heterocyclic ring system substituted with Z;

C₁₋₅ alkyl substituted with 0-2 R²,

C₂₋₅ alkenyl substituted with 0-2 R², and

C₂₋₅ alkynyl substituted with 0-2 R²;

35

Z is selected from H,

-CH(OH)R²,

(1)

-C(ethylenedioxy)R²,
-OR²,
-SR²,
-NR²R³,
5 -C(O)R²,
-C(O)NR²R³,
-NR³C(O)R²,
-C(O)OR²,
-OC(O)R²,
10 -CH(=NR⁴)NR²R³,
-NHC(=NR⁴)NR²R³,
-S(O)R²,
-S(O)₂R²,
-S(O)₂NR²R³, and -NR³S(O)₂R²;

15 R², at each occurrence, is independently selected from
C₁₋₄ alkyl,
C₂₋₄ alkenyl,
C₂₋₄ alkynyl,
20 C₃₋₆ cycloalkyl,
aryl substituted with 0-5 R⁴²;
C₃₋₁₀ carbocyclic residue substituted with 0-3 R⁴¹, and
5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
25 consisting of N, O, and S substituted with 0-3
R⁴¹;

R³, at each occurrence, is independently selected from
H, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, and
30 C₁₋₄ alkoxy;

alternatively, R² and R³ join to form a 5- or 6-membered
ring optionally substituted with -O- or -N(R⁴)-;

35 R⁴, at each occurrence, is independently selected from H,
methyl, ethyl, propyl, and butyl;

R^{6a} is H or C₁₋₄ alkyl;

R^{6b} is H;

5 alternatively, R^{6a} and R^{6b} are taken together to form =O or =S;

R⁷, R⁸, and R⁹, at each occurrence, are independently selected from

10 H, halo, -CF₃, -OCF₃, -OH, -OCH₃, -CN, -NO₂, -NR⁴⁶R⁴⁷, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₄ haloalkyl, C₁₋₆ alkoxy, (C₁₋₄ haloalkyl)oxy,

C₁₋₄ alkyl substituted with 0-2 R¹¹,

15 C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, aryl substituted with 0-5 R³³,

20 5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³¹;

25 OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹², OC(O)R¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹², S(O)₂R¹², S(O)₂NR¹²R¹³, NR¹⁴S(O)₂R¹², NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹², NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and NR¹²C(O)NHR¹⁵;

R¹¹ is selected from

30 H, halo, -CF₃, -OCF₃, -OH, -OCH₃, -CN, -NO₂, -NR⁴⁶R⁴⁷, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₄ haloalkyl, C₁₋₆ alkoxy, (C₁₋₄ haloalkyl)oxy,

35 C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, aryl substituted with 0-5 R³³,

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³,
NR¹⁴C(O)R¹², C(O)OR¹², OC(O)R¹², CH(=NR¹⁴)NR¹²R¹³,
NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹², S(O)₂R¹², S(O)₂NR¹²R¹³,
and NR¹⁴S(O)₂R¹²;

5

R¹², at each occurrence, is independently selected from
C₁₋₄ alkyl,

C₂₋₄ alkenyl,

C₂₋₄ alkynyl,

10 C₃₋₆ cycloalkyl,

phenyl substituted with 0-5 R³³;

C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and

5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R³¹;

15 R¹³, at each occurrence, is independently selected from
H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;

20

alternatively, R¹² and R¹³ join to form a 5- or 6-membered
ring optionally substituted with -O- or -N(R¹⁴)-;

25

R¹⁴, at each occurrence, is independently selected from H
and C₁₋₄ alkyl;

30 R³¹, at each occurrence, is independently selected from
H, OH, halo, CF₃, methyl, and ethyl;

35

R³³, at each occurrence, is independently selected from
H, OH, halo, CN, NO₂, CF₃, methyl, and ethyl;

R⁴¹, at each occurrence, is independently selected from
H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, =O,
C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl,
C₁₋₄ alkyl substituted with 0-1 R⁴³,
aryl substituted with 0-3 R⁴², and

5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R⁴⁴;

5

R⁴², at each occurrence, is independently selected from
H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, SR⁴⁵, NR⁴⁶R⁴⁷, OR⁴⁸,
NO₂, CN, CH(=NH)NH₂, NHC(=NH)NH₂,
C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl,
C₃₋₆ cycloalkyl,

10

C₁₋₄ alkyl substituted with 0-1 R⁴³,
aryl substituted with 0-3 R⁴⁴, and

5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
R⁴⁴;

15

R⁴³ is C₃₋₆ cycloalkyl or aryl substituted with 0-3 R⁴⁴;

20

R⁴⁴, at each occurrence, is independently selected from H,
halo, -OH, NR⁴⁶R⁴⁷, CO₂H, SO₂R⁴⁵, -CF₃, -OCF₃, -CN, -
NO₂, C₁₋₄ alkyl, and C₁₋₄ alkoxy;

25 R⁴⁵ is C₁₋₄ alkyl;

30

R⁴⁶, at each occurrence, is independently selected from H
and C₁₋₃ alkyl;

35 R⁴⁷, at each occurrence, is independently selected from H,
C₁₋₄ alkyl, -C(=O)NH(C₁₋₄ alkyl), -SO₂(C₁₋₄ alkyl),
-SO₂(phenyl), -C(=O)O(C₁₋₄ alkyl), -C(=O)(C₁₋₄ alkyl),
and -C(=O)H;

40

R⁴⁸, at each occurrence, is independently selected from H,
C₁₋₄ alkyl, -C(=O)NH(C₁₋₄ alkyl), -C(=O)O(C₁₋₄ alkyl),
-C(=O)(C₁₋₄ alkyl), and -C(=O)H;

n is 1 or 2;
m is 1 or 2; and
n plus m is 2, 3, or 4.

5 15. A compound of Claim 13 wherein:

X is -CH₂-, -O- or -S-;

R¹ is selected from

10 C₂₋₄ alkyl substituted with Z,
C₂₋₄ alkenyl substituted with Z,
C₂₋₄ alkynyl substituted with Z,
C₃₋₆ cycloalkyl substituted with Z,
aryl substituted with Z,
15 5-6 membered heterocyclic ring system containing at least one heteroatom selected from the group consisting of N, O, and S, said heterocyclic ring system substituted with Z;
C₂₋₄ alkyl substituted with 0-2 R², and
20 C₂₋₄ alkenyl substituted with 0-2 R²;

Z is selected from H,

-CH(OH)R²,
-C(ethylenedioxy)R²,
25 -OR²,
-SR²,
-NR²R³,
-C(O)R²,
-C(O)NR²R³,
30 -NR³C(O)R²,
-C(O)OR²,
-S(O)R²,
-S(O)₂R²,
-S(O)₂NR²R³, and -NR³S(O)₂R²;

35 R², at each occurrence, is independently selected from phenyl substituted with 0-5 R⁴²;

C₃₋₁₀ carbocyclic residue substituted with 0-3 R⁴¹, and
5-10 membered heterocyclic ring system containing from
1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-3
5 R⁴¹;

R³, at each occurrence, is independently selected from
H, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, and
C₁₋₄ alkoxy;

10 alternatively, R² and R³ join to form a 5- or 6-membered
ring optionally substituted with -O- or -N(R⁴)-;

15 R⁴, at each occurrence, is independently selected from H,
methyl, ethyl, propyl, and butyl;

R^{6a} is H or C₁₋₄ alkyl;

R^{6b} is H;

20 alternatively, R^{6a} and R^{6b} are taken together to form =O or
=S;

25 R⁷, R⁸, and R⁹, at each occurrence, are independently
selected from
H, halo, -CF₃, -OCF₃, -OH, -OCH₃, -CN, -NO₂,
C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, (C₁₋₃
haloalkyl)oxy, and
C₁₋₄ alkyl substituted with 0-2 R¹¹;

30 R¹¹ is selected from
H, halo, -CF₃, -OCF₃, -OH, -OCH₃, -CN, -NO₂,
C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, and (C₁₋₃
haloalkyl)oxy;

35 R³³, at each occurrence, is independently selected from
H, OH, halo, CF₃, and methyl;

R⁴¹, at each occurrence, is independently selected from H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, =O, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, 5 C₁₋₄ alkyl substituted with 0-1 R⁴³, aryl substituted with 0-3 R⁴², and 10 5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴², at each occurrence, is independently selected from H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, SR⁴⁵, NR⁴⁶R⁴⁷, OR⁴⁸, 15 NO₂, CN, CH(=NH)NH₂, NHC(=NH)NH₂, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₃₋₆ cycloalkyl, 20 C₁₋₄ alkyl substituted with 0-1 R⁴³, aryl substituted with 0-3 R⁴⁴, and 5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴³ is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 25 phenyl, or pyridyl, each substituted with 0-3 R⁴⁴;

R⁴⁴, at each occurrence, is independently selected from H, halo, -OH, NR⁴⁶R⁴⁷, CO₂H, SO₂R⁴⁵, -CF₃, -OCF₃, -CN, -NO₂, methyl, ethyl, propyl, butyl, methoxy, ethoxy, 30 propoxy, and butoxy;

R⁴⁵ is methyl, ethyl, propyl, or butyl;

R⁴⁶, at each occurrence, is independently selected from H, 35 methyl, ethyl, propyl, and butyl;

R⁴⁷, at each occurrence, is independently selected from

H, methyl, ethyl, n-propyl, i-propyl, n-butyl,
i-butyl, -C(=O)NH(methyl), -C(=O)NH(ethyl),
-SO₂(methyl), -SO₂(ethyl), -SO₂(phenyl),
-C(=O)O(methyl), -C(=O)O(ethyl), -C(=O)(methyl),
5 -C(=O)(ethyl), and -C(=O)H;

R⁴⁸, at each occurrence, is independently selected from
H, methyl, ethyl, n-propyl, i-propyl, -
C(=O)NH(methyl), -C(=O)NH(ethyl), -C(=O)O(methyl), -
10 -C(=O)O(ethyl), -C(=O)(methyl), -C(=O)(ethyl), and -
C(=O)H;

n is 1 or 2;

m is 1 or 2; and

15 n plus m is 2 or 3.

16. A compound of Claim 13 wherein:

X is -CH₂-, -O- or -S-;

20 R¹ is selected from

ethyl substituted with Z,

propyl substituted with Z,

butyl substituted with Z,

25 propenyl substituted with Z,

butenyl substituted with Z,

ethyl substituted with R²,

propyl substituted with R²,

butyl substituted with R²,

30 propenyl substituted with R², and

butenyl substituted with R²;

Z is selected from H,

-CH(OH)R²,

35 -OR²,

-SR²,

-NR²R³,

-C(O)R²,
-C(O)NR²R³,
-NR³C(O)R²,
-C(O)OR²,
5 -S(O)R²,
-S(O)₂R²,
-S(O)₂NR²R³, and -NR³S(O)₂R²;

R², at each occurrence, is independently selected from
10 phenyl substituted with 0-3 R⁴²;
naphthyl substituted with 0-3 R⁴²;
cyclopropyl substituted with 0-3 R⁴¹;
cyclobutyl substituted with 0-3 R⁴¹;
cyclopentyl substituted with 0-3 R⁴¹;
15 cyclohexyl substituted with 0-3 R⁴¹;
pyridyl substituted with 0-3 R⁴¹;
indolyl substituted with 0-3 R⁴¹;
indolinyl substituted with 0-3 R⁴¹;
benzimidazolyl substituted with 0-3 R⁴¹;
20 benzotriazolyl substituted with 0-3 R⁴¹;
benzothienyl substituted with 0-3 R⁴¹;
benzofuranyl substituted with 0-3 R⁴¹;
phthalimid-1-yl substituted with 0-3 R⁴¹;
inden-2-yl substituted with 0-3 R⁴¹;
25 2,3-dihydro-1H-inden-2-yl substituted with 0-3 R⁴¹;
indazolyl substituted with 0-3 R⁴¹;
tetrahydroquinolinyl substituted with 0-3 R⁴¹; and
tetrahydro-isoquinolinyl substituted with 0-3 R⁴¹;

R³, at each occurrence, is independently selected from
30 H, methyl, and ethyl;

R^{6a} is H or C₁₋₄ alkyl;

35 R^{6b} is H;

alternatively, R^{6a} and R^{6b} are taken together to form =O or =S;

5 R⁷, R⁸, and R⁹, at each occurrence, are independently selected from H, F, Cl, methyl, ethyl, methoxy, -CF₃, and -OCF₃;

10 R⁴¹, at each occurrence, is independently selected from H, F, Cl, Br, OH, CF₃, NO₂, CN, =O, methyl, ethyl, propyl, butyl, methoxy, and ethoxy;

15 R⁴², at each occurrence, is independently selected from H, F, Cl, Br, OH, CF₃, SO₂R⁴⁵, SR⁴⁵, NR⁴⁶R⁴⁷, OR⁴⁸, NO₂, CN, =O, methyl, ethyl, propyl, butyl, methoxy, and ethoxy;

R⁴⁵ is methyl, ethyl, propyl, or butyl;

20 R⁴⁶, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

25 R⁴⁷, at each occurrence, is independently selected from H, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, -C(=O)NH(methyl), -C(=O)NH(ethyl), -SO₂(methyl), -SO₂(ethyl), -SO₂(phenyl), -C(=O)O(methyl), -C(=O)O(ethyl), -C(=O)(methyl), -C(=O)(ethyl), and -C(=O)H;

30 R⁴⁸, at each occurrence, is independently selected from H, methyl, ethyl, n-propyl, i-propyl, -C(=O)NH(methyl), -C(=O)NH(ethyl), -C(=O)O(methyl), -C(=O)O(ethyl), -C(=O)(methyl), -C(=O)(ethyl), and -C(=O)H;

35 n is 1; and
 m is 1.

17. A compound of Claim 13 of Formula (II)

(II)

wherein:

5

b is a single bond wherein the bridging hydrogens are either cis or trans;

R¹ is selected from

- 10 - (CH₂)₃C(=O) (4-fluoro-phenyl),
- (CH₂)₃C(=O) (4-bromo-phenyl),
- (CH₂)₃C(=O) (4-methyl-phenyl),
- (CH₂)₃C(=O) (4-methoxy-phenyl),
- (CH₂)₃C(=O) (4-(3,4-dichloro-phenyl)phenyl),
- 15 - (CH₂)₃C(=O) (3-methyl-4-fluoro-phenyl),
- (CH₂)₃C(=O) (2,3-dimethoxy-phenyl),
- (CH₂)₃C(=O) (phenyl),
- (CH₂)₃C(=O) (4-chloro-phenyl),
- (CH₂)₃C(=O) (3-methyl-phenyl),
- 20 - (CH₂)₃C(=O) (4-t-butyl-phenyl),
- (CH₂)₃C(=O) (3,4-difluoro-phenyl),
- (CH₂)₃C(=O) (2-methoxy-5-fluoro-phenyl),
- (CH₂)₃C(=O) (4-fluoro-1-naphthyl),
- (CH₂)₃C(=O) (benzyl),
- 25 - (CH₂)₃C(=O) (4-pyridyl),
- (CH₂)₃C(=O) (3-pyridyl),
- (CH₂)₃CH(OH) (4-fluoro-phenyl),
- (CH₂)₃CH(OH) (4-pyridyl),
- (CH₂)₃CH(OH) (2,3-dimethoxy-phenyl),
- 30 - (CH₂)₃S (3-fluoro-phenyl),
- (CH₂)₃S (4-fluoro-phenyl),
- (CH₂)₃S(=O) (4-fluoro-phenyl),
- (CH₂)₃SO₂ (3-fluoro-phenyl),
- (CH₂)₃SO₂ (4-fluoro-phenyl),

$-\text{CH}_2\text{CH}_2\text{O}(4\text{-fluoro-phenyl})$,
 $-\text{CH}_2\text{CH}_2\text{O}(\text{phenyl})$,
 $-\text{CH}_2\text{CH}_2\text{O}(3\text{-pyridyl})$,
 $-\text{CH}_2\text{CH}_2\text{O}(4\text{-pyridyl})$,
5 $-\text{CH}_2\text{CH}_2\text{O}(2\text{-NH}_2\text{-phenyl})$,
 $-\text{CH}_2\text{CH}_2\text{O}(2\text{-NH}_2\text{-5-F-phenyl})$,
 $-\text{CH}_2\text{CH}_2\text{O}(2\text{-NH}_2\text{-4-F-phenyl})$,
 $-\text{CH}_2\text{CH}_2\text{O}(2\text{-NH}_2\text{-3-F-phenyl})$,
 $-\text{CH}_2\text{CH}_2\text{O}(2\text{-NH}_2\text{-4-Cl-phenyl})$,
10 $-\text{CH}_2\text{CH}_2\text{O}(2\text{-NH}_2\text{-4-OH-phenyl})$,
 $-\text{CH}_2\text{CH}_2\text{O}(2\text{-NH}_2\text{-4-Br-phenyl})$,
 $-\text{CH}_2\text{CH}_2\text{O}(2\text{-NHC(=O)Me-4-F-phenyl})$,
 $-\text{CH}_2\text{CH}_2\text{O}(2\text{-NHC(=O)Me-phenyl})$,
 $-\text{CH}_2\text{CH}_2\text{NH}(4\text{-fluoro-phenyl})$,
15 $-\text{CH}_2\text{CH}_2\text{N}(\text{methyl})(4\text{-fluoro-phenyl})$,
 $-\text{CH}_2\text{CH}_2\text{CO}_2(\text{ethyl})$,
 $-\text{CH}_2\text{CH}_2\text{C(=O)N}(\text{methyl})(\text{methoxy})$,
 $-\text{CH}_2\text{CH}_2\text{C(=O)NH}(4\text{-fluoro-phenyl})$,
 $-\text{CH}_2\text{CH}_2\text{NHC(=O)(phenyl)}$,
20 $-\text{CH}_2\text{CH}_2\text{NMeC(=O)(phenyl)}$,
 $-\text{CH}_2\text{CH}_2\text{NHC(=O)(2-fluoro-phenyl)}$,
 $-\text{CH}_2\text{CH}_2\text{NMeC(=O)(2-fluoro-phenyl)}$,
 $-\text{CH}_2\text{CH}_2\text{NHC(=O)(4-fluoro-phenyl)}$,
 $-\text{CH}_2\text{CH}_2\text{NMeC(=O)(4-fluoro-phenyl)}$,
25 $-\text{CH}_2\text{CH}_2\text{NHC(=O)(2,4-difluoro-phenyl)}$,
 $-\text{CH}_2\text{CH}_2\text{NMeC(=O)(2,4-difluoro-phenyl)}$,
 $-\text{CH}_2\text{CH}_2\text{C}_3(3\text{-indolyl})$,
 $-\text{CH}_2\text{CH}_2\text{C}_3(1\text{-methyl-3-indolyl})$,
 $-\text{CH}_2\text{CH}_2\text{C}_3(1\text{-indolyl})$,
30 $-\text{CH}_2\text{CH}_2\text{C}_3(1\text{-indolinyl})$,
 $-\text{CH}_2\text{CH}_2\text{C}_3(1\text{-benzimidazolyl})$,
 $-\text{CH}_2\text{CH}_2\text{C}_3(1\text{H-1,2,3-benzotriazol-1-yl})$,
 $-\text{CH}_2\text{CH}_2\text{C}_3(1\text{H-1,2,3-benzotriazol-2-yl})$,
 $-\text{CH}_2\text{CH}_2\text{C}_2(1\text{H-1,2,3-benzotriazol-1-yl})$,
35 $-\text{CH}_2\text{CH}_2\text{C}_2(1\text{H-1,2,3-benzotriazol-2-yl})$,
 $-\text{CH}_2\text{CH}_2\text{C}_3(3,4\text{ dihydro-1(2H)-quinolinyl})$,
 $-\text{CH}_2\text{CH}_2\text{C(=O)(4-fluoro-phenyl)}$,

- $(CH_2)_2C(=O)NH(4\text{-fluoro-phenyl})$,
- $CH_2CH_2(3\text{-indolyl})$,
- $CH_2CH_2(1\text{-phthalimidyl})$,
- $(CH_2)_4C(=O)N(\text{methyl})(\text{methoxy})$,
- 5 - $(CH_2)_4CO_2(\text{ethyl})$,
- $(CH_2)_4C(=O)(\text{phenyl})$,
- $(CH_2)_4(\text{cyclohexyl})$,
- $(CH_2)_3CH(\text{phenyl})_2$,
- $CH_2CH_2CH=C(\text{phenyl})_2$,
- 10 - $CH_2CH_2CH=CMe(4\text{-F-phenyl})$,
- $(CH_2)_3CH(4\text{-fluoro-phenyl})_2$,
- $CH_2CH_2CH=C(4\text{-fluoro-phenyl})_2$,
- $(CH_2)_2(2,3\text{-dihydro-1H-inden-2-yl})$,
- $(CH_2)_3C(=O)(2\text{-NH}_2\text{-phenyl})$,
- 15 - $(CH_2)_3C(=O)(2\text{-NH}_2\text{-5-F-phenyl})$,
- $(CH_2)_3C(=O)(2\text{-NH}_2\text{-4-F-phenyl})$,
- $(CH_2)_3C(=O)(2\text{-NH}_2\text{-3-F-phenyl})$,
- $(CH_2)_3C(=O)(2\text{-NH}_2\text{-4-Cl-phenyl})$,
- $(CH_2)_3C(=O)(2\text{-NH}_2\text{-4-OH-phenyl})$,
- 20 - $(CH_2)_3C(=O)(2\text{-NH}_2\text{-4-Br-phenyl})$,
- $(CH_2)_3(1\text{H-indazol-3-yl})$,
- $(CH_2)_3(5\text{-F-1H-indazol-3-yl})$,
- $(CH_2)_3(7\text{-F-1H-indazol-3-yl})$,
- $(CH_2)_3(6\text{-Cl-1H-indazol-3-yl})$,
- 25 - $(CH_2)_3(6\text{-Br-1H-indazol-3-yl})$,
- $(CH_2)_3C(=O)(2\text{-NHMe-phenyl})$,
- $(CH_2)_3(1\text{-benzothien-3-yl})$,
- $(CH_2)_3(6\text{-F-1H-indol-1-yl})$,
- $(CH_2)_3(5\text{-F-1H-indol-1-yl})$,
- 30 - $(CH_2)_3(6\text{-F-2,3-dihydro-1H-indol-1-yl})$,
- $(CH_2)_3(5\text{-F-2,3-dihydro-1H-indol-1-yl})$,
- $(CH_2)_3(6\text{-F-1H-indol-3-yl})$,
- $(CH_2)_3(5\text{-F-1H-indol-3-yl})$,
- $(CH_2)_3(5\text{-F-1H-indol-3-yl})$,
- 35 - $(CH_2)_3(9\text{H-purin-9-yl})$,
- $(CH_2)_3(7\text{H-purin-7-yl})$,
- $(CH_2)_3(6\text{-F-1H-indazol-3-yl})$,

- $(CH_2)_3C(=O)(2-NHSO_2Me-4-F-phenyl)$,
 - $(CH_2)_3C(=O)(2-NHC(=O)Me-4-F-phenyl)$,
 - $(CH_2)_3C(=O)(2-NHC(=O)Me-phenyl)$,
 - $(CH_2)_3C(=O)(2-NHCO_2Et-4-F-phenyl)$,
 5 - $(CH_2)_3C(=O)(2-NHC(=O)NHET-4-F-phenyl)$,
 - $(CH_2)_3C(=O)(2-NHCHO-4-F-phenyl)$,
 - $(CH_2)_3C(=O)(2-OH-4-F-phenyl)$,
 - $(CH_2)_3C(=O)(2-MeS-4-F-phenyl)$,
 - $(CH_2)_3C(=O)(2-NHSO_2Me-4-F-phenyl)$,
 10 - $(CH_2)_2C(Me)CO_2Me$,
 - $(CH_2)_2C(Me)CH(OH)(4-F-phenyl)_2$,
 - $(CH_2)_2C(Me)CH(OH)(4-Cl-phenyl)_2$,
 - $(CH_2)_2C(Me)C(=O)(4-F-phenyl)$,
 - $(CH_2)_2C(Me)C(=O)(2-MeO-4-F-phenyl)$,
 15 - $(CH_2)_2C(Me)C(=O)(3-Me-4-F-phenyl)$,
 - $(CH_2)_2C(Me)C(=O)(2-Me-phenyl)$,
 - $(CH_2)_2C(Me)C(=O)phenyl$,

20

, and

; and

25 R^7 , R^8 , and R^9 , at each occurrence, are independently selected from

hydrogen, fluoro, chloro, bromo, cyano, methyl, ethyl,
 propyl, isopropyl, butyl, t-butyl, nitro,
 trifluoromethyl, methoxy, ethoxy, isopropoxy,
 30 trifluoromethoxy, phenyl, benzyl,

HC(=O)-, methylC(=O)-, ethylC(=O)-, propylC(=O)-,
isopropylC(=O)-, n-butylC(=O)-, isobutylC(=O)-,
secbutylC(=O)-, tertbutylC(=O)-, phenylC(=O)-,

5

methylC(=O)NH-, ethylC(=O)NH-, propylC(=O)NH-,
isopropylC(=O)NH-, n-butylC(=O)NH-, isobutylC(=O)NH-,
secbutylC(=O)NH-, tertbutylC(=O)NH-, phenylC(=O)NH-,

10

methylamino-, ethylamino-, propylamino-, isopropylamino-
, n-butylamino-, isobutylamino-, secbutylamino-,
tertbutylamino-, phenylamino-,

15

provided that two of substituents R⁷, R⁸, and R⁹, are
independently selected from hydrogen, fluoro, chloro,
bromo, cyano, methyl, ethyl, propyl, isopropyl, butyl,
t-butyl, nitro, trifluoromethyl, methoxy, ethoxy,
isopropoxy, and trifluoromethoxy.

20

18. A compound selected from the group consisting of
compounds disclosed in Table 1.

25

19. A compound selected from the group consisting of
compounds disclosed in Table 2.

30

20. A compound selected from the group consisting of
compounds disclosed in Table 3.

35

21. A pharmaceutical composition comprising a
pharmaceutically acceptable carrier and a therapeutically
effective amount of a compound of Claim 1, or a
pharmaceutically acceptable salt thereof.

35

22. A method for treating a human suffering from a
disorder associated with 5HT2C receptor modulation
comprising administering to a patient in need thereof a

therapeutically effective amount of a compound of Claim 1,
or a pharmaceutically acceptable salt thereof.

23. A method of Claim 22 for treating a human suffering
5 from a disorder associated with 5HT2C receptor modulation
wherein the compound is a 5HT2C agonist.

24. A method for treating a human suffering from a
disorder associated with 5HT2A receptor modulation
10 comprising administering to a patient in need thereof a
therapeutically effective amount of a compound of Claim 1,
or a pharmaceutically acceptable salt thereof.

25. A method of Claim 24 for treating a human suffering
15 from a disorder associated with 5HT2A receptor modulation
wherein the compound is a 5HT2A antagonist.

26. A method for treating obesity comprising administering
to a patient in need thereof a therapeutically effective
20 amount of a compound of Claim 1, or a pharmaceutically
acceptable salt thereof.

27. A method for treating schizophrenia comprising
administering to a patient in need thereof a
25 therapeutically effective amount of a compound of Claim 1,
or a pharmaceutically acceptable salt thereof.

28. A method for treating depression comprising
administering to a patient in need thereof a
30 therapeutically effective amount of a compound of Claim 1,
or a pharmaceutically acceptable salt thereof.