1. C

[1]

2. (a) boiling points increase (from the first member to the fifth member); increasing size of molecule/area of contact/number of electrons (from the first to the fifth member); strength of intermolecular/van der Waals'/London/dispersion forces increase / more energy required to break the intermolecular bonds (from first member to fifth member);

3

(b) same general formula;
 successive members differ by CH₂;
 same functional group / similar/same chemical properties;
 gradual change in physical properties;
 Accept specific physical property such as melting point, boiling point only once.

2 max

[5]

3. add bromine water/bromine;

pentane no change/stays brown **and** pent-1-ene decolourizes bromine water/bromine:

OR

add acidified KMnO₄;

pentane no change/stays purple **and** pent-1-ene decolourizes acidified KMnO₄; 2 max *Accept any correct colour change.*Do not accept "clear" instead of "colourless".

[2]

 $^{3}\tilde{a}$ $^{3}\tilde{a}$

4. E: primary **and F**: secondary;

G: primary;

G / E: only one alkyl group/2 H atoms attached to the carbon atom attached to the Cl / only one carbon atom attached to the carbon atom attached to the Cl;

F: two alkyl groups/1 H atom attached to the carbon atom attached to the Cl / two carbon atoms attached to the carbon atom attached to the Cl;

[4]

IB Questionbank Chemistry

5.	D		[1]
6.	A		[1]
	$\boldsymbol{F}\!:$ two alkyl groups/1 H atom attached to the carbon atom attached to the Cl / two carbon atoms attached to the carbon atom attached to the Cl;	4	[4]
7.	В		[1]
8.	D		[1]
9.	C		[1]
10.	A		[1]
11.	В		[1]
12.	(a) methylpropene; Accept 2-methylpropene.	1	
	(b) (i) brown/orange/yellow to colourless / bromine is decolorized;	1	

(ii) 1,2-dibromo-2-methylpropane / 1,2-dibromomethylpropane / 1-bromo-2-methylpropan-2-ol / 1-bromomethylpropan-2-ol;

Do not penalize missing commas, hyphens or added spaces.

Award [1] if structure and correct name are given for 2-bromo-2-methylpropan-1-ol.

[4]

13. (i) CH₃OCH₂CH;

CH₃CHOHCH;

Allow more detailed structural formulas.

2

2

(ii) CH₃CHOHCH₃ has higher boiling point due to hydrogen bonding;
 CH₃OCH₂CH₃ has lower boiling point due to Van der Waals'/London/dispersion/dipole-dipole forces;
 hydrogen bonds in CH₃CHOHCH are stronger;

Allow ecf if wrong structures suggested.

2 max

14. B

[1]

[4]

(ii) CH₃CHOHCH₃ has higher boiling point due to hydrogen bonding; CH₃OCH₂CH₃ has lower boiling point due to Van der Waals'/London/dispersion/dipole-dipole forces; hydrogen bonds in CH₃CHOHCH are stronger; Allow ecf if wrong structures suggested.

2 max

[4]

15. (i) butane < propanal < propan-1-ol;

butane has van der Waals'/London/dispersion forces;

propanal has dipole-dipole attractive forces;

propan-1-ol has hydrogen bonding;

imf marks are independent of the order.

Treat references to bond breaking as contradictions if the imfs are correct.

4

(ii) butane is least soluble;

it cannot form hydrogen bonds/attractive forces with water molecules;

2

(iii) propanal and propanoic acid;

$$CH_3CH_2CHO$$
 / C_2H_5CHO / H_3C — C — C

$$CH_3CH_2COOH \ / \ C_2H_5COOH \ / \ H - C - C - C OH ;$$

3

1

2

(iv)

[12]

(v) secondary (alcohol);

propanone / acetone;

16. C

[1]

17. C

[1]

18.	(i)	energy required to break (1 mol of) a bond in a <u>gaseous</u> molecule/state; Accept energy released when (1 mol of) a bond is formed in a gaseous molecule/state / enthalpy change when (1 mol of) bonds are made or broken in the gaseous molecule/state.		
		average values obtained from a number of similar bonds/compounds / <i>OWTTE</i> ;	2	
	(ii)	Bonds broken $ (1)(C-C) + (1)(O-H) + (5)(C-H) + (1)(C-O) + (3)(O=O) \\ = (1)(347) + (1)(464) + (5)(413) + (1)(358) + (3)(498) = 4728(kJ); \\ Bonds formed \\ (2 \times 2)(C=O) + (3 \times 2)(O-H) \\ = (4)(746) + (6)(464) = 5768 (kJ); \\ \Delta H = 4728 - 5768 = -1040 \text{ kJ mol}^{-1} / -1040 \text{ kJ}; \\ Units needed for last mark. \\ Award [3] for final correct answer. \\ Award [2] for +1040 kJ. $	3	
	(iii)	$M_{\rm r}({\rm C_2H_5OH}) = 46.08 / 46.1$ and $M_{\rm r}({\rm C_8H_{18}}) = 114.26/114.3$; 1 g ethanol produces 22.57 kJ and 1 g octane produces 47.88 kJ; Accept values ranges of 22.5–23 and 47.8–48 kJ respectively. No penalty for use of $M_r = 46$ and $M_r = 114$.	2	
	(iv)	A: CH ₃ CHO; B: CH ₃ COOH/CH ₃ CO ₂ H; Accept either full or condensed structural formulas but not the names or molecular formulas. A: distillation; B: reflux;	4	
	(v)	ethanol/CH ₃ CH ₂ OH; hydrogen bonding (in ethanol);		

19. C

[1]

20. (concentrated) H_2PO_4 /(concentrated) phosphoric acid / H_2SO_4 /sulfuric acid; dyes / drugs / cosmetics / solvent / (used to make) esters / (used in) esterification / disinfectant;

[2]

2

21. C

[1]