Solving System of Linear Equations

CSE 633 Course Project (Spring 2014)

Avinash Paruchuri (50097849)

Vinod Galla (50096982)

Jagadeesh Vallabhaneni (50096437)

Equation Form

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 \vdots \vdots \vdots \vdots \vdots
 $a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = b_i$.
 \vdots \vdots \vdots \vdots \vdots
 $a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$
 $Ax = b$

where $A \in \mathbb{R}^{n \times n}$ is an $n \times n$ matrix of real numbers, $b \in \mathbb{R}^n$ is a vector of size n, and $x \in \mathbb{R}^n$ is an unknown solution vector of size n.

Solution exists only when there exists a matrix A^{-1} such that $A \cdot A^{-1} = I$

Methods of Implementation

Direct Method – Gaussian Elimination
 Exact solution except rounding errors

Iterative Method – Jacobi Method
 Determination of an approximate solution than exact one

Gaussian Elimination

Gaussian Elimination

- Forward Elimination and Backward Substitution
- Upper Triangular form

```
A^{(k)} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1,k-1} & a_{1k} & \cdots & a_{1n} \\ 0 & a_{22}^{(2)} & \cdots & a_{2,k-1}^{(2)} & a_{2k}^{(2)} & \cdots & a_{2n}^{(2)} \\ \vdots & \ddots & \ddots & \vdots & \vdots & & \vdots \\ \vdots & & \ddots & a_{k-1,k-1}^{(k-1)} & a_{k-1,k}^{(k-1)} & \cdots & a_{k-1,n}^{(k-1)} \\ \vdots & & & 0 & a_{kk}^{(k)} & \cdots & a_{kn}^{(k)} \\ \vdots & & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{nk}^{(k)} & \cdots & a_{nn}^{(k)} \end{bmatrix}.
```

Parallel Implementation Details

- Block distribution
 - Processor with rank 0 scatters data
 - n rows, p processors each processor has n/p rows
- Forward elimination
 - For first processor,

For first row

- Make pivot element 1 by doing row operations
- For lower ranked rows in the same processor, make the corresponding elements 0 by row operations

Do this for other rows one by one

Send the data to other processors ranked higher

Do this for other processors (from low to high) one by one

- Backward substitution
 - The matrix is now in upper triangular form (i.e all the elements before pivot element in each row are zero and pivot element is 1)
 - From last to first processor,

For last to first row

- For higher ranked rows in same processor, make the elements in the same column 0 by doing row operations Do this for other rows from bottom to top
- Send the data to other processors ranked lower

Do this for other processors (from high to low) one by one

Processor with rank 0 gathers the data from all other processors which is the output vector

Parallel Implementation using Example

$$\begin{bmatrix} 2 & 2 & 4 & 2 \\ 2 & 3 & 3 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 5 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \\ x4 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 3 \\ 2 \end{bmatrix}$$

$$Ax = b$$

Demonstrated in class

Jacobi Method

Jacobi Method

Given a square system of n linear equations:

$$A\mathbf{x} = \mathbf{b}$$

where:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

Then A can be decomposed into a diagonal component D, and the remainder R:

$$A = D + R \qquad \text{where} \qquad D = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} \text{ and } R = \begin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \\ a_{21} & 0 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & 0 \end{bmatrix}.$$

The solution is then obtained iteratively via

$$\mathbf{x}^{(k+1)} = D^{-1}(\mathbf{b} - R\mathbf{x}^{(k)}).$$

The element-based formula is thus:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j^{(k)} \right), \quad i = 1, 2, \dots, n.$$

Calculating X

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j^{(k)} \right), \quad i = 1, 2, \dots, n.$$

$$x_{1} = \frac{1}{a_{11}}(b_{1} - a_{12}x_{2} - a_{13}x_{3} - \dots - a_{1n}x_{n})$$

$$x_{2} = \frac{1}{a_{22}}(b_{2} - a_{21}x_{1} - a_{23}x_{3} - \dots - a_{2n}x_{n})$$

$$x_2 = \frac{1}{a_{22}}(b_2 - a_{21}x_1 - a_{23}x_3 - \dots - a_{2n}x_n)$$

$$\Leftrightarrow P_{\mathcal{O}}$$

$$\triangleleft P_{k-1}$$

Distribution at each Process

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n-1} & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n-1} & a_{2n} \\ \hline a_{31} & a_{32} & a_{33} & \cdots & a_{3n-1} & a_{3n} \\ \hline \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \hline a_{n-11} & a_{n-12} & a_{n-13} & \cdots & a_{n-1n-1} & a_{n-1n} \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn-1} & a_{nn} \end{pmatrix} \Rightarrow P_{k-1}$$

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \Rightarrow P_{\mathcal{C}}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Algorithm

```
Choose an initial X^{new} = b.
int iteration = 0;
int k = num of rows per process;
do {
            X^{\text{old}} = X^{\text{new}}:
             for i=1...k, do
                          \sigma = 0;
                          for j=1...n, do
                                       if (i != j), then
                                                    \sigma = \sigma + a_{ij} x_i^{\text{old}};
                                       end-if.
                          end-for.
                          x_i^{\text{new}} = (b_i - \sigma)/a_{ii};
             end-for.
             MPI Allgather(X<sup>new</sup>);
             iteration++;
    } while((!converged) && (iteration < MAX_ITERATIONS));</pre>
```

Input

A = Diagonally dominant square matrix

MPI Functions Used

```
MPI Bcast ( &rows, 1, MPI INT, ROOT, MPI COMM WORLD);
MPI Bcast ( &cols, 1, MPI INT, ROOT, MPI COMM WORLD);
MPI Scatter (arrayA, rows process*n, MPI DOUBLE,
           ARecv, rows process*n, MPI DOUBLE,
           ROOT, MPI COMM WORLD);
MPI Scatter (B, rows process, MPI DOUBLE,
           BRecv, rows process, MPI DOUBLE,
           ROOT, MPI COMM WORLD);
```

Results – Gaussian Elimination

Time vs Number of processors (Data Size 2048)

#processers	time taken	
1	7.24	
2	3.37	
4	1.88	
8	0.97	
16	0.53	
32	0.32	
64	0.19	
128	0.18	
256	0.22	/

Results - Gaussian Elimination

Results – Gaussian Elimination

Time vs Data Size (256 Processors)

Data size (Number of Row)	Time Taken
2048	0.22
4096	0.73
8192	3.76
16384	52.53
32768	120.6

Results – Jacobi Method

Time vs Number of Processors (Data Size 8192 Rows)

Number of Processors	Time	
1	5.91	
2	3.66	
4	2.12	
8	1.47	
16	1.07	
32	0 98	
64	0.81	
128	0.68	
256	0.71	

Results – Jacobi Method

Time vs Number of Processors

Results – Jacobi Method

Time vs Data Size (Number of Processors 256)

Results – Gaussian vs. Jacobi

Gaussian

0.23

0.65

3

40.18

100.4

Comparison between both methods for diagonally dominant data

Future Work

Using Relaxation methods for Jacobi Method

$$x_i^{(k+1)} = \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right) + (1 - \omega) x_i^{(k)}, \quad i = 1, \dots, n.$$

- Gauss Seidel for large sparse matrices
- Use cyclic distribution in Gaussian Elimination

References

- <u>Parallel Programming for Multicore and Cluster Systems</u> (Thomas Rauber and Gudula Runger)
- <u>Iterative Methods for Sparse Linear Systems, Second Edition</u> (Yousef Saad)
- Message Passing Interface (MPI) forum http://www.mpi-forum.org
- MPI Tutorial http://mpitutorial.com/

Thank You