BRIBAUD

TP,3 Statistique 2) Méthode de Box-Muller 4-) A l'aide d'un changement de variable polaire, montronn que Eleiλ((Δ-Ε)X+ΕΥ)) = jt j'eiλγπ ((Δ-Ειωνωπό)+ ενίπωπο))e-1/2 do do. 2000 de moité jointe de variables x et y s'écriti fx14 Ln.y1 = 1 exp(-(x2+y2)/2) Posons (x)=(Rcos 0) et on déginit une fonction y tq Formule de changement de variables: $f_{2,\Theta}(r, \theta) = 1 \operatorname{Jac}(r, \theta) | f(\Psi^{2}(r, \theta))$ fx,y(\(\frac{1}{2}(r,0)) = \frac{1}{2} \exp(-(\frac{1}{2}\cos^2\theta + \frac{1}{2}\sin^2\theta)/2) = \frac{1}{2} \end{array} $|\int_{\partial C} \frac{d^{2}(r_{1}\theta)}{|\partial r_{2}|} = \det \left(\frac{\partial e_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial \theta} = \det \left(\frac{\partial e_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial \theta} = \det \left(\frac{\partial e_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial \theta} = \det \left(\frac{\partial e_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial \theta} = \det \left(\frac{\partial e_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial \theta} = \det \left(\frac{\partial e_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial \theta} = \det \left(\frac{\partial e_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial \theta} = \det \left(\frac{\partial e_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial \theta} = \det \left(\frac{\partial e_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial \theta} = \det \left(\frac{\partial e_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial \theta} = \det \left(\frac{\partial e_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial \theta} = \det \left(\frac{\partial e_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} = \det \left(\frac{\partial e_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} = \det \left(\frac{\partial e_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} = \det \left(\frac{\partial e_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} = \det \left(\frac{\partial e_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} = \det \left(\frac{\partial e_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} = \det \left(\frac{\partial e_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} = \det \left(\frac{\partial e_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} = \det \left(\frac{\partial e_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} = \det \left(\frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} = \det \left(\frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} = \det \left(\frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} = \det \left(\frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} = \det \left(\frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} = \det \left(\frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} = \det \left(\frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} = \det \left(\frac{\partial v_{2}^{2}(r_{1}\theta)}{\partial r_{2}} \right) \frac{\partial v_{2}^{$ $= \Gamma \cos^2 \theta + C \sin^2 \theta = C$ rest à valeur dans Rt et à à valeur dans Loi 28 J donc : JR, OLr, B) = 1 E 1/2 (1/2 LO, + = L (r) 1/2 LO, 277 (0) T(eil(12-E)X+EY))=[), eil((1-E)rcont + Enintr) 1 - 12/2 r 1/2 [(r) 1/2 [orange to) dodr Changement de variable, $N = \Gamma^2$; $\frac{dn}{dr} = 2r = x dr = \frac{dn}{2r}$ et retor!

=> \(\frac{i}{2} \left(\frac{i}{2} \reft(\frac{1}{2} \reft) \reft(\frac{1}{2} \ => Eleille-E)x+EY)) = [+0] extr((1-E)con(2TE)+Enin(2TE))
-n/2 de do

Déduisons que les loss de 1-21 nu contern) et 1-21 nu sintern, sont des

Scanned with CamScanner

1					
Loin normalen: On pone: (x)=(
	4 . 4 . 6 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7	***************************************	******************************		
Par identification	i o loi	et.	- la 111	UC> 125	-2/nlu
dans nobre cas pour) et on	- 2 In Lu	1~E121	et donc	عرين
Ainai.	2		2		
$\left(\frac{x}{y}\right) = \left(\frac{\sqrt{-2\ln(u)}}{\sqrt{-2\ln(u)}}\right)$	content)	donc		cariablen	nui-
		·· ····			;
	······	·····	••••••••••••••••••••••••••••••••••••••		
				•••••••	
	•••••••••••••••••••••••••••••••••••••••	······································	······································		
		······································		··· <i>··</i> ·······························	
<u></u>		•••••••••••••••••••••••••••••••••••••••			
······································					
	***************************************			*******************************	
· bee - s any - * ban	**************************************				**************
	***************************************			(
**************************************	**************************************		**************************		

	**************************************	-1-888-17-0	******	Designation of the second	THE PERSON NAMED IN COLUMN
	112m1+1200-10310-400441-1880-10401-1	***************************************	CORPORATE AND SECURE CONTRACTOR OF SECURE	ACCOUNT OF THE PARTY OF	energy of the