1. Задание № 1105

На дне вертикального цилиндрического сосуда, радиус основания которого R = 10 см, неплотно прилегая ко дну, лежит кубик. Если масса кубика m=201 г, а длина его стороны a=10 см, то для того, чтобы кубик начал плавать, в сосуд нужно налить минимальный объем V_{\min} воды ($\rho_{\rm B} = 1{,}00~{\rm г/cm}^3$), равный ... ${\rm cm}^3$.

2. Задание № 1268

Плотность вещества камня массы m = 20 кг составляет $\rho_1 = 2.5 \cdot 10^3$ кг/м³. Чтобы удержать камень в воде (ρ_2 = $1,0 \cdot 10^3$ кг/м³), необходимо приложить силу, модуль F которой равен:

3. Задание № <u>546</u>

Вблизи поверхности Земли атмосферное давление убывает на 1 мм рт. ст. при подъеме на каждые 12 м. Если у подножия атмосферное давление $p_1 = 760$ мм рт. ст., а на ее вершине $p_2 = 732$ мм рт. ст., то высота h горы равна:

4. Задание № <u>516</u>

При спуске в шахту на каждые 12 м атмосферное давление возрастает на 133 Па. Если на поверхности Земли атмосферное давление p_1 = 101,3 кПа, то в шахте на глубине h = 360 м давление p_2 равно:

5. Задание № <u>456</u>

В двух вертикальных сообщающихся сосудах находится ртуть ($\rho_1 = 13.6 \text{ г/см}^3$). Поверх ртути в один сосуд налили слой воды ($\rho_2 = 1,00 \text{ г/см}^3$) высотой H = 6,8 см. Разность Δh уровней ртути в сосудах равна:

6. Задание № <u>2532</u>

В одинаковые сообщающиеся сосуды налили воду $\left({{
ho }_{1}}=1000\frac{{{
m K}\Gamma }}{{{
m M}^{3}}} \right).$ Поверх воды в один из сосудов наливают неизвестную жидкость, не смешивающуюся с водой (см. рис.). Уровень поверхности воды ниже уровня поверхности неизвестной жидкости на $|\Delta h|=2,0$ см. Если плотность неизвестной жидкости $\left(
ho_2=900\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}\right)$. то длина lстолба неизвестной жидкости равна ... см.

7. Задание № <u>1584</u>

На рисунке изображён брусок, находящийся на горизонтальной поверхности, в двух различных положениях (1 и 2). Выберите вариант ответа с правильным соотношением модулей сил F_1 и F_2 давления бруска на горизонтальную поверхность и давлений p_1 и p_2 бруска на эту же поверхность:

1)
$$F_1 = F_2, p_1 = p_2$$

1)
$$F_1 = F_2, p_1 = p_2$$
; 2) $F_1 < F_2, p_1 = p_2$; 3) $F_1 = F_2, p_1 > p_2$; 4) $F_1 > F_2, p_1 = p_2$; 5) $F_1 = F_2, p_1 < p_2$.

4)
$$F_1 > F_2, p_1 = p_2$$

8. Задание № <u>2422</u>

Охотник массой m=144 кг стоит на лыжах на горизонтальной снежной поверхности. Длина одной лыжи l=1,2 м, её ширина a=15 см. Охотник снимает лыжи и ступает на снег. Если общая площадь подошв обуви охотника S=360 см 2 , то без учёта массы обеих лыж изменение давления Δp охотника на снег равно ... к Π а.

9. Задание № <u>756</u>

Во время испытания автомобиля водитель держал постоянную скорость, модуль которой указывает стрелка спидометра, изображённого на рисунке. За промежуток времени $\Delta t = 15$ мин автомобиль проехал путь s, равный:

10. Задание № 636

На рисунке изображены положения шарика, равномерно движущегося вдоль оси Ox, в моменты времени t_1, t_2, t_3 . Момент времени t_3 равен:

11. Задание № 1526

Чтобы забрать свой багаж в аэропорту, турист стал у начала багажной ленты, движущейся равномерно со скоростью, модуль которой $\upsilon_{\pi}=0.5\frac{\mathrm{M}}{\mathrm{c}}$. Спустя время $\tau=4$ c после появления багажа в начале ленты турист заметил свой багаж и начал догонять его, двигаясь равномерно. Если турист забрал багаж, пройдя вдоль ленты расстояние $L=7\,\mathrm{m}$, то модуль скорости v_I туриста был равен ... $\frac{\mathcal{A}^{\mathrm{M}}}{c}$.

12. Задание № 1116

Во время испытания автомобиля водитель поддерживал постоянную скорость, значение которой указывает стрелка спидометра, изображённого на рисунке. Путь s = 21 км автомобиль проехал за промежуток времени Δt , равный:

- 1) 14 мин
- 2) 18 мин
- 3) 22 мин
- 4) 26 мин
- 5) 30 мин

13. Задание № 1

Чтобы измерить силу, необходимо воспользоваться прибором, который называется:

- 1) вольтметр
- 2) барометр
- 3) штангенциркуль
- 4) часы
- 5) динамометр

14. Задание № 854

На рисунке приведено условное обозначение:

- 1) колебательного контура
- 2) конденсатора
- 3) гальванического элемента
- 4) катушки индуктивности
- 5) резистора

15. Задание № 2410

Для проверки спидометра автомобиля водитель держал постоянную скорость, ориентируясь по показаниям спидометра (см. рис.). Если за промежуток времени $\Delta t = 0.25$ ч автомобиль проехал путь s = 29 км, то спидометр:

1) занижает скорость на 12 км/ч 4) завышает скорость на 6 км/ч

2) занижает скорость на 6 км/ч 5) завышает скорость на 12 км/ч

3) работает точно

16. Задание № 1154

Установите соответствие между прибором и физической величиной, которую он измеряет:

А. Вольтметр	1) сила тока	
Б. Барометр	2) электрическое напряжение	
	3) атмосферное давление	
2) A 1ED	2) 4 2 E 1 4) 4 2 E 2	

1) A1E2 2) A1E3

3) А2Б1

4) A2Б3

5) A3_{b2}

17. Задание № 671

Если абсолютная температура тела T = 280 K, то его температура t по шкале Цельсия равна:

1) -17 °C 2) -7.0 °C 3) 7.0 °C 4) 17 °C 5) 27 °C

18. Задание № 611

Если температура тела изменилась на $\Delta t = 60^{\circ} \text{C}$, то изменение его абсолютной температуры ΔT по шкале Кельвина равно:

1) $\frac{273}{60}$ K 2) $\frac{60}{273}$ K 3) 60 K 4) 213 K 5) 333 K

19. Задание № 851

Если температура тела изменилась на $\Delta t = 40^{\circ} \mathrm{C}$, то изменение его абсолютной температуры ΔT по шкале Кельвина равно:

1) $\frac{40}{273}$ K 2) $\frac{273}{40}$ K 3) 40 K 4) 233 K 5) 313 K

20. Задание № 1617

На наружной стороне окна висит термометр, показания которого представлены на рисунке. Абсолютная температура Tвоздуха за окном равна:

21. Задание № 370

Физической величиной, измеряемой в джоулях, является:

1) индуктивность 2) сила Лоренца 3) энергия магнитного поля 4) сила тока 5) сила Ампера

22. Задание № 520

Единицей магнитного потока в СИ, является:

1) 1 Φ

1 Кл

3) 1 O_M

4) 1 B₀

5) 1 A

23. Задание № 704

Единицей работы в СИ, является:

1) 1 Ф 2) 1 Н 3) 1 Кл 4) 1 В 5) 1 Дж

24. Задание № 451

Установите соответствие между каждой физической величиной и её характеристикой. Правильное соответствие обозначено цифрой:

	А. Путь Б. Работа В. Сила	, ,	ная величина ная величина	
1) А1 Б1 В2	2) A1 62 B1	3) А1 Б2 В2	4) А2 Б1 В1	5) А2 Б2 В1

25. Задание № 241

Установите соответствие между каждой физической величиной и её характеристикой. Правильное соответствие обозначено цифрой:

26. Задание № 2474

Установите соответствие между физической величиной и её характеристикой.

Физическая величина	Характеристика физической величины 1) векторная величина 2) скалярная величина	
А. Электроёмкость Б. Потенциал электростатического поля В. Индукция магнитного поля		
1 E1 D2	4) A 2 E 2 D 1	