МОСКОВСКИЙ ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) Факультет аэрофизики и космических исследований

Отчет о выполнении лабораторной работы 1.1.1 Измерение удельного сопротивления нихромовой проволоки

Коломоец А.А. Группа Б03-504

Содержание

Аннотация	2
Георетические сведения	2
Эборудование	
Ход работы	
Зывод	
эшод	

Аннотация

Цель работы: проверить применимость закона Ома для исследуемого образца и измерить его удельное сопротивление.

Теоретические сведения

Удельное сопротивление проволоки круглого сечения можно измерить по формуле:

$$\rho = \frac{R_{np}}{l} \frac{\pi d^2}{4} \tag{1}$$

Где $R_{\it np}$ - сопротивление проволоки, d - диаметр, l - длина.

Общее сопротивление параллельно соединенных проволоки и вольтметра равно:

$$R'_{np} = \frac{U_{\nu}}{I_a} \tag{2}$$

Где I_a - сила тока через амперметр, $U_{\scriptscriptstyle \rm V}$ - напряжение на вольтметре.

Сопротивление проволоки в этом случаем можно считать следующим образом:

$$R_{np} = \frac{R_{\nu} R_{np}^{\prime}}{R_{\nu} - R_{np}^{\prime}} \tag{3}$$

Где R_{ν} - сопротивление вольтметра.

Оборудование

Рисунок 1. Схема цепи

При проведении эксперимента использовались:

- 1. Отрезок нихромовой проволоки
- 2. Соединительные провода
- 3. Вольтметр
- 4. Амперметр
- 5. Источник ЭДС
- 6. Мост постоянного тока Р4833
- 7. Peocmam
- 8. Линейка
- 9. Микрометр
- 10. Штангенциркуль

	Вольтметр	Миллиамперметр
Система	Электромагнитная	Аналоговая
Класс точности		0,5
Предел измерений x_n		0,3 A
Число делений шкалы <i>п</i>		150
Цена деления <i>x</i> _n /n		2 мА
Чувствительность n/x_n		500 дел/А
Абсолютная погрешность Δx_{M}	0,1 мВ	1,5 мА
Внутреннее сопротивление прибора	10M Ω	Пренебрежимо мало

Ход работы

Точность измерения с помощью штангенциркуля — 0.1 мм. Точность измерения с помощью микрометра — 0.01 мм.

Измерение диаметра проволоки

(Таблица 2)

	1	2	3	4	5	6	7	8	9	10
\overline{d}_{um} , мм	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
$d_{_{M\!K}}$, MM	0,36	0,35	0,35	0,36	0,36	0,35	0,36	0,36	0,36	0,35

 $\overline{d_{\scriptscriptstyle um}}$ - диаметр, измеренный штангенциркулем. $d_{\scriptscriptstyle {\scriptscriptstyle MK}}$ - диаметр, измеренный микрометром.

$$\overline{d_{um}} = 0.4 \text{ MM}$$
 $\overline{d_{MK}} = 0.356 \text{ MM}$

При измерении проволоки штангенциркулем случайная погрешность отсутствует, тогда точность результата определяется только систематической погрешностью:

$$d_{um} = (0,4\pm0,1)$$
 MM.

Измерения микрометром содержат и систематическую и случайную погрешность

$$\sigma_{cucm} = 0.01 \text{ mm}, \qquad \sigma_{cn} = \frac{1}{N} \sqrt{\sum_{i=1}^{n} (d - \overline{d})^2} = \frac{1}{10} \sqrt{0.024} \approx 0.015 \text{ mm}.$$

$$\sigma_d = \sqrt{\sigma_{cucm}^2 + \sigma_{cr}^2} = \sqrt{0.01^2 + 0.015^2} \approx 0.018 \text{ mm}.$$

$$d_{_{M\!K}}\!=\!\overline{d_{_{M\!K}}}\!\pm\!\sigma_{d}\!=\!\!(0,\!356\!\pm\!0,\!018)$$
 mm.

Определим площадь поперечного сечения проволоки:

$$S = \frac{\pi d_{MK}^2}{4} = \frac{3.14 \cdot (3.56 \cdot 10^{-2})^2}{4} \approx 0.99 \cdot 10^{-3} cm^2$$

$$\sigma_s = 2\frac{\sigma}{d}S = 2(\frac{0.018}{0.356}) \cdot 1 \cdot 10^{-3} \approx 10^{-4} cm^2$$

$$S = (0.99 \pm 0.10) \cdot 10^{-3} c M^2$$

Измерение показаний вольтметра и амперметра

(Таблица 3)

1 = 20 см												
U, мВ	59,3	43	32,5	25,1	20,1	15,3	14,7	16,5	19,1	25,6	38,6	59
I, дел 2 $\frac{MA}{\partial e \Lambda}$	14,8	10,7	8,1	6,3	5,0	3,9	3,7	4,1	4,8	6,4	9,7	14,7
І, мА	29,6	21,4	16,2	12,6	10,0	7,8	7,4	8,2	9,6	12,8	19,4	29,4
	1=30 см											
U, мВ	88,3	65,3	50,8	36,3	29,1	23,0	22,2	25,0	28,7	38,1	54,4	88,3
I, дел 2 $\frac{MA}{\partial e \Lambda}$	14,8	11,0	8,6	6,1	4,9	3,9	3,8	4,2	4,8	6,4	9,2	14,8
І, мА	29,6	22,0	17,2	12,2	9,8	7,8	7,6	8,4	9,6	12,8	18,4	29,6
	l = 40 см											
U, мВ	143,2	106,8	71,3	54,5	43,4	36,7	34,6	38,9	48,2	71,1	94,7	129,2
I, дел $2\frac{MA}{\partial e \Lambda}$	14,3	10,7	7,2	5,4	4,4	3,7	3,5	3,9	4,9	7,1	9,5	13,0
І, мА	28,6	21,4	14,4	10,8	8,8	7,4	7,0	7,8	9,8	14,2	19,0	26,0

Результаты измерения сопротивления проволоки

(Таблица 4)

L = 20 см	L = 30 см	L = 50 см
$R_0 = 2,056 \Omega$	$R_0 = 3,032 \Omega$	R_0 = 5,044 Ω
R_{cp} = 1,997 Ω	R_{cp} = 2,989 Ω	R_{cp} =4,987 Ω
R_{np} =1,998 Ω	R_{np} = 2,989 Ω	R_{np} = 4,987 Ω
σ_{Rnp}^{cnyu} = 0,036 Ω	σ_{Rnp}^{cnyq} = 0,043 Ω	$\sigma_{\it Rnp}^{\it cnyu}$ = 0,029 Ω
$\sigma_{\it Rnp}^{\it cucm}$ = 0,051 Ω	$\sigma_{\it Rnp}^{\it cucm}$ = 0,075 Ω	σ_{Rnp}^{cucm} = 0,089 Ω
σ_R = 0,062 Ω	σ_R = 0,086 Ω	$\sigma_{\scriptscriptstyle R}$ = 0,094 Ω

Для всех трех величин l внесем в таблицу значение R_{np} , которое вычисляется по формуле (3):

$$R_{np} = \frac{R_{v}R_{np}^{'}}{R_{v} - R_{np}^{'}} = \frac{R_{v}R_{cp}}{R_{v} - R_{cp}}$$

 $\sigma_{\scriptscriptstyle A}$ и $\sigma_{\scriptscriptstyle V}$ - среднеквадратичные ошибки при измерении амперметром и вольтметром.

$$\sigma_V = \frac{\Delta x}{2} = \frac{0.1}{2} = 0.05 \text{ MB.}$$
 $\sigma_A = \frac{\Delta x}{2} = \frac{1.5}{2} = 0.75 \text{ MA.}$

Рассчитаем $\sigma_{\textit{Rcp}}$ для проволоки l = 30 см; $R_{\textit{cp}}$ = 2,989 Ω , U = 88,3 мB, I = 29,6 мA.

$$\sigma_{Rcp}^{cucm} = R_{cp} \sqrt{\left(\frac{\sigma_{v}}{U}\right)^{2} + \left(\frac{\sigma_{A}}{U}\right)^{2}} = 2,989 \sqrt{\left(\frac{0,05}{88.3}\right)^{2} + \left(\frac{0,75}{29.6}\right)^{2}} \approx 0,075 \ \Omega$$

На странице 5 представлены графики зависимостей U(I) для трех длин проводников.

I = 30 см

I = 50 см

Случайную погрешность определения углового коэффициента вычисляем так:

$$\sigma_{Rnp}^{cnyu} = \sqrt{\frac{1}{n-1} (\frac{U_{cp}^2}{I_{cp}^2} - R_{cp}^2)}$$

Теперь можем вычислить полную погрешность.

$$\sigma_R = \sqrt{(\sigma_{Rcp}^{cnyu})^2 + (\sigma_{Rcp}^{cucm})^2}$$

Далее перенесем все данные в таблицу 4.

Вычисление удельного сопративления проволоки

Расчет удельного сопративления проволоки производится по формуле (1)

Относительная погрешность вычисления р считается по формуле

$$\sigma_{\rho} = \sqrt{\left(\frac{\sigma_R}{R_{np}}\right)^2 + \left(2\frac{\sigma_d}{d}\right)^2}$$

(Таблица 5)

l, см	ρ , $10^{-4}\Omega$ ·см	σ _ $ ho$, $10^{-6}\Omega$ \cdot см
20	0.997	6.356
30	0.979	6.848
50	0.988	5. 896

Окончательно: $\rho = (0.988 \pm 0.064) \cdot 10^{-4} \Omega \cdot cM (\varepsilon = 6.4\%)$

Вывод

Основной вклад в погрешность о р вносит погрешность измерения диаметра проволоки, которая приблизительно равна 3%, но так как из-за возведения в квадрат она удваивается, то вклад в погрешность получается примерно 6%. Погрешность осальных измерений достаточно мала по сравнению с измерением диаметра (меньше 2%), поэтому точнее всего необходимо выполнять измерение диаметра проволоки. В качестве альтернативного способа можно находить площадь сечения по массе проволоки, ее плотности и длине. Можно будет измерить массу достаточно большого мотка проволоки (несколько метров) для достижения наибольшей точности.