Appl. No. 10/552,134

Amdt. Dated: January 5, 2008

Reply to Office action of October 15, 2008

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

 (Original) Method of producing a radiolabelled gallium complex by reacting a Ga³⁺ radioisotope with a chelating agent characterised in that the reaction is carried out using microwave activation.

 (Original) Method according to claim 1 wherein the Ga³⁺ radioisotope is selected from the group consisting of ⁶⁶Ga³⁺, ⁵⁷Ga³⁺ and ⁶⁸Ga³⁺.

3. (Previously presented) Method according to claim 1 wherein the Ga^{3+} radioisotope is ${}^{68}Ga^{3+}$

 (Previously presented) Method according to claim 1 wherein the chelating agent is a macrocyclic chelating agent.

(Previously presented) Method according to claim 1 wherein the chelating agent comprises hard donor atoms, preferably O and N atoms.

(Previously presented) Method according to claim 1 wherein the chelating agent is a bifunctional chelating agent.

7. (Previously presented) Method according to claim 1 wherein the chelating agent is a bifunctional chelating agent comprising a targeting vector selected from the group consisting of proteins, glycoproteins, lipoproteins, polypeptides, glycopolypeptides, lipopolypeptides, peptides, glycopeptides, lipopeptides, carbohydrates, nucleic acids, oligonucleotides or a part, a fragment, a derivative or a complex of the aforesaid compounds and small organic molecules.

Appl. No. 10/552,134

Amdt. Dated: January 5, 2008

Reply to Office action of October 15, 2008

(Original) Method according to claim 7 wherein the target vector is a peptide or oligonucleotide.

(Previously presented) Method according to claim 1 wherein the microwave activation is carried out at 80 to 120 W, preferably at 90 to 110 W.

10. (Previously presented) Method according to claim 1 wherein the microwave activation is carried out for 20 s to 2 min, preferably for 30 s to 90 s.

11. (Previously presented) Method according to claim 3 wherein the ⁶⁸Ga³⁺ is obtained by contacting the eluate from a ⁶⁸Ge/⁶⁸Ga generator with an anion exchanger and eluting ⁶⁸Ga³⁺ from said anion exchanger.

 (Original) Method according to claim 11 wherein the ⁶⁶Ge/⁶⁶Ga generator comprises a column comprising titanium dioxide.

 (Previously presented) Method according to claim 11 wherein the anion exchanger comprises HCO₃ as counterions.

14. (Previously presented) Method according to claim 11 wherein the anion exchanger is an anion exchanger comprising quaternary amine functional groups, or the ion exchanger is a anion exchange resin based on polystyrene-divinylbenzene.

15. (Previously presented) Method according to claim 6 for the production of ⁶⁸Garadiolabelled PET tracers.

16. (New) Method according to claim 11 wherein the eluting ⁶⁸Ga³⁺ is in the picomolar to nanomolar range after the elution, and more preferably in a nanomolar to micromolar level.