Три задачи, связанные со случайным поиском

Стоюнина Татьяна Юрьевна, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., д. Некруткин В.В. Рецензент: к.ф.-м.н., д. Голяндина Н.Э.

Санкт-Петербург 2006г.

Содержание работы

Дипломная работа состоит из трех частей:

- Оценка трудоемкости случайного поиска экстремума со случайной начальной точкой.
- Аналитическое решение вспомогательной оптимизационной задачи.
- Моделирование равномерного распределения в d-мерном шаре.

Содержание работы

Дипломная работа состоит из трех частей:

- Оценка трудоемкости случайного поиска экстремума со случайной начальной точкой.
- Аналитическое решение вспомогательной оптимизационной задачи.
- Моделирование равномерного распределения в *d*-мерном шаре.

Содержание работы

Дипломная работа состоит из трех частей:

- Оценка трудоемкости случайного поиска экстремума со случайной начальной точкой.
- Аналитическое решение вспомогательной оптимизационной задачи.
- Моделирование равномерного распределения в d-мерном шаре.

- Пространство оптимизации : тор $\mathbb{I}^d=(0,1]^d$ с равномерной метрикой $\rho_d.$
- ullet Целевая функция $f:\mathbb{I}^d\mapsto\mathbb{R}$ ограничена, измерима и
 - $oldsymbol{0}$ принимает максимальное значение в единственной точке x_0
 - @ непрерывна в точке x_0
 - ullet неравенство $\sup\{f(x): x \in S^c_r(x_0)\} < f(x_0)$ верно для любого r>0
- Случайный поиск:

Алгоритм

Шаг 1.
$$\xi_0 \leftarrow x$$
: $i \leftarrow 1$.

Шаг 2.
$$\eta \leftarrow P(\xi_{i-1}, \cdot)$$
.

Шаг 3. Если
$$f(\eta) \geq f(\xi_{i-1})$$
, то $\xi_i \leftarrow \eta$, иначе $\xi_i \leftarrow \xi_{i-1}$.

Шаг 4. Если
$$i < n$$
, то $\left(i \leftarrow i+1 \right.$ и перейти к шагу 2 $\right)$, иначе — STOP.

ullet Вероятность $P(\mathbf{x},\,\cdot\,)$ обладает симметричной плотностью

$$p(\mathbf{x}, \mathbf{y}) = g(\rho_d(\mathbf{x}, \mathbf{y})),$$

где g монотонно убывает.

- Пространство оптимизации : тор $\mathbb{I}^d=(0,1]^d$ с равномерной метрикой $\rho_d.$
- ullet Целевая функция $f:\mathbb{I}^d\mapsto\mathbb{R}$ ограничена, измерима и
 - $oldsymbol{0}$ принимает максимальное значение в единственной точке x_0 ,
 - $oldsymbol{2}$ непрерывна в точке x_0 ,
 - ullet неравенство $\sup\{f(x): x \in S^c_r(x_0)\} < f(x_0)$ верно для любого r>0.
- Случайный поиск:

Алгоритм

- Шаг 1. $\xi_0 \leftarrow x$; $i \leftarrow 1$.
- Шаг 2. $\eta \leftarrow P(\xi_{i-1}, \cdot)$.
- Шаг 3. Если $f(\eta) \geq f(\xi_{i-1})$, то $\xi_i \leftarrow \eta$, иначе $\xi_i \leftarrow \xi_{i-1}$.
- Шаг 4. Если i < n, то $\left(i \leftarrow i+1 \; \mathsf{u} \; \mathsf{перейтu} \; \mathsf{K} \; \mathsf{шагу} \; 2 \right)$, иначе STOP.
- ullet Вероятность $P(\mathbf{x},\,\cdot\,)$ обладает симметричной плотностью

$$p(\mathbf{x}, \mathbf{y}) = g(\rho_d(\mathbf{x}, \mathbf{y})),$$

где g монотонно убывает.

- Пространство оптимизации: тор \(\mathbb{I}^d = (0,1]^d \) с равномерной метрикой \(\rho_d. \)
- ullet Целевая функция $f:\mathbb{I}^d\mapsto\mathbb{R}$ ограничена, измерима и
 - **(1)** принимает максимальное значение в единственной точке x_0 ,
 - $oldsymbol{2}$ непрерывна в точке x_0 ,
 - ullet неравенство $\sup\{f(x): x \in S^c_r(x_0)\} < f(x_0)$ верно для любого r>0.
- Случайный поиск:

Алгоритм

Шаг 1.
$$\xi_0 \leftarrow x$$
; $i \leftarrow 1$.

Шаг 2.
$$\eta \leftarrow P(\xi_{i-1}, \cdot)$$
.

Шаг 3. Если
$$f(\eta) \geq f(\xi_{i-1})$$
, то $\xi_i \leftarrow \eta$, иначе $\xi_i \leftarrow \xi_{i-1}$.

- Шаг 4. Если i < n, то $\left(i \leftarrow i+1 \text{ и перейти к шагу 2} \right)$, иначе STOP.
- ullet Вероятность $P(\mathbf{x},\,\cdot\,)$ обладает симметричной плотностью

$$p(\mathbf{x}, \mathbf{y}) = g(\rho_d(\mathbf{x}, \mathbf{y})),$$

где g монотонно убывает

- ullet Пространство оптимизации : тор $\mathbb{I}^d=(0,1]^d$ с равномерной метрикой $ho_d.$
- ullet Целевая функция $f:\mathbb{I}^d\mapsto\mathbb{R}$ ограничена, измерима и
 - $oldsymbol{0}$ принимает максимальное значение в единственной точке x_0 ,
 - $oldsymbol{Q}$ непрерывна в точке x_0 ,
 - igoplus неравенство $\sup\{f(x): x \in S^c_r(x_0)\} < f(x_0)$ верно для любого r > 0.
- Случайный поиск:

Алгоритм

- Шаг 1. $\xi_0 \leftarrow x$; $i \leftarrow 1$.
- Шаг 2. $\eta \leftarrow P(\xi_{i-1}, \cdot)$.
- Шаг 3. Если $f(\eta) \geq f(\xi_{i-1})$, то $\xi_i \leftarrow \eta$, иначе $\xi_i \leftarrow \xi_{i-1}$.
- Шаг 4. Если i < n, то $\left(i \leftarrow i+1 \text{ и перейти к шагу 2} \right)$, иначе STOP.
- ullet Вероятность $P(\mathbf{x},\,\cdot\,)$ обладает симметричной плотностью

$$p(\mathbf{x}, \mathbf{y}) = g(\rho_d(\mathbf{x}, \mathbf{y})),$$

где g монотонно убывает.

Поиск: цель и характеристики случайного поиска

Цель поиска: — попадание в множество

$$M_{arepsilon}=\{x\in S_{arepsilon}(x_0): f(x)>f(y)$$
 для $y\in S_{arepsilon}^c(x_0)\},$

где $S_{\varepsilon}(x_0)$ — шар радиуса ε с центром в x_0 .

Характеристика качества функции — коэффициент асимметрии:

$$F^f(r) = mes_d(M_r)/mes_d(S_r(x_0)).$$

Невырожденная функция: $F^f(r) \ge \theta > 0$.

Трудоемкость поиска: $\mathsf{E}_x au_{arepsilon}$, где $au_{arepsilon} = \min\{i \geq 0: \xi_i \in M_{arepsilon}\}.$ x — начальная точка поиска.

Общая проблема: оценить/уменьшить трудоемкость поиска.

Поиск: известные результаты

Результаты А.С. Тихомирова.

• Имеют место неравенства

$$C|\ln \varepsilon| \le \mathsf{E}_x \tau_\varepsilon \le I(\delta(x), \varepsilon; f, g).$$
 (1)

- ullet Существует g_{opt} , доставляющая минимум правой части (1).
- ullet Для невырожденных целевых функций существуют такие g, что

$$\mathsf{E}_x \tau_\varepsilon \le C(f,d) \ln^2(\varepsilon).$$

ullet Если $F^f\equiv heta$, то g_{opt} и $I(\delta(x),arepsilon;f,g_{opt})$ находятся явно, причем g_{opt} не зависит от heta.

Проблемы:

- g_{opt} зависит от x, то есть от взаимного расположения начальной точки поиска и точки экстремума. А оно на практике неизвестно.
- Результаты, относящиеся к классам функций вида $\{f: F^f(r) > \theta > 0\}.$

Поиск: случайная начальная точка. Результаты

Основные результаты.

Пусть начальная точка поиска ξ равномерно распределена в \mathbb{I}^d . Тогда

- Е $au_arepsilon \le J(arepsilon;f,g),$ где J(arepsilon;f,g) явно представлено в интегральной форме.
- ullet Если $F^f(r) \geq heta > 0$, то при arepsilon < 0.25

$$J(\varepsilon; f, g) \le J_{\theta}(\varepsilon; g) = \frac{1}{\phi} \left(d \int_{2\varepsilon}^{0.5} \frac{1}{z^{d+1} g(z)} dz + \frac{2^d - \phi}{g(0.5)} \right). \tag{2}$$

• Правая часть неравенства (2) достигает своего минимума при

$$g(r) = g_{\mathrm{opt}}(r) = \left(d\ln(\beta/\alpha\varepsilon) - (2\beta)^{-d}\right)^{-1} \begin{cases} (\alpha\varepsilon)^{-d}, & \text{при } 0 < r \leqslant \alpha\varepsilon, \\ r^{-d}, & \text{при } a\varepsilon < r \leqslant \beta, \\ \beta^{-d}, & \text{при } \beta < r \leqslant 0.5, \end{cases} \tag{3}$$

если $\varepsilon < a(d,\theta)$. Иначе $g_{opt} \equiv 1$.

Замечание . Величина $J_{ heta}(arepsilon;g_{opt})$ и постоянные a, lpha и eta выписываются явно.

Постановка задачи: ставится задача минимизации функционала

$$\mathcal{J}_{u,v}(w) = \int_{u}^{v} \frac{h^{2}(r)}{w(r)} + \frac{c}{w(1)},$$

(где $0 < u < v \le 1$, c > 0 и $h \in \mathbb{L}^2(u,v)$ — неотрицательная функция) в классе невозрастающих строго положительных непрерывных слева плотностей w.

Мотивация: см. формулу (2).

База: А.С. Тихомиров для случая v=1.

Результаты А.С. Тихомирова (краткая сводка):

- Теорема существования w_{opt} .
- Анализ структуры w_{opt} .
- ullet Явный вид w_{opt} в случае v=1, когда функция h гладкая и строго убывает (2 параметра).

Полученные результаты для случая произвольной h и $v \le 1$:

- Теорема существования w_{opt} .
- ullet Анализ структуры w_{opt} .
- Вид w_{opt} в случае, когда функция h является непрерывной и строго убывает (3 параметра).

Общий вид:

$$w_{\mathrm{opt}}(r) = w_{b,d,\theta}(r) = \frac{1}{\lambda_{b,d,\theta}} \begin{cases} h(b), & \text{при } r \in (0,b], \\ h(r), & \text{при } r \in (b,d], \\ h(d), & \text{при } r \in (d,v], \\ \theta, & \text{при } r \in (v,1] \end{cases}$$

c $u < b \le d \le v$, $\theta \le h(d)$.

Техника: А.С.Тихомиров.

Моделирование: алгоритм И.В.Романовского

Задача: моделирование р. р. в единичном d-мерном шаре База: алгоритм (и реализация) Л.А.Евдокимова и И.В.Романовского. Идея:

- Шар большого радиуса $R(R^2 \text{целое})$.
- Покрытие шара единичными кубами (целочисленные вершины)

$$c_d(t) = \{x | t_j \le x_j < t_j + 1, , j = 1, \dots, d\}.$$

- Параметризация кубов с помощью векторов $t = (t_1, \dots, t_d)$.
- ullet Моделирование номера i куба.
- ullet Сопоставление номера i кубу $t^{(i)}$ (метод Уолкера d раз).
- Моделирование р. р. в кубе $t^{(i)}$ и проверка принадлежности шару. Если "да", то деление полученного вектора на R.

Параметры алгоритма: d, R^2 .

Моделирование: ограничения и затраты

Ограничения: число кубов $\leq 2^{31} - 1$ (тип long).

Объем памяти: необходимый объем памяти $\sim 8dR^3$ байт.

Результат: трудоемкость отбора при разных ограничениях на память.

d	C_{min}	10 Mb	5 Mb	1 Mb
2	≈ 1	1.01	1.01	1.03
3	≈ 1	1.03	1.03	1.06
5	1.05	1.07	1.09	1.17
7	1.25	1.25	1.25	1.33
10	2.31	2.31	2.31	2.31
20	229	229	229	229

Проблема : При ограничении на трудоемкость отбора < 2 получаем ограничение < 10 на размерность d.

Моделирование: результаты

Модификации:

• Хранение целых в виде частного и остатка при делении на $2^{32}-1$ (структура superlong).

Ограничение: число кубов $< 2^{32}(2^{32} - 1) - 1$.

- Оптимизация хранения массивов (выигрыш $\sim 13 R^3$ байт).
- Частичное использование типа long (выигрыш $symp dR^3$ байт).

Результат: трудоемкость отбора резко падает при больших d.

	10 Mb		5 Mb		1 Mb	
d	C_{long}	C_{slong}	C_{long}	C_{slong}	C_{long}	C_{slong}
2	1.01	≈ 1	1.01	≈ 1	1.03	≈ 1
3	1.03	1.02	1.03	1.02	1.06	1.04
5	1.07	1.06	1.09	1.08	1.17	1.14
7	1.25	1.13	1.25	1.17	1.25	1.29
10	2.31	1.29	2.31	1.37	2.31	1.69
20	229	5.27	229	5.27	229	7.34

Моделирование: тестирование и программа

Тестирование.

Статистика критерия:

Пусть (ξ_1,\ldots,ξ_d) р.р. в единичном d-мерном шаре $B_d(1)$. Тогда

$$\left(\frac{\xi_{i+1}^2 + \dots + \xi_d^2}{1 - \xi_1^2 - \dots - \xi_i^2}\right)^{d-\epsilon}$$

р.р. на (0,1) для любого $0 \le i < d$.

Критерии: Колмогорова и χ^2 с 20 интервалами. N=1000.

Программа:

- Реализация алгоритма с модификациями для размерности $d \le 20$.
- Выбор параметров алгоритма согласно заданному ограничению по памяти
- Тестирование сгенерированной выборки