A Second Course in Linear Algebra

Raymond Bian

January 18, 2024

Contents

1 Vectors and Matrices

Lecture 1: Review

1 Vectors and Matrices

For the time being, everything indicated in this course is in $\ensuremath{\mathbb{R}}.$

Definition 1. A **vector** will be defined as a column vector, e.g.

$$u = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3.$$

Notation. Sometimes, they will be written as a column vector lying down, e.g. $(x_1, x_2, x_3) \in \mathbb{R}^3$

Definition 2. Let *a* be a scalar. Then multiplication between vector and scalar is defined as

$$au = \begin{bmatrix} a \cdot X_1 \\ a \cdot X_2 \\ a \cdot X_3 \end{bmatrix}.$$

Definition 3. Let
$$u = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 and $v = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$.

Then addition between vectors is defined as

$$u + v = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{bmatrix}.$$

Definition 4. If u, v are vectors and a, b are scalars, then any au + bv is a **linear combination** of u and v.

Remark. A **vector space** V is a set of objects u, v such that $au + bv \in V$.

Example. Polynomials of degree ≤ 2 in one variable can form a vector space.

Proof. Let
$$p(x) = a_0 + a_1 x + a_2 x^2$$
, and $q(x) = b_0 + b_1 x + b_2 x^2$. Multiplying by scalars and adding are defined. Note that $p(x) \to \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}$.

Example. Let $f(x):[0,1]\to\mathbb{R}$ be a continuous function. We can multiply such functions by scalars and add together such functions, so they form a vector space as well.

Suppose we have two vectors $u, v \in \mathbb{R}^3$. Looking at the set of all linear combinations of u, v,

- if both u and v are the zero vectoor, then $W = \{0\}$.
- if $u = \lambda v$, $v \neq 0$, then W is the line of all multiples of v.
- if u and v are **linearly independent**, then W is a plane in \mathbb{R}^3 .

Definition 5. Vectors u_1 , u_2 , u_3 are **linearly independent** if and only if

$$a_1u_1 + a_2u_2 + a_3u_3 = 0 \Rightarrow a_1 = a_2 = a_3 = 0.$$

Definition 6. Let V, W be a vector spaces such that $W \subseteq V$. Then, W is called a **subspace** of V.

Example. Let
$$W=\{\begin{bmatrix}x_1\\x_2\\0\end{bmatrix}:x_1,x_2\in\mathbb{R}\}.$$
 Then, W is a subspace of \mathbb{R}^3 .

Theorem 1. If $u, v \in V$, then the set of linear combinations of u and v is a subspace.

Proof. Let $W = \text{span}\{u, v\}$. We must show that $w_1, w_2 \in W \Rightarrow c_1w_1 + c_2w_2 \in W$. By assumption, $w_1 = a_1u + b_1v$, and $w_2 = a_2u + b_2v$, such that $w = (c_1a_1 + c_2a_2)u + (c_1b_1 + c_2b_2)v$. Therefore, w is a linear combination of u, v.

Example. Let
$$u = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, and $v = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$. Then, span $\{u, v\}$ is a proper subspace of \mathbb{R}^3 .

Definition 7.
$$u \cdot v = x_1 y_1 + x_2 y_2 + x_3 y_3$$
 is the dot product of the vectors $u = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and $v = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$

Definition 8. We say that $u \perp v$ if $u \cdot v = 0$.

Definition 9. The length or **norm** of a vector u is $\sqrt{u \cdot u} = ||u||$

Theorem 2. The Cauchy–Schwarz inequality states that $|u \cdot v| \le ||u|| ||v||$.

Proof.

$$(u + \lambda v) \cdot (u + \lambda v) \ge 0$$

$$u \cdot u + \lambda^{2} v \cdot v + 2\lambda u \cdot v \ge 0.$$

The minimum lambda is $\frac{-b}{2a} = \frac{-u \cdot v}{v \cdot v}$, which results in this inequality being true. Therefore, all greater values for lambda will result in this inequality being true.

Theorem 3. The triangle inequality theorem states that $||u + v|| \le ||u|| + ||v||$.

Definition 10. The **unit vector** of a vector u, \hat{u} is given by $\frac{u}{\|u\|}$.

Theorem 4. If u and v are vectors such that ||u|| = ||v|| = 1, then $u \cdot v = \cos(\theta)$ where θ is the angle between u and v.

Corollary. If u and v are vectors, then $u \cdot v = \|u\| \|v\| \cos(\theta)$. Note that $u \cdot v = 0$ when $\theta = \frac{\pi}{2}$ or $\frac{3\pi}{2}$.

Lecture 2: Matrices

Example.

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

is a matrix. We can also write $A = \{a_{ij}\}$ such that $i = 1 \dots n$ and $j = 1 \dots m$.

What does it mean to take a product between a matrix and a vector?

Definition 11. This product is defined as

$$\begin{pmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \\ a_{21}x_1 + a_{22}x_2 + a_{13}x_3 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 \end{pmatrix}.$$

i.e. a collection of dot products between the rows and \boldsymbol{x} .

We can also see the product as a linear combination of the columns of the matrix A.

Definition 12. Let the columns of A be A_1, A_2, A_3 . Then, $Ax = x_1A_1 + x_2A_2 + x_3A_3$.

Notation. A's columns are denoted A_1 , A_2 , A_3 , while A's rows are denoted A^1 , A^2 , A^3 .

If we look at the linear equation Ax = b, we can say that b is a linear combination of the columns of A. Instead, looking at it like an equation, "can b be written as a linear combination of the columns of A"?

Looking at $A^1x = b_1$, there are two free variables, such as this is a plane in \mathbb{R}^3 . The only time this is not a plane is if a_{11} , a_{12} , a_{13} are all zero, and b_1 is nonzero

If we have x, y, $A^1x = 0$ and $A^1y = 0$ implies ax + by = z, which solves $A^1z = 0$. The set of solutions is a subspace.

Now, suppose we have all solutions of $A^1x=0$. Call this V. How do we then write the solutions to $A^1x=b$? We find any such c such that $A^1c=b_1$. Then, we claim that the set of solutions of $A^1x=b_1$ is $V+c=\{x+c|x\in V\}$. Checking our solution, $A^1\cdot (x+c)=\underbrace{A^1\cdot x}_0+\underbrace{A^1\cdot c}_{b_1}=b_1$.

Let W = V + c. We want to show if $x \in W \Rightarrow A^1 \cdot x = 0$. Assume $A^1z = b_1$. If we set x = z - c, then $A^1x = A^1z - A^1c = 0$. Therefore, $z = x + c \in W$.

All in all, solving all three equations $A^1x = b_1$, $A^2x = b_2$, $A^3x = b_3$ is now just finding the intersection of three translated planes. **This is what solving** Ax = b **means**.

Another viewpoint is this. Consider the equation $A_1x_1 + A_2x_2 + A_3x_3 = b$. Consider the span of

 A_1 , A_2 , A_3 . Does this span contain b?

Example. Let's say that

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Solving Ax = b, we have $x_3 = b_3$, $x_2 = b_2 + b_3$, and $x_1 = b_1 + b_2 + b_3$ such that

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

Let C denote this matrix. Then, $Ax = b \Leftrightarrow Cb = x$, such that $C = A^{-1}$. Then, C is the **inverse** of A.

Definition 13. We want to say that every $n \times n$ matrix can be written as the product as an upper triangular and lower triangular matrix, called **LU** factorization.

Definition 14. Matrix multiplication is defined as $(AB)_{ij} = \sum_k a_{ik} + b_{kl}$ where $A = \{a_{ij}\}$ and $B = \{b_{kl}\}$

The other way to see AB is if $B = (B_1 \ B_2 \ \dots \ B_n)$, then $AB = (AB_1 \ AB_2 \ \dots \ AB_n)$. In other words, $(AB)_{ij} = A^i \cdot B_j$.

Lecture 3: Matrix Algebra

Example. Solve

$$\underbrace{\begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & 4 \\ -2 & -3 & 7 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{b} = \underbrace{\begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix}}_{b}.$$

Proof.

$$x = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}.$$

Let

$$E_{12} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Then, we have

$$E_{12} \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 10 \end{bmatrix}.$$

Note that this is also $E_{12}(Ax) = E_{12}b = (E_{12}A)x$

Definition 15. AB is such that

$$A(Bx) = (AB)x.$$

for every vector x. It is defined as

$$AB = [AB^1, AB^2, \dots, AB^n].$$

where B^i is the *i*-th column of B.

Theorem 5. $Ax = b \Rightarrow (CA)x = Cb$

Theorem 6. Let \mathbb{R}^n be a vector space and $A, B : \mathbb{R}^n \to \mathbb{R}^n$ linear mappings. Then,

$$A \circ B : \mathbb{R}^n \to \mathbb{R}^n$$
.

is also a linear transformation. Also

$$A \circ B(x) = ABx$$
.

Theorem 7. If \hat{A} is a linear map from $\mathbb{R}^n \to \mathbb{R}^n$ then $\hat{A}(x) = Ax$ for a matrix A.

Proof. For a linear map, we have $\hat{A}(x + y) = \hat{A}(x) + \hat{A}(y)$ and $\hat{A}(\alpha x) = \alpha \hat{A}(x)$. We want to show that any linear mapping is a matrix multiplication. Let

$$e_i = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$

where the 1 is in the *i*th place. Let $A^i = \hat{A}(e_i)$. Let $A = \begin{bmatrix} A^1 & A^2 & \dots & A^n \end{bmatrix}$. Then, by construction

$$\hat{A}(x) = \hat{A}(x_1e_1 + x_2e_2) + \dots + x_ne_n)$$

$$= x_1\hat{A}(e_1) + x_2\hat{A}(e_2) + \dots + x_n\hat{A}e_n)$$

$$= x_1A^1 + x_2A^2 + \dots + x_nA^n$$

$$= Ax.$$

We can also calculate matrix multiplication as $(AB)_{i,j} = \sum_k A_{i,k} \cdot B_{k,j}$.

Theorem 8. Suppose we take a third matrix *C*.

Then,

$$A(BC) = (AB)C.$$

This is the associative property.

Proof. We saw that

$$A(Bx) = (AB)x$$
.

Applying this, we have:

$$(AB)C = \begin{bmatrix} (AB)C^1 & \dots & (AB)C^n \end{bmatrix}$$
$$= \begin{bmatrix} A(BC^1) & \dots & A(BC^n) \end{bmatrix}$$
$$= A\begin{bmatrix} BC^1 & \dots & BC^n \end{bmatrix}$$
$$= A(BC).$$

With this information, row reduction is just a series of matrix multiplications. Note that in row reduction, we can also have permutation matrices that switches the rows.

Theorem 9. $AB \neq BA$.

Proof.

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

but not the other way around.

To summarize matrix operations, we have

$$A + B = B + A$$
$$\alpha(A + B) = \alpha A + \alpha B$$

$$(AB)C = A(BC)$$
$$(A+B)C = AC + BC$$
$$C(A+B) = CA + CB.$$

By these properties, space of matrices is a vector space, and an algebra. However, we are missing division (the inverse)!

Note that a mapping $A: \mathbb{R}^n \to \mathbb{R}^m$ such that m < n cannot be invertible, as there are many solutions to Ax = b and therefore cannot be a bijection. The same can be said when n > m, because Ax = b will have no solutions. Therefore, A is an invertible if n = m.

Definition 16. The **inverse** A^{-1} of A is defined such that

$$A^{-1}Ax = x \quad \forall x.$$

as well as $AA^{-1} = I$ and A^{-1} must be unique.

Theorem 10.

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

Proof.

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B$$

= $B^{-1}IB$
= $B^{-1}B$
= I .

This is the only inverse.

Example. The inverse of

$$E_{12} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

is just

$$E_{12}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

(you add back the two first rows you subtracted from the second).

From the elimination example earlier, we have

$$E_{23}E_{13}E_{12}A = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 7 \\ 0 & 0 & -2 \end{bmatrix} = U.$$

which is now upper triangular. Flipping this around, $A = \underbrace{E_{12}^{-1}E_{13}^{-1}E_{23}^{-1}}_{I}U$. Note that all $E_{i,j}$ are lower

triangular, such that L is also lower triangular. This is **LU Factorization**.

We can use this to solve Ax = b by first writing $A = LU \Rightarrow Ux = L^{-1}B$, from which you do backwards substitution to solve the problem, reducing the number of operations from a magnitude of n^3 to n^2 . However, getting A^{-1} is still n^3 , so it should only be precomputed if we solve equations Ax = b n times.

Lecture 4: Transpose, Permutations, Spaces

Definition 17. If A is an $n \times m$ matrix, then the **transpose** A^T is

$$(A^T)_{ii} = A_{ii}$$
.

If A is $n \times m$, then A^T is $m \times n$.

How do we compute $(AB)^T$? Assume that B is just a vector x. This means that Ax is just a vector

$$Ax = x_1 A^1 + x_2 A^2 + \ldots + x_n A^n$$

Subsequently,

$$(Ax)^T = x_1(A^1)^T + \ldots + x_n(A^n)^T.$$

where $(A^3)^T$ is the transpose of the 3rd column, which is just the 3rd row. In other words,

$$(Ax)^T = x_1(A^T)_1 + \ldots + x_n(A^T)_n$$

= $x^T A^T$

.

Example. If
$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, then $x^T = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$