

2N2222 PN2222 2N2222A PN2222A

THE 2N2222, 2N2222A, PN2222, PN2222A ARE NPN SILICON PLANAR EPITAXIAL TRANSISTORS FOR GENERAL PURPOSE AMPLIFIERS AND MEDIUM SPEED SWITCHING APPLICATIONS. THEY ARE COMPLEMENTARY TO THE PNP TYPE 2N2907, 2N2907A, PN2907, PN2907A RESPECTIVELY. THE 2N2222, 2N2222A ARE PACKED IN TO-18. THE PN2222, PN2222A ARE PACKED IN TO-92A.

CASE TO-18

CBE

CASE TO-92A

2N2222 A

PN2222 PN2222A

ABSOLUTE MAXIMUM RATINGS	•	<u> 2N2222</u>	2N2222A	PN2555	PN2222A
Collector-Base Voltage	v_{CBO}	60 v	75 v	60 v	75 v
Collector-Emitter Voltage	VCEO	30V	40 V	30 v	40 V
Emitter-Base Voltage	$v_{ m EBO}$	5 V	· 6V	5 v	6 v
Collector Current	IC	0.8A	0.84	0.84	0.8A
Total Power Dissipation ($^{\text{T}_{\text{C}}} \leq 25^{\circ}\text{C}$)	$P_{ extsf{tot}}$	1.8W	1.8W	1.2W	1.2W
([™] A ≤ 25°C)		500mW	500mW	500mW	500mW
Junction Temperature	${f T_j}$	175°C	175°C	150°C	150°C
Storage Temperature Range	Tstg	-65 to	200°C	-55 to	150°C

(TA=25°C unless otherwise noted) ELECTRICAL CHARACTERISTICS 2N2222 2N2222A PN2222 PN2222A UNIT TEST CONDITIONS SYMBOL PARAMETER MIN MAX MIN MAX Ic=0.01mA IE=0 60 75 Collector-Base Breakdown Voltage BVCBO Ic=10mA IB=0 40 v 30 Collector-Emitter Breakdown Voltage TACEO * IE=0.01mA Ic=0 6 BVEBO 5 Emitter-Base Breakdown Voltage IE=0 VCB=50V 10 nA Collector Cutoff Current ICBO IE=0 10 nA VCB=60V VCB=50V IE=0 TA=150°C 10 μA VCB=60V IE=0 TA=150°C 10 μA 10 nA ACE=60A VEB=3V Collector Cutoff Current ICEV. 10 10 nA $V_{EB}=3V$ Ic=0 Emitter Cutoff Current IEBO 20 nA VCE=60V VEB-3V IBT. Base Cutoff Current

	0	1 1		2N22	2N2222A		
PARAMETER	SYMBOL	PN2	222 Max	PN22 MIN	22A Max	UNIT	TEST CONDITIONS
Collector-Emitter Saturation Voltage	VCE(sat)*		0.4		0.3	v v	I _C =150mA I _B =15mA I _C =500mA I _B =50mA
Base-Emitter Saturation Voltage	VBE(sat)*		1.3 2.6	0.6	1.2	v	IC=150mA IB=15mA IC=500mA IB=50mA
D.C. Current Gain	H _{FE} *	35 50 75 100 30 50	300	35 50 75 100 40 50 35	300		IC=0.1mA
Current Gain-Bandwidth Product	fŢ	250		300		MHz	IC=20mA VCE=20V
Collector-Base Capacitance	Cob		8		8	рF	V _{CB} =10V I _E =0 f=100kHz
Emitter-Base Capacitance	Cib		25		25	pF	V _{EB} =0.5V I _C =0 f=100kHz
Collector-Base Time Constant	C _C rbb'				150	pS	IC=20mA VCE=20V f=31.8MHz
Noise Figure	nf				4	dВ	IC=0.lmA VCE=10V f=lkHz RG=lk \(\Omega\)
Input Impedance	hie			2 ⁻ 0.25	8 1.25	l .	IC=lomA VCE=lov f=lkHz
Voltage Feedback Ratio	h _{re}				8 4		IC=lmA VCE=lOV f=lkHz IC=lOmA VCE=lOV f=lkHz
Small Signal Current Gain	hfe			50 75	300 375		IC=lmA VCE=lOV f=lkHz IC=lOmA VCE=lOV f=lkHz
Output Admittance	h _{oe}			5 25	35 200		IC=lmA VCE=lOV f=lkHz IC=lOmA VCE=lOV f=lkHz
Delay Time	ta				10	nS	IC=150mA IB1=15mA Vcc=30V
Rise Time	tr				25	nS	IC=150mA IB1=15mA Vcc=30V
Storage Time	t_s				225	nS	I _C =150mA IB1=- I _{B2} =15mA V _{CC} =30V
Fall Time	^t f				60	nS	I _C =150mA I _B 1=-I _B 2=15mA V _C C=30V

^{*} Pulse Test : Pulse Width=0.3mS, Duty Cycle=1%

All waveforms are monitored on an oscilloscope with Rin \geqslant 100Kn , $c_{in} \leqslant$ 12pF, $t_r \leqslant$ 5nS.

(TA=25°C unless otherwise noted)

