LAB REPORT

IRE 212: IoT Architecture and Technologies

Sessional

PREPARED BY SUPERVISED BY

Mehrin Farzana ID: 2101013

ID: 2101013 Lecturer Session: 2021-2022 Department of IRE, BDU Date: 24/09/2024

BANGABANDHU SHEIKH MUJIBUR
RAHMAN DIGITAL UNIVERSITY
(BDU)

Suman Saha

List of Experiments

- 1. Home Automation Using Arduino and Bluetooth Control
 - a) Interfacing Arduino uno with PIR motion sensor
 - b) Interfacing Arduino uno with LDR
 - c) Interfacing Arduino uno with DHT22 Temperature sensor
 - d) Interfacing Arduino uno with HC-05 Bluetooth Module

Experiment No.: 01

Experiment Statement: Home Automation Using Arduino and Bluetooth Control Components and supplies:

- PIR Motion Sensor (generic)
- LDR (LIGHT DEPENDENT RESISTER)
- Temperature Sensor
- HC-05 Bluetooth Module
- LED (generic)
- Arduino UNO
- Jumper wires (generic)

Interfacing Arduino uno with PIR motion sensor:

Pin Definitions:

- led: The LED is connected to digital pin 9 of the Arduino, which will light up when motion is detected.
- sensor: The signal pin of the PIR motion sensor is connected to digital pin 5, which will read the motion sensor's output.

Circuit:

Figure 1: Circuit for Interfacing Arduino Uno with PIR motion sensor

```
const int led = 9;
const int sensor = 5; //signal pin of sensor to digital pin
5.
int state = LOW;
int val = 0;
```

```
void setup() { // Void setup is ran only once after each
powerup or reset of the Arduino board.
 pinMode(led, OUTPUT); // Led is determined as an output
here.
 pinMode(sensor, INPUT); // PIR motion sensor is determined
is an input here.
 Serial.begin(9600);
void loop(){ // Void loop is ran over and over and consists of
the main program.
 val = digitalRead(sensor);
 if (val == HIGH) {
   digitalWrite(led, HIGH);
   delay(500); // Delay of led is 500
   if (state == LOW) {
     Serial.println(" Motion detected");
      state = HIGH;
    }
 else {
   digitalWrite(led, LOW);
   delay(500);
   if (state == HIGH){
      Serial.println("The action/ motion has stopped");
      state = LOW;
```


Figure 2: LED Turns On When Motion is Detected

Figure 3: LED Turns Off When No Motion is Detected

Interfacing Arduino uno with LDR:

Pin Definitions:

- The LDR is connected to analog pin A0, which reads the varying light intensity values.
- An LED is connected to digital pin 9, which will be controlled based on the LDR reading.

Circuit:

Figure 4: Circuit for Interfacing Arduino Uno with LDR

Figure 5: LED turns on when the value is less than 1000

Explanation of code according to output:

- The LDR value is read from the analog pin and displayed on the serial monitor every 2 seconds.
- If the LDR value exceeds 1000 (bright light), the LED turns off. When the value is less than 1000 (low light), the LED turns on.

Interfacing Arduino uno with DHT22 Temperature sensor:

Connecting the DHT22 Sensor:

- The DHT22 sensor has three connections:
- VCC (Power): Connected to the 5V pin of the Arduino.
- GND (Ground): Connected to the ground pin.
- Signal (Data Output): Connected to digital pin 2 of the Arduino to read temperature and humidity data.

Circuit:

Figure 6: Circuit for Interfacing Arduino Uno with DHT22 Temperature sensor

```
hum = dht.readHumidity();
  temp= dht.readTemperature();
  //Print temp and humidity values to serial monitor
  Serial.print("Humidity: ");
  Serial.print(hum);
  Serial.print(" %, Temp: ");
  Serial.print(temp);
  Serial.println(" Celsius");
  delay(2000); //Delay 2 sec.
}
```

```
Output Serial Monitor X

Message (Enter to send message to 'Arduino Uno' on 'COM7')

numidity: 59.20 %, remp: 31.40 Celsius
Humidity: 60.10 %, Temp: 31.40 Celsius
Humidity: 60.60 %, Temp: 31.30 Celsius
Humidity: 60.50 %, Temp: 31.30 Celsius
Humidity: 61.70 %, Temp: 31.30 Celsius
Humidity: 61.70 %, Temp: 31.30 Celsius
Humidity: 61.60 %, Temp: 31.30 Celsius
Humidity: 61.60 %, Temp: 31.30 Celsius
Humidity: 61.10 %, Temp: 31.30 Celsius
Humidity: 60.50 %, Temp: 31.30 Celsius
```

Figure 7: Real-time temperature and humidity monitoring with DHT22 temperature sensor

Interfacing Arduino uno with HC-05 Bluetooth Module:

Connecting the Bluetooth Module:

- VCC: Connected to the 5V pin of the Arduino.
- GND: Connected to the ground pin of the Arduino.
- RX (Receive): Connected to pin 1 (TX) of the Arduino.
- TX (Transmit): Connected to pin 0 (RX) of the Arduino.

Circuit:

Figure 8: Circuit for Interfacing Arduino Uno with DHT22 Temperature sensor

```
Serial.write(BTSerial.read());
}
}
// If data is received from PC serial monitor, send it to
Bluetooth
if (Serial.available()) {
  while (Serial.available()) {
   BTSerial.write(Serial.read());
  }
}
```

```
bluthtooth_copy_20240923151047 | Arduino IDE 2.3.2
File Edit Sketch Tools Help
                   4 Arduino Uno
       bluthtooth_copy_20240923151047.ino
                #include <SoftwareSerial.h>
 힘
                SoftwareSerial BTSerial(0, 1); // RX, TX
                void setup() {
                  Serial.begin(9600);
                  Serial.println("Enter AT Commands");
                  BTSerial.begin(9600);
                void loop() {
                  // If data is received from Bluetooth, send it to the PC serial monitor
                  if (BTSerial.available()) {
                    while (BTSerial.available()) {
   Serial.write(BTSerial.read());
       Output Serial Monitor X
        Message (Enter to send message to 'Arduino Uno' on 'COM7')
       Enter AT Commands
```

Figure 9: Output