

Heating Alloys for Electric Household Appliances

Copyright by Kanthal AB. May be reproduced only with proper acknowledgement of the source. Catalogue 1-A-4-3 Production: ReklamCenter 03057.

Printed in Sweden by Primatryck, 2003-02.3000 This information, which may be subject to change, is offered solely for your consideration and should not be taken as warranty or representation for which we assume legal responsibility. It is not to be understood as permission or recommendation to practice a patented invention without a license and the user should determine weather relevant patent exist.

® KANTHAL, NIKROTHAL, ALKROTHAL, SUPERTHAL, FIBROTHAL and CUPROTHAL are Registered Trademarks of Kanthal Group companies in Sweden and other countries.
™ NIFETHAL, ECOTHAL

Kanthal is never far away!

This handbook contains basic technical and product data for our resistance and resistance heating alloys for the appliance industry.

We have also included design-, calculation- and application guidelines, in order to make it easier to select the right alloy and to design the right element.

More information is given on www.kanthal.com. There you can find product news and other Kanthal product information and handbooks ready to be downloaded as well as information on the Kanthal Group and the nearest Kanthal office.

Kanthal alloys are also produced in a range for industrial furnaces and as ready-to-install elements and systems and as precision wire in very small sizes. Ask for the special handbooks covering those areas.

We have substantial technical and commercial resources at all our offices around the world and we are glad to help you in different technical questions, or to try out completely new solutions at our R & D facilities.

Kanthal is never far away!

Hallstahammar, February 2003

KANTHAL AB
Box 502, SE-734 27 Hallstahammar, Sweden
www.kanthal.com
Tel +46 220 210 00
Fax +46 220 211 66

Contents

		Page
1.	Resistance Heating Alloys	4
	NiFe	
	NIFETHAL 70, NIFETHAL 52	4
	Austenitic Alloys (NiCr, NiCrFe)	
	NIKROTHAL 80, NIKROTHAL 70, NIKROTHAL 60, NIKROTHAL 40,	
	NIKROTHAL 20	5
	Ferritic Alloys (FeCrAl)	
	KANTHAL APM, A-1, A, AF, AE, D, ALKROTHAL	5
	Comparison between KANTHAL and NIKROTHAL	
	KANTHAL advantages	6
	NIKROTHAL advantages	7
	Summary	8
	Copper Nickel Alloys	0
	CUPROTHAL 49, MANGANINA 43, (CUPROTHAL 30, 15, 10 and 05)	9
	Product varieties	11
2.	Physical and Mechanical Properties	12
	Table KANTHAL alloys	11
	Table ALKROTHAL, NIKROTHAL and NIFETHAL alloys	13
	Table CUPROTHAL and MANGANINA alloys	14
	·	
3.	Stranded Resistance Heating Wire	15
	Strand diameter	15
	Standard stocked material	16
	Flexible terminations	16
4.	Thin Wide Strip	18
5.	Design factors	20
٦.	Operating life	20
	Oxidation properties	20
	Corrosion resistance	21
	Maximum temperature per wire size	22
6.	Element types and heating applications	23
	Description	23
	Embedded elements	24
	Supported elements	30
	Suspended elements	36

		Page	
7.	Standard Tolerances	42	
	Electrical resistance	42	
	Diameter of wire	42	4
	Dimensions of cold rolled ribbon	42	1
8.	Delivery forms	43	
	Resistance heating alloys	43	2
	Resistance alloys	45	
_	m 11	/=	
9.	Tables	47	0
	KANTHAL A-AF AF AF	48	3
	KANTHAL A, AF, AE, wire	<u>49</u>	
	KANTHAL A, AF, AE, ribbon	50	
	KANTHAL D, wire	52	4
	KANTHAL D, DT, ribbon	53	_
	ALKROTHAL, wire	55	
	ALKROTHAL, ribbon	56	
	NIKROTHAL 80, 70, wire	58	5
	NIKROTHAL 60, wire	59	
	NIKROTHAL 40, 20, wire	60	
	NIKROTHAL 80, 60, 40, ribbon	61	
	NIFETHAL 70, 52, wire	63	6
	CUPROTHAL 49, MANGANINA 43, CUPROTHAL 30, 15, 10 and 05, wire	64	
	CUPROTHAL 49, ribbon	66	
10	A a	68	7
10	. Appendix List of symbols	68	•
	Formulas and definitions	69	
	Formulas and definitions Formulas for values in chapter 9, Tables	73	
	Relationship between metric and imperial units	73 76	8
	Design calculations for heating elements	7 0 77	
	Wire gauge conversion table	82	
	Temperature conversion table	82 83	^
	Miscellaneous conversion factors	83 86	9
	MISCERARICOUS CORVETSION PACTORS	00	
11	. The complete Kanthal product range	90	
11	The complete transmar product range	70	10

1. Resistance Heating Alloys

The resistance heating alloys can be divided into two main groups.
The FeCrAl (KANTHAL) and the NiCr (NIKROTHAL) based alloys. For lower temperature applications CuNi and NiFe based alloys are also used. The different alloys are described below as well as a comparison of some of the properties of the KANTHAL and the NIKROTHAL alloys.

NiFe

Up to 600 °C 1110 °F: NIFETHAL 70 and 52

are alloys with low resistivity and high temperature coefficient of resistance. The positive temperature coefficient allows heating elements to reduce power as temperature increases. Typical applications are in low temperature tubular elements with self regulating features.

Austenitic Alloys (NiCr, NiCrFe)

Up to 1200 °C 2190 °F: NIKROTHAL 80 is the austenitic alloy with the highest nickel content. Because of its good workability and high-temperature strength, NIKROTHAL 80 is widely used for demanding applications in the electric appliance industry.

Up to 1250 °C *2280* °*F*: NIKROTHAL 70 (Normally used in furnace applications).

Up to 1150 °C 2100 °F: NIKROTHAL 60 has good corrosion resistance, good oxidation properties and very good form stability. The corrosion stability is good except in sulphur containing atmospheres. Typical applications for NIKROTHAL 60 are in tubular heating elements and as suspended coils.

Up to 1100 °C *2010* °F: NIKROTHAL 40 is used as electric heating element material in domestic appliances and other electric heating equipment at operating temperatures up to 1100 °C *2010* °F.

Up to 1050 °C *1920* °*F*: NIKROTHAL 20 (Produced on volume based request.)

Ferritic Alloys (FeCrAI)

Up to 1425 °C 2560 °F: KANTHAL APM (Normally used in furnace applications).

Up to 1400 °C 2550 °F: KANTHAL A-1 (Normally used in furnace applications).

Up to 1350 °C *2460* °*F*: KANTHAL A is used for appliances, where its high resistivity and good oxidation resistance are particularly important.

Up to 1300 °C *2370* °*F*: KANTHAL AF has improved hot strength and oxidation properties and is especially recommended where good form stability properties in combination with high temperature is required.

Up to 1300 °C 2370 °F: KANTHAL AE is developed to meet the extreme demands in fast response elements in glass top hobs and quartz tube heaters. It has exceptional form stability and life in spirals with large coil to wire diameter ratio.

Up to 1300 °C *2370* °*F*: KANTHAL D Employed chiefly in appliances, its high resistivity and low density, combined with better heat resistance than austenitic alloys, make it suitable for most applications.

Up to 1100 °C *2010* °*F*: ALKROTHAL is typically specified for rheostats, braking resistors, etc. It is also used as a heating wire for lower temperatures, such as heating cables.

KANTHAL Advantages

Higher maximum temperature in air

KANTHAL A-1 has a maximum temperature of 1400 °C 2550 °F; NIKROTHAL 80 has a maximum temperature of 1200 °C 2190 °F.

Longer life

KANTHAL elements have a life 2-4 times the life of NIKROTHAL when operated in air at the same temperature.

Higher surface load

Higher maximum temperature and longer life allow a higher surface load to be applied on KANTHAL elements.

Better oxidation properties

The aluminium oxide (Al₂O₃) formed on KANTHAL alloys adheres better and is therefore less contaminating. It is also a better diffusion barrier, better electrical insulator and more resistant to carburizing atmospheres than the chromium oxide (Cr₂O₃) formed on NIKROTHAL alloys.

Lower density

The density of the KANTHAL alloys is lower than that of the NIKROTHAL alloys. This means that a greater number of equivalent elements can be made from the same weight material.

Higher resistivity

The higher resistivity of KANTHAL alloys makes it possible to choose a material with larger cross-section, which improves the life of the element. This is particularly important for thin wire. When the same cross-section can be used, considerable weight savings are obtained. Further, the resistivity of KANTHAL alloys is less affected by coldworking and heat treatment than is the case for NIKROTHAL 80.

Higher yield strength

The higher yield strength of KANTHAL alloys means less change in cross-section when coiling wires.

Better resistance to sulphur

In atmospheres contaminated with sulphuric compounds and in the presence of contaminations containing sulphur on the wire surface, KANTHAL alloys have better corrosion resistance in hot state. NiCr alloys are heavily attacked under such conditions.

Weight savings with KANTHAL alloys

The lower density and higher resistivity of KANTHAL alloys means that for a given power, less material is needed when using KANTHAL instead of NIKROTHAL alloys. The result is that in a great number of applications, substantial savings in weight and element costs can be achieved.

In converting from NiCr to KANTHAL alloys, either the wire diameter can be kept constant while changing the surface load, or the surface load can be held constant while changing the wire diameter. In both cases, the KANTHAL alloy will weigh less than the NiCr alloy.

NIKROTHAL Advantages

Higher hot and creep strength

NIKROTHAL alloys have higher hot and creep strength than KANTHAL alloys. KANTHAL APM, AF and AE are better in this respect than the other KANTHAL grades and have a very good form stability, however, not as good as that of NIKROTHAL.

Better ductility after use

NIKROTHAL alloys remain ductile after long use.

Higher emissivity

Fully oxidized NIKROTHAL alloys have a higher emissivity than KANTHAL alloys. Thus, at the same surface load the element temperature of NIKROTHAL is somewhat lower.

Non-magnetic

In certain low-temperature applications a non-magnetic material is preferred. NIKROTHAL alloys are non-magnetic (except NIKROTHAL 60 at low temperatures). KANTHAL alloys are non-magnetic above 600 °C 1100 °F.

Better wet corrosion resistance

NIKROTHAL alloys generally have better corrosion resistance at room temperature than nonoxidized KANTHAL alloys. (Exceptions: atmospheres containing sulphur and certain controlled atmospheres.)

KANTHAL Resistance Heating Alloys – Summary

Fig. 1 - Maximum operating temperature per alloy

Fig. 2 - Resistivity vs. Temperature.

Copper-Nickel Alloys

CUPROTHAL 49

(universally known as Constantan) is manufactured under close control from electrolytic Copper and pure Nickel.

CUPROTHAL 49 has a number of special characteristics – some electrical, some mechanical – which make it a remarkably versatile alloy. For certain applications, its high specific resistance and negligible temperature coefficient of resistance are its most important attributes. For others, the fact that CUPROTHAL 49 offers good ductility, is easily soldered and welded and has good resistance to atmospheric corrosion is more significant.

Although the range of applications of CUPROTHAL 49 is so wide, its uses fall into four principal categories:

- An ideal alloy for winding heavy-duty industrial rheostats and electric motor starter resistance. High specific resistance, together with good ductility and resistance to corrosion are all important requirements in this category, and CUPROTHAL 49 satisfies the most demanding specifications.
- CUPROTHAL 49 is widely used in wirewound precision resistors, temperature-stable potentiometers, volume control devices and strain gauges. (See the Precision Wire Handbook). In the resistor field, its high resistance and negligible temperature coefficient of resistance are its main attractions.
- The third main category of application exploits another characteristic of CUPROTHAL 49. This is the fact that it develops a high thermal E.M.F. against certain other metals. CUPROTHAL 49 is therefore commonly used as a thermocouple alloy.
- Low temperature resistance heating applications, such as heating cables.

MANGANINA 43

has been developed to satisfy many precision and high stability requirements at, or close to, room temperature.

In some applications it is essential that the resistance of the electronic components does not change either with age or with such changes of temperature as may be encountered in normal use. These requirements are fulfilled perfectly by MANGANINA 43.

The resistance of MANGANINA 43 increases very slightly from 15 °C to approximately 25 °C. Above 25 °C the resistance decreases so that the resistance at 35 °C is about the same as at 15 °C. The maximum change in resistance to be expected is less than 15 parts per million per degree centigrade. Therefore, for an instrument, which is calibrated at 25 °C, the change in resistance over the temperature range from 15-35 °C is negligible, except in instances where the work is of very high precision.

Artificial ageing of assembled coils has been found necessary to avoid a slow decrease in resistance with time. Baking at a temperature between 120 °C and 140 °C for a period of 24 to 72 hours commonly does this.

The higher temperature limit must not be exceeded if damage to enamel or fabric insulation is to be avoided. Regarding E.M.F. versus copper, MANGANINA 43 generates not more than 0.003 mV/°C between 0 and 100 °C.

The main application is in shunts.

Copper-Nickel alloys with medium and low resistivity

KANTHAL produces Copper-Nickel alloys with resistivities lower than those of CUPROTHAL 49 and MANGANINA 43. The main applications are in high current electrical resistances, heating cables, electric blankets, fuses, resistors but they are also used in many other applications.

CUPROTHAL 30
resistivity 30 microhm⋅cm
CUPROTHAL 15
resistivity 15 microhm⋅cm
CUPROTHAL 10
resistivity 10 microhm⋅cm
CUPROTHAL 05
resistivity 5 microhm⋅cm

Different resistors and potentiometers using KANTHAL alloys.

1

Product Varieties

	Rod	Wire	Strip	Ribbon	Thin wide Strip	Welded tubes	Extruded tubes	Straightened wire
KANTHAL								
KANTHAL APM	•	•	•				•	•
KANTHAL A-1	•	•	•					•
KANTHAL A		•		•				•
KANTHAL D, DT	•	•	•	•				•
KANTHAL AF		•	•	•	•	•		•
KANTHAL AE	•	•	•	•	•			•
ALKROTHAL	•	•	•	•				•
NIKROTHAL								
NIKROTHAL 80		•	•	•				•
NIKROTHAL 70		•	•					•
NIKROTHAL 60		•	•	•				•
NIKROTHAL 40	•	•	•	•				•
NIKROTHAL 20		•						•
KANTHAL/NiFe								
NIFETHAL 70		•						•
NIFETHAL 52		•						•
Copper-Nickel								
CUPROTHAL 49	•	•	•	•				•
MANGANINA		•						•
CUPROTHAL 30		•						•
CUPROTHAL 15		•						•
CUPROTHAL 10		•						•
CUPROTHAL 05		•						•

2. Physical and Mechanical properties

		KANTHAL				
		APM	A-1	Α	AF	AE
Max continuous operating tempe		4.405	1 100	1050	1000	1000
(element temperature in air),	°C °F	1425 <i>2600</i>	1400 <i>2550</i>	1350 <i>2460</i>	1300 <i>2370</i>	1300 <i>2370</i>
Nominal composition, %	Cr	22	22	22	22	22
Trommal composition, 70	Al	5.8	5.8	5.3	5.3	5.3
	Fe	Balance	Balance	Balance	Balance	Balance
	Ni	_	_			
Density,	g/cm³ <i>Ib/in</i> ³	7.10 <i>0.256</i>	7.10 <i>0.256</i>	7.15 <i>0.258</i>	7.15 <i>0.258</i>	7.15 <i>0.258</i>
Resistivity at 20 °C, Ω	mm ² m ⁻¹	1.45	1.45	1.39	1.39	1.39
at 68 ° F	Ω/cmf	872	872	836	836	836
Temperature factor of the resistiv	/itv. C.					
250 °C 480 °F	·37 - 1	1,00	1.00	1.01	1.01	1.01
500 °C 930 °F		1.01	1.01	1.03	1.03	1.03
800 °C 1470 °F		1.03	1.03	1.05	1.05	1.05
1000 °C 1830 °F		1.04	1.04	1.06	1.06	1.06
1200 °C 2190 °F		1.05	1.04	1.06	1.06	1.06
Coefficient of thermal expansion	, K ⁻¹					
20-100 °C 68-210 °F 20-250 °C 68-480 °F		- 11 10-6	– 11·10 ⁻⁶	– 11⋅10 ⁻⁶	– 11⋅10 ⁻⁶	_ 11⋅10 ⁻⁶
		11·10 ⁻⁶	12·10 ⁻⁶			12·10 ⁻⁶
20-500 °C 68-930 °F 20-750 °C 68-1380 °F		12·10 ⁻⁶ 14·10 ⁻⁶	12·10°	12⋅10 ⁻⁶ 14⋅10 ⁻⁶	12·10 ⁻⁶ 14·10 ⁻⁶	14·10 ⁻⁶
20-1000 °C 68-1840 °F		15·10 ⁻⁶	15·10 ⁻⁶	15·10 ⁻⁶	15·10 ⁻⁶	15·10 ⁻⁶
	V11Z-1					
Thermal conductivity at 50 °C V at 122 °F Btu in ft		11 <i>76</i>	11 <i>76</i>	11 <i>76</i>	11 <i>76</i>	11 <i>76</i>
Specific heat capacity, kJ kg ⁻¹ K ⁻¹		0.46	0.46	0.46	0.46	0.46
Btu lb-1 ° F		0.40	0.110	0.110	0.110	0.110
Melting point (approx.),	°C	1500	1500	1500	1500	1500
	°F	2730	2730	2730	2730	2730
Mechanical properties* (approx.))					
Tensile strength,	N mm ⁻²	680	680	725	700	720
	psi	98600**	110200	105200	101500	104400
Yield point,	N mm ⁻²	470 <i>68200**</i>	545 <i>79000</i>	550 <i>79800</i>	500 <i>72500</i>	520 <i>74500</i>
Llaudnaaa	<i>psi</i> Hv					
Hardness,	пv %	230	240	230	230	230
Elongation at rupture,			20	22	23	
	N mm ⁻²	40	34	34	37	34
at 1650 °F,	psi	5800	4900	4900	5400	4900
Creep strength ***	N1 2	0.0	4.0	4.0		4.0
	N mm ⁻²	8.2	1.2	1.2	_	1.2
at 1470 °F,	<i>psi</i> N mm ⁻²	1190	70 0.5	70 0.5	_	170
at 1000 °C, at 1830 °F,		_	0.5 <i>70</i>	0.5 <i>70</i>	_	_
	<i>psi</i> N mm ⁻²	_	-	-	0.7	_
at 2010 °F,	psi	_	_	_	100	_
	N mm ⁻²	_	_	_	0.3	_
at 2190 °F,	psi	_	_	_	40	-
Magnetic properties		1)	1)	1)	1)	1)
Emissivity, fully oxidized conditio	n	0.70	0.70	0.70	0.70	0.70

The values given apply for sizes of approx. 1.0 mm diameter 0.04 in. 4.0 mm 0.16 in. Thinner gauges have higher strength and hardness values while the corresponding values are lower for

Calculated from observed elongation in a Kanthal standard furnace test. 1 % elongation after 1000 hours.

D	ALKROTHAL	NIKROTHAL N 80	N 70	N 60	N40	N20	NIFETHAL 70	52
1300 <i>2370</i>	1100 2010	1200 <i>2190</i>	1250 <i>2280</i>	1150 2100	1100 2010	1050 1920	600 1110	600 1110
22 4.8 Balance	15 4.3 Balance	20 - - 80	30 - - 70	15 - Balance 60	20 - Balance 35	24 - Balance 20	- Balance 72	– Balance 52
7.25 <i>0.262</i>	7.28 <i>0.263</i>	8.30 <i>0.300</i>	8.10 <i>0.293</i>	8.20 <i>0.296</i>	7.90 <i>0.285</i>	7.80 <i>0.281</i>	8.45 <i>0.305</i>	8.20 <i>0.296</i>
1.35 <i>812</i>	1.25 <i>744</i>	1.09 <i>655</i>	1.18 <i>709</i>	1.11 <i>668</i>	1.04 <i>626</i>	0.95 <i>572</i>	0.20 <i>120</i>	0.43 ⁶⁾ 220
1.01 1.03 1.06 1.07 1.08	1.02 1.05 1.10 1.11	1.02 1.05 1.04 1.05 1.07	1.02 1.05 1.04 1.05 1.06	1.04 1.08 1.10 1.11	1.08 1.15 1.21 1.23	1.12 1.21 1.28 1.32	2.19 3.66 - -	1.93 2.77 - -
- 11·10 ⁻⁶ 12·10 ⁻⁶ 14·10 ⁻⁶ 15·10 ⁻⁶	- 11·10 ⁻⁶ 12·10 ⁻⁶ 14·10 ⁻⁶ 15·10 ⁻⁶	- 15·10 ⁻⁶ 16·10 ⁻⁶ 17·10 ⁻⁶ 18·10 ⁻⁶	- 14·10 ⁻⁶ 15·10 ⁻⁶ 16·10 ⁻⁶ 17·10 ⁻⁶	- 16·10 ⁻⁶ 17·10 ⁻⁶ 18·10 ⁻⁶	- 16·10 ⁻⁶ 17·10 ⁻⁶ 18·10 ⁻⁶ 19·10 ⁻⁶	- 16·10 ⁻⁶ 17·10 ⁻⁶ 18·10 ⁻⁶ 19·10 ⁻⁶	- - 13·10 ⁻⁶ - 15·10 ⁻⁶	10·10 ⁻⁶ - - -
11 <i>76</i>	16 110	15 104	14 <i>97</i>	14 <i>97</i>	13 <i>90</i>	13 <i>90</i>	17 120	17 120
0.46 <i>0.110</i>	0.46 <i>0.110</i>	0.46 <i>0.110</i>	0.46 <i>0.110</i>	0.46 <i>0.110</i>	0.50 <i>0.119</i>	0.50 <i>0.119</i>	0.52 <i>0.120</i>	0.50 <i>0.120</i>
1500 <i>2730</i>	1500 <i>2730</i>	1400 <i>2550</i>	1380 <i>2515</i>	1390 <i>2535</i>	1390 <i>2535</i>	1380 <i>2515</i>	1430 <i>2610</i>	1435 <i>2620</i>
670 <i>97200</i>	630 <i>91400</i>	810 <i>117500</i>	820 <i>118900</i>	730 105900	675 <i>97900</i>	675 <i>97900</i>	640 <i>92800</i>	610 <i>88500</i>
485 <i>70300</i>	455 <i>66000</i>	420 <i>60900</i>	430 <i>62400</i>	370 <i>53700</i>	340 <i>49300</i>	335 <i>48600</i>	340 <i>49300</i>	340 <i>49300</i>
230	220	180	185	180	180	160	_	_
22	22	30	30	35	35	30	_	30
34 <i>4900</i>	30 <i>4300</i>	100 <i>14500</i>	120 <i>17400</i>	100 <i>14500</i>	120 <i>17400</i>	120 <i>17400</i>	- -	
1.2 170 0.5 70 - -	1.2 170 1 140 - -	15 2160 4 580 - -	- - - - -	15 2160 4 580 - -	20 2900 4 580 - -	20 2900 4 580 - -	- - - - -	- - - - -
1)	1)	²)	²)	³)	2)	2)	4)	5)
0.70	0.70	0.88	0.88	0.88	0.88	0.88	0.88	0.88

 $^{^1)}$ Magnetic (Curie point approx. 600 °C $\,$ 1100 °F) $^2)$ Non-magnetic $^3)$ Slightly magnetic

 $^{^4)}$ Magnetic up to °C/°F (Curie point) 610/1130 $^5)$ Magnetic up to °C/°F (Curie point) 530/990 $^6)\pm10~\%$

	CUPRO- THAL 49	MANGA- NINA 43	CUPROTH 30	AL 15	10	05
Nominal composition, % Ni Cu Fe Other	44 Balance + 1 Mn	4 Balance 11 Mn	23 Balance 1.5 Mn	11 Balance	6 Balance	2 Balance
Density, g/cm³ Ib/in³	8.9	8.4	8.9	8.9	8.9	8.9
	<i>0.321</i>	<i>0.3+2</i>	<i>0.321</i>	<i>0.321</i>	<i>0.321</i>	<i>0.321</i>
Resistivity at 20 °C, Ω mm ² m ⁻¹ at 68 °F Ω /cmi	0.49	0.43	0.30	0.15	0.10	0.05
	<i>295</i>	<i>259</i>	<i>180</i>	<i>90</i>	<i>60</i>	<i>30</i>
Temperature coefficient of resistance Km x 10 ⁻⁶ /°C Temperatur range, °C	±20/±60	±15	250	400	700	1300
	-55-150	15-35	20-105	20-105	20-105	20-105
Linear expansion coefficient Coefficient x 10 ⁻⁶ /°C Temperatur range, °C	14	18	16	16	16	16.5
	20-100	20-100	20-100	20-100	20-100	20-100
Thermal conductivity at 50 °C, Wm ⁻¹ K ⁻¹ at 122 °F Btu in ft²h⁻¹ °F⁻¹	21	22	35	60	90	130
	<i>146</i>	153	<i>243</i>	<i>460</i>	<i>624</i>	<i>901</i>
Specific heat capacity, kJ kg ⁻¹ K ⁻¹ , 20 °C	0.41	0.41	0.37	0.38	0.38	0.38
Btu lb ⁻¹ °F ⁻¹ , 68 °F	<i>0.098</i>	<i>0.098</i>	<i>0.088</i>	<i>0.091</i>	<i>0.091</i>	<i>0.091</i>
Melting point (approx.), °C °F	1280	1020	1150	1100	1095	1090
	<i>2336</i>	1868	<i>2102</i>	<i>2012</i>	<i>2003</i>	1994
Mechanical properties* (approx.) Tensile strength, N mm ⁻² , min. psi, min. N mm ⁻² , max. psi, max.	420	290	340	250	230	220
	60900	<i>42050</i>	49300	<i>36200</i>	<i>33350</i>	31900
	690	640	690	540	680	440
	100100	<i>92800</i>	100100	<i>78300</i>	<i>98600</i>	63800
Elongation at rupture, %	30	30	30	30	30	30
Magnetic properties		Non-	magnetic			

3. Stranded Resistance Heating Wire

Recognising the need for more preciesly controlled stranded wire within the cable industry and working closely with our cable customers, Kanthal have developed a range of stranded resistance wires in the well known NIKROTHAL, KANTHAL and Nickel alloys.

These alloys possess the optimum properties for high performance at elevated temperatures and in other adverse conditions where reliability and quality is of paramount consideration.

Alloy	Nomir	al comp	osition, 9	6		Resistivity at 20°C	Max. temp *)
	Ni	Cr	Fe	ΑI	Oth.	Ω mm 2 m $^{\text{-1}}$	°C
NIKROTHAL 80	80	20				1.09	1200
NIKROTHAL 60	60	16	Bal.			1.11	1150
KANTHAL D		22	Bal.	4.8		1.35	1300
KANTHAL AF		22	Bal.	5.3		1.39	1300
NICKEL	99.2					0.09	
Ni Mn2%	98				2 Mn	0.11	

^{•)} Values given apply for sizes approx. 1.0 mm

Strand diameter

Nominal diameter to be determined from single-end wire diameters, which have to meet resistance requirements.

Resistance generally takes priority over diameter. The calculation is:

Strand normal diameter = single-end diameter x F

F=3 for 7-strand F=5 for 19-strand true concentric F=7 for 37-strand true concentric

Size range

Up to 37 wires (ends) of diameter between 0.20-0.85 mm.

True Concentric

Successive layers have different lay directions and lay length.

Standard Stocked Material

Strand size mm	Alloy	Strand diameter nominal, mm	Strand resistance Ω/m	Meter per Kilo (approx.)
19 x 0.544	NIKROTHAL 80		0.2344-0.2579	26
19 x 0.523	NIKROTHAL 80	2.67	0.2886 max.	30
KW 0.574				
37 x 0.385	NIKROTHAL 80	2.76	0.276 max.	26
KW 0.45				
19 x 0.574	NIKROTHAL 80	2.87		25
19 x 0.523	NIKROTHAL 60		0.297 max.	30
KW 0.574				
19 x 0.574	Nickel	2.87	0.0243 max.	21
19 x 0.574	Ni Mn2%		0.0247 max.	22
19 x 0.610	Ni Mn2%		0.0208 max.	19
KW 0.71				

KW = King Wire

The Kanthal plant and head office in Hallstahammar, Sweden

Flexible Terminations for Industrial Applications

	Flex Size V. Small	Small	Medium	Large	X. Large
Flex Ø, mm	2.3	3.75	4.2	6.7	9.3
CSA, mm ²	3.18	8.40	10.78	21.65	38.48
Strands	7 x 0.76 mm	19 x 0.75 mm	19 x 0.85 mm	49 x 0.75 mm	49 x 1.00 mm
Weight, gram/m	26.24	70	86	184	325
Current, A (low temp. <400 °C)	7	15	22	44	77
Current, A (high temp. >400 °C)	5	15	20	30	45
Ω/m, cold	0.347	0.106	0.102	0.050	0.028

CSA = Cross Sectional Area

4. Thin Wide Strip

Wide and very thin strip has been introduced as an alternative to flattened wire, ribbon, to offer a wider choice of widths than what can be offered via wire flattening.

Kanthal has the ability to supply thin wide resistance strip in the thickness range 0,04 to 0,1 mm in widths up to 275 mm produced through rolling and slitting to dimension.

The alloys available in this product form are primarily the high performing FeCrAl types, like KANTHAL AF, as specified in the technical section of this handbook.

For a material with very high surface to volume ratio such as this thin strip, no standard guidelines for maximum temperature and lifetime are applicable because of the big influence from the chosen design. We advice that everyone considering using this product form should contact Kanthal for in depth discussions before finalising dimensions and design of an application. Kanthal offers advice and technical support regarding choice of dimensions etc.

Thin strip - vertically applied.

Thin strip heating elements for glass top hot plates.

5. Design Factors

Operating Life

The life of the resistance heating alloy is dependent on a number of factors, among the most important are:

- Temperature
- Temperature cycling
- Contamination
- Alloy composition
- Trace elements and impurities
- Wire diameter
- Surface condition
- Atmosphere
- Mechanical stress
- Method of regulation

Since these are unique for each application it is difficult to give general guidelines of life expectations. Recommendations on some of the important design factors are given below.

Table 1Relative Durability Values in %,
KANTHAL and NIKROTHAL Alloys
(ASTM-test wire 0.7 mm 0.028 in)

	1100 °C <i>2010</i> ° <i>F</i>	1200 °C <i>2190</i> ° <i>F</i>	1300 °C <i>2370</i> ° <i>F</i>
KANTHAL A-1	340	100	30
KANTHAL AF	465	120	30
KANTHAL AE	550	120	30
KANTHAL D	250	75	25
NIKROTHAL 80	120	25	-
NIKROTHAL 60	95	25	-
NIKROTHAL 40	40	15	-

Oxidation properties

When heated, resistance-heating alloys form an oxide layer on their surface, which slows down further oxidation of the material. To accomplish this function the oxide layer must be dense and resist the diffusion of gases as well as metal ions. It must also be thin and adhere to the metal under temperature fluctuations.

The protective oxide layer on KANTHAL alloys formed at temperatures above 1000 °C 1830 °F consists mainly of alumina ($\mathrm{Al_2O_3}$). The colour is light grey, while at lower temperatures (under 1000 °C, 1830 °F) the oxide colour becomes darker. The alumina layer has excellent electrical insulating properties and good chemical resistance to most compounds.

The oxide formed on NIKROTHAL alloys consists mainly of chromium oxide (Cr₂O₃). The colour is dark and the electrical insulating properties inferior to those of alumina.

The oxide layer on NIKROTHAL alloys spalls and evaporates more easily than the tighter oxide layer that is formed on the KANTHAL alloys.

Results of several life tests according to ASTM B 78 (modified) are given in Table 1 for KANTHAL and NIKROTHAL alloys. In the table, the durability of KANTHAL A-1 wire at 1200 °C 2190 °F is set at 100 %, and the durability of the other alloys is related to that figure.

Corrosion Resistance

Corrosive or potentially corrosive constituents can considerably shorten wire life. Perspiring hands, mounting or supporting materials or contamination can cause corrosion.

Steam

Steam shortens the wire life. This effect is more pronounced on NIKROTHAL alloys than on KANTHAL alloys.

Halogens

Halogens (fluorine, chlorine, bromine and iodine) severely attack all high-temperature alloys at fairly low temperatures.

Sulphur

In sulphurous atmospheres KANTHAL alloys have considerably better durability than nickel-base alloys. KANTHAL is particularly stable in oxidising gases containing sulphur, while reducing gases with a sulphur content diminish its service life. NIKROTHAL alloys are sensitive to sulphur.

Salts and oxides

The salts of alkaline metals, boron compounds, etc. in high concentrations and are harmful to heating alloys.

Metals

Some molten metals, such as zinc, brass, aluminium and copper, react with the resistance alloys. The elements should therefore be protected from splashes of molten metals.

Ceramic support material

Special attention must be paid to the ceramic supports that come in direct contact with the heating wire. Firebricks for wire support should have an alumina content of at least 45 %. In high-temperature applications, the use of sillimanite and high-alumina firebricks is often recommended. The free silica (uncombined quartz) content should be held low. Iron oxide lowers the melting point of the ceramics. Water glass as a binder in cements must be avoided.

Embedding compounds

Most embedding compounds including ceramic fibres are suitable for KANTHAL and NIKROTHAL if composed of alumina, alumina-silicate, magnesia or zirconia.

Maximum Temperature per Wire Size

The table below gives maximum wire temperatures as a function of wire diameter when operating in air.

Table 2Maximum Permissible Temperature as a Function of Wire Size

	Diameter, mm (in): 0.15-0.4 (0.0059-0.0157) °C °F	0.41-0.95 (0.0061-0.0374) °C °F	1.0-3.0 <i>(0.039-0.118)</i> °C ° <i>F</i>	>3.0 (>0.118) °C °F
KANTHAL AF	900-1100	1100-1225	1225-1275	1300
	1650-2010	2010-2240	2240-2330	2370
KANTHAL A	925-1050	1050-1175	1175-1250	1350
	1700-1920	1920-2150	2150-2300	2460
KANTHAL AE	950-1150	1150-1225	1225-1250	1300
	1740-2100	2100-2240	2240-2300	2370
KANTHAL D	925-1025	1025-1100	1100-1200	1300
	1700-1880	1880-2010	2010-2190	2370
NIKROTHAL 80	925-1000	1000-1075	1075-1150	1200
	1700-1830	1830-1970	1970-2100	2190
NIKROTHAL 60	900-950	950-1000	1000-1075	1150
	1650-1740	1740-1830	1830-1970	2100
NIKROTHAL 40	900-950	950-1000	1000-1050	1100
	1650-1740	1740-1830	1830-1920	2010

C

6. Element types and heating applications

The Embedded Element Type

The wire in the embedded element type is completely surrounded by solid or granular insulating material.

Metal Sheathed Tubular Elements

KANTHAL D is generally the best heating wire for tube temperatures below 700 °C 1290 °F and NIKROTHAL 80 for temperatures above.

To use KANTHAL instead of NiCr gives the following advantages:

- Lower wire weight by some 20-30 % at the same wire dimension
- More even temperature along the element and lower maximum wire temperature.
 This means that the element can be charged higher for a short time - important when there is a risk of dry boiling
- Closer tolerances of rating. Rating and temperature remains more constant since the resistivity in hot state does not change as much as for NiCr
- Longer life at high surface loads. The element life is also easier forecasted
- KANTHAL is easier to manufacture when high resistance per length is needed, since a thicker wire can be used
- Less sensitive to corrosion attacks

The Supported Element Type

The wire, normally in spiral form, is situated on the surface, in a groove or a hole of the electrical insulating material.

KANTHAL AE, KANTHAL AF and NIKROTHAL 80 are generally the best materials.

In order to avoid deformations on horizontal coils, the wire temperature should not exceed the values given in Figure 3.

The Suspended Element Type

The wire is suspended freely between insulated points and is exposed to the mechanical stress caused by its own weight, its own spring force and in some cases also from the forces of an external spring.

NIKROTHAL 80, NIKROTHAL 60, KANTHAL D and KANTHAL AF are the best materials.

Figure 3. Permissible D/d ratios as a function of wire temperature in supported spiral elements.

Characteristics

The heating coil is insulated from the encasing metallic tube by granular material (MgO). The tube is compressed to a round, oval or triangular shape. Terminals may be at either end or at one end of the element (cartridge type).

Recommended alloy

KANTHAL D in elements with sheath temperature <700°C <1290°F. NIKROTHAL 80 in elements with sheath temperature >700°C >1290°F.

Surface load

Wire: Normally 2-4 times the element surface load (wire surface load is not so critical in this element type).

Element: 2-25 W/cm² 13-161 W/in²

Typical applications

Very common element, for example: Cooking: Hot plates, domestic ovens, grills, toaster ovens, frying pans, deep fryers, rice cookers.

Water and beverage: Boilers, immersion heaters, water kettles, coffee makers, dish washers, washing machines.

Space heating: Radiators, storage heaters.

Others: Irons, air heaters, oil heaters, glow plugs, sauna heaters.

Characteristics

Heating coil is embedded in green ceramics (subsequently fired), or cemented in grooves in ceramic bodies.

Recommended alloy

KANTHAL A for high temperature firing. KANTHAL D for other applications.

Surface load

Wire: 5-10 W/cm² 30-60 W/in²

Typical applications

Panel heaters, IR heaters, warming plates, irons, ceramic pots.

Characteristics

Heating coil and insulating powder are pressed into grooves of a metal plate.

Recommended alloy

KANTHAL D

Surface load

Wire:

4-20 W/cm² 25-130 W/in²

Typical applications

Cast iron plates; also, irons, warming plates, kettles, domestic ovens.

Characteristics

Straight wire or coil is wound on a threaded ceramic body and insulated by granular insulating material (MgO) from enveloping metal tube. Terminals are at one end of the element. Elements are compressed when high-loaded.

Recommended alloy

NIKROTHAL 80 in straight wire elements. KANTHAL D in coiled wire elements.

Surface load

On tube:

10-25 W/cm² 65-160W/in² for elements with straight wire. Other types: about 5 W/cm² 30 W/in².

Typical applications

Metal dies, plates, etc., refrigerators.

Characteristics

Wire is wound on a fibreglass core and insulated by PVC or silicone rubber (higher temperatures). Fiberglass insulation permits even higher temperatures. Heating cables with straight or stranded wires, sometimes enclosed in aluminium tube, also occur.

Recommended alloy

KANTHAL D CUPROTHAL 30 NIKROTHAL 40 CUPROTHAL 10 NIKROTHAL 80 CUPROTHAL 49

Surface load

Wire:

<1 W/cm² <6W/in² on wire for PVC and silicone rubber.

2-5 W/cm² 13-30 W/in² for fibreglass insulation.

Typical applications

Defrosting and de-icing elements, electric blankets and pads, car seats, baseboard heaters, floor heating.

Characteristics

Resistance ribbon or wire is wound on mica sheet or tube and insulated by mica. Elements are often encapsulated in steel sheaths.

Recommended alloy

KANTHAL D NIKROTHAL 80

Surface load

Wire:

2-10 W/cm² 13-65 W/in²

Typical applications

Irons, ironing machines, water heaters, plastic moulding dies, soldering irons.

Characteristics

Most common design consists of round ceramic bodies with longitudinal holes or grooves for heating coil. Elements are often in metallic tube with terminals at one end. Often provisions are made to avoid excessive sagging of the coil when the element is operating vertically.

Recommended alloy

KANTHAL A or D for horizontally operating coils. NIKROTHAL 80 (usually) for long vertically situated coils when sagging is a problem.

Surface load

Wire:

3-6 W/cm² 20-40 W/in²

Element:

2-5 W/cm² 13-32 W/in²

Typical applications

Liquid heating, storage heaters.

Characteristics

Coiled and straight wire is located on smooth ceramic tube or in grooves or holes of ceramic bodies of various shapes (plates, tubes, rods, cylinders, etc.).

Recommended alloy

KANTHAL A, AF and D. NIKROTHAL 80 (for pencil bars).

Surface load

Wire:

3-9 W/cm² 20-60 W/in²

Typical applications

Boiling plates, air guns, hobby kilns, radiators.

Characteristics

Heating coil is placed inside quartz tube (or tube of glass ceramic). When the element is operating vertically or at an angle, the coil should be tight-wound and pre-oxidized. For horizontal use, the relative pitch is 1.2-2.0.

Recommended alloy

KANTHAL AE, AF, A and D.

Surface load

Wire:

2-8 W/cm² 13-52 W/in²

Element:

4-8W/cm² 26-52 W/in²

Typical applications

Space heating, toasters, toaster ovens, grills, industrial infrared dryers etc.

Characteristics

Heating coil rests on moulded ceramic fibre plate, with or without grooves. Coils are cemented or stapled at intervals, or pressed into ribs on this surface.

Thin wide strip, normally in corrugated shape, is more and more common as an alternative to coiled wire. Ribbon has also been used.

Recommended alloy

KANTHAL AE or AF.

Surface load

Wire:

 $<10 \text{ W/cm}^2 < 65 \text{ W/in}^2$

Ribbon:

4-6 W/cm² 25-40 W/in²

Typical applications

Boiling plates with ceramic hobs (glass top hot plates).

Supported Elements

Characteristics

Heating coil, or stranded wire, is insulated by ceramic beads. With beads having two holes heating mats are made.

Recommended alloy

KANTHAL D, NIKROTHAL 80 (for panel heaters).

Surface load

Wire:

1-8 W/cm² 6.5-52 W/in²

Typical applications

Mats for in-situ annealing of welded parts, panel heaters, waffle irons, domestic ovens, water heater.

Supported Elements

Characteristics

Heating wire wound on insulated steel wire (approx. 2 mm 0.008 in) or fibre glass cord.

Recommended alloy

KANTHAL D.

Surface load

Wire:

<10 W/cm² <65 W/in²

Typical applications

Stationary hair dryers.

Characteristics

Wire coil is supported at intervals, e.g. by ceramic holders. Fibreglass cord is often placed inside coil to prevent the coil from falling down in case of element failure.

Recommended alloy

NIKROTHAL 80 and NIKROTHAL 60

KANTHAL D and AF (mainly for wire temperatures below 600°C 1110°F, where sagging is no problem).

Surface load

Wire:

7-8 W/cm² 45-50 W/in² in forced air; 3-4 W/cm² 20-25 W/in² in natural convection.

Typical applications

Air heaters such as:

laundry dryers, hair dryers, fan heaters, land dryers.

Characteristics

Wire or ribbon may have elastic or fixed suspension.

Elastic: Wire kept straight by springs when heated.

Fixed: Operating temperature is lower and low thermal expansion is advantageous.

Recommended alloy

KANTHAL A and AF (low thermal expansion) NIKROTHAL 80

Surface load

Wire:

4-12 W/cm² 25-77 W/in²

Typical applications

Radiators, toasters, convection heaters, hair dryers.

Characteristics

Straight or corrugated heating wire is wound on one or both sides of a mica sheet or separated mica strips. Ribbons are frequently used in this application.

Recommended alloy

NIKROTHAL 80, NIKROTHAL 60, KANTHAL D and AF.

Surface load

Wire:

4-7 W/cm² 25-45 W/in²

For toasters:

< 13 W/cm² <26-52 W/in² for wire-wound elements

Typical applications

Toasters; also, convection heating, low-watt aquarium heaters.

Characteristics

Deep-corrugated ribbon is supported by mica sheets. Also radial shape.

Recommended alloy

KANTHAL D, AF and NIKROTHAL 40

Surface load

Wire:

9 W/cm² 60 W/in²

Typical applications

Fan heaters, convection heating.

Characteristics

Heating conductor consists of hairpin- shaped wire bends protruding in all directions, with hole in centre. Element is supported by central insulated rod or insulating tube around its circumference.

Recommended alloy

KANTHAL D, AF NIKROTHAL 80

Surface load

Wire:

4W/cm² 25 W/in² in natural convection, <12 W/cm² 75 W/in² in forced convection.

Typical applications

Hot air guns, radiators, convectors, tumble dryers, domestic ovens with forced convection.

Characteristics

Wire coils operating directly in water.

Recommended alloy

KANTHAL D and AF NIKROTHAL 80.

Surface load

Wire:

Depending on water velocity, 20-60 W/cm² 130-390 W/in² (even higher figures occur.)

Typical applications

Instantaneous tap water and shower heaters, steam generators.

7. Standard Tolerances

Standard tolerances for wire and ribbon are given below. Size tolerances do not apply to material manufactured to resistance tolerances and vice-versa.

Tolerances on electrical resistance

Resistance of wire at 20 °C

Diameter $\leq 0.127 \text{ mm } 0.0048 \text{ in } \pm 8 \%$. All dimensions $> 0.127 \text{ mm } 0.0048 \text{ in } \pm 5 \%$.

Resistance of ribbon

For cold rolled strips and ribbon, all widths and thickness' \pm 5%.

Tolerances on dimensions

Tolerances on diameter of wire according to the EN 10 218-2 T4 standard

Wire size,	Max deviation from nominal value, mm	Max ovality, mm	Wire size, In	Max deviation from nominal value, in	Max ovality, in
d	Tol = $\pm 0.015 \cdot \sqrt{d}$	Tol = $\pm 0.015 \cdot \sqrt{d}$	d	$Tol = \pm 0.002975 \cdot \sqrt{d}$	$Tol = \pm 0.002975.\sqrt{d}$

Max ovality =
$$a - b$$

Tolerances on dimensions of cold rolled ribbon

Ribbon is normally specified with a resistance tolerance. If requested, dimension tolerance on width can be applied as below.

Width mm in	Thickness mm <i>in</i>		
	0.07-0.2	0.2-0.5	0.5-0.8
	0.0028-0.008	0.008-0.020	0.020-0.031
0.5-1.5	+0.02 -0.04	+0.01 -0.03	
0.020-0.059	+0.0001 -0.0016	+0.0004 -0.0012	
1.5-2.5	+0.04 -0.07	+0.03 -0.04	+0.02 -0.04
0.059-0.098	+0.0016 -0.0028	+0.0012 -0.0016	+0.0001 -0.0016
2.5-4.0		±0.08	+0.12
0.098-0.159		±0.0031	+0.0047

8

8. Delivery Forms

In order to avoid transport damage all goods are carefully packed in card board boxes or wooden cases, with suitable internal protection.

Resistance Heating alloys (KANTHAL, ALKROTHAL, NIKROTHAL, NIFETHAL 70 and 52)

Wire

Wire of ≤1.63 mm is delivered on spools, such as shown in the figure. Only one length of wire is wound on each spool. Wire sizes between 0.40 and 1.63 mm can be

supplied in round Pail Packs (drums) such as shown in the table below. Wire sizes >1.65 mm is normally supplied in coils with an inner diameter of approx. 500-600 mm.

Types of Wire Spools

Spool	Tare	Spool i	measurem	ents, mm		Wire dia.	Capacity	
No.	g	D	d	1	d1	L	mm	approx. kg
B 1	100	75	40	100	16	120	0.10-0.19	1
B 2	115	90	40	100	16	120	0.20-0.24	2
B 4	180	120	50	100	16	120	0.25-1.00	4
K 200	600	200	125	160	36	200	0.16-1.20	10
K 250	1050	250	160	160	36	200	0.30-1.63	20
K 355	1850	355	224	160	36	200	0.50-1.63	40

Types of Wire Pails (Drum Pack)

Tare	Pail measu	ırements, mr	n	Wire dia.	Capacity	
g	D, outer	D, inner	height	Material	mm	approx. kg
2600	508	330	150	Plastic	0.40-1.63	33
3500	508	330	250	Plastic	0.40-1.63	50
8500	500	300	520	Cardboard	0.80-1.63	160-240
10000	500	300	820	Cardboard	0.80-1.63	250-400
	g 2600 3500 8500	g D, outer 2600 508 3500 508 8500 500	g D, outer D, inner 2600 508 330 3500 508 330 8500 500 300	g D, outer D, inner height 2600 508 330 150 3500 508 330 250 8500 500 300 520	g D, outer D, inner height Material 2600 508 330 150 Plastic 3500 508 330 250 Plastic 8500 500 300 520 Cardboard	g D, outer D, inner height Material mm 2600 508 330 150 Plastic 0.40-1.63 3500 508 330 250 Plastic 0.40-1.63 8500 500 300 520 Cardboard 0.80-1.63

Thin wide strip

Standard delivery is in coil form on inner core.

For full width material the core is a recyclable steel tube with inner diameter 400 mm.

For narrow slit widths the core is made of hard paper or plastic with inner diameter 200-400 mm depending on strip width and request.

On special demand, narrow slit strip up to 10 mm can be delivered pitch wound on a special spool.

Coil weight or strip lengths are subject to special agreements.

Ribbon

Ribbon is normally supplied on K 125 spools. Sizes of section ≥0.3mm² are wound on K 100 spools. If requested, the smallest sizes can be supplied on K 80 spools.

Rods

Availabel shaved or un-shaved depending on the alloy.

Types of Ribbon Spools

Tare	Spool r	neasurem	ents, mm		Capacity, kg	Capacity, kg		
g	D	d	1	d1	L	KANTHAL	NIKROTHAL	
70	80	50	64	16	80	0.7	0.8	
125	100	63	80	16	100	1.5	1.9	
200	125	80	100	16	125	3	3.5	
600	200	125	160	36	200	10	11	
	g 70 125 200	g D 70 80 125 100 200 125	g D d 70 80 50 125 100 63 200 125 80	g D d I 70 80 50 64 125 100 63 80 200 125 80 100	g D d I d1 70 80 50 64 16 125 100 63 80 16 200 125 80 100 16	g D d I d1 L 70 80 50 64 16 80 125 100 63 80 16 100 200 125 80 100 16 125	g D d I d1 L KANTHAL 70 80 50 64 16 80 0.7 125 100 63 80 16 100 1.5 200 125 80 100 16 125 3	

8

Resistance alloys (CUPROTHAL 49, 30, 15, 10, 5 and MANGANINA 43)

The wire is normally packed as shown below. Wire and ribbon can also be specially packed to individual requirements. To provide additional protection to the materials, spools are wrapped with plastic film or closed in plastic boxes.

Wire

Wire up to 1.40 mm is available on spools. At the request of the customer, wire can also be supplied in annular drums as detailed below. The figure shows the drum without handles.

Wire dimensions from 1.40 to 8.0 are available in coils. The inner diameter of the coil is 350 to 650 mm depending on the alloy type and the diameter.

Wire from 2.00 mm up to 8.0 mm can be straightened in random or fixed lengths. Straight lengths are supplied in bundles.

Types of wire Spools

Spool No.	Wire diameter mm	Nominal wire weight kg	D mm	d1 mm	d2 mm	L mm	l mm	Tare g
K 500	0.80 - 1.40	90	500	315	36	250	189	8000
K 355	0.40 - 1.40	50	355	224	36	200	160	1850
K 250	0.25 - 1.00	20	250	160	36	200	160	1050
K 200	0.25 - 0.80	14	200	125	22	200	160	600
K 160	0.20 - 0.80	7	160	100	22	160	128	350
K 125	0.15 - 0.80	3	125	80	16	125	100	200
K 100	0.127 - 0.25	1.5	100	63	16	100	80	125
K 80	0.127 - 0.25	0.5	80	50	16	80	64	70

Fig. 3 - Drum dimensions

Types of Drums

Drum No.	Wire diameter mm	Nominal wire weight kg	D mm	d mm	h mm	Tare g
050 A	0.50 - 2.30	55	508	330	250	3500
020 B	0.50 - 1.63	36	508	330	150	2600

Types of Ribbon Spools

Tare	Spool m	neasureme	ents, mm		Capacity, kg	Capacity, kg		
g	D	d	1	d1	L	KANTHAL	NIKROTHAL	
70	80	50	64	16	80	0.7	0.8	
125	100	63	80	16	100	1.5	1.9	
200	125	80	100	16	125	3	3.5	
600	200	125	160	36	200	10	11	
	70 125 200	g D 70 80 125 100 200 125	g D d 70 80 50 125 100 63 200 125 80	g D d I 70 80 50 64 125 100 63 80 200 125 80 100	g D d I d1 70 80 50 64 16 125 100 63 80 16 200 125 80 100 16	g D d I d1 L 70 80 50 64 16 80 125 100 63 80 16 100 200 125 80 100 16 125	g D d I d1 L KANTHAL 70 80 50 64 16 80 0.7 125 100 63 80 16 100 1.5 200 125 80 100 16 125 3	

Rods

Available shaved or not shaved depending on the alloy.

In order to avoid transport damage all goods are carefully packed in cardboard boxes or wooden cases, with suitable internal protection.

9. Tables

The tables show metric values for wire and ribbon. There are other editions of this handbook for Imperial values (SWG and B&S).

For dimensions in the range 0.12-0.010 mm 0.0047-0.0004 in, we recommend the Kanthal Precision Technology Handbook. The larger dimensions and different elements are described more in detail in the Kanthal Handbook Resistance Heating Alloys and Systems for Industrial Furnaces.

For each table is indicated whether there

are standard stock items or not. Standard stock items may be changed without notice. Please ask Kanthal for the latest updated stock list. Standard stock items are normally supplied directly on order, while non-standard dimensions may take a bit longer.

Kanthal can supply any dimension on request, provided the volume is large enough.

KANTHAL A-1, APM Wire

Standard stock items	Alloy	Diameter range mm	Resistivity Ωmm ² m ⁻¹	Density gcm ⁻³
	KANTHAL A-1	10.0-0.050	1.45	7.10
	KANTHAL APM	10.0-0.20	1.45	7.10

To obtain resistance at working temperature, multiply by the factor C, in the following table:

°C	20	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400
C,	1.00	1.00	1.00	1.00	1.00	1.01	1.02	1.02	1.03	1.03	1.04	1.04	1.04	1.04	1.05

A-1 APM Ω/m at 20 °C g/m cm²/m mm² 10.0 10.0 0.0185 17017 558 314 78.5 9.5 9.5 0.0205 14590 503 298 70.9 9.27 0.0215 13555 479 291 67.5 8.25 8.25 0.0271 9555 380 259 53.5 8.0 8.0 0.0288 8713 357 251 50.3 7.35 7.35 0.0342 6757 301 231 42.4 7.0 7.0 0.0377 5837 273 220 38.5 6.54 0.0432 4760 239 205 33.6 6.5 6.5 0.0437 4673 236 204 33.2 5.83 0.0543 3372 190 183 26.7 5.5 5.5 0.0610 2831 169 173 23.8 5.0 <t< th=""><th>Diame mm</th><th>ter</th><th>at 20 °C</th><th>Resistano cm²/Ω¹)</th><th>ce Weight</th><th>Surface area</th><th>Cross sectional area</th></t<>	Diame mm	ter	at 20 °C	Resistano cm²/Ω¹)	ce Weight	Surface area	Cross sectional area
9.5 9.5 0.0205 14590 503 298 70.9 9.27 0.0215 13555 479 291 67.5 8.25 8.25 0.0271 9555 380 259 53.5 8.0 8.0 0.0288 8713 357 251 50.3 7.35 7.35 0.0342 6757 301 231 42.4 7.0 7.0 0.0377 5837 273 220 38.5 6.54 0.0432 4760 239 205 33.6 6.5 6.5 0.0437 4673 236 204 33.2 6.0 6.0 0.0513 3676 201 188 28.3 5.83 0.0543 3372 190 183 26.7 5.5 5.5 0.0610 2831 169 173 23.8 5.0 5.0 0.0738 2127 139 157 19.6 4.75 4.7	A-1	APM	Ω /m	at 20 °C	g/m	cm²/m	mm ²
9.27 0.0215 13555 479 291 67.5 8.25 8.25 0.0271 9555 380 259 53.5 8.0 8.0 0.0288 8713 357 251 50.3 7.35 7.35 0.0342 6757 301 231 42.4 7.0 7.0 0.0377 5837 273 220 38.5 6.54 0.0432 4760 239 205 33.6 6.5 6.5 0.0437 4673 236 204 33.2 6.0 6.0 0.0513 3676 201 188 28.3 5.83 0.0543 3372 190 183 26.7 5.5 5.5 0.0610 2831 169 173 23.8 5.0 5.0 0.0738 2127 139 157 19.6 4.75 4.75 0.0818 1824 126 149 17.7 4.62 0.	10.0	10.0	0.0185	17017	558	314	78.5
8.25 8.25 0.0271 9555 380 259 53.5 8.0 8.0 0.0288 8713 357 251 50.3 7.35 7.35 0.0342 6757 301 231 42.4 7.0 7.0 0.0377 5837 273 220 38.5 6.54 0.0432 4760 239 205 33.6 6.5 6.5 0.0437 4673 236 204 33.2 6.0 6.0 0.0513 3676 201 188 28.3 5.83 0.0543 3372 190 183 26.7 5.5 5.5 0.0610 2831 169 173 23.8 5.0 5.0 0.0738 2127 139 157 19.6 4.75 4.75 0.0818 1824 126 149 17.7 4.62 0.0865 1678 119 145 16.8 4.5 4.25	9.5	9.5	0.0205	14590	503	298	70.9
8.0 8.0 0.0288 8713 357 251 50.3 7.35 7.35 0.0342 6757 301 231 42.4 7.0 7.0 0.0377 5837 273 220 38.5 6.54 0.0432 4760 239 205 33.6 6.5 6.5 0.0437 4673 236 204 33.2 6.0 6.0 0.0513 3676 201 188 28.3 5.83 0.0543 3372 190 183 26.7 5.5 5.5 0.0610 2831 169 173 23.8 5.0 5.0 0.0738 2127 139 157 19.6 4.75 4.75 0.0818 1824 126 149 17.7 4.62 0.0865 1678 119 145 16.8 4.5 4.5 0.0912 1551 113 141 15.9 4.25 4.25<		9.27	0.0215	13555	479	291	67.5
7.35 7.35 0.0342 6757 301 231 42.4 7.0 7.0 0.0377 5837 273 220 38.5 6.54 0.0432 4760 239 205 33.6 6.5 6.5 0.0437 4673 236 204 33.2 6.0 6.0 0.0513 3676 201 188 28.3 5.83 0.0543 3372 190 183 26.7 5.5 5.5 0.0610 2831 169 173 23.8 5.0 5.0 0.0738 2127 139 157 19.6 4.75 4.75 0.0818 1824 126 149 17.7 4.62 0.0865 1678 119 145 16.8 4.5 4.5 0.0912 1551 113 141 15.9 4.25 4.25 0.102 1306 101 134 14.2 4.11 0.10	8.25	8.25	0.0271	9555	380	259	53.5
7.0 7.0 0.0377 5837 273 220 38.5 6.54 0.0432 4760 239 205 33.6 6.5 6.5 0.0437 4673 236 204 33.2 6.0 6.0 0.0513 3676 201 188 28.3 5.83 0.0543 3372 190 183 26.7 5.5 5.5 0.0610 2831 169 173 23.8 5.0 5.0 0.0738 2127 139 157 19.6 4.75 4.75 0.0818 1824 126 149 17.7 4.62 0.0865 1678 119 145 16.8 4.5 4.5 0.0912 1551 113 141 15.9 4.25 4.25 0.102 1306 101 134 14.2 4.11 0.109 1181 94.2 129 13.3 4.06 0.112 113	8.0	8.0	0.0288	8713	357	251	50.3
6.54 0.0432 4760 239 205 33.6 6.5 6.5 0.0437 4673 236 204 33.2 6.0 6.0 0.0513 3676 201 188 28.3 5.83 0.0543 3372 190 183 26.7 5.5 5.5 0.0610 2831 169 173 23.8 5.0 5.0 0.0738 2127 139 157 19.6 4.75 4.75 0.0818 1824 126 149 17.7 4.62 0.0865 1678 119 145 16.8 4.5 4.5 0.0912 1551 113 141 15.9 4.25 4.25 0.102 1306 101 134 14.2 4.11 0.109 1181 94.2 129 13.3 4.06 0.112 1139 91.9 128 12.9 4.0 4.0 0.115 108	7.35	7.35	0.0342	6757	301	231	42.4
6.5 6.5 0.0437 4673 236 204 33.2 6.0 6.0 0.0513 3676 201 188 28.3 5.83 0.0543 3372 190 183 26.7 5.5 5.5 0.0610 2831 169 173 23.8 5.0 5.0 0.0738 2127 139 157 19.6 4.75 4.75 0.0818 1824 126 149 17.7 4.62 0.0865 1678 119 145 16.8 4.5 4.5 0.0912 1551 113 141 15.9 4.25 4.25 0.102 1306 101 134 14.2 4.11 0.109 1181 94.2 129 13.3 4.06 0.112 1139 91.9 128 12.9 4.0 4.0 0.115 1089 89.2 126 12.6 3.75 3.75 0.13	7.0	7.0	0.0377	5837	273	220	38.5
6.0 6.0 0.0513 3676 201 188 28.3 5.83 0.0543 3372 190 183 26.7 5.5 5.5 0.0610 2831 169 173 23.8 5.0 5.0 0.0738 2127 139 157 19.6 4.75 4.75 0.0818 1824 126 149 17.7 4.62 0.0865 1678 119 145 16.8 4.5 4.5 0.0912 1551 113 141 15.9 4.25 4.25 0.102 1306 101 134 14.2 4.11 0.109 1181 94.2 129 13.3 4.06 0.112 1139 91.9 128 12.9 4.0 4.0 0.115 1089 89.2 126 12.6 3.75 3.75 0.131 897 78.4 118 11.0 3.65 0.139 82	6.54		0.0432	4760	239	205	33.6
5.83 0.0543 3372 190 183 26.7 5.5 5.5 0.0610 2831 169 173 23.8 5.0 5.0 0.0738 2127 139 157 19.6 4.75 4.75 0.0818 1824 126 149 17.7 4.62 0.0865 1678 119 145 16.8 4.5 4.5 0.0912 1551 113 141 15.9 4.25 4.25 0.102 1306 101 134 14.2 4.11 0.109 1181 94.2 129 13.3 4.06 0.112 1139 91.9 128 12.9 4.0 4.0 0.115 1089 89.2 126 12.6 3.75 3.75 0.131 897 78.4 118 11.0 3.65 0.139 827 74.3 115 10.5 3.5 3.5 0.151 730	6.5	6.5	0.0437	4673	236	204	33.2
5.5 5.5 0.0610 2831 169 173 23.8 5.0 5.0 0.0738 2127 139 157 19.6 4.75 4.75 0.0818 1824 126 149 17.7 4.62 0.0865 1678 119 145 16.8 4.5 4.5 0.0912 1551 113 141 15.9 4.25 4.25 0.102 1306 101 134 14.2 4.11 0.109 1181 94.2 129 13.3 4.06 0.112 1139 91.9 128 12.9 4.0 4.0 0.115 1089 89.2 126 12.6 3.75 3.75 0.131 897 78.4 118 11.0 3.65 0.139 827 74.3 115 10.5 3.5 3.5 0.151 730 68.3 110 9.62 3.35 0.165 640<	6.0	6.0	0.0513	3676	201	188	28.3
5.0 5.0 0.0738 2127 139 157 19.6 4.75 4.75 0.0818 1824 126 149 17.7 4.62 0.0865 1678 119 145 16.8 4.5 4.5 0.0912 1551 113 141 15.9 4.25 4.25 0.102 1306 101 134 14.2 4.11 0.109 1181 94.2 129 13.3 4.06 0.112 1139 91.9 128 12.9 4.0 4.0 0.115 1089 89.2 126 12.6 3.75 3.75 0.131 897 78.4 118 11.0 3.65 0.139 827 74.3 115 10.5 3.5 3.5 0.151 730 68.3 110 9.62 3.35 0.165 640 62.6 105 8.81 3.25 3.25 0.175 584	5.83		0.0543	3372	190	183	26.7
4.75 4.75 0.0818 1824 126 149 17.7 4.62 0.0865 1678 119 145 16.8 4.5 4.5 0.0912 1551 113 141 15.9 4.25 4.25 0.102 1306 101 134 14.2 4.11 0.109 1181 94.2 129 13.3 4.06 0.112 1139 91.9 128 12.9 4.0 4.0 0.115 1089 89.2 126 12.6 3.75 3.75 0.131 897 78.4 118 11.0 3.65 0.139 827 74.3 115 10.5 3.5 3.5 0.151 730 68.3 110 9.62 3.35 0.165 640 62.6 105 8.81 3.25 3.25 0.175 584 58.9 102 8.30	5.5	5.5	0.0610	2831	169	173	23.8
4.62 0.0865 1678 119 145 16.8 4.5 4.5 0.0912 1551 113 141 15.9 4.25 4.25 0.102 1306 101 134 14.2 4.11 0.109 1181 94.2 129 13.3 4.06 0.112 1139 91.9 128 12.9 4.0 4.0 0.115 1089 89.2 126 12.6 3.75 3.75 0.131 897 78.4 118 11.0 3.65 0.139 827 74.3 115 10.5 3.5 3.5 0.151 730 68.3 110 9.62 3.35 0.165 640 62.6 105 8.81 3.25 3.25 0.175 584 58.9 102 8.30	5.0	5.0	0.0738	2127	139	157	19.6
4.5 4.5 0.0912 1551 113 141 15.9 4.25 4.25 0.102 1306 101 134 14.2 4.11 0.109 1181 94.2 129 13.3 4.06 0.112 1139 91.9 128 12.9 4.0 4.0 0.115 1089 89.2 126 12.6 3.75 3.75 0.131 897 78.4 118 11.0 3.65 0.139 827 74.3 115 10.5 3.5 3.5 0.151 730 68.3 110 9.62 3.35 0.165 640 62.6 105 8.81 3.25 3.25 0.175 584 58.9 102 8.30	4.75	4.75	0.0818	1824	126	149	17.7
4.25 4.25 0.102 1306 101 134 14.2 4.11 0.109 1181 94.2 129 13.3 4.06 0.112 1139 91.9 128 12.9 4.0 4.0 0.115 1089 89.2 126 12.6 3.75 3.75 0.131 897 78.4 118 11.0 3.65 0.139 827 74.3 115 10.5 3.5 3.5 0.151 730 68.3 110 9.62 3.35 0.165 640 62.6 105 8.81 3.25 3.25 0.175 584 58.9 102 8.30	4.62		0.0865	1678	119	145	16.8
4.11 0.109 1181 94.2 129 13.3 4.06 0.112 1139 91.9 128 12.9 4.0 4.0 0.115 1089 89.2 126 12.6 3.75 3.75 0.131 897 78.4 118 11.0 3.65 0.139 827 74.3 115 10.5 3.5 3.5 0.151 730 68.3 110 9.62 3.35 0.165 640 62.6 105 8.81 3.25 3.25 0.175 584 58.9 102 8.30	4.5	4.5	0.0912	1551	113	141	15.9
4.06 0.112 1139 91.9 128 12.9 4.0 4.0 0.115 1089 89.2 126 12.6 3.75 3.75 0.131 897 78.4 118 11.0 3.65 0.139 827 74.3 115 10.5 3.5 3.5 0.151 730 68.3 110 9.62 3.35 0.165 640 62.6 105 8.81 3.25 3.25 0.175 584 58.9 102 8.30	4.25	4.25	0.102	1306	101	134	14.2
4.0 4.0 0.115 1089 89.2 126 12.6 3.75 3.75 0.131 897 78.4 118 11.0 3.65 0.139 827 74.3 115 10.5 3.5 3.5 0.151 730 68.3 110 9.62 3.35 0.165 640 62.6 105 8.81 3.25 3.25 0.175 584 58.9 102 8.30	4.11		0.109	1181	94.2	129	13.3
3.75 3.75 0.131 897 78.4 118 11.0 3.65 0.139 827 74.3 115 10.5 3.5 3.5 0.151 730 68.3 110 9.62 3.35 0.165 640 62.6 105 8.81 3.25 3.25 0.175 584 58.9 102 8.30	4.06		0.112	1139	91.9	128	12.9
3.65 0.139 827 74.3 115 10.5 3.5 3.5 0.151 730 68.3 110 9.62 3.35 0.165 640 62.6 105 8.81 3.25 3.25 0.175 584 58.9 102 8.30	4.0	4.0	0.115	1089	89.2	126	12.6
3.5 3.5 0.151 730 68.3 110 9.62 3.35 0.165 640 62.6 105 8.81 3.25 3.25 0.175 584 58.9 102 8.30	3.75	3.75	0.131	897	78.4	118	11.0
3.35 0.165 640 62.6 105 8.81 3.25 3.25 0.175 584 58.9 102 8.30	3.65		0.139	827	74.3	115	10.5
3.25 3.25 0.175 584 58.9 102 8.30	3.5	3.5	0.151	730	68.3	110	9.62
	3.35		0.165	640	62.6	105	8.81
3.2 0.180 558 57.1 101 8.04	3.25	3.25	0.175	584	58.9	102	8.30
0.100 330 37.1 101 8.04	3.2		0.180	558	57.1	101	8.04

Diamet mm	er	at 20 °C	Resistanc	e Weight	Surface area	Cross sectional area
A-1	APM	Ω/m	at 20 °C	g/m	cm²/m	mm ²
3.0	3.0	0.205	459	50.2	94.2	7.07
2.95		0.212	437	48.5	92.7	6.83
2.9	2.9	0.220	415	46.9	91.1	6.61
2.8	2.8	0.235	374	43.7	88.0	6.16
2.65		0.263	317	39.2	83.3	5.52
2.6	2.6	0.273	299	37.7	81.7	5.31
2.5	2.5	0.295	266	34.9	78.5	4.91
2.4		0.321	235	32.1	75.4	4.52
2.34		0.337	218	30.5	73.5	4.30
2.3	2.3	0.349	207	29.5	72.3	4.15
2.25		0.365	194	28.2	70.7	3.98
2.2	2.2	0.381	181	27.0	69.1	3.80
2.05		0.439	147	23.4	64.4	3.30
2.03		0.448	142	23.0	63.8	3.24
2.0	2.0	0.462	136	22.3	62.8	3.14
1.83		0.551	104	18.7	57.5	2.63
1.8	1.8	0.570	99	18.1	56.5	2.54
1.7	1.7	0.639	83.6	16.1	53.4	2.27
1.6		0.695	73.7	14.8	51.2	2.09
1.6		0.721	69.7	14.3	50.3	2.01
1.5	1.5	0.821	57.4	12.5	47.1	1.77
1.4		0.942	46.7	10.9	44.0	1.54
1.3		1.09	37.4	9.42	40.8	1.33
1.2	1.2	1.28	29.4	8.03	37.7	1.13
1.1		1.53	22.6	6.75	34.6	0.950
1.0	1.0	1.85	17.0	5.58	31.4	0.785

 $^{^{1)}}$ cm²/ Ω = I² \cdot C $_{\rm t}$ /p (I = Current, C $_{\rm t}$ = temperature factor, p = surface load W/cm²)

KANTHAL A, AF, AE Wire

Standard stock items	Alloy	Diameter range mm	Resistivity Ωmm²m⁻¹	Density gcm ⁻³
	KANTHAL A	10.0-0.05	1.39	7.15
-	KANTHAL AF	10.0-0.10	1.39	7.15
_	KANTHAL AE	10.0-0.20	1.39	7.15

To obtain resistance at working temperature, multiply by the factor C, in the following table:

°C	20	100	200								1000		1200	1300	
C.	1.00	1.00	1.01	1.01	1.02	1.03	1.04	1.04	1.05	1.05	1.06	1.06	1.06	1.06	

Diamo mm A	eter AF	at 20 °C Ω/m	Resistand cm²/Ω¹) at 20 °C	ce Weight g/m	Surface area cm²/m	Cross sectional area mm²
10	10.0	0.0177	17751	562	314	78.
	8.25	0.0260	9968	382	259	53.5
	8.0	0.0277	9089	359	251	50.3
	7.5	0.0315	7489	316	236	44.2
	7.35	0.0328	7048	303	231	42.4
	7.0	0.0361	6089	275	220	38.5
	6.54	0.0414	4965	240	205	33.6
	6.5	0.0419	4875	237	204	33.2
	6.0	0.0492	3834	202	188	28.3
	5.83	0.0521	3517	191	183	26.7
	5.5	0.0585	2953	170	173	23.8
	5.2	0.0655	2496	152	163	21.2
	5.0	0.0708	2219	140	157	19.6
	4.75	0.0784	1902	127	149	17.7
	4.62	0.0829	1750	120	145	16.8
	4.5	0.0874	1618	114	141	15.9
	4.25	0.0980	1363	101	134	14.2
	4.11	0.105	1232	94.9	129	13.3
	4.0	0.111	1136	89.8	126	12.6
	3.75	0.126	936	79.0	118	11.0
	3.65	0.133	863	74.8	115	10.5
	3.5	0.144	761	68.8	110	9.62
	3.25	0.168	609	59.3	102	8.30
	3.2	0.173	582	57.5	101	8.04
	3.0	0.197	479	50.5	94.2	7.07
	2.9	0.210	433	47.2	91.1	6.61
	2.8	0.226	390	44.0	88.0	6.16
	2.6	0.262	312	38.0	81.7	5.31
	2.5	0.283	277	35.1	78.5	4.91
	2.4	0.307	245	32.3	75.4	4.52
	2.3	0.335	216	29.7	72.3	4.15

Diame mm A	ter AF	at 20 °C Ω/m	Resistance cm²/Ω¹) at 20 °C	ce Weight g/m	Surface area cm²/m	Cross sectional area mm²
	2.25	0.350	202	28.4	70.7	3.98
	2.2	0.366	189	27.2	69.1	3.80
	2.0	0.442	142	22.5	62.8	3.14
	1.8	0.546	104	18.2	56.5	2.54
	1.7	0.612	87.2	16.2	53.4	2.27
	1.65	0.650	79.7	15.3	51.8	2.14
	1.6	0.691	72.7	14.4	50.3	2.01
	1.5	0.787	59.9	12.6	47.1	1.77
	1.4	0.903	48.7	11.0	44.0	1.54
	1.3	1.05	39.0	9.49	40.8	1.33
	1.2	1.23	30.7	8.09	37.7	1.13
	1.1	1.46	23.6	6.79	34.6	0.950
	1.0	1.77	17.8	5.62	31.4	0.785
	0.95	1.96	15.2	5.07	29.8	0.709
0.90	0.90	2.18	12.9	4.55	28.3	0.636
0.85	0.85	2.45	10.9	4.06	26.7	0.567
0.80	0.80	2.77	9.09	3.59	25.1	0.503
0.75	0.75	3.15	7.49	3.16	23.6	0.442
0.70	0.70	3.61	6.09	2.75	22.0	0.385
0.65	0.65	4.19	4.87	2.37	20.4	0.332
0.60	0.60	4.92	3.83	2.02	18.8	0.283
0.55	0.55	5.85	2.95	1.70	17.3	0.238
0.50	0.50	7.08	2.22	1.40	15.7	0.196
0.45	0.45	8.74	1.62	1.14	14.1	0.159
0.40	0.40	11.1	1.14	0.898	12.6	0.126
0.35	0.35	14.4	0.761	0.688	11.0	0.0962
0.30	0.30	19.7	0.479	0.505	9.42	0.0707
0.25		28.3	0.277	0.351	7.85	0.0491
0.20		44.2	0.142	0.225	6.28	0.0314
0.15		78.7	0.0599	0.126	4.71	0.0177

KANTHAL A, AF, AE Ribbon

Alloy	Resistivity Ωmm ² m ⁻¹	Density gcm ⁻³
KANTHAL A, AF, AE	1.39	7.15

To obtain resistance at working temperature, multiply by the factor $\mathbf{C}_{\!_{t}}$ in the following table:

°C C_t 1100 20 100 200 300 400 500 600 700 800 900 1000 1200 1300 1.00 1.00 1.05 1.05 1.06 1.06

Width mm	Thick- ness mm	Resis- tance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²	Width	Thick- ness mm	Resis- tance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²
4	1.0	0.378	265	26.3	100	3.68	2.0	0.10	7.55	5.56	1.32	42.0	0.184
	0.90	0.420	234	23.7	98.0	3.31	1.8	1.0	0.839	66.7	11.8	56.0	1.66
	0.80	0.472	203	21.0	96.0	2.94		0.90	0.933	57.9	10.7	54.0	1.49
	0.70	0.540	174	18.4	94.0	2.58		0.80	1.05	49.6	9.47	52.0	1.32
	0.60	0.630	146	15.8	92.0	2.21		0.70	1.20	41.7	8.29	50.0	1.16
	0.50	0.755	119	13.2	90.0	1.84		0.60	1.40	34.3	7.10	48.0	0.994
	0.40	0.944	93.2	10.5	88.0	1.47		0.50	1.68	27.4	5.92	46.0	0.828
	0.30	1.26	68.3	7.89	86.0	1.10		0.40	2.10	21.0	4.74	44.0	0.662
	0.20	1.89	44.5	5.26	84.0	0.736		0.30	2.80	15.0	3.55	42.0	0.497
	0.15	2.52	33.0	3.95	83.0	0.552		0.20	4.20	9.53	2.37	40.0	0.331
	0.10	3.78	21.7	2.63	82.0	0.368		0.15	5.60	6.97	1.78	39.0	0.248
3	1.0	0.504	159	19.7	80.0	2.76	4.5	0.10	8.39	4.53	1.18	38.0	0.166
	0.90	0.560	139	17.8	78.0	2.48	1.5	1.0	1.01	49.6	9.87	50.0	1.38
	0.80	0.630	121	15.8	76.0	2.21		0.90	1.12	42.9	8.88	48.0	1.24
	0.70	0.719	103	13.8	74.0	1.93		0.80	1.26	36.5	7.89	46.0	1.10
	0.60	0.839	85.8	11.8	72.0	1.66		0.70	1.44	30.6	6.91	44.0	0.966
	0.50	1.01	69.5	9.87	70.0	1.38		0.60	1.68	25.0	5.92	42.0	0.828
	0.40	1.26	54.0	7.89	68.0	1.10		0.50	2.01	19.9	4.93	40.0	0.690
	0.30	1.68	39.3	5.92	66.0	0.828		0.40	2.52	15.1	3.95	38.0	0.552
	0.20	2.52	25.4	3.95	64.0	0.552		0.30	3.36	10.7	2.96	36.0	0.414
	0.15	3.36	18.8	2.96	63.0	0.414		0.20	5.04	6.75	1.97	34.0	0.276
	0.10	5.04	12.3	1.97	62.0	0.276		0.15	6.71	4.91	1.48	33.0	0.207
2.5	1.0	0.604	116	16.4	70.0	2.30		0.10	10.1	3.18	0.987	32.0	0.138
	0.90	0.671	101	14.8	68.0	2.07		0.090	11.2	2.84	0.888	31.8	0.124
	0.80	0.755	87.4	13.2	66.0	1.84		0.080	12.6	2.51	0.789	31.6	0.110
	0.70	0.863	74.1	11.5	64.0	1.61	1.2	0.80	1.57	25.4	6.31	40.0	0.883
	0.60	1.01	61.6	9.87	62.0	1.38		0.70	1.80	21.1	5.53	38.0	0.773
	0.50	1.21	49.6	8.22	60.0	1.15		0.60	2.10	17.2	4.74	36.0	0.662
	0.40	1.51	38.4	6.58	58.0	0.920		0.50	2.52	13.5	3.95	34.0	0.552
	0.30	2.01	27.8	4.93	56.0	0.690		0.40	3.15	10.2	3.16	32.0	0.442
	0.20	3.02	17.9	3.29	54.0	0.460		0.30	4.20	7.15	2.37	30.0	0.331
	0.15	4.03	13.2	2.47	53.0	0.345		0.20	6.30	4.45	1.58	28.0	0.221
	0.10	6.04	8.60	1.64	52.0	0.230		0.15	8.39	3.22	1.18	27.0	0.166
2.0	1.0	0.755	79.4	13.2	60.0	1.84		0.10	12.6	2.07	0.789	26.0	0.110
	0.90	0.839	69.1	11.8	58.0	1.66		0.090	14.0	1.84	0.710	25.8	0.0994
	0.80	0.944	59.3	10.5	56.0	1.47		0.080	15.7	1.63	0.631	25.6	0.0883
	0.70	1.08	50.0	9.21	54.0	1.29		0.070	18.0	1.41	0.553	25.4	0.0773
	0.60	1.26	41.3	7.89	52.0	1.10	1.0	0.80	1.89	19.1	5.26	36.0	0.736
	0.50	1.51	33.1	6.58	50.0	0.920		0.70	2.16	15.8	4.60	34.0	0.644
	0.40	1.89	25.4	5.26	48.0	0.736		0.60	2.52	12.7	3.95	32.0	0.552
	0.30	2.52	18.3	3.95	46.0	0.552		0.50	3.02	9.93	3.29	30.0	0.460
	0.20	3.78	11.6	2.63	44.0	0.368		0.40	3.78	7.41	2.63	28.0	0.368
	0.15	5.04	8.54	1.97	43.0	0.276		0.30	5.04	5.16	1.97	26.0	0.276

 $^{^{1)}}$ cm²/ Ω = I² \cdot C_t/p (I = Current, C_t = temperature factor, p = surface load W/cm²)

(cont.)

KANTHAL A, AF, AE Ribbon

Alloy	Resistivity Ωmm²m ⁻¹	Density gcm ⁻³
KANTHAL A, AF, AE	1.39	7.15

To obtain resistance at working temperature, multiply by the factor C_t in the following table:

°C	20	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	
C _t	1.00	1.00	1.01	1.01	1.02	1.03	1.04	1.04	1.05	1.05	1.06	1.06	1.06	1.06	П

		Resis-				Cross			Resis-				Cross
Width	Thick- ness mm	tance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	sectional area mm²	Width	Thick- ness mm	tance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	sectional area mm²
	0.20	7.55	3.18	1.32	24.0	0.184	0.7	0.070		0.499	0.322	15.4	0.0451
	0.15	10.1	2.28	0.987	23.0	0.138		0.060	36.0	0.423	0.276	15.2	0.0386
1.0	0.10	15.1	1.46	0.658	22.0	0.0920		0.050	43.2	0.347	0.230	15.0	0.0322
	0.090	16.8	1.30	0.592	21.8	0.0828	0.6	0.50	5.0	4.37	1.97	22.0	0.276
	0.080	18.9	1.14	0.526	21.6	0.0736		0.40	6.3	3.18	1.58	20.0	0.221
	0.070	21.6	0.991	0.460	21.4	0.0644		0.30	8.4	2.14	1.18	18.0	0.166
	0.060	25.2	0.842	0.395	21.2	0.0552		0.20	12.6	1.27	0.789	16.0	0.110
	0.050	30.2	0.695	0.329	21.0	0.0460		0.15	16.8	0.894	0.592	15.0	0.0828
0.9	0.70	2.40	13.3	4.14	32.0	0.580		0.10	25.2	0.556	0.395	14.0	0.0552
	0.60	2.80	10.7	3.55	30.0	0.497		0.090	28.0	0.493	0.355	13.8	0.0497
	0.50	3.36	8.34	2.96	28.0	0.414		0.080	31.5	0.432	0.316	13.6	0.0442
	0.40	4.20	6.20	2.37	26.0	0.331		0.070	36.0	0.373	0.276	13.4	0.0386
	0.30	5.60	4.29	1.78	24.0	0.248		0.060	42.0	0.315	0.237	13.2	0.0331
	0.20	8.39	2.62	1.18	22.0	0.166		0.050	50.4	0.258	0.197	13.0	0.0276
	0.15	11.2	1.88	0.888	21.0	0.124		0.040	63.0	0.203	0.158	12.8	0.0221
	0.10	16.8	1.19	0.592	20.0	0.0828	0.5	0.30	10.1	1.59	0.987	16.0	0.138
	0.090	18.7	1.06	0.533	19.8	0.0745		0.20	15.1	0.927	0.658	14.0	0.0920
	0.080	21.0	0.934	0.474	19.6	0.0662		0.15	20.1	0.645	0.493	13.0	0.0690
	0.070	24.0	0.809	0.414	19.4	0.0580		0.10	30.2	0.397	0.329	12.0	0.0460
	0.060	28.0	0.686	0.355	19.2	0.0497		0.090	33.6	0.351	0.296	11.8	0.0414
	0.050	33.6	0.566	0.296	19.0	0.0414		0.080	37.8	0.307	0.263	11.6	0.0368
8.0	0.70	2.70	11.1	3.68	30.0	0.515		0.070	43.2	0.264	0.230	11.4	0.0322
	0.60	3.15	8.90	3.16	28.0	0.442		0.060	50.4	0.222	0.197	11.2	0.0276
	0.50	3.78	6.88	2.63	26.0	0.368		0.050	60.4	0.182	0.164	11.0	0.0230
	0.40	4.72	5.08	2.10	24.0	0.294		0.040	75.5	0.143	0.132	10.8	0.0184
	0.30	6.30	3.49	1.58	22.0	0.221	0.4	0.30	12.6	1.11	0.789	14.0	0.110
	0.20	9.44	2.12	1.05	20.0	0.147		0.20	18.9	0.635	0.526	12.0	0.0736
	0.15	12.6	1.51	0.789	19.0	0.110		0.15	25.2	0.437	0.395	11.0	0.0552
	0.10	18.9	0.953	0.526	18.0	0.0736		0.10	37.8	0.265	0.263	10.0	0.0368
	0.090	21.0	0.848	0.474	17.8	0.0662		0.090	42.0	0.234	0.237	9.80	0.0331
	0.080	23.6	0.746	0.421	17.6	0.0589		0.080	47.2	0.203	0.210	9.60	0.0294
	0.070		0.645	0.368	17.4	0.0515		0.070		0.174	0.184	9.40	0.0258
	0.060	31.5	0.546	0.316	17.2	0.0442		0.060	63.0	0.146	0.158	9.20	0.0221
	0.050	37.8	0.450	0.263	17.0	0.0368		0.050	75.5	0.119	0.132	9.00	0.0184
0.7	0.60	3.60	7.23	2.76	26.0	0.386	0.3	0.20	25.2	0.397	0.395	10.0	0.0552
	0.50	4.32	5.56	2.30	24.0	0.322		0.15	33.6	0.268	0.296	9.00	0.0414
	0.40	5.40	4.08	1.84	22.0	0.258		0.10	50.4	0.159	0.197	8.00	0.0276
	0.30	7.19	2.78	1.38	20.0	0.193		0.090	56.0	0.139	0.178	7.80	0.0248
	0.20	10.8	1.67	0.921	18.0	0.129		0.080		0.121	0.158	7.60	0.0221
	0.15	14.4	1.18	0.691	17.0	0.097		0.070	71.9	0.103	0.138	7.40	0.0193
	0.10	21.6	0.741	0.460	16.0	0.0644		0.060	83.9	0.0858	0.118	7.20	0.0166
	0.090	24.0	0.659	0.414	15.8	0.0580		0.050	101	0.0695	0.0987	7.00	0.0138
	0.080	27.0	0.578	0.368	15.6	0.0515							

 $^{^{1)}}$ cm²/ Ω = I² · C_t/p (I = Current, C_t = temperature factor, p = surface load W/cm²)

KANTHAL D Wire

Standard stock items	Alloy	Diameter range mm	Resistivity Ωmm²m ⁻¹	Density gcm ⁻³
	D	8.0-0.020	1.35	7.25

To obtain resistance at working temperature, multiply by the factor $C_{\rm t}$ in the following table:

°C	20	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300
C,	1.00	1.00	1.01	1.01	1.02	1.03	1.04	1.05	1.06	1.07	1.07	1.07	1.08	1.08

Dia- meter mm	Resistance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²
8.0	0.0269	9358	364	251	50.3
6.5	0.0407	5019	241	204	33.2
6.0	0.0477	3948	205	188	28.3
5.5	0.0568	3041	172	173	23.8
5.0	0.0688	2285	142	157	19.6
4.75	0.0762	1959	128	149	17.7
4.5	0.0849	1666	115	141	15.9
4.25	0.0952	1403	103	134	14.2
4.06	0.104	1223	93.9	128	12.9
4.0	0.107	1170	91.1	126	12.6
3.75	0.122	964	80.1	118	11.0
3.65	0.129	889	75.9	115	10.5
3.5	0.140	784	69.8	110	9.62
3.25	0.163	627	60.1	102	8.30
3.0	0.191	493	51.2	94.2	7.07
2.95	0.198	469	49.6	92.7	6.8
2.8	0.219	401	44.6	88.0	6.16
2.65	0.245	340	40.0	83.3	5.5
2.5	0.275	286	35.6	78.5	4.91
2.0	0.430	146	22.8	62.8	3.14
1.8	0.531	107	18.4	56.5	2.54
1.7	0.595	89.8	16.5	53.4	2.27
1.6	0.671	74.9	14.6	50.3	2.01
1.5	0.764	61.7	12.8	47.1	1.77
1.4	0.877	50.2	11.2	44.0	1.54
1.3	1.02	40.2	9.62	40.8	1.33
1.2	1.19	31.6	8.20	37.7	1.13
1.1	1.42	24.3	6.89	34.6	0.950

Dia- meter mm	Resistance at 20 °C Ω/m	cm²/ $\Omega^{1)}$ at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²
1.0	1.72	18.3	5.69	31.4	0.785
0.95	1.90	15.7	5.14	29.8	0.709
0.90	2.12	13.3	4.61	28.3	0.636
0.85	2.38	11.2	4.11	26.7	0.567
0.80	2.69	9.36	3.64	25.1	0.503
0.75	3.06	7.71	3.20	23.6	0.442
0.70	3.51	6.27	2.79	22.0	0.385
0.65	4.07	5.02	2.41	20.4	0.332
0.60	4.77	3.95	2.05	18.8	0.283
0.55	5.68	3.04	1.72	17.3	0.238
0.50	6.88	2.28	1.42	15.7	0.196
0.45	8.49	1.67	1.15	14.1	0.159
0.42	9.74	1.35	1.00	13.2	0.139
0.40	10.7	1.17	0.911	12.6	0.126
0.35	14.0	0.784	0.698	11.0	0.0962
0.32	16.8	0.599	0.583	10.1	0.0804
0.30	19.1	0.493	0.512	9.42	0.0707
0.28	21.9	0.401	0.446	8.80	0.061
0.25	27.5	0.286	0.356	7.85	0.0491
0.22	35.5	0.195	0.276	6.91	0.0380
0.20	43.0	0.146	0.228	6.28	0.0314
0.19	47.6	0.125	0.206	5.97	0.0284
0.18	53.1	0.107	0.184	5.65	0.0254
0.17	59.5	0.0898	0.165	5.34	0.0227
0.16	67.1	0.0749	0.146	5.03	0.0201
0.15	76.4	0.0617	0.128	4.71	0.0177
0.14	87.7	0.0502	0.112	4.40	0.0154
0.13	102	0.0402	0.0962	4.08	0.0133

 $^{^{1)}}$ cm²/ Ω = I² \cdot C, /p (I = Current, C, = temperature factor, p = surface load W/cm²)

KANTHAL D, DT Ribbon

Alloy	Resistivity Ωmm ² m ⁻¹	Density gcm ⁻³
KANTHAL D	1.39	7.25
KANTAHL DT	1.37	7.25

To obtain resistance at working temperature, multiply by the factor $C_{\rm t}$ in the following table:

°C	20	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	
C,	1.00	1.00	1.01	1.01	1.02	1.03	1.04	1.05	1.06	1.07	1.07	1.07	1.08	1.08	

Width mm	Thick- ness mm	Resistance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²
4	1.0	0.367	273	26.7	100	3.68
	0.90	0.408	240	24.0	98.0	3.31
	0.80	0.459	209	21.3	96.0	2.94
	0.70	0.524	179	18.7	94.0	2.58
	0.60	0.611	150	16.0	92.0	2.21
	0.50	0.734	123	13.3	90.0	1.84
	0.40	0.917	96.0	10.7	88.0	1.47
	0.30	1.22	70.3	8.00	86.0	1.10
	0.20	1.83	45.8	5.34	84.0	0.736
	0.15	2.45	33.9	4.00	83.0	0.552
	0.10	3.67	22.4	2.67	82.0	0.368
3	1.0	0.489	164	20.0	80.0	2.76
	0.90	0.543	144	18.0	78.0	2.48
	0.80	0.611	124	16.0	76.0	2.21
	0.70	0.699	106	14.0	74.0	1.93
	0.60	0.815	88.3	12.0	72.0	1.66
	0.50	0.978	71.6	10.0	70.0	1.38
	0.40	1.22	55.6	8.0	68.0	1.10
	0.30	1.63	40.5	6.0	66.0	0.828
	0.20	2.45	26.2	4.0	64.0	0.552
	0.15	3.26	19.3	3.0	63.0	0.414
	0.10	4.89	12.7	2.0	62.0	0.276
2.5	1.0	0.587	119	16.7	70.0	2.30
	0.90	0.652	104	15.0	68.0	2.07
	0.80	0.734	90.0	13.3	66.0	1.84
	0.70	0.839	76.3	11.7	64.0	1.61
	0.60	0.978	63.4	10.0	62.0	1.38
	0.50	1.17	51.1	8.34	60.0	1.15
	0.40	1.47	39.5	6.67	58.0	0.920
	0.30	1.96	28.6	5.00	56.0	0.690
	0.20	2.93	18.4	3.34	54.0	0.460
	0.15	3.91	13.5	2.50	53.0	0.345
	0.10	5.87	8.86	1.67	52.0	0.230
2.25	1.0	0.652	99.7	15.0	65.0	2.07
	0.90	0.725	86.9	13.5	63.0	1.86
	0.80	0.815	74.8	12.0	61.0	1.66
	0.70	0.932	63.3	10.5	59.0	1.45
	0.60	1.09	52.4	9.00	57.0	1.24
	0.50	1.30	42.2	7.50	55.0	1.04
	0.40	1.63	32.5	6.00	53.0	0.828
	0.30	2.17	23.5	4.50	51.0	0.621
	0.20	3.26	15.0	3.00	49.0	0.414

Width mm	Thick- ness mm	Resis- tance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²
2,25	0.15	4.35	11.0	2.25	48.0	0.311
	0.10	6.52	7.21	1.50	47.0	0.207
2.0	1.0	0.734	81.8	13.3	60.0	1.84
	0.90	0.815	71.1	12.0	58.0	1.66
	0.80	0.917	61.1	10.7	56.0	1.47
	0.70	1.05	51.5	9.34	54.0	1.29
	0.60	1.22	42.5	8.00	52.0	1.10
	0.50	1.47	34.1	6.67	50.0	0.920
	0.40	1.83	26.2	5.34	48.0	0.736
	0.30	2.45	18.8	4.00	46.0	0.552
	0.20	3.67	12.0	2.67	44.0	0.368
	0.15	4.89	8.79	2.00	43.0	0.276
	0.10	7.34	5.72	1.33	42.0	0.184
1.75	1.0	0.839	65.6	11.7	55.0	1.61
	0.90	0.932	56.9	10.5	53.0	1.45
	0.80	1.05	48.7	9.34	51.0	1.29
	0.70	1.20	40.9	8.17	49.0	1.13
	0.60	1.40	33.6	7.00	47.0	0.966
	0.50	1.68	26.8	5.84	45.0	0.805
	0.40	2.10	20.5	4.67	43.0	0.644
	0.30	2.80	14.7	3.50	41.0	0.483
	0.20	4.19	9.30	2.33	39.0	0.322
	0.15	5.59	6.80	1.75	38.0	0.242
	0.10	8.39	4.41	1.17	37.0	0.161
1.5	0.70	1.40	31.5	7.00	44.0	0.966
	0.60	1.63	25.8	6.00	42.0	0.828
	0.50	1.96	20.4	5.00	40.0	0.690
	0.40	2.45	15.5	4.00	38.0	0.552
	0.30	3.26	11.0	3.00	36.0	0.414
	0.20	4.89	6.95	2.00	34.0	0.276
	0.15	6.52	5.06	1.50	33.0	0.207
	0.10	9.78	3.27	1.00	32.0	0.138
	0.090	10.9	2.93	0.900	31.8	0.124
	0.080	12.2	2.58	0.800	31.6	0.110
1.25	0.60	1.96	18.9	5.00	37.0	0.690
	0.50	2.35	14.9	4.17	35.0	0.575
	0.40	2.93	11.2	3.34	33.0	0.460
	0.30	3.91	7.92	2.50	31.0	0.345
	0.20	5.87	4.94	1.67	29.0	0.230
	0.15	7.83	3.58	1.25	28.0	0.173
	0.10	11.7	2.30	0.834	27.0	0.115
	0.090	13.0	2.05	0.750	26.8	0.104

(cont.)

KANTHAL D, DT Ribbon

Alloy	Resistivity Ωmm²m ⁻¹	Density gcm ⁻³
KANTHAL D	1.39	7.25
KANTAHL DT	1.37	7.25

To obtain resistance at working temperature, multiply by the factor C_1 in the following table:

°C	20	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300
C.	1.00	1.00	1.01	1.01	1.02	1.03	1.04	1.05	1.06	1.07	1.07	1.07	1.08	1.08

Width mm	Thick- ness mm	Resis- tance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²	Widtl mm		Resistance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²
1.25	0.080	14.7	1.81	0.667	26.6	0.0920	0.7	0.080	26.2	0.595	0.374	15.6	0.0515
	0.070	16.8	1.57	0.584	26.4	0.0805		0.070	29.9	0.514	0.327	15.4	0.0451
1.0	0.60	2.45	13.1	4.00	32.0	0.552		0.060	34.9	0.435	0.280	15.2	0.0386
	0.50	2.93	10.2	3.34	30.0	0.460		0.050	41.9	0.358	0.233	15.0	0.0322
	0.40	3.67	7.63	2.67	28.0	0.368	0.6	0.40	6.11	3.27	1.60	20.0	0.221
	0.30	4.89	5.32	2.00	26.0	0.276		0.30	8.15	2.21	1.20	18.0	0.166
	0.20	7.34	3.27	1.33	24.0	0.184		0.20	12.2	1.31	0.800	16.0	0.110
	0.15	9.78	2.35	1.00	23.0	0.138		0.15	16.3	0.920	0.600	15.0	0.0828
	0.10	14.7	1.50	0.667	22.0	0.0920		0.10	24.5	0.572	0.400	14.0	0.0552
	0.090	16.3	1.34	0.600	21.8	0.0828		0.090	27.2	0.508	0.360	13.8	0.0497
	0.080	18.3	1.18	0.534	21.6	0.0736		0.080	30.6	0.445	0.320	13.6	0.0442
	0.070	21.0	1.02	0.467	21.4	0.0644		0.070	34.9	0.384	0.280	13.4	0.0386
	0.060	24.5	0.867	0.400	21.2	0.0552		0.060	40.8	0.324	0.240	13.2	0.0331
	0.050	29.3	0.716	0.334	21.0	0.0460		0.050	48.9	0.266	0.200	13.0	0.0276
0.9	0.50	3.26	8.59	3.00	28.0	0.414		0.040	61.1	0.209	0.160	12.8	0.0221
	0.40	4.08	6.38	2.40	26.0	0.331	0.5	0.30	9.78	1.64	1.00	16.0	0.138
	0.30	5.43	4.42	1.80	24.0	0.248		0.20	14.7	0.954	0.667	14.0	0.0920
	0.20	8.15	2.70	1.20	22.0	0.166		0.15	19.6	0.664	0.500	13.0	0.0690
	0.15	10.9	1.93	0.900	21.0	0.124		0.10	29.3	0.409	0.334	12.0	0.0460
	0.10	16.3	1.23	0.600	20.0	0.0828		0.090	32.6	0.362	0.300	11.8	0.0414
	0.090	18.1	1.09	0.540	19.8	0.0745		0.080	36.7	0.316	0.267	11.6	0.0368
	0.080	20.4	0.962	0.480	19.6	0.0662		0.070	41.9	0.272	0.233	11.4	0.0322
	0.070	23.3	0.833	0.420	19.4	0.0580		0.060	48.9	0.229	0.200	11.2	0.0276
	0.060	27.2	0.707	0.360	19.2	0.0497		0.050	58.7	0.187	0.167	11.0	0.0230
	0.050	32.6	0.583	0.300	19.0	0.0414		0.040	73.4	0.147	0.133	10.8	0.0184
8.0	0.50	3.67	7.09	2.67	26.0	0.368	0.4	0.30	12.2	1.14	0.800	14.0	0.110
	0.40	4.59	5.23	2.13	24.0	0.294		0.20	18.3	0.654	0.534	12.0	0.0736
	0.30	6.11	3.60	1.60	22.0	0.221		0.15	24.5	0.450	0.400	11.0	0.0552
	0.20	9.17	2.18	1.07	20.0	0.147		0.10	36.7	0.273	0.267	10.0	0.0368
	0.15	12.2	1.55	0.800	19.0	0.110		0.090	40.8	0.240	0.240	9.80	0.0331
	0.10	18.3	0.981	0.534	18.0	0.0736		0.080	45.9	0.209	0.213	9.60	0.0294
	0.090	20.4	0.873	0.480	17.8	0.0662		0.070		0.179	0.187	9.40	0.0258
	0.080		0.768	0.427	17.6	0.0589		0.060	61.1	0.150	0.160	9.20	0.0221
	0.070	26.2	0.664	0.374	17.4	0.0515		0.050	73.4	0.123	0.133	9.00	0.0184
	0.060	30.6	0.563	0.320	17.2	0.0442	0.3	0.20	24.5	0.409	0.400	10.0	0.0552
	0.050	36.7	0.463	0.267	17.0	0.0368		0.15	32.6	0.276	0.300	9.00	0.0414
0.7	0.40	5.24	4.20	1.87	22.0	0.258		0.10	48.9	0.164	0.200	8.00	0.0276
	0.30	6.99	2.86	1.40	20.0	0.193		0.090		0.144	0.180	7.80	0.0248
	0.20	10.5	1.72	0.934	18.0	0.129		0.080		0.124	0.160	7.60	0.0221
	0.15	14.0	1.22	0.700	17.0	0.097		0.070		0.106	0.140	7.40	0.0193
	0.10	21.0	0.763	0.467	16.0	0.0644		0.060	81.5	0.0883	0.120	7.20	0.0166
	0.090	23.3	0.678	0.420	15.8	0.0580		0.050	97.8	0.0716	0.100	7.00	0.0138

 $^{^{1)}}$ cm²/ Ω = I² \cdot C_t/p (I = Current, C_t = temperature factor, p = surface load W/cm²)

9

ALKROTHAL Wire

 Alloy
 Diameter range mm
 Resistivity Ωmm²m¹
 Density gcm³

 ALKROTHAL
 6.5-0.10
 1.25
 7.28

To obtain resistance at working temperature, multiply by the factor C₁ in the following table:

°C	20	100	200	300	400	500	600	700	800	900	1000	1100
C.	1.00	1.00	1.02	1.03	1.04	1.05	1.08	1.09	1.10	1.11	1.11	1.12

Dia- meter mm	Resistance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²	Dia- meter mm	Resistance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cros sect area mm
6.5	0.0377	5421	242	204	33.2	0.80	2.49	10.1	3.66	25.1	0.50
6.0	0.0442	4264	206	188	28.3	0.75	2.83	8.33	3.22	23.6	0.4
5.5	0.0526	3284	173	173	23.8	0.70	3.25	6.77	2.80	22.0	0.3
5.0	0.0637	2467	143	157	19.6	0.65	3.77	5.42	2.42	20.4	0.3
4.75	0.0705	2115	129	149	17.7	0.60	4.42	4.26	2.06	18.8	0.2
4.5	0.0786	1799	116	141	15.9	0.55	5.26	3.28	1.73	17.3	0.2
4.25	0.0881	1515	103	134	14.2	0.50	6.37	2.47	1.43	15.7	0.1
4.0	0.0995	1263	91.5	126	12.6	0.475	7.05	2.12	1.29	14.9	0.1
3.75	0.113	1041	80.4	118	11.0	0.45	7.86	1.80	1.16	14.1	0.1
3.5	0.130	846	70.0	110	9.62	0.425	8.81	1.52	1.03	13.4	0.1
3.25	0.151	678	60.4	102	8.30	0.40	9.95	1.26	0.915	12.6	0.1
3.0	0.177	533	51.5	94.2	7.07	0.375	11.3	1.04	0.804	11.8	0.1
2.8	0.203	433	44.8	88.0	6.16	0.35	13.0	0.846	0.700	11.0	0.0
2.6	0.235	347	38.7	81.7	5.31	0.32	15.5	0.647	0.585	10.1	0.0
2.5	0.255	308	35.7	78.5	4.91	0.30	17.7	0.533	0.515	9.42	0.0
2.2	0.329	210	27.7	69.1	3.80	0.28	20.3	0.433	0.448	8.80	0.0
2.0	0.398	158	22.9	62.8	3.14	0.26	23.5	0.347	0.387	8.17	0.0
1.9	0.441	135	20.6	59.7	2.84	0.25	25.5	0.308	0.357	7.85	0.0
1.8	0.491	115	18.5	56.5	2.54	0.24	27.6	0.273	0.329	7.54	0.0
1.7	0.551	97.0	16.5	53.4	2.27	0.23	30.1	0.240	0.302	7.23	0.0
1.6	0.622	80.9	14.6	50.3	2.01	0.22	32.9	0.210	0.277	6.91	0.0
1.5	0.707	66.6	12.9	47.1	1.77	0.21	36.1	0.183	0.252	6.60	0.0
1.4	0.812	54.2	11.2	44.0	1.54	0.20	39.8	0.158	0.229	6.28	0.0
1.3	0.942	43.4	9.66	40.8	1.33	0.19	44.1	0.135	0.206	5.97	0.0
1.2	1.11	34.1	8.23	37.7	1.13	0.18	49.1	0.115	0.185	5.65	0.0
1.1	1.32	26.3	6.92	34.6	0.95	0.17	55.1	0.0970	0.165	5.34	0.0
1.0	1.59	19.7	5.72	31.4	0.785	0.16	62.2	0.0809	0.146	5.03	0.0
0.95	1.76	16.9	5.16	29.8	0.709	0.15	70.7	0.0666	0.129	4.71	0.0
0.90	1.96	14.4	4.63	28.3	0.636	0.14	81.2	0.0542	0.112	4.40	0.0
0.85	2.20	12.1	4.13	26.7	0.567	0.13	94.2	0.0434	0.0966	4.08	0.0

ALKROTHAL Ribbon

Alloy	Resistivity Ωmm ² m ⁻¹	Density gcm ⁻³	
ALKROTHAL	1.25	7.28	

To obtain resistance at working temperature, multiply by the factor $C_{\rm t}$ in the following table:

°C	20	100	200	300	400	500	600	700	800	900	1000	1100	
C.	1.00	1.00	1.02	1.03	1.04	1.05	1.08	1.09	1.10	1.11	1.11	1.12	

Width mm	Thick- ness mm	Resis- tance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²	Width mm	Thick- ness mm	Resis- tance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²
4	1.0	0.340	294	26.8	100	3.68	2.25	0.15	4.026	11.9	2.3	48.0	0.311
	0.90	0.377	260	24.1	98.0	3.31		0.10	6.52	7.21	1.5	47.0	0.207
	0.80	0.425	226	21.4	96.0	2.94	2.0	1.0	0.679	88.3	13.4	60.0	1.84
	0.70	0.485	194	18.8	94.0	2.58		0.90	0.755	76.8	12.1	58.0	1.66
	0.60	0.566	163	16.1	92.0	2.21		0.80	0.849	65.9	10.7	56.0	1.47
	0.50	0.679	132	13.4	90.0	1.84		0.70	0.970	55.6	9.4	54.0	1.29
	0.40	0.849	103.6	10.7	88.0	1.47		0.60	1.13	45.9	8.04	52.0	1.10
	0.30	1.13	76.0	8.04	86.0	1.10		0.50	1.36	36.8	6.70	50.0	0.920
	0.20	1.70	49.5	5.36	84.0	0.736		0.40	1.70	28.3	5.36	48.0	0.736
	0.15	2.26	36.7	4.02	83.0	0.552		0.30	2.26	20.3	4.02	46.0	0.552
	0.10	3.40	24.1	2.67	82.0	0.368		0.20	3.40	13.0	2.68	44.0	0.368
3	1.0	0.453	177	20.1	80.0	2.76		0.15	4.53	9.5	2.01	43.0	0.276
	0.90	0.503	155	18.1	78.0	2.48		0.10	7.34	5.72	1.34	42.0	0.184
	0.80	0.566	134	16.1	76.0	2.21	1.75	1.0	0.776	70.8	11.7	55.0	1.61
	0.70	0.647	114	14.1	74.0	1.93		0.90	0.863	61.4	10.5	53.0	1.45
	0.60	0.755	95.4	12.1	72.0	1.66		0.80	0.970	52.6	9.4	51.0	1.29
	0.50	0.906	77.3	10.0	70.0	1.38		0.70	1.11	44.2	8.20	49.0	1.13
	0.40	1.13	60.1	8.0	68.0	1.10		0.60	1.29	36.3	7.03	47.0	0.966
	0.30	1.51	43.7	6.0	66.0	0.828		0.50	1.55	29.0	5.86	45.0	0.805
	0.20	2.26	28.3	4.0	64.0	0.552		0.40	1.94	22.2	4.69	43.0	0.644
	0.15	3.02	20.9	3.0	63.0	0.414		0.30	2.59	15.8	3.52	41.0	0.483
	0.10	4.53	13.7	2.0	62.0	0.276		0.20	3.88	10.0	2.34	39.0	0.322
2.5	1.0	0.543	129	16.7	70.0	2.30		0.15	5.18	7.34	1.76	38.0	0.242
	0.90	0.604	113	15.1	68.0	2.07		0.10	8.39	4.41	1.17	37.0	0.161
	0.80	0.679	97.2	13.4	66.0	1.84	1.5	0.70	1.29	34.0	7.04	44.0	0.966
	0.70	0.776	82.4	11.7	64.0	1.61		0.60	1.51	27.8	6.03	42.0	0.828
	0.60	0.906	68.4	10.0	62.0	1.38		0.50	1.81	22.1	5.03	40.0	0.690
	0.50	1.09	55.2	8.37	60.0	1.15		0.40	2.26	16.8	4.02	38.0	0.552
	0.40	1.36	42.7	6.70	58.0	0.920		0.30	3.02	11.9	3.02	36.0	0.414
	0.30	1.81	30.9	5.02	56.0	0.690		0.20	4.53	7.51	2.01	34.0	0.276
	0.20	2.72	19.9	3.35	54.0	0.460		0.15	6.04	5.46	1.51	33.0	0.207
	0.15	3.62	14.6	2.51	53.0	0.345		0.10	9.06	3.53	1.01	32.0	0.138
	0.10	5.43	9.57	1.67	52.0	0.230		0.090	10.1	3.16	0.905	31.8	0.124
2.25	1.0	0.604	107.6	15.1	65.0	2.07		0.080	11.3	2.79	0.805	31.6	0.110
	0.90	0.671	93.9	13.6	63.0	1.86	1.25	0.60	1.81	20.4	5.02	37.0	0.690
	0.80	0.755	80.8	12.1	61.0	1.66		0.50	2.17	16.1	4.19	35.0	0.575
	0.70	0.863	68.4	10.5	59.0	1.45		0.40	2.72	12.1	3.35	33.0	0.460
	0.60	1.006	56.6	9.0	57.0	1.24		0.30	3.62	8.56	2.51	31.0	0.345
	0.50	1.208	45.5	7.5	55.0	1.04		0.20	5.43	5.34	1.67	29.0	0.230
	0.40	1.510	35.1	6.0	53.0	0.828		0.15	7.25	3.86	1.26	28.0	0.173
	0.30	2.013	25.3	4.5	51.0	0.621		0.10	10.9	2.48	0.837	27.0	0.115
	0.20	3.019	16.2	3.0	49.0	0.414		0.090	12.1	2.22	0.753	26.8	0.104

(cont.)

ALKROTHAL Ribbon

Alloy	Resistivity Ωmm²m⁻¹	Density gcm ⁻³
ALKROTHAL	1.25	7.28

To obtain resistance at working temperature, multiply by the factor C_t in the following table:

 °C
 20
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000
 1100

 C₁
 1.00
 1.00
 1.02
 1.03
 1.04
 1.05
 1.08
 1.09
 1.10
 1.11
 1.11
 1.12

Width mm	Thick- ness mm	Resis- tance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²
1.25	0.080	13.6	1.96	0.670	26.6	0.0920
	0.070	15.5	1.70	0.586	26.4	0.0805
1.0	0.60	2.26	14.1	4.02	32.0	0.552
	0.50	2.72	11.0	3.35	30.0	0.460
	0.40	3.40	8.24	2.68	28.0	0.368
	0.30	4.53	5.74	2.01	26.0	0.276
	0.20	6.79	3.53	1.34	24.0	0.184
	0.15	9.06	2.54	1.00	23.0	0.138
	0.10	13.6	1.62	0.670	22.0	0.0920
	0.090	15.1	1.44	0.603	21.8	0.0828
	0.080	17.0	1.27	0.536	21.6	0.0736
	0.070	19.4	1.10	0.469	21.4	0.0644
	0.060	22.6	0.936	0.402	21.2	0.0552
	0.050	29.3	0.716	0.335	21.0	0.0460
0.9	0.50	3.02	9.27	3.01	28.0	0.414
	0.40	3.77	6.89	2.41	26.0	0.331
	0.30	5.03	4.77	1.81	24.0	0.248
	0.20	7.55	2.91	1.21	22.0	0.166
	0.15	10.1	2.09	0.904	21.0	0.124
	0.10	15.1	1.32	0.603	20.0	0.0828
	0.090	16.8	1.18	0.543	19.8	0.0745
	0.080	18.9	1.039	0.482	19.6	0.0662
	0.070	21.6	0.900	0.422	19.4	0.0580
	0.060	25.2	0.763	0.362	19.2	0.0497
	0.050	30.2	0.629	0.301	19.0	0.0414
8.0	0.50	3.40	7.65	2.68	26.0	0.368
	0.40	4.25	5.65	2.14	24.0	0.294
	0.30	5.66	3.89	1.61	22.0	0.221
	0.20	8.49	2.36	1.07	20.0	0.147
	0.15	11.3	1.68	0.804	19.0	0.110
	0.10	17.0	1.060	0.536	18.0	0.0736
	0.090	18.9	0.943	0.482	17.8	0.0662
	0.080	21.2	0.829	0.429	17.6	0.0589
	0.070	24.3	0.717	0.375	17.4	0.0515
	0.060	28.3	0.608	0.321	17.2	0.0442
	0.050	34.0	0.500	0.268	17.0	0.0368
0.7	0.40	4.85	4.53	1.88	22.0	0.258
	0.30	6.47	3.09	1.41	20.0	0.193
	0.20	9.7	1.85	0.938	18.0	0.129
	0.15	12.9	1.31	0.703	17.0	0.097
	0.10	19.4	0.824	0.469	16.0	0.0644
	0.090	21.6	0.733	0.422	15.8	0.0580

No.							
0.070 27.7 0.555 0.328 15.4 0.0451 0.060 32.3 0.470 0.281 15.2 0.0386 0.050 38.8 0.386 0.234 15.0 0.0322 0.6 0.40 5.66 3.53 1.61 20.0 0.221 0.30 7.55 2.38 1.21 18.0 0.166 0.20 11.3 1.41 0.804 16.0 0.110 0.15 15.1 0.994 0.603 15.0 0.0828 0.10 22.6 0.618 0.402 14.0 0.0552 0.090 25.2 0.548 0.362 13.8 0.0497 0.080 28.3 0.480 0.321 13.6 0.0442 0.070 32.3 0.414 0.281 13.4 0.0386 0.060 37.7 0.350 0.241 13.2 0.0318 0.050 45.3 0.287 0.201 13.0 0.0221	mm	ness	tance at 20 °C Ω/m		g/m	area cm²/m	sectional area
0.060 32.3 0.470 0.281 15.2 0.0386 0.050 38.8 0.386 0.234 15.0 0.0322 0.6 0.40 5.66 3.53 1.61 20.0 0.221 0.30 7.55 2.38 1.21 18.0 0.166 0.20 11.3 1.41 0.804 16.0 0.110 0.15 15.1 0.994 0.603 15.0 0.0828 0.10 22.6 0.618 0.402 14.0 0.0552 0.090 25.2 0.548 0.362 13.8 0.0497 0.080 28.3 0.480 0.321 13.6 0.0442 0.070 32.3 0.414 0.281 13.4 0.0386 0.060 37.7 0.350 0.241 13.2 0.0331 0.050 45.3 0.287 0.201 13.0 0.0276 0.50 45.3 0.226 0.161 12.8 0.0221	0.7	0.080	24.3	0.643	0.375	15.6	0.0515
0.050 38.8 0.386 0.234 15.0 0.0322 0.6 0.40 5.66 3.53 1.61 20.0 0.221 0.30 7.55 2.38 1.21 18.0 0.166 0.20 11.3 1.41 0.804 16.0 0.110 0.15 15.1 0.994 0.603 15.0 0.0828 0.10 22.6 0.618 0.402 14.0 0.0552 0.090 25.2 0.548 0.362 13.8 0.0497 0.080 28.3 0.480 0.321 13.6 0.0442 0.070 32.3 0.414 0.281 13.4 0.0386 0.060 37.7 0.350 0.241 13.2 0.0331 0.050 45.3 0.287 0.201 13.0 0.0226 0.5 0.30 9.06 1.77 1.00 16.0 0.138 0.20 13.6 1.030 0.670 14.0 0.0922		0.070	27.7	0.555	0.328	15.4	0.0451
0.6 0.40 5.66 3.53 1.61 20.0 0.221 0.30 7.55 2.38 1.21 18.0 0.166 0.20 11.3 1.41 0.804 16.0 0.110 0.15 15.1 0.994 0.603 15.0 0.0828 0.10 22.6 0.618 0.402 14.0 0.0552 0.090 25.2 0.548 0.362 13.8 0.0497 0.080 28.3 0.480 0.321 13.6 0.0442 0.070 32.3 0.414 0.281 13.4 0.0386 0.060 37.7 0.350 0.241 13.2 0.0331 0.050 45.3 0.287 0.201 13.0 0.0276 0.040 56.6 0.226 0.161 12.8 0.0221 0.5 0.30 9.06 1.77 1.00 16.0 0.138 0.20 13.6 1.030 0.670 14.0 0.0922		0.060	32.3	0.470	0.281	15.2	0.0386
0.30 7.55 2.38 1.21 18.0 0.166 0.20 11.3 1.41 0.804 16.0 0.110 0.15 15.1 0.994 0.603 15.0 0.0828 0.10 22.6 0.618 0.402 14.0 0.0552 0.090 25.2 0.548 0.362 13.8 0.0497 0.080 28.3 0.480 0.321 13.6 0.0442 0.070 32.3 0.414 0.281 13.4 0.0386 0.060 37.7 0.350 0.241 13.2 0.0331 0.050 45.3 0.287 0.201 13.0 0.0276 0.040 56.6 0.226 0.161 12.8 0.0221 0.5 0.30 9.06 1.77 1.00 16.0 0.138 0.20 13.6 1.030 0.670 14.0 0.0920 0.15 18.1 0.718 0.502 13.0 0.0690		0.050	38.8	0.386	0.234	15.0	0.0322
0.20 11.3 1.41 0.804 16.0 0.110 0.15 15.1 0.994 0.603 15.0 0.0828 0.10 22.6 0.618 0.402 14.0 0.0552 0.090 25.2 0.548 0.362 13.8 0.0497 0.080 28.3 0.480 0.321 13.6 0.0442 0.070 32.3 0.414 0.281 13.4 0.0386 0.060 37.7 0.350 0.241 13.2 0.0331 0.050 45.3 0.287 0.201 13.0 0.0276 0.040 56.6 0.226 0.161 12.8 0.0221 0.5 0.30 9.06 1.77 1.00 16.0 0.138 0.20 13.6 1.030 0.670 14.0 0.0920 0.15 18.1 0.718 0.502 13.0 0.0690 0.10 27.2 0.442 0.335 12.0 0.0460 <tr< td=""><td>0.6</td><td>0.40</td><td>5.66</td><td>3.53</td><td>1.61</td><td>20.0</td><td>0.221</td></tr<>	0.6	0.40	5.66	3.53	1.61	20.0	0.221
0.15 15.1 0.994 0.603 15.0 0.0828 0.10 22.6 0.618 0.402 14.0 0.0552 0.090 25.2 0.548 0.362 13.8 0.0497 0.080 28.3 0.480 0.321 13.6 0.0442 0.070 32.3 0.414 0.281 13.4 0.0386 0.060 37.7 0.350 0.241 13.2 0.0331 0.050 45.3 0.287 0.201 13.0 0.0276 0.040 56.6 0.226 0.161 12.8 0.0221 0.5 0.30 9.06 1.77 1.00 16.0 0.138 0.20 13.6 1.030 0.670 14.0 0.0920 0.15 18.1 0.718 0.502 13.0 0.0690 0.10 27.2 0.442 0.335 12.0 0.0460 0.090 30.2 0.391 0.301 11.8 0.0414		0.30	7.55	2.38	1.21	18.0	0.166
0.10 22.6 0.618 0.402 14.0 0.0552 0.090 25.2 0.548 0.362 13.8 0.0497 0.080 28.3 0.480 0.321 13.6 0.0442 0.070 32.3 0.414 0.281 13.4 0.0386 0.060 37.7 0.350 0.241 13.2 0.0331 0.050 45.3 0.287 0.201 13.0 0.0276 0.040 56.6 0.226 0.161 12.8 0.0221 0.5 0.30 9.06 1.77 1.00 16.0 0.138 0.20 13.6 1.030 0.670 14.0 0.0920 0.15 18.1 0.718 0.502 13.0 0.0690 0.10 27.2 0.442 0.335 12.0 0.0460 0.090 30.2 0.391 0.301 11.8 0.0414 0.080 34.0 0.342 0.268 11.6 0.0326		0.20	11.3	1.41	0.804	16.0	0.110
0.090 25.2 0.548 0.362 13.8 0.0497 0.080 28.3 0.480 0.321 13.6 0.0442 0.070 32.3 0.414 0.281 13.4 0.0386 0.060 37.7 0.350 0.241 13.2 0.0331 0.050 45.3 0.287 0.201 13.0 0.0276 0.040 56.6 0.226 0.161 12.8 0.0221 0.5 0.30 9.06 1.77 1.00 16.0 0.138 0.20 13.6 1.030 0.670 14.0 0.0920 0.15 18.1 0.718 0.502 13.0 0.0690 0.10 27.2 0.442 0.335 12.0 0.0460 0.090 30.2 0.391 0.301 11.8 0.0414 0.080 34.0 0.342 0.268 11.6 0.0368 0.070 38.8 0.294 0.234 11.4 0.0322		0.15	15.1	0.994	0.603	15.0	0.0828
0.080 28.3 0.480 0.321 13.6 0.0442 0.070 32.3 0.414 0.281 13.4 0.0386 0.060 37.7 0.350 0.241 13.2 0.0331 0.050 45.3 0.287 0.201 13.0 0.0276 0.040 56.6 0.226 0.161 12.8 0.0221 0.5 0.30 9.06 1.77 1.00 16.0 0.138 0.20 13.6 1.030 0.670 14.0 0.0920 0.15 18.1 0.718 0.502 13.0 0.0690 0.10 27.2 0.442 0.335 12.0 0.0460 0.090 30.2 0.391 0.301 11.8 0.0414 0.080 34.0 0.342 0.268 11.6 0.0368 0.070 38.8 0.294 0.234 11.4 0.0322 0.060 45.3 0.227 0.201 11.2 0.0276		0.10	22.6	0.618	0.402	14.0	0.0552
0.070 32.3 0.414 0.281 13.4 0.0386 0.060 37.7 0.350 0.241 13.2 0.0331 0.050 45.3 0.287 0.201 13.0 0.0276 0.040 56.6 0.226 0.161 12.8 0.0221 0.5 0.30 9.06 1.77 1.00 16.0 0.138 0.20 13.6 1.030 0.670 14.0 0.0920 0.15 18.1 0.718 0.502 13.0 0.0690 0.10 27.2 0.442 0.335 12.0 0.0460 0.090 30.2 0.391 0.301 11.8 0.0414 0.080 34.0 0.342 0.268 11.6 0.0368 0.070 38.8 0.294 0.234 11.4 0.0322 0.060 45.3 0.247 0.201 11.2 0.0276 0.050 54.3 0.202 0.167 11.0 0.0230		0.090	25.2	0.548	0.362	13.8	0.0497
0.060 37.7 0.350 0.241 13.2 0.0331 0.050 45.3 0.287 0.201 13.0 0.0276 0.040 56.6 0.226 0.161 12.8 0.0221 0.5 0.30 9.06 1.77 1.00 16.0 0.138 0.20 13.6 1.030 0.670 14.0 0.0920 0.15 18.1 0.718 0.502 13.0 0.0690 0.10 27.2 0.442 0.335 12.0 0.0460 0.090 30.2 0.391 0.301 11.8 0.0414 0.080 34.0 0.342 0.268 11.6 0.0368 0.070 38.8 0.294 0.234 11.4 0.0322 0.060 45.3 0.247 0.201 11.2 0.0276 0.050 54.3 0.202 0.167 11.0 0.0230 0.040 67.9 0.159 0.134 10.8 0.011		0.080	28.3	0.480	0.321	13.6	0.0442
0.050 45.3 0.287 0.201 13.0 0.0276 0.040 56.6 0.226 0.161 12.8 0.0221 0.5 0.30 9.06 1.77 1.00 16.0 0.138 0.20 13.6 1.030 0.670 14.0 0.0920 0.15 18.1 0.718 0.502 13.0 0.0690 0.10 27.2 0.442 0.335 12.0 0.0460 0.090 30.2 0.391 0.301 11.8 0.0414 0.080 34.0 0.342 0.268 11.6 0.0368 0.070 38.8 0.294 0.234 11.4 0.0322 0.060 45.3 0.247 0.201 11.2 0.0276 0.050 54.3 0.202 0.167 11.0 0.0230 0.040 67.9 0.159 0.134 10.8 0.0184 0.4 0.30 11.3 1.24 0.804 14.0 0.110		0.070	32.3	0.414	0.281	13.4	0.0386
0.040 56.6 0.226 0.161 12.8 0.0221 0.5 0.30 9.06 1.77 1.00 16.0 0.138 0.20 13.6 1.030 0.670 14.0 0.0920 0.15 18.1 0.718 0.502 13.0 0.0690 0.10 27.2 0.442 0.335 12.0 0.0460 0.090 30.2 0.391 0.301 11.8 0.0414 0.080 34.0 0.342 0.268 11.6 0.0368 0.070 38.8 0.294 0.234 11.4 0.0322 0.060 45.3 0.247 0.201 11.2 0.0276 0.050 54.3 0.202 0.167 11.0 0.0230 0.040 67.9 0.159 0.134 10.8 0.0184 0.4 0.30 11.3 1.24 0.804 14.0 0.110 0.20 17.0 0.707 0.536 12.0 0.0736<		0.060	37.7	0.350	0.241	13.2	0.0331
0.5 0.30 9.06 1.77 1.00 16.0 0.138 0.20 13.6 1.030 0.670 14.0 0.0920 0.15 18.1 0.718 0.502 13.0 0.0690 0.10 27.2 0.442 0.335 12.0 0.0460 0.090 30.2 0.391 0.301 11.8 0.0414 0.080 34.0 0.342 0.268 11.6 0.0368 0.070 38.8 0.294 0.234 11.4 0.0322 0.060 45.3 0.247 0.201 11.2 0.0276 0.050 54.3 0.202 0.167 11.0 0.0230 0.040 67.9 0.159 0.134 10.8 0.0184 0.4 0.30 11.3 1.24 0.804 14.0 0.110 0.20 17.0 0.707 0.536 12.0 0.0736 0.15 22.6 0.486 0.402 11.0 0.0552 </td <td></td> <td>0.050</td> <td>45.3</td> <td>0.287</td> <td>0.201</td> <td>13.0</td> <td>0.0276</td>		0.050	45.3	0.287	0.201	13.0	0.0276
0.20 13.6 1.030 0.670 14.0 0.0920 0.15 18.1 0.718 0.502 13.0 0.0690 0.10 27.2 0.442 0.335 12.0 0.0460 0.090 30.2 0.391 0.301 11.8 0.0414 0.080 34.0 0.342 0.268 11.6 0.0368 0.070 38.8 0.294 0.234 11.4 0.0322 0.060 45.3 0.247 0.201 11.2 0.0276 0.050 54.3 0.202 0.167 11.0 0.0230 0.040 67.9 0.159 0.134 10.8 0.0184 0.4 0.30 11.3 1.24 0.804 14.0 0.110 0.20 17.0 0.707 0.536 12.0 0.0736 0.15 22.6 0.486 0.402 11.0 0.0552 0.15 22.6 0.486 0.402 11.0 0.0552		0.040	56.6	0.226	0.161	12.8	0.0221
0.15 18.1 0.718 0.502 13.0 0.0690 0.10 27.2 0.442 0.335 12.0 0.0460 0.090 30.2 0.391 0.301 11.8 0.0414 0.080 34.0 0.342 0.268 11.6 0.0368 0.070 38.8 0.294 0.234 11.4 0.0322 0.060 45.3 0.247 0.201 11.2 0.0276 0.050 54.3 0.202 0.167 11.0 0.0230 0.040 67.9 0.159 0.134 10.8 0.0184 0.20 17.0 0.707 0.536 12.0 0.0736 0.15 22.6 0.486 0.402 11.0 0.0552 0.15 22.6 0.486 0.402 11.0 0.0552 0.15 37.7 0.260 0.241 9.80 0.0331 0.080 42.5 0.226 0.214 9.60 0.0224 0	0.5	0.30	9.06	1.77	1.00	16.0	0.138
0.10 27.2 0.442 0.335 12.0 0.0460 0.090 30.2 0.391 0.301 11.8 0.0414 0.080 34.0 0.342 0.268 11.6 0.0368 0.070 38.8 0.294 0.234 11.4 0.0322 0.060 45.3 0.247 0.201 11.2 0.0276 0.050 54.3 0.202 0.167 11.0 0.0230 0.040 67.9 0.159 0.134 10.8 0.0184 0.20 17.0 0.707 0.536 12.0 0.0736 0.15 22.6 0.486 0.402 11.0 0.0552 0.10 34.0 0.294 0.268 10.0 0.0368 0.090 37.7 0.260 0.241 9.80 0.0331 0.080 42.5 0.226 0.214 9.60 0.0294 0.070 48.5 0.194 0.188 9.40 0.0258 <td< td=""><td></td><td>0.20</td><td>13.6</td><td>1.030</td><td>0.670</td><td>14.0</td><td>0.0920</td></td<>		0.20	13.6	1.030	0.670	14.0	0.0920
0.090 30.2 0.391 0.301 11.8 0.0414 0.080 34.0 0.342 0.268 11.6 0.0368 0.070 38.8 0.294 0.234 11.4 0.0322 0.060 45.3 0.247 0.201 11.2 0.0276 0.050 54.3 0.202 0.167 11.0 0.0230 0.040 67.9 0.159 0.134 10.8 0.0184 0.20 17.0 0.707 0.536 12.0 0.0736 0.15 22.6 0.486 0.402 11.0 0.0552 0.10 34.0 0.294 0.268 10.0 0.0368 0.090 37.7 0.260 0.241 9.80 0.0331 0.080 42.5 0.226 0.214 9.60 0.0294 0.070 48.5 0.194 0.188 9.40 0.0258 0.050 73.4 0.123 0.134 9.00 0.0184 <t< td=""><td></td><td>0.15</td><td>18.1</td><td>0.718</td><td>0.502</td><td>13.0</td><td>0.0690</td></t<>		0.15	18.1	0.718	0.502	13.0	0.0690
0.080 34.0 0.342 0.268 11.6 0.0368 0.070 38.8 0.294 0.234 11.4 0.0322 0.060 45.3 0.247 0.201 11.2 0.0276 0.050 54.3 0.202 0.167 11.0 0.0230 0.040 67.9 0.159 0.134 10.8 0.0184 0.2 17.0 0.707 0.536 12.0 0.0736 0.15 22.6 0.486 0.402 11.0 0.0552 0.10 34.0 0.294 0.268 10.0 0.0368 0.090 37.7 0.260 0.241 9.80 0.0331 0.080 42.5 0.226 0.214 9.60 0.0294 0.070 48.5 0.194 0.188 9.40 0.0258 0.060 56.6 0.163 0.161 9.20 0.0221 0.050 73.4 0.123 0.134 9.00 0.0184 <td< td=""><td></td><td>0.10</td><td>27.2</td><td>0.442</td><td>0.335</td><td>12.0</td><td>0.0460</td></td<>		0.10	27.2	0.442	0.335	12.0	0.0460
0.070 38.8 0.294 0.234 11.4 0.0322 0.060 45.3 0.247 0.201 11.2 0.0276 0.050 54.3 0.202 0.167 11.0 0.0230 0.040 67.9 0.159 0.134 10.8 0.0184 0.4 0.30 11.3 1.24 0.804 14.0 0.110 0.20 17.0 0.707 0.536 12.0 0.0736 0.15 22.6 0.486 0.402 11.0 0.0552 0.10 34.0 0.294 0.268 10.0 0.0368 0.090 37.7 0.260 0.241 9.80 0.0331 0.080 42.5 0.226 0.214 9.60 0.0294 0.070 48.5 0.194 0.188 9.40 0.0258 0.060 56.6 0.163 0.161 9.20 0.0221 0.050 73.4 0.123 0.134 9.00 0.0184		0.090	30.2	0.391	0.301	11.8	0.0414
0.060 45.3 0.247 0.201 11.2 0.0276 0.050 54.3 0.202 0.167 11.0 0.0230 0.040 67.9 0.159 0.134 10.8 0.0184 0.4 0.30 11.3 1.24 0.804 14.0 0.110 0.20 17.0 0.707 0.536 12.0 0.0736 0.15 22.6 0.486 0.402 11.0 0.0552 0.10 34.0 0.294 0.268 10.0 0.0368 0.090 37.7 0.260 0.241 9.80 0.0331 0.080 42.5 0.226 0.214 9.60 0.0294 0.070 48.5 0.194 0.188 9.40 0.0258 0.060 56.6 0.163 0.161 9.20 0.0221 0.050 73.4 0.123 0.134 9.00 0.0184 0.3 0.20 22.6 0.442 0.402 10.0 0.0		0.080	34.0	0.342	0.268	11.6	0.0368
0.050 54.3 0.202 0.167 11.0 0.0230 0.040 67.9 0.159 0.134 10.8 0.0184 0.4 0.30 11.3 1.24 0.804 14.0 0.110 0.20 17.0 0.707 0.536 12.0 0.0736 0.15 22.6 0.486 0.402 11.0 0.0552 0.10 34.0 0.294 0.268 10.0 0.0368 0.090 37.7 0.260 0.241 9.80 0.0331 0.080 42.5 0.226 0.214 9.60 0.0294 0.070 48.5 0.194 0.188 9.40 0.0258 0.060 56.6 0.163 0.161 9.20 0.0221 0.050 73.4 0.123 0.134 9.00 0.0184 0.3 0.20 22.6 0.442 0.402 10.0 0.0552 0.15 30.2 0.298 0.301 9.00 0.04		0.070	38.8	0.294	0.234	11.4	0.0322
0.040 67.9 0.159 0.134 10.8 0.0184 0.4 0.30 11.3 1.24 0.804 14.0 0.110 0.20 17.0 0.707 0.536 12.0 0.0736 0.15 22.6 0.486 0.402 11.0 0.0552 0.10 34.0 0.294 0.268 10.0 0.0368 0.090 37.7 0.260 0.241 9.80 0.0331 0.080 42.5 0.226 0.214 9.60 0.0294 0.070 48.5 0.194 0.188 9.40 0.0258 0.060 56.6 0.163 0.161 9.20 0.0221 0.050 73.4 0.123 0.134 9.00 0.0184 0.3 0.20 22.6 0.442 0.402 10.0 0.0552 0.15 30.2 0.298 0.301 9.00 0.0414 0.10 45.3 0.177 0.201 8.00 0.027		0.060	45.3	0.247	0.201	11.2	0.0276
0.4 0.30 11.3 1.24 0.804 14.0 0.110 0.20 17.0 0.707 0.536 12.0 0.0736 0.15 22.6 0.486 0.402 11.0 0.0552 0.10 34.0 0.294 0.268 10.0 0.0368 0.090 37.7 0.260 0.241 9.80 0.0331 0.080 42.5 0.226 0.214 9.60 0.0294 0.070 48.5 0.194 0.188 9.40 0.0258 0.060 56.6 0.163 0.161 9.20 0.0221 0.050 73.4 0.123 0.134 9.00 0.0184 0.3 0.20 22.6 0.442 0.402 10.0 0.0552 0.15 30.2 0.298 0.301 9.00 0.0414 0.10 45.3 0.177 0.201 8.00 0.0276 0.090 50.3 0.155 0.181 7.80 0.024		0.050	54.3	0.202	0.167	11.0	0.0230
0.20 17.0 0.707 0.536 12.0 0.0736 0.15 22.6 0.486 0.402 11.0 0.0552 0.10 34.0 0.294 0.268 10.0 0.0368 0.090 37.7 0.260 0.241 9.80 0.0331 0.080 42.5 0.226 0.214 9.60 0.0294 0.070 48.5 0.194 0.188 9.40 0.0258 0.060 56.6 0.163 0.161 9.20 0.0221 0.050 73.4 0.123 0.134 9.00 0.0184 0.3 0.20 22.6 0.442 0.402 10.0 0.0552 0.15 30.2 0.298 0.301 9.00 0.0414 0.10 45.3 0.177 0.201 8.00 0.0276 0.090 50.3 0.155 0.181 7.80 0.0248 0.080 56.6 0.134 0.161 7.60 0.0221		0.040	67.9	0.159	0.134	10.8	0.0184
0.15 22.6 0.486 0.402 11.0 0.0552 0.10 34.0 0.294 0.268 10.0 0.0368 0.090 37.7 0.260 0.241 9.80 0.0331 0.080 42.5 0.226 0.214 9.60 0.0294 0.070 48.5 0.194 0.188 9.40 0.0258 0.060 56.6 0.163 0.161 9.20 0.0221 0.050 73.4 0.123 0.134 9.00 0.0184 0.3 0.20 22.6 0.442 0.402 10.0 0.0552 0.15 30.2 0.298 0.301 9.00 0.0414 0.10 45.3 0.177 0.201 8.00 0.0276 0.090 50.3 0.155 0.181 7.80 0.0248 0.080 56.6 0.134 0.161 7.60 0.0221 0.070 64.7 0.114 0.141 7.40 0.0193	0.4	0.30	11.3	1.24	0.804	14.0	0.110
0.10 34.0 0.294 0.268 10.0 0.0368 0.090 37.7 0.260 0.241 9.80 0.0331 0.080 42.5 0.226 0.214 9.60 0.0294 0.070 48.5 0.194 0.188 9.40 0.0258 0.060 56.6 0.163 0.161 9.20 0.0221 0.050 73.4 0.123 0.134 9.00 0.0184 0.3 0.20 22.6 0.442 0.402 10.0 0.0552 0.15 30.2 0.298 0.301 9.00 0.0414 0.10 45.3 0.177 0.201 8.00 0.0276 0.090 50.3 0.155 0.181 7.80 0.0248 0.080 56.6 0.134 0.161 7.60 0.0221 0.070 64.7 0.114 0.141 7.40 0.0193 0.060 75.5 0.0954 0.121 7.20 0.0166 <td></td> <td>0.20</td> <td>17.0</td> <td>0.707</td> <td>0.536</td> <td>12.0</td> <td>0.0736</td>		0.20	17.0	0.707	0.536	12.0	0.0736
0.090 37.7 0.260 0.241 9.80 0.0331 0.080 42.5 0.226 0.214 9.60 0.0294 0.070 48.5 0.194 0.188 9.40 0.0258 0.060 56.6 0.163 0.161 9.20 0.0221 0.050 73.4 0.123 0.134 9.00 0.0184 0.3 0.20 22.6 0.442 0.402 10.0 0.0552 0.15 30.2 0.298 0.301 9.00 0.0414 0.10 45.3 0.177 0.201 8.00 0.0276 0.090 50.3 0.155 0.181 7.80 0.0248 0.080 56.6 0.134 0.161 7.60 0.0221 0.070 64.7 0.114 0.141 7.40 0.0193 0.060 75.5 0.0954 0.121 7.20 0.0166		0.15	22.6	0.486	0.402	11.0	0.0552
0.080 42.5 0.226 0.214 9.60 0.0294 0.070 48.5 0.194 0.188 9.40 0.0258 0.060 56.6 0.163 0.161 9.20 0.0221 0.050 73.4 0.123 0.134 9.00 0.0184 0.3 0.20 22.6 0.442 0.402 10.0 0.0552 0.15 30.2 0.298 0.301 9.00 0.0414 0.10 45.3 0.177 0.201 8.00 0.0276 0.090 50.3 0.155 0.181 7.80 0.0248 0.080 56.6 0.134 0.161 7.60 0.0221 0.070 64.7 0.114 0.141 7.40 0.0193 0.060 75.5 0.0954 0.121 7.20 0.0166		0.10	34.0	0.294	0.268	10.0	0.0368
0.070 48.5 0.194 0.188 9.40 0.0258 0.060 56.6 0.163 0.161 9.20 0.0221 0.050 73.4 0.123 0.134 9.00 0.0184 0.3 0.20 22.6 0.442 0.402 10.0 0.0552 0.15 30.2 0.298 0.301 9.00 0.0414 0.10 45.3 0.177 0.201 8.00 0.0276 0.090 50.3 0.155 0.181 7.80 0.0248 0.080 56.6 0.134 0.161 7.60 0.0221 0.070 64.7 0.114 0.141 7.40 0.0193 0.060 75.5 0.0954 0.121 7.20 0.0166		0.090	37.7	0.260	0.241	9.80	0.0331
0.060 56.6 0.163 0.161 9.20 0.0221 0.050 73.4 0.123 0.134 9.00 0.0184 0.3 0.20 22.6 0.442 0.402 10.0 0.0552 0.15 30.2 0.298 0.301 9.00 0.0414 0.10 45.3 0.177 0.201 8.00 0.0276 0.090 50.3 0.155 0.181 7.80 0.0248 0.080 56.6 0.134 0.161 7.60 0.0221 0.070 64.7 0.114 0.141 7.40 0.0193 0.060 75.5 0.0954 0.121 7.20 0.0166		0.080	42.5	0.226	0.214	9.60	0.0294
0.050 73.4 0.123 0.134 9.00 0.0184 0.3 0.20 22.6 0.442 0.402 10.0 0.0552 0.15 30.2 0.298 0.301 9.00 0.0414 0.10 45.3 0.177 0.201 8.00 0.0276 0.090 50.3 0.155 0.181 7.80 0.0248 0.080 56.6 0.134 0.161 7.60 0.0221 0.070 64.7 0.114 0.141 7.40 0.0193 0.060 75.5 0.0954 0.121 7.20 0.0166		0.070	48.5	0.194	0.188	9.40	0.0258
0.3 0.20 22.6 0.442 0.402 10.0 0.0552 0.15 30.2 0.298 0.301 9.00 0.0414 0.10 45.3 0.177 0.201 8.00 0.0276 0.090 50.3 0.155 0.181 7.80 0.0248 0.080 56.6 0.134 0.161 7.60 0.0221 0.070 64.7 0.114 0.141 7.40 0.0193 0.060 75.5 0.0954 0.121 7.20 0.0166		0.060	56.6	0.163	0.161	9.20	0.0221
0.15 30.2 0.298 0.301 9.00 0.0414 0.10 45.3 0.177 0.201 8.00 0.0276 0.090 50.3 0.155 0.181 7.80 0.0248 0.080 56.6 0.134 0.161 7.60 0.0221 0.070 64.7 0.114 0.141 7.40 0.0193 0.060 75.5 0.0954 0.121 7.20 0.0166		0.050	73.4	0.123	0.134	9.00	0.0184
0.10 45.3 0.177 0.201 8.00 0.0276 0.090 50.3 0.155 0.181 7.80 0.0248 0.080 56.6 0.134 0.161 7.60 0.0221 0.070 64.7 0.114 0.141 7.40 0.0193 0.060 75.5 0.0954 0.121 7.20 0.0166	0.3	0.20	22.6	0.442	0.402	10.0	0.0552
0.090 50.3 0.155 0.181 7.80 0.0248 0.080 56.6 0.134 0.161 7.60 0.0221 0.070 64.7 0.114 0.141 7.40 0.0193 0.060 75.5 0.0954 0.121 7.20 0.0166		0.15	30.2	0.298	0.301	9.00	0.0414
0.080 56.6 0.134 0.161 7.60 0.0221 0.070 64.7 0.114 0.141 7.40 0.0193 0.060 75.5 0.0954 0.121 7.20 0.0166		0.10	45.3	0.177	0.201	8.00	0.0276
0.070 64.7 0.114 0.141 7.40 0.0193 0.060 75.5 0.0954 0.121 7.20 0.0166		0.090	50.3	0.155	0.181	7.80	0.0248
0.060 75.5 0.0954 0.121 7.20 0.0166		0.080	56.6	0.134	0.161	7.60	0.0221
		0.070	64.7	0.114	0.141	7.40	0.0193
		0.060	75.5	0.0954	0.121	7.20	0.0166
		0.050	90.6	0.0773	0.100	7.00	0.0138

NIKROTHAL 80, 70 Wire

Standard stock items	Alloy	Diameter range mm	Resistivity Ωmm²m⁻¹	Density gcm ⁻³
	NIKROTHAL 80	8.0-0.020	1.09	8.30
_	NIKROTHAL 70	10.0-0.50	1.18	8.10

To obtain resistance at working temperature, multiply by the factor $\mathbf{C}_{\!_{t}}$ in the following table:

°C 20	100	200	300	400	500	600	700	800	900	1000	1100	1200
N 80 C, 1.00	1.01	1.02	1.03	1.04	1.05	1.04	1.04	1.04	1.04	1.05	1.06	1.07
N 70 C, 1.00	1.01	1.02	1.03	1.04	1.05	1.05	1.04	1.04	1.04	1.05	1.06	1.06

To get NIKROTHAL 70, multiply the figures in the table with:

 Resistance
 at 20 °C
 cm²/Ω
 Weight

 Ω/m
 at 20 °C
 g/m

 1.083
 0.924
 0.976

Dia- meter mm	Resistance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²
10	0.0139	22637	652	314	78.5
9.5	0.0154	19408	588	298	70.9
9.0	0.0171	16502	528	283	63.6
8.25	0.0204	12711	444	259	53.5
8.0	0.0217	11590	417	251	50.3
7.5	0.0247	9550	367	236	44.2
7.0	0.0283	7764	319	220	38.5
6.5	0.0328	6217	275	204	33.2
6.0	0.0386	4890	235	188	28.3
5.83	0.0408	4486	222	183	26.7
5.5	0.0459	3766	197	173	23.8
5.0	0.0555	2830	163	157	19.6
4.75	0.0615	2426	147	149	17.7
4.5	0.0685	2063	132	141	15.9
4.25	0.0768	1738	118	134	14.2
4.0	0.0867	1449	104	126	12.6
3.75	0.0987	1194	91.7	118	11.0
3.65	0.104	1101	86.8	115	10.5
3.5	0.113	971	79.9	110	9.62
3.25	0.131	777	68.9	102	8.30
3.0	0.154	611	58.7	94.2	7.07
2.8	0.177	497	51.1	88.0	6.16
2.6	0.205	398	44.1	81.7	5.31
2.5	0.222	354	40.7	78.5	4.91
2.3	0.262	275	34.5	72.3	4.15
2.0	0.347	181	26.1	62.8	3.14
1.8	0.428	132	21.1	56.5	2.54
1.6	0.542	92.7	16.7	50.3	2.01
1.5	0.617	76.4	14.7	47.1	1.77
1.4	0.708	62.1	12.8	44.0	1.54

Dia- meter mm	Resistance at 20 °C Ω/m	cm²/ $\Omega^{1)}$ at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²
1.3	0.821	49.7	11.0	40.8	1.33
1.2	0.964	39.1	9.39	37.7	1.13
1.0	1.39	22.6	6.52	31.4	0.785
0.95	1.54	19.4	5.88	29.8	0.709
0.90	1.71	16.5	5.28	28.3	0.636
0.85	1.92	13.9	4.71	26.7	0.567
0.80	2.17	11.6	4.17	25.1	0.503
0.75	2.47	9.55	3.67	23.6	0.442
0.70	2.83	7.76	3.19	22.0	0.385
0.65	3.28	6.22	2.75	20.4	0.332
0.60	3.86	4.89	2.35	18.8	0.283
0.55	4.59	3.77	1.97	17.3	0.238
0.50	5.55	2.83	1.63	15.7	0.196
0.45	6.85	2.06	1.32	14.1	0.159
0.40	8.67	1.45	1.04	12.6	0.126
0.35	11.3	0.971	0.799	11.0	0.0962
0.32	13.6	0.742	0.668	10.1	0.0804
0.30	15.4	0.611	0.587	9.42	0.0707
0.28	17.7	0.497	0.511	8.80	0.0616
0.25	22.2	0.354	0.407	7.85	0.0491
0.22	28.7	0.241	0.316	6.91	0.0380
0.20	34.7	0.181	0.261	6.28	0.0314
0.19	38.4	0.155	0.235	5.97	0.0284
0.18	42.8	0.132	0.211	5.65	0.0254
0.17	48.0	0.111	0.188	5.34	0.0227
0.16	54.2	0.0927	0.167	5.03	0.0201
0.15	61.7	0.0764	0.147	4.71	0.0177
0.14	70.8	0.0621	0.128	4.40	0.0154
0.13	82.1	0.0497	0.110	4.08	0.0133

 $^{^{1)}}$ cm²/ Ω = I² · C_t/p (I = Current, C_t = temperature factor, p = surface load W/cm²)

9

NIKROTHAL 60 Wire

Alloy	Diameter range	Resistivity	Density
	mm	Ωmm ² m ⁻¹	gcm ⁻³
NIKROTHAL 60	6.0-0.015	1.11	8.20

To obtain resistance at working temperature, multiply by the factor C_t in the following table:

°C	20	100	200	300	400	500	600	700	800	900	1000	1100	1200	
C.	1.00	1.02	1.04	1.05	1.06	1.08	1.09	1.09	1.10	1.10	1.11	1.12	1.13	

Dia- meter mm	Resistance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²
6.0	0.0393	4801	232	188	28.3
5.5	0.0467	3698	195	173	23.8
5.0	0.0565	2779	161	157	19.6
4.75	0.0626	2382	145	149	17.7
4.5	0.0698	2026	130	141	15.9
4.25	0.0782	1706	116	134	14.2
4.0	0.0883	1423	103	126	12.6
3.75	0.101	1172	90.6	118	11.0
3.5	0.115	953	78.9	110	9.62
3.25	0.134	763	68.0	102	8.30
3.0	0.157	600	58.0	94.2	7.07
2.8	0.180	488	50.5	88.0	6.16
2.6	0.209	391	43.5	81.7	5.31
2.5	0.226	347	40.3	78.5	4.91
2.2	0.292	237	31.2	69.1	3.80
2.0	0.353	178	25.8	62.8	3.14
1.9	0.391	152	23.2	59.7	2.84
1.8	0.436	130	20.9	56.5	2.54
1.7	0.489	109	18.6	53.4	2.27
1.6	0.552	91.0	16.5	50.3	2.01
1.5	0.628	75.0	14.5	47.1	1.77
1.4	0.721	61.0	12.6	44.0	1.54
1.3	0.836	48.8	10.9	40.8	1.33
1.2	0.981	38.4	9.27	37.7	1.13
1.1	1.17	29.6	7.79	34.6	0.950
1.0	1.41	22.2	6.44	31.4	0.785
0.95	1.57	19.1	5.81	29.8	0.709
0.90	1.74	16.2	5.22	28.3	0.636
0.85	1.96	13.7	4.65	26.7	0.567
0.80	2.21	11.4	4.12	25.1	0.503

Dia- meter mm	Resistance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²
0.75	2.51	9.38	3.62	23.6	0.442
0.70	2.88	7.62	3.16	22.0	0.385
0.65	3.35	6.10	2.72	20.4	0.332
0.60	3.93	4.80	2.32	18.8	0.283
0.55	4.67	3.70	1.95	17.3	0.238
0.50	5.65	2.78	1.61	15.7	0.196
0.475	6.26	2.38	1.45	14.9	0.177
0.45	6.98	2.03	1.30	14.1	0.159
0.425	7.82	1.71	1.16	13.4	0.142
0.40	8.83	1.42	1.03	12.6	0.126
0.375	10.1	1.17	0.906	11.8	
0.35	11.5	0.953	0.789	11.0	
0.32	13.8	0.728	0.659	10.1	
0.30	15.7	0.600	0.580	9.42	
0.28	18.0	0.488	0.505	8.80	
0.26	20.9	0.391	0.435	8.17	
0.25	22.6	0.347	0.403	7.85	
0.24	24.5	0.307	0.371	7.54	
0.23	26.7	0.270	0.341	7.23	
0.22	29.2	0.237	0.312	6.91	
0.21	32.0	0.206	0.284	6.60	
0.20	35.3	0.178	0.258	6.28	
0.19	39.1	0.152	0.232	5.97	
0.18	43.6	0.130	0.209	5.65	
0.17	48.9	0.109	0.186	5.34	
0.16	55.2	0.0910	0.165	5.03	
0.15	62.8	0.0750	0.145	4.71	
0.14	72.1	0.0610	0.126	4.40	
0.13	83.6	0.0488	0.109	4.08	

NIKROTHAL 40, 20 Wire

Alloy	Diameter range mm	Resistivity Ωmm ² m ⁻¹	Density gcm ⁻³
NIKROTHAL 40	6.0-0.10	1.04	7.90
NIKROTHAL 20	6.0-0.10	0.95	7.80

To obtain resistance at working temperature, multiply by the factor C_t in the following table:

°C	20	100	200	300	400	500	600	700	800	900	1000	1100
N40 C,	1.00	1.03	1.06	1.10	1.12	1.15	1.17	1.19	1.21	1.22	1.23	1.24
N20 C	1.00	1.04	1.10	1.14	1.17	1.21	1.12	1.16	1.28	1.30	1.32	1.34

To get NIKROTHAL 20, multiply the figures in the table with:

| Resistance at 20 °C | cm²/Ω | Weight | Ω/m | at 20 °C | g/m | 0.913 | 1.095 | 0.987 |

					•
Dia- meter mm	Resistance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²
6.0	0.0368	5125	223	188	28.3
5.5	0.0438	3947	188	173	23.8
5.0	0.0530	2966	155	157	19.6
4.75	0.0587	2543	140	149	17.7
4.5	0.0654	2162	126	141	15.9
4.25	0.0733	1821	112	134	14.2
4.0	0.0828	1518	99.3	126	12.6
3.75	0.094	1251	87.3	118	11.0
3.5	0.108	1017	76.0	110	9.62
3.25	0.125	814	65.5	102	8.30
3.0	0.147	641	55.8	94.2	7.07
2.8	0.169	521	48.6	88.0	6.16
2.6	0.196	417	41.9	81.7	5.31
2.5	0.212	371	38.8	78.5	4.91
2.2	0.274	253	30.0	69.1	3.80
2.0	0.331	190	24.8	62.8	3.14
1.9	0.367	163	22.4	59.7	2.84
1.8	0.409	138	20.1	56.5	2.54
1.7	0.458	117	17.9	53.4	2.27
1.6	0.517	97.2	15.9	50.3	2.01
1.5	0.589	80.1	14.0	47.1	1.77
1.4	0.676	65.1	12.2	44.0	1.54
1.3	0.784	52.1	10.5	40.8	1.33
1.2	0.920	41.0	8.93	37.7	1.13
1.1	1.09	31.6	7.51	34.6	0.950
1.0	1.32	23.7	6.20	31.4	0.785
0.95	1.47	20.3	5.60	29.8	0.709
0.90	1.63	17.3	5.03	28.3	0.636
0.85	1.83	14.6	4.48	26.7	0.567
0.80	2.07	12.1	3.97	25.1	0.503

Dia- meter mm	Resistance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²
0.75	2.35	10.01	3.49	23.6	0.442
0.70	2.70	8.14	3.04	22.0	0.385
0.65	3.13	6.52	2.62	20.4	0.332
0.60	3.68	5.12	2.23	18.8	0.283
0.55	4.38	3.95	1.88	17.3	0.238
0.50	5.30	2.97	1.55	15.7	0.196
0.475	5.87	2.54	1.40	14.9	0.177
0.45	6.54	2.16	1.26	14.1	0.159
0.425	7.33	1.82	1.12	13.4	0.142
0.40	8.28	1.52	0.993	12.6	0.126
0.375	9.4	1.25	0.873	11.8	0.110
0.35	10.8	1.017	0.760	11.0	0.0962
0.32	12.9	0.777	0.635	10.1	0.0804
0.30	14.7	0.641	0.558	9.42	0.0707
0.28	16.9	0.521	0.486	8.80	0.0616
0.26	19.6	0.417	0.419	8.17	0.0531
0.25	21.2	0.371	0.388	7.85	0.0491
0.24	23.0	0.328	0.357	7.54	0.0452
0.23	25.0	0.289	0.328	7.23	0.0415
0.22	27.4	0.253	0.300	6.91	0.0380
0.21	30.0	0.220	0.274	6.60	0.0346
0.20	33.1	0.190	0.248	6.28	0.0314
0.19	36.7	0.163	0.224	5.97	0.0284
0.18	40.9	0.138	0.201	5.65	0.0254
0.17	45.8	0.117	0.179	5.34	0.0227
0.16	51.7	0.0972	0.159	5.03	0.0201
0.15	58.9	0.0801	0.140	4.71	0.0177
0.14	67.6	0.0651	0.122	4.40	0.0154
0.13	78.4	0.0521	0.105	4.08	0.0133

 $^{^{1)}}$ cm²/ Ω = I² \cdot C $_{\rm t}$ /p (I = Current, C $_{\rm t}$ = temperature factor, p = surface load W/cm²)

NIKROTHAL 80, 60, 40 Ribbon

Alloy	Resistivity Ωmm²m ⁻¹	Density gcm ⁻³	
NIKROTHAL 80	1.09	8.30	
NIKROTHAL 60	1.11	8.20	
NIKROTHAL 40	1.04	7.90	

To obtain resistance at working temperature, multiply by the factor C, in the following table:

°C 20	100	200	300	400	500	600	700	800	900	1000	1100	1200
N80 C, 1.00	1.01	1.02	1.03	1.04	1.05	1.04	1.04	1.04	1.04	1.05	1.06	1.07
N60 C, 1.00	1.02	1.04	1.05	1.06	1.08	1.09	1.09	1.10	1.10	1.11	1.12	1.13
N40 C _t 1.00	1.03	1.06	1.10	1.12	1.15	1.17	1.19	1.21	1.22	1.23	1.24	

To get N60 or N40, multiply the figures in the table with:

	Resistance at 20 °C Ω/m	e cm²/Ω at 20 °C	Weight g/m	
N60	1.018	0.982	0.988	
N40	0.954	1.048	0.952	

Width mm	Thick- ness mm	Resistance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²		Width mm	Thick- ness mm	Resistance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²
4	1.0	0.296	338	30.5	100	3.68		2.0	0.70	0.846	63.8	10.7	54.0	1.29
	0.90	0.329	298	27.5	98.0	3.31			0.60	0.987	52.7	9.16	52.0	1.10
	0.80	0.370	259	24.4	96.0	2.94			0.50	1.18	42.2	7.64	50.0	0.920
	0.70	0.423	222	21.4	94.0	2.58			0.40	1.48	32.4	6.11	48.0	0.736
	0.60	0.494	186	18.3	92.0	2.21			0.30	1.97	23.3	4.58	46.0	0.552
	0.50	0.592	152	15.3	90.0	1.84			0.20	2.96	14.9	3.05	44.0	0.368
	0.40	0.740	119	12.2	88.0	1.47			0.15	3.95	10.9	2.29	43.0	0.276
	0.30	0.987	87.1	9.16	86.0	1.10			0.10	5.92	7.09	1.53	42.0	0.184
	0.20	1.48	56.7	6.11	84.0	0.736		1.8	1.0	0.658	85.1	13.7	56.0	1.66
	0.15	1.97	42.0	4.58	83.0	0.552			0.90	0.731	73.8	12.4	54.0	1.49
	0.10	2.96	27.7	3.05	82.0	0.368			0.80	0.823	63.2	11.0	52.0	1.32
3	1.0	0.395	203	22.9	80.0	2.76			0.70	0.940	53.2	9.62	50.0	1.16
	0.90	0.439	178	20.6	78.0	2.48			0.60	1.10	43.8	8.25	48.0	0.994
	0.80	0.494	154	18.3	76.0	2.21			0.50	1.32	34.9	6.87	46.0	0.828
	0.70	0.564	131	16.0	74.0	1.93			0.40	1.65	26.7	5.50	44.0	0.662
	0.60	0.658	109	13.7	72.0	1.66			0.30	2.19	19.1	4.12	42.0	0.497
	0.50	0.790	88.6	11.5	70.0	1.38			0.20	3.29	12.2	2.75	40.0	0.331
	0.40	0.987	68.9	9.16	68.0	1.10			0.15	4.39	8.89	2.06	39.0	0.248
	0.30	1.32	50.1	6.87	66.0	0.828			0.10	6.58	5.77	1.37	38.0	0.166
	0.20	1.97	32.4	4.58	64.0	0.552		1.5	1.0	0.790	63.3	11.5	50.0	1.38
	0.15	2.63	23.9	3.44	63.0	0.414			0.90	0.878	54.7	10.3	48.0	1.24
	0.10	3.95	15.7	2.29	62.0	0.276			0.80	0.987	46.6	9.16	46.0	1.10
2.5	1.0	0.474	148	19.1	70.0	2.30			0.70	1.13	39.0	8.02	44.0	0.966
	0.90	0.527	129	17.2	68.0	2.07			0.60	1.32	31.9	6.87	42.0	0.828
	0.80	0.592	111	15.3	66.0	1.84			0.50	1.58	25.3	5.73	40.0	0.690
	0.70	0.677	94.5	13.4	64.0	1.61			0.40	1.97	19.2	4.58	38.0	0.552
	0.60	0.790	78.5	11.5	62.0	1.38			0.30	2.63	13.7	3.44	36.0	0.414
	0.50	0.948	63.3	9.55	60.0	1.15			0.20	3.95	8.61	2.29	34.0	0.276
	0.40	1.18	49.0	7.64	58.0	0.920			0.15	5.27	6.27	1.72	33.0	0.207
	0.30	1.58	35.4	5.73	56.0	0.690			0.10	7.90	4.05	1.15	32.0	0.138
	0.20	2.37	22.8	3.82	54.0	0.460			0.090	8.78	3.62	1.03	31.8	0.124
	0.15	3.16	16.8	2.86	53.0	0.345			0.080	9.87	3.20	0.916	31.6	0.110
	0.10	4.74	11.0	1.91	52.0	0.230		1.2	0.80	1.23	32.4	7.33	40.0	0.883
2.0	1.0	0.592	101	15.3	60.0	1.84			0.70	1.41	26.9	6.41	38.0	0.773
	0.90	0.658	88.1	13.7	58.0	1.66			0.60	1.65	21.9	5.50	36.0	0.662
	0.80	0.740	75.6	12.2	56.0	1.47			0.50	1.97	17.2	4.58	34.0	0.552
¹¹⁾ cm ²	$^{2}/\Omega = ^{2}$	$\cdot C_t/p (I =$	Current,	C _t = tem	perature	factor, p =	= sur	face load	W/cm ²)					(cont.)

(cont.)

NIKROTHAL 80, 60, 40 Ribbon

Alloy	Resistivity Ωmm²m ⁻¹	Density gcm ⁻³
NIKROTHAL 80	1.09	8.30
NIKROTHAL 60	1.11	8.20
NIKROTHAL 40	1.04	7.90

Width	Thick- ness	Resis- tance at 20 °C	cm²/Ω¹)	Weight	Surface area	Cross sectional area	Wi		Thick- ness	Resis- tance at 20 °C	cm²/Ω¹)	Weight	Surface area	Cross sectional area
mm	mm	Ω /m	at 20 °C	g/m	cm²/m	mm²	mr		mm	Ω/m	at 20 °C	g/m	cm²/m	mm²
	0.40	2.47	13.0	3.67	32.0	0.442	0.7		0.40	4.23	5.20	2.14	22.0	0.258
	0.30	3.29	9.12	2.75	30.0	0.331			0.30	5.64	3.54	1.60	20.0	0.193
	0.20	4.94	5.67	1.83	28.0	0.221			0.20	8.46	2.13	1.07	18.0	0.129
	0.15	6.58	4.10	1.37	27.0	0.166			0.15	11.3	1.51	0.802	17.0	0.097
	0.10	9.87	2.63	0.916	26.0	0.110			0.10	16.9	0.945	0.535	16.0	0.0644
	0.090		2.35	0.825	25.8	0.099			0.090		0.840	0.481	15.8	0.0580
	0.080	12.3	2.07	0.733	25.6	0.088			0.080		0.737	0.428	15.6	0.0515
	0.070	14.1	1.80	0.641	25.4	0.077			0.070		0.637	0.374	15.4	0.0451
1.0	0.80	1.48	24.3	6.11	36.0	0.736			0.060		0.539	0.321	15.2	0.0386
	0.70	1.69	20.1	5.35	34.0	0.644	_		0.050		0.443	0.267	15.0	0.0322
	0.60	1.97	16.2	4.58	32.0	0.552	0.6		0.50	3.95	5.57	2.29	22.0	0.276
	0.50	2.37	12.7	3.82	30.0	0.460			0.40	4.94	4.05	1.83	20.0	0.221
	0.40	2.96	9.45	3.05	28.0	0.368			0.30	6.58	2.73	1.37	18.0	0.166
	0.30	3.95	6.58	2.29	26.0	0.276			0.20	9.87	1.62	0.916	16.0	0.110
	0.20	5.92	4.05	1.53	24.0	0.184			0.15	13.2	1.14	0.687	15.0	0.0828
	0.15	7.90	2.91	1.15	23.0	0.138			0.10	19.7	0.709	0.458	14.0	0.0552
	0.10	11.8	1.86	0.764	22.0	0.0920			0.090		0.629	0.412	13.8	0.0497
		13.2	1.66	0.687	21.8	0.0828			0.080		0.551	0.367	13.6	0.0442
	0.080		1.46	0.611	21.6	0.0736			0.070		0.475	0.321	13.4	0.0386
	0.070		1.26	0.535	21.4	0.0644			0.060		0.401	0.275	13.2	0.0331
		19.7	1.07	0.458	21.2	0.0552			0.050	39.5	0.329	0.229	13.0	0.0276
	0.050		0.886	0.382	21.0	0.0460			0.040		0.259	0.183	12.8	0.0221
0.9	0.70	1.88	17.0	4.81	32.0	0.580	0.5		0.30	7.90	2.03	1.15	16.0	0.138
	0.60	2.19	13.7	4.12	30.0	0.497			0.20	11.8	1.18	0.764	14.0	0.0920
	0.50	2.63	10.6	3.44	28.0	0.414			0.15	15.8	0.823	0.573	13.0	0.0690
	0.40	3.29	7.90	2.75	26.0	0.331			0.10	23.7	0.506	0.382	12.0	0.0460
	0.30	4.39	5.47	2.06	24.0	0.248			0.090		0.448	0.344	11.8	0.0414
	0.20	6.58	3.34	1.37	22.0	0.166			0.080		0.392	0.305	11.6	0.0368
	0.15	8.78	2.39	1.03	21.0	0.124			0.070		0.337	0.267	11.4	0.0322
	0.10	13.2	1.52	0.687	20.0	0.0828			0.060	39.5	0.284	0.229	11.2	0.0276
	0.090		1.35	0.619	19.8 19.6	0.0745				59.2	0.232	0.191	10.8	0.0230
	0.080		1.19	0.550 0.481	19.4	0.0662	0.4		0.30	9.87	1.42	0.133	14.0	0.110
	0.070		0.875	0.412	19.2	0.0380	0.2		0.20	14.8	0.810	0.611	12.0	0.0736
	0.050	26.3	0.722	0.412	19.0	0.0414			0.15	19.7	0.557	0.458	11.0	0.0552
0.8	0.70	2.12	14.2	4.28	30.0	0.515			0.10	29.6	0.338	0.305	10.0	0.0368
0.0	0.60	2.47	11.3	3.67	28.0	0.442			0.090		0.298	0.275	9.80	0.0331
	0.50	2.96	8.78	3.05	26.0	0.368			0.080		0.259	0.244	9.60	0.0294
	0.40	3.70	6.48	2.44	24.0	0.294			0.070		0.222	0.214	9.40	0.0258
	0.30	4.94	4.46	1.83	22.0	0.221			0.060		0.186	0.183	9.20	0.0221
	0.20	7.40	2.70	1.22	20.0	0.147			0.050	59.2	0.152	0.153	9.00	0.0184
	0.15	9.87	1.92	0.916	19.0	0.110	0.3		0.20	19.7	0.506	0.458	10.0	0.0552
	0.10		1.22	0.611	18.0	0.0736			0.15		0.342	0.344	9.00	0.0414
	0.090		1.08	0.550	17.8	0.0662			0.10		0.203	0.229	8.00	0.0276
	0.080		0.951	0.489	17.6	0.0589			0.090		0.178	0.206	7.80	0.0248
	0.070		0.822	0.428	17.4	0.0515			0.080		0.154	0.183	7.60	0.0221
	0.060		0.697	0.367	17.2	0.0442			0.070		0.131	0.160	7.40	0.0193
	0.050		0.574	0.305	17.0	0.0368			0.060		0.109	0.137	7.20	0.0166
0.7	0.60		9.22	3.21	26.0	0.386			0.050		0.0886	0.115	7.00	0.0138
	0.50		7.09	2.67	24.0	0.322								
1) am2	10 12	C /n /l				otov n	surface los	ما ۱۸	1/0002)					

 $^{^{1)}}$ cm²/ Ω = I² \cdot C_t/p (I = Current, C_t = temperature factor, p = surface load W/cm²)

NIFETHAL 70 and 52 Wire

Alloy	Diameter range mm	Resistivity Ωmm ² m ⁻¹	Density gcm ⁻³
NIFETHAL 70	4.0-0.10	0.20	8.45
NIFETHAL 52	4.0-0.10	0.43	8.20

To obtain resistance at working temperature, multiply by the factor C_t in the following table:

 °C
 20
 100
 150
 200
 250
 300
 350
 400
 450
 500

 NIFETHAL 70 C_t
 1.00
 1.42
 1.68
 1.91
 2.19
 2.47
 2.75
 3.03
 3.34
 3.66

 NIFETHAL 52 C_t
 1.00
 1.33
 1.53
 1.73
 1.93
 2.13
 2.32
 2.49
 2.64
 2.77

ETH	IAL 70				Cross
Dia- meter	Resistance at 20 °C	cm²/Ω¹)	Weight	Surface area	sectiona area
meter mm	at 20 °C Ω/m	at 20 °C	g/m	area cm²/m	area mm²
1.8	0.0786	719	21.5	56.5	2.54
1.7	0.0881	606	19.2	53.4	2.27
1.6	0.0995	505	17.0	50.3	2.01
1.5	0.113	416	14.9	47.1	1.77
1.4	0.130	339	13.0	44.0	1.54
1.3	0.151	271	11.2	40.8	1.33
1.2	0.177	213	9.56	37.7	1.13
1.1	0.210	164	8.03	34.6	0.950
1.0	0.255	123	6.64	31.4	0.785
0.95	0.282	106	5.99	29.8	0.709
.90	0.314	89.9	5.38	28.3	0.636
85	0.352	75.8	4.79	26.7	0.567
.80	0.398	63.2	4.25	25.1	0.503
.75	0.453	52.0	3.73	23.6	0.442
.70	0.520	42.3	3.25	22.0	0.385
0.65	0.603	33.9	2.80	20.4	0.332
0.60	0.707	26.6	2.39	18.8	0.283
0.55	0.842	20.5	2.01	17.3	0.238
0.50	1.02	15.4	1.66	15.7	0.196
0.475	1.13	13.2	1.50	14.9	0.177
).45	1.26	11.2	1.34	14.1	0.159
.425	1.41	9.47	1.20	13.4	0.142
0.40	1.59	7.90	1.06	12.6	0.126
.375	1.81	6.51	0.933	11.8	0.110
0.35	2.08	5.29	0.813	11.0	0.0962
.32	2.49	4.04	0.680	10.1	0.0804
0.30	2.83	3.33	0.597	9.42	0.0707
.28	3.25	2.71	0.520	8.80	0.0616
26	3.77	2.17	0.449	8.17	0.0531
25	4.07	1.93	0.415	7.85	0.0491
.24	4.42	1.71	0.382	7.54	0.0452
.23	4.81	1.50	0.351	7.23	0.0415
).22	5.26	1.31	0.321	6.91	0.0380
).21	5.77	1.14	0.293	6.60	0.0346
0.20	6.37	0.987	0.265	6.28	0.0314
0.19	7.05	0.846	0.240	5.97	0.0284
).18	7.86	0.719	0.215	5.65	0.0254
).17	8.81	0.606	0.192	5.34	0.0227
0.16	9.95	0.505	0.170	5.03	0.0201
0.15	11.3	0.416	0.149	4.71	0.0177
0.14	13.0	0.339	0.130	4.40	0.0154
0.13	15.1	0.271	0.112	4.08	0.0133
0.12	17.7	0.213	0.0956	3.77	0.0113
0.12				0.40	0.00050
0.12	21.0	0.164	0.0803	3.46	0.00950

 $^{^{1)}}$ cm²/ Ω = I² \cdot C_t/p (I = Current, C_t = temperature factor, p = surface load W/cm²)

Copper-Nickel Wire

Alloy	Diameter range mm	Resistivity Ωmm ² m ⁻¹	Density gcm ⁻³
CUPROTHAL 49	4.0-0.10	0.49	8.90
MANGANINA 43	8.0-0.10	0.43	8.40
CUPROTHAL 30	4.0-0.10	0.30	8.90
CUPROTHAL 15	4.0-0.10	0.15	8.90
CUPROTHAL 10	4.0-0.10	0.10	8.90
CUPROTHAL 05	4.0-0.10	0.05	8.90

To obtain resistance at working temperature, multiply by the factor C_1 in the following table:

Alloy	20 °C	100 °C	200 °C	300 °C	400 v	500 °C	600 °C
CUPROTHAL 49	1.000	1.002	1.002	1.001	1.005	1.017	1.037
MANGANINA 43*	-	-	-	-	-	-	-
CUPROTHAL 30	1.000	1.020	1.030	1.040	1.060	-	-
CUPROTHAL 15	1.000	1.035	1.070	1.110	1.150	-	-
CUPROTHAL 10	1.000	1.060	1.110	1.190	-	-	-
CUPROTHAL 05	1.000	1.110	1.250	1.400	-	-	-

^{*} The use of this alloy is limited to the range 15-35 °C.

Multiply the figures in the table with:

Resistanc at 20 °C Ω/m	e cm²/Ω at 20 °C	Weight g/m	
1.0	1.0	1.0	CUPROTHAL 49
0.877	1.15	0.94	MANGANINA 43
0.612	1.63	1.0	CUPROTHAL 30
0.306	3.29	1.0	CUPROTHAL 15
0.204	4.93	1.0	CUPROTHAL 10
0.102	9.86	1.0	CUPROTHAL 05

Dia- meter mm	Resistance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²		Dia- meter mm	Resistance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²
10	0.0062	50355	699	314	78.5		1.7	0.216	247	20.2	53.4	2.27
9.5	0.0069	43173	631	298	70.9		1.6	0.244	206	17.9	50.3	2.01
9.0	0.0077	36709	566	283	63.6		1.5	0.277	170	15.7	47.1	1.77
8.25	0.0092	28275	476	259	53.5		1.4	0.318	138	13.7	44.0	1.54
8.0	0.0097	25782	447	251	50.3		1.3	0.369	111	11.8	40.8	1.33
7.5	0.0111	21244	393	236	44.2		1.2	0.433	87.0	10.1	37.7	1.13
7.35	0.0115	19994	378	231	42.4		1.1	0.516	67.0	8.46	34.6	0.950
7.0	0.0127	17272	343	220	38.5		1.0	0.624	50.4	6.99	31.4	0.785
6.5	0.0148	13829	295	204	33.2		0.95	0.691	43.2	6.31	29.8	0.709
6.0	0.0173	10877	252	188	28.3		0.90	0.770	36.7	5.66	28.3	0.636
5.5	0.0206	8378	211	173	23.8		0.85	0.864	30.9	5.05	26.7	0.567
5.0	0.0250	6294	175	157	19.6		0.80	0.975	25.8	4.47	25.1	0.503
4.75	0.0277	5397	158	149	17.7		0.75	1.11	21.2	3.93	23.6	0.442
4.5	0.0308	4589	142	141	15.9		0.70	1.27	17.3	3.43	22.0	0.385
4.25	0.0345	3866	126	134	14.2		0.65	1.48	13.8	2.95	20.4	0.332
4.0	0.0390	3223	112	126	12.6		0.60	1.73	10.9	2.52	18.8	0.283
3.75	0.0444	2655	98.3	118	11.0		0.55	2.06	8.38	2.11	17.3	0.238
3.5	0.0509	2159	85.6	110	9.62		0.50	2.50	6.29	1.75	15.7	0.196
3.25	0.0591	1729	73.8	102	8.30		0.475	2.77	5.40	1.58	14.9	0.177
3.0	0.0693	1360	62.9	94.2	7.07		0.45	3.08	4.59	1.42	14.1	0.159
2.8	0.0796	1105	54.8	88.0	6.16		0.425	3.45	3.87	1.26	13.4	0.142
2.6	0.0923	885	47.3	81.7	5.31		0.40	3.90	3.22	1.12	12.6	0.126
2.5	0.100	787	43.7	78.5	4.91		0.375	4.44	2.66	0.983	11.8	
2.2	0.129	536	33.8	69.1	3.80		0.35	5.09	2.16	0.856	11.0	
2.0	0.156	403	28.0	62.8	3.14		0.32	6.09	1.65	0.716	10.1	
1.9	0.173	345	25.2	59.7	2.84		0.30	6.93	1.36	0.629	9.42	
1.8	0.193	294	22.6	56.5	2.54		0.28	7.96	1.11	0.548	8.80	
1) cm2/	$O = I^2 \cdot C / D$	/I - Curron	t C - tom	ocratura f	actor n	curfoc	o lood M	I/am2\				(cont)

 $^{^{1)}}$ cm²/ Ω = I² \cdot C $_{\rm t}$ /p (I = Current, C $_{\rm t}$ = temperature factor, p = surface load W/cm²)

(cont.)

(cont.)

Copper-Nickel	Alloy	Diameter range mm	Resistivity Ωmm²m ⁻¹	Density gcm ⁻³
o oppor monor	CUPROTHAL 49	4,0-0.10	0.49	8.90
Wire	MANGANINA 43	8.0-0.10	0.43	8.40
	CUPROTHAL 30	4.0-0.10	0.30	8.90
	CUPROTHAL 15	4.0-0.10	0.15	8.90
	CUPROTHAL 10	4.0-0.10	0.10	8.90
	CUPROTHAL 05	4.0-0.10	0.05	8.90

To obtain resistance at working temperature, multiply by the factor C_t in the following table:

Alloy	20 °C	100 °C	200 °C	300 °C	400 v	500 °C	600 °C
CUPROTHAL 49	1.000	1.002	1.002	1.001	1.005	1.017	1.037
MANGANINA 43*	-	-	-	-	-	-	-
CUPROTHAL 30	1.000	1.020	1.030	1.040	1.060	-	-
CUPROTHAL 15	1.000	1.035	1.070	1.110	1.150	-	-
CUPROTHAL 10	1.000	1.060	1.110	1.190	-	-	-
CUPROTHAL 05	1.000	1.110	1.250	1.400	-	-	-
* The use of this alloy is	s limited	to the rar	nge 15-3	5 °C.			

Multiply the figures in the table with:

Resistanc at 20 °C Ω/m	e cm²/Ω at 20 °C	Weight g/m	
1.0	1.0	1.0	CUPROTHAL 49
0.877	1.15	0.94	MANGANINA 43
0.612	1.63	1.0	CUPROTHAL 30
0.306	3.29	1.0	CUPROTHAL 15
0.204	4.93	1.0	CUPROTHAL 10
0.102	9.86	1.0	CUPROTHAL 05

Dia- meter mm	Resistance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²
0.26	9.23	0.885	0.473	8.17	
0.25	10.0	0.787	0.437	7.85	
0.24	10.8	0.696	0.403	7.54	
0.23	11.8	0.613	0.370	7.23	
0.22	12.9	0.536	0.338	6.91	
0.21	14.1	0.466	0.308	6.60	
0.20	15.6	0.403	0.280	6.28	

Dia- meter mm	Resistance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²
0.19	17.3	0.345	0.252	5.97	
0.18	19.3	0.294	0.226	5.65	
0.17	21.6	0.247	0.202	5.34	
0.16	24.4	0.2063	0.179	5.03	
0.15	27.7	0.1699	0.157	4.71	
0.14	31.8	0.1382	0.137	4.40	
0.13	36.9	0.1106	0.118	4.08	

Copper-Nickel Ribbon

Alloy	Resistivity Ωmm²m ⁻¹	Density gcm ⁻³	
CUPROTHAL 49	0.49	8.90	

To obtain resistance at working temperature, multiply by the factor C_t in the following table:

 Alloy
 20 °C
 100 °C
 200 °C
 300 °C
 400 °C
 500 °C
 600 °C

 CUPROTHAL 49
 1.000
 1.002
 1.002
 1.001
 1.005
 1.017
 1.037

Width	Thick- ness mm	Resistance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²		Width mm	Thick- ness mm	Resis- tance at 20 °C Ω/m	cm²/Ω¹) at 20 °C	Weight g/m	Surface area cm²/m	Cross sectional area mm²
4	1.0	0.133	751	32.8	100	3.68		1.8	1.0	0.296	189	14.7	56.0	1.66
•	0.90	0.148	662	29.5	98.0	3.31			0.90	0.329	164	13.3	54.0	1.49
	0.80	0.166	577	26.2	96.0	2.94			0.80	0.370	141	11.8	52.0	1.32
	0.70	0.190	494	22.9	94.0	2.58			0.70	0.423	118	10.3	50.0	1.16
	0.60	0.222	415	19.7	92.0	2.21			0.60	0.493	97.3	8.84	48.0	0.994
	0.50	0.266	338	16.4	90.0	1.84			0.50	0.592	77.7	7.37	46.0	0.828
	0.40	0.333	264	13.1	88.0	1.47			0.40	0.740	59.5	5.90	44.0	0.662
	0.30	0.444	193.8	9.83	86.0	1.10			0.30	0.986	42.6	4.42	42.0	0.497
	0.20	0.666	126.2	6.55	84.0	0.736			0.20	1.48	27.0	2.95	40.0	0.331
	0.15	0.888	93.5	4.91	83.0	0.552			0.15	1.97	19.77	2.21	39.0	0.248
	0.10	1.33	61.6	3.28	82.0	0.368			0.10	2.96	12.84	1.47	38.0	0.166
3	1.0	0.178	451	24.6	80.0	2.76		1.5	1.0	0.355	141	12.3	50.0	1.38
	0.90	0.197	395	22.1	78.0	2.48			0.90	0.395	122	11.1	48.0	1.24
	0.80	0.222	342	19.7	76.0	2.21			0.80	0.444	104	9.83	46.0	1.10
	0.70	0.254	292	17.2	74.0	1.93			0.70	0.507	86.7	8.60	44.0	0.966
	0.60	0.296	243	14.7	72.0	1.66			0.60	0.592	71.0	7.37	42.0	0.828
	0.50	0.355	197	12.3	70.0	1.38			0.50	0.710	56.3	6.14	40.0	0.690
	0.40	0.444	153	9.83	68.0	1.10			0.40	0.888	42.8	4.91	38.0	0.552
	0.30	0.592	112	7.37	66.0	0.828			0.30	1.18	30.4	3.68	36.0	0.414
	0.20	0.888	72.1	4.91	64.0	0.552			0.20	1.78	19.2	2.46	34.0	0.276
	0.15	1.18	53.2	3.68	63.0	0.414			0.15	2.37	13.9	1.84	33.0	0.207
	0.10	1.78	34.9	2.46	62.0	0.276			0.10	3.55	9.01	1.23	32.0	0.138
2.5	1.0	0.213	329	20.5	70.0	2.30			0.090	3.95	8.06	1.11	31.8	0.124
	0.90	0.237	287	18.4	68.0	2.07			0.080	4.44	7.12	0.983	31.6	0.110
	0.80	0.266	248	16.4	66.0	1.84		1.2	0.80	0.555	72.1	7.86	40.0	0.883
	0.70	0.304	210	14.3	64.0	1.61			0.70	0.634	59.9	6.88	38.0	0.773
	0.60	0.355	175	12.3	62.0	1.38			0.60	0.740	48.7	5.90	36.0	0.662
	0.50	0.426	141	10.2	60.0	1.15			0.50	0.888	38.3	4.91	34.0	0.552
	0.40	0.533	109	8.19	58.0	0.920			0.40	1.11	28.8	3.93	32.0	0.442
	0.30	0.710	78.9	6.14	56.0	0.690			0.30	1.48	20.3	2.95	30.0	0.331
	0.20	1.07	50.7	4.09	54.0	0.460			0.20	2.22	12.6	1.97	28.0	0.221
	0.15	1.42	37.3	3.07	53.0	0.345			0.15	2.96	9.12	1.47	27.0	0.166
	0.10	2.13	24.4	2.05	52.0	0.230			0.10	4.44	5.86	0.983	26.0	0.110
2.0	1.0	0.266	225	16.4	60.0	1.84			0.090	4.93	5.23	0.884	25.8	0.099
	0.90	0.296	196.0	14.7	58.0	1.66			0.080		4.61	0.786	25.6	0.088
	0.80	0.333	168	13.1	56.0	1.47			0.070	6.34	4.01	0.688	25.4	0.077
	0.70	0.380	142	11.5	54.0	1.29		1.0	0.80	0.67	54.1	6.55	36.0	0.736
	0.60	0.444	117	9.83	52.0	1.10			0.70	0.76	44.7	5.73	34.0	0.644
	0.50	0.533	93.9	8.19	50.0	0.920			0.60	0.89	36.0	4.91	32.0	0.552
	0.40	0.666	72.1	6.55	48.0	0.736			0.50	1.1	28.2	4.09	30.0	0.460
	0.30	0.888	51.8	4.91	46.0	0.552			0.40	1.3	21.0	3.28	28.0	0.368
	0.20	1.33	33.0	3.28	44.0	0.368			0.30	1.8	14.6	2.46	26.0	0.276
	0.15	1.78	24.2	2.46	43.0	0.276			0.20	2.7	9.01	1.64	24.0	0.184
	0.10	2.66	15.77	1.64	42.0	0.184			0.15	3.6	6.48	1.23	23.0	0.138
1) on	2/0 - 12	C /n /l	Current	C - ton	oporoturo	factor n	_ 0	urfago logo	I M/om?	2				(cont)

 $^{1)}$ cm²/ Ω = I² \cdot C $_{\rm t}$ /p (I = Current, C $_{\rm t}$ = temperature factor, p = surface load W/cm²)

(cont.)

(cont.)

Copper-Nickel Ribbon

Alloy	Resistivity Ωmm²m ⁻¹	Density gcm ⁻³
CUPROTHAL 49	0.49	8.90

To obtain resistance at working temperature, multiply by the factor \mathbf{C}_{t} in the following table:

Alloy	20 °C	100 °C	200 °C	300 °C	400 °C	500 °C	600 °C	
CUPROTHAL 49	1.000	1.002	1.002	1.001	1.005	1.017	1.037	

Width		at 20 °C	cm²/Ω¹)	Weight	Surface area	Cross sectional area	Width		at 20 °C	cm²/Ω¹)	Weight	Surface area	Cross sectional area
mm 1.0	mm 0.10	Ω/ m 5.3	at 20 °C 4.13	g/m 0.819	cm²/m 22.0	mm² 0.0920	mm	mm	Ω/ m 12.7	at 20 °C	g/m	cm²/m	mm²
1.0	0.10		3.68	0.737	21.8	0.0920	0.7	0.060	15.2	1.20	0.344	15.2 15.0	0.0386
	0.080		3.24	0.757	21.6	0.0026	0.6	0.030	1.78	0.986	0.287 2.46	22.0	0.0322
		7.6	2.81	0.573	21.4	0.0644	0.0	0.40	2.22	9.01	1.97	20.0	0.276
	0.060	8.9	2.39	0.373	21.2	0.0552		0.30	2.96	6.08	1.47	18.0	0.221
	0.050	10.7	1.97	0.409	21.0	0.0460		0.20	4.44	3.60	0.983	16.0	0.110
0.9	0.70	0.85	37.9	5.16	32.0	0.580		0.20	5.92	2.53	0.983	15.0	0.0828
	0.60	0.99	30.4	4.42	30.0	0.497		0.10	8.88	1.58	0.491	14.0	0.0552
	0.50	1.2	23.7	3.68	28.0	0.414		0.090		1.40	0.442	13.8	0.0332
	0.40	1.5	17.6	2.95	26.0	0.331		0.080	11.1	1.23	0.393	13.6	0.0442
	0.30	2.0	12.2	2.21	24.0	0.248		0.070	12.7	1.06	0.344	13.4	0.0386
	0.20	3.0	7.44	1.47	22.0	0.166		0.060	14.8	0.892	0.295	13.2	0.0331
	0.15	3.9	5.32	1.11	21.0	0.124		0.050	17.8	0.732	0.246	13.0	0.0276
	0.10	5.9	3.38	0.737	20.0	0.0828		0.040	22.2	0.577	0.197	12.8	0.0221
	0.090	6.6	3.01	0.663	19.8	0.0745	0.5	0.30	3.55	4.51	1.23	16.0	0.138
	0.080	7.4	2.65	0.590	19.6	0.0662		0.20	5.33	2.63	0.819	14.0	0.0920
	0.070	8.5	2.29	0.516	19.4	0.0580		0.15	7.10	1.83	0.614	13.0	0.0690
	0.060	9.9	1.95	0.442	19.2	0.0497		0.10	10.7	1.13	0.409	12.0	0.0460
	0.050	11.8	1.61	0.368	19.0	0.0414		0.090	11.8	0.997	0.368	11.8	0.0414
0.8	0.70	0.951	31.5	4.59	30.0	0.515		0.080	13.3	0.871	0.328	11.6	0.0368
	0.60	1.11	25.2	3.93	28.0	0.442		0.070	15.2	0.749	0.287	11.4	0.0322
	0.50	1.33	19.53	3.28	26.0	0.368		0.060	17.8	0.631	0.246	11.2	0.0276
	0.40	1.66	14.42	2.62	24.0	0.294		0.050	21.3	0.516	0.205	11.0	0.0230
	0.30	2.22	9.91	1.97	22.0	0.221		0.040	26.6	0.406	0.164	10.8	0.0184
	0.20	3.33	6.01	1.31	20.0	0.147	0.4	0.30	4.44	3.15	0.983	14.0	0.110
	0.15	4.44	4.28	0.983	19.0	0.110		0.20	6.66	1.80	0.655	12.0	0.0736
	0.10	6.66	2.70	0.655	18.0	0.0736		0.15	8.88	1.24	0.491	11.0	0.0552
	0.090	7.40	2.41	0.590	17.8	0.0662		0.10	13.3	0.751	0.328	10.0	0.0368
	0.080	8.32	2.11	0.524	17.6	0.0589		0.090	14.8	0.662	0.295	9.80	0.0331
	0.070		1.83	0.459	17.4	0.0515		0.080	16.6	0.577	0.262	9.60	0.0294
		11.1	1.55	0.393	17.2	0.0442		0.070	19.0	0.494	0.229	9.40	0.0258
	0.050	13.3	1.28	0.328	17.0	0.0368		0.060		0.415	0.197	9.20	0.0221
0.7	0.60	1.27	20.50	3.44	26.0	0.386		0.050	26.6	0.338	0.164	9.00	0.0184
	0.50	1.52	15.77	2.87	24.0	0.322	0.3	0.20	8.88	1.13	0.491	10.0	0.0552
	0.40	1.90	11.57	2.29	22.0	0.258		0.15	11.8	0.760	0.368	9.00	0.0414
	0.30	2.54	7.89	1.72	20.0	0.193		0.10	17.8	0.451	0.246	8.00	0.0276
	0.20	3.80	4.73	1.15	18.0	0.129		0.090	19.7	0.395	0.221	7.80	0.0248
	0.15	5.07	3.35	0.860	17.0	0.0966		0.080		0.342	0.197	7.60	0.0221
	0.10	7.61	2.10	0.573	16.0	0.0644		0.070	25.4	0.292	0.172	7.40	0.0193
		8.45	1.87	0.516	15.8	0.0580		0.060		0.243	0.147	7.20	0.0166
		9.51	1.64	0.459	15.6	0.0515		0.050	35.5	0.197	0.123	7.00	0.0138
	0.070		1.42	0.401	15.4	0.0451							

 $^{^{1)}}$ cm²/ Ω = I² \cdot C $_{\rm t}$ /p (I = Current, C $_{\rm t}$ = temperature factor, p = surface load W/cm²)

10. Appendix

1. List of symbols

The symbols used comply as far as possible with internationally approved standards.

The following symbols are used:

Symbol	Meaning	Metric	Unit for Calculation Imperial				
A _C	Surface area of heating conductor	cm ²	in²				
b	Width (ribbon or strip)	mm	in				
C _t	Temperature factor (ratio of resistivity at operating temperature to resistivity at room temperature)						
d	Wire diameter	mm	in				
D	Outer coil diameter	mm	in				
1	Current	Α	Α				
L	Length of heating conductor	m	ft				
L _e	Coil length	mm	in				
p	Surface load of heating element	W/cm ²	W/in²				
Р	Power	W	W				
q	Cross-sectional area of heating conductor	mm²	in²				
R _T	Resistance at working temperature	Ω	Ω				
R ₂₀	Resistance at room temperature (20 °C, 68 °F)	Ω	Ω				
S	Pitch	mm	in				
t	Thickness (ribbon or strip)	mm	in				
Т. ө	Temperature	K, °C	K, °F				
U	Voltage	V	V				
α	Temperature coefficient of resistivity	K ⁻¹	° <i>F</i> ⁻¹				
γ	Density (old marking)	g/cm ³	lb/in³				
ρ	Resistivity	$\Omega~\text{mm}^2\text{m}^{\text{-1}}$	$\Omega/smf^*\Omega/cmf$				
10	Balancing factor used in the formulas makes poused with units of section 1:	ssible that the	values can be				
	e.g. wire diameter, d, in [mm] or [in] is different conductor,L in [m] or [ft].	from length of	heating				
¥ C	'1 C						

^{*} smf = square mil-foot cmf = circular mil-foot

2. Formulas and Definitions

The following formulas and definitions are applied to all applications.

Definition: Resistivity R $[\Omega mm^2/m]$ or $[\Omega/cmf]$

The resistance of a conductor, R_{20} , is directly proportional to its length, L and inversely proportional to its cross-sectional area, q:

$$R_{20} = \rho \frac{L}{q}$$
 [1]

The proportional constant, ρ is defined as the resistivity of the material and is temperature dependent. The unit of ρ is in metric system $[\Omega mm^2/m]$ respectively for imperial system $[\Omega/cmf]$.

Definition: Temperature factor C_t [--

Resistivity or change in resistance with temperature, is non-linear for most resistance heating alloys. Hence, the temperature factor, C_t , is often used instead of temperature coefficient. C_t is defined as the ratio between the resistivity or resistance at some selected temperature θ °C and the resistivity or resistance at 20 °C (68 °F).

$$R_{T} = C_{t} \cdot R_{20} \ [\Omega]$$
 [2]

$$C_{t} = \frac{R_{T}}{R_{20}}$$
 [--] [3]

$$C_t = 1 + (\theta - 20)\alpha$$
 (Where θ is in °C) [4]

$$C_t = 1 + (\theta - 68)\alpha$$
 (Where θ is in °F) [5]

Definition: Surface load p [W/cm²] or [W/in²]

The surface load of a heating conductor, p, is its power, P, divided by its surface area, A_C .

$$p = \frac{P}{A_c} [W/cm^2] \text{ or } [W/in^2]$$
 [6]

metric / imperial Wire

$$A_{C} = \pi \cdot d \cdot L \cdot 10$$

$$A_{C} = \pi \cdot d \cdot L \cdot 12$$
[7]

strip / ribbon

$$A_{C} = 2 \cdot (b + t) \cdot L \cdot 10$$

$$A_{C} = 2 \cdot (b + t) \cdot L \cdot 12$$
[8]

General formulas

$$U = R_T \cdot I \quad [V]$$
 [9]

$$P = U \cdot I \quad [W]$$
 [10]

Combining equations [9] and [10] gives:

Combining equations [2], [6], [9] and [10] gives:

$$\frac{A_C}{R_{20}} = \frac{I^2 \cdot C_t}{p} \quad [cm^2/\Omega] \text{ or } [in^2/\Omega] \quad [11]$$

The ratio $\frac{A_C}{R_{20}}$, used for determining wire,

strip or ribbon size, is tabulated for all alloys in the Kanthal Handbook.

Definition:

Cross sectional area q [mm²] or [in²]

A) Round wire

$$q = \frac{\pi}{4} \cdot d^2 \text{ [mm}^2 \text{] or [in}^2 \text{]}$$
 [12]

Combining equations [1], [6], [7] and [12] gives the wire diameter, d:

$$d = \sqrt[3]{\frac{4}{\pi^2} \cdot \frac{\rho \cdot P}{p \cdot R_{20}}}$$
 [13]

10

[16]

metric

$$d = \sqrt[3]{\frac{4}{\pi^2} \cdot \frac{\rho \cdot P}{p \cdot R_{20}} \cdot \frac{L}{10}} \ [mm] \qquad [13]$$

imperial

$$d = \sqrt[3]{\frac{4}{\pi^2} \cdot \frac{\rho \cdot P}{p \cdot R_{20}} \cdot \frac{L}{15.28 \cdot 10^6}} [in] [13]$$

Example:

According to section 2

 $\rho = 1.35 \Omega \text{ mm}^2/\text{m} = (812 \Omega/\text{cmf}) \text{ for }$ Kanthal D

P = 1000 W

 $p = 8 \text{ W/cm}^2 (51.6 \text{ W/in}^2)$

 $R = 40 \Omega$

According to equation [13]:

$$d = \sqrt[3]{\frac{4}{\pi^2} \cdot \frac{1.35 \cdot 1000}{8 \cdot 40} \cdot \frac{L}{10}} = 0.55 \text{ mm}$$

$$d = \sqrt[3]{\frac{4}{\pi^2} \cdot \frac{812 \cdot 1000}{51.6 \cdot 40} \cdot \frac{L}{15.28 \cdot 10^6}} =$$

= 0.022 inch

B) Strip:

$$q = b \cdot t \tag{14}$$

C) Ribbon:

Since ribbons are made by flattening round wires, the cross-sectional area is somewhat smaller depending on size, than equation [14] indicates. As a rule of thumb, a factor 0.92 is used.

$$q = 0.92 \cdot b \cdot t \tag{15}$$

Lately, investigations have shown that a more correct way of expressing the crosssectional area of ribbon is:

$$q = \left(0.985 - \left(\frac{t}{2 \cdot b}\right)^2\right) \cdot b \cdot t$$
 [15']

(Equation [15] is, however, used throughout this Handbook).

Definition:

Coil pitch, s [mm] or [in]

A round wire is often wound as a coil. For calculating coil pitch, s, the equation [16] applies:

$$\left(\frac{\pi \cdot (D - d)}{s}\right)^{2} + 1 = \left(\frac{L}{L_{e}}\right)^{2} \implies$$

$$s = \frac{\pi \cdot (D - d)}{\sqrt{\left(\frac{L}{L_{e}}\right)^{2} - 1}}$$

metric

$$s = \frac{\pi \cdot (D - d)}{\sqrt{\left(\frac{L \cdot 1000}{L_e}\right)^2 - 1}}$$
 [16']

imperial

$$s = \frac{\pi \cdot (D - d)}{\sqrt{\left(\frac{L \cdot 12}{L_e}\right)^2 - 1}}$$
 [16']

When the pitch, s, is small relatively to coil diameter, D, and wire diameter, d.

Than
$$\frac{s}{\pi(D-d)}$$
 << L, so that equation [16] can be simplified to:

$$s = \frac{\pi \cdot (D - d) \cdot L_e}{L}$$
 [17]

Relative pitch s/d

The ratio s/d is often used. It is called the relative pitch or the stretch factor, and may affect the heat dissipation from the coil.

$$r = \frac{s}{d}$$
 [--]

The ratio D/d is essential for the coiling operation, as well as the mechanical stability of the coil in a hot state.

Example – wire calculation:

Calculate the resistance of a 3-foot-long KANTHAL D wire, 22 B & S (0.02535 in diameter).

Combining equation [1] and [12]:

$$R_{20} = \rho \frac{L}{q}$$
 and $q = \frac{\pi}{4} \cdot d^2$

$$R_{20} = \frac{\rho \cdot L \cdot 4}{\pi \cdot d^2}$$

 $\rho = 1.35 \Omega \text{ mm}^2/\text{m} = 812 \Omega/\text{cmf} =$ = $637.79 \Omega/\text{smf}$

 $L = 3 \text{ foot} = 3 \cdot 0.305 \text{ m}$

d = 0.02535 in = 25.35 mil = 0.644 mm

Metric units:

$$R_{20} = \frac{1.35 \cdot 3 \cdot 0.305 \cdot 4}{\pi \cdot 0.644^2} = 3.79 \Omega$$

Imperial units (cmf):

$$R_{20} = \frac{812 \cdot 3}{\pi \cdot (0.02535)^2}$$

$$R_{20} = \frac{812 \cdot 3}{25.35^2} = 3.79 \,\Omega$$

The unit Ω /smf is used principally for conductors with rectangular cross sections. Even here length is given in feet and width and thickness in mils.

Example – ribbon calculation:

Calculate the resistance of a KANTHAL D ribbon 10 feet long, where t = 0.04 in and b = 0.5 in.

Combining equation [1] and [14]:

$$R_{20} = \rho \frac{L}{q}$$
 and $q = 0.92 \cdot b \cdot t$

$$R_{20} = \frac{\rho \cdot L}{0.92 \cdot b \cdot t}$$

 $\rho = 1.35 \Omega \text{ mm}^2/\text{m} = 812 \text{ cmf}$

 $L = 10 \text{ foot} = 10 \cdot 12 \text{ in} = 10 \cdot 0.305 \text{ m}$

 $t = 0.04 \text{ in} = 40 \text{ mil} = 0.04 \cdot 25.4 \text{ mm} =$

= 1.016 mm

 $b = 0.5 \text{ in} = 500 \text{ mil} = 0.5 \cdot 25.4 \text{ mm} =$ = 12.7 mm

Metric units:

$$R_{20} = \frac{1.35 \cdot 10 \cdot 0.305}{0.92 \cdot 12.7 \cdot 1.016} = 0.346 \ \Omega$$

Imperial units (smf):

$$R_{20} = \frac{812 \cdot 10}{0.92 \cdot 500 \cdot 40 \cdot 1.2732} = 0.346 \,\Omega$$

3. Formulas for Values in Chapter 9, Tables

In the Kanthal handbook values **per meter** of the material in **each dimension** are calculated and presented in the table as **surface area, weight, resistance.**

Furthermore are the **cross sectional area** and **area** $/\Omega$ calculated.

Below you can see formulas used (formulas include the unit correction)

Metric units:

Cross sectional area q [mm²]

Based on equation [12] [14] res. [15]

Wire

$$q = \frac{\pi}{4} \cdot d^2$$
 [12']

Strip

$$q = b \cdot t$$
 [14']

Ribbon

$$q = 0.92 \cdot b \cdot t$$
 [15]

Surface area per meter A_{C/m} [cm²/m]

Based on equation [7] res. [8]

Wire

$$A_{C/m} = \pi \cdot d \cdot 10$$
 [7']

Strip/Ribbon

$$A_{C/m} = 2 \cdot (b + t) \cdot 10$$
 [8']

Weigth per meter, m_m [g/m]

Wire

$$m = volume \cdot \gamma = q \cdot l \cdot \gamma \rightarrow m_m = q \cdot \gamma$$

Wire

$$m_{\rm m} = \frac{\pi \cdot d^2 \cdot \gamma}{4}$$
 [18]

Strip

$$m_m = b \cdot t \cdot \gamma \tag{18}$$

Ribbon

$$m_{\rm m} = 0.92 \cdot b \cdot t \cdot \gamma$$
 [18]

Resistance per meter $R_{20/m}$ [Ω/m] Based on equation [1]

$$R_{20/m} = \frac{\rho}{q}$$
 [1']

Wire

$$R_{20/m} = \frac{\rho \cdot 4}{\pi \cdot d^2}$$
 [1']

Strip

$$R_{20/m} = \frac{\rho}{b \cdot t}$$
 [1']

Ribbon

$$R_{20/m} = \frac{\rho}{0.92 \cdot b \cdot t}$$
 [1']

Surface area per Ω [cm²/ Ω]

Combining [1'] and [7'] respectively [1'] and [8']

Wire

$$\frac{A_{C/m}}{R_{20/m}} = \frac{\pi \cdot d \cdot \ q \cdot 10}{\rho} = \frac{\pi^2 \cdot d^3 \cdot 10}{\rho \cdot 4}$$

Strip

$$\begin{split} &\frac{A_{C/m}}{R_{20/m}} = \frac{2 \cdot (b+t) \cdot b \cdot t \cdot 10}{\rho} = \\ &= \frac{20 \cdot (b+t) \cdot b \cdot t}{\rho} \end{split}$$

Ribbon

$$\begin{split} &\frac{A_{C/m}}{R_{20/m}} = \frac{2 \cdot (b + t) \cdot 0.92 \cdot b \cdot t \cdot 10}{\rho} = \\ &= \frac{18.4 \cdot (b + t) \cdot b \cdot t}{\rho} \end{split}$$

Other equations which could be helpful

Length per kilo, L_{kg} [m/kg] Based on equation [18] $\rightarrow L_{kg} = \frac{1000}{m_m}$

Wire

$$L_{kg} = \frac{1000 \cdot 4}{\pi \cdot d^2 \cdot \gamma} = \frac{4000}{\pi \cdot d^2 \cdot \gamma}$$
 [18']

Strip

$$L_{kg} = \frac{1000}{b \cdot t \cdot \gamma}$$
 [18']

Ribbon

$$L_{kg} = \frac{1000}{0.92 \cdot b \cdot t \cdot \gamma} = \frac{1087}{b \cdot t \cdot \gamma}$$
 [18']

Resistance per kilo, R_{kg} Combining [1'] and [18] \rightarrow

$$R_{kg} = \frac{R_{20/m} \cdot 1000}{m_m} = \frac{\rho \cdot 1000}{q \cdot q \cdot \gamma} = \frac{\rho \cdot 1000}{q^2 \cdot \gamma}$$

Wire

$$R_{kg} = \frac{\rho \cdot 1000}{\left[\frac{\pi \cdot d^2}{4}\right]^2 \cdot \gamma} = \frac{\rho \cdot 1000}{\frac{\pi^2 \cdot d^4}{16} \cdot \gamma}$$

Strip

$$R_{kg} = \frac{\rho \cdot 1000}{b^2 \cdot t^2 \cdot \gamma}$$

Ribbon

$$R_{kg} = \frac{\rho \cdot 1000}{b^2 \cdot t^2 \cdot 0.92^2 \cdot \gamma} = \frac{\rho \cdot 1181.5}{b^2 \cdot t^2 \cdot \gamma}$$

Imperial units

 $\rho'_{\text{wire'}} = \Omega$ /cir.mil foot respectively $\rho'_{\text{strip/ribbon}} = \Omega$ /square mil foot.

Cross sectional area q [in²]

Based on equation [12] [14] res. [15]

Wire

$$q = \frac{\pi}{4} \cdot d^2 \tag{12'}$$

Strip

$$q = b \cdot t \tag{14'}$$

Ribbon

$$q = 0.92 \cdot b \cdot t \tag{15'}$$

Surface area per foot $A_{C/ft}$ [in²/ft]

Based on equation [7] res. [8]

Wire

$$A_{C/fi} = \pi \cdot d \cdot 12$$
 [7']

Strip/ribbon

$$A_{C/ft} = 2 \cdot (b + t) \cdot 12 = 24 \cdot (b + t)$$
 [8']

Weigth per foot [lb/ft]

 $m = volume \cdot \gamma = q \cdot l \cdot \gamma \rightarrow m_{ff} = q \cdot \gamma$

Wire

$$m_{ft} = \frac{\pi \cdot d^2 \cdot \gamma \cdot 12}{4} = \pi \cdot d^2 \cdot \gamma \cdot 3$$
 [18']

Strip

$$m_{fi} = b \cdot t \cdot \gamma \cdot 12$$
 [18']

Ribbon

$$m_{ft} = 0.92 \cdot b \cdot t \cdot \gamma \cdot 12 = 11.04 \cdot b \cdot t \cdot \gamma$$
 [18']

Resistance per foot $R_{20/ft}$ [Ω/ft]

Based on equation [1] $\rightarrow R_{20/fi} = \frac{\rho}{q}$

$$R_{20/ft} = \frac{\rho'}{d^2 \cdot 10^6}$$
 [1']

Strip

$$R_{20/ft} = \frac{\rho''}{h \cdot t \cdot 10^6}$$
 [1']

Ribbon

$$R_{20/fi} = \frac{\rho''}{0.92 \cdot b \cdot t \cdot 10^{6}}$$
 [1']

Surface area per Ω [in²/ Ω]

Combining [1'] and [7'] respectively [1'] and [8']

Wire

$$\frac{A_{C/fi}}{R_{20/fi}} = \frac{\pi \cdot d^2 \cdot q \cdot 12 \cdot 10^6}{\rho'} = \frac{\pi^2 \cdot d^3 \cdot 3 \cdot 10^6}{\rho'}$$

Strip

$$\begin{split} &\frac{A_{C/fi}}{R_{20/fi}} = \frac{2 \cdot (b+t) \cdot b \cdot t \cdot 12 \cdot 10^{6}}{\rho''} = \\ &= \frac{24 \cdot (b+t) \cdot b \cdot t \cdot 10^{6}}{\rho''} \end{split}$$

Ribbon

$$\frac{A_{C/ft}}{R_{20/ft}} = \frac{2 \cdot (b+t) \cdot 0.92 \cdot b \cdot t \cdot 12 \cdot 10^{6}}{\rho''} = \frac{22.08 \cdot (b+t) \cdot b \cdot t \cdot 10^{6}}{\rho''}$$

Other equations which could be helpful

Length per lb l_{lb} [ft/lb] Based on equation [18] $\rightarrow l_{lb} = \frac{1}{m_{ft}}$

Wire

$$l_{lb} = \frac{4}{\pi \cdot d^2 \cdot \gamma \cdot 12} = \frac{1}{\pi \cdot d^2 \cdot \gamma \cdot 3}$$
 [18']

Strip

$$l_{lb} = \frac{1}{b \cdot t \cdot \gamma \cdot 12}$$
 [18']

Ribbon

$$l_{lb} = \frac{1}{0.92 \cdot b \cdot t \cdot \gamma \cdot 12} = \frac{1}{b \cdot t \cdot \gamma \cdot 11.04}$$
 [18]

Resistance per lb R_{lb} [9] Combining [1'] and [18] \rightarrow

$$R_{lb} = \frac{R_{20/ft}}{m_{ft}} = \frac{\rho}{q \cdot q \cdot \gamma} = \frac{\rho}{q^2 \cdot \gamma}$$

$$R_{lb} = \frac{\rho'}{d^2 \cdot 10^6 \cdot \pi \cdot d^2 \cdot \gamma \cdot 3} =$$

$$= \frac{\rho'}{d^4 \cdot 10^6 \cdot \pi \cdot \gamma \cdot 3}$$

Strip

$$R_{lb} = \frac{\rho''}{b^2 \cdot t^2 \cdot \gamma \cdot 12 \cdot 10^6}$$

Ribbon

$$R_{lb} = \frac{\rho''}{b^2 \cdot t^2 \cdot 0.92^2 \cdot \gamma \cdot 12 \cdot 10^6} = \frac{\rho''}{b^2 \cdot t^2 \cdot 10.16 \cdot \gamma \cdot 10^6}$$

4. Relationship between metric and imperial units

Metric and imperial sytem conversion table

 $1 \Omega \text{mm}^2 \text{m}^{-1} (\mu \Omega \text{m})$ = $601.54 \Omega/cmf$ = $472.44 \Omega/\text{smf}$ $1 \Omega \text{mm}^2 \text{m}^{-1} (\mu \Omega \text{m})$ $1 \Omega/\text{smf}$ = $1.2732 \Omega/cmf$

1 inch [in] = 1000 mil = 0.0254 m= 12 in 1 foot = 0.3048 m= 0.001 inch = 0.0254 mm1 mil 1 W/cm² $= 6.45 \text{ W/in}^2$ 1 W/in² $= 0.155 \text{ W/cm}^2$

5. Design Calculations for Heating Elements

In this section an element is defined as the combination of heating wire and any supporting and connecting materials. Electrical appliances equipped with a heating element are being used in domestic as well as industrial applications. Domestic applications are e.g. cooking, heating of fluids, drying, ironing, space heating and special purposes such as heating of beds, aquariums, saunas, soldering irons and paint strippers. Industrial applications are such as heat treatment, hardening and drying of inks, paints and lacquers. In vehicles, seats, motors and rear view mirrors are frequently electrically heated.

The appliance and the element must meet requirements regarding performance, cost of raw material and manufacture, life and safety. The requirements may be opposed to each other. A long life and a high degree of safety means a low wire temperature, which results in a long heating up time and often also high raw material costs.

Domestic heating appliances must not cause harm to individuals or damage to property. Safety specifications for each market may influence the design of the appliance and the element and limit their temperature.

The life of a well designed element depends upon the make and the type of wire used. Our FeCrAl and NiCr(Fe) wires have excellent properties at high temperature and provide the best possible life. It should be kept in mind that the life of a wire increases with wire diameter and decreasing wire temperature.

Wire Temperature

For embedded and supported element types the wire temperature depends upon both the wire and the element surface load. For the suspended element types the element surface load in most cases cannot be defined. In addition to the surface load, ambient temperature, heating dissipating conditions and presence and location of other elements will influence the wire temperature and therefore also the choice of wire surface load and element surface load.

Life test of elements.

Surface Load

When calculating an element, voltage and rating are normally known. The element surface load means the rating divided by that part of element surface, which is close to the energised wire and therefore has an elevated temperature. Usually a range of surface loads and not one single figure is listed in the mentioned tables. The choice within the range depends upon the requirements for the element. It also depends upon voltage, rating and dimensions available. A high voltage and a low rating will result in a thin wire, which at the same temperature has a shorter life than a thick wire and will therefore require a low wire surface load.

The wire surface is then found as the ratio between rating and wire surface load.

Surface and Resistance

After having calculated the resistance in cold state, the ratio between the surface and the resistance is found. This ratio is listed for all wire types and wire dimensions in the Kanthal handbook, and the correct wire size can therefore easily be found from these tables.

Life test of 4 mm wire.

Bash test of alloys.

Coil Parameters

The ratio between coil and wire diameter (D/d) must be calculated in order to check that the coil can easily be made. This ratio (D/d) should be in the range 5-12 if possible. In case of supported elements, this ratio must be compared with the deformation curve in Figure 3, page 23. When the coil length and diameter are known, the coil pitch (s) can be estimated by formula [17] in the Appendix. Coil pitch (s) is normally 2-4 times the wire diameter (d). For quartz tube heaters a smaller pitch is normally used. Preoxidised coils from KANTHAL FeCrAl in such elements can be used tightly coiled.

For a straight wire on a threaded ceramic rod and for many elements of the suspended type the wire length is fixed. The resistance per meter can then be calculated and the wire size found from the tables of the Kanthal handbook. If this results in too high a surface load in case of a ribbon, a wider and thinner ribbon having the same cross section can be chosen.

Metal Sheathed Tubular Element

The calculation of a metal sheathed tubular element is more complicated since the resistance is reduced 10 to 30 % as a result of the compression of the element. For such elements, the tube surface load is first determined according to the use of the element. The wire surface load is normally 2 to 4 times greater. After calculating the resistance from rating and voltage, it has to be increased 10 to 30 % in order to arrive at the resistance after coiling. The wire surface will become 2 to 7 % smaller when the element has been reduced. Since the tube length is increased through compression by rolling, the tube surface often remains unaltered.

Glowing coil inside tubular heating element.

Examples

Tubular Element for a Flat Iron

Rating, P 1000 W Voltage. U 220 V

Final tube diameter: 8 mm (0.315 in) Final tube length: 300 mm (11.8 in)

If the terminal length inside the tube is 2 x 25 mm $(2 \times 1 \text{ in})$ the coil length (L_e) will be $L_e = 300 \text{ mm} - (2 \times 25 \text{ mm}) = 250 \text{ mm}$ (9.8 in). Combining equation [9] and [10] gives as hot resistance

$$R = \frac{U^2}{P} = \frac{220^2}{1000} = 48.4 \Omega$$

According to equation [6] tubes surface load becomes

$$\begin{aligned} & p_{tube} = \frac{P}{A_{tube}} = \frac{P}{\pi \cdot d_{tube} \cdot L_e \cdot 0.01} = \\ & = \frac{1000}{\pi \cdot 8 \cdot 250 \cdot 0.01} = 15.91 \frac{W}{cm^2} = (103 \text{ W/in}^2) \end{aligned}$$

If we aim at three times higher wire surface load:

$$p_{wire} = 3 \cdot p_{tube} = 3 \cdot 15.91 = 47.74 \approx 48 \frac{W}{cm^2}$$

(309 W/in²)

According to equation [6] the wire surface can be calculated to

$$p = \frac{P}{A_c}$$

$$A_c = \frac{P}{p} = \frac{1000}{48} = 20.83 \approx 21 \text{ cm}^2 (3.3 \text{ in}^2)$$

KANTHAL D is a sensible choice and an average wire temperature of 700 °C (1290 °F) likely. Due to temperature factor of resistance (C_t for Kanthal D, table chapter 2, = 1.05) the resistance at room temperature is based on [2] calculated to:

$$R_T = C_t \cdot R_{20} \rightarrow R_{20} = \frac{R_T}{C_t} = \frac{48.4}{1.05} = 46.09 \approx$$

 $\approx 46.1 \Omega$

The ratio wire surface to resistance is

$$\frac{A_C}{R_{20}} = \frac{21}{46.1} = 0.455 \frac{cm^2}{\Omega}$$
,

corresponding to a wire size of about 0.3 mm (0.012 in), based on the table for KANTHAL D in chapter 9.

Metal sheathed tubular element.

We assume that a steel tube of initially 9.5 mm (0.37 in) diameter is being used and can then expect a resistance reduction of about 30 % upon rolling. The resistance of the coil should therefore be about 65.3 Ω . The wire surface prior to compression is 7 % bigger, or 22.5 cm² $(3.49 in^2)$, and the ratio between wire surface and resistance $0.34 \text{ cm}^2/\Omega$ $(0.053 in^2/\Omega)$.

The corresponding wire size is 0.26 mm (0.01 in). Tests with this wire size have to be made in order to check the resistance reduction as a result of compression.

Coil suspended on a Mica-cross, element for a hair dryer

Rating, P	350W
Voltage, U	55 V
Length of coil, l	250 mm
Coil outer diameter, D	6 mm

For this application a surface load, p, of 7 W/cm² is reasonable, using equation [6] gives a wire surface of:

$$p = \frac{P}{A_c} \rightarrow A_c = \frac{P}{p} = \frac{350}{7} = 50 \text{ cm}^2$$

Assuming a wire temperature of 600 °C and choosing Kanthal D with an Ct value of 1.04. Next step is to calculate hot- and cold resistance, according to combining equation [9], [10] and [2]:

$$R_{\rm T} = \frac{U_2}{P} = \frac{55^2}{350} = 8.64 \ \Omega$$

$$R_{20} = \frac{R_T}{C_t} = 8.31 \ \Omega$$

By calculating the surface area to cold resistance ratio, a suitable wire dimension is found:

Combining [1'] and [7'], [8']

Wire

$$\frac{A_C}{R_{20}} = \frac{50 \text{ cm}^2}{8.31 \Omega} = 6.01 \frac{\text{cm}^2}{\Omega}$$

According to the table in chapter 9, Kanthal D Ø 0.70 mm has an area to resistance ratio of 6.27 cm²/ Ω .

Verifying the geometry of the coil, suitable values for the D/d ratio are between 6-12. D/d ratio has to be considered since too low as well as too high values will create problems in the coiling process. In this case:

$$\frac{D}{d} = \frac{6 \text{ mm}}{0.7 \text{ mm}} = 8.6 \text{ which is within limits}$$

To get the length of wire we have to calculate the ratio between resistance needed and resistance per meter according to table chapter 9, KANTHAL D, d = 0.7 mm $R_{20/m} = 3.51 \Omega/m$.

The length of the wire becomes:

$$L = \frac{R_{20}}{R_{20/m}} = \frac{8.31 \ \Omega \cdot m}{3.51 \ \Omega} = 2.367 \ m$$

Based on [17] the coil pitch, s, is calculated to:

$$s = \frac{\pi \cdot (D - d) \cdot L}{L} = \frac{\pi \cdot (7 - 0.7) \cdot 250}{2370} = 2.09 \text{ mm}$$

and subsequently a relative pitch:

$$r = \frac{s}{d} = \frac{2.09}{0.7} = 2.98$$

Finally the actual surface load is based on [6] calculated to:

$$p = {P \over A_{c/m} \cdot L} = {350 \over 22 \cdot 2.37} = 6.7 \text{ W/cm}^2$$

10

6. Wire Gauge Conversion Table

Gauge no.	AWG or B&	S mm	SWG inch	mm	Gauge no.	AWG or B&	S mm	SWG inch	mm
4-0	0.4600	11.684	0.4000	10.1600	29	0.01126	0.286	0.0136	0.345
3-0	0.4096	10.404	0.3720	9.4488	30	0.01003	0.255	0.0124	0.315
2-0	0.3648	9.266	0.3480	8.8392	31	0.008928	0.227	0.0116	0.295
0	0.3249	8.252	0.3240	8.2296	32	0.007950	0.202	0.0108	0.274
1	0.2893	7.348	0.3000	7.6200	33	0.007080	0.180	0.0100	0.254
2	0.2576	6.543	0.2760	7.0104	34	0.006305	0.160	0.00920	0.234
3	0.2294	5.827	0.2520	6.4008	35	0.005615	0.143	0.00840	0.213
4	0.2043	5.189	0.2320	5.8928	36	0.005000	0.127	0.00760	0.193
5	0.1819	4.620	0.2120	5.3848	37	0.004453	0.113	0.00680	0.173
6	0.1620	4.115	0.1920	4.8768	38	0.003965	0.101	0.00600	0.152
7	0.1443	3.665	0.1760	4.4704	39	0.003531	0.0897	0.00520	0.132
8	0.1285	3.264	0.1600	4.0640	40	0.003145	0.0799	0.00480	0.122
9	0.1144	2.906	0.1440	3.6576	41	0.002800	0.0711	0.00440	0.112
10	0.1019	2.588	0.1280	3.251	42	0.002494	0.0633	0.00400	0.102
11	0.09074	2.305	0.1160	2.946	43	0.002221	0.0564	0.00360	0.0914
12	0.08081	2.053	0.1040	2.642	44	0.001978	0.0502	0.00320	0.0813
13	0.07196	1.828	0.0920	2.337	45	0.001761	0.0447	0.00280	0.0711
14	0.06408	1.628	0.0800	2.032	46	0.001568	0.0398	0.00240	0.0610
15	0.05707	1.450	0.0720	1.829	47	0.001397	0.0355	0.00200	0.0508
16	0.05082	1.291	0.0640	1.626	48	0.001244	0.0316	0.00160	0.0406
17	0.04526	1.150	0.0560	1.422	49	0.001108	0.0281	0.00120	0.0305
18	0.04030	1.024	0.0480	1.219	50	0.000986	0.0250	0.00100	0.0254
19	0.03589	0.912	0.0400	1.016	51	0.000800	0.0203	0.000878	0.0223
20	0.03196	0.812	0.0360	0.914	52	0.000600	0.0152	0.000782	0.0199
21	0.02846	0.723	0.0320	0.813	53	0.000500	0.0127	0.000697	0.0177
22	0.02535	0.644	0.0280	0.711	54	0.000400	0.0102	0.000620	0.0157
23	0.02257	0.573	0.0240	0.610	55	0.000300	0.0076	0.000552	0.0140
24	0.02010	0.511	0.0220	0.559	56			0.000492	0.0125
25	0.01790	0.455	0.0200	0.508	57			0.000438	0.0111
26	0.01594	0.405	0.0180	0.457	58			0.000390	0.00991
27	0.01420	0.361	0.0164	0.417	59			0.000347	0.00881
28	0.01264	0.321	0.0148	0.376	60			0.000309	0.00785

7. Temperature Conversion Table

The numbers in the light shaded area indicate the temperatures as read. The corresponding temperatures in Fahrenheit are given on the right and those in Celsius on the left.

If 10 degrees are read in Celsius, look in the right column and convert it to 50 °F. If 10 degrees F is read, look in the left column and convert it to -12,2 °C.

°F		°C	∘F		°C	°F		°C
188.6	87	30.6	109.4	43	6.11	32	0	-17.8
190.4	88	31.1	111.2	44	6.67	33.8	1	-17.2
192.2	89	31.7	113.0	45	7.22	35.6	2	-16.7
194.0	90	32.2	114.8	46	7.78	37.4	3	-16.1
195.8	91	32.8	116.6	47	8.33	39.2	4	-15.6
197.6	92	33.3	118.4	48	8.89	41.0	5	-15.0
199.4	93	33.9	120.2	49	9.44	42.8	6	-14.4
201.2	94	34.4	122.0	50	10.0	44.6	7	-13.9
203.0	95	35.0	123.8	51	10.6	46.4	8	-13.3
204.8	96	35.6	125.6	52	11.1	48.2	9	-12.8
206.6	97	36.1	127.4	53	11.7	50.0	10	-12.2
208.4	98	36.7	129.2	54	12.2	51.8	11	-11.7
210.2	99	37.2	131.0	55	12.8	53.6	12	-11.1
212	100	38	132.8	56	13.3	55.4	13	-10.6
230	110	43	134.6	57	13.9	57.2	14	-10.0 -10.0
248	120	49	136.4	58	14.4	59.0	15	-10.0 -9.44
266	130	54	138.2	59	15.0	60.8	16	-9.44 -8.89
284	140	60		60	15.6	62.6	17	-8.33
	150		140.0	61				
302		66	141.8		16.1	64.4	18	-7.78 -7.00
320	160	71	143.6	62	16.7	66.2	19	-7.22
338	170	77	145.4	63	17.2	68.0	20	-6.67
356	180	82	147.2	64	17.8	69.8	21	-6.11
374	190	88	149.0	65	18.3	71.6	22	-5.56
392	200	93	150.8	66	18.9	73.4	23	-5.00
410	210	99	152.6	67	19.4	75.2	24	-4.44
413	212	100	154.4	68	20.0	77.0	25	-3.89
428	220	104	158.0	70	21.1	78.8	26	-3.33
446	230	110	159.8	71	21.7	80.6	27	-2.78
464	240	116	161.6	72	22.2	82.4	28	-2.22
482	250	121	163.4	73	22.8	84.2	29	-1.67
500	260	127	165.2	74	23.3	86.0	30	-1.11
518	270	132	167.0	75	23.9	87.8	31	-0.56
536	280	138	168.8	76	24.4	89.6	32	0
554	290	143	170.6	77	25.0	91.4	33	0.56
572	300	149	172.4	78	25.6	93.2	34	1.11
590	310	154	174.2	79	26.1	95.0	35	1.67
608	320	160	176.0	80	26.7	96.8	36	2.22
626	330	166	177.8	81	27.2	98.6	37	2.78
644	340	171	179.6	82	27.8	100.4	38	3.33
662	350	177	181.4	83	28.3	102.2	39	3.89
680	360	182	183.2	84	28.9	104.0	40	4.44
698	370	188	185.0	85	29.4	105.8	41	5.00
716	380	193	186.8	86	30.0	107.6	42	5.56

10

cont.

°C		°F	°C		°F	°C		°F
199	390	734	482	900	1652	766	1410	2570
204	400	752	488	910	1670	771	1420	2588
210	410	770	493	920	1688	777	1430	2606
216	420	788	499	930	1706	782	1440	2624
221	430	806	504	940	1724	788	1450	2842
227	440	824	510	950	1742	793	1460	2660
232	450	842	516	960	1760	799	1470	2678
238	460	860	521	970	1778	804	1480	2696
243	470	878	527	980	1796	810	1490	2714
254	490	914	532	990	1814	816	1500	2732
260	500	932	538	1000	1832			
266	510	950	543	1010	1850	821	1510	2750
271	520	968	549	1020	1868	827	1520	2768
277	530	986	554	1020	1886	832	1530	2786
						838	1540	2804
282	540	1004	560	1040	1904	843	1550	2822
288	550	1022	566	1050	1922	849	1560	2840
293	560	1040	571	1060	1940	854	1570	2858
299	570	1058	577	1070	1958	860	1580	2876
304	580	1076	582	1080	1976	866	1590	2894
310	590	1094	588	1090	1994	871	1600	2912
316	600	1112	593	1100	2012	877	1610	2930
321	610	1130	599	1110	2030	882	1820	2948
327	620	1148	604	1120	2048	888	1630	2966
332	630	1166	610	1130	2066	893	1640	2984
338	640	1184	616	1140	2084	899	1650	3002
343	650	1202	621	1150	2102	904	1660	3020
349	660	1220	627	1160	2120	910	1670	3038
354	670	1238	632	1170	2138	916	1680	3058
360	680	1256	643	1190	2174	921	1690	3074
366	690	1274	649	1200	2192	927	1700	3092
371	700	1292	654	1210	2210	932	1710	3110
377	710	1310	660	1220	2228	938	1720	3128
382	720	1328	666	1230	2246	943	1730	3146
388	730	1346	671	1240	2264	949	1740	3164
393	740	1364	677	1250	2282	954	1750	3182
399	750	1382	682	1260	2300	960	1760	3200
404	760	1400	688	1270	2318	966	1770	3218
410	770	1418	693	1280	2336	971	1780	3236
416	780	1436	699	1290	2354	977	1790	3254
421	790	1454	704	1300	2372	982	1800	3272
427	800	1472	710	1310	2390	988	1810	3290
432	810	1490	716	1320	2408	993	1820	3308
438	820	1508	721	1330	2426	999	1830	3326
443	830	1526	727	1340	2444	1004	1840	3344
449	840	1544	732	1350	2462	1010	1850	3362
454	850	1562	738	1360	2480	1016	1860	3380
460	860	1580	743	1370	2498	1021	1870	3398
468	870	1598	749	1380	2516	1032	1890	3434
471	880	1816	754	1390	2534	1038	1900	3452
477	890	1634	760	1400	2552	1043	1910	3470
								cont.

cont.

001111			
°C		°F	°C
1049	1920	3488	1249
1054	1930	3506	1254
1060	1940	3524	1260
1066	1950	3542	1266
1071	1960	3560	1271
1077	1970	3578	1277
1082	1980	3596	1282
1088	1990	3614	1288
1093	2000	3632	1293
1099	2010	3650	1299
1104	2020	3668	1304
1110	2030	3686	1310
1116	2040	3704	1316
1121	2050	3722	1321
1127	2060	3740	1327
1132	2070	3758	1332
1138	2080	3776	1338
1143	2090	3794	1343
1149	2100	3812	1349
1154	2110	3830	1354
1160	2120	3848	1360
1166	2130	3866	1366
1171	2140	3884	1371
1177	2150	3902	1377
1182	2160	3920	1382
1188	2170	3938	1388
1193	2180	3956	1393
1199	2190	3974	1399
1204	2200	3992	1404
1210	2210	4010	1410
1216	2220	4028	1421
1221	2230	4046	1427
1227	2240	4064	1432
1232	2250	4082	1438
1238	2260	4100	1443
1243	2270	4118	1449

°C		°F
1249	2280	4138
1254	2290	4154
1260	2300	4172
1266	2310	4190
1271	2320	4208
1277	2330	4226
1282	2340	4244
1288	2350	4262
1293	2360	4280
1299	2370	4298
1304	2380	4316
1310	2390	4334
1316	2400	4352
1321	2410	4370
1327	2420	4388
1332	2430	4406
1338	2440	4424
1343	2450	4442
1349	2460	4460
1354	2470	4478
1360	2480	4496
1366	2490	4514
1371	2500	4532
1377	2510	4550
1382	2520	4568
1388	2530	4586
1393	2540	4604
1399	2550	4622
1404	2560	4640
1410	2570	4658
1421	2590	4694
1427	2600	4712
1432	2610	4730
1438	2620	4748
1443	2630	4766
1449	2640	4784

°C		°F
1454	2650	4802
1460	2660	4820
1466	2670	4838
1471	2680	4856
1477	2690	4874
1482	2700	4892
1488	2710	4910
1493	2720	4928
1499	2730	4946
1504	2740	4964
1510	2750	4982
1516	2760	5000
1521	2770	5018
1527	2780	5036
1532	2790	5054
1538	2800	5072
1543	2810	5090
1549	2820	5108
1554	2830	5126
1560	2840	5144
1566	2850	5162
1571	2860	5180
1577	2870	5198
1582	2880	5216
1588	2890	5234
1593	2900	5252
1599	2910	5270
1604	2920	5288
1610	2930	5306
1616	2940	5324
1621	2950	5342
1627	2960	5360
1632	2970	5376
1638	2980	5396
1643	2990	5414
1649	3000	5432

Interpolation table

	°F
1	1.8
2	3.6
3	5.4
4	7.2
5	9.0
6	10.8
7	12.6
8	14.4
9	16.2
10	18.0
	2 3 4 5 6 7 8

8. Miscellaneous Conversion Factors

To Convert from:	То:	Multiply by:
ampere-turns	gilberts	1.2566
atmospheres	torr	760.00
otu's	kilogram-calories	0.25200
otu's	foot-pounds	778.17
tu's	horsepower-hours	0.00039308
tu's	joules	1054.0
tu's	kilogram-meters	107.59
tu's	kilowatt-hours	0.00029307
tu's	gram-calories	252.00
tu's	watt-hours	0.29307
tu's/hour	watts	0.29307
tu's/minute	watts	17.584
u's/minute	foot-pounds/sec	12.961
u's/sq ft	watt-hours/sq meter	3.1546
u's/(sq ft)(min)	watts/sq inch	0.12203
u's/(hr)(sq ft)	watts/sq meter	3.1525
u's/(hr)(sq ft)(øF)	gm-cals/(sec)(sq m)(oC)	1.3562
lories	joules	4.1840
entigrade	Fahrenheit	1.8 x (°C+32)
	pascal-seconds	0.001
ntipoise cular mils	square centimeters	0.00005067
cular mils	square inches	0.000007854
cular mils	square mils	0.78540
ic cm	cubic inches	0.061024
rees (angle)	radians	0.017453
grees/sec	revolutions/min	0.16667
nes	grams	0.0010197
nes	newtons	0.00001
nes	pounds	0.0000022481
nes/sq cm	kgs/sq meter	0.010197
nes/sq cm	pounds/sq foot	0.0020885
nes/sq cm	pounds/sq inch	0.000014503
hrenheit	Centigrade	0.555 x (°F - 32)
homs	feet	6
ot-pounds	horsepower-hours	0.00000050505
ot-pounds	joules	1.3558
ot-pounds	newton-meters	1.3558
ot-pounds	kilogram-calories	0.00032383
ot-pounds	kilogram-meters	0.13826
ot-pounds	kilowatt-hours	0.00000037662
ot-pounds/min	horsepower	0.000030303
ot-pounds/min	kilowatts	0.000022597
ot-pounds/sec	horsepower	0.0018182
oot-pounds/sec	kg-calories/min	0.019443
or pourido/occ	ng-calones/mill	0.013440

4	ľ	
ı	L	U
		_

To Convert from:	То:	Multiply by:
foot-pounds/sec	kilowatts	0.0013558
furlongs	miles	0.125
gallons (U.S.)	gallons (Brit.)	0.83267
gallons	liters	3.7854
gallons	pints (liquid)	8
gallons	quarts (liquid)	4
gallons/min	cubic feet/sec	0.0022280
gallons/min	liters/sec	0.063090
gauss	lines/sq inch	6.4516
gauss	webers/sq meter	0.0001
grams	ounces	0.035274
grams	ounces (troy)	0.032151
grams	poundals	0.070932
grams	pounds	0.0022046
gram-centimeters	btu's	0.0000009301
gram-centimeters	foot-pounds	0.00072330
gram-centimeters	joules	0.000098067
gram-centimeters	kilogram-meters	0.00001
grams/cm	pounds/inch	0.0055997
grams/cu cm	pounds/cu foot	62.428
grams/cu cm	pounds/cu inch	0.036127
grams/cu cm	pounds/circ mil foot	0.0000034049
horsepower (electric)	horsepower (metric)	1.0143
horsepower	kg-calories/min	10.686
horsepower	horsepower (metric)	1.0139
horsepower	kilowatts	0.7457
horsepower	watts	745.7
horsepower-hours	joules	2684520
horsepower-hours	kilogram-calories	641.19
horsepower-hours	kilogram-meters	273745
hours	seconds	3600
inches	centimeters	2.54
inches	mils	1000
inches	millimeters	25.4
joules	kilogram-calories	0.00023866
joules	volt-coulombs	0.99984
joules	watt-hours	0.00027778
joules	watt-seconds	1
kilograms	dynes	980665
	•	
kilograms	poundals	70.932 2.2046
kilograms	pounds	2.6792
kilograms	pounds (troy)	
kilograms	tons (short)	0.0011023
kilograms	tons (long)	0.00098421 426.93
kilogram-calories	kilogram-meters	420.93

To Convert from:	То:	Multiply by:
kilogram-calories	kilowatt-hours	0.001163
kg-cals/minute	kilowatts	0.06978
kilogram-meters	kilowatt-hours	0.0000027241
kgs/cu meter	grams/cu cm	0.001
kgs/cu meter	pounds/cu foot	0.062428
kgs/cu meter	pounds/cu inch	0.000036127
kgs/meter	pounds/foot	0.67197
kgs/sq centimeter	pounds/sq inch	14.223
kgs/sq meter	pounds/sq foot	0.20482
kgs/sq meter	pounds/sq inch	0.0014223
kilopascals	pounds/sq in	0.14504
kilowatt	btu's/min	56.878
kilowatt-hours	btu's	3413
kilowatt-hours	horsepower-hours	1.3410
kilowatt-hours	kilogram-calories	860
kilowatt-hours	joules	3600000
liter	cubic cm	1000
liter	cubic inches	61.023
liters	quarts (liquid)	1.0567
liters/minute	cubic feet/sec	0.00058858
liters/minute	gallons/sec	0.0044029
meters	inches	39.370
meters	kilometers	0.001
meters	yards	1.0936
meter-kilograms	pound-feet	7.2330
meters/second	miles/hour	2.2369
meters/second	feet/minute	196.85
meters/second	kilometers/hour	3.6
meters/second	miles/minute	0.037282
micrograms	grams	0.00001
microhms	ohms	0.00001
microinches	inches	0.00001
microinches	microns	25.4
microinches	millimeters	0.0254
microliters	liters	0.000001
microns	inches	0.000039370
microns	meters	0.000001
microns	millimeters	0.001
miles	feet	5280
millibars	torr	0.75006
millibars	pascals	100
millihenries	henries	0.001
millimeters	mils	39.370
nautical miles	kilometers	1.852
newtons	pounds	0.22481

To Convert from:	То:	Multiply by:
oersteds	amperes/meter	79.577
ohm - circular mil/foot	ohm - square mil/foot	1.273
ohm - circular mil/foot	ohm - square mm/meter	0.00166
ohm - circular mil/foot	microhm cm	0.16624
ohms/foot	ohms/meter	3.2808
ounces	pounds	0.0625
ounces (fluid)	cubic inches	1.8047
ounces (fluid)	liters	0.02957
ounces (troy)	grains	480
ounces (troy)	pounds (troy)	0.083333
pound	grams	453.59
pound	grains	7000
pound	kilograms	0.45359
pounds (troy)	pounds (avdp)	0.82286
pounds/sq foot	pounds/sq inch	0.0069444
pounds/sq inch	newton/sq meter	6894.8
pounds/cubic foot	kilograms/cubic meter	16.019
pounds/cubic inch	grams/cubic cm	27.680
radians	revolutions	0.15915
radians/sec	revolutions/min	9.5493
slugs	kilograms	14.594
square centimeters	square inches	0.15500
square feet	square meters	0.092903
square millimeters	circular mils	1973.5
square mils	circular mils	1.2732
square mils	square centimeters	0.000064516
square mils	square inches	0.000001
stones	pounds	14
watts	ergs/second	10000000
watts	foot-pounds/min	44.254
watts	foot-pounds/sec	0.73756
watts	kg-calories/min	0.014331
watt-hours	foot-pounds	2655.2
watt-hours	kilogram-calories	0.85985

11. The Kanthal Product Range

Heating Alloys

Appliance Wire 0.12-2 mm 0.00468-0.078 in Ribbon

The heating source in most electric house-hold appliances such as ovens, toasters, hair dryers, washing machines etc.

Industrial Wire 1-10 mm 0.039-0.47 in Strip

For heating elements in industrial furnaces and processes.

Alloy	Max temperature
KANTHAL APM	1425 °C <i>2595 °F</i>
KANTHAL A-1	1400 °C <i>2550 °F</i>
KANTHAL A	1350 °C <i>2460 °F</i>
KANTHAL AE	1300 °C <i>2370 °F</i>
KANTHAL AF	1300 °C <i>2370 °F</i>
KANTHAL D	1300 °C <i>2370 °F</i>
ALKROTHAL	1100 °C <i>2010 °F</i>
NIKROTHAL 80	1200 °C <i>2190 °F</i>
NIKROTHAL 70	1250 °C <i>2280 °F</i>
NIKROTHAL 60	1150 °C <i>2100 °F</i>
NIKROTHAL 40	1100 °C <i>2010 °F</i>
NIFETHAL 70	600 °C 1110 °F
NIFETHAL 52	600 °C 1110 °F

Precision Wire

Precision Wire 0.015-0.12 mm 0.000585-0.00468 in

Is used in electronic components such as resistors and potentiometers and for low temperature heating.

Special Alloys

Alloys for thermocouples, extension and compensating cables.

- Nickel-iron.
- Controlled expansion alloys.
- High temperature alloys for mechanical applications.
- Copper-nickel alloys for special applications.

Precision wire 0.015 mm in the eye of a meedle.

Thermostatic Bimetal

Bimetal consists of two or more metallic strips with different thermal expansion bonded together. When heated up it bends in a pre-determined manner and can be used to monitor, measure or regulate heat. Its main applications are in thermostats for room heaters or water mixing but they are also used to control toasters and indicators in automobiles.

Kanthal offers a wide range of some 30 standard types of thermostatic Bimetal with different specific deflection, manufactured in widths ranging between 170 and 1.0 mm 6.63 - 0.039 in and in thickness between 2.5 and 0.10 mm 0.097 - 0.0039 in. Bimetal is also manufactured to specifications suitable for the snap action disc applications.

Kanthal Super

High power and long life electric heating elements for use up to very high temperatures. Manufactured as ready-made elements, straight or bent in a broad range of standard dimensions. Used mainly in laboratory furnaces and production furnaces in the glass-, electronics-, steel-, ceramics and heat treatment industry.

Quality	Max temperature
Kanthal Super 1700	1700 °C <i>3090 °F</i>
Kanthal Super 1800	1800 °C <i>3270 °F</i>
Kanthal Super 1900	1850 °C <i>3360 °F</i>
Kanthal Super HT	1830 °C <i>3330 °F</i>
Kanthal Super RA	1700 °C <i>3090 °F</i>
Kanthal Super ER	1600 °C <i>2910 °F</i>
Kanthal Super NC	1800 °C <i>3270 °F</i>

SUPERTHAL®

Heating modules with Kanthal Super elements and ceramic fibre in the form of half-cylinders, cylinders, panels or completely tailor made for use up to 1550 °C 2820 °F. Superthal is used wherever concentrated heat is needed, for example in the electronics-and the glass industry as well as in dental furnaces.

Thermostatic Bimetal.

Kanthal Super and Superthal

Metallic Elements

Ready-made furnace elements manufactured in Kanthal workshops from KANTHAL or NIKROTHAL alloys for furnace temperatures between $50 \,^{\circ}\text{C} - 1350 \,^{\circ}\text{C}$ $120 - 2460 \,^{\circ}\text{E}$.

FIBROTHAL®

A complete modular system comprising heating elements and insulation for furnaces and processes up to 1200 °C 2190 °F.

FIBROTHAL.

Metallic elements manufacturing.

TUBOTHAL®

Powerful metallic element heaters for use inside all types of radiant tubes, ideally KANTHAL APM. Available in standard dimensions from 68 to 170 mm diameter 2.6 - 6.6 in.

Tubes

KANTHAL APM and SANDVIK 253/353 MA extruded radiant tubes for gas- or electrically heated furnaces. Complete assemblies with inner tubes (gas) or suitable electric heating elements. Standard dimensions from 26 to 260 mm outer diameter 1.02- 10.2 in.

ECOTHAL®

Ecothal is the world's cleanest recuperative radiant heater. With electronically-controlled gas/air supply and double catalytic converters, nitrogen oxide emissions can be reduced by around 75 %.

APM tube and Tubothal.

APM tubes.

Ecothal

Bild nr 539 Saknas original

Heating Elements

Furnace systems and complete heating elements for semiconductor wafer processing. Furnace rebuilds, upgrades and new replacement rnace systems to provide larger wafer processing capabilities.

Silicon Carbide

Heating elements in a broad range for use up to 1650 °C 3000 °F. Manufactured in straight, spiralled, single or multi-shank designs for a variety of heat treatment and melting furnaces. Kanthal SiC is the standard element for production of float-glass.

GLOBAR® FLOAT

Helix heating element.

Kanthal Machinery

Kanthal Machinery offers a complete range of machines for manufacturing of tubes and metal sheathed tubular elements. Available as either standard or custom built stand-alone machines to complete turnkey factory production lines.

Coiling machine.

Customer Service

Kanthal not only offers a complete range of products to generate or protect against heat, but of equal importance is the technical and commercial service we extend to our customers. Examples of this includes; advice on choice of material, design of ements, trouble-shooting, design and manufacturing of complete heating systems, development of new elements and alloys, installation service and follow-up.

Visit www.kanthal.com

You will always find the latest information about Kanthal and our products on the web. Brochures, handbooks and data-sheets can be downloaded to your computer. You will find address, e-mail, fax- and telephone numbers to all Kanthal subsidiaries and representatives, press releases and other news.

Kanthal is a Sandvik Company.

Sandvik is a high-technology engineering Group with advanced products and a world-leading position within selected niches – tools for metalworking, machinery and tools for rock-excavation, products in stainless steel, special alloys and high temperature materials. World-wide business activities are conducted through 300 companies and representation in 130 countries.

KANTHAL

KANTHAL AB
Box 502, SE-734 27 Hallstahammar, Sweden
www.kanthal.com
Tel +46 220 210 00
Fax +46 220 211 66
A Sandvik Company