Hierarchical Clustering

Dutt Thakkar 2023-05-15

Loading the dataset

```
data=read.csv("/Users/duttthakkar/Desktop/Cereals.csv")
head(data)
```

```
##
                            name mfr type calories protein fat sodium fiber carbo
                                         C
## 1
                      100%_Bran
                                                 70
                                                               1
                                                                     130
                                                                          10.0
                                                                                  5.0
                                         C
                                                120
                                                                           2.0
## 2
              100%_Natural_Bran
                                   0
                                                                      15
                                                                                  8.0
## 3
                       All-Bran
                                                 70
                                                                     260
                                                                           9.0
                                                                                  7.0
## 4 All-Bran_with_Extra_Fiber
                                   K
                                         C
                                                 50
                                                                     140
                                                                          14.0
                                                                                  8.0
## 5
                 Almond_Delight
                                         C
                                                110
                                                               2
                                                                     200
                                                                           1.0 14.0
       Apple_Cinnamon_Cheerios
                                   G
                                         C
                                                                           1.5 10.5
## 6
                                                110
                                                                     180
     sugars potass vitamins shelf weight cups
##
                                                    rating
                280
                                  3
## 1
                           25
                                          1 0.33 68.40297
## 2
          8
                135
                           0
                                  3
                                          1 1.00 33.98368
                          25
## 3
          5
                320
                                  3
                                          1 0.33 59.42551
## 4
                330
                           25
                                          1 0.50 93.70491
                           25
                                  3
                                          1 0.75 34.38484
## 5
          8
                NA
         10
                 70
                           25
                                          1 0.75 29.50954
## 6
```

Viewing the summary and structure of that dataset

summary(data)

```
##
                            mfr
                                                                    calories
        name
                                                type
##
    Length:77
                        Length:77
                                            Length:77
                                                                Min.
                                                                        : 50.0
   Class :character
                        Class :character
                                            Class :character
                                                                1st Qu.:100.0
##
##
   Mode :character
                        Mode :character
                                            Mode :character
                                                                Median :110.0
##
                                                                Mean
                                                                        :106.9
##
                                                                3rd Qu.:110.0
##
                                                                Max.
                                                                        :160.0
##
##
                          fat
                                          sodium
                                                           fiber
       protein
##
   Min.
           :1.000
                     Min.
                            :0.000
                                      Min.
                                             : 0.0
                                                       Min.
                                                              : 0.000
##
    1st Qu.:2.000
                     1st Qu.:0.000
                                      1st Qu.:130.0
                                                       1st Qu.: 1.000
   Median :3.000
                     Median :1.000
                                      Median :180.0
##
                                                       Median : 2.000
           :2.545
                                             :159.7
##
   Mean
                     Mean
                            :1.013
                                      Mean
                                                       Mean
                                                              : 2.152
##
    3rd Qu.:3.000
                     3rd Qu.:2.000
                                      3rd Qu.:210.0
                                                       3rd Qu.: 3.000
##
   Max.
           :6.000
                     Max.
                            :5.000
                                      Max.
                                             :320.0
                                                       Max.
                                                              :14.000
##
##
        carbo
                        sugars
                                          potass
                                                           vitamins
                   Min. : 0.000
##
   Min.
           : 5.0
                                      Min.
                                             : 15.00
                                                        Min.
                                                              : 0.00
                    1st Qu.: 3.000
                                                        1st Qu.: 25.00
##
    1st Qu.:12.0
                                      1st Qu.: 42.50
   Median:14.5
                   Median : 7.000
                                      Median : 90.00
                                                        Median : 25.00
##
##
   Mean
           :14.8
                   Mean
                           : 7.026
                                      Mean
                                             : 98.67
                                                        Mean
                                                               : 28.25
    3rd Qu.:17.0
                                      3rd Qu.:120.00
##
                    3rd Qu.:11.000
                                                        3rd Qu.: 25.00
                                             :330.00
##
   Max.
           :23.0
                   Max.
                           :15.000
                                      Max.
                                                        Max.
                                                               :100.00
##
   NA's
           :1
                   NA's
                           :1
                                      NA's
                                             :2
##
        shelf
                         weight
                                          cups
                                                          rating
           :1.000
                            :0.50
                                            :0.250
                                                             :18.04
##
   Min.
                     Min.
                                    Min.
                                                     Min.
    1st Qu.:1.000
                     1st Qu.:1.00
                                     1st Qu.:0.670
                                                      1st Qu.:33.17
##
##
   Median :2.000
                     Median :1.00
                                    Median :0.750
                                                     Median :40.40
##
   Mean
           :2.208
                     Mean
                            :1.03
                                    Mean
                                            :0.821
                                                      Mean
                                                             :42.67
    3rd Qu.:3.000
                                                      3rd Qu.:50.83
##
                     3rd Qu.:1.00
                                     3rd Qu.:1.000
##
   Max.
           :3.000
                     Max.
                            :1.50
                                    Max.
                                            :1.500
                                                     Max.
                                                             :93.70
##
```

str(data)

```
## 'data.frame':
                  77 obs. of 16 variables:
## $ name  : chr "100%_Bran" "100%_Natural_Bran" "All-Bran" "All-Bran_with_Extra_
Fiber" ...
            : chr "N" "Q" "K" "K" ...
   $ mfr
##
   $ type : chr "C" "C" "C" "C" ...
##
   $ calories: int
                   70 120 70 50 110 110 110 130 90 90 ...
##
##
  $ protein : int 4 3 4 4 2 2 2 3 2 3 ...
            : int 1510220210 ...
##
   $ fat
  $ sodium : int
                   130 15 260 140 200 180 125 210 200 210 ...
##
##
  $ fiber : num 10 2 9 14 1 1.5 1 2 4 5 ...
##
   $ carbo : num
                   5 8 7 8 14 10.5 11 18 15 13 ...
## $ sugars : int 6 8 5 0 8 10 14 8 6 5 ...
  $ potass : int 280 135 320 330 NA 70 30 100 125 190 ...
##
##
   $ vitamins: int
                   25 0 25 25 25 25 25 25 25 ...
##
   $ shelf
            : int
                   3 3 3 3 3 1 2 3 1 3 ...
##
   $ weight : num 1 1 1 1 1 1 1 1 ...
            : num 0.33 1 0.33 0.5 0.75 0.75 1 0.75 0.67 0.67 ...
##
  $ cups
  $ rating : num 68.4 34 59.4 93.7 34.4 ...
```

Loading required packages

```
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(corrplot)
## corrplot 0.92 loaded
library(ggcorrplot)
library(tidyverse)
## — Attaching core tidyverse packages —
                                                                – tidyverse 2.0.0 —
## ✓ dplyr
               1.1.0
                         ✓ readr
                                     2.1.4
## ✓ forcats
               1.0.0

✓ stringr

                                     1.5.0
## ✓ lubridate 1.9.2

✓ tibble

                                     3.1.8
             1.0.1
## ✓ purrr
                         √ tidyr
                                     1.3.0
```

```
## — Conflicts
                                                           - tidyverse_conflicts() —
## * dplyr::filter() masks stats::filter()
## x dplyr::lag()
                     masks stats::lag()
## x purrr::lift()
                     masks caret::lift()
## i Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conf
licts to become errors
library(tidyr)
library(dplyr)
library(e1071)
library(reshape2)
##
## Attaching package: 'reshape2'
##
## The following object is masked from 'package:tidyr':
##
##
       smiths
library(factoextra)
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve
3WBa
library(cluster)
library(cowplot)
##
## Attaching package: 'cowplot'
##
## The following object is masked from 'package:lubridate':
##
##
       stamp
library(pander)
library(kernlab)
```

```
##
## Attaching package: 'kernlab'
##
## The following object is masked from 'package:purrr':
##
## cross
##
## The following object is masked from 'package:ggplot2':
##
## alpha
```

```
library(FactoMineR)
```

Data Preprocessing. Remove all cereals with missing values.

```
dim(data)

## [1] 77 16

c_d2=na.omit(data)
dim(c_d2)

## [1] 74 16
```

There were 4 missing values in the dataset Assigning row names to the cereal column

```
c_d3 = as.data.frame(c_d2)
row.names(c_d3) = c_d3[,1]
c_d4 = c_d3[,-1]
```

Only selecting numerical values and removing catergorical variables

```
c_d5 = c_d4[, c(3:11,13:15)]
```

Normalizing the data using the scale function

```
c_d5 = scale(c_d5)
head(c_d5)
```

```
##
                               calories
                                            protein
                                                           fat
                                                                   sodium
## 100% Bran
                             -1.8659155 1.3817478 0.0000000 -0.3910227
## 100%_Natural_Bran
                              0.6537514   0.4522084   3.9728810   -1.7804186
## All-Bran
                             -1.8659155 1.3817478 0.0000000 1.1795987
## All-Bran_with_Extra_Fiber -2.8737823 1.3817478 -0.9932203 -0.2702057
## Apple_Cinnamon_Cheerios
                              0.1498180 -0.4773310 0.9932203 0.2130625
                              0.1498180 -0.4773310 -0.9932203 -0.4514312
## Apple_Jacks
##
                                   fiber
                                               carbo
                                                         sugars
                                                                    potass
                              3.22866747 -2.5001396 -0.2542051 2.5605229
## 100%_Bran
## 100%_Natural_Bran
                             -0.07249167 -1.7292632 0.2046041 0.5147738
## All-Bran
                              2.81602258 -1.9862220 -0.4836096 3.1248675
## All-Bran_with_Extra_Fiber        4.87924705        -1.7292632        -1.6306324        3.2659536
## Apple_Cinnamon_Cheerios
                             -0.27881412 -1.0868662 0.6634132 -0.4022862
## Apple_Jacks
                             -0.48513656 -0.9583868 1.5810314 -0.9666308
##
                               vitamins
                                            weight
                                                          cups
                                                                   rating
                             -0.1818422 -0.2008324 -2.0856582 1.8549038
## 100%_Bran
## 100%_Natural_Bran
                             -1.3032024 -0.2008324 0.7567534 -0.5977113
                             -0.1818422 -0.2008324 -2.0856582 1.2151965
## All-Bran
## All-Bran_with_Extra_Fiber -0.1818422 -0.2008324 -1.3644493 3.6578436
## Apple_Cinnamon_Cheerios
                             -0.1818422 -0.2008324 -0.3038480 -0.9165248
## Apple_Jacks
                             -0.1818422 -0.2008324 0.7567534 -0.6553998
```

Question 1 (part A): Apply hierarchical clustering to the data using Euclidean distance to the normalized measurements and looking at the correaltion values by plotting the corrplot

```
distance_table <- get_dist(c_d5)
fviz_dist(distance_table)</pre>
```



```
corr_plot = cor(c_d5)
ggcorrplot(corr_plot, outline.color = "grey50", lab = TRUE, hc.order = TRUE, type = "
full")
```


#Sugar and calories are highly negatively correlated with rating. Also, Potass is hig hly positively correlated with fiber and Protien.

Question 1 (part B): comparing hierarchical clustering with different linkages: single, average, complete and ward.

```
# Hierarchical clustering using Complete Linkage
hc1 <- hclust(distance_table, method = "complete" )
# Plot the obtained dendrogram
plot(hc1, cex = 0.6, hang = -1, main = "Dendrogram of Hierarchical Clustering")
rect.hclust(hc1, k = 10, border = 2:10)</pre>
```

Dendrogram of Hierarchical Clustering

distance_table
hclust (*, "complete")

Computing with AGNES and with different linkage methods

```
hc_single <- agnes(distance_table, method = "single")
print(hc_single$ac)</pre>
```

[1] 0.6072384

```
hc_complete <- agnes(distance_table, method = "complete")
print(hc_complete$ac)</pre>
```

[1] 0.8469328

```
hc_average <- agnes(distance_table, method = "average")
print(hc_average$ac)</pre>
```

[1] 0.7881955

```
hc_ward <- agnes(distance_table, method = "ward")
print(hc_ward$ac)</pre>
```

```
## [1] 0.9087265
```

#These results confirm that the Ward linkage, which provides 90.87% accuracy, is the optimal agglomerative (AGNES) linkage to use.

Visualizing the dendogram

```
hc_Ward <- agnes(distance_table, method = "ward")
pltree(hc_Ward, cex = 0.6, hang = -1, main = "Dendrogram of agnes for ward")</pre>
```

Dendrogram of agnes for ward

distance_table
agnes (*, "ward")

Question 2: How many cluster would you choose?

The largest difference in height can be used to determine the k value hence K =5 is the best option.

fviz_dend(hc_ward, k = 5,main = "Dendrogram of AGNES (Ward)",cex = 0.5, k_colors = c ("red", "blue", "darkgreen", "violet", "purple"), color_labels_by_k = TRUE,labels_track_height = 16,ggtheme = theme_bw())

```
## Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instea
d as
## of ggplot2 3.3.4.
## i The deprecated feature was likely used in the factoextra package.
## Please report the issue at <]8;;https://github.com/kassambara/factoextra/issuesh
ttps://github.com/kassambara/factoextra/issues]8;;>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
```

Dendrogram of AGNES (Ward)


```
c_d6 <- cutree(hc_ward, k = 5)
Clustered_df <-as.data.frame(cbind ( c_d5, c_d6 ))</pre>
```

Question 3: Comment on the structure of the clusters and on their stability. Hint: To check stability, partition the data and see how well clusters formed based on one part apply to the other part

For the stability of the clusters, We will partition the data into A and B.

```
cereal_a = c_d5[1:55,]
cereal_b = c_d5[56:74,]
```

Computing the distances of cereal_a

```
distance_cereal_a = get_dist(cereal_a)
#Compute with AGNES and with different linkage methods for cereal_a
 hc_single_cereal_a <- agnes(distance_cereal_a, method = "single")</pre>
 print(hc_single_cereal_a$ac)
 ## [1] 0.6663587
 hc_complete_cereal_a <- agnes(distance_cereal_a, method = "complete")</pre>
 print(hc_complete_cereal_a$ac)
 ## [1] 0.8285192
 hc_average_cereal_a <- agnes(distance_cereal_a, method = "average")</pre>
 print(hc_average_cereal_a$ac)
 ## [1] 0.7646836
 hc_ward_cereal_a <- agnes(distance_cereal_a, method = "ward")</pre>
 print(hc_ward_cereal_a$ac)
 ## [1] 0.8891086
```

With 88.91% accuracy, it enables us to establish that the best linkage for cereal_a is Ward.

Computing the distances of cereal_a

```
distance_cereal_b = get_dist(cereal_b)
```

#Compute with AGNES and with different linkage methods for cereal_b

```
hc_single_cereal_b <- agnes(distance_cereal_b, method = "single")
print(hc_single_cereal_b$ac)</pre>
```

```
## [1] 0.4805129
```

```
hc_complete_cereal_b <- agnes(distance_cereal_b, method = "complete")
print(hc_complete_cereal_b$ac)</pre>
```

```
## [1] 0.71298
```

```
hc_average_cereal_b <- agnes(distance_cereal_b, method = "average")
print(hc_average_cereal_b$ac)</pre>
```

```
## [1] 0.6232053
```

```
hc_ward_cereal_b <- agnes(distance_cereal_b, method = "ward")
print(hc_ward_cereal_b$ac)</pre>
```

```
## [1] 0.7710122
```

With 77.10% accuracy, it enables us to establish that the best linkage for cereal_a is Ward.

Plotting dendogram of cereal_a and cereal_b

```
fviz\_dend(hc\_ward\_cereal\_a, \ k = 5, main = "Cereal\_a Dendrogram of AGNES", cex = 0.5, \ k\_colors = c("black", "purple", "blue", "brown", "red"), color\_labels\_by\_k = TRUE, labels\_track\_height = 16, ggtheme = theme\_bw())
```

Cereal_a Dendrogram of AGNES

fviz_dend(hc_ward_cereal_b, k = 5,main = "Cereal_b Dendrogram of AGNES",cex = 0.5, k_
colors = c("black", "purple", "blue", "brown", "red"), color_labels_by_k = TRUE,label
s_track_height = 16,ggtheme = theme_bw())

Cereal_b Dendrogram of AGNES

Question 3 (part B): Use the cluster centroids from A to assign each record in partition B (each record is assigned to the cluster with the closest centroid)

```
Clustered_df_A <-cutree (hc_ward_cereal_a, k=5)
Clusters_A <-as.data.frame(cbind(cereal_a, Clustered_df_A))
Clust_1 <- colMeans (Clusters_A [Clusters_A$ Clustered_df_A == "1" ,])
# The centroid of cluster 1 is represented by a vector of mean values for each column of the data as a result.
```

```
Clustered_df_B <-cutree (hc_ward_cereal_b, k=5)
Clusters_B <-as.data.frame(cbind(cereal_b, Clustered_df_B))
Clust_2 <- colMeans (Clusters_B [Clusters_B$ Clustered_df_B == "1" ,])
# The centroid of cluster 2 is represented by a vector of mean values for each column of the data as a result.
```

```
Centroid <-rbind(Clust_1, Clust_2)
Centroid</pre>
```

```
##
                                       fat
                                               sodium
                                                            fiber
            calories
                        protein
                                                                       carbo
## Clust_1 -2.201871 1.3817478 -0.3310734 0.1727901 3.64131237 -2.0718749
## Clust 2 0.149818 -0.2449462 0.2483051 -0.2702057 -0.02091106 -0.7977876
##
                         potass vitamins
                                              weight
               sugars
                                                           cups
## Clust 1 -0.7894824 2.9837813 -0.1818422 -0.2008324 -1.845255 2.2426479
## Clust_2 1.0648712 0.1796942 -0.1818422 0.3369228 -0.303848 -0.5618826
           Clustered_df_A
##
## Clust_1
                        1
## Clust_2
```

Question 3 (part C): Assess how consistent the cluster assignments are compared to the assignments based on all the data.

After reviewing the centroid, it shows that cluster 1 is high in protein, fiber, and potassium. It means that the cereals in cluster 1 is more healthier than cluster 2. It can also be supported by looking at calories, fat, carbs, and sugar levels which a re higher in cluster 2 as compared to cluster 1. Thus cereals in cluster 1 are health ier.

#Q4:The elementary public schools would like to choose a set of cereals to include in their daily cafeterias. Every day a different cereal is offered, but all cereals should support a healthy diet. For this goal, you are requested to find a cluster of "healthy cereals." Should the data be normalized? If not, how should they be used in the cluster analysis?

```
#Visualizing the clusters in Scatter plot
fviz_cluster(list(data=distance_table, cluster = c_d6))
```



```
Healthy_cereal<- cbind(c_d2,c_d6)
mean(Healthy_cereal[Healthy_cereal$c_d6==1,"rating"])</pre>
```

```
## [1] 73.84446
```

mean(Healthy_cereal[Healthy_cereal\$c_d6==2,"rating"])

[1] 38.37137

mean(Healthy_cereal[Healthy_cereal\$c_d6==3,"rating"])

[1] 28.66112

mean(Healthy_cereal[Healthy_cereal\$c_d6==4,"rating"])

[1] 46.17608

mean(Healthy_cereal[Healthy_cereal\$c_d6==5,"rating"])

[1] 63.0184

#It is evident that Cluster1 has the highest rating (73.84446), so we will select it as a nutritious cereal.

#lets also visualize the results by plotting a bar chart

```
calories <- ggplot(Clustered_df, aes(x = c_d6, y = calories)) +</pre>
  geom_bar(stat = "identity", fill = "steelblue") +
  labs(x = "Cluster", y = "Calories") +
  ggtitle("Cluster by Calories")
protein <- ggplot(Clustered_df, aes(x = c_d6, y = protein)) +</pre>
  geom_bar(stat = "identity", fill = "red") +
  labs(x = "Cluster", y = "protein") +
  ggtitle("Cluster by Protein")
fat <- ggplot(Clustered_df, aes(x = c_d6, y = fat)) +
  geom_bar(stat = "identity", fill = "orange") +
  labs(x = "Cluster", y = "fat") +
  ggtitle("Cluster by Fat")
sodium \leftarrow ggplot(Clustered_df, aes(x = c_d6, y = sodium)) +
  geom_bar(stat = "identity", fill = "pink") +
  labs(x = "Cluster", y = "sodium") +
  ggtitle("Cluster by sodium")
fiber <- ggplot(Clustered_df, aes(x = c_d6, y = fiber)) +
  geom_bar(stat = "identity", fill = "gray") +
  labs(x = "Cluster", y = "fiber") +
  ggtitle("Cluster by fiber")
carbo <- ggplot(Clustered_df, aes(x = c_d6,, y = carbo)) +</pre>
  geom_bar(stat = "identity", fill = "brown") +
  labs(x = "Cluster", y = "carbo") +
  ggtitle("Cluster by carbo")
sugars <- ggplot(Clustered_df, aes(x = c_d6,, y = sugars)) +</pre>
  geom_bar(stat = "identity", fill = "lightgreen") +
  labs(x = "Cluster", y = "sugars") +
  ggtitle("Cluster by sugars")
potass <- ggplot(Clustered_df, aes(x = c_d6,, y = potass)) +</pre>
  geom_bar(stat = "identity", fill = "yellow") +
  labs(x = "Cluster", y = "potass") +
  ggtitle("Cluster by potass")
rating <- ggplot(Clustered_df, aes(x = c_d6,, y = rating)) +
  geom_bar(stat = "identity", fill = "black") +
  labs(x = "Cluster", y = "rating") +
  ggtitle("Cluster by rating")
plot_grid(calories, protein, fat, sodium, fiber, carbo, sugars, potass, rating)
```


Here we can see that cluster 1 still has the best results. It is low in calories, sugar, and fat. It has higher content of fiber, potassium and protein. Thus we can conclude that cluster 1 can be a set of cereals to include in their daily cafeterias.