TD 2 : Continuité, dérivabilité, convexité

1 Continuité - Dérivabilité (bis)

Exercice 1 Soit $f:[a,b] \to [a,b]$ continue.

- 1. Justifier que la fonction g définie par g(x) = f(x) x est continue sur [a, b].
- 2. En appliquant le théorème des valeurs intermédiaires à la fonction g, montrer qu'il existe $c \in [a,b]$ tel que f(c)=c.

Exercice 2 En utilisant le théorème des accroissements finis, montrer que pour tout $x,y\in\mathbb{R}$ on a

- 1. $|\sin x \sin y| \le |x y|$.
- 2. $|\exp(x) \exp(y)| \ge \exp(\min(x, y))|x y|$.

Exercice 3

Exercice 4 On considère la fonction f définie sur \mathbb{R} par $x \mapsto f(x) = (x^2 + 1) \sin x$.

- 1. Calculer la dérivée de f.
- 2. Montrer de deux façons que l'équation $(x^2 + 1)\cos x + 2x\sin x$ admet une solution dans $[0, \pi]$.
 - (a) En appliquant le théorème de Rolle à une fonction bien choisie.
 - (b) En appliquant le théorème des fonctions intermédiaires à une fonction bien choisie.

Exercice 5 Soit f dérivable sur \mathbb{R} .

- 1. On suppose que $\lim_{x\to\infty} f'(x) = +\infty$. Montrer que $\lim_{x\to\infty} \frac{f(x)}{x} = +\infty$.
- 2. On suppose $\lim_{x\to\infty} f'(x) = l$ pour un certain $l \in \mathbb{R}$. Montrer que $\lim_{x\to\infty} \frac{f(x)}{x} = l$.

Exercice 6 Soit f de classe C^2 sur \mathbb{R}_+ . On suppose que f et f'' sont bornées sur \mathbb{R}_+ . Montrer que f' est bornée sur \mathbb{R}_+ . Plus précisément, si l'on suppose que $|f| \leq M_0$ et $|f''| \leq M_2$ montrer que $|f'| \leq 2\sqrt{M_0M_2}$.

2 Convexité

On admettra (dans un premier temps) la chose suivante. Soit f une fonction convexe. Alors pour tout entier n, pour tout x_1, \ldots, x_n dans I et tout t_1, \ldots, t_n dans [0, 1] tels que $\sum_{i=1}^n t_i = 1$ on a :

$$f\left(\sum_{i=1}^{n} t_i x_i\right) \leq \sum_{i=1}^{n} t_i f\left(x_i\right).$$

Exercice 7 Soient p, q > 0 tels que $\frac{1}{p} + \frac{1}{q} = 1$. Montrer les inégalités suivantes

1. $xy \le \frac{x^p}{p} + \frac{y^q}{q}$ pour tout x, y > 0.

- 2. $1 + x^a y^b \le (1+x)^a (1+y)^b$ pour tout x, y > 0.
- 3. En déduire que si $\sum_{i=1}^{n} x_i^p = \sum_{i=1}^{n} y_i^q = 1$ alors $\sum_{i=1}^{n} x_i y_i \leq 1$ (on suppose les x_i, y_i tous strictement positifs).
- 4. Montrer l'inégalité de Hölder

$$\sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} x_i^p\right)^{1/p} \left(\sum_{i=1}^{n} y_i^q\right)^{1/q}.$$

5. Montrer l'inégalité arithmético-géométrique

$$\frac{x_1 + \dots x_n}{n} \ge \sqrt[n]{x_1 \dots x_n}.$$

Exercice 8 Soit $n \geq 3$ et \mathcal{C} un cercle de rayon 1. Parmi tous les polygones à n côtés inscrits dans \mathcal{C} , déterminer ceux de périmètre maximal.

Exercice 9 Soit f une fonction de classe C^2 sur un intervalle [a,b] et $\lambda \in \mathbb{R}$ fixé. On suppose que pour tout $x \in [a,b], f''(x) \geq \lambda$.

1. Montrer que pour $t \in [0,1]$ on a

$$(1-t)f(a) + tf(b) - f((1-t)a + tb) \ge \lambda t(1-t)(b-a)^2/2.$$

On pourra faire deux développements de Taylor entre des points bien choisis.

- 2. Pour la fonction $f(x) = \frac{1}{2}x^2$, quel λ peut-on prendre et que devient la formule ci-dessus?
- 3. Comment s'interprète le résultat du 1. lorsque $\lambda=0$? Montrer que le cas général peut se déduire du cas $\lambda=0$.

Exercice 10 Soit f une fonction convexe sur \mathbb{R} . Montrer que si elle est majorée alors elle est constante.

Exercice 11 Montrer le résultat admis au début de cette section.