LGS GROUP OF COLLEGES

M-3 XII Chapter #7, Exercise 6. 1, 6. 2

(PAPER CODE #1216)

Class: FSC/ICS Part 2 Session: 2023 – 2025

Date: 6-12-2025

Subject: Mathematics	Name:	Roll No:
Time: 15 Minutes	Objective Type	Marks = 8

OBJECTIVE TYPE

Note: Four possible answer A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question. $(1 \times 8 = 8)$

	question.		$(1 \times 8 = 8)$
1	$\left \cos a\underline{i} + \sin a\underline{j} + 0\underline{k}\right = \underline{\hspace{1cm}}$		
	A.0	B. 1	
	C. -1 The value of $\overline{k} \cdot \overline{i} \times \overline{j}$ is:	D. 2	
2	The value of $\overline{k} \cdot \overline{i} \times \overline{j}$ is:		
	A.0	B. 1	
	C. 2	D. – 1	
3	Commutative Law holds in:	reliable to the second	>-
	A. Vector product	B. Cross product in three ve	ectors
	C. Inner product	D. None of these	
4	If \underline{a} and \underline{b} are two non – zero vectors, then $\underline{a} \times$	<u>b</u> =	
	A. $\underline{b} \times \underline{a}$	В. <u>а</u> <u>b</u>	
	C. <u>a</u> · <u>b</u>	D. $-\underline{b} \times \underline{a}$	
5	The vector \overrightarrow{PQ} through $P(0,5)$ and $Q(-1,-6)$ is:		
	A.(-1,11)	B. (-1, -11)	
	C. (0,11)	D.(1,1)	
6	Centre of circle $x^2 + y^2 + 4x + 6y + 3 = 0$ is:		
	A. $(2,3)$ B. $(-2,3)$		
	C. $(-2, -3)$	D. $(2, -3)$	
7	The radius of circle $x^2 + y^2 + 2gx + 2fy + c = 0$		
	A. $\sqrt{g^2+f^2}$	B. $\sqrt{g^2 - f^2 + c}$	
	$C. \sqrt{g+f^2+c}$	D. $\sqrt{g^2 + f^2 - c}$	
8	The set of all points in the plane that are equally	distant from a fixed point is	called:
	A. Ellipse	B. Parabola	
	C. Hyperbola	D. Circle	

LGS GROUP OF COLLEGES

M-3 XII Chapter #7, Exercise 6. 1, 6. 2

(PAPER CODE #1216)

Class: FSC/ICS Part 2 Session: 2023 – 2025

Date: 6-12-2025

Subject: Mathematics	Name:	Roll No:
Time: 45 Minutes		Marks = 27

SUBJECTIVE TYPE SECTION - 1

2. Attempt any THREE SHORT Questions:

 $(3 \times 2 = 6)$

i	Find the vector from the point A to the origin where
-	$\overrightarrow{AB} = 4\overline{i} - 2\overline{j}$ and B is the point $(-2, 5)$
ii	$\overline{a} = 3\overline{i} - 2\overline{j} + \overline{k}, \underline{b} = \underline{i} + \underline{j}, \text{ find } \overline{b} \times \overline{a}$
	Decree that the contains is 2i + 2h - 2i + 2i - 4h - 2i + 5h - 2i - 5h - 2i - 2
iii	Prove that the vectors $\underline{i} - 2\underline{j} + 3\underline{k}$, $-2\underline{i} + 3\underline{j} - 4\underline{k}$ and $\underline{i} - 3\underline{j} + 5\underline{k}$ are coplanar.
iv	If $\underline{a} + \underline{b} + \underline{c} = 0$ then prove that $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$
1 (
v	Find a vector whose magnitude is '4' and is parallel to $2\underline{i} - 3\underline{j} + 6\underline{k}$
V	This a vector whose magnitude is a fund is paramet to 2 <u>v</u> by a civil

3. Attempt any THREE SHORT Questions:

 $(3 \times 2 = 6)$

i	Write the general form of an equation of a circle. What is its centre and radius?
ii	Find the length of the tangent drawn from the point $(-5, 4)$ to the circle $5x^2 + 5y^2 - 10x + 15y - 131 = 0$
iii	Check the position of point (5, 6) with respect to the circle $2x^2 + 2y^2 + 12x - 8y + 1 = 0$
iv	Prove that normal of circle passes through the centre of circle.
v	Find the equation of tangent to the circle $x^2 + y^2 = 25$ at $(4,3)$

SECTION – II

Attempt any three LONG Questions:

 $(3\times 5=15)$

4	A force of magnitude 6 units acting parallel to $2\overline{i} - 2\overline{j} + \overline{k}$ displaces the point of application from $(1,2,3)$ to $(5,3,7)$. Find the work done.
5	Prove by using vector the line segments joining the mid points of sides of quadrilateral taken in order form a parallelogram.
6	Find an equation of the circle passing through the points $A(4,5)$, $B(-4,-3)$, $C(8,-3)$
7	Find the coordinates of the points of intersection of the line $2x + y = 5$ and the circle $x^2 + y^2 + 2x - 9 = 0$. Also find the length of intercepted chord.