

Agenda

- Data Mining Techniques using R
- Predictive Modeling Performance
- Clustering
 - K-Means Clustering
 - Hierarchical Clustering
- Association Rules (Market Basket Analysis)
- Multi-model Learning
- Text-Mining

Slide and Sample Data

https://github.com/vkrit/chula_datamining.

Prepare Data

35

35

setosa versicolor virginica

37

##

##

Predictive Modeling Performance

Create Decision Tree Model

```
library(party)

myFormula <- Species ~ Sepal.Length + Sepal.Width + Petal.
    Petal.Width
iris_ctree <- ctree(myFormula, data = traindata)</pre>
```

Create Confusion Matrix from Training Data

```
library(caret)
trainPred = predict(iris ctree, traindata)
confusionMatrix(traindata$Species, trainPred)
## Confusion Matrix and Statistics
##
##
               Reference
## Prediction setosa versicolor virginica
## setosa
                    35
                                0
                                           0
## versicolor
                     ()
                               36
                                           1
## virginica
                    0
                                3
                                         32
##
## Overall Statistics
##
##
                  Accuracy: 0.9626
                    95% CI: (0.907, 0.9897)
##
##
       No Information Rate: 0.3645
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa : 0.9439
##
   Mcnemar's Test P-Value : NA
##
##
## Statistics by Class:
```

Class: setosa Class: versicolor Cl

1,0000

7/5/231

##

##

Sensitivity

Confusion Matrix

Confusion Matrix and St	atistics			а
Refere	ence			
Prediction Iris-	setosa Iris-versio	color Iris-virg	ginica	
Iris-setosa	35	0	0	
Iris-versicolor	0	36	1	
Iris-virginica	0	3	32	
Overall Statistics				
Accuracy	: 0.9626			
95% CI	: (0.907, 0.9897)			
No Information Rate				
P-Value [Acc > NIR]	: < 2.2e-16			
Карра	: 0.9439			
Mcnemar's Test P-Value	: NA			
Statistics by Class:				
с	.ass: Iris-setosa (Class: Iris-ver	sicolor Class	s: Iris-virginica
Sensitivity	1.0000		0.9231	0.9697
Specificity	1.0000		0.9853	0.9595
Pos Pred Value	1.0000		0.9730	0.9143
Neg Pred Value	1.0000		0.9571	0.9861
Prevalence	0.3271		0.3645	0.3084
Detection Rate	0.3271		0.3364	0.2991
Detection Prevalence	0.3271		0.3458	0.3271
Balanced Accuracy	1.0000		0.9542	0.9646

K-Means Clustering

- 1. Pick an initial set of K centroids (this can be random or any other means)
- 2. For each data point, assign it to the member of the closest centroid according to the given distance function
- 3. Adjust the centroid position as the mean of all its assigned member data points. Go back to (2) until the membership isn't change and centroid position is stable.
- 4. Output the centroids

K-Means (cont.)

```
library(stats)
set.seed(101)
km <- kmeans(iris[, 1:4], 3)
plot(iris[, 1], iris[, 2], col = km$cluster)
points(km$centers[, c(1, 2)], col = 1:2, pch = 19, cex = 2</pre>
```


K-Means (cont.)

table(km\$cluster, iris\$Species)

```
##
##
       setosa versicolor virginica
##
    1
            0
                      48
                                14
##
    2
           50
                       0
                                0
## 3
           0
                       2
                                36
```

K-Means (second round)

```
set.seed(900)
km <- kmeans(iris[, 1:4], 3)
plot(iris[, 1], iris[, 2], col = km$cluster)
points(km$centers[, c(1, 2)], col = 1:3, pch = 19, cex = 2</pre>
```


K-Means (second round - cont.)

```
##
##
       setosa versicolor virginica
##
             0
                        46
                                   50
     1
##
     2
            17
                         4
                                    0
##
   3
            33
                         0
                                    0
```

Hierarchical Clustering

- 1. Compute distance between every pairs of point/cluster
 - Distance between point is just using the distance function.
 - Compute distance between point A to cluster B may involve many choices (such as the min/max/avg distance between the point A and points in the cluster B)
 - Compute distance between cluster A to cluster B may first compute distance of all points pairs (one from cluster A and the the other from cluster B) and then pick either min/max/avg of these pairs.
- 2. Combine the two closest point/cluster into a cluster. Go back to (1) until only one big cluster remains

Hierarchical Clustering

```
set.seed(101)
sampleiris <- iris[sample(1:150, 40), ] # get samples fro
# each observation has 4 variables, ie, they are
# interpreted as 4-D points
distance <- dist(sampleiris[, -5], method = "euclidean")
cluster <- hclust(distance, method = "average")</pre>
```

plot(cluster, hang = -1, label = sampleiris\$Species)

Cluster Dendrogram

distance hclust (*, "average")

Prune the result tree to 3 groups

```
group.3 <- cutree(cluster, k = 3) # prune the tree
table(group.3, sampleiris$Species)</pre>
```

```
##
## group.3 setosa versicolor virginica
## 1 0 15 9
## 2 13 0 0 0
## 3 0 0 3
```

Plot cluster by column 1 and

```
par(mfrow = c(1, 2))
plot(sampleiris[, c(1, 2)], col = group.3, pch = 19, cex =
   main = "3 clusters")
plot(sampleiris[, c(1, 2)], col = sampleiris$Species, pch
    cex = 1, main = "real clusters")
```

3.5 3.0

3 clusters

real clusters

Association Rules (Market Basket Analysis)

Support: The rule holds with support sup in T (the transaction data set) if sup % of transactions contain X Y.

Confidence: The rule holds in T with confidence conf if conf% of tranactions that contain X also contain Y.

Lift: The Lift of the rule is X=>Y is the confidence of the rule divided by the expected confidence, assuming that the item sets are independent.

Apriori Algorithm

```
# Loead the libraries
library(registry)
library(Matrix)
library(arules)
library(arulesViz)
library(datasets)

# Load the data set
data(Groceries)
```

Data Format

Transaction ID	Milk	Bread	Butter	Beer
1	1	1	0	0
2	0	1	1	0
3	0	0	0	1
4	1	1	1	0
5	0	1	0	0

Explore Groceries Data

```
# Create an item frequency plot for the top 20 items
itemFrequencyPlot(Groceries, topN = 20, type = "absolute")
```


Create Association Rules

```
rules <- apriori(Groceries, parameter = list(supp = 0.001,
    conf = 0.8)
## Apriori
##
## Parameter specification:
   confidence minval smax arem aval originalSupport supp
##
##
           0.8
                  0.1
                         1 none FALSE
                                                 TRUE
                                                         0.
## target ext
## rules FALSE
##
## Algorithmic control:
   filter tree heap memopt load sort verbose
##
       0.1 TRUE TRUE FALSE TRUE
##
                                    2
                                         TRUE
##
## Absolute minimum support count: 9
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)]
## sorting and recoding items ... [157 item(s)] done [0.00
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 5 6 done [0.01s].
## writing ... [410 rule(s)] done [0.00s].
## creating S4 object ... done [0.01s].
# Show the top 5 rules, but only 2 digits
```

23/51

options(digits = 2)

inspect(rules[1:5])

Plot Rules

plot(rules)

Scatter plot for 410 rules

Sort Rules

```
rules <- sort(rules, by = "confidence", decreasing = TRUE)
inspect(rules[1:5])</pre>
```

```
##
                                       support confiden
    lhs
                           rhs
## 1 {rice,
  sugar}
                        => {whole milk} 0.0012
##
## 2 {canned fish,
  hygiene articles > {whole milk} 0.0011
##
## 3 {root vegetables,
##
  butter,
   rice}
                        => {whole milk} 0.0010
##
## 4 {root vegetables,
    whipped/sour cream,
##
                        => {whole milk} 0.0017
##
  flour}
## 5 {butter,
## soft cheese,
## domestic eggs} => {whole milk} 0.0010
```

Grouped Matrix for 410 Rules

27 rules: {turkey, semi-finished bread, +24 items} 12 rules: {brown bread, white bread, +10 items}

12 rules: {soft cheese, beef, +10 items} 19 rules: {canned fish, flour, +23 items}

57 rules: {soups, sweet spreads, +38 items}

29 rules: {mustard, pickled vegetables, +30 items} 10 rules: {butter milk, beef, +15 items}

31 rules: {baking powder, frozen meals, +29 items}

36 rules: {jam, detergent, +37 items}

14 rules: {hard cheese, frankfurter, +18 items}

41 rules: {hamburger meat, specialty cheese, +36 items}

RHS

Size:

Items in LHS Group

1 rules: {liquor, red/blush wine}

2 rules: {ham, grapes, +5 items}

5 rules: {oil, soda, +8 items}

2 rules: {white bread, butter, +1 items}

8 rules: {ham, newspapers, +14 items}

16 rules: {sliced cheese, margarine, +16 items}

33 rules: {whole milk, dessert, +27 items}

51 rules: {meat, newspapers, +41 items}

4 rules: {frozen meals, frankfurter, +4 items}

Change to have limit association in one rule

```
rules <- apriori(Groceries, parameter = list(supp = 0.001,
    conf = 0.8, maxlen = 3))
## Apriori
##
## Parameter specification:
   confidence minval smax arem aval originalSupport supp
##
##
                  0.1
           0.8
                         1 none FALSE
                                                         0.
                                                  TRUE
## target
##
  rules FALSE
##
## Algorithmic control:
##
   filter tree heap memopt load sort verbose
##
       0.1 TRUE TRUE FALSE TRUE
                                    2
                                         TRUE
##
## Absolute minimum support count: 9
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)]
## sorting and recoding items ... [157 item(s)] done [0.00
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 done [0.00s].
## writing ... [29 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
```

Graph for 29 rules

size: support (color: lift (3

Rules pruned

```
subset.matrix <- is.subset(rules, rules)
subset.matrix[lower.tri(subset.matrix, diag = T)] <- NA
redundant <- colSums(subset.matrix, na.rm = T) >= 1
rules.pruned <- rules[!redundant]
rules <- rules.pruned</pre>
```

summary(rules)

```
## set of 29 rules
##
## rule length distribution (lhs + rhs):sizes
##
## 29
##
## Min. 1st Qu. Median Mean 3rd Qu. Max.
##
        3
                      3
                             3
                                     3
               3
                                            3
##
## summary of quality measures:
##
      support
                   confidence
                                      lift
## Min. :0.00102 Min. :0.80
                                 Min. : 3.1
## 1st Qu.:0.00112 1st Qu.:0.81
                                 1st Qu.: 3.3
## Median :0.00122 Median :0.85
                                 Median: 3.6
## Mean :0.00147 Mean :0.86
                                 Mean : 4.0
## 3rd Qu.:0.00173 3rd Qu.:0.91 3rd Qu.: 4.2
  Max. :0.00254 Max. :1.00
##
                                 Max. :11.2
##
## mining info:
        data ntransactions support confidence
##
## Groceries
                           0.001
                    9835
                                      0.8
```

Targeting Items

- What are customers likely to buy before buying whole milk?
- What are customers likely to buy if they purchase whole milk?
- This essentially means we want to set either the Left Hand Side adn Right Hand Side. This is not difficult to do with R!

Find whole milk's antecedents

```
rules <- apriori(data = Groceries, parameter = list(supp =
    conf = 0.08), appearance = list(default = "lhs", rhs =
    control = list(verbose = F))
rules <- sort(rules, decreasing = TRUE, by = "confidence")
inspect(rules[1:5])
                                          support confiden
##
     lhs
                             rhs
## 1 {rice,
                          => {whole milk} 0.0012
      sugar}
##
## 2 {canned fish,
  hygiene articles > {whole milk} 0.0011
##
## 3 {root vegetables,
```

```
## 2 {canned fish,
## hygiene articles} => {whole milk} 0.0011
## 3 {root vegetables,
## rice} => {whole milk} 0.0010
## 4 {root vegetables,
## whipped/sour cream,
## flour} => {whole milk} 0.0017
## 5 {butter,
## soft cheese,
## domestic eggs} => {whole milk} 0.0010
```

Likely to buy after buy whole milk

```
rules <- apriori(data = Groceries, parameter = list(supp =
    conf = 0.15, minlen = 2), appearance = list(default =
    lhs = "whole milk"), control = list(verbose = F))
rules <- sort(rules, decreasing = TRUE, by = "confidence")
inspect(rules[1:5])</pre>
```

```
support confidence
##
     lhs
                     rhs
## 6 {whole milk} => {other vegetables} 0.075
                                               0.29
## 5 {whole milk} => {rolls/buns}
                                       0.057
                                               0.22
## 4 {whole milk} => {yogurt}
                                               0.22
                                       0.056
## 2 {whole milk} => {root vegetables}
                                               0.19
                                       0.049
## 1 {whole milk} => {tropical fruit} 0.042
                                               0.17
```

Multi-model Learning

Ensemble: Bagging

Random Forest

- Here is how such a system is trained; for some number of trees T:
- Sample N cases at random with replacement to create a subset of the data. The subset should be about 66% of the total set.
- · At each node:
 - For some number m (see below), m predictor variables are selected at random from all the predictor variables
 - The predictor variable that provides the best split, according to some objective function, is used to do a binary split on that node.
 - At the next node, choose another m variables at random from all predictor variables and do the same.

Bagging

```
library(ggplot2)
library(randomForest)
# Train 500 trees, random selected attributes
model <- randomForest(Species ~ ., data = traindata, nTree
prediction <- predict(model, newdata = testdata, type = "c"
table(prediction, testdata$Species)</pre>
```

```
##
## prediction setosa versicolor virginica
## setosa 15 0 0
## versicolor 0 13 2
## virginica 0 0 13
```

Boosting

```
library(adabag)
iris.adaboost <- boosting(Species ~ ., data = traindata, b
    mfinal = 5)
iris.adaboost
## $formula
## Species ~ .
##
## $trees
## $trees[[1]]
\#\# n= 107
##
## node), split, n, loss, yval, (yprob)
##
         * denotes terminal node
##
## 1) root 107 65 versicolor (0.262 0.393 0.346)
     2) Petal.Width< 1.6 69 29 versicolor (0.406 0.580 0.0
##
       4) Petal.Length< 2.6 28 0 setosa (1.000 0.000 0.00
##
       5) Petal.Length>=2.6 41 1 versicolor (0.000 0.976
##
     3) Petal.Width>=1.6 38 2 virginica (0.000 0.053 0.94
##
##
## $trees[[2]]
\#\# n= 107
##
## node), split, n, loss, yval, (yprob)
##
         * denotes terminal node
##
  1) root 107 64 virginica (0.252 0.346 0.402) 38/51
```

Plot variables important

```
barplot(iris.adaboost$imp[order(iris.adaboost$imp, decreas
    ylim = c(0, 100), main = "Variables Relative Importance
    col = "lightblue")
```

Variables Relative Importance

Boosting (compare result)

```
table(iris.adaboost$class, traindata$Species, dnn = c("Pre
"Observed Class"))
```

```
##
                   Observed Class
## Predicted Class setosa versicolor virginica
##
                        35
        setosa
                                     0
        versicolor
##
                         0
                                    35
                                                0
        virginica
##
                                     2
                                               35
```

Text Mining

Get Text Mining Library

```
# Needed <- c('tm', 'SnowballCC', 'RColorBrewer',
# 'wordcloud', 'biclust', 'igraph', 'fpc')
# install.packages(Needed, dependencies = TRUE)</pre>
```

Load file (Shakespear's Plays)

```
TEXTFILE = "t8.shakespeare.txt"
if (!file.exists(TEXTFILE)) {
    download.file("https://ocw.mit.edu/ans7870/6/6.006/s08
        destfile = TEXTFILE)
}
shakespeare = readLines(TEXTFILE)
length(shakespeare)

## [1] 124456

shakespeare = shakespeare[-(1:173)]
shakespeare = shakespeare[-(124195:length(shakespeare))]
shakespeare = paste(shakespeare, collapse = " ")
shakespeare = strsplit(shakespeare, "<<[^>]*>>")[[1]]
```

Text Mining

```
library(tm)
docs.vec <- VectorSource(shakespeare)
docs.corpus <- Corpus(docs.vec)
summary(docs.corpus)</pre>
```

```
Length Class
##
                                  Mode
## 1
               PlainTextDocument list
       2
## 2
       2
               PlainTextDocument list
## 3
               PlainTextDocument list
       2
## 4
       2
              PlainTextDocument list
## 5
       2
              PlainTextDocument list
## 6
       2
              PlainTextDocument list
## 7
       2
               PlainTextDocument list
## 8
       2
               PlainTextDocument list
## 9
       2
               PlainTextDocument list
## 10
               PlainTextDocument list
## 11
       2
               PlainTextDocument list
## 12
       2
               PlainTextDocument list
## 13
       2
               PlainTextDocument list
## 14
       2
               PlainTextDocument list
## 15
       2
               PlainTextDocument list
## 16
       2
               PlainTextDocument list
## 17
       2
               PlainTextDocument list
               PlainTextDocument list
## 18
       2
## 19
       2
               PlainTextDocument list
## 20
               PlainTextDocument list
## 2.1
               PlainTextDocument list
               PlainTextDocument list
       2
```

Text Mining Basic

```
# Remove Punctuation
docs.corpus <- tm_map(docs.corpus, removePunctuation)
head(docs.corpus)

## <<SimpleCorpus>>
## Metadata: corpus specific: 1, document level (indexed)
## Content: documents: 6

# Remove Number
docs.corpus <- tm_map(docs.corpus, removeNumbers)
docs.corpus <- tm_map(docs.corpus, tolower)
# Remove Stopwords
docs.corpus <- tm_map(docs.corpus, removeWords, stopwords())</pre>
```

Clean Data

```
# remove ing s, es
library(SnowballC)
docs.corpus <- tm_map(docs.corpus, stemDocument)
docs.corpus <- tm_map(docs.corpus, stripWhitespace)</pre>
```

Step of Text Mining

Create Document Term Matrix

```
# Create Document Term Matrix
dtm <- DocumentTermMatrix(docs.corpus)</pre>
inspect(dtm[1:10, 1:10])
## << DocumentTermMatrix (documents: 10, terms: 10)>>
## Non-/sparse entries: 19/81
## Sparsity
                         : 81%
## Maximal term length: 6
## Weighting
                         : term frequency (tf)
## Sample
##
        Terms
## Docs accept addit agent allow alter altern appli aris a
##
      1
               1
                      1
                             1
                                    1
                                           1
                                                   2
                                                          1
                                                                1
## 10
                                                   0
                                                          0
               0
                      0
                             0
                                    0
                                           0
                                                               0
##
     2
               2
                      2
                                    2
                                                               2
                             0
                                           6
                                                   0
                                                          1
##
     3
               0
                      0
                             0
                                    0
                                           0
                                                   0
                                                          0
                                                               0
##
     4
               0
                      0
                             0
                                    0
                                           0
                                                   0
                                                          0
                                                                0
##
     5
               0
                      1
                             0
                                    0
                                           0
                                                   0
                                                          0
                                                               0
##
   6
               0
                      0
                             0
                                    0
                                           0
                                                   0
                                                          0
                                                                0
##
   7
               0
                      1
                             0
                                    0
                                           0
                                                   0
                                                          0
                                                               0
##
     8
               0
                      0
                                    1
                                                          0
                             0
                                           0
                                                   0
                                                               0
##
      9
               0
                      0
                             0
                                    0
                                           0
                                                   0
                                                          0
                                                               0
```

Create Term Document Matrix

```
# Create Term Document Matrix
tdm <- TermDocumentMatrix(docs.corpus)</pre>
inspect(tdm[1:10, 1:10])
## <<TermDocumentMatrix (terms: 10, documents: 10)>>
## Non-/sparse entries: 19/81
## Sparsity
                       81%
## Maximal term length: 6
## Weighting
            : term frequency (tf)
## Sample
##
          Docs
## Terms
         1 10 2 3 4 5 6 7 8 9
    accept 1 0 2 0 0 0 0 0 0 0
##
    addit 1 0 2 0 0 1 0 1 0 0
##
  agent 1 0 0 0 0 0 0 0 0
##
##
    allow 1 0 2 0 0 0 0 0 1 0
##
    alter 1
              060000000
##
    altern 2 0 0 0 0 0 0 0 0 0
##
    appli
           1 0 1 0 0 0 0 0 0 0
##
    aris
           1 0 2 0 0 0 0 0 0 0
    asi
##
           1 0 0 0 0 0 0 0 0 0
##
     associ 1 0 0 0 0 0 0 0 0 0
```

Explore Data

```
# Explore Data
freq <- colSums(as.matrix(dtm))
length(freq)

## [1] 18786

ord <- order(freq)
head(ord)

## [1] 9 11 13 14 15 20</pre>
```

Removing sparse terms

```
# Start by removing sparse terms:
TDM.common = removeSparseTerms(tdm, 0.1)
dim(tdm)
## [1] 18786 219
dim(TDM.common)
## [1] 0 219
m = as.matrix(tdm)
v = sort(rowSums(m), decreasing = TRUE)
d <- data.frame(word = names(v), freq = v)</pre>
head(d, 10)
##
   word freq
## thou thou 5485
## will will 5080
## thi thi 4032
## shall shall 3595
## lord lord 3566
## come come 3283
## thee thee 3178
## king king 3170
```

good good 2966

sir sir 2797

Create Word Cloud

```
library(wordcloud)
set.seed(1234)
wordcloud(words = d$word, freq = d$freq, min.freq = 1, max
    random.order = FALSE, rot.per = 0.35, colors = brewer.
    "Dark2"))
```

```
page Libring marri hous antoni tongu fellow york high part thought sweet son exeunt poor madam thought sweet son exeunt poor madam warstay show o pray there were take of the pear take of the pe
```

email:

veerasak.kr568@cbs.chula.ac.th

Thank you