OS - TD 6

# Oscillateur harmonique

#### I - Différentes configurations de ressort



FIGURE 1.1 – O est l'origine de l'axe et, pour les cas A, B, C et D, c'est aussi une des extrémités du ressort. Le ressort est de raideur k et de longueur à vide  $l_0$ . La coordonnée de position du point M est notée x; les coordonnées des points  $M_1$  et  $M_2$  sont notées respectivement  $x_1$  et  $x_2$ . Le ressort est supposé linéaire.

Pour les cas A, B, C et D, déterminer en fonction de k, x,  $l_0$  et  $\vec{u}_x$  l'expression de la force de rappel élastique qui s'exerce sur le point M.

Pour le cas E, déterminer en fonction de k,  $x_1$ ,  $x_2$ ,  $l_0$  et  $\vec{u}_x$  les expressions des forces de rappel élastique qui s'exercent respectivement sur  $M_1$  et  $M_2$ .

## II - Équations différentielles

- 1. Parmi les équations suivantes, quelles sont celles qui sont des équations différentielles d'un oscillateur harmonique en position à une dimension le long de l'axe des y? Dans tous les cas, on a k, m,  $l_0$ , g réels positifs.
  - (a)  $\forall t, m\ddot{y} = k(y(t) l_0)$
  - (b)  $\forall t, \, m\ddot{y} = k(y(t) + l_0)$
  - (c)  $\forall t, \, m\ddot{y} = -k(y(t) l_0)$
  - (d)  $\forall t, \ddot{y} + \frac{k}{m}y(t) = -\frac{k}{m}l_0$
  - (e)  $\forall t, \, \ddot{y} \frac{k}{m}(y(t) l_0) = g$
  - (f)  $\forall t, \, \ddot{y} + \frac{k}{m}(y(t) l_0) = -g$
- 2. Pour chaque équation d'un oscillateur harmonique, déterminer l'expression de  $\omega_0$  et  $y_{eq}$ .

#### III - Extrapolation de solution

On considère un dispositif constitué d'un ressort de raideur k et de longueur à vide  $l_0$  à une extrémité duquel est fixée une masse ponctuelle m, libre de se déplacer sans frottement le long d'une droite inclinée d'un angle  $\alpha$  par rapport à l'horizontale, fixe dans le référentiel du laboratoire (R). L'autre extrémité du ressort est fixée en O point le plus haut du dispositif et fixe dans le référentiel.

Sans développer aucun calcul, mais en exploitant les résultats connus pour le dispositif masse+ressort horizontal et vertical, proposer une relation permettant de déterminer la longueur à l'équilibre du ressort en fonction de la raideur et de la longueur à vide du ressort, de l'angle d'inclinaison, de la masse et de la pesanteur. Comparer la pulsation propre du système à celui du ressort vertical ou horizontal.

### IV - Lectures de courbes

On a simulé l'évolution temporelle de la grandeur oscillante d'un oscillateur harmonique. Déterminer sur chacune des courbes de la page suivante, en expliquant littéralement le raisonnement utilisé :

- la fréquence propre;
- la pulsation propre;
- la phase à l'origine.





#### V - Association de ressorts

Pour chacune des configurations ci-dessous, déterminer l'équation différentielle régissant le mouvement de la masse m ainsi que la période des oscillations. Les seules forces s'exerçant sur le point matériel (M, m) sont les forces de rappel des ressorts.



#### VI - Résolution de problème

On dispose de la photographie (de mauvaise qualité) suivante :



Photographie prise alors que l'objet fixé au ressort est à l'équilibre.

L'objet attaché à l'extrémité basse du ressort est en acier et la longueur à vide du ressort vaut environ  $8.5\,\mathrm{cm}$ .

Un élève raconte l'expérience suivante : « Après avoir fixé l'objet à l'extrémité du ressort, je l'ai lancé vers le bas depuis sa position d'équilibre avec une vitesse que j'ai pu mesurer à environ  $4\cdot 10^1\,\mathrm{cm\,s^{-1}}$ . J'ai observé des oscillations de 3 cm d'amplitude mais je ne me rappelle plus si leur période valait  $0,44\,\mathrm{s}$  ou bien  $4,4\,\mathrm{s}^{\,1}$ ».

Déterminer une estimation de la raideur du ressort.

<sup>1.</sup> D'où l'intérêt de bien remplir son cahier de laboratoire.