לוגיקה מתמטית - תרגיל 7

- $M
 ot \bowtie_s (orall x) arphi$ אבל $M \models_s arphi$ שבל השמה S מבנה תורשמה S מבנה M והשמה S מבנה $M
 ot \bowtie_s (\forall x) \varphi$
 - $M \vDash_s arphi$ אז $M \vDash_s (orall x) arphi$ ב. הוכח שאם
 - $M \vDash \varphi$ אם ורק אם $M \vDash (\forall x) \varphi$... הוכח:
 - (השמה s , מבנה M , מוסחה φ) : הוכח או הפרך.
 - $M \vDash_s \lnot arphi$ אז $M \nvDash_s arphi$ אם $M \nvDash_s arphi$
 - $M \vDash \neg arphi$ אז $M \nvDash arphi$ ב. אם
 - $M \models \neg arphi$ אז $M \not\models arphi$ פסוק ו- $arphi \not\models M$
 - $\Box \vdash \neg \varphi$ אז $\not\vdash \varphi$ ד. אם
 - $. \models \neg \varphi$ אז $\not\models \varphi$ פסוק ו- $\varphi \not\models \varphi$ אז
 - .3 אילו מבין הנוסחאות הבאות אמיתיות לוגית ואילו לא י נמק.
 - $((\forall x)R(x) \to (\forall x)Q(x)) \to (\forall x)(R(x) \to Q(x))$.
 - $(\forall x)\varphi \to (\exists x)\varphi$.
 - $(\forall x)(\forall y)\varphi \equiv (\forall y)(\forall x)\varphi$.3
 - $(\forall x)(\exists y) arphi o (\exists y)(\forall x) arphi$.7
 - $(\exists y)(\forall x)\varphi \to (\forall x)(\exists y)\varphi$.市
- היא קבוצת M^M שבו $M=(W^M,f^M)$ נתבונן בשפה שבה יש סימן פונקציה דו-מקומי f ויחס שויון , ובמבנה M^M שבו M=M היא פולת הכפל.
 - . s(x)>0 אם ורק אם $M\models_s \varphi$, s השמה לכל השמה x המקיימת: משתנה חופשי יחיד אם

24.5 תאריך הגשה