제 4 교시

과학탐구 영역(생명과학Ⅱ)

성명 수험번호 제 [] 선택

1. 그림은 동물 세포의 구조를 나타낸 것이 다. A~C는 골지체, 리보솜, 미토콘드리아 를 순서 없이 나타낸 것이다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은?

----- < 보 기 > -

- ¬. A는 2중막을 갖는다.
- L. B는 골지체이다.
- 다. C는 크리스타 구조를 갖는다.

2. 다음은 사람과 장미의 구성 단계에 대한 자료이다. A \sim C는 기 관, 조직, 조직계를 순서 없이 나타낸 것이다.

- A와 B는 사람과 장미에 모두 있지만, C는 장미에만 있다.
- ⑦ 장미의 줄기는 A에 해당한다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은?

---- < 보 기 > -

- ¬. A는 기관이다.
- ㄴ. 사람의 백혈구는 B에 해당한다.
- ㄷ. ᄀ에는 관다발 조직계가 있다.

① ¬ ② ∟

3 7, 5 4 4, 5 5 7, 6, 5

3. 그림은 효소 E에 의해 기질 A가 생성물 B로 전환되는 반응 실 험 I~Ⅲ에서 시간에 따른 B의 농도를, 표는 I~Ⅲ의 조건을 나타낸 것이다.

실험	I	П	Ш
A의 농도 (상댓값)	a	Ъ	(b)
경쟁적 저해제	없음	없음	있음

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외의 다른 조건은 동일하다.) [3점]

----- < 보 기 > -

- ㄱ. @는 ⓑ보다 크다.
- ㄴ. I 에서 E에 의한 반응의 활성화 에너지는 t_1 일 때와 t_2 일
- $c. t_1$ 일 때 E에 의한 반응 속도는 II에서가 III에서보다 빠르다.

1 7

② ㄷ

3 7, 6 4 6, 5 7, 6, 6

4. 다음은 원시 생명체의 진화에 대한 자료이다. A~C는 광합성 세균, 다세포 진핵생물, 무산소 호흡 종속 영양 생물을 순서 없 이 나타낸 것이다.

- 세포내 공생설에 따르면 엽록체의 기원은 A이다.
- 최초의 C는 최초의 B보다 먼저 출현하였다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은?

-----< 보 기 > ----

- ¬. 최초의 산소 호흡 세균은 최초의 A보다 먼저 출현하였다.
- L. B는 유전 물질을 갖는다.
- 다. 오파린은 코아세르베이트가 C에 해당한다고 주장하였다.

5. 그림은 고장액에 있던 식물 세포 X 1를 저장액에 넣었을 때 세포의 부피 에 따른 A와 B를 나타낸 것이다. A 와 B는 각각 삼투압과 흡수력 중 하 나이다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은?

-----< 보기 > ---

- ¬. A는 흡수력이다.
- L. K일 때 X는 원형질 분리가 일어난 상태이다.
- \subset X의 삼투압 은 V_2 일 때가 V_3 일 때보다 크다.

6. 표 (가)는 발효와 사람의 세포 호흡의 물질 전환 과정에서 특징 I~Ⅲ의 유무를, (나)는 I~Ⅲ을 순서 없이 나타낸 것이다. @ ~ ⓒ는 젖산, 에탄올, 아세틸 CoA를 순서 없이 나타낸 것이다.

특징 과정	Ι	П	Ш
피루브산→ⓐ	0	;	×
피루브산→ⓑ	?	0	0
피루브산→ⓒ	×	;	×
() .	인은	Χ.	없은)

과정 특징	Ι	Π	Ш
피루브산→ⓐ	0	?	X
피루브산→ⓑ	?	0	0
피루브산→ⓒ	×	?	×
(○:	있음,	×:	없음)

(가)

1	
	특징(I ~ Ⅲ)
	○ 이산화 탄소가 발생한다.
	○ 미토콘드리아에서 일어난다.
	○ 산화 환원 반응이 일어난다.
	(나)

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은?

--- < 보 기 > -

- ¬. ⓑ는 젖산이다.
- L. I은 '이산화 탄소가 발생한다.'이다.
- c. 1분자당 <u>수소수</u>는 ⓐ가 ⓒ보다 크다.

1 7

과학탐구 영역

고 3

7. 다음은 생명 과학자들의 주요 성과 (가)~(다)의 내용이다.

- (가) 멀리스는 중합 효소 연쇄 반응(PCR)을 개발하였다.
- (나) 왓슨과 크릭은 @ DNA의 이중 나선 구조를 알아내었다.
- (다) 그리피스는 폐렴 쌍구균을 이용하여 (b) 형질 전환 현상 을 발견하였다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은?

-----< 보 기 > --

- ¬. 질소(N)는 @의 구성 원소이다.
- L. @는 b를 일으키는 물질이다.
- ㄷ. (가)는 (나)보다 먼저 이룬 성과이다.

8. 그림은 3역 6계 분류 체계에 따른 생물 대장균 A B 지네 4종류의 계통수를 나타낸 것이다. A와 B 는 각각 소나무와 효모 중 하나이다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은?

-----< 보기 > -

- ¬. B는 효모이다.
- L. 대장균과 A는 서로 다른 역에 속한다.
- ㄷ. A와 B의 유연관계는 B와 지네의 유연관계보다 가깝다.

9. 다음은 이중 가닥 DNA X와 mRNA Y에 대한 자료이다.

○ 그림은 서로 상보적인 단일 가닥 I 과 Ⅱ로 구성된 X를 나타낸 것이다. X는 6개의 염기쌍으로 구성되고 🗇 🕑 ~ ②은 아데닌(A), 사이토신(C), 구 아닌(G), 타이민(T)을 순서 없이 나 타낸 것이다. 염기 사이의 수소 결합 은 표시하지 않았다.

- X에서 염기 간 수소 결합의 총개수 는 14개이다.
- I에서 [□]/_□ = 3이다.
- I 과 II 중 하나로부터 Y가 전사되었고, 염기 개수는 X가 Y의 2배이다. Y의 3' 말단 염기는 C이다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이는 고려하지 않는다.) [3점]

----- < 보 기 > -

- ¬. ③은 사이토신(C)이다.
- ㄴ. X에서 ⓒ의 개수는 2개이다.
- с. Y는 I 로부터 전사되었다.

① ¬ (2) L ③ 7, 仁 ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 10. 그림 (r)는 광합성이 활발하게 일어나는 어떤 식물의 순환적 광인산화 과정 일부를, (나)는 이 식물에서 빛 조건을 달리했을 때 ①과 ① 중 한 곳에서의 시간에 따른 pH를 나타낸 것이다. ①과 ①은 각각 틸라코이드 내부와 스트로마 중 하나이다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 빛 이외의 조건은 동일하다.) [3점]

----- < 보 기 > -

- ¬. (나)는 ⓒ에서의 pH 변화이다.
- L. A를 통한 H⁺의 이동 방식은 능동 수송이다.
- ㄷ. 단위 시간당 ATP 생성량은 t_9 일 때가 t_1 일 때보다 많다.

11. 다음은 이중 가닥 DNA X와 제한 효소에 대한 자료이다.

○ X는 27개의 염기쌍으로 이루어져 있고, X 중 한 가닥의 염기 서열은 다음과 같다. ①은 8개의 염기로, ②은 10개 의 염기로 구성되어 있다.

5'-TCTG \bigcirc A \bigcirc GTCT-3'

○ 그림은 제한 효소 Xho I, BamH I, Apa I 이 인식하는 염 기 서열과 절단 위치를 나타낸 것이다.

> 5'-C'TCGAG-3' 5'-G'GATCC-3' 5'-GGGCC'C-3' 3'-GAGCT|C-5' 3'-CCTAGG-5' 3'-C|CCGGG-5'

Xho I

BamH I

Apa I

: 절단 위치

○ X를 시험관 I~IV에 넣고 제한 효소를 첨가하여 완전히 자른 결과 생성된 DNA 조각 수와 각 DNA 조각의 염기 수는 표와 같으며, IV에 첨가한 제한 효소는 Xho I, BamH I , Apa I 중 2가지이다.

시험관	Ι	П	Ш	IV
첨가한 제한 효소	Xho I	BamH I	Apa I	?
생성된 DNA 조각 수	3	2	2	3
생성된 각 DNA 조각의 염기 수	12, 20, 22	12, 42	22, 32	?

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? [3점]

------ < 보 기 > ---

- ¬. ¬의 3′ 말단 염기는 사이토신(C)이다.
- ∟. ⓒ에는 Apa I 이 인식하는 염기 서열이 포함된다.
- □. IV에서 염기 개수가 20개인 DNA 조각이 생성된다.

① ¬

2 L

3 = 4 = 5 = =

12. 표 (가)는 동물 A~C에서 특징 I~Ⅲ의 유무를, (나)는 I~Ⅲ을 순서 없이 나타낸 것이다. A~C는 회충, 거머리, 불가 사리를 순서 없이 나타낸 것이다.

_			
특징 동물	I	П	Ш
A	9	×	?
В	?	0	;
С	×	×	0

특징(I ~ Ⅲ) ○ 배엽을 형성한다.

○ 원구가 입이 된다.

○ 탈피동물에 속한다.

(○: 있음, x: 없음)

(가)

(나)

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은?

----- < 보 기 > -

- ㄱ. ㈜은 '×'이다.
- L. A는 촉수담륜동물에 속한다.
- ㄷ. 말미잘은 Ⅲ을 갖는다.

 \bigcirc

② ⊏

3 7, 4 4 4, 5 7, 4, 5

13. 그림은 세포 호흡이 일어나고 있는 미토콘 드리아의 TCA 회로 일부를 나타낸 것이다. A ~ C는 5탄소 화합물, 시트르산, 옥살아세트산 을 순서 없이 나타낸 것이다. 과정 Ⅰ~Ⅲ 중 각 과정에서 생성되는 CO₂와 NADH의 분자 수를 더한 값은 Ⅱ에서 가장 크다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? [3점]

----- < 보 기 > --

- ¬. A ~ C 중 1 분자당 탄소 수는 A가 가장 많다.
- L. I 에서 탈탄산 반응이 일어난다.
- ㄷ. Ⅲ에서 FADH₂가 생성된다.

① 7 ② ∟

③ ⊏

47, 65, 6

14. 다음은 줄기세포에 대한 자료이다. ①과 ⓒ은 배아 줄기세포 와 성체 줄기세포를 순서 없이 나타낸 것이다. 동물 A와 B는 같 은 종이고 유전적으로 서로 다른 개체이다.

- (가) 핵이 제거된 A의 난자에 B의 체세포 핵을 넣고 일정 단계까지 발생시켜 ①을 얻는다.
- (나) 골수에서 ①을 얻는다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이는 고려하지 않는다.)

-----< 보 기 > -

- ㄱ. (가)에서 핵치환 기술이 사용된다.
- ∟. ⑦은 A의 체세포와 유전적으로 동일하다.
- ㄷ. 탯줄 혈액에서 ▷을 얻을 수 있다.
- \bigcirc

15. 다음은 어떤 동물에서 세포 P의 분화와 관련된 유전자 (가)~(다)의 전사 조절에 대한 자료이다.

- P는 (가)~(다) 중 (가)와 (나)만 발현되면 세포 I로, (나)와 (다)만 발현되면 세포 Ⅱ로, (가)~(다)가 모두 발 현되면 세포 Ⅲ으로 분화한다.
- (가)~(다)의 프로모터와 A C 프로모터 유전자(가) 전사 인자 결합 부위 A A D 프로모터 유전자(나) ~ D는 그림과 같다. B D 프로모터 유전자(다)
- 유전자 w, x, y, z는 각각 전사 인자 W, X, Y, Z를 암호 화하며, W~Z는 (가)~(다)의 전사 촉진에 관여한다. W ~ Z는 각각 A ~ D 중 서로 다른 한 부위에만 결합한다.
- (가)~(다) 각각의 전사는 각 유전자의 전사 인자 결합 부 위 모두에 전사 인자가 결합했을 때 촉진된다.
- \circ P는 w만 제거할 경우 Π 로, x만 제거할 경우 Π 로 분화 한다. 제거되지 않은 $w \sim z$ 는 모두 발현된다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외는 고려하지 않는다.) [3점]

----- < 보 기 > -

- ¬. W는 C에 결합한다.
- L. y만 제거할 경우, (나)의 전사가 촉진된다.
- $u \sim z$ 가 모두 발현되면, P는 III으로 분화한다.

① 7 ② ∟

3 5 4 7, 5 5 6, 5

16. 다음은 어떤 세포에서 복제 중인 이중 가닥 DNA에 대한 자료 이다.

- 이중 가닥 DNA를 구성하는 단일 가닥 I과 II는 각각 30 개의 염기로 구성되며, 서로 상보적이다. I을 주형으로 하여 선도 가닥 ⑦가 합성되었고, Ⅱ를 주형으로 하여 지 연 가닥이 합성되는 과정에서 가닥 ①~@가 합성되었다.
- ⑦는 30개의 염기로 구성되며, ☞~☞의 염기 개수의 합 은 30이다. [의~] 중 [의가 가장 적은 수의 염기로 구성 되며, 나는 따보다 먼저 합성되었다.
- ⑦는 프라이머 X를, ઃ ~ ②는 모두 프라이머 Y를 가지며, X와 Y는 각각 4개의 염기로 구성된다.
- Ⅱ와 Y 사이의 염기 간 수소 결합의 총개수는 9개이다.
- Ⅰ과 Ⅱ 중 한 가닥의 염기 서열은 다음과 같다. ①~② 은 아데닌(A), 사이토신(C), 구아닌(G), 타이민(T)을 순 서 없이 나타낸 것이다.
- 3'-DDDDACACCCTGTATAACTGTGGTATDDDD-5'

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이는 고려하지 않는다.) [3점]

----- < 보 기 > -

- ¬. X의 염기 서열은 5'-CCUC-3'이다.
- ㄴ. 뭔가 ඓ보다 먼저 합성되었다.
- ㄷ. 퓨린 계열 염기 개수는 따가 따보다 적다.

17 다음은 어떤 진핵생물의 유전자 x와, x에서 돌연변이가 일어 | 19 다음은 동물 종 P의 두 집단 | 1과 | 1에 대한 자료이다. 난 유전자 y의 발현에 대한 자료이다.

- x와 y로부터 각각 폴리펩타이드 X와 Y가 합성된다.
- x의 전사 주형 가닥 엮기 서열은 5'-(가)-(나)-(다)-3' 이며, (가)~(다)는 각각 10개의 염기로 구성된다.
- 표의 I~Ⅲ은 (가)~(다)를 순 구부열기 서역 서 없이 나타낸 것이며, @는 5' 말단과 3′ 말단 중 하나이다. 🗇 ~ ⓒ에서 각각 $\frac{T}{A} = \frac{1}{2}$ 이다.

<u> </u>	엄기 서얼
Ι	a-T GACTCG
Π	a-TACAT UTG
Ш	ⓐ−ACT © CAGT

- X는 7개의 아미노산으로 구성되고, 2개의 타이로신과 1개 의 아이소류신을 가진다.
- y는 x의 전사 주형 가닥에서 ⑦ 연속된 2개의 타이민(T) 이 1회 결실되고, 다른 위치에 ⑦가 1회 삽입된 것이다.
- Y는 5개의 아미노산으로 구성된다.
- o X와 Y의 합성은 개시 코돈 AUG 에서 시작하여 종결 코돈에서 끝나며, 표는 유 전부호를 나타 낸 것이다.

UUU 페닐일	알라닌	UCU UCC		UAU UAC	타이로신	UGU UGC	시스테인
UUA _	A I	UCA	세린	UAA	종결 코돈	UGA	종결 코돈
UUG 류	겐	UCG		UAG	종결 코돈	UGG	트립토판
CUU		CCU		CAU	히스티딘	CGU	
CUC 류	A.I.	CCC	프롤린	CAC	이스니닌	CGC	아르지닌
CUA T	겓	CCA	그글인	CAA	글루타민	CGA	아드시킨
CUG		CCG		CAG	크ㅜ나긴	CGG	
AUU		ACU		AAU	아스파라진	AGU	세린
AUC 아이크	L류신	ACC	트레오닌	AAC	아스파다진	AGC	세닌
AUA		ACA	느네エ근	AAA	라이신	AGA	아르지닌
AUG 메싸이	1오닌	ACG		AAG	다이진	AGG	아트시크
GUU		GCU		GAU	아스파트산	GGU	
GUC 발	eī.	GCC	알라닌	GAC	어느때트인	GGC	글리신
GUA ■	민	GCA	될다고	GAA	글루탐산	GGA	크니앤
GUG		GCG		GAG	크구답인	GGG	

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 핵산 염기 서열 변화는 고려하지 않는다.) [3점]

--- < 보기 > -

- ㄱ. (다)는 Ⅱ이다.
- ∟. ㈜의 5' 말단 염기는 타이민(T)이다.
- C. X와 Y가 합성될 때 사용된 종결 코돈의 염기 서열은 같다.
- 2 3 7, 4 7, 5 -, -① ¬
- 18. 그림은 클로렐라 배양액에 ¹⁴CO₂ ¹⁴C &-를 공급하고 빛을 비춘 후, 클로렐 김값 라에서 ¹⁴C가 포함된 유기물의 생 성량을 시간에 따라 측정하여 나타 낸 것이다. ⓐ와 ⓑ는 각각 RuBP 와 3PG 중 하나이다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은?

----- < 보 기 > ----

- ㄱ. @는 3PG이다.
- L. 1분자당 <u>탄소수</u>는 **b**가 **a**보다 크다.
- ㄷ. 캘빈 회로에서 ⓐ가 PGAL로 전환되는 과정에서 NADPH 가 사용된다.
- \bigcirc 2 L 3 7, L 4 7, L 5 L, L

- o I 과 Ⅱ는 각각 하디·바인베르크 평형이 유지되며, I 과 Ⅱ의 개체 수는 같다.
- P의 몸 색은 상염색체에 있는 검은색 몸 대립유전자 A와 회색 몸 대립유전자 a에 의해 결정되며, A는 a에 대해 완 전 우성이다.
- \circ I 에서 \bigcirc 을 가진 개체들을 합쳐서 구한 \bigcirc 의 빈도는 $\frac{3}{8}$ 이다. ①과 ①은 A와 a를 순서 없이 나타낸 것이다.
- Ⅱ에서 유전자형이 Aa인 개체를 제외하고 구한 ①의 빈도 는 $\frac{1}{17}$ 이다.
- \circ $\frac{I 에서 유전자형이 Aa인 개체 수}{II 에서 검은색 몸 개체 수} = \frac{4}{3}$ 이다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, Ⅰ과 Ⅱ에서 각각 암컷과 수컷의 개체 수는 같다.) [3점]

---- < 보 기 > -

- ㄱ. ⑦은 A이다.
- ㄷ. Ⅱ에서 유전자형이 Aa인 암컷이 임의의 수컷과 교배하여 자손 (F_1) 을 낳을 때, 이 F_1 이 검은색 몸일 확률은 $\frac{3}{5}$ 이다.
- ① ¬ ② L ③ ⊏ 4) 7, L (5) L, E

20. 다음은 진화의 요인에 대한 자료이다. ⊙과 ○은 자연 선택과 창시자 효과를 순서 없이 나타낸 것이다.

- ①은 집단 내 소수의 개체가 분리되어 새로운 집단을 형 성할 때 나타나는 현상이다.
- ○은 환경에 따라 생존과 번식의 확률이 개체 사이에서 서로 달라 나타나는 현상이다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은?

------ < 보 기 > ----

- ㄱ. ¬과 ▷은 모두 유전자풀의 변화 요인이다.
- ㄴ. ۞은 집단에 새로운 대립유전자를 제공한다.
- ㄷ. ⓒ은 유전적 부동의 한 현상이다.
- ① 7 ② ∟ 37, = 4 = 57, = 5
 - * 확인 사항
 - 답안지의 해당란에 필요한 내용을 정확히 기입(표기) 했는지 확인하시오.