Exercise 2.1

Find the principal values of the following:

1.
$$\sin^{-1}\left(-\frac{1}{2}\right)$$
.

Sol. Let
$$\sin^{-1}\left(-\frac{1}{2}\right) = y$$
, then $\sin y = -\frac{1}{2}$

Since the range of the principal value branch of \sin^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$,

therefore, $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ *i.e.*, y is in fourth quadrant $(-\theta)$ or in first

quadrant. Also sin y is negative, therefore, y lies in fourth quadrant and y is negative (*i.e.*, $-\theta$).

Now
$$\sin^{-1}\left(-\frac{1}{2}\right) = -\sin^{-1}\frac{1}{2}$$
 (: $\sin^{-1}(-x) = -\sin^{-1}x$)
= $-\sin^{-1}\sin\frac{\pi}{6} = -\frac{\pi}{6}$

$$\therefore \ \text{Principal value of } \sin^{-1}\left(-\frac{1}{2}\right) \ \text{is} \ \left(-\frac{\pi}{6}\right).$$

2.
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$
.

Sol. Let
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = y$$
, then $\cos y = \frac{\sqrt{3}}{2}$

Since the range of the principal value branch of \cos^{-1} is $[0, \pi]$, therefore, $y \in [0, \pi]$ *i.e.*, y is in first or second quadrant. Also $\cos y$ is positive, therefore, y lies in first quadrant.

Now
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \cos^{-1}\cos\frac{\pi}{6} = \frac{\pi}{6}$$

$$\therefore$$
 Principal value of $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is $\frac{\pi}{6}$.

3. cosec⁻¹ (2).

Sol. Let $\theta = \csc^{-1} 2$ \therefore θ is in first quadrant because x = 2 > 0. $(\because \text{ If } x > 0, \text{ then value of each inverse function lies in first quadrant.)$

$$\therefore \quad \theta = cosec^{-1} \ 2 = cosec^{-1} \ cosec \ \frac{\pi}{6} \ = \frac{\pi}{6} \ .$$

4.
$$tan^{-1} (-\sqrt{3})$$
.

Sol. Let
$$\tan^{-1}(-\sqrt{3}) = y$$
, then $\tan y = -\sqrt{3}$
Since the range of the principal value branch of \tan^{-1} is $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$, therefore, $y \in \left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ *i.e.*, y is in fourth quadrant $(-\theta)$ or y is in first quadrant. Also $\tan y$ is negative, therefore, y lies in fourth quadrant and y is negative $(i.e., -\theta)$.

Now
$$\tan^{-1}(-\sqrt{3}) = -\tan^{-1}\sqrt{3}$$
 (: $\tan^{-1}(-x) = -\tan^{-1}x$)

$$= -\tan^{-1}\tan\frac{\pi}{3} = -\frac{\pi}{3}$$

$$\therefore \text{ Principal value of } \tan^{-1}(-\sqrt{3}) \text{ is } \left(-\frac{\pi}{3}\right).$$

5.
$$\cos^{-1}\left(-\frac{1}{2}\right)$$
.

Sol. Let
$$\cos^{-1}\left(-\frac{1}{2}\right) = y$$
, then $\cos y = -\frac{1}{2}$
Since the range of the principal value branch of \cos^{-1} is $[0, \pi]$, therefore $y \in [0, \pi]$ i.e. y is in first or second quadrant. Also

Since the range of the principal value branch of \cos^{-1} is $[0, \pi]$, therefore, $y \in [0, \pi]$ *i.e.*, y is in first or second quadrant. Also $\cos y$ is negative, therefore, y lies in second quadrant (*i.e.*, $y = \pi - \theta$).

Now
$$\cos^{-1}\left(-\frac{1}{2}\right) = \pi - \cos^{-1}\frac{1}{2}$$
 $(\because \cos^{-1}(-x) = \pi - \cos^{-1}x)$
$$= \pi - \cos^{-1}\cos\frac{\pi}{3} = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$$

$$\therefore$$
 Principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$ is $\frac{2\pi}{3}$

6.
$$tan^{-1} (-1)$$
.

Sol. Let
$$\theta = \tan^{-1}(-1)$$
 : θ lies between $-\frac{\pi}{2}$ and 0 (: $x = -1 < 0$) [Note. For $x < 0$, values of $\sin^{-1}x$, $\tan^{-1}x$ and $\csc^{-1}x$ lies between $-\frac{\pi}{2}$ and 0 .]

$$\therefore \tan^{-1} (-1) = - \tan^{-1} 1 = - \tan^{-1} \tan \frac{\pi}{4} = - \frac{\pi}{4}$$

7.
$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$$
.

Sol. Let
$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = y$$
, then $\sec y = \frac{2}{\sqrt{3}}$

Since the range of the principal value branch of \sec^{-1} is $[0, \pi] - \left\{\frac{\pi}{2}\right\}$, therefore, $y \in [0, \pi] - \left\{\frac{\pi}{2}\right\}$ *i.e.*, y is in first quadrant or second quadrant. Also $\sec y$ is positive, therefore, y lies in first quadrant.

Now,
$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = \sec^{-1}\left(\sec\frac{\pi}{6}\right) = \frac{\pi}{6}$$

 \therefore Principal value of $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$ is $\frac{\pi}{6}$.

8.
$$\cot^{-1}(\sqrt{3})$$
.

Sol. Let
$$\theta = \cot^{-1}(\sqrt{3})$$

 \therefore θ is in first quadrant because $x = \sqrt{3} > 0$.

$$\therefore \quad \theta \, = \, \cot^{-1} \, \sqrt{3} \ = \, \cot^{-1} \, \cot \, \, \frac{\pi}{6} \, = \, \frac{\pi}{6} \, \, .$$

9.
$$\cos^{-1}\left(\frac{-1}{\sqrt{2}}\right)$$
.

Sol. Let
$$\theta = \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$$

 $\therefore \quad \theta \text{ lies between } \frac{\pi}{2} \text{ and } \pi \quad (\because \quad x = -\frac{1}{2} < 0)$

(**Note.** For x < 0, value of $\cos^{-1} x$, $\cot^{-1} x$ and $\sec^{-1} x$ lies between $\frac{\pi}{2}$ and π .)

$$\therefore \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = \pi - \cos^{-1}\frac{1}{\sqrt{2}}$$
$$= \pi - \cos^{-1}\cos\frac{\pi}{4} = \pi - \frac{\pi}{4} = \frac{4\pi - \pi}{4} = \frac{3\pi}{4}.$$

10.
$$\csc^{-1}(-\sqrt{2})$$
.

Sol. Let
$$\csc^{-1}(-\sqrt{2}) = y$$
, then $\csc y = -\sqrt{2}$

Since the range of the principal value branch of \csc^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

 $-\{0\}$, therefore, $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$. Also cosec y is negative, therefore, y lies in fourth quadrant $(-\theta)$ and y is negative.

Now,
$$\csc^{-1}(-\sqrt{2}) = -\csc^{-1}\sqrt{2}$$
 (: $\csc^{-1}(-x) = -\csc^{-1}x$)
= $-\csc^{-1}\csc\frac{\pi}{4} = -\frac{\pi}{4}$

 \therefore Principal value of $\operatorname{cosec}^{-1}\left(-\sqrt{2}\right)$ is $\left(-\frac{\pi}{4}\right)$.

Find the value of the following:

11.
$$\tan^{-1} (1) + \cos^{-1} \left(-\frac{1}{2} \right) + \sin^{-1} \left(-\frac{1}{2} \right)$$
.
Sol. $\tan^{-1} (1) + \cos^{-1} \left(-\frac{1}{2} \right) + \sin^{-1} \left(-\frac{1}{2} \right)$

$$= \tan^{-1} 1 + \pi - \cos^{-1} \frac{1}{2} - \sin^{-1} \frac{1}{2}$$

$$= \tan^{-1} \tan \frac{\pi}{4} + \pi - \cos^{-1} \cos \frac{\pi}{3} - \sin^{-1} \sin \frac{\pi}{6}$$

$$= \frac{\pi}{4} + \pi - \frac{\pi}{3} - \frac{\pi}{6} = \frac{3\pi + 12\pi - 4\pi - 2\pi}{12}$$

$$= \frac{9\pi}{12} = \frac{3\pi}{4}$$

12.
$$\cos^{-1}\left(\frac{1}{2}\right) + 2 \sin^{-1}\left(\frac{1}{2}\right)$$
.
Sol. $\cos^{-1}\left(\frac{1}{2}\right) + 2 \sin^{-1}\left(\frac{1}{2}\right) = \cos^{-1}\cos\frac{\pi}{3} + 2 \sin^{-1}\sin\frac{\pi}{6}$
$$= \frac{\pi}{3} + 2\left(\frac{\pi}{6}\right) = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}.$$

13. If $\sin^{-1} x = y$, then

(A)
$$0 \le y \le \pi$$
 (B) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ (C) $0 < y < \pi$ (D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$.

Sol. Option (B) is the correct answer.

(By definition of principal value for $y = \sin^{-1} x$, $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$)

14. $\tan^{-1} \sqrt{3} - \sec^{-1} (-2)$ is equal to

(A)
$$\pi$$
 (B) $-\frac{\pi}{3}$ (C) $\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$.
Sol. $\tan^{-1} \sqrt{3} - \sec^{-1} (-2)$

$$= \tan^{-1} \sqrt{3} - (\pi - \sec^{-1} 2) \quad (\because \sec^{-1} (-x)) = \pi - \sec^{-1} x)$$

$$= \tan^{-1} \tan \frac{\pi}{3} - \pi + \sec^{-1} \sec \frac{\pi}{3}$$

$$= \frac{\pi}{3} - \pi + \frac{\pi}{3} = \frac{\pi - 3\pi + \pi}{3} = -\frac{\pi}{3}$$

:. Option (B) is the correct answer.

Exercise 2.2

Prove the following:

1.
$$3 \sin^{-1} x = \sin^{-1} (3x - 4x^3), x \in \left[-\frac{1}{2}, \frac{1}{2} \right].$$

Sol. To prove:
$$3 \sin^{-1} x = \sin^{-1} (3x - 4x^3)$$

We know that $\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta$

Put
$$\sin \theta = x \iff \theta = \sin^{-1} x$$

$$\therefore \sin 3\theta = 3x - 4x^3 \qquad \Rightarrow \qquad 3\theta = \sin^{-1} (3x - 4x^3)$$

Putting $\theta = \sin^{-1} x$, $3 \sin^{-1} x = \sin^{-1} (3x - 4x^3)$.

2.
$$3 \cos^{-1} x = \cos^{-1} (4x^3 - 3x), x \in \left[\frac{1}{2}, 1\right].$$

Sol. To prove:
$$3 \cos^{-1} x = \cos^{-1} (4x^3 - 3x), x \in \left[\frac{1}{2}, 1\right]$$

Let $\cos^{-1} x = \theta$, then $x = \cos \theta$ We know that $\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta = 4x^3 - 3x$

 $\Rightarrow 3\theta = \cos^{-1}(4x^3 - 3x) \Rightarrow 3\cos^{-1}x = \cos^{-1}(4x^3 - 3x).$

3.
$$\tan^{-1} \frac{2}{11} + \tan^{-1} \frac{7}{24} = \tan^{-1} \frac{1}{2}$$
.

Sol. To prove:
$$\tan^{-1} \frac{2}{11} + \tan^{-1} \frac{7}{24} = \tan^{-1} \frac{1}{2}$$

L.H.S. =
$$\tan^{-1} \frac{2}{11} + \tan^{-1} \frac{7}{24} = \tan^{-1} \frac{\frac{2}{11} + \frac{7}{24}}{1 - \frac{2}{11} \times \frac{7}{24}}$$

$$\[\because \tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy} \]$$

=
$$\tan^{-1} \frac{48 + 77}{264 - 14} = \tan^{-1} \frac{125}{250} = \tan^{-1} \frac{1}{2} = \text{R.H.S.}$$

4.
$$2 \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{7} = \tan^{-1} \frac{31}{17}$$
.

Sol. To prove:
$$2 \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{7} = \tan^{-1} \frac{31}{17}$$

L.H.S. =
$$2 \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{7}$$

$$= \tan^{-1} \frac{2 \times \frac{1}{2}}{1 - \left(\frac{1}{2}\right)^2} + \tan^{-1} \frac{1}{7} \left[\because 2 \tan^{-1} x = \tan^{-1} \frac{2x}{1 - x^2} \right]$$

$$= \tan^{-1} \frac{4}{3} + \tan^{-1} \frac{1}{7} = \tan^{-1} \frac{\frac{4}{3} + \frac{1}{7}}{1 - \frac{4}{3} \times \frac{1}{7}}$$

$$\left[\because \tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy} \right]$$

$$= \tan^{-1} \frac{28 + 3}{21 - 4} = \tan^{-1} \frac{31}{17} = \text{R.H.S.}$$

Write the following functions in the simplest form:

5.
$$\tan^{-1} \frac{\sqrt{1+x^2}-1}{x}, x \neq 0.$$

Sol. Put $x = \tan \theta$ so that $\theta = \tan^{-1} x$

$$\begin{aligned} & \therefore & \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) = \tan^{-1}\left(\frac{\sqrt{1+\tan^2\theta}-1}{\tan\theta}\right) \\ & = \tan^{-1}\left(\frac{\sec\theta-1}{\tan\theta}\right) = \tan^{-1}\left(\frac{\frac{1}{\cos\theta}-1}{\frac{\sin\theta}{\cos\theta}}\right) \\ & = \tan^{-1}\left(\frac{1-\cos\theta}{\sin\theta}\right) = \tan^{-1}\left(\frac{2\sin^2\frac{\theta}{2}}{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}\right) \\ & = \tan^{-1}\left(\tan\frac{\theta}{2}\right) = \frac{\theta}{2} = \frac{1}{2}\theta = \frac{1}{2}\tan^{-1}x. \end{aligned}$$

6.
$$\tan^{-1} \frac{1}{\sqrt{x^2 - 1}}$$
, $|x| > 1$.

Sol. To simplify
$$\tan^{-1} \frac{1}{\sqrt{x^2 - 1}}$$
, put $x = \sec \theta$ (See Note (*iii*) below) $(\Rightarrow \theta = \sec^{-1} x)$

$$= \tan^{-1} \frac{1}{\sqrt{\sec^2 \theta - 1}} = \tan^{-1} \left(\frac{1}{\sqrt{\tan^2 \theta}}\right)$$

$$| \because \sec^2 \theta - \tan^2 \theta = 1 \implies \sec^2 \theta - 1 = \tan^2 \theta$$

$$= \tan^{-1} \left(\frac{1}{\tan \theta}\right) = \tan^{-1} (\cot \theta)$$

$$= \tan^{-1} \tan \left(\frac{\pi}{2} - \theta\right) = \frac{\pi}{2} - \theta = \frac{\pi}{2} - \sec^{-1} x.$$
Very useful Note: (i) For $\sqrt{a^2 - x^2}$, put $x = a \sin \theta$
(ii) For $\sqrt{a^2 + x^2}$, put $x = a \tan \theta$
and (iii) For $\sqrt{x^2 - a^2}$, put $x = a \sec \theta$.

7.
$$\tan^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}}$$
, $x < \pi$.

Sol.
$$\tan^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}} = \tan^{-1} \sqrt{\frac{2\sin^2 \frac{x}{2}}{2\cos^2 \frac{x}{2}}}$$

[: $1-\cos 2\theta = 2\sin^2 \theta \text{ and } 1 + \cos 2\theta = 2\cos^2 \theta$]
 $= \tan^{-1} \sqrt{\tan^2 \frac{x}{2}} = \tan^{-1} \tan \frac{x}{2} = \frac{x}{2}$.

8.
$$\tan^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right)$$
, $0 < x < \pi$.

Sol. The given expression = $\tan^{-1} \left(\frac{\cos x - \sin x}{\cos x + \sin x} \right)$ Dividing the numerator and denominator by $\cos x$,

$$= \tan^{-1} \left(\frac{1 - \tan x}{1 + \tan x} \right) = \tan^{-1} \left(\frac{\tan \frac{\pi}{4} - \tan x}{1 + \tan \frac{\pi}{4} \tan x} \right) = \tan^{-1} \tan \left(\frac{\pi}{4} - x \right)$$

$$= \frac{\pi}{4} - x.$$

9.
$$\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}$$
, $|x| < a$.

Sol. To simplify $\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}$, put $x = a \sin \theta$;

(See note (i) below solution of Q. No. 7)

$$= \tan^{-1} \left(\frac{a \sin \theta}{\sqrt{a^2 - a^2 \sin^2 \theta}} \right) = \tan^{-1} \left(\frac{a \sin \theta}{\sqrt{a^2 (1 - \sin^2 \theta)}} \right)$$

$$= \tan^{-1} \left(\frac{a \sin \theta}{\sqrt{a^2 \cos^2 \theta}} \right) = \tan^{-1} \left(\frac{a \sin \theta}{a \cos \theta} \right) = \tan^{-1} (\tan \theta) = \theta = \sin^{-1} \frac{x}{a}$$

$$\left[\because x = a \sin \theta \implies \sin \theta = \frac{x}{a} \implies \theta = \sin^{-1} \frac{x}{a} \right]$$

10.
$$\tan^{-1}\left(\frac{3a^2x-x^3}{a^3-3ax^2}\right)$$
, $a > 0$, $\left(-\frac{a}{\sqrt{3}} \le x \le \frac{a}{\sqrt{3}}\right)$.

Sol.
$$\tan^{-1} \left\{ \frac{3a^2x - x^3}{a^3 - 3ax^2} \right\}$$

(Dividing the numerator and denominator by a^3 , to make the first term in denominator as 1)

$$= \tan^{-1} \left(\frac{3\left(\frac{x}{a}\right) - \left(\frac{x}{a}\right)^3}{1 - 3\left(\frac{x}{a}\right)^2} \right)$$

Put $\frac{x}{a} = \tan \theta$.

$$\therefore \text{ The given expression} = \tan^{-1} \left(\frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta} \right)$$
$$= \tan^{-1} (\tan 3\theta) = 3\theta = 3 \tan^{-1} \frac{x}{a}.$$

Find the values of each of the following:

11.
$$\tan^{-1} \left[2 \cos \left(2 \sin^{-1} \frac{1}{2} \right) \right]$$
.
Sol. $\tan^{-1} \left[2 \cos \left(2 \sin^{-1} \frac{1}{2} \right) \right] = \tan^{-1} \left[2 \cos \left(2 \sin^{-1} \sin \frac{\pi}{6} \right) \right]$

$$= \tan^{-1} \left[2 \cos \left(2 \cdot \frac{\pi}{6} \right) \right] = \tan^{-1} \left[2 \cos \frac{\pi}{3} \right]$$

$$= \tan^{-1} \left(2 \times \frac{1}{2} \right) = \tan^{-1} 1 = \tan^{-1} \left(\tan \frac{\pi}{4} \right) = \frac{\pi}{4}.$$

12. cot $(\tan^{-1} a + \cot^{-1} a)$ Sol. cot $(\tan^{-1} a + \cot^{-1} a)$

Sol.
$$\cot (\tan^{-1} a + \cot^{-1} a)$$

$$= \cot \frac{\pi}{2} = 0. \qquad \left[\because \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \right]$$

13.
$$\tan \frac{1}{2} \left[\sin^{-1} \frac{2x}{1+x^2} + \cos^{-1} \frac{1-y^2}{1+y^2} \right], |x| < 1, y > 0 \text{ and } xy < 1.$$

Sol. Put $x = \tan \theta$ and $y = \tan \phi$, then the given expression

$$= \tan \left(\frac{1}{2}\sin^{-1}\frac{2x}{1+x^2} + \frac{1}{2}\cos^{-1}\frac{1-y^2}{1+y^2}\right)$$

$$= \tan \left(\frac{1}{2}\sin^{-1}\frac{2\tan\theta}{1+\tan^2\theta} + \frac{1}{2}\cos^{-1}\frac{1-\tan^2\phi}{1+\tan^2\phi}\right)$$

$$= \tan \left[\frac{1}{2}\sin^{-1}(\sin 2\theta) + \frac{1}{2}\cos^{-1}(\cos 2\phi)\right]$$

$$= \tan \left[\frac{1}{2}(2\theta) + \frac{1}{2}(2\phi)\right] = \tan (\theta + \phi) = \frac{\tan \theta + \tan \phi}{1-\tan \theta \tan \phi} = \frac{x+y}{1-xy}.$$

14. If $\sin \left(\sin^{-1} \frac{1}{5} + \cos^{-1} x \right) = 1$, then find the value of x.

Sol. Given :
$$\sin \left(\sin^{-1} \frac{1}{5} + \cos^{-1} x \right) = 1 = \sin \frac{\pi}{2}$$

 $\Rightarrow \qquad \sin^{-1} \frac{1}{5} + \cos^{-1} x = \frac{\pi}{2}$
 $\Rightarrow \qquad \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} \frac{1}{5} = \cos^{-1} \frac{1}{5} \left(\because \sin^{-1} t + \cos^{-1} t = \frac{\pi}{2} \right)$
 $\Rightarrow \qquad x = \frac{1}{5}.$

15. If $\tan^{-1} \frac{x-1}{x-2} + \tan^{-1} \frac{x+1}{x+2} = \frac{\pi}{4}$, then find the value of x.

Sol. Given:
$$\tan^{-1} \frac{x-1}{x-2} + \tan^{-1} \frac{x+1}{x+2} = \frac{\pi}{4}$$

$$\Rightarrow \tan^{-1} \frac{\frac{x-1}{x-2} + \frac{x+1}{x+2}}{1 - \left(\frac{x-1}{x-2}\right) \left(\frac{x+1}{x+2}\right)} = \frac{\pi}{4} \left(\because \tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy} \right)$$

$$\text{Multiplying by L.C.M.} = (x-2)(x+2),$$

$$\Rightarrow \frac{(x-1)(x+2) + (x+1)(x-2)}{(x-2)(x+2) - (x-1)(x+1)} = \tan \frac{\pi}{4}$$

$$\Rightarrow \frac{x^2 + 2x - x - 2 + x^2 - 2x + x - 2}{x^2 - 4 - (x^2 - 1)} = 1$$

$$\Rightarrow \frac{2x^2 - 4}{x^2 - 4 - x^2 + 1} = 1 \Rightarrow \frac{2x^2 - 4}{-3} = 1$$

$$\Rightarrow 2x^2 - 4 = -3 \Rightarrow 2x^2 = 4 - 3 = 1$$

$$\Rightarrow x^2 = \frac{1}{2} \therefore x = \pm \sqrt{\frac{1}{2}} = \pm \frac{1}{\sqrt{2}}.$$

Find the values of each of the expressions in Exercises 16 to 18.

$$16. \sin^{-1}\left(\sin\frac{2\pi}{3}\right).$$

Sol. We know that
$$\sin^{-1} (\sin x) = x$$
. Therefore, $\sin^{-1} \left(\sin \frac{2\pi}{3} \right) = \frac{2\pi}{3}$. But $\frac{2\pi}{3} \notin \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ which is the principal value branch of \sin^{-1} . Now, $\sin^{-1} \left(\sin \frac{2\pi}{3} \right) = \sin^{-1} \left(\sin \frac{3\pi - \pi}{3} \right) = \sin^{-1} \left[\sin \left(\pi - \frac{\pi}{3} \right) \right]$
$$= \sin^{-1} \left(\sin \frac{\pi}{3} \right) = \frac{\pi}{3} \text{ and } \frac{\pi}{3} \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \therefore \sin^{-1} \left(\sin \frac{2\pi}{3} \right) = \frac{\pi}{3}.$$
17. $\tan^{-1} \left(\tan \frac{3\pi}{4} \right)$.

Sol. We know that
$$\tan^{-1}(\tan x) = x$$
. Therefore, $\tan^{-1}\left(\tan\frac{3\pi}{4}\right) = \frac{3\pi}{4}$.
But $\frac{3\pi}{4} \notin \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ which is the principal value branch of \tan^{-1} .
Now, $\tan^{-1}\left(\tan\frac{3\pi}{4}\right) = \tan^{-1}\left(\tan\frac{4\pi - \pi}{4}\right) = \tan^{-1}\left[\tan\left(\pi - \frac{\pi}{4}\right)\right]$

$$= \tan^{-1}\left[-\tan\frac{\pi}{4}\right] = -\tan^{-1}\tan\frac{\pi}{4}$$

$$= -\frac{\pi}{4} \text{ and } -\frac{\pi}{4} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \qquad \therefore \tan^{-1}\left(\tan\frac{3\pi}{4}\right) = -\frac{\pi}{4}.$$

18.
$$\tan \left(\sin^{-1} \frac{3}{5} + \cot^{-1} \frac{3}{2} \right)$$
.

Sol. Let
$$\sin^{-1} \frac{3}{5} = x$$
 and $\cot^{-1} \frac{3}{5} = y$

 \Rightarrow x and y both lie in first quadrant because $\frac{3}{5} > 0$ and also $\frac{3}{2} > 0$ and hence cos x must be positive.

and
$$\sin x = \frac{3}{5}$$
 and $\cot y = \frac{3}{2}$

$$\Rightarrow \qquad \cos x = \sqrt{1 - \sin^2 x} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}$$

$$\Rightarrow \qquad \tan x = \frac{\sin x}{\cos x} = \frac{3}{4} \text{ and } \tan y = \frac{2}{3}$$

:.
$$\tan \left(\sin^{-1} \frac{3}{5} + \cot^{-1} \frac{3}{2} \right) = \tan (x + y)$$

$$= \frac{\tan x + \tan y}{1 - \tan x \tan y} = \frac{\frac{3}{4} + \frac{2}{3}}{1 - \frac{3}{4} \times \frac{2}{3}} = \frac{\frac{17}{12}}{\frac{1}{2}} = \frac{17}{6}.$$

19. $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$ is equal to

$$(A) \ \frac{7\pi}{6} \qquad \qquad (B) \ \frac{5\pi}{6} \qquad \qquad (C) \ \frac{\pi}{3} \qquad \qquad (D) \ \frac{\pi}{6}$$

- **Sol.** We know that $(x =) \cos \frac{7\pi}{6} = \cos \left(7 \times \frac{180^{\circ}}{6}\right) = \cos 210^{\circ}$ is negative. $(\because 210^{\circ} \text{ lies in third quadrant})$
 - \therefore Value of $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$ must lie between $\frac{\pi}{2}$ and π .

$$\therefore \cos^{-1}\left(\cos\frac{7\pi}{6}\right) = \cos^{-1}\left(\cos\left(2\pi - \frac{7\pi}{6}\right)\right) | \because \cos\left(2\pi - \theta\right) = \cos\theta$$
$$= 2\pi - \frac{7\pi}{6} = \frac{12\pi - 7\pi}{6} = \frac{5\pi}{6}$$

:. Option (B) is the correct answer

20.
$$\sin \left(\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right)$$
 is equal to

(A)
$$\frac{1}{2}$$
 (B) $\frac{1}{3}$ (C) $\frac{1}{4}$ (D) 1.

Sol.
$$\sin\left(\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right) = \sin\left(\frac{\pi}{3} + \sin^{-1}\frac{1}{2}\right)$$
 : $\sin^{-1}(-x) = -\sin^{-1}x$

$$= \sin\left(\frac{\pi}{3} + \sin^{-1}\left(\sin\frac{\pi}{6}\right)\right)$$

$$= \sin \left(\frac{\pi}{3} + \frac{\pi}{6}\right) = \sin \left(\frac{2\pi + \pi}{6}\right) = \sin \frac{3\pi}{6} \qquad = \sin \frac{\pi}{2} = 1.$$

:. Option (D) is the correct answer.

21. $tan^{-1} \sqrt{3} - cot^{-1} (-\sqrt{3})$ is equal to

(A)
$$\pi$$
 (B) $-\frac{\pi}{2}$ (C) 0 (D) $2\sqrt{3}$.

Sol.
$$\tan^{-1} \sqrt{3} - \cot^{-1} (-\sqrt{3})$$

$$\tan^{-1}\sqrt{3} - (\pi - \cot^{-1}\sqrt{3}) \qquad \because \cot^{-1}(-x) = \pi - \cot^{-1}x$$

$$\tan^{-1}\tan\frac{\pi}{3} - \left(\pi - \cot^{-1}\left(\cot\frac{\pi}{6}\right)\right)$$

$$= \frac{\pi}{3} - \left(\pi - \frac{\pi}{6}\right) = \frac{\pi}{3} - \frac{5\pi}{6} = \frac{2\pi - 5\pi}{6}$$

$$= -\frac{3\pi}{6} = -\frac{\pi}{2} \quad \therefore \quad \text{Option (B) is the correct answer.}$$

MISCELLANEOUS EXERCISE

Find the value of the following:

1.
$$\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$$
.

Sol. Here
$$(x) = \cos \frac{13\pi}{6} = \cos \frac{12\pi + \pi}{6} = \cos \left(2\pi + \frac{\pi}{6}\right)$$
$$= \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} > 0.$$

$$\therefore \ \ \mbox{Value of } \cos^{-1} \left(\cos \frac{13\pi}{6} \right) \ \mbox{lies in first quadrant.}$$

$$\therefore \quad \cos^{-1} \left(\cos \frac{13\pi}{6} \right) \; = \; \cos^{-1} \; \frac{\sqrt{3}}{2} \; = \; \cos^{-1} \; \cos \; \frac{\pi}{6} \; = \; \frac{\pi}{6} \; .$$

$$2. \ \tan^{-1}\left(\tan\frac{7\pi}{6}\right).$$

Sol. Here
$$(x) = \tan \frac{7\pi}{6} = \tan \frac{6\pi + \pi}{6} = \tan \left(\pi + \frac{\pi}{6}\right) = \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}} > 0$$

$$\therefore$$
 Value of $\tan^{-1}\left(\tan\frac{7\pi}{6}\right)$ lies in first quadrant.

$$\therefore \tan^{-1}\left(\tan\frac{7\pi}{6}\right) = \tan^{-1}\frac{1}{\sqrt{3}} = \tan^{-1}\tan\frac{\pi}{6} = \frac{\pi}{6}.$$

3. Prove that
$$2 \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{24}{7}$$
.

Sol. Let
$$\sin^{-1} \frac{3}{5} = 0$$

$$\Rightarrow$$
 θ lies in first quadrant $\left(\because \frac{3}{5} > 0\right)$ and $\sin \theta = \frac{3}{5}$.

$$\therefore \quad \cos \theta \text{ is positive and } = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}$$

$$\therefore \qquad \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}$$

We know that
$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta} = \frac{2 \times \frac{3}{4}}{1 - \frac{9}{16}}$$
or $\tan 2\theta = \frac{\frac{3}{2}}{\frac{7}{16}} = \frac{3}{2} \times \frac{16}{7} = \frac{24}{7}$ or $2\theta = \tan^{-1} \frac{24}{7}$.

Putting $\theta = \sin^{-1} \frac{3}{5}$, $2 \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{24}{7}$.

4. Prove that $\sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{77}{36}$.

Sol. Let
$$\sin^{-1} \frac{8}{17} = \alpha \implies \alpha$$
 is in first quadrant. $\left(\because \frac{8}{17} > 0\right)$ and $\sin \alpha = \frac{8}{17}$

$$\therefore \cos \alpha \text{ is positive and } = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - \frac{64}{289}}$$
$$= \sqrt{\frac{289 - 64}{289}} = \sqrt{\frac{225}{289}} = \frac{15}{17}$$

$$\therefore \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{\delta}{17}}{\frac{15}{17}} = \frac{8}{15}$$

Again let $\sin^{-1}\frac{3}{5}=\beta \Rightarrow \beta$ is in first quadrant. $\left(\because \frac{3}{5}>0\right)$ and $\sin\beta=\frac{3}{5}$

$$\therefore$$
 cos β is also positive and = $\sqrt{1-\sin^2\beta}$ = $\sqrt{1-\frac{9}{25}}$ = $\sqrt{\frac{16}{25}}$ = $\frac{4}{5}$

$$\therefore \qquad \tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}$$

We know that
$$\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

Putting values of tan
$$\alpha$$
 and tan β , =
$$\frac{\frac{8}{15} + \frac{3}{4}}{1 - \frac{8}{15} \cdot \frac{3}{4}}$$
Multiplying by L.C.M. = 60,
$$= \frac{32 + 45}{60 - 24} = \frac{77}{36}$$
i.e.,
$$\tan (\alpha + \beta) = \frac{77}{36}$$

$$\therefore \qquad \alpha + \beta = \tan^{-1} \frac{77}{36}$$

Putting values of α and β , $\sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{77}{36}$.

5. Prove that
$$\cos^{-1} \frac{4}{5} + \cos^{-1} \frac{12}{13} = \cos^{-1} \frac{33}{65}$$
.

Sol. Let
$$\cos^{-1} \frac{4}{5} = \alpha \implies \alpha$$
 is in first quadrant. $\left(\because \frac{4}{5} > 0\right)$ and $\cos \alpha = \frac{4}{5}$

$$\therefore \quad \sin \ \alpha \text{ is also positive and} = \sqrt{1-\cos^2 \alpha}$$

$$= \sqrt{1-\frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5}$$

Again let $\cos^{-1} \frac{12}{13} = \beta$

$$\Rightarrow \beta$$
 is in first quadrant.

 $\left(\because \frac{12}{13} > 0\right)$

and
$$\cos \beta = \frac{12}{13}$$
.

$$\therefore \sin \beta \text{ is also positive and } = \sqrt{1 - \cos^2 \beta}$$

$$= \sqrt{1 - \left(\frac{12}{13}\right)^2} = \sqrt{1 - \frac{144}{169}} = \sqrt{\frac{169 - 144}{169}} = \sqrt{\frac{25}{169}} = \frac{5}{13}$$

We know that $\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$

Putting values,
$$= \frac{4}{5} \left(\frac{12}{13} \right) - \frac{3}{5} \left(\frac{5}{13} \right)$$
 or
$$\cos (\alpha + \beta) = \frac{48}{65} - \frac{15}{65} = \frac{33}{65}$$

$$\therefore \qquad \alpha + \beta = \cos^{-1} \frac{33}{65}$$

Putting values of α and β , $\cos^{-1} \frac{4}{5} + \cos^{-1} \frac{12}{13} = \cos^{-1} \frac{33}{65}$.

6. Prove that $\cos^{-1} \frac{12}{13} + \sin^{-1} \frac{3}{5} = \sin^{-1} \frac{56}{65}$.

Sol. Let $\cos^{-1} \frac{12}{13} = \alpha \implies \alpha$ is in first quadrant. $\left(\because \frac{12}{13} > 0\right)$ and $\cos \alpha = \frac{12}{13}$.

 $\therefore \sin \alpha \text{ is also positive and } = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - \frac{144}{169}}$ $= \sqrt{\frac{169 - 144}{169}} = \sqrt{\frac{25}{169}} = \frac{5}{13}$

Let $\sin^{-1} \frac{3}{5} = \beta \implies \beta$ is in first quadrant. $\left(\because \frac{3}{5} > 0\right)$

and $\sin \beta = \frac{3}{5}$.

 \therefore cos β is also positive and = $\sqrt{1-\sin^2 \beta}$ = $\sqrt{1-\frac{9}{25}}$

$$=\sqrt{\frac{25-9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}$$

We know that $\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$.

Putting values, $\sin (\alpha + \beta) = \frac{5}{13} \left(\frac{4}{5}\right) + \frac{12}{13} \left(\frac{3}{5}\right) = \frac{20}{65} + \frac{36}{65} = \frac{56}{65}$

$$\therefore \qquad \alpha + \beta = \sin^{-1} \frac{56}{65}$$

Putting values of α and β , $\cos^{-1} \ \frac{12}{13} \ + \ \sin^{-1} \ \frac{3}{5} \ = \ \sin^{-1} \ \frac{56}{65}$.

7. Prove that $\tan^{-1} \frac{63}{16} = \sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5}$

Sol. Let $\sin^{-1} \frac{5}{13} = x$ and $\cos^{-1} \frac{3}{5} = y$

 \Rightarrow x and y both lie in first quadrant because $\frac{5}{13} > 0$ and $\frac{3}{5} > 0$ and hence cos x and sin y are both positive

and $\sin x = \frac{5}{13}$ and $\cos y = \frac{3}{5}$

$$\Rightarrow \qquad \cos x = \sqrt{1 - \sin^2 x} = \sqrt{1 - \left(\frac{5}{13}\right)^2} = \sqrt{\frac{144}{169}} = \frac{12}{13}$$

and $\sin y = \sqrt{1 - \cos^2 y} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{\frac{16}{25}} = \frac{4}{5}$

$$\Rightarrow \tan x = \frac{\sin x}{\cos x} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12}$$

and
$$\tan y = \frac{\sin y}{\cos y} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3}$$

Now,
$$\tan (x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y} = \frac{\frac{5}{12} + \frac{4}{3}}{1 - \frac{5}{12} \times \frac{4}{3}}$$

$$=\frac{\frac{21}{12}}{\frac{4}{9}}=\frac{7}{4}\times\frac{9}{4}=\frac{63}{16}$$

$$\Rightarrow \qquad \tan^{-1} \frac{63}{16} = x + y$$

Putting values of x and y, $\tan^{-1} \frac{63}{16} = \sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5}$.

8. Prove that $\tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{7} + \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{8} = \frac{\pi}{4}$.

Sol. L.H.S. =
$$\left(\tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{7}\right) + \left(\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{8}\right)$$

= $\tan^{-1}\left(\frac{\frac{1}{5} + \frac{1}{7}}{1 - \frac{1}{5} \cdot \frac{1}{7}}\right) + \tan^{-1}\left(\frac{\frac{1}{3} + \frac{1}{8}}{1 - \frac{1}{3} \cdot \frac{1}{8}}\right)$

Here for first sum, $xy = \frac{1}{5} \times \frac{1}{7} = \frac{1}{35} < 1$ and for second sum

$$xy = \frac{1}{3} \times \frac{1}{8} = \frac{1}{24} < 1.$$

$$= \tan^{-1} \left(\frac{\frac{7+5}{35}}{\frac{35-1}{35}} \right) + \tan^{-1} \left(\frac{\frac{8+3}{24}}{\frac{24-1}{24}} \right) = \tan^{-1} \frac{12}{34} + \tan^{-1} \frac{11}{23}$$

$$= \tan^{-1} \frac{6}{17} + \tan^{-1} \frac{11}{23}$$

$$= \tan^{-1} \left(\frac{\frac{6}{17} + \frac{11}{23}}{1 - \frac{6}{17} \cdot \frac{11}{23}} \right) \qquad \left[\because xy = \frac{6}{17} \times \frac{11}{23} = \frac{66}{391} < 1 \right]$$

Multiplying NUM and DEN by 17 × 23

$$= \tan^{-1} \left(\frac{138 + 187}{391 - 66} \right) = \tan^{-1} \left(\frac{325}{325} \right)$$

$$= \tan^{-1} 1 = \tan^{-1} \tan \frac{\pi}{4} = \frac{\pi}{4} = \text{R.H.S.}$$

9. Prove that
$$\tan^{-1} \sqrt{x} = \frac{1}{2} \cos^{-1} \left(\frac{1-x}{1+x} \right), x \in [0, 1].$$

Sol. Let
$$\tan^{-1} \sqrt{x} = \theta$$
, then $\sqrt{x} = \tan \theta$ $\therefore x = \tan^2 \theta$

$$\therefore \text{ R.H.S.} = \frac{1}{2} \cos^{-1} \frac{1-x}{1+x} = \frac{1}{2} \cos^{-1} \frac{1-\tan^2 \theta}{1+\tan^2 \theta}$$
$$= \frac{1}{2} \cos^{-1} (\cos 2\theta) = \frac{1}{2} (2\theta) = \theta = \tan^{-1} \sqrt{x}.$$

L.H.S.

10. Prove that
$$\cot^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)$$
$$=\frac{x}{2}, x \in \left(0, \frac{\pi}{4}\right).$$

Sol. We know that

$$1 + \sin x = \cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + 2 \cos \frac{x}{2} \sin \frac{x}{2} = \left(\cos \frac{x}{2} + \sin \frac{x}{2}\right)^2$$
Similarly,
$$1 - \sin x = \left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)^2$$

$$\therefore \cot^{-1} \left(\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}\right)$$

$$= \cot^{-1} \left[\frac{\left(\cos \frac{x}{2} + \sin \frac{x}{2}\right) + \left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)}{\left(\cos \frac{x}{2} + \sin \frac{x}{2}\right) - \left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)}\right]$$

$$= \cot^{-1} \left(\frac{2 \cos \frac{x}{2}}{2 \sin \frac{x}{2}}\right) = \cot^{-1} \left(\cot \frac{x}{2}\right) = \frac{x}{2}.$$

11. Prove that
$$\tan^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right) = \frac{\pi}{4} - \frac{1}{2} \cos^{-1}x$$
,
$$\frac{-1}{\sqrt{2}} \le x \le 1.$$

Sol. L.H.S. =
$$\tan^{-1} \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right)$$

Put
$$x = \cos 2\theta$$
 ($\Rightarrow 2\theta = \cos^{-1} x \Rightarrow \theta = \frac{1}{2} \cos^{-1} x$)

$$\therefore \text{ L.H.S.} = \tan^{-1} \left(\frac{\sqrt{1 + \cos 2\theta} - \sqrt{1 - \cos 2\theta}}{\sqrt{1 + \cos 2\theta} + \sqrt{1 - \cos 2\theta}} \right)$$

$$= \tan^{-1} \left(\frac{\sqrt{2 \cos^2 \theta} - \sqrt{2 \sin^2 \theta}}{\sqrt{2 \cos^2 \theta} + \sqrt{2 \sin^2 \theta}} \right)$$

$$= \tan^{-1} \left(\frac{\sqrt{2} \cos \theta - \sqrt{2} \sin \theta}{\sqrt{2} \cos \theta + \sqrt{2} \sin \theta} \right)$$

Dividing every term in NUM and DEN by $\sqrt{2}~\cos\,\theta,$

$$= \tan^{-1} \left(\frac{1 - \tan \theta}{1 + \tan \theta} \right) = \tan^{-1} \left(\frac{\tan \frac{\pi}{4} - \tan \theta}{1 + \tan \frac{\pi}{4} \tan \theta} \right)$$
$$= \tan^{-1} \tan \left(\frac{\pi}{4} - \theta \right) = \frac{\pi}{4} - \theta$$
$$= \frac{\pi}{4} - \frac{1}{2} \cos^{-1} x = \text{R.H.S.}$$

12. Prove that $\frac{9\pi}{8} - \frac{9}{4} \sin^{-1} \frac{1}{3} = \frac{9}{4} \sin^{-1} \frac{2\sqrt{2}}{3}$.

12. Prove that
$$\frac{8}{8} - \frac{4}{4} \sin \frac{\pi}{3} = \frac{4}{4} \sin \frac{\pi}{3}$$
.

Sol. L.H.S. $= \frac{9\pi}{8} - \frac{9}{4} \sin^{-1} \frac{1}{3}$
 $= \frac{9}{4} \left(\frac{\pi}{2} - \sin^{-1} \frac{1}{3} \right)$
 $= \frac{9}{4} \cos^{-1} \frac{1}{3} \left(\because \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \Rightarrow \frac{\pi}{2} - \sin^{-1} x = \cos^{-1} x \right)$
 $\Rightarrow \text{ L.H.S. } = \frac{9}{4} \theta \qquad ...(i) \text{ where } \theta = \cos^{-1} \frac{1}{3}$
 $\therefore \theta \text{ is in first quadrant } \left(\because \frac{1}{3} > 0 \right) \text{ and } \cos \theta = \frac{1}{3}$
 $\therefore \sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \frac{1}{9}} = \sqrt{\frac{8}{9}} = \sqrt{\frac{4 \times 2}{9}} = \frac{2}{3} \sqrt{2}$

$$\therefore \qquad \qquad \theta = \sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)$$

Putting this value of
$$\theta$$
 in (i), L.H.S. = $\frac{9}{4} \sin^{-1} \left(\frac{2\sqrt{2}}{3} \right)$
= R.H.S.

13. Solve the equation $2 \tan^{-1} (\cos x) = \tan^{-1} (2 \csc x)$.

Sol. The given equation is

$$2 \tan^{-1} (\cos x) = \tan^{-1} (2 \csc x)$$

$$\Rightarrow \tan^{-1} \left(\frac{2 \cos x}{1 - \cos^2 x} \right) = \tan^{-1} \left(\frac{2}{\sin x} \right) \left[\because 2 \tan^{-1} x = \tan^{-1} \frac{2x}{1 - x^2} \right]$$

$$\Rightarrow \frac{2 \cos x}{\sin^2 x} = \frac{2}{\sin x}$$

Dividing both sides by $\frac{2}{\sin x}$, we have $\frac{\cos x}{\sin x} = 1$

$$\cot x = 1 = \cot \frac{\pi}{4}$$

$$\therefore \quad x = \frac{\pi}{4}.$$

14. Solve the equation $\tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2} \tan^{-1} x, (x > 0).$

Sol. Put $x = \tan \theta$

:. The given equation becomes $\tan^{-1}\left(\frac{1-\tan\theta}{1+\tan\theta}\right) = \frac{1}{2}\tan^{-1}(\tan\theta)$

$$\Rightarrow \tan^{-1}\left[\frac{\tan\frac{\pi}{4} - \tan\theta}{1 + \tan\frac{\pi}{4}\tan\theta}\right] = \frac{1}{2}\theta$$

$$\Rightarrow \tan^{-1}\tan\left(\frac{\pi}{4} - \theta\right) = \frac{\theta}{2}$$

$$\Rightarrow \frac{\pi}{4} - \theta = \frac{\theta}{2} \Rightarrow \theta + \frac{\theta}{2} = \frac{\pi}{4}$$

$$\Rightarrow \frac{3\theta}{2} = \frac{\pi}{4} \Rightarrow 12\theta = 2\pi \Rightarrow \theta = \frac{2\pi}{12} = \frac{\pi}{6}$$

$$\therefore x = \tan\theta = \tan\frac{\pi}{6} = \frac{1}{\sqrt{3}}.$$

15. $\sin (\tan^{-1} x)$, |x| < 1 is equal to

(A)
$$\frac{x}{\sqrt{1-x^2}}$$
 (B) $\frac{1}{\sqrt{1-x^2}}$ (C) $\frac{1}{\sqrt{1+x^2}}$ (D) $\frac{x}{\sqrt{1+x^2}}$.
Sol. $\sin (\tan^{-1} x) = \sin \theta$ where $\theta = \tan^{-1} x \implies x = \tan \theta$

Sol. $\sin (\tan^{-x} x) = \sin \theta$ where $\theta = \tan^{-x} x \iff x = \tan \theta$ $= \frac{1}{\csc \theta} = \frac{1}{\sqrt{1 + \cot^2 \theta}}$

$$\cos \cot \theta \qquad \sqrt{1 + \cot^2 \theta}$$
[: $\csc^2 \theta - \cot^2 \theta = 1 \implies \csc^2 \theta = 1 + \cot^2 \theta$]

Putting cot
$$\theta = \frac{1}{\tan \theta} = \frac{1}{x}$$
,

$$\sin (\tan^{-1} x) = \frac{1}{\sqrt{1 + \frac{1}{x^2}}} = \frac{1}{\sqrt{\frac{x^2 + 1}{x^2}}} = \frac{x}{\sqrt{x^2 + 1}}$$

:. Option (D) is the correct answer.

16. $\sin^{-1} (1 - x) - 2 \sin^{-1} x = \frac{\pi}{2}$, then x is equal to

(A) 0,
$$\frac{1}{2}$$
 (B) 1, $\frac{1}{2}$ (C) 0 (D) $\frac{1}{2}$.

Sol. The given equation is
$$\sin^{-1} (1 - x) - 2 \sin^{-1} x = \frac{\pi}{2}$$
 ...(i)
Put $\sin^{-1} x = \theta$ \therefore $x = \sin \theta$...(ii)

$$\therefore \quad \text{Equation } (i) \text{ becomes} \quad \sin^{-1} (1-x) - 2\theta = \frac{\pi}{2}$$

$$\Rightarrow \sin^{-1}(1-x) = \frac{\pi}{2} + 2\theta$$

$$\Rightarrow 1 - x = \sin\left(\frac{\pi}{2} + 2\theta\right) = \cos 2\theta = 1 - 2\sin^2\theta$$

Putting $\sin \theta = x$ from (ii), $1 - x = 1 - 2x^2$ or $-x = -2x^2$ or $2x^2 - x = 0$ or x(2x - 1) = 0 \therefore Either x = 0 or 2x - 1 = 0 i.e., 2x = 1i.e., $x = \frac{1}{2}$.

Let us test these roots

Putting x = 0 in (i), $\sin^{-1} 1 - 2 \sin^{-1} 0 = \frac{\pi}{2}$

or
$$\frac{\pi}{2} - 0 = \frac{\pi}{2}$$
 or $\frac{\pi}{2} = \frac{\pi}{2}$ which is true.

 \therefore x = 0 is a root.

Putting
$$x = \frac{1}{2}$$
 in (i), $\sin^{-1} \frac{1}{2} - 2 \sin^{-1} \frac{1}{2} = \frac{\pi}{2}$

or
$$-\sin^{-1}\frac{1}{2} = \frac{\pi}{2}$$
 [:: $t - 2t = -t$]

or
$$-\frac{\pi}{6} = \frac{\pi}{2}$$
 $\left[\because \sin^{-1}\frac{1}{2} = \sin^{-1}\sin\frac{\pi}{6} = \frac{\pi}{6}\right]$ which is impossible.

$$\therefore$$
 $x = \frac{1}{2}$ is rejected.

.. Option (C) is the correct answer.

17.
$$\tan^{-1}\left(\frac{x}{y}\right) - \tan^{-1}\left(\frac{x-y}{x+y}\right)$$
 is equal to
$$(A) \frac{\pi}{2} \qquad (B) \frac{\pi}{3} \qquad (C) \frac{\pi}{4} \qquad (D) - \frac{3\pi}{4}.$$

Sol.
$$\tan^{-1} \frac{x}{y} - \tan^{-1} \left(\frac{x-y}{x+y} \right)$$

$$= \tan^{-1} \left[\frac{\frac{x}{y} - \left(\frac{x-y}{x+y}\right)}{1 + \frac{x}{y} \left(\frac{x-y}{x+y}\right)} \right] \quad \left(\because \tan^{-1} A - \tan^{-1} B = \tan^{-1} \frac{A-B}{1+AB} \right)$$

Multiplying both numerator and denominator by y(x + y)

$$= \tan^{-1} \left[\frac{x(x+y) - y(x-y)}{y(x+y) + x(x-y)} \right] = \tan^{-1} \left(\frac{x^2 + xy - xy + y^2}{xy + y^2 + x^2 - xy} \right)$$
$$= \tan^{-1} \left(\frac{x^2 + y^2}{x^2 + y^2} \right) = \tan^{-1} 1 = \tan^{-1} \tan \frac{\pi}{4} = \frac{\pi}{4}$$

:. Option (C) is the correct answer.