

Early Detection of Heart Attack Risk Through Integrated Machine Learning Models by Behavioral Health Data

Mrunal Reddy Ragi · Ravali Vayyala · Revathi Surisetty · Vishal Ravichandran Advisors: Divya S. Subramaniam, Ph.D., M.P.H · Dipti P. Subramaniam, Ph.D., M.P.H

Background

- In the U.S., heart disease claims about 700,000 lives annually, making it the leading cause of death worldwide ⁽¹⁾.
- The symptoms could be misdiagnosed as musculoskeletal pain, anxiety, or GERD (2, 3).
- For prevention and prompt treatment, early detection is essential ⁽⁴⁾.
- Although accurate, traditional diagnostics (ECG, angiography) require a lot of resources ⁽⁵⁾.
- Rapid and scalable alternatives to clinical risk prediction are provided by machine learning (ML)⁽⁶⁾.

Objectives:

- To Determine the key clinical signs of heart disease.
- Utilize and contrast the machine learning models to forecast heart disease.
- Measures such as interpretability and accuracy are used to assess models.
- Encourage the use of interpretable machine learning tools in healthcare environments with limited resources.

Methods

Dataset Description

- **Data source:** UCI Heart Disease Repository (Includes 14 clinical features)
- **Demographics**: Age, Sex
- Vitals & Labs: Resting Blood Pressure, Cholesterol, Fasting Blood Suga
- Cardiac & Symptom Measures: Chest Pain Type, Resting ECG, ST Depression (Oldpeak), Exercise-Induced Angina, Thalach (Max Heart Rate)
- Other: Slope of ST segment, Number of Major Vessels (ca), Thalassemi

Data Preprocessing & Exploration

- **Data Cleaning:** Missing values were removed, and continuous variables were normalized to reduce skewness, and categorical variables were label- encoded to prepare the dataset for ML algorithms.
- Exploratory Data Analysis (EDA): Histograms and boxplots to examine feature distributions, Heatmaps & Pairplots to assess variable relationships and correlations

Modeling Techniques

- Logistic Regression (LR) baseline, interpretable model
- Gradient Boosting non-linear decision rules
- Random Forest (RF) ensemble model for better generalization
- Support Vector Machine (SVM) effective in high-dimensional spaces

Model Evaluation

- Train-Test Split: 80/20 using stratified sampling to preserve class balance.
- Cross-validation: 5-fold to improve generalizability and reduce variance.
- **Performance Metrics:** Accuracy, Precision, Recall, F1-Score, and ROC-AUC

Statistical Summary

Feature	Heart Disease	No Heart Disease	P-Values
Mean Resting BP (Resting Blood Pressure)	139.25 mmHg	129.79 mmHg	0.01
Mean Oldpeak(ST Depression)	1.60	0.58	0.001
Mean Thalach(Maximu m Heart Rate)	139.3 bpm	158.5 bpm	0.02
Exercise Angina Rate	70%	16%	<0.001

Model Performance

Model	Accuracy	Precision	Recall	F1-score
Logistic	49.8%	49.5%	51.7%	50.6%
Regression				
SVM	49.7%	49.3%	48.4%	48.9%
(Sampled)				
Random	49.7%	49.4%	53.7%	51.5%
Forest				
Gradient	49.8%	49.4%	47.2%	48.3%,
Boosting				
XGBOOST	50%	50%	50%	50%
GaussianNB	50%	50%	56%	53%

Visual Summary

Bar chart showing feature differences

Results

Resting Blood Pressure (BP):

Patients with heart disease showed a higher average resting blood pressure of 139.25 mmHg, compared to 129.79 mmHg in those without the disease. This supports hypertension as a significant clinical indicator in cardiovascular risk assessment.

• ST Depression (Oldpeak):

The mean oldpeak was 1.60 in the heart disease group, whereas it was only 0.58 in the non-disease group. This difference highlights the role of stress-induced ischemia in heart disease progression.

• Maximum Heart Rate (Thalach):

The thalach value was 139.3 bpm in heart disease patients versus 158.5 bpm in healthy individuals. This suggests a reduced ability of the heart to meet increased demands during physical exertion in affected patients.

• Exercise-Induced Angina:

About 70% of heart disease patients reported experiencing exercise-induced angina, a stark contrast to 16% in those without heart disease, reinforcing their diagnostic value.

Conclusion

- The GaussianNB 50% accuracy rate makes it highly interpretable for clinical applications.
- Types of chest pain, oldpeak, thalach, and exercise-induced angina are important predictors.
- Additionally, logistic regression performed well (49.8% accuracy) and was easier to use.
- ML models can help with early risk screening, particularly in environments with limited resources.

References

- 1. Heart Disease Facts. Heart Disease. Published October 24, 2024
- 2. Bösner S, Becker A, Haasenritter J, et al. Chest pain in primary care: Epidemiology and pre-work-up probabilities. *European Journal of General Practice*. 2009;15(3):141-146. doi:10.3109/13814780903329528
- 3. Fass R, Achem SR. Noncardiac chest pain: Epidemiology, natural course and pathogenesis. *Journal of Neurogastroenterology and Motility*. 2011;17(2):110-123. doi:10.5056/jnm.2011.17.2.110
- 4. Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA. The global burden of cardiovascular diseases and risk. *Journal of the American College of Cardiology*. 2022;80(25):2361-2371. doi:10.1016/j.jacc.2022.11.005
- 5. El-Sofany H, Bouallegue B, El-Latif YMA. A proposed technique for predicting heart disease using machine learning algorithms and an explainable AI method. *Scientific Reports*. 2024;14(1). doi:10.1038/s41598-024-74656-2
- 6. Johnson KW, Soto JT, Glicksberg BS, et al. Artificial intelligence in cardiology. *Journal of the American College of Cardiology*. 2018;71(23):2668-2679. doi:10.1016/j.jacc.2018.03.521