$$\hat{H} = \sum_{i,j} h_{ij} \hat{E}_{IJ} + \hat{U} + \sum_{i} v_i' \hat{n}_i = \sum_{i,j} h_{ij} \hat{E}_{IJ} + \hat{U} - \sum_{i} \mu_i \hat{n}_i = \sum_{i \neq j} h_{ij} \hat{E}_{IJ} + \hat{U} + \sum_{i} v_i^{ext} \hat{n}_i \quad (1)$$

Note that we split one-electron operator on 2 contributions: where $i \neq j$ and where i = j. This is also used in python code (Molecule.t and Molecule.v_ext respectively)

x	Description
Molecule.Ne	Number of electrons in the lattice
Molecule.Ns	Number of atoms in the lattice
Molecule.u	1D array that represents on site repulsion: $x_i = U_{i,i,i,i} = \langle ii ii\rangle$
Molecule.t	2D array that represents one-electron Hamiltonian where $i! = j$: $x_{ij} = \begin{cases} 0 & \text{i and j are not connected} \\ t_{ij} & \text{otherwise} \end{cases}$ it is analog to the $\langle \chi_i \hat{h} \chi_j \rangle$
Molecule.v_ext	1D array; sum of $h_{ii} - \mu_i = h_{ii} + v_i' = v_i^{ext}$. It is predefined by our system and it doesn't change during our calculations
Molecule.equiv_atom_groups	dictionary of different sites that are equivalent (and because of that recalculation would be just repetitive. It is a dict with keys $[0, N_{sites}]$ and for each entry value is tuple of all sites (according to Hamiltonian matrix) e.g., $\{0: (0, 3), 1: (1, 2, 4, 5)\}$
Molecule.embedded_mol	It is a representation of a cluster in class_Quant_NBody.QuantNBody class which is class created by me on top of Saad's library Quant_NBody

1 Kohn-Sham

x	Description
Molecule.mu_s	1D vector that ensures that KS system will have correct density with only 1-electron interactions + additional potential called Hartree-Exchange correlation potential: $x_i = \mu^s = \mu^{ext} - v^{Hxc}$
Molecule.h_ks	2D vector. It combines kinetic energy part of one electron Hamiltonian $(i \neq j)$ and Kohn-Sham potential: $x_{ij}: h_{ij}^{KS} = h_{i\neq j} - \mu_i^s \delta_{ij}$
Molecule.wf_ks	2D array that represents all wave functions of non- interacting system ordered by energy. Coefficients for the <i>j</i> -th wave function on the site <i>i</i> on the lat- tice is represented by x_{ij} . This means that wave function is presented by vector $\vec{v}_k = x_{ik}$
Molecule.epsilon_s	1D vector of Kohn-Sham energies
Molecule.y_a	2D array of 1RDM. y due to similarity to γ and a to remind that this is only density per spin (α) . It is generated form KS equation.
Molecule.n_ks	1D vector that is made from diagonal elements of γ_{α} . It represents occupation numbers for each site that are important for CASCI part of algorithm.
Molecule.mu_hxc	1D vector that is the connection between KS and CASCI. In KS part it is represent Hxc chemical potential $(x_i = \mu_i^{Hxc} = -v_i^{Hxc})$ and in CASCI it represents impurity potential: $x_i = \tilde{\mu}_i^{imp}$

y_a_tilde

h_tilde

h_tilde_dimer

u_0_dimer

X	Description
site_group	Key of a dictionary that goes over all equivalent atom groups.
site_id	index of 1 (first) site in the group where we actually calculate CASCI
y_a_correct_imp	2D matrix that is a copy of γ_{α} with permutated indices in such way that our our impurity gets index 0 (this is important since Householder doesn't transform site with index 0). This is done by simply switching columns (site_id, 0) and then also same rows.
V	1D Householder vector that creates bath and environment orbitals. $x_i = v_i = \begin{cases} 0 & i = 0 \\ \frac{\gamma_{10} - \xi}{\sqrt{2\xi(\xi - \gamma_{10})}} & i = 1 \\ \frac{\gamma_{i0}}{\sqrt{2\xi(\xi - \gamma_{10})}} & i \geq 2 \end{cases}$ where $\xi = -\text{sign}(\gamma_{10})\sqrt{\sum_{j>0}\gamma_{j0}^2}$
P	2D Transformation matrix that transforms 1RDM:

	$\left(\frac{\gamma_{i0}}{\sqrt{2\xi(\xi-\gamma_{10})}} i \ge 2\right)$
	where $\xi = -\operatorname{sign}(\gamma_{10})\sqrt{\sum_{j>0} \gamma_{j0}^2}$
P	2D Transformation matrix that transforms 1RDM:
	$x_{ij} = P_{ij} = \delta_{ij} - 2v_i v_j$

This is also 1RDM but in Householder transformed space: $X = P \cdot \gamma_{\alpha} \cdot P$. Note that this is not Molecule class object because now when we have embedding different impurities will have different Householder transformations.

In save way we transformed 1RDM we also transform one-electron Hamiltonian. This is then
$$P \cdot (t + v^{ext}) \cdot P$$

just cropped transformed one-electron Hamiltonian that will be input for CASCI in Quant_NBody

4D tensor that represents $\langle ij|kl\rangle$. In our case this is for dimer with all values 0 ("Non-interacting bath") but impurity $(x_{0000} = U)$

mu_imp

optimized_v_imp_obj

cost_function_CASCI

This is number that corresponds to chemical potential of the impurity. At each cycle it is read from Hxc potential at site that corresponds to site_id and in the end written there.

object that is returned by scipy.optimize.minimize optimizer. It has information about how close we were able to come to KS result and optimized impurity chemical potential.

function that calculates square difference of occupation in KS system and CASCI at given impurity potential.