Funcții

Definiție

Fie A şi B două mulțimi nevide. Se defineşte o **funcție** pe A cu valori în B dacă **fiecărui element** x din A i se asociază **un singur element** y din B.

Pentru notația unei funcții, cel mai des se folosește $f:A\to B$ care se citește "f definită pe A cu valori în B". "f" se poate înlocui cu alte litere, din alfabetul latin sau grecesc $f(x),\ g(x),\ h(x),\ \Gamma(x),\ \theta(x)$.

Nu este o funcție situația în care unui element din A îi corespund mai multe valori din B sau niciuna!

Termeni Importanți

A se numeşte **domeniul de definiţie** al funcţiei B se numeşte **codomeniul** funcţiei x se numeşte **argument** al funcţiei (la folosirea f(x))

Egalitatea a două funcții

Două funcții $f:A\to B,\ g:C\to D$ se numesc egale dacă și numai dacă

- A = C (domeniile de definiție coincid)
- B = D (codomeniile coincid)
- $f(x) = g(x) \forall x \in A$ (valorile funcției coincid)

Reprezentarea grafică a unei funcții

O funcție $f:A\to B$ se reprezintă grafic trasând perechile (x, f(x)), cu x din A sub formă de puncte într-un reper cartezian (intersecția a două drepte perpendiculare, notate Ox și Oy).

exemplu:

$$f \rightarrow \{-1,0,2,4\} : \{-1,2,3,5\}; f(-1) = 2; f(0) = 5; f(2) = -1; f(4) = 3$$

În acest grafic, punctele roşii reprezintă perechile (x, f(x)) ale funcției, adică (-1, 2), (0, 5), (2, -1) şi (4, 3).

Modalități de a defini o funcție

Funcțiile pot fi definite sintetic sau analitic.

- 1. Funcțiile definite sintetic sunt acele funcții pentru care se indică fiecărui element x din A o valoare unică y = f(x) din B.
 - a) diagramă carteziană
 (exemplul reprezentării grafice de mai sus)
 - b) diagramă cu săgeți

Fiecărui element din A îi corespunde o valoare din B

c) tabel de valori

X	-1	0	0,5	2	3
f(x)	-8	-5	-3,5	1	4

Pentru fiecare valoare x este asociată o valoare f(x)

Doar funcțiile care au un număr finit de elemente (și preferabil restrâns) în domeniul de definiție pot fi definite sintetic.

- 2. Funcțiile definite analitic sunt acele funcții care se definesc cu ajutorul unor formule sau proprietăți și, în general, au un număr infinit de valori în domeniul de definiție.
 - a) regulă de calcul

exemplu:

 $f:\mathbb{N}\to\mathbb{R},\, f(n)=rac{n}{n+2}$, atunci se poate calcula valoarea lui f(n) pentru orice n din mulţimea numerelor naturale, de exemplu:

$$f(3) = \frac{3}{3+2} = \frac{3}{5} \operatorname{sau} f(7) = \frac{7}{7+2} = \frac{7}{9}$$

b) mai multe reguli de calcul

exemplu:

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = \begin{cases} x+2, & x \le 2 \\ x, & x \in (2; 6) \\ x-2, & x \ge 6 \end{cases}$$

În acest caz, se calculează valoarea lui f(x) având în vedere restricțiile aplicate lui x. Pentru x = 0, se va calcula f(x) = x + 2 = 0 + 2 = 2, dar pentru x = 6 se va calcula f(x) = x - 2 = 6 - 2 = 4.

Mărginirea unei funcții

(Această proprietate a funcțiilor a fost studiată în clasa a IX-a.)

O funcție $f:A\to B$ este mărginită dacă există două numere reale a și b astfel încât $a\le f(x)\le b$.

De exemplu, funcția $f: \mathbb{N} \to \mathbb{R}$, $f(n) = \frac{n}{n+1}$ este mărginită deoarece $0 \le f(n) \le 1$. În acest caz, a şi b sunt 0 şi 1.

Intersecția graficului cu axele de coordonate

(Această proprietate a funcțiilor a fost studiată în clasa a IX-a.)

Pentru a afla intersecția funcției f cu axa Oy, se calculează f(0), iar punctul de intersecție este de forma A(0, f(0))

Pentru a afla intersecția (sau intersecțiile) funcției f cu axa Ox, se rezolvă ecuația f(x) = 0, din care reies punctele de intersecție de forma $P(x_0, 0)$

Continuitatea unei funcții

(Această proprietate se studiază în clasa a XI-a, la analiză matematică.)

În limbajul comun, se spune că graficul unei funcții este continuu pe un interval dacă nu conține ruperi sau fragmentări, adică dacă poate fi trasat fără a ridica creionul de pe foaia de hârtie.

Funcțiile de gradul întâi, de gradul doi, funcția constantă sunt continue. De asemenea funcțiile polinomiale sunt continue.

Simetria graficului

a) În raport cu o dreaptă

Dreapta x = a este axă de simetrie pentru graficul unei funcții f dacă $f(a - \varepsilon) = f(a + \varepsilon)$ oricare ar fi ε .

b) În raport cu un punct

Punctul S(a,b) este centru de simetrie pentru graficul unei funcții f dacă $\frac{f(a+\varepsilon)+f(a-\varepsilon)}{2}=b$, oricare ar fi ε

Exemplu:

Arătați că $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + 2$ are drept centru de simetrie punctul S(0, 2)

Se calculează $\frac{f(\varepsilon)+f(-\varepsilon)}{2}=\frac{\varepsilon^3-\varepsilon^3+4}{2}=\frac{4}{2}=2$ deci S(0, 2) este centru de simetrie pentru graficul funcției f.

Funcții pare. Funcții impare.

(Această proprietate a funcțiilor a fost studiată în clasa a IX-a.)

O funcție $f: \mathbb{R} \to \mathbb{R}$ se numește **pară** dacă f(-x) = f(x). Se observă că această egalitate este echivalentă cu f(0-x) = f(0+x), ceea ce arată că axa Oy (d: x = 0) este axă de simetrie pentru graficul funcției pare.

O funcție $f: \mathbb{R} \to \mathbb{R}$ se numește **impară** dacă f(-x) = -f(x). De asemenea, se observă că această egalitate este echivalentă cu $\frac{f(x)+f(-x)}{2}=0$, ceea ce înseamnă că punctul O(0, 0) este punct de simetrie pentru graficul funcției f.

Periodicitatea unei funcții

(Această proprietate a funcțiilor a fost studiată în clasa a IX-a.)

O funcție $f: \mathbb{R} \to \mathbb{R}$ se nume;te **periodică** dacă există T > 0 astfel încât f(x+T) = f(x). Cel mai mic T pozitiv cu această proprietate se notează T_0 și se numește **perioadă principală a funcției f**.

Monotonia unei funcții

(Această proprietate a funcțiilor a fost studiată în clasa a IX-a.)

Fie o funcție $f: A \to B$ și un interval $I \subseteq A$.

Funcția f este strict crescătoare pe I $\Leftrightarrow \forall x_1 < x_2, x_1, x_2 \in I, f(x_1) < f(x_2)$

Funcția f este strict descrescătoare pe I $\Leftrightarrow \forall x_1 < x_2, x_1, x_2 \in I, f(x_1) > f(x_2)$

Pentru a se studia monotonia unei funcții se consideră $x_1 < x_2$ și se calculează diferența $f(x_1) - f(x_2)$. Dacă această diferență este pozitivă, funcția este descrescătoare, altfel este crescătoare.

De asemenea, pentru studiul monotoniei se poate calcula semnul raportului $R(x, y) = \frac{f(x) - f(y)}{x - y}$. Dacă raportul este pozitiv, funcția este crescătoare, altfel este descrescătoare.

Asimptotele unei funcții

(Această proprietate se studiază în clasa a XI-a, la analiză matematică.))

Se numește asimptotă (orizontală, verticală sau oblică) o dreaptă la care se apropie infinit de mult graficul unei funcții, dar la care nu ajunge niciodată.

Convexitatea și concavitatea unei funcții

În limbaj comun, graficul unei funcții este **convex** dacă pare că ar reține apă și este **concav** dacă pare că apa ar aluneca de pe acesta.

Pentru a verifica dacă o funcție este convexă pe un interval I, se compară $f(q_1x_1+q_2x_2)$ cu $q_1f(x_1)+q_2f(x_2)$, $\forall x_1,x_2 \in I$, $\forall q_1,q_2 \geq 0$ $a.\hat{\textbf{1}}.$ $q_1+q_2=1$

Dacă primul termen este mai mic decât al doilea, f este convexă, altfel este concavă.

Injectivitatea unei funcții

O funcție este injectivă dacă oricărui element din codomeniu îi corespunde cel mult unui element din domeniul de definiție (deci la 0 sau 1 elemente).

Altfel spus, $f:A\to B$ este injectivă dacă pentru orice $y\in B$, ecuația $\mathbf{f}(\mathbf{x})=\mathbf{y}$ are **cel mult** o soluție.

Această definiție poate fi rescrisă sub forma

f este injectivă
$$\Leftrightarrow$$
 $\forall x_1, x_2 \in A, x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$

O definiție care poate fi verificată matematic este:

f injectivă
$$\Leftrightarrow \forall x_1, x_2 \in A, f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

Exemplu:

Funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 5x + 7 injectivă

- dacă $f(x_1) = f(x_2) \Rightarrow 5x_1 + 7 = 5x_2 + 7 \Rightarrow 5x_1 = 5x_2 \Rightarrow x_1 = x_2 \Rightarrow f$ injectivă SAU
- f(x) = y are cel mult o soluție $5x + 7 = y \Rightarrow x = \frac{y-7}{5}$ soluție unică pentru $x \Rightarrow$ f injectivă SAU
- f funcție de gradul întâi deci f strict monotonă deci f injectivă

Surjectivitatea unei funcții

O funcție este surjectivă dacă oricărui element din codomeniu îi corespunde cel puțin unui element din domeniul de definiție (deci la 1 sau mai multe elemente)

Altfel spus, $f:A\to B$ este surjectivă dacă pentru orice $y\in B$, ecuația $\mathbf{f}(\mathbf{x})=\mathbf{y}$ are cel puțin o soluție.

$$f:A \to B$$
 este **surjectivă** $\Leftrightarrow \forall y \in B \exists x \in A$ astfel încât $f(x) = y$ Din această echivalență reiese că $f:A \to B$ este **surjectivă** $\Leftrightarrow Im f = B$

Exemplu:

Funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 5x + 7 surjectivă

- f(x) = y are cel puţin o soluţie $5x + 7 = y \Rightarrow x = \frac{y-7}{5}$ soluţie pentru x. $x \in \mathbb{R}$ deci şi $\frac{y-7}{5} \in \mathbb{R}$. Asta înseamnă că $y \in \mathbb{R}$, deci f surjectivă.

Bijectivitatea unei funcții

Dacă o funcție este și injectivă, și surjectivă, atunci funcția este **bijectivă**. O funcție este bijectivă dacă și numai dacă oricărui element din codomeniu îi corespunde un singur element din domeniul de definiție.

Pentru a se demonstra că o funcție f este bijectivă se poate demonstra că funcția este injectivă iar apoi că este surjectivă, sau se poate demonstra că ecuația f(x) = y are soluție unică pe domeniul de definiție al funcției.

Matematic, $\forall y \in B$, $\exists ! x \in A$ astfel încât f(x) = y

Observație

Compunerea a două funcții bijective este tot o funcție bijectivă!

Exemplu:

Funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 3 bijectivă

Este suficient să arătăm că pentru orice y din codomeniu, ecuația f(x) = y are exact o soluție reală. Echivalent, $2x + 3 = y \Leftrightarrow 2x = y + 3 \Leftrightarrow x = \frac{y+3}{2} \in \mathbb{R}$, deci f bijectivă.