PECEPTRON SIMPLES

Prof. Dr. Ajalmar Rocha

Disciplina: Inteligência Computacional Aplicada (ICA)

Programa de Pós-Graduação em Eng. de Telecomunicações (PPGET) Instituto Federal do Ceará (IFCE)

Agosto/2014

Resumo

- Introdução
- Neurônio de MucCulloch and Pitts
- Neurônio Biológico
- Perceptron Simples;

Introdução

 Tudo começou em 1943 quando foi proposto o modelo matemático para um neurônio biológico no trabalho de

McCulloch and Pitts (1943)

McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 7:115 - 133.

 O neurônio de McCulloch and Pitts (M-P) é uma aproximação util do neurônio biológico e serve como bloco construtivo das redes neurais artificiais.

Peceptron Simples

Neurônio Biológico

- Grosso modo, um neurônio biológico é composto de:
 - Dendritos;
 - Corpo Celular; e
 - Axônio.
- Não menos importante são as conexões sinápticas. As sinapses ocorrem no contato das terminações nervosas entre neurônios.
- O neurônio de M-P objetiva descrever os aspectos relacionados ao pontecial de ação que trafega:
 - de receptores (sensoriais) para um neurônio;
 - entre neurônios; e
 - de um neurônio para a um atuador (i.e., músculo).

PS

Neurônio Biológico

Interação entre Neurônios Biológicos

Interação entre Neurônios Biológicos

Neurônio de M-P

- Os ramos da árvore dentrítica são modelados por canais de transmissão, através dos quais flui a informação de entrada. Cada componente da informação de entrada é um escalar x_i , tal que $j=1,\ldots,p$.
- As conexões sinápticas são excitatórias ou inibitórias. A contribuição de todos os neurônios pré-sinápticos determina se o neurônios que recebe os sinais gera ou não um impulso nervoso para o próximo neurônio.
- O acumulo energético realizado pelo corpo celular é modelado por uma operação de somatório sobre as entradas ponderadas pelos pesos sinápticos.
- Em resumo, um neurônio é modelado da seguinte forma: as suas múltiplas entradas recebem ativações excitatórias ou inibitórias dos neurônios anteriores, e caso a soma de excitações e inibições ultrapasse um determinado limite (limiar de ativação), o neurônio emite um impulso nervoso. Nesse contexto, o mesmo é modelado como uma chave On/Off.

Peceptron Simples

Neurônio Biológico e Artificial (M-P)

Variável de Ativação do Neurônio de M-P

$$u = w_1 x_1 + w_2 x_2 + \dots + w_p x_p - \theta$$

 x_1, x_2 : entradas

 w_1, w_2 : pesos sinápticos

 θ : limiar (bias)

u: ativação

Variável de Saída do Neurônio de M-P

Pesos do Neurônio de M-P para porta AND

$$w_1 = w_2 = 1$$
 e $\theta = 1,5$

$$y = 1$$
, se $u \ge 0$.

$$y = 0$$
, se $u < 0$.

Pesos do Neurônio de M-P para porta OR

$$w_1 = w_2 = 1$$
 e $\theta = 0.5$

$$y = 1$$
, se $u \ge 0$.

$$y = 0$$
, se $u < 0$.

Pesos do Neurônio de M-P para porta NOT

$$w_1 = -1 \ e \ \theta = -0.5$$

$$y = 1$$
, se $u \ge 0$.

$$y = 0$$
, se $u < 0$.

Perguntas

Pergunta 1

Como poderia se determinar cada um dos valores para os pesos sinápticos?

Resposta: na tentativa e erro, porém não seria eficiente pois o espaço de busca pode ser muito grande.

Pergunta 2

Como determinar os valores para os pesos sinápticos de forma automática?

Resposta: através de um mecanismo ou regra de aprendizagem. Esse mecanismo pode ser alcançado pela minimização de uma função custo ou por uma solução analítica em termos geométricos.

Peceptron Simples

Não esqueça!

- O neurônio artificial possui p entradas $\{x_i\}_{i=1}^p$ e possui p pesos sinápticos $\{w_i\}_{i=1}^p$.
- ullet O neurônio artificial possui ainda um limiar (thresold) de ativação heta.
- O neurônio possui uma variável de ativação u, tal que

$$u = x_1 w_1 + x_2 w_2 + \dots - \theta = \sum_{i=1}^{p} x_i w_i - \theta.$$
 (1)

Não esqueça!

• O neurônio possui também uma variável de saída y, tal que

$$y = sinal(u) = \begin{cases} 0, & \text{se } u \le 0, \\ +1, & \text{se } u > 0. \end{cases}$$
 (2)

- Pode-se também modelar y com os valores +1 ou -1.
- Dado suas características, pode-se aplicar o neurônio de M-P para categorizar problemas com duas classes.

Peceptron Simples

 Em 1958, surgiu o primeiro algoritmo de RNAs proposto por Frank Rosenblatt, chamado Perceptron Simples (PS).

McCulloch and Pitts (1943)

Rosenblatt, Frank (1958), The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain, Cornell Aeronautical Laboratory, Psychological Review, v65, No. 6, pp. 386-408.

- De uma forma geral, consiste do neurônio de M-P combinado com uma regra de aprendizagem.
- A inteligência surge justamente da capacidade de aprender adicionada em virtude desta regra.

 A ativação do Perceptron Simples é calculada similarmente à do neurônio de M-P, ou seja:

$$u = x_1 w_1 + x_2 w_2 + \dots + x_p w_p - \theta$$

$$u = (-1)\theta + x_1 w_1 + x_2 w_2 + \dots + x_p w_p$$

$$u = x_0 w_0 + x_1 w_1 + x_2 w_2 + \dots + x_p w_p$$
(3)

e pode ser apresentada na notação matricial, como:

$$u = \mathbf{w}^{\mathsf{T}} \mathbf{x},\tag{4}$$

• Na equação para o cálculo da variável de ativação

$$u = \mathbf{w}^T \mathbf{x} = \sum_{i=0}^p w_i x_i, \tag{5}$$

o vetor de pesos transposto \boldsymbol{w}^{T} e de entrada \boldsymbol{x} pode ser representado por

$$\mathbf{w}^{\mathsf{T}} = \left[\begin{array}{cccc} \theta & w_1 & w_2 & \dots & w_p \end{array} \right] \qquad \mathbf{x} = \left[\begin{array}{c} x_0 \\ x_1 \\ x_2 \\ \dots \\ x_p \end{array} \right]$$

Perceptron Simples

Um pouco sobre vetores

ullet Um vetor é uma coordenada (ponto) em um espaço de dimensão p.

Comprimento de um vetor no \mathbb{R}^2 é apresentado abaixo.

$$\|\mathbf{v}\| = \sqrt{x^2 + y^2}$$

$$x = ||\mathbf{v}|| \cdot \cos(\alpha)$$

$$y = ||\mathbf{v}|| \cdot \sin(\alpha)$$

Perceptron Simples

Produto interno

Definição 1:

$$u = \mathbf{w}^T \mathbf{x} = \mathbf{x}^T \mathbf{w} \tag{6}$$

O produto escalar é definido como o produto de um vetor linha por um vetor coluna, o que equivale a multiplicar cada componente de um vetor pelo seu correspondente no outro vetor e depois somar cada produto.

Perceptron Simples

Produto interno

Definição 2:

$$u = \|\mathbf{x}\| \|\mathbf{y}\| \cos(\alpha) \tag{7}$$

Alternativamente, o produto escalar pode ser definido como o produto dos comprimentos dos vetores com o cosseno do menor ângulo entre eles.

Perceptron Simples

Produto interno (Definição 2)

Lei dos Cossenos:

$$\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{u}\|^2 - 2\underbrace{\|\mathbf{u}\|\|\mathbf{v}\|\cos\theta}_{(I)} + \|\mathbf{v}\|^2$$
 (8)

Além disto, podemos desenvolver a expressão como a seguir.

$$\|\mathbf{u} - \mathbf{v}\|^2 = \sum_{i=1}^{p} (u_i - v_i)^2$$
 (9)

$$\|\mathbf{u} - \mathbf{v}\|^2 = \sum_{i=1}^p u_i^2 - 2\sum_{i=1}^p u_i v_i + \sum_{i=1}^p v_i^2$$
 (10)

$$\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{u}\|^2 - 2\sum_{i=1}^p u_i v_i + \|\mathbf{v}\|^2$$
 (11)

Perceptron Simples

Produto interno (Definição 2)

Uma vez que as expressões

$$\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{u}\|^2 - 2 \underbrace{\|\mathbf{u}\| \|\mathbf{v}\| \cos \theta}_{(I)} + \|\mathbf{v}\|^2$$
 (12)

e

$$\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{u}\|^2 - 2\sum_{i=1}^p u_i v_i + \|\mathbf{v}\|^2$$
 (13)

são similares, temos que:

$$\cos \theta = \frac{\sum_{i=1}^{p} u_i v_i}{\|\mathbf{u}\| \|\mathbf{v}\|} \tag{14}$$

Perceptron Simples

Produto interno

• O produto escalar é uma medida de similaridade entre vetores.

Para vetores de comprimento fixo, quanto menor o ângulo entre eles, maior é o valor resultante do produto escalar.

- O sinal do produto escalar também é um item importante na análise da orinetação entre os dois vetores.
- O sinal depende basicamente do ângulo entre os vetores.

Perceptron Simples

Produto interno

Caso 1: $0 \le \alpha < 90^{\circ}$ e considerando que $u = \|\mathbf{x}\| \|\mathbf{y}\| \cos(\alpha)$

$$cos(\alpha) > 0 \implies u > 0$$
 (positivo)

Perceptron Simples

Produto interno

Caso 1: 90 $< \alpha \le 180^{\circ}$ e considerando que $u = \|\mathbf{x}\| \|\mathbf{y}\| \cos(\alpha)$

Perceptron Simples

Variável de Saída do PS

 O cálculo para a variável de saída do Perceptron Simples é realizado da mesma maneira que o cálculo para o neurônio de M-P.

$$y = sinal(u) = \begin{cases} 0, & \text{se } u \le 0, \\ +1, & \text{se } u > 0. \end{cases}$$
 (15)

Perceptron Simples

Regra de Aprendizagem

- O processo de aprendizagem consiste basicamente na modificação dos pesos e do limiar do neurônio de M-P até que ele resolva o problema de interesse ou que o período de aprendizagem tenha finalizado.
- O mecanismo ou regra de aprendizagem depende:
 - do erro entre a saída desejada (d) e a saída da rede (y); e
 - da entrada (\mathbf{x}) apresentada ao Perceptron Simples. Isto ocorre porque u depende de \mathbf{x} e y depende de u.

Perceptron Simples

Regra de Aprendizagem

 A idéia é pensar que deve haver uma variação dos valores contidos nos pesos durante o aprendizado, ou seja

$$\Delta \mathbf{w} = \mathbf{w}(t+1) - \mathbf{w}(t)$$

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \Delta \mathbf{w}$$
(16)

em que

- Δw é o incremento memória necessário para o ajuste em relação a um vetor de entrada x;
- w(t) representa o conhecimento no tempo t salvo na memória;
 e
- $\mathbf{w}(t+1)$ representa o conhecimento no tempo t+1 salvo na memória.

Peceptron Simples

Perceptron Simples

Regra de Aprendizagem

- Como definir Δw?
- Vamos considerar argumentos geométricos para esta definição.
- Nesse contexto, temos 3 casos para a variável erro
- Caso 1: e(t) = d(t) y(t) = +1, para d = +1 e y = 0;
- Caso 2: e(t) = d(t) y(t) = -1, para d = 0 e y = +1
- Caso 3: e(t) = d(t) y(t) = 0, para (d = 0 e y = 0) ou (d = +1 e y = +1).
- Obs: nos casos 1 e 2 houve **ERRO**, no caso 3 houve **ACERTO**.

Caso 1:
$$e = d - y = +1 (d=+1 \text{ e } y=0)$$

Situação ocorrida (u<0, y=0):

Situação desejada (*u*>0, *y*=1):

Caso 1 [e(t) = +1]: O vetor **w** deve ser modificado para se aproximar de **x**.

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \mathbf{x}(t)$$

Caso 2:
$$e = d - y = -1$$
 ($d=0$ e $y=+1$)

Situação ocorrida (u>0, y=+1):

u > 0X u < 0

Situação desejada (*u*<0, *y*=0):

Caso 2 [e(t) = -1]: O vetor w deve ser modificado para se afastar de x.

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \mathbf{x}(t)$$

Caso 3a:
$$e = d - y = 0$$
 $(d=+1 \text{ e } y=+1)$

Situação ocorrida = Situação desejada (*u*>0, *y*=+1)

Como houve um acerto, não é preciso modificar o vetorw.

Caso 3b:
$$e = d - y = 0$$
 ($d=0$ e $y=0$)

Situação ocorrida = Situação desejada (*u*<0, *y*=0)

Caso 3 [e(t) = 0]: O vetor **w** não deve ser modificado.

$$\mathbf{w}(t+1) = \mathbf{w}(t)$$

Perceptron Simples

Perceptron Simples

Regra de Aprendizagem

• Do exposto anteriomtente, pode-se inferir que:

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \Delta \mathbf{w}(t)$$

$$\mathbf{w}(t+1) = \mathbf{w}(t) + (\eta \mathbf{x}(t))e(t)$$

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \eta e(t)\mathbf{x}(t)$$

$$(17)$$

em que $\eta \mathbf{x}(t)$ representa o vetor a ser somado para aproximação ou afastamento de \mathbf{w} em relação a \mathbf{x} .

• Em geral utiliza-se um valor para η , denominado fator ou taxa de aprendizagem, pequeno $(0<\eta<<1)$.

Perceptron Simples

Perceptron Simples

Resumo do Algoritmo do Percepron Simples

Perceptron Simples = Neurônio de M-P + Regra de Aprendizagem

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \eta e(t)\mathbf{x}(t)$$

Perceptron Simples

Resumo do Algoritmo do Percepron Simples

- 1. <u>Início</u> (*t*=0)
- 1.1 Definir valor de η entre 0 e 1.
- 1.2 Iniciar $\mathbf{w}(0)$ com valores nulos ou aleatórios.
- 2. <u>Funcionamento</u>
 - 2.1 Selecionar vetor de entrada $\mathbf{x}(t)$.
 - 2.2 Calcular ativação u(t).
 - 2.3 Calcular saída y(t).
- 3. <u>Treinamento</u>
- 3.1 Calcular erro: e(t) = d(t) y(t)
- 3.2 Ajustar pesos via regra de aprendizagem.
- 3.3 Verificar critério de parada.
 - 3.3.1 Se atendido, finalizar treinamento.
 - 3.3.2 Caso contrário, fazer t=t+1 e ir para Passo 2.

OBRIGADO