Foundations of Computing Lecture 16

Arkady Yerukhimovich

March 18, 2025

Outline

Lecture 15 Review

2 Proofs by Reduction

3 Example Proofs by Reduction

Lecture 15 Review

- Countable and Uncountable Sets
 - Diagonalization
- Proving A_{TM} is Undecidable

Announcements

Homework 6 is out

- Due at 5PM on Monday, March 24
- Early deadline by midnight on Friday, March 21.

Announcements

Homework 6 is out

- Due at 5PM on Monday, March 24
- Early deadline by midnight on Friday, March 21.

Exam 2

- Exam 2 will be in class next Thursday, March 27
- Next Tuesday lecture and Wednesday lab will be for review
- You will again be allowed 2 pieces of paper with notes

Announcements

Homework 6 is out

- Due at 5PM on Monday, March 24
- Early deadline by midnight on Friday, March 21.

Exam 2

- Exam 2 will be in class next Thursday, March 27
- Next Tuesday lecture and Wednesday lab will be for review
- You will again be allowed 2 pieces of paper with notes
- Exam will cover the following topics:
 - Turing Machines
 - Countable and uncountable sets
 - Decidable, Turing-recognizable Languages
 - Proofs by reduction
 - Everything we cover this week
- CFL Pumping Lemma will not be on the exam

Outline

Lecture 15 Review

Proofs by Reduction

3 Example Proofs by Reduction

Another Way to Prove Undecidability

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Another Way to Prove Undecidability

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Intuition

 $A \leq B$ means that:

• problem A is no harder than problem B.

Another Way to Prove Undecidability

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Intuition

 $A \leq B$ means that:

- problem A is no harder than problem B.
- Equivalently, problem B is no easier than problem A

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

• Suppose that *B* is decidable

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

- Suppose that B is decidable
- Since $A \leq B$, there exists an algorithm (i.e., a reduction) that uses a solution to B to solve A

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

- Suppose that B is decidable
- Since $A \leq B$, there exists an algorithm (i.e., a reduction) that uses a solution to B to solve A
- But, this means that A is decidable by running the reduction using the decider machine for B.
 TMB
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R</l

Outline

Lecture 15 Review

2 Proofs by Reduction

3 Example Proofs by Reduction

Undecidability of *HALT*_{TM}

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Undecidability of HALT_{TM}

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Undecidability of $HALT_{TM}$

 $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w\}$

Theorem: HALT is undecidable

Proof Sketch:

• Recall that $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$ is undecidable.

Undecidability of HALT_{TM}

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

- Recall that $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$ is undecidable.
- We show that $A_{TM} \leq HALT_{TM}$

Undecidability of $HALT_{TM}$

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

- Recall that $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$ is undecidable.
- We show that $A_{TM} \leq HALT_{TM}$
- This shows that HALT_{TM} is also undecidable

Undecidability of *HALT*_{TM}

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

- Recall that $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$ is undecidable.
- We show that $A_{TM} \leq HALT_{TM}$
- This shows that HALT_{TM} is also undecidable

Proof:

Construct reduction R that decides A_{TM} given a TM D that decides HALT

Undecidability of $HALT_{TM}$

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

- Recall that $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$ is undecidable.
- We show that $A_{TM} \leq HALT_{TM}$
- This shows that HALT_{TM} is also undecidable

Proof:

Construct reduction R that decides A_{TM} given a TM D that decides HALT On input $\langle M, w \rangle$, R does the following:

Undecidability of HALT_{TM}

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

- Recall that $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$ is undecidable.
- We show that $A_{TM} \leq HALT_{TM}$
- This shows that $HALT_{TM}$ is also undecidable

Proof:

Construct reduction R that decides A_{TM} given a TM D that decides HALT On input $\langle M, w \rangle$, R does the following:

• Run $D(\langle M, w \rangle)$

Undecidability of *HALT*_{TM}

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

- Recall that $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$ is undecidable.
- We show that $A_{TM} \leq HALT_{TM}$
- This shows that HALT_{TM} is also undecidable

Proof:

Construct reduction R that decides A_{TM} given a TM D that decides HALT On input $\langle M, w \rangle$, R does the following:

- Run $D(\langle M, w \rangle)$
- If D rejects M(w) doesn't halt halt and reject

Undecidability of $HALT_{TM}$

$$HALT_{TM} \subseteq A_{TM}$$

$$HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$$

Theorem: *HALT* is undecidable Proof Sketch:

- Recall that $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$ is undecidable.
- We show that $A_{TM} \leq HALT_{TM}$
- This shows that HALT_{TM} is also undecidable

Proof:

Construct reduction R that decides A_{TM} given a TM D that decides HALT On input $\langle M, w \rangle$, R does the following:

- Run $D(\langle M, w \rangle)$
- If D rejects M(w) doesn't halt halt and reject
- if D accepts M(w) halts Simulate M(w) until it halts, and output whatever M outputs

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable

Proof Sketch:

• We show that $A_{TM} \leq REGULAR_{TM}$

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

(M,w)

- We show that $A_{TM} \leq REGULAR_{TM}$
- Specifically, reduction builds another TM M' s.t.

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

- We show that $A_{TM} \leq REGULAR_{TM}$
- Specifically, reduction builds another TM M' s.t.
 - If M accepts w, M' recognizes Σ^* regular language

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

- We show that $A_{TM} \leq REGULAR_{TM}$
- Specifically, reduction builds another TM M' s.t.
 - If M accepts w, M' recognizes Σ^* regular language
 - If M does not accept w, M' recognizes $\{0^n1^n\}$ not regular

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

- We show that $A_{TM} \leq REGULAR_{TM}$
- Specifically, reduction builds another TM M' s.t.
 - If M accepts w, M' recognizes Σ^* regular language
 - If M does not accept w, M' recognizes $\{0^n1^n\}$ not regular
- If we can decide whether M' recognizes a regular language or not, can use that to decide whether M accepts w or not

$$REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

$$REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

Reduction R that decides A_{TM} given a TM D that decides $REGULAR_{TM}$

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

Reduction R that decides A_{TM} given a TM D that decides $REGULAR_{TM}$ On input $\langle M, w \rangle$:

 $\bullet \ \, \text{Construct TM} \,\, M'_{\langle M,w\rangle} \,\, \text{s.t.} \,\, M'_{\langle M,w\rangle}(x) \,\, \text{is as follows:} \\$

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

- Construct TM $M'_{\langle M,w\rangle}$ s.t. $M'_{\langle M,w\rangle}(x)$ is as follows:
 - If $x = 0^n 1^n$, accept

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

- **①** Construct TM $M'_{\langle M,w\rangle}$ s.t. $M'_{\langle M,w\rangle}(x)$ is as follows:
 - If $x = 0^n 1^n$, accept
 - If x does not have this form, run M(w) and accept if it accepts

$$REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

- Construct TM $M'_{(M,w)}$ s.t. $M'_{(M,w)}(x)$ is as follows:
 - If $x = 0^n 1^n$, accept
 - If x does not have this form, run M(w) and accept if it accepts
- ② Run D on input $\langle M' \rangle$

$$M(v)=1$$
 when x be M' accept? Z'

$$M(v) \neq 1$$
 0^{n} 1^{n}

$$REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

- **1** Construct TM $M'_{\langle M,w\rangle}$ s.t. $M'_{\langle M,w\rangle}(x)$ is as follows:
 - If $x = 0^n 1^n$, accept
 - If x does not have this form, run M(w) and accept if it accepts
- **2** Run *D* on input $\langle M' \rangle$
 - ullet If M(w)=1, then $M'_{\langle M,w
 angle}$ accepts all $x\in \Sigma^*$ regular
 - If $M(w) \neq 1$, $M'_{(M,w)}$ accepts the language $0^n 1^n$ not regular
- Output what D outputs

Other Undecidable Languages – Exercise

$$EMPTY - STRING_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } M(\epsilon) = 1 \}$$

Think about:

- What direction should the reduction go?
- What language should the reduction use?