

Plywood in Aeroplane Construction

The first point upon which stress is laid in this article, describing the many uses to which plywood may with advantage be put, is that the idea of a number of sheets and fragments of thin wood stuck together by an adhesive such as ordinary glue, more or less soluble in water, or swelling and loosening on exposure to atmospheric humidity, should be dismissed from the mind when the material "plywood" is under consideration.

True plywood is a product resulting from a scientific process involving a correct and methodical sequence of operations all depending on each other. The elements of the original structure of the wood; the relations of the particular cementing material employed to the wood and to the atmospheric conditions of the moment; the temperature required to produce the chemical reactions between the wood and the cementing material, and within the cementing material itself; and the magnitude and duration of the pressure applied per unit area; all these form such a number of variables that no routine standardisation is practicable, and only the exercise of individual skill obtained under long experience, can produce a determinate result.

Laminated plywood formed into shapes under heat and high pressure with cementing materials which become insoluble in the course of the process, has been used in Russia for many years, notably in the works of the Russian Baltic Wagon Co., Ltd., who made the plywood fuselage of the first Sikorsky aeroplane. From Russia the use of plywood extended to Germany in the products of the Deutsches Rohrplatten Gesellschaft; from which a knowledge of these special processes and equipment passed to the United States nearly twenty years ago. In Russia Capt. Kostovitch used plywood for dirigibles which in construction and design anticipated the most recent rigid plywood dirigibles built by the Schutte-Lanz Company in Germany. In Russia also the first complete plywood aeroplanes were made by Steglau in 1912, the use of plywood extending even to the wing covering.

In France, as early as 1909, sheet plywood was used by Levavasseur, and later, in 1912, Béchereau, of the Deperdussin Company, designed the fuselage now known as the "monocoque."

The Germans, who at first made fuselages of the

truss type, covered in with linen after the prevailing French style, commenced about 1912—probably following on a visit of one of their investigators to Russia—to use plywood in fuselage construction, following not the method of Béchereau but a more correct method employing longerons and bulkheads.

England and France continued to use the linen-covered truss construction, and the designers of the United States in most cases followed the precedents thus created with little or no regard to what had been developed in Russia and Germany.

It is pointed out what rough usage the fuselage of the Albatross aeroplanes are able to withstand, and that the use of plywood on British and French machines is even yet unlike that of the better-constructed German aeroplanes in that the plywood is generally nailed on as a mere covering, and not made an integral part of the structure.

Among the advantages of plywood as against the truss construction are the facts that no periodical truing up is required, and that the wood for plywood being so thin may be dried very quickly. The real problem in its successful use in aeroplane construction lies in the standardisation of parts for quantity production.—*H. H. Suplee, Aerial Age Weekly.*

Applications of Kirchoff's Law

THIS is a short article giving some practical applications of the laws of Kirchoff. It is a simple matter by Ohm's laws to find the current passing through a circuit supplied from two or more equal electromotive forces and equal internal resistances connected in parallel. If on the other hand the two or more electromotive forces are unlike with unequal internal resistances and connected in parallel, Kirchoff's laws must be resorted to.

By Kirchoff's first law the algebraic sum of the currents meeting at any point is zero, and by the second law the algebraic sum of the products of the current and resistance of each part of a series circuit equals the electromotive force of that circuit.

If a generator has an open circuit voltage of $E_1 = 120$ volts and an internal resistance of 0.2 ohms while a storage battery develops a voltage $E_2 = 110$ volts on open circuit and has an internal resistance of 0.3 ohms,

both generator and battery being connected in parallel to an external circuit r^2 of 2 ohms resistance, it is impossible to tell by inspection whether the generator will charge the battery or the battery discharge through the external circuit r^2 . This must be determined and also what the voltage across the circuit will be when the current is flowing.

If the battery is being charged the questionable current would have a negative value, indicating that the battery is aiding the generator by discharging through r^2 . From the figures and formulae given it is shown that this value is -1.898 amperes, and from this it may be calculated that the voltage $E = 100.436$ volts by three different methods which are given.

The same problem may be worked out by a different method, in which it is assumed that the generator current $= x$, and the battery current $= y$, then the current passing through the circuit $r^2 = x - y$. The working out of the problem by this second method is a check upon the first. The effect of armature reaction in reducing the generated voltage is not taken into account in the calculations given, but for an interpole machine the effect is negligible.—*Kubanyi, Power.*

Discharges of Atmospheric Electricity

THIS article deals with the records for Zurich and neighborhood of severe storms with thunder and lightning. The earliest observer was Wolfgang Haller, who kept records between 1550 and 1576; a later observer was Prof. Fries, whose records cover the period 1683 to 1718, and since 1821 official records have been kept, while since 1864 the meteorological office has published returns.

A table gives the results. The storms averaged 15.1 per annum for the period 1821-1840; 16.8 for 1841-1860; 16.4 for 1861-1880; 22.3 for 1881-1900 and 18.3 for 1901-1918. It had been suggested that the extended use of high tension conductors of electricity carried upon poles might have considerably modified the number of electric storms, but the author is satisfied that this theory is disproved by the official records. He considers that the seat of the atmospheric discharge is at far too great an elevation above the earth to be affected by electric conductors. He also points out that the percentage of deaths from lightning have remained practically constant.—*Schweizerische Bauzeitung.*

The Scientific American Supplement Index for Vol. 87

JANUARY-JUNE, 1919

THE * INDICATES THAT THE ARTICLE IS ILLUSTRATED

A

Abrasion-Meter	*372
Acetic Acid	279
Acetylene Mine Lamps	149
Acid-Resisting Iron	*340
Acoma Pueblo, N. Mex., Scene in	152
Actinium, The Parent of	139
Adhesiveness of Glue	117
Aerographic Records, Uniformity in	*15
Aeroplane. <i>See</i> Airplanes	
Age of the Earth, The	34
Air Compressor Explosions	10
Airplane Construction, Plywood in	415
Airplane Accidents	30
Airplane Design, Trend of	11
Airplanes, Experiments With Tandem	*204
Airplanes, Surveying and Mapping from	386
Airsheets, Different Types of	*405
Alcohol, Asphodel as a Source of	27
Alcohol from Algae	153
Alcohol from Wood Pulp Refuse	14
Alcohol, The Pharmacology of	22
Algae, Alcohol from	153
"All Wool and a Yard Wide"	262
Alpha Rays, Action of on Metals	94
Aluminum, Annealing	123
Aluminum Alloys, Some Zinc and	367
Aluminum Leaf, Use of in Waterproofing Wood	*292
American and German Science	302
American Food Resources	*136
American Inst. Elect. Eng. Rules Applied to Motors	398
American Merchant Marine, The New	I, 226, II, 227
Ammonia, Oxidation of	*367
Ammonia, Reduction of the Oxides of Nitrogen to	91
Anemometry, Hot-Wire	*106
Animals, Behavior of During Explosions	48
Animal Luminescence and Symbiotic Microbes	286
Ankylostome, Detection of	127
Anomalies in the Animal World	XV, *85
Anthracite and Bituminous Coal, Burning Fine	391
Anthrocyanin Pigments in Plants	2
Antiscorbutic Principles in Limes and Lemons	57

B

Apple Beverages, European	205
Arizona, Canyon de Chelly Ruins in	*100
Army, Water for an Army Ant	*228
Arsonic, Determination of in Dead Bodies	94
Art Museum as a Laboratory	117
Artificial Silk, Formation of Thread in the Spinning of	14
Asphodel as a Source of Alcohol	27
Astronomy, Influence of on Human Thought	342
Atlantic Flight	38, 413
Atomic Hypothesis, Bohr's	176
Atomic Structure, Spectrum Analysis and	382
Attraction, Rôle of Forces	30
Dominating	142
Australia, Grass Tree Resins of	137
Banana, Nutritive Value	139
Banana-Must, Alcoholic Fermentation of	233
Barberry, Eradicating the	11
Bassball, A Pitched Game	*12
Behavior of Animals During Explosions	22
Beverages, European Apple	205
Bituminous Coal, Burning Fine Anthracite and	148
Blue Coal	176
Bohr's Atomic Hypothesis	156
Bone Grafts	239
Books Uncut, Called "Back Numbers"	189
Botany, Economic and Chemical Industry	302
Brass, Cadmium in Brass, Corrosion of in Seawater (P. T. Bruhl)	211
Brass, Electric Melting of	311
Brass and Alloys, Rapid Estimation of Lead in	231
Brewing, Couch Grass as Malt-Adjunct in	87
Bromide Prints, After-Treatment of	153
Bulk of Commodities	227
Burns by Caustic Soda, Treatment of	64
Butterflies, Influence of Color on	201
By-Product Coking, Recent Developments in	171

C

C California, Ocean Temperatures and Seasonal Weather in Southern (McEwen)	224
California, Water Power in (Palmer)	*36
Camel, South American Relatives of	*120
Cameras, Special, for Aerial Photography	117
Cameroun, Some Native Industries of	*60
Canal in the Problem of Transportation	*344
Canary in the Problem of Transportation	*168
Canyon de Chelly, Ariz., Ruins in	413
Caribbeans, Formation and Stability of	*100
Cargo, Ship and in One	103
Catalyst, Rôle of	164
Cattle, Saving Our Cattle Tick, Fight Against	*266
Cedars of Lebanon (A. Henry)	295
Celebes Ore Deposits	373
Cells, Sizes of	341
Cellulose and Derivatives, Fluorescence	144
Century Plant in Mexico	233
Changes of Ocean Level (W. M. Davis)	294
Charcoal, Manufacture of From Waste	*124
Charcoal, Spontaneous Explosion of in Liquid-Oxygen Containers	52
Chemical Combination, Molecular Association and (F. Michaelis)	247
Chemical Reaction, Rôle of Ultra-Violet Light in	208
Chevrons, How They Are Made	*116
Coal, Nitrogen Content of Oxidized	32
Coal Gas for Motor Vehicles in England	106
Coatings, Metallic Production of	10
Coconut Palm (P. J. Wester)	112
Coin Problem, A Scientific (T. L. DeLand)	*276
Coke, Conditions for	101
Coking, Recent Developments in By-product, in England	171
Collecting, A Tip in Pond	71
Collision Predictor (Joly)	*334
Collodion State, Significance of	182
Collodial Fuels (Submar. Def Assoc.)	338
Collodial Membrane in Osmosis	199
Color, Function of in Organisms	102
Color, Influence of on Butterflies	201

Coloring Matter of the Glumes of Sweet Sorghum, Industrial Applications of	26
Comets, Origin of	*260
Combustion in Hay, Spontaneous	*120
Complexes, Inorganic (Mörel)	258
Compressibility of Solids at High Pressures, Determination of	*347
Concrete as a Chemical Engineering Material (M. Toch)	339
Concrete, Effect of Water on Strength of	*211
Concrete Articles, Making Hollow	103
Concrete Ships as Carriers	101
Contraband Trade Between Switzerland and Germany	*52
Cowboys, Portable Scoop	*264
Copper, Metallurgy of (T. H. Eastwick)	*332
Copper, Cold Work on	91
Copper, Process for Sulfate of	108
Copper Castings, Strontium in	173
Cutting, Photographic	128
Cotton, Testing of, by Steaming	224
Cotton and Jute, New Substitute for	96
Couch Grass as Malt-Adjunct in Brewing	87
Covering Power and Illuminating Power of Lenses: Tests and Performance (C. W. Piper)	247
Chevrons, How They Are Made	*116
Crane, Safety of the Alternating Current	62
Crystals, Apparatus for Growing Under Control (Hostetter)	106
Crystals, Behavior of in Liquid Air	*264
Crystals, Phototropy in	197
Crystallography, Molecular Orientations in Physics and	101
Cultures, Diffraction Phenomena of	116
Cumaran, Tonka Beans and	78
Currents, Undamped in "Super-Conductors"	71
Cutting Lubricants	350
Cyprinidae Gigas (Foucheier)	*360

Dew-Gauge, Ereldin's	*373
Diesel Engine, Marine	230
Diesel Engine on Locomotives	*36
Diffraction Phenomena of Bacterial Cultures	116
Diffusion, Principles of and Their Analogues	31
Diplopia, Prism Binoculars for Detecting	240
Direct Current vs Power Factor (F. E. Austin)	*316
Disinfection by Alcohol, Theory and Practice of	103
Disinfection by Heat	203
Dispersodiology	182
Dissociation, Spectroscopy and	48
Dock, Docking a	128
Duck Keel in Sea-Going Steamers, The	16
Dustfall of March, 1918 (Winchell and Miller)	*234
Dust in Mine Air, Estimation of by the Kotze Konimeter	6
Dyes, in Photography	6
Dye Industry, The German	27
Dye Process, A New Photographic Mordant	20

E

Earth, The Age of	34
Earth's Interior, Constitution of	73
Earthquakes, Estimating the Distance of	284
Earthquakes, Mechanics of	*402
Eggs, Photographic Method for the Examination of	64
Egypt, Manganese in	267
Electric Dog	*376
Electric Propulsion for the U.S. S. New Mexico	I, *356; II, *396; III, *408
Electrical Meter Testing in Germany	36
Electricity, Mechanics and	*252
Electricity, Atmospheric	415
Electricity and Matter	355
Elements, Hack's Classification of	*146
Elephant, Porto Rico Gum	201
Embroidery by Wholesale	*116
Emulsions, Making of Stable for Bacteria	75
Energy, Ultra-Violet (Lucky)	242
Engine, Marine, Internal-Combustion	*140
Enlarging, Position of the Illuminant in and Projection	351
Esperanto, History of	99
Evolution, Role of Selection in, I, 66; II, 90	90

D

Dangers of Explosion, The	7
Desert, Trees for	*188

- Explosions, Air Compressor...
Explosions, Behavior of Animals
During...
Explosion, The Dangers of...
Explosion, Spontaneous, of the
Charcoal in Liquid-Oxygen
Containers...
Explosives, Utilizing Surplus...
Exposure Meters...
Eyepieces, Telescopic...

F
Familiar Insects Through the
Camera...
Family, and Relations of Its
Members in India...
Fastness of Colors, to Light,
Standardizing...
Fat from Low Forms of Animal
Life...
Fatigue, Biological Character
of...
Faults, Locating Submarine...
Feed, Digestibility of Artificial
Dried...
Fertilizers, Agricultural...
Fertilizer, The Theory of...
Field, Influence of On Initial
Phase of Discharge...
Films, Lubricating and Other
Properties of Thin Oily...
Fishery Industries, See Lions
and (C. H. Townsend)...
Fishes Around New York...
Flavoring Matter, Chemistry
of...
Flowers, Whence Their Names...
Fluorescence and Molecular
Transformation...
Flying Sickness (Flack)...
Food Substitutes and the Zoo...
Forecasting, Ocean Temperatures
in Long Range...
Formalin, Effect of, on Germina-
tion...
Freudian Theory of Psycho-
Analysis Illustrated (E. Rig-
nano)...
Flowers and Tiny Animals in
Glass...
Fuel, Our Liquid...
Fuels, Colloidal (Submar. Def.
Ass.)...
Fun, Sea, Problems and Their
Solution, Two (G. A. Clark)...
Furnaces Without Crucibles,
Gas-fired Melting...
Future State, Burial Customs
and Belief in 84.

G
Gas for Motor Vehicles in Eng-
land, Coal...
Gas for Raising Steam...
Gas Offense Preparation in the
United States...
Gases in Alloy Steel...
German Commercial Trickery...
German Dye Industry, The...
German Merchant Fleet, Pres-
ent State of...
Germination, Effect of Formu-
lin on...
"Ghosts" in Prisms, Detection
of...
Giant Insect (Fouquier)...
Glass, Annealing of...
Glass, Flowers and Tiny Ani-
mals in...
Glass, How to Cut Properly...
Glass, Iron as a Source of Color
in Optical...
Glass Industry, Refractory Ma-
terials and...
Glass, Polishing...
Glassware, Scientific...
Glue, Adhesiveness of, Deter-
mined...
Gold, at High Temperatures and
Pressures...
Grass, The Story of a...
Graffel, Artificial...
Gravitation, Rôle of Forces
Dominating...
Gun Metal, Impurities in...

H
Hack's Classification of the
Chemical Elements...
Hadfield Prize, The...
Hawks of Canadian Prairie in
Relation to Agriculture (P.
A. Taverner)...
Hay, Spontaneous Combustion
in...
Health, The Relation of Light
to...
Heat, Disinfection by...
Heat Losses Through Insulation...
Heater, Electric, for Distilling
Gasoline...
Helium for Airships...
Holland, Oyster Cultivation in...
Homing Habits of the Pulmo-
nate Mollusk Oncidium...
Hook-Worm Disease, Detection
of...
Hops in California, Growing
(A. L. Dahl)...
Horses, Work Done by, During
the War in France...
Human Thought, Influence of
Astronomy on (H. MacPher-
son)...
Hurricanes, Effects of, on Upper-
Air Currents...
Hydraulic Systems, Shock in...

I
Ido, History of...
Ignition Temperature of Gaseous
Mixtures...
India, Beginnings of the Lan-
guage of Southern (J. Laz-
arus)...
India, Family Life in...
India Utilizing Native Timber...
Indies, Tin Mining in the Dutch...
India, To Make Liquid
Industrial Substitutes in Ger-
many...
Industry, Chemical and Eco-
nomic Botany...
Influence of Aviation Upon
Mathematical Physics...
Ink, Pigment for Printing...
Inorganic Complexes...
Insect Tyrants: The Army Ants...
Insects, Whence Their Names...

J
Japan, The Vegetable Oil Indus-
try of...

K
Kaolina, Sulphuric Acid in the
Sedimentation of...
Kirchoff's Law, Applications...
Kite-Flying, Meteorological...
Koniometer, Kozte Estimation
of Dust in Mine Air by the...

L
Lamps, Acetylene Mine...
Lantern Improved Street...
Latent Image, How Developed
on Photographic Plates...
Latent Images in Glass...
Latent Deviations of Project-
iles...
Laundering, Action of Agents
on Textiles...
Laundering, Chemistry of...
Lead Alloys...
Lead, Compounds of...
Lead, Rapid Estimation of in
Brass and Alloys...
Leather Preservation...
Lenses for a Studio...
Lenses, Covering Power and Il-
luminating Power of: Tests
and Performance (C. W.
Piper)...
"Life," Meaning of...
Life, Organic Matter and...
Life-Table, Biology of...
Light, Measuring the Intensity
of...
Light Scattering by Air Mo-
lecules...
Light, Scattering of by Dust-
Free Air...
Light to Health, The Relation
of...
Lime, Hydride, in Mortar...
Limes and Lemons, Antiseptic
butic Principle in...
Line Subjects, Exposing on...
Linon Plant Tags...
Locomotive, Thermo (Diesel)...
Locomotive Service, Improved...
Long Range Guns...
Lost City—New Mexico (C.
D'Emery)...
Louche, That Annoys Armies and
People...
Lubricants, Cutting...
Lumber, Seasoning of...
Luminescence, Animal — and
Symbiotic Microbes (U. Pier-
anton)...

M
Macaon Indians of Venezuela,
The...
Magnetic Field of the Sun...
Magnetism, New Theory of...
Man, Equality of...
Man, Pleistocene, of Vero, Fla.
Megascopina Allena in Open-
Heath Steel Practice (S. L.
Hoyt)...
Manganese in Egypt...
Maori Burial Chests...
Marbles of Italy, The...
Marine Diesel Oil Engine (J.
W. Anderson)...
Marine Lighting, Recent Devel-
opments in...
Mass, Standards of...
Matches, How Made...
Mathematical Physics, Influence
of Aviation Upon...
Matter, Electricity and...
Mechanics and Electricity...
Megass, Paper-Making from...
Meeting New Demands, Paint
and Varnish Makers...
Men, Conservation of, on Our
Railroads...
Mentality of the War Prisoner...
Menthyl-Yielding Plant...
Mesopotamia Minerals and Man-
ufactures...
Metal, Gun, Impurities in...
Metals, New Process of Spray-
ing...
Metals, Super-Conductivity of
at Low Temperatures...
Meter, April 23, 1918...
Meter, Double-Tariff Current...
Metropolitan Museum as a Lab-
oratory...
Mimicry, Protective...
Microscope, Anastigmatic Eye-
pieces for...
Microscope in Metal Study (H.
M. Sayers)...
Mine Lamps, Acetylene...
Mineral Elements in Animal
Nutrition (E. F. Forbes)...
Miniatrure from the Past...
Mint, Japanese Black...
Mirrors, Reflecting Prisms in
Place of...
Mississippi Valley, Economics
of Transportation in...
Mixtures, Gaseous, Ignition
Temperature of...
Molecular Association and
Chemical Combination (F.
Michaux)...
Molecular Orientations in Phys-
ics and Crystallography, I.
18; II. 46
Molecular Transformation, Flu-
orescence and...
Molecules, Life and Structure
of (Ama Pictet)...
Moon, Motion of...
Mortality, Due to Snakes and
Wild Animals in India...
Moon, New Elements in...
Mosquitoes, Flight of Through
Horizontal Pipes...
Moss, Sphagnum...
Protective Coatings...

N
Negatives, Stripping for Stor-
age...
New American Merchant Ma-
rine (E. N. Hurley)...
New Mexico, U.S.S. Electric
Propulsion for...
New York, Fishes Around...
New York Harbor, Salvage
Work in...
Newton and the Colors of the
Spectrum (R. A. Houston)...
Nickel, Electro-Chemical Be-
havior of...
Nitric Oxide, Stability of...
Nitrogen Fixation, Atmospheric,
in Japan...
Nitrogen Fixation, Present
Status of (A. H. White)...
Non-Inflammable Plastic Mate-
rial...
Nucleic Acid and Its Analytical
Examination (A. C. Chap-
man)...
Nutrition, Mineral Elements in
Animal...

O
Ocean Flying, What the
Weather Man Thinks of (W.
R. Gregg)...
Ocean Level, Changes of (W.
M. Davis)...
Ocean Temperature in Long-
Range Forecasting (Brooks)...
Oil, Determination of, in Seeds...
Oil, Lubricating, Substitutes
for...
Oil, Rubber Seed...
Oncidium, Homing Habits of the
Pulmonate Mollusk (L. B.
Arey and W. J. Crozier)...
Organic Matter and Life (J.
Negele)...
Osmosis, Function of the Col-
loid Membrane in...
Ostrowski's Method of Vul-
canization Without Sulphur...
Overseas Flight, Ready for...
Oysters Cultivation in Holland...
Oyster Feeds Both Men and
Plants, The...

P
Pacific, Islands of, Importance
of...
Packing for Export (H. R.
Moody)...
Packing Goods for Shipment...
Paint, Discoloration of White...
Paint for Ship, Four Tons of
Lead in...
Paints, Luminous: Radium vs.
Meso-Thorium in...
Paint and Varnish Makers
Meeting New Demands...
Palate of Civilized Man and
Its Influence on Agriculture...
Paper, Yellowing of (A. B.
Hitchins)...
Paper-Making from Megass...
Parabolic Mirrors, New Pro-
cess for Making...
Patent Rights, The Selling of
(F. W. Harris)...
Philosophy and Spiritualism...
Phosphorus, Effect of the Qual-
ities on Soft Steel...
Photo-Copying Process, Play-
ertype...
Photographers' Hints for from
Motion Pictures...
Photographic Mordant Dye Pro-
cess, A New...
Photographic Permanence...
Photographs, Coloring of, by
Wax Medium...
Photographs from Airplanes and
Balloons...
Photographs on "Salted Paper".
Photography, Dyes in...
Photography, Photo-Chemical
Reactions in...
Photometer, A New Stellar...
Phototropy, in Crystals...
Physical Relativity...
Physics, Fundamental Concepts
of...
Physics and Crystallography,
Molecular Orientations in...
Physics, Experiments With Tan-
gles...
Plants, The Anthracyanin Pig-
ments in...
Plant Growth and Reproduction...
Plant Tags, Linen...
Platinum, Ductility of...
Platinum, Replacement of, in
Electrolysis Apparatus...
Platinum Substitute, A...
Playertype Photo-Copying Pro-
cess...
Pleistocene Man of Vero, Fla.
Plumbago Crucibles, Using Up
Old...
Pile Driver, Novel...
Pillars, Prentice...
Pillories, See Stocks...
Pine-Tree Needles, Cotton Sub-
stitute from...
Planes, Experiments With Tan-
gles...
Skins, Liquid, Breaking of...
Skins, Artificial, Cross Sections
Silks, Formation of the Thread
in the Spinning of Artificial...
Silks, A Wonderful Exhibition
of Old French...
Skoda Works, Austrian Munition
Factory...
Slag, Widening Demand for
Blast-Furnace...
Soap, War Substitutes for, in
Germany...
Sils, A Dispersoidology and
Technique...
Silks, Formation of the Thread
in the Spinning of Artificial...
Silks, A Wonderful Exhibition
of Old French...
Skoda Works, Austrian Munition
Factory...
Slag, Widening Demand for
Blast-Furnace...
Solutions, How to Cork Up...
Some Native Industries of Ger-
many, Cameroon...
Some Peculiar Thermoelectric
Effects...
Sound, the Perception of...
South America, Camelidæ of...
Soy Bean Milk...
Spark Gaps...
Spark Coll., Improved...
Sparkling Plugs, Construction
and Use of...
Sparrowhawk Habits of the...
Spectroscopy and Dissociation
of Analogues...
Prisms, Reflecting in Place of
Mirrors...
Protective Coatings...

R
Prisoner, Mentality of the War...
Propeller, Keeping the Dry
(M. E. Dunlap)...
Prosthesis of the Lower Limb...
Motor Vehicles, Coal Gas for...
Myopia, Causes and Prevention
of...

S
Sprague Moss...
Spider's Web, Fishing With...
Spiritualism, Philosophy and...
Spitsbergen, Minerals of...
Spraying Metals, New Process
of...
Spruce, Sitka—Emergency Sa-
vaging...
Starch, Nature's Factories for
Sugar and...
Stars, Light-Giving Power of...
Steamers, The Dutch Keel in Sea-
Going...
Steel, for Reconstruction...
Steel, Manganese Alloys in
Open-Hearth Practice (S.
L. Hoyt)...
Steel, Soft, Effect of Phospho-
rus on the Qualities of...
Steel, Warping of, Through Re-
peated Quenching...
Stellar Evolution (W. D. Mac-
Millan)...
Starlight, A New...
Stocks and Pillories of Old
England...
Stone, Artificial, from Mica
Clay...
Stone Age Dwellers in Arizona
Today...
Strontium in Copper Castings...
Substitutes, Industrial, in Ger-
many...
Sugar from Several Points of
View...
Sugar and Starch, Nature's Fac-
tories for...
Sulphuric Acid, Manufacture of
by Chamber Process...
Sun, Angular Movements...
Sun, Magnetic Field of...
Superconductors, Undamped
Currents in...
Supernatural Square, The 34...
Surveying and Mapping from
Airplanes...

T
Tabanuco Gum or Elemt...
Tails, Linen Plant...
Tamil Speech, Antiquity of
(J. Lazarus)...
Telephony, See also Radio-Tele-
phony...
Temper, Removing from Hard-
ened Steel...
Temperature, High in Engineer-
ing...
Temperatures, Measuring Fluc-
tuating...
Term-Cotta, Pinholing and Peel-
ing on...
Tests for Trainmen in Germany...
Textiles, Action of Laundry...
Toxicons...
Textile Fibers in Germany...
Thermoelectric Effects, Some Pe-
culiar...
Thimbles, Scarcity of...
Things That Might Be Used
(J. Waddell)...
Tiles, Effect of Pressure Varia-
tion in Dust-Pressed...
Tim Mining in the Dutch Indies...
Tonka Bean, and Cumarin...
Transatlantic Flight, Winds
and...
Transportation, The Canal in
the Problem of...
Transportation in Miss. Valley
Economics of...
Transportation on the Magla-
lena River, Colombia...
Transvaal, Rock Paintings in...
Tree Surgery...
Trim of Ships...
Two-Cycle Paraffin Oil Engine...

U
Ultra-Violet Energy (Lucklesh)...
Ultra-Violet, Rôle of in Chem-
ical Reaction...
Ultra-Violet Rays, Action of, on
Sugar-Cane, Pineapple, and
Banana in Hawaii (T. Tsuji)...
Unifinity in Aerographic Rec-
ords...
Upper Air Currents, Effects of
Hurricanes on...
Uses, New, for Some Raw Prod-
ucts...

V
Vacua, High, and Their Meas-
urement...
Vegetable Oil Industry of Japan...
Venezuela, The Macos Indians
of...
Vermin, Appendix in the
Wombat...
Vibration, Mechania, Musical
and Electrical...
Vision, Threshold of...
Vitamines...
Volcanic Blasts, Dynamic Heat-
ing of Air as a Cause of Hot
(G. W. Cole)...
Vulcanization Without Sulphur
by Ostromyslenski's Method...

W
Wall-Paper, Manufacture of...
Walnut, the Time to Cut...
Wasps and Their Ways, Social...
Wasp, The Tree...
Waste Products, Methods of
Recalcination...
Water, Color of...
Water, Color of...
Water for an Army...
Water Power in California
(Palmer)...
Weights, Ancient Trade of the
East...
Weightless, Dispersioniology and
Technique...
Welding, Electric, Modern...
Welding, Electric, for Ship
building...
Wind Circulation of the Globe...
Winds and Atlantic Flight...
Wombat, Appendix in...
World Languages...
World, How Old Is (McNairn)...

Z
Zinc and Aluminum Alloys...
Zinc Pole, Sign of, in a Battery...
Zircon, New Uses for...

ith. *48
and. 345
126
process 29
Sea- *404
for 223
of. 395
Sea- 16
*20
in 282; 302
spho- 54
Re- 71
Mac- 322
... 23
Old 132
and 193
izona 324
ings. 173
Get- 336
ts of 154
Pac- 223
re of 370
... 413
293
mped 71
... *44
from 386

201
48
of 238

Tele-

Hard- 112
ineer- 232
Flue- 52
Peel- 153
many. 307
ndry 123
217
e Pe- 43
... 53
Used 298
artia- 197
ddles. 383
119
119
Winds 30
l in 100
alley. *406
agda- *88
in. 62
... 200
127
ine. 327

esh). 242
hem- 208
f. on 208
and 327
sugi). 327
Rec- *15
s. of 189
Prod- 71

Meas- 278
inan. 229
dians *40
the 105
stical 5
... 285
62
Heat-
Hot 314
sphur 29
thod. 29

*184
16
ocial. 196
14
s. of 103
II, 393;
III, 410
*26
ornia *260
f the 237
... 87
and 182
143
Ship- 79
abe. 217
413
... 105
99
firn). 255

387
ttery. 53
391
54