CIS 575. Introduction to Algorithm Analysis Remarks on Assignment #4, Spring 2014

Question 1 For (1), we appeal to the Master Theorem stated on the slides (the question doesn't specify whether we take $\lfloor n/3 \rfloor$ or $\lceil n/3 \rceil$ but that doesn't matter). We have a=9, b=3 and thus $r=\log_3(9)=2$. It is thus case 1 of the Theorem that applies, telling us that $\mathbf{T}(\mathbf{n}) \in \mathbf{\Theta}(\mathbf{n}^2 \lg(\mathbf{n}))$.

For (2), the Master Theorem is *not* immediately applicable. But it is easy to see that $T(n) = n + (n-1) + (n-2) + \dots$ and thus $\mathbf{T}(\mathbf{n}) \in \mathbf{\Theta}(\mathbf{n}^2)$.

For (3), we may again apply the Master Theorem; we have $a=3,\ b=2$ and thus $r=\log_2(3)$. Since $n=n^1$ with $1<\log_2(3)$, it is case 3 of the Theorem that applies, and we get $\mathbf{T}(\mathbf{n})\in \mathbf{\Theta}(\mathbf{n}^{\lg(3)})$ (and thus $T(n)\in O(n^2)$ and $T(n)\in \Omega(n)$.)

Question 2 Let us start with the inductive step, and calculate (using the induction hypothesis on $\lfloor n/2 \rfloor$)

$$T(n) = 7T(\lfloor n/2 \rfloor) + n^3$$

$$\leq 7c\lfloor n/2 \rfloor^3 + n^3$$

$$\leq 7c(n/2)^3 + n^3$$

$$= (7c/8 + 1)n^3$$

and infer that $T(n) \le cn^3$ will hold if we demand $7c/8 + 1 \le c$ which amounts to $\mathbf{c} \ge \mathbf{8}$.

And all $c \ge 8$ will indeed also work for the base case, n = 1, as there $T(n) = 5 = 5 \cdot n^3 \le cn^3$.

Question 3 We again start with the inductive step, and get (using the induction hypothesis on $\lfloor n/2 \rfloor$)

$$T(n) = 4T(\lfloor n/2 \rfloor) + 1$$

$$\leq 4(c\lfloor n/2 \rfloor^2 - d) + 1$$

$$\leq 4c(n/2)^2 - 4d + 1$$

$$= cn^2 - 4d + 1$$

and infer that $T(n) \le cn^2 - d$ will hold if we demand $-4d + 1 \le -d$ which amounts to $d \ge 1/3$.

Let us pick say $\mathbf{d} = \mathbf{1}$, and now consider the base case n = 1. Then $T(n) = 3 \le cn - d$ will hold iff $\mathbf{c} \ge \mathbf{4}$.

Question 4 For given n > 1, we observe that a call FINDVAL(A[1..n]) causes at most one recursive call, with an argument of size approximately n/2, and also the execution of a constant number of commands. Hence the time complexity is described by a recurrence

$$\mathbf{T}(\mathbf{n}) = \mathbf{1} \cdot \mathbf{T}(\mathbf{n}/2) + \mathbf{f}(\mathbf{n})$$

where $\mathbf{f}(\mathbf{n}) \in \mathbf{\Theta}(\mathbf{1})$. We can thus apply the Master Theorem, with a = 1 and b = 2 and thus $r = \log_2(1) = 0$, and with q = 0 as $1 = n^0$. Since r = q, we get

$$T(n) \in \Theta(n^r \lg(n)) = \Theta(\lg(\mathbf{n}))$$

¹Though one could argue, cf. the slide on "What is an Elementary Instruction?", that the command $m \leftarrow \lceil n/2 \rceil$ runs in time $\Theta(\lg(n))$ since it takes $\lg(n)$ bits to represent n.