Introduction to CMOS VLSI Design

Lecture 6: Wires

Outline Introduction Wire Resistance Wire Capacitance Wire RC Delay Crosstalk Wire Engineering Repeaters 6: Wires CMOS VLSI Design Slide 2

Introduction

- ☐ Chips are mostly made of wires called *interconnect*
 - In stick diagram, wires set size
 - Transistors are little things under the wires
 - Many layers of wires
- ☐ Wires are as important as transistors
 - Speed
 - Power
 - Noise
- □ Alternating layers run orthogonally

6: Wires

CMOS VLSI Design

Wire Resistance

 \Box ρ = resistivity (Ω *m)

$$R = \frac{\rho}{t} \frac{l}{w}$$

6: Wires

CMOS VLSI Design

Slide 7

Wire Resistance

 \Box ρ = resistivity (Ω *m)

$$R = \frac{\rho}{t} \frac{l}{w} = R_{\rm W} \frac{l}{w}$$

 \square R_{\square} = sheet resistance (Ω/\square)

 $-\ \square$ is a dimensionless unit(!)

Count number of squares

 $-R = R_{\square} * (# of squares)$

6: Wires

CMOS VLSI Design

Choice of Metals

- ☐ Until 180 nm generation, most wires were aluminum
- Modern processes often use copper
 - Cu atoms diffuse into silicon and damage FETs
 - Must be surrounded by a diffusion barrier

Metal	Bulk resistivity (μΩ*cm)
Silver (Ag)	1.6
Copper (Cu)	1.7
Gold (Au)	2.2
Aluminum (Al)	2.8
Tungsten (W)	5.3
Molybdenum (Mo)	5.3

6: Wires CMOS VLSI Design Slide 9

Sheet Resistance

☐ Typical sheet resistances in 180 nm process

Layer	Sheet Resistance (Ω/\Box)	
Diffusion (silicided)	3-10	
Diffusion (no silicide)	50-200	
Polysilicon (silicided)	3-10	
Polysilicon (no silicide)	50-400	
Metal1	0.08	
Metal2	0.05	
Metal3	0.05	
Metal4	0.03	
Metal5	0.02	
Metal6	0.02	

6: Wires CMOS VLSI Design Slide 10

Capacitance Trends

- \Box Parallel plate equation: C = εA/d
 - Wires are not parallel plates, but obey trends
 - Increasing area (W, t) increases capacitance
 - Increasing distance (s, h) decreases capacitance
- Dielectric constant
 - $\varepsilon = k\varepsilon_0$
- \Box ϵ_0 = 8.85 x 10⁻¹⁴ F/cm
- \square k = 3.9 for SiO₂
- ☐ Processes are starting to use low-k dielectrics
 - $k \approx 3$ (or less) as dielectrics use air pockets

6: Wires

CMOS VLSI Design

Diffusion & Polysilicon

- Diffusion capacitance is very high (about 2 fF/μm)
 - Comparable to gate capacitance
 - Diffusion also has high resistance
 - Avoid using diffusion runners for wires!
- □ Polysilicon has lower C but high R
 - Use for transistor gates
 - Occasionally for very short wires between gates

6: Wires

CMOS VLSI Design

Slide 15

Lumped Element Models

- Wires are a distributed system
 - Approximate with lumped element models

 $\begin{array}{c} \text{N segments} \\ \begin{array}{c} R \\ \hline \downarrow C \end{array} & \begin{array}{c} R/N \\ \hline \downarrow C/N \end{array} & \begin{array}{c} R/2 \\ \hline \end{array} & \begin{array}{c} R/2$

- \Box 3-segment π -model is accurate to 3% in simulation
- ☐ L-model needs 100 segments for same accuracy!
- \Box Use single segment π -model for Elmore delay

6: Wires

CMOS VLSI Design

Example

- ☐ Metal2 wire in 180 nm process
 - 5 mm long
 - 0.32 μm wide
- \Box Construct a 3-segment π -model
 - $-R_{\Pi} =$
 - C_{permicron} =

6: Wires

CMOS VLSI Design

Slide 17

Example

- ☐ Metal2 wire in 180 nm process
 - 5 mm long
 - 0.32 μm wide
- \Box Construct a 3-segment π -model

$$- R_{\square} = 0.05 \Omega/\square$$

=> R = 781Ω

$$-$$
 C_{permicron} = 0.2 fF/ μ m

=> C = 1 pF

6: Wires

CMOS VLSI Design

Wire RC Delay

- ☐ Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 5mm wire from the previous example.
 - $-R = 2.5 k\Omega^*\mu m$ for gates
 - Unit inverter: 0.36 μm nMOS, 0.72 μm pMOS

$$-t_{pd} =$$

6: Wires

CMOS VLSI Design

Slide 19

Wire RC Delay

- ☐ Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 5mm wire from the previous example.
 - $-R = 2.5 \text{ k}\Omega^*\mu\text{m}$ for gates
 - Unit inverter: 0.36 μm nMOS, 0.72 μm pMOS

6: Wires

CMOS VLSI Design

Crosstalk

- □ A capacitor does not like to change its voltage instantaneously.
- ☐ A wire has high capacitance to its neighbor.
 - When the neighbor switches from 1-> 0 or 0->1, the wire tends to switch too.
 - Called capacitive coupling or crosstalk.
- □ Crosstalk effects
 - Noise on nonswitching wires
 - Increased delay on switching wires

6: Wires

CMOS VLSI Design

Slide 21

Crosstalk Delay

- ☐ Assume layers above and below on average are quiet
 - Second terminal of capacitor can be ignored
 - Model as $C_{gnd} = C_{top} + C_{bot}$
- ☐ Effective C_{adi} depends on behavior of neighbors
 - Miller effect

В	ΔV	C _{eff(A)}	MCF
Constant			
Switching with A			
Switching opposite A			

6: Wires

CMOS VLSI Design

Crosstalk Delay

- ☐ Assume layers above and below on average are quiet
 - Second terminal of capacitor can be ignored
 - Model as $C_{gnd} = C_{top} + C_{bot}$
- $\hfill \Box$ Effective C_{adj} depends on behavior of neighbors
 - Miller effect

В	ΔV	C _{eff(A)}	MCF
Constant	V_{DD}	C _{gnd} + C _{adj}	1
Switching with A	0	C_{gnd}	0
Switching opposite A	2V _{DD}	C _{gnd} + 2 C _{adj}	2

6: Wires

CMOS VLSI Design

Slide 23

Crosstalk Noise

- ☐ Crosstalk causes noise on nonswitching wires
- ☐ If victim is floating:
 - model as capacitive voltage divider

$$\Delta V_{victim} = \frac{C_{adj}}{C_{gnd-v} + C_{adj}} \Delta V_{aggressor}$$

6: Wires

CMOS VLSI Design

Driven Victims

- ☐ Usually victim is driven by a gate that fights noise
 - Noise depends on relative resistances
 - Victim driver is in linear region, agg. in saturation
 - If sizes are same, $R_{aggressor}$ = 2-4 x R_{victim}

$$\Delta V_{victim} = \frac{C_{adj}}{C_{gnd-v} + C_{adj}} \frac{1}{1+k} \Delta V_{aggressor} = 2\text{-}4 \times R_{victim}$$

$$\Delta V_{victim} = \frac{C_{adj}}{C_{gnd-v} + C_{adj}} \frac{1}{1+k} \Delta V_{aggressor}$$

$$k = \frac{\tau_{aggressor}}{\tau_{victim}} = \frac{R_{aggressor} \left(C_{gnd-a} + C_{adj}\right)}{R_{victim} \left(C_{gnd-v} + C_{adj}\right)}$$

6: Wires

CMOS VLSI Design

Noise Implications

- ☐ So what if we have noise?
- ☐ If the noise is less than the noise margin, nothing happens
- ☐ Static CMOS logic will eventually settle to correct output even if disturbed by large noise spikes
 - But glitches cause extra delay
 - Also cause extra power from false transitions
- Dynamic logic never recovers from glitches
- □ Memories and other sensitive circuits also can produce the wrong answer

6: Wires

CMOS VLSI Design

Slide 27

Wire Engineering

- ☐ Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:

6: Wires

CMOS VLSI Design

Repeater Design How many repeaters should we use? How large should each one be? Equivalent Circuit Wire length I/N Wire Capaitance C_w*I/N, Resistance R_w*I/N Inverter width W (nMOS = W, pMOS = 2W) Gate Capacitance C' *W, Resistance R/W

CMOS VLSI Design

Slide 34

6: Wires

Repeater Design

- ☐ How many repeaters should we use?
- ☐ How large should each one be?
- □ Equivalent Circuit
 - Wire length /
 - Wire Capacitance C_w*I, Resistance R_w*I
 - Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance C' *W, Resistance R/W

$$R/W = \begin{array}{c|c} R_w/N \\ \hline \downarrow C_w//2N & C_w//2N & C'W \\ \hline \end{array}$$

6: Wires

CMOS VLSI Design

Slide 35

Repeater Results

- Write equation for Elmore Delay
 - Differentiate with respect to W and N
 - Set equal to 0, solve

$$\frac{l}{N} = \sqrt{\frac{2RC'}{R_w C_w}}$$

$$\frac{t_{pd}}{l} = \left(2 + \sqrt{2}\right)\sqrt{RC'R_w C_w}$$
 ~60-80 ps/mm in 180 nm process
$$W = \sqrt{\frac{RC_w}{R_c C'}}$$

6: Wires

CMOS VLSI Design