violations

Adam Okulicz-Kozaryn adam.okulicz.kozaryn@gmail.com

this version: Tuesday 10th April, 2018 13:04

<u>outline</u>

misc

intuition

collinearity again

heteroskedasticity

normality of residuals

endogeneity

[*] (elements of) research design: causality

[*] more diagnostics

outline misc

intuition

collinearity again

heteroskedasticity

normality of residuals

endogeneity

[*] (elements of) research design: causality

[*] more diagnostics

misc 3/53

changes from before

- dropped autocorrelation—assuming you use cross-sec data
 - · not time series, not panel

misc 4/5

outline

misc

intuition

collinearity again

heteroskedasticity

normality of residuals

endogeneity

[*] (elements of) research design: causality

[*] more diagnostics

intuition 5/53

violations

- so far we have just talked about the regressions that satisfy assumptions
- but what happens when assumptions are violated?
- · typically, they are!
- and what you can do about it?

intuition 6/53

practical considerations

- usually have heteroskedasticity in crosssectional data
- (and autocorrelation in time-series data) [skipped]
- (and both in panel data) [skipped]"unobserved heterogeneity" = LOVB
- outliers/leveragenormality of residuals
- you should *always* test all of them
- (except autocorr in unclustered cross-sectional data and normality in datasets>1k)

when you report reg results, it is expected and assumed

you took care of all assumptions

intuition 7/53

<u>outline</u>

misc

intuition

collinearity again

heteroskedasticity

normality of residuals

endogeneity

[*] (elements of) research design: causality

[*] more diagnostics

collinearity again 8/53

we discussed collinearity earlier

- if perfect, then you cannnot estimate std err
- · stata will just drop a perfectly collinear var
- with dummies—if you incl all cat—it is so called "dummy trap"
- otherwhise, collinearity does not violate any assumption
- just makes std err bigger
- it is just like "micronumerosity"
- typically, do nothing

collinearity again 9/53

<u>outline</u>

misc

intuition

collinearity again

heteroskedasticity

normality of residuals

endogeneity

[*] (elements of) research design: causality

[*] more diagnostics

heteroskedasticity 10/53

examples

violation

- again, heteroskedascity=pattern in residuals
- the variance of Y conditional on X varies from one observation to another
- · eg it may depend on the values of X
- if true:
- $\cdot \hat{\beta}_i$ still unbiased
- \cdot $s_{\hat{eta}_i}$ is not as accurate as reported by software
- · not BLUE because not efficient

heteroskedasticity 12/53

diagnosis

- eyeball
- ♦ test
 - · there are many tests... eg Breush-Pagan

heteroskedasticity 13/53

solutions

- calculate robust se
- transform variables (*if* theoretically justifiable)
 - heteroskedasticity might indicate you are working in the wrong metric
- · a popular transformation that often works is log
- · log is popular for skewed distributions like income...
- ♦ dofile: het

heteroskedasticity 14/53

<u>outline</u>

misc

intuition

collinearity again

heteroskedasticity

normality of residuals

endogeneity

[*] (elements of) research design: causality

[*] more diagnostics

only worry if you have small sample

- don't have to worry about this at all if sample is big
- if sample is small, after running regress
- can predict residuals predict resid,r
- do a histogram and plot them
- if they look very unnormal, don't be too trusting in significance
- try to get more data!

normality of residuals 16/53

<u>outline</u>

misc

intuition

collinearity again

heteroskedasticity

normality of residuals

endogeneity

[*] (elements of) research design: causality

[*] more diagnostics

endogeneity 17/53

closely related to design!

- if you have bad design, you'll have endogeneity
- curiously, economists are obsessed with it
- but other fields aren't
- ♦ a superb and readable reference is Sorensen (2012) http://people.bu.edu/tsimcoe/code/Endog-PDW.pdf

endogeneity 18/53

what is it

- technically, if x and error term are correlated
- \diamond so there is some Z that predicts Y and correlates with X
- · (see also discussion of Z in res des sec)
- o so it can be just LOVB, or unobserved heterogeneity
- unobserved heterogeneity: see Rumsfeld's unknown unknowns in res des sec

endogeneity 19/53

simultaneity and self-selection

- but usually by endogenity we mean bigger problems
- simultaneity and self-selection
- and they are bigger problems because no amount of control vars helps!
- \diamond simultaneity not only $X \to Y$ but also $Y \to X$
- could do Granger causality or IV
- but best do an experiment, or natural experiment
- think deeply about the relationship between X and Y
- one of the best ways to think deeply, i think, is to use
 INUS condition (res des sec)

endogeneity 20/53

the bottom line

- the bottom line is that in experiment U/As are assigned to levels of X at random
- think about whether that is the case in your study (after controlling for other Xs)
- or at least if that's the case to large degree
- you want to think about selectivity and self-selection early in the process: at the research design stage
- think about source of variability in X
- · or data generating process as pol sci would put it

endogeneity 21/53

<u>outline</u>

misc

intuition

collinearity again

heteroskedasticity

normality of residuals

endogeneity

- [*] (elements of) research design: causality
- [*] more diagnostics

research design

- whether you have good or bad research design does not violate assumptions
- but it is critical for ability to argue causality
- causality is acheived with design, not with statistics (incl regression)!!
 - · sure trying to get closer to it with multiple regressions, but cannot really get there with much confidence
- indeed multiple regression results themselves (without design or at least much thought given to it), are about as good as an educated guess!!

research design is a class itself

- research design is about designing your research
- i will just mention few things that will be important for this class
- a quick, useful and applied reference is http://www.socialresearchmethods.net/kb/design.php
 a more in-depth treatment is Lawrence B. Mohr, Impact

Analysis for Program Evaluation books.google.com/books?isbn=0803959362

- ♦ also see http:
 - //knowledge.sagepub.com/view/researchdesign/SAGE.xml
 - · guess have to be on campus to access it for free

causality

- much of research design is about causality
- · want to show $X \rightarrow Y$
- correlation is necessary for causality
- · (in rare cases suppressor var makes it unnecessary, eg (Mazur, 2011))
- but not sufficient
- http://www.tylervigen.com/

INUS condition (Mackie, 1980)

Sufficient Condition

- a useful way of thinking about causality: Insufficient but Non-redundant part of Unnecessary but
- many, if not most causes are INUS conditions
- eg a cigarette as a cause of forrest fire
- · it's Insufficient, because by itself it is not enough, eg you

also need oxygen, dry leaves, etc

- · it is contributing to fire, hence Non-redundant
- and along with other stuff (oxygen, dry leaves etc) it constitutes Unnecessary but Sufficient Condition
 - · it's not necessary for fire, it can be lightening, etc

(but.sit)'s sufficient to it's enough to start the fire

basic concepts

- ♦ Y: a dependent variable, outcome
- X: an independent variable, predictor
- \diamond want to show $X \to Y$ (X affects (causes) Y)
- · and not the other way round $(Y \rightarrow X)$
- · and not $Z \to Y$; eg $X(CO_2),Y(temp)$, $Z(sun\ temp)$
- · it is difficult to argue!
- after all, there are unknown unknowns (Z's that we are unaware of)

The Problem: Unknown Unknowns

- there are known knowns; there are things we know that we know
- there are known unknowns; that is to say, there are things that we now know we don't know
- but there are also unknown unknowns—there are things we do not know we don't know
- ♦ (Donald Rumsfeld)
- how do we deal with unknown unknowns?
- do an experiment!

The Problem put another way: Counterfactual

- it all boils down to comparing what happened to what would have happened had the treatment not happened
- eg we got a new teacher and now kids perform better on SAT
 - to know whether the teacher caused better performance we would need to know what would have happened to SAT scores without this teacher (scores might have gone up due to Z),
 - · and compare it to what actually happened

The Problem put another way: Counterfactual

- the problem is that we do not observe counterfactual (we can try to infer it though)
- counterfactual is the effect of all knowns/unknowns (incl. unknown unknowns)
- how do we deal with lack of counterfactual
- do an experiment!
- (or if you cannot, try to estimate it somehow)

the gold standard [ask IRB appr]the experimental design give few examples

 only with experimental design you can confidently argue causality

and it is because randomization takes care of the known

- and unknown predictors of the outcome (draw a picture of 2 groups of people)
- in other words, it establishes a counterfactual but wait!
 - most of the time we cannot have an experimental design
 because it is unethical and politically impossible

eg we cannot randomly assign kids to bad school or to

[*] Smaking rattp://www.isocialresearchmethods.net/kb/desexper.php

internal validity

- internal validity is about causality
- you have internal validity if you can claim that X causes Y
 - · eg some drug X causes some disease Y to disappear
 - http://knowledge.sagepub.com/view/researchdesign/n43.xml#n43
 - http://knowledge.sagepub.com/view/researchdesign/n192.xml#n192

threats to internal validity

- history, maturation, regression to the mean
- · something else happened that caused Y
- · things develop over time in a certain way
- selection bias, self selection
- · does smoking causes cancer?
- · maybe less healthy people select to smoke?
- http://knowledge.sagepub.com/view/researchdesign/n192.xml#n192

spurious correlation

- ⋄ you think that X causes Y, but actually it is Z
- global warming:
 - · we have it—we can measure temperature
 - but what's the cause: CO_2 or Sun activity?

reverse causality

- a closely related topic to spurious correlation is reverse causality
- here, instead of some other Z that causes Y instead of X
- ♦ we have Y causing X, as opposed to X causing Y...
- what do we do ?

reverse causality

- you may try to find some other X that measures the same or similar concept and that cannot be caused by Y
- ⋄ eg instead of education → wage; do father's education → wage (your wage can reverse cause your education, but not your father's education)
- ♦ find some exogenous (external) shock: policing ← crime
- ♦ but terror attack/alert →policing→crime; we know that policing→crime; not the other way round
 - https://www.law.upenn.edu/fac/jklick/48JLE267.pdf

natural experiment

- again most of the time you cannot have an experiment
- but there are natural experiments or exogenous shocks
- exogenous meaning that they are caused externally (like an experimenter's randomization) and somewhat randomly (at least with relation to a problem at hand
- eg earthquake (any weather, eg storm); terrorist attack;
 policy change (less random)
- in model simply have dummy for U/As affected storm, policy etc

causality without experiment?

- yes! well maybe, but you need to do lots of work...
- essentially you want to exclude alternative explanations
- so you act like a devil's advocate...
- try to abolish your story / find an alt explanation
- ♦ if you cannot find any, then your story is right ...
- · until disproved
- · just use regression and "control" for other vars
- there are some designs that improve our inference greatly over having no design at all (ex post facto, observational)

ex post facto: X_1Y_1

- very common...it is *no* design
- non-experimental, cross-sectional, observational, correlational; you'll most likey do this
- we start investigation "after the fact"
- o no time involved, don't know whether X precedes Y
- ⋄ both, X and Y are observed at the same time examples?
- · (but X must precede Y in order to be causal)
- practically impossible to argue causality here
- ♦ but cheap and big N, and good external validity

ex post facto: X_1Y_1

- useful, many "causes" were discovered using observational studies
- ⋄ eg smoking→cancer was found out using ex post facto
- and then confirm using better designs
- ♦ http://knowledge.sagepub.com/view/researchdesign/n145.xml
- ♦ http://knowledge.sagepub.com/view/researchdesign/n271.xml#n271

before-after (pre-post): blackboard: schematic measured Y, then do X, and then measured Y again

- eg measured readership at the library , buy some cool stats books ; measured readership again
- eg measured crime rate , put more police on the streets ;
 measured crime again.
- measured crime again
 eg measured soup consumption , changed soup ; measured soup consumption again
- anyone did pre/post? eg working at school?
- tried new programs, new approaches?
- or simply pre-post without T, say to identify highest and lowest gain students

(2 group) comparative change: $\frac{Y_{E1}X_2Y_{E3}}{Y_{C1}}$

- \diamond eg H_0 : police with better guns fights crime better
- \diamond measured crime rate in 2010 in Camden (Y_{E1}) and Newark (Y_{C1})
 - in 2011 give super guns to police in Camden (X_2) , (but not in Newark)
 - · in 2012 measured crime rate Camden (Y_{E3}) and Newark (Y_{C3})
- then we have evidence that the guns worked

⋄ if crime rate dropped more in Camden than in Newark,

♦ stata: see so called DID http://www.princeton.edu/~otorres/DID101.pdf

difference in difference (p.235 Wheelan, 2013)

- just 'before after' with a comparison group
- did sth to one group, and not to the other group
- · over time (pre post) see if there is any difference
- like we discussed earlier in res_des.pdf
- ♦ blackboard: fig: first from p236, and then from p237
- · and pictures similar to those from res_des.pdf follow

DID

DID

DID

Illustrating Difference-in-Difference Estimate of Average Program Effect

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

discontinuity analysis (p.238 Wheelan, 2013)

- can use when there is some rigid cutoff for something, say:
- remedial program for F grades
 prison sentence for a crime
- then compare those who just made it (C-, or a ticket)
- v those who didn't (F, prison)—but they were just above the cutoff
 the cool thing is that the two groups are similar, especially:
 - not really any difference whatsoever with respect to cause of treatment!
 - · so the treatment is arbitrary (random), so we have experiment!

example

- new jersey state government workforce profile 2010
- http://www.nj.gov/csc/about/publications/workforce/pdf/
 wf2010.pdf
- p37: minorities in state govt over time
- how increase internal validity?
- ⋄ compare to PA, DE, NY etc
- factor in minority population; applications
- do experiments! many already done! again, read lit!!
- · say people with black names apply for jobs
- · students with Asian names email professors
- o and both, employers and professors discriminate against!

eg: tacit knowledge is the key!

- if you know sth about state govt
- · you know that it is concentrated in Trenton
- · (one student said so)
- hence, the key is population characteristics
- · around Trenton!

next step

- if you are interested in program evaluation:
 - · Quick http://www.socialresearchmethods.net/kb/evaluation.php
 - · in-depth, advanced: Mohr (1995), Shadish et al. (2002)

<u>outline</u>

misc

intuition

collinearity again

mormanty of residuals

endogeneity

[*] (elements of) research design: causality

[*] more diagnostics

[*] more diagnostics

Nick's modeldiag

http:
//www.stata-journal.com/sjpdf.html?articlenum=gr0009

[*] more diagnostics 52/53

ucla diagnostics https: //stats.idre.ucla.edu/stata/webbooks/reg/chapter2/

- stata-webbooksregressionwith-statachapter-2-regression-d most useful:
 - scatter dfbeta ... · lvr2plot, ml()
- avplot(s)

- transforming variables https: //stats.idre.ucla.edu/stata/webbooks/reg/chapter1/
- regressionwith-statachapter-1-simple-and-multiple-regres and see help regress postestimation [*] more diagnostics

you should always do these in your research

may also want to transform variables if needed: 1.5

- MACKIE, J. (1980): The cement of the universe, Clarendon Press Oxford.

 MAZUR, A. (2011): "Does increasing energy or electricity consumption improve quality of life in
- industrial nations?" Energy Policy, 39, 2568–2572.

 MOHR, L. B. (1995): Impact Analysis for Program Evaluation, Sage, Beverly Hills CA, second
- MOHR, L. B. (1995): Impact Analysis for Program Evaluation, Sage, Beverly Hills CA, second edition ed.
- Shadish, W. R., T. D. Cook, and D. T. Campbell (2002): Experimental and quasi-experimental designs for generalized causal inference, Wadsworth Cengage learning.
- Sorensen, J. B. (2012): "Endogeneity is a fancy word for a simple problem," <u>Unpublished</u>.
- $\label{eq:Wheelan} \begin{tabular}{lll} Wheelan, C. (2013): & \underline{Naked \ statistics: \ stripping \ the \ dread \ from \ the \ data, \ WW \ Norton \ \& \ Company. \end{tabular}$