Package 'WSH'

January 8, 2020

	January 6, 2020
Туре	Package
Title	R package for the calculation of the following Within-Sample Heterogeneity Scores in Bisulfite Sequencing Data: FDRP, qFDRP, PDR, Epipolymorphism, Methylation Entropy and MHL
Versi	on 0.1.3
Auth	or Michael Scherer
Main	tainer Michael Scherer <mscherer@mpi-inf.mpg.de></mscherer@mpi-inf.mpg.de>
Desci	ription R package for the calculation of the following Within-Sample Heterogeneity Scores in Bisulfite Sequencing Data: Fraction of Discordant Read Pairs (FDRP), quantitative FDRP (qFDRP), Proportion of Discordant Reads (PDR, Landau et.al. (2014), Cancer Cell), Epipolymorphism (Landan et.al. (2012), Nature Genetics), Methylation Entropy (Xie et.al. (2011), Nucleic Acids Research) and Methylation Haplotype Load (MHL, Guo et.al. (2017), Nature Genetics)
Licen	ise GPL-3
Enco	ding UTF-8
Lazy]	Data true
Date	2020-01-08
Depe	nds RnBeads, GenomicAlignments, Rsamtools, parallel, rtracklayer, doParallel, RUnit, RnBeads.hg38
Roxy	genNote 7.0.2
R to	calculate.entropy

2 calculate.entropy

Index		21
	wsh.run.example	19
	VALID.SCORES	
	set.option	
	run.mhl.calculation	
	run.methclone	
	run.haplotype.calculation	
	rnb.calculate.qfdrp	15
	rnb.calculate.pdr	15
	rnb.calculate.mhl	14
	rnb.calculate.fdrp	
	get.option	
	create.genomebrowser.track	
	compute.score.rnb	11
	compute.score.GRanges	11
	compute.score	10
	calculate.qfdrp	9
	calculate.pdr.site	8
	calculate.pdr.by.chromosome	8
	calculate.pdr	
	calculate.mhl	
	calculate.fdrp.site	
	calculate.fdrp.score	
	calculate.fdrp.by.chromosome	4

calculate.entropy

calculate.entropy

Description

This function calculates Methylation entropy by calling the methclone software to compute epiallele frequencies and then uses the definition of entropy for the calculation.

Usage

```
calculate.entropy(bam.file, out.folder = getwd(), out.name = "methclone")
```

Arguments

bam.file path to bam file containing the reads of the data set
out.folder folder to store the temporary file produced by methclone
out.name name of temporary file

Value

a data frame containing the position in the reference genome and the Entropy scores

```
calculate. {\tt epipolymorphism} \\ calculate. {\tt epipolymorphism}
```

Description

This function calculates Epipolymorphism by calling the methclone software to compute epiallele frequencies and then uses the definition of epipolymorphism for the calculation.

Usage

```
calculate.epipolymorphism(
  bam.file,
  out.folder = getwd(),
  out.name = "methclone"
)
```

Arguments

```
bam.file path to bam file containing the reads of the data set
out.folder folder to store the temporary file produced by methclone
out.name name of temporary file
```

Value

a data frame containing the position in the reference genome and the Epipolymorphism scores

```
calculate.fdrp calculate.fdrp
```

Description

This function calculates the FDRP scores for the reads given in the bam files for the CpGs present in the annotation.

Usage

```
calculate.fdrp(
  bam.file,
  anno,
  log.path = getwd(),
  cores = 1,
  window.size = get.option("WINDOW.SIZE")
)
```

Arguments

bam. file bath to the bam file to be analyzed already aligned to a reference genome

anno annotation as a GRanges object with the CpG sites to be analyzed

log.path location of the log file

cores number of cores available for the analysis

window.size window size used to restrict the concordance/discordance classification of each

read pair DEFAULT: 50 as the maximum distance

Value

FDRP scores for the given annotation.

Author(s)

Michael Scherer

calculate.fdrp.by.chromosome

calculate.fdrp.by.chromosome This function calculates the FDRP scores for the reads given in the bam files for the CpGs present in

the annotation.

Description

calculate.fdrp.by.chromosome This function calculates the FDRP scores for the reads given in the bam files for the CpGs present in the annotation.

Usage

calculate.fdrp.by.chromosome(bam, anno)

Arguments

bam file with the reads from a bisulfite sequencing technique already aligned to

a reference genome

anno annotation as a GRanges object with the CpG sites to be analyzed

Details

This function is called by calculate.fdrps for each chromosome separately and calls toCpG as well as calculate.fdrp.site.

Value

vector of fdrp scores for the given CpG sites in anno

calculate.fdrp.score 5

Author(s)

Michael Scherer

```
calculate.fdrp.score calculate.fdrp.score
```

Description

This function calculates the FDRPs/qFDRPs (depending on how the options are set) for all CpG sites in the annotation from the reads provided by the bam file.

Usage

```
calculate.fdrp.score(
  bam.file,
  anno,
  log.path = getwd(),
  cores = 1,
  window.size = get.option("WINDOW.SIZE")
)
```

Arguments

bam. file bath to the bam file to be analyzed already aligned to a reference genome

anno CpG sites to be analyzed as a GRanges object

log.path location of the log file

cores number of cores available for the analysis

window.size window size used to restrict the concordance/discordance classification of each

read pair DEFAULT: 50 as the maximum distance

Value

FDRP scores for the given annotation.

Author(s)

6 calculate.mhl

·	lculate.fdrp.site This function compute the FDRP score for a given g site.
---	--

Description

calculate.fdrp.site This function compute the FDRP score for a given cpg site.

Usage

```
calculate.fdrp.site(pos, cpg, reads, site)
```

Arguments

pos	index of the cpg site
cpg	list containing the mapping from each cpg site to the reads that contain this site
reads	GRanges object containing the reads needed for the calculation of the FDRP, already converted into the custom representation
site	position of the CpG site of interest as an integer number

Details

This function is called by calculate.fdrps.chromosome each CpG present on the chormosome and calls compute.discordant for each pair of reads.

Value

FDRP score for the given CpG site

Author(s)

Michael Scherer we actually calculate the FDRP as frac#discordant read pairs#all read pairs

Description

This function computed the Methylation Haplotype Load (MHL) for all sites in a given annotation by employing the scripts downloaded from the paper's website

calculate.pdr 7

Usage

```
calculate.mhl(
  roi,
  bam.file,
  out.folder = getwd(),
  out.name = "mhl.txt",
  bam.type = "bismark"
)
```

Arguments

roi Region of interest for which haplotype information should be computed

bam. file path to bam file containing the reads

out.folder folder to write the output out.name name of the output file

bam. type alignment tools used to create the bam file

Value

a data frame containing the position in the reference genome and the MHL scores

calculate.pdr calculate.pdr

Description

This function calculates the PDRs for all analyzed CpG sites in the bam file of the corresponding sample

Usage

```
calculate.pdr(bam.file, anno, log.path = getwd(), cores = 1)
```

Arguments

bam. file bath to the bam file to be analyzed already aligned to a reference genome anno annotation as a GRanges object with the CpG sites to be analyzed

log.path location of the log file

cores number of cores available for the analysis

Value

PDR scores for the given annotation.

Author(s)

8 calculate.pdr.site

calculate.pdr.by.chromosome

calculate.pdr.by.chromosome

Description

This function calculates the PDR scores for the reads given in the bam files for the CpGs present in the annotation.

Usage

```
calculate.pdr.by.chromosome(bam, anno)
```

Arguments

bam file with the reads from a bisulfite sequencing technique already aligned to

a reference genome

anno annotation as a GRanges object with the CpG sites to be analyzed

Value

vector of pdr scores for the given CpG sites in anno

Author(s)

Michael Scherer

calculate.pdr.site

calculate.pdr.site This function computes the PDR score for a given cpg site.

Description

calculate.pdr.site This function computes the PDR score for a given cpg site.

Usage

```
calculate.pdr.site(cpg, reads)
```

Arguments

cpg index of the cpg site

reads GRanges object containing the reads needed for the calculation of the PDR,

already converted into the custom representation

calculate.qfdrp 9

Value

PDR score for the given CpG site

Author(s)

Michael Scherer

calculate.qfdrp

calculate.qfdrp

Description

This function calculates the qFDRP scores for the reads given in the bam files for the CpGs present in the annotation.

Usage

```
calculate.qfdrp(
  bam.file,
  anno,
  log.path = getwd(),
  cores = 1,
  window.size = get.option("WINDOW.SIZE")
)
```

Arguments

bam. file bath to the bam file to be analyzed already aligned to a reference genome

anno annotation as a GRanges object with the CpG sites to be analyzed

log.path location of the log file

cores number of cores available for the analysis

window.size window size used to restrict the concordance/discordance classification of each

read pair DEFAULT: 50 as the maximum distance

Value

qFDRP scores for the given annotation.

Author(s)

10 compute.score

Description

Generic function to call, passes its arugments either to compute.score.rnb or compute.score.GRanges.

Usage

```
compute.score(bam.file, ..., score = "qfdrp")
```

Arguments

bam.file	path to bam file containing the reads
	additional arugment. Either RnBSet, GRanges or empty (only for Epipolymorphism and Entropy)
score	The WSH score which should be computed, needs to be one of fdrp,qfdrp,pdr,epipolymorphism, entropy or mhl

Value

data frame containing the annotation and the computed WSH scores

Author(s)

Michael Scherer

Examples

```
load(system.file(file.path("extData","example_GRanges.RData"),package="WSH"))
example.rnb.set <- system.file(file.path("extData","small_rnbSet.zip"),package="WSH")
example.bam <- system.file(file.path("extData","small_example.bam"),package="WSH")
fdrp <- compute.score(bam.file=example.bam,example.GRanges,score="fdrp")
qfdrp <- compute.score(bam.file=example.bam,example.rnb.set,score="qfdrp")</pre>
```

compute.score.GRanges

compute.score.GRanges compute.score.GRanges

Description

Main function to compute WSH scores based on a input GRanges object and a bam file containing the reads.

Usage

```
compute.score.GRanges(bam.file, range, score = "qfdrp")
```

Arguments

bam.file path to bam file containing the reads
range GRanges object containing the annotation

score The WSH score which should be computed, needs to be one of fdrp,qfdrp,pdr,epipolymorphism,

entropy or mhl

Value

data frame containing the annotation and the computed WSH scores

Author(s)

Michael Scherer

Examples

```
load(system.file(file.path("extData","example_GRanges.RData"),package="WSH"))
example.bam <- system.file(file.path("extData","small_example.bam"),package="WSH")
fdrp <- compute.score.GRanges(bam.file=example.bam,range=example.GRanges)</pre>
```

compute.score.rnb

compute.score.rnb

Description

Main function to compute WSH scores based on a input RnBSet and a bam file containing the reads.

Usage

```
compute.score.rnb(bam.file, rnb.set, score = "qfdrp")
```

Arguments

bam. file path to bam file containing the reads

rnb. set path to RnBSet containing methylation, coverage and sample meta information

score The WSH score which should be computed, needs to be one of fdrp,qfdrp,pdr,epipolymorphism,

entropy or mhl

Value

data frame containing the annotation and the computed WSH scores

Author(s)

Michael Scherer

Examples

```
example.rnb.set <- system.file(file.path("extData","small_rnbSet.zip"),package="WSH")
example.bam <- system.file(file.path("extData","small_example.bam"),package="WSH")
fdrp <- compute.score.rnb(bam.file=example.bam,rnb.set=example.rnb.set)</pre>
```

```
create.genomebrowser.track
```

create.genomebrowser.track

Description

Converts the output of compute.score und compute.score.GRanges into genome browser tracks, that can be directly imported into e.g. UCSC Genome Browser.

Usage

```
create.genomebrowser.track(
  score.output,
  sample.name = "Sample",
  store.path = getwd(),
  bin.width = 5000
)
```

Arguments

score.output The output as generated through compute.score or compute.score.GRanges: a

data.frame with chromosome positions and the score values for those positions.

sample.name The name of the sample to be added to the file.

store.path The path to which the file is to be stored.

bin.width Width of bins in bp to aggregate the scores. If NULL, the scores are stored as

single CpGs.

get.option 13

Author(s)

Michael Scherer

get.option

get.option Print the value of the global option

Description

get.option Print the value of the global option

Usage

```
get.option(names)
```

Arguments

names

string or character vector containing the names of the options to be printed

Value

the option for the specified option

Author(s)

Michael Scherer

Examples

```
get.option("coverage.threshold")
set.option(coverage.threshold=42)
get.option("coverage.threshold")
```

rnb.calculate.fdrp

rnb.calculate.fdrp

Description

This function calculates the FDRP scores for a given RnBSet and a bam file containing the reads.

Usage

```
rnb.calculate.fdrp(rnb.set, bam.path, log.path = getwd(), cores = 1)
```

14 rnb.calculate.mhl

Arguments

rnb.set RnBSet object containing the CpG sites for which calculation should be con-

ducted

bam.path path to the bam file containing the reads

path to the log directory, if not existing it is created log.path

cores available for the analysis cores

Value

FDRP scores for the CpG sites in the RnBSet with a higher coverage than COVERAGE.THRESHOLD

Author(s)

Michael Scherer

Examples

```
example.rnb.set <- system.file(file.path("extData","small_rnbSet.zip"),package="WSH")</pre>
example.bam <- system.file(file.path("extData", "small_example.bam"),package="WSH")</pre>
fdrp <- rnb.calculate.fdrp(rnb.set=example.rnb.set,bam.path=example.bam)</pre>
```

rnb.calculate.mhl rnb.calculate.mhl

Description

This function calculates the MHL scores for a given RnBSet and a bam file containing the reads.

Usage

```
rnb.calculate.mhl(rnb.set, bam.path, roi.path = getwd())
```

Arguments

rnb.set RnBSet object containing the CpG sites for which calculation should be con-

ducted

path to the bam file containing the reads bam.path

roi.path path to a directory to which output can be added

Value

MHL scores for the CpG sites in the RnBSet with a higher coverage than COVERAGE.THRESHOLD

rnb.calculate.pdr

Description

This function calculates the PDR scores for a given RnBSet and a bam file containing the reads.

Usage

```
rnb.calculate.pdr(rnb.set, bam.path, log.path = getwd(), cores = 1)
```

Arguments

rnb.set	RnBSet object containing the CpG sites for which calculation should be con-
	ducted

bam. path path to the bam file containing the reads

log.path path to the log directory, if not existing it is created

cores cores available for the analysis

Value

PDR scores for the CpG sites in the RnBSet with a higher coverage than COVERAGE.THRESHOLD

Author(s)

Michael Scherer

Examples

```
example.rnb.set <- system.file(file.path("extData","small_rnbSet.zip"),package="WSH")
example.bam <- system.file(file.path("extData","small_example.bam"),package="WSH")
fdrp <- rnb.calculate.pdr(rnb.set=example.rnb.set,bam.path=example.bam)</pre>
```

```
rnb.calculate.qfdrp rnb.calculate.qfdrp
```

Description

This function calculates the qFDRP scores for a given RnBSet and a bam file containing the reads.

Usage

```
rnb.calculate.qfdrp(rnb.set, bam.path, log.path = getwd(), cores = 1)
```

Arguments

rnb.set RnBSet object containing the CpG sites for which calculation should be con-

ducted

bam. path path to the bam file containing the reads

log.path path to the log directory, if not existing it is created

cores cores available for the analysis

Value

qFDRP scores for the CpG sites in the RnBSet with a higher coverage than COVERAGE.THRESHOLD

Author(s)

Michael Scherer

Examples

```
example.rnb.set <- system.file(file.path("extData","small_rnbSet.zip"),package="WSH")
example.bam <- system.file(file.path("extData","small_example.bam"),package="WSH")
fdrp <- rnb.calculate.qfdrp(rnb.set=example.rnb.set,bam.path=example.bam)</pre>
```

```
run.haplotype.calculation
```

run.haplotype.calculation

Description

Runs the haplotype calculation associated with MHL's publication

Usage

```
run.haplotype.calculation(
  roi,
  bam.file,
  out.folder = getwd(),
  out.name = "hapinfo.txt",
  bam.type = "bismark"
)
```

Arguments

roi Region of interest for which haplotype information should be computed

bam. file path to bam file containing the reads

out.folder folder to write the output out.name name of the output file

bam. type alignment tools used to create the bam file

run.methclone 17

Author(s)

Michael Scherer

run.methclone run.methclone

Description

Runs the methclone software

Usage

```
run.methclone(bam.file, out.folder = getwd(), out.name = "methclone")
```

Arguments

bam.file path to bam file containing the reads for defining epialleles out.folder path to folder where methclones output should be stored out.name name of the output file

Author(s)

Michael Scherer

run.mhl.calculation run.mhl.calculation

Description

Runs the MHL calculation given the haplotype information file associated with MHL's publication

Usage

```
run.mhl.calculation(hapinfo.file, out.folder = getwd(), out.name = "mhl.txt")
```

Arguments

hapinfo.file path to haplotype information file as produced by run.haplotype.calculation

out.folder folder to write the output
out.name name of the output file

Author(s)

set.option

 $\operatorname{set.option}$

set.option

Description

Change global options for WSH score calculation

Usage

```
set.option(
  window.size = 50,
  mapq.filter = 35,
  max.reads = 40,
  min.overlap = 35,
  fdrp.type = "FDRP",
  coverage.threshold = 10,
  methclone.methylation.diff = 0,
  perl.path = "/usr/bin/perl",
  samtools.path = "/usr/bin"
)
```

Arguments

window.size	Window around the CpG site of interest to consider in FDRP and qFDRP calculation, the higher the value, the more likely it is to find heterogeneity		
mapq.filter	mapq filter used to filter out low quality reads		
max.reads	Maximum number of reads to be considered in FDRP and qFDRP calculation. The scores compute all pairs, therefore this is a crucial parameter for the running time of the calculation.		
min.overlap	Miniumum overlap between two reads to consider it as a read pair in FDRP/qFDRP calculation in bp.		
fdrp.type	FDRP type to be used: either FDRP or qFDRP		
coverage.threshold			
	Coverage Threshold emloyed to select the sites in a RnBSet annotation that fullfill havin a coverage higher than this threshold		
methclone.methylation.diff			
	Methylation difference parameter employed by the methclone software. Only sites are considered that have a methylation difference higher than this value in the methclone package.		
perl.path	Path to an installation of perl on the machine		
samtools.path	path to the directory where samtools is located in your machine		

Author(s)

VALID.SCORES 19

Examples

```
get.option("coverage.threshold")
set.option(coverage.threshold=42)
get.option("coverage.threshold")
```

VALID.SCORES

main.R

Description

This scripts contains main functions to calculate the scores.

Usage

VALID.SCORES

Format

An object of class character of length 6.

wsh.run.example

wsh.run.example

Description

Returns the scores for a small example data set of size 50kb

Usage

```
wsh.run.example(score = "qfdrp")
```

Arguments

score

The WSH score which should be computed, needs to be one of fdrp,qfdrp,pdr,epipolymorphism,entropy or mhl

Value

A data frame containing the annotation and the corresponding score

Author(s)

20 wsh.run.example

Examples

wsh.run.example("pdr")

Index

```
*Topic datasets
    VALID. SCORES, 19
calculate.entropy, 2
calculate.epipolymorphism, 3
calculate.fdrp, 3
calculate.fdrp.by.chromosome, 4
calculate.fdrp.score, 5
calculate.fdrp.site, 6
calculate.mhl, 6
calculate.pdr, 7
calculate.pdr.by.chromosome, 8
calculate.pdr.site,8
calculate.qfdrp, 9
compute.score, 10
compute.score.GRanges, 10, 11
compute.score.rnb, 10, 11
create.genomebrowser.track, 12
get.option, 13
rnb.calculate.fdrp, 13
rnb.calculate.mhl, 14
rnb.calculate.pdr, 15
rnb.calculate.qfdrp, 15
run.haplotype.calculation, 16, 17
run.methclone, 17
run.mhl.calculation, 17
set.option, 18
VALID. SCORES, 19
wsh.run.example, 19
```