

CS172 Overview

- Module: CS172 "Computer Systems 2" (7.5 credits)
- Lecturer:
 - Kevin Casey <kevin.casey@mu.ie>
 - Department of Computer Science

CS172 Structure

- Lectures:
 - Three lectures a week:
 - Tue @ 12.00
 - Thu @ 09.00 (Starts week 2)
 - Fri @ 14.00
- Lab & Tutorial:
 - Tutorial: One 1-hour tutorial per week
 - Lab: One 1-hour lab per week
- Two streams: theory and practice
- Tutorials start in week 2 (i.e. Monday 11th Feb)
 Labs start in week 3 (i.e. Monday 18th Feb)

CS172 Topics

What is CS172 about?

CS172 Topics

What is CS172 about?

- It's about developing a language to talk about computational structures
 - we want to be able to reason about them and deduce things about them.
- We could use:
 - A natural language: powerful enough, but too vague
 - A programming language: precise enough, but too detailed

CS172 Topics

What is CS172 about?

- It's about developing a language to talk about computational structures
 - we want to be able to reason about them and deduce things about them.
- We could use:
 - A natural language: powerful enough, but too vague
 - A programming language: precise enough, but too detailed
- Instead we use: Logic
- a family of languages that are as precise and as detailed as we want.

CS172 Textbook

Logic in Action

by Johan van Benthem, Hans van Ditmarsch, Jan van Eijck, Jan Jaspars,

www.logicinaction.org

November 23, 2016.

Parts of the *Logic in Action* textbook we'll cover

Classical Systems

- 2 Propositional Logic
- √ 3 Syllogistic Reasoning
- 4 Reasoning About Predicates and Classes Knowledge, Action, Interaction
 - Logic, Information and Knowledge
 - Logic and Action
 - Logic, Games and Interaction Methods
- 8 Validity Testing (Tableau)
- 9 Proofs (Natural Deduction)
- 10 Computation (Resolution)
 - **Appendices**
- Sets, Relations and Functions

CS172 Tutorials

- Each week there will be a **tutorial sheet** posted on Moodle.
- You can try these questions in your own time.
- The tutorial is a chance to ask questions or get help on the questions.

Tutorials start in week 2

CS172 Marks

Your CS172 marks will be calculated based on:

- 75% for the end of semester exam
- 25% for continuous assessment
- This continuous assessment is broken down as:
 - three tests (@ 7% each)
 - attendance marks (4%)

Some History...

René Descartes 1596-1650

La Géométrie, 1637

René Descartes 1596-1650

La Géométrie, 1637

Find the length of the line segment DE

René Descartes 1596-1650 La Géométrie, 1637

Find the length of the line segment DE

Circle: Center
$$(-2, -1)$$
, radius $= \sqrt{20}$

Line: through (-5,0), slope =-3

René Descartes 1596-1650

La Géométrie, 1637

Find the length of the line segment DE

Circle:
$$(x+2)^2 + (y+1)^2 = 20$$

Line: 3x + y = -15

René Descartes 1596-1650 La Géométrie, 1637

Find the length of the line segment *DE*

Circle:
$$(x+2)^2 + (y+1)^2 = 20$$

Line: 3x + y = -15

Points:
$$D = (-6,3)$$
, $E = (-4,-3)$

Distance: |DE| =

$$\sqrt{(-6-(-4))^2+(3-(-3))^2}$$

Calculating machines and binary numbers

Gottfried Leibniz 1646-1716

Calculating machines and binary numbers

Gottfried Leibniz 1646-1716

- The Step Reckoner 1672
 machine to do addition, subtraction,
 multiplication and division
 - [...] it is unworthy of excellent men to lose hours like slaves in the labour of calculation which could safely be relegated to anyone else if the machine were used.

Calculating machines and binary numbers

Gottfried Leibniz 1646-1716

• Explication de l'Arithmtique Binaire 1703

Explanation of the binary arithmetic, which uses only the characters 1 and 0, with some remarks on its usefulness, and on the light it throws on the ancient Chinese figures of Fu Xi

- Fu Xi is considered the originator of the *I Ching*

Words for water

water

uisce

eau

Words for water

water

水

uisce

eau

Water Ripple in hieroglyphs

Words for water

water

uisce

eau

... and on to computation

Gottfried Leibniz 1646-1716

... and on to computation

Gottfried Leibniz 1646-1716

Leibniz' Grand Programme:

- An encyclopedia describing the topics in the full extent of human knowledge.
- A characteristica universalis: symbols for the elements of human thought, a kind of universal concept language.
- A calculus ratiocinator, a system for manipulating these symbols to implement rules of deduction.

Logic vs. computation

Uses of the calculus ratiocinator:

Logic:

The only way to rectify our reasonings is to make them as tangible as those of the Mathematicians, so that we can find our error at a glance, and when there are disputes among persons, we can simply say: Let us calculate [calculemus], without further ado, to see who is right.

Computation:

[...] it is unworthy of excellent men to lose hours like slaves in the labour of calculation which could safely be relegated to anyone else if the machine were used.

Leibniz' Mechanica Dyadica

See: http://www.logicinaction.org/AUC/apps/java/leibniz

Phases in the development of Logic

Philosophical Logic	Aristotle 384-322 BC
300 BC - 1850	Chrysippus 279-206 BC
Logic as Algebra 1850-1900	Augustus de Morgan 1806-1871
	George Boole 1815-1864
	John Venn 1834-1923
Foundations of Maths 1880-1930	Gottlob Frege 1848-1925
	David Hilbert 1862-1943
	Bertrand Russell 1872-1970
Computer Science 1930-	Kurt Gödel 1906-1978
	Alonzo Church 1903-1995
	Alan Turing 1912-1954