TEST REPORT

Reference No. WTS16S0756079E

FCC ID 2AENE-ES160630

Applicant..... : ENTERTAINMENT SOLUTIONS S.L.U.

Address...... P.E. MIRAFLORES NAVE 3 - CTRA CASTELLON KM 5.25 (50720)

ZARAGOZA

Manufacturer : ENTERTAINMENT SOLUTIONS S.L.U.

Address P.E. MIRAFLORES NAVE 3 - CTRA CASTELLON KM 5.25 (50720)

ZARAGOZA

Product Name..... Set Top Box

Model No. ESTB-Qpd

Standards...... FCC CFR47 Part 15 C Section 15.247:2015

Date of Receipt sample : Jul. 18, 2016

Date of Test : Jul. 20 - 27, 2016

Test Result..... : Pass *

*Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Zero Zhou / Test Engineer

Philo Zhong / Manager

ed by:

Reference No.: WTS16S0756079E Page 2 of 72

2 Test Summary

Test Items	Test Requirement	Result
Radiated Emissions	15.205(a)	PASS
Radiated Effissions	15.209(a)	PASS
Conducted Emissions	15.207(a)	PASS
Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3),(4)	PASS
Power Spectral Density	15.247(e)	PASS
Band Edge	15.247(d)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

3 Contents

		Page
1	COVER PAGE	
2		
3		
4		Comparison of the comparison
	4.2 DETAILS OF E.U.T. 4.3 CHANNEL LIST	
5	EQUIPMENT USED DURING TEST	
	5.1 EQUIPMENTS LIST	
6	CONDUCTED EMISSION	9
	6.1 E.U.T. OPERATION	
7	RADIATED EMISSIONS	14
	7.2 TEST SETUP	
8	BAND EDGE MEASUREMENT	
	8.1 TEST PRODUCE	
9	BANDWIDTH MEASUREMENT	
	9.1 Test Procedure	
10		
10	10.1 Test Procedure	42
11	POWER SPECTRAL DENSITY	49
12	ANTENNA REQUIREMENT	
13	RF EXPOSURE	
	13.2 THE PROCEDURES / LIMIT	57
14	PHOTOGRAPHS -MODEL ESTB-QPD TEST SETUP PHOTOS	59

Reference No.: WTS16S0756079E Page 4 of 72

	14.1	Photograph – Radiated Emission	59
	14.2	PHOTOGRAPH – CONDUCTED EMISSION TEST SETUP AT TEST SITE 2#	62
15	РНОТ	TOGRAPHS - CONSTRUCTIONAL DETAILS	63
	15.1	Model ESTB-Qpd - External Photos	63
	15.2	MODEL ESTB-OPD - INTERNAL PHOTOS	69

Reference No.: WTS16S0756079E Page 5 of 72

4 General Information

4.1 General Description of E.U.T.

Product Name: Set Top Box

Model No.: ESTB-Qpd

Model Difference: N/A

Operation Frequency: 802.11b/g/n HT20: 2412MHz ~ 2462MHz,

802.11n HT40: 2422MHz~2452MHz

The lowest oscillator: 32,768KHz

Antenna Gain: 2dBi

Type of modulation: IEEE 802.11b (CCK/QPSK/BPSK,11Mbps max.)

IEEE 802.11g (BPSK/QPSK/16QAM/64QAM,54Mbps max.)
IEEE 802.11n (BPSK/QPSK/16QAM/64QAM,HT20:72Mbps max.,

HT40:150Mbps max.)

4.2 Details of E.U.T.

Technical Data: (Adapter 1 Input: 100-240VAC 50/60Hz, 0.3A

Output: DC 12V, 1000mA)

(Adapter 2 Input: 100-240VAC 50/60Hz, 0.35A

Output: DC 5V, 2000mA)

Adapter 1: : Manufacturer: QIAN FU DA ELECTRON CO., LTD

Model No.: QFD015-120100

Adapter 2: : Manufacturer: SHENZHEN KEYU POWER SUPPLY ECHNOLOGY

CO., LTD

Model No.: KA23-0502000DES

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2412	2	2417	3	2422	4	2427
5	2432	6	2437	7	2442	8	2447
9	2452	10	2457	11	2462	12	-

Reference No.: WTS16S0756079E Page 6 of 72

4.4 Test Mode

Table 1 Tests Carried Out Under FCC part 15.247

Test Items	Mode	Data Rate	Channel	TX/RX
	802.11b	11 Mbps	1/6/11	TX
Marianum Daali Ortant Damar	802.11g	54 Mbps	1/6/11	TX
Maximum Peak Output Power	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX
	802.11b	11 Mbps	1/6/11	TX
Dower Spectral Density	802.11g	54 Mbps	1/6/11	TX
Power Spectral Density	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX
	802.11b	11 Mbps	1/11	TX
Eraguanay Banga	802.11g	54 Mbps	1/11	TX
Frequency Range	802.11n HT20	108 Mbps	1/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX
	802.11b	11 Mbps	1/6/11	TX
Transmitter Spurious Emissions	802.11g	54 Mbps	1/6/11	TX
Transmiller Spundus Emissions	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX

Note :Parameters set by test software during channel & power tests, the software provided by the customer was used to set the operating channels as well as the output power level. The RF output power set is the power expected by the manufacturer and is going to be fixed on the firmware of the final product .

4.5 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A-1

Waltek Services(Shenzhen) Co., Ltd. Has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A-1, October 15, 2015.

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

FCC Test Site 2# Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

Reference No.: WTS16S0756079E Page 7 of 72

5 Equipment Used during Test

5.1 Equipments List

Condu	cted Emissions Test	Site 1#				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.15,2015	Sep.14,2016
2.	LISN	R&S	ENV216	101215	Sep.15,2015	Sep.14,2016
3.	Cable	Тор	TYPE16(3.5M)	-	Sep.15,2015	Sep.14,2016
Condu	cted Emissions Test	Site 2#				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.15,2015	Sep.14,2016
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.15,2015	Sep.14,2016
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.15,2015	Sep.14,2016
4.	4. Cable LARGE RF300 - Sep.15,2015					
3m Sei	mi-anechoic Chamber	for Radiation Emis	sions Test site	1#		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.15,2015	Sep.14,2016
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Sep.15,2015	Sep.14,2016
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Sep.15,2015	Sep.14,2016
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.15,2015	Sep.14,2016
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.19,2016	Apr.18,2017
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.19,2016	Apr.18,2017
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Sep.15,2015	Sep.14,2016
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Sep.15,2015	Sep.14,2016
3m Sei	mi-anechoic Chamber	for Radiation Emis	sions Test site	2#		
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	Sep.15,2015	Sep.14,2016
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Sep.15,2015	Sep.14,2016
3	Amplifier	Compliance pirection	PAP-0203	22024	Sep.15,2015	Sep.14,2016

Waltek Services (Shenzhen) Co.,Ltd.

http://www.waltek.com.cn

Reference No.: WTS16S0756079E Page 8 of 72

		systems inc								
4	Cable	HUBER+SUHNER	CBL2	525178	Sep.15,2015	Sep.14,2016				
RF Co	RF Conducted Testing									
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date				
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.15,2015	Sep.14,2016				
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.15,2015	Sep.14,2016				
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.15,2015	Sep.14,2016				

5.2 **Measurement Uncertainty**

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
De diete d'Onevieus Enviseires dest	± 5.03 dB (Bilog antenna 30M~1000MHz)
Radiated Spurious Emissions test	± 4.74 dB (Horn antenna 1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.3 Test Equipment Calibration
All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS16S0756079E Page 9 of 72

6 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

56 dB_μV between 0.5MHz & 5MHz60 dB_μV between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

6.1 E.U.T. Operation

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Transmitting mode, the test data were shown in the report.

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

6.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

6.4 Conducted Emission Test Result

Adapter 1 Live line:

Reference No.: WTS16S0756079E Page 11 of 72

Neutral line:

Adapter 2 Live line:

Reference No.: WTS16S0756079E Page 13 of 72

Neutral line:

Reference No.: WTS16S0756079E Page 14 of 72

7 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r05 & ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

Littit.						
_	Field Strei	ngth	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m Distance (m)		uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

7.1 EUT Operation

Operating Environment:

Temperature: 25.5 °C
Humidity: 51 % RH
Atmospheric Pressure: 1016 mbar

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

Reference No.: WTS16S0756079E Page 15 of 72

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10: 2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Reference No.: WTS16S0756079E Page 16 of 72

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GHz	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS16S0756079E Page 17 of 72

7.4 Test Procedure

1. The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane; For above1GHz, the EUT is 1.5m above ground plane.

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

7.5 Summary of Test Results

Test Frequency: 32.768KHz~ 30MHz

Frequency (MHz)	Measurement results		Measurement Detector Correct Extrapolation		Measurement results Limit (calculated)		Margin	
(1011 12)	dΒμV	@3m	PK/QP	dB/m	dB	dBμV/m @30m	dBµV/m @30m	dB
26.430	26.14		QP	19.90	40.00	6.04	29.54	-23.50

Test Frequency: 30MHz ~ 18GHz

Fraguenay	Receiver	er Datasta	Turn	able Corrected Corrected		Corrected	0 1 1	FCC Part 15.247/209/205	
Frequency	Reading	Detector	Angle			Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11b: Low Channel 2412MHz									
223.45	41.05	QP	14	1.6	Н	-11.62	29.43	46.00	-16.57
223.45	36.26	QP	348	1.9	V	-11.62	24.64	46.00	-21.36
4824.00	50.44	PK	167	1.9	V	-1.06	49.38	74.00	-24.62
4824.00	46.32	Ave	167	1.9	V	-1.06	45.26	54.00	-8.74
7236.00	41.08	PK	219	1.2	Н	1.33	42.41	74.00	-31.59
7236.00	41.96	Ave	219	1.2	Н	1.33	43.29	54.00	-10.71
2325.88	45.53	PK	46	1.9	V	-13.19	32.34	74.00	-41.66
2325.88	38.57	Ave	46	1.9	V	-13.19	25.38	54.00	-28.62
2387.15	44.55	PK	14	1.1	Н	-13.14	31.41	74.00	-42.59
2387.15	38.11	Ave	14	1.1	Н	-13.14	24.97	54.00	-29.03
2489.36	44.02	PK	22	2.0	V	-13.08	30.94	74.00	-43.06
2489.36	36.69	Ave	22	2.0	V	-13.08	23.61	54.00	-30.39

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	Carrantad	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11b: Mid	dle Chan	nel 243	7MHz			
223.45	40.20	QP	31	1.7	Н	-11.62	28.58	46.00	-17.42
223.45	34.91	QP	181	1.1	V	-11.62	23.29	46.00	-22.71
4874.00	50.87	PK	88	1.1	V	-0.62	50.25	74.00	-23.75
4874.00	46.82	Ave	88	1.1	V	-0.62	46.20	54.00	-7.80
7311.00	41.43	PK	20	1.6	Н	2.21	43.64	74.00	-30.36
7311.00	40.70	Ave	20	1.6	Н	2.21	42.91	54.00	-11.09
2334.00	46.20	PK	147	1.8	V	-13.19	33.01	74.00	-40.99
2334.00	37.68	Ave	147	1.8	V	-13.19	24.49	54.00	-29.51
2362.81	43.63	PK	316	1.2	Н	-13.14	30.49	74.00	-43.51
2362.81	36.65	Ave	316	1.2	Н	-13.14	23.51	54.00	-30.49
2490.42	42.52	PK	351	1.1	V	-13.08	29.44	74.00	-44.56
2490.42	38.98	Ave	351	1.1	V	-13.08	25.90	54.00	-28.10

Reference No.: WTS16S0756079E Page 20 of 72

Facessan	Receiver	Detector	Turn	RX An	tenna	Corrected Factor	Corrected	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar		Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11b: Hi	gh Chanr	nel 2462	MHz			
223.45	41.50	QP	139	1.2	Н	-11.62	29.88	46.00	-16.12
223.45	34.03	QP	239	1.1	V	-11.62	22.41	46.00	-23.59
4924.00	50.49	PK	353	1.4	V	-0.24	50.25	74.00	-23.75
4924.00	48.19	Ave	353	1.4	V	-0.24	47.95	54.00	-6.05
7386.00	41.20	PK	186	2.0	Н	2.84	44.04	74.00	-29.96
7386.00	41.93	Ave	186	2.0	Н	2.84	44.77	54.00	-9.23
2326.44	46.32	PK	164	1.1	V	-13.19	33.13	74.00	-40.87
2326.44	38.89	Ave	164	1.1	V	-13.19	25.70	54.00	-28.30
2374.08	43.86	PK	113	1.3	Н	-13.14	30.72	74.00	-43.28
2374.08	36.56	Ave	113	1.3	Н	-13.14	23.42	54.00	-30.58
2491.59	43.46	PK	139	1.6	V	-13.08	30.38	74.00	-43.62
2491.59	36.84	Ave	139	1.6	V	-13.08	23.76	54.00	-30.24

F	Receiver	Detector	Turn	RX An	tenna	Corrected Factor	Compated	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar		Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11g: Lo	w Chann	el 2412I	MHz			
223.45	41.07	QP	69	1.1	Н	-11.62	29.45	46.00	-16.55
223.45	35.25	QP	296	1.9	V	-11.62	23.63	46.00	-22.37
4824.00	51.95	PK	316	1.5	V	-1.06	50.89	74.00	-23.11
4824.00	49.50	Ave	316	1.5	V	-1.06	48.44	54.00	-5.56
7236.00	40.17	PK	350	1.9	Н	1.33	41.50	74.00	-32.50
7236.00	41.14	Ave	350	1.9	Н	1.33	42.47	54.00	-11.53
2310.40	45.19	PK	49	1.8	V	-13.19	32.00	74.00	-42.00
2310.40	38.73	Ave	49	1.8	V	-13.19	25.54	54.00	-28.46
2388.23	42.53	PK	251	2.0	Н	-13.14	29.39	74.00	-44.61
2388.23	38.12	Ave	251	2.0	Н	-13.14	24.98	54.00	-29.02
2488.80	44.45	PK	172	1.6	V	-13.08	31.37	74.00	-42.63
2488.80	37.02	Ave	172	1.6	V	-13.08	23.94	54.00	-30.06

Reference No.: WTS16S0756079E Page 22 of 72

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	Carra ata d	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11g: Mid	dle Chan	nel 243	7MHz			
223.45	40.98	QP	24	1.1	Н	-11.62	29.36	46.00	-16.64
223.45	35.47	QP	61	1.9	V	-11.62	23.85	46.00	-22.15
4874.00	50.65	PK	190	1.9	V	-0.62	50.03	74.00	-23.97
4874.00	48.77	Ave	190	1.9	V	-0.62	48.15	54.00	-5.85
7311.00	41.54	PK	298	1.3	Н	2.21	43.75	74.00	-30.25
7311.00	41.49	Ave	298	1.3	Н	2.21	43.70	54.00	-10.30
2338.87	46.19	PK	232	1.2	V	-13.19	33.00	74.00	-41.00
2338.87	38.63	Ave	232	1.2	V	-13.19	25.44	54.00	-28.56
2351.47	42.67	PK	284	1.9	Н	-13.14	29.53	74.00	-44.47
2351.47	36.17	Ave	284	1.9	Н	-13.14	23.03	54.00	-30.97
2485.06	42.06	PK	343	1.4	V	-13.08	28.98	74.00	-45.02
2485.06	37.56	Ave	343	1.4	V	-13.08	24.48	54.00	-29.52

Reference No.: WTS16S0756079E Page 23 of 72

_	Receiver	5	Turn	RX An	tenna	Corrected		FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11g: High Channel 2462MHz									
223.45	41.79	QP	68	1.6	Н	-11.62	30.17	46.00	-15.83
223.45	35.83	QP	268	1.1	V	-11.62	24.21	46.00	-21.79
4924.00	49.40	PK	211	1.5	V	-0.24	49.16	74.00	-24.84
4924.00	47.81	Ave	211	1.5	V	-0.24	47.57	54.00	-6.43
7386.00	41.80	PK	69	1.4	Н	2.84	44.64	74.00	-29.36
7386.00	41.46	Ave	69	1.4	Н	2.84	44.30	54.00	-9.70
2332.02	46.29	PK	96	1.5	V	-13.19	33.10	74.00	-40.90
2332.02	38.39	Ave	96	1.5	V	-13.19	25.20	54.00	-28.80
2382.91	44.90	PK	10	1.8	Н	-13.14	31.76	74.00	-42.24
2382.91	38.16	Ave	10	1.8	Н	-13.14	25.02	54.00	-28.98
2497.56	44.43	PK	96	1.3	V	-13.08	31.35	74.00	-42.65
2497.56	38.68	Ave	96	1.3	V	-13.08	25.60	54.00	-28.40

Reference No.: WTS16S0756079E Page 24 of 72

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	Compated	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	⊢actor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11 n20: L	ow Chan	nel 241	2MHz			
223.45	41.08	QP	304	1.3	Н	-11.62	29.46	46.00	-16.54
223.45	37.31	QP	310	1.5	V	-11.62	25.69	46.00	-20.31
4824.00	49.62	PK	344	1.3	V	-1.06	48.56	74.00	-25.44
4824.00	49.26	Ave	344	1.3	V	-1.06	48.20	54.00	-5.80
7236.00	42.35	PK	49	2.0	Н	1.33	43.68	74.00	-30.32
7236.00	41.46	Ave	49	2.0	Н	1.33	42.79	54.00	-11.21
2349.30	45.81	PK	14	1.9	V	-13.19	32.62	74.00	-41.38
2349.30	38.08	Ave	14	1.9	V	-13.19	24.89	54.00	-29.11
2384.63	43.21	PK	263	1.6	Н	-13.14	30.07	74.00	-43.93
2384.63	36.40	Ave	263	1.6	Н	-13.14	23.26	54.00	-30.74
2490.31	42.44	PK	179	1.8	V	-13.08	29.36	74.00	-44.64
2490.31	38.02	Ave	179	1.8	V	-13.08	24.94	54.00	-29.06

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	Carrantad	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11 n20: Middle Channel 2437MHz									
223.45	41.58	QP	264	1.1	Н	-11.62	29.96	46.00	-16.04
223.45	37.71	QP	281	1.6	V	-11.62	26.09	46.00	-19.91
4874.00	49.49	PK	248	1.1	V	-0.62	48.87	74.00	-25.13
4874.00	48.21	Ave	248	1.1	V	-0.62	47.59	54.00	-6.41
7311.00	42.86	PK	127	1.8	Н	2.21	45.07	74.00	-28.93
7311.00	41.82	Ave	127	1.8	Н	2.21	44.03	54.00	-9.97
2339.61	45.38	PK	343	1.6	V	-13.19	32.19	74.00	-41.81
2339.61	39.77	Ave	343	1.6	V	-13.19	26.58	54.00	-27.42
2389.23	44.17	PK	263	2.0	Н	-13.14	31.03	74.00	-42.97
2389.23	36.25	Ave	263	2.0	Н	-13.14	23.11	54.00	-30.89
2484.55	42.10	PK	292	1.1	V	-13.08	29.02	74.00	-44.98
2484.55	37.57	Ave	292	1.1	V	-13.08	24.49	54.00	-29.51

_	Receiver	5	Turn	RX An	tenna	Corrected		FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11 n20: F	ligh Char	nel 246	62MHz			
223.45	40.11	QP	27	1.4	Н	-11.62	28.49	46.00	-17.51
223.45	37.94	QP	203	1.8	V	-11.62	26.32	46.00	-19.68
4924.00	48.96	PK	299	1.0	V	-0.24	48.72	74.00	-25.28
4924.00	47.47	Ave	299	1.0	V	-0.24	47.23	54.00	-6.77
7386.00	44.30	PK	49	1.2	Н	2.84	47.14	74.00	-26.86
7386.00	42.10	Ave	49	1.2	Н	2.84	44.94	54.00	-9.06
2315.33	46.15	PK	99	1.3	V	-13.19	32.96	74.00	-41.04
2315.33	39.13	Ave	99	1.3	V	-13.19	25.94	54.00	-28.06
2356.25	42.07	PK	11	1.7	Н	-13.14	28.93	74.00	-45.07
2356.25	36.75	Ave	11	1.7	Н	-13.14	23.61	54.00	-30.39
2492.37	43.77	PK	82	1.9	V	-13.08	30.69	74.00	-43.31
2492.37	36.27	Ave	82	1.9	V	-13.08	23.19	54.00	-30.81

Reference No.: WTS16S0756079E Page 27 of 72

F	Receiver	L)etector	Turn	RX An	tenna	Corrected Factor	Compated	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar		Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			n40: Lo	w Chann	el 2422I	MHz			
223.45	39.53	QP	330	1.1	Н	-11.62	27.91	46.00	-18.09
223.45	34.82	QP	337	1.1	V	-11.62	23.20	46.00	-22.80
4844.00	48.52	PK	55	1.8	V	-1.06	47.46	74.00	-26.54
4844.00	47.66	Ave	55	1.8	V	-1.06	46.60	54.00	-7.40
7266.00	41.24	PK	256	1.2	Н	1.33	42.57	74.00	-31.43
7266.00	38.83	Ave	256	1.2	Н	1.33	40.16	54.00	-13.84
2325.77	46.14	PK	331	1.9	V	-13.19	32.95	74.00	-41.05
2325.77	38.32	Ave	331	1.9	V	-13.19	25.13	54.00	-28.87
2388.97	43.35	PK	9	1.8	Н	-13.14	30.21	74.00	-43.79
2388.97	36.25	Ave	9	1.8	Н	-13.14	23.11	54.00	-30.89
2498.55	42.34	PK	156	1.2	V	-13.08	29.26	74.00	-44.74
2498.55	38.97	Ave	156	1.2	V	-13.08	25.89	54.00	-28.11

F	Receiver	Datastan	Turn	RX An	tenna	Corrected Factor	Compated	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar		Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			n40: Mid	dle Chan	nel 243	7MHz			
223.45	39.07	QP	175	1.2	Н	-11.62	27.45	46.00	-18.55
223.45	34.76	QP	87	1.6	V	-11.62	23.14	46.00	-22.86
4874.00	48.97	PK	52	1.1	V	-0.62	48.35	74.00	-25.65
4874.00	48.33	Ave	52	1.1	V	-0.62	47.71	54.00	-6.29
7311.00	41.04	PK	217	1.1	Н	2.21	43.25	74.00	-30.75
7311.00	39.74	Ave	217	1.1	Н	2.21	41.95	54.00	-12.05
2333.59	46.82	PK	258	1.8	V	-13.19	33.63	74.00	-40.37
2333.59	38.15	Ave	258	1.8	V	-13.19	24.96	54.00	-29.04
2366.68	43.05	PK	99	1.4	Н	-13.14	29.91	74.00	-44.09
2366.68	37.12	Ave	99	1.4	Н	-13.14	23.98	54.00	-30.02
2495.89	43.73	PK	99	1.5	V	-13.08	30.65	74.00	-43.35
2495.89	38.53	Ave	99	1.5	V	-13.08	25.45	54.00	-28.55

Reference No.: WTS16S0756079E Page 29 of 72

Fragues	Receiver	Detector	Turn	RX An	tenna	Corrected	Carrantad	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			n40: Hiç	gh Chann	el 2452	MHz			
223.45	39.45	QP	206	1.2	Н	-11.62	27.83	46.00	-18.17
223.45	35.46	QP	349	1.8	V	-11.62	23.84	46.00	-22.16
4904.00	49.62	PK	332	1.9	V	-0.24	49.38	74.00	-24.62
4904.00	48.76	Ave	332	1.9	V	-0.24	48.52	54.00	-5.48
7356.00	40.80	PK	16	1.7	Н	2.84	43.64	74.00	-30.36
7356.00	40.51	Ave	16	1.7	Н	2.84	43.35	54.00	-10.65
2343.29	45.57	PK	180	1.8	V	-13.19	32.38	74.00	-41.62
2343.29	39.59	Ave	180	1.8	V	-13.19	26.40	54.00	-27.60
2386.97	43.10	PK	345	1.0	Н	-13.14	29.96	74.00	-44.04
2386.97	36.74	Ave	345	1.0	Н	-13.14	23.60	54.00	-30.40
2484.32	43.07	PK	200	1.5	V	-13.08	29.99	74.00	-44.01
2484.32	38.41	Ave	200	1.5	V	-13.08	25.33	54.00	-28.67

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported

Reference No.: WTS16S0756079E Page 30 of 72

8 **Band Edge Measurement**

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r05 April 08, 2016 Test Limit:

Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits

specified in §15.209(a) (see §15.205(c)).

Test Mode: **Transmitting**

8.1 **Test Produce**

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Reference No.: WTS16S0756079E Page 31 of 72

8.2 Test Result

11b

11g Band edge-left side * RBW 100 kHz Offs 0.50 dB * Att 20 dB * VBW 300 kHz M2[1] -50.65 dBm Batt Ref 10.50 dBm SWT 15ms 2.399730000 GHz M1[1] -49.31 dBm 2.400000000 GHz 1Rm 0 dBm Max -10 dBm D1 -15,460 dBm -20 dBm--30 dBm -40 dBm 45.460 dBm -50 dBm -60 dBm -70 dBm -80 dBm Stop 2.432 GHz Start 2.31 GHz

11 N20

11 N40

Reference No.: WTS16S0756079E Page 35 of 72

9 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r05 April 08, 2016

9.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

9.2 Test Result:

Operation mode	6dB Bandwidth (MHz)						
	Channel 1	Channel 6	Channel 11				
TX 11b	10.092	10.092	10.092				
	Channel 1	Channel 6	Channel 11				
TX 11g	16.617	16.617	16.617				
	Channel 1	Channel 6	Channel 11				
TX 11n HT20	17.838	17.838	17.838				
	Channel 3	Channel 6	Channel 9				
TX 11n HT40	36.560	36.560	36.560				

Reference No.: WTS16S0756079E Page 36 of 72

Test result plot as follows:

Mode: TX 11b channel 11

Reference No.: WTS16S0756079E Page 42 of 72

10 Maximum conducted (average) output power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r05 April 08, 2016

10.1 Test Procedure

558074 D01 DTS Meas Guidance v03r05 April 08, 2016 section 9.2.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 1MHz. VBW = 3MHz. Sweep = auto; Detector Function =RMS, Set the span to at least 1.5 times the 6 dB bandwidth.
- 3. Keep the EUT in transmitting at lowest, Middle and highest channel individually. Record the max value.

10.2 Test Result

Test mode :TX 11b						
Maximum conducted(average) output power (dBm)						
2412MHz 2437MHz 2462MHz						
9.11	9.22					
Limit: 1W/30dBm						

Test mode :TX 11g				
Maximum conducted(average) output power (dBm)				
2412MHz 2437MHz 2462MHz				
9.35 9.07 9.04				
Limit: 1W/30dBm				

Test mode :TX 11n HT20						
Maximum conducted(average) output power (dBm)						
2412MHz 2437MHz 2462MHz						
9.38 9.08 9.04						
Limit: 1W/30dBm						

Test mode : TX 11n HT40					
	10 Maximum Peak Output Power (dBm)				
2422MHz 2437MHz 2452MHz					
9.22 9.37 9.42					
Limit: 1W/30dBm					

Reference No.: WTS16S0756079E Page 43 of 72

Test result plot as follows:

Mode: TX 11b channel 11

Reference No.: WTS16S0756079E Page 49 of 72

11 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r05 April 08, 2016

11.1 Test Procedure

558074 D01 DTS Meas Guidance v03r05 April 08, 2016 section 10.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

11.2 Test Result

Test mode :TX 11b					
Power Spectral density					
2412MHz 2437MHz 2462MHz					
-24.32 -24.26 -24.07					
Limit: 8dBm per 3kHz					

Test mode :TX 11g					
Power Spectral density					
2412MHz 2437MHz 2462MHz					
-26.94 -27.70 -27.42					
Limit: 8dBm per 3kHz					

Test mode :TX 11n HT20					
Power Spectral density					
2412MHz 2437MHz 2462MHz					
-27.18 -27.54					
Limit: 8dBm per 3kHz					

Test mode : TX 11n HT40					
Power Spectral (dBm per 3kHz)					
2422MHz 2437MHz 2452MHz					
-26.70 -29.97 -28.29					
Limit: 8dBm per 3kHz					

Mode: TX 11n HT20 channel 11

Mode: TX 11n HT40 channel 9

12 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

This device uses of an antennas that uses a specified coupling to the intentional radiator. Antenna connectors complied with the requirement.

Reference No.: WTS16S0756079E Page 57 of 72

13 RF Exposure

Test Requirement: FCC Part 1.1307

Evaluation Method: FCC Part 2.1091 & KDB 447498 D01 General RF Exposure Guidance v06

13.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

13.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

(7 t) =11111to 101 0 000	7 () Entrite for Cocapational 7 Controlled Exposure				
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ², H ²or S (minutes)	
0.3-3.0	614	1.63	(100)*	6	
3.0-30	1842 / f	4.89 / f (900 / f)*		6	
30-300	61.4	0.163	1.0	6	
300-1500			F/300	6	
1500-100,000			5	6	

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)			Averaging Time E ² , H ² or S (minutes)		
0.3-1.34	614	1.63	(100)*	30	
1.34-30	824/f	2.19/f	(180/f)*	30	
30-300	27.5	27.5 0.073		30	
300-1500			F/1500	30	
1500-100,000			1.0	30	

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTS16S0756079E Page 58 of 72

13.3 MPE Calculation Method

$$\mathbf{S} = \frac{P \times G}{4 \times \pi \times R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = output power to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

From the peak EUT RF output power, the minimum mobile separation distance, R=20cm, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Antenna Gain Gain (dBi) (numeric)		Maximum conducted Output Power (dBm)	Maximum conducted Output Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)
2.00	1.585	9.42	8.75	0.002759	1

Reference No.: WTS16S0756079E Page 59 of 72

14 Photographs – Model ESTB-Qpd Test Setup Photos

14.1 Photograph – Radiated Emission

Test frequency 32.768KHz to 30MHz Test Site 2# Adapter 1

Adapter 2

Test frequency from 30MHz to 1GHz Test Site 2#

Adapter 1

Adapter 2

Test frequency above 1GHz Test Site 1# Adapter 1

Adapter 2

14.2 Photograph – Conducted Emission Test Setup at Test Site 2#

Adapter 1

Adapter 2

Reference No.: WTS16S0756079E Page 63 of 72

15 Photographs - Constructional Details

15.1 Model ESTB-Qpd - External Photos

Reference No.: WTS16S0756079E Page 64 of 72

Reference No.: WTS16S0756079E Page 65 of 72

Reference No.: WTS16S0756079E Page 66 of 72

Reference No.: WTS16S0756079E Page 67 of 72

Reference No.: WTS16S0756079E Page 68 of 72

15.2 Model ESTB-Qpd - Internal Photos

Reference No.: WTS16S0756079E Page 70 of 72

Reference No.: WTS16S0756079E Page 71 of 72

Reference No.: WTS16S0756079E Page 72 of 72

=====End of Report=====