Mehrkriterielle Optimierung 6.3.2012

Carsten Franke

Lernziele dieser Vorlesung

- Entwicklung des Grundverständnis für mehrkriterielle Optimierungsprobleme
- Erlernen der Pareto-Begrifflichkeiten
- Verständnis der klassischen Optimierungsmethoden
- Erlernen des ersten evolutionären mehrkriteriellen Verfahrens

Einleitung

- Bisher nur Optimierungen mit einem Zielkriterium
- Nun, Zielkritierien mit Zielkonflikten für ein gemeinsames Optimierungsproblem
- Beispiele:
 - Autokauf (Preis versus Leistung)
 - Motorenleistung (Hubraum versus Verbrauch)
 - Prüfungen (Arbeitszeit versus Freizeit)

Beispiel Autokauf

Darstellung unterschiedlicher Optimierungskombinationen

In realen Problemen -Nebenbedingungen

Aber: Was wird dazwischen präferiert?

Methode 1: Präferenz-basierte Mehrkriterielle Optimierung

Methode 2: Ideale Mehrkriterielle Optimierung

Vergleich

Präferenzbasierte mehrkriterielle Optimierung

 Einkriterielle Lösung, die in Iterationen verbessert wird (klassische Verfahren)

Zur Erzeugung der Menge der Lösungen mit Zielkonflikt sind viele parameterisierte Lösung nötig

Ideale mehrkriterielle Optimierung

 Ziel: viele Lösungen mit Zielkonflikt

Evolutionär geeignet, da pro Generation viele individuelle Lösungen existieren

Mehrkriterielle Optimierung – formaler Ansatz

$$f_m(x) \rightarrow \min, m = 1, 2...M$$

mit den Nebenbedingungen:

$$g_{j}(x) \ge 0, \quad j = 1, 2 ... J;$$

 $h_{k}(x) = 0, \quad k = 1, 2 ... K;$
 $x_{i}^{(U)} \le x_{i} \le x_{i}^{(O)}, \quad i = 1, 2 ... n;$

Konzept der Dominanz (Annahme: Zielminimierung)

Eine Lösung $x^{(1)}$ wird als **dominant** bezeichnet gegenüber einer Lösung $x^{(2)}$ wenn beide Bedingungen erfüllt sind:

1) Die Lösung $x^{(1)}$ ist nicht schlechter als $x^{(2)}$ in allen Zielfunktionen, oder

$$f_j(x^{(1)}) \prec = f_j(x^{(2)})$$
 für alle $j = 1, 2...M$

2) Die Lösung $x^{(1)}$ ist strikt besser als $x^{(2)}$ bezüglich mindestens einer Zielfunktion, oder

$$f_j(x^{(1)}) \prec f_j(x^{(2)})$$
 für mindestens eins $j \in [1, M]$

Das Ermitteln der nicht-dominierten Menge mit M-Funktionen und 1N-Variablen benötigt: $O(N(\log N)^{M-2})$

Ziele der mehrkriteriellen Optimierung

Paretodominanz

Paretoäquvalenz – Paretodominanz

Multi-Objective Optimization Formal Problem Definition

- Pareto Optimalität: Ein Entscheidungsvektor $\vec{x} \in X_f$ ist non-dominated bezüglich der Menge $A \subseteq X_f$, wenn $\vec{\exists} \vec{a} \in A : \vec{a} \prec_p \vec{x}$. Des Weiteren ist \vec{x} Pareto optimal wenn \vec{x} nicht dominiert wird von X_f .
- Nicht dominierte Menge und Front: Sei $A \subseteq X_f$. Die Funktion nd(A) ergibt die nicht-dominierte Untermenge von A:

$$nd(A) = {\vec{x} \in A \mid \vec{\exists} \vec{x}' \in A \text{ with } \vec{x}' \prec_p \vec{x}}$$

Die zugehörigen Objektvektoren $\vec{f}(X_p)$ bilden die nicht-dominierte Front bezüglich A. Des Weiteren wird die Menge $X_p = nd(X_f)$ die **Pareto optimale Menge** und die Menge $\vec{f}(nd(X_f))$ die **Pareto-Front** genannt.

Übung

- Welche Aussage ist richtig:
 - Die Pareto-Front beschreibt alle Entscheidungsvektoren, die von anderen Lösungen nicht dominiert werden.
 - Die Pareto-Menge beschreibt alle Entscheidungsvektoren, die von anderen Lösungen nicht dominiert werden.

Pareto-optimale Lösungen (min-min)

Pareto-optimale Lösungen (min-max)

Pareto-optimale Lösungen (max-min)

Pareto-optimale Lösungen (max-max)

Übung

 Gegeben seien folgende Nutzenfunktionen

Minimiere $(-x_1^3)$

Maximiere $\exp(x_1^2)$

Wenn beide Nutzenfunktionen optimiert werden, kann es dabei Pareto-optimale Lösungen geben? Begründen Sie.

Übung

2. Überprüfen Sie ob die erste Lösung die zweite dominiert.

```
a) (min, min): f^{(1)} = (1,2; 3,5)^T, f^{(2)} = (1,5; 3.0)^T
```

- b) (min, max, min): $f^{(1)} = (10.5; 1.5; -10.0)^T$, $f^{(2)} = (5.0; 0.5; -12)^T$
- c) (min, min, min): $f^{(1)} = (10.5; 1.5; -10.0)^T$, $f^{(2)} = (5.0; 0.5; -12)^T$
- d) (max, max, min): $f^{(1)} = (10,5;1,5; -10,0)^T$, $f^{(2)} = (5,0;0,5;-12)^T$
- e) (max, max, max): $f^{(1)} = (10.5; 1.5; -10.0)^T$, $f^{(2)} = (5.0; 0.5; -12)^T$
- f) (min, max, max): $f^{(1)} = (10,5;1,5; -10,0)^T$, $f^{(2)} = (5,0;0,5;-12)^T$

Klassische Methoden

Klassische Verfahren der mehrkriteriellen Optimierung:

- Gewichtete Summenmethode
- epsilon-bedingte Methode
- Gewichtete Metrik-Methode
- Werte-Funktion Methode
- Benson's Methode
- Ziel-Programmierung Methode

Methode 1: Präferenz-basierte Mehrkriterielle Optimierung

Gewichtete Summenmethode

- Gebräuchlichste klassische Methode
- Gewichte : definiert vom Anwender

• Maximiere:
$$F_m(x) = \sum_{m=1}^{M} w_m \cdot f_m(x)$$

• mit: $g_j(x) \ge 0, \quad j = 1, 2 \dots J;$ $\sum_{m=1}^{M} w_i = 1, w_i \ge 0$
• $h_k(x) = 0, \quad k = 1, 2 \dots K;$
• $x_i^{(L)} \le x_i \le x_i^{(U)}, \quad i = 1, 2 \dots n;$

- Vorteile:
 - Einfach zu nutzen
 - Für konvexe Fronten nachweislich
- Nachteile:
 - Gewichte sind sehr sensitiv
 - Unterschiedliche Gewichte führen nicht notwendiger Weise zu unterschiedlichen Lösungen

Übung

• Maximiere:
$$F_m(x) = \sum_{m=1}^{M} w_m \cdot f_m(x)$$

• mit: $g_j(x) \ge 0, \quad j = 1, 2 \dots J;$ $\sum_{m=1}^{M} w_i = 1, w_i \ge 0$
 $h_k(x) = 0, \quad k = 1, 2 \dots K;$ $x_i^{(L)} \le x_i \le x_i^{(U)}, \quad i = 1, 2 \dots n;$

 Was muss variiert werden, um eine Pareto-Front zu erzeugen?

epsilon-bedingte Methode

• Minimiere: $f_{\mu}(x)$,

```
• mit:  f_m(x) \le \mathcal{E}_m, \ m = 1, 2 ... M \text{ und } m \ne \mu 
 g_j(x) \ge 0, \ j = 1, 2 ... J; 
 h_k(x) = 0, \ k = 1, 2 ... K; 
 x_i^{(L)} \le x_i \le x_i^{(U)}, \ i = 1, 2 ... n;
```

Vorteile:

 Methode funktioniert für konvexe und nicht-konvexe Suchräume

Nachteile:

- Für alle Nutzenfunktionen sind gute Informationen notwendig
- Lösung hängt sehr vom gewählten epsilon ab

Gewichtete Metrik Methode

• Minimiere:
$$l_p(x) = \left(\sum_{m=1}^{M} w_m | f_m(x) - z_m^*|^p\right)^{\frac{1}{p}}$$
,

• mit: z^* - ideale Lösung $g_j(x) \ge 0$, j = 1, 2...J; $h_k(x) = 0$, k = 1, 2...K;

• Sonderform gewichtet Tchebycheff: $l_{\infty} = \max_{m=1}^{M} (w_m \mid f_m(x) - z_m^* \mid)$

 $x_i^{(L)} \le x_i \le x_i^{(U)}, i = 1, 2 \dots n;$

- Vorteile:
 - gewichtetes Tchebycheff Problem findet alle Pareto-optimalen Lösungen, wenn z* ein utopian Vector ist (Miettinen 1999)
- Nachteile:
 - Werte können sich in Größenordnungen unterscheiden. Daher ist eine Normalisierung sinnvoll, die zusätzliches Wissen braucht.
 - Die ideale Lösung z* muss bekannt sein.

Benson's Methode

$$\max \sum_{m=1}^{M} \max(0, (z_m^{\circ} - f_m(x)))$$

$$mit \ f_m(x) \le z_m^{\circ}$$

- "Vergrößere den Abstand zu einer schlechten Lösung" z_m
- Problem: Optimierungsmethoden sind schwer nutzbar, da die Optimierungsfunktion nicht differenzierbar ist

Werte-Funktion Methode

$$\max U(f(x)); U: R^M \to R$$

$$f(x) = (f_1(x), f_2(x), \dots, f_M(x))^T$$

Probleme:

- Werte-Funktion ist schwer zu bestimmen
- Werte-Funktion muss überall im gültigen Lösungsraum definiert sein.

Ziel-Programmierungs-Methode

Für jede Zielfunktion wird ein Ziel definiert

$$Ziel(f(x) = t)$$

- Oft Übersetzung in: f(x) p + n = tpositive Abweichung negative Abweichung
- Resultierendes Ziel: $\min(p+n)$
- z.B. gewichtete Zielprogrammierung:

$$\min \sum_{m=1}^{M} (\alpha_{m} p_{m} + \beta_{m} n_{m})$$

$$\min f_{m}(x) - p_{m} + n_{m} = t, m = 1, 2, ..., M$$

Übung

 Was kann mittels alpha und beta realisiert werden?

Probleme der klassischen Ansätze Wie soll die Diversität erhalten werden?

Klassische Methoden

Vorteile:

- Konvergenz (hier nicht gezeigt)
- leicht zu implementieren

Nachteile:

- stets Umwandlung eines mehrkriteriellen
 Problems in ein einkriterielles Problem
- Parametervariation notwendig um eine Pareto-Front zu erhalten (unterschiedliche Parameter müssten dann zu unterschiedlichen Lösungen führen)

Methode 2: Ideale Mehrkriterielle Optimierung

Wesentliche Vorteile mehrkriterieller Evolutionärer Algorithmen

- Pro Generation werden viele Lösungen gefunden
- Kein Bedarf nach idealen Lösungen/Gewichten etc.
- Alle nicht-dominierten Lösungen werden gleich betont
- Methoden zur Erhaltung der Diversität lassen sich besser integrieren
- Algorithmen können an viele verschiedene Probleme angepasst werden

Mehr-kriterielle Evolutionäre Algorihtmen (Beispiele)

- Nicht-elitäre Algorithmen
 - Vector Evaluated Genetic Algorithm (VEGA)
 - Non-dominated Sorting Genetic Algorithm (NSGA)
 - Predator-Prey Evolution Strategy
 - sehr viele andere
- Elitäre Algorithmen
 - Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II)
 - Strength Pareto Evolutionary Algorithm (SPEA 2)
 - S metric selection Multi-objective Evolutionary Algorithm (SMS-EMOA)
 - Indicator Based Evolutionary Algorithm (IBEA)
 - viele andere

Allgemeiner evolutionärer Algorithmus

Hier liegen die wesentlichen Änderung. Dies ist im Wesentlichen auch für die meisten anderen mehrkriteriellen EAs so.

Vector Evaluated Genetic Algorithm

- Erster bekannter mehrkriterieller evolutionärer Algorithmus von Schaffer (1984)
- Nutzung eines Vektors für die verschiedenen Funktionswerte – ein Eintrag pro Funktion
- Extrem einfacher Algorithmus
- Eindeutige Zuweisung einer zufälligen, aber gleich großen Teilmenge der jeweiligen Population zu den jeweiligen Nutzenfunktionen
- Nutzung eines "normalen" Genetischen Algorithmus" zur eigentlichen Evolution

VEGA Auswertungsschema

In der Regel sollte die Zuordnung zufällig erfolgen.

Aktuelle Population

Reproduktionspool für die neue Population

Neue Population

Übung

Welcher Teil eines allgemeinen EAs wird bei VEGA verändert?

VEGA Selektion

- N- Anzahl der Individuen; M-Anzahl der Nutzenfunktionen
- 1) Setze i = 1 und q = N/M
- 2) Für alle j=1+(i-1)*q bis j=i*q:
 - 1) $F(x^j) = f_i(x^j) //wähle für Individum j die Nutzenfunktion i$
- Führe F-proportionale Selektion aller q Lösungen aus und erstelle den Pool_i
- 4) Wenn i=M, gehe zu 5. Sonst i++ und 2)
- 5) Erstelle den Reproduktionspool $P = \bigcup_{i=1}^{M} P_i$

VEGA Vor- und Nachteile

- Vorteile
 - Einfach und leicht zu implementieren
- Nachteile
 - Viele Lösungen liegen nahe an den optimalen Lösungen der einzelnen Nutzenfunktionen (schlechte Diversität)
 - Rekombinations-operator versagt häufig beim Erstellen von Zwischenlösungen zur Erzeugung der Pareto-Front

Ubung

Das Problem

• Das Problem
$$f(d,h) = c(\frac{\pi d^2}{2} + \pi dh)$$
 Maximiere
$$g_1(d,h) = \frac{\pi d^2 h}{4}$$
 Variablen
$$0 < d \le 32$$

$$0 < h \le 32$$

- Erzeugen Sie die Pareto-Front mit VEGA!
- Nutzen Sie pro Nutzenfunktion 15 zufällig ausgewählte Individuen.
- Nutzen Sie die Rang-basierte Selektion

Vorlesungsplanung

- 21.02.2012: Einkriterielle Evolutionäre Optimierung I (CF)
- 28.02.2012: Einkriterielle Evolutionäre Optimierung II (CF)
- 06.03.2012: Test (1+2), Mehrkriterielle Evolutionäre Optimierung I (CF)
- 13.03.2012: Statistische Lerntheorie I (JP)
- 20.03.2012: Statistische Lerntheorie II (JP)
- 27.03.2012: Test (4+5), Neuronale Netze (JP)
- 10.04.2012: Support Vector Maschinen I (JP)
- 02.05.2012: Mehrkriterielle Evolutionäre Optimierung II (CF)
- 08.05.2012: Genetische Fuzzy Systeme (CF)
- 15.05.2012: Test (3+8+9), Meta-Heuristiken (ACO, PSO) (CF)
- 22.05.2012: Simulated Annealing und andere Suchmethoden (CF)
- 29.05.2012: Support Vector Maschinen II (JP)
- 05.06.2012: Test (6+7+12), Clustering (JP)
- 12.06.2012: Lernen und Spieltheorie (JP)
- 26.06.2012: 1. Termin mündliche Prüfungen
- 03.07.2012: 2. Termin mündliche Prüfungen

Hausaufgabe

- Beenden Sie bitte alle in der Vorlesung nicht vollständig bearbeiteten Übungen+
- Lesen Sie das paper: "Indicator-Based Selection in Multiobjective Search" von Eckart Zitzler and Simon Künzli (beide ETH Zürich)