

Licenciatura em Engenharia Informática

Análise Matemática 1º Semestre 2022-2023

Cálculo Diferencial

AULA TEÓRICO - PRÁTICA 5

Tema: Funções Reais de Várias Variáveis

Objetivo: No final desta aula os alunos deverão ser capazes de:

- determinar derivadas parciais;
- determinar derivadas de funções compostas usando o teorema da derivada da função composta;
- resolver exercícios envolvendo o diferencial total.
- 1. Calcule as derivadas parciais de 1ª ordem das funções:

1.1
$$f(x,y) = 5x^2y + 4xy^3$$
;

1.2
$$f(x,y) = 2^{xy^3}$$
;

1.3
$$f(x,y) = ln(3^x + x^y);$$

1.4
$$f(x, y, z) = e^x \sin(z) + \cos(x - 3y);$$

1.5
$$f(x, y, z) = (\cot x)^{\tan y} + z^{xy};$$

1.6
$$f(x, y, z) = \ln \sqrt{\frac{x^2 - y^2}{x^2 + y^2}} - \cos(\ln(z))$$
 em $P = (1, 0, 1)$.

2. Seja z = ln(x + y).

Aplicando o teorema da derivada da função composta, escreva a expressão de $\frac{dz}{dt}$, sendo $x=\tan(2t)$ e $y=\frac{1}{3^t}$.

- 3. Considere a função $f(x,y) = \ln(x^2 3y) + y$. Sendo $x = \sqrt{u} + \cos(v)$ e $y = \arctan(u+v)$, calcule $\frac{\partial f}{\partial u}\Big|_{v=0}^{u=1}$, aplicando o teorema da derivada da função composta.
- 4. Calcule, caso exista, o diferencial total das seguintes funções:

4.1
$$f(x,y) = x^3 - x^2y + 3y^2$$
;

4.2
$$f(x,y) = x^2 e^{xy} + x \arctan(y)$$
, no ponto $(0,1)$;

4.3
$$f(x,y) = ln(x^2 + y^2) + x \tan(y)$$
, no ponto $\left(0, \frac{\pi}{4}\right)$;

4.4
$$f(x, y, z) = x^2 e^{yz} + \ln(z^y)$$
, no ponto $(2, 0, 1)$.

- 5. Seja $z = f(x,y) = 3x^2 xy$. Calcule $\triangle z$ e dz quando (x,y) varia de (1,2) para (1.01,1.98).
- 6. Usando o conceito de diferencial total, calcule o valor aproximado das seguintes funções nos pontos indicados:

6.1
$$f(x,y) = \sqrt[5]{x + \ln y}$$
, no ponto (32.1, 1.2);

6.2
$$f(x,y) = \sin(x)\cos(y)$$
, no ponto $(47^{\circ}, 44^{\circ})$.

7. Num cone circular reto (cone de revolução), o raio da base e a altura são medidos como tendo 12 cm e 27 cm, respetivamente, com um possível erro de medição de até 0.1 cm em cada.

Use diferenciais para estimar o erro máximo no cálculo do volume do cone.

Soluções:

1.1
$$\frac{\partial f}{\partial x} = 10xy + 4y^3$$
; $\frac{\partial f}{\partial y} = 5x^2 + 12xy^2$

1.2
$$\frac{\partial f}{\partial x} = y^3 2^{xy^3} ln2;$$
 $\frac{\partial f}{\partial y} = 3xy^2 2^{xy^3} ln2$

1.3
$$\frac{\partial f}{\partial x} = \frac{3^x \ln 3 + yx^{y-1}}{3^x + x^y}; \quad \frac{\partial f}{\partial y} = \frac{x^y \ln x}{3^x + x^y}$$

1.4
$$\frac{\partial f}{\partial x} = e^x \sin z - \sin(x - 3y);$$
 $\frac{\partial f}{\partial y} = 3\sin(x - 3y);$ $\frac{\partial f}{\partial z} = e^x \cos z$

$$1.5 \frac{\partial f}{\partial x} = -\frac{\tan x \tan y}{\sin^2 x} (\cot x)^{\tan y} + yz^{xy} lnz; \quad \frac{\partial f}{\partial y} = \sec^2 y (\cot x)^{\tan y} ln(\cot x) + xz^{xy} lnz; \quad \frac{\partial f}{\partial z} = xyz^{xy-1} lnz;$$

1.6
$$\frac{\partial f}{\partial x}|_P = 0;$$
 $\frac{\partial f}{\partial y} = |_P = 0;$ $\frac{\partial f}{\partial z}|_P = 0$

2.
$$\frac{dz}{dt} = \frac{2 \sec^2(2t) \ 3^t - \ln 3}{3^t \tan(2t) + 1}$$

3.
$$\frac{\partial f}{\partial u}\Big|_{\substack{u=1\\v=0}} = \frac{2}{16-3\pi} + \frac{1}{2}$$

4.1
$$dz = (3x^2 - 2xy) dx + (-x^2 + 6y) dy$$

4.2
$$df|_{(0,1)} = \frac{\pi}{4} dx$$

4.3
$$df|_{(0,\frac{\pi}{4})} = 1 dx + \frac{8}{\pi} dy$$

$$4.4 \ df|_{(2,0,1)} = 4 \ dx + 4 \ dy$$

5.
$$\triangle z = 0.0605$$
 $dz = 0.06$

6.1
$$f(32.1, 1.2) \approx 2 + \frac{3}{800} \approx 2.00375$$

6.2
$$f(47^{\circ}, 44^{\circ}) \approx \frac{1}{2} + \frac{\pi}{120} \approx 0.53$$

7.
$$26.4\pi \ cm^3 \approx 83 \ cm^3$$