Fonction inverse, classe de terminale STMG

1 Étude de la fonction inverse

Définition:

On appelle fonction *inverse* la fonction définie pour tout nombre réel appartenant à $]-\infty;0[\cup]0;+\infty[$ par $f:x\mapsto=\frac{1}{x}.$

Tableau de valeurs:

x	-4	-3	-2	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1	2	4
				••••				••••		

Propriété:

La fonction inverse est dérivable sur] $-\infty;0[$ et sur]0; $+\infty[$ et sa dérivée est :

Preuve:

On a pour tout réel a non nul et tout réel h tel que $a+h\neq 0$, $\frac{f(a+h)-f(a)}{h}=\dots$

qui tend vers quand h tend vers 0.

Variations, propriété:

La fonction inverse est:

- strictement sur;
- strictement sur

Preuve:

Sur, sa fonction dérivée étant strictement, la fonction inverse est strictement, sa fonction dérivée étant strictement, la fonction inverse est strictement, la fonction inverse est strictement

x	$-\infty$	••••	$+\infty$
$\frac{1}{x}$			

Représentation graphique :

Signe:

La fonction inverse est sur $]-\infty;0[$ et sur $]0;+\infty[$.

\boldsymbol{x}	$-\infty$		$+\infty$		
$\frac{1}{x}$					

Comportement aux bornes de son ensemble de définition, propriété et définition : :

Propriété (rappel) :

Soit k un réel.

- L'équation x = k est l'équation de la droite parallèle à l'axe des et passant par le point de coordonnées

2 Application à l'étude de fonctions

Exemple [Étude d'une fonction somme d'une fonction polynomiale et de la fonction inverse] :

On considère la fonction f définie sur $]0; +\infty[$ par $f(x) = 2x + 1 + \frac{8}{x}$.

On a $f'(x) = \dots$

...

..... est une fonction polynôme du second degré $ax^2 + bx + c$ avec a =, b = et c =

Par ailleurs, on constate que $2(x+2)(x-2) = \dots$

En outre a>0 donc le signe de est d'où :

x	0		$+\infty$
f'(x)		 	
f			
		••••	