Advanced Calculus

Name:

Exam II Review, October 6, 2023

"All students are enjoined in the strongest possible terms to eschew proofs by contradition! H.L ROYDEN Real Analysis

Row and Seat:

- 1. Show that the sequence $F = k \in \mathbb{Z}_{\geq 1} \mapsto 8 \frac{1}{k}$ is bounded above.
- 2. Show that the sequence $F = k \in \mathbb{Z}_{\geq 1} \mapsto \frac{(-1)^k}{k^2}$ converges.
- 3. Show that the sequence $F = k \in \mathbb{Z}_{\geq 1} \mapsto \begin{cases} k! & k < 10^9 \\ \frac{(-1)^k}{k^2} & k \geq 10^9 \end{cases}$ converges.
- 4. Show that the sequence $F = k \in \mathbb{Z}_{\geq 1} \mapsto \frac{3k+1}{2k+8}$ converges.
- 5. Show that the sequence $F = k \in \mathbb{Z}_{\geq 1} \mapsto k 3\lfloor \frac{k}{3} \rfloor$ does not converge to 1.
- 6. Using the definition from the QRS, show that the interval $(-\infty, 8)$ is open.
- 7. Let $A \subset \mathbf{R}$. Using the definition of an open set in the QRS, write the undefintion of an open set. That is, complete the statement:

A is not open \equiv

- 8. Using the undefition from the previous question, show that the set $(-\infty, 8) \cup \{9\}$ is not open.
- 9. Let $A \subset \mathbf{R}$. Using the definition of a limit point in the QRS, write the undefintion of limit point. That is, complete the statement:

$$x \not\in \operatorname{lp}(A) \equiv$$

- 10. Use your undefinition from the previous question to show that $5 \notin lp(\mathbf{Z})$.
- 11. Use the QRS defintion of a *boundary point* to show that $12 \in bp((0,12))$.
- 12. Use the result of the previous question to show that (0, 12) is not closed.
- 13. Show that the set \mathbf{R} is not compact by showing that there is an open cover of \mathbf{R} that has no finite subcover.
- 14. Show that the set **Z** is not compact by showing that there is an open cover of **Z** that has no finite subcover.
- 15. Let *F* be a convergent sequence, and let $\alpha \in \mathbf{R}$. Show that αF is a convergent sequence.
- 16. Let F be a convergent sequence and suppose $\operatorname{range}(F) \subset ([0,\infty))$. Show that \sqrt{F} converges. You may use the fact that $(\forall x, y \in \mathbf{R}_{\geq 0}) (|\sqrt{x} \sqrt{y}| \leq \sqrt{|x-y|})$
- 17. For the sequence $F = k \in \mathbb{Z}_{\geq 0} \mapsto k 3\lfloor \frac{k}{3} \rfloor$, give three examples of a convergent subsequence.

- 18. Give an example of a sequence F and a real number α such that αF converges and F diverges.
- 19. Give an example of sequences F and G such that both F and G diverge, but F+G converges.
- 20. Give an example of sequences F and G such that both F and G diverge, but FG converges.
- 21. Show that $(\forall x, y \in \mathbf{R}_{\geq 0}) (\sqrt{x+y} \leq \sqrt{x} + \sqrt{y})$.