BF4.104

March 25, 2020

1 Mekanik II, uppgift 4.104

The radius r of the steering wheel is 200 mm. The distance d from O to C is 1 m. The center C of the steering wheel lies in the x-y plane. The driver exerts a force $\mathbf{F} = 10\hat{x} + 10\hat{y} - 5\hat{z}$ (N) on the wheel at A. If the angle $\alpha = 0$, what is the magnitude about the shaft OC?

2 Lösning:

2.1 Resonemang

Det som söks är momentet \mathbf{M}_{OC} kring rattstången som går i riktningen \hat{r}_{OC} . Därför är ett lämpligt tillvägagångssätt att först bestämma momentet \mathbf{M}_{C} kring rattens centrum C for att sedan använda ekvationen för momentet kring en axel som ger $\mathbf{M}_{OC} = (\mathbf{M}_{C} \cdot \hat{r}_{OC})\hat{r}_{OC}$.

2.2 Krafter, moment och vektorer

För att kunna beräkna \mathbf{M}_{OC} behöver vi först bestämma enhetsvektorn \hat{r}_{C} och kraftmomentet \mathbf{M}_{OC} .

Enhetsvektorn \hat{r}_{OC} ligger i xy-planet och kan med hjälp av trigonometriska samband skrivas som $\hat{r}_{OC}=\cos 20\hat{x}+\sin 20\hat{y}$

Eftersom den enda kraft som bidrar i problemet är \mathbf{F} , vilken verkar med vektorn \mathbf{r}_{CA} kring punkten C, blir kraftmomentet $\mathbf{M}_C = \mathbf{r}_{CA} \times \mathbf{F}$

Eftersom vinkeln $\alpha=0$ enligt uppgiften ligger punkten A i samma plan som rattstången, d.v.s. i xy-planet. Även om det är svårt att se i figuren kan man anta att ratten sitter vinkelrätt mot rattstången. En projektion av systemet i xy-planet ges nedan:

För att tydligare se hur ett uttryck för \mathbf{r}_{CA} kan fås kan man använda vinkelförhållanden enligt figurer nedan:

Så \mathbf{r}_{CA} kan därför skrivas $\mathbf{r}_{CA} = r \sin 20 \hat{x} - r \cos 20 \hat{y} \text{ (m)}$ och \mathbf{F} är som givet i uppgiften $\mathbf{F} = 10 \hat{x} + 10 \hat{y} - 5 \hat{z} \text{ (N)}$

2.3 Beräkning

Vi börjar med att beräkna kraftmomentet $\mathbf{M}_{C} = \mathbf{r}_{CA} \times \mathbf{F}$

$$\mathbf{r}_{CA} \times \mathbf{F} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ r \sin 20 & -r \cos 20 & 0 \\ 10 & 10 & -5 \end{vmatrix} = 5r \cos 20\hat{x} + 5r \sin 20\hat{y} + (10r \sin 20 + 10r \cos 20)\hat{z}$$

Med kraftmomentet \mathbf{M}_C uträknat kan vi nu räkna momentet \mathbf{M}_{OC} längs rattstången OC. Som ett delsteg räknar vi skalärprodukten $\mathbf{M}_C \cdot \hat{r}_{OC}$:

$$\mathbf{M}_C \cdot \hat{r}_{OC} = (\cos 20\hat{x} + \sin 20\hat{y}) \cdot (5r\cos 20\hat{x} + 5r\sin 20\hat{y} + 20r\sin 20\hat{z}) = 5r\cos^2 20 + 5r\sin^2 20 + 0 = 5r(\cos^2 20 + \sin^2 20) = 5r$$

Vilket ger oss kraftmomentet kring OC som:

$$\mathbf{M}_{OC} = (\mathbf{M}_C \cdot \hat{r}_{OC})\hat{r}_{OC} = 5r(\cos 20\hat{x} + \sin 20\hat{y}) = 5r\cos 20\hat{x} + 5r\sin 20\hat{y}$$

Med insatt värde r = 0.2m blir $\mathbf{M}_{OC} = 5r\cos 20\hat{x} + 5r\sin 20\hat{y} = \cos 20\hat{x} + \sin 20\hat{y}$ (Nm)

Normen av \mathbf{M}_{OC} ger oss magnituden M_{OC} som söktes i uppgiften:

$$M_{OC} = \sqrt{(\cos 20\hat{x} + \sin 20\hat{y})^2} = \sqrt{\cos^2 20 + \sin^2 20} = \sqrt{1} = 1 \text{ (Nm)}$$

(Notera att redan skalärprodukten $\mathbf{M}_C \cdot \hat{r}_{OC}$ gav oss magnituden eftersom \hat{r}_{OC} är en enhetsvektor).

2.4 Svar

Magnituden av kraftmomentet kring AC är $M_{AC} = 1$ (Nm)