Zadanie: GRA Gra platformowa

XXVIII OI, etap I. Plik źródłowy gra.* Dostępna pamięć: 256 MB.

19.10 - 23.11.2020

Bajtazar gra w grę platformową na swoim nowym komputerze. Plansza do gry składa się z n ułożonych pod sobą platform, po których może poruszać się postać gracza. Każda platforma ma długość X, tak więc pozycja postaci może być opisana za pomocą pary liczb (i,x), gdzie i to numer platformy, licząc od góry, a x to odległość od lewego krańca platformy ($1 \le i \le n, 1 \le x \le X$). Postać gracza startuje z lewego krańca pewnej platformy i musi dojść do prawego krańca dowolnej platformy. Postać może poruszać się jedynie w prawo.

Żeby nie było jednak tak prosto, to w niektórych miejscach na platformach znajdują się dziury, które utrudniają graczowi poruszanie się. Postać może je przeskakiwać albo używać do spadania/wskakiwania na platformy znajdujące się niżej/wyżej. Nigdzie na planszy nie ma dwóch dziur bezpośrednio pod sobą, ani bezpośrednio obok siebie.

Formalnie, jeśli postać znajduje się na pozycji (i, x), to możliwe ruchy gracza wyglądają następująco:

- Klawiszem $\lceil F \rceil$ może przejść na pozycję (i, x + 1), jeśli nie znajduje się w niej dziura.
- Klawiszem F może spaść na pozycję (i+1,x+1), jeśli $i \neq n$ oraz na pozycji (i,x+1) jest dziura.
- Klawiszem A może przeskoczyć na pozycję (i, x + 2), jeśli na pozycji (i, x + 1) jest dziura.
- Klawiszem B może wskoczyć na pozycję (i-1,x+1), jeśli $i \neq 1$ oraz na pozycji (i-1,x) jest dziura.

Znając początkowe położenie gracza oblicz, ile minimalnie skoków (czyli naciśnięć klawiszy A i B) potrzebuje, by dotrzeć do prawego krańca dowolnej platformy.

Wejście

W pierwszym wierszu wejścia znajdują się trzy liczby całkowite n, X oraz z ($1 \le n \le 100\,000, 1 \le X \le 10^9, 1 \le z \le 100\,000$) oznaczające liczbę i długość platform oraz liczbę zapytań.

W kolejnych n wierszach są opisane platformy; i-ty z nich zaczyna się nieujemną liczbą całkowitą k_i oznaczającą liczbę dziur na i-tej platformie, po której znajduje się rosnący ciąg k_i liczb całkowitych oznaczających odległości tych dziur od lewego końca platformy. Na żadnej platformie dziury nie znajdują się na lewym ani na prawym krańcu oraz dziury nie sąsiadują ze sobą, a na kolejno następujących po sobie platformach nie istnieją dziury mające tę samą odległość od lewego końca swojej platformy. Sumaryczna liczba dziur jest nie większa niż 2 000 000.

W kolejnych z wierszach znajdują się zapytania; j-ty z nich zawiera liczbę całkowitą p_j $(1 \le p_j \le n)$.

Wyjście

Twój program powinien wypisać na wyjście z wierszy; j-ty z nich powinien zawierać liczbę całkowitą, będącą odpowiedzią na pytanie: ile minimalnie naciśnięć przycisków $\boxed{\mathbf{A}}$ i $\boxed{\mathbf{B}}$ potrzeba, żeby dojść z pozycji $(p_j,1)$ na pozycję, której druga współrzędna to X.

Przykład

Dla danych wejściowych:	poprawnym wynikiem jest:
3 9 3	1
1 6	1
2 3 8	0
2 5 7	
3	
2	1
1	2
	3
	1 2 3 4 5 6 7 8 9

Wyjaśnienie przykładu: Gracz, startując z pozycji (3,1), może nacisnąć dwa razy klawisz F, by dostać się do pozycji (3,3), następnie klawiszem B wskakuje na pozycję (2,4) i po pięciokrotnym użyciu klawisza F, spadając przy tym niżej, znajdzie się na pozycji (3,9).

Startując z pozycji (2,1), można nacisnąć klawisz [F], potem [A], a potem pięć razy [F].

Startując z pozycji (1,1), wystarczy naciskać tylko klawisz F.

Testy "ocen":

1
ocen: n=5, test bez wyraźnej struktury;

2ocen: n = 50, dziury umieszczone po przekatnej;

3ocen: n = 50, dziury tworzą szachownicę.

Ocenianie

Zestaw testów dzieli się na następujące podzadania. Testy do każdego podzadania składają się z jednej lub większej liczby osobnych grup testów.

Podzadanie	Warunki	Liczba punktów
1	$z \le 5, \ n \cdot X \le 1000000$	30
2	$z \le 5$	50
3	bez dodatkowych warunków	20