Departamento de Matemática, Universidade	DE AVEIR	O MATEMÁTICA DISCRETA
Teste 2, 14 de Junho de 2023, Duração: 1h45m	\mathbf{A}	Classificação:
Nome:		N^o Mec.:
Declaro que desisto:		Folhas supl.:

- 1. (4 val) Um hotel tem 20 quartos que vão ser pintados usando 5 cores. Cada quarto é pintado com uma única cor. Considere que só tem tinta azul (uma das cinco cores) para pintar três quartos e o mesmo acontece relativamente à tinta verde, e tem tinta suficiente de cada uma das restantes três cores para pintar todos os quartos.
 - a) Determine a série geradora correspondente ao problema de determinação do número de possibilidades de pintar n quartos com as cinco cores.
 - b) A partir da série geradora obtida em (1a) obtenha o valor do coeficiente que dá a solução do problema para os 20 quartos.

Departamento de Matemática, Universidade	DE AVEIR	O MATEMÁTICA DISCRETA
Teste 2, 14 de Junho de 2023, Duração: 1h45m	\mathbf{B}	Classificação:
Nome:		N^{o} Mec.:
Declaro que desisto:		Folhas supl.:

- 2. (2 val) Determine o coeficiente de x^4y no desenvolvimento de $(xy+\frac{2}{y}-3x)^6$.
- 3. (5 val) Considere o número a_n de sequências de comprimento $n \in \mathbb{N}$ nos algarismos «0» e «1» e no símbolo «X», que não contêm dois algarismos consecutivos.
 - a) Justifique que a sucessão $(a_n)_{n\geq 0}$ satisfaz a equação de recorrência $a_n=a_{n-1}+2a_{n-2}$ $(n\geq 2)$, e indique as condições iniciais.
 - b) Determine a função (ou série) geradora de $(a_n)_{n\geq 0}$.
 - c) Resolva a equação de recorrência indicada em (3a), determinando uma fórmula fechada para a_n .

Nota. Se não resolveu a questão (3a), considere os valores iniciais $a_0 = a_1 = 1$.

Departamento de Matemática, Universidade	DE AVEIRO	MATEMÁTICA DISCRETA
Teste 2, 14 de Junho de 2023, Duração: 1h45m	\mathbf{C}	Classificação:
Nome:		N^{o} Mec.:
Declaro que desisto:		Folhas supl.:

4. (7 val) Seja G o seguinte grafo simples não orientado com custos nas arestas representado na figura 1.

Figura 1: O grafo G

Figura 2: O grafo J

- a) Considere o subgrafo H de G induzido pelo conjunto de vértices $\{a,b,c,d,f\}$. Determine o número $\tau(H)$ de árvores abrangentes de H, aplicando a fórmula recursiva $\tau(H) = \tau(H e) + \tau(H//e)$, sendo e uma aresta de H que não é lacete. Justifique.
- b) Determine um caminho de custo mínimo entre os vértices \mathbf{a} e \mathbf{e} em G, aplicando o algoritmo de Dijkstra. Apresente todos os passos do algoritmo usando uma tabela adequada e indique o custo total do caminho determinado.
- c) Seja J o grafo simples indicado na figura 2. Os grafos G e J são isomorfos? Justifique devidamente e, no caso afirmativo, indique o respetivo isomorfismo.
- 5. (2 val) Numa festa onde estão 31 pessoas é possível que cada uma destas pessoas conheça exatamente 5 das restantes pessoas? Justifique.