« Previous (/course/cs357-f15/flow-session/74246/6/)
下一页 » (/course/cs357-f15/flow-session/74246/8/)
① (/course/cs357-f15/flow-session/74246/0/) (/course/cs357-f15/flow-session/74246/1/)
② (/course/cs357-f15/flow-session/74246/2/) (/course/cs357-f15/flow-5
⑤ Session/74246/3/) (/course/cs357-f15/flow-session/74246/4/)
② (/course/cs357-f15/flow-session/74246/5/) (/course/cs357-f15/flow-session/74246/8/)
② Session/74246/6/) (/course/cs357-f15/flow-session/74246/8/)

An example

Take a look at a specific call option for Toyota (TM):

TM Oct 2015 120.000 call (TM151016C00120000) - OPR * watchlist

3.85 0.00 (0.00%) 8:17AM EDT

Prev Close:	3.85	Day's Range:	3.85 - 4.15		
Open:	3.85	Contract Range:	N/A - N/A		
Bid:	N/A	Volume:	18		
Ask:	N/A	Open Interest:	105		
Strike:	120.00				
Expire Date:	16-Oct-15				

Quotes delayed, except where indicated otherwise. Currency in USD.

https://finance.yahoo.com/q?s=TM151016C00120000 (https://finance.yahoo.com/q?s=TM151016C00120000)

How do we read this option box? (http://www.investopedia.com/university/options/option4.asp). It lists the *strike* price of \$120.00 and an expiration date of 16 October 2015. It looks like the value is around \$3.85 which is a good target for our simulation.

What else do we need to know? *Volatility* is missing here and can be challenging to predict. For now, we'll assume we know the the volatility for this option is 25%.

We also need the *current stock price*. At the moment it's around \$122.00

Add to Portfolio

f Like {13

122.00 +2.04(1.70%) Sep 16, 4:04PM EDT

Prev Close:	119.96	Day's Range:	121.54 - 122.33	Toyota ■ TM	Motor	Cor	porat			on :00 pm 1	FDT	
Open:	121.81	52wk Range:	108.40 - 145.80	A	20.00	Mhan				.oopiii		122.5
Bid:	120.32 x 100	Volume:	439,615	1,400	M-J.		M	V	A. A.	garage of the state of	100	122.0 121.5
Ask:	122.46 x 100	Avg Vol (3m):	354,368									121.0
1y Target Est:	149.97	Market Cap:	191.98B									120.5
Beta:	0.554096	P/E (ttm):	10.40	© Yahoo)!							120.0 119.5
Next Earnings Date:	N/A	EPS (ttm):	11.73	10am		12pi	m	2	pm Pre	vious C	4pm lose	
		Div & Yield:	4.02 (3.44%)	1d	5d	1m	3m	6m	1y	2y	5у	max

Quotes delayed, except where indicated otherwise. Currency in USD.

http://finance.yahoo.com/q?s=TM&fr=uh3_finance_web&uhb=uhb2 (http://finance.yahoo.com/q?s=TM&fr=uh3_finance_web&uhb=uhb2)

How do we approximate the interest rate? The US LIBOR rate (http://www.homefinance.nl/english/international-interest-rates/libor/libor-interest-rates-usd.asp) appears to be about 0.21% for a two-week rate.

We're going to make teh asset pricing a bit simpler. Recall the geometric Brownian motion:

$$S_T = S_t e^{(r - \frac{\sigma^2}{2})(T - t) + \sigma\sqrt{T - t}\epsilon}$$

Try this to see if we're close on the asset price

```
import datetime
S = 122.00
sigma = 0.25
r = 0.0021
T = (datetime.dat(2015,10,16) - datetime.date(2015,9,17)).days / 365.0
```

What does the our Browniand asset pricer give us?

Next, we'll calculating the call payout (from C_T previously). Recall that it's worth either $S_T - K$ or 0:

```
def call_payout(S_T, K):
    """
S_T : asset price (prediction) at time T
    K : strike price
    """
    return max(0, S_T - K)
```

Here we're not use the the array-aware version.

What is the payoff for your asset price (above) with the strike price?