Branch-Cut Discontinuities of $\frac{1}{2}\log\xi\left(\frac{1}{2}+it\right)$

BY STEPHEN CROWLEY
August 28, 2025

Theorem 1. Let $\xi(s)$ denote Riemann's ξ -function, which is entire, and fix a single-valued branch Log of the complex logarithm on $\mathbb{C} \setminus (-\infty, 0]$ (the principal branch). Consider the function

$$F(t) = \frac{1}{2} \operatorname{Log}\left(\xi\left(\frac{1}{2} + it\right)\right) \forall t \in \mathbb{R}$$
(1)

defined wherever $\xi\left(\frac{1}{2}+it\right)\notin(-\infty,0]$. Then the following hold:

- 1. F is continuous on any maximal open interval of t for which $\xi\left(\frac{1}{2}+it\right)$ avoids $(-\infty,0]$.
- 2. At any t_0 with $\xi\left(\frac{1}{2}+i\,t_0\right)\in(-\infty,0]$ and $\xi\left(\frac{1}{2}+i\,t_0\right)\neq0$, the one-sided limits of F exist and satisfy

$$\lim_{t \to t_0^+} F(t) - \lim_{t_0^-} F(t) = \pi i \tag{2}$$

i.e., F exhibits a jump discontinuity of size πi (equivalently, Log jumps by $2\pi i$ and the prefactor $\frac{1}{2}$ halves the jump).

3. The set of t at which these discontinuities occur is precisely the preimage of the negative real axis under the map $t \mapsto \xi\left(\frac{1}{2} + it\right)$, excluding zeros of ξ ; consequently, the observed discontinuities are branch-cut crossings of Logo ξ and not singularities of ξ .

Proof. The proof proceeds in three steps corresponding to parts (1), (2), and (3) of Theorem 1.

Step 1: Proof of (1). Since $\xi(s)$ is entire by construction, ξ has no poles or branch points in s and $\xi\left(\frac{1}{2}+it\right)$ is a continuous function of t into \mathbb{C} . Since the only multivalued object in F is Log, all discontinuities of F must arise from the branch structure of Log applied to the continuous path $t\mapsto \xi\left(\frac{1}{2}+it\right)$. This establishes the reduction to the logarithm.

The principal branch Log with branch cut along $(-\infty, 0]$ is analytic and thus continuous on $\mathbb{C} \setminus (-\infty, 0]$. Therefore F is continuous at any t_0 for which $\xi(\frac{1}{2} + i t_0) \notin (-\infty, 0]$.

Step 2: Proof of (2). Let $w(t) := \xi(\frac{1}{2} + it)$ and suppose $w(t_0) \in (-\infty, 0]$ with $w(t_0) \neq 0$. Because w is continuous and nonzero at t_0 , there exists $\delta > 0$ such that:

- 1. $w(t) \neq 0$ for $|t t_0| < \delta$, and
- 2. the image $w((t_0 \delta, t_0 + \delta))$ crosses the branch cut transversely at $w(t_0)$.

Approaching $w(t_0)$ from the upper half-plane corresponds to arguments $\arg w(t) \to \pi^-$, while from the lower half-plane corresponds to $\arg w(t) \to (-\pi)^+$ (principal values). Hence

$$\lim_{t \to t_0^+} \text{Log}w(t) - \lim_{t \to t_0^-} \text{Log}w(t) = 2\pi i$$
(3)

the standard $2\pi i$ jump across the negative real axis for the principal logarithm. Multiplying by $\frac{1}{2}$ yields the stated jump πi for F.

Step 3: Proof of (3). By definition, the principal branch is continuous precisely off its branch cut. Therefore one-sided jumps can only occur when the continuous path w(t) intersects the branch cut, i.e., when $w(t) \in (-\infty, 0]$.

If w(t) = 0, then Logw(t) is undefined and a different analysis is required (zeros are branch points of $\text{Log}\circ w$), but by hypothesis these are excluded from consideration in part (2).

Conversely, every transverse crossing of $(-\infty, 0]$ yields the jump quantified in part (2). Thus the discontinuity set is exactly $w^{-1}((-\infty, 0]) \setminus w^{-1}(\{0\})$.

Corollary 2. Any specific numerical locations of discontinuities (e.g., $t = \pm (e-1)$ in a given plot) are exactly the real parameters for which $\xi\left(\frac{1}{2}+i\,t\right)$ lands on the negative real axis under the chosen branch. These values therefore solve

$$\arg \xi \left(\frac{1}{2} + i t\right) \equiv \pi (\operatorname{mod} 2 \pi) \tag{4}$$

Corollary 3. Since ξ is entire, the discontinuities described in Theorem 1 are not singularities of ξ ; they arise solely from composing the entire function ξ with a single-valued branch of Log along the critical line.