General Relativity

Richard Bower

Epiphany Term 2020

Contents

Lecture 1	2
Lecture 2 Introduction to Tensors	3
2.1 Intro to Tensor Notation	3
2.2 Coordinate Transformation	3
2.3 Tensors	4
Lecture 3	5
3.1 Higher order tensors	5
3.2 Tensor Equations	5
3.3 The metric tensor	5
3.4 Kronecker Delta	5
Lecture 4	6
Lecture 5	7
Lecture 6	8
6.1 Geodesic Equations	9

Just intro stuff

Lecture 2 Introduction to Tensors

- ➤ Notation
- ➤ Coordinate transforms
- ➤ Contravariant tensors
- ➤ Covariant tensors

2.1 Intro to Tensor Notation

Consider the cartesian definition for \underline{r} :

$$\underline{r} = x\underline{i} + y\underline{j} + \underline{z}. \tag{2.1}$$

We have the basis vector $\{\underline{i},\underline{j},\underline{k}\}$ and coordinate values $\{x,y,z\}$. We can write this in a different form as

$$\underline{r} = x^1 \underline{e}_1 + x^2 \underline{e}_2 + x^3 \underline{e}_3. \tag{2.2}$$

Note: $x^2 \neq x * x$. The 2 is an index, not a power. If we want to square something, we will write $(x^1)^2 = x^1 x^1$. We can rewrite the above again as

$$\underline{r} = \sum_{i=1}^{3} x^{i} \underline{e}_{i}. \tag{2.3}$$

We can then simplify this further using the Einstein summation convention:

$$\underline{r} = x^i \underline{e}_i, \tag{2.4}$$

i.e. whenever there is a repeated index, we sum over them. Different letters will imply different things:

- \triangleright Roman letters i, j, \ldots summing over 3D space
- \blacktriangleright Roman letters a, b, c, \ldots summing over ND space
- ightharpoonup Roman letters A, B, \ldots summing over 2D space
- ➤ Greek letters $\alpha, \beta, \mu, \nu, \ldots$ summing over 4D space-time $\{x^0, x^1, x^2, x^3\}$, starting from 0 as time is different slightly, so $\{ct, x^i\}$

2.2 Coordinate Transformation

You may be used to

$$x' = \gamma \left(x - \frac{vct}{c} \right), \tag{2.5}$$

where the extra c factor to make time space-like. This notation can get confusing so instead we use:

$$x^{\bar{1}} = \gamma \left(x^1 - \frac{v}{c} x^0 \right), \tag{2.6}$$

where the 'bar' indicates new coordinate system.

For a minute vector difference between points P and Q $d\underline{r}$ in two coordinate systems, we can define \underline{e}_a :

$$\underline{r}(P) = \underline{e}_{\bar{a}} x^{\bar{a}} \qquad \underline{r}(P) = \underline{e}_{\bar{b}} x^{\bar{b}} \qquad (2.7)$$

$$d\underline{r} = dx^a \underline{e}_a \tag{2.8}$$

$$\frac{\partial \underline{r}}{\partial x^a} = \underline{e}_a \qquad \qquad \frac{\partial \underline{r}}{\partial x^{\bar{b}}} = \underline{e}_{\bar{b}} \qquad (2.9)$$

But what is the relationship between these two coordinate systems? Start with $x^{\bar{b}}=x^{\bar{b}}(x^a)$, and consider a general function

$$f = f(x^1, x^2, x^3) (2.10)$$

$$\Delta f = \frac{\partial f}{\partial x^1} \Delta x' + \frac{\partial f}{\partial x^2} \Delta x^2 + \frac{\partial f}{\partial x^2} \Delta x^3 = \frac{\partial f}{\partial x^a} \Delta x^a$$
 (2.11)

How do we get a small change in $x^{\bar{b}}$?

$$\Delta x^{\bar{b}} = \frac{\partial x^{\bar{b}}}{\partial x^a} \Delta x^a \tag{2.12}$$

$$dx^{\bar{b}} = \frac{\partial x^{\bar{b}}}{\partial x^a} dx^a \tag{2.13}$$

$$dx^{\bar{a}} = \frac{\partial x^{\bar{a}}}{\partial x^b} dx^b \tag{2.14}$$

Notice how we can simply just switch round the indices - these are all dummy variables and as long as the index notation is consistent, it is completely arbitrary which letter is used, i.e. the letters themselves mean nothing.

2.3 Tensors

Any quantity which transforms as

$$A^{\bar{b}} = \frac{\partial x^{\bar{b}}}{\partial x^a} A^a \tag{2.15}$$

is a Rank (1,0) or order 1 contravariant tensor. What about \underline{e}_a ?

$$\underline{r} = x^a \underline{e}_a = x^{\bar{b}} \underline{e}_{\bar{b}} \tag{2.16}$$

$$\underline{e}_{\bar{b}} = \frac{\partial \underline{r}}{\partial x^{\bar{b}}} = \frac{\partial \underline{r}}{\partial x^{a}} \frac{\partial x^{a}}{\partial x^{\bar{B}}} = \frac{\partial x^{a}}{\partial x^{\bar{b}}} \underline{e}_{a}$$

$$(2.17)$$

So now we have reversed the position of the indices in Eq (2.15).

How do we define scalars?

$$\nabla \phi = \frac{\partial \phi}{\partial x^i} \underline{e}_i \tag{2.18}$$

$$\frac{\partial \phi}{\partial x^{\bar{j}}} = \frac{\partial x^i}{\partial x^{\bar{j}}} \frac{\partial \phi}{\partial x^i} \tag{2.19}$$

In general, we have

$$A_{\bar{j}} = \frac{\partial x^i}{\partial x^{\bar{j}}} A_i, \tag{2.20}$$

which we call a Rank (0,1) or order 1 covariant tensor.

3.1 Higher order tensors

Consider

$$T^{ab} = A^a B^b, (3.1)$$

$$T^{\bar{c}\bar{d}} = A^{\bar{c}}B^{\bar{d}} = \left(\frac{\partial x^{\bar{c}}}{\partial x^a}A^a\right)\left(\frac{\partial x^{\bar{d}}}{\partial x^b}B^b\right) = \frac{\partial x^{\bar{c}}}{\partial x^a}\frac{\partial x^{\bar{d}}}{\partial x^b}A^aB^b = \frac{\partial x^{\bar{c}}}{\partial x^a}\frac{\partial x^{\bar{d}}}{\partial x^b}T^{ab}.$$
 (3.2)

This is the definition of a second order contravariant tensor.

3.2 Tensor Equations

We can write a basic tensor equation,

$$T^a = k(A^a + B^a), (3.3)$$

and wonder how this would look in a transformed coordinate system?

$$T^{\bar{b}} = \frac{\partial x^{\bar{b}}}{\partial x^a} T^a = k \left(\frac{\partial x^{\bar{b}}}{\partial x^a} A^a + \frac{\partial x^{\bar{b}}}{\partial x^a} B^a \right)$$
(3.4)

$$=k(A^{\bar{b}}+B^{\bar{b}}). \tag{3.5}$$

So if a tensor equation is true, it is true in all coordinate systems.

3.3 The metric tensor

What is the metric? The metric is a measure of space. We define the metric tensor,

$$g_{ab} = \underline{e}_a \cdot \underline{e}_b = g_{ba}, \tag{3.6}$$

so it is symmetric. We can use this when calculating spacetime distances:

$$ds^{2} = \underline{dr} \cdot \underline{dr} = (dx^{a}\underline{e}_{a}) \cdot (dx^{b}\underline{e}_{b})$$

$$(3.7)$$

$$= (\underline{e}_a \cdot \underline{e}_b) dx^a dx^b = g_{ab} dx^a dx^b. \tag{3.8}$$

Is it a tensor?

$$g_{\bar{a}\bar{b}} = (\underline{e}_{\bar{a}} \cdot \underline{e}_{\bar{b}}) = \left(\frac{\partial x^c}{\partial x^{\bar{a}}} \underline{e}_c\right) \cdot \left(\frac{\partial x^d}{\partial x^{\bar{b}}} \underline{e}_d\right)$$
(3.9)

$$= \frac{\partial x^c}{\partial x^{\bar{a}}} \frac{\partial x^d}{\partial x^{\bar{b}}} (\underline{e}_c \cdot \underline{e}_d) = \frac{\partial x^c}{\partial x^{\bar{a}}} \frac{\partial x^d}{\partial x^{\bar{b}}} g_{cd}, \tag{3.10}$$

so it transforms as a tensor; a second order covariant tensor.

3.4 Kronecker Delta

We can write an arbitrary vector as

$$\underline{A} = A^{a}\underline{e}_{a} = A^{\bar{b}}\underline{e}_{\bar{b}} = \left(\frac{\partial x^{\bar{b}}}{\partial x^{a}}A^{a}\right) \left(\frac{\partial x^{d}}{\partial x^{\bar{b}}}\underline{e}_{d}\right)$$
(3.11)

$$= \left(\frac{\partial x^{\bar{b}}}{\partial x^a} \frac{\partial x^d}{\partial x^{\bar{b}}}\right) A^a \underline{e}_d = \left(\frac{\partial x^d}{\partial x^a}\right) A^a \underline{e}_d \tag{3.12}$$

$$=\delta_a{}^dA^a\underline{e}_d=A^d\underline{e}_d=A^a\underline{e}_a \eqno(3.13)$$

Asbolute Derivative:

$$\frac{D\lambda^a}{ds} = \frac{d\lambda^a}{ds} + \Gamma^a{}_{bc}\lambda^b \frac{dx^c}{ds} \tag{6.1}$$

Covariant Derivative:

$$\lambda^{a}_{;c} = \frac{\partial \lambda^{a}}{\partial x^{c}} + \Gamma^{a}_{bc} \lambda^{b} \tag{6.2}$$

Christoffel Symbols:

$$\Gamma^{c}{}_{ab}\underline{e}_{c} = \frac{\partial \underline{e}_{a}}{\partial x^{b}}, \quad \Gamma^{c}{}_{ab} = \Gamma^{c}{}_{ba} \tag{6.3}$$

Other stuff:

$$\frac{\partial g_{ab}}{\partial x^c} = \Gamma^d_{ac} g_{bd} + \Gamma^d_{bc} g_{ad} \tag{6.4}$$

$$\frac{\partial g_{bc}}{\partial x^a} = \Gamma^d_{\ ba} g_{cd} + \Gamma^d_{\ ca} g_{bd} \tag{6.5}$$

$$\frac{\partial g_{ca}}{\partial x^b} = \Gamma^d_{cd}g_{ad} + \Gamma^d_{ab}g_{cd} \tag{6.6}$$

$$2\Gamma^{d}_{ac}g_{bd} = \frac{\partial g_{ab}}{\partial x^{c}} + \frac{\partial g_{bc}}{\partial x^{a}} - \frac{\partial g_{ca}}{\partial x^{b}}$$

$$(6.7)$$

$$\Gamma^{f}{}_{ac} = \frac{1}{2} g^{fb} \left(\frac{\partial g_{bc}}{\partial x^a} - \frac{\partial g_{ca}}{\partial x^b} + \frac{\partial g_{ab}}{\partial x^c} \right)$$
 (6.8)

$$= \frac{1}{2}g^{fb}\left(\partial_a g_{bc} - \partial_b g_{ca} + \partial_c g_{ab}\right) \tag{6.9}$$

We multiplied lefthandside of (6.7) by δ^f_{d}.

Example: 2D flat space

 $x^A = \{x, y\}:$

$$g_{AB} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \text{diag}(1, 1)$$
 (6.10)

$$\Gamma^{A}_{BC} = 0 \tag{6.11}$$

So we don't have to deal with these in Cartesian coordinates. What about polar coordinates? $x^A = \{r, \theta\}$:

$$ds^2 = dr^2 + r^2 d\theta^2 (6.12)$$

$$g_{AB} = \operatorname{diag}(1, r^2) \tag{6.13}$$

$$\Gamma^{A}{}_{BC} \neq 0 \tag{6.14}$$

So we can still get non-zero Christoffel symbols even for flat space, but it is still "boring" really.

Let's consider something more interesting, i.e. curved. For 3D space, we have

$$ds^{2} = dr^{2} + r^{2} d\theta^{2} + r^{2} \sin^{2} \theta d\phi^{2}$$
(6.15)

But we want to use just the surface of a sphere, so fixed r = a:

$$ds^{2} = a^{2} d\theta^{2} + a^{2} \sin^{2} \theta d\phi^{2} = g_{AB} dx^{A} dx^{B}$$
(6.16)

$$g_{AB} = \operatorname{diag}(a^2, a^2 \sin^2 \theta) \tag{6.17}$$

We have g_{AB} , but we want g^{AB} . Recall

$$g^{AB}g_{BC} = \delta^A_{C}. (6.18)$$

So we have a set of 4 simultaneous equations:

$$g^{A1}g_{1C} + g^{A2}g_{2C} = \delta^{A}_{C}. (6.19)$$

For diagonal g_{AB} **ONLY**:

$$g^{AB}g_{BA} = g^{AA}g_{AA} = 1 \implies g^{AA} = \frac{1}{g_{AA}}$$
 (6.20)

$$g^{AB} = \operatorname{diag}\left(\frac{1}{a^2}, \frac{1}{a^2 \sin^2 \theta}\right) \tag{6.21}$$

So now we want to calculate

$$\Gamma^{\theta}_{\theta\theta} = \frac{1}{2} g^{\theta B} \left(\partial_{\theta} g_{B\theta} - \partial_{B} g_{\theta\theta} + \partial_{\theta} g_{\theta B} \right), \quad g^{\theta B} = 0, B \neq \theta$$
 (6.22)

$$= \frac{1}{2} \frac{1}{a^2} \left(\partial_{\theta} g_{\theta\theta} - \partial_{\theta} g_{\theta\theta} + \partial_{\theta} g_{\theta\theta} \right) = 0 \tag{6.23}$$

$$\Gamma^{\theta}_{\ \phi\theta} = \Gamma^{\theta}_{\ \theta\phi} = \frac{1}{2} g^{\theta B} \left(\partial_{\theta} g_{B\phi} - \partial_{B} g_{\phi\theta} + \partial_{\phi} g_{\theta B} \right) \tag{6.24}$$

$$= \frac{1}{2}g^{\theta\theta} \left(\partial_{\theta}g_{\theta\phi} - \partial_{\theta}g_{\phi\theta} + \partial_{\phi}g_{\theta\theta}\right) = 0 \tag{6.25}$$

$$\Gamma^{\theta}_{\ \phi\phi} = -\sin\theta\cos\theta\tag{6.26}$$

$$\Gamma^{\phi}_{\theta\phi} = \cot \theta \tag{6.27}$$

The rest of the Christoffel symbols for this example are 0 (there are $2^3 = 8$ in total?).

6.1 Geodesic Equations

The velocity is a tensor,

$$\underline{v} = v^{\alpha} \underline{e}_{\alpha} = \frac{\partial x^{\alpha}}{\partial \tau} \underline{e}_{\alpha} \tag{6.28}$$

If there's no force, then there's no change in the velocity vector doesn't change, but its components might change. No force means the absolute derivative of the components:

$$\frac{Dv^{\alpha}}{d\tau} = 0 \tag{6.29}$$

By an affine parameter, we mean a linear function of path length u = A + Bs, such as the proper time τ .

$$\frac{dv^{\alpha}}{d\tau} + \Gamma^{\alpha}{}_{\beta\gamma}v^{\beta}\frac{dx^{\gamma}}{d\tau} = 0 \tag{6.30}$$

$$\frac{d^2x^{\alpha}}{d\tau^2} + \Gamma^{\alpha}{}_{\beta\gamma}\frac{dx^{\beta}}{d\tau}\frac{dx^{\gamma}}{d\tau} = 0 \tag{6.31}$$

$$\ddot{x}^{\alpha} + \Gamma^{\alpha}{}_{\beta\gamma}\dot{x}^{\beta}\dot{x}^{\gamma} = 0 \tag{6.32}$$

Let's guess and make a solution for the sphere, $s = a\theta$, so we are just going around the circumference of the sphere at constant ϕ . For θ :

$$\frac{d^2\theta}{ds^2} + \Gamma^{\theta}_{BC} \frac{dx^B}{ds} \frac{dx^c}{ds} = 0 + \Gamma^{\theta}_{\phi\phi} \frac{d\phi}{ds} \frac{d\phi}{ds} = 0$$
 (6.33)

We get a big tick and a gold star! For ϕ :

$$\frac{d^2\phi}{ds^2} + \Gamma^{\phi}_{BC} \frac{dx^B}{ds} \frac{dx^C}{ds} = 0 + \Gamma^{\phi}_{\theta\phi} \frac{d\theta}{ds} \frac{d\phi}{ds} + \Gamma^{\phi}_{\phi\theta} \frac{d\phi}{ds} \frac{d\theta}{ds} = 0$$
 (6.34)

So it's a geodesic path! Yayyyyyy!