Metoda czasu urojonego

Julia Ceklarz

1 Zadanie 1. i zadanie 2.

$$\alpha = 0.95 \Delta \frac{mx^2}{\hbar^2}$$

 $Funkcja\ falowa\ stanu\ podstawowego$

 $Funkcja\ falowa\ pierwszego\ stanu\ wzbudzonego$

 $\begin{tabular}{ll} Zmiana \ wartości \ oczekiwanej \ energii \ w \ zależności \ od \\ iteracji \end{tabular}$

Zmiana wartości oczekiwanej energii w zależności od iteracji

$$\alpha = 0.90 \Delta \frac{mx^2}{\hbar^2}$$

 $Funkcja\ falowa\ stanu\ podstawowego$

 $Funkcja\ falowa\ pierwszego\ stanu\ wzbudzonego$

Zmiana wartości oczekiwanej energii w zależności od iteracji

Zmiana wartości oczekiwanej energii w zależności od iteracji

$$\alpha = 0.98 \Delta \frac{mx^2}{\hbar^2}$$

 $Funkcja\ falowa\ stanu\ podstawowego$

 $Funkcja\ falowa\ pierwszego\ stanu\ wzbudzonego$

 $Zmiana\ wartości\ oczekiwanej\ energii\ w\ zależności\ od\ iteracji$

Zmiana wartości oczekiwanej energii w zależności od iteracji

2 zadanie 3.

Funkcja falowa pierwszego stanu wzbudzonego

Funkcja falowa pierwszego stanu wzbudzonego

Zmiana wartości oczekiwanej energii w zależności od iteracji

Zmiana wartości oczekiwanej energii w zależności od iteracji

Po dodaniu potencjału równego 2000 eV zmiany nie są porażające. Należało jednak zwiększyć ilość iteracji, ponieważ dodatkowy potencjał utrudnia rachunki i konieczne jest powtórzenie obliczeń więcej razy, aby wynik był ładny i poprawny.

Podsumowanie we wszystkich przypadkach udało się udowodnić zbieżność energii. Funkcje falowe wyglądają tak, jak powinny. W przypadku krytycznej wartości α energia zgodnie z oczekiwaniem nie zbiega do 0.