GAN

POSTECH MIV Lab.

TA: Joonhyuk Park, Hyuna Cho, Minjae Jeong

Generative models

• 생성모델 (Generative model)은 학습 데이터를 사용하여 학습 데이터의 분포를 따르는 유사한 데이터를 생성하는 모델.

Training samples $\sim p_{data}(x)$

Generated samples $\sim p_{model}(x)$

Want to learn $p_{model}(x)$ similar to $p_{data}(x)$

Generative models

- Explicit vs. Implicit generative model
 - 학습데이터의 분포 P(x)를 바로 모델링 하는 생성모델 explicit generative models
 - 학습데이터의 분포를 몰라도 생성할 수 있는 모델 implicit generative models

GAN이란

- G(Generative)
- A(Adversarial)
- N(Network)

GAN이란

- 게임이론적인 접근방식
- 지폐위조범(Generator)은 경찰을 최대한 열심히 속이려고 한다. 경찰(Discriminator)은 이렇게 위조된 지폐를 진짜와 감별하려고(Classify) 노력한다.
- 이러한 경쟁 속에서 두 그룹 모두 속이고 구별하는 능력이 발전하고, 결과적으로는 진짜 지폐와 위조 지폐를 구별할 수 없을 정도(구별할 확률 pd=0.5)에 이르게 된다.

GAN Applications

Artwork, super-resolution, colorization, etc.

※ 자료: Ian Goodfellow, NIPS 2016 Tutorial: Generative Adversarial Networks

GAN Architecture

GAN Architecture

Discriminator and Generator (source:" Pathmind ")

GAN이란

- Q_model(x|z): 정의하고자 하는 z값을 줬을 때 x 이미지를 내보내는 모델
- P_data(x): x라는 data distribution은 있지만 어떻게 생긴지는 모르므로, P 모델을 Q 모델에 가깝게 가도록 함
- **파란 점선** --- : discriminator distribution (분류 분포) > 학습을 반복하다보면 가장 구분하기 어려운 구별 확률인 1/2 상태가 됨
- 녹색 선 -: generative distribution (가짜 데이터 분포)
- 검은색 점선 --- : data generating distribution (실제 데이터 분포)

출처 : https://wegonnamakeit.tistory.com/54

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))].$$

The GAN Objective Function

D should maximize V(D, G) : D 입장에서는 V가 최댓값	1. D가 구분을 잘하는 경우, 만약 Real data가 들어오면 D(X)=1, D(G(Z))=0 : 진짜면 1, 가짜면 0을 내뱉음. (G(Z)에 가짜가 들어온 경우, 가짜를 잘 구분한 것임)
D should minimize V(D,G) : G 입장에서 V가 최솟값	 D가 구분을 못하는 경우, 만약 Real Data가들어오면 D(G(Z))=1: 진짜를 0, 가짜를 1로 내뱉음(진짜를 구분하지 못하고 가짜를 진짜로 착각함) Log안의 D(x)값이 0이 되어, V값이 음의 무한대로됨. Minimize를 위해 음의 무한대로 보내는게 G입장에서는 가장 좋음

- X: real 이미지, Z: latent code, G(Z) : fake 이미지, D(X) : real 이미지라고 분류한 확률, D(G(Z)) : D가 fake라고 분류한 확률
- G(z)는 D(G(z))가 1로 판단하도록 학습하고, D(G(Z))는 0으로 판단하도록 학습함.

출처 : https://wegonnamakeit.tistory.com/54

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

The GAN Objective Function

Alternate between:

1. Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

The GAN Objective Function

Alternate between:

Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

The GAN Objective Function

Alternate between:

Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Gradient descent on generator

$$\min_{ heta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{ heta_d}(G_{ heta_g}(z)))$$

Instead: Gradient ascent on generator, different objective

$$\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$$

BCE loss

$$Loss = L(y, \hat{p}) = -y \log(\hat{p}) - (1 - y) \log(1 - \hat{p})$$

where $y \Rightarrow$ label,

 $\hat{p} \Rightarrow$ estimated probability of belonging to the positive class

Vanilla GAN

Generator Parameters

This network has a total of 1,493,520 parameters.

Discriminator Parameters

This network has a total of 533,505 parameters.

Vanilla GAN

- 앞의 vanilla GAN 같은 경우 쉬운 dataset (e.g. MNIST)는 잘 생성하지만 복잡한 이미지(개, 고양이)를 생성하는 것은 한계.
- DCGAN은 MLP대신에 CNN을 적용한 모델
- Details

Architecture guidelines for stable Deep Convolutional GANs

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use LeakyReLU activation in the discriminator for all layers.

Practice 1: Vanilla_GAN

Details (Generator, Discriminator)

Layer (type)	Output Shape	Param #	Layer (type)	Output Shape	Param #
Linear-1 LeakyReLU-2 BatchNorm1d-3 Linear-4 LeakyReLU-5 BatchNorm1d-6 Linear-7	[-1, 256] [-1, 256] [-1, 256] [-1, 512] [-1, 512] [-1, 512] [-1, 1024]	25,856 0 512 131,584 0 1,024 525,312	Dropout-1 Linear-2 LeakyReLU-3 Linear-4 LeakyReLU-5 Linear-6 Sigmoid-7	[-1, 784] [-1, 512] [-1, 512] [-1, 256] [-1, 256] [-1, 1] [-1, 1]	0 401,920 0 131,328 0 257
LeakyReLU-8 BatchNorm1d-9 Dropout-10 Linear-11 Tanh-12 Total params: 1,489,936	[-1, 1024] [-1, 1024] [-1, 1024] [-1, 784] [-1, 784]	0 2,048 0 803,600 0	Total params: 533,505 Trainable params: 533,505 Non-trainable params: 0 Input size (MB): 0.00 Forward/backward pass size (MB)		

Params size (MB): 2.04

Estimated Total Size (MB): 2.06

Trainable params: 1,489,936

Non-trainable params: 0

Input size (MB): 0.00

Forward/backward pass size (MB): 0.06

Params size (MB): 5.68

Estimated Total Size (MB): 5.74

Practice 2: DCGAN

Details (Generator, Discriminator)

Layer (type)	Output Shape	Param #
Linear-1 BatchNorm2d-2 Upsample-3 Conv2d-4 BatchNorm2d-5 LeakyReLU-6 Upsample-7 Conv2d-8 BatchNorm2d-9 LeakyReLU-10 Conv2d-11	[-1, 8192] [-1, 128, 8, 8] [-1, 128, 16, 16] [-1, 128, 16, 16] [-1, 128, 16, 16] [-1, 128, 16, 16] [-1, 128, 32, 32] [-1, 64, 32, 32] [-1, 64, 32, 32] [-1, 64, 32, 32] [-1, 64, 32, 32] [-1, 1, 32, 32]	827,392 256 0 147,584 256 0 73,792 128 0
Tanh-12	[-1, 1, 32, 32]	0

Total params: 1,049,985 Trainable params: 1,049,985 Non-trainable params: 0

Input size (MB): 0.00

Forward/backward pass size (MB): 3.64

Params size (MB): 4.01

Estimated Total Size (MB): 7.65

Layer (type)	Output Shape	Param #
Conv2d-1	[-1, 16, 16, 16]	160
LeakyReLU-2	[-1, 16, 16, 16]	0
Dropout2d-3	[-1, 16, 16, 16]	0
Conv2d-4	[-1, 32, 8, 8]	4,640
LeakyReLU-5	[-1, 32, 8, 8]	0
Dropout2d-6	[-1, 32, 8, 8]	0
BatchNorm2d-7	[-1, 32, 8, 8]	64
Conv2d-8	[-1, 64, 4, 4]	18,496
LeakyReLU-9	[-1, 64, 4, 4]	0
Dropout2d-10	[-1, 64, 4, 4]	0
BatchNorm2d-11	[-1, 64, 4, 4]	128
Conv2d-12	[-1, 128, 2, 2]	73,856
LeakyReLU-13	[-1, 128, 2, 2]	0
Dropout2d-14	[-1, 128, 2, 2]	0
BatchNorm2d-15	[-1, 128, 2, 2]	256
Linear-16	[-1, 1]	513
Sigmoid-17	[-1, 1]	0

Total params: 98,113 Trainable params: 98,113 Non-trainable params: 0

.

Input size (MB): 0.00

Forward/backward pass size (MB): 0.20

Params size (MB): 0.37

Estimated Total Size (MB): 0.58

- Latent space(Noise) interpolation
 - Generator가 단순히 학습 이미지를 외우거나 베낀게 아니어야 함
 - Walking in the latent space

Vector Arithmetic on face samples

GAN의 어려운 점

- 1. Unstable Training (Convergence, Mode Collapse)
- 2. 생성 모델 평가 지표 (ex. FID, IS, etc.)
- 3. 학습 데이터의 분포를 따라가기 때문에 어떤 데이터가 생성될지 예측하기 어려움 (cGAN)

Evaluation of GAN models

- Hard to evaluate how well the images are generated
 - There is no GT for image generation
 - Solution: Compare the distribution of real and generated images

Evaluation of GAN models

- FID (Frechet Inception Distance)
 - Use pretrained Inception-V3 model, assuming it can extract essential image features well enough.

Feature Space

실습

- Simple GAN (MLP based)
- DCGAN (Deep Convolutional GAN)