Mechatronics Systems Design Laboratory ECE 491

Igor Paprotny

Upcoming Checkout

- This week:
 - Altium Tutorial (Lab 3)
- Next week:
 - PWM(Lab 4)
 - Quiz 1 next Tuesday (2/14/2017)
- BB up
- Project proposal due Tuesday 2/14 (project proposal guidelines on BB soon)

Motor: Electrical Equivalent Circuit

An equivalent circuit can be constructed to model the operation of the motor from an electrical perspective.

FET Operation (n-channel) • To switch transistor on, gate is connected to positive voltage • Accumulation of positive rolages on the gate electrode attracts negative charges just underneath the gate, in the channel region

Motor Controllers Topologies Single FET motor controllers have the simplest topology Can only accelerate, and coast to stop Other topologies allow for: Breaking Backwards motion Most common, full H-bridge Possible to use a half-bridge to simplify the controller design

Motor Controllers Topology: Single FET FET OFF - Coasts (open connectors) to stop

Motor Controllers Topology: Half-Bridge

- It is possible to accelerate breaking by use the concept of dynamic breaking
 The V_{anil} generated by the motor is used to drive current through armature to cause breaking of the motor
 Required additional FET

Motor Controllers Topology: Half-Bridge

- A ON, B OFF

Motor Controllers Topology: Half-Bridge

Dynamic Breaking:
 A OFF, B ON

Motor Controllers Topology – H-Bridge

- The most versatile motor controller topology is an Hbridge
- Requires four (4) FETs per

Motor Controllers Topology – H-Bridge

- The most versatile motor controller topology
- Requires four (4) FETs per motor
- Supports:
 Motion forward

Motor Controllers Topology – H-Bridge

- The most versatile motor controller topology
- Requires four (4) FETs per
- Supports:
 Motion forward
 Motion backward

Motor Controllers Topology – H-Bridge

- The most versatile motor controller topology
- Requires four (4) FETs per motor
- Supports:
 - Motion forward
 Motion backward

 - Breaking

Motor Controllers Topology – H-Bridge

- The most versatile motor controller topology
- Requires four (4) FETs per motor
- Supports:
- Motion forward
 Motion backward
 Breaking
- Caution H-bridge can short V_{dd} and ground

Motor Controllers Topology – H-Bridge

- The most versatile motor controller topology
- Requires four (4) FETs per
- Supports:
 Motion forward
 Motion backward
 - Breaking
- Caution H-bridge can short V_{dd} and ground
- Kick-back snubber diodes

Summary: Motor Controller Topology

- Single FET controller allows for acceleration (ON) or coasting (OFF)
- Half-bridge allows for acceleration, breaking, and coasting
- The most versatile motor controller configuration is an H-bridge
- H-bridge allows for
 Motor actuation both back and forth
 Dynamic breaking
 Careful not to short battery terminals in H-bridge!

Control for Autonomous Car Actuation

- Autonomous car contains two main actuators
 - DC Motors: provide forward propulsion
 Servos: provide steering
- Pulse-width modulation (PWM) allows for control of both

Pulse-Width Modulation (PWM): DC Motors

Pulse-Width Modulation (PWM) is used to vary torque produced by a motor while still using a driver FET only in either completely off or completely on states.

- Alternative (Bad approach):
 - Use the FET as a variable resistor
 Large power dissipation by the FET
- Recall that: $\tau = k_i i_m$
- Pulse i_m by switching it fast on and

Pulse-Width Modulation (PWM): DC Motors

Pulse-Width Modulation (PWM) is used to vary torque produced by a motor while still using a driver FET only in either completely off or completely on states.

- Alternative (Bad approach):
 Use the FET as a variable resistor
 Large power dissipation by the FET
- Recall that: $\tau = k_t i_m$

• Duty cycle: $d = \frac{t_{on}}{T}$

 $\overline{i_m} = d \cdot i_m \qquad \overline{\tau} = k_t \cdot \overline{i_m}$

RC Servo: Introduction

- - Initially developed for position control in radio-controlled RC applications
 Low precision combination of DC motor and position feedback.
 Currently used for other than RC applications in robotics, mechatronics

RC Servo: Control Servo operation: rvo operation: Most RC servo has three wires, almost universally color coded accordingly » RED – supply voltage (Vin), 5 V. » BLACK – Ground (GND) » WHITE – Signal (S) Servo can typically rotate +/- 90 deg. Signal (S) causes the output shaft to rotate to a set position. Position encoded in a pulse train provided to S Period of 20 – 30 ms (typical) Pulse 0.5 – 3 ms (typical)

PWM using MCU

- Usually MCUs have ability to configure PWM for use with the GPIOs

 - Vising times to provide output PWM signal to both motors and servo
 Independent channels per timer
 Must be configured to assign timer and channel to a desired GPIO for output

Summary: PWM Motor and Servo		
Control	-	
Pulse-width modulation (PWM) is an efficient way of controlling power, and thus torque, of the motors Can be used for velocity control		
Avoids power drop over the FETs PWM duty-cycle control the power Servos use an input pulse-train to control the direction of the output shaft		
— Can use PWM for control the direction of the servo — PWM pulse duration controls the direction — Must be calibrated		
- Musicus compression	·	
	_	
Review of power supply for autonomous car Power Supply I: Linear Voltage Regulators Power Supply II: DC/DC converter		
Complete power supply solution		

Review: Power Supply for Autonomous Car

- Different power needs for various sub-systems
- On-board power supply needed to:

 - Drive the motors (large currents)
 Drive the servo (moderate currents)
 Power the MCU (low currents, voltage stability)
 Power the sensors (low currents, voltage stability)
- Battery is the main reservoir of on-board power
- Many battery types

 Most common types for electric vehicles are Lithium ion batteries (high energy density, moderate cost, large discharge/charge cycle life)

Review: Power Supply for Autonomous Car MCU Power Supp

Power Supply 1: Linear Voltage Regulator Reduces the supply voltage to a stable value set value Output voltage less than input voltage A variable (controlled) resistor Key parameters Output voltage (e.g. 5 V) Input voltage range Output current Oropout E.g.: LM2940CT-5.0/NOPB S Yout A max output 1 A max output SOOMY Dropout

Review: Power Supply for Autonomous Car Schematic of the required power supply for the sub-systems Ψ_{on}

Power Supply II: DC/DC Converter

- Must elevate the voltage to provide a stable power supply (say 5 V)
- This can be down using switching power supplies
- Switching power supply:

 - Uses capacitors or inductors to store energy
 Switches between a charge and discharge cycle
 During the discharge cycle the energy is added or subtracted from the input voltage
 Boost converter adds the stored voltage to boost supply voltage
 Buck converters subtract the stored voltage to decrease the supply voltage
- This class will design a boost converter

Power Supply II: Boost Converter

- Used to boost the input voltage
- Uses a storage inductor as the storage element for the boost stage

Power Supply II: Boost Converter – 1 **Charge Stage**

- The switch is closed
 In inductor starts storing magnetic energy by conserving current passing through

Power Supply II: Boost Converter – 2 Step-up Stage

- Inductor "attempts" to maintain current and thus throws large inversed voltage to maintain current i_L.

 The current i_L passes through diode D and charges up capacitor C

Power Supply II: Boost Converter – 2 Step-up Stage

- The switch opens
- Inductor "attempts" to maintain current and thus throws large inversed voltage to maintain current $\mathbf{i}_{\rm L}$.
- The current i_L passes through diode D and charges up capacitor C

Power Supply II: Boost Converter – 2 Step-up Stage

- The step-up current (slope) through the inductor is now: $\frac{V_i V_o}{L} = \frac{di_L}{dt}$
- Inductor is discharging

Power Supply II: Boost Converter – Charge Step Revisited

The inductor is charging up.

After t₁ we open the switch

Power Supply II: Boost Converter – Step-Up Step Revisited

Power Supply for Autonomous Car — Entire System • Two-component stable power-supply: 1. Boost converter to make sure input voltage to linear regulator is always > 5 V + V_{aropout} • E.g. 12 V 2. Linear regulator to provide stable 5 V supply 7.2 V DC-DC Boost Converter Voltage Regulator Voux

Power Supply for Autonomous Car — Entire System Redundancy: Rediability through redundancy – can disconnect the DC-DC converter and still most likely be ok. Can avoid high current conditions in SW 7.2 V DC-DC Boost Converter Voltage Regulator Voltage Regulator

Summary: Power Supply for **Autonomous Car**

- Reliable supply necessary to provide different voltage or current to car sub-systems
- Output battery voltage can vary as a function of current
 Can cause problems at stall, turning
- Linear Voltage Regulator can provide a stable output voltage
- A some and V_{out} > V_{in} +V_{depost}

 A switching (DC-DC) converter can both reduce or increase the voltage a desired level
- A DC-DC boost converter, together with one or more linear voltage regulator, can provide a stable supply voltage