SORU: Verilen "10011101" sayısını aşağıdaki tabloda verilen sıraya göre kaydırma işlemlerini gerçekleştiriniz.

	in	in	in	out dout	
operation	sel	din	shift_count [2:0]		
noshift	000	10011101	2	10011101	
logical left shift	001	10011101	2	01110100	
arithmetic left shift	010	10011101	2	01110100	
logical right shift	011	10011101	2	00100111	
arithmetic right shift	100	10011101	2	11100111	
rotate left	101	10011101	2	01110110	
rotate right	110	10011101	2	01100111	
noshift	111	10011101	2	10011101	

Kodu yazmaya geçmeden önce kaydırma operasyonları nedir, bunları anlayalım:


```
module shift_operations(
    input logic signed [7:0] d_in, // MSB in 1 olursa negatif olmasını
sağlar.
    input logic [2:0] sel,
    input logic [2:0] shift_count,
    output logic signed [7:0] d_out
  );
  logic [15:0] temp;
  logic [15:0] temp_vio;
  always_comb
  begin
    case (sel)
      3'b000:
        d_out = d_in; //no shift
      3'b001:
        d out = d in << shift count; // logical left shift</pre>
      3'b010:
        d_out = d_in <<< shift_count; // arithmetic left shift</pre>
      3'b011:
        d_out = d_in >> shift_count; // logical right shift
      3'b100:
        d_out = d_in >>> shift_count; // arithmetic right shift
      3'b101: // circular (rotate) left shift
      begin
        temp = {d_in, d_in} << shift_count;</pre>
        d_out = temp[15:8];
      3'b110:// circular (rotate) right shift
      begin
        temp = {d_in, d_in} >> shift_count;
        d_out = temp[7:0];
      end
      3'b111:
        d_out = d_in;// reserved
      default:
        d_out = d_in;
    endcase
  end
endmodule
// {} bitleri birlestirmek veya dizileri olusturmak icin kullanılır.
```

// temp = {d_in, d_in} demek d_in bitini iki kere arka arkaya koyup 16 bitlik
sayı elde etmek demektir.

Design çıktımız şu şekilde olacaktır:

Artık simülasyon kodumuzu yazabiliriz:

```
8'b10011101,
          8'b01110100,
          8'b01110100,
          8'b00100111,
          8'b11100111,
          8'b01110110,
          8'b01100111,
          8'b10011101
        };
  initial
  begin
    d_in = 8'b10011101;
    shift_count = 2;
    for(int i = 0; i < 8; i++)
    begin
      sel = i;
      #5;
      assert(d_out == result_vector[i])
            begin
              $display("Test sonucu dogrudur,");
            else
            begin
              $display("Test sonucu yanlistir.");
          end
          #5;
    $stop;
  end
endmodule
```

Simülasyon sonuçlarımız aşağıdaki gibi olacaktır:

Untitled 1 _ Ø ¬ ×													
Q 🕍 6	ର୍ ପ୍	22 34 -1 14	H 12 21 47 70	*[-[X H							٥		
28.550 ms									^				
Name	Value	0.000 ns	5.000 ns	10.000 ns	15.000 ns	20.000 ns	25.000 ns	30.000 ns		35.000 ns	40.000 ns		
> W d_in[7:0	9d					9 d							
> W sel[2:0]	5	0	1	2	3	4	5	_ X	6	X	7		
> 😻 shif2:0	2	2											
> 😻 d_o:0]	76	9d	_	74	27	e7	76	X	67		d		
> 💆 resu:0]	9d,74,74,2	94,74,74,27,67,7667,94											

```
# run 1000ns
Test sonucu dogrudur,
Sstop called at time : 45 ns : File "C:/Users/zulal/INFO: [USF-XSim-96] XSim completed. Design snapshot
INFO: [USF-XSim-97] XSim simulation ran for 1000ns
launch_simulation: Time (s): cpu = 00:00:04; elapse
```