14 Диэлектрик

Диэлектрик — это тело, *не* способное проводить через себя электрические заряды. Например, если металлическое *заряженное* тело A соединить диэлектриком с металлическим *незаряженным* телом Б, то заряд тела A *не* перераспределится между этими двумя телами.

В диэлектрике (в отличие от проводника) *нет свободных зарядов*. Заряженные частицы (электроны и ядра) в диэлектрике являются *связанными* — электроны в таком случае могут перемещаться лишь внутри молекулы тела (рис. 1).

Рис. 1. Диэлектрик

Соответствующие электроны (синие шары) и ядра (красные шары) сцеплены друг с другом (если диэлектрик жидкий или газообразный, то его молекулы «носят с собой» свои ядра и электроны)¹.

Пусть диэлектрик помещен в однородное электрическое поле (рис. 2).

Рис. 2. Диэлектрик в электрическом поле

Внешенее поле $E_{\rm B}$ «разворачивает» молекулы диэлектрика так, что на одной поверхности тела (левая поверхность — синяя область) оказываются преимущественно отрицательные заряды — электроны, а на другой поверхности (правая поверхность — красная область) оказываются в основном положительные заряды — ядра. Это происходит вследствие действия силы Кулона на электроны со стороны поля: на рис. 2 эта сила «тянет» электроны влево.

Избыточные наведенные заряды на поверхностях диэлектрика (см. рис. 2) создают внутри тела собственное поле E_i , направленное *против* внешнего поля $E_{\rm B}$. Поле E_i ослабляет поле $E_{\rm B}$ внутри диэлектрика (при этом $E_i < E_{\rm B}$). Результирующее (суммарное) поле E внутри тела равно $E = E_{\rm B} - E_i > 0$.

Диэлектрическая проницаемость (ε) — это характеристика тела, показывающая во сколько раз уменьшается поле в нем по сравнению с вакуумом:

$$\varepsilon = \frac{E_{\rm B}}{E},\tag{1}$$

где $E_{\rm b}$ — поле в вакууме, E — поле в данном теле ($E < E_{\rm b}$).

¹В особых случаях электрон может «оторваться» от своего ядра — так происходит, например, при электризации диэлектрика трением.