

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

5. DIVIDE AND CONQUER I

- merge demo
- merge-and-count demo

SECTIONS 5.1-5.2

5. DIVIDE AND CONQUER

- merge demo
- merge-and-count demo

Given two sorted lists *A* and *B*, merge into sorted list *C*.

sorted list A

3

7 10 14 18

sorted list B

2 11 16 20 23

Given two sorted lists *A* and *B*, merge into sorted list *C*.

compare minimum entry in each list: copy 2

Given two sorted lists *A* and *B*, merge into sorted list *C*.

compare minimum entry in each list: copy 3

sorted list C

2

Given two sorted lists *A* and *B*, merge into sorted list *C*.

compare minimum entry in each list: copy 7

Given two sorted lists *A* and *B*, merge into sorted list *C*.

compare minimum entry in each list: copy 10

Given two sorted lists *A* and *B*, merge into sorted list *C*.

compare minimum entry in each list: copy 11

sorted list C

2 3 7 10

Given two sorted lists *A* and *B*, merge into sorted list *C*.

compare minimum entry in each list: copy 14

Given two sorted lists *A* and *B*, merge into sorted list *C*.

compare minimum entry in each list: copy 16

sorted list C

2 3 7 10 11 14

Given two sorted lists *A* and *B*, merge into sorted list *C*.

compare minimum entry in each list: copy 18

sorted list C

2 3 7 10 11 14 16

Given two sorted lists *A* and *B*, merge into sorted list *C*.

list A exhausted: copy 20

Given two sorted lists *A* and *B*, merge into sorted list *C*.

list A exhausted: copy 23

Given two sorted lists *A* and *B*, merge into sorted list *C*.

done

SECTION 5.3

5. DIVIDE AND CONQUER

- merge demo
- merge-and-count demo

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 2 and add x to inversion count

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 3 and decrement x

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 7 and decrement x

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 10 and decrement x

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 11 and add x to increment count

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 14 and decrement x

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 16 and add x to increment count

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 18 and decrement x

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

list A exhausted: copy 20

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

list A exhausted: copy 23

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

done: return 8 inversions

sorted list C

inversions = 8