

Universidade de Brasília

Departamento de Ciência da Computação

Bancos de Dados

CIC0097

Prof. Pedro Garcia Freitas

https://pedrogarcia.gitlab.io/

pedro.garcia@unb.br

Universidade de Brasília Instituto de Ciências Exatas Departamento de Ciências da Computação

Este conjunto de slides não deve ser utilizado ou republicado sem a expressa permissão do autor.

This set of slides should not be used or republished without the author's express permission.

Módulo 10 Modelo Relacional - (MR) -Parte 4: Mapeamento MER \rightarrow Relacional: Relacionamentos n-ários, especialização/generalização

> CIC0097/2023.1 T1/T2

1. Objetivos

Esta aula apresenta o mapeamento MER → MR, considerando as situações onde aparecem os relacionamentos n-ários, as especializações/generalizações e agregações.

2.1 Mapeamento de entidades fortes

2.2 Mapeamento: atributos multivalorados

2.4 Relacionamentos binários 1:1 (FK)

2.5 Relacionamentos binários 1:1 (relação unificada)

2.6 Relacionamentos binários 1:1 (referência cruzada)

2.7 Relacionamentos binários 1:n

com atributos multivalorados

2.8 Relacionamentos binários n:n


```
FUNCIONARIO(Pnome, NomeM, Unome, CPF, Data_nasc,
Endereco, Salario, Sexo)
```

PROJETO (PNome, <u>PNumero</u>, PLocal, Depto)

TRABALHA_EM(CPF, PNumero, Horas)

Referência cruzada obrigatória

- 3.1 Relacionamentos não-binários (n-ários)
- →Para cada cada não-binário/n-ário (i.e., n>2), cria-se uma nova relação S para representar o relacionamento;

- 3.1 Relacionamentos não-binários (n-ários)
- →Para cada cada não-binário/n-ário (i.e., n>2), cria-se uma nova relação S para representar o relacionamento;
- →As chaves estrangeiras de S são formadas pelas chaves primárias das relações que participam do relacionamento (igual na referência cruzada)

- 3.1 Relacionamentos não-binários (n-ários)
- →Os atributos simples ou componentes simples dos atributos compostos do relacionamento são incluídos em **S**.

- 3.1 Relacionamentos não-binários (n-ários)
- →A chave primária de S é, usualmente, a combinação de todas chaves estrangeiras em S.

- 3.1 Relacionamentos não-binários (n-ários)
- →A chave primária de S é, usualmente, a combinação de todas chaves estrangeiras em S.
- →Mas se a cardinalidade em qualquer participação do relacionamento é 1, então a chave primária de S não deveria incluir a chave estrangeira que referencia a relação que representa esse tipo de entidade.

3.1 Relacionamentos não-binários (n-ários)

Fornecedor

id_fornecedor	•••
1001	•••
1002	
1003	•••

Projeto

<u>id projeto</u>	•••
10	•••
20	•••
30	•••

Peça

número_peça	•••
111	•••
333	•••
222	•••

Fornece

id_fornecedor	<u>id_projeto</u>	codigo_peca	quantidade
1001	10	111	20
1001	10	222	20
1002	10	111	20
1002	20	111	10
1003	20	111	30
1004	20	333	40

3.1 Relacionamentos não-binários (n-ários)

Fornecedor

id_fornecedor	•••
1001	•••
1002	
1003	•••

Projeto

id projeto	•••
10	•••
20	•••
30	•••

Peça

número_peça	•••
111	•••
333	•••
222	•••

Fornece

<u>id fornecedor</u>	id projeto	codigo peca	quantidade
1001	10	111	20
1001	10	222	20
1002	10	111	20
1002	20	111	10
1003	20	111	30
1004	20	333	40

Chave primaria

3.1 Relacionamentos não-binários (n-ários)

Fornecedor

id_fornecedor	•••
1001	•••
1002	
1003	

Projeto

<u>id_projeto</u>	•••
10	•••
20	•••
30	•••

Fornece

id_fornecedor	id projeto	codigo peca	quantidade
1001	10	111	20
1001	10	222	20
4000	40	444	00
1002	10	111	
1002	20	111	10
1002	20	111	20
1004	20	333	40
	· ·		

Chave primaria

Peça

número peça	•••
111	•••
333	•••
222	•••

3.2 Generalizações/Especializações

→Considerando superclasse C, cujos atributos são {k, a₁, a₂, ..., aռ} (sendo k a chave primária), podemos converter cada uma das especializaões com m subclasses {S1,S2, ..., Sm} usando as 4 possíveis estragédias:

- 3.2 Generalizações/Especializações
 - 1)Mutiplas relações: superclasse + subclasses
 - 2) Mutiplas relações: apenas subclasses
 - 3)Única relação: atributo único especificando tipo
 - 4)Única relação: vários atributos de tipos

3.2 Generalizações/Especializações

- 3.2.1 Mutiplas relações: superclasse + subclasses
- → Crie uma relação L para representar a superclasse C e inclua em L os atributos attr (L) = {k, a1, a2, ..., an} e a chave primária PK (L) = k;
- → Crie uma relação Li para cada subclasse S_i, onde 1 ≤ i ≤ m com os atributos attr(Li) = {k}U{a₁, a₂, ..., a_n} e a chave primária PK(Li) = k;

3.2 Generalizações/Especializações

3.2.1 - Mutiplas relações: superclasse + subclasses

3.2 Generalizações/Especializações

3.2.1 - Mutiplas relações: superclasse + subclasses

3.2 Generalizações/Especializações

3.2.1 - Mutiplas relações: superclasse + subclasses

3.2 Generalizações/Especializações

- 3.2.2 Mutiplas relações: apenas subclasses
- → Crie uma relação L_i para cada subclasse Si onde onde 1 ≤ i ≤ m com os atributos attr(L_i) = { atributos de Si}U{k, a₁, a₂, ..., a_n} e e a chave primária PK(L_i) = k;

3.2 Generalizações/Especializações

3.2.2 - Mutiplas relações: apenas subclasses

transformadas em

relações/tabelas

3. Mapeamento MER → Relacional:

3.2 Generalizações/Especializações

3.2.2 - Mutiplas relações: apenas subclasses

3.2 Generalizações/Especializações

3.2.2 - Mutiplas relações: apenas subclasses

Note que os atributos (incluindo a chave) da superclasse são herdados e se repetem em ambas subclasses

3.2 Generalizações/Especializações

3.2.2 - Mutiplas relações: apenas subclasses

Os atributos específicos não se sobrepõem

3.2 Generalizações/Especializações

- 3.2.3 Única relação: atributo único especificando tipo
- → Crie uma relação L com os atributos attr(L)={k,a₁,a₂, ...,an}U{atributos de S1}U{atributos de S2}U...{atributos de Sm}U{t} e a chave primária PK(L)=k;

3.2 Generalizações/Especializações

- 3.2.3 Única relação: atributo único especificando tipo
- → Crie uma relação L com os atributos attr(L)={k,a₁,a₂, ...,an}U{atributos de S1}U{atributos de S2}U...{atributos de Sm}U{t} e a chave primária PK(L)=k;

O atributo criado **t** é o <u>atributo tipo</u> (discriminador) e seu valor indica a subclasse à qual cada tupla pertence, caso ela pertença a alguma subclasse.

3.2 Generalizações/Especializações

- 3.2.3 Única relação: atributo único especificando tipo
- → Crie uma relação L com os atributos attr(L) = {k, a₁, a₂, ..., aռ}U { atributos de S1 } U { atributos de S2 } U... { atributos de Sm}U{t} e a chave primária PK(L) = k;
- → Essa abordagem possui uma desvantagens: dependendo do relacionamento, ela pode requerer a criação de muitos valores null.

3.2 Generalizações/Especializações

3.2 Generalizações/Especializações

3.2.3 - Única relação: atributo único especificando tipo

Servidor

<u>CPF</u>	Nome	DataNascimento	Sexo	Endereço	tipo	nível	grau	tipo_servidor
------------	------	----------------	------	----------	------	-------	------	---------------

3.2 Generalizações/Especializações

3.2 Generalizações/Especializações

3.2 Generalizações/Especializações

3.2 Generalizações/Especializações

3.2 Generalizações/Especializações

3.2 Generalizações/Especializações

3.2.3 - Única relação: atributo único especificando tipo

Servidor

<u>CPF</u>	Nome	DataNascimento	Sexo	Endereço	tipo	nível	grau	tipo_servidor
01	Alice	06121984	F	DF	Civil	Null	Null	Engenheiro
10	Alice	01111942	F	SP	Null	C2	Null	Gerente
22	Paulo	03131985	М	RJ	Comp	Null	Null	Engenheiro
12	Beto	02021984	М	RJ	Null	Null	Medio	Técnico

3.2 Generalizações/Especializações

3.2.3 - Única relação: atributo único especificando tipo

Servidor

<u>CPF</u>	Nome	DataNascimento	Sexo	Endereço	tipo	nível	grau	tipo_servidor
01	Alice	06121984	F	DF	Civil	Null	Null	Engenheiro
10	Alice	01111942	F	SP	Null	C2	Null	Gerente
22	Paulo	03131985	М	RJ	Comp	Null	Null	Engenheiro
12	Beto	02021984	М	RJ	Null	Null	Medio	Técnico

Note que essa abordagem pode gerar muitos valores Null na tabela.

3.2 Generalizações/Especializações

- 3.2.4 Única relação: vários atributos de tipos
- → Crie uma relação L com os atributos attr(L) = {k, a₁, a₂, ..., aռ} U { atributos de S1 } U { atributos de S2 } U... { atributos de Sm} U {t1, t2, ..., tm} e a chave primária PK(L) = k;
- → Cada t_i, onde 1 ≤ i ≤ m, é um atributo do tipo booleano que indica se uma tupla pertence a uma subclasse S_j.

3.2 Generalizações/Especializações

3.2.4 - Única relação: vários atributos de tipos

- → Crie uma relação L com os atributos attr(L) = {k, a₁, a₂, ..., aₙ}U{atributos Várias colunas adicionadas Sm}U{t1, t2, ..., tտ} e a chave primária PK(L) = k;
- → Cada t_i, onde 1 ≤ i ≤ m, é um atributo do tipo booleano que indica se uma tupla pertence a uma subclasse S_j.

3.2 Generalizações/Especializações

3.2 Generalizações/Especializações

3.2.4 - Única relação: vários atributos de tipos

Peça

<u>id</u>	descrição	m_flag	n_lote	projeto	c_flag	preço	fornecedor
-----------	-----------	--------	--------	---------	--------	-------	------------

3.2 Generalizações/Especializações

3.2.4 - Única relação: vários atributos de tipos

3.2 Generalizações/Especializações

3.2.4 - Única relação: vários atributos de tipos

Exercício 4.1: Considere o esquema textual de dados do modelo relacional definido parcialmente abaixo, onde **Dependente** é uma relação derivada de uma entidade fraca que se relaciona com Empregado.

Empregado (CodigoEmpregado, Nome, NoPIS-PASEP)

Dependente (CodigoEmpregado, NoDependente, Nome)

Nesse caso, na tabela **Empregado**, tanto

CodigoEmpregado quanto NoPIS-PASEP podem ser chave primária. Qual você escolheria como chave primária? Porque?

Exercício 4.1:

Escolheria o CodEmpregado como chave primária de Empregado pois este atributo está sendo usado na relação Dependente como chave estrangeira, sendo, desta maneira, estabelecida uma relação entre as duas relações.

Universidade de Brasília

Departamento de Ciências da Computação

4. Exercícios

Empregado

Exercício 4.2: Abaixo aparece um esquema textual parcial para um banco de dados relacional. Identifique neste esquema as <u>chaves primárias</u> e <u>chaves estrangeiras</u>:

```
Aluno (CodigoAluno, Nome, CodigoCurso)

Curso (CodigoCurso, Nome)

Disciplina (CodigoDisciplina, Nome, Creditos, CodigoDepartamento)

Curriculo (CodigoCurso, CodigoDisciplina, Obrigatória-Opcional)

Conceito (CodigoAluno, CodigoDisciplina, Ano-Semestre, Conceito)

Departamento (CodigoDepartamento, Nome)
```


Exercício 4.2:

R: Chave primária / Chave estrangeira

```
Aluno (CodigoAluno, Nome, CodigoCurso)

Curso (CodigoCurso, Nome)

Disciplina (CodigoDisciplina, Nome, Creditos, CodigoDepartamento)

Curriculo (CodigoCurso, CodigoDisciplina, Obrigatória-Opcional)

Conceito (CodigoAluno, CodigoDisciplina, Ano-Semestre, Conceito)

Departamento (CodigoDepartamento, Nome)
```


Exercício 4.3: Considere as seguintes alternativas de implementação de um banco de dados relacional:

- Alternativa 1
 - Aluno (
 CodAl,
 Nome, CodCurso, Endereco)
- Alternativa 2
 - Aluno (<u>CodAl</u>, Nome, CodCurso)
 EnderecoAluno (<u>CodAl</u>, Endereco)
 CodAl referencia Aluno

Em ambos os casos está sendo representado um conjunto de alunos e informações (código, nome, código de curso, endereço) a ele referentes. À luz dos princípios que baseiam as regras de tradução de diagramas ER, qual você escolheria? Por que?

Exercício 4.3:

- Alternativa 1
 - Aluno (

 CodAl,

 Nome, CodCurso, Endereco)
- Alternativa 2
 - Aluno (<u>CodAl</u>, Nome, CodCurso)
 EnderecoAluno (<u>CodAl</u>, Endereco)
 CodAl referencia Aluno

Exercício 4.3:

```
    Alternativa 1
    Aluno (
        CodAl,
        Nome, CodCurso, Endereco)
```

- A alternativa representa o mesmo número de atributos usando apenas uma tabela.
- A alternativa não requer junções (join). Na outra alternativa, cada vez que os atributos do aluno forem necessários, será necessário fazer uma junção das 2 tabelas.
- A alternativa requer um menor número de chaves primárias.
- A alternativa não requer uso de chaves estrangeiras.
- Menor overhead.

Dúvidas?

Prof. Pedro Garcia Freitas

https://pedrogarcia.gitlab.io/

pedro.garcia@unb.br