1 Nearest Neighbor Methods

1.1 Nearest Neighbor for Classification

We are given a set of n ordered pairs $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ where $y_i \in C$ with $C = \{c_1, ..., c_M\}$ being a set of labels. The nearest neighbor classification \hat{y} for a new point x is y_j where j is the following:

$$\arg\min_{j}||x-x_{j}||$$

Let $x_1, x_2, ..., x_k$ be the k closest points to x. Let I be those indicies 1 to k. The k-nearest neighbor classification for x is the label c_m where m is the following:

$$\arg\max_{m} \mathbb{1}_{I}(y_i = c_m)$$

1.2 Nearest Neighbor for Regression

We are given a set of n ordered pairs (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) where $y_i \in \mathbb{R}$. The nearest neighbor regression value \hat{y} for a new point x is y_j where j is the following:

$$\arg\min_{j}||x-x_{j}||$$

Let $x_1, x_2, ..., x_k$ be the k closest points to x. Let I be those indicies 1 to k. The k-nearest neighbor regression for x is the mean of the y_i values:

$$\frac{1}{k} \sum_{i \in I} y_i$$

2 Bayes Classifier

Estimate probability of class p(y = c) using a probability model.

2.1 Multivariate Gaussian

2.2 Naive Bayes