SEQUENCE LISTING

<110> Mize, Nancy K. Haley-Vicente, Dana A.
<120> Interleukin-1 Hy2 Materials and Methods
<130> 28110/36858A
<140> <141>
<150> US 60/245,346 <151> 2000-11-02
<160> 26
<170> PatentIn Ver. 2.0
<210> 1
<211> 998
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (54)(512)
<400> 1
ggttccagga actcaggatc tgcagtgagg accagacacc actgattgca gga atg 56
Met
1
tgt tcc ctc ccc atg gca aga tac tac ata att aaa tat gca gac cag 104
Cys Ser Leu Pro Met Ala Arg Tyr Tyr Ile Ile Lys Tyr Ala Asp Gln
5 10 15
aag gct cta tac aca aga gat ggc cag ctg ctg gtg gga gat cct gtt 152
Lys Ala Leu Tyr Thr Arg Asp Gly Gln Leu Leu Val Gly Asp Pro Val
20 25 30

AND THE REAL PROPERTY OF THE P

200	ggc	aga	aac	cct	ctt	aca	tgc	atc	aag	gag	gca	tgt	tgc	aac	gac	gca
	Gly	Arg	Asn	Pro	Leu	Thr	Cys	Ile	Lys	Glu	Ala	Cys	Cys	Asn	Asp	Ala
					45					40					35	
248	agc	9 99	gga	cag	atc	999	ctg	ttc	att	ccc	gtc	aag	acc	cgc	gac	ttg
	Ser	Gly	Gly	Gln	Ile	Gly	Leu	Phe	Ile	Pro	Val	Lys	Thr	Arg	Asp	Leu
	65					60					55					50
296	ctg	cag	cta	tcc	cct	999	gag	gaa	aca	gag	gtg	tgt	gca	ctg	tgc	cgc
	Leu	Gln	Leu	Ser	Pro	Gly	Glu	Glu	Thr	Glu	Val	Cys	Ala	Leu	Cys	Arg
		80					75					70				
344	aca	gcc	gag	gaa	ggt	ggt	aaa	tac	ctg	gaa	gag	att	aac	gtg	gat	gag
	Thr	Ala	Glu	Glu	Gly	Gly	Lys	Tyr	Leu	Glu	Glu	Ile	Asn	Val	Asp	Glu
			95					90					85			
392	gag	ctt	agg	ttc	gcc	tcc	ggc	tca	agc	agc	cag	ttc	ttc	acc	ttc	cgc
	Glu	Leu	Arg	Phe	Ala	Ser	Gly	Ser	Ser	Ser	Gln	Phe	Phe	Thr	Phe	Arg
				110					105					100		
440	cag	CCC	gag	gca	ccg	ggc	tgt	ctg	ttc	tgg	ggc	cct	tgg	gcc	gct	gct
	Gln	Pro	Glu	Ala	Pro	Gly	Cys	Leu	Phe	Trp	Gly	Pro	Trp	Ala	Ala	Ala
					125					120					115	
488	aag	acc	cgt	gcc	tca	CCC	gag	agt	gag	aag	acc	ctc	cag	gta	cca	cag
		Thr														
	145		J			140				•	135					130
542	ttgtg	agcct	tt ta	acati	acto	gga a	acad	ggad	taq	tga	agc	caq	gaa	ttt	tac	ttt
	ر- ر	J		5 5 5	:	,	J:	J J :	3					Phe		
															1 -	

tatgtccaca tectaateee aagatetgtg catatgttae catacatgte caaagaggtt 662

ttgcaaatgt gattatgtta aggatettga aatgaggaga caateetggg ttateettgt 722

gggetcagtt taateacaag aaggaggcag gaagggagag teagagagag aatggaagat 782

accatgette taattttgaa gatggagtga gggeettga gecaacatat geaggtgtt 842

ttagaaggag gaaaagecaa gggaacggat teteetetat agteteegga aggaacacag 902

etettgacac atggattea geteagtgae acceatttea gaettetgae etecacaact 962

ataaaataat aaacttgtgt tattgtaaac etetgg

<210> 2

<211> 152

<212> PRT

<213> Homo sapiens

<400> 2

Met Cys Ser Leu Pro Met Ala Arg Tyr Tyr Ile Ile Lys Tyr Ala Asp 1 5 10 15

Gln Lys Ala Leu Tyr Thr Arg Asp Gly Gln Leu Leu Val Gly Asp Pro 20 25 30

Val Ala Asp Asn Cys Cys Ala Glu Lys Ile Cys Thr Leu Pro Asn Arg

35 40 45

Gly Leu Asp Arg Thr Lys Val Pro Ile Phe Leu Gly Ile Gln Gly Gly
50 55 60

Ser Arg Cys Leu Ala Cys Val Glu Thr Glu Glu Gly Pro Ser Leu Gln 65 70 75 80

Leu Glu Asp Val Asn Ile Glu Glu Leu Tyr Lys Gly Glu Glu Ala 85 90 95

Thr Arg Phe Thr Phe Phe Gln Ser Ser Gly Ser Ala Phe Arg Leu
100 105 110

Glu Ala Ala Trp Pro Gly Trp Phe Leu Cys Gly Pro Ala Glu Pro
115 120 125

Gln Gln Pro Val Gln Leu Thr Lys Glu Ser Glu Pro Ser Ala Arg Thr
130 135 140

Lys Phe Tyr Phe Glu Gln Ser Trp 145

<210> 3

<211> 998

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (3)..(512)

<4	0	0	>	- 3

99	ttc	cag	gaa	ctc	agg	atc	tgc	agt	gag	gac	cag	aca	сса	ctg	att	47
	Phe	Gln	Glu	Leu	Arg	Ile	Cys	Ser	Glu	Asp	Gln	Thr	Pro	Leu	Ile	
	1				5					10					15	

gca	gga	atg	tgt	tcc	ctc	CCC	atg	gca	aga	tac	tac	ata	att	aaa	tat	95
Ala	Gly	Met	Cys	Ser	Leu	Pro	Met	Ala	Arg	Tyr	Tyr	Ile	Ile	Lys	Tyr	
				20					25					30		

gca	gac	cag	aag	gct	cta	tac	aca	aga	gat	ggc	cag	ctg	ctg	gtg	gga	143
Ala	Asp	Gln	Lys	Ala	Leu	Tyr	Thr	Arg	Asp	Gly	Gln	Leu	Leu	Val	Gly	
			35					40					45			

gat	cct	gtt	gca	gac	aac	tgc	tgt	gca	gag	aag	atc	tgc	aca	ctt	cct	191
Asp	Pro	Val	Ala	Asp	Asn	Cys	Cys	Ala	Glu	Lys	Ile	Cys	Thr	Leu	Pro	
		50					55					60				

aac	aga	ggc	ttg	gac	cgc	acc	aag	gtc	CCC	att	ttc	ctg	999	atc	cag	239
Asn	Arg	Gly	Leu	Asp	Arg	Thr	Lys	Val	Pro	Ile	Phe	Leu	Gly	Ile	Gln	
	65					70					75					
gga	999	agc	cgc	tgc	ctg	gca	tgt	gtg	gag	aca	gaa	gag	999	cct	tcc	287
Gly	Gly	Ser	Arg	Cys	Leu	Ala	Cys	Val	Glu	Thr	Glu	Glu	Gly	Pro	Ser	
80					85					90					95	
cta	cag	ctg	gag	gat	gtg	aac	att	gag	gaa	ctg	tac	aaa	ggt	ggt	gaa	335
Leu	Gln	Leu	Glu	Asp	Val	Asn	Ile	Glu	Glu	Leu	Tyr	Lys	Gly	Gly	Glu	
				100					105					110		
gag	gcc	aca	cgc	ttc	acc	ttc	ttc	cag	agc	agc	tca	ggc	tcc	gcc	ttc	383
Glu	Ala	Thr	Arg	Phe	Thr	Phe	Phe	Gln	Ser	Ser	Ser	Gly	Ser	Ala	Phe	
			115					120					125			
agg	ctt	gag	gct	gct	gcc	tgg	cct	ggc	tgg	ttc	ctg	tgt	ggc	ccg	gca	431
						Trp										
J		130				•	135	-	-			140	_			
gag	ccc	caq	caq	cca	qta	cag	ctc	acc	aaq	gaq	agt	gag	ccc	tca	gcc	479
						Gln										
	145					150			1		155					
cgt	acc	aag	ttt	tac	ttt	gaa	cag	agc	tgg	tag	gga	gaca	gga	aact	gcgttt	532
						Glu										
160		-		•	165				-	170						
tad	catt	ata i	ccca	caaa	cc a	ageta	catc	c ta	ctca	aaat.	cta	taat	agg	caqa	ataatg	592
	;	. د-د				,,,,,,,,,		-5		- درر			J.J.	٠, ٦	. ,	
taa	~~~~		tata	t aan	an t.	aat a	5 t aa	a 22	~~+~	+~+~	ant	atat	tag	cata	catoto	652

caaagaggtt ttgcaaatgt gattatgtta aggatcttga aatgaggaga caatcctggg 712

ttatccttgt gggctcagtt taatcacaag aaggaggcag gaagggagag tcagagagag 772

aatggaagat accatgcttc taattttgaa gatggagtga ggggccttga gccaacatat 832

gcaggtgttt ttagaaggag gaaaagccaa gggaacggat tctcctctat agtctccgga 892

aggaacacag ctcttgacac atggatttca gctcagtgac acccatttca gacttctgac 952

ctccacaact ataaaataat aaacttgtgt tattgtaaac ctctgg 998

<210> 4

<211> 169

<212> PRT

<213> Homo sapiens

<400> 4

Phe Gln Glu Leu Arg Ile Cys Ser Glu Asp Gln Thr Pro Leu Ile Ala

1 5 10 15

Gly Met Cys Ser Leu Pro Met Ala Arg Tyr Tyr Ile Ile Lys Tyr Ala
20 25 30

Asp Gln Lys Ala Leu Tyr Thr Arg Asp Gly Gln Leu Leu Val Gly Asp

35 40 45

Pro Val Ala Asp Asn Cys Cys Ala Glu Lys Ile Cys Thr Leu Pro Asn 50 55 60

Arg Gly Leu Asp Arg Thr Lys Val Pro Ile Phe Leu Gly Ile Gln Gly Gly Ser Arg Cys Leu Ala Cys Val Glu Thr Glu Glu Gly Pro Ser Leu Gln Leu Glu Asp Val Asn Ile Glu Glu Leu Tyr Lys Gly Gly Glu Glu Ala Thr Arg Phe Thr Phe Phe Gln Ser Ser Ser Gly Ser Ala Phe Arg Leu Glu Ala Ala Ala Trp Pro Gly Trp Phe Leu Cys Gly Pro Ala Glu Pro Gln Gln Pro Val Gln Leu Thr Lys Glu Ser Glu Pro Ser Ala Arg Thr Lys Phe Tyr Phe Glu Gln Ser Trp <210> 5 <211> 155 <212> PRT <213> Homo sapiens <400> 5 Met Val Leu Ser Gly Ala Leu Cys Phe Arg Met Lys Asp Ser Ala Leu

Lys Val Leu Tyr Leu His Asn Asn Gln Leu Leu Ala Gly Gly Leu His $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Ala Gly Lys Val Ile Lys Gly Glu Glu Ile Ser Val Val Pro As
n Arg 35 40 45

Trp Leu Asp Ala Ser Leu Ser Pro Val Ile Leu Gly Val Gln Gly Gly
50 55 60

Ser Gln Cys Leu Ser Cys Gly Val Gly Gln Glu Pro Thr Leu Thr Leu 65 70 75 80

Glu Pro Val Asn Ile Met Glu Leu Tyr Leu Gly Ala Lys Glu Ser Lys

85 90 95

Ser Phe Thr Phe Tyr Arg Arg Asp Met Gly Leu Thr Ser Ser Phe Glu
100 105 110

Ser Ala Ala Tyr Pro Gly Trp Phe Leu Cys Thr Val Pro Glu Ala Asp 115 120 125

Gln Pro Val Arg Leu Thr Gln Leu Pro Glu Asn Gly Gly Trp Asn Ala 130 135 140

<210> 6

<211> 178

<212> PRT

<213> Rattus rattus

<400> 6

Met Glu Ile Cys Arg Gly Pro Tyr Ser His Leu Ile Ser Leu Leu Leu 1 5 10 15

Ile Leu Leu Phe Arg Ser Glu Ser Ala Gly His Pro Ala Gly Lys Arg

Pro Cys Lys Met Gln Ala Phe Arg Ile Trp Asp Thr Asn Gln Lys Thr

35 40 45

Phe Tyr Leu Arg Asn Asn Gln Leu Ile Ala Gly Tyr Leu Gln Gly Pro
50 55 60

Asn Thr Lys Leu Glu Glu Lys Ile Asp Met Val Pro Ile Asp Phe Arg
65 70 75 80

Asn Val Phe Leu Gly Ile His Gly Gly Lys Leu Cys Leu Ser Cys Val

Lys Ser Gly Asp Asp Thr Lys Leu Gln Leu Glu Glu Val Asn Ile Thr

Asp Leu Asn Lys Asn Lys Glu Glu Asp Lys Arg Phe Thr Phe Ile Arg

Ser Glu Thr Gly Pro Thr Thr Ser Phe Glu Ser Leu Ala Cys Pro Gly
130 135 140

Asn Thr Pro Lys Glu Pro Cys Thr Val Thr Lys Phe Tyr Phe Gln Glu 165 170 175

Asp Gln

<210> 7

<211> 177

<212> PRT

<213> Sus scrofa

<400> 7

Met Glu Val Ser Arg Tyr Leu Cys Ser Tyr Leu Ile Ser Phe Leu Leu

1 5 10 15

Phe Leu Phe His Ser Glu Thr Ala Cys His Pro Leu Gly Lys Arg Pro 20 25 30

Cys Arg Met Gln Ala Phe Arg Ile Trp Asp Val Asn Gln Lys Thr Phe
35 40 45

Tyr Leu Arg Asn Asn Gln Leu Val Ala Gly Tyr Leu Gln Gly Pro Asn
50 55 60

Thr Lys Leu Glu Glu Lys Ile Asp Val Val Pro Val Glu Pro His Phe
65 70 75 80

Val Phe Leu Gly Ile His Gly Gly Lys Leu Cys Leu Ser Cys Val Lys

85 90 95

1

Ser Gly Asp Glu Met Lys Leu Gln Leu Asp Ala Val Asn Ile Thr Asp 100 105 110 Leu Arg Lys Asn Ser Glu Gln Asp Lys Arg Phe Thr Phe Ile Arg Ser 115 120 125 Asp Ser Gly Pro Thr Thr Ser Phe Glu Ser Ala Ala Cys Pro Gly Trp 140 130 135 Phe Leu Cys Thr Ala Leu Glu Ala Asp Gln Pro Val Gly Leu Thr Asn 145 150 155 160 Thr Pro Lys Ala Ala Val Lys Val Thr Lys Phe Tyr Phe Gln Gln Asp 165 170 175 Gln <210> 8 <211> 177 <212> PRT <213> Homo sapiens <400> 8

Phe Leu Phe His Ser Glu Thr Ile Cys Arg Pro Ser Gly Arg Lys Ser
20 25 30

Met Glu Ile Cys Arg Gly Leu Arg Ser His Leu Ile Thr Leu Leu Leu

10

Ser Lys Met Gln Ala Phe Arg Ile Trp Asp Val Asn Gln Lys Thr Phe \$35\$

Tyr Leu Arg Asn Asn Gln Leu Val Ala Gly Tyr Leu Gln Gly Pro Asn
50 55 60

Val Asn Leu Glu Glu Lys Ile Asp Val Val Pro Ile Glu Pro His Ala
65 70 75 80

Leu Phe Leu Gly Ile His Gly Gly Lys Met Cys Leu Ser Cys Val Lys

85 90 95

Ser Gly Asp Glu Thr Arg Leu Gln Leu Glu Ala Val Asn Ile Thr Asp 100 105 110

Leu Ser Glu Asn Arg Lys Gln Asp Lys Arg Phe Ala Phe Ile Arg Ser 115 120 125

Asp Ser Gly Pro Thr Thr Ser Phe Glu Ser Ala Ala Cys Pro Gly Trp
130 135 140

Met Pro Asp Glu Gly Val Met Val Thr Lys Phe Tyr Phe Gln Glu Asp

165 170 175

Glu

<210> 9

राजा । भूति स्टास्ट संबंधित स्थापन

<211> 159 <212> PRT <213> Homo sapiens <400> 9 Met Ala Leu Glu Thr Ile Cys Arg Pro Ser Gly Arg Lys Ser Ser Lys Met Gln Ala Phe Arg Ile Trp Asp Val Asn Gln Lys Thr Phe Tyr Leu Arg Asn Asn Gln Leu Val Ala Gly Tyr Leu Gln Gly Pro Asn Val Asn Leu Glu Glu Lys Ile Asp Val Val Pro Ile Glu Pro His Ala Leu Phe Leu Gly Ile His Gly Gly Lys Met Cys Leu Ser Cys Val Lys Ser Gly Asp Glu Thr Arg Leu Gln Leu Glu Ala Val Asn Ile Thr Asp Leu Ser Glu Asn Arg Lys Gln Asp Lys Arg Phe Ala Phe Ile Arg Ser Asp Ser Gly Pro Thr Thr Ser Phe Glu Ser Ala Ala Cys Pro Gly Trp Phe Leu

the state of the s

Cys Thr Ala Met Glu Ala Asp Gln Pro Val Ser Leu Thr Asn Met Pro

7 TWENT IN THE WORLD

Asp Glu Gly Val Met Val Thr Lys Phe Tyr Phe Gln Glu Asp Glu	
145 150 155	
<210> 10	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:primer	
22237 Description of Artificial Sequence:primer	
<400> 10	
ccgcaccaag gtccccattt tc	22
<210> 11	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:primer	
<400> 11	0.0
gageceacaa ggataaceea gg	22
<210> 12	
<211> 1366	
<212> DNA	
<213> Homo sapiens	

<400> 12

ggcagtggga	ctgggtttga	gctgggctta	tcctccaact	gtgagggagg	ctacagcaca	60
ctccacccca	ctctcagggc	tgggaattgt	tgtggctcag	ctatttgggg	gaatctgttt	120
tccagtttct	cagaaccagc	gcaagcacac	acateceagg	ctcacacccc	tggtggctgg	180
acttgctccc	ggatagcctc	agtcagggag	aggcagaget	gcctggagcc	tgctgggctg	240
gtggaagcct	tggtggattc	tggcaggcca	attatagatg	aatggcctgg	ggaacccgtg	300
cagcccgtgg	ctgagtggtt	ctaagcccca	gcacgtctgc	ctctggcttc	acccagcctc	360
cttttctaac	tgcccttctc	tcctccccat	cagtgaggac	cagacaccac	tgattgcagg	420
aatgtgttcc	ctccccatgg	caagatacta	cataattaaa	tatgcagacc	agaaggctct	480
atacacaaga	gacggccagc	tgctggtggg	agatectgtt	gcagacaact	gctgtgcaga	540
gaagatctgc	acacttccta	acagaggctt	ggaccgcacc	aaggtcccca	ttttcctggg	600
gatccaggga	gggagccgct	gcctggcatg	tgtggagaca	gaagagggc	cttccctaca	660
gctggaggat	gtgaacattg	aggaactgta	caaaggtggt	gaagaggcca	cacgcttcac	720
cttcttccag	agcagctcag	gctccgcctt	caggcttgag	gctgctgcct	ggcctggctg	780
gttcctgtgt	ggcccggcag	agccccagca	gccagtacag	ctcaccaagg	agagtgagcc	840
ctcagcccgt	accaagtttt	actttgaaca	gagctggtag	ggagacagga	aactgcgttt	900
tagccttgtg	cccccaaacc	aagctcatcc	tgctcagggt	ctatggtagg	cagaataatg	960
tcccccgaaa	tatgtccaca	tcctaatccc	aagatctgtg	catatgttac	catacatgtc	1020
caaagaggtt	ttgcaaatgt	gattatgtta	aggatcttga	aatgaggaga	caatcctggg	1080
ttatccttgt	gggctcagtt	taatcacaag	aaggaggcag	gaagggagag	tcagagagag	1140
aatggaagat	accatgcttc	taattttgaa	gatggagtga	ggggccttga	gccaacatat	1200
gcttgtgttt	ttagaaggag	gaaaagccaa	gggaacggat	tctcctctat	agtctccgga	1260
aggaacacag	ctcttgacac	atggatttca	gctcagtgac	acccatttca	gacttctgac	1320
ctccacaact	ataaaataat	aaacttgtgt	tattgtaaac	ctctgg		1366

<210> 13

<211> 200

<212> PRT

<213> Homo sapiens

<400> 13

мет	ASN	GTA	ьeu	GIY	Asn	Pro	Cys	ser	Pro	Trp	Leu	ser	GIY	ser	Lys
1				5					10					15	
Pro	Gln	His	Val	Cva	Leu	Trn	Len	Hiq	Pro	Δla	Ser	Phe	Ser	Δsn	Cvs
110	0111			Cyb	БСС	112	Dea		110	1114	001	1110		1,011	C
			20					25					30		
Pro	Ser	Leu	Leu	Pro	Ile	Ser	Glu	Asp	Gln	Thr	Pro	Leu	Ile	Ala	Gly
		35					40					45			
Met	Cvs	Ser	Len	Pro	Met	Ala	Ara	Tvr	Tvr	Ile	Ile	Lvs	Tvr	Ala	Asp
							5	-1-	1 -				2		
	50					55					60				
Gln	Lys	Ala	Leu	Tyr	Thr	Arg	Asp	Gly	Gln	Leu	Leu	Val	Gly	Asp	Pro
65					70					75					80
Val	Ala	Asp	Asn	Cys	Cys	Ala	Glu	Lys	Ile	Cys	Thr	Leu	Pro	Asn	Arg
		_		-	_			-		-					_
				85					90					95	
				85					90					95	
				85					90					95	
Gly	Leu	Asp	Arg		Lys	Val	Pro	Ile		Leu	Gly	Ile	Gln		Gly
Gly	Leu	Asp	Arg		Lys	Val	Pro	Ile		Leu	Gly	Ile	Gln 110		Gly
Gly	Leu	Asp			Lys	Val	Pro			Leu	Gly	Ile			Gly
			100	Thr	Lys Cys			105	Phe				110	Gly	
		Cys	100	Thr			Glu	105	Phe				110	Gly	
			100	Thr				105	Phe			Pro	110	Gly	
Ser	Arg	Cys 115	100	Thr	Cys	Val	Glu 120	105 Thr	Phe	Glu	Gly	Pro 125	110 Ser	Gly	Gln
Ser	Arg	Cys 115	100	Thr		Val	Glu 120	105 Thr	Phe	Glu	Gly	Pro 125	110 Ser	Gly	Gln
Ser	Arg	Cys 115	100	Thr	Cys	Val	Glu 120	105 Thr	Phe	Glu	Gly	Pro 125	110 Ser	Gly	Gln
Ser	Arg Glu	Cys 115	100	Thr	Cys	Val Glu	Glu 120	105 Thr	Phe	Glu	Gly	Pro 125	110 Ser	Gly	Gln
Ser	Arg Glu 130	Cys 115 Asp	100 Leu Val	Thr Ala	Cys	Val Glu 135	Glu 120 Glu	105 Thr	Phe Glu Tyr	Glu Lys	Gly Gly 140	Pro 125 Gly	110 Ser Glu	Gly Leu Glu	Gln
Ser	Arg Glu 130	Cys 115 Asp	100 Leu Val	Thr Ala	Cys	Val Glu 135	Glu 120 Glu	105 Thr	Phe Glu Tyr	Glu Lys	Gly Gly 140	Pro 125 Gly	110 Ser Glu	Gly Leu Glu	Gln
Ser Leu Thr	Arg Glu 130	Cys 115 Asp	100 Leu Val	Thr Ala	Cys	Val Glu 135	Glu 120 Glu	105 Thr	Phe Glu Tyr	Glu Lys Gly	Gly Gly 140	Pro 125 Gly	110 Ser Glu	Gly Leu Glu	Gln Ala Leu
Ser Leu Thr	Arg Glu 130 Arg	Cys 115 Asp	100 Leu Val	Thr Ala Asn	Cys Ile Phe 150	Val Glu 135 Gln	Glu 120 Glu Ser	105 Thr Leu	Phe Glu Tyr	Glu Lys Gly 155	Gly Gly 140 Ser	Pro 125 Gly	110 Ser Glu	Gly Leu Glu	Gln Ala Leu 160
Ser Leu Thr	Arg Glu 130 Arg	Cys 115 Asp	100 Leu Val	Thr Ala Asn	Cys	Val Glu 135 Gln	Glu 120 Glu Ser	105 Thr Leu	Phe Glu Tyr	Glu Lys Gly 155	Gly Gly 140 Ser	Pro 125 Gly	110 Ser Glu	Gly Leu Glu	Gln Ala Leu 160

Gln Gln Pro Val Gln Leu Thr Lys Glu Ser Glu Pro Ser Ala Arg Thr
180 185 190

Lys Phe Tyr Phe Glu Gln Ser Trp

195 200

<210> 14

<211> 1366

<212> DNA

<213> Homo sapiens

<400> 14

ggcagtggga ctgggtttga gctgggctta tcctccaact gtgagggagg ctacagcaca 60 ctccacccca ctctcagggc tgggaattgt tgtggctcag ctatttgggg gaatctgttt 120 tecagtttet cagaaccage geaageacae acateecagg etcacaecee tggtggetgg 180 acttgctccc ggatagcctc agtcagggag aggcagagct gcctggagcc tgctgggctg 240 gtggaageet tggtggatte tggcaggeea attatagaeg aatggeetgg ggaaceegtg 300 cagcccgtgg ctgagtggtt ctaagcccca gcacgtctgc ctctggcttc acccagcctc 360 cttttctaac tgcccttctc tcctccccat cagtgaggac cagacaccac tgattgcagg 420 aatgtgttcc ctccccatgg caagatacta cataattaaa tatgcagacc agaaggctct 480 atacacaaga gacggccagc tgctggtggg agatcctgtt gcagacaact gctgtgcaga 540 gaagatetge acaetteeta acagaggett ggaccgcace aaggteecca tttteetggg 600 gatccaggga gggagccgct gcctggcatg tgtggagaca gaagaggggc cttccctaca 660 gctggaggat gtgaacattg aggaactgta caaaggtggt gaagaggcca cacgcttcac 720 ettetteeag ageageteag geteegeett eaggettgag getgetgeet ggeetggetg 780 gtteetgtgt ggeeeggeag ageeeeagea geeagtacag eteaceaagg agagtgagee 840 ctcagcccgt accaagtttt actttgaaca gagctggtag ggagacagga aactgcgttt 900 tagcettgtg cccccaaacc aagetcatce tgctcagggt ctatggtagg cagaataatg 960 tcccccgaaa tatgtccaca tcctaatccc aagatctgtg catatgttac catacatgtc 1020 caaagaggtt ttgcaaatgt gattatgtta aggatcttga aatgaggaga caatcctggg 1080 ttatccttgt gggctcagtt taatcacaag aaggaggcag gaagggagag tcagagagag 1140

THE HIRD PARTY OF THE PROPERTY OF THE

end for productive many about and any later process entail fact, and the contract of the contr

aatggaagat accatgcttc taattttgaa gatggagtga ggggccttga gccaacatat 1200 gcttgtgttt ttagaaggag gaaaagccaa gggaacggat tctcctctat agtctccgga 1260 aggaacacag ctcttgacac atggatttca gctcagtgac acccatttca gacttctgac 1320 ctccacaact ataaaataat aaacttgtgt tattgtaaac ctctgg 1366

<210> 15

<211> 5445

<212> DNA

<213> Homo sapiens

<400> 15

ctggactgga ccagcattga atttcttcca gctctttgag ctgacactga cccagagtgg 60 gagtcatcag cttgctatcc accttcaccc agggccctcc actttgttgc cccacctaga 120 totgggcaca getaceacae tgeceactgt eetgetgeta caaccaaaga ageeceagtg 180 gtttggccaa ggggagccca tcatcaagtg ggcttgcatt gaggccatga tgctgttgag 240 ttatctgtac tgggggattg tctagtcctt taggactcaa agtgctggcc aggaggaacc 300 agcagcattg acatcacctg gttgcatatt tgaaatgtac agtctcaggc cccaccccag 360 gcctgaaaaa ccagaatctg ttattttaac aagaactgca ggtggtttat atatttatta 420 ataagtgtga agaatggaat gaaagtacat cagttcccaa gcagcatggc tgattgctgg 480 aatcactcca agtcctactg aattagaacc ttcggcccag gaaatagtaa ttatacagag 540 tcccccaggt gatgcagatg ggcaggcaca tttaggagcc aatgacttta actgaacact 600 tcatttaaaa aatgttgaaa cttacttgat actacaaagg aaattcatgt tcattatagg 660 aaaatgttga tatgtttaaa aaattactca taaagccata ggtaagtggt gcaacaacac 720 gagtaacata totatgtatg tgtototatg tgtggattta aatagaatta cagtgtacac 780 ttgatttata atctgcattt ttcacctaat atattttgaa aatttttatg tcctaaaaca 840 agettetata atateatett taacaaacae atacateett atttattgaa ttttgetata 900 atttcttagc caattaccta ttactgaaaa ttcagatttt tttcaacttc ttgctattgt 960 aaaaaattat gcagtgaaca tttttgtaag taaacatttg ggcaatccgt tatttttcct 1020 aagagtaagg gaaacacatg caatcacaaa gtatacagaa tgctttaaga ctttcattca 1080

cagcaccaac atecetecag aatttgeact tgttagteee tattateett caetetaagt 1140 ctcaaagtca taccccaagg cctggggaca gaaaatgact tgtccaaagt gacagtgaca 1200 gacccagtac taaaagccac cttggctaca gecetgttte tggaacttga gtgetgaggt 1260 ggttggaage egtateetea geacceacet gtteettete acetgeetee ecagggteee 1320 teageatete tetatteete eetgageeet attaetttet teeacetgee ttetteettt 1380 ctettetete attitetget tiettatatt tittettete tatteeette tiattiggig 1440 agaatcagat ctactcggta aacctcagcc ctagtcatac ttgcgttact ttcctgagct 1500 aatttecaac teetgattag etetgggttt atttecatge taaattetgg actggeettt 1560 ccaatgggtg ttcattttag ggaagagete taggacagga taacccatcg ggaaggagca 1620 gagtcatgtg aggctgtgtg gcctggcatt tatacagggc cactatcttc actgtgccat 1680 tttccatctg gaacagaatg ggggagtttg gatgggctgt tttcagcagt cttggccaag 1740 cacttctagt cactaggaat gatgttttcc aactctctgg ggagacccca ccagcctcac 1800 tgctgctgga gaccccttct agttgtgctc tcttctttca ctctgggctc tagttatcta 1860 accettgget agttatgggg gegggggtgt ggtgeeetgt tggeeaacag ggeagtggga 1920 ctgggtttga gctgggctta tcctccaact gtgagggagg ctacagcaca ctccacccca 1980 ctctcagggc tgggaattgt tgtggctcag ctatttgggg gaatctgttt tccagtttct 2040 cagaaccagc gcaagcacac acatcccagg ctcacacccc tggtggctgg acttgctccc 2100 ggatagcete agteagggag aggeagaget geetggagee tgetgggetg gtggaageet 2160 tggtggattc tggcaggcca attatagatg aatggcctgg ggaacccgtg cagcccgtgg 2220 ctgagtggtt ctaagcccca gcacgtctgc ctctggcttc acccagcctc cttttctaac 2280 tgcccttctc tcctccccat cagtgaggac cagacaccac tgattgcagg aatgtgttcc 2340 ctccccatgg caagatacta catgtaagtt gtcctggcat gtccctgctt tccaagccag 2400 ggggtcaggg tgggaagagg aaaggaatgc tgagtcagag gatgaggctc cttctcacct 2460 tagaaattgc aagtgcccca taattaagct tcatcatcac cacagtagca acagctcttt 2520 cctgaacgtc tgcaagatgc cagccaatct actgcctcat ctctgttcca aaaagtctat 2580 aagtggagtg ttattaaccc cattttacag atctggaagc tgaggctcaa agagggtaaa 2640 taacttcccc catgtcacac agctaccaaa aggcagagcc aggaatcaga cttcatgtcc 2700 tctatgctgc tccatccgcc tctctgaaat gtcagaaagt tttgaatctc aatgacagca 2760 tettgatggt ggtecetgtg geetttacte ceagtgtggg ettetaacae ttacttacat 2820 ttcatctcat ttgagatttg catccttcct tatcttttac tactttgttg tctgtgattt 2880 tgtcataagc tcctttcagg aaggaggtga ggcataagaa aaatcaaaga ggactctggg 2940 atgcatttcc tetgeceete ceatggaeee tgtaatgtee agggetgtgt cetggaeaag 3000 gtgggtgggg agcagtcctg gtctcaagga ggtgacagcc tggctgggaa gcaagacaca 3060 tacataggaa gcacataaat gacaaagcag atgtcagcac ttcagggcat ctaatctggg 3120 ttctggtctc caaatagaat gctgctggca tgtgagttgt cacatctggg ttgtcaaggt 3180 ggcaagggga atgccagtca gcaagcccag gatctttccg gaagtttatt tttattgtac 3240 aagtgaacct gctttaaata tgtacagtca ttagctaagg gtattatcgt tagctgttat 3300 tgaggtagaa aaatcccctg gaggtggtgg aatttgtcca gaggttctgc cctaaaaggt 3360 taatgagage tetecageee tgacageage tgacaggeat etttgaaace aactaggtga 3420 ctgagctaat accetgeatg actttgaage etttaaaata tetgaaaage aaateacact 3480 tcagtataca ctcaattaat ctctgtacta aagagaataa acatttataa acaattaggg 3540 caggcccaaa aaatttaaga taaggtccac tgtatcccaa agtcatctga gcctcactaa 3600 gaaatttete aggaageeag gaacatttte tttaceeete tgtcagaggg cattggetet 3660 cegtteteet etgaaggeet eeceaageea tgagaaggea ggaageaeag eetetgaaaa 3720 gcaagaacac aggagacctt ccttgcttta agactggcct ggtctttacc tgctcttggg 3780 agtgaccatt cccctcttac cacctgtgaa ggagagaaaa tcgcccaaat gctcaaggtg 3840 gtgattcaga gcatggaagt ggaagggett gggggceagt ggtgcataaa gggaatgggc 3900 catcagcact gtcatactgt ttcagaatta aatatgcaga ccagaaggct ctatacacaa 3960 gagatggcca gctgctggtg ggagatcctg ttgcagacaa ctgctgtgca ggtgagcttc 4020 ccccagcaga gggtcagcag ctgccccag tgacagtgag aagggccaga gagcagctgt 4140 ggcctctcct agcgagggga catgactcct gcagaagtcc tggctcaccg tccagtctgc 4200 atgeagggee aggeeaggtg tgeecatgte eagtteette etgeetgage etttacetge 4260 caagageetg caacatgggg tteeettgte cettgaetet tetetetett ceetcetaga 4320 gaagatetge acaetteeta acagaggett ggacegeace aaggteecca tttteetggg 4380 gatccaggga gggagccgct gcctggcatg tgtggagaca gaagaggggc cttccctaca 4440 gctggaggtg agaggcctct ccccattcta ggggacactg cagacctggc ctgacccctg 4500 ggatgctctg gcatctttgt gcctatctgt ggattcccag ccaggtccac atgtcctact 4560 tecteaggtt tecaecatet ecetetgeae etageaecaa gaecettgee etetagaate 4620 tgcagaaggc agtcccttgg gtaaaaacca gccctgtcag gtcctttttt ggccaagccc 4680 cagaggeete cagggetaac acetecatea geacteteat tetgeageea tecacettge 4740 ccccacagga tgtgaacatt gaggaactgt acaaaggtgg tgaagaggcc acacgcttca 4800 cettetteca gageagetea ggeteegeet teaggettga ggetgetgee tggeetgget 4860 ggttcctgtg tggcccggca gagccccagc agccagtaca gctcaccaag gagagtgagc 4920

A COMPANY OF A SECOND CONTRACTOR OF THE PROPERTY OF THE PROPER

ceteageceg taceaagttt tactttgaac agagetggta gggagacagg aaactgcgtt 4980 ttagecttgt gececeaaac caageteate etgeteaggg tetatggtag geagaataat 5040 gteececgaa atatgtecac atcetaatec caagatetgt geatatgtta ceatacatgt 5100 ceaaagaggt tttgcaaatg tgattatgtt aaggatettg aaatgaggag acaateetgg 5160 gttateettg tgggeteagt ttaateacaa gaaggaggea ggaagggaga gteagaggag 5220 gaatggaaga taceatgett etaattttga agatggagtg agggeeettg agecaacaaa 5280 tgeaggtgtt tttagaaggt ggaaaageea agggaacgga tteteetta gagteteegg 5340 aaggaacaca getettgaca catggatte ageteagtga eacecatte agaettetga 5400 cetecacaac tataaaataa taaacttgtg ttattgtaaa cetet 5445

<210> 16

<211> 4388

<212> DNA

<213> Mouse

<400> 16

ccatatcctt atttcctgga tttatcattc cctttcagcc gactggacat tgacagcatt 60 tccaactttt caaccttgta aaaataacta attgaactat tttataacta agcatttggg 120 caatcaatta cctctgcctg gaatgggggc aacaacacat gcaatcatgg gaaagccagg 180 atgetgetgt etgateeeta geeetggeat tegtgeagaa eeteaetete atetgtgeee 240 tgatateett caeteteaag tetttteeca gtgaetttta aaggeaacag aateatatag 300 ccaataatga aagctacttg gtctacagtt gtgtggcgtt ttttatagat attttcatca 360 tttacattta aaatgcatat cccaaaagte ccctataccc tcccccaccc tgctccccta 420 cocactgcac teceacttet tggccetgge tttececett actggggcat ataaagtttg 480 ctagaccaag gggcctctct tcccaatgat ggccaactag gccattttct gctacatatg 540 cagetagaga caccagttet ggggttactg gttagtteat attgttgtte tacetatggg 600 gttgcagacc ccttcagctc ttgagtactt tctctagctc ctccattggg agccctgtgt 660 tecatectat agatgaetgt gageatecee ttetgtattt geaggegtgg catatgaaat 720 agtatotgoa tittggtggot gattatggga tggaccoccg ggtggggcag totatggatg 780 gtccatcctt tcatcttagc tccaaacttt gtctctgcaa cttcttccat ggatatttta 840 gtccctaatc tagggaggaa tgaagtatcc ccaagttgat cttccttctt gattttctta 900 tgttttagca gttggatgtt ggatattata ggtttctggg ctaatatcca cttatcagtg 960

station media, a laterate media, station of the st

agtacatatc aagtgaattc ttttgtgatt aggttacctc actcaagatg atattctcca 1020 ctatgttcaa aacagcccta tttatagtag ccagaagact ggaaagaacc cagtccctca 1080 acagaggaat ggatacagaa aatgggcaca tttatgcaat ggagcccact cagatattaa 1140 aaacaacgaa tttatgaaat tetegggeaa aaceetatet aaageeagga ataaggaaaa 1200 gatggactgc ctgcctgcag ctgggagagc tggggagacc tttgtggatt ctgtaatact 1260 taggggtacg gaacagettg tggetggata attetgaget ceageatgte tgeececeaa 1320 aaaacattet gtttttetga aageettttt ettetttgee teagtgaaga eeagacaete 1380 ccaactgcag gaatgtgctc ccttcccatg gcaagatact acatgtaagt aatcttaacg 1440 ategeteaat caaggggeet ggagateaea tgagaaggga aaaggetgag teaaagggae 1500 aaageteeet etageeacag aaateteaaa caetgaataa ttgatettea tetttgteaa 1560 tcacaacagc cctctttcct ggtgacagaa tggaacaact gtaagagtgg tattgcttag 1620 tccattttac agacceggaa actcaacete caegaggtta tacaatttte etcatgteat 1680 gcaattaccc aaaagcagag agtgggatcg gactctctgt tctctaaact gatgtagcta 1740 gttcttagaa agctcaaaca atcttgagtc ccaaggacag cacctttatg gtcacctgga 1800 ttgataccta tatcaaaaaa aaaaaaaggt ctcactagat agccctggct accctgaaac 1860 teteactgtg tacatttagg tgaecaegaa eteacagaga tetgeettee aagtgetggg 1920 attaaagtat gtaccaccac acctgcatct ttgacaataa ctgagtggta tctaaattct 1980 tccagtggct aaacagttaa gtcccagttc ccaaagtctg acaaaaatgc caggtggctg 2040 aaatctgtac agacctttgt tcttaatgta caagtgagcc tgctttaaaa acaatacgca 2100 agctgttttt gctattgcta agtgttgcag agacagaaaa ggctcccaga agtggtaact 2160 ttggtccaga ggttctgttc tcaaactcat tgtgagctct gaaagcaact gatgggcagc 2220 tctgaaatca gctgggcaat taggctaata acaggcataa ttttaatgtt tcacacgcat 2280 gacagttcct ccccagctgc cctagtacat acttaccctc ctaggcacgt cattagaccc 2340 ataggtataa ccagtgacta atcaggccct ggtctaattc taagttggcc tcctatataa 2400 gtgccactca gagtgtacct catcatggct gtagtgggcc cagagtctag ggacatagac 2460 ttttctattg tccaatttct gatttgtgaa ttttctacaa aaagaatttt ttttaatttt 2520 acaaatcaaa tcacagttac tacatcttca gttccttcat taattagtgt tactatttaa 2580 aaaaataaaa taaatcaagc tcagaaacat catggatagg gttcattgta tctccagggt 2640 acctgagett caaagcaact ceteagacag ceatgaaaac ateeteaatt accteatgag 2700 aagacactat tgtcatttct ggagcctctg ataatcctga gcctaggcag ctttgggatg 2760 aaacaattte taccettatt ggaacagtgt ceeteteetg tetggaaaca atteaceaaa 2820 ggctccatgt ggttgtccag taaggtggta tggggacaga aatggacaat gatccctgag 2880 ggcagtgatc cattaacctt gccctcctat ttcagaatca aggatgcaca tcaaaaggct 2940 ttgtacacac ggaatggcca gctcctgctg ggagaccctg attcagacaa ttatagtcca 3000 ggtgatette eggtggtggg ggtgggggag tggaggggag ggtgtggggg gggetetett 3060 ccagaagttg cttagtgtcc atctgccaca aggccttgat tctttccttc aattgtgtct 3120 ctagagacat gagaatattg tcacagtgat aaggagaaga ggtaggggca gtttcttcct 3180 gtaaaaaatg aattccattt accctgcagt ctccatacag aaacaggcca gagggggca 3240gacccagtaa cttctagctg agccctacct tgcttaaaac ctgccatctg tggtcccctc 3300 actgtctgaa ttgcattctg tcttacctcc cagagaaggt ctgtatcctt cctaaccgag 3360 gcctagaccg ctccaaggtc cccatcttcc tggggatgca gggaggaagt tgctgcctgg 3420 cgtgtgtaaa gacaagagag ggacctetee tgeagetgga ggtgagacae ceeteeteat 3480 tgcagtcagt actgccactg gaacatagtg acatctttga acccacatgt cccctctctt 3540 gtttcccatc tatctctctt tgcctccagc tgagggactc tagcctttgg ggatgtacag 3600 aaagaacatg getteggaaa aetetteeet attgagteet tetttggeea ageetetgag 3660 gcactaaggg ctgacgtccc aaccaaacac tcatttcatc tcacagctgt ctccctttcc 3720 ccacaggatg tgaacatcga ggacctatac aagggaggtg aacaaaccac ccgtttcacc 3780 tttttccaga gaagettggg atetgeette aggettgagg etgetgeetg ecetggetgg 3840 tttctctgtg gcccagctga gccccagcag ccagtgcagc tcaccaaaga gagtgaaccc 3900 tccacccata ctgaattcta ctttgagatg agtcggtaaa gagacataag gctggggcct 3960 cgtctagtgc ccccagtctg agatcttctt gctcagcatc tctggaaagc agaataagga 4020 agataccaaa gatgtttggg tettaateee cagaatetgt gacegtgtta cattaaatgg 4080 caaagggatt tttttttcc ttcatggtcc atttgggccc attggaatca tctgaggcct 4140 catgaggaga aggaagaggt catgagggag actggcgcaa actttggtac taaaagtaac 4200 aatggagaca gggaccataa gctgatgggt aacagtggtt tctagaaacc ggaaatgatg 4260 agagetetee tgacacaggt gtetggattt ttetggaetg aagaatggeg aaataataca 4320 gctccattat tttaagccac tgagtttgag atcattcaat gaagctgtca taataaaacc 4380 4388 tgtgcttc

<210> 17

<211> 459

<212> DNA

<213> Mouse

THE RESERVE OF THE PARTY OF THE

TOTAL CONTRACTOR CONTR

<400> 17

<210> 18

<211> 152

<212> PRT

<213> Mouse

<400> 18

Met Cys Ser Leu Pro Met Ala Arg Tyr Tyr Ile Ile Lys Asp Ala His

1 10 15

Gln Lys Ala Leu Tyr Thr Arg Asn Gly Gln Leu Leu Leu Gly Asp Pro

Asp Ser Asp Asn Tyr Ser Pro Glu Lys Val Cys Ile Leu Pro Asn Arg

35 40 45

Gly Leu Asp Arg Ser Lys Val Pro Ile Phe Leu Gly Met Gln Gly Gly
50 55 60

Ser Cys Cys Leu Ala Cys Val Lys Thr Arg Glu Gly Pro Leu Leu Gln 65 70 75 80

Leu Glu Asp Val Asn Ile Glu Asp Leu Tyr Lys Gly Gly Glu Gln Thr 85 90 95

```
Thr Arg Phe Thr Phe Phe Gln Arg Ser Leu Gly Ser Ala Phe Arg Leu
                                                    110
                                105
            100
Glu Ala Ala Cys Pro Gly Trp Phe Leu Cys Gly Pro Ala Glu Pro
                                                125
                            120
        115
Gln Gln Pro Val Gln Leu Thr Lys Glu Ser Glu Pro Ser Thr His Thr
                                            140
                        135
    130
Glu Phe Tyr Phe Glu Met Ser Arg
                    150
<210> 19
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer
<400> 19
                                                                    31
gageegecat gtgtteeete eecatggeaa g
<210> 20
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
```

<223> Description of Artificial Sequence: primer

```
<400> 20
gctaccagct ctgttcaaag taaaac
<210> 21
<211> 143
<212> PRT
<213> Homo sapiens
<400> 21
Met Gln Ala Phe Arg Ile
```

<210	> 21														
<211	> 14	3													
<212	2> PR	T.													
<213	3 > HC	omo s	apie	ens											
<400)> 21														
Met	Gln	Ala	Phe	Arg	Ile	Trp	Asp	Val	Asn	Gln	Lys	Thr	Phe	Tyr	Leu
1				5					10					15	
Arg	Asn	Asn	Gln	Leu	Val	Ala	Gly	Tyr	Leu	Gln	Gly	Pro	Asn	Val	Asn
			20					25					30		
_	a 1	~ 3	Tria	Tlo	λαν	7727	TeV	Pro	Tle	Glu	Pro	His	Ala	Leu	Phe

26

Leu Glu Glu Lys Ile Asp Val Val Pro Ile Glu Pro His Ala Leu Phe 45 40 35

Leu Gly Ile His Gly Gly Lys Met Cys Leu Ser Cys Val Lys Ser Gly 60 55 50

Asp Glu Thr Arg Leu Gln Leu Glu Ala Val Asn Ile Thr Asp Leu Ser 80 75 70 65

Glu Asn Arg Lys Gln Asp Lys Arg Phe Ala Phe Ile Arg Ser Asp Ser 95 90 85

Gly Pro Thr Thr Ser Phe Glu Ser Ala Ala Cys Pro Gly Trp Phe Leu 110 105 100

Cys Thr Ala Met Glu Ala Asp Gln Pro Val Ser Leu Thr Asn Met Pro 125 120 115

Asp Glu Gly Val Met Val Thr Lys Phe Tyr Phe Gln Glu Asp Glu
130 135 140

<210> 22

<211> 146

<212> PRT

<213> Homo sapiens

<400> 22

Ala Arg Tyr Tyr Ile Ile Lys Tyr Ala Asp Gln Lys Ala Leu Tyr Thr

1 5 10 15

Arg Asp Gly Gln Leu Leu Val Gly Asp Pro Val Ala Asp Asn Cys Cys
20 25 30

Ala Glu Lys Ile Cys Ile Leu Pro Asn Arg Gly Leu Asp Arg Thr Lys

35 40 45

Val Pro Ile Phe Leu Gly Ile Gln Gly Gly Ser Arg Cys Leu Ala Cys
50 55 60

Val Glu Thr Glu Glu Gly Pro Ser Leu Gln Leu Glu Asp Val Asn Ile
65 70 75 80

Glu Glu Leu Tyr Lys Gly Gly Glu Glu Ala Thr Arg Phe Thr Phe Phe

85 90 95

Gln Ser Ser Gly Ser Ala Phe Arg Leu Glu Ala Ala Ala Trp Pro 100 105 110

Gly Trp Phe Leu Cys Gly Pro Ala Glu Pro Gln Gln Pro Val Gln Leu
115 120 125

نــه الـ الإخالة بالله على خانيالا

Thr Lys Glu Ser Glu Pro Ser Ala Arg Thr Lys Phe Tyr Phe Glu Gln
130 135 140

Ser Trp

145

<210> 23

<211> 151

<212> PRT

<213> Homo sapiens

<400> 23

Val Arg Ser Leu Asn Cys Thr Leu Arg Asp Ser Gln Gln Lys Ser Leu

1 5 10 15

Val Met Ser Gly Pro Tyr Glu Leu Lys Ala Leu His Leu Gln Gly Gln $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Asp Met Glu Gln Gln Val Val Phe Ser Met Ser Phe Val Gln Gly Glu 35 40 45

Glu Ser Asn Asp Lys Ile Pro Val Ala Leu Gly Leu Lys Glu Lys Asn
50 55 60

Leu Tyr Leu Ser Cys Val Leu Lys Asp Asp Lys Pro Thr Leu Gln Leu 65 70 75 80

Glu Ser Val Asp Pro Lys Asn Tyr Pro Lys Lys Met Glu Lys Arg 85 90 95 Phe Val Phe Asn Lys Ile Glu Ile Asn Asn Lys Leu Glu Phe Glu Ser 100 105 110 Ala Gln Phe Pro Asn Trp Tyr Ile Ser Thr Ser Gln Ala Glu Asn Met 125 120 115 Pro Val Phe Leu Gly Gly Thr Lys Gly Gly Gln Asp Ile Thr Asp Phe 130 135 140 Thr Met Gln Phe Val Ser Ser 145 150 <210> 24 <211> 148 <212> PRT <213> Homo sapiens <400> 24 Pro Met Ala Arg Tyr Tyr Ile Ile Lys Tyr Ala Asp Gln Lys Ala Leu 1 5 10 15 Tyr Thr Arg Asp Gly Gln Leu Leu Val Gly Asp Pro Val Ala Asp Asn 20 25 30 Cys Cys Ala Glu Lys Ile Cys Ile Leu Pro Asn Arg Gly Leu Asp Arg 35 40 45 Thr Lys Val Pro Ile Phe Leu Gly Ile Gln Gly Gly Ser Arg Cys Leu

50 55 60

<213> Artificial Sequence

Ala Cys Val Glu Thr Glu Glu Gly Pro Ser Leu Gln Leu Glu Asp Val 80 70 75 65 Asn Ile Glu Glu Leu Tyr Lys Gly Glu Glu Ala Thr Arg Phe Thr 95 85 90 Phe Phe Gln Ser Ser Ser Gly Ser Ala Phe Arg Leu Glu Ala Ala Ala 105 110 100 Trp Pro Gly Trp Phe Leu Cys Gly Pro Ala Glu Pro Gln Gln Pro Val 115 120 125 Gln Leu Thr Lys Glu Ser Glu Pro Ser Ala Arg Thr Lys Phe Tyr Phe 130 135 140 Glu Gln Ser Trp 145 <210> 25 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Primer <400> 25 gtcatatgtg ttccctcccc atggcaag 28 <210> 2 <211> 26 <212> DNA

<223> Description of Artificial Sequence: Primer

<400> 26

gttttacttt gaacagagct ggtagtgatc aagcttc

37