MAT. DISCRETA 5

PERMUTAZIONI

Che cos'è una permutazione (basi)

Che cos'è una permutazione

- Una permutazione è un riordinamento di un insieme di n elementi.
- Formalmente: è una **funzione biiettiva** $\sigma:\{1,2,\ldots,n\}\to\{1,2,\ldots,n\}$. Significa che ogni elemento va in uno e un solo posto, e nessuno si ripete o sparisce. Esempio: su $\{1,2,3\}$, la permutazione

$$\sigma(1)=2, \ \sigma(2)=3, \ \sigma(3)=1$$
 è il ciclo (1 2 3).

Notazione a cicli

- Un ciclo $(a\ b\ c)$ significa $a\mapsto b,\ b\mapsto c,\ c\mapsto a.$
- Cicli disgiunti (che non condividono elementi) si possono scrivere uno accanto all'altro: si applicano indipendentemente.
- Convenzione di composizione: quando scrivi un prodotto di cicli $(\alpha \beta \gamma)(\delta ...)$ si applica **prima** il ciclo più a destra, poi quello a sinistra (cioè si legge *right-to-left*). Questo è lo standard in teoria delle permutazioni.

Un ciclo è solo una regola che dice "questo numero va in quell'altro".

$$\begin{pmatrix} q & b & c \\ 1 & 4 & 8 \end{pmatrix}$$

- a,b,c (guarda le colonne sotto, e segui : $a\mapsto b,\ b\mapsto c,\ c\mapsto a$)
- $(1\ 5\ 8)$ vuol dire: $1\mapsto 5,\ 5\mapsto 8,\ 8\mapsto 1.$
- $(2\ 3\ 8)$ vuol dire: $2\mapsto 3,\ 3\mapsto 8,\ 8\mapsto 2.$
- $(4\ 5)$ vuol dire: $4\mapsto 5,\ 5\mapsto 4.$

Tutti gli altri numeri rimangono invariati.

Esempio di traccia:

Si consideri la seguente permutazione di S_8

$$g = (158)(238)(45)$$

- 1. Determinare la decomposizione in cicli disgiunti di g.
- 2. Determinare una permutazione h $2S_8$ tale che $h \circ g = g \circ h$, con $h \neq id$.

Traccia: calcolo di g

Hai $g = (1\ 5\ 8)(2\ 3\ 8)(4\ 5)$. Seguiamo la regola: applichiamo prima $(4\ 5)$, poi $(2\ 3\ 8)$, poi $(1\ 5\ 8)$.

Per trovare la decomposizione in cicli disgiunti è comodo calcolare l'immagine di ogni elemento 1, 2, ..., 8.

Per scrivere una permutazione come **prodotto di cicli disgiunti**.

- 1. Parti da un elemento, segui dove va, poi dove va il successivo, finché torni all'inizio → hai un ciclo.
- 2. Ripeti con gli elementi che non hai ancora toccato.
- 3. Metti tutto insieme.

Premessa:

• Il simbolo " \mapsto " (oppure $| \rightarrow$):

Si legge "va in" o "è mandato in".

Serve per descrivere come una funzione trasforma un elemento.

Descrive l'insieme di partenza e arrivo della funzione (dominio → codominio).

Esempi:

• Se ho una funzione $f(x)=x^2$, posso scriverla anche così:

$$f: x \mapsto x^2$$
.

Si legge: "f manda x in x^2 ".

• Per una permutazione $g = (1 \ 2 \ 3)$:

$$1\mapsto 2,\quad 2\mapsto 3,\quad 3\mapsto 1.$$

Il simbolo "→":

Si legge "da ... a ..." e serve per indicare il dominio e il codominio di una funzione. Descrive come un singolo elemento viene trasformato.

Esempi:

La scrittura

$$f: \mathbb{R} o \mathbb{R}, \quad x \mapsto x^2$$

significa:

- "f è una funzione che prende input da \mathbb{R} e restituisce output in \mathbb{R} ";
- e precisamente manda x in x^2 .

Esempio con x=1

Calcoliamo g(1)

- Applica $(4\ 5)$: questo ciclo tocca solo 4 e 5, quindi lascia 1 invariato \Rightarrow 1.
- Poi $(2\ 3\ 8)$: tocca solo 2,3,8, quindi lascia 1 invariato \Rightarrow 1.
- Poi £: qui invece 1 va in 5 \Rightarrow 5. Quindi g(1) = 5.

Non stiamo facendo operazioni numeriche (tipo somme o prodotti), stiamo solo **seguendo le regole dei cicli**: controlliamo se il numero è citato dentro al ciclo.

- Se sì, lo spostiamo in quello successivo del ciclo.
- Se no, resta uguale.

Esempio con x=5

Calcoliamo g(5).

- Applica $(4\ 5)$: questo ciclo dice $5\mapsto 4$.
- Poi (2 3 8): non tocca il 4, quindi resta 4.
- Poi $(1\ 5\ 8)$: non tocca il 4, quindi resta 4. Quindi g(5)=4.

Calcolo immagine per immagine (passo-passo)

Applichiamo i tre cicli in ordine (destra → sinistra) a ciascun elemento.

- Per 1:
 - 1. (45) lascia 1 invariato \rightarrow 1.
 - 2. $(2\ 3\ 8)$ lascia 1 invariato \rightarrow 1.
 - 3. (1 5 8) manda $1 \mapsto 5$. $\Rightarrow g(1) = 5$.
- **Per** 5:
 - 1. $(45): 5 \mapsto 4$.
 - $2. (238): 4 \mapsto 4.$
 - 3. $(158): 4 \mapsto 4$. $\Rightarrow g(5) = 4$.
- Per 4:
 - 1. $(45): 4 \mapsto 5$.
 - 2. $(2\ 3\ 8): 5\mapsto 5$.
 - 3. $(158): 5 \mapsto 8$. $\Rightarrow g(4) = 8$.
- Per 8:

- 1. $(45): 8 \mapsto 8$.
- 2. $(238): 8 \mapsto 2$.
- 3. $(158): 2 \mapsto 2$. $\Rightarrow g(8) = 2$.
- Per 2:
 - 1. $(45): 2 \mapsto 2$.
 - 2. $(2\ 3\ 8): 2\mapsto 3$.
 - 3. $(1 \ 5 \ 8): 3 \mapsto 1.$ $\Rightarrow g(2) = 3.$
- **Per** 3:
 - 1. $(45): 3 \mapsto 3$.
 - 2. $(2\ 3\ 8): 3\mapsto 8$.
 - 3. $(158): 8 \mapsto 2$. $\Rightarrow g(3) = 1$.
- **Per** 6 e 7: nessun ciclo li tocca \Rightarrow sono fissi: g(6) = 6, g(7) = 7.

Riepilogo (mappa):

$$1 \mapsto 5, \ 5 \mapsto 4, \ 4 \mapsto 8, \ 8 \mapsto 2, \ 2 \mapsto 3, \ 3 \mapsto 1, \ 6 \mapsto 6, \ 7 \mapsto 7.$$

Costruzione dei cicli disgiunti

Parto da 1 e seguo le immagini fino a tornare a 1:

$$1 \rightarrow 5 \rightarrow 4 \rightarrow 8 \rightarrow 2 \rightarrow 3 \rightarrow 1$$
.

Quindi c'è un ciclo di lunghezza 6:

(154823).

Gli elementi 6 e 7 sono fissi (cicli di lunghezza 1, di solito si omettono).

Risposta (punto 1):

$$g = (1\ 5\ 4\ 8\ 2\ 3)$$
 (6 e 7 fissi). $di\ lughezza\ 6$

2) Trovare $h \in S_8$ non banale con $h \circ g = g \circ h$

Premessa: cosa significa "commutare"?

Due permutazioni $g, h \in S_n$ commutano se l'ordine in cui le applichi non cambia il risultato:

$$h \le g = g \le h$$

- Dove "o" indica la **composizione**: applicare prima una permutazione e poi l'altra.
- In altre parole: se applichi h prima e g dopo, ottieni lo stesso risultato che se applichi g prima e h dopo.

Esempio intuitivo:

- Immagina 6 carte numerate 1, 2, 3, 4, 5, 6.
- Sia g la permutazione che le ruota di 1 posizione: (1 2 3 4 5 6).
- Se applichi g due volte (g^2) , è come ruotarle di 2 posizioni.
- Adesso, $g^2\circ g=g\circ g^2=g^3$, cioè ruotare di 3 posizioni.
- Quindi $g \in g^2$ **commutano**, perché l'ordine non cambia il risultato finale.

Idea chiave: quando due permutazioni commutano, puoi scambiarne l'ordine senza modificare l'effetto finale.

Perché considerare le potenze di g?

Una proprietà fondamentale dei cicli:

- Ogni potenza g^k di un ciclo g **commuta con** g: $g^k \circ g = g \circ g^k = g^{k+1}$.
- Qui, "centralizzatore" significa l'insieme di tutte le permutazioni che commutano con g.
- Se g è un ciclo di lunghezza 6, allora: $g^6 = \mathrm{id}$ (l'identità) e nessuna potenza minore di 6 fa tornare tutti gli elementi al punto di partenza.
- Quindi basta scegliere una potenza g^k con $1 \le k \le 5$ per ottenere una permutazione **non** banale che commuta con q.

Applicazione al nostro caso concreto

Abbiamo la permutazione $g \in S_8$:

$$g = (1\ 5\ 4\ 8\ 2\ 3)$$

- Questo è un **6-ciclo**: ruota sei elementi e lascia fissi 6,7.
- Significa:
 - $g^1=g o {\sf ruota}$ di 1 posizione
 - $g^2
 ightarrow {
 m ruota}$ di 2 posizioni
 - $g^3 \rightarrow \text{ruota di 3 posizioni}$
 - ...
 - $g^6 = id$

Osservazione: Qualsiasi g^k commuta con g.

Costruire $h=g^2$ e decomporlo in cicli disgiunti

Applichiamo g **due volte** (g^2) su ogni elemento:

- Consideriamo la sequenza degli elementi:
 - $1\mapsto 5\mapsto 4\to 1\mapsto 4$
 - $4\mapsto 8\mapsto 2\to 4\mapsto 2$

•
$$2 \mapsto 3 \mapsto 1 \rightarrow 2 \mapsto 1$$

 $\Rightarrow ciclo(1 \ 4 \ 2)$

• Altri elementi nel 6-ciclo:

•
$$3\mapsto 1\mapsto 5\to 3\mapsto 5$$

•
$$5\mapsto 4\mapsto 8\to 5\mapsto 8$$

•
$$8 \mapsto 2 \mapsto 3 \rightarrow 8 \mapsto 3$$

 $\Rightarrow ciclo(358)$

• Gli elementi 6 e 7 restano fissi.

Quindi la decomposizione di g^2 in cicli disgiunti è:

$$h = g^2 = (1 \ 4 \ 2)(3 \ 5 \ 8)$$

- $h \neq \mathrm{id} \rightarrow \grave{\mathrm{e}}$ non banale
- $h \circ g = g \circ h \to \mathbf{commuta}$ con g

Conclusione

· Risposta finale:

$$h = g^2 = (1 \ 4 \ 2)(3 \ 5 \ 8)$$
 (commuta con $g, h \neq id$)

- Perché funziona sempre questo metodo:
 - Le potenze di un ciclo rimangono all'interno del ciclo stesso, non mischiano elementi di cicli diversi.
 - Quindi \$g^k \$commuta sempre con g.
 - In generale, se ci sono più cicli disgiunti, le potenze combinano in modo naturale con ogni ciclo.

Per esercizi sulle Parole

Quanti anagrammi si possono formare con la parola COCCODRILLO? Quanti di questi anagrammi iniziano per L?

Scrivi la parola e conta quante volte appare ciascuna lettera.

COCCODRILLO → lettere e loro frequenze:

- C:3
- O:3
- L:2
- D:1
- R:1
- 1:1

Totale lettere = 3+3+2+1+1+1=11.

2) Formula generale (permutazioni con ripetizioni)

Se hai n oggetti in totale e, tra loro, gruppi indistinguibili di dimensioni $n_1, n_2, ...$, il numero di permutazioni distinte è

$$\frac{n!}{n_1! \, n_2! \cdots}$$

Qui n = 11 e i denominatori sono 3!, 3!, 2!, 1!, 1!, 1!. Quindi

$$\#$$
anagrammi = $\frac{11!}{3! \ 3! \ 2!}$.

3) Calcolo numerico (passo passo)

- $11! = 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 39916800.$
- 3!=6. Quindi denominatore $=6\cdot 6\cdot 2=72$. Ora dividi: $\frac{39\,916\,800}{72}\,=\,\frac{39\,916\,800}{6}\div 6\div 2=6\,652\,800\div 6\div 2=1\,108\,800\div 2=554\,400.$

Quindi ci sono 554,400 anagrammi distinti.

4) Quanti iniziano per L?

Mettiamo la prima lettera fissata a L. Poiché le L sono 2 identiche, fissare la prima posizione come L significa semplicemente **rimuovere una L**..

Rimangono 11-1=10 lettere con frequenze:

•
$$C: 3, O: 3, L: 1, D: 1, R: 1, I: 1.$$

Numero di permutazioni delle rimanenti:

$$\frac{10!}{3! \, 3!}$$
.

Calcolo:

- 10! = 3628800.
- $3! \cdot 3! = 6 \cdot 6 = 36$. $\frac{3628800}{36} = \frac{3628800}{6} \div 6 = 604800 \div 6 = 100800$.

Quindi 100,800 anagrammi iniziano per L.

Risposte parte 1

- Totale anagrammi: 554 400.
- Di questi, quelli che iniziano per L: 100 800.