Formulas básicas de arquitectura

Luigi Quero

13 de julio de 2023

Resumen

Formulario de ecuaciones para calcular las prestaciones (rendimiento) del CPU y sus relaciones.

Índice

L.	Formulas están relacionadas con las prestaciones del CPU:	2
	1.1. Prestación del CPU:	2
	1.2. Relación de las prestaciones entre equipos:	2
	1.3. Relación cuantitativa de las prestaciones entre equipos:	2
	1.4. Medición de las prestaciones del CPU en base a otros factores: .	2
2.	Ciclos e instrucciones del CPU como factores de prestaciones	3
	2.1. Ciclos para un programa en base a prestaciones:	3
	2.2. Ecuación clásica para medir las prestaciones de la CPU:	3
	2.3. Ecuación elemental de prestaciones con factores simplificados:	3
3.	Ecuación para medir la potencia relativa de un procesador en	
	relación con otro:	3
1.	Circuitos integrados y sus prestaciones en relación a su produc-	
	ción	3
	4.1. Coste por dado de silicio:	3
	$4.2.\;$ Porcentaje de dados sin defectos por tanda (aproximadamente:	4
5.	Ley de Amdalh:	4

- 1. Formulas están relacionadas con las prestaciones del CPU:
- 1.1. Prestación del CPU:

$$Prestaciones = \frac{1}{Tiempo\ de\ ejecuacion\ un\ programa}$$

1.2. Relación de las prestaciones entre equipos:

 $Prestaciones_X > Prestaciones_Y$

$$\frac{1}{Tiempo~de~ejecuacion_X} > \frac{1}{Tiempo~de~ejecuacion_Y}$$

 $Tiempo\ de\ ejecuacion_{Y} > Tiempo\ de\ ejecuacion_{X}$

1.3. Relación cuantitativa de las prestaciones entre equipos:

$$\frac{Prestationes_X}{Prestaciones_y} = N$$

$$\frac{Prestationes_X}{Prestaciones_y} = \frac{Tiempo~de~ejecuacion_Y}{Tiempo~de~ejecuacion_X} = N$$

1.4. Medición de las prestaciones del CPU en base a otros factores:

Tiempo de ejecuacion de un programa = Ciclos para el programa*Periodo del reloj

$$Tiempo\ de\ ejecuacion\ de\ un\ programa = \frac{Ciclos\ para\ el\ programa}{Frecuencia\ del\ reloj}$$

- 2. Ciclos e instrucciones del CPU como factores de prestaciones
- 2.1. Ciclos para un programa en base a prestaciones:

 $Ciclos\ de\ reloj\ del\ CPU\ para\ un\ programa = No\ de\ instrucciones*CPI$

2.2. Ecuación clásica para medir las prestaciones de la CPU:

 $Tiempo\ de\ ejecucion = No\ de\ instrucciones\ *CPI*Periodo\ del\ reloj$

$$Tiempo \ de \ ejecucion = \frac{No \ de \ instrucciones \ *CPI}{Frecuencia \ del \ reloj}$$

2.3. Ecuación elemental de prestaciones con factores simplificados:

$$Tiempo\ de\ ejecucion = \frac{segundos}{Instrucciones} = \frac{Instrucciones}{programa} * \frac{Ciclos dereloj}{Instrucciones} * \frac{Segundos}{Ciclos\ de\ reloj}$$

3. Ecuación para medir la potencia relativa de un procesador en relación con otro:

$$\frac{Potencia_{nueva}}{Potencia_{antigua}} = \frac{Carga\ capacitiva_{nueva} * Voltaje_{nuevo}^2 * Frecuencia_{nueva}}{Carga\ capacitiva_{antigua} * Voltaje_{antiguo}^2 * Frecuencia_{antigua}}$$

- 4. Circuitos integrados y sus prestaciones en relación a su producción
- 4.1. Coste por dado de silicio:

$$Coste\ por\ dado = \frac{Area\ de\ la\ oblea}{Area\ del\ dado}$$

4.2. Porcentaje de dados sin defectos por tanda (aproximadamente:

$$Factor\ de\ produccion = \frac{1}{(1(Defectos\ por\ area*Area\ del\ dado))^2}$$

5. Ley de Amdalh:

$$Tiempo\ de\ ejecucion\ mejorado = \frac{Tiempo\ de\ ejecucion\ por\ la\ mejora}{Cantidaddemejora} + Tiempo\ no\ afectado$$

6. MIPS(Millones de Instrucciones Por Segundo):

$$MIPS = \frac{No~de~instrucciones}{Tiempo~de~ejecucion*10^{6}}$$

$$MIPS = \frac{Frecuencia\ de\ reloj}{CPI*10^6}$$