2020 计蒜之道 预赛 第一场 题解

五子棋

根据棋盘上棋子的数量,判断应该是谁走下一步。

枚举落子的位置,然后检查是否会使得棋盘出现至少五子连珠的局面。

注意边界、超过五子、无解输出 tie 等特殊情况。

染色

令 f_i 表示前 i 个元素的最大贡献。

如果没有特殊区间,显然转移方程为 $f_i = \max(w_i, b_i) + f_{i-1}$ 。

简单

区间不相交时,在 f_i 从 f_{i-1} 转移的基础上,当处理到区间 [l,r] 的右端点 r 时考虑一下从 f_{l-1} 的转移即可($f_{l-1}+sum(l,r)+c$, sum(l,r) 表示区间 [l,r] 对应颜色贡献的和, c 表示这个区间带来的额外贡献)。

预处理每个元素染成白色/黑色的前缀和,时间复杂度 O(n+m)。

中等

发现 f_i 转移时可以枚举 j, (j < i),假设 (j,i] 范围内全部染成黑色 / 白色,求出所有在 (j,i] 内特殊区间的价值之和就可以进行转移了,定义这个值为 calc(j,i,black/white),同时定义每个位置涂成黑色 / 白色带来贡献的前缀和为 b_i / w_i ,先写出转移方程:

$$f_i = \max_{j=0}^{i=1} \{f_j + \max\{calc(j,i, ext{black}) + b_i - b_j, calc(j,i, ext{white}) + w_i - w_j\}\}$$

(无需考虑跨过j的特殊区间,这些区间会被更小的j考虑到)

如果对于每个 j 都枚举所有区间判断并求和,总复杂度是 $O(n^2m)$,考虑优化:转移过程中 i 是递增的,动态维护右端点 $\leq i$ 的区间并保持左端点有序,就可以利用前缀/后缀和优化转移了。维护过程可以用数组+插入排序或其他数据结构实现,当 i 加 1 后将所有以 i 为右端点的区间加入数据结构中,按顺序枚举 j 即可,这样时间复杂度变为 $O(n^2+m)$ 。

仍然无法通过本题,发现 m 较小,可以改为枚举所有右端点 $\leq i$ 的区间而非所有 j(j < i),时间复杂度 $O(n+m^2)$ 。

也可以转化为最大权闭合子图问题求最小割,需要线段树/ST表优化建图,也不知道能不能跑过。

困难

用线段树代替上文的数据结构,由于转移时 b_i 和 w_i 是定值,用线段树维护 f_j-b_j 或 f_j-w_j ,加入一个新的区间 [l,i] 就相当于线段树 l-1 之前的位置全部加上新区间的贡献,然后求全局最大值(i 后面的部分在求出 f 前可以设为 $-\infty$)即可。

时间复杂度 $O((n+m)\log n)$ 。