Songs Lyrics Classification into gender baseline models

```
In [1]:

    import numpy as np

            import pandas as pd
            import re
            import nltk
            from nltk.corpus import stopwords
            import matplotlib.pyplot as plt
            import string
            import multiprocessing
            import os
            import sklearn
            import pprint
            import seaborn as sns
            nltk.download('stopwords')
            %matplotlib inline
            stop = stopwords.words('english')
            from subprocess import check_output
            [nltk_data] Downloading package stopwords to
                            C:\Users\LENOVO\AppData\Roaming\nltk data...
            [nltk data]
                          Package stopwords is already up-to-date!
            [nltk_data]
In [2]:
        df1 = pd.read csv('lyrics 6.csv')
            df1.head()
            df1
```

Out[2]:

	Artist	Gender	Lyrics
0	The Weeknd	male	Yeah\r\r\nYeah\r\r\nYeah\r\r\nYour man on the
1	The Weeknd	male	I'm tryna put you in the worst mood, ah\r\r\nP
2	The Weeknd	male	And I know she'll be the death of me\r\r\nAt I
3	The Weeknd	male	We found each other\r\nl helped you out of a
4	The Weeknd	male	NaN
1045	Taylor Swift	Female	Once upon a time, a few mistakes ago\r\r\nI wa
1046	Taylor Swift	Female	We're all bored, we're all so tired of everyth
1047	Taylor Swift	Female	We could leave the Christmas lights up 'til Ja
1048	Taylor Swift	Female	It feels like a perfect night\r\r\nTo dress up
1049	Taylor Swift	Female	Flashing lights, and we\r\r\nTook a wrong turn
1050 rows × 3 columns			

Out[3]:

Gender Lyrics	Gender	
male Yeah\r\r\nYeah\r\r\nYeah\r\r\nYour man on the	0 male	0
male I'm tryna put you in the worst mood, ah\r\r\nP	1 male	1
male And I know she'll be the death of me\r\r\nAt I	2 male	2
male We found each other\r\r\nl helped you out of a	3 male	3
male NaN	4 male	4

Out[4]:

	Gender	Lyrics
0	male	Yeah\r\r\nYeah\r\r\nYeah\r\r\nYour man on the
1	male	I'm tryna put you in the worst mood, ah\r\r\nP
2	male	And I know she'll be the death of me\r\r\nAt I
3	male	We found each other\r\r\nl helped you out of a
5	male	Seneler sürer her günüm\r\r\nOoh yeah, ooh yea
1045	Female	Once upon a time, a few mistakes ago\r\r\nl wa
1046	Female	We're all bored, we're all so tired of everyth
1047	Female	We could leave the Christmas lights up 'til Ja
1048	Female	It feels like a perfect night\r\r\nTo dress up
1049	Female	Flashing lights, and we\r\r\nTook a wrong turn
4000		

1020 rows × 2 columns

Out[5]:

	Gender	Lyrics
0	male	Yeah\r\r Yeah\r\r Your man on the roa
1	male	I'm tryna put you in the worst mood, ah\r\r P1
2	male	And I know she'll be the death of me\r\r At le
3	male	We found each other\r\r I helped you out of a
5	male	Seneler sürer her günüm\r\r Ooh yeah, ooh yeah

Top words in lyrics

```
In [6]:
          | import nltk
             from nltk.tokenize import word tokenize
             lyricss= df1.Lyrics.str.cat(sep=' ')
             #function to split text into word
             tokens = word_tokenize(lyricss)
             vocabulary = set(tokens)
             print(len(vocabulary))
             frequency_dist = nltk.FreqDist(tokens)
             sorted(frequency_dist,key=frequency_dist.__getitem__, reverse=True)[0:50]
             15465
    Out[6]: [',',
              'Ι',
              'you',
              'the',
              'a',
              'me',
              'it',
              "n't",
              "",
              'my',
              'to',
              'that',
              "'m",
              'in',
              "'s",
              'on',
              'and',
              'do',
              'like',
              'up',
              'got',
              'know',
              'your',
              'And',
              '?',
              'with',
              'of',
              'You',
              'be',
              'for',
              'all',
              'we',
              'just',
              'yeah',
              'get',
              'na',
              'out',
              'ai',
              'love',
              'no',
              'was',
              'what',
              'they',
              'this',
```

```
'so',
'is',
"'re",
'she',
'want']

In [7]: ► df1.Lyrics[2]
print(df1.shape)

(1020, 2)
```

Remove special characters

Out[9]:

	Gender	Lyrics
0	male	yeah yeah your man on the road, he doin'
1	male	i'm tryna put you in the worst mood, ah clea
2	male	and i know she'll be the death of me at least
3	male	we found each other i helped you out of a brok
5	male	seneler sürer her günüm ooh yeah, ooh yeah, oo
1045	Female	once upon a time, a few mistakes ago i was in
1046	Female	we're all bored, we're all so tired of everyth
1047	Female	we could leave the christmas lights up 'til ja
1048	Female	it feels like a perfect night to dress up like
1049	Female	flashing lights, and we took a wrong turn, and

1020 rows × 2 columns

Removing Stop Words

Tokenization

In [15]: ► df1

Out[15]:

	Gender	Lyrics
0	male	yeah yeah yeah man road, doin' promo said, "ke
1	male	i'm tryna put worst mood, ah cleaner church sh
2	male	know she'll death least we'll numb she'll alwa
3	male	found helped broken place gave comfort falling
5	male	seneler sürer günüm ooh yeah, ooh yeah, ooh ye
1045	Female	upon time, mistake ago sights, got alone found
1046	Female	we're bored, we're tired everything wait train
1047	Female	could leave christmas light 'til january place
1048	Female	feel like perfect night dress like hipster mak
1049	Female	flashing lights, took wrong turn, fell rabbit

1020 rows × 2 columns

In [16]:

```
def get_stemmed_text(corpus):
    from nltk.stem.porter import PorterStemmer
    stemmer = PorterStemmer()
    return [' '.join([stemmer.stem(word) for word in review.split()]) for rev

text=df1["Lyrics"]
df1["Lyrics"] = get_stemmed_text(text)
df1.head()
```

Out[16]:

	Gender	Lyrics
0	male	yeah yeah man road, doin' promo said, "ke
1	male	i'm tryna put worst mood, ah cleaner church sh
2	male	know she'll death least we'll numb she'll alwa
3	male	found help broken place gave comfort fall mist
5	male	senel sürer günüm ooh yeah, ooh yeah, ooh yeah

Out[17]:

Lyrics	Gender	
[yeah, yeah, yeah, man, road, doin, promo, sai	male	0
[i, m, tryna, put, worst, mood, ah, cleaner, c	male	1
[know, she, II, death, least, we, II, numb, sh	male	2
[found, help, broken, place, gave, comfort, fa	male	3
[senel, sürer, günüm, ooh, yeah, ooh, yeah, oo	male	5
[upon, time, mistak, ago, sights, got, alon, f	Female	1045
[we, r, bored, we, r, tire, everyth, wait, tra	Female	1046
[could, leav, christma, light, til, januari, p	Female	1047
[feel, like, perfect, night, dress, like, hips	Female	1048
[flash, lights, took, wrong, turn, fell, rabbi	Female	1049

1020 rows × 2 columns

In [18]: ► df1

Out[18]:

Lyrics	Gender	
[yeah, yeah, yeah, man, road, doin, promo, sai	male	0
[i, m, tryna, put, worst, mood, ah, cleaner, c	male	1
[know, she, II, death, least, we, II, numb, sh	male	2
[found, help, broken, place, gave, comfort, fa	male	3
[senel, sürer, günüm, ooh, yeah, ooh, yeah, oo	male	5
[upon, time, mistak, ago, sights, got, alon, f	Female	1045
[we, r, bored, we, r, tire, everyth, wait, tra	Female	1046
[could, leav, christma, light, til, januari, p	Female	1047
[feel, like, perfect, night, dress, like, hips	Female	1048
[flash, lights, took, wrong, turn, fell, rabbi	Female	1049

1020 rows × 2 columns

Stemming

Feature Extraction using Vectorize

```
In [19]:

    ★ from sklearn.preprocessing import LabelBinarizer

            encoder = LabelBinarizer()
            Y = encoder.fit transform(df1['Gender'])
In [ ]:
        from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
            def cv(data):
                count_vectorizer = CountVectorizer()
                emb = count vectorizer.fit transform(data)
                return emb, count_vectorizer
            list corpus = df1["Lyrics"].tolist()
            #list_labels = df1["Artist"].tolist()
            X_train, X_test, y_train, y_test = train_test_split(list_corpus, Y, test_size
            X train counts, count vectorizer = cv(X train)
            X_test_counts = count_vectorizer.transform(X_test)
```

Feature extraction using tf-idf

```
In [28]: M

def tfidf(data):
    tfidf_vectorizer = TfidfVectorizer()

    train = tfidf_vectorizer.fit_transform(data)

    return train, tfidf_vectorizer

X_train_tfidf, tfidf_vectorizer = tfidf(X_train)
X_test_tfidf = tfidf_vectorizer.transform(X_test)
```

Baseline model

Logistic Regression with count vectorize

```
In [29]:
         clf = LogisticRegression()
            clf.fit(X train counts, y train)
            y_predicted_counts = clf.predict(X_test_counts)
            from sklearn.metrics import accuracy score, f1 score, precision score, recall
            def get_metrics(y_test, y_predicted_counts):
                # true positives / (true positives+false positives)
                precision = precision_score(y_test, y_predicted_counts, pos_label=None,
                                                average='weighted')
                # true positives / (true positives + false negatives)
                recall = recall_score(y_test, y_predicted_counts, pos_label=None,
                                          average='weighted')
                # harmonic mean of precision and recall
                f1 = f1_score(y_test, y_predicted_counts, pos_label=None, average='weight
                # true positives + true negatives/ total
                accuracy = accuracy_score(y_test, y_predicted_counts)
                return accuracy, precision, recall, f1
            accuracy, precision, recall, f1 = get_metrics(y_test, y_predicted_counts)
            print("accuracy = %.3f, precision = %.3f, recall = %.3f, f1 = %.3f" % (accura
             accuracy = 0.804, precision = 0.802, recall = 0.804, f1 = 0.801
             C:\Users\LENOVO\Anaconda3\lib\site-packages\sklearn\linear model\ logistic.
             py:940: ConvergenceWarning: lbfgs failed to converge (status=1):
            STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
             Increase the number of iterations (max iter) or scale the data as shown in:
                https://scikit-learn.org/stable/modules/preprocessing.html (https://sci
             kit-learn.org/stable/modules/preprocessing.html)
             Please also refer to the documentation for alternative solver options:
                https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
             ession (https://scikit-learn.org/stable/modules/linear model.html#logistic-
             regression)
              extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)
```

Logistic regression with tfidf

```
In [30]:

    ★ from sklearn.linear model import LogisticRegression

             clf = LogisticRegression()
             clf.fit(X train tfidf, y train)
             y_predicted_tfidf = clf.predict(X_test_tfidf)
             from sklearn.metrics import accuracy score, f1 score, precision score, recall
             def get_metrics(y_test, y_predicted_tfidf):
                 # true positives / (true positives+false positives)
                 precision = precision_score(y_test, y_predicted_tfidf, pos_label=None,
                                                 average='weighted')
                 # true positives / (true positives + false negatives)
                 recall = recall_score(y_test, y_predicted_tfidf, pos_label=None,
                                           average='weighted')
                 # harmonic mean of precision and recall
                 f1 = f1_score(y_test, y_predicted_tfidf, pos_label=None, average='weighte
                 # true positives + true negatives/ total
                 accuracy = accuracy_score(y_test, y_predicted_tfidf)
                 return accuracy, precision, recall, f1
             accuracy, precision, recall, f1 = get_metrics(y_test, y_predicted_tfidf)
             print("accuracy = %.3f, precision = %.3f, recall = %.3f, f1 = %.3f" % (accura
             accuracy = 0.740, precision = 0.760, recall = 0.740, f1 = 0.715
```

Naive Bayes using Count Vectorize

```
In [31]:
         ▶ from sklearn.naive bayes import MultinomialNB
             clf = MultinomialNB().fit(X train counts, y train)
            y predicted counts=clf.predict(X test counts)
             from sklearn.metrics import accuracy score, f1 score, precision score, recall
             def get_metrics(y_test, y_predicted_counts):
                 # true positives / (true positives+false positives)
                 precision = precision_score(y_test, y_predicted_counts, pos_label=None,
                                                average='weighted')
                 # true positives / (true positives + false negatives)
                 recall = recall_score(y_test, y_predicted_counts, pos_label=None,
                                          average='weighted')
                # harmonic mean of precision and recall
                f1 = f1_score(y_test, y_predicted_counts, pos_label=None, average='weight
                # true positives + true negatives/ total
                 accuracy = accuracy_score(y_test, y_predicted_counts)
                 return accuracy, precision, recall, f1
             accuracy, precision, recall, f1 = get_metrics(y_test, y_predicted_counts)
             print("accuracy = %.3f, precision = %.3f, recall = %.3f, f1 = %.3f" % (accura
             accuracy = 0.789, precision = 0.787, recall = 0.789, f1 = 0.786
In [32]:
        clf = MultinomialNB().fit(X train tfidf, y train)
            y predicted counts=clf.predict(X test tfidf)
            from sklearn.metrics import accuracy score, f1 score, precision score, recall
             def get_metrics(y_test, y_predicted_counts):
                 # true positives / (true positives+false positives)
                 precision = precision_score(y_test, y_predicted_counts, pos_label=None,
                                                average='weighted')
                 # true positives / (true positives + false negatives)
                 recall = recall score(y test, y predicted counts, pos label=None,
                                          average='weighted')
                # harmonic mean of precision and recall
                f1 = f1 score(y test, y predicted counts, pos label=None, average='weight
                # true positives + true negatives/ total
                 accuracy = accuracy_score(y_test, y_predicted_counts)
                 return accuracy, precision, recall, f1
             accuracy, precision, recall, f1 = get metrics(y test, y predicted counts)
             print("accuracy = %.3f, precision = %.3f, recall = %.3f, f1 = %.3f" % (accura
             accuracy = 0.642, precision = 0.698, recall = 0.642, f1 = 0.542
```