УДК 621.3

В. С. Безяев

МЕТОДЫ АНАЛИЗА И СИНТЕЗА СИСТЕМ И СЕТЕЙ ИНФОРМАЦИОННОГО ОБМЕНА

Рассматриваются методы анализа систем и сетей информационного обмена с использованием сетей Петри. Приводятся примеры анализа систем и сетей аналитическим методом и методом имитационного моделирования в среде математического пакета MathCad.

Анализ систем информационного обмена предполагает построение математических (имитационных) моделей. Отождествляя сообщение или документ в системе с заявкой, передачу (обработку) с обслуживанием, систему информационного обмена можно рассматривать как сеть массового обслуживания (СемО), содержащую узлы или системы массового обслуживания (СМО). В случае анализа однофазных СМО используется аппарат дискретных и непрерывных цепей Маркова [1, 2]. Как правило, цепи Маркова изображают в виде ориентированного графа (диаграммы переходов). Если одна заявка последовательно обслуживается в системе с несколькими серверами, то имеет место многофазная СМО или СемО. Разработка математической модели СемО является более сложной задачей. В модели СемО требуется отобразить топологию, маршруты перемещений и логику взаимодействия отдельных сообщений (требований).

На рисунке 1 приведена модель системы информационного обмена в виде временной сети Петри [3].

Рис. 1 Модель информационного обмена

Система информационного обмена является СеМО и содержит два узла. Переходы в сети Петри t_1 , t_2 , t_3 , t_4 соответствуют источникам сообщений и серверам обслуживания. Позиции сети Петри p_1 , p_2 , p_3 соответствуют накопителям сообщений. В позиции p_1 размещено Q маркеров. Каждый маркер соответствует одному сообщению. Посредством (p_1, t_1) представлено поступление сообщения на передачу, (p_2, t_2) — передача сообщения по каналу связи, (p_3, t_3) — доставка сообщения адресату, (p_3, t_4) — запрос на повторную передачу документа по каналу связи. Система характеризуется показательным законом обслуживания в узлах и имеет следующие параметры:

- интенсивность пуассоновского потока сообщений на входе системы информационного обмена λ ;
- среднее время передачи сообщения по каналу связи системы информационного обмена $\tau_1 = 1/\mu_1$;
- среднее время доставки принятого сообщения адресату системы информационного обмена $\tau_2 = 1/\mu_2$;
- среднее время генерации запроса на повторную передачу сообщения по каналу связи $\tau_3 = 1/\mu_3$.

В соответствии с моделью на рисунке 1 можно составить систему дифференциальных уравнений, описывающих поведение системы информационного обмена (CeMO):

$$\begin{cases} f_1'(t) = -\lambda f_1(t) + \mu_2 r f_3(t); \\ f_2'(t) = -\mu_1 f_2(t) + \lambda f_1(t) + \mu_3 (1 - r) f_3(t); \\ f_3'(t) = -\mu_2 r f_3(t) + \mu_1 f_2(t) + \mu_3 (1 - r) f_3(t), \end{cases}$$
(1)

где $f_1(t)$, $f_2(t)$, $f_3(t)$ — вероятности отсутствия сообщения в системе, передачи сообщения по каналу связи, доставки сообщения адресату соответственно. Система дифференциальных уравнений может быть решена средствами любого математического пакета, в том числе MathCad. Значения финальных вероятностей не зависят от начальных условий. Графики переходного процесса в CeMO в случае $\lambda = 0.8$ [1/мин], $\mu_1 = 10$ [1/мин], $\mu_2 = 1$ [1/мин], $\mu_3 = 5$ [1/мин] и r = 0.99 приведены на рисунке 2.

Рис. 2 График переходного процесса в системе

В соответствии с предлагаемым аналитическим методом анализа среднее время пребывания сообщения в системе информационного обмена рассчитывается по формуле

$$T_{c} = f_{2}(t_{k}) / ((\mu_{1}^{*} - \lambda) f_{1}(t_{k})) + f_{3}(t_{k}) / ((\mu_{2} - \lambda) f_{1}(t_{k})) + 1/\mu_{1}^{*} + 1/\mu_{2},$$

где μ_1^* – интенсивность передачи сообщений по каналу связи с учетом обратной связи в сети; t_k – окончание исследуемого временного интервала.

Интенсивность μ_1^* оценивается по следующей формуле:

$$1/\mu_1^* = 1/\mu_1 + \sum_{i=1}^n \left[\left(\mu_1 + \mu_3 / \mu_1 \mu_3 \right) \right] \left(1 - r \right)^i$$
.

При $\lambda=0.8$ [1/мин], $\mu_1=20$ [1/мин], $\mu_2=1$ [1/мин], $\mu_3=5$ [1/мин] и r=0.99 среднее время пребывания сообщения в системе информационного обмена $T_c=5.15$ мин, среднее время ожидания обслуживания сообщения в системе информационного обмена $W_c=4.047$ мин.

Состояние узла в СеМО, например узла (p_2 , t_2), в момент времени t можно определить как абстрактное множество C_t , для которого функция $\rho_t: C_t \times X_t \to Y_t$ является реакцией системы в момент времени t. Множество всех реакций узла ρ_t ,

$$\overline{\rho} = \{ \rho_t : C_t \times X_t \to Y_t \& t \in T \},$$

составляет семейство реакций узла, а множество $\overline{C} = \left\{ C_t : t \in T \right\}$ — семейство состояний узла. Функция ϕ_{tt} является функцией перехода состояний на отрезке времени $\left\{ t^* : t \leq t^* < t \right\}$. Множество $\overline{\phi}_{tt}$,

$$\overline{\varphi} = \left\{ \varphi_{tt} : C_t \times X_{tt} \longrightarrow C_t \& t, t' \in T \& t' > t \right\},\,$$

составляет семейство функций перехода состояний.

Чтобы определить семейства функций ρ , ϕ_{tt} , рассмотрим временные диаграммы СМО типа М/М/1: 2, приведенные на рисунке 1.

Рис. 3 Временная диаграмма СМО

Множество моментов времени, связанных с поступлением требований в СМО $M_1 = \{t_1, t_2, t_4, t_6, t_7, t_9\}$. Множество моментов времени, когда об-

служенные требования покидают СМО $M_2 = \{t_2, t_5, t_8, t_{10}, t_{11}\}$. Множество моментов времени блокировки требований $M_3 = \{t_7\}$. Множество моментов поступления требований $M_4 = M_1 \backslash M_3$.

Зададим поступление заявок на вход СМО с помощью δ -функции Дирака:

$$x_k = x_k(t) = \begin{cases} \delta_x(t - t_k), \text{ если } t_k \in M_1; \\ 0, \text{ если } t_k \notin M_1. \end{cases}$$
 (1)

Моменты окончания обслуживания требований в СМО:

$$\varepsilon_k = \varepsilon_k(t) = \begin{cases} \delta_{\varepsilon}(t - t_k), \text{ если } t_k \in M_2; \\ 0, \text{ если } t_k \notin M_2. \end{cases}$$
 (2)

Число заявок, поступивших на вход СМО, определяется соотношением

$$\alpha(t) = \int_{0}^{t} \sum x_k(\tau) [t_k \in M_4] d\tau.$$
 (3)

Число заявок, покинувших СМО после обслуживания, определяется соотношением

$$\beta(t) = \int_{0}^{t} \sum_{k} \varepsilon_{k}(\tau) [t_{k} \in M_{2}] d\tau.$$
 (4)

Число требований, находящихся в СМО в момент времени t (состояние системы),

$$C_t = \int_0^t \left(\sum x_k(\tau) \left[t_k \in M_4 \right] - \sum \varepsilon_k(\tau) \left[t_k \in M_2 \right] \right) d\tau.$$
 (5)

С учетом выражений (1)–(5) среднее время, проведенное сообщением в системе информационного обмена, при анализе методом имитации может быть определено по формуле

$$T_c = \sum_{k=1}^{N} (v_k - z_k) / N, \qquad (6)$$

где N — общее число сообщений на входе системы; z_k — момент времени поступления k-го сообщения в систему; v_k — момент времени покидания системы k-м сообщением.

Среднее число сообщений в системе информационного обмена за промежуток времени $(0, v_N)$ определяется выражением

$$N_c = \sum_{k=1}^{N} (v_k - z_k) / v_N,$$
 (7)

где v_N – момент времени покидания системы последним сообщением.

Интенсивность поступления заявок на обслуживание может быть определена на основе формулы Литтла: $\lambda^* = N_c/T_c$ [1]. Так, если интенсивность поступления сообщений в систему обмена λ известна, то выполнение равенства $\lambda = \lambda^*$ является одним из подтверждений адекватности моделей.

На рисунке 4 приведены графики изменений состояния в первом узле CeMO (числа сообщений). Из графика видно, что число сообщений в узле не превышает двух. Следовательно, в первом узле необходимость в накопителе сообщений большой емкости отсутствует. Кроме того, вероятность нахождения сообщения в узле очень мала.

Рис. 4 График изменений состояний первого узла

На рисунке 5 приведен график изменений состояния второго узла в системе информационного обмена. Как следует из графика, вероятность возникновения длинной очереди сообщений в узле достаточно велика.

Рис. 5 График изменений состояния второго узла

Длина очереди может достигать боле двадцати сообщений. Поэтому при реализации системы во втором узле необходимо установить накопитель для сообщений с достаточно большой емкостью.

На рисунке 6 приведен график изменения состояния всей системы информационного обмена. Из сопоставления графиков следует, что изменения очереди во втором узле и в системе в целом различаются очень мало.

Рис. 6 График изменений числа сообщений в системе

Методом имитационного моделирования выполнен анализ системы информационного обмена с заданными выше параметрами. Результаты имитационного моделирования: $T_c = 5,17\,$ мин, $W_c = 4,065\,$ мин. Таким образом, относительная разность оценок средних времен пребывания требования в системе и времени ожидания в очереди, полученных аналитическим методом и методом имитационного моделирования, составила $0,4\,$ и 0,45% соответственно. Кроме того, результаты, полученные аналитическим методом, удовлетворительно совпадают с оценками по известной методике [2].

Список литературы

- 1. **Крылов, В. В.** Теория телетрафика и ее приложения / В. В. Крылов, С. С. Самохвалова. СПб. : БХВ-Петербург, 2005. 288 с.
- 2. **Уолрэнд**, Дж. Введение в теорию сетей массового обслуживания / Дж. Уолрэнд; пер. с англ. М.: Мир, 1993. 336 с.
- 3. Котов, В. Е. Сети Петри / В. Е. Котов. М.: Наука, ГРФМЛ, 1984. 128 с.