

5

THERAPEUTIC APPLICATIONS OF LAMININ AND LAMININ-DERIVED PROTEIN FRAGMENTS

This is a continuation of US Application No. 08/947,057 filed 10/08/1997, which claims priority to US Provisional Application No. 60/027,981 filed 10/08/1996.

10

TECHNICAL FIELD

The invention relates to the discovery, identification and use of laminin, laminin-derived protein fragments, and laminin-derived polypeptides, as well as related peptides and antibodies, for the therapeutic intervention and diagnosis of Alzheimer's disease and other amyloidoses. In addition, the discovery and identification of an Alzheimer's beta-amyloid protein (A β) specific binding region within the globular domain repeats of the laminin A chain, has led to new diagnostic and therapeutic applications for Alzheimer's disease and other amyloidoses which are disclosed.

BACKGROUND OF THE INVENTION

20 Alzheimer's disease is characterized by the accumulation of a 39-43 amino acid peptide termed the beta-amyloid protein or A β , in a fibrillar form, existing as extracellular amyloid plaques and as amyloid within the walls of cerebral blood vessels. Fibrillar A β amyloid deposition in Alzheimer's disease is believed to be detrimental to the patient and eventually leads to toxicity and neuronal cell death, characteristic hallmarks of Alzheimer's disease. Accumulating evidence now implicates amyloid as a major causative factor of Alzheimer's disease pathogenesis. Discovery and identification of new compounds, agents, proteins, polypeptides or protein-derivatives as potential therapeutic agents to arrest Alzheimer's disease A β amyloid formation, deposition, accumulation and/or persistence is desperately sought.

25 It is known that A β is normally present in human blood and cerebrospinal fluid.

However, it is not known why this potential fibrillar protein remains soluble in circulating biological fluids. Can the agent(s) responsible for this extraordinary solubility of fibrillar A β be applied to diagnostic and therapeutic regimens against the fibrillar A β amyloid present in Alzheimer's brain?

5

SUMMARY OF THE INVENTION

The present invention provides answers to these questions and relates to the novel and surprising discovery that laminin and specific laminin-derived protein fragments are indeed potent inhibitors of Alzheimer's disease amyloidosis, and therefore have potential use for the therapeutic intervention and diagnosis of the amyloidoses. In addition, we have identified a specific region within laminin which interacts with the Alzheimer's disease beta-amyloid protein and contributes to the observed inhibitory and therapeutic effects. In addition, specific laminin-derived protein fragments which also interact with the A β of Alzheimer's disease have been discovered to be present in human serum and cerebrospinal fluid, and implicate diagnostic applications which are described.

Laminin is a specific basement membrane component that is involved in several fundamental biological processes, and may play important roles in the pathogenesis of a number of different human diseases. Using a solid phase binding immunoassay, the present invention determined that laminin binds the A β of Alzheimer's disease with a single binding constant of $K_d = 2.7 \times 10^{-9}$ M. In addition, using a Thioflavin T fluorometry assay (which quantitatively determines the amount of fibrillar amyloid formed), the present invention has determined that laminin is surprisingly an extremely potent inhibitor of A β fibril formation.

In this latter study, 25 μ M of A β (residues 1-40) was incubated at 37°C for 1 week in the

presence or absence of 100 nM laminin. Laminin was found to significantly ($p<0.001$) inhibit A β (1-40) amyloid fibril formation by 2.9-fold at 1 hour, 4.6-fold at 1 day, 30.6-fold at 3 days and 27.1-fold at 1 week. Other basement membrane components including perlecan, fibronectin and type IV collagen were not effective inhibitors of A β (1-40)

5 fibrillogenesis in comparison to laminin, demonstrating the specificity of the inhibitory effect exhibited by laminin. The inhibitory effects of laminin on A β fibrillogenesis was also found to occur in a dose-dependent manner. In addition, laminin was found to cause dissolution of pre-formed Alzheimer's disease amyloid fibrils in a dose-dependent manner following 4 days of incubation. Laminin was digested with V8, trypsin or elastase to determine small protease-resistant fragments of laminin which still interacted with A β . A ~55 kilodalton (kDa) laminin fragment derived from V8 or elastase digested laminin was found to interact with biotinylated A β (1-40). Amino acid sequencing of the ~55 kDa fragment identified an A β -binding domain within laminin situated within the globular repeats of the laminin A chain.

55 Intact laminin was found to be present in human serum but not human cerebrospinal fluid, whereas laminin protein fragments ranging from ~120 kDa to ~200 kDa were found to be present in both human serum and cerebrospinal fluid. Of all the laminin protein fragments present in human biological fluids described above, a prominent ~130 kilodalton band was found in human serum and cerebrospinal fluid which primarily interacted with A β as determined by ligand blotting methodology. This ~130 kilodalton laminin fragment is known as the E8 fragment (i.e. generated following elastase digestion of laminin)(Yurchenco and Cheng, J. Biol. Chem. 268:17286-17299, 1993) and is also believed to consist of the globular domains of the laminin A chain. The interaction of specific laminin fragments such as the newly discovered ~130 kDa protein is believed to bind A β in biological fluids and keep it in a soluble state. The present invention describes

the use of laminin, laminin-derived protein fragments, and laminin-derived polypeptides for the therapeutic intervention and diagnosis of Alzheimer's disease and other amyloidoses. In addition, the discovery and identification of a specific Alzheimer's A β -binding region within the globular domain repeats of the laminin A chain, and the discovery of the presence of 5 laminin fragments containing this region in human serum and cerebrospinal fluid, has led to new diagnostic and therapeutic applications for Alzheimer's disease and other amyloidoses.

FEATURES OF THE INVENTION

10 A primary object of the present invention is to establish new therapeutic methods and diagnostic applications for the amyloid diseases. The amyloid diseases include, but are not limited to, the amyloid associated with Alzheimer's disease and Down's syndrome (wherein the specific amyloid is referred to as beta-amyloid protein or A β), the amyloid associated with chronic inflammation, various forms of malignancy and Familial Mediterranean Fever 15 (wherein the specific amyloid is referred to as AA amyloid or inflammation-associated amyloidosis), the amyloid associated with multiple myeloma and other B-cell dyscrasias (wherein the specific amyloid is referred to as AL amyloid), the amyloid associated with type II diabetes (wherein the specific amyloid is referred to as amylin or islet amyloid), the amyloid associated with the prion diseases including Creutzfeldt-Jakob disease, Gerstmann- 20 Straussler syndrome, kuru and animal scrapie (wherein the specific amyloid is referred to as PrP amyloid), the amyloid associated with long-term hemodialysis and carpal tunnel syndrome (wherein the specific amyloid is referred to as beta₂-microglobulin amyloid), the amyloid associated with senile cardiac amyloid and Familial Amyloidotic Polyneuropathy 25 (wherein the specific amyloid is referred to as transthyretin or prealbumin), and the amyloid associated with endocrine tumors such as medullary carcinoma of the thyroid (wherein the specific amyloid is referred to as variants of procalcitonin).

A primary object of the present invention is to use laminin, laminin-derived protein fragments and/or laminin-derived polypeptides as potent inhibitors of amyloid formation, deposition, accumulation and/or persistence in Alzheimer's disease and other amyloidoses.

5 "Laminin fragments, laminin-derived fragments, laminin-derived protein fragments and/or laminin-derived polypeptides", may include, but are not limited to, laminin A (or A1) chain, laminin B1 chain, laminin B2 chain, laminin A2 chain (merosin), laminin G1 chain, the globular domain repeats within the laminin A1 chain, SEQ ID NO: 1 (11 amino acid sequence within the mouse laminin A chain), SEQ ID NO: 2 (fourth globular repeat with the mouse laminin A chain), SEQ ID NO: 3 (fourth globular repeat within the human laminin A chain), SEQ ID NO: 4 (mouse laminin A chain), SEQ ID NO: 5 (human laminin A chain), SEQ ID NO: 6 (human laminin B1 chain), SEQ ID NO: 7 (mouse laminin B1 chain), SEQ ID NO: 8 (rat laminin B2 chain), SEQ ID NO: 9 (human laminin B2 chain), SEQ ID NO: 10 (mouse laminin G1 chain), SEQ ID NO: 11 (human laminin G1 chain), and all fragments or combinations thereof.

10
15
20
25 Yet another object of the present invention is to use conformational dependent proteins, polypeptides, or fragments thereof for the treatment of Alzheimer's disease and other amyloidoses. Such conformational dependent proteins include, but are not limited to, laminin, laminin-derived fragments including laminin A1 chain (SEQ ID NO 4; SEQ ID NO: 5), the globular repeat domains within the laminin A1 chain (SEQ ID NO: 2, SEQ ID NO:3), an 11- amino acid peptide sequence within the globular domain of the laminin A chain (SEQ ID NO:1), laminin B1 chain (SEQ ID NO:6, SEQ ID NO: 7), laminin B2 chain (SEQ ID NO: 8, SEQ ID NO:9), laminin G1 chain (SEQ ID NO: 10, SEQ ID NO: 11) and/or portions thereof.

Yet another aspect of the present invention is to use peptidomimetic compounds modelled from laminin, laminin-derived protein fragments and/or laminin-derived polypeptides, including but not limited to SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10 and SEQ ID NO: 11, and fragments thereof, as potent inhibitors of amyloid formation, deposition, accumulation and/or persistence in Alzheimer's disease and other amyloidoses.

Yet another object of the present invention is to mimic the 3-dimensional A β -binding site(s) on laminin, laminin-derived protein fragments and/or laminin-derived polypeptides and use these mimics as potent inhibitors of amyloid formation, deposition, accumulation and/or persistence in Alzheimer's disease and other amyloidoses.

Yet a further aspect of the present invention is to use anti-idiotypic antibodies to laminin, laminin-derived protein fragments and/or laminin-derived polypeptides as potent inhibitors of amyloid formation, deposition, accumulation and/or persistence in Alzheimer's disease and other amyloidoses.

Another aspect of the invention is to provide new and novel polyclonal and/or monoclonal peptide antibodies which can be utilized in a number of in vitro assays to specifically detect A β -binding laminin derived protein fragments and/or A β -binding laminin derived polypeptides in human tissues and/or biological fluids. Polyclonal or monoclonal antibodies that are made specifically against a peptide portion or fragment of laminin which interacts with A β can be utilized to detect and quantify amyloid disease specific laminin fragments in human tissues and/or biological fluids. These antibodies can be made by administering the peptides in antigenic form to a suitable host. Polyclonal or monoclonal

antibodies may be prepared by standard techniques known to those skilled in the art.

Another object of the present invention is to use laminin, the A β -binding laminin fragments and/or laminin-derived polypeptides referred to above, for the detection and specific localization of laminin peptides important in the amyloid diseases in human tissues, 5 cells, and/or cell culture using standard immunohistochemical techniques.

Yet another aspect of the present invention is to use antibodies recognizing laminin, any of the A β -binding laminin fragments, and/or laminin-derived polypeptides including, 10 but not limited to, SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10 and SEQ ID NO: 11, and fragments thereof, for in vivo labelling; for example, with a radionucleotide, for radioimaging to be utilized for in vivo diagnosis, and/or for in vitro diagnosis.

Yet another aspect of the present invention is to make use of laminin, A β -binding laminin protein fragments and/or A β -binding laminin-derived polypeptides including, but not limited to, SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10 and 20 SEQ ID NO: 11, and fragments thereof, as potential therapeutics to inhibit the deposition, formation, and accumulation of fibrillar amyloid in Alzheimer's disease and other amyloidoses (described above), and to enhance the clearance and/or removal of preformed amyloid deposits in brain (for Alzheimer's disease and Down's syndrome amyloidosis) and in systemic organs (for systemic amyloidoses).

25
Another object of the present invention is to use A β -binding laminin-derived

polypeptides or fragments thereof, in conjunction with polyclonal and/or monoclonal antibodies generated against these peptide fragments, using in vitro assays to detect amyloid disease specific autoantibodies in human biological fluids. Specific assay systems can be utilized to not only detect the presence of autoantibodies against A β -binding laminin-derived protein fragments or polypeptides thereof in biological fluids, but also to monitor the progression of disease by following elevation or diminution of laminin protein fragments and/or laminin-derived polypeptide autoantibody levels.

Another aspect of the invention is to utilize laminin, laminin-derived protein fragments and/or laminin-derived polypeptide antibodies and/or molecular biology probes for the detection of these laminin derivatives in human tissues in the amyloid diseases.

Yet another object of the present invention is to use the laminin-derived protein fragments of the present invention in each of the various therapeutic and diagnostic applications described above. The laminin-derived protein fragments include, but are not limited to, the laminin A1 chain, the globular repeats within the laminin A1 chain, the laminin B1 chain, the laminin B2 chain, the laminin G1 chain, the laminin A2 chain (also known as merosin), and all constituents or variations thereof, including but not limited to SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10 and SEQ ID NO: 11, and fragments thereof, including peptides which have at least 70% homology to the sequences disclosed herein. Specific laminin-derived protein fragments or peptides as described above may be derived from any species including, but are not limited to, human, murine, bovine, porcine, and/or equine species.

Another object of the invention is to provide polyclonal and/or monoclonal peptide

antibodies which can be utilized in a number of in vitro assays to specifically detect laminin protein fragments in human tissues and/or biological fluids. Polyclonal or monoclonal antibodies made specifically against a peptide portion or fragment of any of the laminin fragments described herein can be utilized to detect and quantify laminin-derived protein fragments in human tissues and/or biological fluids. A preferred embodiment is a polyclonal antibody made to the ~130 kilodalton A β -binding laminin fragment present in human serum and cerebrospinal fluid. These antibodies can be made by isolating and administering the laminin-derived fragments and/or polypeptides in antigenic form to a suitable host. Polyclonal or monoclonal antibodies may be prepared by standard techniques by one skilled in the art.

Yet another object of the present invention is to use laminin-derived fragment antibodies as described herein as a specific indicator for the presence and extent of laminin breakdown in brain by monitoring biological fluids including, but not limited to, cerebrospinal fluid, blood, serum, urine, saliva, sputum, and stool.

Yet another object of the present invention is to use laminin-derived fragment antibodies as described herein as a specific indicator for the presence, extent and/or progression of Alzheimer's disease and/or other brain amyloidoses by monitoring biological fluids including, but not limited to, cerebrospinal fluid, blood, serum, urine, saliva, sputum, and stool.

Yet another object of the present invention is to use laminin-derived fragment antibodies as described herein as a specific indicator for the presence and extent of laminin breakdown in systemic organs by monitoring biological fluids including, but not limited to, cerebrospinal fluid, blood, serum, urine, saliva, sputum, and stool.

Yet another object of the present invention is to use laminin-derived fragment antibodies as described herein as a specific indicator for the presence and extent of amyloidosis in type II diabetes by monitoring biological fluids including, but not limited to, cerebrospinal fluid, blood, serum, urine, saliva, sputum, and stool.

10 Yet another object of the present invention is to use laminin-derived fragment antibodies as described herein as a specific indicator for the presence and extent of

amyloidosis in other systemic amyloidoses by monitoring biological fluids including, but not limited to, cerebrospinal fluid, blood, serum, urine, saliva, sputum, and stool.

15 Yet another object of the present invention is to make use of peptides or fragments of laminin as described herein, including but not limited to, SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10 and SEQ ID NO: 11, and fragments thereof, as potential blocking therapeutics for the interaction of laminin and laminin-derived fragments in a number of biological processes and diseases (such as in Alzheimer's disease and other amyloid diseases described herein).

20 Yet another object of the invention is to utilize specific laminin-derived fragment antibodies, as described herein, for the detection of these laminin fragments in human tissues in the amyloid diseases.

25 Another object of the present invention is to use laminin, laminin-derived protein fragments, and laminin-derived polypeptides, as described herein, for the treatment of amyloid formation, deposition, accumulation and/or persistence in Alzheimer's disease and

other amyloidoses.

Another object of the present invention is to use pills, tablets, caplets, soft and hard gelatin capsules, lozenges, sachets, cachets, vegicaps, liquid drops, elixers, suspensions, 5 emulsions, solutions, syrups, tea bags, aerosols (as a solid or in a liquid medium), suppositories, sterile injectable solutions, and sterile packaged powders, which contain laminin, laminin-derived protein fragments, and laminin-derived polypeptides, including, but not limited to, SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10 and 10 SEQ ID NO: 11, and fragments thereof, to treat patients with Alzheimer's disease and other amyloidoses.

Yet another object of the present invention is to use laminin, laminin-derived protein fragments, and laminin-derived polypeptides, including, but not limited to, SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10 and SEQ ID NO: 11, and fragments thereof, as potent agents which inhibit amyloid formation, amyloid deposition, amyloid accumulation, amyloid persistence, and/or cause a dissolution of pre-formed or pre-deposited amyloid fibrils in Alzheimer's disease, and other amyloidoses.

20 Yet another object of the present invention is to provide the use of laminin, laminin-derived protein fragments, and laminin-derived polypeptides, as described herein, for inhibition of amyloid formation, deposition, accumulation, and/or persistence, regardless of its clinical setting.

25 Yet another object of the present invention is to provide compositions and methods

involving administering to a subject a therapeutic dose of laminin, laminin-derived protein fragments, and laminin-derived polypeptides, which inhibit amyloid deposition, including but not limited to, SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10 and
5 SEQ ID NO: 11, and fragments thereof. Accordingly, the compositions and methods of the invention are useful for inhibiting amyloidosis in disorders in which amyloid deposition occurs. The proteins or polypeptides of the invention can be used therapeutically to treat amyloidosis or can be used prophylactically in a subject susceptible to amyloidosis. The methods of the invention are based, at least in part, in directly inhibiting amyloid fibril
10 formation, and/or causing dissolution of preformed amyloid fibrils.

15 Yet another object of the present invention is to provide pharmaceutical compositions for treating amyloidosis. The pharmaceutical compositions include a therapeutic compound of the invention in an amount effective to inhibit amyloid deposition and a pharmaceutically acceptable vehicle.

These and other features and advantages of the present invention will become more fully apparent when the following detailed description of the invention is read in conjunction with the accompanying figures.
20

BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings are illustrative of embodiments of the invention and are not meant to limit the scope of the invention.
25

FIGURE 1 is a binding curve demonstrating the binding interaction of EHS laminin

to substrate bound A β (1-40). A single binding site with a $K_d = 2.7 \times 10^{-9}$ M is determined.

FIGURE 2 demonstrates the potent inhibition of A β amyloid fibril formation by laminin as determined by a Thioflavin T fluorometry assay over a 1 week experimental period.

FIGURE 3 compares the potent inhibition of A β amyloid fibril formation by laminin to other basement membrane components including fibronectin, type IV collagen and perlecan. Only laminin is found to have a potent inhibitory effect on A β fibrillogenesis as early as 1 hour after incubation.

FIGURE 4 is a graph of a 1 week Thioflavin T fluorometry assay utilized to determine the potential dose-dependent effects of laminin on inhibition of A β amyloid fibril formation. Significant dose-dependent inhibition of A β (1-40) amyloid fibril formation is observed at 1 day, 3 days and 1 week of treatment with increasing concentrations of laminin.

FIGURE 5 is a graph of a Thioflavin T fluorometry assay utilized to determine the potential dose-dependent effects of laminin on dissolution of pre-formed A β (1-40) amyloid fibrils within a 4 day incubation period. Laminin causes dissolution of pre-formed A β amyloid fibrils in a dose-dependent manner.

FIGURE 6 is a graph of a 1 week Thioflavin T fluorometry assay utilized to determine the effects of laminin on islet amyloid polypeptide (amylin) fibrillogenesis, and determine whether laminin causes a dose-dependent inhibition of amylin fibril formation. Laminin does not significantly inhibit amylin fibrillogenesis suggesting its specificity for

Alzheimer's disease amyloidosis.

FIGURE 7 is a black and white photograph of laminin digested with V8 protease,
separated by SDS-PAGE and following interaction with biotinylated A β (1-40). The
smallest fragment of V8-resistant laminin that interacts with A β is a ~55 kilodalton fragment.
5

10

FIGURE 8 is a black and white photograph of laminin digested with trypsin,
separated by SDS-PAGE and following interaction with biotinylated A β (1-40). The
smallest fragment of trypsin-resistant laminin that interacts with A β is a ~30 kilodalton
fragment.

15
20
25

FIGURE 9 is a black and white photograph of laminin digested with elastase,
separated by SDS-PAGE and following interaction with biotinylated A β (1-40). A ~55
kilodalton laminin fragment (arrow) that binds biotinylated A β was identified and
sequenced. Note also the presence of a ~130 kDa fragment (arrowheads) that binds A β
following 1.5 hours of elastase digestion (lane 2). Panel A is a ligand blot using biotinylated
A β as a probe, whereas panel B is Coomassie blue staining of the same blot in Panel A to
locate the specific band(s) for sequencing.

20

FIGURE 10 shows the complete amino acid sequence of the mouse laminin A chain.
Sequencing of the ~55 kilodalton A β -binding band shown in Figure 9 leads to the
identification of an 11 amino acid segment (underline and arrowhead) within the laminin A
chain. This A β binding region of laminin is situated within the globular domain repeats of
the laminin A chain.

25

FIGURE 11 shows schematic diagrams of laminin and the newly discovered "A β -

binding region” of laminin (shown in left panel; between the two arrowheads) which is situated within the last three globular domains of the laminin A chain.

FIGURE 12 is a black and white photograph of a Western blot demonstrating the presence of laminin (arrowheads) and/or laminin-derived protein fragments (bands between the two arrows) in human serum (lanes 1-7; left side) and human cerebrospinal fluid (lanes 1-7; right side) obtained from Alzheimer’s disease, type II diabetes and normal aged patients. A ~110-130 kilodalton range of laminin positive protein fragments (between the two arrows) is present in both human serum and cerebrospinal fluid, whereas intact laminin (arrowheads) is only present in serum but not in cerebrospinal fluid.

FIGURE 13 is a black and white photograph demonstrating that intact laminin (arrow) and a prominent ~130 kilodalton band (arrowhead) present in human Alzheimer’s disease, type II diabetes and normal aged patient serum, bind A β . The A β -binding laminin and specific A β -binding laminin fragments in human serum were identified following separation by SDS-PAGE and interaction with nanomolar concentrations of biotinylated A β (1-40).

FIGURE 14 is a black and white photograph demonstrating the presence of a prominent ~130 kilodalton band (arrow) in human Alzheimer’s disease and normal aged patient cerebrospinal fluid, identified following separation by SDS-PAGE and following interaction with nanomolar concentrations of biotinylated A β (1-40). This same ~130 kilodalton A β -binding protein is also present in human serum (Figure 13).

DETAILED DESCRIPTION OF THE INVENTION

The following sections are provided by way of background to better appreciate the
5 invention.

Alzheimer's Disease

Alzheimer's disease is the most common cause of dementia in middle and late life,
and is manifested by progressive impairment of memory, language, visuospatial perceptions
10 and behavior (A Guide to the Understanding of Alzheimer's Disease and Related Disorders,
edited by Jorm, New York University Press, New York 1987). A diagnosis of probable
Alzheimer's disease can be made on clinical criteria (usually by the exclusion of other
diseases, memory tests etc), but a definite diagnosis requires the histological examination of
specific abnormalities in the brain tissue usually obtained at autopsy.

In Alzheimer's disease, the parts of the brain essential for cognitive processes such
as memory, attention, language, and reasoning degenerate, robbing victims of much that
makes us human, including independence. In some inherited forms of Alzheimer's disease,
onset is in middle age, but more commonly, symptoms appear from the mid-60's onward.
20 Alzheimer's disease is characterized by the deposition and accumulation of a 39-43 amino
acid peptide termed the beta-amyloid protein, A β or β /A4 (Glenner and Wong, Biochem.
Biophys. Res. Comm. 120:885-890, 1984; Masters et al, Proc. Natl. Acad. Sci. USA
82:4245-4249, 1985; Husby et al, Bull. WHO 71:105-108, 1993). A β is derived from
larger precursor proteins termed beta-amyloid precursor proteins (or β PPs) of which there
25 are several alternatively spliced variants. The most abundant forms of the β PPs include

proteins consisting of 695, 751 and 770 amino acids (Tanzi et al, Nature 331:528-530, 1988; Kitaguchi et al, Nature 331:530-532, 1988; Ponte, et al, Nature 331:525-528, 1988).

The small A β peptide is a major component which makes up the amyloid deposits of neuritic “plaques” and in the walls of blood vessels (known as cerebrovascular amyloid deposits) in the brains of patients with Alzheimer’s disease. In addition, Alzheimer’s disease is characterized by the presence of numerous neurofibrillary “tangles”, consisting of paired helical filaments which abnormally accumulate in the neuronal cytoplasm (Grundke-Iqbali et al, Proc. Natl. Acad. Sci. USA 83:4913-4917, 1986; Kosik et al, Proc. Natl. Acad. Sci. USA 83:4044-4048, 1986; Lee et al, Science 251:675-678, 1991). The pathological hallmarks of Alzheimer’s disease is therefore the presence of “plaques” and “tangles”, with amyloid being deposited in the central core of plaques and within the blood vessel walls. It is important to note that a so-called “normal aged brain” has some amyloid plaques and neurofibrillary tangles present. However, in comparison, an Alzheimer’s disease brain shows an over abundance of plaques and tangles. Therefore, differentiation of an Alzheimer’s disease brain from a normal brain from a diagnostic point of view is primarily based on quantitative assessment of “plaques” and “tangles”.

In an Alzheimer’s disease brain, there are usually thousands of neuritic plaques. The neuritic plaques are made up of extracellular deposits consisting of an amyloid core usually surrounded by enlarged axons and synaptic terminals, known as neurites, and abnormal dendritic processes, as well as variable numbers of infiltrating microglia and surrounding astrocytes. The neurofibrillary tangles present in the Alzheimer’s disease brain mainly consist of tau protein, which is a microtubule-associated protein (Grundke-Iqbali et al, Proc. Natl. Acad. Sci. USA 83:4913-4917, 1986; Kosik et al, Proc. Natl. Acad. Sci. USA 83:4044-4048, 1986; Lee et al, Science 251:675-678, 1991). At the ultrastructural level, the tangle consists of paired helical filaments twisting like a ribbon, with a specific crossing

over periodicity of 80 nanometers. In many instances within a neurofibrillary tangle, there are both paired helical filaments and straight filaments. In addition, the nerve cells will many times die, leaving the filaments behind. These tangles are known as "ghost tangles" since they are the filamentous remnants of the dead neuron.

5

The other major type of lesion found in the brain of an Alzheimer's disease patient is the accumulation of amyloid in the walls of blood vessels, both within the brain parenchyma and in the walls of the larger meningeal vessels which lie outside the brain. The amyloid deposits localized to the walls of blood vessels are referred to as cerebrovascular amyloid or 10 congophilic angiopathy (Mandybur, J. Neuropath. Exp. Neurol. 45:79-90, 1986; Pardridge et al, J. Neurochem. 49:1394-1401, 1987).

15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

In addition, Alzheimer's disease patients demonstrate neuronal loss and synaptic loss. Furthermore, these patients also exhibit loss of neurotransmitters such as acetylcholine. Tacrine, the first FDA approved drug for Alzheimer's disease is a cholinesterase inhibitor (Cutler and Sramek, New Engl. J. Med. 328:808-810, 1993). However, this drug has showed limited success, if any, in the cognitive improvement in Alzheimer's disease patients and initially had major side effects such as liver toxicity.

20

For many years there has been an ongoing scientific debate as to the importance of "amyloid" in Alzheimer's disease and whether the "plaques" and "tangles" characteristic of this disease, were a cause or merely the consequences of the disease. Recent studies during the last few years have now implicated that amyloid is indeed a causative factor for Alzheimer's disease and not merely an innocent bystander. The Alzheimer's disease A β protein in cell culture has been shown to cause degeneration of nerve cells within short periods of time (Pike et al, Br. Res. 563:311-314, 1991; J. Neurochem. 64:253-265,

1994). Studies suggest that it is the fibrillar structure, a characteristic of all amyloids, that is responsible for the neurotoxic effects. The A β has also been found to be neurotoxic in slice cultures of hippocampus (the major memory region affected in Alzheimer's)(Harrigan et al, Neurobiol. Aging 16:779-789, 1995) and induces nerve cell death in transgenic mice (Games et al, Nature 373:523-527, 1995; Hsiao et al, Neuron 15:1203-1218, 1995). In addition, injection of the Alzheimer's A β into rat brain causes memory impairment and neuronal dysfunction (Flood et al, Proc. Natl. Acad. Sci. U.S.A. 88:3363-3366, 1991; Br. Res. 663:271-276, 1994), two additional hallmarks of Alzheimer's disease. Probably, the most convincing evidence that amyloid (ie. beta-amyloid protein) is directly involved in the pathogenesis of Alzheimer's disease comes from genetic studies. It has been discovered that the production of A β can result from mutations in the gene encoding, its precursor, known as the beta-amyloid precursor protein (Van Broeckhoven et al, Science 248:1120-1122, 1990; Europ. Neurol. 35:8-19, 1995; Murrell et al, Science 254:97-99, 1991; Haass et al, Nature Med. 1:1291-1296, 1995). This precursor protein when normally processed usually only produces very little of the toxic A β . The identification of mutations in the amyloid precursor protein gene which causes familial, early onset Alzheimer's disease is the strongest argument that amyloid is central to the pathogenetic process underlying this disease. Four reported disease-causing mutations have now been discovered which demonstrate the importance of the beta-amyloid protein in causing familial Alzheimer's disease (reviewed in Hardy, Nature Genet. 1:233-234, 1992). All of these studies suggest that providing a drug to reduce, eliminate or prevent fibrillar A β formation, deposition, accumulation and/or persistence in the brains of human patients should be considered an effective therapeutic.

10

20

25

Other Amyloid Diseases

The “amyloid diseases” consist of a group of clinically and generally unrelated human diseases which all demonstrate a marked accumulation in tissues of an insoluble extracellular substance known as “amyloid”, and usually in an amount sufficient to impair normal organ function. Rokitansky in 1842 (Rokitansky, “Handbuch der pathologischen Anatomie”, Vol. 3, Braumuller and Seidel, Vienna) was the first to observe waxy and amorphous looking tissue deposits in a number of tissues from different patients. However, it wasn’t until 1854 when Virchow (Virchow, Arch. Path. Anat. 8:416, 1854) termed these deposits as “amyloid” meaning “starch-like” since they gave a positive staining with the sulfuric acid-iodine reaction, which was used in the 1850’s for demonstrating cellulose. Although cellulose is not a constituent of amyloid, nonetheless, the staining that Virchow observed was probably due to the present of proteoglycans (PGs) which appear to be associated with all types of amyloid deposits. The name amyloid has remained despite the fact that Friederich and Kekule in 1859 discovered the protein nature of amyloid (Friedrich and Kekule, Arch. Path. Anat. Physiol. 16:50, 1859). For many years, based on the fact that all amyloids have the same staining and structural properties, lead to the postulate that a single pathogenetic mechanism was involved in amyloid deposition , and that amyloid deposits were thought to be composed of a single set of constituents. Current research has clearly shown that amyloid is not a uniform deposit and that amyloids may consist of different proteins which are totally unrelated (Glenner, N. England J. Med. 302:1283-1292, 1980).

Although the nature of the amyloid itself has been found to consist of completely different and unrelated proteins, all amyloids appear similar when viewed under the microscope due to amyloid’s underlying protein able to adapt into a fibrillar structure. All

amyloids regardless of the nature of the underlying protein 1) stain characteristically with the Congo red dye and display a classic red/green birefringence when viewed under polarized light (Puchtler et al, *J. Histochem. Cytochem.* 10:355-364, 1962), 2) ultrastructurally consists of fibrils with a diameter of 7-10 nanometers and of indefinite length, 3) adopt a predominant beta-pleated sheet secondary structure. Thus, amyloid fibrils viewed under an electron microscope (30,000 times magnification) from the post-mortem brain of an Alzheimer's disease patient would look nearly identical to the appearance of amyloid present in a biopsied kidney from a rheumatoid arthritic patient. Both these amyloids would demonstrate a similar fibril diameter of 7-10 nanometers.

10

In the mid to late 1970's amyloid was clinically classified into 4 groups, primary amyloid, secondary amyloid, familial amyloid and isolated amyloid. Primary amyloid, is amyloid appearing de novo, without any preceding disorder. In 25-40% of these cases, primary amyloid was the antecedent of plasma cell dysfunction such as the development of multiple myeloma or other B-cell type malignancies. Here the amyloid appears before rather than after the overt malignancy. Secondary amyloid, appeared as a complication of a previously existing disorder. 10-15% of patients with multiple myeloma eventually develop amyloid (Hanada et al, *J. Histochem. Cytochem.* 19:1-15, 1971). Patients with rheumatoid arthritis, osteoarthritis, ankylosing spondylitis can develop secondary amyloidosis as with patients with tuberculosis, lung abscesses and osteomyelitis (Benson and Cohen, *Arth. Rheum.* 22:36-42, 1979; Kamei et al, *Acta Path. Jpn.* 32:123-133, 1982; McAdam et al, *Lancet* 2:572-575, 1975). Intravenous drug users who self-administer and who then develop chronic skin abscesses can also develop secondary amyloid (Novick, *Mt. Sin. J. Med.* 46:163-167, 1979). Secondary amyloid is also seen in patients with specific malignancies such as Hodgkin's disease and renal cell carcinoma (Husby et al, *Cancer Res.* 42:1600-1603, 1982). Although these were all initially classified as secondary amyloid,

25

once the amyloid proteins were isolated and sequenced many of these turned out to contain different amyloid proteins.

The familial forms of amyloid also showed no uniformity in terms of the peptide responsible for the amyloid fibril deposited. Several geographic populations have now been identified with genetically inherited forms of amyloid. One group is found in Israel and this disorder is called Familial Mediterranean Fever and is characterized by amyloid deposition, along with recurrent inflammation and high fever (Mataxas, Kidney 20:676-685, 1981). Another form of inherited amyloid is Familial Amyloidotic Polyneuropathy, and has been found in Swedish (Skinner and Cohen, Biochem. Biophys. Res. Comm. 99:1326-1332, 1981), Portuguese (Saraiva et al, J. Lab. Clin. Med. 102:590-603, 1983; J. Clin. Invest. 74:104-119, 1984) and Japanese (Tawara et al, J. Lab. Clin. Med. 98:811-822, 1981) nationalities. Amyloid deposition in this disease occurs predominantly in the peripheral and autonomic nerves. Hereditary amyloid angiopathy of Icelandic origin is an autosomal dominant form of amyloid deposition primarily affecting the vessels in the brain, and has been identified in a group of families found in Western Iceland (Jennson et al, Clin. Genet. 36:368-377, 1989). These patients clinically have massive cerebral hemorrhages in early life which usually causes death before the age of 40.

The primary, secondary and familial forms of amyloid described above tend to involve many organs of the body including heart, kidney, liver, spleen, gastrointestinal tract, skin, pancreas, and adrenal glands. These amyloid diseases are also referred to as "systemic amyloids" since so many organs within the body demonstrate amyloid accumulation. For most of these amyloidoses, there is no apparent cure or effective treatment and the consequences of amyloid deposition can be detrimental to the patient. For example, amyloid deposition in kidney may lead to renal failure, whereas amyloid

deposition in heart may lead to heart failure. For these patients, amyloid accumulation in systemic organs leads to eventual death generally within 3 to 5 years.

Isolated forms of amyloid, on the other hand, tend to involve a single organ system.

5 Isolated amyloid deposits have been found in the lung, and heart (Wright et al, Lab. Invest. 30:767-773, 1974; Pitkanen et al, Am. J. Path. 117:391-399, 1984). Up to 90% of type II diabetic patients (non-insulin dependent form of diabetes) have isolated amyloid deposits in the pancreas restricted to the beta cells in the islets of Langerhans (Johnson et al, New Engl. J. Med. 321:513-518, 1989; Lab. Invest. 66:522-535, 1992). Isolated forms of amyloid have also been found in endocrine tumors which secrete polypeptide hormones such as in 10 medullary carcinoma of the thyroid (Butler and Khan, Arch. Path. Lab. Med. 110:647-649, 1986; Berger et al, Virch. Arch. A Path. Anat. Hist. 412:543-551, 1988). A serious complication of long term hemodialysis is amyloid deposited in the medial nerve and clinically associated with carpal tunnel syndrome (Gejyo et al, Biochem. Biophys. Res. Comm. 129:701-706, 1985; Kidney Int. 30:385-390, 1986). By far, the most common type and clinically relevant type of organ-specific amyloid, and amyloid in general, is that found in the brains of patients with Alzheimer's disease (see U.S. Patent No. 4,666,829 and 15 Glenner and Wong, Biochem. Biophys. Res. Comm. 120:885-890, 1984; Masters et al, Proc. Natl. Acad. Sci., USA 82:4245-4249, 1985). In this disorder, amyloid is predominantly restricted to the central nervous system. Similar deposition of amyloid in the 20 brain occurs in Down's syndrome patients once they reach the age of 35 years (Rumble et al, New England J. Med. 320:1446-1452, 1989; Mann et al, Neurobiol. Aging 10:397-399, 1989). Other types of central nervous system amyloid deposition include rare but highly infectious disorders known as the prion diseases which include Creutzfeldt-Jakob disease, 25 Gerstmann-Straussler syndrome, and kuru (Gajdusek et al, Science 197:943-960, 1977; Prusiner et al, Cell 38:127-134, 1984; Prusiner, Scientific American 251:50-59, 1984;

Prusiner et al, Micr. Sc. 2:33-39, 1985; Tateishi et al, Ann. Neurol. 24:35-40, 1988).

It was misleading to group the various amyloidotic disorders strictly on the basis of their clinical features, since when the major proteins involved were isolated and sequenced, 5 they turned out to be different. For example, amyloid seen in rheumatoid arthritis and osteoarthritis, now known as AA amyloid, was the same amyloid protein identified in patients with the familial form of amyloid known as Familial Mediterranean Fever. Not to confuse the issue, it was decided that the best classification of amyloid should be according to the major protein found, once it was isolated, sequenced and identified.

10

Thus, amyloid today is classified according to the specific amyloid protein deposited. The amyloid diseases include, but are not limited to, the amyloid associated with Alzheimer's disease, Down's syndrome and hereditary cerebral hemorrhage with amyloidosis of the Dutch type (wherein the specific amyloid is now known as the beta-amyloid protein or A β), the amyloid associated with chronic inflammation, various forms of malignancy and Familial Mediterranean Fever (AA amyloid or inflammation-associated amyloidosis), the amyloid associated with multiple myeloma and other B-cell abnormalities (AL amyloid), the amyloid associated with type II diabetes (amylin or islet amyloid), the amyloid associated with the prion diseases including Creutzfeldt-Jakob disease, Gerstmann-20 Straussler syndrome, kuru and animal scrapie (PrP amyloid), the amyloid associated with long-term hemodialysis and carpal tunnel syndrome (beta $_2$ -microglobulin amyloid), the amyloid associated with senile cardiac amyloid and Familial Amyloidotic Polyneuropathy (prealbumin or transthyretin amyloid), and the amyloid associated with endocrine tumors such as medullary carcinoma of the thyroid (variants of procalcitonin).

25

Laminin and Its Structural Domains

Laminin is a large and complex 850 kDa glycoprotein which normally resides on the basement membrane and is produced by a variety of cells including embryonic, epithelial and tumor cells (Foidart et al, Lab. Invest. 42:336-342, 1980; Timpl et al, Methods Enzymol. 82:831-838, 1982). Laminin-1 (is derived from the Engelbreth-Holm-Swarm tumor) and is composed of three distinct polypeptide chains, A, B1 and B2 (also referred to as alpha1, beta1 and gamma-1, respectively), joined in a multidomain structure possessing three short arms and one long arm (Burgeson et al, Matrix Biol. 14:209-211, 1994). Each of these arms is subdivided into globular and rodlike domains. Studies involving in vitro self-assembly and the analysis of cell-formed basement membranes have shown that laminin exists as a polymer, forming part of a basement membrane network (Yurchenco et al, J. Biol. Chem. 260:7636-7644, 1985; Yurchenco et al, J. Cell Biol. 117:1119-1133, 1992; Yurchenco and Cheng, J. Biol. Chem. 268: 17286-17299, 1993). Laminin is believed to play important roles in a number of fundamental biological processes including promotion of neural crest migration (Newgreen and Thiery, Cell Tissue Res. 211:269-291, 1980; Rovasio et al, J. Cell Biol. 96:462-473, 1983), promotion of neurite outgrowth (Lander et al, Proc. Natl. Acad. Sci. 82:2183-2187, 1985; Bronner-Fraser and Lallier, Cell Biol. 106:1321-1329, 1988), the formation of basement membranes (Kleinman et al, Biochem. 22:4969-4974, 1983), the adhesion of cells (Engvall et al, J. Cell Biol. 103: 2457-2465, 1986) and is inducible in adult brain astrocytes by injury (Liesi et al, EMBO J. 3:683-686, 1984). Laminin interacts with other components including type IV collagen (Terranova et al, Cell 22:719-726, 1980; Rao et al, Biochem. Biophys. Res. Comm. 128:45-52, 1985; Charonis et al, J. Cell Biol. 100: 1848-1853, 1985; Laurie et al, J. Mol. Biol. 189:205-216, 1986), heparan sulfate proteoglycans (Riopelle and Dow, Brain Res. 525:92-100, 1990; Battaglia et al, Eur. J. Biochem. 208:359-366, 1992) and heparin (Sakashita et al,

FEBS Lett. 116:243-246, 1980; Del Rosso et al, Biochem. J. 199:699-704, 1981; Skubitz et al, J. Biol. Chem. 263:4861-4868, 1988).

Several of the functions of laminin have been found to be associated with the short arms. First, the short arms have been found to participate in laminin polymerization (Yurchenco et al, J. Cell Biol. 117:1119-1133, 1992; Yurchenco and Cheng, J. Biol. Chem. 268: 17286-17299, 1993). A recently proposed three-arm interaction hypothesis of laminin polymerization (Yurchenco and Cheng, J. Biol. Chem. 268: 17286-17299, 1993) further holds that self-assembly is mediated through the end regions of each of the three short arms. A prediction of this model is that each short arm can independently and competitively inhibit laminin polymerization. However, it has not been possible to formally test this prediction using conventional biochemical techniques because of an inability to separate the alpha and gamma chains. Second, several heparin binding sites have been thought to reside in the short arms (Yurchenco et al, J. Biol. Chem. 265:3981-3991, 1990; Skubitz et al, J. Cell Biol. 115:1137-1148, 1991), although the location of these sites have remained obscure. Third, the $\alpha 1\beta 1$ integrin has been found to selectively interact with large short arm fragments containing all or most of the short arm domains (Hall et al, J. Cell Biol. 110:2175-2184, 1990; Goodman et al, J. Cell Biol. 113:931-941, 1991).

Most functional activities of laminin appear to be dependent upon the conformational state of the glycoprotein. Specifically, self-assembly and its calcium dependence, nidogen (entactin) binding to laminin, $\alpha 6\beta 1$ integrin recognition of the long arm, heparin binding to the proximal G domain (cryptic) and RGD-dependent recognition of the short A chain of laminin (cryptic) have all been found to be conformationally dependent (Yurchenco et al, J. Biol. Chem. 260:7636-7644, 1985; Fox et al, EMBO J. 10:3137-3146, 1991; Sung et al, J. Cell Biol. 123:1255-1268, 1993). Two consequences of improperly folded laminin, loss of

normal functional activity and the activation of previously cryptic activities, suggest that it is important to map and characterize biological activities using correctly folded laminin or conformational homologues to any particular laminin or laminin fragment.

5 Laminin may also be involved in the pathogenesis of a number of important diseases. For example, in diabetes significant decrease in the levels of laminin on the glomerular basement membranes indicates that a molecular imbalance occurs (Shimomura and Spiro, Diabetes 36:374-381, 1987). In experimental AA amyloidosis (ie. inflammation-associated amyloidosis), increased levels of laminin are observed at the sites of AA amyloid deposition (Lyon et al, Lab. Invest. 64:785-790, 1991). However, the role(s) of laminin in systemic amyloidosis is not known. In Alzheimer's disease and Down's syndrome, laminin is believed to be present in the vicinity of A β -containing amyloid plaques (Perlmutter and Chui, Brain Res. Bull. 24:677-686, 1990; Murtomaki et al, J. Neurosc. Res. 32:261-273, 1992; Perlmutter et al, Micro. Res. Tech. 28:204-215, 1994).

10
15 Previous studies have indicated that the various isoforms of the beta-amyloid precursor proteins of Alzheimer's disease, bind both the basement membrane proteins perlecan (Narindrasorasak et al, J. Biol. Chem. 266:12878-12883, 1991) and laminin (Narindrasorasak et al, Lab. Invest. 67:643-652, 1992). With regards to laminin, it was not previously known whether laminin interacts with A β , whether a particular domain of laminin (if any) participates in A β interactions, and whether laminin had any significant role(s) in A β amyloid fibrillogenesis.

20
25 The present invention has discovered that laminin binds A β with relatively high affinity and surprisingly laminin is a potent inhibitor of A β amyloid formation, and causes dissolution of pre-formed Alzheimer's disease amyloid fibrils. In addition, a 55-kilodalton

elastase resistant fragment of laminin which also binds A β has been localized to the globular domain repeats within the A chain of laminin. This region is believed to be responsible for many of the inhibitory effects that laminin has on Alzheimer's disease amyloidosis. These findings indicate that laminin, laminin-derived protein fragments and/or laminin-derived polypeptides, particularly those containing the disclosed A β -binding site within the globular domain repeats within the laminin A chain, may serve as novel inhibitors of A β amyloidosis in Alzheimer's disease and other amyloidoses. In addition, the discovery and identification of an Alzheimer's A β -binding region within the globular domain repeats of the laminin A chain, and the discovery of its presence in human serum and cerebrospinal fluid, as a ~130 kDa laminin-derived fragment, leads to novel diagnostic and therapeutic applications for Alzheimer's disease and other amyloidoses.

Examples

The following examples are provided to disclose in detail preferred embodiments of the binding interaction of laminin with A β , and the potent inhibitory effects of laminin and disclosed fragments on A β fibril formation. However, it should not be construed that the invention is limited to these specific examples.

20

Example 1

Binding of Laminin to the Beta-Amyloid Protein (A β) of Alzheimer's Disease

25

2 μ g of A β (1-40)(Bachem Inc., Torrance, CA USA; Lot #WM365) in 40 μ l of Tris-buffered saline (TBS)(pH 7.0) was allowed to bind overnight at 4 $^{\circ}$ C to microtiter wells (Nunc plates, Maxisorb). The next day all of the microtiter wells were blocked by

incubating with 300 µl of Tris-buffered saline containing 100 mM Tris-HCl, 50 mM NaCl, 0.05% Tween-20, and 3 mM NaN₃ (pH 7.4)(TTBS) plus 2% bovine serum albumin (BSA). Various dilutions (ie. 1:10, 1:30, 1:90, 1:270, 1:810, 1:2430 and 1:7290) of Engelbreth-Holm-Swarm (EHS) mouse tumor laminin (1 mg/ml)(Sigma Chemical Co., St. Louis, MO, USA) in 250 µl of TBS (pH 7.4) were placed in wells (in triplicate) either containing substrate bound Aβ (1-40) or blank, and allowed to bind overnight at 4°C overnight. The next day, the wells were rinsed 3 times with TTBS, and then probed for 2 hours with 100 µl of rabbit anti-laminin antibody (Sigma Chemical Company, St. Louis, MO) diluted 1:10,000 in TTBS. After 3 rinses with TTBS, the wells were then incubated for 2 hours on a rotary shaker with 100 µl of secondary probe consisting of biotinylated goat anti-rabbit (1:1000) and strepavidin-peroxidase (1:500 dilution of a 2 µg/ml solution) in TTBS containing 0.1% BSA. The wells were then rinsed 3 times with TTBS and 100 µl of a substrate solution (OPD-Sigma Fast from Sigma Chemical Co., St. Louis, MO) was added to each well and allowed to develop for 10 minutes or until significant color differences were observed. The reaction was stopped with 50 µl of 4N H₂SO₄ and read on a Model 450 microplate reader (Biorad, Hercules, CA USA) at 490 nm. Data points representing a mean of triplicate determinations were plotted and the affinity constants (ie. K_d) were determined using Ultrafit (version 2.1, Biosoft, Cambridge, U.K.) as described below.

The binding data were analyzed assuming a thermodynamic equilibrium for the formation of the complex BL, from the laminin ligand in solution, L, and the uncomplexed Aβ adsorbed to the microtiter well, B, according to the equation: K_d = [B] X [L]/[BL]. We elected to determine K_d's by using an enzyme-linked immunoassay that gives a color signal that is proportional to the amount of unmodified laminin bound to Aβ (Engel, J. and

Schalch, W., Mol. Immunol. 17:675-680, 1980; Mann, K. et al, Eur. J. Biochem. 178:71-80, 1988; Fox, J.W. et al, EMBO J. 10:3137-3146, 1991; Battaglia, C. et al, Eur. J. Biochem. 208:359-366, 1992).

To account for potential non-specific binding, control wells without A β (in triplicate) were included for each concentration of laminin used in each binding experiment. Optical densities of the control wells never exceeded 0.050 at all laminin concentrations employed for these experiments. The optical densities of the control wells were subtracted from the optical densities of the A β -containing wells that received similar laminin concentrations.

Non-specific absorbance obtained from A β containing wells that did not receive laminin were also subtracted from all data points. Thus, the equation in the form of: $OD_{exp} = OD_o + (S \times [laminin]) + (OD_{max} \times [laminin])/([laminin] + K_d)$ where ($S \times [laminin]$) represents non-specific binding (control wells) and OD_o is the non-specific absorbance, becomes $OD_{exp} = OD_{max} \times [laminin]/([laminin] + K_d)$. Therefore, at 50 % saturation $OD_{exp} = 0.50 OD_{max}$ and $K_d = [laminin]$. Determination of [laminin] at 50% saturation was performed by non-linear least square program (Ultrafit from Biosoft, UK) using a one-site model.

As demonstrated in Figure 1, EHS laminin bound immobilized A β (1-40) with a single binding constant with an apparent dissociation constant of $K_d = 2.7 \times 10^{-9} M$. Several repeated experiments utilizing this solid phase binding immunoassay indicated that laminin bound A β (1-40) repetitively with one apparent binding constant.

Example 2

Inhibition of Alzheimer's Disease A β Fibril Formation by Laminin

5

The effects of laminin on A β fibrillogenesis was also determined using the previously described method of Thioflavin T fluorometry (Naiki et al, Lab. Invest. 65:104-110, 1991; Levine III, Protein Sci. 2:404-410, 1993; Levine III, Int. J. Exp. Clin. Invest. 2:1-6, 1995; Naiki and Nakakuki, Lab. Invest. 74:374-383, 1996). In this assay, Thioflavin T binds specifically to fibrillar amyloid and this binding produces a fluorescence enhancement at 480 nm that is directly proportional to the amount of amyloid fibrils formed (Naiki et al, Lab. Invest. 65:104-110, 1991; Levine III, Protein Sci. 2:404-410, 1993; Levine III, Int. J. Exp. Clin. Invest. 2:1-6, 1995; Naiki and Nakakuki, Lab. Invest. 74:374-383, 1996). In a first study, the effects of EHS laminin on A β (1-40) fibrillogenesis was assessed. For this study, 25 μ M of freshly solubilized A β (1-40)(Bachem Inc., Torrance, CA, USA; Lot # WM365) was incubated in microcentrifuge tubes at 37°C for 1 week (in triplicate), either alone, or in the presence of 100 nM EHS laminin (Sigma Chemical Company, St. Louis, MO, USA) in 100 mM Tris, 50 mM NaCl, pH 7.0 (TBS). 100 nM of laminin utilized for these studies represented a A β :laminin molar ratio of 250:1. 10 50 μ l aliquots were then taken from each tube for analysis at 1 hr, 1 day, 3 days, and 1 week. In a second set of studies, the effects of laminin on A β (1-40) fibril formation was directly compared to other basement membrane components including fibronectin, type IV collagen and perlecan. For these studies, 25 μ M of freshly solubilized A β (1-40) was 20 incubated in microcentrifuge tubes for 1 week (in triplicate) either alone, or in the presence of 100 nM of EHS perlecan (isolated as previously described)(Castillo et al, J. Biochem. 120:433-444, 1996), fibronectin (Sigma Chemical Company, St. Louis, MO, USA) or type 25

IV collagen (Sigma Chemical Company, St. Louis, MO, USA). 50 ul aliquots were then taken for analysis at 1 hour, 1 day, 3 days and 1 week. In a third set of studies, 25 μ M of freshly solubilized A β (1-40) was incubated in microcentrifuge tubes for 1 week (in triplicate) either alone, or in the presence of increasing concentrations of laminin (i.e. 5 nM, 15 nM, 40 nM and 100 nM). 50 μ l aliquots were taken for analysis at 1 hour, 1 day, 3 days and 1 week.

For each determination described above, following each incubation period, A β peptides +/- laminin, perlecan, fibronectin or type IV collagen, were added to 1.2 ml of 100 μ M Thioflavin T (Sigma Chemical Co., St. Louis, MO) in 50 mM phosphate buffer (pH 6.0). Fluorescence emission at 480 nm was measured on a Turner instrument-model 450 fluorometer at an excitation wavelength of 450 nm. For each determination, the fluorometer was calibrated by zeroing in the presence of the Thioflavin T reagent alone, and by setting the 50 ng/ml riboflavin (Sigma Chemical Co., St. Louis, Mo) in the Thioflavin T reagent to 1800 fluorescence units. All fluorescence determinations were based on these references and any background fluorescence given off by laminin, perlecan, type IV collagen, or fibronectin alone in the presence of the Thioflavin T reagent was always subtracted from all pertinent readings.

As shown in Figure 2, freshly suspended A β (1-40) alone, following a 1 hour incubation at 37°C, demonstrated an initial fluorescence of 41 fluorescence units. During the 1 week incubation period there was a gradual increase in the fluorescence of 25 μ M A β (1-40) alone, increasing 6.7-fold from 1 hour to 1 week, with a peak fluorescence of 379 fluorescence units observed at 1 week. This increase was significantly inhibited when A β (1-40) was co-incubated with laminin, in comparison to A β alone. A β (1-40) co-incubated with laminin displayed fluorescence values that were 2.9-fold lower ($p<0.001$) at 1 hour,

4.6-fold lower ($p<0.0001$) at 1 day, 30.6-fold lower ($p<0.0001$) at 3 days and 27.1-fold lower ($p<0.0001$) at 1 week. This study indicated that laminin was a potent inhibitor of A β amyloid fibril formation, nearly completely inhibiting amyloid fibril formation even after 1 week of incubation.

5

To determine whether the inhibitory effects of laminin was specific to this basement membrane component, an direct comparison was made to other known basement membrane components including perlecan, fibronectin, and type IV collagen. In these studies 25 μ M of A β (1-40) was incubated in the absence or presence of either 100 nM of laminin, 100 nM of fibronectin, 100 nM of type IV collagen and 100 nM of perlecan (Figure 3). Freshly solubilized A β (1-40) when incubated at 37°C gradually increased in fluorescence levels from 1 hour to 1 week (by 10.8-fold)(Figure 3), as previously demonstrated (Figure 2). Perlecan was found to significantly accelerate A β (1-40) amyloid formation at 1 day and 3 days, whereas fibronectin and type IV collagen only showed significant inhibition of A β (1-40) fibrillogenesis at 1 week. Laminin, on the other hand, was again found to be a very potent inhibitor of A β fibrillogenesis causing a 9-fold decrease at 1 and 3 days, and a 21-fold decrease at 1 week. This study reconfirmed the potent inhibitory effects of laminin on A β fibrillogenesis, and demonstrated the specificity of this inhibition, since none of the other basement membrane components (including fibronectin, type IV collagen and perlecan) were very effective inhibitors.

10

15

20

25

To determine whether the inhibitory effects of laminin on A β fibrillogenesis occurred in a dose-dependent manner, different concentrations of laminin (i.e. 5nM, 15 nM, 40 nM and 100 nM) were tested. As shown in Figure 4, freshly solubilized A β (1-40) when incubated at 37°C gradually increased from 1 hour to 1 week, as previously demonstrated (Figures 2 and 3). 100 nM of laminin significantly inhibited A β fibril formation at all time

points studied, including 1 hour, 1 day, 3 days and 7 days. Laminin was also found to inhibit A β fibril formation in a dose-dependent manner which was significant ($p<0.05$) by 3 days of incubation. At 3 days and 7 days, both 100 nM and 40 nM of laminin significantly inhibited A β fibril formation. This study reconfirmed that laminin was a potent inhibitor of A β fibril formation and that this inhibition occurred in a dose-dependent manner.

5

Example 3

Laminin Causes Dose-Dependent Dissolution of Pre-Formed Alzheimer's Disease Amyloid Fibrils

10

The next study was implemented to determine whether laminin was capable of causing a dose-dependent dissolution of pre-formed Alzheimer's disease A β (1-40) amyloid fibrils. This type of activity would be important for any potential anti-Alzheimer's amyloid drug which can be used in patients who already have substantial amyloid deposition in brain. For example, Alzheimer's disease patients in mid-to late stage disease have abundant amyloid deposits in their brains as part of both neuritic plaques and cerebrovascular amyloid deposits. A therapeutic agent capable of causing dissolution of pre-existing amyloid would be advantageous for use in these patients who are at latter stages of the disease process.

20

For this study, 1 mg of A β (1-40)(Bachem Inc., Torrance, CA, USA; Lot #WM365) was dissolved in 1.0 ml of double distilled water (1mg/ml solution) and then incubated at 37°C for 1 week. 25 μ M of fibrillized A β was then incubated at 37°C in the presence or absence of laminin (from EHS tumor; Sigma Chemical Company, St. Louis, MO, USA) at concentrations of 125 nM, 63 nM, 31 nM and 16 nM containing 150 mM Tris HCl, 10 mM NaCl, pH 7.0. Following a 4 day incubation, 50 μ l aliquots were added

25

to 1.2ml of 100 μ M Thioflavin T (Sigma Chemical Co., St. Louis, MO) in 50mM NaPO₄ (pH 6.0) for fluorometry readings as described in example 2.

As shown in Figure 5, dissolution of pre-formed Alzheimer's disease A β amyloid fibrils by laminin occurred in a dose-dependent manner. A significant ($p<0.001$) 41% dissolution of pre-formed A β amyloid fibrils was observed with 125 nM of laminin, whereas 63 nM of laminin caused a significant ($p<0.001$) 39% dissolution. Furthermore, 31 nM and 16 nM of laminin still caused a significant ($p<0.01$) 28% and 25% dissolution of pre-formed A β amyloid fibrils. These data demonstrated that laminin causes dissolution of pre-formed Alzheimer's disease amyloid fibrils in a dose-dependent manner following a 4-day incubation.

Example 4

Laminin Does Not Significantly Inhibit Islet Amyloid Polypeptide (Amylin) Fibril Formation

In the next study, the specificity of the laminin inhibitory effects on Alzheimer's disease amyloid was determined by testing laminin's potential effects on another type of amyloid. Amyloid accumulation occurs in the islets of Langerhans in ~90% of patients with type II diabetes (Westerman et al, *Am. J. Path.* 127:414-417, 1987). The major protein in islet amyloid is a 37 amino acid peptide, termed islet amyloid polypeptide or amylin which is known to be a normal secretory product of the beta-cells of the pancreas (Cooper et al, *Proc. Natl. Acad. Sci.*, 84:8628-8632, 1987). The dose-dependent effects of laminin on amylin fibrillogenesis was determined using the Thioflavin T fluorometry assay. 25 μ M of A β (1-40)(Bachem Inc., Torrance, CA, USA; Lot #WM365) was incubated in microcentrifuge

tubes at 37°C for 1 week (in triplicate), either alone, or in the presence of 5 nM, 15 nM, 40 nM and 100 nM of laminin in 150 mM Tris HCl, 10 mM NaCl, pH 7.0 (TBS). 50 µl aliquots were taken from each tube for analysis at 1 hr, 1 day, 3 days, and 1 week using Thioflavin T fluorometry as described in example 2.

5

As shown in Figure 6, freshly suspended amylin alone following a 1-hour incubation at 37°C reached a maximum fluorescence of 1800 fluorescence units, which did not significantly change during the 1 week experimental period. The initial high fluorescence of amylin was attributed to amylin's ability to spontaneously form amyloid fibrils within a very short incubation period. Laminin at 100 nM did not significantly inhibit amylin fibril formation at all time points within the 1 week experimental period (Figure 6). In addition, no significant inhibition of amylin fibrillogenesis by laminin at decreasing concentrations (i.e. 40 nM , 15 nM and 5 nM) was observed, even though a decrease (but not significant) in amylin fibril formation was observed with 40 nM of laminin at 1 day, 3 days and 1 week (Figure 6). This study demonstrated that the inhibitory effects of laminin did not occur with amylin fibril formation, and demonstrated the specificity of the observed laminin inhibitory effects on Alzheimer's disease amyloid.

Example 5

Identification of V8 and Trypsin-Resistant Laminin Fragments which Interact with the Beta-Amyloid Protein of Alzheimer's Disease

In the next set of studies, we determined whether small fragment(s) of laminin generated by V8 or trypsin digestion would bind to A β . This would enable one to determine the domain(s) of laminin which bind A β and likely play a role in inhibition of A β fibril formation and causing dissolution of preformed Alzheimer's amyloid fibrils (as

demonstrated in the invention).

For these experiments, A β (1-40) was biotinylated according to the manufacturer's protocol (Pierce, Rockford, Illinois). For the ligand studies, intact EHS laminin was left undigested, or digested with V8 or trypsin (Sigma Chemical Company, St. Louis, MO, USA). More specifically, 2 μ g of trypsin or V8 protease in 2 μ l of 50 mM Tris-HCl buffer (pH 8.0) were added to 50 μ l of laminin (50 μ g)(in the same buffer) and incubated overnight at 37°C. The next day, 10 μ l of protease-digested laminin (or undigested laminin) was mixed with 10 μ l of 2X sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer, and heated for 5 minutes in a boiling water bath. SDS-PAGE was performed according to the method of Laemmli (Laemmli, U.K. Nature 227:680-685, 1970), or according to the method of Schägger and Jagow (Schägger and Jagow, Anal. Biochem. 166:368-379, 1987) using a Mini-Protean II electrophoresis system (Biorad) with precast 4-15% Tris-Glycine or 10-20% tricine polyacrylamide gels, respectively, and under non-reducing conditions. Electrophoresis occurred at 200V for 45 minutes along with pre-stained molecular weight standards.

After SDS-PAGE (10-20% tricine or 4-15% Tris-Glycine gels) was performed as described above, the separated laminin and its fragments (total protein of 10 μ g/lane) were transferred to polyvinylidene difluoride membrane (PVDF) using a Mini transblot electrophoresis transfer cell (Biorad, Hercules, CA, U.S.A.). Electrotransfer was performed at 100V for 2 hours. Following transfer, membranes were rinsed with methanol and dried. The fragment(s) of laminin involved in binding to A β were then detected by using biotinylated-A β (1-40), as described above. Blots were probed for 2 hours with 2 μ M biotinylated A β (1-40) in TTBS. The membranes were then rinsed three times (10 seconds each) with TTBS, probed for 30 minutes with streptavidin alkaline phosphatase conjugate

(Vectastain), rinsed again (as described above), and followed by the addition of an alkaline phosphatase substrate solution (Vectastain). Following color development, the reaction was stopped by flushing the membranes with double distilled water.

5 As shown in Figure 7, V8-digested laminin produced multiple protein fragments which interacted with biotinylated A β (1-40). Using a 4-15% Tris-Glycine gel system (Figure 7, lane 1), V8-resistant laminin fragments which interacted with A β included fragments of ~400 kDa (which probably represented intact laminin which was left undigested), ~100-130 kDa, ~85 kDa, and a prominent fragment at ~ 55 kDa. Using a 10-10 20% tricine gel system (Figure 7, lane 2), V8-resistant laminin fragments which interacted with A β included fragments of ~130 kDa, ~85 kDa, and a prominent fragment at ~ 55 kDa (Figure 7, lane 2, arrow). It is important to note that molecular size expressed in kilodaltons (kDa) are generally approximate. This study demonstrated that the smallest V8-resistant protein fragment of laminin which interacted with A β (1-40) was ~55 kDa.

15 As shown in Figure 8, trypsin-digested laminin produced multiple protein fragments which interacted with biotinylated A β (1-40). Using a 4-15% Tris-Glycine gel system (Figure 8, lane 1), trypsin-resistant laminin fragments which interacted with A β included fragments of ~400 kDa (which probably represented intact laminin which was left undigested), ~150-200 kDa, ~97 kDa, ~65 kDa and a prominent fragment at ~ 30 kDa. 20 Using a 10-20% tricine gel system (Figure 8, lane 2), trypsin-resistant laminin fragments which interacted with A β included fragments of ~97 kDa, ~90 kDa, ~65 kDa and a prominent fragment at ~ 30 kDa (Figure 8, lane 2, arrow). This study demonstrated that the smallest trypsin-resistant fragment of laminin which interacted with A β (1-40) was ~30 kDa.

Example 6

5 Identification of Elastase-Resistant Laminin Fragments Which Interact with the Beta-Amyloid Protein of Alzheimer's Disease

In the next set of studies, we determined whether small fragment(s) of laminin generated by elastase digestion would bind to A β . In addition , we sequenced and identified
10 the region within elastase-resistant laminin which interacted with A β . For these experiments, A β (1-40) was biotinylated according to the manufacturer's protocol (Pierce, Rockford, Illinois). For the ligand studies, intact EHS laminin was left undigested, or digested with elastase (Sigma Chemical Company, St. Louis, MO, USA). For elastase digestion, 2 μ g of elastase in 8 μ l of 50 mM Tris-HCl buffer (pH 8.0) was added to 50 μ l of laminin (50 μ g)(in the same buffer) and incubated for 1.5 hours or 2.5 hours at 37°C. In addition, as a control, 2 μ g of elastase in 50 μ l of 50 mM Tris-HCl buffer (pH 8.0) was incubated for 2.5 hours at 37°C. Following the appropriate incubation times as described above, 10 μ l of each of the above incubations were mixed with 10 μ l of 2X SDS-PAGE electrophoresis sample buffer, and heated for 5 minutes in a boiling water bath. SDS-PAGE was performed according to the method of Laemmli (Laemmli, *Nature* 227:680-685, 1970) using a Mini-Protean II electrophoresis system with precast 4-15% Tris-Glycine polyacrylamide gels, and under non-reducing conditions. Electrophoresis occurred at 200V for 45 minutes along with pre-stained molecular weight standards (Biorad).

25 After SDS-PAGE was performed as described above, the separated laminin fragments were transferred to PVDF using a Mini transblot electrophoresis transfer cell (Millipore, Bedford, MA, U.S.A.). Electrotransfer was performed at 100V for 2 hours.

Following transfer, membranes were rinsed with methanol, dried and cut into two equal parts which were used for A β ligand blotting, or Coomassie blue staining and subsequent amino acid sequencing. The fragment(s) of laminin involved in binding to A β were then detected by using biotinylated-A β (1-40), as described above. Blots were probed for 2 hours with 2 μ M biotinylated A β (1-40) in TTBS. The membranes were then rinsed three times (10 seconds each) with TTBS, probed for 30 minutes with strepavidin alkaline phosphatase conjugate (Vectastain), rinsed again (as described above), and followed by the addition of an alkaline phosphatase substrate solution (Vectastain). Following color development, the reaction was stopped by flushing the membranes with double distilled water.

For Coomassie blue staining, PVDF membranes were immersed with 0.2% Coomassie Brilliant blue (w/v) in 50 % methanol, 10% acetic acid, and 40% distilled water for 2 minutes, and then rinsed with 50% methanol, 10% acetic acid, and 40% distilled water until visible bands were observed, and no background staining was present. The 55 kDa A β -binding laminin fragment, described below, was sent to the Biotechnology Service Center (Peptide Sequence Analysis Facility at the University of Toronto, Toronto, Ontario, Canada) and subjected to amino acid sequencing using a Porton 2090 Gas-Phase Microsequencer (Porton Instruments, Tarzana, CA) with on-line analysis of phenylthiohydantoin derivatives.

In Figure 9, Panel A represents an A β ligand blot whereas Panel B represents the equivalent Coomassie blue stained blot. As shown in Figure 9 (Panel A, lanes 2 and 3), elastase-digested laminin produced multiple protein fragments which bound biotinylated A β (1-40). Panel A, lane 1 represents undigested mouse EHS laminin, whereas lanes 2 and 3 represents laminin which had been digested with elastase for 1.5 hours or 2.5 hours,

respectively. Panel A, lane 4 represents elastase digestion for 2.5 hours in the absence of laminin. Undigested laminin (Fig. 9, Panel A, lane 1) which interacted with A β included multiple bands from >~400 kDa to >~86 kDa, with the most prominent A β -interaction occurring with intact laminin (i.e. ~ 400 kDa). Elastase-resistant laminin protein fragments which interacted with A β (Fig. 9, Panel A, lanes 2 and 3) included fragments of >~400kDa, ~130 kDa (arrowhead), ~80-90 kDa, ~65 kDa and a prominent band at ~ 55 kDa (arrow). The interaction of these elastase-resistant laminin protein fragments with A β were only observed under non-reducing conditions suggesting that the A β interaction was also conformation dependent. The 130kDa elastase resistant laminin fragment which interacts with A β , is also believed to be part of the E8 fragment (see Figure 11), and is the same protein fragment of laminin that appears to be present in human serum and cerebrospinal fluid (see Examples 10 and 11). Figure 9, Panel A, lane 4 demonstrates that the band observed at ~29 kDa represents non-specific A β binding due to the presence of the elastase enzyme alone.

Figure 9, Panel B demonstrates all of the multiple protein bands which were stained by Coomassie blue. Note, for example, in Panel B, lanes 2 and 3, that elastase digestion of laminin produced multiple protein fragments between ~55 kDa and ~90 kDa which did not bind A β , and were not observed in the A β ligand blot (Fig. 9, Panel A, lanes 2 and 3).

An A β -Binding Domain Within Laminin is Identified Within the Globular Repeats of the Laminin A Chain

The 55 kDa laminin fragment (ie. produced following 1.5 hours of elastase digestion) that demonstrated positive A β binding interaction by ligand blotting was then

prepared (Fig. 9, Panel B, lane 2, arrow) in large amounts for amino acid sequencing (as described in example 6). Sequence data determined the exact location within laminin that was involved in binding to A β . An 11-amino acid sequence was determined from sequencing of the 55 kDa band. The sequence identified was:

5 Leu-His-Arg-Glu-His-Gly-Glu-Leu-Pro-Pro-Glu (SEQ ID NO:1).

The specific A β -binding domain within laminin was then identified by comparison to known mouse laminin sequence (Sasaki and Yamada, *J. Biol. Chem.* 262:17111-17117, 1987; Sasaki et al, *Proc. Natl. Acad. Sci.* 84:935-939, 1987; Durkin, et al, *Biochem.* 27:5198-5204, 1988; Sasaki et al, *J. Biol. Chem.* 263:16536-16544, 1988), since mouse EHS laminin was utilized in the studies of the present invention. In addition, the complete amino acid sequence within laminin was retrieved from the National Center for Biotechnology Information, Bethesda, Maryland, U.S.A.

10
15
20
Figure 10 shows the complete amino acid sequence of mouse laminin A chain (Genebank accession number P19137; SEQ ID NO: 4). The 11 amino acid protein fragment sequenced from the ~55 kDa protein within laminin which binds A β is identified (Figure 10; bold underline and arrowhead; SEQ ID NO: 1) and matches exactly to the region within the third globular domain repeat of laminin A chain (Figure 11). The fourth globular domain repeat of mouse laminin A chain is shown as SEQ ID NO: 2 (Genebank Accession Number P19137; amino acids #2746-2922), whereas the fourth globular domain repeat of human laminin A chain is shown as SEQ ID NO: 3 (Genebank Accession Number P25391; amino acids #2737-2913).

25 Figure 11 shows two schematic representations of laminin (Colognato-Pyke et al, *J. Biol. Chem.* 270:9398-9406, 1995) and the newly discovered A β -binding region of laminin

(shown in left panel; between the two arrowheads) which is situated within the last three globular domains of the laminin A chain. The left panel of figure 11 illustrates laminin and fragments generated following protease digestions. Elastase fragments E1', E1X (dark line border), E-alpha-35 and E4 all correspond to regions of the short arms of laminin. Long arm fragments are E8, E3 and cathepsin G fragment C8-9. The E8 fragment produced by elastase digestion of laminin contains the long arm fragments containing the distal part of the long arm and the G subdomains 1-3, and consists of a 130-150 kda (Yurchenco and Cheng, *J. Biol. Chem.* 268:17286-17299, 1993). The E3 fragments also produced by elastase digestion of laminin contains the distal long arm globule with G subdomains 4 and 5. The E3 fragment shown in Figure 11, Panel A, has previously shown to be a doublet at ~60 kDa and ~55 kDa (Yurchenco and Cheng, *J. Biol. Chem.* 268:17286-17299, 1993). This also confirms our discovery whereby the ~55 kDa fragment which we found to bind A β is localized within the E3 region of laminin (Figure 11, Left Panel).

The right panel of Figure 11 depicts the function map with the alpha (A chain), β (B1 chain) and gamma (B2 chain) chains of laminin shown in shades of decreasing darkness. EGF repeats are indicated by bars in the rod domains of the short arm. Domains, based on sequence analysis, are indicated in small Roman numerals and letters. The locations of heparin-binding, polymer-forming, and the active alpha1 β 1 integrin-binding sites are shown in bold-face for the alpha-chain short arm. The long arm functions of heparin binding (heparin), alpha6 β 1 integrin-recognition site (alpha6 β 1), and dystroglycan (DG), mapped in other studies, are indicated in gray-shaded labels. It is interesting to note that the A β -binding region of laminin is also a region involved in binding to heparin.

It should also be emphasized that the globular domain repeats of the laminin A chain likely interacts with A β in a conformation dependent manner, since the interaction of the

~55-kilodalton elastase-resistant protein fragments with A β was only observed under non-reducing conditions.

Example 8

5

Identification of Laminin and Laminin Protein Fragments in Human Serum and Cerebrospinal Fluid Derived from Alzheimer's disease, Type II Diabetes, and/or Normal Aged Patients

10

In the next study, western blotting techniques using a polyclonal antibody against laminin was used to determine whether intact laminin and/or laminin fragments were present in human serum and cerebrospinal fluid obtained from Alzheimer's disease, type II diabetes and/or normal aged patients. In this study, human serum was obtained from the Alzheimer's disease Research Center at the University of Washington from either living aged patients who may have had corresponding mini-mental state examinations (where a score of 30 is normal, a score of 15 suggests moderate dementia and a score <10 suggests severe dementia), or from living aged patients who had subsequently died and were diagnosed at autopsy with Alzheimer's disease (following examination of their brains obtained postmortem). In addition, human serum was obtained from the Diabetes Endocrinology Research Center at the University of Washington. The following human serums were obtained and analyzed as part of this study: 1) patient #9; a normal 67 yr old female with a mini-mental score of 30; 2) patient #5226 - a 70 year old female with confirmed moderate Alzheimer's disease who also had a mini-mental score of 12 ; 3) patient #5211- a 66 year old male with confirmed Alzheimer's disease who also had a mini-mental score of 25; 4) patient B- a 63 year old male who had confirmed type II diabetes; 5) patient #5223- a 68 year old female with confirmed Alzheimer's disease who also had a mini-mental score of 22; 6) patient #22- an 83 yr old normal aged female who also had a mini-mental score of 30;

15

20

25

7) patient #C- a 68 year old male with confirmed type II diabetes. Each of these serums were utilized in this study and represent lanes 1-7 (left side) of Figure 12 (in the same order as above).

5 In addition, cerebrospinal fluid was obtained from the Alzheimer's disease Research Center at the University of Washington from either living aged patients who may have had corresponding mini-mental state examinations, or from living aged patients who had subsequently died and were diagnosed at autopsy with Alzheimer's disease (following examination of their brains obtained postmortem). The following human cerebrospinal fluids were obtained as part of this study: 1) patient #6- a normal 64 year old female who had a mini-mental score of 30; 2) patient #7- a normal 67 year old male who had a mini-mental score of 30; 3) patient #8- a normal 80 year old female who had a mini-mental score of 30; 4) patient #9- a normal 67 year old female who had a mini-mental score of 30; 5) patient #1111P- a normal 78 year old female who had a mini-mental score of 30; 6) patient #50-a 66 year old male patient with probable moderate Alzheimer's disease as indicated by a mini-mental score of 15; 7) patient #54-a 73 year old male with probable severe Alzheimer's disease as indicated by a mini-mental score of 8. Each of these cerebrospinal fluid samples were utilized in this study and represent lanes 1-7 (right side) of Figure 12 (in the same order as above).

20
25 For the study described above, 10 µl of human serum diluted at 1:10, or 10µl of undiluted human cerebrospinal fluid was added to 10 µl of SDS-PAGE buffer and ligand blots were prepared as in Example 6. Blots were probed for 2 hours with a polyclonal antibody (used at a dilution of 1:10,000 in TTBS) against EHS laminin (Sigma Chemical Company, St. Louis, MO). The membranes were then rinsed 3 times (10 seconds each) with TTBS and incubated for 1 hour with a biotinylated goat anti-rabbit IgG secondary

antibody diluted 1:1,000 with TTBS. The membranes were then rinsed three times (10 seconds each) with TTBS, probed for 30 minutes with streptavidin alkaline phosphatase conjugate (Vectastain), rinsed again (as described above), followed by the addition of an alkaline phosphatase substrate solution (Vectastain). Following color development, the reaction was stopped by flushing the membranes with double distilled water.

5

As shown in Figure 12, intact laminin (arrowheads) was present in human serum (lanes 1-7; left side) but not in human cerebrospinal fluid (lanes 1-7; right side). Qualitative observations suggest that intact laminin (as described above) may have been decreased in serum of Alzheimer's disease patients in comparison to controls (i.e. compare intact laminin in Figure 12, lane 1, left side-normal individual; to Figure 12, lane 2, left side-Alzheimer's disease patient). In addition to intact laminin, human serum derived from Alzheimer's disease, type II diabetes and normal aged patients also contained laminin immunoreactivity in a series of band from ~120 kDa to ~200 kDa (Figure 12, bands observed between the two arrows). On the other hand, cerebrospinal fluid samples did not contain intact laminin (Figure 12; lanes 1-7; right side) but only contained a series of laminin immunoreactive protein fragments from ~120 kDa to ~200 kDa (i.e. Figure 12, bands observed between the two arrows). This study determined that a series of laminin protein fragments are present in both human serum and cerebrospinal fluid of Alzheimer's disease, type II diabetes and normal aged patients, whereas intact laminin is only present in human serum. The novel discovery of the laminin fragments in human cerebrospinal fluid suggests that it may be used as a marker to determine the extent of laminin breakdown in the brain during Alzheimer's disease and other brain disorders.

20

25

Example 9

5 **Identification of a ~130 Kilodalton Laminin Protein Fragment in Human
Serum of Alzheimer's disease, Type II Diabetes and Normal Aged Patients
which Binds A β**

In the next study, A β ligand blotting techniques were utilized to identify whether
10 laminin or laminin protein fragments present in human serum bind A β . In this study, human
serum was obtained from the Alzheimer's disease Research Center at the University of
Washington from either living patients who may have had corresponding mini-mental state
examinations (where a score of 30 is normal, a score of 15 suggests moderate dementia and
a score <10 suggests severe dementia), or from living patients who had subsequently died
and were diagnosed at autopsy with Alzheimer's disease (following examination of their
brains obtained postmortem). In addition, human serum was obtained from the Diabetes
Endocrinology Research Center at the University of Washington. The first six human
serum samples (i.e. Figure 13, lanes 1-6) were the same serum samples as indicated in
Example 8. In addition, Figure 13 lanes 7-10 consisted of human serum obtained from
lane 7) patient #E- a 54 year old male with confirmed type II diabetes, lane 8) patient #5230-
a 72 year old female with confirmed moderate Alzheimer's disease who had a mini-mental
score of 19, lane 9) patient #E-a 54 year old male with confirmed type II diabetes, and lane
10) patient #F- a 69 year old male with confirmed type II diabetes.

25 For this study, A β (1-40) was biotinylated according to the manufacturer's protocol
(Pierce, Rockford, IL). For the ligand studies, following SDS-PAGE as described above in
Example 8, separated laminin and its fragments present in human serum were transferred to
polyvinylidene difluoride membrane (PVDF) using a Mini transblot electrophoresis transfer

cell. Electrotransfer was performed at 100V for 2 hours. Following transfer, membranes were rinsed with methanol and dried. The fragment(s) of laminin in human serum involved in binding to A β were then detected by using biotinylated-A β (1-40). Blots were probed for 2 hours with 1 μ M biotinylated A β (1-40) in TTBS. The membranes were then rinsed three times (10 seconds each) with TTBS, probed for 30 minutes with strepavidin alkaline phosphatase conjugate (Vectastain), rinsed again (as described above), and followed by the addition of an alkaline phosphatase substrate solution (Vectastain). Following color development, the reaction was stopped by flushing the membranes with double distilled water.

10

As shown in Figure 13, A β interacted with intact human laminin (arrow) in most samples of human serum. However, it was surprising to note that intact laminin was virtually absent in 2 of the 4 Alzheimer's disease patients serum (Fig. 13, lanes 5 and 8), suggesting that laminin-derived fragments may be important in Alzheimer's disease as a diagnostic marker. The most interesting discovery was that of all the laminin immunoreactive protein fragments found in human serum (i.e ~120 kDa to ~200 kDa, bands observed between the arrows, Figure 12, lanes 1-7, right side), only a prominent ~130 kDa band was found to interact with A β (Figure 13, arrowhead). This same prominent band is approximately the same molecular weight of the E8 band generated from mouse laminin following elastase digestion (see Figure 9), and which also contains the globular domain repeats of the laminin A chain. This study therefore determined that besides intact laminin, human serum contains a ~130 kDa laminin fragment which binds to A β , and may be important for keeping A β soluble in biological fluids such as blood. This study also suggests that qualitative and quantitative assessment of laminin fragments in human serum may prove diagnostic for the extent and progression of Alzheimer's disease, type II diabetes and other amyloidoses.

Example 10

5 **Identification of a ~130 Kilodalton Laminin Protein Fragment in Human
Cerebrospinal Fluid of Alzheimer's disease and Normal Aged Patients which
Binds A β**

In the next study, A β ligand blotting techniques were utilized to identify whether laminin protein fragments (<200 kDa) present in human cerebrospinal fluid bind A β . In this study, human cerebrospinal fluid was obtained from the Alzheimer's disease Research Center at the University of Washington from either living aged patients who may have had corresponding mini-mental state examinations (where a score of 30 is normal, a score of 15 suggests moderate Alzheimer's disease and a score <10 suggests moderate Alzheimer's disease), or from living aged patients who had subsequently died and were diagnosed at autopsy with Alzheimer's disease (following examination of their brains obtained postmortem). The following human cerebrospinal fluids were obtained and analyzed as part of this study (depicted in Figure 14, lanes 1-10): 1) patient #65- a 71 yr old male with probable severe Alzheimer's disease as indicated by a mini-mental score of 0; 2) patient #54- a 73 yr old male with probable severe Alzheimer's disease as indicated by a mini-mental score of 8.; 3) patient #6- a normal 64 yr old female who had a mini-mental score of 30; 4) patient #7- a normal 67 yr old male who had a mini-mental score of 30; 5) patient #8- a normal 80 yr old female who had a mini-mental score of 30; 6) patient #9- a normal 67 yr old female who had a mini-mental score of 30; 7) patient #1111P- a normal 78 yr old female who had a mini-mental score of 30; 8) patient #50-a 66 yr old male patient with probable moderate Alzheimer's disease as indicated by a mini-mental score of 15; 9) patient #52-a 69 yr old male with probable moderate Alzheimer's disease as indicated by a mini-mental score of 16; 10) patient #64-a 64 yr old male with probable severe Alzheimer's

disease as indicated by a mini-mental score of 0. Each of these cerebrospinal fluid samples were utilized in this study and represent lanes 1-10 of Figure 14 (in the same order as above).

For this study, A β ligand blotting was employed as described in Example 9. The fragment(s) of laminin in human cerebrospinal fluid involved in binding to A β were detected by using biotinylated-A β (1-40). Blots were probed for 2 hours with 50 nM of biotinylated A β (1-40) in TTBS. The rest of the A β ligand blotting procedure is as described above in Example 9.

As shown in Figure 14, A β interacted with laminin fragment bands between ~120 kDa and ~200 kDa in most samples of human cerebrospinal fluid. As observed in human serum, most samples of human cerebrospinal fluid also contained a prominent ~130 kDa laminin fragment (Figure 14, arrow) which interacted with A β . No intact A β -binding laminin was found in human cerebrospinal fluid (not shown), as previously demonstrated (Figure 12, Example 8). Again, this same prominent ~130 kDa A β -binding laminin fragment present in human cerebrospinal fluid is approximately the same molecular weight of the E8 band generated from laminin, and which also contains the globular domain repeats of the laminin A chain. This study therefore determined that human cerebrospinal fluid also contains a ~130 kDa laminin fragment which binds to A β , and may be important for keeping A β soluble in biological fluids such as cerebrospinal fluid.

Further Aspects and Utilizations of the Invention

Laminin-Derived Protein Fragments and Polypeptides

5 One therapeutic application of the present invention is to use laminin, laminin protein fragments which bind A β or other amyloid proteins, and/or laminin polypeptides derived from amino acid sequencing of the laminin fragments which bind A β (such as the ~130 kilodalton protein described herein) or other amyloid proteins, as potent inhibitors of amyloid formation, deposition, accumulation and/or persistence in Alzheimer's disease and other amyloidoses. The amyloid diseases include, but are not limited to, the amyloid associated with Alzheimer's disease and Down's syndrome (wherein the specific amyloid is referred to as beta-amyloid protein or A β), the amyloid associated with chronic inflammation, various forms of malignancy and Familial Mediterranean Fever (wherein the specific amyloid is referred to as AA amyloid or inflammation-associated amyloidosis), the amyloid associated with multiple myeloma and other B-cell dyscrasias (wherein the specific amyloid is referred to as AL amyloid), the amyloid associated with type II diabetes (wherein the specific amyloid is referred to as amylin or islet amyloid), the amyloid associated with the prion diseases including Creutzfeldt-Jakob disease, Gerstmann-Straussler syndrome, kuru and animal scrapie (wherein the specific amyloid is referred to as PrP amyloid), the amyloid associated with long-term hemodialysis and carpal tunnel syndrome (wherein the specific amyloid is referred to as beta $_2$ -microglobulin amyloid), the amyloid associated with senile cardiac amyloid and Familial Amyloidotic Polyneuropathy (wherein the specific amyloid is referred to as transthyretin or prealbumin), and the amyloid associated with endocrine tumors such as medullary carcinoma of the thyroid (wherein the specific amyloid is referred to as variants of procalcitonin).

The polypeptides referred to above may be a natural polypeptide, a synthetic polypeptide or a recombinant polypeptide. The fragments, derivatives or analogs of the polypeptides to any laminin fragment referred to herein may be a) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue and such substituted amino acid residue may or may not be encoded by the genetic code, or b) one in which one or more of the amino acid residues includes a substituent group, or c) one in which the mature polypeptide is fused with another compound, such as a compound used to increase the half-life of the polypeptide (for example, polylysine), or d) one in which the additional amino acids are fused to the mature polypeptide, such as a leader or secretory sequence or a sequence which is employed for purification of the mature polypeptide or a proprotein sequence. Such fragments, derivatives and analogs are deemed to be within the scope of the invention.

The tertiary structure of proteins refers to the overall 3-dimensional architecture of a polypeptide chain. The complexity of 3-dimensional structure arises from the intrinsic ability of single covalent bonds to be rotated. Rotation about several such bonds in a linear molecule will produce different nonsuperimposable 3-dimensional arrangements of the atoms that are generally described as conformations.

Protein conformation is an essential component of protein-protein, protein-substrate, protein-agonist, protein-antagonist interactions. Changes in the component amino acids of protein sequences can result in changes that have little or no effect on the resultant protein conformation. Conversely, changes in the peptide sequences can have effects on the protein conformation resulting in reduced or increased protein-protein, etc. interactions. Such changes and their effects are generally disclosed in Proteins: Structures and Molecular Properties by Thomas Creighton W.H. Freeman and Company, New York, 1984 which

is hereby incorporated by reference.

“Conformation” and “conformation similarity” when used in this specification and claims refers to a polypeptide’s ability (or any other organic or inorganic molecule) to assume a given shape, through folding and the like, so that the shape, or conformation, of the molecule becomes an essential part of its functionality, sometimes to the exclusion of its chemical makeup. It is generally known that in biological processes two conformationally similar molecules may be interchangeable in the process, even the chemically different. “Conformational similarity” refers to the latter interchangeability or substitutability. For example, laminin and laminin-derived protein fragments are among the subjects of the invention because they have been shown to bind the A β protein and render it inactive in fibril formation; it is contemplated that other molecules that are conformationally similar to laminin, or any claimed laminin fragment or polypeptide, may be substituted in the claimed method to similarly render the A β inactive in fibrillogenesis and other amyloid processes. In general it is contemplated that levels of conformational similarity at or above 70% are sufficient to assume homologous functionality in the claimed processes, though reduced levels of conformational similarity may be made to serve as well. Conformational similar levels at or above 90% should provide some level of additional homologue functionality.

Thus, one skilled in the art would envisage that changes can be made to the laminin sequence, or fragments or polypeptides thereof, that would increase, decrease or have no effect on the binding of laminin or fragments thereof, to A β amyloid. In addition, one skilled in the art would envisage various post-translational modifications such as phosphorylation, glycosylation and the like would alter the binding of laminin, laminin fragments or laminin polypeptides to A β amyloid.

The polypeptides of the present invention include the polypeptides or fragments of laminin described herein, including but not limited to SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10 and SEQ ID NO: 11, and fragments thereof, as well as 5 polypeptides which have at least 70% similarity (preferably 70 % identity) and more preferably a 90% similarity (more preferably a 90% identity) to the polypeptides described above.

10 Fragments or portions of the polypeptides or fragments of laminin of the present invention may be employed for producing the corresponding full-length polypeptides by peptide synthesis; therefore, the fragments may be employed as intermediates for producing the full length polypeptides.

15 The polypeptides of the present invention may be a naturally purified product, or a product of chemical synthetic procedures, or produced by recombinant techniques from a prokaryotic or eukaryotic host (for example, by bacterial, yeast, higher plant, insect and mammalian cells in culture). Depending upon the host employed in a recombinant procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. Polypeptides of the invention may also include an initial methionine amino 20 acid residue.

Chemical polypeptide synthesis is a rapidly evolving area in the art, and methods of solid phase polypeptide synthesis are well-described in the following references, hereby entirely incorporated by reference (Merrifield, J. Amer. Chem. Soc. 85:2149-2154, 1963; 25 Merrifield, Science 232:341-347, 1986; Fields, Int. J. Polypeptide Prot. Res. 35, 161, 1990).

Recombinant production of laminin polypeptides can be accomplished according to known method steps. Standard reference works setting forth the general principles of recombinant DNA technology include Watson, Molecular Biology of the Gene, Volumes I and II, The Benjamin/Cummings Publishing Company Inc., publisher, Menlo Park, Calif. 5 1987; Ausubel et al, eds., Current Protocols in Molecular Biology, Wiley Interscience, publisher, New York, N.Y. 1987; 1992; and Sambrook et al, Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory, publisher, Cold Spring Harbor, N.Y. 1989, the entire contents of which references are herein incorporated by reference.

The polypeptides of the present invention may also be utilized as research reagents and materials for discovery of treatments and diagnostics for human diseases.

Antibodies

Antibodies generated against the polypeptides corresponding to specific sequences recognizing the laminin fragments of the present invention which bind A β or other amyloid proteins can be obtained by direct injection of the polypeptides into an animal or by administering the polypeptides to an animal, preferably a nonhuman. The antibody so obtained will then bind the polypeptides itself. In this manner, even a sequence encoding only a fragment of the polypeptides can be used to generate antibodies binding the whole native polypeptides. Such antibodies can then be used to isolate the polypeptides from tissue expressing that polypeptide. Preferred embodiments include, but are not limited to, SEQ ID 25 NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10 and SEQ ID NO: 11, and

fragments thereof, as well as polypeptides which have at least 70% similarity (preferably 70 % identity) and more preferably a 90% similarity (more preferably a 90% identity) to the polypeptides described above.

5 The term "antibody" is meant to include polyclonal antibodies, monoclonal antibodies, chimeric antibodies, anti-idiotypic antibodies to antibodies specific for laminin-derived protein fragments or polypeptides of the present invention.

10 Polyclonal antibodies are heterogeneous populations of antibody molecules derived from the sera of animals immunized with an antigen.

15 A monoclonal antibody contains a substantially homogeneous population of antibodies specific to antigens, which population contains substantially similar epitope binding sites. For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler and Milstein, Nature 256:495-497, 1975), the trioma technique, the human B-cell hybridoma technique (Kozbor et al, Immunology Today 4:72, 1983), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al, in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp.77-96, 1985).

20 Such antibodies may be of any immunoglobulin class including IgG, IgM, IgE, IgA, GILD and any subclass thereof.

25 Chimeric antibodies are molecules different portions of which are derived from different animal species, such as those having variable region derived from a murine monoclonal antibody and a human immunoglobulin constant region, which are primarily used to reduce immunogenicity in application and to increase yields in production. Chimeric

antibodies and methods for their production are known in the art (ex. Cabilly et al, Proc. Natl. Acad. Sci. U.S.A. 81:3273-3277, 1984; Harlow and Lane: Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory 1988).

5 An anti-idiotypic antibody is an antibody which recognizes unique determinants generally associated with the antigen-binding site of an antibody. An anti-idiotypic antibody can be prepared by immunizing an animal of the same species and genetic type (e.g., mouse strain) as the source of the monoclonal antibody with the monoclonal antibody to which an anti-idiotypic antibody is being prepared. The immunized animal will 10 recognize and respond to the idotypic determinants of the immunizing antibody by producing an antibody to these idotypic determinants (the anti-idiotypic antibody). See, for example, U.S. Patent No. 4,699,880, which is herein incorporated by reference.

15 The term "antibody" is also meant to include both intact molecules as well as fragments thereof, such as, for example, Fab and F(ab')₂, which are capable of binding antigen. Fab and F(ab')₂ fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody (Wahl et al, J. Nucl. Med. 24:316-325, 1983).

20 The antibodies or fragments of antibodies, useful in the present invention may be used to quantitatively or qualitatively detect laminin or laminin-derived fragments in a sample or to detect presence of cells which express a laminin polypeptide of the present invention. This can be accomplished by immunofluorescence techniques employing a 25 fluorescently labeled antibody coupled with light microscopic, flow cytometric or fluorometric detection.

One of the ways in which a laminin fragment antibody can be detectably labeled is by linking the same to an enzyme and use in an enzyme immunoassay (EIA). This enzyme, in turn, when later exposed to an appropriate substrate, will react with the substrate in such a manner as to produce a chemical moiety which can be detected, for example, by

5 spectrophotometric, fluorometric, or by visual means. Enzymes which can be used detectably label the antibody include, but are not limited to, malate dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, yeast alcohol dehydrogenase, alpha-glycerophosphate dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, 10 urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase and acetylcholinesterase. The detection can be accomplished by colometric methods which employ a chromogenic substrate for the enzyme. Detection can be accomplished by colometric methods which employ a chromogenic substrate for the enzyme. Detection can also be accomplished by visual comparison of the extent of enzymatic reaction of a substrate with similarly prepared standards (see Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory 1988; Ausubel et al, eds., Current Protocols in Molecular Biology, Wiley Interscience, N.Y. 1987, 1992).

PCT/US93/02153

20 Detection may be accomplished using any of a variety of other immunoassays. For example, by radiolabeling of the antibodies or antibody fragments, it is possible to detect R-PTPase through the use of a radioimmunoassay (RIA). A good description of RIA may be found in Laboratory Techniques and Biochemistry in Molecular Biology, by Work et al, North Holland Publishing Company, NY (1978) with particular reference to the chapter entitled "An Introduction to Radioimmune Assay and Related Techniques" by Chard, 25 incorporated entirely by reference herein. The radioactive isotope can be detected by such means as the use of a gamma-counter, a scintillation counter or by autoradiography.

It is also possible to label a laminin fragment polypeptide antibody with a fluorescent compound. When the fluorescently labeled antibody is exposed to light of the proper wavelength, its presence can then be detected due to fluorescence. Among the most commonly used fluorescent labelling compounds are fluorescein isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o-phthaldehyde and fluorescamine, commercially available, e.g., from Molecular Probes, Inc. (Eugene, Oregon, U.S.A.).

The antibody can also be detectably labeled using fluorescence emitting metals such as ^{152}Eu , or other of the lanthanide series. These metals can be attached to the antibody using such metal groups as diethylenetriamine pentaacetic acid (EDTA).

The antibody can also be detectably labeled by coupling it to a chemiluminescent compound. The presence of the chemiluminescent-tagged antibody is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction, Examples of particularly useful chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt, and oxalate ester.

Likewise, a bioluminescent compound may be used to label the antibody of the present invention. Bioluminescence is a type of chemiluminescence found in biological systems in which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the presence of luminescence. Important bioluminescent compounds for purposes of labeling are luciferin, luciferase and aequorin.

The antibodies (or fragments thereof) useful in the present invention may be

employed histologically, as in immunofluorescence or immunoelectron microscopy, for in situ detection of a laminin fragment of the present invention. In situ detection may be accomplished by removing a histological specimen from a patient, and providing the labeled antibody of the present invention to such a specimen. The antibody (or fragment) is
5 preferably provided by applying or by overlaying the labeled antibody (or fragment) to a biological sample. Through the use of such a procedure, it is possible to determine not only the presence of a laminin fragment polypeptide but also its distribution on the examined tissue. Using the present invention, those of ordinary skill will readily perceive that any of a wide variety of histological methods (such as staining procedures) can be modified in order
10 to achieve such in situ detection.

In accordance with yet a further aspect of the present invention there are provided antibodies against laminin, laminin fragments and/or laminin-derived polypeptides which interact with A β or other amyloid proteins, or derivatives thereof. These antibodies can be used for a number of important diagnostic and/or therapeutic applications as described herein. In one aspect of the invention, polyclonal and/or monoclonal antibodies made against laminin, laminin fragments and/or laminin-derived polypeptides which bind A β or other amyloid proteins, may be utilized for Western blot analysis (using standard Western blotting techniques knowledgeable to those skilled in the art) to detect the presence of
20 amyloid protein-binding laminin fragments or amyloid protein-binding laminin polypeptides in human tissues and in tissues of other species. Western blot analysis can also be used to determine the apparent size of each amyloid protein-binding laminin fragment. In addition, Western blotting following by scanning densitometry (known to those skilled in the art) can be used to quantitate and compare levels of each of the laminin fragments in tissue samples,
25 biological fluids or biopsies obtained from individuals with specific diseases (such as the amyloid diseases) in comparison to tissue samples, biological fluids or biopsies obtained

from normal individuals or controls. Biological fluids, include, but are not limited to, blood, plasma, serum, cerebrospinal fluid, sputum, saliva, urine and stool.

In yet another aspect of the invention, polyclonal and/or monoclonal antibodies made
5 against laminin, laminin fragments and/or laminin-derived peptides which bind A β or other amyloid proteins, can be utilized for immunoprecipitation studies (using standard immunoprecipitation techniques known to one skilled in the art) to detect laminin, laminin fragments and/or laminin-derived peptides which bind A β or other amyloid proteins, in tissues, cells and/or biological fluids. Use of the laminin, laminin fragment and/or laminin-derived peptide antibodies for immunoprecipitation studies can also be quantitated to
10 determine relative levels of laminin, laminin fragments and/or laminin-derived peptides which interact with A β or other amyloid proteins, in tissues, cells and/or biological fluids. Quantitative immunoprecipitation can be used to compare levels of laminin, laminin fragments and/or laminin amyloid protein-binding peptides in tissue samples, biological fluids or biopsies obtained from individuals with specific diseases (such as the amyloid diseases) in comparison to tissue samples, biological fluids or biopsies obtained from normal individuals or controls.

Therapeutic Applications

20 Yet another aspect of the present invention is to make use of laminin, laminin fragments and/or laminin-derived polypeptides as amyloid inhibitory therapeutic agents. The laminin-derived peptide sequences or fragments can be synthesized utilizing standard techniques (ie. using an automated synthesizer). Laminin, laminin fragments and/or laminin-derived polypeptides which bind A β or other amyloid proteins, can be used as potential
25 blocking therapeutics for the interaction of laminin in a number of biological processes and

diseases (such as in the amyloid diseases described above). In a preferred embodiment, specific peptides made against the amino acid sequence of laminin contained within the ~55 kDa laminin fragment (i.e. globular repeats within the laminin A chain; SEQ ID NO 3) described in the present invention, may be used to aid in the inhibition of amyloid formation, deposition, accumulation, and /or persistence in a given patient. Likewise, in another preferred embodiment anti-idiotypic antibodies made against laminin, laminin fragments and/or laminin-derived polypeptides (as described above) may be given to a human patient as potential blocking antibodies to disrupt continued amyloid formation, deposition, accumulation and/or persistence in the given patient.

10

Preparations of laminin-derived polypeptides for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions, which may contain auxiliary agents or excipients which are known in the art. Pharmaceutical compositions such as tablets, pills, tablets, caplets, soft and hard gelatin capsules, lozenges, sachets, cachets, vesticaps, liquid drops, elixers, suspensions, emulsions, solutions, syrups, tea bags, aerosols (as a solid or in a liquid medium), suppositories, sterile injectable solutions, sterile packaged powders, can be prepared according to routine methods and are known in the art.

20

In yet another aspect of the invention, laminin, laminin fragments and/or laminin-derived polypeptides may be used as an effective therapy to block amyloid formation, deposition, accumulation and/or persistence as observed in the amyloid diseases. For example, the invention includes a pharmaceutical composition for use in the treatment of amyloidoses comprising a pharmaceutically effective amount of a laminin, laminin fragment and/or laminin-derived polypeptide anti-idiotypic antibody and a pharmaceutically acceptable carrier. The compositions may contain the laminin, laminin fragments and/or laminin-derived polypeptide anti-idiotypic antibody, either unmodified, conjugated to a potentially

therapeutic compound, conjugated to a second protein or protein portion or in a recombinant form (ie. chimeric or bispecific laminin, laminin fragment and/or laminin polypeptide antibody). The compositions may additionally include other antibodies or conjugates. The antibody compositions of the invention can be administered using conventional modes of administration including, but not limited to, topical, intravenous, intra-arterial, intraperitoneal, oral, intralymphatic, intramuscular or intralumbar. Intravenous administration is preferred. The compositions of the invention can be a variety of dosage forms, with the preferred form depending upon the mode of administration and the therapeutic application. Optimal dosage and modes of administration for an individual patient can readily be determined by conventional protocols.

Laminin, laminin-derived protein fragments, and laminin-derived polypeptides, or antibodies of the present invention may be administered by any means that achieve their intended purpose, for example, to treat laminin involved pathologies, such as Alzheimer's disease and other amyloid diseases, or other related pathologies, using a laminin-derived polypeptide described herein, in the form of a pharmaceutical composition.

For example, administration of such a composition may be by various parenteral routes such as subcutaneous, intravenous, intradermal, intramuscular, intraperitoneal, 20 intranasal, transdermal or buccal routes. Alternatively, or concurrently, administration may be by the oral route. Parenteral administration can be by bolus injection or by gradual perfusion over time.

A preferred mode of using a laminin-derived polypeptide, or antibody 25 pharmaceutical composition of the present invention is by oral administration or intravenous application.

A typical regimen for preventing, suppressing or treating laminin-involved pathologies, such as Alzheimer's disease amyloidosis, comprises administration of an effective amount of laminin-derived polypeptides, administered over a period of one or 5 several days, up to and including between one week and about 24 months.

It is understood that the dosage of the laminin-derived polypeptides of the present invention administered *in vivo* or *in vitro* will be dependent upon the age, sex, health, and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment, and the 10 nature of the effect desired. The most preferred dosage will be tailored to the individual subject, as is understood and determinable by one of skill in the art, without undue experimentation.

The total dose required for each treatment may be administered by multiple doses or in a single dose. A laminin-derived polypeptide may be administered alone or in conjunction with other therapeutics directed to laminin-involved pathologies, such as Alzheimer's disease or amyloid diseases, as described herein.

Effective amounts of a laminin-derived polypeptide or composition, which may also 20 include a laminin-fragment derived antibody, are about 0.01 μ g to about 100mg/kg body weight, and preferably from about 10 μ g to about 50 mg/kg body weight, such as 0.05, 0.07, 0.09, 0.1, 0.5, 0.7, 0.9., 1, 2, 5, 10, 20, 25, 30, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 mg/kg.

25 Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions, which may contain axillary agents or excipients

which are known in the art. Pharmaceutical compositions comprising at least one laminin-derived polypeptide, such as 1-10 or 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 laminin-derived polypeptides, of the present invention may include all compositions wherein the laminin-derived polypeptide is contained in an amount effective to achieve its intended purpose. In addition to at least one laminin-derived polypeptide, a pharmaceutical composition may contain suitable pharmaceutically acceptable carriers, such as excipients, carriers and/or axillaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically.

Pharmaceutical compositions comprising at least one laminin-derived polypeptide or antibody may also include suitable solutions for administration intravenously, subcutaneously, dermally, orally, mucosally, rectally or may by injection or orally, and contain from about 0.01 to 99 percent, preferably about 20 to 75 percent of active component (i.e. polypeptide or antibody) together with the excipient. Pharmaceutical compositions for oral administration include pills, tablets, caplets, soft and hard gelatin capsules, lozenges, sachets, cachets, vegicaps, liquid drops, elixers, suspensions, emulsions, solutions, and syrups.

The laminin, laminin-derived protein fragments, and laminin-derived polypeptides for Alzheimer's disease and other central nervous system amyloidoses may be optimized to cross the blood-brain barrier. Methods of introductions include but are not limited to systemic administration, parenteral administration i.e., via an intraperitoneal, intravenous, perioral, subcutaneous, intramuscular, intraarterial, intradermal, intramuscular, intranasal, epidural and oral routes. In a preferred embodiment, laminin, laminin-derived protein fragments, and laminin-derived polypeptides may be directly administered to the cerebrospinal fluid by intraventricular injection. In a specific embodiment, it may be

5

desirable to administer laminin, laminin-derived protein fragments, and laminin-derived polypeptides locally to the area or tissue in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, by injection, by infusion using a cannulae with osmotic pump, by means of a catheter, by means of a suppository, or by means of an implant.

10

In yet another embodiment laminin, laminin-derived protein fragments, and laminin-derived polypeptides may be delivered in a controlled release system, such as an osmotic pump. In yet another embodiment, a controlled release system can be placed in proximity to the therapeutic target, ie. the brain, thus requiring only a fraction of the systemic dose.

PCT/GB2008/05525

In yet another aspect of the present invention, peptidomimetic compounds modelled from laminin, laminin fragments and/or laminin-derived polypeptides identified as binding A_B or other amyloid proteins, may serve as potent inhibitors of amyloid formation, deposition, accumulation and/or persistence in Alzheimer's disease and other amyloidoses. Peptidomimetic modelling is implemented by standard procedures known to those skilled in the art.

20

In yet another aspect of the present invention, compounds that mimic the 3-dimensional A_B binding site on laminin using computer modelling, may serve as potent inhibitors of amyloid formation, deposition, accumulation and/or persistence in Alzheimer's disease and other amyloidoses. Design and production of such compounds using computer modelling technologies is implemented by standard procedures known to those skilled in the art.

25

Recombinant DNA technology, including human gene therapy, has direct

applicability to the laminin proteins and their fragments, of this invention. One skilled in the art can take the peptide sequences disclosed herein and create corresponding nucleotide sequences that code for the corresponding peptide sequences. These sequences can be cloned into vectors such as retroviral vectors, and the like. These vectors can, in turn, be transfected into human cells such as hepatocytes or fibroblasts, and the like. Such transfected cells can be introduced into humans to treat amyloid diseases. Alternatively, the genes can be introduced into the patients directly. The basic techniques of recombinant DNA technology are known to those of ordinary skill in the art and are disclosed in Recombinant DNA Second Edition, Watson, et al., W.H. Freeman and Company, New York, 1992,
which is hereby incorporated by reference.

Diagnostic Applications

Another aspect of the invention is to provide polyclonal and/or monoclonal antibodies against laminin, laminin fragments and/or laminin-derived polypeptides which bind A β or other amyloid proteins, which would be utilized to specifically detect laminin, laminin fragments and/or laminin-derived peptides in human tissues and/or biological fluids. In one preferred embodiment, polyclonal or monoclonal antibodies made against a peptide portion or fragment of laminin, can be used to detect and quantify laminin, laminin fragments and/or laminin-derived polypeptides in human tissues and/or biological fluids.
20 Polyclonal and/or monoclonal peptide antibodies can also be utilized to specifically detect laminin fragments and/or laminin-derived polypeptides in human tissues and/or biological fluids. In a preferred embodiment, a polyclonal or monoclonal antibody made specifically against a peptide portion or fragment of ~55 kDa elastase-resistant protein which binds A β (as described herein), can be used to detect and quantify this laminin fragment in human
25 tissues and/or biological fluids. In another preferred embodiment, a polyclonal or

10

5

15

20

25

monoclonal antibody made specifically against a peptide portion or fragment of ~130 kDa laminin-derived protein which is present in human biological fluids and binds A β (as described herein), can be used to detect and quantify this laminin fragment in human tissues and/or biological fluids. Other preferred embodiments include, but are not limited to, making polyclonal or monoclonal antibodies made specifically against a peptide portion or fragment of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10 and SEQ ID NO: 11, as well as polypeptides which have at least 70% similarity (preferably 70 % identity) and more preferably a 90% similarity (more preferably a 90% identity) to the polypeptides described above.

For detection of laminin fragments and/or laminin-derived polypeptides described above in human tissues, cells, and/or in cell culture, the polyclonal and/or monoclonal antibodies can be utilized using standard immunohistochemical and immunocytochemical techniques, known to one skilled in the art.

For detection and quantitation of laminin, laminin fragments and/or laminin-derived polypeptides in biological fluids, including cerebrospinal fluid, blood, plasma, serum, urine, sputum, and/or stool, various types of ELISA assays can be utilized, known to one skilled in the art. An antibody molecule of the present invention may be adapted for utilization in an immunometric assay, also known as a “two-site” or “sandwich” assay. In a typical immunometric assay, a quantity of unlabeled antibody (or fragment of antibody) is bound to a solid support or carrier, and a quantity of detectable labeled soluble antibody is added to permit detection and/or quantitation of the ternary complex formed between solid-phase antibody, antigen, and labeled antibody.

5

10

20

25

In a preferred embodiment, a "sandwich" type of ELISA can be used. Using this preferred method a pilot study is first implemented to determine the quantity of binding of each laminin-fragment monoclonal antibody to microtiter wells. Once this is determined, aliquots (usually in 40 µl of TBS; pH 7.4) of the specific laminin-fragment antibody are allowed to bind overnight to microtiter wells (Maxisorb C plate from Nunc) at 4°C. A series of blank wells not containing any laminin-fragment specific monoclonal antibody are also utilized as controls. The next day, non-bound monoclonal antibody is shaken off the microtiter wells. All of the microtiter wells (including the blank wells) are then blocked by incubating for 2 hours with 300 µl of Tris-buffered saline containing 0.05% Tween-20 (TTBS) plus 2% bovine serum albumin, followed by 5 rinses with TTBS. 200 µl of cerebrospinal fluid, blood, plasma, serum, urine, sputum, and/or stool and/or any other type of biological sample is then diluted (to be determined empirically) in TTBS containing 2% bovine serum albumin and placed in wells (in triplicate) containing bound laminin-fragment antibody (or blank) and incubated for 2 hours at room temperature. The wells are then washed 5 times with TTBS. A second biotinylated-monoclonal antibody against the same laminin-derived fragment (but which is against a different epitope) is then added to each well (usually in 40 µl of TBS; pH 7.4) and allowed to bind for 2 hours at room temperature to any laminin-fragment captured by the first antibody. Following incubation, the wells are washed 5 times with TTBS. Bound materials are then detected by incubating with 100 µl of peroxidase-avidin complex (1:250 dilution in TTBS with 0.1% BSA) for 1 hour on a rotary shaker. After 5 washes with TTBS, a substrate solution (100 µl, OPD-Sigma Fast from Sigma Chemical Co., St. Louis, MO, USA) is added and allowed to develop significant color (usually 8-10 minutes). The reaction is stopped with 50 µl of 4N sulfuric acid and read on a standard spectrophotometer at 490 nm. This ELISA can be utilized to determine differences in specific laminin fragments (and/or A β -binding laminin fragments) in biological fluids which can serve as a diagnostic marker to follow the

progression on a live patient during the progression of disease (ie. monitoring of amyloid disease as an example). In addition, quantitative changes in laminin fragments can also serve as a prognostic indicator monitoring how a live patient will respond to treatment which targets a given amyloid disease such as Alzheimer's disease. Such assays can be provided in
5 a kit form.

A competition assay may also be employed wherein antibodies specific to laminin, laminin fragments and/or laminin-derived polypeptides are attached to a solid support and labelled laminin, laminin fragments and/or laminin-derived polypeptides and a sample derived from a host are passed over the solid support and the amount of label detected attached to the solid support can be correlated to the quantity of laminin, laminin fragments and/or laminin-derived polypeptides in the sample. This standard technique is known to one skilled in the art.
10

Another object of the present invention is to use laminin, laminin fragments and/or laminin-derived polypeptides, in conjunction with laminin, laminin fragment and/or laminin-derived peptide antibodies, in an ELISA assay to detect potential laminin, laminin fragment and/or laminin-derived peptide autoantibodies in human biological fluids. Such a diagnostic assay may be produced in a kit form. In a preferred embodiment, peptides containing the sequences of laminin, laminin-derived fragments and laminin-derived polypeptides as in SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10 and SEQ ID NO:
20 11, as well as polypeptides which have at least 70% similarity (preferably 70 % identity) and more preferably a 90% similarity (more preferably a 90% identity) to the polypeptides described above, will be used to initially bind to microtiter wells in an ELISA plate. A pilot study is first implemented to determine the quantity of binding of each laminin fragment
25

polypeptide to microtiter wells. Once this is determined, aliquots (usually 1-2 μ g in 40 μ l of TBS; pH 7.4) of specific laminin fragment polypeptides (as described herein) are allowed to bind overnight to microtiter wells (Maxisorb C plate from Nunc) at 4°C. All the microtiter wells (including blank wells without the laminin fragment polypeptides) are blocked by 5 incubating for 2 hours with 300 μ l of Tris-buffered saline (pH 7.4) with 0.05% Tween-20 (TTBS), containing 2% albumin. This is followed by 5 rinses with TTBS. The patients' biological fluids (i.e., cerebrospinal fluid, blood, plasma, serum, sputum, urine, and/or stool) are then utilized and 200 μ l are diluted (to be determined empirically) with TTBS containing 2% bovine serum albumin, and placed in microtiter wells (in triplicate) containing 10 a specific laminin fragment polypeptide or blank wells (which do not contain peptide), and are incubated at 1.5 hours at room temperature. Any autoantibodies present in the biological fluids against the laminin fragment will bind to the substrate bound laminin fragment polypeptide (or fragments thereof). The wells are then rinsed by washing 5 times with TTBS. 100 μ l of biotinylated polyclonal goat anti-human IgGs (Sigma Chemical company, St. Louis, MO, USA), diluted 1:500 in TTBS with 0.1% bovine serum albumin, is then aliquoted into each well. Bound materials are detected by incubating with 100 μ l of peroxidase-avidin complex (1:250 dilution in TTBS with 0.1% bovine serum albumin) for 1 hour on a rotary shaker. Following 5 washes with TTBS, substrate solution (100 μ l, OPD-Sigma Fast from Sigma Chemical Company, St. Louis, MO, USA) is added and allowed to 20 develop significant color (usually 8-10 minutes). The reaction is stopped with 50 μ l of 4N sulfuric acid added to each well and read on a standard spectrophotometer at 490 nm. This assay system can be utilized to not only detect the presence of autoantibodies against laminin fragments in biological fluids, but also to monitor the progression of disease by following elevation or diminution of laminin fragment autoantibody levels. It is believed that patients 25 demonstrating excessive laminin fragment formation, deposition, accumulation and/or persistence as may be observed in the amyloid diseases, will also carry autoantibodies

against the laminin fragments in their biological fluids. Various ELISA assay systems, knowledgeable to those skilled in the art, can be used to accurately monitor the degree of laminin fragments in biological fluids as a potential diagnostic indicator and prognostic marker for patients during the progression of disease (ie. monitoring of an amyloid disease for example). Such assays can be provided in a kit form. In addition, quantitative changes in laminin fragment autoantibody levels can also serve as a prognostic indicator monitoring how a live patient will respond to treatment which targets a given amyloid disease.

Other diagnostic methods utilizing the invention include diagnostic assays for measuring altered levels of laminin, laminin fragments and/or laminin-derived polypeptides in various tissues compared to normal control tissue samples. Assays used to detect levels of laminin, laminin fragments and/or laminin-derived polypeptides in a sample derived from a host are well-known to those skilled in the art and included radioimmunoassays, competitive-binding assays, Western blot analysis and preferably ELISA assays (as described above).

Yet another aspect of the present invention is to use the antibodies recognizing laminin, laminin fragments and/or laminin-derived polypeptides for labellings, for example, with a radionucleotide, for radioimaging or radioguided surgery, for in vivo diagnosis, and/or for in vitro diagnosis. In one preferred embodiment, radiolabelled peptides or antibodies made (by one skilled in the art) against laminin, laminin fragments and/or laminin-derived polypeptides may be used as minimally invasive techniques to locate laminin, laminin fragments and/or laminin-derived polypeptides, and concurrent amyloid deposits in a living patient. These same imaging techniques could then be used at regular intervals (ie. every 6 months) to monitor the progression of the amyloid disease by following the specific levels of laminin, laminin fragments and/or laminin-derived

polypeptides.

Yet another aspect of the present invention is to provide a method which can evaluate a compound's ability to alter (diminish or eliminate) the affinity of a given amyloid protein
5 (as described herein) or amyloid precursor protein, to laminin, laminin-derived fragments or laminin-derived polypeptides. By providing a method of identifying compounds which affect the binding of amyloid proteins, or amyloid precursor proteins to such laminin-derived fragments, the present invention is also useful in identifying compounds which can prevent or impair such binding interaction. Thus, compounds can be identified which
10 specifically affect an event linked with the amyloid formation, amyloid deposition, and/or amyloid persistence condition associated with Alzheimer's disease and other amyloid diseases as described herein.

According to one aspect of the invention, to identify for compounds which allow the interaction of amyloid proteins or precursor proteins to laminin-derived fragments or laminin polypeptides, either amyloid or laminin fragments are immobilized, and the other of the two is maintained as a free entity. The free entity is contacted with the immobilized entity in the presence of a test compound for a period of time sufficient to allow binding of the free entity to the immobilized entity, after which the unbound free entity is removed. Using antibodies
20 which recognize the free entity, or other means to detect the presence of bound components, the amount of free entity bound to immobilized entity can be measured. By performing this assay in the presence of a series of known concentrations of test compound and, as a control, the complete absence of test compound, the effectiveness of the test compound to allow binding of free entity to immobilized entity can be determined and a quantitative
25 determination of the effect of the test compound on the affinity of free entity to immobilized entity can be made. By comparing the binding affinity of the amyloid-laminin fragment

complex in the presence of a test compound to the binding affinity of the amyloid-laminin fragment complex in the absence of a test compound, the ability of the test compound to modulate the binding can be determined.

5 In the case in which the amyloid is immobilized, it is contacted with free laminin-derived fragments or polypeptides, in the presence of a series of concentrations of test compound. As a control, immobilized amyloid is contacted with free laminin-derived polypeptides, or fragments thereof in the absence of the test compound. Using a series of concentrations of laminin-derived polypeptides, the dissociation constant (K_d) or other indicators of binding affinity of amyloid-laminin fragment binding can be determined. In the assay, after the laminin-derived polypeptides or fragments thereof is placed in contact with the immobilized amyloid for a sufficient time to allow binding, the unbound laminin polypeptides are removed. Subsequently, the level of laminin fragment-amyloid binding can be observed. One method uses laminin-derived fragment antibodies, as described in the invention, to detect the amount of specific laminin fragments bound to the amyloid or the amount of free laminin fragments remaining in solution. This information is used to determine first qualitatively whether or not the test compound can allow continued binding between laminin-derived fragments and amyloid. Secondly, the data collected from assays performed using a series of test compounds at various concentrations, can be used to measure quantitatively the binding affinity of the laminin fragment-amyloid complex and thereby determine the effect of the test compound on the affinity between laminin fragments and amyloid. Using this information, compounds can be identified which do not modulate the binding of specific laminin fragments to amyloid and thereby allow the laminin-fragments to reduce the amyloid formation, deposition, accumulation and/or persistence, and the subsequent development and persistence of amyloidosis.

10

15

20

25

Therefore a kit for practicing a method for identifying compounds useful which do not alter laminin, laminin-derived fragments or laminin-derived polypeptides to an immobilized amyloid protein, said kit comprising a) a first container having amyloid protein immobilized upon the inner surface, b) a second container which contains laminin, laminin-derived fragments or laminin-derived polypeptides dissolved in solution, c) a third container which contains antibodies specific for said laminin, laminin-derived fragments or laminin-derived polypeptides, said antibodies dissolved in solution, and d) a fourth container which contains labelled antibodies specific for laminin, laminin-derived fragments or laminin-derived polypeptides, said antibodies dissolved in solution.

10

5

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Gerardo Castillo and Alan Snow
(ii) TITLE OF INVENTION: Therapeutic and Diagnostic Applications of Laminin and Laminin-Derived Protein Fragments
(iii) NUMBER OF SEQUENCES: 11

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: Patrick M. Dwyer
(B) STREET: 1919 One Union Square, 600 University Street
(C) CITY: Seattle
(D) STATE: WA (Washington)
(E) COUNTRY: United States of America
(F) ZIP: 98101

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Diskette - 3.50 inch, 1.44 Mb storage
(B) COMPUTER: IBM PC
(C) OPERATING SYSTEM: PC-DOS (Windows NT Version 4.0, '95)
(D) SOFTWARE: WordPerfect 5.2

(vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER: 08/947,057
(B) FILING DATE: 08-October-1997
(C) CLASSIFICATION: U.S. Utility Appl.

(vii) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER: 60/027,981
(B) FILING DATE: 08-October-1996
(C) CLASSIFICATION: U.S. Provisional Appl.

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Dwyer, Patrick M.
(B) REGISTRATION NUMBER: 32,411
(C) REFERENCE/DOCKET NUMBER: PROTEO.P03

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (206) 343-7074
(B) TELEFAX: (206) 343-7085

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS

- (A) LENGTH: 11 AMINO ACIDS
(B) TYPE: AMINO ACID
(C) STRANDEDNESS:
(D) TOPOLOGY: LINEAR

(ii) MOLECULAR TYPE: PROTEIN

(ix) FEATURE:

(D) OTHER INFORMATION: AMINO ACID NUMBERING ACCORDING TO TRANSLATION OF GENEBANK ACCESSION NUMBER P19137

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

Leu His Arg Glu His Gly Glu Leu Pro Pro Glu
1 5 10

INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS

- (A) LENGTH: 177 AMINO ACIDS
(B) TYPE: AMINO ACID

(C) STRANDEDNESS:
(D) TOPOLOGY: LINEAR

(ii) MOLECULAR TYPE: PROTEIN

(ix) FEATURE:

(D) OTHER INFORMATION: AMINO ACID NUMBERING ACCORDING TO TRANSLATION OF
GENEBANK ACCESSION NUMBER P19137 (AMINO ACIDS #2746-2922)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Leu	Gln	Val	Gln	Leu	Ser	Ile	Arg	Thr	Phe	Ala	Ser	Ser	Gly	Leu	Ile	Tyr	Tyr	Val	Ala
1	5							10						15					20
His	Gln	Asn	Gln	Met	Asp	Tyr	Ala	Thr	Leu	Gln	Leu	Gln	Glu	Gly	Arg	Leu	His	Phe	Met
				25					30					35					40
Phe	Asp	Leu	Gly	Lys	Gly	Arg	Thr	Lys	Val	Ser	His	Pro	Ala	Leu	Leu	Ser	Asp	Gly	Lys
				45				50						55					60
Trp	His	Thr	Val	Lys	Thr	Glu	Tyr	Ile	Lys	Arg	Lys	Ala	Phe	Met	Thr	Val	Asp	Gly	Gln
				65				70						75					80
Glu	Ser	Pro	Ser	Val	Thr	Val	Val	Gly	Asn	Ala	Thr	Thr	Leu	Asp	Val	Glu	Arg	Lys	Leu
				85				90						95					100
Tyr	Leu	Gly	Gly	Leu	Pro	Ser	His	Tyr	Arg	Ala	Arg	Asn	Ile	Gly	Thr	Ile	Thr	His	Ser
				105				110						115					120
Ile	Pro	Ala	Cys	Ile	Gly	Glu	Ile	Met	Val	Asn	Gly	Gln	Gln	Leu	Asp	Lys	Asp	Arg	Pro
				125				130						135					140
Leu	Ser	Ala	Ser	Ala	Val	Asp	Arg	Cys	Tyr	Val	Val	Ala	Gln	Glu	Gly	Thr	Phe	Phe	Glu
				145				150						155					160
Gly	Ser	Gly	Tyr	Ala	Ala	Leu	Val	Lys	Glu	Gly	Tyr	Lys	Val	Arg	Leu	Asp			
				165				170						175					

(2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 177 AMINO ACIDS
- (B) TYPE: AMINO ACID
- (C) STRANDEDNESS:
- (D) TOPOLOGY: LINEAR

(ii) MOLECULAR TYPE: PROTEIN

(ix) FEATURE:

(D) OTHER INFORMATION: AMINO ACID NUMBERING ACCORDING TO TRANSLATION OF
GENEBANK ACCESSION NUMBER P25391 (AMINO ACIDS #2737-2913)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

Leu	Ser	Val	Glu	Leu	Ser	Ile	Arg	Thr	Phe	Ala	Ser	Ser	Gly	Leu	Ile	Tyr	Tyr	Met	Ala
1	5							10						15					20
His	Gln	Asn	Gln	Ala	Asp	Tyr	Ala	Val	Leu	Gln	Leu	His	Gly	Gly	Arg	Leu	His	Phe	Met
				25				30						35					40
Phe	Asp	Leu	Gly	Lys	Gly	Arg	Thr	Lys	Val	Ser	His	Pro	Ala	Leu	Leu	Ser	Asp	Gly	Lys
				45				50						55					60
Trp	His	Thr	Val	Lys	Thr	Asp	Tyr	Val	Lys	Arg	Lys	Gly	Phe	Ile	Thr	Val	Asp	Gly	Arg
				65				70						75					80
Glu	Ser	Pro	Met	Val	Thr	Val	Val	Gly	Asp	Gly	Thr	Met	Leu	Asp	Val	Glu	Gly	Leu	Phe
				85				90						95					100
Tyr	Leu	Gly	Gly	Leu	Pro	Ser	Gln	Tyr	Gln	Ala	Arg	Lys	Ile	Gly	Asn	Ile	Thr	His	Ser
				105				110						115					120
Ile	Pro	Ala	Cys	Ile	Gly	Asp	Val	Thr	Val	Asn	Ser	Lys	Gln	Leu	Asp	Lys	Asp	Ser	Pro
				125				130						135					140
Val	Ser	Ala	Phe	Thr	Val	Asn	Arg	Cys	Tyr	Ala	Val	Ala	Gln	Glu	Gly	Thr	Phe	Asp	

145	150	155	160
Gly Ser Gly Tyr Ala Ala Leu Val Lys	Glu Gly Tyr Lys Val Gln Ser Asp		
165	170	175	

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3084 AMINO ACIDS
- (B) TYPE: AMINO ACID
- (C) STRANDEDNESS:
- (D) TOPOLOGY: LINEAR

(ii) MOLECULAR TYPE: PROTEIN

(ix) FEATURE:

(D) OTHER INFORMATION: AMINO ACID NUMBERING ACCORDING TO TRANSLATION OF
GENEBANK ACCESSION NUMBER P19137

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Arg Gly Ser Gly Thr Gly Ala Ala Leu Leu Val Leu Ala Ser Val Leu Trp Val			
1 5	10	15	20
Thr Val Arg Ser Gln Gln Arg Gly Leu Phe Pro Ala Ile Leu Asn Leu Ala Thr Asn Ala			
25 25	30	35	40
His Ile Ser Ala Asn Ala Thr Cys Gly Glu Lys Gly Pro Glu Met Phe Cys Lys Leu Val			
45 45	50	55	60
Glu His Val Pro Gly Arg Pro Val Arg His Ala Gln Cys Arg Val Cys Asp Gly Asn Ser			
65 65	70	75	80
Thr Asn Pro Arg Glu Arg His Pro Ile Ser His Ala Ile Asp Gly Thr Asn Asn Trp Trp			
85 85	90	95	100
Gln Ser Pro Ser Ile Gln Asn Gly Arg Glu Tyr His Trp Val Thr Val Thr Leu Asp Leu			
105 105	110	115	120
Arg Gln Val Phe Gln Val Ala Tyr Ile Ile Ile Lys Ala Ala Asn Ala Pro Arg Pro Gly			
125 125	130	135	140
Asn Trp Ile Leu Glu Arg Ser Val Asp Gly Val Lys Phe Lys Pro Trp Gln Tyr Tyr Ala			
145 145	150	155	160
Val Ser Asp Thr Glu Cys Leu Thr Arg Tyr Lys Ile Thr Pro Arg Arg Gly Pro Pro Thr			
165 165	170	175	180
Tyr Arg Ala Asp Asn Glu Val Ile Cys Thr Ser Tyr Tyr Ser Lys Leu Val Pro Leu Glu			
185 185	190	195	200
His Gly Glu Ile His Thr Ser Leu Ile Asn Gly Arg Pro Ser Ala Asp Asp Pro Ser Pro			
205 205	210	215	220
Gln Leu Leu Glu Phe Thr Ser Ala Arg Tyr Ile Arg Leu Arg Leu Gln Arg Ile Arg Thr			
225 225	230	235	240
Leu Asn Ala Asp Leu Met Thr Leu Ser His Arg Asp Leu Arg Asp Leu Asp Pro Ile Val			
245 245	250	255	260
Thr Arg Arg Tyr Tyr Tyr Ser Ile Lys Asp Ile Ser Val Gly Gly Met Cys Ile Cys Tyr			
265 265	270	275	280
Gly His Ala Ser Ser Cys Pro Trp Asp Glu Glu Ala Lys Gln Leu Gln Cys Gln Cys Glu			
285 285	290	295	300
His Asn Thr Cys Gly Glu Ser Cys Asp Arg Cys Cys Pro Gly Tyr His Gln Gln Pro Trp			
305 305	310	315	320
Arg Pro Gly Thr Ile Ser Ser Gly Asn Glu Cys Glu Glu Cys Asn Cys His Asn Lys Ala			
325 325	330	335	340
Lys Asp Cys Tyr Tyr Asp Ser Ser Val Ala Lys Glu Arg Arg Ser Leu Asn Thr Ala Gly			
345 345	350	355	360
Gln Tyr Ser Gly Gly Val Cys Val Asn Cys Ser Gln Asn Thr Thr Gly Ile Asn Cys			
365 365	370	375	380
Glu Thr Cys Ile Asp Gln Tyr Tyr Arg Pro His Lys Val Ser Pro Tyr Asp Asp His Pro			
385 385	390	395	400
Cys Arg Pro Cys Asn Cys Asp Pro Val Gly Ser Leu Ser Ser Val Cys Ile Lys Asp Asp			

	405	410	415	420
Arg His Ala Asp	Leu Ala Asn Gly Lys	Trp Pro Gly Gln Cys	Pro Cys Arg Lys Gly	Tyr
425	430	435	440	
Ala Gly Asp Lys	Cys Asp Arg Cys Gln	Phe Gly Tyr Arg Gly	Phe Pro Asn Cys Ile	Pro
445	450	455	460	
Cys Asp Cys Arg	Thr Val Gly Ser Leu Asn Glu Asp Pro Cys	Ile Glu Pro Cys Leu	Cys	
465	470	475	480	
Lys Lys Asn Val	Glu Gly Lys Asn Cys Asp Arg Cys Lys Pro	Gly Phe Tyr Asn Leu	Lys	
485	490	495	500	
Glu Arg Asn Pro	Glu Gly Cys Ser Glu Cys Phe Cys Phe Gly	Val Ser Gly Val Cys	Asp	
505	510	515	520	
Ser Leu Thr Trp	Ser Ile Ser Gln Val	Thr Asn Met Ser Gly	Trp Leu Val Thr Asp	Leu
525	530	535	540	
Met Ser Thr Asn	Lys Ile Arg Ser Gln Gln Asp Val Leu Gly	Gly His Arg Gln Ile	Ser	
545	550	555	560	
Ile Asn Asn Thr	Ala Val Met Gln Arg	Leu Thr Ser Thr Tyr	Tyr Trp Ala Ala Pro	Glu
565	570	575	580	
Ala Tyr Leu Gly	Asn Lys Leu Thr Ala	Phe Gly Gly Phe Leu	Lys Tyr Thr Val Ser	Tyr
585	590	595	600	
Asp Ile Pro Val	Glu Thr Val Asp Ser	Asp Leu Met Ser His	Ala Asp Ile Ile Ile	Lys
605	610	615	620	
Gly Asn Gly Leu	Thr Ile Ser Thr Arg	Ala Glu Gly Leu Ser	Leu Gln Pro Tyr Glu	Glu
625	630	635	640	
Tyr Phe Asn Val	Val Arg Leu Val Pro	Glu Asn Phe Arg Asp	Phe Asn Thr Arg Arg	Glu
645	650	655	660	
Ile Asp Arg Asp	Gln Leu Met Thr Val	Leu Ala Asn Val Thr	His Leu Leu Ile Arg	Ala
665	670	675	680	
Asn Tyr Asn Ser	Ala Lys Met Ala Leu	Tyr Arg Leu Asp Ser	Val Ser Leu Asp Ile	Ala
685	690	695	700	
Ser Pro Asn Ala	Ile Asp Leu Ala Val	Ala Ala Asp Val Glu	His Cys Glu Cys Pro	Gln
705	710	715	720	
Gly Tyr Thr Gly	Thr Ser Cys Glu Ala	Cys Leu Pro Gly Tyr	Tyr Arg Val Asp Gly	Ile
725	730	735	740	
Leu Phe Gly Gly	Ile Cys Gln Pro Cys	Glu Cys His Gly His	Ala Ser Glu Cys Asp	Ile
745	750	755	760	
His Gly Ile Cys	Ser Val Cys Thr His	Asn Thr Thr Gly Asp	His Cys Glu Gln Cys	Leu
765	770	775	780	
Pro Gly Phe Tyr	Gly Thr Pro Ser Arg	Gly Thr Pro Gly Asp	Cys Gln Pro Cys Ala	Cys
785	790	795	800	
Pro Leu Ser Ile	Asp Ser Asn Asn Phe	Ser Pro Thr Cys His	Leu Thr Asp Gly Glu	Glu
805	810	815	820	
Val Val Cys Asp	Gln Cys Ala Pro Gly	Tyr Ser Gly Ser Trp	Cys Glu Arg Cys Ala	Asp
825	830	835	840	
Gly Tyr Tyr Gly	Asn Pro Thr Val Pro	Gly Gly Thr Cys Val	Pro Cys Asn Cys Ser	Gly
845	850	855	860	
Asn Val Asp Pro	Leu Glu Ala Gly His	Cys Asp Ser Val Thr	Gly Glu Cys Leu Lys	Cys
865	870	875	880	
Leu Trp Asn Thr	Asp Gly Ala His Cys	Glu Arg Cys Ala Asp	Gly Phe Tyr Gly Asp	Ala
885	890	895	900	
Val Thr Ala Lys	Asn Cys Arg Ala Cys	Asp Cys His Glu Asn	Gly Ser Leu Ser Gly	Val
905	910	915	920	
Cys His Leu Glu	Thr Gly Leu Cys Asp	Cys Lys Pro His Val	Thr Gly Gln Gln Cys	Asp
925	930	935	940	
Gln Cys Leu Ser	Gly Tyr Tyr Gly Leu	Asp Thr Gly Leu Gly	Cys Val Pro Cys Asn	Cys
945	950	955	960	
Ser Val Glu Gly	Ser Val Ser Asp Asn	Cys Thr Glu Glu Gly	Gln Cys His Cys Gly	Pro
965	970	975	980	
Gly Val Ser Gly	Lys Gln Cys Asp Arg	Cys Ser His Gly Phe	Tyr Ala Phe Gln Asp	Gly
985	990	995	1000	
Gly Cys Thr Pro	Cys Asp Cys Ala His	Thr Gln Asn Asn Cys	Asp Pro Ala Ser Gly	Glu
1005	1010	1015	1020	
Cys Leu Cys Pro	Pro His Thr Gln Gly	Leu Lys Cys Glu Glu	Cys Glu Glu Ala Tyr	Trp
1025	1030	1035	1040	

Gly Leu Asp Pro Glu Gln Gly Cys Gln Ala Cys Asn Cys Ser Ala Val Gly Ser Thr Ser
 1045 1050 1055 1060
 Ala Gln Cys Asp Val Leu Ser Gly His Cys Pro Cys Lys Lys Gly Phe Gly Gly Gln Ser
 1065 1070 1075 1080
 Cys His Gln Cys Ser Leu Gly Tyr Arg Ser Phe Pro Asp Cys Val Pro Cys Gly Cys Asp
 1085 1090 1095 1100
 Leu Arg Gly Thr Leu Pro Asp Thr Cys Asp Leu Glu Gln Gly Leu Cys Ser Cys Ser Glu
 1105 1110 1115 1120
 Asp Ser Gly Thr Cys Ser Cys Lys Glu Asn Val Val Gly Pro Gln Cys Ser Lys Cys Gln
 1125 1130 1135 1140
 Ala Gly Thr Phe Ala Leu Arg Gly Asp Asn Pro Gln Gly Cys Ser Pro Cys Phe Cys Phe
 1145 1150 1155 1160
 Gly Leu Ser Gln Leu Cys Ser Glu Leu Glu Gly Tyr Val Arg Thr Leu Ile Thr Leu Ala
 1165 1170 1175 1180
 Ser Asp Gln Pro Leu Leu His Val Val Ser Gln Ser Asn Leu Lys Gly Thr Ile Glu Gly
 1185 1190 1195 1200
 Val His Phe Gln Pro Pro Asp Thr Leu Leu Asp Ala Glu Ala Val Arg Gln His Ile Tyr
 1205 1210 1215 1220
 Ala Glu Pro Phe Tyr Trp Arg Leu Pro Lys Gln Phe Gln Gly Asp Gln Leu Leu Ala Tyr
 1225 1230 1235 1240
 Gly Gly Lys Leu Gln Tyr Ser Val Ala Phe Tyr Ser Thr Leu Gly Thr Gly Thr Ser Asn
 1245 1250 1255 1260
 Tyr Glu Pro Gln Val Leu Ile Lys Gly Gly Arg Ala Arg Lys His Val Ile Tyr Met Asp
 1265 1270 1275 1280
 Ala Pro Ala Pro Glu Asn Gly Val Arg Gln Asp Tyr Glu Val Gln Met Lys Glu Glu Phe
 1285 1290 1295 1300
 Trp Lys Tyr Phe Asn Ser Val Ser Glu Lys His Val Thr His Ser Asp Phe Met Ser Val
 1305 1310 1315 1320
 Leu Ser Asn Ile Asp Tyr Ile Leu Ile Lys Ala Ser Tyr Gly Gln Gly Leu Gln Gln Ser
 1325 1330 1335 1340
 Arg Ile Ala Asn Ile Ser Met Glu Val Gly Arg Lys Ala Val Glu Leu Pro Ala Glu Gly
 1345 1350 1355 1360
 Glu Ala Ala Leu Leu Leu Glu Leu Cys Val Cys Pro Pro Gly Thr Ala Gly His Ser Cys
 1365 1370 1375 1380
 Gln Asp Cys Ala Pro Gly Tyr Tyr Arg Glu Lys Leu Pro Glu Ser Gly Gly Arg Gly Pro
 1385 1390 1395 1400
 Arg Pro Leu Leu Ala Pro Cys Val Pro Cys Asn Cys Asn Asn His Ser Asp Val Cys Asp
 1405 1410 1415 1420
 Pro Glu Thr Gly Lys Cys Leu Ser Cys Arg Asp His Thr Ser Gly Asp His Cys Glu Leu
 1425 1430 1435 1440
 Cys Ala Ser Gly Tyr Tyr Gly Lys Val Thr Gly Leu Pro Gly Asp Cys Thr Pro Cys Thr
 1445 1450 1455 1460
 Cys Pro His His Pro Pro Phe Ser Phe Ser Pro Thr Cys Val Val Glu Gly Asp Ser Asp
 1465 1470 1475 1480
 Phe Arg Cys Asn Ala Cys Leu Pro Gly Tyr Glu Gly Gln Tyr Cys Glu Arg Cys Ser Ala
 1485 1490 1495 1500
 Gly Tyr His Gly Asn Pro Arg Ala Ala Gly Gly Ser Cys Gln Thr Cys Asp Cys Asn Pro
 1505 1510 1515 1520
 Gln Gly Ser Val His Ser Asp Cys Asp Arg Ala Ser Gly Gln Cys Val Cys Lys Pro Gly
 1525 1530 1535 1540
 Ala Thr Gly Leu His Cys Glu Lys Cys Leu Pro Arg His Ile Leu Met Glu Ser Asp Cys
 1545 1550 1555 1560
 Val Ser Cys Asp Asp Asp Cys Val Gly Pro Leu Leu Asn Asp Leu Asp Ser Val Gly Asp
 1565 1570 1575 1580
 Ala Val Leu Ser Leu Asn Leu Thr Gly Val Ser Pro Ala Pro Tyr Gly Ile Leu Glu Asn
 1585 1590 1595 1600
 Leu Glu Asn Thr Thr Lys Tyr Phe Gln Arg Tyr Leu Ile Lys Glu Asn Ala Lys Lys Ile
 1605 1610 1615 1620
 Arg Ala Glu Ile Gln Leu Glu Gly Ile Ala Glu Gln Thr Glu Asn Leu Gln Lys Glu Leu
 1625 1630 1635 1640
 Thr Arg Val Leu Ala Arg His Gln Lys Val Asn Ala Glu Met Glu Arg Thr Ser Asn Gly
 1645 1650 1655 1660
 Thr Gln Ala Leu Ala Thr Phe Ile Glu Gln Leu His Ala Asn Ile Lys Glu Ile Thr Glu

	1665	1670	1675	1680
Lys Val Ala Thr	Leu Asn Gln Thr Ala	Arg Lys Asp Phe Gln	Pro Pro Val Ser Ala	Leu
1685	1690	1695	1700	
Gln Ser Met His	Gln Asn Ile Ser Ser	Leu Leu Gly Leu Ile	Lys Glu Arg Asn Phe	Thr
1705	1710	1715	1720	
Glu Met Gln Gln	Asn Ala Thr Leu Glu	Leu Lys Ala Ala Lys	Asp Leu Leu Ser Arg	Ile
1725	1730	1735	1740	
Gln Lys Arg Phe	Gln Lys Pro Gln Glu	Lys Leu Lys Ala Leu	Lys Glu Ala Asn Ser	Leu
1745	1750	1755	1760	
Leu Ser Asn His	Ser Glu Lys Leu Gln	Ala Ala Glu Glu Leu	Leu Lys Glu Ala Gly	Ser
1765	1770	1775	1780	
Lys Thr Gln Glu	Ser Asn Leu Leu Leu	Leu Leu Val Lys Ala	Asn Leu Lys Glu Glu	Phe
1785	1790	1795	1800	
Gln Glu Lys Lys	Leu Arg Val Gln Glu	Glu Gln Asn Val Thr	Ser Glu Leu Ile Ala	Lys
1805	1810	1815	1820	
Gly Arg Glu Trp	Val Asp Ala Ala Gly	Thr His Thr Ala Ala	Ala Gln Asp Thr Leu	Thr
1825	1830	1835	1840	
Gln Leu Glu His	His Arg Asp Glu Leu	Leu Leu Trp Ala Arg	Lys Ile Arg Ser His	Val
1845	1850	1855	1860	
Asp Asp Leu Val	Met Gln Met Ser Lys	Arg Arg Ala Arg Asp	Leu Val His Arg Ala	Glu
1865	1870	1875	1880	
Gln His Ala Ser	Glu Leu Gln Ser Arg	Ala Gly Ala Leu Asp	Arg Asp Leu Glu Asn	Val
1885	1890	1895	1900	
Arg Asn Val Ser	Leu Asn Ala Thr Ser	Ala Ala His Val His	Ser Asn Ile Gln Thr	Leu
1905	1910	1915	1920	
Thr Glu Glu Ala	Glu Met Leu Ala Ala	Asp Ala His Lys Thr	Ala Asn Lys Thr Asp	Leu
1925	1930	1935	1940	
Ile Ser Glu Ser	Leu Ala Ser Arg Gly	Lys Ala Val Leu Gln	Arg Ser Ser Arg Phe	Leu
1945	1950	1955	1960	
Lys Glu Ser Val	Gly Thr Arg Arg Lys	Gln Gln Gly Ile Thr	Met Lys Leu Asp Glu	Leu
1965	1970	1975	1980	
Lys Asn Leu Thr	Ser Gln Phe Gln Glu	Ser Val Asp Asn Ile	Thr Lys Gln Ala Asn	Asp
1985	1990	1995	2000	
Ser Leu Ala Met	Leu Arg Glu Ser Pro	Gly Gly Met Arg Glu	Lys Gly Arg Lys Ala	Arg
2005	2010	2015	2020	
Glu Leu Ala Ala	Ala Ala Asn Glu Ser	Ala Val Lys Thr Leu	Glu Asp Val Leu Ala	Leu
2025	2030	2035	2040	
Ser Leu Arg Val	Phe Asn Thr Ser Glu	Asp Leu Ser Arg Val	Asn Ala Thr Val Gln	Glu
2045	2050	2055	2060	
Thr Asn Asp Leu	Leu His Asn Ser Thr	Met Thr Thr Leu Leu	Ala Gly Arg Lys Met	Lys
2065	2070	2075	2080	
Asp Met Glu Met	Gln Ala Asn Leu Leu	Leu Asp Arg Leu Lys	Pro Leu Lys Thr Leu	Glu
2085	2090	2095	2100	
Glu Asn Leu Ser	Arg Asn Leu Ser Glu	Ile Lys Leu Leu Ile	Ser Arg Ala Arg Lys	Gln
2105	2110	2115	2120	
Ala Ala Ser Ile	Lys Val Ala Val Ser	Ala Asp Arg Asp Cys	Ile Arg Ala Tyr Gln	Pro
2125	2130	2135	2140	
Gln Thr Ser Ser	Thr Asn Tyr Asn Thr	Leu Ile Leu Asn Val	Lys Thr Gln Glu Pro	Asp
2145	2150	2155	2160	
Asn Leu Leu Phe	Tyr Leu Gly Ser Ser	Ser Ser Ser Asp Phe	Leu Ala Val Glu Met	Arg
2165	2170	2175	2180	
Arg Gly Lys Val	Ala Phe Leu Trp Asp	Leu Gly Ser Gly Ser	Thr Arg Leu Glu Phe	Pro
2185	2190	2195	2200	
Glu Val Ser Ile	Asn Asn Asn Arg Trp	His Ser Ile Tyr Ile	Thr Arg Phe Gly Asn	Met
2205	2210	2215	2220	
Gly Ser Leu Ser	Val Lys Glu Ala Ser	Ala Ala Glu Asn Pro	Pro Val Arg Thr Ser	Lys
2225	2230	2235	2240	
Ser Pro Gly Pro	Ser Lys Val Leu Asp	Ile Asn Asn Ser Thr	Leu Met Phe Val Gly	Gly
2245	2250	2255	2260	
Leu Gly Gly Gln	Ile Lys Lys Ser Pro	Ala Val Lys Val Thr	His Phe Lys Gly Cys	Met
2265	2270	2275	2280	
Gly Glu Ala Phe	Leu Asn Gly Lys Ser	Ile Gly Leu Trp Asn	Tyr Ile Glu Arg Glu	Gly
2285	2290	2295	2300	

Lys Cys Asn Gly Cys Phe Gly Ser Ser Gln Asn Glu Asp Ser Ser Phe His Phe Asp Gly
 2305 2310 2315 2320
 Ser Gly Tyr Ala Met Val Glu Lys Thr Leu Arg Pro Thr Val Thr Gln Ile Val Ile Leu
 2325 2330 2335 2340
 Phe Ser Thr Phe Ser Pro Asn Gly Leu Leu Phe Tyr Leu Ala Ser Asn Gly Thr Lys Asp
 2345 2350 2355 2360
 Phe Leu Ser Ile Glu Leu Val Arg Gly Arg Val Lys Val Met Val Asp Leu Gly Ser Gly
 2365 2370 2375 2380
 Pro Leu Thr Leu Met Thr Asp Arg Arg Tyr Asn Asn Gly Thr Trp Tyr Lys Ile Ala Phe
 2385 2390 2395 2400
 Gln Arg Asn Arg Lys Gln Gly Leu Leu Ala Val Phe Asp Ala Tyr Asp Thr Ser Asp Lys
 2405 2410 2415 2420
 Glu Thr Lys Gln Gly Glu Thr Pro Gly Ala Ala Ser Asp Leu Asn Arg Leu Glu Lys Asp
 2425 2430 2435 2440
 Leu Ile Tyr Val Gly Gly Leu Pro His Ser Lys Ala Val Arg Lys Gly Val Ser Ser Arg
 2445 2450 2455 2460
 Ser Tyr Val Gly Cys Ile Lys Asn Leu Glu Ile Ser Arg Ser Thr Phe Asp Leu Leu Arg
 2465 2470 2475 2480
 Asn Ser Tyr Gly Val Arg Lys Gly Cys Ala Leu Glu Pro Ile Gln Ser Val Ser Phe Leu
 2485 2490 2495 2500
 Arg Gly Gly Tyr Val Glu Met Pro Pro Lys Ser Leu Ser Pro Glu Ser Ser Leu Leu Ala
 2505 2510 2515 2520
 Thr Phe Ala Thr Lys Asn Ser Ser Gly Ile Leu Leu Val Ala Leu Gly Lys Asp Ala Glu
 2525 2530 2535 2540
 Glu Ala Gly Gly Ala Gln Ala His Val Pro Phe Phe Ser Ile Met Leu Leu Glu Gly Arg
 2545 2550 2555 2560
 Ile Glu Val His Val Asn Ser Gly Asp Gly Thr Ser Leu Arg Lys Ala Leu Leu His Ala
 2565 2570 2575 2580
 Pro Thr Gly Ser Tyr Ser Asp Gly Gln Glu His Ser Ile Ser Leu Val Arg Asn Arg Arg
 2585 2590 2595 2600
 Val Ile Thr Ile Gln Val Asp Glu Asn Ser Pro Val Glu Met Lys Leu Gly Pro Leu Thr
 2605 2610 2615 2620
 Glu Gly Lys Thr Ile Asp Ile Ser Asn Leu Tyr Ile Gly Gly Leu Pro Glu Asp Lys Ala
 2625 2630 2635 2640
 Thr Pro Met Leu Lys Met Arg Thr Ser Phe His Gly Cys Ile Lys Asn Val Val Leu Asp
 2645 2650 2655 2660
 Ala Gln Leu Leu Asp Phe Thr His Ala Thr Gly Ser Glu Gln Val Glu Leu Asp Thr Cys
 2665 2670 2675 2680
 Leu Leu Ala Glu Glu Pro Met Gln Ser Leu His Arg Glu His Gly Glu Leu Pro Pro Glu
 2685 2690 2695 2700
 Pro Pro Thr Leu Pro Gln Pro Glu Leu Cys Ala Val Asp Thr Ala Pro Gly Tyr Val Ala
 2705 2710 2715 2720
 Gly Ala His Gln Phe Gly Leu Ser Gln Asn Ser His Leu Val Leu Pro Leu Asn Gln Ser
 2725 2730 2735 2740
 Asp Val Arg Lys Arg Leu Gln Val Gln Leu Ser Ile Arg Thr Phe Ala Ser Ser Gly Leu
 2745 2750 2755 2760
 Ile Tyr Tyr Val Ala His Gln Asn Gln Met Asp Tyr Ala Thr Leu Gln Leu Gln Glu Gly
 2765 2770 2775 2780
 Arg Leu His Phe Met Phe Asp Leu Gly Lys Gly Arg Thr Lys Val Ser His Pro Ala Leu
 2785 2790 2795 2800
 Leu Ser Asp Gly Lys Trp His Thr Val Lys Thr Glu Tyr Ile Lys Arg Lys Ala Phe Met
 2805 2810 2815 2820
 Thr Val Asp Gly Gln Glu Ser Pro Ser Val Thr Val Val Gly Asn Ala Thr Thr Leu Asp
 2825 2830 2835 2840
 Val Glu Arg Lys Leu Tyr Leu Gly Gly Leu Pro Ser His Tyr Arg Ala Arg Asn Ile Gly
 2845 2850 2855 2860
 Thr Ile Thr His Ser Ile Pro Ala Cys Ile Gly Glu Ile Met Val Asn Gly Gln Gln Leu
 2865 2870 2875 2880
 Asp Lys Asp Arg Pro Leu Ser Ala Ser Ala Val Asp Arg Cys Tyr Val Val Ala Gln Glu
 2885 2890 2895 2900
 Gly Thr Phe Phe Glu Gly Ser Gly Tyr Ala Ala Leu Val Lys Glu Gly Tyr Lys Val Arg
 2905 2910 2915 2920
 Leu Asp Leu Asn Ile Thr Leu Glu Phe Arg Thr Ser Lys Asn Gly Val Leu Leu Gly

2925	Ile Ser Ser Ala Lys Val Asp Ala Ile Gly Leu Glu Ile Val	2930	Asp Gly Lys Val Leu	2940 Phe
2945	Gly Ala Gly Arg Ile Thr Ala Thr Tyr Gln	2950	Pro Arg Ala Ala Arg	2955 Ala
2965	Leu Cys Asp Gly Lys Trp His Thr Leu Gln Ala His Lys Ser	2970	Lys His Arg Ile Val	2975 Leu
2985	Thr Val Asp Gly Asn Ser Val Arg Ala Glu Ser Pro His Thr	2990	His Ser Thr Ser Ala	2995 Asp
3005	Tyr Pro Ala His Ile Lys Gln Asn Cys Leu	3010	3015 Ser	3020
3025	Ser Arg Ala Ser Phe Arg Gly Cys Val Arg Asn Leu Arg Leu	3030	3035 Ser	3040
3045	Gln Ser Leu Asp Leu Ser Arg Ala Phe Asp Leu Gln Gly Val	3050	3055 Gln Val	3060
3065	Phe Pro His Ser Cys Pro	3070	3075 Gly Pro	3080
	Gly Pro Glu Pro			

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3075 AMINO ACIDS
- (B) TYPE: AMINO ACID
- (C) STRANDEDNESS:
- (D) TOPOLOGY: LINEAR

(ii) MOLECULAR TYPE: PROTEIN

(ix) FEATURE:

(D) OTHER INFORMATION: AMINO ACID NUMBERING ACCORDING TO TRANSLATION OF
GENEBANK ACCESSION NUMBER P25391

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

Met Arg Gly Gly Val Leu Leu Val Leu Leu Cys Val Ala Ala Gln Cys Arg Gln Arg	1	5	10	15	20
Gly Leu Phe Pro Ala Ile Leu Asn Leu Ala Ser Asn Ala His Ile Ser Thr Asn Ala Thr	25	30	35	40	
Cys Gly Glu Lys Gly Pro Glu Met Phe Cys Lys Leu Val Glu His Val Pro Gly Arg Pro	45	50	55	60	
Val Arg Asn Pro Gln Cys Arg Ile Cys Asp Gly Asn Ser Ala Asn Pro Arg Glu Arg His	65	70	75	80	
Pro Ile Ser His Ala Ile Asp Gly Thr Asn Asn Trp Trp Gln Ser Pro Ser Ile Gln Asn	85	90	95	100	
Gly Arg Glu Tyr His Trp Val Thr Ile Thr Leu Asp Leu Arg Gln Val Phe Gln Val Ala	105	110	115	120	
Tyr Val Ile Ile Lys Ala Ala Asn Ala Pro Arg Pro Gly Asn Trp Ile Leu Glu Arg Ser	125	130	135	140	
Leu Asp Gly Thr Thr Phe Ser Pro Trp Gln Tyr Tyr Ala Val Ser Asp Ser Glu Cys Leu	145	150	155	160	
Ser Arg Tyr Asn Ile Thr Pro Arg Arg Gly Pro Pro Thr Tyr Arg Ala Asp Asp Glu Val	165	170	175	180	
Ile Cys Thr Ser Tyr Tyr Ser Arg Leu Val Pro Leu Glu His Gly Glu Ile His Thr Ser	185	190	195	200	
Leu Ile Asn Gly Arg Pro Ser Ala Asp Asp Leu Ser Pro Lys Leu Leu Glu Phe Thr Ser	205	210	215	220	
Ala Arg Tyr Ile Arg Leu Arg Leu Gln Arg Ile Arg Thr Leu Asn Ala Asp Leu Met Thr	225	230	235	240	
Leu Ser His Arg Glu Pro Lys Glu Leu Asp Pro Ile Val Thr Arg Arg Tyr Tyr Tyr Ser	245	250	255	260	
Ile Lys Asp Ile Ser Val Gly Gly Met Cys Ile Cys Tyr Gly His Ala Ser Ser Cys Pro	265	270	275	280	
Trp Asp Glu Thr Thr Lys Leu Gln Cys Gln Cys Glu His Asn Thr Cys Gly Glu Ser					

285	290	295	300
Cys Asn Arg Cys Cys Pro Gly Tyr His Gln Gln Pro Trp Arg	Pro Gly Thr Val Ser Ser		
305	310	315	320
Gly Asn Thr Cys Glu Ala Cys Asn Cys His Asn Lys Ala Lys	Asp Cys Tyr Tyr Asp Glu		
325	330	335	340
Ser Val Ala Lys Gln Lys Lys Ser Leu Asn Thr Ala Gly Gln	Phe Arg Gly Gly Gly Val		
345	350	355	360
Cys Ile Asn Cys Leu Gln Asn Thr Met Gly Ile Asn Cys Glu	Thr Cys Ile Asp Gly Tyr		
365	370	375	380
Tyr Arg Pro His Lys Val Ser Pro Tyr Glu Asp Glu Pro Cys	Arg Pro Cys Asn Cys Asp		
385	390	395	400
Pro Val Gly Ser Leu Ser Ser Val Cys Ile Lys Asp Asp Leu	His Ser Asp Leu His Asn		
405	410	415	420
Gly Lys Gln Pro Gly Gln Cys Pro Cys Lys Glu Gly Tyr Thr	Gly Glu Lys Cys Asp Arg		
425	430	435	440
Cys Gln Leu Gly Tyr Lys Asp Tyr Pro Thr Cys Val Ser Cys	Gly Cys Asn Pro Val Gly		
445	450	455	460
Ser Ala Ser Asp Glu Pro Cys Thr Gly Pro Cys Val Cys Lys	Glu Asn Val Glu Gly Lys		
465	470	475	480
Ala Cys Asp Arg Cys Lys Pro Gly Phe Tyr Asn Leu Lys Glu	Lys Asn Pro Arg Gly Cys		
485	490	495	500
Ser Glu Cys Phe Cys Phe Gly Val Ser Asp Val Cys Ser Ser	Leu Ser Trp Pro Val Gly		
505	510	515	520
Gln Val Asn Ser Met Ser Gly Trp Leu Val Thr Asp Leu Ile	Ser Pro Arg Lys Ile Pro		
525	530	535	540
Ser Gln Gln Asp Ala Leu Gly Gly Arg His Gln Val Ser Ile	Asn Asn Thr Ala Val Met		
545	550	555	560
Gln Arg Leu Ala Pro Lys Tyr Tyr Trp Ala Ala Pro Glu Ala	Tyr Leu Gly Asn Lys Leu		
565	570	575	580
Thr Ala Phe Gly Gly Phe Leu Lys Tyr Thr Val Ser Tyr Asp	Ile Pro Val Glu Thr Val		
585	590	595	600
Asp Ser Asn Leu Met Ser His Ala Asp Val Ile Ile Lys Gly	Asn Gly Leu Thr Leu Ser		
605	610	615	620
Thr Gln Ala Glu Gly Leu Ser Leu Gln Pro Tyr Glu Glu Tyr	Leu Asn Val Val Arg Leu		
625	630	635	640
Val Pro Glu Asn Phe Gln Asp Phe His Ser Lys Arg Gln Ile	Asp Arg Asp Gln Leu Met		
645	650	655	660
Thr Val Leu Ala Asn Val Thr His Leu Leu Ile Arg Ala Thr	Tyr Asn Ser Ala Lys Met		
665	670	675	680
Ala Leu Tyr Arg Leu Glu Ser Val Ser Leu Asp Ile Ala Ser	Ser Asn Ala Ile Asp Leu		
685	690	695	700
Val Val Ala Ala Asp Val Glu His Cys Glu Cys Pro Gln Gly	Tyr Thr Gly Thr Ser Cys		
705	710	715	720
Glu Ser Cys Leu Ser Gly Tyr Tyr Arg Val Asp Gly Ile Leu	Phe Gly Gly Ile Cys Gln		
725	730	735	740
Pro Cys Glu Cys His Gly His Ala Ala Glu Cys Asn Val His	Gly Val Cys Ile Ala Cys		
745	750	755	760
Ala His Asn Thr Thr Gly Val His Cys Glu Gln Cys Leu Pro	Gly Phe Tyr Gly Glu Pro		
765	770	775	780
Ser Arg Gly Thr Pro Gly Asp Cys Gln Pro Cys Ala Cys Pro	Leu Thr Ile Ala Ser Asn		
785	790	795	800
Asn Phe Ser Pro Thr Cys His Leu Asn Asp Gly Asp Glu Val	Val Cys Asp Trp Cys Ala		
805	810	815	820
Pro Gly Tyr Ser Gly Ala Trp Cys Glu Arg Cys Ala Asp Gly	Tyr Tyr Gly Asn Pro Thr		
825	830	835	840
Val Pro Gly Glu Ser Cys Val Pro Cys Asp Cys Ser Gly Asn	Val Asp Pro Ser Glu Ala		
845	850	855	860
Gly His Cys Asp Ser Val Thr Gly Glu Cys Leu Lys Cys Leu	Gly Asn Thr Asp Gly Ala		
865	870	875	880
His Cys Glu Arg Cys Ala Asp Gly Phe Tyr Gly Asp Ala Val	Thr Ala Lys Asn Cys Arg		
885	890	895	900
Ala Cys Glu Cys His Val Lys Gly Ser His Ser Ala Val Cys	His Leu Glu Thr Gly Leu		
905	910	915	920

Cys Asp Cys Lys Pro Asn Val Thr Gly Gln Gln Cys Asp Gln Cys Leu His Gly Tyr Tyr
 925 930 935 940
 Gly Leu Asp Ser Gly His Gly Cys Arg Pro Cys Asn Cys Ser Val Ala Gly Ser Val Ser
 945 950 955 960
 Asp Gly Cys Thr Asp Glu Gly Gln Cys His Cys Val Pro Gly Val Ala Gly Lys Arg Cys
 965 970 975 980
 Asp Arg Cys Ala His Gly Phe Tyr Ala Tyr Gln Asp Gly Ser Cys Thr Pro Cys Asp Cys
 985 990 995 1000
 Pro His Thr Gln Asn Thr Cys Asp Pro Glu Thr Gly Glu Cys Val Cys Pro Pro His Thr
 1005 1010 1015 1020
 Gln Gly Gly Lys Cys Glu Glu Cys Glu Asp Gly His Trp Gly Tyr Asp Ala Glu Val Gly
 1025 1030 1035 1040
 Cys Gln Ala Cys Asn Cys Ser Leu Val Gly Ser Thr His His Arg Cys Asp Val Val Thr
 1045 1050 1055 1060
 Gly His Cys Gln Cys Lys Ser Lys Phe Gly Gly Arg Ala Cys Asp Gln Cys Ser Leu Gly
 1065 1070 1075 1080
 Tyr Arg Asp Phe Pro Asp Cys Val Pro Cys Asp Cys Asp Leu Arg Gly Thr Ser Gly Asp
 1085 1090 1095 1100
 Ala Cys Asn Leu Glu Gln Gly Leu Cys Gly Cys Val Glu Glu Thr Gly Ala Cys Pro Cys
 1105 1110 1115 1120
 Lys Glu Asn Val Phe Gly Pro Gln Cys Asn Glu Cys Arg Glu Gly Thr Phe Ala Leu Arg
 1125 1130 1135 1140
 Ala Asp Asn Pro Leu Gly Cys Ser Pro Cys Phe Cys Ser Gly Leu Ser His Leu Cys Ser
 1145 1150 1155 1160
 Glu Leu Glu Asp Tyr Val Arg Thr Pro Val Thr Leu Gly Ser Asp Gln Pro Leu Leu Arg
 1165 1170 1175 1180
 Val Val Ser Gln Ser Asn Leu Arg Gly Thr Thr Glu Gly Val Tyr Tyr Gln Ala Pro Asp
 1185 1190 1195 1200
 Phe Leu Leu Asp Ala Ala Thr Val Arg Gln His Ile Arg Ala Glu Pro Phe Tyr Trp Arg
 1205 1210 1215 1220
 Leu Pro Gln Gln Phe Gln Gly Asp Gln Leu Met Ala Tyr Gly Gly Lys Leu Lys Tyr Ser
 1225 1230 1235 1240
 Val Ala Phe Tyr Ser Leu Asp Gly Val Gly Thr Ser Asn Phe Glu Pro Gln Val Leu Ile
 1245 1250 1255 1260
 Lys Gly Gly Arg Ile Arg Lys Gln Val Ile Tyr Met Asp Ala Pro Ala Pro Glu Asn Gly
 1265 1270 1275 1280
 Val Arg Gln Glu Gln Glu Val Ala Met Arg Glu Asn Phe Trp Lys Tyr Phe Asn Ser Val
 1285 1290 1295 1300
 Ser Glu Lys Pro Val Thr Arg Glu Asp Phe Met Ser Val Leu Ser Asp Ile Glu Tyr Ile
 1305 1310 1315 1320
 Leu Ile Lys Ala Ser Tyr Gly Gln Gly Leu Gln Gln Ser Arg Ile Ser Asp Ile Ser Val
 1325 1330 1335 1340
 Glu Val Gly Arg Lys Ala Glu Lys Leu His Pro Glu Glu Glu Val Ala Ser Leu Leu Glu
 1345 1350 1355 1360
 Asn Cys Val Cys Pro Pro Gly Thr Val Gly Phe Ser Cys Gln Asp Cys Ala Pro Gly Tyr
 1365 1370 1375 1380
 His Arg Gly Lys Leu Pro Ala Gly Ser Asp Arg Gly Pro Arg Pro Leu Val Ala Pro Cys
 1385 1390 1395 1400
 Val Pro Cys Ser Cys Asn Asn His Ser Asp Thr Cys Asp Pro Asn Thr Gly Lys Cys Leu
 1405 1410 1415 1420
 Asn Cys Gly Asp Asn Thr Ala Gly Asp His Cys Asp Val Cys Thr Ser Gly Tyr Tyr Gly
 1425 1430 1435 1440
 Lys Val Thr Gly Ser Ala Ser Asp Cys Ala Leu Cys Ala Cys Pro His Ser Pro Pro Ala
 1445 1450 1455 1460
 Ser Phe Ser Pro Thr Cys Val Leu Glu Gly Asp His Asp Phe Arg Cys Asp Ala Cys Leu
 1465 1470 1475 1480
 Leu Gly Tyr Glu Gly Lys His Cys Glu Arg Cys Ser Ser Ser Tyr Tyr Gly Asn Pro Gln
 1485 1490 1495 1500
 Thr Pro Gly Gly Ser Cys Gln Lys Cys Asp Cys Asn Arg His Gly Ser Val His Gly Asp
 1505 1510 1515 1520
 Cys Asp Arg Thr Ser Gly Gln Cys Val Cys Arg Leu Gly Ala Ser Gly Leu Arg Cys Asp
 1525 1530 1535 1540
 Glu Cys Glu Pro Arg His Ile Leu Met Glu Thr Asp Cys Val Ser Cys Asp Asp Glu Cys

	1545	1550	1555	1560
Val Gly Val Leu	Leu Asn Asp Leu Asp	Glu Ile Gly Asp Ala	Val Leu Ser Leu Asn	Leu
1565	1570	1575	1580	
Thr Gly Ile Ile	Pro Val Pro Tyr Gly	Ile Leu Ser Asn Leu	Glu Asn Thr Thr Lys	Tyr
1585	1590	1595	1600	
Leu Gln Glu Ser	Leu Leu Lys Glu Asn Met Gln Lys Asp Leu	Gly Lys Ile Lys Leu	Glu	
1605	1610	1615	1620	
Gly Val Ala Glu	Glu Thr Asp Asn Leu	Gln Lys Lys Leu Thr	Arg Met Leu Ala Ser	Thr
1625	1630	1635	1640	
Gln Lys Val Asn Arg Ala Thr Glu Arg	Ile Phe Lys Glu Ser	Gln Asp Leu Ala Val	Ala	
1645	1650	1655	1660	
Ile Glu Arg Leu	Gln Met Ser Ile Thr	Glu Ile Met Glu Lys	Thr Thr Leu Asn	Gln
1665	1670	1675	1680	
Leu Asp Glu Asp	Phe Leu Leu Pro Asn	Ser Thr Leu Gln Asn	Met Gln Gln Asn	Gly
1685	1690	1695	1700	
Ser Leu Leu Glu	Ile Met Gln Ile Arg	Asp Phe Thr Gln Leu	His Gln Asn Ala Thr	Leu
1705	1710	1715	1720	
Glu Leu Lys Ala	Ala Glu Asp Leu Leu	Ser Gln Ile Gln Glu	Asn Tyr Gln Lys	Pro
1725	1730	1735	1740	
Glu Glu Leu Glu	Val Leu Lys Glu Ala	Ala Ser His Val Leu	Ser Lys His Asn Asn	Glu
1745	1750	1755	1760	
Leu Lys Ala Ala	Glu Ala Leu Val Arg	Glu Ala Glu Ala Lys	Met Gln Glu Ser Asn	His
1765	1770	1775	1780	
Leu Leu Leu Met	Val Asn Ala Asn Leu	Arg Glu Phe Ser Asp	Lys Lys Leu His Val	Gln
1785	1790	1795	1800	
Glu Glu Gln Asn	Leu Thr Ser Glu Leu	Ile Val Gln Gly Arg	Gly Leu Ile Asp Ala	Ala
1805	1810	1815	1820	
Ala Ala Gln Thr	Asp Ala Val Gln Asp	Ala Leu Glu His Leu	Glu Asp His Gln Asp	Lys
1825	1830	1835	1840	
Leu Leu Leu Trp	Ser Ala Lys Ile Arg	His His Ile Asp Asp	Leu Val Met His Met	Ser
1845	1850	1855	1860	
Gln Arg Asn Ala	Val Asp Leu Val Tyr	Arg Ala Glu Asp His	Ala Thr Glu Phe Gln	Arg
1865	1870	1875	1880	
Leu Ala Asp Val	Leu Tyr Ser Gly Leu	Glu Asn Ile Arg Asn	Val Ser Leu Asn Ala	Thr
1885	1890	1895	1900	
Ser Ala Ala Tyr	Val His Tyr Asn Ile	Gln Ser Leu Ile Glu	Glu Ser Glu Glu Leu	Ala
1905	1910	1915	1920	
Arg Asp Ala His	Arg Thr Val Thr Glu	Thr Ser Leu Leu Ser	Glu Ser Leu Val Ser	Asn
1925	1930	1935	1940	
Gly Lys Ala Ala	Val Gln Arg Ser Ser	Arg Phe Leu Lys Glu	Gly Asn Asn Leu Ser	Arg
1945	1950	1955	1960	
Lys Leu Pro Gly	Ile Ala Leu Glu Leu	Ser Glu Leu Arg Asn	Lys Thr Asn Arg Phe	Gln
1965	1970	1975	1980	
Glu Asn Ala Val	Glu Ile Thr Arg Gln	Thr Asn Glu Ser Leu	Leu Ile Leu Arg Ala	Ile
1985	1990	1995	2000	
Pro Glu Gly Ile	Arg Asp Lys Gly Ala	Lys Thr Lys Glu Leu	Ala Thr Ser Ala Ser	Gln
2005	2010	2015	2020	
Ser Ala Val Ser	Thr Leu Arg Asp Val	Ala Gly Leu Ser Gln	Glu Leu Leu Asn Thr	Ser
2025	2030	2035	2040	
Ala Ser Leu Ser	Arg Val Asn Thr Thr	Leu Arg Glu Thr His	Gln Leu Leu Gln Asp	Ser
2045	2050	2055	2060	
Thr Met Ala Thr	Leu Leu Ala Gly Arg	Lys Val Lys Asp Val	Glu Ile Gln Ala Asn	Leu
2065	2070	2075	2080	
Leu Phe Asp Arg	Leu Lys Pro Leu Lys	Met Leu Glu Glu Asn	Leu Ser Arg Asn Leu	Ser
2085	2090	2095	2100	
Glu Ile Lys Leu	Leu Ile Ser Gln Ala	Arg Lys Gln Ala Ala	Ser Ile Lys Val Ala	Val
2105	2110	2115	2120	
Ser Ala Asp Arg	Asp Cys Ile Arg Ala	Tyr Gln Pro Gln Ile	Ser Ser Thr Asn Tyr	Asn
2125	2130	2135	2140	
Thr Leu Thr Leu	Asn Val Lys Thr Gln	Glu Pro Asp Asn Leu	Leu Phe Tyr Leu Gly	Ser
2145	2150	2155	2160	
Ser Thr Ala Ser	Asp Phe Leu Ala Val	Glu Met Arg Arg Gly	Arg Val Ala Phe Leu	Trp
2165	2170	2175	2180	

Asp Leu Gly Ser Gly Ser Thr Arg Leu Glu Phe Pro Asp Phe Pro Ile Asp Asp Asn Arg
 2185 2190 2195 2200
 Trp His Ser Ile His Val Ala Arg Phe Gly Asn Ile Gly Ser Leu Ser Val Lys Glu Met
 2205 2210 2215 2220
 Ser Ser Asn Gln Lys Ser Pro Thr Lys Thr Ser Lys Ser Pro Gly Thr Ala Asn Val Leu
 2225 2230 2235 2240
 Asp Val Asn Asn Ser Thr Leu Met Phe Val Gly Gly Leu Gly Gly Gln Ile Lys Lys Ser
 2245 2250 2255 2260
 Pro Ala Val Lys Val Thr His Phe Lys Gly Cys Leu Gly Glu Ala Phe Leu Asn Gly Lys
 2265 2270 2275 2280
 Ser Ile Gly Leu Trp Asn Tyr Ile Glu Arg Glu Gly Lys Cys Arg Gly Cys Phe Gly Ser
 2285 2290 2295 2300
 Ser Gln Asn Glu Asp Pro Ser Phe His Phe Asp Gly Ser Gly Tyr Ser Val Val Glu Lys
 2305 2310 2315 2320
 Ser Leu Pro Ala Thr Val Thr Gln Ile Ile Met Leu Phe Asn Thr Phe Ser Pro Asn Gly
 2325 2330 2335 2340
 Leu Leu Leu Tyr Leu Gly Ser Tyr Gly Thr Lys Asp Phe Leu Ser Ile Glu Leu Phe Arg
 2345 2350 2355 2360
 Gly Arg Val Lys Val Met Thr Asp Leu Gly Ser Gly Pro Ile Thr Leu Leu Thr Asp Arg
 2365 2370 2375 2380
 Arg Tyr Asn Asn Gly Thr Trp Tyr Lys Ile Ala Phe Gln Arg Asn Arg Lys Gln Gly Val
 2385 2390 2395 2400
 Leu Ala Val Ile Asp Ala Tyr Asn Thr Ser Asn Lys Glu Thr Lys Gln Gly Glu Thr Pro
 2405 2410 2415 2420
 Gly Ala Ser Ser Asp Leu Asn Arg Leu Asp Lys Asp Pro Ile Tyr Val Gly Gly Leu Pro
 2425 2430 2435 2440
 Arg Ser Arg Val Val Arg Arg Gly Val Thr Thr Lys Ser Phe Val Gly Cys Ile Lys Asn
 2445 2450 2455 2460
 Leu Glu Ile Ser Arg Ser Thr Phe Asp Leu Leu Arg Asn Ser Tyr Gly Val Arg Lys Gly
 2465 2470 2475 2480
 Cys Leu Leu Glu Pro Ile Arg Ser Val Ser Phe Leu Lys Gly Gly Tyr Ile Glu Leu Pro
 2485 2490 2495 2500
 Pro Lys Ser Leu Ser Pro Glu Ser Glu Trp Leu Val Thr Phe Ala Thr Thr Asn Ser Ser
 2505 2510 2515 2520
 Gly Ile Ile Leu Ala Ala Leu Gly Gly Asp Val Glu Lys Arg Gly Asp Arg Glu Glu Ala
 2525 2530 2535 2540
 His Val Pro Phe Phe Ser Val Met Leu Ile Gly Gly Asn Ile Glu Val His Val Asn Pro
 2545 2550 2555 2560
 Gly Asp Gly Thr Gly Leu Arg Lys Ala Leu Leu His Ala Pro Thr Gly Thr Cys Ser Asp
 2565 2570 2575 2580
 Gly Gln Ala His Ser Ile Ser Leu Val Arg Asn Arg Arg Ile Ile Thr Val Gln Leu Asp
 2585 2590 2595 2600
 Glu Asn Asn Pro Val Glu Met Lys Leu Gly Thr Leu Val Glu Ser Arg Thr Ile Asn Val
 2605 2610 2615 2620
 Ser Asn Leu Tyr Val Gly Gly Ile Pro Glu Gly Glu Gly Thr Ser Leu Leu Thr Met Arg
 2625 2630 2635 2640
 Arg Ser Phe His Gly Cys Ile Lys Asn Leu Ile Phe Asn Leu Glu Leu Leu Asp Phe Asn
 2645 2650 2655 2660
 Ser Ala Val Gly His Glu Gln Val Asp Leu Asp Thr Cys Trp Leu Ser Glu Arg Pro Lys
 2665 2670 2675 2680
 Leu Ala Pro Asp Ala Glu Asp Ser Lys Leu Leu Arg Glu Pro Arg Ala Phe Pro Glu Gln
 2685 2690 2695 2700
 Cys Val Val Asp Ala Ala Leu Glu Tyr Val Pro Gly Ala His Gln Phe Gly Leu Thr Gln
 2705 2710 2715 2720
 Asn Ser His Phe Ile Leu Pro Phe Asn Gln Ser Ala Val Arg Lys Lys Leu Ser Val Glu
 2725 2730 2735 2740
 Leu Ser Ile Arg Thr Phe Ala Ser Ser Gly Leu Ile Tyr Tyr Met Ala His Gln Asn Gln
 2745 2750 2755 2760
 Ala Asp Tyr Ala Val Leu Gln Leu His Gly Gly Arg Leu His Phe Met Phe Asp Leu Gly
 2765 2770 2775 2780
 Lys Gly Arg Thr Lys Val Ser His Pro Ala Leu Leu Ser Asp Gly Lys Trp His Thr Val
 2785 2790 2795 2800
 Lys Thr Asp Tyr Val Lys Arg Lys Gly Phe Ile Thr Val Asp Gly Arg Glu Ser Pro Met

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1786 AMINO ACIDS
 - (B) TYPE: AMINO ACID
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: LINEAR

(ii) MOLECULAR TYPE: PROTEIN

(ix) FEATURE:

- (D) OTHER INFORMATION: AMINO ACID NUMBERING ACCORDING TO TRANSLATION OF
GENEBANK ACCESSION NUMBER P07942;

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Met	Gly	Leu	Leu	Gln	Leu	Leu	Ala	Phe	Ser	Phe	Leu	Ala	Leu	Cys	Arg	Ala	Arg	Val	Arg
1				5					10					15					20
Ala	Gln	Glu	Pro	Glu	Phe	Ser	Tyr	Gly	Cys	Ala	Glu	Gly	Ser	Cys	Tyr	Pro	Ala	Thr	Gly
				25					30					35					40
Asp	Leu	Leu	Ile	Gly	Arg	Ala	Gln	Lys	Leu	Ser	Val	Thr	Ser	Thr	Cys	Gly	Leu	His	Lys
				45					50					55					60
Pro	Glu	Pro	Tyr	Cys	Ile	Val	Ser	His	Leu	Gln	Glu	Asp	Lys	Lys	Cys	Phe	Ile	Cys	Asn
				65					70					75					80
Ser	Gln	Asp	Pro	Tyr	His	Glu	Thr	Leu	Asn	Pro	Asp	Ser	His	Leu	Ile	Glu	Asn	Val	Val
				85					90					95					100
Thr	Thr	Phe	Ala	Pro	Asn	Arg	Leu	Lys	Ile	Trp	Trp	Gln	Ser	Glu	Asn	Gly	Val	Glu	Asn
				105					110					115					120
Val	Thr	Ile	Gln	Leu	Asp	Leu	Glu	Ala	Glu	Phe	His	Phe	Thr	His	Leu	Ile	Met	Thr	Phe
				125					130					135					140
Lys	Thr	Phe	Arg	Pro	Ala	Ala	Met	Leu	Ile	Glu	Arg	Ser	Ser	Asp	Phe	Gly	Lys	Thr	Trp
				145					150					155					160
Gly	Val	Tyr	Arg	Tyr	Phe	Ala	Tyr	Asp	Cys	Glu	Ala	Ser	Phe	Pro	Gly	Ile	Ser	Thr	Gly

	165	170	175	180
Pro Met Lys Lys Val Asp Asp Ile Ile Cys Asp Ser Arg Tyr		Ser Asp Ile Glu Pro Ser		
185	190	195	200	
Thr Glu Gly Glu Val Ile Phe Arg Ala Leu Asp Pro Ala Phe		Lys Ile Glu Asp Pro Tyr		
205	210	215	220	
Ser Pro Arg Ile Gln Asn Leu Leu Lys Ile Thr Asn Leu Arg		Ile Lys Phe Val Lys Leu		
225	230	235	240	
His Thr Leu Gly Asp Asn Leu Leu Asp Ser Arg Met Glu Ile		Arg Glu Lys Tyr Tyr Tyr		
245	250	255	260	
Ala Val Tyr Asp Met Val Val Arg Gly Asn Cys Phe Cys Tyr		Gly His Ala Ser Glu Cys		
265	270	275	280	
Ala Pro Val Asp Gly Phe Asn Glu Glu Val Glu Gly Met Val		His Gly His Cys Met Cys		
285	290	295	300	
Arg His Asn Thr Lys Gly Leu Asn Cys Glu Leu Cys Met Asp		Phe Tyr His Asp Leu Pro		
305	310	315	320	
Trp Arg Pro Ala Glu Gly Arg Asn Ser Asn Ala Cys Lys Lys		Cys Asn Cys Asn Glu His		
325	330	335	340	
Ser Ile Ser Cys His Phe Asp Met Ala Val Tyr Leu Ala Thr		Gly Asn Val Ser Gly Gly		
345	350	355	360	
Val Cys Asp Asp Cys Gln His Asn Thr Met Gly Arg Asn Cys		Glu Gln Cys Lys Pro Phe		
365	370	375	380	
Tyr Tyr Gln His Pro Glu Arg Asp Ile Arg Asp Pro Asn Phe		Cys Glu Arg Cys Thr Cys		
385	390	395	400	
Asp Pro Ala Gly Ser Gln Asn Glu Gly Ile Cys Asp Ser Tyr		Thr Asp Phe Ser Thr Gly		
405	410	415	420	
Leu Ile Ala Gly Gln Cys Arg Cys Lys Leu Asn Val Glu Gly		Glu His Cys Asp Val Cys		
425	430	435	440	
Lys Glu Gly Phe Tyr Asp Leu Ser Ser Glu Asp Pro Phe Gly		Cys Lys Ser Cys Ala Cys		
445	450	455	460	
Asn Pro Leu Gly Thr Ile Pro Gly Gly Asn Pro Cys Asp Ser		Glu Thr Gly His Cys Tyr		
465	470	475	480	
Cys Lys Arg Leu Val Thr Gly Gln His Cys Asp Gln Cys Leu		Pro Glu His Trp Gly Leu		
485	490	495	500	
Ser Asn Asp Leu Asp Gly Cys Arg Pro Cys Asp Cys Asp Leu		Gly Ala Leu Asn Asn		
505	510	515	520	
Ser Cys Phe Ala Glu Ser Gly Gln Cys Ser Cys Arg Pro His		Met Ile Gly Arg Gln Cys		
525	530	535	540	
Asn Glu Val Glu Pro Gly Tyr Tyr Phe Ala Thr Leu Asp His		Tyr Leu Tyr Glu Ala Glu		
545	550	555	560	
Glu Ala Asn Leu Gly Pro Gly Val Ser Ile Val Glu Arg Gln		Tyr Ile Gln Asp Arg Ile		
565	570	575	580	
Pro Ser Trp Thr Gly Ala Gly Phe Val Arg Val Pro Glu Gly		590 595 600		
585				
Ile Asp Asn Ile Pro Tyr Ser Met Glu Tyr Asp Ile Leu Ile		Arg Tyr Glu Pro Gln Leu		
605	610	615	620	
Pro Asp His Trp Glu Lys Ala Val Ile Thr Val Gln Arg Pro		Gly Arg Ile Pro Thr Ser		
625	630	635	640	
Ser Arg Cys Gly Asn Thr Ile Pro Asp Asp Asn Gln Val		Val Ser Leu Ser Pro Gly		
645	650	655	660	
Ser Arg Tyr Val Val Leu Pro Arg Pro Val Cys Phe Glu Lys		Gly Thr Asn Tyr Thr Val		
665	670	675	680	
Arg Leu Glu Leu Pro Gln Tyr Thr Ser Ser Asp Ser Asp Val		Glu Ser Pro Tyr Thr Leu		
685	690	695	700	
Ile Asp Ser Leu Val Leu Met Pro Tyr Cys Lys Ser Leu Asp		Ile Phe Thr Val Gly Gly		
705	710	715	720	
Ser Gly Asp Gly Val Val Thr Asn Ser Ala Trp Glu Thr Phe		Gln Arg Tyr Arg Cys Leu		
725	730	735	740	
Glu Asn Ser Arg Ser Val Val Lys Thr Pro Met Thr Asp Val		Cys Arg Asn Ile Ile Phe		
745	750	755	760	
Ser Ile Ser Ala Leu Leu His Gln Thr Gly Leu Ala Cys Glu		Cys Asp Pro Gln Gly Ser		
765	770	775	780	
Leu Ser Ser Val Cys Asp Pro Asn Gly Gly Gln Cys Gln Cys		Arg Pro Asn Val Val Gly		
785	790	795	800	

Arg Thr Cys Asn Arg Cys Ala Pro Gly Thr Phe Gly Phe Gly Pro Ser Gly Cys Lys Pro
 805 810 815 820
 Cys Glu Cys His Leu Gln Gly Ser Val Asn Ala Phe Cys Asn Pro Val Thr Gly Gln Cys
 825 830 835 840
 His Cys Phe Gln Gly Val Tyr Ala Arg Gln Cys Asp Arg Cys Leu Pro Gly His Trp Gly
 845 850 855 860
 Phe Pro Ser Cys Gln Pro Cys Gln Cys Asn Gly His Ala Asp Asp Cys Asp Pro Val Thr
 865 870 875 880
 Gly Glu Cys Leu Asn Cys Gln Asp Tyr Thr Met Gly His Asn Cys Glu Arg Cys Leu Ala
 885 890 895 900
 Gly Tyr Tyr Gly Asp Pro Ile Ile Gly Ser Gly Asp His Cys Arg Pro Cys Pro Cys Pro
 905 910 915 920
 Asp Gly Pro Asp Ser Gly Arg Gln Phe Ala Arg Ser Cys Tyr Gln Asp Pro Val Thr Leu
 925 930 935 940
 Gln Leu Ala Cys Val Cys Asp Pro Gly Tyr Ile Gly Ser Arg Cys Asp Asp Cys Ala Ser
 945 950 955 960
 Gly Tyr Phe Gly Asn Pro Ser Glu Val Gly Gly Ser Cys Gln Pro Cys Gln Cys His Asn
 965 970 975 980
 Asn Ile Asp Thr Thr Asp Pro Glu Ala Cys Asp Lys Glu Thr Gly Arg Cys Leu Lys Cys
 985 990 995 1000
 Leu Tyr His Thr Glu Gly Glu His Cys Gln Phe Cys Arg Phe Gly Tyr Tyr Gly Asp Ala
 1005 1010 1015 1020
 Leu Arg Gln Asp Cys Arg Lys Cys Val Cys Asn Tyr Leu Gly Thr Val Gln Glu His Cys
 1025 1030 1035 1040
 Asn Gly Ser Asp Cys Gln Cys Asp Lys Ala Thr Gly Gln Cys Leu Cys Leu Pro Asn Val
 1045 1050 1055 1060
 Ile Gly Gln Asn Cys Asp Arg Cys Ala Pro Asn Thr Trp Gln Leu Ala Ser Gly Thr Gly
 1065 1070 1075 1080
 Cys Asp Pro Cys Asn Cys Asn Ala Ala His Ser Phe Gly Pro Ser Cys Asn Glu Phe Thr
 1085 1090 1095 1100
 Gly Gln Cys Gln Cys Met Pro Gly Phe Gly Gly Arg Thr Cys Ser Glu Cys Gln Glu Leu
 1105 1110 1115 1120
 Phe Trp Gly Asp Pro Asp Val Glu Cys Arg Ala Cys Asp Cys Asp Pro Arg Gly Ile Glu
 1125 1130 1135 1140
 Thr Pro Gln Cys Asp Gln Ser Thr Gly Gln Cys Val Cys Val Glu Gly Val Glu Gly Pro
 1145 1150 1155 1160
 Arg Cys Asp Lys Cys Thr Arg Gly Tyr Ser Gly Val Phe Pro Asp Cys Thr Pro Cys His
 1165 1170 1175 1180
 Gln Cys Phe Ala Leu Trp Asp Val Ile Ile Ala Glu Leu Thr Asn Arg Thr His Arg Phe
 1185 1190 1195 1200
 Leu Glu Lys Ala Lys Ala Leu Lys Ile Ser Gly Val Ile Gly Pro Tyr Arg Glu Thr Val
 1205 1210 1215 1220
 Asp Ser Val Glu Arg Lys Val Ser Glu Ile Lys Asp Ile Leu Ala Gln Ser Pro Ala Ala
 1225 1230 1235 1240
 Glu Pro Leu Lys Asn Ile Gly Asn Leu Phe Glu Glu Ala Glu Lys Leu Ile Lys Asp Val
 1245 1250 1255 1260
 Thr Glu Met Met Ala Gln Val Glu Val Lys Leu Ser Asp Thr Thr Ser Gln Ser Asn Ser
 1265 1270 1275 1280
 Thr Ala Lys Glu Leu Asp Ser Leu Gln Thr Glu Ala Glu Ser Leu Asp Asn Thr Val Lys
 1285 1290 1295 1300
 Glu Leu Ala Glu Gln Leu Glu Phe Ile Lys Asn Ser Asp Ile Arg Gly Ala Leu Asp Ser
 1305 1310 1315 1320
 Ile Thr Lys Tyr Phe Gln Met Ser Leu Glu Ala Glu Glu Arg Val Asn Ala Ser Thr Thr
 1325 1330 1335 1340
 Glu Pro Asn Ser Thr Val Glu Gln Ser Ala Leu Met Arg Asp Arg Val Glu Asp Val Met
 1345 1350 1355 1360
 Met Glu Arg Glu Ser Gln Phe Lys Glu Lys Gln Glu Glu Gln Ala Arg Leu Leu Asp Glu
 1365 1370 1375 1380
 Leu Ala Gly Lys Leu Gln Ser Leu Asp Leu Ser Ala Ala Ala Glu Met Thr Cys Gly Thr
 1385 1390 1395 1400
 Pro Pro Gly Ala Ser Cys Ser Glu Thr Glu Cys Gly Gly Pro Asn Cys Arg Thr Asp Glu
 1405 1410 1415 1420
 Gly Glu Arg Lys Cys Gly Gly Pro Gly Cys Gly Gly Leu Val Thr Val Ala His Asn Ala

	1425	1430	1435	1440
Trp Gln Lys Ala Met Asp Leu Asp Gln	Asp Val Leu Ser Ala	Leu Ala Glu Val Glu	Gln	
1445	1450	1455	1460	
Leu Ser Lys Met Val Ser Glu Ala Lys	Leu Arg Ala Asp Glu	Ala Lys Gln Ser Ala	Glu	
1465	1470	1475	1480	
Asp Ile Leu Leu Lys Thr Asn Ala Thr	Lys Glu Lys Met Asp	Lys Ser Asn Glu Glu	Leu	
1485	1490	1495	1500	
Arg Asn Leu Ile Lys Gln Ile Arg Asn	Phe Leu Thr Gln Asp	Ser Ala Asp Leu Asp	Ser	
1505	1510	1515	1520	
Ile Glu Ala Val Ala Asn Glu Val Leu	Lys Met Glu Met Pro	Ser Thr Pro Gln Gln	Leu	
1525	1530	1535	1540	
Gln Asn Leu Thr Glu Asp Ile Arg Glu	Arg Val Glu Ser Leu	Ser Gln Val Glu Val	Ile	
1545	1550	1555	1560	
Leu Gln His Ser Ala Ala Asp Ile Ala	Arg Ala Glu Met Leu	Leu Glu Glu Ala Lys	Arg	
1565	1570	1575	1580	
Ala Ser Lys Ser Ala Thr Asp Val Lys	Val Thr Ala Asp Met	Val Lys Glu Ala Leu	Glu	
1585	1590	1595	1600	
Glu Ala Glu Lys Ala Gln Val Ala Ala	Glu Lys Ala Ile Lys	Gln Ala Asp Glu Asp	Ile	
1605	1610	1615	1620	
Gln Gly Thr Gln Asn Leu Leu Thr Ser	Ile Glu Ser Glu Thr	Ala Ala Ser Glu Glu	Thr	
1625	1630	1635	1640	
Leu Phe Asn Ala Ser Gln Arg Ile Ser	Glu Leu Glu Arg Asn	Val Glu Glu Leu Lys	Arg	
1645	1650	1655	1660	
Lys Ala Ala Gln Asn Ser Gly Glu Ala	Glu Tyr Ile Glu Lys	Val Val Tyr Thr Val	Lys	
1665	1670	1675	1680	
Gln Ser Ala Glu Asp Val Lys Lys Thr	Leu Asp Gly Glu Leu	Asp Glu Lys Tyr Lys	Lys	
1685	1690	1695	1700	
Val Glu Asn Leu Ile Ala Lys Lys Thr	Glu Glu Ser Ala Asp	Ala Arg Arg Lys Ala	Glu	
1705	1710	1715	1720	
Met Leu Gln Asn Glu Ala Lys Thr Leu	Leu Ala Gln Ala Asn	Ser Lys Leu Gln Leu	Leu	
1725	1730	1735	1740	
Lys Asp Leu Glu Arg Lys Tyr Glu Asp	Asn Gln Arg Tyr Leu	Glu Asp Lys Ala Gln	Glu	
1745	1750	1755	1760	
Leu Ala Arg Leu Glu Gly Glu Val Arg	Ser Leu Leu Lys Asp	Ile Ser Gln Lys Val	Ala	
1765	1770	1775	1780	
Val Tyr Ser Thr Cys Leu				
	1785			

(2) INFORMATION FOR SEQ ID NO: 7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1786 AMINO ACIDS
- (B) TYPE: AMINO ACID
- (C) STRANDEDNESS:
- (D) TOPOLOGY: LINEAR

(ii) MOLECULAR TYPE: PROTEIN

(ix) FEATURE:

(D) OTHER INFORMATION: AMINO ACID NUMBERING ACCORDING TO TRANSLATION OF
GENEBANK ACCESSION NUMBER P02469

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

Met Gly Leu Leu Gln Val Phe Ala Phe Gly Val Leu Ala Leu Trp Gly Thr Arg Val Cys				
1	5	10	15	20
Ala Gln Glu Pro Glu Phe Ser Tyr Gly	Cys Ala Glu Gly Ser	Cys Tyr Pro Ala Thr	Gly	
25	30	35	40	
Asp Leu Leu Ile Gly Arg Ala Gln Lys	Leu Ser Val Thr Ser	Thr Cys Gly Leu His	Lys	
45	50	55	60	
Pro Glu Pro Tyr Cys Ile Val Ser His	Leu Gln Glu Asp Lys	Lys Cys Phe Ile Cys Asp		

65	70	75	80
Ser Arg Asp Pro Tyr His Glu Thr Leu Asn Pro Asp Ser His		Leu Ile Glu Asn Val Val	
85	90	95	100
Thr Thr Phe Ala Pro Asn Arg Leu Lys Ile Trp Trp Gln Ser		Glu Asn Gly Val Glu Asn	
105	110	115	120
Val Thr Ile Gln Leu Asp Leu Glu Ala Glu Phe His Phe Thr		His Leu Ile Met Thr Phe	
125	130	135	140
Lys Thr Phe Arg Pro Ala Ala Met Leu Ile Glu Arg Ser Ser		Asp Phe Gly Lys Thr Trp	
145	150	155	160
Gly Val Tyr Arg Tyr Phe Ala Tyr Asp Cys Glu Ser Ser Phe		Pro Gly Ile Ser Thr Gly	
165	170	175	180
Pro Met Lys Lys Val Asp Asp Ile Ile Cys Asp Ser Arg Tyr		Ser Asp Ile Glu Pro Ser	
185	190	195	200
Thr Glu Gly Glu Val Ile Phe Arg Ala Leu Asp Pro Ala Phe		Lys Ile Glu Asp Pro Tyr	
205	210	215	220
Ser Pro Arg Ile Gln Asn Leu Leu Lys Ile Thr Asn Leu Arg		Ile Lys Phe Val Lys Leu	
225	230	235	240
His Thr Leu Gly Asp Asn Leu Leu Asp Ser Arg Met Glu Ile		Arg Glu Lys Tyr Tyr	
245	250	255	260
Ala Val Tyr Asp Met Val Val Arg Gly Asn Cys Phe Cys Tyr		Gly His Ala Ser Glu Cys	
265	270	275	280
Ala Pro Val Asp Gly Val Asn Glu Glu Val Glu Gly Met Val		His Gly His Cys Met Cys	
285	290	295	300
Arg His Asn Thr Lys Gly Leu Asn Cys Glu Leu Cys Met Asp		Phe Tyr His Asp Leu Pro	
305	310	315	320
Trp Arg Pro Ala Glu Gly Arg Asn Ser Asn Ala Cys Lys Lys		Cys Asn Cys Asn Glu His	
325	330	335	340
Ser Ser Ser Cys His Phe Asp Met Ala Val Phe Leu Ala Thr		Gly Asn Val Ser Gly Gly	
345	350	355	360
Val Cys Asp Asn Cys Gln His Asn Thr Met Gly Arg Asn Cys		Glu Gln Cys Lys Pro Phe	
365	370	375	380
Tyr Phe Gln His Pro Glu Arg Asp Ile Arg Asp Pro Asn Leu		Cys Glu Pro Cys Thr Cys	
385	390	395	400
Asp Pro Ala Gly Ser Glu Asn Gly Gly Ile Cys Asp Gly Tyr		Thr Asp Phe Ser Val Gly	
405	410	415	420
Leu Ile Ala Gly Gln Cys Arg Cys Lys Leu His Val Glu Gly		Glu Arg Cys Asp Val Cys	
425	430	435	440
Lys Glu Gly Phe Tyr Asp Leu Ser Ala Glu Asp Pro Tyr Gly		Cys Lys Ser Cys Ala Cys	
445	450	455	460
Asn Pro Leu Gly Thr Ile Pro Gly Gly Asn Pro Cys Asp Ser		Glu Thr Gly Tyr Cys Tyr	
465	470	475	480
Cys Lys Arg Leu Val Thr Gly Gln Arg Cys Asp Gln Cys Leu		Pro Gln His Trp Gly Leu	
485	490	495	500
Ser Asn Asp Leu Asp Gly Cys Arg Pro Cys Asp Cys Asp Leu		Gly Gly Ala Leu Asn Asn	
505	510	515	520
Ser Cys Ser Glu Asp Ser Gly Gln Cys Ser Cys Leu Pro His		Met Ile Gly Arg Gln Cys	
525	530	535	540
Asn Glu Val Glu Ser Gly Tyr Tyr Phe Thr Thr Leu Asp His		Tyr Ile Tyr Glu Ala Glu	
545	550	555	560
Glu Ala Asn Leu Gly Pro Gly Val Val Val Val Glu Arg Gln		Tyr Ile Gln Asp Arg Ile	
565	570	575	580
Pro Ser Trp Thr Gly Pro Gly Phe Val Arg Val Pro Glu Gly		Tyr Tyr Leu Glu Phe Phe	
585	590	595	600
Ile Asp Asn Ile Pro Tyr Ser Met Glu Tyr Glu Ile Leu Ile		Arg Tyr Glu Pro Gln Leu	
605	610	615	620
Pro Asp His Trp Glu Lys Ala Val Ile Thr Val Gln Arg Pro		Gly Lys Ile Pro Ala Ser	
625	630	635	640
Ser Arg Cys Gly Asn Thr Val Pro Asp Asp Asn Gln Val Val		Ser Leu Ser Pro Gly	
645	650	655	660
Ser Arg Tyr Val Val Leu Pro Arg Pro Val Cys Phe Glu Lys		Gly Met Asn Tyr Thr Val	
665	670	675	680
Arg Leu Glu Leu Pro Gln Tyr Thr Ala Ser Gly Ser Asp Val		Glu Ser Pro Tyr Thr Phe	
685	690	695	700

Ile Asp Ser Leu Val Leu Met Pro Tyr Cys Lys Ser Leu Asp Ile Phe Thr Val Gly Gly
 705 710 715 720
 Ser Gly Asp Gly Glu Val Thr Asn Ser Ala Trp Glu Thr Phe Gln Arg Tyr Arg Cys Leu
 725 730 735 740
 Glu Asn Ser Arg Ser Val Val Lys Thr Pro Met Thr Asp Val Cys Arg Asn Ile Ile Phe
 745 750 755 760
 Ser Ile Ser Ala Leu Ile His Gln Thr Gly Leu Ala Cys Glu Cys Asp Pro Gln Gly Ser
 765 770 775 780
 Leu Ser Ser Val Cys Asp Pro Asn Gly Gly Gln Cys Gln Cys Arg Pro Asn Val Val Gly
 785 790 795 800
 Arg Thr Cys Asn Arg Cys Ala Pro Gly Thr Phe Gly Phe Gly Pro Asn Gly Cys Lys Pro
 805 810 815 820
 Cys Asp Cys His Leu Gln Gly Ser Ala Ser Ala Phe Cys Asp Ala Ile Thr Gly Gln Cys
 825 830 835 840
 His Cys Phe Gln Gly Ile Tyr Ala Arg Gln Cys Asp Arg Cys Leu Pro Gly Tyr Trp Gly
 845 850 855 860
 Phe Pro Ser Cys Gln Pro Cys Gln Cys Asn Gly His Ala Leu Asp Cys Asp Thr Val Thr
 865 870 875 880
 Gly Glu Cys Leu Ser Cys Gln Asp Tyr Thr Thr Gly His Asn Cys Glu Arg Cys Leu Ala
 885 890 895 900
 Gly Tyr Tyr Gly Asp Pro Ile Ile Gly Ser Gly Asp His Cys Arg Pro Cys Pro Cys Pro
 905 910 915 920
 Asp Gly Pro Asp Ser Gly Arg Gln Phe Ala Arg Ser Cys Tyr Gln Asp Pro Val Thr Leu
 925 930 935 940
 Gln Leu Ala Cys Val Cys Asp Pro Gly Tyr Ile Gly Ser Arg Cys Asp Asp Cys Ala Ser
 945 950 955 960
 Gly Phe Phe Gly Asn Pro Ser Asp Phe Gly Gly Ser Cys Gln Pro Cys Gln Cys His His
 965 970 975 980
 Asn Ile Asp Thr Thr Asp Pro Glu Ala Cys Asp Lys Asp Thr Gly Arg Cys Leu Lys Cys
 985 990 995 1000
 Leu Tyr His Thr Glu Gly Asp His Cys Gln Leu Cys Gln Tyr Gly Tyr Tyr Gly Asp Ala
 1005 1010 1015 1020
 Leu Arg Gln Asp Cys Arg Lys Cys Val Cys Asn Tyr Leu Gly Thr Val Lys Glu His Cys
 1025 1030 1035 1040
 Asn Gly Ser Asp Cys His Cys Asp Lys Ala Thr Gly Gln Cys Ser Cys Leu Pro Asn Val
 1045 1050 1055 1060
 Ile Gly Gln Asn Cys Asp Arg Cys Ala Pro Asn Thr Trp Gln Leu Ala Ser Gly Thr Gly
 1065 1070 1075 1080
 Cys Gly Pro Cys Asn Cys Asn Ala Ala His Ser Phe Gly Pro Ser Cys Asn Glu Phe Thr
 1085 1090 1095 1100
 Gly Gln Cys Gln Cys Met Pro Gly Phe Gly Gly Arg Thr Cys Ser Glu Cys Gln Glu Leu
 1105 1110 1115 1120
 Phe Trp Gly Asp Pro Asp Val Glu Cys Arg Ala Cys Asp Cys Asp Pro Arg Gly Ile Glu
 1125 1130 1135 1140
 Thr Pro Gln Cys Asp Gln Ser Thr Gly Gln Cys Val Cys Val Glu Gly Val Glu Gly Pro
 1145 1150 1155 1160
 Arg Cys Asp Lys Cys Thr Arg Gly Tyr Ser Gly Val Phe Pro Asp Cys Thr Pro Cys His
 1165 1170 1175 1180
 Gln Cys Phe Ala Leu Trp Asp Ala Ile Ile Gly Glu Leu Thr Asn Arg Thr His Lys Phe
 1185 1190 1195 1200
 Leu Glu Lys Ala Lys Ala Leu Lys Ile Ser Gly Val Ile Gly Pro Tyr Arg Glu Thr Val
 1205 1210 1215 1220
 Asp Ser Val Glu Lys Lys Val Asn Glu Ile Lys Asp Ile Leu Ala Gln Ser Pro Ala Ala
 1225 1230 1235 1240
 Glu Pro Leu Lys Asn Ile Gly Ile Leu Phe Glu Glu Ala Glu Lys Leu Thr Lys Asp Val
 1245 1250 1255 1260
 Thr Glu Lys Met Ala Gln Val Glu Val Lys Leu Thr Asp Thr Ala Ser Gln Ser Asn Ser
 1265 1270 1275 1280
 Thr Ala Gly Glu Leu Gly Ala Leu Gln Ala Glu Ala Glu Ser Leu Asp Lys Thr Val Lys
 1285 1290 1295 1300
 Glu Leu Ala Glu Gln Leu Glu Phe Ile Lys Asn Ser Asp Ile Gln Gly Ala Leu Asp Ser
 1305 1310 1315 1320
 Ile Thr Lys Tyr Phe Gln Met Ser Leu Glu Ala Glu Lys Arg Val Asn Ala Ser Thr Thr

	1325	1330	1335	1340
Asp Pro Asn Ser	Thr Val Glu Gln Ser	Ala Leu Thr Arg Asp	Arg Val Glu Asp Leu	Met
	1345	1350	1355	1360
Leu Glu Arg Glu	Ser Pro Phe Lys Glu	Gln Gln Glu Glu Gln	Ala Arg Leu Leu Asp	Glutamate
	1365	1370	1375	1380
Leu Ala Gly Lys	Leu Gln Ser Leu Asp	Leu Ser Ala Ala Ala	Gln Met Thr Cys Gly	Threonine
	1385	1390	1395	1400
Pro Pro Gly Ala	Asp Cys Ser Glu Ser	Glu Cys Gly Gly	Pro Asn Cys Arg Thr Asp	Glycine
	1405	1410	1415	1420
Gly Glu Lys Lys	Cys Gly Gly Pro Gly	Cys Gly Gly	Leu Val Thr Val Ala His Ser	Alanine
	1425	1430	1435	1440
Trp Gln Lys Ala	Met Asp Phe Asp Arg	Asp Val Leu Ser Ala	Leu Ala Glu Val Glu	Glutamine
	1445	1450	1455	1460
Leu Ser Lys Met Val	Ser Glu Ala Lys	Val Arg Ala Asp Glu	Ala Lys Gln Asn Ala	Glutamine
	1465	1470	1475	1480
Asp Val Leu Leu	Lys Thr Asn Ala Thr	Lys Glu Lys Val Asp	Lys Ser Asn Glu Asp	Leucine
	1485	1490	1495	1500
Arg Asn Leu Ile	Lys Gln Ile Arg Asn	Phe Leu Thr Glu Asp	Ser Ala Asp Leu Asp	Serine
	1505	1510	1515	1520
Ile Glu Ala Val	Ala Asn Glu Val Leu	Lys Ser Gly Asn Ala	Ser Thr Pro Gln Gln	Leucine
	1525	1530	1535	1540
Gln Asn Leu Thr	Glu Asp Ile Arg Glu	Arg Val Glu Thr Leu	Ser Gln Val Glu Val	Isoleucine
	1545	1550	1555	1560
Leu Gln Gln Ser	Ala Ala Asp Ile Ala	Arg Ala Glu Leu Leu	Leu Glu Glu Ala Lys	Arginine
	1565	1570	1575	1580
Ala Ser Lys Ser	Ala Thr Asp Val Lys	Val Thr Ala Asp Met	Val Lys Glu Ala Leu	Glutamine
	1585	1590	1595	1600
Glu Ala Glu Lys	Ala Gln Val Ala Ala	Glu Lys Ala Ile Lys	Gln Ala Asp Glu Asp	Isoleucine
	1605	1610	1615	1620
Gln Gly Thr Gln	Asn Leu Leu Thr Ser	Ile Glu Ser Glu Thr	Ala Ala Ser Glu Glu	Threonine
	1625	1630	1635	1640
Leu Thr Asn Ala	Ser Gln Arg Ile Ser	Lys Leu Glu Arg Asn Val	Glu Glu Leu Lys	Arginine
	1645	1650	1655	1660
Lys Ala Ala Gln	Asn Ser Gly Glu Ala	Glu Tyr Ile Glu Lys	Val Val Tyr Ser Val	Lysine
	1665	1670	1675	1680
Gln Asn Ala Asp	Asp Val Lys Thr	Leu Asp Gly Glu Leu	Asp Glu Lys Tyr Lys	Lysine
	1685	1690	1695	1700
Val Glu Ser Leu	Ile Ala Gln Lys Thr	Glu Glu Ser Ala Asp	Ala Arg Arg Lys Ala	Glutamate
	1705	1710	1715	1720
Leu Leu Gln Asn	Glu Ala Lys Thr Leu	Leu Ala Gln Ala Asn	Ser Lys Leu Gln Leu	Leucine
	1725	1730	1735	1740
Glu Asp Leu Glu	Arg Lys Tyr Glu Asp	Asn Gln Lys Tyr Leu	Glu Asp Lys Ala Gln	Glutamate
	1745	1750	1755	1760
Leu Val Arg Leu	Glu Gly Glu Val Arg	Ser Leu Leu Lys Asp	Ile Ser Glu Lys Val	Alanine
	1765	1770	1775	1780
Val Tyr Ser Thr	Cys Leu			
	1785			

(2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1801 AMINO ACIDS
- (B) TYPE: AMINO ACID
- (C) STRANDEDNESS:
- (D) TOPOLOGY: LINEAR

(ii) MOLECULAR TYPE: PROTEIN

(ix) FEATURE:

- (D) OTHER INFORMATION: AMINO ACID NUMBERING ACCORDING TO TRANSLATION OF GENE BANK ACCESSION NUMBER P15800

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Met	Glu	Trp	Ala	Ser	Gly	Lys	Pro	Gly	Arg	Gly	Gln	Gly	Gln	Pro	Val	Pro	Trp	Glu	
1	5				10						15							20	
Leu	Arg	Leu	Gly	Leu	Leu	Leu	Ser	Val	Leu	Ala	Ala	Thr	Leu	Ala	Gln	Val	Pro	Ser	Leu
					25				30					35					40
Asp	Val	Pro	Gly	Cys	Ser	Arg	Gly	Ser	Cys	Tyr	Pro	Ala	Thr	Gly	Asp	Leu	Leu	Val	Gly
					45				50					55					60
Arg	Ala	Asp	Arg	Leu	Thr	Ala	Ser	Ser	Thr	Cys	Gly	Leu	His	Ser	Pro	Gln	Pro	Tyr	Cys
					65				70					75					80
Ile	Val	Ser	His	Leu	Gln	Asp	Glu	Lys	Lys	Cys	Phe	Leu	Cys	Asp	Ser	Arg	Arg	Pro	Phe
					85				90					95					100
Ser	Ala	Arg	Asp	Asn	Pro	Asn	Ser	His	Arg	Ile	Gln	Asn	Val	Val	Thr	Ser	Phe	Ala	Pro
					105				110					115					120
Gln	Arg	Arg	Thr	Ala	Trp	Trp	Gln	Ser	Glu	Asn	Gly	Val	Pro	Met	Val	Thr	Ile	Gln	Leu
					125				130					135					140
Asp	Leu	Glu	Ala	Glu	Phe	His	Phe	Thr	His	Leu	Ile	Met	Thr	Phe	Lys	Thr	Phe	Arg	Pro
					145				150					155					160
Ala	Ala	Met	Leu	Val	Glu	Arg	Ser	Ala	Asp	Phe	Gly	Arg	Thr	Trp	Arg	Val	Tyr	Arg	Tyr
					165				170					175					180
Phe	Ser	Tyr	Asp	Cys	Gly	Ala	Asp	Phe	Pro	Gly	Ile	Pro	Leu	Ala	Pro	Pro	Arg	Arg	Trp
					185				190					195					200
Asp	Asp	Val	Val	Cys	Glu	Ser	Arg	Tyr	Ser	Glu	Ile	Glu	Pro	Ser	Thr	Glu	Gly	Glu	Val
				205				210					215					220	
Ile	Tyr	Arg	Val	Leu	Asp	Pro	Ala	Ile	Pro	Ile	Pro	Asp	Pro	Tyr	Ser	Ser	Arg	Ile	Gln
				225				230					235					240	
Asn	Leu	Leu	Lys	Ile	Thr	Asn	Leu	Arg	Val	Asn	Leu	Thr	Arg	Leu	His	Thr	Leu	Gly	Asp
				245				250					255					260	
Asn	Leu	Leu	Asp	Pro	Arg	Arg	Glu	Ile	Arg	Glu	Lys	Tyr	Tyr	Tyr	Ala	Leu	Tyr	Glu	Leu
				265				270					275					280	
Val	Ile	Arg	Gly	Asn	Cys	Phe	Cys	Tyr	Gly	His	Ala	Ser	Gln	Cys	Ala	Pro	Ala	Pro	Gly
				285				290					295					300	
Ala	Pro	Ala	His	Ala	Glu	Gly	Met	Val	His	Gly	Ala	Cys	Ile	Cys	Lys	His	Asn	Thr	Arg
				305				310					315					320	
Gly	Leu	Asn	Cys	Glu	Gln	Cys	Gln	Asp	Phe	Tyr	Gln	Asp	Leu	Pro	Trp	His	Pro	Ala	Glu
				325				330					335					340	
Asp	Gly	His	Thr	His	Ala	Cys	Arg	Lys	Cys	Glu	Cys	Asn	Gly	His	Ser	His	Ser	Cys	His
				345				350					355					360	
Phe	Asp	Met	Ala	Val	Tyr	Leu	Ala	Ser	Gly	Asn	Val	Ser	Gly	Gly	Val	Cys	Asp	Gly	Cys
				365				370					375					380	
Gln	His	Asn	Thr	Ala	Gly	Arg	His	Cys	Glu	Leu	Cys	Arg	Pro	Phe	Phe	Tyr	Arg	Asp	Pro
				385				390					395					400	
Thr	Lys	Asp	Met	Arg	Asp	Pro	Ala	Ala	Cys	Arg	Pro	Cys	Asp	Cys	Asp	Pro	Met	Gly	Ser
				405				410					415					420	
Gln	Asp	Gly	Gly	Arg	Cys	Asp	Ser	His	Asp	Asp	Pro	Val	Leu	Gly	Leu	Val	Ser	Gly	Gln
				425				430					435					440	
Cys	Arg	Cys	Lys	Glu	His	Val	Val	Gly	Thr	Arg	Cys	Gln	Gln	Cys	Arg	Asp	Gly	Phe	Phe
				445				450					455					460	
Gly	Leu	Ser	Ala	Ser	Asn	Pro	Arg	Gly	Cys	Gln	Arg	Cys	Gln	Cys	Asn	Ser	Arg	Gly	Thr
				465				470					475					480	
Val	Pro	Gly	Gly	Thr	Pro	Cys	Asp	Ser	Ser	Ser	Gly	Thr	Cys	Phe	Cys	Lys	Arg	Leu	Val
				485				490					495					500	
Thr	Gly	Asp	Gly	Cys	Asp	Arg	Cys	Leu	Pro	Gly	His	Trp	Gly	Leu	Ser	His	Asp	Leu	Leu
				505				510					515					520	
Gly	Cys	Arg	Pro	Cys	Asp	Cys	Asp	Val	Gly	Gly	Ala	Leu	Asp	Pro	Gln	Cys	Asp	Glu	Ala
				525				530					535					540	
Thr	Gly	Gln	Cys	Pro	Cys	Arg	Pro	His	Met	Ile	Gly	Arg	Arg	Cys	Glu	Gln	Val	Gln	Pro
				545				550					555					560	
Gly	Tyr	Phe	Arg	Pro	Phe	Leu	Asp	His	Leu	Thr	Trp	Glu	Ala	Glu	Gly	Ala	His	Gly	Gln
				565				570					575					580	
Val	Leu	Glu	Val	Val	Glu	Arg	Leu	Val	Thr	Asn	Arg	Glu	Thr	Pro	Ser	Trp	Thr	Gly	Val
				585				590					595					600	
Gly	Phe	Val	Arg	Leu	Arg	Gly	Gly	Gln	Glu	Val	Glu	Phe	Leu	Val	Thr	Ser	Leu	Pro	Arg

605	610	615	620
Ala Met Asp Tyr Asp Leu Leu Leu Arg Trp Glu Pro Gln Val Pro Glu Gln Trp Ala Glu	625	630	640
Leu Glu Leu Val Val Gln Arg Pro Gly Pro Val Ser Ala His Ser Pro Cys Gly His Val	645	650	660
Leu Pro Arg Asp Asp Arg Ile Gln Gly Met Leu His Pro Asn Thr Arg Val Leu Val Phe	665	670	680
Pro Arg Pro Val Cys Leu Glu Pro Gly Leu Ser Tyr Lys Leu Lys Leu Lys Leu Thr Gly	685	690	700
Thr Gly Gly Arg Ala His Pro Glu Thr Pro Tyr Ser Gly Ser Gly Ile Leu Ile Asp Ser	705	710	720
Leu Val Leu Gln Pro His Val Leu Met Leu Glu Met Phe Ser Gly Gly Asp Ala Ala Ala	725	730	740
Leu Glu Arg Arg Thr Thr Phe Glu Arg Tyr Arg Cys His Glu Glu Gly Leu Met Pro Ser	745	750	760
Lys Thr Pro Leu Ser Glu Ala Cys Val Pro Leu Leu Ile Ser Ala Ser Ser Leu Val Tyr	765	770	780
Asn Gly Ala Leu Pro Cys Gln Cys Asp Pro Gln Gly Ser Leu Ser Ser Glu Cys Asn Pro	785	790	800
His Gly Gly Gln Cys Arg Cys Lys Pro Gly Val Val Gly Arg Arg Cys Asp Ala Cys Ala	805	810	820
Thr Gly Tyr Tyr Gly Phe Gly Pro Ala Gly Cys Gln Ala Cys Gln Cys Ser Pro Asp Gly	825	830	840
Ala Leu Ser Ala Leu Cys Glu Gly Thr Ser Gly Gln Cys Leu Cys Arg Thr Gly Ala Phe	845	850	860
Gly Leu Arg Cys Asp His Cys Gln Arg Gly Gln Trp Gly Phe Pro Asn Cys Arg Pro Cys	865	870	880
Val Cys Asn Gly Arg Ala Asp Glu Cys Asp Ala His Thr Gly Ala Cys Leu Gly Cys Arg	885	890	900
Asp Tyr Thr Gly Gly Glu His Cys Glu Arg Cys Ile Ala Gly Phe His Gly Asp Pro Arg	905	910	920
Leu Pro Tyr Gly Gly Gln Cys Arg Pro Cys Pro Cys Pro Glu Gly Pro Gly Ser Gln Arg	925	930	940
His Phe Ala Thr Ser Cys His Arg Asp Gly Tyr Ser Gln Gln Ile Val Cys His Cys Arg	945	950	960
Ala Gly Tyr Thr Gly Leu Arg Cys Glu Ala Cys Ala Pro Gly His Phe Gly Asp Pro Ser	965	970	980
Lys Pro Gly Gly Arg Cys Gln Leu Cys Glu Cys Ser Gly Asn Ile Asp Pro Thr Asp Pro	985	990	1000
Gly Ala Cys Asp Pro His Thr Gly Gln Cys Leu Arg Cys Leu His His Thr Glu Gly Pro	1005	1010	1020
His Cys Gly His Cys Lys Pro Gly Phe His Gly Gln Ala Ala Arg Gln Ser Cys His Arg	1025	1030	1040
Cys Thr Cys Asn Leu Leu Gly Thr Asp Pro Gln Arg Cys Pro Ser Thr Asp Leu Cys His	1045	1050	1060
Cys Asp Pro Ser Thr Gly Gln Cys Pro Cys Leu Pro His Val Gln Gly Leu Ser Cys Asp	1065	1070	1080
Arg Cys Ala Pro Asn Phe Trp Asn Phe Thr Ser Gly Arg Gly Cys Gln Pro Cys Ala Cys	1085	1090	1100
His Pro Ser Arg Ala Arg Gly Pro Thr Cys Asn Glu Phe Thr Gly Gln Cys His Cys His	1105	1110	1120
Ala Gly Phe Gly Gly Arg Thr Cys Ser Glu Cys Gln Glu Leu His Trp Gly Asp Pro Gly	1125	1130	1140
Leu Gln Cys Arg Ala Cys Asp Cys Asp Pro Arg Gly Ile Asp Lys Pro Gln Cys His Arg	1145	1150	1160
Ser Thr Gly His Cys Ser Cys Arg Pro Gly Val Ser Gly Val Arg Cys Asp Gln Cys Ala	1165	1170	1180
Arg Gly Phe Ser Gly Val Phe Pro Ala Cys His Pro Cys His Ala Cys Phe Gly Asp Trp	1185	1190	1200
Asp Arg Val Val Gln Asp Leu Ala Ala Arg Thr Arg Arg Leu Glu Gln Trp Ala Gln Glu	1205	1210	1220
Leu Gln Gln Thr Gly Val Leu Gly Ala Phe Glu Ser Ser Phe Leu Asn Leu Gln Gly Lys	1225	1230	1240

Leu Gly Met Val Gln Ala Ile Val Ala Ala Arg Asn Thr Ser Ala Ala Ser Thr Ala Lys
 1245 1250 1255 1260
 Leu Val Glu Ala Thr Glu Gly Leu Arg His Glu Ile Gly Lys Thr Thr Glu Arg Leu Thr
 1265 1270 1275 1280
 Gln Leu Glu Ala Glu Leu Thr Asp Val Gln Asp Glu Asn Phe Asn Ala Asn His Ala Leu
 1285 1290 1295 1300
 Ser Gly Leu Glu Arg Asp Gly Leu Ala Leu Asn Leu Thr Leu Arg Gln Leu Asp Gln His
 1305 1310 1315 1320
 Leu Asp Ile Leu Lys His Ser Asn Phe Leu Gly Ala Tyr Asp Ser Ile Arg His Ala His
 1325 1330 1335 1340
 Ser Gln Ser Thr Glu Ala Glu Arg Arg Ala Asn Ala Ser Thr Phe Ala Ile Pro Ser Pro
 1345 1350 1355 1360
 Val Ser Asn Ser Ala Asp Thr Arg Arg Ala Glu Val Leu Met Gly Ala Gln Arg Glu
 1365 1370 1375 1380
 Asn Phe Asn Arg Gln His Leu Ala Asn Gln Gln Ala Leu Gly Arg Leu Ser Thr His Thr
 1385 1390 1395 1400
 His Thr Leu Ser Leu Thr Gly Val Asn Glu Leu Val Cys Gly Ala Pro Gly Asp Ala Pro
 1405 1410 1415 1420
 Cys Ala Thr Ser Pro Cys Gly Gly Ala Gly Cys Arg Asp Glu Asp Gly Gln Pro Arg Cys
 1425 1430 1435 1440
 Gly Gly Leu Gly Cys Ser Gly Ala Ala Ala Thr Ala Asp Leu Ala Leu Gly Arg Ala Arg
 1445 1450 1455 1460
 His Thr Gln Ala Glu Leu Gln Arg Ala Leu Val Glu Gly Gly Ile Leu Ser Arg Val
 1465 1470 1475 1480
 Ser Glu Thr Arg Arg Gln Ala Glu Glu Ala Gln Gln Arg Ala Gln Ala Ala Leu Asp Lys
 1485 1490 1495 1500
 Ala Asn Ala Ser Arg Gln Val Glu Gln Ala Asn Gln Glu Leu Arg Glu Leu Ile Gln
 1505 1510 1515 1520
 Asn Val Lys Asp Phe Leu Ser Gln Glu Gly Ala Asp Pro Asp Ser Ile Glu Met Val Ala
 1525 1530 1535 1540
 Thr Arg Val Leu Asp Ile Ser Ile Pro Ala Ser Pro Glu Gln Ile Gln Arg Leu Ala Ser
 1545 1550 1555 1560
 Glu Ile Ala Glu Arg Val Arg Ser Leu Ala Asp Val Asp Thr Ile Leu Ala His Thr Met
 1565 1570 1575 1580
 Gly Asp Val Arg Arg Ala Glu Gln Leu Leu Gln Asp Ala Gln Arg Ala Arg Ser Arg Ala
 1585 1590 1595 1600
 Glu Gly Glu Arg Gln Lys Ala Glu Thr Val Gln Ala Ala Leu Glu Glu Ala Gln Arg Ala
 1605 1610 1615 1620
 Gln Gly Ala Ala Gln Gly Ala Ile Arg Gly Ala Val Val Asp Thr Lys Asn Thr Glu Gln
 1625 1630 1635 1640
 Thr Leu Gln Gln Val Gln Glu Arg Met Ala Gly Thr Glu Gln Ser Leu Asn Ser Ala Ser
 1645 1650 1655 1660
 Glu Arg Ala Arg Gln Leu His Ala Leu Leu Glu Ala Leu Lys Leu Lys Arg Ala Gly Asn
 1665 1670 1675 1680
 Ser Leu Ala Ala Ser Thr Ala Glu Glu Thr Ala Gly Ser Ala Gln Ser Arg Ala Arg Glu
 1685 1690 1695 1700
 Ala Glu Lys Gln Leu Arg Glu Gln Val Gly Asp Gln Tyr Gln Thr Val Arg Ala Leu Ala
 1705 1710 1715 1720
 Glu Arg Lys Ala Glu Gly Val Leu Ala Ala Gln Ala Arg Ala Glu Gln Leu Arg Asp Glu
 1725 1730 1735 1740
 Ala Arg Gly Leu Leu Gln Ala Ala Gln Asp Lys Leu Gln Arg Leu Gln Glu Leu Glu Gly
 1745 1750 1755 1760
 Thr Tyr Glu Glu Asn Glu Arg Glu Leu Glu Val Lys Ala Ala Gln Leu Asp Gly Leu Glu
 1765 1770 1775 1780
 Ala Arg Met Arg Ser Val Leu Gln Ala Ile Asn Leu Gln Val Gln Ile Tyr Asn Thr Cys
 1785 1790 1795 1800
 Gln

(2) INFORMATION FOR SEQ ID NO: 9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1798 AMINO ACIDS
- (B) TYPE: AMINO ACID
- (C) STRANDEDNESS:
- (D) TOPOLOGY: LINEAR

(ii) MOLECULAR TYPE: PROTEIN

(ix) FEATURE:

(D) OTHER INFORMATION: AMINO ACID NUMBERING ACCORDING TO TRANSLATION OF
GENEBANK ACCESSION NUMBER P55268

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

Met	Glu	Leu	Thr	Ser	Arg	Glu	Arg	Gly	Arg	Gln	Pro	Leu	Pro	Trp	Glu	Leu	Arg	Leu
1	5					10					15				20			
Gly	Leu	Leu	Leu	Ser	Val	Leu	Ala	Ala	Thr	Leu	Ala	Gln	Ala	Pro	Ala	Pro	Asp	Val
									30					35				40
Gly	Cys	Ser	Arg	Gly	Ser	Cys	Tyr	Pro	Ala	Thr	Gly	Asp	Leu	Leu	Val	Gly	Arg	Ala
								45		50				55				60
Arg	Leu	Thr	Ala	Ser	Ser	Thr	Cys	Gly	Leu	Asn	Gly	Pro	Gln	Pro	Tyr	Cys	Ile	Val
								65		70				75				80
His	Leu	Gln	Asp	Glu	Lys	Lys	Cys	Phe	Leu	Cys	Asp	Ser	Arg	Arg	Pro	Phe	Ser	Ala
								85		90				95				100
Asp	Asn	Pro	His	Ser	His	Arg	Ile	Gln	Asn	Val	Val	Thr	Ser	Phe	Ala	Pro	Gln	Arg
							105		110					115				120
Ala	Ala	Trp	Trp	Gln	Ser	Glu	Asn	Gly	Ile	Pro	Ala	Val	Thr	Ile	Gln	Leu	Asp	Leu
							125		130					135				140
Ala	Glu	Phe	His	Phe	Thr	His	Leu	Ile	Met	Thr	Phe	Lys	Thr	Phe	Arg	Pro	Ala	Ala
							145		150					155				160
Leu	Val	Glu	Arg	Ser	Ala	Asp	Phe	Gly	Arg	Thr	Trp	His	Val	Tyr	Arg	Tyr	Phe	Ser
							165		170					175				180
Asp	Cys	Gly	Ala	Asp	Phe	Pro	Gly	Val	Pro	Leu	Ala	Pro	Pro	Arg	His	Trp	Asp	Asp
							185		190					195				200
Val	Cys	Glu	Ser	Arg	Tyr	Ser	Glu	Ile	Glu	Pro	Ser	Thr	Glu	Gly	Glu	Val	Ile	Tyr
							205		210					215				220
Val	Leu	Asp	Pro	Ala	Ile	Pro	Ile	Pro	Asp	Pro	Tyr	Ser	Ser	Arg	Ile	Gln	Asn	Leu
							225		230					235				240
Lys	Ile	Thr	Asn	Leu	Arg	Val	Asn	Leu	Thr	Arg	Leu	His	Thr	Leu	Gly	Asp	Asn	Leu
							245		250					255				260
Asp	Pro	Arg	Arg	Glu	Ile	Arg	Glu	Lys	Tyr	Tyr	Tyr	Ala	Leu	Tyr	Glu	Leu	Val	Val
							265		270					275				280
Gly	Asn	Cys	Phe	Cys	Tyr	Gly	His	Ala	Ser	Glu	Cys	Ala	Pro	Ala	Pro	Gly	Ala	Pro
							285		290					295				300
His	Ala	Glu	Gly	Met	Val	His	Gly	Ala	Cys	Ile	Cys	Lys	His	Asn	Thr	Arg	Gly	Leu
							305		310					315				320
Cys	Glu	Gln	Cys	Gln	Asp	Phe	Tyr	Arg	Asp	Leu	Pro	Trp	Arg	Pro	Ala	Glu	Asp	Gly
							325		330					335				340
Ser	His	Ala	Cys	Arg	Lys	Cys	Glu	Cys	His	Gly	His	Thr	His	Ser	Cys	His	Phe	Asp
							345		350					355				360
Ala	Val	Tyr	Leu	Ala	Ser	Gly	Asn	Val	Ser	Gly	Gly	Val	Cys	Asp	Gly	Cys	Gln	His
							365		370					375				380
Thr	Ala	Gly	Arg	His	Cys	Glu	Leu	Cys	Arg	Pro	Phe	Phe	Tyr	Arg	Asp	Pro	Thr	Lys
							385		390					395				400
Leu	Arg	Asp	Pro	Ala	Val	Cys	Arg	Ser	Cys	Asp	Cys	Asp	Pro	Met	Gly	Ser	Gln	Asp
							405		410					415				420
Gly	Arg	Cys	Asp	Ser	His	Asp	Asp	Pro	Ala	Leu	Gly	Leu	Val	Ser	Gly	Gln	Cys	Arg
							425		430					435				440
Lys	Glu	His	Val	Val	Gly	Thr	Arg	Cys	Gln	Gln	Cys	Arg	Asp	Gly	Phe	Phe	Gly	Leu
							445		450					455				460
Ile	Ser	Asp	Arg	Leu	Gly	Cys	Arg	Arg	Cys	Gln	Cys	Asn	Ala	Arg	Gly	Thr	Val	Pro
							465		470					475				480
Ser	Thr	Pro	Cys	Asp	Pro	Asn	Ser	Gly	Ser	Cys	Tyr	Cys	Lys	Arg	Leu	Val	Thr	Gly
							485		490					495				500

Gly	Cys	Asp	Arg	Cys	Leu	Pro	Gly	His	Trp	Gly	Leu	Ser	His	Asp	Leu	Leu	Gly	Cys	Arg
					505				510					515					520
Pro	Cys	Asp	Cys	Asp	Val	Gly	Gly	Ala	Leu	Asp	Pro	Gln	Cys	Asp	Glu	Gly	Thr	Gly	Gln
					525				530					535					540
Cys	His	Cys	Arg	Gln	His	Met	Val	Gly	Arg	Arg	Cys	Glu	Gln	Val	Gln	Pro	Gly	Tyr	Phe
					545				550					555					560
Arg	Pro	Phe	Leu	Asp	His	Leu	Ile	Trp	Glu	Ala	Glu	Asp	Thr	Arg	Gly	Gln	Val	Leu	Asp
					565				570					575					580
Val	Val	Glu	Arg	Leu	Val	Thr	Pro	Gly	Glu	Thr	Pro	Ser	Trp	Thr	Gly	Ser	Gly	Phe	Val
					585				590					595					600
Arg	Leu	Gln	Glu	Gly	Gln	Thr	Leu	Glu	Phe	Leu	Val	Ala	Ser	Val	Pro	Lys	Ala	Met	Asp
					605				610					615					620
Tyr	Asp	Leu	Leu	Leu	Arg	Leu	Glu	Pro	Gln	Val	Pro	Glu	Gln	Trp	Ala	Glu	Leu	Glu	Leu
					625				630					635					640
Ile	Val	Gln	Arg	Pro	Gly	Pro	Val	Pro	Ala	His	Ser	Leu	Cys	Gly	His	Leu	Val	Pro	Lys
					645				650					655					660
Asp	Asp	Arg	Ile	Gln	Gly	Thr	Leu	Gln	Pro	His	Ala	Arg	Tyr	Leu	Ile	Phe	Pro	Asn	Pro
					665				670					675					680
Val	Cys	Leu	Glu	Pro	Gly	Ile	Ser	Tyr	Lys	Leu	His	Leu	Lys	Leu	Val	Arg	Thr	Gly	Gly
					685				690					695					700
Ser	Ala	Gln	Pro	Glu	Thr	Pro	Tyr	Ser	Gly	Pro	Gly	Leu	Leu	Ile	Asp	Ser	Leu	Val	Leu
					705				710					715					720
Leu	Pro	Arg	Val	Leu	Val	Leu	Glu	Met	Phe	Ser	Gly	Gly	Asp	Ala	Ala	Ala	Leu	Glu	Arg
					725				730					735					740
Gln	Ala	Thr	Phe	Glu	Arg	Tyr	Gln	Cys	His	Glu	Glu	Gly	Leu	Val	Pro	Ser	Lys	Thr	Ser
					745				750					755					760
Pro	Ser	Glu	Ala	Cys	Ala	Pro	Leu	Leu	Ile	Ser	Leu	Ser	Thr	Leu	Ile	Tyr	Asn	Gly	Ala
					765				770					775					780
Leu	Pro	Cys	Gln	Cys	Asn	Pro	Gln	Gly	Ser	Leu	Ser	Ser	Glu	Cys	Asn	Pro	His	Gly	Gly
					785				790					795					800
Gln	Cys	Leu	Cys	Lys	Pro	Gly	Val	Val	Gly	Arg	Arg	Cys	Asp	Leu	Cys	Ala	Pro	Gly	Tyr
					805				810					815					820
Tyr	Gly	Phe	Gly	Pro	Thr	Gly	Cys	Gln	Ala	Cys	Gln	Cys	Ser	His	Glu	Gly	Ala	Leu	Ser
					825				830					835					840
Ser	Leu	Cys	Glu	Lys	Thr	Ser	Gly	Gln	Cys	Leu	Cys	Arg	Thr	Gly	Ala	Phe	Gly	Leu	Arg
					845				850					855					860
Cys	Asp	Arg	Cys	Gln	Arg	Gly	Gln	Trp	Gly	Phe	Pro	Ser	Cys	Arg	Pro	Cys	Val	Cys	Asn
					865				870					875					880
Gly	His	Ala	Asp	Glu	Cys	Asn	Thr	His	Thr	Gly	Ala	Cys	Leu	Gly	Cys	Arg	Asp	His	Thr
					885				890					895					900
Gly	Gly	Glu	His	Cys	Glu	Arg	Cys	Ile	Ala	Gly	Phe	His	Arg	Asp	Pro	Arg	Leu	Pro	Tyr
					905				910					915					920
Gly	Gly	Gln	Cys	Arg	Pro	Cys	Pro	Cys	Pro	Glu	Gly	Pro	Gly	Ser	Gln	Arg	His	Phe	Ala
					925				930					935					940
Thr	Ser	Cys	His	Gln	Asp	Glu	Tyr	Ser	Gln	Gln	Ile	Val	Cys	His	Cys	Arg	Ala	Gly	Tyr
					945				950					955					960
Thr	Gly	Leu	Arg	Cys	Glu	Ala	Cys	Ala	Pro	Gly	His	Phe	Gly	Asp	Pro	Ser	Arg	Pro	Gly
					965				970					975					980
Gly	Arg	Cys	Gln	Leu	Cys	Glu	Cys	Ser	Gly	Asn	Ile	Asp	Pro	Met	Asp	Pro	Asp	Ala	Cys
					985				990					995					1000
Asp	Pro	His	Thr	Gly	Gln	Cys	Leu	Arg	Cys	Leu	His	His	Thr	Glu	Gly	Pro	His	Cys	Ala
					1005				1010					1015					1020
His	Cys	Lys	Pro	Gly	Phe	His	Gly	Gln	Ala	Ala	Arg	Gln	Ser	Cys	His	Arg	Cys	Thr	Cys
					1025				1030					1035					1040
Asn	Leu	Leu	Gly	Thr	Asn	Pro	Gln	Gln	Cys	Pro	Ser	Pro	Asp	Gln	Cys	His	Cys	Asp	Pro
					1045				1050					1055					1060
Ser	Ser	Gly	Gln	Cys	Pro	Cys	Leu	Pro	Asn	Val	Gln	Gly	Pro	Ser	Cys	Asp	Arg	Cys	Ala
					1065				1070					1075					1080
Pro	Asn	Phe	Trp	Asn	Leu	Thr	Ser	Gly	His	Gly	Cys	Gln	Pro	Cys	Ala	Cys	His	Pro	Ser
					1085				1090					1095					1100
Arg	Ala	Arg	Gly	Pro	Thr	Cys	Asn	Glu	Phe	Thr	Gly	Gln	Cys	His	Cys	Arg	Ala	Gly	Phe
					1105				1110					1115					1120
Gly	Gly	Arg	Thr	Cys	Ser	Glu	Cys	Gln	Glu	Leu	His	Trp	Gly	Asp	Pro	Gly	Leu	Gln	Cys

	1125	1130	1135	1140
His Ala Cys Asp	Cys Asp Ser Arg Gly	Ile Asp Thr Pro Gln	Cys His Arg Phe Thr	Gly
				1160
1145	1150	1155		
His Cys Ser Cys	Arg Pro Gly Val Ser	Gly Val Arg Cys Asp	Gln Cys Ala Arg Gly	Phe
				1180
1165	1170	1175		
Ser Gly Ile Phe	Pro Ala Cys His Pro	Cys His Ala Cys Phe	Gly Asp Trp Asp Arg	Val
				1200
1185	1190	1195		
Val Gln Asp Leu	Ala Ala Arg Thr Gln	Arg Leu Glu Gln Arg	Ala Gln Glu Leu Gln	Gln
				1220
1205	1210	1215		
Thr Gly Val Leu	Gly Ala Phe Glu Ser	Ser Phe Trp His Met	Gln Glu Lys Leu Gly	Ile
				1240
1225	1230	1235		
Val Gln Gly Ile	Val Gly Ala Arg Asn	Thr Ser Ala Ala Ser	Thr Ala Gln Leu Val	Glu
				1260
1245	1250	1255		
Ala Thr Glu Glu	Leu Arg Arg Glu Ile	Gly Glu Ala Thr Glu	His Leu Thr Gln Leu	Glu
				1280
1265	1270	1275		
Ala Asp Leu Thr	Asp Val Gln Asp Glu	Asn Phe Asn Ala Asn	His Ala Leu Ser Gly	Leu
				1300
1285	1290	1295		
Glu Arg Asp Arg	Leu Ala Leu Asn Leu	Thr Leu Arg Gln Leu	Asp Gln His Leu Asp	Leu
				1320
1305	1310	1315		
Leu Lys His Ser	Asn Phe Leu Gly Ala	Tyr Asp Ser Ile Arg	His Ala His Ser Gln	Ser
				1340
1325	1330	1335		
Ala Glu Ala Glu	Arg Arg Ala Asn Thr	Ser Ala Leu Ala Val	Pro Ser Pro Val Ser	Asn
				1360
1345	1350	1355		
Ser Ala Ser Ala	Arg His Arg Thr Glu	Ala Leu Met Asp Ala	Gln Lys Glu Asp Phe	Asn
				1380
1365	1370	1375		
Ser Lys His Met	Ala Asn Gln Arg Ala	Leu Gly Lys Leu Ser	Ala His Thr His Thr	Leu
				1400
1385	1390	1395		
Ser Leu Thr Asp	Ile Asn Glu Leu Val	Cys Gly Ala Pro Gly	Asp Ala Pro Cys Ala	Thr
				1420
1405	1410	1415		
Ser Pro Cys Gly	Gly Ala Gly Cys Arg	Asp Glu Asp Gly Gln	Pro Arg Cys Gly Gly	Leu
				1440
1425	1430	1435		
Ser Cys Asn Gly	Ala Ala Ala Thr Ala	Asp Leu Ala Leu Gly	Arg Ala Arg His Thr	Gln
				1460
1445	1450	1455		
Ala Glu Leu Gln	Arg Ala Leu Ala Glu	Gly Gly Ser Ile Leu	Ser Arg Val Ala Glu	Thr
				1480
1465	1470	1475		
Arg Arg Gln Ala	Ser Glu Ala Gln Gln	Arg Ala Gln Ala Ala	Leu Asp Lys Ala Asn	Ala
				1500
1485	1490	1495		
Ser Arg Gly Gln	Val Glu Gln Ala Asn	Gln Glu Leu Gln Glu	Leu Ile Gln Ser Val	Lys
				1520
1505	1510	1515		
Asp Phe Leu Asn	Gln Glu Gly Ala Asp	Pro Asp Ser Ile Glu	Met Val Ala Thr Arg	Val
				1540
1525	1530	1535		
Leu Glu Leu Ser	Ile Pro Ala Ser Ala	Glu Gln Ile Gln His	Leu Ala Gly Ala Ile	Ala
				1560
1545	1550	1555		
Glu Arg Val Arg	Ser Leu Ala Asp Val	Asp Ala Ile Leu Ala	Arg Thr Val Gly Asp	Val
				1580
1565	1570	1575		
Arg Arg Ala Glu	Gln Leu Leu Gln Asp	Ala Arg Arg Ala Arg	Ser Trp Ala Glu Asp	Glu
				1600
1585	1590	1595		
Lys Gln Lys Ala	Glu Thr Val Gln Ala	Ala Leu Glu Ala	Gln Arg Ala Gln Gly	Ile
				1620
1605	1610	1615		
Ala Gln Gly Ala	Ile Arg Gly Ala Val	Ala Asp Thr Arg Asp	Thr Glu Gln Thr Leu	Tyr
				1640
1625	1630	1635		
Gln Val Gln Glu	Arg Met Ala Gly Ala	Glu Arg Ala Leu Ser	Ser Ala Gly Glu Arg	Ala
				1660
1645	1650	1655		
Arg Gln Leu Asp	Ala Leu Leu Glu Ala	Leu Lys Leu Lys Arg	Ala Gly Asn Ser Leu	Ala
				1680
1665	1670	1675		
Ala Ser Thr Ala	Glu Glu Thr Ala Gly	Ser Ala Gln Gly Arg	Ala Gln Glu Ala Glu	Gln
				1700
1685	1690	1695		
Leu Leu Arg Gly	Pro Leu Gly Asp Gln	Tyr Gln Thr Val Lys	Ala Leu Ala Glu Arg	Lys
				1720
1705	1710	1715		
Ala Gln Gly Val	Leu Ala Ala Gln Ala	Arg Ala Glu Gln Leu	Arg Asp Glu Ala Arg	Asp
				1740
1725	1730	1735		
Leu Leu Gln Ala	Ala Gln Asp Lys Leu	Gln Arg Leu Gln Glu	Leu Glu Gly Thr Tyr	Glu
				1760
1745	1750	1755		

Glu	Asn	Glu	Arg	Ala	Leu	Glu	Ser	Lys	Ala	Ala	Gln	Leu	Asp	Gly	Leu	Glu	Ala	Arg	Met
				1765				1770						1775					1780
Arg	Ser	Val	Leu	Gln	Ala	Ile	Asn	Leu	Gln	Val	Gln	Ile	Tyr	Asn	Thr	Cys	Gln		
				1785				1790						1795					

(2) INFORMATION FOR SEQ ID NO: 10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1607 AMINO ACIDS
- (B) TYPE: AMINO ACID
- (C) STRANDEDNESS:
- (D) TOPOLOGY: LINEAR

(ii) MOLECULAR TYPE: PROTEIN

(ix) FEATURE:

(D) OTHER INFORMATION: AMINO ACID NUMBERING ACCORDING TO TRANSLATION OF GENEBOOK ACCESSION NUMBER P02468

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Met	Thr	Gly	Gly	Gly	Arg	Ala	Ala	Leu	Ala	Leu	Gln	Pro	Arg	Gly	Arg	Leu	Trp	Pro	Leu
1		5		10							15						20		
Leu	Ala	Val	Leu	Ala	Ala	Val	Ala	Gly	Cys	Val	Arg	Ala	Ala	Met	Asp	Glu	Cys	Ala	Asp
			25					30						35				40	
Glu	Gly	Gly	Arg	Pro	Gln	Arg	Cys	Met	Pro	Glu	Phe	Val	Asn	Ala	Ala	Phe	Asn	Val	Thr
			45					50						55				60	
Val	Val	Ala	Thr	Asn	Thr	Cys	Gly	Thr	Pro	Pro	Glu	Glu	Tyr	Cys	Val	Gln	Thr	Gly	Val
			65				70						75				80		
Thr	Gly	Val	Thr	Lys	Ser	Cys	His	Leu	Cys	Asp	Ala	Gly	Gln	Gln	His	Leu	Gln	His	Gly
			85				90						95				100		
Ala	Ala	Phe	Leu	Thr	Asp	Tyr	Asn	Asn	Gln	Ala	Asp	Thr	Thr	Trp	Trp	Gln	Ser	Gln	Thr
			105				110						115				120		
Met	Leu	Ala	Gly	Val	Gln	Tyr	Pro	Asn	Ser	Ile	Asn	Leu	Thr	Leu	His	Leu	Gly	Lys	Ala
			125				130						135				140		
Phe	Asp	Ile	Thr	Tyr	Val	Arg	Leu	Lys	Phe	His	Thr	Ser	Arg	Pro	Glu	Ser	Phe	Ala	Ile
			145				150						155				160		
Tyr	Lys	Arg	Thr	Arg	Glu	Asp	Gly	Pro	Trp	Ile	Pro	Tyr	Gln	Tyr	Tyr	Ser	Gly	Ser	Cys
			165				170						175				180		
Glu	Asn	Thr	Tyr	Ser	Lys	Ala	Asn	Arg	Gly	Phe	Ile	Arg	Thr	Gly	Gly	Asp	Glu	Gln	Gln
			185				190						195				200		
Ala	Leu	Cys	Thr	Asp	Glu	Phe	Ser	Asp	Ile	Ser	Pro	Leu	Thr	Gly	Gly	Asn	Val	Ala	Phe
			205				210						215				220		
Ser	Thr	Leu	Glu	Gly	Arg	Pro	Ser	Ala	Tyr	Asn	Phe	Asp	Asn	Ser	Pro	Val	Leu	Gln	Glu
			225				230						235				240		
Trp	Val	Thr	Ala	Thr	Asp	Ile	Arg	Val	Thr	Leu	Asn	Arg	Leu	Asn	Thr	Phe	Gly	Asp	Glu
			245				250						255				260		
Val	Phe	Asn	Glu	Pro	Lys	Val	Leu	Lys	Ser	Tyr	Tyr	Tyr	Ala	Ile	Ser	Asp	Phe	Ala	Val
			265				270						275				280		
Gly	Gly	Arg	Cys	Lys	Cys	Asn	Gly	His	Ala	Ser	Glu	Cys	Val	Lys	Asn	Glu	Phe	Asp	Lys
			285				290						295				300		
Leu	Met	Cys	Asn	Cys	Lys	His	Asn	Thr	Tyr	Gly	Val	Asp	Cys	Glu	Lys	Cys	Leu	Pro	Phe
			305				310						315				320		
Phe	Asn	Asp	Arg	Pro	Trp	Arg	Arg	Ala	Thr	Ala	Glu	Ser	Ala	Ser	Glu	Ser	Leu	Pro	Cys
			325				330						335				340		
Asp	Cys	Asn	Gly	Arg	Ser	Gln	Glu	Cys	Tyr	Phe	Asp	Pro	Glu	Leu	Tyr	Arg	Ser	Thr	Gly
			345				350						355				360		
His	Gly	Gly	His	Cys	Thr	Asn	Cys	Arg	Asp	Asn	Thr	Asp	Gly	Ala	Lys	Cys	Glu	Arg	Cys
			365				370						375				380		
Arg	Glu	Asn	Phe	Phe	Arg	Leu	Gly	Asn	Thr	Glu	Ala	Cys	Ser	Pro	Cys	His	Cys	Ser	Pro
			385				390						395				400		
Val	Gly	Ser	Leu	Ser	Thr	Gln	Cys	Asp	Ser	Tyr	Gly	Arg	Cys	Ser	Cys	Lys	Pro	Gly	Val

405	410	415	420
Met Gly Asp Lys Cys Asp Arg Cys Gln Pro Gly Phe His Ser Leu Thr Glu Ala Gly Cys	425	430	440
Arg Pro Cys Ser Cys Asp Leu Arg Gly Ser Thr Asp Glu Cys Asn Val Glu Thr Gly Arg	445	450	460
Cys Val Cys Lys Asp Asn Val Glu Gly Phe Asn Cys Glu Arg Cys Lys Pro Gly Phe Phe	465	470	480
Asn Leu Glu Ser Ser Asn Pro Lys Gly Cys Thr Pro Cys Phe Cys Phe Gly His Ser Ser	485	490	500
Val Cys Thr Asn Ala Val Gly Tyr Ser Val Tyr Asp Ile Ser Ser Thr Phe Gln Ile Asp	505	510	520
Glu Asp Gly Trp Arg Val Glu Gln Arg Asp Gly Ser Glu Ala Ser Leu Glu Trp Ser Ser	525	530	540
Asp Arg Gln Asp Ile Ala Val Ile Ser Asp Ser Tyr Phe Pro Arg Tyr Phe Ile Ala Pro	545	550	560
Val Lys Phe Leu Gly Asn Gln Val Leu Ser Tyr Gly Gln Asn Leu Ser Phe Ser Phe Arg	565	570	580
Val Asp Arg Arg Asp Thr Arg Leu Ser Ala Glu Asp Leu Val Leu Glu Gly Ala Gly Leu	585	590	600
Arg Val Ser Val Pro Leu Ile Ala Gln Gly Asn Ser Tyr Pro Ser Glu Thr Thr Val Lys	605	610	620
Tyr Ile Phe Arg Leu His Glu Ala Thr Asp Tyr Pro Trp Arg Pro Ala Leu Ser Pro Phe	625	630	640
Glu Phe Gln Lys Leu Leu Asn Asn Leu Thr Ser Ile Lys Ile Arg Gly Thr Tyr Ser Glu	645	650	660
Arg Thr Ala Gly Tyr Leu Asp Asp Val Thr Leu Gln Ser Ala Arg Pro Gly Pro Gly Val	665	670	680
Pro Ala Thr Trp Val Glu Ser Cys Thr Cys Pro Val Gly Tyr Gly Gly Gln Phe Cys Glu	685	690	700
Thr Cys Leu Pro Gly Tyr Arg Arg Glu Thr Pro Ser Leu Gly Pro Tyr Ser Pro Cys Val	705	710	720
Leu Cys Thr Cys Asn Gly His Ser Glu Thr Cys Asp Pro Glu Thr Gly Val Cys Asp Cys	725	730	740
Arg Asp Asn Thr Ala Gly Pro His Cys Glu Lys Cys Ser Asp Gly Tyr Tyr Gly Asp Ser	745	750	760
Thr Leu Gly Thr Ser Ser Asp Cys Gln Pro Cys Pro Cys Pro Gly Gly Ser Ser Cys Ala	765	770	780
Ile Val Pro Lys Thr Lys Glu Val Val Cys Thr His Cys Pro Thr Gly Thr Ala Gly Lys	785	790	800
Arg Cys Glu Leu Cys Asp Asp Gly Tyr Phe Gly Asp Pro Leu Gly Ser Asn Gly Pro Val	805	810	820
Arg Leu Cys Arg Pro Cys Gln Cys Asn Asp Asn Ile Asp Pro Asn Ala Val Gly Asn Cys	825	830	840
Asn Arg Leu Thr Gly Glu Cys Leu Lys Cys Ile Tyr Asn Thr Ala Gly Phe Tyr Cys Asp	845	850	860
Arg Cys Lys Glu Gly Phe Phe Gly Asn Pro Leu Ala Pro Asn Pro Ala Asp Lys Cys Lys	865	870	880
Ala Cys Ala Cys Asn Pro Tyr Gly Thr Val Gln Gln Gln Ser Ser Cys Asn Pro Val Thr	885	890	900
Gly Gln Cys Gln Cys Leu Pro His Val Ser Gly Arg Asp Cys Gly Thr Cys Asp Pro Gly	905	910	920
Tyr Tyr Asn Leu Gln Ser Gly Gln Gly Cys Glu Arg Cys Asp Cys His Ala Leu Gly Ser	925	930	940
Thr Asn Gly Gln Cys Asp Ile Arg Thr Gly Gln Cys Glu Cys Gln Pro Gly Ile Thr Gly	945	950	960
Gln His Cys Glu Arg Cys Glu Thr Asn His Phe Gly Phe Gly Pro Glu Gly Cys Lys Pro	965	970	980
Cys Asp Cys His His Glu Gly Ser Leu Ser Leu Gln Cys Lys Asp Asp Gly Arg Cys Glu	985	990	1000
Cys Arg Glu Gly Phe Val Gly Asn Arg Cys Asp Gln Cys Glu Glu Asn Tyr Phe Tyr Asn	1005	1010	1020
Arg Ser Trp Pro Gly Cys Gln Glu Cys Pro Ala Cys Tyr Arg Leu Val Lys Asp Lys Ala	1025	1030	1040

Ala Glu His Arg Val Lys Leu Gln Glu Leu Glu Ser Leu Ile Ala Asn Leu Gly Thr Gly
 1045 1050 1055 1060
 Asp Asp Met Val Thr Asp Gln Ala Phe Glu Asp Arg Leu Lys Glu Ala Glu Arg Glu Val
 1065 1070 1075 1080
 Thr Asp Leu Leu Arg Glu Ala Gln Glu Val Lys Asp Val Asp Gln Asn Leu Met Asp Arg
 1085 1090 1095 1100
 Leu Gln Arg Val Asn Ser Ser Leu His Ser Gln Ile Ser Arg Leu Gln Asn Ile Arg Asn
 1105 1110 1115 1120
 Thr Ile Glu Glu Thr Gly Ile Leu Ala Glu Arg Ala Arg Ser Arg Val Glu Ser Thr Glu
 1125 1130 1135 1140
 Gln Leu Ile Glu Ile Ala Ser Arg Glu Leu Glu Lys Ala Lys Met Ala Ala Ala Asn Val
 1145 1150 1155 1160
 Ser Ile Thr Gln Pro Glu Ser Thr Gly Glu Pro Asn Asn Met Thr Leu Leu Ala Glu Glu
 1165 1170 1175 1180
 Ala Arg Arg Leu Ala Glu Arg His Lys Gln Glu Ala Asp Asp Ile Val Arg Val Ala Lys
 1185 1190 1195 1200
 Thr Ala Asn Glu Thr Ser Ala Glu Ala Tyr Asn Leu Leu Leu Arg Thr Leu Ala Gly Glu
 1205 1210 1215 1220
 Asn Gln Thr Ala Leu Glu Ile Glu Glu Leu Asn Arg Lys Tyr Glu Gln Ala Lys Asn Ile
 1225 1230 1235 1240
 Ser Gln Asp Leu Glu Lys Gln Ala Ala Arg Val His Glu Glu Ala Lys Arg Ala Gly Asp
 1245 1250 1255 1260
 Lys Ala Val Glu Ile Tyr Ala Ser Val Ala Gln Leu Thr Pro Val Asp Ser Glu Ala Leu
 1265 1270 1275 1280
 Glu Asn Glu Ala Asn Lys Ile Lys Lys Glu Ala Ala Asp Leu Asp Arg Leu Ile Asp Gln
 1285 1290 1295 1300
 Lys Leu Lys Asp Tyr Glu Asp Leu Arg Glu Asp Met Arg Gly Lys Glu His Glu Val Lys
 1305 1310 1315 1320
 Asn Leu Leu Glu Lys Gly Lys Ala Glu Gln Gln Thr Ala Asp Gln Leu Leu Ala Arg Ala
 1325 1330 1335 1340
 Asp Ala Ala Lys Ala Leu Ala Glu Glu Ala Ala Lys Lys Gly Arg Ser Thr Leu Gln Glu
 1345 1350 1355 1360
 Ala Asn Asp Ile Leu Asn Asn Leu Lys Asp Phe Asp Arg Arg Val Asn Asp Asn Lys Thr
 1365 1370 1375 1380
 Ala Ala Glu Glu Ala Leu Arg Arg Ile Pro Ala Ile Asn Arg Thr Ile Ala Glu Ala Asn
 1385 1390 1395 1400
 Glu Lys Thr Arg Glu Ala Gln Leu Ala Leu Gly Asn Ala Ala Ala Asp Ala Thr Glu Ala
 1405 1410 1415 1420
 Lys Asn Lys Ala His Glu Ala Glu Arg Ile Ala Ser Ala Val Gln Lys Asn Ala Thr Ser
 1425 1430 1435 1440
 Thr Lys Ala Asp Ala Glu Arg Thr Phe Gly Glu Val Thr Asp Leu Asp Asn Glu Val Asn
 1445 1450 1455 1460
 Gly Met Leu Arg Gln Leu Glu Glu Ala Glu Asn Glu Leu Lys Arg Lys Gln Asp Asp Ala
 1465 1470 1475 1480
 Asp Gln Asp Met Met Met Ala Gly Met Ala Ser Gln Ala Ala Gln Glu Ala Glu Leu Asn
 1485 1490 1495 1500
 Ala Arg Lys Ala Lys Asn Ser Val Ser Ser Leu Leu Ser Gln Leu Asn Asn Leu Leu Asp
 1505 1510 1515 1520
 Gln Leu Gly Gln Leu Asp Thr Val Asp Leu Asn Lys Leu Asn Glu Ile Glu Gly Ser Leu
 1525 1530 1535 1540
 Asn Lys Ala Lys Asp Glu Met Lys Ala Ser Asp Leu Asp Arg Lys Val Ser Asp Leu Glu
 1545 1550 1555 1560
 Ser Glu Ala Arg Lys Gln Glu Ala Ala Ile Met Asp Tyr Asn Arg Asp Ile Ala Glu Ile
 1565 1570 1575 1580
 Ile Lys Asp Ile His Asn Leu Glu Asp Ile Lys Lys Thr Leu Pro Thr Gly Cys Phe Asn
 1585 1590 1595 1600
 Thr Pro Ser Ile Glu Lys Pro
 1605

(2) INFORMATION FOR SEQ ID NO: 11:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1609 AMINO ACIDS
(B) TYPE: AMINO ACID
(C) STRANDEDNESS:
(D) TOPOLOGY: LINEAR

(ii) MOLECULAR TYPE: PROTEIN

(ix) FEATURE:
(D) OTHER INFORMATION: AMINO ACID NUMBERING ACCORDING TO TRANSLATION OF
GENEBANK ACCESSION NUMBER P11047

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

Met Arg Gly Ser His Arg Ala Ala Pro Ala Leu Arg Pro Arg Gly Arg Leu Trp Pro Val
1 5 10 15 20
Leu Ala Val Leu Ala Ala Ala Ala Ala Gly Cys Ala Gln Ala Ala Met Asp Glu Cys
25 30 35 40
Thr Asp Glu Gly Gly Arg Pro Gln Arg Cys Met Pro Glu Phe Val Asn Ala Ala Phe Asn
45 50 55 60
Val Thr Val Val Ala Thr Asn Thr Cys Gly Thr Pro Pro Glu Glu Tyr Cys Val Gln Thr
65 70 75 80
Gly Val Thr Gly Val Thr Lys Ser Cys His Leu Cys Asp Ala Gly Gln Pro His Leu Gln
85 90 95 100
His Gly Ala Ala Phe Leu Thr Asp Tyr Asn Asn Gln Ala Asp Thr Thr Trp Trp Gln Ser
105 110 115 120
Gln Thr Met Leu Ala Gly Val Gln Tyr Pro Ser Ser Ile Asn Leu Thr Leu His Leu Gly
125 130 135 140
Lys Ala Phe Asp Ile Thr Tyr Val Arg Leu Lys Phe His Thr Ser Arg Pro Glu Ser Phe
145 150 155 160
Ala Ile Tyr Lys Arg Thr Arg Glu Asp Gly Pro Trp Ile Pro Tyr Gln Tyr Tyr Ser Gly
165 170 175 180
Ser Cys Glu Asn Thr Tyr Ser Lys Ala Asn Arg Gly Phe Ile Arg Thr Gly Gly Asp Glu
185 190 195 200
Gln Gln Ala Leu Cys Thr Asp Glu Phe Ser Asp Phe Ser Pro Leu Thr Gly Gly Asn Val
205 210 215 220
Ala Phe Ser Thr Leu Glu Gly Arg Pro Ser Ala Tyr Asn Phe Asp Asn Ser Pro Val Leu
225 230 235 240
Gln Glu Trp Val Thr Ala Thr Asp Ile Arg Val Thr Leu Asn Arg Leu Asn Thr Phe Gly
245 250 255 260
Asp Glu Val Phe Asn Asp Pro Lys Val Leu Lys Ser Tyr Tyr Tyr Ala Ile Ser Asp Phe
265 270 275 280
Ala Val Gly Gly Arg Cys Lys Cys Asn Gly His Ala Ser Glu Cys Met Lys Asn Glu Phe
285 290 295 300
Asp Lys Leu Val Cys Asn Cys Lys His Asn Thr Tyr Gly Val Asp Cys Glu Lys Cys Leu
305 310 315 320
Pro Phe Phe Asn Asp Arg Pro Trp Arg Arg Ala Thr Ala Glu Ser Ala Ser Glu Cys Leu
325 330 335 340
Pro Cys Asp Cys Asn Gly Arg Ser Gln Glu Cys Tyr Phe Asp Pro Glu Leu Tyr Arg Ser
345 350 355 360
Thr Gly His Gly His Cys Thr Asn Cys Gln Asp Asn Thr Asp Gly Ala His Cys Glu
365 370 375 380
Arg Cys Arg Glu Asn Phe Phe Arg Leu Gly Asn Asn Glu Ala Cys Ser Ser Cys His Cys
385 390 395 400
Ser Pro Val Gly Ser Leu Ser Thr Gln Cys Asp Ser Tyr Gly Arg Cys Ser Cys Lys Pro
405 410 415 420
Gly Val Met Gly Asp Lys Cys Asp Arg Cys Gln Pro Gly Phe His Ser Leu Thr Glu Ala
425 430 435 440
Gly Cys Arg Pro Cys Ser Cys Asp Pro Ser Gly Ser Ile Asp Glu Cys Asn Val Glu Thr
445 450 455 460
Gly Arg Cys Val Cys Lys Asp Asn Val Glu Gly Phe Asn Cys Glu Arg Cys Lys Pro Gly
465 470 475 480
Phe Phe Asn Leu Glu Ser Ser Asn Pro Arg Gly Cys Thr Pro Cys Phe Cys Phe Gly His

485	490	495	500
Ser Ser Val Cys Thr Asn Ala Val Gly Tyr Ser Val Tyr Ser Ile Ser Ser Thr Phe Gln			
505	510	515	520
Ile Asp Glu Asp Gly Trp Arg Ala Glu Gln Arg Asp Gly Ser Glu Ala Ser Leu Glu Trp			
525	530	535	540
Ser Ser Glu Arg Gln Asp Ile Ala Val Ile Ser Asp Ser Tyr Phe Pro Arg Tyr Phe Ile			
545	550	555	560
Ala Pro Ala Lys Phe Leu Gly Lys Gln Val Leu Ser Tyr Gly Gln Asn Leu Ser Phe Ser			
565	570	575	580
Phe Arg Val Asp Arg Arg Asp Thr Arg Leu Ser Ala Glu Asp Leu Val Leu Glu Gly Ala			
585	590	595	600
Gly Leu Arg Val Ser Val Pro Leu Ile Ala Gln Gly Asn Ser Tyr Pro Ser Glu Thr Thr			
605	610	615	620
Val Lys Tyr Val Phe Arg Leu His Glu Ala Thr Asp Tyr Pro Trp Arg Pro Ala Leu Thr			
625	630	635	640
Pro Phe Glu Phe Gln Lys Leu Leu Asn Asn Leu Thr Ser Ile Lys Ile Arg Gly Thr Tyr			
645	650	655	660
Ser Glu Arg Ser Ala Gly Tyr Leu Asp Asp Val Thr Leu Ala Ser Ala Arg Pro Gly Pro			
665	670	675	680
Gly Val Pro Ala Thr Trp Val Glu Ser Cys Thr Cys Pro Val Gly Tyr Gly Gly Gln Phe			
685	690	695	700
Cys Glu Met Cys Leu Ser Gly Tyr Arg Arg Glu Thr Pro Asn Leu Gly Pro Tyr Ser Pro			
705	710	715	720
Cys Val Leu Cys Ala Cys Asn Gly His Ser Glu Thr Cys Asp Pro Glu Thr Gly Val Cys			
725	730	735	740
Asn Cys Arg Asp Asn Thr Ala Gly Pro His Cys Glu Lys Cys Ser Asp Gly Tyr Tyr Gly			
745	750	755	760
Asp Ser Thr Ala Gly Thr Ser Ser Asp Cys Gln Pro Cys Pro Cys Pro Gly Gly Ser Ser			
765	770	775	780
Cys Ala Val Val Pro Lys Thr Lys Glu Val Val Cys Thr Asn Cys Pro Thr Gly Thr Thr			
785	790	795	800
Gly Lys Arg Cys Glu Leu Cys Asp Asp Gly Tyr Phe Gly Asp Pro Leu Gly Arg Asn Gly			
805	810	815	820
Pro Val Arg Leu Cys Arg Leu Cys Gln Cys Ser Asp Asn Ile Asp Pro Asn Ala Val Gly			
825	830	835	840
Asn Cys Asn Arg Leu Thr Gly Glu Cys Leu Lys Cys Ile Tyr Asn Thr Ala Gly Phe Tyr			
845	850	855	860
Cys Asp Arg Cys Lys Asp Gly Phe Phe Gly Asn Pro Leu Ala Pro Asn Pro Ala Asp Lys			
865	870	875	880
Cys Lys Ala Cys Asn Cys Asn Pro Tyr Gly Thr Met Lys Gln Gln Ser Ser Cys Asn Pro			
885	890	895	900
Val Thr Gly Gln Cys Glu Cys Leu Pro His Val Thr Gly Gln Asp Cys Gly Ala Cys Asp			
905	910	915	920
Pro Gly Phe Tyr Asn Leu Gln Ser Gly Gln Gly Cys Glu Arg Cys Asp Cys His Ala Leu			
925	930	935	940
Gly Ser Thr Asn Gly Gln Cys Asp Ile Arg Thr Gly Gln Cys Glu Cys Gln Pro Gly Ile			
945	950	955	960
Thr Gly Gln His Cys Glu Arg Cys Glu Val Asn His Phe Gly Phe Gly Pro Glu Gly Cys			
965	970	975	980
Lys Pro Cys Asp Cys His Pro Glu Gly Ser Leu Ser Leu Gln Cys Lys Asp Asp Gly Arg			
985	990	995	1000
Cys Glu Cys Arg Glu Gly Phe Val Gly Asn Arg Cys Asp Gln Cys Glu Glu Asn Tyr Phe			
1005	1010	1015	1020
Tyr Asn Arg Ser Trp Pro Gly Cys Gln Glu Cys Pro Ala Cys Tyr Arg Leu Val Lys Asp			
1025	1030	1035	1040
Lys Val Ala Asp His Arg Val Lys Leu Gln Glu Leu Glu Ser Leu Ile Ala Asn Leu Gly			
1045	1050	1055	1060
Thr Gly Asp Glu Met Val Thr Asp Gln Ala Phe Glu Asp Arg Leu Lys Glu Ala Glu Arg			
1065	1070	1075	1080
Glu Val Met Asp Leu Leu Arg Glu Ala Gln Asp Val Lys Asp Val Asp Gln Asn Leu Met			
1085	1090	1095	1100
Asp Arg Leu Gln Arg Val Asn Asn Thr Leu Ser Ser Gln Ile Ser Arg Leu Gln Asn Ile			
1105	1110	1115	1120

Arg Asn Thr Ile Glu Glu Thr Gly Asn Leu Ala Glu Gln Ala Arg Ala His Val Glu Asn
 1125 1130 1135 1140
 Thr Glu Arg Leu Ile Glu Ile Ala Ser Arg Glu Leu Glu Lys Ala Lys Val Ala Ala Ala
 1145 1150 1155 1160
 Asn Val Ser Val Thr Gln Pro Glu Ser Thr Gly Asp Pro Asn Asn Met Thr Leu Leu Ala
 1165 1170 1175 1180
 Glu Glu Ala Arg Lys Leu Ala Glu Arg His Lys Gln Glu Ala Asp Asp Ile Val Arg Val
 1185 1190 1195 1200
 Ala Lys Thr Ala Asn Asp Thr Ser Thr Glu Ala Tyr Asn Leu Leu Leu Arg Thr Leu Ala
 1205 1210 1215 1220
 Gly Glu Asn Gln Thr Ala Phe Glu Ile Glu Glu Leu Asn Arg Lys Tyr Glu Gln Ala Lys
 1225 1230 1235 1240
 Asn Ile Ser Gln Asp Leu Glu Lys Gln Ala Ala Arg Val His Glu Glu Ala Lys Arg Ala
 1245 1250 1255 1260
 Gly Asp Lys Ala Val Glu Ile Tyr Ala Ser Val Ala Gln Leu Ser Pro Leu Asp Ser Glu
 1265 1270 1275 1280
 Thr Leu Glu Asn Glu Ala Asn Asn Ile Lys Met Glu Ala Glu Asn Leu Glu Gln Leu Ile
 1285 1290 1295 1300
 Asp Gln Lys Leu Lys Asp Tyr Glu Asp Leu Arg Glu Asp Met Arg Gly Lys Glu Leu Glu
 1305 1310 1315 1320
 Val Lys Asn Leu Leu Glu Lys Gly Lys Thr Glu Gln Gln Thr Ala Asp Gln Leu Leu Ala
 1325 1330 1335 1340
 Arg Ala Asp Ala Ala Lys Ala Leu Ala Glu Glu Ala Ala Lys Lys Gly Arg Asp Thr Leu
 1345 1350 1355 1360
 Gln Glu Ala Asn Asp Ile Leu Asn Asn Leu Lys Asp Phe Asp Arg Arg Val Asn Asp Asn
 1365 1370 1375 1380
 Lys Thr Ala Ala Glu Glu Ala Leu Arg Lys Ile Pro Ala Ile Asn Gln Thr Ile Thr Glu
 1385 1390 1395 1400
 Ala Asn Glu Lys Thr Arg Glu Ala Gln Gln Ala Leu Gly Ser Ala Ala Ala Asp Ala Thr
 1405 1410 1415 1420
 Glu Ala Lys Asn Lys Ala His Glu Ala Glu Arg Ile Ala Ser Ala Val Gln Lys Asn Ala
 1425 1430 1435 1440
 Thr Ser Thr Lys Ala Glu Ala Glu Arg Thr Phe Ala Glu Val Thr Asp Leu Asp Asn Glu
 1445 1450 1455 1460
 Val Asn Asn Met Leu Lys Gln Leu Gln Glu Ala Glu Lys Glu Leu Lys Arg Lys Gln Asp
 1465 1470 1475 1480
 Asp Ala Asp Gln Asp Met Met Met Ala Gly Met Ala Ser Gln Ala Ala Gln Glu Ala Glu
 1485 1490 1495 1500
 Ile Asn Ala Arg Lys Ala Lys Asn Ser Val Thr Ser Leu Leu Ser Ile Ile Asn Asp Leu
 1505 1510 1515 1520
 Leu Glu Gln Leu Gly Gln Leu Asp Thr Val Asp Leu Asn Lys Leu Asn Glu Ile Glu Gly
 1525 1530 1535 1540
 Thr Leu Asn Lys Ala Lys Asp Glu Met Lys Val Ser Asp Leu Asp Arg Lys Val Ser Asp
 1545 1550 1555 1560
 Leu Glu Asn Glu Ala Lys Lys Gln Glu Ala Ala Ile Met Asp Tyr Asn Arg Asp Ile Glu
 1565 1570 1575 1580
 Glu Ile Met Lys Asp Ile Arg Asn Leu Glu Asp Ile Arg Lys Thr Leu Pro Ser Gly Cys
 1585 1590 1595 1600
 Phe Asn Thr Pro Ser Ile Glu Lys Pro
 1605