Total No.	of Questio
UNIVER	
Duration:	3 Hrs.
Note: All o Q.1 (MCQ	questions a
Q.1 i. iii. iv.	Using represe (a) 111 How r implem (a) 2, 2 If we wits one (a) Invo
v. vi.	K flip-i (a) 5 kl

ns: 6 Total No. of Printed Pages:3

Enrollment No.....

Faculty of Science / Engineering End Sem (Odd) Examination Dec-2019 CA3CO02 Digital Electronics

Programme: BCA / BCA-MCA (Integrated)

Branch/Specialisation: Computer

Application

Maximum Marks: 60

are compulsory. Internal choices, if any, are indicated. Answers of be written in full instead of only a, b, c or d.

- 8-bits the 2's complement signed magnitude 1 entation of $(-13)_{10}$ is
 - 10011 (b) 01110011 (c) 11110010 (d) 01110010
 - many 2-input XOR, AND and OR gates are required to nent a full adder logic circuit?
 - 2 and 2 (b) 2, 3 and 2 (c) 1, 3 and 1 (d) 2, 2 and 3
 - want a two input AND gate to pass a signal connected at 1 input, then its other input must be
 - rerted (b) Low
- (c) High
- (d) Undefined

ven K-map represents

- ID gate (b) OR gate (c) NOR gate (d) NAND gate
- nany selection lines are required in an 64X1 multiplexer?
 - (b) 5
- (c) 6
- (d) 8
- nerate a square wave of frequency 5kHz at the output Q of J- 1 flop, the clock frequency should be

- (b) 10 kHz (c) 2.5 kHz (d) 20 kHz
- odulo-16 counter the propagation delay of each flip-flop is 1 The maximum clock frequency that can be used is
- MHz (b) 5 MHz
- (c) 20 MHz (d) 2 MHz

P.T.O.

1

1

	viii.	Which of the following is most power efficient logic family?			
		(a) RTL (b) DTL (c) TTL (d) CMOS			
	ix.	ROM is made up of]		
		(a) NAND and OR gates (b) Decoder and OR gates			
		(c) NOR gates and Decoder (d) NAND gates and Decoder			
	х.	Which of the following is primary memory?	1		
		(a) RAM and ROM (b) Hard Disk			
		(c) Compact Disk (d) Floppy Disk			
Q.2	i.	If A.B=0 and (A.C)'=0, then evaluate the Boolean expression	2		
		for $f(A, B, C) = A'BC + A'B' + B' + C$.			
	ii.	Convert the numbers into desired base.	8		
		(a) $(586.625)_{10} = ($) ₂ (b) $(F7A.B2)_{16} = ($) ₈			
		(c) $(754.12)_8 = ($ $)_{10}$ (d) $(11010010.1101)_2 = ($ $)_{10}$			
OR	iii.	Explain the working of 4-bit binary parallel multiplier with proper	8		
		logic diagram using IC-7483 and by an example.			
Q.3	i.	What do you understand by radix or base of a number system?	2		
	ii.	(a) Implement a 2-input AND gate using diodes and explain its working for all input combinations.	8		
		(b) Implement the given function $f(x, y, z)$ using NAND gates only.			
		$f(x, y, z) = \Sigma_m(0,3,4,5,7)$			
OR	iii.	Find the minimal SOP and POS expression using K-map for	8		
		$f(x, y, z) = \Sigma_m(0,1,2,7,8,9,10,15)$			
Q.4	i.	Explain 4x1 multiplexer with its block diagram, truth table,	3		
		expression of output and logic diagram.			
	ii.	What is race-around condition? How it is eliminated by master	7		
		slave flip-flop?			
OR	iii.	With the help of state table, K-map and logic diagram explain	7		
		designing of a sequence generator that produces sequence 1011.			
0.5	i.	Explain serial-in serial-out shift register using J-K flip-flop.	_		

	- 1	

	11.	Design a MOD-6 up counter using J-K flip-flop giving its state	0
		diagram, present state-next state table, excitation input table,	
		excitation maps and logic circuit diagram.	
OR	iii.	Explain the working of 2-input CMOS-NAND and 2-input	6
		CMOS-NOR implementations for all possible input combinations.	
Q.6		Attempt any two:	
	i.	Write any five difference between RAM and ROM.	5
	ii.	Design 3-bit binary to gray code converter using ROM.	5
	iii.	Write short note on:	5
		(a) Secondary memory and its types	
		(b) PROM and EPROM.	

Marking Scheme CA3CO02 Digital Electronics

Q.1	i.	representation of $(-13)_{10}$ is (a) 11110011	magnitude	1
	ii.	How many 2-input XOR, AND and OR gates a implement a full adder logic circuit? (b) 2, 3 and 2	are required to	1
	iii.	If we want a two input AND gate to pass a signal its one input, then its other input must be (c) High	connected at	1
	iv.	The given K-map represents (d) NAND gate		1
	v.	How many selection lines are required in an 64X1 r (c) 6	nultiplexer?	1
	vi.	To generate a square wave of frequency 5kHz at the output Q of J-K flip-flop, the clock frequency should be (b) 10 kHz		
	vii.	In a modulo-16 counter the propagation delay of each flip-flop is 5nsec. The maximum clock frequency that can be used is (a) 50 MHz		
	viii.	Which of the following is most power efficient logic family? (d) CMOS		
ix.		ROM is made up of (b) Decoder and OR gates		1
	х.	Which of the following is primary memory? (a) RAM and ROM		1
Q.2	i.	Evaluate the Boolean expression		2
	ii.	Convert the numbers into desired base.		8
ΩD	:::	2 marks for each conversion	(2 marks*4) 3 marks	8
OR	iii.	Logic diagram using Explanation of working	3 marks	o
		Example	2 marks	
Q.3	i.	Definition of radix or base of a number system		2
	ii.	(a) Implement a 2-input AND gate using diodes		8

		Implementation	1 mark	
		Working for all input combinations	2 marks	
		(b) Implement the given function $f(x, y, z)$		
		Minimization	2 marks	
OD		Implementation	3 marks	0
OR	iii.	Find the minimal SOP and POS expression using	K-map for	8
		For each minimal expression 2.5 marks	~ 1	
		(2.5 marks * 2)	5 marks	
		1 mark for each K-Map (1 mark * 3)	3 marks	
Q.4	i.	4x1 multiplexer with its		3
		Block diagram	0.5 mark	
		Truth table	0.5 mark	
		Expression of output	1 mark	
		Logic diagram	1 mark	
	ii.	Explanation of race-around condition	2 marks	7
		Logic diagram of master slave flip-flop	2 marks	
		Explanation of master slave flip flop	3 marks	
OR	iii.	Designing of a sequence generator that produces	sequence 1011.	7
		Explanation	1 mark	
		State table	2 marks	
		K-map and expression	2 marks	
		Logic diagram	2 marks	
Q.5	i.	Serial-in serial-out shift register using J-K flip-flo	р	4
		Logic diagram	2 marks	
		Explanation	2 marks	
	ii.	Design a MOD-6 up counter		6
		State diagram	1 mark	
		Present state-next state table	1 mark	
		Excitation input table	1 mark	
		Excitation maps and expressions	2 marks	
		Logic circuit diagram using J-K flip-flop	1 mark	
OR	iii.	Working of 2-input CMOS-NAND and 2-input C	CMOS-NOR	6
		Implementations		
		1 mark for each (1 mark * 2)	2 marks	
		All possible input combinations		
		2 marks for each (2 marks * 2)	4 marks	

Q.6		Attempt any two:		
	i.	Any five difference between RAM and ROM	5	
		1 mark for each difference (1 mark * 5))	
	ii.	Design 3-bit binary to gray code converter using ROM		
		Explanation 1 mark		
		Truth table 1 mark		
		Expressions 1 mark		
		Logic diagram 2 marks		
	iii.	Write short note on:	5	
		(a) Secondary memory and its types 2.5 mark		
		(b) PROM and EPROM. 2.5 marks		
