§1 Процессы с независимыми приращениями

Определение 1. Случайный процесс — измеримое отображение $X: \Omega \to L(T), L(T)$ — пространство функций над T

Пример 1. $T = t_0$, тогда X — случайная величина

Определение 2. X — процесс с независимыми приращениями, если $\forall t_0 < \cdots < t_n \in T$ случайные величины

$$X(t_0), X(t_1) - X(t_0), \ldots, X(t_n) - X(t_n - t_{n-1})$$

Пример 1. $T = \mathbb{N}$, а сам независимый процесс $X(n) = \sum_{i=1}^{n} Y_i$, Y_i — независимы.

Определение 3. Пусть $T = \mathbb{R}$ (время) и при этом:

$$X(0)=0$$
 $X(t)-X(s)\sim\Pi(\lambda(t-s))$ X — процесс с независимыми приращениями

Определение 4 (Винеровский процесс (броуновское движение)). Пусть $T = \mathbb{R}$ (время) и при этом:

$$X(0)=0$$
 $X(t)-X(s)\sim \mathcal{N}(0,t-s)$ X — процесс с независимыми приращениями

§ 2 Стационарные процессы

Определение 1 (Стационарные в узком смысле). X(t) называется стационарным в узком смысле, если

$$\forall t_1, \ldots, t_n \in T, \forall \tau > 0 \ \left(t_1 + \tau, \ldots, t_n + \tau \in T\right)$$
$$\Rightarrow \left(X(t_1 + \tau), \ldots, X(t_n + \tau)\right) \stackrel{d}{=} \left(X(t_1), \ldots, X(t_n)\right)$$

Короче, можно двигать начало отсчёта времени, распределение не изменится.

Следствие 1.

$$m(t) = MX(t) = const$$

$$\sigma^2(t) = DX(t) = const$$

$$cov(X(s), X(t)) = cov(X(0), X(t-s)) =: R(t-s)$$

Здесь определена величина R(t-s), если что.

Определение 2 (Стационарные в широком смысле). X(t) называется стационарным в широком смысле, если М X(t) = const и cov(X(s), X(t)) = R(t-s).

Сделаем теперь из процессов (пока любых) линейное пространство со скалярным произведением.

$$H_0 = \left\{ \sum_{k=1}^n c_k X(t_k) \middle| n \in \mathbb{N}, t_i \in \mathcal{T}, c_i \in \mathbb{R} \right\}$$
 (1)

$$\langle X(s), X(t) \rangle = \text{cov}(X(s), X(t)) \tag{2}$$

Теперь сделаем из него гильбертово пространство, пополнив по метрике, соотвествующей скалярному произведению Дальше надо бы доказать, что оно вообще расстояние

<+Здесь дальше какая-то жесть про спектральную меру. Я её не понимаю+>

§ 3 Цепи Маркова

Определение 1. Пусть \mathfrak{X} — дискретное множество состояний. Тогда ξ_i образуют цепь Маркова, если

$$P(\xi_n = i_n \mid \xi_{n-1} = i_{n-1}, \xi_1 = i_1) = P(\xi_n = i_n \mid \xi_{n-1} = i_{n-1})$$

(Цепь помнит только свое предыдущее состояние)

Определение 2. Если известны $q_i = P(\xi_1 = i)$ и ${}^np_{ij} = P(\xi_n = j \mid \xi_{n-1} = i)$, то цепь называется полностью определённой. $P = (p_{ii})$ ещё называется стохастической матрицей.

Определение 3. Если ${}^{n}p_{ij}$ не зависит от n, то цепь называется однородной.

Определение 4. $p_{ij}^{(n)} = P(\xi_{k+n} = j \mid \xi_k = k)$ (вероятность перейти за n шагов).

Утверждение 1. Для однородной цепи:

$$p_{ij}^{(n+m)} = \sum_{k} p_{ik}^{(m)} \cdot p_{kj}^{(n)} \Rightarrow P^{(n)} = P^{n}$$

Оно всё следует из независимости от старых состояний и формулы полной вероятности ??.

Пример 1. Если ξ_i независимы, то они образуют цепь Маркова

Пример 2. Если ξ_i независимы, то η_n : $\eta_n = f(\eta_{n-1}, \xi_n)$ образуют цепь Маркова.

Определение 5 (Случайные блуждания). Случайное блуждание — процесс с дискретным временем вида $\eta_0 + \sum_i \xi_i$, где $\xi_n \in \mathbb{R}^d$ — независимые случайные величины , ξ_k принимает значения $\pm e_i$ — ортонормированный базис \mathbb{Z}^d

Случайные блуждания тоже можно считать цепью Маркова

Определение 6. $f_{ii}^{(n)} = P(\xi_{n+1} = i \mid \xi_n \neq i, \dots, \xi_2 \neq i, \xi_1 = i)$. Состояние i возратное, если $\sum_{n=1}^{\infty} f_{ii}^n = 1$ и невозратное иначе.

Но надо ещё подумать над вероятностью вернуться в какое-то состояние, идя не важно как.

$$p_{ii}^{(n)} = f_{ii}^{(n)} + f_{ii}^{(n-1)} p_{ii} + \dots + f_{ii}^{(1)} p_{ii}^{(n-1)}$$

С таким можно разобраться при помощи производящих функций

$$P(z) = \sum_{n=0}^{\infty} p_{ii}^{(n)} z^n, \ p_{ii}(0) = 1$$

$$F(z) = \sum_{n=1}^{\infty} f_{ii}^{(n)} z^n$$

$$P(z) = P(z)F(z) + 1$$

Получить последнюю формулу можно честно перемножив два ряда. Только нужно ещё не забыть, что один из них начинается с z^1 . А дальше член при z^n как раз и оказывается суммой выше

Утверждение 2 (Критерий возрата). $i-возратное \Leftrightarrow \sum_{i}^{\infty} p_{ii}^{(n)} = +\infty$

Из формулы выше

$$P(z) = \frac{1}{1 - F(z)}$$

а $\sum_{n=1}^{\infty} f_{ii}^{(n)} = F(1) = 1$ в случае возратного состояния.

Определение 7. Состояния i, j сообщаются, если $\exists \, n \colon p_{ij}^{(n)} > 0.$

Замечание 1. Это отношение эквивалентности

Утверждение 3. Если состояние связанные, то они имеют одинаковую возратность.

Теорема 4.
$$\lim_{n \to \infty} p_{ii}^{(n)} = \frac{1}{\sum_{n=1}^{\infty} n f_{ii}^{(n)}}$$

§ 4 Марковские процессы

Здесь будем брать и сурово строить сигма-алгебры на заданных множествах.

Определение 1. $\sigma(Y_1, \ldots, Y_n)$ — наименьшая сигма-алгебра, относительно которой Y_i измеримы. Короче, порождённая набором $\{Y_i\}$.

Замечание. Индекс i может быть и непрерывным: $\sigma(X(t) \mid t \in T)$

Пример 1. $F_a^b = \sigma(X(t), t \in [a, b])$ — сигма-алгебра интервала.

Пример 2. $F_{-\infty}^t = \sigma(X(\zeta), \zeta \in (-\infty, t])$ — сигма-алгебра прошлого. Можно так же и будущего. И настоящего $(\zeta \in \{t\})$.

Определение 2 (Марковский процесс). X(t) — марковский процесс, если

$$\forall A \in F_{-\infty}^t, B \in F_t^{\infty} \ P(AB) = P(A)P(B)$$

Короче говоря, прошлое не зависит от будущего.