

SEQUENCE LISTING

<110> Whitsett, Jeffrey
Klaus H. Kaestner

<120> Diagnosis, prognosis and treatment of
pulmonary diseases

<130> 10872/517745

<150> 60/519,453
<151> 2004-11-12

<160> 7

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 2242
<212> DNA
<213> homo sapiens

<220>
<221> CDS
<222> (204)...(1577)

<221> misc_feature
<222> (678)...(965)
<223> Fork Head Domain

<221> variation
<222> (494)...(494)
<223> /allele="T"
 /allele="C"
 /db_xref="dbSNP"

<221> variation
<222> (1040)...(1040)
<223> /allele="T"
 /allele="C"
 /db_xref="dbSNP"

<221> variation
<222> (1243)...(1243)
<223> /allele="G"
 /allele="C"
 /db_xref="dbSNP"

<221> variation

<222> (1391)...(1391)

<223> /allele="T"

/allele="C"

/db_xref="dbSNP

<221> variation

<222> (1408)...(1408)

<223> /allele="G"

/allele="A"

/db_xref="dbSNP

<221> variation

<222> (1627)...(1627)

<223> /allele="G"

/allele="A"

/db_xref="dbSNP

<221> variation

<222> (1737)...(1738)

<223> /allele="G"

/allele="-"

/db_xref="dbSNP

<221> variation

<222> (1754)...(1754)

<223> /allele="G"

/allele="A"

/db_xref="dbSNP

<221> polyA_signal

<222> (2220)...(2225)

<400> 1

ccgcggccact tccaactacc gcctccggcc tgcccaggga gagagaggga gtggagccca 60
gggagaggga ggcgcgagaga gggagggagg aggggacgggt gcttggctg acttttttt 120
aaaagaggggt ggggggtgggg ggtgattgtc ggtcgttgt tgtagctttt aaattttaaa 180
ctgccatca ctcggcttcc agt atg ctg gga gcg gtg aag atg gaa ggg cac 233

Met Leu Gly Ala Val Lys Met Glu Gly His

1 5 10

gag ccg tcc gac tgg agc agc tac tat gca gag ccc gag ggc tac tcc 281

Glu Pro Ser Asp Trp Ser Ser Tyr Tyr Ala Glu Pro Glu Gly Tyr Ser

15 20 25

tcc gtg agc aac atg aac gcc ggc ctg ggg atg aac ggc atg aac acg 329

Ser Val Ser Asn Met Asn Ala Gly Leu Gly Met Asn Gly Met Asn Thr

30 35 40

tac atg agc atg tcg gcg gcc gcc atg ggc agc ggc tcg ggc aac atg 377

Tyr Met Ser Met Ser Ala Ala Met Gly Ser Gly Ser Gly Asn Met

45 50 55

agc gcg ggc tcc atg aac atg tcg tcg tac gtg ggc gct ggc atg agc 425

Ser Ala Gly Ser Met Asn Met Ser Ser Tyr Val Gly Ala Gly Met Ser

60 65 70

ccg tcc ctg gcg ggg atg tcc ccc ggc gcg ggc gcc atg gcg ggc atg 473
Pro Ser Leu Ala Gly Met Ser Pro Gly Ala Gly Ala Met Ala Gly Met
75 80 85 90

ggc ggc tcg gcc ggg ggc ggc gtg gcg ggc atg ggg ccg cac ttg 521
Gly Gly Ser Ala Gly Ala Ala Gly Val Ala Gly Met Gly Pro His Leu
95 100 105

agt ccc agc ctg agc ccc ctc ggg ggg cag gcg gcc ggg gcc atg ggc 569
Ser Pro Ser Leu Ser Pro Leu Gly Gly Gln Ala Ala Gly Ala Met Gly
110 115 120

ggc ctg gcc ccc tac gcc aac atg aac tcc atg agc ccc atg tac ggg 617
Gly Leu Ala Pro Tyr Ala Asn Met Asn Ser Met Ser Pro Met Tyr Gly
125 130 135

cag gcg ggc ctg agc cgc gcc cgc gac ccc aag acc tac agg cgc agc 665
Gln Ala Gly Leu Ser Arg Ala Arg Asp Pro Lys Thr Tyr Arg Arg Ser
140 145 150

tac acg cac gca aag ccg ccc tac tcg tac atc tcg ctc atc acc atg 713
Tyr Thr His Ala Lys Pro Pro Tyr Ser Tyr Ile Ser Leu Ile Thr Met
155 160 165 170

gcc atc cag cag agc ccc aac aag atg ctg acg ctg agc gag atc tac 761
Ala Ile Gln Gln Ser Pro Asn Lys Met Leu Thr Leu Ser Glu Ile Tyr
175 180 185

cag tgg atc atg gac ctc ttc ccc ttc tac cgg cag aac cag cag cgc 809
Gln Trp Ile Met Asp Leu Phe Pro Phe Tyr Arg Gln Asn Gln Gln Arg
190 195 200

tgg cag aac tcc atc cgc cac tcg ctc tcc aac gac tgt ttc ctg 857
Trp Gln Asn Ser Ile Arg His Ser Leu Ser Phe Asn Asp Cys Phe Leu
205 210 215

aag gtg ccc cgc tcg ccc gac aag ccc ggc aag ggc tcc ttc tgg acc 905
Lys Val Pro Arg Ser Pro Asp Lys Pro Gly Lys Gly Ser Phe Trp Thr
220 225 230

ctg cac cct gac tcg ggc aac atg ttc gag aac ggc tgc tac ctg cgc 953
Leu His Pro Asp Ser Gly Asn Met Phe Glu Asn Gly Cys Tyr Leu Arg
235 240 245 250

cgc cag aag cgc ttc aag tgc gag aag cag ctg gcg ctg aag gag gcc 1001
Arg Gln Lys Arg Phe Lys Cys Glu Lys Gin Leu Ala Leu Lys Glu Ala
255 260 265

gca ggc gcc ggc agc ggc aag aag ggc gcc gga gcc cag gcc 1049
Ala Gly Ala Ala Gly Ser Gly Lys Lys Ala Ala Gly Ala Gln Ala
270 275 280

tca cag gct caa ctc ggg gag gcc gcc ggg ccg gcc tcc gag act ccg 1097

Ser Gln Ala Gln Leu Gly Glu Ala Ala Gly Pro Ala Ser Glu Thr Pro
285 290 295

gcg ggc acc gag tcg cct cac tcg agc gcc tcc ccg tgc cag gag cac 1145
 Ala Gly Thr Glu Ser Pro His Ser Ser Ala Ser Pro Cys Gln Glu His
 300 305 310

aag cga ggg ggc ctg gga gag ctg aag ggg acg ccg gct gcg gcg ctg 1193
Lys Arg Gly Gly Leu Gly Glu Leu Lys Thr Pro Ala Ala Ala Leu
315 320 325 330

agc ccc cca gag ccg gcg ccc tct ccc ggg cag cag cag cag cag gcc gcg 1241
Ser Pro Pro Glu Pro Ala Pro Ser Pro Gly Gln Gln Gln Gln Ala Ala
335 340 345

gcc cac ctg ctg ggc ccg ccc cac cac ccg ggc ctg ccg cct gag gcc 1289
Ala His Leu Leu Gly Pro Pro His His Pro Gly Leu Pro Pro Glu Ala
350 355 360

cac ctg aag ccg gaa cac cac tac gcc ttc aac cac ccg ttc tcc atc 1337
His Leu Lys Pro Glu His His Tyr Ala Phe Asn His Pro Phe Ser Ile
365 370 375

aac aac ctc atg tcc tcg gag cag cag cac cac cac agc cac cac cac 1385
Asn Asn Leu Met Ser Ser Glu Gln Gln His His His Ser His His His
380 385 390

cac caa ccc cac aaa atg gac ctc aag gcc tac gaa cag gtg atg cac 1433
His Gln Pro His Lys Met Asp Leu Lys Ala Tyr Glu Gln Val Met His
395 400 405 410

tac ccc ggc tac ggt tcc ccc atg cct ggc agc ttg gcc atg ggc ccg 1481
Tyr Pro Gly Tyr Gly Ser Pro Met Pro Gly Ser Leu Ala Met Gly Pro
415 420 425

gtc acg aac aaa acg ggc ctg gac gcc tcg ccc ctg gcc gca gat acc 1529
Val Thr Asn Lys Thr Gly Leu Asp Ala Ser Pro Leu Ala Ala Asp Thr
130 135 140

tcc tac tac cag ggg gtg tac tcc cg^g ccc att atg aac tcc tct taa 1577
Ser Tyr Tyr Gln Gly Val Tyr Ser Arg Pro Ile Met Asn Ser Ser *
145 150 155

gaagacgacg gctcaggcc cgcttaactc tggcaccccg gatcgaggac aagtgagaga 1637
gcaagtgggg gtcgagactt tggggagacg gtgtgcaga gacgcaggg agaagaatac 1697
cataacaccc ccaccccaac acccccaaga cagcagtctt ctccacccgc tgcatggcgtt 1757
ccgtccccaa cagaggccca cacagatacc ccacgtctataaggagg aaaacggaa 1817
agaataaaaaa gttaaaaaaa agcctccgtt tcccactact gtgttagactc ctgccttc 1877
aagcacctgc agattctgat ttttttgtt ttgttgtct cctccattgc ttgttgtca 1937
gggaagtctt acttaaaaaa aaaaaaaaaat ttgttgatgt actcgggtta aaaccatgt 1997
gtttaaacag aaccagaggg ttgtactatt gttaaaaaac agaaaaaaaataatgtaa 2057
ggctgtgtt aaatgaccaa gaaaaagaaa aaaaaagcat tcccaatctt gacacgggt 2117
aatccagggtc tcgggtccga ttaatttgcgt gctttatgtt tggcttataa 2177
atgtgttattc tggctgcaag ggccagagtt ccacaaatct atattaaagt gttatacccg 2237
gtttt 2242

<210> 2
<211> 457
<212> PRT
<213> homo sapiens

<220>
<221> DOMAIN
<222> (159)...(254)
<223> Fork Head Domain

<221> VARIANT
<222> (347)...(347)
<223> /allele="G"
 /allele="A"
 /db_xref="dbSNP"

<221> VARIANT
<222> (402)...(402)
<223> /allele="P"
 /allele="L"
 /db_xref="dbSNP"

<400> 2
Met Leu Gly Ala Val Lys Met Glu Gly His Glu Pro Ser Asp Trp Ser
1 5 10 15
Ser Tyr Tyr Ala Glu Pro Glu Gly Tyr Ser Ser Val Ser Asn Met Asn
20 25 30
Ala Gly Leu Gly Met Asn Gly Met Asn Thr Tyr Met Ser Met Ser Ala
35 40 45
Ala Ala Met Gly Ser Gly Ser Gly Asn Met Ser Ala Gly Ser Met Asn
50 55 60
Met Ser Ser Tyr Val Gly Ala Gly Met Ser Pro Ser Leu Ala Gly Met
65 70 75 80
Ser Pro Gly Ala Gly Ala Met Ala Gly Met Gly Gly Ser Ala Gly Ala
85 90 95
Ala Gly Val Ala Gly Met Gly Pro His Leu Ser Pro Ser Leu Ser Pro
100 105 110
Leu Gly Gly Gln Ala Ala Gly Ala Met Gly Gly Leu Ala Pro Tyr Ala
115 120 125
Asn Met Asn Ser Met Ser Pro Met Tyr Gly Gln Ala Gly Leu Ser Arg
130 135 140
Ala Arg Asp Pro Lys Thr Tyr Arg Arg Ser Tyr Thr His Ala Lys Pro
145 150 155 160
Pro Tyr Ser Tyr Ile Ser Leu Ile Thr Met Ala Ile Gln Gln Ser Pro
165 170 175
Asn Lys Met Leu Thr Leu Ser Glu Ile Tyr Gln Trp Ile Met Asp Leu
180 185 190
Phe Pro Phe Tyr Arg Gln Asn Gln Gln Arg Trp Gln Asn Ser Ile Arg
195 200 205
His Ser Leu Ser Phe Asn Asp Cys Phe Leu Lys Val Pro Arg Ser Pro
210 215 220
Asp Lys Pro Gly Lys Gly Ser Phe Trp Thr Leu His Pro Asp Ser Gly
225 230 235 240
Asn Met Phe Glu Asn Gly Cys Tyr Leu Arg Arg Gln Lys Arg Phe Lys

245	250	255
Cys Glu Lys Gln Leu Ala Leu Lys Glu Ala Ala Gly Ala Ala Gly Ser		
260	265	270
Gly Lys Lys Ala Ala Ala Gly Ala Gln Ala Ser Gln Ala Gln Leu Gly		
275	280	285
Glu Ala Ala Gly Pro Ala Ser Glu Thr Pro Ala Gly Thr Glu Ser Pro		
290	295	300
His Ser Ser Ala Ser Pro Cys Gln Glu His Lys Arg Gly Gly Leu Gly		
305	310	315
Glu Leu Lys Gly Thr Pro Ala Ala Ala Leu Ser Pro Pro Glu Pro Ala		
325	330	335
Pro Ser Pro Gly Gln Gln Gln Ala Ala Ala His Leu Leu Gly Pro		
340	345	350
Pro His His Pro Gly Leu Pro Pro Glu Ala His Leu Lys Pro Glu His		
355	360	365
His Tyr Ala Phe Asn His Pro Phe Ser Ile Asn Asn Leu Met Ser Ser		
370	375	380
Glu Gln Gln His His His Ser His His His Gln Pro His Lys Met		
385	390	395
Asp Leu Lys Ala Tyr Glu Gln Val Met His Tyr Pro Gly Tyr Gly Ser		
405	410	415
Pro Met Pro Gly Ser Leu Ala Met Gly Pro Val Thr Asn Lys Thr Gly		
420	425	430
Leu Asp Ala Ser Pro Leu Ala Ala Asp Thr Ser Tyr Tyr Gln Gly Val		
435	440	445
Tyr Ser Arg Pro Ile Met Asn Ser Ser		
450	455	

<210> 3
<211> 2230
<212> DNA
<213> homo sapiens

<220>
<221> CDS
<222> (192)...(1565)

<221> misc_feature
<222> (666)...(953)
<223> Fork Head Domain

```
<221> variation  
<222> (482)...(482)  
<223> /allele="T"  
      /allele="C"  
      /db xref="dbSNP"
```

```
<221> variation  
<222> (1028)...(1028)  
<223> /allele="T"  
      /allele="C"  
      /db xref="dbSNP"
```

<221> variation

<222> (1231)...(1231)
 <223> /allele="G"
 /allele="C"
 /db_xref="dbSNP"

<221> variation
 <222> (1379)...(1379)
 <223> /allele="T"
 /allele="C"
 /db_xref="dbSNP"

<221> variation
 <222> (1396)...(1396)
 <223> /allele="G"
 /allele="A"
 /db_xref="dbSNP"

<221> variation
 <222> (1615)...(1615)
 <223> /allele="G"
 /allele="A"
 /db_xref="dbSNP"

<221> variation
 <222> (1725)...(1726)
 <223> /allele="G"
 /allele="-"
 /db_xref="dbSNP"

<221> polyA_signal
 <222> (2208)...(2213)

<400> 3
 tcggccgctg ctagaggggc tgcttcgcgcc aggcgcggc cgccccactg cgggtccctg 60
 gcgcccggtg tctgaggagt cggagagccg aggcggccag accgtgcgcc ccgcgcgttct 120
 cccgaggccg ttccgggtct gaactgtaac agggaggggc ctgcaggag cagcagcggg 180
 cgagttaaag t atg ctg gga gcg gtg aag atg gaa ggg cac gag ccg tcc 230
 Met Leu Gly Ala Val Lys Met Glu Gly His Glu Pro Ser
 1 5 10

gac tgg agc agc tac tat gca gag ccc gag ggc tac tcc tcc gtg agc 278
 Asp Trp Ser Ser Tyr Tyr Ala Glu Pro Glu Gly Tyr Ser Ser Val Ser
 15 20 25

aac atg aac gcc ggc ctg ggg atg aac ggc atg aac acg tac atg agc 326
 Asn Met Asn Ala Gly Leu Gly Met Asn Gly Met Asn Thr Tyr Met Ser
 30 35 40 45

atg tcg gcg gcc ggc atg ggc agc ggc tcg ggc aac atg agc gcg ggc 374
 Met Ser Ala Ala Ala Met Gly Ser Gly Ser Gly Asn Met Ser Ala Gly
 50 55 60

tcc atg aac atg tcg tcg tac gtg ggc gct ggc atg agc ccg tcc ctg 422
 Ser Met Asn Met Ser Ser Tyr Val Gly Ala Gly Met Ser Pro Ser Leu
 65 70 75

gcu ggg atg tcc ccc ggc gcg ggc gcc atg ggc ggc tcg 470
Ala Gly Met Ser Pro Gly Ala Gly Ala Met Ala Gly Met Gly Ser
80 85 90

gcc ggg gcg gcc ggc gtg gcg ggc atg ggg ccg cac ttg agt ccc agc 518
Ala Gly Ala Ala Gly Val Ala Gly Met Gly Pro His Leu Ser Pro Ser
95 100 105

ctg agc ccg ctc ggg ggg cag gcg gcc ggg ggc atg ggc ggc ctg gcc 566
Leu Ser Pro Leu Gly Gly Gln Ala Ala Gly Ala Met Gly Gly Leu Ala
110 115 120 125

ccc tac gcc aac atg aac tcc atg agc ccc atg tac ggg cag gcg ggc 614
Pro Tyr Ala Asn Met Asn Ser Met Ser Pro Met Tyr Gly Gln Ala Gly
130 135 140

ctg agc cgc gcc cgc gac ccc aag acc tac agg cgc agc tac acg cac 662
Leu Ser Arg Ala Arg Asp Pro Lys Thr Tyr Arg Arg Ser Tyr Thr His
145 150 155

gca aag ccg ccc tac tcg tac atc tcg ctc atc acc atg gcc atc cag 710
Ala Lys Pro Pro Tyr Ser Tyr Ile Ser Leu Ile Thr Met Ala Ile Gln
160 165 170

cag agc ccc aac aag atg ctg acg ctg agc gag atc tac cag tgg atc 758
Gln Ser Pro Asn Lys Met Leu Thr Leu Ser Glu Ile Tyr Gln Trp Ile
175 180 185

atg gac ctc ttc ccc ttc tac cgg cag aac cag cag cgc tgg cag aac 806
Met Asp Leu Phe Pro Phe Tyr Arg Gln Asn Gln Gln Arg Trp Gln Asn
190 195 200 205

tcc atc cgc cac tcg ctc tcc aac gac tgt ttc ctg aag gtg ccc 854
Ser Ile Arg His Ser Leu Ser Phe Asn Asp Cys Phe Leu Lys Val Pro
210 215 220

cgc tcg ccc gac aag ccc ggc aag ggc tcc ttc tgg acc ctg cac cct 902
Arg Ser Pro Asp Lys Pro Gly Lys Gly Ser Phe Trp Thr Leu His Pro
225 230 235

gac tcg ggc aac atg ttc gag aac ggc tgc tac ctg cgc cgc cag aag 950
Asp Ser Gly Asn Met Phe Glu Asn Gly Cys Tyr Leu Arg Arg Gln Lys
240 245 250

cgc ttc aag tgc gag aag cag ctg gcg ctg aag gag gcc gca ggc gcc 998
Arg Phe Lys Cys Glu Lys Gln Leu Ala Leu Lys Glu Ala Ala Gly Ala
255 260 265

gcc ggc agc ggc aag aag ggc gcc gga gcc cag gcc tca cag gct 1046
Ala Gly Ser Gly Lys Lys Ala Ala Gly Ala Gln Ala Ser Gln Ala
270 275 280 285

caa ctc ggg gag gcc ggc ggg ccg gcc tcc gag act ccg gcg ggc acc 1094
Gln Leu Gly Glu Ala Ala Gly Pro Ala Ser Glu Thr Pro Ala Gly Thr

290

295

300

gag tcg cct cac tcg agc gcc tcc ccg tgc cag gag cac aag cga ggg 1142
 Glu Ser Pro His Ser Ser Ala Ser Pro Cys Gln Glu His Lys Arg Gly
 305 310 315

ggc ctg gga gag ctg aag ggg acg ccg gct gcg ggc ctg agc ccc cca 1190
 Gly Leu Gly Glu Leu Lys Gly Thr Pro Ala Ala Ala Leu Ser Pro Pro
 320 325 330

gag ccg gcg ccc tct ccc ggg cag cag cag gcc gcg gcc cac ctg 1238
 Glu Pro Ala Pro Ser Pro Gly Gln Gln Gln Ala Ala Ala His Leu
 335 340 345

ctg ggc ccg ccc cac cac ccg ggc ctg ccg ctc gag gcc cac ctg aag 1286
 Leu Gly Pro Pro His His Pro Gly Leu Pro Pro Glu Ala His Leu Lys
 350 355 360 365

ccg gaa cac cac tac gcc ttc aac cac ccg ttc tcc atc aac aac ctc 1334
 Pro Glu His His Tyr Ala Phe Asn His Pro Phe Ser Ile Asn Asn Leu
 370 375 380

atg tcc tcg gag cag cac cac agc cac cac cac caa ccc 1382
 Met Ser Ser Glu Gln Gln His His Ser His His His Gln Pro
 385 390 395

cac aaa atg gac ctc aag gcc tac gaa cag gtg atg cac tac ccc ggc 1430
 His Lys Met Asp Leu Lys Ala Tyr Glu Gln Val Met His Tyr Pro Gly
 400 405 410

tac ggt tcc ccc atg cct ggc agc ttg gcc atg ggc ccg gtc acg aac 1478
 Tyr Gly Ser Pro Met Pro Gly Ser Leu Ala Met Gly Pro Val Thr Asn
 415 420 425

aaa acg ggc ctg gac gcc tcg ccc ctg gcc gca gat acc tcc tac tac 1526
 Lys Thr Gly Leu Asp Ala Ser Pro Leu Ala Ala Asp Thr Ser Tyr Tyr
 430 435 440 445

cag ggg gtg tac tcc cgg ccc att atg aac tcc tct taa gaagacgacg 1575
 Gln Gly Val Tyr Ser Arg Pro Ile Met Asn Ser Ser *
 450 455

gttccaggccc cggctaactc tggcacccccc gatcgaggac aagttagaaaa gcaagtgggg 1635
 gtcgagactt tggggagacg tggtgcaga gacgcaaggg agaagaaaatc cataacaccc 1695
 ccaccccaac acccccaaga cagcagtc tttcacccgc tgcagccgtt ccgtccccaaa 1755
 cagagggcca cacagatacc ccacgttcta tataaggagg aaaacgggaa agaatataaa 1815
 gttaaaaaaaaa agcctccgtt ttccactact gtgttagactc ctgttcttc aagcacctgc 1875
 agattctgtt ttttgttg ttgtgttctt cctccatgc ttttgttgc gggaaatgttt 1935
 actaaaaaaaaa aaaaaaaaaat ttgtgtgtg actcggtgtt aaaccatgtt gtttaacag 1995
 aaccagaggg ttgtactatt gttaaaaaaaaa agggaaaaaaa ataatgttggtctgtt 2055
 aaatgaccaa gaaaaagaaaa aaaaaagcat tcccaatctt gacacgggtt aatccagggtt 2115
 tcgggtccgtttaattatgtt gttctgtgtt gctttattttt tggcttataaa atgtgttattc 2175
 tggctgcaag ggccagagtt ccacaaatctt atattaaatgttatacccg gtttt 2230

<211> 1001
<212> DNA
<213> Mus musculus

<220>
<221> promoter
<222> (1)...(1001)
<223> upstream promoter for FoxA1 from -1000 to 0

<400> 4

ccggcagaga ggcaggctg actaggatcc gcctgccta tcacacaaac atctgcgcgc 60
agtttctcc tcgttcgtat cgctgcagt gacaaggaaa gtggagtggc ctgaggcgga 120
aaaaaaaaatgtcataa aaatataaaa cggtgctgtg actcacctgc tcttagccgc 180
aggtaacttgcgttgcggcag ccgcctccgtt ctgtcgcca ggagcccagg tcggcctaacc 240
gtcactttgc tcggctgact cagatgactg ggttctagt gacgaggcaa aagtggggct 300
tttccccctt ccaagcccc aaggccggga agtaggggta gtctccagg gttgaacctt 360
gggtcaagaa tcaggatgag gggagcaaaag gagccaagtg gaccaagagc ggagtcttag 420
taaggtccag ggggtggta gcacctctag gagggaaactc ggggtcattc agcgagcacg 480
atccctgcgc tgtagctcg atgccaccac ccaggtcctt ctccgcagc acagctctt 540
gggtccagag ccctggctgtt ccctccaagg caccgcctat ttccctttt ctctttttt 600
ttccctttctt ttcccttc ttttttctt tttccaaagg gggtcacaca cacaccgc 660
ctatttccctt cttcccttag ccgcgagact taaaccaatt atactgcctt gtaaacaaag 720
tgagggccag gtttggggaa gggatggcg ggaggggcgc gggggccgc cggcgcgtgc 780
gcggcggggc gggaggccgcg gcccgtggac tggcggggcg cccgcctaca ggtgcaccc 840
gggcttgta ggtgcgagcg tcttgtgcg cggacaaat ggggagagga cgaggagggtg 900
ggcactcccg cgacgtaaaga tccacatcg ctcaactgca ctgcctcgc acaggccgc 960
cgctcacttc ccgcggaggc gctggccggc gccgcgcctt g 1001

<210> 5
<211> 1001
<212> DNA
<213> Mus musculus

<220>
<221> promoter
<222> (1)...(1001)
<223> upstream promoter for FoxA2 from -1000 to 0

<400> 5

atctgatctc tctgggttcc ctgtgtcac taggtgaaca cgtcagattt accttcagcg 60
ggaaaaacagg cgttgcctt gaggactcg tgctctgcata tgcttcagat gacacattaa 120
tacccatct gtccatacta tgcgtttc agcagcaaaag ggcaactgtat ttgcgtgcgc 180
ttcagttccaa aaggatgtcg acctcttttccatccatc atctggcttc catttcattt 240
caggcttccaa tgctcaaaac tcacccactt acctgcacc tctatgtact ctctttctac 300
cacacgaaat tggacacc tggattttggg ccaactattt ccattttctt ccatttcata 360
gagagaagag ttgggactg tttccatcata tccttagtac attttcagaa ccaagaaaaga 420
ctgtccacat aaaaacgcgg gcaagaccctt ccactccaaa atctaggctt accttagtct 480
cggcttggt agctaacaat ataaatgaca tactctgtt tttcatgtt tgttttttt 540
ggggagacaa ggttcttc tgcgtttccgg atgtctgaa actcactcta tagacttaggt 600
cagccctagac ttctctgaga tccttcgtcc tctgcctcaa aggcaaga caacactca 660
aatgcacact tttacacactt agaagctaaa gagaaaagaa actgaaattt tcaattttta 720
taagacatcg ctggctctg caggcagaga acacagatcc tcctgaagtc atcccacaag 780
gcccattttt gatttttttt ccctgcctt acccccaactt actgcccgtt tgtttttagt 840
tacgaaatgc ttggggcacc ttggattta ctgaaaaagta accttggaaac accgaggccc 900
tcatgcgcaga ggcaaatcgc tgccctccgg gtattggctt cagctaaacg ggtctctca 960

ggccgactga ggtggtagc cagaaagagg actgaggtaa c 1001

<210> 6
<211> 1002
<212> DNA
<213> homo sapiens

<220>
<221> promoter
<222> (1)...(1001)
<223> upstream promoter for FoxA1 from -1000 to 0

<400> 6
tgtatggga gatgtccctt cccctgtacc tttccatc agaaaccaga cggtcgctc 60
cagctca tccgtaaacgg ctgaaggggg gcgggaggag gagcccgca gggggaggac 120
ggcccgactt gggtcgcctt gccctatcac acagacatctt gctctcagg tctccctt 180
tgtggtcgtt acagatgaca agggagagg agccgaccga ggcggaaacaa aaaaaaaaaaag 240
ttatgtcata aagatataaa ccgggtctgt gactcaccctt ctcttagccg caggtacgag 300
ttcgtggca ggcgcctccgc tctgttagcc cggggccccc gtcggcctaa cgtcacttgg 360
ctcggctgac tca gatgacc cgggtcttag tgacgaagca aaagtggggc ttttccctt 420
ttcttagtctt aagctcttca gaggaaagaa aaaaaaaaaagt ctgtatttctt cagtcctccg 480
gggttgaact ttgggtcagg aatcaggagg gaggaagcaa agagcaggag gggcgcgaga 540
ctggggccca gcccgcgtc ggaagggtggc gtgtaccctt ggggaggggac cccggggta 600
gttatccac aagggtctca agccca gtccttccatc cccatccatc cccatccatc 660
tgcgagggtc cgtatccatc cccttagccccc cccggccccc tggggccccc tattttttt 720
tttccaaag ggggttacac cccctccctc cccatccatc tcttccatc gctccgggc 780
ctaaaccaat tacactgtt tgcaaaacaaa gtgaggggccc cgttggggg agggttcgtc 840
ggggagggggt cgcgcgcgc ggtgaagcgg cggggcggga ggcgcggcgg cccgactggc 900
gggcggccgc ctgcagggtg cacccggc tttttaggtg cgagcgtttt tttttaggtg 960
acaaaatgggg agaggacgag gaggtggca ctcaagcgtac gt 1002

<210> 7
<211> 1001
<212> DNA
<213> homo sapiens

<220>
<221> promoter
<222> (1)...(1001)
<223> upstream promoter for FoxA2 from -1000 to 0

<400> 7
cggccgctgc tagagggct gcttgcgcca ggcgcggcc gccccactgc gggccctgg 60
cggccgggtt ctgaggagtc ggagagccga ggccggccaga ccgtgcgtcc cggcgttctc 120
ccgaggccgt tccgggtctg aactgttaca gggagggggcc tcgcaggagc agcagcgggc 180
gagttaaagg tgtgtacgtt gttttctaa ataggacgc gcttgcataa ttggctgtca 240
tggactgtt gttttgacag agaatgagca ctgagagcga agaaacccgg cataaataaa 300
tccggcttc ataggatct gcccggact gaggctggac ggcgcctccg acaggcgcac 360
cgggcggccg ggcgcgtatgac acggggcggg ggctggaggc cggagccggc ccagagggtg 420
gtttccccc aggtccctcc ttccctcagg gactcgctgt ggacccggga gggaaaggggg 480
ctcgaccagg gatcccgctt gcccgtatc cccggccagcc cgcgttttgc gcccggccag 540
gagtgcgggg cggccggccg gtggggcggc cggcaggcgc tgagggcag gtgcggagcg 600
ccggctgcgg ctacccatca cttaggtgt agctgtttt tcaaatgggc tggccgggtt 660
ctggggattt gaggccccggc ccagcgcgc ggcgtatatc accagccccc cacgtca 720
cggcactgtt cccgtccggc gtccacaccc cctccctcc tccctccctt tccctccctt 780

cctccctcaccaccacc accgcctct cctccctc ctcctccctc ctccccaccc 840
ccccactagc ccccgccgg cgccgtccc gcccgtcg ggcagctcg cactgccaac 900
ctcagccgcc acccgccagc ccgtgagcgc ggccggccgg ggtgctccct acccgccgggc 960
gctggcctgg gcctccctcg ctccctgccc ccccccacct c 1001