Project Advancement: CLAIM 2020 Project

FerryBox database

Managing and administrating the database in order to get faster and more accurate statistic and scientific results

Analyse

Describe

Visualize

Control

Juin 2019 – Mai 2020 Aouachri Sondos

Presentation plan

FerryBox: Water masses properties and dynamics

- ✓ Device at 5 meter depth
- ✓ Sampling frequency of 1 minute
- ✓ Measured parameters:
 - Temperature
 - Salinity
 - Dissolved oxygen
 - Turbidity
 - pH...

- The Tunisian FerryBox is currently involved in the CLAIM EU
 2020 project
- ✓ The first launch of FerryBox data collecting campaigns was on 2016
- ✓ The growing database offers several interesting scientific possibilities:
 - Statistical studies
 - Comparison with satellite data
 - Insight into the Mediterranean marine dynamics..

Inventory

Involvement within the Seadatanet 1 and 2 and SeaDataCloud projects has been successfully completed

INSTM oceanographic data plays a central role in Euro-Mediterranean and African projects

The time series of the Ferry Box data as well as the few missing CTD stations along the Tunisian coast are among the futur ameliorations

Currently, more than 500 FerryBox transects have been processed. Only 18 examples were used to test the next steps regarding Download Manager (DM) and Request Management System (RMS)

FerryBox system installed on board C/f Carthage of the Tunisian Navigation Company (CTN)

Professional data management is required with agreements on standardization, quality control protocols, archiving and access..

Collect once, Use many times!

Each contributor used different technologies to tackle one part or more of the project:

- Eliminating the files heading, data plots, quality control.. (Matlab)
- Insertion of data in the web app, transect visualization on a map, relational database creation.. (Php/ Symphony/PostgreSQL)
- Plotting data, creation of time series, comparing with satellite data.. (Excel/Matlab)
- Data pre processing, classification, quality control.. (Manual)

Etc..

Different aspects of the mission

A Files management

Gathering, downloading, automating the classification and the protection of the raw data

B Data management

Indexing files, transforming data into new forms (plots, general stats, time series), pre treatments and quality control

C Database administration

Creation of relational database on Sqlite3 SGBD, automating data insertion

D Web application

Displaying scientific data in an interactive application, different forms of charts, a blog and user management

Quality system design

ISO 9001 Clauses - PLAN

- 1 Scope
- 2 Normative references
- 3 Terms and Definitions
- 4 Context of the organization
 - 4.1 Understanding the organization and its context
 - 4.2 Understanding the needs and expectations of interested parties
 - 4.3 Determining the scope of the quality management system
 - 4.4 Quality management system and its processes
- 5 Leadership
 - 5.1 Leadership and commitment
 - 5.1.1 Leadership And Commitment For The Quality Management System
 - 5.1.2 Customer Focus
 - 5.2 Policy
 - 5.2.1 Establishing the quality policy
 - 5.2.2 Communicating the quality policy
 - 5.3 Organizational roles, responsibilities and authorities
- 6 Planning
 - 6.1 Actions to address risks and opportunities
 - How to address risk in ISO 90001
 - 6.2 Quality objectives and planning to achieve them
 - 6.3 Planning of changes

Key processes are steps that you go through to give the customer what they want, e.g. from order acceptance to design through to delivery.

A good way to do this is to think about how work flows through your organization. Consider how the inputs and outputs to the key processes flow from one process to the next, what sub-processes might exist within it and how the support processes link in.

We have to check that process inputs and outputs are defined and review how each of the processes are sequenced and how they interact.

FerryBox database

A very abundant information about the Mediterranean water surface

Local management

Managing files and data

Web application

Data interactive visualization

Python main libraries

Pandas

Manipulation and analysis of data: structuring of data and operations of manipulation of numerical tables and time series.

Numpy

Manipulation of multidimensional arrays and arrays, as well as mathematical functions operating on these arrays.

Matplotlib

Plotting and visualization of data in the form of graphs

Seaborn

It allows you to create statistical graphs in Python. It is built on matplotlib and is tightly integrated with pandas data structures (hence the choice of this library).

Daily refreshment process

Administrateur : Invite de commandes

Microsoft Windows [version 10.0.18362.720]

(c) 2019 Microsoft Corporation. Tous droits réservés.

C:\windows\system32>cd C:\Users\tunfe\Desktop\FB executables

C:\Users\tunfe\Desktop\ER_executables>python 1_Create_db.py
Database files are created

C:\Users\tunfe\Desktop\FB executables>

Quality control flags

Quality control flags

- A quality flag is assigned to each data value.
- Quality flags are used to describe the data value, no changes are made to the data values.

Spike test

Differences between sequential measurements, where one measurement is quite different than adjacent ones, is a spike in both size and gradient.

Test_value =
$$\left| \frac{V_2 - (V_3 + V_1)}{2} \right| - \left| \frac{(V_3 - V_1)}{2} \right|$$

where V2 is the measurement being tested as a spike, and V1 and V3 are the values previous and next.

- **Temperature**: The V2 value is flagged when the test value exceeds <u>6.0 degree C.</u>
- Salinity: The V2 value is flagged when the test value exceeds <u>0.9 PSU</u>

Values that fail the spike test should be flagged as wrong and should not be distributed.

Gradient

This test is failed when the difference between adjacent measurements is too steep.

$$Test_value = \left| \frac{V_2 - (V_3 + V_1)}{2} \right|$$

where V2 is the measurement being tested as a spike, and V1 and V3 are the previous and next values.

- Temperature: The V2 value is flagged when the test value exceeds 9.0 degree C.
- Salinity: The V2 value is flagged when the test value exceeds 1.5 PSU

Values that fail the test (i.e. value V2) should be flagged as wrong.

Example

File: 631_2019-12-15_151224_Marseille_to_goulette

Parameter: Oxygen

Mean value : 229.774

Standard deviation: 3.942

Time series creation process

11.8°E

Detect the first path cell (5 km)

Original FerryBox file

Date	Latitude	Longitude	Salinity_SBE45	Distance	Cumul_Distance
09/08/2016	44.325697	8.986357	38.149008	0.601666	850.2433024
09/08/2016	44.330328	8.984447	38.132975	0.536668	850.7799709
09/08/2016	44.334445	8.982676	38.106117	0.478786	851.2587565
09/08/2016	44.338354	8.981048	38.065742	0.453353	851.7121094
09/08/2016	44.342096	8.979485	38.024975	0.434087	852.1461963
09/08/2016	44.345642	8.978024	37.997525	0.41089	852.5570864
09/08/2016	44.349429	8.976265	37.997525	0.443566	853.0006528
09/08/2016	44.353245	8.973875	37.994292	0.464881	853.4655336
09/08/2016	44.356914	8.971277	38.004733	0.457295	853.9228285
09/08/2016	44.360167	8.968976	38.004733	0.405353	854.3281818
09/08/2016	44.363083	8.966903	38.025183	0.363731	854.691913
09/08/2016	44.365833	8.964949	38.0367	0.342986	855.034899

Generated time serie

					Λ.	В	_	D	E		G
37	.994292	0.464881	853.4655336	1	Date	C1	:2	C3	C4	C5	C6
38	3.004733	0.457295	853.9228285	2	09/08/2010	38.0457098	38.201788	38.2851334	38.223326		38.190334
25	3.004733	0.405353	854.3281818	3	08/08/2010				37.2811453		
				4	07/08/2016	38.253919	38.1939946	38.2428334	38.304363	38.1905784	38.22508
38	3.025183	0.363731	854.691913	5	04/08/2016	37.3654954	37.3230844	37.2925143	37.2979819	37.2904074	37.279241
3	8.0367	0.342986	855.034899	6	03/08/2016	38.2876265	38.2378459	38.2547643	38.2769547	38.261706	38.218794
				7	02/08/2016	37.29 99584	37.2895023	37.3070143	37.2898843	37.2484334	37.24317
			. ,	, .	1/08/2016	38.2484234	38.2917585	38.2591799	38.2518169	38.2321976	38.251579
	Insert tr	ie param	eter's mean vo	alue	9/07/2016	38.2422392	38.2089283	38.228669	38.2632441	38.2394476	38.234801
				10	27/07/2016	37.2655537	37.226259	37.219541	37.2319145	37.2163466	37.205981
				11	26/07/2016	38.201912	38.1671115	38.1781219	38.2041857	38.206432	38.182373
				12	25/07/2016	37.2025665	37.1650584	37.1696249	37.1829989	37.1735787	37.169695
				13	24/07/2016	38.1804583	38.1697621	38.1830429	38.2352071	38.2063904	38.180780
				14	23/07/2016	37.3310463	37.1769214	37.1608585	37.1464381	37.1464071	37.158096
				15	22/07/2016	38.201077	38.1691484	38.1487763	38.1172179	38.1209119	38.13203
				16			37.139301		37.1609644		37.113691
3_	genova_731	1501_pre.c	SV	17	19/07/2016	38.1484135	38.1885822	38.1710561	38.1476013	38.1278679	38.129236
					/						

Detect the date

File: 99_2016-08-09_185756_Goulette_to_genova_731501_pre.csv

FerryBox database

A very abundant information about the Mediterranean water surface

Local management

Managing files and data

Web application

Data interactive visualization

Web application components

Administrator panel

This part of the dashboard requires administrator login/password access, It enables the import of data in the database.

Community blog

This part of the application is where updates about the project, the advancement and encountered problems are discussed with the international community.

Data description

In this part, the projects current advancement, collected measurements and general statistics are displayed,

Data access

The international users of the Tunisian FerryBox Dashboard can, using this part of the application, visualize filtered data dynamically, in real time.

Data download

Users are offered the possibility to download data by requesting it via an online form.

Motivations

It is important to mention that a web application has already been created, in the previous years. This new web application is inspired from that previous result, while:

- Using a new database structure, based on the new files contents
- Providing a more rich user experience (user interface, data description, blog and articles ..)
- Displaying data in more than one charts type and form
- Filtering data on real-time basis
- Showing the ferry transect while coloring the path based on the measured parameter
- Using a Python-based developing platform, to ensure the continuity and coherence of the used technologies..

Tunisian FerryBox dashboard

European FerryBox Database

Frontend

Users see

20% of total effort

Backend

- Users don't see
- 80% of total effort
- Repetitive

The reference map

The colored map

What's next?

December

Scientific article redaction

The FerryBox data should have, at this point of my mission, achieved a level of maturity that allows it to be inserted in some valuable scientific content.

Aout

Further data exploitation / Satellite data matching

The project coordinator may assign further data quality controls, based on the web application behavior and the local refreshment process efficiency. Preparing data for the matching process could be tackled too.

Mai

Finalizing the web application and deployment

The web application, after team meetings and discussions, articles and web redaction, and unit tests validation, can be deployed to international use

Mission's overview

- FerryBox data structuring and preprocessing
- ✓ Data analysis related to the project's tasks and goals
- Writing reports and scientific articles
- ✓ Participation in the various scientific events of the project

Brochure

FerryBox

The measuring device for marine water characteristics is fixed at the water depth of 5 meters, collecting data each 1 minute of the ferry trip

432 goulette to Harselle 190 Coulette to Marselle 193 Coulette to Marselle 193 Coulette to Marsell borquila 449 group to PARSE to Marselle 449 group to PARSE to Marselle 480 ZANZIS to Marselle

Main transects

The two mainly visited transects are:

- · Tunis Genova
- · Tunis Marseille

Other golfs are randomly visited such as Zarzis, Lyon...

FERRYBOX TECHNOLOGY

The Tunisian FerryBox device is part of an initiative that's targeting water masse tracking and measuring. It is

materialized by a set of sensors that are implemented in Carthage ferry, at 5 meters depth. It is measuring, for each minute of the ferry's trip, several parameters (Temperature, Salinity, Dissolved oxygen, Turbidity, pH...)

AUTO-SAMPLER

Auto-sampler is a new device that was joined to FerryBox equipment on 2020, it's designed to automate marine water sampling.

AADI Oxygen op-

Seapoint Chloro-

SBE45 MicroTSG

Thermosalinograph

SBE38 Digital Oceanographic
Thermometer

The first launch of FerryBox data collecting campaigns was on 2016. The growing database offers several interesting scientific possibilities:

- · Statistical studies
- · Comparison with satellite data
- · Insight into the Mediterranean marine dynamics...

The Tunisian FerryBox dashboard renders the required graphics and maps, based on a user's instant demand. The web application is totally dynamic and is exporting the required data to visualize it, in real time.

he application's user is offered the possibility to visualize:

- · Transects plot, for each parameter
- · Map plot, with a colored transect
- · Scatter plot, with a dynamic quality control
- · Time series plot, on each position of the ferry trip
- · Data description ...

CARTHAGE FERRY

The FerryBox sensors are being hosted in the Tunisian ferry Carthage, from CTN, since February 2016.

DATABASE STATISTICS

DYNAMIC WEB APPLICATION: DATA ACCESS

TRANSECT PLOT

Plot several parameter's distribution along the ferry trip regions (Temperature, Salinity, Chlorophyll, Turbidity...), with several quality control options

MAP PLOT

Draw the ferry's transect on a georeferenced map, with colored information about scientific data repartition (example below: Salinity

TIME SERIES

Visualize time series fluctuations on any given point of FerryBox trips, and any time range since 2016 (max, min and average values)

SCATTER PLOT

Draw all possible combinations of FerryBox parameters'

Correlations (XY plots) and regression line

DYNAMIC WEB APPLICATION: ADMIN INTERFACE

REQUESTS MANAGEMENT

UPLOAD DATA

DOWNLOAD DATA

DATA STATISTICS

Show					Bearch				
10 entries									
Reference	Date	Departure	Destination	Start time	End time	Duration (h)	Distance (km)	Size (Octet)	Line
22	March 10, 2016	Marselle	Goulette	11.45 s.m.	9 8.711	21	042	575100	1275
25	March 15, 2016	Goulette	Marcelle	11:00 p.m.	1205 pm	19	501	380534	779
26	March 17, 2016	Marselle	goulette	1215 p.m.	2341 a.m.	19	759	576361	1161
00	March 22, 2016	Goulette	Marseile	1216 p.m.	3.07 p.m.	26	837	792314	1612
30	April 5, 2016	Goulette	Marselle	1216 p.m.	932 am	21	897	628740	1276
30	April 7, 3016	Marselle	Goulette	10:30 a.m.	810 am	.21	843	633277	1293
82	April 12, 3016	Goulette	Marselle	1215 p.m.	9:27 a.m.	21	897	636877	1272
43	April 14, 2016	Marselle	Goulette	11:26 a.m.	835 a.m.	-21	842	629936	1275
40	June 11, 2016	Goulette	Marseile	11:24 a.m.	5.83 a.m.	18	798	524821	1086
50	June 12, 2016	Marselle	Goulette	206 p.m.	935 a.m.	19	798	565512	1169

