Coastal Vulnerability Formalization

Core Definition

"Coastal vulnerability refers to the expected amount of damage that a coastal ecosystem will face as the outcome from its exposure and lack of resilience to coastal hazards"

Formal Mathematical Structure

$$CV(ce) = \mathbb{E}_{h \sim P(h|e_{ch})}[D(ce, h, lor_{ch}(ce))]$$

Where:

- CV(ce) = Coastal vulnerability of coastal ecosystem ce
- $\mathbb{E}_{h \sim P(h|e_{ch})}[\cdot]$ = Expected value over hazard scenarios h distributed according to exposure characteristics
- D(·) = Damage function mapping (ecosystem, hazard realization, resilience) → damage
- ce = Coastal ecosystem state vector
- h = Specific hazard realization (random variable)
- $P(h|e_{ch})$ = Probability distribution of hazard scenarios conditional on exposure characteristics
- $lor_{ch}(ce)$ = Lack of resilience function dependent on ecosystem state

Term-by-Term Formalization

0. Coastal Ecosystem (ce)

- **Definition**: The specific coastal ecosystem under assessment, characterized by its geographical, biological, physical, and functional attributes.
- Mathematical Representation: A tuple or set of features.

$$ce = (G, B, P, F)$$

Where:

- G: Geographic attributes (e.g., location coordinates, spatial extent/area A_{ce} , boundaries, connectivity to other ecosystems).
- *B*: Biotic attributes (e.g., species composition, biodiversity metrics, population densities, habitat types like mangrove, coral reef, saltmarsh, seagrass bed).
- *P*: Physical/Abiotic attributes (e.g., geomorphology, sediment type, bathymetry, water quality parameters, structural complexity).
- *F*: Functional attributes (e.g., ecosystem services provided like coastal protection, carbon sequestration rate, nursery function, recreational value).
- Domain:
- $G \in SpatialObjects$
- $B \in \text{BioticFeatureSpace}$
- $P \in PhysicalFeatureSpace$
- $F \in Functional Feature Space$
- Notes:
- The specific attributes chosen for B,P,F will depend on the assessment's scope and the type of damage being quantified.
- ce properties directly inform lor_ch (e.g., A(ce), R(ce), S(ce)) and $\Psi(ce)$ in the damage function.

1. Coastal Vulnerability

- Definition: The primary metric representing the anticipated impact on a coastal ecosystem
- Mathematical Representation:

$$ext{CV}(ce) = \mathbb{E}_{h \sim P(h|e_{ch})}[D(ce,h, ext{lor}_{ch}(ce))]$$

- **Domain**: $\mathbb{R}_{>0}$ (non-negative real numbers)
- Constraints:
- $-\operatorname{CV}(ce) \geq 0$ (non-negativity)
- $\mathrm{CV}(ce) \leq \phi(ce)$ where $\phi(ce)$ is the maximum possible damage (e.g., total ecosystem area, biomass, or functional capacity)

2. Expected Amount of Damage

- Definition: Statistical expectation of damage over all possible hazard scenarios
- Mathematical Representation:

$$\mathbb{E}_{h \sim P(h|e_{ch})}[D] = \int_{\mathcal{H}} p(h|e_{ch}) \cdot D(ce, h, lor_{ch}(ce)) dh$$

Where:

- \mathcal{H} : Space of all hazard scenarios h
- $-p(h|e_{ch})$: Conditional probability density function of hazard h given exposure characteristics
- $D(ce, h, lor_{ch}(ce))$: Damage function for specific hazard realization h
- Properties:
- Probabilistic integration over uncertainty in hazards
- Future-oriented (models stochastic future events)
- Dimensionally consistent (units depend on damage metric chosen)
- Discrete Event Alternative:

$$CV(ce) = \sum_{i \in T} \lambda_i \cdot \mathbb{E}[D(ce, h_i, lor_{ch}(ce))]$$

Where λ_i is the annual frequency of hazard type i and T is the set of discrete hazard types.

3. Exposure to Coastal Hazards

- **Definition**: Characterization of hazard probability distributions affecting the ecosystem
- Mathematical Representation:

$$e_{ch} = \{(\lambda_i, F_i)\}_{i \in T}$$

Where:

- λ_i : Annual frequency of hazard type *i* (events/year)
- $F_i(h)$: Cumulative distribution function of intensity for hazard type i
- T: Set of relevant hazard types (e.g., storms, sea-level rise)
- Hazard Realization Sampling:

$$h \sim P(h|e_{ch}) = \sum_{i \in T} rac{\lambda_i}{\sum_j \lambda_j} \cdot f_i(h)$$

Where $f_i(h)$ is the probability density function derived from $F_i(h)$

- Domain:
 - $\lambda_i > 0$ (positive real), F_i is a valid CDF
- Constraints:
 - $\sum_i \lambda_i < \infty$ (finite total hazard rate)
- Ecosystem Feedback: $e_{ch} = F_{EH}(ce)$ where ecosystem state modifies exposure through protective services

4. Lack of Resilience

- Definition: Inability to absorb/recover from hazards, quantified via resilience factors
- Mathematical Representation:

$$lor_{ch}(ce) = 1 - (w_1 \cdot A(ce) + w_2 \cdot R(ce) + w_3 \cdot S(ce))$$

Where:

- $A(ce) \in [0,1]$: Adaptive capacity (e.g., species diversity)
- $-R(ce) \in [0,1]$: Recovery potential (e.g., sediment replenishment rate)
- $S(ce) \in [0,1]$: Structural integrity (e.g., mangrove density)
- w_j : Weights where $\sum w_j = 1$
- Domain: $\mathrm{lor}_{ch} \in [0,\overline{1}]$

(0 = fully resilient, 1 = no resilience)

- Critical Constraint:

Damage D must be a monotonically non-decreasing function of $lor_{ch}(ce)$ (higher lack of resilience \rightarrow higher damage)

- **Weight Determination**: Use multi-criteria decision analysis (MCDA) or expert elicitation with consistency checks
- **Sensitivity Analysis**: Mandatory sensitivity analysis on all weight parameters (w_j) to assess robustness of lor_{ch} calculations

5. Damage Function

- Definition: Mechanism translating hazard impact into quantifiable ecosystem damage
- Mathematical Representation (One Possible Functional Form):

$$D(ce, h, lor_{ch}(ce)) = f(h) \cdot g(lor_{ch}(ce)) \cdot \Psi(ce)$$

Where:

- f(h): Hazard intensity multiplier (e.g., storm surge height²)
- $g(lor_{ch}(ce))$: Resilience scaling term (e.g., $e^{k \cdot lor_{ch}(ce)}$ with k > 0)
- $\Psi(ce)$: Ecosystem's maximum damage potential (e.g., total area, biomass, or service value)
- Alternative Forms: Additive models $(D = f(h) + g(lor_{ch}) + \Psi(ce))$ or more complex interaction terms may be appropriate depending on the specific ecosystem-hazard system
- **Domain**: $\mathbb{R}_{>0}$ (non-negative)
- Enforced Constraints:
- $-\frac{\partial D}{\partial h}>0,\,\frac{\partial D}{\partial lor_{ch}}>0$ (damage monotonicity)
- $D(ce, h, lor_{ch}(ce)) \leq \phi(ce) \, \forall \, \text{h (upper physical bound enforced via saturation)}$ $\lim_{h \to \infty} D(ce, h, lor_{ch}(ce)) = \phi(ce) \, \text{(damage approaches but never exceeds maximum)}$

6. Spatio-Temporal Dynamics

- Definition: Accounting for changes in coastal vulnerability over a defined time horizon and across spatial
- Mathematical Representation:
 - Time Dependence: Key variables become functions of time $t \in [0, T_H]$, where T_H is the time
 - Ecosystem: ce(t) = (G(t), B(t), P(t), F(t))
 - Exposure: $e_{ch}(t) = \{\lambda_i(t), I_i(t)\}_{i \in T}$
 - Lack of Resilience: $\operatorname{lor}_{ch}(t) = 1 (w_1 \cdot A(ce(t)) + w_2 \cdot R(ce(t)) + w_3 \cdot S(ce(t)))$
 - Per-Event Expected Damage at time t: $D_{event}(t) = \mathbb{E}_{h \sim P(h|e_{ch}(t))}[D(ce(t), h, lor_{ch}(ce(t)))]$
 - **Annual Expected Damage** at time *t*:

$$D_{annual}(t) = \sum_{i \in T} \lambda_i(t) \cdot \mathbb{E}_{h \sim F_i(t)}[D(ce(t), h, lor_{ch}(ce(t)))]$$

Where $\lambda_i(t)$ is the annual frequency of hazard type i at time t

- Vulnerability over Time Horizon (Discrete Time Framework):
 - Average Annual Vulnerability:

$$CV_{T_H,avg}(ce) = rac{1}{T_H} \sum_{t=1}^{T_H} D_{annual}(t)$$

- Discounted Total Expected Damage:

$$CV_{T_H,total}(ce) = \sum_{t=1}^{T_H} rac{1}{(1+r)^t} D_{annual}(t)$$

Where r is the discount rate for temporal preferences

- Spatial Explicitness: Variables become functions of spatial coordinates $\mathbf{s}=(x,y)$ (or a more general spatial vector) within the ecosystem's spatial domain \mathcal{S}_{ce} .
 - $ce(\mathbf{s}), e_{ch}(\mathbf{s}), lor_{ch}(\mathbf{s})$
 - Spatially Explicit Vulnerability:

$$CV(ce, \mathbf{s}) = \mathbb{E}[D(ce(\mathbf{s}), e_{ch}(\mathbf{s}), \log_{ch}(\mathbf{s}))]$$

This results in a vulnerability map.

- Combined Spatio-Temporal Vulnerability:
- $ce(\mathbf{s},t)$, $e_{ch}(\mathbf{s},t)$, $lor_{ch}(\mathbf{s},t)$
- Instantaneous Spatially Explicit Vulnerability:

$$extit{CV}(ce,\mathbf{s},t) = \mathbb{E}[D(ce(\mathbf{s},t),e_{ch}(\mathbf{s},t),\mathrm{lor}_{ch}(\mathbf{s},t))]$$

- Domain:

 - $egin{array}{ll} ullet & t \in [0,T_H] \ ullet & \mathbf{s} \in \mathcal{S}_{ce} \subset \mathbb{R}^2 ext{ (or } \mathbb{R}^3) \end{array}$
- · Stability Analysis for Feedback Systems:

 - o System converges if $\|F_{EH}(ce_{t+1}) F_{EH}(ce_t)\| < \epsilon$ for ecosystem feedback o Lyapunov stability condition: $\frac{d}{dt}V(ce(t)) < 0$ where V is a suitable energy function
- Notes:
 - Discrete time framework better represents annual assessment cycles
 - o Discounting prevents unbounded damage accumulation over infinite horizons
 - Spatially explicit models require gridded or vector data for inputs

7. Interdependencies and Feedbacks

- Definition: Interactions where ecosystem state influences hazard exposure, or where damage/recovery dynamics are complex, or where ecosystems influence each other's vulnerability.
- Mathematical Representation:
 - **Ecosystem-Hazard Feedback**: Exposure e_{ch} becomes a function of the ecosystem state ce.

$$e_{ch} = \mathcal{F}_{EH}(ce)$$

Where \mathcal{F}_{EH} is a function or model translating ecosystem attributes (e.g., reef height, mangrove density) into modified hazard characteristics (e.g., reduced wave energy).

The core CV equation becomes: $CV(ce) = \mathbb{E}_{h \sim P(h|\mathcal{F}_{EH}(ce))}[D(ce, h, lor_{ch}(ce))].$

- Damage Accumulation & Recovery Dynamics: The state of damage D_{state} evolves over time with explicit feedback to ecosystem state.
- Let $D_{state}(t)$ be the accumulated damage at time t.
- For a hazard event h_k at time t_k , instantaneous damage $D_{event,k} = D(ce(t_k), h_k, lor_{ch}(t_k))$.
- Recovery function $Rec(ce, D_{state}, \Delta t)$ describes damage reduction over Δt .
- Evolution of damage (discrete time):

$$D_{state}(t + \Delta t) = D_{state}(t) + \sum_{k \text{ s.t. } t_k \in [t, t + \Delta t)} D_{event, k} - Rec(ce(t), D_{state}(t), \Delta t)$$

- Critical Feedback: Ecosystem state and resilience depend on damage state:
 - $ce(t) = \mathcal{F}_{damage}(ce_0, D_{state}(t))$ where ce_0 is the undamaged baseline state
 - $lor_{ch}(t) = lor_{ch}(ce(t), D_{state}(t))$ (damaged ecosystems typically less resilient)
- Implementation Note: These feedbacks often require numerical simulation rather than analytical solutions.
- Inter-ecosystem Linkages: Vulnerability of ecosystem ce_i depends on the state of ecosystem ce_i .
 - Let $D_{state,i}$ be the damage state of ce_i .
 - Exposure for ce_j : $e_{ch,j} = \mathcal{F}_{link,E}(ce_i, D_{state,i}, \ldots)$ (e.g., damaged reef ce_i increases wave exposure for seagrass ce_i).
 - Lack of resilience for ce_j : $lor_{ch,j} = \mathcal{F}_{link,R}(ce_i,D_{state,i},\ldots)$ (e.g., damaged mangroves ce_i reduce sediment supply for marsh ce_j , affecting its recovery).
 - Then $CV(ce_j|ce_i, D_{state,i}) = \mathbb{E}[D(ce_j, e_{ch,j}(\cdot), \log_{ch,j}(\cdot))].$
 - This can lead to a system of coupled CV equations for a network of ecosystems $\mathbf{CE} = \{ce_1, \dots, ce_N\}.$
- Notes:
 - These feedbacks can significantly increase model complexity, often requiring numerical simulation.
 - \mathcal{F}_{EH} , Rec, $\mathcal{F}_{link,E}$, $\mathcal{F}_{link,R}$ are complex functions/models specific to the ecosystems and hazards.

8. Uncertainty Quantification

- **Definition**: Systematic assessment of uncertainty in CV(ce) arising from uncertainties in input parameters, model structure, and hazard probabilities.
- Mathematical Representation:
 - Let $\Theta = \{\theta_1, \theta_2, \dots, \theta_M\}$ be the set of all uncertain parameters and model choices (e.g., parameters in p(h), weights w_i in lor_{ch} , parameters in f(h) and $g(lor_{ch})$, choice of functional forms).
 - Each θ_k has an associated probability distribution $P(\theta_k)$ or a set of alternative models.
 - Coastal Vulnerability becomes a random variable conditional on Θ : $CV(ce|\Theta)$.
 - The goal is to find the probability distribution of CV(ce), denoted P(CV(ce)).
 - o Methods:
 - Monte Carlo Simulation:
 - 1. Sample N sets of parameters $\Theta^{(s)}$ from their respective distributions $P(\Theta_k)$.
 - 2. For each sample $s=1,\ldots,N$, calculate $CV^{(s)}(ce) = \mathbb{E}[D(ce, e_{ch}(\Theta^{(s)}), \operatorname{lor}_{ch}(\Theta^{(s)}))|\Theta^{(s)}].$
 - 3. The ensemble $\{CV^{(s)}(ce)\}$ approximates P(CV(ce)).

 Sensitivity Analysis: Evaluate $\frac{\partial CV}{\partial \theta_k}$ to identify key sources of uncertainty.
- Output:
 - Not just a point estimate for CV(ce), but also:
 - Mean: $\mathbb{E}_{\Theta}[CV(ce|\Theta)]$
 - Variance: $Var_{\Theta}[CV(ce|\Theta)]$
 - Confidence Intervals / Credible Intervals (e.g., 5th-95th percentiles).
 - Probability Density Function (PDF) or Cumulative Distribution Function (CDF) of CV(ce).
- Notes:
 - Crucial for decision-making, as it provides a measure of confidence in the CV estimate.

9. Normalization and Aggregation for Indices

- **Definition**: Standardizing CV(ce) values for comparison across different ecosystems or damage units, and combining them into composite indices for broader assessment.
- Mathematical Representation:
 - Normalization: Transforming CV(ce) to a common scale, typically [0, 1].
 - **Method 1 (Min-Max Scaling)** Use for relative comparisons:

$$CV_{norm}(ce) = rac{CV(ce) - CV_{min}}{CV_{max} - CV_{min}}$$

Where CV_{min} and CV_{max} are minimum/maximum values across comparison set.

- Limitation: Highly sensitive to outliers; single extreme value compresses all other
- Recommendation: Remove outliers or use robust percentile-based scaling (e.g., 5th-95th percentiles)
- Method 2 (Maximum Damage Scaling) Use for absolute vulnerability:

$$CV_{norm}(ce) = rac{CV(ce)}{\phi(ce)}$$

Where $\phi(ce)$ is the maximum possible damage. Represents proportion of ecosystem at risk.

■ Method 3 (Z-Score Normalization) - Alternative for outlier robustness:

$$CV_{norm}(ce) = rac{CV(ce) - \mu_{CV}}{\sigma_{CV}}$$

Where μ_{CV} and σ_{CV} are mean and standard deviation of CV values.

- Selection Criteria: Use Method 1 for ecosystem rankings (with outlier handling), Method 2 for absolute risk assessment, Method 3 when outliers are problematic.
- **Aggregation**: Combining CV values from multiple ecosystems ($ce_k, k=1,\ldots,N_{eco}$) into a single index.
- Regional Vulnerability Index (RVI):

$$RVI = \sum_{k=1}^{N_{eco}} W_k \cdot CV_{norm}(ce_k)$$

Where:

- W_k : Weight assigned to ecosystem ce_k determined via MCDA or expert elicitation $\sum_{k=1}^{N_{eco}} W_k = 1$ for weighted average interpretation
- Weight Determination: Use Analytic Hierarchy Process (AHP) or similar MCDA
- Mandatory Sensitivity Analysis: Assess RVI robustness to weight variations ($W_k \pm \delta$
- Domain:
 - \circ $CV_{norm}(ce) \in [0,1]$ (enforced by normalization)
 - $RVI \in [0,1]$ (if W_k sum to 1 and $CV_{norm} \in [0,1]$)
- Consistency Checks:
 - Sensitivity analysis on weight choices
 - Rank correlation analysis between different weighting schemes
- Notes:
 - Method selection significantly affects rankings document rationale
 - Provide uncertainty bounds on aggregated indices

10. Adaptation and Management Interventions

- Definition: Evaluating the potential of human actions to modify coastal vulnerability by altering exposure, resilience, or ecosystem characteristics.
- Mathematical Representation:
 - Let \mathcal{M} be a set of possible management interventions $M_i \in \mathcal{M}$.
 - An intervention M_i can modify:
 - Ecosystem characteristics: $ce \rightarrow ce'(M_i)$
 - Exposure: $e_{ch} \rightarrow e'_{ch}(M_j, ce')$ (e.g., building a seawall, restoring a reef)
 - Lack of Resilience: $lor_{ch} \rightarrow lor'_{ch}(M_j, ce')$ (e.g., habitat restoration improving A(ce'), R(ce'), S(ce')).
 - Vulnerability with Intervention:

$$CV(ce, M_j) = \mathbb{E}[D(ce'(M_j), e'_{ch}(M_j, ce'(M_j)), lor'_{ch}(M_j, ce'(M_j)))]$$

- Effectiveness of Intervention (Vulnerability Reduction):

$$\Delta CV(M_j) = CV_{baseline}(ce) - CV(ce, M_j)$$

Where $CV_{baseline}(ce)$ is the vulnerability without intervention.

- o Cost-Effectiveness Analysis:

 - Let $C(M_j)$ be the cost of implementing intervention M_j .

 Cost-Effectiveness Ratio: $CER(M_j) = \frac{C(M_j)}{\Delta CV(M_j)}$ (cost per unit of vulnerability reduced).
 - Benefit-Cost Ratio (if ΔCV can be monetized): $BCR(M_j) = \frac{\text{Monetized}(\Delta CV(M_j))}{C(M_j)}$.

• Optimization:

- Find $M_j^* \in \mathcal{M}$ that maximizes $\Delta CV(M_j)$ subject to a budget constraint $C(M_j) \leq B_{max}$.
- Or, find M_j^* that minimizes $CER(M_j)$.

• Notes:

- This formalization allows for a quantitative comparison of different adaptation strategies.
- \circ Modeling the effect of M_j on ce, e_{ch}, lor_{ch} is a significant research and modeling challenge itself.
- The framework can also be used to assess maladaptation, where $CV(ce, M_j) > CV_{baseline}(ce)$.