Organizační úvod

Poznámka

Podmínkou zápočtu je splnění 1 domácí práce a 1 písemného testu. Není potřeba docházka.

Bude moodle (přístup dají cvičící). Budou tam poznámky k přednášce, cvičebnice a bude se tam odevzdávat domácí práce.

Je dobré umět míru.

1 Úvod

Poznámka

Pravděpodobnost popisuje modely popisující náhodné jevy.

Statistika se pak snaží popsat reálné věci za pomocí těchto modelů.

Poznámka (Historie)

Klasická pravděpodobnost navazuje na dílo Kolmogorova, který popisoval axiomatickou pravděpodobnost.

2 Pravděpodobnostní prostor

Definice 2.1 (Pravděpodobnostní prostor, pravděpodobnost)

Pravděpodobnostní prostor je trojice (Ω, \mathcal{A}, P) , kde Ω je neprázdná množina, \mathcal{A} je σ -algebra a P je pravděpodobnost.

Pravděpodobnost P je množinová funkce $\mathcal{A} \to [0,1]$ splňující:

- $P(A) \ge 0 \ \forall A \in \mathcal{A}$, (nezápornost)
- $P(\Omega) = 1$, (normovanost)
- jsou-li $A_i \in \mathcal{A}$ po dvou disjunktní, pak $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$. (σ -aditivita)

Poznámka (Interpretace)

 Ω se často nazývá stavový prostor a obsahuje všechny "realizace náhody" neboli elementární jevy, tj. všechny možnosti, o kterých uvažuji.

 $\mathcal A$ je σ -algebra náhodných jevů. P pak obsahuje veškerou informaci o té dané náhodné situaci.

Pokud nastal $\omega \in A \in \mathcal{A} \ (\omega \in \Omega)$, pak nastal jev A.

Definice 2.2 (Klasický pravděpodobnostní prostor, diskrétní pravděpodobnostní prostor, spojitý pravděpodobnostní prostor, indikátor)

 Ω konečná, $\mathcal{A}=2^{\Omega},\ P(\{a\})=\frac{1}{n}\ \forall a\in\Omega$ je klasický pravděpodobnostní prostor.

 Ω spočetná (včetně konečná), $\mathcal{A}=2^{\Omega},\ p:\Omega\to[0,1]$ je taková, že $p(\omega)\geq0\ \forall\omega\in\Omega$ a $\sum_{\omega\in\Omega}=1$. Položíme $P(A)=\sum_{\omega\in A}p(\omega)\ \forall A\in\mathcal{A}$ nazýváme diskrétní pravděpodobnostní prostor.

 $\Omega = \mathbb{R}$, $\mathcal{A} = \mathcal{B}(\mathbb{R})$ (resp. $\mathcal{B}_0(\mathbb{R})$) a $g : \mathbb{R} \to [0, \infty)$ měřitelná, že $\int_{\mathbb{R}} g(x) dx = 1$, pak definujeme $P(B) = \int_B g(x) dx$, $b \in \mathcal{B}(\mathbb{R}) = \mathcal{A}$ je spojitý pravděpodobnostní prostor. Speciálním případem $g(x) = 1_{[0,1]}(x)$ je pak tzv. indikátor.

Definice 2.3 (Jev jistý, jev nemožný, podjev, zároveň, alespoň jeden, jev opačný, neslučitelné jevy)

 Ω je jev jistý, \emptyset je jev nemožný, $A \subset B$ znamená "A je podjev B", $A \cap B$ znamená "nastal A a zároveň B", $A \cup B$ znamená "nastal A nebo B", A^C je jev opačný, $A \cap B = \emptyset$ jsou neslučitelné jevy.

Věta 2.1

Buďte (Ω, \mathcal{A}, P) pravděpodobnostní prostor a $A, B, A_i \in \mathcal{A}$ $(i \in \mathbb{N})$ náhodné jevy. Pak platí:

- $P(\emptyset) = 0;$
- P je konečně aditivní;
- $P(A^C) = 1 P(A)$;
- $P(A \cup B) = P(A) + P(B) P(A \cap B);$
- $A \subset B \implies P(A) < P(B)$; (monotonie)
- $A_1 \subseteq A_2 \subseteq \ldots \implies P(\bigcup_{i=1}^{\infty} A_i) = \lim_{n \to \infty} P(A_i); (spojitost)$
- $A_1 \supseteq A_2 \supseteq \ldots \implies P(\bigcap_{i=1}^{\infty} A_i) = \lim_{n \to \infty} P(A_i); (spojitost)$
- $A_1 \supseteq A_2 \supseteq \ldots \land \bigcap_{i=1}^{\infty} A_i = \emptyset \implies \lim_{n \to \infty} P(A_i) = 0$; (spojitost v nule)
- $B \subset A \implies P(A \setminus B) = P(A) P(B)$.

Důkaz

Vše z míry. Pravdědobnost je konečná, předposlední bod vyplývá z předchozího.

Poznámka

28. února bude v 17:20 náhradní přednáška za poslední přednášku.

Věta 2.2 (Princip inkluze a exkluze)

Buď (Ω, \mathcal{A}, P) pravděpodobnostní prostor. Pak pro každé $n \in \mathbb{N}$ a každá $A_i \in \mathcal{A}$, $i \in \mathbb{N}$, platí:

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i \le j \le n} P(A_i \cap A_j) + \dots + (-1)^{n-1} P(\bigcap_{i=1}^{n} A_i).$$

 $D\mathring{u}kaz$

Nebude, v podstatě byl v diskrétce.

3 Podmíněná pravděpodobnost

Definice 3.1 (Podmíněná pravděpodobnost)

Buďte $A, B \in \mathcal{A}$ takové, že P(B) > 0. Definujeme $P(A|B) = \frac{P(A \cap B)}{P(B)}$ a nazýváme ji podmíněnou pravděpodobností jevu A za podmínky (jevu) B.

Věta 3.1

Buď $B \in \mathcal{A}$ takové, že P(B) > 0. Pak zobrazení $P(.|B) : \mathcal{A} \rightarrow [0,1]$ splňuje definici pravděpodobnosti.

 $D\mathring{u}kaz$

Ověříme po bodech: zřejmě $P(A|B) \geq 0 \ \forall A \in \mathcal{A}, \ P(\Omega|B) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1 \ \text{a } \sigma$ -aditivita plyne ze σ -aditivity $P(.\cap B)$ a deMorganových pravidel $(B \cap \bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} A_i \cap B), \ P(B)^{-1}$ se prostě z obou stran vytkne.

Pozor

Podmíněná pravděpodobnost nám neříká nic o příčinné souvislosti.

Pozorování (O podmíněné pravděpodobnosti)

Buďte $A, B, C \in \mathcal{A}$ a pravděpodobnost "správných" jevů nenulová. Pak:

• $P(A \cup B|C) = P(A|C) + P(B|C) - P(A \cap B|C)$,

- $B \subset A \implies P(A|B) = 1$,
- $A \cap B = \emptyset \implies P(A|B) = 0$,
- $P(A|\Omega) = P(A)$,
- pokud $P(\{\omega\}) > 0$, pak $\forall A \in \mathcal{A}$ platí $P(A|\{\omega\}) = \delta_{\omega}(A)$.

 $D\mathring{u}kaz$

Triviální (buď z definice, nebo z toho, že je to pravděpodobnost).

Pozor (Neplatí!)

 $P(A|B \cup C) = P(A|B) + P(A|C)$, ani v případě, že $A \cap B = \emptyset$.

Věta 3.2 (O násobení pravděpodobností)

Budte $A_1, A_2, \ldots, A_n \in \mathcal{A}$ takové, že $P(A_1 \cap A_2 \cap \ldots \cap A_{n-1}) > 0$. Pak

$$P(A_1 \cap A_2 \cap \ldots \cap A_n) = P(A_n | A_1 \cap \ldots \cap A_{n-1}) \cdot P(A_{n-1} | A_1 \cap A_2 \cap \ldots \cap A_{n-2}) \cdot \ldots \cdot P(A_2 | A_1) \cdot P(A_1).$$

 $D\mathring{u}kaz$

L

Z $P(A_1 \cap \ldots \cap A_{n-1}) > 0$ plyne, že $P(A_1 \cap \ldots \cap A_k) > 0$ pro $k \in [n-1]$, pomocí monotonie pravděpodobnosti. Tedy výraz je dobře definován.

Dokážeme indukcí: Pro n=2 platí $P(A_1\cap A_2)=P(A_2|A_1)\cdot P(A_1)$ z definice. Z n-1 na $n\colon (B:=A_1\cap\ldots\cap A_{n-1})$

$$P(A_1 \cap A_2 \cap \ldots \cap A_n) = P(B \cap A_n) \stackrel{\text{def}}{=} P(A|B) \cdot P(B) \stackrel{\text{IP}}{=}$$

$$= P(A_n|A_1 \cap ... \cap A_{n-1}) \cdot P(A_{n-1}|A_1 \cap A_2 \cap ... \cap A_{n-2}) \cdot ... \cdot P(A_2|A_1) \cdot P(A_1).$$

Věta 3.3 (O celkové pravděpodobnosti)

Budte A, B_1, B_2, \ldots náhodné jevy takové, že $P(\bigcup_n B_n) = 1$ a $B_i \cap B_j = \emptyset \ \forall i \neq j$ a $P(B_i) > 0 \ \forall i$. Potom $P(A) = \sum_n P(A|B_n) \cdot P(B_n)$.

 $D\mathring{u}kaz$

Víme $P\left(\left(\bigcup_n B_n\right)^c\right) = 0$, a tedy $P(A) = P\left(A \cap \bigcup_n B_n\right) + P\left(A \cap \left(\bigcup_n B_n\right)\right) = P\left(A \cap \bigcup_n B_n\right)$, protože P je konečně-aditivní a platí monotonie. Dle de Morganových pravidel (a toho, že průnik s další množinou zachovává disjunktnost):

$$P(A) = P\left(\bigcup_{n} (A \cap B_n)\right) = \sum_{n} P(A \cap B_n) = \sum_{n} P(A|B_n) \cdot P(B_n).$$

Věta 3.4 (Bayesova)

Za předpokladů věty o celkové pravděpodobnosti a P(A) > 0, platí $P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_n P(A|B_n)P(B_n)}$.

 $D\mathring{u}kaz$

Snadný z definice podmíněné pravdě
podobnosti a věty o celkové pravdě
podobnosti. \qed

Příklad (Pólyovo urnové schéma)

Máme v urně n koulí k různých barev. Náhodně taháme z urny. Po vytažení koule do urny vytaženou kouli vrátíme a s ní i Δ (pevný parametr) koulí stejné barvy.

Podle volby Δ máme 2 základní schémata: $\Delta=-1$ (tahání bez vracení) a $\Delta=0$ (tahání s vracením).

Definice 3.2 (Nezávislé jevy)

Náhodné jevy A a B jsou nezávislé, pokud platí $P(A \cap B) = P(A) \cdot P(B)$.

Pozor

Zase to nemá nic do činění s kauzalitou.

Věta 3.5

Jsou-li dva jevy A a B nezávislé, pak jsou i jevy A a B^c nezávislé.

Je-li navíc P(B) > 0, pak P(A|B) = P(A).

Důkaz

$$P(A \cap B^c) = P(A) - P(A \cap B) = P(A) - P(A) \cdot P(B) = P(A) \cdot (1 - P(B)) = P(A) \cdot P(B).$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \cdot P(B)}{P(B)} = P(A).$$

Definice 3.3 (Vzájemná nezávislost)

Buď $\{A_{\lambda}\}_{{\lambda}\in\Lambda}$ systém náhodných jevů. Pak říkáme, že tyto jevy jsou (vzájemně) nezávislé, pokud pro každou konečnou množinu $I\subset\Lambda$ (dále $I\in\mathcal{F}(\Lambda)$) platí $P(\bigcap_{i\in I}A_i)=\prod_{i\in I}P(A_i)$.

Věta 3.6

Buď $C = \{B_1, \ldots, B_k\}, k \in \mathbb{N}$, systém nezávislých jevů. Nahradíme-li libovolnou podmnožinu těchto jevů jejich doplňky, dostaneme opět systém nezávislých jevů

 $D\mathring{u}kaz$

Indukcí podle velikosti nahrazované množiny. (Použije se předchozí věta.)

Věta 3.7

Jsou-li jevy $A_1, \ldots, A_n, B_1, \ldots, B_m$ vzájemně nezávislé a $P(B_1 \cap \ldots \cap B_m) > 0$, pak

$$P(A_1 \cap \ldots \cap A_n | B_1 \cap \ldots \cap B_m) = P(A_1 \cap \ldots \cap A_n) = P(A_1) \cdot \ldots \cdot P(A_n).$$

 $D\mathring{u}kaz$

Snadný.

4 Náhodné veličiny

Definice 4.1 (Náhodný element)

Buďte (Ω, \mathcal{A}) a (Ω', \mathcal{A}') stavové prostory. Pak každé měřitelné zobrazení $X:\Omega\to\Omega'$ nazveme náhodný element z Ω' .

Definice 4.2 (Náhodná veličina)

Měřitelné zobrazení $X:(\Omega,\mathcal{A})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ nazveme (reálnou) náhodnou veličinou.

Definice 4.3 (Značení)

Místo $\{\omega\in\Omega|\ X(\omega)\leq a\}$ píšeme $\{X\leq a\},$ místo $P(\{X\leq a\})$ píšeme $P(X\leq a).$

Definice 4.4

Buď X náhodná veličina. $X^{-1}(\mathcal{B}(\mathbb{R}))$ značíme $\sigma(X)$ a nazýváme σ -algebrou náhodných jevů generovaných náhodnou veličinou X (σ -algebra indukovaná X).