STAT355 - PROBABILITY & STATISTICS Chapter 8: Tests of Hypotheses Based on a Single Sample

Fall 2011

Chapter 8: Tests of Hypotheses Based on a Single Sample

- 1 8.1 Hypotheses and Test Procedures
- 2 8.2 Tests about a Population Mean
- 3 8.3 Tests Concerning a Population Proportion
- 4 8.4 *P*-Values

A statistical hypothesis, or just hypothesis, is a claim or assertion either about the value of a single parameter (population characteristic or characteristic of a probability distribution), about the values of several parameters, or about the form of an entire probability distribution.

One example of a hypothesis is the claim $\mu=0.75$, where μ is the true average inside diameter of a certain type of PVC pipe.

Another example is the statement p < 0.10, where p is the proportion of defective circuit boards among all circuit boards produced by a certain manufacturer.

If μ_1 and μ_2 denote the true average breaking strengths of two different types of twine, one hypothesis is the assertion that $\mu_1 - \mu_2 = 0$, and another is the statement $\mu_1 - \mu_2 > 5$.

In any hypothesis-testing problem, there are two contradictory hypotheses under consideration. One hypothesis might be the claim $\mu=.75$ and the other $\mu\neq0.75$, or the two contradictory statements might be $p\geq0.10$ and p<0.10.

- ▶ The objective is to decide, based on sample information, which of the two hypotheses is correct.
- ► Analogy in a criminal trial.

Definition

The null hypothesis, denoted by H_0 , is the claim that is initially assumed to be true (the prior belief claim).

The alternative hypothesis, denoted by H_a , is the assertion that is contradictory to H_0 .

The null hypothesis will be rejected in favor of the alternative hypothesis only if sample evidence suggests that H_0 is false. If the sample does not strongly contradict H_0 , we will continue to believe in the plausibility of the null hypothesis. The two possible conclusions from a hypothesis-testing analysis are then reject H_0 or fail to reject H_0 .

▶ A test of hypotheses is a method for using sample data to decide whether the null hypothesis should be rejected.

Thus we might test H_0 : $\mu=0.75$ against the alternative H_a : $\mu\neq0.75$. Only if sample data strongly suggests that μ is something other than 0.75 should the null hypothesis be rejected.

In the absence of such evidence, H_0 should not be rejected, since it is still quite plausible.

ightharpoonup A test procedure is a rule, based on sample data, for deciding whether to reject H_0 .

Test Procedures

A test procedure is specified by the following:

- A test statistic, a function of the sample data on which the decision (reject H_0) or do not reject H_0) is to be based
- ② A rejection region, the set of all test statistic values for which H_0 will be rejected

The null hypothesis will then be rejected if and only if the observed or computed test statistic value falls in the rejection region.

Test Procedures - Example

Suppose, for example, that 10% of all circuit boards produced by a certain manufacturer during a recent period were defective.

An engineer has suggested a change in the production process in the belief that it will result in a reduced defective rate.

Let *p* denote the true proportion of defective boards resulting from the changed process.

Then the research hypothesis, on which the burden of proof is placed, is the assertion that p < .10. Thus the alternative hypothesis is $H_a : p < .10$.

In our treatment of hypothesis testing, H_0 will generally be stated as an equality claim. If θ denotes the parameter of interest, the null hypothesis will have the form $H_0: \theta = \theta_0$, where θ_0 is a specified number called the null value of the parameter (value claimed for θ by the null hypothesis).

Test Procedures - Example

The suggested alternative hypothesis was H_a : p < 0.10, the claim that the defective rate is reduced by the process modification.

A natural choice of H_0 in this situation is the claim that $p \neq 0.10$, according to which the new process is either no better or worse than the one currently used.

We will instead consider H_0 : p = 0.10 versus H_a : p < .10.

A test of H_0 versus H_a in the circuit board problem might be based on examining a random sample of n=200 boards. Let X denote the number of defective boards in the sample, a binomial random variable; x represents the observed value of X.

If H_0 is true, E(X) = np = 200(.10) = 20, whereas we can expect fewer than 20 defective boards if H_a is true.

Test Procedures - Example

A value x just a bit below 20 does not strongly contradict H_0 , so it is reasonable to reject H_0 only if x is substantially less than 20.

One such test procedure is to reject H_0 if $x \le 15$ and not reject H_0 otherwise.

It is possible that H_0 may be rejected when it is true or that H_0 may not be rejected when it is false.

Either error might result when the region $x \le 14$ is employed, or indeed when any other sensible region is used.

Definition

- \triangleright A type I error consists of rejecting the null hypothesis H_0 when it is true.
- \triangleright A type II error involves not rejecting H_0 when H_0 is false.

The choice of a particular rejection region cutoff value fixes the probabilities of type I and type II errors.

- ▶ These error probabilities are traditionally denoted by α and β , respectively.
- \triangleright Because H_0 specifies a unique value of the parameter, there is a single value of α . However, there is a different value of β for each value of the parameter consistent with H_a .

Errors in Hypothesis Testing - Example

A certain type of automobile is known to sustain no visible damage 25% of the time in 10-mph crash tests. A modified bumper design has been proposed in an effort to increase this percentage.

Let p denote the proportion of all 10-mph crashes with this new bumper that result in no visible damage.

The hypotheses to be tested are H_0 : p=0.25 (no improvement) versus H_a : p>.25.

The test will be based on an experiment involving n=20 independent crashes with prototypes of the new design.

Intuitively, H_0 should be rejected if a substantial number of the crashes show no damage.

Errors in Hypothesis Testing - Example

Consider the following test procedure:

Test statistic: X = the number of crashes with no visible damage

Rejection region: $R_8 = \{8, 9, 10, ..., 19, 20\}$; that is, reject H_0 if $x \ge 8$, where x is the observed value of the test statistic.

This rejection region is called upper-tailed because it consists only of large values of the test statistic.

When H_0 is true, X has a binomial probability distribution with n=20 and p=.25. Then

$$\alpha$$
 = $P(\text{type I error})$
= $P(H_0 \text{ is rejected when it is true})$
= $P(X \ge 8 \text{ when } X \text{ Bin}(n = 20, p = 0.25))$
= $1 - B(7; 20, .25) = 0.102$

◆□ > ◆□ > ◆ = > ◆ = > 9 < ○</p>

That is, when H_0 is actually true, roughly 10% of all experiments consisting of 20 crashes would result in H_0 being incorrectly rejected (a type I error).

In contrast to α , there is not a single β . Instead, there is a different β for each different p that exceeds .25.

For example,

$$eta(0.3) = P(\text{type II error when } p = 0.3)$$
 $= P(H_0 \text{ is not rejected when it is false because } p = 0.3)$
 $= P(X \le 7 \text{ when } X \text{ } Bin(20, .3))$
 $= B(7; 20, .3) = 0.772$

Proposition

Suppose an experiment and a sample size are fixed and a test statistic is chosen. Then decreasing the size of the rejection region to obtain a smaller value of α results in a larger value of β for any particular parameter value consistent with H_a .

- ▶ This proposition says that once the test statistic and n are fixed, there is no rejection region that will simultaneously make both α and all β 's small.
- ▶ A region must be chosen to effect a compromise between α and β .
- ▶ Because of the suggested guidelines for specifying H_0 and H_a , a type I error is usually more serious than a type II error (this can always be achieved by proper choice of the hypotheses).

The approach adhered to by most statistical practitioners is then to specify the largest value of α that can be tolerated and find a rejection region having that value of α rather than anything smaller.

- ▶ This makes β as small as possible subject to the bound on α . The resulting value of α is often referred to as the significance level of the test.
- ▶ Traditional levels of significance are 0.10, 0.05, and 0.01, though the level in any particular problem will depend on the seriousness of a type I error the more serious this error, the smaller should be the significance level.
- ▶The corresponding test procedure is called a level α test (e.g., a level .05 test or a level .01 test).
- ightharpoonup A test with significance level lpha is one for which the type I error probability is controlled at the specified level.

Errors in Hypothesis Testing - Example

Suppose that a cigarette manufacturer claims that the average nicotine content μ of brand B cigarette is at most 1.5mg. The objective is to test $H_0: \mu = 1.5$ versus $H_a: \mu > 1.5$ based on a random sample $X_1, X_2, ..., X_{32}$ of nicotine content.

- ▶ Suppose the distribution of nicotine content is known to be normal with $\sigma=0.20$. Then $\bar{X}\sim N(\mu_X=\mu,\sigma_X=\sigma/\sqrt{32})=N(\mu,0.0354)$
- ► Test statistic: $Z = \frac{\bar{X}-1.5}{0.0354}$
- ightharpoonup Z expresses the distance between X and its expected value when H_0 is true as some number of standard deviations.

Errors in Hypothesis Testing - Example

- ▶ For example, z=3 results from an \bar{x} that is 3 standard deviations larger than we would have expected it to be were H_0 true. Rejecting H_0 when x considerably exceeds 1.5 is equivalent to rejecting H_0 when z considerably exceeds 0.
- ▶ That is, the form of the rejection region is $z \ge c$. Let's now determine c so that $\alpha = 0.05$. When H_0 is true, Z has a standard normal distribution. Thus

$$\alpha = P(\text{ type I error }) = P(\text{ rejecting } H_0 \text{ when } H_0 \text{ is true})$$

$$= P(Z \ge c \text{ when } Z \sim N(0,1))$$

We find $c = z_{0.05} = 1.645$.

Exercise (8.1) 13

Let $X_1, ..., X_n$ denote a random sample from a normal population distribution with a known value of σ .

- For testing the hypotheses $H_0: \mu = \mu_0$ versus $H_a: \mu > \mu_0$ (where μ_0 is fixed), show that the test with test statistic \bar{X} and rejection region $\bar{x} \geq \mu_0 + 2.33\sigma/\sqrt{n}$ has significance level $\alpha = 0.01$.
- Suppose the procedure of part (1.) is used to test $H_0: \mu \leq \mu_0$ versus $H_a: \mu > \mu_0$. If $\mu_0 = 100, n = 25$, and $\sigma = 5$, what is the probability of type I error when $\mu = 99$? When $\mu = 98$? In general, what can be said about the probability of a type I error when the actual value of μ is less than μ_0 ? Verify your assertion.

Tests About a Population Mean

We will focus on three cases:

- f 0 A Normal Population with Known σ
- **2** A Normal Population with Unknown σ with Large Sample
- **3** A Normal Population with Unknown σ with Small Sample
- ▶ In all cases, we assume that $X_1,...,X_n$ represent a random sample of size n from the normal population.
- ▶ The null hypothesis in all three cases will state that μ has a particular numerical value, the null value, which we will denote by μ_0 .
- \blacktriangleright Although the assumption that the value of σ is known is rarely met in practice, this case provides a good starting point because of the ease with which general procedures and their properties can be developed.

Case I: A Normal Population with Known σ

When H_0 : $\mu = \mu_0$ is true,

$$Z = rac{ar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$$

Test statistic value:

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

The following are the rejection regions:

The following are the rejection regions.		
Alternative Hypothesis	Rejection Region for Level α Test	
$H_{a}: \mu > \mu_0$	$z \geq z_{lpha}$ (upper-tailed test)	
$H_{a}:\mu<\mu_{0}$	$z \leq -z_{lpha}$ (lower-tailed test)	
$H_{a}:\mu eq\mu_{0}$	either $z \geq z_{\alpha/2}$ or $z \leq -z_{\alpha/2}$ (two-tailed test)	

Case I: A Normal Population with Known σ

Use of the following sequence of steps is recommended when testing hypotheses about a parameter.

- Identify the parameter of interest and describe it in the context of the problem situation.
- ② Determine the null value and state the null hypothesis.
- **3** State the appropriate alternative hypothesis.
- Give the formula for the computed value of the test statistic.
- **5** State the rejection region for the selected significance level α .
- 6. Compute any necessary sample quantities, substitute into the formula for the test statistic value, and compute that value.
- $oldsymbol{0}$ 7. Decide whether H_0 should be rejected, and state this conclusion in the problem context.

Remark: The formulation of hypotheses (Steps 2 and 3) should be done before examining the data.

Case I: A Normal Population with Known σ - Example

A manufacturer of sprinkler systems used for fire protection in office buildings claims that the true average system-activation temperature is 130° .

A sample of n=9 systems, when tested, yields a sample average activation temperature of $131.08^{\circ}F$. If the distribution of activation times is normal with standard deviation $1.5^{\circ}F$, does the data contradict the manufacturers claim at significance level $\alpha=0.01$?

Case I: A Normal Population with Known σ - Example

A manufacturer of sprinkler systems used for fire protection in office buildings claims that the true average system-activation temperature is 130° . A sample of n=9 systems, when tested, yields a sample average activation temperature of $131.08^{\circ}F$. If the distribution of activation times is normal with standard deviation $1.5^{\circ}F$, does the data contradict the manufacturers claim at significance level $\alpha=0.01$?

- **①** Parameter of interest: $\mu = \text{true}$ average activation temperature.
- **2** Null hypothesis: H_0 : $\mu = 130$ (null value = $\mu_0 = 130$).
- **3** Alternative hypothesis: $H_a: \mu \neq 130$ (a departure from the claimed value in either direction is of concern).
- Test statistic value: $z = \frac{\bar{x} \mu_0}{\sigma / \sqrt{n}} = \frac{\bar{x} 130}{1.5 / \sqrt{n}}$.
- **3** We reject H_0 if either $z \ge 2.58$ or $z \le -2.58$.
- **6** Substituting n = 9 and $\bar{x} = 131.08$, we get z = 2.16
- ② z does not fall in the rejection region. Therefore, H_0 cannot be rejected. The data does not give strong evidence to claim that the true average differs from the design value of 130.

Case II: A Normal Population with unknown σ and Large Sample

When H_0 : $\mu = \mu_0$ is true and n is large enough,

$$Z=rac{ar{X}-\mu_0}{S/\sqrt{n}}\sim N(0,1)$$

where S is the sample variance. Test procedure follows the previous case.

Case III: A Normal Population with unknown σ and Small Sample

Knowledge of the test statistics distribution when H_0 is true (the "null distribution") allows us to construct a rejection region for which the type I error probability is controlled at the desired level.

In this case, $T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim N(0,1)$ has a t distribution with n-1 degrees of freedom.

We will use of the upper-tail t critical value $t_{\alpha,n-1}$ to specify the rejection region $t \geq t_{\alpha,n-1}$.

$$P(\text{type I error}) = P(H_0 \text{ is rejected when it is true})$$

= $P(T \ge t_{\alpha,n-1} \text{ when } T \sim t_{n-1})$
= α

Case III: A Normal Population with unknown σ and Small Sample

When H_0 : $\mu = \mu_0$ is true,

$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$$

Test statistic value:

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

The following are the rejection regions:

Alternative Hypothesis	Rejection Region for Level α Test
H_{a} : $\mu > \mu_{0}$	$t \geq t_{lpha,n-1}$
H_{a} : $\mu < \mu_{0}$	$t \leq -t_{\alpha,n-1}$
H_a : $\mu \neq \mu_0$	either $t \geq t_{\alpha/2,n-1}$ or $t \leq -t_{\alpha/2,n-1}$

◆□ → ◆□ → ◆ = → ◆ = → へ○

Exercise (8.2) 19

The melting point of each of 16 samples of a certain brand of hydrogenated vegetable oil was determined, resulting in $\bar{x}=94.32$. Assuming that the distribution of the melting point is normal with $\sigma=1.20$,

- **1** Test H_0 : $\mu = 95$ versus H_a : $\mu \neq 95$ using a two-tailed level 0.01 test.
- ② If a level 0.01 test is used, what is $\beta(94)$, the probability of a type II error when $\mu=94?$
- **3** What value of *n* is necessary to ensure that $\beta(94) = 0.1$ when $\alpha = 0.01$?

Tests Concerning a Population Proportion

Let p denote the proportion of individuals or objects in a population who possess a specified property (e.g., cars with manual transmissions or smokers who smoke a filter cigarette).

- ▶ If an individual or object with the property is labelled a success (S), then p is the population proportion of successes.
- ▶ Tests concerning p will be based on a random sample of size n from the population. Provided that n is small relative to the population size, X (the number of S's in the sample) has (approximately) a binomial distribution.
- ▶ Furthermore, if n itself is large $[np \ge 10 \text{ and } n(1-p) \ge 10]$, both X and the estimator $\hat{p} = X/n$ are approximately normally distributed.
- ▶ We first consider large-sample tests based on this latter fact and then turn to the small sample case that directly uses the binomial distribution.

Large-Sample Tests on Proportion

The estimator $\hat{p} = X/n$ is unbiased $[E(\hat{p}) = p]$, has approximately a normal distribution, and its standard deviation is $\sigma_{\hat{p}} \sqrt{p(1-p)/n}$.

▶ When H_0 is true, $E(\hat{p}) = p_0$ and $\sigma_{\hat{p}} = \sqrt{p_0(1-p_0)/n}$, so $\sigma_{\hat{p}}$ does not involve any unknown parameters.

It then follows that when n is large and H_0 is true, the test statistic

$$Z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

has approximately a standard normal distribution.

Large-Sample Tests on Proportion

If the alternative hypothesis is $Ha: p>p_0$ and the upper-tailed rejection region $z\geq z_{\alpha}$ is used, then

$$P(\mathsf{type\ I\ error}) = P(H_0 \ \mathsf{is\ rejected\ when\ it\ is\ true}) \ = P(Z \geq z_{lpha} \ \mathsf{when\ } Z \sim N(0,1)) \ pprox \ \alpha$$

Thus the desired level of significance α is attained by using the critical value that captures area α in the upper tail of the z curve.

Large-Sample Tests on Proportion

Rejection regions for the other two alternative hypotheses, lower-tailed for H_a : $p < p_0$ and two-tailed for H_a : $p \neq p_0$, are justified in an analogous manner.

Null hypothesis: $H_0: p = p_0$

Test statistic value:
$$Z = \frac{\hat{p} - p_0}{\sqrt{p_0(1-p_0)/n}}$$

The following are the rejection regions:

Alternative Hypothesis	Rejection Region for Level $lpha$ Test
$H_a : p > p_0$	$z \geq z_lpha$ (upper-tailed)
$H_a : p < p_0$	$z \leq -z_{lpha}$ (lower-tailed)
H_a : $p \neq p_0$	either $z \geq z_{\alpha/2}$ or
	either $z \leq -z_{\alpha/2}$ (two-tailed)

These procedures are valid provided that $np_0 \ge 10$ and $n(1-p_0) \ge 10$.

Large-Sample Tests on Proportion - Example

Natural cork in wine bottles is subject to deterioration, and as a result wine in such bottles may experience contamination.

An article reported that, in a tasting of commercial chardonnays, 16 of 91 bottles were considered spoiled to some extent by cork-associated characteristics.

Does this data provide strong evidence for concluding that more than 15% of all such bottles are contaminated in this way?

Let's carry out a test of hypotheses using a significance level of $\alpha = 0.10$.

Large-Sample Tests on Proportion - Example

- p = the true proportion of all commercial chardonnay bottles considered spoiled to some extent by cork-associated characteristics.
- 2 The null hypothesis is H_0 : p = 0.15.
- **3** The alternative hypothesis is H_a : p > 0.15, the assertion that the population percentage exceeds 15%.
- Since $np_0 = 91(.15) = 13.65 > 10$ and $n(1-p_0) = 91(.85) = 77.35 > 10$, the large-sample z test can be used. The test statistic value is $z = (\hat{p} 0.15)/\sqrt{(0.15)(0.85)/n}$
- **3** The form of H_a implies that an upper-tailed test is appropriate: Reject H_0 if $z \ge z_{0.10} = 1.28$.
- **⊙** From data, n = 91 and $\hat{p} = 16/91 = 0.1758$, from which $z = (0.1758 0.15)/\sqrt{(0.15)(0.85)/91} = 0.69$
- \odot Since 0.69 < 1.28, z is not in the rejection region. At significance level 0.10, the null hypothesis cannot be rejected.

<ロ > < 部 > < き > < き > き 9 < 0

Small-Sample Tests on Proportion

Small-Sample Tests

Test procedures when the sample size n is small are based directly on the binomial distribution rather than the normal approximation.

Consider the alternative hypothesis H_a : $p > p_0$ and again let X be the number of successes in the sample.

Then X is the test statistic, and the upper-tailed rejection region has the form $x \ge c$. When H_0 is true, X has a binomial distribution with parameters n and p_0 , so

$$P(\text{type I error}) = P(H_0 \text{ is rejected when it is true})$$

$$= P(X \ge c \text{ when } X \sim Bin(n, p_0))$$

$$= 1 - P(X \le c - 1 \text{ when } X \sim Bin(n, p_0))$$

$$= 1 - B(c - 1; n, p_0)$$

Small-Sample Tests on Proportion

▶ It is usually not possible to find a value of c for which P(type I error) is exactly the desired significance level α . Instead, the largest rejection region of the form $\{c, c+1, \ldots, n\}$ satisfying $1 - Bin(c-1:n, p_0) \le \alpha$ is used.

Let p' denote an alternative value of $p(p'>p_0)$. When $p=p', X\sim Bin(n,p')$, so

$$\beta(p')$$
 = $P(\text{type II error when } p = p')$
 = $P(X < c \text{ when } X \sim Bin(n, p'))$
 = $B(c - 1; n, p')$

STAT355 - Probability & Statistics

Exercise (8.3) 39

A random sample of 150 recent donations at a certain blood bank reveals that 82 were type A blood. Does this suggest that the actual percentage of type A donations differs from 40%, the percentage of the population having type A blood?

Carry out a test of the appropriate hypotheses using a significance level of 0.01. Would your conclusion have been different if a significance level of 0.05 had been used?

P-Values

It is an alternative way of reaching a conclusion in a hypothesis testing analysis. One advantage is that the P-value provides an intuitive measure of the strength of evidence in the data against H_0 .

Definition

The P-value is the probability, calculated assuming that the null hypothesis is true, of obtaining a value of the test statistic at least as contradictory to H_0 as the value calculated from the available sample.

Key points of the definition

- The P-value is a probability.
- This probability is calculated assuming that H_0 is true.
- Beware: The P-value is not the probability that H_0 is true, nor is it an error probability!

P-Values - Example

Urban storm water can be contaminated by many sources, including discarded batteries. When ruptured, these batteries release metals of environmental significance. A sample of 51 Panasonic AAA batteries gave a sample mean zinc mass of 2.06g and a sample standard deviation of 0.141g. Does this data provide compelling evidence for concluding that the population mean zinc mass exceeds 2.0g?

With $\boldsymbol{\mu}$ denoting the true average zinc mass for such batteries, the relevant hypotheses are

 H_0 : $\mu = 2.0$ versus H_a : $\mu > 2.0$.

The sample size is large enough to use CLT. The test statistic value is $z = \frac{\bar{x} - 2.0}{s/\sqrt{n}} = \frac{2.06 - 2.0}{0.141/\sqrt{51}} = 3.04$

The P-value is

$$P(Z \ge 3.04 \text{ when } \mu = 2.0) = 1 - P(Z < 3.04 \text{ when } \mu = 2.0) = 0.0012$$

P-Values - Example

More generally, the smaller the P-value, the more evidence there is in the sample data against the null hypothesis and for the alternative hypothesis. That is, H_0 should be rejected in favor of H_a when the P-value is sufficiently small.

Decision rule based on the P-value

Select a significance level α . Then

reject
$$H_0$$
 if P -value $\leq \alpha$ do not reject H_0 if P -value $> \alpha$

P-Values - Example

Thus if the P-value exceeds the chosen significance level, the null hypothesis cannot be rejected at that level.

But if the P-value is equal to or less than α , then there is enough evidence to justify rejecting H_0 .

In Example 14, we calculated P-value = 0.0012. Then using a significance level of 0.01, we would reject the null hypothesis in favor of the alternative hypothesis because 0.0012 < 0.01.

However, suppose we select a significance level of only 0.001, which requires more substantial evidence from the data before H_0 can be rejected. In this case we would not reject H_0 because 0.0012 > 0.001.

Exercise (8.4) 52

The paint used to make lines on roads must reflect enough light to be clearly visible at night. Let μ denote the true average reflectometer reading for a new type of paint under consideration. A test of $H_0: \mu=20$ versus $H_a: \mu>20$ will be based on a random sample of size n from a normal population distribution. What conclusion is appropriate in each of the following situations?

- **1** $n = 15, t = 3.2, \alpha = 0.05$
- **2** $n = 9, t = 1.8, \alpha = 0.01$
- n = 24, t = -0.2