## Studies with Improved Renormalization Group Techniques

by

### **Gregory James Petropoulos**

B.S., University of Connecticut, 2010M.S., University of Colorado, 2013

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

Department of Physics

2015

# This thesis entitled: Studies with Improved Renormalization Group Techniques written by Gregory James Petropoulos has been approved for the Department of Physics

Anna Hasenfratz

Prof. Thomas DeGrand

The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline.

| Prof. Etha     | an Neil      |  |
|----------------|--------------|--|
|                |              |  |
|                |              |  |
| - A G          |              |  |
| Prof. Senarat  | h de Alwis   |  |
|                |              |  |
|                |              |  |
| Prof. Thomas A | . Manteuffel |  |
| Tion Thomas I  |              |  |
|                |              |  |

Date \_\_\_\_\_

Petropoulos, Gregory James (Ph.D., Physics)

Studies with Improved Renormalization Group Techniques

Thesis directed by Prof. Anna Hasenfratz



### Acknowledgements

This this is was supported by an award from the Department of Energy (DOE) Office of Science Graduate Fellowship Program (DOE SCGF). The DOE SCGF Program was made possible in part by the American Recovery and Reinvestment Act of 2009. The DOE SCGF program is administered by the Oak Ridge Institute for Science and Education for the DOE. ORISE is managed by Oak Ridge Associated Universities (ORAU) under DOE contract number DE- AC05-06OR23100. All opinions expressed in this presentation are the author's and do not necessarily reflect the policies and views of DOE, ORAU, or ORISE.

## Contents

## Chapter

| L | Mon          | te Carl | o Renormalization Group                                       | 1  |
|---|--------------|---------|---------------------------------------------------------------|----|
|   | 1.1          | Introd  | luction                                                       | 1  |
|   | 1.2          | Metho   | od                                                            | 2  |
|   |              | 1.2.1   | Blocking                                                      | 3  |
|   |              | 1.2.2   | Two-lattice matching procedures and the need for optimization | 6  |
|   |              | 1.2.3   | Chirally Broken Theories                                      | S  |
|   |              | 1.2.4   | Conformal Theories                                            | S  |
|   | 1.3          | 8 and   | 12 Flavor Results                                             | 10 |
|   |              | 1.3.1   | 8 Flavors                                                     | 12 |
|   |              | 1.3.2   | 12 Flavors                                                    | 12 |
|   |              | 1.3.3   | The Case of the Wandering Fixed Point                         | 13 |
|   |              |         |                                                               |    |
| В | Bibliography |         | 20                                                            |    |

## Appendix

Tables

Table

# Figures

## Figure

| 1.1 | The original 6x6 lattice on the left possesses a discrete scaling symmetry of $s=2$         |    |
|-----|---------------------------------------------------------------------------------------------|----|
|     | and $s=3$ . The shaded orange square is a $s=2$ block variable. The resulting orange        |    |
|     | $3\times3$ blocked lattice in the bottom right formed by replacing each block variable with |    |
|     | a single site in the upper left corner of the block. The cyan shaded region shows a         |    |
|     | b=3 block variable. Performing a block transformation that replaces each block              |    |
|     | with a point in the upper left of the block produces the $2 \times 2$ blocked lattice shown |    |
|     | in the upper right                                                                          | 14 |
| 1.2 | This figure shows how links are blocked on the lattice. Two adjacent links in the           |    |
|     | same direction are block transformed to form one link of twice the lattice spacing.         |    |
|     | We perform all possible block transformation shown on the left as the red, blue,            |    |
|     | green, and orange block tilings of the unblocked lattice. We then store the links of        |    |
|     | the blocked lattice as shown on the right hand side of the figure                           | 14 |
| 1.3 | Here I show coupling space for a system with one relevant direction $K_0$ . All irrelevant  |    |
|     | directions are collected in $K'$ . We simulate at a point $P$ in parameter. As we block     |    |
|     | the system it the effective couplings will change. In the diagram here the couplings        |    |
|     | reach the renormalized trajectory after 3 blocking steps. Further blocking steps move       |    |
|     | the couplnigs along the renormalized trajectory                                             | 15 |

| 1.4 | For matching we pick two points in coupling space $P_1$ and $P_2$ . After 3 blocking steps,                     |    |
|-----|-----------------------------------------------------------------------------------------------------------------|----|
|     | shown as circles the effective action of $P_2$ has reached the renormalized trajectory.                         |    |
|     | $P_1$ requires 4 blocking steps shown as stars but reahes the same point on the renor-                          |    |
|     | malized trajectory. Because $P_2$ took one less blockign step its correlation length $\xi$                      |    |
|     | is a factor of $s$ smaller than the correlation length of the first ensemble that started                       |    |
|     | at $P_1$ . By choosing pairs of points in coupling space that block to the same point                           |    |
|     | on the renormalized trajectory in coupling space, we can construct a discrete step                              |    |
|     | scaling function.                                                                                               | 15 |
| 1.5 | The RG flow of a confining theory on the $m=0$ critical surface. $\beta$ is the relevant                        |    |
|     | gauge coupling, $\beta'$ are irrelevant couplings                                                               | 16 |
| 1.6 | The RG flow of a conformal theory on the $m=0$ critical surface. $\beta$ is the relevant                        |    |
|     | gauge coupling, $\beta'$ are irrelevant couplings                                                               | 16 |
| 1.7 | Optimization of the HYP-smearing parameter $\alpha$ in the RG blocking transformation,                          |    |
|     | for $\beta_F = 5.0$ . The uncertainties on the data points are dominated by averaging over                      |    |
|     | the different observables as described in the text                                                              | 17 |
| 1.8 | Results for the bare step-scaling function $s_b$ from traditional MCRG two-lattice                              |    |
|     | matching with $24^3 \times 48$ , $12^3 \times 24$ and $6^3 \times 12$ lattice volumes for $N_f = 8$ . The blue  |    |
|     | dashed lines are perturbative predictions for asymptotically weak coupling                                      | 17 |
| 1.9 | Results for the bare step-scaling function $s_b$ from traditional MCRG two-lattice                              |    |
|     | matching with $24^3 \times 48$ , $12^3 \times 24$ and $6^3 \times 12$ lattice volumes for $N_f = 12$ . The blue |    |
|     | dashed lines are perturbative predictions for asymptotically weak coupling                                      | 18 |

| 1.10 | An illustration of how optimizing the block transformation can result in difficulties                        |   |
|------|--------------------------------------------------------------------------------------------------------------|---|
|      | locating an IRFP, $\beta$ is the relevant gauge coupling and $\beta'$ are irrelevant couplings.              |   |
|      | The upper figure shows the renormalized trajectory in red, green, and blue found by                          |   |
|      | optimizing the RG transformation at $\beta_1, \beta_2, \text{and} \beta_3$ respectively. The location of the |   |
|      | IRFP changes in each renormalized trajectory, in this picture the IRFP is moved to                           |   |
|      | the coupling we perform MCRG at. The resulting $s_b$ is consistent with zero across a                        |   |
|      | wide range of couplings                                                                                      | 9 |

#### Chapter 1

#### Conclusion

Truly it is an exciting time in particle physics. For almost two decades since the discovery of the top quark no new fundamental particles were discovered in collider experiments. After a long wait the Higgs particle has been discovered, completing the standard model. Although the standard model is complete we know it must be an effective theory and our knowledge of the Higgs mass puts constraints on beyond standard model physics.

Many proposals for beyond standard model physics, including technicolor, are strongly coupled theories and thus inherently nonperturbative. Since the lattice offers the only controlled means of studying non perturbative field theories in a controlled manner, it is natural that strongly coupled beyond standard model is an active area of lattice research. Studying BSM physics on the lattices has created many new challenges for the lattice community to solve. Unlike QCD, we don't know the answer to most questions beforehand, and there are no experimental results to compare lattice results with. Furthermore just because a technique is successful when studying QCD does not mean that it will work just as well in systems that are very different from QCD. Accordingly it is important to approach each theory we study carefully and with an open mind. Only when several methods converge on the same result can that result be trusted. Additionally since there is more than one way to put a continuum theory on the lattice, it is important to understand the effect of the lattice action and lattice artifacts.

The lattice search for viable technicolor theories has focused on exploring gauge theories with  $SU(N_C)$  colors and  $N_f$  fermions in some representation R. Changing these parameters generates

theories with dramatically different behavior. Theories with a small number of fermionic flavors in a lower representation behave similarly to QCD. If more fermionic degrees of freedom are added, the theory develops an infrared fixed point. If enough degrees of freedom are added the theory will lose asymptotic freedom. The location of the conformal window in the parameter space  $N_C$ ,  $N_f$ , and R is fundamentally a question of strong dynamics. Perturbative and quasi perturbative calculations exist for the bounds of the conformal window but they can only serve as a guide to locate interesting theories for numerical studies.

Ultimately we are interested in the behavior of theories that may exhibit a slowly running coupling. This behavior, also called walking, may exist just below the conformal window. In a walking theory,  $\gamma_m$  must be  $\mathcal{O}(1)$  for the theory to be phenomenologically successful. Walking is widely believed to be necessary for any technicolor model to fit current experimental bounds on flavor changing neutral currents. To date a viable walking theory has not yet been found.

Many groups, including our own have explored the conformal window with several goals in mind. First understand the extent of the conformal window. Second improve lattice techniques in conformal systems. Third explore the bottom of the conformal window for walking behavior.

In this thesis I have discussed three methods that can be used to understand the  $\beta$  function. These methods are general and work for confining and conformal systems, they have the benefit that distinguishing between the two is straight forward. I first discussed MCRG and presented results for SU(3) gauge theory with  $N_f = 8$  and  $N_f = 12$ . Our results were consistent with the 12 flavor theory exhibiting an IRFP. The 8 flavor theory did not show a fixed point and appeared to be chirally broken and confining.

Next I introduced the gradient flow step scaling and showed results for SU(3) gauge theory with  $N_f = 4$  and  $N_f = 12$ . The 4 flavor results were simply to show that our improvement works in a theory we know to be chirally broken. They also serve as a contrast to the 12 flavor results which clearly indicate an IRFP. Another group has recently applied this technique, with our improvement, to SU(3) gauge theory with 8 flavors [72] their results show that while the theory runs slower than perturbation theory predicts, they can not locate an IRFP.

Finally I introduced an improvement to MCRG that uses the Wilson flow as an optimization. We call this technique Wilson Flow MCRG or WMCRG. WMCRG is like MCRG in that we are calculating the discrete step scaling function. By using the Wilson Flow as an optimization we are able to probe a single renormalized trajectory. Results from WMCRG for SU(3) gauge theory of 12 flavors of fermions in the fundamental representation shows very clear evidence of a fixed point.

One of the benefits of these three techniques is that they are computationally inexpensive and do not require specific lattice dimensions or special boundary conditions. That is the lattices that we use for these step scaling studies are able to be used in other studies as well. Our group has been involved with several other analysis. We studied finite temperature phase transitions [107], finding a bulk phase transition in the 12 flavor theory and no such transition in the 8 flavor theory. We also used the Dirac eigenmodes to calculate  $\gamma_m$  over several length scales [26, 27]. Results from both of these studies are consistent with an IR conformal 12 flavor theory. For several years the IR physics of SU(3) gauge theory with 12 flavors of fermions in the fundamental representation was a topic of debate. Several early papers drew different conclusions from their analysis. A consensus has emerged that the theory is indeed conformal. This consensus is a result of improvements in our understanding of quantum field theories as well as implements in lattice techniques used to study those quantum field theories.

In contrast to the 12 flavor theory, the results for 8 flavors show no sign of an IRFP. The fact that 8 flavors is chirally broken is not controversial. However, peculiar behavior in the eigenmode study seems to suggest that the running of the coupling is slow over a wide range of energy scales. These results seem to be confirmed by recent studies using our improved Wilson Flow step scaling function. It is still not clear if the running is simply slower than expected or is the long sought for walking scenario. Clearly SU(3) gauge theory with 8 flavors of fermions in the fundamental representation is an interesting theory that should be studied further.

#### **Bibliography**

[1]

- [2] David Adams. Fourth root prescription for dynamical staggered fermions. Phys. Rev. D, 72:114512, Dec 2005.
- [3] Yasumichi Aoki, Tatsumi Aoyama, Masafumi Kurachi, Toshihide Maskawa, Kohtaroh Miura, Kei-ichi Nagai, Hiroshi Ohki, Enrico Rinaldi, Akihiro Shibata, Koichi Yamawaki, and Takeshi Yamazaki. Light composite scalar in eight-flavor QCD on the lattice. 2014.
- [4] Yasumichi Aoki, Tatsumi Aoyama, Masafumi Kurachi, Toshihide Maskawa, Kei-ichi Nagai, Hiroshi Ohki, Enrico Rinaldi, Akihiro Shibata, Koichi Yamawaki, and Takeshi Yamazaki. Light composite scalar in twelve-flavor QCD on the lattice. Phys. Rev. Lett., 111:162001, 2013.
- [5] Yasumichi Aoki, Tatsumi Aoyama, Masafumi Kurachi, Toshihide Maskawa, Kei-ichi Nagai, Hiroshi Ohki, Enrico Rinaldi, Akihiro Shibata, Koichi Yamawaki, and Takeshi Yamazaki. The scalar spectrum of many-flavour QCD. 2013.
- [6] Yasumichi Aoki, Tatsumi Aoyama, Masafumi Kurachi, Toshihide Maskawa, Kei-ichi Nagai, Hiroshi Ohki, Akihiro Shibata, Koichi Yamawaki, and Takeshi Yamazaki. Lattice study of conformality in twelve-flavor QCD. Phys. Rev., D86:054506, 2012.
- [7] T. Appelquist, G. T. Fleming, M. F. Lin, E. T. Neil, and D. Schaich. Lattice Simulations and Infrared Conformality. Phys. Rev., D84:054501, 2011.
- [8] Thomas Appelquist, Richard Brower, Simon Catterall, George Fleming, Joel Giedt, Anna Hasenfratz, Julius Kuti, Ethan Neil, and David Schaich. Lattice Gauge Theories at the Energy Frontier. 2013.
- [9] Thomas Appelquist, George T. Fleming, and Ethan T. Neil. Lattice study of the conformal window in QCD-like theories. Phys. Rev. Lett., 100:171607, 2008.
- [10] Thomas Appelquist, George T. Fleming, and Ethan T. Neil. Lattice Study of Conformal Behavior in SU(3) Yang-Mills Theories. Phys. Rev., D79:076010, 2009.
- [11] Thomas Appelquist and Ethan T. Neil. Lattice gauge theory beyond the standard model. pages 699–729, 2009.
- [12] Janos Balog, Ferenc Niedermayer, and Peter Weisz. Logarithmic corrections to O(a\*\*2) lattice artifacts. Phys. Lett., B676:188–192, 2009.

- [13] Janos Balog, Ferenc Niedermayer, and Peter Weisz. The Puzzle of apparent linear lattice artifacts in the 2d non-linear sigma-model and Symanzik's solution. <u>Nucl. Phys.</u>, B824:563–615, 2010.
- [14] Tom Banks and A. Zaks. On the Phase Structure of Vector-Like Gauge Theories with Massless Fermions. Nucl. Phys., B196:189, 1982.
- [15] Claude Bernard, Maarten Golterman, Yigal Shamir, and Stephen R. Sharpe. Comment on: chiral anomalies and rooted staggered fermions [phys. lett. b 649 (2007) 230]. Physics Letters B, 649(23):235 240, 2007.
- [16] Gyan Bhanot. Su(3) lattice gauge theory in 4 dimensions with a modified wilson action. Physics Letters B, 108(45):337 340, 1982.
- [17] Gyan Bhanot and Michael Creutz. Variant actions and phase structure in lattice gauge theory. Phys. Rev. D, 24:3212–3217, Dec 1981.
- [18] J. Binney, N.J. Dowrick, A.J. Fisher, and M.E.J. Newman. The Theory of Critical Phenomena: An Introduction to the Renormalization Group. Oxford University Press, Oxford, 1992.
- [19] T. Blum, C. DeTar, Urs M. Heller, Leo Krkkinen, K. Rummukainen, and D. Toussaint. Thermal phase transition in mixed action {SU} (3) lattice gauge theory and wilson fermion thermodynamics. Nuclear Physics B, 442(12):301 – 316, 1995.
- [20] A. Bode. Two loop expansion of the schrdinger functional coupling sf in {SU} (3) lattice gauge theory. Nuclear Physics B Proceedings Supplements, 63(13):796 798, 1998. Proceedings of the {XVth} International Symposium on Lattice Field Theory.
- [21] Szabolcs Borsanyi, Stephan Durr, Zoltan Fodor, Christian Hoelbling, Sandor D. Katz, S. Krieg, T. Kurth, L. Lellouch, T. Lippert, C. McNeile, and K. K. Szabo. High-precision scale setting in lattice QCD. <u>JHEP</u>, 1209:010, 2012.
- [22] William E. Caswell. Asymptotic Behavior of Nonabelian Gauge Theories to Two Loop Order. Phys. Rev. Lett., 33:244, 1974.
- [23] Simon Catterall and Francesco Sannino. Minimal walking on the lattice. <u>Phys.Rev.</u>, D76:034504, 2007.
- [24] Anqi Cheng, Anna Hasenfratz, Yuzhi Liu, Gregory Petropoulos, and David Schaich. Finite size scaling of conformal theories in the presence of a near-marginal operator. 2013.
- [25] Anqi Cheng, Anna Hasenfratz, Yuzhi Liu, Gregory Petropoulos, and David Schaich. Step scaling studies using the gradient flow running coupling. 2014, in preparation.
- [26] Anqi Cheng, Anna Hasenfratz, Gregory Petropoulos, and David Schaich. Determining the mass anomalous dimension through the eigenmodes of Dirac operator. <u>PoS</u>, LATTICE 2013:088, 2013.
- [27] Anqi Cheng, Anna Hasenfratz, Gregory Petropoulos, and David Schaich. Scale-dependent mass anomalous dimension from Dirac eigenmodes. JHEP, 1307:061, 2013.

- [28] Anqi Cheng, Anna Hasenfratz, and David Schaich. Novel phase in SU(3) lattice gauge theory with 12 light fermions. Phys. Rev., D85:094509, 2012.
- [29] Christian B. Lang Christof Gattringer. Quantum Chromodynamics on the Lattice. Springer, 2010.
- [30] Michael Creutz. Chiral anomalies and rooted staggered fermions. Physics Letters B, 649(23):230 234, 2007.
- [31] Michael Creutz. Reply to: comment on: chiral anomalies and rooted staggered fermions [phys. lett. b 649 (2007) 230] [phys. lett. b 649 (2007) 235]. Physics Letters B, 649(23):241 242, 2007.
- [32] Thomas DeGrand. Lattice studies of QCD-like theories with many fermionic degrees of freedom. 2010.
- [33] Thomas DeGrand. Finite-size scaling tests for spectra in SU(3) lattice gauge theory coupled to 12 fundamental flavor fermions. Phys. Rev., D84:116901, 2011.
- [34] Thomas DeGrand and Anna Hasenfratz. Remarks on lattice gauge theories with infrared-attractive fixed points. Phys.Rev., D80:034506, 2009.
- [35] Thomas DeGrand, Yigal Shamir, and Benjamin Svetitsky. Gauge theories with fermions in the two-index symmetric representation. PoS, LATTICE2011:060, 2011.
- [36] Thomas DeGrand, Yigal Shamir, and Benjamin Svetitsky. Infrared fixed point in SU(2) gauge theory with adjoint fermions. Phys.Rev., D83:074507, 2011.
- [37] Luigi Del Debbio, Biagio Lucini, Agostino Patella, Claudio Pica, and Antonio Rago. Mesonic spectroscopy of Minimal Walking Technicolor. Phys.Rev., D82:014509, 2010.
- [38] T. DeGrand & C DeTar. <u>Lattice Methods for Quantum Chromodynamics</u>. World Scientific, 2006.
- [39] A. Deuzeman, M. P. Lombardo, and E. Pallante. Evidence for a conformal phase in SU(N) gauge theories. Phys. Rev., D82:074503, 2010.
- [40] Albert Deuzeman, Maria Paola Lombardo, Tiago Nunes da Silva, and Elisabetta Pallante. The bulk transition of QCD with twelve flavors and the role of improvement. 2012.
- [41] Savas Dimopoulos and Leonard Susskind. Mass Without Scalars. <u>Nucl.Phys.</u>, B155:237–252, 1979.
- [42] Michael Dine. Tasi lectures on the strong cp problem.
- [43] Estia Eichten and Kenneth D. Lane. Dynamical Breaking of Weak Interaction Symmetries. Phys.Lett., B90:125–130, 1980.
- [44] F. Englert and R. Brout. Broken Symmetry and the Mass of Gauge Vector Mesons. Phys.Rev.Lett., 13:321–323, 1964.
- [45] Zoltan Fodor, Kieran Holland, Julius Kuti, Daniel Nogradi, and Chris Schroeder. Nearly conformal gauge theories on the lattice. Int.J.Mod.Phys., A25:5162–5174, 2010.

- [46] Zoltan Fodor, Kieran Holland, Julius Kuti, Daniel Nogradi, and Chris Schroeder. Twelve massless flavors and three colors below the conformal window. <u>Phys. Lett.</u>, B703:348–358, 2011.
- [47] Zoltan Fodor, Kieran Holland, Julius Kuti, Daniel Nogradi, Chris Schroeder, and Chik Him Wong. Can the nearly conformal sextet gauge model hide the Higgs impostor? Phys. Lett., B718:657–666, 2012.
- [48] Zoltan Fodor, Kieran Holland, Julius Kuti, Daniel Nogradi, Chris Schroeder, and Chik Him Wong. Confining force and running coupling with twelve fundamental and two sextet fermions. PoS, Lattice 2012:025, 2012.
- [49] Zoltan Fodor, Kieran Holland, Julius Kuti, Daniel Nogradi, Chris Schroeder, and Chik Him Wong. Conformal finite size scaling of twelve fermion flavors. PoS, Lattice 2012:279, 2012.
- [50] Zoltan Fodor, Kieran Holland, Julius Kuti, Daniel Nogradi, and Chik Him Wong. The gradient flow running coupling scheme. PoS, Lattice 2012:050, 2012.
- [51] Zoltan Fodor, Kieran Holland, Julius Kuti, Daniel Nogradi, and Chik Him Wong. The Yang-Mills gradient flow in finite volume. JHEP, 1211:007, 2012.
- [52] Zoltan Fodor, Kieran Holland, Julius Kuti, Daniel Nogradi, and Chik Him Wong. Can a light Higgs impostor hide in composite gauge models? PoS, LATTICE 2013:062, 2014.
- [53] Patrick Fritzsch and Alberto Ramos. The gradient flow coupling in the Schrdinger Functional. JHEP, 1310:008, 2013.
- [54] J. Gasser and H. Leutwyler. Chiral perturbation theory to one loop. <u>Ann. Phys.</u>, 158:142, 1984.
- [55] Howard Georgi and David B. Kaplan. Composite Higgs and Custodial SU(2). Phys.Lett., B145:216, 1984.
- [56] Joel Giedt. Confining force and running coupling with twelve fundamental and two sextet fermions. PoS, Lattice 2012:006, 2012.
- [57] Joel Giedt. Lattice gauge theory and physics beyond the standard model. <u>PoS</u>, Lattice 2012:006, 2012.
- [58] Sheldon L. Glashow. Partial-symmetries of weak interactions. <u>Nuclear Physics</u>, 22(4):579 588, 1961.
- [59] Maarten Golterman. Applications of chiral perturbation theory to lattice QCD. pages 423–515, 2009.
- [60] David Gross and Frank Wilczek. Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett., 30:1343–1346, Jun 1973.
- [61] G.S. Guralnik, C.R. Hagen, and T.W.B. Kibble. Global Conservation Laws and Massless Particles. Phys.Rev.Lett., 13:585–587, 1964.
- [62] A. Hasenfratz, R. Hoffmann, and F. Knechtli. The Static potential with hypercubic blocking. Nucl. Phys. Proc. Suppl., 106:418–420, 2002.

- [63] Anna Hasenfratz. Investigating the critical properties of beyond-qcd theories using monte carlo renormalization group matching. Phys. Rev. D, 80:034505, Aug 2009.
- [64] Anna Hasenfratz. Conformal or Walking? Monte Carlo renormalization group studies of SU(3) gauge models with fundamental fermions. Phys. Rev., D82:014506, 2010.
- [65] Anna Hasenfratz. MCRG study of 12 fundamental flavors with mixed fundamental-adjoint gauge action. PoS, Lattice 2011:065, 2011.
- [66] Anna Hasenfratz. Infrared fixed point of the 12-fermion SU(3) gauge model based on 2-lattice MCRG matching. Phys. Rev. Lett., 108:061601, 2012.
- [67] Anna Hasenfratz, Anqi Cheng, Gregory Petropoulos, and David Schaich. Mass anomalous dimension from Dirac eigenmode scaling in conformal and confining systems. <u>PoS</u>, Lattice 2012:034, 2012.
- [68] Anna Hasenfratz, Anqi Cheng, Gregory Petropoulos, and David Schaich. Finite size scaling and the effect of the gauge coupling in 12 flavor systems. PoS, LATTICE 2013:075, 2013.
- [69] Anna Hasenfratz, Anqi Cheng, Gregory Petropoulos, and David Schaich. Reaching the chiral limit in many flavor systems. 2013.
- [70] Anna Hasenfratz, Roland Hoffmann, and Stefan Schaefer. Hypercubic smeared links for dynamical fermions. JHEP, 0705:029, 2007.
- [71] Anna Hasenfratz and Francesco Knechtli. Flavor symmetry and the static potential with hypercubic blocking. Phys. Rev., D64:034504, 2001.
- [72] Anna Hasenfratz, David Schaich, and Aarti Veernala. Nonperturbative beta function of eight-flavor SU(3) gauge theory. 2014.
- [73] Peter W. Higgs. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett., 13(16):508–509, October 1964.
- [74] P.W. Higgs. Broken symmetries, massless particles and gauge fields. Physics Letters, 12(2):132 133, 1964.
- [75] Christopher T. Hill and Elizabeth H. Simmons. Strong dynamics and electroweak symmetry breaking. Physics Reports, 381(46):235 402, 2003.
- [76] Etsuko Itou. Properties of the twisted Polyakov loop coupling and the infrared fixed point in the SU(3) gauge theories. <u>PTEP</u>, 2013:083B01, 2013.
- [77] Y. Iwasaki, K. Kanaya, S. Kaya, S. Sakai, and T. Yoshie. Phase structure of lattice QCD for general number of flavors. Phys.Rev., D69:014507, 2004.
- [78] Xiao-Yong Jin and Robert D. Mawhinney. Lattice QCD with Eight Degenerate Quark Flavors. PoS, LATTICE2008:059, 2008.
- [79] Xiao-Yong Jin and Robert D. Mawhinney. Lattice QCD with 8 and 12 degenerate quark flavors. PoS, LAT2009:049, 2009.

- [80] Xiao-Yong Jin and Robert D. Mawhinney. Lattice QCD with 12 Degenerate Quark Flavors. PoS, Lattice 2011:066, 2012.
- [81] David B. Kaplan, Howard Georgi, and Savas Dimopoulos. Composite Higgs Scalars. Phys.Lett., B136:187, 1984.
- [82] D.B. Kaplan. Chiral symmetry and lattice fermions.
- [83] John Kogut and Leonard Susskind. Hamiltonian formulation of wilson's lattice gauge theories. Phys. Rev. D, 11:395–408, Jan 1975.
- [84] Andreas S. Kronfeld. Lattice gauge theory with staggered fermions: How, where, and why (not). PoS, LAT2007:016, 2007.
- [85] Kenneth Lane. Two lectures on technicolor.
- [86] C.-J. David Lin, Kenji Ogawa, Hiroshi Ohki, and Eigo Shintani. Lattice study of infrared behaviour in SU(3) gauge theory with twelve massless flavours. JHEP, 1208:096, 2012.
- [87] Martin Luscher. Properties and uses of the Wilson flow in lattice QCD. <u>JHEP</u>, 1008:071, 2010.
- [88] Martin Luscher. Trivializing maps, the Wilson flow and the HMC algorithm. Commun. Math. Phys., 293:899–919, 2010.
- [89] M. Lscher and P. Weisz. Computation of the action for on-shell improved lattice gauge theories at weak coupling. Physics Letters B, 158(3):250 254, 1985.
- [90] Adam Martin. Technicolor signals at the lhc.
- [91] Shinya Matsuzaki and Koichi Yamawaki. Holographic techni-dilaton at 125 GeV. Phys. Rev., D86:115004, 2012.
- [92] R. Narayanan and H. Neuberger. Infinite N phase transitions in continuum Wilson loop operators. JHEP, 0603:064, 2006.
- [93] Ethan T. Neil. Exploring Models for New Physics on the Lattice. <u>PoS</u>, Lattice 2011:009, 2011.
- [94] H.B. Nielsen and M. Ninomiya. Absence of neutrinos on a lattice: (i). proof by homotopy theory. Nuclear Physics B, 185(1):20 40, 1981.
- [95] H.B. Nielsen and M. Ninomiya. Absence of neutrinos on a lattice: (ii). intuitive topological proof. Nuclear Physics B, 193(1):173 194, 1981.
- [96] H.B. Nielsen and M. Ninomiya. A no-go theorem for regularizing chiral fermions. Physics Letters B, 105(23):219 223, 1981.
- [97] Paula Perez-Rubio and Stefan Sint. Non-perturbative running of the coupling from four flavour lattice QCD with staggered quarks. PoS, Lattice 2010:236, 2010.
- [98] Michael E. Peskin and Dan V. Schroeder. An Introduction To Quantum Field Theory (Frontiers in Physics). Westview Press, 1995.

- [99] Gregory Petropoulos, Anqi Cheng, Anna Hasenfratz, and David Schaich. <u>PoS</u>, Lattice 2012:051, 2012.
- [100] Gregory Petropoulos, Anqi Cheng, Anna Hasenfratz, and David Schaich. Improved Lattice Renormalization Group Techniques. PoS, LATTICE 2013:079, 2013.
- [101] H. David Politzer. Reliable Perturbative Results for Strong Interactions? <u>Phys.Rev.Lett.</u>, 30:1346–1349, 1973.
- [102] C. Quigg. Spontaneous symmetry breaking as a basis of particle mass. Rept. Prog. Physics, pages 1019–1054, 2007.
- [103] C. Quigg. Unanswered questions in the electroweak theory. <u>Annual Review of Nuclear and</u> Particle Science, pages 505–555, 2009.
- [104] Thomas A. Ryttov and Robert Shrock. An Analysis of Scheme Transformations in the Vicinity of an Infrared Fixed Point. Phys.Rev., D86:085005, 2012.
- [105] Abdus Salam and John Clive Ward. Electromagnetic and weak interactions. Phys. Lett., 13:168–171, 1964.
- [106] Francesco Sannino. Conformal Dynamics for TeV Physics and Cosmology. <u>Acta Phys.Polon.</u>, B40:3533–3743, 2009.
- [107] David Schaich, Anqi Cheng, Anna Hasenfratz, and Gregory Petropoulos. Bulk and finite-temperature transitions in SU(3) gauge theories with many light fermions. <u>PoS</u>, Lattice 2012:028, 2012.
- [108] Robert Shrock. Some recent results on models of dynamical electroweak symmetry breaking. pages 227–241, 2007.
- [109] Stefan Sint. On the schrdinger functional in {QCD}. <u>Nuclear Physics B</u>, 421(1):135 156, 1994.
- [110] Jan Smit. Introduction to Quantum Fields on a Lattice. Cambridge University Press, 2002.
- [111] Rainer Sommer. Scale setting in lattice QCD. PoS, LATTICE 2013:015, 2014.
- [112] Leonard Susskind. Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory. Phys.Rev., D20:2619–2625, 1979.
- [113] R.H. Swendsen. Phys. Rev. Lett., 42:859, 1979.
- [114] K. Symanzik. Continuum limit and improved action in lattice theories: (ii). o(n) non-linear sigma model in perturbation theory. Nuclear Physics B, 226(1):205 227, 1983.
- [115] Fatih Tekin, Rainer Sommer, and Ulli Wolff. The Running coupling of QCD with four flavors. Nucl. Phys., B840:114–128, 2010.
- [116] Steven Weinberg. A Model of Leptons. Phys.Rev.Lett., 19:1264–1266, 1967.
- [117] Steven Weinberg. Implications of Dynamical Symmetry Breaking. Phys.Rev., D13:974–996, 1976.

- [118] Steven Weinberg. Implications of Dynamical Symmetry Breaking: An Addendum. <u>Phys.Rev.</u>, D19:1277–1280, 1979.
- [119] P. Weisz. Continuum limit improved lattice action for pure yang-mills theory (i). Nuclear Physics B, 212(1):1-17, 1983.
- [120] Kenneth Wilson. Confinement of quarks. Phys. Rev. D, 10:2445–2459, Oct 1974.