武汉大学 2017-2018 学年第二学期期末考试高等数学 B2

- 1、(8分)设 $(\vec{a} \times \vec{b}) \cdot \vec{c} = 4$,试求 $[(\vec{a} + \vec{b}) \times (\vec{b} + \vec{c})] \cdot (\vec{a} + \vec{c})$.
- 2、(8分)设z = z(x,y)是由方程 $x^2 2z = f(y^2 2z)$ 所确定的隐函数,其中f可微,求证 $y\frac{\partial z}{\partial x} + x\frac{\partial z}{\partial y} = xy$.
- 3、(8分) 设 $D = \{(x, y) | |x| + |y| \le 1\}$, 计算二重积分 $\iint_D y^2 dx dy$.
- 4. (8分) 已知椭圆 $L: \frac{x^2}{4} + \frac{y^2}{9} = 1$ 周长为b,求 $\oint_L (4xy + 9x^2 + 4y^2) ds$.
- 5、(8分) 判断两直线 L_1 : $\frac{x+1}{1} = \frac{y}{1} = \frac{z-1}{2}$ 和 L_2 : $\frac{x}{1} = \frac{y+1}{3} = \frac{z-2}{4}$ 是否在同一平面内,并求两直线的的夹角。
- 6、(10 分) 已知 $\frac{(x+ay)dx+ydy}{(x+y)^2}$ 为某函数的全微分,求该函数并确定 a 的值.
- 7、(10 分) 在椭球面 $2x^2 + y^2 + z^2 = 1$ 上求一点,使函数 $f(x, y, z) = x^2 + y^2 + \tan z^2$ 在该点沿曲线 $x = t^2$, y = 1 2t , $z = t^3 3t$ 在点 (1, -1, -2) 处的切线方向的方向导数最大。
- 8、(10 分) 求曲面积分 $I = \iint_S yz dz dx + 2 dx dy$,其中 S 是球面 $x^2 + y^2 + z^2 = 9$ 的外侧在 $z \ge 0$ 的部分。
- 9、(8分) 设 f(u)连续, 区域 Ω 由 $0 \le z \le 1$, $x^2 + y^2 \le t^2$ 围成,

$$f(t) = \iiint_{\Omega} [z^2 + f(\sqrt{x^2 + y^2})] dV$$
, $\Re \lim_{t \to 0+} \frac{f(t)}{t^2}$.

- 10、(8分) 已知 $b_n = \int_0^1 x \sin n\pi x dx$, $(n = 1, 2, 3, \cdots)$, 试判别级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} b_n}{n+1}$ 敛散性并求其和。
- 11、(8分) 求幂级数 $\sum_{n=1}^{\infty} \frac{n}{3^n + (-2)^n} x^n$ 的收敛区间与收敛域。
- 12、(6 分)设a,b为任意常数,f(x)在x=0的邻域内具有二阶连续导数,且 $\lim_{x\to 0}\frac{f(x)}{x}=0,\ f''(x)\geq m>0$,试讨论级数:

$$af(\frac{1}{\sqrt{1}}) - bf(\frac{1}{\sqrt{2}}) + af(\frac{1}{\sqrt{3}}) - bf(\frac{1}{\sqrt{4}}) + \dots + af(\frac{1}{\sqrt{2n-1}}) - bf(\frac{1}{\sqrt{2n}}) + \dots$$
 的敛散性。

由 (1) 知 $\lim_{n\to\infty} \sigma_{2n}$ 存在, $\lim_{n\to\infty} S_{2n}$ 不存在,级数发散。

武汉大学 2017-2018 学年第二学期期末考试高等数学 B2 参考解答

1、(8分)设
$$(\vec{a} \times \vec{b}) \cdot \vec{c} = 4$$
,试求 $[(\vec{a} + \vec{b}) \times (\vec{b} + \vec{c})] \cdot (\vec{a} + \vec{c})$.

解:
$$[(\vec{a}+\vec{b})\times(\vec{b}+\vec{c})]\cdot(\vec{a}+\vec{c}) = (\vec{a}\times\vec{b}+\vec{a}\times\vec{c}+\vec{b}\times\vec{b}+\vec{b}\times\vec{c})\cdot(\vec{a}+\vec{c}) = 2(\vec{a}\times\vec{b})\cdot\vec{c} = 8$$

2、(8分)设
$$z = z(x, y)$$
是由方程 $x^2 - 2z = f(y^2 - 2z)$ 所确定的隐函数,其中 f 可微,求证

$$y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = xy$$
.

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{-x}{f'-1}, \frac{\partial z}{\partial y} = -\frac{F_x}{F_z} = \frac{yf'}{f'-1} \qquad \text{if } y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = xy$$

3、(8分) 设
$$D = \{(x, y) | |x| + |y| \le 1\}$$
, 计算二重积分 $\iint_D y^2 dx dy$.

4. (8分) 已知椭圆
$$L: \frac{x^2}{4} + \frac{y^2}{9} = 1$$
周长为 b ,求 $\oint_L (4xy + 9x^2 + 4y^2) ds$.

解 因为L关于x轴(y轴)对称,4xy关于y(关于x)为奇函数,所以 $\oint_L 4xyds = 0$,故

$$\oint_{L} (4xy + 9x^{2} + 4y^{2}) ds = \oint_{L} (9x^{2} + 4y^{2}) ds = 36 \int_{L} (\frac{x^{2}}{4} + \frac{y^{2}}{9}) ds = 36b.$$

5、(8分) 判断两直线 L_1 : $\frac{x+1}{1} = \frac{y}{1} = \frac{z-1}{2}$ 和 L_2 : $\frac{x}{1} = \frac{y+1}{3} = \frac{z-2}{4}$ 是否在同一平面内,并求两直线的的夹角。

解 1: 直线 L_1 与 L_2 的方向向量分别为 $S_1 = \{1,1,2\}, S_2 = \{1,3,4\}$,且分别过 P(-1,0,1), Q(0,-1,2)

从而
$$(\mathbf{s}_1 \times \mathbf{s}_2) \cdot \mathbf{PQ} = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 3 & 4 \\ 1 & -1 & 1 \end{vmatrix} = 2 \neq 0$$
,故直线 L_1 与 L_2 为异面直线.

两直线之间的夹角余弦为
$$\cos \varphi = \frac{12}{\sqrt{6}\sqrt{26}} = \sqrt{\frac{12}{13}}$$
, 故夹角为 $\varphi = \arccos \sqrt{\frac{12}{13}}$

6、(10 分) 已知
$$\frac{(x+ay)dx+ydy}{(x+y)^2}$$
 为某函数的全微分,求该函数并确定 a 的值.

解: 设该函数为
$$u(x,y)$$
,则由全微分公式有 $du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy = \frac{(x+ay)dx + ydy}{(x+y)^2}$,则有

$$\frac{\partial u}{\partial x} = \frac{(x+ay)}{(x+y)^2}, \quad \frac{\partial u}{\partial y} = \frac{y}{(x+y)^2}, \text{ 分别对 } y, x 求偏导得 \frac{\partial^2 u}{\partial y \partial x} = \frac{(a-2)x-ay}{(x+y)^3}, \quad \frac{\partial^2 u}{\partial x \partial y} = \frac{-2y}{(x+y)^3},$$

由于
$$\frac{\partial^2 u}{\partial x \partial y}$$
 和 $\frac{\partial^2 u}{\partial y \partial x}$ 连续,所以 $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$,则 $a = 2$ 。由曲线积分与路径无关可得

$$u(x, y) = \ln(x + y) - \frac{y}{x + y} + C$$

7、(10 分) 在椭球面 $2x^2 + y^2 + z^2 = 1$ 上求一点,使函数 $f(x, y, z) = x^2 + y^2 + \tan z^2$ 在该点沿曲线 $x = t^2$, y = 1 - 2t, $z = t^3 - 3t$ 在点 (1, -1, -2) 处的切线方向的方向导数最大。

解: 由曲线
$$x = t^2$$
, $y = 1 - 2t$, $z = t^3 - 3t$ 在点 $(1, -1, -2)$ 处的法线方向向量为:

$$\{2t, -2.3t^2 - 3\}$$
 $|_{t=1} = 2\{1, -1, 0\}$ 其单位向量为: $\{\cos\alpha, \cos\beta, \cos\gamma\} = \frac{1}{\sqrt{2}}\{1, -1, 0\}$

函数 f(x, y, z) 的方向导数的表达式为 $\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta + \frac{\partial f}{\partial z} \cos \gamma$ 。

其中
$$\left\{\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\} = 2\left\{x, y, z \sec^2 z^2\right\}$$
 因此 $\frac{\partial f}{\partial l} = \sqrt{2}(x - y)$ 。

于是,按照题意,即求函数 $\sqrt{2}(x-y)$ 在条件 $2x^2 + y^2 + z^2 = 1$ 下的最大值。设 $F(x, y, z, \lambda) = \sqrt{2}(x-y) + \lambda(2x^2 + y^2 + z^2 - 1)$,

8、(10 分) 求曲面积分 $I = \iint_S yz dz dx + 2 dx dy$,其中 S 是球面 $x^2 + y^2 + z^2 = 9$ 的外侧在 $z \ge 0$ 的部分。

解:添加辅助面 S_1 : $z = 0(x^2 + y^2 \le 4)$,法向量乡下,用 Gauss 公式得

$$I + \iint_{S_1} yz dz dx + 2 dx dy = \iiint_{\Omega} z dV = \int_0^2 dz \iint_{D(z)} z dx dy = \int_0^2 z \pi (4 - z^2) dz = 4\pi$$
,于是
$$I = -\iint_{S_1} yz dz dx + 2 dx dy + 4\pi = \iint_{D} 2 dx dy + 4\pi = 12\pi$$

9、(8分)设f(u)连续,区域 Ω 由 $0 \le z \le 1$, $x^2 + y^2 \le t^2$ 围成,

$$f(t) = \iiint_{\Omega} [z^2 + f(\sqrt{x^2 + y^2})] dV$$
, $\Re \lim_{t \to 0+} \frac{f(t)}{t^2}$

解
$$f(t) = \iiint_{\Omega} \left[z^2 + f\left(\sqrt{x^2 + y^2}\right) \right] dV = \int_0^{2\pi} d\theta \int_0^t \rho d\rho \int_0^1 [z^2 + f(\rho)] dz$$

$$= \frac{\pi}{3} t^2 + 2\pi \int_0^t \rho f(\rho) d\rho$$

$$\lim_{t \to 0+} \frac{f(t)}{t^2} = \frac{\pi}{3} + 2\pi \frac{\lim_{t \to 0+} \int_0^t \rho f(\rho) d\rho}{t^2} = \frac{\pi}{3} + \pi \lim_{t \to 0+} f(t) = \frac{\pi}{3} \quad (\because f(0) = 0)$$

10、(8分) 已知 $b_n = \int_0^1 x \sin n\pi x dx$, $(n = 1, 2, 3, \cdots)$, 试判别级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} b_n}{n+1}$ 敛散性并求其和。

由比较判别法知,级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}b_n}{n+1} = \sum_{n=1}^{\infty} \frac{1}{\pi n(n+1)}$ 收敛

$$\mathbb{X}\sum_{n=1}^{\infty}\frac{(-1)^{n+1}b_n}{n+1} = \frac{1}{\pi}\sum_{n=1}^{\infty}\frac{1}{n(n+1)} = \frac{1}{\pi}\sum_{n=1}^{\infty}(\frac{1}{n} - \frac{1}{n+1}),$$

且
$$S_n = \frac{1}{\pi} \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1} \right) = \frac{1}{\pi} \left(1 - \frac{1}{n+1} \right)$$
 所以级数的和 $S = \lim_{n \to \infty} \frac{1}{\pi} \left(1 - \frac{1}{n+1} \right) = \frac{1}{\pi}$.

11、(8分) 求幂级数 $\sum_{n=1}^{\infty} \frac{n}{3^n + (-2)^n} x^n$ 的收敛区间与收敛域。

解:
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \frac{\frac{n+1}{3^{n+1} + (-2)^{n+1}}}{\frac{n}{3^n + (-2)^n}} = \frac{1}{3}$$
, 所以收敛半径 $R = 3$,收敛区间为 $(-3,3)$,

在
$$x = \pm 3$$
 处,原级数为 $\sum_{n=1}^{\infty} \frac{n}{3^n + (-2)^n} (\pm 3)^n = \sum_{n=1}^{\infty} \frac{(\pm 1)^n n}{1 + (-\frac{2}{3})^n}$,而 $\lim_{n \to \infty} \frac{n}{1 + (-\frac{2}{3})^n} = \infty$,所以发散,

因此收敛域也为(-3,3)。

12、(6 分)设a,b为任意常数,f(x)在x=0的邻域内具有二阶连续导数,且 $\lim_{x\to 0}\frac{f(x)}{x}=0,\ f''(x)\geq m>0$,试讨论级数:

$$af(\frac{1}{\sqrt{1}}) - bf(\frac{1}{\sqrt{2}}) + af(\frac{1}{\sqrt{3}}) - bf(\frac{1}{\sqrt{4}}) + \dots + af(\frac{1}{\sqrt{2n-1}}) - bf(\frac{1}{\sqrt{2n}}) + \dots$$
 的敛散性。

解 由
$$\lim_{x\to 0} \frac{f(x)}{x} = 0$$
 得: $f(0) = f'(0) = 0$, 再由 $f''(x) \ge m > 0$ 知: 当 $x > 0$ 时, $f(x) > 0$, $f(x)$

是单调增函数,且 $\lim_{x\to 0} f(x) = 0$,故 $f(\frac{1}{\sqrt{n}})$ 单调减且趋于 0,所以 $\sum_{n=1}^{\infty} (-1)^{n-1} f(\frac{1}{\sqrt{n}})$ 收敛。

当
$$a = b$$
 时,级数 = $a \sum_{n=1}^{\infty} (-1)^{n-1} f(\frac{1}{\sqrt{n}})$,收敛。

$$= a[f(\frac{1}{\sqrt{1}}) - f(\frac{1}{\sqrt{2}}) + \dots + f(\frac{1}{\sqrt{2n-1}}) - f(\frac{1}{\sqrt{2n}})]$$

$$+(a-b)[f(\frac{1}{\sqrt{2}})+f(\frac{1}{\sqrt{4}})+\dots+f(\frac{1}{\sqrt{2n}})] = a\sigma_{2n}+(a-b)\delta_n$$

$$\lim_{n\to\infty} \frac{f(\frac{1}{\sqrt{2n}})}{\frac{1}{n}} = \lim_{x\to 0^+} \frac{f(x)}{2x^2} = \frac{f''(0)}{4} > \frac{m}{4} > 0, \qquad \lim_{n\to\infty} \delta_n \, \overline{\wedge} \, \overline{\wedge}$$

由(1)知 $\lim_{n\to\infty}\sigma_{2n}$ 存在, $\lim_{n\to\infty}S_{2n}$ 不存在,级数发散。