House Price Prediction Using Regression Analysis

Dependent Variable: Sale Price

Categorical Variables

Numeric Variables

Missingness

Missing Values in Train and Test Dataset

Feature Transformation

Transformation

	Туре	Feature	Values	Transformation
Categorical	Ordinal	Basement Quality	Ex, Gd, TA, Fa, Po	5,4,3,2,1
		Lot Shape	Reg, IR1, IR2, IR3	4,3,2,1
		Land Slope	Gtl, Mod, Sev	3,2,1
		Garage Finish	Fin, RFn, Unf, None	4,3,2,1
	Nominal	Neighborhood	CollgCr, Veenker	One-Hot Coding
Numeric	Skewed	Sale Price Basement Total SF	Right Skewed	Log Transformation
	Not Skewed	Garage Area	Normal Distribution	No Transformation
		Fire Places	(Roughly)	

Feature Engineering Insights

DROP

YearBuilt ~ GarageYrBlt = 0.83
 Off all total values in train and test set, 75.8% of the YearBuilt and GarageYrBlt values were the same.

CREATION

- 1. 'AgeWhenSold' = YrSold YearBuilt
- 2. 'YearsSinceRemod' = YrSold YearRemodAdd

Regularization

- Automatically does the feature selection for you
- Penalizes extra features, sets coefficient to zero
- Reduce the model complexity
- Possibility of overfitting with linear regression
- Addresses Multicollinearity
- Use Lasso, Ridge and Elastic Net regression

Feature Selection

Cross-Validation

Lasso: Alpha = 0.0005, Ridge: Alpha = 2.8 and Elastic Net: (Alpha = 0.0005 and L1_Ratio = 0.9)

Pricing Prediction

RMSE Log Error

Lasso: 0.127

Ridge: 0.129

Elastic Net: 0.126

Gradient Boosting Regressor

- Gradient Boosting Is One of Our Best Performing Algorithms
- Trained Gradient Boosting Machine Using the Entire Set of Features
- Tuned Hyperparameters Via Grid Search
- Best Model Parameters: Learning Rate (0.05), # of Estimators (2,000), Max Depth (3)
- Most Useful Features in Construction of Boosted Decision Tree were Above Grade Living Area Square Feet, Kitchen Quality, Total Square Feet of Basement Area, and Size of Garage in Car Capacity

PCA + Gradient Boosting Regressor

- Attempted to Improve Baseline Result by Reducing Dimensionality
- High Dimensional Data Can Be Sparse or Spread Out
- Used Standard Scaler to Normalize the Data
- First 150 Principal Components Accounted for Over 85% of Variation
- After Implementing PCA our Result Did Not Improve
- Reducing Dimensions Caused Loss of Some Important Information Not Only Random Noise

PCA + Gradient Boosting Regressor

Best Parameters:

of components - 150

of estimators - 2,000

Learning rate - 0.05

CV score: 0.87 vs. CV score of 0.91 for Gradient Boosting without PCA

Model Comparison

What can we do better?

Ensembling and Stacking

XGBoost

RANK	MODEL	HYPERPARAMETERS	KAGGLE LEADERBOARD SCORE
1	Stacked model with ENet, Random Forest 1 (low depth), Random Forest 2 (high depth), Gradient Boosting 1 (conservative), Gradient Boosting 2 (aggresive) with linear meta model	ENet: alpha = 0.0005, I1_ratio=0.9 RF1: max_depth=4, n_estimators=1000, RF2: max_depth=9, n_estimators=1000 GBM1: n_estimators=3000, max_depth=3, min_samples_split=10 GBM2: n_estimators=2000, max_depth=9, min_samples_split=10	0.12260
2	Ensembling 50% ENet and 50% XGBoost	ENet: alpha=0.0005, I1_ratio=0.9 XGBoost: learning_rate=0.05, max_depth=3, gamma=0.0468	0.12485

n_estimators=2200

learning_rate=0.05, max_depth=3,

0.12923

Conclusions

Prediction Similarities

