<< 문제지에 풀이와 답을 작성하여 제출하십시오. >>

0000 년 00 학기 00 고사		과	물리학 18장	학 과	학 년	감 독	
출 제	공동 출제	목		학 번		교 수	
편 집	송 현 석	명	기출문제 문제지	성 명		확 인	
시험일시 0000. 00. 00			0		0	점 수	

[주의 사항] 1. 계산기는 사용할 수 없습니다.

2. 단위가 필요한 답에는 반드시 SI 체계로 단위를 표기하시오.

[2014년 2학기 중간고사 10번] - 예제 18.2, 연습문제 18.3 참고

1. 다음 그림의 회로에서 저항 R_2 에 흐르는 전류를 구하시오.

 $(I_2 =)$

[2013년 2학기 중간고사 8번] - 예제 18.2, 연습문제 18.3 참고

2. 아래 그림에서 6Ω 의 저항에 흐르는 전류 I를 구하시오.

[2011년 2학기 중간고사 6번] - 예제 18.2, 연습문제 18.3 참고

3. 아래 그림의 회로에서 $6.0\,\Omega$ 의 저항에 흐르는 전류를 구하시오.

 $(I_{6.0\,\Omega} =)$

[2013년 2학기 중간고사 6번 & 2008년 2학기 중간고사 7번]

- 4. 키르히호프의 법칙 중 접합점 법칙은 ()에 근거하고, 고리법칙은 ()에 근거한다. 여기서 괄호 안에 들어갈 적절한 법칙을 아래 보기에서 고르시오.
- ① 가우스 법칙
- ② 전하량 보존 법칙 ③ 옴의 법칙
- ④ 에너지 보존 법칙 ⑤ 암페어 법칙

[2012년 2학기 중간고사 7번] - 예제 18.5, 연습문제 18.4 참고

5. 우측 그림과 같이 축전기만으로 구성된 회로가 있다. $^{\mathbf{A}}$ ullet 모든 축전기의 전기용량이 $1.2\,\mu F$ 으로 동일할 때, 단자 A, B 사이의 등가 전기용량은 얼마인가?

($C_{eq} =$

)

<뒷 면에 단답형 문제 더 있음.>

(I=)

[2011년 2학기 중간고사 8번] - 연습문제 18.14 참고

6. 아래 그림과 같은 회로에서 B점에 대한 A점의 전위는 몇 V인가?

($V_A - V_B =$)

[2014년 2학기 중간고사 9번] - 연습문제 18.6 참고

7. 평행판 축전기를 충분히 충전한 후 기전력 장치를 제거하였다. 이제 평행판 축전기의 간격을 세 배로 늘리면 전기용량, 두 표면의 전하밀도, 축전기 양 단의 전위차는 각각 몇 배가 되는가? 순서대로 쓰시오.

(UH, UH, UH)

[2010년 2학기 중간고사 9번] - 연습문제 18.6 참고

8. 평행판 축전기를 충분히 충전한 후 기전력 장치를 제거하였다. 이제 축전기에서 평행판의 간격을 두 배로 늘렸을 때 다음 중 변하지 않는 양을 모두 골라라.

()

- ① 축전기의 전기용량 ② 평행판의 전하밀도 ③ 축전기에 저장된 에너지
- ④ 축전기 내부의 전기장 ⑤ 평행판 사이의 전위차

[2009년 2학기 중간고사 8번] - 예제 18.7 참고

9. 단면적 A, 간격 d 인 평행판 축전기의 두 극판을 +q, -q로 대전시킨 후 기전력 장치를 제거하고 축전기 사이에 유전상수 $\kappa(>1)$ 인 유전체를(면적 A, 두께 d)를 삽입하였다. 다음 물리량 중 증가하는 것은 어떤 것인가?

(

- ① 극판간의 전위차 ② 축전기의 전기용량 ③ 내부 전기장
- ④ 극판의 전하밀도 ⑤ 인덕턴스

[2011년 2학기 중간고사 7번] - 연습문제 18.6, 18.16 참고

10. 전기용량이 C인 평행판 축전기를 전압이 V인 전원에 연결하여 충분히 충전한 후 전원을 끊었다. 그 후 축전기에서 평행판의 간격이 세 배가 되도록 끌어당겼는데, 끌어당기는 데 필요한 일을 C와 V를 이용하여 나타내어라.

 $(W_{\mathfrak{Q}} =)$

[2007년 2학기 중간고사 8번] - 연습문제 18.8, 18.9 참고

11. 그림과 같이 유전 상수가 κ_1 , κ_2 로 다른 두 물질로 반반씩 채워진 면적이 A 이고 두 판 사이의 거리가 d 인 평행판 축전기의 전기용량을 구하시오.

(C=

[2012년 2학기 중간고사 8번] - 예제 18.8, 연습문제 18.10, 18.11 참고

12. 우측 그림과 같은 회로에서 저항 R은 $5.0\,\Omega$ 이고 축전기의 전기용량 C는 $3.0\,\mu F$ 이다. 기전력 장치로는 $\epsilon=6.0\,V$ 인 전지를 사용한다. 스위치 S를 a에 연결한 후 오랜 시간이 흘러 축전기에 충전이 끝났을 때 축전기의 전하량은 얼마인가?

(Q=)

<뒷 면에 주관식 문제 있음.>

[주의 사항] 주관식 문제는 상세한 풀이과정이 없으면 영점처리 됩니다.

[2011년 2학기 중간고사 주관식 2번] - 예제 18.1 연습문제 18.1, 18.2 참고 [주관식 1] [15점]

아래 그림과 같은 저항 회로가 있다. 이 회로는 저항이 각각 $10\,\Omega$, $5\,\Omega$ 인 두 개의 저항을 전압이 V인 전지에 직렬로 연결한 후 저항 R을 $5\,\Omega$ 의 저항에 병렬로 연결한 것이다. 이때, 저항 R의 단위는 Ω 이다. 다음 질문들에 답하여라.

(1) 위 회로에서 저항 R에 걸리는 전압을 R과 V의 함수로 나타내시오. [5점]

 $(V_R =)$

(2) 저항 R에서 소비되는 전력을 R과 V의 함수로 나타내시오. [5점]

 $(P_R =)$

, $R_R =$

(3) 저항 R에서 소비되는 전력이 최대가 되기 위한 R의 값과 그 때의 소비전력을 구하시오. [5점]

(R =

[2012년 2학기 중간고사 주관식 2번] - 예제 18.2 연습문제 18.3 참고 [주관식 2] [15점]

아래 그림과 같은 회로에서 다음 질문들에 답하여라.

(1) 2.0Ω 의 저항에 흐르는 전류 I를 구하시오. [5점]

(I=)

(2) 두 전원 장치의 전압 V_1 과 V_2 를 구하시오. [5점]

 $(V_1 = , V_2 =)$

(3) 저항 R의 크기를 구하시오. [5점]

(R=)

[2013년 2학기 중간고사 주관식 2번] - 예제 18.7 참고 [주관식 3] [10점]

전기용량이 $10\,\mu F$ 인 평행판 축전기가 $200\,V$ 의 전압으로 충전되었다. 충전 후 전원을 분리시키고 이 축전기에 유전상수가 $2.5\,$ 인 유전체를 평행판 사이에 삽입하였다. 이때, 다음 질문들에 답하시오.

(1) 유전체를 삽입하기 전, 축전기에 저장된 전기에너지를 구하시오. [5점]

(U=)

(2) 유전체를 삽입한 후, 축전기에 저장된 전기에너지를 구하시오. [5점]

(U' =)

<뒷 면에 주관식 문제 더 있음.>

[2010년 2학기 중간고사 주관식 1번] - 연습문제 18.14 참고 [주관식 4] [20점]

아래 그림과 같이 저항과 축전기로 구성된 회로가 있다. 다음 질문들에 답하시오.

(1) 스위치 S가 열려 있을 때 a점과 b점의 전위는 각각 얼마인가? [6점]

 $(V_a = , V_b =)$

(2) 스위치 S가 닫혔을 때 스위치를 통해 흐르는 전하량의 크기는 얼마인가? [6점]

(3) 스위치가 닫히기 전과 후에 축전기에 저장된 에너지는 각각 얼마인가? [8점]

(
$$U_{before} =$$
 , $U_{after} =$)

[2009년 2학기 중간고사 주관식 1번] - 연습문제 18.7 참고 [주관식 5] [20점]

전기용량이 C인 축전기에 V_0 의 기전력 장치를 이용하여 충분히 충전시켰다. 이때, 한 쪽 도체에 충전된 전하량은 Q_0 이다. 이제, 기전력 장치를 떼어내고 미지의 전기용량 C_x 를 갖는 축전기를 병렬로 연결하였다. 다음 질문들에 답하시오.

(1) 전하량 Q_0 를 구하시오. [5점]

$$(Q_0 =)$$

(2) 전기용량 C_x 를 같는 축전기의 한 쪽 도체판에 저장된 전하량 Q_x 는 Q_0 의 몇 배인가? [8점]

(UH)

(3) 전기용량 C를 갖는 축전기의 양단의 전위차 V는 원래의 전위차 V_0 의 몇 배인가? [7점]

HH)

<뒷 면에 주관식 문제 더 있음.>

(Q =)

[2014년 2학기 중간고사 주관식 2번] - 예제 16.5, 연습문제 18.5, 18.16 참고 [주관식 6] [15점]

면적이 A 인 두 평면에 균일한 면 전하밀도 σ 와 $-\sigma$ 로 각각 대전되어 나란히 놓여 있는 평행판 축전기가 있다. 아래 물음에 답하시오. (단, 유전률은 ϵ_0 이다.)

(1) 영역 I, II, III 에서 전기장의 세기를 각각 구하시오. (단, 두 평면의 면적은 충분히 넓고 사이의 간격은 충분히 좁아서 가장자리 효과는 무시한다.) [5점]

($E_{\mathrm{I}} =$, $E_{\mathrm{II}} =$, $E_{\mathrm{III}} =$)

(2) 이 때, 평행판 축전기에 저장된 에너지와 에너지 밀도를 주어진 변수들 $(\epsilon_0,\ \sigma,\ A,\ d)$ 을 이용하여 나타내시오. [5점]

(U=, u=)

(F=

(3) 평행판 축전기에서 두 평행판 간 서로 작용하는 힘을 구하시오. [5점]

[2006년 2학기 중간고사 7,8번] - 예제 18.8 참고

[2005년 2학기 중간고사 5,6번] - 연습문제 18.7, 18.10, 18.11, 18.19 참고

[주관식 7] [20점]

우측의 회로를 보고 회로에 주어진 변수들을 이용하여 다음 질문들에 답하시오.

(1) 스위치 S를 a 단자에 연결하고 충분한 시간이 흐를 때까지 건전지가 한 일은 얼마인가? [5점]

(
$$W_{건전지} =$$
)

(2) 스위치 S를 a 단자에 연결하고 충분한 시간이 흐를 때까지 저항체를 통하여 잃어버린 총 전기에너지는 얼마인가? [5]점]

($W_{
m R}$ \approx)

(3) 이제 스위치 S를 b단자에 연결하고 충분한 시간이 흐른 후 축전기 C'의 양판 사이의 전위차는 얼마인가? [5점]

(V' =)

(4) 이제 스위치 S를 b 단자에 연결하고 충분한 시간이 흐른 후 축전기 C'에 남아있는 전기 에너지는 얼마인가? [5점]

(U' =)

<수고하셨습니다.>