Билет 27

Автор1, ..., Aвтор<math>N

21 июня 2020 г.

Содержание

0.1	Билет 27:	Определения предела по Ко	ши и по Гейне.	Локальная	ограниченность	
	функции,	имеющей предел. Критерий	Коши			1

0.1. Билет 27: Определения предела по Коши и по Гейне. Локальная ограниченность функции, имеющей предел. Критерий Коши.

Определение 0.1 (Коши).

Пусть $\langle X, \rho_X \rangle$, $\langle Y, \rho_Y \rangle$ - метрические пространства, $E \subset X$, $a \in E'$, $f : E \mapsto Y$.

Тогда $(f(A) = \{f(x) \mid x \in A\}$ - образ функции).

$$\lim_{x \to a} f(x) = b \iff \forall \varepsilon > 0 \quad \exists \delta > 0 \quad f(\mathring{B}_{\delta}^{X}(a) \cap E) \subset B_{\varepsilon}^{Y}(b).$$

Аналогичная формулировка (раскрыть образ):

$$\lim_{x \to a} f(x) = b \iff \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in \mathring{B}_{\delta}^{X}(a) \cap E \quad f(x) \in B_{\varepsilon}^{Y}(b).$$

И ещё одна аналогичная формулировка (раскрыть шары):

$$\lim_{x \to a} f(x) = b \iff \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in E \setminus \{a\} \quad (\rho_X(x, a) < \delta \implies \rho_Y(f(x), b) < \varepsilon).$$

Определение 0.2 (Гёйне).

Пусть $\langle X, \rho_X \rangle$, $\langle Y, \rho_Y \rangle$ - метрические пространства, $E \subset X$, $a \in E'$, $f : E \mapsto Y$.

$$\lim_{x\to a} f(x) = b \iff \forall \text{ последовательностей } x_n \in E \setminus \{a\} \quad \lim_{n\to\infty} x_n = a \implies \lim_{n\to\infty} f(x_n) = b.$$

Теорема 0.1.

Определения по Коши и по Гёйне эквивалентны.

Доказательство.

Коши ⇒ Гёйне:

Пусть $x_n \in E \setminus \{a\}, \lim_{n \to \infty} x_n = a \implies \forall \delta > 0 \quad \exists N \quad \forall n > N \quad \rho(x_n, a) < \delta.$

В частности, у нас δ для ε из Коши. Выберем по нему N.

Тогда $\forall n > N \quad \rho_X(x_n, a) < \delta \implies \rho_Y(f(x_n), b) < \varepsilon \implies \lim_{n \to \infty} f(x_n) = b.$

Гёйне ⇒ Коши:

От противного. Пусть δ не существует $\implies \exists \varepsilon > 0 \quad \forall \delta \quad \exists x \in \mathring{B}^X_{\delta}(a) \cap E \quad \rho_Y(f(x), b) > \varepsilon$.

В частночти, можем взять $\delta = \frac{1}{n}$.

Тогда $\forall n \in \mathbb{N} \quad \exists x_n \in E \setminus a \quad \rho_X(x_n, a) < \frac{1}{n} \to 0$, но $\rho_Y(f(x_n, b)) > \varepsilon$. Получается, $\lim_{n \to \infty} x_n = a$, но $\lim_{n \to \infty} f(x_n) \neq b$. Противоречие с Гёйне.

Следствие.

Предел единственнен.

Доказательство.

Пусть предел не единственнен. Тогда по Гёйне у любой последовательности должны быть оба предела, что невозможно так как предел последовательности единственный, а функция от последовательности - последовательность.

Теорема 0.2.

Пусть $\langle X, \rho_X \rangle$, $\langle Y, \rho_Y \rangle$ - метрические пространства, $E \subset X$, $a \in E'$, $f : E \mapsto Y$, $\lim_{x \to a} f(x) = b$.

Тогда $\exists r>0 ~~ f|_{B_r(a)\cap E}$ - ограничена.

Билет 27 СОДЕРЖАНИЕ

Доказательство.

Подставим $\varepsilon = \rho_Y(f(a), b) + 1$ в Коши:

$$\exists \delta > 0 \quad \forall x \in \mathring{B}_{\delta}^{X}(a) \cap E \quad \rho_{Y}(f(x), b) < \rho_{Y}(f(a), b) + 1.$$

Значит, все значения функции в $B^X_\delta(a)\cap E$ лежиат в $B^Y_{\rho_Y(f(a),b)+1}(b)$.

Teopeма 0.3. Cauchy criteria

Пусть $\langle X, \rho_X \rangle, \, \langle Y, \rho_Y \rangle$ - метрические пространства, Y - полное, $E \subset X, \, a \in E', \, f : E \mapsto Y.$

Тогда

$$\exists \lim_{x \to a} f(x) \iff \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x, y \in \mathring{B}^{X}_{\delta}(a) \cap E \quad f(x) \in B^{Y}_{\varepsilon}(f(y)).$$

Альтернативная формулировка (раскрытие шаров):

$$\exists \lim_{x \to a} f(x) \iff \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x, y \in E \setminus \{a\} \quad (\rho_X(x, a) < \delta \land \rho_X(y, a) < \delta \implies \rho_Y(f(x), f(y)) < \varepsilon).$$

Доказательство.

Hеобходимость (\Longrightarrow) :

$$\begin{cases} \rho_X(x,a) < \delta \implies \rho_Y(f(x),b) < \varepsilon \\ \rho_X(y,a) < \delta \implies \rho_Y(f(y),b) < \varepsilon \end{cases} \implies \rho_Y(f(x),f(y)) < \rho(f(x),b) + \rho(b,f(y)) < 2\varepsilon$$

Достаточность (\leq):

Возьмём последовательность $x_n \in E \setminus \{a\}, x_n \to a$.

Проверим фундаментальность $f(x_n)$:

Надо:

$$\forall \varepsilon > 0 \quad \exists N \quad \forall n, m > N \quad \rho_Y(f(x_n, f(x_m))).$$

Пределы на последовательностях получатся одинаковыми: иначе, можем смешать их, получить сходящуюся к a последовательность которая также даст предел, но тогда у сходящейся последовательности есть подпоследовательности с разными пределами. Противоречие.

TODO: Нужна-ли арифметика и всё такое? Вроде в билете даже не сказано про «Основные свойства» итд...