2. 7 Existènce & Unique vess

	V
	Study properties of solutions even in cases when solution isn't known explicitly
	1) When can we be sure a solution exist?
	2) the many different solutions are there to TVP?
	2) the many different solutions are there to IVP? Ex: IVP: tx'=x+3t2 with x(0)=1
	Ex: $IVP: tx' = x + 3t^2$ with $x(0) = 1$ $= x' = \frac{x}{t} + 3t = x' = f(t, x) called normal form!$ Apart from $t = 0$, every solution $x(t) = 3t^2 + (t + t) has this form for constant t \in \mathbb{R}$
-1	die to the total soldier
8570	Apart from t=0, every solution X(t) = 3 t 2 + C t has this, form for constant C = R
V	" these solutions defined at t=0, x(0)=0 for any C
	· these solutions also solve tx'=x+3+2 for tE(-00,00)
	But does not solve IVP x(0)=1 because x(0)=0 \$1
7	no solution to IVP
	Thin: Existence of Solutions
	Suppose function S(t,x) is defined and continuous on rectangle R in the
187	tx-plane. Then given any point (to, xo) ER, the IVP
	$\chi' = \delta(t, x)$ and $\chi(t_0) = \chi_0$
	has solution x(t) defined in an interval containing to.
	Furthermore, the solution will be defined hintil
	the solution gurve t > (t, x(t)) ener returne R.
	7
	R= {(t,x) a < t < b, c < x < d }
	(to,x.)
	In previous example, since & is discontinue
	at t=0, then doesn't apply in any
	rectangle including points (t, x) H
5 2 5	t = 0 in it
	Interval of Existence of a Solution:
	Ex: $IVP x' = +x^2 $, and $x(0) = 0$ and $x(x) = 0$
	$f(t,x)= tx^2 $, f continuous on $-\infty < t < \infty$, $-\infty < x < \infty$
	So let $R = R ^2$
	but solution to IVP is XLED = tout

	Sitisty X(t.) = y(t.) = x.
	B (ony as (t, x(t)) and (t, y(t)) stry in R, x(t) = y(t)
	Condusion"
	1) There's only one solution to IVP
	D) Solution extry until solution curve t > (t, x(t)) temes R
	"If 2 solution to some stifferential countries start 2 other they stay Zoeth
	If 2 solutions to same differential equation struct 2 getter, they stry 2 gether - Thru any (10, x0) ER, the exists only I solution curve
V	"If 2 solutions xCE), yCE) to same DE in R meet at a t, so
	x(t)=y(t), flow t, can be startly point + Uniqueness Than implie
	the 2 solutions agree everywhere
	Ex: Corside ty'+2y=4t2, Y(1)=2. Is the a solution to
	this IUP? If yes is solution unique?
	Mormal form: y'=-\frac{2}{2}\frac{4}{4}
	$f(t,y) = -\frac{2}{t}y + 4t$
	f(t,y) is cont. everywhere except t=0
	Choose R: R= {Lt,y} = 2 < t < 3 and 1 < y < 3 }
	4) avoids t=0
	f(t, y) continuous on R
	and initial point (1,2) in R, by Existence Thin
	there's a solution to DVP.
	Uniquences, requires one more condition: of needs to
W	be continuous on R. of = -2 which is cont. on R
	so by Varances, Then, Heres I solution
	Ex: (onsider y'=ty(3-y) and suppose y(1)=3. Show that y(t)=3
	for all t.
	f(t,y)=ty(3-y) — Bith t and by
	Initial point (1,3) in R

	(an see by substitution x(e)=3 is solution to x'= txC3-x)
	Since y(1)=x(1)=3 LHS: x'=0
	RHS: txC3-x)=t3(3-
0,	ntercocness than implies y(t) = x(t) = 3 for all t
	57 / (+)= 3 for all t)
1	
1 10 20	
1 100	
- 1	