Complementos de Análise Matemática

$\begin{array}{c} \text{MIETI, MIEMAT, MIETEX} \\ 2016/2017 \end{array}$

Folha de Exercícios 5 Introdução às equações diferenciais parciais

Problemas com condições de fronteira: valores próprios e funções próprias

1. Mostre que as funções $\sin(\pi x), \sin(2\pi x), \sin(3\pi x), \dots$ são as funções próprias do problema de valores de fronteira

$$\frac{d^2y}{dx^2} + \lambda y = 0, \qquad y(0) = y(1) = 0,$$

no intervalo [0,1].

2. Mostre que as funções $1, \cos(\pi x), \cos(2\pi x), \cos(3\pi x), \dots$ são as funções próprias do problema de valores de fronteira

$$\frac{d^2y}{dx^2} + \lambda y = 0, \qquad y'(0) = y'(1) = 0,$$

no intervalo de [0,1].

3. Determine os valores próprios e as funções próprias dos seguintes problemas de valores de fronteira.

(a)
$$\frac{d^2y}{dx^2} + \lambda y = 0$$
, $y(0) = 0$, $y'(l) = 0$

(b)
$$\frac{d^2y}{dx^2} - \lambda y = 0$$
, $y'(0) = 0$, $y'(l) = 0$

(c)
$$\frac{d^2y}{dx^2} + \lambda y = 0$$
, $y(0) - y'(0) = 0$, $y(\pi) - y'(\pi) = 0$

(d)
$$\frac{d^2y}{dx^2} + \lambda y = 0$$
, $y(0) - y'(0) = 0$, $y(1) = 0$

4. Para que valores de λ é que o problema de valores de fronteira

$$\frac{d^2y}{dx^2} + \lambda y = 0, \qquad y(0) = y(2\pi), \quad y'(0) = y'(2\pi),$$

tem solução não-trivial?

5. Para que valores de λ é que o PVF

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + (1+\lambda)y = 0, y(0) = 0, y(1) = 0,$$

1

tem solução não-trivial?

Classificação de equações diferenciais parciais de segunda ordem

- 6. Escrever a forma geral de uma EDP de primeira ordem linear em três variáveis. Quantas funções são necessárias para especificar esta EDP?
- 7. Considere o operador \mathcal{L} dado por $\mathcal{L}u(x,y) = a(x,y)u_{xx} + b(x,y)u_{xy} +$ $c(x,y)u_{yy}$. Mostre que \mathcal{L} é um operador linear.
- 8. Supondo que \mathcal{L}_1 e \mathcal{L}_2 são operadores lineares. Mostre que o operador $\mathcal{L}_1 + \mathcal{L}_2$ também é um operador diferencial linear.
- 9. Classifique cada uma das EDPs de segunda ordem como elíptica, parabólica ou hiperbólica.

(a)
$$u_{xx} + 3u_{xy} + u_{yy} + 2u_x - u_y = 0$$
 (b) $u_{xx} - 2u_{xy} + u_{yy} + 2u_x - u_y = 0$

$$u_{xx} - 2u_{xy} + u_{yy} + 2u_x - u_y = 0$$

$$(c) \quad u_{xx} + xu_{yy} = 0$$

(d)
$$u_{xx} + 2e^{xy}u_{xy} + e^{2xy}u_{yy} = 0$$

$$(e) \quad e^y u_{xx} + e^x u_{yy} = 0$$

(f)
$$u_{xx} + 2\cos(x)u_{yy} = 0$$
 $x \in]0, \pi/2[$

O princípio da sobreposição

- 10. Mostre que a função $u(x,y) = e^{kx} \cos ky$ é uma solução da equação de Laplace $u_{xx} + u_{yy} = 0$ qualquer que seja o valor da constante k.
- 11. Mostre que a função $u(x,t)=e^{kx}e^{-k^2t}$ é uma solução da equação de calor $u_{xx} + u_t = 0$ qualquer que seja o valor da constante k.
- 12. Mostre que a função $u(x,y) = e^{kx}e^{-ky}$ é uma solução da equação de onda $u_{xx} - u_{yy} = 0$ qualquer que seja o valor da constante k.
- 13. Mostre que a função $u(x,y)=\frac{kx^2}{2}+\frac{(1-k)y^2}{2}$ é uma solução da equação de Poisson $u_{xx}+u_{yy}=1$ qualquer que seja o valor da constante k.

Soluções da folha de exercícios 5

3. (a)
$$\lambda_n = \frac{(2n+1)^2 \pi^2}{4l^2}, y(x) = \sin\left[\frac{(2n+1)\pi x}{2l}\right];$$

(b)
$$\lambda = 0, y(x) = 1; \lambda_n = -n^2 \pi^2 / l^2, y(x) = \cos(\frac{n\pi x}{l});$$

(c)
$$\lambda = -1$$
, $y(x) = e^x$; $\lambda_n = n^2$, $y(x) = n\cos(nx) + \sin(nx)$;

(d)
$$y(x) = \sin(\sqrt{\lambda_n}x) + \sqrt{\lambda_n}\cos(\sqrt{\lambda_n}x)$$
, onde $\tan(\sqrt{\lambda_n}) = -\sqrt{\lambda_n}$ e
$$\frac{(2n-1)^2\pi^2}{4} < \lambda_n < n^2\pi^2.$$

4.
$$\lambda = 0$$
, $y(x) = 1$; $\lambda_n = n^2$, $y(x) = \cos(nx) + \sin(nx)$.

5.
$$\lambda_n = n^2 \pi^2$$
, $y(x) = e^x \sin(n\pi x)$.

6.
$$a(x,y,z)u_x+b(x,y,z)u_y+c(x,y,z)u_z+d(x,y,z)u=f(x,y,z);$$
 são necessárias 5 funções.

- 9. (a) hiperbólica;
 - (b) parabólica;
 - (c) elíptica se x > 0, hiperbólica se x < 0, parabólica se x = 0;
 - (d) parabólica;
 - (e) elíptica;
 - (f) elíptica;