Конспект по матанализу II семестр Современное программирование, факультет математики и компьютерных наук, СПбГУ (лекции Бахрева Федора Львовича)

Тамарин Вячеслав

20 марта 2020 г.

Оглавление

1	Инт	гергирование
	1.1	
		1.1.1 Формула Тейлора с остаточным членом в интегральной форме
		1.1.2 Теорема о среднем
	1.2	Приближенное вычисление интеграла
	1.3	Приближенное вычисление интеграла
		1.3.1 Свойства
	1.4	Вычисление площадей и объемов
		1.4.1 Площади
		1.4.2 Объемы
	1.5	Кривые в \mathbb{R}^n и их площади
		1.5.1 Поговорим о длине
		1.5.2 Важные частные случаи общей формулы
2	Дис	фференциальное исчисление функций многих вещественных переменных 1
	2.1	Нормированные пространства
		2.1.1 Продолжение примеров
	2.2	
		2.2.1 Линейные и полилинейные непрерывные отображения (операторы) 2
		2.2.2 Пространство линейных непрерывных операторов
	2.3	Дифференциальные отображения
	2.4	Примеры и дополнительные свойства дифференцирования
	2.5	Частные производные
	2.6	Важный частный случай: $X=\mathbb{R}^m,\ Y=\mathbb{R}^n$
	2.7	Теорема о конечном приращении (Лагранжа)

Глава 1

Интергирование

1.1

Лекция 1

14 feb

1.1.1 Формула Тейлора с остаточным членом в интегральной форме

$$f(x) = T_{n,x_0} f(x) + R_{n,x_0} f(x),$$

где

$$T_{n,x_0}f(x) = \sum_{i=0}^n \frac{1}{i!} f^{(i)}(x) (x - x_0)^i,$$

а R_{n,x_0} — остаток.

Theorem 1.1.1 (Формула Тейлора с остатком в интегральной форме). $f \in C^{n+1}(\langle a, b \rangle), \ x, x_0 \in (a, b).$ Тогда остатков в формуле Тейлора представим в виде

$$R_{n,x_0} = \frac{1}{n!} \int_{x_0}^{x} f^{(n+1)}(t)(x-t)^n dt.$$

Доказательство. Индукция по n.

База: n=1. По формуле Ньютона-Лейбница:

$$R_{0,x_0}f(x) = f(x) - f(x_0) = \int_{x_0}^x f'(t)dt.$$

Переход: $n-1 \rightarrow n$.

$$R_{n-1,x_0}f(x) = \frac{1}{(n-1)!} \int_{x_0}^x f^{(n)}(x-t)^{n-1} dt =$$

$$= \frac{1}{(n-1)!} \int_{x_0}^x f^{(n)}(t) d\left(\frac{(x-t)^n}{n}\right) =$$

$$= \underbrace{-\frac{1}{n!} f^{(n)}(t)(x-t)^n \Big|_{x_0}^x}_{\frac{(x-x_0)^n}{n!} f^{(n)}(x_0)} + \underbrace{\frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt}_{R_{n,x_0}f(x)}$$

Теорема о среднем 1.1.2

Theorem 1.1.2 (Хитрая теорема о среднем). $f, g \in C[a, b], g \ge 0$. Тогда

$$\exists c \in (a,b) : \int_a^b f(x)g(x)dx = f(c) \int_a^b g(x)dx.$$

Доказательство. Найдем максимум и минимум f на [a,b].

$$m \leqslant f(x) \leqslant M$$
.

Тогда

$$mg(x) \leqslant f(x)g(x) \leqslant Mg(x).$$

Так как интеграл монотонен

$$\begin{split} m \int_a^b g(x) dx &\leqslant \int_a^b f(x) d(x) dx \leqslant M \int_a^b g(x) dx \\ m &\leqslant \frac{\int_a^b f(x) g(x) dx}{\int_a^b g(x) dx} \leqslant M. \end{split}$$

По теореме Больцано-Коши о промежуточном значении

$$\exists c \in (a,b) : f(c) = \frac{\int_a^b f(x)g(x)dx}{\int_a^b g(x)dx}.$$

Corollary. Если $|f^{(n+1)}| \leq M$, то существует понятно какая оценка сверху для $|R_{n,x_0}f(x)|$.

Theorem 1.1.3. Формула Тейлора с остатком в форме Лагранжа следует из формулы Тейлора с остатком в интегральной форме.

Доказательство. Запишем остаток в форме Лагранжа:

$$R_{n,x_0}f(x)=rac{f^{(n+1)}(\Theta)}{(n+1)!}(x-x_0)^{n+1},\quad\Theta$$
 лежит между $x,x_0.$

По прошлой теореме 1.1.2, где $g(t) = (x-t)^n$, получаем, что

$$\frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt = \frac{1}{n!} \cdot f^{(n+1)}(\Theta) \int_{x_0}^x (x-t)^n dt = \frac{1}{n!} \cdot f^{(n+1)}(\Theta) \cdot \left(-\frac{(x-t)^{n+1}}{n+1}\right) \Big|_{x_0}^x.$$

1.2 Приближенное вычисление интеграла

Definition 1: Дробление

Пусть $\tau = \{x_0, x_1, \dots x_n\}$, $a < x_0 < \dots < x_n < b$. Тогда τ называется **дроблением** отрезка [a, b]. Мелкость дробления $| au|=\max_{0\leqslant i\leqslant n-1}(x_{i+1}x_i).$ Θ называется оснащением дробления au, если $\Theta=\{t_1,\dots t_n\}:t_j=[x_{j-1},x_j]$

Пара (τ, Θ) называется оснащенным дроблением.

Definition 2: Интегральная сумма

Если $f \in C[a,b], (\tau,\Theta)$ — оснащенное дробление отрезка [a,b], интегральной суммой называется

$$S_{\tau,\Theta}(f) = \sum_{j=1}^{n} f(t_j)(x_j - x_{j-1}).$$

Theorem 1.2.1. $f \in C[a,b]$. Тогда $\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall (\tau,\Theta)-$ оснащенное дробление отрезка [a,b], $|\tau| < \delta$:

$$\left| S_{\tau,\Theta}(f) - \int_a^b f(x) dx \right| \leqslant \varepsilon.$$

To ecmb $\lim_{|\tau|\to 0} = \int_a^b f(x) dx$.

Доказательство. По теореме Кантора о равномерной непрерывности

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall s,t \in [a,b] : \left(|s-t| < \delta \Longrightarrow |f(s) - f(t)| < \frac{\varepsilon}{|b-a|} \right).$$

Перепишем неравенство

$$\left| \sum_{j=1}^{n} f(t_j)(x_j - x_{j-1}) - \sum_{j=1}^{n} \underbrace{\int_{x_{j-1}}^{x_j} f(x) dx}_{(x_j - x_{j-1})f(c_i)} \right| \leqslant \sum_{j=1}^{n} \left| f(t_j) - f(c_j) \right| (x_j - x_{j-1}) \leqslant \frac{\varepsilon}{|b - a|} \sum_{j=1}^{n} (x_j - x_{j-1}) = \varepsilon.$$

1.3 Приближенное вычисление интеграла

Definition 3: Дробление

Пусть $\tau = \{x_0, \dots, x_n\}, \ a < x_0 < \dots < x_n < b.$ Тогда τ называется дроблением отрезка [a, b]. Мелкость дробления —

$$|\tau| = \max_{0 \le i \le n-1} (x_{i+1} - x_i).$$

Оснащение дробления —

$$\theta = \{t_1, \dots t_n\}, \quad t_j \in [x_{j-1}, x_j].$$

Оснащенное дробление — пара (τ, Θ)

Definition 4

 $f \in C[a,b],\, (\Theta,\tau)$ — оснащенное дробление отрезка [a,b]. Тогда

$$S_{\tau,\Theta}(f) = \sum_{j=1}^{n} f(t_j)(x_j - x_{j+1})$$

называется интегральной суммой.

Theorem 1.3.1. $f \in C[a,b]$. Тогда $\forall \varepsilon > 0 \ \exists \delta > 0 \ makue$, что для любого оснащенного дробления (τ,Θ) отрезка $[a,b], \ |\tau| < \delta$:

$$\left| S_{\tau,\Theta}(t) - \int_a^b f(x) dx \right| \leqslant \varepsilon.$$

То есть

$$\lim_{|\tau|\to 0} S_{\tau,\Theta} \to \int_a^b f(x) dx.$$

Доказательство. По теореме Канторая о равномерной непрерывности $\forall \varepsilon > 0 \ \exists \delta > 0 \colon \left(\forall s, t \in [a,b], |s-t| < S \Longrightarrow |f(s)-f(t)| < \frac{\varepsilon}{|b-a|} \right).$

$$\left| \sum_{j=1}^{n} f(t_j)(x_j - x_{j-1}) - \sum_{j=1}^{n} \int_{x_{j-1}}^{x_j} f(x) dx \right| \le$$

$$\le \left| \sum_{j=1}^{n} |f(t_j) - f(r_j)| (x_j - x_{j-1}) \right| \le$$

$$\le \frac{\varepsilon}{b - a} \sum_{j=1}^{n} (x_j - x_{j-1}) = \varepsilon$$

Здесь $t_j, r_j \in [x_j, x_{j-1}].$

Лекция 2

21 feb

1.3.1 Свойства

Property.

1 $c \in (a,b)$:

$$\int_{a}^{\to b} f dx = \int_{a}^{c} f dx + \int_{c}^{\to b}.$$

2 $\int_{a}^{b} f dx - cxo\partial umcs \Longrightarrow \lim_{A \to b} \int_{A}^{b} f = 0$

2' Если $\int_A^{\to b} f \not\to_{A\to b-} \Longrightarrow \int_a^{\to b}$ расходится (необходимое условие сходимости несобственного интеграла).

линейность $f,g-\phi$ ункции на $[a,b),\ \alpha,\beta\in\mathbb{R}.$

$$\int_a^{\to b},\ \int_a^{\to b}g\ cxo\partial \mathrm{smcs}\ \Longrightarrow \int_a^{\to b}(\alpha f+\beta g)=\alpha \int_a^{\to b}+\beta \int_a^{\to b}g.$$

монотонность $f \leqslant g, \int_a^{\to b} f + \int_a^{\to b} g \, \cos \theta a m c s.$

$$\int_{a}^{\to b} f \leqslant \int_{a}^{\to b} g.$$

Definition 5: Абсолютная сходимость

 Γ оворя $m,\ что\ \int_a^{ o} f\$ сходится абсолютно, $ecnu\ cxodumc$ я $\int_a^{ o} b|f|.$

Eсли $\int_a^{\to b} f$ сходится абсолютно, то $\int_a^{\to b} f$ сходится и верно неравенство

$$\left| \int_{a}^{\to b} f \right| \leqslant \int_{a}^{\to b} |f| \,.$$

Доказательство. Воспользуемся критерием Больцано-Коши:

$$\int_{a}^{\to b} |f| \, \operatorname{сходится} \implies \forall \varepsilon > 0 \,\, \exists \delta \in (a,b) : \forall B_1, B_2 \in (\delta,b) : \int_{B_1}^{B_2} |f| dx < \varepsilon \Longrightarrow \left| \int_{B_1}^{B_2} f dx \right| < \varepsilon.$$

Для любого B:

$$\left| \int_{a}^{B} \right| \leqslant \int_{a}^{B} |f| dx.$$

Definition 6: Условная сходимость

 $\int_a^{\to b} f$ называется условно сходящимся, если $\int_a^{\to b} f$ сходится, а $\int_a^{\to b} |f|$ расходится.

интегрирование по частям $f,g \in C^1[a,b)$

$$\int_{a}^{b} fg' = fg \Big|_{a}^{b} - \int_{a}^{b} f'g, \quad fg \Big|_{a}^{b} = \lim_{x \to b^{-}} f(x)g(x) - f(a)g(a).$$

Если два предела из трех существуют, то существует третий и верно это равенство.

замена переменной $\varphi: [\alpha, \beta) \to [a, b), \ \varphi \in C^1[\alpha, \beta), f \in C[a, b).$ Если существует предел, обозначим его так: $\exists \lim_{x \to \beta^-} \varphi(x) = \varphi(\beta^-).$

$$\int_{\alpha}^{\rightarrow beta} f(\varphi(x))\varphi'(x)dx = \int_{\varphi(\alpha)}^{\varphi(\beta-)} f(y)dy.$$

Доказательство. $D \in [\alpha, \beta)$.

$$\Phi(\gamma) = \int_{\alpha}^{\gamma} f(\varphi(x)) \varphi'(x) dx.$$

 $c \in [a,b)$

$$F(c) = \int_{\varphi(\alpha)}^{c} f(y)dy.$$

Обычная формула замены перменной: $\Phi = F(\varphi(x))$.

 \Longrightarrow Пусть $\exists \int_{\varphi(\alpha)}^{\varphi(\beta-)} f(y) dy$. Возьмем любую последовательность $\{\gamma_n\} \subset [\alpha,\beta), \gamma_n \to \beta-.$

$$\Phi(\gamma_n) = F(\varphi(\gamma_n)).$$

$$\int_{\alpha}^{\gamma_n} f \circ \varphi' = \int_{\varphi(\alpha)}^{\varphi(\gamma_n)} \to \int_{\varphi(\alpha)}^{\varphi(\beta)}.$$

ГЛАВА 1. ИНТЕРГИРОВАНИЕ

- 1. $\varphi(\beta-) < b$ очевидно.
- 2. $\varphi(\beta-) = b \ \{c_n\} \subset [\varphi(\alpha), b), \ c_n \to b \ \exists \gamma_{n \in [\alpha, \beta)} : \varphi(\gamma_n) = c_n.$ Существует подпоследовательность, стремящаяся либо к β , либо к числу меньшему β .
 - $\{\gamma_{n_k}\} \to \beta$

$$\int_{\alpha}^{\gamma_{n_k}} = \int_{\varphi(\gamma)}^{\varphi(\gamma_{n_k} = c_{n_k})}.$$

• $\{\gamma_{n_k}\} \to \tilde{\beta} < \beta$

$$\varphi(\gamma_{n_k}) \to \varphi(\beta) \in [a, b) < b.$$

Но должно быть равно b. Противоречие.

Значит $\gamma_n \to b$.

$$\int_{alpha}^{\varphi(\gamma_n)} (f \circ g) \varphi' = \int_{phi(alpha)}^{phi(\gamma_n)} f = \int_{\varphi(\alpha)}^{c_n} f.$$

Theorem 1.3.2 (Признаки сравнения). Пусть $0 \leqslant f \leqslant g, \ f,g \in C[a,b)$. Тогда

- 1. если $\int_a^{\to b} g$ сходится, то $\int_a^{\to b} f$ сходится,
- 2. если $\int_a^{\to b} g$ расходится, то $\int_a^{\to b} f$ расходится.

Доказательство.

- 1. Используем критерий Коши $\forall \varepsilon > 0 \ \exists \delta \in (a,b): \forall B_1, B_2 \in (\delta,b): \ \int_{B_1}^{B_2} g < \varepsilon \Longrightarrow \int_{B_1}^{B_2} f < \varepsilon$
- 2. Аналогично

Theorem 1.3.3 (Признаки Абеля и Дирихле). $f \in C[a,b), \ g \in C^1[a,b), \ g$ монотонна.

Признак Дирихле *Если* f имеет ограниченную первообразную на $[a,b), g \to 0$, то $\int^{tb} fg$ сходится.

Признак Абеля Eсли $\int_a^{\to b} f$ cходится, g ограничена, то $\int_a^{\to b} f g$ cходится.

Доказательство. F — первообразная f. $F(B) = \int_a^B f$.

$$\int_{a}^{\to b} fg dx = \int_{a}^{\to b} g dF = Fg \Big|_{a}^{\to b} - \int_{a}^{\to b} Fg' dx.$$

признак Даламбера $\lim_{B\to b-}F(B)g(B)=0$

признак Абеля $\exists \lim F, \exists \lim g$

Теперь про интеграл. Пусть $M = \max F$, он существует, так как F ограничена в любом случае.

$$\int_{a}^{b} Fg'dx \leqslant M \cdot \int_{a}^{b} |g|dx = M \cdot \left| \int_{a}^{b} g'dx \right| = M \cdot |g(b-) - g(a)|.$$

Example 1.3.1.

$$\int_0^{\frac{1}{2}} x^{\alpha} |\ln x|^{\beta}.$$

Рассмотрим случай $\alpha>1$. Метод удавливания логарифма: $\varepsilon>0$: $\alpha-\varepsilon>-1$,

$$|x^{\alpha}|\ln x|^{\beta} = x^{\alpha-\varepsilon}x^{\varepsilon}|\ln x|^{\beta} \underset{x\to 0}{\longrightarrow} 0 \leqslant Cx^{\alpha-\varepsilon}.$$

Тогда $\int_0^{\frac{1}{2}} x^{\alpha-\varepsilon} dx$ сходится.

Если $\alpha < -1$.

$$\varepsilon > 0 \ \alpha + \varepsilon < -1.$$

$$x^{\alpha} |\ln x|^b = x^{\varepsilon + \alpha} \underbrace{x^{-\varepsilon} |\ln x|^{\beta}}_{\to \infty}.$$

Тогда $\int_0^{\frac{1}{2}} x^{\alpha+\varepsilon} dx$ расходится.

Если $\alpha = -1$, сделаем замену:

$$\int_0^{\frac{1}{2}} \frac{|\ln x|^{\beta}}{x} dx = -\int_0^{\frac{1}{2}} |\ln x|^{\beta} d(f(x)) = \int_{-\ln \frac{1}{2}}^{\infty} y^{\beta} dy.$$

Тоже сходтся.

Example 1.3.2.

$$\int_{10}^{+\infty} \frac{\sin x}{s^{\alpha}} dx, \quad \int_{10}^{+\infty} \frac{\cos 7x}{x^{\alpha}} dx.$$

 $\alpha > 0$.

$$\int_{10}^{+\infty} \frac{|\sin x|}{x^{\alpha}} dx$$
 сходится, так как сходится
$$\int_{10}^{+\infty} \frac{dx}{x^{\alpha}}.$$

2. $0 < \alpha \leqslant 1$. По признаку Дирихле: $f(x) = \sin x$ – ограничена первообразная, $g(x) = \frac{1}{x^{\alpha}}$ – убывает.

Значит

$$\int_{10}^{+\infty} \frac{\sin x}{x^{\alpha}} dx \, \operatorname{сходится.}$$

Example 1.3.3 (Более общий вид).

$$\int_{10}^{+\infty} f(x) \sin \lambda x dx, \quad \int_{10}^{+\infty} f(x) \cos \lambda x dx, \quad \lambda \in \mathbb{R} \setminus \{0\}.$$

 $f \in C^1[0, +\infty), f$ монотонна.

Если при $x \to +\infty$ $f \to 0$, то интегралы сходятся,

Если при $x \to +\infty$ $f \not\to 0$, то интегралы расходятся.

Remark.

$$\int_{10}^{+\infty} f(x)dx \ \text{сходится} \ \neq f \to 0, \ \text{при} \ x \to +\infty.$$

Practice.

$$\int_{10}^{+\infty} f(x)dx$$
 сходится, $f \in C[10, +\infty)$.

Следует ли из этого, что

$$\int_{10}^{+\infty} (f(x))^3 dx$$
 сходится?

1.4 Вычисление площадей и объемов

1.4.1 Площади

- 1. $f \in C[a,b], f \geqslant 0, P_f = \{(x,y) \mid x \in [a,b], y \in [0,f(x)]\}$. Тогда $S(P_f) = \int_a^b f(x) dx$
- 2. Криволинейная трапеция. $f,g \in C[a,b], f \geqslant g, T_{f,g} = \{(x,y) \mid xin[a,b], y \in [g(x),f(x)]\}.$ Тогда $S(T_{f,g}) = \int_a^b f(x) g(x) dx$

Corollary (Принцип Кавальери). Если есть две фигуры на плоскости расположенные в одной полосе и длина всех сечений прямыми, параллельными полосе, равны, то их площади равны.

Сейчас мы можем доказать его только для случаев, когда все границы фигур — графики функции.

3. Площадь криволинейного сектора в полярных координатах. $f: [\alpha, \beta] \to \mathbb{R}, \ \beta - \alpha \leqslant 2\pi, \ f \geqslant 0,$ g непрерывна.

$$\tilde{P}_f = \{(r, \varphi) \in \mathbb{R}^2 \mid \varphi \in [a, b], \ r \in [0, f(\varphi)]\}.$$

Пусть τ — дробление $[\alpha, \beta]$, $\tau = \{\gamma_j\}_{j=0}^n$, $\alpha = \gamma_0 < \gamma_1 < \dots < \gamma_n = \beta$. Пусть $M_j = \max_{[\gamma_j, \gamma_{j+1}]}, m_j = \beta$

Рис. 1.1: sector

$$\min_{[\gamma_j,\gamma_{j+1}]}$$
.

$$\sum \frac{m_j^2}{2} (\gamma_j - \gamma_{j+1}) \leqslant S(\tilde{P}_f) \leqslant \sum \frac{M_j^2}{2(\gamma_j - \gamma_{j+1})}.$$

Крайние стремятся к $\frac{1}{2}\int_{\alpha}^{\beta}f^{2}(\varphi)d\varphi$. Значит

$$S(\tilde{P}_f)\frac{1}{2}\int_a^b fst(\varphi)d\varphi.$$

4. Площадь фигуры, ограниченной праметрически заданной кривой. $x,y:\mathbb{R}to\mathbb{R}.\ \forall t:x(t+T)=x(t),y(t+T)=y(T).\ x,y\in C^1(\mathbb{R})$

$$S = \int_{A}^{B} (f(x) - g(x))dx.$$

$$\int_{A}^{B} g(x)dx = \int_{\substack{x=x(t) \\ t \in [b, a+T] \\ dx = x'(t)dt \\ g(x'(t)) = y(t)}} \int_{A}^{B} f(x)dx = -\int_{a}^{a} y(t)x'(t)dt$$

$$S = \int_{A}^{B} (f(x) - g(x))dx = -\int_{a}^{a+T} y(t)x'(t)dt = \int_{a}^{a+T} y'(t)x(t)dt.$$

1.4.2 Объемы

- 1. Аксиомы и свойства такие же как и у площади. Можно определить псевдообъем.
- 2. Фигура $T \subset \mathbb{R}^3, \ T \subset \{(x,y,z) \in \mathbb{R}^3 \mid x \in [a,b]\}.$

Definition 7

Сечение $T(x) = \{(y, z) \in \mathbb{R}^2 \mid (x, y, z) \in T\}.$

 $\forall x: T(x)$ имеет площадь, а

$$V(T) = \int_{a}^{b} S(T(x))dx.$$

3. Дополнительное ограничение не T:

$$\forall \Delta \subset [a, b] \ \exists x_*, x^* \in \Delta : \forall x \in \Delta \ T(x_*) \subset T(x) \subset T(x^*).$$

Example 1.4.1. T — тело вращения, $f \in C[a,b], \ f \geqslant 0$.

$$T = \{(x, y, z) \mid \sqrt{y^2 + z^2} \leqslant f(x)\}.$$

Доказательство формулы. Постулируем объем цилиндра: с произвольным основанием V = SH. Рассмотрим тело T и τ дробление отрезка [a,b] . Поместим его между двумя цилиндрами.

Рис. 1.2: cilinder

$$\sum (x_j - x_{j-1}) S(T(x_* \Delta_j)) \leqslant V \leqslant (x_j - x_{j-1}) S(T(x^* \Delta_j)).$$

Обе суммы стремятся к $\int_a^b S(T(x)) dx$ как интегральные суммы.

Example 1.4.2 (Интеграл Эйлера-Пуассона).

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$$

$$T=\{0\leqslant y\leqslant e^{-(x^2+y^2)}\}$$

$$T(x) = \{(y, z) \in \mathbb{R}^2 \mid 0 \leqslant y \leqslant e^{-(x^2 + z^2)}\}.$$

Посчитаем площадь сечения

$$S(T(x)) = \int_{-\infty}^{\infty} e^{-(x^2 + z^2)} dz = e^{-(x^2)} int_{-\infty}^{\infty} e^{-y^2} = Ie^{-x^2}.$$

Рис. 1.3: Интеграл Эйлера-Пуассона

Лекция 3

$$\int_{-\infty}^{\infty} e^{-x^2} dx = I.$$

Получили, что $V = I^2$.

$$V = \int_0^1 S(y)dy = \pi \int_0^1 r(y)^2 dy = .$$

Где $r(y) = \sqrt{-\ln y}$. Подставляем:

$$= -\pi \int_0^1 \ln y \, dy = -\pi (y \ln y - y) \Big|_0^1 = \pi.$$

28 feb

1.5 Кривые в \mathbb{R}^n и их площади

Definition 8: Путь

Путь в \mathbb{R}^n — отображение $\gamma:[a,b]\to\mathbb{R}^n,\ \gamma\in C[a,b].$

Можно разложить по координатам

$$\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t)), \ \gamma_i$$
 — координатные отображения для γ .

Начало пути — $\gamma(a)$, конец пути — $\gamma(b)$.

Носители пути — $\gamma([a,b])$.

 γ замкнут, если $\gamma(a) = \gamma(b)$.

 $\gamma \in C^n[a,b] \Longleftrightarrow \forall i: \gamma_i \in C^r[a,b] \Longleftrightarrow \gamma - r$ -гладкий путь.

 γ^{-1} — противоположный путь, если $\gamma^{-1}(t) = \gamma(a-b-t), \ \forall t \in [a,b].$

Note. Разные пути могут иметь один общий носитель.

Definition 9

Два пути $\gamma:[a,b]\to\mathbb{R}^n$ и $\tilde{\gamma}:[c,d]\to\mathbb{R}^n$ эквивалентны, если существует строго возрастающая сюрьекция

$$\varphi:[a,b]\to [c,d]:\gamma=\tilde{\gamma}\circ\varphi.$$

Statement. Это отношение эквивалентности.

Definition 10: Кривая

Кривая в \mathbb{R}^n — класс эквивалентности путей. Параметризация кривой — путь, представляющий кривую.

Example 1.5.1.

$$\gamma_1: [0,\pi] \to \mathbb{R}^2 \quad \gamma_1(t) = (\cos t, \sin t_0).$$

$$\gamma_2: [-1,1] \to \mathbb{R}^2 \quad \gamma_2(t) = (-t, \sqrt{1-t^2}).$$

Можно определить:

начало кривой

- конец кривой
- простота
- замкнутость
- \bullet кривя r-гладкая, если у нее есть хотя бы одна гладкая параметризация.

1.5.1 Поговорим о длине

Ожидаемые свойства:

• $\gamma: [a,b] \to \mathbb{R}^n, c \in (a,b).$

$$\gamma = \gamma \mid_{[a,c]}, \quad \gamma = \gamma \mid_{[c,b]} \Longrightarrow l(\gamma) = l(\gamma) + l(\gamma).$$

- независимость от параметризации
- $l(\gamma) \geqslant |\gamma(a) \gamma(b)|$
- $l(\gamma) \geqslant \sum_{1}^{m} |\gamma(x_i) \gamma(x_{i-1})|$, где \forall дробления [a,b] $\tau = \{x_i\}$

Definition 11: Длина пути

 $\gamma:[a,b] \to \mathbb{R}^n$ — путь. $l(\gamma) = \sup_{\tau} l_{\tau}$, где

$$l_{\tau} = \sum_{j=1}^{m} |\gamma(x_j) - \gamma(x_{j-1})|, \ \tau = \{x_j\}_{j=0}^{m}.$$

Practice. Придумать пример бесконечно длинного пути.

Definition 12

Если путь имеет конечную длину, он называется спрямляемым.

Definition 13

Длина крвивой — длина любой из ее параметризаций.

Property.

1.
$$\gamma \sim \tilde{\gamma} \Longrightarrow l(\gamma) = l(\tilde{\gamma})$$

 $\boxed{2.}$ $A \partial \partial u m u$ вность

$$\gamma: [a,b], c \in (ab)$$
 $\gamma = \gamma \mid_{[a,c]}, \ \gamma \gamma \mid_{[c,b]}.$

 $Tor \partial a \ l(\gamma) = l(\gamma) + l(\gamma).$

Доказательство.

 $\boxed{1\Longrightarrow 2}$ τ — дробление [a,b].

$$\tau^{l} (\tau \cap [a, c] \cup \{c\})$$
$$\tau^{r} = (\tau \cap [c, b] \cup \{c\})$$

$$l(\gamma) = \sum_{j=1}^{n} |\gamma(x_j) - \gamma(x_{j-1})| \leqslant l_{\tau^l}(\gamma^l) - l_{tau^r}(\gamma^r) \leqslant l(\gamma^l) - l(\gamma^r).$$

 $2 \Longrightarrow 1$ τ^l — дробление $[a,b],\, au^r$ — дробление $[c,d].\, au = au^l \cup au^r$.

$$l(\gamma) \leqslant l_{\tau}(\gamma) = l_{\tau^l}(\gamma^l) + l_{\tau^r}(\gamma^r)$$

$$\sup_{l} l(\gamma) \geqslant l(\gamma^l) + l_{\tau^r}(\gamma^r) \qquad \forall \tau$$

$$\sup_{\tau^{l}} l(\gamma) \geqslant l(\gamma^{l}) + l_{\tau^{r}}(\gamma^{r}) \qquad \forall \tau^{l}$$

$$\sup_{\tau^{r}} l(\gamma) \geqslant l(\gamma^{l}) + l_{\tau^{r}}(\gamma^{r}) \qquad \forall \tau^{r}$$

Theorem 1.5.1 (Длина гладкого пути). $\gamma:[a,b] \to \mathbb{R}^n$ — гладкий путь. Тогда γ обязательно cnp u

$$l(\gamma) = \int_{a}^{b} |\gamma'(t)| dt.$$

$$\gamma'(t) = (\gamma_1'(t), \dots, \gamma_n'(\tau)).$$

$$|\gamma'(t)| = \sqrt{|\gamma'_1(t)|^2 + \dots + \gamma'_n(t)^2|}.$$

Доказательство. 1. $\Delta \subset [a,b]$ — отрезок. Пусть $m_j(\Delta) = \min_{t \in \Delta} |\gamma'_j(t)|, M_j(\Delta) = \max_{t \in \Delta} |\gamma'_j(t)|.$

$$m(\Delta) = \sqrt{\sum_{j=1}^{n} (m_j(\Delta))^2}, \qquad M(\Delta) = \sqrt{\sum_{j=1}^{n} (M_j(\Delta))^2}.$$

Для всех $\Delta \subset [a,b]$ чему равно $l(\gamma \mid_{\Delta})$?

Пусть $\tau = \{x_j\}_{j=0}^m$. Тогда

$$l_{\tau} = \sum_{j=1}^{m} \sqrt{\sum_{k=1}^{n} |\gamma_k(x_j) - \gamma_k(x_{j-1})|^2}.$$

По теореме Лагранжа результат равен

$$l_{\tau} = \sum_{j=1}^{m} \sqrt{\sum_{k=1}^{n} |\gamma'_{k}(...)|^{2} \cdot |x_{j} - x_{j-1}|} =$$

$$= \sum_{j=1}^{m} (x_{j} - x_{j-1}) \sqrt{\sum_{k=1}^{n} |\gamma'_{k}(...)|^{2}}$$

Выражение под корнем не превосходит $M(\Delta)$ и не менее $m(\Delta)$

$$|\Delta| m(\Delta) \le l(\gamma |_{\Delta} \le |\Delta| M(\Delta).$$

2.

$$\int_{\Delta} |\gamma'_k(t)| dt = \int_{\Delta} \sqrt{|\gamma'_1(t)| sr + \dots + |\gamma'_n(t)|} dt.$$

$$m(\Delta) \leqslant \max \sqrt{\dots} \leqslant M(\Delta).$$

$$|\Delta| m(\Delta) \leqslant \int_{\Delta} |\gamma'(t)| dt \leqslant |\Delta| M(\Delta).$$

3.

$$\forall \varepsilon > 0 \ \exists \delta > 0 : s, t \in [a, b], \ |s - t| < \delta \quad \forall j \in [1, k] : \left| \gamma_j'(s) - \gamma_j'(t) \right| < \varepsilon.$$
$$|\Delta| < \delta \Longrightarrow M(\Delta) - m(\Delta) = \sqrt{\sum M_j(\Delta)^2} - \sqrt{\sum m_j(\Delta)^2} \leqslant \sum |M_j(\Delta) - m_j(\Delta) \leqslant \varepsilon n|$$

4. Теперь возьмем дробление [a, b] на кусочки длиной меньше δ .

$$[a, b] = \Delta_1 \cup \ldots \cup \Delta_k, \quad |\Delta_j| < \delta.$$

Запишем два неравенства

$$m(\Delta_j)|\Delta_j| \leqslant l(\gamma \mid_{\Delta_j} \leqslant M(\Delta_j)|\Delta_j|.$$

$$m(\Delta_j)|\Delta_j| \leqslant \int_{\Delta_j} |\gamma'| \leqslant M(\Delta_j)|\Delta_j|.$$

$$\sum_{j=1}^k m(\Delta_j)|\Delta_j| \leqslant l(\gamma) \leqslant \sum_{j=1}^k M_{j=1}^k M(\Delta_j)|\Delta_j|$$

$$\sum_{j=1}^k m(\Delta_j)|\Delta_j| \leqslant \int_0^b |\gamma'| \leqslant \sum_{j=1}^k M_{j=1}^k M(\Delta_j)|\Delta_j|$$

$$\sum_{j=1}^{k} M(\gamma_j) |\Delta_j| - \sum_{j=1}^{k} m(\Delta_j) |\Delta_j| \leqslant \varepsilon n \cdot \sum_{j=1}^{k} |\Delta_i| = \varepsilon n(b-a).$$

Example 1.5.2. Посчитаем длину окружности: $\gamma = (\cos t, \sin t), \ t \in [0, 2\pi], \ \gamma' = (-\sin t, \cos t), \ |\gamma'| = 1.$ Тогда

$$l(\gamma) = \int_0^{2\pi} 1dt = 2\pi.$$

1.5.2 Важные частные случаи общей формулы

1. $\gamma(t) = (x(t), y(t), z(t))$ — путь в \mathbb{R}^3 .

$$l(\gamma) = \int_{a}^{b} \sqrt{|x'(t)|^{2} + |y'(t)|^{2} + |z'(t)|^{2}}.$$

2. Длина графика функции. $f \in C^1[a,b], \, \Gamma_f = \{(x,f(t)) \mid x \in [a,b]\}.$

$$l(\Gamma_f) = \int_a^b \sqrt{1 + (f'(t))^2} dx.$$

3. Длина кривой в полярных координатах $r: [\alpha, \beta] \to \mathbb{R}_+, \ \{(r(\varphi), \varphi)\} = \{(r(\varphi)\cos\varphi, r(\varphi)\sin\varphi)\}$

$$l(\gamma) = \int_{\alpha h}^{\beta} \sqrt{r^2 + (r')^2} d\varphi.$$

 $Remark. \ \gamma: [a,b] \to \mathbb{R}^m, \ \Delta \subset [a,b]$ — отрезок.

$$l(\gamma\mid_{\Delta}) = \int_{\Delta} \underbrace{\left|\gamma'(t)\right| dt}_{\text{Дифференциал дуги}}.$$

Если f задана на носителе пути γ получаем «неравномерную длину»: $\int_a^b f(t) \left| \gamma'(t) \right| dt$

Глава 2

Дифференциальное исчисление функций многих вещественных переменных

2.1 Нормированные пространства

Example 2.1.1. \mathbb{R}^m , \mathbb{C}^m .

$$||x||_p = \left(\sum_{j=1}^m |x_j|^2\right)^{\frac{1}{p}}, \quad p \geqslant 1.$$

Если $p = +\infty$, $||x||_{+\infty} = \max_{1 \leq j \leq m}$.

Note. Все нормы в \mathbb{R}^m эквивалентны.

Example 2.1.2. (K, ρ) — метрический компакт. Рассмотрим множество $C(K) = \{f : K \to \mathbb{R} \mid f$ — непрервна $\}$, оно линейно над \mathbb{R}^m . Норма:

$$||f||_{\infty} = ||f||_{C(K)} = \max_{x \in K} |f(x)|.$$

Theorem 2.1.1. C(K) — *полно*.

Доказательство. Рассмотрим фундментальную последовательность функций $|f_n| \subset C(K)$. Возьмем $x \in K : \{f_n(x)\}_{n=1}^{\infty} \subset \mathbb{R}$ — фундаментальна. Следовательно,

$$\exists \lim_{n \to \infty} f_n(x) =: f(x).$$

Последовательность фундаментальны, значит

$$\forall \varepsilon > 0 \ \exists N : \forall k, n > N : ||f_k - f_n|| < \varepsilon \ \forall x \in K \ |f_k(x) - f_n(x)| < \varepsilon.$$

Устремим $k \to \infty$. $f_k(x) \to f(x)$

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall x \in K : |f(x) - f_n(x)| \leq \varepsilon.$$

Возьмем $n_0 > N$. f_{n_0} — равномерно непрерывна, тогда

$$\forall \varepsilon \ \exists \delta > 0 \ \forall x_1, x_2 : \rho(x_1, x_2) < \delta \Longrightarrow |f_{n_0}(x_1) - f_{n_0}(x_2)| < \varepsilon.$$

$$|f(x_1) - f(x_2)| \le |(x_1) - f_{n_0}(x_1)| + |f_{n_0}(x_1) - f_{n_0}(x_2)| |f_{n_0}(x_1 - f(x_2))| \le 3\varepsilon.$$

Следовательно, $f \in C(K)$. Докажем сходимость по норме:

$$\forall \varepsilon > 0 \; \exists N > 0 \; \forall n > N : \underbrace{\forall x \in K \; |f(x) - f_{n_0}(x)| \leqslant \varepsilon}_{\max_{x \in K} |f - f_n| \leqslant \varepsilon}.$$

Example 2.1.3. (K, ρ) — метрический компакт. Рассмотрим множество $l_{\infty}(K) = \{f : K \to \mathbb{R} \mid f$ — ограничена $\}$, оно линейно над \mathbb{R}^m . Норма:

$$||f||_{\infty} = \sup_{x \in K} |f(x)|.$$

Theorem 2.1.2. $l_{\infty}(X)$ — *полно*.

Доказательство. Аналогично.

Note. $C(K) \subset l_{\infty}(K)$ — замкнутое подпространство.

Note. Замкнутое подпространство полного пространства полно.

Example 2.1.4.
$$K = [a, b], C^1(K) = C^1[a, b].$$

$$C^1[a,b] = \left\{ f: [a,b] \to \mathbb{R} \mid f$$
 дифференцируема на $[a,b], f' \in C[a,b] \right\}.$

Определим норму $\varphi_3(t) = \max_{x \in [a,b]} |f(x)| + \max_{x \in [a,b]} |f'(x)|.$

Theorem 2.1.3. $(C^1[a,b], \varphi_3)$ полно.

Доказательство. $\{f_n\} \subset C^1[a,b]$ фундаментальна. Так как $\varphi_3(f_n - f_k) \to_{n,kro\infty} 0$, $\varphi_1(f_n - f_k) \to 0$ и $\varphi_2(f_n - f_k) \to 0$. Тогда $||f_n - f_k|| \to 0$ и $||f_n' - f_k'|| \to 0$. Получаем, что $\{f_n\}$ фундаментальна в C[a,b] и $\{f_n'\}$ фундаментальна в C[a,b].

Докажем два пункта:

- 1. $f \in C^1$, тое есть $\exists g = f'$.
- 2. $f_3(f_n f) \to 0$

Докажем, что $f(a) - \left(\int_a^b g(t)dt + f(a)\right) \to 0.$

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N : \max |f_n - f| < \varepsilon \wedge \max |f'_n - g| < \varepsilon.$$

Перепишем модуль разности

$$= \left| f_n(x) - \left(\int_a^x f'_n(t)dt + f(a) \right) + (f(x) - f_n(x)) - \int_a^x \left(g(t) - f'_n(t) \right) dt - (f_n(a) - f(a)) \right| \le$$

$$\le |f(x) - f_n(x)| + \int_a^x |g(x) - f'_n(t)| dt + |f_n(a) - f(a)| < \varepsilon (b - a + 2)$$

Проверили первый пункт. Второй следует из того, что $f_n \to f \wedge f'_n \to g$.

ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ВЕЩЕСТВЕННЫХ ПЕРЕМЕННЫХ

6 march

Remark. $||f_n - f|| \to 0$, $f_n \in C(K) \Longrightarrow f \in C(k)$.

$$x_k \to x_0 \Longrightarrow f(x_k) \to f(x_0).$$

$$\lim_{k \to \infty} \lim_{n \to \infty} f_n(x_k) = \lim_{n \to \infty} \lim_{k \to \infty} (x_k) = f(n).$$

Remark. Из того, что $||f_n - f||_{\infty} \to 0$ и $||f'_n - g||$, следует f' = g. То есть

$$\left(\lim_{n\to\infty} f_n\right)' = \lim_{n\to\infty} f_n'.$$

Practice. $\varphi_4(t) = |f(a)| + \max_{x \in [a,b]} |f'(x)|$

Лекция 4

2.1.1Продолжение примеров

1. $C_p[a,b] = \{ f \in C[a,b] \}$

$$||f||_{C_p[a,b]} = ||f||_p = \left(\int_a^b |f(x)| \, dx\right)^{\frac{1}{p}}, \quad p \geqslant 1.$$

Это норма:

- Не меньше нуля
- $||f|| = 0 \iff f = 0$
- $\|\lambda f\| = |\lambda| \cdot \|f\|$
- Неравенство треугольника $||f|| + ||g|| \ge ||f + g||$ (сейчас доказывать не будем)

Эта норма не полная. Но есть процедура пополнения.

Theorem 2.1.4 (без доказательства)). (X, ρ) — метрическое пространство. Тогда $\exists ! (Y, \tilde{\rho})$ — полное метрическое пространство, такое что

- (a) $X \subset Y$
- (b) $\rho = \tilde{\rho} \mid_{X \times X}$ (c) Y = dX

Такое пространство пополняется до $L_p(a, b)$.

2. $l_p = \{x = (x_1, \ldots) \mid x_j \in \mathbb{R}, \exists \lim_{n \to \infty} \sum_{j=1}^n |x_j|^p \},$ $p \geqslant 1$ Такое пространство тоже нормировано:

$$||x||_{\rho} = \left(\sum_{j=1}^{\infty} |x_j|^p\right)^{\frac{1}{p}}.$$

 $Practice. \ l_p$ полно

Note. В бесконечномерных нормированных пространствах компактность не равносильна замкнутости и конечности. Верно только в правую сторону.

ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ВЕЩЕСТВЕННЫХ ПЕРЕМЕННЫХ

• l_p . Возьмем шар $B = \{x \in l_p \mid ||x|| \le 1\}$

$$e^{1} = (1, 0, 0, ...)$$

 $e^{2} = (0, 1, 0, 0, ...)$
 \vdots
 $e^{k} = (\underbrace{0, ...0}_{k-1}, 1, 0, ...)$
 \vdots

Practice. Проверить не компактность $B = \{ f \in C[a,b] \mid ||f|| = 1 \}$ в C[a,b].

2.2 Сжимающие отображения

Definition 14

(X,
ho) — метрическое пространство. U: X o X. U называется сжимающим отображением, если

$$\forall \gamma < 1 \ \forall x_1, x_2 \in X \colon \rho(U(x_1), U(x_2)) \leqslant \gamma \rho(x_1, x_2).$$

Theorem 2.2.1 (Принцип сжимающих отображений). (X, ρ) *полно*.

- 1. U-сжимающее отображение $\Longrightarrow \exists !x_* \colon U(x_1) = x_* -$ неподвижная точка
- 2. Если $\exists N \colon U^N$ сжимающее отображение $\Longrightarrow \exists !x_* \colon U(x_* = x_*)$

Доказательство.

1. Рассмотрим траекторию точки x_1 .

$$x_1, x_2 = U(x_1), x_3 = U(x_2), \dots x_n = U(x_{n-1}).$$

$$\rho(x_{n+1}, x_n) \leqslant \gamma \rho(x_n, x_{n-1}) \leqslant$$

$$\gamma^2 \rho(x_{n-1}, x_{n-2}) \leqslant$$

$$\dots$$

$$\leqslant \gamma^{n-1} \rho(x_2, x_1) = \gamma^{n-1} d$$

Тогда по неравенству треугольника

$$\forall m > n \colon \rho(x_n, x_m) \leqslant \sum_{k=n-1}^{\infty} \gamma^k d = \gamma^{n-1} d(1 + \gamma + \ldots) = \frac{\gamma^{n-1} d}{1 - \gamma} \longrightarrow 0.$$

Следовательно, $\{x_n\}$ фундаментальна. Так как наше пространство полно, существует предел этой последовательности. $U(x_n) = x_{n+1}$. Первое стремиться к $U(x_*)$, второе — к x_* .

Единственность следует из того, что иначе мы можем уменьшить расстояние между двумя фиксированными неподвижными точками.

2. $\exists x_*$, посмотрим на $U^N(x_*)$. Посмотрим на последовательное применение U несколько раз. На N-ом шаге мы придем в x_* .

Единственность уже доказали.

Example 2.2.1 (Обыкновенная линейное дифференциальное уравнение первого порядка).

$$f'(x) + a(x) \cdot f(x) = b(x),$$
 $a, b \in C[0, 1],$ $f(0) = c$

Задача: найти $f \in C^1[0,1]$. То есть доказать, что оно существует и единственна.

$$f(x) = c + \int_0^x (b(t) - a(t)f(t)) dt.$$

Заведем отображение $U: C[0,1] \to C[0,1]$, что $(U(f))(x) = c + \int_0^x \left(b(t) - a(t) f(t) \right) dt$. Хотим найти неподвижную точку отображения U (то есть такую f).

Пусть $(U_0(f))(x) = -\int_0^x a(t)f(t)dt$. Правда ли, что

1.
$$U^n(f) - U^n(g) = U_0^n(f) - U_0^n(g) = U_0^n(f-g)$$

2. $\exists n : U_0^n$ — сжимающее отображение из C[0,1] в C[0,1].

Проверим

1. При n = 1, очевидно.

$$U^{n}(f) - U^{n}(g) = U\left(U^{n-1}(f)\right) - U\left(U^{n-1}(g)\right) =$$

$$= U_{0}\left(U_{0}^{n-1}(f)\right) - U_{0}(U_{0}^{n-1}(g)) =$$

$$= U_{0}\left(U^{n-1}(f) - U^{n-1}(g)\right) =$$

$$= U_{0}\left(U_{0}^{n-1}(f) - U_{0}^{n-1}(g)\right) =$$

$$= U_{0}^{n}(f) - U_{0}^{n}(g)$$

2. $||U_0^n(f-g)||_{\infty} \leq \gamma ||f-g||$

Пусть f-g=h. $\|U_0^n(h)\|_{\infty}=\gamma\|h\|$. Пусть $M=\max|a|,\ \|h\|_{\infty}|h(x)|$.

$$(U_0^1(h))(x) = -\int_0^x a(t_1)h(t_1)dt_1$$

$$(U_0^2(h))(x) = (-1)^2 \int_0^x a(t_2) \left(\int_0^{t_2} a(t_1)h(t_1)dt_1\right)dt_2$$

$$\vdots$$

$$(U_0^n(h))(x) = (-1)^n \int_0^x a(t_n) \int_0^{t_n} (\dots) dt_n$$

Оценим

$$|(U_0^n(h))(x)| \leqslant M^n \cdot ||h||_{\infty} \int_0^x \int_0^{t_n} \int_0^{t_{n-1}} \dots \int_0^{t_1} dt_1 dt_2 \dots dt_n = M^n \cdot ||h||_{\infty} \frac{x^n}{n!}.$$

$$||U_0^n(h)||_{\infty} \leqslant \left(M^n \frac{x^n}{n!}\right) ||h||_{\infty}.$$

Выражение в скобках стремиться к нулю при $n \to \infty$. Значит, U_0^n сжимающее.

Note. На самом деле мы сейчас посчитали объем обрезанного куба.

$$f\in C[0,1].$$
 Так как $f(x)=c+\int_0^x (b(t)-a(t)f(t))dt,\,f\in C^1[a,b]$

Practice. X полно, $U: X \to X$, $\forall x, y : \rho(U(x), U(y)) < \rho(x, y)$.

- 1. Верно ли, что U сжимающее?
- 2. Верно ли, что обязательно есть неподвижная точка?

2.2.1 Линейные и полилинейные непрерывные отображения (операторы)

Definition 15: Линейное отображение

X,Y — линейные пространства над одним полем скаляров (либо \mathbb{R} , либо \mathbb{C}). $U:X \to Y$ называется линейным, если

- 1. $\forall x_1, x_2 \in X : U(x_1 + x_2) = U(x_1) + U(x_2)$
- 2. $\forall x \in X, \ \lambda \text{скаляр} \colon U(\lambda x) = \lambda U(x)$

Note. Для экономии университетского мела не пишут скобки у линейный отображений: $U(x_1) = Ux_1$ **Designation.** Hom(X,Y) — множество всех линейных отображений из X в Y.

Definition 16

 $X_1, \dots X_n$ — линейные пространства, Y — линейное пространство над одним скаляром. $U: X_1 \times X_2 \times \dots \times X_n \to Y$ — полилинейное отображение, если оно линейно по каждому из аргументов.

Designation. $\operatorname{Poly}(X_1, \dots X_n, Y)$ — множество всех полилинейных отображений.

Definition 17

Если Y — поле скаляров, линейное отображение $U: X \to Y$ называется линейным функционалом.

Example 2.2.2. $X = \{x = (x_1, \ldots) \mid x_j \in \mathbb{R}, \text{ лишь конечное число отлично от нуля}\}$ $U: X \to X, \ x \mapsto (x_1, 2x_2, 3x_3, \ldots)$

Example 2.2.3 (δ -функция). $\delta: C[-1,1] \to \mathbb{R}, \ \delta(f) = f(0).$

Example 2.2.4. $U: C[a,b] \to \mathbb{R}, \ Uf = \int_a^b f(x)dx$

Example 2.2.5. $U:C[a,b]\to\mathbb{R},\ Uf(x)=\int_a^x f(t)dt$

Example 2.2.6. $U \in \text{Poly}(\underbrace{\mathbb{R}, \mathbb{R}, \dots \mathbb{R}}_{n}; \mathbb{R}), \ U(x_1, \dots x_n) = x_1 x_2 x_3 \dots x_n$

Example 2.2.7. $U \in \text{Poly}(\mathbb{R}^n, \mathbb{R}^n; \mathbb{R}), \ U(x, y) = (x, y)$

Example 2.2.8. $U \in \text{Poly}(\mathbb{R}^3, \mathbb{R}^3; \mathbb{R}^3), U(x, y) - [x, y]$ — векторное произведение.

ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ВЕЩЕСТВЕННЫХ ПЕРЕМЕННЫХ

Example 2.2.9. Определитель, все возможные формы объема.

Example 2.2.10. $U_j \in \text{Hom}(X,Y)$. Можно сделать из этого полилинейное $U \in \text{Poly}(X_1,X_2,\ldots,X_n;Y)$, $U(x_1,\ldots x_n) = U_1x_1 + U_2x_2 + \ldots U_nx_n$.

Example 2.2.11. $U: C^1[a,b] \to C[a,b], \ Uf = f'$

Theorem 2.2.2 (Эквивалентные условия непрерывности линейного отображения). X,Y- л uнейный нормированные пространства с одним полем скаляров, $U \in \text{Hom}(X,Y)$. Следующие
утверждения эквивалентны:

- 1. U непрерывно
- 2. U непрерывно в 0
- 3. $\exists C \ \forall x \in X \colon ||Ux||_Y \leqslant C||x||_X$

Definition 18

U — непрерывное линейное отображение (оператор) из X в Y.

$$||U|| = \inf\{C \mid x \in X, ||Ux|| \le C||x||\}.$$

 $\|U\|$ — операторная норма.

Note. Если U — разрывное отображение, считаем, что $||U|| = \infty$.

Note.

$$||U|| = \sup_{x \neq 0} \frac{||Ux||}{||x||}.$$

Example 2.2.12. Нормы в прошлых примерах

- **2.2.2** $||U|| = \infty$
- **2.2.3** ||U|| = 1
- **2.2.4** ||U|| = b a
- **2.2.5** ||U|| = b a
- **2.2.11** ||U|| = 1

Theorem 2.2.3 (Условие непрерывности полилинейного отображения). $U \in Poly(X_1, ... X_m; Y)$, X_i, Y — линейные нормированные пространства. Следующие утверждения эквивалентны:

- 1. U непрерывно
- 2. U непрерывно в 0
- 3. $\exists C \ \forall x_1 \in X_1, x_2 \in X_2, \dots x_n \in X_n : \|U(x_1, \dots x_n)\| \leqslant X \|x_1\| \cdot \dots \cdot \|x_n\|$

Note. В прямом произведении есть норма (Например, такая)

$$||(x_1, \dots x_n)|| = \max\{||x_1||_{X_1}, \dots ||x_n||_{X_n}\}.$$

Definition 19: Норма полилинейного отображения

$$||U|| = \inf \{ C \mid \forall x_1 \in X_1, \dots x_n \in X_n \mid ||U(x_1, \dots x_n)| < C||x_1|| \cdot \dots ||x_n|| \}.$$

Theorem 2.2.4 (эквивалентные способы вычисления оперератора). U — линейное непрерывное отображение $X \to Y$. Тогда

$$||U|| = \sup_{x \neq 0} \frac{||U||}{||x||} = \sup_{||x|| = 1} ||Ux|| = \sup_{||x|| \leqslant 1} ||Ux|| = \sup_{||x|| < 1} ||Ux||.$$

Доказательство. Обозначим супремумы за A, B, C, D. Очевидно, что $C \geqslant B$ и $C \geqslant D$

$$C = \sup_{\|x\| \le 1} \|Ux\| \le \sup_{\|x\| \le 1} \frac{\|Ux\|}{\|X\|} \le \sup_{x \ne 0} \frac{\|Ux\|}{\|x\|} = A.$$

Докажем, что $B\geqslant A.\ x\neq 0,\ \tilde{x}=\frac{x}{\|x\|}.$

$$\frac{\|Ux\|}{\|x\|} = \|Ux\| \leqslant B.$$

Значит, $\sup_{x \neq 0} \frac{\|Ux\|}{\|x\|} \leqslant B$. Теперь докажем, что $D \geqslant A$.

$$x \neq 0, \ \varepsilon > 0 \colon \tilde{x} = \frac{x}{\|x\|} (1 - e\varepsilon), \quad \|\tilde{x}\| = 1 - \varepsilon < 1.$$

$$\begin{cases} \|U\tilde{x}\| \leqslant D \\ \|U\tilde{x}\| = \frac{1-\varepsilon}{\|x\|} \|Ux\| \end{cases} \implies \frac{\|Ux\|}{\|x\|} \leqslant \frac{D}{1-\varepsilon} \to 0.$$

Следовательно,

$$\frac{\|Ux\|}{\|x\|} \leqslant D \Longrightarrow \sup_{x \neq} \frac{\|Ux\|}{\|x\|} \leqslant D.$$

Remark. В конечномерных пространствах все линейные и полилинейные отображения непрерывны.

Theorem 2.2.5 (эквивалентные способы вычисления нормы полилинейного оператора). U: $X_1 \times \ldots \times X_n \to Y$.

$$||U|| = \sup_{x_j \neq 0} \frac{||U(x_1, \dots x_n)||}{||x_1|| \dots ||x_n||} || = \sup_{||x_j| = 1 |||||U(x_1, \dots x_n)||} = \sup_{||x_j|| < 1} = \sup_{||x_j|| \le 1}.$$

ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ВЕЩЕСТВЕННЫХ

2.2.2 Пространство линейных непрерывных операторов

Theorem 2.2.6 (О свойствах операторной нормы). $U_1, U_2, U_3: X \to Y$ — линейные непрерывные операторы, λ — скаляр. Тогда

1.
$$||U_1 + U_2|| \le ||U_1|| + ||U_2||$$

2.
$$\|\lambda U\| = |\lambda| \|U\|$$

3.
$$||U|| = 0 \Longleftrightarrow U = 0$$

4. $U: X \to Y, V: Y \to Z$ — линейные отображения.

$$||VU|| \le ||V|| \cdot ||U||$$

$$VU = V \circ U$$

$$VUx = V(U(x))$$

Designation. $L(X,Y) \subset \text{Hom}(X,Y)$ — пространство линейных операторов.

Лекция 5

 $Note.\ L(X;Y)\subset {\rm Hom}(X;Y)$ — линейные отображения из X в Y. Это линейное нормированное пространство.

13 march 18 апреля в 11:00 в каб 301 коллоквиум

Note. Тоже самое верно для полилинейных отобранной. То есть выполнены аксиомы нормы, доказательство аналогичное. $L(X_1, X_2, \dots X_n; Y) \subset \text{Poly}(X_1, \dots X_n; Y)$.

Theorem 2.2.7 (О полноте пространства операторов). Если Y полно, то L(X;Y) Тоже полно.

Доказательство.

1. Построение предельного оператора.

$$\{U_n\}\subset L(X,Y)$$
 — фундаментальна, то есть $\|U_n-U_m\|\to 0, n,m\to\infty$.

Рассмотрим $x \in X$:

$$||U_m x - U_n x||_Y = ||(U_m - U_n)x||_Y \leqslant ||U_m - U_n|| \cdot ||x||_X \to 0, \ n, m \to \infty.$$

Тогда $\{U_m x\}$ фундаментальна в Y, следовательно, $\exists \lim_{m\to\infty} U_m x \eqqcolon U(x)$

2. Линейность предельного отображения.

$$U(x_1 + x_2) = \lim_{m \to \infty} (U_m(x_1 + x_2)) = \lim_{m \to \infty} U_m x_1 + \lim_{m \to \infty} U_m x_2 = U x_1 + U x_2$$
$$U(\lambda x) = \lambda U x$$

3. Непрерывность U.

$$\varepsilon = 1 \ \exists N \colon \forall n, m \in \mathbb{N} \ \forall x \in X \colon ||U_m x - U_n x|| \leqslant 1 \cdot ||x||.$$

Устремим $n \to \infty$:

$$\exists N \ \forall n > N \ \forall x \in X : ||U_m x - U x|| \leqslant ||x||.$$

По неравенству треугольника, при достаточно большом m > N

$$||Ux|| \le ||Ux - U_m x|| + ||U_m x|| \le ||x|| + ||Um|| \cdot ||x|| \le (1 + ||U_m||) \cdot ||x||.$$

Следовательно, U непрерывно.

ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ВЕЩЕСТВЕННЫХ ПЕРЕМЕННЫХ

4. Сходимость $\{Um\}$ к U по норме L(X,Y).

$$\forall \varepsilon > 0 \ \exists N \ \forall n, m > N \ \forall x \in X \colon \|U_m x - U_n x\| \leqslant \varepsilon \|x\|.$$

При $x \to \infty$

$$\forall \varepsilon > 0 \ \exists N \ \forall m > N \ \forall x \in X \colon \|U_m x - U x\| \leqslant \varepsilon \|x\| \Longleftrightarrow \|U m - U\| \leqslant \varepsilon.$$

Theorem 2.2.8. *Если* Y *полно*, *то* $L(X_1, ..., X_n; Y)$ *полно*.

Example 2.2.13 (Самый важный случай). Y — пространство скаляров. $L(X,Y) = X^*$ — сопряженное пространство — пространство линейных непрерывных функционалов.

Theorem 2.2.9. $L_1 = L(X_1 ... X_k; L(X_{k+1}, ... X_n; Y) \subseteq L(X_1, ... X_n; Y) = L_2$, то есть существует изометрический (сохраняющий норму) изоморфизм.

Доказательство. Построим биекцию. $U \in L_1: U(x_1, \ldots, x_k) \in L(X_{k+1}, \ldots, X_n; Y), U(x_1, \ldots, x_k)(x_{k+1}, \ldots, x_n) \in Y.$

Определим $\tilde{U}(x_1, \dots x_n) := U(x_1, \dots x_k)(x_{k+1}, \dots x_n)$. Оно будет полилинейно непрерывно. Это же определение работает и в обратную сторону.

Теперь нужно понять, что с нормой все в порядке.

$$||U|| = \sup_{\substack{\|x_i\|=1\\1\leqslant i\leqslant k}} ||U(x_1,\ldots x_n)|| = \sup_{\substack{\|x_i\|=1\\1\leqslant i\leqslant k}} \left(\sup_{\substack{\|x_i\|=1\\k< i\leqslant n}} ||U(x_1,\ldots x_k)(x_{k+1},\ldots x_n)||\right) = \sup_{\substack{\|x_i\|=1\\1\leqslant i\leqslant n}} ||\tilde{U}(x_1,\ldots x_n)|| = \tilde{U}.$$

2.3 Дифференциальные отображения

Definition 20

X,Y — нормированные пространства, $E\subset X,\,x\in E,\,x$ — внутренняя точка, $f:E\to Y.\,f$ — дифференцируемо в точке $x,\,$ если $\exists L\in L(X,Y)$:

$$f(x+h) - f(x) = L(h) + o(h), \qquad h \to 0, x+h \in E.$$

Note. $x, h \in X$, f(x), $f(x+h) \in Y$, $Lh \in Y$

Что такое o(h):

$$f(x+h) - f(x) = Lh + \alpha(x,h).$$

$$\lim_{h \to 0} \frac{\|\alpha(x,h)\|_Y}{\|h\|_X} = 0.$$

Definition 21

L- дифференциал f в точке x.

ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ВЕЩЕСТВЕННЫХ ПЕРЕМЕННЫХ

Designation. Обозначения дифференциала $D_x f, f'(x), d_x f, df(x)$

Формула из определения выглядит так

$$f(x+h) - f(x) = df(x)h + o(h), \quad h \to 0.$$

Note. Это определение — дифференцируемость по Фреше.

Note. В конечномерном случае из линейности L автоматически следует непрерывность.

Theorem 2.3.1. Если дифференциал в точке х существует, то он единственный.

Доказательство. Пусть $\exists L_1, L_2 \colon f(x+h) - f(x) = L_i h + \mathrm{o}(h)$. Тогда $L_1 h - L_2 h - \mathrm{o}(h)$, докажем, что $L = L_1 - L_2$ равно нулю.

Зафиксируем $h \neq 0$.

$$||Lh|| = \frac{||L(th)||}{||t||} = \underbrace{\frac{||L(th)||}{||th||}}_{\to 0} ||x|| \to 0, \quad t \to 0.$$

Следовательно, $||Lh|| = 0 \Longrightarrow L = 0$.

Definition 22

Если $f:E\subset X\to Y$ (E открыто), f дифференцируема во всех точках $E,\,df:E\to L(X,Y)$ — производное отображение.

Note. Если f дифференцируема в точке x, то f непрерывна.

Правила дифференцирования

Линейность $f_1, f_2 : E \subset XtoY, f_1, f_2$ непрерывны в точке $x \in E$. Тогда $\forall \lambda_1, \lambda_2$ — скаляры: $\lambda_1 f_1 + \lambda_2 f_2$ дифференцируема в точке x и $d(\lambda_1 f_1 + \lambda_2 f_2)(x) = \lambda_1 df_1(x) + \lambda_2 df_2(x)$

Дифференциал композиции X,Y,Z — линейные нормируемые пространства, $U\subset X,\ V\subset Y,\ U,V$ открыты, $f:UtoY,g:V\to Z,\ x\in U,f(x)inV,$ f дифференцируема в точке x,g дифференцируема в точке x.

$$d(g \circ f)(x) = dg(f(x)) \circ df(x)).$$

Доказательство.

$$g(f(x+h)) - g(f(x)) = \\ = dg(f(x))(f(x+h) - f(x)) + o(f(x+h) - f(x)) \\ = dg(f(x))(df(x)h + o(h)) + o(f(x+h) - f(x)) = \\ = dg(f(x))df(x)h + \underbrace{dg(f(x))(o(h)) + o(f(x+h) - f(x))}_{?=o(h)}$$

$$\frac{\|dg(f(x))(o(h))\|_{Z}}{\|h\|_{X}} \leqslant \frac{\|dg(f(x))\|\|o(h)\|}{\|h\|_{X}} \to 0.$$

$$\frac{\|o(f(x+h) - f(x))\|}{\|h\|} = \underbrace{\frac{\|o(f(x+h) - f(x))\|}{\|f(x+h) - f(x)\|}}_{|h|} \cdot \underbrace{\frac{\|f(x+h) - f(x)\|}{\|h\|}}_{|h|} \to 0, h \to 0.$$

Дифференцирование обратного $x \in U \subset X$, U открыто, $f: U \to Y$, существует окрестность V(f(x)) в Y, в которой $\exists f^{-1}$. Предположим, что f дифференцируема в точке x, $\exists (df(x))^{-1} \in L(Y,X)$, f^{-1} непрерывна в точке f(x). Тогда f^{-1} дифференцируема в точке f(x) и

$$\underbrace{df^{-1}(f(x))}_{\in L(Y,X)} = \left(df(x)\right)^{-1}.$$

Note. Здесь слишком много условий

Доказательство. $f(x)=y,\ f^{-1}(y)=x,\ f(x+h)=y+t,\ f^{-1}(y+t)=x+h.\ h\to 0\Longleftrightarrow t\to 0.$ Давайте запишем

$$t = f(x+h) - f(x) = df(x)h + o(h).$$

Тогда $||t|| \leq C||h||$. Воспользуемся тем, что df(x) обратим.

$$(df(x))^{-1} t = h + (df(x))^{-1} (o(h))$$
(2.3.1)

$$\| (df(x))^{-1} (o(h)) \| \le \| (df(x))^{-1} \| \cdot \| o(h) \| \le \frac{\|h\|}{2}, \quad \|h\| < \delta.$$

То есть

$$\forall \varepsilon > 0 \ \exists \delta \colon \left(\|h\| < \delta \Longrightarrow \frac{\|o(h)\|}{\|h\|} < \frac{\varepsilon}{\|(df(x))^{-1}\|} \right).$$

Тогда $\forall \|h\| < \delta \colon \|(df(x))^{-1}t\| \geqslant \frac{\|h\|}{2} \Longrightarrow \|h\| \leqslant C\|t\|$. Перепишем 2.3.1

$$f^{-1}(y+t) - f(y) = (df(x))^{-1}t + o(t).$$

Это определение дифференцируемости. Тогда

$$df^{-1}(f(x)) = (df(x))^{-1}.$$

2.4 Примеры и дополнительные свойства дифференцирования

 $0. f: \mathbb{R} \to \mathbb{R}, f$ дифференцируема.

$$df(x): \mathbb{R} \to \mathbb{R}, \ h \mapsto f'(x)h.$$

- 1. $f: U \subset X \to Y$, f постоянно, то есть $f(x) = y_0 \quad \forall x \in U$. Тогда df(x) = 0 (нулевое линейное отображение, все переводит в нуль).
- 2. $f \in L(X,Y), df(x) = f$.

$$f(x+h) - f(x) = f(h) = (df(x))(h).$$

3. $f(x,y) = x^2 + 2xy$. $h = (h_x, h_y)$

$$f(x + h_x, y + h_y) - f(x, y) = x^2 + xh_x + h_x^2 + 3xy + 3xh_y + 3yh_x - x^2 - 3xy + 3h_xh_y = (2x + 3y)h_x + 3xh_y + \underbrace{h_x^2 + 3h_xh_y}_{o(h)}$$

В матричной форме

$$(2x+3y \quad 3x) \cdot \begin{pmatrix} h_x \\ h_y \end{pmatrix}.$$

ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ВЕЩЕСТВЕННЫХ ПЕРЕМЕННЫХ

- 4. $x \in U \subset X$, $f: U \to Y$, $A \in L(Y, Z)$. Если f дифференцируема в точке x, то $A \circ f$ дифференцируема в точке x и $d(A \circ f)(x) = Adf(x)$
- 5. $x \in U \subset X, f : U \to Y_1 \times \ldots \times Y_n$. Это n отображений: $f(x) = (f_1(x), \ldots f_n(x)), f_j : U \to Y_j$. f дифференцируема в точек x, тогда и только тогда, когда $f_1, \ldots f_n$ дифференцируемы в точке x_0 .

Доказательство. $f(x+h)-f(x)=df(x)h+o(h)\in Y$. Левая часть равна

$$(f_1(x+h)-f_1(x),\ldots f_n(x+h)-f_n(x)).$$

А правая

$$(L_1h, L_2h, \dots L_nh) + o(h).$$

6. $x_j: X_1 \times X_2 \times \dots X_n \to X_j$, $(x_1, \dots x_n) \mapsto x_j$.

$$dx_i(x)h = h_i$$
.

Это удобное обозначение базиса, которое мы будем дальше использовать.

7. $A: X_1 \times X_n \to Y$ — полилинейное и непрерывное. Оставим только два сомножителя. $A: X_1 \times X_2 \to Y$.

$$A(x_1 + h_1, x_2 + h_2) - A(x_1, x_2) = A(x_1, h_1) + A(h_1, x_2) + \underbrace{A(h_1, h_2)}_{o(h)}.$$

$$dA(x_1, x_2)h = A(h_1, x_1) + A(x_1, h_2).$$

Или можно записать так:

$$dA(x_1, x_2) = A(dx_1, x_2) + A(x_1, dx_2).$$

Совершенно аналогично для n координат.

Property.

1) $f(x) = x_1 \cdot \dots \cdot x_n, f: \mathbb{R}^n \to \mathbb{R}$.

$$df(x) = \sum_{j=1}^{n} \left(dx_j \prod_{i \neq j} x_i \right).$$

$$df(x) h = \sum_{j=1}^{n} \left(h \prod_{i \neq j} x_i \right).$$

$$df(x)h = \sum_{j=1}^{n} \left(h_j \prod_{i \neq j} x_i \right).$$

 $2) \ f_1, \dots f_n : X \to \mathbb{R}.$

$$d(f_1f_2...f_n)(x) = f_2(x)f_3(x)...df_1(x) +$$

3) $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} - c \kappa a \Lambda s p hoe n pous bedeute.$

$$d\langle \cdot, \cdot \rangle = \langle dx_1, x_2 \rangle + \langle x_1, dx_2 \rangle.$$

4) $f, q: X \to \mathbb{R}^n$

$$d\langle f, g \rangle = \langle df, g \rangle + \langle f, dg \rangle.$$

5) $f: X \to Y \text{ } nad \mathbb{R}(\mathbb{C}), \lambda: X \to \mathbb{R}$

$$d(\lambda f) = \underbrace{f}_{\in Y} \underbrace{d\lambda}_{L(X,\mathbb{R})} + \lambda \underbrace{df}_{\in L(X,Y)}.$$

Practice. $U = \{A \in L(X,Y) \mid \exists A^{-1} \in L(X,Y)\}$ — множество обратимых линейных отображений. $f: U \to L(X,Y), \ f(A) = A^{-1}$. Найти df.

ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ВЕЩЕСТВЕННЫХ ПЕРЕМЕННЫХ

2.5 Частные производные

Definition 23: Частные производные

Пусть $a \in X_1 \times X_2 \times \ldots \times X_n$. U — окрестность точки $a.\ f: U \to Y.\ f(x) = f(x_1,\ldots x_n)$. Определим $\varphi_j: X_j \to Y,\ \varphi_j(x_j) = f(a_1,a_2,\ldots x_j,a_{j+1},\ldots a_n)$. $d\varphi_j(a_j)$ называется частным дифференциалом (частной производной) f по x_j в точке a, если существует.

Designation. Частный дифференциал обозначается кучей способов

$$\partial_{x_j} f(a), \ \frac{\partial f}{\partial x_j}, \partial_j f(a) \in L(x_i, Y).$$

Лекция 6

20 march

$\mathbf{2.6}$ Важный частный случай: $X = \mathbb{R}^m, \ Y = \mathbb{R}^n$

Statement. Пусть $x \in U \subset \mathbb{R}^m$, $f: U \to \mathbb{R}^n$, $f(x) = (f_1(x), \dots f_n(x))$. Тогда f дифференцируема в точке x тогда u только тогда, когда $f_1, f_2, \dots f_n$ дифференцируемы в точке x u

$$df(x) = (df_1(x), \dots df_n(x)), \quad \partial f_i(x) \in L(\mathbb{R}^m, \mathbb{R}), \ f_j \colon \mathbb{R}^m \to \mathbb{R}.$$

Доказательство. Пусть $h \in \mathbb{R}^m$. Запишем

$$df(x)h = (df_1(x)h, \dots df_n(x)h).$$

Тогда

$$f(x+h) - f(x) = (f_1(x+h) - f_1(x), \dots f_n(x+h) - f_n(x)).$$

Первое слагаемое равно df(x)h, а правая

Statement. Если n=1, то получаем просто функцию, а не вектор-функцию. Если $f: U \subset \mathbb{R}^m \to \mathbb{R}$ дифференцируема в точке x, то существуют все частные производные u

$$df(x)h = \sum_{j=1}^{m} \frac{\partial f}{\partial x_j}(x)h_j, \quad h = (h_1, \dots h_n)^T.$$

при этом

$$df(x) = \left(\frac{\partial f}{\partial x_1}\right).$$

Statement. Вернемся к 2.6. Пусть $x \in U \subset \mathbb{R}^m$, $f(x) = (f_1(x), \dots f_n(x))$. Тогда f дифференцируема в точке x и существуют частные производные $\frac{\partial f_j}{\partial x_k}(x)$, $j = 1, \dots m$, $k = 1, \dots n$

$$\partial f(x)h = \begin{pmatrix} df_1(x)h \\ \dots \\ df_n(x)h \end{pmatrix}.$$

Statement. Если есть отображения $f: \mathbb{R}^m \to \mathbb{R}^n, \ g: \mathbb{R}^n \to \mathbb{R}^k, \ u$ они дифференцируемы, то $d(f \circ f)(x) = dg(f(x))df(x)$:

$$\left(\dots \quad \frac{\partial g_i \circ f}{\partial x_l}(x) \quad \dots \right) = \left(\dots \quad \frac{\partial g_i}{\partial y_j}(f(x)) \quad \dots \right) \cdot \left(\dots \quad \frac{\partial f_i}{\partial x_l}(x) \quad \dots \right).$$

ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ВЕЩЕСТВЕННЫХ ПЕРЕМЕННЫХ

Правило цепочки:

$$\frac{\partial (g_i \circ f)}{\partial x_l}(x) = \sum_{i=1}^n \frac{\partial g_i}{\partial y_i}(f(x)) \frac{\partial f_j}{\partial x_l}(x).$$

Statement.

Example 2.6.1 (вычисление частных производных). Пусть $f(x,y) = x^3 + 3xy$.

$$\frac{\partial f}{\partial x}(x,y) = 3x^2 + 3y.$$

$$\frac{\partial f}{\partial y}(x,y) = 3x.$$

То есть

$$df(x,y)h = (3x^2 + 3y \quad 3x) \cdot \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}.$$

Через градиенты

grad.

Statement. Если $f: \mathbb{R}^m \to R$, то частные производные можно определять формулами

$$\frac{\partial f}{\partial x_i}(x) = \lim_{t \to 0} \frac{f(x + te_j) - f(x)}{t}, \qquad e_j = \begin{pmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \end{pmatrix}^T.$$

(Единица стоит на *i-м* месте.) Это определение можно обобщить. Можно определить производную по направлению.

Definition 24: Производная по вектору

Пусть $f \colon X \to \mathbb{R}, \ v \in X$. Тогда

$$\frac{\partial f}{\partial v}(x) = \lim_{t \to 0} \frac{f(x + tv) - f(x)}{t}$$

— производная по вектору v или вдоль вектора v. Если $\|v\|=1,$ то называют производной по направлению v.

Property (Экстремальное свойство градиента). В случае \mathbb{R}^m

$$\frac{\partial f}{\partial v}(x) = \langle \operatorname{grad} f(x), v \rangle,$$

откуда

$$\left| \frac{\partial f}{\partial v}(x) \right| \le \left| \operatorname{grad} f(x) \right| \left| v \right|.$$

Функция растет быстрее всего в направлении градиента:

$$\max_{|v|=1} \left| \frac{\partial f}{\partial v}(x) \right|.$$

Доказательство. Все рассуждения предполагают, что f дифференцируема в x.

$$\frac{\partial f}{\partial v}(x) = \langle \operatorname{grad} f(x), v \rangle \Longleftrightarrow \frac{\partial f}{\partial v}(x) = df(x)v.$$

ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ВЕЩЕСТВЕННЫХ ПЕРЕМЕННЫХ

$$f(x+tv) - f(x) = df(x)(tv) + o_{t\to 0}(t).$$

Тогда

$$\frac{f(x+tv) - f(x)}{t} = df(x)v + \underbrace{\frac{o(t)}{t}}_{\to 0}.$$

2.7 Теорема о конечном приращении (Лагранжа)

Theorem 2.7.1 (Теорема о конечном приращении). Пусть $f: U \subset X \to Y$ непрерывно на $[x, x+t] \subset U$ и дифференцируемо на (x, x+h). Тогда

$$||f(x+h) - f(x)||_Y \le \sup_{\xi \in (x,x+h)} ||df(\xi)||_{L(X,Y)} \cdot ||h||_X.$$

Доказательство. Обозначим супремум $M = \sup_{\xi \in (x,x+h)} \|df(\xi)\|_{L(X,Y)} = \sup_{\Theta \in (0,1)} \|df(x,+\Theta h)\|_{L(X,Y)}$. Достаточно проверить

$$\forall [\xi', \xi''] \subsetneq (x, x + h) \colon ||f(\xi') - f(\xi'')|| \leqslant M ||\xi' - \xi''||.$$

Предположим противное:

$$\Delta_1 = [\xi_1', \xi_1''] \colon ||f(\xi_1') - f(\xi_1'')|| \geqslant (M + \varepsilon_0) ||\xi_1' - \xi_1''||, \quad \varepsilon_0 > 0.$$

Разделим отрезок пополам: $\Delta_1 = \Delta_1^1 \cup \Delta_1^2 = [\xi_1', \frac{\xi_1' + \xi_1''}{2}] \cup [\frac{\xi_1' + \xi_1''}{2}, \xi_1'']$. На одном из них обязательно выполнено прежнее неравенство.

Так можем построить последовательность $\Delta_1 \supset \Delta_2 \dots$ Пусть $\{\xi_0\} = \cap \Delta_i$. Тогда

$$f(\xi_0 + \delta) - f(\xi_0) = df(\xi_0)\delta + \alpha(\delta), \quad \frac{\|\alpha(\delta)\|}{\|\delta\|} \stackrel{\delta \to 0}{\to} 0.$$

Тогда

$$\exists \varepsilon > 0 \colon \left(\|\delta\| < \varepsilon \Longrightarrow \|f(\xi_0 + \delta) - f(\xi_0)\| \leqslant \left(M + \frac{\varepsilon_0}{2} \right) \|\delta\|, \quad \frac{\alpha(\delta)}{\|\delta\|} \stackrel{\delta \to 0}{\to} 0 \right).$$

То есть с некоторого момента все принадлежат окрестности $\exists N \colon \forall n > N \quad \Delta_n \subset B(\xi_0, \varepsilon)$.

$$||f(\xi'_n) - f(\xi''_m)|| \leqslant + \begin{cases} ||f(\xi'_n) - f(\xi_0)|| \leqslant \left(M + \frac{\varepsilon_0}{2}\right) ||\xi'_n - \xi_0|| \\ ||f(\xi''_n) - f(\xi_0)|| \leqslant \left(M + \frac{\varepsilon_0}{2}\right) ||\xi''_n - \xi_0|| \end{cases} = \left(M + \frac{\varepsilon_0}{2}\right) ||\xi'_n - \xi''_n||.$$

Получаем противоречие, так как с некоторого момента утверждение неверно.

Note. В правой части можно ююю

Note. На прямой теорема Лагранжа дает существование $\xi \in (x, x + \varepsilon)$:

$$|f(x+h) - f(x)| = |f'(\xi)| \cdot |h|.$$

Но для вектор-функции на плоскости это уже может быть не верно.

Note. В \mathbb{R}^n есть доказательства, использующие наличие скалярного произведения.

Corollary. Если f из теоремы и $A \in L(X,Y)$, то

$$||f(x+h) - f(x) - Ah|| \le \sup_{\xi \in (x,x+h)} ||df(\xi - Ah)|| ||h|| = \sup_{v \in (0,1)} ||df(x+vh - Ah)|| ||h||.$$

Это теорема при g(x) = f(x) - Ax.

Corollary. Если K — выпуклый компакт в X, $f \in C^1(K,Y)$, то f — Липшицево на K.

Definition 25

Если $f\colon U\subset X\to Y$ дифференцируемо во всех точках U и $df\colon U\to L(X,Y)$ непрерывно, то говорят, что f непрерывно дифференцируемо на U и пишут $f\in C^1(U,Y)$

Note. $f: U \subset X_1 \times \ldots \times X_m \to Y$ непрерывно дифференцируемо на U тогда и только тогда, когда непрерывны все частные производные.

Theorem 2.7.2 (Признак дифференцируемости). Пусть $f: U \subset X_1 \times ... \times X_m \to Y, \ x \in U$. Предположим, что f имеет все частные дифференциалы в U и они непрерывны в точке x. Тогда f дифференцируема в точке x.

Доказательство. Докажем для m=2. Дифференциал должен выглядеть так: $Lh=\partial_{x_1}f(x)h_1+\partial_{x_2}f(x)h_2$. $x\in U\subset X_1\times X_2$.

Проверим ||f(x+h) - f(x) - Lh|| = o(h) при $h \to 0$.

$$..(x) \leqslant \underbrace{\|f(x_1 + h_1, x_2 + h_2) - f(x_1 + h_1) - \partial_{x_2} f(x_1 x_2) h_1\|}_{\leqslant \sup_{\Theta_2 \in (0,1)} \|\partial_{x_2} f(x_1 + h_1, x_2 + \Theta_2 h_2) - \partial_{x_2} f(x_1, x_2)\| \cdot \|h_2\|} + \underbrace{\|f(x_1 + h_1, x_2) - f(x_1, x_2) - \partial_{x_1} f(x) h_1\|}_{\leqslant \sup_{\Theta_1 \in (0,1)} \|\partial_{x_1} f(x_1 + \Theta_1, x_2) - \partial_{x_1} f(x)\| \cdot \|h_1\|}_{\leqslant \sup_{\Theta_1 \in (0,1)} \|\partial_{x_1} f(x_1 + \Theta_1, x_2) - \partial_{x_1} f(x)\| \cdot \|h_1\|} \leqslant .$$

Заметим, что $||h_1|| \leqslant ||h|| \wedge ||h_2|| \leqslant ||h||$. Тогда можем переписать так:

$$\leq \|h\| \cdot \left(\sup_{\Theta_1} + \sup_{\Theta_1}\right).$$

Каждый из этих супремумов стремиться к 0 при $h \to 0$.

Corollary. Непрерывная дифференцируцемость на открытом множестве равносильна непрерывной дифференцируемости всех частных отображений (существованию и непрерывности всех частных дифференциалов).

Theorem 2.7.3 (Теорема о конечном приращении для функций). Пусть $f: U \subset X \to \mathbb{R}$ непрерывна на $[x, x+h] \in U$ и дифференцируема на (x.x+h). Тогда существует такое $\xi \in (x, x+h)$, что

$$f(x+h) - f(x) = df(\xi)h.$$

Corollary. Если U — выпуклое множество и df(x) = 0 для любого x из U, то f(x) = const на U.

Corollary. Если U — открытое связное множество в df(x) = 0 для всех $x \in U$, то f(x) = const на U.