Lab 2: Deep Residual Learning

Department of Computer Science, NCTU

TA Yu-Chuan Chuang (莊祐銓)

Source: Hung-yi Lee, "Machine Learning course"

Paper: He, Kaiming, et al. "Deep residual learning for image recognition." CVPR, 2016.

Applications - Playing Go & Games

Applications - Autonomous Driving & Robotics

How it(AI) works?

深度學習≈找尋一個函數(根據資料)

Mail filtering: f() = 垃圾郵件?

Image classification: f(() = 貓or狗?

EEG classification: f() = 動左手?動右手?

Playing go: f() = 下在天元?

Speech recognition: f(----) = "Wow"

Binary Classification(二元分類)

Mail Filtering(郵件過濾)

Mail filtering: f() = yes or no?

input

你知道在非洲過了60秒,就等於過了一分鐘你知道呼吸很重要嗎? 吸了第一口,就不能沒有第二口

Multi-class Classification(多元分類)

MNIST Classification(手寫數字辨識)

Image Classification(影像辨識)

Fully Connected Layer

32 X 32 X 3 = 3072

參數量: 3072 X 3072 = 9437184

torch.nn.linear(in_features=3072, out_features=3072)

Convolution Layer

Convolution Layer

Fully Connected Layer vs Convolution Layer

參數量: 3072 X 3072 = 9437184

torch.nn.Conv2d(in_channels=3, out_channels=3, kernel_size=(3,3), stride=1, padding=1)

參數量: 3 X 3 X 3 X 3 = 81 Kernel size X input channel X output channel

Pooling

- A pooling function replaces the output of the net with a summary statistic of the nearby outputs.
- Pooling helps to make the representation become approximately invariant to small translation and rotation.

Example: Feedforward Deep Networks

Image Categorization

LeNet(LeCun et al. 1998)

ResNet

- Won 1st place in the ILSVRC 2015 classification competition
- ResNet makes it possible to train up to hundreds or even thousands of layers and still achieves compelling performance.

Deeper is Better?

- Increasing network depth does not work by simply stacking layers together
- Deep networks are hard to train because of the gradient vanishing problem

Gradient Vanishing

$$x \rightarrow w_1 \rightarrow w_2 \rightarrow w_3 \rightarrow w_4 \rightarrow Loss$$

 $y_1 \qquad y_2 \qquad y_3 \qquad y_4$

$$\frac{\partial Loss}{\partial w_1} = \frac{\partial Loss}{\partial y_4} \frac{\partial y_4}{\partial z_4} \frac{\partial z_4}{\partial y_3} \frac{\partial y_3}{\partial z_3} \frac{\partial z_3}{\partial y_2} \frac{\partial y_2}{\partial z_2} \frac{\partial z_2}{\partial y_1} \frac{\partial y_1}{\partial z_1} \frac{\partial z_1}{\partial w_1}$$

$$= \frac{\partial Loss}{\partial y_4} \sigma'(z_4) w_4 \sigma'(z_3) w_3 \sigma'(z_2) w_2 \sigma'(z_1) x_1$$

If $w_i < 1$, it will produce gradient vanishing.

Gradient Vanishing

Smaller gradients

Learn very slow

Almost random

Larger gradients

Learn very fast

Already converge

How to Avoid Gradient Vanishing?

• This identity mapping does not have any parameters and is just there to add the output from the previous layer to the layer ahead

ImageNet Challenge(Image Classification)

ResNet Architecture

ResNe18(Basic block), ResNet50(Bottleneck block)

				. – – – – –			
layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112		7×7, 64, stride 1				
			3×3 max pool, stride 2				
conv2_x	56×56	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8 $	
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36 $	
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	
	1×1	average pool, 1000-d fc, softmax					
FLOPs		1.8×10^{9}	3.6×10^{9}	3.8×10^9	7.6×10 ⁹	11.3×10 ⁹	

ResNet Block

• ResNe18(Basic block), ResNet50(Bottleneck block)

Deeper is Better?

model	top-1 err.	top-5 err.
VGG-16 [41]	28.07	9.33
GoogLeNet [44]	-	9.15
PReLU-net [13]	24.27	7.38
plain-34	28.54	10.02
ResNet-34 A	25.03	7.76
ResNet-34 B	24.52	7.46
ResNet-34 C	24.19	7.40
ResNet-50	22.85	6.71
ResNet-101	21.75	6.05
ResNet-152	21.43	5.71

	# layers	# params	
ResNet	20	0.27M	8.75
ResNet	32	0.46M	7.51
ResNet	44	0.66M	7.17
ResNet	56	0.85M	6.97
ResNet	110	1.7M	6.43 (6.61±0.16)
ResNet	1202	19.4M	7.93

- 網路太淺(參數少),能力不足,所以效果相對較差網路越深(參數多),能力越強,可處理更複雜的問題

Model Capacity

- Models with insufficient capacity are unable to solve complex tasks
- Models with high capacity can solve complex tasks, but may be overfitting

