МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого»

Институт компьютерных наук и кибербезопасности Высшая школа технологий искусственного интеллекта Направление: 02.03.01 Математика и компьютерные науки

Теория алгоритмов

Отчёт по выполнению курсовой работы «Синтез функциональной схемы электронных часов» Вариант 11

Студент,		
группы 5130201/20102		_ Гаар В.С.
Преподаватель		_ Востров А.В.
	« »	2024 г

Санкт-Петербург, 2024

Содержание

B	веде	ние	3
1	Пос	становка задачи	4
2	Опі	исание объекта управления	5
3	Ma	гематическое описание	6
	3.1	Модель конечного автомата	6
	3.2	Реализация графа управляющего автомата	
	3.3	Управляющие воздействия	
	3.4	Общая структурная схема	
	3.5	Кодирование входных и выходных воздействий, состояний автомата	
	3.6	Минимизация функций	
4	Cxe	мотехническая реализация	17
	4.1	Анализ схемотехнических элементов	17
	4.2	Расчёт площади схемы	32
38	клю	чение	33
\mathbf{C}	писо	к источников	34

Введение

Данный отчёт содержит в себе информацию о курсовой работе, в ходе выполнения которой было необходимо разработать функциональную схему электронных часов с заданными дополнительными функциями.

На функциональной схеме изображают функциональные части изделия (элементы, устройства и функциональные группы), участвующие в процессе, иллюстрируемом схемой, и связи между этими частями. Графическое построение схемы должно давать наиболее наглядное представление о последовательности процессов, иллюстрируемых схемой.

1 Постановка задачи

Построить функциональную схему электронных часов, которые кроме отображения и корректировки времени (минут и часов) выполняют следующие функции, определённые вариантом 2101100:

- A=2: отображают и позволяют корректировать день недели;
- В=1: режим работы часов 24-х часовой;
- С=0: отключение индикаторов с целью экономии электроэнергии отсутствует;
- D=1: останов часов по нажатию кнопки;
- Е=1: присутствует простой секундомер (сброс запуск останов);
- F=0: звуковая сигнализация отсутствует;
- G=0: звуковой сигнал в устанавливаемое время (будильник) отсутствует.

Для построения управляющих воздействий было необходимо:

- 1. Построить конечный автомат с состояниями системы часов.
- 2. Построить и минимизировать функции импульсных и потенциальных команд.
- 3. Построить функциональную схему часов с данными командами.

2 Описание объекта управления

Реализуемые электронные часы содержат индикаторную панель, показывающую время (часы, минуты) и день недели, и внешние кнопки управления а и b.

Для отображения времени используются:

- 1. Шесть семисегментных дисплеев:
 - старший десятичный разряд часов;
 - младший десятичный разряд часов;
 - старший десятичный разряд минут;
 - младший десятичный разряд минут;
 - первая буква аббревиатуры дня недели;
 - вторая буква аббревиатуры дня недели.
- 2. Диод, отвечающий за режим работы часов: отображение времени часов/отображение времени секундомера.

Для управления часами используются кнопки внешнего управления — а и b. Входные воздействия на часы возможны нажатием одной из кнопок или их обеих одновременно.

3 Математическое описание

3.1 Модель конечного автомата

Конечный автомат — абстрактный автомат с конечным числом возможных внутренних состояний.

Конечный автомат возможно формализовать как упорядоченную шестёрку: $M=(S,\Sigma,Y,s_0,\delta,\lambda)$, где

- S множество состояний конечного автомата;
- Σ входной алфавит;
- У множество выходных сигналов;
- s_0 начальное состояние;
- $\delta: S \times \Sigma \to S$ функция переходов;
- $\lambda: S \times \Sigma \to Y$ функция выходов.

Конечный автомат начинает работу в состоянии s_0 , считывает входные воздействия и переходит в соответствующие функции переходов состояния, выводя соответствующие выходные данные.

3.2 Реализация графа управляющего автомата

Было выделено 7 состояний $S = \{S_0, S_1, S_2, S_3, S_4, S_5, S_6\}$, где

- S_0 состояние отображения времени и дня недели (time). В этом состоянии включены все индикаторы для отображения часов, минут и дня недели.
- S_1 состояние коррекции минут (minutes correction). В этом состоянии горят только индикаторы минут.
- S_2 состояние коррекции часов (hours correction). В этом состоянии горят только индикаторы часов.
- S_3 состояние коррекции дня недели (day of the week correction). В этом состоянии горит только индикатор дня недели.
- S_4 состояние запущенного секундомера ($stopwatch\ running$). На индикаторах идущее время (минуты и секунды) секундомера.
- S_5 состояние остановленного секундомера ($stopwatch\ pause$). На индикаторах минуты и секунды секундомера. В этом состоянии секундомер не отсчитывает время.
- S_6 состояние остановленных часов ($time\ stop$). На индикаторах часы, минуты и день недели. В этом состоянии время зафиксировано и не изменяется.

Множество выходных сигналов $Y = \{z_0, z_1, z_2, z_3, z_4, z_5, z_6\}$, где

- z_0 нейтральный сигнал;
- \bullet z_1 прибавление единицы к минутам при корректировке;
- ullet z_2 прибавление единицы к часам при корректировке;
- z_3 смена дня недели на следующий при корректировке;
- z_4 остановка/запуск секундомера;
- z_5 сброс текущего значения секундомера;
- z_6 остановка/запуск часов.

Входной алфавит $\Sigma = \{a, b, ab\}$, где

- a нажатие кнопки а;
- b нажатие кнопки b;
- ab нажатие обеих кнопок.

Начальное состояние s_0 автомата это состояние S_0 – "Отображение времени и дня недели".

Функция переходов и выходов представлены в Табл. 1 и Табл. 2 соответственно.

Таблица 1. Функция переходов δ

	a	b	ab
$\mathbf{S_0}$	S_1	S_4	S_6
$\mathbf{S_1}$	S_2	S_1	S_1
$\mathbf{S_2}$	S_3	S_2	S_2
S_3	S_0	S_3	S_3
S_4	S_4	S_5	S_0
S_5	S_5	S_4	S_0
$\mathbf{S_6}$	S_6	S_6	S_0

Таблица 2. Функция выходов λ

	a	b	ab
$\mathbf{S_0}$	z_0	z_0	z_7
$\mathbf{S_1}$	z_0	z_1	z_0
$\mathbf{S_2}$	z_0	z_2	z_0
$\mathbf{S_3}$	z_0	z_3	z_0
$\mathbf{S_4}$	z_4	z_5	z_0
S_5	z_6	z_5	z_0
S_6	z_0	z_0	z_7

На Рис. 1 представлен реализованный конечный автомат.

Рис. 1. Конечный автомат

Этому графу переходов соответствует следующая таблица переходов (Табл. 3).

Таблица 3. Таблица переходов

Вход	Текущее состояние	Следующее состояние	Выход
a	s_0 : time	s_1 : minutes correction	z_0
b	$s_0: ext{time}$	s_4 : stopwatch running	z_0
ab	s_0 : time	s_6 : time stop	z_6
a	$s_1: { m minutes\ correction}$	s_2 : hours correction	z_0
b	$s_1: { m minutes\ correction}$	s_1 : minutes correction	z_1
ab	$s_1: { m minutes\ correction}$	s_1 : minutes correction	z_0
a	s_2 : hours correction	s_3 : day of the week correction	z_0
b	s_2 : hours correction	s_2 : hours correction	z_2
ab	s_2 : hours correction	s_2 : hours correction	z_0
a	s_3 : day of the week correction	s_0 : time	z_0
b	s_3 : day of the week correction	s_3 : day of the week correction	z_3
ab	$s_3: { m day\ of\ the\ week\ correction}$	s_3 : day of the week correction	z_0
a	s_4 : stopwatch running	s_4 : stopwatch running	z_5
b	s_4 : stopwatch running	$s_5: { m stopwatch\ pause}$	z_4
ab	s_4 : stopwatch running	$s_0: ext{time}$	z_5
a	$s_5: { m stopwatch\ pause}$	$s_5: { m stopwatch\ pause}$	z_5
b	$s_5: { m stopwatch\ pause}$	s_4 : stopwatch running	z_4
ab	$s_5: { m stopwatch\ pause}$	$s_0: ext{time}$	z_5
a	s_6 : time stop	s_6 : time stop	z_0
b	s_6 : time stop	s_6 : time stop	z_0
ab	s_6 : time stop	$s_0: ext{time}$	z_6

3.3 Управляющие воздействия

Входом в управляющий автомат являются преобразованные внешние воздействия, выходы — это два типа управляющих воздействий: импульсные и потенциальные. Импульсные команды — это кратковременные воздействия, которые подаются в момент нажатия внешних кнопок владельцем часов. Потенциальные команды — это продолжительное воздействие, которое действует в период нахождения автомата в определенном состоянии и может измениться только при переключении автомата в другое состояние.

Потенциальные команды:

- L_1 разрешение подачи тактового импульса на счётчики секундомера. При наличии этого сигнала секундомер запускается, при отсутствии останавливается.
- L_2 управление MC, которое позволяет выводить на индикаторы текущее время или время секундомера.
- \bullet L_3 управление подачей сигнала на индикатор минут.

- \bullet L_4 управление подачей сигнала на индикатор часов.
- \bullet L_5 управление подачей сигнала на индикатор дней недели.
- L_6 разрешение подачи тактового импульса на счётчики часов. При наличии этого сигнала часы идут, при отсутствии останавливаются.

Импульсные команды:

- \bullet i_1 прибавление единицы к минутам при корректировке;
- \bullet i_2 прибавление единицы к часам при корректировке;
- \bullet i_3 прибавление единицы к порядковому номеру дня недели;
- \bullet i_4 обнулить счетчики секундомера.

3.4 Общая структурная схема

Общая структурная схема представлена на Рис. 2.

Рис. 2. Общая структурная схема

3.5 Кодирование входных и выходных воздействий, состояний автомата

Кодирование входных сигналов и состояний автомата представлены в Табл. 4 и Табл. 5 соответственно.

Таблица 4. Кодирование входных сигналов

	$\mathbf{x_1}$	$\mathbf{x_2}$
a	1	0
b	0	1
ab	1	1

Таблица 5. Кодирование состояний

	$\mathbf{q_1}$	$\mathbf{q_2}$	q_3
S_0	0	0	0
$\mathbf{S_1}$	0	0	1
$\mathbf{S_2}$	0	1	0
S_3	0	1	1
S_4	1	0	0
S_5	1	0	1
S_6	1	1	0

3.6 Минимизация функций

В соответствии с закодированными состояниями были построены таблицы истинности для преобразований F и FL (Табл. 6 и Табл. 7).

Таблица 6. Преобразование F

Bxc	Входы Текущее состояние Следующее состо		эинко:	Выход							
x ₁	$\mathbf{x_2}$	$\mathbf{q_1}$	$\mathbf{q_2}$	$\mathbf{q_3}$	$\mathbf{Q_1}$	$\mathbf{Q_2}$	$\mathbf{Q_3}$	i_1	$\mathbf{i_2}$	i_3	$\mathbf{i_4}$
1	0	0	0	0	0	0	1	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0	0
1	1	0	0	0	1	1	0	0	0	0	0
1	0	0	0	1	0	1	0	0	0	0	0
0	1	0	0	1	0	0	1	1	0	0	0
1	1	0	0	1	0	0	1	0	0	0	0
1	0	0	1	0	0	1	1	0	0	0	0
0	1	0	1	0	0	1	0	0	1	0	0
1	1	0	1	0	0	1	0	0	0	0	0
1	0	0	1	1	0	0	0	0	0	0	0
0	1	0	1	1	0	1	1	0	0	1	0
1	1	0	1	1	0	1	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0	1
0	1	1	0	0	1	0	1	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	1
1	0	1	0	1	1	0	1	0	0	0	1
0	1	1	0	1	1	0	0	0	0	0	0
1	1	1	0	1	0	0	0	0	0	0	1
1	0	1	1	0	1	1	0	0	0	0	0
0	1	1	1	0	1	1	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0

Таблица 7. Преобразование FL

	$\mathbf{q_1}$	$\mathbf{q_2}$	$\mathbf{q_3}$	L_1	$\mathbf{L_2}$	L_3	$\mathbf{L_4}$	L_5	L_6
0	0	0	0	0	0	1	1	1	1
1	0	0	1	0	0	1	0	0	1
2	0	1	0	0	0	0	1	0	1
3	0	1	1	0	0	0	0	1	1
4	1	0	0	1	1	1	1	0	1
5	1	0	1	0	1	1	1	0	1
6	1	1	0	0	0	1	1	1	0

${f 3.6.1}$ Минимизация для Q_1 - Q_3

По Табл. 6 были построены формулы для Q_1,Q_2,Q_3 . На Рис. 3 приведены карты Карно для минимизации Q_1,Q_2,Q_3 соответственно.

Рис. 3. Карты карно для (a) Q_1 ; (b) Q_2 ; (c) Q_3 .

$$Q_1 = \neg x_2 q_1 + \neg x_1 q_1 + x_2 \neg q_1 \neg q_2 \neg q_3$$

$$Q_2 = \neg x_1 q_2 + \neg x_2 q_2 \neg q_3 + x_2 q_2 q_3 + \neg x_2 \neg q_1 \neg q_2 q_3 + x_1 x_2 \neg q_1 \neg q_3$$

$$Q_3 = \neg x_2 q_1 q_3 + \neg x_2 \neg q_1 \neg q_3 + x_2 \neg q_1 q_3 + \neg x_1 q_1 \neg q_2 \neg q_3$$

3.6.2 Минимизация для i_1 - i_4

По Табл. 6 были построены формулы для i_1, i_2, i_3, i_4 . На Рис. 4 приведены карты Карно для минимизации i_1, i_2, i_3, i_4 соответственно.

Рис. 4. Карты карно для (a) i_1 ; (b) i_2 ; (c) i_3 ; (d) i_4 .

$$i_1 = \neg x_1 \neg q_1 \neg q_2 q_3$$

$$i_2 = \neg x_1 \neg q_1 q_2 \neg q_3$$

$$i_3 = \neg x_1 q_2 q_3$$

$$i_4 = x_1 q_1 \neg q_2$$

3.6.3 Минимизация для L_1 - L_6

По Табл. 7 были построены формулы для L_1,L_2,L_3,L_4,L_5,L_6 . На Рис. 5 приведены карты Карно для минимизации L_1,L_2,L_3,L_4,L_5,L_6 соответственно.

Рис. 5. Карты карно для (a) L_1 ; (b) L_2 ; (c) L_3 ; (d) L_4 ; (e) L_5 ; (f) L_6 .

$$L_1 = q_1 \neg q_2 \neg q_3$$

$$L_{2} = q_{1} \neg q_{2}$$

$$L_{3} = q_{1} + \neg q_{2}$$

$$L_{4} = q_{1} + \neg q_{3}$$

$$L_{5} = q_{1}q_{2} + q_{2}q_{3} + \neg q_{1} \neg q_{2} \neg q_{3}$$

$$L_{6} = \neg q_{1} + \neg q_{2}$$

4 Схемотехническая реализация

4.1 Анализ схемотехнических элементов

4.1.1 Индикаторный преобразователь (ИП)

Индикаторный преобразователь (ИП) — выполняет функцию преобразования двоичного кода, десятичной цифры в сигналы, которые управляют индикаторами. Каждый индикатор состоит из семи сегментов, копјhst при включении в определенной комбинации формируют изображение соответствующей цифры. Необходимо подавать напряжение на каждый сегмент, чтобы он «загорелся» и отобразил нужную информацию. На Рис. 6 приведены индикаторные преобразователи схемы.

Рис. 6. Индикаторный преобразователь

В данной работе был использован универсальный ИП 74LS47D, при помощи которого сигнал из четырёх бит, определяющий десятичную цифру, преобразовывался в соответствующие сигналы для отображения данной цифры на семисегментном дисплее.

4.1.2 Тактовый генератор

Генератор тактовых импульсов (генератор тактовой частоты) предназначен для синхронизации различных процессов в цифровых устройствах — ЭВМ, электронных часах, таймерах и других. Он вырабатывает электрические импульсы, обычно прямоугольной формы, заданной частоты, которая часто используется как эталонная — считая количество импульсов, можно, например, измерять временные интервалы. На Рис. 7 показан тактовый генератор.

Рис. 7. Тактовый генератор

В данной работе используется тактовый генератор с тактовой частотой 200 Γ ц, значением скважности 50% и задержкой 0 секунд.

4.1.3 Счётчик

Счётичик — это устройство, которое осуществляет счет и хранение импульсов. У каждого счетчика есть тактовый вход, на который поступают импульсы, и несколько выходов, с которых можно снимать двоичный код числа, находящийся в счетчике. С каждым новым входным импульсом этот код изменяется: он может увеличиваться на 1 (суммирующий счетчик), уменьшаться на 1 (вычитающий счетчик) или изменяться в соответствии с каким-либо другим правилом. На Рис. 8 приведена, работа двух счётчиков.

Рис. 8. Работа счётчиков

Важным параметром счётчика является *коэффициент пересчета* К. К — это максимальное число импульсов, которое может быть подсчитано. Если рассматри-

вать счетчик как конечный автомат, то K — это количество различных состояний счетчика. Через K переключений счетчик c коэффициентом пересчета K возвращается в исходное состояние. Для удобства использования счетчика, кроме тактового входа существует вход «Уст. 0» (сброс). При подаче на него импульса (логической единицы) на выходе устанавливается нулевой код.

4.1.4 Триггер

Триггер — устройство с двумя устойчивыми состояниями. Основная его функция — хранить один бит информации неограниченное время до тех пор, пока эта информация не будет изменена воздействием на вход триггера. Существует довольно много разновидностей триггеров, различающихся по входным условиям смены состояния.

Кратко алгоритм работы D-триггера, используемого в дальнейшем (см. Рис. 9): когда на выходе Q-1, а на выходе $\overline{Q}-0$, говорят, что триггер установлен в единичное состояние. В противном случае $(Q-0,\overline{Q}-0)$, считается, что триггер сброшен в нулевое стояние. На выходе \overline{Q} триггера всегда устанавливается уровень напряжения, противоположный уровню напряжения на Q.

Рис. 9. D-триггер

Непосредственная установка или сброс триггера осуществляется подачей напряжения низкого уровня на входы S (Set – установка) или R (Reset – сброс) соответственно. Подавать логический ноль на оба входа сразу недопустимо. Если низкий уровень присутствует на R или S, то сигналы на входах D и C никак не влияют на состояние триггера. Однако в функциональном плане более важными являются

именно входы D (Data) и C (Clock). Триггер работает так, что сигнал от входа D передается на выход Q в момент положительного перепада напряжения на С. При этом во время постоянного уровня напряжения или в момент отрицательного перепада напряжения на С значение Q не может измениться. Чтобы триггер переключался правильно, уровень на входе D следует зафиксировать заранее, перед приходом тактового перепада на С. Минимальное время между появлением сигнала на D и на С называется защитным интервалом. При работе в таком режиме, на входах R и S должен присутствовать уровень логической единицы.

4.1.5 Демультиплексор

 \mathcal{A} емультиплексор — это цифровое устройство, которое принимает один входной сигнал и направляет его на один из нескольких выходов в зависимости от управляющих сигналов.

Управляющие линии определяют, какой из выходов активируется, позволяя распределять данные или маршрутизировать сигналы. Например, при n управляющих линиях устройство может иметь 2^n выходов. Демультиплексоры широко применяются в коммуникационных системах, обработке сигналов и компьютерных сетях.

4.1.6 Интерфейс часов

На Рис. 10 представлен интерфейс часов.

Рис. 10. Интерфейс часов

Интерфейс состоит из 5 семисегментных дисплеев, кнопок а и b, 2 диодов для отображения режима работы часов.

4.1.7 Хранение и корректировка времени

На Рис. 11 представлена схема, реализующая хранение, обновление и корректировку времени часов. Основными элементами являются семь счетчиков: единицы секунд, десятки секунд, единицы минут, десятки минут, единицы часов, десятки часов и день недели. Для каждого счетчика выставлено максимальное значение, так, например, счётчики десятков секунд и десятков минут сбрасываются при достижении значения 6, счётчик дней недели сбрасывается при достижении значения 7, а количество часов сбрасывается при достижении значения 24 (значение 2 у счётчика десятка часов и значение 4 у счётчика единиц часов). Секунды прибавляются на каждом такте независимо от остальных данных.

Рис. 11. Блок подсчёта и корректировки времени часов

Единицы минут зависят от десятков секунд, десятки минут зависят от единиц минут и т.д. Перенос разряда осуществляется в тот момент, когда приходит сигнал на прибавление, а во всех меньших разрядах уже достигнуто максимальное значение.

На Рис. 12 представлена схема, реализующая хранение и обновление времени секундомера. Основными элементами являются четыре счетчиков: единицы секунд, десятки секунд, единицы минут, десятки минут. Для каждого счетчика выставлено максимальное значение, так, например, счётчики десятков секунд и десятков минут сбрасываются при достижении значения 6.

Рис. 12. Блок подсчёта времени секундомера

Единицы минут зависят от десятков секунд, десятки минут зависят от единиц минут и т.д. Перенос разряда осуществляется в тот момент, когда приходит сигнал на прибавление, а во всех меньших разрядах уже достигнуто максимальное значение.

4.1.8 Устройство управления

На Рис. 13 приведена схема устройства управления, состоящая из следующих блоков:

- преобразователь внешних воздействий;
- блок F;
- і-формирователь;
- элемент памяти;
- блок FL.

Рис. 13. Устройство управления

Данные блоки рассматриваются более подробно в последующих пунктах.

4.1.9 Преобразователь внешних воздействий

Реализованный в схеме конечный автомат получает сигнал х от преобразователя внешних воздействий, соответствующий одной из кнопок или им обеим, а так же сигнал s, по которому будет произведен переход часов из одного состояния в другое. Дискретная реализация приведена на Рис. 14.

Рис. 14. Преобразователь внешних воздействий

На выходе реализованный в схеме конечный автомат формирует импульсные и потенциальные команды, которые влияют на работу всей остальной схемы часов.

4.1.10 Блок F

На Рис. 15 приведена, реализация блока F в схеме.

Рис. 15. Реализация блока F

Следующее состояние часов поразрядно формируется в блоке F по значениям входных сигналов и разрядам старого состояния. Таким образом, на выходе получаются разряды следующего состояния, которые поступают на вход D-latch-триггеров блока ЭП.

4.1.11 і-формирователь

На Рис. 16 приведена реализация і-формирователя в схеме.

Рис. 16. Реализация блока і-формирователя

Для прибавления единицы к минутам, часам или дням недели при корректировке времени и для сброса секундомера используются команды i, которые поступают от блока i-формирователь в реализации конечного автомата по управлению состоянием часов.

4.1.12 Элемент памяти

Элемент памяти (ЭП) хранит состояние конечного автомата в двух D-latch триггерах. Реализованный ЭП представлен на Рис. 17.

Рис. 17. Элемент памяти

При единичном синхроимпульсе s во второй триггер записывается состояние, ранее хранимое в первом, а в первый триггер записывается новое состояние, переданное из блока F. При нулевом синхроимпульсе s из второго триггера считывается хранимое в нём состояние для передачи в блоки F и FL.

4.1.13 Блок FL

На Рис. 18 приведена реализация блока FL в схеме.

Рис. 18. Реализация блока FL

Для управления работой индикаторов используются потенциальные команды L, которые поступают от блока FL в реализации конечного автомата по управлению состоянием часов.

4.2 Расчёт площади схемы

Для расчёта площади необходимо оценить число транзисторов, которое потребуется для создания реальной схемы часов по построенной схеме. Для этого используем Табл. 8.

Таблица 8. Подсчёт количества транзисторов

Элемент	Число транзисторов	Число элементов	Всего транзисторов
Элемент НЕ	2	15	30
Элемент И	4	42	168
Элемент ИЛИ	4	13	52
D-триггер	20	4	80
D-latch-триггер 74LS373DW	160	2	320
RS-триггер SR_FF_POSSR	16	1	16
Счётчик 74LS90D	76	11	836
Счётчик 74LS93D	68	1	68
Мультиплексор MUX_2TO1	14	5	70
Мультиплексор 74LS157D	54	4	216
ИП 74LS47D	150	5	750
PNP-транзистор	1	2	2
		Итого:	2608

Для реализации схемы потребуется примерно 2608 транзисторов. Производя оценку из расчёта 1000 транзисторов на одном квадратном миллиметре площади кристалла, площадь схемы примерно равна $2.608~{\rm mm}^2$.

Заключение

В результате данной курсовой работы была подготовлена и составлена функциональная схема электронно-цифровых часов в соответствии с заданным вариантом (вариант №11), когорая имеет следующий функционал:

- A=2: отображают и позволяют корректировать день недели;
- В=1: режим работы часов 24-х часовой;
- C=0: отключение индикаторов с целью экономии электроэнергии отсутствует;
- D=1: останов часов по нажатию кнопки;
- Е=1: присутствует простой секундомер (сброс запуск останов);
- F=0: звуковая сигнализация отсутствует;
- G=0: звуковой сигнал в устанавливаемое время (будильник) отсутствует.

Преимущества:

- Для реализации задачи блоков F, FL, i-формирователя были проведены минимизации соответствующих функций, благодаря чему используется меньшее количество логических элементов.
- Конечный автомат составлен с использованием двух кнопок, что уменьшает количество переменных.

Недостатки:

- Корректировка времени возможна только в сторону прибавления единиц, что усложняет выставление значения меньше текущего.
- Использование блоков со сложной логикой для простых задач. Например, использование мультиплексора MUX_2TO1 для корректировки времени, чтобы при отсутствии сигнала соответствующей микрокоманды входы счётчиков были подключены к земле.
- Избыточность D-триггеров в блоке памяти. Из 8 доступных входов и выходов используются лишь 3.

Масштабирование:

- Добавление будильника.
- Добавление сохранения состояния секундомера.
- Реализовать отображение дня недели при помощи буквенных символов/светодиодов.
- Добавить отображение секунд и даты.
- Добавить команды на удержание одиночных кнопок.

Работа была выполнена в среде разработки NI Multisim (v14.0.1).

Исходные схемы всего проекта находятся в репозитории GitHub (https://github.com/vlgUseless/Clock-FSM).

Полученные знания могут быть и будут испольованы в работе над последующими проектами и заданиями.

Список источников

- [1] Сайт секции «Телематика». Теория алгоритмов. Методические указания к курсовой работе [Электронный ресурс] URL: https://tema.spbstu.ru/userfiles/files/courses/2018-theory-algorithm/KuR_MU.pdf (дата обращения 10.12.2024).
- [2] Карпов Ю. Г. Теория автоматов. Питер, 2003г, 206с
- [3] Эриксон Д. Алгоритмы. ДМК-Пресс, 2023г, 526с.
- [4] sublime.tools. Карта карно [Электронный ресурс] URL: https://sublime.tools/ru/karta-karno (дата обращения 10.12.2024).