Assignment -2

Python Programming

Assignment Date	08 September 2022
Student Name	Mr. Jeya prathap P
Student Register Number	910619104035
Maximum Marks	

1. Importing necessary Libraries and Dataset

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

import scipy.stats
import statsmodels.api as sm
#import statsmodels.stats.api as sms
import statsmodels.formula.api as smf
from statsmodels.stats.stattools import jarque_bera

sns.set_style('darkgrid')
sns.set(font_scale=1.3)

data = pd.read_csv('Churn_Modelling.csv')
data
```

Out[143]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveM
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	
	9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	
	9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	
	9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	
	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	
	9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	

10000 rows x 14 columns

SHAPE AND SIZE OF THE DATASET

```
In (101= data.shape
Out[101]: (10000, 14)
```

DataTypes

```
In [103= data.describe(include='object')
Out[103]:
```

data.dtypes

Out[102]: |

RowNumber	int64
CustomerId	int64
Surname	object
CreditScore	int64
Geography	object
Gender	object
Age	int64
Tenure	int64
Balance	float64
NumOfProducts	int64
HasCrCard	int64
IsActiveMember	int64
EstimatedSalary	float64
Exited	int64
dtype: object	

	Surname	Geography	Gender
count	10000	10000	10000
unique	2932	3	2
top	Smith	France	Male
freq	32	5014	5457

Describe function to watch the Mean, Medium, etc

	data.d	escribe()								
[105]:		RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember
	count 1	0000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000
	mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100
	std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797
	min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000
	25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000
	50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000
	75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000
	max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000

2. Perform Visualizations

UNIVARIATE ANALYSIS

Histogram

```
cols = 3
rows = 4
num_cols = data.select_dtypes(exclude='object').columns
fig = plt.figure( figsize=(cols*5, rows*5))
for i, col in enumerate(num_cols):
    ax=fig.add_subplot(rows,cols,i+1)
    sns.histplot(x = data[col], ax = ax)

fig.tight_layout()
plt.show()
```


Distplot

```
cols = 3
rows = 4
num_cols = data.select_dtypes(exclude='object').columns
fig = plt.figure( figsize=(cols*5, rows*5))
for i, col in enumerate(num_cols):
    ax=fig.add_subplot(rows,cols,i+1)
    sns.histplot(x = data[col], ax = ax, data=data, kde='True')
fig.tight_layout()
```


Countplot

Boxplot

Bivariate Analysis

Out[110]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMem
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):
    Column
                      Non-Null Count Dtype
     RowNumber
                      10000 non-null int64
                      10000 non-null int64
10000 non-null object
     CustomerId
     Surname
     CreditScore
                      10000 non-null int64
    Geography
                       10000 non-null object
                      10000 non-null object
    Gender
                      10000 non-null int64
10000 non-null int64
     Tenure
                      10000 non-null float64
 8
    Balance
                    10000 non-null int64
10000 non-null int64
 9
    NumOfProducts
 10 HasCrCard
11 IsActiveMember 10000 non-null int64
 12 EstimatedSalary 10000 non-null float64
13 Exited
                       10000 non-null int64
dtypes: float64(2), int64(9), object(3)
memory usage: 1.1+ MB
```

Numerical variable vs Numerical variable

Scatterplot

```
In [112... sns.scatterplot(x='Balance', y='Age', data = data, hue='Gender')
   plt.show()
```


Categorical vs Categorical

Catplot

```
sns.catplot(x='Gender', y='Age', data=data, kind='point', hue='Geography')
plt.show()
```


Multivariate Analysis

PairPlot

sns.pairplot(data)

Out[114]: <seaborn.axisgrid.PairGrid at 0x24161886980>

3. Perform descriptive statistics on the dataset.

data.describe(include='all') **Balance NumOfProduct** Out[144]: RowNumber **CustomerId Surname** CreditScore Geography Gender Age Tenure count 10000.00000 1.000000e+04 10000 10000.000000 10000 10000 10000.000000 10000.000000 10000.000000 10000.00000 unique 2932 2 NaN NaN NaN 3 NaN NaN NaN Na top NaN NaN Smith NaN France Male NaN NaN NaN Na NaN 32 NaN 5014 5457 NaN NaN NaN Na freq 5000.50000 1.569094e+07 NaN 650.528800 NaN NaN 38.921800 5.012800 76485.889288 1.53020 mean 62397.405202 std 2886.89568 7.193619e+04 NaN 96.653299 NaN NaN 10.487806 2.892174 0.58165 min 1.00000 1.556570e+07 NaN 350.000000 NaN NaN 18.000000 0.000000 0.000000 1.00000 25% 2500 75000 1.562853e+07 NaN 584 000000 NaN NaN 32 000000 3.000000 0.000000 1.00000 50% 5000.50000 1.569074e+07 NaN 652.000000 NaN NaN 37.000000 5.000000 97198.540000 1.00000 75% 7500.25000 1.575323e+07 NaN 718.000000 NaN NaN 44.000000 7.000000 127644.240000 2.00000 10000.00000 1.581569e+07 850.000000 10.000000 250898.090000 4.00000 max NaN NaN NaN 92.000000

```
Out[145]: RowNumber
CustomerId
                               10000
           Surname
                               10000
          CreditScore
                              10000
          Geography
                               10000
                               10000
          Gender
                               10000
          Tenure
                               10000
          Balance
          NumOfProducts
                              10000
           HasCrCard
                               10000
          IsActiveMember
                               10000
          {\tt EstimatedSalary}
                               10000
          Exited
                               10000
          dtype: int64
```

4. Handle the Missing values.

Fill with Zeros for NAN values

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiv
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	
•••												
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	
9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	

5. Find the outliers and replace the outliers

	а												
Out[147]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveM
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	
	9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	
	9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	
	9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	
	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	
	9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	
	10000) rows × 14 co	lumns										

```
in [148. missing_values=data.isnull().sum()
    missing_values[missing_values>0]/len(data)*100

Out[148]: Series([], dtype: float64)

In [148. data.drop(['RowNumber', 'Exited', 'CustomerId', 'Surname', 'Geography', 'Gender'], axis=1, inplace=True)
    data.head()
```

```
101348.88
           0
                    619
                          42
                                         0.00
                    608
                          41
                                      83807.86
                                                                     0
                                                                                            112542.58
           2
                                                           3
                                                                                    0
                                                                                           113931.57
                    502
                          42
                                  8 159660.80
                                                                     1
           3
                                                           2
                                                                                    0
                    699
                          39
                                         0.00
                                                                     0
                                                                                            93826.63
           4
                                  2 125510.82
                                                           1
                                                                                            79084.10
                    850
                          43
                                                                     1
In [150... cols = 3
          rows = 4
          num_cols = data.select_dtypes(exclude='object').columns
          fig = plt.figure( figsize=(cols*5, rows*5))
          for i, col in enumerate(num_cols):
              ax=fig.add_subplot(rows,cols,i+1)
              sns.boxplot(x = data[col], ax = ax)
          fig.tight_layout()
          plt.show()
                                                                                                            4
Tenure
                                                                                              0
                                                                                                     2
              400
                     500
                           600
                                 700
                                         800
                                                     20
                                                              40
                                                                        60
                                                                                 80
                                                                                                                  6
                                                                                                                          8
                                                                                                                                 10
                        CreditScore
                                                                     Age
                50000 100000 150000 200000 250000
                                                                2.0 2.5 3.0
                                                                                                     0.2
                                                                                                           0.4 0.6
                                                                                                                                1.0
           0
                                                    1.0
                                                         1.5
                                                                                 3.5
                                                                                       4.0
                                                                                              0.0
                                                                                                                          8.0
                                                                                                            HasCrCard
                          Balance
                                                                NumOfProducts
          0.0
                 0.2
                        0.4
                               0.6
                                      0.8
                                             1.0
                                                     0
                                                            50000
                                                                   100000
                                                                           150000
                                                                                     200000
                      IsActiveMember
                                                                EstimatedSalary
          data['CreditScore'].hist()
```

Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary

CreditScore Age Tenure

Out[149]:

data['Age'].hist()

Out[124]: <AxesSubplot: >

data['NumOfProducts'].hist()

Out[125]: <AxesSubplot: >


```
print('Skewness value of Age: ',data['Age'].skew())
Age_mean = data['Age'].mean()
print('Mean of Age is: ',Age_mean)
Age_std = data['Age'].std()
print('Standard Deviation of Age is: ',Age_std)
low= Age_mean - (3 * Age_std)
high= Age_mean + (3 * Age_std)
Age_outliers = data[(data['Age'] < low) | (data['Age'] > high)]
#print('Outliers of Age is:\n',Age_outliers)
print('Outliers of Age is:\n',Age_outliers)
Age_outliers.head()
```

Skewness value of Age: 1.0113202630234552

Mean of Age is: 38.9218

Standard Deviation of Age is: 10.487806451704609

Outliers of Age is:

85

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
85	652	75	10	0.00	2	1	1	114675.75
158	646	73	6	97259.25	1	0	1	104719.66
230	673	72	1	0.00	2	0	1	111981.19
252	681	79	0	0.00	2	0	1	170968.99
310	652	80	4	0.00	2	1	1	188603.07

```
print('Skewness value of CreditScore: ',data['CreditScore'].skew())
CreditScore_mean = data['CreditScore'].mean()
print('Mean of CreditScore is: ',CreditScore_mean)
CreditScore_std = data['CreditScore'].std()
print('Standard Deviation of CreditScore is: ',CreditScore_std)
low= CreditScore_mean - (3 * CreditScore_std)
high= CreditScore_mean + (3 * CreditScore_std)
CreditScore_outliers = data[(data['CreditScore'] < low) | (data['CreditScore'] > high)]
#print('Outliers of Age is:\n',Age_outliers)
print('Outliers of CreditScore is:')
```

```
CreditScore_outliers.head()
Skewness value of CreditScore: -0.07160660820092675
Mean of CreditScore is: 650.5288
Standard Deviation of CreditScore is: 96.65329873613035
Outliers of CreditScore is:
      CreditScore Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary
 1405
                  44
                           6 128747.69
                                                                                    146955.71
1631
             350
                  54
                           1 152677.48
                                                   1
                                                                            1
                                                                                    191973.49
                                                              1
 1838
                                                                                    123602 11
                           0 109733 20
                                                   2
                                                             0
                                                                            0
             350
                  39
 1962
             358
                  52
                           8 143542.36
                                                   3
                                                                            0
                                                                                    141959.11
```

0

169621.69

```
print('Skewness value of NumOfProducts: ',data['NumOfProducts'].skew())
NumOfProducts_mean = data['NumOfProducts'].mean()
print('Mean of NumOfProducts is: ', NumOfProducts mean)
NumOfProducts std = data['NumOfProducts'].std()
print('Standard Deviation of NumOfProducts is: ', NumOfProducts_std)
low= NumOfProducts_mean -(3 * NumOfProducts_std)
high= NumOfProducts mean + (3 * NumOfProducts std)
NumOfProducts_outliers = data[(data['NumOfProducts'] < low) | (data['NumOfProducts'] > high)]
#print('Outliers of Age is:\n',Age_outliers)
print('Outliers of NumOfProducts is:')
NumOfProducts_outliers.head()
```

Skewness value of NumOfProducts: 0.7455678882823168 Mean of NumOfProducts is: 1.5302 Standard Deviation of NumOfProducts is: 0.5816543579989906 Outliers of NumOfProducts is:

4 163146.46

t[153]:		CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
	7	376	29	4	115046.74	4	1	0	119346.88
	70	738	58	2	133745.44	4	1	0	28373.86
	1254	628	46	1	46870.43	4	1	0	31272.14
	1469	819	49	1	120656.86	4	0	0	166164.30
	1488	596	30	6	121345.88	4	1	0	41921.75

Outliers Eliminated

2473

351

```
Q1 = data['Age'].quantile(0.25)
         Q3 = data['Age'].quantile(0.75)
         IQR = Q3 - Q1
         whisker_width = 1.5
         lower_whisker = Q1 -(whisker_width*IQR)
         upper whisker = Q3 + (whisker width*IQR)
         data['Age']=np.where(data['Age']>upper whisker,upper whisker,np.where(data['Age']<lower whisker,lower whisker,d
         print('Outliers Removed in Age:')
         sns.boxplot(data['Age'])
         Outliers Removed in Age:
Out[160]: <AxesSubplot: >
```

60 50 40

30

20

```
Q3 = data['CreditScore'].quantile(0.75)

IQR = Q3 - Q1

whisker_width = 1.5

lower_whisker = Q1 - (whisker_width*IQR)

upper_whisker = Q3 + (whisker_width*IQR)

data['CreditScore']=np.where(data['CreditScore']>upper_whisker,upper_whisker,np.where(data['CreditScore']<lower

print('Outliers Removed in CreditScore:')

sns.boxplot(data['CreditScore'])

Outliers Removed in CreditScore:
```



```
Q1 = data['NumOfProducts'].quantile(0.25)
Q3 = data['NumOfProducts'].quantile(0.75)

IQR = Q3 - Q1
whisker_width = 1.5
lower_whisker = Q1 - (whisker_width*IQR)
upper_whisker = Q3 + (whisker_width*IQR)
data['Age']=np.where(data['NumOfProducts']>upper_whisker,upper_whisker,np.where(data['NumOfProducts']<lower_whi
print('Outliers Removed in NumOfProducts:')
sns.boxplot(data['NumOfProducts'])

Outliers Removed in NumOfProducts:
```

Outliers Removed in NumOfProducts
Out[162]: <AxesSubplot: >

6. Check for Categorical columns and perform encoding.

```
import numpy as np #for numpy operations
import pandas as pd #for creating DataFrame using Pandas
```

```
# to split the dataset using sklearn
from sklearn.preprocessing import LabelEncoder,OneHotEncoder
# load titanic dataset
data1 = pd.read_csv('Churn_Modelling.csv')
data1.head(10)
```

```
Out[2]:
             RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure
                                                                                                 Balance NumOfProducts HasCrCard IsActiveMemb
          n
                            15634602 Hargrave
                                                                                   42
                                                                                            2
                                                                                                     0.00
                                                        619
                                                                 France
                                                                         Female
                                                                                                                        1
          1
                       2
                            15647311
                                            Hill
                                                        608
                                                                   Spain
                                                                         Female
                                                                                   41
                                                                                                 83807.86
                                                                                                                                    0
          2
                                                                                             8 159660.80
                       3
                            15619304
                                           Onio
                                                        502
                                                                 France
                                                                         Female
                                                                                                                        3
                                                                                                                                    1
          3
                       4
                            15701354
                                           Boni
                                                        699
                                                                         Female
                                                                                   39
                                                                                             1
                                                                                                     0.00
                                                                                                                                    0
                                                                 France
          4
                       5
                            15737888
                                        Mitchell
                                                        850
                                                                   Spain
                                                                         Female
                                                                                   43
                                                                                             2 125510.82
                                                                                                                        1
                                                                                                                                    1
          5
                                           Chu
                                                                                             8 113755.78
                       6
                            15574012
                                                        645
                                                                   Spain
                                                                            Male
          6
                                                                                                                        2
                       7
                            15592531
                                         Bartlett
                                                        822
                                                                 France
                                                                            Male
                                                                                   50
                                                                                             7
                                                                                                     0.00
                                                                                                                                    1
          7
                       8
                            15656148
                                         Obinna
                                                        376
                                                                Germany
                                                                         Female
                                                                                   29
                                                                                             4 115046.74
                                                                                                                        4
          8
                       9
                                                                                             4 142051.07
                                                                                                                        2
                                                                                                                                    0
                            15792365
                                            He
                                                        501
                                                                 France
                                                                            Male
          9
                      10
                            15592389
                                            H?
                                                        684
                                                                 France
                                                                            Male
                                                                                   27
                                                                                             2 134603.88
```

```
data1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):
# Column Non-Null Count Dtype
```

```
10000 non-null int64
Ω
    RowNumber
1
    CustomerId
                     10000 non-null
    Surname
                     10000 non-null object
                     10000 non-null int64
3
    CreditScore
4
    Geography
                     10000 non-null object
                     10000 non-null object
    Gender
6
                     10000 non-null
    Aae
                                    int64
                     10000 non-null int64
 7
    Tenure
8
    Balance
                     10000 non-null float64
 9
    NumOfProducts
                     10000 non-null
10
                     10000 non-null int64
   HasCrCard
11 IsActiveMember
                    10000 non-null int64
12
    EstimatedSalary 10000 non-null float64
                     10000 non-null int64
13 Exited
dtypes: float64(2), int64(9), object(3)
memory usage: 1.1+ MB
```

label_encoder object
label_encoder =LabelEncoder()
Encode labels in column.

data1['Surname'] = label_encoder.fit_transform(data1['Surname'])
data1.head(10)

RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMemb Out[4]: 0 1 15634602 1115 619 France Female 42 0.00 1 2 15647311 1177 608 41 83807.86 0 Spain Female 2 3 15619304 2040 502 Female 42 8 159660.80 3 France 1 3 0.00 2 4 15701354 289 699 France Female 39 1 0 4 5 15737888 1822 850 2 125510.82 Spain Female 1 5 6 15574012 537 645 Spain 44 8 113755.78 2 Male 6 7 2 15592531 177 822 France Male 50 7 0.00 1 7 8 15656148 2000 376 4 115046.74 Germany Female 8 9 15792365 1146 501 France Male 44 4 142051.07 2 0 9 10 15592389 1081 684 France Male 27 2 134603.88

```
data1['Gender'] = label_encoder.fit_transform(data1['Gender'])
data1.head(10)
```

		Danahanahan	0	0	0	0	0	A	T	Dalamas	Norm Of Date does to		la A ational dame in
Out[7]:					CreditScore						NumOfProducts		ISACTIVEWIEMD
	0	1	15634602	1115	619	France	0	42	2	0.00	1	1	
	1	2		1177	608	Spain	0	41	1		1	0	
	2	3	15619304	2040	502	France	0	42	8		3	1	
	3	4	15701354	289	699	France	0	39	1		2	0	
	4	5	15737888	1822	850	Spain	0	43		125510.82	1	1	
	5	6	15574012	537	645	Spain	1	44		113755.78	2	1	
	6	7		177	822	France	1	50	7	0.00	2	1	
	7	8	15656148	2000	376	Germany	0	29	4	115046.74	4	1	
	8	9	15792365	1146	501	France	1	44	4	142051.07	2	0	
	9	10	15592389	1081	684	France	1	27	2	134603.88	1	1	
4													
		tal[' <mark>Geogr</mark> tal.head(1		bel_enco	der.fit_tra	ansform(da	ta1[' Ge	ograp	ohy'])				
Out[8]:	ı	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMemb
	0	1	15634602	1115	619	0	0	42	2	0.00	1	1	
	1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	
	2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	
	3	4	15701354	289	699	0	0	39	1	0.00	2	0	
	4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	
	5	6	15574012	537	645	2	1	44	8	113755.78	2	1	
											_		
	6	7	15592531	177	822	0	1	50	7	0.00	2	1	
	7	7	15592531 15656148	177 2000	822 376	0	0	50 29		0.00 115046.74	2	1	
									4				

7. Split the data into dependent and independent variables.

#

Dependent Variable: A dependent variable is a variable whose value depends on another variable.

#

Independent Variable: An Independent variable is a variable whose value never depends on another variable.

#

```
print("The Minimum value of Dataset:\n",data1.min(numeric_only=True))
print("\n")
print("The Maximum value of Dataset:\n",data1.max(numeric_only=True))
print("\n")
print("The Mean value of Dataset:\n",data1.mean(numeric_only=True))
print("\n")

print(data1.count(0))
print(data1.shape)
print(data1.size)
```

```
CustomerId
                            15565701.00
         Surname
                                    0.00
         CreditScore
                                  350.00
                                    0.00
         Geography
         Gender
                                    0.00
                                   18.00
         Age
                                    0.00
         Tenure
         Balance
                                    0.00
         NumOfProducts
                                    1.00
         HasCrCard
                                    0.00
         IsActiveMember
                                    0.00
         EstimatedSalary
                                   11.58
         Exited
                                    0.00
         dtype: float64
         The Maximum value of Dataset:
          RowNumber
                               10000.00
         CustomerId
                            15815690.00
         Surname
                                2931.00
         CreditScore
                                 850.00
                                    2.00
         Geography
         Gender
                                    1.00
         Age
                                   92.00
                                   10.00
         Tenure
                               250898.09
         Balance
         NumOfProducts
                                   4.00
         HasCrCard
                                    1.00
         IsActiveMember
                                    1.00
         EstimatedSalary
                               199992.48
         Exited
         dtype: float64
         The Mean value of Dataset:
                             5.000500e+03
          RowNumber
         CustomerId
                            1.569094e+07
         Surname
                            1.507774e+03
         CreditScore
                            6.505288e+02
                            7.463000e-01
         Geography
         Gender
                            5.457000e-01
                             3.892180e+01
         Age
         Tenure
                            5.012800e+00
         Balance
                            7.648589e+04
         NumOfProducts
                             1.530200e+00
                             7.055000e-01
         HasCrCard
         IsActiveMember
                            5.151000e-01
         EstimatedSalary
                            1.000902e+05
         Exited
                             2.037000e-01
         dtype: float64
                             10000
         RowNumber
         CustomerId
                            10000
         Surname
                             10000
         CreditScore
                             10000
         Geography
                             10000
         Gender
                             10000
         Age
                             10000
         Tenure
                             10000
                            10000
         Balance
         NumOfProducts
                             10000
         HasCrCard
                             10000
         IsActiveMember
                             10000
                            10000
         EstimatedSalary
         Exited
                             10000
         dtype: int64
         (10000, 14)
         140000
         y = data1["Surname"]
         x=data1.drop(columns=["Surname"],axis=1)
         x.head()
           RowNumber Customerld CreditScore Geography Gender Age Tenure
                                                                         Balance NumOfProducts HasCrCard IsActiveMember Estimat
Out[31]:
         0
                    1
                        15634602
                                       619
                                                   0
                                                          0
                                                              42
                                                                            0.00
         1
                    2
                        15647311
                                       608
                                                   2
                                                          0
                                                              41
                                                                        83807.86
                                                                                                      0
         2
                                                   0
                                                                     8 159660.80
                                                                                                      1
                    3
                        15619304
                                       502
                                                          0
                                                              42
                                                                                            3
                                                                                                                   0
                                                                                                                           1
```

The Minimum value of Dataset:

RowNumber

3

4

4

15701354

15737888

699

850

0

2

0 39

0 43

0.00

2 125510.82

0

1

1

0

1

1.00

9. Scale the independent variables

```
names=x.columns
          names
          Index(['RowNumber', 'CustomerId', 'CreditScore', 'Geography', 'Gender', 'Age',
                   'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMember',
                   'EstimatedSalary', 'Exited'],
                 dtype='object')
          from sklearn.preprocessing import scale
          X=scale(x)
          array([[-1.73187761, -0.78321342, -0.32622142, ..., 0.97024255,
Out[36]:
                    0.02188649, 1.97716468],
                   [-1.7315312, -0.60653412, -0.44003595, ...,
                                                                      0.97024255,
                     0.21653375, -0.50577476],
                   [-1.73118479, -0.99588476, -1.53679418, ..., -1.03067011,
                    0.2406869 , 1.97716468],
                   [ 1.73118479, -1.47928179, 0.60498839, ..., 0.97024255,
                    -1.00864308, 1.97716468],
                   [ 1.7315312 , -0.11935577, 1.25683526, ..., -1.03067011,
                    -0.12523071, 1.97716468],
                   [ 1.73187761, -0.87055909, 1.46377078, ..., -1.03067011,
                    -1.07636976, -0.50577476]])
          x = pd.DataFrame(X, columns = names)
                RowNumber CustomerId CreditScore Geography
                                                                                             Balance NumOfProducts HasCrCard IsActiveMem
                                                                 Gender
                                                                             Age
             0
                                                                         0.293517 -1.041760 -1.225848
                   -1.731878
                              -0.783213
                                          -0.326221
                                                     -0.901886 -1.095988
                                                                                                            -0.911583
                                                                                                                       0.646092
                                                                                                                                       0.970
                   -1.731531
                              -0.606534
                                          -0.440036
                                                      1.515067
                                                               -1.095988
                                                                         0.198164 -1.387538
                                                                                             0.117350
                                                                                                            -0.911583
                                                                                                                       -1.547768
                                                                                                                                       0.970
                              -0.995885
                                                                                                                       0.646092
             2
                   -1.731185
                                          -1.536794
                                                     -0.901886
                                                              -1.095988
                                                                         0.293517
                                                                                   1.032908
                                                                                             1.333053
                                                                                                            2.527057
                                                                                                                                      -1.030
             3
                   -1.730838
                               0.144767
                                                                         0.007457 -1.387538
                                                                                                            0.807737
                                           0.501521
                                                     -0.901886
                                                              -1.095988
                                                                                           -1.225848
                                                                                                                       -1.547768
                                                                                                                                      -1.030
                   -1.730492
                               0.652659
                                           2.063884
                                                      1.515067
                                                               -1.095988
                                                                         0.388871 -1.041760
                                                                                             0.785728
                                                                                                            -0.911583
                                                                                                                       0.646092
                                                                                                                                       0.970
                              -1.177652
                                                     -0.901886
                                                               0.912419
                                                                         0.007457 -0.004426
                                                                                                            0.807737
                                                                                                                       0.646092
                                                                                                                                      -1.030
          9995
                   1.730492
                                           1.246488
                                                                                           -1.225848
          9996
                   1.730838
                              -1.682806
                                          -1.391939
                                                     -0.901886
                                                               0.912419
                                                                        -0.373958
                                                                                   1.724464
                                                                                            -0.306379
                                                                                                            -0.911583
                                                                                                                       0.646092
                                                                                                                                       0.970
          9997
                   1.731185
                              -1.479282
                                           0.604988
                                                     -0.901886
                                                               -1.095988
                                                                        -0.278604
                                                                                   0.687130
                                                                                                            -0.911583
                                                                                                                       -1.547768
                                                                                                                                       0.970
          9998
                   1.731531
                              -0.119356
                                           1.256835
                                                               0.912419
                                                                         0.293517 -0.695982
                                                                                            -0.022608
                                                                                                            0.807737
                                                                                                                       0.646092
                                                                                                                                      -1.030
                                                      0.306591
          9999
                   1.731878
                              -0.870559
                                           1.463771
                                                     -0.901886 -1.095988 -1.041433 -0.350204
                                                                                             0.859965
                                                                                                            -0.911583
                                                                                                                       0.646092
                                                                                                                                      -1.030
          10000 rows x 13 columns
```

10. Split the data into training and testing

#

The train-test split is used to estimate the performance of machine learning algorithms that are applicable for prediction-based Algorithms/Applications. By default, the Test set is split into 30 % of actual data and the training set is split into 70% of the actual data.

#

```
from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test=train_test_split(x, y, test_size=0.2, random_state=0)

x_train.head()
```

Out[40]:		RowNumber	CustomerId	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMem
	7389	0.827747	-0.195066	0.170424	1.515067	-1.095988	-0.469311	-0.004426	-1.225848	0.807737	0.646092	-1.030
	9275	1.481077	0.810821	-2.312802	0.306591	0.912419	0.293517	-1.387538	-0.012892	-0.911583	0.646092	0.970
	2995	-0.694379	-1.507642	-1.195351	-0.901886	-1.095988	-0.946079	-1.041760	0.575076	-0.911583	0.646092	-1.030
	5316	0.109639	1.243462	0.035916	1.515067	0.912419	0.102810	-0.004426	0.467955	-0.911583	0.646092	-1.030
	356	-1.608556	-1.100775	2.063884	1.515067	-1.095988	1.723821	1.032908	0.806010	0.807737	0.646092	0.970

x_train.shape,y_train.shape,x_test.shape,y_test.shape

Out[41]: ((8000, 13), (8000,), (2000, 13), (2000,))

Loading [MathJax]/extensions/Safe.js