VIII UNIWERSYTECKI OBÓZ OLIMPIADY MATEMATYCZNEJ

Wielomiany

Rozgrzewka

Zadanie 1. Udowodnij, że jeśli a+b=c+d oraz ab=cd, to wówczas a=b i c=d lub a=d i b=c.

Zadanie 2. Wykonaj dzielenie wielomianów

- (1) $(x^6 2x^4 + 2x^3 2x + 1) : (x^3 2x + 1)$
- (2) $(2x^7 3x^6 + 4x^4 x^2 + 2x + 4) : (2x^5 + x^4 1)$
- (3) $(x^4 + x^3 + 10x^2 + 9x + 9) : (x^2 + 2x + 1)$
- (4) $(38x^3 + 7x^2 8x 1) : (x + \frac{1}{2})$

Zadanie 3. Rozłóż na czynniki wielomiany

- (1) $x^3 + 3x^2 4x 12$
- (2) $2x^4 6x^3 8x^2$
- (3) $9x^2 30x + 25$
- $(4) \ x^4 + 3x^3 15x^2 19x + 30$

Zadanie 4. Wielomian W(x) przy dzieleniu przez (x-5) daje resztę 1, a przy dzieleniu przez (x+3) daje resztę -7. Wyznacz resztę z dzielenia tego wielomianu przez wielomian $x^2 - 2x - 15$.

Zadanie 5. Dany jest wielomian $W(x) = x^4 + ax^3 + bx^2 + cx + d$. Pokaż, że jeśli W(x) ma cztery pierwiastki rzeczywiste, to na to, żeby istniało m takie, że $W(x+m) = x^4 + px^2 + q$ potrzeba i wystarczy, aby suma pewnych dwóch pierwiastków była równa sumie pozostałych dwóch.

Zadanie 6. Podaj przykład takiego wielomianu W(x) stopnia szóstego, który w wyniku podzielenia przez wielomian $P(x) = 2x^3 + 8$ daje resztę będącą wielomianem stopnia drugiego.

Zadanie 7. Wielomian W(x) o współczynnikach całkowitych daje przy dzieleniu przez wielomian $(x^2 - 12x + 11)$ resztę (990x - 889). Wykaż, że wielomian ten nie ma pierwiastków całkowitych.

Zadanie 8. Dla jakich wartości parametrów a, b wielomian W(x) jest podzielny przez wielomian P(x), jeśli:

(1)
$$W(x) = x^4 - 2x^3 + ax^2 - 3x + b$$
, $P(x) = x^2 - 3x + 3$

(2)
$$W(x) = x^4 - x^3 - 9x^2 + ax + 2$$
, $P(x) = x^2 + 2x + b$

Zadanie 9. Wielomian W(x) jest stopnia drugiego i ma jeden pierwiastek dwukroty równy 3. Czy wielomian $P(x) = [W(x)]^3(x^3 + 5x^2 - 9x - 45)$ ma pierwiastki wielokrotne? Jeśli tak, to jakie? Podaj krotność pierwiastka wielokrotnego.

Zadanie 10. Przedstaw wielomian

(1)
$$W(x) = x^4 + 2x^3 + 5x^2 + 4x + 3$$

(2)
$$P(x) = x^4 - 3x^3 + 6x^2 - 5x + 3$$

w postaci iloczynu wielomianów o współczynnikach całkowitych (dla W - całkowitych dodatnich).

Zadanie 11. Wiadomo, że x_1 , x_2 , x_3 są rozwiązaniami równania $x^3 - 2x^2 + x + 1 = 0$. Ułóż równanie, którego rozwiązaniami są $y_1 = x_1x_2$, $y_2 = x_1x_2$ i $y_3 = x_2x_3$.

Podzielność

Jeśli P(x) jest wielomianem o współczynnikach całkowitych, a $a,b\in\mathbb{Z},$ to wówczas

$$a - b|P(a) - P(b).$$

Zadanie 12. Dla każdej liczby dodatniej a wyznaczyć liczbę pierwiastków wielomianiu $x^3 + (a+2)x^2 - x - 3a$.

Zadanie 13. Udowodnić, że jeżeli liczby x_1 i x_2 są pierwiastkami równania $x^2 + px - 1 = 0$, gdzie p jest liczbą nieparzystą, to dla każdego naturalnego n liczby $x_1^n + x_2^n$ i $x_1^{n+1} + x_2^{n+1}$ są całkowite i względnie pierwsze.

Zadanie 14. Dane są trzy różne liczby całkowite a, b, c. Udowodnić, że nie istnieje wielomian w(x) o współczynnikach całkowitych taki, że w(a) = b, w(b) = c i w(c) = a.

Zadanie 15. Pokaż, że jeśli wielomian W(x) o współczynnikach całkowitych dla czterech różnych liczb całkowitych przyjmuje wartość 1, to nie ma liczby całkowitej p takiej, że W(x) = -1.

Zadanie 16. Przedstawić wielomian $x^4+x^2+x^2+x+1$ w postaci różnicy kwadratów dwóch wielomianów niejednakowego stopnia o współczynnikach rzeczywistych.

2