Laborator 10

Se consideră următoarele funcții:

se considera urmatoarele funcții:
a)
$$f: [0,1] \to [0,\infty), \ f(x) = x^3, \ x \in [0,1].$$

b) $f: [2,5] \to [0,\infty), \ f(x) = \frac{1}{\sqrt{x-1}}, \ x \in [2,5].$
c) $f: [-1,2] \to [0,\infty), \ f(x) = \begin{cases} \frac{1}{1+x^2}, & x \in [-1,0] \\ \frac{1}{x^2}\sin^2\frac{x}{1-x}, & x \in (0,1) \\ \sqrt{2x-x^2}, & x \in [1,2]. \end{cases}$

- I. Realizați pentru fiecare funcție de mai sus un program în Matlab care returnează valoarea f(x) pentru x dat din domeniul de definiție al funcției f.
- II. Implementați în Matlab fiecare din metodele descrise mai jos pentru funcțiile date mai sus. Comparați rezultatele obținute cu metode diferite pentru aceeași funcție.

Integrare Monte-Carlo - versiunea I

Fie $f:[a,b]\to[0,\infty)$ o funcție integrabilă dată și M>0 astfel încât $f(x)\leq M$, oricare ar fi $x \in [a, b]$. Considerăm următorii pași pentru aproximarea integralei $\int_a^b f(x) dx$:

• se generează N numere aleatoare uniform distribuite pe intervalul [a, b]:

$$x_1, x_2, \dots, x_N \in [a, b],$$

unde $N \in \mathbb{N}$ este dat $(N = 100, 1000, \ldots)$.

• se generează N numere aleatoare uniform distribuite pe intervalul [0, M]:

$$y_1,y_2,\ldots,y_N\in[0,M].$$

- se calculează numărul P de perechi (x_i, y_i) care verifică inegalitatea: $y_i \leq f(x_i)$, pentru $i = 1, 2, \dots, N$.
 - se calculează valoarea aproximativă \mathcal{A} a integralei $\int_a^b f(x) dx$: $\mathcal{A} = M(b-a) \frac{P}{N}$.

Integrare Monte-Carlo - versiunea II

Fie $f:[a,b] \to [0,\infty)$ o funcție integrabilă dată. Considerăm următorii pași pentru aproximarea integralei $\int_a^b f(x) dx$:

• se generează N numere aleatoare uniform distribuite pe intervalul [a, b]:

$$x_1, x_2, \dots, x_N \in [a, b],$$

unde $N \in \mathbb{N}$ este dat $(N = 100, 1000, \ldots)$.

- se notează: $y_i = (b-a)f(x_i)$, pentru $i = 1, 2, \dots, N$.
- se calculează valoarea aproximativă \mathcal{A} a integralei $\int_a^b f(x) dx$: $\mathcal{A} = \frac{1}{N} (y_1 + y_2 + \ldots + y_N)$.

 $Integrare\ numeric \breve{a}\ -\ regula\ trapezului$

Fie $f:[a,b]\to [0,\infty)$ o funcție integrabilă dată. Considerăm următorii pași pentru aproximarea integralei $\int_a^b f(x)\,dx$:

• se consideră o diviziune echidistantă a intervalului [a, b]:

$$a = x_1 < x_2 < \dots < x_N < x_{N+1} = b,$$

unde $N \in \mathbb{N}$ este dat $(N = 100, 1000, \ldots)$.

- se notează: $y_i = f(x_i)$, pentru $i = 1, 2, \dots, N+1$.
- se calculează aria A_i a tranpezului cu vârfurile în punctele de coordonate $(x_i, 0), (x_{i+1}, 0), (x_{i+1}, y_{i+1})$ și (x_i, y_i) , pentru i = 1, 2, ..., N.
 - se calculează valoarea aproximativă \mathcal{A} a integralei $\int_a^b f(x) dx$: $\mathcal{A} = \mathcal{A}_1 + \mathcal{A}_2 + \ldots + \mathcal{A}_N$.

