Lena is preparing for an important coding competition that is preceded by a number of sequential preliminary contests. Initially, her luck balance is 0. She believes in "saving luck", and wants to check her theory. Each contest is described by two integers, $\boldsymbol{L}[i]$ and $\boldsymbol{T}[i]$:

- ullet L[i] is the amount of luck associated with a contest. If Lena wins the contest, her luck balance will decrease by L[i]; if she loses it, her luck balance will increase by L[i].
- ullet T[i] denotes the contest's importance rating. It's equal to 1 if the contest is important, and it's equal to 0 if it's unimportant.

If Lena loses no more than k important contests, what is the maximum amount of luck she can have after competing in all the preliminary contests? This value may be negative.

Example

$$k = 2 \ L = [5, 1, 4] \ T = [1, 2, 0]$$

Contest		L[i]	T[i]
1	5	1	
2	1	1	
3	4	0	

If Lena loses all of the contests, her will be 5+1+4=10. Since she is allowed to lose 2 important contests, and there are only 2 important contests, she can lose all three contests to maximize her luck at 10.

If k=1, she has to win at least 1 of the 2 important contests. She would choose to win the lowest value important contest worth 1. Her final luck will be 5 + 4 - 1 = 8.

Function Description

Complete the luckBalance function in the editor below.

luckBalance has the following parameter(s):

- int k: the number of important contests Lena can lose
- int contests[n][2]: a 2D array of integers where each contests[i] contains two integers that represent the luck balance and importance of the i^{th} contest

Returns

• int: the maximum luck balance achievable

Input Format

The first line contains two space-separated integers n and k, the number of preliminary contests and the maximum number of important contests Lena can lose.

Each of the next n lines contains two space-separated integers, L[i] and T[i], the contest's luck balance and its importance rating.

Constraints

- $1 \le n \le 100$
- $0 \le k \le N$
- $1 \leq L[i] \leq 10^4$
- $T[i] \in \{0,1\}$

Sample Input

```
STDIN Function
63 n=6, k=3
51 contests = [[5, 1], [2, 1], [1, 1], [8, 1], [10, 0], [5, 0]]
21
11
81
100
50
```

Sample Output

29

Explanation

There are n=6 contests. Of these contests, ${\bf 4}$ are important and she cannot lose more than ${\bf k}={\bf 3}$ of them. Lena maximizes her luck if she wins the $\mathbf{3}^{rd}$ important contest (where L[i]=1) and loses all of the other five contests for a total luck balance of 5+2+8+10+5-1=29.