Functional Analysis

February 17, 2024

Solution of problem 1: We need to check that rules of inner products hold—

- 1. For A = B, we have $\langle A, A \rangle = tr(AA^*) = \sum_{i,j} |a_{ij}|^2 \geq 0$, where a_{ij} denotes the elements of A. Moreover, $||A|| = 0 \implies |a_{ij}| = 0$ for all $1 \leq i, j \leq n \implies A = 0$. 2. $\langle B, A \rangle = tr(BA^*) = tr(A\overline{B}^T)$. See that $A\overline{B}^T(\underline{c_{ij}})$ is such that $c_{ij} = \sum_{i=1}^n a_{i1}\overline{b_{j1}}$. See that $\overline{c_{ij}} = \sum_{i=1}^n \overline{a_{i1}}b_{j1}$, gives us $\sum_{1 \leq i,j \leq n} a_{ij}\overline{b_{ij}}$. Note that replacing A and B just gives us the conjugate which is the derived result, that gives us the conjugate, which is the desired result, that

$$\langle B, A \rangle = \overline{\langle A, B \rangle}.$$

3. We have $\langle A+B,C\rangle=tr((A+B)C^*)$. We know that

$$tr((A+B)C^*) = \sum_{1 \le i,j \le n} (a_{ij} + b_{ij}) \overline{c_{ij}} = \sum_{1 \le i,j \le n} a_{ij} \overline{c_{ij}} + \sum_{1 \le i,j \le n} b_{ij} \overline{c_{ij}} = tr(AC^*) + tr(BC^*).$$

4. We have

$$\langle (\alpha A), B \rangle = tr(\alpha A B^*) = \sum_{1 \le i, j \le n} \alpha a_{ij} \overline{b_{ij}} = \alpha \sum_{1 \le i, j \le n} a_{ij} \overline{b_{ij}} = \alpha \langle A, B \rangle.$$

Therefore we have defined an inner product. Now fix $\varepsilon > 0$. Then we take a Cauchy sequence of matrices (A_n) . There exists $N \in \mathbb{N}$ such that

$$\left(\sum_{i,j} \left| a_{ij}^{(n)} - a_{ij}^{(m)} \right|^2 \right)^{1/2} < \varepsilon,$$

for $n, m \geq N$.

Thus we have that

$$\left| a_{ij}^{(n)} - a_{ij}^{(m)} \right| < \left(\sum_{i,j} \left| a_{ij}^{(n)} - a_{ij}^{(m)} \right|^2 \right)^{1/2} < \varepsilon.$$

Thus we know that $a_{ij}^{(n)} \to a_{ij}$ in \mathbb{C} . We claim that $A = (a_{ij})$ is the desired limit. We have

$$||A_n - A||^2 = \sum_{i,j} |a_{ij}^{(n)} - a_{ij}^{(m)}|^2 < \varepsilon,$$

which gives us the required answer. To solve the second part, see that since we can apply the Cauchy Schwarz inequality on inner product spaces, we have

$$|\langle A, B \rangle|^2 \le ||A||^2 \cdot ||B||^2$$
,

which gives us the required answer.

Solution of problem 2: We calculate $||x-y||^2 + ||x-z||^2 - ||x-u||^2$. Then see that

$$\begin{split} t \, ||x-y||^2 + (1-t) \, ||x-z||^2 - ||x-u||^2 &= t(||x||^2 + ||y||^2 - \langle x,y \rangle - \langle y,x \rangle) \\ &\quad + (1-t)(||x||^2 + ||z||^2 - \langle x,z \rangle - \langle z,x \rangle) \\ &\quad - (||x||^2 + ||u||^2 - \langle x,u \rangle - \langle u,x \rangle) \\ &= ||x||^2 - \langle x,u \rangle - \langle u,x \rangle + t \, ||y||^2 + (1-t) \, ||z||^2 \\ &\quad - ||x||^2 - ||u||^2 + \langle x,u \rangle + \langle u,x \rangle \\ &= t \, ||y||^2 + (1-t) \, ||z||^2 - ||u||^2 \\ &= t \, ||y||^2 + (1-t) \, ||z||^2 - (\langle ty + (1-t)z, ty + (1-t)z \rangle) \\ &= t \, ||y||^2 + (1-t) \, ||z||^2 \\ &\quad - \left(t^2 \, ||y||^2 + t(1-t) \, \langle y,z \rangle + t(1-y) \, \langle z,y \rangle + (1-t)^2 \, ||z||^2\right) \\ &= t(1-t) \, ||y-z||^2 \, . \end{split}$$

The second result follows easily by setting $t = \frac{1}{2}$, which gives us $u = \frac{1}{2}(y+z)$.

Solution of problem 3: For any $z \in Y$, we want to show that $\Re \langle x - y, y - z \rangle \ge 0$. We know that for any $a, b \in H$ we have $||a + b||^2 = ||a||^2 + ||b||^2 + 2\Re \langle a, b \rangle$. Using this, we have

$$\Re \langle x - y, y - z \rangle = \frac{1}{2} \left(||x - z||^2 - ||x - y||^2 - ||y - z||^2 \right).$$

We now just have to show that

$$||x - z||^2 \ge ||x - y||^2 + ||y - z||^2$$
.

Let us set u := ty + (1 - t)z by Apollonius' identity, for some $t \in [0, 1]$, then we have $t ||x - y||^2 + (1 - t) ||x - z||^2 = ||x - u||^2 + t(1 - t) ||y - z||^2 \ge ||x - y||^2 + t(1 - t) ||y - z||^2$.

Thus we have

$$||x - z||^2 \ge ||x - y||^2 + t ||y - z||^2$$
.

Putting $t \to 1$ gives us the desired result.

Conversely, since $\Re \langle x-y,y-z\rangle \geq 0$, we have

$$||x - z||^2 \ge ||x - y||^2 + ||y - z||^2$$

implying that $||x-z||^2 \ge ||x-y||^2$ for all $z \in Y$. Thus $\inf_{z \in Y} ||x-z|| \ge ||x-y||$. For the other side, since $y \in Y$, we have

$$\inf_{z \in Y} ||x - z|| \le ||x - y||,$$

which gives us the desired inequality.

Solution of problem 4: We propose that \mathbb{R}^{∞} is an IPS that does not satisfy the projection theorem. This is an IPS as a subspace of ℓ^2 . Let $a^{(n)} = (1, \frac{1}{2}, \dots, \frac{1}{n}, 0, \dots)$. Then see that

$$\left| \left| a^{(n)} - a^{(m)} \right| \right| = \sum_{k=1}^{\infty} \left| a_k^{(n)} - a_k^{(m)} \right|^2$$
$$= \sum_{k=m+1}^n \frac{1}{k^2} \le \sum_{k=1}^n \frac{1}{k^2},$$

which is a convergent sequence, hence the above is bounded above, meaning that this sequence is Cauchy. However, in ℓ^2 this sequence converges to a point $\alpha = (1, \frac{1}{2}, \dots)$ outside \mathbb{R}^{∞} , thus this space is not complete.

Define the linear functional $f: \mathbb{R}^{\infty} \to \mathbb{K}$ where $(x_n) \mapsto \langle (x_n), \alpha \rangle$.

Let $W = \ker f$. Our claim is that W is a proper subspace. $(1,0,\ldots)$ is not in W, so that is done. We need to find W^{\perp} . Let $x \in W^{\perp}$, and $\beta^{(n)} = (1,\ldots,-n,0,\ldots)$ which is in W. Then we have $x \perp W \implies x \perp \beta_n$. Then

$$\sum_{k=1}^{\infty} x_k \beta_k^{(n)} = x_1 - nx_n = 0,$$

which means that x has infinitely many non-zero terms. Thus $W^{\perp} = 0$, and this contradicts the statement of the projection theorem.

Solution of problem 5: Since A_1 is bounded, all subsets are bounded. We can pick any $a_n \in A_n$ such that it's norm is minimum. Then we claim that (a_n) is a Cauchy sequence, and hence convergent. If we do show that it is Cauchy, then we have that the limit is contained within $\bigcap_{n=1}^{\infty} A_n$, which would complete the proof.

Now we have that $\forall x \in A_1, ||x|| \leq K$, for some K > 0. Since the norm is a monotone convergent sequence, the norm converges. By the parallelogram law,

$$||x_n - x_m||^2 = 2||x_n||^2 + 2||x_m||^2 - ||x_n + x_m||^2$$

for $n \ge m$. Since $x_m \in A_m$ and $A_n \subseteq A_m$, have $x_n, x_m \in A_m$. Then from the convexity of A_m we have $\frac{1}{2}(x_n + x_m) \in A_m$. Thus $\frac{1}{2}||x_n + x_m|| \ge ||x_m||$. Thus, we have

$$||x_n - x_m||^2 \le 2||x_n||^2 + 2||x_m||^2 - 4||x_m||^2 = 2(||x_n||^2 - ||x_m||^2).$$

Since $||x_n||$ is convergent, we must have that (x_n) is Cauchy, which completes the proof.

Solution of problem 6: We want to construct an isometric isomorphism between H, a separable Hilbert space and ℓ^2 , the sequence of square summable sequences over a linear field. We have H is separable, hence there exists a countable dense subset. This, in fact gives us an orthonormal Schauder basis $\{b_n\}_{n\in\mathbb{N}}$. Let the standard orthonormal basis for ℓ^2 be given by $\{e_n\}_{n\in\mathbb{N}}$. Define $T: H \to \ell^2$ be such that

$$T(\sum_{n=1}^{\infty} a_n b_n) = \sum_{n=1}^{\infty} a_n e_n.$$

For $\mathbf{a} = \{k_n\}, \mathbf{b} = \{l_n\} \in H$, we have

$$\langle T\mathbf{a}, T\mathbf{b} \rangle = \langle \sum_{n=1}^{\infty} k_n e_n, \mathbf{b} \rangle = \sum_{n=1}^{\infty} k_n \langle e_n, \mathbf{b} \rangle.$$

We can see that

$$\langle e_n, \sum_{m=1}^{\infty} l_n e_n \rangle = \sum_{m=1}^{\infty} \overline{l_m} \langle e_n, e_m \rangle = \overline{l_n}.$$

Thus we have $\langle T\mathbf{a}, T\mathbf{b} \rangle = \sum_{n=1}^{\infty} k_n \bar{l}_n = \langle \mathbf{a}, \mathbf{b} \rangle$. Thus our map is an isometry. It is clearly one-one. It is also onto, as the pre-image of any $\sum_{n=1}^{\infty} c_n e_n$ is $\sum_{n=1}^{\infty} c_n b_n$. Therefore we have an isomorphism of Hilbert spaces.

Solution of problem 7: If V is a finite-dimensional vector space, then any total orthonormal set must be finite as there can be at most some finite number of linearly independent elements. Since a total orthonormal set must span the entire space, we have a Hamel basis since any element can be written as a finite linear combination of elements from the total orthonormal set.

Conversely, let V be a vector space such that every total orthonormal set is a Hamel basis. Take B to be a total orthonormal set, which is a Hamel basis by assumption. Let this be finite. Then we have $\{\bar{e}_n\}\subseteq B$. Now consider the series $\sum_n \frac{\bar{e}_n}{2^n}$. This converges in V, as $\sum_n \frac{1}{n}$ converges, hence let $x=\sum_n \frac{\bar{e}_n}{2^n}$. Since B is Hamel basis, we have $x\sum_n \alpha_i e_i$, which is a finite summation of terms $e_n\in B$ from the orthonormal set. However, from equating the two we see that clearly x has infinitely many non-zero coefficients, which contradicts that there is an infinite total orthonormal set.

Solution of problem 8: Let C be a closed convex non-empty subset of H, a real Hilbert space. By Riesz Representation Theorem, we know that there exists $y \in H$ such that $f(x) = \langle x, y \rangle$. Then

$$g(x) = \langle x, x \rangle - \langle x, y \rangle$$

$$= \langle x, x - y \rangle$$

$$= \frac{1}{2} (||x||^2 + ||x - y||^2 - ||y||^2)$$

$$\geq \frac{1}{2} (||x_0||^2 + ||x_1 - y||^2 - ||y||^2),$$

where $x_0 \in C$ such that it has minimum norm, and $x_1 \in C$ is the point which is the best approximation of y to C.

We know that $\delta = \inf_{x \in C} g(x)$ exists. Let $\{x_n\}$ be a sequence in H such that $\lim_{n \to \infty} g(x_n) = \delta$. To see that this sequence is Cauchy, see that for $\varepsilon > 0$, we have

$$||x_n - x_m||^2 = 2||x_n||^2 + 2||x_m||^2 - ||x_n - x_m||^2.$$

Since $\frac{1}{2}(x_n + x_m) \in C$, we have $g((x_n + x_m)/2) \ge \delta$. Thus $||x_n + x_m||^2 \ge 4\delta + 2\langle x_n, y \rangle + 2\langle x_m, y \rangle$. Then we use the above to see that

$$||x_n - x_m||^2 \le 2(q(x_n)q(x_m)) - 4\delta.$$

Thus, for a large enough $n, m \in \mathbb{N}$, we get that $||x_n - x_m||$ is arbitrarily small, and hence $\{x_n\}$ is a Cauchy sequence. Clearly, this must converge in a Hilbert space, to some x_0 . Since this is a closed convex set, this minimum is unique.

Solution of problem 9: We are given $T: \mathbb{K}^n \to \mathbb{K}^m$, where

$$(Tx)(i) = \sum_{j=1}^{n} k_{ij} x_j,$$

where i = 1, 2, ..., m. Let a_i denote the *i*th row of T. Then we have $\langle Tx, y \rangle = \sum_{j=1}^{m} (Tx)(i)y_j$. Expanding the entire thing, we have

$$\langle Tx, y \rangle = \sum_{1 \le i \le m, 1 \le j \le n} k_{ij} x_j \bar{y_i}.$$

We can write this as

$$\sum_{i=1}^{n} x_{j} \overline{\overline{k_{1i}}y_{1} + \dots + \overline{k_{mi}}y_{m}} = \langle x, \overline{T}^{T}y \rangle!$$

Therefore from uniqueness of adjoint we must have $T^* = \overline{T}^T$.

Solution of problem 10: See that for any operator we have

$$|\langle Tx, x \rangle| \le ||Tx|| \cdot ||x|| \le ||T||,$$

taking ||x||=1. Since the left of the inequality depends on x while the right is independent, we have $\sup_{||x||=1}\langle Tx,x\rangle\leq ||T||$. For the other direction, let $\alpha:=\sup\{|\langle Tx,x\rangle|\ |\ ||x||=1\}$. We want to show that for $||x||=||\langle Tx,y\rangle||\leq \alpha$. Since T is self-adjoint, we have $\langle Tx,y\rangle\in\mathbb{R}$. Then we have

$$\langle Tx, y \rangle = \frac{(\langle T(x+y), x+y \rangle - \langle T(x-y), x-y \rangle)}{4}.$$

But then

$$|\langle Tx,y\rangle| \leq \alpha \frac{||x+y||^2 + ||x-y||^2}{4} = \alpha,$$

by the parallelogram identity.