geometria-plana-resumo

April 1, 2024

[]: import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = [4, 3]

0.1 Pontos Notáveis do Triângulo

Ponto	Intersecção das três	Nota
Baricentro	Medianas	O baricentro é o centro de massa (gravidade) do triângulo.
Incentro	Bissetrizes internas	Centro da circunferência inscrita no triângulo.
Circuncentro	Mediatrizes	Centro da circunferência circunscrita ao triângulo.
Ortocentro	Retas suportes das alturas	

0.2 Polígonos

DEFINIÇÃO. Seja uma sequência $s=(A_1,A_2,...,A_n)$ de pontos distintos no plano com $n\geq 3$, onde três pontos consecutivos (A_{n-1},A_n,A_{n+1}) são não colineares. Chama-se de **polígono P** a união dos segmentos $\overline{A_1A_2}$, $\overline{A_2A_3}$, ..., $\overline{A_{n-1}A_n}$, $\overline{A_nA_1}$, ou seja,

$$P = \overline{A_1 A_2} \ \cup \ \overline{A_2 A_3} \ \cup \ \dots \ \cup \ \overline{A_{n-1} A_n} \ \cup \ \overline{A_n A_1}$$

P é comumente denotado como

$$P = A_1 A_2 \dots A_n$$

Os pontos $A_1\,,A_2\,,\dots\,,A_n$ são chamados **vértices** do polígono.

Os segmentos $A_1A_2\,, A_2A_3\,, \dots, A_{n-1}A_n\,, A_nA_1$ são chamados **lados** do polígono.

Os ângulos $\hat{A}_1=A_n\hat{A}_1A_2$, $\hat{A}_2=A_1\hat{A}_2A_3$, ..., $\hat{A}_n=A_{n-1}\hat{A}_nA_1$ são os ângulos (internos) do polígono.

0.2.1 Classificação de Polígonos

Um polpigono é dito **simples** se, e somente se, a interseção de quaisquer dois lados não consecutivos é vazia.

```
[]: vertices = [(0, 0, 'A1'), (0, 1, 'A2'), (1, 1.5, 'A3'), (1.5, 0.5, 'A4'), (0.5, \( \sqrt{\text{\sqrt{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinset}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\til\tinit\text{\text{\tiliex{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinit}\text{\text{\text{\text{\text{\text{\text{\text{\tinit\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\texicr{\texi}\text{\texi{\texi}\tint{\text{\texi{\texi\texi{\text{\texi{\texi\tin\tintex{\tiint
                         \hookrightarrow 0, 'A5'), (0, 0, '')]
                       x_values = []
                       y_values = []
                       for point in vertices:
                                         x, y, label = point
                                         x_values.append(x)
                                         y_values.append(y)
                                         index = vertices.index(point)
                                         next_point = point
                                         if index < len(vertices) - 1:</pre>
                                                                x_next, y_next, label_next = vertices[index + 1]
                                         plt.annotate(
                                                            label,
                                                             (x, y),
                                                            textcoords='offset points',
                                                            xytext=(-10, -4) if x == x_next else (0, 8), # distance from text to
                              \rightarrow points (x, y)
                                                            ha='center'
                       plt.plot(x_values, y_values)
                       plt.axis('off')
                       plt.show()
```


[]: