Popular ensemble methods

Victor Kitov

Yandex School of Data Analysis

Table of contents

- Popular ensemble methods
 - Bagging and random forest
 - Boosting

- Popular ensemble methods
 - Bagging and random forest
 - Boosting

Bagging

- Random selection of
 - samples (with replacement)
 - features (without replacement)
- During bootstrap approximately $1-1/e\approx 2/3$ samples are retained and $1/e\approx 1/3$ samples left out for large training sets.

Random forests

Input: training dataset $TDS = \{(x_i, y_i), 1 = 1, 2, ...n\}$; the number of trees B and the size of feature subsets m.

- **1** for b = 1, 2, ...B:
 - generate random training dataset TDS^b of size n by sampling (x_i, y_i) pairs from TDS with replacement.
 - build a tree using TDS^b training dataset with feature selection for each node from random subset of features of size m (generated individually for each node).
- ② Evaluate the quality by assigning output to x_i , i = 1, 2, ...n using majority vote (classification) or averaging (regression) among trees with $b \in \{b : (x_i, y_i) \notin T^b\}$

Output: B trees. Classification is done using majority vote and regression using averaging of B outputs.

Comments

- Random forests use random selection on both samples and features
- Left out samples are used for evaluation of model performance.
- Less interpretable than individual trees
- Pro: Parallel implementation
- Contra: different trees are not targeted to correct mistakes of each other

Ensembles - Victor Kitov
Popular ensemble methods
Boosting

- Popular ensemble methods
 - Bagging and random forest
 - Boosting

Forward stagewise additive modeling

Input: training dataset (x_i, y_i) , i = 1, 2, ...n; loss function L(f, y), general form of additive classifier $h(x, \gamma)$ (dependent from parameter γ) and the number M of successive additive approximations.

- Fit initial approximation $f^0(x)$ (might be taken $f^0(x) \equiv 0$)
- ② For m = 1, 2, ...M:
 - find next best classifier

$$(c_m, \gamma_m) = \arg\min \sum_{i=1}^n L(f_{m-1}(x_i) + c_m h(x_i, \gamma_m), y_i)$$

set

$$f_m(x) = f_{m-1}(x) + c_m h(x, \gamma_m)$$

Output: approximation function $f^M(x) = f^0(x) + \sum_{j=1}^M c_j h(x, \gamma_m)$ Adaboost algorithm is obtained for $L(y, f(x)) = e^{-yf(x)}$

Adaboost (discrete version)

Assumptions: loss function $L(y, f(x)) = e^{-yf(x)}$ **Input:** training dataset (x_i, y_i) , i = 1, 2, ...n; number of additive weak classifiers M, a family of weak classifiers $h(x) \in \{+1, -1\}$, trainable on weighted datasets.

- Initialize observation weights $w_i = 1/n$, i = 1, 2, ...n.
- ② for m = 1, 2, ...M:
 - fit $h^m(x)$ to training data using weights w_i
 - 2 compute weighted misclassification rate:

$$E_m = \frac{\sum_{i=1}^n w_i \mathbb{I}[h^m(x) \neq y_i]}{\sum_{i=1}^n w_i}$$

- 3 if $E_M > 0.5$ or $E_M = 0$: terminate procedure.
- $oldsymbol{\circ}$ increase all weights, where misclassification with $h^m(x)$ was made:

$$w_i \leftarrow w_i e^{\alpha_m}, i \in \{i : h^m(x_i) \neq y_i\}$$

Output: composite classifier
$$f(x) = \sup_{0 \le t \le T} \left(\sum_{m=1}^{M} \alpha_m h^m(x) \right)$$

Boostina

Adaboost derivation

Set initial approximation $f^0(x) \equiv 0$.

Apply forward stagewise algorithm for m = 1, 2, ...M:

$$(c_m, h^m) = \arg \min_{c_m, h^m} \sum_{i=1}^n L(f_{m-1}(x_i) + c_m h^m(x), y_i)$$

$$= \arg \min_{c_m, h^m} \sum_{i=1}^n e^{-y_i f_{m-1}(x_i)} e^{-c_m y_i h^m(x)}$$

$$= \arg \min_{c_m, h^m} \sum_{i=1}^n w_i^m e^{-c_m y_i h^m(x_i)}, \quad w_i^m = e^{-y_i f_{m-1}(x_i)}$$

Since $c_m \geq 0$ and $y_i h^m(x_i) \in \{-1, +1\}$ minimum with respect to $h^m(x)$ is attained at

$$h^m(x_i) = \arg\min_{h} \sum_{\substack{i=1 \ 0 \le t \ne 1}}^{n} w_i^m \mathbb{I}[h(x_i) \ne y_i]$$

Adaboost derivation

Denote
$$F(c_m) = \sum_{i=1}^n w_i^m \exp(-c_m y_i h^m(x_i))$$
. Then

$$\frac{\partial F(c_m)}{\partial c_m} = -\sum_{i=1}^n w_i^m e^{-c_m y_i h^m(x_i)} y_i h^m(x_i) = 0$$

$$-\sum_{i:h^m(x_i)=y_i} w_i^m e^{-c_m} + \sum_{i:h^m(x_i)\neq y_i} w_i^m e^{c_m} = 0$$

$$e^{2c_m} = \frac{\sum_{i:h^m(x_i)=y_i} w_i^m}{\sum_{i:h^m(x_i)\neq y_i} w_i^m}$$

$$c_{m} = \frac{1}{2} \ln \frac{\left(\sum_{i:h^{m}(x_{i})=y_{i}} w_{i}^{m}\right) / \left(\sum_{i=1}^{n} w_{i}^{m}\right)}{\left(\sum_{i:h^{m}(x_{i})\neq y_{i}} w_{i}^{m}\right) / \left(\sum_{i=1}^{n} w_{i}^{m}\right)} = \frac{1}{2} \ln \frac{1-E_{m}}{E_{m}} = \frac{1}{2} \alpha_{m},$$

$$E_{m} = \frac{\sum_{i=1}^{n} w_{i}^{m} \mathbb{I}[h^{m}(x_{i}) \neq y_{i}]}{\sum_{i=1}^{n} w_{i}^{m}}$$

Adaboost derivation

Weights recalculation:

$$\mathbf{w}_{i}^{m+1} \stackrel{df}{=} \mathbf{e}^{-y_{i}f_{m}(x_{i})} = \mathbf{e}^{-y_{i}f_{m-1}(x_{i})}\mathbf{e}^{-y_{i}c_{m}h^{m}(x_{i})}$$

Noting that $-y_ih^m(x_i) = 2\mathbb{I}[h^m(x_i) \neq y_i] - 1$, we can rewrite:

$$\begin{aligned} w_i^{m+1} &= e^{-y_i f_{m-1}(x_i)} e^{c_m (2\mathbb{I}[h^m(x_i) \neq y_i] - 1)} = \\ &= w_i^m e^{2c_m \mathbb{I}[h^m(x_i) \neq y_i]} e^{-c_m} \propto w_i^m e^{2c_m \mathbb{I}[h^m(x_i) \neq y_i]} = w_i^m e^{\alpha_m \mathbb{I}[h^m(x_i) \neq y_i]} \end{aligned}$$

We used the property that classification result is not affected by multiplication of all weights by constant.

- For general loss function L forward stagewise algorithm can be solved explicitly in rare cases. In general gradient boosting is applied.
- Gradient boosting is analogous to steepest descent:
 - function approximation is composed of sums of approximations, each of which approximates $\partial L/\partial f$.

Input: training dataset (x_i, y_i) , i = 1, 2, ...n; loss function L(f, y) and the number M of successive additive approximations.

• Fit initial approximation $f^0(x)$ (might be taken $f^0(x) \equiv 0$)

- Fit initial approximation $f^0(x)$ (might be taken $f^0(x) \equiv 0$)
- **2** For each step m = 1, 2, ...M:

- Fit initial approximation $f^0(x)$ (might be taken $f^0(x) \equiv 0$)
- **2** For each step m = 1, 2, ...M:
 - **1** calculate derivatives $z_i = -\frac{\partial L(r,y)}{\partial r}|_{r=f^{m-1}(x)}$

- Fit initial approximation $f^0(x)$ (might be taken $f^0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:
 - calculate derivatives $z_i = -\frac{\partial L(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - ② fit h^m on $\{(x_i, z_i)\}_{i=1}^n$ with some loss function.

- Fit initial approximation $f^0(x)$ (might be taken $f^0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:
 - calculate derivatives $z_i = -\frac{\partial L(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - ② fit h^m on $\{(x_i, z_i)\}_{i=1}^n$ with some loss function.
 - solve univariate optimization problem:

$$\sum_{i=1}^n L\left(f^{m-1}(x_i)+c_mh^m(x_i),y_i\right)\to \min_{c_m\in\mathbb{R}_+}$$

- Fit initial approximation $f^0(x)$ (might be taken $f^0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:
 - calculate derivatives $z_i = -\frac{\partial L(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - ② fit h^m on $\{(x_i, z_i)\}_{i=1}^n$ with some loss function.
 - solve univariate optimization problem:

$$\sum_{i=1}^n L\left(f^{m-1}(x_i)+c_mh^m(x_i),y_i
ight) o \min_{c_m\in\mathbb{R}_+}$$

3 set
$$f^m(x) = f^{m-1}(x) + c_m h^m(x)$$

Input: training dataset (x_i, y_i) , i = 1, 2, ...n; loss function L(f, y) and the number M of successive additive approximations.

- Fit initial approximation $f^0(x)$ (might be taken $f^0(x) \equiv 0$)
- **2** For each step m = 1, 2, ...M:
 - calculate derivatives $z_i = -\frac{\partial L(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - 2 fit h^m on $\{(x_i, z_i)\}_{i=1}^n$ with some loss function.
 - solve univariate optimization problem:

$$\sum_{i=1}^n L\left(f^{m-1}(x_i)+c_mh^m(x_i),y_i\right)\to \min_{c_m\in\mathbb{R}_+}$$

3 set
$$f^m(x) = f^{m-1}(x) + c_m h^m(x)$$

Output: approximation function $f^{M}(x) = f^{0}(x) + \sum_{m=1}^{M} c_{m}h^{m}(x)$

Input: training dataset (x_i, y_i) , i = 1, 2, ...n; loss function L(f, y) and the number M of successive additive approximations.

• Fit constant initial approximation $f^0(x)$:

$$f^0(x) = \operatorname{arg\,min}_{\gamma} \sum_{i=1}^{n} L(\gamma, y_i)$$

- Fit constant initial approximation $f^0(x)$: $f^0(x) = \arg\min_{\gamma} \sum_{i=1}^n L(\gamma, y_i)$
- **2** For each step m = 1, 2, ...M:

- Fit constant initial approximation $f^0(x)$: $f^0(x) = \arg\min_{\gamma} \sum_{i=1}^n L(\gamma, y_i)$
- ② For each step m = 1, 2, ...M:
 - calculate derivatives $z_i = -\frac{\partial L(r,y)}{\partial r}|_{r=f^{m-1}(x)}$

- Fit constant initial approximation $f^0(x)$: $f^0(x) = \arg\min_{\gamma} \sum_{i=1}^n L(\gamma, y_i)$
- ② For each step m = 1, 2, ...M:
 - calculate derivatives $z_i = -\frac{\partial L(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - 2 fit regression tree h^m on $\{(x_i, z_i)\}_{i=1}^n$ with some loss function, get leaf regions $\{R_{jm}\}_{j=1}^{J_m}$.

- Fit constant initial approximation $f^0(x)$: $f^0(x) = \arg\min_{\gamma} \sum_{i=1}^n L(\gamma, y_i)$
- ② For each step m = 1, 2, ...M:
 - calculate derivatives $z_i = -\frac{\partial L(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - ② fit regression tree h^m on $\{(x_i, z_i)\}_{i=1}^n$ with some loss function, get leaf regions $\{R_{jm}\}_{i=1}^{J_m}$.
 - § for each terminal region R_{jm} , $j = 1, 2, ...J_m$ solve univariate optimization problem:

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{im}} L(f^{m-1}(x_i) + \gamma, y_i)$$

Input: training dataset (x_i, y_i) , i = 1, 2, ...n; loss function L(f, y) and the number M of successive additive approximations.

- Fit constant initial approximation $f^0(x)$: $f^0(x) = \arg\min_{\gamma} \sum_{i=1}^n L(\gamma, y_i)$
- ② For each step m = 1, 2, ...M:
 - calculate derivatives $z_i = -\frac{\partial L(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - ② fit regression tree h^m on $\{(x_i, z_i)\}_{i=1}^n$ with some loss function, get leaf regions $\{R_{jm}\}_{i=1}^{J_m}$.
 - **9** for each terminal region R_{jm} , $j=1,2,...J_m$ solve univariate optimization problem:

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{im}} L(f^{m-1}(x_i) + \gamma, y_i)$$

① update $f^m(x) = f^{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} \mathbb{I}[x \in R_{jm}]$

Input: training dataset (x_i, y_i) , i = 1, 2, ...n; loss function L(f, y) and the number M of successive additive approximations.

- Fit constant initial approximation $f^0(x)$: • $f^0(x) = \arg\min_{\gamma} \sum_{i=1}^n L(\gamma, y_i)$
- ② For each step m = 1, 2, ...M:
 - calculate derivatives $z_i = -\frac{\partial L(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - ② fit regression tree h^m on $\{(x_i, z_i)\}_{i=1}^n$ with some loss function, get leaf regions $\{R_{jm}\}_{i=1}^{J_m}$.
 - **9** for each terminal region R_{jm} , $j=1,2,...J_m$ solve univariate optimization problem:

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{im}} L(f^{m-1}(x_i) + \gamma, y_i)$$

① update $f^m(x) = f^{m-1}(x) + \sum_{i=1}^{J_m} \gamma_{jm} \mathbb{I}[x \in R_{jm}]$

Output: approximation function $f^M(x)$

Modification of boosting for trees

- Compared to first method of gradient boosting, boosting of regression trees finds additive coefficients individually for each terminal region R_{jm} , not globally for the whole classifier $h^m(x)$.
- This is done to increase accuracy: forward stagewise algorithm cannot be applied to find R_{jm} , but it can be applied to find γ_{jm} , because second task is solvable for arbitrary L.
- Max leaves J
 - interaction between no more than J-1 terms
 - usually $4 \le J \le 8$
 - M controls underfitting-overfitting tradeoff and selected using validation set

Loss function selection

- Usually h is fitted to z using $(h-z)^2$, though using absolute loss or Huber function loss makes procedure more robust to outliers.
- $L(\hat{y}, y)$ specification:
 - in regression $L(\hat{y}, y)$ is set to regression loss function:
 - squared deviation, absolute deviation, Huber loss
 - when $L(\widehat{y}, y) = (\widehat{y} y)^2$ method is called *L2Boost*.
 - in classification L(f, y) is set to margin loss function:
 - exponential $L(f,y) = e^{-fy}$ or log-loss $L(f,y) = \ln(1 + e^{-fy})$.
 - log-loss optimization with approximate solution from single step of Newton-Rhapson method is called LogitBoost
 - log-loss optimization yields not only classes, but also class probabilities.

Shrinkage & subsampling

• Shrinkage of general GB, step (d):

$$f^m(x) = f^{m-1}(x) + \nu c_m h^m(x)$$

Shrinkage of trees GB, step (d):

$$f^m(x) = f^{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_{jm} \mathbb{I}[x \in R_{jm}]$$

- Comments:
 - $\nu \in (0, 1]$
 - $\nu \downarrow \Longrightarrow M \uparrow$
- Subsampling