ЛИНЕЙНАЯ РЕГРЕССИЯ

1. Одномерная линейная регрессия

- 1) Ввести коэффициенты линейного уравнения y(x) = ax + b. Получить выборку y_1, y_2, \ldots, y_n значений случайных величин $\xi_1, \xi_2, \ldots, \xi_n$ с распределениями $\xi_i \sim N(y(i), \sigma^2)$.
- 2) Оценить коэффициенты a и b линейной регрессии $\hat{y} = a^*x + b^*$ по данным $X = (1, 2, \dots, n), Y = (y_1, y_2, \dots, y_n).$
- 3) Вычислить коэффициент детерминации R^2 .
- 4) Получить дополнительную выборку значений случайных величин ξ_{n+1} , ξ_{n+2} , ..., ξ_{n+m} с распределениями $\xi_i \sim N(y(i), \sigma^2)$. Сравнить предсказанные значения $\hat{y} = a^*x + b^*$ с выборкой.
- 5) Повторить пункты 1-4 для выборки, где x выбирается случайным образом на отрезке $[t_1, t_2]$.

2. Многомерная линейная регрессия

- 1) Ввести коэффициенты линейного уравнения $y(x_1, x_2) = a_1x_1 + a_2x_2 + b$. Получить выборку y_1, y_2, \ldots, y_n значений случайных величин $\xi_1, \xi_2, \ldots, \xi_n$ с распределениями $\xi_i \sim N(y(x_1, x_2), \sigma^2)$, где $x_1 \sim R(t_1, t_2), x_2 \sim R(s_1, s_2)$.
- 2) Оценить коэффициенты a_1 , a_2 и b линейной регрессии $\hat{y} = a_1^* x_1 + a_2^* x_2 + b^*$.
- 3) Вычислить коэффициент детерминации R^2 .
- 4) Получить дополнительную выборку значений случайных величин ξ_{n+1} , ξ_{n+2} , ..., ξ_{n+m} с распределениями $\xi_i \sim N(y(x_1,x_2),\sigma^2)$. Сравнить предсказанные значения $\hat{y} = a_1^*x_1 + a_2^*x_2 + b^*$ с выборкой.

3. Анализ реальных данных

Найти реальные данные и провести регрессионный анализ.