Gruppovnins 5

1.
$$\lambda_1 = 1$$
 $\lambda_2 = 0.8$ $\lambda_3 = 0.6$

$$\bar{V}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \bar{V}_2 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \qquad \bar{V}_3 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$$

V= X, V, + X 2 V2 + X3 V3

Enlist Sets 814 + 8.15 Kommer egenverkerer till olika egenverkerer till olika egenverkerer till olika egenværden. En Kvadratisk motris med K olika egenværden Kommer ha atminstene K linjärt oberoende egenverktorer. Detta betxder att de 3 egenverktorena till 3x3-matrisen utsev bas verktorena till R³, och därför gäller följande:

VESPan({V, V2, V3})

DVS. Vi Kan na Varje Punkt i IR3 med V, OCh Vi Kan Skriva alla 3-veikterer son en linjerkombination av Vi, V2, V3.

b) $A \bar{v} = \lambda \bar{v}$ $A^{n}\bar{v}_{1} = \lambda^{n}_{1}\bar{v}_{1} = 1^{n}\bar{v}_{1} = \bar{v}_{1}$ $A^{n}\bar{v}_{2} = \lambda^{n}_{2}\bar{v}_{2} = 0.8^{n}\bar{v}_{2}$ $A^{n}\bar{v}_{3} = \lambda^{n}_{3}\bar{v}_{3} = 0.6^{n}\bar{v}_{3}$

C) $A^{n}\bar{v} = A^{n}(x_{1}\bar{v}_{1} + x_{2}\bar{v}_{2} + x_{3}\bar{v}_{3}) = A^{n}_{X_{1}}\bar{v}_{1} + A^{n}_{X_{2}}\bar{v}_{2} + A^{n}_{X_{3}}\bar{v}_{3} =$

= $(A^n \bar{v}_1)_{X_1} + (A^n \bar{v}_2)_{X_2} + (A^n \bar{v}_3)_{X_3}$ Di $n \to \infty$ Kommer $(A^n \bar{v}_1) = 1$ medans $A^n \bar{v}_2 \to 0$ och $A^n \bar{v}_3 \to 0$ eftersom de tvi sista gar mot 0 Kommer X_2 och X_3 inte Spela Vovi. Diremet Kommer X_1 Pivorka. Mer exact Süller: $A^n \bar{v}_1 \to \bar{v}_1 X_1$ $A^{n}_{\overline{V}} = A^{n}(X_{1}\overline{v_{1}} + X_{2}\overline{v_{2}} + X_{3}\overline{v_{3}}) = A^{n}_{\overline{v_{1}}X_{1}} + A^{n}_{\overline{v_{2}}X_{2}} + A^{n}_{\overline{v_{3}}X_{3}} =$ $= \lambda^{n}_{1}\overline{v_{1}}X_{1} + \lambda^{n}_{2}\overline{v_{2}}X_{2} + \lambda^{n}_{3}\overline{v_{3}}X_{3} = (\lambda^{n}_{1}X_{1})\overline{v_{1}} + (\lambda^{n}_{2}X_{2})\overline{v_{2}} + (\lambda^{n}_{3}X_{3})\overline{v_{3}}$ Det finns 3 fall for varje term:

1. 1=1 de N=00 galler 1 =1

2. -1< 1< | galer 1 -0

3. 1< h
da n-700 galler 1"-700.

Selan finns specialfolm $\lambda < -1$ och $\lambda = 1$.

for dessa kan vi inte säsa väd de gär mot di λ^n kammer kar sämt för sämnin n och udda

för udda n. $\lambda = -1$ Kommer altornera mekan 1 och -1,

medens $\lambda < -1$ kammer gå mot vändisheten, men den kammer inte stehna på den positiva eller negativa vändisheten.

Vi kan dock dra slutsatsan av di n - 3 ov kammer λ^n λ^n Vara någan linjerkombination av egen vektorena. Vi kan dock inte säga vad λ^n dock inte säga vad λ^n Vi kan hade implicerat av ov är udd enar jämn.

[di deta hade implicerat av ov är udd enar jämn.

e) V_i anvander Def. 8.19: $A=PDP^{d}$ dar P är inverterbr matris $(\bar{V}_1\,\bar{V}_2\,\bar{V}_3)$ och $D=\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$. V_i vet at P är inverterbor och därmed att A är diagonalisarbor dä A är en 3×3 matris med 3 olika egenvarden. $V_{i,j}V_{i,j}V_{i,j}$ är därmed linjert oberoende. Och därför gäller Sats 8.20.