Wine Quality Prediction

Download Library

In []: # pip install pandas matplotlib seaborn

Required Library

In [1]: import pandas as pd
 from matplotlib import pyplot as plt
 import seaborn as sns

Load Dataset

In [2]: dataset=pd.read_csv('WineQT.csv')

In [3]: dataset

Out[3]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphate
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.5
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.6
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.6
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.5
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.5
•••									•••	
1138	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.7
1139	6.8	0.620	0.08	1.9	0.068	28.0	38.0	0.99651	3.42	0.8
1140	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.5
1141	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.7
1142	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.7

1143 rows × 13 columns

In [4]: dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1143 entries, 0 to 1142
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1143 non-null	float64
1	volatile acidity	1143 non-null	float64
2	citric acid	1143 non-null	float64
3	residual sugar	1143 non-null	float64
4	chlorides	1143 non-null	float64
5	free sulfur dioxide	1143 non-null	float64
6	total sulfur dioxide	1143 non-null	float64
7	density	1143 non-null	float64
8	pН	1143 non-null	float64
9	sulphates	1143 non-null	float64
10	alcohol	1143 non-null	float64
11	quality	1143 non-null	int64
12	Id	1143 non-null	int64

dtypes: float64(11), int64(2)

memory usage: 116.2 KB

In [5]: dataset.describe()

```
Out[5]:
                       fixed
                                  volatile
                                                            residual
                                                                                    free sulfur
                                                                                                tota
                                             citric acid
                                                                        chlorides
                     acidity
                                  acidity
                                                                                      dioxide
                                                              sugar
         count 1143.000000 1143.000000
                                                                                  1143.000000
                                           1143.000000 1143.000000
                                                                     1143.000000
                                                                                               1143
                    8.311111
                                 0.531339
                                              0.268364
                                                                        0.086933
                                                                                                  45
         mean
                                                           2.532152
                                                                                    15.615486
           std
                    1.747595
                                 0.179633
                                              0.196686
                                                           1.355917
                                                                        0.047267
                                                                                    10.250486
                                                                                                 32
                                              0.000000
                                                           0.900000
                                                                                                  6
           min
                    4.600000
                                 0.120000
                                                                        0.012000
                                                                                     1.000000
          25%
                    7.100000
                                 0.392500
                                              0.090000
                                                           1.900000
                                                                        0.070000
                                                                                     7.000000
                                                                                                 21
          50%
                    7.900000
                                 0.520000
                                              0.250000
                                                           2.200000
                                                                        0.079000
                                                                                    13.000000
                                                                                                 37
                                 0.640000
                                              0.420000
                                                           2.600000
                                                                        0.090000
                                                                                    21.000000
                                                                                                 61
          75%
                    9.100000
                   15.900000
                                 1.580000
                                              1.000000
                                                          15.500000
                                                                        0.611000
                                                                                    68.000000
                                                                                                289
          max
         dataset.columns
In [6]:
Out[6]: Index(['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar',
                 'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density',
                 'pH', 'sulphates', 'alcohol', 'quality', 'Id'],
               dtype='object')
         dataset=dataset.drop(['Id'],axis=1)
         sns.catplot(x='quality',data=dataset,kind='count')
```

Out[8]: <seaborn.axisgrid.FacetGrid at 0x23a43c437f0>


```
In [9]: # volatile acidity vs quality
plot = plt.figure(figsize=(10,5))
sns.barplot(x='quality',y='volatile acidity',data = dataset)
```

Out[9]: <Axes: xlabel='quality', ylabel='volatile acidity'>


```
In [10]: plot = plt.figure(figsize=(10,5))
    sns.barplot(x='quality',y='citric acid',data = dataset)
```

Out[10]: <Axes: xlabel='quality', ylabel='citric acid'>

In [11]: # create a heatmap to understand the corr relation between coloums
 plt.figure(figsize=(15,8))
 sns.heatmap(dataset.corr(),annot=True , cmap="YlGnBu")

Out[11]: <Axes: >

In [12]: # Data Preprocessing

```
In [13]: x=dataset.drop(['quality'],axis=1)
In [14]: x
Out[14]: free total
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphate
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.5
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.6
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.6
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.5
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.5
•••	•••	•••	•••	•••	•••	•••	•••	•••		
1138	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.7
1139	6.8	0.620	0.08	1.9	0.068	28.0	38.0	0.99651	3.42	0.8
1140	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.5
1141	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.7
1142	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.7

1143 rows × 11 columns

```
In [15]: # Label Binarization
In [16]: y=dataset['quality'].apply(lambda y_value: 1 if y_value>=7 else 0 )
In [17]: y
Out[17]: 0
                  0
                  0
          2
                  0
          3
                  0
                  0
         1138
          1139
         1140
                  0
         1141
                  0
         1142
         Name: quality, Length: 1143, dtype: int64
 In [ ]:
 In [ ]:
```

Split the data into two part

In [18]: from sklearn.model_selection import train_test_split
In [19]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=2)
In [20]: x_train

Out[20]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphate
1130	7.4	0.350	0.33	2.4	0.068	9.0	26.0	0.99470	3.36	0.6
453	9.5	0.885	0.27	2.3	0.084	31.0	145.0	0.99780	3.24	0.5
1072	6.2	0.440	0.39	2.5	0.077	6.0	14.0	0.99555	3.51	0.6
877	6.5	0.670	0.00	4.3	0.057	11.0	20.0	0.99488	3.45	0.5
193	7.9	0.545	0.06	4.0	0.087	27.0	61.0	0.99650	3.36	0.6
•••			•••	•••	•••	•••			•••	
1099	6.2	0.520	0.08	4.4	0.071	11.0	32.0	0.99646	3.56	0.6
466	10.7	0.430	0.39	2.2	0.106	8.0	32.0	0.99860	2.89	0.5
299	9.5	0.780	0.22	1.9	0.077	6.0	32.0	0.99880	3.26	0.5
493	5.1	0.470	0.02	1.3	0.034	18.0	44.0	0.99210	3.90	0.6
527	9.0	0.690	0.00	2.4	0.088	19.0	38.0	0.99900	3.35	0.6

914 rows × 11 columns

In [21]: x_test

Out[21]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	
	835	9.8	0.390	0.43	1.65	0.068	5.0	11.0	0.99478	3.19	0.46	
	226	7.4	0.360	0.29	2.60	0.087	26.0	72.0	0.99645	3.39	0.68	
	199	11.4	0.260	0.44	3.60	0.071	6.0	19.0	0.99860	3.12	0.82	
	158	6.8	0.610	0.04	1.50	0.057	5.0	10.0	0.99525	3.42	0.60	
	597	6.7	0.280	0.28	2.40	0.012	36.0	100.0	0.99064	3.26	0.39	
	•••											
	86	7.8	0.500	0.17	1.60	0.082	21.0	102.0	0.99600	3.39	0.48	
	164	8.5	0.370	0.20	2.80	0.090	18.0	58.0	0.99800	3.34	0.70	
	99	8.1	0.670	0.55	1.80	0.117	32.0	141.0	0.99680	3.17	0.62	
	286	7.1	0.735	0.16	1.90	0.100	15.0	77.0	0.99660	3.27	0.64	
	947	7.2	0.835	0.00	2.00	0.166	4.0	11.0	0.99608	3.39	0.52	

229 rows × 11 columns

In []:

Train the Data using RandomForestRegressor