<u> Singularities</u>

We are only interested in isolated singular ities. We can write the analy tic function as Laurent series around an isolated singularity, convergent on a disk punctuated at the singularity.

Singularity.

Let f be analytic on D, with an isolated singularity at 30. In |3-30|=r in D, |3-30|=r in D, |3-30|=r in D, Based on the

 $\int_{K=-\infty}^{\infty} a_{K} \left(3-3\right)^{K} \quad \text{Based on the}$

Singularities.

Singularities.

1 Removable singularity | 1(3) | < c.

This occurs when $a_K = 0 + K(0, L(3))$ then becomes a Power series. 3 appears to be a

singularity but actually is not for example $\int_{3}^{3} (3) = \frac{\sin 3}{3} \text{ at } 3 = 0.$ I has a removable singularity at 30 only if (3) is Sounded around 30. Then for $|3-30| \le \epsilon$, $f(3) \le \sum_{K=0}^{\infty} a_K \epsilon^K$ which converges. If f(3) is bounded around 30, $a_{K} = \frac{1}{2\pi i} \int_{|\omega - z_{0}|} \frac{\int_{(\omega)}^{(\omega)} |\omega - z_{0}|}{|\omega - z_{0}|} e^{(\omega - z_{0})} K + 1 d\omega$ $\Rightarrow |a_{\kappa}| \leq O(\frac{1}{\epsilon}\kappa)$ a_K = 0 + K < 0 since E > 0.

2 Poles | 1(3) | > c.

When ax +0 for finitely many 12 40. The

order of a pole at z is the largest n Jor which a # 0. $\delta(3)$ has a pole at 30 only if $\lim_{3\to 30} |5(3)| = \infty$ () If I has a pole of order n at 3=30, $\int (3) = \sum_{K=-n}^{\infty} a_K (3-3_0)^{K}.$ Let $g(3) = (3-3)^n f(3)$ which is $\neq 0$ at 3. $\int (3) = \underbrace{\int (3)}_{(3-3)^n}$ \Rightarrow $\angle in |\delta(3)| = \infty.$ Conversely, let $\lim_{3\to 30} |5(3)| = \infty$. We define $g(3) = \frac{1}{f(3)} \cdot g(3)$ is analytic around 30 since $f(3) \neq 0$ around 30. Also it is bounded around 30. g(3) thus

may have a removable singularity at 30.

Since $\lim_{3\to 3_0} |J(3)| = \infty$, $g(3_0) = 0$. g(3) Thus

has an isolated zero of order nat 30.

 $\Rightarrow g(3) = (3-3)^n h(3) \quad \text{where } h(3) \neq 0$

 $\Rightarrow \int (3) = (3-3)^{-n} \cdot \frac{1}{h(3)}$

 $= (3-30)^{-n} \sum_{K \geq 0} \alpha_K (3-30)^K$

 $= \sum_{K=-n}^{\infty} \alpha_{K+n} \left(3-3 \right)^{K}$

b(3) thus has a pole of order n at 30.

3 Essential Singularity

When a # 0 for infinitely many K < 0,

then 30 is called an essential singularity.

An example is $\sum_{11,1} \frac{1}{3} \times \text{ or } \sqrt{e}$.

g(3) has an essential singularity at 3_0 , only $g' + \omega \in \mathbb{C}$, there is a sequence $\{u_m\}$ with $\lim_{n \to \infty} u_n = 3_0$ such that $\lim_{n \to \infty} g(u_n) = \omega$.

 $+\varepsilon$, $\exists S$ and \exists such that $|3-3| \leq S$ and $|5(3)-\omega| \leq \varepsilon$.

Let $\omega \in \mathbb{C}$ such that $\exists d$ and ε and $|\beta(3) - \omega| \geq \varepsilon$ for every $|3 - 3_0| \leq d$. We will define $g(3) = \frac{1}{f(3) - \omega}$. Consider g(3) in $|3 - 3_0| \leq d$. $g(3) \leq \frac{1}{\varepsilon}$

 \Rightarrow g(3) is bounded in $|3-3|<\delta$.

This means g(z) is completely analytic in $|z-z_0| < \delta$. Let $g(z) = (z-z_0)^n h(z)$ where $h(z) \neq 0$

/·· (2) , U.

$$\Rightarrow \int(3) - \omega + \left(3 - 3\right)^{-n} \frac{1}{h(3)}$$