INSTRUCTIONS: Books, notes, and electronic devices are <u>not</u> permitted. Fill out your bluebook properly including lecture number and instructor name. Also make a **grading table** with room for 9 problems and a total score. **Start each problem on a new page.** Box your final answers. A correct answer with incorrect or no supporting work may receive no credit. **SHOW ALL WORK**

- 1. (16 points) Let $f(x) = \frac{2 + e^x}{3 e^x}$.
 - (a) Does f have any horizontal or vertical asymptotes? Justify your answer using appropriate limits.
 - (b) Find the instantaneous rate of change of f with respect to x. Simplify your answer.
 - (c) Find the linearization of f centered at x = 0.
 - (d) Find the inverse function $f^{-1}(x)$. You may assume that f is one-to-one.
- 2. (36 points) The following problems are not related.
 - (a) Evaluate $\lim_{x\to\infty} (1+2^x)^{1/x}$.
 - (b) Use the Intermediate Value Theorem to show that $1 + u + \arctan u = 0$ has at least one real solution.
 - (c) Find $\frac{dy}{dx}$ if $y = (\ln x)^x$.
 - (d) Evaluate $\lim_{h\to 0} \frac{\arccos(1/2+h) \pi/3}{h}$.
 - (e) Evaluate $\int_0^{1/6} \frac{\sin^{-1}(3t)}{\sqrt{1-9t^2}} dt$.
 - (f) A monster eel is growing exponentially, increasing in length by 30 percent every 2 months. If its length at birth was b inches, how long will it take for the eel to reach 8 times its initial length?
- 3. (12 points) Let $f(x) = \int_0^x \left(e^{t^3 9t^2 + 24t + 1}\right) dt, x > 0.$
 - (a) Find the intervals where the graph of f(x) is concave upwards.
 - (b) Find the intervals where the graph of f(x) is concave downwards.
 - (c) Find the values of x where the graph of f(x) has inflection points.
- 4. (25 points) The following questions are not related:
 - (a) Evaluate $\int \left(\frac{\sin \theta 1}{\cos^2 \theta}\right) d\theta$
 - (b) Evaluate $\int \left(\frac{1}{x \ln(x^3)}\right) dx$
 - (c) Solve the following differential equation: $\frac{dy}{dx} = 2e^{-x} \cosh x$ where y(0) = 1.
 - (d) Name all points where the tangent line to the function $y = \frac{1}{x}$ is parallel to y = 2x 3.
 - (e) Name all points where the tangent line to the function $y = 3x \frac{4}{3}x^3$ is perpendicular to x + 2y = 2.

More On Next Page

5. (12 points) A wooden beam has a rectangular cross section of height h and width w. The strength of the beam is given by $s = kh^2w$ where k is a positive constant. What are the dimensions of the strongest beam that can be cut from a round log of diameter 24 inches? Justify.

- 6. (6 points) A particle is moving along the curve $x^2y^2 = 81$ in the fourth quadrant. When it reaches x = 1, its x-coordinate is increasing at a rate of $\frac{1}{2}$ unit per second. At what rate is the y-coordinate changing? Choose the most appropriate answer; you need not justify your answer:

 (A) $\frac{1}{18}$ units per second. (B) $-\frac{9}{2}$ units per second. (C) $\frac{9}{2}$ units per second. (D) $-\frac{1}{18}$ units per second. (E) y is constant (not changing). (F) None of the above.

- 7. (24 points) Answer the following statements as Always True, or <u>False</u>. No justification is necessary.

Consider the function $g(x) = \begin{cases} x^2 & : -1 \le x < 2 \\ 3 - 3(x - 2)^2 & : 2 \le x \le 3 \end{cases}$

(a) q(x) is differentiable.

- : $-1 \le x \le 2$: $2 \le x \le 3$ (b) g(x) is integrable. (c) g(x) has an absolute maximum.
- (d) The area under the graph of g(x) is 5. (e) $\lim_{x\to 2} g(x)$ exists.
- (f) Rolle's Theorem guarantees that q(x) has a horizontal tangent for some c in (-1,1).
- 8. Consider the following short answer questions; no justification is necessary.
 - (a) (2 points) Which of the following are not approximation methods?
 - (I) Newton's Method
- (II) Average rate of change
- (III) Linearization
- (IV) Riemann Sum
- (b) (5 points) State whether each of the following functions is continuous or has a jump discontinuity or has an infinite discontinuity or has a removable discontinuity on their respective domains.
- (I) $f(x) = \frac{x-4}{x^2+1}$ (II) $f(x) = \frac{|x-4|}{x-4}$ (III) $f(x) = \frac{x^2-1}{x-4}$
- (IV) $f(x) = \frac{x^2 4x}{x 4}$ (V) $f(x) = \begin{cases} \frac{x^2 4x}{x 4} & : x \neq 4 \\ 6 & : x = 4 \end{cases}$
- 9. (12 points) Answer the following, no justification is necessary. Suppose g is a continuous function defined on [0,5] that satisfies the following conditions:

$$g(3) = g(5) = 0,$$
 $g' > 0$ on $(0,4),$ $g' < 0$ on $(4,5).$

- (a) To maximize the value of $\int_a^b g(x) dx$ on a subinterval of [0, 5], what values of a and b should be chosen if a < b?
- (b) The expression $\sum_{i=1}^{3} g\left(2 + \frac{2i}{3}\right)\left(\frac{2}{3}\right)$ is a left endpoint rectangle approximation for what integral?
- (c) Which of the following expressions computes the total area between the curve y = g(x) and the
 - (I) $\int_0^5 g(x) dx$ (II) $\left| \int_0^5 g(x) dx \right|$ (III) $\int_0^4 g(x) dx + \int_0^5 g(x) dx$ (IV) none of the above