UM 204 (WINTER 2024) - WEEK 12

1. DIFFERENTIATION

Throughout this section, we will only consider real or vector-valued functions on open intervals of the real line.

1.1. Introduction.

Definition 1.1. Let $f:(a,b)\to\mathbb{R}$ and $c\in(a,b)$. We say that f is differentiable at c with derivative f'(c) if

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c),$$

or equivalently,

$$\lim_{x \to c} \frac{f(x) - f(c) - f'(c)(x - c)}{x - c} = 0.$$

The function is differentiable in (a, b) if f is differentiable at each $c \in (a, b)$. Moreover, the function $c \mapsto f'(c)$ is the derivative function of f.

As an exercise, revisit the proofs of the following results:

Theorem 1.2. If $f:(a,b)\to\mathbb{R}$ is differentiable at $c\in(a,b)$, then f is continuous at c.

Theorem 1.3. If $f, g: (a, b) \to \mathbb{R}$ are differentiable at c, then

- (1) f + g is differentiable at c and (f + g)'(c) = f'(c) + g'(c),
- (2) fg is differentiable at c, and (fg)'(c) = f(c)g'(c) + f'(c)g(c),
- (3) assuming $g'(c) \neq 0$, f/g is differentiable at c, and $(f/g)'(c) = \frac{g(c)f'(c) f(c)g'(c)}{g(c)^2}$.

Theorem 1.4. Suppose $f:(a,b) \to \mathbb{R}$ is differentiable at $c \in (a,b)$. Suppose $f((a,b)) \subset (p,q)$. and $g:(p,q) \to \mathbb{R}$ is differentiable at f(c). Then, $g \circ f:(a,b) \to \mathbb{R}$ is differentiable at c, and

$$(g \circ f)'(c) = g'(f(c)) \cdot f'(c).$$

1.2. **Mean value theorems and applications.** As we have already seen before, derivatives are useful in detecting point of extrema.

Theorem 1.5. Let $f:(a,b) \to \mathbb{R}$ be a function. Suppose f has a local extremum at $c \in (a,b)$ and f is differentiable at c, then f'(c) = 0.

Proof. WLOG, assume that c is a point of local maximum (otherwise, consider -f). Then, there is some $\delta > 0$ such that

$$f(x) \le f(c) \quad \forall x \in B(c; \delta) \subset (a, b).$$

Thus, if $x \in (c - \delta, \delta)$, then

$$\frac{f(x) - f(X)}{x - c} \ge 0,$$

and if $x \in (c, c + \delta)$,

$$\frac{f(x) - f(c)}{x - c} \le 0.$$

Taking limits as $x \to c$, we obtain that $0 \le f'(c) \le 0$, which yields the claim.

Remark. Similar reasoning also allows us to deduce the sign of the derivative of a monotone function (though the converse requires something more).

Example. Consider the function

$$f(x) = \begin{cases} x^2 \sin(1/x), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

When $x \neq 0$, the differentiability of the function follows from the result about sums, products and quotients of differentiable functions. Furthermore, we obtain that

$$f'(x) = 2x\sin(1/x) - \cos(1/x), \quad x \neq 0.$$

At x = 0, we directly compute

$$\lim_{h \to 0} \frac{f(h) - f(0)}{h} = h \sin(1/h) = 0.$$

Thus, f'(x) exists for all $x \in \mathbb{R}$, by it is not continuous at x = 0.

Theorem 1.6 (Intermediate Value Property). Let $f:(p,q) \to \mathbb{R}$ is differentiable and $[a,b] \subset (p,q)$. Suppose $f'(a) < \lambda < f'(b)$. Then, there is some $c \in (a,b)$ such that $f'(c) = \lambda$.

Proof. Let $g(x) = f(x) - \lambda x$. Then, g'(a) < 0 and g'(b) > 0. Since g'(a), there is a $\delta > 0$ such that for all $x \in (a, a + \delta)$,

$$\frac{g(x) - g(a)}{x - a} < g'(a) - \frac{g'(a)}{2} < 0.$$

Thus, g(x) < g(a) for all $x \in (a, a + \delta)$. Similarly, since g'(b) > 0, we obtain that g(x) < g(b) for all $x \in (b - \delta', b)$ for some $\delta' > 0$. This implies that the minimum of g on [a, b] is attained at some $c \in (a, b)$. \square

Exercise. Show that if a function has a discontinutiy of the first kind, then there is an interval on which it does not satisfy the intermediate value property.

Corollary 1.7. A derivative function on an interval of \mathbb{R} cannot have discontinuities of the first kind.

Theorem 1.8 (Cauchy's). Let $f,g:[a,b] \to \mathbb{R}$ be continuous functions that are differentiable on (a,b). Then, there is some $c \in (a,b)$ such that

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).$$

Remarks. 1. The special case where g(x) = x and f(a) = f(b) is called Rolle's theorem.

- 2. The special case where g(x) = x is call the mean value theorem.
- 3. One interpretation is: the ratio of the global averages of two functions is attained at some point by the ration of their derivatives.
- 4. If $x \mapsto (f(x), g(x))$ parametrizes a path in \mathbb{R}^2 , then the line joining the endpoints is parallel to the tangent line at some point in the path.

END OF LECTURE 28

Proof. Let

$$h(x) = (f(b) - f(a))g(x) - (g(b) - g(a))f(x), x \in [a, b].$$

Then, by the algebraic laws of continuous and differentiable functions, h is continuous on [a, b] and differentiable on (a, b). Further, note that

$$h(a) = h(b)$$
.

Then, since h is continuous, it attains its extrema on [a, b]. Either h is constant on [a, b], in which case h'(x) = 0 everywhere, and c can be chosen to be any point (a, b).

Otherwise, there is some $t \in (a, b)$ where either h(t) > h(a) or h(t) < h(a). In this case, an extrema is attained at some $c \in (a, b)$, and by the previous theorem h'(c) = 0.

Remark. The mean value theorem allows us to deduce the monotonicity of a function based on the sign of its derivative.

Theorem 1.9 (Taylor's theorem). Let $n \in \mathbb{N}$. Suppose $f : [a,b] \times \mathbb{R}$ is such that $f, f', ..., f^{(n)}$ exist on (a,b), and extend continuously to [a,b]. Then, there is some $c \in (a,b)$ such that

$$f(b) = f(a) + f'(a)(b-a) + \dots + \frac{f^{(n-1)}(a)}{(n-1)!}(b-a)^{n-1} + \frac{f^{(n)}(c)}{n!}(b-a)^n.$$

Proof. Suppose we knew how to prove this result for the special case $f(a) = \cdots = f^{(n-1)}(a) = 0$. That is, for a function satisfying these conditions, there is a $c \in (a, b)$ such that

$$f(b) = \frac{f^{(n)}(c)}{n!}(b-a)^n.$$

Then we try to modify the given function to satisfy this condition. Let

$$F(x) = f(x) - \sum_{k=0}^{\ell} c_k (b - a)^k.$$

In order that $F(a) = \cdots = F^{(n-1)}(a) = 0$, we must have that $\ell = n-1$, and

$$c_j = \frac{f^{(j)}(a)}{i!}.$$

Applying the special (yet unproved) case to observe that there is a $c \in (a, b)$ such that

$$f(b) - \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (b-a)^k = F(b) = \frac{F^{(n)}(c)}{n!} = \frac{f^{(n)}(c)}{n!}.$$

Now, consider the special case. Let '

$$g(x) = f(x) - f(b) \frac{(x-a)^n}{(b-a)^n}.$$

Then, $g(a) = \cdots g^{(n-1)}(a) = 0$ and g(b) = 0. By Rolle's theorem, there is a $c_1 \in (a, b)$ such that

$$g'(c_1)=0.$$

Now, applying Rolle's theorem to g' on $[a, c_1]$, we obtain a $c_1 \in (a, c_1)$ such that

$$g''(c_2)=0.$$

Continuing this way, we obtain $a < c_n < c_{n-1} < \cdots < c_1 < b$ such that

$$g^{(n)}(c_n) = f^{(n)}(c_n) - \frac{n!}{(b-a)^n} f(b) = 0.$$

Theorem 1.10 (L'Hospital's Rule). Suppose $-\infty \le a < b \le +\infty$. Let $f,g:(a,b) \to \mathbb{R}$ be differentiable functions such that $g(x) \ne 0$ and $g'(x) \ne 0$ for all $x \in (a,b)$. Suppose $A \in [-\infty,\infty]$ such that

$$\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = A.$$

Then, in each of the following situations,

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = A.$$

- (1) $if \lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = 0.,$
- (2) $if \lim_{x \to a^+} g(x) = +\infty$,
- (3) $if \lim_{x \to a^+} g(x) = -\infty$.

Proof. We will only tackle the case when $a, A \in \mathbb{R}$.

Given $\varepsilon > 0$, we obtain a $\delta > 0$ such that for all $x \in (a, a + \delta)$,

$$A - \varepsilon < \frac{f'(x)}{g'(x)} < A + \varepsilon.$$

Let $y \in (a, a + \delta)$.

Assume (i) holds. Let $\{z_n\}_{n\in\mathbb{N}}$ be a sequence in $(a, a+\delta)$ such that

- (1) $z_n < y$ for all $n \in \mathbb{N}$,
- $(2) \lim_{n\to\infty} z_n = a,$
- (3) $g(z_n) \neq g(y)$.

The last feature is possible since $g'(x) \neq 0$ on $(a, a + \delta)$. Thus, if $z_1 > \cdots > z_{n-1}$ has been constructed, there is always a $z_n \in (1/n, z_{n-1})$ such that $f(z_n) \neq f(y)$. Now, by the GMVT, there exists a $w_n \in (z_n, y) \subset (a, a + \delta)$ such that

$$A - \varepsilon < \frac{f(y) - f(y_n)}{g(y) - g(y_n)} = \frac{f'(w_n)}{g'(w_n)} < A + \varepsilon$$

Taking limits as $n \to \infty$, we obtain that

$$A - \varepsilon < \frac{f(z)}{g(z)} < A + \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, we have that

$$\lim_{x \to a^+} \frac{f(z)}{g(z)} = A.$$

END OF LECTURE 29

Assume that (ii) holds. Then, since $\lim_{x\to a^+} g(x) = +\infty$, there is some $0 < \delta' < \delta$ such that for all $z \in (a, a + \delta')$, $g(z) > \max\{g(y) + 1, 0\}$. Then,

$$\frac{g(z)-g(y)}{g(z)}>0.$$

Once again, for each $y \in (a, a + \delta')$, there is some $\theta \in (y, z)$ such that

$$A - \varepsilon < \frac{f(z) - f(y)}{g(z) - g(y)} = \frac{f'(\theta)}{g'(\theta)} < A + \varepsilon.$$

Thus,

$$(A-\varepsilon)\frac{g(y)-g(z)}{g(z)} < \frac{f(z)-f(y)}{g(z)-g(y)}\frac{g(z)-g(y)}{g(z)} < (A+\varepsilon)\frac{g(z)-g(y)}{g(z)}$$

or

$$(A-\varepsilon)\left(1-\frac{g(y)}{g(z)}\right)+\frac{f(y)}{g(z)}<\frac{f(z)}{g(z)}<(A+\varepsilon)\left(1-\frac{g(y)}{g(z)}\right)+\frac{f(y)}{g(z)}.$$

Keeping *y* fixed, let $z \rightarrow a^+$. Then,

$$A - \varepsilon < \frac{f(z)}{g(z)} < A + \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, we are done. The third case is similar to the second one.

Bad uses. In both cases, in can be directly shown (using the squeeze theorem, basic bounds, etc.) that the limits exist, and are 1 and 0, respectively.

However, an imprecise use of L'Hospital's rule will yield:

$$\lim_{x \to \infty} \frac{2x}{2x + \sin(x)} = \lim_{x \to \infty} \frac{2}{2 + \cos(x)} = \lim_{x \to \infty} \frac{0}{-\sin(x)} = 0.$$

$$\lim_{x \to 0} \frac{x^2 \sin(1/x^2)}{x} = \lim_{x \to \infty} 2x \sin(1/x^2) - 4x^{-2} \cos(1/x^2) = DNE.$$

1.3. Vector-valued functions.

Definition 1.11. Given $f:(a,b)\to\mathbb{R}^n$, we say that f is differentiable at $c\in(a,b)$ with $f'(c)\in\mathbb{R}^k$ as derivative if

$$\lim_{x \to c} \left\| \frac{f(x) - f(c)}{x - c} - f'(c) \right\| = 0.$$

Remarks. 1) If $f = (f_1, ..., f_n)$, then the differentiability of f at c is equivalent to the all f_j 's at being differentiable at c, with

$$f'(c) = (f'_1(c), ..., f'_n(c)).$$

2) The sum and inner product of differentiable vector-valued functions is also differentiable and the derivatives behave in the expected fashion.

Warning! Several theorems fail in this context.

(1) Let $f(x) = e^{ix} = \cos(x) + i\sin(x)$ (or think of it as $f(x) = (\cos(x), \sin(x))$). Then, $f'(x) = ie^{ix}$, which is never (0,0) for $x \in [0,2\pi]$, but $f(2\pi) = f(0) = 0$.

(2) Let f(x) = x and $g(x) = x + x^2 e^{i/x^2}$ on (0,1). It's clear that $\lim_{x\to 0} f(x) = \lim_{x\to 0} g(x) = 0$. Moreover, $\lim_{x\to 0} \frac{f'(x)}{g'(x)} = 0$. For this, note that

$$g'(x) = 1 + \left(2x - \frac{2i}{x}\right)e^{i/x^2}.$$

Thus,

$$|g'(x)| \ge \left|2x - \frac{2i}{x}\right| - 1 \ge \frac{2}{x} - 1 \to +\infty,$$

as $x \to 0$, whereas f'(x) = 1. However,

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = 1.$$

Thus, L'Hosptial's rule doesn't hold.

Theorem 1.12 (Mean Value Inequality). Suppose $f : [a,b] \to \mathbb{R}^n$ is continuous on [a,b] and differentiable on (a,b). Then, there is a $c \in (a,b)$ such that

$$||f(b) - f(a)|| \le ||f'(c)||(b-a).$$

Proof. Consider $F: x \mapsto \langle f(b) - f(a), f(x) \rangle$. Then, there is some $c \in (a, b)$ such that

$$||f(b) - f(a)||^2 = F(b) - F(a) = F'(c)(b-a) < f(b) - f(a), f(c) > (b-a) \le ||f(b) - f(a)|| ||f'(c)|| (b-a).$$

by the Cauchy-Schwartz inequality.

2. RIEMANN INTEGRATION

Once again, we will focus on \mathbb{R} -valued functions on the real line (or its subsets). Riemann integration was the first rigorous theory of integration, and is quite useful for practical purposes.

Definition 2.1. Let $f:[a,b] \to be$ a bounded function. Let $P = \{x_0, x_1, ..., x_n\}$ be a partition of [a,b], i.e.,

$$a = x_0 \le x_1 \le \cdots \le x_n = b$$
.

Let

$$\Delta x_i = x_i - x_{i-1},$$

$$M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$$

$$m_i = \inf_{x \in [x_{i-1}, x_i]} f(x), \quad i \in \{1, ..., n\}.$$

Let

$$U(P,f) = \sum_{i=1}^{n} M_i x_i$$
$$L(P,f) = \sum_{i=1}^{n} m_i x_i.$$

Then, the upper integral and lower integral of f are defined as

$$\int_{a}^{b} f dx = \inf\{U(P, f) : P \text{ is a partition of } [a, b]\},$$

$$\int_{a}^{b} f dx = \sup\{L(P, f) : P \text{ is a partition of } [a, b]\}.$$

The function f is said to be Riemann integrable if

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$

in which case this quantity is denoted by $\int_a^b f dx$.

Note that for every partition *P*,

$$\inf_{[a,b]} f(b-a) \le L(P,f) \le U(P,f) \le \sup_{[a,b]} f(b-a).$$

So, the definition makes sense for every bounded function.

END OF LECTURE 30