КЕРАМИЧЕСКИЕ КОНДЕНСАТОРЫ БОЛЬШОЙ ЕМКОСТИ

Керамические конденсаторы являются естественным элементом практически любой электронной схемы. Они применяются там, где необходима способность работать с сигналами меняющейся полярности, хорошие частотные характеристики, малые потери, незначительные токи утечки, небольшие габаритные размеры и низкая стоимость. Там же, где эти требования пересекаются, они практически незаменимы. Но проблемы, связанные с технологией их производства, отводили этому типу конденсаторов нишу устройств малой емкости. Действительно, керамический конденсатор на $10 \text{ мк} \Phi$ еще недавно воспринимался как удивительная экзотика, и стоило такое чудо как горсть алюминиевых электролитических тех же емкости и напряжения либо как несколько аналогичных танталовых.

Однако развитие технологий позволило к настоящему времени сразу нескольким фирмам заявить о достижении их керамическими конденсаторами емкости в $100~{\rm Mk}\Phi$ и анонсировать начало производства еще больших значений еще до конца этого года. А сопровождающее этот процесс непрерывное падение цен на все изделия данной группы заставляет внимательнее присмотреться ко вчерашней экзотике, чтоб не отстать от технического прогресса и сохранить конкурентоспособность.

Несколько слов о технологиях. Говоря о керамических конденсаторах, здесь мы будем рассматривать многослойные керамические конденсаторы. На рис. 1 представлена структура такого конденсатора, а на рис. 2 фотография сильно увеличенного среза изделия одного из мировых лидеров их производства — японской фирмы «Мигата».

Емкость многослойных керамических конденсаторов определяется формулой:

$$C=\mathcal{E}_0 \quad \frac{\mathcal{E}_0 \times S_0 \times n}{d} \quad , \tag{1}$$

где

 ϵ_0 — константа диэлектрической проницаемости вакуума.

 ϵ — константа диэлектрической проницаемости используемой в качестве диэлектрика керамики.

S₀ — активная площадь одного электрода.

n — число слоев диэлектрика.

d — толщина слоя диэлектрика.

Таким образом, увеличения емкости можно добиться уменьшением толщины слоев диэлектрика, увеличением числа электродов, их активной площади, повышением диэлектрической проницаемости диэлектрика.

Уменьшение толщины диэлектрика и связанная с этим возможность увеличения количества электродов — основной способ увеличения емкости керамических конденсаторов. Но снижение толщины диэлектрика приводит с снижению напряжения пробоя. Потому конденсаторы большой емкости трудно найти на высокое рабочее напряжение.

Увеличение числа слоев диэлектрика — процесс, технологически связанный с уменьшением толщины единичного слоя. Рис. 3 отображает технологические тенденции последних лет в этой области, представленные фирмой «Мигаta».

Увеличение активной площади одного электрода — это увеличение габаритных размеров конденсатора — крайне неприятное явление, приводящее к резкому росту стоимости изделия.

Увеличение диэлектрической проницаемости при заметном увеличении емкости приводит к существенному ухудшению температурной стабильности и сильной зависимости емкости от приложенного напряжения.

Теперь рассмотрим возможности и особенности применения керамических конденсаторов большой емкости. Перед началом обсуждения стоит обратить внимание на уже имеющиеся предложения и ближайшие планы лидеров отрасли фирм «Murata» и «Samsung Electro-Mechanics», представленные ниже.

Естественной областью применения подобного спектра керамических конденсаторов большой емкости может быть замена ими танталовых и алюминиевых конденсаторов для поверхностного монтажа в схемах подавления пульсаций, разделения постоянной и переменной составляющих электрического сигнала, интегрирующих цепочках. Однако при этом необходимо учитывать принципиальные различия между этими группами деталей, делающие, в большинстве случаев, бессмысленными замены типа электролитический конденсатор номинал×напряжение на аналогичные номинал×напряжение керамического конденсатора. Рассмотрим коротко основные причины этого.

Частотные свойства конденсаторов определяет зависимость их импеданса и эквивалентного последовательного сопротивления (ESR) от частоты. Типичные зависимости такого рода для керамических, танталовых и алюминиевых конденсаторов приведены на рис. 4 и рис. 5.

Существенная разница в импедансе на частотах выше $1~\mathrm{kTu}$ с алюминиевыми электролитическими и свыше $10~\mathrm{Tu}$ с танталовыми конденсаторами позволяет в некоторых случаях использовать для сглаживания пульсаций напряжения номиналы меньшей емкости для получения аналогичного эффекта. Разница в величине сглаживания паразитных синусоидальных пульсаций различных частот конденсаторами разного типа, но одинаковой емкости — $10~\mathrm{mk}\Phi$ — дана в таблице на следующей странице.

Частота пульсации	Входная амплитуда пульсации	Выходная амплитуда пульсации, мВ					
		алюминиевые эл-кие танталовые эл-кие керамически					
		конденсаторы	конденсаторы	конденсаторы			
10 кГц		534	204	196			
100 кГц	2 B	336	64	16			
500 кГц		346	38	12			
1 МГЦ		332	30	3			

Таким образом, для обеспечения одинакового с танталовым конденсатором в 10~ мк Φ уровня подавления пульсаций частотой 1~ М Γ ц можно использовать керамический конденсатор емкостью 1,0-2,2~мк Φ . Экономия места на плате и денег очевидна.

Низкое эквивалентное последовательное сопротивление и связанные с ним малые потери позволяют значительно сильнее нагружать керамические конденсаторы, нежели электролитические, несмотря на их значительно более скромные габаритные размеры, не вызывая при этом критического для детали разогрева.

Сравнительные кривые разогрева конденсаторов токами пульсации различной частоты приведены на рис. 6.

Еще одним, и немалым плюсом керамических конденсаторов является их способность кратковременно держать высокие напряжения перегрузки, многократно превышающие номинальные. Кто выбирал сглаживающие конденсаторы для импульсных источников питания, знает, как это важно! Ибо там в моменты запуска и выключения могут генерироваться импульсы до нескольких значений выходного напряжения, заставляя использовать электролитические конденсаторы с большим запасом по напряжению.

Сравнительную характеристику напряжения пробоя для различных типов конденсаторов по результатам тестов, проведенных фирмой «Murata». приведены на рис. 7.

Теперь несколько слов о грустном. При всех своих достоинствах керамические конденсаторы большой емкости производятся с использованием диэлектриков типа X7R/X5R и Y5V. Их отличительной особенностью является сильная зависимость диэлектрической проницаемости, а с ней, согласно (1) и емкости,

Murata X5R/X7R

	1 мкФ	2,2 мкФ	4,7 мкФ	10 мкФ	22 мкФ	47 мкФ	100 мкФ
100 B	2220						
50 B	1210	1812	2220	2220			
25 B	1206	1210	1210	1812	1812		
16 B	0805	1206	1206	1210	1812	2220	
10 B	0603	0805	1206	1210	1210	2220	
6,3 B	0603	0603	0805	0805	1206	1210	2220

Murata Y5V

	1 мкФ	2,2 мкФ	4,7 мкФ	10 мкФ	22 мкФ	47 мкФ	100 мкФ
100 B	1210						
50 B	1206		1210	1812			
25 B	0805	0805	1206	1210			
16 B	0603	0805	1206				
10 B	0603		0805	0805	1210		
6.3 B	0402	0603		0805	1206	1210	1812

от температуры и приложенного напряжения. Типичные зависимости такого рода для конденсаторов разных типов показаны на рис. 8 и 9.

Из них видим, что при достаточно жестких требованиях к стабильности номинала, например во времязадающих цепях, или при развязке постоянной и переменной составляющих, на замену электролитическим конденсаторам можно рекомендовать только керамические с диэлектриком X7R, который может оказаться еще более интересным, если принять во внимание его диапазон рабочих температур: $-55 - +125\,^{\circ}\mathrm{C}$, позволяющий ему найти применение как в аппаратуре, рассчитанной на работу на улице в условиях севера, так и в автомобильной технике, с ее жесткими требованиями к сохранению работоспособности при высоких температурах.

Однако для сглаживающего конденсатора стабильность номинала не является критическим параметром. Потому можно рассчитывать на высокую востребованность и емкостей на основе менее стабильной керамики Y5V, из которой можно получить детали меньшего габарита и стоимости.

Samsung Electro-Mechanics X7R

	1 мкФ	2,2 мкФ	4,7 мкФ	10 мкФ	22 мкФ	47 мкФ	100 мкФ
100 B	1210	2220					
50 B	1210						
25 B	1206						
16 B	0805	1206	1206	1210			
10 B	0805	1206	1206	1206	1812		
6,3 B	0603	0805	0805	0805	1210		2220

Samsung Electro-Mechanics Y5V

	1 мкФ	2,2 мкФ	4,7 мкФ	10 мкФ	22 мкФ	47 мкФ	100 мкФ
100 B							
50 B	1210	1812					
25 B	0805	1206	1206	1206			
16 B	0603	0805	1206	1206			
10 B	0603	0805	0805	1206	1206	1812	2220
6,3 B							

Для поверхностного монтажа

- Широкий выбор номиналов от 0,5 пФ до 100 мкФ, постоянно имеющихся на складе.
- Габаритные размеры от 0201 до 2220.

Габаритные размеры

	Длина (L), мм	Ширина (W), мм
0201	0,6±0,03	0,3±0,03
0402	1,0±0,2	0,5±0,1
0603	1,6±0,2	0,8±0,2
0805	2,0±0,2	1,25±0,2
1206	3,2±0,2	1,6±0,2
1210	3,2±0,2	2,5±0,2
1812	4,6±0,3	3,2±0,3
2220	5,7±0,4	5,0±0,4

NP0 (COG) — самая высокая температурная стабильность и отсутствие зависимости емкости от частоты и приложенного напряжения. Невысокое значение возможных емкостей.

Х7R — используется там, где стабильность менее важна, чем высокое значение емкости.

Y5V — применяется в случаях, когда допустимы значительные изменения номинала в зависимости от температуры. Возможны исключительно большие значения емкости.

Общего назначения 0201-2220

 $^{^{\}rm 1}$ — приведены типичные значения. Возможны вариации, зависящие от конкретного производителя.

Типо- размер	Диэлектрик	Область рабочих тем- ператур, °С	Максима- льное напря- жение, В	Диапазон возможных емкостей	Допустимые отклонения от номинала, %	Типо- размер	Диэлектрик	Область рабочих тем- ператур, °С	Максима- льное напря- жение, В	Диапазон возможных емкостей	Допустимые отклонения от номинала, %	
0201*	NP0/C0G	-55~+125	25	0,1 пФ — 100 пФ	±0,25pF*,±0,5pF*, 1*,2*,5	1206	NP0/C0G	-55~+125	100	0,5 пФ — 6,8 нФ	±0,25pF*,±0,5pF*, 1*,2*,5	
	U ² J ((750/+120 ppm°C)	-55~+125	50	3—15 пФ	2*, 5				50	0,5 пФ — 82 нФ	1,2,5	
			25	18-100 пФ					25	8,2-100 нФ		
	X7R	-55~+125	16	100 пФ — 1 нФ	5*,10		U ² J((750/+120 ppm°C)	-55~+125	50	3,9-100 нФ	5	
			6,3	1,5-10 нФ			X7R	-55~+125	100	100 пФ — 470 нФ	5*, 10	
	X5R	-55 ~+85	10	1,5–10 нФ	10				50	220 пФ — 4,7 мкФ		
			6,3	0,015-0,22 мкФ*					25	330 нФ — 4,7 мкФ		
	Y5V	-30 ~+85	10	2,2-10 нФ	+80/-20				16	680 нФ — 10 мкФ		
0402	NP0/C0G	-55~+125	50	0,1 пФ — 1 нФ	±0,25pF*,±0,5pF*,1*,2*,5		X5R	FF 10F	10	1–22 мкФ	10	
	U²J((750/+120 ppm°C) X7R	-55~+125 -55~+125	50 100	3–180 пФ 220 пФ – 4.7 нФ	±0,25pF*,±0,5pF*, 5 5*,10		AOR	-55 ~+85	16 10	2,2-10 мкФ 1-10 мкФ	10	
	A/n	-55-+125	50	100 пФ – 4,7 нФ	5,10				6,3	4,7–100 мкФ		
			25	3,9–47 нФ			Y5V	-30 ~+85	50	10 нФ — 4,7 мкФ	±20*, +80/-20	
			16	5,6-100 нФ			150	-50 105	25	680 нф — 10 мкФ	20 , 100/-20	
			10	33–100 нФ					16	1–10 мкФ		
	X5R	-55 ~+85	16	100 нФ	10				10	2,2-22 мкФ		
	1.5		10	68-220 нФ	''				6,3	10-47 мкф		
			6,3	220 нФ - 2,2 мкФ*		1210	NP0/C0G	-55~+125	100	1–10 нФ	1*, 2*,5	
	Y5V	-30 ~+85	50	2,2-10 нФ	±20*, +80/-20		· ·		50	1-100 нФ		
			25	22-100 нФ			X7R	-55~+125	100	100 нФ — 2,2 мкФ	5*, 10	
			16	10-470 нФ					50	680 нФ — 4,7 мкФ		
			10	220-470 нФ					25	1,5-10 мкФ		
			6,3	470 нФ — 1 мкФ					16	2,2-22 мкФ		
0603	NP0/C0G	-55~+125	100	0,5 пФ — 1 нФ	1*, 2*,5,10*				10	22-47 мкф		
			50	0,5 пФ — 3,3 нФ			X5R	-55 ~+85	25	10 мкФ; 22 мкФ	10	
	11011/750/- 400 - 001	55 . 105	25	3,9-10 нФ					16	10 мкФ-47 мкф		
	U²J((750/+120 ppm°C) X7R	-55~+125 -55~+125	50 100	3 пф — 10 нф 100 пФ — 100 нФ*	±0,25pF*,±0,5pF*, 5 5*, 10				10 6,3	10 мкФ-47 мкФ 22-100 мкФ		
	A/K	-35~+125	50	100 пФ — 100 нФ	5", 10		Y5V	-30 ~+85	100	22-100 мкФ 100 нФ	+80/-20	
			25	33-220 нФ			134	-3063	50	1–10 мкФ	+00/-20	
			16	100 нФ — 1 мкФ					25	4,7 мкФ; 10 мкФ		
			10	150 нФ — 2.2 мкФ					16	10 мкФ: 22 мкФ		
	X5R	-55 ~+85	25	220 нФ — 1 мкФ	10				10	10 мкФ; 22 мкФ; 47мкф		
			16	150 нФ — 2,2 мкФ					6,3	47 мкФ; 100 мкф		
			10	330 нФ — 2,2 мкФ		1812	NP0/C0G	-55~+125	100	1-22 нФ	1*, 2*,5	
			6,3	1-10 мкФ					50	1-22 нФ		
	Y5V	-30 ~+85	100	4,7 нФ	±20*, +80/-20		X7R	-55~+125	100	100 нФ — 2,2 мкФ	5*, 10	
			50	10-220 нФ					50	1,5-2,2 мкФ		
			25	100-470 нФ							25	4,7 мкФ; 10 мкФ
			16	220 нФ — 2,2 мкФ			V50	FF .0F	10	22 мкФ; 47 мкф	40	
			10	470 нФ — 4,7 мкФ 2,2—10 мкФ*			X5R	-55 ~+85	25 16	10 мкФ 22 мкФ	10	
0805	NP0/C0G	-55~+125	6,3 100	0,5 пФ — 2,7 нФ	±0,25pF*,±0,5pF*,1*,2*,5				10	22 мкФ 22 мкф; 47 мкФ		
0000	NPU/CUG	-55-+125	50	0,5 пФ — 2,7 нФ	±υ,25με ,±υ,5με ,1 ,2 ,5				6,3	47 мкф; 100 мкФ		
			25	3.9–33 нФ			Y5V	-30 ~+85	100	220 нф - 1 мкФ	+80/-20	
	U ² J((750+/(120 ppm°C)	-55~+125	50	820 пФ — 47 нФ	2*, 5			"	50	10 мкФ	11, 11	
	X7R	-55~+125	100	100 пФ — 47 нФ	5*, 10				25	22 мкФ		
			50	100 пФ — 470 нФ	, i				16	47 мкФ		
			25	100 нФ — 2,2 мкФ					10	100 мкФ		
			16	150 нФ — 4,7 мкФ					6,3	100 мкФ		
			10	220 нФ — 10 мкФ		2220	NP0/C0G	-55~+125	100	15 нФ; 22 нФ	5	
	X5R	-55 ~+85	25	1–4,7 мкф	10		X7R	-55~+125	100	680 нФ - 4,7 мкФ	5*, 10	
			16	470 нф — 4,7 мкФ					50	1–4,7 мкФ		
			10	0,33-10 мкф					25	10 мкФ; 15 мкф; 22 мкф		
	Ver :	00 00	6,3	1,5-22 мкф	. 004		X5R	-55 ~+85	50	10 мкФ	10	
	Y5V	-30 ~+85	50	10 нФ — 1 мкФ	±20*, +80/-20		Y5V	-30 ~+85	100	470 нф	+80/-20	
			25	100 нФ — 4,7 мкФ					50	22 мкф		
			16 10	1-10 мкФ 1-10 мкФ					25 16	47 мкф 100 мкф		
			6,3B	1—10 мкФ 10 мкФ					10	тоо мкф		
			U,3B	I U MKΨ								

^{*} Возможность поставки требует уточнения.

Для поверхностного монтажа, высоковольтные

Типоразмер	Диэлектрик	Область рабочих температур, °С	Максимальное напряжение	Диапазон возможных емкостей	Допустимые отклонения от номинала, %
0000	ND0/000	FF + 10F	000 D		±0,1pF*;±0,25pF*,±0,5pF*,1*,2*,5
0603	NP0/C0G X7R	-55~+125	200 B 250 B	0,5–100 пФ* 220 пФ – 2,2 нФ	±0,1pr*;±0,25pr*,±0,5pr*,1*,2*,5
0805	NP0		200 B	0,5-220 пФ*	±0,1pF*;±0,25pF*,±0,5pF*,1*,2*,5
0003	NIO		250 B	10 пФ — 1,2 нФ	±0,1β1 ,±0,23β1 ,±0,3β1 ,1 ,2 ,0
			500 B	10-470 πΦ	
	X7R		250 B	100 пФ — 22 нФ	5*, 10
	AIII		500 B	100 пф — 22 нф	3,10
1206	NP0		200 B	270–470 пФ	1*,2*,5
1200	NIO		250 B	10 пФ — 3,9 нФ	1 ,2 ,0
			500 B	1 пФ — 2,2 нФ	
			1 KB	10 пФ — 1,5 нФ	
			2 KB	10-270 пФ	
			3 KB	10-68 пФ	
	X7R		250 B	100 пФ — 100 нФ	5*, 10
			500 B	100 пФ — 33 нФ	, , ,
			630 B	1—15 нФ	
			1 kB	100 пФ — 4,7 нФ	1
			2 ĸB	100 пФ — 1 нФ	
1210	NP0		200 B	0,5-220 пФ*; 560 пФ - 1 нФ	1*,2*,5
			250 B	1-6,8 нФ	, ,-
			500 B	0,5-120 пФ*; 1-3,3 нФ	±0,1pF*;±0,25pF*,5
			1 kB	10-2,2 нФ	
			2 ĸB	10-560 пФ	i
			3 кВ	10-220 пФ	
	X7R		250 B	22-220 нФ	5*, 10
			500 B	3,3-47 нФ	
			630 B	22-47 нф	
			1 kB	220 пФ — 22 нФ	
			2 кВ	220 пФ — 1,5 нФ	
1808	NP0		250 B	1–3,3 нф	1*, 2*,5
			500 B	1–3,3 нФ	1
			1 kB	10 пФ — 2,2 нФ	
			2 ĸB	10-560 пФ	1
			3 кВ	5–330 пФ	
	X7R		500 B	2,2-47 нФ	5*, 10
			1 kB	470 пФ — 10 нФ	
			2 KB	100 пФ — 2,2 нФ	
			3 кВ	100 пФ — 1 нФ	
1812	NP0		200 B	1,2–2,7 нФ	1*, 2*, 5
			250 B	1–12 нФ	
			500 B	1–6,8 нФ	
			1 kB	10 пФ — 4,7 нФ	
			2 KB	10 пФ — 1,2 нФ	
			3 кВ	10-390 пФ	
	X7R		250 B	47—470 нФ	5*, 10
			500 B	4,7–150 нФ	
			630 B	22 нф*-100 нф	
			1 KB	470 пФ — 47 нФ	
			2 KB	470 пФ — 4,7 нФ	
	VEV	20 .05	3 KB	470 пФ — 2,2 нФ	100* 100/ 00
2000	Y5V	-30 ~ +85	250 B	10-560 нФ	±20*,+80/-20
2220	NP0	-55~+125	200 B	3,3-5,6 нф	1*, 2*,5
	V7D		500 B	560 пФ, 1000 пф	E+ 10
	X7R		250 B	330 нФ — 1 мкФ	5*, 10
			500 B	68 пФ — 220 нФ	1
			630 B	150-220 нф	
			1 KB	1–100 нФ	1
			2 kB	1–10 нФ	

^{*} Возможность поставки требует уточнения.

Другие серии доступны по запросу. За дополнительной информацией обращаться на сайт **www.symmetron.ru** или непосредственно в ЗАО «Симметрон ЭК»

Для поверхностного монтажа, серия GRM 21/ GRM31/GRM 32/ GRM 43/ GRM 55

- Конденсаторы высокой емкости на высокое напряжение в малых габаритах.
- Идеальны для DC-DC преобразователей, телефонных аппаратов, модемов, пусковых устройств и электронных балластов люминесцентных ламп, телевизионной техники.

Емкость	Напряжение, В	TKE	Габарит	Код
100 пкФ	DC630	C0G(NP0)	1206	GRM31A5C2J101JW01
150 пкФ	DC630	C0G(NP0)	1206	GRM31A5C2J151JW01
220 пкФ	DC630	C0G(NP0)	1206	GRM31A5C2J221JW01
330 пкФ	DC630	C0G(NP0)	1206	GRM31A5C2J331JW01
470 пкФ	DC630	C0G(NP0)	1206	GRM31A5C2J471JW01
1 нФ	DC630	C0G(NP0)	1206	GRM31B5C2J102JW01
100 пкФ	DC630	R	1206	GRM31AR32J101KY01D
150 пкФ	DC630	R	1206	GRM31AR32J151KY01D
220 пкФ	DC630	R	1206	GRM31AR32J221KY01D
330 пкФ	DC630	R	1206	GRM31AR32J331KY01D
470 пкФ	DC630	R	1206	GRM31BR32J471KY01L
680 пкФ	DC630	R	1206	GRM31BR32J681KY01L
1 нФ	DC630	R	1206	GRM31BR32J102KY01L
1 7 пкФ	DC1000	R	1206	GRM31AR33A470KY01D
68 пкФ	DC1000	R	1206	GRM31AR33A680KY01D
100 пкФ	DC1000	R	1206	GRM31AR33A101KY01D
150 пкФ	DC1000	R	1206	GRM31AR33A151KY01D
220 пкФ	DC1000	R	1206	GRM31AR33A221KY01D
330 пкФ	DC1000	R	1206	GRM31AR33A331KY01D
470 пкФ	DC1000	R	1206	GRM31BR33A471KY01L
10 пкФ	DC2000	SL	1206	GRM31B1X3D100JY01L
12 пкФ	DC2000	SL	1206	GRM31B1X3D120JY01L
15 пкФ	DC2000	SL	1206	GRM31B1X3D150JY01L
18пкФ	DC2000	SL	1206	GRM31B1X3D180JY01L
22пкФ	DC2000	SL	1206	GRM31B1X3D220JY01L
27пкФ	DC2000	SL	1210	GRM32Q1X3D270JY01L
33пкФ	DC2000	SL	1210	GRM32Q1X3D330JY01L
39пкФ	DC2000	SL	1210	GRM32Q1X3D390JY01L
47 пкФ	DC2000	SL	1210	GRM32Q1X3D470JY01L
56 пкФ	DC2000	SL	1210	GRM32Q1X3D560JY01L
68 пкФ	DC2000	SL	1210	GRM32Q1X3D680JY01L
82 пкФ	DC2000	SL	1210	GRM32Q1X3D820JY01L
120 пкФ	DC2000	SL	1812	GRM43D1X3D121JY01L
150 пкФ	DC2000	SL	1812	GRM43D1X3D151JY01L
180 пкФ	DC2000	SL	1812	GRM43D1X3D181JY01L
220 пкФ	DC2000	SL	1812	GRM43D1X3D221JY01L
10 пкФ	DC3150	C0G(NP0)	1808	GRM42A5C3F100JW01L
12 пкФ	DC3150	COG(NPO)	1808	GRM42A5C3F120JW01L
15 пкФ	DC3150	COG(NP0)	1808	GRM42A5C3F150JW01L
18 пкФ	DC3150	COG(NPO)	1808	GRM42A5C3F180JW01L
22 пкФ	DC3150	COG(NP0)	1808	GRM42A5C3F220JW01L
27 пкФ	DC3150	COG(NPO)	1808	GRM42A5C3F270JW01L
33 пкФ	DC3150	COG(NP0)	1808	GRM42A5C3F330JW01L
39 пкФ	DC3150	COG(NPO)	1808	GRM42A5C3F390JW01L
47 пкФ	DC3150	COG(NP0)	1808	GRM42A5C3F470JW01L
56 пкФ	DC3150	SL	1808	GRM42D1X3F560JY02L
68 пкФ	DC3150	SL	1808	GRM42D1X3F680JY02L
		OL.	1000	
82 пкФ	DC3150	SL	1808	GRM42D1X3F820JY02L

Емкость	Напряжение, В	TKE	Габарит	Код
220 пФ	DC250	X7R	0603	GRM188R72E221KW07D
330 пФ	DC250	X7R	0603	GRM188R72E331KW07D
470 пФ	DC250	X7R	0603	GRM188R72E471KW07D
680 пФ	DC250	X7R	0603	GRM188R72E681KW07D
1 нФ	DC250	X7R	0603	GRM188R72E102KW07D
1,5 нФ	DC250	X7R	0603	GRM188R72E152KW07D
2,2 нФ	DC250	X7R	0603	GRM188R72E222KW07D
1 нФ	DC250	X7R	0805	GRM21AR72E102KW01D
1,5 нФ	DC250	X7R	0805	GRM21AR72E152KW01D
2,2 нФ	DC250	X7R	0805	GRM21AR72E222KW01D
3,3 нФ	DC250	X7R	0805	GRM21AR72E332KW01D
4,7 нФ	DC250	X7R	0805	GRM21AR72E472KW01D
6,8 нФ	DC250	X7R	0805	GRM21AR72E682KW01D
10 нФ	DC250	X7R	0805	GRM21BR72E103KW03L
15 нФ	DC250	X7R	1206	GRM31BR72E153KW01L
22 нФ	DC250	X7R	1206	GRM31BR72E223KW01L
33 нФ	DC250	X7R	1206	GRM31CR72E333KW03L
47 нФ	DC250	X7R	1206	GRM31CR72E473KW03L
0,1 мкФ	DC250	X7R	1206	GRM31CR72E104KW03L
68 нФ	DC250	X7R	1210	GRM32QR72E683KW01L
0,1 мкФ 0,22 мкФ	DC250 DC250	X7R X7R	1210 1210	GRM32DR72E104KW01L GRM32DR72E224KW01L
	DC250	X7R X7R	1812	GRM43QR72E154KW01L
0,15 мкФ 0.22 мкФ	DC250	X7R X7R	1812	GRM43QR72E154KW01L
0,33 мкФ	DC250 DC250	X7R X7R	1812	GRM43DR72E334KW01L
0,47 мкФ	DC250	X7R	1812	GRM43DR72E474KW01L
0,33 мкФ	DC250	X7R	2220	GRM55DR72E334KW01L
0,47 мкФ	DC250	X7R	2220	GRM55DR72E474KW01L
1 мкФ	DC250	X7R	2220	GRM55DR72E105KW01L
1 нФ	DC630	X7R	1206	GRM31BR72J102KW01L
1,5 нФ	DC630	X7R	1206	GRM31BR72J152KW01L
1,8 нФ	DC630	X7R	1206	GRM31BR72J182KW01L
2.2 нФ	DC630	X7R	1206	GRM31BR72J222KW01L
3,3 нФ	DC630	X7R	1206	GRM31BR72J332KW01L
4,7 нФ	DC630	X7R	1206	GRM31BR72J472KW01L
6,8 нФ	DC630	X7R	1206	GRM31BR72J682KW01L
10 нФ	DC630	X7R	1206	GRM31BR72J103KW01L
15 нФ	DC630	X7R	1206	GRM31CR72J153KW03L
22 нФ	DC630	X7R	1210	GRM32QR72J223KW01L
33 нФ	DC630	X7R	1210	GRM32DR72J333KW01L
47 нФ	DC630	X7R	1210	GRM32DR72J473KW01L
68 нФ	DC630	X7R	1812	GRM43QR72J683KW01L
0,1 мкФ	DC630	X7R	1812	GRM43DR72J104KW01L
0,15 мкФ	DC630	X7R	2220 2220	GRM55DR72J154KW01L
0,22 мкФ 470 пФ	DC630 DC1000	X7R X7R	1206	GRM55DR72J224KW01L GRM31BR73A471KW01L
510 πΦ	DC1000 DC1000	X7R X7R	1206	GRM31BR73A511KW01L
1 нФ	DC1000	X7R	1206	GRM31BR73A102KW01L
1,5 нФ	DC1000	X7R	1206	GRM31BR73A152KW01L
2.2 нФ	DC1000	X7R	1206	GRM31BR73A222KW01L
3,3 нФ	DC1000	X7R	1206	GRM31BR73A332KW01L
4,7 нФ	DC1000	X7R	1206	GRM31BR73A472KW01L
6,8 нФ	DC1000	X7R	1210	GRM32QR73A682KW01L
10 нФ	DC1000	X7R	1210	GRM32QR73A103KW01L
15 нФ	DC1000	X7R	1210	GRM32DR73A153KW01L
22 нФ	DC1000	X7R	1210	GRM32DR73A223KW01L
10 нФ	DC1000	X7R	1812	GRM43DR73A103KW21L
33 нФ	DC1000	X7R	1812	GRM43DR73A333KW01L
47 нФ	DC1000	X7R	1812	GRM43DR73A473KW01L
0,1 мкФ	DC1000	X7R	2220	GRM55DR73A104KW01L

Для подавления электромагнитных помех, серии GA355D/GA355X(GB/GC), GA342D/GA343D/GA355D(GD/GF)

- Конденсаторы для использования в сетях переменного тока, сертифицированные на соответствие промышленным стандартам электробезопасности.
- По сравнению с аналогичными выводными конденсаторами в 10 раз меньше по объему и в 4 раза меньше по массе.

 Идеальны для использования как конденсаторы класса X2 (GB) и X1 или Y2 (GC), класса Y3 (GD) и Y2 (GF), а также в линейных фильтрах для модемов или другого коммуникационного оборудования.

Рабочее напряжение (переменное) Пиковое тестовое напряжение 60 с при токе не более 50 мА	1075 B
	1500 B
(переменное для GC, GD и GF	типа).
Тип диэлектрика	X7R.
Допустимые отклонения от номинала	
в диапазоне температур -55 — +125 °C	.±15%.
Коэффициент диссипации, не более	
Сопротивление изоляции, не менее	

Название	Номер	Co	ответств	арту	Рабочее	
стандарта	стандарта	тип GB	тип GC	тип GD	тип GF	напряжение
UL	UL1414	_	Да	_	_	
VDE	EN132400	_	Да	_	_	
SEV		Да	Да	-	_	-250 B
SEMKO		Да	Да	Да	Да	
EN132400 C	lass	X2	X1/Y2	Y3	Y2	

Тип	Номинал	Габарит	L, мм	W, мм	Т, мм	Упаковка (на ленте 180 мм)	Код
GC	100 пФ +10, -10%			5,0±0,4			GA355DR7GC101KY02L
	150 nФ +10, -10%		5,7±0,4		2,0±0,3		GA355DR7GC151KY02L
	220 nФ +10, -10%						GA355DR7GC221KY02L
	330 nΦ +10, −10%						GA355DR7GC331KY02L
	470 nΦ +10, -10%					1000	GA355DR7GC471KY02L
	680 nΦ +10, −10%						GA355DR7GC681KY02L
	1000 nΦ +10, -10%	2220					GA355DR7GC102KY02L
	1500 пФ +10, -10%						GA355DR7GC152KY02L
	2200 nΦ +10, -10%						GA355DR7GC222KY02L
	3300 пФ +10, -10%						GA355DR7GC332KY02L
	4700 πΦ +10, -10%						GA355DR7GC472KY02L
GB	10000 пФ +10, −10%						GA355DR7GB103KY02L
	15000 nΦ +10, −10%						GA355DR7GB153KY02L
	22000 nФ +10, -10%						GA355DR7GB223KY02L
	33000 пФ +10, -10%				2,7 ±0,3		GA355XR7GB333KY06L
GD	100 nΦ +10, -10%	1808	4,5±0,3	2,0±0,3 3,2±0,3	2,0±0,3		GA342DR7GD101KW02L
	150 nΦ +10, −10%						GA342DR7GD151KW02L
	220 пФ +10, -10%						GA342DR7GD221KW02L
	470 nΦ +10, -10%						GA342DR7GD471KW02L
	1000 пФ +10, -10%						GA342DR7GD102KW02L
	1500 nΦ +10, -10%						GA342DR7GD152KW02L
	1800 nΦ +10, -10%	1812					GA343DR7GD182KW01L
	2200 πΦ +10, -10%						GA343DR7GD222KW01L
GF	1000 nΦ +10, -10%	2211	5,7±0,4	2,8±0,3			GA352DR7GF102KW01L
	2200 πΦ +10, -10%	2220		5,0±0,4			GA355DR7GF222KW01L

КОНДЕНСАТОРЫ КЕРАМИЧЕСКИЕ

Со сверхнизким эквивалентным последовательным сопротивлением (ESR), высокочастотные HQF (HQM)

- Специальная технология изготовления и медные внутренние электроды позволили получить высокую добротность и сверхнизкое (примерно в 3 раза менее обычного) эквивалентное последовательное сопротивление.
- Высокая частота саморезонанса.
- Высокая температурная стабильность C0H: 0±60 ppm. Отсутствие свинца.
- Типичные применения: коммуникационное оборудование для сотовой связи, Bluetooth, спутниковое и кабельное телевидение, VCO, TCXO, радиочастотные усилители, GPS.

ı					040	2, 5	2, 50 B					
	С, пФ	частота саморезо- нанса, ГГц	ESR, 1 ГГц, мОм	Q,1 ГГц	ESR на частоте саморезонанса, мОм	С, пФ	частота саморезо- нанса, ГГц	ESR, 1 ГГц, мОм	Q,1 ГГц	ESR на частоте саморезонанса, мОм		
	0,3	23,4	560	290	710	3,9	5,35	170	225	175		
	0,4	20,35	490	805	605	4,7	4,65	155	200	155		
	0,5	19,7	440	720	535	5,6	3,95	145	175	140		
ı	0,6	17,4	405	650	485	6,8	4,1	130	155	125		
	0,7	15,1	375	600	445	8,2	3,65	120	140	115		
	0,8	14,45	355	560	415	10	3,35	110	120	105		
	0,9	12,6	335	520	385	12	3,35	102	104	94		
ı	1	12	320	490	365	15	2,6	92	88	82		
	1,2	10,6	295	440	330	18	2,3	84	70	74		
ı	1,5	8,9	265	390	290	22	2,2	78	56	66		
	1,8	7,1	245	350	265							
	2,2	6,4	225	310	235							
	2,7	6	205	275	210							
- 1						_						

C,	частота	ESR,	Q,1	ESR на частоте	C,	частота	ESR,	Q,1	ESR на частоте
пΦ	саморезо-	1 ГГц,	ГГц	саморезонанса,	пΦ	саморезо-	1 ГГц,	ГГц	саморезонанса,
	нанса, ГГц	мОм		мОм		нанса, ГГц	мОм		мОм
0,4	17,8	445	860	595	3,9	4,15	175	210	200
0,5	17,1	400	805	540	4,7	3,55	165	185	185
0,6	13,6	385	755	510	5,6	3,13	150	160	170
0,7	12,2	345	635	440	6,8	2,85	140	135	155
0,8	11,4	325	595	410	8,2	2,73	130	115	140
0,9	10,6	315	560	390	10	2,58	120	96	130
1	9,6	300	525	365	12	2,4	110	76	118
1,2	8,8	275	455	335	15	2,15	102	62	108
1,5	7,9	250	395	300	18	2,05	96	50	100
1,8	6,9	240	360	285	22	1,87	88	34	90
2,2	5,75	215	305	250	27	1,78	80	26	82
2,7	5,1	200	270	235				Q,	
								300 MLT	
3,3	4,7	185	235	210	82	0,93	52	105	52

0603, 50 B

