

A Minor Project Report on

"LISALA VENDOR"

Bachelor of Engineering in

Mechanical Engineering

Submitted by

Raghunandan Patil : 01FE18BME094
Sanganagouda K K
Prasanna Honkalse
Yashovardhan Patil : 01FE18BME091
Yashovardhan Patil : 01FE18BME085
Samrudh Deshmukh
Raju Bhovi : 01FE18BME114
: 01FE18BME112

Under the Guidance of

Prof.Nagaraj Ekbote, Prof Shridhar Mondal, Prof Balachandra Halemani

K L E Society's

KLE Technological University

HUBLI-31

School of Mechanical Engineering

CERTIFICATE

This is to certify that Capstone Project entitled "LISALA VENDOR" submitted by **Team C11 to** the **KLE Technological University**, Hubli-580031, towards partial fulfillment for the award of the degree of Bachelor of Engineering is a bona-fide record of work carried out by him/her under our supervision. The contents of project report, in full or in parts, have not been submitted to any other institute or university for award of any degree or diploma.

Prof. Nagaraj Ekbote,

Dr. B. B. Kotturshettar

Prof. Balachandra Halemani

Guide

Head of department

Name of the Examiners

Signature with date

- 1. Prof Nagaraj Ekbote
- 2. Prof Madhusudan
- 3. Prof Balchandra Halemani

ACKNOWLEDGEMENT

The successful completion of any task would be incomplete without mentioning the people who made it possible and whose guidance and encouragement has made our efforts successful.

At the outset, we would like to express our deep sense of gratitude for our guide **Prof. NAGARAJ EKBOTE AND BALCHANDRA HALEMANI** for making this project report successful through their invaluable guidance at every stage of the project report.

We also thank **Dr. B. B. Kotturshettar** for his encouragement in undertaking the task of this project.

We express our sincere regard and gratitude to our project co-ordinators **Prof Nagaraj Ekbote**, **Prof Sridhar M**, and **Prof. Balchandra Halemani** School of Mechanical Engineering, KLE Tech,, Hubli

We also thankful to all faculty members of the Mechanical Engineering Department of KLE Technological University, for helping us directly or indirectly in different stages of our project work.

Student signature

(**Team C11**)

MINOR PROJECT TEMPLATES

Phase wise expectations and tasks:

Design Phase:

1. Refined	l problem statement	
1.1	Identifying end users (Customers)	✓
1.2	Identify customer needs	✓
1.3	Analyzing the needs	✓
1.4	Requirements List	✓
2. Product	benchmarking	✓
2.1	Studying and exploring competitive products	✓
2.2	Patent search	✓
2.3	Literature survey	✓
3. Design	Specifications	✓
3.1	Objectives	✓
3.2	Constraints	✓
3.3	Objective tree (affinity diagram)	✓
3.4	Design Specifications	✓
4. Concep	t generation	✓
4.1	Defining Functions	✓
4.2	Morphological chart	✓
4.3	Generating design alternatives	✓
4.4	Selecting best alternatives (Pugh chart)	✓
5. Design	-	✓
5.1	3D Model	✓
5.2	Assembly models	✓
5.3	2D drawing	✓
5.4	Design Calculations	✓
6 Prototy	pe Planning	✓
6.1	Raw materials	✓
6.2	Bill of Materials	✓
6.3	Joining techniques/ methods	✓
6.4	Flow Chart	✓
6.5	Sub-Assembly Planning	

Phase 1

1 Refined problem statement: Ultraviolet Plate Dispenser for Hostels, buffets, Restaurants Canteens and Catering services.

Customer: Giridhar Bhatakal Interviewer(s): Raghunandan and Prasanna Date:30-03-202				
Question/Prompt	Customer Statement	Interpreted Need/ Expectations		
Typical uses	UV rays are harmful if exposed	UV rays should not be exposed to the atmosphere		
	UV lamps or bulb are expensive	UV lamps or bulbs must be economical		
	Difficult in operating using UV radiations	User friendly and easy to use		
Likes-current methods followed(traditional techniques)	Normal disinfectant spray is used	Less effort is required		
teeninques)	They don't require electricity	Electricity consumption is saved		
Dislikes-current methods followed(traditional techniques)	Cannot be used immediately if disinfectant sprays are used	It should be ready for use		
Suggested Improvements	Proper sanitization of plates must be done	Reliable sanitization method should be used		

Customer: Ramesh Jay Interviewer(s): Sanganagouda & Yashovardhan Date:30-03-2021

Question/Prompt	Customer Statement	Interpreted Need/ Expectations	
Typical uses	It is Anti-bacterial	It is able to kill all kinds of microorganism	
	UV lamps is convenient to use and no chemicals are needed	No chemical residue is left on the plates	
	UV only works in its light path and can be blocked by objects	Reflectivity of UV light should be ensured	
Likes-current methods followed(traditional techniques)	Sterilizing using steam under pressure	High energy is required for steam	
I would be using hot air to blow out the bacteria		High temperature is used	
Dislikes-current methods followed(traditional techniques) Sometimes Plates may break unde high pressure or temperature		Machine should work under optimum condition	
Suggested Improvements Plates should be sterilized in proper order without damage		Self-alignment of plates is important	

Customer: Malteshgouda Patil Interviewer(s): Samrudh & Raju Date:1-04-2021				
Question/Prompt	Customer Statement	Interpreted Need/ Expectations		
Typical uses	Dispensing of plates should be continuous	Time consumed for dispensing a plate should be minimum		
	I should be aware when to insert the plates	Insertions of plates should be indicated		
	Plates should not fall while dispensing	Process of dispensing of plates should be smooth		
Likes-current methods followed(traditional techniques)	I would prefer to keep plates in hot water	Sanitization of plates is not ensured		
techniques)	-NA-	-NA-		
Dislikes-current methods followed(traditional techniques)	Machine consumes more space	Machine should be compact in size		
Suggested Improvements	Make sure that machine don't make noise	Proper damping is necessary to minimize the NVH levels		

1.4 Requirements List

Customer	Requirements
1-3	Proper sanitization of plates
	Dispense plates simultaneously
	Aesthetic Appearance
	Shock proof
	Water proof
	Compact Design
	Controlled NVH levels of the machine
	Self-alignment of plates

Phase 2

2. Product Benchmarking

2.1 Studying and exploring competitive products

Products (Images or name)	Specificatio ns	Cost INR	Advantage	Limitations	Function s
name) 1.Borosil-Suruksha	ns 22L 44W time 0- 10mins 4UV lamps	1199 0	Portable, 99.99% disinfectation.	Rusts easily Leakage of UV radiation through joints and cover	Safe food disinfecti on Can disinfect variable size products Disinfects in short
2. Virushield Large	70 L 11W 2UV lamps	2890	Asymmetric placement and tray ensures optimal bottom surface coverage. Reflective interiors for 360 degree reach	Huge size Lid with Velcro so chances of leakage is there Safety is compromise d	time Sterilizes all groceries gadgets keys and masks
3.Mounolax UV-C sterilizer	38x26x36 2 UV bulbs	3549	Removable under mount drip tray Elegantly decorated	Small size Therefore multiple items cannot	Sterilizes small items or

360 mm			Durable	be sterilized simultaneous ly and can sterilize only small items	electrical gadgets
4.IFFOVERSEA S-Ultra	37x37x37 45L Weight 1.8kg 2UV 11W each	2549	Comes in form of foldable bag highly portable Most effective reflectors	No indication of UV bulb is on	Sterilizes all surfaces from food to metals

2.2 Patent search

Patent Name/ Number/ Date	Information	
Antimicrobial Blue light	Blue light within range of 400-470nm	
US20060085052A1	Excites the endogenous photosensitizing	
	chromophores leading to generation of reactive	
	oxygen species that are toxic to microbial cells	
US9039966	Light between 400nm to 500nm inactivation at	
	405nm potential pathogens are killed using	
	aBL	
CN 102563453	UV radiation emitted are in the range of	
	240nm-400nm.	

2.3 Literature survey

Literature details	Gathered Information
Eurotek Environmental Private Limited	The machine can be used in airports, malls,
managing director Raj Kumar Kurra launches	super markets, and apartments for 99.9%
UVC (Ultraviolet-C) Scanz Plus sanitization	protection from viruses as disinfection had
machine invented by Safelifz in Hyderabad.	gained importance during COVID times. It also
News article: The Hindu Newspaper	has an internal infrared temperature sensor apart
Published on: 03-07-2020	from an alarm system mounted on top for
	making an alarm if any abnormality is observed
	in the human temperature. It is totally password
	protected and it cannot be tampered by any
	unauthorized person.

Phase 3 3. Design Specifications

3.1 Objectives

Objectives			
Proper sanitization of plates	Proper holding of plates		
Uniform spread of UV light	Self-alignment of plates		
Dispense of sanitized plates	Avoid multiple hand contact with plates		
Portable in design	User friendly		
Automatic dispensing	Economical design		
Less power consumption	Minimize noise and vibration		
Less space consumption	Environment friendly		
Low/No maintenance	Smooth operation of dispensing mechanism		
Shock proof	Water proof		

3.2 Constraints

Constraints			
Alignment of limited number of plates Sanitization of minimum 5 plates			
Sanitization time of plates is between 10-15min	Simultaneous dispense of plates		
Dispense of one plate at a time	Machine should be compact		

3.3 Objective tree (affinity diagram)

O#	Objectives	First level	Second level	Third level
-	~ .	objectives	objectives	objectives
1	Safety	✓		
2	User safety		✓	
3	Device safety		✓	
4	Water proof			~
5	Shock proof			~
6	Proper sanitization of plates	✓		
7	Uniform spread of UV rays		✓	
8	Proper holding of plates	✓		
9	Self-alignment of plates		✓	
10	Dispense of sanitized plates	✓		
11	Automatic dispensing		✓	
12	Low/No maintenance	✓		
13	Less power consumption		✓	
14	Less space consumption		✓	
15	Minimize noise and vibration	✓		
16	Minimize mechanism sound		✓	
17	Minimize dispensing sound		✓	
18	Portable in design	✓		
19	Compact size		✓	
20	Sturdy and Durable		✓	

Objective tree:

3.4 Design Specifications:

Sl	Engineering Specifications	Units			
No.					
1	Overall dimensions	Millimeters			
2	Ultraviolet radiations	Nanometers			
3	Time consumption for sanitization	Minutes			
4	Time consumption for dispensing	seconds			
5	Sanitization per plate	Numbers			
6	Electricity consumption	Amperes			
7	Operation	Semi-automatic			

Competitive Benchmarking:

		(Competitive Products			
3.6			Product 1	Product 2	Product 3	
Metric #	Metric	Units	Borosil-	Virushield	Mounolax	
#			Suruksha	Large	UV-C	
				_	sterilizer	
1.	Volume	L	22L	70L	38x26x36	
2.	No of UV lamps		4	2	2	
		n in	11000	2000	25.40	
3.	Cost	INR	11990	2890	3549	
4.	Power consumption	W	44	11	11	
	-					
5.	Safety	%	70	95	90	
6.	Weight	kg	5	2	7	

Phase 4

4.1 Concept Generation

4.1 Defining Functions

Sl	Functions	Sub Functions (optional)			
No					
1	Separation of plates				
2	Sanitization of plates	Killing of bacteria and virus			
3	Dispensing of plates				
4	Indication of sanitization and apprise the no the of	Alert sound			
	plates				

4.2 Morphological Chart

Functions M ▼	Means	Means 2	Means 3	Means 4	Means 5
	1				
Separation of	Servo	Solenoid	threaded		
plates	motors	<u>push-pull</u>	rods		
Sanitization of	UV	alcohol	steam	Dettol	disinfectant spray
plates	light	disinfectant			
Dispensing of	screw	springs	hydraulic	threaded	timer belt
plates	jack		mechanis	stud	
	mechani		m		
	sm				
Indication of	buzzer	speaker	electric	led light	digital display
systems status			bell		
quo					

4.3 Generating design alternatives

Identified Design Alternatives:

Si.	Design Alternatives
1	means(2,3,4,4)
2	means(2,1,1,1)
3	means(1,5,2,3)
4	means(3,2,5,5)

Sketch of generated design concepts/ alternatives:

Design Alternative 2 Rear view Iso-View > Plate in > Limiter Switch/servord > Shey | Drawer. Plate for low plates worring. Base toton + 1 threaded Power supply & control Piston mod Hydrawlic jack Mechanism CS canned with CamScanner

Design Alternative 3 Iso-View Pulley Rean view > Disinfectant spray > Plate in shey Deawo. > Rope Plote out > Base POWER & rentsol unit CS canned with CamScanner

Design Alternative 4

Design Alternative 5

Design Alternative 6

4.4 Selecting Design Alternative (Using Pugh Chart)

Requirements	Weight	Design1	Design2	Design3	Design 4	Design 5	Design 6	Reference
Safety	10	+	+	+	+	+	+	0
Portable	4	+	+	+	+	+	+	0
Power	5	0	0	0	0	0	-	0
Efficiency	8	0	+	-	-	+	-	0
Automatic	8	-	-	-	-	+	+	0
Cost Efficient	8	0	-	+	0	+	-	0
Dispenser	9	+	+	+	+	+	+	0
NVH level	7	-	+	0	-	0	+	0
Marketable	8	+	0	0	0	+	-	0
Pluses		4	5	4	3	7	5	0
Sames		3	2	3	3	2	0	0
Minuses		2	2	2	3	0	4	0
Overall Total		2	3	2	0	7	1	0
Weighted Total		16	22	15	0	55	9	0
Yes / No		NO	NO	NO	NO	YES	NO	0

Selected Design Alternative: DESIGN 5

5.1 3D Models

1. SUPPORT FRAME:

2. MOVABLE BASE:

3. WHEELS:

4.WHEELBASE:

5.LEAD SCREW:

6.STEPPER MOTOR:

7. COUPLER:

8. SPROCKET:

9.CHAIN:

10.CHAIN WEDGE:

11.UV LIGHT:

12. SOLENOID HOLDER:

13.SOLENOID WITH WEDGE:

<u>14.BOLT:</u>

15. LEAD SCREW NUT:

16.NUT

17.SPUR GEAR

2D DRAFTING:

1.STANDARD SUPPORT FRAME

2.MOVABLE BASE:

3.WHEELS:

4.WHEEL BASE:

5. THREADED ROD:

6.STEPPERMOTOR:

7.COUPLER:

7.SPROCKET:

9.CHAIN:

10. CHAIN WEDGE

11.SOLENOID HOLDER

12. HEAD BOLT

13.SOLENOID WITH WEDGE

5.4 Boughtout and Manufactured Parts

Boughtoutparts	Manufactured Parts	
Electronic components Arduino Uno, IR sensor, Solenoid, Nema 17 stepper motor and its Driver. Mechanical component are lead screw ,nuts and bolt Spur Gear, Coupler.	Structural frame, Complete base, Chain and chain support frame, wedges, Solenoid holder, Sprockets, Handle, UV lamps, Frame covers, Plates, wheels and base for it.	

5.5 Design Calculations:

1. STANDARD SUPPORT FRAME

STANDARD SUPPORT FRAME

E=210 GPa L=900mm

I= MOI of 'L' section

$$x = \frac{A1X1 + A2X2}{A1 + A2}$$

1. A1=46X4=184mm²

X1=2mm

Y1=23+4=27mm

2. A2=50X4=200mm²

X2=25mm

Y2=2mm

$$x' = \frac{A1X1 + A2X2}{A1 + A2}$$
 $Y' = \frac{A1Y1 + A2Y2}{A1 + A2}$

=13.97 =13.97

 $I_{xx}=I_{xx1}+I_{xx2}$

$$I_{xx1} = I_g + I_{ah}^2 = (bd^3/12) + a_1(y-y_1)^2$$

$$I_{xx2} = I_g + I_{ah}^2 = (bd^3/12) + a_2(y-y_2)^2$$

=63685.01mm⁴

=28927.84mm⁴

 $I_{xx} = I_{yy} = 92607.85 \text{mm}^4$

EULERS CRIPPLING/BUCKLING LOAD

 $P_{CR} = (\pi^2 EI)/4I^2$

=59.24KN

2. UPPER SUPPORT CHAIN DRIVE

UPPER SUPPORT FOR CHAIN DRIVE

EULER CRIPPLING LOAD

$$P_{CR} = \frac{\pi 2EI}{4l2}$$

$$L = \frac{l}{2}$$

E=200GPa

$$I = \frac{\pi}{64} \times d^4$$
 $d = \Phi 14$

I=1885.74mm⁴

$$L = \frac{l}{2} = \frac{335}{2} = 217.5 \text{mm}$$

Taking max load applied on the rod as 6kg and assuming the end conditions as fixed

$$P_{CR} = \frac{\pi 2EI}{4l2}$$

=8292N

Maximum load applied on rod is 6kg=6x9.81=58.86N

For 6mm diameter rod we will get shear load of 6X9.81=58.86N

Shear=
$$\frac{FQ}{Ib}$$

$$=4F[R^2-y^2]/3\Pi R^4$$

For maximum shear y=0

Therefore

Shear =
$$4FR^2/3\Pi R^4$$

Tensile strength of steel rod 345-525 MPa

Shear stress = tensile strength/1.73

Shear strength= 200-300 MPa

3. WEDGE

WEDGE

E=6X9.81=58.86kg

A=16.6X1.25=20.625mm²

y=1.25/2=0.625mm

I=(bd3/12)=2.685mm4

b=16.5mm

$$stress = \frac{FAy}{Ib}$$

stress=17.12 MPa

Tensile strength of Brass is between 124-310 MPa

Shear strength =
$$\frac{124}{1.73}$$
 =71.67MPa

As permissible stress is more than design stress hence design is safe.

3. STEPPER MOTOR

STEPPER MOTOR CALCULATIONS

W=6kg

F=6X9.81=58.86N

Radius of pulley = 25mm

=0.025m

Torque = FXR =58.86X0.025

=1.4715N-m

We are using NEMA 17 as our motor torque provided by it is 3.2kg-cm

Which after conversion is equal to 3.13 N-m

This torque is greater than our design torque and closer to it.

FINAL SPECIFICATIONS OF STEPPER MOTOR (NEMA 17)

- 1. Torque=3.13 N-m
- 2. Draws 1.2A at 4V
- 3. Power supply between 18V to 30V DC

5.6 BILL OF MATERIAL

Sl.No	Part No.	Part Name	Quantity	Material specification
1	1	Support frame	1	MS steel
2	2	Movable base	1	590X450mm
3	3	Wheels	4	R10
4	4	Wheel base	4	24x8mm
5	5	Lead Screw & Nut	2	P=2mm L=600mm D=8mm
6	6	Stepper motor	2	Torque= 3.13 Nm 1.2A at 4V
7	7	Coupler	2	25x20x20mm
8	8	Sprocket	4	Dia= 40mm
9	9	Chain	4	Centre distance=500mm
10	10	Chain Wedge	12	Nylon
11	11	UV Lamp	4	40W
12	12	Solenoid holder	4	ABS plastic
13	13	Solenoid with wedge	8	12V 1A Wedge material=Brass
14	14	M10 Nut & Bolt	4	-

5.7 ASSEMBLY OF MODEL

5.8 EXPLODED VIEW OF MODEL

6.3 Joining techniques/ methods:

SL NO	Joining Method	Material to be joined	Resources required and specification
1	Fasteners	Structural Support with solenoid holder	M10 nut and bolt
2	TIG Welding	Structural support assembly made of steel	Welding machine ,tungsten electrode
3	Adhesives	Upper support and movable base	Araldite
4	Fasteners	Chain wedge with chain , Solenoid with solenoid holder	M3 nut and bolt

6.4 Flow Chart:

6.5 Sub-Assembly Planning:

Sub Assembly	Brought out Parts	Manufactured Parts
Structural support	Steel rods	Solenoid wedge
assembly	Solenoid	Solenoid holder
	Nut and bolts (M10)	-
Movable base assembly	Lead screw and nut	Base
	Lever	Chain assembly holder
	Wheel and wheel base	-
Chain support assembly	Stepper motor	Chain
	Steel rod	Sprocket
	-	Chain wedge

6.6 Material Specification:

MATERIAL SELECTION

STRUCTURAL SUPPORT - STEEL

CHAIN ASSEMBLY SUPPORT – STEEL

MOVABLE BASE- POLYSTYRENE FOAM

CHAIN ASSEMBLY HOLDERS - ACRYLIC

SOLENOID WEDGE – BRASS

CHAIN WEDGE – ABS Plastic

SOLENOID HOLDER – ACRYLONITRILE–BUTADIENE-STYRENE (ABS Thermoplastic)

SPROCKET - CAST IRON

CHAIN - CARBON STEEL

LEAD SCREW - CARBON STEEL

WHEELS-NYLON 6 6

WHEEL BASE -STEEL

GEARS - CAST IRON

6.7 Finite Element Analysis:

1) STRUCTURAL SUPPORT

• Analysis type : Static structural

Material type : SteelMesh type : Fine mesh

Nodes – 40064

• Elements - 19016

• Boundary conditions:

• Force – 300N (downwards)

• Fixed supports – Base and side support.

• Result: Since factor of safety is 15MPa, the design is safe.

2. Chain Assembly Support:

• Analysis type: Structural buckling

Material type: SteelMesh type: Fine mesh

Nodes: 28920
Elements: 16233
Boundary conditions:
Force: 10 N (downwards)

• Fixed supports – Base and side support.

• Result: Since it buckles only 1mm,

• the design is safe.

SOLENOID WEDGE

Analysis type: Static Structural

• Material Type: Brass

Mesh type: Fine mesh

Nodes: 3608Elements: 2147

Boundary conditions:

1. Force: 60N (downwards)

2. Fixed: Bottom side

• Result: Since the minimum

Factor of safety is 5.514MPa, the design is safe.

• CHAIN WEDGE

• Analysis type: Static Structural

• Material type : ABS plastic

• Mesh type : Fine mesh

• Nodes :19942

• Elements:10082

Boundary Conditions:

1. Force: 20N(downwards)

2. Fixed supports : chain holder attachment

• Result: Since deformation is minimal,

the design is safe

SOLENOID HOLDER

Analysis type: Static structural

• Material type: ABS Plastic

Mesh type: Fine mesh

Nodes: 41744Elements: 25528

Boundary Conditions:

1. Force: 25(downwards)

2. Fixed supports: Upper face of the holder

 Result: Since minimum FOS is 6.814 MPa and deformation is under limits, the design is safe

• CHAIN ASSEMBLY HOLDER

Analysis type: Static structural

• Material type: ACRYLIC

Mesh type: Fine mesh

• Nodes: 8492

• Elements: 4987

Boundary Conditions:

1. Force: 60N (downwards)

2. Fixed supports: Wheel attachment slot

 Result: Deformation is under safe limits, the design is safe

✓ Load Case1 *

Safety Factor

WHEEL

Analysis type : Static structuralMaterial type : NYLON 6 6

Wateriar type : NTLON 0

- Mesh type : Fine mesh
- Nodes:6948
- Elements:4178
- Boundary Conditions:
- 1. Force: 25 (downwards)
- 2. Fixed supports: circumference of the wheel
- Result: Deformation is under safe limits, the design is safe.

• WHEEL BASE

• Analysis type: Static structural

• Material type : STEEL

Mesh type : Fine mesh

Nodes: 2593Elements: 1161

Ziements:1101

Boundary Conditions:

1. Force: 25 N(downwards)

2. Fixed supports: Body of the face

• Result: Deformation is under safe limits, the design is safe.

7.1 Electrical Circuit:

7.2 Electrical Circuit Simulation:

 $\underline{https://drive.google.com/file/d/1vwhBN_R6cKR8vMDqzDt_bKE1oSC1OCJI/view?usp=sharing}$

- Arduino Mega 2560 is used as microcontroller for our project, where it connected to stepper motors (Nema – 17) via L298n driver and made connections are made as per above diagram.
- Solenoids system is connected via two relays for each set (of 4) to the microcontroller. These two are the outputs from the microcontroller in our project
- We have two inputs for our microcontroller that is mainly
 - ➤ Push button for initialisation of the device (Operator)
 - > IR sensor for dispensing (one plate at a time) for customer
- We have used SimulIDE for our electrical circuit simulation

Working Simulation:

https://drive.google.com/file/d/1wpFRQuYGNs0UyY9M0Uk8ST_Y6mfp0g_K/view?usp=sharing

8.1 Results and Conclusions:

- From finite elemental analysis our design is safe.
- The part models were designed and assembled with appropriate dimensions.
- The program for mechatronic subsystem of the project worked effectively in the software.
- Working of the model was animated using Fusion 360.
- We conclude that we have improved CAE/CAD design skills exponentially and could able to
 design model within constraints. Also learnt to work under collaboration in a team remotely.
 We were able to complete the project within given time by efficiently managing the project.
 We have improved software skills in Autodesk Fusion 360, Inventor Professional, Proteus,
 Simul IDE.

8.2 Future Scope:

Our product has the potential to be develop as one of the leading innovations as health and hygiene unit especially where the buffets system of the food service is used.

9. Product Catalogue:

Operating Instructions:

- Set the machine according to the size of the plates (refer tutorial).
 Power ON the machine.
 Place the stack of plates.
 Press the initializer, ONLY ONCE (Red button behind the machine).
 Wait for few seconds while the plates are separated and sanitized misside the machine.
 Wave your hand below the seasor in front to get a sentitized butter. Get crustomers!
- sanitized plate. (For customers). USES UV LIGHT. TAKE SAFETY PRECAUTION WHEN THE MACHINE IS ON

Team Members:

Raghunandan Patil Sanganagouda K K Prasanna Honkalse Yashovardhan Patil Samrudh Deshmukh Raju Bhovi

Mentors:

Prof: Nagaraj Ekbote Prof: Balchandra Halemani

Contact:

Raghunandan Patil Ph no. 9686475310

UV PLATE SANITIZER AND DISPENSER

Introduction:

The pandemic has made us aware the importance of staying protected and the precautions to be taken to keep ourselves safe major concern at such times in places of large gathering, sanitization plays a pivotal role which can drastically reduce the risk of getting unknowingly infected

So, we have come up with our product

So, we have come up with our product LiSaLa Vendor, your very own plate sanitizer and dispenser. This device helps you in your day today life in this pandemic especially in hostels, buffets and many more situations where you face risk of getting infected by microbes from the plate you

Background:

This innovation was inspired by the ongoing pandemic situations of Covid – 19 where people had the risk of getting infected by the plates which are kept exposed. Our product stores, sanitizes and dispenses single plate at a time.

Features:

- Operates for range of plates sizing from (10–14-inch diameter plates)
- Self-separates the stack of plates reducing the work of user
- Can handle up to 30kgs of plates
 Stores, sanitizes and dispenses plates

Product Specifications:

- Four 40W UV Lamps used
- Dimension 600X600X900mm Steel Body frame
- Handles 30kg load
- Nema-17 stepper motor- 1.2A at 4V, 3.13Nm torque Push-pull solenoid - 12V 1A
- Arduino Mega2560 IR sensor

3D Models:

CIRCUIT DIAGRAM:

Mechanism:

- · Lead Screw: The lead screws are rotated by a combination of gears upon which a nut holding upper support holder provides adjustments for plate size.
- Chain drive: Used in upper support as conveyer to carry the separated plates.
- · Push pull solenoids: Uses combination of motions to separate the plates