数值计算方法

第二章 非线性方程求根

ruiluo@outlook.com

单变量非线性方程

• 单变量非线性方程

$$f(x) = 0$$

其中 $x \in R$, $f(x) \in C[a,b]$ 。这里C表示在区间上连续

- 有根区间, 逐次搜索
- 确定根所在的区间,进行根的隔离
- 通过数值方法,近似求解,并保证精度要求

求有根区间

例: 求
$$f(x) = x^3 - 10x^2 + 30x - 25 = 0$$
 的有根区间

求有根区间

例: 求
$$f(x) = x^3 - 10x^2 + 30x - 25 = 0$$
 的有根区间

f(x) 连续,所以可以通过检测 $x = 0, 1, 2, \dots, 6$ 上函数的正负来初步确定函数的有根区间

二分法

- 逐次搜索法:将区间[a,b]分成若干小的子区间,由零点定理确定根所在的子区间,不断细分直到满足精度要求
- 二分法 (逐次搜索法的一种):
 - ① 有根区间[a,b]令为有根区间 $[a_0,b_0]$,i=0
 - ② 考察有根区间 $[a_i,b_i]$, 取中点 $x_i=(a_i+b_i)/2$,
 - ③ 根据 $f(x_i)$, $f(a_i)$, $f(b_i)$ 的符号, 判断根在 $[a_i,x_i]$ 还是 $[x_i,b_i]$ 内
 - lacktriangle 将折半过后的有根区间作为 $[a_{i+1},b_{i+1}]$
 - ⑤ 重复步骤2-4,直到达到求解精度
- 二分法的优点是算法简单,且总是收敛的
- 缺点是事先要确定有根区间,且收敛较慢,且不能用于求复根或偶数重根

二分法

例: 求方程 $f(x) = x^3 - x - 1 = 0$ 在区间 [1.0, 1.5] 内的一个实根.要求准确到小数点后的第2 位

• 将方程f(x) = 0改写成等价的形式:

$$x = g(x)$$

- 选择一个初始近似值 x_0 ,将它代入上式右端,即可求得:

$$x_1 = g(x_0)$$

可以如此反复迭代计算: $x_{k+1}=g(x_k)$, $k=0,1,2,\cdots$

• 如果有

$$\lim_{k \to \infty} x_k = x^*$$

则认为算法收敛

例: 求方程 $f(x) = x^3 - x - 1 = 0$ 在 x = 1.5 附近的根

例: 求方程 $f(x) = x^3 - x - 1 = 0$ 在 x = 1.5 附近的根

解:将原方程写成

$$x = \sqrt[3]{x+1}$$

的形式。所以迭代形式应为:

$$x_{k+1} = \sqrt[3]{x_k + 1}$$

例: 求方程 $f(x) = x^3 - x - 1 = 0$ 在 x = 1.5 附近的根

解:将原方程写成

$$x = \sqrt[3]{x+1}$$

的形式。所以迭代形式应为:

$$x_{k+1} = \sqrt[3]{x_k + 1}$$
0 1.50000
1 1.35721
2 1.33086
3 1.32588
4 1.32494
5 1.32476
6 1.32473
7 1.32472
8 1.32472

采用迭代形式 $x_{k+1} = x_k^3 - 1$ 能不能行?

• 求解方程

$$f(x) = x - x^{1/3} - 2 = 0$$

在3.5附近的根

- 求解格式可以有:
 - $g_1(x) = x^{1/3} + 2$
 - $g_2(x) = (x-2)^3$
 - $g_3(x) = \frac{6 + 2x^{1/3}}{3 x^{-2/3}}$

k	$g_1(x)$	$g_2(x)$	$g_3(x)$
0	3	3	3
1	3.4422495703	1	3.5266442931
2	3.5098974493	-1	3.5213801474
3	3.5197243050	-27	3.5213797068
4	3.5211412691	-24389	3.5213797068
5	3.5213453678	-1.45107e + 13	
6	3.5213747615	-3.05539e + 39	
7	3.5213789946	-2.85233e + 118	
8	3.5213796042	$-\inf$	
9	3.5213796920	$-\inf$	
10	3.5213797047	$-\inf$	
11	3.5213797065	$-\inf$	

迭代法的几何意义

还有三种情况参看教材,图2-4

迭代法收敛的充分条件

定理1

设 $g(x) \in [a, b]$ 满足以下两个条件:

- ① 对任意 $x \in [a,b]$,有 $g(x) \in [a,b]$;
- ② 存在常数L, 0 < L < 1,使对任意 $x,y \in [a,b]$,有

$$|g(x) - g(y)| \le L|x - y|$$

则

- ① x = g(x) A[a,b] 上存在唯一实根 A^*
- ② 对任意初值 $x_0 \in [a, b]$, 由 $x_{k+1} = g(x_k)$ 得到的迭代序列 $\{x_k\}$ 收到到x = g(x) 在[a, b] 的唯一实根 x^*
- ③ 并有误差估计:

$$|x^* - x_k| \le \frac{1}{1 - L} |x_{k+1} - x_k|$$
$$|x^* - x_k| \le \frac{L^k}{1 - L} |x_1 - x_0|$$

迭代法收敛的充分条件:局部收敛性

- 迭代序列 $\{x_k\}$ 对于任何初始值 $x_0 \in [a,b]$ 都收敛,这种收敛性通常称为**全局收敛性**。这种情况常常不易检验,通常只在不动点 x^* 的邻近考察其收敛性
- 设g(x) 有不动点 x^* ,如果存在 x^* 的某个邻域 $S = \{x \mid |x x^*| \leq \delta\}$,对任意 $x_0 \in S$,选代 $x_{k+1} = g(x_k)$ 产生的序列 $\{x_k\} \in S$,且收敛到 x^* ,则称迭代法**局部收敛**

定理2

设 x^* 为x=g(x) 的不动点,g'(x) 在 x^* 的某个邻域连续, 且|g'(x)|<1 ,则迭代法 $x_{k+1}=g(x_k)$ 局部收敛

迭代法收敛的充分条件

例: 方程 $x = e^{-x}$ 有唯一实根位于 (0,1) , 试分析迭代过程

$$x_{k+1} = e^{-x_k}$$

的收敛性

牛顿迭代法

- 基本思想:将非线性方程 f(x) = 0 逐步归结为某种 线性方程求解
- 将 f(x) 在 x_k 处做Taylor展开,保留一阶(线性)项,则 f(x) = 0 近似写作:

$$f(x_k) + f'(x_k)(x - x_k) = 0$$

该方程的根 x 作为迭代的 x_{k+1} 则得到:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

即牛顿迭代法

牛顿迭代法的几何意义

牛顿迭代法

例:用牛顿迭代法计算方程

$$x - \cos x = 0$$

的实根,要求精确到

$$|x_{k+1} - x_k| < 10^{-5}$$

牛顿迭代法的收敛条件

定理3

对于方程 f(x) = 0, 若存在区间 (a,b), 使

- ① 区间 (a,b) 上存在方程的单根 x^*
- ② f"(x) 在区间 (a,b) 内连续

则牛顿迭代法在 x^* 局部收敛

牛顿迭代法的收敛条件

定理4

对方程f(x) = 0,若存在区间[a,b],使

- f"(x) 在[a,b] 上连续
- f(a)f(b) < 0
- 对任意 $x \in [a, b]$,都有 $f'(x) \neq 0$
- f"(x) 在[a,b] 上保号

则当初值 $x_0 \in [a,b]$ 且 $f(x_0)f''(x_0) > 0$ 时,牛顿迭代法产生的迭代序列 $\{x_k\}$ 收敛于方程 f(x) = 0 在 [a,b] 上的唯一实根 x^*

牛顿法

- 牛顿法的优点是收敛快
- 缺点(1): 每步迭代要计算 $f(x_k)$ 和 $f'(x_k)$,计算量较大 且有时 $f'(x_k)$ 计算较困难
- 缺点(2): 初始近似 x_0 只在根x 附近才能保证收敛,如 x_0 给的不合适可能不收敛

牛顿下山法

迭代公式:

$$x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$$

 λ 称为下山因子,目的为了保证收敛,其在每一步中可不同,收敛的目的要求 $|f(x_{k+1})| < |f(x_k)|$

弦割法

思路: 近似表示一阶微分

$$f'(x_k) = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

迭代公式:

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1}), \quad k = 1, 2, \dots$$

弦割法

思路: 近似表示一阶微分

$$f'(x_k) = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

迭代公式:

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1}), \quad k = 1, 2, \dots$$

好处:避免了求微分

弦割法

非线性方程组求根

非线性方程组

$$\begin{cases} f_1(x_1, \dots, x_n) = 0 \\ f_2(x_1, \dots, x_n) = 0 \\ \dots \\ f_n(x_1, \dots, x_n) = 0 \end{cases}$$

可以写成

$$F(X) = 0$$

的形式, 其中

$$F \equiv \{f_1, f_2, \dots, f_n\}^T, \qquad X \equiv \{x_1, x_2, \dots, x_n\}^T$$

非线性方程组求根

我们可以写出相关的Jacobi矩阵

$$F'(X) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ h \cdots & \cdots & \cdots & \cdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

仿造牛顿迭代法的方式,可以得到方程组的迭代公式

$$X_{k+1} = X_k - [F'(X_k)]^{-1} \cdot F(X_k)$$

收敛阶

一个迭代格式是p阶收敛的,它应该满足

$$\lim_{k \to \infty} \frac{|x^* - x_{k+1}|}{|x^* - x_k|^p} = c$$

定理:设 x^* 是方程x = g(x) 的根, $g(x), g'(x), \dots, g^{(p)}(x)$ 在 x^* 的邻近连续

- 当 $0 < |g(x^*)| < 1$ 时,迭代法是线性收敛的
- 当 $g'(x^*) = 0, g''(x^*) \neq 0$ 时, 迭代法是平方收敛的

艾特肯方法

对线性收敛速度的迭代格式,可有近似:

$$\frac{x^* - x_{k+1}}{x^* - x_k} \approx \frac{x^* - x_{k+2}}{x^* - x_{k+1}}$$

容易解出

$$x^* \approx x_k - \frac{(x_{k+1} - x_k)^2}{x_{k+2} - 2x_{k+1} + x_k}$$

这样求解出来的 x^* 可以作为一个很好的近似:

$$\tilde{x} = x_k - \frac{(x_{k+1} - x_k)^2}{x_{k+2} - 2x_{k+1} + x_k}$$

艾特肯方法

所以, 迭代格式可以是:

$$\begin{cases} y_k = g(x_k) \\ z_k = g(y_k) \\ x_{k+1} = x_k - \frac{(y_k - x_k)^2}{z_k - 2y_k + x_k} \end{cases}$$

- 这里调用了两次 g(x) ,仍然可以降低计算量(迭代次数可大幅减小)
- 注意:对线性收敛的迭代格式q(x)适用
- 思考:若 g(x) 是平方收敛的,迭代格式如何?