

FACULTY OF COMPUTING

SEMESTER 1 2023/2024

SECI1013 – DISCRETE STRUCTURE

SECTION 3

ASSIGNMENT 1 – CHAPTER 1

LECTURER: DR. NOR HAIZAN BT MOHAMED RADZI

STUDENT NAME	MATRIC NO
EVELYN GOH YUAN QI	A23CS0222
JOANNE CHING YIN XUAN	A23CS0227

Evelyn Goh Yuan Q: A23C50222

1. Relation Joanne Ching Yin Xuan A23650227

Given A = {2, 3, 4, 5, 6, 7, 8} and R a relation over A. Draw the directed graph of R after realising that xRy iff x-y = 3n for some n ∈ Z. Find all possible equivalence relations for R.

(5 marks)

if n=0	if n=1	if n=-1	$R = \{(2,2), (2,5), (2,8), (3,3), (3,6),$
3(0)=0	3611 = 3	36-1)=-3	(4,4), (4,7), (5,2), (5,5), (5,8),
2-2 = 0	8-5 = 3	5-8 = -3	(6,3), (6,6), (7,4), (7,7), (8,2),
3-3=0	7-4 = 3 6-3 = 3	4-7 = -3 3-6 = -3	(8,5), (8,8)}
4-4=0	6-3 = 3 5-2 = 3	2-5 3	
5-5 = 0	if n=2	if n=-2	
6-6=0	3(2)=6	3(-2) = -6	
7-7=0 8-8=0	8-2=6	2-8 = -6	

2. Let $A = \{1, 2, 3\}$ and $B = \{9, 8, 7\}$.

Let R: A to B. For all $(a, b) \in A \times B$, and given a R $b \Leftrightarrow a+b$ is an even number,

- a. Determine R and R^{-1} .
- b. Draw arrow diagrams for both.
- c. Describe R-1 in words.

(10 marks)

a)
$$R = \{(1.9), (1.7), (2.8), (3.9), (3.7)\}$$

 $R^{-1} = \{(9.1), (7.1), (8.2), (9.3), (7.3)\}$

c) The inverse relation of Ris 9 to 1, 7 to 1, 8 to 2, 9 to 3 and 7 to 3

3. Let $A = \{1, 2, 3, 4, 5\}$, and let R be the relation on A that has the matrix (given below)

	1	2	. 2	Ļ	5
ſ	г1	0	8	000	07
2	0	1	0	0	0 0 0 0 1
3	0	1	1 0	1	0
1234	1	0	0	1	1
7	Lo	0	0	1	1.

Construct the digraph of \emph{R} , and list in-degrees and out-degrees of all vertices.

(6 marks)

$$R = \{(1,1),(2,2),(3.2),(3.3),(3.4),(4.1),(4.4),(4.5),(5.4),(5.5)\}$$

	1	2	3	4	5
in-degree	2	2	ſ	3	2
out - degree	ı	(3	3	2

4. Given A = $\{0, 1, 2, 3, 4\}$, and R = $\{(0, 0), (0, 1), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 0), (3, 2), (3, 3), (3, 4), (4, 0), (4, 3), (4, 4)\}$. Draw the relation graph and find is R reflexive, symmetric, or transitive?

(12 marks)

.. R is reflexive and symmetric but not transitive because (2,3), (3,0) ER but (2,0) & R

- 5. Relation R in the set A = $\{1, 2, 3...13, 14\}$ defined as R = $\{(x, y):$
 - 3x y = 0}, Determine whether the relation is
 - a. Reflexive
 - b. Symmetric
 - c. Transitive

Support your answer with the reason.

(9 marks)

$$R = \{(1,3), (2,6), (3,4), (4,12)\}$$

- a) Not reflexive because for each element nEA, (n,n) &R
- b) Not symmetric because (1,3) ER but (3,1) &R
- c) Not transitive because (1,3) and (3,9) ER but (1,9) &R
- 6. Suppose that the given is a relation matrix for R and S,

$$R = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } S = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Using Boolean Arithmetric, Find

- a. RS
- b. SR

(2 Marks)

Relation is a list of connection between things while function is specific connection where each element is linked to only each other.

- 8. If $A = \{2, 3, 4, 5\}$, then write whether each of the following relations on set A is a function or not. Give reasons also.
 - (i) {(2, 3), (3, 4), (4, 5), (5, 2)}
 - (ii) {(2, 4), (3, 4), (5, 4), (4, 4)}
 - (iii) {(2, 3), (2, 4), (5, 4)}
- (iv) {(2, 3), (3, 5), (4, 5)} (v) {(2, 2), (2, 3), (4, 4), (4, 5)}

(8 marks)

- i) Function because domain of f is equal to A
- ii) Function because f(N1) = f(N2) but N. + N2
- iii) Not function because domain element has 2 corresponding elements
- iv) Not function because the first part is not function as the domain of f is not equal to A, the second part is not function as domain element has 2 corresponding elements. Hence, not function v not function, so it is not function.
 - 9. Given the relation of $R = \{(x,y)|y = x + 5, x \text{ is } \mathbb{Z}^+ \text{ less than } 6\}$. Depict this relationship using roster form. Write down the domain and the range.

(3 marks)

$$R = \{(1,6), (2,7), (3,8), (4,9), (5,10)\}$$

 $Pomain = \{(1,2,3,4,5)\}$
 $Range = \{(6,7,8,9,10)\}$

- 10. In the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

 - (v) $f = R \rightarrow R, f(x) = 1 2x$ (vi) $f = R \rightarrow R, f(x) = 5x^2 1$ (vii) $f = R \rightarrow R, f(x) = x^4$

 - (viii) $f = R \rightarrow R, f(x) = \left(\frac{x-2}{x-2}\right)$

(8 marks)

$$V) f(n_1) = f(n_2)$$

 $1-2n_1 = (-2n_2)$

is covered
$$N = \frac{1}{2}(1-y)$$

$$f(n) = 1-2(\frac{1}{2}(1-y)) = y$$
(ont.)

(vi) $f(n) = 5n^2 - 1$

f(-2) = f(2)

: Onto function

but-2 =2

(iv)
$$f(x) = \left(\frac{n-2}{n-3}\right)$$

$$\frac{N_1 - 2}{N_1 - 3} = \frac{N_2 - 2}{N_2 - 3}$$

Every exement in codemain is covered (Onto)

Given the following functions, find the function f(g(x)) and find the value of the function if $x = \{0, 1, 2, 3\}$

(ix) f(x) = 3x - 1; $g(x) = x^2 - 1$ (x) $f(x) = x^2$; g(x) = 5x - 6

(xi) f(x) = x - 1; $g(x) = x^3 + 1$

(9 marks)

$$(ix) fg(n) = 3(n^{2}-1)-1$$

$$= 3n^{2}-3-1$$

$$= 3n^{2}-4$$

$$f(g(0)) = 3(0)^{2}-4 = 4$$

$$f(g(1)) = 3(1)^{2}-4 = -1$$

$$f(g(2)) = 3(2)^{2}-4 = 8$$

$$f(g(3)) = 3(3)^{2}-4 = 23$$

(X)
$$f(g(n)) = (5n-6)^2$$

= $25n^2 - 60n + 36$
 $f(g(0)) = 25(0)^2 - 60(0) + 36 = 36$
 $f(g(1)) = 25(1)^2 - 60(1) + 36 = 1$
 $f(g(2)) = 25(2)^2 - 60(2) + 36 = 16$
 $f(g(3)) = 25(3)^2 - 60(3) + 36 = 81$

(xi)
$$f(g(n)) = (x^3 + 1) - 1$$

= x^3
 $f(g(0)) = 0^3 = 0$
 $f(g(1)) = 1^3 = 1$
 $f(g(2)) = 2^3 = 8$
 $f(g(3)) = 3^3 = 27$

Q3. Recurrence Relation

Solve the recurrence relation given;

 $\begin{array}{ll} \hbox{(xii)} & a_n=6a_{n-1}-9a_{n-2} \text{ ; initial conditions } a_0=1 \ and \ a_1=6 \\ \hbox{(xiii)} & a_n=6a_{n-1}-11a_{n-2}+6a_{n-3} \text{ ;} \\ & \text{initial conditions } a_0=2 \text{ , } a_1=5 \ and \ a_2=15 \end{array}$

(xiv) $a_n=-3a_{n-1}-3a_{n-2}+a_{n-3}$ initial conditions $a_0=1$, $a_1=-2$ and $a_2=-1$

(12 marks)

(Xii)
$$a_0 = 1$$
, $a_1 = 6$
 $a_2 = b(a_1) - 9(a_0) = b(b) - 9(1) = 27$
 $a_3 = b(a_2) - 9(a_1) = b(27) - 9(b) = (08)$
 $a_4 = b(a_3) - 9(a_2) = b(108) - 9(27) = 405$
 $a_5 = b(a_4) - 9(a_3) = b(405) - 9(108) = 1458$

(xiii)
$$a_0 = 2$$
, $a_1 = 5$, $a_2 = 15$
 $a_3 = b(a_2) - 11(a_1) + b(a_0) = b(15) - 11(5) + b(2) = 47$
 $a_4 = b(a_3) - 11(a_2) + b(a_1) = b(47) - 11(15) + b(5) = 147$
 $a_5 = b(a_4) - 11(a_3) + b(a_2) = b(147) - 11(47) + b(16) = 455$

(xiv)
$$a_0 = 1$$
, $a_1 = -2$, $a_2 = -1$
 $a_3 = -3(a_2) - 3(a_1) + a_0 = -3(-1) - 3(-2) + 1 = 10$
 $a_4 = -3(a_3) - 3(a_2) + a_1 = -3(10) - 3(-1) + (-2) = -29$
 $a_5 = -3(a_4) - 3(a_3) + a_2 = -3(-29) - 3(10) + (-1) = 56$

$$a_{n+1} = 5a_n - 3$$
 ; $a_1 = k$

where k is a non-zero constant.

- (i) Find the value of $a_{\rm 4}$ in terms of k . (ii) Given that $a_{\rm 4}{=}~7$, determine the value of k .

(8 marks)

i)
$$a_1 = k$$

 $a_2 = 5k - 3$
 $a_3 = 5(5k - 3) - 3$
 $= 25k - 15 - 3$
 $= 25k - (8)$
 $a_4 = 25(25k - 18) - 3$
 $= 125k - 93$
ii) $a_4 = 7$
 $a_4 = 7$
 $a_4 = 7$
 $a_5 = 7$
 $a_4 = 7$
 $a_5 = 7$