

Discrete Representation of Behaviors

Semester Project Célia Benquet

Caltech Mouse Social Interactions (CalMS21) Dataset

- Multi-agent behavior dataset,
 Sun et al., April 2021
- Resident-Intruder format
- Keypoints locations using Mouse Action Recognition System (MARS, Segalin et al. 2020)
- 4 labelled behavior classes:
 - Attack
 - Mount
 - Investigation
 - Other

Caltech Mouse Social Interactions (CalMS21) Dataset

- Imbalanced classes
 - → low proportion of 'attack'

- Mean duration of behavior ~4sec
- Videos between 1min/10min

Review of my project

Accurate reconstruction using generative model

Product/Vector Quantization

Language Model on top of the discrete representation

My model

- Encoder/Decoder from VAME (Luxem et al. 2018)
 - RNNs
- K-means Product Quantiser from vq-Wav2Vec (Schneider et al. 2020)
 - Online differential version of K-means in the latent space

- Encoder/Decoder from VAME (Luxem e
 - RNNs
- K-means Product Quantiser from vq-Wa
 - Online differential version of K-means

e, e,e, 000 et al. 2020) **V**_zL q(z|x)**VAME** $z_q(\mathbf{x})$

Metrics

- R2
- RMSE

Evaluate reconstruction

Supervised learning for behavior estimation

Only at validation

- Classification accuracy from data before latent space (SVM) \Rightarrow ze(x)
- Classification accuracy from data after latent space (SVM) \Rightarrow zq(x)
- Classification accuracy from discrete representation of the data (DecisionTreeClassifier) ⇒ Codewords

Metrics

Accuracy = Mean of the diagonal of the confusion matrix

- R2
 - Evaluate reconstruction

RMSE

Supervised learning for behavior estimation

Classification accuracy from data before latent space (SVM) ⇒ ze(x)

• Classification accuracy from data after latent space (SVM) \Rightarrow zq(x)

 Classification accuracy from discrete representation of the data (DecisionTreeClassifier) ⇒ Codewords

Only at validation

Rationale: Discrete Tree Classification

Toy example for 2 groups / 4 variables

Losses

Loss = Reconstruction Loss + Eta * kMeans Loss

- Reconstruction loss: nn.MSELoss() ⇒ optimize encoder/decoder
- kMeans loss:
 - kMean loss = Latent loss + gamma * commitment loss
 - Latent loss ⇒ st embedding vectors move towards encoder outputs
 - Commitment loss ⇒ st encoder commits to an embedding / its output does not grow

Egocentric Representation

Pipeline: Data ⇒ Normalization ⇒ Alignment (centered, aligned on y-axis) ⇒ Model ⇒ Reconstruction ⇒ Realignment ⇒ De-normalization

Egocentric Representation (32G/120V)

Egocentric Representation

Comparison

Baseline

Egocentric

Goals for the project

Accurate reconstruction using generative model

Product/Vector Quantization

Language Model on top of the discrete representation

#Used Codewords increases with training time

- 32 groups / 120 variables
- #Epochs ⇒ increase #codewords used especially #codewords used once
- Accuracy not linked to #codewords

Most of the codewords used once

High similarity of variables used in the codewords

Codewords used more than once (100 out of 9111)

Codewords used once only (100 out of 69291)

- Avg: ~0.55 (unique usage) and ~0.56 (multiple usages)
- Between unique usage codewords, used for the same target: avg ~0.54

Hyp: Trade-off Tokens/Groups

- Investigation for a good trade-off → efficient utilisation of latent variables
- $\#Codewords = V^G$

Few groups/variables ⇒ mode collapse

Lots of groups/lots of variables

⇒ poor discretisation

Higher #Codewords for more groups

Higher usage of available codewords for less groups

Total #Codewords = V^G

	Percentage(%)
1_16	100.00000
1_32	100.00000
1_64	70.31250
1_128	28.90625
2_16	83.98438
2_32	46.28906
2_64	13.69629
2_128	4.79126
16_16	0.00000
16_32	0.00000
16_64	0.00000
16_128	0.00000
32_16	0.00000
32_32	0.00000
32_64	0.00000
00 400	0.00000

0.00000

32 128

Percentage(%)

Comparison to Schneider et al. (2020)

Æ

Comparison to Schneider et al. (2020)

5	-
Ξ	
ň	
π	
Ĭ	
Á	
ر	

V	1 group	2 groups	4 groups	8 groups	16 groups	32 groups
40	100 % (40)	95.3 % (1.6k)	27.4 % (2.56M)	74.8 % (39.9M)	99.6 % (39.9M)	99.9 % (39.9M)
80	92.5 % (80)	78.5 % (6.4k)	11.8 % (39.9M)	91.5 % (39.9M)	99.3 % (39.9M)	100 % (39.9M)
160	95 % (160)	57.2 % (25.6k)	35.2 % (39.9M)	97.6 % (39.9M)	99.8 % (39.9M)	100 % (39.9M)
320	33.8 % (320)	24.6 % (102.4k)	57.3 % (39.9M)	98.7 % (39.9M)	99.9 % (39.9M)	100 % (39.9M)
640	24.6 % (640)	10 % (409.6k)	60.2 % (39.9M)	99.3 % (39.9M)	99.9 % (39.9M)	100 % (39.9M)
1280	7.2 % (1.28k)	4.9 % (1.63M)	67.9 % (39.9M)	99.5 % (39.9M)	99.9 % (39.9M)	100 % (39.9M)

100.00000 1 40 48.75000 1 80 22.50000 1 160 2 40 30.50000 5.64062 2 80 4 40 0.38742 0.00942 4 80 8 40 0.00000 0.00000 8 80 0.00000 16 40 0.00000 16 80 0.00000 32 40

32 80

32 160

32 320

0.00000

0.00000

0.00000

Percentage(%)

Variation of latent variables doesn't infer to much on skewness

- Slightly more codewords (V^16)
- Skewness is variable

Variation of latent variables doesn't infer to much on skewness

- Slightly more codewords (V^16)
- Skewness is variable

Variation of groups means more tokens used only once

- More codewords of course (32^G)
- More tokens used once!

Variation of groups means more tokens used only once

- More codewords of course (32^G)
- More tokens used once!

Possible directions of investigation

Célia Benquet

- Using a different/more diverse(!) dataset
 - ⇒ only 3 classes which one is "Other"
 - ⇒ Cricket hunting dataset
- ConvNet as Encoder/Decoder
 ⇒ comparison to VAME

Thank you for your attention

Any thoughts?

Extra Slides

Baseline Representation (no alignment)

Baseline Representation (no alignment)

Usage of tokens

1_16 1_32 1_64 1_128 2_16 2_32 2_64 2_128 16_16 16_32 16_6416_12832_16 32_32 32_6432_128 Epochs

#Codewords 16 1_16 32 1 32 45 1_64 37 1_128 2 16 215 474 2_32 2 64 561 2 128 785 33654 16_16 16 32 39516 42326 16 64 42309 16_128 46744 32_16 32_32 44379 32 64 49165 32_128 51758