

I can not believe there is no training!

Paper Reading by Zhiying Lu 2023.06.05

Tip-Adapter: Training-free Adaption of CLIP for Few-shot Classification

Renrui Zhang *1,2 , Wei Zhang *1 , Rongyao Fang 2 , Peng Gao $^{\dagger 1}$, Kunchang Li 1 , Jifeng Dai 3 , Yu Qiao 1 , and Hongsheng Li 2,4

ECCV 2022

Shanghai AI Laboratory
 The Chinese University of Hong Kong
 SenseTime Research
 Centre for Perceptual and Interactive Intelligence (CPII)
 {zhangrenrui, gaopeng, qiaoyu}@pjlab.org.cn, hsli@ee.cuhk.edu.hk

SuS-X: Training-Free Name-Only Transfer of Vision-Language Models

Vishaal Udandarao University of Cambridge

vu214@cam.ac.uk

Ankush Gupta DeepMind, London

ankushgupta@google.com

Samuel Albanie University of Cambridge

sma71@cam.ac.uk

ICCV 2022

- □作者介绍
- □研究背景
- □ Tip-Adapter
- □ SuS-X
- □总结

作者介绍

Tip-Adapter: Training-free Adaption of CLIP for Few-shot Classification

Renrui Zhang*1,2 Wei Zhang*1, Rongyao Fang², Peng Gao†1, Kunchang Li¹, Jifeng Dai³, Yu Qiao¹, and Hongsheng Li²,4

Shanghai AI Laboratory
 The Chinese University of Hong Kong
 SenseTime Research

⁴ Centre for Perceptual and Interactive Intelligence (CPII) {zhangrenrui, gaopeng, qiaoyu}@pjlab.org.cn, hsli@ee.cuhk.edu.hk

总计

2018 年至今

4

LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention R Zhang, J Han, A Zhou, X Hu, S Yan, P Lu, H Li, P Gao, Y Qiao arXiv preprint arXiv:2303.16199

用次数	年份	
252	2021	
1 95 *	2022	
162	2020	
133	2022	

关注

引用次数

Hongsheng Li (李鸿升)
Associate Professor at The <u>Chinese University of Hong Kong</u> 在 ee.cuhk.edu.hk 的电子邮件经过验证·首页
Computer Vision Machine Learning Medical Image Analysis

StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

H Zhang, T Xu, H Li, S Zhang, X Wang, X Huang, DN Metaxas IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 41 (8), 1947-1962

标题	引用次数	年份
StackGAN: Text to photo-realistic image synthesis with stacked generative adversarial networks H Zhang, T Xu, H LI, S Zhang, X Huang, X Wang, D Metaxas [EEE int. Conf. Comput. Vision (ICCV), 5907-5915	3029	2017
PointRCNN: 3D object proposal generation and detection from point cloud S Shi, X Wang, H Li Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern	1911	2019
Cross-scene crowd counting via deep convolutional neural networks C Zhang, H Li, X Wang, X Yang Proceedings of the IEEE Conference on Computer Vision and Pattern	1315	2015
PV-RCNN: Point-voxel feature set abstraction for 3D object detection S Shi, C Guo, L Jiang, Z Wang, J Shi, X Wang, H Li Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern	1279	2020

1269

2019

引用次数		查看全部
	总计	2018 年至今
引用	32678	30112
h 指数	82	78
i10 指数	191	181
		8000
		6000
	. 11	4000
- 1		2000
2016 2017 2018 2	2019 2020 2021	2022 2023 0
开放获取的出版	反物数量	查看全部
7 篇文章		128 篇文章
无法查看的文章		可查看的文章
根据资助方的强制	制性开放获取政	策

作者介绍

SuS-X: Training-Free Name-Only Transfer of Vision-Language Models

Ankush Gupta

Vishaal Udandarao University of Cambridge

DeepMind, London vu214@cam.ac.uk ankushqupta@google.com

FOLLOW

Samuel Albanie University of Cambridge

sma71@cam.ac.uk

TITLE

Vishaal Udandarao

PhD Student, University of Tübingen & University of Cambridge

Verified email at cam.ac.uk - Homepage Deep Learning Natural Language Processing Computer Vision CITED BY YEAR Cobra: Contrastive bi-modal representation algorithm 23 2020 V Udandarao, A Maiti, D Srivatsav, SR Vyalla, Y Yin, RR Shah arXiv preprint arXiv:2005.03687 EDUQA: Educational domain question answering system using conceptual network mapping 2019 A Agarwal, N Sachdeva, RK Yadav, V Udandarao, V Mittal, A Gupta, ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and

Sus-x: Training-free name-only transfer of vision-language

V Udandarao, A Gupta, S Albanie arXiv preprint arXiv:2211.16198

Memeify: A large-scale meme generation system SR Vyalla, V Udandarao

Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, 307-311

- □作者介绍
- □研究背景
- □ Tip-Adapter
- □ SuS-X
- □总结

研究背景

- 具有零样本识别潜力的多模态CLIP模型成为主流
- Parameter-Efficient-Finetuning 成为利用大模型适配下游任务的范式

CLIP-Adapter

Models	Training	Epochs	Time	Accuracy	Gain	Infer. Speed	GPU Mem.
Zero-shot CLIP [48]	Free	0	0	60.33	0	10.22ms	2227MiB
Linear-probe CLIP [48]	Required	-	13min	56.13	-4.20	-	-
CoOp [73]	Required	200	14h 40min	62.95	+2.62	299.64 ms	7193MiB
CLIP-Adapter [16]	Required	200	50min	63.59	+3.26	$10.59 \mathrm{ms}$	2227 MiB
Tip-Adapter	Free	0	0	62.03	+1.70	10.42ms	2227MiB
Tip-Adapter-F	Required	20	5min	65.51	+5.18	$10.53 \mathrm{ms}$	2227 MiB

- 以往的方法还需要大量资源进行微调
- Tip-Adapter方法无需进行任务微调,直接即插即用

Table 1: Taxonomy of CLIP adaptation methods for downstream classification. We underline the Zero-Shot CLIP model to signify that it is the base model that all others build on top of. *This method considers access to all test-set samples simultaneously, hence we still consider it zero-shot. †This method additionally uses class hierarchy maps.

	Method	Does not require training	Does not require labelled data	Does not require target data distribution
	LP-CLIP 61	×	×	Х
	CoOp [88]	X	X	X
	PLOT [12]	X	X	×
	LASP [10]	X	X	×
Few-shot fine-tuning	SoftCPT [21]	X	X	×
methods	VT-CLIP 83	X	X	×
	VPT [19]	X	X	×
	ProDA 49	X	X	×
	CoCoOp [87]	X	X	X
	CLIP-Adapter [28]	X	X	×
	TIP-Adapter [84]	✓	×	×
	UPL [40]	X	✓	X
Intermediate	SVL-Adapter [58]	X	✓	X
methods	TPT [52]	X	✓	✓
	CLIP+SYN [36]	X	✓	✓
	CaFo [82]	×	✓	✓
	Zero-Shot CLIP 61	✓	✓	✓
Zero-shot	CALIP [34]	✓	✓	✓
methods	CLIP+DN 89 *	✓	✓	✓
	CuPL 60	√	√	✓
Training-free name-only	VisDesc [53]	✓	✓	✓
transfer methods	CHiLS [57] [†]	✓	✓	✓
•	SuS-X (ours)	✓	✓	✓

- □作者介绍
- □研究背景
- □ Tip-Adapter
- □ SuS-X
- □总结

• 同时结合CLIP-Adapter和CoOp的优点,并且无需训练

13

 $\mathbf{F}_{ ext{train}} \in \mathbb{R}^{NK \times C}$

 $\mathbf{L}_{\mathrm{train}} \in \mathbb{R}^{NK \times N}$

 $\mathbf{F}_{\text{train}} = \text{VisualEncoder}(I_K),$

 $\mathbf{L}_{\text{train}} = \text{OneHot}(L_N).$

- N为类别数量
- K为每类的shot数
- C为emb dim

• 将img对应到cache model中,

[1, C] * [C, NK] = [1, NK]

· 利用cache将特征加权到类别,

[1, NK] * [NK, N] = [1, N]

14

- 利用残差连接将cache的信息 融入到CLIP的logit中
- 利用相似度进行加权

logits =
$$\alpha A \mathbf{L}_{\text{train}} + f_{\text{test}} W_c^T$$

= $\alpha \varphi (f_{\text{test}} \mathbf{F}_{\text{train}}^T) \mathbf{L}_{\text{train}} + f_{\text{test}} W_c^T$, $A = \exp(-\beta (1 - f_{\text{test}} \mathbf{F}_{\text{train}}^T))$,

Fig. 2. Comparison of Tip-Adapter and CLIP-Adapter [16] to acquire few-shot knowledge. Tip-Adapter retrieves from the constructed cache model, but CLIP-Adapter encodes the knowledge by the learnbale adapter and obtains it aided by CLIP's classifier W_c .

Fig. 3. The multi-modality cache model of Tip-Adapter. Different from previous networks only with visual cache, Tip-Adapter caches both visual and textual knowledge by CLIP's encoders.

Fig. 4. Few-shot classification accuracy of different models on ImageNet [10].

Few-shot Setup	1	2	4	8	16
Zero-sh	ot CLI	P [48]:	60.33		
Linear-probe CLIP [48] CoOp [73] CLIP-Adapter [16]	57.15	57.81	59.99	49.52 61.56 62.68	62.95
Tip-Adapter Tip-Adapter-F	61.32	61.69	62.52	61.45 64.00 $+2.55$	65.51

Table 2. Classification accuracy (%) on ImageNet [10] of different models with quantitative values. The last row in blue records the performance gain of Tip-Adapter-F brought by further fine-tuning over Tip-Adapter.

		. 11	TD: A	1 .					
Ablation Studies on Tip-Adapter									
Residual Ratio	0.0	0.5	1.0	2.0	3.0	4.0			
α	60.33	61.44	62.03	61.41	60.36	59.14			
Sharpness Ratio	1.5	3.5	5.5	7.5	9.5	11.5			
β	61.82	61.91	62.03	61.76	61.62	61.40			
Cache Size	0	1	2	4	8	16			
	60.33	61.45	61.71	61.79		62.03			
More Shots	Shot Setup		16	32	64	128			
than 16		dapter dapter-F	$62.03 \\ 65.47$	$62.51 \\ 66.58$	$62.88 \\ 67.96$	63.15 69.74			

Models	ResNet-50	ResNet-101	ViT-B/32	ViT-B/16	RN50×16
Zero-shot CLIP [48]	60.33	62.53	63.80	68.73	70.94
CoOp [73]	62.95	66.60	66.85	71.92	-
CLIP-Adapter [16]	63.59	65.39	66.19	71.13	-
Tip-Adapter	62.03	64.78	65.61	70.75	72.95
Tip-Adapter-F	$\boldsymbol{65.51}$	$\boldsymbol{68.56}$	$\boldsymbol{68.65}$	73.69	75.81

- □作者介绍
- □研究背景
- □ Tip-Adapter
- □ SuS-X
- □总结

- 在Tip-Adapter基础上,引入了Diffusion图像生成或LAION-5B检索构建cache
- 利用image feature和cache feature分别与text feature对齐

$$W \in \mathbb{R}^{C \times d}$$

$$f_i = \texttt{CLIPImageEncoder}(y_i), i \in [1, t], f_i \in \mathbb{R}^d$$

 $f = \texttt{Concat}([f_1, f_2, \dots, f_t]), f \in \mathbb{R}^{t \times d}$

$$F_i = \texttt{CLIPImageEncoder}(x_i), i \in [1, CK], F_i \in \mathbb{R}^d$$

$$F = \texttt{Concat}([F_1, F_2, \dots, F_{CK}]), F \in \mathbb{R}^{CK \times d}$$

$$TL = \alpha AL + fW^T$$

$$\text{KL}(P||Q) = \sum_{i} P_i \log \frac{P_i}{Q_i}$$
.

$$S = \operatorname{softmax}(FW^T), S \in \mathbb{R}^{CK \times C}$$

$$s = \operatorname{softmax}(fW^T), s \in \mathbb{R}^{t \times C}$$

$$M_{i,j} = \mathtt{KL}(s_i||S_j), i \in [1,t], j \in [1,CK]$$

$$TXL = fW^T + \alpha AL + \gamma \psi(-M)L$$

	Method	Average*	ImageNet [18]	ImageNet-R [38]	ImageNet-Sketch [73]	EuroSAT [37]	DTD [14]	Birdsnap [5]
	Zero-shot CLIP [61]	52.27	60.31	59.34	35.42	26.83	41.01	30.56
Zero-shot	CALIP [34]	_	60.57	_	_	38.90	42.39	_
Zero-snoi	CALIP [34] [†]	52.37	60.31	59.33	36.10	26.96	41.02	30.68
	CLIP+DN [89]	53.02	60.16	60.37	35.95	28.31	41.21	31.23
	CuPL [60]	55.50	61.45	61.02	35.13	38.38	48.64	35.65
	CuPL+e	55.76	61.64	61.17	35.85	37.06	47.46	35.80
Name-only	VisDesc 53	53.76	59.68	57.16	33.78	37.60	41.96	35.65
	SuS-X-SD (ours)	<u>56.73</u>	61.84	61.76	<u>36.30</u>	45.57	50.59	<u>37.14</u>
	SuS-X-LC (ours)	56.87	61.89	62.10	37.83	44.23	49.23	38.50

Zhiying Lu - USTC 2023/10/24

Table 3: *SuS-X* generalises to different VLMs. *Average reported across 19 datasets.

VLM	Method	Average*	ImageNet	EuroSAT	DTD	Birdsnap
	Zero-shot	31.38	35.55	20.80	28.55	4.51
	CuPL	34.79	41.60	26.30	42.84	6.83
TCL	CuPL+e	32.79	41.36	25.88	41.96	6.60
ICL	VisDesc	33.94	40.40	21.27	34.28	5.69
	SuS-X-SD	41.49	52.29	28.75	48.17	13.60
	SuS-X-LC	42.75	52.77	36.90	<u>46.63</u>	17.93
	Zero-shot	48.73	50.59	44.10	44.68	10.21
	CuPL	51.11	52.96	39.37	52.95	12.24
BLIP	CuPL+e	51.36	53.07	41.48	53.30	12.18
BLIP	VisDesc	49.91	50.94	42.25	47.45	11.69
	SuS-X-SD	53.20	55.93	45.36	56.15	16.95
	SuS-X-LC	54.64	56.75	51.62	<u>55.91</u>	23.78

Table 4: Component Analysis of SuS-X.

Text Prompts	Method	SuS	TIP-X	Average Accuracy
	Zero-shot CLIP	X	Х	52.27
	SuS-TIP-SD	1	X	53.49 (+1.22%)
Default	SuS-X-SD	1	✓	53.69 (+1.42%)
	SuS-TIP-LC	1	X	53.83 (+1.56%)
	SuS-X-LC	1	✓	54.20 (+1.93%)
	CuPL+e	X	X	55.76 (+3.49%)
	SuS-TIP-SD	✓	X	56.63 (+4.36%)
CuPL+e	SuS-X-SD	✓	✓	<u>56.73</u> (+4.46%)
	SuS-TIP-LC	1	X	56.72 (+4.45%)
	SuS-X-LC	✓	✓	56.87 (+4.60%)

Table 5: Prompting strategies for SuS construction.

				Net Acc.		
method	Photo	CuPL	CuPL Photo		Photo CuPL	
LC	56.87	56.20	61.89	61.79 61.84	0.28	0.32
SD	56.32	<u>56.73</u>	61.79	<u>61.84</u>	0.17	0.20

Table 6: **Hyperparameter sensitivity for** γ

Dataset				γ value	;		
	0	0.1	0.2	0.3	0.5	0.75	1
ImageNet-R	60.87	60.98	61.03	61.05	61.00	60.89	60.65
OxfordPets	76.76	77.17	77.58	77.44	77.17	77.17	76.90
ImageNet-R OxfordPets DTD	47.16	47.16	47.51	47.69	47.87	47.96	47.60

(a) Tasks where larger support sets are beneficial

(b) Tasks where larger support sets are harmful

Figure 6: Effect of support size.

(a) Dishwasher

(c) Australian Kelpie

(b) Split Rail Fence

(d) Bulbul

Dataset	Classes	Val	Test	Dataset	Support Set Size	Dataset	α	β	γ
UCF-101	101	1898	3783	UCF-101	5858	UCF-101	0.10	8.59	0.10
CIFAR-10	10	10000	10000	CIFAR-10	50	CIFAR-10	5.09	5.41	0.10
CIFAR-100	100	10000	10000	CIFAR-100	4700	CIFAR-100	0.10	1.49	0.10
Caltech101	100	1649	2465	Caltech101	101	Caltech101	0.10	1.27	0.10
Caltech256	257	6027	9076	Caltech256	3084	Caltech256	0.10	12.76	0.10
ImageNet	1000	50000	50000	ImageNet	36000	ImageNet	10.08	39.46	0.10
SUN397	397	3970	19850	SUN397	397	SUN397	2.60	8.35	0.10
FGVCAircraft	100	3333	3333	FGVCAircraft	7900	FGVCAircraft	2.60	24.52	0.69
Birdsnap	500	7774	11747	Birdsnap	39000	Birdsnap	48.53	22.55	0.69
StanfordCars	196	1635	8041	StanfordCars	980	StanfordCars	0.10	1.58	0.10
CUB	200	1194	5794	CUB	400	CUB	0.10	8.84	0.10
Flowers102	102	1633	2463	Flowers102	3162	Flowers 102	0.10	2.72	0.10
Food101	101	20200	30300	Food101	3434	Food101	17.56	49.02	0.10
OxfordPets	37	736	3669	OxfordPets	2627	OxfordPets	10.08	41.91	1.29
DTD	47	1128	1692	DTD	188	DTD	5.09	23.79	0.70
EuroSAT	10	5400	8100	EuroSAT	150	EuroSAT	2.60	1.00	0.10
ImageNet-Sketch	1000	50889	50889	ImageNet-Sketch	42000	ImageNet-Sketch	30.04	38.48	0.69
ImageNet-R	200	30000	30000	ImageNet-R	10200	ImageNet-R	2.60	30.65	0.70
Country211	211	10550	21100	Country211	844	Country211	12.57	22.31	0.10

$$\text{TXL} = \underbrace{fW^T}_{\text{1. zero-shot component}} + \underbrace{\alpha AL}_{\text{2. intra-modal distance component}} + \underbrace{\gamma \psi(-M)L}_{\text{3. inter-modal distance component}}$$

Table 15: Contribution of intra-modal and inter-modal distances.

Dist. terms used	1 (Zero-shot)	1+3 (Inter-modal)	1+2 (Intra-modal)	1+2+3 (Both)
Average Acc.	52.27	56.30	56.56	56.87
Gain		+4.03	+4.29	+4.60

Table 21: SuS-X-SD Results with additional T2I models.

T2I Model	ImageNet	EuroSAT	DTD	OxfordPets	Average
ZS-CLIP (baseline)	60.31	26.83	41.01	81.82	52.49
StableDiffusion-1.4 (from main paper)	61.84	45.57	50.59	85.34	60.84 (+8.35%)
Kandinsky2.1	61.83	44.96	49.17	85.47	60.36 (+7.87%)
OpenJourney-4 Protogen-2.2	61.81 61.82	45.00 48.67	50.71 50.35	85.17 85.26	60.67 (+8.18%) 61.52 (+9.03%)

Table 22: Fine-tuning methods vs SuS-X.

Method	ZS-CLIP	FT-CLIP	CoOp [88]	CLIP-Adapter [28]	SuS-X	SuS-X-F
Witthou	(No adaptation)	(Full fine-tuning)	(PromptTuning)	(Adapters)	(Ours)	(Ours)
ImageNet	60.31	60.35	60.96	61.61	61.89	63.22
EuroSAT	26.83	55.37	52.12	<u>57.00</u>	44.23	59.22
DTD	41.01	<u>50.35</u>	45.66	49.29	49.23	52.30
OxfordPets	81.82	84.51	85.99	85.06	86.59	87.77

(a) SuS-LC, Photo, Airplane

6

(b) SuS-LC, CuPL, Airplane

A	Abiglicam
	which a covered with besttern, too book
7	shelled eggs, and has ssings for the form
104	lets.
600	To be a second to
100	stability, viewing and

(c) SuS-LC, Photo, Bird

(d) SuS-LC, CuPL, Bird

(e) SuS-SD, Photo, Airplane

(f) SuS-SD, CuPL, Airplane

(g) SuS-SD, Photo, Bird

(h) SuS-SD, CuPL, Bird

- □作者介绍
- □研究背景
- □方法
- 口实验效果
- □总结

总结反思

- 多模态大模型的能力已经足够实现无需训练即可适配到下游任务中
- 适配任务时需要合理利用多模态模型中嵌入的知识,结合prompt,adapter系列方法合 理利用这些特征

总结反思

谢谢!