Klasyfikacja enzymów na podstawie sekwencji i właściwości fizykochemicznych

Szymon Szrajer

	Grupa (klasa)	Katalizator reakcji			
	EC 1 Oksydoreduktazy	przenoszą ładunki (elektrony i jony H ₃ O ⁺ - protony) z cząsteczki substratu na cząsteczkę akceptora			
	EC 2 Transferazy	przenoszą daną grupę funkcyjną (tiolową, aminową, itp.) z cząsteczki jednej substancji na cząsteczkę innej substa			
	EC 3 Hydrolazy	katalizują rozpad substratu pod wpływem wody (hydroliza); do grupy tej należy wiele enzymów trawiennych			
	EC 4 Liazy	katalizują rozpad substratu bez hydrolizy			
	EC 5 Izomerazy	zmieniają wzajemne położenie grup chemicznych bez rozkładu szkieletu związku			
	EC 6 <i>Ligazy</i>	katalizują syntezę różnych cząsteczek; powstają wiązania chemiczne			
	EC 7 Translokazy	katalizują ruch jonów i cząsteczek przez błony lub ich rozdział wewnątrz błon			

Dataset 1

- 1_2000.fa
- 2_2000.fa
- 3_2000.fa
- 4_2000.fa
- 5_2000.fa
- 6_2000.fa
- 7_2000.fa

non-enzyme_14000.fa

Dataset 2

- EC 6.1 includes ligases used to form carbon-oxygen bonds
- EC 6.2 includes ligases used to form carbon-sulfur bonds
- EC 6.3 includes ligases used to form carbon-nitrogen bonds (including argininosuccinate synthetase)
- EC 6.4 includes ligases used to form carbon-carbon bonds
- EC 6.5 includes ligases used to form phosphoric ester bonds

Dane - Sekwencja

>tr|A0A671G7H5|A0A671G7H5_RHIFE tr|A0A671G7H5|A0A671G7H5_RHIFE Amine oxidase OS=Rhinolophus ferrumeguinum OX=59479 GN=A0C1 PE=3 SV=1
MEQRWQLHGSPAAPGRRGGASEEAASVGKPRGHGTWQSQLGGNPCVPIKQLTSPPLHSRAMGRETLALGWAVAATLMLQALAMAEHSPGTPHSKASVFADLSAHELKAVRSFLWSRKELRLQSSRALTITKNSVFL
LNHALQEATKPLHQFFLATTGFSFHNCHLQCLTFTDVAPRGLASGERRSWFILQRYVEGYFLHPTGLELLLDHSSTNTQDWTVEQVWYNGKFYRSPEELARKYKKGEVDVVVLEDPLPKGKGAENMKDPPLFSSYK
SQTKYIDVGWGLGTVTHELAPGIDCPNTATFLDALHYYDTDDPIHYPRALCVFEMPMQVPLRRHFNSNFSGGFNFYAGLQGQVLVLRTTSTVYNYDYIWDFIFYPNGVMETKVHATGYVHATFYTPEGLRYGTRLH
PKKNAWGHQRSYRLQIHSMADQVLPPSLQEERAVTWARYPLAVTKYRESELYSSSIYNQNDPWDPPVVFEEFLRNNEYIEDEDLVAWVTVGFLHIPHSEDIPNTATPGNSVGFLLRPFNFFPEDPSLASRDTVIVW

Sekwencja zakodowana jest w postaci punktów izoelektrycznych odpowiadających poszczególnym aminokwasom, gdzie pI = 7 ----> 0

QGHEAA = [-1.35, -1.03, 0.59, -3.78, -0.98, -0.98]

Dane fizykochemiczne

```
'Weight', 'Aromaticity', 'Instability', \
'Helix', 'Turn', 'Sheet', 'Extinction', \
'Charge10', 'Charge7', 'Charge4', \
'Isoelectric', 'GRAVY', 'Flexibility', \
'AverageWeight', 'Tiny', 'Small', \
'Aliphatic', 'Aromatic', 'NonPolar', \
'Polar', 'Charged', 'Basic', 'Acidic', \
'Ala', 'Arg', 'Asn', 'Asp', 'Cys', \
```

heet
0.26
0.27
0.19
0.27
0.27

wyjściowe statystyki

Weight	Aromaticity	Instability	Helix	Turn	Sheet
-0.479995	-1.007024	-0.159426	-1.310321	1.608531	-0.128542
-0.176982	0.903379	-0.180337	0.259898	-1.133641	0.116703
-0.115180	0.521298	-0.978589	-0.612446	0.465959	-1.845259
-0.233556	1.285459	-0.580372	1.132242	-0.219584	0.116703
-0.641693	0.521298	-1.096782	0.957774	0.008930	0.116703

przeskalowane statystyki

Dane fizykochemiczne

Amine soid composition		Microorganisms			Significance		
Amino acid composition		1	2	3	4	Significance	
	Thermophiles	8.7	11.6	12.5	13.9		
	Mesophiles	4.6	5.8	10.1	6.5	*	
Ala (A)	Hyperthermophiles	10.2	10.0	11.2	9.5		
	Psychrophiles	14.1	10.8	10.8	7.9		
	Thermophiles	2.9	3.9	5.3	4.6		
	Mesophiles	1.7	2.7	1.1	1.8		
Arg (R)	Hyperthermophiles	4.5	1.1	4.0	4.1	*	
	Psychrophiles	2.5	1.1	1.6	3.4		
	Thermophiles	6.1	7.8	4.1	3.9		
	Mesophiles	10.2	8.7	5.3	10.5	*	
Asn (N)	Hyperthermophiles	4.5	5.3	4.0	4.9		
	Psychrophiles	6.9	5.7	5.8	6.6	1	
	Thermophiles	5.3	2.5	4.3	4.4	**	
Acr (D)	Mesophiles	6.5	8.3	6.9	6.5		
Asp (D)	Hyperthermophiles	5.9	7.7	5.2	6.1		
	Psychrophiles	6.9	6.4	7.1	7.2		
	Thermophiles	0.5	0.0	1.4	1.2	*	
	Mesophiles	0.4	0.0	0.0	0.2		
Cys (C)	Hyperthermophiles	0.5	0.0	1.2	0.5		
	Psychrophiles	1.6	0.9	1.3	1.9		

Architektura sieci 1 – brak konwolucji

```
def noConv(input_size, hidden_size, num_classes):
    inputs = Input(shape=(input_size,))
    fc1 = Dense(hidden size, activation='relu')(inputs)
    dropout1 = Dropout(0.5)(fc1)
    fc2 = Dense(hidden size, activation='relu')(dropout1)
    dropout2 = Dropout(0.25)(fc2)
    fc3 = Dense(num_classes, activation='sigmoid')(dropout2)
    model = Model(inputs, fc3)
    return model
```

Task 1 - F1-score on test(10 holdouts)

Task 2 - F1-score on test(10 holdouts)

https://www.nature.com/articles /s41598-020-71450-8/figures/2

Wybór najlepszego paddingu

Task1 – enzym lub nie enzym

Task2 – enzym z jednej z 7 klas

Architektura 2 – jedna warstwa konwolucyjna

```
def oneCNN(input size, num classes):
    inputs = Input(shape=(input size, 1))
    conv layer1 = Conv1D(32, 3, activation='relu', \
                         input_shape=(input_size, 1))(inputs)
    pooling layer1 = MaxPooling1D(pool size=2)(conv layer1)
    dropout1 = Dropout(0.5)(pooling layer1)
    flatten = Flatten()(conv layer1)
    fc1 = Dense(16, activation='relu')(flatten)
    fc2 = Dense(8, activation='relu')(fc1)
    fc3 = Dense(num classes, activation='sigmoid')(fc2)
   model = Model(inputs, fc3)
    return model
```

Architektura 3 – pięć warstw konwolucyjnych

```
def stackedCNN(input size, num classes):
   inputs = Input(shape=(input size, 1))
   conv layer1 = Conv1D(32, 2, activation='relu', \
                         input shape=(input size, 1))(inputs)
   pooling layer1 = MaxPooling1D(pool size=2)(conv layer1)
   conv layer2 = Conv1D(256, 2, activation='relu')(pooling layer1)
   dropout1 = Dropout(0.5)(conv layer2)
   conv layer3 = Conv1D(128, 2, activation='relu')(dropout1)
   pooling layer2 = MaxPooling1D(pool size=2)(conv layer3)
   conv layer4 = Conv1D(64, 2, activation='relu')(pooling layer2)
   dropout2 = Dropout(0.25)(conv layer4)
   conv layer5 = Conv1D(32, 2, activation='relu')(dropout2)
   flatten = Flatten()(conv layer5)
   fc1 = Dense(16, activation='relu')(flatten)
   fc2 = Dense(8, activation='relu')(fc1)
   fc3 = Dense(num classes, activation='sigmoid')(fc2)
   model = Model(inputs, fc3)
   return model
```

Hiperparametry

```
batch_size = 64
epochs = 45
```

```
tf.keras.optimizers.Adam(
    learning_rate=0.001,
    beta_1=0.9,
    beta_2=0.999,
    epsilon=1e-07,
    amsgrad=False,
    weight_decay=None,
    clipnorm=None,
    clipvalue=None,
    global_clipnorm=None,
    use_ema=False,
    ema_momentum=0.99,
    ema_overwrite_frequency=None,
    jit_compile=True,
    name='Adam',
    **kwargs
```

Dataset 1 – wyniki

Dataset 2 – wyniki

Dataset 1

Dataset 2

Dataset 3 – lokalizacja komórkowa

- 290 sekwencji białek jądra komórkowego
- 290 sekwencji białek zewnątrzkomórkowych
- 290 sekwencji białek błony komórkowej

Dataset 3 – wyniki

Dataset 1 – kombinacja predykcji sieci

73.8%

89.9%

Dyskusja - parametry task1

Dataset	Architektura	Wymiar danych	Parametry	Accuracy (test)
1	no_conv	28000 x 1000	68000	70.0%
1	5_conv	28000 x 1000	229000	71%
1	no_conv	28000 x 28	6000	79.4%
1	5_conv	28000 x 28	104000	80.1%
2	no_conv	10000 x 1000	68000	88.8%
2	5_conv	10000 x 1000	229000	93.1%
2	no_conv	10000 x 28	6000	94.7%
2	5_conv	10000 x 28	104000	93.2%

Dyskusja - parametry task1

Dataset	Architektura	Wymiar danych	Parametry	Accuracy (test)
1	no_conv	28000 x 1000	68000	70.0%
1	5_conv	28000 x 1000	229000	71%
1	no_conv	28000 x 28	6000	79.4%
1	5_conv	28000 x 28	104000	80.1%
2	no_conv	10000 x 1000	68000	88.8%
2	5_conv	10000 x 1000	229000	93.1%
2	no_conv	10000 x 28	6000	94.7%
2	5_conv	10000 x 28	104000	93.2%

zestaw treningowy

zestaw testowy

zestaw treningowy

zestaw testowy

Źródła

- https://pl.wikipedia.org/wiki/Numer_EC
- https://en.wikipedia.org/wiki/Ligase
- Raj et al., J Proteomics Bioinform 2017, 10:12 DOI: 10.4172/jpb.1000459
- https://www.nature.com/articles/s41598-020-71450-8/figures/2
- https://www.sciencedirect.com/science/article/abs/pii/S0022519318
 305654