IDAA432C

Assignment 2

By:

- Neil Syiemlieh
- Aditya Vallabh
- Kiran Velumuri
- Tauhid Alam

Abstract

A sorted array of numbers is a sequence of numbers arranged in either ascending or descending order. The purpose of this project is to:

- Sort a given array of numbers and keep track of the original location of its elements
- Find the location of a key in the sorted array

To generate random numbers:

- rand function used to populate the array

To keep track of elements' original location:

- n x 2 matrix as the input array, where
- 1st column indices of elements
- 2nd column the elements themselves

Algorithm Design

Merge Sort

Steps:

- If input array has at least two elements, proceed
- Find the middle element of the array
- Call merge sort on the first half of the array
- Call merge sort on the second half of the array
- Merge the two halves by calling the merge function

Algorithm 1 Merge Sort Algorithm

Input: arr, l, r

if l < r then

 $m \leftarrow (l+r)/2$

mergeSort(arr, l, m)

mereSort(arr, m+1, r)

merge(arr, l, m, r)

Merge

Steps:

- Create two temporary arrays L and R
- Copy the left half of input array to L and right half to R
- Replace the input array by elements of L and R element-wise, in order (merge step)
- Copy all the remaining element of either *L* or *R* into the input array

Algorithm 2 Merge Algorithm Input: arr, l, m, r $n1 \leftarrow m - l + 1$ $n2 \leftarrow r - m$ for $i \leftarrow 0$ to n1 - 1 do $L[i][0] \leftarrow arr[l + i][0]$ $L[i][1] \leftarrow arr[l + i][1]$ for $j \leftarrow 0$ to n2 - 1 do $R[j][0] \leftarrow arr[m + 1 + j][0]$ $R[j][1] \leftarrow arr[m + 1 + j][1]$

```
while i < n1 \; AND \; j < n2 \; \mathbf{do}

if L[i][1] \le R[j][1] then

arr[k][0] \leftarrow L[i][0]

arr[k][1] \leftarrow L[i][1]

i \leftarrow i + 1

else

arr[k][0] \leftarrow R[j][0]

arr[k][1] \leftarrow R[j][1]

j \leftarrow j + 1

k \leftarrow k + 1
```

while
$$i < n1$$
 do $arr[k][0] \leftarrow L[i][0]$ $arr[k][1] \leftarrow L[i][1]$ $i \leftarrow i + 1$ $k \leftarrow k + 1$ while $j < n2$ do $arr[k][0] \leftarrow R[j][0]$ $arr[k][1] \leftarrow R[j][1]$ $j \leftarrow j + 1$ $k \leftarrow k + 1$

Binary Search

Steps:

- If input array has at least one element, proceed. Else, return -1 to say that the key doesn't exist in the array
- Find the middle element of the array
- If middle element equal to key, return middle element's location
- If middle element less than key, call binary search on right half of array
- If middle element greater than key, call binary search on left half of array

Algorithm 3 Binary Search

Input: arr, n, key

$$l \leftarrow 0$$

 $r \leftarrow n-1$ while $l \leq r$ do

 $m \leftarrow (l+r)/2$

if arr[m][1] == key then

return m else if arr[m][1] < key then $l \leftarrow m+1$

 $r \leftarrow m-1$

else

return - 1

Complexity Analysis

A. Merge Sort

Computation time recurrence relation:

$$T(n) = 2 T(\frac{n}{2}) + O(n)$$
$$T(1) = O(1)$$

Deriving the time expression

$$T(n) = 2 T(\frac{n}{2}) + n$$

$$= 2 \left[2 T(\frac{n}{4}) + \frac{n}{2}\right] + n$$

$$= 4 T(\frac{n}{4}) + 2n$$

$$= 4 \left[2 T(\frac{n}{8}) + \frac{n}{4}\right] + 2n$$

$$T(n) = 2^k T(\frac{n}{2k}) + kn$$

Through the derivation on the left, we obtain the expression for the computation time below:

$$T(n) = n \ (1 + \log_2 n)$$

Time Complexity

Time complexity is the same for all cases because the algorithm never terminates prematurely.

 $O(n \log n)$

 $\Theta(n \log n)$ $\Omega(n \log n)$

Worst

Average

Best

B. Binary Search

Computation time recurrence relation:

$$T(n) = T(\frac{n}{2}) + O(1)$$
$$T(1) = O(1)$$

Deriving the time expression

$$T(n) = T(\frac{n}{2}) + 1$$
$$= [T(\frac{n}{4}) + 1] + 1$$

$$=T(\frac{n}{4})+2$$

$$T(n) = T(\frac{n}{2k}) + k$$

$$T(n) = \log_2 n$$

Time Complexity

Average and worst case are the same. Best case happens when the key is equal to the middle element of the input array.

 $O(\log n)$

 $\Theta(\log n)$

 $\Omega(1)$

Worst

Average

Best

Experimental Study

Merge Sort Complexity

$$\Theta(n \log n)$$

Binary Search Complexity

Best: $\Omega(1)$

Average: $\Theta(\log n)$

Worst: $O(\log n)$

Discussions

Comparison

Algorithm	Best Time Complexity	Average Time Complexity	Worst Time Complexity
Linear Search	O(1)	O(n)	O(n)
Binary Search	O(1)	O(log n)	O(log n)
Bubble Sort	O(n)	O(n^2)	O(n^2)
Selection Sort	O(n^2)	O(n^2)	O(n^2)
Insertion Sort	O(n)	O(n^2)	O(n^2)
Merge Sort	O(nlogn)	O(nlogn)	O(nlogn)
Quick Sort	O(nlogn)	O(nlogn)	O(n^2)

Generation of random numbers

- Dynamic allocation of memory for creating and storing matrices
- Used rand() and srand() from stdlib
- srand() sets the seed which is used by rand to generate "random" numbers
- Setting the seed as current time to produce different pseudo-random numbers on each run

Conclusion

We have implemented the merge sort algorithm, which has $\Theta(n^*logn)$ time complexity in all the cases, to sort the given set of unsorted numbers.

For finding a key in the sorted array, binary search has been used, which has a time complexity of $\Omega(1)$ in the best case and $O(\log n)$ in the worst case.

Mank you