Redistribution in Microsimulation Models with Behavioral Responses

Max Löffler

ZEW and University of Cologne

Canazei — January 14, 2015

What is this session about?

- ▶ Redistribution: "If top tax rate was 53 instead of 42 %, how would that affect net incomes, income inequality or work incentives?"
- ► Microsimulation: Ex ante analysis to evaluate counterfactual situations or policy reforms that are to be implemented in the future
- Models: Analysis starting from economic theory and theoretic models
- Behavioral Responses: Allows to study adjustments to changed incentives and predict responses to counterfactual situations

Motivation

- Why could this be interesting for inequality and welfare analysis?
 - Understand and predict behavioral responses to redistributive policies
 - Estimation of structural utility models allows various welfare analyses
- Applied session
 - How do these models work?
 - How to estimate them?
 - How to predict behavior?
- ► Several references included (Creedy and Kalb, 2005, 2006, Aaberge and Colombino, 2014)

Outline

- 1. Short introduction and motivation
- 2. How to use these models?
 - 2.1 Basic workflow using such models
 - 2.2 Underlying theory and modeling assumptions
 - 2.3 Data and choice set construction
 - 2.4 How to estimate these models
 - 2.5 Using these models for policy analyses
- Model extensions
- 4. Applied session
- 5. References

Basic workflow

- 1. Specify a theoretical model of individual labor supply behavior
 - ▶ E.g. U = U(C, L), individuals maximize their utility over potential jobs
 - ▶ Jobs defined by wages w, working hours h and other characteristics ϵ
- 2. Find suitable data and set up the choice set
 - ▶ Identify chosen jobs (hours, wages and characteristics observed in the data)
 - Add counterfactual choices and simulate hypothetical hours and net incomes
- 3. Estimate the model using this choice set, obtain preference estimates
- Hold preferences constant and simulate counterfactual scenarios
 - Study behavioral adjustments if tax/benefit system or wages were different
 - Calculate welfare measures (e.g. compensating variation, utility differentials)

Theoretical model

- ► Agents receive utility from consumption *C* and leisure *L*
 - Mainly two different classes of models have been used over the last decades
 - ► Classic models assume maximization over continuous range of working hours, i.e. $\max_{h=[0,60]} U(C[h], L[h])$ (Burtless and Hausman, 1978, Hausman, 1981)
 - More recent models usually assume discrete choice between different jobs, i.e. max_{j∈J} U(C_j, L_j) (Aaberge et al., 1995, van Soest, 1995, Hoynes, 1996)
 - Individual subscripts omitted, but no time subscripts: "steady-state" models
- Agents choose jobs and maximize utility. How does it look like?
 - ▶ Individual *n*'s utility of choosing job *j* is defined as $U_{nj} = U(C_{nj}, L_j, \epsilon_{nj})$
 - Researcher needs to identify form of U, distribution of e_{nj} and job offers
 - Observed choices inform us about maximum utility and optimal working hours

Identification

- Wait, agents' labor supply is thus determined by consumption and leisure, both functions of working hours? Isn't that tautological?
 - ▶ Right. That's why econometricians care so much about identification
 - ► Non-parametric identification impossible with cross-sectional data (Manski, 2014)
 - But even cross-sectional data typically gives us variation in wages, non-labor incomes, taxes and transfers (=consumption) for given working hours
- Use structural model and impose specific functional form, e.g.
 - ► $U_{nj} = \alpha_1 \ln C_{nj} + \alpha_2 (\ln C_{nj})^2 + \alpha_3 \ln L_j + \alpha_4 (\ln L_j)^2 + \alpha_5 \ln C_{nj} \ln L_j + \epsilon_{nj}$
 - $ightharpoonup C_{nj}$ accounts for earnings $w_{nj}L_j$, non-labor income I and tax/benefit system
 - Assumes homogeneous preferences and specific functional form

Job offers and hours categories

- ▶ We assume that individuals choose among jobs, but what is a job?
 - ▶ A job j is defined by hours h_i , wages w_{nj} and unobservables ϵ_{nj}
 - ► Most often, job modeling boils down to three simple assumptions:
 - 1. Unobservables follow Gumbel distribution: $\epsilon_{nj} \sim GEV(0, 1, 0)$
 - 2. Wages assumed exogenous to hours or preferences: $w_{nj} = w_n$
 - 3. Hours discretized to interval means: $h_i \in [0, 10, 20, 30, 40, 50, 60]$

(van Soest, 1995, Hoynes, 1996, Keane and Moffitt, 1998, Blundell et al., 2000, Bargain et al., 2014)

- ► This simple model generates seven choices for each individual
- Modeling approach is rather restrictive. Alternative approaches:
 - ▶ Define random choice-set instead of discretized hours intervals (Aaberge et al., 2009)
 - ► Allow correlation between wages and preferences (Blundell and Shephard, 2012)
 - ► Allow hours-dependent wages and flexible correlation (Löffler et al., 2014)

Data sources

- ► What kind of data is required for the estimation?
 - ► The model requires information at least on wages and working hours
 - Ideally, the data also contains household characteristics, information on children, demographics, social background, occupational information, . . .
 - Most models based on cross-sectional data, but panel data highly useful
- ► Which data sets are used in practice?
 - Usually household surveys, only rarely administrative data because working hours are seldom reported in tax registers or social security records
 - ► EU: SILC, US: CPS, PSID, NLSY, Germany: SOEP, Britain: BHPS, ...

Tax/benefit calculator

- What we need to do with the data
 - Clean up sample and keep only working-age population (or subgroups)
 - Create choice set according to job model (for now: simple approach)
 - Calculate individual wage rates (and impute wage for non-workers)
 - Duplicate individual observations by number of hypothetical choices
- How to create hypothetical job choices?
 - Define weekly/monthly working hours for every hypothetical job choice
 - Based on hypothetical hours and wages, calculate gross earnings for all jobs
 - Apply tax/benefit calculator to these hypothetical households with their hypothetical working hours and gross earnings to get disposable income
 - ▶ Popular calculators: EUROMOD for Europe, TAXSIM for the US, ...
- ► Observed working hours inform us about the job actually chosen

Browsing through the data

► The resulting data set should look somehow like this one:

#	id	hours	wage	gross	dpi	leisure	choice	
1	1	0	7.5	0	400	80	0	
2	1	10	7.5	300	500	70	0	
3	1	20	7.5	600	600	60	1	
4	1	30	7.5	900	700	50	0	
5	1	40	7.5	1,200	800	40	0	
6	1	50	7.5	1,500	900	30	0	
7	1	60	7.5	1,800	1,000	20	0	
8	2	0	9.7	0	400	80	0	
9	2	10	9.7	388	550	70	0	
10	2	20	9.7	766	700	60	0	
11	2	30	9.7	1,164	850	50	0	
12	2	40	9.7	1,552	1,000	40	1	
13	2	50	9.7	1,940	1,150	30	0	
14	2	60	9.7	2,328	1,300	20	0	

Estimation approach

- Bringing the theory to the data
 - We know the choice and we know the consumption and leisure for all jobs
 - ightharpoonup We want to outback the preference coefficients α of our utility function
- Recall the utility function we assumed for our model

$$U_{nj} = \underbrace{\alpha_1 \ln C_{nj} + \alpha_2 (\ln C_{nj})^2 + \alpha_3 \ln L_j + \alpha_4 (\ln L_j)^2 + \alpha_5 \ln C_{nj} \ln L_j}_{V_{nj}} + \epsilon_{nj}$$

- Moreover we assumed that ϵ_{ni} is extreme value distributed
- ► Yields well known multinomial or conditional logit problem (McFadden, 1974)

$$P\left(U_{nj} > U_{nk} \forall k \neq j\right) = \frac{\exp V_{nj}}{\sum_{h \in I} \exp V_{nh}} \quad \forall \quad n = 1, \dots, N, \quad j \in J$$

▶ We can estimate this model using maximum likelihood methods

Estimation using Stata

- ▶ Define the likelihood function of this simple model
 - ► Log-likelihood given by: $\ln L = \sum_{n=1}^{N} \sum_{i \in J} y_{nj} (V_{nj} \ln \sum_{h \in J} \exp V_{nh})$
 - Where $y_{nj}=1$ if individual n chose alternative j and $y_{nj}=0$ otherwise
- ► Turning to Stata
 - ► The model defined above can be estimated using Stata's clogit command
 - ► Call by: clogit choice ln_dpi ln_leisure ... [fw=...], group(id)
- ► Rather restrictive when it comes to more complicated models
 - ▶ User-written command lslogit for labor supply estimation (Löffler, 2013)
 - Supports many heavily used utility specifications and extensions (Löffler et al., 2014)
 - ► Call by: lslogit choice [fw=...], group(id) con(dpi) lei(leisure)

Example output

```
. Islogit choice, group(id) c(dpi) l(leisure) boxcox cx(age* m) lx1(age* m)
Mixed Logit Labor Supply Model
                                      Number of obs
                                                    5761
                                      LR chi2(2) = 171.99
                                      Prob > chi2 = 0.0000
Log likelihood = -1368.2779
                                      Pseudo R2
                                                       0.1456
                            (Std. Err. adjusted for clustering on id)
             Coef. Std. Err. z P>|z| [95% Conf. Interval]
    choice |
   age m | 63.48062 10.78075 5.89 0.000 42.35074 84.6105
Cx
    age2 m | -8.688809 1.483041 -5.86 0.000 -11.59552 -5.782102
     .0578086 1.49 0.136 -.0270435
CxL1 _cons | .0862592
                                                     .1995619
L1x
   age m | 1.314325 1.334258 0.99 0.325 -1.300773 3.929424
    age2_m | -.1787296 .1835297 -0.97 0.330 -.5384413 .1809821
     _cons | -2.32873
                      2.38518 -0.98 0.329 -7.003596
                                                   2.346136
     /1_C | .593499 .0875811 6.78 0.000 .4218433 .7651548
     /l_L1 | -2.624566 .5228987 -5.02 0.000 -3.649429
                                                    -1.599704
   [dudes] | .0341955
```

Model: - Box-Cox utility function

Postestimation

- lacktriangle Maximum likelihood gives us estimates for preference coefficients \hat{a}
 - ightharpoonup This allows us to predict utility levels \hat{V}_{nj} from choosing the different jobs
 - Call by: predict util, xb
 - Using these we can predict choice probabilities or utility maximizing choice
 - ► Call by: predict prob, pc1
 - ► Enables us to check estimation fit by comparing observed and predicted choices

#	id	hours	choice	util	prob	
1	1	0	0	1.0	0.100	
2	1	10	0	1.5	0.165	
3	1	20	1	2.0	0.271	
4	1	30	0	1.5	0.165	
5	1	40	0	1.0	0.100	
6	1	50	0	1.0	0.100	
7	1	60	0	1.0	0.100	

Counterfactual analysis

- ▶ Holding preferences \hat{a} constant, we can simulate policy reforms
 - ► E.g. by calculating new disposable incomes for all job categories
 - ▶ gen dpi2 = ...
 - ▶ replace dpi = dpi2
 - ▶ predict prob2, pc1

#	id	hours	dpi	dpi2	choice	prob	prob2	
1	1	0	400	300	0	0.100	0.07	
2	1	10	500	400	0	0.165	0.10	
3	1	20	600	500	1	0.271	0.14	
4	1	30	700	700	0	0.165	0.14	
5	1	40	800	900	0	0.100	0.20	
6	1	50	900	1,100	0	0.100	0.18	
7	1	60	1,000	1,300	0	0.100	0.18	

Model extensions

- ▶ These are the basics. Model can be extended in several dimensions
 - ► Alternative representation of job offers (Aaberge et al., 2009, Dagsvik et al., 2014)
 - ▶ Different assumptions on the wage distribution and exogeneity (Löffler et al., 2014)
 - ► Functional form of the utility function (van Soest et al., 2002, Löffler et al., 2014)
 - Part-time restrictions and fixed costs (van Soest, 1995, Euwals and van Soest, 1999)
 - ► Random preferences and unobserved heterogeneity (van Soest, 1995, Pacifico, 2013)
 - Correlated wages and preferences (Breunig et al., 2008, Blundell and Shephard, 2012)
 - Welfare stigma from benefit participation (Hoynes, 1996, Keane and Moffitt, 1998)
 - Job offers and different economic sectors (Dagsvik and Strøm, 2006)
- ► Huge literature, but all follow the same outline and workflow
 - ► Good intro: "Labour supply and microsimulation" (Creedy and Kalb, 2005, 2006)
 - ► Handbook chapter: "Labour Supply Models" (Aaberge and Colombino, 2014)
 - ► Comprehensive sensitivity check with respect to assumptions (Löffler et al., 2014)

Conclusion

Comments or questions? — loeffler@zew.de

References I

- Aaberge, R. and Colombino, U. (2014). Labour Supply Models, in C. O'Donoghue (ed.), Handbook of Microsimulation, Vol. 293, Emerald Group Publishing Limited, pp. 167–221.
- Aaberge, R., Colombino, U. and Wennemo, T. (2009). Evaluating Alternative Representations of the Choice Sets in Models of Labor Supply, *Journal of Economic Surveys* 23(3): 586–612.
- Aaberge, R., Dagsvik, J. K. and Strøm, S. (1995). Labor Supply Responses and Welfare Effects of Tax Reforms, *The Scandinavian Journal of Economics* **97**(4): 635–659.
- Bargain, O., Orsini, K. and Peichl, A. (2014). Comparing Labor Supply Elasticities in Europe and the US: New Results, *Journal of Human Resources* **49**(3): 723–838.
- Blundell, R., Duncan, A., McCrae, J. and Meghir, C. (2000). The Labour Market Impact of the Working Families' Tax Credit, *Fiscal Studies* **21**(1): 75–104.
- Blundell, R. and Shephard, A. (2012). Employment, Hours of Work and the Optimal Taxation of Low-Income Families, Review of Economic Studies 79(2): 481–510.
- Breunig, R., Cobb-Clark, D. A. and Gong, X. (2008). Improving the Modelling of Couples' Labour Supply, Economic Record 84(267): 466–485.
- Burtless, G. and Hausman, J. A. (1978). The Effect of Taxation on Labor Supply: Evaluating the Gary Negative Income Tax Experiment, *The Journal of Political Economy* **86**(6): 1103–1130.
- Creedy, J. and Kalb, G. (2005). Discrete Hours Labour Supply Modelling: Specification, Estimation and Simulation, *Journal of Economic Surveys* **19**(5): 697–734.

References II

- Creedy, J. and Kalb, G. (2006). Labour Supply and Microsimulation, Edward Elgar Publishing Limited.
- Dagsvik, J. K., Jia, Z., Kornstadt, T. and Thoresen, T. O. (2014). Theoretical and Practical Arguments For Modeling Labor Supply as a Choice Among Latent Jobs, *Journal of Economic Surveys* 28(1): 134–151.
- Dagsvik, J. K. and Strøm, S. (2006). Sectoral Labor Supply, Choice Restrictions and Functional Form, *Journal of Applied Econometrics* **21**(6): 803–826.
- Euwals, R. and van Soest, A. (1999). Desired and actual labour supply of unmarried men and women in the Netherlands, *Labour Economics* **6**(1): 95–118.
- Hausman, J. A. (1981). Labor Supply, in H. J. Aaron and J. A. Pechman (eds), How taxes affect economic behavior, Brookings Institution, pp. 27–72.
- Hoynes, H. W. (1996). Welfare Transfers in Two-Parent Families: Labor Supply and Welfare Participation Under AFDC-UP, *Econometrica* **64**(2): 295–332.
- Keane, M. P. and Moffitt, R. (1998). A Structural Model of Multiple Welfare Program Participation and Labor Supply, *International Economic Review* **39**(3): 553–589.
- Löffler, M. (2013). Fitting Complex Mixed Logit Models: An Application to Labor Supply. Mimeo, presented at the Stata Conference in New Orleans, July 2013.
- Löffler, M., Peichl, A. and Siegloch, S. (2014). Structural Labor Supply Models and Wage Exogeneity, *ZEW Discussion Paper* **14-040**.

References III

- Manski, C. F. (2014). Identification of income-leisure preferences and evaluation of income tax policy, *Quantitative Economics* **5**(1): 145–174.
- McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior, in P. Zarembka (ed.), Frontiers in Econometrics, Academic Press, New York.
- Pacifico, D. (2013). On the role of unobserved preference heterogeneity in discrete choice models of labour supply, *Empirical Economics* **45**(2): 929–963.
- van Soest, A. (1995). Structural Models of Family Labor Supply A Discrete Choice Approach, *Journal of Human Resources* **30**(1): 63–88.
- van Soest, A., Das, M. and Gong, X. (2002). A structural labour supply model with flexible preferences, *Journal of Econometrics* **107**(1-2): 345–374.