CS2022: 數位系統設計

Combinational Logic

Outline

- Introduction
- Combinational Circuits
- Analysis Procedure
- Design Procedure
- Binary Adder-Subtractor
- Decimal Adder
- Binary Multiplier
- Magnitude Comparator
- Decoders
- Encoders
- Multiplexers

Introduction

- Logic circuits for digital systems may be combinational or sequential
- A combinational circuit consists of logic gates whose outputs at any time are determined from only the present combination of inputs

Combinational Circuits

Logic circuits for digital system

- Sequential circuits
 - » Contain memory elements
 - The outputs are a function of the current inputs and the state of the memory elements
 - » The outputs also depend on past inputs

Combinational Circuits

A combinational circuits

2ⁿ possible combinations of input values

Figure 1 Block diagram of combinational circuit

- Specific functions
 - » Adders, subtractors, comparators, decoders, encoders, and multiplexers
 - » MSI circuits or standard cells

Analysis Procedure

- Analysis procedure for combinational circuit
 - Make sure that it is combinational not sequential
 - » No feedback path
 - Derive its Boolean functions (truth tables)
 - Design verification
 - A verbal explanation of its function

A Straight-forward Procedure

Figure 2 Logic Diagram for Analysis Example

A Straight-forward Procedure

 $F_1 = T_3 + T_2 = F_2'T_1 + ABC = (AB + AC + BC)'(A + B + C) + ABC = (A' + B')(A' + C')(B' + C')(A + B + C) + ABC = (A' + B'C')(AB' + AC' + BC' + B'C) + ABC = A'BC' + A'B'C + AB'C' + ABC$

Truth Table for Logic Diagram

Enumerate input combinations for the truth table

Table 4.1 *Truth Table for the Logic Diagram of Fig. 4.2*

Α	В	C	F ₂	F ₂	<i>T</i> ₁	T ₂	T ₃	<i>F</i> ₁
0	0	0	0	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1

Design Procedure

- **■** The design procedure of combinational circuits
 - State the problem (system specification (spec.))
 - Determine the inputs and outputs
 - The input and output variables are assigned symbols
 - Derive the truth table
 - Derive the simplified Boolean functions
 - Draw the logic diagram and verify the correctness

Design Procedure

- Functional description
 - Boolean function
 - HDL (Hardware description language)
 - » Verilog HDL
 - » VHDL
 - Schematic entry
- Design objectives and constraints
 - Number of gates
 - Number of inputs to a gate
 - Propagation delay
 - Number of interconnection
 - Limitations of the driving capabilities

Code Conversion Example

BCD to excess-3 code

The truth table

Table 4.2 *Truth Table for Code-Conversion Example*

	Inpu	t BCD		Outp	Output Excess-3 Cod			
A	В	C	D	W	х	y	z	
0	0	0	0	0	0	1	1	
0	0	0	1	0	1	0	0	
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	0	
0	1	0	0	0	1	1	1	
0	1	0	1	1	0	0	0	
0	1	1	0	1	0	0	1	
0	1	1	1	1	0	1	0	
1	0	0	0	1	0	1	1	
1	0	0	1	1	1	0	0	

BCD Maps

Figure 3 Maps for BCD to Excess-3 Code Converter Combinational Logic-13

BCD to Excess-3 Functions

The simplified functions of two-level implementation

- \rightarrow z = D'
- \rightarrow y = CD + C'D'
- \rightarrow x = B'C + B'D + BC'D'
- ϕ W = A + BC + BD

Another implementation

- \rightarrow z = D'

- \rightarrow w = A + B(C + D)

Yet Another BCD to Excess-3

■ The logic diagram of multi-level implementation

Fig. 4 Logic Diagram for BCD to Excess-3 Code Converter

Binary Adder-Subtractor

Half adder

- \bullet 0 + 0 = 0; 0 + 1 = 1; 1 + 0 = 1; 1 + 1 = 10
- Two input variables: x, y
- Two output variables: C (carry), S (sum)
- Truth table

Table 4.3 *Half Adder*

X	y	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half Adder

Simplified sum-of-products

- \bullet S = x'y + xy'
- \bullet C = xy

The flexibility for implementation

- \bullet $S = x \oplus y$
- $\bullet S = (x + y)(x' + y')$
- \diamond S' = xy + x'y'
- \bullet S = (C + x'y')'
- C = xy = (x' + y')'

Table 4.3 *Half Adder*

0
1
1
0

Implementation of Half-Adder

Figure 5 Implementation of Half-Adder

Full-Adder

Full-Adder

- The arithmetic sum of three input bits
- Three input bits
 - » x, y: two significant bits
 - » z: the carry bit from the previous lower significant bit

◆ Two output bits: C, S

Table 4.4 *Full Adder*

X	y	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full-Adder

Fig. 7 Implementation of Full Adder in Sum of Products

Full-Adder

Simplified sum-of-products

- \bullet C = xy + xz + yz

Full-adder by using 2 half-adders

- ♦ $S = z \oplus (x \oplus y) = z'(xy' + x'y) + z(xy' + x'y)' = z'xy' + z'x'y + z((x' + y)(x + y')) = xy'z' + x'yz' + xyz + x'y'z$
- \bullet C = z(xy' + x'y) + xy = xy'z + x'yz + xy

Fig. 8 Implementation of Full Adder with Two Half Adders and an OR Gate

Binary (Ripple-Carry) Adder

Subscript i:	3	2	1	0	
Input carry Augend	1	0	1	0 1	C_i A_i
Addend	0	0	1	1	$B_i^{'}$
Sum Output carry				uuloouuloovanova	S_i C_{i+1}

Figure 9 Four-bit adder

Carry Propagation

Carry propagation

- When the correct outputs are available?
- The critical path counts (the worst case)
- $(A_0, B_0, C_0) \rightarrow C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow (C_4, S_3)$
- ◆ 4-bit adder → 8 gate levels (n-bit adder: 2n gate levels)

Figure 10 Full Adder with *P* and *G* Shown

Carry Propagation

Carry propagation

- When the correct outputs are available?
- The critical path counts (the worst case)
- $(A_0, B_0, C_0) \rightarrow C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow (C_4, S_3)$
- ◆ 4-bit adder → 8 gate levels (n-bit adder: 2n gate levels)

Parallel Adders

- Reduce the carry propagation delay
 - Using faster gates
 - Parallel adders (e.g., carry look-ahead adder)
- Carry look-ahead adder (CLA)
 - ♦ Carry propagate: $P_i = A_i \oplus B_i$
 - ◆ Carry generate: G_i = A_iB_i
 - Sum: $S_i = P_i \oplus C_i$
 - \bullet Carry: $C_{i+1} = G_i + P_i C_i$
 - C_0 = input carry
 - $\bullet \quad C_1 = G_0 + P_0 C_0$
 - $\bullet \quad C_2 = G_1 + P_1C_1 = G_1 + P_1(G_0 + P_0C_0) = G_1 + P_1G_0 + P_1P_0C_0$
 - \bullet $C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$
 - \bullet $C_4 = G_3 + P_3C_3 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0$

Carry Look-ahead Adder (1/2)

Logic diagram of carry look-ahead generator

Carry propagate: $P_i = A_i \oplus B_i$ Carry generate: $G_i = A_i B_i$

 C_0 = input carry

$$C_1 = G_0 + P_0 C_0$$

$$C_2 = G_1 + P_1C_1 = G_1 + P_1G_0 + P_1P_0C_0$$

$$C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$$

Fig. 11 Logic Diagram of Carry Look-ahead Generator

Carry Look-ahead Adder (2/2)

4-bit carry-look ahead adder

- Propagation delay of C₃, C₂
 and C₁ are equal
- Propagation delay of S_3 , S_2 and S_1 are equal

Fig. 12 4-Bit Adder with Carry Look-ahead

Signed Binary Subtractor

- Signed binary subtraction is performed by adding the minuend to the 2's complement of the subtrahend
- 4-bit adder-subtractor
 - \bullet M=0: A + B; A + B + 0
 - \bullet M=1: A B; A + B' + 1

Fig. 13 4-Bit Adder Subtractor Combinational Logic-28

Overflow

- Since the number of bits is limited, overflow occurs when the resulting value of an operation is out of the range of valid values. That is, the resulting value is greater than max or less than min.
 - Add two positive numbers and obtain a negative number
 - Add two negative numbers and obtain a positive number
 - \lor V = 0, no overflow; V = 1, overflow

Example:

carries:	0 1	carries:	1 0
+70	0 1000110	-70	1 0111010
_+80	0 1010000	-80	1 0110000
+150	1 0010110	-150	0 1101010

Unsigned Binary Subtractor

- Unsigned binary subtraction can also be performed by adding the minuend to the 2's complement of the subtrahend
- 4-bit adder-subtractor C₄
 - M=0: A + B; A + B + 0
 - \bullet M=1: A B; A + B' + 1

Overflow detection

Decimal Adder

- Add two BCD's
 - 9 inputs: two BCD's and one carry-in
 - 5 outputs: one BCD and one carry-out
- Design approaches
 - A truth table with 2⁹ entries (many entries, 312 exactly, are don't cares)
 - Use 4-bit binary adder
 - » The maximum sum \leftarrow 9 + 9 + 1 = 19
 - » Binary to BCD

BCD Adder (1/3)

■ BCD Adder: binary sum to BCD sum

Table 4.5 *Derivation of BCD Adder*

	Biı	nary Su	ım			BCD Sum						
K	Z 8	Z 4	Z ₂	Z ₁	c	S 8	S 4	S ₂	S ₁			
0	0	0	0	0	0	0	0	0	0	0		
0	0	0	0	1	0	0	0	0	1	1		
0	0	0	1	0	0	0	0	1	0	2		
0	0	0	1	1	0	0	0	1	1	3		
0	0	1	0	0	0	0	1	0	0	4		
0	0	1	0	1	0	0	1	0	1	5		
0	0	1	1	0	0	0	1	1	0	6		
0	0	1	1	1	0	0	1	1	1	7		
0	1	0	0	0	0	1	0	0	0	8		
0	1	0	0	1	0	1	0	0	1	9		
0	1	0	1	0	1	0	0	0	0	10		
0	1	0	1	1	1	0	0	0	1	11		
0	1	1	0	0	1	0	0	1	0	12		
0	1	1	0	1	1	0	0	1	1	13		
0	1	1	1	0	1	0	1	0	0	14		
0	1	1	1	1	1	0	1	0	1	15		
1	0	0	0	0	1	0	1	1	0	16		
1	0	0	0	1	1	0	1	1	1	17		
1	0	0	1	0	1	1	0	0	0	18		
1	0	0	1	1	1	1	0	0	1	19		

BCD Adder (2/3)

Modifications are needed if the sum > 9

- ♦ If C = 1, then sum > 9
 - K = 1, or
 - $Z_8Z_4 = 1 (11xx), or$
 - $Z_8Z_2 = 1 (1 \times 1 \times).$
- Modification: –(10)_d or + 6

$$C = K + Z_8 Z_4 + Z_8 Z_2$$

BCD Adder (3/3)

Block diagram

Fig. 14 Block Diagram of a BCD Adder Combinational Logic-34

Digital System Design

Binary Multiplier (1/3)

Multiplication consists of

- Generation of partial products
- Accumulation of shifted partial products

						y_5	y_4	y_3	y_2	y_1	y_0	
						X ₅	X ₄	X ₃	X ₂	x ₁	x ₀	
						$x_0 y_5$	$x_0^{} y_4^{}$	$x_0 y_3$	$x_0^{}y_2^{}$	$x_0 y_1$	$x_0 y_0$	
					$x_1 y_5$	$x_1 y_4$	$x_1 y_3$	$x_1 y_2$	$x_1 y_1$	$x_1^{} y_0^{}$		
				$x_2^{}y_5^{}$	$x_2^{} y_4^{}$	$x_2^{}y_3^{}$	$x_2^{}y_2^{}$	$x_2^{}y_1^{}$	$x_2^{}y_0^{}$			
			$x_3 y_5$	$x_3 y_4$	$x_3 y_3$	$x_3 y_2$	x_3y_1	$x_3 y_0$				
		$x_4 y_5$	$x_4 y_4$	$x_4 y_3$	$x_4 y_2$	$x_4 y_1$	$x_4 y_0$					
	$x_5 y_5$	$x_5 y_4$	x_5y_3	$x_5 y_2$	x_5y_1	$x_5 y_0$						
p ₁₁	p ₁₀	p_9	p_8	p_7	p_6	p_5	p_4	p_3	p_2	p_1	p_0	

Multiplicand

Multiplier

Partial Products

Product

Binary Multiplier (2/3)

Partial products

AND operations

Fig. 15 Two-bit by two-bit binary multiplier

Combinational Logic-36

Digital System Design

Binary Multiplier (3/3)

4-bit by 3-bit binary multiplier

Fig. 16 Four-bit by three-bit binary multiplier

Combinational Logic-37

Digital System Design

Various Multipliers

Combinational Logic-38

Digital System Design

Magnitude Comparator (1/3)

- The comparison of two unsigned numbers
 - ◆ Outputs: A>B, A=B, A<B</p>
- Design Approaches
 - **♦** The truth table of 2*n*-bit comparator
 - \rightarrow 2²ⁿ entries too cumbersome for large n
 - Use inherent regularity of the problem
 - » Reduce design efforts
 - » Reduce human errors

Magnitude Comparator (2/3)

■ Algorithm → logic

- \bullet $A = A_3 A_2 A_1 A_0$; $B = B_3 B_2 B_1 B_0$
- ◆ A=B
 - » $A_3=B_3$, $A_2=B_2$, $A_1=B_1$, and $A_1=B_1$
 - Equality: $x_i = A_i B_i + A_i' B_i'$ (equivalence)
 - $(A=B) = x_3x_2x_1x_0=1$
- (A>B)

$$A_3B_3' + X_3A_2B_2' + X_3X_2A_1B_1' + X_3X_2X_1A_0B_0'$$

(A<B)</p>

»
$$A_3'B_3 + x_3A_2'B_2 + x_3x_2A_1'B_1 + x_3x_2x_1A_0'B_0$$

Implementation

Magnitude Comparator (3/3)

Combinational Logic-41

Digital System Design

Decoder (1/2)

A n-to-m decoder (active high)

- ♦ A binary code of n bits = 2ⁿ distinct information
- n input variables; up to 2ⁿ output lines
- Only one output can be active (high) at any time

Table 4.6 *Truth Table of a Three-to-Eight-Line Decoder*

Inputs			Outputs							
X	y	z	D_0	D ₁	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	O
0	1	0	0	0	1	0	0	0	0	O
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	O
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Decoder (2/2)

An implementation

Three-to-eight-line decoder Fig. 18

Combinational Logic-43

Digital System Design

Decoder with Enable Input

Decoder with enable (active low)

- A decoder with an enable input (using controlling value)
- Receive information on a single line and transmits it on one of 2ⁿ possible output lines
- Only one output can be active (low) when enable (active-low)

Е	A	В	D_0	D_1	D_2	D_3
1 0 0 0	X 0 0 1 1	X 0 1 0	1 0 1 1	1 1 0 1	1 1 1 0 1	1 1 1 1 0

Input don't care X: for all cases (0 and 1)

Fig. 19 Two-to-four-line decoder with enable input (NAND implementation)

Decoder Expansion

Decoder expansion

◆ Two 3-to-8 decoder with enable: a 4-to-16 decoder

Fig. 20 4×16 decoder constructed with two 3×8 decoders

SOP Implementation (1/2)

Combinational logic implementation

- Each output = a minterm
- Use a decoder and an external OR gate to implement any Boolean function of n input variables
- A full-adder
 - » $S(x, y, z) = \Sigma(1, 2, 4, 7)$
 - » $C(x, y, z) = \Sigma(3, 5, 6, 7)$

Fig. 21 Implementation of a full adder with a decoder Combinational Logic-46

SOP Implementation (2/2)

- Two possible approaches using decoder
 - » OR (minterms of F): k inputs (k minterms)
 - » NOR (minterms of F'): $2^n k$ inputs
- In general, it is not a practical implementation for a large design
 - » Too many minterms

Encoders (1/2)

The inverse function of a decoder

Table 4.7 *Truth Table of an Octal-to-Binary Encoder*

Inpu	uts		Out	puts						
D ₀	<i>D</i> ₁	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇	×	y	z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

The encoder can be implemented with three OR gates

Encoders (2/2)

Three OR gates implementation

Limitations

- » Illegal input: $D_3 = D_6 = 1$
 - The output = 111 (D_7 =1)
- » Illegal input: $D_0 = D_1 = D_2 = D_3 = D_4 = D_5 = D_6 = D_7 = 0$
 - The output = 000 (D_0 =1)

Priority Encoder (1/3)

- Resolve the ambiguity of illegal inputs
- Only one of the input is encoded

Table 4.8 *Truth Table of a Priority Encoder*

	Inp	uts	Outputs			
D ₀	D ₁	D ₂	D ₃	X	y	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

- D₃ has the highest priority
- D₀ has the lowest priority
- X: don't-care conditions
 - » NOTICE: input and output don't-cares are different

V: valid output indicator

» Avoid $D_0 = D_1 = D_2 = D_3 = 0$

Priority Encoder (2/3)

The maps for simplifying outputs x and y

Fig. 22 Maps for a priority encoder

Priority Encoder (3/3)

Implementation of priority encoder

Fig. 23 Four-input priority encoder

$$x = D_{2} + D_{3}$$

$$y = D_{3} + D_{1}D_{2}'$$

$$V = D_{0} + D_{1} + D_{2} + D_{3}$$

Multiplexers

- Select binary information from one of many input lines and direct it to a single output line
- **2**ⁿ input lines, *n* selection lines, and one output line

Fig. 24 Two-to-one-line multiplexer

Four-to-one-line Multiplexer

■ 4-to-1 line multiplexer

S_1	S_0	Y
0 0 1 1	0 1 0 1	$I_0 \\ I_1 \\ I_2 \\ I_3$

 $Y = S_1' \cdot S_0' \cdot I_0 + S_1' \cdot S_0 \cdot I_1 + S_1 \cdot S_0' \cdot I_2 + S_1 \cdot S_0 \cdot I_3$

Fig. 25 Four-to-one-line multiplexer

2ⁿ-to-1 Multiplexer

- **■** Note: 2ⁿ-to-1 multiplexer
 - ◆ n-to-2ⁿ decoder
 - ◆ Add the 2ⁿ input lines to each AND gate
 - OR (all AND gates)
 - n selection lines
 - An enable input (optional)

Quadruple 2-to-1-line MUX with Enable

Combinational Logic-56

Digital System Design

Boolean Function Implementation (1/4)

- MUX: a decoder + an OR gate
- n inputs Boolean function implementation
 - 2ⁿ-to-1 MUX: trivial (p.176)
 - » Each minterm value (0 or 1) is assigned to corresponding MUX input line
 - ◆ 2^{*n*-1}-to-1 MUX
 - » n-1 of these variables: MUX selection lines
 - » The last variable: MUX input lines

Boolean Function Implementation (2/4)

• An example: $F(x, y, z) = \Sigma(1, 2, 6, 7)$

Fig. 27 Implementing a Boolean function with a multiplexer

Boolean Function Implementation (3/4)

Procedure:

- Assign an ordering sequence of the input variable
- The rightmost variable will be used for the input lines
- Assign the remaining n-1 variables to the selection lines w.r.t. their corresponding sequence
- Construct the truth table
- Consider a pair of consecutive minterms starting from m₀
- Determine the input lines

Boolean Function Implementation (4/4)

Example: $F(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)$

A	B	C	D	F	
0	0 0	0 0	0 1	0 1	F = D
0	$0 \\ 0$	1 1	0 1	0 1	F = D
0 0	1 1	$\begin{array}{c} 0 \\ 0 \end{array}$	0 1	1 0	F = D'
0	1 1	1 1	0 1	0 0	F = 0
1 1	0 0	0	0 1	0 0	F = 0
1 1	0 0	1 1	0 1	0 1	F = D
1 1	1 1	0 0	0 1	1 1	<i>F</i> = 1
1 1	1 1	1 1	0 1	1 1	<i>F</i> = 1

Fig. 28 Implementing a four-input function with a multiplexer

16-to-1 MUX Implementation (1/4)

A	В	С	D	F	16 x 1 MUX
0	0	0	0	0	10 X I WOX
0	0	0	1	1	S_0
0	0	1	0	0	$c \longrightarrow s_1 \\ s_2 $
0	0	1	1	1	$A \longrightarrow S_3$
0	1	0	0	1	0
0	1	0	1	0	1
0	1	1	0	0	2 3
0	1	1	1	0	4
1	0	0	0	0	5 6
1	0	0	1	0	7
1	0	1	0	0	8 9
1	0	1	1	1	10
1	1	0	0	1	11 12
1	1	0	1	1	13
1	1	1	0	1	14 15
1	1	1	1	1	

Combinational Logic-61

Digital System Design

8-to-1 MUX Implementation (2/4)

Α	В	C	D	F	
0	0	0	0	0	
0	0	0	1	1	$F_0 = D$
0	0	1	0	0	
0	0	1	1	1	$F_1 = D$
0	1	0	0	1	
0	1	0	1	0	$F_2 = D'$
0	1	1	0	0	
0	1	1	1	0	$F_3 = 0$
1	0	0	0	0	
1	0	0	1	0	$F_4 = 0$
1	0	1	0	0	
1	0	1	1	1	$F_5 = D$
1	1	0	0	1	F ₆ = 1
1	1	0	1	1	F ₆ – I
1	1	1	0	1	
1	1	1	1	1	F ₇ = 1

4-to-1 MUX Implementation (3/4)

Α	В	С	D	F				
0	0	0	0	0			4 x 1 MUX	
0	0	0	1	1	5 - D			
0	0	1	0	0	$F_0 = D$	В ———	S_o	
0	0	1	1	1		Α	S_{2}	
0	1	0	0	1				
0	1	0	1	0	E - CIDI			
0	1	1	0	0	$F_1 = C'D'$	_		
0	1	1	1	0		F_o	0	F
1	0	0	0	0		F ₁	1	
1	0	0	1	0	5 65	1		
1	0	1	0	0	$F_2 = CD$	F ₂	2	
1	0	1	1	1				
1	1	0	0	1		F ₃	3	
1	1	0	1	1	5 – 1			
1	1	1	0	1	F ₃ = 1			
1	1	1	1	1	- hipotional I		Divital Co	. 5 .

Combinational Logic-63

Digital System Design

2-to-1 MUX Implementation (4/4)

0 0 0 0	•
0 0 0 1 1 1 2x1MUX	
0 0 1 0 0	
$0 \qquad 0 \qquad 1 \qquad 1 \qquad 1 \qquad s_o \qquad s_o$	
$F_0 = B'D + BC'D'$	
0 1 0 1 0	
0 1 1 0 0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F
1 0 0 0 0	
1 0 0 1 0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1 0 1 1 1	
1 1 0 0 1 $F_1 = B'CD + B$	
1 1 0 1 1	
1 1 1 0 1	1
1 1 1 1 1 Combinational Logic-64 Digital Sys	tem Desian

Combinational Logic-64

Three-state (Tri-state) Gates

- A multiplexer can be constructed with three-state gates
- Output state: 0, 1, and high-impedance (open circuits)

Fig. 29 Graphic symbol for a three-state buffer

С	Α	Υ
0	0	Z
0	1	Z
1	0	0
1	1	1

Multiplexer Examples

Fig. 30 Multiplexer with three-state gates

Decoder/Demultiplexer

Decoder/demultiplexer

(a) Decoder with enable

(b) Demultiplexer

Demultiplexer

- Forward the data input to one of the outputs
- 1 input lines, *n* selection lines, and 2ⁿ input lines

