Course Code	18PYB103J Course Name PHYSICS: SEMICONDUCTOR PHYSICS		SICS		urse egory		В	Basic Sciences L T P 3 1 2						C 5									
Pre-requisite Courses Nil Co-requisite Courses Nil Course Offering Department Physics and Nanotechnology Data Book / Codes/Standards						Prog Co Nil	jress ourse		Nil														_
Course Learning Rationale (CLR): The purpose of learning this course is to:						Le	arnir	ng					Prog	ram L	_earn	ing C	utco	mes (PLO)				
CLR-1: Intr	roduce band gap and	l fermi level in se	miconductors			1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	3 1	14	15
CLR-3: Pro CLR-4: Pro CLR-5: Det	ovide an insight on se ocure knowledge of e velop necessary skill	emiconductor opti electrical and opti s for low dimensi	mechanism in p-n and metal semiconductor junction iical transitions and photovoltaic effect cal measurements in semiconductor ional semiconductor material processing and charact iderstanding of engineering and technology	lerization		Thinking (Bloom)	d Proficiency (%)	d Attainment (%)	Engine Knowledge	Analysis	& Development	, Design, Research	Modern Tool Usage	& Culture	nent & Sustainability		al & Team Work	Sommunication	Mgt. & Finance	g Learning			3
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:					evel of	Expected	Expected	100	Problem	Design 8	Analysis,	Modern	Society	Environment &	Ethics	Individual &	Sommu	Project Mgt.			7	PSO - 3	
CLO-1: Ide	entify the energy band	d in solids and ele	ectron occupation probability			2	85	75	ŀ		-	-	-	-	-	-	-	-	-	-		-	-
CLO-2: Ana	alyze the working of	optoelectronic de	evices			2	75	70	F	l H	-	-	-	-	-	-	-	-	-	-	-	-	-
CLO-3: App	ply the knowledge to	the development	t of new and novel optoelectronic devices			2	80	75	ŀ	-	-	Н	-	-	-	-	-		-	-	-	-	-
	CLO-4: Identify the working mechanism of electrical and optical measurements					2	75	70	ŀ		-	-	-	-	-	-	-	-	-	-	-	-	-
CLO-5: Utilize the knowledge of the low dimensional semiconductor material fabrication and characterization.					2	80	70	F	-	Н	-	-	-	-	-	-	-	-	-	-	-	-	
CLO-6: Apply the concepts of semiconductor physics in real time applications					2	80	70		-	-	-	-	-	-	-	-	-	-	-	-	<u>-</u>	_	
Duration (hou	ır)	18	18	18							1	8							18	3			
SLO-		ectron theory	Intrinsic semiconductor	Concept of optical trans semiconductors	sition	s in bu	lk	(Concept	of elec	trical r	neasu	ıremei	nts		Dens	ity of	states	es in 2D				
J*			F ! !																				_

Durati	on (hour)	18	18	18	18	18
S-1	SLO-1	Classical Free electron theory	Intrinsic semiconductor	Concept of optical transitions in bulk semiconductors	Concept of electrical measurements	Density of states in 2D
3-1	SLO-2	Quantum Free electron theory	Fermi level on carrier-concentration and temperature in Intrinsic semiconductor	optical absorption process	Two-point probe technique	Density of states in 1D and 0 D
	SLO-1	Density of states	Extrinsic semiconductors	Concept of recombination process	Four-point probe technique-linear method	Introduction to low dimensional systems
S-2	SLO-2	Energy band in solids	Fermi level on carrier-concentration and temperature in extrinsic semiconductors	Optical recombination process	Four-point probe technique-Van der Pauw method	Quantum well
	SLO-1	Kronig-Penney model	Explanation for carrier generation	Explanation for spontaneous emission	Significance of carrier density	Quantum wire and dots
S-3	SLO-2	Kronig-Penney model	Explanation for recombination processes	Explanation for stimulated emission	Significance of resistivity and Hall mobility	Introduction to novel low dimensional systems
S-4	SLO-1	Solving problems	Solving problem	Solving problem	Solving problem	Solving problem
3-4	SLO-2	Solving problems	Solving problem	Solving problem	Solving problem	Solving problem
S 5-6	SLO-1 SLO-2	Basics of experimentation	Study of I-V characteristics of a light dependent resistor (LDR)	Characterization of pn junction diode (Forward Bias)	Determine Particle Size of Semiconductor Laser	Determine of efficiency of solar cell
S-7	SLO-1	E-k diagram	Carrier transport - diffusion and drift current	Joint density of states in semiconductor	Hot-point probe measurement	CNT- properties and synthesis
3-1	SLO-2	Direct and Indirect band gap	Continuity equation	Density of states for photons	capacitance-voltage measurements	Applications of CNT
S-8	SLO-1	Concept of phonons	p-n junction	Explanation of transition rates	Extraction of parameters in a diode	Fabrication technique-CVD
3-8	SLO-2	Concept of Brillouin Zone	Biasing concept in p-n junction	Fermi's golden rule	I-V characteristics of a diode	Fabrication technique-PVD

S-9	SLO-1	Energy band structure of semiconductor- Brillouin zone	Metal-semiconductor junction -Ohmic contact	Concept of optical loss	Principle of Deep-level transient spectroscopy (DLTS)	Characterizations techniques for low dimensional systems
3-9	SLO-2	Concept of effective mass	Metal-semiconductor junction - Schottky junction	Concept of optical gain	Instrumentation of DLTS	XRD-Powder method
S-10	SLO-1	Solving problems	Solving problem	Solving problem	Solving problem	Solving problem
3-10	SLO-2	Solving problems	Solving problem	Solving problem	Solving problem	Solving problem
S 11-12	SLO-1 SLO-2	Determine Hall coefficient of Semiconductor material	Determine Band Gap of semiconductor- Four probe method	Repeat/Revision of experiments	Attenuation, propagation characteristic of optical fiber cable using laser source	Determine lattice parameters using powder XRD
S-13	SLO-1	Classification of electronic materials	Semiconductor materials of interest for optoelectronic devices	Basic concepts of Photovoltaics	Significance of band gap in semiconductors	Principle of electron microscopy
3-13	SLO-2	Fermi level	Photocurrent in a P-N junction diode	Photovoltaic effect	Concept of absorption and transmission	Scanning electron microscopy
S-14	SLO-1	Probability of occupation	Light emitting diode	Applications of Photovoltaic effect	Fundamental laws of absorption	Transmission electron microscopy
3-14	SLO-2	Influence of donors in semiconductor	Classification of Light emitting diode	Determination of efficiency of a PV cell	Instrumentation of UV-Vis spectroscopy	Atomic force microscope
S-15	SLO-1	Influence of acceptors in semiconductor	Optoelectronic integrated circuits	Theory of Drude model	Determination of band gap by UV-Vis spectroscopy	Heterojunctions
0-13	SLO-2	Non-equilibrium properties of carriers	Organic light emitting diodes	Determination of conductivity	Concept of Photoluminescence	Band diagrams of heterojunctions
S-16	SLO-1	Solving problems	Solving problem	Solving problem	Solving problem	Solving problem
0-10	SLO-2	Solving problems	Solving problem	Solving problem	Solving problem	Solving problem
S 17-18		Determine Band Gap of semiconductor- Post Office Box method	Study of V-I and V-R characteristics of a solar cell	To verify Inverse square law of light using a photo cell.	Characteristic of p_n junction diode under reverse bias	Mini Project

L	earning	1. J. Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill Inc.1995.	3. S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley 2008.
R	Resources	2. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc., 2007.	4. A. Yariv and P. Yeh, Photonics:Optical Electronics in Modern Communications, Oxford University Press, New York 2007.

Learning Ass	sessment												
	Bloom's Continuous Learning Assessment (50% weightage)										Final Examination (50% weightage)		
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	(10%)#	Tillai Examination (50% weightage)			
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
	Total 100 %		100 %		100	0 %		%	100 %				

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Dr. Vinay Gupta, National Physical Laboratory, guptavinay@nplindia.org	Prof. C. Vijayan, IITM, Chennai, cvijayan@iitm.ac.in	Dr. C. Preferencial Kala, SRMIST
	Prof. S. Balakumar, University of Madras, balakumar@unom.ac.in	Dr. M. Krishnamohan, SRMIST