Домашнее задание №2 Логика и Теория Алгоритмов

Козырнов Александр Дмитриевич ИУ7-42Б Вариант 6

4 мая 2024 г.

Оглавление

1	Зад	Задача 1						
	1.1	Условие						
	1.2	Решен	ше					
		1.2.1	Карты Карно					
		1.2.2	Ядро функции и сокращенная ДНФ					
		1.2.3	Поиск Тупиковых ДНФ. Функция Патрика					
		1.2.4	Минимальная ДНФ					
2	Задача 2							
	2.1	Услов	ие					
	2.2	Решен	ше					
		2.2.1	Нахождение таблицы значений функции f					
		2.2.2	Нахождение минимальных ДНФ					
		2.2.3	Выяснение полноты системы					
		2.2.4	Построение функциональных элементов, образующих базовые функции					
3	Зад	ача 3						
	3.1	Услов	ие					
	3.2	2 Решение						

Задача 1

1.1 Условие

Для булевой функции f, заданной в таблице 1:

- а) найти сокращенную ДНФ; б) найти ядро функции;
- в) получить все тупиковые ДНФ и указать, какие из них являются минимальными;
- Γ) на картах Карно указать ядро и покрытия, соответствующие минимальным ДНФ.

Сама функция f, заданная в виде вектора значений:

 $f(1100\ 1101\ 1101\ 1001)$

1.2 Решение

1.2.1 Карты Карно

1.2.2 Ядро функции и сокращенная ДНФ

Ядром функции будет являться $\bar{x}_3\bar{x}_4$

Сокращенная ДНФ:

$$\bar{x}_3\bar{x}_4 \lor \bar{x}_2\bar{x}_3 \lor \bar{x}_1\bar{x}_3 \lor x_2x_3x_4 \lor x_1x_3x_4 \lor x_1\bar{x}_2x_4 \lor \bar{x}_1x_2x_4$$

1.2.3 Поиск Тупиковых ДНФ. Функция Патрика

$$K_1 = \bar{x}_3 \bar{x}_4$$
 $K_2 = \bar{x}_2 \bar{x}_3$

$$K_3 = \bar{x}_1 \bar{x}_3$$
 $K_4 = x_2 x_3 x_4$

$$K_5 = x_1 x_3 x_4$$
 $K_6 = x_1 \bar{x}_2 x_4$

$$K_7 = \bar{x}_1 x_2 x_4$$

Тогда изначальная функция Патрика будет выглядеть так:

$$(K_2 \vee K_3) \wedge (K_3 \vee K_7) \wedge (K_7 \vee K_4) \wedge (K_4 \vee K_5) \wedge (K_5 \vee K_6) \wedge (K_6 \vee K_2)$$

Вычислим (упростим) найденную функцию Патрика:

$$\begin{split} & (K_2 \vee K_3) \wedge (K_3 \vee K_7) \wedge (K_7 \vee K_4) \wedge (K_4 \vee K_5) \wedge (K_5 \vee K_6) \wedge (K_6 \vee K_2) = \\ & = (K_3 \vee K_3 K_7 \vee K_2 K_3 \vee K_2 K_7) \wedge (K_7 K_4 \vee K_7 K_5 \vee K_4 \vee K_4 K_5) \wedge (K_5 K_6 \vee K_2 K_5 \vee K_6 \vee K_6 K_2) = \\ & = (K_3 \vee K_2 K_7) \wedge (K_4 \vee K_5 K_7) \wedge (K_6 \vee K_2 K_5) = \\ & = (K_3 K_4 \vee K_3 K_5 K_7 \vee K_2 K_4 K_7 \vee K_2 K_5 K_7) \wedge (K_6 \vee K_2 K_5) = \\ & = K_3 K_4 K_6 \vee K_3 K_4 K_5 \vee K_2 K_3 K_4 \vee \overline{K_3 K_5 K_6 K_7} \vee K_3 K_5 K_7 \overline{\vee K_2 K_3 K_5 L_7} \vee \\ & \vee \overline{K_2 K_4 K_6 K_7} \vee \overline{K_2 K_4 K_5 K_7} \vee K_2 K_4 K_7 \vee \overline{K_4 K_5 K_6 K_7} \vee K_2 K_5 K_7 \vee \overline{K_2 K_5 K_7} = \\ & = K_3 K_4 K_6 \vee K_3 K_4 K_5 \vee K_2 K_3 K_4 \vee K_3 K_5 K_7 \vee K_2 K_4 K_7 \vee K_2 K_5 K_7 \end{aligned}$$

Получаем из вышенайденного

$$\underbrace{\bar{x}_{3}\bar{x}_{4}}_{\text{Ядро}} \lor \underbrace{\begin{cases} \bar{x}_{1}\bar{x}_{3} \lor x_{2}x_{3}x_{4} \lor x_{1}\bar{x}_{2}x_{4} \\ \bar{x}_{1}\bar{x}_{3} \lor x_{2}x_{3}x_{4} \lor x_{1}x_{3}x_{4} \\ \bar{x}_{1}\bar{x}_{3} \lor x_{2}x_{3}x_{4} \lor \bar{x}_{2}\bar{x}_{3} \\ \bar{x}_{1}\bar{x}_{3} \lor x_{1}x_{3}x_{4} \lor \bar{x}_{1}x_{2}x_{4} \\ \bar{x}_{2}\bar{x}_{3} \lor x_{2}x_{3}x_{4} \lor \bar{x}_{1}x_{2}x_{4} \\ \bar{x}_{2}\bar{x}_{3} \lor x_{1}x_{3}x_{4} \lor \bar{x}_{1}x_{2}x_{4} \\ \end{bmatrix}}_{\text{Тупиковые ДНФ}}$$

1.2.4 Минимальная ДНФ

В итоге можем получить минимальную ДНФ:

$$\boxed{\underline{\bar{x}_3\bar{x}_4}} \vee \underline{\bar{x}_2\bar{x}_3} \vee \underline{\bar{x}_1\bar{x}_3} \vee \underline{x_2x_3x_4} \atop K_3} \vee \underbrace{X_2x_3x_4}_{K_4}$$

Задача 2

2.1 Условие

Даны функции f (таблица 2) и w (таблица 3).

- а) Вычислить таблицу значений функции f. б) Найти минимальные ДНФ функций f и w.
- в) Выяснить полноту системы $\{f,w\}$. Если система не полна, дополнить систему функцией g до полной системы.

Указание. Запрещается дополнять систему константами, отрицанием и базовыми функциями двух переменных $(\oplus, \lor, \land, |, \downarrow$ и т.д.) Не допускается дополнение функцией, образующей с f или w полную подсистему, кроме случаев, когда иное невозможно.

г) Из функциональных элементов, реализующих функции полной системы $\{f, w\}$ или $\{f, w, g\}$, построить функциональные элементы, реализующие базовые функции $(\lor, \land, \overline{}, 0, 1)$.

Функция
$$f$$
: Вектор значений функции w :
$$\boxed{(x_3\Rightarrow (x_2\sim \bar{x}_3))\vee (x_1\oplus \bar{x}_2)\oplus x_1x_2}$$

2.2 Решение

2.2.1 Нахождение таблицы значений функции f

$$f = (x_3 \Rightarrow (x_2 \sim \bar{x}_3)) \lor (x_1 \oplus \bar{x}_2) \oplus x_1 x_2$$

x ₁	x_2	Х3	f
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

2.2.2 Нахождение минимальных ДНФ

Минимальная ДН Φ функции f

Так как все склейки находятся в ядре функции, то найденная ДНФ будет минимальной:

$$\bar{x}_2 \vee \bar{x}_1 \bar{x}_3$$

Минимальная ДН Φ функции w

Аналогично функции f функция w имеет все склейки в ядре, отчего минимальная ДНФ:

$$\bar{x}_1\bar{x}_2\vee\bar{x}_2x_3\vee\bar{x}_1x_3$$

2.2.3 Выяснение полноты системы

	T_0	T_1	S	M	L
f	-	-	-	-	-
w	-	-	+	-	-

Легко понять, что обе функции не сохраняют констант 1 и 0. $f \notin S$, то есть не является самодвойственной, потому что ее набор значений как минимум является несимметричным. У функции w вектор значений является симметричным (1101 - 0100). То есть Revers(0100) = 0010, а $\overline{0010} = 1101$, что равно левой части. Функция f немонотонна, например есть значение 010 = 1 и 011 = 0. Обе функции нелинейны, так как их полиномы Жегалкина нелинейны.

Полином Жегалкина функции f

$f(0,0,0) = a_0 = 1$	$\implies a_0 = 1$
$f(1,0,0) = a_0 \oplus a_1 = 1$	$\implies a_1 = 0$
$f(0,1,0) = a_0 \oplus a_2 = 1$	$\implies a_2 = 0$
$f(0,0,1) = a_0 \oplus a_3 = 1$	$\implies a_3 = 0$
$f(1,1,0)=a_0\oplus \mathscr{H}\oplus \mathscr{H}\oplus \mathscr{H}\oplus a_{12}=0$	$\implies a_{12} = 1$
$f(1,0,1)=a_0\oplus \mathscr{G}\oplus \mathscr{G}\oplus \mathscr{G}\otimes a_{13}=1$	$\implies a_{13} = 0$
$f(0,1,1) = a_0 \oplus a_2 \oplus a_3 \oplus a_{23} = 0$	$\implies a_{23} = 1$
$f(1,1,1)=a_0\oplus a_1\oplus a_2\oplus a_2\oplus a_1\oplus a_{12}\oplus a_{23}\oplus a_{23}\oplus a_{123}=0$	$\implies a_{123} = 1$

Полином Жегалкина: $x_1x_2 \oplus x_2x_3 \oplus x_1x_2x_3 \oplus 1$

Полином Жегалкина функции w

$$\begin{array}{llll} w(0,0,0) = a_0 = 1 & \Longrightarrow a_0 = 1 \\ w(1,0,0) = a_0 \oplus a_1 = 0 & \Longrightarrow a_1 = 1 \\ w(0,1,0) = a_0 \oplus a_2 = 0 & \Longrightarrow a_2 = 1 \\ w(0,0,1) = a_0 \oplus a_3 = 1 & \Longrightarrow a_3 = 0 \\ w(1,1,0) = a_0 \oplus a_1 \oplus a_2 \oplus a_{12} = 0 & \Longrightarrow a_{12} = 1 \\ w(0,1,1) = a_0 \oplus a_1 \oplus a_2 \oplus a_2 \oplus a_{23} = 1 & \Longrightarrow a_{23} = 1 \\ w(1,1,1) = a_0 \oplus a_1 \oplus a_2 \oplus a_2 \oplus a_2 \oplus a_{12} \oplus a_{13} \oplus a_{23} \oplus a_{123} = 0 & \Longrightarrow a_{123} = 0 \end{array}$$

Полином Жегалкина: $x_1 \oplus x_2 \oplus x_1x_2 \oplus x_1x_3 \oplus x_2x_3 \oplus 1$

2.2.4 Построение функциональных элементов, образующих базовые функции Конъюнкция

$$f(x_1,x_2,0)=x_1x_2\oplus 1$$
 - штрих Шеффера (отрицание конъюнкции)
Отсюда конъюнкция - это $x_1x_2=\overline{f(x_1,x_2,0)}$

Дизъюнкция

$$x_1 \vee x_2 = \overline{x_1 x_2} = f(\bar{x}_1, \bar{x}_2, 0)$$

Константа 0 и 1. Отрицание

$$1 = f(1,0,x)$$
 $0 = w(1,1,x)$ $\overline{x} = w(x,x,x)$

Задача 3

3.1 Условие

Доказать в исчислении высказываний (буквы обозначают произвольные формулы):

$$\neg((X \& Y) \& \neg Z) \vdash (\neg(\neg X \to \neg Y) \lor (Y \to Z))$$

3.2 Решение

Нам известно, что

$$A \& B = \neg (A \to \neg B)$$
 $A \lor B = \neg A \to B$

Перепишем формулу:

$$\neg\neg(\neg(X\to\neg Y)\to\neg\neg Z)\vdash\neg\neg(\neg X\to\neg Y)\to(Y\to Z)$$

Доказательство:

- 1) $\neg\neg(\neg(X \to \neg Y) \to \neg\neg Z)$ Гипотеза
- 2) ¬¬(¬(X → ¬Y) → ¬¬Z) → (¬(¬X → ¬Y) → ¬¬Z) секвенция 3 при $A := \neg(X \to \neg Y) \to \neg\neg Z$
- 3) ¬(¬ $X \to ¬Y$) $\to ¬¬Z$ modus ponens, (1) и (2)
- 4) $\neg\neg(\neg X \to \neg Y)$ Гипотеза
- 5) $\neg\neg(\neg X \to \neg Y) \to (\neg X \to \neg Y)$ секвенция 3 при $A := (\neg X \to \neg Y)$
- 6) $\neg X \rightarrow \neg Y$ modus ponens, (4) и (5)
- 7) Y Гипотеза
- 8) $(\neg X \to \neg Y) \to (Y \to X)$ секвенция 6 при A := Y, B := X
- 9) $Y \to X$ modus pomems, (6) и (8)
- 10) X modus ponens, (7) и (9)
- 11) $X \to (\neg \neg Y \to \neg (X \to \neg Y))$ секвенция 9 при $A := X, B := \neg Y$
- 12) $\neg \neg Y \rightarrow \neg (X \rightarrow \neg Y)$ modus ponens, (10) и (11)
- 13) $Y \to \neg \neg Y$ секвенция 4 при A := Y
- 14) $Y \to \neg(X \to \neg Y)$ секвенция 1, (12) и (13) при $A := Y, B := \neg \neg Y, C := \neg(X \to \neg Y)$
- 15) ¬ $(X \rightarrow ¬Y)$ modus ponens, (7) и (14)
- 16) $\neg \neg Z$ modus ponens, (3) и (15)
- 17) ¬¬ $Z \rightarrow Z$ секвенция 3 при A := Z
- 18) Z modus ponens, (16) и (17)