# Marcin Stępniak

# Architektura systemów komputerowych Laboratorium 12 Symulator SMS32 Przerwania sprzętowe

# 1. Informacje

Przerwania sprzętowe to krótkie fragmenty kodu, dostarczające użyteczne funkcje, które mogą być wywołane przez elementy sprzętu. Mogą to być urządzenia wewnętrzne komputera (np. dysk twardy), jak i urządzenia peryferyjne. Na przykład naciśniecie klawisza na klawiaturze lub poruszanie mysza wywołuje przerwanie sprzętowe, pozwalające procesorowi odczytać wciśnięte klawisze lub położenie myszy. W odróżnieniu od przerwań programowych, przerwania sprzętowe są asynchroniczne i mogą wystąpić w środku wykonania instrukcji, co wymaga dodatkowej uwagi przy programowaniu (np. zapisywanie rejestrów bazowych i flag na stosie). Akt inicjowania przerwania sprzętowego jest określany jako żądanie przerwania (ang. interrupt request - IRQ). Po odebraniu żądania przerwania procesor przerywa normalne przetwarzanie programu i wykonuje procedurę obsługi przerwania, a po jej zakończeniu wznawia normalne przetwarzanie. Takie podejście sprawia, że przetwarzanie zdarzeń jest bardziej wydajne. Bez przerwania, procesor musiałby odpytywać urzadzenia w regularnych odstępach czasu, aby sprawdzić, czy określone zdarzenie zaistniało. Przerwania mogą mieć przypisane priorytety. Na przykład dysk może mieć pierwszeństwo nad drukarką.

## 1.1. Tablica wektorów przerwań

Wektory przerwań symulatora znajdują się w pamięci pod adresami 00..0F. Ponieważ na początku pamięci musi znaleźć się instrukcja, która

Tabela 1. Przerwania generowane przez urządzenia

| Numer przerwania | Urządzenie            |
|------------------|-----------------------|
| 02               | Zegar                 |
| 03               | Klawiatura            |
| 04               | Klawiatura numeryczna |

przeskoczy tablicę wektorów, to pierwszą użyteczną komórką dla wektora jest [02].

### 1.2. Wywołanie przerwania

Urządzenia wywołują przerwania o odpowiednich numerach. Numer przerwania to w rzeczywistości adres wektora przerwania. Na przykład żądanie przerwania 02 spowoduje odczytanie przez procesor wartości komórki o adresie 02. Następnie wskaźnik instrukcji jest odkładany na stosie, a program kontynuuje pracę od instrukcji znajdującej się pod adresem wskazanym przez odczytaną wartość. W ten sposób wykonywany jest kod przerwania. Jego wykonanie kończy instrukcja IRET, która powoduje powrót z przerwania (wskaźnik instrukcji jest przywracany ze stosu).

Gdy flaga przerwania "I" (Interrupt) nie jest ustawiona, to przerwania są ignorowane. Do ustawienia flagi "I" służy instrukcja *STI*, a instrukcja *CLI* czyści tę flagę. Po ustawieniu flagi "I" należy dodać wektory wykorzystywanych przerwań. Zawsze będzie to przynajmniej przerwanie zegara o numerze 02. Oznacza to, że pod adresem 02 w pamięci należy umieścić adres procedury obsługi przerwania zegara. W najprostszej wersji taka procedura będzie zawierała tylko instrukcję *IRET*, czyli powrót z przerwania bez wykonywania żadnych akcji.

W zrozumieniu działania przerwań powinny pomóc programy przedstawione na listingach 1 i 2.

#### 1.3. Zegar

Symulator SMS32 posiada zegar wyzwalający przerwanie 02 w regularnych odstępach czasu, które można ustawić w zakładce *Configuration* (zob. rys. 1).

## 1.4. Klawiatura

W celu wyświetlenia okna reprezentującego klawiaturę (zob. rys. 2) należy wysłać dowolne dane na port 07 (instrukcja OUT 07). Po każdym naciśnię-



Rysunek 1. Konfiguracja zegara. Źródło: dokumentacja SMS32



Rysunek 2. Klawiatura generująca przerwania. Źródło: dokumentacja SMS32

ciu klawisza klawiatury, generowane jest sprzętowe przerwanie o numerze 03. Procedura ob sługi przerwania powinna odczytać kod naciśniętego klawisza za pomocą instrukcji *IN 07*. Kod zostanie skopiowany do rejestru AL. Naciśniecie klawisza może generować różne znaki. Zależy to od tego, w którym miejscu klawisza nastąpiło kliknięcie. Po najechaniu myszą nad różne obszary klawisza, generowany znak wyświetli się na dole klawiatury (z prawej strony spacji).

#### 1.5. Klawiatura numeryczna

Aby wyświetlić okno reprezentujące klawiaturę numeryczną (zob. rys. 3) należy wysłać dowolne dane na port 08 (instrukcja *OUT 08*). Po każdym naciśnięciu klawisza klawiatury numerycznej, generowane jest sprzętowe przerwanie o numerze 04. Procedura ob sługi przerwania powinna odczytać kod



Rysunek 3. Klawiatura numeryczna generująca przerwania. Źródło: dokumentacja SMS32

naciśniętego klawisza za pomocą instrukcji  $\mathit{IN}$  08. Kod zostanie skopiowany do rejestru AL.

Listing 1. Szablon programu do obsługi przerwań sprzętowych

```
; Szablon programu obslugi przerwan sprzetowych
  jmp start ; Skok za tablice wektorow przerwan
  db 10 ; Wektor przerwania zegara
  db 00 ; Wektor przerwania klawiatury (nieuzywany)
  db 20; Wektor przerwania klawiatury numerycznej
; ===== Procedura obslugi przerwania zegara ======
  org
           ; Tutaj nalezy robic cos uzytecznego
  nop
  nop
  nop
  nop
  nop
  iret
; ===== Procedura obslugi przerwania klawiatury numerycznej =====
  org
            ; Zapobieganie wielobieznosci (czyszczenie flagi I)
  CLI
  push al
  pushf
  in 08
            ; Tutaj nalezy przetworzyc nacisniety klawisz
  nop
  nop
  nop
  nop
  nop
  popf
   pop
           ; Ponowne ustawienie flagi I
   STI
   iret
```

Listing 2. Program demonstrujący działanie przerwań sprzętowych

```
; Przyklad wykorzystanie przerwan sprzetowych
; Program obraca silnikiem krokowym w sposob ciagly
; i zmienia swiatla drogowe po kazdym wystapieniu zdarzenia zegara
  JMP Start; Skok za tablice wektorow przerwan
  DB 50; Wektor pod adresem 02 wskazujacy na adres 50
Start:
  STI
         ; Ustawienie flagi I. Wlaczenie obsługi przerwan sprzetowych
Rep:
       AL,1
  OUT
       05; silnik krokowy
  MOV
       AL,2
       05
  OUT
  MOV
       AL,4
  OUT
  MOV
       AL,8
  OUT
       05
  JMP
            _____
 _____
  ORG
  PUSH al; Zapisanie AL na stos.
  PUSH bl; Zapisanie BL na stos.
  PUSHF
       ; Zapisanie flag na stos.
  JMP
       PastData
  DB 84 ; Red
               Green
  DB c8; Red+Amber Amber
  DB 30 ; Green Red
  DB 58; Amber
                 Red+Amber
  DB 57; Wskazuje na poczatek tablicy
PastData:
      BL,[5B]; BL wskazuje na tablice danych
```

```
MOV
        AL, [BL] ; Kopiowanie danych z pamieci pod adresem BL
  OUT
        01; Wyslanie danych do swiatel
         AL,58; Sprawdzenie czy to ostatni wpis w tablicy
   CMP
   JZ Reset ; Jezeli ostatni, to resetuje wskaznik
   INC
        BL; BL wskazuje do nastepnego elementu tablicy
   MOV
         [5B], BL ; Zapisanie wskaznika w pamieci
   JMP
         Stop
Reset:
        BL,57; Ustawienie wskaznika na poczatek tablicy
  MOV
         [5B], BL ; Zapisanie wskaznika do pamieci pod adresem 5B
  VOM
Stop:
  POPF
            ; Przywrocenie flag
  POP
        bl ; Przywrocenie BL
        al ; Przywrocenie AL
   IRET
           ;powrot z procedury obslugi przerwania
FND
```

#### 1.6. Dodatkowe informacje

```
    http://www.softwareforeducation.com/sms32v50/sms32v50_manual/210-11hwint.htm
    https://pl.wikipedia.org/wiki/Wielobieżność
```

#### 2. Zadania

#### 2.1. Zadanie 1

Napisać program, który steruje grzałką w taki sposób, aby uzyskać stałą temperaturę. Jednocześnie program odlicza w sposób ciągły ("przekręcenie licznika") od 9 do 0 na wyświetlaczu VDU. Zmiana cyfry na wyświetlaczu ma być zrealizowana jako procedura obsługi przerwania zegara.

#### 2.2. Zadanie 2

Napisać program wykorzystujący przerwania klawiatury do sterowania ruchem węża w labiryncie.

#### 2.3. Zadanie 3

Napisać program obsługujący przerwania sprzętowe klawiatury znakowej i numerycznej, i wstawiający odczytane znaki na kolejną wolną pozycję wyświetlacza VDU. Po naciśnięciu przycisku "Enter" dodawanie rozpoczyna się od nowej linii (początku kolejnej linii), a naciśnięcie przycisku "Backspace"

powoduje usunięcie ostatnio wprowadzonego znaku lub przejście na koniec linii wyżej. Należy zabezpieczyć program przed wyjściem poza komórki pamięci przeznaczone dla wyświetlacza. Opcjonalnie można dodać wyświetlanie kursora.