EJERCICIO 2 – PARTE 2

1- ANÁLISIS

2x + 4y = 10000 (m) m - Dato de entrada

3x + 2y = 9000 (n) n - Dato de entrada

DATOS DE ENTRADA

PROCESO

SALIDA

(m) Fertilizante 1

CÁLCULO

Cantidad de Ha TIPO A

(n) Fertilizante 2

Cantidad de Ha TIPO B

. Tomo la 1º ecuación y la simplifico:

$$2x + 4y = m$$

$$2/2x + m/2y = m/2$$

$$x + 2y = m/2$$

Entonces:

$$x + 2y = m/2$$

$$3x + 2y = n$$

. Resto la 2º ecuación de la 1º ecuación para cancelar y:

$$3x + 2y - (x + 2y) = n - m/2$$

$$3x + 2y - x - 2y = n - m/2$$

$$2x = n - m/2$$

x = (n/2 - m/4)

. Sustituyo x en la 1º ecuación:

$$x + 2y = m$$

$$(n/2 - m/4) + 2y = m$$

$$2y = m - n/2 + m/4$$

2y = 3/4m - n/2

y = 3/8m - n/4

Entonces:

DATOS DE ENTRADA

- . m y n van a ser los valores ingresados por el usuario. Cantidad de Fertilizante disponible.
- m Cantidad de Fertilizante 1 disponible.
- n Cantidad de Fertilizante 2 disponible.

PROCESO

x = (n/2 - m/4)

y = 3/8m - n/4

SALIDA

- x e y: Cantidad de hectáreas de cada tipo.
- x Cantidad de hectáreas de cada Tipo A.
- y Cantidad de hectáreas de cada Tipo B.

2- ESTRATEGIA

3- AMBIENTE

VARIABLE	TIPO	SIGNIFICADO		
m	Real	Cantidad Fertilizante 1		
n	Real	Cantidad Fertilizante 2		
х	Real	Cantidad de Ha de Tipo A		
i	Real	Cantidad de Ha de Tipo B		

4- DIAGRAMA DE FLUJO

5- ALGORITMO DEL PROBLEMA

```
Algoritmo CantidadHectareas
         Definir m. n. x. i Como Real:
 Δ
        Escribir "Ingrese la cantidad de Fertilizante 1 disponible (kg):";
 6
        Escribir "Ingrese la cantidad de Fertilizante 2 disponible (kg):";
 8
         Si m \leq 0 o n \leq 0 Entonces // Verificar que los datos ingresados no sea \leq 0
10
11
         Escribir "ERROR: La cantidad de Fertilizante 1 y/o 2 ingresada no puede ser negativa ni 0.";
         SiNo
12
13
14
            x = (n/2) - (m/4); // Obtengo valor Ha de TIPO A
15
           i = (-n/4) + (3*m/8); // Obtengo valor Ha de TIPO B
16
            Si x < 0 Entonces // Para aprovechar al máximo los fertilizantes; En caso de que x me de menor a \theta,
17
18
                             // lo convierto a 0 y obtengo las Ha. de Tipo B. (Solo podría sembrar las Ha. de tipo B)
             x ← 0;
            FinSi
19
20
            Si i < 0 Entonces // Para aprovechar al máximo los fertilizantes; En caso de que x me de menor a \theta,
21
22
                               // lo convierto a 0 y obtengo las Ha. de Tipo A. (Solo podría sembrar las Ha. de tipo A)
23
            FinSi
24
25
            Si x = 0 Y i = 0 Entonces
26
                Escribir "No se puede sembrar ninguna hectárea con los fertilizantes disponibles.";
27
             SiNo
28
                Si x = 0 Entonces
29
                   Escribir "La cantidad de fertilizante no es suficiente para sembrar hectáreas de tipo A.";
                FinSi
3.0
31
32
                Si i = 0 Entonces
33
                 Escribir "La cantidad de fertilizante no es suficiente para sembrar hectáreas de tipo B.";
                FinSi
34
3.5
36
            Escribir "La cantidad de Hectáreas con variedad de TIPO A que puede sembrar el productor son: ", x," Ha.";
37
            Escribir "La cantidad de Hectáreas con variedad de TIPO B que puede sembrar el productor son: ", i," Ha.";
38
39
         FinSi
41 FinAlgoritmo
```

6- PRUEBA DE ESCRITORIO

	m	n	Х	i
1	<sin definir=""></sin>	<sin definir=""></sin>	<sin definir=""></sin>	<sin definir=""></sin>
3	<sin definir=""></sin>	<sin definir=""></sin>	<sin definir=""></sin>	<sin definir=""></sin>
5	<sin inicializar=""></sin>	<sin inicializar=""></sin>	<sin inicializar=""></sin>	<sin inicializar=""></sin>
6	<sin inicializar=""></sin>	<sin inicializar=""></sin>	<sin inicializar=""></sin>	<sin inicializar=""></sin>
7	10000	<sin inicializar=""></sin>	<sin inicializar=""></sin>	<sin inicializar=""></sin>
8	10000	<sin inicializar=""></sin>	<sin inicializar=""></sin>	<sin inicializar=""></sin>
10	10000	9000	<sin inicializar=""></sin>	<sin inicializar=""></sin>
12	10000	9000	<sin inicializar=""></sin>	<sin inicializar=""></sin>
14	10000	9000	<sin inicializar=""></sin>	<sin inicializar=""></sin>
15	10000	9000	2000	<sin inicializar=""></sin>
17	10000	9000	2000	1500
19	10000	9000	2000	1500
21	10000	9000	2000	1500
23	10000	9000	2000	1500
25	10000	9000	2000	1500
27	10000	9000	2000	1500
28	10000	9000	2000	1500
30	10000	9000	2000	1500
32	10000	9000	2000	1500
34	10000	9000	2000	1500
36	10000	9000	2000	1500
37	10000	9000	2000	1500
38	10000	9000	2000	1500
39	10000	9000	2000	1500
41	10000	9000	2000	1500