AP Calculus Homework Four – Differentiation

- 2.3 Implicit Differentiation; 2.4 Estimating a Derivative; 2.5 Derivative of the Inverse of a Function
- 1. Find $\frac{dy}{dx}$
- (a) $x + \cos(x + y) = 0$
- (b) $\sin x \cos y 2 = 0$
- (c) $3x^2 2xy + 5y^2 = 1$
- (d) $\sin(xy) = x$
- (e) $\begin{cases} x = t \sin t \\ y = 1 \cos t \end{cases}$
- (f) $\begin{cases} x = 1 e^{-t} \\ y = t + e^{-t} \end{cases}$
- (g) $\begin{cases} x = \frac{1}{1-t} \\ y = 1 \ln(1-t) \end{cases}$
- 2. Find $\frac{d^2y}{dx^2}$
- (a) $x^2 + y^2 = 25$
- (b) $\begin{cases} x = t^2 1 \\ y = t^4 2t^3 \end{cases}$
- (c) $\begin{cases} x = \cos t \\ y = \cos 2t \end{cases}$

3. In the following eight sub questions, differentiable functions f and g have the values shown in the table.

X	f	f'	g	g'
0	2	1	5	-4
1	3	2	3	-3
2	5	3	1	-2
3	10	4	0	-1

(a) If
$$A = f + 2g$$
, find $A'(3)$

(b) If
$$B = f \times g$$
, find $B'(2)$

(c) If
$$D = \frac{1}{g}$$
, find $D'(1)$

(d) If
$$H(x) = \sqrt{f(x)}$$
, find $H'(3)$

(e) If
$$K(x) = \left(\frac{f}{g}\right)(x)$$
, find $K'(0)$ (f) If $M(x) = f(g(x))$, find $M'(1)$

(f) If
$$M(x) = f(g(x))$$
, find $M'(1)$

(g) If
$$P(x) = f(x^3)$$
, find $P'(1)$

(g) If
$$P(x) = f(x^3)$$
, find $P'(1)$ (h) If $S(x) = f^{-1}(x)$, find $S'(3)$

4. From the values of f shown in the table below, estimate f'(2).

X	1.92	1.94	1.96	1.98	2.00
f(x)	6.00	5.00	4.40	4.10	4.00

5. Using the values shown in the table in Q7, estimate $(f^{-1})'(4)$.

6. The "left half" of the parabola defined by $y = x^2 - 8x + 10$ for $x \le 4$ is a one-to-one function; therefore its inverse is also a function. Call that inverse g. Find g'(3).

7. At how many points on the interval [a, e] does the function graphed satisfy the Mean Value Theorem?

