

CMOS Dual Binary to 1 of 4 Decoder/Demultiplexers

December 1992

Features

- · High Voltage Type (20V Rating)
- CD4555BMS: Outputs High on Select
- CD4556BMS: Outputs Low on Select
- Expandable with Multiple Packages
- 100% Tested for Quiescent Current at 20V
- Standardized, Symmetrical Output Characteristics
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Noise Margin (Over Full Package/Temperature Range)
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- . 5V, 10V and 15V Parametric Ratings
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

- Decoding
- Code Conversion
- . Demultiplexing (Using Enable Input as a Data Input
- Memory Chip-Enable Selection
- Function Selection

Description

CD4555BMS and CD4556BMS are dual one-of-four decoders/demultiplexers. Each decoder has two select inputs (A and B), an Enable input (\overline{E}) , and four mutually exclusive outputs. On the CD4555BMS the outputs are high on select; on the CD4556BMS the outputs are low on select.

When the Enable input is high, the outputs of the CD4555BMS remain low and the outputs of the CD4556BMS remain high regardless of the state of the select inputs A and B. The CD4555BMS and CD4556BMS are similar to types MC14555 and MC14556, respectively.

The CD4555BMS and CD4556BMS are supplied in these 16-lead outline packages:

Braze Seal DIP *H46 †H4T

Frit Seal DIP H1E Ceramic Flatpack H6W

Functional Diagrams

CD4555BMS

Absolute Maximum Ratings

10s Maximum

DC Supply Voltage Range, (VDD) -0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs -0.5V to VDD +0.5V DC Input Current, Any One Input±10mA Operating Temperature Range -55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG) -65°C to +150°C Lead Temperature (During Soldering) +265°C At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for

Reliability Information

Thermal Resistance Ceramic DIP and FRIT Package Flatpack Package	θ _{ja} 80°C/W 70°C/W	θ _{jc} 20°C/W 20°C/W
Maximum Package Power Dissipation (PD	o) at +125°C	
For $T_A = -55^{\circ}C$ to $+100^{\circ}C$ (Package Typ		
For $T_A = +100^{\circ}$ C to $+125^{\circ}$ C (Package T		
Lineari	ity at 12mW/	°C to 200mW
Device Dissipation per Output Transistor .		100mW
For T _A = Full Package Temperature Rar Junction Temperature	•	0 11 /

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	10	μΑ
				2	+125°C	-	1000	μА
		VDD = 18V, VIN = VD	VDD = 18V, VIN = VDD or GND		-55°C	-	10	μА
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	'	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	(Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	.4V	1	+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0	0.5V	1	+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	1.5V	1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.	.6V	1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.	.5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10)μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ/	A	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VE	DD or GND	7	+25°C	VOH>	VOL <	V
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	VDD = 15V, VOH > 13.5V, VOL < 1.5V		+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit implemented.

2. Go/No Go test with limits applied to inputs.

is 0.050V max.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	440	ns
A or B Input to any Output	TPLH1		10, 11	+125°C, -55°C	-	594	ns
Propagation Delay	TPHL2 TPLH2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	400	ns
E to any Output			10, 11	+125°C, -55°C	-	540	ns
Transition Time			9	+25°C	-	200	ns
	TTLH		10, 11	+125°C, -55°C	-	270	ns

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μΑ
				+125°C	-	150	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	300	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	600	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15 VDD = 15V, VOUT = 1.5V		1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-1.6	mA
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
				-55°C	-	-4.2	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	7	-	V

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 10V	1, 2, 3	+25°C	-	190	ns
A or B Input to any Output	TPLH1	VDD = 15V	1, 2, 3	+25°C	-	140	ns
Propagation Delay	TPHL2	VDD = 10V	1, 2, 3	+25°C	-	170	ns
E to any Output	TPLH2	VDD = 15V	1, 2, 3	+25°C	-	130	ns
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25°C	-	100	ns
	TTLH	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

						LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS	
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ	
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V	
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V	
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V	
P Threshold Voltage Delta	ΔVTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V	
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V	
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2		
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns	

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	± 1.0μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP	MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pre Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)	100% 5004	1, 7, 9, Deltas	
Interim Test 3 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)	100% 5004	1, 7, 9, Deltas	

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A	Group A		1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
Subgroup B-6		Sample 5005	1, 7, 9	
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND RECORD		
CONFORMANCE GROUPS	METHOD	PRE-IRRAD	POST-IRRAD	PRE-IRRAD	POST-IRRAD	
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4	

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCIL	LATOR			
FUNCTION	OPEN	GROUND	VDD	9V ± -0.5V	50kHz	25kHz			
PART NUMBER	PART NUMBER CD4555BMS & CD4556BMS								
Static Burn-In 1 Note 1	4 - 7, 9 - 12	1 - 3, 8, 13 - 15	16						
Static Burn-In 2 Note 1	4 - 7, 9 - 12	8	1 - 3, 13 - 16						
Dynamic Burn- In Note 1	-	1, 8, 15	16	4 - 7, 9 - 12	2, 14	3, 13			
Irradiation Note 2									

NOTE:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

Logic Diagrams

FIGURE 1. CD455RBMS LOGIC DIAGRAM (1 OF 2 IDENTICAL CIRCUITS)

FIGURE 2. CD4556BMS LOGIC DIAGRAM (1 OF 2 IDENTICAL CIRCUITS)

TRUTH TABLE

INPUTS	S ENABLE S	ELECT	OUTPUTS CD4555BMS				OUTPUTS CD4556BMS			
E	В	А	Q3	Q2	Q1	Q0	Q3	Q2	Q1	Q0
0	0	0	0	0	0	1	1	1	1	0
0	0	1	0	0	1	0	1	1	0	1
0	1	0	0	1	0	0	1	0	1	1
0	1	1	1	0	0	0	0	1	1	1
1	Х	Х	0	0	0	0	1	1	1	1

X = Don't Care

Logic $1 \equiv High$ Logic $0 \equiv Low$

Typical Performance Characteristics

FIGURE 3. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 5. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 4. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 6. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

Typical Performance Characteristics (Continued)

FIGURE 7. TYPICAL PROPAGATION DELAY TIME vs LOAD CAPACITANCE (A OR B INPUT TO ANY OUTPUT)

FIGURE 8. TYPICAL PROPAGATION DELAY TIME vs LOAD CAPACITANCE (E INPUTS TO ANY OUTPUT)

FIGURE 9. TYPICAL PROPAGATION DELAY TIME vs SUPPLY VOLTAGE

FIGURE 11. TYPICAL DYNAMIC POWER DISSIPATION vs FREQUENCY

fI = 1MHz, 50% DUTY CYCLE

FIGURE 12. CD4555BMS B INPUT TO Q3 OUTPUT DYNAMIC SIGNAL WAVEFORMS

fl = 1MHz, 50% DUTY CYCLE

FIGURE 13. CD4556BMS B INPUT TO $\overline{\rm Q3}$ OUTPUT DYNAMIC SIGNAL WAVEFORMS

fl = 1MHz, 50% DUTY CYCLE

FIGURE 14. CD4555BMS $\overline{\text{E}}$ INPUT TO Q3 OUTPUT DYNAMIC SIGNAL WAVEFORMS

FIGURE 15. CD4556BMS $\overline{\text{E}}$ INPUT TO $\overline{\text{Q3}}$ OUTPUT DYNAMIC SIGNAL WAVEFORMS

Applications

FIGURE 16. 1 OF 4 LINE DATA DEMULTIPLEXER USING CD4555BMS

TRUTH TABLE

SELECT	INPUTS	OUTPUTS						
В	Α	Q0	Q1	Q2	Q3			
0	0	DATA	0	0	0			
0	1	0	DATA	0	0			
1	0	0	0	DATA	0			
1	1	0	0	0	DATA			

TRUTH TABLE

	I	NPUT	S		Q OUTPUTS															
Е	D	С	В	Α	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	1	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
1	Х	Х	Х	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

X = Don't Care

Chip Dimensions and Pad Layouts

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10-3 inch).

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

All Intersil semiconductor produ	ucts are manufactured, assembled and	I tested under ISO9000 quality systems certification.
otice. Accordingly, the reader is cautione	d to verify that data sheets are current before plac	te changes in circuit design and/or specifications at any time without cing orders. Information furnished by Intersil is believed to be accurate or for any infringements of patents or other rights of third parties which
	ted by implication or otherwise under any patent or	
For informa	ation regarding Intersil Corporation and its products,	see web site http://www.intersil.com
Sales Office Headquar	ters	
IORTH AMERICA	EUROPE	ASIA
ntersil Corporation	Intersil SA Mercure Center	Intersil (Taiwan) Ltd.
P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902	Mercure Center 100, Rue de la Fusee	Taiwan Limited 7F-6, No. 101 Fu Hsing North Road

1130 Brussels, Belgium

TEL: (32) 2.724.2111

FAX: (32) 2.724.22.05

TEL: (321) 724-7000

FAX: (321) 724-7240

Taipei, Taiwan

Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.