الإجابة النموذجية وسلم التنقيط

امتحان شهادة البكالوريا دورة: 2011

المادة : الرياضيات الشعبة: رياضيات

نة	العلاه	/ 1 fu - 1 10 5 1 10 11-	محاور
مجزأة المجموع		عناصر الإجابة (الموضوع الأول)	
04.5	MANUS OF SA	التمرين الأول : (04.5 نقطة)	
	0.5×3	$z_c = \sqrt{6}e^{\frac{i\pi}{4}} \cdot z_s = \sqrt{2}e^{\frac{i3\pi}{4}} \cdot z_s = \sqrt{2}e^{\frac{i\pi}{4}}$ (1)	
	0.25×3	$\arg(\frac{z_B - z_A}{z_C - z_A}) = \frac{\pi}{3} + 2k \pi; k \in \mathbb{Z} \text{if } \frac{z_B - z_A}{z_C - z_A} = 1 \frac{z_B - z_A}{z_C - z_A} = \frac{1}{2} + \frac{\sqrt{3}}{2}i \text{if } (2)$	داد مرکبة طبیقاتها هندسیة
	0.25×2	$(\overrightarrow{AC}; \overrightarrow{AB}) = \frac{\pi}{3}$ $AB = AC$: التفسير الهندسي	شابه
	0.25	ب) ABC مثلث متقايس الأضلاع	
	0.25	$z_D = -\sqrt{3} - \sqrt{3}i$ (3)	
	0.25×3	$\frac{3\pi}{4}$ وزاویته $\sqrt{2}$ وزاویته T -1 (4	
	0.5	$\frac{3\pi}{2}$ ب T σ تشابه مرکزه A ونسبته 2 وزاویته T	
		التمرين الثاني (04.5 نقطة)	
	0.75	ا)-أ \overline{AB} لا يوازي \overline{AC} ومنه النقط B ، B و \overline{AC} تعتين مستويا	
	0.25×2	(ABC) ب $=0$ $=0$ $=0$ $=0$ منه $=0$ شعاع ناظمي ل $=0$	
	0.5	3x + 4y - 2z + 1 = 0 معادلة ديكارنية للمستوي $3x + 4y - 2z + 1 = 0$	مستقيمات
	0.25×2	(P_2) و (P_1) شعاع ناظمي لــ (P_1) و (P_1) (P_2) شعاع ناظمي لــ (P_2)	المستويات
		و $0=1$ $\overline{n}\cdot\overline{n}$ ومنه (P_2) و (P_2) متعامدان.	ي الفضاء
		$\int_{Y=8t} x = \frac{4}{5}t + \frac{1}{5}$	طبيقات
04.5	0.25×3	(\Delta)	جداء سلمي في
	0.25×2	ا تحقق (Δ) و التحقق (Δ) التحقق (Δ) التحقق (Δ) التحقق (Δ)	فضاء
	0.25×2	$d(O;(P_2)) = \frac{1}{3} \cdot d(O;(P_1)) = \frac{\sqrt{29}}{29} - 2$	
	0.25×2	$\cdots d\left(O;(\Delta)\right) = \sqrt{\frac{38}{261}}$	

تابع الإجابة النموذجية المادة: رياضيات الشعبة: رياضيات

	العلامة	عناصر الإجابة (الموضوع الأول)	محاور			
المجموع	مجزأة		لموضوع			
4		التمرين الثالث: (04 نقاط)				
	0.25×3+0.5	$U_0 = 3$, $U_5 = 18$, $U_3 = 12$, $d = 6$ (1)	لمنتاليات			
	0.75	$U_n = 3 + 3n$ (2 ورثبته 670 ورثبته 670 $U_n = 3 + 3n$				
	0.5	$u_N = 2010 = u_{669}$ ومنه $u_{N+1} = 10080 = \frac{5}{2}(u_N + u_{N+4})$ (3)	سابية			
	0.5	S = 3(n+1)(2n+1) (1 (4				
	0.5×2	$S_2 = 3n(n+1)$ $S_1 = 3(n+1)^2$ (\hookrightarrow				
		التمرين الرابع: (07 نقاط)				
	0.25	$f'(x) = (3x + 7)e^{x}$ (1(1)				
	0.25	$f''(x) = (3x + 10)e^x$	اسة دالة			
		البرهان بالتراجع أنَّه من أجل كل عدد طبيعي n غير معدوم فإن:	ية برها <i>ن</i>			
	0.75	$f^{(n)}(x) = (3x + 3n + 4)e^x$	تراجع			
	0.25	$y = (3x + 10)e^x + c_1x + c_2$ (ب $y = (3x + 10)e^x + c_1x + c_2$	بادلة ماس			
	0.25	$\lim_{x \to -\infty} f(x) = 3 \lim_{x \to -\infty} xe^x + 4 \lim_{x \to -\infty} e^x = 0$ -1-(2)	ساب مساحات			
	0.25	\cdots عند (C_r) عند المستقيم المقارب لــ ((C_r)) عند (C_r)				
	0.25×3	$-\frac{7}{3}$ متز ایدة تماما علی $\frac{7}{3} + \infty$ و متناقصة تماما علی $f \cdot f \cdot f$				
07	0.5	جدول التغيرات				
3370	0.5	y = -(3x +16)e ⁻¹⁰ / ₃ : (Δ) معادلة (1-(3)				
	0.25×2	$\omega\left(-\frac{10}{3}; f(-\frac{10}{3})\right)$, $f'(x)$ ب $f''(x)$ ب اشارة $\phi\left(-\frac{10}{3}; f(-\frac{10}{3})\right)$				
	0.75	ج) رسم (c _r) و (Δ)				
	0.75	$\int_{0}^{x} te^{t} dt = (x-1)e^{x} + \frac{2}{a} (4)$				
	0.5					
	0.5					
	0.25	$\lim_{\lambda \to -\infty} A(\lambda) = 3e^{-\frac{4}{3}} \{ ua \}$				
		141				

تابع الإجابة النموذجية المادة: رياضيات الشعبة: رياضيات

		i	ath a size	10 21-01	ما ام		محاور
أة المجمو	مجزأ	عناصر الإجابة (الموضوع الثاني)					لموضوع
0	التمرين الأول: (04 نقاط) 0.75						
	energy.	n	3 <i>k</i>	3.4	t + 1	3k + 2	
		باقي القسمة	1		2	4	وافقات
04 0.).75			طى 13	ة للعدد °9 ء	بواقي القسمة الإقليدي	ام التعداد سمة
			n	3 <i>k</i>	3k+1	3k + 2	قليدية
		سمة	باقي الق	1	9	3	
0.).25	$0 \le \beta < 9$ و $0 < \alpha < 9$ مع $b = 6 + 8 \times 9 + \beta \times 9^3 + \alpha \times 9^6$ (4)					
0.).25	$lpha+eta\equiv-1$ [7] تكافئ $b\equiv0$ [7]					
0.).25	$\alpha + \beta \equiv 0$ [13] م تكافئ $b \equiv 0$ [13]					
0.).25	$(\alpha, \beta) \in \{(5,8), (8,5), (6,7), (7,6)\}$: $\alpha + \beta = 13$					
0 0 0. 05	0.5 0.5 0.5 0.5 0.5	λ∈R { z	$= 3 - 3\lambda$ $G(\frac{1}{3}; \frac{1}{3}; \frac$	طة (1; 2 3 المستوى (ا	$t \in \mathbb{R}$ ر z طعان في النق النق مثلث \overline{GA} مثلث \overline{n} $(6;3;2)$ طة المنظ طة 0 و المست	$=\frac{3}{2}t$ (D) و (Δ) منقا (D) $=\overline{GB}+\overline{GC}=0$ (2 $=\overline{GB}+\overline{GC}=0$ (2 $=\overline{GB}+\overline{GC}=0$ (2 $=\overline{GB}+\overline{GC}=0$ (2 $=\overline{GB}+\overline{GC}=0$ (3 $=\overline{GB}+\overline{GC}=0$ (3 $=\overline{GB}+\overline{GC}=0$ (3 $=\overline{GB}+\overline{GC}=0$ (3	مثیل ستقیم مادلة مستو کار ثقل اث مد نقطة عن ستقیم

الشعبة: رياضيات	المادة : رياضيات	تابع الإجابة النموذجية
	The state of the s	

العلامة		عناص الأحاية (المهضوع الثاني)	
المجموع	مجزأة		الموضوع
		التمرين الثالث: (04 نقاط)	لأعداد
	0.5	$a = \left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$ \(iii) \(i \)	لمركبة امتثاليات
	1	$a^{2011} = \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}$ ب) صحیح لأن: $a^{2011} = \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}$	
	0.5	2/ أ- خطأ لأن زاويته هي $\frac{3\pi}{4}$	
04	0.5	ب- خطأ لأنه مجموعة النقط M هي نصف مستقيم مفتوح مبدؤه: A	
	0.5		
	0.5	$u_{n+1}-u_n>0$ ، $u_{n+1}-u_n>0$ ، $u_{n+1}-u_n>0$ ، $u_{n+1}-u_n>0$ ب) خطأ لأن: من أجل كل عدد طبيعي	
	0.5	$\lim_{n\to\infty}u_n=rac{2}{3}$ ج) خطأ لأن: $\lim_{n\to\infty}u_n=rac{2}{3}$	
		التمرين الرابع: (07 نقاط)	
	0.25×2	$g, g'(x) = 2x + \frac{2}{x} > 0$ اً-(1) $g, g'(x) = 2x + \frac{2}{x} > 0$	
	0.25×3	$\lim_{x \to \infty} g(x) = +\infty$ ، $\lim_{x \to \infty} g(x) = -\infty$	
	0.25		الة
	0.5	إشارة (g(x) >0 و (x) >0 من أجل x >1 و g(x) و من أجل 1 > 0 >0	وغاريتمية وال أصلية
	0.25	-1-(2) قابلة للاشتقاق على $-1-(2)$ لأنها جداء دالتين قابلتن للاشتقاق $f'-1-(2)$	حساب
	0.5	$\cdots f'(x) = \frac{g(x)}{x^3}$	مساحت لوضع النسبي
	0.25	r متزایدة تماما علی]c;+∞[ومتناقصة تماما علی [0;1]	
07	0.25×3	$\lim_{x \to +\infty} f(x) = +\infty \lim_{x \to +\infty} f(x) = +\infty$	
- 1		(C_f) ومنه (C_f) فوق (S) من لجل $(x) - \ln x = \frac{-\ln x}{r^2}$ ب	
	0.25×2	تحت (δ) من اُجِل x >1 من اُجِل σ	
	0.25	$\lim_{x \to \infty} \frac{1}{x^2} \ln x = 0$	
	0.25	C_f نستتنج أن (δ) منحنى مقارب ا (C_f) في جوار (C_f) نستنج	
	0.75	رسم (C _f) و (C _f)	
	0.5	$ \int_{1}^{1} \frac{1}{t^2} \ln t dt = -\frac{1}{x} (1 + \ln x) + 1 - 1 - (3) $	
	0.25	x → x lnx −x هي دالة أصلية لـ x → lnx على]0+0 الما مـ x → x الم	
	0.25	$F(x) = \frac{(x^2+1)\ln x - x^2 + 1}{x}$ [1;+∞[المجال على المجال $F(x) = \frac{(x^2+1)\ln x - x^2 + 1}{x}$	
	0.25	$\dots A(\alpha) = \int_{1}^{\alpha} (\ln x - f(x)) dx = 1 - \frac{1 + \ln \alpha}{\alpha} (ua) - \frac{1}{\alpha}$	
	0.25	$\lim_{\alpha \to +\infty} A(\alpha) = 1 (u\alpha)$	