12. Лемма Гаусса и следствие о содержании произведения многочленов.

Определение

Пусть $f(t) = a_n t^n + \dots + a_0 \in \mathbb{Z}[t]$. Тогда его содержание $c(f) = (a_0, \dots, a_n)$ (НОД коэффициентов).

Мы любим примеры:

Пусть
$$f(t) = 22t^2 + 4t + 2$$
 тогда $c(f) = (22,4,2) = 2$

Лемма 8

(Лемма Гаусса.) Пусть $f,g\in\mathbb{Z}[x]$, c(f)=c(g)=1. Тогда c(fg)=1.

Примерчик:

$$f(t) = 2t^2 + 3t + 5$$
 и $c(f) = (2,3,5) = 1$
 $g(t) = 1t^2 + 5t + 2$ и $c(g) = (1,5,2) = 1$
 $fg(t) = 2t^4 + 13t^3 + 24t^2 + 31t + 10$ и $c(fg) = (2,13,24,31,10) = 1$

Доказательство. • Предположим противное и рассмотрим такое $p \in \mathbb{P}$, что $c(fg) \in p$. Однако, $c(f) \not \mid p$ и $c(g) \not \mid p$.

- ullet Пусть $f(t) = a_n t^n + \dots + a_0$ и $g(t) = b_m t^m + \dots + b_0$. Рассмотрим такой наименьший индекс k, что $a_k \not | p$ и такой наименьший индекс ℓ , что $b_\ell \not | p$.
- ullet Пусть $\mathit{fg} = d_{m+n} t^{n+m} + \cdots + d_0$. Тогда

$$\mathcal{J} d_{k+\ell} = \left(\sum_{i=0}^{k-1} a_i b_{k+\ell-i}\right) + a_k b_\ell + \left(\sum_{i=k+1}^{k+\ell} a_i b_{k+\ell-i}\right) / p,$$

так как первая сумма делится на р

 $(a_i \ \dot{p} \ \text{при} \ i \in \{0,\dots,k-1\})$ и вторая сумма делится на p (при $i \in \{k+1,\dots,k+\ell\}$ мы имеем $k+\ell-i \in \{0,\dots,\ell-1\}$, а значит, $b_{k+\ell-i} \ \dot{p}$), а $a_k b_\ell \ \dot{p}$.

ullet Значит, c(fg) / p, противоречие.

Чтобы понять о чем эта сумма посмотрим на нашем примере:

Пусть
$$k = 1$$
 и $l = 2$

$$d_3 = a_0 \cdot b_3 + a_1 \cdot b_2 + a_2 \cdot b_1 + a_3 \cdot b_0 =$$

= 5 \cdot 0 + 3 \cdot 1 + 2 \cdot 5 + 0 \cdot 2 = 0 + 3 + 10 + 0 = 13

Следствие 1

Для $f,g \in \mathbb{Z}[x]$ выполнено c(fg) = c(f)c(g).

$$f(t) = 22t^2 + 4t + 2$$
 и $c(f) = (22, 4, 2) = 2$
 $g(t) = 3t^2 + 5t - 6$ и $c(g) = (3, 5, -6) = 1$

$$fg(t) = 66t^4 + 122t^3 - 106t^2 - 14t - 12$$
 и $c(fg) = (66, 122, -106, -14, -12) = 2$ $c(f)c(g) = 2 \cdot 1 = 2$

Доказательство. \bullet Пусть $f(t) = c(f) \cdot f_1(t)$ и $g(t) = c(g) \cdot g_1(t)$.

- ullet Тогда $f_1,g_1\in \mathbb{Z}[t]$ и $c(f_1)=c(g_1)=1$ и по Лемме Гаусса $c(f_1g_1)=1.$
- Следовательно, Эта штучка равна 1 $c(fg) = c(c(f) \cdot f_1 \cdot c(g) \cdot g_1) = c(f)c(g) \cdot \frac{c(f_1g_1)}{c(f_1g_1)} = c(f)c(g)$ (мы воспользовались тем, что общий множитель c(f)c(g) при вычисления НОД коэффициентов можно вынести).

Например, $f_1(t) = 11t^2 + 2t + 1$

$$fg(t) = 66t^4 + 122t^3 - 106t^2 - 14t - 12$$
 и $c(fg) = c(2 \cdot (11t^2 + 2t + 1) \cdot 1 \cdot (3t^2 + 5t - 6)) = 2 \cdot 1 \cdot c(f_1g_1) = 2 \cdot 1 \cdot 1 = 2$

13. Лемма о связи разложений многочлена с целыми коэффициентами на множители в Q[x] и в Z[x]. Эквивалентность неприводимости в Z[x] и в Q[x].

Лемма 9

Пусть $f \in \mathbb{Z}[x]$, $q_1, \ldots, q_n \in \mathbb{Q}[x]$, $f = q_1 \ldots q_n$, $\deg(q_i) \geq 1$ для всех $i \in \{1, \ldots, n\}$. Тогда существуют такие $p_1, \ldots, p_n \in \mathbb{Z}[x]$ и $c_1, \ldots, c_n \in \mathbb{Q}$, что $f = p_1 \ldots p_n$ и $p_i = c_i q_i$ для всех $i \in \{1, \ldots, n\}$.

Эта теорема о том, что мы можем разложить каждый многочлен на произведение нескольких других как с целыми, так и рациональными коэффициентами.

$$f(t) = a_2 t^2 + a_1 t + a_0 = (q_{0,1} t + q_{0,0})(q_{1,1} t + q_{1,0})(q_{2,1} t + q_{2,0}) =$$

$$= (p_{0,1} t + p_{0,0})(p_{1,1} t + p_{1,0})(p_{2,1} t + p_{2,0})$$

Доказательство. • Для каждого $i \in \{1, \ldots, n\}$ представим все коэффициенты q_i в виде несократимых дробей, пусть m_i — НОК знаменателей этих коэффициентов. У каждой такой скобки будет свой m

ullet Тогда $g_i=m_iq_i\in\mathbb{Z}[x]$ и $mf=g_1\dots g_n$, где $m=m_1\dots m_n\in\mathbb{N}.$

$$\begin{split} f(t) &= m_0(q_{0,1}t + q_{0,0}) \cdot m_1(q_{1,1}t + q_{1,0}) \cdot m_2(q_{2,1}t + q_{2,0}) = \\ &= m \cdot (q_{0,1}t + q_{0,0})(q_{1,1}t + q_{1,0})(q_{2,1}t + q_{2,0}) \end{split}$$

Утверждение

Пусть $mf = g_1 \dots g_n$, где $m \in \mathbb{N}$, $f, g_1, \dots, g_n \in \mathbb{Z}[x]$. Тогда существует разложение $f = p_1 \dots p_n$, где $p_i = d_i g_i \in \mathbb{Z}[x]$, $d_i \in \mathbb{Q}$ для всех $i \in \{1, \dots, n\}$.

Доказательство. Индукция по m.

База m=1: построенное разложение $f=g_1\dots g_n$ подходит.

Переход. • Пусть для меньших m утверждение доказано, $p \in \mathbb{P}, \ m \in p$.

ullet Тогда $c(g_1)\dots c(g_n)=c(g_1\dots g_n)=c(m\cdot f)\ \dot{\cdot}\ p$, значит, существует такое $i\in\{1,\dots,n\}$, что $c(g_i)\ \dot{\cdot}\ p$.

- ullet НУО $c(g_1) \cdot p$. Тогда $g_1 = p \cdot g_1^*$, где $g_1^* \in \mathbb{Z}[x]$.
- ullet Пусть $m^*:=rac{m}{
 ho}$. Тогда $m^*\in\mathbb{Z}$ и $m^*f=g_1^*g_2\dots g_n$.
- ullet Так как $m^* < m$, по индукционному предположению существует разложение $f = p_1 \dots p_n$, где $p_1 = d_1^* g_1^*$ и $p_i = d_i g_i$ при $i \in \{2, \dots, n\}$.
- ullet Положим $d_1:=rac{d_1^*}{p}.$ Тогда $p_1=d_1g_1$, получено разложение для m.
- ullet Для завершения доказательства леммы остается положить $c_i := d_i m_i.$
 - ullet Если многочлен $f \in \mathbb{Z}[x]$ неприводим в $\mathbb{Q}[x]$, то он, очевидно, неприводим и в $\mathbb{Z}[x]$.

Следствие 2

Многочлен $f \in \mathbb{Z}[x]$ неприводим в $\mathbb{Q}[x]$, если и только если он неприводим в $\mathbb{Z}[x]$.

Доказательство. \Rightarrow . Если многочлен $f \in \mathbb{Z}[x]$ приводим в $\mathbb{Z}[x]$, то он, очевидно, приводим и в $\mathbb{Q}[x]$.

- \leftarrow . Предположим противное, пусть f приводим в $\mathbb{Q}[x]$.
- ullet Тогда $f=g_1g_2$, где $g_1,g_2\in \mathbb{Q}[x]$, $1\leq \deg(g_1)<\deg(f)$ и $1\leq \deg(g_2)<\deg(f)$.
- ullet По Лемме 9, существует разложение $f=h_1h_2$, где $h_1,h_2\in\mathbb{Z}[x],\; h_1=cg_1$ и $h_2=c'g_2,\; c,c'\in\mathbb{Q}.$
- ullet Тогда f приводим в $\mathbb{Z}[x]$, противоречие.

16. Свойства рациональных корней и значений в целых точках многочленов с целыми коэффициентами.

Лемма 10

Пусть
$$f(t) = a_n t^n + \cdots + a_0 \in \mathbb{Z}[t]$$
, $x, y \in \mathbb{Z}$, $x \neq y$. Тогда $f(x) - f(y) \mid x - y$.

Доказательство. • НУО x - y > 0. Так как $x \equiv_{x-y} y$, для всех $k \in \{0, ..., n\}$ выполняется $x^k \equiv_{x-y} y^k$.

$$ullet$$
 Тогда $f(x) = \sum_{k=0}^{n} a_k x^k \equiv_{x-y} \sum_{k=0}^{n} a_k y^k = f(y).$

Лемма 11

Пусть
$$f(t)=a_nt^n+\cdots+a_0\in\mathbb{Z}[t]$$
, $f(rac{p}{q})=0$, где $p,q\in\mathbb{Z}$, $(p,q)=1$. Тогда $a_n\stackrel{.}{\cdot} q$ и $a_0\stackrel{.}{\cdot} p$.

Доказательство.

$$0 = q^n f(\frac{p}{q}) = a_n p^n + a_{n-1} p^{n-1} q + \dots + a_1 p q^{n-1} + a_0 q^n.$$
 (1)

- ullet Все слагаемые в правой части (1), кроме $a_n p^n$, делятся на q, значит, и $a_n p^n \ \vdots \ q$. Так как (p,q)=1, получаем $a_n \ \vdots \ q$.
- ullet Все слагаемые в правой части (1), кроме $a_0 q^n$, делятся на p, значит, и $a_0 q^n \ \dot{p}$. Так как (p,q) = 1, получаем $a_0 \ \dot{p}$.

Следствие 4

Пусть
$$f(t)=t^n+\cdots+a_0\in\mathbb{Z}[t]$$
, $lpha\in\mathbb{Q}$, $f(lpha)=0$. Тогда $lpha\in\mathbb{Z}$.

Доказательство. ullet Пусть $lpha=rac{p}{q}$, где $p,q\in\mathbb{Z}$, (p,q)=1.

$$ullet$$
 По Лемме 11, 1 $\dot{}$ g , то есть $lpha \in \mathbb{Z}$.

Лемма 12

Пусть $f(t)=a_nt^n+\cdots+a_0\in\mathbb{Z}[t]$, $f(\frac{p}{q})=0$, где $p,q\in\mathbb{Z}$, (p,q)=1. Тогда f(k) \vdots kq-p для любого $k\in\mathbb{Z}$.

Доказательство. ●

$$q^n f(k) = q^n ig(f(k) - fig(rac{p}{q}ig) ig) = \;$$
 Раскрыли скобки и записали в виде суммы

$$\left(\sum_{i=0}^{n} q^{n} a_{i} k^{i}\right) - \left(\sum_{i=0}^{n} a_{i} p^{i} q^{n-i}\right) = \sum_{i=1}^{n} q^{n-i} a_{i} \left((kq)^{i} - p^{i}\right) \stackrel{!}{\cdot} kq - p,$$

так для всех $i \in \{1,\ldots,n\}$

$$(kq)^i - p^i : kq - p \iff (kq)^i \equiv_{kq-p} p^i \iff kq \equiv_{kq-p} p.$$

ullet Так как $(q^n, kq - p) = (q, p) = 1$, из $q^n f(k) \ \vdots \ kq - p$ следует, что $f(k) \ \vdots \ kq - p$.

17. Разностный многочлен.

Определение

Пусть $f \in K[x]$, где K — коммутативное кольцо с 1, причем $K \supset \mathbb{Z}$.

- ullet Разностный многочлен задается формулой $\Delta f(x) := f(x+1) f(x).$
- Примеры подходящих колец K: \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} .

Пусть
$$f(x) = 2x^2 + 3x + 5$$
 и тогда $f(x+1) = 2(x+1)^2 + 3(x+1) + 5$

$$\Delta f(x) = 2x^2 + 4x + 2 + 3x + 3 + 5 - (2x^2 + 3x + 5) = 4x + 5$$

Лемма 13

Пусть $f \in K[x]$, где K — коммутативное кольцо c 1, причем $K \supset \mathbb{Z}$. Тогда $\Delta f \in K[x]$, $\deg(\Delta f) = \deg(f) - 1$.

Доказательство. • Пусть $f(x) = a_n x^n + \cdots + a_0$, где $n = \deg(f)$. Давайте рассмотрим какие-то два слагаемых разницы из многочленов

- ullet По биному Ньютона, $a_kig((x+1)^k-x^kig)=\sum\limits_{i=1}^n a_k\mathrm{C}_k^ix^{k-i}.$
- ullet Поэтому $\Delta f \in K[x].$
- Одночлены с x^n в Δf сокращаются, а единственный одночлен с x^{n-1} это $a_n\mathrm{C}^1_nx^{n-1}$ с коэффициентом $a_n\mathrm{C}^1_n\neq 0$. Следовательно, $\deg(\Delta f)=n-1$.