

## Graph Convolutional Network - GCN

Uma Introdução

- ▶ Emap Redes Neurais e Deep Learning
- > Prof. Renato Rocha
- > Aluno: Gilberto Ramos
- ▶ Data: 29.10.2021

01

Introdução

02

Introdução a teoria de Grafos 03

Introdução as GNNs e GCNs 04

GCN-Estado da arte 05

Aplicação GCN em Python

AGENDA



dados euclidianos x não euclidianos a não regularidade das estruturas de dados

#### INTRODUÇÃO



Fig. 1. Left: image in Euclidean space. Right: graph in non-Euclidean space.

#### INTRODUÇÃO

▶ Como a lA aprende a estrutura?



▶ Além dos vértices e arestas, os grafos também podem conter um conjunto de atributos que descrevem cada vértice. Nesse caso, o grafos pode ser definido como: G = (V, E, X), onde X é uma matriz de propriedades por vértices.

#### Matemáticos que introduziram o tema: James Josheph Sylvester (1814 – 1897).





Leonhard Eyfer (1/07-1783)

#### INTRODUÇÃO A TEORIA DE GRAFOS

Um grafo G é composto por un conjunto não-vazio de vértices (nós) V(G), um conjunto de arestas E(G) e uma função de incidência  $\Psi_G$ , a qual relaciona arestas de E(G) com pares de vértices (não necessariamente distintos) de V(G) [14].

Exemplo de um Grafo:



#### Main questions:

How do we take advantage of relational structure for better prediction?



Complex domains (knowledge, text, images, etc.) have rich relational structure, which can be represented as a **relational graph**.



Networks or Graphs?

**Network** often refers to real systems

Web, Social network, Metabolic network
 Language: Network, node, link

**Graph** is a mathematical representation of a network

Web graph, Social graph, Knowledge Graph
 Language: Graph, vertex, edge



#### Nodes Degrees

Undirected



#### Directed



**Source:** Node with  $k^{in} = 0$ **Sink:** Node with  $k^{out} = 0$ 

Node degree,  $k_i$ : the number of edges adjacent to node i

$$k_A = 4$$

Avg. degree: 
$$\bar{k} = \langle k \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i = \frac{2E}{N}$$

In directed networks we define an in-degree and out-degree. The (total) degree of a node is the

sum of in- and out-degrees.

$$k_C^{in}=2$$

$$k_C^{in} = 2$$
  $k_C^{out} = 1$   $k_C = 3$ 

$$k_{C} = 3$$

$$\overline{k} = \frac{E}{N}$$

$$\overline{k^{in}} = \overline{k^{out}}$$

#### Directed vs Undirected Graphs

#### Undirected

Links: undirected (symmetrical, reciprocal)



- **Examples:** 
  - Collaborations
  - Friendship on Facebook

#### Directed

**Links:** directed (arcs)



- **Examples:** 
  - Phone calls
  - Following on Twitter

#### Bipartite Graph

Bipartite graph is a graph whose nodes can be divided into two disjoint sets U and V such that every link connects a node in U to one in V; that is, U and V are independent sets



- Authors-to-Papers (they authored)
- Actors-to-Movies (they appeared in)
- Users-to-Movies (they rated)
- Recipes-to-Ingredients (they contain)
- "Folded" networks:
  - Author collaboration networks
  - Movie co-rating networks



#### Complete Graph

The maximum number of edges in an undirected graph on N nodes is

$$E_{\text{max}} = \binom{N}{2} = \frac{N(N-1)}{2}$$



An undirected graph with the number of edges  $E = E_{max}$  is called a **complete graph**, and its average degree is N-1

#### Represent graph as a set of edges:

- **(2, 3)**
- **(2, 4)**
- **(3, 2)**
- **(3, 4)**
- **4** (4, 5)
- **(5, 2)**
- **(5, 1)**



#### Representing Graphs: Adjacency Matrix





 $A_{ij} = 1$  if there is a link from node i to node j  $A_{ii} = 0$  otherwise

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

#### More types of graphs

#### Unweighted



$$A_{ij} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$A_{ii} = 0 A_{ij} = A_j$$

$$E = \frac{1}{2} \sum_{i,j=1}^{N} A_{ij} \quad \overline{k} = \frac{2E}{N}$$

Examples: Friendship, Hyperlink

#### Weighted

(undirected)

$$A_{ij} = \begin{pmatrix} 0 & 2 & 0.5 & 0 \\ 2 & 0 & 1 & 4 \\ 0.5 & 1 & 0 & 0 \\ 0 & 4 & 0 & 0 \end{pmatrix}$$

$$A_{ii} = 0$$
  $A_{ij} = A_{j}$ 

$$E = \frac{1}{2} \sum_{i,j=1}^{N} nonzero(A_{ij}) \quad \overline{k} = \frac{2E}{N}$$

**Examples:** Collaboration, Internet, Roads





Apera, topical Models
Models
Musherinatical Ecology

Restution Physics

Sinchage of RNA



Economic networks

Communication networks



Information networks: Web & citations



Internet



Networks of neurons

## MODELAGEM USANDO GRAFOS





#### TAREFAS DE APRENDIZADO DE MÁQUINA EM GRAFOS

### REDES NEURAIS DE GRAFOS: GNN

#### CNN —→ GNN

Objetivo: substituir imagens por grafos

- Numa CNN cada pixel é representado por um vetor n-dimensional (3D-RGB no input)
- Numa GNN cada nó(vértice) do grafo de entrada é representado por um vetor n-dim



Propostas em [GMS05; Sca+09], com o objetivo de aprender, através de exemplos, uma função que mapeasse tanto um grafo G a um vetor de números reais, como um nó v.

- $\tau(G) = \mathbb{R}^m$
- $\tau(G, v) = \mathbb{R}^m$

Cada nó  $v \in V$  possui um vetor de características  $I_v$ .

 $x_v = f_{\mathbf{w}}(I_v, x_{ne[v]}, I_{ne[v]})$  é um vetor de características de v que depende de se seus vizinhos, ne[v].

 $o_v = g_w(I_v, x_v)$  é a saída de v.

 $f_{\mathbf{w}}$  e  $g_{\mathbf{w}}$  são funções parametrizadas por pesos  $\mathbf{w}$ . Na prática, f e g são redes neurais, MLPs ou RNNs parametrizadas por conjuntos de pesos diferentes ( $\mathbf{w}_f$  e  $\mathbf{w}_g$ ).

## GNN: EMBEDDING NODES



# REDES NEURAIS EM GRAFOS REDES NEURAIS FUNÇÃO AGREGADORA FUNÇÃO DE ATIVAÇÃO ATIVALIZADO FUNÇÃO DE ATIVAÇÃO FUNÇÃO DE ATIVAÇÃO FUNÇÃO DE ATIVAÇÃO FUNÇÃO DE ATIVAÇÃO FUNÇÃO DE ATIVAÇÃO

Figura 2. Processamento de uma GNN. Fonte: [Zeng and Tang 2021].

#### REDES NEURAIS DE GRAFOS: GNN

- Graph Neural Networks (GNNs), modelo proposto por [Scarselli et al. 2009]
- Objetivo do modelo
- O processo de aprendizagem
- O funcionamento de uma GNN. [Zeng and Tang 2021]

Encontrar  $\boldsymbol{w}$  de forma a aproximar  $\boldsymbol{o}_{v}$  de uma saída esperada.

A base de exemplos é composta por p triplas (G, v, t), onde G é um grafo, v é um vértice de G e t é a saída esperada para uma função  $\phi_{\mathbf{w}}(G_i, v_i) = \mathbf{o}_v$ .

O valor de w é encontrado minimizando uma função de erro, como o erro quadrático:

$$e_{\mathbf{w}} = \sum_{i=1}^{p} (t_i - \phi_{\mathbf{w}}(G_i, v_i))^2$$

#### OBJETIVO DA GNN

#### GNN

#### ALGORITMO DE APRENDIZADO

#### Passo 1: Estabilização de $x_v$

- $x_v$  depende de  $x_{ne[v]}$ .
- Necessário atualizar iterativamente  $x_v(t) = f_{\mathbf{w}}(I_v, \mathbf{x}_{ne[v]}(t-1), I_{ne[v]})$  até alcançar um ponto fixo estável em t = T.

#### Passo 2: cálculo dos pesos

• Calcular o gradiente  $\frac{\partial e_{w}(T)}{\partial w}$  e atualizar w usando descida de gradiente.

#### INTERPRETAÇÃO

- nós representam objetos ou conceitos, descritos por um vetor de características.
- arestas representam relações (estradas, ligações moleculares).
- a GNN otimiza seu desempenho em uma tarefa (e.g. classificação, regressão)
   modelando as interações entre os objetos em seus pesos w.

#### PROPRIEDADES

#### Compartilhamento de parâmetros

Ambas as funções  $f_{\mathbf{w}}$  e  $g_{\mathbf{w}}$  são aplicadas a todos os nós dos grafos, o que significa que  $\mathbf{w}$  é utilizada em mais de um local na entrada dos dados.

#### Grafos de tamanho arbitrário

A ordem na qual ne[v] é utilizado em  $f_{\mathbf{w}}$  importa? Se não,  $f_{\mathbf{w}}$  pode ser uma função de agregação (e.g. máximo, média), ignorando a ordem e quantidade de vértices.

Permite processar grafos de tamanhos arbitrários!



▶Uma rede convolucional de grafos (GCN), implementa a convolução em um **grafo**, ao invés de em uma imagem composta de pixels.



GCN-GRAPH CONVOLUTION NETWORK



#### Graph Convolution Layer

- Idêntica à convolução tradicional, exceto por:
  - Vizinhança não é necessariamente em grid
  - Não temos mais um peso específico para cada vizinho
  - Ao invés disso: aplicamos uma transformação a cada feature

```
X_i' \leftarrow \sum_{j \in \mathcal{N}(i) \cup \{i\}} \Theta \times X_i
```

```
import torch
# Nº of nodes
# Adjacency matrix (NxN)
A = torch.tensor([
    [0,1,0,1,0,0,0,0],
    [0,0,1,0,0,0,0,0],
    [0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,1],
    [0,0,0,1,0,0,0,0],
    [0,0,0,1,0,0,0,0],
    [0,0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,0],
1).float()
# Add self-edges
A += torch.eye(N)
# Dimensionality of feature vectors
# Initial feature vectors
x = torch.randn(N, d)
# Parameters
θ = torch.nn.Linear(d, d, bias=False)
# GC layer
x = torch.mm(A, \theta(x))
```



#### Graph Convolution Layer

Podemos empilhar múltiplas camadas de GC



```
import torch
# Nº of nodes
N = 8
# Adjacency matrix (NxN)
A = torch.tensor([
    [0,1,0,1,0,0,0,0],
    [0,0,1,0,0,0,0,0],
    [0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,1].
    [0,0,0,1,0,0,0,0],
    [0,0,0,1,0,0,0,0],
    [0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,0],
]).float()
# Add self-edges
A += torch.eye(N)
# Dimensionality of feature vectors
d = 16
# Initial feature vectors
x = torch.randn(N, d)
# Parameters
01 = torch.nn.Linear(d, d, bias=False)
02 = torch.nn.Linear(d, d, bias=False)
# GC layers
x = torch.relu(torch.mm(A, \theta1(x)))
x = torch.relu(torch.mm(A, \theta 2(x)))
```

# GCN

#### Graph Convolution Layer



```
# Util to project and plot feature vectors

def plot_feature vectors(x):
    pca = PCA(n_components=2)
    x_proj = pca.fit_transform(x.detach().numpy())
    plt.figure(figsize=(4, 4))
    plt.scatter(x_proj[:,0], x_proj[:,1], c=labels, s=100)
    plt.show()

# Dimensionality of feature vectors

d = 100
    # Initial feature vectors

x = torch.randn(len(6), d)

# Parameters

0 = [torch.nn.Linear(d, d, bias=False) for i in range(3)]

# Plot before GCs

plot_feature_vectors(x)
```

# GCN

#### Graph Convolution Layer



#### GCN: Message Passing

#### obtendo a mensagem dos nós vizinhos

$$m_v^{t+1} = \sum_{w \in N(v)} M_t(h_v^t, h_w^t, e_{vw})$$

Atualização do estado do nó usando o estado oculto anterior e uma nova mensagem

$$h_v^{t+1} = U_t(h_v^t, m_v^{t+1})$$

#### Message Passing for Node V1 for t = 1

$$m_v^{t+1} = \sum_{w \in N(v)} h_w^t$$

$$h_v^{t+1} = average(h_v, m_v^{t+1})$$

ht - hidden state for each node





## ESTADO DA ARTE – APLICAÇÕES DE GCN



Fig. 1 Architecture of GCN

#### ESTADO DA ARTE – ARCHITECTURE OF GCN



- Classificação de nós de um grafo
- Poucos labels são conhecidos
- Como embeddings acumulam informação local, é possível treinar com menos labels

## ESTADO DA ARTE: SEMI-SUPERVISED LEARNING WITH GCN

| Dataset  | Type             | Nodes  | Edges   | Classes | Features | Label rate |
|----------|------------------|--------|---------|---------|----------|------------|
| Citeseer | Citation network | 3,327  | 4,732   | 6       | 3,703    | 0.036      |
| Cora     | Citation network | 2,708  | 5,429   | 7       | 1,433    | 0.052      |
| Pubmed   | Citation network | 19,717 | 44,338  | 3       | 500      | 0.003      |
| NELL     | Knowledge graph  | 65,755 | 266,144 | 210     | 5,414    | 0.001      |

Semi-Supervised Classification with Graph Convolutional Networks

Thomas N. Kipf, Max Welling

https://arxiv.org/abs/1609.02907

Table 2: Summary of results in terms of classification accuracy (in percent).

| Method             | Citeseer       | Cora           | Pubmed         | NELL           |
|--------------------|----------------|----------------|----------------|----------------|
| ManiReg [3]        | 60.1           | 59.5           | 70.7           | 21.8           |
| SemiEmb [28]       | 59.6           | 59.0           | 71.1           | 26.7           |
| LP [32]            | 45.3           | 68.0           | 63.0           | 26.5           |
| DeepWalk [22]      | 43.2           | 67.2           | 65.3           | 58.1           |
| ICA III            | 69.1           | 75.1           | 73.9           | 23.1           |
| Planetoid* [29]    | 64.7 (26s)     | 75.7 (13s)     | 77.2 (25s)     | 61.9 (185s)    |
| GCN (this paper)   | 70.3 (7s)      | 81.5 (4s)      | 79.0 (38s)     | 66.0 (48s)     |
| GCN (rand. splits) | $67.9 \pm 0.5$ | $80.1 \pm 0.5$ | $78.9 \pm 0.7$ | $58.4 \pm 1.7$ |

#### Estado da arte → Related Work

Tabela 1 – Summary of Results of work based on GCN

| S. No. | Research Paper              | Application                       | Methodology                                                                                                                                                                                | Fig.Number    | Results               |
|--------|-----------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------|
| 1      | Benamira et al. [3]         | Fake News detection               | Embbending of articles + Graph Construction + Classification(GCN+AGNN)                                                                                                                     | Fig. 3        | 84.94% +- 2.30%       |
| 2      | Bian et al. [4]             | Rumour detection                  | Construct propagation and dispersion graphs+calculate the high level node representations + root feature enhacement+representation of propagation and dispersion for rumour classification | Fig. 4        | 96.1%                 |
| 3      | Dong et al. [5]             | Multiple rumour source detection  | GCNSI+LPSI+NetSleuth                                                                                                                                                                       | <u>Fig. 5</u> | 0.63 (error distance) |
| 4      | Li and GoldWasser [6]       | Political perspective detection   | GCN+SkipThought/GCN+HLST<br>M                                                                                                                                                              | Fig. 6        | 91.74%                |
| 5      | Wu et al. [7]               | Social spammer detection          | GCN + markov random field(MRF)                                                                                                                                                             | -             | 83.9%                 |
| 6      | AlJohany et al. [8]         | Bot prediction on social networks | Bot Detection using<br>SNA(Community detection,<br>degree and triangle, clustering<br>coeficiente) + GCN                                                                                   | <u>Fig. 7</u> | 71%                   |
| 7      | Ying et al. [9]             | Web-scale recommender systems     | PinSage(random-Walk graph convolutional network(GCN))                                                                                                                                      | -             | 67%(hit-rate)         |
| 8      | Yao et al. [10]             | Text-classification               | Text graph convolutional networks (text GCN)                                                                                                                                               | -             | 86.34%                |
| 9      | Marcheggiani and Titov [11] | Semantic role labelling           | Word-embbending + BiLSTM<br>Encoder+GCN<br>encoder+Classifier                                                                                                                              | _             | 88.0%(F1-Score)       |

# ESTADO DA ARTE: SEMI-SUPERVISED FAKE NEWS DETECTION USING GCN



Fig. 1. Illustration of the proposed approach: M denotes the number of articles (real and fake) and E is the dimension of our GloVe embeddings (in our case, M = 150, E = 100). Finally, we use k = 4 nearest neighbours to build the graph

[Published in 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) 2019]

#### • Estado da arte -> bi-direcional GCN for Rumour Detection



Fig. 4 Architecture of bi-directional GCN for rumour detection [4]

#### batch Input Generation Agolrithm Laplacian matrix GCN Layer ReLU N-layers GCN Layer ReLU Dense Layer Sigmoid Fig. 5 Architecture of GCNSI for rumour detection [5]

# ESTADO DA ARTE GCNSI FOR RUMOUR DETECTION



# ESTADO DA ARTE -> BOT DETECTION IN POLITICAL PERSPECTIVE



#### Fig. 7 Model architecture [8]

# ESTADO DA ARTE -> BOT DETECTION ON SOCIAL NETWORKS

#### NOTAS FINAIS

Bioinformatics, 34, 2018, WS7-W66 doi: 10.1093/bioinformatics/bhy294



#### Modeling polypharmacy side effects with graph convolutional networks

Marinka Zitnik<sup>1</sup>, Monica Agrawal<sup>1</sup> and Jure Leskovec<sup>1,2,\*</sup>

<sup>1</sup>Department of Computer Science, Stanford University, Stanford, CA 94305, USA and <sup>2</sup>Chan Zuckerberg Biehob, San Francisco, CA 94158, USA

"To whom correspondence should be addressed.

#### Abstract

Metivation: The use of drug combinations, termed polypharmacy, is common to treat patients with complex diseases or co-existing conditions. However, a major consequence of polypharmacy is a much higher risk of adverse side effects for the patient. Polypharmacy side effects emerge because of drug-drug interactions, in which activity of one drug may change, favorably or unfavorably, if taken with another drug. The knowledge of drug interactions is often limited because these complex relationships are rare, and are usually not observed in relatively small clinical testing. Discovering polypharmacy side effects thus remains an important challenge with significant implications for patient mortality and morbidity.

Results: Here, we present Decagon, an approach for modeling polypharmacy side effects. The approach constructs a multimodal graph of protein-protein interactions, drug-protein target interac-

- Melhoria: Permitir input de grafos dinâmicos.
- Deep Learning em grafos abre possibilidades em:
  - Redes sociais
  - Bio-tecnologia/Moléculas
  - Expressões simbólicas
  - Raciocínio relacional
  - Código
  - Otimização combinatória
  - Semi-supervised learning
  - Física
  - Química/Farmácia/BioMédica
  - ..



#### APLICAÇÃO GCN EM PYTHON+TENSORFLOW



### VAMOS PARA O GOOGLE COLAB



#### Referências

- 1. Huang K-H (2019) A gentle introduction to graph neural networks (basics, DeepWalk, and GraphSage), 10 Feb 2019. [Online]. Available: https://towardsdatascience.com/a-gentle-introduction-to-graph-neural-network-basics-deepwalk-and-graphsage-db5d540d50b3
- 2. Jepsen TS (2018) How to do deep learning on graphs with graph convolutional network, 18 Sept 2018. [Online]. Available: https://towardsdatascience.com/how-to-do-deep-learning-ongraphs-with-graph-convolutional-networks-7d2250723780
- 3. Benamira A, Devillers B, Lesot E, Ray AK, Saadi M, Malliaros FD (2019) Semi-supervised learning and graph neural networks for fake news detection. In: IEEE/ACM International conference on advances in social networks analysis and mining, Chicago
- 4. Bian T, Xiao X, Xu T, Zhao P, Huang W, Rong Y, Huang J (2020) Rumor defection on social media with bi-directional graph convolutional networks. arXiv preprint arXiv:2001.06362, Chicago
- 5. Dong M, Zheng B, Hung NQV, Su H, Li G (2019) Multiple rumor source detection with graph convolutional networks. In: 28th ACM International conference on information and knowledge management, Harvard
- 6. Li C, Goldwasser D (2019) Encoding social information with graph convolutional networks for political perspective detection in news media. In: 57th Annual meeting of the association for computational linguistics, Harvard

#### Referências

- 7. Wu Y, Lian D, Xu Y, Wu L, Chen E (2020) Graph convolutional networks with markov random field reasoning for social spammer detection
- 8. Aljohani N, Fayoumi A, Hassan S (2020) Bot prediction on social networks of Twitter in altmetrics using deep graph convolution networks. Soft Comput
- 9. Ying R, He R, Chen K, Eksombatchai P, Hamilton WL, Leskovec J (2018) Graph convolutional neural networks for web scale. In: 24th ACMSIGKDD international conference on knowledge discovery & data mining, Chicago, pp 974–983
- 10. Yao L, Mao C, Luo Y (2019) Graph convolutional networks for text classification. In: AAAI Conference on artificial intelligence, Vancouver
- 11. Marcheggiani D, Titov I (2017) Encoding sentences with graph convolutional networks for semantic refer labeling, arXiv preprint arXiv:1703.04826, Harvard
- 12. Zhang S, Tong H, Xu J, Maciejewski R (2019) Graph convolutional networks: a comprehensive feview 10 Nov 2019. [Online]. Available: https://link.springer.com/article/10.1186/s40649-019-0069-y
- 13. Yang Z, Han S, Zhao J (2020) Poisson Kernel avoiding self-smoothing in graph convolutional networks. arXiv preprint arXiv:2002.02589, 7 Feb 2020, Vancouver
- 14. J. A. Bondy e U. S. R. Murty. Graph Theory. Springer London, 2008. DOI:10.1007/9/18-1-84628-970-5.

[GMS05] M. Gori, G. Monfardini e F. Scarselli. "A new model for learning in graph domains". English. Em: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. Vol. 2. cited By 70. IEEE, jul. de 2005, pp. 729–734. DOI: 10.1109/ijcnn.2005.1555942.

[Sca+09] F. Scarselli et al. "The Graph Neural Network Model". English. Em: IEEE Transactions on Neural Networks 20.1 (jan. de 2009). cited By 269, pp. 61–80. ISSN: 1045-9227. DOI: 10.1109/tnn.2008.2005605.

#### SLIDE EXTRA: PIADAS INFAMES: HOMENAGEM AO NOSSO PROF. DR. RENATO ROCHA

Existem 10 tipos de pessoas no mundo: as que entendem números binários e as que não entendem.

- Você sabe que é um vértice?
- Não.
- Então vamos ali no cantinho que eu te mostro.

92% dos brasileiros são ruins em matemática, os outros 16% são péssimos!

- Me sinto tão insignificante... disse o número 1.
- Pelo menos você é mais do que nada. respondeu o número zero.

Por que o 3 e o 7 não podem se casar? Porque são primos. O que é uma pena, pois eles formariam um casal 10.

- Gata, seus pais são matemáticos?
- Não. Por quê?
- Porque você é um produto notável.