Prove inf $S \leq \sup S$:

Proof. Since $S \neq \emptyset$, $S \subseteq \mathbb{R}$, S is bounded above and below, inf S, $\sup S$ exist. Since $S \neq \emptyset$, $\exists s \in S$. By definiation, inf $S \leq s \leq \sup S$ for all $s \in S$. Taking the extremes of the inequality, we get $\inf S \leq \sup S$.

What if $\inf S = \sup S$?

If $\alpha = \inf S = \sup S$, then we know S contains only one element so $\inf S \leq s \leq \sup S \implies \alpha \leq s \leq \alpha \implies s = \alpha$.

Let S and T be nonempty subsets of $\mathbb R$ with the following property: $s \le t$ for all $s \in S$ and $t \in T$. Prove $S \subseteq T \implies \inf T \le \inf S \le \sup T$:

Proof. Since both $S, T \neq \emptyset$, $S, T \subseteq \mathbb{R}$, and bounded, $\inf S, \inf T, \sup S, \sup T$ exist. Then, since $S \subseteq T$, $\forall s \in S, s \in T$. Since $\forall t \in T, t \leq \sup T$, $\sup T$ is an upper bound for S. Since $\sup S$ is the least upper bound by definition, we have that $\sup S \leq \sup T$. Since $\forall t \in T, \inf T \leq t$, we have that $\inf T$ is a lower bound for S. Since $\inf S$ is the greatest lower bound by definition, we have that $\inf T \leq \inf S$. Note that since $S \neq \emptyset$, $\forall s \in S$, $\inf S \leq s \leq \sup S$, so we get the following inequality: $\inf T \leq \inf S \leq s \leq \sup S \leq \sup T$ so $\inf T \leq \inf S \leq \sup T$

Prove that if a > 0, then there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < a < n$:

Proof. Multiplying n on both sides of $\frac{1}{n} < a$, we get 1 < na. By the Archemedian property, since a, 1 > 0, there exists an $n \in \mathbb{N}$ s.t. na > 1.

Since a, 1 > 0 in the inequality $a < 1 \cdot n$, by the Archemedian property, there exists an $n \in \mathbb{N}$ s.t. n > a. Therefore, $\frac{1}{n} < a < n$.

Prove $\lim \frac{(-1)^n}{n} = 0$ *Scratch:*

$$\left| \frac{(-1)^n}{n} - 0 \right| < \varepsilon$$

$$\left| \frac{(-1)^n}{n} \right| < \varepsilon$$

$$\frac{1}{n} < \varepsilon$$

$$n > \frac{1}{\varepsilon}$$
note: $\left| \frac{(-1)^n}{n} - 0 \right| \le \frac{1}{n}$

Proof. Let $\varepsilon > 0$. Let $N \geq \frac{1}{\varepsilon}$. The, $\forall n > N$, we have

$$n>\frac{1}{\varepsilon}$$

$$\frac{1}{n}<\varepsilon$$

$$\left|\frac{(-1)^n}{n}-0\right|\leq\frac{1}{n}<\varepsilon$$

$$\left|\frac{(-1)^n}{n}-0\right|<\varepsilon$$
 taking the

taking the extremes of the inequalities

Therefore, $\lim \frac{(-1)^n}{n} = 0$.

Prove $\lim \frac{1}{n^{1/3}} = 0$

Prove $\lim \frac{2n-1}{3n+2} = \frac{2}{3}$ *Scratch:*

$$\left|\frac{2n-1}{3n+2} - \frac{2}{3}\right| < \varepsilon$$

$$\left|\frac{2n-1-(2n+4)}{3n+2}\right| < \varepsilon$$

$$\left|\frac{-5}{3n+2}\right| < \varepsilon$$

$$\frac{5}{3n+2} < \varepsilon$$

$$5 < 3n\varepsilon + 2\varepsilon$$

$$n > \frac{5-2\varepsilon}{3\varepsilon}$$

Proof. Let $\varepsilon > 0$. Let $N \ge \frac{5-2\varepsilon}{3\varepsilon}$. Then $\forall n > N$, we have

$$n > \frac{5 - 2\varepsilon}{3\varepsilon}$$

From the scratch work above, $\left|\frac{2n-1}{3n+2} - \frac{2}{3}\right| < \varepsilon$.

Prove $\lim \frac{n+6}{n^2-6} = 0$