

ฐานข้อมูลเบื้องต้นและแบบจำลองเชิงแนวคิด Introduction and Conceptual Modeling

ชนิดของฐานข้อมูล และ แอปพลิเคชันของฐานข้อมูล

- ฐานข้อมูลและระบบฐานข้อมูลในชีวิตประจำวัน
 - ้ ตัวอย่างเช่น การจองโรงแรมและตัวเครื่องบิน การยืมหนังสือจากห้องสมุด ระบบ การสั่งของทางไปรษณีย์ เป็นต้น
- ฐานข้อมูลตัวเลขและข้อความ
- ฐานข้อมูลมัลติมีเดีย
 - ้ รูปภาพ คลิปวีดิทัศน์ หรือ ข้อความเสียง
- ฐานข้อมูลทางภูมิศาสตร์
 - แผนที่ ข้อมูลภูมิอากาศ หรือ ภาพถ่ายดาวเทียม
- คลังข้อมูล
 - สกัดข้อมูลจากข้อมูลจำนวนมากและมีเครื่องมือที่ช่วยในการวิเคราะห์ข้อมูลเพื่อใช้ ในการตัดสินใจ
- ฐานข้อมูลแบบทันกาลเชิงรุก
 - ใช้ในการควบคุมกระบวนงานในงานอุตสาหกรรมและการผลิต

คำจำกัดความเบื้องต้น

- **ฐานข้อมูล**: กลุ่มของข้อมูลที่เกี่ยวข้องกัน
- ข้อมูล: ข้อเท็จจริงที่สามารถบันทึกได้และมีความหมายโดยปริยาย
- คุณสมบัติของฐานข้อมูล:
 - เป็นแบบจำลองของปัญหาจริง ซึ่งเรียกว่า มินิเวิร์ลด
 - ข้อมูลที่เก็บไว้ในฐานข้อมูลเดียวกันควรมีความเกี่ยวข้องกันและมีความหมาย ในตัวเอง
 - ได้ถูกออกแบบ สร้าง และบรรจุข้อมูลลงในฐานข้อมูลเพื่อวัตถุประสงค์อันใด อันหนึ่งที่แน่ชัด
- มินิเวิร์ลด: แบบจำลองปัญหาจริง หรือส่วนหนึ่งของปัญหาจริงที่ข้อมูล ในฐานข้อมูลนั้นเกี่ยวข้อง เช่น ฐานข้อมูลการลงทะเบียนของนิสิตใน มหาวิทยาลัย

คำจำกัดความเบื้องต้น (ต่อ)

- ระบบการจัดการฐานข้อมูล (DBMS): ซอฟต์แวร์ที่ใช้ในการสร้าง และบำรุงรักษาข้อมูลและฐานข้อมูลในคอมพิวเตอร์
- ระบบฐานข้อมูล: ซอฟต์แวร์ระบบการจัดการฐานข้อมูลพร้อมกับ ข้อมูลบางครั้งอาจรวมถึงแอปพลิเคชันด้วย

รูปที่ 1.1: ระบบฐานข้อมูลเบื้องต้น

ความสามารถของระบบการจัดการฐานข้อมูล

- กำหนดคุณลักษณะของฐานข้อมูล : ตั้งแต่ขนิดของข้อมูล, โครงสร้างของข้อมูล และเงื่อนไขบังคับต่าง ๆ
- สร้างฐานข้อมูลและบรรจุข้อมูล ลงฐานข้อมูลลงในหน่วยเก็บ
- จัดดำเนินการฐานข้อมูล : การสืบค้น, การจัดทำรายงาน การเพิ่ม การลบ การแก้ไขข้อมูล
- การประมวลผลพร้อมกันและใช้ข้อมูลร่วมกัน สามารถมีผู้ใช้งาน หลายคนหรือโปรแกรมหลายโปรแกรมทำงานพร้อมกันได้ โดยที่ ข้อมูลยังคงความถูกต้อง

ความสามารถของระบบการจัดการฐานข้อมูล

• คุณสมบัติอื่น ๆ:

- การป้องกันและดูแลความปลอดภัย
 - การตรวจสอบการเข้าถึงที่ไม่ได้รับการอนุญาต
 - การจัดการด้านความมั่นคงของข้อมูลเมื่อซอฟต์แวร์หรือฮาร์ดแวร์มี ปัญหา
- การปรับปรุงและบำรุงรักษาฐานข้อมูล
 - DBMS ทำให้ระบบสามารถปรับเปลี่ยนไปตามความต้องการที่ เปลี่ยนไปได้

ตัวอย่างของฐานข้อมูล (โดยมีแบบจำลองเชิงแนวคิดประกอบ)

- ตัวอย่างของมินิเวิร์ลด : UNIVERSITY
- เอนทิตี ของมินิเวิร์ลด:
 - STUDENTS
 - COURSEs
 - SECTIONs (of COURSEs)
 - (academic) DEPARTMENTs
 - INSTRUCTORs

Note: จากมินิเวิร์ลดนี้ เราสามารถเขียน ENTITY-RELATIONSHIP data model ได้

ตัวอย่างของฐานข้อมูล (โดยมีแบบจำลองเชิงแนวคิดประกอบ)

• ความสัมพันธ์ ของมินิเวิร์ลด:

- SECTIONs เป็นส่วนย่อยของ COURSEs หนึ่ง ๆ
- STUDENTs เลือก SECTIONs
- COURSEs *ต้องมี* COURSEs เปื้องต้น
- INSTRUCTORs สอน SECTIONs
- COURSEs กำหนดโดย DEPARTMENTs
- STUDENTs มีสังกัด DEPARTMENTs

Note: จากมินิเวิร์ลดนี้ เราสามารถเขียน ENTITY-RELATIONSHIP data model.

ฐปที่ 1.2ก:

ฐานข้อมูลสำหรับเก็บข้อมูลนักศึกษาและรายวิชา

STUDENT	Name	StudentNumber	Class	Major
	Smith	17	1	CS
	Brown	8	2	CS

COURSE	CourseName	CourseNumber	CreditHours	Department
	Intro to Computer Science	CS1310	4	CS
	Data Structures	CS3320	4	CS
	Discrete Mathematics	MATH2410	3	MATH
	Database	CS3380	3	CS

ฐปที่ 1.2ข:

ฐานข้อมูลสำหรับเก็บข้อมูลตอนเรียน

SECTION	SectionIdentifier	CourseNumber	Semester	Year	Instructor
	85	MATH2410	Fall	98	King
	92	CS1310	Fall	98	Anderson
	102	CS3320	Spring	99	Knuth
	112	MATH2410	Fall	99	Chang
	119	CS1310	Fall	99	Anderson
	135	CS3380	Fall	99	Stone

รูปที่ 1.2ค: ฐานข้อมูลสำหรับเก็บข้อมูลรายงานผลการศึกษาและรายวิชา พื้นฐาน

GRADE_REPORT	StudentNumber	SectionIdentifier	Grade
	17	112	В
	17	119	С
	8	85	Α
	8	92	Α
	8	102	В
	8	135	Α

PREREQUISITE	CourseNumber	PrerequisiteNumber
	CS3380	CS3320
	CS3380	MATH2410
	CS3320	CS1310

ลักษณะสำคัญของการใช้กลยุทธ์ฐานข้อมูล

- ธรรมชาติในการบรรยายตนเองของระบบฐานข้อมูล:
 - Catalog ของ DBMS จะเก็บ definition หรือ description ของ ฐานข้อมูล
 - Definition ประกอบด้วย โครงสร้างไฟล์ ชนิด รูปแบบของข้อมูล และ ข้อบังคับต่างๆ
 - Description หรือเรียกว่า meta-data ดังแสดงในรูปที่ 1.1 เป็นส่วนที่ ทำให้ซอฟต์แวร์ DBMS สามารถทำงานกับฐานข้อมูลอื่นๆได้

ลักษณะสำคัญของการใช้กลยุทธ์ฐานข้อมูล (ต่อ)

- การไม่ขึ้นต่อกันระหว่างโปรแกรมและข้อมูล:
 - สามารถเปลี่ยนแปลงโครงสร้างของหน่วยเก็บข้อมูลและการจัดการต่างๆ
 โดยไม่จำเป็นต้องเปลี่ยนโปรแกรมการเข้าถึง DBMS
 - โครงสร้างของไฟล์ข้อมูลนั้นถูกแยกออกจากโปรแกรมการเข้าถึง(Access program) ซึ่งไม่เหมือนกระบวนการจัดการไฟล์ (File processing) แบบ ดั้งเดิม
 - ในกระบวนการจัดการไฟล์แบบดั้งเดิม โครงสร้างของไฟล์ข้อมูลจะถูกฝัง
 ติดกับโปรแกรมแอปพลิเคชัน

รูปที่ 1.3: รูปแบบของหน่วยเก็บข้อมูลภายในสำหรับเก็บระเบียน นักศึกษา

Data Item Name	Starting Position in Record	Length in Characters (bytes)
Name	1	30
StudentNumber	31	4
Class	35	4
Major	39	4

ลักษณะสำคัญของการใช้กลยุทธ์ฐานข้อมูล(ต่อ)

- <u>Data Abstraction:</u> หรือ Program-Operation
 Independence
 - ในระบบ Object-Oriented และ Object-Relational นั้น ผู้ใช้สามารถระบุการ จัดการให้กับข้อมูลในรูปแบบของนิยามฐานข้อมูล (Database definition)
 - การจัดการ (ฟังก์ชันหรือเมทอด) ประกอบด้วย 2 ส่วน
 - ส่วนติดต่อกับผู้ใช้ (หรือ Signature): ชื่อคำสั่งและพารามิเตอร์ต่างๆ
 - การปฏิบัติการ (หรือ วิธีการ) นั้นถูกระบุแยกออกมา ดังนั้นจึงสามารถทำการ เปลี่ยนแปลงได้โดยไม่กระทบส่วนติดต่อผู้ใช้
 - แบบจำลองข้อมูล ใช้ในการซ่อนรายละเอียดของหน่วยเก็บ และนำเสนอใน รูปของ มุมมองระดับแนวคิด
 - DBMS จะทำการดึงรายละเอียดของหน่วยเก็บไฟล์จาก Catalog

ลักษณะสำคัญของการใช้กลยุทธ์ฐานข้อมูล(ต่อ)

- <u>สนับสนุนการพิจารณาข้อมูลจากหลายมุมมอง</u> : ผู้ใช้แต่ละคน สามารถพิจารณาฐานข้อมูลในมุมมอง (View) ที่แตกต่างกัน ซึ่งอธิบาย เฉพาะส่วนของข้อมูลที่ผู้ใช้สนใจเท่านั้น
 - มุมมอง ประกอบด้วย ข้อมูลที่อนุมานได้จากไฟล์ฐานข้อมูล แต่ไม่ได้ถูกเก็บไว้ใน ฐานข้อมูลอย่างชัดเจน

ฐปที่ 1.4

- •แสดงสองมุมมองที่ได้จากฐานข้อมูลในรูปที่ 1.2
 - (a) มุมมอง STUDENT TRANSCRIPT
 - (b) มุมมอง COURSE PREREQUISITES

(a)	TRANSCRIPT	StudentNeme	Student Transcript					
	THANSCHIFT	StudentName	CourseNumber	Grade	Semester	Year	SectionId	
			CS1310	С	Fall	99	119	
		Smith	MATH2410	В	Fall	99	112	
			MATH2410	Α	Fall	98	85	
			CS1310	Α	Fall	98	92	
	Brown	Brown	CS3320	В	Spring	99	102	
			CS3380	Α	Fall	99	135	

(b)	PREREQUISITES	CourseName	CourseNumber	Prerequisites
		Database	CS3380	CS3320
		Dalabase	C33360	MATH2410
		Data Structures	CS3320	CS1310

ลักษณะสำคัญของการใช้กลยุทธ์ฐานข้อมูล (ต่อ)

- การใช้ข้อมูลร่วมกัน และ การดำเนินการโดยกลุ่มผู้ใช้:
 - ผู้ใช้หลายคนมีสิทธิ์ในการร่วมกันแก้ไขและปรับปรุงฐานข้อมูลได้
 - ต้องมีการรับรองจาก DBMS ว่าแต่ละการดำเนินการ (Transaction)
 จะต้องถูกปฏิบัติการ (Execute) อย่างถูกต้องจนครบสมบูรณ์หรือ
 ไม่เช่นนั้นก็ต้องไม่มีการดำเนินการใดๆเลย
 - OLTP (แอปพลิเคชันประเภทออนไลน์) เป็นส่วนสำคัญมากสำหรับแอป พลิเคชันฐานข้อมูล
 - (การดำเนินการ หุมายถึงโปรแกรมหรือกระบวนการปฏิบัติการ ที่ทำการ เข้าถึงฐานข้อมูลตั้งแต่หนึ่งครั้งขึ้นไป เช่น การอ่าน การแก้ไข เป็นต้น)

ผู้ใช้ฐานข้อมูล

- สามารถจัดแบ่งผู้ใช้ออกเป็น 2 ประเภทหลักๆ
 - ผู้มีบทบาทเบื้องหน้า (Actors on the Scene): ผู้ที่ใช้และควบคุม
 เนื้อหาของฐานข้อมูล
 - ผู้มีบทบาทเบื้องหลัง (Actor behind the Scene): ผู้ที่พัฒนา ฐานข้อมูลหรือออกแบบซอฟต์แวร์ DBMS

ผู้มีบทบาทเบื้องหน้า

• ผู้บริหารฐานข้อมูล (Database administrators : DBA):

- มีอำนาจในการให้สิทธิ์การเข้าถึงฐานข้อมูล
- ประสานงานและดูแลการใช้ฐานข้อมูล
- จัดหาทรัพยากรทางด้านซอฟต์แวร์และฮาร์ดแวร์
- ควบคุมการใช้ฐานข้อมูลและตรวจสอบประสิทธิภาพของการจัดการ
- แก้ไขปัญหาต่างๆ เช่น ช่องว่างของระบบความปลอดภัย และปัญหาเวลาการ ตอบสนองต่ำ

• ผู้ออกแบบฐานข้อมูล (Database Designers):

- ระบุเนื้อหา โครงสร้าง ข้อบังคับ (Constraint) รวมถึงฟังก์ชันหรือการดำเนินการ (Transaction) ต่างๆ ที่เกี่ยวข้องกับฐานข้อมูล
- ติดต่อและทำความเข้าใจความต้องการของผู้ใช้ปลายทาง

• ผู้ใช้ปลายทาง (End-user):

- ใช้ข้อมูลในการสืบค้น (Query) และจัดทำรายงาน
- บางส่วนอาจทำหน้าที่ในการปรับปรุงเนื้อหาของฐานข้อมูลอีกด้วย

ผู้มีบทบาทเบื้องหลัง

• ผู้ออกแบบและพัฒนาระบบ DBMS

ออกแบบและพัฒนาส่วนต่างๆ รวมทั้งส่วนติดต่อกับผู้ใช้ ในรูปแบบของชุดซอฟต์แวร์

• ผู้พัฒนาเครื่องมือ (Tool Developers)

 พัฒนาเครื่องมือ หรือทูล (Tool) ซึ่งเป็นชุดซอฟต์แวร์ที่ช่วยในการออกแบบระบบ ฐานข้อมูลและช่วยในการพัฒนาผลงาน

• ผู้ปฏิบัติงานและดูแลรักษา

- สั่งดำเนินการ (Run) รวมถึงดูแลฮาร์ดแวร์และซอฟต์แวร์ของระบบฐานข้อมูล

ประเภทของผู้ใช้ปลายทาง

- ผู้ใช้ชั่วคราว (Casual): ทำการเข้าถึงฐานข้อมูลเป็นครั้ง คราว
- Naïve or Parametric: เป็นกลุ่มผู้ใช้ปลายทางส่วนใหญ่ ซึ่ง ใช้ฟังก์ชันต่างๆที่ถูกกำหนดมาเรียบร้อยแล้วในรูปแบบของ "การดำเนินการแบบสำเร็จรูป (canned transaction)" กับ ระบบฐานข้อมูล เช่น พนักงานรับและจ่ายเงินในธนาคาร พนักงานสำรองที่ เป็นต้น

ประเภทของผู้ใช้ปลายทาง

- Sophisticated : เช่น นักวิเคราะห์ธุรกิจ นักวิทยาศาสตร์ วิศวกร รวมถึงผู้ใช้อื่นๆที่มีความคุ้นเคยกับสมรรถภาพของ ระบบ
- Stand-alone : ส่วนมากมักจะเป็นผู้ที่ดูแลฐานข้อมูลส่วน บุคคลโดยใช้ชุดแอปพลิเคชันพร้อมใช้ เช่น ผู้ใช้โปรแกรม คำนวณภาษี ซึ่งสร้างฐานข้อมูลภายในขึ้นมาเอง เป็นต้น

ข้อดีในการใช้กลยุทธ์ฐานข้อมูล

- สามารถควบคุมความซ้ำซ้อน (Redundancy) ในการจัดเก็บข้อมูล รวมถึงความยากลำบากในการพัฒนาและดูแลรักษา
 - ความซ้ำซ้อนของข้อมูลนั้นเป็นสาเหตุของปัญหามากมาย เช่น
 - จำเป็นต้องทำการปรับปรุงหรือแก้ไขข้อมูลเดียวกันหลายครั้ง
 - สิ้นเปลืองพื้นที่ในการเก็บข้อมูล
 - ไฟล์ที่เสนอข้อมูลเดียวกันอาจมีการจัดเก็บข้อมูลที่ไม่ตรงกันได้
- สามารถใช้ข้อมูลร่วมกันได้
- ป้องกันการเข้าถึงข้อมูลโดยไม่ได้รับอนุญาต

รูปที่ 1.5.

การเก็บข้อมูลที่ซ้ำซ้อนของ StudentName และ CourseNumber ใน (a) กรณีข้อมูลตรงกัน (b) กรณีที่ข้อมูลไม่ตรงกัน

(a)	GRADE_REPORT	StudentNumber	StudentName	SectionIdentifier	CourseNumber	Grade
		17	Smith	112	MATH2410	В
		17	Smith	119	CS1310	С
		8	Brown	85	MATH2410	Α
		8	Brown	92	CS1310	Α
		8	Brown	102	CS3320	В
		8	Brown	135	CS3380	Α

(b)	GRADE_REPORT	StudentNumber	StudentName	SectionIdentifier	CourseNumber	Grade
		17	Brown	112	MATH2410	В

ข้อดีในการใช้กลยุทธ์ฐานข้อมูล(ต่อ)

- สามารถเตรียมหน่วยเก็บข้อมูลที่มั่นคง (Persistent storage) สำหรับ โปรแกรม Objects (ใน Object-oriented DBMS's – บทที่ 20-22)
- จัดเตรียมโครงสร้างหน่วยเก็บข้อมูลเพื่อให้สามารถดำเนินการสืบค้น (Query) ได้อย่างมีประสิทธิภาพ
 - DBMS จะมีโครงสร้างข้อมูลพิเศษ เพื่อทำให้การค้นข้อมูลในดิสค์รวดเร็วยิ่งขึ้น ซึ่งทำ ได้โดยการใช้ดัชนี (Indexes)
- สามารถทำการสำรอง (Backup) และฟื้นสภาพข้อมูล (Recovery)
- มีส่วนการติดต่อผู้ใช้หลากหลายรูปแบบสำหรับผู้ใช้ในกลุ่มต่างๆกัน
 - ประกอบด้วย ภาษาสืบค้น(Query language) ภาษาโปรแกรม (Programming language) แบบฟอร์มและโค้ดคำสั่ง (Form and Command code) และ Menudriven interface

ข้อดีในการใช้กลยุทธ์ฐานข้อมูล(ต่อ)

- สามารถนำเสนอความสัมพันธ์ที่ซับซ้อนของข้อมูลได้
- มีการกำหนดข้อบังคับในการควบคุมความคงสภาพ (Integrity constraints)
- สนับสนุนการอนุมาน (Inference) ข้อมูลใหม่ๆจากข้อเท็จจริงที่เก็บไว้ ในฐานข้อมูล รวมถึงการดำเนินการ (Action) ต่างๆโดยใช้กฎเกณฑ์

สิ่งที่เกี่ยวข้องเพิ่มเติมในการใช้กลยุทธ์ฐานข้อมูล

- มีศักยภาพในการควบคุมมาตรฐาน: เป็นส่วนที่สำคัญมาก ของแอปพลิเคชันฐานข้อมูลที่ประสบความสำเร็จในองค์กร ใหญ่ๆ โดยมาตรฐานในที่นี้ หมายถึง ชื่อรายการข้อมูล รูปแบบการแสดงภาพหน้าจอ โครงสร้างรายงาน และ metadata (นิยามของข้อมูล) เป็นต้น
- ลดเวลาในการพัฒนาแอปพลิเคชัน: เวลาที่ใช้ในการเพิ่มแอป พลิเคชันใหม่ลดลง

สิ่งที่เกี่ยวข้องเพิ่มเติมในการใช้กลยุทธ์ฐานข้อมูล (ต่อ)

- มีความยืดหยุ่นในการเปลี่ยนแปลงโครงสร้างข้อมูล: สามารถ เปลี่ยนแปลงไปตามความต้องการที่ระบุได้
- มีการปรับข้อมูลให้ทันสมัยอยู่ตลอดเวลา: สำคัญมากสำหรับ ธุรกิจออนไลน์ เช่น สายการบินโรงแรม การเช่ารถ เป็นต้น
- Economies of scale: โดยการรวบรวมข้อมูลและแอปพลิเคชัน ระหว่างแผนก ซึ่งลดความสิ้นเปลืองจากความซ้ำซ้อนของ ทรัพยากรและบุคคลได้

วิวัฒนาการของ DBMS (โดย James Martin)

- Stage 1 : ไฟล์ข้อมูลพื้นฐาน มีอิทธิพลในช่วงต้นทศวรรษที่ 60
- Stage 2 : กระบวนการเข้าถึงไฟล์ มีอิทธิพลในช่วงปลายทศวรรษที่ 60
- Stage 3 : ระบบฐานข้อมูลในช่วงแรกเริ่ม มีอิทธิพลในช่วงต้นทศวรรษที่ 70
- Stage 4 : ระบบฐานข้อมูลในปัจจุบัน ตั้งแต่ปี 1970 จนถึงปัจจุบัน

ช่วงที่ 1 : ไฟล์ข้อมูลพื้นฐาน (มีอิทธิพลในช่วงต้นทศวรรษที่ 60)

ช่วงที่ 1 : ไฟล์ข้อมูลพื้นฐาน

- ในการจัดระบบไฟล์ในรูปแบบลำดับอนุกรม
- โครงสร้างข้อมูลทางกายภาพมีลักษณะเดียวกับโครงสร้างข้อมูล ทางตรรก
- ใช้กระบวนการจัดการแบบกลุ่ม (Batch-processing) โดยไม่มีการ เข้าถึงข้อมูลแบบทันกาล (Real-time)
- มีการจัดเก็บไฟล์ที่ซ้ำซ้อน เนื่องจากข้อมูลเดิมยังคงถูกเก็บไว้
- ซอฟต์แวร์สามารถจัดการได้เพียงขั้นตอน input/output เท่านั้น

ช่วงที่ 1 : ไฟล์ข้อมูลพื้นฐาน (ต่อ)

- ผู้พัฒนาโปรแกรมแอปพลิเคชันจะทำการออกแบบรูปแบบทาง กายภาพและฝังติดไว้กับโปรแกรมแอปพลิเคชัน
- ถ้ามีการเปลี่ยนแปลงโครงสร้างข้อมูลหรือส่วนควบคุมการเก็บ ข้อมูล (Storage device) จะต้องทำการเขียนโปรแกรมรวมทั้งแปลง ภาษาและทดลองใหม่อีกด้วย
- ข้อมูลมักจะถูกออกแบบให้ทำงานอย่างมีประสิทธิภาพกับแอป พลิเคชันหนึ่งๆเท่านั้น
- เกิดการซ้ำซ้อนระหว่างไฟล์ข้อมูลมาก

ช่วงที่ 2 : กระบวนการเข้าถึงไฟล์ (มีอิทธิพลในช่วงปลายทศวรรษที่ 60)

ช่วงที่ 2 : กระบวนการเข้าถึงไฟล์

- สามารถทำการบันทึกได้โดยการเข้าถึงข้อมูลแบบตามลำดับ (Serial) หรือ แบบสุ่ม (Random) (ไม่ใช้การบันทึกลงในขอบเขตของข้อมูล (Field))
- ใช้กระบวนการจัดการแบบกลุ่ม (Batch) แบบอินไลน์ (In-line) หรือแบบทัน กาล (Real-time)
- ไฟล์ทางตรรกและไฟล์ทางกายภาพนั้นแยกออกจากกัน
- เปลี่ยนแปลงหน่วยเก็บข้อมูลได้โดยไม่จำเป็นต้องทำการเปลี่ยนแปลง โปรแกรม
- โครงสร้างข้อมูล อยู่ในรูปแบบลำดับอนุกรม (Serial) ลำดับเชิงดัชนี (Index sequential) หรือ Simple direct access

ช่วงที่ 2 : กระบวนการเข้าถึงไฟล์ (ต่อ)

- ไม่มีการใช้คีย์หลายตัว (Multiple-key) ในการสืบค้นข้อมูล
- อาจมีการตรวจสอบความปลอดภัยของข้อมูล แต่นับว่ายังไม่ค่อย ปลอดภัย
- ยังคงมีแนวใน้มที่จะออกแบบข้อมูลให้มีประสิทธิภาพกับแอปพลิเค ชันหนึ่งๆอยู่
- ยังคงพบความซ้ำซ้อนของข้อมูลจำนวนมากอยู่

ช่วงที่ 3 : ระบบฐานข้อมูลในช่วงแรกเริ่ม (มีอิทธิพลในช่วงต้นทศวรรษที่ 70)

ช่วงที่ 3 : ระบบฐานข้อมูลในช่วงแรกเริ่ม

- สามารถอนุมานไฟล์ทางตรรกที่แตกต่างกันได้มากมาย จากข้อมูล ทางกายภาพเดียวกัน
- สามารถเข้าถึงข้อมูลเดียวกันได้จากหลายทางด้วยการกำหนด
 ความต้องการที่ต่างกัน
- ซอฟต์แวร์มีความสามารถในการลดความซ้ำซ้อนของข้อมูล
- มีการใช้ข้อมูลร่วมกันระหว่างแอปพลิเคชันต่างๆ
- การไม่มีความซ้ำซ้อนของข้อมูล เอื้อต่อความคงสภาพของข้อมูล (Data integrity)

ช่วงที่ 3 : ระบบฐานข้อมูลในช่วงแรกเริ่ม (ต่อ)

- การจัดระบบหน่วยเก็บข้อมูลทางกายภาพนั้นไม่ขึ้นกับโปรแกรม แอปพลิเคชัน
- สามารถกำหนดตำแหน่งที่อยู่ของข้อมูลในขอบเขตของข้อมูล (Filed) หรือในระดับกลุ่ม (Group level)
- สามารถใช้คีย์หลายตัว (Multiple-key) ในการสืบค้นได้
- ใช้การจัดระบบข้อมูลที่ซับซ้อนโดยไม่ทำให้โปรแกรมแอปพลิเคชัน ซับซ้อน

ช่วงที่ 4 : ความต้องการของระบบฐานข้อมูลในปัจจุบัน

ช่วงที่ 4 : ความต้องการของระบบฐานข้อมูลใน ปัจจุบัน

- ซอฟต์แวร์มีข้อมูลทางตรรกและทางกายภาพที่ไม่ขึ้นต่อกัน
- สามารถทำการพัฒนาฐานข้อมูลให้ดีขึ้น โดยไม่ต้องทำการดูแล รักษามาก
- มีส่วนอำนวยความสะดวกให้ผู้บริหารฐานข้อมูล ในการควบคุม ข้อมูล
- มีการใช้ขั้นตอนที่มีประสิทธิภาพในการควบคุมความเป็นส่วน บุคคล ความปลอดภัย และความคงสภาพ (Integrity) ของข้อมูล

ประวัติการพัฒนาเทคโนโลยีฐานข้อมูล

- แอปพลิเคชันฐานข้อมูลในช่วงแรก : มีการนำเสนอโมเดลแบบ แตกสาขา (Hierarchical model) และโมเดลแบบเครือข่าย (Network model) ในช่วงกลางทศวรรษที่ 70 และมีอิทธิพลในช่วงทศวรรษที่ 70 ซึ่งยังคงพบการใช้โมเดลเหล่านี้ในการปฏิบัติการฐานข้อมูลทั่วโลก จำนวนมาก
- ระบบที่ใช้พื้นฐานของโมเดลความสัมพันธ์: IBM และ มหาวิทยาลัยต่างๆได้ทำการวิจัยและทดลองแบบจำลองที่ได้นำเสนอ ในช่วงปี 1970 เป็นอย่างหนัก ซึ่งทำให้เกิดเป็น DBMS เชิงสัมพันธ์ (Relational DBMS Products) ขึ้นในช่วงทศวรรษที่ 80

ประวัติการพัฒนาเทคโนโลยีฐานข้อมูล (ต่อ)

- Object-oriented applications: ได้มีการนำเสนอ OODBMSs ขึ้น ในช่วงปลายทศวรรษที่ 80 ถึงต้นทศวรรษที่ 90 เพื่อสนองความ ต้องการในการประมวลผลที่ซับซ้อนในโปรแกรมช่วยการออกแบบ (CAD) และแอปพลิเคชันอื่นๆ แต่การใช้งานยังไม่เป็นที่นิยมมากนัก
- ข้อมูลในเว็บและแอปพลิเคชันการค้าอิเล็กทรอนิกส์: เว็บบรรจุ ข้อมูลในรูปแบบของ HTML (Hypertext Markup Language) โดยมี การเชื่อมโยงระหว่างหน้า ก่อให้เกิดการพัฒนาแอปพลิเคชันใหม่ๆขึ้น จำนวนมาก รวมถึงการค้าอิเล็กทรอนิกส์ (Ecommerce) ซึ่งปัจจุบัน ใช้มาตรฐานใหม่ คือ XML (eXtended Markup Language)

การขยายความสามารถของฐานข้อมูล

มีการเพิ่มฟังก์ชันใหม่ ๆให้กับ DBMSs ในด้านต่าง ๆ ดังต่อไปนี้:

- แอปพลิเคชันทางวิทยาศาสตร์
- หน่วยเก็บและจัดการข้อมูลภาพ
- การจัดการข้อมูลเสียงและภาพ
- การค้นข้อมูล (Data Mining)
- Spatial data management
- การจัดการข้อมูลลำดับเวลาและประวัติข้อมูล (Time Series and Historical Data Management)

ซึ่งทั้งหมดนี้ทำให้เกิดความก้าวหน้าในการวิจัยและพัฒนาข้อมูลชนิดใหม่ๆ โครงสร้างข้อมูลที่ซับซ้อน คำสั่งและหน่วยเก็บข้อมูลใหม่ๆ รวมทั้งการเก็บดัชนี (Index schemes) ในระบบฐานข้อมูล

กรณีที่ไม่ควรใช้ DBMS

• DBMS มีค่าใช้จ่ายที่สูง:

- การลงทุนเริ่มต้นทางด้านฮาร์ดแวร์สูง
- มีค่าใช้จ่ายเพิ่มในการให้กำหนดกฎทั่วไป (Generality) ความ ปลอดภัย (Security) การควบคุมร่วมกัน (Concurrency control) การฟื้นสภาพ (Recovery) และฟังก์ชันควบคุมความคงสภาพ (Integrity function)

• กรณีที่ไม่จำเป็นต้องใช้ DBMS:

- เมื่อฐานข้อมูลและแอปพลิเคชันมีลักษณะไม่ซับซ้อน มีการระบุที่ ชัดเจน และไม่ต้องการการเปลี่ยนแปลงใดๆ
- เมื่อต้องการความทันกาลในการปรับเปลี่ยนให้ตรงความต้องการ ตลอดเวลา ซึ่งอาจทำไม่ได้เนื่องจากค่าใช้จ่ายที่สูงของ DBMS
- เมื่อไม่ต้องการให้ผู้ใช้เข้าถึงข้อมูลได้หลายๆคน

กรณีที่ไม่ควรใช้ DBMS (ต่อ)

• กรณีที่ DBMS ไม่มีความสามารถเพียงพอ :

- มื่อระบบฐานข้อมูลไม่สามารถจัดการกับข้อมูลที่ซับซ้อน เนื่องมาจาก ข้อจำกัดของโมเดล
- เมื่อผู้ใช้ฐานข้อมูลต้องการคำสั่งพิเศษที่ไม่มีใน DBMS