ML Approaches for NLP

Dr. Pruthwik Mishra, Department of AI, SVNIT Surat Session in STTP on Recent Trends and Practices in AI Organized by DoAI, SVNIT Surat 10.07.2025

Early Systems

- Rule Based Systems
 - Expert Systems
 - Collection of Conditions (a long list of if conditions)
 - Word Lists/Dictionaries
- Examples
 - Sentiment Analysis
 - List of Positive and Negative Words
 - Machine Translation
 - Bilingual Dictionaries and Grammar Transfer
 - Analyze->Transfer->Generate (Sampark Systems for Indian Language Pairs)
 - Question Answering
 - Keyword/Pattern Based (one such system was ELIZA in 1960s)
 - "What is the capital of France?"
 - a keyword-based system might search for documents containing both "capital" and "France".
 - Retrieve documents that mention "Paris" as the capital city.
- Rule based systems are hard to design
 - Expensive as they require experts
 - Rules are never exhaustive

ML Approaches for NLP

- Natural Language Processing
 - Processing Natural Language (it is not programming language)
 - Flavors of Natural Language
 - Text
 - Audio
 - In this session, we are going to talk about ML approaches in Text Processing
- ML Approaches to be discussed
 - Supervised
 - Classification
 - Sequence Classification
 - Semi-Supervised
 - Co-Learning
 - Combination of Labeled and Unlabeled Data
 - Unsupervised
 - Clustering

How is NLP different?

- ML Approaches need data/features to train
 - The data is in numeric format

- NLP (Natural Language Processing) deals with text
 - Text are not numbers
 - What is the minimum unit for processing?
 - Output Description
 Output Descript

Numeric Conversion of Text

- What are the possible options?
 - Can we just give a separate index to a word in a piece of text?
 - Sentence: I am in Surat .
 - Index Sequence: 11 32 107 1377 32 [Assuming we have 10000 unique words in a corpus]
 - One-Hot-Encoding
 - (Assuming we have 10000 unique words in a corpus) Each word will be of 10000 dimensions
 - The index of the word will be 1 others will be 0
 - Term Frequency
 - Count/Frequency of each word in the corpus
 - Can also be normalized
 - o TF-IDF
 - Term Frequency and Inverse Document Frequency
 - One of the most widely used representations
 - TF_IDF = TF * IDF
 - Reference: https://en.wikipedia.org/wiki/Tf%E2%80%93idf

More on TF-IDF

Variants of term frequency (tf) weight

weighting scheme	tf weight
binary	0,1
raw count	$f_{t,d}$
term frequency	$\left f_{t,d} \middle/ \sum_{t' \in d} f_{t',d} ight $
log normalization	$\log(1+f_{t,d})$
double normalization 0.5	$0.5 + 0.5 \cdot rac{f_{t,d}}{\max_{\{t' \in d\}} f_{t',d}}$
double normalization K	$K+(1-K)rac{f_{t,d}}{\max_{\{t'\in d\}}f_{t',d}}$

Variants of inverse document frequency (idf) weight

weighting scheme	idf weight ($n_t = \{d \in D : t \in d\} $)
unary	1
inverse document frequency	$\log rac{N}{n_t} = -\log rac{n_t}{N}$
inverse document frequency smooth	$\log\!\left(\frac{N}{1+n_t}\right)+1$
inverse document frequency max	$\log\!\left(rac{\max_{\{t'\in d\}}n_{t'}}{1+n_t} ight)$
probabilistic inverse document frequency	$\log rac{N-n_t}{n_t}$

But, Tokenization matters

- Tokenization
 - Splitting/Dividing text into meaningful? tokens
 - Based on Tokens
 - Representations will vary
 - What is a token?
 - Words?
 - Punctuations?
 - Emails?
 - URL?
 - Phone Number?
 - The priority is to reduce the sparsity
 - Sparse means no representation at all

Lemmatization/Stemming/Morph Analysis

- Languages are beautiful
- A root can have multiple word forms
 - o walk, walks, walked, walking for walk
 - o go, goes, went, going, gone for go
 - o child, children for child
- Can we represent all these into a single root form?
 - This can be done using Lemmatization (finding lemma) or Morph Analysis
 - Usually linguistic root
- Stemming
 - Reduces a word to its base form (may not be linguistic)
 - Usually done using basic rules of affixation
- Other Preprocessing
 - Case Normalization
- Indian Languages are much more complex
 - Single root can have thousands of word forms in Dravidian languages

Basic Units of Processing

- Word n-grams
 - Text: I am in Surat .
 - Unigrams (n=1): [I, am, in, Surat, .]
 - Bigrams (n=2): [I am, am in, in Surat, Surat.]
 - Trigrams (n=3): [I am in, am in Surat, in Surat.]
 - So on
- Character n-grams
 - Text: I am in Surat.
 - o Unigrams: [I,SPACE, a, m, i, n, S, u, r, t, .]
 - Bigrams: [ISPACE, SPACEa, am, mSPACE, SPACEi, in, nSPACE, SPACES, Su, ur, ra, at, tSPACE, SPACE.]
 - So on
- Multiple n-grams at Word level and Character level can be combined
- Both can also be combined

Classification Tasks in NLP

- Text Classification
 - Author Identification
 - Sentiment Classification/Detection
 - Aspect Detection
 - Hate Speech Detection
 - Dialect Identification
 - Offensive Language Identification
 - Fake News Detection
- Usually done using Supervised ML Techniques
- In case of scarce data, Semi-Supervised Techniques are also explored

Hate Speech Detection

- Detecting Offensive language in various social media platforms especially Twitter is challenging
- These often target individuals, communities, organizations, and nations
- Several ML Approaches can be used for this task
 - o SVM
 - Random Forest
 - Adaboost
 - Ensemble Models
- Preprocessing
 - Customized tokenizer for Twitter
 - Normalize the Twitter handles and hashtags as "USRTOK", and urls as "URLTOK".
- Features
 - o TF-IDF
 - Word Unigrams
 - Character 2-5 grams
 - Length of Tweet

Sentiment Analysis

- Detect the sentiment polarity of a piece of text
- Can be binary or multi class
 - o Binary positive, negative
 - Multi class positive, negative, neutral
- Example:
 - Text: The Indian team succumbed to a 10-wicket loss against Australia in the Border-Gavaskar series
 - o Sentiment: *negative*
- Features
 - TF-IDF
 - Word Unigrams + Bigrams
 - Character 2-6 grams
 - Sentiment Lexicon
 - Count the total positive and negative words in the sample and concatenate with the TF-IDF vectors
- Models
 - SVM
 - Logistic Regression
 - Random Forest

Dialect Identification

- Arabic (language), refers to a wide spectrum of native languages used in Middle East and North Africa
- Automatic identification of these dialects becomes an essential task for major natural language applications such as MT, Speech Recognition, Tourist Guide etc.
- It is also modeled as a multi class classification where the classes are represented by the dialects
- Features
 - o TF-IDF
 - Word n-gram
 - Character n-grams
 - Language Modeling (LM) Score
 - Given a sequence of words w₁, w₂, w₃, .., w_{n-1}, need to predict the next word w_n
 - Usually represented as log of the conditional probability $P(w_n|w_1, w_2, w_3, ..., w_{n-1})$
- Models
 - SVM
 - Multinomial Naive Bayes'
 - Logistic Regression

Text Classification using Naive Bayes'

- Given a piece of text, we need to predict the class
- Let us take the example of document classification
- A document d can be considered as a collection of words w₁, w₂, ..., w_n
- The classification can be modeled as depicted below:

$$egin{aligned} & rgmax_{c \in C} \mathbb{P}(c|d) = rgmax_{c \in C} rac{\mathbb{P}(d|c)\mathbb{P}(c)}{\mathbb{P}(d)} \ & \hat{c} = rgmax_{c \in C} \mathbb{P}(c|d) = rgmax_{c \in C} \mathbb{P}(d|c)\mathbb{P}(c) \end{aligned}$$

$$\hat{c} = \operatorname{argmax}_{c \in C} \mathbb{P}(c) \mathbb{P}(w_1 | c) \mathbb{P}(w_2 | c) \dots \mathbb{P}(w_{n-1} | c) \mathbb{P}(w_n | c)$$

Sequence Labeling

- Given a sequence, the task here is to predict the labels
- Many NLP Tasks falls in this category
 - Part-Of-Speech (POS) Tagging
 - Sentence: I am going home .
 - POS Sequence: PRP VAUX VM NN PUNC
 - Chunking
 - Sentence: I am going home .
 - Chunks: NP (I_PRP) VP(am_VAUX going_VM) NP(home_NN ._PUNC)
 - Named Entity Recognition (NER)
 - Sentence: SVNIT Surat is situated in the Surat city.
 - Named Entities: ORGANIZATION(SVNIT Surat), LOCATION(Surat)

What is required for POS Tagging?

Tagset

Language	Tagset	#Tags	
English	British National Corpus (BNC) Basic	61	
	Penn Treebank POS	36	
	Universal POS	17	
Indian Languages	BIS Tagset	42 (maximum)	
	Universal POS	17	

BIS POS Tagset

- Languages Covered
 - o Bangla
 - Gujarati
 - Hindi
 - Kashmiri
 - Konkani
 - Maithili
 - Marathi
 - Punjabi
 - o Urdu
 - o Telugu
 - Kannada
 - Malayalam
 - o Tamil
 - Odia (not included, but all types covered by BIS)
- Does not include the tagsets from North-Eastern region
 - However, can easily be extended
- Hierarchical with more than one level of information
 - Top Level
 - Subtypes
- Morphologically richer languages use the superset of tags (finer levels of verb tags) while others use a subset of tags

POS Tags in BIS

N_NN	PR_PRL	V_VM_VF	RP_INTF
N_NNP	DM_DMD	V_VM_VNF	RP_INJ
N_NST	DM_DMI	V_VM_VNG	RD_PUNC
N_NNV	DM_DMR	V_VAUX	RD_SYM
PR_PRP	DM_DMQ	CC_CCD	RD_UNK
PR_PRI	JJ	cc_ccs	RD_ECH
PR_PRF	RB	CC_CCS_UT	QT_QTF
PR_PRC	PSP	RP_RPD	QT_QTC
PR_PRQ	V_VM	RP_NEG	QT_QTO

Approaches

- Rule Based
- Machine Learning Based
 - Naive Bayes
 - Trie Based
 - Hidden Markov Model (HMM)
 - Support Vector Machine (SVM)
 - Conditional Random Fields (CRF)
 - Maximum Entropy Markov Models (MEMM)
- Deep Learning Approaches
 - BiLSTM Based
 - BERT/Transformer Based
 - LLM Based

Conditional Random Fields (CRF)

- Each sample or token is represented as a vector of features
- Each sequence or sentence is a collection of features
- Features used for Morph Analysis and POS Tagging
 - Token Features
 - Token
 - Prefixes upto length 4
 - Suffixes upto length 7
 - Binary Length Feature (MORE if len(token) > 4 else LESS)
 - Context Features
 - Window length 5 (w_{i-2}, w_{i-1}, w_i, w_{i+1}, w_{i+2})

Example

- Mary Jane can see Will.
- Spot will see Mary.
- Will Jane spot Mary?
- Mary will pat Spot.

https://www.mygreatlearning.com/blog/pos-tagging/

Implementation of CRF

Implemented using CRF++ toolkit (https://taku910.github.io/crfpp/)

- Code shared for training the CRF models for Hindi
 - Available at https://github.com/Pruthwik/Hindi-POS-Tagger-and-Chunker-Training-Using-CRF

Unsupervised Learning

Clustering Hate Speech Detection trumpisatraitor

