AQ1 REACTIONS ACIDE-BASE EN SOLUTION AQUEUSE

I. Rappel: concept acide-base

I.1. la théorie de Brönsted (1923)

Un <u>acide</u> est une espèce chimique susceptible de libérer un proton H⁺, Une <u>base</u> est une espèce chimique susceptible de capter un proton H⁺,

I.2. Couple acide-base

• AH un acide : par définition AH $\stackrel{\rightarrow}{\sim}$ A⁻ + H⁺ (notation symbolique)

⇒ A⁻ est la base conjuguée de AH, ⇒ AH / A⁻ est un couple acide / base

(type: HCO_2H / HCO_2^-).

• <u>B une base</u> : par définition B + H⁺ → BH⁺ (notation symbolique)

⇒ BH⁺ est l'acide conjugué de B,
 ⇒ BH⁺ / B est un couple acide / base

(type: NH_4^+ / NH_3).

II. Les réactions acide-base

II.1. Définition

Une réaction acide-base est une réaction d'échange protonique entre un donneur de proton (forme acide du couple n^2 : A_1 / B_1) et un accepteur de proton (forme basique du couple n^2 : A_2 / B_2) :

$$A_1 + B_2 \xrightarrow{\leftarrow} B_1 + A_2$$

Un acide ne peut libérer un proton que s'il y a en solution une base pour le capter.

II.2. Réactions avec l'eau

H+ n'existe pas en solution aqueuse il ne peut être qu'échangé; l'échange protonique peut aussi se faire avec le solvant.

Ex.:
$$\bullet$$
 HA + H₂O $\stackrel{\rightarrow}{\leftarrow}$ A⁻ + H₃O⁺ acide1 base2 base1 acide2

couples mis en jeu: HA / A^- et H_3O^+ / H_2O

couples mis en jeu: BH+ / B et H₂O / OH⁻

II.3. H₂O solvant amphotère

- ♦Un corps amphotère ou un ampholyte est une espèce chimique possédant à la fois un caractère acide et un caractère basique.
- ♦ Réaction d'auto ionisation de H_2O : H_2O + H_2O $\stackrel{\rightarrow}{_}$ H_3O^+ + OH^-
 - ⇒ réaction acide-base: base1 acide2 acide1 base2
 - \Rightarrow couples mis en jeu : $\underline{H_2O}$ / OH^- et H_3O^+ / $\underline{H_2O}$.
 - \Rightarrow constante de l'équilibre = produit ionique de l'eau $K_e = [H_3O^+].[OH^-] = 10^{-14}$ à 25°C

La réaction est aussi appelée réaction d'autoprotolyse de l'eau.

III. Forces des acides et des bases

III.1. Acide fort - base forte

◆ Acide fort = acide pour lequel la réaction d'hydrolyse est totale:

$$HA + H_2O \rightarrow A^- + H_3O^+$$

- une solution aqueuse de HA ne contient pas de molécule de HA.
- base conjuguée d'un acide fort = base indifférente (aucune aptitude à capter des H⁺)

Exemples: HCI, HNO₃.

◆ Base forte = base pour laquelle la réaction d'hydrolyse est totale:

$$B + H_2O \rightarrow BH^+ + OH^-$$

- une solution aqueuse de B ne contient pas de molécule de B.
- acide conjugué d'une base forte = acide indifférent.

Exemples: NaOH, NH2-.

III.2. Acide faible - Base faible

♦ Acide faible = acide pour lequel la réaction d'hydrolyse n'est que partielle: HA + $H_2O \xrightarrow{\rightarrow} A^- + H_3O^+$

$$HA + H_2O \xrightarrow{7} A^{-} + H_3O^{-}$$

D'après la loi d'action de masse cet équilibre est caractérisé par la constante:

$$K_A = \frac{a_{A\cdots} \, a_{H3O^+}}{a_{HA}.a_{H2O}} \quad soit: \ K_A = \frac{[A^-][H_3O^+]}{[HA]}$$

K_A = constante d'acidité du couple AH / A⁻

On définit aussi $pK_A = -\log_{10} K_A$ (donné dans les tables).

L'acide HA est d'autant plus fort que son pK_A est petit.

Exemples :
$$HF/F^ pK_A = 3,2$$
 $HCN/CN^ pK_A = 9,3$

♦ Base faible = base pour laquelle la réaction d'hydrolyse n'est que partielle: B + H_2O $\stackrel{\rightarrow}{\leftarrow}$ BH⁺ + OH⁻

$$B + H_2O \xrightarrow{\rightarrow} BH^+ + OH$$

Cet équilibre est caractérisé par la constante
$$K_B = \frac{[BH^+][HO^-]}{[B]}$$

K_B = constante de basicité du couple BH⁺ / B

On définit aussi $pK_B = - log_{10} K_B$.

La base B est d'autant plus forte que son pK_B est petit.

Exemples:
$$NH_4^+/NH_3$$
 $pK_B = 4.8$
 $HNO_2/NO_2^ pK_B = 10.7$

III.3. Cas de l'eau.

pK_A et pK_B de H₂O.

Réaction :
$$H_3O^+ + H_2O \stackrel{\rightarrow}{\sim} H_2O + H_3O^+$$

Constante d'acidité
$$K_A = 1 \Rightarrow pK_A(H_3O^+/H_2O) = 0$$

Réaction :
$$H_2O + H_2O \xrightarrow{\leftarrow} H_3O^+ + HO^-$$

Constance de basicité $K_B = [H_3O^+][HO^-] = K_e \Rightarrow pK_B(H_3O^+/H_2O) = 14$

Couple H₂O/HO⁻

Réaction : $H_2O + H_2O \stackrel{\rightarrow}{\smile} HO^- + H_3O^+$

Constante d'acidité $K_A = [H_3O^+][HO^-] = K_e \Rightarrow pK_A(H_2O/HO^-) = 14$

Réaction : $HO^- + H_2O \xrightarrow{\sim} H_2O + HO^-$

Constance de basicité $K_B = 1 \Rightarrow pK_B(H_2O/HO^-) = 0$

♦ Relation entre le pK_A et pK_B d'un même couple acide-base (ex: AH/A-):

$$K_A = \frac{[A^-][H_3O^+]}{[HA]}$$
 et $K_B = \frac{[AH][HO^-]}{[A^-]}$
Ainsi $K_A.K_B = = [H_3O^+][HO^-] = K_e$

D'où à 25°C p K_A + p K_B = p K_e = 14

III.4. Cas des polyacides ou des polybases.

Soit H_nA un polyacide, on peut appliquer la loi d'action de masse à chacun des équilibres relatif à une de ces acidités, on définit ainsi n constantes d'acidité.

Exemple:

 $H_2S/HS^-pK_{A1} = 7.0$ et $HS^-/S^{2-}pK_{A2} = 13.0$

III.5. Quelques acides-bases à connaitre.

• Acide sulfurique

L'acide sulfurique, appelé jadis huile de vitriol ou vitriol, est un composé chimique de formule H₂SO₄.

C'est un acide minéral dont la première acidité est forte (la deuxième a un pK_A très faible de 1.9) est seulement dépassée par quelques super acides. Il est miscible à l'eau en toutes proportions, où il se dissocie en libérant des cations hydronium. En première approximation il est souvent considéré comme un diacide fort dans l'eau : $2H_2O + H_2SO_4 \rightarrow 2H_3O^+ + SO_4^{2-}$

Acide nitrique

L'acide nitrique, parfois appelé acide azotique, est un composé chimique de formule HNO₃. Liquide incolore lorsqu'il est pur, il s'agit d'un acide fort, généralement utilisé en solution aqueuse, jadis appelée «eau-forte » par les alchimistes puis les graveurs sur cuivre.

Acide chlorhydrique

L'acide chlorhydrique est une solution aqueuse ayant pour solutés des ions oxonium (H₃O⁺) et des ions chlorure (Cl⁻). On peut l'obtenir par dissolution dans l'eau du chlorure d'hydrogène (HCl) qui est un gaz. Le gaz HCl est un acide fort qui s'ionise totalement en solution aqueuse. L'acide chlorhydrique est le principal constituant des acides gastriques. C'est un acide couramment utilisé comme réactif dans l'industrie chimique.

Acide phosphorique

L'acide phosphorique est un triacide de formule H₃PO₄. Ses trois acidités sont faibles (pKA₁ = 2.1 ; pKA₂ $= 7.2 \text{ et pK}_{A3} = 12.7$

L'acide acétique ou acide éthanoïque est un acide carboxylique de formule chimique : C₂H₄O₂ ou CH₃COOH.

C'est un acide faible dans l'eau (p $K_A = 4.8$

• La soude

La solution d'hydroxyde de sodium, souvent appelée soude, est une solution aqueuse transparente. Concentrée, elle est corrosive et souvent appelée lessive de soude. L'hydroxyde de sodium, appelé également soude ou soude caustique, est un solide ionique de formule chimique NaOH. Il se présente généralement sous forme de pastilles, de paillettes ou de billes blanches, corrosives. Il est très soluble dans l'eau

• L'ion hydrogénocarbonate

L'ion hydrogénocarbonate est un ion polyatomique dont la formule chimique est HCO₃⁻. Il a une double propriété, il est à la fois acide et base appartenant à deux couples acido-basiques différents, on appelle cela une espèce amphotère.

 $(pK_{A1} = 6.3 \text{ et } pK_{A2} = 10.3)$

• L'ammoniac

L'ammoniac est un composé chimique de formule NH₃ (groupe générique des *nitrures d'hydrogène*). Dans les conditions de température et de pression ordinaire, c'est un gaz fortement soluble dans l'eau. La solution correspondant est appelée ammoniaque (mais on confond souvent les deux noms). Il s'agit d'une base faible

 $(pK_A = 9.2)$

III.6. Echelle d'acidité

- ♦ Effet de nivellement du solvant:
- d'après les définitions d'un acide fort et d'une base forte, H₃O⁺ est l'acide le plus fort qui puisse exister en solution aqueuse et OH⁻ est la base la plus forte qui puisse exister en solution aqueuse.
 - l'échelle d'acidité est donc limitée:

Seuls les couples pour lesquels $0 \le pK_A \le 14$ peuvent être différenciés en solution aqueuse.

◆ Exemples

IV. Domaines de prédominance

IV.1.Définition du pH d'une solution aqueuse

Définition : pH = -Log₁₀(a_{H3O+}) où a_{H3O+} = activité de H₃O⁺

Cas des solutions diluées = cas usuel : $a_{H3O+} = [H_3O^+]$.

- ♦ Cas de l'eau pure : [H_3O^+] = [HO^-] \Rightarrow pH = -Log₁₀($\sqrt{K_e}$) = 7 (à 25°C) \Rightarrow solution dite neutre.
- ◆ Conséquence: une solution est dite acide si pH < 7 ([H₃O⁺] > [HO⁻]) une solution est dite basique si pH > 7 ([H₃O⁺] < [HO⁻])

Remarque:

On définit pOH = $-\text{Log}_{10}(a_{\text{HO-}})$ comme à l'équilibre on a toujours $K_e = [H_3\text{O}^+].[H\text{O}^-]$, on obtient pOH+pH = pK_e.

IV.2.Domaines de prédominance

- ♦ Considérons le couple AH / A⁻ de constante d'acidité $K_A = \frac{[A^-][H_3O^+]}{[HA]}$ soit pH = p K_A + Log $\frac{[A^-]}{[HA]}$ On en déduit:
 - Si pH < pK_A alors [A⁻] < [AH] AH prédomine sur A⁻.
 - Si pH = p K_A alors $[A^-]$ = [AH]
 - Si pH > pK_A alors [A⁻] > [AH] A⁻ prédomine sur AH.

⇒Diagramme (simplifié) de prédominance :

$$\xrightarrow{AH} \xrightarrow{A^{-}} pH$$

♦ Pour les polyacides il est possible de superposer les diagrammes de prédominances relatifs à chaque couple; ce qui donne dans le cas d'un diacide le diagramme ci-dessous:

IV.3.Lecture d'un diagramme

Exemples:

•
$$\frac{[A^{-}]}{[HA]}$$
 > $10^{n} \Leftrightarrow pH_0 \ge pK_A + n$ (fig.1)

$$ullet \frac{[A^{\hat{}}]}{[HA]} < 10^{-n} \Leftrightarrow pH_0 \le pK_A - n \text{ (fig.2)}$$

$$\begin{array}{c|cccc}
AH & & A^{-} \\
\hline
X & & pH_{0} & pK_{A} \\
\hline
& & fig.2
\end{array}$$

Rg: Un raisonnement totalement analogue peut être couples BH⁺ / B en remplaçant pK_A par pK_B et pH par pOH = $-\log_{10}([HO^-])$. mené sur les

$$\xrightarrow{B} \xrightarrow{BH+} pOH$$

V. Diagrammes de distribution

V.1. Présentation

On peut tracer le diagramme de distribution pour des espèces acido-basiques. Il s'agit de tracer le graphe du pourcentage de chacune des espèces en fonction pH.

Exemple Diagramme de distribution de l'acide acétique CH₃COOH

Le pH de la solution d'acide acétique de concentration initiale C₀ peut varier de manière continue par addition de soude concentrée de sorte que la variation de volume puisse être négligée. Si on note C_A la concentration en acide acétique CH₃CHOOH et C_B celle en acétate CH₃COO⁻, C_A et C_B vérifient les deux équations suivantes :

La conservation de la matière C₀ = C_A + C_B

La constante d'acidité : $K_A = \frac{hC_B}{C_A}$ (pour simplifier on note $h = [H_3O^+]_{eq}$)
On calcule alors $\alpha_A = \frac{C_A}{C_0}$ et $\alpha_B = \frac{C_B}{C_0}$ correspondant aux pourcentages respectifs de l'acide acétique et de l'acétate présents en solution.

Calcul:

Par la conservation de la matière : $\frac{1}{\alpha_A} = 1 + \frac{C_B}{C_A}$ Constant d'acidité : $\frac{C_B}{C_A} = \frac{K_A}{h}$

D'où
$$\alpha_A = \frac{h}{h + K_A}$$

De même on trouve $\alpha_B = \frac{K_A}{h + K_A}$

Remarque

Sur le diagramme les courbes se coupent pour $pH = pK_A$

V.2. Exemples

Acide ortho phosphorique $pK_{A1} = 2.1 pK_{A2} = 7.2 pK_{A3} = 12.4$

VI. Etude d'une réaction acidobasique

VI.1. Calcul de la constante d'équilibre

Soit la réaction acide base symbolique : $A_1 + B_2 \xrightarrow{\leftarrow} B_1 + A_2$ On applique la loi d'action de masse pour trouver la constante d'équilibre :

$$\begin{split} K &= \frac{[B_1][A_2]}{[A_1][B_2]} = \frac{[B_1][H_3O^+]}{[A_1]} \cdot \frac{[A_2]}{[B_2][H_3O^+]} \\ D'où \; K &= \frac{K_{A1}}{K_{A2}} = 10^{\triangle pKA} \end{split}$$

soit
$$\Delta pK_A = pK_{A2} - pK_{A1}$$

Si $\Delta pK_A > 0$ alors K>1 la réaction se fera effectivement dans le sens écrit.

Si ΔpK_A < 0 alors K<1 la réaction se fera en sens inverse de celui écrit.

VI.2. La réaction prépondérante

Lorsque plusieurs acides et plusieurs bases sont mélangés, pour connaître l'état d'équilibre du système on cherche à déterminer la réaction prépondérante, c'est-à-dire celle qui a la constante d'équilibre la plus grande et donc celle qui modifiera l'état initial.

D'après les résultats précédents :

- ♦ <u>Réaction prépondérante</u> = action de l'acide le fort sur la base la plus forte tous deux en quantités non négligeables dans la solution.
- \Rightarrow C'est la réaction de plus grande constante d'équilibre (ce qui correspond à une valeur maximale pour $\Delta p K_A$).

Ainsi connaissant la réaction prépondérante, sa constante d'équilibre, par un tableau d'avancement dans des cas simples on pourra trouver l'état d'équilibre de la solution.

VI.3. Exemples

• Mise en solution d'un acide faible

On met en solution un acide faible de constante d'acidité pK_A tel que sa concentration soit C_0 . Déterminer l'état d'équilibre de la solution.

① On trace l'échelle d'acidité en entourant les espèces présentes

② On recherche la réaction prépondérante : l'action de l'acide le plus fort sur la base la plus forte :

$$HA + H_2O \xrightarrow{\leftarrow} A^- + H_3O^+$$

- ③ On calcule sa constante d'équilibre : $K = K_A = 10^{-pKA}$
- ④ On fait un tableau d'avancement

	HA	H ₂ O	→ ←	A ⁻	H₃O ⁺
Etat initiale	C ₀	Solvant	`	-	-
Equilibre	$C_0 - x$	Solvant		Х	Х

$$K_A = \frac{[A^-][H_3O^+]}{[HA]} = \frac{x^2}{C_0-x}$$

Soit
$$x^2 + K_A x - C_0 K_A = 0$$

On ne retient que la racine positive.

Le pH de la solution est donné par pH = $-\text{Log}[H_3O^+] = -\text{Log}(x)$

Remarque:

La plupart du temps K_A <<1 la réaction est donc peu déplacée. On a alors x << C₀

D'où
$$K_A \approx x^2/C_0$$

Ainsi
$$x = \sqrt{K_A C_0}$$

Et pH =
$$\frac{1}{2}$$
(pK_A + pC₀)

Exemple : L'acide acétique $pK_A = 4.8$ et $C_0 = 10^{-2}$ mol.L⁻¹

On a alors pH = 3.4

D'où x = $10^{-3.4}$ mol.L⁻¹ qui est bien très petit devant C₀.

• Mélange d'un acide et d'une base.

On mélange de l'ammoniaque NH_3 à la concentration C_0 et de l'acide acétique de concentration $2C_0$.

On donne les pK_A:

$$CH_3CO_2H/CH_3CO_2^-$$
 pK_{A1} = 4.8

 NH_4^+/NH_3 pK_{A2} = 9.2

① On trace l'échelle d'acidité en entourant les espèces présentes

- ② On recherche la réaction prépondérante : l'action de l'acide le plus fort sur la base la plus forte :
- CH₃CO₂H + NH₃ $\stackrel{\rightarrow}{\leftarrow}$ CH₃CO₂ + NH₄⁺

 ③ On calcul sa constante d'équilibre : K =10^(pKA2-pKA1) = 10^{4.4}
- ④ On fait un tableau d'avancement

	CH ₃ CO ₂ H	NH ₃	→ ←	CH ₃ CO ₂ -	NH ₄ ⁺
Etat initiale	2C ₀	C ₀	,	-	-
Equilibre	$2C_0 - x$	$C_0 - x$		Х	Х

 $K \gg 1$ donc la réaction est quasitotale Le réactif limitant est NH_3 donc $x = C_0$

A l'équilibre [CH₃CO₂H] = [CH₃CO₂-]=[NH₄+] = C₀ et [NH₃] = ϵ

Le pH de la solution est donné par pH =p K_{A1} + Log $\frac{[CH_3CO_2]}{[CH_3CO_2H]}$ = p K_{A1} .

AQ1 REACTIONS ACIDE-BASE EN SOLUTION AQUEUSE

I. Rappel: concept acide-base	<u>1</u>
I.1. la théorie de Brönsted (1923)	<u>1</u>
I.2. Couple acide-base	<u>1</u>
II. Les réactions acide-base	<u>1</u>
II.1. Définition	<u>1</u>
II.2. Réactions avec l'eau	<u>1</u>
II.3. H₂O solvant amphotère	<u>1</u>
III. Forces des acides et des bases	2
III.1. Acide fort - base forte	2
III.2. Acide faible - Base faible	<u>2</u>
III.3. Cas de l'eau .	<u>2</u>
III.4. Cas des polyacides ou des polybases.	3
III.5. Quelques acides-bases à connaitre	3
III.6. Echelle d'acidité	<u>4</u>
IV. Domaines de prédominance	5
IV.1.Définition du pH d'une solution aqueuse	5
IV.2.Domaines de prédominance	6
IV.3.Lecture d'un diagramme	<u>6</u>
V. Diagrammes de distribution	<u>6</u>
V.1. Présentation	<u>6</u>
V.2. Exemples	<u>7</u>
VI. Etude d'une réaction acidobasique	<u>8</u>
VI.1. Calcul de la constante d'équilibre	<u>8</u>
VI.2. La réaction prépondérante	<u>8</u>
VI.3. Exemples	<u>9</u>