CSCI 303: Algorithms, HW 10

Due: 3:30 pm, Wednesday, 11/7

1. Problem 1

(c) The graph is a directed acyclic graph.

2. Problem 2

(14 points)(b) Is the topological ordering produced during your execution in problem 2a the unique topological ordering for this graph? If so, explain why. If not, explain why not (giving an alternative topological ordering suffices). (1 point) (c) Does the use of the adjacency list, augmented with a queue, enforce a consistent outcome for topological sort? If so, explain why. If not, explain why not. Again, think like a computer! (1 point)

(a) Topological sort

	Indegree	Adjacent node				
	0	v_1	<i>v</i> ₄	<i>v</i> ₅	<i>v</i> ₇	
	0	v_2	<i>v</i> ₃	<i>v</i> ₅	<i>v</i> ₆	
i	1	v_3	v_4	v_5		
1.	2	v_4	<i>v</i> ₅			
	4	<i>v</i> ₅	<i>v</i> ₆	<i>v</i> ₇		
	2	v_6	<i>v</i> ₇			
	3	<i>v</i> ₇				

Enqueue v_1 and v_2

Queue Start

$$v_1$$
 v_2

ii. Dequeue v_1

Topological Order = v_1

Indegree	Adjacent node			
1	v_3	v_4	<i>v</i> ₅	
1	v_4	<i>v</i> ₅		
3	<i>v</i> ₅	<i>v</i> ₆	<i>v</i> ₇	
1	<i>v</i> ₆	<i>v</i> ₇		
2	<i>v</i> ₇			

Queue Start

 v_2

iii. Dequeue v_2

Topological Order = v_1 , v_2 Indegree Adjacent node

ır	iaegree	Adjacent node			
	0	v_3	<i>v</i> ₄	<i>v</i> ₅	
	1	v_4	<i>v</i> ₅		
	2	v_5	<i>v</i> ₆	v_7	
	0	v_6	<i>v</i> ₇		
	2	<i>v</i> ₇			

Enqueue v_3 , v_6

Queue Start

 v_3, v_6

iv. Dequeue v_3

Topological Order = v_1 , v_2 , v_3

Indegree	Adjacent node			
0	v_4	<i>v</i> ₅		
1	<i>v</i> ₅	<i>v</i> ₆	<i>v</i> ₇	
2	v_7			

Enqueue v_4

Queue Start

 v_6, v_4

v. Dequeue v_6

Topological Order = v_1 , v_2 , v_3 , v_6

Indegree	Adjacent node			
1	<i>v</i> ₅	<i>v</i> ₆	<i>v</i> ₇	
1	v_7			

Queue Start

 v_4

vi. Dequeue v_4

Topological Order = v_1 , v_2 , v_3 , v_6 , v_4

Indegree	Adjacent node		0,			
0	<i>v</i> ₅	v ₆		<i>v</i> ₇		
1	V7					

Enqueue v_5

Queue Start

 v_5

vii. Dequeue v₅

Topological Order = v_1 , v_2 , v_3 , v_6 , v_4 , v_5

Indegree	Adjacent node	
0	v_7	

Enqueue *v*₇

Queue Start

*V*7

viii. Dequeue v₇

Topological Order = v_1 , v_2 , v_3 , v_6 , v_4 , v_5 , v_7

- (b) Another possible topological order is v_2 , v_1 , v_3 , v_6 , v_4 , v_5 , v_7
- (c) No it does not because if there are two items that are enqueued at the same time, whichever is enqueued first will affect how it is ordered.

3. Problem 3

	ν	known	d_v	p_{v}
	v_1	F	0	0
	v_2	F	∞	0
(0)	<i>v</i> ₃	F	∞	0
(a)	v_4	F	∞	0
	v_5	F	∞	0
	v_6	F	∞	0
	v_7	F	∞	0
	\overline{v}	known	d_v	p_v
	$\frac{v}{v_1}$	known T	$\frac{d_v}{0}$	$\frac{p_v}{0}$
(b)	v_1	T	0	0
(b)	v_1 v_2	T F	0 ∞	0
(b)	v_1 v_2 v_3	T F F	0 ∞ ∞	0 0 0
(b)	v ₁ v ₂ v ₃ v ₄	T F F F	0 ∞ ∞ 6	0 0 0 v ₁