全国信息学奥林匹克联赛(NOIP2010)复赛模拟赛六 提高组

(请选手务必仔细阅读本页内容)

一. 题目概况

中文题目名称	Fibonacci Sequence	Number	PermRLE	TreeCount
英文题目名称	fibonacci	number	permrle	treecount
可执行文件名	fibonacci.exe	number.exe	permrle.exe	treecount
输入文件名	fibonacci.in	number.in	permrle.in	treecount.in
输出文件名	fibonacci.out	number.out	permrle.out	treecount.out
每个测试点时限	1秒	1~2 秒	1~4 秒	1秒
测试点数目	10	10	10	10
每个测试点分值	10	10	10	10
附加样例文件	有	有	有	有
结果比较方式	全文比较 过滤行末空格 及文末回车	全文比较 过滤行末空格 及文末回车	全文比较 过滤行末空格 及文末回车	全文比较 过滤行末空格 及文末回车
题目类型	传统	传统	传统	传统

二. 运行内存限制

内存上限	64M	64M	64M	64M
------	-----	-----	-----	-----

三. 注意事项

- 1、文件名(程序名和输入输出文件名)必须使用小写。
- 2、C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3、symbol 评测时采用的机器配置为: CPU 2.33 GHz,内存 2G,上述时限以此配置为准。

1. Fibonacci sequence

(fibonacci.pas/c/cpp)

【问题描述】

f(n) = f(n-1) + f(n-2) $\{n \ge 3, f(1) = 1, f(2) = 1\}$,这就是著名的Fibonacci sequence。现在给你两个数x,y,其中 $x \le y,y \le 2^{31} - 1$ 。

你的任务就是求出 $\sum_{i=x}^{y} f(i) \mod 10000$ 。即 Fibonacci 数列第 $x^{\sim}y$ 项的和除以 10000的余数。

【输入】

第一行是一个整数 $T(T \le 1000)$, 表示有多少组数据。接下来T行,每行两个整数x, y, 意义如上述。

【输出】

输出 T 行,对于每组数据,输出 $\sum_{i=x}^{y} f(i) \mod 10000$ 。

【输入输出样例】

fibonacci.in	fibonacci.out
2	12
1 5	5976
127 255	

【数据约定】

对于 80%的数据,T = 1,且 $y \le 10^6$ 对于 100%的数据, $T \le 1000$,且 $y \le 2^{31} - 1$

2.Number

(number.pas/c/cpp)

【问题描述】

有N(2 \leq N \leq 15)个数 $a_1,a_2,\ldots,a_{n-1},a_n$,如果在这 N 个数中,有且仅有一个数能整除 m,那么整数 m 就是一个幸运数,你的任务就是在给定 $a_1,a_2,\ldots,a_{n-1},a_n$ 的情况下,求出第 K 小的幸运数。

【输入】

第一行为一整数数N,K($2 \le N \le 15$, $1 \le K \le 2^{31} - 1$),意义如上述。 接下来一行有 N 个整数, $a_1, a_2, \dots, a_{n-1}, a_n$,这 N 个整数均不超过 $2^{31} - 1$ 。

【输出】

输出一行,仅包含一个整数 ans,表示第 K 小的幸运数。答案保证不超过 10^{15} 。

【输出输出样例】

number.in	number.out
2 4	8
2 3	

number.in	number.out
2 100	12500
125 32767	

【数据约定】

对于 50%的数据, $N \le 5$,ans ≤ 100000

对于 80%的数据, $N \le 10$, ans $\le 10^{15}$

对于 100%的数据, $N \le 15$, ans $\le 10^{15}$

3. PermRLE

(PermRLE.pas/c/cpp)

【问题描述】

文本压缩的算法有很多种,这里给出一种叫做 PermRLE 的压缩算法。

定义一个整数 k, PermRLE 算法依赖于一种压缩顺序。所谓的压缩顺序就是一种 1^k 的排列。例如当 k=4 的时候,其中一种排列方式是 $\{1,2,4,3\}$,对于字符串"abdb",按照这种排列方式进行排列之后就变成了"abbd"。

对于一段长度为 Len 的文本,其中 k 能整除 Len,那么 PermRLE 算法就是把整个文本分成 Len div k 段,然后每一段按照一种 1^{\sim} k 的排列方式进行重新排列,重新排列完之后,就把这 Len div k 段进行合并。对于合并之后得到一个新字符串,PermRLE 算法就是把字符串中连续相同的字符合并成一个字符,例如 aabccaabb 合并后就变成了 abcab。

给出一段长度为Len($1 \le \text{Len} \le 50000$)的文本以及一个整数k($1 \le k \le 16$)其中 k 能整除 Len,你的任务就是找出一种 1^{\sim} k 的排列,使得 PermRLE 算法压缩之后的文本的长度最小。当然,为了降低难度,你只需输出文本压缩之后最小的长度,而不需要输出这种排列。

【输入】

输入第一行有一个整数 $k(1 \le k \le 16)$, 意义如上所述。

接下来一行有一个字符串,保证字符串的长度能被 k 整除,且字符串里仅含有小写字母。

【输出】

输出一行,仅包含文本压缩之后的最小长度。

【输出输出样例】

permrle.in	permrle.out
4	7
abcabcabc	

permrle.in	permrle.out
3	12
abcabcabc	

【样例解释】

对于样例一,k的排列是1432,然后原字符串变成aacbbbacccba,压缩之后变成acbacba,长度为7,可以证明,这是最小答案。

对于样例二,无论 k 的排列如何,都无法使压缩之后的字符串长度小于 12

【数据约定】

对于 50%的数据, $1 \le k \le 5$, $1 \le Len \le 1000$ 对于 100%的数据, $1 \le k \le 16$, $1 \le Len \le 50000$

4. TreeCount

(treecount.pas/c/cpp)

【问题描述】

给出一个有 $N(2 \le N \le 1000)$ 个顶点 $M(N-1 \le M \le N * (N-1)/2)$ 条边的无向连通图。设 dist1[i]表示在这个无向连通图中,顶点 i 到顶点 l 的最短距离。

现在要求你在这个图中删除M - (N-1)条边,使得这个图变成一棵树。设 dist2[i] 表示在这棵树中,顶点i到顶点1的距离。

你的任务是求出有多少种删除方案,使得对于任意的 i,满足 dist1[i]=dist2[i]。

【输入】

第一行,两个整数,N,M,表示有N个顶点和M条边。

接下来有 M 行,每行有 3 个整数x,y,len($1 \le x,y \le n,1 \le len \le 100$),表示顶点 x 和顶点 y 有一条长度为 len 的边。

数据保证不出现自环、重边。

【输出】

输出一个整数,表示满足条件的方案数 mod 2147483647 的答案。

【输出输出样例】

treecount.in	treecount.out
3 3	2
1 2 2	
1 3 1	
2 3 1	

【样例解释】

删除第一条边或者第三条边都能满足条件,所以方案数为2。

【数据规模】

对于 30%的数据, $2 \le N \le 5$, $M \le 10$

对于 50%的数据,满足条件的方案数不超过 10000

对于 100%的数据, $2 \le N \le 1000$