Institut für Informatik Heinrich-Heine-Universität Düsseldorf

Prof. Dr. Alice McHardy Robin Küppers Sebastian Konietzny Aaron Weimann WS 2013/2014 29.10.2013 Übungsblatt 1

Einführung in die Informatik I

Übungen zur Vorlesung

Musterlösung

1.1 Umrechnung zwischen Zahlensystemen (6 Punkte)

Vervollständigen Sie die folgende Tabelle, indem Sie in jeder Zeile zwischen den Zahlensystemen umrechnen.

Binärsystem	Hexadezimal system	Dezimal system
		$(76)_{10}$
	$(feba)_{16}$	
$(0001\ 0010\ 0110\ 0111)_2$		

Musterlösung

Binärsystem	Hexadezimal system	Dezimal system
$(0000\ 0000\ 0100\ 1100)_2$	$(4c)_{16}$	$(76)_{10}$
$(1111\ 1110\ 1011\ 1010)_2$	$(feba)_{16}$	$(65210)_{10}$
$(0001\ 0010\ 0110\ 0111)_2$	$(1267)_{16}$	$(4711)_{10}$

Hinweis zur Benotung: Je ein Punkt für jede berechnete Zahl in der Tabelle. Mögliche Rechenwege:

- \bullet Binärsystem \to Dezimalsystem: Zweierpotenzen aufsummieren
- \bullet Dezimalsystem \to Binärsystem: Division durch 2 mit Rest

- \bullet Binärsystem \to Hexadezimalsystem: vier Binärziffern entsprechen einer Hexadezimalziffer (Nibble)
- Hexadezimalsystem \rightarrow Binärsystem: analog
- \bullet Dezimalsystem \to Hexadezimalsystem: Division durch 16 mit Rest
- ullet Hexadezimalsystem o Dezimalsystem: Sechzehnerpotenzen aufsummieren

Beispielrechnungen:

Beispielrechnung (Dezimal \rightarrow Binärsystem) für (76)₁₀:

76/2 = 38 + 0	0
38/2 = 19 + 0	00
19/2 = 9 + 1	100
9/2 = 4 + 1	1100
4/2 = 2 + 0	01100
2/2 = 1 + 0	001100
1/2 = 0 + 1	$(1001100)_2$

Beispielrechnung (Hex \rightarrow Dezimalsystem) für $(feba)_{16}$:

$$(feba)_{16} = (a * 16^{0}) + (b * 16^{1}) + (e * 16^{2}) + (f * 16^{3})$$

= 10 + (11 * 16) + (14 * 256) + (15 * 4096)
= (65210)₁₀

Beispielrechnung (Bin \rightarrow Dezimalsystem) für (0001001001100111)₂:

$$(0001\ 0010\ 0110\ 0111)_2 = 2^0 + 2^1 + 2^2 + 2^5 + 2^6 + 2^9 + 2^{12}$$

= $1 + 2 + 4 + 32 + 64 + 512 + 4096$
= $(4711)_{10}$

1.2 Unicode und UTF-8 (6 Punkte)

1. Gegeben sei das folgende UTF-8 codierte Zeichen (als Hexadezimalzahl): E2 98 BA Bestimmen Sie das zugehörige Unicodezeichen und geben Sie es als Hexadezimalzahl an.

Schreiben Sie die Hexadezimalzahl zunächst binär auf und suchen Sie anschließend die "Nutz-Bits". Geben Sie alle Zwischenschritte Ihrer Berechnung an. (3 Punkte)

2. Gegeben sei das folgende Unicodezeichen (als Hexadezimalzahl): 26 7F Codieren Sie das Zeichen mit UTF-8 (als Hexadezimalzahl). Schreiben Sie die Hexadezimalzahl zunächst binär auf. Wandeln Sie dann die Zahl in die UTF-8 Codierung um und markieren Sie die Bits, die hinzugefügt werden müssen. Geben Sie alle Zwischenschritte Ihrer Berechnung an. (3 Punkte)

Musterlösung

- 1. $(E2\ 98\ BA)_{16} = 11100010\ 10011000\ 10111010_2$ $111000101001100010111010_2$ $00100110\ 00111010_2 = (26\ 3A)_{16}$ (WHITE SMILING FACE)
- 2. $(26\ 7F)_{16} = 00100110\ 011111111_2$ $1110001010011001101111111_2$ $1110\ 0010\ 1001\ 1001\ 1011\ 1111_2 = (E2\ 99\ BF)_{16}$ (WHEELCHAIR SYMBOL)

1.3 Rechnen in der Zweierkomplement-Darstellung (5 Punkte)

- 1. Nennen Sie zwei Vorteile der Zweierkomplement-Darstellung gegenüber der Vorzeichen-Betrags-Darstellung. (1 Punkt)
- 2. Wandeln Sie die folgenden Ausdrücke zunächst in 8-Bit-Zweierkomplement-Darstellung um. Berechnen Sie anschließend den Wert der Ausdrücke in Zweierkomplement-Darstellung¹. (1+1+2 Punkte)
 - (a) $(15)_{10} (8)_{10}$
 - (b) $(3)_{10} (10)_{10}$
 - (c) $(8)_{10} (39)_{10} (6)_{10} + (50)_{10}$

Musterlösung

¹Eine führende Eins (an 9. Stelle) wird verworfen, wenn sie bei der Addition durch einen Übertrag entsteht. (Sehen sie auch: http://de.wikipedia.org/wiki/Zweierkomplement#Rechenoperationen)

- 1. Nennen Sie zwei Vorteile der Zweierkomplement-Darstellung gegenüber der Vorzeichen-Betrags-Darstellung. (1 Punkt)
 - benötigt keine Fallunterscheidung, ob mit negativen oder mit positiven Zahlen gerechnet wird; d.h. im Rechenwerk muss keine Subtraktion implementiert sein
 - genau eine Darstellung für Null
- 2. Wandeln Sie die folgenden Ausdrücke zunächst in 8-Bit-Zweierkomplement-Darstellung um. Berechnen Sie anschließend den Wert der Ausdrücke in Zweierkomplement-Darstellung. (1+1+2 Punkte)

Rechenoperationen:

- Addition wie gewohnt (Überlauf ignorieren)
- Subtraktion als Negation gefolgt von Addition
- Negation als Komplementbildung und Addition von 1
- (a) $(8)_{10} = (00001000)_2$, invertieren: $(11110111)_2$, Eins addieren: $(11111000)_{2k}$

$$(15)_{10} - (8)_{10}$$

$$= (00001111)_{2k} + (11111000)_{2k}$$

$$= (00000111)_{2k}$$

$$= (7)_{10}$$

(b) $(10)_{10} = (00001010)_2$, invertieren: $(11110101)_2$, Eins addieren: $(11110110)_{2k}$

$$(3)_{10} - (10)_{10}$$

$$= (00000011)_{2k} + (11110110)_{2k}$$

$$= (11111001)_{2k}$$

$$= (-7)_{10}$$

(c) $(39)_{10} = (00100111)_2$, invertieren: $(11011000)_2$, Eins addieren: $(11011001)_{2k}$ $(6)_{10} = (00000110)_2$, invertieren: $(11111001)_2$, Eins addieren: $(11111010)_{2k}$

$$(8)_{10} + (-39)_{10} + (-6)_{10} + (50)_{10}$$

$$= (00001000)_{2k} + (11011001)_{2k} + (11111010)_{2k} + (00110010)_{2k}$$

$$= (11100001)_{2k} + (11111010)_{2k} + (00110010)_{2k}$$

$$= (111011011)_{2k} + (00110010)_{2k}, \text{ Überlauf ignorieren: } (11011011)_{2k} + (00110010)_{2k}$$

$$= (100001101)_{2k}, \text{ Überlauf ignorieren: } (00001101)_{2k}$$

$$= (13)_{10}$$

1.4 Darstellung von Festkomma- und Gleitkommazahlen (8 Punkte)

- 1. Beschreiben Sie die Bedeutung des ersten Bits und der beiden darauffolgenden Bitfolgen in der kompakten Gleitkommadarstellung. (2 Punkte)
- 2. Wieso ist die Normalisierung von Gleitkommazahlen sinnvoll? (2 Punkte)

Musterlösung

- 1. Beschreiben Sie die Bedeutung des ersten Bits und der beiden darauffolgenden Bitfolgen in der kompakten Gleitkommadarstellung. (2 Punkte)
 - erstes Bit: Vorzeichen (0 für positiv, 1 für negativ)
 - Mantisse: enthält die Ziffern der Gleitkommazahl, durch geeignete Wahl des Exponenten wird eine führende Eins erzwungen, die in der kompakten Darstellung eingespart werden kann.
 - Exponent: speichert die Stelle des Kommas bzw. die Größenordnung der Zahl
- 2. Wieso ist die Normalisierung von Gleitkommazahlen sinnvoll? (2 Punkte)
 - Normalisierte Zahlen sind direkt vergleichbar, denn jede darstellbare Zahl hat genau eine normalisierte Kodierung.
 - Das erste Bit ist implizit bekannt und kann weggelassen werden.
- - $0\ 10001011\ 000000000000000001000100$

$$exp: 2^{7} + 2^{3} + 2^{1} + 2^{0} = 139$$

$$exp - bias = 139 - 127 = 12$$

$$mantisse: 2^{-17} + 2^{-21}$$

$$\Rightarrow (1.0 + 2^{-17} + 2^{-21}) * 2^{12}$$

$$= 2^{12} + 2^{-5} + 2^{-9}$$

$$= 4096 + 0.03125 + 0.001953125 = 4096.033203125$$

$1\ 10000001\ 0100000000000000000000000$

 $exp: 2^7 + 2^0 = 129$

exp - bias = 129 - 127 = 2 $mantisse: 2^{-2}$

 $\Rightarrow (1.0 + 2^{-2}) * 2^2 = 5, Vorzeichenbit = 1 = > -5$