MATH 3160: Probability (UConn, Fall 2015)

Course schedule (Last updated: August 24, 2015)

This document supplements the information given on our websites: http://homepages.uconn.edu/jpchen/math3160f15/ and http://www.math.uconn.edu/~troby/math3160f15/. Unless otherwise noted, all readings refer to Ross, 9th edition. It is strongly recommended that you read the assigned sections before the indicated lecture. It is essential that you watch the posted videos listed above the day of the lecture.

For a condensed review of the material, refer to the lecture notes by Prof. Richard **Bass**, posted under "Resources" on the Piazza course page. The sections relevant to each class are listed in [square brackets] in the "Readings" column.

Wk	Date	Topic(s)	Readings [Review]	HW
1	T 9/1	Class intro. Counting principle. Permutations.	1.1-1.3	
	Video	Permutations & combinations.		
	R 9/3	Combinations and binomial coefficients: $\binom{n}{k}$. The	1.3-1.4	
		Binomial Thm. Khayyam-YangHui-Pascal triangle.		
2	Video	From binomials to multinomials.		
	T 9/8	Multinomials. The birthday problem. Counting	1.5 [Bass §1]	
		5-card poker hands.		
	Video	More counting problems.		
	R 9/10	Compositions (aka "# integer solutions of	1.6-2.2	HW1 Due
		equations"), multistep problems. [End		
		combinatorics.] The probability setup.		
3	Video	Kolmogorov's axioms of probability.		
	T 9/15	Consequences of the axioms. The inclusion-exclusion	2.3–2.5; also	
	17: 1	identity. Applications to dice and cards.	Bass pp. 5–7	
	Video R 9/17	Uniform discrete probability problems.	2 5 (alsies 5a)	HW2 Due
	n 9/17	Examples: Urn games, the birthday problem, and the matching problem.	2.5 (skip 50) [Bass §2]	HWZ Due
4	Video	Coin flips as independent Bernoulli trials.	[Dass 32]	
4	T 9/22	(Finish) uniform discrete probability problems.	3.4 (up to 4h),	
	1 3/22	Independence of events. Bernoulli trials.	Bass §3	
	Video	What is conditional probability?	2000 30	
	R 9/24	Examples. The multiplication rule. The matching	3.2, 3.5 (theo.	HW3 Due
	/	problem revisited. Conditional probability is a	disc.)	
		probability.	,	
5	Video	Bayes' formula		
	T 9/29	Examples. The Monty Hall problem.	$3.3, 3.4 (4i-4\ell)$	
	Video	Gambler's ruin		
	R 10/1	Finish conditional probability. Start discrete random	4.1 (skip 1e),	HW4 Due
		variables. pmf and cdf.	4.2, 4.10 [Bass	
			§4]	
6	Video	Random variables and their expectations.	40 44 45 40	
	T 10/6	Expectation of a discrete rv. Linearity of	4.3, 4.4, 4.5, 4.9	
		expectation. Expectation of a function of a rv		
	R 10/8	(LOTUS). Variance & higher moments. Midterm exam 1	1.1-3.5	
	11 10/8	Midderin exam 1	1.1-9.9	

7	Video T 10/13	Bernoulli, binomial, geometric, negative binomial. Bernoulli and binomial distributions. The geometric distribution and its memoryless property. The negative binomial distribution. The Banach match problem.	4.5, 4.6 (skip 4.6.2), 4.8.1–2 [Bass §5]					
	Video R 10/15	Poisson The hypergeometric distribution. The binomial approx to the hypergeometric. The Poisson distribution. Examples. The Poisson approx to the binomial.	4.8.3, 4.7 (skip 4.7.1) [Bass §6]	HW5 Due				
This is a good time to brush up on multivariable calculus! How do you evaluate $\int_0^\infty e^{-x^2} dx$?								
8	Video T 10/20	Discrete, continuous, or neither? Continuous distributions: pdf, cdf, expectation. The uniform distribution.	5.1–3 [Bass §7]					
	Video R 10/22	Properties of the normal distribution. The normal distribution and the Z-table. The de Moivre-Laplace central limit theorem. Examples. Confidence interval and margin of error in opinion polling.	5.4, 5.4.1, Bass §8–9	HW6 Due				
9	Video	The exponential distribution and its memoryless property.						
	T 10/27	Examples. The gamma distribution. Connecting with the Poisson process.	4.7, 5.5 (skip 5.5.1) 5.6.1, 9.1					
	Video R 10/29	Transformation of random variables Examples. How to code the exponential distribution. The Cauchy distribution (and why it is special).	5.7, 5.6.3	HW7 Due				
10	Video T 11/3	Joint probability distributions Examples. Marginal and conditional distributions.	6.1, 6.4, 6.5 [Bass §10]					
	Video R 11/5	(In)dependence of random variables Examples. Buffon's needle problem. Sums of independent rv's. Convolutions.	6.2 (skip 2e, 2g), 6.3.1–6.3.4	HW8 Due				
11	Video T 11/10	Order statistics (min and max) Finish sums of independent rv's. Examples on order statistics. Transformation of jointly distributed random variables.	6.6, 6.7					
	R 11/12	Midterm exam 2	4.1 - 6.2					
12	Video T 11/17	The indicator function trick Moments of the number of occurring events. The matching problem revisited. The coupon collector's problem.	7.2–7.3					
13	Video R 11/19	Covariance Covariance. Variance of sums. Correlation. Thanksgiving Break	7.4	HW9 Due				
14	Video T 12/1	Conditional expectations. Examples. Adam's & Eve's Laws.	7.5 [Bass §12]					
	Video R 12/3	Moment generating functions. Examples and applications.	7.7, Bass §13	HW10 Due				

15	Video T 12/8	LLN & CLT Markov's ineq., Chebyshev's ineq., and Chernoff bound. Proof of the weak LLN. Strong LLN.	8.2, 8.5	
	Video R 12/10	Proof of CLT How to use the CLT. Jensen's ineq. Why hedge funds exist. A cautionary tale from the subprime mortgage crisis of 2008.	8.3, 8.4, 8.5 [Bass §14]	HW11 Due
16	Check!	Comprehensive final exam (with a moderate emphasis on materials covered after Midterm 2)	Everything discussed	