

支持 PD 的多快充协议双口充电解决方案

1. 概述

SW3516P 是一款高集成度的多快充协议双口充电芯片,支持 A+C 口任意口快充输出,支持双口独立限流。其集成了 5A 高效率同步降压变换器,支持 PPS/ PD/QC/ AFC/ FCP/SCP/ PE/ SFCP 等多种快充协议,最大输出 PD 100W(20V@5A),CC/CV 模式,以及双口管理逻辑。外围只需少量的器件,即可组成完整的高性能多快充协议双口充电解决方案。

2. 应用领域

- 车充
- 适配器
- 排插

3. 规格

- 同步降压变换器
 - ▶ 输出电流高达 5A
 - ➤ 输入电压范围 6~32V
 - ➤ 支持 CC/CV 模式
 - ▶ 支持双口独立限流
 - ▶ 支持线损补偿
 - ▶ 支持温度控制

• 快充协议

- > 支持 PPS/PD3.0/PD2.0
- ➤ 支持 QC4+/QC4/QC3.0/QC2.0
- ▶ 支持 AFC
- ▶ 支持 FCP
- > 支持 SCP
- ➤ 支持 PE2.0/PE1.1
- > 支持 SFCP
- Type-C 接口
 - ▶ 内置 USB Type-C 接口逻辑
 - ➤ 支持 DFP/Source 角色

· BC1.2 模块

- ➤ 支持 BC1.2 DCP 模式
- ▶ 支持苹果/三星大电流充电模式 识别
- 快充指示灯
 - ▶ 内置快充指示灯驱动
- 保护机制
 - ▶ 软启动
 - ▶ 输入过压保护
 - ▶ 输入欠压保护
 - ▶ 输出过流保护
 - ▶ 输出短路保护
 - ▶ 过温保护
- · I2C 接口
- QFN-28(4x4mm) 封装

4. 功能框图

5. 引脚定义及功能描述

5.1. 引脚定义

5.2. 引脚描述

Pin	Name	Function Description
1	CC2	Type-C 配置通道 2。
2	CC1	Type-C 配置通道 1。
3	DPC	Type-C 口 DP 信号。
4	DMC	Type-C 口 DM 信号。
5	FLED	快充指示。
6	CSPC	Type-C 口输出电流检测正端。
7	CSNC	Type-C 口输出电流检测负端。
8	CSNA	Type-A 口输出电流检测负端。
9	CSPA	Type-A 口输出电流检测正端。
10	VBUSC	Type-C 口负载接入检测引脚。

11	VBUSA	Type-A 口负载接入检测引脚。
12	VDD	内部工作电源。
13	DGND	数字地。
14	VDRV	驱动电源。
15	BST	上 N 管驱动 Bootstrap 引脚。
16	LGATE	下 N 管驱动信号。
17	HGATE	上N管驱动信号。
18	SW	开关节点电压检测引脚。
19	VIN	输入电源。
20	SDA	I2C 数据信号。
21	SCK	I2C 时钟信号。
22	GATEC	Type-C 口通路控制。
23	GATEA	Type-A 口通路控制。
24	NTC	板级温度检测引脚。
25	COMP	外部补偿引脚。
26	GND	接地。
27	DPA	Type-A 口 DP 信号。
28	DMA	Type-A □ DM 信号。
	EPAD	散热 PAD,接地。

6. 极限参数

Parameters	Symbol	MIN	MAX	UNIT
输入电压	VIN	-0.3	36	V
输出电压	CSPA/CSNA/CSPC/ CSNC/VBUSA/VBUSC	-0.3	36	V
SW 管脚电压	SW	-0.3	36	V
BST/HGATE 管脚电压	BST/HGATE-SW	-0.3	6	V
通路控制电压	GATEA/GATEC	-0.3	36	V
接口通信管脚电压	CC1/CC2/DPC/DMC/ DPA/DMA	-0.3	24	V
其它管脚电压		-0.3	6	V
结温		-40	+150	°C
存储温度		-60	+150	°C
ESD (HBM)		-4	+4	KV

【备注】超过此范围的电压电流及温度等条件可能导致器件永久损坏。

7. 推荐参数

Parameters	Symbol	MIN	Typical	MAX	UNIT
输入电压	VIN	6		32	V

8. 电气特性

(V_{IN} = 12V, T_A = 25°C, **除特别说明**。)

		T . C . 11.1	2.532		1	
Parameters	Symbol	Test Conditions	MIN	TYP	MAX	UNIT
供电电源	1					
VIN 输入电源	V_{IN}		6		32	V
VIN 输入欠压门限	V _{IN_UVLO}	VIN 输入电压下降	4.9	5	5.1	V
VIN 输入欠压门限迟滞	$V_{\text{IN_UVLO_HYS}}$	VIN 输入电压上升	0.85	1	1.15	V
VIN 输入过压门限	V _{IN_OVP}	VIN 输入电压上升	30.5	32	33.5	V
VIN 输入过压门限迟滞	V _{IN_OVP_HYS}	VIN 输入电压下降	1.0	1.5	2.0	V
VDD 输出电压	V_{DD}	V _{IN} =12V	4.9	5	5.1	V
VDD 输出电流	I_{DD}	$V_{IN}=12V$		50		mA
VDRV 输出电压	V_{DRV}	$V_{IN}=12V$	4.9	5	5.1	V
空载电流	I_Q	V _{IN} =12V, I _{OUT} =0mA		1	2	mA
降压变换器		N				
开关频率	F_{CHG}		110	125	140	KHz
		V_{OUT} =5V, I_{OUT} =0V	5.0	5.1	5.2	V
		V _{OUT} =9V, I _{OUT} =0V	8.9	9.1	9.3	V
输出电压	$V_{ m OUT}$	$V_{OUT}=12V$, $I_{OUT}=0V$	11.7	12.1	12.3	V
		$V_{OUT}=15V$, $I_{OUT}=0V$	14.6	15.1	15.4	V
		$V_{OUT}=20V$, $I_{OUT}=0V$	19.5	20.1	20.5	V
CC 限流电流	$ m I_{CC}$	V_{OUT} =5V, I_{OUT} =3A PDO	3.05	3.3	3.7	A
	ICC	V_{OUT} =20V, I_{OUT} =5A PDO	5.05	5.4	5.8	A
线损补偿	V _{OUT_WDC}	$R_{CS}=5m\Omega$	50	65	80	mV/A
恒温温度值	T_{REGU_CHG}		105	120	135	°C
轻载检测						
轻载电流检测门限值	I _{LIGHT_LOAD}	$R_{CS}=5m\Omega$	10	15	25	mA

轻载检测关机时间	t _{LIGHT_LOAD}		1.5	2	3	S	
Type-C 接口							
CC 管脚输出电流	I _{CC_SOURCE}	Power Level=3.0A	310	330	350	uA	
BC1.2							
DD/DM 由压	DP	Apple 2.4A Mode	2.55	2.7	2.85	V	
DP/DM 电压	DM	Apple 2.4A Mode	2.55	2.7	2.85	V	
PE					>		
电流门限	$I_{ m REF}$		150	250	350	mA	
退出时间	t _{PLUG_OUT}		160	200	240	mS	
I2C							
速率	$ m f_{CLK}$	4		100	400	Kbit/S	
热关机保护							
过热关机门限	T_{SHDT}	温度上升	135	150	165	°C	
过热关机迟滞	T_{SHDT_HYS}	温度下降	35	50	65	°C	

9. 功能描述

9.1. 降压变换器

SW3516P 集成了高效率的开关降压变换器。采用外置双 N 功率管,负载能力可达 5A,效率>95%(VIN=12V,VOUT=5V,IOUT=5A)。

降压变换器开关频率 125KHz。采用 PFM/PWM 自动切换模式,轻载时工作在 PFM 模式,中载及重载时工作在 PWM 模式。

降压变换器支持 CC/CV 模式。当负载电流小于 CC 限流时,降压电路输出设定电压。当负载达到 CC 限流值时,将限定输出电流在 CC 限流值,输出电压将下降。单口输出时,CC 限流 3.3A;双口同时输出时,每个口单独限流 2.7A。

降压变换器支持线损补偿。输出补偿电压根据负载电流线性增加,增加电压为 65mV/A。

降压变换器支持温度控制,当芯片温度超过 120℃时,输出电压开始下降;如果继续过温超过 150℃,则芯片进入过温关机模式。进入过温关机模式后,温度降低到过温门限迟滞以下,芯片自动开机,降压变换器启动回到默认状态。

降压变换器包含了输入过压/输入欠压/输出过流/输出短路等保护。

9.2. 通路控制

SW3516P 支持 Type-A+Type-C 双口输出,任意口支持快充输出。

Type-A 口支持 QC3.0/QC2.0/AFC/FCP/SCP/PE2.0/PE1.1/SFCP 快充输出。

Type-C 口支持 PPS/PD3.0/PD2.0/QC4+/QC4/QC3.0/QC2.0/AFC/FCP/SCP/PE2.0/PE1.1/SFCP 快充输出。

默认状态下,Type-A口输出 5V,Type-C 无输出。单口输出时,支持快充输出。双口输出时,支持 5V 输出,同时各口单独限流。

在 Type-C 口打开 Type-A 口关闭时, Type-A 口负载接入功能生效,当负载接入时将打开已关闭的 Type-A 口对外放电。在单口输出时,空载检测后 Type-A 口恢复到默认的 5V 输出;多口时,空载检测将关闭 Type-A 口。空载检测电流门限约 15mA。UFP 设备接入打开 Type-C 口对外放电,UFP 设备移出关闭 Type-C 口,同时 Type-C 口空载时也会关闭 Type-C 口通路。

9.3. Type-C 接口

SW3516P 集成了 Type-C 接口控制器,支持 DFP/Source 角色,当 UFP 设备接入时自动对其放电,UFP 设备移出时自动关闭通路。

当 UFP 设备连接时, SW3516P 将会在 CC 引脚上广播 3A 电流能力。

9.4. PD 快充

SW3516P集成了PPS/PD3.0/PD2.0 快充协议,PPS 输出最大支持 3.3~21V@3A,PD3.0/PD2.0 输出支持 5V/9V/12V/15V@3A、20V@5A,最大支持 100W 输出。

9.5. QC 快充

SW3516P 集成了 QC 快充协议,支持 QC4+/QC4/QC3.0/QC2.0,支持 Class A/Class B。QC2.0 输出支持 5V/9V/12V/20V。QC3.0 输出支持 3.6V~20V,200mV/Step。

OC2.0/OC3.0 根据 DP/DM 电压请求相应的输出电压,如下表:

接入	设备	SW3516P		
DP	DM	VOUT	Note	
3.3V	3.3V	20V		

0.6V	0.6V	12V	
3.3V	0.6V	9V	
0.6V	3.3V	连续模式	0.2V/Step
0.6V	GND	5V	

9.6. AFC 快充

SW3516P 集成了 AFC 快充协议,输出支持 5V/9V/12V。

9.7. FCP 快充

SW3516P 集成了 FCP 快充协议,输出支持 5V/9V/12V。

9.8. SCP 快充

SW3516P 集成了 SCP 快充协议,输出支持 3.4~12V@4A。

9.9. PE 快充

SW3516P 集成了 PE2.0 及 PE1.1 快充协议, PE2.0 输出支持 5V~20V, 500mV/Step。PE1.1 输出支持 5V/7V/9V/12V。

9.10. SFCP 快充

SW3516P 集成了 SFCP 快充协议,输出支持 5V/9V/12V。

9.11. BC1.2 功能

SW3516P 包含了 USB 智能自适应功能模块,其不仅支持 BC1.2 功能,以及中国手机充电器标准,还能很好的兼容苹果和三星的大电流输出识别:

Apple 2.4A mode: DP=2.7V, DM=2.7V;

Samsung 2A mode: DP=1.2V, DM=1.2V;

9.12. 快充指示灯

SW3516P 内部集成快充指示灯驱动 FLED Pin,在快充输出时,FLED 拉低,打开快充指示灯。

9.13. ADC

SW3516P 内部集成了 12 bit ADC,可采集输入电压/输出电压/Type-A 口输出电流/Type-C 口输出电流/板级温度。板级温度通过采集 103AT NTC 电阻的电压进行折算,通过串接 2K 电阻,提高高温时的检测精度。具体来说:

ADC 通路	范围	Step
输入电压	0~40.96V	10mV
输出电压	0~24.576V	6mV
Type-A 口输出电流	0~10.24A	2.5mA
Type-C 口输出电流	0~10.24A	2.5mA
NTC 电压	0~2.048V	0.5mV

9.14. I2C 接口

SW3516P 支持 I2C 接口, 支持 100K/400K 通信速率。Master 可通过 I2C 接口读取芯片的 状态信息。

读操作:

Slave address: 0x3C Register address: 0xB0

写操作:

Slave address: 0x3C Register address: 0xB0

10. 典型应用电路图

11. 机械尺寸

11.1. 封装 A

11.1.1. 封装 A 图

11.1.2. 封装 A 尺寸

G 1 1	Dimension in Millimeters					
Symbol	MIN	NOM	MAX			
A	0.70	0.75	0.80			
A1	0	0.02	0.05			
A2		0.55				
A3		0.203 REF				
b	0.15	0.20	0.25			
D		4 BSC				
Е		4 BSC				
e		0.40 BSC				
D2	2.30	2.40	2.50			
E2	2.30	2.40	2.50			
L	0.30	0.40	0.50			
K		0.4 REF				
aaa		0.1				
ccc		0.1				
eee		0.08				
bbb		0.07				
ddd		0.05				
fff		0.1				

11.2. 封装 B

11.2.1. 封装 B 图

BOTTOM VIEW

11.2.2. 封装 B 尺寸

G 1 1		Dimension in Millimeters				
Symbol	MIN	NOM	MAX			
A	0.70	0.75	0.80			
A1	0	0.02	0.05			
A2		0.55				
A3		0.203 REF				
b	0.15	0.20	0.25			
D		4 BSC				
Е		4 BSC				
e		0.40 BSC				
D2	2.30	2.40	2.50			
E2	2.30	2.40	2.50			
L	0.30	0.40	0.50			
K		0.4 REF				
aaa	(0.1				
ccc		0.1				
eee		0.08				
bbb		0.07				
fff		0.1				

12. 订货信息

*可选信息1: 与客户特定需求相关的备注

13. 版本历史

- V1.0 初始版本;
- V1.1 更新文档模板;
- V1.2 更新限流参数;
- V1.3 更新封装图和封装尺寸
- V1.4 更新订货信息
- V1.5 更新封装图和封装尺寸

免责声明

珠海智融科技股份有限公司(以下简称"本公司")将按需对本文件内容作相应修改,且不 另行通知。请客户自行在本公司官网下载最新文本。

本文件仅供客户参考,本公司不对客户产品的设计、应用承担任何责任。客户应保证在将本公司产品集成到任何产品中,不会侵犯第三方知识产权,如客户产品发生侵权行为,本公司将不承担任何责任。

客户转售本公司产品所做的任何虚假宣传,本公司将对此不承担任何责任;如本文件被第三方篡改,篡改后的文本对本公司不产生任何约束力。