Exercice 1.

Soit la fonction f définie sur [-1; 1] par $f(x) = 2x^3 - 5x$.

- 1. Justifier que f est continue sur [-1; 1].
- 2. Justifier que l'équation f(x) = -1 a au moins une solution dans cet intervalle.

Exercice 2.

Soit une fonction f définie et continue sur $\mathbb R$ dont on donne ci-après le tableau de variation :

- 1. Démontrer que l'équation f(x) = 0 admet une unique solution α dans l'intervalle $[-2; +\infty[$.
- 2. Démontrer que l'équation f(x) = 0 n'admet pas de solution dans l'intervalle $]-\infty;-2]$.
- 3. En déduire le tableau de signes de f(x) sur \mathbb{R} .

Exercice 3.

Soit la fonction f définie sur [2;3] par $f(x)=\left(x^2-\frac{5}{2}x+1\right)\mathrm{e}^x$. On admet que l'équation f(x)=40 a une solution unique α dans [2;3].

Déterminer un encadrement de α à 10^{-1} près puis la valeur approchée de α à 10^{-1} près.

Exercice 1.

Soit la fonction f définie sur [-1; 1] par $f(x) = 2x^3 - 5x$.

- 1. Justifier que f est continue sur [-1; 1].
- 2. Justifier que l'équation f(x) = -1 a au moins une solution dans cet intervalle.

Exercice 2.

Soit une fonction f définie et continue sur \mathbb{R} dont on donne ci-après le tableau de variation :

x	$-\infty$	-2	$+\infty$
Variation de f	-7	-11	$+\infty$

- 1. Démontrer que l'équation f(x) = 0 admet une unique solution α dans l'intervalle $[-2; +\infty[$.
- 2. Démontrer que l'équation f(x) = 0 n'admet pas de solution dans l'intervalle $]-\infty;-2]$.
- 3. En déduire le tableau de signes de f(x) sur \mathbb{R} .

Exercice 3.

Soit la fonction f définie sur $[2\,;\,3]$ par $f(x)=\left(x^2-\frac{5}{2}x+1\right)\mathrm{e}^x.$

On admet que l'équation f(x) = 40 a une solution unique α dans [2; 3].

Déterminer un encadrement de α à 10^{-1} près puis la valeur approchée de α à 10^{-1} près.