Energyresulution from Tau 1 (kinematic Fit)

Mean -0.01578 RMS 0.1358

Entries

Energyresulution from Tau 1(blue) and Tau 2(red) (kinematic Fit)

Mean -0.01578 RMS 0.1358

Energyresulution (kinematic Fit)

Mean -0.007018 RMS 0.1341 Energyresulution from the kinematic Fit(blue) and dynamic Fit (red)

Mean -0.007018 RMS 0.1341

Entries

Mean: (2.071±0.271)*10⁻³ σ: (1.00545±0.00275)*10⁻¹ dynamic-fit

Mean: (1.970±0.263)*10⁻³ σ: (0.98891±0.00264)*10⁻¹

 $\frac{\Delta \ \sigma}{\sigma}$: (1.645± 0.368)%

Impact of the dynamic constraint on the final energyfraction

Impact of the dynamic constraint on the final energyfraction (z>0.85)

Impact of the dynamic constraint on the final energyfraction (z<0.3)

The Error from z₁ against z

Impact of the dynamic constraint on the final energyfraction z against z $\operatorname{ac}\{\#\mathsf{E}_{\tau,\mathsf{vis}}\}\{\#\mathsf{E}_{\tau,\mathsf{I}}$ 0.8 0.6 0.4 77758 0.2

Difference of the energy fraction $\mathbf{z}_{\mathbf{k}}$ out of the k-fit and $\mathbf{z}_{\text{truth}}$

Difference of the energyfraction z_k out of the k-fit and z_{truth}

Difference of the energy fraction \mathbf{z}_{kd} out of the k-fit and $\mathbf{z}_{\mathrm{truth}}$

Difference of the energy fraction \mathbf{z}_{kd} out of the k-fit and \mathbf{z}_{truth}

