Resolução da Primeira Lista de Lógica

1)

			I					
p	q	r	S	$p \rightarrow q$	$q \rightarrow r$	$r \rightarrow s$	$(p \to q) \land (q \to r) \land (r \to s)$	$p \rightarrow s$
V	V	V	V	V	V	V	V	V
V	V	V	F	V	V	F	F	F
V	V	F	V	V	F	V	F	V
V	V	F	F	V	F	V	F	F
V	F	V	V	F	V	V	F	V
V	F	V	F	F	V	F	F	F
V	F	F	V	F	V	V	F	V
V	F	F	F	F	V	V	F	F
F	V	V	V	V	V	V	V	V
F	V	V	F	V	V	F	F	V
F	V	F	V	V	F	V	F	V
F	V	F	F	V	F	V	F	V
F	F	V	V	V	V	V	V	V
F	F	V	F	V	V	F	F	V
F	F	F	V	V	V	V	V	V
F	F	F	F	V	V	V	V	V

 $P \Rightarrow Q$? Sim, observando a tabela verdade acima, nota-se que todas as vezes em que P é verdadeira, Q também é verdadeira.

P<=> Q? Não, pois para serem equivalentes seria necessário que as colunas p \rightarrow q $^{\land}$ q \rightarrow r $^{\land}$ r \rightarrow s e p \rightarrow s, na tabela acima, fossem exatamente iguais.

p	q	p v q
V	V	V
V	F	V
F	V	V
F	F	F

Implica, pois todas as vezes em que p é verdadeira, p v q também é.

b) p ^ q => p

p	q	p ^ q
V	V	V
V	F	F
F	V	F
F	F	F

Implica, pois todas as vezes em que p ^q é verdadeira, p também é.

c) (p v q)
$$^{\sim}q \Rightarrow p$$

p	q	p v q	~q	(p v q) ^~q
V	V	V	F	F
V	F	V	V	V
F	V	V	F	F
F	F	F	V	F

Implica, pois todas as vezes em que (p v $\ q) \ ^\sim q$ é verdadeira, p também é.

d)(p ^ ~r
$$\rightarrow$$
 ~q) ^ p ^ ~r => ~q

p	q	r	~q	~r	p ^~r	p^~r →~ q	$(p \land \sim r \rightarrow \sim q) \land p \land \sim r$
V	V	V	F	F	F	V	F
V	V	F	F	V	V	F	F
V	F	V	V	F	F	V	F
V	F	F	V	V	V	V	V
F	V	V	F	F	F	V	F
F	V	F	F	V	F	V	F
F	F	V	V	F	F	V	F
F	F	F	V	V	F	V	F

Implica, pois todas as vezes em que (p ^ ~r \rightarrow ~q) ^ p ^ ~r é verdadeira, ~q também é.

e)
$$(p \rightarrow q) \land (r \rightarrow \neg q) \Rightarrow r \rightarrow \neg p$$

p	q	r	~p	~q	$p \rightarrow q$	$r \rightarrow \sim q$	$(p \rightarrow q) \land (r \rightarrow \sim q)$	r → ~p
V	V	V	F	F	V	F	F	F
V	V	F	F	F	V	V	V	V
V	F	V	F	V	F	V	F	F
V	F	F	F	V	F	V	F	V
F	V	V	V	F	V	F	F	V
F	V	F	V	F	V	V	V	V
F	F	V	V	V	V	V	V	V
F	F	F	V	V	V	V	V	V

f)
$$\sim p \rightarrow q ^ \sim q \Rightarrow \sim p$$

p	q	~p	~q	q ^~q	~p → q ^ ~q
V	V	F	F	F	V
V	F	F	V	F	V
F	V	V	F	F	F
F	F	V	V	F	F

Não implica, pois existem casos onde $\sim p \rightarrow q ^ \sim q$ é verdadeira e $\sim p$ é falsa.

3

a) Se a chuva continuar, o rio vai transbordar.

Antecedente: A chuva continua. Consequente: O rio vai transbordar

Se a chuva continuar, o rio vai transbordar.

b) Uma condição suficiente para a falha de uma rede é a chave geral parar de funcionar.

Antecedente: Chave geral para de funcionar.

Consequente: A falha de uma rede.

Se a chave geral para de funcionar a rede falhará.

c) Os abacates só estão maduros quando estão escuros e macios.

Sejam p: Os abacates estão maduros e q: Os abacates estão macios e escuros.

Para que a frase acima seja verdadeira, não é possível termos abacates maduros se não estiverem macios e escuros, ou seja, sempre que V(p) = V, V(q) tem que ser V(q) = V também, em outras palavras se V(p) = V e V(q) = F, a frase é falsa, logo:

Antecedente: Os abacates estão maduros

Consequente: Os abacates estão macios e escuros.

Se os abacates estão maduros, então estão macios e escuros.

d) Uma boa dieta e uma condição necessária para um gato saudável.

Antecedente: Gato saudável Consequente: Tem uma boa dieta.

Se o gato é saudável, então tem uma boa dieta.

4)

Para resolver essa questão, devemos nos lembrar das Regra de De Morgan:

- a) Júlia não adora manteira ou não detesta nata.
- b) A resposta não é 4 nem 5.
- c) Pepinos não são verdes ou não têm sementes.
- d) 2 >= 7 ou 3 não é ímpar.
- 5)
- p: Rosas são vermelhas.
- q: Violetas são azuis
- r: Açúcar e doce.

c)
$$q \rightarrow p ^r$$

d)
$$p \rightarrow \sim q^{-\alpha} \sim r$$

e) p
$$^{\wedge}$$
 (\sim r \rightarrow \sim q v r)

a)
$$(r \land \sim p) \leftrightarrow q$$

O açúcar é doce e as rosas não são vermelhas se, e somente se, violetas são azuis.

Rosas são vermelhas ou violetas são azuis, mas o açúcar não é doce.

Rosas são vermelhas, ou violetas são azuis e o açúcar não é doce.

7) a)
$$((p \vee q) \vee \neg r) \rightarrow \neg p \vee r$$

р	q	r	~p	~r	pvq	(p v q) v ~r	~p v r	$((p \lor q) \lor \sim r) \rightarrow \sim p \lor r$
٧	V	٧	F	F	V	V	V	V
٧	V	F	F	V	V	V	F	F
٧	F	٧	F	F	V	V	V	V
٧	F	F	F	V	V	V	F	F
F	V	٧	V	F	V	V	V	V
F	٧	F	٧	V	V	V	V	V
F	F	٧	٧	F	F	F	V	V
F	F	F	V	V	F	V	V	V

A proposição é uma contingência.

b) (p ^ q) v r \rightarrow p ^ (q v ~r)

р	q	r	~r	p ^q	(p ^ q) v r	q v ∼r	p ^ (q v ~r)	$(p \land q) \lor r \rightarrow p \land (q \lor \sim r)$
V	٧	٧	F	V	V	V	V	V
V	٧	F	V	V	V	V	V	V
V	F	٧	F	F	V	F	F	F
V	F	F	V	F	F	V	V	V
F	٧	٧	F	F	V	V	F	F
F	٧	F	V	F	F	V	F	V
F	F	٧	F	F	V	F	F	F
F	F	F	V	F	F	V	F	V

A proposição é uma contingência.

c) ((~p v q)
$$\leftrightarrow$$
 (p \rightarrow q)) v p

р	q	r	~p	(~p v q)	$(p \rightarrow q)$	$(\sim p \vee q) \leftrightarrow (p \rightarrow q)$	$((\sim p \lor q) \leftrightarrow (p \rightarrow q)) \lor p$
V	٧	V	F	V	V	V	V
٧	٧	F	F	V	V	V	V
٧	F	٧	F	F	F	V	V
٧	F	F	F	F	F	V	V
F	٧	٧	V	V	V	V	V
F	٧	F	V	V	V	V	V
F	F	V	V	V	V	V	V
F	F	F	V	V	V	V	V

A proposição é uma tautologia.