Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregiun i Twierdzenie klasyfikacyjne

Elementarna Geometria Różniczkowa

15 lutego 2013

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzchni Parametryzacja Monge'a

Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

Przestrzeń styczna

Wektor normalny

Powtórka z algebry liniowej I

I forma podstawowa

Pochodne kierunkowe. Izometria.

Pochodne kierunkowe
Izometria

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

Pole powierzchni

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregium i Twierdzenie klasyfikacyjne

4 D > 4 P > 4 E > 4 E > 9 Q P

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma

Pochodne kierunkowe.

(rzywizna Gauss

Krzywizna Gaussa I

Theorema Egregium
i Twierdzenie
klasyfikacyjne

Krzywizna Gaussa II

Odwzorowanie Weingartena Druga forma podstawowa Krzywizna Gaussa oraz krzywizna średnia Podsumowanie Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie klasyfikacyjne

Symbole Christoffela Theorema Egregium Twierdzenie klasyfikujące

Elementarna Geometria Różniczkowa

Wykład 5

Powierzchnie w \mathbb{R}^3

Powierzchnie w \mathbb{R}^3

Przykłady powierzch

Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkcji

Poziomice tunkcji

normalne. I forma podstawowa

Pochodne kierunkowe

Krzywizna Gaussa

Krzywizna Gaussa II

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3 Podstawowe definicje Przykłady powierzchni

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregium i Twierdzenie klasyfikacyjne

Powierzchnie w \mathbb{R}^3

Podstawowe definicj Przykłady powierzch

Powierzchnie obrotowe

Poziomice funkc

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe.

Krzynyizna Gaussa

Krzywizna Gaussa II

Kizy wiziia Gaussa i

Niech $U \subset \mathbb{R}^2$ będzie zbiorem otwartym. Funkcję

nazywamy gładką, jeśli wszystkie pochodne cząstkowe (dowolnego rzędu) x istnieją oraz są funkcjami ciągłymi.

$$x: U \to \mathbb{R}^3$$

$$\frac{\partial x}{\partial s}(s,t) \times \frac{\partial x}{\partial t}(s,t) \neq 0$$

Elementarna Geometria Różniczkowa

Powierzchnie w R3

$$x: U \to \mathbb{R}^3$$

nazywamy **gładką**, jeśli wszystkie pochodne cząstkowe (dowolnego rzędu) x istnieją oraz są funkcjami ciągłymi.

Definicja

Niech $U \subset \mathbb{R}^2$ będzie zbiorem otwartym. Gładką funkcję

$$x: U \to \mathbb{R}^3$$

nazywamy lokalnym układem współrzędnych jeśli jest injekcją, oraz

$$\frac{\partial x}{\partial s}(s,t) \times \frac{\partial x}{\partial t}(s,t) \neq 0$$

dla wszystkich $(s, t) \subset U$.

Powierzchnie w R3

Podzbiór $M \subset \mathbb{R}^3$ nazywamy **powierzchnią gładką**, jeśli dla każdego punktu $p \in M$ istnieje otoczenie otwarte tego punktu $V \subset M$ oraz gładka bijekcja $x: U \to V \subset \mathbb{R}^3$. Potocznie mówimy, że przestrzeń jest powierzchnią gładką jeśli "lokalnie" (tj. w małym otoczeniu każdego punktu) wygląda jak fragment płaszczyzny (patrz część 1 Lematu 5.5)

- Powierzchnię gładką M nazywamy **regularną** jeśli wokół każdego punktu p istnieje lokalny układ współrzędnych $x: U \to V \subset \mathbb{R}^3$.
- Powierzchnię gładką M nazywamy łukowo spójną, jeśli dla dowolnych dwóch punktów $x, y \in M$ istnieje krzywa $\alpha:[0,1] \to M$ taka, że $\alpha(0) = x$ i $\alpha(1) = y$.

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzo

Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkc

normalne. I forma podstawowa

> Pochodne kierunkowe. Izometria

Krzywizna Gaussa

Krzywizna Gaussa I

- Powierzchnię gładką M nazywamy **regularną** jeśli wokół każdego punktu p istnieje lokalny układ współrzędnych $x: U \to V \subset \mathbb{R}^3$.
- Powierzchnię gładką M nazywamy łukowo spójną, jeśli dla dowolnych dwóch punktów $x, y \in M$ istnieje krzywa $\alpha:[0,1] \to M$ taka, że $\alpha(0) = x$ i $\alpha(1) = y$.

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzchr

Parametryzacja Monge'a Powierzchnie obrotowe

Powierzchnie prostokre

Poziomice funk

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe.

(rzywizna Gaussa I

Krzywizna Gaussa II

Definicja

- Podzbiór $M \subset \mathbb{R}^3$ nazywamy **powierzchnią gładką**, jeśli dla każdego punktu $p \in M$ istnieje otoczenie otwarte tego punktu $V \subset M$ oraz gładka bijekcja $x: U \to V \subset \mathbb{R}^3$. Potocznie mówimy, że przestrzeń jest powierzchnią gładką jeśli "lokalnie" (tj. w małym otoczeniu każdego punktu) wygląda jak fragment płaszczyzny (patrz część 1 Lematu 5.5).
- Powierzchnię gładką M nazywamy **regularną** jeśli wokół każdego punktu p istnieje lokalny układ współrzędnych $x: U \to V \subset \mathbb{R}^3$.
- Powierzchnię gładką M nazywamy łukowo spójną, jeśli dla dowolnych dwóch punktów $x, y \in M$ istnieje krzywa $\alpha: [0, 1] \to M$ taka, że $\alpha(0) = x$ i $\alpha(1) = y$.

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzo

- Powierzchnie obrotowe
- Powierzchnie prostokreśln
- Poziomice funkc

Wektory styczne i normalne. I forma podstawowa

Pochodne cierunkowe. zometria.

(rzynyizna Gaussa l

Krzywizna Gaussa I

Krzywizna Gaussa I

- Podzbiór $M \subset \mathbb{R}^3$ nazywamy **powierzchnią gładką**, jeśli dla każdego punktu $p \in M$ istnieje otoczenie otwarte tego punktu $V \subset M$ oraz gładka bijekcja $x: U \to V \subset \mathbb{R}^3$. Potocznie mówimy, że przestrzeń jest powierzchnią gładką jeśli "lokalnie" (tj. w małym otoczeniu każdego punktu) wygląda jak fragment płaszczyzny (patrz część 1 Lematu 5.5).
- Powierzchnię gładką M nazywamy **regularną** jeśli wokół każdego punktu p istnieje lokalny układ współrzędnych $x: U \to V \subset \mathbb{R}^3$.
- Powierzchnię gładką M nazywamy łukowo spójną, jeśli dla dowolnych dwóch punktów $x, y \in M$ istnieje krzywa $\alpha:[0, 1] \to M$ taka, że $\alpha(0) = x$ i $\alpha(1) = y$.

owierzchnie w \mathbb{R}^3

Podstawowe definicje

Parametryzacja Mon

Powierzchnie obrotowe Powierzchnie prostokreślne

Poziomice funk

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Elementarna Geometria Różniczkowa

Powierzchnie w K

Podstawowe definicje

Parametryzacja Monge'a

Powierzchnie prostokreślne

Wektory styczne i normalne. I forma

Pochodne cierunkowe

Krzywizna Gaussa I

Krzywizna Gaussa II

Elementarna Geometria Różniczkowa

Powierzchnie w K

Podstawowe definicje

Przykłady p

Powierzchnie obrotowe
Powierzchnie prostokreślne

Poziomice funkcj

normalne. I forma podstawowa

Pochodne kierunkowe

(rzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium i Twierdzenie klasyfikacyjne

Uwaga

UWAGA! Zakładamy, że wszystkie powierzchnie które będzie my rozważać dalej są regularne i łukowo spójne.

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ i $y: V \to M$ będą lokalnymi układami współrzędnych wokół punktu $p \in M$. Wtedy złożenie

$$y^{-1} \circ x : x^{-1}(x(U) \cap y(V)) \to y^{-1}(x(U) \cap y(V))$$

nazywamy funkcją zmiany układu współrzędnych i oznaczamy $\Phi_{x,y}$.

rowierzchnie w ik

Podstawowe definicje

Przykłady

- Powierzchnie obrotowe
- Poziomice funkcji

r ozionice runkeji

normalne. I forma podstawowa

ochodne cierunkowe

Krzywizna Gaussa

Krzywizna Gaussa II

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią. Wówczas:

- 1. Jeśli $x: U \to M$ jest lokalnym układem współrzędnych wtedy x jest dyfeomorfizmem U na obraz x(U).
- 2. Niech $V \subset \mathbb{R}^2$ będzie zbiorem otwartym i niech $f: V \to U$ będzie dyfeomorfizmem. Wtedy

$$y \stackrel{def.}{=} x \circ f: V \to M$$

jest lokalnym układem współrzędnych i f jest funkcją zmiany układu współrzędnych $\Phi_{V,x}$.

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady pow

- Parametryzacja Monge'a

 Powierzchnie obrotowe

 Powierzchnie prostokrećino
- Poziomice funk

normalne. I forma podstawowa

Pochodne kierunkowe. Izometria

izometria.

Krzywizna Gaussa

Krzywizna Gaussa II

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią. Wówczas:

- 1. Jeśli $x: U \to M$ jest lokalnym układem współrzędnych wtedy x jest dyfeomorfizmem U na obraz x(U).
- 2. Niech $V \subset \mathbb{R}^2$ będzie zbiorem otwartym i niech $f: V \to U$ będzie dyfeomorfizmem. Wtedy

$$y \stackrel{\textit{def.}}{=} x \circ f: V \to M$$

jest lokalnym układem współrzędnych i f jest funkcją zmiany układu współrzędnych $\Phi_{y,x}$.

owierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powi

- Powierzchnie obrotowe
 Powierzchnie prostokreślne
- Poziomice funkc

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria

Krzywizna Gaussa I

rzywizna Gaussa II

rzywizna Gaussa II

Dowód:

Dowód:

- 1) Ponieważ x jest injekcją, więc jest bijekcją na swój obraz.

1) Ponieważ *x* jest injekcją, więc jest bijekcją na swój obraz. Ponieważ *x* jest funkcją gładką, oraz na zbiorze *U* rząd jej pochodnej jest równy 2 (z definicji lokalnego układu współrzędnych), więc korzystając z twierdzenia o funkcji uwiklanej na zbiorze *x*(*U*) istnieje do *x* gładka funkcja

 Ponieważ złożenie dwóch dyfeomorfizmów jest dyfeomorfizmem, wystarczy sprawdzić, że jest spełniona własność lokalnego układu współrzędnych dla y = x ∘ f. Powierzchnie w R³

Podstawowe definicje

Przykłady powierzchni

Powierzchnie obrotowe Powierzchnie prostokreślne

Wektory styczne i normalne. I forma

normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Dowód:

- 1) Ponieważ x jest injekcją, więc jest bijekcją na swój obraz. Ponieważ x jest funkcją gładką, oraz na zbiorze U rząd jej pochodnej jest równy 2 (z definicji lokalnego układu współrzędnych), więc korzystając z twierdzenia o funkcji uwikłanej na zbiorze x(U) istnieje do x gładka funkcja odwrotna, zatem x jest dyfeomorfizmem.
- Ponieważ złożenie dwóch dyfeomorfizmów jest dyfeomorfizmem, wystarczy sprawdzić, że jest spełniona własność lokalnego układu współrzędnych dla y = x ∘ f.

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzci

Powierzchnie obrotowe
Powierzchnie prostokreślne
Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

$$\frac{\partial(x \circ f)}{\partial s} \times \frac{\partial(x \circ f)}{\partial t} =$$

$$= \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial s} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial s}\right) \times \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial t} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial t}\right) =$$

$$= \frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) + \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s} \left(\frac{\partial x}{\partial f_2} \times \frac{\partial x}{\partial f_1}\right) =$$

$$= \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right)$$

$$\frac{\partial(x \circ f)}{\partial s} \times \frac{\partial(x \circ f)}{\partial t} =$$

$$= \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial s} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial s}\right) \times \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial t} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial t}\right) =$$

$$= \frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) + \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s} \left(\frac{\partial x}{\partial f_2} \times \frac{\partial x}{\partial f_1}\right) =$$

$$= \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right)$$

Ponieważ *x* jest lokalnym układem współrzędnych, więc z definicji pierwszy czynnik jest niezerowy. Ponieważ *f* jest dyfeomorfizmem, więc drugi czynnik (wyznacznik macierzy Jacobiego dla *f*) jest różny od zera.

Ostatnia teza ($\Phi_{x,y}=f$) wynika z definicji funkcji przejścia pomiędzy układami współrzędnych.

Podstawowe definicje

Daniel de de consiste de la consiste

Przykłady powierzchni

Powierzchnie obrotowe
Powierzchnie prostokreślne

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe.

Krzywizna Gaussa I

Krzywizna Gaussa II

Ponieważ *x* jest lokalnym układem współrzędnych, więc z definicji pierwszy czynnik jest niezerowy. Ponieważ *f* jest dyfeomorfizmem, więc drugi czynnik (wyznacznik macierzy Jacobiego dla *f*) jest różny od zera.

Ostatnia teza ($\Phi_{x,y} = f$) wynika z definicji funkcji przejścia pomiedzy układami współrzednych.

rowieizciiiie w IX

Podstawowe definicje

Przykłady powierzchni

Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkc

normalne. I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

$$\begin{split} \frac{\partial(x \circ f)}{\partial s} \times \frac{\partial(x \circ f)}{\partial t} &= \\ &= \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial s} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial s}\right) \times \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial t} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial t}\right) = \\ &= \frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) + \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s} \left(\frac{\partial x}{\partial f_2} \times \frac{\partial x}{\partial f_1}\right) = \\ &= \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) \end{split}$$

Elementarna Geometria Różniczkowa

$$\frac{\partial(x \circ f)}{\partial s} \times \frac{\partial(x \circ f)}{\partial t} = \\
= \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial s} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial s}\right) \times \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial t} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial t}\right) = \\
= \frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) + \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s} \left(\frac{\partial x}{\partial f_2} \times \frac{\partial x}{\partial f_1}\right) = \\
= \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right)$$

Ponieważ x jest lokalnym układem współrzędnych, więc z definicji pierwszy czynnik jest niezerowy. Ponieważ f jest dyfeomorfizmem, więc drugi czynnik (wyznacznik macierzy Jacobiego dla f) jest różny od zera.

Ponieważ x jest lokalnym układem współrzędnych, więc z definicji pierwszy czynnik jest niezerowy. Ponieważ f jest dyfeomorfizmem, więc drugi czynnik (wyznacznik macierzy Jacobiego dla f) jest różny od zera.

Ostatnia teza ($\Phi_{x,y} = f$) wynika z definicji funkcji przejścia pomiędzy układami współrzędnych.

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzchni

Powierzchnie obrotowe
Powierzchnie prostokreślne

Wektory styczne i normalne. I forma podstawowa

kierunkowe. Izometria.

Arzywizna Gaussa

Krzywizna Gaussa II

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $f:M \to \mathbb{R}$ będzie odwzorowaniem. Odwzorowanie f nazywamy gładkim jeśli dla każdego punktu $p \in M$ i dla każdego lokalnego układu współrzędnych $x:U \to M$ takiego, że $p \in x(u)$ funkcja

$$f \circ x: U \stackrel{x}{\to} M \stackrel{f}{\to} \mathbb{R}$$

jest gładka jako funkcja z \mathbb{R}^2 do \mathbb{R} .

Powierzchnie w K

Podstawowe definicje

Przykłady p

- Powierzchnie obrotowe

 Powierzchnie prostokreślne
- Poziomice funkc

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe.

. . .

Krzywizna Gaussa I

Krzywizna Gaussa II

- ▶ Jeśli F: R³ → R jest gładka, wtedy jej obcięcie F|_M: M → R będzie również gładkie.
- Załóżmy że x: U → M ⊂ R³ jest lokalnym układem współrzędnych. Jeśli f: U → R jest funkcją gładką, to funkcję na powierzchni M możemy określić jako

$$F = f \circ x^{-1} \colon x^{-1}(U) \to U \to \mathbb{R},$$

gdzie $x^{-1}(U) \subset M$. Jest to funkcja gładka jako złożenie dwóch funkcji gładkich.

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady

Parametryzacja Monge a

Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

- ▶ Jeśli $F: \mathbb{R}^3 \to \mathbb{R}$ jest gładka, wtedy jej obcięcie $F|_{\mathcal{M}}: \mathcal{M} \to \mathbb{R}$ będzie również gładkie.
- ▶ Załóżmy że $x: U \to M \subset \mathbb{R}^3$ jest lokalnym układem współrzędnych. Jeśli $f: U \to \mathbb{R}$ jest funkcją gładką, to funkcję na powierzchni M możemy określić jako

$$F = f \circ x^{-1} \colon x^{-1}(U) \to U \to \mathbb{R}$$

gdzie $x^{-1}(U) \subset M$. Jest to funkcja gładka jako złożenie dwóch funkcji gładkich.

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady p

Parametryzacja Monge a
Powierzchnie obrotowe
Powierzchnie prostokreślne

Wektory styczne i normalne. I forma podstawowa

ochodne derunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

- ▶ Jeśli $F: \mathbb{R}^3 \to \mathbb{R}$ jest gładka, wtedy jej obcięcie $F|_{\mathcal{M}}: \mathcal{M} \to \mathbb{R}$ będzie również gładkie.
- ▶ Załóżmy że $x: U \to M \subset \mathbb{R}^3$ jest lokalnym układem współrzędnych. Jeśli $f: U \to \mathbb{R}$ jest funkcją gładką, to funkcję na powierzchni M możemy określić jako

$$F = f \circ x^{-1} : x^{-1}(U) \to U \to \mathbb{R},$$

gdzie $x^{-1}(U) \subset M$. Jest to funkcja gładka jako złożenie dwóch funkcji gładkich.

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady pow

Parametryzacja Monge a

Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

erunkowe. ometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

jest funkcją gładką.

▶ Niech *M* będzie zadana jako powierzchnia paraboloidy,

$$x(s, t) = (s, t, s^2 + t^2).$$

Rozważmy funkcję $f:\mathbb{R}^2 o\mathbb{R}$ zadaną wzorem

$$(s, t) \mapsto \sin(s + t)$$

Wtedy $f \circ x^{-1}(a, b, c) = \sin(a + b)$ i stąd $f \circ x: M \to \mathbb{R}$ jest funkcją gładką na powierzchni paraboloidy.

Podstawowe definicje

Przykłady pov

112ykiady p

Powierzchnie obrotow

Powierzchnie prostokreślne

Poziomice funkc

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe.

Krzywizna Gaussa I

Krzywizna Gaussa II

$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

jest funkcją gładką.

Niech M będzie zadana jako powierzchnia paraboloidy,

$$x(s, t) = (s, t, s^2 + t^2).$$

$$(s, t) \mapsto \sin(s + t)$$

Funkcja $f: S^2 \to \mathbb{R}$ zadana wzorem

$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

jest funkcją gładką.

▶ Niech *M* będzie zadana jako powierzchnia paraboloidy,

$$x(s, t) = (s, t, s^2 + t^2).$$

$$(s, t) \mapsto \sin(s + t)$$

Funkcja $f: S^2 \to \mathbb{R}$ zadana wzorem

$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

jest funkcją gładką.

▶ Niech *M* będzie zadana jako powierzchnia paraboloidy,

$$x(s, t) = (s, t, s^2 + t^2).$$

$$(s, t) \mapsto \sin(s + t)$$

Funkcja $f: S^2 \to \mathbb{R}$ zadana wzorem

$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

jest funkcją gładką.

▶ Niech *M* będzie zadana jako powierzchnia paraboloidy,

$$x(s, t) = (s, t, s^2 + t^2).$$

Rozważmy funkcję $f: \mathbb{R}^2 \to \mathbb{R}$ zadaną wzorem

$$(s, t) \mapsto \sin(s + t).$$

Wtedy $f \circ x^{-1}(a, b, c) = \sin(a + b)$ i stąd $f \circ x: M \to \mathbb{R}$ jest funkcją gładką na powierzchni paraboloidy.

rowierzennie w K

Podstawowe definicje

Przykłady

Powierzchnie obrotowe

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

ochodne ierunkowe.

Krzywizna Gaussa

Krzywizna Gaussa I

$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

jest funkcją gładką.

▶ Niech *M* będzie zadana jako powierzchnia paraboloidy,

$$x(s, t) = (s, t, s^2 + t^2).$$

Rozważmy funkcję $f: \mathbb{R}^2 \to \mathbb{R}$ zadaną wzorem

$$(s, t) \mapsto \sin(s + t)$$
.

Wtedy $f \circ x^{-1}(a, b, c) = \sin(a + b)$ i stąd $f \circ x: M \to \mathbb{R}$ jest funkcją gładką na powierzchni paraboloidy.

Powierzchnie w K

Podstawowe definicje

Przykłady p

Powierzchnie obrotowe
Powierzchnie prostokreślne

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria

zometria.

Krzywizna Gaussa

Krzywizna Gaussa I

Elementarna Geometria Różniczkowa

Definicja

Niech $M, N \subset \mathbb{R}^3$ będą gładkimi powierzchniami i niech $f: M \to N$ będzie odwzorowaniem. Mówimy, że f jest **odwzorowaniem gładkim** jeśli jest gładkie jako odwzorowanie $M \to \mathbb{R}^3$. Mówimy, że f jest **dyfeomorfizmem powierzchni** jeśli f jest gładką bijekcją, której odwzorowanie odwrotne jest również gładkie.

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady po

- Powierzchnie obrotowe
 Powierzchnie prostokreślne
- Poziomice funk

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe.

rzynyizna Caussa

Crzywizna Gaussa I

Krzywizna Gaussa I

Niech M, $N \subset \mathbb{R}^3$ będą powierzchniami gładkimi i niech

$$f:M\to N$$

będzie odwzorowaniem ciągłym. f jest odwzorowaniem gładkim (a więc gładkim jako odwzorowanie $f:M\to\mathbb{R}^3$) wtedy i tylko wtedy gdy dla każdego punktu $p\in M$ istnieje wokół niego lokalny układ współrzędnych $x:U\to M$ oraz istnieje lokalny układ współrzędnych $y:V\to N$ wokół $f(p)\in N$ takie, że złożenie

$$y^{-1} \circ f \circ x: U \to V$$

jest gładkie jako odwzorowanie $\mathbb{R}^2 \to \mathbb{R}^2$ (tam, gdzie to złożenie ma sens).

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzc

Powierzchnie obrotowe
Powierzchnie prostokreślne

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Krzywizna Gaussa

Krzywizna Gaussa II

Aby złożenie $y^{-1} \circ f \circ x$ będzie miało sens musimy założyć, że ograniczymy się do zbioru otwartego $f(x(U)) \cap y(v) \neq \emptyset$. Dla wygody oznaczmy $A \stackrel{\text{def.}}{=} x^{-1}(y^{-1}(y(v)))$.

Załóżmy, że odwzorowanie $f:M\to N\subset\mathbb{R}^3$ jest gładkie

Ponieważ x i y są dyfeomorfizmami na swój obraz, więc i ich funkcje odwrotne są gładkie. Zatem złożenie $y^{-1} \circ f \circ x$ jest również gładkie.

Załóżmy, że $y^{-1} \circ f \circ x$ jest odwzorowaniem gładkim z $\mathbb{R}^2 \supset U \to V \subset \mathbb{R}^2$. Możemy je złożyć wcześniej z x^{-1} : $x(U) \to U$, oraz później z $y: V \to y(V)$ otrzymując:

$$M \supset x(U) \underbrace{\overset{x^{-1}}{\to} U \overset{x}{\to} x(U)}_{id_{x(U)}} \xrightarrow{f} y(V) \underbrace{\overset{y^{-1}}{\to} V \overset{y}{\to} y(V)}_{id_{y(V)}} y(V) \subset N$$

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzc

Powierzchnie obrotowe
Powierzchnie prostokreślne

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Krzywizna Gaussa

Krzywizna Gaussa I

 x^{-1} : $x(U) \to U$, oraz później z y: $V \to y(V)$ otrzymując:

$$M \supset x(U) \xrightarrow{x^{-1}} U \xrightarrow{x} x(U) \xrightarrow{f} y(V) \xrightarrow{y^{-1}} V \xrightarrow{y} y(V) \subset N$$

Podstawowe definicje

Załóżmy, że odwzorowanie $f: M \to N \subset \mathbb{R}^3$ jest gładkie. Ponieważ x i y są dyfeomorfizmami na swój obraz, więc i ich funkcje odwrotne są gładkie. Zatem złożenie $y^{-1} \circ f \circ x$ jest również gładkie.

$$M \supset x(U) \xrightarrow[\mathrm{id}_{x(U)}]{x^{-1}} \xrightarrow{X} x(U) \xrightarrow{f} y(V) \xrightarrow{y^{-1}} V \xrightarrow{y} y(V) \subset N$$

Podstawowe definicje

Podstawowe definicje

Elementarna Geometria Różniczkowa

Aby złożenie $y^{-1} \circ f \circ x$ będzie miało sens musimy założyć, że ograniczymy się do zbioru otwartego $f(x(U)) \cap y(v) \neq \emptyset$. Dla wygody oznaczmy $A \stackrel{\text{def.}}{=} x^{-1}(v^{-1}(v(v))).$

Załóżmy, że odwzorowanie $f: M \to N \subset \mathbb{R}^3$ jest gładkie.

Ponieważ x i y są dyfeomorfizmami na swój obraz, więc i ich funkcje odwrotne są gładkie. Zatem złożenie $y^{-1} \circ f \circ x$ jest również gładkie.

Załóżmy, że $y^{-1} \circ f \circ x$ jest odwzorowaniem gładkim z $\mathbb{R}^2 \supset U \rightarrow V \subset \mathbb{R}^2$. Możemy je złożyć wcześniej z x^{-1} : $x(U) \to U$, oraz później z $y: V \to y(V)$ otrzymując:

Aby złożenie $y^{-1} \circ f \circ x$ będzie miało sens musimy założyć, że ograniczymy się do zbioru otwartego $f(x(U)) \cap y(v) \neq \emptyset$. Dla wygody oznaczmy $A \stackrel{\text{def.}}{=} x^{-1}(v^{-1}(v(v))).$

Załóżmy, że odwzorowanie $f: M \to N \subset \mathbb{R}^3$ jest gładkie.

Ponieważ x i y są dyfeomorfizmami na swój obraz, więc i ich funkcje odwrotne są gładkie. Zatem złożenie $y^{-1} \circ f \circ x$ jest również gładkie.

Załóżmy, że $y^{-1} \circ f \circ x$ jest odwzorowaniem gładkim z $\mathbb{R}^2 \supset U \rightarrow V \subset \mathbb{R}^2$. Możemy je złożyć wcześniej z x^{-1} : $x(U) \to U$, oraz później z $y: V \to y(V)$ otrzymując:

$$M \supset x(U) \xrightarrow{x^{-1}} U \xrightarrow{x} x(U) \xrightarrow{f} y(V) \xrightarrow{y^{-1}} V \xrightarrow{y} y(V) \subset N.$$

Podstawowe definicje

Definicja

Niech $f: U \to \mathbb{R}$ będzie funkcją określoną na zbiorze otwartym $U \subset \mathbb{R}^2$. Powierzchnię $M \subset \mathbb{R}^3$ nazywamy **powierzchnią Monge'a** jeśli jej parametryzacja jest wykresem funkcji f:

$$x(s,t)=(s,t,f(s,t)).$$

Elementarna Geometria Różniczkowa

owierzchnie w R³
Podstawowe definicje

Parametryzacja Monge'a

Powierzchnie prostokreślne

Wektory styczne i normalne. I forma

Pochodne kierunkowe

Krzywizna Gaussa

Krzywizna Gaussa I

Parametryzacja Monge'a spełnia naszą definicję powierzchni (Definicja 5.3), ponieważ

$$\frac{\partial x}{\partial s}(s,t) \times \frac{\partial x}{\partial t}(s,t) = \det \begin{bmatrix} i & j & k \\ 1 & 0 & \frac{\partial f}{\partial s}(s,t) \\ 0 & 1 & \frac{\partial f}{\partial t}(s,t) \end{bmatrix} = \\ = \left(-\frac{\partial f}{\partial s}(s,t), -\frac{\partial x}{\partial t}(s,t), 1 \right) \neq 0.$$

Powierzchnie w \mathbb{R}^3

Przykłady powierzch

Parametryzacja Monge'a

Powierzchnie prostokreślne

Poziomice funkcji

normalne. I forma podstawowa

Pochodne kierunkowe.

Vernavirna Caussa

Krzywizna Gaussa I

Krzywizna Gaussa I

Przykład

- Paraboloida
- Powierzchnia siodłowa

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Podstawowe definicj Przykłady powierzch

Parametryzacja Monge'a

Powierzchnie prostokreślne Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe.

Krzywizna Gaussa I

Krzywizna Gaussa II

FIZYKIAU

► Paraboloida

Powierzchnia siodłowa

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Przykłady powierzchi

Parametryzacja Monge'a

Powierzchnie prostokreślne

Wektory styczne i normalne. I forma

Pochodne kierunkowe.

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Powierzchnia siodłowa

Parametryzacja Monge'a

Definicja

Powierzchnia obrotowa powstaje poprzez obrócenie krzywej $\alpha(t)$ wokół pewnej ustalonej prostej.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Podstawowe definicj Przykłady powierzch

Parametryzacja Monge'a

Powierzchnie obrotowe

Powierzchnie prostokreśln Poziomice funkcii

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe

Krzywizna Gaussa

Krzywizna Gaussa II

Aby powierzchnia w ten sposób uzyskana była regularna musimy dodatkowo wymagać, aby

- krzywa była bez samoprzecięć, oraz
- oś obrotu nie przecinała naszej krzywej w żadnym punkcie.

Zadanie

Opisać co się "psuje" w definicji kiedy zachodzi jedna bądź druga okoliczność.

Powierzchnie w \mathbb{R}^3

Przykłady powierzchi

Powierzchnie obrotowe

Powierzchnie prostokreślno Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe.

Krzywizna Gaussa I

Krzywizna Gaussa II

Aby powierzchnia w ten sposób uzyskana była regularna musimy dodatkowo wymagać, aby

- krzywa była bez samoprzecięć, oraz
- oś obrotu nie przecinała naszej krzywej w żadnym punkcie.

Zadanie

Opisać co się "psuje" w definicji kiedy zachodzi jedna bądź druga okoliczność. Powierzchnie w \mathbb{R}^3

Przykłady powierzch

Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. zometria

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Aby powierzchnia w ten sposób uzyskana była regularna musimy dodatkowo wymagać, aby

- krzywa była bez samoprzecięć, oraz
- oś obrotu nie przecinała naszej krzywej w żadnym punkcie.

Zadanie

Opisać co się "psuje" w definicji kiedy zachodzi jedna bądź druga okoliczność.

Powierzchnie w \mathbb{R}^3

Przykłady powierzch

Powierzchnie obrotowe

Powierzchnie prostokreślne Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. zometria

Krzywizna Gaussa I

(------- C------ II

Nrzywizna Gaussa n

- krzywa była bez samoprzecięć, oraz
- oś obrotu nie przecinała naszej krzywej w żadnym punkcie.

Zadanie

Opisać co się "psuje" w definicji kiedy zachodzi jedna bądź druga okoliczność.

Powierzchnie w \mathbb{R}^3

Przykłady powierzch

Powierzchnie obrotowe

Powierzchnie prostokreślne Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe.

ometria.

rzywizna Gaussa I

Krzywizna Gaussa II

heorema Egregium Twierdzenie

► Hiperboloida jednopowłokowa (katenoida)

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Parametryzacja Monge'a

Powierzchnie obrotowe

Powierzchnie prostokreślne Poziomice funkcji

normalne. I forma

Pochodne kierunkowe.

Krzywizna Gaussa I

Krzywizna Gaussa II

Przykład

► Sfera

► Torus

► Hiperboloida jednopowłokowa (katenoida)

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Podstawowe definicje Przykłady powierzchr

Powierzchnie obrotowe

Powierzchnie prostokreślne Poziomice funkcii

normalne. I forma

Pochodne kierunkowe.

Krzywizna Gaussa

Krzywizna Gaussa I

Przykład

- ► Sfera
- ▶ Torus

► Hiperboloida jednopowłokowa (katenoida)

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Podstawowe definicje Przykłady powierzchn

Parametryzacja Monge'a

Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkcji

normalne. I forma podstawowa

Pochodne kierunkowe.

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

- Sfera
 - ▶ Torus

► Hiperboloida jednopowłokowa (katenoida)

Powierzchnie w \mathbb{R}^3

Podstawowe definicje Przykłady powierzchr

Parametryzacja Monge'a Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkcji

normalne. I forma podstawowa

ochodne ierunkowe.

Krzywizna Gaussa I

,

Krzywizna Gaussa II

Powierzchnią prostokreślną nazywamy powierzchnię o parametryzacji

$$x(s, t) = \alpha(s) + t\beta(s),$$

gdzie α i β są krzywymi w przestrzeni \mathbb{R}^3 . α nazywa się potocznie kierownicą, β - ruletą.

Elementarna Geometria Różniczkowa

Powierzchnie prostokreślne

Zauważmy, że dla ustalonego s_0 (czyli linia parametru dla zmiennej t) parametryzacja powyżej redukuje się do równania parametrycznego prostej. Powierzchnia prostokreślna to więc powierzchnia która "składa się" z prostych.

- ▶ Walec, Stożek
- Powierzchnia śrubowa
- ▶ Powierzchnia siodłowa
- Katenoida.

Powierzchnie w \mathbb{R}^3

Przykłady powierzch

Parametryzacja Monge'a Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkcj

Wektory styczne i normalne. I forma podstawowa

> ochodne erunkowe.

Krzywizna Gaussa

Krzywizna Gaussa I

Zauważmy, że dla ustalonego s_0 (czyli linia parametru dla zmiennej t) parametryzacja powyżej redukuje się do równania parametrycznego prostej. Powierzchnia prostokreślna to więc powierzchnia która "składa się" z prostych.

- ▶ Walec, Stożek
- Powierzchnia śrubowa
- ▶ Powierzchnia siodłowa
- ► Katenoida.

Powierzchnie w \mathbb{R}^3

Przykłady powierzch

Parametryzacja Monge'a Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkcj

Wektory styczne i normalne. I forma podstawowa

> ochodne ierunkowe.

Krzywizna Gaussa I

Krzywizna Gaussa I

Zauważmy, że dla ustalonego s_0 (czyli linia parametru dla zmiennej t) parametryzacja powyżej redukuje się do równania parametrycznego prostej. Powierzchnia prostokreślna to więc powierzchnia która "składa się" z prostych.

- ▶ Walec, Stożek
- Powierzchnia śrubowa
- Powierzchnia siodłowa
- ► Katenoida.

Powierzchnie w \mathbb{R}^3

Przykłady powierzch

Parametryzacja Monge Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkcj

Wektory styczne i normalne. I forma podstawowa

> ochodne ierunkowe. rometria.

Krzywizna Gaussa

Krzywizna Gaussa I

Zauważmy, że dla ustalonego s_0 (czyli linia parametru dla zmiennej t) parametryzacja powyżej redukuje się do równania parametrycznego prostej. Powierzchnia prostokreślna to więc powierzchnia która "składa się" z prostych.

- ▶ Walec, Stożek
- Powierzchnia śrubowa
- Powierzchnia siodłowa
- ► Katenoida.

Powierzchnie w \mathbb{R}^3

Przykłady powierzch

Parametryzacja Monge Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkcj

Wektory styczne i normalne. I forma podstawowa

Pochodne cierunkowe

Krzywizna Gaussa I

Krzywizna Gaussa I

Zauważmy, że dla ustalonego s_0 (czyli linia parametru dla zmiennej t) parametryzacja powyżej redukuje się do równania parametrycznego prostej. Powierzchnia prostokreślna to więc powierzchnia która "składa się" z prostych.

- ▶ Walec, Stożek
- Powierzchnia śrubowa
- Powierzchnia siodłowa
- ► Katenoida.

Powierzchnie w \mathbb{R}^3

Przykłady powierzch

Parametryzacja Monge Powierzchnie obrotowe

Powierzchnie prostokreślne

oziomice tunkcj

Wektory styczne i normalne. I forma podstawowa

> ochodne ierunkowe.

Krzywizna Gaussa I

Krzywizna Gaussa I

 $F: V \to \mathbb{R}$

będzie gładką funkcją. Punkt $p \in V$ nazywamy **punktem krytycznym** odwzorowania *F* jeśli

rank DF(p) = 0.

- W naszym przypadku oznacza to, że wszystkie pochodne
- Liczbe $a \in \mathbb{R}$ nazywamy wartością krytyczną

Poziomice funkcii

$$F:V\to\mathbb{R}$$

będzie gładką funkcją. Punkt $p \in V$ nazywamy **punktem krytycznym** odwzorowania *F* jeśli

$$\operatorname{rank} DF(p) = 0.$$

- W naszym przypadku oznacza to, że wszystkie pochodne cząstkowe są równe 0.
- Liczbe $a \in \mathbb{R}$ nazywamy wartością krytyczną

Elementarna Geometria Różniczkowa

Poziomice funkcji

$$F:V\to\mathbb{R}$$

będzie gładką funkcją. Punkt $p \in V$ nazywamy **punktem krytycznym** odwzorowania *F* jeśli

$$\operatorname{rank} DF(p) = 0.$$

- W naszym przypadku oznacza to, że wszystkie pochodne cząstkowe są równe 0.
- Liczbę $a \in \mathbb{R}$ nazywamy wartością krytyczną odwzorowania F jeśli wewnątrz zbioru $F^{-1}(a)$ leżv przynajmniej jeden punkt krytyczny.

Poziomice funkcji

Punkt $p \in V$ nazywamy **punktem regularnym** odwzorowania F jeśli

rank DF(p) = 1.

- W naszym przypadku oznacza to, że przynajmniej jedna z pochodnych cząstkowych odwzorowania F jest różna od 0 w tym punkcie.
- ▶ Liczbę $a \in \mathbb{R}$ nazywamy wartością regularną odwzorowania F jeśli zbiór $F^{-1}(a)$ składa się tylko z punktów regularnych.

Powierzchnie w \mathbb{R}^3

Podstawowe definicje Przykłady powierzchi

Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkcji

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

> ochodne ierunkowe. rometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Punkt $p \in V$ nazywamy **punktem regularnym** odwzorowania F jeśli

rank
$$DF(p) = 1$$
.

- W naszym przypadku oznacza to, że przynajmniej jedna z pochodnych cząstkowych odwzorowania F jest różna od 0 w tym punkcie.
- ▶ Liczbę $a \in \mathbb{R}$ nazywamy wartością regularną odwzorowania F jeśli zbiór $F^{-1}(a)$ składa się tylko z punktów regularnych.

Powierzchnie w \mathbb{R}^3

Podstawowe definicje Przykłady powierzchi

Powierzchnie obrotowe

Powierzchnie prostokreśln

Poziomice funkcji

Wektory styczne i normalne. I forma

ochodne ierunkowe.

Krzywizna Gaussa I

(rzywizna Gaussa II

Punkt $p \in V$ nazywamy **punktem regularnym** odwzorowania F jeśli

rank
$$DF(p) = 1$$
.

- W naszym przypadku oznacza to, że przynajmniej jedna z pochodnych cząstkowych odwzorowania F jest różna od 0 w tym punkcie.
- ▶ Liczbę $a \in \mathbb{R}$ nazywamy **wartością regularną** odwzorowania F jeśli zbiór $F^{-1}(a)$ składa się tylko z punktów regularnych.

Powierzchnie w \mathbb{R}^3

Podstawowe definic

owierzchnie obrotowe

Poziomice funkcii

Poziomice tunkcji

Wektory styczne i normalne. I forma podstawowa

ochodne ierunkowe.

rzvwizna Gaussa I

(rzywizna Gaussa II

Elementarna Geometria Różniczkowa

Twierdzenie

Niech $V \subset \mathbb{R}^3$ będzie zbiorem otwartym, zaś $F: V \to \mathbb{R}$ funkcją gładką. Jeśli $a \in F(V) \subset \mathbb{R}$ jest wartością regularną, wtedy $F^{-1}(a)$ jest gładką powierzchnią (o ile jest to zbiór niepusty).

Dowód:

Dowód jest dosyć techniczny i wynika z twierdzenia o odwzorowaniu uwikłanym. Pomijamy.

Powierzchnie w \mathbb{R}^3

Przykłady powierzch

Powierzchnie obrotowe
Powierzchnie prostokreślne

Poziomice funkcji

Wektory styczne i normalne. I forma nodstawowa

Pochodne kierunkowe. zometria

Krzywizna Gaussa

Krzywizna Gaussa II

Twierdzenie

Niech $V \subset \mathbb{R}^3$ będzie zbiorem otwartym, zaś $F: V \to \mathbb{R}$ funkcją gładką. Jeśli $a \in F(V) \subset \mathbb{R}$ jest wartością regularną, wtedy $F^{-1}(a)$ jest gładką powierzchnią (o ile jest to zbiór niepusty).

Dowód:

Dowód jest dosyć techniczny i wynika z twierdzenia o odwzorowaniu uwikłanym. Pomijamy.

owierzchnie w \mathbb{R}^3

Przykłady powierzch

Powierzchnie obrotowe Powierzchnie prostokreślne

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. zometria

Krzywizna Gaussa I

Krzywizna Gaussa I

Przykład

▶ elipsoida (w szczególności sfera o promieniu R jako przeciwobraz $f^{-1}(R)$, gdzie $f(x, y, z) = x^2 + y^2 + z^2$).

- ▶ paraboloida ($F(x, y, z) = x^2 + y^2 z$)
- hiperboloida (jedno i dwu-powłokowa:

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Podstawowe defin Przykłady powierz

Parametryzacja Monge'a

Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. zometria.

Krzywizna Gaussa

Krzywizna Gaussa I

Przykład

▶ elipsoida (w szczególności sfera o promieniu R jako przeciwobraz $f^{-1}(R)$, gdzie $f(x, y, z) = x^2 + y^2 + z^2$).

- ▶ paraboloida ($F(x, y, z) = x^2 + y^2 z$)
- hiperboloida (jedno i dwu-powłokowa:

$$f(x) = \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2}$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Podstawowe defin Przykłady powierz

Parametryzacja Monge'a

Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe Izometria

Krzywizna Gaussa

Krzywizna Gaussa I

Przykład

▶ elipsoida (w szczególności sfera o promieniu R jako przeciwobraz $f^{-1}(R)$, gdzie $f(x, y, z) = x^2 + y^2 + z^2$).

- ▶ paraboloida ($F(x, y, z) = x^2 + y^2 z$)
- hiperboloida (jedno i dwu-powłokowa: $f(x) = \frac{x^2}{x^2} + \frac{y^2}{k^2} \frac{z^2}{z^2}.$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Przykłady powierzchni Parametryzacja Monge'a

Poziomice funkcii

Wektory styczne i normalne. I forma

Pochodne kierunkowe

Krzywizna Gaussa

Krzywizna Gaussa II

Wykład 6

Wektory styczne i normalne. I forma podstawowa

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Przestrze

Powtórka z algebry liniowej

Pochodne kierunkow

zometria.

Krzywizna Gaussa II

Powierzchnie w \mathbb{R}^3

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Przestrzeń styczr Wektor normalny

Powtórka z algebry liniowej

Pochodne

Izometria.

rzywizna Gaussa I

(rzywizna Gaussa II

Theorema Egregium Twierdzenie dasyfikacyine

Wektory styczne i normalne. I forma podstawowa Przestrzeń styczna Wektor normalny Powtórka z algebry liniowej I

Pochodne kierunkowe Izometria

I forma podstawowa

Krzywizna Gaussa

Krzywizna Gaussa I

Na każdej powierzchni mamy naturalnie dane dwie rodziny krzywych . Dla każdego ustalonego $s_0 \in \mathbb{R}$ możemy rozpatrywać krzywą

$$x(s_0,\cdot):\mathbb{R}\to\mathbb{R}^3.$$

Podobnie dla dowolnego to mamy krzywą

$$x(\cdot, t_0): \mathbb{R} \to \mathbb{R}^3.$$

Krzywe te leżą na naszej powierzchni, a wektory styczne do tych krzywych będą grały bardzo ważną rolę w dalszych rozważaniach.

Powierzchnie w \mathbb{R}^3

normalne. I for podstawowa

Przestrzeń styczna

Powtórka z algebry liniowej I forma podstawowa

Pochodne kierunkowe. Izometria.

zywizna Gaussa I

Krzywizna Gaussa II

Powyższe krzywe nazywamy **liniami parametru**. Jeśli oznaczymy punkt $p=x(s_0,t_0)$ wtedy wektory do nich styczne w punkcie p oznaczamy przez

$$x_s(p) \stackrel{\text{def.}}{=} \frac{\partial x}{\partial s}(s, t_0)\big|_{s=s_0}, \qquad x_t(p) \stackrel{\text{def.}}{=} \frac{\partial x}{\partial t}(s_0, t)\big|_{t=t_0}.$$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Przestrzeń styczna

Powtórka z algebry liniowej I forma podstawowa

'ochodne ierunkowe

(rzywizna Caussa I

Krzywizna Gaussa II

Powyższe krzywe nazywamy **liniami parametru**. Jeśli oznaczymy punkt $p=x(s_0,t_0)$ wtedy wektory do nich styczne w punkcie p oznaczamy przez

$$x_s(p) \stackrel{\text{def.}}{=} \frac{\partial x}{\partial s}(s, t_0)\big|_{s=s_0}, \qquad x_t(p) \stackrel{\text{def.}}{=} \frac{\partial x}{\partial t}(s_0, t)\big|_{t=t_0}.$$

Powierzchnie w \mathbb{R}^3

odstawowa

Przestrzeń styczna

Powtórka z algebry liniowej I forma podstawowa

ocnoane ierunkowe. rometria.

rzywizna Gaussa I

Krzywizna Gaussa II

przestrzenią styczną i oznaczamy T_pM .

Uwaga

Przestrzeń styczna jest faktycznie przestrzenią liniową, tj.

Jeśli v ∈ T_pM, wtedy również av ∈ T_pM dla dowolnego a ∈ ℝ. Wynika to z reparametryzacji

Niech $\alpha_v: (-\varepsilon, \varepsilon) \to M \subset \mathbb{R}^3$ będzie krzywą gładką. Załóżmy,

rozważmy wszystkie tego typu krzywe α_v . Wektory do nich styczne w punkcie p utworzą przestrzeń którą nazywamy

że $\alpha_{\nu}(0) = p$, oraz $\alpha'_{\nu}(0) = \nu$. Ustalmy punkt $p \in M$ i

 $\alpha_{av}(t) = \alpha_v(at).$

▶ Addytywność (jeśli v, $w \in T_pM$, wówczas $av + bw \in T_pM$) wynika z dowodu następnego lematu.

Uwaga

Przestrzeń styczna jest faktycznie przestrzenią liniową, tj.

▶ Jeśli $v \in T_pM$, wtedy również a $v \in T_pM$ dla dowolnego $a \in \mathbb{R}$. Wynika to z reparametryzacji

$$\alpha_{av}(t) = \alpha_v(at).$$

Addytywność (jeśli v, $w \in T_pM$, wówczas $av + bw \in T_pM$) wynika z dowodu następnego lematu.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Przestrzeń styczna

Powtórka z algebry liniowej I forma podstawowa

kierunkowe. zometria.

Irzywizna Gaussa I

Krzywizna Gaussa II

że $\alpha_{\nu}(0) = p$, oraz $\alpha'_{\nu}(0) = \nu$. Ustalmy punkt $p \in M$ i rozważmy wszystkie tego typu krzywe α_v . Wektory do nich styczne w punkcie p utworzą przestrzeń którą nazywamy **przestrzenią styczną** i oznaczamy T_pM .

Uwaga

Przestrzeń styczna jest faktycznie przestrzenią liniową, tj.

▶ Jeśli $v \in T_pM$, wtedy również $av \in T_pM$ dla dowolnego $a \in \mathbb{R}$. Wynika to z reparametryzacji

$$\alpha_{av}(t) = \alpha_v(at).$$

► Addytywność (jeśli v, $w \in T_pM$, wówczas

Niech $\alpha_{\nu}: (-\varepsilon, \varepsilon) \to M \subset \mathbb{R}^3$ będzie krzywą gładką. Załóżmy, \dot{z} e $\alpha_{\nu}(0) = p$, oraz $\alpha'_{\nu}(0) = \nu$. Ustalmy punkt $p \in M$ i rozważmy wszystkie tego typu krzywe α_v . Wektory do nich styczne w punkcie p utworzą przestrzeń którą nazywamy **przestrzenią styczną** i oznaczamy T_pM .

Uwaga

Przestrzeń styczna jest faktycznie przestrzenią liniową, tj.

▶ Jeśli $v \in T_pM$, wtedy również $av \in T_pM$ dla dowolnego $a \in \mathbb{R}$. Wynika to z reparametryzacji

$$\alpha_{av}(t) = \alpha_{v}(at).$$

Addytywność (jeśli v, w ∈ T_pM, wówczas $av + bw \in T_pM$) wynika z dowodu następnego lematu.

Niech $U \subset \mathbb{R}^2$ będzie zbiorem otwartym i niech $x: U \to \mathbb{R}^3$ będzie lokalnym układem współrzędnych.

- 1. Przestrzeń styczna jest rozpięta przez wektory $\{x_s(p), x_t(p)\}$, styczne do linii parametru przecinających się w punkcie p.
- Niech p ∈ x(U), p = x(s₀, t₀) będzie punktem na powierzchni. Wymiar przestrzeni stycznej w punkcie p wynosi

 $\dim T_p M = 2$

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

Przestrzeń styczna

Powtórka z algebry liniowej I I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Niech $U \subset \mathbb{R}^2$ będzie zbiorem otwartym i niech $x: U \to \mathbb{R}^3$ będzie lokalnym układem współrzędnych.

- 1. Przestrzeń styczna jest rozpięta przez wektory $\{x_s(p), x_t(p)\}$, styczne do linii parametru przecinających się w punkcie p.
- Niech p ∈ x(U), p = x(s₀, t₀) będzie punktem na powierzchni. Wymiar przestrzeni stycznej w punkcie p wynosi

 $\dim T_p M = 2$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Przestrzeń styczna

Powtórka z algebry liniowej l I forma podstawowa

kierunkowe. zometria.

arzy wiziła Gaussa i

Krzywizna Gaussa II

Niech $U \subset \mathbb{R}^2$ będzie zbiorem otwartym i niech $x: U \to \mathbb{R}^3$ będzie lokalnym układem współrzędnych.

- 1. Przestrzeń styczna jest rozpięta przez wektory $\{x_s(p), x_t(p)\}$, styczne do linii parametru przecinających się w punkcie p.
- 2. Niech $p \in x(U)$, $p = x(s_0, t_0)$ będzie punktem na powierzchni. Wymiar przestrzeni stycznej w punkcie p wynosi

 $\dim T_p M = 2.$

Powierzchnie w \mathbb{R}^3

Vektory styczne i ormalne. I forma odstawowa

Przestrzeń styczna

Powtórka z algebry liniowej l I forma podstawowa

ierunkowe. cometria.

arzywizna Gaussa i

rzywizna Gaussa

$$\beta \stackrel{\text{def.}}{=} x^{-1} \circ \alpha_{v} : (-\varepsilon, \varepsilon) \to U \subset \mathbb{R}^{2}$$

$$\alpha_v(t) = \underbrace{x \circ x^{-1}}_{\mathrm{id}_{x(U)}} \circ \alpha_v(t) = x(\beta_1(t), \beta_2(t)),$$

$$\beta \stackrel{\text{def.}}{=} x^{-1} \circ \alpha_{v} : (-\varepsilon, \varepsilon) \to U \subset \mathbb{R}^{2}$$

$$\alpha_{\nu}(t) = \underbrace{x \circ x^{-1}}_{\mathrm{id}_{x(U)}} \circ \alpha_{\nu}(t) = x(\beta_1(t), \beta_2(t)),$$

Niech $\langle x_s(p), x_t(p) \rangle_{\mathbb{R}}$ oznacza podprzestrzeń liniową w \mathbb{R}^3 rozpiętą przez wektory x_s i x_t . Pokażemy, że każdy wektor z przestrzeni stycznej T_pM można przedstawić jako kombinację liniową wektorów stycznych do linii parametru.

$$\alpha_{\nu}(t) = \underbrace{x \circ x^{-1}}_{\mathrm{id}_{x(U)}} \circ \alpha_{\nu}(t) = x(\beta_1(t), \beta_2(t)),$$

Wystarczy udowodnić pierwszą część lematu. Niech $\langle x_s(p), x_t(p) \rangle_{\mathbb{R}}$ oznacza podprzestrzeń liniową w \mathbb{R}^3 rozpiętą przez wektory x_s i x_t . Pokażemy, że każdy wektor z przestrzeni stycznej T_pM można przedstawić jako kombinację liniową wektorów stycznych do linii parametru.

Niech $v \in T_p M$. Z definicji przestrzeni stycznej istnieje krzywa $\alpha_{\nu}:(-\varepsilon,\varepsilon)\to M\subset\mathbb{R}^3$ taka, że $\alpha_{\nu}(0)=p$, $\alpha'_{\nu}(0) = \nu \in T_{\rho}M$. Rozważmy złożenie

$$\beta \stackrel{\text{def.}}{=} x^{-1} \circ \alpha_{v} : (-\varepsilon, \varepsilon) \to U \subset \mathbb{R}^{2}$$

$$\alpha_v(t) = \underbrace{x \circ x^{-1}}_{\mathrm{id}_{x(U)}} \circ \alpha_v(t) = x(\beta_1(t), \beta_2(t)),$$

Elementarna Geometria Różniczkowa

Niech $\langle x_s(p), x_t(p) \rangle_{\mathbb{R}}$ oznacza podprzestrzeń liniową w \mathbb{R}^3 rozpiętą przez wektory x_s i x_t . Pokażemy, że każdy wektor z przestrzeni stycznej T_pM można przedstawić jako kombinację liniową wektorów stycznych do linii parametru.

Niech $v \in T_p M$. Z definicji przestrzeni stycznej istnieje krzywa $\alpha_{\nu}:(-\varepsilon,\varepsilon)\to M\subset\mathbb{R}^3$ taka, że $\alpha_{\nu}(0)=p$, $\alpha'_{\nu}(0) = \nu \in T_p M$. Rozważmy złożenie

$$\beta \stackrel{\text{def.}}{=} x^{-1} \circ \alpha_{\nu} : (-\epsilon, \epsilon) \to \mathit{U} \subset \mathbb{R}^2$$

i niech $\beta_1, \beta_2: (-\varepsilon, \varepsilon) \to \mathbb{R}$ będą funkcjami współrzędnych β .

$$\alpha_v(t) = \underbrace{x \circ x^{-1}}_{\mathrm{id}_{x(U)}} \circ \alpha_v(t) = x(\beta_1(t), \beta_2(t)),$$

Elementarna Geometria Różniczkowa

Niech $\langle x_s(p), x_t(p) \rangle_{\mathbb{R}}$ oznacza podprzestrzeń liniową w \mathbb{R}^3 rozpiętą przez wektory x_s i x_t . Pokażemy, że każdy wektor z przestrzeni stycznej T_pM można przedstawić jako kombinację liniową wektorów stycznych do linii parametru.

Niech $v \in T_p M$. Z definicji przestrzeni stycznej istnieje krzywa $\alpha_{\nu}: (-\varepsilon, \varepsilon) \to M \subset \mathbb{R}^3$ taka, że $\alpha_{\nu}(0) = p$, $\alpha'_{\nu}(0) = \nu \in T_p M$. Rozważmy złożenie

Przestrzeń styczna

$$\beta \stackrel{\text{def.}}{=} x^{-1} \circ \alpha_{v} : (-\varepsilon, \varepsilon) \to U \subset \mathbb{R}^{2}$$

i niech $\beta_1, \beta_2: (-\varepsilon, \varepsilon) \to \mathbb{R}$ będą funkcjami współrzędnych β . Wtedy równość funkcji

$$\alpha_{\nu}(t) = \underbrace{x \circ x^{-1}}_{\mathrm{id}_{x(U)}} \circ \alpha_{\nu}(t) = x(\beta_1(t), \beta_2(t)),$$

pociąga równość pochodnych:

Powtórka z algebry liniowej I I forma podstawowa

Izometria.

....,

Krzywizna Gaussa II

Theorema Egregium i Twierdzenie

$$v = \alpha'_{v}(t)\big|_{t=0} = x(\beta_{1}(t), \beta_{2}(t))'\big|_{t=0} =$$

$$= \frac{\partial x}{\partial \beta_{1}}(s_{0}, t_{0})\beta'_{1}(t)\big|_{t=0} + \frac{\partial x}{\partial \beta_{2}}(s_{0}, t_{0})\beta'_{2}(t)\big|_{t=0} =$$

$$= \beta'_{1}(0)x_{s}(s_{0}) + \beta'_{2}(0)x_{t}(t_{0})$$

co daje szukany rozkład v w bazie $\{x_s, x_t\}$. Teraz przypuśćmy, że $v = ax_s + bx_t$ dla pewnych $a, b \in \mathbb{R}$. Bez straty ogólności możemy założyć, że lokalny układ współrzędnych został w taki sposób wybrany, że x(0,0) = p (dlaczego?). Zdefiniujmy krzywą $\alpha: (-\varepsilon, \varepsilon) \to x(U)$ przez $\alpha(t) = x(at, bt)$. Proste przeliczenie pokazuje, że $\alpha(0) = p$ i $\alpha'(0) = ax_s + bx_t = v$, czyli v należy do T_pM .

Powtórka z algebry liniowej I I forma podstawowa

Izometria.

Kizywiziia Gaussa i

Krzywizna Gaussa II

Theorema Egregiu i Twierdzenie klasyfikacyjne

$$\begin{aligned} v &= \alpha_{\nu}'(t)\big|_{t=0} = x\big(\beta_{1}(t), \beta_{2}(t)\big)'\big|_{t=0} = \\ &= \frac{\partial x}{\partial \beta_{1}}(s_{0}, t_{0})\beta_{1}'(t)\big|_{t=0} + \frac{\partial x}{\partial \beta_{2}}(s_{0}, t_{0})\beta_{2}'(t)\big|_{t=0} = \\ &= \beta_{1}'(0)x_{s}(s_{0}) + \beta_{2}'(0)x_{t}(t_{0}), \end{aligned}$$

co daje szukany rozkład v w bazie $\{x_s, x_t\}$. Teraz przypuśćmy, że $v = ax_s + bx_t$ dla pewnych $a, b \in \mathbb{R}$. Be straty ogólności możemy założyć, że lokalny układ współrzędnych został w taki sposób wybrany, że x(0,0) = p (dlaczego?). Zdefiniujmy krzywą $\alpha: (-\varepsilon, \varepsilon) \to x(U)$ przez $\alpha(t) = x(at, bt)$. Proste przeliczenie pokazuje, że $\alpha(0) = p$ i $\alpha'(0) = ax_s + bx_t = v$, czyli v należy do T_pM .

Powtórka z algebry liniowej l I forma podstawowa

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium i Twierdzenie klasyfikacyjne

$$\begin{aligned} v &= \alpha_{\nu}'(t)\big|_{t=0} = x\big(\beta_1(t), \beta_2(t)\big)'\big|_{t=0} = \\ &= \frac{\partial x}{\partial \beta_1}(s_0, t_0)\beta_1'(t)\big|_{t=0} + \frac{\partial x}{\partial \beta_2}(s_0, t_0)\beta_2'(t)\big|_{t=0} = \\ &= \beta_1'(0)x_s(s_0) + \beta_2'(0)x_t(t_0), \end{aligned}$$

co daje szukany rozkład v w bazie $\{x_s, x_t\}$.

Teraz przypuśćmy, że $v=ax_s+bx_t$ dla pewnych $a,b\in\mathbb{R}$. Be straty ogólności możemy założyć, że lokalny układ współrzędnych został w taki sposób wybrany, że x(0,0)=p (dlaczego?). Zdefiniujmy krzywą $\alpha\colon (-\varepsilon,\varepsilon)\to x(U)$ przez $\alpha(t)=x(at,bt)$. Proste przeliczenie pokazuje, że $\alpha(0)=p$ i $\alpha'(0)=ax_s+bx_t=v$, czyli v należy do T_pM .

Wektor normaln

I forma podstawowa

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium i Twierdzenie klasyfikacyjne

$$\begin{aligned} v &= \alpha_{\nu}'(t)\big|_{t=0} = x\big(\beta_{1}(t), \beta_{2}(t)\big)'\big|_{t=0} = \\ &= \frac{\partial x}{\partial \beta_{1}}(s_{0}, t_{0})\beta_{1}'(t)\big|_{t=0} + \frac{\partial x}{\partial \beta_{2}}(s_{0}, t_{0})\beta_{2}'(t)\big|_{t=0} = \\ &= \beta_{1}'(0)x_{s}(s_{0}) + \beta_{2}'(0)x_{t}(t_{0}), \end{aligned}$$

co daje szukany rozkład v w bazie $\{x_s, x_t\}$. Teraz przypuśćmy, że $v = ax_s + bx_t$ dla pewnych $a, b \in \mathbb{R}$. Bez straty ogólności możemy założyć, że lokalny układ współrzędnych został w taki sposób wybrany, że x(0,0) = p (dlaczego?). Zdefiniujmy krzywą $\alpha: (-\varepsilon, \varepsilon) \to x(U)$ przez $\alpha(t) = x(at, bt)$. Proste przeliczenie pokazuje, że $\alpha(0) = p$ i

Wektor normalny

I forma podstawowa

Izometria.

Krzywizna Gaussa I

(rzywizna Gaussa II

Theorema Egregium i Twierdzenie klasyfikacyjne

$$\begin{aligned} v &= \alpha_{\nu}'(t)\big|_{t=0} = x\big(\beta_{1}(t), \beta_{2}(t)\big)'\big|_{t=0} = \\ &= \frac{\partial x}{\partial \beta_{1}}(s_{0}, t_{0})\beta_{1}'(t)\big|_{t=0} + \frac{\partial x}{\partial \beta_{2}}(s_{0}, t_{0})\beta_{2}'(t)\big|_{t=0} = \\ &= \beta_{1}'(0)x_{s}(s_{0}) + \beta_{2}'(0)x_{t}(t_{0}), \end{aligned}$$

co daje szukany rozkład v w bazie $\{x_s, x_t\}$. Teraz przypuśćmy, że $v = ax_s + bx_t$ dla pewnych $a, b \in \mathbb{R}$. Bez straty ogólności możemy założyć, że lokalny układ współrzędnych został w taki sposób wybrany, że x(0,0) = p (dlaczego?). Zdefiniujmy krzywą $\alpha: (-\varepsilon, \varepsilon) \to x(U)$ przez $\alpha(t) = x(at, bt)$. Proste przeliczenie pokazuje, że $\alpha(0) = p$ i $\alpha'(0) = ax_s + bx_t = v$ czyli v należy do T_2M

Powtórka z algebry liniowej

Pochodne kierunkowe. zometria.

Krzywizna Gaussa I

. Irzywizna Gaussa II

Theorema Egregium i Twierdzenie klasyfikacyjne

$$\begin{aligned} v &= \alpha_{v}'(t)\big|_{t=0} = x\big(\beta_{1}(t), \beta_{2}(t)\big)'\big|_{t=0} = \\ &= \frac{\partial x}{\partial \beta_{1}}(s_{0}, t_{0})\beta_{1}'(t)\big|_{t=0} + \frac{\partial x}{\partial \beta_{2}}(s_{0}, t_{0})\beta_{2}'(t)\big|_{t=0} = \\ &= \beta_{1}'(0)x_{s}(s_{0}) + \beta_{2}'(0)x_{t}(t_{0}), \end{aligned}$$

co daje szukany rozkład v w bazie $\{x_s, x_t\}$. Teraz przypuśćmy, że $v = ax_s + bx_t$ dla pewnych $a, b \in \mathbb{R}$. Bez straty ogólności możemy założyć, że lokalny układ współrzędnych został w taki sposób wybrany, że x(0,0) = p (dlaczego?). Zdefiniujmy krzywą $\alpha: (-\varepsilon, \varepsilon) \to x(U)$ przez $\alpha(t) = x(at, bt)$. Proste przeliczenie pokazuje, że $\alpha(0) = p$ i $\alpha'(0) = ax_s + bx_t = v$, czyli v należy do T_pM .

Powtórka z algebry liniowej

kierunkowe. Izometria.

Krzywizna Gaussa I

rzywizna Gaussa II

Theorema Egregium i Twierdzenie klasyfikacyjne

$$\begin{aligned} v &= \alpha_{v}'(t)\big|_{t=0} = x\big(\beta_{1}(t), \beta_{2}(t)\big)'\big|_{t=0} = \\ &= \frac{\partial x}{\partial \beta_{1}}(s_{0}, t_{0})\beta_{1}'(t)\big|_{t=0} + \frac{\partial x}{\partial \beta_{2}}(s_{0}, t_{0})\beta_{2}'(t)\big|_{t=0} = \\ &= \beta_{1}'(0)x_{s}(s_{0}) + \beta_{2}'(0)x_{t}(t_{0}), \end{aligned}$$

co daje szukany rozkład v w bazie $\{x_s, x_t\}$. Teraz przypuśćmy, że $v = ax_s + bx_t$ dla pewnych $a, b \in \mathbb{R}$. Bez straty ogólności możemy założyć, że lokalny układ współrzędnych został w taki sposób wybrany, że x(0,0) = p (dlaczego?). Zdefiniujmy krzywą $\alpha: (-\varepsilon, \varepsilon) \to x(U)$ przez $\alpha(t) = x(at, bt)$. Proste przeliczenie pokazuje, że $\alpha(0) = p$ i $\alpha'(0) = ax_s + bx_t = v$, czyli v należy do T_pM .

Uwaga

Zauważmy, że przestrzeń styczna nie ma ustalonej w kanoniczny sposób bazy. Wektory x_s i x_t ją rozpinające zależą od wybranego lokalnego układu współrzędnych. Natomiast niezależna od tego wyboru jest cała przestrzeń styczna, a więc i jej ortogonalne dopełnienie, które nazywać będziemy kierunkiem normalnym.

Powierzchnie w \mathbb{R}^3

Wektory styczne normalne. I form podstawowa

Wektor normalny

Powtórka z algebry liniowej I I forma podstawowa

Pochodne kierunkowe. Izometria.

rzywizna Gaussa I

(rzywizna Gaussa II

Theorema Egregium
i Twierdzenie

$$x: U \longrightarrow M$$

 $(s_0, t_0) \longmapsto p \in M$

będzie lokalnym układem współrzędnych. Wektor normalny w p definiujemy jako

$$N(p) \stackrel{\text{def.}}{=} \frac{x_s \times x_t}{\|x_s \times x_t\|},$$

gdzie x_s i x_t wektorami stycznymi do linii parametru przechodzących przez punkt p.

Powierzchnie w \mathbb{R}^3

ektory styczne ormalne. I forma odstawowa

Wektor normalny

Powtórka z algebry liniow

Pochodne

ometria.

Krzywizna Gaussa II

Uwaga

Ponieważ wektor normalny ma długość 1, więc koniec każdego wektora normalnego N(p) leży na powierzchni sfery dwuwumiarowej $N(M) \subset S^2$. Zatem N może być traktowany jako **funkcja między powierzchniami**

$$N:M \to S^2 \subset \mathbb{R}^3$$

punktów na powierzchni M. Jest to tzw. **odwzorowanie Gaussa** do którego wrócimy później.

Powierzchnie w \mathbb{R}^3

/ektory styczne i ormalne. I forma odstawowa Przestrzeń styczna

Wektor normalny

Powtórka z algebry liniowej I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Definicja

Niech V będzie przestrzenią liniową nad ciałem \mathbb{R} . Forma dwuliniowa na V to odwzorowanie

$$F: V \times V \to \mathbb{R}$$
.

które jest liniowe na każdej ze zmiennych, tj. spełnione są następujące równości

- F(av + bw, z) = aB(v, z) + bB(w, z)
- F(v, aw + bz) = aB(v, w) + bB(v, z)

dla wszystkich wektorów v, w, $z \in V$ oraz wszystkich liczb rzeczywistych a, $b \in \mathbb{R}$.

Definicja

Niech V będzie przestrzenią liniową nad ciałem \mathbb{R} . Forma dwuliniowa na V to odwzorowanie

$$F: V \times V \to \mathbb{R}$$

które jest liniowe na każdej ze zmiennych, tj. spełnione są następujące równości

- F(av + bw, z) = aB(v, z) + bB(w, z)
- F(v, aw + bz) = aB(v, w) + bB(v, z)

dla wszystkich wektorów v, w, $z \in V$ oraz wszystkich liczb rzeczywistych a, $b \in \mathbb{R}$.

$$B(v, w) = B(w, v)$$

dla wszystkich $v, w \in V$.

$$A \stackrel{\text{def.}}{=} \begin{bmatrix} B(v_1, v_1) & \cdots & B(v_1, v_n) \\ \vdots & \ddots & \vdots \\ B(v_n, v_1) & \cdots & B(v_n, v_n) \end{bmatrix}$$

Powtórka z algebry liniowei I

$$B(v, w) = B(w, v)$$

dla wszystkich $v, w \in V$.

Definicja

Niech $\{v_1, \ldots, v_n\}$ będzie bazą przestrzeni V, oraz niech Bbędzie formą dwuliniową na V. Macierz fromy B w tej bazie definiujemy jako

$$A \stackrel{\text{def.}}{=} \left[\begin{array}{ccc} B(v_1, v_1) & \cdots & B(v_1, v_n) \\ \vdots & \ddots & \vdots \\ B(v_n, v_1) & \cdots & B(v_n, v_n) \end{array} \right]$$

Przy takiej definicji mamy $B(x, y) = xAy^T$ gdzie y^T oznacza transpozycję.

Powtórka z algebry liniowei I

Elementarna Geometria Różniczkowa

Powierzchnie w R³

ormalne. I forma odstawowa

Wektor normalny
Powtórka z algebry liniowej I

I forma podstawowa

zometria.

(rzywizna Gaussa II.

Theorema Egregiur i Twierdzenie

Przykład

Standardowy iloczyn skalarny $\langle x,y\rangle=\sum x_i^2$ jest oczywiście formą dwuliniową. W standardowej bazie przestrzeni \mathbb{R}^n jego macierzą jest $A=\operatorname{Id}$.

Niech $M \subset \mathbb{R}^3$ będzie gładką powierchnią i niech $p \in M$ będzie punktem na niej. Dla powierzchni M definiujemy **pierwszą formę podstawową w punkcie** p jako formę dwuliniową

$$I_p: T_p M \times T_p M \longrightarrow \mathbb{R}$$

 $(v, w) \longmapsto \langle v, w \rangle,$

gdzie $\langle \cdot, \cdot \rangle$ jest standardowym iloczynem skalarnym w \mathbb{R}^3 . Oznaczamy ją symbolem I_p .

Powierzchnie w \mathbb{R}^3

Wektory styczne ormalne. I form odstawowa

Wektor normalny

Powtórka z algebry liniowej I forma podstawowa

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Pierwsza forma podstawowa powierzchni *M* to zależna w sposób ciągły od punktu *p* rodzina wszystkich form dwuliniowych

$$\mathfrak{I}_{\mathcal{M}}\stackrel{\mathrm{def.}}{=}\{I_{p}\}_{p\in\mathcal{M}}.$$

Uwaga

Postać macierzowa pierwszej formy podstawowa zależy w istotny sposób od zanurzenia powierzchni w \mathbb{R}^3 (czyli od wyboru lokalnego układu współrzędnych x: $U \to M$).

Od teraz wektory styczne do linii parametru będziemy nazywać x_1 i x_2 zamiast x_5 i x_6 . Niech $x(s_0, t_0) = p$.

Powierzchnie w \mathbb{R}^3

Vektory styczne i ormalne. I forma odstawowa

Wektor normalny
Powtórka z algebry liniowe
I forma podstawowa

Pochodne kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Pierwsza forma podstawowa powierzchni *M* to zależna w sposób ciągły od punktu *p* rodzina wszystkich form dwuliniowych

$$\mathfrak{I}_{\mathcal{M}}\stackrel{\mathrm{def.}}{=}\{I_{p}\}_{p\in\mathcal{M}}.$$

Uwaga

Postać macierzowa pierwszej formy podstawowa zależy w istotny sposób od zanurzenia powierzchni w \mathbb{R}^3 (czyli od wyboru lokalnego układu współrzędnych x: $U \to M$).

Od teraz wektory styczne do linii parametru będziemy nazywać x_1 i x_2 zamiast x_5 i x_6 . Niech $x(s_0, t_0) = p$.

Powierzchnie w \mathbb{R}^3

ormalne. I for odstawowa

Wektor normalny
Powtórka z algebry liniowe
I forma podstawowa

Pochodne kierunkowe. zometria.

rzywizna Gaussa I

Krzywizna Gaussa II

Pierwsza forma podstawowa powierzchni *M* to zależna w sposób ciągły od punktu *p* rodzina wszystkich form dwuliniowych

$$\mathfrak{I}_{\mathcal{M}}\stackrel{\mathrm{def.}}{=}\{I_{p}\}_{p\in\mathcal{M}}.$$

Uwaga

Postać macierzowa pierwszej formy podstawowa zależy w istotny sposób od zanurzenia powierzchni w \mathbb{R}^3 (czyli od wyboru lokalnego układu współrzędnych x: $U \to M$).

Od teraz wektory styczne do linii parametru będziemy nazywać x_1 i x_2 zamiast x_5 i x_t . Niech $x(s_0, t_0) = p$.

Powierzchnie w \mathbb{R}^3

ormalne. I for odstawowa

Wektor normalny Powtórka z algebry liniowe

I forma podstawowa
Pochodne

ierunkowe. zometria.

Krzywizna Gaussa II

W każdym punkcie powierzchni macierz formy podstawowej

to macierz wymiaru 2 × 2. Przy tak przyjętych oznaczeniach niech

$$g_{ij}(s_0, t_0) \stackrel{def.}{=} \langle x_i(s_0), x_j(t_0) \rangle, \quad i, j = 1, 2.$$

Wtedy macierz formy podstawowej w bazie $\{x_1, x_2\}$, w punkcie p ma postać

$$I_p = \begin{bmatrix} g_{11}(s_0, t_0) & g_{12}(s_0, t_0) \\ g_{21}(s_0, t_0) & g_{22}(s_0, t_0) \end{bmatrix}$$

W przyszłości będziemy utożsamiać formę z jej macierzą w standardowej bazie przestrzeni stycznej.

Powierzchnie w R³

Wektory styczne Iormalne. I forma Iodstawowa

Wektor normalny
Powtórka z algebry liniowej
I forma podstawowa

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

W każdym punkcie powierzchni macierz formy podstawowej to macierz wymiaru 2 × 2. Przy tak przyjętych oznaczeniach niech

$$g_{ij}(s_0, t_0) \stackrel{def.}{=} \langle x_i(s_0), x_j(t_0) \rangle, \quad i, j = 1, 2.$$

Wtedy macierz formy podstawowej w bazie $\{x_1, x_2\}$, w punkcie p ma postać

$$I_p = \left[\begin{array}{ccc} g_{11}(s_0, t_0) & g_{12}(s_0, t_0) \\ g_{21}(s_0, t_0) & g_{22}(s_0, t_0) \end{array} \right]$$

W przyszłości będziemy utożsamiać formę z jej macierzą w standardowej bazie przestrzeni stycznej.

Powierzchnie w \mathbb{R}^3

ormalne. I foi odstawowa

Wektor normalny
Powtórka z algebry liniowe

I forma podstawowa

ometria.

(12y Wiziia Gaussa i

Krzywizna Gaussa II

$$g_{ij}(s_0, t_0) \stackrel{def.}{=} \langle x_i(s_0), x_j(t_0) \rangle, \quad i, j = 1, 2.$$

Wtedy macierz formy podstawowej w bazie $\{x_1, x_2\}$, w punkcie p ma postać

$$I_p = \left[\begin{array}{ccc} g_{11}(s_0, t_0) & g_{12}(s_0, t_0) \\ g_{21}(s_0, t_0) & g_{22}(s_0, t_0) \end{array} \right]$$

W przyszłości będziemy utożsamiać formę z jej macierzą w standardowej bazie przestrzeni stycznej.

Powierzchnie w \mathbb{R}^3

ormalne. I fo odstawowa

Wektor normalny
Powtórka z algebry liniowe

I forma podstawowa

erunkowe. ometria.

(12) WIZIIA Gaussa I

Krzywizna Gaussa II

$$x(s,t)=(s,t,st).$$

$$x_1(s, t) = (1, 0, t)$$
 $x_2(s, t) = (0, 1, s).$

$$I_p = I_{x(s,t)} = \begin{bmatrix} 1+t^2 & st \\ st & 1+s^2 \end{bmatrix}$$

Niech $x: U \to \mathbb{R}^3$ będzie powierzchnią siodłową w parametryzacji Mongea.

$$x(s, t) = (s, t, st).$$

Wtedy

$$x_1(s, t) = (1, 0, t)$$
 $x_2(s, t) = (0, 1, s).$

$$I_p = I_{x(s,t)} = \begin{bmatrix} 1+t^2 & st \\ st & 1+s^2 \end{bmatrix}$$

Elementarna Geometria Różniczkowa

$$x(s,t)=(s,t,st).$$

Wtedy

$$x_1(s, t) = (1, 0, t)$$
 $x_2(s, t) = (0, 1, s).$

Biorąc odpowiednie iloczyny skalarne tych wektorów otrzymujemy następującą postać macierzy pierwszej formy podstawowej:

$$I_p = I_{x(s,t)} = \begin{bmatrix} 1 + t^2 & st \\ st & 1 + s^2 \end{bmatrix}$$

$$x(s,t)=(s,t,st).$$

Wtedy

$$x_1(s, t) = (1, 0, t)$$
 $x_2(s, t) = (0, 1, s).$

Biorąc odpowiednie iloczyny skalarne tych wektorów otrzymujemy następującą postać macierzy pierwszej formy podstawowej:

$$I_p = I_{x(s,t)} = \begin{bmatrix} 1 + t^2 & st \\ st & 1 + s^2 \end{bmatrix}$$

Elementy macierzy I_p nazywamy **współczynnikami metrycznymi** lokalnego układu współrzędnych $x: U \rightarrow M$

Uwaga

- ▶ Ponieważ iloczyn skalarny w \mathbb{R}^n jest formą symetryczną więc I_p jest również formą symetryczną, zatem każdym punkcie mamy $g_{12} = g_{21}$.
- ► Gauss (a za nim część podręczników) używał oznaczer E, F i G na (odpowienio) g₁₁, g₁₂ i g₂₂.

Powierzchnie w \mathbb{R}^3

ektory styczne ormalne. I form odstawowa

Wektor normalny

I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa i

Krzywizna Gaussa II

Uwaga

- ▶ Ponieważ iloczyn skalarny w \mathbb{R}^n jest formą symetryczną, więc I_p jest również formą symetryczną, zatem każdym punkcie mamy $g_{12} = g_{21}$.
- Gauss (a za nim część podręczników) używał oznaczeń
 E, F i G na (odpowienio) g₁₁, g₁₂ i g₂₂.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma nodstawowa

Wektor normalny
Powtórka z algebry liniowej
I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa II

Definicja

Elementy macierzy I_p nazywamy współczynnikami metrycznymi lokalnego układu współrzędnych $x: U \to M$

Uwaga

- ▶ Ponieważ iloczyn skalarny w \mathbb{R}^n jest formą symetryczną, więc I_p jest również formą symetryczną, zatem każdym punkcie mamy $g_{12} = g_{21}$.
- ► Gauss (a za nim część podręczników) używał oznaczeń E, F i G na (odpowienio) g₁₁, g₁₂ i g₂₂.

Powierzchnie w \mathbb{R}^3

veкtory styczne ormalne. I forma odstawowa

Wektor normalny
Powtórka z algebry liniowej l
I forma podstawowa

tierunkowe. zometria.

Krzywizna Gaussa i

Theorema Egregium

i Twierdzenie klasyfikacyjne

Uwaga

- ▶ Ponieważ iloczyn skalarny w \mathbb{R}^n jest formą symetryczną, więc I_p jest również formą symetryczną, zatem każdym punkcie mamy $g_{12} = g_{21}$.
- Gauss (a za nim część podręczników) używał oznaczeń
 E, F i G na (odpowienio) g₁₁, g₁₂ i g₂₂.

Powierzchnie w \mathbb{R}^3

ormalne. I for odstawowa

Wektor normalny

I forma podstawowa

Pochodne kierunkowe. zometria.

Krzywizna Gaussa I

(rzywizna Gaussa

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$ będzie lokalnym układem współrzędnych. Wtedy

$$N = \frac{x_1 \times x_2}{\sqrt{\det(g_{ij})}}.$$

$$\det(g_{ij}) = g_{11}g_{22} - g_{12}^2 = \langle x_1, x_1 \rangle \langle x_2, x_2 \rangle - \langle x_1, x_2 \rangle^2 =$$

$$= \|x_1\|^2 \|x_2\|^2 - \|x_1\|^2 \|x_2\|^2 \cos^2 \varphi =$$

$$= \|x_1\|^2 \|x_2\|^2 (1 - \cos^2 \varphi) =$$

$$= \|x_1\|^2 \|x_2\|^2 \sin^2 \varphi = \|x_1 \times x_2\|^2,$$

Elementarna Geometria Różniczkowa

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$ będzie lokalnym układem współrzędnych. Wtedy

$$N = \frac{x_1 \times x_2}{\sqrt{\det(g_{ij})}}.$$

Dowód:

$$\det(g_{ij}) = g_{11}g_{22} - g_{12}^2 = \langle x_1, x_1 \rangle \langle x_2, x_2 \rangle - \langle x_1, x_2 \rangle^2 =$$

$$= \|x_1\|^2 \|x_2\|^2 - \|x_1\|^2 \|x_2\|^2 \cos^2 \varphi =$$

$$= \|x_1\|^2 \|x_2\|^2 (1 - \cos^2 \varphi) =$$

$$= \|x_1\|^2 \|x_2\|^2 \sin^2 \varphi = \|x_1 \times x_2\|^2,$$

Elementarna Geometria Różniczkowa

Lemat

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$ będzie lokalnym układem współrzędnych. Wtedy

$$N = \frac{x_1 \times x_2}{\sqrt{\det(g_{ij})}}.$$

Dowód:

Niech φ będzie kątem między x_1 i x_2 . Wtedy

$$\det(g_{ij}) = g_{11}g_{22} - g_{12}^2 = \langle x_1, x_1 \rangle \langle x_2, x_2 \rangle - \langle x_1, x_2 \rangle^2 =$$

$$= \|x_1\|^2 \|x_2\|^2 - \|x_1\|^2 \|x_2\|^2 \cos^2 \varphi =$$

$$= \|x_1\|^2 \|x_2\|^2 (1 - \cos^2 \varphi) =$$

$$= \|x_1\|^2 \|x_2\|^2 \sin^2 \varphi = \|x_1 \times x_2\|^2,$$

Elementarna Geometria Różniczkowa

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$ będzie lokalnym układem współrzędnych. Wtedy

$$N = \frac{x_1 \times x_2}{\sqrt{\det(g_{ij})}}.$$

Dowód:

Niech φ będzie kątem między x_1 i x_2 . Wtedy

$$\det(g_{ij}) = g_{11}g_{22} - g_{12}^2 = \langle x_1, x_1 \rangle \langle x_2, x_2 \rangle - \langle x_1, x_2 \rangle^2 =$$

$$= \|x_1\|^2 \|x_2\|^2 - \|x_1\|^2 \|x_2\|^2 \cos^2 \varphi =$$

$$= \|x_1\|^2 \|x_2\|^2 (1 - \cos^2 \varphi) =$$

$$= \|x_1\|^2 \|x_2\|^2 \sin^2 \varphi = \|x_1 \times x_2\|^2,$$

$$N = \frac{x_1 \times x_2}{\sqrt{\det(g_{ij})}}.$$

Dowód:

Niech φ będzie kątem między x_1 i x_2 . Wtedy

$$\det(g_{ij}) = g_{11}g_{22} - g_{12}^2 = \langle x_1, x_1 \rangle \langle x_2, x_2 \rangle - \langle x_1, x_2 \rangle^2 =$$

$$= \|x_1\|^2 \|x_2\|^2 - \|x_1\|^2 \|x_2\|^2 \cos^2 \varphi =$$

$$= \|x_1\|^2 \|x_2\|^2 (1 - \cos^2 \varphi) =$$

$$= \|x_1\|^2 \|x_2\|^2 \sin^2 \varphi = \|x_1 \times x_2\|^2,$$

i lemat wynika z definicji N.

$$(\overline{g_{ij}}\circ\Phi_{x,y})=(J_{\Phi}^{-1})^T(g_{ij})J_{\Phi}^{-1}$$

Dowód:

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Wektor normalny
Powtórka z algebry liniowej l
I forma podstawowa

Izometria.

(rzynyizna Caussa II

Krzywizna Gaussa II

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$, $y: V \to M$ będą lokalnymi układami współrzędnych. Załóżmy, że $x(U) \cap y(V) \neq \emptyset$. Niech (g_{ij}) , [odpowiednio $(\overline{g_{ij}})$] oznacza macierz współczynników metrycznych dla x [odpowiednio y].

Jesli przez J $_{\Phi}$ oznaczymy Jakobian (macierz pochodnych) funkcji zmiany układu współrzędnych $\Phi_{\mathsf{x},y}$ wtedy $(\overline{\mathsf{g}_{ij}})$ wyrażają się następującymi wzorami

$$(\overline{g_{ij}}\circ\Phi_{x,y})=(J_{\Phi}^{-1})^T(g_{ij})J_{\Phi}^{-1}$$

Dowód: Pomijamy

Powierzchnie w \mathbb{R}^3

oormalne. I form oodstawowa

Wektor normalny
Powtórka z algebry liniowej

I forma podstawowa

Izometria.

Crzywizna Gaussa II

$$(\overline{g_{ij}}\circ\Phi_{x,y})=(J_{\Phi}^{-1})^T(g_{ij})J_{\Phi}^{-}$$

Dowód: Pomijamy

Powierzchnie w \mathbb{R}^3

ormalne. I fo odstawowa

Wektor normalny

I forma podstawowa

lzometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

$$(\overline{g_{ij}}\circ\Phi_{x,y})=(J_{\Phi}^{-1})^T(g_{ij})J_{\Phi}^{-1}$$

Dowód: Pomijamy

Powierzchnie w \mathbb{R}^3

ormalne. I foi odstawowa

Wektor normalny

I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa II

$$(\overline{g_{ij}}\circ\Phi_{x,y})=(J_{\Phi}^{-1})^T(g_{ij})J_{\Phi}^{-1}$$

Dowód:

Pomijamy.

Powierzchnie w \mathbb{R}^3

ormalne. I fo odstawowa

Wektor normalny

Powtórka z algebry liniowej I forma podstawowa

zierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych. Rozważmy krzywą gładką $\alpha(t) = (\alpha_1(t), \alpha_2(t)) \subset U$. Wtedy długość krzywej $\overline{\alpha} \stackrel{\text{def.}}{=} x \circ \alpha: \mathbb{R} \to M$ na powierzchni jest równa

$$L(\overline{\alpha}) = \int_{a}^{b} \sqrt{I_{\alpha(t)}(\alpha'(t), \alpha'(t))} dt$$

co można bezpośrednio zapisać:

$$\int_{a}^{b} \sqrt{(\alpha_{1}^{\prime})^{2} g_{11}(\alpha(t)) + 2\alpha_{1}^{\prime} \alpha_{2}^{\prime} g_{12}(\alpha(t)) + (\alpha_{2}^{\prime})^{2} g_{22}(\alpha(t))}$$

Dowód:

Ćwiczenie.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Wektor normalny

Powtórka z algebry liniowej l I forma podstawowa

zometria.

Krzywizna Gaussa I

Theorema Egregium i Twierdzenie

7

(□) (리) (리) (로) (로) (로)

Elementarna

Geometria Różniczkowa

 $\overline{\alpha} \stackrel{def.}{=} x \circ \alpha : \mathbb{R} \to M$ na powierzchni jest równa

$$L(\overline{\alpha}) = \int_{a}^{b} \sqrt{I_{\alpha(t)}(\alpha'(t), \alpha'(t))} dt,$$

$$\int_{a}^{b} \sqrt{(\alpha_{1}^{\prime})^{2} g_{11}(\alpha(t)) + 2\alpha_{1}^{\prime} \alpha_{2}^{\prime} g_{12}(\alpha(t)) + (\alpha_{2}^{\prime})^{2} g_{22}(\alpha(t))}$$

Elementarna Geometria Różniczkowa

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych. Rozważmy krzywą gładką $\alpha(t) = (\alpha_1(t), \alpha_2(t)) \subset U$. Wtedy długość krzywej

 $\overline{\alpha} \stackrel{\textit{def.}}{=} x \circ \alpha \colon \mathbb{R} \to M$ na powierzchni jest równa

$$L(\overline{\alpha}) = \int_{a}^{b} \sqrt{I_{\alpha(t)}(\alpha'(t), \alpha'(t))} dt,$$

co można bezpośrednio zapisać:

$$\int_{a}^{b} \sqrt{(\alpha_{1}')^{2} g_{11}(\alpha(t)) + 2\alpha_{1}' \alpha_{2}' g_{12}(\alpha(t)) + (\alpha_{2}')^{2} g_{22}(\alpha(t))}.$$

Dowód:

2

Elementarna

Geometria Różniczkowa

Vektory styczi ormalne. I for odstawowa

Wektor normalny

Powtórka z algebry liniowej

I forma podstawowa

kierunkowe. Izometria.

/------- C------ I

Krzywizna Gaussa II

i Twierdzenie klasyfikacyjne Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych. Rozważmy krzywą gładką $\alpha(t) = (\alpha_1(t), \alpha_2(t)) \subset U$. Wtedy długość krzywej $\overline{\alpha} \stackrel{def.}{=} x \circ \alpha: \mathbb{R} \to M$ na powierzchni jest równa

$$L(\overline{\alpha}) = \int_{a}^{b} \sqrt{I_{\alpha(t)}(\alpha'(t), \alpha'(t))} dt,$$

co można bezpośrednio zapisać:

$$\int_{a}^{b} \sqrt{(\alpha_{1}')^{2} g_{11}(\alpha(t)) + 2\alpha_{1}' \alpha_{2}' g_{12}(\alpha(t)) + (\alpha_{2}')^{2} g_{22}(\alpha(t))}.$$

Dowód:

Ćwiczenie.

normalne. I forma

ormalne. I for odstawowa

Wektor normalny

Powtórka z algebry liniowej I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa II

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Pochodne kierunkowe Izometria

Krzywizna Gaussa

zywizna Gaussa

Theorema Egregium i Twierdzenie klasyfikacyjne

Wykład 7

Pochodne kierunkowe. Izometria.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.
Pochodne kierunkowe
Izometria

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregium i Twierdzenie klasyfikacyjne

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Pochodne kierunkowe Izometria

Krzywizna Gaussa I

rzywizna Gaussa

ierunkowe. zometria.

Pochodne kierunkowe Izometria

Krzywizna Gaussa

rzywizna Gaussa

Theorema Egregiun i Twierdzenie klasyfikacyjne

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem na niej. Załóżmy, że mamy daną funkcję gładką $f:M \to \mathbb{R}$ oraz wektor $v \in T_pM$ z przestrzeni stycznej.

gładką $f: M \to \mathbb{R}$ oraz wektor $v \in I_pM$ z przestrzeni stycznej. Z definicji przestrzeni stycznej istnieje krzywa $\alpha: (-\varepsilon, \varepsilon) \to M$ taka że $\alpha(0) = p$ oraz $\alpha'(0) = v$. Oczywiście złożenie $f \circ \alpha: \mathbb{R} \to \mathbb{R}$ jest funkcją gładką, możemy więc rozważać jej pochodną.

Definicia

Przy oznaczeniach jak powyżej definiujemy **pochodna kierunkową** funkcji *f* **w kierunku wektora** *v* jako

$$\nabla_{v} f \stackrel{\text{def.}}{=} (f \circ \alpha)'(0).$$

ierunkowe. zometria.

Pochodne kierunkowe Izometria

Krzywizna Gaussa

Krzywizna Gauss

Theorema Egregium i Twierdzenie

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem na niej. Załóżmy, że mamy daną funkcję gładką $f: M \to \mathbb{R}$ oraz wektor $v \in T_pM$ z przestrzeni stycznej. Z definicji przestrzeni stycznej istnieje krzywa $\alpha: (-\varepsilon, \varepsilon) \to M$ taka że $\alpha(0) = p$ oraz $\alpha'(0) = v$. Oczywiście złożenie $f \circ \alpha: \mathbb{R} \to \mathbb{R}$ jest funkcją gładką, możemy więc rozważać jej pochodną.

Definicia

Przy oznaczeniach jak powyżej definiujemy **pochodna kierunkową** funkcji *f* **w kierunku wektora** *v* jako

$$\nabla_{v} f \stackrel{\text{def.}}{=} (f \circ \alpha)'(0).$$

kierunkowe. zometria. Pochodne kierunkowe

Izometria

Crzywizna Gaussa

rzywizna Gaussa

i Twierdzenie klasyfikacyjne

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem na niej. Załóżmy, że mamy daną funkcję gładką $f \colon M \to \mathbb{R}$ oraz wektor $v \in T_p M$ z przestrzeni stycznej. Z definicji przestrzeni stycznej istnieje krzywa $\alpha \colon (-\varepsilon, \varepsilon) \to M$ taka że $\alpha(0) = p$ oraz $\alpha'(0) = v$. Oczywiście złożenie $f \circ \alpha \colon \mathbb{R} \to \mathbb{R}$ jest funkcją gładką, możemy więc rozważać jej pochodną.

Definicja

Przy oznaczeniach jak powyżej definiujemy **pochodna kierunkową** funkcji *f* **w kierunku wektora** *v* jako

$$\nabla_{\mathbf{v}} f \stackrel{\text{def.}}{=} (f \circ \alpha)'(0).$$

ierunkowe. zometria.

Pochodne kierunkowe Izometria

rzywizna Gauss

Krzywizna Gauss

Theorema Egregium Twierdzenie

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem na niej. Załóżmy, że mamy daną funkcję gładką $f: M \to \mathbb{R}$ oraz wektor $v \in T_pM$ z przestrzeni stycznej. Z definicji przestrzeni stycznej istnieje krzywa $\alpha: (-\varepsilon, \varepsilon) \to M$ taka że $\alpha(0) = p$ oraz $\alpha'(0) = v$. Oczywiście złożenie $f \circ \alpha: \mathbb{R} \to \mathbb{R}$ jest funkcją gładką, możemy więc rozważać jej pochodną.

Definicja

Przy oznaczeniach jak powyżej definiujemy **pochodną kierunkową** funkcji f **w kierunku wektora** v jako

$$\nabla_{\nu} f \stackrel{\text{def.}}{=} (f \circ \alpha)'(0).$$

Definicja pochodnej kierunkowej nie zależy od wyboru krzywej α , tj. jeśli β : $(-\epsilon,\epsilon) \rightarrow M$ jest drugą krzywą o tej własności, że $\beta(0)=p$ oraz $\beta'(0)=v$ wtedy

$$(f \circ \alpha)'(0) = (f \circ \beta)'(0).$$

Dowód:

Niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół punktu $p \in M$. Możemy wybrać tak małe ε , że obrazy $\alpha(-\varepsilon, \varepsilon)$ i $\beta(-\varepsilon, \varepsilon)$ będą już zawarte w x(U). Z definicji przestrzeni stycznej, wektory styczne do tych krzywych w 0 można wyrazić jako kombinacje liniowe wektorów x_1 i x_2 . Co więcej, z równości $\alpha'(0) = v = \beta'(0)$ wynika, że współczynniki tych kombinacji są sobie równe w punkcie p.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

> erunkowe. ometria.

Pochodne kierunkowe Izometria

a.comestia

•

Theorema Egregium
Twierdzenie

Definicja pochodnej kierunkowej nie zależy od wyboru krzywej α , tj. jeśli β : $(-\varepsilon, \varepsilon) \rightarrow M$ jest drugą krzywą o tej własności, że $\beta(0) = p$ oraz $\beta'(0) = v$ wtedy

$$(f \circ \alpha)'(0) = (f \circ \beta)'(0).$$

Dowód:

Niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół punktu $p \in M$. Możemy wybrać tak małe ε , że obrazy $\alpha(-\varepsilon, \varepsilon)$ i $\beta(-\varepsilon, \varepsilon)$ będą już zawarte w x(U). Z definicji przestrzeni stycznej, wektory styczne do tych krzywych w 0 można wyrazić jako kombinacje liniowe wektorów x_1 i x_2 . Co więcej, z równości $\alpha'(0) = v = \beta'(0)$ wynika, że współczynniki tych kombinacji sa sobie równe w punkcie p.

Powierzchnie w \mathbb{R}^3

wektory styczne i normalne. I forma oodstawowa

erunkowe. ometria.

Pochodne kierunkowe Izometria

(raniana Caussa

zywizna Gaussa

Definicja pochodnej kierunkowej nie zależy od wyboru krzywej α , tj. jeśli $\beta:(-\varepsilon,\varepsilon)\to M$ jest drugą krzywą o tej własności, że $\beta(0) = p$ oraz $\beta'(0) = v$ wtedy

$$(f \circ \alpha)'(0) = (f \circ \beta)'(0).$$

Dowód:

Niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół punktu $p \in M$. Możemy wybrać tak małe ε , że obrazy $\alpha(-\varepsilon, \varepsilon)$ i $\beta(-\varepsilon, \varepsilon)$ beda już zawarte w x(U). Z definicji przestrzeni stycznej, wektory styczne do tych krzywych w 0 można wyrazić jako kombinacje liniowe wektorów x_1 i x_2 .

Definicja pochodnej kierunkowej nie zależy od wyboru krzywej α , tj. jeśli $\beta: (-\epsilon, \epsilon) \to M$ jest drugą krzywą o tej własności, że $\beta(0) = p$ oraz $\beta'(0) = v$ wtedy

$$(f \circ \alpha)'(0) = (f \circ \beta)'(0).$$

Dowód:

Niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół punktu $p \in M$. Możemy wybrać tak małe ε , że obrazy $\alpha(-\varepsilon, \varepsilon)$ i $\beta(-\varepsilon, \varepsilon)$ będą już zawarte w x(U). Z definicji przestrzeni stycznej, wektory styczne do tych krzywych w 0 można wyrazić jako kombinacje liniowe wektorów x_1 i x_2 . Co więcej, z równości $\alpha'(0) = v = \beta'(0)$ wynika, że współczynniki tych kombinacji są sobie równe w punkcie p.

Powierzchnie w \mathbb{R}^3

wektory styczne i normalne. I forma podstawowa

kierunkowe. zometria. Pochodne kierunkowe

Izometria

(rzywizna Gaussa

zywizna Gaussa

$$(x^{-1}\circ\alpha)'(0)=(x^{-1}\circ\beta)'(0).$$

$$(f \circ \alpha)'(0) = [(f \circ x) \circ (x^{-1} \circ \alpha)]'(0) =$$

$$= J(f \circ x) \underbrace{(x^{-1} \circ \alpha(0))}_{=p = (x^{-1} \circ \beta)(0)} \underbrace{(x^{-1} \circ \alpha)'(0)}_{=v = (x^{-1} \circ \beta)'(0)} =$$

$$= J(f \circ x)(x^{-1} \circ \beta(0))(x^{-1} \circ \beta)'(0) = (f \circ \beta)'(0)$$

gdzie J oznacza jakobian odwzorowania (macierz pochodnych czastkowych).

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ochodne ierunkowe. zometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

rzywizna Gaussi

$$(x^{-1}\circ\alpha)'(0)=(x^{-1}\circ\beta)'(0).$$

$$(f \circ \alpha)'(0) = [(f \circ x) \circ (x^{-1} \circ \alpha)]'(0) =$$

$$= J(f \circ x) \underbrace{(x^{-1} \circ \alpha(0))}_{=p = (x^{-1} \circ \beta)(0)} \underbrace{(x^{-1} \circ \alpha)'(0)}_{v = (x^{-1} \circ \beta)'(0)} =$$

$$= J(f \circ x)(x^{-1} \circ \beta(0))(x^{-1} \circ \beta)'(0) = (f \circ \beta)'(0)$$

gdzie J oznacza jakobian odwzorowania (macierz pochodnych czastkowych). Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

Pochodne zierunkowe. zometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

rzywizna Gaussa

$$\left(x^{-1}\circ\alpha\right)'\!(0)=\left(x^{-1}\circ\beta\right)'\!(0).$$

$$(f \circ \alpha)'(0) = [(f \circ x) \circ (x^{-1} \circ \alpha)]'(0) =$$

$$= J(f \circ x) \underbrace{(x^{-1} \circ \alpha(0))}_{=p = (x^{-1} \circ \beta)(0)} \underbrace{(x^{-1} \circ \alpha)'(0)}_{=v = (x^{-1} \circ \beta)'(0)} =$$

$$= J(f \circ x)(x^{-1} \circ \beta(0))(x^{-1} \circ \beta)'(0) = (f \circ \beta)'(0)$$

gdzie J oznacza jakobian odwzorowania (macierz pochodnych czastkowych). Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ierunkowe. cometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

zywizna Gauss

$$(x^{-1}\circ\alpha)'(0)=(x^{-1}\circ\beta)'(0).$$

$$\begin{split} (f \circ \alpha)'(0) &= \left[(f \circ x) \circ (x^{-1} \circ \alpha) \right]'(0) = \\ &= J(f \circ x) \underbrace{(x^{-1} \circ \alpha(0))}_{=p = (x^{-1} \circ \beta)(0)} \underbrace{(x^{-1} \circ \alpha)'(0)}_{=v = (x^{-1} \circ \beta)'(0)} = \\ &= J(f \circ x)(x^{-1} \circ \beta(0))(x^{-1} \circ \beta)'(0) = (f \circ \beta)'(0), \end{split}$$

gdzie *J* oznacza jakobian odwzorowania (macierz pochodnych cząstkowych).

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

erunkowe. ometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

zywizna Gauss

Uwaga

Dwie pierwsze własności mówią, że ∇ jest operatorem liniowym ze względu na argument (funkcję) i kierunek (wektor).

Powierzchnie w \mathbb{R}^3

normalne. I forma podstawowa

kierunkowe. Izometria. Pochodne kierunkowe

zometria

Krzywizna Gaussa

zywizna Gaussa

Uwaga

Dwie pierwsze własności mówią, że ∇ jest operatorem liniowym ze względu na argument (funkcję) i kierunek (wektor).

Powierzchnie w \mathbb{R}^3

normalne. I forma podstawowa

> erunkowe. ometria.

Pochodne kierunkowe

. .

. .

neorema Egregium

i Twierdzenie klasyfikacyjne

Uwaga

Dwie pierwsze własności mówią, że ∇ jest operatorem liniowym ze względu na argument (funkcję) i kierunek (wektor).

Powierzchnie w \mathbb{R}^3

weкtory styczne i normalne. I forma podstawowa

> erunkowe. ometria.

Pochodne kierunkowe

omeria

. .

,

i Twierdzenie klasyfikacyjne

$$\nabla_{av+bw} f = a \nabla_v f + b \nabla_w f$$

Uwaga

Dwie pierwsze własności mówią, że ∇ jest operatorem liniowym ze względu na argument (funkcję) i kierunek (wektor).

Powierzchnie w \mathbb{R}^3

weкtory styczne i normalne. I forma podstawowa

> erunkowe. ometria.

Pochodne kierunkowe

петта

KIZYWIZIIA Gaussa

zywizna Gaussa

Uwaga

Dwie pierwsze własności mówią że ∇ jest operatorem liniowym ze względu na argument (funkcję) i kierunek (wektor).

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

zometria

zywizna Gaussa

ocnoane kierunkowe. zometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregiun i Twierdzenie klasyfikacyjne

Własność drugą i trzecią pozostawiamy jako (proste

ćwiczenia. Wystarczy w nich skorzystać z podstawowych własności różniczkowania funkcji.

Udowodnimy teraz pierwszą własność.

Niech $v=(v_1,v_2)$ oraz $w=(w_1,w_2)$. Bez straty ogólności możemy założyć, że x(0,0)=p. Zdefiniujmy

$$\alpha_{v}(t) \stackrel{\text{def.}}{=} x(av_1t, av_2t)$$
 $\alpha_{w}(t) \stackrel{\text{def.}}{=} x(bw_1t, bw_2t)$

oraz niech

$$\beta(t) \stackrel{\text{def.}}{=} x((av_1 + bw_1)t, (av_2 + bw_2)t$$

Wówczas pochodna β w t = 0 jest równa

$$\beta'(t)|_{t=0} = \underbrace{a(v_1x_1 + v_2x_2)}_{=\alpha'_v(0)} + \underbrace{b(w_1x_1 + w_2x_2)}_{=\alpha'_w(0)} = v + w$$

Udowodnimy teraz pierwszą własność.

$$\alpha_v(t) \stackrel{\text{def.}}{=} x(av_1t, av_2t)$$
 $\alpha_w(t) \stackrel{\text{def.}}{=} x(bw_1t, bw_2t)$

$$\beta(t) \stackrel{\text{def.}}{=} x((av_1 + bw_1)t, (av_2 + bw_2)t)$$

$$\beta'(t)\big|_{t=0} = \underbrace{a(v_1x_1 + v_2x_2)}_{=\alpha'_v(0)} + \underbrace{b(w_1x_1 + w_2x_2)}_{=\alpha'_v(0)} = v + w_1$$

Elementarna Geometria Różniczkowa

ćwiczenia. Wystarczy w nich skorzystać z podstawowych własności różniczkowania funkcji.

Udowodnimy teraz pierwszą własność.

Niech $v = (v_1, v_2)$ oraz $w = (w_1, w_2)$. Bez straty ogólności możemy założyć, że x(0,0) = p. Zdefiniujmy

$$\alpha_v(t) \stackrel{\text{def.}}{=} x(av_1t, av_2t)$$
 $\alpha_w(t) \stackrel{\text{def.}}{=} x(bw_1t, bw_2t)$

$$\beta(t) \stackrel{\text{def.}}{=} x((av_1 + bw_1)t, (av_2 + bw_2)t)$$

$$\beta'(t)\big|_{t=0} = \underbrace{a(v_1x_1 + v_2x_2)}_{=\alpha'_{\nu}(0)} + \underbrace{b(w_1x_1 + w_2x_2)}_{=\alpha'_{\nu}(0)} = v + w_1$$

Elementarna Geometria Różniczkowa

ćwiczenia. Wystarczy w nich skorzystać z podstawowych własności różniczkowania funkcji.

Udowodnimy teraz pierwszą własność.

Niech $v = (v_1, v_2)$ oraz $w = (w_1, w_2)$. Bez straty ogólności możemy założyć, że x(0,0) = p. Zdefiniujmy

$$\alpha_{v}(t) \stackrel{\text{def.}}{=} x(av_1t, av_2t) \qquad \alpha_{w}(t) \stackrel{\text{def.}}{=} x(bw_1t, bw_2t),$$

oraz niech

$$\beta(t) \stackrel{\text{def.}}{=} x((av_1 + bw_1)t, (av_2 + bw_2)t)$$

$$\beta'(t)\big|_{t=0} = \underbrace{a(v_1x_1 + v_2x_2)}_{=\alpha'_{\psi}(0)} + \underbrace{b(w_1x_1 + w_2x_2)}_{=\alpha'_{\psi}(0)} = v + w$$

Elementarna Geometria Różniczkowa

własności różniczkowania funkcji.

Udowodnimy teraz pierwszą własność.

Niech $v = (v_1, v_2)$ oraz $w = (w_1, w_2)$. Bez straty ogólności możemy założyć, że x(0,0) = p. Zdefiniujmy

$$\alpha_{v}(t) \stackrel{\text{def.}}{=} x(av_1t, av_2t) \qquad \alpha_{w}(t) \stackrel{\text{def.}}{=} x(bw_1t, bw_2t),$$

oraz niech

$$\beta(t) \stackrel{\text{def.}}{=} x((av_1 + bw_1)t, (av_2 + bw_2)t)$$

Wówczas pochodna β w t = 0 jest równa

$$\beta'(t)\big|_{t=0} = \underbrace{a(v_1x_1 + v_2x_2)}_{=\alpha'_v(0)} + \underbrace{b(w_1x_1 + w_2x_2)}_{=\alpha'_w(0)} = v + w.$$

$$\nabla_{av+bw}f = (f \circ \beta)'(0) = \frac{\partial f(\beta(t))}{\partial \beta(t)} \beta'(t) \Big|_{t=0} =$$

$$= a \frac{\partial f(\beta(0))}{\partial \beta(0)} (v_1x_1 + v_2x_2) + b \frac{\partial f(\beta(0))}{\partial \beta(0)} (w_1x_1 + w_2x_2) =$$

$$= a \frac{\partial f(\alpha_v(0))}{\partial \alpha_v(0)} \alpha'_v(0) + b \frac{\partial f(\alpha_w(0))}{\partial \alpha_w(0)} \alpha'_w(0) =$$

$$= a (f \circ \alpha_v)'(t) \Big|_{t=0} + b (f \circ \alpha_w)'(t) \Big|_{t=0} =$$

$$a \nabla_v f + b \nabla_w f$$

Wektory styczne i normalne. I forma podstawowa

ierunkowe. cometria.

Pochodne kierunkowe

ometria

Krzywizna Gaussa I

. . . .

Theorema Egregium i Twierdzenie

$$\nabla_{av+bw}f = (f \circ \beta)'(0) = \frac{\partial f(\beta(t))}{\partial \beta(t)} \beta'(t) \Big|_{t=0} =$$

$$= a \frac{\partial f(\beta(0))}{\partial \beta(0)} (v_1x_1 + v_2x_2) + b \frac{\partial f(\beta(0))}{\partial \beta(0)} (w_1x_1 + w_2x_2) =$$

$$= a \frac{\partial f(\alpha_v(0))}{\partial \alpha_v(0)} \alpha'_v(0) + b \frac{\partial f(\alpha_w(0))}{\partial \alpha_w(0)} \alpha'_w(0) =$$

$$= a (f \circ \alpha_v)'(t) \Big|_{t=0} + b (f \circ \alpha_w)'(t) \Big|_{t=0} =$$

$$a \nabla_v f + b \nabla_w f$$

Wektory styczne i normalne. I forma podstawowa

erunkowe. ometria.

Pochodne kierunkowe

ometria

Krzywizna Gaussa I

rzywizna Gaussa

$$\nabla_{av+bw}f = (f \circ \beta)'(0) = \frac{\partial f(\beta(t))}{\partial \beta(t)} \beta'(t) \Big|_{t=0} =$$

$$= a \frac{\partial f(\beta(0))}{\partial \beta(0)} (v_1x_1 + v_2x_2) + b \frac{\partial f(\beta(0))}{\partial \beta(0)} (w_1x_1 + w_2x_2) =$$

$$= a \frac{\partial f(\alpha_v(0))}{\partial \alpha_v(0)} \alpha'_v(0) + b \frac{\partial f(\alpha_w(0))}{\partial \alpha_w(0)} \alpha'_w(0) =$$

$$= a (f \circ \alpha_v)'(t) \Big|_{t=0} + b (f \circ \alpha_w)'(t) \Big|_{t=0} =$$

$$a \nabla_v f + b \nabla_w f$$

Wektory styczne i normalne. I forma podstawowa

erunkowe. ometria.

Pochodne kierunkowe

zometria

Kizywiziia Gaussa i

rzywizna Gauss

$$\begin{split} \nabla_{av+bw}f &= (f \circ \beta)'(0) = \frac{\partial f(\beta(t))}{\partial \beta(t)} \beta'(t) \bigg|_{t=0} = \\ &= a \frac{\partial f(\beta(0))}{\partial \beta(0)} (v_1x_1 + v_2x_2) + b \frac{\partial f(\beta(0))}{\partial \beta(0)} (w_1x_1 + w_2x_2) = \\ &= a \frac{\partial f(\alpha_v(0))}{\partial \alpha_v(0)} \alpha'_v(0) + b \frac{\partial f(\alpha_w(0))}{\partial \alpha_w(0)} \alpha'_w(0) = \\ &= a (f \circ \alpha_v)'(t) \bigg|_{t=0} + b (f \circ \alpha_w)'(t) \bigg|_{t=0} = \\ &= a \nabla_v f + b \nabla_w f. \end{split}$$

Wektory styczne i normalne. I forma podstawowa

erunkowe. ometria.

Pochodne kierunkowe

ometria

Krzywizna Gaussa I

haorama Egragiun

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $f:M \to \mathbb{R}^3$ będzie odwzorowaniem gładkim (tj. polem wektorowym). **Pochodną** f w punkcie $p \in M$ definiujemy jako

$$Df_p: T_pM \to R^3$$

 $v \mapsto \nabla_v f$

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

kierunkowe. zometria.

Pochodne kierunkowe Izometria

Krzywizna Gaussa I

zywizna Gaussa

heorema Egregium Twierdzenie Niech $M, N \subset \mathbb{R}^3$ będą powierzchniami gładkimi, $p \in M$ punktem, oraz niech $f: M \to N$ będzie gładką funkcją. Wtedy dla każdego $v \in T_pM$ mamy $Df_p(v) \in T_{f(p)}N$ oraz

$$Df_p: T_pM \to T_{f(p)}N$$

jest odwzorowaniem liniowym.

Dowód

Liniowość wynika natychmiast z liniowości pochodnej kierunkowej, (Lemat 7.3, punkt drugi) więc musimy tylko pokazać, że $Df_p(v) \in T_{f(p)}N$.

Powierzchnie w \mathbb{R}^3

mektory styczne i normalne. I forma podstawowa

erunkowe. ometria.

Izometria |

Krzywizna Gaussa I

rzywizna Gaussa

Niech $M, N \subset \mathbb{R}^3$ będą powierzchniami gładkimi, $p \in M$ punktem, oraz niech $f: M \to N$ będzie gładką funkcją. Wtedy dla każdego $v \in T_pM$ mamy $Df_p(v) \in T_{f(p)}N$ oraz

$$Df_p: T_pM \to T_{f(p)}N$$

jest odwzorowaniem liniowym.

Dowód:

Liniowość wynika natychmiast z liniowości pochodnej kierunkowej, (Lemat 7.3, punkt drugi) więc musimy tylko pokazać, że $Df_p(v) \in T_{f(p)}N$.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

> erunkowe. ometria.

Izometria

Krzywizna Gaussa I

rzywizna Gaussa

Niech M, $N \subset \mathbb{R}^3$ będą powierzchniami gładkimi, $p \in M$ punktem, oraz niech $f: M \to N$ będzie gładką funkcją. Wtedy dla każdego $v \in T_pM$ mamy $Df_p(v) \in T_{f(p)}N$ oraz

$$Df_p: T_pM \to T_{f(p)}N$$

jest odwzorowaniem liniowym.

Dowód:

Liniowość wynika natychmiast z liniowości pochodnej kierunkowej, (Lemat 7.3, punkt drugi) więc musimy tylko pokazać, że $Df_p(v) \in T_{f(p)}N$.

Izometria

Niech $v \in T_pM$. Wtedy istnieje taka krzywa $\alpha: (-\varepsilon, \varepsilon) \to M$, że $\alpha(0) = p$ oraz $\alpha'(0) = v$. Mamy wtedy

$$Df_p(\mathbf{v}) = \nabla_{\mathbf{v}} f = (f \circ \alpha)'(0).$$

Zauważmy, że krzywa

$$f \circ \alpha : (-\varepsilon, \varepsilon) \to N$$

jest krzywą na powierzchni N, oraz $(f \circ \alpha)(0) = f(p)$. Zatem z definicji przestrzeni stycznej otrzymujemy $(f \circ \alpha)'(0) \in T_{f(p)}N$, czyli $Df_p(v) \in T_{f(p)}N$.

Powierzchnie w R³

Vektory styczne i ormalne. I forma odstawowa

ochodne ierunkowe. zometria.

Pochodne kierunkowe Izometria

Krzywizna Gaussa I

zvwizna Gaussa I

$$Df_p(\mathbf{v}) = \nabla_{\mathbf{v}} f = (f \circ \alpha)'(0).$$

Zauważmy, że krzywa

$$f \circ \alpha : (-\varepsilon, \varepsilon) \to N$$

jest krzywą na powierzchni N, oraz $(f \circ \alpha)(0) = f(p)$. Zatem z definicji przestrzeni stycznej otrzymujemy $(f \circ \alpha)'(0) \in T_{f(p)}N$, czyli $Df_p(v) \in T_{f(p)}N$.

Powierzchnie w \mathbb{R}^3

Vektory styczne i ormalne. I forma odstawowa

erunkowe. ometria.

Pochodne kierunkowe Izometria

Krzywizna Gaussa I

rzywizna Gaussa

Niech $v \in T_pM$. Wtedy istnieje taka krzywa $\alpha: (-\varepsilon, \varepsilon) \to M$, że $\alpha(0) = p$ oraz $\alpha'(0) = v$. Mamy wtedy

$$Df_p(\mathbf{v}) = \nabla_{\mathbf{v}} f = (f \circ \alpha)'(0).$$

Zauważmy, że krzywa

$$f \circ \alpha : (-\varepsilon, \varepsilon) \to N$$

jest krzywą na powierzchni N, oraz $(f \circ \alpha)(0) = f(p)$. Zatem z definicji przestrzeni stycznej otrzymujemy $(f \circ \alpha)'(0) \in T_{f(p)}N$, czyli $Df_p(v) \in T_{f(p)}N$.

Powierzchnie w \mathbb{R}^3

normalne. I forma podstawowa

chodne erunkowe. ometria.

Pochodne kierunkowe Izometria

Krzywizna Gaussa I

rzywizna Gaussi

$$f(s, t) = (\cos s, \sin s, t).$$

(Jest to odwzorowanie które owija arkusz papieru na walec.)

Dla $p=(0,0)\in\mathbb{R}^2$ mamy f(p)=(1,0,0). Zauważmy, że $T_p\mathbb{R}^2$ jest płaszczyzną x-y, zaś $T_{f(p)}(S^1\times\mathbb{R})$ jest płaszczyzną y-z. Wybierzmy $v=(a,b)\in T_p\mathbb{R}^2$ i niech $\alpha\colon (-\varepsilon,\varepsilon)\to\mathbb{R}^2$ będzie zadana przez $\alpha(t)=(at,bt)$. Wtedy oczywiście

$$\alpha(0) = p$$
, $\alpha'(0) = v$, oraz $f \circ \alpha(t) = (\cos at, \sin at, bt)$.

$$Df_p(v) = \nabla_v f = (f \circ \alpha)'|_{t=0} =$$

= $(-a \sin at, a \cos at, b)|_{t=0} = (0, a, b).$

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

kierunkowe. Izometria. Pochodne kierunkowe Izometria

Krzywizna Gaussa

zywizna Gauss

Rozważmy odwzorowanie $f: \mathbb{R}^2 \to S^1 \times \mathbb{R}$ zadane wzorem

$$f(s, t) = (\cos s, \sin s, t).$$

(Jest to odwzorowanie które owija arkusz papieru na walec.) Dla $p = (0, 0) \in \mathbb{R}^2$ mamy f(p) = (1, 0, 0). Zauważmy, że $T_p \mathbb{R}^2$ jest płaszczyzną x-y, zaś $T_{f(p)}(S^1 \times \mathbb{R})$ jest płaszczyzną y-z.

$$\alpha(0) = p$$
, $\alpha'(0) = v$, oraz $f \circ \alpha(t) = (\cos at, \sin at, bt)$.

$$Df_p(v) = \nabla_v f = (f \circ \alpha)' \big|_{t=0} =$$

= $(-a \sin at, a \cos at, b) \big|_{t=0} = (0, a, b)$

Izometria

$$f(s, t) = (\cos s, \sin s, t).$$

(Jest to odwzorowanie które owija arkusz papieru na walec.) Dla $p=(0,0)\in\mathbb{R}^2$ mamy f(p)=(1,0,0). Zauważmy, że $T_p\mathbb{R}^2$ jest płaszczyzną x-y, zaś $T_{f(p)}(S^1\times\mathbb{R})$ jest płaszczyzną y-z. Wybierzmy $v=(a,b)\in T_p\mathbb{R}^2$ i niech $\alpha\colon (-\varepsilon,\varepsilon)\to\mathbb{R}^2$ będzie zadana przez $\alpha(t)=(at,bt)$. Wtedy oczywiście

$$\alpha(0) = p$$
, $\alpha'(0) = v$, oraz $f \circ \alpha(t) = (\cos at, \sin at, bt)$.

$$Df_p(v) = \nabla_v f = (f \circ \alpha)' \big|_{t=0} =$$

= $(-a \sin at, a \cos at, b) \big|_{t=0} = (0, a, b)$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

Pochodne kierunkowe Izometria

rzywizna Gaussa I

zywizna Gauss

$$f(s, t) = (\cos s, \sin s, t).$$

(Jest to odwzorowanie które owija arkusz papieru na walec.) Dla $p=(0,0)\in\mathbb{R}^2$ mamy f(p)=(1,0,0). Zauważmy, że $T_p\mathbb{R}^2$ jest płaszczyzną x-y, zaś $T_{f(p)}(S^1\times\mathbb{R})$ jest płaszczyzną y-z. Wybierzmy $v=(a,b)\in T_p\mathbb{R}^2$ i niech $\alpha\colon (-\varepsilon,\varepsilon)\to\mathbb{R}^2$ będzie zadana przez $\alpha(t)=(at,bt)$. Wtedy oczywiście

$$\alpha(0) = p$$
, $\alpha'(0) = v$, oraz $f \circ \alpha(t) = (\cos at, \sin at, bt)$.

$$Df_p(v) = \nabla_v f = (f \circ \alpha)' \big|_{t=0} =$$

= $(-a \sin at, a \cos at, b) \big|_{t=0} = (0, a, b).$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

kierunkowe. zometria. Pochodne kierunkowe

Pochodne kierunkowe Izometria

rzywizna Gaussa I

rzywizna Gaussa

Niech $M, N \subset \mathbb{R}^3$ będą gładkimi powierzchniami i niech $f: M \to N$ będzie funkcją gładką.

► Mówimy, że f jest **izometrią** jeśli f jest dyfeomorfizmem,

$$I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w)),$$

► Funkcję f nazywamy **lokalną izometria**, jeśli dla

Izometria

Niech M, $N \subset \mathbb{R}^3$ będą gładkimi powierzchniami i niech $f:M \to N$ będzie funkcją gładką.

Mówimy, że f jest izometrią jeśli f jest dyfeomorfizmem, oraz pierwsza forma podstawowa jest niezmienniczna ze względu na f, i.e.

$$I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w)),$$

dla wszystkich $p \in M$ i wszystkich $v, w \in T_p(M)$.

▶ Funkcję f nazywamy **lokalną izometrią**, jeśli dla każdego punktu $p \in M$ istnieje jego otoczenie otwarte $U \subset M$ takie, że $f(U) \subset N$ jest zbiorem otwartym (w N), oraz $f|_U: U \to f(U)$ jest izometrią.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

> erunkowe. ometria.

Pochodne kierunkowe Izometria

rzywizna Gaussa

zywizna Gaussa

Niech $M, N \subset \mathbb{R}^3$ będą gładkimi powierzchniami i niech $f: M \to N$ będzie funkcją gładką.

► Mówimy, że f jest **izometria** jeśli f jest dyfeomorfizmem, oraz pierwsza forma podstawowa jest niezmienniczna ze względu na f, i.e.

$$I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w)),$$

dla wszystkich $p \in M$ i wszystkich $v, w \in T_p(M)$.

 Funkcję f nazywamy lokalną izometrią, jeśli dla każdego punktu $p \in M$ istnieje jego otoczenie otwarte $U \subset M$ takie, że $f(U) \subset N$ jest zbiorem otwartym (w N), oraz $f|_U: U \to f(U)$ jest izometrią.

Izometria

ierunkowe. cometria. Pochodne kierunkowe

Pochodne kierunkowe Izometria

Krzywizna Gaussa I

rzywizna Gauss

Theorema Egregiu i Twierdzenie klasyfikacyjne

Uwaga

Warto zauważyć, że izometria od lokalnej izometrii różni się tylko i wyłącznie tym, że lokalna izometria nie musi być dyfeomorfizmem całych przestrzeni. Jest to niewielka, lecz jak zobaczymy ważna różnica.

Niech M, $N \subset \mathbb{R}^3$ będą gładkimi powierzchniami i niech $f: M \to N$ będzie funkcją gładką. Następujące warunki są równoważne.

- 1. f jest lokalną izometrią.
- 2. Równość $I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w))$ zachodzi dla wszystkich $p \in M$ oraz $v, w \in T_pM$.
- 3. Dla każdego $p \in M$ istnieje lokalny układ współrzędnych $x: U \to M$ wokół p taki, że $f \circ x: U \to N$ jest lokalnym układem współrzędnych o takich samych współczynnikach metrycznych g_{ii} jak x.
- Dla każdego punktu p ∈ M istnieje takie jego otoczenie otwarte A ⊂ M, że jeśli α:(a, b) → A jest gładką krzywą, to długość α ⊂ M jest taka sama jak długość f ∘ α ⊂ N.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

iierunkowe. zometria. Pochodne kierunkow

Pochodne kierunkowe Izometria

Krzywizna Gaussa

rzywizna Gaussa

równoważne.

- 1. f jest lokalną izometrią.
- 2. Równość $I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w))$ zachodzi dla wszystkich $p \in M$ oraz $v, w \in T_pM$.
- Dla każdego p ∈ M istnieje lokalny układ współrzędnych x: U → M wokół p taki, że f ∘ x: U → N jest lokalnym układem współrzędnych o takich samych współczynnikach metrycznych g_{ij} jak x.
- 4. Dla każdego punktu $p \in M$ istnieje takie jego otoczenie otwarte $A \subset M$, że jeśli $\alpha:(a,b) \to A$ jest gładką krzywą, to długość $\alpha \subset M$ jest taka sama jak długość $f \circ \alpha \subset N$.

Powierzchnie w R³

Vektory styczne i ormalne. I forma odstawowa

erunkowe. ometria.

Pochodne kierunkowe Izometria

Krzywizna Gaussa

rzywizna Gaussa

Niech M, $N \subset \mathbb{R}^3$ będą gładkimi powierzchniami i niech $f: M \to N$ będzie funkcją gładką. Następujące warunki są równoważne.

- 1. f jest lokalną izometrią.
- 2. Równość $I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w))$ zachodzi dla wszystkich $p \in M$ oraz $v, w \in T_pM$.

Izometria

Niech M, $N \subset \mathbb{R}^3$ będą gładkimi powierzchniami i niech $f: M \to N$ będzie funkcją gładką. Następujące warunki są równoważne.

- 1. f jest lokalną izometrią.
- 2. Równość $I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w))$ zachodzi dla wszystkich $p \in M$ oraz $v, w \in T_pM$.
- 3. Dla każdego $p \in M$ istnieje lokalny układ współrzędnych $x: U \to M$ wokół p taki, że $f \circ x: U \to N$ jest lokalnym układem współrzędnych o takich samych współczynnikach metrycznych g_{ii} jak x.
- 4. Dla każdego punktu $p \in M$ istnieje takie jego otoczenie otwarte $A \subset M$, że jeśli $\alpha:(a,b) \to A$ jest gładką krzywą, to długość $\alpha \subset M$ jest taka sama jak długość $f \circ \alpha \subset N$.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

erunkowe. ometria.

Pochodne kierunkowe Izometria

Krzywizna Gaussa I

rzywizna Gaussa

- 1. f jest lokalną izometrią.
- 2. Równość $I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w))$ zachodzi dla wszystkich $p \in M$ oraz $v, w \in T_pM$.
- 3. Dla każdego $p \in M$ istnieje lokalny układ współrzędnych $x: U \to M$ wokół p taki, że $f \circ x: U \to N$ jest lokalnym układem współrzędnych o takich samych współczynnikach metrycznych g_{ij} jak x.
- Dla każdego punktu p ∈ M istnieje takie jego otoczenie otwarte A ⊂ M, że jeśli α:(a, b) → A jest gładką krzywą, to długość α ⊂ M jest taka sama jak długość f ∘ α ⊂ N.

Powierzchnie w \mathbb{R}^3

wektory styczne normalne. I forma podstawowa

erunkowe. ometria.

Izometria

Krzywizna Gaussa I

rzywizna Gaussa

 $(2)\Rightarrow (3)$. Niech $p\in M$ oraz niech $x\colon U\to M$ będzie lokalnym układem współrzędnych wokół p. Pokażemy, że pochodna złożenia $f\circ x$ ma rangę 2, więc z twierdzenia o funkcji uwikłanej będzie wynikać, że $f\circ x$ na pewnym otoczeniu $V\subset U$ jest dyfeomorfizmem na swój obraz.

Niech $\{e_1, e_2\}$ będzie standardową bazą w \mathbb{R}^2 . Niech $q \in x(U)$ oraz niech $\overline{q} = x^{-1}(q)$. Zdefiniujmy krzywe

$$\alpha_{q,i}(t) = x(\overline{q} + te_i), \quad i = 1, 2,$$

działające z $(-\varepsilon, \varepsilon) \to x(U)$ dla odpowiednio małego ε .

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

> ochodne erunkowe. ometria.

Pochodne kierunkowe Izometria

Krzywizna Gaussa I

zywizna Gauss

Udowodnimy tylko, że lokalna izometria zachowuje współczynniki metryczne. Resztę implikacji pozostawiamy jako (opcjonalne) zadania.

 $(2)\Rightarrow(3).$ Niech $p\in M$ oraz niech $x\colon U\to M$ będzie lokalnym układem współrzędnych wokół p. Pokażemy, że pochodna złożenia $f\circ x$ ma rangę 2, więc z twierdzenia o funkcji uwikłanej będzie wynikać, że $f\circ x$ na pewnym otoczeniu $V\subset U$ jest dyfeomorfizmem na swój obraz.

Niech $\{e_1, e_2\}$ będzie standardową bazą w \mathbb{R}^2 . Niech $q \in x(U)$ oraz niech $\overline{q} = x^{-1}(q)$. Zdefiniujmy krzywe

$$\alpha_{q,i}(t) = x(\overline{q} + te_i), \quad i = 1, 2,$$

działające z $(-\varepsilon, \varepsilon) \to x(U)$ dla odpowiednio małego ε .

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

> ierunkowe. cometria.

Pochodne kierunkowe Izometria

Krzywizna Gaussa I

zywizna Gauss

Udowodnimy tylko, że lokalna izometria zachowuje współczynniki metryczne. Resztę implikacji pozostawiamy jako (opcjonalne) zadania.

 $(2)\Rightarrow (3)$. Niech $p\in M$ oraz niech $x\colon U\to M$ będzie lokalnym układem współrzędnych wokół p. Pokażemy, że pochodna złożenia $f\circ x$ ma rangę 2, więc z twierdzenia o funkcji uwikłanej będzie wynikać, że $f\circ x$ na pewnym otoczeniu $V\subset U$ jest dyfeomorfizmem na swój obraz.

Niech $\{e_1, e_2\}$ będzie standardową bazą w \mathbb{R}^2 . Niech $q \in x(U)$ oraz niech $\overline{q} = x^{-1}(q)$. Zdefiniujmy krzywe

$$\alpha_{q,i}(t) = x(\overline{q} + te_i), \quad i = 1, 2,$$

działające z $(-\varepsilon, \varepsilon) \to x(U)$ dla odpowiednio małego ε .

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

erunkowe. ometria.

Pochodne kierunkowe Izometria

(rzywizna Gaussa I

zywizna Gauss

Udowodnimy tylko, że lokalna izometria zachowuje współczynniki metryczne. Resztę implikacji pozostawiamy jako (opcjonalne) zadania.

 $(2) \Rightarrow (3)$. Niech $p \in M$ oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół p. Pokażemy, że pochodna złożenia $f \circ x$ ma rangę 2, więc z twierdzenia o funkcji uwikłanej będzie wynikać, że $f \circ x$ na pewnym otoczeniu $V \subset U$ jest dyfeomorfizmem na swój obraz.

Niech $\{e_1, e_2\}$ bedzie standardową bazą w \mathbb{R}^2 . Niech $g \in x(U)$ oraz niech $\overline{q} = x^{-1}(q)$. Zdefiniujmy krzywe

$$\alpha_{q,i}(t) = x(\overline{q} + te_i), \quad i = 1, 2,$$

działające z $(-\varepsilon, \varepsilon) \to x(U)$ dla odpowiednio małego ε .

Izometria

$$\alpha_{q,i}(0) = q,$$
 $\alpha'_{q,i}(0) = x_i,$

natomiast z reguły łańcuchowej wynika, że

$$f \circ \alpha_{q,i}(0) = f(q),$$
 $(f \circ \alpha_{q,i})'(0) = (f \circ x)_i,$

gdzie wartości pochodnych x_i oraz $(f \circ x)_i$ są wzięte dla $\overline{q} \subset U$. Ponownie z definicji uzyskujemy

$$(f \circ x)_i = (f \circ \alpha_{q,i})'(0) = \nabla_{x_i} f = Df_q(x_i),$$

więc korzystając z założeninia mamy

$$\langle (f \circ x)_i, (f \circ x)_i \rangle = \langle Df_q(x_i), Df_q(x_j) \rangle = \langle x_i, x_j \rangle$$

dla wszystkich i, j = 1, 2.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

> erunkowe. ometria.

Izometria

Krzywizna Gaussa I

zywizna Gauss

Z definicji $\alpha_{q,i}$ wiemy, że:

$$\alpha_{q,i}(0) = q,$$
 $\alpha'_{q,i}(0) = x_i,$

natomiast z reguły łańcuchowej wynika, że

$$f \circ \alpha_{q,i}(0) = f(q),$$
 $(f \circ \alpha_{q,i})'(0) = (f \circ x)_i,$

gdzie wartości pochodnych x_i oraz $(f \circ x)_i$ są wzięte dla $\overline{q} \subset U$. Ponownie z definicji uzyskujemy

$$(f \circ x)_i = (f \circ \alpha_{q,i})'(0) = \nabla_{x_i} f = Df_q(x_i),$$

więc korzystając z założeninia mamy

$$\langle (f \circ x)_i, (f \circ x)_i \rangle = \langle Df_q(x_i), Df_q(x_j) \rangle = \langle x_i, x_j \rangle$$

dla wszystkich i, j = 1, 2.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma nodstawowa

kierunkowe. Izometria. Pochodne kierunkowe

Izometria

rzywizna Gaussa I

rzywizna Gauss

$$lpha_{q,i}(0)=q, \qquad \qquad lpha_{q,i}'(0)=x_i,$$

natomiast z reguły łańcuchowej wynika, że

$$f \circ \alpha_{q,i}(0) = f(q),$$
 $(f \circ \alpha_{q,i})'(0) = (f \circ x)_i,$

gdzie wartości pochodnych x_i oraz $(f \circ x)_i$ są wzięte dla $\overline{q} \subset U$. Ponownie z definicji uzyskujemy

$$(f \circ x)_i = (f \circ \alpha_{q,i})'(0) = \nabla_{x_i} f = Df_q(x_i),$$

więc korzystając z założeninia mamy

$$\langle (f \circ x)_i, (f \circ x)_i \rangle = \langle Df_q(x_i), Df_q(x_j) \rangle = \langle x_i, x_j \rangle$$

dla wszystkich i, j = 1, 2.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria. Pochodne kierunkowe

Izometria

rzywizna Gaussa I

zywizna Gaussa

tierunkowe. zometria. Pochodne kierunkowe

Pochodne kierunkowe Izometria

Krzywizna Gaussa

Zy Wiziia Gaussa i

Theorema Egregiu i Twierdzenie klasyfikacyjne

 $\langle (f \circ x)_i, (f \circ x)_i \rangle = \langle Df_q(x_i), Df_q(x_j) \rangle = \langle x_i, x_j \rangle$

Z powyższego równania wynika, że $||(f \circ x)_i|| = ||x_i||$, oraz kąt między $(f \circ x)_1$ i $(f \circ x)_2$ jest taki sam jak między x_1 i x_2 . Zatem z liniowej niezależności x_1 i x_2 wynika liniowa niezależność $(f \circ x)_1$ i $(f \circ x)_2$, czyli rank $(f \circ x) = 2$ na odpowiednio pomniejszonym zbiorze $V \subset U$ (tak by $\alpha_{q,i}$) były dobrze określone). Wreszcie z twierdzenia o funkcji uwikłanej wynika, że $f \circ x$: $V \to N$ jest lokalnym układem

ierunkowe. zometria.

Pochodne kierunkowe Izometria

Krzywizna Gaussa

Krzywizna Gauss

Theorema Egregium
i Twierdzenie

 $\langle (f \circ x)_i, (f \circ x)_i \rangle = \langle Df_q(x_i), Df_q(x_j) \rangle = \langle x_i, x_j \rangle$

Z powyższego równania wynika, że $||(f \circ x)_i|| = ||x_i||$, oraz kąt między $(f \circ x)_1$ i $(f \circ x)_2$ jest taki sam jak między x_1 i x_2 . Zatem z liniowej niezależności x_1 i x_2 wynika liniowa niezależność $(f \circ x)_1$ i $(f \circ x)_2$, czyli rank $(f \circ x) = 2$ na odpowiednio pomniejszonym zbiorze $V \subset U$ (tak by $\alpha_{q,i}$) były dobrze określone). Wreszcie z twierdzenia o funkcji uwikłanej wynika, że $f \circ x: V \to N$ jest lokalnym układem współrzędnych. Równość współczynników metrycznych wynika natychmiast z powyższej równości.

Z powyższego równania wynika, że $\|(f \circ x)_i\| = \|x_i\|$, oraz kąt między $(f \circ x)_1$ i $(f \circ x)_2$ jest taki sam jak między x_1 i x_2 . Zatem z liniowej niezależności x_1 i x_2 wynika liniowa niezależność $(f \circ x)_1$ i $(f \circ x)_2$, czyli rank $(f \circ x) = 2$ na odpowiednio pomniejszonym zbiorze $V \subset U$ (tak by $\alpha_{q,i}$) były dobrze określone). Wreszcie z twierdzenia o funkcji uwikłanej wynika, że $f \circ x$: $V \to N$ jest lokalnym układem współrzędnych. Równość współczynników metrycznych wynika natychmiast z powyższej równości.

Powierzchnie w \mathbb{R}^3

Vektory styczne i ormalne. I forma odstawowa

ierunkowe. cometria.

Pochodne kierunkowe

ometria

Krzywizna Gaussa I

zywizna Gaussa

$$f(s, t) = (\cos s, \sin s, t)$$

jest lokalną izometrią (ale oczywiście nie jest izometrią).

Niech $p=(p_1,p_2)\in\mathbb{R}^2$ oraz niech $U=(p_1-\pi,p_1+\pi)\times\mathbb{R}$. Wtedy inkluzja $x:U\to\mathbb{R}^2$ jest lokalnym układem współrzędnych w \mathbb{R}^2 , oraz $f\circ x:U\to S^1\times\mathbb{R}$ jest injekcją. Co więcej mamy

$$(f \circ x)_1 = (-\sin s, \cos s, 0)$$
 oraz $(f \circ x)_2 = (0, 0, 1),$

więd

$$(f \circ x)_1 \times (f \circ x)_2 = (\cos s, \sin s, 0) \neq (0, 0, 0)$$

czyli $f \circ x$ jest lokalnym układem współrzędnych.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

erunkowe. ometria. ochodne kierunkowe

Izometria

Krzywizna Gaussa

zywizna Gauss

$$f(s, t) = (\cos s, \sin s, t)$$

jest lokalną izometrią (ale oczywiście nie jest izometrią). Niech $p=(p_1,p_2)\in\mathbb{R}^2$ oraz niech $U=(p_1-\pi,p_1+\pi)\times\mathbb{R}$. Wtedy inkluzja $x\colon U\to\mathbb{R}^2$ jest lokalnym układem współrzędnych w \mathbb{R}^2 , oraz $f\circ x\colon U\to S^1\times\mathbb{R}$ jest injekcją. Co

$$(f \circ x)_1 = (-\sin s, \cos s, 0)$$
 oraz $(f \circ x)_2 = (0, 0, 1),$

więd

$$(f \circ x)_1 \times (f \circ x)_2 = (\cos s, \sin s, 0) \neq (0, 0, 0)$$

czyli $f \circ x$ jest lokalnym układem współrzędnych

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

erunkowe. ometria.

Pochodne kierunkowe Izometria

Krzywizna Gaussa I

zywizna Gaussa

$$f(s, t) = (\cos s, \sin s, t)$$

jest lokalną izometrią (ale oczywiście nie jest izometrią). Niech $p = (p_1, p_2) \in \mathbb{R}^2$ oraz niech $U = (p_1 - \pi, p_1 + \pi) \times \mathbb{R}$. Wtedy inkluzja $x: U \to \mathbb{R}^2$ jest lokalnym układem współrzędnych w \mathbb{R}^2 , oraz $f \circ x: U \to S^1 \times \mathbb{R}$ jest injekcją. Co więcej mamy

$$(f \circ x)_1 = (-\sin s, \cos s, 0)$$
 oraz $(f \circ x)_2 = (0, 0, 1),$

więc

$$(f \circ x)_1 \times (f \circ x)_2 = (\cos s, \sin s, 0) \neq (0, 0, 0)$$

czyli $f \circ x$ jest lokalnym układem współrzędnych.

Izometria

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right].$$

Izometria

Obliczenie współczynników metrycznych zarówno dla x jak i $f \circ x$ skutkuje wyznaczeniem macierzy pierwszej formy podstawowej, w każdym z przypadków równej

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right].$$

Jednocześnie jest jasnym, że f nie może być izometrią, ponieważ w przeciwnym przypadku \mathbb{R}^2 musiałoby być dyfeomorficzne z $S^1 \times \mathbb{R}$.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ochodne ierunkowe. zometria.

Pochodne kierunkowe Izometria

Krzywizna Gaussa I

zywizna Gaussa

Obliczenie współczynników metrycznych zarówno dla x jak i $f\circ x$ skutkuje wyznaczeniem macierzy pierwszej formy podstawowej, w każdym z przypadków równej

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right].$$

Jednocześnie jest jasnym, że f nie może być izometrią, ponieważ w przeciwnym przypadku \mathbb{R}^2 musiałoby być dyfeomorficzne z $S^1 \times \mathbb{R}$.

Powierzchnie w \mathbb{R}^3

wektory styczn normalne. I forr podstawowa

> erunkowe. ometria.

Pochodne kierunkowe Izometria

rzywizna Gaussa I

zywizna Gaussa

Elementarna Geometria Różniczkowa

Powierzchnie w K

normalne. I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa – Idea Pole powierzchni

rowtorka z algebry liniowej

zywizna Gaussa

heorema Egregium Twierdzenie Iasvfikacvine

Wykład 8

Krzywizna Gaussa I

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa Krzywizna Gaussa – Idea Pole powierzchni Powtórka z algebry liniowej II

Krzywizna Gaussa I

Theorema Egregium i Twierdzenie klasyfikacyjne

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa – Idea Pole powierzchni

Crzywizna Gauss

Jednak dla celów dalszego wykładu chcielibyśmy, aby był funkcją gładką określoną *na powierzchni*. Stąd następująca definicja:

Definicia

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych. **Odwzorowaniem Gaussa** nazywamy funkcję $\widehat{n}: x(U) \to S$ zadaną wzorem

$$\widehat{n}(p) \stackrel{\text{def.}}{=} n \circ x^{-1}(p),$$

 $gdzie n = \frac{x_1 \times x_2}{\|x_1 \times x_2\|}.$

Powierzchnie w \mathbb{R}^3

Vektory styczne i ormalne. I forma odstawowa

ochodne erunkowe. ometria.

Krzywizna Gaussa

Odwzorowanie Gaussa

ole powierzchni

irzywizna Gauss

Odwzorowanie Gaussa

Tak jak został zdefiniowany wektor normalny (jako $\frac{x_1 \times x_2}{\|x_1 \times x_2\|}$, definicia 6.4), jest on raczej funkcją z $\mathbb{R}^2 \to \mathbb{R}^3$ (lub $\mathbb{R}^2 \to S^2$). Jednak dla celów dalszego wykładu chcielibyśmy, aby był funkcją gładką określoną na powierzchni. Stąd następująca definicja:

Jednak dla celów dalszego wykładu chcielibyśmy, aby był funkcją gładką określoną *na powierzchni*. Stąd następująca definicja:

Definicja

Niech $M \subset R^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych. **Odwzorowaniem Gaussa** nazywamy funkcję $\widehat{n}: x(U) \to S^2$ zadaną wzorem

$$\widehat{n}(p) \stackrel{\text{def.}}{=} n \circ x^{-1}(p),$$

gdzie
$$n = \frac{x_1 \times x_2}{\|x_1 \times x_2\|}$$
.

Odwzorowanie Gaussa

➤ Zauważmy, że dla różnych lokalnych układów współrzędnych dobrze określony jest tylko kierunek normalny, więc (jednostkowy) wektor normalny może s różnić co najwyżej o czynnik (−1) w stosunku do wyjściowego. Nie będzie to jednak zmieniać w istotny sposób dalszych obliczeń. Możemy przyjąć, że jeśli powierzchnia jest zamknięta, to wybieramy kierunek

▶ Odwzorowanie Gaussa z całą pewnością zależy od tego w jaki sposób powierzchnia M jest umieszczona w \mathbb{R}^3 i może się zmienić, gdy zaczniemy tę powierzchnię deformować.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

> ochodne ierunkowe. zometria.

ICIZY WIZIIA GAUS

Odwzorowanie Gaussa

Pole powierzchni
Powtórka z algebry linjowei

Irzywizna Gaussa

Uwaga

- ➤ Zauważmy, że dla różnych lokalnych układów współrzędnych dobrze określony jest tylko kierunek normalny, więc (jednostkowy) wektor normalny może się różnić co najwyżej o czynnik (−1) w stosunku do wyjściowego. Nie będzie to jednak zmieniać w istotny sposób dalszych obliczeń. Możemy przyjąć, że jeśli powierzchnia jest zamknięta, to wybieramy kierunek "zewnętrzny".
- Odwzorowanie Gaussa z całą pewnością zależy od tego w jaki sposób powierzchnia M jest umieszczona w \mathbb{R}^3 i może się zmienić, gdy zaczniemy tę powierzchnię deformować.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ochodne ierunkowe. cometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea Pole powierzchni

zywizna Gaussa

Theorema Egregium
Twierdzenie

Uwaga

- ➤ Zauważmy, że dla różnych lokalnych układów współrzędnych dobrze określony jest tylko kierunek normalny, więc (jednostkowy) wektor normalny może się różnić co najwyżej o czynnik (−1) w stosunku do wyjściowego. Nie będzie to jednak zmieniać w istotny sposób dalszych obliczeń. Możemy przyjąć, że jeśli powierzchnia jest zamknięta, to wybieramy kierunek "zewnętrzny".
- ▶ Odwzorowanie Gaussa z całą pewnością zależy od tego w jaki sposób powierzchnia M jest umieszczona w \mathbb{R}^3 i może się zmienić, gdy zaczniemy tę powierzchnię deformować.

Powierzchnie w \mathbb{R}^3

Vektory styczno ormalne. I form odstawowa

ierunkowe. zometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Id Pole powierzchni

zywizna Gaussa

Theorema Egregium
Twierdzenie

- 1. $K:M \to \mathbb{R}$ jest funkcją gładką;
- krzywizna K(p) jest niezależna od wyboru lokalnych układów współrzędnych, zależy tylko od powierzchni samej w sobie;
- jeśli (otwarty, o niepustym wnętrzu) zbiór naszej powierzchni jest zawarty w płaszczyźnie, wtedy krzywizna na nim powinna znikać;
- 4. w sytuacji na rysunku krzywizna powierzchni M w punkcie p powinna być mniejsza niż krzywizna powierzchni N w tym punkcie, $K_M(p) < K_N(q)$.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. zometria.

Krzywizna Gaussa

Krzywizna Gaussa – Idea

ole powierzchni owtórka z algebry liniowe

irzywizna Gaussa

- 1. $K:M \to \mathbb{R}$ jest funkcją gładką;
- krzywizna K(p) jest niezależna od wyboru lokalnych układów współrzędnych, zależy tylko od powierzchni samej w sobie;
- jeśli (otwarty, o niepustym wnętrzu) zbiór naszej powierzchni jest zawarty w płaszczyźnie, wtedy krzywizna na nim powinna znikać;
- 4. w sytuacji na rysunku krzywizna powierzchni M w punkcie p powinna być mniejsza niż krzywizna powierzchni N w tym punkcie, $K_M(p) < K_N(q)$.

Powierzchnie w \mathbb{R}^3

Wektory styczne normalne. I forma podstawowa

ochodne ierunkowe. zometria.

Krzywizna Gaussa I Odwzorowanie Gaussa

Krzywizna Gaussa – Idea Pole powierzchni

irzywizna Gaussa

heorema Egregium
Twierdzenie

Chcemy zdefiniować krzywiznę powierzchni, więc szukamy funkcji $K: M \to \mathbb{R}^3$, która będzie spełniać następujące własności:

- 1. $K: M \to \mathbb{R}$ jest funkcją gładką;
- krzywizna K(p) jest niezależna od wyboru lokalnych układów współrzędnych, zależy tylko od powierzchni samej w sobie;
- jeśli (otwarty, o niepustym wnętrzu) zbiór naszej powierzchni jest zawarty w płaszczyźnie, wtedy krzywizna na nim powinna znikać;
- 4. w sytuacji na rysunku krzywizna powierzchni M w punkcie p powinna być mniejsza niż krzywizna powierzchni N w tym punkcie, $K_M(p) < K_N(q)$.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ochodne erunkowe. ometria.

Krzywizna Gaussa I Odwzorowanie Gaussa

Krzywizna Gaussa – Idea Pole powierzchni

zywizna Gaussa

heorema Egregium Twierdzenie

- 1. $K: M \to \mathbb{R}$ jest funkcją gładką;
- krzywizna K(p) jest niezależna od wyboru lokalnych układów współrzędnych, zależy tylko od powierzchni samej w sobie;
- jeśli (otwarty, o niepustym wnętrzu) zbiór naszej powierzchni jest zawarty w płaszczyźnie, wtedy krzywizna na nim powinna znikać;
- 4. w sytuacji na rysunku krzywizna powierzchni M w punkcie p powinna być mniejsza niż krzywizna powierzchni N w tym punkcie, $K_M(p) < K_N(q)$.

Powierzchnie w \mathbb{R}^3

Wektory styczne normalne. I form podstawowa

ochodne erunkowe. ometria.

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

ole powierzchni

owtórka z algebry lini

rzywizna Gaussa

Theorema Egregium
Twierdzenie

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa – Idea

Pole powierzchni

. .

zywizna Gaussa

Theorema Egregium

i Twierdzenie

klasyfikacyjne

- ► Ustalmy punkt $p \in M$ i lokalny układ współrzędnych $x: U \rightarrow M$ wokół p.
- ▶ Wybierzmy niewielkie otoczenie otwarte $T \subset x(U)$ zawierające punkt p.
- ► Kiedy punkt p należy do zbioru T, wtedy $\widehat{n}(p)$ należy do zbioru $\widehat{n}(T) \subset S^2$,
- zbadajmy więc stosunek pól

$$\frac{A(\widehat{n}(T)) \subset S^2}{A(T) \subset M}$$

$$K(p) \stackrel{\text{def.}}{=} \varinjlim_{T \to p} \frac{A(\widehat{n}(T))}{A(T)}.$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

> chodne erunkowe. ometria.

Krzywizna Gaussa I

Krzywizna Gaussa – Idea Pole powierzchni

Powtórka z algebry liniowej II

Krzywizna Gaussa

heorema Egregium Twierdzenie Jasyfikacyjne

- Ustalmy punkt p ∈ M i lokalny układ współrzędnych x: U → M wokół p.
- ▶ Wybierzmy niewielkie otoczenie otwarte $T \subset x(U)$ zawierające punkt p.
- ► Kiedy punkt p należy do zbioru T, wtedy $\widehat{n}(p)$ należy do zbioru $\widehat{n}(T) \subset S^2$,
- zbadajmy więc stosunek pól

$$\frac{A(\widehat{n}(T)) \subset S^2}{A(T) \subset M}$$

$$K(p) \stackrel{\text{def.}}{=} \varinjlim_{T \to p} \frac{A(\widehat{n}(T))}{A(T)}.$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Vektory styczne i ormalne. I forma odstawowa

ochodne erunkowe. ometria.

Krzywizna Gaussa I

Krzywizna Gaussa – Idea

ole powierzchni

(rzywizna Gaussa

heorema Egregium Twierdzenie

- ▶ Ustalmy punkt $p \in M$ i lokalny układ współrzędnych $x: U \rightarrow M$ wokół p.
- ▶ Wybierzmy niewielkie otoczenie otwarte $T \subset x(U)$ zawierające punkt p.
- ► Kiedy punkt p należy do zbioru T, wtedy $\widehat{n}(p)$ należy do zbioru $\widehat{n}(T) \subset S^2$,
- zbadajmy więc stosunek pól

$$\frac{A(\widehat{n}(T)) \subset S^2}{A(T) \subset M};$$

$$K(p) \stackrel{\text{def.}}{=} \varinjlim_{T \to p} \frac{A(\widehat{n}(T))}{A(T)}.$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

/ektory styczne i ormalne. I forma odstawowa

erunkowe. ometria.

Krzywizna Gaussa I Odwzorowanie Gaussa

Krzywizna Gaussa – Idea Pole powierzchni

rzywizna Gaussa

Theorema Egregium

dasyfikacyjne

- Wybierzmy niewielkie otoczenie otwarte $T \subset x(U)$ zawierające punkt p.
- ► Kiedy punkt p należy do zbioru T, wtedy $\hat{n}(p)$ należy do zbioru $\widehat{n}(T) \subset S^2$.
- zbadajmy więc stosunek pól

$$\frac{A(\widehat{n}(T)) \subset S^2}{A(T) \subset M}$$
;

$$K(p) \stackrel{\text{def.}}{=} \varinjlim_{T \to p} \frac{A(\widehat{n}(T))}{A(T)}.$$

Krzywizna Gaussa - Idea

- Ustalmy punkt p ∈ M i lokalny układ współrzędnych x: U → M wokół p.
- Wybierzmy niewielkie otoczenie otwarte T ⊂ x(U) zawierające punkt p.
- ► Kiedy punkt p należy do zbioru T, wtedy $\widehat{n}(p)$ należy do zbioru $\widehat{n}(T) \subset S^2$,
- zbadajmy więc stosunek pól

$$\frac{A(\widehat{n}(T)) \subset S^2}{A(T) \subset M}$$
;

$$K(p) \stackrel{\text{def.}}{=} \varinjlim_{T \to p} \frac{A(\widehat{n}(T))}{A(T)}.$$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma oodstawowa

ierunkowe. zometria.

Krzywizna Gaussa I Odwzorowanie Gaussa

Krzywizna Gaussa – Idea Pole powierzchni

zwwizna Gaussa

heorema Egregium

Twierdzenie lasyfikacyjne

Krzywizna Gaussa

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea Pole powierzchni

Theorema Egregium i Twierdzenie

Problemy:

- Czy ta granica jest niezależna od wyboru otoczeń T? Jak to formalnie zdefiniować?
- 2. Co to jest $A(\widehat{n}(T))$ kiedy \widehat{n} nie jest injekcją?
- 3. Co się stanie jeśli odwzorowanie Gaussa "odwraca" obszar T? Czy wtedy należałoby brać pole $A(\widehat{n}(T))$ ze znakiem ujemnym?

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Krzywizna Gaussa

Krzywizna Gaussa – Idea

ole powierzchni

.

rzywizna Gaussa

Theorema Egregiun i Twierdzenie

Problemy:

- 1. Czy ta granica jest niezależna od wyboru otoczeń *T*? Jak to formalnie zdefiniować?
- 2. Co to jest $A(\widehat{n}(T))$ kiedy \widehat{n} nie jest injekcją?
- 3. Co się stanie jeśli odwzorowanie Gaussa "odwraca" obszar T? Czy wtedy należałoby brać pole A(n(T)) ze znakiem ujemnym?

rowierzchnie w K

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Krzywizna Gaussa I Odwzorowanie Gaussa

Krzywizna Gaussa – Idea Pole powierzchni

ole powierzchni Powtórka z algebry liniow

zywizna Gaussa

Theorema Egregiun i Twierdzenie

Problemy:

- 1. Czy ta granica jest niezależna od wyboru otoczeń *T*? Jak to formalnie zdefiniować?
- 2. Co to jest $A(\widehat{n}(T))$ kiedy \widehat{n} nie jest injekcją?
- 3. Co się stanie jeśli odwzorowanie Gaussa "odwraca" obszar T? Czy wtedy należałoby brać pole $A(\widehat{n}(T))$ ze znakiem ujemnym?

Problemy:

- 1. Czy ta granica jest niezależna od wyboru otoczeń *T*? Jak to formalnie zdefiniować?
- 2. Co to jest $A(\widehat{n}(T))$ kiedy \widehat{n} nie jest injekcją?
- 3. Co się stanie jeśli odwzorowanie Gaussa "odwraca" obszar T? Czy wtedy należałoby brać pole $A(\widehat{n}(T))$ ze znakiem ujemnym?

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. zometria.

Krzywizna Gaussa I Odwzorowanie Gaussa Krzywizna Gaussa – Idea

ole powierzchni

rzywizna Gauss:

heorema Egregium Twierdzenie

$$x(\phi, \psi) = (R\cos\phi\cos\psi, R\sin\phi\cos\psi, R\sin\psi)$$

będzie na niej lokalnym układem współrzędnych. Mamy

$$\begin{aligned} x_{\Phi} &= R(-\sin\phi\cos\psi,\cos\phi\cos\psi,0), \\ x_{\psi} &= R(-\cos\phi\sin\psi,-\sin\phi\sin\psi,\cos\psi) \end{aligned}$$

$$\widehat{n}(p) = \frac{x_{\Phi} \times x_{\Psi}}{\|x_{\Phi} \times x_{\Psi}\|} = \frac{p}{R}$$

Krzywizna Gaussa - Idea

$$x(\phi, \psi) = (R\cos\phi\cos\psi, R\sin\phi\cos\psi, R\sin\psi)$$

będzie na niej lokalnym układem współrzędnych. Mamy

$$\begin{split} x_{\Phi} &= R(-\sin\phi\cos\psi,\cos\phi\cos\psi,0), \\ x_{\psi} &= R(-\cos\phi\sin\psi,-\sin\phi\sin\psi,\cos\psi), \end{split}$$

więc jeśli wybierzemy (zgodnie z konwencją) wektor normalny *n* wskazujący na zewnątrz, wtedy

$$\widehat{n}(p) = \frac{x_{\Phi} \times x_{\Psi}}{\|x_{\Phi} \times x_{\Psi}\|} = \frac{p}{R}$$

dla całej sfery.

Krzywizna Gaussa - Idea

Widzimy więc, że odwzorowanie Gaussa zmiejsza obszar o czynnik $\frac{1}{R}$ i nie ma żadnych problemów z definicją.

Sfera o promieniu R

Sfera o promieniu 1

Powierzchnie w \mathbb{R}^3

Vektory styczne ormalne. I forma odstawowa

ochodne erunkowe. ometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa Krzywizna Gaussa – Idea

Pole powierzchni
Powtórka z algebry linie

rzywizna Gauss:

heorema Egregium Twierdzenie

Krzywizna Gaussa - Idea

Powierzchnie w \mathbb{R}^3

Wektory styczn normalne. I fori podstawowa

ochodne ierunkowe. zometria.

Krzywizna Gaussa I Odwzorowanie Gaussa

Krzywizna Gaussa – Idea Pole powierzchni

Pole powierzchni Powtórka z algebry

zywizna Gaussa

heorema Egregium Twierdzenie

Powierzchnie w \mathbb{R}^3

Wektory styczn normalne. I forn oodstawowa

Pochodne cierunkowe. zometria.

Krzywizna Gaussa I Odwzorowanie Gaussa

Krzywizna Gaussa – Idea Pole powierzchni

zywizna Gaussa

heorema Egregium Twierdzenie

Podobnie jak wcześniej wyraziliśmy długość, teraz wyrazimy pole powierzchni w języku współczynników metrycznych.

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych. Pole podzbioru $S \subset x(U)$ wyraża się wzorem

$$A(S) \stackrel{\text{def.}}{=} \iint_{X^{-1}(S)} \sqrt{\det(g_{ij})} \, ds \, ds$$

ochodne ierunkowe. cometria.

Krzywizna Gaussa

Odwzorowanie Gaussa

Pole powierzchni

ne powierzenni

wtórka z algebry liniow

ywizna Gaussa

heorema Egregium Twierdzenie

Podobnie jak wcześniej wyraziliśmy długość, teraz wyrazimy pole powierzchni w języku współczynników metrycznych.

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych. Pole podzbioru $S \subset x(U)$ wyraża się wzorem

$$A(S) \stackrel{\mathsf{def.}}{=} \iint_{x^{-1}(S)} \sqrt{\det(g_{ij})} ds dt$$

Załóżmy, że $S \subset x(U) \cap y(V)$ dla dwóch lokalnych układów współrzędnych x, y na M. Niech (g_{ij}) , $[odpowiednio (\overline{g_{ij}})]$ oznacza macierz współczynników metrycznych dla x [odpowiednio y]. Wtedy

$$\iint_{x^{-1}(S)} \sqrt{\det(g_{ij})} \, ds \, dt = \iint_{y^{-1}(S)} \sqrt{\det(\overline{g_{ij}})} \, ds \, dt.$$

Dowód tego lematu pozostawiamy jako ćwiczenie

Powierzchnie w \mathbb{R}^3

Wektory styczne normalne. I form podstawowa

ochodne ierunkowe. zometria.

Krzywizna Gaussa Odwzorowanie Gaussa

Krzywizna Gaussa – Idea
Pole powierzchni
Doubiela – alacha diainus

. .

zywizna Gaussa

heorema Egregium Twierdzenie Jasyfikacyjne Załóżmy, że $S \subset x(U) \cap y(V)$ dla dwóch lokalnych układów współrzędnych x, y na M. Niech (g_{ij}) , $[odpowiednio (\overline{g_{ij}})]$ oznacza macierz współczynników metrycznych dla x [odpowiednio y]. Wtedy

$$\iint_{x^{-1}(S)} \sqrt{\det(g_{ij})} \, ds \, dt = \iint_{y^{-1}(S)} \sqrt{\det(\overline{g_{ij}})} \, ds \, dt.$$

Dowód tego lematu pozostawiamy jako ćwiczenie

Powierzchnie w \mathbb{R}^3

Wektory styczne normalne. I form podstawowa

ochodne ierunkowe. zometria.

Krzywizna Gaussa Odwzorowanie Gaussa

Krzywizna Gaussa – Idea
Pole powierzchni
Doubiela – alacha diainus

. .

zywizna Gaussa

heorema Egregium Twierdzenie Jasyfikacyjne Załóżmy, że $S \subset x(U) \cap y(V)$ dla dwóch lokalnych układów współrzędnych x, y na M. Niech (g_{ij}) , $[odpowiednio (\overline{g_{ij}})]$ oznacza macierz współczynników metrycznych dla x [odpowiednio y]. Wtedy

$$\iint_{x^{-1}(S)} \sqrt{\det(g_{ij})} \, ds \, dt = \iint_{y^{-1}(S)} \sqrt{\det(\overline{g_{ij}})} \, ds \, dt.$$

Dowód tego lematu pozostawiamy jako ćwiczenie.

Powierzchnie w \mathbb{R}^3

Wektory styczn normalne. I forr podstawowa

ochodne ierunkowe. cometria.

Krzywizna Gaussa |
Odwzorowanie Gaussa

Krzywizna Gaussa – Idea
Pole powierzchni

with the 2 tangetory innower

zywizna Gauss

Theorema Egregium
Twierdzenie
dasyfikacyjne

$$\langle x_1 \times x_2, n \rangle = \langle \|x_1 \times x_2\| n, n \rangle = \|x_1 \times x_2\| = \sqrt{\det(g_{ij})},$$

$$A(T) = \iint_{x^{-1}(T)} \langle x_1 \times x_2, n \rangle \, ds \, dt.$$

$$A(\widehat{n}(T)) = \iint_{x^{-1}(T)} \langle n_1 \times n_2, n \rangle ds dt$$

Pole powierzchni

$$\langle x_1 \times x_2, n \rangle = \langle \|x_1 \times x_2\| n, n \rangle = \|x_1 \times x_2\| = \sqrt{\det(g_{ij})},$$

zatem mamy

$$A(T) = \iint_{x^{-1}(T)} \langle x_1 \times x_2, n \rangle ds dt.$$

$$A(\widehat{n}(T)) = \iint_{x^{-1}(T)} \langle n_1 \times n_2, n \rangle ds dt$$

Pole powierzchni

$$\langle x_1 \times x_2, n \rangle = \langle \|x_1 \times x_2\| n, n \rangle = \|x_1 \times x_2\| = \sqrt{\det(g_{ij})},$$

zatem mamy

$$A(T) = \iint_{x^{-1}(T)} \langle x_1 \times x_2, n \rangle ds dt.$$

Analogicznie możemy zdefiniować pole $\widehat{n}(T)$ jako

$$A(\widehat{n}(T)) = \iint_{x^{-1}(T)} \langle n_1 \times n_2, n \rangle ds dt,$$

gdzie n_1 , n_2 są pochodnymi cząstkowymi n po zmiennych odpowiednio s i t.

To rozwiązuje problemy (2) i (3) powyżej, jednak problem (1) (niezależności definicji od wyboru otoczeń *T*) pozostaje.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

kierunkowe. zometria.

Krzywizna Gaussa I

(rzywizna Gaussa – Idea

Pole powierzchni

wtórka z algebry liniowej

zywizna Gaussa

heorema Egregium Twierdzenie dasyfikacyjne

$$\langle x_1 \times x_2, n \rangle = \langle \|x_1 \times x_2\| n, n \rangle = \|x_1 \times x_2\| = \sqrt{\det(g_{ij})},$$

zatem mamy

$$A(T) = \iint_{X^{-1}(T)} \langle x_1 \times x_2, n \rangle ds dt.$$

Analogicznie możemy zdefiniować pole $\widehat{n}(T)$ jako

$$A(\widehat{n}(T)) = \iint_{x^{-1}(T)} \langle n_1 \times n_2, n \rangle ds dt,$$

gdzie n_1 , n_2 są pochodnymi cząstkowymi n po zmiennych odpowiednio s i t.

To rozwiązuje problemy (2) i (3) powyżej, jednak problem (1) (niezależności definicji od wyboru otoczeń *T*) pozostaje.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

cierunkowe. zometria.

Odwzorowanie Gaussa

Pole powierzchni

wtórka z algebry linio

ywizna Gaussa

heorema Egregium Twierdzenie lasyfikacyjne

ochodne erunkowe. ometria.

Krzywizna Gaussa

Odwzorowanie Gaussa Krzywizna Gaussa – Idea Pole powierzchni

Powtórka z algebry liniowej II

Krzywizna Gaussa

Theorema Egregium

i Twierdzenie

Niech V będzie rzeczywistą przestrzenią wektorową i niech $\langle \; , \; \rangle$ będzie iloczynem skalarnym na V.

Definicja

Rozważmy odwzorowanie liniowe $F: V \to V$. Odwzorowaniem dwuliniowym **indukowanym przez** F nazywamy odwzorowanie $B_F: V \to \mathbb{R}$ zadane przez

$$B_F(v, w) = \langle F(v), w \rangle$$

Powtórka z algebry liniowei II

Niech V będzie rzeczywistą przestrzenią wektorowa i niech \langle , \rangle będzie iloczynem skalarnym na V.

Definicja

Rozważmy odwzorowanie liniowe $F: V \rightarrow V$. Odwzorowaniem dwuliniowym indukowanym przez F nazywamy odwzorowanie $B_F: V \to \mathbb{R}$ zadane przez

$$B_F(v, w) = \langle F(v), w \rangle.$$

Niech (V, \langle , \rangle) będzie przestrzenią wektorową z iloczynem skalarnym. Ustalmy bazę tej przestrzeni.

- Oznaczmy przez G macierz iloczynu skalarnego w tej bazie.
- Niech F: V → V będzie odwzorowaniem liniowym o macierzy A w powyższej bazie.
- Niech M oznacza macierz odwzorowania B_F indukowanego przez F (znów macierz w powyższej bazie)

Wtedy $M = A^tG$.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ochodne ierunkowe. zometria.

Krzywizna Gaussa
Odwzorowanie Gaussa

Krzywizna Gaussa – Idea Pole powierzchni Powtórka z algebry liniowei II

, ,

Krzywizna Gaussa

Theorema Egregium i Twierdzenie klasyfikacyine

Niech (V, \langle , \rangle) będzie przestrzenią wektorową z iloczynem skalarnym. Ustalmy bazę tej przestrzeni.

- Oznaczmy przez G macierz iloczynu skalarnego w tej bazie.
- Niech F: V → V będzie odwzorowaniem liniowym o macierzy A w powyższej bazie.
- Niech M oznacza macierz odwzorowania B_F indukowanego przez F (znów macierz w powyższej bazie)

Wtedy $M = A^tG$.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ochodne ierunkowe. zometria.

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

Krzywizna Gaussa – Idea Pole powierzchni Powtórka z algebry linjowei II

, ,

Krzywizna Gaussa

heorema Egregium Twierdzenie dasyfikacyine

Niech (V, \langle , \rangle) będzie przestrzenią wektorową z iloczynem skalarnym. Ustalmy bazę tej przestrzeni.

- Oznaczmy przez G macierz iloczynu skalarnego w tej bazie.
- Niech F: V → V będzie odwzorowaniem liniowym o macierzy A w powyższej bazie.
- Niech M oznacza macierz odwzorowania B_F indukowanego przez F (znów macierz w powyższej bazie).
 (traka A A A A A C

Wtedy $M = A^tG$.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ochodne ierunkowe. zometria.

Krzywizna Gaussa I Odwzorowanie Gaussa

Krzywizna Gaussa – Idea Pole powierzchni

Powtórka z algebry liniowej II

rzywizna Gaussa

Theorema Egregium
Twierdzenie
dasyfikacyjne

Niech (V, \langle , \rangle) będzie przestrzenią wektorową z iloczynem skalarnym. Ustalmy bazę tej przestrzeni.

- Oznaczmy przez G macierz iloczynu skalarnego w tej bazie.
- Niech F: V → V będzie odwzorowaniem liniowym o macierzy A w powyższej bazie.
- Niech M oznacza macierz odwzorowania B_F indukowanego przez F (znów macierz w powyższej bazie).

Wtedy $M = A^t G$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ochodne ierunkowe. cometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa Krzywizna Gaussa – Idea Pole powierzchni

Powtórka z algebry liniowej II

rzywizna Gaussa

heorema Egregium Twierdzenie dasyfikacyjne Niech (V, \langle , \rangle) będzie przestrzenią wektorową z iloczynem skalarnym. Ustalmy bazę tej przestrzeni.

- Oznaczmy przez G macierz iloczynu skalarnego w tej bazie.
- Niech $F: V \rightarrow V$ będzie odwzorowaniem liniowym o macierzy A w powyższej bazie.
- Niech M oznacza macierz odwzorowania B_F indukowanego przez F (znów macierz w powyższej bazie).

Wtedy $M = A^tG$.

Powtórka z algebry liniowei II

Niech V będzie przestrzenią wektorową.

- Niech B będzie formą dwuliniową na V. Wtedy B jest formą symetryczną wtedy i tylko wtedy, gdy macierz B w dowolnej bazie V jest macierzą symetryczną.
- Niech F: V → V będzie odwzorowaniem liniowym. Wtedy następujące warunki są równoważne:
 - 1. F jest odworowaniem samo-sprzężonym
 - macierz F jest symetryczna w każdej bazie ortonormalnej przestrzeni V,
 - 3. indukowana przez F forma dwuliniowa jest symetryczna.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

> ochodne erunkowe. ometria.

Krzywizna Gaussa I Odwzorowanie Gaussa Krzywizna Gaussa – Idea

Powtórka z algebry liniowej II

Krzywizna Gaussa

Theorema Egregium i Twierdzenie

Niech V będzie przestrzenią wektorową.

- Niech B będzie formą dwuliniową na V. Wtedy B jest formą symetryczną wtedy i tylko wtedy, gdy macierz B w dowolnej bazie V jest macierzą symetryczną.
- Niech F: V → V będzie odwzorowaniem liniowym. Wtedy następujące warunki są równoważne:

F jest odworowaniem samo-sprzężonym,

- macierz F jest symetryczna w każdej bazie ortonormalnej przestrzeni V,
- 3. indukowana przez F forma dwuliniowa jest symetryczna.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ochodne ierunkowe. cometria.

Odwzorowanie Gaussa
Krzywizna Gaussa – Idea

Pole powierzchni
Powtórka z algebry liniowei II

------- C------ I

rzywizna Gaussa

heorema Egregium Twierdzenie dasyfikacyjne

Niech V będzie przestrzenią wektorową.

- Niech B będzie formą dwuliniową na V. Wtedy B jest formą symetryczną wtedy i tylko wtedy, gdy macierz B w dowolnej bazie V jest macierzą symetryczną.
- Niech F: V → V będzie odwzorowaniem liniowym. Wtedy następujące warunki są równoważne:
 - 1. F jest odworowaniem samo-sprzężonym
 - macierz F jest symetryczna w każdej bazie ortonormalnej przestrzeni V,
 - 3. indukowana przez F forma dwuliniowa jest symetryczna.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ochodne ierunkowe. zometria.

Odwzorowanie Gaussa Krzywizna Gaussa – Idea

Powtórka z algebry liniowej II

rzywizna Gaussa

Theorema Egregium
Twierdzenie

Niech V będzie przestrzenią wektorową.

- Niech B będzie formą dwuliniową na V. Wtedy B jest formą symetryczną wtedy i tylko wtedy, gdy macierz B w dowolnej bazie V jest macierzą symetryczną.
- Niech F: V → V będzie odwzorowaniem liniowym. Wtedy następujące warunki są równoważne:
 - 1. F jest odworowaniem samo-sprzężonym,
 - macierz F jest symetryczna w każdej bazie ortonormalnej przestrzeni V,
 - 3. indukowana przez F forma dwuliniowa jest symetryczna

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ochodne ierunkowe. zometria.

Odwzorowanie Gaussa
Krzywizna Gaussa – Idea

Powtórka z algebry liniowej II

zywizna Gaussa

Theorema Egregium
Twierdzenie

Lemat

Niech V będzie przestrzenią wektorową.

- Niech B będzie formą dwuliniową na V. Wtedy B jest formą symetryczną wtedy i tylko wtedy, gdy macierz B w dowolnej bazie V jest macierzą symetryczną.
- Niech F: V → V będzie odwzorowaniem liniowym. Wtedy następujące warunki są równoważne:
 - 1. F jest odworowaniem samo-sprzężonym,
 - 2. macierz F jest symetryczna w każdej bazie ortonormalnej przestrzeni V,
 - 3. indukowana przez F forma dwuliniowa jest symetryczna

Powierzchnie w \mathbb{R}^3

normalne. I forma nodstawowa

ochodne ierunkowe. zometria.

Krzywizna Gaussa I
Odwzorowanie Gaussa

Krzywizna Gaussa – Idea Pole powierzchni

Powtórka z algebry liniowej II

zywizna Gaussa

Lemat

Niech V będzie przestrzenią wektorową.

- Niech B będzie formą dwuliniową na V. Wtedy B jest formą symetryczną wtedy i tylko wtedy, gdy macierz B w dowolnej bazie V jest macierzą symetryczną.
- Niech F: V → V będzie odwzorowaniem liniowym. Wtedy następujące warunki są równoważne:
 - 1. F jest odworowaniem samo-sprzężonym,
 - macierz F jest symetryczna w każdej bazie ortonormalnej przestrzeni V,
 - 3. indukowana przez F forma dwuliniowa jest symetryczna.

Powierzchnie w \mathbb{R}^3

Wektory styczne normalne. I form podstawowa

ochodne ierunkowe. zometria.

Krzywizna Gaussa I Odwzorowanie Gaussa

Krzywizna Gaussa – Idea Pole powierzchni Powtórka z algebry linjowei II

......

zywizna Gaussa

Niech $F: V \rightarrow V$ będzie liniowym odwzorowaniem. Załóżmy, że F jest samosprzężone, wtedy

- F ma rzeczywiste wartości własne k_i.
- wektory odpowiadające wartościom własnym F są
- Macierz A odwzorowania F w dowolnej bazie spełnia

$$\det A = \prod_{i} k_{i} \qquad oraz \qquad \operatorname{tr} A = \sum_{i} k_{i}$$

- F ma rzeczywiste wartości własne k_i.
- Macierz A odwzorowania F w dowolnej bazie spełnia

$$\det A = \prod_{i} k_{i} \quad oraz \quad \operatorname{tr} A = \sum_{i} k_{i}$$

- F ma rzeczywiste wartości własne k_i.
- wektory odpowiadające wartościom własnym F są ortogonalne.
- Macierz A odwzorowania F w dowolnej bazie spełnia

$$\det A = \prod_i k_i$$
 oraz $\operatorname{tr} A = \sum_i k_i$

- F ma rzeczywiste wartości własne k_i.
- wektory odpowiadające wartościom własnym F są ortogonalne.
- Macierz A odwzorowania F w dowolnej bazie spełnia

$$\det A = \prod_{i} k_{i}$$
 oraz $\operatorname{tr} A = \sum_{i} k_{i}$.

Niech $F: V \rightarrow V$ będzie liniowym odwzorowaniem. Załóżmy, że F jest samosprzężone, wtedy

- F ma rzeczywiste wartości własne k_i.
- wektory odpowiadające wartościom własnym F są ortogonalne.
- Macierz A odwzorowania F w dowolnej bazie spełnia

$$\det A = \prod_{i} k_{i}$$
 oraz $\operatorname{tr} A = \sum_{i} k_{i}$.

Zadanie

Oswoić wszystkie nieznane definicje pojawiające się w powyższej powtórce z algebry liniowej i zrozumieć sformułowania powyższych twierdzeń (niekoniecznie z dowodami!)

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Odwzorowanie Weingartena

Druga forma podstawow Krzywizna Gaussa oraz

krzywizna średnia Podsumowanie

Agitacja na rzecz zgoc

lefinicji

Theorema Egregium i Twierdzenie klasyfikacyjne

Wykład 9

Krzywizna Gaussa II

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Odwzorowanie Weingartena Druga forma podstawowa Krzywizna Gaussa oraz krzywizna średnia Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie klasyfikacyjne

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

wzorowanie Weingartena

ruga forma podstawowa zywizna Gaussa oraz

Podsumowanie

Agitacja na rzecz zgo Iofinicii

definicji

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół punktu $p \in x(U)$.

Możemy rozważać \hat{n} jako pole wektorowe na M. Wtedy dla każdego wektora $v \in T_p(M)$ pochodna kierunkowa $D\hat{n}(v)$ należy do T_pM (rozważanej abstrakcyjnie jako 2-wymiarowa podprzestrzeń liniowa w R^3).

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

tierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa i

Odwzorowanie Weingartena

Krzywizna Gaussa oraz krzywizna średnia

Podsumowanie

Agitacja na rzecz zgodnoś definicji

Lemat

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół punktu $p \in x(U)$.

Możemy rozważać \hat{n} jako pole wektorowe na M. Wtedy dla każdego wektora $v \in T_p(M)$ pochodna kierunkowa $D \hat{n}(v)$ należy do T_pM (rozważanej abstrakcyjnie jako 2-wymiarowa podprzestrzeń liniowa w R^3).

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

kierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Odwzorowanie Weingartena

Druga forma podstawowa
Krzywizna Gaussa oraz

krzywizna średnia Podsumowanie

Agitacja na rzecz zgodn

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół punktu $p \in x(U)$.

Możemy rozważać \hat{n} jako pole wektorowe na M. Wtedy dla każdego wektora $v \in T_p(M)$ pochodna kierunkowa $D \hat{n}(v)$ należy do T_pM (rozważanej abstrakcyjnie jako 2-wymiarowa podprzestrzeń liniowa w R^3).

Powierzchnie w \mathbb{R}^3

Vektory styczne i ormalne. I forma odstawowa

zometria.

Krzywizna Gaussa

Krzywizna Gaussa

Odwzorowanie Weingartena

Druga forma podstawowa Krzywizna Gaussa oraz

Podsumowanie

Agitacja na rzecz zgodn

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Odwzorowanie Weingartena

Druga forma podstawow Krzywizna Gaussa oraz krzywizna średnia

Podsumowani

Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie klasyfikacyjne

Dowód:

Wektor normalny $\widehat{n}(p)$ ma długość 1 w każdym punkcie, więc możemy zapisać $\langle \widehat{n}, \widehat{n} \rangle = 1$ wewnątrz x(U). Wtedy

$$0 = D\langle \widehat{n}, \widehat{n} \rangle(v) = \nabla_v \langle \widehat{n}, \widehat{n} \rangle = 2 \langle \nabla_v \widehat{n}, \widehat{n} \rangle = 2 \langle D \widehat{n}(v), \widehat{n} \rangle,$$

więc $D\widehat{n}(v)$ jest zawsze prostopadły do \widehat{n} , zatem musi należeć do T_nM .

Odwzorowanie Weingartena

Dowód:

Wektor normalny $\hat{n}(p)$ ma długość 1 w każdym punkcie, więc możemy zapisać $\langle \widehat{n}, \widehat{n} \rangle = 1$ wewnątrz x(U).

$$0 = D\langle \widehat{n}, \widehat{n} \rangle(v) = \nabla_v \langle \widehat{n}, \widehat{n} \rangle = 2 \langle \nabla_v \widehat{n}, \widehat{n} \rangle = 2 \langle D \widehat{n}(v), \widehat{n} \rangle$$

Wektor normalny $\widehat{n}(p)$ ma długość 1 w każdym punkcie, więc możemy zapisać $\langle \widehat{n}, \widehat{n} \rangle = 1$ wewnątrz x(U). Wtedy

$$0 = D\langle \widehat{n}, \widehat{n} \rangle(v) = \nabla_{v}\langle \widehat{n}, \widehat{n} \rangle = 2\langle \nabla_{v} \widehat{n}, \widehat{n} \rangle = 2\langle D \widehat{n}(v), \widehat{n} \rangle,$$

więc $D\widehat{n}(v)$ jest zawsze prostopadły do \widehat{n} , zatem musi należeć do T_nM .

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa i

Odwzorowanie Weingartena

Druga torma podstawowa
Krzywizna Gaussa oraz
krzywizna średnia

Podsumowanie

Agitacja na rzecz zgodności definicji

Wektor normalny $\widehat{n}(p)$ ma długość 1 w każdym punkcie, więc możemy zapisać $\langle \widehat{n}, \widehat{n} \rangle = 1$ wewnątrz x(U). Wtedy

$$0 = D\langle \widehat{\mathbf{n}}, \widehat{\mathbf{n}} \rangle(\mathbf{v}) = \nabla_{\mathbf{v}} \langle \widehat{\mathbf{n}}, \widehat{\mathbf{n}} \rangle = 2 \langle \nabla_{\mathbf{v}} \widehat{\mathbf{n}}, \widehat{\mathbf{n}} \rangle = 2 \langle D \, \widehat{\mathbf{n}}(\mathbf{v}), \widehat{\mathbf{n}} \rangle,$$

więc $D\widehat{n}(v)$ jest zawsze prostopadły do \widehat{n} , zatem musi należeć do T_pM .

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

erunkowe. ometria.

Krzywizna Gaussa

rzywizna Gaussa

Odwzorowanie Weingartena

ruga forma podstawowa rzywizna Gaussa oraz

Podsumowanie

Agitacja na rzecz zgodności definicji

Przy powyższych oznaczeniach **odwzorowaniem Weingartena** w punkcie p nazywamy odwzorowanie $L: T_pM \to T_pM$ zadane przez

$$L(\mathbf{v}) \stackrel{\text{def.}}{=} -D \, \widehat{\mathbf{n}}(\mathbf{v}) = -\nabla_{\mathbf{v}} \widehat{\mathbf{n}}.$$

Lemat

Odwozorowanie Weingartena L: $T_pM \rightarrow T_pM$ jest odwzorowaniem liniowym.

Dowód

Lemat wynika z własności pochodnej kierunkowej (lemat 7.3).

Powierzchnie w \mathbb{R}^3

Vektory styczne i ormalne. I forma odstawowa

erunkowe. ometria.

Krzywizna Gaussa

Krzywizna Gaussa I

Odwzorowanie Weingartena

Druga forma podstawowa Krzywizna Gaussa oraz

krzywizna średnia Podsumowanie

Agitacja na rzecz zgodno Jefinicii

Przy powyższych oznaczeniach **odwzorowaniem Weingartena** w punkcie p nazywamy odwzorowanie $L: T_pM \to T_pM$ zadane przez

$$L(\mathbf{v}) \stackrel{\text{def.}}{=} -D\,\widehat{\mathbf{n}}(\mathbf{v}) = -\nabla_{\mathbf{v}}\widehat{\mathbf{n}}.$$

Lemat

Odwozorowanie Weingartena L: $T_pM \rightarrow T_pM$ jest odwzorowaniem liniowym.

Dowód

Lemat wynika z własności pochodnej kierunkowej (lemat 7.3).

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

> erunkowe. ometria.

Krzywizna Gaussa

Crzywizna Gaussa I

Odwzorowanie Weingartena

Oruga forma podstawowa Grzywizna Gaussa oraz

krzywizna średnia Podsumowanie

Agitacja na rzecz zgodn definicii

Theorema Egregium i Twierdzenie Przy powyższych oznaczeniach **odwzorowaniem Weingartena** w punkcie p nazywamy odwzorowanie $L: T_pM \to T_pM$ zadane przez

$$L(\mathbf{v}) \stackrel{\text{def.}}{=} -D \,\widehat{\mathbf{n}}(\mathbf{v}) = -\nabla_{\mathbf{v}} \widehat{\mathbf{n}}.$$

Lemat

Odwozorowanie Weingartena L: $T_pM \rightarrow T_pM$ jest odwzorowaniem liniowym.

Dowód:

Lemat wynika z własności pochodnej kierunkowej (lemat 7.3).

Powierzchnie w \mathbb{R}^3

Wektory styczne normalne. I forma podstawowa

> ochodne erunkowe. ometria.

Krzywizna Gaussa

rzywizna Gaussa

Odwzorowanie Weingartena

ruga forma podstawowa rzywizna Gaussa oraz

Krzywizna Gaussa oraz krzywizna średnia

Agitacja na rzecz zgodni Jefinicji

Theorema Egregiun

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

cierunkowe. zometria.

Krzywizna Gaussa I

Odwzorowanie Weingartena

Druga forma podstawow Krzywizna Gaussa oraz

krzywizna średnia

Agitacja na rzecz zgodn

definicji

Theorema Egregium i Twierdzenie klasyfikacyjne

Uwaga

Chociaż do definicji odwzorowania Weingartena używamy lokalnego układu współrzędnych, jednak przy innym wyborze $x: U \to M$, odwzorowanie L może się różnić tylko o znak \pm .

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół punktu $p \in x(U)$. **Druga forma podstawowa** w punkcie p to odwzorowanie dwuliniowe $\text{II}_p: T_pM \times T_pM \to \mathbb{R}$ indukowane przez odwzorowanie Weingartena L, tj. zadane wzorem

$$\Pi_p(v, w) = \langle L(v), w \rangle,$$

dla wszystkich v, w z przestrzeni stycznej T_pM .

Uwaga

Tak jak odwzorowanie Weingartena, druga forma podstawowa jest zdefiniowana z dokładnością do znaku.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

Krzywizna Gaussa I

zywizna Gaussa |

Druga forma podstawowa

zywizna Gaussa oraz

Podsumowanie

Agitacja na rzecz zgodr definicji

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół punktu $p \in x(U)$. **Druga forma podstawowa** w punkcie p to odwzorowanie dwuliniowe $II_p: T_pM \times T_pM \to \mathbb{R}$ indukowane przez odwzorowanie Weingartena L, tj. zadane wzorem

$$\Pi_p(v, w) = \langle L(v), w \rangle,$$

dla wszystkich v, w z przestrzeni stycznej T_pM .

Uwaga

Tak jak odwzorowanie Weingartena, druga forma podstawowa jest zdefiniowana z dokładnością do znaku.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

erunkowe. ometria.

Krzywizna Gaussa

rzywizna Gaussa I

Druga forma podstawowa

zywizna Gaussa oraz

Podsumowanie

Agitacja na rzecz zgodn definicji

$$(L_{ij}) = \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix}$$
 $(l_{ij}) = \begin{bmatrix} l_{11} & l_{12} \\ l_{21} & l_{22} \end{bmatrix}$

Wniosek

Na podstawie powtórki z algebry liniowej II, mamy

$$(l_{ij})=(L_{ij})^t(g_{ij}),$$

więc korzystając z własności odwrotności i transpozycji otrzymujemy

$$(L_{ij}) = (g_{ij})^{-1} (l_{ij})^t.$$

Powierzchnie w \mathbb{R}^3

Vektory styczne i ormalne. I forma odstawowa

rometria.

Krzywizna Gaussa

irzywizna Gaussa II

Druga forma podstawowa

Krzywizna Gaussa oraz krzywizna średnia

Podsumowanie

Agitacja na rzecz zgodno definicji

$$(L_{ij}) = \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix}$$
 $(l_{ij}) = \begin{bmatrix} l_{11} & l_{12} \\ l_{21} & l_{22} \end{bmatrix}$

Wniosek

Na podstawie powtórki z algebry liniowej II, mamy

$$(l_{ij}) = (L_{ij})^t(g_{ij}),$$

więc korzystając z własności odwrotności i transpozycji otrzymujemy

$$(L_{ij}) = (g_{ij})^{-1} (l_{ij})^t.$$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

Krzywizna Gaussa

rzywizna Gaussa II

Druga forma podstawowa

rzywizna Gaussa oraz rzywizna średnia

Podsumowanie Agitacia na rzecz zgo

Agitacja na rzecz zgodnos definicji

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół punktu $p \in x(U)$.

1. (Równania Weingartena) Dla wszystkich indeksów i, j, zachodzi

$$n_i = -L_{1i}x_1 - L_{2i}x_2.$$

Dla wszystkich indeksów i, j, współczynniki macierzy drugiej formy podstawowej są równe

$$l_{ij} = -\langle n_i, x_j \rangle = \langle n, x_{ij} \rangle$$

gdzie x_{ij} jest oznaczeniem drugiej pochodnej cząstkowej względem zmienych i-tej i j-tej.

Powierzchnie w \mathbb{R}^3

Vektory styczne i ormalne. I forma odstawowa

ierunkowe. zometria.

Krzywizna Gaussa

Krzywizna Gaussa II

Druga forma podstawowa

Krzywizna Gaussa oraz krzywizna średnia

Podsumowanie Agitacja na rzecz zgod

definicji

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół punktu $p \in x(U)$.

1. (Równania Weingartena) Dla wszystkich indeksów i, j, zachodzi

$$n_i = -L_{1i}x_1 - L_{2i}x_2.$$

$$l_{ij} = -\langle n_i, x_j \rangle = \langle n, x_{ij} \rangle,$$

Druga forma podstawowa

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół punktu $p \in x(U)$.

1. (Równania Weingartena) Dla wszystkich indeksów i, j, zachodzi

$$n_i = -L_{1i}x_1 - L_{2i}x_2.$$

2. Dla wszystkich indeksów i, j, współczynniki macierzy drugiej formy podstawowej są równe

$$l_{ij} = -\langle n_i, x_j \rangle = \langle n, x_{ij} \rangle$$
,

gdzie x_{ij} jest oznaczeniem drugiej pochodnej cząstkowej względem zmienych i-tej i j-tej.

Powierzchnie w \mathbb{R}^3

wektory styczne i normalne. I forma podstawowa

ierunkowe. cometria.

Krzywizna Gaussa

Arzywizna Gaussa II Odwzorowanie Weingartena

Druga forma podstawowa

zywizna Gaussa oraz zywizna średnia

Agitacja na rzecz zgodno

Agitacja na rzecz zgodności definicji

$$n_i = \frac{\partial(\widehat{n} \circ x)}{\partial u_i} = \nabla_{x_i} \widehat{n} = -L(x_i) = -L_{1i} x_1 - L_{2i} x_2,$$

(2.) Mamy

$$l_{ij} = \Pi(x_i, x_j) = \langle L(x_i), x_j \rangle \stackrel{*}{=} -\langle \nabla_{x_i} n, x_j \rangle = -\langle n_i, x_j \rangle$$

wynika z dowodu pierwszej części.) Aby udowodnić drugą równość, skorzystamy z tego, że $\langle n, x_i \rangle = 0$. Mamy

$$0 = \frac{\partial \langle n, x_j \rangle}{\partial u_i} = \langle n_i, x_j \rangle + \langle n, x_{ij} \rangle$$

skąd natychmiast wynika druga równość.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II Odwzorowanie Weingartena

Druga forma podstawowa Krzywizna Gaussa oraz krzywizna średnia

Agitacja na rzecz zgodr definicii

definicji

$$n_i = \frac{\partial(\widehat{n} \circ x)}{\partial u_i} = \nabla_{x_i} \widehat{n} = -L(x_i) = -L_{1i}x_1 - L_{2i}x_2,$$

(2.) Mamy

$$l_{ij} = \Pi(x_i, x_j) = \langle L(x_i), x_j \rangle \stackrel{*}{=} -\langle \nabla_{x_i} n, x_j \rangle = -\langle n_i, x_j \rangle$$

co dowodzi pierwszej równości w punkcie 2. (równość * wynika z dowodu pierwszej części.) Aby udowodnić drugą równość, skorzystamy z tego, że $\langle n, x_i \rangle = 0$. Mamy

$$0 = \frac{\partial \langle n, x_j \rangle}{\partial u_i} = \langle n_i, x_j \rangle + \langle n, x_{ij} \rangle$$

skąd natychmiast wynika druga równość.

Powierzchnie w R³

Wektory styczne i normalne. I forma nodstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Crzywizna Gaussa II Odwzorowanie Weingartena

Druga forma podstawowa Krzywizna Gaussa oraz

Podsumowanie
Agitacia na rzecz zgodr

Agitacja na rzecz zgodności definicji

$$n_i = \frac{\partial(\widehat{n} \circ x)}{\partial u_i} = \nabla_{x_i} \widehat{n} = -L(x_i) = -L_{1i}x_1 - L_{2i}x_2,$$

(2.) Mamy

$$l_{ij} = II(x_i, x_j) = \langle L(x_i), x_j \rangle \stackrel{*}{=} -\langle \nabla_{x_i} n, x_j \rangle = -\langle n_i, x_j \rangle,$$

co dowodzi pierwszej równości w punkcie 2. (równość * wynika z dowodu pierwszej części.) Aby udowodnić drugą równość, skorzystamy z tego, że $\langle n, x_i \rangle = 0$. Mamy

$$0 = \frac{\partial \langle n, x_j \rangle}{\partial u_i} = \langle n_i, x_j \rangle + \langle n, x_{ij} \rangle$$

skąd natychmiast wynika druga równość.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ierunkowe. cometria.

Krzywizna Gaussa I

Crzywizna Gaussa II Odwzorowanie Weingartena

Druga forma podstawowa

krzywizna średnia

Agitacia na rzec

Agitacja na rzecz zgodno definicji

$$n_i = \frac{\partial(\widehat{n} \circ x)}{\partial u_i} = \nabla_{x_i} \widehat{n} = -L(x_i) = -L_{1i}x_1 - L_{2i}x_2,$$

(2.) Mamy

$$l_{ij} = \Pi(x_i, x_j) = \langle L(x_i), x_j \rangle \stackrel{*}{=} -\langle \nabla_{x_i} n, x_j \rangle = -\langle n_i, x_j \rangle,$$

co dowodzi pierwszej równości w punkcie 2. (równość * wynika z dowodu pierwszej części.) Aby udowodnić druga równość, skorzystamy z tego, że $\langle n, x_i \rangle = 0$. Mamy

$$0 = \frac{\partial \langle n, x_j \rangle}{\partial u_i} = \langle n_i, x_j \rangle + \langle n, x_{ij} \rangle$$

Druga forma podstawowa

$$n_i = \frac{\partial(\widehat{n} \circ x)}{\partial u_i} = \nabla_{x_i} \widehat{n} = -L(x_i) = -L_{1i}x_1 - L_{2i}x_2,$$

(2.) Mamy

$$l_{ij} = II(x_i, x_j) = \langle L(x_i), x_j \rangle \stackrel{*}{=} -\langle \nabla_{x_i} n, x_j \rangle = -\langle n_i, x_j \rangle,$$

co dowodzi pierwszej równości w punkcie 2. (równość * wynika z dowodu pierwszej części.) Aby udowodnić drugą równość, skorzystamy z tego, że $\langle n, x_i \rangle = 0$. Mamy

$$0 = \frac{\partial \langle n, x_j \rangle}{\partial u_i} = \langle n_i, x_j \rangle + \langle n, x_{ij} \rangle,$$

skąd natychmiast wynika druga równość.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

> runkowe. metria.

Krzywizna Gaussa I

rzywizna Gaussa II dwzorowanie Weingartena

Druga forma podstawowa Krzywizna Gaussa oraz

Podsumowanie

Agitacja na rzecz zgodno definicji

Lemat

Druga forma podstawowa

- Druga forma podstawowa II jest symetryczna.
- Odwzorowanie Weingartena L jest samosprzężone

Dowód:

Symetryczność macierzy (l_{ij}) wynika z poprzedniego lematu i równości $x_{12}=x_{21}$. Druga teza wynika wtedy z powiązań macierzy symetrycznej z samosprzężeniem odwzorowania przez nią indukowanego (lemat 8.6 cytowany podczas powtórki z algebry liniowej II).

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

Crzywizna Gaussa I

Krzywizna Gaussa II

Druga forma podstawowa Krzywizna Gaussa oraz

krzywizna średnia Podsumowanie

Agitacja na rzecz zgodność definicji

- Druga forma podstawowa II jest symetryczna.
- Odwzorowanie Weingartena L jest samosprzężone.

Dowód:

Symetryczność macierzy (l_{ij}) wynika z poprzedniego lematu i równości $x_{12}=x_{21}$. Druga teza wynika wtedy z powiązań macierzy symetrycznej z samosprzężeniem odwzorowania przez nią indukowanego (lemat 8.6 cytowany podczas powtórki z algebry liniowej II).

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

rzywizna Gaussa I

Erzywizna Gaussa II

Druga forma podstawowa Krzywizna Gaussa oraz

Podsumowanie

Agitacja na rzecz zgodności
definicii

definicji

- Druga forma podstawowa II jest symetryczna.
- Odwzorowanie Weingartena L jest samosprzężone.

Dowód:

Symetryczność macierzy (l_{ij}) wynika z poprzedniego lematu i równości $x_{12}=x_{21}$. Druga teza wynika wtedy z powiązań macierzy symetrycznej z samosprzężeniem odwzorowania przez nią indukowanego (lemat 8.6 cytowany podczas powtórki z algebry liniowej II).

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ierunkowe. cometria.

Krzywizna Gaussa I

Arzywizna Gaussa II Odwzorowanie Weingartena

Druga forma podstawowa Krzywizna Gaussa oraz

Podsumowanie
Agitacia na rzecz zgodn

Agitacja na rzecz zgodnoś definicji

- Druga forma podstawowa II jest symetryczna.
- Odwzorowanie Weingartena L jest samosprzężone.

Dowód:

Symetryczność macierzy (l_{ii}) wynika z poprzedniego lematu i równości $x_{12} = x_{21}$. Druga teza wynika wtedy z powiązań macierzy symetrycznej z samosprzężeniem odwzorowania przez nią indukowanego (lemat 8.6 cytowany podczas powtórki z algebry liniowej II).

Druga forma podstawowa

Z powyższych rozważań wcale nie wynika, że macierz odwzorowania Weingartena (L_{ij}) jest symetryczna. Jeśli baza przestrzeni stycznej $\{x_1, x_2\}$ nie będzie ortonormalna w punkcie p, wtedy najczęściej $L_{ij}(p)$ nie będzie macierzą symetryczną. (ogólniej: nie możemy wtedy zastosować do niej lematu 8.6).

Uwaga

Wiedząc, że l_{ij} jest symetryczna, możemy przepisać uzyskaną wcześniej równość

$$(L_{ij}) = (g_{ij})^{-1}(l_{ij}).$$

Powierzchnie w \mathbb{R}^3

normalne. I for podstawowa

tierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II Odwzorowanie Weingartena

Druga forma podstawowa

rzywizna Gaussa oraz rzywizna średnia

Podsumowanie

Agitacja na rzecz zgodno Jefinicji

Uwaga

Wiedząc, że l_{ij} jest symetryczna, możemy przepisać uzyskaną wcześniej równość

$$(L_{ij}) = (g_{ij})^{-1}(l_{ij}).$$

Powierzchnie w \mathbb{R}^3

wektory styczne iormalne. I form iodstawowa

ierunkowe. zometria.

Krzywizna Gaussa

Crzywizna Gaussa II

Druga forma podstawowa

Krzywizna Gaussa oraz Krzywizna średnia

Podsumowanie

Agitacja na rzecz zgodno definicji

Niezmiennikami numerycznymi macierzy 2×2 są wyznacznik i ślad. Co więcej, są to niezmienniki odpowiadajacego danej macierzy odwzorowania liniowego (tj. są te same dla macierzy sprzężonych), dlatego właśnie je użyjemy w poniższych definicjach.

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech L będzie oznaczało odwzorowanie Weingartena. Zdefiniujmy dwie funkcje skalarne $K:M \to \mathbb{R}$, $H:M \to \mathbb{R}$ nastepująco

$$K(p) = \det L(p)$$
 $H(p) = \frac{1}{2} \operatorname{tr} L(p)$

Nazywamy je odpowiednio **krzywizną Gaussa** i **krzywizną** średnia.

Niezmiennikami numerycznymi macierzy 2×2 są wyznacznik i ślad. Co więcej, są to niezmienniki odpowiadajacego danej macierzy odwzorowania liniowego (tj. są te same dla macierzy sprzężonych), dlatego właśnie je użyjemy w poniższych definicjach.

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech L będzie oznaczało odwzorowanie Weingartena. Zdefiniujmy dwie funkcje skalarne $K:M \to \mathbb{R}$, $H:M \to \mathbb{R}$ nastepująco

$$K(p) = \det L(p)$$
 $H(p) = \frac{1}{2} \operatorname{tr} L(p)$

Nazywamy je odpowiednio **krzywizną Gaussa** i **krzywizną średnia**.

Krzywizna Gaussa oraz krzywizna średnia

Niezmiennikami numerycznymi macierzy 2 × 2 są wyznacznik i ślad. Co więcej, są to niezmienniki odpowiadającego danej macierzy odwzorowania liniowego (tj. są te same dla macierzy sprzężonych), dlatego właśnie je użyjemy w poniższych definicjach.

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech L będzie oznaczało odwzorowanie Weingartena. Zdefiniujmy dwie funkcje skalarne $K:M\to\mathbb{R},\,H:M\to\mathbb{R}$ nastepująco

$$K(p) = \det L(p)$$
 $H(p) = \frac{1}{2} \operatorname{tr} L(p).$

Nazywamy je odpowiednio krzywizną Gaussa i krzywizną średnia.

Elementarna Geometria Różniczkowa

rowierzchnie w K

Wektory styczne i normalne. I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Odwzorowanie Weingarte Druga forma podstawowa

Druga forma podstawowa Krzywizna Gaussa oraz krzywizna średnia

Podsumowar

Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie klasyfikacyjne

Lemat

Krzywizna Gaussa i krzywizna średnia nie zależą od wyboru macierzy reprezentującej odwzorowanie Weingartena, tj. nie zależą od wyboru bazy przestrzeni stycznej T_pM .

Dowód:

Dowód wynika z odpowiedniego przedstawienia wyznacznika (jako iloczynu wartości własnych) i śladu (jako ich sumy) cytowanego w powtórce z algebry liniowej II (Lemat 8.7).

Krzywizna Gaussa i krzywizna średnia nie zależą od wyboru macierzy reprezentującej odwzorowanie Weingartena, tj. nie zależą od wyboru bazy przestrzeni stycznej T_pM .

Dowód:

Dowód wynika z odpowiedniego przedstawienia wyznacznika (jako iloczynu wartości własnych) i śladu (jako ich sumy) cytowanego w powtórce z algebry liniowej II (Lemat 8.7).

Powierzchnie w \mathbb{R}^3

Wektory styczne i iormalne. I forma oodstawowa

ierunkowe. zometria.

Krzywizna Gaussa I

Odwzorowanie Weingarte
Druga forma podstawowa
Krzywizna Gaussa oraz
krzywizna średnia

Podsumowanie

Agitacja na rzecz zgodności definicji

Niech $M \subset \mathbb{R}^3$ bedzie powier

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół punktu $p \in x(U)$. Wtedy

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}, \quad oraz \qquad H(p) = \frac{g_{11}l_{22} - 2g_{12}l_{12} + g_{22}l_{1}}{2\det(g_{ij})}$$

Dowód:

Dowody tych równości wynikają z równości $(L_{ij}) = (g_{ij})^{-1}(l_{ij})$, oraz z własności multiplikatywnych wyznacznika i śladu macierzy. Pozostawiamy je do sprawdzenia jako zadanie domowe.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

ruga forma podstawowa

Krzywizna Gaussa oraz krzywizna średnia

Agitacja na rzecz zgodn definicji

definicji

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół punktu $p \in x(U)$. Wtedy

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}, \quad oraz \qquad H(p) = \frac{g_{11}l_{22} - 2g_{12}l_{12} + g_{22}l_{11}}{2\det(g_{ij})}$$

Dowód:

Dowody tych równości wynikają z równości $(L_{ij}) = (g_{ij})^{-1}(l_{ij})$, oraz z własności multiplikatywnych wyznacznika i śladu macierzy. Pozostawiamy je do sprawdzenia jako zadanie domowe.

Powierzchnie w \mathbb{R}^3

Vektory styczne i ormalne. I forma odstawowa

ierunkowe. cometria.

Krzywizna Gaussa I

(rzywizna Gaussa I Odwzorowanie Weingartena

Druga forma podstawowa Krzywizna Gaussa oraz krzywizna średnia

Podsumowanie

Agitacja na rzecz zgodności definicji

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół punktu $p \in x(U)$. Wtedy

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}, \quad oraz \qquad H(p) = \frac{g_{11}l_{22} - 2g_{12}l_{12} + g_{22}l_{11}}{2\det(g_{ij})}$$

Dowód:

Dowody tych równości wynikają z równości $(L_{ij}) = (g_{ij})^{-1}(l_{ij})$, oraz z własności multiplikatywnych wyznacznika i śladu macierzy. Pozostawiamy je do sprawdzenia jako zadanie domowe.

Powierzchnie w \mathbb{R}^3

ormalne. I form odstawowa

tierunkowe. zometria.

irzywizna Gaussa I

rzywizna Gaussa II

Druga forma podstawowa Krzywizna Gaussa oraz krzywizna średnia

Podsumowanie

Agitacja na rzecz zgodności definicji

$$g_{11} = \langle x_1, x_1 \rangle, \qquad g_{12} = g_{21} = \langle x_1, x_2 \rangle, \qquad g_{22} = \langle x_2, x_2 \rangle,$$

$$n = \frac{x_1 \times x_2}{\|x_1 \times x_2\|} = \frac{x_1 \times x_2}{\sqrt{\det(g_{ij})}},$$

$$l_{11} = \langle n_1, x_1 \rangle, \qquad l_{12} = \langle n_2, x_1 \rangle, \qquad l_{22} = \langle n_2, x_2 \rangle,$$

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}, \qquad H(p) = \frac{g_{11}l_{22} - 2g_{12}l_{12} + g_{22}l_{11}}{2\det(g_{ij})}.$$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa

uga forma podstawowa

rzywizna Gaussa oraz rzywizna średnia

Podsumowanie

Agitacja na rzecz zgodności definicji

Oznaczmy przez $\overline{p} = x^{-1}(p)$.

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in M$.

 $K(p) = \lim_{T \to \{p\}} \frac{A(\widehat{n}(T))}{A(T)} = \frac{\iint_{X^{-1}(T)} \langle n_1 \times n_2, n \rangle ds dt}{\iint_{X^{-1}(T)} \langle x_1 \times x_2, n \rangle ds dt} =$

Agitacja na rzecz zgodności

definicii

cierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa

Druga forma podstawowa Krzywizna Gaussa oraz

Podsumowanie

Agitacja na rzecz zgodności definicji

Theorema Egregium
i Twierdzenie

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in M$. Oznaczmy przez $\overline{p} = x^{-1}(p)$.

Przypomnijmy orginalną definicję Gaussa krzywizny i zastąpmy pola przez odpowiednie całki:

$$K(p) = \lim_{T \to \{p\}} \frac{A(\widehat{n}(T))}{A(T)} = \frac{\iint_{x^{-1}(T)} \langle n_1 \times n_2, n \rangle ds dt}{\iint_{x^{-1}(T)} \langle x_1 \times x_2, n \rangle ds dt} =$$

$$= \frac{\iint_{x^{-1}(T)} \langle n_1 \times n_2, n \rangle ds dt}{\iint_{x^{-1}(T)} \sqrt{\det(g_{ij})} ds dt}$$

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa I Odwzorowanie Weingartena

Druga forma podstawow Krzywizna Gaussa oraz krzywizna średnia

Podsumowanie

Agitacja na rzecz zgodności definicji

Theorema Egregium
i Twierdzenie

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in M$. Oznaczmy przez $\overline{p} = x^{-1}(p)$.

Przypomnijmy orginalną definicję Gaussa krzywizny i zastąpmy pola przez odpowiednie całki:

$$K(p) = \lim_{T \to \{p\}} \frac{A(\widehat{n}(T))}{A(T)} = \frac{\iint_{X^{-1}(T)} \langle n_1 \times n_2, n \rangle ds dt}{\iint_{X^{-1}(T)} \langle x_1 \times x_2, n \rangle ds dt} = \frac{\iint_{X^{-1}(T)} \langle n_1 \times n_2, n \rangle ds dt}{\iint_{X^{-1}(T)} \sqrt{\det(g_{ij})} ds dt}.$$

podcałkowej w tych punktach:

$$\iint_{x^{-1}(T)} \langle n_1 \times n_2, n \rangle ds dt = \langle n_1(a_T) \times n_2(a_T), n(a_T) \rangle A(x^{-1}(T)),$$

$$\iint_{x^{-1}(T)} \sqrt{\det(g_{ij})} ds dt = \sqrt{\det(g_{ij}(b_T))} A(x^{-1}(T)).$$

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

(rzywizna Gaussa I

ruga forma podstawowa rzywizna Gaussa oraz

Podsumowanie

Agitacja na rzecz zgodności definicji

dla każdego takiego zbioru T muszą istnieć takie punkty a_T , $b_T \in x^{-1}(T)$, że cała całka wyraża się jako wartość funkcji podcałkowej w tych punktach:

$$\iint_{x^{-1}(T)} \langle n_1 \times n_2, n \rangle ds dt = \langle n_1(a_T) \times n_2(a_T), n(a_T) \rangle A(x^{-1}(T)),$$

$$\iint_{x^{-1}(T)} \sqrt{\det(g_{ij})} ds dt = \sqrt{\det(g_{ij}(b_T))} A(x^{-1}(T)).$$

Agitacja na rzecz zgodności definicii

$$\lim_{T \to \{p\}} \frac{A(\widehat{n}(T))}{A(T)} = \lim_{T \to \{p\}} \frac{\langle n_1(a_T) \times n_2(a_T), n(a_T) \rangle A(x^{-1}(T))}{\sqrt{\det(g_{ij}(b_T))} A(x^{-1}(T))} = \frac{\langle n_1(\overline{p}) \times n_2(\overline{p}), n(\overline{p}) \rangle}{\sqrt{\det(g_{ij}(\overline{p}))}}.$$

Z równań Weingartena na pochodne wektora normalnego $(n_i = -L_{1i}x_1 - L_{2i}x_2)$ otrzymujemy

$$n_1 \times n_2 = (-(L_{11}x_1 + L_{21}x_2)) \times (-(L_{21}x_1 + L_{22}x_2)) =$$

= $(x_1 \times x_2)(L_{11}L_{22} - L_{21}L_{22}) = K(p)(x_1 \times x_2)$

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Druga forma podstawowa Krzywizna Gaussa oraz krzywizna średnia

Podsumowanie

Agitacja na rzecz zgodności definicji

$$\lim_{T \to \{p\}} \frac{A(\widehat{n}(T))}{A(T)} = \lim_{T \to \{p\}} \frac{\langle n_1(a_T) \times n_2(a_T), n(a_T) \rangle A(x^{-1}(T))}{\sqrt{\det(g_{ij}(b_T))} A(x^{-1}(T))} = \frac{\langle n_1(\overline{p}) \times n_2(\overline{p}), n(\overline{p}) \rangle}{\sqrt{\det(g_{ij}(\overline{p}))}}.$$

Z równań Weingartena na pochodne wektora normalnego $(n_i = -L_{1i}x_1 - L_{2i}x_2)$ otrzymujemy

$$n_1 \times n_2 = (-(L_{11}x_1 + L_{21}x_2)) \times (-(L_{21}x_1 + L_{22}x_2)) =$$

= $(x_1 \times x_2)(L_{11}L_{22} - L_{21}L_{22}) = K(p)(x_1 \times x_2)$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa I Odwzorowanie Weingartena

ruga forma podstawowa rzywizna Gaussa oraz

Podsumowanie

A -ia - i - - - - - - - -

Agitacja na rzecz zgodności definicji

$$\lim_{T \to \{p\}} \frac{A(\widehat{n}(T))}{A(T)} = \lim_{T \to \{p\}} \frac{\langle n_1(a_T) \times n_2(a_T), n(a_T) \rangle A(x^{-1}(T))}{\sqrt{\det(g_{ij}(\overline{b}_T))} A(x^{-1}(T))} = \frac{\langle n_1(\overline{p}) \times n_2(\overline{p}), n(\overline{p}) \rangle}{\sqrt{\det(g_{ij}(\overline{p}))}}.$$

Z równań Weingartena na pochodne wektora normalnego $(n_i = -L_{1i}x_1 - L_{2i}x_2)$ otrzymujemy

$$n_1 \times n_2 = (-(L_{11}x_1 + L_{21}x_2)) \times (-(L_{21}x_1 + L_{22}x_2)) =$$

= $(x_1 \times x_2)(L_{11}L_{22} - L_{21}L_{22}) = K(p)(x_1 \times x_2).$

Powierzchnie w \mathbb{R}^3

Vektory styczne ormalne. I forma odstawowa

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa I Odwzorowanie Weingartena

Oruga forma podstawowa irzywizna Gaussa oraz rzywizna średnia

Podsumowanie

Agitacja na rzecz zgodności definicji

$$\langle \mathbf{n}_{1}(\overline{p}) \times \mathbf{n}_{2}(\overline{p}), \mathbf{n}(\overline{p}) \rangle = K(p) \left\langle x_{1}(\overline{p}) \times x_{2}(\overline{p}), \frac{x_{1}(\overline{p}) \times x_{2}(\overline{p})}{\sqrt{\det(g_{ij}(\overline{p}))}} \right\rangle =$$

$$= \frac{K(p)}{\sqrt{\det(g_{ij}(\overline{p}))}} ||x_{1} \times x_{2}||^{2} = 4K(p) \sqrt{\det(g_{ij}(\overline{p}))},$$

$$\lim_{T \to \{p\}} \frac{A(\widehat{n}(T))}{A(T)} = \frac{K(p)\sqrt{\det(g_{ij}(\overline{p})))}}{\sqrt{\det(g_{ij}(\overline{p})))}} = K(p).$$

Powierzchnie w \mathbb{R}^3

Vektory styczne i ormalne. I forma odstawowa

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Oruga forma podstawowa

Podsumowanie

Agitacja na rzecz zgodności definicji

$$\langle n_1(\overline{p}) \times n_2(\overline{p}), n(\overline{p}) \rangle = K(p) \left\langle x_1(\overline{p}) \times x_2(\overline{p}), \frac{x_1(\overline{p}) \times x_2(\overline{p})}{\sqrt{\det(g_{ij}(\overline{p}))}} \right\rangle =$$

$$= \frac{K(p)}{\sqrt{\det(g_{ij}(\overline{p}))}} ||x_1 \times x_2||^2 = 4K(p) \sqrt{\det(g_{ij}(\overline{p}))},$$

$$\lim_{T \to \{p\}} \frac{A(\widehat{n}(T))}{A(T)} = \frac{K(p)\sqrt{\det(g_{ij}(\overline{p})))}}{\sqrt{\det(g_{ij}(\overline{p})))}} = K(p).$$

Powierzchnie w \mathbb{R}^3

Vektory styczne i ormalne. I forma odstawowa

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

ruga forma podstawowa

Podsumowanie

Agitacja na rzecz zgodności definicii

$$\langle n_1(\overline{p}) \times n_2(\overline{p}), n(\overline{p}) \rangle = K(p) \left\langle x_1(\overline{p}) \times x_2(\overline{p}), \frac{x_1(\overline{p}) \times x_2(\overline{p})}{\sqrt{\det(g_{ij}(\overline{p}))}} \right\rangle =$$

$$= \frac{K(p)}{\sqrt{\det(g_{ij}(\overline{p}))}} ||x_1 \times x_2||^2 = 4K(p) \sqrt{\det(g_{ij}(\overline{p}))},$$

$$\lim_{T \to \{p\}} \frac{A(\widehat{n}(T))}{A(T)} = \frac{K(p)\sqrt{\det(g_{ij}(\overline{p})))}}{\sqrt{\det(g_{ij}(\overline{p})))}} = K(p).$$

Powierzchnie w \mathbb{R}^3

Vektory styczne Iormalne. I forma Iodstawowa

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

uga forma podstawowa

rzywizna Gaussa oraz zywizna średnia Podsumowanie

rousumowanie

Agitacja na rzecz zgodności definicji

$$\begin{split} \langle \textit{n}_{1}(\overline{\textit{p}}) \times \textit{n}_{2}(\overline{\textit{p}}), \, \textit{n}(\overline{\textit{p}}) \rangle &= \textit{K}(\textit{p}) \left\langle \textit{x}_{1}(\overline{\textit{p}}) \times \textit{x}_{2}(\overline{\textit{p}}), \, \frac{\textit{x}_{1}(\overline{\textit{p}}) \times \textit{x}_{2}(\overline{\textit{p}})}{\sqrt{\text{det}(\textit{g}_{\textit{ij}}(\overline{\textit{p}}))}} \right\rangle &= \\ &= \frac{\textit{K}(\textit{p})}{\sqrt{\text{det}(\textit{g}_{\textit{ij}}(\overline{\textit{p}})))}} ||\textit{x}_{1} \times \textit{x}_{2}||^{2} = 4\textit{K}(\textit{p}) \sqrt{\text{det}(\textit{g}_{\textit{ij}}(\overline{\textit{p}})))}, \end{split}$$

$$\lim_{T \to \{p\}} \frac{A(\widehat{n}(T))}{A(T)} = \frac{K(p)\sqrt{\det(g_{ij}(\overline{p})))}}{\sqrt{\det(g_{ij}(\overline{p})))}} = K(p).$$

Powierzchnie w \mathbb{R}^3

Vektory styczne i ormalne. I forma odstawowa

zometria.

Krzywizna Gaussa I

(rzywizna Gaussa II

uga forma podstawowa zywizna Gaussa oraz

Podsumowanie

Agitacja na rzecz zgodności definicji

$$\begin{split} \langle n_1(\overline{p}) \times n_2(\overline{p}), n(\overline{p}) \rangle &= K(p) \left\langle x_1(\overline{p}) \times x_2(\overline{p}), \frac{x_1(\overline{p}) \times x_2(\overline{p})}{\sqrt{\det(g_{ij}(\overline{p}))}} \right\rangle = \\ &= \frac{K(p)}{\sqrt{\det(g_{ij}(\overline{p})))}} \|x_1 \times x_2\|^2 = 4K(p) \sqrt{\det(g_{ij}(\overline{p}))}, \end{split}$$

$$\lim_{T\to\{p\}}\frac{A(\widehat{n}(T))}{A(T)}=\frac{K(p)\sqrt{\det(g_{ij}(\overline{p})))}}{\sqrt{\det(g_{ij}(\overline{p})))}}=K(p).$$

Powierzchnie w \mathbb{R}^3

vektory styczne ormalne. I form odstawowa

zometria.

Krzywizna Gaussa I

(rzywizna Gaussa II

a forma podstawowa

rzywizna średnia Podsumowanie

. . .

Agitacja na rzecz zgodności definicji

Wykład 10

Theorema Egregium i Twierdzenie klasyfikacyjne

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium i Twierdzenie

klasyfikacyjne
Symbole Christoffela
Theorema Egregium
Twiggfanio klasyfikuios

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium i Twierdzenie klasyfikacyjne Symbole Christoffela Theorema Egregium Twierdzenie klasyfikujące Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregium i Twierdzenie klasyfikacyjne

Symbole Christoffela Theorema Egregium Twierdzenie klasyfikując

$$n_i = -L_{1i}x_1 - L_{2i}x_2.$$

Wyrażają one pochodne cząstkowe wektora normalnego w bazie $\{x_1, x_2, n\}$. Udowodnimy teraz podobne wzory dla drugich pochodnych cząstkowych x_{ij} .

Twierdzenie (Formuła Gaussa)

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką oraz niech $x: U \to M$ będzie lokalnych układem współrzędnych. Wtedy

$$x_{ij} = \Gamma_{ij}^{1} x_1 + \Gamma_{ij}^{2} x_2 + l_{ij} n.$$
 (10.1)

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Pochodne tierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

wierdzenie ssyfikacyine

Symbole Christoffela

$$n_i = -L_{1i}x_1 - L_{2i}x_2.$$

Wyrażają one pochodne cząstkowe wektora normalnego w bazie $\{x_1, x_2, n\}$. Udowodnimy teraz podobne wzory dla drugich pochodnych cząstkowych x_{ij} .

Twierdzenie (Formuła Gaussa)

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką oraz niech $x: U \to M$ będzie lokalnych układem współrzędnych. Wtedy

$$x_{ij} = \Gamma_{ij}^{1} x_1 + \Gamma_{ij}^{2} x_2 + l_{ij} n. \tag{10.1}$$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zierunkowe. zometria.

(rzywizna Gaussa |

Krzywizna Gaussa II

heorema Egregi Twierdzenie Iasyfikacyjne

Symbole Christoffela

Ponieważ funkcje Γ_{ij}^k zwane **symbolami Christoffela** nie pojawiły się jeszcze na tym wykładzie, możemy to sformułowanie przyjąć jako ich **definicję** (z resztą tak samo zdefiniowaliśmy torsję krzywej).

Ponieważ $x_{ij} = x_{ji}$, więc natychmiast otrzymujemy pierwszą własność tych symboli:

$$\Gamma_{ij}^k = \Gamma_{ji}^k, \quad dla \ k = 1, 2$$

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

Krzywizna Gaussa

Krzywizna Gaussa II

heorema Egregiur Twierdzenie

Symbole Christoffela

Ponieważ funkcje Γ_{ij}^k zwane **symbolami Christoffela** nie pojawiły się jeszcze na tym wykładzie, możemy to sformułowanie przyjąć jako ich **definicję** (z resztą tak samo zdefiniowaliśmy torsję krzywej).

Ponieważ $x_{ij} = x_{ji}$, więc natychmiast otrzymujemy pierwszą własność tych symboli:

$$\Gamma_{ij}^k = \Gamma_{ji}^k$$
, dla $k = 1, 2$.

Powierzchnie w R³

Wektory styczne i normalne. I forma nodstawowa

ierunkowe. zometria.

Krzywizna Gaussa

Krzywizna Gaussa II

heorema Egregiun Twierdzenie

Symbole Christoffela

$$x_{ij} = \Gamma_{ij}^1 x_1 + \Gamma_{ij}^2 x_2 + Q_{ij} n.$$

Zrzutujmy ortogonalnie obie strony tego równania na wektory x_1 , x_2 i n:

$$\langle x_{ij}, x_1 \rangle = \Gamma_{ij}^1 g_{11} + \Gamma_{ij}^2 g_{12}$$

 $\langle x_{ij}, x_2 \rangle = \Gamma_{ij}^1 g_{21} + \Gamma_{ij}^2 g_{22}$
 $\langle x_{ij}, n \rangle = Q_{ij}$

Natychmiast z tego wynika, że $Q_{ij}=l_{ij}$. Pozostałe dwa równania potraktujmy jako własności symboli Christoffela. $\,$ $\,$ Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium

Symbole Christoffela

$$x_{ij} = \Gamma_{ij}^1 x_1 + \Gamma_{ij}^2 x_2 + Q_{ij} n.$$

Zrzutujmy ortogonalnie obie strony tego równania na wektory x_1 , x_2 i n:

$$\langle x_{ij}, x_1 \rangle = \Gamma_{ij}^1 g_{11} + \Gamma_{ij}^2 g_{12}$$
$$\langle x_{ij}, x_2 \rangle = \Gamma_{ij}^1 g_{21} + \Gamma_{ij}^2 g_{22}$$
$$\langle x_{ij}, n \rangle = Q_{ij}$$

Natychmiast z tego wynika, że $Q_{ij}=l_{ij}$. Pozostałe dwa równania potraktujmy jako własności symboli Christoffela. $\ \Box$ Powierzchnie w \mathbb{R}^3

Vektory styczne i ormalne. I forma odstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

eorema Egregiun wierdzenie

Symbole Christoffela

$$x_{ij} = \Gamma_{ij}^1 x_1 + \Gamma_{ij}^2 x_2 + Q_{ij} n.$$

Zrzutujmy ortogonalnie obie strony tego równania na wektory x_1 , x_2 i n:

$$\langle x_{ij}, x_1 \rangle = \Gamma_{ij}^1 g_{11} + \Gamma_{ij}^2 g_{12}$$

 $\langle x_{ij}, x_2 \rangle = \Gamma_{ij}^1 g_{21} + \Gamma_{ij}^2 g_{22}$
 $\langle x_{ij}, n \rangle = Q_{ij}$

Natychmiast z tego wynika, że $Q_{ij}=l_{ij}$. Pozostałe dwa równania potraktujmy jako własności symboli Christoffela. $\ \Box$ Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

eorema Egregiun wierdzenie

Symbole Christoffela

$$x_{ij} = \Gamma_{ij}^1 x_1 + \Gamma_{ij}^2 x_2 + Q_{ij} n.$$

Zrzutujmy ortogonalnie obie strony tego równania na wektory x_1 , x_2 i n:

$$\langle x_{ij}, x_1 \rangle = \Gamma_{ij}^1 g_{11} + \Gamma_{ij}^2 g_{12}$$

 $\langle x_{ij}, x_2 \rangle = \Gamma_{ij}^1 g_{21} + \Gamma_{ij}^2 g_{22}$
 $\langle x_{ij}, n \rangle = Q_{ij}$

Natychmiast z tego wynika, że $Q_{ij} = l_{ij}$. Pozostałe dwa równania potraktujmy jako własności symboli Christoffela. \square

Powierzchnie w \mathbb{R}^3

ormalne. I form odstawowa

erunkowe. ometria.

Krzywizna Gaussa

Krzywizna Gaussa II

neorema Egregiui Wierdzenie

Symbole Christoffela

Niech $M \to \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych. Dla wszystkich i, j = 1, 2 zachodzi

$$\begin{pmatrix} \Gamma_{ij}^1 \\ \Gamma_{ij}^2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix}^{-1} \begin{pmatrix} \frac{\partial g_{j1}}{\partial u_i} + \frac{\partial g_{i1}}{\partial u_j} - \frac{\partial g_{ij}}{\partial u_1} \\ \frac{\partial g_{j2}}{\partial u_i} + \frac{\partial g_{i2}}{\partial u_j} - \frac{\partial g_{ij}}{\partial u_2} \end{pmatrix}$$

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

zierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Γheorema Egregium

Symbole Christoffela

Theorems Egregium

 $\frac{\partial g_{ij}}{\partial u_k} = \frac{\partial \langle x_i, x_j \rangle}{\partial u_k} = \left\langle \frac{\partial x_i}{\partial u_k}, x_j \right\rangle + \left\langle x_i, \frac{\partial x_j}{\partial u_k} \right\rangle = \langle x_{ik}, x_j \rangle + \langle x_i, x_{jk} \rangle.$

Podobnie, permutując indeksy i, j, k (równocześnie pamiętając, że $g_{ij}=g_{ji}$, oraz $x_{ij}=x_{ji}$) otrzymujemy dwa kolejne równania:

$$\frac{\partial g_{ik}}{\partial u_j} = \langle x_{ij}, x_k \rangle + \langle x_i, x_{jk} \rangle$$
$$\frac{\partial g_{jk}}{\partial u_i} = \langle x_{ik}, x_j \rangle + \langle x_k, x_{ij} \rangle$$

Dodając drugie i trzecie równanie, a następnie odejmując pierwsze otrzymujemy:

$$\frac{1}{2}\left(\frac{\partial g_{ik}}{\partial u_i} + \frac{\partial g_{jk}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_k}\right) = \langle x_{ij}, x_k \rangle.$$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Pochodne derunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

klasyfikacyjne
Symbole Christoffela

$$\frac{\partial g_{ij}}{\partial u_k} = \frac{\partial \langle x_i, x_j \rangle}{\partial u_k} = \left\langle \frac{\partial x_i}{\partial u_k}, x_j \right\rangle + \left\langle x_i, \frac{\partial x_j}{\partial u_k} \right\rangle = \langle x_{ik}, x_j \rangle + \langle x_i, x_{jk} \rangle.$$

$$\frac{\partial g_{ik}}{\partial u_j} = \langle x_{ij}, x_k \rangle + \langle x_i, x_{jk} \rangle$$

$$\frac{\partial g_{jk}}{\partial u_i} = \langle x_{ik}, x_j \rangle + \langle x_k, x_{ij} \rangle$$

$$\frac{1}{2}\left(\frac{\partial g_{ik}}{\partial u_j}+\frac{\partial g_{jk}}{\partial u_i}-\frac{\partial g_{ij}}{\partial u_k}\right)=\langle x_{ij},x_k\rangle.$$

Elementarna Geometria Różniczkowa

Symbole Christoffela

Podobnie, permutując indeksy i, j, k (równocześnie pamiętając, że $g_{ij}=g_{ji}$, oraz $x_{ij}=x_{ji}$) otrzymujemy dwa kolejne równania:

$$\frac{\partial g_{ik}}{\partial u_j} = \langle x_{ij}, x_k \rangle + \langle x_i, x_{jk} \rangle$$

$$\frac{\partial g_{jk}}{\partial u_i} = \langle x_{ik}, x_j \rangle + \langle x_k, x_{ij} \rangle$$

Dodając drugie i trzecie równanie, a następnie odejmując pierwsze otrzymujemy:

$$\frac{1}{2}\left(\frac{\partial g_{ik}}{\partial u_i} + \frac{\partial g_{jk}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_k}\right) = \langle x_{ij}, x_k \rangle.$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

ektory styczne i ormalne. I forma odstawowa

zometria.

Krzywizna Gaussa

Krzywizna Gaussa II

heorema Egregium

Symbole Christoffela

$$\frac{\partial g_{ij}}{\partial u_k} = \frac{\partial \langle x_i, x_j \rangle}{\partial u_k} = \left\langle \frac{\partial x_i}{\partial u_k}, x_j \right\rangle + \left\langle x_i, \frac{\partial x_j}{\partial u_k} \right\rangle = \langle x_{ik}, x_j \rangle + \langle x_i, x_{jk} \rangle.$$

Podobnie, permutując indeksy i, j, k (równocześnie pamiętając, że $g_{ij}=g_{ji}$, oraz $x_{ij}=x_{ji}$) otrzymujemy dwa kolejne równania:

$$\frac{\partial g_{ik}}{\partial u_j} = \langle x_{ij}, x_k \rangle + \langle x_i, x_{jk} \rangle$$

$$\frac{\partial g_{jk}}{\partial u_i} = \langle x_{ik}, x_j \rangle + \langle x_k, x_{ij} \rangle$$

Dodając drugie i trzecie równanie, a następnie odejmując pierwsze otrzymujemy:

$$\frac{1}{2}\left(\frac{\partial g_{ik}}{\partial u_i}+\frac{\partial g_{jk}}{\partial u_i}-\frac{\partial g_{ij}}{\partial u_k}\right)=\langle x_{ij},x_k\rangle.$$

Powierzchnie w R³

Vektory styczne i ormalne. I forma odstawowa

ometria.

Krzywizna Gaussa i

Krzywizna Gaussa II

Theorema Egregiur Twierdzenie

Symbole Christoffela

$$\langle x_{ij}, x_k \rangle = \Gamma_{ij}^1 \langle x_1, x_k \rangle + \Gamma_{ij}^2 \langle x_2, x_k \rangle = \sum_{r=1}^2 \Gamma_{ij}^r g_{rk},$$

$$\sum_{r=1}^{2} \Gamma_{ij}^{r} g_{rk} = \frac{1}{2} \left(\frac{\partial g_{ik}}{\partial u_j} + \frac{\partial g_{jk}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_k} \right).$$

Wystarczy teraz to równanie zapisać w postaci macierzowej

$$\begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \begin{pmatrix} \Gamma_{ij}^1 \\ \Gamma_{ij}^2 \end{pmatrix} = \begin{pmatrix} \frac{\partial g_{i1}}{\partial u_j} + \frac{\partial g_{j1}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_1} \\ \frac{\partial g_{i2}}{\partial u_j} + \frac{\partial g_{j2}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_2} \end{pmatrix}$$

i pomnożyć z lewej strony przez $(g_{ij})^{-1}$ aby otrzymać szukane przedstawienie Γ_{ii}^k .

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

asyfikacyjne

Symbole Christoffela

$$\langle x_{ij}, x_k \rangle = \Gamma_{ij}^1 \langle x_1, x_k \rangle + \Gamma_{ij}^2 \langle x_2, x_k \rangle = \sum_{r=1}^2 \Gamma_{ij}^r g_{rk},$$

$$\sum_{r=1}^{2} \Gamma_{ij}^{r} g_{rk} = \frac{1}{2} \left(\frac{\partial g_{ik}}{\partial u_{j}} + \frac{\partial g_{jk}}{\partial u_{i}} - \frac{\partial g_{ij}}{\partial u_{k}} \right).$$

Wystarczy teraz to równanie zapisać w postaci macierzowej

$$\begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \begin{pmatrix} \Gamma_{ij}^1 \\ \Gamma_{ij}^2 \end{pmatrix} = \begin{pmatrix} \frac{\partial g_{i1}}{\partial u_j} + \frac{\partial g_{j1}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_1} \\ \frac{\partial g_{i2}}{\partial u_j} + \frac{\partial g_{j2}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_2} \end{pmatrix}$$

i pomnożyć z lewej strony przez $(g_{ij})^{-1}$ aby otrzymać szukane przedstawienie Γ_{ii}^k .

Powierzchnie w R³

Vektory styczne i ormalne. I forma odstawowa

zometria.

Kizy Wizila Gaussa i

Krzywizna Gaussa II

klasyfikacyjne Symbole Christoffela

Symbole Christonela

$$\langle x_{ij}, x_k \rangle = \Gamma_{ij}^1 \langle x_1, x_k \rangle + \Gamma_{ij}^2 \langle x_2, x_k \rangle = \sum_{r=1}^2 \Gamma_{ij}^r g_{rk},$$

$$\sum_{r=1}^{2} \Gamma_{ij}^{r} g_{rk} = \frac{1}{2} \left(\frac{\partial g_{ik}}{\partial u_{j}} + \frac{\partial g_{jk}}{\partial u_{i}} - \frac{\partial g_{ij}}{\partial u_{k}} \right).$$

Wystarczy teraz to równanie zapisać w postaci macierzowej:

$$\begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \begin{pmatrix} \Gamma_{ij}^1 \\ \Gamma_{ij}^2 \end{pmatrix} = \begin{pmatrix} \frac{\partial g_{i1}}{\partial u_i} + \frac{\partial g_{j1}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_1} \\ \frac{\partial g_{i2}}{\partial u_j} + \frac{\partial g_{j2}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_2} \end{pmatrix},$$

i pomnożyć z lewej strony przez $(g_{ij})^{-1}$ aby otrzymać szukane przedstawienie Γ_{ii}^k .

Powierzchnie w \mathbb{R}^3

Vektory styczne i ormalne. I forma odstawowa

metria.

reizy wizina Gaassa

Krzywizna Gaussa II

klasyfikacyjne Symbole Christoffela

Symbole Christonela

$$\langle x_{ij}, x_k \rangle = \Gamma_{ij}^1 \langle x_1, x_k \rangle + \Gamma_{ij}^2 \langle x_2, x_k \rangle = \sum_{r=1}^2 \Gamma_{ij}^r g_{rk},$$

$$\sum_{r=1}^{2} \Gamma_{ij}^{r} g_{rk} = \frac{1}{2} \left(\frac{\partial g_{ik}}{\partial u_{j}} + \frac{\partial g_{jk}}{\partial u_{i}} - \frac{\partial g_{ij}}{\partial u_{k}} \right).$$

Wystarczy teraz to równanie zapisać w postaci macierzowej:

$$\begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \begin{pmatrix} \Gamma_{ij}^1 \\ \Gamma_{ij}^2 \end{pmatrix} = \begin{pmatrix} \frac{\partial g_{i1}}{\partial u_i} + \frac{\partial g_{j1}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_1} \\ \frac{\partial g_{i2}}{\partial u_j} + \frac{\partial g_{j2}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_2} \end{pmatrix},$$

i pomnożyć z lewej strony przez $(g_{ij})^{-1}$ aby otrzymać szukane przedstawienie Γ_{ii}^k .

Powierzchnie w R³

normalne. I forma podstawowa

ometria.

Krzywizna Gaussa i

Krzywizna Gaussa II

klasyfikacyjne Symbole Christoffela

Symbole Christoffela

$$l_{11}l_{22} - l_{12}^2 = \sum_{r=1}^2 g_{1r} \left[\frac{\partial \Gamma_{22}^r}{\partial u_1} - \frac{\partial \Gamma_{21}^r}{\partial u_2} + \sum_{m=1}^2 (\Gamma_{22}^m \Gamma_{m1}^r - \Gamma_{21}^m \Gamma_{m2}^r) \right]$$

Równania Codazziego-Mainardiego:

$$\frac{\partial l_{12}}{\partial u_1} - \frac{\partial l_{11}}{\partial u_2} + \sum_{r=1}^{2} \left(\Gamma_{12}^r l_{r1} - \Gamma_{11}^r l_{r2} \right) = 0$$

$$\frac{\partial l_{22}}{\partial u_1} - \frac{\partial l_{21}}{\partial u_2} + \sum_{r=1}^{2} \left(\Gamma_{22}^r l_{r1} - \Gamma_{21}^r l_{r2} \right) = 0$$

Symbole Christoffela

Niec $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych. Wtedy zachodzą następujące równości.

► Równanie Gaussa:

$$l_{11}l_{22}-l_{12}^2 = \sum_{r=1}^2 g_{1r} \left[\frac{\partial \Gamma_{22}^r}{\partial u_1} - \frac{\partial \Gamma_{21}^r}{\partial u_2} + \sum_{m=1}^2 (\Gamma_{22}^m \Gamma_{m1}^r - \Gamma_{21}^m \Gamma_{m2}^r) \right].$$

Równania Codazziego-Mainardiego:

$$\begin{aligned} \frac{\partial l_{12}}{\partial u_1} - \frac{\partial l_{11}}{\partial u_2} + \sum_{r=1}^{2} \left(\Gamma_{12}^r l_{r1} - \Gamma_{11}^r l_{r2} \right) &= 0 \\ \frac{\partial l_{22}}{\partial u_1} - \frac{\partial l_{21}}{\partial u_2} + \sum_{r=1}^{2} \left(\Gamma_{22}^r l_{r1} - \Gamma_{21}^r l_{r2} \right) &= 0 \end{aligned}$$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

,

Krzywizna Gaussa II

syfikacyjne

Symbole Christoffela

Niec $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych. Wtedy zachodzą następujące równości.

► Równanie Gaussa:

$$l_{11}l_{22}-l_{12}^2 = \sum_{r=1}^2 g_{1r} \left[\frac{\partial \Gamma_{22}^r}{\partial u_1} - \frac{\partial \Gamma_{21}^r}{\partial u_2} + \sum_{m=1}^2 (\Gamma_{22}^m \Gamma_{m1}^r - \Gamma_{21}^m \Gamma_{m2}^r) \right].$$

Równania Codazziego-Mainardiego:

$$\frac{\partial l_{12}}{\partial u_1} - \frac{\partial l_{11}}{\partial u_2} + \sum_{r=1}^{2} \left(\Gamma_{12}^r l_{r1} - \Gamma_{11}^r l_{r2} \right) = 0$$

$$\frac{\partial l_{22}}{\partial u_1} - \frac{\partial l_{21}}{\partial u_2} + \sum_{r=1}^{2} \left(\Gamma_{22}^r l_{r1} - \Gamma_{21}^r l_{r2} \right) = 0$$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

ici zy wiziia Gaussa

Krzywizna Gaussa II

asyfikacyjne

Symbole Christoffela

Chociaż równania te wyglądają groźnie, ich dowód sprowadza się do bardzo prostego faktu: trzecie pochodne cząstkowe są sobie równe bez względu na kolejność różniczkowania:

$$x_{ijk} = x_{ikj}$$
.

Dowód

Przypomnijmy formułę Gaussa:

$$x_{ij} = \Gamma_{ij}^1 x_1 + \Gamma_{ij}^2 x_2 + l_{ij} n$$

a następnie zróżniczkujmy ją względem u_k

$$x_{ijk} = \frac{\partial \Gamma_{ij}^1}{\partial u_k} x_1 + \Gamma_{ij}^1 x_{1k} + \frac{\partial_{ij}^2}{\partial u_k} x_2 + \Gamma_{ij}^2 x_{2k} + \frac{\partial l_{ij}}{\partial u_k} n + l_{ij} n_k$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

neorema Egregium

klasyfikacyjne Symbole Christoffela

Theorema Egregium

Udowodnimy tylko Równania Codazziego-Mainardiego, równanie Gaussa pozostawiając jako ćwiczenie.

Chociaż równania te wyglądają groźnie, ich dowód sprowadza się do bardzo prostego faktu: trzecie pochodne cząstkowe są sobie równe bez względu na kolejność różniczkowania:

$$x_{ijk}=x_{ikj}$$
.

Dowód

Przypomnijmy formułę Gaussa:

$$x_{ij} = \Gamma_{ij}^1 x_1 + \Gamma_{ij}^2 x_2 + l_{ij} n$$

a następnie zróżniczkujmy ją względem u_k

$$x_{ijk} = \frac{\partial \Gamma_{ij}^1}{\partial u_k} x_1 + \Gamma_{ij}^1 x_{1k} + \frac{\partial_{ij}^2}{\partial u_k} x_2 + \Gamma_{ij}^2 x_{2k} + \frac{\partial l_{ij}}{\partial u_k} n + l_{ij} n_k$$

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregiur Twierdzenie

Symbole Christoffela

Theorema Egregium
Twierdzenie klasyfikując

Udowodnimy tylko Równania Codazziego-Mainardiego, równanie Gaussa pozostawiając jako ćwiczenie.

Chociaż równania te wyglądają groźnie, ich dowód sprowadza się do bardzo prostego faktu: trzecie pochodne cząstkowe są sobie równe bez względu na kolejność różniczkowania:

$$x_{ijk} = x_{ikj}$$
.

Dowód:

Przypomnijmy formułę Gaussa:

$$x_{ij} = \Gamma_{ij}^1 x_1 + \Gamma_{ij}^2 x_2 + l_{ij} n,$$

a następnie zróżniczkujmy ją względem u_k

$$x_{ijk} = \frac{\partial \Gamma_{ij}^1}{\partial u_k} x_1 + \Gamma_{ij}^1 x_{1k} + \frac{\partial_{ij}^2}{\partial u_k} x_2 + \Gamma_{ij}^2 x_{2k} + \frac{\partial l_{ij}}{\partial u_k} n + l_{ij} n_k$$

ometria.

ICIZy WIZIIA GAGSSA

Krzywizna Gaussa I

Theorema Egregiu Twierdzenie Wasyfikacyjne

Symbole Christoffela

Theorema Egregium
Twierdzenie klasyfikując

Udowodnimy tylko Równania Codazziego-Mainardiego, równanie Gaussa pozostawiając jako ćwiczenie.

Chociaż równania te wyglądają groźnie, ich dowód sprowadza się do bardzo prostego faktu: trzecie pochodne cząstkowe są sobie równe bez względu na kolejność różniczkowania:

$$x_{ijk} = x_{ikj}$$
.

Dowód:

Przypomnijmy formułę Gaussa:

$$x_{ij} = \Gamma_{ij}^1 x_1 + \Gamma_{ij}^2 x_2 + l_{ij} n,$$

a następnie zróżniczkujmy ją względem u_k :

$$x_{ijk} = \frac{\partial \Gamma_{ij}^1}{\partial u_k} x_1 + \Gamma_{ij}^1 x_{1k} + \frac{\partial_{ij}^2}{\partial u_k} x_2 + \Gamma_{ij}^2 x_{2k} + \frac{\partial l_{ij}}{\partial u_k} n + l_{ij} n_k.$$

$$x_{ijk} = \frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} x_{1} + \Gamma_{ij}^{1} \underbrace{\left(\Gamma_{1k}^{2} x_{1} + \Gamma_{1k}^{2} x_{2} + l_{1k} n\right)}_{x_{1k}} + \frac{\partial_{ij}^{2}}{\partial u_{k}} x_{2} + \Gamma_{ij}^{2} \underbrace{\left(\Gamma_{2k}^{1} x_{1} + \Gamma_{2k}^{2} x_{2} + l_{2k} n\right)}_{x_{2k}} + \frac{\partial l_{ij}}{\partial u_{k}} n + l_{ij} \underbrace{\left(-L_{1k} x_{1} - L_{2k} x_{2}\right)}_{n_{k}} = \begin{bmatrix} \frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{1} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{1k} \end{bmatrix} x_{1} + \begin{bmatrix} \frac{\partial \Gamma_{ij}^{2}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{2} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{2k} \end{bmatrix} x_{2} + \begin{bmatrix} \frac{\partial \Gamma_{ij}^{2}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{2} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{2k} \end{bmatrix} x_{2} + \begin{bmatrix} \Gamma_{ij}^{1} l_{1k} + \Gamma_{ij}^{2} l_{2k} + \frac{\partial l_{ij}}{\partial u_{k}} \end{bmatrix} n = Ax_{1} + Bx_{2} + Cn.$$

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Symbole Christoffela

Korzystając teraz z równania Weingartena i fromuły Gaussa podstawmy za n_k i x_{ij} ich realizacje w bazie $\{x_1, x_2, n\}$, a następnie uporządkujmy wyrażenie:

$$x_{ijk} = \frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} x_{1} + \Gamma_{ij}^{1} \underbrace{\left(\Gamma_{1k}^{2} x_{1} + \Gamma_{1k}^{2} x_{2} + l_{1k} n\right)}_{x_{1k}} + \frac{\partial^{2}_{ij}}{\partial u_{k}} x_{2} + \Gamma_{ij}^{2} \underbrace{\left(\Gamma_{2k}^{1} x_{1} + \Gamma_{2k}^{2} x_{2} + l_{2k} n\right)}_{x_{2k}} + \frac{\partial l_{ij}}{\partial u_{k}} n + l_{ij} \underbrace{\left(-L_{1k} x_{1} - L_{2k} x_{2}\right)}_{n_{k}} = \begin{bmatrix} \frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{1} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{1k} \end{bmatrix} x_{1} + \begin{bmatrix} \frac{\partial \Gamma_{ij}^{2}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{2} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{2k} \end{bmatrix} x_{2} + \\ + \begin{bmatrix} \Gamma_{ij}^{1} l_{1k} + \Gamma_{ij}^{2} l_{2k} + \frac{\partial l_{ij}}{\partial u_{k}} \end{bmatrix} n = Ax_{1} + Bx_{2} + Cn.$$

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

kierunkowe. Izometria.

Kizywiziia Gaussa i

Krzywizna Gaussa II

i Twierdzenie

Symbole Christoffela

Korzystając teraz z równania Weingartena i fromuły Gaussa podstawmy za n_k i x_{ii} ich realizacje w bazie $\{x_1, x_2, n\}$, a następnie uporządkujmy wyrażenie:

$$x_{ijk} = \frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} x_{1} + \Gamma_{ij}^{1} \underbrace{\left(\Gamma_{1k}^{2} x_{1} + \Gamma_{1k}^{2} x_{2} + l_{1k} n\right)}_{x_{1k}} + \frac{\partial_{ij}^{2}}{\partial u_{k}} x_{2} + \Gamma_{ij}^{2} \underbrace{\left(\Gamma_{2k}^{1} x_{1} + \Gamma_{2k}^{2} x_{2} + l_{2k} n\right)}_{x_{2k}} + \frac{\partial l_{ij}}{\partial u_{k}} n + l_{ij} \underbrace{\left(-L_{1k} x_{1} - L_{2k} x_{2} + l_{2k} n\right)}_{n_{k}} + \frac{\partial \Gamma_{ij}^{2}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{1} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{1k} \underbrace{\left(-L_{1k} x_{1} - L_{2k} x_{2}\right)}_{n_{k}} = \underbrace{\left(-\frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{1} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{1k}\right)}_{n_{k}} x_{1} + \underbrace{\left(-\frac{\partial \Gamma_{ij}^{2}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{2} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{2k}\right)}_{n_{k}} x_{2} + \underbrace{\left(-\frac{\partial \Gamma_{ij}^{2}}{\partial u_{k}} + \Gamma_{ij}^{2} l_{2k} + \frac{\partial l_{ij}}{\partial u_{k}}\right)}_{n_{k}} n_{k} = Ax_{1} + Bx_{2} + Cn.$$

Elementarna Geometria Różniczkowa

Symbole Christoffela

Korzystając teraz z równania Weingartena i fromuły Gaussa podstawmy za n_k i x_{ij} ich realizacje w bazie $\{x_1, x_2, n\}$, a następnie uporządkujmy wyrażenie:

$$x_{ijk} = \frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} x_{1} + \Gamma_{ij}^{1} \underbrace{\left(\Gamma_{1k}^{2} x_{1} + \Gamma_{1k}^{2} x_{2} + l_{1k} n\right)}_{x_{1k}} + \underbrace{\frac{\partial_{ij}^{2}}{\partial u_{k}} x_{2} + \Gamma_{ij}^{2} \underbrace{\left(\Gamma_{2k}^{1} x_{1} + \Gamma_{2k}^{2} x_{2} + l_{2k} n\right)}_{x_{2k}} + \underbrace{\frac{\partial l_{ij}}{\partial u_{k}} n + l_{ij} \underbrace{\left(-L_{1k} x_{1} - L_{2k} x_{2}\right)}_{n_{k}} = \underbrace{\begin{bmatrix} \partial \Gamma_{ij}^{1}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{1} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{1k} \end{bmatrix} x_{1} + \underbrace{\begin{bmatrix} \partial \Gamma_{ij}^{2}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{2} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{2k} \end{bmatrix} x_{2} + \underbrace{\begin{bmatrix} \Gamma_{ij}^{1} l_{1k} + \Gamma_{ij}^{2} l_{2k} + \frac{\partial l_{ij}}{\partial u_{k}} \end{bmatrix} n = Ax_{1} + Bx_{2} + Cn.}$$

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium

klasyfikacyjne Symbole Christoffela

Korzystając teraz z równania Weingartena i fromuły Gaussa podstawmy za n_k i x_{ij} ich realizacje w bazie $\{x_1, x_2, n\}$, a następnie uporządkujmy wyrażenie:

$$x_{ijk} = \frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} x_{1} + \Gamma_{ij}^{1} \underbrace{\left(\Gamma_{1k}^{2} x_{1} + \Gamma_{1k}^{2} x_{2} + l_{1k} n\right)}_{x_{1k}} + \frac{\partial_{ij}^{2}}{\partial u_{k}} x_{2} + \Gamma_{ij}^{2} \underbrace{\left(\Gamma_{2k}^{1} x_{1} + \Gamma_{2k}^{2} x_{2} + l_{2k} n\right)}_{x_{2k}} + \frac{\partial l_{ij}}{\partial u_{k}} n + l_{ij} \underbrace{\left(-L_{1k} x_{1} - L_{2k} x_{2}\right)}_{n_{k}} =$$

$$= \left[\frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{1} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{1k}\right] x_{1} + \left[\frac{\partial \Gamma_{ij}^{2}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{2} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{2k}\right] x_{2} + \left[\Gamma_{ij}^{1} l_{1k} + \Gamma_{ij}^{2} l_{2k} + \frac{\partial l_{ij}}{\partial u_{k}}\right] n = Ax_{1} + Bx_{2} + Cn.$$

owierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

Krzywizna Gaussa i

Krzywizna Gaussa II

i Twierdzenie klasyfikacyjne

Symbole Christoffela

$$x_{ijk} = \frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} x_{1} + \Gamma_{ij}^{1} \underbrace{\left(\Gamma_{1k}^{2} x_{1} + \Gamma_{1k}^{2} x_{2} + l_{1k} n\right)}_{x_{1k}} + \frac{\partial_{ij}^{2}}{\partial u_{k}} x_{2} + \Gamma_{ij}^{2} \underbrace{\left(\Gamma_{2k}^{1} x_{1} + \Gamma_{2k}^{2} x_{2} + l_{2k} n\right)}_{x_{2k}} + \frac{\partial l_{ij}}{\partial u_{k}} n + l_{ij} \underbrace{\left(-L_{1k} x_{1} - L_{2k} x_{2}\right)}_{n_{k}} =$$

$$= \left[\frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{1} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{1k}\right] x_{1} + \left[\frac{\partial \Gamma_{ij}^{2}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{2} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{2k}\right] x_{2} + \left[\Gamma_{ij}^{1} l_{1k} + \Gamma_{ij}^{2} l_{2k} + \frac{\partial l_{ij}}{\partial u_{k}}\right] n = Ax_{1} + Bx_{2} + Cn.$$

owierzchnie w R

Wektory styczne i normalne. I forma podstawowa

> ierunkowe. zometria.

Krzywizna Gaussa i

Krzywizna Gaussa II

klasyfikacyjne

Symbole Christoffela

$$x_{ikj} = \left[\frac{\partial \Gamma_{ik}^{1}}{\partial u_{j}} + \Gamma_{ik}^{1} \Gamma_{1j}^{1} + \Gamma_{ik}^{2} \Gamma_{2j}^{2} - l_{ik} L_{1j} \right] x_{1} +$$

$$+ \left[\frac{\partial \Gamma_{ik}^{2}}{\partial u_{j}} + \Gamma_{ik}^{1} \Gamma_{1j}^{2} + \Gamma_{ik}^{2} \Gamma_{2j}^{2} - l_{ik} L_{2j} \right] x_{2} +$$

$$+ \left[\Gamma_{ik}^{1} l_{1j} + \Gamma_{ik}^{2} l_{2j} + \frac{\partial l_{ik}}{\partial u_{j}} \right] n =$$

$$= A' x_{1} + B' x_{2} + C' n.$$

Symbole Christoffela

Zamieniając miejscami j i k otrzymujemy

$$x_{ikj} = \left[\frac{\partial \Gamma_{ik}^{1}}{\partial u_{j}} + \Gamma_{ik}^{1} \Gamma_{1j}^{1} + \Gamma_{ik}^{2} \Gamma_{2j}^{2} - l_{ik} L_{1j} \right] x_{1} +$$

$$+ \left[\frac{\partial \Gamma_{ik}^{2}}{\partial u_{j}} + \Gamma_{ik}^{1} \Gamma_{1j}^{2} + \Gamma_{ik}^{2} \Gamma_{2j}^{2} - l_{ik} L_{2j} \right] x_{2} +$$

$$+ \left[\Gamma_{ik}^{1} l_{1j} + \Gamma_{ik}^{2} l_{2j} + \frac{\partial l_{ik}}{\partial u_{j}} \right] n =$$

$$= A' x_{1} + B' x_{2} + C' n.$$

Symbole Christoffela

$$\Gamma^1_{ij}l_{1k} + \Gamma^2_{ij}l_{2k} + \frac{\partial l_{ij}}{\partial u_k} = \Gamma^1_{ik}l_{1j} + \Gamma^2_{ik}l_{2j} + \frac{\partial l_{ik}}{\partial u_j}, \qquad (C = C').$$

Odpowiednio grupując otrzymujemy

$$\begin{split} \frac{\partial l_{ij}}{\partial u_k} - \frac{\partial l_{ik}}{\partial u_j} + \left(\Gamma_{ij}^1 l_{1k} - \Gamma_{ik}^1 l_{1j}\right) + \Gamma_{ij}^2 l_{2k} - \Gamma_{ik}^2 l_{2j} = \\ &= \frac{\partial l_{12}}{\partial u_1} - \frac{\partial l_{11}}{\partial u_2} + \sum_{r=1}^2 \left(\Gamma_{12}^r l_{r1} - \Gamma_{11}^r l_{r2}\right) = 0. \end{split}$$

Ostatecznie podstawiając (i = 1, j = 2, k = 1) [odpowiednio: (i = 2, j = 2, k = 1)] otrzymujemy pierwsze [drugie] równanie Codazziego-Mainardiego.

Elementarna Geometria Różniczkowa

Powierzchnie w R³

/ektory styczne i ormalne. I forma odstawowa

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

neorema Egregium Wierdzenie

Symbole Christoffela

$$\Gamma^1_{ij}l_{1k} + \Gamma^2_{ij}l_{2k} + \frac{\partial l_{ij}}{\partial u_k} = \Gamma^1_{ik}l_{1j} + \Gamma^2_{ik}l_{2j} + \frac{\partial l_{ik}}{\partial u_j}, \qquad (C = C').$$

Odpowiednio grupując otrzymujemy

$$\begin{split} \frac{\partial l_{ij}}{\partial u_k} - \frac{\partial l_{ik}}{\partial u_j} + \left(\Gamma_{ij}^1 l_{1k} - \Gamma_{ik}^1 l_{1j}\right) + \Gamma_{ij}^2 l_{2k} - \Gamma_{ik}^2 l_{2j} = \\ &= \frac{\partial l_{12}}{\partial u_1} - \frac{\partial l_{11}}{\partial u_2} + \sum_{r=1}^2 \left(\Gamma_{12}^r l_{r1} - \Gamma_{11}^r l_{r2}\right) = 0. \end{split}$$

Ostatecznie podstawiając (i = 1, j = 2, k = 1) [odpowiednio: (i = 2, j = 2, k = 1)] otrzymujemy pierwsze [drugie] równanie Codazziego-Mainardiego.

Powierzchnie w \mathbb{R}^3

Vektory styczne i ormalne. I forma odstawowa

ometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

eorema Egregium wierdzenie

Symbole Christoffela

$$\Gamma^{1}_{ij}l_{1k} + \Gamma^{2}_{ij}l_{2k} + \frac{\partial l_{ij}}{\partial u_{k}} = \Gamma^{1}_{ik}l_{1j} + \Gamma^{2}_{ik}l_{2j} + \frac{\partial l_{ik}}{\partial u_{j}}, \qquad (C = C').$$

Odpowiednio grupując otrzymujemy

$$\begin{split} \frac{\partial l_{ij}}{\partial u_k} - \frac{\partial l_{ik}}{\partial u_j} + \left(\Gamma_{ij}^1 l_{1k} - \Gamma_{ik}^1 l_{1j}\right) + \Gamma_{ij}^2 l_{2k} - \Gamma_{ik}^2 l_{2j} = \\ &= \frac{\partial l_{12}}{\partial u_1} - \frac{\partial l_{11}}{\partial u_2} + \sum_{r=1}^2 \left(\Gamma_{12}^r l_{r1} - \Gamma_{11}^r l_{r2}\right) = 0. \end{split}$$

Ostatecznie podstawiając (i = 1, j = 2, k = 1) [odpowiednio: (i = 2, j = 2, k = 1)] otrzymujemy pierwsze [drugie] równanie Codazziego-Mainardiego.

Powierzchnie w \mathbb{R}^3

Vektory styczne i ormalne. I forma odstawowa

erunkowe. ometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

neorema Egregium Twierdzenie

Symbole Christoffela

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregium

klasyfikacyjne Symbole Christoffela

Theorema Egregium

Zadanie

Udowodnić formułę Gaussa.

Podpowiedź: należy porównać współczynniki A, A', oraz B, B'. Następnie podstawić (i=2, j=1, k=2).

Niech $M \subset \mathbb{R}^3$ oraz $N \subset \mathbb{R}^3$ będą powierzchniami gładkimi o krzywiznach odpowienio K_M i K_N . Niech $f: M \to N$ będzie lokalną izometrią. Wtedy

$$K_M(p) = K_N(f(p))$$

dla wszystkich $p \in M$

Ponieważ pierwsza forma podstawowa powierzchni jest niezmienicza ze względu na lokalne izometrie (lemat 7.7, własność 3) wystarczy więc pokazać, że krzywizna Gaussa może być wyrażona w terminach współczynników metrycznych (funkcji g_{11} , g_{12} , g_{22}), oraz ich pochodnych.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ometria.

Krzywizna Gaussa i

Krzywizna Gaussa II

i Twierdzenie klasyfikacyjne Symbole Christoffela Theorema Egregium Niech $M \subset \mathbb{R}^3$ oraz $N \subset \mathbb{R}^3$ będą powierzchniami gładkimi o krzywiznach odpowienio K_M i K_N . Niech $f: M \to N$ będzie lokalną izometrią. Wtedy

$$K_M(p) = K_N(f(p))$$

dla wszystkich p ∈ M.

Ponieważ pierwsza forma podstawowa powierzchni jest niezmienicza ze względu na lokalne izometrie (lemat 7.7, własność 3) wystarczy więc pokazać, że krzywizna Gaussa może być wyrażona w terminach współczynników metrycznych (funkcji g_{11} , g_{12} , g_{22}), oraz ich pochodnych.

Powierzchnie w \mathbb{R}^3

Mektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa i

Krzywizna Gaussa I

I heorema Egregiur
Twierdzenie
dasyfikacyjne
Symbole Christoffela
Theorema Egregium
Twierdzenie Masyfikujące

Niech $M \subset \mathbb{R}^3$ oraz $N \subset \mathbb{R}^3$ będą powierzchniami gładkimi o krzywiznach odpowienio K_M i K_N . Niech $f: M \to N$ będzie lokalną izometrią. Wtedy

$$K_{\mathcal{M}}(p) = K_{\mathcal{N}}(f(p))$$

dla wszystkich p ∈ M.

Ponieważ pierwsza forma podstawowa powierzchni jest niezmienicza ze względu na lokalne izometrie (lemat 7.7, własność 3) wystarczy więc pokazać, że krzywizna Gaussa może być wyrażona w terminach współczynników metrycznych (funkcji g_{11} , g_{12} , g_{22}), oraz ich pochodnych.

Powierzchnie w \mathbb{R}^3

ormalne. I forn odstawowa

ierunkowe. cometria.

Kizy wiziia Odussa

Krzywizna Gaussa

Theorema Egregiur
Twierdzenie
dasyfikacyjne
Symbole Christoffela
Theorema Egregium
Twierdzenie klasyfikujące

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}.$$

Wystarczy więc przedstawić wyrażenie $\det(l_{ij}) = l_{11}l_{22} - l_{12}^2$ przy pomocy funkcji g_{11} , g_{12} , g_{22} i ich pochodnych. (**Uwaga:** jest to możliwe, mimo, że żadnej pojedynczej funkcji l_{ij} w taki sposób przedstawić się nie da!).

Przypomnijmy równanie Gaussa (z twierdzenia 10.3):

$$l_{11}l_{22} - l_{12}^2 = \sum_{r=1}^2 g_{1r} \left[\frac{\partial \Gamma_{22}^r}{\partial u_1} - \frac{\partial \Gamma_{21}^r}{\partial u_2} + \sum_{m=1}^2 \left(\Gamma_{22}^m \Gamma_{m1}^r - \Gamma_{21}^m \Gamma_{m2}^r \right) \right].$$

Wyraża ono $l_{11}l_{22} - l_{12}^2$ przy pomocy g_{ij} oraz symboli Christoffela (i ich pochodnych).

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

> ochodne ierunkowe. cometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregiur
Twierdzenie
klasyfikacyjne

Theorema Egregium
Twierdzenie klasyfikujące

Niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in M$. Wiemy, że krzywizna wyraża się wzorem

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}.$$

Wystarczy więc przedstawić wyrażenie $\det(l_{ij}) = l_{11}l_{22} - l_{12}^2$ przy pomocy funkcji g_{11} , g_{12} , g_{22} i ich pochodnych. (**Uwaga:** jest to możliwe, mimo, że żadnej pojedynczej funkcji l_{ij} w taki sposób przedstawić się nie da!).

Przypomnijmy równanie Gaussa (z twierdzenia 10.3)

$$l_{11}l_{22} - l_{12}^2 = \sum_{r=1}^2 g_{1r} \left[\frac{\partial \Gamma_{22}^r}{\partial u_1} - \frac{\partial \Gamma_{21}^r}{\partial u_2} + \sum_{m=1}^2 \left(\Gamma_{22}^m \Gamma_{m1}^r - \Gamma_{21}^m \Gamma_{m2}^r \right) \right].$$

Wyraża ono $l_{11}l_{22} - l_{12}^2$ przy pomocy g_{ij} oraz symboli Christoffela (i ich pochodnych).

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ierunkowe. cometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregiun i Twierdzenie klasyfikacyjne Symbole Christoffela

Theorema Egregium Twierdzenie klasyfikujące

4 D > 4 A > 4 B > 4 B > B 9 Q Q

Niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in M$. Wiemy, że krzywizna wyraża się wzorem

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}.$$

Wystarczy więc przedstawić wyrażenie $\det(l_{ij}) = l_{11}l_{22} - l_{12}^2$ przy pomocy funkcji g_{11} , g_{12} , g_{22} i ich pochodnych. (**Uwaga:** jest to możliwe, mimo, że żadnej pojedynczej funkcji l_{ij} w taki sposób przedstawić się nie da!).

Przypomnijmy równanie Gaussa (z twierdzenia 10.3):

$$l_{11}l_{22} - l_{12}^2 = \sum_{r=1}^2 g_{1r} \left[\frac{\partial \Gamma_{22}^r}{\partial u_1} - \frac{\partial \Gamma_{21}^r}{\partial u_2} + \sum_{m=1}^2 \left(\Gamma_{22}^m \Gamma_{m1}^r - \Gamma_{21}^m \Gamma_{m2}^r \right) \right].$$

Wyraża ono $l_{11}l_{22} - l_{12}^2$ przy pomocy g_{ij} oraz symboli Christoffela (i ich pochodnych).

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

kierunkowe. zometria.

Krzywizna Gaussa I

Grzywizna Gaussa

Twierdzenie dasyfikacyjne Symbole Christoffela Theorema Egregium

Twierdzenie klasyfik

Niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in M$. Wiemy, że krzywizna wyraża się wzorem

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}.$$

Wystarczy więc przedstawić wyrażenie $\det(l_{ij}) = l_{11}l_{22} - l_{12}^2$ przy pomocy funkcji g_{11} , g_{12} , g_{22} i ich pochodnych. (**Uwaga:** jest to możliwe, mimo, że żadnej pojedynczej funkcji l_{ij} w taki sposób przedstawić się nie da!).

Przypomnijmy równanie Gaussa (z twierdzenia 10.3):

$$l_{11}l_{22} - l_{12}^2 = \sum_{r=1}^2 g_{1r} \left[\frac{\partial \Gamma_{22}^r}{\partial u_1} - \frac{\partial \Gamma_{21}^r}{\partial u_2} + \sum_{m=1}^2 \left(\Gamma_{22}^m \Gamma_{m1}^r - \Gamma_{21}^m \Gamma_{m2}^r \right) \right].$$

Wyraża ono $l_{11}l_{22} - l_{12}^2$ przy pomocy g_{ij} oraz symboli Christoffela (i ich pochodnych).

Powierzchnie w R³

Wektory styczne iormalne. I form oodstawowa

ierunkowe. zometria.

Krzywizna Gaussa

rzywizna Gaussa

clasyfikacyjne
Symbole Christoffela
Theorema Egregium

Twierdzenie klasyfikują

4 D > 4 D > 4 B > 4 B > B = 4900

Z drugiej strony dzięki wcześniejszemu lematowi charakteryzującego symbole Christoffela (lemat 10.2):

$$\begin{pmatrix} \Gamma_{ij}^1 \\ \Gamma_{ij}^2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix}^{-1} \begin{pmatrix} \frac{\partial g_{j1}}{\partial u_i} + \frac{\partial g_{i1}}{\partial u_j} - \frac{\partial g_{ij}}{\partial u_1} \\ \frac{\partial g_{j2}}{\partial u_i} + \frac{\partial g_{i2}}{\partial u_j} - \frac{\partial g_{ij}}{\partial u_2} \end{pmatrix}$$

wiemy, że i je da się wyrazić przy pomocy współczynników metrycznych (i ich pochodnych). Zatem wstawiając równania

Theorema Egregium

$$\begin{pmatrix} \Gamma_{ij}^1 \\ \Gamma_{ij}^2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix}^{-1} \begin{pmatrix} \frac{\partial g_{j1}}{\partial u_i} + \frac{\partial g_{i1}}{\partial u_j} - \frac{\partial g_{ij}}{\partial u_1} \\ \frac{\partial g_{j2}}{\partial u_i} + \frac{\partial g_{i2}}{\partial u_j} - \frac{\partial g_{ij}}{\partial u_2} \end{pmatrix}$$

wiemy, że i je da się wyrazić przy pomocy współczynników metrycznych (i ich pochodnych). Zatem wstawiając równania z tego lematu do równania Gaussa otrzymujemu szukane wyrażenie $l_{11}l_{22} - l_{12}^2$ w tylko terminach funkcji g_{ii} (oraz ich pochodnych).

Theorema Egregium

Prześledzić dowód Theorema Egregium i wyprowadzić bezpośredni wzór na krzywiznę Gaussa zawierający tylko współczynniki metryczne i ich pochodne.

Uwaga

Twierdzenie odwrotne do Theorema Egregium nie zachodzi. Mianowicie istnieją powierzchnie M i N oraz odwzorowania $f: M \to N$ dla których K(f(p)) = K(p), lecz mimo wszystko f nie jest lokalną izometrią.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Twierdzenie klasyfikacyjne Symbole Christoffela Theorema Egregium

Twierdzenie klasyfik

Zadanie

Prześledzić dowód Theorema Egregium i wyprowadzić bezpośredni wzór na krzywiznę Gaussa zawierający tylko współczynniki metryczne i ich pochodne.

Uwaga

Twierdzenie odwrotne do Theorema Egregium nie zachodzi. Mianowicie istnieją powierzchnie M i N oraz odwzorowania $f: M \to N$ dla których K(f(p)) = K(p), lecz mimo wszystko f nie jest lokalną izometrią.

Powierzchnie w \mathbb{R}^3

Wektory styczne normalne. I forma podstawowa

ierunkowe. cometria.

Krzywizna Gaussa

Krzywizna Gaussa II

Theorema Egregiu
i Twierdzenie
klasyfikacyjne
Symbole Christoffela
Theorema Egregium

Elementarna

$$M = \{y(u, v) = (u \sin v, u \cos v, \ln u) : u \in \mathbb{R}_+, v \in (-\pi, \pi)\},\$$

 $N = \{x(u, v) = (v \sin u, v \cos u, u) : u \in \mathbb{R}_+, v \in (-\pi, \pi)\},\$

oraz zdefiniujmy funkcję $f:M\to N$ jako

$$f(y(u, v)) \stackrel{\text{def.}}{=} x(v, u).$$

Wtedy (sprawdzić!)

$$K(f(y(u, v))) = K(x(v, u)) = \frac{-1}{(1 + u^2)^2} = K(y(u, v)).$$

Gdyby Jednak f była lokalną izometrią, wówczas lokalne układy współrzędnych x i y musiałyby mieć te same współczynniki metryczne (z zamienionymi zmiennymi). Jednak $g_{11}^{M}(u, v) = 1 + \frac{1}{v^2}$ podczas gdy $g_{11}^{N}(u, v) = 1$.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium

klasyfikacyjne

Symbole Christoffela Theorema Egregium

$$M = \{y(u, v) = (u \sin v, u \cos v, \ln u) : u \in \mathbb{R}_+, v \in (-\pi, \pi)\},\$$

 $N = \{x(u, v) = (v \sin u, v \cos u, u) : u \in \mathbb{R}_+, v \in (-\pi, \pi)\},\$

oraz zdefiniujmy funkcję $f: M \to N$ jako

$$f(y(u, v)) \stackrel{\text{def.}}{=} x(v, u).$$

Wtedy (sprawdzić!)

$$K(f(y(u, v))) = K(x(v, u)) = \frac{-1}{(1 + u^2)^2} = K(y(u, v)).$$

Gdyby Jednak f była lokalną izometrią, wówczas lokalne układy współrzędnych x i y musiałyby mieć te same współczynniki metryczne (z zamienionymi zmiennymi). Jednak $g_{11}^{M}(u, v) = 1 + \frac{1}{v^2}$ podczas gdy $g_{11}^{N}(u, v) = 1$.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

heorema Egregium

klasyfikacyjne Symbole Christoffela

Theorema Egregium
Twierdzenie klasyfikui

Twieruzeille Klasyi

$$M = \{y(u, v) = (u \sin v, u \cos v, \ln u) : u \in \mathbb{R}_+, v \in (-\pi, \pi)\},\$$

 $N = \{x(u, v) = (v \sin u, v \cos u, u) : u \in \mathbb{R}_+, v \in (-\pi, \pi)\},\$

oraz zdefiniujmy funkcję $f: M \to N$ jako

$$f(y(u, v)) \stackrel{\text{def.}}{=} x(v, u).$$

Wtedy (sprawdzić!)

$$K(f(y(u, v))) = K(x(v, u)) = \frac{-1}{(1 + u^2)^2} = K(y(u, v)).$$

Gdyby jednak f była lokalną izometrią, wówczas lokalne układy współrzędnych x i y musiałyby mieć te same współczynniki metryczne (z zamienionymi zmiennymi). Jednak $g_{11}^{M}(u, v) = 1 + \frac{1}{v^2}$ podczas gdy $g_{11}^{N}(u, v) = 1$.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Twierdzenie dasyfikacyjne Symbole Christoffela Theorema Egregium

Niech $U \subset \mathbb{R}^2$ będzie spójnym zbiorem otwartym.

Załóżmy, że mamy dane symetryczne macierze 2×2 funkcji $(g_{ij}: U \to \mathbb{R})$ oraz $(l_{ij}: U \to \mathbb{R})$ spełniających $\det(g_{ij}) > 0$,oraz mamy dane osiem funkcji $\Gamma^k_{ij}: U \to \mathbb{R}$ (dla i, j, k = 1, 2) spełniających z powyższmi (g_{ij}) i (l_{ij}) dwa równania Codazziego-Mainardiego i równanie Gaussa. Wówczas istnieje powierzchnia $x: U \to M$ dla której

- ▶ (g_{ij}) tworzą pierwszą formę podstawową,
- $ightharpoonup (l_{ij})$ tworzą drugą formę podstawową,
- Γ^k_{ij} tworzą układ funkcji Christoffela.

Co więcej dowolne dwie takie powierzchnie są ze sobą lokalnie izometryczne.

Dowód: Pomijamy.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

I wierdzenie klasyfikacyjne Symbole Christoffela Theorema Egregium

Niech $U \subset \mathbb{R}^2$ będzie spójnym zbiorem otwartym. Załóżmy, że mamy dane symetryczne macierze 2×2 funkcji $(g_{ij}: U \to \mathbb{R})$ oraz $(l_{ij}: U \to \mathbb{R})$ spełniających $\det(g_{ij}) > 0$,oraz mamy dane osiem funkcji $\Gamma^k_{ij}: U \to \mathbb{R}$ (dla i, j, k = 1, 2) spełniających z powyższmi (g_{ij}) i (l_{ij}) dwa równania Codazziego-Mainardiego i równanie Gaussa. Wówczas istnieje powierzchnia $x: U \to M$ dla którei

- ▶ (g_{ij}) tworzą pierwszą formę podstawową,
- $ightharpoonup (l_{ij})$ tworzą drugą formę podstawową,
- $ightharpoonup \Gamma_{ij}^k$ tworzą układ funkcji Christoffela.

Co więcej dowolne dwie takie powierzchnie są ze sobą lokalnie izometryczne.

Dowód: Pomijamy.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Twierdzenie
asyfikacyjne
ymbole Christoffela

Twierdzenie (Klasyfikacyjne powierzchni)

Niech $U \subset \mathbb{R}^2$ będzie spójnym zbiorem otwartym. Załóżmy, że mamy dane symetryczne macierze 2×2 funkcji $(g_{ij}: U \to \mathbb{R})$ oraz $(l_{ij}: U \to \mathbb{R})$ spełniających $\det(g_{ij}) > 0$,oraz mamy dane osiem funkcji $\Gamma^k_{ij}: U \to \mathbb{R}$ (dla i, j, k=1,2) spełniających z powyższmi (g_{ij}) i (l_{ij}) dwa równania Codazziego-Mainardiego i równanie Gaussa. Wówczas istnieje powierzchnia $x: U \to M$ dla której

- $ightharpoonup (g_{ij})$ tworzą pierwszą formę podstawową,
- $ightharpoonup (l_{ij})$ tworzą drugą formę podstawową,
- $ightharpoonup \Gamma_{ij}^k$ tworzą układ funkcji Christoffela.

Co więcej dowolne dwie takie powierzchnie są ze sobą lokalnie izometryczne.

Dowód: Pomijamy.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

cierunkowe. zometria.

Krzywizna Gaussa

Krzywizna Gaussa II

heorema Egregiur 「wierdzenie asyfikacyjne

Theorema Egregiu

Twierdzenie (Klasyfikacyjne powierzchni)

Niech $U \subset \mathbb{R}^2$ będzie spójnym zbiorem otwartym. Załóżmy, że mamy dane symetryczne macierze 2×2 funkcji $(g_{ij}: U \to \mathbb{R})$ oraz $(l_{ij}: U \to \mathbb{R})$ spełniających $\det(g_{ij}) > 0$,oraz mamy dane osiem funkcji $\Gamma^k_{ij}: U \to \mathbb{R}$ (dla i, j, k=1,2) spełniających z powyższmi (g_{ij}) i (l_{ij}) dwa równania Codazziego-Mainardiego i równanie Gaussa. Wówczas istnieje powierzchnia $x: U \to M$ dla której

- $ightharpoonup (g_{ij})$ tworzą pierwszą formę podstawową,
- $ightharpoonup (l_{ij})$ tworzą drugą formę podstawową,
- $ightharpoonup \Gamma_{ij}^k$ tworzą układ funkcji Christoffela.

Co więcej dowolne dwie takie powierzchnie są ze sobą lokalnie izometryczne.

Dowód: Pomijamy.

Powierzchnie w \mathbb{R}^3

Wektory styczne Iormalne. I forma Iodstawowa

ierunkowe. cometria.

Krzywizna Gaussa

rzywizna Gaussa

Twierdzenie asyfikacyjne

Theorema Egregium

Niech $U \subset \mathbb{R}^2$ będzie spójnym zbiorem otwartym. Załóżmy, że mamy dane symetryczne macierze 2×2 funkcji $(g_{ij}: U \to \mathbb{R})$ oraz $(l_{ij}: U \to \mathbb{R})$ spełniających $\det(g_{ij}) > 0$,oraz mamy dane osiem funkcji $\Gamma^k_{ij}: U \to \mathbb{R}$ (dla i, j, k = 1, 2) spełniających z powyższmi (g_{ij}) i (l_{ij}) dwa równania Codazziego-Mainardiego i równanie Gaussa. Wówczas istnieje powierzchnia $x: U \to M$ dla której

- ▶ (g_{ij}) tworzą pierwszą formę podstawową,
- $ightharpoonup (l_{ij})$ tworzą drugą formę podstawową,
- $ightharpoonup \Gamma_{ij}^k$ tworzą układ funkcji Christoffela.

Co więcej dowolne dwie takie powierzchnie są ze sobą lokalnie izometryczne.

Dowód: Pomijamy.

Powierzchnie w \mathbb{R}^3

vektory styczne Jormalne. I forma Jodstawowa

erunkowe. ometria.

Crzywizna Gauss

rzywizna Gaus:

heorema Egregiu Twierdzenie lasyfikacyjne

Theorema Egregium

Niech $U \subset \mathbb{R}^2$ będzie spójnym zbiorem otwartym. Załóżmy, że mamy dane symetryczne macierze 2×2 funkcji $(g_{ij}: U \to \mathbb{R})$ oraz $(l_{ij}: U \to \mathbb{R})$ spełniających $\det(g_{ij}) > 0$,oraz mamy dane osiem funkcji $\Gamma^k_{ij}: U \to \mathbb{R}$ (dla i, j, k = 1, 2) spełniających z powyższmi (g_{ij}) i (l_{ij}) dwa równania Codazziego-Mainardiego i równanie Gaussa. Wówczas istnieje powierzchnia $x: U \to M$ dla której

- ▶ (g_{ij}) tworzą pierwszą formę podstawową,
- $ightharpoonup (l_{ij})$ tworzą drugą formę podstawową,
- $ightharpoonup \Gamma_{ij}^k$ tworzą układ funkcji Christoffela.

Co więcej dowolne dwie takie powierzchnie są ze sobą lokalnie izometryczne.

Dowód: Pomijamy.

Powierzchnie w \mathbb{R}^3

wektory styczne normalne. I forma oodstawowa

ochodne erunkowe. ometria.

Krzywizna Gaussa

Crzywizna Gaussa

heorema Egregiun Twierdzenie

Symbole Christoffela Theorema Egregium