Санкт-Петербургский Политехнический Университет им. Петра Великого

Институт прикладной математики и механики Кафедра прикладной математики

ЛАБОРАТОРНАЯ РАБОТА №5 ВЫБОРОЧНЫЕ КОЭФФИЦИЕНТЫ КОРРЕЛЯЦИИ И ЭЛЛИПСЫ РАССЕИВАНИЯ

Студент группы 3630102/70301

Камянский Д.В.

Преподаватель

Баженов А. Н.

Содержание

- 1 Список иллюстраций
- 2 Список таблиц

3 Постановка задачи

Сгенерировать двумерные выборки размерами 20,60,100 для двумерного нормального распределения $N(x,y,0,0,1,1,\rho)$.

Коэффициент корреляции ρ взять равным 0, 0.5, 0.9.

Каждая выборка генерируется 1000 раз и для неё вычисляются: среднее значение, среднее значение квадрата и дисперсия коэффициентов корреляции Пирсона, Спирмена и квадрантного коэффициента корреляции. Повторить все вычисления для смеси нормальных распределений:

$$f(x,y) = 0.9N(x,y,0,0,1,1,0.9) + 0.1N(x,y,0,0,10,10,-0.9)$$
(1)

Изобразить сгенерированные точки на плоскости и нарисовать эллипс равновероятности.

4 Теория

1. Двумерное нормально распределение:

$$N(x, y, \bar{x}, \bar{y}, \sigma_x, \sigma_y, \rho) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \times \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\bar{x})^2}{\sigma_x^2} - 2\rho \frac{(x-\bar{x})(y-\bar{y})}{\sigma_x\sigma_y} + \frac{(y-\bar{y})^2}{\sigma_y^2}\right]\right)$$
(2)

2. Коэффициент корреляции Пирсона:

$$r = \frac{\frac{1}{n} \sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\frac{1}{n} \sum (x_i - \bar{x})^2 \frac{1}{n} \sum (y_i - \bar{y})^2}}$$
(3)

3. Квадрантный коэффициент корреляции:

$$r_Q = \frac{(n_1 + n_3) - (n_2 + n_4)}{n} \tag{4}$$

где n_1, n_2, n_3, n_4 — количества точек с координатами (x_i, y_i) , попавшими соответственно в I,II,III и IV квадранты декартовой системы с осями $x^{'} = x - medx, y^{'} = y - medy$ и с центром в точке с координатами(medx, medy)

4. Коэффициент корреляции Спирмана:

$$r_S = \frac{\frac{1}{n} \sum (u_i - \bar{u})(v_i - \bar{v})}{\sqrt{\frac{1}{n} \sum (u_i - \bar{u})^2 \frac{1}{n} \sum (v_i - \bar{v})^2}}$$
(5)

где u и v – ранги, соотвествующие значениям переменной X и Y соответственно.

5 Реализация

Работы была выполнена на языке Python 3.8.2 Для генерации выборок использовался модуль модуль stats библиотеки scipy. Для построения графиков использовалась библиотека matplotlib.

6 Результаты

Рис. 1: Графики двумерного нормального распределения и смеси для размера выборки n=20

Рис. 2: Графики двумерного нормаль фото Распредения и смеси для размера выборки n=60 dotsNormal1.png

Таблица 1: Результаты для двумерного нормального распределения (??) при p=0.0

				_				
	Normal $n = 20, p = 0.0$				Normal $n = 60, p = 0.0$			0.0
	Pearson	Spearman	Quad			Pearson	Spearman	Quad
Табли	ца (3 :1 8892 ль	та 0ы 45дя дв	у 0.9000 00	нор	маДън	101(0) (1 246 (41 2 1)	ед елелли О¶??) -10p01838333 0
E^2	0.05409	0.04186	0.02800		E^2	0.01080	0.00965	0.00667
D	0.01840	0.02071	0.02440		D	0.00865	0.00704	0.00556
	Norma	n = 20, p = 0).5			Normal	n = 60, p = 0	.5
	Rearana	n Spearman(0.0 Quad			Profedi	<i>ո</i> Տբ բաց ը;aթ.=	$0.\Omega$ uad
E	P@50363	Spearman	OQ46ΩΦ0		E	P & 21847	Spearman	0.81333
E	-0.03469	-0.02803	-0:03200		E^2	0.00805	0.33759	0166760
$E^{\mathbf{p}}$	00001853	090034395	0.0018640		₽ ²	0.00064	0.00033	00000094
D	0.00411	0.00461	0.00762] .	D	0.00088	0.00073	0.00088
	Normal	n = 100, p = 100	0.5			Normal r	n = 1000, p = 1	0.5
	Pearson	Spearman	Quad			Pearson	Spearman	Quad
E	0.10020	0.47702	0.33200		Е	0.49458	0.47938	0.33320
E^2	0.25200	0.23489	0.12048		E^2	0.24515	0.23052	0.11207
D	0.00570	0.00734	0.01026		D	0.00054	0.00071	0.00105

Рис. 3: Графики двумерного нормального распределения и смеси для размера выборки n=100

dotsNormal2.png

Таблица 3: Результаты для двумерного нормального распределения $(\ref{eq:condition})$ при p=0.9

Normal $n = 20, p = 0.9$					
	Pearson	Spearman	Quad		
E	0.90154	0.85850	0.64000		
E^2	0.81558	0.74275	0.44000		
D	0.00281	0.00574	0.03040		

Normal $n = 60, p = 0.9$					
	Pearson	Spearman	Quad		
Е	0.89761	0.88464	0.69333		
E^2	0.80681	0.78457	0.48622		
D	0.00112	0.00198	0.00551		

Normal $n = 100, p = 0.9$					
	Pearson	Spearman	Quad		
E	0.89624	0.88888	0.71600		
E^2	0.80360	0.79094	0.51728		
D	0.00037	0.00082	0.00462		

Normal $n = 1000, p = 0.9$					
	Pearson	Spearman	Quad		
E	0.89971	0.88953	0.71120		
E^2	0.80951	0.79132	0.50603		
D	0.00004	0.00005	0.00022		

NormalMix $n = 20$, $p_1 = 0.9$, $p_2 = -0.9$				
	Pearson	Spearman	Quad	
Е	0.90154	0.85850	0.64000	
E^2	0.12784	0.14056	0.18000	
D	0.03603	0.04226	0.11240	

NormalMix $n = 60$, $p_1 = -0.9$, $p_2 = -0.9$				
	Pearson	Spearman	Quad	
E	0.34444	0.33502	0.24000	
E^2	0.13330	0.12744	0.08711	
D	0.01466	0.01521	0.02951	

Nor	NormalMix $n = 100, p_1 = 0.9, p_2 = -0.9$					
	Pearson	Spearman	Quad			
E	0.42503	0.39751	0.26400			
E^2	0.18615	0.16254	0.07584			
D	0.00550	0.00453	0.00614			

Nori	NormalMix $n = 1000$, $p_1 = 0.9$, $p_2 = -0.9$				
	Pearson	Spearman	Quad		
E	0.38948	0.37427	0.25080		
E^2	0.15242	0.14103	0.06380		
D	0.00073	0.00095	0.00090		

7 Выводы

По таблицам ??, ??, ??, ??, видно, что, при увеличении объёма выборки, подсчитанные коэффициенты корреляции стремятся к теоретическим.

Ближе всех к данному коэффициенту корреляции находится коэффициент Пирсона.

По графикам видно, что при уменьшении корреляции эллипс равновероятности стремится к окружности, а при увеличении растягивается.

8 Список литературы

- [1] Модуль numpy https://physics.susu.ru/vorontsov/language/numpy.html
- [2] Модуль matplotlib https://matplotlib.org/users/index.html
- [3] Модуль scipy https://docs.scipy.org/doc/scipy/reference/
- [4] Двумерное нормальное распределение: https://en.wikipedia.org/wiki/Multivariate_normal_distribution
- [5] Коэффициент корреляции Пирса: http://statistica.ru/theory/koeffitsient-korrelyatsii/
- [6] Коэффициент корреляции Спирмана: http://economic-definition.com/Exchange Terminology/Koefficient korrelyacii Correlation coefficient eto.html

9 Приложения

 ${\it K}$ од отчёта: https://github.com/MisterProper9000/MatStatLabs/blob/master/MatStatLab5/MatStatLab5.tex

Kод лаборатрной: https://github.com/MisterProper9000/MatStatLabs/blob/master/MatStatLab5/MatStatLab5.py