MODELLING AND SIMULATION

Lesson 5- SS 2014 - Michel Kana

What do we do in today's lesson?

- 1. Summary of the previous practice
- Epidemiology models
- 3. Compartmental modeling
- 4. Summary

Summary of the previous practice

[Population models]

Models of structured populations

Epidemiology models - SIR

- We assume to have an epidemic with the following characteristics
 - The disease spreads through contact or close proximity between infected and healthy individuals
 - The probability for two individuals to come to contact is the same within the population
 - There is no incubation period and the disease becomes effective immediately after contact
 - The population is closed with constant size (no births neither deaths)
- □ SIR is a simple model for many infectious diseases, including measles , mumps and rubella
 - S(t) represents the number of individuals susceptible to infection
 - \blacksquare I(t) represents the number of infected individuals, i.e. those who show signs of illness and spreads disease further.
 - R(t) represents the number of removed individuals, i.e. those in a period of isolation or resistant individuals who were previously infected and have recovered with immunity.
 - represents the average spreading rate of infection, i.e. the adequate number of contacts sufficient for the transmission of infection between individuals.
 - lacktriangledown a represents the removal rate, the speed of isolation or treatment of infected individuals.

Epidemiology models - SIR

- \square N is the total number of individuals in the population.
- $\frac{I(t)}{N}$ represents the proportion of infected individuals in the population.
- $\frac{r \cdot I(t)}{N}$ represents the rate infected individual gives rise to new infections.
- $\frac{r \cdot I(t)}{N} \cdot S(t)$ represents the rate at which susceptible individuals encounter infected individuals and become infected.
- $a \cdot I(t)$ is the rate at which infected individuals are removed from the infective class

$$\frac{dS(t)}{dt} = -r \cdot S(t) \cdot I(t)$$

$$\frac{dI(t)}{dt} = r \cdot S(t) \cdot I(t) - a \cdot I(t)$$

$$\frac{dR(t)}{dt} = a \cdot I(t)$$

$$S(t) + I(t) + R(t) = N$$

Epidemiology models - SIR

Equilibrium occurs

- Before disease begins spreading S(0) = N and R(0) = 0
- - $r \cdot S(0) \cdot I(t) a \cdot I(t) > 0$
 - $(r \cdot S(0) \cdot -a) \cdot I(t) > 0$
 - $r \cdot S(0) \cdot -a > 0$
 - $\frac{r}{a} \cdot S(0) > 1$
 - $\frac{r}{a} \cdot S(0)$ is the basic contact number
 - $\frac{r}{a} \cdot S(0) > 1$: infection will be established in the population. Infection peaks and then disappears.
 - = $\frac{r}{a} \cdot S(0) < 1$: the infection dies out and there is no epidemic.
- $lue{}$ After disease has moved through the entire population S=0 and R=N

$$\frac{dS(t)}{dt} = -r \cdot S(t) \cdot I(t)$$

$$\frac{dI(t)}{dt} = r \cdot S(t) \cdot I(t) - a \cdot I(t)$$

$$\frac{dR(t)}{dt} = a \cdot I(t)$$

$$S(t) + I(t) + R(t) = N$$

Introduction to compartment models

- Compartment models are often used to describe transport of material in biological systems
 - Material could be energy, substance, individuals of a population
 - Compartments can represent organs, species of animal and plants
 - Material can either
 - flow from one compartment to another,
 - or it can be added from the outside through a source
 - or it can be removed through a drain or a sink
- We assume that
 - all material in the compartment is homogeneous
 - The system is closed in some sense. In other words the compartments may not include unaccounted for sources or sinks
 - All transport channels are known and the equation of mass balance can be applied

Example of compartment models

Pharmacokinetic model with 1 compartment

- lacktriangle A one-compartment model is a simplified view of a homogeneous body where drug quantity u_1 is input as bogus
- \square The amount of drug X_1 is distributed over the hypothetical volume V_1 .
- \square An experimental setup measures the concentration of drug in the body $Y_1 = X_1/V_1$.
- The rate of extraction of drug k_{11} from the body is proportional to the amount of drug inside the body.

Pharmacokinetic model with 1 compartment

The change of drug amount over the time in the compartment is equal to the drug input minus drug output

- Observation or measurements of drug concentration in the body is equal to the drug amount in the body divided by the hypothetical volume
 - $Y_1 = \frac{1}{V_1} X_1$
- The observation function shows the change of concentration of drug in the compartment over the time and can be visualized for given parameter values

$$Y_1(t) = \left(\frac{1}{v_1}e^{-k_{11}t}\right)u_1$$

Pharmacokinetic model with 2 compartments

The change of drug amount (input minus output) in the compartments is given by the following differential equations:

 Observation or measurements of drug concentration in the body is equal to the drug amount in the body divided by the hypothetical volume

$$Y_1 = \frac{1}{V_1} X_1 + 0.X_2$$

Pharmacokinetic model with 2 compartments

- We rewrite this differential equation using matrixes, we obtain the so called state-space notation of the Linear Time Invariant Lumped Parameters Dynamic System
 - $\dot{X} = A.X + B.U$
 - Y = C.X + D.U
 - $X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ is the state vector
 - $U = [u_1]$ is the input vector
 - $A = \begin{bmatrix} (-k_{11} k_{12}) & 0 \\ k_{12} & -k_{22} \end{bmatrix}$ is the system or parameter matrix
 - $B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is the input matrix
 - $Y = [Y_1]$ is the observation vector
 - $C = \begin{bmatrix} \frac{1}{V_1} & 0 \end{bmatrix}$ is the output matrix

Pharmacokinetic model with 3 compartments

$$\dot{X}_{1} = (-k_{12} - k_{13}) \cdot X_{1} + k_{21} \cdot X_{2} + k_{31} \cdot X_{3} + u_{1}
\dot{X}_{2} = k_{12} \cdot X_{1} + (-k_{21} - k_{22}) \cdot X_{2} + 0 \cdot X_{3} + 0
\dot{X}_{3} = k_{13} \cdot X_{1} + 0 \cdot X_{2} + 0 \cdot X_{3}
Y_{1} = \frac{1}{V_{1}} \cdot X_{1} + 0 \cdot X_{2} + 0 \cdot X_{3}$$

$$X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} \quad Y = [Y_1]$$

$$U = [u_1]$$

$$A = \begin{bmatrix} -k_{12} - k_{13} & k_{21} & k_{31} \\ k_{12} & -k_{21} - k_{22} & 0 \\ k_{13} & 0 & -k_{31} \end{bmatrix} \quad B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad C = \begin{bmatrix} \frac{1}{V_1} & 0 & 0 \end{bmatrix}$$

Summary of today's lesson

[Population models]

Epidemiology models

Pharmacokinetic models

[What is next?]

Pharmacokinetic model.