Matemática Financiera

Autor: José M. Martín Senmache Sarmiento

Capítulo 8: Planes de Pago

Solución de Ejercicio Nº10

e-financebook

10. **CONTA S.A.** desea adquirir una maquinaria industrial a través de un crédito prendario otorgado por el Banco de los Emprendedores en las siguientes condiciones:

✓ Precio de venta de la maquinaria : US\$ 25,000.00

✓ Cuota inicial a pagar : 20% del precio de venta

✓ Periodicidad en el pago : Bimestral

✓ Número de años a pagar : 2 años

✓ Tasa efectiva anual : 9% el primer año y 10% el segundo.

✓ Plazos de gracia total : Cuota número 1.

✓ Plazos de gracia parcial : Cuota número 2.

Se pide construir el cronograma de pagos del crédito, considerando:

a) Estilo de pago de francés vencido.

b) Estilo de pago de alemán vencido.

Respuestas: Ver cuadros

DATOS					
Nombre	Descripcion	Valor			
PV	Precio de venta del bien	25,000.00			
%CI	Porcentaje de cuota inicial	20%			
f	f Frecuencia o Perioricidad en el pago Bimestral				
t	t Tiempo 2 años				
TE 1	Tasa de Interés Efectiva Anual (TEA) de los períodos 1 al 6, que genera TEB1				
TE 2	Tasa de Interés Efectiva Anual (TEA) de los períodos 7 al 12, que genera TEB2	10%			
PGT	Primera cuota como plazo de gracia Cuota N°1 total.				
PGP	PGP Segunda cuota como plazo de gracia Cuota Nº2 parcial.				

FÓRMULAS				
Número Fórmula				
19	$TEP_2 = (1 + TEP_1)^{\left(\frac{N^{\circ} díasTEP2}{N^{\circ} díasTEP1}\right)} - 1$			

49
$$R = SI^* \left(\frac{TEP^* (1+TEP)^{(n-nc+1)}}{(1+TEP)^{(n-nc+1)} - 1} \right)$$
68
$$A = \frac{SI}{(n-nc+1)}$$

SOLUCIÓN

Calendario ordinario:

$$C = PV - CI$$

$$C = PV - \%CI*PV$$

$$C = 25,000.00 - 20\% * 25,000.00$$

$$C = 20,000.00$$

$$TEB1 = (1 + TEA1) \begin{bmatrix} \frac{N^0 \text{ díasTEB1}}{N^0 \text{ díasTEA1}} \\ -1 \end{bmatrix}$$

$$TEB1 = (1+9\%) \begin{bmatrix} \frac{60}{360} \end{bmatrix} - 1$$

$$TEB1 = 0.01446659214$$

$$TEB1 = 1.446659214\%$$

$$TEB2 = (1 + TEA2) \begin{bmatrix} \frac{N^0 \text{ díasTEB2}}{N^0 \text{ díasTEA2}} \\ -1 \end{bmatrix}$$

$$TEB2 = (1+10\%) \left(\frac{60}{360} \right)$$

a) Plan de pagos por método Francés:

Cuota Nº1:

Saldo Inicial₁ = C = 20,000.00

 $TEB_1 = TEB1 = 1.446659214\%$

Interés₁ = TEB₁ * Saldo Inicial₁

Interés₁ = 1.446659214% * 20,000.00

Interés₁ = 289.33

Cuota₁ = 0.00 (P.G.T.:no cancela intereses ni amortización)

Amortización₁ = 0.00 (P.G.T.:no amortiza deuda)

Saldo Final₁ = Saldo Inicial₁ + Interes₁ (P.G.T.: capitaliza intereses)

Saldo Final₁ = 20,000.00 + 289.33

Saldo Final₁ = 20,289.33

Cuota Nº2:

Saldo Inicial₂ = Saldo Final₁

Saldo Inicial₂ = 20,289.33

 $TEB_2 = TEB1 = 1.446659214\%$

Interes₂ = TEB₂ * Saldo Inicial₂

Interes₂ = 1.446659214% * 20,289.33

Interes₂ = 293.52

Cuota₂ = 293.52 (P.G.P.:cancela intereses pero no amortización)

Amortización₂ = 0.00 (P.G.P.:no amortiza deuda)

Saldo Final₁ = Saldo Inicial₁ (P.G.P.:deuda se mantiene constante)

Saldo Final, = 20,289.33

Cuota Nº3:

Saldo Inicial₃ = Saldo Final₂

Saldo Inicial₃ = 20,289.33

 $TEB_3 = TEB1 = 1.446659214\%$

Interés₃ = TEC₃ * Saldo Inicial₃

Interés₃ = 1.446659214% * 20,289.33

 $Interés_3 = 293.52$

Cuota₃ = Saldo Inicial₃ *
$$\left(\frac{TEB_3 * (1 + TEB_3)^{(n - nc + 1)}}{(1 + TEB_3)^{(n - nc + 1)} - 1}\right)$$

Cuota₃ = 20,289.33 *
$$\left(\frac{1.446659214\%*(1+1.446659214\%)^{(12-3+1)}}{(1+1.446659214\%)^{(12-3+1)}-1}\right)$$

Cuota₃ = 2,193.84

Amortización₃ = Cuota₃ - Interés₃

Amortización₃ = 2,193.84 - 293.52

Amortización₃ = 1,900.33

Saldo Final₃ = Saldo Inicial₃ - Amortización₃

Saldo Final₃ = 20,289.33 - 1,900.33

Saldo $Final_3 = 18,389.00$

Cuota Nº4:

Saldo Inicial₄ = Saldo Final₃

Saldo Inicial₄ = 18,389.00

 $TEB_4 = TEB1 = 1.446659214\%$

Interés₄ = TEB₄ * Saldo Inicial₄

 $Interés_4 = 1.446659214\% * 18,389.00$

Interés₄ = 266.03

Cuota₄ = 18,389.00 *
$$\left(\frac{1.446659214\%*(1+1.446659214\%)^{(12-4+1)}}{(1+1.446659214\%)^{(12-4+1)}-1}\right)$$

 $Cuota_4 = 2,193.84$

Amortización₄ = Cuota₄ - Interés₄

Amortización₄ = 2,193.84 - 266.03

Amortización₄ = 1,927.82

Saldo Final₄ = Saldo Inicial₄ - Amortización₄

Saldo Final₄ = 18,389.00 - 1,927.82

Saldo Final₄ = 16,461.19

Cuota Nº5:

Saldo Inicial₅ = Saldo Final₄

Saldo Inicial₅ = 16,461.19

 $TEB_5 = TEB1 = 1.446659214\%$

Interés₅ = TEB₅ * Saldo Inicial₅

Interés₅ = 1.446659214% * 16,461.19

Interés₅ = 238.14

Cuota₅ = 16,461.19 *
$$\left(\frac{1.446659214\%*(1+1.446659214\%)^{(12-5+1)}}{(1+1.446659214\%)^{(12-5+1)}-1}\right)$$

 $Cuota_5 = 2,193.84$

 $Amortización_5 = Cuota_5 - Interés_5$

Amortización₅ = 2,193.84 - 238.14

Amortización₅ = 1,955.71

Saldo Final₅ = Saldo Inicial₅ - Amortización₅

Saldo Final₅ = 16,461.19 - 1,955.71

Saldo Final₅ = 14,505.48

Cuota Nº6:

Saldo Inicial₆ = Saldo Final₅

Saldo Inicial₆ = 14,505.48

 $TEB_6 = TEB1 = 1.446659214\%$

Interés₆ = TEB₆ * Saldo Inicial₆

Interés₆ = 1.446659214% * 14,505.48

 $Interés_6 = 209.84$

Cuota₆ = 14,505.48 *
$$\left(\frac{1.446659214\% * (1+1.446659214\%)^{(12-6+1)}}{(1+1.446659214\%)^{(12-6+1)}-1}\right)$$

Cuota₆ = 2,193.84

Amortización₆ = Cuota₆ - Interés₆

Amortización₆ = 2,193.84 - 209.84

Amortización₆ = 1,984.00

Saldo Final₆ = Saldo Inicial₆ - Amortización₆

Saldo $Final_6 = 14,505.48 - 1,984.00$

Saldo Final₆ = 12,521.48

Cuota Nº7:

Saldo Inicial, = Saldo Final,

Saldo Inicial, = 12,521.48

 $TEB_7 = TEB2 = 1.601186777\%$

Interés, = TEB, * Saldo Inicial,

Interés $_{7} = 1.601186777\% * 12,521.48$

Interés $_7 = 200.49$

Cuota₇ = 12,521.48 *
$$\left(\frac{1.601186777\% * (1+1.601186777\%)^{(12-7+1)}}{(1+1.601186777\%)^{(12-7+1)}-1}\right)$$

Cuota₇ = 2,205.41

Amortización, = Cuota, - Interés,

Amortización₇ = 2,205.41 - 200.49

Amortización $_7 = 2,004.92$

Saldo Final₇ = Saldo Inicial₇ – Amortización₇

Saldo Final, = 12,521.48 - 2,004.92

Saldo Final₇ = 10,516.56

Cuota Nº8:

Saldo Inicial₈ = Saldo Final₇

Saldo Inicial $_8 = 10,516.56$

TEB₈ = TEB2 = 1.601186777%

Interés₈ = TEB₈ * Saldo Inicial₈

Interés₈ = 1.601186777% * 10,516.56

Interés₈ = 168.39

Cuota₈ = 10,516.56 *
$$\left(\frac{1.601186777\%*(1+1.601186777\%)^{(12-8+1)}}{(1+1.601186777\%)^{(12-8+1)}-1}\right)$$

Cuota₈ = 2,205.41

Amortización₈ = Cuota₈ - Interés₈

Amortización $_8 = 2,205.41 - 168.39$

Amortización₈ = 2,037.03

Saldo Final₈ = Saldo Inicial₈ - Amortización₈

Saldo Final₈ = 10,516.56 - 2,037.03

Saldo Final₈ = 8,479.53

Cuota Nº9:

Saldo Inicial, = Saldo Final,

Saldo Inicial₉ = 8,479.53

 $TEB_9 = TEB2 = 1.601186777\%$

Interés₉ = TEB₉ * Saldo Inicial₉

Interés $_{q} = 1.601186777\% * 8,479.53$

Interés₉ = 135.77

Cuota₉ = 8,479.53 *
$$\left(\frac{1.601186777\% * (1+1.601186777\%)^{(12-9+1)}}{(1+1.601186777\%)^{(12-9+1)}-1}\right)$$

Cuota $_9 = 2,205.41$

Amortización₉ = Cuota₉ - Interés₉

Amortización₉ = 2,205.41 - 135.77

Amortización₉ = 2,069.64

Saldo Final₉ = Saldo Inicial₉ - Amortización₉

Saldo Final_o = 8,479.53 - 2,069.64

Saldo Final_g = 6,409.89

Cuota Nº10:

Saldo Inicial₁₀ = Saldo Final₉

Saldo Inicial₁₀ = 6,409.89

 $TEB_{10} = TEB2 = 1.601186777\%$

Interés₁₀ = TEB₁₀ * Saldo Inicial₁₀

 $Interés_{10} = 1.601186777\% * 6,409.89$

Interés₁₀ = 102.63

Cuota₁₀ = 6,409.89 *
$$\frac{1.601186777\% * (1+1.601186777\%)^{(12-10+1)}}{(1+1.601186777\%)^{(12-10+1)} - 1}$$

Cuota₁₀ = 2,205.41

Amortización₁₀ = Cuota₁₀ - Interés₁₀

Amortización₁₀ = 2,205.41 - 102.63

Amortización₁₀ = 2,102.78

Saldo Final₁₀ = Saldo Inicial₁₀ - Amortización₁₀

Saldo Final₁₀ = 6,409.89 - 2,102.78

Saldo Final₁₀ = 4,307.11

Cuota Nº11:

Saldo Inicial₁₁ = Saldo Final₁₀

Saldo Inicial₁₁ = 4,307.11

 $TEB_{11} = TEB2 = 1.601186777\%$

Interés₁₁ = TEB₁₁ * Saldo Inicial₁₁

Interés₁₁ = 1.601186777% * 4,307.11

Interés₁₁ = 68.96

Cuota₁₁ = 4,307.11*
$$\frac{1.601186777\% * (1+1.601186777\%)^{(12-11+1)}}{(1+1.601186777\%)^{(12-11+1)}-1}$$

Cuota₁₁ = 2,205.41

Amortización₁₁ = Cuota₁₁ - Interés₁₁

Amortización₁₁ = 2,205.41 - 68.96

Amortización₁₁ = 2,136.45

Saldo Final₁₁ = Saldo Inicial₁₁ - Amortización₁₁

Saldo Final₁₁ = 4,307.11 - 2,136.45

Saldo Final₁₁ = 2,170.66

Cuota Nº12:

Saldo Inicial₁₂ = Saldo Final₁₁

Saldo Inicial₁₂ = 2,170.66

 $TEB_{12} = TEB2 = 1.601186777\%$

Interés₁₂ = TEB₁₂ * Saldo Inicial₁₂

Interés₁₂ = 1.601186777% * 2,170.66

Interés₁₂ = 34.76

Cuota₁₂ = 2,170.66 * $\left(\frac{1.601186777\% * (1+1.601186777\%)^{(12-12+1)}}{(1+1.601186777\%)^{(12-12+1)}-1}\right)$

 $Cuota_{12} = 2,205.41$

Amortización₁₂ = Cuota₁₂ - Interés₁₂

Amortización₁₂ = 2,205.41 - 34.76

Amortización₁₂ = 2,170.66

Saldo Final₁₂ = Saldo Inicial₁₂ – Amortización₁₂

Saldo Final₁₂ = 2,170.66 - 2,170.66

Saldo $Final_{12} = 0.00$

Nº	Plazo Gracia	Saldo Inicial	Interes	Cuota	Amort.	Saldo Final
1	Т	20,000.00	(289.33)	0.00	0.00	20,289.33
2	Р	20,289.33	(293.52)	(293.52)	0.00	20,289.33
3	S	20,289.33	(293.52)	(2,193.84)	(1,900.33)	18,389.00
4	S	18,389.00	(266.03)	(2,193.84)	(1,927.82)	16,461.19
5	S	16,461.19	(238.14)	(2,193.84)	(1,955.71)	14,505.48
6	S	14,505.48	(209.84)	(2,193.84)	(1,984.00)	12,521.48
7	S	12,521.48	(200.49)	(2,205.41)	(2,004.92)	10,516.56
8	S	10,516.56	(168.39)	(2,205.41)	(2,037.03)	8,479.53
9	S	8,479.53	(135.77)	(2,205.41)	(2,069.64)	6,409.89
10	S	6,409.89	(102.63)	(2,205.41)	(2,102.78)	4,307.11
11	S	4,307.11	(68.96)	(2,205.41)	(2,136.45)	2,170.66
12	S	2,170.66	(34.76)	(2,205.41)	(2,170.66)	0.00

b) Plan de pagos por método Alemán:

Cuota Nº1:

Saldo Inicial₁ = C = 20,000.00

 $TEB_1 = TEB1 = 1.44665214\%$

Interés₁ = TEB₁ * Saldo Inicial₁

 $Interés_1 = 1.44665214\% * 20,000.00$

Interés₁ = 289.33

Amortización₁ = 0.00 (P.G.T.:no amortiza deuda)

Cuota₁ = 0.00 (P.G.T.:no cancela intereses ni amortización)

Saldo Final₁ = Saldo Inicial₁ + Interés₁ (P.G.T. : capitaliza intereses)

Saldo Final₁ = 20,000.00 + 289.33

Saldo Final₁ = 20,289.33

Cuota Nº2:

Saldo Inicial₂ = Saldo Final₁

Saldo Inicial₂ = 20,289.33

 $TEB_2 = TEB1 = 1.44665214\%$

Interés₂ = TEB₂ * Saldo Inicial₂

Interés₂ = 1.44665214% * 20,289.33

 $Interés_2 = 293.52$

Amortización₂ = 0.00 (P.G.P.:no amortiza deuda)

Cuota₂ = Interés₂ (P.G.P.:cancela intereses pero no amortización)

 $Cuota_2 = 293.52$

Saldo Final₂ = Saldo Inicial₂ (P.G.P.:deuda se mantiene constante)

Saldo Final₂ = 20,289.33

Cuota Nº3:

Saldo Inicial₃ = Saldo Final₂

Saldo $Inicial_3 = 20,289.33$

TEB₃ = TEB1 = 1.44665214%

Interés₃ = TEB₃ * Saldo Inicial₃

Interés₃ = 1.44665214% * 20,289.33

Interés₃ = 293.52

 $Amortización_3 = \frac{Saldo Inicial_3}{n - nc + 1}$

Amortización₃ = $\frac{20,289.33}{12-3+1}$

Amortización₃ = 2,028.93

Cuota₃ = Interés₃ + Amortización₃

Cuota₃ = 293.52 + 2,028.93

Cuota₃ = 2,322.45

Saldo Final₃ = Saldo Inicial₃ - Amortización₃

Saldo Final₃ = 20,289.33 - 2,028.93

Saldo Final₃ = 18,260.40

Cuota Nº4:

Saldo Inicial₄ = Saldo Final₃

Saldo Inicial₄ = 18,260.40

 $TEB_4 = TEB1 = 1.44665214\%$

Interés₄ = TEB₄ * Saldo Inicial₄

Interés₄ = 1.44665214% * 18,260.40

Interés₄ = 264.17

Amortización₄ = $\frac{18,260.40}{12-4+1}$

Amortización₄ = 2,028.93

Cuota₄ = Interés₄ + Amortización₄

Cuota₄ = 264.17 + 2,028.93

Cuota $_4 = 2,293.10$

Saldo Final₄ = Saldo Inicial₄ - Amortización₄

Saldo $Final_4 = 18,260.40 - 2,028.93$

Saldo Final₄ = 16,231.47

Cuota Nº5:

Saldo Inicial₅ = Saldo Final₄

Saldo Inicial₅ = 16,231.47

 $TEB_5 = TEB1 = 1.44665214\%$

Interés₅ = TEB₅ * Saldo Inicial₅

Interés₅ = 1.44665214% * 16,231.47

 $Interés_5 = 234.81$

Amortización₅ = $\frac{16,231.47}{12-5+1}$

Amortización₅ = 2,028.93

Cuota₅ = Interés₅ + Amortización₅

Cuota₅ = 234.81 + 2,028.93

Cuota₅ = 2,263.75

Saldo Final₅ = Saldo Inicial₅ - Amortización₅

Saldo Final₅ = 16,231.47 - 2,028.93

Saldo Final₅ = 14,202.53

Cuota Nº6:

Saldo Inicial₆ = Saldo Final₅

Saldo Inicial₆ = 14,202.53

 $TEB_6 = TEB1 = 1.44665214\%$

Interés₆ = TEB₆ * Saldo Inicial₆

Interés₆ = 1.44665214% * 14,202.53

 $Interés_6 = 205.46$

Amortización₆ = $\frac{14,202.53}{12-6+1}$

Amortización₆ = 2,028.93

Cuota₆ = Interés₆ + Amortización₆

Cuota $_6 = 205.46 + 2,028.93$

Cuota₆ = 2,234.40

Saldo Final₆ = Saldo Inicial₆ - Amortización₆

Saldo Final₆ = 14,202.53 - 2,028.93

Saldo $Final_6 = 12,173.60$

Cuota Nº7:

Saldo Inicial₇ = Saldo Final₆

Saldo Inicial₇ = 12,173.60

 $TEB_7 = TEB2 = 1.601186777\%$

Interés₇ = TEB₇ * Saldo Inicial₇

Interés₇ = 1.601186777% * 12,173.60

Interés $_7 = 194.92$

Amortización₇ = $\frac{12,173.60}{12-7+1}$

Amortización $_7 = 2,028.93$

Cuota₇ = Interés₇ + Amortización₇

Cuota₇ = 194.92 + 2,028.93

 $Cuota_7 = 2,223.86$

Saldo Final₇ = Saldo Inicial₇ - Amortización₇

Saldo Final₇ = 12,173.60 - 2,028.93

Saldo Final₇ = 10,144.67

Cuota Nº8:

Saldo Inicial₈ = Saldo Final₇

Saldo Inicial₈ = 10,144.67

 $TEB_8 = TEB2 = 1.601186777\%$

Interés₈ = TEB₈ * Saldo Inicial₈

Interés₈ = 1.601186777%*10,144.67

 $Interés_8 = 162.44$

Amortización₈ = $\frac{10,144.67}{12-8+1}$

 $Amortización_8 = 2,028.93$

Cuota₈ = Interés₈ + Amortización₈

 $Cuota_8 = 162.44 + 2,028.93$

Cuota₈ = 2,191.37

Saldo Final₈ = Saldo Inicial₈ - Amortización₈

Saldo Final₈ = 10,144.67 - 2,028.93

Saldo Final₈ = 8,115.73

Cuota Nº9:

Saldo Inicial₉ = Saldo Final₈

Saldo Inicial $_9 = 8,115.73$

 $TEB_9 = TEB2 = 1.601186777\%$

Interés₉ = TEB₉ * Saldo Inicial₉

Interés_a = 1.601186777% * 8,115.73

Interés $_{9} = 129.95$

Amortización₉ = $\frac{8,115.73}{12-9+1}$

Amortización₉ = 2,028.93

Cuota₉ = Interés₉ + Amortización₉

Cuota₉ = 129.95 + 2,028.93

Cuota₉ = 2,158.88

Saldo Final₉ = Saldo Inicial₉ - Amortización₉

Saldo Final₉ = 8,115.73 - 2,028.93

Saldo Final₉ = 6,086.80

Cuota Nº10:

Saldo Inicial $_{10}$ = Saldo Final $_{9}$

Saldo Inicial $_{10} = 6,086.80$

 $TEB_{10} = TEB2 = 1.601186777\%$

Interés₁₀ = TEB₁₀ * Saldo Inicial₁₀

 $Interés_{10} = 1.601186777\% * 6,086.80$

Interés₁₀ = 97.46

Amortización₁₀ = $\frac{6,086.80}{12-10+1}$

Amortización₁₀ = 2,028.93

Cuota₁₀ = Interés₁₀ + Amortización₁₀

 $Cuota_{10} = 97.46 + 2,028.93$

Cuota₁₀ = 2,126.39

Saldo Final₁₀ = Saldo Inicial₁₀ - Amortización₁₀

Saldo Final₁₀ = 6,086.80 - 2,028.93

Saldo Final₁₀ = 4,057.87

Cuota Nº11:

Saldo Inicial₁₁ = Saldo Final₁₀

Saldo Inicial₁₁ = 4,057.87

 $TEB_{11} = TEB2 = 1.601186777\%$

Interés₁₁ = TEB₁₁ * Saldo Inicial₁₁

Interés₁₁ = 1.601186777% * 4,057.87

Interés₁₁ = 64.97

Amortización₁₁ = $\frac{4,057.87}{12-11+1}$

Amortización₁₁ = 2,028.93

Cuota₁₁ = Interés₁₁ + Amortización₁₁

 $Cuota_{11} = 64.97 + 2,028.93$

 $Cuota_{11} = 2,093.91$

Saldo Final₁₁ = Saldo Inicial₁₁ - Amortización₁₁

Saldo Final₁₁ = 4,057.87 - 2,028.93

Saldo Final₁₁ = 2,028.93

Cuota Nº12:

Saldo Inicial₁₂ = Saldo Final₁₁

Saldo Inicial₁₂ = 2,028.93

 $TEB_{12} = TEB2 = 1.601186777\%$

Interés₁₂ = TEB₁₂ * Saldo Inicial₁₂

Interés₁₂ = 1.601186777% * 2,028.93

 $Interés_{12} = 32.49$

Amortización₁₂ = $\frac{2,028.93}{12-12+1}$

 $Amortizaci\'on_{12}=2,028.93$

 $Cuota_{12} = Interés_{12} + Amortización_{12}$

 $Cuota_{12} = 32.49 + 2,028.93$

Cuota₁₂ = 2,061.42

Saldo Final₁₂ = Saldo Inicial₁₂ – Amortización₁₂

Saldo Final₁₂ = 2,028.93 - 2,028.93

Saldo $Final_{12} = 0.00$

Nº	Plazo Gracia	Saldo Inicial	Interes	Cuota	Amort.	Saldo Final
1	Т	20,000.00	(289.33)	0.00	0.00	20,289.33
2	Р	20,289.33	(293.52)	(293.52)	0.00	20,289.33
3	S	20,289.33	(293.52)	(2,322.45)	(2,028.93)	18,260.40
4	S	18,260.40	(264.17)	(2,293.10)	(2,028.93)	16,231.47
5	S	16,231.47	(234.81)	(2,263.75)	(2,028.93)	14,202.53
6	S	14,202.53	(205.46)	(2,234.40)	(2,028.93)	12,173.60
7	S	12,173.60	(194.92)	(2,223.86)	(2,028.93)	10,144.67
8	S	10,144.67	(162.44)	(2,191.37)	(2,028.93)	8,115.73
9	S	8,115.73	(129.95)	(2,158.88)	(2,028.93)	6,086.80
10	S	6,086.80	(97.46)	(2,126.39)	(2,028.93)	4,057.87
11	S	4,057.87	(64.97)	(2,093.91)	(2,028.93)	2,028.93
12	S	2,028.93	(32.49)	(2,061.42)	(2,028.93)	0.00