```
. use "C:\Users\lutib\Dropbox\PEP_distance_Poverty Course (Exercises)\2019\weeks_semaines 7-8-9\ver
> sion\data_b3_3.dta",clear
. do "C:\Users\lutib\AppData\Local\Temp\STD36fc_000000.tmp"
. // EXERCICE 1
. // Q1
. /* Use the non parametric regression approach to predict the perceveid minimum well-being */
. use data_b3_3.dta, replace
. cnpe ae_exp min_ae_exp, xvar(ae_exp) min(0) max(60000)
                                                        hs(hsize)
> legend(order( 1 "Perceived minimum well-being " 2 "Observed well-being")) ///
> subtitle("") title(The subjective poverty line)
     ///
> xtitle(Observed well-being)
            ///
> ytitle(Predicted level of the perceived minimum well-being )
                                                                         ///
> vgen(yes)
WAIT: Estimation of in progress: ==>>
: . : . : . : . 10%
: . : . : . : . 20%
: . : . : . : . 30%
: . : . : . : . 40%
: . : . : . : . 50%
: . : . : . : . 60%
: . : . : . : . 70%
: . : . : . : . 80%
: . : . : . : . 90%
: . : . : . : . 100%
<== END
WAIT: Estimation of in progress: ==>>
: . : . : . : . 10%
: . : . : . : . 20%
: . : . : . : . 30%
: . : . : . : . 40%
: . : . : . : . 50%
: . : . : . : . 60%
: . : . : . : . 70%
: . : . : . : . 80%
: . : . : . : . 90%
: . : . : . : . 100%
<== END
. /* Estimate the level of ae_exp where the difference between the predicted minimum well-being
> and the observed well-being is nil */
. cap drop dif
```

. gen dif = _npe_min_ae_exp- ae_exp

. cnpe ae_exp, hs(hsize) xvar(dif) xval(0) vgen(yes)

In progress ...

Household size : hsize Sampling weight : sweight

Variable(s)	Estimated value
ae_exp	22828.025391

```
. /*Show the subjective poverty line */
```

. cnpe ae_exp min_ae_exp, xvar(ae_exp) min(0) max(60000) hs(hsize) ///
> legend(order(1 "Perceived minimum well-being " 2 "Observed well-being")) ///

> subtitle("") title(The subjective poverty line)

> ytitle(Predicted level of the perceived minimum well-being)

.

. .// Q2:

. ifgt ae_exp, alpha(1) hsize(hsize) pline(22828.025)

Poverty index : FGT index Household size : hsize Sampling weight : sweight Parameter alpha : 1.00

Variable	Estimate	STE	LB	UB	Pov. line
ae_exp	0.144024	0.015000	0.114582	0.173467	22828.03

. ifgt ae_exp, alpha(1) hsize(hsize) pline(20900)

Poverty index : FGT index Household size : hsize Sampling weight : sweight Parameter alpha : 1.00

Variable	Estimate	STE	LB	UB	Pov. line
ae_exp	0.120934	0.014569	0.092337	0.149532	20900.00

. ifgt ae_exp, alpha(1) hsize(hsize) opl(mean) prop(50)

Poverty index : FGT index Household size : hsize Sampling weight : sweight Parameter alpha : 1.00

Variable	Estimate	STE	LB	UB	Pov. line
ae_exp	0.077279	0.011093	0.055506	0.099052	16991.00

```
.
. // Q3:
. /*
> The use of the relative poverty line is more appropriate for the developed countries.
> This can be justified by the rapid increase in well-being in average and the standard of livings
> over time.
> */
.
. // EXERCICE 2
.
. // Q1
. end of do-file
```

. use "C:\Users\lutib\Dropbox\PEP_distance_Poverty Course (Exercises)\2019\weeks_semaines 7-8-9\ver > $sion\data_b3_3.dta$ ",clear

. do "C:\Users\lutib\AppData\Local\Temp\STD36fc_000000.tmp"

. dfgtg ae_exp, hgroup(sex) hsize(hsize) alpha(0) pline(20900)

Decomposition of the FGT index by groups

Poverty index : FGT index Household size : hsize Sampling weight : sweight Group variable : sex Parameter alpha : 0.00

Group	FGT index	Population share	Absolute contribution	Relative contribution
Male	0.336161	0.754545	0.253648	0.694339
	0.019070	0.020842	0.015560	0.047359
Female	0.454912	0.245455	0.11166	0.305661
	0.058320	0.020842	0.022011	0.047359
Population	0.365309 0.022878	1.00000 0.000000	0.36530 9	9 1.000000 0.000000

/*

> We can conclude that the poverty within the female-headed households is more pronounced.

> However, their relative and absolute contribution to the total poverty is lower than man-headed h

> ouseholds.

> This is because of the much lower population share of female-headed households in the total popul

> ation.

> */

. // Q3:

. ifgt ae_exp, hgroup(region) hsize(hsize) alpha(0) pline(20900)

Poverty index : FGT index
Household size : hsize
Sampling weight : sweight
Group variable : region
Parameter alpha : 0.00

Group	Estimate	STE	LB	UB	Pov. line
1: central	0.224916	0.027233	0.171462	0.278371	20900.
2: eastern	0.307212	0.026473	0.255249	0.359174	20900.
3: northern	0.721940	0.046327	0.631009	0.812872	20900.
4: western	0.266609	0.034500	0.198891	0.334328	20900.
Population	0.365309	0.022878	0.320402	0.410215	20900.

.

. // Q3:

. gen ae_exp2=ae_exp

. replace ae_exp2=ae_exp2*(1+0.11) if region==3 (509 real changes made)

. replace ae_exp2=ae_exp2*(1-0.06) if region==2 (838 real changes made)

.

. // Q4:

. dfgtgr ae_exp ae_exp2, alpha(1) pline(20900) hsize1(hsize) hsize2(hsize)

Decomposition of the variation in the FGT index into growth and redistribution.

Parameter alpha : 1.00
Poverty line : 20900.00

	Estimate	STE	LB	UB
Distribution_1 Distribution_2	0.120934 0.116279	0.014569 0.013606	0.092337 0.089572	0.149532 0.142985
Difference: (d2-d1)	-0.004656	0.001318	-0.007242	-0.002069
	Datt & Ravallion ap	pproach: referen	ce period t1	
Growth Redistribution Residue	0.000714 -0.005402 0.000033	0.000378 0.001134 	-0.000027 -0.007629 	0.001455 -0.003176
	Datt & Ravallion ap	pproach: referen	ce period t2	
Growth Redistribution Residue	0.000746 -0.005370 -0.000033	0.000393 0.001137	-0.000024 -0.007601 	0.001517 -0.003138
	Shapley approach			
Growth Redistribution	0.000730 -0.005386	0.007617 0.001136	-0.014220 -0.007615	0.015680 -0.003157

. // Q5:

. dfgtg2d ae_exp ae_exp2, alpha(1) hgroup(region) pline(20900) hsize1(hsize) hsize2(hsize) ref(0)

Decomposition of the FGT index by groups Group variable : region Parameter alpha : 1.00

Population shares and FGT indices

Group	Initial Pop. share	Initial FGT index	Final Pop. share	Final FGT index	Difference in FGT index
central	0.268071	0.053819	0.268071	0.053	819 0.000000
	0.016345	0.009016	0.016345	0.009016	0.00000
eastern	0.266545	0.080410	0.266545	0.096	0.015659
	0.015916	0.007902	0.015916	0.008681	0.001258
northern	0.217543	0.321715	0.217543	0.281	-0.040588
	0.024678	0.041079	0.024678	0.040778	0.002256
western	0.247841	0.060875	0.247841	0.060	875 0.000000
	0.015462	0.009835	0.015462	0.009835	0.000000
Population	1.000000	0.120934	1.000000	0.116	279 -0.004656
	0.000000	0.014569	0.00000	0.013606	0.001318

Decomposition components

Group	Poverty Component	Population Component	Interaction Component
central	0.00000	0.000000	0.000000
	0.00000	0.00000	0.00000
eastern	0.004174	0.000000	0.000000
	0.000422	0.00000	0.000000
northern	-0.008830	0.000000	0.000000
	0.001135	0.00000	0.000000
western	0.00000	0.000000	0.000000
	0.000000	0.00000	0.000000
Population	-0.004656	0.000000	0.000000
_	===	===	===

. // EXERCICE 3

. // Q1:

```
. input identifier weight inc_t1 inc_t2
    identif~r
                weight
                           inc_t1
                                      inc_t2
                         0.00
1.54
3.85
 1.02.1
       0
                  0.00
                   1.50
           0.1
 3.2
           0.1
                   4.50
                         6.60
 4.3
           0.1
                   7.50
 5.4
           0.1
                  3.00
                         2.75
 6.5
           0.1
                  4.50
                         4.40
 7.6
           0.1
                  9.00
                          7.70
 8.7
           0.1
                  10.50 8.80
 9.8
           0.1
                  15.00 7.70
          0.1 12.00 6.60
0.1 13.50 6.60
 10.9
11. 10
12.
. end
. sort inc_t1
. gen perc=sum(weight)
. // Q2:
. qui sum inc_t1 [aw=weight]
. scalar mean1=r(mean)
. qui sum inc_t2 [aw=weight]
. scalar mean2=r(mean)
. scalar g_mean = (mean2-mean1)/mean1
. gen g_mean = (mean2-mean1)/mean1
. dis "Mean 1
                         =" mean1
Mean 1
                   =8.1
. dis "Mean 2
                       = " mean2
Mean 2
                  = 5.6539999
. dis "Growth in averages = " g_mean
Growth in averages = -.30197531
. // Q3:
. gen g_inc =(inc_t2-inc_t1)/inc_t1
```

(1 missing value generated)

. clear

```
. replace g_{inc} = 0 in 1
(1 real change made)
. // Q4:
. line g_inc g_mean perc, title(Growth Incidence Curve) yline(`g_mean') ///
> legend(order( 1 "GIC curve" 2 "Growth in average income")) ///
> xtitle(Percentiles (p)) ytitle(Growth in incomes) ///
> plotregion(margin(zero))
. // Q5:
. drop in 1
(1 observation deleted)
. cap drop temp
. gen temp = g_inc
. sum temp [aw=weight] if (inc_t1<10.4)</pre>
    Variable
                    Obs
                                           Mean Std. Dev.
                             Weight
                                                                  Min
                                                                              Max
                      6 .600000009
                                       -.0812963
                                                    .0701759 -.1444445
                                                                            .0266666
```

. dis = r(mean)

-.08129631

. ipropoor inc_t1 inc_t2, pline(10.4)
 Poverty line : 10.40
 Parameter alpha : 0.00

Pro-poor indices	Estimate	STE	LB	UB
Growth rate(g)	-0.301975	0.068365	-0.456627	-0.1473
Ravallion & Chen (2003) index Ravallion & Chen (2003) - g	-0.081296 0.220679	0.027568 0.075578	-0.143659 0.049710	-0.01893 0.39164
Kakwani & Pernia (2000) index	1.333333	0.418947	0.385609	2.2810
PEGR index PEGR - g	-0.402634 -0.100658	0.181351 0.136631	-0.812877 -0.409739	0.00763

. // Q6:

. dfgtgr inc_t1 inc_t2, alpha(1) pline(10.4)

Decomposition of the variation in the FGT index into growth and redistribution.

Parameter alpha : 1.00 Poverty line : 10.40

	Estimate	STE	LB	UB
Distribution_1 Distribution_2	0.311538 0.456346	0.105810 0.072481	0.072180 0.292383	0.550897 0.620309
Difference: (d2-d1)	0.144808	0.044233	0.044745	0.244871
	Datt & Ravallion a	pproach: referenc	ce period t1	

Growth	0.145484	0.036725	0.062407	0.228562
Redistribution	-0.057026	0.026851	-0.117767	0.003714
Residue	0.056350			
	Datt & Ravallion ap	proach: referer	nce period t2	
Growth	0.201834	0.059022	0.068318	0.335350
Redistribution	-0.000677	0.009501	-0.022169	0.020816
Residue	-0.056350			
	Shapley approach			
Growth	0.173659	0.046125	0.069318	0.278001
Redistribution	-0.028851	0.010816	-0.053318	-0.004385

end of do-file

.