- 6.7 1) $\underline{1}^1 \equiv 1 \mod 9$ $\overline{1}$ est d'ordre 1.

 - 3) $\overline{3}$ n'est pas une unité, car pgcd $(3,9) = 3 \neq 1$.
 - 4) $4^1 \equiv 4 \not\equiv 1 \mod 9$ $4^2 \equiv 16 \equiv 7 \not\equiv 1 \mod 9$ $4^3 \equiv 4^2 \cdot 4 \equiv 7 \cdot 4 \equiv 28 \equiv 1 \mod 9$ $\overline{4}$ est d'ordre 3.
 - 5) $5^1 \equiv 5 \not\equiv 1 \mod 9$ $5^2 \equiv 25 \equiv 7 \not\equiv 1 \mod 9$ $5^3 \equiv 5^2 \cdot 5 \equiv 7 \cdot 5 \equiv 35 \equiv 8 \not\equiv 1 \mod 9$ $5^4 \equiv 5^3 \cdot 5 \equiv 8 \cdot 5 \equiv 40 \equiv 4 \not\equiv 1 \mod 9$ $5^5 \equiv 5^4 \cdot 5 \equiv 4 \cdot 5 \equiv 20 \equiv 2 \not\equiv 1 \mod 9$ $5^6 \equiv 5^5 \cdot 5 \equiv 2 \cdot 5 \equiv 10 \equiv 1 \mod 9$ $\overline{5}$ est d'ordre 6.
 - 6) $\overline{6}$ n'est pas une unité, car pgcd $(6,9) = 3 \neq 1$.
 - 7) $7^1 \equiv 7 \not\equiv 1 \mod 9$ $7^2 \equiv 49 \equiv 4 \not\equiv 1 \mod 9$ $7^3 \equiv 7^2 \cdot 7 \equiv 4 \cdot 7 \equiv 28 \equiv 1 \mod 9$ $\overline{7}$ est d'ordre 3.
 - 8) $8^1 \equiv 8 \not\equiv 1 \mod 9$ $8^2 \equiv 64 \equiv 1 \mod 9$ $\overline{8}$ est d'ordre 2.