Lecture 7: Bayesian Belief Network

Background:

- \rightarrow Model joint probability of features (x) and class (c) $P(X_1, X_2 X_n, C)$
- → Noive assumption: X1, 1/2... In one independent

 $P(x_1, x_2 ... x_n, c) = P(x_1/c) ... P(x_2/c) ... P(x_n/c) .P(c)$

- Drop Naive Assumption and model dependence.

Random
Variables Condi. dep.

Plate notation

plate diagram

plate diagram

P(xn/c)

 $P(x_1, x_2, x_3, c)$

- No endependence assumption

 $P(x_1, x_2, x_3, c) = P(x_1/x_2, x_3, e) \cdot P(x_2/x_3, c)$ Difficult to compute $P(x_3/c) \cdot P(c)$

Covid-19 Example

X1 = Symptom X2 = Contact X3 = Test

	1	2	3	4	5	6	7	8	9	10
contact	1	1	1	O	0	1	1	0	1	1
Symptom XZ	1	1	1	1	0	0	Ö	1	Õ	0
Test X3	1	O _e	0	1	1	1	٥,	1	1_	O .
Injected	1	1	0	ユ	0	1	1	1	1	1

P(c), P(
$$\chi_3/c$$
), P(χ_1/χ_3), P(χ_2/χ_3)
P(c), P(χ_3/c), P(χ_1/χ_3), P(χ_2/χ_3)
1 8/10 1 5/8 1/2 1 3/6 4/42 1 3/6 2/4
0 2/10 0 3/8 1/2 0 3/6 0/0+2 0 3/6 2/4

$$P(c=1, \chi_1=1, \chi_2=1, \chi_3=0)$$

$$= P(\bar{\chi}_1/\bar{\chi}_3) \cdot P(\bar{\chi}_2/\bar{\chi}_3) \cdot P(\bar{\chi}_3/\bar{c}_1) \cdot P(\bar{c}_1)$$

$$= (576)(2/4)(3/8)(8/10)$$

$$\approx 3/6$$

 $\approx 3/20$

Inference Ex: 2

$$P(c=1, x_1=1, x_2=1)$$

$$= \sum_{\chi_i \in \chi_3} P(c=1, \chi_i=1, \chi_{2}=1)$$

$$= P(C=1, X_1=1, X_2, =1, X_3=0)$$

$$+ P(C=1, X_1=1, X_2=1, X_3=1)$$

$$= P(X_1=1/X_3=0) \cdot P(X_2=1/X_3=0) \cdot P(X_3=0/C=1) \cdot P(C=1)$$

$$+ P(X_1=1/X_3=1) \cdot P(X_2=1/X_3=1) \cdot P(X_3=1/C=1) \cdot P(C=1)$$

$$= 5/40 + 1/8 = 1/8$$

Inference Example 3

$$P(c=0, x_1=0)$$

$$=$$
 $\sum P(c=0, \chi_1=0, \chi_2=i, \chi_3=i)$
 $\forall i \in \chi_2 \neq j \in \chi_3$

$$= P(C=0, X_1=0, X_2=0, X_3=0) + P(C=0, X_1=0, X_2=0, X_3=1) + P(C=0, X_1=0, X_2=1, X_3=0) + P(C=0, X_1=0, X_1=0, X_2=1, X_3=1)$$

$$\to DTY$$

Inference Ex: 4

$$P(c=1/X_i=1)$$

$$= \frac{P(C=1, \chi_1=1)}{P(\chi_1=1)}$$

$$= \frac{\sum_{x_2} \sum_{x_3} P(c=1, x_1=1, x_2, x_3)}{\sum_{x_2} \sum_{x_3} P(c, x_1=1, x_2, x_3)}$$

$$P(c=1, X_1=1, X_2=0, X_3=0) \cdot P(c=1, X_1=1, X_2=0, X_3=1, X_3=1, X_3=1, X_3=1, X_3=1, X_3=1) \cdot P(c=1, X_1=1, X_2=1, X_3=1)$$

$$P(C=1, X_i=1, -$$