Ответы на вопросы к коллоквиуму по линейной алгебре и геометрии 15-16 мая

Чудинов Никита (группа 104)*

1 Комплексные числа

1.1 Билет 1

Вопрос 1.1.1 (Что такое поле?). Поле — алгебраическая структура, для элементов которой определены операции сложения и умножения с определёнными свойствами:

- 1. Коммутативность сложения
- 2. Ассоциативность сложения
- 3. Существование нулевого элемента
- 4. Существование противоположного элемента
- 5. Коммутативность умножения
- 6. Ассоциативность умножения
- 7. Существование единичного элемента
- 8. Существование обратного элемента для ненулевых элементов
- 9. Дистрибутивность умножения относительно сложения

Аксиомы 1–4 соответствуют определению коммутативной группы по сложению, 5–8 коммутативной группы по умножению, а аксиома 9 связывает сложение и умножение.

Вопрос 1.1.2 (Докажите, что в поле обратный элемент к любому ненулевому элементу определяется единственным образом).

Доказательство. Пусть b', b'' — обратные элементу a. Тогда:

$$b' = b'1 = b'(ab'') = (b'a)b'' = 1b'' = b''$$

Вопрос 1.1.3 (Приведите примеры бесконечных полей и докажите, что они удовлетворяют требуемым свойствам). $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ — доказательство остаётся читателю как упражнение.

Вопрос 1.1.4 (Докажите, что существует поле из двух элементов). Пример такого поля — поле вычетов по модулю 2. Доказательство тривиально и состоит из проверки всех теорем.

1.2 Билет 2

Вопрос 1.2.1 (Что такое комплексные числа?). Комплексные числа (\mathbb{C}) — числа вида x+iy, где x и y — вещественные числа, а i — мнимая единица (величина, для которой выполняется равенство $i^2=-1$).

Вопрос 1.2.2 (Дайте определение арифметических операций над комплексными числами).

- 1. Сложение: (a + bi) + (x + yi) = (a + b) + (x + y)i
- 2. Взятие противоположного: -(a+bi) = (-a+(-b)i)

^{*}Отдельное спасибо 104 группе за помощь в исправлении ошибок и предоставлении материала.

- 3. Умножение: $(a + bi) \times (x + yi) = ((ax by) + (ay + bx)i)$
- 4. Взятие обратного: $(a+bi)^{-1} = \frac{a}{a^2+b^2} \left(\frac{b}{a^2+b^2}\right)i$

Вопрос 1.2.3 (Докажите, что множество комплексных чисел образует поле). Доказательство остаётся читателю как упражнение.

Вопрос 1.2.4 (Сформулируйте основную теорему алгебры и докажите её для многочленов второй степени). Всякий отличный от константы многочлен с комплексными коэффициентами имеет, по крайней мере, один корень на поле комплексных чисел.

Доказательство основной теоремы алгебры для многочленов степени 2. Рассмотрим обычное решение квадратных уравнений:

$$ax^{2} + bx + c = 0$$

$$D = b^{2} - 4ac$$

$$x = \frac{-b \pm \sqrt{D}}{2a}$$

Так как D — комплексное и $a \neq 0$, то решение последнего уравнения существует. Таким образом мы нашли корень произвольного многочлена второй степени в \mathbb{C} .

1.3 Билет 3

Вопрос 1.3.1 (Что такое модуль и аргумент комплексного числа?). Рассматривая комплексные числа вида (a+bi), мы можем поместить их на плоскость, с осью абсцисс обозначающей значение a, и осью ординат, обозначающей значение b. Такое изображение называется комплексной плоскостью.

Тогда модулем комплексного числа будет называться длина радиус вектора соответствующей точки комплексной плоскости.

Аргументом комплексного числа называется угол между вектором и положительным направлением оси абсцисс.

Bonpoc 1.3.2 (Как модуль и аргумент ведут себя при перемножении комплексных чисел?). Модули комплексных чисел при умножении перемножаются, а аргументы складываются.

Доказательство. Из школьного курса геометрии мы знаем, как получить координаты вектора, зная его длину и угол поворота. Допустим, мы имеем комплексное число a с модулем |a|=z и аргументом $\arg(a)=\varphi$. Тогда

$$x_a = z \cos(\varphi);$$

 $y_a = z \sin(\varphi).$

Записав это в обычной форме мы получим $a = z(\cos(\varphi) + i\sin(\varphi))$ — это называется тригонометрической формой комплексного числа.

Рассмотрим теперь умножение двух комплексных чисел в тригонометрической форме:

$$a = y(\cos\varphi + i\sin\varphi)$$

$$b = z(\cos\psi + i\sin\psi)$$

$$ab = yz(\cos\varphi + i\sin\varphi)(\cos\psi + i\sin\psi)$$

$$ab = yz(\cos\varphi\cos\psi + i\cos\varphi\sin\psi + i\sin\varphi\cos\psi - \sin\varphi\sin\psi)$$

$$ab = yz((\cos\varphi\cos\psi - \sin\varphi\sin\psi) + i(\cos\varphi\sin\psi + \sin\varphi\cos\psi))$$

$$ab = yz(\cos(\varphi + \psi) + i\sin(\varphi + \psi))$$

$$|ab| = yz$$

$$\arg(ab) = \varphi + \psi$$

Вопрос 1.3.3 (Докажите, что каждое ненулевое комплексное число имеет ровно n корней n-й степени и опишите способ их нахождения). Сначала докажем количество корней.

Лемма (Теорема Безу). Если x_1 — корень многочлена f(x), степень которого равна n, то мы можем разложить этот многочлен как

$$f(x) = (x - x_1) \cdot g(x),$$

 $ede\ g(x)$ — многочлен степени n-1.

Доказательство теоремы Безу. Поделим f(x) на $x-x_1$ с остатком, получим

$$f(x)=(x-x_1)\cdot g(x)+r$$

$$x=x_1$$

$$f(x_1)=0\cdot g(x)+r$$

$$f(x_1)=r$$
 Так как x_1 — корень, то $f(x_1)=0$
$$r=0$$

Опираясь на основную теорему и теорему Безу, узнаём, что у уравнения степени n ровно n различных корней.

Для поиска корней проще всего использовать формулу Эйлера.

Лемма (Формула Эйлера). $e^{ix} = \cos(x) + i\sin(x)$.

Доказательство леммы. Используем ряды Тейлора. Разложим функцию e^{ix} в ряд Тейлора в окрестности точки a=0 по степеням x. Получим

$$e^{ix} = 1 + \frac{ix}{1!} + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \dots$$

$$= 1 + ix - \frac{x^2}{2!} - \frac{ix^3}{3!} + \frac{x^4}{4!} + \frac{ix^5}{5!} - \frac{x^6}{6!} + \dots$$

$$= (1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots) + i(\frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots)$$

$$= \cos x + i \sin x$$

Лемма (Формула Муавра).

$$a = z(\cos(\varphi + 2\pi k) + i\sin(\varphi + 2\pi k);$$

$$a = ze^{i(\varphi + 2\pi k)}$$

$$a^n = z^n e^{i(\varphi + 2\pi k)n}$$

$$a^n = z^n(\cos(n\varphi + 2\pi nk) + i\sin(n\varphi + 2\pi nk))$$

Отсюда,

$$\sqrt[n]{a} = \left\{ \sqrt[n]{z} \left(\frac{\cos(n\varphi)}{2\pi nk} + i \frac{\sin(n\varphi)}{2\pi nk} \right) \right\}; k \in \{0, 1, \dots, n-1\}$$

1.4 Билет 4

Вопрос 1.4.1 (Что такое кратность корня многочлена?). Говорят, что корень c имеет кратность m, если рассматриваемый многочлен делится на $(x-c)^m$ и не делится на $(x-c)^{m+1}$.

Вопрос 1.4.2 (Докажите, что сумма кратностей корней многочлена с комплексными коэффициентами равна его степени).

Доказательство. Представим корень x_i кратности k_i как k_i равных между собой корней кратности 1. Сумма кратностей при этом не меняется. Но количество таких корней равно степени многочлена по основной теореме алгебры.

Вопрос 1.4.3 (Докажите, что каждый многочлен положительной степени с действительными коэффициентами разложим на линейные и квадратичные множители, также с действительными коэффициентами). Для начала докажем вспомогательное утверждение

Лемма. Если x = (a + bi) — корень многочлена и коэффициенты многочлена вещественны, то сопряжённый к нему $\overline{x} = (a - bi)$ — тоже корень.

Доказательство. Для начала докажем вспомогательное утверждение

Лемма (О возведении сопряжённых чисел в степень). $\overline{x}^k = \overline{x^k}$

Доказательство. При k=1 истинность очевидна. Предположим, что для некоторого k утверждение истинно, тогда $\overline{x}^{k+1} = \overline{x}^k \cdot \overline{x} = \overline{x^k} \cdot \overline{x}$. Свели задачу к более простой, теперь надо доказать, что для произвольных $x, y : \overline{x} \cdot \overline{y} = \overline{x \cdot y}$.

$$x = a + bi$$

$$\overline{x} = a - bi$$

$$y = c + di$$

$$\overline{y} = c - di$$

$$x \cdot y = (ac - bd) + (bc + ad)i$$

$$\overline{x} \cdot \overline{y} = (ac - bd) - (bc + ad)i$$

$$\overline{x} \cdot \overline{y} = (ac - bd) - (bc + ad)i$$

$$\overline{x} \cdot \overline{y} = \overline{x} \cdot \overline{y}$$

$$f(\overline{x_i}) = f_n \overline{x_i^n} + f_{n-1} \overline{x_i^{n-1}} + \dots + f_1 \overline{x_i} + f_0$$

$$f(\overline{x_i}) = \overline{f_n x_i^n} + \overline{f_{n-1} x_i^{n-1}} + \dots + \overline{f_1 x_i} + \overline{f_0}$$

$$\overline{f(x_i)} = f(\overline{x_i})$$

$$\overline{0} = 0$$

Доказательство. Каждому вещественному корню соответствует одночлен вида $(x-x_i)$, согласно теореме Безу. Рассмотрим комплексные корни. Каждому корню l+mi соответствует (по лемме) сопряжённый корень l-mi, но $(x-l-mi)(x-l+mi)=(x-l)^2-(mi)^2=x^2-2lx+l^2+m^2$. Тогда если $a=-2l,b=l^2+m^2$, то многочлен раскладывается в произведение

$$(x-x_1)^{k_1}(x-x_2)^{k_2}\dots(x-x_s)^{k_s}(x^2+a_{s+1}x+b_{s+1})^{k_{s+1}}\dots(x^2+a_nx+b_n)^{k_n}$$

Вопрос 1.4.4 (Сформулируйте и докажите теорему Виета для многочленов произвольной степени). Если c_1, c_2, \ldots, c_n — корни многочлена $x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_0 = 0$ (каждый корень взят соответствующее его кратности число раз), то коэффициенты a_{n-1}, \ldots, a_0 выражаются в виде многочленов от корней, а именно:

$$a_{n-1} = -(c_1 + c_2 + \dots + c_n)$$

$$a_{n-2} = c_1c_2 + c_1c_3 + \dots + c_1c_n + c_2c_3 + \dots + c_{n-1}c_n$$

$$\dots = \dots$$

$$a_k = \sum_{1 \le j_1 < \dots < j_{n-k} \le n} (-1)^{n-k} x_{j_1} \dots x_{j_{n-k}}$$

$$\dots = \dots$$

$$a_1 = (-1)^{n-1} (c_1c_2 \dots c_{n-1} + c_1c_2 \dots c_{n-2}c_n + \dots + c_2c_3 \dots c_n)$$

$$a_0 = (-1)^n c_1c_2 \dots c_n$$

Доказательство. Раскроем $f(x) = (x - x_1)(x - x_2) \dots (x - x_n)$. Получим 2^n слагаемых, каждое из которых равно $(-1)^{n-k}x_1b_1\dots x_nb_nx^k$, где b_i равняется нулю или единице, соответствуя тому, включили ли мы этот корень в слагаемое или нет, а k — количество исключённых корней. \square

1.5 Билет 5

Вопрос 1.5.1 (Что такое линейное пространство над произвольным полем?). Линейное пространство V над полем F — это четвёрка $(V, F, +, \cdot)$, где

- 1. V непустое множество элементов произвольной природы, которые называются векторами
- 2. F поле, элементы которого называются скалярами
- 3. $+: V \times V \to V$ операция сложения векторов
- $4. \cdot : F \times V \to V$ операция умножения скаляра на вектор

При этом выполняются следующие аксиомы:

- 1. Коммутативность сложения
- 2. Ассоциативность сложения
- 3. Существование нейтрального элемента относительно сложения
- 4. Существование противоположного элемента относительно сложения
- 5. Ассоциативность умножения на скаляр
- 6. Унитарность (умножение вектора на нейтральный элемент в поле сохраняет вектор)
- 7. Дистрибутивность умножения на вектор относительно сложения скаляров
- 8. Дистрибутивность умножения на скаляр относительно сложения векторов

Вопрос 1.5.2 (Что такое комплексификация действительного пространства и что такое овеществление комплексного пространства?). Пусть $W_{\mathbb{R}}$ — действительное пространство. Тогда комплексификация пространства $W=W_{\mathbb{R}}$ — это множество

$$W_{\mathbb{C}} = W \times W = \{(u, v); u, v \in W\}$$

с операцией

$$(a+bi)(\vec{u},\vec{v}) = (a\vec{u}-b\vec{v},a\vec{v}+b\vec{u})$$

При этом мы отождествляем $w \in W$ с (w, 0). Тогда $i \cdot w = (0, w)$.

Пример: $\mathbb{R}_{\mathbb{C}} = \mathbb{C}$

Пусть V — комплексное линейное пространство. Тогда овеществление пространства V — это то же множество V, рассмотренное как пространство над \mathbb{R} . Так как $\mathbb{R} \subset \mathbb{C}$, то это возможно. Обозначается $V_{\mathbb{R}}$. Таким образом при овеществлении «забывается», как умножать на мнимую единицу. Пример: $\mathbb{C}_{\mathbb{R}} = \mathbb{R}^2$

Вопрос 1.5.3 (Докажите, что комплексификация, и, соответственно, овеществление, являются линейными пространствами над соответствующими полями и найдите их размерности). Доказательство остаётся читателю как упражнение.

Размерность пространства после комплексификации увеличивается в два раза, размерность пространства после овеществления не меняется.

Вопрос 1.5.4 (Постройте комплексификацию пространства \mathbb{R}^n и овеществление пространства \mathbb{C}^n). $\mathbb{R}^n_{\mathbb{C}} = \mathbb{C}^n$ $\mathbb{C}^n_{\mathbb{P}} = \mathbb{R}^{2n}$