ILMD10A

I²C接続 最大 10A DC モーター駆動用モジュール

■特徴

- ・ マイコン側とモーター側が電気的に絶縁することで制御機器の破損を防止
- ・ 従来のモータードライブ基板と比較して大電流に対応
- · 不足電圧、過電流、熱遮断回路内蔵
- · 台形加減速機能、通信不良時停止機能、周波数可変機能搭載
- ・ 3 種類の PWM モード(SingleMagnitude、LockedAntiPhase、On-Break)
- ・ 超小型(W:55mm D:26mm H:24mm)

■主要諸元

モーター側電圧 : 8.0~35V

・ 最大連続電流 : 8A DC ※要冷却

・ 最大瞬時電流 : 10A DC

・ 最大 PWM 周波数 : 100kHz

■主な用途

- ・ パワフルな IoT デバイス
- ・ モーター制御の学習

■対応デバイス

- ・ Arduino(サンプルコードあり)
- ・ Raspberrypi(サンプルコード公開予定)
- ・ その他 I2C 対応機器

1 各種仕様

1.1 動作範囲

区分	項目	記号	測定条件	最少	標準	最大	単位
モーター側	電源電圧	Vcc _M	-	8.0	12.0	35	V
	検出電圧	V_{LV}	-		6.0		V
	出力電流	I _{out}	-	-	-	8.0	А
マイコン側	電源電圧	Vcc _L	-	3.0	3.3	5.0	V

1.2 最大絶対定格

区分	項目	記号	定格	単位
モーター側	電源電圧	Vcc _M	35	٧
<u> </u>	出力電流	I _{o(PEAK)}	10.0	Α
マイコン側	電源電圧	Vcc _L	5.5	V

絶対最大定格は瞬時たりとも超えてはならない規格です。

1.3 推奨動作範囲

区分	項目	記号	測定条件	最少	最大	単位	備考
モーター側	電源電圧	Vcc _M	-	10.0	32.0	٧	
	出力電流	I _{out}	-	-	3.0	Α	放熱器無し
	出力電流	I _{out}	-	-	8.0	Α	放熱必要
マイコン側	電源電圧	Vcc_L	-	3.0	5.0	V	

モーター側とマイコン側の GND は電気的に絶縁されていますが、基板上でお互いの配線が近接している箇所があります。各 GND 間で大きな電位差が発生する場合は使用前に確認をしてください。

1.4 データ更新頻度

100Hz で受信したデータを更新し、マイコンのレジスタに反映しています。そのため、I2C の通信が終了してから出力への反映まで最大 10 ミリ秒の遅れが発生する可能性があります。

2 レジスタマップ

名称	アドレス	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	初期値	
Who am I	0x00				Who	am I<7:0>				0x1A	
STATUS	0x01		RESERVED<7:2> ALERT2 ALERT1								
MODE	0x02	Prescale	e<7:6>	PWM mo	de<5:4>	AB Inv.	SR EN	WDT EN	STBY	0x00	
SRH	0x03		Slew Rate High Byte<7:0>								
SRL	0x04		Slew Rate Low Byte<7:0>								
DUTYH	0x05		Duty High Byte<7:0>								
DUTYL	0x06				Duty Lo	w Byte<7:0)>			0xFF	
ТОРН	0x07				Count TOP	High Byte<	7:0>			0x03	
TOPL	0x08				Count TOP	Low Byte<	7:0>			0xFF	
ADR	0x09	-	- I2C Slave address<6:0>								
WRITE	0x0A				EEPROM	WRITE<7:	0>			0x00	

2.1 Who am I レジスタ (R/-)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	初期値	
Who am I<7:0>									

Who am I<7:0>

常に 0x1A を返します。

2.2 STATUS レジスタ (R/-)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	初期値
		RESER	ALERT2	ALERT1	0x00			

bit7:2 RESERVED<7:2>

常に 0b000000 を返します。

bit1 ALERT2

電源電圧 Vcc_M が検出電圧 V_{LV} を下回り、アラート 2(低電圧)が検出されている間、ビットがセットされます。電源電圧が回復すると自動でリセットされます。

bit0 ALERT1

過熱・過電流によりアラート 1(熱遮断・過電流検出)が発生するとビットがセットされます。 このビットがセットされた場合、MODE レジスタの STBY をセット→リセット→セットする ことで復帰します。

2.3 MODE レジスタ (R/W)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	初期値
Presca	Prescale<7:6> PWM mode<5:4>		de<5:4>	AB Inv.	SR EN	WDT EN	STBY	0x00

bit7-6 Prescale<7:6>

PWM 用タイマのプリスケーラ分周比を設定します。

Prescale<7:6>	分周比			
00	1			
01	8			
10	64			
11	256			

bit5-4 PWM mode<5:4>

PWM の動作モードを設定します。

PWM mode<5:4>	モード
00	OFF
01	On-Break
10	LockedAntiPhase
11	SingleMagnitude

bit3 AB Inv.

このビットがセットされているとモータードライバへの入力ピンが入れ替わります。

入れ替えることによってモーターの回転方向を反対向きにすることができます。

bit2 SR EN

このビットがセットされていると台形加速が有効になります。

台形加速が有効の場合、10 ミリ秒ごとに更新される PWM 比較レジスタは SRH、SRL で表される 16bit 整数を上限として変化します。

bit1 WDT EN

このビットがセットされていると通信ウォッチドックタイマが有効になります。

通信ウォッチドックタイマが有効の場合、およそ 1 秒の間マスタからの書き込みが途絶えると、モータードライバの出力を止め、MODE レジスタの STBY ビットをリセットします。

bit0 STBY

このビットがセットされているとモータードライバの STBY ピンを HIGH にし、出力を有効にします。

2.4 SRH、SRL レジスタ(R/W)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	初期値	
SRH<7:0>									
SRL<7:0>									

bit7-0 SRH<7:0>

台形加速の上位バイトです。

bit7-0 SRL<7:0>

台形加速の下位バイトです。

MODE レジスタの SR EN ビットがセットされている場合、SRH、SRL は 1 以上にする必要があります。

SRH、SRL を更新する場合、必ず SRH から連続で書き込んでください。

2.5 DUTYH、DUTYL レジスタ(R/W)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	初期値	
DUTYH<7:0>									
DUTYL<7:0>									

bit7-0 DUTYH<7:0>

PWM のデューティー比を決めるカウンタの比較一致レジスタの上位バイトです。

bit7-0 DUTYL<7:0>

PWM のデューティー比を決めるカウンタの比較一致レジスタの下位バイトです。

DUTYH、DUTYLの16bitはTOPH、TOPLの16bitよりも小さく設定する必要があります。

PWM の DUTY 比 P_{Duty} は以下の式により求められます。

$$P_{\text{Duty}} = \frac{\text{DUTY} < 15:0 >}{\text{TOP} < 15:0 >}$$

DUTYH、DUTYL を更新する場合、必ず DUTYH から連続で書き込んでください。

2.6 TOPH、TOPL レジスタ(R/W)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	初期値	
TOPH<7:0>									
TOPL<7:0>									

bit7-0 TOPH<7:0>

PWM 周波数とデューティー比を決めるタイマカウンタ最大値の上位バイトです。

bit7-0 TOPL<7:0>

PWM 周波数とデューティー比を決めるタイマカウンタ最大値の下位バイトです。

TOPH、TOPLの16bitはDUTYH、DUTYLの16bitよりも大きく設定する必要があります。

PWM 周波数 P_{freq} は以下の式により求められます。

$$P_{freq} = \frac{8MHz}{n \times TOP < 15:0 >}$$
 (n = プリスケーラ分周比)

TOPH、TOPL を更新する場合、必ず TOPH から連続で書き込んでください。

2.7 ADR レジスタ(R/W)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	初期値
1	I2C Slave address<6:0>						0x10	

bit7 RESERVED

常に0を返します。

bit6-0 I2C Slave address<6:0>

スレーブアドレス(7bit 表記)です。出荷時は 0x10 に設定されています。

ILMD10A の I2C スレーブアドレスは ADR レジスタに保存され、起動時に EEPROM からロードされます。

ADR レジスタにスレーブアドレスを書き込み、WRITE レジスタの操作により EEPROM に書き込むことで次回起動時にスレーブアドレスがロードされます。

2.8 WRITE レジスタ(R/W)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	初期値
	EEPROM WRITE<7:0>							0x00

bit7-0 EEPROM WRITE<7:0>

EEPROM WRITE レジスタに 0xFF を書き込むことで 0x02 から 0x09 までのレジスタ内容を EEPROM に書き込みます。書き込み完了後、緑と青の LED が点灯し動作を停止します。 EEPROM に書き込んだ内容は次回以降の電源投入時にロードされます。

3 各部機能

3.1 基板概形

表面

裏面

3.2 各コネクタ

CN1 マイコン側電源・通信用端子

制御用の電源およびマスタとの通信端子です。

このモジュールが採用している I2C 通信は特性上ノイズに敏感です。マスタ-スレーブ間は可能な限り短く配線するように心がけてください。

CN2 モーター側電源端子

モーター側の電源端子です。接続する負荷に合わせて適切な太さの電線を使用してく ださい。

バッテリ等の内部インピーダンスが低い電源を接続する場合は必ず電路の途中にヒューズを入れてください。モータードライバには過電流遮断回路が内蔵されていますが 短絡モード故障を完全に防ぐものではありません。

CN3 モーター接続端子

駆動するモーターを接続する端子です。接続するモーターに合わせて適切な太さの電線を使用してください。PWM モードを LAP で使用する場合、周波数によってはインダクタの直列接続が必要な場合があります。

3.3 大電流を扱う場合

平均して 3A を超える電流を流す場合、基板上のパターンのみでは電流容量が足りません。 基板裏面の丸印部パッド間を AWG18 程度の電線で接続してください。

また、モータードライバからの発熱が増加するため放熱器の使用や送風等で放熱対策 をしっかりと取ってください。モータードライバには過熱遮断回路が内蔵されていま すが、素子の故障を完全に防ぐものではありません。

4 サポート情報

4.1 基板上 LED

基板上の LED は下表のパターンで点滅します。

動作	赤 LED(D1)	緑 LED(D2)	青 LED(D3)	
通常時	点滅(約 50Hz)	消灯	消灯	
低電圧検出時	点滅(約 50Hz)		点灯	
(ALERT1)	一	-		
過熱・過電流検出時	上述(約 E0∐-1)	点灯	-	
(ALERT2)	点滅(約 50Hz)	[XX]		
EEPROM 書込時	消灯	点灯	点灯	
アナログモード	消灯	点滅(約 13Hz)	点滅(約 13Hz)	

4.2 単体での動作確認

起動時の各 LED 点滅後に SDA ピンがマイコン側電源電圧の 40%から 60%の範囲に収まっている場合、アナログ入力モードで動作します。アナログ入力モードで使用する場合、SDA ピンへの電圧で PWM のデューティー比が決まります。SDA ピンの電圧がマイコン側電源電圧の 50%を超える場合正転、50%で停止、50%未満では逆転となります。また、アナログモードで動作した場合、次回の電源投入時まで I2C のコマンドは一切受け付けません。

4.3 連絡先

使用にあたってご不明な点がありましたら twitterID(@s_yuki_sst)にリプライでお問い合わせください。可能な限り対応します。