7 הרצאה

מסלולים קלים ביותר - אלגוריתם גנרי

הקדמה

 $P_{st}=(s=v_0,\dots,v_k=t)$ נתון לנו גרף (מכוון או לא) הפן פונקציית משקל על הקשתות משקל על הקשתות $w:E o\mathbb{R}$ וכן פונקציית משקל המסלול הקל ביותר בין שני צמתים s וב-($s=v_0,\dots,v_k=t$) את משקל המסלול הקל ביותר בין שני צמתים s וב-($s=v_0,\dots,v_k=t$) את משקל המסלול הקל ביותר בין שני צמתים s וב-($s=v_0,\dots,v_k=t$)

$$\delta(s,t) = \inf_{P_{st}} w(P_{st})$$

 $\delta(1,7)$ אווה למה פווה $\delta(1,3)$ בגרף הבא ? בגרף אווה $\delta(1,3)$

:הערות

- לאלגוריתמים למציאת מסלול קל ביותר שימושים רבים, אולי המידי שבהם הוא חישוב מסלול קצר ביותר בין שתי נקודות במפה.
- יתכנו משקלים שלילים על הקשתות, למשל אם אנחנו מעוניינים לתכנן מסלול לרכב חשמלי והמטרה שלנו היא לחסוך בסוללה.
 - $\delta(s,t)=\infty$ כאשר צומת t לא ישיג מצומת s נגדיר •
- הותת כזה רק מעגל שלילי שישיג מ-s (בדרך כלל במקרה כזה רק נרצה לזהות השישיג מ-s לכל שישיג מ-s (בדרך כלל במקרה כזה רק נרצה לזהות שזהו אכן המצב).

תכונות

טענה 1. אם אין בגרף מעגלים שלילים אז קיים מסלול פשוט קל ביותר

הוכחה. נסתכל על המסלול הקל ביותר עם הכי מעט מעגלים, נוריד מעגל אחד.

טענה 2. אם (v_i,\dots,v_j) -ש מחלול קל ביותר v_k -ט ל- v_k אז לכל או v_k -ט מסלול קל ביותר v_i -ט מסלול קל ביותר פר v_i -ט מסלול פר v_i -ט מסלול

הוכחה. אם לא, נחליף את המסלול הקל ביותר בתת מסלול הקיים ונקבל מסלול קל יותר.

 $\delta(s,v) < \delta(s,u) + w(uv)$ טענה 3 (אי שוויון המשולש). לכל $u,v \in V, uv \in E$ טענה

הוכחה. משקל המסלול הקל ביותר מ-s ל-u ומשם ל-v הוא הוכחה מסלול הקל ביותר מסלולים קלים החכחה. \square

מקור בודד

 $v \in V$ לכל $\delta(s,v)$ בהינתן גרף לחשב את מקור $\sigma=(V,E)$ וצומת מקור

 $v\in V$ מוסם עליון אס עליון אס לכל פונקציית מסם עליון). בהינתן גרף G=(V,E), פונקציית הסס עליון אס לכל מתקיים ש $d(v)\geq \delta(s,v)$

ניסיון שיפור של d(v) לפי קשת uv מוגדר להיות $d:V \to \mathbb{R}$ ניסיון שיפור ופונקציית חסם ופונקציית חסם עליון $d(v) \leftarrow \min\{d(v),d(u)+w(uv)\}$ דוגמה:

טענה 4. אם b היא פונקציית חסם עליון לפני ניסיון שיפור אז b היא פונקציית חסם עליון אחרי ניסיון השיפור.

ש: מתקיים אז מתקיים ש- $d(v) < \delta(v)$ אז מתקיים ש

$$d(v) < \delta(s, v) \le \delta(s, u) + w(uv) \le d(u) + w(uv) = d(v)$$

w(uv) < d(v) - d(u) אם משפרת משפרת עס תקרא משפרת משפרת (קשת משפרת) הגדרה 2.

אלגוריתם גנרי לחישוב ערך המסלול הקל ביותר ממקור בודד

- $d(s) \leftarrow 0$ הצב, $d(v) \leftarrow \infty$ הצב $v \in V$ הצב. 1.
 - uv כל עוד קיימת קשת משפרת .2

$$d(v) \leftarrow d(u) + w(uv)$$
 (ম)

 $d(v) < \infty$ אז פיענה 5. אם האלגוריתם עוצר וצומת v ישיג פ

הוכחה. נניח בשלילה שלא ונסתכל על קשת uv במסלול מ-s ל-v כך ש- ∞ ו-0 ו-0 - סתירה.

טענה 6. אם סיים בגרף מעגל שלילי ישיג מ-s אז האלגוריתם לא עוצר.

: נשים לב שקשת אינה משפרת אמ"מ $w(uv) \geq d(v) - d(u)$ נישים לב שקשת אינה משפרת אמ"מ $w(uv) \geq d(v) - d(u)$

$$0 = d(v_1) - d(v_k) + \sum_{i=1}^{k-1} d(v_{i+1}) - d(v_i) \le w(v_1 v_k) + \sum_{i=1}^{k-1} w(v_{i+1} v_i) < 0$$

 $v \in V$ לכל $d(v) = \delta(v)$ אם האלגוריתם עוצר אז אם האלגוריתם

הוכחה. נשים לב ש-d היא פונקציית חסם עליון והפעולה היחידה שהאלגוריתם מבצע היא ניסיון שיפור ולכן בסיום האלגוריתם הוכחה. $v \in V$ לכל $d(v) \geq \delta(v)$ היא עדיין פונקציית חסם עליון, כלומר $d(v) \geq \delta(v)$

uv שהטענה לא מתקיימת עבורו. נסתכל על קשת ער, s, כך שהטענה אינ מ-s, נניח בשלילה שקיים צומת שיים צומת שיג מuv, כך שהטענה לא מתקיים ש- $d(v) > \delta(s,v)$. במסלול קל ביותר מ-s ל-uv ש-uv במסלול קל ביותר מ-uv שליים ש-uv ו-uv במסלול קל ביותר אינ מתקיים ש-

$$w(uv) = \delta(v) - \delta(u) < d(v) - d(u)$$

. ומכאן ש-uv קשת משפרת

מציאת עץ המסלולים הקלים ביותר נעדכן את האלגוריתם כך שלכל צומת יהיה מצביע לצומת הקודם אליו במסלול הקל ביותר אליו מ-s.

- $d(s) \leftarrow 0$ הצב, $d(v) \leftarrow \infty, p(v) \leftarrow nil$ הצב $v \in V$ אתחול: לכל.
 - uv כל עוד קיימת קשת משפרת.2

$$d(v) \leftarrow d(u) + w(uv)$$
 (x)

$$p(v) \leftarrow u$$
 (2)

d(v)=d(u)+w(uv) אז p(v)=u אס האלגוריתם, אס אלגוריתם ביזען ריצת האלגוריתם

הוכחה. מיידי מהגדרת האלגוריתם.

$$E' = \{uv : p(v) = u\}$$
ו- $V' = \{v : p(v) \neq nil\} \cup \{s\}$ נגדיר

 V^{\prime} את שפורש ביותר פילים קלים עץ עס האר $T=(V^{\prime},E^{\prime})$ טענה פיותר שפורש האר ביותר שפורש את

הוכחה. באינדוקציה.

סיס: נכון

d(u)-d(v)= אחד מעגל אז מצר פניסיון שיפור לפי עד: אם ניסיון שיפור פי