# Examples for Day 8

Dr. Noori Kim

# The Karnaugh Map

# Practice $\overline{ABC} + \overline{ABC} + AB\overline{C} + ABC$

| C<br>AB | 0 | 1 |
|---------|---|---|
| 00      |   | 1 |
| 01      | 1 |   |
| 11      | 1 | 1 |
| 10      |   |   |

# Practice $\overline{A} + A\overline{B} + ABC$

| C<br>AB | 0 | 1 |
|---------|---|---|
| 00      | 1 | 1 |
| 01      | 1 | 1 |
| 11      | 1 |   |
| 10      | 1 | 1 |

# Grouping the 1s





# Grouping the 1s



# Determining the Minimum SOP Expression from the Map



#### Determining the Minimum SOP Expression



$$AB + BC + \overline{A}\overline{B}\overline{C}$$



$$\overline{B} + \overline{A}\overline{C} + AC$$

#### Determining the Minimum SOP Expression



# Mapping Directly from a Truth Table

|   |     |   |     | $\overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + AB\overline{C} + ABC$ |
|---|-----|---|-----|-------------------------------------------------------------------------------------------|
|   | I/P |   | O/P |                                                                                           |
| А | В   | С | X   | $\setminus C$ 0 1                                                                         |
| 0 | 0   | 0 | 1 ~ | AB                                                                                        |
| 0 | 0   | 1 | 0   | 00                                                                                        |
| 0 | 1   | 0 | 0   |                                                                                           |
| 0 | 1   | 1 | 0   | 01                                                                                        |
| 1 | 0   | 0 | 1 ~ |                                                                                           |
| 1 | 0   | 1 | 0   | 11 1 1                                                                                    |
| 1 | 1   | 0 | 1 - | 10                                                                                        |
| 1 | 1   | 1 | 1 - |                                                                                           |

#### "Don't Care" Conditions

- Sometimes a situation arises in which some input variable combinations are not allowed:
  - i.e., six invalid combinations: 1010, 1011, 1100, 1101, 1110, and 1111.
- Since these unallowed states will never occur in an application → they can be treated as "don't care" terms with respect to their effect on the output.
- The "don't care" terms can be used to advantage on the K-map (how? see the next).

### "Don't Care" Conditions

(i.e., six invalid combinations: 1010, 1011, 1100, 1101, 1110, and 1111)

|   | O/P |   |   |   |
|---|-----|---|---|---|
| A | В   | С | D | Y |
| 0 | 0   | 0 | 0 | 0 |
| 0 | 0   | 0 | 1 | 0 |
| 0 | 0   | 1 | 0 | 0 |
| 0 | 0   | 1 | 1 | 0 |
| 0 | 1   | 0 | 0 | 0 |
| 0 | 1   | 0 | 1 | 0 |
| 0 | 1   | 1 | 0 | 0 |
| 0 | 1   | 1 | 1 | 1 |
| 1 | 0   | 0 | 0 | 1 |
| 1 | 0   | 0 | 1 | 1 |
| 1 | 0   | 1 | 0 | x |
| 1 | 0   | 1 | 1 | x |
| 1 | 1   | 0 | 0 | X |
| 1 | 1   | 0 | 1 | x |
| 1 | 1   | 1 | 0 | X |
| 1 | 1   | 1 | 1 | x |



Without "don't care"  $Y = A\overline{B}\overline{C} + \overline{A}BCD$ 

With "don't care"

Y = A + BCD

## Mapping a Standard POS



### Mapping a Standard POS/SOP

$$(A+B+C)(A+B+\overline{C})(A+\overline{B}+C)(A+\overline{B}+\overline{C})(\overline{A}+\overline{B}+C)$$

POS: 000,001,010,011,110 → missing 100,111,101 : SOP



| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |
|   |   |   |   |

$$A(\overline{B}+C)$$

$$A\overline{B} + AC$$

$$A\overline{B}$$

## Timing Analysis

 Determine the gate output for the input waveforms below.





Sketch the output waveforms for the circuit shown in Figure 3–58.



Figure 3-58





#### Simplification Using Boolean Algebra

```
1. AB' + AB + BC = A(B'+B) + BC = A + BC

2. AB'D + AB'D' = AB'(D+D') = AB'

3. (A'+B)(A+B) = A'A + AB + A'B + BB = 0 + B(A+A') = B

4. ACD+A'BCD = CD(A+A'B) = CD(A+B) = ACD + BCD

5. AC'+ABC' = AC'(1+B) = AC'

6. A'B'CD' + A'B'C'D' = A'B'D'(C+C') = A'B'D'

7. A'D + ABD = D(A'+AB) = D(A'+B)

8. ((A'+C)(B+D'))' = AC' + B'D
```

```
A note for K-map.

3. (A'+B)(A+B): POS: F=B;

1. AB' + AB + BC: SOP: F= A+BC
```