SIMULADOR DE AMBIENTES ACÚSTICOS ORIENTADO A UMA ABORDAGEM MULTIAGENTES

Autor: Gabriel Augusto Barbosa

Orientador: Prof. Dr. Maurício Serrano Coorientadora: Prof^a. Dr^a. Milene Serrano

Universidade de Brasília - FGA

Introdução Referencial teórico Suporte tecnológico Metodologia Resultados Conclusão Bibliografia

Contextualização

- ► Estúdios musicais
- Auditórios
- ► Salas de aula

Introducão Referencial teórico Suporte tecnológico Metodologia Resultados Conclusão Bibliografic

Questão de pesquisa

"É possível desenvolver um sistema que simule o comportamento do som dentro de um ambiente fechado utilizando uma abordagem multiagentes?"

Introducão Referencial teórico Suporte tecnológico Metodologia Resultados Conclusão Bibliografia

Objetivo geral

Desenvolver um sistema que seja capaz de simular o comportamento do som dentro de um ambiente fechado, utilizando uma abordagem multiagentes, para que possa ser incorporado na implementação de novos simuladores acústicos, afim de potencializar o auxílio aos projetistas e/ou especialistas em acústica no que tange o acompanhamento e a avaliação dos parâmetros de seus projetos.

Introducão Referencial teórico Suporte tecnológico Metodologia Resultados Conclusão Bibliografia

Objetivos específicos I

- 1. Estudar o comportamento do som dentro de ambientes acústicos, identificando variáveis acústicas presentes dentro desses ambientes.
- 2. Identificar **índices de absorção** referentes aos **materiais** presentes nos ambientes em análise.
- 3. Propor um suporte tecnológico baseado em uma abordagem multiagentes, o qual será utilizado para a implementação da solução.
- 4. Explorar técnicas de programação, padrões de projeto e demais boas práticas da Engenharia de Software visando o desenvolvimento de um simulador manutenível e extensível.

Introducão Referencial teórico Suporte tecnológico Metodologia Resultados Conclusão Bibliografia

Objetivos específicos II

5. Definir métricas de qualidade visando realizar a análise estática e a cobertura do código do simulador proposto, com base em uma abordagem de teste apropriada para o contexto, focada, principalmente, em testes unitários.

ntrodução **Referencial teórico** Suporte tecnológico Metodologia Resultados Conclusão Bibliografi

Acústica I

Figura: Frequência e intensidade sonora

Fonte: < http://wingchunus.com/how-fast-should-you-punch/>

trodução Referencial teórico Suporte tecnológico Metodologia Resultados Conclusão Bibliografia

Acústica II

Figura: Reflexão

Fonte: < http://www.metalica.com.br/desempenho-acusticos-em-sistemas-drywall >

Acústica III

Intensidade sonora:

$$I_0 = 10^{-12} \ W/m^2$$

 $I_{max} = 1 \ W/m^2$

Nível de intensidade sonora (Decibel):

$$d\beta = 10\log\frac{I}{I_0}$$

Tempo de reverberação (RT60): tempo em que o nível de intensidade sonora no ambiente cai em 60 dB.

oducão Referencial teórico Suporte tecnológico Metodologia Resultados Conclusão Bibliografia

Simulação

Simulação é a representação de um processo do mundo real para um ambiente controlado onde se pode estudar o comportamento do mesmo, sob diversas condições, sem riscos físicos e/ou grandes custos envolvidos (TORGA, 2007).

Simulação x Simulação Computacional

ntrodução **Referencial teórico** Suporte tecnológico Metodologia Resultados Conclusão Bibliografia

Simulação acústica

Um dos modelo de representação acústica de ambientes fechados é acústica geométrica de salas, onde o conceito de onda sonora é substituído pelo conceito de raio sonoro (TORRES, 2008).

Figura: Reflexão dos raios sonoros

troducão Referencial teórico Suporte tecnológico Metodologia Resultados Conclusão Bibliografia

Ferramentas de desenvolvimento

12

Figura: Ferramentas de desenvolvimento utilizadas

troducão Referencial teórico Suporte tecnológico **Metodologia** Resultados Conclusão Bibliografia

Classificação da pesquisa

- O objetivo de uma pesquisa exploratória é a familiarização com o assunto que ainda não foi bem explorado e existem poucas informações acerca do mesmo (GIL, 2002).
- A pesquisa-ação é um processo cíclico e contínuo, onde se planeja, implementa, descreve e avalia uma mudança para a melhoria de sua prática. Desta forma, há um aprendizado maior por parte do pesquisador durante o processo (SILVA, 2015).

roducão Referencial teórico Suporte tecnológico **Metodologia** Resultados Conclusão Bibliografia

Planejamento da pesquisa

► Processo TCC

► Scrum adaptado para este TCC

Roadmap das sprints durante o desenvolvimento da ferramenta

Tabela: Roadmap

Sprint	Atividade	Data de início	Data de Término		
Sprint 1	Implementar US01	07/06/2015	14/06/2015		
Sprint 2	Implementar US02	14/06/2015	21/06/2015		
Sprint 3	Implementar US03	21/06/2015	28/07/2015		
Sprint 4	Implementar US10	28/06/2015	05/07/2015		
Sprint 5	Implementar US05	05/07/2015	12/07/2015		
Sprint 6	Implementar US04	12/07/2015	19/07/2015		
Sprint 7	Atividade de Refatoração	19/07/2015	26/07/2015		
Sprint 8	Implementar US06	26/07/2015	02/08/2015		
Sprint 9	Implementar US11	02/08/2015	09/08/2015		
Sprint 10	Implementar US07	09/08/2015	16/08/2015		
Sprint 11	Implementar US08	16/08/2015	23/08/2015		
Sprint 12	Implementar US09	23/08/2015	30/08/2015		
Sprint 13	Atividade de Refatoração	30/08/2015	06/09/2015		

roducão Referencial teórico Suporte tecnológico Metodologia **Resultados** Conclusão Bibliografia

O simulador

Demonstração do simulador.

roducão Referencial teórico Suporte tecnológico Metodologia **Resultados** Conclusão Bibliografi

Arquitetura I

Figura: Modelo arquitetural do sistema

trodução Referencial teórico Suporte tecnológico Metodologia **Resultados** Conclusão Bibliografia

Arquitetura II

Figura: Máquina de raciocínio do simulador acústico

troducão Referencial teórico Suporte tecnológico Metodologia **Resultados** Conclusão Bibliografia

Testes unitários e cobertura de código

test (27/10/2015 17:00:13)							
Element	Coverage	Covered Instruct	Missed Instructi	Total Instructions			
▼ [≧] AcousticSimulator	90,0 %	4.351	485	4.836			
▼ th src	82,3 %	2.259	485	2.744			
▶ # languagesAndMessages	94,5 %	103	6	109			
▶ 	100,0 %	27	0	27			
▶ # simulator.agents	42,6 %	302	407	709			
▶ # simulator.objects	96,6 %	1.667	58	1.725			
▶ 	92,0 %	160	14	174			

Figura : Cobertura de código

troducão Referencial teórico Suporte tecnológico Metodologia **Resultados** Conclusão Bibliografia

Métricas de qualidade de código fonte I

Dentre as métricas suportadas pelo Analizo, Meirelles (2013) seleciona um subconjunto representativo, pois foi constatado que muitas delas eram redundantes por medir prioridades muito correlacionadas.

- 1. Conexões aferentes, ou ACC, uma medida de acoplamento.
- 2. Média da complexidade ciclomática dos métodos, ou ACCM.
- 3. Média do tamanho dos métodos, ou AMLOC.
- 4. Média do número de parâmetros por método, ou ANPM.

trodução Referencial teórico Suporte tecnológico Metodologia **Resultados** Conclusão Bibliografia

Métricas de qualidade de código fonte II

- 5. Profundidade na árvore de herança, ou DIT.
- 6. Número de métodos, ou NOM.
- 7. Número de atributos públicos, ou NPA.
- 8. Complexidade estrutural, ou SC, uma medida que combina acoplamento (CBO) e coesão (LCOM4).

troducão Referencial teórico Suporte tecnológico Metodologia **Resultados** Conclusão Bibliografia

Métricas de qualidade de código fonte III

As métricas colhidas foram analisadas qualitativamente, baseando-se nos intervalos sugeridos no trabalho de Filho (2013).

	ACC	ACCM	AMLOC	ANPM	DIT	NOM	NPA	sc
Excelente	[0,2]	[0,3]	[0,8]	[0,2]	[0,2]	[0,10]	[0,1]	[0,12]
Bom	[2,7]	[3,5]	[8,19]	[2,3]	[2,4]	[10,17]	[1,2]	[12,28]
Regular	[7,15]	[5,7]	[19,37]	[3,5]	[4,6]	[17,27]	[2,3]	[28,51]
Preocupante	[15,∞]	[7,∞]	[37,∞]	[5,∞]	[6,∞]	[27,∞]	[3,∞]	[51,∞]

Valores obtidos: 1	1,64	1,63	12,07	0,68	0,42	8,15	0,79	17,24
--------------------	------	------	-------	------	------	------	------	-------

Figura: Análise estática do código fonte

roducão Referencial teórico Suporte tecnológico Metodologia **Resultados** Conclusão Bibliografía

Comparação entre os cenários de uso avaliados I

Configurações e especificações técnicas do ambiente:

- ▶ Processador Intel Core i7, modelo 2630QM de 2Ghz
- ▶ 6 Gb de memória ram
- ▶ Ubuntu 14.04.3 LTS, 64 bits
- ► Java 1.8.0_66

Tabela: Cenários avaliados

Dados do ambiente	Cenário 1	Cenário 2	Cenário 3	
Largura	4 m	3 m	25 m	
Comprimento	4 m	7 m	20 m	
Altura	3 m	4 m	6 m	
Absorção média	9 %	10 %	20 %	

23

Resultados

Comparação entre os cenários de uso avaliados II

Figura: Tempo de reverberação dos simuladores por cenário.

roducão Referencial teórico Suporte tecnológico Metodologia Resultados **Conclusão** Bibliografia

Considerações finais

Neste trabalho, foi proposta a seguinte questão de pesquisa:

"É possível desenvolver um sistema que simule o comportamento do som dentro de um ambiente fechado utilizando uma abordagem multiagentes?"

Com base nos **resultados** desse trabalho, oriundos dos **objetivos específicos**, pode-se concluir que a resposta à questão é: **Sim**, o simulador atendeu ao objetivo geral para o qual foi proposto.

ntrodução Referencial teórico Suporte tecnológico Metodologia Resultados **Conclusão** Bibliografia

Trabalhos futuros I

- 1. Alternativa ao JFreeChart que possibilite a representação de todos os elementos dentro do ambiente.
- Incorporar catálogo de materiais associados aos seus respectivos índices de absorção.
- 3. Adicionar novos parâmetros a serem coletados durante a simulação e apresentados ao usuário final, como por exemplo: clareza, brilho, equilíbrio, ruído e distorção (FIGUEIREDO, 2005).
- 4. Refinar cálculos de reflexão sonora.

ntrodução Referencial teórico Suporte tecnológico Metodologia Resultados **Conclusão** Bibliografia

Trabalhos futuros II

A arquitetura do simulador foi elaborada de modo a garantir uma ferramenta manutenível e extensível. O código fonte está disponível para a comunidade de software livre sob a licença GPL v2 no GitHub em:

< https://github.com/gabriel-augusto/AcousticSimulator>.

Obrigado.

ão Referencial teórico Suporte tecnológico Metodologia Resultados Conclusão Bibliografia

Bibliografia I

- FIGUEIREDO, F. L. Parâmetros acústicos subjetivos: Critérios para avaliação da qualidade acústica de salas de música. Tese (Doutorado), 2005.
- FILHO, C. M. de O. *Kalibro: interpretação de métricas de código-fonte*. Tese (Doutorado) Universidade de São Paulo, 2013.
- GIL, A. C. *Como elaborar projetos de pesquisa*. São Paulo, Brasil: Atlas, 2002.
- MEIRELLES, P. R. M. Monitoramento de métricas de código-fonte em projetos de software livre. Tese (Doutorado) Universidade de São Paulo, 2013.
- SILVA, R. C. da. Ferramenta de estratégia financeira apoiada por sistemas multiagentes comportamentais. 2015.
- TORGA, B. L. M. *Modelagem, simulação e otimização em sistemas puxados de manufatura*. Tese (Doutorado) UNIVERSIDADE FEDERAL DE ITAJUBÁ, Minas Gerais. 2007.

ão Referencial teórico Suporte tecnológico Metodologia Resultados Conclusão **Bibliografia**

Bibliografia II

TORRES, M. H. C. Simulação acústica no ambiente acmus. dissertação (mestrado em ciência da computação). São Paulo, 2008.