2IMM20 - Foundations of data mining TU Eindhoven, Quartile 3, 2017-2018

Anne Driemel

Why reduce the dimension?

Why reduce the dimension?

Representation of input data often is often high dimensional (images, documents, etc.)

There are two main reasons to reduce the dimension:

- some algorithms have running time exponential in the dimension
- we want to **visualize** inherent structure in the data

Overview of this lecture

- Principal Component Analysis (PCA)
- Interpretation of Principle Components
- Computing Principal Components
- Singular-Value Decomposition (SVD)
- Power Method
- Eigenvectors of the Sample Covariance Matrix
- Multidimensional scaling
- Isomap

Principal components provide a sequence of best linear approximations to a data set

Given a data set $P = \{\mathbf{p_1}, \dots, \mathbf{p_n}\}$, we want to represent P using a k-dimensional linear model

$$f(\lambda) = \mu + \mathbf{V}\lambda,$$

where

- μ is a location vector in ${\rm I\!R}^d$
- V is a $d \times k$ orthonormal matrix
- $-\lambda$ is a k vector of parameters

The above is a parametric representation of an affine hyperplane of dimension \boldsymbol{k}

Want to find the hyperplane which minimizes sum of squared distances ("best fitting") $\sum_{1 \leq i \leq n} \|\mathbf{p_i} - f(\lambda^{(i)})\|^2$

We can visualize P in the subspace spanned by $\mathbf{v_1}$ and $\mathbf{v_2}$ by plotting the principle coordinates λ .

We have our linear model

$$f(\lambda) = \mu + \mathbf{V}\lambda,$$

where

- μ is a location vector in ${\rm I\!R}^d$
- V is a $d \times k$ matrix
- $-\lambda$ is a k vector of parameters

We have a function that defines "best fitting"

$$\min_{\mu, \mathbf{V_k}, \lambda} \sum_{1 \le i \le n} \|\mathbf{p_i} - f(\lambda^{(i)})\|^2$$

We have our linear model

$$f(\lambda) = \mu + \mathbf{V}\lambda,$$

where

- μ is a location vector in ${\rm I\!R}^d$
- \mathbf{V} is a $d \times k$ matrix
- λ is a k vector of parameters

We have a function that defines "best fitting"

$$\min_{\mu, \mathbf{V_k}, \lambda} \sum_{1 \le i \le n} \|\mathbf{p_i} - f(\lambda^{(i)})\|^2$$

Optimizing for μ and λ gives

$$\mu = \frac{1}{n} \sum_{1 \le i \le n} \mathbf{p_i}$$
 and $\lambda^{(i)} = \mathbf{V}^T (\mathbf{p_i} - \mu)$

We have our linear model

$$f(\lambda) = \mu + \mathbf{V}\lambda,$$

where

- μ is a location vector in ${\rm I\!R}^d$
- \mathbf{V} is a $d \times k$ matrix
- $-\lambda$ is a k vector of parameters

We can assume that μ is the mean of the data

We have a function that defines "best fitting"

$$\min_{\mu, \mathbf{V_k}, \lambda} \sum_{1 \le i \le \mu} \|\mathbf{p_i} - f(\lambda^{(i)})\|^2$$

Optimizing for μ and λ gives

$$\mu = rac{1}{n} \sum_{1 \leq i \leq n} \mathbf{p_i}$$
 and $\lambda^{(i)} = \mathbf{V}^T (\mathbf{p_i} - \mu)$

We have our linear model

$$f(\lambda) = \mu + \mathbf{V}\lambda,$$

where

- μ is a location vector in ${\rm I\!R}^d$
- \mathbf{V} is a $d \times k$ matrix
- $-\lambda$ is a k vector of parameters

We have a function that defines "best fitting"

$$\min_{\mu, \mathbf{V_k}, \lambda} \sum_{1 \le i \le \mu} \|\mathbf{p_i} - f(\lambda^{(i)})\|^2$$

Optimizing for μ and λ gives

$$\mu = rac{1}{n} \sum_{1 \leq i \leq n} \mathbf{p_i}$$
 and

We can assume that μ is the mean of the data

... and we use the projection onto ${f V}$ for λ

Example: handwritten digits

3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3		3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3

Example: handwritten digits

Assume we computed the first two principal components We obtain an interpretable representation

$$\widehat{f}(\lambda) = \mu + \mathbf{V}\lambda,$$

$$= \mu + \lambda_1 \mathbf{v_1} + \lambda_2 \mathbf{v_2}$$

$$= + \lambda_1 + \lambda_2 \cdot$$

$$= \mathbf{mean}$$
principle components

Example: handwritten digits

Interpretation?

Example: handwritten digits

Interpretation?

"slanting"

"lengthening of lower tail"

Example: handwritten digits

We have defined PCA as an optimization problem: Fitting a k-dimensional hyperplane to the data

$$f(\lambda) = \mu + \mathbf{V}\lambda,$$

We have defined PCA as an optimization problem: Fitting a k-dimensional hyperplane to the data

$$f(\lambda) = \mu + \mathbf{V},$$

How do we compute V?

We have defined PCA as an optimization problem: Fitting a k-dimensional hyperplane to the data

$$f(\lambda) = \mu + \mathbf{V}\lambda,$$

How do we compute V?

In the following, let ${\bf A}$ be a $n \times d$ matrix with row vectors ${\bf a_i}$ with

$$\mathbf{a_i} = (\mathbf{p_i} - \mu)^T$$

 $\bf A$ is a **centered** version of P

Simplest case: fitting a line through the origin to A

(Pythagoras) $\|\mathbf{a_i}\|^2 = \alpha_i^2 + \beta_i^2$

(Pythagoras)
$$\|\mathbf{a_i}\|^2 = \alpha_i^2 + \beta_i^2$$

$$\Leftrightarrow \quad \alpha_i^2 = \|\mathbf{a_i}\|^2 - \beta_i^2$$

 ${\bf A}$ is a $n \times d$ matrix with row vectors ${\bf a_i}$

The first singular vector of
$$A$$
 is: $\mathbf{v_1} = \underset{\|\mathbf{v}\|=1}{\operatorname{argmax}} \|\mathbf{A}\mathbf{v}\|$

The first singular value of
$$A$$
 is: $\sigma_1 = \|\mathbf{A}\mathbf{v_1}\|$

 ${\bf A}$ is a $n \times d$ matrix with row vectors ${\bf a_i}$

The first singular vector of A is:

$$\mathbf{v_1} = \underset{\|\mathbf{v}\|=1}{\operatorname{argmax}} \|\mathbf{A}\mathbf{v}\|$$

The first singular value of A is:

$$\sigma_1 = \|\mathbf{A}\mathbf{v_1}\|$$

The second singular vector of \boldsymbol{A} is:

$$\mathbf{v_2} = \underset{\mathbf{v} \perp \mathbf{v_1}}{\operatorname{argmax}} \|\mathbf{A}\mathbf{v}\|$$

 ${\bf A}$ is a $n \times d$ matrix with row vectors ${\bf a_i}$

The first singular vector of A is:

$$\mathbf{v_1} = \underset{\|\mathbf{v}\|=1}{\operatorname{argmax}} \|\mathbf{A}\mathbf{v}\|$$

The first singular value of A is:

$$\sigma_1 = \|\mathbf{A}\mathbf{v_1}\|$$

The second singular vector of A is:

$$\mathbf{v_2} = \operatorname*{argmax}_{\|\mathbf{v}\|=1} \|\mathbf{Av}\|$$

The second singular value of A is:

$$\sigma_2 = \|\mathbf{A}\mathbf{v_2}\|$$

 ${\bf A}$ is a $n \times d$ matrix with row vectors ${\bf a_i}$

The first singular vector of A is:

$$\mathbf{v_1} = \underset{\|\mathbf{v}\|=1}{\operatorname{argmax}} \|\mathbf{A}\mathbf{v}\|$$

The first singular value of A is:

$$\sigma_1 = \|\mathbf{A}\mathbf{v_1}\|$$

The second singular vector of A is:

$$\mathbf{v_2} = \operatorname*{argmax}_{\|\mathbf{v}\|=1} \|\mathbf{Av}\|$$

The second singular value of A is:

$$\sigma_2 = \|\mathbf{A}\mathbf{v_2}\|$$

. . .

 ${\bf A}$ is a $n \times d$ matrix with row vectors ${\bf a_i}$

The first singular vector of A is:

$$\mathbf{v_1} = \underset{\|\mathbf{v}\|=1}{\operatorname{argmax}} \|\mathbf{A}\mathbf{v}\|$$

The first singular value of A is:

$$\sigma_1 = \|\mathbf{A}\mathbf{v_1}\|$$

The second singular vector of A is:

$$\mathbf{v_2} = \operatorname*{argmax}_{\|\mathbf{v}\|=1} \|\mathbf{A}\mathbf{v}\|$$

The second singular value of A is:

$$\sigma_2 = \|\mathbf{A}\mathbf{v_2}\|$$

. . .

The process stops when we have found singular vectors $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_r}$ and singular values $\sigma_1, \sigma_2, \dots, \sigma_r$ and

$$\max_{\substack{\|\mathbf{v}\|=1\\\mathbf{v}\perp\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_r}}\|\mathbf{A}\mathbf{v}\|=\mathbf{0}$$

Singular Value Decomposition (SVD)

SVD is the factorization of a matrix A into three matrices

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$$

where

- ullet U and V are orthonormal
- **D** is diagonal with positive real entries σ_i
- σ_i are in descending order

Singular Value Decomposition (SVD)

SVD is the factorization of a matrix A into three matrices

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$$

where

- U and V are orthonormal
- **D** is diagonal with positive real entries σ_i
- σ_i are in descending order

Columns of V are called **singular vectors** $v_1, v_2, ...$ Diagonal entries of D are called **singular values** $\sigma_1, \sigma_2, ...$

Singular Value Decomposition (SVD)

 $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$ can be rewritten using the sum of outer products

$$\mathbf{A} = \sum_{i} \sigma_{i} \mathbf{u_{i}} \mathbf{v_{i}}^{T}$$

where $\mathbf{u_i}$ and $\mathbf{v_i}$ are columns of \mathbf{U} and \mathbf{V}

The i^{th} term in the above sum can be viewed as giving the components of the rows of ${\bf A}$ along ${\bf v_i}$

$$\mathbf{B} = \mathbf{A}^T \mathbf{A} = \left(\sum_i \sigma_i \mathbf{u_i} \mathbf{v_i}^T \right) \left(\sum_j \sigma_j \mathbf{u_j} \mathbf{v_j}^T \right)$$

$$\mathbf{B} = \mathbf{A}^{T} \mathbf{A} = \left(\sum_{i} \sigma_{i} \mathbf{u_{i}} \mathbf{v_{i}}^{T} \right) \left(\sum_{j} \sigma_{j} \mathbf{u_{j}} \mathbf{v_{j}}^{T} \right)$$

$$= \sum_{i} \sum_{j} \sigma_{i} \sigma_{j} \mathbf{v_{i}} \left(\mathbf{u_{i}}^{T} \mathbf{u_{j}} \right) \mathbf{v_{j}}^{T} \quad \text{orthogonal for } i \neq j$$

$$\mathbf{B} = \mathbf{A}^{T} \mathbf{A} = \left(\sum_{i} \sigma_{i} \mathbf{u_{i}} \mathbf{v_{i}}^{T} \right) \left(\sum_{j} \sigma_{j} \mathbf{u_{j}} \mathbf{v_{j}}^{T} \right)$$

$$= \sum_{i} \sum_{j} \sigma_{i} \sigma_{j} \mathbf{v_{i}} \left(\mathbf{u_{i}}^{T} \mathbf{u_{j}} \right) \mathbf{v_{j}}^{T} \quad \text{orthogonal for } i \neq j$$

$$= \sum_{i} \sigma_{i}^{2} \mathbf{v_{i}} \mathbf{v_{i}}^{T}$$

$$\mathbf{B} = \mathbf{A}^{T} \mathbf{A} = \left(\sum_{i} \sigma_{i} \mathbf{u_{i}} \mathbf{v_{i}}^{T} \right) \left(\sum_{j} \sigma_{j} \mathbf{u_{j}} \mathbf{v_{j}}^{T} \right)$$

$$= \sum_{i} \sum_{j} \sigma_{i} \sigma_{j} \mathbf{v_{i}} \left(\mathbf{u_{i}}^{T} \mathbf{u_{j}} \right) \mathbf{v_{j}}^{T} \quad \text{orthogonal for } i \neq j$$

$$= \sum_{i} \sigma_{i}^{2} \mathbf{v_{i}} \mathbf{v_{i}}^{T}$$

$$\mathbf{B}^{2} = \sum_{i} \sum_{j} \sigma_{i}^{2} \sigma_{j}^{2} \mathbf{v_{i}} \left(\mathbf{v_{i}}^{T} \mathbf{v_{j}} \right) \mathbf{v_{j}}^{T} = \sum_{i} \sigma_{i}^{4} \mathbf{v_{i}} \mathbf{v_{i}}^{T}$$

$$\mathbf{B} = \mathbf{A}^{T} \mathbf{A} = \left(\sum_{i} \sigma_{i} \mathbf{u_{i}} \mathbf{v_{i}}^{T}\right) \left(\sum_{j} \sigma_{j} \mathbf{u_{j}} \mathbf{v_{j}}^{T}\right)$$

$$= \sum_{i} \sum_{j} \sigma_{i} \sigma_{j} \mathbf{v_{i}} \left(\mathbf{u_{i}}^{T} \mathbf{u_{j}}\right) \mathbf{v_{j}}^{T} \quad \text{orthogonal for } i \neq j$$

$$= \sum_{i} \sigma_{i}^{2} \mathbf{v_{i}} \mathbf{v_{i}}^{T}$$

$$\mathbf{B}^{2} = \sum_{i} \sum_{j} \sigma_{i}^{2} \sigma_{j}^{2} \mathbf{v_{i}} \left(\mathbf{v_{i}}^{T} \mathbf{v_{j}}\right) \mathbf{v_{j}}^{T} = \sum_{i} \sigma_{i}^{4} \mathbf{v_{i}} \mathbf{v_{i}}^{T}$$

$$\mathbf{B}^{k} = \sum_{i} \sigma_{i}^{2k} \mathbf{v_{i}} \mathbf{v_{i}}^{T} \rightarrow \sigma_{1}^{2k} \mathbf{v_{1}} \mathbf{v_{1}}^{T}$$

$$\left(\mathbf{using} \ \sigma_{1} > \sigma_{2}\right)$$

The first principal component v_1 can be computed using the **power method**:

$$\mathbf{B} = \mathbf{A}^{T} \mathbf{A} = \left(\sum_{i} \sigma_{i} \mathbf{u_{i}} \mathbf{v_{i}}^{T}\right) \left(\sum_{j} \sigma_{j} \mathbf{u_{j}} \mathbf{v_{j}}^{T}\right)$$

$$= \sum_{i} \sum_{j} \sigma_{i} \sigma_{j} \mathbf{v_{i}} \left(\mathbf{u_{i}}^{T} \mathbf{u_{j}}\right) \mathbf{v_{j}}^{T} \quad \text{orthogonal for } i \neq j$$

$$= \sum_{i} \sigma_{i}^{2} \mathbf{v_{i}} \mathbf{v_{i}}^{T}$$

$$= \sum_{i} \sigma_{i}^{2} \sigma_{j}^{2} \mathbf{v_{i}} \left(\mathbf{v_{i}}^{T} \mathbf{v_{j}}\right) \mathbf{v_{j}}^{T} = \text{We can estimate } \mathbf{v_{1}} \text{ using the first column of } \mathbf{B}^{k} \text{ normalized to } \mathbf{B}^{k} = \sum_{i} \sigma_{i}^{2k} \mathbf{v_{i}} \mathbf{v_{i}}^{T} \rightarrow \sigma_{1}^{2k} \mathbf{v_{1}} \mathbf{v_{1}}^{T}$$

$$= \mathbf{B}^{k} = \sum_{i} \sigma_{i}^{2k} \mathbf{v_{i}} \mathbf{v_{i}}^{T} \rightarrow \sigma_{1}^{2k} \mathbf{v_{1}} \mathbf{v_{1}}^{T}$$

(using $\sigma_1 > \sigma_2$)

Interpretation of principal components (again)

Example: handwritten digits

Assume we computed the first two principal components We obtain an interpretable representation

$$\widehat{f}(\lambda) = \mu + \mathbf{V}\lambda,$$

$$= \mu + \lambda_1 \mathbf{v_1} + \lambda_2 \mathbf{v_2}$$

$$= + \lambda_1 + \lambda_2 \cdot$$

$$= - \mu + \lambda_1 \cdot$$

$$= -$$

An Alternative View

We can view a_i as an observation of a multivariate distribution

A contains n observations of d random variables X_1, X_2, \ldots, X_d

The **covariance** of two variables X_i, X_j is defined as

$$\operatorname{cov}(X_i, X_j) = \operatorname{E}\left[(X_i - \mu_i)(X_j - \mu_j)\right]$$
 with $\mu_i = \operatorname{E}\left[X_i\right]$

The **sample covariance matrix** is defined as

$$\mathbf{M} = \frac{1}{n-1} \sum_{1 \le i \le n} (\mathbf{a_i} - \mu)^T (\mathbf{a_i} - \mu)$$

$$\mathbf{A}^T \mathbf{A}$$

An Alternative View

A vector v such that

$$B\mathbf{v} = \gamma \mathbf{v}$$

is called an $\mathbf{eigenvector}$ of B and γ is called the $\mathbf{eigenvalue}$

An Alternative View

A vector v such that

$$B\mathbf{v} = \gamma \mathbf{v}$$

is called an **eigenvector** of B and γ is called the **eigenvalue**

The following holds true since $\mathbf{V}^T = \mathbf{V}^{-1}$

$$\mathbf{A}\mathbf{v_i} = \sigma_i \mathbf{u_i}$$

and

$$\mathbf{A}^T \mathbf{u_i} = \sigma_i \mathbf{v_i}$$

together this implies

$$\mathbf{A}^T \mathbf{A} \mathbf{v_i} = \sigma_i^2 \mathbf{v_i}$$

Therefore, the singular vectors of A are the eigenvectors of the sample covariance matrix

Assume matrix $\bf A$ is not available, but instead we are given all squared pairwise distances as $n \times n$ matrix Δ

$$\Delta_{ij} = \|\mathbf{a_i} - \mathbf{a_j}\|^2$$

Assume matrix $\bf A$ is not available, but instead we are given all squared pairwise distances as $n \times n$ matrix Δ

$$\Delta_{ij} = \|\mathbf{a_i} - \mathbf{a_j}\|^2$$

We can recover inner products $\mathbf{a_i}\mathbf{a_i^T}$ of unknown \mathbf{A} as follows

Assume matrix $\bf A$ is not available, but instead we are given all squared pairwise distances as $n \times n$ matrix Δ

$$\Delta_{ij} = \|\mathbf{a_i} - \mathbf{a_j}\|^2$$

We can recover inner products $\mathbf{a_i}\mathbf{a_i^T}$ of unknown \mathbf{A} as follows

The following matrix is a **double-centering** of Δ

$$\mathbf{B} = \left(\mathbf{I} - \frac{\mathbf{J}}{n}\right) \Delta \left(\mathbf{I} - \frac{\mathbf{J}}{n}\right)$$

where

- I denotes the $n \times n$ identity matrix
- J be the $n \times n$ matrix of all 1's

Assume matrix $\bf A$ is not available, but instead we are given all squared pairwise distances as $n \times n$ matrix Δ

$$\Delta_{ij} = \|\mathbf{a_i} - \mathbf{a_j}\|^2$$

We can recover inner products $\mathbf{a_i}\mathbf{a_i^T}$ of unknown \mathbf{A} as follows

The following matrix is a **double-centering** of Δ

$$\mathbf{B} = \left(\mathbf{I} - \frac{\mathbf{J}}{n}\right) \Delta \left(\mathbf{I} - \frac{\mathbf{J}}{n}\right)$$
 centering the rows of Δ

where

- I denotes the $n \times n$ identity matrix
- J be the $n \times n$ matrix of all 1's

Assume matrix $\bf A$ is not available, but instead we are given all squared pairwise distances as $n \times n$ matrix Δ

$$\Delta_{ij} = \|\mathbf{a_i} - \mathbf{a_j}\|^2$$

We can recover inner products $\mathbf{a_i}\mathbf{a_i^T}$ of unknown \mathbf{A} as follows

The following matrix is a **double-centering** of Δ

$$\mathbf{B} = (\mathbf{I} - \frac{\mathbf{J}}{n}) \Delta (\mathbf{I} - \frac{\mathbf{J}}{n})$$
 centering the rows of Δ

where

- I denotes the $n \times n$ identity matrix
- J be the $n \times n$ matrix of all 1's

centering the columns of Δ

Assume matrix $\bf A$ is not available, but instead we are given all squared pairwise distances as $n \times n$ matrix Δ

$$\Delta_{ij} = \|\mathbf{a_i} - \mathbf{a_j}\|^2$$

We can recover inner products $\mathbf{a_i}\mathbf{a_i^T}$ of unknown \mathbf{A} as follows

The following matrix is a **double-centering** of Δ

$$\mathbf{B} = (\mathbf{I} - \frac{\mathbf{J}}{n}) \Delta (\mathbf{I} - \frac{\mathbf{J}}{n})$$
 centering the rows of Δ

where

- I denotes the $n \times n$ identity matrix
- J be the $n \times n$ matrix of all 1's

centering the columns of Δ

If A is mean-centered, one can show that $(-\frac{1}{2})\mathbf{B} = \mathbf{A}\mathbf{A}^T$

Recall that from SVD we have

$${f A}{f v_i}=\sigma_i{f u_i}$$
 and ${f A}^T{f u_i}=\sigma_i{f v_i}$ which implies

$$\mathbf{A}^T \mathbf{A} \mathbf{v_i} = \sigma_i^2 \mathbf{v_i}$$

Recall that from SVD we have

$$\mathbf{A}\mathbf{v_i} = \sigma_i \mathbf{u_i}$$
 and which implies

$$\mathbf{A}^T \mathbf{A} \mathbf{v_i} = \sigma_i^2 \mathbf{v_i}$$

 $\mathbf{A}^T \mathbf{u_i} = \sigma_i \mathbf{v_i}$

symmetrically, this also implies

$$\mathbf{A}\mathbf{A}^T\mathbf{u_i} = \sigma_i^2\mathbf{u_i}$$

Recall that from SVD we have

$$\mathbf{A}\mathbf{v_i} = \sigma_i\mathbf{u_i}$$
 and $\mathbf{A}^T\mathbf{u_i} = \sigma_i\mathbf{v_i}$

which implies

$$\mathbf{A}^T \mathbf{A} \mathbf{v_i} = \sigma_i^2 \mathbf{v_i}$$

symmetrically, this also implies

$$\mathbf{A}\mathbf{A}^T\mathbf{u_i} = \sigma_i^2\mathbf{u_i}$$

Thus, the eigenvectors of $\mathbf{A}\mathbf{A}^T$ are the vectors $\mathbf{u_i}$ of the SVD of \mathbf{A} and the corresponding eigenvalues are the values σ_i^2 .

Recall that from SVD we have

$$\mathbf{A}\mathbf{v_i} = \sigma_i\mathbf{u_i}$$
 and $\mathbf{A}^T\mathbf{u_i} = \sigma_i\mathbf{v_i}$ which implies

$$\mathbf{A}^T \mathbf{A} \mathbf{v_i} = \sigma_i^2 \mathbf{v_i}$$

symmetrically, this also implies

$$\mathbf{A}\mathbf{A}^T\mathbf{u_i} = \sigma_i^2\mathbf{u_i}$$

Thus, the eigenvectors of $\mathbf{A}\mathbf{A}^T$ are the vectors $\mathbf{u_i}$ of the SVD of \mathbf{A} and the corresponding eigenvalues are the values σ_i^2 .

We obtain coordinates $\lambda^{(i)} = \sigma_i \mathbf{u_i}$ in the best-fit linear model.

Recall that from SVD we have

$$\mathbf{A}\mathbf{v_i} = \sigma_i\mathbf{u_i}$$
 and $\mathbf{A}^T\mathbf{u_i} = \sigma_i\mathbf{v_i}$ which implies

$$\mathbf{A}^T \mathbf{A} \mathbf{v_i} = \sigma_i^2 \mathbf{v_i}$$

symmetrically, this also implies

$$\mathbf{A}\mathbf{A}^T\mathbf{u_i} = \sigma_i^2\mathbf{u_i}$$

Thus, the eigenvectors of $\mathbf{A}\mathbf{A}^T$ are the vectors $\mathbf{u_i}$ of the SVD of \mathbf{A} and the corresponding eigenvalues are the values σ_i^2 .

We obtain coordinates $\lambda^{(i)} = \sigma_i \mathbf{u_i}$ in the best-fit linear model.

The result is called an **embedding** of **A** and the process is called classical multidimensional scaling (MDS).

Isomap

Isomap is a non-linear embedding algorithm which assumes that the data lies on an Euclidean manifold

Isomap is due to Tenenbaum, Silva and Langford (2000)

Algorithm:

- Compute the k-nearest neighbor graph G
- Compute all pairwise shortest paths in ${\cal G}$
- Use Multidimensional scaling on the obtained distances

Summary

- Principal Component Analysis (PCA)
- Interpretation of Principal Components
- Computing Principal Components
- Singular-Value Decomposition (SVD)
- Power Method
- Eigenvectors of the Sample Covariance Matrix
- Multidimensional scaling
- Isomap

References

- Avrim Blum, John Hopcroft, Ravindran Khannan: Foundations of Data Science
- Trevor Hastie, Robert Tibshirani, Jerome Friedman: Elements of Statistical Learning
- J. B. Tenenbaum, V. de Silva, J. C. Langford, "A Global Geometric Framework for Nonlinear Dimensionality Reduction", Science 290, (2000).