Operating Systems Structure and Processes

Otto J. Anshus University of Tromsø/Oslo

The Architecture of an OS

- Monolithic
- Layered
- Virtual Machine, Library, Exokernel
- Micro kernel and Client/Server
- Hybrids

Goals of the architecture

- OS as Resource Manager
- OS as Virtual Machine (abstractions)
- Efficiency, flexibility, size, security, ... as discussed earlier

Operating System Use of Processes: Where is the OS executing?

Separate Kernel

P₃
P₄
P₅

Illustrations: Stallings:
Operating System:
Internals and Design

P_n

Kernel

 P_2

OS-Functions Executing within Processes

OS-Functions Executing in Separate Processes

Monolithic

- All kernel routines are together
- A system call interface
- Examples:
 - Linux
 - Most Unix OS
 - NT (hybrid)

Layered Structure

- Hiding information at each layer
- Develop a layer at a time
- Examples
 - THE (6 layers,semaphores, Dijkstra1968)
 - MS-DOS (4 layers)

Level N				
•				
Level 2				
Level 1				
Hardware				

Microkernel and Client/Server

- Micro-kernel is "micro"
- Services are implemented as user level processes
- Micro-kernel get services on behalf of users by messaging with the service processes
- Example: <u>L4</u>, <u>Nucleus</u>, <u>Taos</u>, <u>Mach</u>, <u>Mach</u>, <u>NT</u> (hybrid)

Virtual Machine

"A running program is often referred to as a virtual machine - a machine that doesn't exist as a matter of actual physical reality. The virtual machine idea is itself one of the most elegant in the history of technology and is a crucial step in the evolution of ideas about software. To come up with it, scientists and technologists had to recognize that a computer running a program isn't merely a washer doing laundry. A washer is a washer whatever clothes you put inside, but when you put a new program in a computer, it becomes a new machine.... The virtual machine: A way of understanding software that frees us to think of software design as machine design."

From David Gelernter's "<u>Truth, Beauty, and the Virtual Machine</u>," Discover Magazine, September 1997, p. 72.

en, vår 2019

Virtual 8086

A NEW OLD IDEA: PENTIUM VIRTUAL 8086 MODE

 Virtual 8086 mode on the Pentium makes it possible to run old 16-bit DOS applications on a virtual machine

_

Java VM

Figure 1.1: Diagram of Java Program Execution

Exokernel Architecture

Hardware Support

- What is the minimal support?
 - 2 modes
 - Exception and interrupt trapping
- Can virtual machine be protected without such support?
 - Yes, emulation instead of executing on real machine

Pro et Contra

Monolithic	Layered	VM	C/S	Micro kernel
•Performance	•Clear division of labour	 •Many virtual computers with different OS'es •Test of new OS while production work continues •All in all: flexibility 	•Clear division of labour	 •More flexible •Small means less bugs+manageable •Distributed systems •Failure isolation of services at Kernel Level
•Less structured	Are layers really sepaparated?Performance issues?	Performance issues?Complexity issues?	•Performance issues?	•Flexibility issues? •Performance issues?

"Truths" on Micro Kernel Flexibility and Performance

- A micro kernel restricts application level flexibility.
- Switching overhead kernel-user mode is inherently expensive.
- Switching address-spaces is costly.

NO: Can be <50 cycles

- IPC is expensive.
- Micro kernel architectures lead to meet 53-500 cycles/IPC one way
- Kernel should be portable (on top of a small hardware-dependent layer).

Concurrency and Process

- Problem to solve
 - A shared CPU, many I/O devices and lots of interrupts
 - Users feel they have machine to themselves
- Strategy
 - Decompose hard problems into simple ones
 - Deal with one at a time
 - Process is such a unit

Flow of Execution

Procedure, Co-routine, Thread, Process

- Procedure, Function, (Sub)Routine
 - Call-execute all-return nesting
- Co-routine

User level non preemptive "scheduler" in user code

- Call-resumes-return
- Thread (more later)
- Process
 - Single threaded
 - Multi threaded

Procedure and Co-routine

Process

- Sequential execution of operations
 - No concurrency inside a (**single** threaded) process
 - Everything happens sequentially
- Process state
 - Registers
 - Stack(s)
 - Main memory
 - Open files in UNIX
 - Communication ports
 - Other resources

Program and Process

For at least one *thread* of execution

```
main()
foo()
foo()
      Program
```

```
main()
                 PID
                 heap
foo()
                 stack
                 main
                  foo
               registers
foo()
                               The
                  PC
                              context
               Resources:
              comm. ports,
                  files,
               semaphores
        Process
```


Process vs. Program

- Process > program
 - Program is just part of process state
 - Example: many users can run the same program
- Process < program
 - A program can invoke more than one process
 - Example: Fork off processes to lookup webster

Instruction Pointer (program counter) in the

Process State Transitions

Blocked

terminate

Process State Transition

Process Control Block (Process Table)

• What

- Process management info
 - State (ready, running, blocked)
 - Registers, PSW, parents, etc
- Memory management info
 - Segments, page table, stats, etc
- I/O and file management
 - Communication ports, directories, file descriptors, etc.

Discussion: What needs to be saved and restored on a context switch?

Volatile state

- Program counter (Program Counter (PC) also called Instruction Pointer (Intel: EIP))
- Processor status register
- Other register contents
- User and kernel stack pointers
- A pointer to the address space in which the process runs
 - the process's page table directory

...and how?

- Save(volatile machine state, current process);
- Load(another process's saved volatile state);
- **Start**(new process);

Threads and Processes

Trad. Threads

Project OpSys

Processes in individual address spaces

Links

- Virtual machine
 - http://whatis.techtarget.com/definition/0,,sid9_gci213305,00.html
- Exokernel
 - https://en.wikipedia.org/wiki/Exokernel

• THE

• http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD196.PDF

• L4

• http://os.inf.tu-dresden.de/L4/

VM

http://www.vm.ibm.com/

Course Variants

- UiO INF3151 Thomas Plagemann
 - https://www.uio.no/studier/emner/matnat/ifi/INF3151/v19/timeplan/index. httml#FOR
- Princeton COS 318 Jaswinder P. Singh
 - http://www.cs.princeton.edu/courses/archive/fall18/cos318/schedule.html

