Objectives:

This experiment aims to:

- I. determine the Michaelis-Menten constant (K_m) and the maximum rate of reaction done with tyrosinase (V_{max}) via spectrophotometry
- II. determine the type of inhibition done (competitive, non-competitive, or mixed) by p-hydroxybenzoic acid and a selected household inhibitor on tyrosinase

Reagents:

Reagent Name and Structure	Physical and Chemical Properties	Safety Precautions
4.80 mM catechol stock solution OH OH	Brown powder MP: 100°C Density: 1.34 g/cm³ at 15°C MW = 110.11 g/mol Absorption maximum at 280 nm; does not absorb significantly at 410 nm	Causes serious skin and eye irritation if in contact Wear protective gears (i.e. protective gloves, lab gown) Rinse immediately with water if in contact Disposal: G704
0.10 M pH 7 Phosphate (H ₃ PO ₄ and NaH ₂ PO ₄)	- odorless liquid - density: 1.91 g/cm ³	Rinse contaminated skin and eyes with running water Disposal: B204 (if excess is <ph7)< td=""></ph7)<>
Tyrosinase	Solid state MP: 89-94°C catalyzes the oxidation of catechol to 1,2-benzoquinone, of which absorbs 410 nm strongly	Rinse eye and skin with running water if contaminated Avoid inhaling the compound Disposal: M503
0.30 mM p-hydroxybenzoic acid	Beige powder solid Odorless MP: 214°C MW = 138.12 g/mol	Hazardous combustion compounds Rinse cautiously with water if ever the skin and eyes are contaminated Disposal: B208

Deionized water H O H	- colorless, odorless liquid - BP: 100°C - MW: 18.02 g/mol	Non-irritant, generally safe to handle Disposal: sink

Procedures:

Part A. DETERMINATION OF Km and Vmax

Part B. ENZYME INHIBITION STUDIES

Calculations:

I. Calculations for the Preparation of Catechol Stock Solutions

To prepare 2.40, 1.20, 0.60, and 0.30 mM catechol solutions from 4.80 mM stock catechol, given that each solution is limited to 15 mL:

- For 2.40 mM solution (A): 7.5 mL stock + 7.5 mL DI H₂O
- For 1.20 mM solution (B): 7.5 mL soln. A + 7.5 mL DI H₂O
- For 0.60 mM solution (C): 7.5 mL soln. B + 7.5 mL DI H₂O
- For 0.30 mM solution (D): 7.5 mL soln. C + 7.5 mL DI H_2O

These values are obtained from the dilution equation:

$$M_1V_1 = M_2V_2$$

Example for 2.40 mM solution (A):

$$V_1 = M_2 V_2 / M_1 = (2.40 \text{ mM})(15 \text{ mL}) / (4.80 \text{ mM}) = 7.5 \text{ mL Stock}$$

II. Calculation of Molar Concentration for Each Batch of Solutions

Assuming solution volumes are additive, the volumes of each standard solution in the 96-well plate are:

- For tyrosinase-only batch: $V = 150 \mu L + 50 \mu L = 200 \mu L$
- For tyrosinase-and-inhibitor batch: $V = 150 \mu L + 50 \mu L + 50 \mu L = 250 \mu L$

Because 150 μ L of the catechol solution is added per well, and that the solution is diluted to 200 or 250 μ L, the concentration of catechol is decreased, also in accordance to the dilution equation:

$$M_1V_1 = M_2V_2$$

Example for 2.40 mM solution (A) in Tyrosinase-and-Inhibitor Batch:

$$M_2 = M_1 V_1 / V_2 = (2.40 \text{ mM})(150 \mu\text{L}) / (250 \mu\text{L}) = 1.44 \text{ mM Catechol}$$

III. Notes and Formulas for Data Analysis

• The Beer-Lambert law can be used to quantify the molar concentration c of catechol before the reaction and 1,2-benzoquinone after the reaction. Since the absorbance A at 410 nm is measured, and 1,2-benzoquinone, but not catechol, absorbs light at 410 nm (large molar absorptivity ε), the reacted tyrosinase-only solutions obtained after 7 minutes can be set as the external standard solutions from which an external calibration curve may be obtained. It is assumed here that all the catechol is transformed to 1,2-benzoquinone and that the original concentration of catechol is equal to the final concentration of 1,2-benzoquinone. Note that b is path length through each well and A_0 is systematic error.

$$A = A_0 + \varepsilon bc$$

• Using the above equation, the molar concentrations of 1,2-benzoquinone for each well at each time value may be calculated. Once the concentration is plotted as y against time t for a particular solution (tyrosinase with or without inhibitor), the points may be fitted with an exponential model (in the form $y = A - Ae^{-kt}$) and the reaction velocity v may be calculated as the magnitude of the slope, |dy/dt|, as time x approaches zero.

$$v = \left| \lim_{t \to 0} \left[\frac{dy}{dt} \right] \right|$$

- The initial molar concentration of substrate, [S]₀ is equal to the initial concentration of catechol in each well, which is calculated from the concentrations of standards used based on the volume of the solution (see calculations II and table 3).
- Values of 1/v and $1/[S]_0$ are plotted against each other as y and x axes, respectively. This is called a Lineweaver-Burk plot. Then, the maximum velocity v_{max} and Michaelis-Menten constant K_M may be calculated according to the Lineweaver-Burk equation. The first equation is used for the tyrosinase-only samples, whereas the second equation is used for samples with tyrosinase and inhibitor (Atkins & de Paula, 2006)

$$\frac{1}{v} = \frac{1}{v_{\text{max}}} + \left(\frac{K_{\text{M}}}{v_{\text{max}}}\right) \frac{1}{[S]_0}$$

$$\frac{1}{v} = \frac{\alpha'}{v_{\text{max}}} + \left(\frac{\alpha K_{\text{M}}}{v_{\text{max}}}\right) \frac{1}{[S]_0}$$

- Then, the I/v vs $I/[S]_0$ plots of tyrosinase-only (TO) and tyrosinase-and-inhibitor (TI) samples may be compared. The type of inhibition may be identified as follows (Atkins & de Paula, 2006):
 - If the slope of plot TI is significantly greater than the slope of plot TO, the inhibitor is a **competitive inhibitor** for tyrosinase.
 - If the intercept of plot TI is significantly greater than the intercept of plot TO, the inhibitor is a non-competitive inhibitor for tyrosinase.
 - Finally, if both the slope and intercept of plot TI are significantly greater than the slope and intercept of plot TO, the inhibitor is a **mixed inhibitor** for tyrosinase.

Gantt Chart:

Each portion must be done after the previous step is finished; Each portion has its own allocated time

Procedure	Time Slot									
Preparation of Glassware										
Obtain Reagents										
Prep Catechol Stock Solution and Blank										
Serial Dilution of Stock Solution										

Insert Solutions + Inhibitor to Well Plates								
Travel Time								
Addition of Tyrosinase								
Spectrophotometry								

Data and Observations:

• Setup of the 96-Well Plate (indicates where each solution is located in)

Table 1. Measurements Taken During Preparation of Catechol Solutions

There is measurements taken Burning I repartation of Careenor Solutions								
Preparation of Catechol Stock Solution								
Parameter	Measurement							
Solution pH								

Table 2. Setup of The 96-Well Plate

	1	2	3	4	5	6	7	8	9	10	11	12
A												
В												
С												
D												
Е												
F												
G												
Н												

Table 3. Legend of Catechol-containing External Standard Solutions to be Prepared

Catechol	150 μL mM Catechol Added	2.40	1.20	0.60	0.30
	Initial mM Catechol for Tyrosinase-Only Batch	1.80	0.90	0.45	0.225
	Initial mM Catechol for Tyrosinase-and- Inhibitor Batch	1.44	0.72	0.36	0.18
Total	Total Volume (μL) for Tyrosinase-only Batch	200	200	200	200
Volume of Solution	Total Volume (µL) for Tyrosinase-and-Inhibitor Batch	250	250	250	250

Table 4. Absorbance of Catechol-1,2-Benzoquinone Reaction Mixtures at 410 nm for Tyrosinase-Only Batch

	Absorbance at 410 nm (Tyrosinase Only)								
Elapsed Time (s)	Solution A	Solution B	Solution C	Solution D					
0									
15									
30									
45									
60									
i i	ŧ	:	:	÷					
420									

Table 4. Absorbance of Catechol-1,2-Benzoquinone Reaction Mixtures at 410 nm in the Presence of Tyrosinase and 0.30 M p-Hydroxybenzoic Acid

	Absorbance at 410 nm (Tyrosinase and p-HBA)								
Elapsed Time (s)	Solution A*	Solution B*	Solution C*	Solution D*					
0									
16									
32									

48				
64				
:	i	:	:	:
432				

Table 5. Absorbance of Catechol-1,2-Benzoquinone Reaction Mixtures at 410 nm in the Presence of Tyrosinase and a Household Inhibitor

	Absorbance at 410 nm (Tyrosinase and)								
Elapsed Time (s)	Solution A'	Solution B'	Solution C'	Solution D'					
0									
16									
32									
48									
64									
÷	:	i i	÷	i					
432									

Observations:

References:

- Albarrán, G., Boggess, W., Rassolov, V., & Schuler, R. H. (2010, June 25). Absorption spectrum, mass spectrometric properties, and electronic structure of 1,2-benzoquinone. *Journal of Physical Chemistry*. https://pubs.acs.org/doi/10.1021/jp101723s
- Atkins, P., and de Paula, J. (2006). Atkins' Physical Chemistry. W. H. Freeman and Company.
- Deionized Water. (n.d.). Fisher Scientific. Retrieved September 17, 2024, from https://fscimage.fishersci.com/msds/89955.htm
- Safety Data Sheet 4-Hydrobenzoic Acid. (2010, November 8). Thermo Fisher Scientific Safety Data Sheet. Retrieved October 22, 2024, from https://www.fishersci.com/store/msds?partNumber=AC120991000&productDescription=4-HYD ROXYBENZOIC+ACID%2C+9+100GR&vendorId=VN00032119&countryCode=US&language =en
- Scalzone, A., Bonifacio, M. A., Cometa, S., Cucinotta, F., de Giglio, E., Ferreira, A. M., & Gentile, P. (2020, June). pH-Triggered Adhesiveness and Cohesiveness of Chondroitin Sulfate-Catechol Biopolymer for Biomedical Applications. *Frontiers in Bioengineering and Biotechnology*. 10.3389/fbioe.2020.00712
- Sigma Aldrich. (n.d.). *Pyrocatechol Safety Data Sheet*. Sigma Aldrich. Retrieved October 15, 2024, from https://www.sigmaaldrich.com/PH/en/sds/SIAL/C9510?userType=undefined
- Phosphate Buffered Saline. (2022). Sigma-Aldrich. Retrieved September 17, 2024, from https://www.sigmaaldrich.com/PH/en/sds/SIGMA/P5119?userType=undefined
- Tyrosinase from Mushroom. (2023). Sigma-Aldrich. Retrieved September 17, 2024, from https://www.sigmaaldrich.com/PH/en/sds/sigma/t3824?userType=undefined