Practice Problems (Relations)

Q.1	The number of relations on a n element set is:				
	$(\mathbf{A}) \; 2^{n^2}$	(B) $2^{n(n-1)}$	(C) $2^{\frac{n(n+1)}{2}}$	(D) $3^{\frac{n(n-1)}{2}}$	
Q.2	The number of relations on a n element set that are reflexive is:				
	(A) 2^{n^2}	(B) $2^{n(n-1)}$	(C) $2^{\frac{n(n+1)}{2}}$	(D) $3^{\frac{n(n-1)}{2}}$	
Q.3	The number of relation	ons on a n element set	that are symmetric is:		
	(A) 2^{n^2}	(B) $2^{n(n-1)}$	(C) $2^{\frac{n(n+1)}{2}}$	(D) $3^{\frac{n(n-1)}{2}}$	
Q.4	The number of relations on a n element set that are asymmetric:				
	(A) 2^{n^2}	(B) $2^{n(n-1)}$	(C) $2^{\frac{n(n+1)}{2}}$	(D) $3^{\frac{n(n-1)}{2}}$	
Q.5	The number of relations on a n element set that are antisymmetric:				
	(A) $2^n 3^{\frac{n(n-1)}{2}}$	(B) $2^{n(n-1)}$	(C) $2^{\frac{n(n+1)}{2}}$	(D) $3^{\frac{n(n-1)}{2}}$	
Q.6	The number of relations on a n element set that are irreflexive is:				
	(A) 2^{n^2}	(B) $2^{n(n-1)}$	(C) $2^{\frac{n(n+1)}{2}}$	(D) $3^{\frac{n(n-1)}{2}}$	
Q.7	The number of relations on a n element set that are not reflexive is:				
	$(A)2^{n(n-1)}(2^n-1)$	(B) $2^{n(n-1)}$	(C) $2^{\frac{n(n+1)}{2}}$	(D) $3^{\frac{n(n-1)}{2}}$	
Q.8	How many relations are there on the power set of $X = {\phi}$? (A) 2^4 (B) 2^2 (C) 2^{16} (D) 2^8				
Ω	` '				
Q.9	Let R be the relation on the set of real numbers given by xRy if and only if $x < y + 1$.				
	(A) Reflexive, but not symmetric and not transitive.(B) Reflexive, symmetric and not transitive.				
	(C) Not Reflexive, not symmetric and not transitive.				
	(D) Reflexive, but not symmetric and transitive.				
Q.10	Define a relation on the integers by aRb if $ a - b < 5$. Choose the most complete correct statement from the following:				
	(A) R is transitive		(B) R is reflexive and	d symmetric	
	(C) R is reflexive and	l transitive	(D) R is symmetric and transitive		

Deter	mine which of the following proper (i) Reflexive (ii) Irreflexive (iii) Symmetric (iv) Antisymmetric (v) Asymmetric (vi) Transitive	ties applies to each relation.		
Q.11	Let R be the relation on N gien by xRy iff x divides y.			
	(A) (i) and (vi) only	(B) (i), (iii) and (vi) only		
	(C) (i), (iv) and (vi) only	(D) (ii), (v), (vi) only		
Q.12	Let X be a set and let R be the relation " \subseteq " defined on subsets of X.			
	(A) (i) and (vi) only	(B) (i), (iv) and (vi) only		
	(C) (ii) and (iv) only	(D) (i) only		
Q.13	Let R be the relation onl the real numbers given by xRy iff $x - y$ is rational.			
	(A) (i) and (vi) only	(B) (i), (iii) and (vi) only		
	(C) (ii) and (iv) only	(D) (ii), (iv), (v) only		
Q.14	Let R be the relation on the real numbers given by xRy iff $x - y$ is irrational.			
	(A) (i) and (iii) only	(B) (i), (iv) and (vi) only		
	(C) (ii), (iv) and (v) only	(D) (ii) and (iii) only		
Q.15	Let R be the relation on the real numbers given by xRy iff $(x - y)^2 < 0$.			
	(A) (ii) and (vi) only	(B) (i), (iv) and (vi) only		
	(C) (ii), (iii) and (vi) only	(D) (ii), (iii), (iv), (v) and (vi) only		

True or False

- 1. A relation which is not reflexive is always irreflexive. (False)
- 2. The properties of being symmetric and anti-symmetric are not negatives of each other. (True)
- 3. Empty set is a relation (**True**)
- 4. Asymmetric implies irreflexive (**True**)
- **5.** Asymmetric implies antisymmetric (**True**)
- 6. A relation can be simultaneously Symmetric and antisymmetric (**True**)
- 7. Symmetric and antisymmetric implies transitive (**True**)
- **8.** A relation can simultaneously be both reflexive and ir-reflexive (**True**)
- 9. reflexive and irreflexive implies all properties (**True**)
- **10.** Empty relation ϕ is symmetric, antisymmetric, asymetric, transtive, irreflexive and may or may not be reflexive depending upon the domain. (**True**)