Direct Numerical Simulations of Flow Over Smooth and Rough Wavy Walls at $Re_{\lambda}=4,780$

Vedant Puri¹²³, Ramesh Balakrishnan¹, Aleksandr Obabko¹, Paul Fischer¹²

¹Argonne National Laboratory ²University of Illinois Urbana-Champaign ³Julia Computing

November 23, 2021

Introuction

Problem:

- To model the dynamics of the atmospheric boundary layer over complex terrains with application to windfarm simulations
- LES calculations often do not resolve near-surface regions, thereby requiring additional subgrid modelling

Objectives:

- Understand physics of turbulent flows over periodic, wavy boundaries
- Study the effects of small boundary irregularities on on LES calculation

Method:

- Perform DNS of flow over a wavy wall (Smooth Wavy Wall, SWW), and a wavy wall with added roughness (Rough Wavy Wall, RWW) that an LES would not capture
- Compare Reynolds stress budgets statistics of SWW, RWW

Nek5000 Spectral Element Code

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u} + \rho \mathbf{f}$$
$$\nabla \cdot \mathbf{u} = 0, \quad Re = \frac{\rho U L}{\mu}$$

Nek5000

- Flexible like finite elements, accurate like spectral methods
- 7th order GLL polynomial within each element
- 3rd order BDF/Ext formula for time-integration (explicit handling of nonlinear term)
- Excellent scalability (32768 cores on Argonne resources)
- Linear Stokes problem (pressure-viscous decoupling) for solving Navier-Stokes

Validation Turbulence Budgets Subroutines in NEK5000

Validation on Reynolds Stress budgets subroutines in NEK5000 against channel flow dataset of Kim et al. 1998 at $Re_{\tau}=394$

$$\partial_{t}k + \underbrace{\langle u_{i} \rangle k_{,i}}_{\text{convection}} = -\underbrace{\langle u'_{j}u'_{i} \rangle \langle u_{j,i} \rangle}_{\text{production}} - \underbrace{\langle u'_{i}k \rangle_{,i}}_{\text{turbdiff}} - \underbrace{\langle p'_{,j}u'_{j} \rangle}_{\text{presdiff}} + \underbrace{k_{,ii}}_{\text{Re}} - \underbrace{\langle u'_{j,i}u'_{j,i} \rangle}_{\text{dissipation}}$$

(SWW schematic, Maass and Schumann, 1994)

- $Re_{\lambda} = 4780$; wave amplitude $\delta/\lambda = 0.05$
- Periodic BC in streamwise and spanwise directions
- Flow averaged over 60 convective time units $(\overline{U}/4\lambda)$

Case	Element Mesh	Order	$L_x \times H \times L_z$	λ	δ	λ'	δ'
SWW	$64 \times 16 \times 32$	7	$4 \times 1 \times 2$	1	0.05		
RWW	$128 \times 24 \times 32$	7	$4 \times 1 \times 2$	1	0.05	0.2	0.02

Validation of Smooth Wavy Wall DNS

- Mesh refinement near wall
 - ≈ 2 points within $y^+ \le 1$, 2 elements within $y^+ \le 10$
 - $\Delta x^+ = \Delta z^+ \approx 5$
- Flow separation at crest of wave, reattachment at $x/\lambda=0.69$
- Residual of TKE budgets is 2 orders of magnitude than TKE

Mean Flow

- Flow separates at crest of wave $(x/\lambda=0)$ and reattaches at $x/\lambda=0.69$
- Outer region (y/H>0.3) where flow is not effected by wavy wall; inner region is y/H<0.1; and buffer region in between
- Flow is largely undisturbed in the outer region - Townsend's hypothesis holds!

Turbulent Kinetic Energy Budgets

- Roughness disrupts inner flow and causes larger TKE and budgets
- Correlation between production term and $\langle u_1'u_1' \rangle$

Homogenized Statistics

- Spatially average statistics over lateral directions (including sinosoudal waves) to obtain a single profile
- $Re_{\tau}=142,\,104$ for SWW, RWW respectively

Conclusion

- Extensive computations on flow over smooth and rough wavy walls have been done
- Results of Maass and Schumann have been reproduced with a high-order code
- Reynolds Stress budgets are computed for both Smooth Wavy Wall, and Rough Wavy Wall cases
- The effects of roughness have been observed to remain in the inner flow
- Work is underway to model the effects of roughness in subgrid models for Large Eddy Simulations of high Reynolds number wall-bounded flows

Acknowledgements

- This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.
- We gratefully acknowledge the computing resources provided on Bebop, a high-performance computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory.