ΛΥΣΗ

α) Είναι $P(1) = 1^3 - 2 \cdot 1^2 - 1 + 2 = 1 - 2 - 1 + 2 = 0$ που σημαίνει ότι το P(x) έχει παράγοντα το x-1. Το σχήμα Horner για τη διαίρεση P(x): (x-1) φαίνεται παρακάτω:

1	-2	-1	2	1
	1	-1	-2	
1	-1	-2	0	

Συνεπώς $P(x) = (x-1)(x^2-x-2)$.

β) Το πρόσημο του $P(x) = (x-1)(x^2-x-2)$ φαίνεται στον παρακάτω πίνακα:

×	-∞		-1			1		2	2	+	∞
x-1		-			-	9	+	-		+	
$x^2 - x - 2$		+	9)	-		-	(•	+	
$(x-1)(x^2-x-2)$		-	7)	+	7	-	. ,	ļ	+	

Συνεπώς P(x) < 0 για κάθε $x \in (-\infty, -1) \cup (1, 2)$.

- y) Eίναι $10 < 20 < 100 \Rightarrow \log 10 < \log 20 < \log 100 \Rightarrow 1 < \log 20 < 2$.
- δ) Αφού P(x) < 0 για κάθε $x \in (-\infty, -1) \cup (1, 2)$ και $1 < \log 20 < 2$ συμπεραίνουμε ότι $P(\log 20) < 0$.