Introduction

Machine Learning

Arthur Samuel (1959):

"Field of study that gives computers the ability to learn without being explicitly programmed".

Tom Mitchell (1997):

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E".

Machine Learning

 How to construct programs that automatically improve with experience.

Example

Experience

Example	GRAY?	MAMMAL?	LARGE?	VEGETARIAN?	WILD?	Elephant
1	+	+	+	+	+	+
2	+	+	+	-	+	+
3	+	+	-	+	+	- (Mouse)
4	-	+	+	+	+	- (Giraffe)
5	+	ı	+	-	+	- (Dinosaur)
6	+	+	+	+	-	+

Prediction

7	+	+	+	-	+	?
8	+	-	+	-	+	?
9	+	+	+	-	-	?

Example

- Deep learning: developed by a research group at Stanford and Google X.
- A system of 16,000 connected computer processors that can learn concepts without supervision.
- Featured in The New Youk Times in 2012.

Machine Learning

What is learning?

Machine Learning

 Learning is an (endless) generalization or induction process.

Types of Machine Learning

- Supervised learning: the learner (learning algorithm)
 are trained on labelled examples, i.e., input where the
 desired output is known.
- Unsupervised learning: the learner operates on unlabelled examples, i.e., input where the desired output is unknown.

Types of Machine Learning

- Reinforcement learning: between supervised and unsupervised learning. It is told when an answer is wrong, but not how to correct it.
- Evolutionary learning: biological evolution can be seen as a learning process, to improve survival rates and chance of having offspring.

Types of Machine Learning

- The most common type: supervised learning.
 - Regression: to find a function whose curve passes as close as possible to all of the given data points.
 - Classification: to find the class of an instance given its selected features.

- K-fold cross validation:
 - Randomly partitioned k equal sized subsamples.
 - k 1 for training and 1 for testing.
 - k times (folds) of validation and taking the average.

Statistical significance test: to reject the null-hypothesis
that the two compared systems are equivalently
efficient although their performance measures are
different.

Fisher's randomization:

- Q testing cases.
- $-\delta = |m(A) m(B)|$
- 2^{|Q|} permutations of performances of A and B on Q cases.
- N^+ = number of permutations whose A-B performance difference is greater than or equal to δ.
- N⁻ = number of permutations whose A-B performance difference is smaller than or equal to -δ.
- two-sided p-value = $(N^+ + N^-)/2^{|Q|}$
- $-p \le 0.05$ to reject the null-hypothesis

 Overfitting: h∈H is said to overfit the training data if there exists h'∈H, such that h has smaller error than h' over the training examples, but h' has a smaller error than h over the entire distribution of instances.

Overfitting:

Overfitting:

- There is noise in the data
- The number of training examples is too small to produce a representative sample of the target concept

Performance Measures

number of correct system answers

• Precision (P) = -----number of system answers

number of correct system answers

Recall (R) = -----number of correct problem answers

Performance Measures

Correct problem answers

$$Accuracy = (TP + TN)/(TP + TN + FP + FN)$$

System answers

Performance Measures

number of correct system answers

• Precision (P) = -----number of system answers

number of correct system answers

- Recall (R) = -----number of correct problem answers
- F-measure (F) = 2.P.R/(P + R)

 Inferring a boolean-valued function from training examples of its input (instances) and output (classifications).

Example

Experience

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Low Weak

Prediction

5	Rainy	Cold	High	Strong	Warm	Change	?
6	Sunny	Warm	Normal	Strong	Warm	Same	?
7	Sunny	Warm	Low	Strong	Cool	Same	?

- Learning problem:
 - Target concept: a subset of the set of instances X

```
c: X \rightarrow \{0, 1\} (number of possible concepts = 2^{|X|})
```

– Target function:

Hypothesis:

Characteristics of all instances of the concept to be learned

■ Constraints on instance attributes

h:
$$X \to \{0, 1\}$$

Satisfaction:

h(x) = 1 iff x satisfies all the constraints of h

h(x) = 0 otherwsie

Consistency:

h(x) = c(x) for every instance x of the training examples

Correctness:

h(x) = c(x) for every instance x of X

How to represent a hypothesis?

Hypothesis representation (constraints on instance attributes):

<Sky, AirTemp, Humidity, Wind, Water, Forecast>

- ?: any value is acceptable
- single required value
- Ø: no value is acceptable
- Number of possible hypotheses = (4.3.3.3.3.3) + 1 = 973
- Example:

h1 = <Sunny, ?, ?, Strong, ? , ?>

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

What is a hypothesis that is consistent with the training examples?

General-to-specific ordering of hypotheses:

$$h_j \ge_g h_k \text{ iff } \forall x \in X: h_k(x) = 1 \Rightarrow h_j(x) = 1$$

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

What is the most specific hypothesis that is consistent with the training examples?

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

$$h = \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle$$

h = <Sunny, Warm, Normal, Strong, Warm, Same>

h = <Sunny, Warm, ? , Strong, Warm, Same>

h = <Sunny, Warm, ? , Strong, ? , ? >

- Initialize h to the most specific hypothesis in H:
- For each positive training instance x:

For each attribute constraint a_i in h:

If the constraint is not satisfied by x

Then replace a_i by the next more general constraint satisfied by x

Output hypothesis h

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

h = <Sunny, Warm, ? , Strong, ? , ? >

Prediction

5	Rainy	Cold	High	Strong	Warm	Change	No
6	Sunny	Warm	Normal	Strong	Warm	Same	Yes
7	Sunny	Warm	Low	Strong	Cool	Same	Yes

- The result is consistent with the positive training examples.
- Is the result is consistent with the negative training examples?

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes
5	Sunny	Warm	Normal	Strong	Cool	Change	No

h =Sunny, Warm, ? , Strong, ? , ? >

- The result is consistent with the negative training examples if the target concept is contained in H (and the training examples are correct).
- Sizes of the space:
 - Size of the instance space: |X| = 3.2.2.2.2.2 = 96
 - Size of the concept space $C = 2^{|X|} = 2^{96}$
 - Size of the hypothesis space $H = (4.3.3.3.3.3) + 1 = 973 << 2^{96}$
 - ⇒ The target concept (in C) may not be contained in H.

Compact Representation of Version Space

 Version space: a set of all hypotheses that are consistent with the training examples.

Compact Representation of Version Space

• G (the generic boundary): set of the most generic hypotheses of H consistent with the training data D:

```
G = \{g \in H \mid consistent(g, D) \land \neg \exists g' \in H: g' >_g g \land consistent(g', D)\}
```

• S (the specific boundary): set of the most specific hypotheses of H consistent with the training data D:

```
S = \{s \in H \mid consistent(s, D) \land \neg \exists s' \in H: s >_g s' \land consistent(s', D)\}
```

Compact Representation of Version Space

Version space = <G, S> = {h∈H | ∃g∈G ∃s∈S: g ≥_g h ≥_g s}

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

$$S_0 = \{ \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle \}$$

$$G_0 = \{ \langle ?, ?, ?, ?, ?, ? \rangle \}$$

Cao Hoang Tru
CSE Faculty - HCMUT

S

- Initialize G to the set of maximally general hypotheses in H
- Initialize S to the set of maximally specific hypotheses in H

- For each positive example d:
 - Remove from G any hypothesis inconsistent with d
 - For each s in S that is inconsistent with d:

Remove s from S

Add to S all least generalizations h of s, such that h is consistent with d and some hypothesis in G is more general than h

Remove from S any hypothesis that is more general than another hypothesis in S

- For each negative example d:
 - Remove from S any hypothesis inconsistent with d
 - For each g in G that is inconsistent with d:

Remove g from G

Add to G all least specializations h of g, such that h is consistent with d and some hypothesis in S is more specific than h

Remove from G any hypothesis that is more specific than another hypothesis in G

 Partially learned concept can be used to classify new instances using the majority rule.

- Size of the instance space: |X| = 3.2.2.2.2 = 96
- Number of possible concepts = 2^{|X|} = 2⁹⁶
- Size of $H = (4.3.3.3.3.3) + 1 = 973 << 2^{96}$
 - ⇒ a biased hypothesis space

- An unbiased hypothesis space H' that can represent every subset of the instance space X: Propositional logic sentences
- Positive examples: x₁, x₂, x₃

Negative examples: x_4 , x_5

$$h(x) \equiv (x = x_1) \vee (x = x_2) \vee (x = x_3) \equiv x_1 \vee x_2 \vee x_3$$

 $h'(x) \equiv (x \neq x_4) \wedge (x \neq x_5) \equiv \neg x_4 \wedge \neg x_5$

Any new instance x is classified positive by half of the version space, and negative by the other half

⇒ not classifiable

Example	Quality	Price	Buy
1	Good	Low	Yes
2	Bad	High	No

3	Good	High	?
4	Bad	Low	?

 A learner that makes no prior assumptions regarding the identity of the target concept cannot classify any unseen instances.

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes
5	Cloudy	Warm	High	Weak	Cool	Same	Yes
6	Cloudy	Cold	High	Weak	Cool	Same	No

No.	Sky	AirTemp	Humidity	Wind	Water	Forecast	Enjoy
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes
5	Cloudy	Warm	High	Weak	Cool	Same	Yes
6	Cloudy	Cold	High	Weak	Cool	Same	No

(Sky = Sunny) ∨ (Sky = Cloudy ∧ AirTemp = Warm)

7	Rainy	Warm	Normal	Weak	Cool	Same	?
8	Cloudy	Warm	High	Strong	Cool	Change	?

No.	Sky	AirTemp	Humidity	Wind	Water	Forecast	Enjoy
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes
5	Cloudy	Warm	High	Weak	Cool	Same	Yes
6	Cloudy	Cold	High	Weak	Cool	Same	No

54 January 22, 2016 Cao Hoang Tru CSE Faculty - HCMUT

Homogenity of Examples

• Entropy(S) = $-p_1\log_2 p_1 - p_1\log_2 p_2$

Homogenity of Examples

• Entropy(S) = $\sum_{i=1,c}$ - $p_i log_2 p_i$ impurity measure

Information Gain

• Gain(S, A) = Entropy(S) - $\sum_{v \in Values(A)} (|S_v|/|S|)$. Entropy(S_v)

Example

• Entropy(S) =
$$-p_+\log_2 p_+ - p_-\log_2 p_- = -(4/6)\log_2(4/6) - (2/6)\log_2(2/6)$$

= $0.389 + 0.528 = 0.917$

- Gain(S, Sky)
 - = Entropy(S) $\sum_{v \in \{Sunnv, Rainv, Cloudv\}} (|S_v|/|S|)$ Entropy(S_v)
 - = Entropy(S) $[(3/6).Entropy(S_{Sunny}) + (1/6).Entropy(S_{Rainy}) + (2/6).Entropy(S_{Cloudy})]$
 - = Entropy(S) (2/6).Entropy(S_{Cloudy})
 - = Entropy(S) $-(2/6)[-(1/2)\log_2(1/2) (1/2)\log_2(1/2)]$
 - = 0.917 0.333 = 0.584

Example

• Entropy(S) =
$$-p_+\log_2 p_+ - p_-\log_2 p_- = -(4/6)\log_2(4/6) - (2/6)\log_2(2/6)$$

= $0.389 + 0.528 = 0.917$

- Gain(S, Water)
 - = Entropy(S) $\sum_{v \in \{Warm, Cool\}} (|S_v|/|S|)$ Entropy(S_v)
 - = Entropy(S) [(3/6).Entropy(S_{Warm}) + (3/6).Entropy(S_{Cool})]
 - = Entropy(S) $-(3/6).2.[-(2/3)\log_2(2/3) (1/3)\log_2(1/3)]$
 - = Entropy(S) 0.389 0.528
 - = 0

Example

- Gain(S_{Cloudy}, AirTemp)
 - = Entropy(S_{Cloudy}) $\sum_{v \in \{Warm, Cold\}} (|S_v|/|S|) Entropy(S_v)$
 - = 1
- Gain(S_{Cloudy}, Humidity)
 - = Entropy(S_{Cloudy}) $\sum_{v \in \{Normal, High\}} (|S_v|/|S|) Entropy(S_v)$
 - = 0

Hypothesis space: complete!

- Hypothesis space: complete!
- Shorter trees are preferred over larger trees
- Prefer the simplest hypothesis that fits the data

- Decision Tree algorithm: searches incompletely thru a complete hypothesis space.
 - ⇒ Preference bias
- Cadidate-Elimination searches completely thru an incomplete hypothesis space.
 - ⇒ Restriction bias