Data Augmentation for Aiding Pneumonia Classification

Matthew Carter, Ivan Chuprinov, Chris Drazic, Alex Gavin, and Raleigh Hansen

DRIVING MOTIVATIONS

Accelerate medical diagnosis time with end-to-end deep learning

Improve performance of current pneumonia detection systems

Beneficial augmentation techniques may generalize to other tasks

PREVIOUS WORK

- Great results w/forms of ResNet
- Preprocessing techniques
- Modified AlexNetw/ handcrafted features
- Transfer learning
- Reducing computational cost

Shortcut connection in ResNet

OUR WORK

- Baseline architecture vs. Established architecture
- Established architecture trained w/data augmentations
- Leverage PyTorch, WandB framework for testing

O2 METHODOLOGIES

Data, Metrics, Augmentation,
Architecture, Training

OUR DATA SET

- 5,863 Chest X-Ray Images
- Labeled as Bacterial Pneumonia, Viral Pneumonia, or Normal
- 60% Train, 20% Dev, 20% Test

ADVANTAGES:

- High resolution images
- Expert-verified labels
- LIMITATIONS:
 - Imbalanced
 - Relatively small

OUR TASK: BINARY CLASSIFICATION

Metrics:

- F1Score
- PR Curve

True Positive: Pneumonia

True Negative: Normal

AUGMENTATIONS

Geometric Augmentations

- Rotations
- Mirroring
- Translations
- Noise Injection

Original

Mirrored

Photometric Augmentations

- Contrast
- Brightness
- Brightness & Contrast
- Color-space Transformations

Original

RGB Transforms

AUGMENTATIONS

Finalized on:

- Default
- Brightness
- Contrast
- Rotation
- Brightness + Contrast
- Brightness + Rotation
- Brightness + Contrast + Rotation

BASELINE ARCHITECTURE

Simple Convolutional Neural Network

- One convolutional layer
- Activation
- Pooling
- Fully connected linear layer
- Output classification

RESNET ARCHITECTURE

Residual Neural Networks

- Skip connections
- Prevents vanishing gradients
- Fewer layers when training
- Layers restored when feature spaced is learned
- Less prone to abnormalities within data

ResNet18

- 18 convolutional layers total
- Layers in blocks of four

ResNet Performance,
Scores Across Augmentations,
Interpretation of Results

BASELINE vs RESNET

Predicted

Actual

Actual

	Pneumonia	Normal
Pneumonia	807	47
Normal	37	279

Predicted

	Pneumonia	Normal
Pneumonia	827	27
Normal	31	285

Results from Baseline Architecture

Results from ResNet18

RESULTS ACROSS AUGMENTATIONS

Default

Contrast

Rotation

Brightness

RESULTS ACROSS AUGMENTATIONS

Contrast + Rotation

Brightness + Contrast

Brightness + Rotation

Brightness + Contrast + Rotation

OY CLOSING THOUGHTS Takeaways, Future Work

KEY TAKEAWAYS

- ResNet18 still better than baseline
- Applicability of data augmentations
- Deep learning is hard

A visual representation of our team after result analysis

FUTURE WORK

- Incorporate new data
- Apply augmentations differently
- Adjust augmentation parameters
- Use augmentations in different architectures

