

Prepared by:

Vikram Kumar(2016CE10237)

Submitted to:

Prof. K. R. Rao, Civil Engineering Department

Indian Institute of Technology Delhi

Acknowledgement

I have taken efforts in this project. However, it would not have been possible without the kind support and help of many individuals. Firstly, I would like to express sincere gratitude towards my supervisor, Professor K. Ramachandra Rao, for his continuous support through the project, for his guidance, patience, motivation and enthusiasm. I couldn't have imagined better supervisor and mentor for my project.

I would like to express my special gratitude to Tarapada Mandal for his vital help and guidance throughout this project

My thanks and appreciation also go to my friends in developing the project and people who have willingly helped me out with their abilities.

Table of Contents

- 1. Acknowledgement
- 2. Introduction
- 3. Problem Statement
- 4. Methodology
- 5. Observation and Analysis
- 6. Conclusion
- 7. References

Introduction

Fire risk assessment is the assessment of the risks to the people and property as a result of unwanted fires. In a simple risk assessment, the probability of a certain unwanted fire scenario are explored. In a comprehensive risk assessment, all probable unwanted fire scenarios and their consequences are considered.

A fire scenario involves the projection of a set of fire events, all of which are linked together by whether the fire protection measures succeed or fail. The probability of fire scenario is dependent on the individual probabilities of success or failure of fire protection measures. A fire event is an occurrence that is related to fire initiation, or fire growth, or smoke spread, or occupant evacuation, or fire department response.

A set of fire scenarios can be constructed based on well-known event tree concept.

Fig.1

A set of all possible combinations of the linked events forms a complete set of all possible fire scenarios. For example, the combinations of A–C, A–B–D and A–B–E form a complete set of three fire scenarios.

A fire protection measure is a measure that can be a fire protection system such as sprinklers and alarms; or a fire protection action such as occupant evacuation training and drills.

For fire risk assessment in building, the event tree can be constructed based on these five major fire events: Fire ignition, fire growth, smoke spread, failure of occupants to evacuate, failure of fire department to response. Each of the five hazardous events, however can only happen if the fire protection measure for that event fails to prevent the event from happening. There can be five major barriers between a fire and the people. The more effective the barriers are, the lower the probabilities of those fire scenarios that can lead to harm.

Fig.2

Problem Statement

Fire risk assessment can be performed based on past fire experience. Such fire risk assessment, however, are only valid if the situation in the past and that to be assessed at the present are the same. One of the thing that past disaster have in common is that they all are different, They are in different building types, with different causes and contributory factors, so it seems whatever is done to prevent the last disaster from happening again, the next disaster is likely to be almost completely different. Fire risk assessment provides the opportunity to address the potential risk from all foreseeable potential future disasters, not just the last one.

Risk assessment for different type of building and occupancy based on past fire experience is necessary to prevent the possible fire hazards in future and major regulations can be adopted by fire authorities. Generally, categorization of building and occupancy is done as follows; Residential, Assembly, Educational, Industrial, Institutional, Mercantile, Businesses, Storage etc. Which can be further divided by high- and low-rise type buildings.

To consider the future potential fire risks of a specific building under design, full quantitative fire risk assessment might be necessary. The approach combines the probabilistic information from fire report data with prediction of the physical consequences of fire events.

Fig. 3

One of the major challenges to quantifying future fire risk for a specific building design is that the events of greatest concern are very rare, and in many cases may not have happened yet and are not recorded in fire report data. Therefore, there is a need to break the fire event process down into many sub-events (for which there is data) so that they can be reconstructed to predict the probable frequency of fire events that have not happened yet.

In our project we decided to perform statistical analysis of fire reports data for different type of buildings and adopted quantitative fire risk assessment for different type of buildings in Delhi.

Methodology

We extracted data of fire reports from publicly available fire report database of Delhi Fire Department. Delhi Fire Department stores fire reports data for all the fire stations separately, there are total 64 fire station reported in Delhi Fire Department in which some of them are in under construction. There fire stations are further divided by Zones, There are total 4 zones defined by Delhi fire department; New Delhi, south, south west and west zone.

We extracted fire calls data for total 50 fire stations and performed statistical analysis for the data. These files were in JSON file format, we converted into CSV format. These are the attributes of the csv file

Total 232945 fire calls files are extracted in which many of the files are not related to fire incident so we filtered the files based on "Nature of Call" attribute. This attribute contains two values "fire call" and "other", we selected "Nature of Call" as Fire call only. Now we had around 157000 fire reports files only.

These files does not contain information of physical consequences such as number of deaths and injuries in separate attribute in numerical form, the information is included in an attribute "Details of Affected Area" which is in string format ,so there is a sentence which includes the information of injuries and deaths for ex.

"Fire was in a hut resulting <u>five persons</u> sustained burn <u>injuries</u> and removed to LNJP Hospital by public before the arrival of DFS."

Since the number of files are too large, therefore extracting the numbers of deaths and injuries manually is very laborious, Since the format of sentences are almost same so we choose some keywords such as 'sustained', "removed", "resulting" and programmed a code in python to extract this information automatically.

Apart from this other data preprocessing and cleaning is done using python. We calculated operation time of fire department based on given information of departure and arrival of fire fighting trucks at the incident location.

Operation Time = Time of Leaving from fire scene – Time of arrival at fire scene We observed that there are some files in which operation time is too large. For example

	operation_time	Category of Fire:
152664	1660 days 08:55:00	Medium
72423	1249 days 00:53:00	Small
128647	583 days 06:05:00	Small
188649	563 days 00:15:00	Small
134712	467 days 01:58:00	Small
12410	449 days 02:50:00	Small
208051	381 days 01:25:00	Small
108512	366 days 00:28:00	Small
176611	365 days 00:34:00	Small
29385	340 days 00:20:00	Small
106300	312 days 00:15:00	Small
208267	309 days 02:12:00	Small
173446	308 days 00:40:00	Small
1307	298 days 00:35:00	Small
100083	298 days 00:30:00	Small
226866	298 days 00:20:00	Small
161987	284 days 01:10:00	Small
26246	701 days 02.57.00 Fig. 4	emall emall

First column shows fire report number, as we see that for small category of fire, operation time is more than 2-3 years which is not possible there for we preprocessed the data and excluded these fire calls files from statistical analysis, yet we were careful about not losing any important information. We choose only those fire calls files to exclude which has faulty operation time and also no physical consequences information. Since our main focus is on physical consequences due to fire incident therefor, we cannot exclude the important information because of faulty entry in database. We also choose not to exclude all these faulty operation file while we are performing statistical analysis on different attributes because this faulty information does not affect other attributes such as types of occupancy and buildings where fire occurred, and physical consequences.

We performed quantitative fire risk analysis. We calculated probability of occurrence for any area or location as $P = \frac{Number\ of\ fire\ calls\ in\ that\ area}{Number\ of\ years}$ for example, in Geeta colony total number of fire occurrence was 5613 from year 2006 to 2020 therefor P = 5613/14 = 400.92 fires/year.

We calculated other measures of fire risks which are

 $Consequence\ to\ injuries = \frac{Total\ number\ of\ injuries}{total\ occurrence\ of\ fire\ cases}\ \ (injuries\ / fire)$

 $Consequence\ to\ deaths = \frac{Total\ number\ of\ deaths}{total\ occurrence\ of\ fire\ cases} \quad \text{(deaths\ /\ fire)}$

Fire risk to injuries = consequence to injuries \times probability of occurrence (injuries/year)

Fire risk to deaths = consequence to deaths \times probability of occurrence (deaths/year)

These values of probabilities and risks can be used in event tree analysis of quantitative fire risk assessment.

Observation and Statistical Analysis

Fire calls

Figure below shows a heatmap of numbers of call in Delhi. Darker the color, more fire calls received in that area. We see that most affected area in context of receiving fire calls is Rohini sector-5, Janakpuri and Roop Nagar. Less affected areas are Delhi Sectt., Bawana Bhor garh, jwalaheri etc.

Fig. 5

Fig. 6

We also looked at fire calls frequency variation based on hours of the day and month of year(avg by month from year 2006-2020)

We see that the peak time for fires in Delhi based on fire reports data is in between 8-12 p.m. and the lowest time period for fires is from 4-7 am

May and June has more fires than any other month while January-March and December has the lowest number of fire reported.

If we look at types of fire, we see that small fires has major share of total fire incident, number of serious and major types of fire are very low.

Small	154060
Make4	1010
Make6	359
Medium	191
Make8	107
Serious	37
Major	15
Make3	8
First Call	4

Fig. 8

Fire calls from different type of building

We see that high rise buildings are more fire resistant than low rise buildings, Top 7 buildings in figure where fire case are more are low rise buildings, low rise residential buildings has more fire cases than any other building and much more fire cases than in high rise residential buildings. We can also observe that Mercantile buildings are more fire resistant if it is high rise, since low rise mercantile buildings has more fire case .

. . .

Fig.9

Fire Risk

We calculated fire risk to injuries and deaths based on different type of buildings and different zones

Fire risk values by different type of buildings

types_of_building_occupancy	deaths	injuries	occurence	count_of_years	probability of occurence	consequence to injuries	consequence to deaths	fire risk to injuries	fire risk to deaths
High Rise Assembly	0	6	9	8	1.125	0.666666667	0	0.75	0
High Rise Business	2	63	648	14	46.28571429	0.097222222	0.00308642	4.5	0.142857143
High Rise Educational	0	0	13	14	0.928571429	0	0	0	0
High Rise Industrial	1	9	12	13	0.923076923	0.75	0.083333333	0.692307692	0.076923077
High Rise Institutional	0	6	106	14	7.571428571	0.056603774	0	0.428571429	0
High Rise Mercantile	0	5	17	12	1.416666667	0.294117647	0	0.416666667	0
High Rise Others	0	0	5	8	0.625	0	0	0	0
High Rise Residential	1	19	150	14	10.71428571	0.126666667	0.006666667	1.357142857	0.071428571
High Rise Storage	0	0	4	7	0.571428571	0	0	0	0
Low Rise Assembly	17	43	595	14	42.5	0.072268908	0.028571429	3.071428571	1.214285714
Low Rise Business	18	111	3903	14	278.7857143	0.028439662	0.004611837	7.928571429	1.285714286
Low Rise Educational	1	21	1030	14	73.57142857	0.02038835	0.000970874	1.5	0.071428571
Low Rise Hazardous	1	36	65	14	4.642857143	0.553846154	0.015384615	2.571428571	0.071428571
Low Rise Industrial	148	644	4967	14	354.7857143	0.129655728	0.029796658	46	10.57142857
Low Rise Institutional	3	19	613	14	43.78571429	0.030995106	0.004893964	1.357142857	0.214285714
Low Rise JJ Cluster	69	420	2126	14	151.8571429	0.197554092	0.032455315	30	4.928571429
Low Rise Mercantile	63	575	10591	14	756.5	0.054291379	0.005948447	41.07142857	4.5
Low Rise Others	0	0	87	14	6.214285714	0	0	0	0
Low Rise Residential	397	3479	51029	14	3644.928571	0.068176919	0.00777989	248.5	28.35714286
Low Rise Storage	32	76	1699	14	121.3571429	0.044732195	0.018834609	5.428571429	2.285714286
Low Rise Tents/Pandals	4	9	336	14	24	0.026785714	0.011904762	0.642857143	0.285714286
Others Assembly	0	0	1	1	1	0	0	0	0
Others Business	0	0	19	12	1.583333333	0	0	0	0
Others Educational	0	0	3	4	0.75	0	0	0	0
Others Hazardous	0	0	2	5	0.4	0	0	0	0
Others Industrial	0	0	4	1	4	0	0	0	0
Others Institutional	0	0	5	9	0.55555556	0	0	0	0
Others JJ Cluster	0	2	27	9	3	0.074074074	0	0.22222222	0
Others Mercantile	0	0	16	2	8	0	0		0
Others Others	82	648	75809	14	5414.928571	0.008547798	0.001081666	46.28571429	5.857142857
Others Residential	0	0	14	14	1	0	0	0	0
Others Storage	0	2	8	1	8	0.25	0	2	0
Select building Select Occupancy	0	0	1	1	1	0	0	0	0

Fig. 10

As we see that Low rise residential has highest risk to deaths followed by low rise industrial, fire risk to injuries is highest in low rise residential buildings and low rise mercantile. If we compare between high rise and low rise buildings in context of fire risk in deaths and injuries, in high rise buildings risk is much lower than in low rise buildings.

Zone	Operational Jurisdiction of F	ir deaths	injuries	occurence	count_of_years	probability of occ	consequence to injuries	consequence to deaths	fire risk to injuries	fire risk to deaths
New_Delhi_Zone	CBD SHAHDARA	1	7 59	1590	10	159	0.037106918	0.004402516	5.9	0.
New_Delhi_Zone	Connaught Circus	11	156	4098	14	292.714285	7 0.03806735	0.002684236	11.14285714	0.785714286
New_Delhi_Zone	Darya Ganj	1	1 12	713	14	50.9285714	0.016830295	0.001402525	0.857142857	0.07142857
New_Delhi_Zone	Delhi Sectt.	() 2	. 88	10	8.8	0.022727273	0	0.2	
New_Delhi_Zone	Geeta Colony	25	223	5613	14	400.9285714	4 0.0397292	0.004453946	15.92857143	1.78571428
New_Delhi_Zone	Gokul Puri	23	3 231	3917	14	279.785714	0.058973704	0.005871841	16.5	1.64285714
New_Delhi_Zone	Headquaters	() () 2	2	2	1 0	0	C	
New_Delhi_Zone	J.R. Road	55	151	3635	14	259.642857	0.041540578	0.015130674	10.78571429	3.92857142
New_Delhi_Zone	Laxmi Nagar	1 2	2 57	2386	14	170.4285714	4 0.023889355	0.000838223	4.071428571	0.14285714
New_Delhi_Zone	Mandavali Mayur Vihar	14	1 182	4328	14	309.142857	0.042051756	0.00323475	13	
New_Delhi_Zone	Pai Walan	9	63	1970	14	140.714285	7 0.031979695	0.004568528	4.5	0.64285714
New_Delhi_Zone	Rakab Ganj	() 19	693	14	49.5	0.027417027	0	1.357142857	
New_Delhi_Zone	S.P.M. Marg	20	81	2933	14	209.	0.027616775	0.006818957	5.785714286	1.42857142
New_Delhi_Zone	Shahadara	18	3 147	3179	14	227.071428	0.046240956	0.005662158	10.5	1.28571428
New Delhi Zone	Shastri Park	23	3 267	3951	14	282.214285	7 0.067577828	0.005821311	19.07142857	1.64285714
New_Delhi_Zone	Tahirpur	42	2 203	2985	12	248.7	0.0680067	0.014070352	16.91666667	3.
New Delhi Zone	Teliwara		5 21	919	14	65.6428571	0.022850925	0.005440696	1.5	0.35714285
South_West_Zone	Dwarka	17	7 136	4417	14	315.	0.030790129	0.003848766	9.714285714	1.214285714
South_West_Zone	Hari Nagar	9	62	2907	12	242.2	0.021327829	0.003095975	5.166666667	0.75
South_West_Zone	Janakpuri	36	358	8341	14	595.785714	0.042920513	0.004316029	25.57142857	2.57142857
South West Zone	Najaf Garh	15	105	4235	14	302.	0.024793388	0.003541913	7.5	1.07142857
South_West_Zone	Naraina		5 52	1621	14	115.785714	0.032078964	0.003084516	3.714285714	0.35714285
South_West_Zone	Prasad Nagar	20	138	3924	14	280.285714	0.035168196	0.00509684	9.857142857	1.428571429
South_West_Zone	Shanker Road	1	7 52	2116	14	151.142857	0.024574669	0.003308129	3.714285714	0.5
South Zone	Bhikaji Cama Place	24	1 201	5828	14	416.285714	0.034488675	0.004118051	14.35714286	1.714285714
South Zone	Chanakya Puri	21	114	2750	14	196.428571	0.041454545	0.007636364	8.142857143	1.5
South Zone	Mathura Road	34	1 188	5164	14	368.8571429	0.036405887	0.006584043	13.42857143	2.42857142
South Zone	Okhla	1	2 45	773	14	55.2142857	0.058214748	0.002587322	3.214285714	0.14285714
South Zone	Okhla Phase1	23	3 258	2403	14	171.642857	0.107365793	0.009571369	18.42857143	1.64285714
South Zone	Rashtrapati Bhawan	() (85	14	6.07142857	1 0	0	0	(
South Zone	Safdarjung	20	135	3931	14	280.785714	0.034342407	0.005087764	9.642857143	1.428571429
South Zone	Sarita Vihar	24	1 112	2160	12	180	0.051851852	0.011111111	9.333333333	
West_Zone	Badli	() 12	110	14	7.85714285	0.109090909	0	0.857142857	
West_Zone	Bawana	12	2 49	2574	14	183.8571429	0.019036519	0.004662005	3.5	0.85714285
West Zone	Bhor Garh	11	1 95	2739	14	195.642857	0.034684191	0.004016064	6.785714286	0.785714286
West_Zone	DSIDC BAWANA	22	2 107	1853	12	154.416666	7 0.057744199	0.011872639	8.916666667	1.83333333
West_Zone	Jahangir Puri	41	1 260	6067	14	433.3571429	0.042854788	0.00675787	18.57142857	2.92857142
West_Zone	Jawalapuri	40	218	4263	14	304.	0.051137696	0.009383064	15.57142857	2.85714285
West Zone	Jwalaheri				12				0.5	
West_Zone	Keshavpuram	32			14				11.64285714	
West Zone	Kirti Nagar	- 6		1814	14	129.571428			4.428571429	
West Zone	Mangolpuri Ph 2	20			12				9.666666667	1.66666666
West Zone	Moti Nagar	24			14				11.85714286	
West Zone	Narela	-			14					
West Zone	Paschim Vihar				14				1.214285714	
West Zone	Roop Nagar	28			14				18.92857143	
West_Zone	Sector 16 Rohini	17			12					
West Zone	Sector-5 Rohini	47			12				29.07142857	3.35714285
West_Zone West Zone	Tikri	47			12			0.005313137	2.166666667	0.2
West_Zone	Wazirpur	14			14				11	

Fig. 11

We see that highest risk to death in J.R. road area(3.92 deaths/year) and in Sector-5 Rohini (3.35 deaths/year)

Highest risk to injuries in Sector-5 Rohini (29.07 injuries/year), Janakpuri (25.57 injuries/year). Similarly we can get risk values for all the areas in different zones of delhi.

Fig. 12

. . .

Risk Heatmap in shown below for Delhi for both injuries and deaths.

Fire Risk to injuries heatmap

Event tree diagram Analysis

The event tree method involves the construction of an event tree of various fire scenario subsequent to the initiation of fire hazard. The fire scenario provides more logical information for the judgement or probability, consequence and risk values. A complete fire risk assessment would involve the identification of all potential fire hazards and the consideration of various protection measures to minimize risk.

Given below is an event tree diagram for an apartment building having three additional fire protection measure;1. No smoking material 2. Sprinkler system 3. Evacuation drills.

There are total 8 fire scenario, for example scenario A has a probability of 2.4E-03, the impact of each of the fire protection measures on the inherent rate of fire occurrence is assessed using a residual probability multiplier.

Some of these residual probability multipliers can be obtained from statistics, if they are available. If no such information is available, then subjective judgment may be required. For example, there is no statistical information that can be easily found on the reduction of fire occurrence of implementing a 'no smoking material' plan for apartment buildings. Without such statistical information, we have to make an assumption.

Similarly residual consequence multiplier is used to measure impact of fire protection measure on inherent consequence.

Conclusion

In this study, we tried to get inferences from fire report data and calculated fire risk to physical consequences such as deaths and injuries. Our main aim is to identify which type of buildings are more risks prone to fire in Delhi and which areas are mostly affected in context of physical consequences and more prone in context of fire occurrences. We also identified the seasonal variation of fire calls.

Due to covid19 pandemic we could not perform safety measurement audit in various type of buildings in Delhi. Further scope of this study is to use this statistical analysis with safety measurement audit in different type of buildings to perform risk assessment for different type of buildings. One can adopt event-tree analysis for the same.

References

1. Yung, David Tin Lam. (2008), Principles of fire risk assessment in buildings, John Wiley & Sons, Ltd