estomultiplihedra q-lifting subdivision polynomials

lifted generalized permutohedra and composition polynomials

federico ardila

san francisco state university san francisco california usa

universidad de los andes bogotá colombia

2012 joint mathematics meetings boston . jan 5 . 2012

nestomultiplihedra q-lifting subdivision polynomial

Joint work with: Jeff Doker (UC Berkeley)

Outline

- 1. Generalized permutahedra and trees
- 2. Lifted generalized permutahedra
- 3. The subdivision by compositions
- 4. Volume and composition polynomials

Generalized permutahedra and trees

The permutahedron P_n is:

$$P_n = \text{conv} \{(\pi_1, \dots, \pi_n) : \pi \text{ a permutation of } [n]\}$$

Inequality description:

$$\sum_{i=1}^{n} t_i = \binom{n+1}{2}, \qquad \sum_{i \in I} t_i \ge \binom{|I|+1}{2} \text{ for all } I \subseteq [n]$$

A generalized permutahedron is obtained from P_n by changing the edge lengths while preserving their directions.

Important examples:

- polytope from empirical distributions (Pitman-Stanley)
- matroid polytope (Edmonds)
- associahedron \mathcal{K}_n (Stasheff, Haiman)
- ullet graph associahedron $\mathcal{K}G$ (Carr-Devadoss, A.-Reiner-Williams)
- nestohedron KB (Postnikov, Feichtner-Sturmfels)

graph associahedron KG:

Some new examples:

- multiplihedron \mathcal{J}_n (Stasheff, Forcey, A.-Doker)
- graph multiplihedron $\mathcal{J}G$ (Devadoss-Forcey, A.-Doker)

graph multiplihedron \mathcal{J}_n :

(painted G-trees) \leftrightarrow (faces of $\mathcal{J}G$)

Question:

• Is the nestomultiplihedron $\mathcal{J}B$ a polytope? (Devadoss-Forcey) ($B = \text{building set} \rightarrow \mathcal{J}B = \text{polytope}$?) of painted B-trees)

Some new examples:

- multiplihedron \mathcal{J}_n (Stasheff, Forcey, A.-Doker)
- graph multiplihedron $\mathcal{J}G$ (Devadoss-Forcey, A.-Doker)

graph multiplihedron \mathcal{J}_n :

(painted G-trees) \leftrightarrow (faces of $\mathcal{J}G$)

Question:

• Is the nestomultiplihedron $\mathcal{J}B$ a polytope? (Devadoss-Forcey) ($B = \text{building set} \rightarrow \mathcal{J}B = \text{polytope}$?) of painted B-trees)

Theorem. (A. - Doker)

There is a generalized permutahedron (the nestomultiplihedron) whose face poset is isomorphic to the poset of painted *B*-trees.

Lifting

Sketch of proof.

The *q*-lifting $P \mapsto P(q)$ (where $0 \le q \le 1$) takes a generalized permutahedron in \mathbb{R}^n to a generalized permutahedron in \mathbb{R}^{n+1} . We define:

$$P(q) := qP(1) + (1-q)P(0)$$

where

$$P(1) = P$$
, $P(0) = \{ \mathbf{t} \in \mathbb{R}^n \, | \, \mathbf{0} \le \mathbf{t} \le \mathbf{x} \text{ for some } \mathbf{x} \in P \}$

$$q P(1) + (1-q) P(0) = P(q)$$

We show:

gen. perm. P	lifting $P(q)$
permutahedron P_n	permutahedron P_{n+1}
matroid polytope P_M	independent set polytope I_M $(q=0)$
associahedron \mathcal{K}_n	multiplihedron \mathcal{J}_n
graph associahedron $\mathcal{K}G$	graph multiplihedron $\mathcal{J}G$
nestohedron \mathcal{KB}	nestomultiplihedron $\mathcal{J}\mathcal{B}$

Theorem. (A. - Doker)

There is a generalized permutahedron (the nestomultiplihedron) whose face poset is isomorphic to the poset of painted *B*-trees.

A subdivision.

vol(P(q)) is polynomial in q. To get a handle on it, subdivide.

For each ordered partition $\pi = B_1 | \cdots | B_k$ of [n], let

- P_{π} be the π -minimal face of P(minl in direction $w \in \mathbb{R}^n$ where $w_{B_1} < \ldots < w_{B_k}$.) (P = "front facet")
- P_{π}^{i} be obtained from P_{π} by scaling coords. $B_{1} \cup \cdots \cup B_{i}$ by q.

• $P^{\pi}(q) = \text{conv}(P_{\pi}^{0}, P_{\pi}^{1}, \dots, P_{\pi}^{k}).$

Example.

 $P = \mathcal{K}(4)$ (associahedron) $\pi = 1|23$

- $P_{\pi} = \text{conv}\{(1,2,3),(1,4,1)\}$
- $P_{\pi}^{1} = \text{conv}\{(q, 2, 3), (q, 4, 1)\}$
- $P_{\pi}^2 = \text{conv}\{(q, 2q, 3q), (q, 4q, q)\}$

Theorem. (A. - Doker)

The polytopes $P^{\pi}(q)$ form a subdivision of P(q) as π ranges over the ordered partitions of [n].

Volumes and composition polynomials

We get $\operatorname{vol}(P(q)) = \sum_{\pi} \operatorname{vol}(P^{\pi}(q))$. What is $\operatorname{vol}(P^{\pi}(q))$?

• Combinatorially, $P^{\pi}(q) \cong \Delta_k \times P_{\pi}$. $(\Delta_k = \text{simplex})$

• There is a projection $f: P^{\pi}(q) \to \Delta_k$ whose fibers $f^{-1}(p)$ are predictable modifications of P_{π} . Integrating over Δ_k ,

$$\mathsf{vol}(P^{\pi}(q)) = z_{\pi} \mathsf{vol}_{n-k}(P_{\pi}) \int_{q}^{1} \int_{q}^{t_{k}} \cdots \int_{q}^{t_{2}} t_{1}^{|B_{1}|-1} \cdots t_{k}^{|B_{k}|-1} dt_{1} \cdots dt_{k}$$

Composition polynomials.

For a composition $c=(c_1,\ldots,c_k)$, write $\mathbf{t^{c-1}}:=t_1^{c_1-1}\cdots t_k^{c_k-1}$. The **composition polynomial** $g_c(q)$ is

$$g_c(q) := \int_q^1 \int_q^{t_k} \cdots \int_q^{t_2} \mathbf{t^{c-1}} dt_1 \cdots dt_k.$$

- $g_{(1,1,1,1)}(q) = \frac{1}{24}(1-q)^4$.
- $g_{(2,2,2,2)}(q) = \frac{1}{384}(1-q)^4(1+q)^4$.
- $g_{(1,2,2)}(q) = \frac{1}{120}(1-q)^3(8+9q+3q^2).$
- $g_{(2,2,1)}(q) = \frac{1}{120}(1-q)^3(3+9q+8q^2).$
- $g_{(5,3)}(q) = \frac{1}{120}(1-q)^2(5+10q+15q^2+12q^3+9q^4+6q^5+3q^6).$

Proposition. $g_c(q)$ is a polynomial of degree n satisfying

- 1. $g_{\text{reverse}(c)}(q) = q^n g_c(1/q)$
- 2. $g_{mc}(q) = \frac{1}{m^k} g_c(q^m)$ for $m \in \mathbb{N}$.

Composition polynomials.

For a composition $c=(c_1,\ldots,c_k)$, write $\mathbf{t^{c-1}}:=t_1^{c_1-1}\cdots t_k^{c_k-1}$. The **composition polynomial** $g_c(q)$ is

$$g_c(q) := \int_q^1 \int_q^{t_k} \cdots \int_q^{t_2} \mathbf{t^{c-1}} dt_1 \cdots dt_k.$$

- $g_{(1,1,1,1)}(q) = \frac{1}{24}(1-q)^4$.
- $g_{(2,2,2,2)}(q) = \frac{1}{384}(1-q)^4(1+q)^4$.
- $g_{(1,2,2)}(q) = \frac{1}{120}(1-q)^3(8+9q+3q^2).$
- $g_{(2,2,1)}(q) = \frac{1}{120}(1-q)^3(3+9q+8q^2).$
- $g_{(5,3)}(q) = \frac{1}{120}(1-q)^2(5+10q+15q^2+12q^3+9q^4+6q^5+3q^6).$

Proposition. $g_c(q)$ is a polynomial of degree n satisfying:

- 1. $g_{\text{reverse}(c)}(q) = q^n g_c(1/q)$.
- 2. $g_{mc}(q) = \frac{1}{m^k} g_c(q^m)$ for $m \in \mathbb{N}$.

$$g_c(q) := \int_q^1 \int_q^{t_k} \cdots \int_q^{t_2} \mathbf{t^{c-1}} dt_1 \cdots dt_k.$$

Theorem. (A. - Doker) Let $c = (c_1, \ldots, c_k)$ be a composition.

- 1. $g_c(q) = (1-q)^k f_c(q)$ for a poly. $f_c(q)$ with $f_c(1) = 1/k!$
- 2. The coefficients of $f_c(q)$ are positive.

Proof: The "easy" recurrences don't suffice. With some work,

$$g_{c^m}(q) = \left(\frac{c_1 + \cdots + c_m}{c_1 + \cdots + c_k}\right) g_{c^R}(q) + \left(\frac{c_{m+1} + \cdots + c_k}{c_1 + \cdots + c_k}\right) q^{c_1} g_{c^L}(q).$$

One of the section of

(True for all 335,922 compositions of \leq 7 parts which are \leq 6.)

$$g_c(q) := \int_q^1 \int_q^{t_k} \cdots \int_q^{t_2} \mathbf{t^{c-1}} dt_1 \cdots dt_k.$$

Theorem. (A. - Doker) Let $c = (c_1, \ldots, c_k)$ be a composition.

- 1. $g_c(q) = (1-q)^k f_c(q)$ for a poly. $f_c(q)$ with $f_c(1) = 1/k!$
- 2. The coefficients of $f_c(q)$ are positive.

Proof: The "easy" recurrences don't suffice. With some work,

$$g_{c^m}(q) = \left(\frac{c_1 + \dots + c_m}{c_1 + \dots + c_k}\right) g_{c^R}(q) + \left(\frac{c_{m+1} + \dots + c_k}{c_1 + \dots + c_k}\right) q^{c_1} g_{c^L}(q).$$
 $c^m := (c_1, \dots, c_{m-1}, c_m + c_{m+1}, c_{m+2}, \dots, c_k), \quad c^L := (c_2, \dots, c_k), \quad c^R := (c_1, \dots, c_{k-1})$

Question. Are the coefficients of $f_c(q)$ unimodal? Log-concave?

(True for all 335,922 compositions of \leq 7 parts which are \leq 6.)

$$g_c(q) := \int_q^1 \int_q^{t_k} \cdots \int_q^{t_2} \mathbf{t}^{\mathbf{c}-\mathbf{1}} dt_1 \cdots dt_k.$$

Theorem. (A. - Doker) Let $c = (c_1, \ldots, c_k)$ be a composition.

- 1. $g_c(q) = (1-q)^k f_c(q)$ for a poly. $f_c(q)$ with $f_c(1) = 1/k!$
- 2. The coefficients of $f_c(q)$ are positive.

Proof: The "easy" recurrences don't suffice. With some work,

$$g_{c^m}(q) = \left(\frac{c_1 + \dots + c_m}{c_1 + \dots + c_k}\right) g_{c^R}(q) + \left(\frac{c_{m+1} + \dots + c_k}{c_1 + \dots + c_k}\right) q^{c_1} g_{c^L}(q).$$
 $c^m := (c_1, \dots, c_{m-1}, c_m + c_{m+1}, c_{m+2}, \dots, c_k), \quad c^L := (c_2, \dots, c_k), \quad c^R := (c_1, \dots, c_{k-1})$

Question. Are the coefficients of $f_c(q)$ unimodal? Log-concave?

(True for all 335,922 compositions of ≤ 7 parts which are ≤ 6 .)

Polynomial interpolation of exponential functions.

Theorem. (A. - Doker)

Let $c = (c_1, \dots, c_k)$ be a composition.

Let $\beta_i = c_1 + \cdots + c_i$ be the partial sums. $(i = 0, 1, \dots, k)$

Let $h(x) = a_0 + a_1 x + \cdots + a_k x^k$ be the polynomial of smallest degree that passes through the k+1 points (β_i, q^{β_i}) . (Here the coefficients a_i are functions of q.) Then

$$a_k=(-1)^kg_c(q).$$

Proof.

- The recursion gives an explicit formula for $g_c(q)$.
- Lagrange interpolation gives a formula for a_k .
- They match.

Question. What's the real reason for this?

Polynomial interpolation of exponential functions.

Theorem. (A. - Doker)

Let $c = (c_1, \dots, c_k)$ be a composition.

Let $\beta_i = c_1 + \cdots + c_i$ be the partial sums. $(i = 0, 1, \dots, k)$

Let $h(x) = a_0 + a_1 x + \cdots + a_k x^k$ be the polynomial of smallest degree that passes through the k+1 points (β_i, q^{β_i}) . (Here the coefficients a_i are functions of q.) Then

$$a_k = (-1)^k g_c(q).$$

Proof.

- The recursion gives an explicit formula for $g_c(q)$.
- Lagrange interpolation gives a formula for a_k .
- They match.

Question. What's the real reason for this?

Linear extensions in posets. (Stanley)

Poset P_c :

- a chain $p_0 < p_1 < \cdots < p_k$
- a chain of size $c_i 1$ below p_i for $1 \le i \le k$

Order polytope
$$\mathcal{O}(P_c)$$
: $0 \le x_i \le x_j \le 1$ for $i \le j \in P$

Then we have:

$$vol(\mathcal{O}(P_c) \cap (x_{p_0} = q)) = \frac{g_c(q)}{(c_1 - 1)! \cdots (c_k - 1)!}$$

which implies

$$g_c(q) = \frac{(c_1-1)!\cdots(c_k-1)!}{n!}\sum_{i=0}^n N_{i+1}\binom{n}{i}q^i(1-q)^{n-i}$$

where N_j = number of linear extensions f of P_c with $f(x_0) = j$.

Therefore
$$N_i^2 \geq N_{j-1}N_{j+1}$$
 for $2 \leq j \leq n$. (Nice, but not quite what we want

Linear extensions in posets. (Stanley)

Poset P_c :

- a chain $p_0 < p_1 < \cdots < p_k$
- a chain of size $c_i 1$ below p_i for $1 \le i \le k$

Order polytope $\mathcal{O}(P_c)$: $0 \le x_i \le x_j \le 1$ for $i \le j \in P$

Then we have:

$$vol(\mathcal{O}(P_c) \cap (x_{p_0} = q)) = \frac{g_c(q)}{(c_1 - 1)! \cdots (c_k - 1)!}$$

which implies:

$$g_c(q) = \frac{(c_1-1)!\cdots(c_k-1)!}{n!}\sum_{i=0}^n N_{i+1}\binom{n}{i}q^i(1-q)^{n-i}$$

where N_j = number of linear extensions f of P_c with $f(x_0) = j$.

Therefore $N_j^2 \geq N_{j-1} N_{j+1}$ for $2 \leq j \leq n$. (Nice, but not quite what we want.)

many thanks.