USING INTERPRETABLE MACHINE LEARNING TO DIAGNOSE ALZHEIMER'S DISEASE THROUGH BLOOD-**BASED IMMUNOLOGICAL BIOMARKERS**

Minor - Collaborative Science for Biomedical Breakthroughs Ellen Heck¹, Madelon van Hoek², Tom Kitak³, Clinten Mohan³ ⁴ ¹ Maastricht University, ² Leiden University, ³ TU Delft, ⁴ Erasmus MC

Erasmus MC

Background

Alzheimer's disease (AD) is a debilitating neurodegenerative disease characterised by a decline in cognitive functioning [3]. It is currently predicted that the prevalence of AD will double by the year 2050 [2,3]. This will have a great impact on society, as more resources will need to be allocated to mitigate the effects of the disease. While treatment plans are being developed, the way AD is diagnosed still leaves room for improvement in terms of costs and invasiveness. The goal of this project is to train a model intended to diagnose AD through the use of immunological biomarkers taken from blood samples - making diagnosis less invasive and less costly.

Diagnosis Now

Currently, two techniques can be used to diagnose AD:

- PET scan imaging [3]
 - Detects Amyloid-β42 plaques in brains
 - Cons: costly (up to €7000); radioactive tracer use
- Lumbar puncture [3,7]
- o Detects Aβ and p-Tau in Cerebral Spinal Fluid
 - Con: invasive

Figure 2: Lumbar Puncture Procedure. [b]

Established Biomarkers

• amyloid-β42 (Aβ42) [4]

Objective 3:

• phosphorylated-tau protein (p-Tau)

Figure 3: B-amyloid and Tau protein models. [c]

Machine Learning Model

Regression for its

• Benchmark with tau

and amyloid-β42

Analyze importance

of immunological

markers for future

research directions.

clarity and cost.

• Utilize Logistic

markers.

Our Solution

Create a more cost-effective, less invasive, and interpretable diagnostic method

- Make use of blood samples
- Identify immunological proteins involved in AD
- Train an algorithm for AD diagnosis with these proteins

Research plan

Objective 1: Data Collection

- Blood sample collection and analysis
- Use LC-MS for molecule identification
- Calculate their concentration

Source

Objective 2: Data Validation

- Preventing false positive in objective 1
- Use of ELISA

Figure 5: Sandwich ELISA method. [e]

Figure 4: Diagram of LC-MS machine.

[d]

Innovation

Identifying immunological biomarkers in AD could point to the root cause of the disease. This method will be less invasive than a lumbar puncture. Taking blood is less expensive than PET scans.