On Conjugates of Collatz-Type Mappings

Stefan Kohl *

Abstract

A mapping $f: \mathbb{Z} \to \mathbb{Z}$ is called residue class-wise affine if there is a positive integer m such that it is affine on residue classes (mod m). If there is a finite set $S \subset \mathbb{Z}$ which intersects nontrivially with any trajectory of f, then f is called almost contracting. Assume that f is a surjective but not injective residue class-wise affine mapping, and that the preimage of any integer under f is finite. Then f is almost contracting if and only if there is a permutation σ of \mathbb{Z} such that f^{σ} is monotonous almost everywhere. In this article it is shown that if there is no positive integer k such that applying $f^{(k)}$ decreases the absolute value of almost all integers, then σ cannot be residue classwise affine itself. The original motivation for the investigations in this article comes from the famous 3n+1 Conjecture.

MSC 2000: Primary 11B99, Secondary 20B99

1 Introduction

In the 1930s, Lothar Collatz made the following conjecture which is still open today (see [3] for a survey article and [4] for an annotated bibliography):

1.1 3n+1 Conjecture Iterated application of the mapping

$$T: \mathbb{Z} \longrightarrow \mathbb{Z}, n \longmapsto \begin{cases} \frac{n}{2} & \text{if } n \text{ even,} \\ \frac{3n+1}{2} & \text{if } n \text{ odd.} \end{cases}$$

to any positive integer yields 1 after a finite number of steps. In short this means that for all $n \in \mathbb{N}$, there exists $k \in \mathbb{N}_0$ such that $T^{(k)}(n) = 1$.

^{*}Institut für Geometrie und Topologie, Pfaffenwaldring 57, Universität Stuttgart, 70550 Stuttgart / Germany. E-mail: kohl@mathematik.uni-stuttgart.de

Obviously this conjecture holds if and only if there is a permutation σ of \mathbb{Z} which maps positive integers to positive integers and fixes 1 such that T^{σ} maps any integer n > 1 to a smaller one. Since T is surjective but not injective, this is essentially equivalent to requiring that T^{σ} is monotonous almost everywhere (imagine the graph of a monotonous conjugate!).

In this article, on the one hand we generalize the question for the existence of such a monotonous conjugate to other mappings similar to the Collatz mapping T. On the other we specialize it to the case that the conjugating permutation σ itself is similar to T, i.e. residue class-wise affine:

1.2 Definition We call a mapping $f: \mathbb{Z} \to \mathbb{Z}$ residue class-wise affine if there is a positive integer m such that the restrictions of f to the residue classes $r(m) \in \mathbb{Z}/m\mathbb{Z}$ are all affine, i.e. given by

$$f|_{r(m)}: r(m) \to \mathbb{Z}, n \mapsto \frac{a_{r(m)} \cdot n + b_{r(m)}}{c_{r(m)}}$$

for certain coefficients $a_{r(m)}, b_{r(m)}, c_{r(m)} \in \mathbb{Z}$ depending on r(m). We call the smallest possible m the modulus of f, written $\operatorname{Mod}(f)$. For reasons of uniqueness, we assume that $\gcd(a_{r(m)}, b_{r(m)}, c_{r(m)}) = 1$ and that $c_{r(m)} > 0$. We define the multiplier $\operatorname{Mult}(f)$ of f by $\operatorname{lcm}_{r(m) \in \mathbb{Z}/m\mathbb{Z}} a_{r(m)}$ and the divisor $\operatorname{Div}(f)$ of f by $\operatorname{lcm}_{r(m) \in \mathbb{Z}/m\mathbb{Z}} c_{r(m)}$. We always assume that $\operatorname{Mult}(f) \neq 0$.

- **1.3 Definition** Let $f: \mathbb{Z} \to \mathbb{Z}$ be a mapping. We call f almost contracting if there is a finite set $S \subset \mathbb{Z}$ which intersects nontrivially with any trajectory of f. We call f monotonizable if there is a permutation $\sigma \in \operatorname{Sym}(\mathbb{Z})$ and a finite set $S \subset \mathbb{Z}$ such that f^{σ} is monotonous on $\mathbb{Z} \setminus S$. Further we call f rewa-monotonizable if σ can be chosen to be residue class-wise affine.
- **1.4 Remark** It is easy to see that surjective monotonizable mappings are also almost contracting, and that almost contracting mappings are monotonizable provided that the preimage of any integer is finite.
- 1.5 Example We look at the residue class-wise affine mappings

$$f: n \mapsto \begin{cases} \frac{n+1}{2} & \text{if } n \in 1(6), \\ \frac{9n+1}{2} & \text{if } n \in 3(6), \\ \frac{9n+11}{2} & \text{if } n \in 5(6), \\ \frac{n-2}{18} & \text{if } n \in 2(54), \\ \frac{n+8}{18} & \text{if } n \in 28(54), \\ \frac{n}{2} & \text{otherwise} \end{cases} \text{ and } \sigma: n \mapsto \begin{cases} 9n+1 & \text{if } n \in 0(3), \\ \frac{n-1}{9} & \text{if } n \in 1(27), \\ n & \text{otherwise.} \end{cases}$$

The mapping f is surjective and rewa-monotonizable. Indeed its conjugate under σ is f^{σ} : $n \mapsto \lfloor (n+1)/2 \rfloor$, which is monotonous on \mathbb{Z} . Therefore f is almost contracting. This is nontrivial, as there are trajectories like $21, 95, 433, 217, 109, 55, 28, \ldots$ and $63, 284, 142, 71, 325, 163, 82, \ldots$

2 A Condition for rcwa-Monotonizability

In this article we derive a necessary condition for rewa-monotonizability. In the proof we need the following lemmata:

2.1 Lemma Assume that f is a non-injective residue class-wise affine mapping. Then there are a residue class $r_0(m_0)$ and two disjoint residue classes $r_1(m_1)$ and $r_2(m_2)$ of \mathbb{Z} such that $r_0(m_0) = f(r_1(m_1)) = f(r_2(m_2))$.

Proof: Let $m := \operatorname{Mod}(f)$. Since f is not injective, there are two residue classes $\tilde{r}_1(m)$ and $\tilde{r}_2(m)$ whose images under f are not disjoint. The images $f(\tilde{r}_1(m))$ and $f(\tilde{r}_2(m))$ are also residue classes. Thus their intersection $r_0(m_0)$ is a residue class, too. The preimages $r_1(m_1)$ and $r_2(m_2)$ of $r_0(m_0)$ under the affine mappings of $f|_{\tilde{r}_1(m)}$ resp. $f|_{\tilde{r}_2(m)}$ are residue classes as well. They are disjoint since they are subsets of distinct residue classes (mod m).

2.2 Lemma Given a residue class-wise affine mapping f, there is a constant $c \in \mathbb{N}$ such that $\forall n \in \mathbb{Z} \ |f(n)| \leq \operatorname{Mult}(f) \cdot |n| + c$.

Proof: Take upper bounds on the absolute values of the images of n under the affine partial mappings of f.

We get a quite restrictive condition for rcwa-monotonizability:

2.3 Theorem Assume that f is a residue class-wise affine mapping which is not injective, but surjective and rewa-monotonizable. Then there is a $k \in \mathbb{N}$ such that there are at most finitely many $n \in \mathbb{Z}$ which satisfy $|f^{(k)}(n)| \ge |n|$.

Proof: By assumption, we can choose a residue class-wise affine permutation σ and a finite subset $S \subset \mathbb{Z}$ such that $\mu := f^{\sigma}$ is monotonous on $\mathbb{Z} \setminus S$.

Surjectivity and non-injectivity are inherited from f to μ . Consequently, by Lemma 2.1 there is a residue class r(m) such that any $n \in r(m)$ has at least two distinct preimages under μ .

From the surjectivity of μ , the monotonity of μ on $\mathbb{Z} \setminus S$ and the finiteness of S we can conclude that there is a constant $c' \in \mathbb{N}$ such that we have $\forall n \in \mathbb{Z} \ |\mu(n)| < m/(m+1) \cdot |n| + c'$, and induction over $k \in \mathbb{N}$ yields

$$\forall k \in \mathbb{N} \ \forall n \in \mathbb{Z} \ |\mu^{(k)}(n)| < (m/(m+1))^k \cdot |n| + k \cdot c'.$$

For any $k \in \mathbb{N}$ we have $f^{(k)}(n) = \sigma^{-1}\mu^{(k)}\sigma(n)$. We choose k such that $(m/(m+1))^k < 1/(2 \cdot \text{Mult}(\sigma) \cdot \text{Div}(\sigma))$.

Since inversion interchanges multiplier and divisor, by Lemma 2.2 for some constant c depending on σ the following holds:

$$|f^{(k)}(n)| = |\sigma^{-1}\mu^{(k)}\sigma(n)| < \operatorname{Div}(\sigma) \cdot (m/(m+1))^k \cdot |n| \cdot \operatorname{Mult}(\sigma) + c$$

$$< |n|/2 + c.$$

Since neither k nor c depends on n, this completes our proof.

2.4 Example Let f be as in Example 1.5. Then Theorem 2.3 asserts that there is some $k \in \mathbb{N}$ such that for almost all $n \in \mathbb{Z}$ it is $|f^{(k)}(n)| < |n|$.

An easy computation with the GAP [1] package RCWA [2] shows indeed that k=7 is the smallest value which satisfies this condition. Further one can check that the integers $n \notin \{-1,0,1\}$ which fail to satisfy the inequality $|f^{(k)}(n)| < |n|$ for all $k \leqslant 6$ are those in the set $21(192) \cup 63(192) \cup 105(192)$.

Theorem 2.3 has consequences for the 3n + 1 Conjecture:

2.5 Corollary The Collatz mapping T is not rewa-monotonizable.

Proof: The Collatz mapping T is surjective and not injective. Further, given $n = 2^k m - 1$ for some $k, m \in \mathbb{N}$ we have $T^{(k)}(n) = (3^k n + (3^k - 2^k))/2^k > n$. Hence if there is a conjugate T^{σ} ($\sigma \in \text{Sym}(\mathbb{Z})$) which is monotonous almost everywhere, then by Theorem 2.3, σ is not residue class-wise affine.

2.6 Remark Corollary 2.5 shows mainly that a 'conjugating' permutation which certifies that the Collatz mapping is almost contracting cannot be 'very simple'. To the author it seems likely that it must be quite complicate.

References

- [1] The GAP Group. GAP Groups, Algorithms, and Programming; Version 4.4.7, 2006. http://www.gap-system.org.
- [2] Stefan Kohl. RCWA Residue Class-Wise Affine Groups, 2005. GAP package, http://www.gap-system.org/Packages/rcwa.html.
- [3] Jeffrey C. Lagarias. The 3x+1 problem and its generalizations. *Amer. Math. Monthly*, 92:1–23, 1985.
- [4] Jeffrey C. Lagarias. The 3x+1 problem: An annotated bibliography, 2006. (http://arxiv.org/abs/math.NT/0309224).