Probability

Lectures by Steven Miller

Notes by Yao Zhang

Williams College, Fall 2019

1 Lecture 1	1	17 Lecture 17	17
2 Lecture 2	2	18 Lecture 18	18
3 Lecture 3	3	19 Lecture 19	19
4 Lecture 4	4	20 Lecture 20	20
5 Lecture 5	5	21 Lecture 21	21
6 Lecture 6	6	22 Lecture 22	22
7 Lecture 7	7	23 Lecture 23	23
8 Lecture 8	8	24 Lecture 24	24
9 Lecture 9	9	24 Decoure 24	24
10 Lecture 10	10	25 Lecture 25	25
11 Lecture 11	11	26 Lecture 26	26
12 Lecture 12	12	27 Lecture 27	27
13 Lecture 13	13	28 Lecture 28	28
14 Lecture 14	14	29 Lecture 29	29
15 Lecture 15	15	30 Lecture 30	30
16 Lecture 16	16	31 Lecture 31	31

Introduction

While probability began with a study of games, it has grown to become a discipline with numerous applications throughout mathematics and the sciences. Drawing on gaming examples for motivation, this course will present axiomatic and mathematical aspects of probability. Included will be discussions of random variables, expectation, independence, laws of large numbers, and the Central Limit Theorem. Many interesting and important applications will also be presented, including some from coding theory, number theory and nuclear physics.

These lectures are mainly based on the books The Probability Lifesaver by Steven Miller published by Princeton University Press.

These notes were live-TeXed, though I edited for typos and added diagrams requiring the TikZ package separately. I used the editor TeXstudio.

I am responsible for all faults in this document, mathematical or otherwise; any merits of the material here should be credited to the lecturer, not to me.

Please email any corrections or suggestions to jaafar_zhang@163.com.

Acknowledgments

Thank you to all of my friends who will send me suggestions and corrections. My notes will be much improved due to your help.

I would like to especially thank Professor Miller who puts this course in website.

Introduction

Combinatorics, Birthday Problem, Pentium Bug, QWERTY, Programming, Babylonian Mathematics

Set Theory, Probability Wish List, Coding

Axioms of Probability, Consequences, Sniffing out Formulas

Supplemental: Infinities, Generating Functions, Differentiating Identities

Factorial Function, Binomial Coefficients, Poker Hands, Pascal's Triangle Mod 2

Probability and Mathematical Modeling I

Probability and Mathematical Modeling ${\bf II}$

Card Shuffling

Trump Splits, Conditional Probability, Bayes' Theorem

 ${\bf Independence,\, Derangements,\, Inclusion-Exclusion,\, Induction}$

Basics of pdfs and Random Variables

Review cont/discrete RV, expectation, moments, Cauchy, Taylor

Joint pdfs, linearity of expectation

Introduction to Statistics and Modeling

Simpson's paradox, Ace of Hearts method

Linearity of expectation, variances and covariances, power of linearity of expectation, bernoulli and binomial, convolution

Marriage Problem, Two Envelope Problem, Buffon's Needle

Differentiating Identiteis (Gaussian, Exponential, Geometric, Negative Binomial)

Sums of Uniform Random Variables, Sums of Gaussian Random Variables, Cauchy Distribution, Gregory-Leibnitz Formula

Pythagoras, Gamma Function, Chi-Square Distribution, Surface Area

Markov and Chebyshev's inequalities, Divide and Conquer vs Newton's Method

Poisson Random Variables, Exponential Function, Stirling's Formula, Dyadic Decomposition, CLT to Stirling

CLT for random walk of fair coin tosses, intro to generating fns via sums Poisson rvs

Generating Functions and Moment Generating Functions

 ${\bf M}$ & M Game: Memoryless Processes, Geometric Series, Double Recurrences, Hypergeometric

Generating Functions III: Properties of MGF, Poisson and Normal Example, Poisson to CLT

Method of Least Squares

Proof of the CLT

German Tank Problem

Coding Examples