Table of

Outline

Recap

The delta method

Derivation of the delta method

Lecture 20

Ingo Ruczinski

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

November 4, 2015

Table of contents

Table of contents

Outlin

Reca

The delt method

Derivation of the delta method

- 1 Table of contents
- 2 Outline
- 3 Recap
- 4 The delta method
- 5 Derivation of the delta method

Outline

Reca

The delta method

Derivation of the delta method

- 1 Review two sample binomial results
- 2 Delta method

Derivation of the delta method

Two sample binomials results

Recall $X \sim \text{Bin}(n_1, p_1)$ and $Y \sim \text{Bin}(n_2, p_2)$. Also this information is often arranged in a 2×2 table:

$$\begin{array}{c|cccc}
 n_{11} = x & n_{12} = n_1 - x & n_1 \\
 n_{21} = y & n_{22} = n_2 - y & n_2
 \end{array}$$

$$\bullet \hat{RD} = \hat{p}_1 - \hat{p}_2$$

$$\hat{SE}_{\hat{RD}} = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

•
$$\hat{RR} = \frac{\hat{p}_1}{\hat{p}_2}$$

$$\hat{SE}_{\log \hat{RR}} = \sqrt{\frac{(1-\hat{p}_1)}{\hat{p}_1 n_1} + \frac{(1-\hat{p}_2)}{\hat{p}_2 n_1}}$$

•
$$\hat{OR} = \frac{\hat{p}_1/(1-\hat{p}_1)}{\hat{p}_2/(1-\hat{p}_2)} = \frac{n_{11}n_{22}}{n_{12}n_{21}}$$

$$\hat{SE}_{\log \hat{OR}} = \sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}}$$

$$CI = Estimate \pm Z_{1-\alpha/2}SE_{Est}$$

Standard errors

- **delta method** can be used to obtain large sample standard errors
- Formally, the delta methods states that if

$$rac{\hat{ heta}- heta}{\hat{SE}_{\hat{ heta}}}
ightarrow \mathrm{N}(0,1)$$

then

$$\frac{f(\hat{\theta}) - f(\theta)}{f'(\hat{\theta})\hat{SE}_{\hat{\theta}}} \to \mathrm{N}(0,1)$$

- Asymptotic mean of $f(\hat{\theta})$ is $f(\theta)$
- Asymptotic standard error of $f(\hat{\theta})$ can be estimated with $f'(\hat{\theta})\hat{SE}_{\hat{\theta}}$

Derivation o

- $\theta = p_1$
- $\hat{ heta} = \hat{p}_1$

•
$$\hat{SE}_{\hat{\theta}} = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1}}$$

- $f(x) = \log(x)$
- f'(x) = 1/x
- $\frac{\hat{ heta}- heta}{\hat{SE}_{\hat{n}}}
 ightarrow \mathrm{N}(0,1)$ by the CLT
- Then $\hat{SE}_{\log \hat{p}_1} = f'(\hat{\theta})\hat{SE}_{\hat{\theta}}$

$$=rac{1}{\hat{
ho}_1}\sqrt{rac{\hat{
ho}_1(1-\hat{
ho}_1)}{n_1}}=\sqrt{rac{(1-\hat{
ho}_1)}{\hat{
ho}_1n_1}}$$

And

$$\frac{\log \hat{p}_1 - \log p_1}{\sqrt{\frac{(1-\hat{p}_1)}{\hat{p}_1 p_1}}} \to \mathrm{N}(0,1)$$

Derivation of the delta method

Putting it all together

• Asymptotic standard error

$$\begin{aligned} \operatorname{Var}(\log \hat{R}R) &= \operatorname{Var}\{\log(\hat{\rho}_{1}/\hat{\rho}_{2})\} \\ &= \operatorname{Var}(\log \hat{\rho}_{1}) + \operatorname{Var}(\log \hat{\rho}_{2}) \\ &\approx \frac{(1-\hat{\rho}_{1})}{\hat{\rho}_{1}n_{1}} + \frac{(1-\hat{\rho}_{2})}{\hat{\rho}_{2}n_{2}} \end{aligned}$$

- The last line following from the delta method
- The approximation requires large sample sizes
- The delta method can be used similarly for the log odds ratio

Derivation of the delta method • If $\hat{\theta}$ is close to θ then

$$\frac{f(\hat{\theta}) - f(\theta)}{\hat{\theta} - \theta} \approx f'(\hat{\theta})$$

So

$$\frac{f(\hat{\theta}) - f(\theta)}{f'(\hat{\theta})} \approx \hat{\theta} - \theta$$

Therefore

$$\frac{f(\hat{\theta}) - f(\theta)}{f'(\hat{\theta})\hat{SE}_{\hat{\theta}}} \approx \frac{\hat{\theta} - \theta}{\hat{SE}_{\hat{\theta}}}$$