Supporting Information for

Up-conversion Intersystem Crossing Rates in Organic Emitters for Thermally Activated Delayed Fluorescence (TADF): Impact of the Nature of Singlet vs. Triplet Excited States

Pralok K. Samanta,[†] Dongwook Kim,*^{,†,‡} Veaceslav Coropceanu,[§] and Jean-Luc Brédas*^{,†}

[†]Laboratory for Computational and Theoretical Chemistry of Advanced Materials

Physical Science and Engineering Division

King Abdullah University of Science and Technology

Thuwal 23955-6900, Kingdom of Saudi Arabia

[‡]Department of Chemistry

Kyonggi University

154-42 Gwanggyosan-Ro, Yeongtong-Gu, Suwon 440-760, Korea

§School of Chemistry and Biochemistry

Center for Organic Photonics and Electronics (COPE)

Georgia Institute of Technology

Atlanta, Georgia 30332-0400

*E-mail: dongwook-kim@kyonggi.ac.kr, jean-luc.bredas@kaust.edu.sa

Contents

A.	Theoretical Background	S4
B.	Figure S1: Comparison between Experimental and Computational values of	of ΔE_{ST} , and
	ΔE_{ST} as a Function of the Sum of the Overlaps between Hole and Ele	ectron Wave
	Functions.	S7
C.	Table S1: Calculated Overlap (ξ) of Hole and Electron Wave Functions in the	$e S_1$ and T_1
	states at Respective-State Geometries	S11
D.	Table S2: Calculated Intramolecular Reorganization Energies (λ_{intra}) and	nd Effective
	Reorganization Energies (S $\cdot \hbar \omega_{eff}$) from High-frequency Vibrations	$(\hbar\omega_{eff})$ and
	Associated Huang-Rhys Factor (S) for Representative Molecules, in the	case of Up-
	Conversion Intersystem Crossing (UISC).	S12
E.	Table S3. Comparison of the k_{UISC} (s ⁻¹) Rates Calculated with and without C	onsideration
	of the Associated Huang-Rhys Factor (S), for 2CzPN and PXZ-TRZ.	S13
F.	Table S4: Calculated (LC- ω *PBE/6-31+G(d)) and Experimental Vertical	1 Excitation
	Energies for the S_1 State, $E_{VA}(S_1)$, and Adiabatic Singlet (S_1) -Triplet	(T ₁) Energy
	Differences, ΔE_{ST}	S14
G.	Table S5: Calculated Vertical Transition Energies for the S_1 State, $E_{VA}(S_1)$, a	nd Vertical
	Singlet (S ₁)-Triplet (T ₁) Energy Differences, ΔE_{ST-v} at the Ground-state Geometric Geometric (S ₁)-Triplet (T ₁) Energy Differences, ΔE_{ST-v} at the Ground-state Geometric (S ₁)-Triplet (T ₁) Energy Differences, ΔE_{ST-v} at the Ground-state Geometric (S ₁)-Triplet (T ₁) Energy Differences, ΔE_{ST-v} at the Ground-state Geometric (S ₁)-Triplet (T ₂)-Triplet (T ₁)-Triplet (T ₂)-	netry, using
	Various DFT Functionals.	S15
Н.	Table S6. Calculated Spin-orbit Coupling Matrix Elements between the S_1 a	nd T ₁ States
	at the T ₁ Geometry using Various DFT Functionals for Representative Molecular Company of the T ₁ Geometry using Various DFT Functionals for Representative Molecular Company of the T ₁ Geometry using Various DFT Functionals for Representative Molecular Company of the T ₁ Geometry using Various DFT Functionals for Representative Molecular Company of the T ₁ Geometry using Various DFT Functionals for Representative Molecular Company of the T ₁ Geometry using Various DFT Functionals for Representative Molecular Company of the T ₁ Geometry using Various DFT Functionals for Representative Molecular Company of the T ₂ Geometry using Various DFT Functionals for Representative Molecular Company of the T ₂ Geometry (Table Company of the Table Company of the T ₂ Geometry (Table Company of the Table	ules. S16
I.	Table S7: Natures of Representative Excited States at T ₁ State Optimized Geo	ometry S17
J.	Table S8. Comparison of Calculated Adiabatic Singlet-Triplet Energy differ	
	Different T ₁ -state Geometries Obtained from either Unrestricted DFT Calculations.	or TD-DFT S20
K.	Table S9: Calculated HOMO-LUMO Energy Gaps (in eV) for Representative	
	$(\Delta E_{\text{H-L}}{}^{\text{CT}})$ and their Respective Moieties Associated with the Lowest Triple	let LE State
	$(\Delta E_{H-L}{}^{LE})$ at their T_1 -state Geometries	S21

L.	Table	S10:	Calculated	Vertical	Excitation	Energies	(in	eV)	at	the	Ground-sta	ate
	Geome	etries l	Using the Ta	mm-Danc	off Approxi	mation wi	th th	e LC-	-ω*F	PBE :	Functional,	6-
	31+G(d) Bas	sis Set, and P	CM Mode	el (ε=2.37)						S22	
M.	Figure	S2: N	TOs of CBP	, α-NPD,	2CzPN, CC	2TA, and I	PIC-	TRZ			S23	
N.	Figure	S3: N	TOs of PXZ	-TRZ, AC	CRFLCN, 4C	CzIPN, and	Spir	ro-CN	1		S24	
O.	Figure	S4: N	TOs of 4CzI	PN-Me, 4	CzPN, 4Cz	ΓPN, and 4	CzT	PN-N	1e		S25	
P.	Refere	nces									S26	

1. Theoretical Backgrounds

1. Optical Excitation

The excitation energies are calculated within the Tamm-Dancoff Approximation (TDA) with the 6-31+G(d) basis set. The recent development of optimally tuned range-separated (OT-RS) exchange functional allows the reliable calculations of the charge-transfer (CT) excited-state properties of molecules or complexes. ¹⁻⁶ In range-separated exchange-correlation functional, the Coulomb operator is split into local and non-local regions:

$$\frac{1}{r_{12}} = \frac{1 - \operatorname{erf}(\omega r_{12})}{r_{12}} + \frac{\operatorname{erf}(\omega r_{12})}{r_{12}}$$
 (S1)

The range-separation parameter ω determines where the exchange term switches from short-range region (DFT exchange) to the long-range region (Hartree-Fock exchange). The ω value is optimized based on the principle that the vertical ionization potential (IP_v) must be equal to the negative of the HOMO energy ($\epsilon_{\rm H}$) in exact Kohn-Sham (KS) or generalized KS (GKS) theory;⁷ for the gap-tuned functionals, the optimal ω value is obtained by minimizing the J^2 value:^{3,8-9}

$$J^{2} = \sum_{i=0}^{1} [\epsilon_{H}(N+i) + IP(N+i)]^{2}$$
 (S2)

The optimal ω values for the LC- ω PBE functional are listed in Table S4 for all the molecules considered in this study. Note that we refer to the LC- ω PBE functional with the optimal ω value as LC- ω *PBE.

2. Local excitation (LE) vs charge transfer (CT) contributions

The Natural Transition Orbital (NTO) analysis of a given excited state can be conducted *via* the singular-value decomposition of the 1-particle transition density matrix, **T**, *i.e.*,

$$\left| \left(\mathbf{U}^{\dagger} \mathbf{T} \mathbf{V} \right)_{ij} \right| = \delta_{ij} \alpha_{i} \tag{S3}$$

where α is the singular value; δ_{ij} is the Kronecker delta; **U** and **V** are unitary square matrices that transform the canonical occupied and virtual molecular orbitals (MOs) into hole and particle NTOs, respectively. The Löwdin population on atom μ for the hole and electron NTOs can be given using the density matrix for the NTOs, \mathbf{D}_{NTO} , *i.e.*,

$$P_{NTO}^{\mu} = \sum_{i \in \mu} \left(\mathbf{S}^{1/2} \mathbf{D}_{NTO} \mathbf{S}^{1/2} \right)_{ii}$$
 (S4)

where **S** is the overlap matrix in the AO basis; $\mathbf{D}_{NTO} = \mathbf{C}_{NTO}^{\dagger} \mathbf{C}_{NTO}$, and \mathbf{C}_{NTO} denotes a coefficient matrix for either a hole or electron NTO in the AO basis, respectively. The local-excitation (LE) and charge-transfer (CT) contributions to a given excited state are computed as:

$$f = \sum_{i=1}^{Nocc} \alpha_i^2 P_{hNTO}^{\mu} P_{eNTO}^{\nu}$$
 (S5)

When atoms μ and ν belong to the same fragment, the f value above points to the LE contribution to the state; otherwise, it is related to CT contribution.

3. Extent of overlap between hole and electron wave functions

The extent of overlap between the hole and electron wave function, ξ , is calculated using Multiwfn-3.3.8:¹⁰

$$\xi = \int \min(\rho_h(\mathbf{r}), \rho_e(\mathbf{r})) d\mathbf{r}$$
 (S6)

where $\rho_h(\mathbf{r})$ and $\rho_e(\mathbf{r})$ are the density of hole and electron, respectively, at position \mathbf{r} .

4. Singlet-triplet Energy Gap, ΔE_{ST}

Figure S1(a) shows the comparison between the experimental and computational values of ΔE_{ST} for all the molecules studied in this report. As the theoretical results appear to be reliable, we can base our discussion on the theoretical values.⁸ As mentioned earlier, the overlap between the hole and electron wave functions can be taken qualitatively as a measure of K.¹¹ Thus, in Figure S1(b), we also plotted the calculated ΔE_{ST} values as a function of the sum of the overlaps between the hole and electron NTOs for both S_1 and T_1 states. The correlation is rather poor, which again reflects the fact that the molecules often have singlet and triplet excited states of different characters, and hence K is not the sole factor determining ΔE_{ST} . It is thus desirable to gain a better understanding of the factors governing ΔE_{ST} .

Figure S1. (a) Comparison between experimental and computational values of ΔE_{ST} ; (b) ΔE_{ST} as a function of the sum of the overlaps between hole and electron wave functions (ξ) in the S₁ and T₁ states (ξ_{S_1} and ξ_{T_1} are calculated at the optimized geometries of the respective states; see Table S1) for all the molecules studied in this report.

5. Reorganization energy:

In the evaluation of k_{UISC} (see Eqs 1 and 2) the reorganization energy (λ) and related Huang-Rhys factors must be estimated. The reorganization energy can be represented as a sum of the contributions from the surroundings, λ_s , and those from intramolecular vibrations, λ_{intra} . The latter can be defined as:

$$\lambda_{\text{intra}} = E_{S_i}^* - E_{S_i}^0 \tag{S7}$$

where $E_{S_1}^*$ is the S₁ state energy at the T₁-state (or sometimes T₂-state) geometry, and $E_{S_1}^0$ is the one at the S₁-state geometry. We note that λ_{intra} can be divided into a part arising from low-frequency modes, which can be treated in a classical way, and a part associated with high-frequency modes. The sum of reorganization energy due to intramolecular low-frequency vibrations and that from surroundings (λ_s) is denoted in Eq. 2 as λ_M . Many high-frequency modes, in general, contribute to the reorganization energy. In Marcus-Levich-Jortner model, in order to simplify the calculations of the Franck-Condon-weighted density of states (Eq. 2) the effect of all contributing modes is represented via an effective mode with an effective frequency, ω_{eff} , and effective Huang-Rhys factor, S_{eff} .

Upon an electronic transition, the geometry of the system changes via vibrational relaxations. The total intramolecular reorganization energy, λ_{intra} , can be represented as a sum of contributions from individual vibrational normal modes, i, as:

$$\lambda_{intra} = \sum \lambda_i = \sum \hbar \omega_i S_i \tag{S8}$$

$$\lambda_i = \frac{k_i}{2} \Delta Q_i^2 \tag{S9}$$

$$S_i = \frac{\lambda_i}{\hbar \omega_i} \tag{S10}$$

where k_i and ΔQ_i denote the force constant for the normal mode i and the coordinate displacement from the T₁-state equilibrium position to the S₁-state one along the mode i, respectively.

The ω_{eff} , and S_{eff} are obtained by means of Eqs. (S11) and (S12) where the summation is performed only over the high-frequency vibrational modes (not included in λ_{M}):¹⁴

$$\hbar\omega_{eff} = \frac{\sum \hbar\omega_{j}S_{j}}{\sum S_{j}} \tag{S11}$$

$$S_{eff} = \sum S_j \tag{S12}$$

For example, in case of 2CzPN we found three vibrational normal modes with significant S values. The frequencies of such normal modes are 1543, 1564, and 1574 cm⁻¹, and S factors for those modes are 0.10, 0.03 and 0.23, respectively. Thus the computed effective normal mode is 1565 cm⁻¹ (0.19 eV) and effective S is calculated to be 0.36.

On the other hand, a vibrational mode is determined to be low-frequency one if its energy is smaller than the thermal energy. We found that such modes correspond to the one less than ca. 200 cm^{-1} at 300 K and the associated *S* factors are less than 0.1. Hence, their contribution to λ would be very small; for example, given the thermal energy of ca. 26 meV at 300 K and *S* factor of 0.1, the contribution from the low-frequency mode of ca. 200 cm^{-1} is approximately 2.6 meV.

For a few representative molecules, the vibration relaxation energy of the S_1 state and the associated S factor were calculated using the DUSHIN program developed by Reimers. ¹⁵ The computed effective reorganization energies due to high-frequency, nonclassical intramolecular vibrations ($S \cdot \hbar \omega_{eff}$) are found to be in the range of 0.01 eV to 0.19 eV (Table S2). Thus, overall, the Marcus reorganization energy due to low-frequency intramolecular vibrations and the surrounding medium-induced relaxations can be expected to fall in the range \sim 0.1-0.2 eV. ^{13, 16} Given that a rigorous evaluation of λ_M values for the large molecules in our study would be a difficult task, we simply considered effective values of 0.1 and 0.2 eV for λ_M in the calculation of the k_{UISC} rates. In addition, the high-frequency effective reorganization energy $(S \cdot \hbar \omega_{eff})$ turned out to have only limited impact. For instance, in the case of 2CzPN for which the $S \cdot \hbar \omega_{eff}$ value is 0.07 eV (Table S2), k_{UISC} with and without taking high-frequency modes into account are estimated to be 2.1×10^3 s⁻¹ and 3.0×10^3 s⁻¹, respectively, when λ_M is set as 0.1 eV; similarly, in the case of PXZ-TRZ for which $S \cdot \hbar \omega_{eff}$ is even larger (0.19 eV), the corresponding rates are 1.4 × 10^7 s^{-1} and $3.2 \times 10^7 \text{ s}^{-1}$, with the same λ_M ; see Table S3. Such small differences overall mean that the impact of S can be neglected in the evaluation of k_{UISC} for the molecules where S was not explicitly computed.

Table S1. Calculated Overlap (ξ) of Hole and Electron Wave Functions in the S₁ and T₁ states at Various Geometries.

Molecules	S ₀ -geo	metry	S ₁ -geo	ometry	T ₁ -geo	ometry	$\xi_{S_1} + \xi_{T_1}^a$
Molecules	ξ_{S_1}	ξ_{T_1}	ξ_{S_1}	ξ_{T_1}	ξ_{S_1}	ξ_{T_1}	2
CBP	0.37	0.56	0.43	0.59	0.45	0.62	0.53
α-NPD	0.24	0.56	0.25	0.55	0.36	0.61	0.43
2CzPN	0.17	0.40	0.05	0.05	0.23	0.51	0.28
CC2TA	0.31	0.51	0.09	0.13	0.34	0.63	0.36
PIC-TRZ	0.19	0.38	0.08	0.11	0.09	0.11	0.10
PXZ-TRZ	0.07	0.13	0.05	0.05	0.10	0.18	0.11
ACRFLCN	0.04	0.63	0.04	0.05	0.04	0.64	0.34
Spiro-CN	0.01	0.51	0.01	0.03	0.01	0.03	0.02
4CzIPN	0.13	0.15	0.06	0.07	0.13	0.17	0.12
4CzIPN-Me	0.13	0.15	0.07	0.08	0.11	0.13	0.10
4CzPN	0.11	0.16	0.05	0.07	0.08	0.29	0.17
4CzTPN	0.12	0.17	0.11	0.15	0.17	0.25	0.18
4CzTPN-Me	0.11	0.16	0.11	0.14	0.12	0.16	0.13

 $^{^{}a}\xi_{S_{1}}[\xi_{T_{1}}]$ corresponds to the wave function overlap for the $S_{1}[T_{1}]$ state at the S_{1} - $[T_{1}$ -] state geometry.

Table S2. Calculated Intramolecular Reorganization Energies (λ_{intra}) and Effective Reorganization Energies ($S \cdot \hbar \omega_{eff}$) from High-frequency Vibrations ($\hbar \omega_{eff}$) and Associated Huang-Rhys Factor (S) for Representative Molecules, in the case of Up-Conversion Intersystem Crossing (UISC).

Molecules	$\lambda_{intra}(eV)$	Huang-Rhys factor (S)	$\hbar\omega_{eff}\left(eV\right)$	$S \cdot \hbar \omega_{eff} (eV)$
CBP	0.077	0.08	0.21	0.017
α-NPD	0.115	0.06	0.21	0.013
2CzPN	0.243	0.36	0.19	0.068
CC2TA	0.599	a		
PIC-TRZ	0.011	a		
PIC-TRZ ^b	0.433^{b}	a		
PXZ-TRZ	0.031	0.00	0.21	0.000
PXZ-TRZ ^b	0.389^{b}	0.91 ^b	0.21 ^b	0.191 ^b
ACRFLCN	0.004	0.00	0.20	0.000
Spiro-CN	0.003	a		
Spiro-CN ^b	0.400^{b}	a		
4CzIPN	0.080	a		
4CzIPN-Me	0.049	a		
4CzPN	0.158	a		
4CzTPN	0.135	a		
4CzTPN-Me	0.049	a		

 $[^]a$ Effective Huang-Rhys factor not taken into account, see Methodology Section in the main text. b The values correspond to the transitions from the T_2 to the S_1 state.

Table S3. Comparison of the k_{UISC} (s⁻¹) Rates Calculated with and without Consideration of the Associated Huang-Rhys Factor (S), for 2CzPN and PXZ-TRZ.

Molecules	Huang-Rhys factor	k_U	TISC
Molecules	(S)	$\lambda_{\rm M}=0.10~{\rm eV}$	$\lambda_{\rm M}=0.20~{\rm eV}$
2CzPN	0.36	2.08×10^3	1.16×10^4
ZCZFN	0.00	2.98×10^{3}	1.67×10^4
DV7 TD7	0.91 ^a	1.37×10^{7a}	3.91×10^{6a}
PXZ-TRZ	0.00^{a}	3.16×10^{7a}	8.67×10^{6a}

 $^{^{\}text{a}}$ The values correspond to the UISC from the T_2 to S_1 state.

Table S4. Calculated (LC- ω *PBE/6-31+G(d)) and Experimental Vertical Excitation Energies for the S₁ State, E_{VA}(S₁), and Adiabatic Singlet (S₁)-Triplet (T₁) Energy Differences, ΔE_{ST} .

Molecules	ω*	$E_{VA}(S_1)$		ΔΕ	ST
	Bohr ⁻¹				
		Calculated	Expt. ^b	Calculated	Expt. ^b
$\Delta E_{ST} > 0.70 \text{ eV}$					
CBP	0.173	3.94	3.80	0.88	0.71
α-NPD	0.170	3.29	3.31	0.76	0.73
$\Delta E_{ST} = 0.10 \sim 0.50 \text{ eV}$					
2CzPN	0.176	3.22	3.19	0.25	0.31
CC2TA	0.159	3.66	3.64	0.16	0.20
PIC-TRZ	0.141	3.17	3.35	0.11	0.18
$\Delta E_{ST} \leq 0.10 \text{ eV}$					
PXZ-TRZ	0.183	2.94	2.73	0.09	0.06
ACRFLCN	0.174	3.03	3.05	0.02	0.24
Spiro-CN	0.168	2.73	2.69	0.01	0.06
4CzIPN	0.142	2.52	2.85	0.01	0.10
4CzIPN-Me	0.132	2.36	-	0.04	0.05
4CzPN	0.146	2.55	2.82	0.00	0.15
4CzTPN	0.147	2.32	2.61	0.06	0.09
4CzTPN-Me	0.143	2.28	2.49	0.09	0.09

^aAll values are in eV. ^bExperimental values are taken from Ref. 17.

Table S5. Calculated Vertical Transition Energies for the S_1 State, $E_{VA}(S_1)$, and Vertical Singlet (S_1) -Triplet (T_1) Energy Differences, ΔE_{ST-v} at the Ground-state Geometry, using Various DFT Functionals.^a

Molecules	LC-ω [*] PBE		B3LYP		M06-2X	
	$E_{VA}(S_1)$	ΔE_{ST-v}	$E_{VA}(S_1)$	ΔE_{ST-v}	$E_{VA}(S_1)$	ΔE_{ST-v}
CBP	3.94	0.66	3.52	0.50	4.04	2.23
α-NPD	3.29	0.57	2.98	0.43	3.55	2.36
2CzPN	3.22	0.41	2.79	0.27	3.52	1.90
CC2TA	3.66	0.35	3.06	0.08	4.00	2.14
PIC-TRZ	3.17	0.22	2.89	0.08	3.75	2.00
PXZ-TRZ	2.94	0.07	2.23	0.03	3.24	1.51
ACRFLCN	3.03	0.07	2.50	0.01	3.52	2.12
Spiro-CN	2.73	0.07	1.93	0.00	3.10	1.70
4CzIPN	2.52	0.12	2.36	0.10	3.09	1.56
4CzIPN-Me	2.36	0.12	2.24	0.10	2.98	1.44
4CzPN	2.55	0.13	2.34	0.15	3.15	1.70
4CzTPN	2.32	0.14	2.09	0.10	2.85	1.43
4CzTPN-Me	2.28	0.12	2.01	0.09	2.84	1.38
MAD^b	0.00	0.00	0.39	0.09	0.43	1.57

	PBE0		BHand	LYP
	$E_{VA}(S_1)$	ΔE_{ST-v}	$E_{VA}(S_1)$	ΔE_{ST-v}
CBP	3.68	0.63	4.26	1.76
α-NPD	3.13	0.57	3.76	1.80
2CzPN	2.95	0.34	3.66	1.36
CC2TA	3.29	0.17	4.21	1.71
PIC-TRZ	3.09	0.19	3.94	1.62
PXZ-TRZ	2.41	0.03	3.43	0.98
ACRFLCN	2.68	0.01	3.62	1.51
Spiro-CN	2.14	0.00	3.09	1.00
4CzIPN	2.51	0.12	3.24	1.02
4CzIPN-Me	2.39	0.12	3.13	0.91
4CzPN	2.50	0.19	3.27	1.14
4CzTPN	2.25	0.11	2.98	0.85
4CzTPN-Me	2.18	0.10	2.94	0.79
MAD^{b}	0.22	0.05	0.58	1.03

^aAll the values are in eV. The calculations were conducted at the COSMO(toluene)-TDDFT level with TZP basis sets using various exchange-correlation functionals; in the case of the LC- ω^* PBE functional, calculations were carried out using the PCM(toluene) model with the 6-31+G(d) basis set within the Tamm-Dancoff approximation. ^bThe mean absolute deviations (MAD) values were evaluated by taking the LC- ω^* PBE results as reference.

 $Table~S6.~Calculated~Spin-orbit~Coupling~Matrix~Elements~between~the~S_1~and~T_1~States~at~the~T_1~Geometry~using~Various~DFT~Functionals~for~Representative~Molecules.^a$

Molecules	B3LYP	M06-2X	PBE0	BHandLYP
CBP	< 0.01	< 0.01	< 0.01	< 0.01
α-NPD	0.68	0.86	0.68	0.83
2CzPN	0.66	1.64	0.74	1.16
PXZ-TRZ	0.22	1.14	0.26	1.09
ACRFLCN	0.50	0.54	0.46	0.51
Spiro-CN	0.01	0.08	0.01	0.07
4CzIPN	0.23	1.10	0.27	0.83
4CzPN	0.51	1.97	0.61	1.36
4CzTPN	0.65	3.74	0.81	2.45

^aAll values are in cm⁻¹. The calculations were conducted at the COSMO(toluene)-TDDFT/TZP level.

Table S7: Natures of Representative Excited States at T_1 -state Geometry as a Function of DFT Functionals and Basis Sets \dagger

Molecules	Excited	LC-ω*PBE/6-31+G(d)	PBE0/TZP
	States	Energy (eV)	Energy (eV)
CBP	S_1	3.17 (H => L)	2.89 (H => L)
	S_2	3.83 (H-1 => L)	3.43 (H-1 => L)
	T_1	2.19 (H => L)	1.95 (H => L)
	T_2	3.37 (H-1 => L)	3.14 (H-1 => L)
α-NPD	S_1	2.94 (H => L)	2.74 (H => L)
	S_2	3.36 (H-1 => L+1; H => L+1)	3.18 (H=> L+1; H-1 => L+1)
	T_1	1.95 (H => L)	1.74 (H => L)
	T_2	$2.80 (H-1 \Rightarrow L+1)$	2.65 (H-1 => L+1)
2CzPN	S_1	2.96 (H => L)	2.68 (H => L)
	S_2	3.15 (H-1 => L)	2.89 (H-1 => L)
	T_1	2.34 (H => L)	2.15 (H => L)
	T_2	2.80 (H-1 => L)	2.60 (H-1 => L)
CC2TA	S_1	3.54 (H-1 => L; H-1 => L+1)	3.27 (H -1=> L)
	S_2	3.75 (H-5 => L)	3.34 (H => L)
	T_1	$2.69 (H-4 \Rightarrow L+1)$	2.46 (H-2 => L+1)
	T_2	3.21 (H-7 => L)	3.13 (H-1 => L; H-1 => L+1)
PIC-TRZ	S_1	2.31 (H => L)	2.17 (H => L)
	S_2	2.68 (H-1 => L)	2.54 (H-1 => L)

	T ₁	2.19 (H => L)	2.09 (H => L)
	T_2	2.56 (H-1 => L)	2.46 (H-1 => L)
PXZ-TRZ	S_1	2.48 (H => L)	1.98 (H => L)
	S_2	3.47 (H => L+3)	2.78 (H => L+1)
	T_1	2.34 (H => L)	1.88 (H => L)
	T_2	2.78 (H => L+3; H => L+4)	2.69 (H => L+3; H => L+4)
ACRFLCN	S_1	2.60 (H => L)	2.26 (H=> L)
	S_2	3.72 (H-1 => L)	3.44 (H-1=> L)
	T_1	2.578 (H-1 => L)	2.24 (H=> L)
	T_2	2.580 (H => L)	2.34 (H-1=> L)
Spiro-CN	S_1	2.05 (H => L)	1.56 (H => L)
	S_2	3.17 (H-1 => L)	2.56 (H-1 => L)
	T_1	2.04 (H => L)	1.56 (H => L)
	T_2	2.45 (H => L+1)	2.28 (H => L+2)
4CzIPN	S_1	2.18 (H => L)	2.13 (H => L)
	S_2	2.42 (H-1 => L)	2.35 (H-1 => L)
	T_1	2.02 (H => L)	1.96 (H => L)
	T_2	2.24 (H-1 => L)	2.18 (H-1 => L)
4CzIPN-Me	S_1	2.00 (H => L)	1.98 (H => L)
	S_2	2.24 (H-1 => L)	2.21 (H-1 => L)
	T_1	1.87 (H => L)	1.85 (H => L)
	T_2	2.08 (H-1 => L)	2.06 (H-1 => L)
4CzPN	S_1	2.34 (H => L)	2.19 (H => L)

	S_2	2.35 (H-1 => L)	2.27 (H-1 => L)
	T_1	2.08 (H => L)	1.92 (H => L)
	T_2	2.22 (H-1 => L)	2.17 (H-1 => L)
4CzTPN	S_1	2.02 (H => L)	1.93 (H => L)
	S_2	2.35 (H-1 => L)	2.21 (H-1 => L)
	T_1	1.77 (H => L)	1.70 (H => L)
	T_2	2.10 (H-1 => L)	1.97 (H-1 => L)
4CzTPN-Me	S_1	1.80 (H => L)	1.69 (H => L)
	S_2	2.09 (H-1 => L)	1.95 (H-1 => L)
	T_1	1.65 (H => L)	1.57 (H => L)
	T_2	1.95 (H-1 => L)	1.83 (H-1 => L)

[†]H and L are highest occupied molecular orbital and lowest unoccupied molecular orbital, respectively.

Table S8. Comparison of Calculated Adiabatic Singlet-Triplet Energy Differences (ΔE_{ST} in eV) using Different T_1 -state Geometries Obtained from either Unrestricted DFT (UDFT) or TD-DFT calculations.

Molecules	UDFT	TD-DFT		
α-NPD	0.76	077		
2CzPN	0.25	0.24		
CC2TA	0.16	0.15		
PIC-TRZ ^a	0.11	0.10		
PXZ-TRZ	0.09	0.15		
4CzIPN	0.01	-0.04		
4CzPN	0.00	-0.03		
4CzTPN	0.05	0.06		

^a The orderings between the T_1 and T_2 states are different for UDFT and TD-DFT, which is acceptable given the negligible energy difference between them (ca. 9 meV).

Table S9. Calculated HOMO-LUMO Energy Gaps (in eV) for Representative Molecules (ΔE_{H-L}^{CT}) and their Respective Moieties Associated with the Lowest Triplet LE State (ΔE_{H-L}^{LE}) at their T_1 -state Geometries.^a

Molecules	$\Delta {\rm E_{H\text{-}L}}^{ m CT}$	$\Delta \mathrm{E_{H\text{-}L}}^{\mathrm{LE}}$	$\Delta E_{H\text{-}L}^{CT} / \Delta E_{H\text{-}L}^{LE}$
СВР	5.79	6.63	0.873
α-NPD	5.77	5.91	0.976
2CzPN	5.65	7.43	0.760
CC2TA	6.03	6.97	0.865
PIC-TRZ	5.04	6.55	0.789
PXZ-TRZ	4.88	6.86	0.711
ACRFLCN	5.25	6.56	0.801
Spiro-CN	4.44	5.70	0.779
4CzPN	5.30	7.51	0.705

^a The calculations were performed at the LC- ω PBE/6-31G(d) level with the range-separation parameter ω set at 0.17 bohr⁻¹; this is the mean value over all the molecules (among which the actual tuned ω values vary from 0.141 to 0.183). We note that the exact ΔE_{H-L} values depend on ω .

Table S10. Calculated Vertical Excitation Energies (in eV) at the Ground-state Geometries Using the Tamm-Dancoff Approximation with the LC- ω^* PBE Functional, 6-31+G(d) Basis Set, and PCM Model (ϵ =2.37).

С	BP	α-1	NPD	2C	zPN	CC	2TA	PIC	-TRZ
State	Energy	State	Energy	State	Energy	State	Energy	State	Energy
T_1	3.28	T_1	2.72	T_1	2.81	T_1	3.30	T_1	2.95
T_2	3.37	T_2	2.74	T_2	3.04	T_2	3.32	T_2	2.96
T_3	3.37	T_3	2.96	S_1	3.22	T_3	3.32	T_3	3.07
T_4	3.47	S_1	3.29	S_2	3.30	T_4	3.33	T_4	3.07
T_5	3.47	T_4	3.34	T_3	3.42	T_5	3.41	T_5	3.13
T_6	3.75	S_2	3.35	S_3	3.68	T_6	3.42	S_1	3.16
S_1	3.94	T_5	3.44			S_1	3.65	T_6	3.17
T_7	4.00	T_6	3.45			S_2	3.78	T_7	3.17
T_8	4.01							S_2	3.23
T_9	4.05								
S_2	4.05								
PXZ	Z-TRZ	ACR	FLCN	Spir	o-CN	4CzIPN		4CzIPN-Me	
State	Energy	State	Energy	State	Energy	State	Energy	State	Energy
T_1	2.87	T_1	2.96	T_1	2.66	T_1	2.40	T_1	2.24
S_1	2.94	T_2	3.02	T_2	2.70	S_1	2.52	S_1	2.36
T_2	2.95	S_1	3.03	S_1	2.71	T_2	2.53	T_2	2.39
T_3	3.36	T_3	3.36	T_3	2.97	T_3	2.67	T_3	2.50
T_4	3.38	T_4	3.46	T_4	3.06	T_4	2.68	T_4	2.55
T_5	3.47	S_2	3.98	T_5	3.24	T_5	2.72	T_5	2.57
S_2	3.61			T_6	3.26	S_2	2.75	S_2	2.59
S_3	3.74			S_2	3.29				
4C	4CzPN		4CzTPN		4CzTPN-Me				
State	Energy	State	Energy	State	Energy				
T_1	2.42	T_1	2.18	T_1	2.16				
T_2	2.44	S_1	2.32	T_2	2.18				
S_1	2.55	T_2	2.42	T_3	2.26				
S_2	2.61	T_3	2.49	S_1	2.28				
T_3	2.63	T_4	2.53	S_2	2.29				
		S_2	2.55	S_3	2.36				

Figure S2. Natural Transition Orbitals of CBP, α -NPD, 2CzPN, CC2TA, and PIC-TRZ corresponding to the S₁ and T₁ states at their respective optimized geometry (the T₂ state is also included for PIC-TRZ). Hole and electron wave functions with the largest weight, ν , are illustrated below and above the arrows, respectively. Hydrogen atoms are omitted for the sake of clarity.

Figure S3. Natural transition orbitals of PXZ-TRZ, ACRFLCN, 4CzIPN, and Spiro-CN corresponding to the S_1 and T_1 states at their respective optimized geometry. Hole and electron wave functions with the largest weight, ν , are illustrated below and above the arrows, respectively. Hydrogen atoms are omitted for the sake of clarity.

Figure S4. Natural transition orbitals of 4CzIPN-Me, 4CzPN, 4CzTPN, and 4CzTPN-Me corresponding to the S_1 and T_1 states at their respective optimized geometry. Hole and electron wave functions with the largest weight, ν , are illustrated below and above the arrows, respectively. Hydrogen atoms are omitted for the sake of clarity.

2. References

- (1) Baer, R.; Livshits, E.; Salzner, U. Annu. Rev. Phys. Chem. 2010, 61, 85.
- (2) Refaely-Abramson, S.; Baer, R.; Kronik, L. *Phys. Rev. B* **2011**, *84*, 75144.
- (3) Kronik, L.; Stein, T.; Refaely-Abramson, S.; Baer, R. J. Chem. Theory Comput. 2012, 8, 1515.
- (4) Refaely-Abramson, S.; Sharifzadeh, S.; Govind, N.; Autschbach, J.; Neaton, J. B.; Baer, R.; Kronik, L. *Phys. Rev. Lett.* **2012**, *109*, 226405.
- (5) Srebro, M.; Autschbach, J. J. Chem. Theory Comput. 2012, 8, 245.
- (6) Sun, H.; Autschbach, J. Chemphyschem 2013, 14, 2450.
- (7) Levy, M.; Perdew, J. P.; Sahni, V. Phys. Rev. A 1984, 30, 2745.
- (8) Sun, H.; Zhong, C.; Brédas, J. L. J. Chem. Theory Comput. 2015, 11, 3851.
- (9) Bokareva, O. S.; Grell, G.; Bokarev, S. I.; Kühn, O. *J. Chem. Theory Comput.* **2015**, *11*, 1700.
- (10) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580.
- (11) Kim, D. J. Phys. Chem. C 2015, 119, 12690.
- (12) Brédas, J. L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chem. Rev. 2004, 104, 4971.
- (13) Schmidt, K.; Brovelli, S.; Coropceanu, V.; Beljonne, D.; Cornil, J.; Bazzini, C.; Caronna,
- T.; Tubino, R.; Meinardi, F.; Shuai, Z.; Brédas, J. L. J. Phys. Chem. A 2007, 111, 10490.
- (14) Barbara, P. F.; Meyer, T. J.; Ratner, M. A. J. Phys. Chem. 1996, 100, 13148.
- (15) Reimers, J. R. J. Chem. Phys. 2001, 115, 9103.
- (16) Beljonne, D.; Shuai, Z.; Pourtois, G.; Brédas, J. L. J. Phys. Chem. A 2001, 105, 3899.
- (17) Huang, S.; Zhang, Q.; Shiota, Y.; Nakagawa, T.; Kuwabara, K.; Yoshizawa, K.; Adachi, C. *J. Chem. Theory Comput.* **2013**, *9*, 3872.