

Zombie Apocalypse graph

Source: https://github.com/neo4j-examples/graphgists/blob/master/medical/zombie.adoc

Louvain - description

- Hierarchical clustering algorithm designed to detect communities
- Maximizing modularity score (maximize edges within community and minimize edges between community)

Louvain- Results

Leiden - Description

Problem with Louvain:

- Louvain algorithm has major defect -> unnoticed until 2019
- experimental analysis: 25% of the communities are badly connected & 6% are disconnected

Leiden:

- hierarchical clustering algorithm
- randomly breaks down communities into smaller well-connected ones.
- faster than the Louvain algorithm.
- communities are more locally optimally assigned.

Leiden - Description

Results- Louvain - Leiden:

Louvain:

- 5 communities detected.
- some big communities

Leiden:

- 6 communities detected
- split in smaller communities

- > Of all detected communities by both algorithm, only one same community(blue).
- > It could be a scenario that if zombie outbreak really happens in the blue community, then the new york can be sealed in order to isolate other parts of US.

Hetionet dataset - explanation

- Network with multiple node and edge (relationship) types which encodes biology.
- Version 1.0 contains 47,031 nodes of 11 types and 2,250,197 relationships of 24 types.

Query on Hetionet Subset

```
A MATCH ()-[rel]→()

RETURN

| type(rel) AS rel_type,
| count(*) AS count

ORDER BY count DESC
```

```
C MATCH path =
  (:Disease {name: 'pancreatic cancer'})-[:upregulates]→()
  RETURN path LIMIT 10
```

D MATCH (gene:Gene {name: "PAK2"})-[:covaries] \rightarrow (covariate) RETURN covariate.name

Query on Hetionet Subset - explanation

A > analyze the number of relationships by counting the occurrences of each relationship type

B > retrieve the first 10 disease nodes from the graph

C> retrieve the first 10 upregulated genes for the "pancreatic cancer" disease.

D>retrieve the names of the covariates that are associated with the "PAK2" gene that is also an upregulated gene for "pancreatic cancer".

Query on Hetionet Subset - Some result

Α

rel_type	count
"regulates"	265672
"interacts"	147164
"covaries"	61690
"downregulates"	28725
"upregulates"	26487
"associates"	12623
"binds"	11571
"resembles"	7029
"treats"	755

Query on Hetionet Subset - Some result

D

covariate.na	me
"PTBP1"	
"ARF6"	
"EFNA3"	
"CBLN3"	
"DRG1"	
"SERP1"	
"AVP"	
"YWHAQ"	