[REPLACEMENT SHEET]

Pharm. Sci. 2000, 21, 45). Examples of these transduction signals are derived from viral coat proteins such as Tat from HIV and VP22 from herpes simplex virus, and a transcriptional factor from *Drosophila*, ANTP. The peptides Tat (Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Arg-GlD NO 1), VP22 (Asp-Ala-Ala-Thr-Ala-Thr-Arg-Gly-Arg-Ser-Ala-Ala-Ser-Arg-Pro-Thr-Glu-Arg-Pro-Arg-Ala-Pro-Ala-Arg-Ser-Ala-Ser-Arg-Pro-Arg-Arg-Pro-Val-Glu, SEQ ID NO 2), and ANTP (Arg-Gln-Iso-Lys-Iso-Trp-Phe-Gln-Asn-Arg-Met-Lys-Trp-Lys-Lys, SEQ ID NO 3) share no sequence motif other than number of cationic (lysine and arginine) residues. In addition, reports of synthetic peptides possessing no homology other than a propensity of cationic charge (net overall cationic charge) have also been shown to posses transduction activity (Service, R.F. Science 2000, 288, 28.)

Nuclear localizing signals enhance the targeting of the gene into proximity of the nucleus and/or its entry into the nucleus. Such nuclear transport signals can be a protein or a peptide such as the SV40 large T ag NLS or the nucleoplasmin NLS. These nuclear localizing signals interact with a variety of nuclear transport factors such as the NLS receptor (karyopherin alpha) which then interacts with karyopherin beta. The nuclear transport proteins themselves could also function as NLS's since they are targeted to the nuclear pore and nucleus.

20

25

5

10

15

Signals that enhance release from intracellular compartments (releasing signals) can cause DNA release from intracellular compartments such as endosomes (early and late), lysosomes, phagosomes, vesicle, endoplasmic reticulum, golgi apparatus, trans golgi network (TGN), and sarcoplasmic reticulum. Release includes movement out of an intracellular compartment into cytoplasm or into an organelle such as the nucleus. Releasing signals include chemicals such as chloroquine, bafilomycin or Brefeldin A1 and the ER-retaining signal (KDEL sequence, SEQ ID NO 4), viral components such as influenza virus hemagglutinin subunit HA-2 peptides and other types of amphipathic peptides. Cellular receptor signals are any signal that enhances the association of the gene or particle with a

[REPLACEMENT SHEET]

2,3-dicarboximide esters, p-nitrophenyl esters, pentafluorophenyl esters, 4-dimethylaminopyridinium amides, and acyl imidazoles.

A nucleophile is a species possessing one or more electron-rich sites, such as an unshared pair of electrons, the negative end of a polar bond, or pi electrons.

Examples

10

5

Example 1: Synthesis of Cysteine-Terminal Tat Peptide (Tat-Cys).

Peptide syntheses were performed using standard solid phase peptide techniques using FMOC chemistry. A cysteine was added to the amino terminus of Tat to allow for

conjugation through the thiol group to make the peptide Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Arg-

Gln-Arg-Arg-Cys (Tat-Cys, SEQ ID NO 5).

15

20

Example 2: Synthesis of noncleavably linked (irreversible covalent) Tat-Cys and

fluorescein through a thioether bond.

To a solution of succinimidyl-4-(N-maleimidomethyl) cyclohexane-carboxylate (SMCC

from Pierce) 1.0 mg in 0.1 mL dimethylformamide was added 1.2 mg (1 eq) of 4'-

(aminomethyl)fluorescein. After two hours, this solution was added to a 1 mL aqueous

solution of 8.4 mg Tat-Cys (1 eq). The solution was buffered to pH 8 by the addition of

potassium carbonate. This solution was used for transport studies without further

purification.