FACULTY OF INFORMATICS

INTRODUCTION TO ARTIFICIAL INTELLIGENCE LABORATORY WORK 1 REPORT

Student: Gurban Shukurov

Lecturer: dr. Germanas Budnikas

Kaunas 2023

1. Select (create) a dataset to perform this and other laboratory works. Your choice must be approved by the tutor.

Selected Dataset: 1000 Cameras Dataset

Link: https://www.kaggle.com/datasets/crawford/1000-cameras-dataset

Context: Based on 13 properties ~1,000 cameras were described in the dataset.

Format:

The 13 properties of each camera:

Model

Release date

Max resolution

Low resolution

Effective pixels

Zoom wide (W)

Zoom tele (T)

Normal focus range

Macro focus range

Storage included

Weight (inc. batteries)

Dimensions

Price

2. For each continuous (numeric) type attribute calculate:

- total number of values,
- percentage of missing values,
- cardinality,
- minimum (min) and maximum (max) values,
- 1st and 3rd quartiles,
- average,
- median,
- Standard deviation.

Numeric type attribute calculations:											
Column	TotNmVl	PercMiss %	Cardinality	Q1	Q3	Min	Max	Average	Median	Standart Deviation	
Weight (inc. batteries)	1038	0.1927 %	238	180.0	350.0	0.0	1860.0	319.2654	226.0	260.4101	
Dimensions	1038	0.1927 %	102	92.0	115.0	0.0	240.0	105.3634	101.0	24.2628	
Price	1038	0.0000 %	43	149.0	399.0	14	7999	457.3844	199.0	760.4529	

3. For each *category* type attribute calculate:

- total number of values,
- percentage of missing values,
- cardinality,
- mode.
- The frequency of the mode
- Percentage value of the mode
- Second mode value (mode 2),
- Frequency value for Mode 2,
- Percentage of Mode 2.

Categoric type attribute calculations:										
Column	TotNmV1	PercMiss %	Cardinality	Mode1	FreqMode1	PercMode1 %	Mode2	FreqMode2	PercMode2 %	
Release date	1038	0.0000 %	14	2007	163	15.7033 %	2006	153	14.7399 %	
Max resolution	1038	0.0000 %	99	3072	108	10.4046 %	2048	102	9.8266 %	
Low resolution	1038	0.0000 %	70	2048	187	18.0154 %	1600	162	15.6069 %	
Effective pixels	1038	0.0000 %	16		197	18.9788 %		152	14.6435 %	
Zoom wide (W)	1038	0.0000 %	25	38	259	24.9518 %	35	252	24.2775 %	
Zoom tele (T)	1038	0.0000 %	100	114	163	15.7033 %	105	139	13.3911 %	
Normal focus range	1038	0.0000 %	32	50	286	27.5530 %	60	159	15.3179 %	
Macro focus range	1038	0.0963 %	30	10.0	200	19.2678 %	5.0	132	12.7168 %	
Storage included	1038	0.1927 %	45	16.0	279	26.8786 %	8.0	152	14.6435 %	

4. Draw histograms of attributes (recommended number of histogram columns is defined by a formula: $1+3.22 \cdot \log_e n$, where n is sample size). Provide descriptions of the distribution (e.g., normal, exponential, etc.) and what conclusions can be drawn from it.

5. Identify data quality problems: missing values, cardinality problems, outliers. Provide a plan for resolving these issues, which will be implemented programmatically (e.g. missing categorical attribute values will be included based on an attribute's mode estimate, extreme values are eliminated or adjusted).

There were some missing values and I filled them with the mode of the attribute, accordingly. There were no cardinality problems.

In the histograms I marked the outliers, they were supposed to be removed, so I did. I did the following tasks without data quality problems (i.e., with corrected dataset).

- 6. Investigate relationships between attributes using visualization techniques
 - a. For continuous type attributes: Using a scatter plot type graph, provide several (2-3) examples with strong linear attribute dependency (direct or inverse correlation) and several examples with non-correlated (weakly correlated) attributes. Comment on results.
 - b. Provide an SPLOM diagram (Scatter Plot Matrix).

In my dataset I had only three numerical attributes

SPLOM-Diagram:

For categorical attributes: Using the bar plot type diagram, give some (2-3) examples of attribute frequency and comment on the results.

 Provide some (2-3) examples of histograms and box plot diagrams depicting relationships between categorical and numeric type variables.

Many types of cameras had normal focus range of 80,60,50,40 that weighted 200-300

7. Calculate the covariance and correlation values between continuous attributes and graphically represent the correlation matrix. Comments on the results.

Covariance: The values in datasets are very different and unique

	Weight (inc. batteries)	Dimensions	Price
Weight (inc. batteries)	6737.979664	629.380357	327.089258
Dimensions	629.380357	158.510516	94.475000
Price	327.089258	94.475000	10116.976961

Correlation: it was positive correlation, but not perfect one

	Weight (inc. batteries)	Dimensions	Price
Weight (inc. batteries)	1.000000	0.609003	0.039616
Dimensions	0.609003	1.000000	0.074604
Price	0.039616	0.074604	1.000000

Correlation matrix:

8. Perform data normalization.

I performed data normalization in the bounds of 0 and 1:

	Release date	Max resolution	Low resolution	Effective pixels	Zoom wide (W)	Zoom tele (T)	Normal focus range	Macro focus range	Storage included	Weight (inc. batteries)	Dimensions	Price
count	505.000000	505.000000	505.000000	505.000000	505.000000	505.000000	505.000000	505.000000	505.000000	505.000000	505.000000	505.000000
mean	0.674807	0.449012	0.564214	0.333753	0.543762	0.542226	0.591262	0.404158	0.529641	0.405109	0.426582	0.378173
std	0.248860	0.204351	0.211078	0.209845	0.181062	0.153223	0.250053	0.251666	0.268241	0.149246	0.159368	0.188006
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.555556	0.277457	0.490196	0.181818	0.400000	0.472973	0.500000	0.250000	0.312500	0.309091	0.316456	0.252336
50%	0.666667	0.465679	0.627451	0.363636	0.500000	0.554054	0.625000	0.350000	0.500000	0.354545	0.379747	0.308411
75%	0.888889	0.566474	0.705882	0.454545	0.700000	0.594595	0.750000	0.500000	0.687500	0.460000	0.518987	0.439252
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000

9. Convert categorical variables to numeric type variables.

I did not have to convert the values in my dataset because they were already numerical.