Roots of a Cubic Equation

Theorem:

A cubic equation $ax^3 + bx^2 + cx + d = 0$ always has three roots.

If α , β and γ are the roots of the equation, then

$$\underline{\alpha + \beta + \gamma = -\frac{b}{a}}, \ \beta \gamma + \alpha \gamma + \alpha \beta = \frac{c}{a}, \text{ and } \alpha \beta \gamma = -\frac{d}{a}.$$

Let α , β and γ be the roots of the following equations.

Determine the values of $\alpha + \beta + \gamma$, $\beta \gamma + \alpha \gamma + \alpha \beta$ and $\alpha \beta \gamma$.

(a)
$$x^3 - 2x^2 + x - 3 = 0$$

(b)
$$2x^3 + 4x^2 - 1 = 0$$

(c)
$$-x^3 - x^2 + 3x + 1 = 0$$

Find the integer c such that the equation $4x^3 + cx - 27 = 0$ has a double root.

Example: (NEAB June 1998)

The equation $x^3 - 3x^2 + px + 4 = 0$, where p is a constant, has roots $\alpha - \beta$, α and $\alpha + \beta$, where $\beta > 0$.

- (a) Find the values of α and β .
- (b) Find the value of p.

The roots of a cubic equation $x^3 + px^2 + qx + r = 0$, where $p, q, r \in \mathbb{R}$, are α , β and γ . Given that $\alpha + \beta + \gamma = 4$,

$$\alpha^2 + \beta^2 + \gamma^2 = 20$$
 and $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -2$, find p, q and r.

Let the roots of the equation $x^3 - 6x + 2 = 0$ be α , β and γ . Without evaluating α , β and γ , find the values of

(a)
$$4\alpha + 4\beta + 4\gamma$$

$$(b)\alpha^2 + \beta^2 + \gamma^2$$

$$(c)(\beta-\gamma)^2+(\gamma-\alpha)^2+(\alpha-\beta)^2$$

$$(d)\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$

Given that the roots of the equation $x^3 - 6x^2 + 11x + 6 = 0$ are in arithmetic progression, solve the equation.

Formation of a Cubic Equation

Theorem:

If the roots of a cubic equation are R_1 , R_2 and R_3 , then its equation is given by

$$x^{3} - (R_{1} + R_{2} + R_{3})x^{2} + (R_{2}R_{3} + R_{1}R_{3} + R_{1}R_{2})x + R_{1}R_{2}R_{3} = 0.$$

 α , β and γ are the roots of the cubic equation $ax^3 + bx^2 + cx + d = 0$, where a:b:c:d is in the simplest ratio. Find a,b,c and d if

(a)
$$\alpha + \beta + \gamma = -3$$
, $\beta \gamma + \alpha \gamma + \alpha \beta = 1$ and $\alpha \beta \gamma = -2$.

(b)
$$\alpha + \beta + \gamma = 1$$
, $\beta \gamma + \alpha \gamma + \alpha \beta = 0$ and $\alpha \beta \gamma = 1$

(c)
$$\alpha + \beta + \gamma = \frac{1}{3}$$
, $\beta \gamma + \alpha \gamma + \alpha \beta = -\frac{1}{2}$ and $\alpha \beta \gamma = \frac{1}{2}$.

KFC

Each of the following are the roots of the cubic equation $ax^3 + bx^2 + cx + d = 0$, where a:b:c:d is in the simplest ratio. Use the sum and product of roots to find a, b, c and d.

- (a)2,3,4
- (b)-1,0,2
- $(c)0, \frac{1}{3}, -\frac{1}{3}$
- $(d)1, -\frac{1}{2}, -\frac{2}{3}$

The roots of the cubic equation $2x^3 + 3x^2 + 4x + 5 = 0$ are α , β and γ . Without evaluating α , β and γ , find the cubic equations with roots

(i)
$$\alpha - 2$$
, $\beta - 2$ and $\gamma - 2$ (ii) 3α , 3β and 3γ

The roots of the cubic equation $x^3 + 2x^2 + 3x + 4 = 0$ are α , β and γ . Without evaluating α , β and γ , find the cubic equations with roots

(i)
$$\alpha^2$$
, β^2 and γ^2

$$(ii)\frac{1}{\alpha}, \frac{1}{\beta}$$
 and $\frac{1}{\gamma}$.

Example: (AQA March 2000)

The roots of the cubic equation $2x^3 + 3x^2 + 4 = 0$ are α , β and γ .

- (a) State the values of $\alpha + \beta + \gamma$, $\beta \gamma + \alpha \gamma + \alpha \beta$ and $\alpha \beta \gamma$.
- (b) Hence, find the cubic equation with integer coefficients, having roots $\alpha\beta$, $\beta\gamma$ and $\gamma\alpha$.

Solve the simultaneous equations

$$\begin{cases} p+q+r=6\\ qr+rp+pq=11.\\ pqr=6 \end{cases}$$

<u>Homework</u>

Please attempt all the questions in the following slides.

Questions are to be discussed on the next day of the instruction.

The roots of the equation $x^3 - ax^2 + bx - c = 0$ are α , β and γ . Prove that if $\alpha\beta = \alpha + \beta$, then $\gamma = a + c - b$.

The cubic equation $ax^3 + bx^2 + cx + d = 0$ has the property that two of its roots are the reciprocal of each other. Prove that $a^2 - d^2 = ac - bd$. Hence, solve the equation $9x^3 + 24x - 11x - 6 = 0$.

The roots of the equation $x^3 + ax + b = 0$ are α , β and γ .

Find the equation with roots
$$\frac{\beta}{\gamma} + \frac{\gamma}{\beta}$$
, $\frac{\gamma}{\alpha} + \frac{\alpha}{\gamma}$ and $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$.

Solve the simultaneous equations

$$\begin{cases} p+q+r=6=11\\ p^{2}+q^{2}+r^{2}=26.\\ pqr=-12 \end{cases}$$