ΘΕΜΑ 4

4.1. Ισχύει $\Delta K_{AB} = W_{\vec{F}_{\eta\lambda}}$, $K_B - K_A = e \cdot V$, $V = 200 \ V$.

Μονάδες 6

4.2. Ισχύει
$$K=\frac{1}{2}\cdot m_p\cdot v^2$$
 , $v=\sqrt{\frac{2\cdot K}{m_p}}=\sqrt{\frac{2\cdot 200\cdot 1,6\cdot 10^{-19}}{1,6\cdot 10^{-27}}}\,\frac{m}{s}=2\,\cdot\,10^5\,\frac{m}{s}.$

Μονάδες 6

4.3. Ισχύει
$$E = \frac{V}{\Delta x} = 2 \cdot 10^3 \frac{N}{c}$$
.

Μονάδες 6

4.4. Η ηλεκτρική δύναμη που ασκείται στο πρωτόνιο έχει μέτρο $F_{\eta\lambda}=E\cdot e$. Η επιτάχυνση με την οποία επιταχύνεται το πρωτόνιο έχει μέτρο $\alpha=\frac{F_{\eta\lambda}}{m_p}=\frac{E\cdot e}{m_p}$. Το πρωτόνιο επιταχύνεται για χρονικό διάστημα $v=\alpha\cdot \Delta t$, $\Delta t=\frac{v}{\alpha}=\frac{v\cdot m_p}{E\cdot e}$. Έτσι, ο μέσος ρυθμός αύξησης της κινητικής ενέργειας του πρωτονίου, κατά την επιτάχυνσή του είναι $\frac{\overline{\Delta K}}{\Delta t}=\frac{K}{\Delta t}=\frac{K\cdot E\cdot e}{v\cdot m_p}=3$, $2\cdot 10^{-11}\,\frac{J}{s}$

Μονάδες 7