How good are leading theories of bridge verbs? An experimental evaluation

Nick Huang¹, Diogo Almeida², Jon Sprouse² National University of Singapore¹, NYU Abu Dhabi²

WCCFL 2022

Starting point: restrictions on wh-extraction

- 1. Who ate the sandwich and pickles?
- 2. *What did Jo eat the sandwich and ?

A standard analysis of **island constraints**:

Wh-extraction is subject to structural (syntactic) constraints.

(Ross 1967, among many others)

But some restrictions are not as amenable to a syntactic analysis

- 3. Who did Kim say that Jo saw _?
- 4. ??Who did Kim stammer that Jo saw _?

Say: bridge verb

Stammer: non-bridge

Difference is lexical, not syntactic.

Call this variation in acceptability "bridge effects".

Why do bridge effects exist?

Dean 1967; Erteschik-Shir 1973; Ambridge & Goldberg 2008; Kothari 2008; Dąbrowska 2008, 2013; Liu et al. 2019, 2021; Richter & Chaves 2020

Three non-syntactic approaches for understanding bridge effects

1. Information structure

(Erteschik-Shir 1973; Ambridge & Goldberg 2008, etc.)

- 3. Who did Kim say that Jo saw?
- 4. ??Who did Kim stammer that Jo saw _?

2. Frequency

(Kothari 2008; but see Liu et al. 2019; 2021 and Richter & Chaves 2020)

3. Prototype effects: **Semantic similarity** to *say/think*

(Dąbrowska 2008; 2013; also Ambridge & Goldberg 2008, etc.)

Success with bridge effects \rightarrow a stronger case for non-syntactic theories of wh-extraction constraints

Further consequences for autonomy of syntax, poverty of the stimulus, learnability, etc.

This talk: An empirical evaluation of these theories of bridge effects

- Overview of existing theories
 - 1. Information structure
 - 2. Frequency
 - 3. Semantic similarity
- The logic of our experiments
- Results and discussion
- Conclusion: we need empirically stronger theories.

Bridge effects = relative acceptability

5. What did Kim say / stammer [that Jo saw _]? "Long" extraction from clause6. Who said / stammered [that Jo saw the robber]? "Short" extraction

Bridge effects

- = How much worse is long extraction, i.e. extracting from the complement clause?
- = Penalty for long extraction = acceptability of (6) acceptability of (5)

Theory 1. Information structure

- "No extraction from non-dominant constituents." (e.g. Erteschik-Shir 1973)
- "No extraction from backgrounded clauses" (Ambridge & Goldberg 2008)
- 7. Kim said [that Jo saw the robber].

Verbs like say foreground/focus the complement clause.

8. Kim **stammered** [that Jo saw the robber].

Stammer draws attention to the act of stammering, not the clause; the clause is backgrounded.

Theory 2. Frame frequency

Bridge effects track how often a verb takes a finite complement clause.

- 9. What did Kim say that Jo saw? Say+clause very frequent
- 10. ??What did Kim stammer that Jo saw? Stammer+clause rare

Independent psycholinguistic evidence that low-frequency structures create processing difficulties. (e.g. Hale 2001; Levy 2008)

Kothari 2008, Dabrowska 2013, but see Liu et al. 2019, Richter & Chaves 2020

Theory 3. Semantic similarity / prototype effects

We hear many instances of extraction with say or think, e.g.:

What did you **say** they will do? Where do you **think** they went?

For language processing purposes, we create "templates" based on prototypical questions.

```
Say template: WH do you say S-GAP?
```

Think template: WH do you think S-GAP?

(Replace with a suitable constituent.)

Dąbrowska 2008, 2013; Verhagen 2005: see also Ambridge & Goldberg 2008

Theory 3. Semantic similarity / prototype effects

- 9. What did Kim **say** that Jo saw?
 - → Use the existing *say* template.

- 10. ??What did Kim **stammer** that Jo saw?
 - → No *stammer* template; modify existing templates instead.
 - → Bridge effects reflect cost of modifying a template, which decreases with semantic similarity to say / think.

Problem #1: No clear consensus from prior experiments testing these theories

E.g.

- Ambridge & Goldberg 2008, Dąbrowska 2013: experimental results supporting information structure theory.
- Liu et al. 2021: failed to replicate results.

Our contribution: exhaustive (640 verbs), experimental evaluation of these theories

Quantifying bridge effects

- 5. What did Kim say / stammer [that Jo saw _]? "Long" extraction from clause6. Who _ said / stammered [that Jo saw the robber]? "Short" extraction
- Collect 60 sets of ratings per verb, for sentences like (5) and (6) on Amazon Mechanical Turk/CloudResearch (~9,600 participants).
- Calculate relative acceptability ("penalty") for each verb.
- Analyse only the 484 verbs where "short extraction" sentences (6) are relatively OK (z-scored acceptability > 0)

We adopted the predictor measure proposed by advocates of each theory

1. Information structure

"Negation test" (4,800 AMT participants). (Ambridge & Goldberg 2008)

The princess didn't know that the duchess would invite the arrogant knight.

The duchess will invite the arrogant knight.

True

False

Not enough info

2. Frequency

Frequency of Verb-that combinations + clause bias, fro

3. Semantic similarity

Off-the-shelf word-embeddings from Latent Semantic Analy English Wikipedia; WordNet word classes. (Ştefănescu et al. 2014;

True: more backgrounded

False: less backgrounded

 Calculate cosine similarity (word-embeddings) and hierarchical distance (WordNet) to say and think

We adopted the predictor measure proposed by advocates of each theory

1. Information structure

"Negation test".

(Ambridge & Goldberg 2008)

2. Frequency

Frequency of Verb-that combinations + clause bias, from COCA. (Davies 2020)

3. Semantic similarity

Off-the-shelf word-embeddings from Latent Semantic Analysis and Global Vectors applied to English Wikipedia; WordNet word classes. (Ştefănescu et al. 2014; Fares et al. 2017; Fellbaum 1998)

 Calculate cosine similarity (word-embeddings) and hierarchical distance (WordNet) to say and think

We adopted the predictor measure proposed by advocates of each theory

1. Information structure

"Negation test".

(Ambridge & Goldberg 2008)

2. Frequency

Frequency of Verb-that combinations + clause bias, from COCA. (Davies 2020)

3. Semantic similarity

Off-the-shelf word-embeddings from Latent Semantic Analysis and Global Vectors applied to English Wikipedia; WordNet word classes. (Ştefănescu et al. 2014; Fares et al. 2017; Fellbaum 1998)

Calculate cosine similarity (word-embeddings) and hierarchical distance (WordNet) to say
and think

Six predictor variables in total

Replicating Ambridge & Goldberg 2008: much clearer correlation on subset of 12 verbs

A&G 2008, fig. 3

$$R^2 = .69$$

Same 12 verbs

$$R^2 = .48$$

Re-examining a recent claim that there are no bridge effects

Liu et al. (2019, 2021): Relative acceptability doesn't vary with frequency.

 Model acceptability for 48 verbs, with only main effects for verb+clause frequency and short/long extraction.

Not supported by an analysis of our full set of verbs (right).

- We find an interaction between frequency and extraction (*b*=0.05, *t*=5.92, *p*<.01).
- Graphically represented by **non-parallel** trend lines in scatterplot.

Summarising

Prior experimental studies have verb sample issues.

Analysing a full set of verbs, we find that even the best-performing theory of bridge effects (information structure) is **empirically weak**.

→ Factors like information structure, frequency, semantic similarity contribute to bridge effects, but unlikely to be the only driver of bridge effects.

Results call for better theories of bridge effects

Our inspection of our results suggest that **verb classes** matter: verbs that allow nonfinite complement clauses (*believe/expect* NP *to* VP; *claim to* VP) tend to have higher relative acceptability (point-biserial correlation = .40, p<.01).

Further questions:

- 1. Is the verb class fact due to verb **semantics**, **pragmatics**, or even **syntax**?
- 2. **Cross-linguistic variation**: Some languages lack long-distance whquestions (e.g. Polish, some German varieties). Why?

Thank you

- Various aspects of this research was in part supported by a NUS Postdoctoral Fellowship.
- Earlier versions of this project was supported by NSF Grant #DGE-1449815.