Lecture Notes

Power MOSFETs

William P. Robbins

Professor, Dept. of Electrical and Computer Engineering University of Minnesota

Outline

- Construction of power MOSFETs
- Physical operations of MOSFETs
- Power MOSFET switching Characteristics
- Factors limiting operating specifications of MOSFETs
- COOLMOS
- PSPICE and other simulation models for MOSFETs

Multi-cell Vertical Diffused Power MOSFET (VDMOS)

Important Structural Features of VDMOS

- 1. Parasitic BJT. Held in cutoff by body-source short
- 2. Integral anti-parallel diode. Formed from parasitic BJT.
- 3. Extension of gate metallization over drain drift region. Field plate and accumulation layer functions.
- 4. Division of source into many small areas connected electrically in parallel. Maximizes gate width-to-channel length ratio in order to increase gain.
- 5. Lightly doped drain drift region. Determines blocking voltage rating.

Alternative Power MOSFET Geometries

- Trench-gate MOSFET
- Newest geometry. Lowest on-state resistance.

- V-groove MOSFET.
- First practical power MOSFET.
- Higher on-state resistance.

MOSFETs - 4 W.P. Robbins

MOSFET I-V Characteristics and Circuit Symbols

The Field Effect - Basis of MOSFET Operation

Threshold Voltage V_{GS(th)}

V_{GS} where strong inversion layer has formed.
 Typical values 2-5 volts in power MOSFETs

- Value determined by several factors
 - 1. Type of material used for gate conductor
 - 2. Doping density of body region directly beneath gate
 - 3. Impurities/bound charges in oxide
 - 4. Oxide capacitance per unit area $C_{OX} = \frac{\epsilon_{OX}}{t_{OX}}$ $t_{OX} = \text{oxide thickness}$
- Adjust threshold voltage during device fabrication via an ion implantation of impurities into body region just beneath gate oxide.

W.P. Robbins

Drift Velocity Saturation

- Mobility also decreases because large values of V_{GS} increase free electron density.
- At larger carrier densities, free carriers collide with each other (carrier-carrier scattering) more often than with lattice and mobility decreases as a result.

- In MOSFET channel, $J = q \mu_n n E$ = $q n v_n$; velocity $v_n = \mu_n E$
- Velocity saturation means that the mobility μ_{n} inversely proportional to electric field E.
- Mobilty decreases, especially via carriercarrier scattering leead to linear transfer curve in power devices instead of square law transfer curve of logic level MOSFETs.

Channel-to-Source Voltage Drop

- $V_{GS} = V_{GG} = V_{OX} + V_{CS}(x)$; $V_{CS}(x) = I_{D1}R_{CS}(x)$
- Larger x value corresponds be being closer to the drain and to a smaller V_{OX}.
- Smaller V_{OX} corresponds to a smaller channel thickness. Hence reduction in channel thickness as drain is approached from the source.

Channel Pinch-off at Large Drain Current

- $I_{D2} > I_{D1}$ so $V_{CS2}(x) > V_{CS1}(x)$ and thus channel narrower at an given point.
- Total channel resistance from drain to source increasing and curve of I_D vs V_{DS} for a fixed V_{GS} flattens out.

- Apparent dilemma of channel disappearing at drain end for large I_D avoided.
- 1. Large electric field at drain end oriented parallel to drain current flow. Arises from large current flow in channel constriction at drain.
- 2. This electric field takes over maintenance of minimum inversion layer thickness at drain end.
- Larger gate-source bias V_{GG} postpones flattening of I_D vs V_{DS} until larger values of drain current are reached.

MOSFET Switching Models for Buck Converter

• Buck converter using power MOSFET.

• MOSFET equivalent circuit valid for on-state (triode) region operation.

- MOSFET equivalent circuit valid for off
- state (cutoff) and active region operation.

MOSFET Capacitances Determining Switching Speed

- Gate-source capacitance Cgs approximately constant and independent of applied voltages.
- Gate-drain capacitance Cgd varies with applied voltage. Variation due to growth of depletion layer thickness until inversion layer is formed.

Internal Capacitances Vs Spec Sheet Capacitances

MOSFET internal capacitances

<u>Input capacitance</u>

Reverse transfer or feedback capacitance

Bridge balanced (Vb=0) Cbridge = Cgd = C_{rss}

Output capacitance

$$C_{OSS} = C_{gd} + C_{ds}$$

Turn-on Equivalent Circuits for MOSFET Buck Converter

• Equivalent circuit during t_d(on).

R_G

C_{gd1}

C_{gd1}

C_{gg}

C_{gs}

Equivalent circuit during t_{ri} . R_{G} C_{DC} C_{gd1} C_{gd1} C_{gd1} C_{gd1} C_{gd1} C_{gg}

• Equivalent circuit during t_{fv1}.

• Equivalent circuit during t_{fv2} . R_G $r_{DS(on)}$ r_{GG} r_{GG} r_{GG} r_{GG} r_{Gg}

MOSFET-based Buck Converter Turn-on Waveforms

MOSFETs - 14 W.P. Robbins

Turn-on Gate Charge Characteristic

$$\begin{split} & (V_{t} + I_{D1} / g_{m}) \\ & Q_{on} = \int \left[C_{gs} (V_{gs}) + C_{gd} (V_{gs}) \right] V_{gs} \, dV_{gs} \\ & V_{gs,off} \\ & V_{ds,on} \\ & Q_{p} = \int C_{gd} (V_{ds}) \, V_{ds} \, dV_{ds} \\ & V_{d} \\ & V_{gs,on} \\ & Q_{T} = Q_{on} + Q_{p} + \int \left[C_{gs} (V_{gs}) + C_{gd} (V_{gs}) \right] V_{gs} \, dV_{gs} \\ & (V_{t} + I_{D1} / g_{m}) \end{split}$$

MOSFETs - 15 W.P. Robbins

Turn-on Waveforms with Non-ideal Free-wheeling Diode

• Equivalent circuit for estimating effect of free -wheeling diode reverse recovery.

MOSFET-based Buck Converter Turn-off Waveforms

- Assume ideal freewheeling diode.
- Essentially the inverse of the turn-on process.
- Model quanitatively using the same equivalent circuits as for turn-on. Simply use correct driving voltages and initial conditions

dV/dt Limits to Prevent Parasitic BJT Turn-on

• Large positive $C_{gd} = \frac{d \cdot DS}{dt}$ could turn on parasitic BJT.

- Turn-on of T₊ and reverse recovery of D_{f-} will produce large positive $C_{\mbox{gd}} \, \frac{\mbox{dv}_{\mbox{DS}}}{\mbox{dt}}$ in bridge circuit.
- Parasitic BJT in T_- likely to have been in reverse active mode when D_{f_-} was carrying current. Thus stored charge already in base which will increase likelyhood of BJT turn-on when positive $C_{gd} \frac{dv_{DS}}{dt}$ is generated.

MOSFETs - 18 W.P. Robbins

Maximum Gate-Source Voltage

- V_{GS(max)} = maximum per missible gatesource voltage.
- If V_{GS} >V_{GS(max)} rupture of gate oxide by large electric fields possible.
- $E_{BD}(oxide) \approx 5-10 \text{ million V/cm}$
 - Gate oxide typically 1000 anstroms thick
 - $V_{GS(max)} < [5x10^6][10^{-5}] = 50 \text{ V}$
 - Typical V_{GS(max)} 20 30 V
- Static charge on gate conductor can rupture gate oxide
 - Handle MOSFETs with care (ground yourself before handling device)
 - Place anti-parallel connected Zener diodes between gate and source as a protective measure

MOSFET Breakdown Voltage

- BV_{DSS} = drain-source breakdown voltage with V_{GS} = 0
- Caused by avalanche breakdown of drain-body junction
- Achieve large values by
 - 1. Avoidance of drain-source reachthrough by heavy doping of body and light doping of drain drift region

- 2. Appropriate length of drain drift region
- 3. Field plate action of gate conductor overlap of drain region
- 4. Prevent turn-on of parasitic BJT with body-source short (otherwise BV_{DSS}
 - = BV_{CEO} instead of BV_{CBO})

MOSFET On-state Losses

- On-state power dissipation $P_{on} = I_o^2 r_{DS(on)}$
- Large V_{GS} minimizes accumulation layer resistance and channel resistance
- r_{DS(on)} dominated by drain drift resistance for BV_{DSS} > few 100 V

•
$$r_{DS(on)} = \frac{V_d}{I_D} \approx 3x10^{-7} \frac{BV_{DSS}^2}{A}$$

r_{DS(on)} increases as temperature increases.
 Due to decrease in carrier mobility with increasing temperature.

MOSFETs - 21
W.P. Robbins

Paralleling of MOSFETs

 MOSFETs can be easily paralleled because of positive temperature coefficient of r_{DS(on)}.

- Positive temperature coefficient leads to thermal stabilization effect.
 - If $r_{DS(on)1} > r_{DS(on)2}$ then more current and thus higher power dissipation in Q_2 .
 - Temperature of Q_2 thus increases more than temperature of Q_1 and $r_{DS(on)}$ values become equalized.

MOSFET Safe Operating Area (SOA)

- No distinction between FBSOA and RBSOA. SOA is square.
 - FB = forward bias. $V_{GS} \ge 0$.
 - RB = reverse bias. $V_{GS} \le 0$.
- No second breakdown.

Structural Comparison: VDMOS Versus COOLMOS™

 Conventional vertically oriented power MOSFET

• COOLMOS™ structure (composite buffer structure, super-junction MOSFET, super multi -resurf

MOSFET)

 Vertical P and N regions of width b doped at same density (N_a = N_d)

COOLMOS™ Operation in Blocking State

- COOLMOSTM structure partially depleted.
- Arrows indicate direction of depletion layer growth as device turns off.
- Note n-type drift region and adjacent p-type stripes deplete uniformly along entire vertical length.
- COOLMOS™ structure at edge of full depletion with applied voltage V_c. Depletion layer reaches to middle of vertical P and N regions at b/2.
- Using step junction formalism, $V_c = (q b^2 N_d)/(4 \epsilon) = b E_{c max}/2$
- Keep $E_{c,max} \le E_{BD}/2$. Thus $N_d \le (\epsilon E_{BD})/(q b)$

COOLMOS™ Operation in Blocking State (cont.)

- For applied voltages $V > V_c$, vertically oriented electric field E_v begins to grow in depletion region.
- E_v spatially uniform since space charge compensated for by E_c . $E_v \approx V/W$ for $V >> V_c$.
- Doping level N_d in n-type drift region can be much greater than in drift region of conventional VDMOS drift region of similar BV_{BD} capability.
- At breakdown $E_v = E_{BD} \approx 300 \text{ kV/cm}$; $V = BV_{BD} = E_{BD}W$

COOLMOS™ Operation in ON-State

- On-state specific resistance $AR_{on} [\Omega\text{-cm}^2]$ much less than comparable VDMOS because of higher drift region doping.
- COOLMOS™ conduction losses much less than comparable VDMOS.

- $R_{on} A = W/(q \mu_n N_d)$; Recall that $N_d = (\epsilon E_{BD})/(q b)$
- Breakdown voltage requirements set $W = BV_{BD}/E_{BD}$.
- Substituting for W and N_d yields $R_{on}A = (b BV_{BD})/(\epsilon \mu_n E_{BD}^2)$

R_{on} A Comparison: VDMOS versus COOLMOSTM

- COOLMOS at BV_{BD} = 1000 V. Assume $b \approx 10 \mu m$. Use $E_{BD} = 300 \text{ kV/cm}$.
 - $R_{on}\,A = (10^{-3}~cm)~(1000~V)/[~(9x10^{-14}~F/cm)(12)(1500~cm^2~-V-sec)(300~kV/cm)^2]$ $R_{on}\,A = 0.014~\Omega$ -cm . Corresponds to $N_d = 4x10^{15}~cm^{-3}$
- Typical VDMOS, $R_{on} A = 3x10^{-7} (BV_{BD})^2$
 - $R_{on} A = 3x10^{-7} (1000)^2 = 0.3 \Omega$ -cm ; Corresponding $N_d = 10^{14} \text{ cm}^3$
- Ratio COOLMOS to VDMOS specific resistance = 0.007/0.3 = 0.023 or approximately 1/40
 - At $BV_{BD} = 600 \text{ V}$, ratio = 1/26.
 - Experimentally at $BV_{BD} = 600 \text{ V}$, ratio is 1/5.
- For more complete analysis see: Antonio G.M. Strollo and Ettore Napoli, "Optimal ON-Resistance Versus Breakdown Voltage Tradeoff in Superjunction Power Device: A Novel Analytical Model", IEEE Trans. On Electron Devices, Vol. 48, No. 9, pp 2161-2167, (Sept., 2001)

COOLMOSTM Switching Behavior

• MOSFET witching waveforms for clamped inductive load.

- Larger blocking voltages V_{ds} > depletion voltage V_c , COOLMOS has smaller C_{gs} , C_{gd} , and C_{ds} than comparable (same R_{on} and BV_{DSS}) VDMOS.
- Small blocking voltages V_{ds} < depletion voltage V_c , COOLMOS has larger C_{gs} , C_{gd} , and C_{ds} than comparable (same R_{on} and BV_{DSS}) VDMOS.
- Effect on COOLMOS switching times relative to VDMOS switching times.
 - Turn-on delay time shorter
 - Current rise time shorter
 - Voltage fall time1 shorter
 - Voltage fall time2 longer
 - Turn-off delay time longer
 - Voltage rise time1 longer
 - Voltage rise time2 shorter
 - Current fall time shorter

PSPICE Built-in MOSFET Model

Drain RD Cgb Cbd Cgd RB RG RDS Idrain Gate Bulk Cgs Cbs RS Source

Circuit components

- RG, RDS, RS, RB, and RD = parasitic ohmic resistances
- Cgs Cgd, and Cgb = constant voltageindependent capacitors
- Cbs and Cbd = nonlinear voltagedependent capacitors (depletion layer capacitances)
- Idrain = f(Vgs, Vds) accounts for dc characteristics of MOSFET
- Model developed for lateral (signal level) MOSFETs

Lateral (Signal level) MOSFET

- Body-source short keeps C_{bs} constant.
- Body-source short puts C_{bd} between drain and source.
- Variations in drain-source voltage relatively small, so changes in C_{bd} also relatively small.
- Capacitances relatively independent of terminal voltages

- C_{gs}, C_{bg}, C_{gd} due to electrostatic capacitance of gate oxide. Independent of applied voltage
- Consequently PSPICE MOSFET model has voltage-independent capacitances.

C_{bs} and C_{bd} due to depletion layers.
 Capacitance varies with junction voltage.

Vertical Power MOSFET

- Drain-drift region and large drain-source voltage variations cause large variations in drain-body depletion layer thickness
 - Large changes in C_{gd} with changes in drain-source voltage. 10 to 100:1 changes in C_{gd} measured in high voltage MOSFETs.
 - Moderate changes in C_{gb} and C_{bs} .

• MOSFET circuit simulation models must take this variation into account.

Inadequacies of PSPICE MOSFET Model

- C_{gs} and C_{gd} in PSPICE model are constant independent of terminal voltages
- In vertical power MOSFETs, C_{gd} varies substantially with terminal voltages.

• Comparison of transient response of drainsource voltage using PSPICE model and an improved subcircuit model. Both models used in same step-down converter circuit.

Example of an Improved MOSFET Model

- Developed by Motorola for their TMOS line of power MOSFETs
- M1 uses built-in PSPICE models to describe dc MOSFET characteristics. Space charge capacitances of intrinsic model set to zero.
- Space charge capacitance of DGD models voltage-dependent gate-drain capacitance.
- CGDMAX insures that gate-drain capacitance does not get unrealistically large at very low drain voltages.
- DBODY models built-in anti-parallel diode inherent in the MOSFET structure.
- CGS models gate-source capacitance of MOSFET. Voltage dependence of this capacitance ignored in this model.
- Resistances and inductances model parasitic components due to packaging.
- Many other models described in literature. Too numerous to list here.

Another Improved MOSFET Simulation Model

- L_G, R_G, L_S R_S, L_D, R_D parasitic inductances and resistances
- M1= intrinsic SPICE level 2 MOSFET with no parasitic resistances or capacitances.

- M2 and M3 are SPICE level 2
 MOSFETs used along with V_{offset} to
 model voltage dependent behavior of
 C_{gd}.
- JFET Q₁ and R_d account for voltage drop in N⁻ drain drift region
- D_{sub} is built-in SPICE diode model used to account for parasitic anti-parallel diode in MOSFET structure.
- Reference "An Accurate Model for Power DMOSFETs Including Interelectrode Capacitances", Robert Scott, Gerhard A. Frantz, and Jennifer L. Johnson, IEEE Trans. on Power Electronics, Vol. 6, No. 2, pp. 192-198, (April, 1991)