Exploring Disk-Shaped Corner Regions as Seed Points for PDE-based Inpainting

Daniel Gusenburger August 7, 2020

Motivation

Figure 1: Example for an application of inpainting in image restoration [Bertalmio et al., 2000]

• Restoration technique (antique paintings, photographs)

- Restoration technique (antique paintings, photographs)
- "Filling in" of areas without having to know the data in these regions

- Restoration technique (antique paintings, photographs)
- "Filling in" of areas without having to know the data in these regions
- Digital inpainting introduced around 2000
 (e.g. [Bertalmio et al., 2000, Masnou and Morel, 1998])

...and why do we care?

Image Compression

Inpainting based image compression methods are already able to outperform traditional codecs like JPEG for high compression rates

...and why do we care?

Image Compression

Inpainting based image compression methods are already able to outperform traditional codecs like JPEG for high compression rates

Figure 2: Mask and respective reconstruction [Hoeltgen et al., 2016]

 Choosing optimal seed points for PDE-based inpainting is not trivial

- Choosing optimal seed points for PDE-based inpainting is not trivial
- Many different approaches (semantic, tree-based, analytic, ...)

- Choosing optimal seed points for PDE-based inpainting is not trivial
- Many different approaches (semantic, tree-based, analytic, ...)
- Semantic: Image features as seed points (edges/corners)

- Choosing optimal seed points for PDE-based inpainting is not trivial
- Many different approaches (semantic, tree-based, analytic, ...)
- Semantic: Image features as seed points (edges/corners)
- Edge-based methods successful [Mainberger et al., 2011]

- Choosing optimal seed points for PDE-based inpainting is not trivial
- Many different approaches (semantic, tree-based, analytic, ...)
- Semantic: Image features as seed points (edges/corners)
- Edge-based methods successful [Mainberger et al., 2011]
- Corners as seed points barely explored

PDE-based inpainting using corner information [Zimmer, 2007]

Examined how well images can be compressed using only corners

PDE-based inpainting using corner information [Zimmer, 2007]

- Examined how well images can be compressed using only corners
- Masks as small neighbourhoods around important corners

PDE-based inpainting using corner information [Zimmer, 2007]

- Examined how well images can be compressed using only corners
- Masks as small neighbourhoods around important corners
- Interleaving mean curvature motion (MCM) and edge-enhancing diffusion (EED) for reconstruction

Figure 3: Reconstruction from corner regions of different sizes [Zimmer, 2007]

Criticism:

· Inaccurate corner localisation

Criticism:

- · Inaccurate corner localisation
- Small masks might not capture the actual corners

Criticism:

- Inaccurate corner localisation
- Small masks might not capture the actual corners
- MCM not well suited for inpainting

Criticism:

- Inaccurate corner localisation
- Small masks might not capture the actual corners
- MCM not well suited for inpainting

Modifications:

Larger corner regions to capture displaced corners

Criticism:

- Inaccurate corner localisation
- Small masks might not capture the actual corners
- MCM not well suited for inpainting

Modifications:

- Larger corner regions to capture displaced corners
- Adapted thresholding

Criticism:

- Inaccurate corner localisation
- Small masks might not capture the actual corners
- MCM not well suited for inpainting

Modifications:

- Larger corner regions to capture displaced corners
- Adapted thresholding
- · Pure EED inpainting

Corner Regions + Localisation

 Structure tensor averages directional information in the surrounding region

$$J_{\rho} = K_{\rho} * (\nabla u_{\sigma} \nabla u_{\sigma}^{\top})$$

 Structure tensor averages directional information in the surrounding region

$$J_{\rho} = \mathsf{K}_{\rho} * (\nabla \mathsf{u}_{\sigma} \nabla \mathsf{u}_{\sigma}^{\top})$$

• Corner detection based on eigenvalues λ_1, λ_2

Figure 4: Visualization of relation between eigenvalues of structure tensor [Harris and Stephens, 1988]

 Structure tensor averages directional information in the surrounding region

$$J_{\rho} = K_{\rho} * (\nabla u_{\sigma} \nabla u_{\sigma}^{\top})$$

- Corner detection based on eigenvalues λ_1, λ_2
- · Förstner-Harris measure:

$$\frac{\det J_{\rho}}{\operatorname{tr} J_{\rho}} = \frac{\lambda_{1} \lambda_{2}}{\lambda_{1} + \lambda_{2}} > T$$

 Structure tensor averages directional information in the surrounding region

$$J_{\rho} = K_{\rho} * (\nabla u_{\sigma} \nabla u_{\sigma}^{\top})$$

- Corner detection based on eigenvalues λ_1, λ_2
- · Förstner-Harris measure:

$$rac{\det J_{
ho}}{\operatorname{tr} J_{
ho}} = rac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2} > T$$

Local maxima marked as corners

• Increases uncertainty in localisation

- · Increases uncertainty in localisation
- · Detected position might not align with actual position

Figure 4: Corner regions similar to approach of [Zimmer, 2007] for different integration scales. Left: $\rho=$ 2 Right: $\rho=$ 4

- · Increases uncertainty in localisation
- · Detected position might not align with actual position
- · Reconstruction errors

- · Increases uncertainty in localisation
- · Detected position might not align with actual position
- Reconstruction errors
- Increasing integration scale to restrict amount of mask pixels not viable (as in [Zimmer, 2007])

Choosing the Mask Radius

Figure 4: Matrix containing reconstruction results for different combinations of integration scale and mask radius

Choosing the Mask Radius

R	1	2	3	4	5	6
1	4.83	10.97	15.70	20.39	22.71	23.58
2	1.25	7.89	17.31	21.48	23.45	24.13
3	1.25	7.89	17.31	21.48	23.45	24.13
4	1.25	1.25	7.21	16.91	22.92	24.34
5	1.25	1.25	1.25	7.84	17.96	22.82

Figure 5: PSNR Values for reconstructed images from previous slide

Choosing the Mask Radius

Results:

• Experiments suggest choosing mask radius at least as large as integration scale

Choosing the Mask Radius

- Experiments suggest choosing mask radius at least as large as integration scale
- · Loss of information for too small radii

Additional Modifications

Problem

Amount of corners varying on input image with fixed threshold Makes it hard to reliably produce masks of the same size

Problem

Amount of corners varying on input image with fixed threshold Makes it hard to reliably produce masks of the same size

Remedy

Use so called percentile on cornerness map to filter out a certain percentage of corners

Problem

Amount of corners varying on input image with fixed threshold Makes it hard to reliably produce masks of the same size

Remedy

Use so called percentile on cornerness map to filter out a certain percentage of corners

Alternative

Instead of filtering out percentage of corners, calculate upper bound for number of corners such that only a certain percentage of *pixels* is kept.

Figure 6: Mask of similar size for different radii. Upper bound: 2% of total pixels. Actual sizes: 1.95%, 1.97%, 1.96%

Non-maximum Suppression

Observation

Corner regions tend to overlap a lot, especially in textured regions

Results in poorly distributed inpainting mask

Non-maximum Suppression

Observation

Corner regions tend to overlap a lot, especially in textured regions

Results in poorly distributed inpainting mask

Possible Remedy

Discard corners already covered by a 'better' corner

Non-maximum Suppression

Figure 7: Effect of CNMS on the distribution of corner regions across the image. Parameters: $\sigma=$ 1, $\rho=$ 1, R= 4, q= 0.02. **Top:** CNMS, **Bottom:** no CNMS

• Reconstruction based on edge-enhancing diffusion

- · Reconstruction based on edge-enhancing diffusion
- Type of anisotropic diffusion governed by PDE

$$\partial_t u = \mathsf{div}(g(\nabla u_\sigma \nabla u_\sigma^\top) \nabla u)$$

- · Reconstruction based on edge-enhancing diffusion
- · Type of anisotropic diffusion governed by PDE

$$\partial_t u = \mathsf{div}(g(\nabla u_\sigma \nabla u_\sigma^\top) \nabla u)$$

Originally meant for denoising

Figure 8: Top Left: Original image, **Top Right:** Homogeneous Diffusion, **Bottom Left:** Nonlinear isotropic diffusion, **Bottom Right:** EED

- Reconstruction based on edge-enhancing diffusion
- · Type of anisotropic diffusion governed by PDE

$$\partial_t u = \operatorname{div}(g(\nabla u_\sigma \nabla u_\sigma^\top) \nabla u)$$

- Originally meant for denoising
- Considered one of the best inpainting operators [Schmaltz et al., 2014]

Figure 8: Comparison of inpainting operators [Schmaltz et al., 2014]

Figure 9: Left: Original image, **Middle:** Inpainting mask ($\sigma=$ 1, $\rho=$ 1, R=7, q=0.02) 1.99% of all pixels, **Right:** Reconstruction ($\sigma=$ 2, $\lambda=$ 0.1, $\alpha=$ 0.49, $\gamma=$ 1, *PSNR*: 18.35)

Figure 10: Left: Original image, **Middle:** Inpainting mask ($\sigma=$ 1, $\rho=$ 1, R= 4, q= 0.02) 1.96% of all pixels, **Right:** Reconstruction ($\sigma=$ 2, $\lambda=$ 0.1, $\alpha=$ 0.49, $\gamma=$ 1, *PSNR*: 31.45)

Figure 11: Left: Original image, **Middle:** Inpainting mask ($\sigma=$ 1, $\rho=$ 1, R= 10) 4.74% of all pixels, **Right:** Reconstruction ($\sigma=$ 2, $\lambda=$ 0.2, $\alpha=$ 0.49, $\gamma=$ 1, *PSNR* : 18.35)

Figure 12: Left: Original image, **Middle:** Inpainting mask ($\sigma=$ 1, $\rho=$ 1, R= 5, q= 0.1) 9.23% of all pixels, **Right:** Reconstruction ($\sigma=$ 2, $\lambda=$ 0.4, $\alpha=$ 0.49, $\gamma=$ 1, *PSNR*: 21.11)

Figure 13: Left: Original image, **Middle:** Inpainting mask ($\sigma=$ 1.5, $\rho=$ 2, R= 6, q= 0.02) 1.88% of all pixels, **Right:** Reconstruction ($\sigma=$ 2, $\lambda=$ 0.2, $\alpha=$ 0.49, $\gamma=$ 1, *PSNR* : 20.74)

Figure 14: Left: Original image, **Middle:** Inpainting mask ($\sigma=$ 1.5, $\rho=$ 2, R= 6, q= 0.02) 1.88% of all pixels, **Right:** Reconstruction ($\sigma=$ 2, $\lambda=$ 0.2, $\alpha=$ 0.49, $\gamma=$ 1, *PSNR* : 16.25)

• Choose mask radius at least as large as integration scale

- Choose mask radius at least as large as integration scale
- Fairly good results for binary images

- Choose mask radius at least as large as integration scale
- Fairly good results for binary images
- Struggles with textured images

- Choose mask radius at least as large as integration scale
- Fairly good results for binary images
- Struggles with textured images
- Corners are fairly seldom

Any questions?

Thank you for your time!

References

Bibliography i

[Bertalmio et al., 2000] Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C. (2000).

Image inpainting.

In SIGGRAPH '00: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pages 417–424. ACM Press/Addison-Wesley Publishing Co.

[Harris and Stephens, 1988] Harris, C. G. and Stephens, M. (1988).

A combined corner and edge detector.

In Alvey Vision Conference, pages 147–151.

Bibliography ii

[Hoeltgen et al., 2016] Hoeltgen, L., Mainberger, M., Hoffmann, S., Weickert, J., Tang, C. H., Setzer, S., Johannsen, D., Neumann, F., and Doerr, B. (2016).

Optimizing spatial and tonal data for PDE-based inpainting, pages 35 – 83.

De Gruyter, Berlin, Boston.

[Mainberger et al., 2011] Mainberger, M., Bruhn, A., Weickert, J., and Forchhammer, S. (2011).

Edge-based compression of cartoon-like images with homogeneous diffusion.

Pattern Recognition, 44(9):1859 – 1873.

Computer Analysis of Images and Patterns.

Bibliography iii

[Masnou and Morel, 1998] Masnou, S. and Morel, J. (1998).

Level lines based disocclusion.

In Proceedings 1998 International Conference on Image Processing. ICIP98, volume 3, pages 259–263.

[Schmaltz et al., 2014] Schmaltz, C., Peter, P., Mainberger, M., Ebel, F., Weickert, J., and Bruhn, A. (2014).

Understanding, optimising, and extending data compression with anisotropic diffusion.

International Journal of Computer Vision, 108.

Bibliography iv

[Zimmer, 2007] Zimmer, H. L. (2007).

Pde-based image compression using corner information.

M.Sc. Thesis, Mathematical Image Analysis Group, Department of Mathematics and Computer Science, Saarland University.

Appendix