

- 一, (每小题7分, 共28分)
- 1, 设函数 $z(x,y) = \frac{x^2}{2y} + f(xy)$, 其中函数 f 二阶可微, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.
- 2, 若隐函数 y = y(x) 由方程 $xy = e^{x+y}$ 确定,求 y'。
- 3, 设函数 $g(y) = \int_{\sqrt{y}}^{y^3} \frac{\cos(xy)}{x} dx$, y > 0, 求 g'(y)。
- 4, 计算积分: $I = \int_{1}^{2} dy \int_{y}^{2} \frac{\sin x}{x-1} dx$ 。
- 二, (10 分) 求曲线积分 $I = \oint_{\ell} (1 + ye^x) dx + (x + e^x) dy$, 其中 ℓ 是椭圆

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$
 的上半周由点 $A(2,0)$ 到点 $B(-2,0)$ 。

三, $(10 \, \beta)$ 计算曲面积分 $I = \iint_{S^+} x \, dy \, dz + (y + y^2) \, dz \, dx + z \, dx \, dy$,其中 S^+ 为曲面 $z = x^2 + y^2$, $0 \le z \le 1$,取下侧。

四, (每小题7分, 共14分)

- 1, 求解微分方程初值问题: $\begin{cases} x y' + y = e^x \\ y(1) = 1 \end{cases}$
- 2, 求微分方程: $y'' 4y' + 3y = 1 + e^{2x}$ 的通解。
- 五,讨论如下广义积分的敛散性:(每小题5分,共10分)

(1)
$$\int_{1}^{+\infty} \frac{dx}{\sqrt[3]{x^2 - x + 1}}$$
,

$$(2) \int_0^1 \frac{\sin x}{x^{\frac{4}{3}}} dx$$

六, (每小题8分,共16分)

- (1) 求幂级数 $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n3^n} (x-3)^n$ 的收敛半径,收敛区间和收敛域。
- (2) 求函数 $f(x) = \frac{1}{1+x}$ 在点 x=1 处的幂级数展开式。

七, $(7 \, \beta)$ 讨论无穷积分 $\int_0^{+\infty} \frac{x^2 \sin x}{5 + x^3} dx$ 的敛散性,若积分收敛,研究其是绝对收敛还是条件收敛?

八, $(5\, \mathcal{G})$ 设序列 $\{n\, a_n.\}$ 收敛,级数 $\sum_{n=1}^{+\infty} n(a_n-a_{n-1})$ 也收敛,求证:级数 $\sum_{n=1}^{+\infty} a_n$ 收敛。