Andy Liu (Github: al1729) Math189R Homework 1 Monday, Feb 4, 2017

Feel free to work with other students, but make sure you write up the homework and code on your own (no copying homework *or* code; no pair programming). Feel free to ask students or instructors for help debugging code or whatever else, though. The starter code for problem 2 part c and d can be found under the Resource tab on course website.

Note: You need to create a Github account for submission of the coding part of the homework. Please create a repository on Github to hold all your code and include your Github account username as part of the answer to problem 2.

1 (**Linear Transformation**) Let $\mathbf{y} = A\mathbf{x} + \mathbf{b}$ be a random vector. show that expectation is linear:

$$\mathbb{E}[\mathbf{y}] = \mathbb{E}[A\mathbf{x} + \mathbf{b}] = A\mathbb{E}[\mathbf{x}] + \mathbf{b}.$$

Also show that

$$\operatorname{cov}[\mathbf{y}] = \operatorname{cov}[A\mathbf{x} + \mathbf{b}] = A\operatorname{cov}[\mathbf{x}]A^{\top} = A\mathbf{\Sigma}A^{\top}.$$

(a) Note that, by definition, $\mathbb{E}[\mathbf{y}] = \mathbb{E}[A\mathbf{x} + \mathbf{b}] = \int (A\mathbf{x} + \mathbf{b})P(x)$, where the integral is taken over all possible values of x. By the properties of integrals, this is equal to

$$A \int \mathbf{x} P(x) d\mathbf{x} + \int \mathbf{b} P(x) d\mathbf{x}$$
$$= A \mathbb{E}[\mathbf{x}] + \mathbf{b}$$

(using the property that b is constant to simplify the right-hand side), as desired. Thus, expectation is linear.

(b) Note that, by definition, $\operatorname{cov}[\mathbf{y}] = \operatorname{cov}[A\mathbf{x} + \mathbf{b}] = \mathbb{E}[(A\mathbf{x} + \mathbf{b} - \mathbb{E}[A\mathbf{x} + \mathbf{b}])(A\mathbf{x} + \mathbf{b} - \mathbb{E}[A\mathbf{x} + \mathbf{b}])^T]$. Since expectation is linear, the innermost expectation expressions can be simplified to become

$$(\mathbb{E}[A\mathbf{x} + \mathbf{b} - A\mathbb{E}[\mathbf{x}] - \mathbf{b}])(\mathbb{E}[A\mathbf{x} + \mathbf{b} - A\mathbb{E}[\mathbf{x}] - \mathbf{b}])^{T}$$
$$= (\mathbb{E}[A\mathbf{x} - A\mathbb{E}[\mathbf{x}]])(\mathbb{E}[A\mathbf{x} - A\mathbb{E}[\mathbf{x}]])^{T}$$

We can then factor out the A and A^T from the left- and right-hand sides of the expression, yielding

$$(A\mathbb{E}[\mathbf{x} - \mathbb{E}[\mathbf{x}]]\mathbb{E}[\mathbf{x} - \mathbb{E}[\mathbf{x}]]^T A^T)$$

However, the middle expression is just Σ , meaning the entire expression is equivalent to $A\Sigma A^T$, as desired.

•

- **2** Given the dataset $\mathcal{D} = \{(x,y)\} = \{(0,1), (2,3), (3,6), (4,8)\}$
 - (a) Find the least squares estimate $y = \theta^{\top} \mathbf{x}$ by hand using Cramer's Rule.
 - (b) Use the normal equations to find the same solution and verify it is the same as part (a).
 - (c) Plot the data and the optimal linear fit you found.
- (d) Find randomly generate 100 points near the line with white Gaussian noise and then compute the least squares estimate (using a computer). Verify that this new line is close to the original and plot the new dataset, the old line, and the new line.
- (a) It is known that, by Cramer's Rule, y = mx + b, where $m = \frac{n\sum x_i y_i (\sum x_i)(\sum y_i)}{n\sum x_i^2 (\sum x_i)^2}$ and $b = \frac{(\sum x_i^2)(\sum y_i) (\sum x_i)(\sum x_i y_i)}{n\sum x_i^2 (\sum x_i)^2}$. Since we are given \mathcal{D} , we know that n = 4, and we can manually compute $\sum x_i = 9$, $\sum y_i = 18$, $\sum x_i y_i = 56$, $\sum x_i^2 = 29$. Substituting these values into our equation, we find that $m = \frac{4(56) 9(18)}{4(29) 9^2} = \frac{62}{35}$, and

Substituting these values into our equation, we find that $m = \frac{4(56)-9(18)}{4(29)-9^2} = \frac{62}{35}$, and $b = \frac{29(18)-9(56)}{4(29)-9^2} = \frac{18}{35}$. Thus, we conclude that $y = \frac{62x}{35} + \frac{18}{35}$.

(b) Note that we are given that $X = \begin{bmatrix} 1 & 0 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$, $Y = \begin{bmatrix} 1 \\ 3 \\ 6 \\ 8 \end{bmatrix}$. Thus, $X^TX = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 3 & 4 \end{bmatrix}$.

$$\begin{bmatrix} 1 & 0 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 9 \\ 9 & 29 \end{bmatrix}. \text{ Additionally, } X^TY = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 6 \\ 8 \end{bmatrix} = \begin{bmatrix} 18 \\ 56 \end{bmatrix}.$$

By the normal equations, we know that $\theta = (X^TX)^{-1}(X^Ty) \Rightarrow X^TX\theta = X^Ty \Rightarrow \begin{bmatrix} 4 & 9 \\ 9 & 29 \end{bmatrix}\theta = \begin{bmatrix} 18 \\ 56 \end{bmatrix}$. Solving for θ using Cramer's Rule, we find that $\theta = \begin{bmatrix} \frac{18}{35} \\ \frac{62}{35} \end{bmatrix}$, thus confirming that $y = \frac{62x}{35} + \frac{18}{35}$.

(c) (Github: al1729)

(d) (Github: al1729)