LEÇON N° 201 : ESPACES DE FONCTIONS. EXEMPLES ET APPLICATIONS.

Soient X un ensemble et E un evn.

I/ Espaces de fonctions continues.

A/ Fonctions continues et convergence. [EA]

Définition 1 : CVS et CVU.

Exemple $2: x \mapsto x^n$ CVS mais pas uniformément.

Proposition 3 : $CVU \implies CVS$.

Définition 4 : $C_b(X, E)$ espace de fonctions bornées.

Proposition 5 : CVU et stabilité de la continuité.

Théorème 6 : Théorème de double limite.

Théorème 7: $(C_b(X,E),||\cdot||_{\infty})$ est complet.

B/ Fonctions continues sur un compact. [G] [HL]

Proposition 8: L'image continue d'un compact est compact.

Contre-exemple 9 : Ce n'est pas vrai pour l'image réciproque : $\sin^{-1}([-1,1]) = \mathbb{R}$ n'est pas compact.

Théorème 10 : Théorème de la borne atteinte.

Théorème 11 : Premier théorème de Dini.

Développement 1.a)

Application 12 : Existence d'une suite de polynôme convergeant uniformément vers $|\cdot|$ sur [-1,1].

Théorème 13 : Théorème de Heine.

Corollaire 14 : Deuxième théorème de Dini.

Définition 15: Espace équicontinu.

Théorème 16 : Théorème d'Ascoli.

C/ Densité de familles de fonctions. [HL] [WIL]

Développement 1.b)

Théorème 17: Théorème de Stone-Weierstrass.

Application 18 : L'ensemble des fonctions lipschitzienne de X dans \mathbb{R} est dense.

Application 19 : Si a < b, pour tout $f \in C^0([a,b],\mathbb{R})$, il existe $P_n \in \mathbb{R}[X]$ telle que (P_n) converge uniformément vers f.

Application 20 : Si f est telle que $\forall n \in \mathbb{N}, \ \int_a^b t^n f(t) \, \mathrm{d}t = 0$ alors f = 0.

Proposition 21 : La fonction de Weierstrass est une fonction continue partout et nulle part dérivable.

Application 22 : L'ensemble des fonctions continues partout nulle part dérivable est dense dans $C^0([0,1],\mathbb{R})$.

II/ Espaces de fonctions Lebesgue-intégrale.

A/ Définitions et propriétés. [BP] [BREZ]

Soit (X, \mathcal{A}, μ) espace mesuré.

Définition 23 : Les espaces L^p avec leurs normes associées.

Proposition 24 : Inégalité de Hölder.

Corollaire 25 : Inégalité de Minkowski.

Proposition 26 : $(L^p(\mu), ||\cdot||_p)$ est un espace vectoriel normé.

Développement 2

Théorème 27 : Riesz-Fischer : $L^p(\mu)$ est complet.

Proposition 28: Inclusions des $L^p(\mu)$ si mesure finie.

Remarque 29 : $L^2(\mu)$ est un espace de Hilbert.

B/ Convolution et régularisation. [BP]

Définition 30 : Convolution L^1 - L^1 et L^1 - L^p .

Proposition 31 : $(L^1,+,\cdot,*)$ est une \mathbb{K} algèbre commutative sans unité.

Définition 32 : Approximation de l'unité.

Exemple 33: Novau de Gauss.

Théorème 34 : Régularisation par approximation unité.

Corollaire 35 : C_c^{∞} est dense dans L^p .

Application 36: $S(\mathbb{R})$ est dense dans $L^2(\mathbb{R})$.

C/ Transformée de Fourier sur $L^1(\mathbb{R})$. [GW]

Définition 37: Définition de la transformée de Fourier sur $L^1(\mathbb{R})$.

Exemple 38 : Transformée de Fourier de $\mathbb{1}_{[a,b]}$.

Lemme 39: Riemann-Lebesgue.

Proposition 40 : $\mathcal{F}: L^1 \to C_0(\mathbb{R})$ est linéaire continue.

Proposition 41 : Formule de dualité.

Proposition 42: Lien entre convolution et transformée de Fourier.

Théorème 43: Formule d'inversion de Fourier.

Corollaire 44 : La transformée de Fourier est injective.

- [EA] El Amrani Suites et séries de fonctions p. 139 [G] Gourdon Analyse p. 31 et p. 228
- [HL] Hirsch-Lacombe Éléments d'analyse fonctionnelle p. 26-31
- [BP] Briane-Pagès Théorie de l'intégration 4ème éd. p. 153 et p.
- [BREZ] Brézis Analyse fonctionnelle p. 57
- [WIL] Willem Analyse fonctionnelle p. 130 [GW] Gasquet-Witomski Analyse de Fourier p. 128-135

LEÇON N°203 : UTILISATION DE LA NOTION DE COMPACITÉ.

Dans toute la suite, on prendra (E,d) un espace métrique et $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

I/ Notion de compacité.

A/ Propriété de Borel-Lebesgue. [G]

Définition 1 : Définition compact par BL.

Exemple 2 : Tout espace métrique fini est compact, $\mathbb R$ n'est pas compact.

Proposition 3: Un espace métrique compact est borné.

Proposition 4 : (E,d) compact si et seulement si pour toute intersection de fermés vide il existe une sous-famille finie de fermés d'intersection vide.

Corollaire 5 : Si $(F_n)_n$ suite décroissante de fermés non vides alors $\bigcap_{n\in\mathbb{N}}F_n\neq\emptyset$.

Proposition 6 : Une réunion finie de compactes est compacte.

Proposition 7: Une intersection de compacts est compacte.

Proposition 8 : Si $x_n \to l$ alors $\{x_n, n \in \mathbb{N}\} \cup \{l\}$ est un compact.

B/ Propriété de Bolzano-Weierstrass. [G] [CAL]

 ${\bf D\'efinition~9: Compact~selon~Bolzano-Weierstrass.}$

Exemple 10: Les segments de \mathbb{R} sont compacts.

Théorème 11: Les parties compactes de $\mathbb R$ sont les fermés bornés.

Corollaire 12: E compacte \iff toute suite de E admet une valeur d'adhérence.

Théorème 13 : Théorème de Tychonov.

Proposition 14: Un espace compact est complet.

Proposition 15 : Dans un compact $(x_n)_n$ admet une unique valeur d'adhérence $l \iff (x_n)_n$ converge vers l.

 ${\bf Application} \ {\bf 16: La} \ {\bf d\'{e}composition} \ polaire \ {\bf est} \ {\bf un} \ hom\'{e}omorphisme.$

Application 17: exp: $S_n(\mathbb{R}) \to S_n^{++}(\mathbb{R})$ est un homéomorphisme.

II/ Compacité et applications continues.

A/ Résultats généraux. [G]

Proposition 18: L'image continue d'un compact est compacte.

Proposition 19 : Si $f:(E,d)\to F$ avec F métrique et E compact, f continue et bijective alors f est un homéomorphisme.

Application 20 : \mathbb{R}/\mathbb{Z} est homéomorphe à \mathbb{S}^1 .

Proposition 21: Théorème de la borne atteinte.

Remarque 22 : Avec le théorème des valeurs intermédiaires on a donc l'image d'un segment est un segment.

Théorème 23 : Théorème de point fixe dans un compact : si K compact et f : $K \to K$ continue telle que d(f(x), f(y)) < d(x, y) alors f admet un unique point fixe.

Remarque 24 : Faux si on suppose juste complet : considérer $f: x \mapsto x + \frac{1}{x}$

Théorème 25 : Théorème de Heine.

Exemple 26 : Exemples de fonctions uniformément continues.

B/ Le cas de R et des fonctions réelles. [R]

Théorème 27 : Théorème de Rolle.

Exemple 28 : Si la fonction f s'annule en n+1 points alors $f^{(n)}$ s'annule au moins une fois.

Contre-exemple 29 : Vrai uniquement si à valeurs dans \mathbb{R} , $t\mapsto e^{it}$ est telle que $f(0)=f(2\pi)$ mais sa dérivée ne s'annule jamais.

Corollaire 30 : Inégalité des accroissements finis.

III/ Compacité dans les evns.

A/ Le cas de la dimension finie. [G]

Développement 1.a)

Lemme 31 : Pour tout E \mathbb{K} -ev, les fermés bornés de $(E,||\cdot||_{\infty,E})$ sont compacts.

Théorème 32 : Équivalence des normes en dimension finie.

Corollaire 33 : Toute application linéaire d'un evn de dimension finie vers un evn quelconque est continue.

Corollaire 34 : Les parties compactes d'un evn de dimension finie sont les fermés bornés.

Exemple 35 : $O_n(\mathbb{R})$ est compact.

Développement 1.b)

Théorème 36 : Théorème de Riesz.

Application 37 : Les compacts en dimension infinie sont d'intérieur vide.

Exemple 38 : $B_{\mathbb{R}[X]}(0,1)$ n'est pas compact car $\mathbb{R}[X]$ est de dimension infinie en temps que \mathbb{R} -ev.

B/ En dimension infinie : approximation uniforme. [HL]

Théorème 39 : Premier théorème de Dini.

Développement 2

Application 40 : Il existe une suite de polynôme CVU vers $|\cdot|$ sur [-1,1].

Théorème 41: Théorème de Stone-Weierstrass.

Corollaire 42 : Densité (uniforme) des polynômes dans $C^0([0,1],\mathbb{R})$.

Application 43: Si f continue telle que pour tout n, $\int_0^1 x^n f(x) dx = 0$ alors f = 0.

Corollaire 44 : Densité (uniforme) des polynômes trigonométriques dans $C^0_{2\pi}(\mathbb{R},\mathbb{R}).$

 ${
m C}/{
m \ En \ dimension \ infinie}:{
m Ascoli. \ [HL]}$

Définition 45 : Équicontinue en un point et uniforme équicontinuité.

Proposition 46 : C(X) équicontinue si et seulement si uniformément équicontinue.

Théorème 47: Théorème d'Ascoli.

- [G] Gourdon Analyse p. 27-38 et p.47
- [HL] Hirsch-Lacombe Éléments d'analyse fonctionnelle p. 26-31 et p. 38
- [CAL] Caldéro Histoires hédonistes tome 1 p. 201 et p. 208
- [R] Rombaldi Éléments d'analyse réelle p. 251

LEÇON N°204 : CONNEXITÉ. EXEMPLES D'APPLICATIONS.

Dans toute la suite on notera (X,d) un espace métrique.

I/ Espaces connexes.

A/ Définitions et propositions. [G] [Q]

Proposition 1 : Propositions équivalentes et définition de la connexité.

Remarque 2 : La définition pour n'importe quel choix de discret.

Application 3 : Si X connexe et g_1 , g_2 continues alors si $e^{2i\pi g_1}=e^{2i\pi g_2}$ alors g_1-g_2 est constante.

Exemple $4:\mathbb{R}$ et \mathbb{C} sont connexes, \mathbb{Q} n'est pas connexe, les convexes de \mathbb{R} sont connexes.

Lemme 5 : Passage des douanes.

Théorème 6 : L'image continue d'un connexe est connexe.

Application 7 : \mathbb{R} et \mathbb{R}^2 ne sont pas homéomorphes.

Théorème 8 : Les connexes de R sont les intervalles.

B/ Propriétés de stabilité. [G] [Q]

Proposition 9 : Si A est connexe et B telle que $A \subset B \subset \overline{A}$ alors B est connexe.

Corollaire 10 : L'adhérence d'un connexe est connexe.

Proposition 11 : Stabilité de la connexité par l'union si l'intersection est non vide.

Remarque 12: L'intersection de connexes n'est en général pas connexe (prendre une droite et un cercle), l'union de connexes n'est en général pas connexe (prendre deux boules disjointes).

Proposition 13 : Le produit cartésien de connexes est connexe.

C/ Composantes connexes. [G]

Proposition 14 : La relation $x\mathcal{R}y \Longleftrightarrow \exists C$ connexe tel que $x \in C$ et $y \in C$ est une relation d'équivalence.

Définition 15 : Une classe d'équivalence pour la relation est une composante connexe.

Proposition 16 : Partition de l'espace et les composantes connexes sont fermées.

Proposition 17: Si il y a un nombre fini de composantes connexes alors elles sont ouvertes.

Exemple 18 : $O_n(\mathbb{R})$ possède deux composantes connexes : $SO_n(\mathbb{R})$ et $O_n^-(\mathbb{R})$.

D/ Connexité par arcs. [G] [Q]

Définition 19: Chemin.

Définition 20 : Connexité par arcs.

Théorème 21 : Connexe par $\operatorname{arc} \implies \operatorname{connexe}$.

Remarque 22 : Utile pour montrer la connexité, de plus c'est une notion topologique.

Exemple 23 : Boule unité fermée est connexe et convexe implique connexe par arcs.

Contre-exemple 24 : $\overline{\{(x,\sin(1/x)),\ 0 < x \le 1\}}$ est connexe mais n'est pas connexe par arcs.

Théorème 25 : Si E est un \mathbb{R} -ev alors une partie Ω ouverte est connexe par arcs si et seulement si elle est connexe.

II/ Applications de la connexité en Analyse.

 $\mathbf{A}/\ \mathbf{En}$ analyse réelle. $[\mathbf{G}]$

Théorème 26 : Théorème des valeurs intermédiaires.

Application 27: Toute fonction continue $f:[a,b] \to [a,b]$ admet un point fixe.

B/ En calcul différentiel. [PGCD]

Théorème 28 : Inégalité des accroissements finis.

Corollaire 29 : Si dans connexe la différentielle s'annule alors la fonction est constante dans le connexe.

Développement 1

Théorème 30 : Interversion limite-différentielle dans un connexe.

Application 31 : L'exponentielle matricielle est C^1 et calcul de sa différentielle.

C/ En analyse complexe. [T] [OBJ]

Lemme 32 : Ouvert connexe de $\mathbb{C}=$ ouvert connexe par arcs de $\mathbb{C}.$

Théorème 33 : Théorème des zéros isolés dans un espace connexe.

Corollaire 34: Théorème du prolongement analytique.

Application 35 : Prolongement méromorphique de la fonction Γ sur $\mathbb{C}\backslash (-\mathbb{N}).$

Théorème 36 : Principe du maximum.

D/ Dans les espaces de matrice. [FGNAlg2] [ZAV]

Développement 2

Lemme 37 : $\mathbb{C}[A]^{\times}$ est connexe par arcs.

Théorème 38 : L'exponentielle matricielle est surjective sur \mathbb{C} .

Corollaire 39 : $\exp(\mathcal{M}_n(\mathbb{R})) = \{M^2, M \in GL_n(\mathbb{R})\}$

Corollaire $40 : \mathrm{GL}_n(\mathbb{C})$ est connexe par arcs.

Proposition 41 : $GL_n(\mathbb{R})$ n'est pas connexe mais admet deux composantes connexes $GL_n^+(\mathbb{R}) = \det^{-1}(\mathbb{R}_*^+)$ et $GL_n^-(\mathbb{R}) = \det^{-1}(\mathbb{R}_*^-)$.

Proposition 42 : $\mathrm{SL}_n(\mathbb{R})$ et $\mathrm{SL}_n(\mathbb{C})$ sont connexes.

- [G] Gourdon Analyse p. 38-47
- [Q] Queffélec Topologie p. 113-127
- [PGCD] Rouvière Petit Guide du Calcul Différentiel p. 96 et p. 109
- [T] Tauvel Analyse complexe pour la licence p. 52
- [OBJ] Beck Malick Peyré Objectif Agrégation p. 82
- [FGNAlg2] Francinou Gianella Nicolas Algèbre 2 p. 177
- [ZAV] Zavidovique Un max de maths p. 48

LEÇON N° 205 : ESPACES COMPLETS. EXEMPLES ET APPLICATIONS.

On considère (X,d) un espace métrique.

I/ Généralités sur la complétude.

A/ Suites de Cauchy. [G]

Définition 1 : Suites de Cauchy.

Proposition 2 : Une suite convergente est de Cauchy, une suite de Cauchy est bornée, si une suite de Cauchy admet une valeur d'adhérence alors elle converge.

Définition 3 : Espaces complets.

Exemple $4 : \mathbb{R}^n$ est complet.

Remarque 5 : La complétude dépend de la norme.

Contre-exemple 6 : Q n'est pas complet (considérer la méthode de Héron pour approximer $\sqrt{2}$).

B/ Propriétés des espaces complets. [G]

Théorème 7 : Complété d'un espace métrique.

Exemple 8: $\hat{\mathbb{Q}} = \mathbb{R}$ mais faire attention à la définition (il faut considérer la notion de limite dans \mathbb{Q} pour éviter les boucles logiques). $\hat{\mathcal{P}} = C^0([0,1],\mathbb{R})$ où \mathcal{P} l'ensemble des fonctions polynomiales sur [0,1].

Proposition 9 : Toute partie complète est fermée, tout fermé d'un complet est complet.

Proposition 10 : Le produit cartésien de complets est complet.

Théorème 11: Théorème des fermés emboîtés.

II/ Exemples d'espace vectoriels normés complets.

A/ Espaces de Banach. [G]

On considère ici E et F deux evn.

Définition 12: Banach

Théorème 13 : Tout evn de dimension finie est complet.

Proposition 14: Si F Banach alors $\mathcal{L}(E,F)$ est un Banach, $(C_b(\mathbb{R},\mathbb{R}),||\cdot||_{\infty})$ est un Banach.

Proposition 15 : (X,d) est complet si et seulement si toute série absolument convergente converge.

Application 16: L'exponentielle matricielle est bien définie.

Application 17: Lemme de Von-Neumann + GL(E) est un ouvert.

B/ Espaces $L^p(\mu)$. [BP] [BREZ]

On considère ici (X, \mathcal{A}, μ) un espace mesuré.

Définition 18 : Espaces L^p et L^∞ avec les normes associées.

Proposition 19 : Inégalité de Hölder.

Corollaire 20 : Inégalité de Minkowski.

Définition 21 : Les espaces $L^p(\mu)$ sont des evn.

Développement 1

Théorème 22 : Riesz-Fischer : $L^p(\mu)$ est un Banach

Remarque 23 : $L^2(\mu)$ est un espace de Hilbert.

C/ Espaces de Hilbert. [HL]

Définition 24 : Espace préhilbertien, produit scalaire.

Définition 25 : Espace de Hilbert.

Exemple 26: Tout espace préhilbertien de dimension finie est de Hilbert, $C_{2\pi}^0(\mathbb{R},\mathbb{C})$ est de Hilbert.

Développement 2.a)

Théorème 27: Théorème de projection sur un convexe fermé.

Corollaire 28 : Si C = F sev fermé alors $H = F \oplus F^{\perp}$.

Application 29 : Existence et unicité espérance conditionnelle.

Application 30 : Lemme de séparation d'un point et d'un convexe fermé et enveloppe convexe de $O_n(\mathbb{R})$.

Développement 2.b)

Corollaire 31 : Théorème de représentation de Riesz.

Application 32: Existence adjoints dans un Hilbert.

III/ Utilisation de la complétude.

A/ Prolongement d'applications. [G] [GW]

Théorème 33 : Si E, F métriques, A dense dans $E, f: A \to F$ uniformément continue, il existe un unique prolongement uniformément continue.

Corollaire 34 : Pareil pour pour linéaire continue avec ev
n et ${\cal F}$ Banach.

Définition 35 : Espace de Schwarz.

Proposition 36: $S(\mathbb{R})$ est dense dans $L^2(\mathbb{R})$.

Théorème 37 : Formule de Fourier-Plancherel dans $S(\mathbb{R})$.

Application 38 : $\frac{\mathcal{F}}{\sqrt{2\pi}}$ est une isométrie.

B/ Théorème de point fixe. [G]

Théorème 39 : Théorème de point fixe de Banach-Picard.

Remarque 40 : Faux si seulement d(f(x), f(y)) < d(x, y) considérer sur \mathbb{R} $f: x \mapsto x + \frac{1}{x}$ (Mais vrai si X compact).

Corollaire 41 : Si f^r est k-contractante avec 0 < k < 1 alors f admet un unique point fixe.

Corollaire 42: Point fixe à paramètres.

Application 43 : Théorème de Cauchy-Lipschitz avec hypothèse globalement lipschitzien.

Exemple 44 : Existence et unicité de la solution de l'équation différentielle Y'(t) = AY(t) avec $Y(t_0) = Y_0$ et $A \in M_n(\mathbb{R})$.

- [G] Gourdon Analyse p. 20-27 et p. 48-50
- [BP] Briane-Pagès Théorie de l'intégration 4ème éd. p. 153
- [BREZ] Brézis Analyse fonctionnelle p. 57
- [HL] Hirsch-Lacombe Éléments d'analyse fonctionnelle p. 84-96
- [GW] Gasquet-Witomski Analyse de Fourier p. 141 et p. 158

LEÇON N° 206 : EXEMPLE D'UTILISATION DE LA DIMENSION FINIE EN ANALYSE.

I/ Topologie en dimension finie.

On prend E un $\mathbb{K}(\mathbb{R} \text{ ou } \mathbb{C})$ -ev avec norme $||\cdot||_E$.

A/ Dans les espaces vectoriels normés. [G]

Définition 1 : Normes équivalentes.

Développement 1.a)

Lemme 2 : Pour tout E IK-ev, les fermés bornés de $(E,||\cdot||_{\infty,E})$ sont compacts.

Théorème 3 : Équivalence des normes en dimension finie.

Corollaire 4: Toute application linéaire d'un evn de dimension finie vers un evn quelconque est continue.

Remarque 5 : Faux en dimension infinie avec $P\mapsto P'$ avec la norme infinie sur $\mathbb{R}[X].$

Corollaire 6 : Tout sev de dimension finie d'un evn est fermé.

Application $7 : \exp(A) \in \mathbb{K}[A]$.

 ${\bf Corollaire~8: Tout~espace~de~dimension~finie~est~complet.}$

B/ Compacité. [G] [CAL]

Corollaire 9 : Les compacts en dimension finie sont les fermés bornés.

Exemple 10: Les segments sur \mathbb{R} sont compacts, $O_n(\mathbb{R})$ est compact.

Développement 1.b)

Théorème 11: Théorème de Riesz

Proposition 12 : En dimension finie, une suite bornée converge si et seulement si elle a une unique valeur d'adhérence.

Exemple 13 : $((-1)^n)_n$ admet 2 valeurs d'adhérences donc ne converge pas.

Application 14: La décomposition polaire est un homéomorphisme.

II/ En calcul différentiel.

A/ Applications différentiables sur un ouvert de \mathbb{R}^n . [PGCD]

Dans toute la suite $\mathcal{U} \subset \mathbb{R}^n$ ouvert et $n, p \in \mathbb{N}^*$.

Définition 15 : Application différentiable et différentielle.

Remarque 16 : En dimension finie, la différentiabilité ne dépend pas de la norme.

Définition 17 : Dérivabilité selon un vecteur + dérivées partielles.

Théorème 18 : Si les dérivées partielles existent et sont continues alors la fonction est de classe C^1 .

Définition 19 : Matrice jacobienne.

Proposition 20 : Règle de la chaîne.

Application 21: Calcul du laplacien en polaire.

Définition 22 : C^1 -difféomorphisme.

Théorème 23 : Changement de variable.

 ${\bf Application} \ {\bf 24}: {\bf Int\'egrale} \ {\bf de} \ {\bf Gauss}.$

 $B/\ Optimisation.\ [G]\ [PGCD]$

Définition 25 : Différentilles partielles secondes.

Théorème 26: Théorème de Schwarz.

Définition 27: Matrice Hessienne, elle est symétrique.

Remarque 28 : La hessienne est la matrice de la forme bilinéaire associée.

Théorème 29 : Si f C^2 CN et CS pour avoir un minimum local.

Théorème 30 : Théorème des extrema liés.

Développement 2

Proposition 31 : Différentielle du déterminant : Si $M, H \in M_n(\mathbb{R})$, alors $d_M(\det)(H) = \operatorname{Tr}(^t\operatorname{Com}(M)H)$.

Application 32 : $\mathrm{SO}_n(\mathbb{R})$ est l'ensemble des éléments de $\mathrm{SL}_n(\mathbb{R})$ de norme 2 minimale.

Application 33: Inégalité arithmético-géométrique.

III/ Applications.

A/ Projection dans un préhilbertien et séries de Fourier. [G]

Définition 34 : Espace préhilbertien + Hilbert.

Remarque 35 : En dimension finie sont des Hilbert.

Théorème 36 : Théorème de projection sur un convexe fermé non vide.

Corollaire 37: La projection est continue, linéaire.

Définition 38 : Espace des fonctions D.

Notation 39 : Les polynômes trigonométriques forment une famille libre orthonormale de D.

Proposition 40: Projection sur \mathcal{P}_n .

Corollaire 41 : Inégalité de Bessel + Parseval.

B/ En équations différentielles. [G] [PGCD]

On considère les équations du type Y'(t) = A(t)Y(t) + b(t).

Théorème 42 : Théorème de Cauchy linéaire.

Proposition 43 : L'espace des solutions est un sous-espace affine de dimension n.

Définition 44: Wronskien.

Proposition 45 : (Identité d'Abel) Équation différentielle vérifiée par le Wronskien : W'(t) = Tr(A(t))W(t) et W(0) = 1.

Application 46 : $\det(e^{tA}) = e^{t\operatorname{Tr}(A)}$.

- [G] Gourdon Analyse p. 50, p. 258, p. 321 et p. 358
- [CAL] Caldéro Histoires hédonistes tome 1 p. 201
- [PGCD] Rouvière Petit Guide du Calcul Différentiel p. 39, p. 76, p. 283 et p. 359

LEÇON N° 208 : ESPACES VECTORIELS NORMÉS, APPLICATIONS LINÉAIRES CONTINUES. EXEMPLES.

Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , E, F et G trois \mathbb{K} -ev et (X, \mathcal{A}, μ) un espace mesuré.

I/ Normes et applications linéaires continues sur un espace vectoriel.

A/ Norme. [G] [PGCD]

Définition 1 : Définition d'une norme et d'un evn

Exemple 2: $(\mathbb{K}, |\cdot|)$, \mathbb{R}^n et ses normes p et $(C_b^0(\mathbb{R}, \mathbb{R}), ||\cdot||_{\infty})$ sont des evns.

Proposition 3 : $L^p(\mu)$ est un evn pour $||\cdot||_p$.

Définition 4 : Définition de deux normes équivalentes.

Exemple 5 : Dans \mathbb{K}^n , $||\cdot||_1 \sim ||\cdot||_\infty$ car $||\cdot||_\infty \leq ||\cdot||_1 \leq n||\cdot||_\infty +$ équivalence des normes p, dans $C^0([0,1],\mathbb{R})$, $||\cdot||_1$ et $||\cdot||_\infty$ ne sont pas équivalentes.

B/ Applications linéaires continues. [G]

Théorème 6 : Différentes équivalences pour être linéaire continue.

Exemple 7 : La transformée de Fourier sur $L^1(\mathbb{R})$ est linéaire continue.

Remarque 8 : Pour montrer qu'une application linéaire est continue on utilise surtout critère lipschitzien.

Exemple 9 : La continuité dépend de la norme, considérer $\delta: f \mapsto f(0)$ avec $||\cdot||_{\infty}$ et $||\cdot||_1$.

Définition 10 : Ensemble des applications linéaires continues entre deux evns et norme subordonnée.

Proposition 11 : La norme subordonnée est une norme d'algèbre sur $\mathcal{L}(E)$.

Proposition 12 : La continuité est préservée par équivalence des normes sur l'ensemble de départ.

Proposition 13 : Si $f \in E^*$, f continue si et seulement si $\mathrm{Ker}(f)$ est fermé.

Remarque 14 : En particulier H est un hyperplan fermé si c'est le noyau d'une forme linéaire continue.

II/ Cas de la dimension finie.

A/ Équivalence des normes. [G] [PGCD]

Proposition 15: $(E, ||\cdot||_E)$ evn alors $||\cdot||_E$ est continue.

Développement 1.a)

Théorème 16: Théorème d'équivalence des normes en dimension finie.

Remarque 17: La réciproque est vraie.

 $\begin{tabular}{ll} \textbf{Corollaire 18:} Toute application linéaire définie sur un evn de dimension finie est continue. \end{tabular}$

Contre-exemple 19 : Faux en dimension infinie avec $P\mapsto P'$ et la norme infinie sur $\mathbb{R}[X]$.

Corollaire 20: Tout espace de dimension finie est complet.

Corollaire 21: Tout sev de dimension finie d'un evn est fermé.

Application 22 : L'exponentielle matricielle est un polynôme en la matrice : $\exp(A) \in \mathbb{K}[A]$.

Corollaire 23 : Les parties compactes d'un evn sont les parties fermées et bornées.

Exemple 24 : $O_n(\mathbb{R})$ est compact.

Développement 1.b)

Théorème 25 : Théorème de Riesz.

Application 26: Les compacts en dimension infinie sont d'intérieur vide.

B/ Normes sur les espaces de matrice. [PGCD] [ALL]

Définition 27: Normes matricielles.

Proposition 28 : Les normées subordonnées $||\cdot||_{p,q}$ sont des normes matricielles.

Proposition 29 : Calcul de quelques normes subordonnées.

Application 30 : Les normes matricielles sont utiles en analyse numérique pour les méthodes itératives de résolution de systèmes linéaires (Gauss-Seidel et Jacobi).

III/ Cas de la dimension infinie.

A/ Les espaces de Banach. [G] [BREZ]

Définition 31: Définition Banach.

Exemple 32: Tout evn de dimension finie est de Banach, $(C^0([0,1],\mathbb{R}),||\cdot||_{\infty})$ est de Banach.

Proposition 33: Si F de Banach alors $\mathcal{L}(E,F)$ est de Banach.

Théorème 34 : Riesz-Fischer : $L^p(\mu)$ est complet.

Théorème 35: E de Banach si et seulement si toute série absolument convergente converge.

Application 36: Lemme de Von-Neumann et GL(E) est ouverte.

Application 37: L'exponentielle matricielle est bien définie.

Théorème 38 : Si E de Banach alors les applications linéaires continues bijectives sont des homéomorphismes.

Proposition 39: Si $||\cdot||_1 \sim ||\cdot||_2$ et $(E,||\cdot||_1)$ est complet alors $(E,||\cdot||_2)$ est complet.

Application 40 : Théorème de Cauchy linéaire.

Théorème 41: Extension par densité d'applications linéaires continues.

Application 42 : Extension de la transformée de Fourier de $S(\mathbb{R})$ sur $L^2(\mathbb{R})$.

B/ Espaces de Hilbert. [HL]

Définition 43 : Espaces de Hilbert : espaces préhilbertiens complet.

Exemple $44:L^2(\mu)$ est un espace de Hilbert et l'ensemble des fonctions continues de \mathbb{R} dans \mathbb{C} 2π -périodiques aussi.

Remarque 45: La norme dérive d'un produit scalaire si et seulement si elle vérifie l'identité du parallélogramme.

Développement 2.a)

Théorème 46: Théorème de projection sur un convexe fermé.

Corollaire 47: Théorème de représentation de Riesz.

Application 48: Existence des adjoints dans un Hilbert.

- [G] Gourdon Analyse p. 47-57, p. 55 [PGCD] Rouvière Petit Guide du Calcul Différentiel p. 11, p. 16 et p. 24
- [ALL] Allaire Analyse numérique et optimisation p. 428
- [BREZ] Brézis Analyse fonctionnelle p. 57
- [HL] Hirsch-Lacombe Éléments d'analyse fonctionnelle p. 84-96

Leçon n° 209 : Approximation d'une fonction par des fonctions régulières. Exemples et applications,

I/ Approximation par des polynômes.

A/ Interpolation. [DEM]

Théorème 1 : Polynômes interpolateurs de Lagrange.

Théorème 2 : Majoration de l'erreur entre fonction et polynôme interpolateur.

Remarque 3 : L'erreur dépend des dérivées et de la répartition des points.

Remarque 4 : Phénomène de Runge : cas où le polynôme interpolateur ne converge pas simplement vers la fonction.

B/ Approximation locale. [R]

Théorème 5 : Taylor-Young.

Application 6 : DL de e^x et $\cos(x)$.

Théorème 7 : Taylor-Lagrange.

Application 8 : Critère pour être DSE au voisinage d'un point en majorant la dernière dérivée.

C/ Approximation uniforme sur un compact. [HL] [G]

Lemme 9 : Lemme de Dini.

Développement 1

Application 10 : Existence d'une suite de polynômes convergeant uniformément vers $|\cdot|$ sur [-1,1].

Théorème 11: Stone-Weierstrass.

Corollaire 12 : L'ensemble des fonctions lipschitzienne de X compact dans $\mathbb R$ est dense.

Corollaire 13 : Si a < b, pour tout $f \in C^0([a,b],\mathbb{R})$, il existe $P_n \in \mathbb{R}[X]$ telle que (P_n) converge uniformément vers f.

Remarque 14 : Ce n'est plus vrai si on enlève le caractère compact car si P_n suite de polynômes CVU vers f sur \mathbb{R} alors f est un polynôme.

II/ Approximation par convolution. [BP]

Proposition 16 : uniforme continuité de la translation.

Proposition 17: Convolution $L^p * L^q$.

Proposition 18 : Propriété de régularisation.

Proposition 19 : $(L^1(\mathbb{R}), +, \times, *)$ est une algèbre de Banach commutative sans unité.

Définition 20 : Approximation de l'unité.

Exemple 21 : Si $\varphi \in C_c^{\infty}(\mathbb{R})$ d'intégrale 1 alors $\varphi_n(x) = n\varphi(nx)$ est une approximation de l'unité.

Proposition 22 : Convergence des approximation de l'unité.

Corollaire 23 : $C_c^{\infty}(\mathbb{R})$ dense dans L^p .

Application 24 : $S(\mathbb{R})$ est dense dans L^2 .

Application 25 : Lemme de Riemann-Lebesgue.

Application 26 : La transformée de Fourier dans $L^1(\mathbb{R})$ est injective.

III/ Bases hilbertiennes de fonctions régulières.

A/ Polynômes trigonométriques et séries de Fourier. [EA]

Définition 27 : Définition de l'espace $L_{2\pi}^p$.

Proposition 28: $(e^{inx})_{n\in\mathbb{Z}}$ est une base hilbertienne de $L^2_{2\pi}$.

Définition 29 : Coefficients de Fourier.

Lemme 30 : Lemme de Riemann-Lebesgue.

Définition 31 : Série trigonométrique.

Définition 32 : Noyau de Dirichlet et Féjer.

Proposition 33: Propriétés et lien entre les deux noyaux.

Théorème 34 : Féjer.

Remarque 35 : Nouvelle démonstration que les polynômes trigonométriques forment une base hilbertienne de $L_{2\pi}^2$.

Théorème 36 : Parseval dans le cas L^2 .

Théorème 37 : Dirichlet.

Application 38 : Calcul des $\zeta(2k)$ avec les coefficients de Bernouilli.

Théorème 39 : CVN des séries de Fourier si continue et $C^1_{\rm pm}$

Développement 2

Application 40 : Résolution de l'équation de la chaleur dans une barre par les séries de Fourier.

B/ Polynômes et fonctions de Hermite. [EA]

Définition 41 : Polynômes de Hermite.

Proposition 42 : Après renormalisation, ils forment une base hilbertienne de L^2_{ω} avec $\omega: x \mapsto e^{-x^2}$.

Proposition 43: Diagonalisation de la transformée de Fourier sur $L^2(\mathbb{R})$.

- [DEM] Demailly Analyse numérique p. 21-24 et p. 36
- [R] Rombaldi Éléments d'analyse réelle p. 287 et p. 307
 [HL] Hirsch-Lacombe Analyse fonctionnelle p. 26-31

- [G] Gourdon Analyse p. 228
 [BP] Briane-Pagès Théorie de l'intégration 4ème éd. p. 259
- [EA] El Amrani Analyse de Fourier p. 169-201, p. 239 et p. 246-

LEÇON N° 213 : ESPACES DE HILBERT. EXEMPLES D'APPLICATIONS.

 $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et soit H un \mathbb{K} -ev.

I/ Espaces de Hilbert et leur structure.

A/ Espaces préhilbertiens. [HL]

Définition 1 : Produit scalaire sur \mathbb{R} ou \mathbb{C} .

Définition 2 : Espace préhilbertien.

Exemple $3: \mathbb{R}^d$, \mathbb{C}^d et $L^2(\mu)$ avec μ mesure positive sont des espaces préhilbertiens.

Proposition 4 : Inégalité de Cauchy-Schwarz.

Corollaire 5 : On peut définir une norme avec le produit scalaire.

Corollaire 6 : $\phi_y = \langle \cdot, y \rangle$ est continue de norme ||y||.

Proposition 7 : Identité du parallélogramme.

Théorème 8 : Théorème de Fréchet Von-neumann : Une norme dérive du produit scalaire si et seulement si elle vérifie l'identité de parallélogramme.

Définition 9 : Orthogonal d'une partie et de deux éléments.

Proposition 10: Toutes les relations sur les orthogonaux.

Théorème 11 : Pythagore.

B/ Espaces de Hilbert : définition et exemples. [HL]

Définition 12 : Espaces de Hilbert.

Exemple 13 : Tout espace préhilbertien de dimension finie est un Hilbert, $L^2(\mu)$ est un Hilbert.

C/ Théorème de projection sur un convexe fermé. [HL] [OBJ]

Développement 1.a)

Théorème 14 : Théorème de projection sur un convexe fermé + annexe.

Proposition 15 : Si on prend F un sev fermé, p_F est linéaire, continue, 1-lipschitzienne.

Corollaire 16 : $E = F \oplus F^{\perp}$.

Corollaire 17: F dense si et seulement si $F^{\perp} = \{0\}$.

Application 18 : Lemme de séparation d'un point et d'un convexe fermé.

Développement 1.b)

Théorème 19: Théorème de représentation de Riesz.

Application 20 : Existence du gradient.

Application 21 : Existence adjoints dans les espaces de Hilbert.

D/ Bases hilbertiennes. [HL] [EA]

Définition 22 : Base orthogonale et orthonormale.

Proposition 23 : Procédé de Gram-Schmidt.

Proposition 24: Une base orthogonale est libre.

Définition 25: Base hilbertienne.

Exemple 26 : $C_{2\pi}^0(\mathbb{R},\mathbb{C})$ est un Hilbert de base hilbertienne $e_n(x) = e^{inx}$.

Remarque 27 : Avec la prop 17, on a un moyen de montrer que des bases sont hilbertiennes.

Développement 2.a)

Exemple 28: L^2_{ω} avec le produit scalaire $\langle f,g\rangle = \int_{\mathbb{R}} f(x)\overline{g(x)}e^{-x^2} dx$ a pour base hilbertienne $\left(\frac{H_n}{2^n n! \sqrt{2\pi}}\right)$ (les polynômes de Hermite).

Proposition 29: Projection sur un espace de dimension finie.

Proposition 30 : Inégalité de Bessel.

Théorème 31 : Bessel-Parseval.

Théorème 32 : Expression $x = \sum_{i \in I} \langle x, e_i \rangle e_i$.

Développement 2.b)

Application 33 : Diagonalisation de la transformée de Fourier sur $L^2(\mathbb{R})$.

II/ Applications aux séries de Fourier. [OBJ] [G] [FGNAna2]

Définition 34 : Espace $L^2(\mathbb{T})$ muni de son produit scalaire.

Proposition 35 : Sa base hilbertienne et définition coefficients de Fourier.

Proposition 36 : Égalité de Parseval.

Application 37 : Calcul de $\zeta(2)$ et $\zeta(4)$.

Application 38 : En utilisant les séries de Fourier dans un cadre plus grand on peut calculer les $\zeta(2k)$ pour tout k > 1.

- [HL] Hirsch-Lacombe Analyse fonctionnelle p. 84-96
- [G] Gourdon Analyse p. 261
- [OBJ] Beck Malick Peyré Objectif Agrégation p. 97 et p. 122
 [EA] El Amrani Analyse de Fourier p. 239 et p. 246-247
 [FGNAna2] Francinou Gianella Nicolas Analyse 2 p. 308

Leçon n°215 : Applications différentiables définies sur un ouvert de \mathbb{R}^n . Exemples et applications.

Dans toute la suite on notera $n, p \in \mathbb{N}^*$ et $\mathcal{U} \subset \mathbb{R}^n$ un ouvert.

I/ Applications différentiables.

A/ Notion de différentielle. [G] [PGCD]

Définition 1 : Applications différentiable en a et différentielle.

Proposition 2 : Unicité différentielle.

Exemple 3 : Les applications affines et linéaires sont différentiables.

Exemple 4 : Si (n,p) = (1,1) alors f différentiable en $a \iff f$ dérivable en a. (+ Annexe avec tangente)

Exemple 5 : Le produit matriciel est différentiable et calcul de sa différentielle.

Exemple 6 : L'inversion matricielle est différentiable et calcul de sa différentielle.

Proposition 7 : Différentiable \implies continue.

Proposition 8 : Stabilité de la différentiabilité par la somme et le produit.

Proposition 9 : Règle de la chaîne.

Corollaire 10 : Formule de Leibniz.

Corollaire 11 : Différentielle d'une forme bilinéaire.

Définition 12 : Définition du gradient (existe toujours par le théorème de Riesz).

B/ Différentielles partielles. [G] [PGCD]

Définition 13 : Différentielle selon un vecteur.

Proposition 14: f différentiable $\implies f$ est dérivable selon tout vecteur.

Contre-exemple 15 : La réciproque est fausse avec $f:(x,y)\mapsto \frac{xy}{x^2+y^2}$ et f(0,0)=0, f est dérivable selon tout vecteur en 0 mais n'est pas différentiable en 0 car n'y est même pas continue.

Définition 16 : Dérivées partielles.

Remarque 17 : Expression différentielle et gradient dans le cas p=1 avec les dérivées partielles.

Définition 18: Matrice jacobienne.

Remarque 19 : Expression de la règle de la chaîne avec les dérivées partielles.

 $\mathbb{C}/$ Applications de classe C^1 . [PGCD]

Définition 20 : Applications C^1 et C^1 -difféomorphisme.

Exemple 21 : Le changement de variable polaire est un \mathbb{C}^1 -difféomorphisme.

Développement 1.a)

Proposition 22 : Différentielle du déterminant : Si $M, H \in M_n(\mathbb{R})$, alors $d_M(\det)(H) = \operatorname{Tr}({}^t\operatorname{Com}(M)H)$.

Théorème 23 : $C^1 \iff$ admet des dérivées partielles continues.

II/ Différentielles d'ordres supérieurs.

A/ Différentielles secondes. [PGCD]

Définition 24 : Différentielles de tout ordre et C^k et C^{∞} .

Définition 25 : Matrice hessienne et forme bilinéaire associée.

Théorème 26 : Théorème de Schwarz.

 ${\bf Application}\ {\bf 27}: {\bf La}\ {\bf hessienne}\ {\bf est}\ {\bf donc}\ {\bf sym\acute{e}trique}.$

 $\rm B/\ \acute{E}tude$ locale et globale. $\rm [G]\ [PGCD]$

Proposition 28: C^p équivaut admettre en tout ordre dériv partielles continues.

Théorème 29: Théorème d'inversion locale.

Application 30: Théorème des fonctions implicites.

Théorème 31 : Formule de Taylor-Young.

Théorème 32 : Formule de Taylor avec reste intégral.

Théorème 33 : Inégalité des accroissements finis.

Corollaire 34 : Si \mathcal{U} convexe alors f est k-lipschitzienne.

Corollaire 35 : Si \mathcal{U} connexe et si la différentielle est nulle alors la fonction est constante sur \mathcal{U} .

Développement 2

Théorème 36 : Interversion limite-différentielle par la connexité.

Application 37 : L'exponentielle matricielle est C^1 et calcul de sa différentielle.

C/ Recherche d'extrema. [PGCD] [G]

Dans cette partie on suppose p = 1.

Définition 38: Extrema locaux et globaux.

Théorème 39 : CN et CS pour avoir un extremum avec des conditions sur la hessienne.

Théorème 40: Théorème des extréma liés.

Développement 1.b)

Application $41: SO_n(\mathbb{R})$ est l'ensemble des éléments de $SL_n(\mathbb{R})$ de norme 2 minimale.

- [PGCD] Rouvière Petit Guide du Calcul Différentiel p. 39, p. 95,
 p. 179, p. 283 et p. 359
 [G] Gourdon Analyse p. 303-321

LEÇON N° 218 : FORMULES DE TAYLOR. EXEMPLES ET APPLICATIONS.

I/ Approximation locale : Formule de Taylor-Young. [R] [PGCD]

Théorème 1 : Théorème de Taylor-Young.

Théorème 2 : Théorème de Taylor-Young en dimensions supérieures.

Définition 3 : Développements limités.

Proposition 4 : Unicité du développement.

Application 5: $e^{t(A+B)} = e^{tA}e^{tB} \iff [A,B] = 0.$

Proposition 6 : Si f n-fois dérivable alors f admet un DL à l'ordre n.

Proposition 7 : Si n=1 la réciproque est vraie : f dérivable en $a \Longleftrightarrow \mathrm{DL}$ à l'ordre 1 en a.

Contre-exemple 8 : Faux pour n > 1 avec $f(x) = x^3 \sin(1/x)$ qui admet un DL à l'ordre 2 en 0 mais n'est pas deux fois dérivable en 0.

Exemple 9 : DL usuels et $\frac{1}{\cos(x)} = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + o(x^4)$.

Application 10 : Les développements limités permettent de lever des formes indéterminées pour calculer des limites.

II/ Approximation globale.

A/ Formule de Taylor-Lagrange. [R]

Théorème 11 : Taylor-Lagrange.

Corollaire 12 : Inégalité de Taylor-Lagrange.

Remarque 13 : Pour n = 0 on retrouve l'inégalité des accroissements finis.

 $\rm\,B/$ Formule de Taylor avec reste intégral. $\rm\,[R]$ $\rm\,[OBJ]$

Proposition 14 : Taylor avec reste intégral.

Remarque 15 : Avec plus de régularité on a donc plus d'informations sur le reste de la formule de Taylor-Young.

Proposition 16 : Reste-intégral en dimension supérieur.

Application 17: Lemme de Hadamard.

C/ Application : Développement en série entière. [EA] [R]

Définition 18 : DSE au voisinage de x_0 .

Proposition 19 : Si f DSE en $x_0 \implies C^{\infty}$ au voisinage de $x_0 + \text{le DSE}$ est donné par la formule de Taylor.

Application 20 : Application de la formule de Taylor-Lagrange : Critère pour être DSE en majorant la dernière dérivée.

Application 21 : Application de la formule de Taylor avec reste intégral : DSE de e^x , $\cos(x)$, $\sin(x)$ et $(1+x)^{\alpha}$.

Théorème 22 : Bernstein.

Théorème 23 : Inégalité de Kolmogorov.

III/ Applications des formules de Taylor.

A/ Recherche d'extrema. [PGCD]

Définition 24: Minimum et maximum local.

Définition 25 : Point critique.

Proposition 26: CN et CS pour avoir un extremum local.

Exemple 27: $f(x,y) = x^2 + y^4$ a un minimum global en 0 strict.

B/ Applications en analyse numérique. [PGCD] [DEM]

Proposition 28 : Méthode de Newton.

Application 29 : Méthode de Héron.

Proposition 30 : Schéma d'Euler explicite pour les équations différentielles.

C/ Étude asymptotique d'intégrales. [PGCD]

Développement 1

Proposition 31 : Méthode de Laplace.

Application 32 : Stirling généralisé.

D/ En probabilités. [WA]

Définition 33 : Fonction caractéristique.

Développement 2

Théorème 34 : Paul-Lévy.

Théorème 35: Théorème central limite.

Application 36: Intervalles de confiance asymptotique.

- [R] Rombaldi Éléments d'analyse réelle p. 287 et p. 307
- [PGCD] Rouvière Petit Guide du Calcul Différentiel p. 142, p. 287, p. 339 et p. 359
- [OBJ] Beck Malick Peyré Objectif Agrégation p. 25
- [EA] El Amrani Suites et séries de fonctions p. 241-244
- [WA] Walter Appel Probabilités pour les Non-Probabilistes p. 358, p. 362 et p. 438
- [DEM] Demailly Analyse numérique p. 133

LEÇON N° 219 : EXTREMA : EXISTENCE, CARACTÉRISATION, RECHERCHE. EXEMPLES ET APPLICATIONS.

Soit X un \mathbb{R} -evn et $f: X \to \mathbb{R}$.

I/ Existence et unicité d'extrema.

A/ Premières définitions. [PGCD]

Définition 1: Maximum/minimum local/global.

Remarque 2: Un extremum global est local et l'inverse est faux avec $x \mapsto (x-2)x(x+2)$ (la fonction possède deux extrema locaux qui ne sont pas globaux.

B/ Compacité. [G]

Théorème 3 : Théorème des bornes atteintes.

Application 4 : Théorème de point fixe dans un compact : si K compact et f : $K \to K$ continue telle que d(f(x), f(y)) < d(x, y) alors f admet un unique point fixe.

Application 5: Si K_1 et K_2 sont des compacts alors $\exists x_1, x_2$ tels que $d(x_1, x_2) = d(K_1, K_2)$.

Proposition 6 : Si f continue coercive de X evn fermé non borné en dimension finie dans \mathbb{R} admet un minimum.

Application 7 : Si F fermé et K compact, d(F,K) est atteinte.

C/ Convexité. [OBJ] [FGNAlg3]

Définition 8 : Ensembles, fonctions convexes et fonctions strictement convexes.

Exemple 9 : La norme est strictement convexe.

Théorème 10 : Caractérisations de la convexité.

Application 11: $A \in S_n(\mathbb{R}), x \mapsto \langle Ax, x \rangle$ est convexe si et seulement si A positive.

Proposition 12 : L'ensemble des extrema d'une fonction convexe est un convexe, si f strictement convexe et admet un minimum alors f a un unique extremum.

Application 13 : Ellipsoïde de John-Loewner.

Exemple 14 : L'existence d'un point minimum pour une fonction strictement convexe n'est pas vrai en général (considérer exp).

D/ Espaces de Hilbert. [HL]

Développement 1.a)

Théorème 15: Théorème de projection sur un convexe fermé.

Corollaire $16: p_F$ est continue, linéaire, 1-lipschitzienne.

Corollaire 17 : Si C = F sev fermé alors $H = F \oplus F^{\perp}$.

Application 18 : Existence de l'espérance conditionnelle en probabilité.

Développement 1.b)

Théorème 19 : Théorème de représentation de Riesz.

Application 20: Existence des adjoints dans un Hilbert.

E/ Cas des fonctions holomorphes. [T] [OBJ]

Théorème 21 : Formule de Cauchy.

Corollaire 22 : Propriété de la moyenne.

Proposition 23 : Inégalités de Cauchy.

Corollaire 24 : Théorème de Liouville.

Application 25 : Théorème de d'Alembert-Gauss.

Proposition 26: Principe du maximum local.

Corollaire 27 : Principe du minimum local.

Proposition 28: Principe du maximum global.

Application 29 : Lemme de Schwarz sur les automorphismes du disque unité.

II/ Extrema et calcul différentiel.

A/ Propriétés du premier ordre. [R][PGCD]

Définition 30 : Point critique.

Théorème 31 : Si f admet un extremum local en a alors $d_a f = 0$.

Remarque 32 : La réciproque est fausse avec $x\mapsto x^3$ (la dérivée s'annule en 0 mais 0 n'est pas un extremum local).

Théorème 33 : Rolle.

Corollaire 34 : Inégalité des accroissements finis.

B/ Conditions du second ordre. [PGCD]

Théorème 35 : CN et CS d'existence d'extrema avec des conditions sur la hessienne.

Exemple 36: Le cas de la dimension 2.

Exemple 37 : Pour le dernier cas considérer les trois fonctions $f(x,y)=x^4$, $f(x,y)=-x^4$ et $f(x,y)=x^4-y^4$.

 $\mathrm{C}/\mathrm{Optimisation}$ sous contrainte. $[\mathrm{PGCD}]$ $[\mathrm{OBJ}]$

Théorème 38: Théorème des extrema liés.

Développement 2

Proposition 39 : Différentielle du déterminant : Si $M, H \in M_n(\mathbb{R})$, alors $d_M(\det)(H) = \text{Tr}(^t\text{Com}(M)H)$.

Application 40 : $\mathrm{SO}_n(\mathbb{R})$ est l'ensemble des éléments de $\mathrm{SL}_n(\mathbb{R})$ de norme 2 minimale.

Application 41 : Diagonalisation des endomorphismes symétriques.

III/ Optimisation numérique.

A/ Newton. [PGCD]

Théorème 42 : Méthode de Newton.

Application 43 : Méthode de Héron.

Application 44 : En combinant la méthode de Newton avec la dichotomie on peut approximer les racines d'un polynôme.

B/ Moindres carrés : régression linéaire.

Proposition 45 : Coefficient directeur et ordonnée à l'origine de la droite d'ajustement.

- [R] Rombaldi Éléments d'analyse réelle p. 251 et p. 258
- [PGCD] Rouvière Petit Guide du Calcul Différentiel p. 142 et p. 360-364
- [OBJ] Beck Malick Peyré Objectif Agrégation p.20, p. 26-30 et p. 72
- [G] Gourdon Analyse p. 31-34
- [HL] Hirsch-Lacombe Éléments d'analyse fonctionnelle p. 91-96
- [FGNAlg3] Francinou Gianella Nicolas Algèbre 3 p. 229
- [T] Tauvel Analyse complexe pour la Licence 3 p. 84-87

LEÇON N° 220 : ILLUSTRER PAR DES EXEMPLES LA THÉORIE DES ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES.

I/ Théorèmes fondamentaux de la théorie des EDOs.

A/ Théorème de Cauchy-Lispchitz. [G] [BERT]

Définition 1 : Solutions globales et maximales.

Théorème 2 : Théorème de Cauchy-Lipschitz.

Remarque 3 : On peut passer d'une équation différentielle d'ordre n à une équation différentielle d'ordre 1

Proposition 4: $C^1 \Longrightarrow$ localement lipschitzien.

Application 5: $y' = t^2 e^y$ et $y(0) = y_0$ admet des solutions sur \mathbb{R} .

Exemple 6: $y'' + (y')^2 \sin(ty) = 0$ admet des solutions sur \mathbb{R} .

B/ Prolongement des solutions. [BERT]

Théorème 7 : Théorème de sortie de tout compact.

Corollaire 8 : Théorème des bouts.

Exemple 9: $y' = y^2$ et x' = -x avec y' = -y.

Lemme 10 : Lemme de Grönwall intégral.

 $\label{eq:Application 11:Si} \ f \ \text{continue, localement lipschitzienne et bornée alors la solution est globale.}$

II/ Méthodes de résolution explicite, étude quantitative.

A/ Résolution des EDO linéaires. [G]

Théorème 12 : Théorème de Cauchy linéaire.

Méthode 13 : Méthode de variation de la constante.

Application 14: Formule de Duhamel si A est constante.

Théorème 15 : Solutions explicites d'une équation différentielle linéaire homogène d'ordre n.

B/ Résolution en se ramenant à une EDL. [G]

Exemple 16 : Équation différentielle de Bernouilli.

Application 17 : Résoudre $y' - ty^3 + ty = 0$.

Exemple 18 : Équation de Ricatti.

C/ Utilisation des séries entières. [BERT] [FGNAna4]

Exemple 19 : Résolution de $(t^2 + t)y'' + (3t + 1)y' + y = 0$.

Développement 1

Exemple 20 : Résolution de l'équation de Bessel grâce aux séries entières.

D/ Équations à variables séparables.

Définition 21 : Équations à variables séparables.

Exemple 22 : Résolution de $t \ln(t)y' - y - 1 = 0$.

III/ Étude qualitative des solutions.

A/ Champs de vecteurs, isoclines et points stationnaires. [BERT]

Définition 23 : Équation autonome et trajectoires.

Définition 24 : Isoclines.

Exemple 25 : Système et orientation par quadrant : permet d'avoir des informations sur le portrait de phase et la forme des solutions.

Définition 26 : Courbe intégrale et portrait de phase.

Exemple 27 : Système de Lotka-Voltera.

Exemple 28 : Équation du pendule.

Application 29 : Présentation du cas des équations autonomes d'ordre 2 : portraits de phase de Y' = AY selon les propriétés de diagonalisation de la matrice A.

B/ Stabilité des solutions. [PGCD] [BERT]

Définition 30 : Solutions stables et asymptotiquement stables.

Développement 2

Théorème 31 : Théorème de Liapounov.

- [BERT] Berthelin Équations différentielles p. 14-212

- [G] Gourdon Analyse p. 353-374
 [FGNAna4] Francinou Gianella Nicolas Analyse 4 p. 101
 [PGCD] Rouvière Petit Guide du Calcul Différentiel p. 129

Leçon n° 221 : Équations différentielles linéaires. Systèmes d'équations différentielles linéaires. Exemples et applications.

Soit I un intervalle de \mathbb{R} et $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

I/ Théorie des équations différentielles linéaires.

A/ Premières définitions. [G]

Définition 1 : Équations différentielles d'ordre p et équations différentielles homogènes.

Remarque 2 : On peut toujours se ramener aux cas p=1 avec une matrice compagnon.

Remarque 3 : Si les fonctions sont à valeurs dans \mathbb{K}^n on parle de système d'équations différentielles linéaires et on se ramène au cas p=1 comme avant.

Notation 4 : On note S_H l'ensemble des solutions homogènes et S l'ensemble des solutions.

B/ Théorème de Cauchy linéaire : structure des solutions. [G]

Théorème 5 : Théorème de Cauchy linéaire.

Remarque 6: Réécriture pour les équations différentielles d'ordre n.

Exemple 7: Il existe une unique solution à $y' + y = \sin(t)$ avec y(0) = 1.

Application 8 : Si on trace les différentes solutions avec conditions initiales différentes, elle ne se croisent pas par unicité du théorème de Cauchy.

Contre-exemple 9 : L'hypothèse de linéarité est nécessaire pour l'unicité par exemple $y'=y^{1/2}$ et y(0)=0 on a deux solutions : y(t)=0 et $y(t)=\frac{t^2}{4}$.

Proposition 10 : S_H est un sev de dimension n. S est un espace affine de dimension n et de direction S_H .

Remarque 11 : On a donc $S = \{Y + Y_0, Y \in S_H\}$ où Y_0 est une solutions particulière.

C/ Notion de wronskien. [G] [BERT]

Définition 12 : Wronskien.

Remarque 13 : Expression du Wronskien lorsque l'on a p solutions.

Proposition 14 : Le rang des solutions à t fixé est indépendant de t.

Proposition 15 : $Y_1, ..., Y_p$ solutions indépendantes si et seulement si $\exists t_0$ tel que $w(t_0) \neq 0$ si et seulement si $\forall t, w(t) \neq 0$.

Proposition 16: Identité d'Abel : w'(t) = Tr(A(t))W(t)

Application 17: $\forall t \in \mathbb{R}, \det(e^{tA}) = e^{t \operatorname{Tr}(A)}.$

D/ Stabilité de solutions. [PGCD]

Définition 18: Solutions stables et asymptotiquement stables.

Développement 1

Théorème 19 : Théorème de Liapounov.

II/ Résolutions explicites.

A/ Résolution d'équations homogènes. [BERT]

 ${\bf D\acute{e}finition}$ 20 : Polynôme caractéristique associé à une EDL à coefficients constants.

Proposition 21 : Résolution de Y' = AY : la solution est de la forme $Y(t) = e^{tA}Y_0$.

Remarque 22 : Demande de calculer l'exponentielle de matrice qui n'est pas toujours simple, la réduction aide.

Lemme 23 : Lemme des noyaux.

Théorème 24 : Expression explicite dans le cas constant des équations différentielles autonomes.

Exemple 25 : Cas de l'ordre 2 à coefficients constants.

 ${\bf Application~26:} \ {\bf R\'esolution~de~l\'equation~diff\'erentielle~associ\'ee~\`a~l\'oscillateur~harmonique~sans~frottements.$

B/ Recherche de solutions particulières. [G] [BERT]

Méthode 27 : Méthode de variation des constantes.

Corollaire 28: Formule de Duhamel en dimension 1.

Application 29 : Transformée de Fourier d'une gaussienne.

Exemple 30 : Solutions du premier exemple donné.

C/ Solutions développables en série entière. [BERT] [FGNAna4]

Développement 2

Exemple 31 : Résolution de l'équation de Bessel grâce aux séries entières.

III/ Étude qualitative en dimension 2.

 $\mathbf{A}/$ Localisation des zéros. [BERT]

Théorème 32 : Théorème de localisation de Sturm.

Exemple 33 : y'' + y = 0 s'annule une infinité de fois sur \mathbb{R} . (en effet puisque la résolution explicite est cos)

Exemple 34 : y'' + ty s'annule une fois sur] $-\infty,0$ [et une infinité de fois sur] $0,+\infty$ [.

B/ Portrait de phase d'équations autonomes. [BERT]

Application 35 : Tracer les trajectoires dans le cas Y'=AY en dimension 2 avec les portraits de phase en annexe.

- [BERT] Berthelin Équations différentielles p. 14-212
- [G] Gourdon Analyse p. 353 et p. 357
- [FGNAna4] Francinou Gianella Nicolas Analyse 4 p. 101
- [PGCD] Rouvière Petit Guide du Calcul Différentiel p. 129

Leçon n° 223 : Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications.

On pose $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et $(u_n)_n \in \mathbb{K}^{\mathbb{N}}$.

I/ Convergence des suites numériques.

A/ Limites. [EA] [R]

Définition 1 : Définition suite convergente et divergente.

Exemple 2 : $u_n = 1 + \frac{(-1)^n}{n}$ converge vers 1, $u_n = n$ DV et cas des suites arithmétiques et géométriques.

Théorème 3 : Unicité de la limite.

Proposition 4 : Toute suite numérique convergente est bornée.

Proposition 5 : Linéarité de la limite.

Proposition 6 : Caractérisation séquentielle de la continuité.

Définition 7 : Suites de Cauchy.

Proposition 8 : Toute suite converge est de Cauchy, toute suite de Cauchy est bornée.

Proposition 9: Toute suite de Cauchy converge dans $\mathbb R$ ou $\mathbb C$.

B/ Valeurs d'adhérences. [EA] [G]

Définition 10 : Sous-suite convergente.

Proposition 11 : Si $u_n \to l$ alors toute sous-suite converge vers l.

Définition 12 : Valeurs d'adhérences.

Proposition 13 : Si u_n converge elle n'a qu'une seule valeur d'adhérence.

Exemple $14: (-1)^n$ a deux valeurs d'adhérence 1 et -1.

Proposition 15 : L'ensemble des valeurs d'adhérences est un fermé qui est : $\bigcap_{n\in\mathbb{N}}\overline{\{u_k,\ k\geq n\}}$

Exemple 16 : $(\sin(n))_n$ et $(\cos(n))_n$ ont pour ensemble de valeur d'adhérence [-1,1].

C/ Cas des suites réelles. [EA] [WA]

Lemme 17 : Conservation des inégalités larges.

Théorème 18 : Théorème des gendarmes.

Proposition 19: Limite infinie et inégalité.

Théorème 20: Limite monotone.

Exemple 21 : L'intégrale de Wallis : $(I_n)_n$ converge car est croissante majorée.

Définition 22 : Suites adjacentes.

Proposition 23: Convergence des suites adjacentes.

Application 24 : $H_n = \sum_{k=0}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$.

Lemme 25 : Toute suite réelle admet une sous-suite monotone.

Théorème 26 : Bolzano-Weierstrass.

Corollaire 27 : Un suite converge si et seulement si elle est bornée et n'admet qu'une unique valeur d'adhérence.

Définition 28 : Limite sup et inf.

Remarque 29 : C'est utile en pratique car ces limites sont toujours définies.

Proposition 30 : La limite inf est la plus petite valeur d'adhérence et la limite sup est la plus grande.

Théorème 31 : (u_n) converge si et seulement si $\limsup u_n = \liminf u_n$.

Application 32 : $X_n \to X$ en loi si et seulement si F_{X_n} CVS vers F_X en tout point de continuité de F_X .

II/ Suites particulières.

A/ Séries de nombre réels et complexes, comparaison. [G]

Définition 33 : Série.

Exemple 34 : Cas de la série géométrique.

Proposition 35 : Si $(u_n)_n$ est positive alors $\sum u_n$ converge si et seulement si (S_n) majorée.

Exemple 36 : Séries de Riemann : $\sum \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.

Théorème 37 : Sommation des relations d'équivalents.

Application 38 : Développement asymptotique à l'ordre 2 de la série harmonique.

B/ Suites définies par une relation de récurrence. [R] [FGNAna1]

Théorème 39 : Théorème de Césaro.

Développement 1

Application 40: Développement asymptotique de $u_{n+1} = f(u_n)$ lorsque $f(x) = x - ax^{\alpha} + o(x^{\alpha}) + \text{application aux cas des fonctions sin et } \ln(1+\cdot).$

Application 41 : Développement asymptotique à deux termes de $u_{n+1} = u_n + e^{-u_n}$.

III/ Approximation de réels. [R] [PGCD]

Proposition 42 : Suite adjacentes d'éléments de \mathbb{Q} tendant vers un réel fixé.

${\bf D\'{e}veloppement}\ {\bf 2}$

Théorème 43: Méthode de Newton

Application 44: Méthode de Héron.

Théorème 45 : Les sous-groupe de $(\mathbb{R},+)$ sont soit denses soit fermés du type $a\mathbb{Z}$ avec $a\in\mathbb{R}.$

Application 46 : L'ensemble des valeurs d'adhérence de la suite $(e^{in})_n$ est le cercle unité.

- [EA] El Amrani Suites et séries de fonctions p. 1-38
- [G] Gourdon Analyse p. 19, p. 191-200
- [R] Rombaldi Éléments d'analyse réelle p. 99, p. 114 et p. 165
- [FGNAna1] Francinou Gianella Nicolas Analyse 1 p. 99-103
- [PGCD] Rouvière Petit Guide du Calcul Différentiel p. 142
- [WA] Walter Appel Probabilités pour les Non-Probabilistes p. 411

LEÇON N° 224 : EXEMPLES DE DÉVELOPPEMENTS ASYMPTOTIQUES DE SUITES ET DE FONCTIONS.

 $n \in \mathbb{N}$, on considère ici (X,d) un espace métrique.

I/ Comparaison de suites et de fonctions. [G] [WA]

Définition 1 : Échelle de comparaison.

Exemple 2 : Exemple d'échelles de comparaison.

Définition 3 : Définition développement asymptotique et développement limité (lorsque l'échelle choisie est les monômes).

Exemple 4 : Développement asymptotique pour l'échelle $x^{\alpha} \ln^{\beta}(x)$ de $x \mapsto x^{\frac{1}{x}}$.

Proposition 5 : Unicité lorsque l'échelle de précision est fixée.

Théorème 6 : Formule de Taylor-Young.

Application 7 : Théorème Central Limite

Remarque 8 : Pour avoir DL en a il suffit d'avoir le DL en 0 de $x \mapsto f(x+a)$.

Exemple 9 : DL en 0 de $x \mapsto (1+x)^{\alpha}$.

Proposition 10 : On peut sommer et multiplier les DL.

Exemple 11 : DL en 0 de $\frac{e^x}{1+x}$.

Proposition 12 : On peut composer des DL.

Exemple 13 : DL en 0 de $x \mapsto \ln(\cos(x))$.

Proposition 14: Intégration des DL.

Exemple 15 : DL en 0 de Arctan.

Exemple 16 : Les DL usuels en 0 en annexe.

Application 17: Les DA permettent d'obtenir des informations sur la position des asymptotes.

Remarque 18 : Les notions de développements limités et asymptotiques s'adaptent aux suites de façon équivalente.

II/ Exemples de développements asymptotiques de suites.

A/ Suites et séries numériques. [G]

Théorème 19 : Sommation des équivalents.

Proposition 20 : Comparaison série-intégrale.

Application 21 : Convergence de la série de Bertrand : $\sum \frac{1}{n^{\alpha} \ln(n)^{\beta}}$ converge si et seulement si $\alpha > 1$ ou $(\alpha = 1 \text{ et } \beta > 1)$

 $\ensuremath{\mathbf{Application}}$ $\mathbf{22}:$ Développement asymptotique à deux termes de la série harmonique.

Exemple 23 : Formule de Stirling obtenue par les intégrales de Wallis.

Définition 24 : Définition des coefficients et polynômes de Bernouilli.

Proposition 25 : Propriété sur ces polynômes.

Théorème 26 : Formule d'Euler Mc-Laurin.

Application 27 : Développement asymptotique à tout ordre de la série harmonique.

B/ Suites récurrentes. [FGNAna1]

Développement 1

Exemple 28 : Développement asymptotique de $u_{n+1} = f(u_n)$ lorsque $f(x) = x - ax^{\alpha} + o(x^{\alpha}) + \text{application aux cas des fonctions sin et } \ln(1+\cdot).$

Exemple 29 : Développement asymptotique à deux termes de $u_{n+1} = u_n + e^{-u_n}$.

C/ Suites définies implicitement. [FGNAna1]

Remarque 30 : Pas de méthode générale mais l'idée de départ est de partir de la relation de définition de la suite.

Exemple 31 : Développement asymptotique de a_n définie comme la plus grande racine de $X^{2n}-2nX+1$.

Exemple 32 : Développement asymptotique de $u_n^5 + nu_n - 1 = 0$.

III/ Exemples de développements asymptotiques de fonctions.

A/ Fonctions définies par une intégrale. [G] [PGCD]

Théorème 33: Intégration des relations de comparaison.

Application 34: Développement asymptotique du logarithme intégral Li.

Développement 2

Théorème 35 : Méthode de Laplace

Application 36 : Formule de Stirling intégrale.

B/ Fonctions définies par la somme d'une série. [G]

Exemple 37 : Équivalent de $x \mapsto \sum_{n=1}^{+\infty} x^{n^2}$ en 1⁻.

Exemple 38 : Développement limité de la fonction ζ de Riemann.

- [G] Gourdon Analyse p. 85-93, p. 154, p. 169, p. 200, p. 282 et p. 302
- [PGCD] Rouvière Petit Guide du Calcul Différentiel p. 339
- [FGNAna1] Francinou Gianella Nicolas Analyse 1 p. 99-101 et p. 127-128
- [WA] Walter Appel Probabilités pour les Non-Probabilistes p. 438

Leçon n° 226 : Suites vectorielles et réelles définies par une relation de récurrence $u_{n+1}=f(u_n)$. Exemples. Applications à la résolution approchée d'équations.

I/ Généralités sur les suites récurrentes.

A/ Suites récurrentes d'ordre h et 1. [G]

Définition 1 : Suites récurrentes d'ordre h.

Remarque 2 : On peut toujours se ramener au cas de l'ordre 1 en prenant $g(x_1, ..., x_h) = (f(x_1, ..., x_h), x_1, ..., x_{h-1}).$

B/ Cas des suites récurrentes réelles d'ordre 1. [EA] [G]

On se place ici avec I intervalle de \mathbb{R} , $f:I\to\mathbb{R}$ et $f(I)\subset I$, $u_0\in I$ et $\forall n\in\mathbb{N},\ u_{n+1}=f(u_n).$

Théorème 3 : Caractérisation séquentielle de la continuité.

Corollaire 4: Si $u_n \to l$ et f continue alors f(l) = l.

Exemple 5 : La suite u_n définie par $u_0 = 1$ et $u_{n+1} = u_n^2 - u_n - 3$ a pour limite potentielle -1 ou 3.

Proposition 6 : Lien entre monotonie de f et monotonie de la suite $(u_n)_n$.

Exemple 7 : Cas de la suite récurrente $u_{n+1} = \frac{1}{2-\sqrt{u_n}}$

C/ Suites récurrentes linéaires à coefficients constants. [G]

Définition 8 : Suites récurrentes linéaires à coefficients constants.

Définition 9 : Polynôme caractéristique associé à une suite récurrente.

Proposition 10: Expression explicite.

Remarque 11 : Expression explicite des suites récurrentes d'ordre 2.

Exemple 12 : Suite de Fibonacci.

D/ Quelques familles de suites récurrentes. [G]

Exemple 13 : Suite arithmétique.

Exemple 14 : Suite géométrique.

Exemple 15: Suites homographiques.

II/ Points fixes et suites récurrentes.

A/ Théorème du point fixe. [G] [PGCD]

Théorème 16 : Théorème de point fixe de Banach-Picard. (préciser la suite récurrente apparaissant dans la preuve)

Contre-exemple 17: L'hypothèse d(f(x), f(y)) < d(x, y) ne suffit pas pour l'existence : $f(x) = x + \frac{1}{x}$ n'admet pas de point fixe.

Corollaire 18 : Si f^r est k-contractante avec 0 < k < 1 alors f admet un unique point fixe.

Définition 19: Point fixe attractif et répulsif.

Proposition 20 : Attractivité, superattraction, répulsion.

Exemple 21 : Utilisation des suites récurrentes pour approcher le nombre d'or.

 $\rm B/\ Application\ en\ théorie\ des\ équations\ différentielles\ linéaires.\ [BERT]$

Application 22 : Théorème de Cauchy-Lipschitz dans le cas globalement lipschitzien.

Remarque 23 : On effectue un changement de norme pour rendre une application contractante.

C/ Application en algèbre linéaire. [G]

Lemme 24 : Déterminant circulant.

Proposition 25: Suite de polygone.

D/ Application en probabilité. [WA]

Définition 26: Fonction génératrice.

Développement 1

Théorème 27: Processus de branchement de Galton-Watson.

E/ Développements asymptotiques de suites récurrentes. [FGNAna1]

Développement 2

Exemple 28 : Développement asymptotique de $u_{n+1} = f(u_n)$ lorsque $f(x) = x - ax^{\alpha} + o(x^{\alpha}) + \text{application aux cas des fonctions sin et } \ln(1+\cdot).$

Exemple 29 : Développement asymptotique à deux termes de $u_{n+1} = u_n + e^{-u_n}$.

III/ Méthodes de résolutions d'équations.

A/ Trouver les zéros d'une fonction. [PGCD]

Théorème 30 : Méthode de Newton.

Application 31 : Méthode de Héron.

Application 32 : En couplant la méthode de Newton avec la dichotomie on peut trouver des approximations des racines d'un polynôme.

B/ Méthodes itératives pour la résolution d'un système linéaire. [ALL]

Définition 33: Méthode itérative convergente.

Proposition 34 : Convergence des méthodes itératives.

Définition 35 : Matrice à diagonale strictement dominante.

Proposition 36 : Pour les matrices à diagonale strictement dominante, les méthodes de Jacobi et de Gauss-Seidel convergent.

C/ Approximation de valeurs et vecteurs propres. [ALL]

Proposition 37 : Convergence de la méthode de la puissance itérée.

- [G] Gourdon Analyse p. 21, p. 23 et p. 192
- [EA] El Amrani Suites et séries de fonction p. 38-47
- [PGCD] Rouvière Petit Guide du Calcul Différentiel p. 139
- [BERT] Berthelin Équations différentielles p. 85
- [FGNAna1] Francinou Gianella Nicolas Analyse 1 p. 99-101
- [WA] Walter Appel Probabilités pour les Non-Probabilistes p. 438
- [ALL] Allaire Analyse numérique et optimisation p. 428 et p. 440

Leçon n°228 : Continuité, dérivabilité des fonctions réelles d'une variable réelle. Exemples et àpplications.

Soit I un intervalle de \mathbb{R} .

I/ Continuité et dérivabilité.

A/ Continuité des fonctions réelles. [R] [WA]

Définition 1 : Définition continuité et l'ensemble $C^0(I,\mathbb{R})$.

Exemple 2 : Fonctions constantes, polynômes, sin et cos sont continues sur \mathbb{R} .

Proposition 3 : Stabilité de la continuité par valeur absolue, somme, produit, quotient, composée.

Définition 4 : Continuité à droite et à gauche.

Proposition 5 : Continue en a si et seulement si continue à droite et à gauche en a.

Proposition 6 : Caractérisation séquentielle de la continuité

Contre-exemple 7: La fonction $f: x \mapsto \cos\left(\frac{1}{x}\right)$ et f(0) = 0 est discontinue en 0, la fonction $\mathbb{1}_{\mathbb{O}}$ est discontinue sur \mathbb{R} .

Application 8 : Si f est continue et $u_{n+1} = f(u_n)$ avec $(u_n)_n$ qui converge vers l alors f(l) = l.

Proposition 9 : Caractérisation topologique de la continuité.

Proposition 10 : Prolongement par continuité.

Exemple 11 : Prolongement en 0 de $x \mapsto x^{\alpha} \cos\left(\frac{1}{x^{\beta}}\right)$ où $\alpha > 0$ et $\beta > 0$.

Théorème 12 : Si f est monotone sur I alors l'ensemble de ses points de discontinuités est dénombrable.

Exemple 13 : $f:x\mapsto \frac{1}{\mathrm{Ent}(\frac{1}{x})}$ et f(0)=0 admet un nombre infini de points de discontinuités.

Application 14 : La fonction de répartition admet donc un nombre dénombrable de points de discontinuités : cela permet de montrer la convergence en loi discrète.

Définition 15: Fonctions lipschitiziennes.

Proposition 16: Les fonctions lipschitziennes sont continues.

Corollaire 17 : Les fonctions convexe sont continues sur l'intérieur d'un segment.

Définition 18: Uniforme continuité.

Exemple 19: Les fonctions lipschitziennes sont uniformément continues.

Théorème 20 : Théorème de Heine.

Théorème 21: Théorème des bornes atteintes.

B/ Dérivabilité. [R]

Définition 22 : Fonctions dérivables de classe C^1 , C^n et C^{∞} .

Proposition 23 : f dérivable en a si et seulement si admet un DL_1 en a.

Remarque 24 : Faux aux autres ordres car $x \mapsto x^3 \sin\left(\frac{1}{x}\right)$ admet un DL₂ en 0 mais n'est pas deux fois dérivable en 0.

Corollaire 25: Dérivable \implies continue.

Proposition 26 : Toutes les opérations sur les dérivées.

Proposition 27 : Formule de Leibniz.

Proposition 28: Inversion locale en dimension 1.

II/ Théorèmes fondamentaux des fonctions réelles.

A/ Théorème des valeurs intermédiaires. [R]

Théorème 29 : Si f continue sur I alors f(I) est un intervalle.

Corollaire 30 : Théorème des valeurs intermédiaires.

Application 31 : $e^{x-3} = \ln(x)$ admet une solution sur \mathbb{R} .

Théorème 32 : Théorème de Darboux.

Exemple 33: Les fonctions en escalier n'ont pas de primitive.

B/ Du théorème de Rolle aux formules de Taylor. [R]

Proposition 34: Si f admet un extremum local en a alors f'(a) = 0.

Théorème 35 : Théorème de Rolle.

Corollaire 36 : Égalité des accroissements finis.

Corollaire 37 : Inégalité des accroissements finis.

Corollaire 38 : Si I intervalle tel que $\forall x \in I, f'(x) = 0$ alors f est constante.

Théorème 39 : Taylor-Lagrange.

Théorème 40 : Taylor avec reste intégral.

Développement 1

Application 41 : Méthode de Laplace.

C/ Densité. [G]

Théorème 42 : Weierstrass.

Application 43 : Si f continue sur I segment et $\int_I x^n f(x) dx = 0$ alors f est nulle.

III/ Passages à la limite des fonctions réelles.

A/ Suites de fonctions. [EA] [WIL]

Théorème 44 : Convergence uniforme conserve la continuité.

Développement 2

Application 45 : Étude de la fonction de Weierstrass, fonction continue partout et nulle part dérivable.

Remarque 46 : Si pas CVU alors on ne garde pas forcément le caractère continue (penser à $x \mapsto x^n$).

Théorème 47 : Dérivation terme à terme des séries de fonctions.

B/ Intégrale à paramètres. [BP] [FGNAna3]

Théorème 48 : Continuité sous signe intégral.

Théorème 49 : Dérivabilité sous signe intégral.

Application 50 : Intégrale de Dirichlet.

Application 51 : La fonction Γ est C^{∞} .

- [R] Rombaldi Éléments d'analyse réelle p. 161, p. 197, p. 251-315
- [EA] El Amrani Suites et séries de fonction p. 196-197
- [PGCD] Rouvière Petit Guide du Calcul Différentiel p. 339
- [WA] Walter Appel Probabilités pour les Non-Probabilistes p. 397
- [WIL] Willem Analyse fonctionnelle p. 130
- [BP] Briane Pagès Théorie de l'intégration p. 138
- [FGNAna3] Francinou Gianella Nicolas Analyse 3 p. 214
- [G] Gourdon Analyse p. 224

LEÇON N° 229 : FONCTIONS MONOTONES. FONCTIONS CONVEXES. EXEMPLES ET APPLICATIONS.

Dans toute la suite on considérera I un intervalle de \mathbb{R} et $f,g:I\to\mathbb{R}$.

I/ Fonctions monotones.

A/ Généralités. [RDC]

Définition 1: Définition fonctions monotones (strict) + ensemble $M^{\pm}(I)$.

Exemple 2 : $x \mapsto x^2$ est strictement croissante sur \mathbb{R}^+ et strictement décroissante sur R^- et $x \mapsto \lfloor x \rfloor$ est croissante. La fonction de répartition d'une variable aléatoire est croissante.

Proposition 3 : Stabilité des fonctions monotones par somme, multiplication par un réel, composition, produit si une des deux est positives, inverse si différent de 0.

Contre-exemple 4 : Le produit en général n'est pas monotone. (Penser à $x\mapsto x$ croissante sur $\mathbb R$ mais $x\mapsto x^2$ n'est pas croissante sur $\mathbb R$)

Proposition 5: Si f monotone, f injective si et seulement si strictement monotone.

 $\rm B/\ Limite\ et\ continuité.\ [RDC]\ [R]\ [WA]$

Théorème 6 : Limite monotone.

Corollaire 7: Les fonctions monotones admettent des limites finies à droite et à gauche en tout point.

Théorème 8 : L'ensemble des points de discontinuités d'une fonction monotone est au plus dénombrable.

Exemple 9 : L'application f(0) = 0 et $f(x) = \frac{1}{\left\lfloor \frac{1}{x} \right\rfloor}$ est croissante et possède un nombre infini de points de discontinuités.

Application 10 : La fonction de répartition admet donc un nombre dénombrable de points de discontinuités : cela permet de montrer la convergence en loi discrète.

Proposition 11: Si f est monotone, f continue sur I si et seulement si f(I) est un intervalle.

Corollaire 12: Homéomorphisme.

Exemple 13 : sin est un homéomorphisme sur $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ et cela permet de définir Arcsin.

 ${\bf C}/$ Dérivabilité et monotonie. $[{\bf R}]$

Théorème 14 : Rolle.

Théorème 15: Accroissements finis.

Théorème 16: Lien entre monotonie et signe dérivée.

Exemple 17: $t \mapsto t^3$ est strictement croissante.

D/ Théorèmes de Dini. [G]

Théorème 18: Les deux théorèmes de Dini.

Application 19 : Existence d'une suite de polynômes convergeant uniformément vers $|\cdot|$ sur [-1,1].

Application 20 : Théorème de Stone-Weierstrass.

E/ Applications. [G]

Proposition 21 : Monotonie des suites réelles récurrentes d'ordre 1.

Proposition 22 : Comparaison série-intégrale.

Application 23 : Développement asymptotique de la série harmonique à l'ordre 2.

II/ Fonctions convexes.

A/ Généralités. [R]

Définition 24: Fonctions convexes et concaves.

Proposition 25: f convexe si et seulement si epi(f) convexe.

Exemple 26: $x \mapsto e^x$ est convexe et un produit de fonctions convexes n'est a priori pas toujours convexe. (Penser à $x \mapsto x$ et $x \mapsto x^3$)

Proposition 27 : La composée d'une fonction convexe croissante et une convexe est convexe.

Proposition 28: Une limite simple de fonctions convexe est convexe.

Théorème 29 : f convexe si et seulement si f convexe sur les milieux.

Proposition 30: f convexe si et seulement si la fonction pente est croissante.

Application 31: Les applications affines sont les applications convexes et concaves.

B/ Fonction log-convexe. [R] [FGNAlg3]

Définition 32: Définition fonction log-convexe.

Proposition 33: Une fonction log-convexe est convexe.

Développement 1

Exemple 34 : Convexité logarithmique du déterminant.

Application 35 : Ellipsoïde de John-Loewner.

C/ Régularité des fonctions convexes. [R] [OBJ]

Proposition 36 : Continuité à l'intérieur de l'intervalle. (car la fonction y est lipschitzienne)

Théorème 37 : Si f est continue et convexe sur I, f est convexe sur I.

Proposition 38 : Lien entre convexité et croissance dérivée à droite.

Proposition 39: f convexe si et seulement si f' croissante.

Proposition 40 : f convexe si et seulement si $f'' \ge 0$ (et cas strict).

Exemple $41:\Gamma$ est convexe et même log-convexe.

Théorème 42 : Du théorème de Darboux on peut en déduire qu'une fonction convexe dérivable est continûment dérivable.

Théorème 43 : L'ensemble des extrema d'une fonction convexe est convexe.

Corollaire 44: Si f est strictement convexe et admet un extremum alors cet extremum est unique.

Proposition 45 : Convexité en dimension supérieure.

D/ Quelques inégalités de convexité. [G] [R]

Application 46: Inégalité arithmético-géométrique.

Application 47 : Inégalité de Hölder.

Application 48 : Inégalité de Minkowski.

III/ Application aux probabilités. [WA]

Théorème 49 : Inégalité de Jensen.

Application 50: Inclusion des L^p dans le cadre des convergences L^p .

Définition 51: Fonction génératrice.

Développement 2

Proposition 52 : Monotonie et convexité fonction génératrice.

Application 53: Processus de branchement de Galton-Watson.

- [RDC] Ramis Deschamps Odoux Topologie et éléments d'analyse tome 3 p. 118-124
- [R] Rombaldi Éléments d'analyse réelle p. 164, p. 225-245, p. 251
- [WA] Walter Appel Probabilités pour les Non-Probabilistes p. 195, p. 397
- [G] Gourdon Analyse p. 94, p. 192, p. 228
- [OBJ] Beck Malick Peyré Objectif Agrégation p. 26-30
- [FGNAlg3] Francinou Gianella Nicolas Algèbre 3 p. 229

Leçon n° 230 : Séries de nombres réels ou complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.

On considère ici $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

I/ Notion de série numérique. [G] [EA]

On considère ici $(u_n) \in (\mathbb{K})^{\mathbb{N}}$.

Définition 1 : Série terme général, somme partielle, somme infinie quand convergent et reste d'une série.

Proposition 2 : Si la série converge alors le reste tend vers 0.

Exemple 3 : Séries géométriques avec leurs restes.

Proposition 4 : Critère de Cauchy pour les séries.

Corollaire 5 : Si $\sum u_n$ converge alors $|u_n|$ tend vers 0.

Remarque 6 : La réciproque est fausse pour $u_n = \ln(1+1/n)$.

Définition 7 : Séries grossièrement divergentes.

Exemple 8 : $\sum 2^n$ diverge grossièrement.

Proposition 9 : L'ensemble des séries convergentes est un K-ev.

Définition 10 : Séries télescopiques.

Proposition 11: $\sum (a_n - a_{n-1})$ et $(a_n)_n$ ont même nature.

Application 12 : $\sum \frac{1}{n(n+1)}$ converge.

II/ Séries de terme général positif : cas de convergence. [G] [EA] [FGNAna1]

Proposition 13 : La série de terme général positive converge si et seulement si elle est majoré.

Théorème 14 : Comparaison des séries à terme général positif (inégalité, grand O, équivalent).

Remarque 15: Ce résultat est faux en général si le terme général n'est pas positif.

Proposition 16: Série de Riemann: $\sum \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.

Application 17 : Critère $n^{\alpha}u_n$.

Exemple 18: $\sum e^{-n^2}$ converge car $n^2e^{-n^2}$ tend vers 0.

Proposition 19: Comparaison série intégrale.

Application 20 : Séries de Bertrand : $\sum \frac{1}{n^{\alpha} \ln(n)^{\beta}}$ converge si et seulement si $\alpha > 1$ ou $(\alpha = 1 \text{ et } \beta > 1)$.

Théorème 21 : Sommation des relations de comparaison.

Application 22 : Développement asymptotique de la série harmonique à l'ordre 2.

Développement 1

Application 23: Développement asymptotique de $u_{n+1} = f(u_n)$ lorsque $f(x) = x - ax^{\alpha} + o(x^{\alpha}) + \text{application aux cas des fonctions sin et } \ln(1+\cdot).$

Application 24 : Développement asymptotique à deux termes de $u_{n+1} = u_n + e^{-u_n}$.

Proposition 25: Règle de d'Alembert/Cauchy et Raab-Duhamel.

Exemple 26 : Exemple d'approximation de e par d'Alembert.

Remarque 27 : La réciproque du critère de Cauchy est fausse.

III/ Séries à terme général quelconque.

A/ converge absolue, semi-convergence. [G] [EA] [FGNAna1]

Définition 28 : Séries absolument convergentes.

Proposition 29: $\sum |u_n| < +\infty$ alors $\sum u_n < +\infty$.

Contre-exemple 30 : Réciproque fausse.

Définition 31: Semi-convergence.

Remarque 32: La sommation des relations de comparaison est toujours valable si une est absolument convergente et l'autre de signe constant.

Théorème 33 : Produit de Cauchy.

Théorème 34 : Théorème d'arrangement de Riemann.

Remarque 35 : Ce théorème permet de mieux comprendre le fameux " $\sum_{n=1}^{+\infty} n = \frac{-1}{12}$ ".

B/ Séries alternées et critère d'Abel. [EA]

Définition 36 : Séries alternées.

Théorème 37: Critère spécial de Leibniz et majoration somme et reste.

Remarque 38 : La décroissance est essentielle.

Théorème 39 : Critère d'Abel avec transformation d'Abel.

Application $40 : \sum a_n \cos(n\theta)$ et $\sum a_n \sin(n\theta)$ convergent avec $\theta \notin 2\pi \mathbb{Z}$.

IV/ Autres techniques de calcul de sommes et de séries.

A/ Séries entières. [EA] [G]

Définition 41 : Séries entières + rayon de converge.

Proposition 42: CVA dans le disque de converge + CVN.

Remarque 43: On ne peut pas conclure sur le disque.

Théorème 44: Théorème d'Abel radial (avec annexe).

Exemple 45 : Calcul de $\sum \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$.

B/ Par les séries de Fourier. [G] [FGNAna2]

Définition 46 : Coefficients de Fourier réels.

Proposition 47: Lien parité et annulation coefficient de Fourier.

Théorème 48: Dirichlet. Théorème 49 : Parseval.

Développement 2

Application 50 : Calcul des $\zeta(2k)$.

- [G] Gourdon Analyse p. 200, p. 236, p. 256 [EA] El Amrani Suites et séries de fonction p. 79-110, p. 229 [FGNAna1] Francinou Gianella Nicolas Analyse 1 p. 99-101 et p. 217
- [FGNAna2] Francinou Gianella Nicolas Analyse 2 p. 308

LEÇON N° 234 : FONCTIONS ET ESPACES DE FONCTIONS LEBESGUE-INTÉGRABLES.

Dans la suite, on posera (X, \mathcal{A}, μ) un espace mesuré.

I/ Construction de l'intégrale et théorèmes d'intégrations

A/ Cas des étagées et mesurables positives [BP]

Définition 1 : Définition fonction étagée positive et intégrale.

Définition 2 : Définition fonction mesurable positive et intégrale.

Proposition 3 : Lemme fondamental d'approximation des fonctions mesurables positives par les étagées positives.

Proposition 4 : Croissance de l'intégrale.

Théorème 5 : Convergence monotone.

Théorème 6 : L'intégrale est croissante, additive et vérifie la positive homogénéité.

Proposition 7 : Si A est de mesure nulle pour μ alors $\int_A f d\mu = 0$.

Corollaire 8 : Si f et g sont égales presque partout alors leurs intégrales aussi.

B/ Fonctions Lebesgue-intégrable. [BP]

Définition 9 : Intégrabilité sur μ et espace $L^1(\mu)$

Exemple 10 : Mesure de comptage et espace $l^1(\mu)$.

Exemple 11 : L'intégrale de Lebesgue généralise l'intégrale de Riemann.

Remarque 12 : Toutes les propriétés de l'intégrale restent vraies pour les fonctions intégrables.

C/ Théorèmes d'intégration. [BP]

Lemme 13 : Lemme de Fatou.

Exemple 14 : Si des fonctions (f_n) intégrables convergent simplement vers f et si $\sup \int_X f_n d\mu < +\infty$ alors $f \in L^1(\mu)$.

Théorème 15 : Convergence dominé.

Contre-exemple 16: $f_n(x) = \mathbb{1}_{[n,n+1]}(x)$ est telle que : $\int_{\mathbb{R}} f_n(x) dx = 1$ ne converge pas vers 0, l'hypothèse de domination n'est ici pas vérifiée.

Application 17: La suite $I_n(\alpha) = \int_0^n \left(1 + \frac{x}{n}\right)^n e^{-\alpha x} dx$ converge et vaut $\frac{1}{\alpha - 1}$ si $\alpha > 1$.

Application 18 : Continuité et dérivabilité sous signe intégral.

Théorème 19 : Fubini-Tonelli.

Application 20 : Calcul de l'intégrale de Gauss par le changement de variable polaire.

Théorème 21 : Fubini.

Corollaire 22 : En utilisant la mesure de comptage on retrouve le théorème de Fubini pour les sommes permettant d'intervertir deux sommes.

II/ Espaces L^p .

Dans toute la suite on considère $p \in [1, +\infty]$ et q son exposant conjugué ie $\frac{1}{p} + \frac{1}{q} = 1$

A/ Construction et premières propriétés. [BP] [BREZ]

Définition 23 : Définition de l'espace $L^p(\mu)$ et $\mathbb{L}^{\infty}(\mu)$ avec leurs normes associées.

Exemple 24: Non inclusion dans le cas général pour la mesure de Lebesgue sur \mathbb{R} , inclusion si segment ou mesures finies.

Théorème 25 : Inégalité de Hölder.

Corollaire 26 : Inégalité de Minkowski.

Proposition 27: Les espaces sont des espaces vectoriels normés.

Développement 1

Théorème 28 : Riesz-Fischer : $L^p(\mu)$ est complet.

Proposition 29 : La norme $||\cdot||_2$ dérive d'un produit scalaire et fait donc de $L^2(\mu)$ un Hilbert.

B/ Convolution et régularisation. [BP] [BREZ]

Définition 30 : Convolé de fonctions L^1 et L^p , L^p et L^q .

Proposition 31 : L^1 est une algèbre commutative ne possédant pas d'unité pour la convolution.

Application 32: La densité de la somme de deux variables aléatoires indépendantes est la convolé des deux densités respectives.

Définition 33 : Suite régularisante.

Exemple 34 : Noyau de Gauss.

Corollaire $35: C_c^{\infty}$ est dense dans L^p .

Application 36 : $S(\mathbb{R})$ est dense dans L^2 .

C/ Transformée de Fourier dans $L^1(\mathbb{R})$ et $L^2(\mathbb{R})$. [GW] [EA]

Lemme 37: Riemann-Lebesgue.

Définition 38: Définition transformée de Fourier dans $L^1(\mathbb{R})$.

Corollaire 39 : La transformée de Fourier est linéaire et continue.

Exemple 40 : Transformée de Fourier de $x \mapsto e^{-a|x|}, x \mapsto \mathbb{1}_{[a,b]}$ (c'est donc un exemple de f telle que $\hat{f} \notin L^1(\mathbb{R})$

Proposition 41: Toutes les propriétés de calculs.

Proposition 42: Formule d'inversion.

Proposition 43: Injectivité de la transformée de Fourier sur $L^1(\mathbb{R})$

Proposition 44 : Lien entre dérivation et transformée de Fourier.

Application 45 : Transformée de Fourier de la gaussienne.

Théorème 46 : Plancherel et définition de la transformée dans L^2 comme extension de la transformée sur $S(\mathbb{R})$.

Développement 2

Application 47 : Diagonalisation de la transformée de Fourier sur $L^2(\mathbb{R})$.

- [BP] Briane Pagès Théorie de l'intégration p. 71, p. 113-174 et
- [BREZ] Brézis Analyse fonctionnelle p. 57 et p. 66
- [GW] Gasquet-Witomski Analyse de Fourier p. 128-161 [EA] El Amrani Analyse de Fourier p. 239 et p. 246-247

LEÇON N° 235 : PROBLÈMES D'INTERVERSION DE SYMBOLES EN ANALYSE.

I/ Suites et séries de fonctions.

A/ Interversion limite-limite. [EA] [HAU]

Définition 1 : CVS et CVU.

Exemple 2: Pour $f_n(x) = x^n$ on ne peut pas intervertir les deux limites: $\lim_{x\to 1^-} f_n(x) \neq \lim_{n\to +\infty} f_n(x)$.

Théorème 3 : Théorème de double limite.

Proposition 4 : Si CVU et continue alors la limite est continue.

Corollaire 5 : Théorème de double limite pour les séries de fonctions.

Exemple 6: $\zeta(x) \to 1$ quand $x \to +\infty$.

B/ Interversion limite-dérivée et dérivée/dérivée. [EA] [HAU] [PGCD]

Théorème 7: Théorème inversion limite-dérivée.

Exemple 8 : ζ est de classe C^{∞} sur $]1, +\infty[$.

Contre-exemple 9 : L'interversion limite-dérivée est fausse pour $f_n(x) = \frac{x}{1+n^2x^2}$.

Développement 1

Théorème 10 : Interversion limite-différentielle par la connexité.

Application 11 : Différentielle de l'exponentielle matricielle.

Théorème 12 : Schwarz.

 $\ensuremath{\mathsf{Application}}$ 13 : La hessienne est symétrique permet d'étudier les extrema d'une fonction.

 ${\bf C}/$ Interversion de quantificateurs. $[{\bf G}]$ $[{\bf HL}]$

Théorème 14: Théorèmes de Dini.

Application 15 : Existence d'une suite de polynôme convergeant uniformément vers $|\cdot|$ sur [-1,1].

Théorème 16 : Théorème de Heine.

 $\mathrm{D}/$ Interversion limite-intégrale sur un segment. $[\mathrm{EA}]$ $[\mathrm{T}]$

Théorème 17: Interversion limite-intégrale pour CVU.

Exemple 18 : $f_n(x) = \left(1 - \frac{x}{n}\right)^n \mathbb{1}_{[0,n]}(x)$, on calcule l'intégrale quand $n \to +\infty$.

Théorème 19 : Si CVU on peut interversion somme et intégrale.

Application 20: Formule de Cauchy pour les fonctions holomorphes.

II/ Théorèmes d'interversion en théorie de l'intégration.

A/ Les théorèmes fondamentaux. [BP]

Théorème 21 : Converge monotone.

Corollaire 22: Interversion somme-intégrale dans le cas positif.

Corollaire 23 : Lemme de Fatou.

Remarque 24: Utile pour montrer qu'une limite est infinie.

Théorème 25 : Convergence dominée.

Exemple 26 : Calcul de $I_n(\alpha) = \int_0^n \left(1 + \frac{x}{n}\right)^n e^{\alpha x} dx$ selon les valeurs de α .

Corollaire 27 : Si $\sum \int f_n(x) dx < +\infty$ alors on intervertit somme et intégrale.

B/ Conséquences sur les intégrales à paramètres. [BP] [FGNAna3]

Théorème 28 : Continuité sous signe intégral.

Application 29 : La transformée de Fourier sur $L^1(\mathbb{R}^d)$ est bien définie et continue.

Théorème 30 : Dérivabilité sous signe intégral.

Développement 2

Application 31 : Intégrale de Dirichlet.

Application 32 : Transformée de Fourier d'une gaussienne.

Théorème 33 : Holomorphie sous signe intégral.

Application 34 : La fonction Γ est holomorphe sur $\{z \in \mathbb{C}, \operatorname{Re}(z) > 0\}$.

C/ Interversion intégrale-intégrale. [BP] [FGNAna2]

Théorème 35 : Fubini-Tonelli.

Application 36 : Intégrale de Gauss.

Théorème 37: Fubini.

Corollaire 38: Interversion somme-somme.

Application 39 : Calcul des $\zeta(2k)$ pour tout $k \geq 1$.

- [G] Gourdon Analyse p. 31 et p. 228
- [HAU] Hauchecorne Les contre-exemples en mathématiques p. 235 et p. 241
- [PGCD] Rouvière Petit Guide du Calcul Différentiel p. 109
- [EA] El Amrani Suites et séries de fonction p. 139-201
- [HL] Hirsch-Lacombe Éléments d'analyse fonctionnelle p. 26
- [BP] Briane Pagès Théorie de l'intégration p. 131-138 et p. 221
- [T] Tauvel Analyse complexe pour la licence p. 91
- [FGNAna2] Francinou Gianella Nicolas Analyse 2 p. 308
- [FGNAna3] Francinou Gianella Nicolas Analyse 3 p. 214

LEÇON N° 236 : ILLUSTRER PAR DES EXEMPLES QUELQUES MÉTHODES DE CALCUL D'INTÉGRALES DE FONCTIONS D'UNE OU PLUSIEURS VARIABLES.

Les fonctions considérées sont à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

I/ Intégration des fonctions scalaires d'une ou plusieurs variables.

A/ À l'aide des primitives. [G] [ROM]

Proposition 1 : Théorème fondamental de l'analyse.

Exemple 2 : Intégrales de Riemann.

Théorème 3 : Décomposition en éléments simples.

Application 4 : La décomposition en éléments simples permet de trouver la primitive de toute fraction rationnelle.

Exemple 5 : Primitive de $x \mapsto \frac{1-x}{(x^2+x+1)^2}$.

B/ À l'aide d'une intégration par parties. [G]

Théorème 6 : Intégration par parties.

Exemple 7: $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ est semi-convergente.

Exemple 8 : Formule explicite des intégrales de Wallis.

Exemple 9 : Relation fonctionnelle de la fonction $\Gamma : \Gamma(x+1) = x\Gamma(x)$.

 $\mathrm{C}/$ En utilisant les théorèmes d'intégration. $[\mathrm{BP}]$

Théorème 10 : Lemme de Fatou.

Corollaire 11 : Théorème de convergence monotone.

Théorème 12: Théorème de convergence dominée.

Exemple 13 : Calcul de $I_n(\alpha) = \int_0^n \left(1 + \frac{x}{n}\right)^n e^{\alpha x} dx$ selon les valeurs de α .

Théorème 14 : Théorème de Fubini.

D/ Par changement de variable. [G] [GK]

Théorème 15 : Changement de variable.

Méthode 16 : Règles de Bioche.

Exemple 17: Changement de variable polaire.

Application 18 : Calcul de l'intégrale de Gauss.

Proposition 19: Intégrales de fonctions radiales.

Application 20 : Volume de la boule unité euclidienne.

II/ Intégrales dépendant d'un paramètre. [G] [BP] [FGNAna3]

Théorème 21 : Continuité sous signe intégral.

Application 22 : La transformée de Fourier est bien définie et est continue sur $L^1(\mathbb{R}).$

Théorème 23 : Dérivabilité sous signe intégral.

Développement 1

Application 24 : Calcul de l'intégrale de Dirichlet.

Exemple 25 : La fonction Γ est C^{∞} et calcul de ses dérivées.

III/ Utilisation des fonctions holomorphes. [T] [AM]

Théorème 26 : Holomorphie sous signe intégral.

Application 27 : La fonction Γ est holomorphe sur $\{z\in\mathbb{C},\ \operatorname{Re}(z)>0\}.$

Théorème 28: Théorème des résidus.

Développement 2

Application 29 : Formule des compléments.

Exemple 30 : Transformée de Fourier d'une fraction rationnelle.

Application 31 :
$$I(x) = \int_0^{+\infty} \frac{\cos(xt)}{1+t^2} dt = \frac{\pi}{2} e^{-|x|}.$$

IV/ Par approximation numérique. [DANT] [WA]

Méthode 32 : Méthode des rectangles.

Proposition 33: Estimation de l'erreur.

Méthode 34 : Méthodes du point milieu

Proposition 35: Estimation de l'erreur.

Théorème 36 : Loi forte des grands nombres.

Application 37 : Méthode de Monte-Carlo.

- [G] Gourdon Analyse p. 123, p. 132, p. 146
- [ROM] Rombaldi Algèbre et géométrie 2nd éd. p. 399
- [T] Tauvel Analyse complexe pour la licence p. 91 et p. 103
- [BP] Briane Pagès Théorie de l'intégration p. 131
- [DANT] Dantzer Analyse et probabilités p. 490
- [WA] Walter Appel Probabilités pour les Non-Probabilistes p. 212 et p. 536
- [AM] Amar Mathéron Analyse complexe p. 246
- [GK] Garet-Kurtzmann De l'intégration aux probabilités p. 97-98
- [FGNAna3] Francinou Gianella Nicolas Analyse 3 p. 214

Leçon n°239 : Fonctions définies par une intégrale dépendant d'un paramètre. Exemples et applications.

I/ Régularité et comportement asymptotique d'intégrales à paramètres.

Théorème 1 : Théorème de convergence dominée.

A/ Continuité. [BP]

Théorème 2 : Continuité sous signe intégral.

Remarque 3 : Comme la continuité est une propriété locale, on peut se contenter de regarder sur les compacts.

Application 4: La transformée de Fourier sur L^1 est bien définie et continue.

 $\rm\,B/$ Dérivabilité. $\rm [BP]$ $\rm [GW]$ $\rm [FGNAna3]$

Théorème 5 : Dérivation sous signe intégral.

Développement 1

 ${\bf Application} \ {\bf 6}: {\bf Calcul} \ {\bf de} \ {\bf l'intégrale} \ {\bf de} \ {\bf Dirichlet} \ {\bf en} \ {\bf faisant} \ {\bf apparaître} \ {\bf un} \ {\bf paramètre}.$

Remarque 7 : On peut généraliser ce théorème aux fonctions \mathbb{C}^k .

Application 8 : Calcul de la transformée de Fourier de la gaussienne.

C/ Holomorphie et résidus. [T]

Théorème 9 : Holomorphie sous signe intégral.

Application 10: La fonction Γ est holomorphe sur $\{z \in \mathbb{C}, \operatorname{Re}(z) > 0\}$.

Théorème 11: Théorème des résidus.

Développement 2

Lemme 12 : Si 0 < a < 1, $I_a = \int_0^{+\infty} \frac{e^{ax}}{1 + e^x} dx = \frac{\pi}{\sin(\pi a)}$.

Application 13 : Formule des compléments.

D/ Comportement asymptotique. [PGCD]

Proposition 14 : Méthode de Laplace.

Application 15 : Formule de Stirling intégrale par la fonction Γ .

II/ Convolution et transformée de Fourier.

A/ Convolution et régularisation. [BP]

Définition 16 : Convolé de fonctions L^1 et L^p , L^p et L^q .

Proposition $17:L^1$ est une algèbre commutative ne possédant pas d'unité pour la convolution.

Application 18 : La densité de la somme de deux variables aléatoires indépendantes est la convolé des deux densités respectives.

Définition 19 : Suite régularisante.

Exemple 20 : Noyau de Gauss.

Corollaire $21: C_c^{\infty}$ est dense dans L^p .

Application 22 : $S(\mathbb{R})$ est dense dans L^2 .

B/ Transformée de Fourier dans $L^1(\mathbb{R})$. [GW]

Lemme 23 : Riemann-Lebesgue.

Définition 24 : Définition transformée de Fourier dans $L^1(\mathbb{R})$.

Corollaire 25 : La transformée de Fourier est linéaire et continue.

Exemple 26 : Transformée de Fourier de $x\mapsto e^{-a|x|},\,x\mapsto \mathbbm{1}_{[a,b]}$ (exemple de f telle que $\hat{f}\not\in L^1(\mathbbm{R})$.

Proposition 27 : Propriétés de calcul de la transformée de Fourier.

Proposition 28 : Lien entre convolution et transformée de Fourier.

Théorème 29 : Formule de dualité.

Proposition 30 : Formule d'inversion de Fourier.

Corollaire 31 : Injectivité de la transformée.

Proposition 32 : Lien entre dérivation et transformée de Fourier.

C/ Transformée de Fourier en probabilité. [WA] [ZQ]

Définition 33: Fonction caractéristique.

Remarque 34 : Il s'agit de la transformée de Fourier dans le cadre d'une mesure de probabilité.

Exemple 35 : Fonction caractéristique d'une gaussienne.

Théorème 36 : Théorème de Paul-Lévy.

Application 37: Théorème central limite.

- [BP] Briane Pagès Théorie de l'intégration p. 138, p. 259
- [WA] Walter Appel Probabilités pour les Non-Probabilistes p. 358, p. 438
- [GW] Gasquet-Witomski Analyse de Fourier p. 128-138, p. 133
- [PGCD] Rouvière Petit Guide du Calcul Différentiel p. 339
- [T] Tauvel Analyse complexe pour la licence p. 91, p. 103
- [FGNAna3] Francinou Gianella Nicolas Analyse 3 p. 214
- [ZQ] Zuily Queffélec Analyse pour l'agrégation p. 536

Leçon n°241 : Suites et séries de fonctions. Exemples et applications.

Soit $(E, ||\cdot||)$ un evn de dimension fini (donc complet) et X un ensemble.

I/ Modes de convergence.

A/ Suites de fonctions. [EA] [G]

Définition 1 : Convergence simple.

Remarque 2 : La limite est unique.

Définition 3 : Convergence uniforme.

Exemple $4: x \mapsto x^n$ converge simplement mais pas uniformément (sauf sur un segment du type [0,a] avec a<1) + convergence simple de $\left(1-\frac{x}{n}\right)$ vers e^{-x} .

Proposition 5 : Critère de Cauchy uniforme.

Application 6: Si une suite de polynômes converge uniformément sur \mathbb{R} , la limite est un polynôme.

Définition 7 : On pose B(X,E) l'ensemble des fonctions bornées et on le munit de $||\cdot||_{\infty}$.

Proposition 8 : f_n converge uniformément vers $f \iff ||f_n - f||_{\infty} \to 0$.

Remarque 9 : En étudiant la norme infinie on a donc un critère pour montrer qu'une suite de fonction ne converge pas uniformément.

Exemple $10: x \mapsto \frac{\sin(nx)}{1+n^2x^2}$ ne converge pas uniformément sur \mathbb{R} .

Proposition 11: B(X,E) est complet.

Théorème 12 : Premier théorème de Dini.

Application 13 : Il existe une suite de polynôme converge uniformément sur [-1,1] vers $|\cdot|$.

Théorème 14 : Théorème de Stone-Weierstrass.

B/ Séries de fonctions. [EA] [G]

Définition 15 : Série de fonction.

Définition 16 : Convergence simple et uniforme comme avant et reste de la série.

Proposition 17: Si $\sum f_n$ CVU alors f_n CVU vers 0.

Proposition 18: $\sum f_n$ CVU \iff le reste de la série CVU vers 0.

Exemple 19 : Cas de $u_n(x) = \frac{x}{x^2 + n^2}$.

Définition 20 : Convergence normale.

Exemple 21: $\sum xe^{-nx}$ converge normalement sur $[a, +\infty[$ avec a > 0.

Proposition 22 : CVN \implies CVU \implies CVS.

C/ Cas des séries entières. [G]

Définition 23 : Série entière.

Lemme 24 : Lemme d'Abel et définition du rayon de convergence.

Théorème 25 : Soit $\sum u_n x^n$ une série entière de rayon de convergence R > 0 alors $x \mapsto \sum u_n x^n$ converge normalement sur tout disque de rayon r < R.

II/ Régularités de la limite.

A/ Continuité. [EA] [WIL]

Soit X une partie non vide d'un evn F.

Théorème 26 : La convergence uniforme conserve la continuité.

Théorème 27 : Théorème de double limite.

Remarque 28 : Réécriture dans le cas des séries de fonctions.

Exemple 29: $\sum \frac{e^{-n|x|}}{n^2}$.

Développement 1

Application 30 : Étude de la fonction de Weierstrass : fonction continue partout nul part dérivable.

B/ Dérivabilité. [EA] [PGCD]

Théorème 31 : Dérivation des suites de fonctions.

Remarque 32 : Réécriture dans le cas des séries de fonctions.

Remarque 33 : On peut le réécrire pour les fonctions de classe C^p .

Exemple 34: La fonction ζ est C^{∞} sur $]1, +\infty[$.

Théorème 35: Interversion limite-différentielle.

Application 36 : Différentielle de l'exponentielle matricielle.

C/ Intégration des séries de fonctions. [EA]

Théorème 37 : Convergence uniforme et interversion limite intégrale.

Théorème 38: Théorème d'inversion série intégrale.

Exemple 39:
$$\int_0^{+\infty} \frac{\sin(x)}{e^x - 1} dx = \sum_{n \ge 1} \frac{1}{n^2 + 1}$$
.

III/ Application aux séries de Fourier. [EA] [FGNAna2] [ZQ]

Définition 40 : Définition des coefficients de Fourier.

Définition 41 : Séries de Fourier.

Proposition 42 : Parité de la fonction et lien avec l'annulation des coefficients de Fourier réels.

Théorème 43: Théorème de Dirichlet.

Application 44: Expression des $\zeta(2k)$.

Théorème 45 : La série de Fourier converge normalement si la fonction est continue et $C^1_{\mathrm{pm}}(\mathbb{R})$.

Développement 2

Application 46: Résolution de l'équation de la chaleur dans une barre.

- [EA] El Amrani Suites et séries de fonctions p. 139-201
- [EA] El Amrani Analyse de Fourier p. 169
- [G] Gourdon Analyse p. 220, p. 236
- [PGCD] Rouvière Petit Guide du Calcul Différentiel p. 109
- [FGNAna2] Francinou Gianella Nicolas Analyse 2 p. 308
- -- [ZQ] Zuily Queffélec Analyse pour l'agrégation p. 105
- [WIL] Willem Analyse fonctionnelle p. 130

LEÇON N° 243 : SÉRIES ENTIÈRES, PROPRIÉTÉS DE LA SOMME. EXEMPLES ET APPLICATIONS.

I/ Généralités.

A/ Séries entières, disque de convergence. [EA]

Définition 1 : Série entière.

Définition 2 : Rayon de convergence et disque de convergence.

Lemme 3 : Convergence absolue dans le disque de convergence et divergence grossière sinon, convergence normale dans un disque strictement inclus.

Exemple $4: \sum z^n$ a pour rayon de convergence 1.

Remarque 5 : Sur le cercle d'incertitude toutes les situations sont possibles. (considérer les séries $\sum z^n$, $\sum \frac{z^n}{n}$ et $\sum \frac{z^n}{n^2}$).

Théorème 6 : Règle d'Alembert.

Exemple 7 : Calcul du rayon de convergence de $\sum \frac{2^n z^{2n+1}}{n+1}$.

Théorème 8 : Règle de Cauchy et d'Hadamard.

Exemple 9 : $\sum \frac{n}{2^n} z^n$ a pour rayon de convergence 2.

B/ Opérations sur les séries entières. [EA] [G]

Proposition 10 : Si $a_n = O(b_n)$ alors $R_a \ge R_b$.

Théorème 11 : Stabilité de la somme et du produit et rayons de convergences associés.

Exemple 12 : Cas où le rayon est $+\infty$ alors que les deux séries de départ ont un rayon de convergence fini.

Théorème 13 : Inverse d'une série entière.

II/ Régularité de la somme.

A/ Régularité sur le disque de convergence. [G]

Théorème 14: Holomorphe dans le disque.

Corollaire 15 : Unicité des coefficients et valeurs : $a_n = \frac{f(n)(0)}{n!}$.

Théorème 16: La fonction à variable réelle associée est C^{∞} .

Exemple 17 : Série primitive.

Application 18 : DSE de Arctan, Arcsin, Arccos, $ln(1+\cdot)$.

B/ Régularité sur le cercle d'incertitude. [G]

Théorème 19 : Théorème d'Abel Angulaire (faire une annexe avec le dessin du disque).

III/ Fonctions développables en série entière.

A/ Sur C. [T] [FGNAna2]

Définition 20 : DSE au voisinage d'un point, fonctions analytiques.

Exemple 21 : $z \mapsto \frac{1}{z}$ est analytique sur \mathbb{C}^* .

Théorème 22 : Formule de Cauchy.

 ${\bf Corollaire~23: Les~fonctions~holomorphes~sont~analytiques.}$

Développement 1

Application 24 : Calcul des $\zeta(2k)$ avec nombres de Bernouilli.

Proposition 25 : Principe des zéros isolés.

Remarque 26 : On peut retrouver l'unicité du DSE grâce à cette propriété.

Théorème 27 : Liouville.

Application 28 : Théorème de d'Alembert-Gauss.

B/ Sur R. [G]

Définition 29 : DSE au voisinage d'un point sur \mathbb{R} .

Exemple 30 : La fonction $f: x \mapsto e^{\frac{-1}{x^2}}$ sur \mathbb{R}^+ et 0 sinon. La fonction f est C^{∞} sur \mathbb{R} mais pas DSE en 0.

Proposition 31 : Condition suffisante pour être DSE en utilisant l'inégalité de Taylor-Lagrange.

Théorème 32 : DSE si et seulement si le reste CVS vers 0.

Théorème 33 : Théorème de Bernstein.

III/ Applications.

A/ Résolution d'équations différentielles. [FGNAna4] [ZQ]

Remarque 34 : Peut être pertinent de regarder les solutions DSE d'une équa diff.

Théorème 35 : Résoudre y'' + py' + qy = 0 avec DSE.

Application 36: Résolution de l'équation d'Airy y'' + xy = 0, y(0) = 1, y'(0) = 0.

Développement 2

Proposition 37: Résolution de l'équation de Bessel grâce aux séries entières.

B/ La fonction génératrice en probabilités. [WA] [Q²]

Définition 38: Fonction génératrice.

Théorème 39: Les différentes propriétés de la fonction génératrice.

Théorème 40 : Récupération des moments.

Application 41 : Galton-Watson.

Application 42: Indécomposabilité de la loi de Poisson.

- [EA] El Amrani Suites et séries de fonctions p. 229-256
 [G] Gourdon Analyse p. 236, p. 251 et p. 252
- [T] Tauvel Analyse complexe pour la licence p. 40, p. 50, p. 77
- [FGNAna2] Francinou Gianella Nicolas Analyse 2 p. 308
- [FGNAna4] Francinou Gianella Nicolas Analyse 4 p. 101
- [ZQ] Zuily-Queffélec Analyse pour l'agrégation p. 408 et p. 435
- [WA] Walter Appel Probabilités pour les Non-Probabilistes p.
- $[Q^2]$ Queffélec Queffélec Analyse complexe et applications p. 209,

LEÇON N° 244 : EXEMPLES D'ÉTUDES ET D'APPLICATIONS DE FONCTIONS USUELLES ET SPÉCIALES

```
I/ Fonctions usuelles liées à l'exponentielle.
        A/ Fonction exponentielle. [T]
Définition 1 : Exponentielle complexe.
Proposition 2 : Holomorphe sur \mathbb{C}, \exp' = \exp et propriétés de calcul.
Théorème 3 : C'est un morphisme continu surjectif de noyau 2i\pi\mathbb{Z}.
       B/ Fonctions circulaires. [T] [FGNAlg1]
Définition 4 : cos et sin en utilisant exp.
Proposition 5: DSE cos et sin.
Proposition 6: Expression avec l'exponentielle \cos(z) = \frac{1}{2}(e^{iz} + e^{-iz}) et \sin(z) =
\frac{1}{2i}(e^z - e^{-z}).
Application 7 : Polynômes de Tchébychev.
Définition 8 : Arccos et Arcsin + annexe avec les graphes.
        C/ Fonctions logarithmes. [T]
Définition 9 : exp est bijective sur \mathbb{R} de réciproque ln.
Définition 10: Arguments de z, détermination continue de l'argument sur un
ouvert \mathcal{U} de \mathbb{C}.
Proposition 11: Détermination principale du logarithme sur \mathbb{C}\backslash\mathbb{R}_-.
Proposition 12: Développement en série entière de la détermination du logarithme.
Corollaire 13: On peut donc définir les fonctions puissances sur \mathbb{C}\backslash\mathbb{R}_{-}.
II/ Exemples de fonctions définies par une intégrales à paramètres.
```

A/ Fonction Γ d'Euler. [G] [R] [OBJ] [PGCD]

Définition 14: Fonction Γ .

```
Théorème 15: \Gamma est C^{\infty}, valeur de \Gamma^{(k)}, relation fonctionnelle et limites.
Théorème 16: Bohr-Mollerup: Caractérisation de la fonction Gamma.
Théorème 17: Prolongement méromorphique de \Gamma sur \mathbb{C}\setminus (-\mathbb{N}), les résidus sont
\operatorname{Res}(\Gamma, -n) = \frac{(-1)^n}{n!}.
   Développement 1
    Proposition 18 : Formule des compléments
Proposition 19: Par la méthode de Laplace, on obtient la formule de Stirling
intégrale.
         B/ Fonction \beta et applications en probabilité. [G] [GK]
Définition 20 : Fonction \beta.
Proposition 21 : Équations fonctionnelles de \beta.
Proposition 22 : Lien entre \beta et \Gamma.
Définition 23 : Lois \Gamma et \beta en probabilité.
Application 24 : Si X_1, \ldots, X_n iid de loi \mathcal{E}(\lambda) alors X_1 + \cdots + X_n \sim \Gamma(n, \lambda), si X et
Y indépendantes de loi respectives \Gamma(r,\lambda) et \Gamma(s,\lambda) alors X+Y de loi \Gamma(r+s,\lambda).
```

III/ Exemple de fonctions définies par une série : la fonction ζ de Riemann.

A/ Propriétés générales de ζ . [G] [FGNAna2]

Définition 25: Fonction ζ .

Proposition 26 : ζ définie sur $\pi_1 = \{z \in \mathbb{C}, \operatorname{Re}(z) > 1\}$ et majoration.

Proposition 27: $\zeta(s) = \frac{1}{s-1} + \gamma + o(1)$ et $\zeta(s) \underset{s \to +\infty}{\rightarrow} 1$.

Théorème 28 : La fonction ζ se prolonge méromorphiquement à \mathbb{C} en ayant 1 en unique pôle de résidu 1.

Définition 29 : $f: z \mapsto \frac{z}{e^z-1}$ se développe en série entière au voisinage de 0 et définition des coefficients de Bernouilli.

Proposition 30 : Propriétés des coefficients de Bernouilli.

Développement 2

Théorème 31 : Calcul des $\zeta(2k)$ en passant par les séries de Fourier.

Corollaire 32 : $\zeta(2k) \in \pi^{2k}\mathbb{Q}$ donc $\zeta(2k)$ est irrationnel et transcendant.

Remarque 33 : Pas de telle formule explicite trouvée à ce jour pour $\zeta(2k+1)$.

B/ Lien avec les nombres premiers. [GK] [ROM]

Théorème 34 : Produit eulérien de ζ .

Application 35 : $\sum_{p \in \mathcal{P}} \frac{1}{p}$ diverge.

Application 36 : Il n'existe pas de mesure de probabilité μ sur \mathbb{N}^* telle que $\mu(n\mathbb{N}^*) = \frac{1}{n}$.

Théorème 37 : (Culturel) Théorème de De La Vallée Poussin : $\pi(x) \sim \frac{x}{\ln(x)}$.

- [T] Tauvel Analyse complexe pour la licence p. 43-45, p.62 et p.

- [G] Gourdon Analyse p. 158 et p. 295
 [FGNAlg1] Francinou Gianella Nicolas Algèbre 1 p. 222
 [FGNAna2] Francinou Gianella Nicolas Analyse 2 p. 308
 [PGCD] Rouvière Petit Guide du Calcul Différentiel p. 339
- [R] Rombaldi Éléments d'analyse réelle p. 364
 [OBJ] Beck Malick Peyré Objectif Agrégation p. 82
- [GK] Garet-Kurtzmann De l'intégration aux probabilités p. 56-57, p. 145-148 et p. 461
- [ROM] Rombaldi Algèbre et géométrie p. 308

Leçon n° 245 : Fonctions holomorphes et méromorphes sur un ouvert de $\mathbb C$. Exemples et applications,

Dans la suite on notera Ω un ouvert de \mathbb{C} .

I/ Régularité des fonctions à variable complexe.

A/ Fonctions holomorphes. [T]

Définition 1 : Une fonction C-dérivable est dite holomorphe.

Exemple 2 : Les polynômes et fractions rationnelles sans pôles en z sont holomorphes.

Proposition 3: $\mathcal{H}(\Omega)$ est stable par somme, produit et composition.

Proposition 4 : Propriétés équivalentes de l'holomorphie (La différentielle est une similitude directe).

Corollaire 5 : Équations de Cauchy-Riemann.

Exemple 6: $z \mapsto \overline{z}$ n'est pas holomorphe sur \mathbb{C} .

B/ Fonctions analytiques. [T]

Définition 7: Définition fonction analytique.

Proposition 8 : $\mathcal{A}(\Omega)$ est une \mathbb{C} -algèbre.

Théorème 9 : Une fonction DSE est holomorphe sur son disque de convergence et la dérivée est la dérivée terme à terme.

Remarque 10 : En appliquant le même argument sur f' on peut alors en déduire que f est infiniment \mathbb{C} -dérivable sur le disque de convergence.

Corollaire $11 : \mathcal{A}(\Omega) \subset \mathcal{H}(\Omega)$.

Exemple 12 : Holomorphie de exp, sin et cos sur \mathbb{C} , analyticité de $z \mapsto \frac{1}{(a-z)^p}$ sur D(a,|a|).

II/ Intégration sur un chemin et lien avec l'holomorphie.

A/ Intégrale sur un chemin et formule de Cauchy. [T]

Définition 13: Définition indice.

Proposition 14: Propriétés sur l'indice.

Exemple 15 : Lacet cercle de centre a et de rayon $R: \gamma_{a,R}: t \mapsto a + Re^{it}$, l'indice d'un point dans le disque est 1 et dans l'extérieur c'est 0.

Théorème 16 : Goursat.

Théorème 17 : Formule de Cauchy dans un convexe.

Corollaire 18 : Formule de Cauchy dans un cercle.

B/ Applications de la formule de Cauchy. [T]

Théorème 19 : Analyticité des fonctions holomorphes.

Théorème 20 : Inégalités de Cauchy.

Corollaire 21: Théorème de Liouville: Toute fonction entière bornée est constante.

Application 22 : Théorème de d'Alembert-Gauss

Théorème 23 : Principe du maximum global.

C/ Primitives et logarithmes. [AM] $[\mathbf{Q}^2]$

Proposition 24: Toute fonction sur un disque admet une primitive holomorphe.

Corollaire 25: Toute fonction holomorphe admet localement des primitives.

Corollaire 26 : Une fonction holomorphe ne s'annulant pas sur $\mathcal U$ étoilé admet un logarithme sur $\mathcal U$.

Développement 1

Application 27: Indécomposabilité de la loi de Poisson.

D/ Convergence de suites de fonctions holomorphes. [T]

Théorème 28 : Holomorphie stable par convergence uniforme sur tout compact.

Exemple 29 : La fonction ζ bien définie.

Théorème 30 : Holomorphie sous signe intégral.

Application 31 : La fonction Γ est bien définie sur $\pi_0 = \{z \in \mathbb{C}, \operatorname{Re}(z) > 0\}$

E/ Prolongement des fonctions holomorphes. [T] [OBJ]

Théorème 32: Théorème des zéros isolés.

Corollaire 33: Prolongement analytique.

Application 34 : La fonction Γ se prolonge méromorphiquement sur $\mathbb{C}\setminus (-\mathbb{N})$ et calcul des résidus.

III/ Méromorphie et théorème des résidus. [T]

Définition 35 : Les différentes singularités isolées (effaçable, pôle, essentielle).

Proposition 36 : Définition équivalentes des différentes singularités.

Définition 37 : Fonctions méromorphes.

Théorème 38 : Formule de Cauchy dans une couronne.

Corollaire 39 : Développement en série de Laurent.

Remarque 40 : Lien entre série de Laurent et les singularités.

Définition 41 : Résidu de f en a.

Proposition 42 : Formules de calcul des résidus.

Théorème 43: Théorème des résidus.

Développement 2

Application 44 : Formule des compléments.

- [T] Tauvel Analyse complexe pour la licence p. 50-102
- [AM] Amar-Mathéron Analyse complexe p. 125
- [OBJ] Beck Malick Peyré Objectif Agrégation p. 82
- [Q²] Queffélec Queffélec Analyse complexe et applications p. 209, p. 425

LEÇON N° 246 : SÉRIES DE FOURIER. EXEMPLES ET APPLICATIONS.

I/ Coefficients et séries de Fourier.

A/ Résultats préliminaires. [EA]

Définition 1 : $C_{2\pi}^0$, $L_{2\pi}^p$, $L_{2\pi}^2$ est un espace de Hilbert avec son produit scalaire associé.

Définition 2: $e_n(x) = e^{inx}$ et définition polynômes trigonométriques.

Théorème 3 : L'ensemble des polynômes trigonométriques est dense dans $C_{2\pi}^0$.

Proposition 4: $(e_n)_{n\in\mathbb{Z}}$ est une base hilbertienne de $L^2_{2\pi}$.

B/ Séries de Fourier. [EA]

Définition 5 : Coefficients de Fourier complexes.

Remarque 6 : Dans $L_{2\pi}^2$ on a $c_n(f) = \langle f, e_n \rangle$.

Définition 7: Produit de convolution sur $L_{2\pi}^1$.

Proposition 8 : Toutes les propriétés de calcul des coefficients de Fourier.

Proposition 9: Riemann-Lebesgue.

Corollaire 10 : Si f est C^k alors $c_n(f) = o\left(\frac{1}{|n|^k}\right)$ et si $c_n(f) = o\left(\frac{1}{|n|^k}\right)$ et $k \ge 2$ alors f est C^{k-2} .

Remarque 11 : Au plus la fonction f est régulière au plus les coefficients de Fourier décroissent vite.

Définition 12 : Coefficients de Fourier réels.

Remarque 13 : Relation avec $c_n(f)$.

Proposition 14 : Lien entre parité de la fonction f et la nullité des coefficients de Fourier réels.

Définition 15 : Séries de Fourier et sommes partielles.

C/ Sommes de Césaro et noyaux trigonométriques. [EA]

Définition 16 : Somme de Césaro.

Définition 17 : Convergence au sens de Césaro.

Définition 18 : Noyau de Dirichlet.

Proposition 19 : Propriétés sur les noyaux de Dirichlet.

Définition 20 : Noyau de Féjer.

Proposition 21 : Propriétés sur les noyaux de Féjer et son lien avec le noyau de Dirichlet.

II/ Convergence des séries de Fourier.

Théorème 22 : Si f est L^1 et que la série converge alors c'est la série de Fourier.

A/ Convergence au sens de Césaro. [EA]

Théorème 23 : Féjer.

Application 24 : Théorème de Stone-Weierstrass trigonométrique.

Théorème 25 : Injectivité des séries de Fourier.

Proposition 26 : $\mathcal{F}: L^1 \to c_0(\mathbb{Z})$ est linéaire continue injective de norme 1.

 $\rm B/\ Convergence\ en\ moyenne\ quadratique.\ [EA]$

Théorème 27 : Parseval.

Remarque 28 : Réécriture avec les coefficients réels.

C/ Convergence ponctuelle et uniforme. [G]

Théorème 29 : Jordan-Dirichlet.

Corollaire 30 : Dirichlet.

Théorème 31 : La série de Fourier converge normalement si la fonction est continue et C_{pm}^1 .

```
Application 32 : Calcul de \zeta(2), \, \zeta(4) et \sum n = 1 + \infty \frac{1}{(2n-1)^2}
```

III/ Application des séries de Fourier.

A/ Calcul de séries. [FGNAna2]

Développement 1

Théorème 33 : Calcul des $\zeta(2k)$.

B/ Résolution d'EDP : équation de la chaleur. [ZQ]

Développement 2

Théorème 34 : Résolution à l'aide des séries de Fourier.

C/ Lien entre la théorie de Fourier discrète et continue. [EA]

Proposition 35: Formule sommatoire de Poisson.

Corollaire 36 : Identité de Jacobi

- [EA] El Amrani Analyse de Fourier p. 169-201, p. 210

- [G] Gourdon Analyse p. 259
 [FGNAna2] Francinou Gianella Nicolas Analyse 2 p. 308
 [ZQ] Zuily Queffélec Analyse pour l'agrégation p. 105

Leçon n°250: Transformation de Fourier. Applications.

```
I/ Transformation de Fourier dans L^1(\mathbb{R}).
        A/ Définition et premières propriétés. [EA] [GW]
Lemme 1: Riemann-Lebesgue.
Définition 2: Définition transformée de Fourier dans L^1(\mathbb{R}).
Remarque 3 : On peut la définir dans \mathbb{R}^d avec d \geq 1, mêmes types de résultats.
Corollaire 4 : La transformée de Fourier est linéaire et continue.
Exemple 5 : Transformée de Fourier de x \mapsto e^{-a|x|}, x \mapsto \mathbb{1}_{[a,b]} (exemple de f telle
que \hat{f} \notin L^1(\mathbb{R})).
Définition 6: Définition de \check{f}, \overline{f} et \tau_a f.
Proposition 7 : Toutes les propriétés de calculs.
        B/ Convolution et théorème d'inversion. [EA] [GW]
Définition 8: Définition convolution dans L^1.
Proposition 9: Lien entre convolution et produit.
Définition 10 : Approximation de l'unité.
Exemple 11 : Noyau de Gauss.
Proposition 12 : Régularisation avec noyau.
Théorème 13 : Formule de dualité.
Théorème 14 : La transformation de Fourier est injective.
Théorème 15 : Formule d'inversion.
Proposition 16 : Lien entre transformée de Fourier et convolution.
        C/ Dérivation. [GW]
Proposition 17: Transformée de Fourier d'une dérivée.
```

Proposition 18 : Dérivée d'une transformée de Fourier.

Proposition 19 : Transformée de Fourier de la gaussienne.

II/ Extension à $S(\mathbb{R})$ et $L^2(\mathbb{R})$.

A/ Dans $S(\mathbb{R})$. [GW] [WIL]

Définition 20 : Définition de l'espace de Schwartz.

Proposition 21 : C'est un espace vectoriel et stable par dérivation, multiplication par un polynôme et produit.

Exemple 22: Les gaussiennes sont dans Schwartz.

Théorème 23 : Stabilité de $S(\mathbb{R})$ par transformation de Fourier.

Théorème 24 : La transformation de Fourier est une application linéaire, bijective et bicontinue de $S(\mathbb{R})$ dans $S(\mathbb{R})$.

Développement 1

Lemme 25: Lemme de Freud.

Application 26 : Fonction de Weierstrass : exemple de fonction continue partout nulle part dérivable.

 \int B/ Dans $L^2(\mathbb{R})$. [GW] [EA]

Proposition 27: $S(\mathbb{R})$ dense dans $L^2(\mathbb{R})$.

Théorème 28 : Formule de Fourier-Plancherel dans $S(\mathbb{R})$.

Théorème 29 : Fourier-Plancherel : La transformée de Fourier se prolonge en une isométrie de L^2 dans L^2 et on note \tilde{f} la transformée de Fourier de f sur L^2 .

Proposition 30: Les transformées de Fourier coïncident sur $L^1 \cap L^2$.

Remarque 31 : Moyen de calcul de la transformée de Fourier dans L^2 : on calcule la transformée de Fourier de $f\mathbbm{1}_{[-n,n]}$ et on fait tendre n vers l'infini.

Développement 2

Application 32 : Diagonalisation de la transformée de Fourier sur L^2 .

III/ Applications à d'autres domaines.

A/ En probabilités. [WA]

On considère $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé.

Définition 33 : Convergence en loi.

Définition 34: Fonction caractéristique.

Théorème 35 : Paul-Lévy.

Remarque 36 : La preuve utilise la bijectivité de la transformée de Fourier sur $S(\mathbb{R})$

Application 37: Théorème central limite.

B/ Pour résoudre des EDPs. [FGNAna4]

Application 38 : Résolution de l'équation de la chaleur périodique.

- [GW] Gasquet-Witomski Analyse de Fourier p. 127-161
- [EA] El Amrani Analyse de Fourier p. 73-122, p. 239 et p. 246-247
- [WIL] Willem Analyse fonctionnelle p. 130
- [WA] Walter Appel Probabilités pour les Non-Probabilistes p. 358, p. 401, p. 438
- [FGNAna4] Francinou Gianella Nicolas Analyse 4 p. 49

LEÇON N° 253 : UTILISATION DE LA NOTION DE CONVEXITÉ EN ANALYSE.

I/ Généralités sur la convexité.

A/ Premières définitions et propriétés. [OBJ] [G] [R]

Définition 1 : Partie convexe.

Exemple 2 : Les intervalles de \mathbb{R} sont convexes, une boule dans \mathbb{R}^2 est convexe.

Exemple 3 : Les demi-espaces sont convexes.

Proposition 4: Une intersection de convexes est convexe.

Définition 5 : Enveloppe convexe.

Théorème 6 : Théorème de Carathéodory.

Définition 7: Fonctions convexes, strictement convexes.

Proposition 8 : f est convexe si et seulement si l'épigraphe de f est convexe + annexe.

Application 9 : Si les $(f_i)_{i \in I}$ sont convexes alors $\sup_{i \in I} (f_i)$ est convexe.

Proposition 10 : Une fonction convexe est continue sur l'intérieur du domaine (car y est lipschitzienne) et admet des dérivées à gauche et à droite.

Théorème 11 : Caractérisation de la convexité si f est dérivable et si f est deux fois dérivable.

Exemple 12: exp est convexe et ln est concave.

Théorème 13 : Caractérisations en dimension supérieure de la convexité.

Application 14 : Si $A \in S_n(\mathbb{R})$ alors $x \mapsto \langle Ax, x \rangle$ est convexe si et seulement si A positive.

B/ Inégalités de convexité. [G] [R]

Proposition 15 : Inégalité arithmético-géométrique.

Théorème 16 : Inégalité de Hölder.

Corollaire 17 : Inégalité de Minkowski et donc $||\cdot||_p$ est une norme sur \mathbb{R}^n .

Exemple 18: $\forall x \in \left[0, \frac{\pi}{2}\right] \frac{2}{\pi} x < \sin(x) < x$.

C/ Recherche d'extrema. [OBJ] [FGNAlg3] [PGCD]

Proposition 19: Si f convexe, les minimum forment un ensemble convexe.

Théorème 20 : Lorsque la fonction f est strictement convexe et admet un minimum, alors ce minimum est unique.

Exemple 21 : L'existence d'un minimum n'est pas toujours assurée : considérer exp qui est strictement convexe.

Application 22 : Point de Fermat.

Développement 1

Lemme 23 : log-convexité du déterminant sur $S_n^{++}(\mathbb{R})$.

Application 24 : Ellipsoïde de John-Loewner.

Proposition 25 : Méthode de Newton.

Application 26 : Méthode de Héron.

II/ Exemples d'applications dans certains espaces.

A/ Dans les espaces de Hilbert. [HL] [ZQ]

Développement 2.a)

Théorème 27 : Théorème de projection sur un convexe fermé.

Corollaire 28 : Si F est un sev de H alors p_F est linéaire, continue, 1-lipschitzienne.

Corollaire 29 : Si F est un sev fermé de H alors $H = F \oplus F^{\perp}$.

Application 30 : Existence de l'espérance conditionnelle sur L^2 .

Application 31 : Lemme de séparation d'un point et d'un convexe fermé, application au calcul de l'enveloppe convexe de $O_n(\mathbb{R})$.

Développement 2.b)

Théorème 32: Théorème de représentation de Riesz.

Application 33 : Existence des adjoints dans un Hilbert.

B/ Dans les espaces $L^p(\mu)$. [BP]

Définition 34: Espaces L^p et leurs normes associées pour $p \in [1, +\infty]$.

Théorème 35 : Inégalité de Hölder.

Corollaire 36 : Inégalité de Minkowski.

Proposition 37 : $(L^p(\mu), ||\cdot||_p)$ est un espace vectoriel normé.

 ${\bf Application~38}$: Inclusion des L^p si l'espace est de mesure finie, et non inclusion dans le cadre général.

Proposition 39 : Inégalité de Jensen.

Remarque 40 : On retrouve le cas discret.

C/ Applications aux probabilités. [WA] [OUV]

Proposition 41 : Inégalité de Jensen.

Application 42 : Implication des convergences L^p en probabilité.

Proposition 43 : Inégalité de Hoeffding.

Définition 44 : Fonction génératrice.

Proposition 45 : Les propriétés des fonctions génératrices.

Application 46 : Galton-Watson.

- [G] Gourdon Analyse p. 94
- [FGNAlg3] Francinou Gianella Nicolas Algèbre 3 p. 229
- [R] Rombaldi Éléments d'analyse réelle p. 225-245
- [OBJ] Beck Malick Peyré Objectif Agrégation p. 26-30
- [PGCD] Rouvière Petit Guide du Calcul Différentiel p. 142
- [HL] Hirsch-Lacombe Éléments d'analyse fonctionnelle p. 91-96
- [ZQ] Zuily Queffélec Analyse pour l'agrégation p. 205
- [BP] Briane-Pagès Théorie de l'intégration 4ème éd. p. 153
- [WA] Walter Appel Probabilités pour les Non-Probabilistes p. 160, p.195, p. 328 et p. 392
- [OUV] Ouvrard Probabilités 2 p. 128

LEÇON N° 261 : LOI D'UNE VARIABLE ALÉATOIRE : CARACTÉRISATIONS, EXEMPLES ET APPLICATIONS.

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et (E, \mathcal{E}) un espace euclidien.

I/ Loi d'une variable aléatoire.

A/ Premières définitions. [CR] [OUV]

Définition 1 : Variable aléatoire (réelle, discrète).

Définition 2 : Loi d'une variable aléatoire.

Notation 3: $P_X(B) = P(X \in B), P_X(\{k\}) = P(X = k).$

Remarque 4 : Si X est discrète, $(P(X=k))_k$ caractérise la loi de X.

Définition 5 : On dit que X suit la loi de probabilité μ si μ est une mesure de probabilité et $P_X = \mu$.

Définition 6 : Variable à densité.

Théorème 7 : Radon-Nikodyn.

Corollaire 8 : La densité caractérise la loi.

B/ Cas des vecteurs aléatoires, indépendance. [CR]

On prend ici $(X_1, ..., X_n)$ n variables aléatoires définies chacunes sur n espaces probabilisé a priori différents et on note $X = (X_1, ..., X_n)$.

Définition 9 : Loi conjointe et i-ième lois marginales.

Proposition 10 : Connaître la loi conjointe c'est connaître les lois marginales (Pour discret et à densité).

Contre-exemple 11 : La réciproque est fausse : considérer (X,Y) qui mesure le jet de deux dés.

Remarque 12 : Si X et Y à densité, (X,Y) n'est pas forcément à densité.

Définition 13 : Variables indépendantes.

Théorème 14 : $X_1, ..., X_n$ indépendantes si et seulement si $\mathbb{P}_{(X_1,...,X_n)} = \mathbb{P}_{X_1} \otimes \mathbb{P}_{X_n}$.

Proposition 15 : Si X et Y sont indépendantes alors $f_{(X,Y)} = f_X * f_Y$ et pareil pour le cas discret.

Application 16 : Si $X_1, ..., X_n$ iid de loi $\mathcal{E}(\lambda)$ alors $X_1 + \cdots + X_n \sim \Gamma(n, \lambda)$, si X et Y indépendantes de loi respectives $\Gamma(r, \lambda)$ et $\Gamma(s, \lambda)$ alors X + Y de loi $\Gamma(r + s, \lambda)$.

Définition 17 : Convergence en loi.

C/ Lois usuelles. [CR]

Tableau de toutes les lois et leurs interprétations.

II/ Caractérisation de la loi d'une variable aléatoire.

A/ Fonction muette. [CR]

Définition 18 : Espérance.

Proposition 19 : Théorème de transfert.

Définition 20 : Moment d'ordre k.

Proposition 21 : Fonction muette : si pour toute f mesurable bornée $\mathbb{E}[f(X)] = \int f(x)g(x)\,\mathrm{d}x$ alors X est à densité de densité g.

Remarque 22 : Permet le calcul de lois en pratique.

B/ Fonction de répartition. [CR] [WA]

Définition 23 : Fonction de répartition.

Proposition 24 : La fonction de répartition est croissante, continue à droite et calcul des limites aux extrémités.

Proposition 25: La fonction de répartition caractérise la loi.

Proposition 26 : Pour une variable aléatoire de fonction de répartition F, d'inverse généralisé noté $F^{<-1>}$ et si U est uniforme sur [0,1] alors $X=F^{<-1>}(U)$ admet pour fonction de répartition F.

Remarque 27 : Si la fonction de répartition est \mathbb{C}^1 on dérive pour obtenir la densité.

Application 28 : Si X uniforme sur [0,1] alors on peut déterminer la densité de $Y=X^2$ en dérivant la fonction de répartition.

Développement 1

Proposition 29 : $X_n \xrightarrow{\mathcal{L}} X \iff \forall x$ point de continuité de F_X alors $\lim_{n \to +\infty} F_{X_n}(x) = F_X(x)$.

Corollaire 30 : Si les variables sont discrètes alors $X_n \xrightarrow{\mathcal{L}} X \iff \mathbb{P}(X_n = k) \underset{n \to +\infty}{\to} \mathbb{P}(X = k)$.

Application 31: Approximation binomiale-poisson : si $X_n \sim \mathcal{B}(n, p_n)$ où $np_n \to \lambda$ alors $X_n \overset{\mathcal{L}}{\to} \mathcal{P}(\lambda)$

C/ Fonction caractéristique. [CR]

Définition 32 : Fonction caractéristique.

Proposition 33 : La fonction caractéristique caractérise la loi.

Exemple 34 : Fonction caractéristique de la gaussienne.

Développement 2.a)

Théorème 35 : Paul-Lévy.

D/ Fonction génératrice. [WA]

 ${\bf D\'efinition~36:} Fonction~{\bf g\'en\'eratrice~pour~les~variables~al\'eatoires~discrètes.}$

Proposition 37 : La fonction génératrice caractérise la loi.

Proposition 38 : Toutes les propriétés de la fonction génératrice.

Proposition 39 : Récupération des moments.

Application 40: Processus de branchement de Galton-Watson.

III/Théorème central-limite. [WA]

Développement 2.b)

Théorème 41: Théorème central limite.

Application 42 : Dans la méthode de Monte-Carlo, on a un intervalle de confiance de l'intégrale en $O\left(\frac{1}{\sqrt{n}}\right)$.

- [CR] Chabanol Ruch Probabilités et statistiques p. 21-70 et Appendice B
- [OUV] Ouvrard Probabilités 2 p. 8
- [WA] Walter Appel Probabilités pour les Non-Probabilistes p. 160, p. 195, p. 397, p. 411 et p. 438

LEÇON N° 262 : CONVERGENCES D'UNE SUITE DE VARIABLES ALÉATOIRES. THÉORÈMES LIMITES. EXEMPLES ET APPLICATIONS.

Dans toute la suite on prend $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé.

I/ Modes de convergence.

A/ Convergence presque sûre. [WA]

Définition 1 : Convergence presque sûre.

Proposition 2 : Linéarité de la convergence presque sûre.

Lemme 3 : Lemmes de Borel-Cantelli.

Théorème 4 : CNS pour avoir convergence sûre d'une suite de variables aléatoires.

Corollaire 5 : Conditions suffisantes pratiques pour vérifier la convergence sûre.

B/ Convergence en probabilité. [WA] [OUV]

Définition 6 : Définition de la convergence en probabilité.

Exemple 7 : (X_n) suite tel que $\mathrm{Var}(X_n) \to 0$ alors X_n converge en probabilité vers 0.

Proposition 8: $X_n \stackrel{\mathbb{P}}{\to} X \iff \mathbb{E}[\min(X_n - X, 1)] \to 0.$

Proposition 9 : Si f continue et $X_n \stackrel{\mathbb{P}}{\to} X$ alors $f(X_n) \stackrel{\mathbb{P}}{\to} f(X)$

Remarque 10 : On ne connaît pas nécessairement la variable aléatoire limite d'où le critère de Cauchy uniforme suivant.

Proposition 11 : Critère de Cauchy pour la convergence en probabilité.

Théorème 12 : Convergence presque sûre ⇒ convergence en probabilité.

Contre-exemple 13 : La réciproque est fausse pour $X_n \sim \mathcal{B}(\frac{1}{n})$.

Proposition 14: Réciproque partielle avec sous-suite.

C/ Convergence L^p . [OUV]

Définition 15 : Convergence L^p .

Proposition 16: Implication des convergences L^p .

Proposition 17 : Critère de Cauchy L^p .

Théorème 18 : Convergence $L^p \implies$ convergence en probabilité.

Contre-exemple 19 : La réciproque est fausse : si X_n est de loi $\mathbb{P}_{X_n} = \frac{1}{n}\delta_{n^2} + (1 - \frac{1}{n})\delta_0$ alors (X_n) converge en probabilité vers 0 mais ne converge pas L^1 vers 0.

D/ Équi-intégrabilité et réciproque partielle. [OUV]

Définition 20 : Équi-intégrabilité.

Proposition 21 : Exemple d'un cas uniformément majoré par un variable aléatoire intégrable

Théorème 22 : Si $X_n \stackrel{\mathbb{P}}{\to} X$ et $\{|X_n|^p\}$ uniformément intégrable alors $X_n \stackrel{L^p}{\to} X$.

E/ Convergence en loi. [WA]

Définition 23 : Définition convergence en loi.

Développement 1.a)

Théorème 24 : $X_n \stackrel{\mathcal{L}}{\to} X \iff \forall x$ point de continuité de F_X alors $\lim_{n \to +\infty} F_{X_n}(x) = F_X(x)$.

Proposition 25: Si f continue et $X_n \stackrel{\mathcal{L}}{\to} X$ alors $f(X_n) \stackrel{\mathcal{L}}{\to} f(X)$

Proposition 26 : Convergence en probabilité ⇒ convergence en loi.

Remarque 27 : La réciproque est fausse car a priori les variables aléatoires ne sont pas nécessairement définies sur le même espace probabilisé, la convergence en loi est une convergence de mesures.

Développement 1.b)

Proposition 28 : Si les variables sont discrètes alors $X_n \stackrel{\mathcal{L}}{\to} X \Longleftrightarrow \mathbb{P}(X_n = k) \underset{n \to +\infty}{\to} \mathbb{P}(X = k).$

Application 29 : Approximation binomiale-poisson : si $X_n \sim \mathcal{B}(n,p_n)$ où $np_n \to \lambda$ alors $X_n \overset{\mathcal{L}}{\to} \mathcal{P}(\lambda)$

Remarque 30 : Annexe avec tous les modes de converge leurs implications et leurs réciproques partielles.

Théorème 31 : Slutsky.

II/ Théorèmes limites. [WA]

Théorème 32 : Loi forte des grands nombres.

Application 33 : Méthode de Monte-Carlo pour calculer numériquement une intégrale.

Développement 2

Théorème 34 : Théorème de Paul-Lévy.

Théorème 35: Théorème central limite.

Application 36 : Dans la méthode de Monte-Carlo, on a un intervalle de confiance de l'intégrale en $O\left(\frac{1}{\sqrt{n}}\right)$.

- [WA] Walter Appel Probabilités pour les Non-Probabilistes p. 383, p. 397, p. 411, p. 425, p. 438 et p. 533
- [OUV] Ouvrard Probabilités 2 p. 90, p. 93-98

LEÇON N° 264 : VARIABLES ALÉATOIRES DISCRÈTES. EXEMPLES ET APPLICATIONS.

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et (E, \mathcal{E}) espace probabilisable.

I/ Généralités sur les variables aléatoires discrètes.

A/ Caractérisation d'une variable aléatoire discrète. [CR]

Définition 1 : Variable aléatoire discrète.

Proposition 2 : La loi d'une variable aléatoire discrète est caractérisée par $(\mathbb{P}(X=k))_{k\in X(\Omega)}$.

Exemple 3 : La variable aléatoire donnant le score d'un dé est une variable aléatoire discrète car à valeurs dans $\{1, \ldots, 6\}$.

B/ Lois discrètes usuelles et interprétation. [CR]

Tableau contenant toutes les lois, notations et interprétations : Uniforme, Bernouilli, Binomiale, Poisson, Géométrique (unique loi discrète sans mémoire).

 ${
m C}/{
m Variables}$ aléatoires discrètes indépendantes. [CR]

On prend ici (X_1, \ldots, X_n) n variables aléatoires dans n espaces probabilisés.

Définition 4 : Variables indépendantes.

Proposition 5 : Variables indépendantes dans le cas discret.

Proposition 6 : Si $X_1, ..., X_n$ indépendantes et $g_1, ..., g_n$ mesurables alors $g_1(X_1), ..., g_n(X_n)$ sont indépendantes.

Proposition 7 : Calcul de la loi de la somme de variables aléatoires indépendantes discrètes.

Application 8 : Si $X \sim \mathcal{P}(\lambda)$ et $Y \sim \mathcal{P}(\mu)$ indépendantes alors $X + Y \sim \mathcal{P}(\lambda + \mu)$ et si $X \sim \mathcal{B}(n,p)$ et $Y \sim \mathcal{B}(m,p)$ indépendantes alors $X + Y \sim \mathcal{B}(n+m,p)$.

II/ Moments et fonctions génératrices.

A/ Moments d'ordre k. [CR]

Définition 9 : Espérance discrète.

Remarque 10 : Si B mesurable alors si $X = \mathbb{1}_B$ on a $\mathbb{E}[X] = \mathbb{P}(B)$.

Proposition 11 : E est linéaire et positive.

Remarque 12: $\mathbb{E}[X] = \sum_{n \geq 1} \mathbb{P}(X \geq n)$.

Proposition 13: Formule de transfert.

Définition 14 : Moment d'ordre k, espace L^k , variance et écart-type.

Remarque 15 : Interprétation de l'espérance et de la variance.

Proposition 16 : Inclusion des \mathcal{L}^k (car ici espace de mesure finie) et donc des moments.

Proposition 17 : Propriétés de la variance.

Exemple 18 : Calcul des espérances et variances des lois usuelles.

 $\,$ B/ Fonctions génératrices. [CR] [WA]

Définition 19: Fonction génératrice.

Proposition 20: La fonction génératrice est de rayon de convergence au moins 1.

Exemple 21 : Fonction génératrice des lois usuelles.

Proposition 22 : Si X et Y indépendantes alors $G_{X+Y} = G_X G_Y$.

Développement 1

Application 23 : Indécomposabilité de la loi de poisson.

Proposition 24: Toutes les propriétés de la fonction génératrice.

Développement 2

Application 25: Processus de branchement de Galton-Watson.

Proposition 26 : Récupération des moments.

III/ Vers les théorèmes limites.

A/ Borel-Cantelli. [WA]

Définition 27: Limite sup d'événements.

Proposition 28: Lemmes de Borel-Cantelli.

Application 29 : La marche aléatoire simple sur \mathbb{Z} et \mathbb{Z}^2 sont récurrentes : on calcule $\mathbb{P}(S_{2n}=0)$ et comme les séries divergent dans les deux cas on a le résultat par Borel-Cantelli.

B/ Convergence en loi et TCL. [WA]

Définition 30 : Convergence en loi.

Proposition 31 : Si les variables sont discrètes alors $X_n \stackrel{\mathcal{L}}{\to} X \Longleftrightarrow \mathbb{P}(X_n = k) \underset{n \to +\infty}{\to} \mathbb{P}(X = k)$.

Application 32: Approximation binomiale-poisson : si $X_n \sim \mathcal{B}(n, p_n)$ où $np_n \to \lambda$ alors $X_n \overset{\mathcal{L}}{\to} \mathcal{P}(\lambda)$

Théorème 33: Théorème central limite.

Application 34 : Dans la méthode de Monte-Carlo, on a un intervalle de confiance de l'intégrale en $O\left(\frac{1}{\sqrt{n}}\right)$.

- [CR] Chabanol Ruch Probabilités et statistiques p. 21-70 et Appendice B
- [WA] Walter Appel Probabilités pour les Non-Probabilistes p. 117, p.160, p. 195, p. 393, p. 397, p. 411, p. 423, p. 438, p. 533

LEÇON N° 266 : UTILISATION DE LA NOTION D'INDÉPENDANCE EN PROBABILITÉS.

On se place dans $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé.

I/ Notion d'indépendance.

A/ Événements indépendants. [GK]

Définition 1 : Probabilité conditionnelle.

Remarque 2 : C'est une mesure de probabilité.

Définition 3 : Événements indépendants deux à deux.

Exemple 4 : On lance deux pièces A : "La première pièce fait face", B : "La deuxième fait pile", C : "On a le même résultat sur les deux pièces" alors A, B et C sont indépendants deux à deux.

Définition 5 : Événements mutuellement indépendantes.

Contre-exemple 6 : Dans l'exemple précédent les trois événements ne sont mutuellement indépendants.

Proposition 7: Si $(A_i)_{i\in I}$ indépendants alors $(B_i)_{i\in I}$ où $B_i \in \{A_i, A_i^c\}$ sont indépendants.

Application 8: $\varphi(n) = n \prod_{i \in I} \left(1 - \frac{1}{p_i}\right)$.

B/ Indépendance de tribus et de variables aléatoires. [GK] [CR]

Définition 9 : Indépendance de tribus.

Définition 10 : Mutuelle-indépendance de variables aléatoires.

Théorème 11 : Si (X_i) indépendantes et (f_i) mesurables alors $(f_i(X_i))$ sont indépendantes.

Exemple 12 : X et Y indépendantes alors X^2 et ch(Y) sont indépendantes.

Contre-exemple 13 : X_1 , X_2 les deux va donnant le résultat du lancer des deux pièces alors X_1 , X_2 et $X_1 - X_2$ ne sont mutuellement indépendantes.

Proposition 14: $(X_1,...,X_n)$ indépendantes si et seulement si $\mathbb{P}_{(X_1,...,X_n)} = \mathbb{P}_{X_1} \otimes \mathbb{P}_{X_n}$.

Définition 15 : Inverse généralisée d'une fonction de répartition.

Lemme 16 : Si (X_n) iid Bernouilli de paramètres $\frac{1}{2}$ alors $\sum_{n\in\mathbb{N}} \frac{X_n}{2^n}$ suit une loi uniforme de [0,1].

Théorème 17 : Pour toute probabilité μ sur $(\mathbb{R}, B(\mathbb{R}))$, il existe une suite de va iid de loi μ .

II/ Premières propriétés autour de l'indépendance.

A/ Critères d'indépendances. [GK]

Théorème 18 : Si X et Y indépendantes alors $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.

Remarque 19 : Si les variables aléatoires sont indépendantes alors elles ne sont pas corrélées.

Contre-exemple 20 : Réciproque fausse avec X loi uniforme sur [-1,1] et $Y=X^2$, elles sont décorrélées mais pas indépendantes.

Corollaire 21 : Si X et Y indépendantes alors $\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y)$.

Proposition 22 : Si $(X_1, ..., X_n)$ admet une densité, $(X_1, ..., X_n)$ indépendantes si et seulement si $f_X = f_{X_1} ... f_{X_n}$. Si X et Y indépendantes à densité alors (X, Y) à densité.

B/ Sommes de variables aléatoires. [CR] [GK] $[\mathbf{Q}^2]$

Proposition 23: Si indépendantes $f_{X+Y} = f_X * f_Y$.

Application 24: Si $X_1, ..., X_n$ iid de loi $\mathcal{E}(\lambda)$ alors $X_1 + \cdots + X_n \sim \Gamma(n, \lambda)$, si X et Y indépendantes de loi respectives $\Gamma(r, \lambda)$ et $\Gamma(s, \lambda)$ alors X + Y de loi $\Gamma(r + s, \lambda)$.

Proposition 25: Si X et Y indépendantes alors $G_{X+Y} = G_X G_Y$.

Application 26 : Si $X \sim \mathcal{P}(\lambda)$ et $Y \sim \mathcal{P}(\mu)$ indépendantes alors $X + Y \sim \mathcal{P}(\lambda + \mu)$.

Développement 1

Application 27 : Indécomposabilité de la loi de Poisson.

Proposition 28 : Si $X_1, ... X_n$ et N indépendantes alors $G_{\sum\limits_{k=1}^N X_k} = G_N \circ G_{X_1}.$

C/ Cas des vecteurs gaussiens. [GK]

Définition 29 : Vecteur gaussien et matrice de covariance.

Proposition 30 : Si $X_1, ..., X_n$ toutes normales indépendantes alors $X = (X_1, ..., X_n)$ est un vecteur gaussien.

Théorème 31 : Si $(X_1,...,X_n)$ est un vecteur gaussien alors $(X_1,...,X_n)$ sont indépendantes si et seulement si la matrice de covariance associée est diagonale.

Remarque 32 : Dans le cas des vecteurs gaussiens si les variables aléatoires sont décorrelées elles sont alors indépendantes.

III/ Théorèmes limites.

A/ Borel-Cantelli. [WA]

Proposition 33: Lemmes de Borel-Cantelli.

Application 34 : La marche aléatoire simple sur \mathbb{Z} et \mathbb{Z}^2 sont récurrentes : on calcule $\mathbb{P}(S_{2n}=0)$ et comme les séries divergent dans les deux cas on a le résultat par Borel-Cantelli.

B/ Loi des grands nombres. [WA]

Théorème 35 : Loi faible des grands nombres.

Théorème 36 : Loi forte des grands nombres.

Application 37: $\overline{X_n} = \frac{1}{n} \sum_{k=1}^{n} X_k$ est un estimateur fortement consistant.

C/ TCL. [WA]

Développement 2

Théorème 38: Théorème de Paul-Lévy.

Corollaire 39: Théorème central limite.

Application 40 : Dans la méthode de Monte-Carlo, on a un intervalle de confiance de l'intégrale en $O\left(\frac{1}{\sqrt{n}}\right)$.

- [GK] Garet-Kurtzmann De l'intégration aux probabilités p. 49-54, p. 56, p. 126-136
- [CR] Chabanol Ruch Probabilités et statistiques p. 26 et p. 41
- [WA] Walter Appel Probabilités pour les Non-Probabilistes p. 117, p. 423, p. 438 et p. 533
- [Q²] Queffélec Queffélec Analyse complexe et applications p. 209, p. 425