Entrega Superficies. GDIF

Mario Calvarro Marines

Enunciado

Demuestra que una superficie parametrizada tal que $E = \frac{1}{v^2}$, F = 0, $G = \frac{1}{v^2}$ para todo $(u, v) \in \mathbb{R}^2$ con v > 0 tiene una curvatura de Gauss constante igual a -1. Comprueba que las curvas de la forma

$$(u(s), v(s)) = (a + r \tanh(s), r \operatorname{sech}(s))$$

son las semicircunferencias con centro en v=0 y que su imagen por φ están parametrizadas por su longitud de arco y son geodésicas. Parametriza por arco las semirrectas verticales y comprueba que también son geodésicas. ¿Puede haber más geodésicas?

Curvatura de Gauss

Veamos que, efectivamente, la curvatura de Gauss de esta superficie es constantemente -1. Por hipótesis, sabemos que la matriz de la *Primera Forma Fundamental* de esta superficie es:

$$\begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} \frac{1}{v^2} & 0 \\ 0 & \frac{1}{v^2} \end{pmatrix}$$

Además, gracias a que F=0, podemos aplicar el ejercicio 7 de la hoja 6 que nos indica una forma de la curvatura de Gauss:

$$K = -\frac{1}{2\sqrt{EG}} \left(\left(\frac{E_v}{\sqrt{EG}} \right)_v + \left(\frac{G_u}{\sqrt{EG}} \right)_u \right)$$

Por lo que solo queda calcular los distintos términos:

$$\sqrt{EG} = \sqrt{\frac{1}{v^4}} = \frac{1}{v^2} \qquad E_v = -\frac{2}{v^3} \qquad G_u = 0$$

$$\left(\frac{E_v}{\sqrt{EG}}\right)_v = \left(-\frac{2}{v}\right)_v = \frac{2}{v^2}$$

Sustituyendo,

$$K = -\frac{v^2}{2}\left(\frac{2}{v^2} + 0\right) = -\frac{v^2}{2} \cdot \frac{2}{v^2} = -1.$$

Que es lo que buscábamos.