中值定理

15 年试题

若函数 $f(x) = \sqrt{1-x^2} + kx$ 数在区间[0,1]上满足 罗尔 (Rolle) 定理的条件,则常数 k =

解:若函数 $f(x) = \sqrt{1-x^2} + kx$ 数在区间[0,1]上满足罗尔 (Rolle) 定理的条件,则 f(1) = f(0),即 k = 1

14 年试题

7. $f(x) = x^2 + 2x - 1$ 在区间[0,2] 上应用拉格朗日 (Langrange) 中值定理时,满足定理要求的 $\xi =$ 。

解:
$$f'(x) = 2x + 2$$
, $f'(\xi) = 2\xi + 2$

由拉格朗日(Langrange)中值定理结论

$$f'(\xi) = \frac{f(b) - f(a)}{b - a},$$

得2
$$\xi$$
+2= $\frac{f(2)-f(0)}{2-0}$ = $\frac{7-(-1)}{2}$,

解得 $\xi = 1$

13 年试题

下列函数中,在区间[-1,1]上满足罗尔(Rolle) () 定理条件的是

A.
$$y = x^{\frac{2}{3}}$$
 B. $y = |x|$

$$\mathbf{B.} \quad y = |x|$$

C.
$$y = x^{\frac{4}{3}}$$
 D. $y = x^{\frac{5}{3}}$

D.
$$y = x^{\frac{3}{3}}$$

解:函数 $y = x^{\frac{4}{3}}$ 在区间 [-1,1] 连续

$$y = x^{\frac{4}{3}}$$
的导数 $y' = \frac{4}{3}x^{\frac{1}{3}}$,在(-1,1) 可导

$$\coprod f(-1) = f(1)$$

满足罗尔(Rolle)定理条件

05 年试题

下列函数中,在闭区间[-1,1]上满足罗尔中值 定理条件的是

A.
$$f(x) = |x|$$

B.
$$f(x) = x^{-2}$$

A.
$$f(x) = |x|$$
 B. $f(x) = x^{-2}$ C. $f(x) = \sqrt{1 - x^2}$ D. $f(x) = x^3$

D.
$$f(x) = x^3$$

渐近线

15 年试题

曲线 $y = (1 - \frac{5}{x})^x$ 的水平渐进线为

y =_______

14 年试题

2. 函数 $y = \frac{x}{x + 2\sin x}$ 的图形的水平渐近线是

$$A. \quad y = 0$$

B.
$$y = \frac{1}{3}$$

C.
$$y = \frac{1}{2}$$

D.
$$y = 1$$

13 年试题

2. 曲线
$$y = \frac{x^2}{x^2 - 1}$$
 ()

- A. 只有水平渐近线
- B. 只有铅垂渐进线
- C. 既有水平渐近线也有铅垂渐近线
- D. 无渐近线
- 12 年试题 公众号:高数专题复习

如果曲线 $y = ax - \frac{x^2}{x+1}$ 的水平渐近线存在,

则常数a = ()

A. 2 B. 1 C. 0

D. -1

09 年试题

曲线 $y = \frac{\ln(1+x)}{x}$ 的水平渐近线方程 是 _____。

07 年试题

设函数 $y = \frac{1 - e^{-x^2}}{1 + e^{-x^2}}$,则其函数图像的水平渐近线 方程是 _____。

06 年试题

若直线y = 4是曲线 $y = \frac{ax + 3}{2x - 1}$ 的水平渐近线,则 *a*= .

单调区间、极值

15 年试题

2. 已知函数 f(x) 在 x_0 处有二阶导数,且

 $f'(x_0) = 0$, $f''(x_0) = 1$,则下列结论正确的是

- A. x_0 为f(x)的极小值点
- B. x_0 为f(x)的极大值点
- $C. x_0$ 为f(x)的极值点
- D. $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点

解:因为 $f'(x_0) = 0$, $f''(x_0) = 1 > 0$,

所以 x_0 为f(x)的极小值点

14 年试题

求函数 $f(x) = \log_4(4^x + 1) - \frac{1}{2}x - \log_4 2$ 的单调

区间和极值。

13. 解: f(x)的定义域为 $(-\infty, +\infty)$

$$f'(x) = \frac{4^x \ln 4}{(4^x + 1) \ln 4} - \frac{1}{2} = \frac{4^x - 1}{2(4^x + 1)}$$

令
$$f'(x) = 0$$
,解得 $x = 0$

当x < 0时,f'(x) < 0,当x > 0时,f'(x) > 0, 所以f(x)在区间 $(-\infty, 0)$ 递减,在 $(0, +\infty)$ 内递增; f(0) = 0是 f(x)的极小值

13 年试题

设函数 $f(x) = x \sin x + \cos x$, 则下列结论正确的是

- A. f(0)是f(x)的极小值, $f(\frac{\pi}{2})$ 是f(x)的极大值
- B. f(0)是 f(x)的极大值, $f(\frac{\pi}{2})$ 是 f(x)的极小值
 - C. f(0)和 $f(\frac{\pi}{2})$ 都是f(x)的极小值
 - D. f(0)和 $f(\frac{\pi}{2})$ 都是f(x)的极大值

解: $f'(x) = x \cos x$ $f''(x) = \cos x - x \sin x$ f'(0) = 0, f''(0) = 1 > 0 , 所以, f(0)是 f(x)的极小值,

$$f'(\frac{\pi}{2}) = 0, f''(\frac{\pi}{2}) = -\frac{\pi}{2} < 0$$
,

所以, $f(\frac{\pi}{2})$ 是 f(x)的极大值

12 年试题

13. 确定函数 $f(x) = (x-1)e^{\frac{\pi}{4} + \arctan x}$ 的单调区间 公众号: 富致专题复见

和极值

(6分)

13. 解:函数 f(x) 的定义域为 $(-\infty, +\infty)$,

$$f'(x) = e^{\frac{\pi}{4} + \arctan x} + (x - 1)e^{\frac{\pi}{4} + \arctan x} \cdot \frac{1}{1 + x^2}$$

$$=\frac{x(1+x)}{1+x^2}e^{\frac{\pi}{4}+\arctan x}$$

(2分)

令
$$f'(x) = 0$$
,解得 $x = 0, x = -1$

因为在区间($-\infty$,-1)内,f'(x) > 0;在区间(-1,0)内,f'(x) < 0;

在区间 $(0,+\infty)$ 内, f'(x) > 0,

所以 f(x) 的递增区间是 $(-\infty,-1)$ 及 $(0,+\infty)$,递减区间是 (-1,0) (4 分)

f(x) 的极大值是f(-1) = -2, f(x)的极小值

$$f(0) = -e^{\frac{\pi}{4}} \tag{6 \%}$$

11 年试题

已知 f(x)的二阶导数存在,且 f(2) = 1,则 x = 2是函数 $F(x) = (x-2)^2 f(x)$ 的

A. 极小值点

B. 最小值点

C. 极大值点

D. 最大值点

解:
$$F'(x) = 2(x-2)f(x) + (x-2)^2 f'(x)$$

 $F''(x) = 2f(x) + 4(x-2)f'(x) + (x-2)^2 f''(x)$
 $F'(2) = 0$, $F''(2) = 2f(2) = 2 \times 1 = 2 > 0$
 $x = 2$ 是函数 $F(x) = (x-2)^2 f(x)$ 的极小值点

08 年试题

求函数
$$f(x) = 3 - x - \frac{4}{(x+2)^2}$$
在区间 [-1, 2]上

的最大值及最小值。

12. 【解析】由题意,知

$$f(-1) = 0, f(0) = 2, f(2) = \frac{3}{4}$$

令 f'(x) = 0,即 $(x+2)^3 = 8$,解得驻点 x=0,

又
$$f(-1) = 0, f(0) = 2, f(2) = \frac{3}{4}$$
,所以 $f(x)$ 在区

间[-1, 2]上最大值M = 2及最小值m = 0.

05 年试题

21. 设
$$f(x) = xe^{-\frac{1}{2}x^2}$$
,

- (1) 求 f(x)的单调区间及极值;
- (2) 求 f(x)的闭区间 [0, 2] 上的最大值和最小值。

列表

X	$(-\infty,-1)$	-1	(-1, 1)	1	$(1,+\infty)$
f'(x)	_	0	+	0	_
f(x)	下降	极小	上升	极大	下降

可知极小值
$$f(-1) = -\frac{1}{\sqrt{e}}$$

极大值
$$f(1) = \frac{1}{\sqrt{e}}$$

(2) 因 f(x)在 [0,2]上连续,由 (1) 知 f(x)在 (0,2)内可导,且在 (0,2),内只有一个驻点 x=1 (极大值点),因

故 $f(x) = xe^{\frac{1}{2}x^2}$ 在闭区间[0,2]上的最大

值为
$$f(1) = \frac{1}{\sqrt{e}}$$
,最小值为 $f(0) = 0$

凹凸性

14 年试题

曲线 $y = \ln x + \frac{1}{2}x^2 + 1$ 的凸区间是

A.
$$(-\infty,1)$$

B.
$$(-1,0)$$

D.
$$(1,+\infty)$$

解:
$$y' = \frac{1}{x} + x$$
, $y'' = \frac{x^2 - 1}{x^2}$

在区间(0,1), y'' < 0, 曲线 $y = \ln x + \frac{1}{2}x^2 + 1$ 凸

13 年试题

求曲线 $y = \ln(\sqrt{x^2 + 4} + x)$ 的凹、凸区间及其拐 公众号: 高数专题复见

点坐标。

解:函数的定义域为 $(-\infty, +\infty)$,

$$y' = \frac{1}{\sqrt{x^2 + 4} + x} \left(\frac{x}{\sqrt{x^2 + 4}} + 1 \right) = \frac{1}{\sqrt{x^2 + 4}},$$

$$y'' = \frac{-x}{\left(x^2 + 4\right)^{\frac{3}{2}}} \circ$$

令y'' = 0,解得x = 0,

当x < 0时y'' > 0; 当x > 0时y'' < 0。

故曲线的凹区间为 $(-\infty,0)$; 曲线的凸区间为 $(0,+\infty)$;

曲线的拐点为(0,ln2)。

12 年试题

8. 若曲线 $y = x^3 + ax^2 + bx + 1$ 有拐点(-1,0),则常数b =_____。

解:
$$f'(x) = 3x^2 + 2ax + b$$
, $f''(x) = 6x + 2a$
曲线 $y = x^3 + ax^2 + bx + 1$ 有拐点(-1,0)

所以,
$$f(-1) = 0$$
, $f''(-1) = 0$,

即
$$a+b=0, -6+2a=0$$
,解得: $a=3, b=-3$

11 年试题

- 13. 求曲线 $y = x \arctan kx(k < 0)$ 的凹凸区间和 拐点。
- 13. 解:函数的定义域为

$$(-\infty, +\infty), y' = 1 - \frac{k}{1 + k^2 x^2}, y'' = \frac{2k^3 x}{(1 + k^2 x^2)^2}$$

令y'' = 0,解得x = 0,

在区间 $(-\infty,0)$ 内,y''>0;在区间 $(0,+\infty)$ 内,y''<0,

所以该曲线的凸区间是 $(0,+\infty)$,凹区间是 $(-\infty,0)$;

拐点是(0,0)。

10 年试题

已知点(1, 1)是曲线 $y = ae^{\frac{1}{x}} + bx^2$ 的拐点,求常数 a,b 的值。

13. 解: 由题意知 *ae* + *b* = 1 ① 又因为

$$y' = -\frac{a}{x^2}e^{\frac{1}{x}} + 2bx, y'' = \frac{2a}{x^3}e^{\frac{1}{x}} + \frac{a}{x^4}e^{\frac{1}{x}} + 2b$$

2

$$2ae + ae + 2b = 3ae + 2b = 0$$

由①和②解得
$$a = -\frac{2}{e}, b = 3$$

09 年试题

设函数 $f(x) = x^2 + 4x - 4x \ln x - 8$ 。

(1)判断 f(x)在区间(0,2)上的图形的凹凸

性,并说明理由;

(2) 证明: 当0 < x < 2,有f(x) < 0。

20. 【解析】(1)

:
$$f'(x) = 2x + 4 - 4 \ln x - 4 = 2x - 4 \ln x$$
, $f''(x) = 2 - \frac{4}{x}$

当
$$0 < x < 2$$
时, $f''(x) < 0$,

所以f(x)在(0,2)上的图形是凸的。

$$:: f'(x)$$
在 $(0,2)$ 上单调减少,

由此知:

当
$$0 < x < 2$$
时,有

$$f'(x) > f'(2) = 4 - 4 \ln 2 > 0$$

故 f(x) 在区间(0,2) 上单调增加.

因此当0 < x < 2时,有

$$f(x) < f(2) = 4 + 8 - 8 \ln 2 - 8 = 4 - 8 \ln 2 = 4 - 4 \ln 4 < 0.$$