

Métodos Numéricos

Unidade II: Zeros de Funções Reais

Introdução

- Em muitos problemas nas mais diversas áreas da engenharia temos situações que envolvem a resolução de uma equação do tipo f(x) = 0.
- Consideremos, por exemplo, o seguinte problema:

- O esquema acima representa um dispositivo não linear onde a função g modela um dispositivo de tensão controlado por corrente.
- Se quisermos estudar o fluxo de corrente no circuito devemos resolver a equação:

$$E - Ri - g(i) = 0$$

Solução de Equações

Uma equação polinomial, algébrica ou transcendental é representada por:

$$f(x)=0$$

- Onde f é uma função não linear a uma variável que pode ser uma função polinomial, algébrica ou transcendental.
 - Função Transcendental $\rightarrow sen(x)$, e^x , ln(x)
 - Equação Polinomial $\rightarrow x^4 4x^3 + 10x 100 = 0$
 - Equação Algébrica $\rightarrow \frac{1}{(x^3+2)^{1/2}} 20 = 0$

Solução de Equações

- As soluções da equação f(x) = 0 são denominadas raízes da equação ou zeros da função f.
 - Estas raízes podem ser reais ou complexas, podendo ainda ter um número finito ou infinito de raízes.
 - $x^4 4x^3 + 10x 100 = 0 \rightarrow 4$ raízes
 - $x \cdot tg(x) 1 = 0 \Rightarrow$ infinitas raízes
 - As raízes reais e/ou complexas podem ainda ser simples e repetidas (múltiplas).

$$(x - 0.5)^3 \cdot (x - 0.7)^2 \cdot (x - 1.2) = 0$$

- Possui 6 raízes reais;
- 0,5 é uma raiz repetida com multiplicidade 3;
- 0,7 raiz repetida com multiplicidade 2;
- 1,2 raiz simples;

Métodos Numéricos

- Sabemos que para algumas equações, como polinomiais do segundo grau por exemplo, existem fórmulas explícitas que dão as raízes em função dos coeficientes.
- No caso de polinômios de grau mais alto ou para funções mais complexas a tarefa de identificação exata dos zeros torna-se complicada.
- Desta forma os métodos numéricos buscam aproximações para estes métodos.
- A ideia inicial é a partir de uma aproximação inicial para a raiz refinar a solução através de um processo iterativo.

Métodos Numéricos

- Os métodos para encontrar as raízes devem conter duas fases distintas:
 - FASE I → Localização ou isolamento da raiz, que consiste em limitar um intervalo que contém a raiz;
 - FASE II → Refinamento, que consiste em, dado uma aproximação inicial no intervalo fornecido pela FASE I, melhorar a solução sucessivamente até obtermos uma raiz dentro de uma precisão ε pré-definida.

Isolamento das Raízes

- Seja f(x) uma função contínua num intervalo [a, b].
- Se $f(a) \cdot f(b) < 0$ então existe pelo menos **um ponto** $x = \xi$ entre a e b que é **zero de f(x).**

Sob a hipótese do teorema anterior, se f '(x) existir e preservar seu sinal em (a, b), então este intervalo contém um único zero de f(x).

- Uma forma de isolar as raízes de f(x) usando os resultados anteriores é tabelar f(x) para vários valores de x e analisar as mudanças de sinal de f(x) e o sinal da derivada nos intervalos em que f(x) mudou de sinal.
- Ex: $f(x) = x^3 9x + 3$

X	-∞	-100	-10	-5	-3	-1	0	1	2	3	4	5
F(x)	-	-	-	-	+	+	+	-	-	+	+	+

• Sabendo que f(x) é contínua para qualquer x real e observando as variações de sinal, podemos concluir que cada um dos intervalos $I_1=[-5,-3]$, $I_2=[0,1]$, $I_3=[2,3]$ contém pelo menos um zero de f(x).

• Ex: $f(x) = \sqrt{x} - 5e^{-x}$, com D(f)= \mathbb{R}^+

X	0	1	2	3
F(x)	-	-	+	+

- Analisando a tabela, vemos que f(x) admite pelo menos um zero no intervalo (1,2).
- Para saber se este zero é único neste intervalo podemos usar a definição, isto é, analisar o sinal de f'(x):

$$f'(x) = \frac{1}{2\sqrt{x}} + 5e^{-x} > 0, \forall x > 0$$

 Assim, podemos concluir que f(x) admite um único zero em todo seu domínio de definição e este zero está no intervalo (1,2).

- Seja f(x) uma função contínua num intervalo [a, b].
- Se $f(a) \cdot f(b) > 0$ então podemos ter várias situações.

- A análise gráfica da função f(x) ou da equação f(x) = 0 é fundamental para se obter boas aproximações para a raiz. Desta forma podemos adotar as seguintes técnicas:
 - Esboçar o gráfico de f(x) e localizar os pontos onde a curva realiza a transição do eixo x.
 - A partir da equação f(x) = 0, obter o equivalente g(x) = h(x) e esboçar os gráficos de g(x) e h(x) no mesmo plano afim de localizar os pontos onde as curvas se interceptam pois neste caso $f(\xi) = 0 \rightarrow g(\xi) = h(\xi)$
 - Utilizar programas computacionais afim de esboçar os gráficos das funções;

OBS: O esboço do gráfico de uma função requer o estudo detalhado do comportamento desta função, que envolve basicamente os itens: **domínio**; **pontos de máximo e mínimo**; **pontos de descontinuidade**; **intervalos de crescimento e decrescimento**; **concavidade**; **pontos de inflexão** e **assíntotas da função**;

UNIVERSIDADE FEDERAL DO CEARÁ

Exercícios

- Traçar os gráficos as seguintes funções:
 - a) $f(x) = x^3 9x + 3$
 - b) $f(x) = \sqrt{x} 5e^{-x}$
 - c) $f(x) = x \log(x) 1$

- Antes de abordamos métodos para determinação o número e os limites das raízes reais de uma equação polinomial, serão vistos modelos de avaliar um polinômio e algumas propriedades importantes desse tipo de função.
- Uma equação algébrica de grau n tem exatamente n raízes, reais ou complexas, contando cada raiz de acordo com sua multiplicidade.
 - Uma raiz ξ de uma equação polinomial tem multiplicidade m se:

$$P(x) = c_n x^n + c_{n-1} x^{n-1} + c_{n-2} x^{n-2} + \dots + c_2 x^2 + c_1 x + c_0 = 0$$

$$P(\xi) = P'(\xi) = P''(\xi) = \dots = P^{m-1}(\xi) = 0 \text{ e}$$

$$P^m(\xi) \neq 0 \quad \text{sendo}$$

$$P^i(\xi) = \frac{d^i P(x)}{dx^i} \Big|_{x = \xi, i = 1, 2, \dots, m}.$$

Exemplo

Exemplo

$$P(x) = 3x^5 - 2x^4 + 5x^3 + 7x^2 - 3x + 1$$

$$P(x) = x^4 + 2x^3 - 12x^2 + 14x - 5 \rightarrow P(1) = 0,$$

 $P'(x) = 4x^3 + 6x^2 - 24x + 14 \rightarrow P'(1) = 0,$
 $P''(x) = 12x^2 + 12x - 24 \rightarrow P''(1) = 0 e$
 $P'''(x) = 24x + 12 \rightarrow P'''(1) = 36.$

- Se os **coeficientes** de uma equação algébrica forem **reais**, então **suas raízes complexas serão complexos conjugados em pares**, ou seja, se $\xi_1 = a + bi$ for uma raiz de multiplicidade m, então $\xi_2 = a bi$ também será uma **raiz com a mesma multiplicidade**.
- Uma equação algébrica com grau ímpar com coeficientes reais tem, no mínimo, uma raiz real.

Dada a equação:

$$P(x) = c_n x^n + c_{n-1} x^{n-1} + c_{n-2} x^{n-2} + \dots + c_2 x^2 + c_1 x + c_0 = 0$$

■ Se $c_n > 0$ e k ($0 \le k \le n-1$) for o maior índice de coeficiente escolhido dentre os coeficientes negativos, então o limite superior das raízes positivas de P(x) = 0 pode ser dado por:

$$L = 1 + \sqrt[n-k]{\frac{B}{c_n}}$$

onde B é o valor absoluto do maior coeficiente negativo em módulo.

■ Desta foma se ξ_p for a maior das raízes positivas de P(x) = 0, então $\xi_p \le L$.

- Exemplo:
 - Seja a equação:

$$P(x) = x^4 + 2x^3 - 13x^2 - 14x + 24 = 0$$

Os coeficientes negativos são $c_{\underline{2}}=-13$ e $c_{\underline{1}}=-14$, portanto, k=2, pois $\underline{2}>\underline{1},\ B=|-14|$

$$L = 1 + \sqrt[4-2]{\frac{14}{1}} \rightarrow L = 4,74.$$

• O Teorema de Lagrange garante que P(x)=0 não tem nenhuma raiz maior que 4,74.

- Se $c_i > 0$ (i = 0, 1, ... n), então P(x) = 0 não tem raízes positivas, pois $P(x) = \sum_{i=0}^{n} c_i x^i$ para $c_i > 0$ e x > 0.
- Para determinar os limites superiores e inferiores das raízes positivas e negativas, são necessárias três equações auxiliares.

$$P_1(x) = x^n P(1/x) = 0,$$

$$P_2(x) = P(-x) = 0 e$$

$$P_3(x) = x^n P(-1/x) = 0.$$

Exemplo

Seja
$$P(x) = x^4 - 6x^3 - 5x^2 + 42x + 40 = 0$$
,

então as equações auxiliares e suas respectivas raízes são

$$P_1(x) = x^4 P(1/x) = 40x^4 + 42x^3 - 5x^2 - 6x + 1,$$

$$P_2(x) = P(-x) = x^4 + 6x^3 - 5x^2 - 42x + 40,$$

$$P_3(x) = x^4 P(-1/x) = 40x^4 - 42x^3 - 5x^2 + 6x + 1,$$

Se $1/\xi_q$ for a maior das raízes positivas de $P_1(x) = 0$, então ξ_q será a menor das raíze positivas de P(x) = 0 (ver Exemplo 6.10). Sendo L_1 o limite superior das raízes positiva de $P_1(x) = 0$, calculado pelo Teorema 6.3, tem-se que

$$\frac{1}{\xi_q} \le L_1 \to \xi_q \ge \frac{1}{L_1},$$

consequentemente, o limite inferior das raízes positivas de P(x) = 0 é $1/L_1$. Desse modo, s P(x) = 0 possuir raízes positivas ξ^+ , elas estarão no intervalo

$$\frac{1}{L_1} \le \xi^+ \le L$$

Por outro lado, se $-\xi_r$ for a maior das raízes positivas de $P_2(x) = 0$, então ξ_r será a meno das raízes negativas de P(x) = 0 (ver Exemplo 6.10). Sendo L_2 o limite superior das raíze positivas de $P_2(x) = 0$, dado pelo Teorema 6.3

$$-\xi_r \le L_2 \to \xi_r \ge -L_2.$$

Se $-1/\xi_s$ for a maior das raízes positivas de $P_3(x) = 0$, então ξ_s será a menor das raízes negativas de P(x) = 0 (ver Exemplo 6.10). Sendo L_3 o limite superior das raízes positivas de $P_3(x) = 0$, dado pelo Teorema 6.3

$$-\frac{1}{\xi_s} \le L_3 \to \xi_s \le -\frac{1}{L_3}.$$

Então, se P(x) = 0 tiver raízes negativas ξ^- , elas estarão no intervalo

$$-L_2 \le \xi^- \le -\frac{1}{L_3}$$

A Figura 6.3 mostra os limites das raízes reais de uma equação algébrica. É importante notar que esses limites não garantem a existência das raízes reais, mas tão-somente informam onde as raízes reais estarão caso existam.

Figura 6.3 Limites das raízes reais de uma equação algébrica.

Calcular os limites das raízes reais de $P(x) = x^4 + 2x^3 - 13x^2 - 14x + 24 = 0$

As equações auxiliares são

$$P_1(x) = x^4 P\left(\frac{1}{x}\right) = x^4 \left(\frac{1}{x^4} + \frac{2}{x^3} - \frac{13}{x^2} - \frac{14}{x} + 24\right) = 0 \to$$

$$P_1(x) = 24x^4 - 14x^3 - 13x^2 + 2x + 1 = 0,$$

$$L_1 = 1 + \sqrt[4-3]{\frac{14}{24}} \leadsto \frac{1}{L_1} = 0,63,$$

$$P_2(x) = P(-x) = (-x)^4 + 2(-x)^3 - 13(-x)^2 - 14(-x) + 24 = 0 \to$$

$$P_2(x) = P(-x) = (-x)^4 + 2(-x)^3 - 13(-x)^2 - 14(-x) + 24 = 0 \rightarrow$$

$$P_2(x) = x^4 - 2x^3 - 13x^2 + 14x + 24 = 0,$$

$$L_2 = 1 + \sqrt[4-3]{\frac{13}{1}} \rightsquigarrow -L_2 = -14 \text{ e}$$

$$P_3(x) = x^4 P\left(\frac{1}{-x}\right) = x^4 \left(\frac{1}{(-x)^4} + \frac{2}{(-x)^3} - \frac{13}{(-x)^2} - \frac{14}{(-x)} + 24\right) = 0 \rightarrow$$

$$P_3(x) = 24x^4 + 14x^3 - 13x^2 - 2x + 1 = 0,$$

$$L_3 = 1 + \sqrt[4-2]{\frac{13}{24}} \rightsquigarrow -\frac{1}{L_3} = -0,58.$$

Considerando que L=4,74, conforme o Exemplo 6.9, então os limites das raízes reais são

$$0.63 \le \xi^{+} \le 4.74$$
 e $-14 \le \xi^{-} \le -0.58$.

- Pode-se assim construir um dispositivo para facilitar a determinação dos limites das raízes reais. O dispositivo é constituído de dois blocos.
- No primeiro bloco são definidos os coeficientes de P(x) = 0 e de suas três equações auxiliares $P_1(x) = 0$, $P_2(x) = 0$, $P_3(x) = 0$.
- Para tal:
 - 1. Colocar os coeficientes de P(x) = 0 em uma coluna com c n no topo
 - 2. Inverter a ordem dos coeficientes da coluna P(x) e colocá-los em $P_1(x)$
 - 3. Trocar o sinal dos coeficientes de P(x), cujos índices sejam ímpares e atribuir a $P_2(x)$
 - 4. Inverter a ordem dos coeficientes da coluna $P_2(x)$ e colocá-los em $P_3(x)$
 - 5. Se algum $c_n < 0$ então trocar o sinal de todos os coeficientes da coluna para garantir que $c_n > 0$ conforme exige o teorema.

- No segundo bloco são atribuídos os parâmetros necessários para aplicar o teorema a cada uma das quatro equações:
- Assim:
 - k é o primeiro coeficiente negativo.
 - n é o grau do polinômio,
 - B é o valor absoluto do maior coeficiente negativo em módulo,
 - L_i é o limite superior das raízes positivas de $P_i(x) = 0$ dado pelo teorema e
 - $L_{\xi(P)}$ são os limites superiores e inferiores das raízes positivas e negativas de P(x) = 0 sendo que

$$L_{\xi(P)} = L$$
, $L_{\xi(P_1)} = 1/L_1$, $L_{\xi(P_2)} = -L_2$ e $L_{\xi(P_3)} = -1/L_3$.

Exercício

Calcular os limites das raízes de $P(x) = x^4 + 2x^3 - 13x^2 - 14x + 24 = 0$ usando o dispositivo prático.

n=4	P(x)	$P_1(x)$	$P_2(x)$	$P_3(x)$
c_4	1	24	1	24
c_3	2	-14	-2	14
c_2	-13	-13	-13	-13
c_1	-14	2	14	-2
c_0	24	1	24	1
k	2	3	3	' 2
n-k	2	1.	1	2
B]-14	-14	[-13]	-13
L_i	4,74	1,58	14	1,74
L_{ξ}	4,74	0,63	-14	-0,58

Trabalho

 Elaborar um algoritmo que implemente o dispositivo pratico apresentado. Os parâmetros de entrada são o grau do polinômio e o vetor c dos coeficientes. O parâmetro de saída é o vetor L contendo os limites das raízes reais.

Refinamento das Raízes

- Uma vez que tenhamos uma raiz ξ isolada em um dado intervalo [a, b], então a próxima etapa consiste em gerar uma sequência $\{x_0, x_1, x_2, \dots, x_k, \dots, \xi\} \in [a, b]$ que convirja para a raiz exata ξ de f(x) = 0.
- Desta forma temos que todos os métodos devem efetuar um teste do tipo:
 - Minha aproximação x_k está suficientemente próxima de ξ (raiz exata)?

 Assim existem duas formas de interpretar a tolerância desta raiz aproximada que, nem sempre, resultam em uma mesma resposta:

 \overline{x} é raiz aproximada com precisão ε se:

i)
$$|\bar{x} - \xi| < \varepsilon$$
 ou

$$ii$$
) $|f(\overline{x})| < \varepsilon$.

No entanto como podemos executar este teste de forma prática se o valor exato (ξ) da raiz não é conhecido?

- Uma das maneiras de se implementar este critério de parada seria reduzir o intervalo que contém a raiz a cada iteração.
- Ao se conseguir um intervalo [a, b] tal que:

 No entanto, nem sempre é possível cumprir-se ambos os critérios de parada de forma simultânea devido as relações de variação entre domínio e imagem de f(x).

 Pode-se ainda de forma prática estabelecer o critério de parada em função evolução da sequência de aproximação:

$$|x_k - x_{k-1}| \le \varepsilon,$$

$$\left| \frac{x_k - x_{k-1}}{x_k} \right| \le \varepsilon$$

 Há desta forma todas as condições para a implementação de qualquer método iterativo com objetivo de isolar uma aproximação para raiz de f(x) dada uma tolerância ε.

- Seja uma função f(x) contínua no intervalo [a, b], sendo ξ a única raiz de f(x) = 0 neste intervalo.
- O método da bisseção consiste em subdividir o intervalo ao meio a cada iteração e a metade desta divisão que contenha a raiz, ou seja, aquele em que f(x) tenha sinais opostos nos extremos.
- Seja a função f(x) no intervalo [a, b] e tal que f(a)f(b) < 0.</p>
 - Suponha que em (a, b) contenha apenas uma única raiz para fins de simplificação.
 - O método visa reduzir o tamanho deste intervalo até se atingir a precisão requerida: (b a) < ε, usando para isto sucessivas divisões de [a, b] pela metade.

De forma gráfica teremos:

Método da Bisseção

De forma gráfica teremos:

$$x_1 = \frac{a_1 + b_1}{2} \quad \begin{cases} f(a_1) < 0 \\ f(b_1) > 0 \\ f(x_1) < 0 \end{cases} \implies \begin{cases} \xi \in (x_1, b_1) \\ a_2 = x_1 \\ b_2 = b_1 \end{cases}$$

De forma gráfica teremos:

$$x_{2} = \frac{a_{2} + b_{2}}{2} \quad \begin{cases} f(a_{2}) < 0 \\ f(b_{2}) > 0 \\ f(x_{2}) < 0 \end{cases} \implies \begin{cases} \xi \in (x_{2}, b_{2}) \\ a_{3} = x_{2} \\ b_{3} = b_{2} \end{cases}$$

Ache o valor aproximado da raiz da equação polinomial.

$$f(x) = x^3 - 9x + 3$$
 $I = [0, 1]$ $\varepsilon = 10^{-3}$

Iteração	x	f(x)	b-a
1	.5	-1.375	.5
2	.25	.765625	.25
3	.375	322265625	.125
4	.3125	.218017578	.0625
5	.34375	0531311035	.03125
6	.328125	.0822029114	.015625
7	.3359375	.0144743919	7.8125×10^{-3}
8	.33984375	0193439126	3.90625×10^{-3}
9	.337890625	$-2.43862718 \times 10^{-3}$	1.953125×10^{-3}
10	.336914063	$6.01691846 \times 10^{-3}$	9.765625×10^{-4}

- Estimativa do número de iterações
 - Dada uma precisão ε e um intervalo inicial [a, b], é possível saber quantas iterações serão efetuadas pelo método da bisseção até que se obtenha b a < ε .
 - Vimos que:

$$b_k - a_k = \frac{b_{k-1} - a_{k-1}}{2} = \frac{b_0 - a_0}{2^k}$$

• Deve-se obter o valor k tal que $b_k - a_k < \varepsilon$, ou seja

$$\frac{b_0 - a_0}{2^k} < \varepsilon \Rightarrow 2^k > \frac{b_0 - a_0}{\varepsilon} \Rightarrow k \log(2) > \log(b_0 - a_0) - \log(\varepsilon)$$

$$k > \frac{\log(b_0 - a_0) - \log(\varepsilon)}{\log(2)}$$

Método da Posição Falsa

- O método da posição falsa consiste em reduzir a amplitude do intervalo [a,b] que contém a raiz.
- Ao invés de usar o ponto médio do intervalo, o método usa o ponto onde a **reta secante** unindo $(a_k, f(a_k)) e(b_k, f(b_k))$ cruza o eixo x e o seleciona para ser uma nova extremidade do intervalo.

Método da Posição Falsa

- Seja uma função f(x) contínua no intervalo [a, b], sendo ξ a única raiz de f(x)=0 neste intervalo.
- Uma estimativa da raiz ξ é tomada onde a reta secante cruza o eixo x.
- A equação da reta secante que passa pelos pontos de coordenadas (a, f(a)) e (b, f(b)) é dada por:

$$\frac{b - x_0}{f(b)} = \frac{x_0 - a}{-f(a)}$$

$$x_0\big(f(b)-f(a)\big)=a\big(f(b)\big)-b\big(f(a)\big)$$

$$x_0 = \frac{a(f(b)) - b(f(a))}{f(b) - f(a)}$$

Método da Posição Falsa

$$f(x) = 2x^3 - \cos(x+1) - 3$$

•
$$a = -1$$
, $b = 2$, $\epsilon = 0.01$

Método da Falsa Posição

Exemplo

$$f(x) = x \log(x) - 1 \qquad [a_0, b_0] = [2, 3]$$

$$f(a_0) = -0.3979 < 0$$

$$f(b_0) = 0.4314 > 0$$

$$x_0 = \frac{af(b) - bf(a)}{f(b) - f(a)} = \frac{2 \times 0.4314 - 3 \times (-0.3979)}{0.4314 - (-0.3979)} = \frac{2.0565}{0.8293} = 2.4798$$

$$\begin{cases} a_1 = x_0 = 2.4798 & f(a_1) < 0 \\ b_1 = 3 & f(b_1) > 0 \end{cases}$$

$$\Rightarrow x_1 = \frac{2.4798 \times 0.4314 - 3 \times (-0.0219)}{0.4314 - (-0.0219)} = 2.5049$$

$$f(x_1) = -0.0011. \text{ Analogamente,}$$

$$\begin{cases} a_2 = x_1 = 2.5049 \\ b_2 = b_1 = 3 \end{cases}$$

Método da Falsa Posição

Exercício

$$f(x) = x^3 - 9x + 3$$
 $I = [0, 1]$ $\varepsilon_1 = \varepsilon_2 = 5 \times 10^{-4}$

Iteração	x	f(x)	b - a
1	.375	322265625	1
2	.338624339	-8.79019964 × 10 ⁻³	.375
3	.337635046	-2.25883909 × 10 ⁻⁴	.338624339

E portanto
$$\bar{x} = 0.337635046$$
 e $f(\bar{x}) = -2.25 \times 10^{-4}$.

Método de Pégaso

- De maneira similar ao método da posição falsa, o método de Pégaso consiste em reduzir a amplitude do intervalo [a, b] que contém a raiz.
- Ao invés de apenas usar o ponto onde a reta secante unindo $(x_{k-1}, f(x_{k-1}))$ e $(x_k, f(x_k))$ cruza o eixo x, o método também reduz o valor de $f(x_{k-1})$ por um fator de:

$$\frac{f(x_k)}{f(x_k) + f(x_{k+1})}$$

Método de Pégaso

- Seja uma função f(x) contínua no intervalo [a, b], sendo ξ a única raiz de f(x)=0 neste intervalo.
- Uma estimativa da raiz ξ é tomada onde a reta secante cruza o eixo x.
- Se $f(x) \cdot f(b) > 0$, então

$$f(a) = f(a) \cdot \frac{f(b)}{f(b) + f(x)}$$

Método de Pégaso

Exemplo

Calcular com $\varepsilon \leq 0.01$, a raiz de $f(x) = 2x^3 - \cos(x+1) - 3 = 0$ pelo método pégaso sabendo-se que $\xi \in [-1, 2]$.

Método de Pégaso

Exercício

Achar o ponto de máximo μ do polinômio $P(x) = x^4 + 2x^3 - 13x^2 - 14x + 24$ pelo método pégaso, com $\varepsilon \leq 10^{-5}$, sabendo-se que $\mu \in [-1, 1]$

Definição

- Dada uma **função f(x) contínua no intervalo** [a,b] onde existe uma **raiz única**, **f(x) = 0**, é possível transformar tal equação em uma equação equivalente $\mathbf{x} = \mathbf{g}(\mathbf{x})$ e, a partir de uma **aproximação inicial** \mathbf{x}_0 , gerar uma **seqüência** $\{\mathbf{x}_k\}$ **de aproximações para** ξ pela **relação** $\mathbf{x}_{k+1} = \mathbf{g}(\mathbf{x}_k)$, uma vez que $\mathbf{g}(\mathbf{x})$ é tal que $\mathbf{f}(\xi) = \mathbf{0}$ se e somente se $\mathbf{g}(\xi) = \xi$.
- O Método do Ponto Fixo inicia-se reescrevendo a função f(x) como: f(x) = g(x) x
- Essa forma de escrever f(x) é bastante útil. No ponto x que corresponde à raiz de f(x), isto é, f(x) = 0, teremos que:

$$f(x) = g(x) - x = 0$$
$$g(x) = x$$

g(x) é a Função de Iteração para f(x) = 0.

Exemplo

• A função $f(x) = x^2 - x - 2$ pode ser reescrita como:

$$f(x) = x^2 - 2 - x = g(x) - x$$

- onde $g(x) = x^2 2$.
- Essa função tem como ponto fixo o valor x = 2, pois $g(2) = 2^2 2 = 2$.
- E esse é exatamente o valor da raiz de f(x), pois $f(2) = 2^2 2 2 = 0$.
- Ou seja, no ponto x que corresponde à raiz de f(x), ao substituirmos o valor de x na função g(x), teremos como resultado o próprio valor de x.
- Portanto, a raiz de f(x) será o ponto fixo de g(x), ou seja, o valor que ao ser substituído em g(x) retorna o próprio valor de x.

Forma geral das funções de iteração

$$g(x) = x + A(x)f(x)$$

• com $A(\xi) \neq 0$ em ξ , ponto fixo de g(x).

- Interpretação Gráfica
 - x = g(x) tem como raiz a abcissa do ponto de intersecção da reta r(x) = x e da curva g(x).
 - Determinar os pontos fixos de uma função g(x) é determinar os pontos de intersecção entre as curvas.

Interpretação Gráfica

Exemplo

■ Encontre uma estimativa para a raiz de $f(x) = x^2 - e^x$, com $x_0 = -1$, usando o Método da Iteração Linear (Pontos Fixos).

$$f(x) = 0$$

$$x^{2} - e^{x} = 0$$

$$x = \pm \sqrt{e^{x}}$$

$$x_{0} = -1 \rightarrow \phi(x_{0}) = \phi(-1) = -\sqrt{e^{-1}} = -0,606$$

$$x_{1} = -0,606 \rightarrow \phi(x_{1}) = \phi(-0,606) = -\sqrt{e^{-0,606}} = -0,738$$

$$x_{2} = -0,738 \rightarrow \phi(x_{2}) = \phi(-0,738) = -\sqrt{e^{-0,738}} = -0,691$$

$$x_{3} = -0,691 \rightarrow \phi(x_{3}) = \phi(-0,691) = -\sqrt{e^{-0,691}} = -0,707$$

$$x_{4} = -0,707$$

$$x_{5} = -0$$

$$x_{5} = -0$$

$$x_{6} = -0$$

$$x_{7} = -0$$

Exemplo

• Encontre uma estimativa para a raiz de $f(x) = x^2 + x - 6$, com $x_0 = 1,5$, usando o Método da Iteração Linear (Pontos Fixos).

$$g_1(x) = 6 - x^2$$

$$g_2(x) = \pm \sqrt{6-x}$$

$$g_3(x) = 6/(x + 1)$$

$$x_1 = g(x_0) = 6 - 1.5^2 = 3.75$$

$$x_2 = g(x_1) = 6 - 3.75^2 = -8.0625$$

$$x_3 = g(x_2) = 6 - (-8,0625)^2 = -59,003906$$

•
$$x_4 = g(x_3) = 6 - (-59,003906)^2 = -3475,4609$$

 $\{x_k\} \rightarrow inf$ quando $k \rightarrow inf$

Exemplo

■ Encontre uma estimativa para a raiz de $f(x) = x^2 + x - 6$, com $x_0 = 1,5$, usando o Método da Iteração Linear (Pontos Fixos).

$$g_1(x) = 6 - x^2$$

•
$$g_2(x) = \pm \sqrt{6 - x}$$

$$g_3(x) = 6/(x + 1)$$

$$x_1 = g(x_0) = \sqrt{6 - 1.5} = 2.121320343$$

•
$$x_2 = g(x_1) = \sqrt{6 - 2,121320343} = 1,969436380$$

•
$$x_3 = g(x_2) = \sqrt{6 - 1,969436380} = 2,007626364$$

•
$$x_4 = g(x_3) = \sqrt{6 - 2,007626364} = 1,998092499$$

•
$$x_5 = g(x_4) = \sqrt{6 - 1,998092499} = 2,000476818$$

Exercício

• Encontre uma estimativa para a raiz de $f(x) = x^3 - x - 1$, com $x_0 = 1$, usando o Método da Iteração Linear (Pontos Fixos).

$$g_1(x) = x^3 - 1$$

•
$$g_2(x) = \pm \sqrt[3]{1+x}$$

$$g(x) = g_2(x) = \sqrt[3]{1+x}$$

$$x_1 = g(x_0) = \sqrt[3]{1+1} = 1,259921$$

•
$$x_2 = g(x_1) = \sqrt[3]{1 + 1,259921} = 1,312294$$

•
$$x_3 = g(x_2) = \sqrt[3]{1 + 1,312294} = 1,322354$$

$$x_4 = g(x_3) = \sqrt[3]{1 + 1,322354} = 1,324269$$

•
$$x_5 = g(x_4) = \sqrt[3]{1 + 1,324269} = 1,324633$$

 $\{x_k\} \rightarrow \xi_2$ quando $k \rightarrow inf$

- Estudo da Convergência
 - Sendo ξ uma raiz de f(x) = 0, isolada em um intervalo I = [a,b], centrado em ξ e g(x) uma função de iteração para f(x) = 0, se:
 - g(x) e g'(x) são contínuas em I
 - $|g'(x)| < 1, \forall x \in I = [a,b]$
 - $x_1 \in I$
 - Então a sequência $\{x_k\}$ gerada pelo processo iterativo $x_{k+1} = g(x_k)$ convergirá para ξ .

- Exercício
 - Aplique o método de convergência para $f(x) = x^2 + x 6$, com $x_0 = 1.5$.

Definição

- Dada uma função f(x) contínua no intervalo [a,b] onde existe uma raiz única, é possível determinar uma aproximação de tal raiz a partir da interseção da tangente à curva em um ponto x_0 com o eixo das abscissas.
- Uma das condições de convergência é que |g'(x)| < 1, $\forall x \in I$, onde I é um intervalo centrado na raiz.
- A convergência será tanto mais rápida quanto menor for |g'(x)|.
- O método de Newton-Raphson busca garantir e acelerar a convergência do MPF, escolhendo g(x), tal que $g'(\xi) = 0$, como função de interação.

- Dedução
 - Dada a equação f(x) = 0 e partindo da forma geral para g(x)g(x) = x + A(x)f(x)
 - Busca-se obter a função A(x) tal que $g'(\xi) = 0$
 - g(x) = x + A(x)f(x)
 - g'(x) = 1 + A'(x)f(x) + A(x)f'(x)
 - $g'(\xi) = 1 + A'(\xi)f(\xi) + A(\xi)f'(\xi)$, fazendo $f(\xi) = 0$

$$g'(\xi) = 1 + A(\xi)f'(\xi)$$

Assim,

•
$$g'(\xi) = 0$$

•
$$1 + A(\xi)f'(\xi) = 0$$

•
$$A(\xi) = -1/f'(\xi)$$

$$g'(\xi) = 1 + A(\xi)f'(\xi)$$

$$A(x) = -1/f'(x)$$

- A(x) = -1/f'(x)
 - Como g(x) = x + A(x)f(x)

$$g(x) = x + \left(\frac{-1}{f'(x)}\right) f(x)$$

$$g(x) = x - \frac{f(x)}{f'(x)}$$

• Deste modo, escolhido x_0 , a sequência $\{x_k\}$ será determinada por

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

- Interpretação Gráfica
 - Dado o ponto $(x_k, f(x_k))$
 - Traça-se a reta $L_k(x)$ tangente à curva neste ponto:

$$L_k(x) = f(x_k) + f'(x_k)(x - x_k)$$

- Determina-se o zero de $L_k(x)$, um modelo linear que aproxima f(x) em uma vizinhança x_k .
 - $L_k(x) = 0$

$$x = x_k - f(x_k)/f'(x_k)$$

• Faz-se $x_{k+1} = x$

Interpretação Gráfica

- Estudo da Convergência
 - Sendo f(x), f'(x) e f''(x) contínuas em um intervalo I que contém uma raiz $x = \xi$ de f(x) = 0 e supondo $f'(\xi) \neq 0$, existirá um intervalo $\bar{I} \subseteq I$ contendo a raiz ξ , tal que se $x_0 \in \bar{I}$, a sequência $\{x_k\}$ gerada pela fórmula recursiva

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

convergirá para a raiz.

Exercício

■ Encontre uma estimativa para a raiz de $f(x) = x^2 + x - 6$, com $x_0 = 1,5$, usando o Método de Newton-Raphson.

$$g(x) = x - \frac{f(x)}{f'(x)} = x - \frac{x^2 + x - 6}{2x + 1}$$

•
$$x_1 = g(x_0) = 1.5 - \frac{1.5^2 + 1.5 - 6}{2 \cdot 1.5 + 1} = 2.062500000$$

•
$$x_2 = g(x_1) = 2,000762195$$

$$x_3 = g(x_2) = 2,000000116$$

Método da Secante

Definição

- Dada uma função f(x) contínua no intervalo [a,b] onde existe uma raiz única, é possível determinar uma aproximação de tal raiz a partir da interseção da secante à curva em dois pontos x_0 e x_1 com o eixo das abscissas.
- Um grande inconveniente do Método de Newton-Raphson é a necessidade da obtenção de f'(x) e o cálculo de seu valor numérico a cada iteração.
- Dessa forma, faz-se a substituição da derivada $f'(x_k)$ pelo quociente das diferenças.

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

$$g(x) = \frac{x_{k-1} \cdot f(x_k) - x_k \cdot f(x_{k-1})}{f(x_k) - f(x_{k-1})}$$
(Nova Função de Interação)

Método da Secante

Interpretação Gráfica

• A partir de duas aproximações x_{k-1} e x_k obtém-se o ponto x_{k+1} como sendo a abscissa do ponto de intersecção do eixo \overrightarrow{ox} e da reta que passa pelos pontos $(x_{k-1}, f(x_{k-1}))$ e $(x_k, f(x_k))$, secante à curva da função.

Método da Secante

Exercício

• Encontre uma estimativa para a raiz de $f(x) = x^2 + x - 6$, com $x_0 = 1.5$ e $x_1 = 1.7$, usando o Método da Secante.