François Husson

Laboratoire de mathématiques appliquées - Agrocampus Rennes

husson@agrocampus-ouest.fr

- Introduction
- 2 Principes de la Classification Ascendante Hiérarchique
- 3 Exemple
- 4 Les K-means : un algorithme de partitionnement
- 6 Compléments
 - · Consolidation de partition
 - Classification sur des données de grandes dimensions
 - Variables qualitatives et classification
 - Enchaînement analyse factorielle classification
- 6 Caractérisation de classes d'individus

- 1 Introduction
- 2 Principes de la Classification Ascendante Hiérarchique
- 3 Exemple
- 4 Algorithme de partitionnement : les K-means
- 6 Compléments
- 6 Caractérisation des classes d'individus

Introduction

- Définitions :
 - Classification : action de constituer ou construire des classes
 - Classe : ensemble d'individus (ou d'objets) possédant des traits de caractères communs (groupe, catégorie)
- Exemples
 - de classification : règne animal, disque dur d'un ordinateur, division géographique de la France, etc.
 - de classe : classe sociale, classe politique, etc.
- Deux types de classification :
 - hiérarchique : arbre, CAH
 - méthode de partitionnement : partition

Exemple de hiérarchie : le règne animal

- 1 Introduction
- 2 Principes de la Classification Ascendante Hiérarchique
- 3 Exemple
- 4 Algorithme de partitionnement : les K-means
- 6 Compléments
- 6 Caractérisation des classes d'individus

Quelles données pour quels objectifs?

La classification s'intéresse à des tableaux de données individus × variables quantitatives

Objectifs : production d'une structure (arborescence) permettant :

- la mise en évidence de liens hiérarchiques entre individus ou groupes d'individus
- la détection d'un nb de classes
 « naturel » au sein de la population

Critères

Ressemblance entre individus:

- distance euclidienne
- indice de similarité
- •

Ressemblance entre groupes d'individus :

- saut minimum ou lien simple (plus petite distance)
- lien complet (plus grande distance)
- critère de Ward

Algorithme

Arbres et partitions

Les arbres finissent tous ... par être coupés!!!

Remarque : vu le mode de construction, la partition n'est pas optimale mais est intéressante

Qualité d'une partition

Quand une partition est-elle bonne?

- Si les individus d'une même classe sont proches
- Si les individus de 2 classes différentes sont éloignés

Et mathématiquement ça se traduit par?

- Variabilité intra-classe petite
- Variabilité inter-classes grande
- ⇒ Deux critères, lequel choisir?

Qualité d'une partition

 \bar{x}_k moyenne de x_k , \bar{x}_{ak} moyenne de x_k dans la classe q

 \implies 1 seul critère!

La qualité d'une partition est mesurée par :

$$0 \leq rac{\mathsf{Inertie\ inter}}{\mathsf{Inertie\ totale}} \leq 1$$

$$\frac{\mathsf{Inertie}_{\mathsf{inter}}}{\mathsf{Inertie}_{\mathsf{totale}}} = 0 \Longrightarrow \forall k, \forall q, \bar{x}_{qk} = \bar{x}_k$$
 par variable, les classes ont mêmes moyennes Ne permet pas de classifier

$$\frac{\mathsf{Inertie}_{\mathsf{inter}}}{\mathsf{Inertie}_{\mathsf{totale}}} = 1 \Longrightarrow \forall k, \forall q, \forall i, x_{iqk} = \bar{x}_{qk}$$
 les individus d'une même classe sont identiques ldéal pour classifier

Attention : ce critère ne peut être jugé en absolu car il dépend du nb d'individus et du nb de classes

Méthode de Ward

- Initialisation : 1 classe = 1 individu \Longrightarrow In. inter = In. totale
- A chaque étape : agréger les classes a et b qui minimisent la diminution de l'inertie inter

Inertie(a) + Inertie(b) = Inertie(a
$$\cup$$
 b) - $\underbrace{\frac{m_a m_b}{m_a + m_b}}_{\text{à minimiser}} d^2(a, b)$

Regroupe les objets de faible poids et évite l'effet de chaîne

Regroupe des classes ayant des centres de gravité proches

Intérêt immédiat pour la classification

- 1 Introduction
- 2 Principes de la Classification Ascendante Hiérarchique
- 3 Exemple
- 4 Algorithme de partitionnement : les K-means
- 6 Compléments
- 6 Caractérisation des classes d'individus

Les données température

- 15 individus : villes de France
- 12 variables : températures mensuelles moyennes (sur 30 ans)

	Janv	Févr	Mars	Avri	Mai	Juin	juil	Août	Sept	Octo	Nove	Déce	Lati	Long
Bordeaux	5.6	6.6	10.3	12.8	15.8	19.3	20.9	21	18.6	13.8	9.1	6.2	44.5	-0.34
Brest	6.1	5.8	7.8	9.2	11.6	14.4	15.6	16	14.7	12	9	7	48.24	-4.29
Clermont	2.6	3.7	7.5	10.3	13.8	17.3	19.4	19.1	16.2	11.2	6.6	3.6	45.47	3.05
Grenoble	1.5	3.2	7.7	10.6	14.5	17.8	20.1	19.5	16.7	11.4	6.5	2.3	45.1	5.43
Lille	2.4	2.9	6	8.9	12.4	15.3	17.1	17.1	14.7	10.4	6.1	3.5	50.38	3.04
Lyon	2.1	3.3	7.7	10.9	14.9	18.5	20.7	20.1	16.9	11.4	6.7	3.1	45.45	4.51
Marseille	5.5	6.6	10	13	16.8	20.8	23.3	22.8	19.9	15	10.2	6.9	43.18	5.24
Montpellier	5.6	6.7	9.9	12.8	16.2	20.1	22.7	22.3	19.3	14.6	10	6.5	43.36	3.53
Nantes	5	5.3	8.4	10.8	13.9	17.2	18.8	18.6	16.4	12.2	8.2	5.5	47.13	-1.33
Nice	7.5	8.5	10.8	13.3	16.7	20.1	22.7	22.5	20.3	16	11.5	8.2	43.42	7.15
Paris	3.4	4.1	7.6	10.7	14.3	17.5	19.1	18.7	16	11.4	7.1	4.3	48.52	2.2
Rennes	4.8	5.3	7.9	10.1	13.1	16.2	17.9	17.8	15.7	11.6	7.8	5.4	48.05	-1.41
Strasbourg	0.4	1.5	5.6	9.8	14	17.2	19	18.3	15.1	9.5	4.9	1.3	48.35	7.45
Toulouse	4.7	5.6	9.2	11.6	14.9	18.7	20.9	20.9	18.3	13.3	8.6	5.5	43.36	1.26
Vichy	2.4	3.4	7.1	9.9	13.6	17.1	19.3	18.8	16	11	6.6	3.4	46.08	3.26

Quelles villes ont des profils météo similaires? Comment caractériser les groupes de villes?

Les données température : l'arbre hiérarchique

Les données température

Somme des pertes d'inertie = 12

Doit-on faire 2 groupes? 3 groupes? 4?

Découpage en 2 groupes :

$$\frac{\text{Inertie inter}}{\text{Inertie totale}} = \frac{7.88}{12} = 66\%$$

A quoi comparer ce pourcentage?

66 % de l'information résumée avec ce découpage en 2 classes A quoi comparer ce pourcentage?

Séparer villes froides en 2 groupes :

$$\frac{\text{Inertie inter}}{\text{Inertie totale}} = \frac{1.56}{12} = 13\%$$

Passage de 15 villes à 3 classes : 66 % + 13 % = 79 % de la variabilité des données

Détermination d'un nombre de classes

- A partir de l'arbre
- Dépend de l'usage (enquête, . . .)

- A partir du diagramme des indices de niveau
- Critère ultime : interprétabilité des classes

- 1 Introduction
- 2 Principes de la Classification Ascendante Hiérarchique
- 3 Exemple
- 4 Algorithme de partitionnement : les K-means
- 6 Compléments
- 6 Caractérisation des classes d'individus

Algorithme de partitionnement : les K-means

Algorithme d'agrégation autour des centres mobiles (K-means)

- Choisir *Q* centres de classes au hasard
- Affecter les points au centre le plus proche
- Calculer les Q centres de gravité

- 1 Introduction
- 2 Principes de la Classification Ascendante Hiérarchique
- 3 Exemple
- 4 Algorithme de partitionnement : les K-means
- **6** Compléments
- 6 Caractérisation des classes d'individus

Consolidation d'une partition obtenue par CAH

La partition obtenue par CAH n'est pas optimale et peut être améliorée, consolidée, par les K-means

Algorithme de consolidation :

- la partition obtenue par CAH est utilisée comme initialisation de l'algorithme de partitionnement
- quelques étapes de K-means sont itérées

 \implies amélioration de la partition (souvent non décisive)

Avantage : consolidation de la partition Inconvénient : perte de l'info de hiérarchie

CAH en grandes dimensions

- Si beaucoup de variables : faire une ACP et ne conserver que les premières dimensions ⇒ on se ramène au cas classique
- Si beaucoup d'individus : algorithme de CAH trop long
 - Faire une partition (par K-means) en une centaine de classes
 - Construire la CAH à partir des classes (utiliser l'effectif des classes dans le calcul)
 - Obtention du « haut » de l'arbre de la CAH

Arbre à partir de classes

CAH sur données qualitatives

Deux stratégies pour faire une classification sur données qualitatives :

- Se ramener à des variables quantitatives
 - Faire une ACM et ne conserver que les premières dimensions
 - Faire la CAH à partir des composantes principales de l'ACM
- Utiliser des mesures adaptées aux données qualitatives : indice de similarité, indice de Jaccard, etc.

Enchaînement analyse factorielle - classification

- Données qualitatives : ACM renvoie des composantes principales qui sont quantitatives
- L'analyse factorielle élimine les dernières composantes qui ne contiennent que du bruit ⇒ classification plus stable

Hierarchical clustering on the factor map

- 1 Introduction
- 2 Principes de la Classification Ascendante Hiérarchique
- 3 Exemple
- 4 Algorithme de partitionnement : les K-means
- 6 Compléments
- 6 Caractérisation des classes d'individus

Constitution des classes - Édition des parangons

Parangon : individu le plus proche du centre d'une classe

```
classe 1 : Montpellier
                         Bordeaux
                                                  Nice
                                                        Toulouse
                                    Marseille
                  0.419
                             1.141
                                        1.193
                                                 2.242
                                                            2.256
classe 2 :
                 Rennes
                           Nantes
                                        Brest
                  0.641
                             1.586
                                        2.045
classe 3 :
                  Vichy
                                     Grenoble
                                                 Paris
                         Clermont
                                                             Lyon
                  0.428
                             0.669
                                        1.184
                                                 1.339
                                                            1.680
```


Caractérisation des classes

Objectifs :

- Trouver les variables les plus caractérisantes pour la partition
- Caractériser une classe (ou un groupe d'individus) par des variables quantitatives
- Trier les variables qui caractérisent les classes

Questions :

- Quelles variables caractérisent le mieux la partition?
- Comment caractériser les individus de la classe 1?
- Quelles variables les caractérisent le mieux?

Caractérisation des classes

Quelles variables caractérisent le mieux la partition?

- Pour chaque variable quantitative :
 - construire le modèle d'analyse de variance entre la variable quantitative expliquée par la variable de classe
 - faire le test de Fisher de l'effet de la classe
- Trier les variables par probabilité critique croissante

```
Eta2 P-value

Octo 0.8362 1.930e-05

Sept 0.8301 2.407e-05

Févr 0.8227 3.103e-05

Mars 0.8126 4.326e-05

Janv 0.8118 4.444e-05

Nove 0.8083 4.963e-05

Avri 0.7929 7.890e-05

Déce 0.7871 9.316e-05

Août 0.7864 9.503e-05

Juin 0.7241 4.409e-04

Mai 0.7164 5.205e-04

juil 0.7156 5.287e-04
```


Idée 1: si les valeurs de X pour la classe q semblent tirées au hasard parmi les valeurs de X, alors X ne caractérise pas la classe q

 $\mbox{Id\'ee 2}$: plus l'hypothèse d'un tirage au hasard est douteuse, plus X caractérise la classe q

Idée : référence du tirage au hasard de n_q valeurs parmi N

Quelles valeurs peut prendre \bar{x}_a ? (i.e. quelle est la loi de \bar{X}_a ?)

$$\mathbb{E}(ar{X}_q) = ar{x}$$
 $\mathbb{V}(ar{X}_q) = rac{s^2}{n_q} \, \left(rac{N-n_q}{N-1}
ight)$ $\mathcal{L}(ar{X}_q) = \mathcal{N}$ car $ar{X}_q$ est une moyenne

$$\mathcal{L}(X_q) = \mathcal{N}$$
 car X_q est une moyenne

$$\implies \ \, \mathsf{Valeur\text{-}test} = \frac{\bar{x}_q - \bar{x}}{\sqrt{\frac{\underline{s}^2}{n_q} \ \left(\frac{N - n_q}{N - 1}\right)}} \sim \mathcal{N}(0, 1)$$

- Si |Valeur-test| ≥ 1.96 alors X caractérise la classe q
- X caractérise d'autant mieux la classe q que V-test grande

Idée : classer les variables par |Valeur-test| décroissante

\$quant	ti\$'1'					
7	v.test	Mean in	Overall	sd in	Overall	p.value
		category	mean	category	sd	
Sept	3.40	19.30	17.00	0.755	1.79	0.000678
Moye	3.39	13.80	11.80	0.742	1.55	0.000705
Avri	3.33	12.70	11.00	0.580	1.37	0.000871
Octo	3.32	14.50	12.30	0.941	1.77	0.000893
Mars	3.24	10.00	8.23	0.524	1.48	0.001210
Août	3.18	21.90	19.60	0.792	1.94	0.001490
Juin	3.00	19.80	17.80	0.727	1.73	0.002670
Mai	3.00	16.10	14.40	0.691	1.45	0.002720
Nove	2.97	9.88	7.93	0.999	1.74	0.003020
juil	2.92	22.10	19.80	1.000	2.06	0.003550
Févr	2.88	6.80	4.83	0.940	1.81	0.003940
Déce	2.54	6.66	4.85	0.896	1.89	0.011200
Janv	2.46	5.78	3.97	0.924	1.94	0.013700

\$'2'						
	v.test	Mean in	Overall	sd in	Overall	p.value
		category	mean	category	sd	
Mai	-2.02	12.90	14.40	0.953	1.45	0.04380
Août	-2.02	17.50	19.60	1.090	1.94	0.04330
Juin	-2.05	15.90	17.80	1.160	1.73	0.04020
juil	-2.18	17.40	19.80	1.350	2.06	0.02900
Long	-2.88	-2.34	2.58	1.380	3.21	0.00404
Ampl	-2.95	12.40	15.90	1.560	2.25	0.00316
\$'3'						
	v.test	Mean in	Overall	sd in	Overall	p.value
		category	mean	category	sd	
Sept	-2.05	15.90	17.00	0.738	1.79	0.040700
Avri	-2.11	10.20	11.00	0.637	1.37	0.035100
Moye	-2.60	10.70	11.80	0.620	1.55	0.009220
Octo	-2.81	10.90	12.30	0.661	1.77	0.004940
Mars	-2.85	7.03	8.23	0.807	1.48	0.004310
3.7		1.00	0.20			
Nove	-3.15	6.36	7.93	0.654	1.74	0.001620
Nove Févr						0.001620 0.001150
	-3.15	6.36	7.93	0.654	1.74	

Quelles variables caractérisent le mieux la partition?

- Pour chaque variable qualitative, construire un test du χ^2 entre la variable et la variable de classe
- Trier les variables par probabilité critique croissante

```
$test.chi2
p.value df
Région 0.001700272 6
```

La modalité *Nord-Est* caractérise-t-elle la classe 3?

	Classe 3	Autre classe	Total
Nord-Est	$n_{mc} = 3$	0	$n_m = 3$
Pas NE	4	8	12
Total	$n_c = 7$	8	n = 15

Test : H_0 : $\frac{n_{mc}}{n_0} = \frac{n_m}{n}$ contre H_1 : m anormalement élevée dans c

Sous
$$H_0: \mathcal{L}(N_{mc}) = \mathcal{H}(n_c, \frac{n_m}{n}, n)$$
 $P_{H_0}(N_{mc} \ge n_{mc})$

Classe 3

$$\frac{3}{3} \times 100 = 100 \ ; \frac{3}{7} \times 100 = 42.86 \ ; \ \frac{3}{15} \times 100 = 20 \ ; \ P_{\mathcal{H}(7, \frac{3}{15}, 15)}[N_{mc} \ge 3] = 0.077$$

 \implies H_0 acceptée, Nord-Est n'est pas sur-représenté dans la classe 3 Tri des modalités en fonction des probabilités critiques

Caractérisation d'une classe par les axes

Les axes factoriels sont aussi des variables quantitatives

\$'1'						
	v.test	Mean in	Overall	sd in	Overall	p.value
		category	mean	category	sd	
Dim.1	3.39	3.97	0	1.46	3.1	0.000693
\$'2'						
-						
	v.test	Mean in	Overall	sd in	Overall	p.value
		category	mean	category	sd	
Dim.2	2.84	2.29	0	1.29	1.51	0.00447
\$'3'						
	v.test	Mean in	Overall	sd in	Overall	p.value
		category	mean	category	sd	
Dim.2	-2.11	-0.911	0	0.927	1.51	0.0346
Dim.1	-2.56	-2.270	0	1.260	3.10	0.0104

Conclusion

- La classification s'applique à des tableaux individus × variables quantitatives
 L'ACM transforme des variables qualitatives en variables quantitatives
- CAH donne un arbre hiérarchique ⇒ nombre de classes
- K-means consolide les classes
- Caractérisation des classes par des variables actives et supplémentaires, quantitatives et qualitatives