Tight rate for $\hat{\theta}$

Jiaxin Hu

This note discusses the tightest rate of $\hat{\theta}$ in the dTBM.

Two remaining questions:

- 1. How to extend the 1-d θ_k estimation problem to multiway estimation? The objective function is non-linear for multiple θ_k 's;
- 2. How to deal with the estimation error from S? The simple non-degree estimator \hat{S} fails because θ_k will render the core tensor estimation error to the mean tensor estimation.

1 Preliminary

We consider the general Gaussian dTBM

$$\mathcal{Y} = \mathcal{S} \times_1 \mathbf{\Theta}_1 \mathbf{M}_1 \times_2 \cdots \times \mathbf{\Theta}_K \mathbf{M}_K + \mathcal{E},$$

where $S \in \mathbb{R}^{r_1 \times \cdots \times r_K}$ is the core tensor, $M_k \in \{0,1\}^{p_k \times r_k}$ are the membership matrices corresponding to the assignment $z_k \in [p_k] \mapsto [r_k]$, $\theta_k \in \mathbb{R}^{p_k}$ are heterogeneity, and $\mathcal{E} \in \mathbb{R}^{p_1 \times \cdots \times p_K}$ is noise tensor with i.i.d. standard Gaussian entries.

We consider the estimation space

$$E = \{(\hat{z}_k, \hat{\boldsymbol{\theta}}_k, \hat{\mathcal{S}}) : \hat{z}_k \text{ is a function } [p_k] \rightarrow [r_k], \ \hat{\boldsymbol{\theta}}_k(i) > 0, i \in [p_k], k \in [K]\}.$$

We have the MLE of $(z_k, \theta_k, \mathcal{S})$ that minimizes the least square error over E

$$(\hat{z}_{k,\text{MLE}}, \hat{\boldsymbol{\theta}}_{k,\text{MLE}}, \hat{\mathcal{S}}_{\text{MLE}}) = \underset{(z_k, \boldsymbol{\theta}_k, \mathcal{S}) \in E}{\operatorname{arg min}} \| \mathcal{Y} - \mathcal{X}(z_k, \boldsymbol{\theta}_k, \mathcal{S}) \|_F^2,$$

where

$$\mathcal{X}(z_k, \boldsymbol{\theta}_k, \mathcal{S}) = \mathcal{S} \times_1 \boldsymbol{\Theta}_1 \boldsymbol{M}_1 \times_2 \cdots \times \boldsymbol{\Theta}_K \boldsymbol{M}_K.$$

Let $(z_k^*, \boldsymbol{\theta}^*, \mathcal{S}^*)$ denote the true parameters.

2 Tight rate for $\hat{ heta}$ with true assignment

2.1 1-d problem with given core tensor

We first consider a simpler question: Suppose that the true parameters z^* , \mathcal{S}^* and $\boldsymbol{\theta}_k^*$ for $k \geq 2$ are given. What's the error rate for $\boldsymbol{\theta}_1^*$?

Let $\mathcal{X}(\boldsymbol{\theta}_1) \coloneqq \mathcal{X}(z^*, \boldsymbol{\theta}_1, \{\boldsymbol{\theta}_k^*\}_{k \geq 2}, \mathcal{S}^*)$ denote the mean tensor with degree $\boldsymbol{\theta}_1$ while other parameters are fixed as true parameters.

Lemma 1 (1-d $\boldsymbol{\theta}$ estimation). Consider a general dTBM with true parameter $(z_k^*, \boldsymbol{\theta}^*, \mathcal{S}^*)$ in \mathcal{P} , fixed $r \geq 2$, $K \geq 2$. Suppose that the true parameters z^*, \mathcal{S}^* and $\boldsymbol{\theta}_k^*$ for $k \geq 2$ are given. Consider the estimate $\hat{\boldsymbol{\theta}}_1$ such that $\|\mathcal{Y} - \mathcal{X}(\hat{\boldsymbol{\theta}}_1)\|_F^2 \leq \|\mathcal{Y} - \mathcal{X}(\boldsymbol{\theta}_1^*)\|_F^2$. With probability tends to 1 as $p \to \infty$, we have

$$\|\hat{\boldsymbol{\theta}}_1 - \boldsymbol{\theta}_1^*\|^2 \lesssim \frac{1}{p^{K-2}}$$

Proof of Lemma 1. Note that the MSE result in Lemma 12 of the manuscript also applies for the estimate $(z, \theta_k, \mathcal{S})$ such that $\|\mathcal{Y} - \mathcal{X}(z, \theta_k, \mathcal{S})\|_F^2 \leq \|\mathcal{Y} - \mathcal{X}(z^*, \theta_k^*, \mathcal{S}^*)\|_F^2$. Hence, we have

$$\mathcal{O}(pr + r^{K}) \gtrsim \|\mathcal{X}(\hat{\boldsymbol{\theta}}_{1}) - \mathcal{X}(\boldsymbol{\theta}_{1}^{*})\|_{F}^{2}$$

$$= \|(\hat{\boldsymbol{\Theta}}_{1}\boldsymbol{M}_{1}^{*} - \boldsymbol{\Theta}_{1}^{*}\boldsymbol{M}_{1}^{*})\operatorname{Mat}_{1}(\mathcal{S}^{*} \times_{2} \boldsymbol{\Theta}_{2}^{*}\boldsymbol{M}_{2}^{*} \times_{3} \cdots \times_{K} \boldsymbol{\Theta}_{K}^{*}\boldsymbol{M}_{K}^{*})\|_{F}^{2}$$

$$\geq \|\hat{\boldsymbol{\theta}}_{1} - \boldsymbol{\theta}_{1}^{*}\|^{2} \min_{a:} \|\boldsymbol{S}_{a:}^{*}\|_{F}^{2} p^{K-1}$$

$$\geq c_{3}p^{K-1} \|\hat{\boldsymbol{\theta}}_{1} - \boldsymbol{\theta}_{1}^{*}\|^{2}, \tag{1}$$

where in the second inequality, the p^{K-1} comes from the norm of the slice in the mean tenor, and the last inequality follows from the assumption that $\|S_{a:}^*\|_F \ge c_3$ for some constant $c_3 > 0$. By inequality (1) and the assumption that r is fixed, we obtain that

$$\|\hat{\boldsymbol{\theta}}_1 - \boldsymbol{\theta}_1^*\|^2 \lesssim \frac{1}{p^{K-2}},$$

with high probability tends to 1 as $p \to \infty$.

Remark 1 (Tightness). The result in Lemma 1 agrees with the heuristic; i.e.,

$$\frac{1}{p}\|\hat{\boldsymbol{\theta}}_1 - \boldsymbol{\theta}_1^*\|^2 \le \frac{\# \text{ parameter}}{\# \text{ number}} = \frac{p}{p^K}.$$

Therefore, we can consider the result in Lemma 1 achieves the sharpest rate.

Lemma 2 (1-d $\boldsymbol{\theta}$ estimation with increasing r). Consider a general dTBM with true parameter $(z_k^*, \boldsymbol{\theta}^*, \mathcal{S}^*)$ in \mathcal{P} , fixed $K \geq 2$ and r = p/2. Suppose that the true parameters z^*, \mathcal{S}^* and $\boldsymbol{\theta}_k^*$ for $k \geq 2$ are given. Consider the estimate $\hat{\boldsymbol{\theta}}_1$ such that $\|\mathcal{Y} - \mathcal{X}(\hat{\boldsymbol{\theta}}_1)\|_F^2 \leq \|\mathcal{Y} - \mathcal{X}(\boldsymbol{\theta}_1^*)\|_F^2$. With probability tends to 1 as $p \to \infty$, we have

$$\|\hat{\boldsymbol{\theta}}_1 - \boldsymbol{\theta}_1^*\|^2 \lesssim \mathcal{O}(p) \tag{2}$$

Proof of Lemma 2. Following the same idea of the proof of Lemma 1, we replace the r by p/2. The left hand side in inequality (1) becomes $\mathcal{O}(p^K)$, and we obtained the desired result.

Remark 2 (Alternative error rate via the closed from of $\hat{\theta}$). Given the true parameters z^*, \mathcal{S}^* and θ_k^* for $k \geq 2$ and fixed $r \geq 2$, the $\hat{\theta}_1$ minimizes the least square error has the closed form

$$\hat{\boldsymbol{\theta}}_{1}(i) = \frac{\langle \boldsymbol{Y}_{i:}, \boldsymbol{C}_{z^{*}(i):} \rangle}{\|\boldsymbol{C}_{z^{*}(i):}\|^{2}} \vee 0 = (\boldsymbol{\theta}_{1}^{*}(i) + \frac{\langle \boldsymbol{E}_{i:}, \boldsymbol{C}_{z^{*}(i):} \rangle}{\|\boldsymbol{C}_{z^{*}(i):}\|^{2}}) \vee 0$$

where $C = \operatorname{Mat}_1(S^* \times_2 \Theta_2^* M_2^* \times_3 \cdots \times_K \Theta_K^* M_K^*)$, $Y = \operatorname{Mat}(\mathcal{Y})$, and $E = \operatorname{Mat}_1(\mathcal{E})$. Note that $C_{z^*(i)}$: is the vectorization of a K-1 tensor. By Lemma E5 in Han et al. (2022), we have

$$\frac{\left\langle \boldsymbol{E}_{i:}, \boldsymbol{C}_{z^{*}(i):} \right\rangle}{\|\boldsymbol{C}_{z^{*}(i):}\|} \leq \sup_{\boldsymbol{\mathcal{T}} \in \mathcal{Q}(r, \dots, r) \cap \|\boldsymbol{\mathcal{T}}\| = 1} \left\langle \mathcal{E}_{z^{*}(i):}, \boldsymbol{\mathcal{T}} \right\rangle \lesssim \sqrt{p}. \tag{3}$$

Since $\|C_{z^*(i)}\| \ge \min_{a \in [r]} \|S_{a}^*\|_F p^{(K-1)/2}$, we have

$$|\boldsymbol{\theta}_{1}^{*}(i) - \hat{\boldsymbol{\theta}}_{1}(i)|^{2} \le \left| \frac{\langle \boldsymbol{E}_{i:}, \boldsymbol{C}_{z^{*}(i):} \rangle}{\|\boldsymbol{C}_{z^{*}(i):}\|^{2}} \right| \lesssim \frac{1}{p^{K-2}},$$
 (4)

with high probability tends to 1. Compared with Lemma 1, the rate (4) obtained via closed form is sup-optimal with an extra p factor; since the average point-wise estimation error in Lemma 1 $\frac{1}{p} \|\hat{\boldsymbol{\theta}}_1 - \boldsymbol{\theta}_1^*\|^2$ is of order $1/p^{K-1}$. The closed form method ignores the decomposition structure on the first mode, which may be the reason causes the sub-optimality.

When r = p/2, the right hand side of the inequality (3) becomes to $\sqrt{p^{K-1}}$, and thus we have

$$|\boldsymbol{\theta}_1^*(i) - \hat{\boldsymbol{\theta}}_1(i)|^2 \le \mathcal{O}(1). \tag{5}$$

This result agrees with the conclusion in (2) since there is no significant dimension reduction in the decomposition structure with r = p/2. In fact, the closed form result (5) is stronger than the result in Lemma 2. Because point-wise result (5) indicates the vector-wise result in (2) while vector-wise result (2) allows $|\theta_1^*(i) - \hat{\theta}_1(i)|^2 = \mathcal{O}(p)$ for some $i \in [p]$.

2.2 Multiway problem with given core tensor

We now extend the simple question to a multiway problem: Suppose that the true parameters z^* , \mathcal{S}^* are given. What's the error rate for $\boldsymbol{\theta}_k^*$ for all $k \in [K]$?

In 1-d problem, the key step to establish the error rate for θ is to find following inequality

$$\|\mathcal{X}(z^*, \boldsymbol{\theta}_k, \mathcal{S}^*) - \mathcal{X}(z^*, \boldsymbol{\theta}_k^*, \mathcal{S}^*)\|_F^2 \ge C \min_{k \in [K]} \|\boldsymbol{\theta}_k - \boldsymbol{\theta}_k^*\|^2 p^{K-1},$$
(6)

where C is some positive constant.

I did not figure out how to prove the inequality (6). I think the difficulty lies in the non-linearity of \mathcal{X} with θ_k s. Also, since we are finding lower bound, triangle inequality may not be helpful to decompose the left hand side by considering one θ_k at a time.

2.3 Error rate only with given assignment

The next extension will be: Suppose that only the true assignment z^* is given. What's the error rate for θ_k^* for all $k \in [K]$?

In this extension, we need to consider the estimation error of S^* . Given the true parameter, consider the estimator \hat{S} such that

$$\hat{\mathcal{S}}_{a_1,\dots,a_K} = \frac{1}{\prod_{k \in [K]} |(z^*)^{-1}(a_k)|} \sum_{i_k \in (z^*)^{-1}(a_k)} \mathcal{Y}_{i_1,\dots,i_K}.$$

Hence, we have

$$\mathbb{P}(|\hat{\mathcal{S}}_{a_1,\dots,a_K} - \mathcal{S}^*_{a_1,\dots,a_K}| \ge t) \approx \mathbb{P}(\frac{1}{p^K} | \sum_{i \in [p^K]} \epsilon_i | \ge t) \le 2 \exp\left(-p^K t^2\right),$$

where ϵ_i 's are i.i.d. standard normal variables. Thus, we have

$$|\hat{\mathcal{S}}_{a_1,\dots,a_K} - \mathcal{S}^*_{a_1,\dots,a_K}| \le \mathcal{O}(p^{-K/2}),$$
 (7)

with probability tends to 1 as $p \to \infty$.

In the 1-d problem, we now have

$$\|\mathcal{X}(\hat{\boldsymbol{\theta}}_{1},\hat{\mathcal{S}}) - \mathcal{X}(\boldsymbol{\theta}_{1}^{*},\mathcal{S}^{*})\|_{F}^{2} \geq \|(\hat{\boldsymbol{\Theta}}_{1}\boldsymbol{M}_{1}^{*} - \boldsymbol{\Theta}_{1}^{*}\boldsymbol{M}_{1}^{*})\operatorname{Mat}_{1}(\mathcal{S}^{*} \times_{2} \boldsymbol{\Theta}_{2}^{*}\boldsymbol{M}_{2}^{*} \times_{3} \cdots \times_{K} \boldsymbol{\Theta}_{K}^{*}\boldsymbol{M}_{K}^{*})\|_{F}^{2}$$

$$- \|\hat{\boldsymbol{\Theta}}_{1}\boldsymbol{M}_{1}^{*}\operatorname{Mat}_{1}(\hat{\mathcal{S}} - \mathcal{S}^{*} \times_{2} \boldsymbol{\Theta}_{2}^{*}\boldsymbol{M}_{2}^{*} \times_{3} \cdots \times_{K} \boldsymbol{\Theta}_{K}^{*}\boldsymbol{M}_{K}^{*})\|_{F}^{2}$$

$$\geq c_{3}p^{K-1}\|\hat{\boldsymbol{\theta}}_{1} - \boldsymbol{\theta}_{1}^{*}\|^{2} - \|\hat{\mathcal{S}} - \mathcal{S}\|_{F}^{2}p^{2K},$$

$$\geq c_{3}p^{K-1}\|\hat{\boldsymbol{\theta}}_{1} - \boldsymbol{\theta}_{1}^{*}\|^{2} - \mathcal{O}(p^{K}).$$

$$(8)$$

where the first inequality follows from the equation that $\hat{S} = S^* + (\hat{S} - S^*)$, the second inequality follows from (1) and the fact that $\lambda_{\max}(\boldsymbol{\Theta}^* \boldsymbol{M}^*) \lesssim p/r$, and the last inequality follows from the estimation rate of S in (7).

Plugging in above inequality (8) into the proof of Lemma 1, we obtain the non-desirable result $\|\hat{\boldsymbol{\theta}}_1 - \boldsymbol{\theta}_1^*\|^2 \lesssim \mathcal{O}(p)$. Notice the estimation rate of \mathcal{S} in (7) satisfies the heuristic, however, the degree $\boldsymbol{\theta}_k^*$ s render the core tensor estimation error to the mean tensor and result in the term p^K in inequality (8).

Moreover, notice that the \hat{S} is not the least square estimator that minimizes $\|\mathcal{Y} - \mathcal{X}(z^*, \boldsymbol{\theta}_k, \mathcal{S})\|_F$. The real minimizer \hat{S}_{sq} involves $\hat{\boldsymbol{\theta}}_{k,sq}$ and thus is hard to directly analyze the closed form of \hat{S}_{sq} . I will try to find a better way to deal with the joint estimation of S and S.

Remark 3 (Necessity to include identifiability condition in estimation space). Previous proof for $\boldsymbol{\theta}$ accuracy converts estimation error in mean tensor $\hat{\mathcal{X}}$ to the error in $\hat{\boldsymbol{\theta}}$ or $\hat{\mathcal{S}}$. To extend previous idea to the case without true parameters, we need to include identifiability conditions in the estimation space; i.e., consider

$$\tilde{E} = \{(\hat{z}_k, \hat{\pmb{\theta}}_k, \hat{\mathcal{S}}) : \hat{z}_k \text{ is a function } [p_k] \rightarrow [r_k], \ \hat{\pmb{\theta}}_k(i) > 0, \\ |\hat{\pmb{\theta}}_{k, \hat{z}_k^{-1}(a)}| = |\hat{z}_k^{-1}(a)|, \ i \in [p_k], \\ a \in [r_k], k \in [K]\}.$$

Here is an example that illustrates the failure of the converting idea without identifiability.

Example 1 (Non-identifiability estimation). Consider the estimate $(\hat{z}, \hat{\theta}_k, \hat{S}) = (z^*, \theta_k^*, S^*)$ and another set of estimate $(\hat{z}', \hat{\theta}'_k, \hat{S}') = (z^*, 2\theta_k^*, 2^{-K}S^*)$. Note that $(\hat{z}', \hat{\theta}'_k, \hat{S}') \in E$ since previous estimation space E does not require the identifiability. Then, we have $\|\hat{\mathcal{X}} - \mathcal{X}^*\|_F = \|\hat{\mathcal{X}}' - \mathcal{X}^*\|_F = 0$. However, $\|\hat{\theta}_k - \theta_k^*\|^2 = 0$ and $\|\hat{\theta}'_k - \theta_k^*\|^2 = \|\theta_k^*\|^2 \gtrsim p$.

References

Han, R., Willett, R., and Zhang, A. R. (2022). An optimal statistical and computational framework for generalized tensor estimation. *The Annals of Statistics*, 50(1):1–29.