

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호

10-2004-0065820

Application Number

출 원 년 월 일

Date of Application

2004년 08월 20일

AUG 20, 2004

출 원 Applicant(s) 인 :

주식회사 엘지생명과학

외 1명

LG Life Sciences Ltd., et al.

2004 년 10 월 13 일

특

허

청

COMMISSIONER

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

【서지사항】

【서류명】 서지사항 보정서

【수신처】 특허청장

【제출일자】 2004.08.27

【제출인】

【명칭】 주식회사 엘지생명과학

【출원인코드】 1-2002-030835-0

【사건과의 관계】 출원인

【제출인】

【명칭】 야마노우치세이야쿠 가부시키가이샤

【출원인코드】 5-1998-096251-6

【사건과의 관계】 출원인

【대리인】

【성명】 최규팔

【대리인코드】 9-1998-000563-8

【포괄위임등록번호】 2002-065483-8

【사건의 표시】

【출원번호】 10-2004-0065820

【출원일자】 2004.08.20

【발명의 명칭】 멜라노코틴 수용체의 항진제

【제출원인】

【접수번호】 1-1-2004-0373408-03

【접수일자】2004.08.20【보정할 서류】특허출원서

【보정할 사항】

【보정대상항목】 철부서류

【보정방법】 제출

【보정내용】

【첨부서류】 1. 위임장_1통

【취지】 특허법시행규칙 제13조·실용신안법시행규칙 제8조의 규

정에의하여 위와 같 이 제출합니다. 대리인

최규팔 (인)

1020040065820

출력 일자: 2004/10/14

【수수료】

【보정료】

3,000

원

【기타 수수료】

원

【합계】

3,000

원

[첨부서류]

1. 위임장[원, 역문]_1통

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】· 0009

【제출일자】 2004.08.20

【발명의 명칭】 멜라노코틴 수용체의 항진제

【발명의 영문명칭】 Melanocortin receptor agonists

【출원인】

【명칭】 주식회사 엘지생명과학

【출원인코드】 1-2002-030835-0

【출원인】

【명칭】 야마노우치세이야쿠 가부시키가이샤

【출원인코드】 5-1998-096251-6

【대리인】

【성명】 최규팔

 【대리인코드】
 9-1998-000563-8

 【포괄위임등록번호】
 2002-065483-8

TTE NOOTET

【발명자】

【성명의 국문표기】 이구

【성명의 영문표기】 LEE,Koo

【주민등록번호】 601224-1822222

【우편번호】 305-380

【주소】 대전광역시 유성구 문지동 104-1 엘지생명과학 기술연구원

【국적】 KR

【발명자】

【성명의 국문표기】 박희술

【성명의 영문표기】 PARK, Heuisul

【주민등록번호】 710225-1921529

【우편번호】 305-380

【주소】 대전광역시 유성구 문지동 104-1 엘지생명과학 기술연구원

【국적】 KR

【발명자】

【성명의 국문표기】 안인애

【성명의 영문표기】 AHN, In-Ae

【주민등록번호】 730221-2030937

【우편번호】 305-380

【주소】 대전광역시 유성구 문지동 104-1 엘지생명과학 기술연구원

【국적】 KR

【발명자】

【성명의 국문표기】 유현주

【성명의 영문표기】 Y00,Hyun Ju

【주민등록번호】 761219-2057916

【우편번호】 305-380

【주소】 대전광역시 유성구 문지동 104-1 엘지생명과학 기술연구원

【국적】 KR

【발명자】

【성명의 국문표기】 최성필

【성명의 영문표기】CHOI, Sung Pil【주민등록번호】730111-1716016

【우편번호】 305-380

【주소】 대전광역시 유성구 문지동 104-1 엘지생명과학 기술연구원

【국적】 KR

【발명자】

【성명의 국문표기】 김종엽

【성명의 영문표기】 KIM, Jong Yup

【주민등록번호】 730617-1823419

【우편번호】 305-380

【주소】 대전광역시 유성구 문지동 104-1 엘지생명과학 기술연구원

【국적】 KR

【발명자】

【성명의 국문표기】 콘도 유타카

【성명의 영문표기】 KONDOH, Yutaka

【주소】 일본 이바라키 305-8585 츠쿠바시 미유키가오카 21

【국적】 JP

【발명자】

【성명의 국문표기】 히라바야시 료지

【성명의 영문표기】 HIRABAYASHI,Ryoji

【주소】 일본 이바라키 305-8585 츠쿠바시 미유키가오카 21

【국적】 JP

【발명자】

 【성명의 국문표기】
 혼다 슈고

 【성명의 영문표기】
 HONDA, Shugo

【주소】 일본 이바라키 305-8585 츠쿠바시 미유키가오카 21

【국적】 JP

【발명자】

【성명의 국문표기】 카쿠 히데타카

【성명의 영문표기】 KAKU, Hidetaka 【주소】 일본 이바라키 305-8585 츠쿠바시 미유키가오카 21

【국적】 JP

【발명자】

【성명의 국문표기】 시시쿠라 준이치

【성명의 영문표기】 SHISHIKURA, Jun-ichi

【주소】 일본 이바라키 305-8585 츠쿠바시 미유키가오카 21

[국적] JP

【취지】 특허법 제42조의 규정에 의하여 위와 같이 출원합니다. 대리인

최규팔 (인)

【수수료】

 [기본출원료]
 0
 면
 38,000
 원

[가산출원료] 92 면 0 원

 【우선권주장료】
 0
 건
 0
 원

 【심사청구료】
 0
 항
 0
 원

【합계】 38,000 원

【첨부서류】 1. 요약서·명세서(도면)_1통 2.위임장[추후제출]_1통

【요약서】

[요약]

본 발명은 멜라노코틴 수용체에 대한 항진활성이 우수한 하기 화학식 1의 화합물, 약제학적으로 허용되는 그의 염, 수화물, 용매화물 또는 이성체, 및 이를 유효성분으로 함유함을 특징으로 하는 멜라노코틴 수용체의 기능항진제 조성물에 관한 것이다:

상기 식에서 R¹, R², R³, R⁴, R⁵, 및 n은 명세서에 정의한 바와 같다.

【명세서】

【발명의 명칭】

멜라노코틴 수용체의 항진제{Melanocortin receptor agonists}

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

 본 발명은 멜라노코틴 수용체에 대한 항진활성이 우수한 하기 화학식 1의 화합물, 약제 학적으로 허용되는 그의 염, 수화물, 용매화물 및 이성체에 관한 것이다:

<> [화학식 1]

$$\mathbb{R}^{1}$$
 \mathbb{R}^{2}
 \mathbb{R}^{3}
 \mathbb{R}^{3}
 \mathbb{R}^{4}

- <4> 상기 식에서 R¹, R², R³, R⁴, R⁵, 및 n 은 하기 정의한 바와 같다.
- 본 발명은 또한, 상기 화학식 1의 화합물을 유효성분으로 함유함을 특징으로 하는 멜라노코틴 수용체의 기능항진제 조성물, 특히 구제적으로는 비만, 당뇨, 염증 및 발기부전증에 대한 예방 및 치료용 조성물에 관한 것이다.
- <6> 프로-오피오멜라노코틴(pro-opiomelanocortin, POMC)은 POMC 유전자에서 유래하며, 뇌의 시상하부, 하수체, 뇌간 등에서 주로 발현되고 번역 후 효소적 수식에 의해 α-멜라닌 세포 자극호르몬(melanocyte stimulating hormone, MSH), β-MSH, γ-MSH, 부신피질 자극 호르몬

(adrenocorticotrophic hormone) 등의 신경 펩티드가 되어 생리효과를 나타낸다. 멜라노코틴 펩티드들은 MCR들 각각에 대한 친화력에 따라 여러 가지 생리현상을 조절하며, 이러한 생리현 상으로는 피부색소침착, 체온, 염증, 식욕, 행동조절기능 등이 알려져 있다(참조: Mountjoy KG, et al., Mol Cell Endocrinol 1997, 128, 171; Haskell-Luevano C. et al., Drug News Perspect 1999, 12, 197; Wikberg, JES, et al., Pharmacol Res 2000, 42, 393).

- 에라노코틴 수용체(melanocortin receptor, MCR)들은 G-단백질 짝지움 수용체에 속하며 현재까 지 모두 5가지 종류가 밝혀져 있다. MCR 1은 멜라닌 세포, 대식세포에서 발현되며 멜라닌 세포 에서는 멜라닌 색소를 조절함으로써 피부와 모발의 색을 결정한다. MCR 2는 부신과 지방조직에 서 발현되며 부신에서의 부신피질 자극 호르몬에 의한 부신호르몬 분비조절의 매개기능이 잘 알려져 있다. MCR 3, 4 및 5는 신경 말단뿐만 아니라 뇌에서도 발현되어 행동, 학습, 기억, 식 욕, 신경의 발생과 재생 등에 대한 효과로 나타나는 멜라노코틴 펩티드들에 의한 중추 신경 작 용을 매개하는 것으로 생각되고 있다. 현재까지 MCR 3은 발기부전 및 염증반응, MCR 4는 비만 및 당뇨병에 관여한다고 알려져 있고, 각 수용체의 작용 특이성에 대한 연구가 활발하게 이루 어지고 있다 (참조: MacNeil DJ, et al., Eur J Pharmacol 2002, 450, 93). 그 결과, 비만이 활발히 진행된 사람에서의 유전학적 연구에서 MCR 4가 깊이 관여됨을 알았고, MCR 4가 제거된 유전자 변이 마이스(knockout mice)가 과식에 의해 비만으로 발전함을 보여주어 이 수용체가 식욕조절에서 중요한 역할을 한다는 것을 증명해주고 있다 (참조: Lu D, Willard D, et al., Nature 1994, 371(6500), 799; Huszar D et al., Cell 1997, 88(1), 131; Hinney A, et al., J Clin Endocrinol Metab 1990, 84(4), 1483).
- 《》 이처럼 MCR들이 여러 가지 중요한 생리현상의 조절에 관련되어 있음이 밝혀지면서 항진 물질 또는 길항 물질에 대한 탐색이 활발히 이루어졌고, 주로 아미노산의 조합을 변화시킨 펩티드들

의 구조활성 상관관계를 통해 연구되어졌다. 대표적인 MCR 항진 펩티드로는
NDP-MSH(Ac-Ser-Tyr-Ser-Nle-Glu-His-DPhe-Arg-Trp-Gly- Lys-Po-Val-NH2)와
MTII(Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2)를 들 수 있고, 이들은 MCR 1, 3, 4, 5에 대해 a -MSH(Ac-Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp- Gly-Lys-Po-Val-NH2)보다 강력한 효력을 나타낸다(참조: Haskell-Luevano C, et al., J Med Chem 1997, 40, 1738). 특히 상기 MCR 항진 펩티드 MTII는 피하주사 경로로 흡수된 후 Blood Brain Barrier(BBB)를 통과하여 중추신경계에 대한 효과도 나타내었으며(참조: Dorr RT, et al., Life Sci 1996, 58(20), 1777), 뿐만 아니라 이 물질은 발기를 유발하는 효능을 지니고 있어 최근에 정신적 발기부전을 겪고 있는 남성을 대상으로 한 임상실험에서 효능이 있는 것으로 보고되었다(참조: Wessels, et al. Urology, 2000, 56, 641: Wessels, et al. J. Urol., 1998, 160, 389). 최근에는 소분자형 펩티드도 MC4R에 대해 우수한 항진 효능을 보였으며, 이 물질이 동물실험에서 식욕을 억제하는 효능을 가진다고 보고되었다(참조: Benoit, SC, et al. J. Neuroscience 2000, 20, 3442).

◆ 소분자 MCR 항진제에 대한 발굴과 이들의 생리학적 연구도 최근에 활발히 진행되고 있다. 비폡 티드성 소분자 물질의 라이브러리로부터 고효율 약효시험(High-throughput Screening)을 통하 거나, 조합화학을 이용하여 발굴된 MCR 항진제 물질이 최근 보고되었다(참조: WO 01/10842, WO 01/05401, WO 01/23392, WO 01/23887). 특히, 머크(Merck)사는 성장호르몬 촉진제로서의 활성을 지닌 소분자 물질로부터 적절한 구조변화 연구를 통해 발굴된 MC4R에 선택적인 우수한 항진제 물질을 보고하였는데(참조: WO 99/64002, WO 00/74679), 이 물질을 취(rat)에 주사로 투여한 동물시험에서 발기를 유발하는 효능이 검정되었다(참조: Sebhat, IK, et al., J Med Chem 2002, 45, 4589). 머크사는 그 후 유사한 구조의 소분자 MCR 항진제들을 발굴하였으며(참조: WO 01/55109, WO 01/70337, WO 01/70708, WO 02/081443, WO 02/15909, WO 02/068387), 이와 유

사한 구조를 지니는 소분자 MCR 항진제들도 다른 여러 연구 그룹들에 의해 보고되었다(참조: WO 02/059095, WO 02/059107, WO 02/059117, WO 02/059108, WO 02/085925, WO 03/009847, WO 03/009850, WO 02/018327). 또한, 최근에 발굴된 MC1R 에 선택적인 소분자 항진제는 쥐(mouse)를 사용한 동물시험에서 항감염 효능이 검정되었다(참조: Herpin, TF, et al., J Med Chem 2003, 46, 1123).

【발명이 이루고자 하는 기술적 과제】

- <10> 그러나 전술한 펩티드성 MCR 항진제는 그 분자적 특성으로 인해 경구용 제제로서 사용할 수 없는 커다란 한계를 지니고 있다. 또한, 머크사의 물질뿐 아니라 현재까지 보고된 소분자 MCR 항진제도 경구흡수성 및 그 효능에 있어서 개선되어야만 의약으로서 사용될 가능성이 있다. 따라서 본 발명의 목적은 새로운 구조의 소분자 MCR 항진제를 제공하는 것이며 이들은 비만, 당뇨및 성기능 장애에 대한 예방 및 치료 목적으로 사용될 수 있다.
- <11> 구체적으로, 본 발명은 MCR들에 대한 항진 효능, 특히 MC4R에 대한 선택적인 항진 효능이 뛰어 난 화학식 1의 화합물, 그의 약제학적으로 허용되는 염, 수화물, 용매화물, 및 이성체를 제공 하는 것을 목적으로 한다.
- <12> 본 발명은 또한, 약제학적으로 허용되는 담체와 함께 유효성분으로서 화학식 1의 화합물, 그의 약제학적으로 허용되는 염, 수화물, 용매화물, 또는 이성체를 함유함을 특징으로 하는 멜라노 코틴 수용체의 기능항진제 조성물을 제공함을 목적으로 한다.

<13> 특히, 본 발명에 따른 조성물은 비만, 발기부전증, 당뇨병, 및 염증에 대한 예방 및 치료에 우수한 효과를 나타낸다.

【발명의 구성 및 작용】

<14> 본 발명은 하기 화학식 1의 화합물, 약제학적으로 허용되는 그의 염, 수화물, 용매화물 및 이성체를 제공한다.

<15> [화학식 1]

<16>

$$R^1$$
 R^2
 R^3
 R^4
 R^4

<17> 상기 식에서

<18> n은 1 또는 2를 나타내고,

<19> R¹은 수소,

<20> C₁-C₁₀-알킬,

<21> C₁-C₁₀-알킬카보닐,

<22> C₁-C₁₀-알킬설포닐,

<23> $-(CH_2)_p-R^6$,

 $^{<24>}$ $-(CH_2)_p$ -CO-R⁶,

- $^{<25>}$ -(CH₂)_p-SO₂-R⁶,
- <26> -(CH₂)_p-헤테로사이클,
- <27> -(CH₂)_p-헤테로아릴,
- $^{<28>}$ -CO-(CH₂)_p-R⁶,
- <29> -CO-(CH₂)_p-헤테로사이클,
- <30> -CO-(CH₂)_p-헤테로아릴, 또는
- <31> -CO-(CH₂)_p-C₃-C₈-사이클로알킬을 나타내며,
- <32> 여기서
- <33> p은 0, 1, 2, 또는 3을 나타내고,
- R⁶은 아미노 및 하이드록시로 구성된 그룹으로부터 선택된 치환체에 의해 치환되거나 비치환
 된 C₁-C₆-알킬을 나타내거나, 아미노, C₁-C ₆-알킬아미노, 디(C₁-C₆-알킬)아미노, C₁-C₆-알킬카
 보닐아미노, C₁-C₆-알콕시카보닐아미노, C₁-C₆-알킬설포닐아미노, C₁-C₆-알콕시, 또는 하이드록
 시를 나타내며,
- <35> -(CH₂)_p- 그룹에서 수소원자는 아미노, C₁-C₆-알킬, 이미다졸릴메틸, 또는 벤질에 의해 대체될 수 있고,
- <36> 헤테로사이클 또는 헤테로아릴은 할로겐, 아미노, C₁-C₆-알킬, 하이드록시, C₁-C₈-알콕시, C₁-C₆-알킬카보닐, 및 옥소로 구성된 그룹으로부터 선택된 치환체에 의해 일치환 또는 다치환되거나 비치환되며,
- <?>> 사이클로알킬은 아미노에 의해 치환되거나 비치환되고,

- <38> R²는 수소,
- <39> C₁-C₈-알킬,
- <40> C3-C7-사이클로알킬, 또는
- <41> -CO-(CH₂)_p-R⁶를 나타내거나,
- $^{<42>}$ R 1 및 R 2 는 함께 $^-$ (CH $_2$) $_q$ 를 나타내며, 여기에서 q 는 4, 5, 또는 6을 나타내고,
- <43> R³는 수소,
- <44> C₁-C₆-알킬,
- <45> 카바모일-C₁-C₄-알킬,
- <46> -(CH₂)_p-C₃-C₇-사이클로알킬,
- <47> -(CH₂)_p-C₆-C₁₀-아긜,
- <48> -(CH₂)_p-헤테로아릴, 또는
- <49> -(CH₂)_p-헤테로사이클을 나타내며,
- <50> 여기서
- 아릴 또는 헤테로아릴은 할로겐, 하이드록시, C₁-C₄-알킬, C₁-C₄-알콕시, 아미노, C₁-C₄-알킬
 아미노, 및 디(C₁-C₄-알킬)아미노로-구성된 그룹으로부터 선택된 치환체에 의해 일치환 또는
 다치환되거나 비치환되고,
- 알킬, 사이클로알킬, 또는 헤테로사이클은 할로겐, 하이드록시, C₁-C₄-알킬, C₁-C₄-알콕시,
 아미노, C₁-C₄- 알킬아미노, 디(C₁-C₄-알킬)아미노, 및 옥소로 구성된 그룹으로부터 선택된 치
 환체에 의해 일치환 또는 다치환되거나 비치환되며,

- <53> R⁴는 수소,
- <54> C₁-C₈-알킬,
- <55> -(CH₂)_p-C₃-C₈-사이클로알킬,
- <56> -(CH₂)_p-C₆-C₁₀-아릴,
- <57> -(CH₂)_p-헤테로아릴, 또는
- <58> -(CH₂)_p-헤테로사이클을 나타내며,
- <59> 여기서
- <60> 아릴 또는 헤테로아릴은 할로겐, 하이드록시, C_1 - C_4 -알킬, C_1 - C_4 -알콕시, 아미노, C_1 - C_4 -알킬 아미노, 및 디(C_1 - C_4 -알킬)아미노로 구성된 그룹으로부터 선택된 치환체에 의해 일치환 또는 다치환되거나 비치환되고,
- *61> 사이클로알킬 또는 헤테로사이클은 할로겐, 하이드록시, C₁-C₄-알킬, C₁-C₄-알콕시, 아미노, C₁-C₄-알킬아미노, 디(C₁-C₄-알킬)아미노, 및 옥소로 구성된 그룹으로부터 선택된 치환체에 의해 일치환 또는 다치환되거나 비치환되며,
- <62> R⁵는 -C(0)-R⁵' 를 나타내고,
- <63> 여기에서
- <64> R⁵'는 하이드록시, 포르밀, 아미노, 디(C₁-C₈-알킬)아미노, C₁-C₈-알콕시,

C₁-C₈-알콕시알콕시, C₁-C₈-알킬카보닐옥시, C₃-C₈-사이클로알킬카보닐옥시, C₂-C₈-알카노일옥시, C₁-C₈-알콕시이미노, 아르-C₁-C₈-알킬옥시, 아르-C₁-C₈-알킬카보닐옥시, 아릴옥시, 아릴티오, 할로겐에 의해 치환되거나 비치환된 아릴카보닐옥시, 및 디(C₁-C₈-알

킬)아릴옥시로 구성된 그룹중에서 선택된 치환체에 의해 일치환 또는 다치환되거나 비치환된 C_1 - C_8 -알킬을 나타내거나,

- <65> 하이드록시에 의해 치환된 아릴을 나타내거나,
- <66> 니트로아릴설포닐, 옥소, 하이드록시, C₁-C₈-알킬, 및 하이드록시-C₁-C₈-알킬로 구성된 그룹 중에서 선택된 치환체에 의해 일치환 또는 다치환되거나 비치환된 헤테로사이클을 나타내거나,
- *67> 하이드록시, 할로겐, C₁-C₈-알콕시, 또는 아미노에 의해 치환되거나 비치환된 C₁-C₈-알킬에 의해, 또는 C₁-C₈-알콕시, C₃-C₇-사이클로알킬 또는 아미노-C₁-C₈-알킬카보닐에 의해 일 또는 이치환되거나 비치환된 아미노를 나타내거나,
- <68> 하이드록시-C₁-C₈-알킬에 의해 치환되거나 비치환된 C₃-C₇-사이클로알케닐을 나타낸다.
- <69> 본 발명에 따른 화학식 1의 화합물의 치환기에 대한 정의에서 용어 알킬은 단독으로 또는 알킬옥시와 같이 조합하여 사용되는 경우에 각각 직쇄 또는 측쇄 탄화수소 라디칼을 의미하며, 용어 사이클로알킬은 사이클로헥실을 포함한 불포화 지방족 환을 의미한다.
- <70> 용어 아릴은 페닐, 나프틸 등을 포함하는 6- 내지 10-원 방향족 그룹을 의미한다.
- <71>용어 헤테로아릴은 질소원자, 산소원자 및 황원자로 구성된 그룹으로부터 선택된 1 내지 2개의 헤테로원자를 포함하고, 벤조 또는 C3-C8-사이클로알킬과 융합될 수 있는 방향족 3 내지 6원 환을 의미하고, 모노사이클릭 헤테로아릴의 예로는 티아졸, 옥사졸, 티오펜, 퓨란, 피롤, 이미 다졸, 이소옥사졸, 피라졸, 트리아졸, 티아디아졸, 테트라졸, 옥사디아졸, 피리딘, 피리다진, 피리미딘, 피라진 및 이와 유사한 그룹을 들 수 있으나 이들로 제한되는 것은 아니며, 비사이 클릭 헤테로아릴의 예로는 인돌, 벤조티오펜, 벤조퓨란, 벤즈이미다졸, 벤족사졸, 벤즈이속사

- 졸, 벤즈티아졸, 벤즈티아디아졸, 벤즈트리아졸, 퀴놀린, 이소퀴놀린, 퓨린, 퓨로피리딘 및 이와 유사한 그룹을 들 수 있으나 이들로 제한되는 것은 아니다.
- <72> 용어 헤테로사이클은 질소원자, 산소원자 및 황원자로 구성된 그룹으로부터 선택된 1 내지 2개의 헤테로원자를 포함하며, 벤조 또는 C3-C8-사이클로알킬과 융합될 수 있고, 포화되거나 1 또는 2개의 이중결합을 포함하는 4 내지 8원 환을 의미하고, 그 예로는 피페리딘, 모폴린, 티아모폴린, 피롤리딘, 이미다졸리딘, 테트라하이드로퓨란, 피페라진 및 이와 유사한 그룹을 들 수 있으나 이들로 제한되는 것은 아니다.
- <73> 본 발명에 따른 화학식 1의 화합물에서도 바람직한 화합물은
- '74' i) R¹이 수소, C₁-C₁0-알킬, -(CH₂)p-R6, -(CH₂)p-CO-R6, -(CH₂)p-헤테로사이클, -CO-(CH₂)p-R6, -CO-(CH₂)p-헤테로사이클, -CO-(CH₂)p-헤테로사이클, -CO-(CH₂)p-헤테로아릴, 또는 -CO-(CH₂)p-C₃-C₃-사이클로알킬을 나타내거나,
- <75> 특히 바람직하게는 수소, 메틸, -(CH₂)₂-R⁶, -CH₂-CO-R ⁶, -(CH₂)₂-헤테로사이클, -CO-CH₂-R⁶, -CO-CH₂-헤테로사이클, 또는 -CO-CH₂-헤테로아릴을 나타내는 화합물,
- <76> ii) R²가 수소 또는 C₁-C₆-알킬을 나타내는 화합물,
- <77> iii) R³가 각각 할로겐, 하이드록시, 및 C₁-C₄-알킬로 구성된 그룹으로부터 선택된 치환체에 의해 일치환 내지 삼치환되거나 비치환된 -CH₂-사이클로헥실, -CH₂-페닐, 또는 -CH₂-인돌을 나타내거나,
- <78> 특히 바람직하게는 각각 할로겐, 하이드록시, 및 C₁-C₄-알킬로 구성된 그룹으로부터 선택된 치 환체에 의해 일치환 내지 삼치환되거나 비치환된 -CH₂-페닐을 나타내는 화합물.

iv) R⁴가 C₁-C₈- 알킬을 나타내거나, 각각 할로겐, 하이드록시, C₁-C₄-알킬, C₁-C₄-알콕시, 아미노, C₁-C₄-알킬아미노, 및 디(C₁-C₄-알킬)아미노로 구성된 그룹으로부터 선택된 치환체에 의해 일치환 내지 삼치환되거나 비치환된 C₃-C₈-사이클로알킬, 페닐, 헤테로아릴, 또는 헤테로사이클을 나타내거나,

<80> 특히 바람직하게는 각각 할로겐, C₁-C₄-알킬, 및 C₁-C₄-알콕시로 구성된 그룹으로부터 선택된 치환체에 의해 일치환 내지 삼치환되거나 비치환된 C₃-C₈-사이클로알킬 또는 페닐을 나타내거 나,

<81> 보다 특히 바람직하게는 메틸에 의해 일치환 내지 삼치환되거나 비치환된 사이클로헥실 또는 사이클로헵틸을 나타내거나, 할로겐 및 메톡시로 구성된 그룹으로부터 선택된 치환체에 의해 일치환 내지 삼치환되거나 비치환된 페닐을 나타내는 화합물이다.

본 발명에 따른 화학식 1의 대표적인 화합물에는 하기 표에 표시된 것과 같은 화합물이 포함된다.

<83>

<84>

		·				
R ¹	R ² ·	X	R ⁴	R ⁵ ′	#	n
Н	Н	Cl	c-헥실	(R)-C(Me)(H)CH ₂ OH	S	1
Н	Н	Cı	c-헥실	C(Me) ₂ CH ₂ OH	S	1
Н	Н	Cl	c~헥실	C(Me) ₂ OH	S	1
Н	Н	Cl	c-핵실	C(Me) ₂ (CH ₂) ₂ OH	S	1
Н	Н	Cl	c-헥실	C(Me)(ÇH ₂ OH) ₂	S	1
Н	Н	Cı	c-핵실	C(Me)₂CH₂OH	R	1
Н	Н	Cl	c-헥실	C(Me)₂CH2OMe	S	1
Н	Н	Cl	c-헥실	C(Me) ₂ CH ₂ OBn	S	1
Н	Н	CI	c-헥실	C(c-펜틸)CH ₂ OH	S	1
Н	Н	Cl	c-헥실	C(Me) ₂ (CH ₂) ₃ O-(2,4-diMe-Ph)	S	1
Н	Н	CI	c-헥실	C(Me)(H)CH ₂ OAc	S	1
Н	Н	Cl	c-헥실	C(c-Pr)CH₂OH	S	1
Н	Н	Cl	c-헥실	아미노프로필	S	1
Н	Н	Cl	c-헥실	아미노에틸	S	1
Н	Н	Cl	c-헥실	아미노부틸	S	1
Н	Н	Cl	c-헥실	3-하이드록시페닐	S	1
Н	Н	Cl	c-헥실	4-하이드록시페널	S	1
Н	н	CI	c-헥실	2-(CH ₂ OH)-1-(c-펜텐)-1-일	S	1
Н	Н	· CI	c-헥실	2-(CH ₂ OH)-1-(c-헥센)-1-일	S	1
Н	Н	Cı	c헥실	1-Nos-피페리딘-4-일	S	1
Н	Н	Cl	c-헥실	피페리딘-4-일	S	1
메틸	메틸	Cl	c-헥실	C(Me) ₂ CH ₂ OH	S	1
이소프로필	메틸	Cl	c-헥실	(R)-C(Me)(H)CH ₂ OH	S	1
메틸	메틸	Cı	c-헥실	(R)-C(Me)(H)CH ₂ OH	S	1
메틸	메틸	Cl	c-헥실	C(Me)(CH ₂ OH) ₂	S	1
메틸	메틸	CI	c-헥실	C(Me)(-CH ₂ OC(=0)OCH ₂ -)	S	1
하이드록시아세틸	Н	Cl	c-헥실	C(Me) ₂ CH ₂ OH	S	1
하이드목시하제얼	하이드 목시아 세틸	C1	c헥실	C(Me)2CH2OH	S	1
에틸	에틸	Cl	c-헥실	C(Me)2CH2OH	S	1
Gly	Н	Cl	c-헥실	(R)-C(Me)(H)CH2OH	S	1
Gly	Н	Cı	c-헥실	C(Me)2CH2OH	S	1
(Me) ₂ N-Gly	Н	CI	c-헥실	C(Me)2CH2OH	S	1

<85>

	T	1				
이소부티릴	Н	Cl	c-헥실	C(Me) ₂ CH ₂ OH	S	1
이소프로필	Н	C1	c-헥실	C(Me)₂CH₂OH	S	1
-(CH ₂) ₅ -		Cl	c-헥실	C(Me)₂CH₂OH	S	1
하이드록시피발로일	Н	CI	c-헥실	C(Me)2CH2OH	S	1
이미다졸-2-일	Н	Cl	c-헥실	C(Me)2CH2OH	S	1
이미다졸-4-일	Н	Cı	c-핵실	C(Me) ₂ CH ₂ OH	S	1
Н	Н	Cı	c-헥실	아미노부틸아미노	S	1
Н	Н	Cı	c-헥실	아미노프로필아미노	S	1
Н	Н	Cl	c-헥실	아미노에틸아미노	S	1
H	Н	Cl	c-헥실	하이드록시에틸아미노	S	1
Н	н	Cl	c-헥실	메톡시에틸아미노	S	1
Н	Н	CI	c-헥실	(3S)-3-(OH)-Pyd-1-일	S	1
Н	Н	Cl	c~헥실	(2S)-2-(HOCH ₂)-Pyd-1-일	S	1
Н	Н	Cl	c-헥실	N[(CH ₂) ₂ OH] ₂	S	1
Н	Н	Cl	c-헥실	N[(CH ₂) ₃ OH] ₂	S	1
하이드록시부티릴	Н	CI	c-헥실	C(Me)₂CH₂OH	S	1
프로피오닐	Н	Cl	c-헥실	C(Me)₂CH2OH	S	1
피롤리딘-3-일	н .	Cı	c-헥실	C(Me) ₂ CH ₂ OH	S	1
(S)Pyd-2-CH ₂ -	Н	C1	c-헥실	C(Me) ₂ CH ₂ OH	S	1
메톡시아세틸	Н	. C1	c-헥실	C(Me)₂CH₂OH	S	1
DTic	Н	Cl	c-헥실	C(Me)2CH2OH	S	1
아미노에틸	Н	Cl	c-헥실	C(Me) ₂ CH ₂ OH	S	.1
(Me)N-에틸	Н	Cl	c-헥실	C(Me)2CH2OH	S	1
(R)Pyd-2-CH ₂ -	Н	Cl	c-헥실	2-(CH₂OH)-1-(c-펜텐)-1-일	S	.1
Н	Н	Cl	2,3-diF-페닐	C(Me)2CH2OH	· S	1
Н	Н	Cl	3,5-diMe-폐닐	C(Me)2CH2OH	R,S	1
Н	Н	Cl	2,3-diF-페닐	C(Me) ₂ CH ₂ OH	R,S	1
Н	Н	Cl	4-Me-페닐	G(Me)₂CH₂OH	R,S	1
Н	Н	Cl	페닐	C(Me)2CH2OH	R;S	1
Н	Н	Cl	2-아다만틸	C(Me)2CH2OH	S	1
Н	Н	F	c-헥실	C(Me)2CH2OH	S	1
Н	Н	ОМе	c-헥실	C(Ne)2CH2OH	S	1
Н	Н	Br	c-헥실	C(Me) ₂ CH ₂ OH	S	1
				_		

<86>

					T -	_
메틸	H	Cl	c-헥실	C(Me)(CH ₂ -OH) ₂	S	1
메틸	H	Cl	c-헥실	C(Me) ₂ (CH ₂ -OMe)	S	1
메틸	Н	CI	c-헥실	C(Me) ₂ (CH ₂ -OMOM)	S	1
이소펜틸	Н	C1	c-헥실	C(Me) ₂ CH ₂ -OH	S	1
MeO-(CH ₂) ₂ -	Н	Cl	c~헥실	C(Me) ₂ CH ₂ -OH	S	1
하이드록시에틸	Н	Cl	c-헥실	C(Me) ₂ CH ₂ -OH	S	1
(Me)N-(CH ₂) ₂ -	Н	CI	c-헥실	C(Me) ₂ CH ₂ -OH	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-핵실	C(Me) ₂ CH ₂ -OH	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	C(Me)CH ₂ -OH	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	C(Me)(CH ₂ -OH) ₂	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	CI	c-헥실	C(Me) ₂ [CH ₂ -N(Me) ₂]	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	CI	c-헥실	C(Me) ₂ CH ₂ -OMe	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-핵실	C(Me) ₂ (CH ₂ -OMOM)	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	C(Me) ₂ CH ₂ -OBn	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	C(Me) ₂ [CH ₂ -O(i-Bu)]	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	C(Me) ₂ CH ₂ -OPh	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	C(Me)2CH2-SPh	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	CI	c-헥실	C(Me)2CH2-OCOPh	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	C(Me) ₂ [CH ₂ -OCO(c-Hex)]	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	. CI	c-헥실	C(Me) ₂ CH ₂ -OCOBn	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	C(Me) ₂ CH ₂ -OCOBu	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	C(Me) ₂ [CH ₂ -OCO(i-Pr)]	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	C(Me) ₂ [CH ₂ -OCO(2,5diF-Ph)]	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	C(Me) ₂ OAc	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	C1	c-헥실	2-(HOCH ₂)-1-(c-펜텐)-1-일	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	(3S)-3-(OH)-Pyd-1-일	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	C(Me)2(CHO)	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н .	Cl	c-헥실	C(Me)2(CH=N-OMe)	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	2,3-diF-Ph	C(Me) ₂ (CH ₂ -OH)	S	1
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	2,3-diF-Ph	N(Me) ₂	S	1
Н	Н	Cl	c-헥실	C(Me)2CH2OH		2
Н	. Н	Cı	c-헥실	N(Me)2CH2OH		2
Н	Н	Cl	c-핵실	2-(CH ₂ OH)-1-(c-펜덴)-1-일		2
Н	Н	Cl	c-헥실	2-(CH ₂ OH)-1-(c-핵센)-1-일		2
						

<87>

Н	Н	CI	2,3-diF-페닐	C(Me)2CH2OH	2
(R)Pyd-2-CH ₂ -	Н	Cl	2,3-diF-페닐	C(Me)2CH2OH	2
(R)Pyd-2-CH ₂ -	Н	CI	c-헥실	C(Me) ₂ CH ₂ OH	2
Н	Н	CI	c-헥실	N(Me)(CH ₂) ₂ OH	2
Н	Н	Cl	c-헥실	N(Et)(CH ₂) ₂ OH	2
Н	Н	CI	c-헥실	N(n-Pr)(CH ₂) ₂ OH	2
Н	Н	CI	c-헥실	N(c-Pr)(CH ₂) ₂ OH	2
Н	Н	Cl	c-헥실	N(i-Pr)(CH ₂) ₂ OH	2
Н	Н	C1	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₂ OH	2
Н	Н	Cl	c-헥실	N(Me)(CH ₂) ₂ OMe	2
Н	Н	Cl	c-헥실	N(H)(CH ₂) ₂ OMe	2
Н	Н	Cl	c-헥실 ·	N(Et)(CH ₂) ₂ OMe	2
Н	Н	Cl	c-헥실	N[(CH ₂) ₂ OH] ₂	2
Н	Н	Cl	c-헥실	N[(CH ₂) ₂ OMe] ₂	2
Н	Н	Cl	c-헥실	N(Me) ₂	2
Н	Н	Cl	c-헥실	N(Et) ₂	2
Н	Н	Cl	c-헥실	N(Me)OMe	2
Н	Н	CI	c-헥실	N(Me)(아미노피발릴)	2
Н	Н	Cl	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₂ F	2
Н	Н	. C1	c-헥실	N(Me)(CH ₂) ₂ F	2
Н	Н	Cl	c-헥실	N(Et)(CH ₂) ₃ OH	2
Н	Н	Cl	c-헥실	N(Et)(CH ₂) ₂ F	2
Н	Н	Cl	c-헥실	N(Et)(CH ₂) ₃ F	2
Н	Н	Cl	c-헥실	N[(CH ₂) ₃ OH] ₂	2
Н	Н	Cl	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₃ OH	2
Н	Н	Cı	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₃ OH	2
Н	Н	Cl	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OH	2
Н	Н	Cl	c-헥실	N[(CH ₂) ₂ F] ₂	2
Н	Н	F	c-헥실	N(Me)(CH ₂) ₂ OH	2
Н	Н	F	c-헥실	N(Et)(CH ₂) ₂ OH	2
Н	Н	F	c-헥실	N(n-Pr)(CH ₂) ₂ OH	2
Н	Н	F	c-핵실	N(c-Pr)(CH ₂) ₂ OH	2
Н	Н	F	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₂ OH	2
Н	Н	F	c-헥실	N(Me)(CH ₂) ₂ OMe	2

<88>

н	Н	F	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₂ F	2
Н	Н	F	c-헥실	N(Me)(CH ₂) ₂ F	2
Н	Н	F	c-헥실	N(Et)(CH ₂) ₃ OH	2
Н	Н	F	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₃ OH	2
Н	Н	F.	c-헥실	N[(CH ₂) ₂ F] ₂	2
Н	Н	Cı	c-헥실	(3S)-3-(OH)-Pyd-1-일	2
Н	Н	CI	c-헥실	(3R)-3-(OH)-Pyd-1-일	2
Н	Н	Cl	c-헥실	(2R)-2-(HOCH₂)-Pyd-1-일	2
Н	Н	Cl	c-헥실	(2S)-2-(HOCH ₂)-Pyd-1-일	2
Н	Н	Ci	c -헥실	(3R)-3-아미노-Pyd-1-일	2
Н	Н	Cl	c-헥실	(3S)-3-아미노-Pyd-1-일	2
Н	Н	Cı	c-헥실	(3R)-3-(0H)-Pid-1-일	 2
Н	Н	Cı	c-헥실	(3S)-3-(OH)-Pid-1-일	2
Н	Н	CI	c-헥실	4-(OH)-Pid-1-일	2
Н	Н	Cl	c-헥실	4-아미노-Pid-1-일	2
메틸	메틸	C1	c-헥실	N(Et) ₂	2
메틸	메틸	Cl	c~헥실	N(Et)(CH ₂) ₂ OH	2
메틸	메틸	Cl	c-헥실	N(Et)(CH ₂) ₃ OH	2
메틸	메틸	C1	c-헥실	N(c-Pr)(CH ₂) ₂ OH	2
메틸	메틸	. CI	c-헥실	N(i-Pr)(CH ₂) ₂ OH	2
메틸	메틸	CI	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₂ OH	2
메틸	메틸	CI	c-헥실	N[(CH ₂) ₂ OH] ₂	2
메틸	메틸	CI	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OH	2
메틸	메틸	Cl	c-헥실	N(Me)(CH ₂) ₂ OMe	2
메틸	메틸	CI	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OMe	2
메틸	메틸	Cl	c-헥실	N(Et)(CH ₂) ₂ F	2
메틸	메틸	Cl	c-헥실	N(Et)(CH ₂) ₃ F	2
메틸	메틸	Cl	c-헥실	N(Et)(CH ₂) ₃ OH	2
메틸	메틸	Cl	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₃ OH	 2
메틸	메틸	F	c-헥실	N(Et) ₂	2
메틸	메틸	F	c-헥실	N(Et)(CH ₂) ₂ OH	2
메틸	메틸	F	c-헥실	N(i-Pr)(CH ₂) ₂ OH	2
메틸	메틸	F	c-헥실	N[(CH ₂) ₂ OH] ₂	2
메틸	메틸	F	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OMe	2
			1		

<89>

메틸	메틸	F	c-헥실	N(Et)(CH ₂) ₃ OH	2
(R)Pyd-2-CH ₂	Н	CI	c~헥실	N(Et) ₂	2
(R)Pyd-2-CH ₂	Н	Cı	c-헥실	N(i-Pr)(CH ₂) ₂ OH	2
(R)Pyd-2-CH ₂	Н	Cl	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₂ OH	2
(R)Pyd-2-CH ₂	Н	CI	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OH	2
(R)Pyd-2-CH ₂	Н	Cl	c-헥실	N(Et)(CH ₂) ₂ F	2
(R)Pyd-2-CH ₂	Н	CI	c-헥실	N(Et)(CH ₂) ₃ OH	2
(R)Pyd-2-CH ₂	Н	Cl	c-헥실	N(n-Pr)(CH ₂) ₂ OH	2
(R)Pyd-2-CH ₂	Н	Cl	c-헥실	N[(CH ₂) ₂ OH] ₂	2
(R)Pyd-2-CH ₂	Н	Cl	c-헥실	N(Me)OMe	2
(R)Pyd-2-CH ₂	Н	Cı	c-헥실	N(Me)(아미노피발릴)	2
(R)Pyd-2-CH ₂	Н	Cı	c-헥실	N(Et)(CH ₂) ₂ OH	2
(R)Pyd-2-CH ₂	Н	Cı	c~헥실	N[(CH ₂) ₂ OMe] ₂	2
(R)Pyd-2-CH ₂	Н	CI	c-헥실	N(c-Pr)(CH ₂) ₂ OH	2
(R)Pyd-2-CH ₂	Н	Cl	c-헥실	.(3S)-3-(OH)-Pyd-1-일	2
(R)Pyd-2-CH ₂	Н	Cl	c-헥실	(2R)-2-(HOCH₂)-Pyd-1-일	2
(R)Pyd-2-CH ₂	Н	CI	c-헥실	4-(OH)-Pid-1-일	2
(R)Pyd-2-CH ₂	Н	Cl	c-헥실	(3R)-3-(OH)-Pid-1-일	2
(R)Pyd-2-CH ₂	Н	F	c-헥실	N(Et) ₂	2
(R)Pyd-2-CH ₂	Н	F	c-헥실	N(i-Pr)(CH ₂) ₂ OH	2
(R)Pyd-2-CH ₂	Н	F	c-헥실	N[(CH ₂) ₂ OH] ₂	2
(R)Pyd-2-CH ₂	Н	F	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OMe	2
(R)Pyd-2-CH ₂	Н	F	c-헥실	N(Et)(CH ₂) ₂ F	2
(R)Pyd-2-CH ₂	Н	F	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₂ OH	2
·(R)Pyd-2-CH ₂	Н	F	c-헥실	(3S)-3-(OH)-Pyd-1-일	2
(R)Pyd-2-CH ₂	Н	F	c-헥실	(2R)-2-(HOCH ₂)-Pyd-1-일	2
(S)Pyd-3-yl	Н	Cı	c-헥실	N(Et) ₂	2
(S)Pyd-3-y1	Н	Cl	c-헥실	N(Et)(CH ₂) ₂ OH	2
2-oxo-1-Pyd-(CH ₂) ₂ -	Н	Cl	c-헥실	N(Et)(CH ₂) ₂ OH	2
2-oxo-1-Pyd-(CH ₂) ₂ -	Н	C1	c-헥실	N(Et)(CH ₂) ₃ OH	2
3-0H-1-Pyd-(CH ₂) ₂ -	Н	C1	c-헥실	N(Et)(CH ₂) ₃ F	2
3-OH-1-Pyd-(CH ₂) ₂ -	Н	Cl	c-헥실	N(Et)(CH ₂) ₃ OH	2
1-Pyd-(CH ₂) ₂ -	Н	Cı	c-헥실	N(Et) ₂	2
1-Pyd-(CH ₂) ₂ -	Н	Cl	c-헥실	N(Et)(CH ₂) ₂ OH	2

<90>

1-Pyd-(CH ₂) ₂ -	Н	Cl	c-헥실	N(Et)(CH ₂) ₃ F		2
1-Pyd-(CH ₂) ₂ -	H	Cl	c-헥실	N(c-Pr)(CH ₂) ₂ OH		2
1-Pyd-(CH ₂) ₂ -	Н	CI	c-핵실	N(i-Pr)(CH ₂) ₂ OH		2
1-Pyd-(CH ₂) ₂ -	Н	C1	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₂ OH		2
1-Pyd-(CH ₂) ₂ -	Н	C1	c-헥실	N[(CH ₂) ₂ OH] ₂		2
1-Pyd-(CH ₂) ₂ -	Н	CI	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OH		2
1-Pyd-(CH ₂) ₂ -	Н	Cl	c~헥실	N(Me)(CH ₂) ₂ OMe		2
1-Pyd-(CH ₂) ₂ -	Н	CI	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OMe		2
1-Pyd-(CH ₂) ₂ -	Н	Cl	c-헥실	N(Et)(CH ₂) ₂ F		2
1-Pyd-(CH ₂) ₂ -	Н	Cl	c-헥실	N(Et)(CH ₂) ₃ OH		2
1-Pyd-(CH ₂) ₂ -	Н	Cl	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₃ OH		2
1-Pyd-(CH ₂) ₂ -	Н	F	c-헥실	N(Et) ₂		2
1-Pyd-(CH ₂) ₂ -	Н	F	c-헥실	N(Et)(CH ₂) ₂ OH		2
1-Pyd-(CH ₂) ₂	Н	F	c-헥실	N(i-Pr)(CH ₂) ₂ OH		2
1-Pyd-(CH ₂) ₂ -	Н	F	c-헥실	N[(CH ₂) ₂ OH] ₂		2
1-Pyd-(CH ₂) ₂ -	Н	F	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OMe		2
1-Pyd-(CH ₂) ₂ -	Н	F	c-헥실	N(Et)(CH ₂) ₃ OH		2
NH ₂ -(CH ₂) ₂ -	Н	Cl	c-헥실	N[(CH ₂) ₂ OH] ₂		2
(Me)N-(CH ₂) ₂ -	Н	CI	c-헥실	N[(CH ₂) ₂ OH] ₂		2
(iPr)N-(CH ₂) ₂ -	Н	- C1	c-헥실	N(Et) ₂		2
(iPr)N-(CH ₂) ₂ -	Н	Cl	c-헥실	N(Et)(CH ₂) ₂ OH		2
(iPr)N-(CH ₂) ₂ -	Н	Cl	c-헥실	N(c-Pr)(CH ₂) ₂ OH		2
(iPr)N-(CH ₂) ₂ -	Н	Cl	c-헥실	N(i-Pr)(CH ₂) ₂ OH		2
(iPr)N-(CH ₂) ₂ -	Н	Cl	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₂ OH		2
(iPr)N-(CH ₂) ₂ -	Н	Cl	c-헥실	N[(CH ₂) ₂ OH] ₂	1 1	2
(iPr)N-(CH ₂) ₂ -	Н	Cl	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OH		2
(iPr)N-(CH ₂) ₂ -	Н	CI	c-헥실	N(Me)(CH ₂) ₂ OMe		2
(iPr)N-(CH ₂) ₂ -	Н	Cı	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OMe		2
(iPr)N-(CH ₂) ₂ -	Н	Cl	c-헥실	N(Et)(CH ₂) ₂ F		2
(iPr)N-(CH ₂) ₂ -	Н	Cl	c-헥실	N(Et)(CH ₂) ₃ OH		2
(iPr)N-(CH ₂) ₂ -	. Н	Cl	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₃ OH		2
(iPr)N-(CH ₂) ₂ -	Н	F	c-헥실	N(Et) ₂		2
(iPr)N-(CH ₂) ₂ -	н	F	c-헥실	N(Et)(CH ₂) ₂ OH		2
(iPr)N-(CH ₂) ₂ -	Н	F	c-헥실	N(i-Pr)(CH ₂) ₂ OH		2

<91>

(15.)11 (011.)			an 11	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	T.
(iPr)N-(CH ₂) ₂	Н	F	c-헥실	N[(CH ₂) ₂ OH] ₂	2
(iPr)N-(CH ₂) ₂ -	Н	F	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OMe	2
(iPr)N-(CH ₂) ₂ -	H	F	c-헥실	N(Et)(CH ₂) ₃ OH	2
(iPr)(Me)N-(CH ₂) ₂ -	Н	F	c-헥실	N(Et)(CH₂)₃OH	2
(S)-3-OH-Pyd-1-(CH ₂) ₂	Н	Cl	c-헥실	N(Et) ₂	2
(S)-3-OH-Pyd-1-(CH ₂) ₂	Н	Cl	c-헥실	N(Et)(CH ₂) ₂ OH	2
(S)-3-OH-Pyd-1-(CH ₂) ₂	Н	Cl	c-핵실	N(c-Pr)(CH ₂) ₂ OH	2
(S)-3-OH-Pyd-1-(CH ₂) ₂	H	Cl	c-헥실	N(i-Pr)(CH ₂) ₂ OH	2
(S)-3-OH-Pyd-1-(CH ₂) ₂	Н	Cl	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₂ OH	2
(S)-3-0H-Pyd-1-(CH ₂) ₂	Н	Cl	c-헥실	N[(CH ₂) ₂ OH] ₂	2
(S)-3-OH-Pyd-1-(CH ₂) ₂	Н	CI	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OH	2
(S)-3-OH-Pyd-1-(CH ₂) ₂	Н	Cl	c-헥실	N(Me)(CH ₂) ₂ OMe	2
(S)-3-OH-Pyd-1-(CH ₂) ₂	Н	C1	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OMe	2
(S)-3-OH-Pyd-1-(CH ₂) ₂	Н	CI	c-헥실	N(Et)(CH ₂) ₃ F	2
(S)-3-OH-Pyd-1-(CH ₂) ₂	Н	Cl	c-헥실	N(Et)(CH ₂) ₂ F	2
(S)-3-OH-Pyd-1-(CH ₂) ₂	Н	CI	c-핵실	N(Et)(CH ₂) ₃ OH	2
(S)-3-OH-Pyd-1-(CH ₂) ₂	Н	Cl	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₃ OH	2
(R)-3-OBn-Pyd-1-(CH ₂) ₂	Н	Cl	c-헥실	N(Et)(CH ₂) ₃ F	1
(S)-3-0Bn-Pyd-1-(CH ₂) ₂	н	CI	c-헥실	N(Et)(CH ₂) ₂ OH	1
(S)-3-OH-Pyd-1-(CH ₂) ₂	Н	· F	c-헥실	N(Et) ₂	2
(S)-3-OH-Pyd-1-(CH ₂) ₂	Н	F	c~헥실	N(Et)(CH ₂) ₂ OH	2
(S)-3-OH-Pyd-1-(CH ₂) ₂	Н	F	c-헥실	N(i-Pr)(CH ₂) ₂ OH	2
(S)-3-OH-Pyd-1-(CH ₂) ₂	Н	F	c-헥실	N[(CH ₂) ₂ OH] ₂	2
(S)-3-OH-Pyd-1-(CH ₂) ₂	Н	F	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OMe	2
(S)-3-OH-Pyd-1-(CH ₂) ₂	Н	F	c-헥실	N(Et)(CH ₂) ₃ OH	2
(R)-3-OH-Pyd-1-(CH ₂) ₂	Н	CI	c-헥실	N(Et) ₂	2
(R)-3-OH-Pyd-1-(CH ₂) ₂	Н	Cl	c-헥실	N(Et.)(CH ₂) ₂ OH	2
(R)-3-OH-Pyd-1-(CH ₂) ₂	Н	Cl	c-헥실	N(c=Pr)(CH ₂) ₂ OH	2
(R)-3-OH-Pyd-1-(CH ₂) ₂	Н	Cl	c-헥실	N(i-Pr)(CH ₂) ₂ OH	2
(R)-3-0H-Pyd-1-(CH ₂) ₂	Н	CI	_c=핵실 -	N[(CH ₂) ₂ OMe](CH ₂) ₂ OH	2
(R)-3-OH-Pyd-1-(CH ₂) ₂	Н	Cl	c-헥실	N[(CH ₂) ₂ OH] ₂	2
(R)-3-OH-Pyd-1-(CH ₂) ₂	Н	Cl	c-핵실	N[(CH ₂) ₂ F](CH ₂) ₂ OH	2
(R)-3-OH-Pyd-1-(CH ₂) ₂	Н	CI	c-헥실	N(Me)(CH ₂) ₂ OMe	2
(R)-3-OH-Pyd-1-(CH ₂) ₂	н	Cl	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OMe	2
L			L	<u> </u>	

<92>

(R)-3-OH-Pyd-1-(CH2)2	Н	C1	c-헥실	N(Et)(CH ₂) ₃ F	2
(R)-3-OH-Pyd-1-(CH2)2	Н	Cl	c-헥실	N(Et)(CH ₂) ₂ F	2
(R)-3-0H-Pyd-1-(CH ₂) ₂	Н	C1	c-헥실	N(Et)(CH ₂) ₃ OH	2
(R)-3-0H-Pyd-1-(CH ₂) ₂	Н	C1	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₃ OH	2
(R)-3-OH-Pyd-1-(CH ₂) ₂	Н	F	c-헥실	N(Et) ₂	2
(R)-3-OH-Pyd-1-(CH ₂) ₂	Н	F	c-헥실	N(Et)(CH ₂) ₂ OH	2
(R)-3-OH-Pyd-1-(CH ₂) ₂	Н	F	c-헥실	N(i-Pr)(CH ₂) ₂ OH	2
(R)-3-OH-Pyd-1-(CH ₂) ₂	Н	F	c-헥실	N[(CH ₂) ₂ OH] ₂	2
(R)-3-OH-Pyd-1-(CH ₂) ₂	Н	F	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OMe	2
(R)-3-OH-Pyd-1-(CH ₂) ₂	Н	F	c-헥실	N(Et)(CH ₂) ₃ OH	2
2-oxo-1-pyd-(CH ₂) ₂₋	Н	C1	c-헥실	N(Et) ₂	2
2-oxo-1-pyd-(CH ₂) ₂ -	Н	C1	c-헥실	N(Et)(CH ₂) ₂ OH	2
2-oxo-1-pyd-(CH ₂) ₂₋	Н	Cl	c-헥실	N(c-Pr)(CH ₂) ₂ OH	2
2-oxo-1-pyd-(CH ₂) ₂₋	Н	Cl	c-헥실	N(i-Pr)(CH ₂) ₂ OH	2
2-oxo-1-pyd-(CH ₂) ₂₋	Н	Cı	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₂ OH	2
2-oxo-1-pyd-(CH ₂) ₂₋	Н	Cl	c-헥실	N[(CH ₂) ₂ OH] ₂	2
2-oxo-1-pyd-(CH ₂) ₂₋	Н	CI	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OH	2
2-oxo-1-pyd-(CH ₂) ₂₋	Н	Cl	c-헥실	N(Me)(CH ₂) ₂ OMe	2
2-oxo-1-pyd-(CH ₂) ₂₋	Н	Cl	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OMe	2
2-oxo-1-pyd-(CH ₂) ₂₋	Н	· C1	c-헥실	N(Et)(CH ₂) ₃ F	2
2-oxo-1-pyd-(CH ₂) ₂₋	Н	Cı	c-헥실	N(Et)(CH ₂) ₂ F	2
2-oxo-1-pyd-(CH ₂) ₂₋	Н	CI	c-헥실	N(Et)(CH ₂) ₂ OH	2
2-oxo-1-pyd-(CH ₂) ₂₋	Н	Cl	c-헥실	N(Et)(CH ₂) ₃ OH	2
2-oxo-1-pyd-(CH ₂) ₂₋	Н	Cı	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₃ OH	2
2-oxo-1-pyd-(CH ₂) ₂₋	Н	F	c-헥실	N(Et) ₂	2
2-oxo-1-pyd-(CH ₂) ₂₋	Н	F	c-헥실	N(Et)(CH ₂) ₂ OH	2
2-oxo-1-pyd-(CH ₂) ₂₋	Н	F	c-헥실	N(i-Pr)(CH ₂) ₂ OH	2
2-oxo-1-pyd-(CH ₂) ₂₋	Н	F	c-헥실	N[(CH ₂) ₂ OH] ₂	2
2-oxo-1-pyd-(CH ₂) ₂₋	Н	F	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OMe	2
2-oxo-1-pyd-(CH ₂) ₂₋	Н	F	c-헥실	N(Et)(CH ₂) ₃ OH	2
Mor-(CH ₂) ₂ -	Н	Cl	c-헥실	N(Et)(CH ₂) ₂ OH	2
Mor-(CH ₂) ₂ -	H	Cl	c-헥실	N[(CH ₂) ₂ OMe] ₂	2
Mor-(CH ₂) ₂ -	Н	Cl	c-헥실	N[(CH ₂) ₂ OH] ₂	2
Mor-(CH ₂) ₂ -	Н	C1	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OH	2

<93>

Mor-(CH ₂) ₂ -	Н	Cl	c-헥실	N(Me)(CH ₂) ₂ OMe	2
Mor-(CH ₂) ₂ -	Н	CI	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OMe	2
Mor-(CH ₂) ₂ -	Н	Cl	c-헥실	N(Et)(CH ₂) ₂ F	2
Mor-(CH ₂) ₂ -	Н	F	c-헥실	N(Et)(CH ₂) ₂ OH	2
Mor-(CH ₂) ₂ -	Н	F	c-헥실	N(i-Pr)(CH ₂) ₂ OH	2
Mor-(CH ₂) ₂ -	Н	F	c-헥실	N[(CH ₂) ₂ OH] ₂ .	2
Н	Н	Cl	2,3-diF-페닐	N(Me)(CH ₂) ₂ OH	2
Н	Н	Cl	2,3-diF-페닐	N(Me)(CH ₂) ₂ OMe	2
Н	Н	Cl	2,3-diF-페닐	N(Me)2(CH2)2OH	2
(R)Pyd-2-CH ₂	H	Cl	2,3-diF-페닐	N(Me)(CH ₂) ₂ OH	2
(R)Pyd-2-CH ₂	Н	Cl	2,3-diF-페닐	N(Me)(CH ₂) ₂ OMe	2
$(Me)_2N-(CH_2)_2-$	Н	Cl	c-헥실	N(Me)OMe	2
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	N(Et)(CH ₂) ₂ -OH	2
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	N(n-Pr)(CH ₂) ₂ -OH	2
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	N[(CH ₂) ₂ -OH] ₂	2
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	N[(CH ₂) ₂ -OMe] ₂	2
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	(2R)-2-(HOCH ₂)-Pyd-1-일	2
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	4-아미노-Pid-1-일	2
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	N(Me)(CH ₂) ₂ -OH	2
(Me) ₂ N-(CH ₂) ₂ -	Н	. Cl	c-핵실	N(Me)(CH ₂) ₂ -OMe	2
(Me) ₂ N-(CH ₂) ₂ -	Н	C1	c-헥실	N(Et) ₂	2
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	N(i-Pr)(CH ₂) ₂ OH	2
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₂ OH	2
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OH	2
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	N(Et)(CH ₂) ₂ F	2
(Me) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	N(Et)(CH ₂) ₃ OH	2
(Me) ₂ N-(CH ₂) ₂ -	Н	F	c-헥실	N(Me)OMe	2
(Me) ₂ N-(CH ₂) ₂ -	Н	F	c-헥실	N(Et)(CH ₂) ₂ -OH	2
(Me) ₂ N-(CH ₂) ₂ -	Н	F	c-헥실	N(n-Pr)(CH ₂) ₂ -OH	2
(Me) ₂ N-(CH ₂) ₂ -	Н	F	c-핵실	N[(CH ₂) ₂ -OH] ₂	2
(Me) ₂ N-(CH ₂) ₂ -	Н	F	c-헥실	N[(CH ₂) ₂ -OMe] ₂	2
(Me) ₂ N-(CH ₂) ₂ -	Н	F	c-헥실	N(i-Pr)(CH ₂) ₂ OH	2
(Me) ₂ N-(CH ₂) ₂ -	Н	F	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₂ OH	2
(Me) ₂ N-(CH ₂) ₂ -	Н	F	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OH	2
			<u> </u>	<u> </u>	1

<94>

(Me) ₂ N-(CH ₂) ₂ -	Н	F	c-핵실	N(Et)(CH ₂) ₂ F	2
(Me) ₂ N-(CH ₂) ₂ -	Н	F	c-헥실	N(Et)(CH ₂) ₃ OH	2
(Et) ₂ N-(CH ₂) ₂ -	Н	CI	c-헥실	N(Et)(CH ₂) ₃ OH	2
(Et) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	N(Et)(CH ₂) ₂ F	2
(Et) ₂ N-(CH ₂) ₂ -	Н	CI	c-헥실	N(Et)(CH ₂) ₂ OH	2
(Et) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	N(n-Pr)(CH ₂) ₂ OH	2
(Et) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	N[(CH ₂) ₂ OH] ₂	2
(Et) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	N[(CH ₂) ₂ OMe] ₂	2
(Et) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	N(i-Pr)(CH ₂) ₂ OH	2
(Et) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₂ OH	2
(Et) ₂ N-(CH ₂) ₂ -	Н	C1	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OH	2
(Et) ₂ N-(CH ₂) ₂ -	Н	Cl	c-헥실	N(Et)(CH ₂) ₂ F	2
(Et) ₂ N-(CH ₂) ₂ -	Н	F	c-헥실	N(Et)(CH ₂) ₃ OH	2
(Et) ₂ N-(CH ₂) ₂ -	Н	F	c-헥실	N(Et)(CH ₂) ₂ OH	2
(Et) ₂ N-(CH ₂) ₂ -	Н	F	c-헥실	N(n-Pr)(CH ₂) ₂ OH	2
(Et) ₂ N-(CH ₂) ₂ -	Н	F	c-헥실	N[(CH ₂) ₂ OH] ₂	2
(Et) ₂ N-(CH ₂) ₂ -	Н	F	c-헥실	N[(CH ₂) ₂ OMe] ₂	2
(Et) ₂ N-(CH ₂) ₂ -	Н	F	c-헥실	N(i-Pr)(CH ₂) ₂ OH	2
(Et) ₂ N-(CH ₂) ₂ -	Н	F	c-핵실	N[(CH ₂) ₂ OMe](CH ₂) ₂ OH	2

본 발명에 따른 화합물은 또한 약제학적으로 허용되는 염을 형성할 수 있다. 이러한 약 제학적으로 허용되는 염에는 약제학적으로 허용되는 음이온을 함유하는 무독성 산부가염을 형성하는 산, 예를 들면 황산, 염산, 질산, 인산, 브롬화수소산, 요오드화수소산 등과 같은 무기산, 타타르산, 포름산, 시트르산, 아세트산, 트리클로로아세트산, 트리플루오로아세트산, 글루콘산, 벤조산, 락트산, 푸마르산, 말레인산 등과 같은 유기 카본산, 메탄설폰산, 벤젠설폰산, 마톨루엔설폰산 또는 나프탈렌설폰산 등과 같은 설폰산 등에 의해 형성된 산부가염이 포함된다. 본 발명에 따른 화학식 1의 화합물은 통상적인 방법에 의해 그의 염으로 전환시킬수 있다.

한편, 본 발명에 따른 화합물들은 비대칭 탄소중심을 가질 수 있으므로 R 또는 S 이성체, 라세미체, 부분 입체이성체 혼합물 및 개개 부분입체이성체로서 존재할 수 있으며, 이들 모든 이성체 및 혼합물은 본 발명의 범위에 포함된다.

한편, 본 발명에 따른 화학식 1의 화합물은 하기 반응식 1 내지 6에 도시한 바와 같은 방법으로 제조할 수 있다. 하기 반응식에서 화합물 (3), (7), (8), (9), (12), (13), (17), (19), 및 (24)는 화학식 1 화합물의 전형적인 화합물들을 나타낸다.

역8> 먼저, 화합물(3)은 반응식 1에 나타낸 바와 같이 아미노기가 보호된 아미노산 화합물(1)을 아미노 고리화 아민 화합물(2)(여기서 고리화 아민은 피롤리딘 또는 피페리딘을 나타낸다)과 일반적인 아미드 결합 형성 방법에 따라 반응시켜 제조할 수 있다. 출발 물질인 보호된 아미노산 화합물(1)은 상업적으로 구입 가능하며, 문헌 공지된 방법에 따라 제조할 수 있다(참조: Williams, R. M., Synthesis of optically active a-Amino Acids, Pergamon Press: Oxford, 1989). 또한 아미노 고리화 아민 화합물(2)의 제조방법은 하기 본 명세서를 참조할수 있다.

:100> 상기 식에서

101> R³, R⁴, 및 R⁵는 각각 앞에서 정의한 바와 같고,

102> Cm은 피롤리딘 또는 피페리딘환을 나타내며,

출력 일자: 2004/10/14 -

<103> P는 아미노 보호기, 바람직하게는 BOC, Cbz, 또는 Fmoc 를 나타낸다.

<104> 화합물(7), (8), 또는 (9)는 하기 반응식 2에서와 같이 보호된 아미노산 화합물(4),

(5), 또는 (6)과 화합물(3)을 결합시켜 제조할 수 있다. 보호된 아미노산 화합물(4), (5), 또는 (6)은 상업적으로 구입이 가능하거나 아미노산으로부터 보호화 반응과 가수분해 반응을 거쳐 제조할 수 있다.

(105> 【반응식 2】

:106> 상기 식에서

:107> R⁶은 앞에서 정의한 바와 같고.

108> R은 알킬 또는 보호된 아미노알킬을 나타낸다.

화합물(12) 또는 (13)과 같이 알킬화된 아민 화합물은 하기 반응식 3 에서와 같이 반응식 1에서 제조한 화합물(3)과 보호된 아미노 알데히드 화합물(10)로부터 환원성 아미노 반응(조건: NaBH(0Ac)3, DCE, 상은, 3-4 hr) 및 탈보호화 반응을 통하여 제조할 수 있다. 아미노 알데히드 화합물(10)는 상업적으로 구입이 가능하거나 티오에스테르의 환원반응 또는 아미노 알콜의 산화반응과 같은 공지의 방법으로 합성이 가능하다. 화합물(11)은 일반적인 알킬 알데히

드 또는 아미노 및 알콜 유도체가 치환된 알데히드로서 상업적으로 구입 가능하거나 보호화 반응을 통해 쉽게 합성할 수 있다. 또한 화합물(13)은 그 반응 조건에 따라 단일 혹은 이중 치환된 화합물로서 얻어진다.

(110> 【반응식 3】

하기 반응식 4는 화합물(17), (18), 또는 (19)를 제조하는 방법을 나타내고 있다. 화합물(3)을 니트로벤젠설포닐 클로라이드로 보호화한 화합물(14) (참조: Tetrahedron Letters, 1995, 36, 6373-6374)에 대해 알킬화 또는 환원성 아미노 반응을 수행하여 화합물(16)을 제조할 수 있다. 이때 반응물질로 사용되는 보호된 화합물(15)는 디메틸아미노에틸클로라이드나 N-BOC-아미노에틸클로라이드와 같은 화합물을 예로 들 수 있다. 또한, 화합물(18)은 화합물 (16)으로부터 환원성 아미노 반응 또는 미쯔노부 반응을 수행하여 제조할 수 있고, 화합물(18)에 다시 알킬화 반응을 수행하면 화합물(19)로 전환될 수 있다.

:113> 상기 식에서

114> Q는 아미노알킬을 나타내며,

:115> X는 할로겐을 나타낸다.

하기 반응식 5는 3번 위치에 이중 치환된 아미노기가 붙은 피롤리딘 및 4번 위치에 이중 치환된 아미노기가 붙은 피페리딘의 제조 방법을 나타내고 있다. 화합물(20)은 본 출원인의 선행출원(특허출원 제10-2003-0079799호)에 개시된 방법으로 합성할 수 있고, 화합물(20)과 화합물(21)을 커플링 반응 또는 아실화 반응, 및 탈보호화 반응시켜 화합물(22)를 합성할 수 있다. 여기서 화합물(21)은 카복시산 또는 산클로라이드 화합물 형태를 갖는다.

<117> 【반응식 5】

*118> 우레아 유도체는 하기 반응식 6과 같은 방법으로 제조할 수 있다. 먼저 보호된 아미노산(1)과 아미노 고리화 화합물(20)을 커플링 반응시키면 화합물(23)을 얻을 수 있다. 또 한, 화합물(23)을 포스겐과 반응시켜 카바모일 클로라이드를 만든 다음 아민 화합물과 커플링 반응시키고 탈보호화 반응시키면 화합물(24)를 얻을 수 있다.

:119> 【반응식 6】

:120> 상기 식에서

121> NRR'는 R^{5'}의 정의중 치환되거나 비치환된 아미노 그룹을 나타낸다.

122> 상기 각 단계의 반응은 바람직하게는 반응에 악영향을 끼치지 않는 통상적인 용매 중에 서 수행될 수 있으며, 특히 바람직하게는 디메틸포름아미드, 디메틸아세트아미드, 테트라하이 드로푸란, 메틸렌클로라이드, 및 클로로포름 중에서 선택된 1종 이상의 용매를 사용할 수 있으나, 단 이들로 제한되는 것은 아니다.

123> 탈보호화 반응은 염산, 트리플루오로아세트산 등과 같은 강산 존재하에 수행하거나, 트리에틸아민, 피페리딘, 디이소프로필에틸아민(DIPEA) 등과 같은 아민 염기의 존재하에 수행하거나, 수소첨가반응을 사용하여 수행할 수 있다. 구체적인 반응 조건은 문헌(참조: T. ₩.

Green & G. M. Wuts Protective Groups in Organic Synthesis, Chapter 7, pp309-405)에 기재된 내용을 참조할 수 있다.

- (DCC), 1-(3-디메틸아미노프로필)-3-에틸카보디이미드(EDC), 1,1'-디카보닐디이미다졸(CDI) 등의 카보이미드류를 1-하이드록시벤조트리아졸(HOBT) 또는 1-하이드록시-7-아자벤조트리아졸(HOAT)과 혼합된 상태로 사용하거나, 비스-(2-옥소-3-옥사졸리디닐)-포스핀산 클로라이드(BOP-C1), 디페닐포스포릴아지드(DPPA), N-[디메틸아미노-1H-1,2,3-트리아졸[4,5-b]피리딘-1-일메틸렌]-N-메틸메탄아미늄(HATU) 등을 사용할 수 있으나, 단 이들로 제한되는 것은 아니다.
- 일반적인 혼합물의 분리는 칼럼 크로마토그래피를 사용하고 최종 화합물의 경우 재결정이나 노말 또는 리버스 상태의 HPLC(Waters, Delta Pack, 300x50 mmI.D., C18 5µm, 100A)를 통하여 분리할 수 있다. 재결정이나 HPLC를 통해 정제하는 경우, 트리플루오로아세트산염의 형태로 화합물을 얻을 수 있으며, 염산염을 얻고자 하는 경우에는 이온교환 수지를 이용할 수 있다.
- 126> 상기한 본 발명의 방법에 따른 반응이 완결된 후에 생성물은 통상적인 후처리 방법, 예를들면 크로마토그래피, 재결정화 등의 방법에 의해 분리 및 정제할 수 있다.
- ·127> 본 발명의 화합물은 멜라노코틴 수용체에 대하여 우수한 항진작용을 나타내므로 본 발명은 또한, 약제학적으로 허용되는 담체와 함께 유효성분으로서 화학식 1의 화합물을 함유함을 특징으로 하는 멜라노코틴 수용체의 기능항진제 조성물을 제공한다. 특히, 본 발명에 따른 조성물은 비만, 발기부전증, 당뇨병, 및 염증에 대한 예방 및 치료에 우수한 효과를 나타내나 이들 질병에만 제한되는 것은 아니다.

본 발명의 화합물을 임상적인 목적으로 투여시에 단일용량 또는 분리용량으로 숙주에게 투여될 총 일일용량은 체중 1kg 당 0.01 내지 10mg의 범위가 바람직하나, 개개 환자에 대한 특이적인 용량 수준은 사용될 특정 화합물, 환자의 체증, 성, 건강상태, 식이, 약제의 투여시간, 투여방법, 배설률, 약제혼합 및 질환의 중증도 등에 따라 변화될 수 있다.

(129) 본 발명의 화합물은 목적하는 바에 따라 어떠한 경로로도 투여될 수 있다. 주사, 경구 및 비강 투여가 바람직하나, 피부, 복강, 후강 및 직장을 통하여 투여할 수도 있다.

7.130> 주사용 제제, 예를 들면 멸균 주사용 수성 또는 유성 현탁액은 공지된 기술에 따라 적합한 분산제, 습윤제, 또는 현탁제를 사용하여 제조할 수 있다. 이를 위해 사용될 수 있는 용매에는 물, 링거액 및 등장성 NaCl 용액이 있으며, 멸균 고정오일도 통상적으로 용매 또는 현탁매질로서 사용한다. 모노-, 디-글리세라이드를 포함하여 어떠한 무자극성 고정오일도 이러한목적으로 사용될 수 있으며, 또한 올레산과 같은 지방산도 주사용 제제에 사용할 수 있다.

(131) 경구투여용 고체투여 형태로는 캅셀제, 정제, 환제, 산제 및 입제가 있으며, 특히 캅셀제와 정제가 유용하다. 정제 및 환제는 장피제로 제조하는 것이 바람직하다. 고체투여 형태는 본 발명에 따른 화학식 1의 활성화합물을 수크로오즈, 락토오즈, 전분 등과 같은 하나 이상의 불활성 회석제 및 마그네슘 스테아레이트와 같은 윤활제, 붕해제, 결합제 등과 같은 담체와 혼합시켜 제조할 수 있다.

132> 상기 반응식, 하기 제조예 및 실시예에서 화합물의 명칭에 사용되는 약어와 용어의 설명은 다음과 같다.

:133> Ac:

아세틸

:134> Bu:

부틸

<135> CBZ(Cbz): 벤질옥시카보닐

<136> BOC(Boc): t-부톡시카보닐

(137) Fmoc: 9-플루오레닐메톡시카보닐

:138> c-Hex: 사이클로헥실

:139> c-Pr: 사이클로프로필

:140> DCE: 디클로로에탄

:141> DCM: 디클로로메탄

142> DEAD: 디에틸아조디카복실레이트

:143> DIPEA: 디이소프로필에틸아민

:144> DMAP: 4-디메틸아미노피리딘

:145> DMF: N,N-디메틸포름아미드

146 DTic: (D)-1,2,3,4-테트라하이드로이소퀴놀린-3-카복실릭

:147> EDC: 1-(3-디메틸아미노프로필)-3-에틸카보디이미드, 염산염

:148> Gly: 글라이신

:149> Hex: 노르말 헥산

150> HOBT: 하이드록시벤조트리아졸

151> HBTU: 2-(1H-벤조트리아졸-1-일)-1,1,3,3-테트라메틸유로늄 헥사플루오로 포스페이트

^{152>} i-Pr: 이소프로필

153> i-Bu: 이소부틸

<u>15</u>→ Mor: 모폴린

<155> Nos:

2-니트로벤젠설포닐

<156> Ph:

페닐

<157> Phe:

페닐알라닌

<158> Pid:

피페리딘

<159> Pro:

프롤린

<160> Pyd:

피롤리딘

<161> TEA:

트리에틸아민

<162> TFA:

트리플루오로아세트산

<163> Tic:

1,2,3,4-테트라하이드로이소퀴놀린-3-카복시산

(164) 하기 제조예는 본 발명에 따른 실시예 화합물의 합성에 필요한 중간체 제조를 보다 구체적으로 설명한다.

:165> 제조예 1- 11:

166> 본 출원인의 선행출원(특허출원 제10-2003-0079799호)에 개시된 방법을 이용하여 하기 표의 아미노피롤리딘 또는 아미노피페리딘 화합물을 합성하였다.

<168>

제조예	n	R	*	MS(M+H)
1	1	c-헥실	S	303
2	1	c-헥실	R	303
3	1	c-헥실	R,S	303
4	1	페닐	R,S	297
5	1	4-Me-페닐	R,S	311
6	1	2,3 diF-페닐	S	333
7	1	2,3 diF-페닐	R,S	333
8	1	3,5-diMe-페닐	· R,S	325
9	1	2-아다만틸	S	369
10	2	c-헥실	S	317
11	2	2,3-diF-페닐	S	347

(169) 제조예 12: 1-하이드록시메틸-1-사이클로펜탄카복시산

다 사이클로펜탄카복시산(1.10 g, 10.0 mmol)을 THF(30 ml)에 녹이고 반응용기 내부를 질소로 치환하였다. 반응용액의 온도를 -78℃로 낮추고 LDA(8.8 ml, 2.5 m in hexane)를 천천히 적가한 후 30분 동안 -78℃에서 교반하였다. 파라포름알데히드(30.0g)를 또 다른 플라스크에 넣고 원 반응용기와 라인으로 연결한 후 파라포름알데히드를 가열하여 버블링시켰다. 반응이 종결되면 파라포름알데히드와의 연결선을 빼고 NH4Cl 수용액을 첨가하고 유기물을 EtOAc로 추출하였다. 추출한 유기용액을 MgSO4로 건조시킨 후 감압 농축하여 표제 화합물을 수득하고 정제 없이 다음 반응에 사용하였다.

MS[M+H] = 145(M+1)

172> 제조예 13: 2,2-디메틸-3-메톡시-프로피온산

173> 단계 A: 2,2-디메틸-3-메톡시-프로피온산 에틸에스테르

2,2-디메틸-3-하이드록시-프로피온산 에틸에스테르(1.3 g, 10.0 mmol)를 CH₃CN(30 ml)에 녹이고 Ag₂O(11.5 g, 50.0 mmol)와 메틸요오다이드(0.56 ml, 11 mmol)를 첨가하였다. 반응 용

액을 12시간동안 상온에서 교반한 후 셀라이트로 여과하고, 감압 농축하고, 칼럼 크로마토그라 피(용리액: EtOAc/Hex = 1/10)로 정제하여 표제 화합물(1.34 g, 91.2 %)을 수득하였다.

(175) MS[M+H] = 147(M+1)

(176> 단계 B: 2,2-디메틸-3-메톡시-프로피온산

단계 A에서 수득한 2,2-디메틸-3-메톡시-프로피온산 에틸에스테르(1.17 g, 8.00 mmol)를 MeOH 수용액(MeOH/H₂O = 1/1, 24 ml)에 녹이고 LiOH(560 mg, 16.0 mmol)를 첨가하였다. 반응용액을 상온에서 30분 동안 교반한 후 감압 하에 용매를 제거하고 잔류물에 1N HCl을 첨가하였다. EtOAc로 추출한 유기용액을 MgSO₄로 건조한 후 정제 없이 다음 반응에 사용하였다.

MS[M+H] = 133(M+1)

179> 제조예 14: 2,2-디메틸-3-벤질록시-프로피온산

180> 2,2-디메틸-3-하이드록시-프로피온산 에틸에스테르와 벤질 클로라이드를 제조예 13과 동일한 방법으로 반응시켜 표제 화합물을 수득하였다.

MS[M+H] = 209(M+1)

182> 제조예 15: 1-BOC-피페리딘-4-카복서산

183> 피페리딘-4-카복시산(1.29 g, 10.0 mmol)을 물에 녹이고 NaOH(800 mg, 20.0 mmol)를 첨가하였다. 반응용액이 맑아지면 (BOC)₂O(2.5 g, 11.0 mmol)를 넣고 12시간 교반하였다. 반응이 종결되면 감압 하에 용매를 제거하고 잔류물에 1N HCl을 첨가하였다. EtOAc로 추출한 유기용액을 MgSO₄로 건조한 후 정제 없이 다음 반응에 사용하였다.

<184> MS[M+H] = 230(M+1)

(185) 제조예 16: (2R)-2-메틸-3-아세틸옥시프로피온산

(2R)-2-메틸-3-하이드록시프로피온산(10.0 g, 100 mmol)을 피리딘(30 ml)에 녹이고 반응용액의 온도를 0℃로 낮추었다. 아세틸 클로라이드(11.8 g, 15.0 mmol)를 천천히 적가한 후 반응용액의 온도를 상온으로 올린 다음 3시간 동안 상온에서 교반하였다. 반응이 종결되면 1N 염산(30 ml)을 넣어 pH를 3-4 정도로 맞춘 후 EtOAc로 유기물을 추출하였다. 추출한 유기물을 1N 염산으로 4-5회 씻어 주고 MgSO4로 건조한 후 감압 농축하여 표제 화합물 (11.4 g, 95.0 %)을 수득하였다.

:187> MS[M+H] = 147(M+1)

:188> 제조예 17-24

189> 여러 가지 하이드록시 카복시산 화합물들을 제조예 12에서와 동일한 방법으로 반응시켜 다음과 같은 화합물을 수득하였다.

190> O R

<191>

제조예	R	R'	R"	MS[M+H]
17	메틸	메틸	OAc	147
18	메틸	메틸	CH ₂ -OAc	161
19	메틸	메틸	(CH ₂) ₂ -OAc	175
20	메틸	메틸	(CH ₂) ₃ -OAc	189
21	메틸	CH ₂ -OAc	CH ₂ -OAc	218
22	-(CH	{₂)₄−	CH ₂ -OAc	187
23		l ₂) ₂ -	CH ₂ -OAc	159
24	2-(Ac0-(185		
25	2-(Ac0-(CH2-)-1-사이클로	뵉센-1-일	199

192> 제조예 26: (3S)-3-[사이클로헥실(아세틸옥시피발로일) 아미노]피롤리딘

(193> 단계 A: 2,2-디메틸-3-아세틸록시프로피오닐 클로라이드

제조예 18에서 수득한 2,2-디메틸-3-아세틸록시프로피온산(11.76 g, 80 mmol)을 벤젠 (100 mℓ)에 녹이고 반응용액의 온도를 0℃로 낮춘 다음 옥살릴 클로라이드(15.0 g, 120 mmol)를 천천히 적가하였다. 3시간 후 감압하에 용매를 제거하고 감압 증류하여 표제 화합물을 수득하였다.

MS[M+H] = 179(M+1)

196> 단계 B: (3S)-1-Cbz-3-[사이클로헥실(아세틸옥시피발로일)아미노]피롤리딘

제조예 1에서 수득한 (3S)-1-Cbz-3-(사이클로헥실아미노)피롤리딘(3.0 g, 10 mmol)을 THF(15 mℓ)에 녹이고 Et₃N(15 mℓ)와 DMAP(1.25 g, 10 mmol)를 적가한 다음 단계 A에서 수득한 2,2-디메틸-3-아세틸록시프로피오닐 클로라이드(3.58 g, 20 mmol)를 첨가하였다. 반응 온도를 90℃로 올려서 48시간 동안 교반하였다. 반응이 종결되면 감압 하에 용매를 제거하고 남은 여액에 NaHCO₃ 수용액을 첨가한 후 유기물을 EtOAc로 추출하였다. 추출된 유기 용액을 1N HCl로 씻어 주고 MgSO₄로 건조시킨 후 감압 농축하고 칼럼 크로마토그라피(용리액: EtOAc/Hex = 1/2)로 정제하여 표제 화합물(2.80 g, 62.9 %)을 수득하였다.

MS[M+H] = 445(M+1)

(199> 단계 C: (3S)-3-[사이클로헥실(아세틸옥시피발로일)아미노]피롤리딘

단계 B에서 수득한 (3S)-1-Cbz-3-[사이클로헥실(아세틸옥시피발로일)아미노]피롤리딘 (1.00 g, 2.25 mmol)을 다이옥산(10 mℓ)에 녹이고 Pd/C(200 mg)를 첨가한 다음 수소 치환 상태에서 12시간 교반하였다. 반응용액을 셀라이트로 여과하고 감압 농축하여 표제 화합물(657 mg, 84 %)을 수득하였다.

MS[M+H] = 311(M+1)

:202> 제조예 27-53:

203> 상업적으로 구입가능한 카복시산 또는 제조예 13-25에서 수득한 카복시산과 제조예 1-11에서 수득한 아민 화합물을 제조예 26에서와 동일한 방법으로 반응시켜 다음과 같은 화합물을 수득하였다.

<205>

206>

207>

제조예	n	*	R	R'	R"	R"'	MS [M+H]
27	1	S	Н	메틸	СН2-ОАс	c-헥실	297
28	1	S	메틸	메틸	OAc	c-헥실	297
29	1	S	메틸	메틸	(CH ₂) ₂ -OAc	c-헥실	325
30	1	S	메틸	메틸	(CH ₂) ₃ -OAc	c-헥실	339
31	1	S	메틸	(CH ₂) ₂ -OAc	(CH ₂) ₂ -OAc	c~헥실	369
32	1	S	메틸	메틸	CH ₂ -OMe	c-헥실	283
33		S	메틸	메틸	CH₂−OBn	c-헥실	359
34	1	S	메틸	메틸	(CH ₂) ₃ -O-(2,4-diMe) 페닐	c-헥실	401
35	1	S	-(CH ₂) ₄ -	CH ₂) ₄ - CH ₂ -OAc c-		c-헥실	337
36	1	S	~(CH ₂) ₂ ·	-	CH ₂ -OAc	c-헥실	309
37	1	S.	-(CH ₂) ₂ -	-	CO₂Et c~		309
38	1	S	Н _	1-BOC-피페리딘-4-일 c		c-헥실	380
39	1	S	Н	1-(니트로벤: -4-일	젠설포날)-피페리딘	c-헥실	465
40	1	S	3-하이3	드록시페닐	•	c-헥실	289
41	1	S	2-아세	톡시메틸-1-펜	텐-1-일	c-헥실	335
42	1	S	2-야세-	목시메틸-1-헥	센-1-일	c-헥실	349
43	1	R	메틸	메틸	CH ₂ -OAc	c-헥실	311
44	1	R,S	메틸	메틸	CH ₂ -OAc	c-혝실	311
45	1	S	메틸	메틸	СН2-ОАС	2,3-diF-페닐	341
46 ·	1	R,S	메틸	메틸·	CH ₂ -OAc	2,3-diF-페닐	341
47	1	R,S	메틸	메틸	CH ₂ -OAc	3,5-diMe-페닐	.333
48	1	R,S	메틸	메틸	CH ₂ -OAc	4-Me-페닐	319
49	1	R,S	메틸	메틸	CH ₂ -OAc	페닐	305
50	1	S	메틸	메틸	CH ₂ -OAc	2-아다만틸	
51	2	S	메틸	메틸	CH ₂ -OAc	c-헥실 ·	325
52	2	Ś	2-아세	톡시메틸-1-사	이글로펜텐-1-일	c-텍실	349
53	2	S	2-아세-	톡시메틸-1-사	이클로헥센-1-일	c-헥실	363

제조예 54: (3S)-3-{사이클로헥실[(N-BOC)아미노아세틸]아미노}피롤리딘

단계 A: (3S)-1-Cbz-3-{사이클로헥실[(N-BOC)아미노아세틸]아미노}피롤리딘

지조예 1에서 수득한 (3S)-1-Cbz-3-{사이클로헥실아미노}피롤리단(3.0 g, 10.0 mmol)을 DMF(30 ml)에 녹인 용액에 DIEPA(3.50 ml, 20.0 mmol), HBTU(4.88 g, 13 mmol), BOC-Gly(1.92 g, 11 mmol)을 넣고 4시간 동안 상은에서 교반하였다. 반응이 종결되면 용매를 감압하에 제거하고 NaHCO₃ 수용액으로 묽힌 다음 유기물을 EtOAc로 추출하였다. 추출한 유기용액을 1N HCl로 셋어주고, MgSO₄로 건조시키고, 감압 농축한 다음 칼럼 크로마토그라피(용리액: EtOAc/Hex = 1/3)로 정제하여 표제 화합물(4.63 g, 92.0 %)을 수득하였다.

(209) MS[M+H] = 474(M+1)

^{210>} 단계 B: (3S)-3-{사이클로헥실[(N-BOC)아미노아세틸]아미노}피롤리딘

단계 A에서 수득한 (3S)-1-Cbz-3-{사이클로헥실[(N-BOC)아미노아서틸]아미노}피롤리딘을 제조예 26의 단계 C에서와 동일한 방법으로 반응시켜 표제 화합물을 수득하였다.

MS[M+H] = 340(M+1)

^{:213>} 제조예 55-59:

214> 상업적으로 구입 가능한 카복시산과 제조예 1에서 수득한 아민 화합물을 제조예 54에서 와 동일한 방법으로 반응시켜 다음과 같은 화합물을 수득하였다.

215> N O F

<216>

제조예	R	MS[M+H]
55	(N-BOC)아미노메틸	354
56	(N-BOC)아미노에틸	368
57	(에톡시카보닐)메틸	297
58	하이드록시메틸	255
59	(CH ₂) ₂ -OC(=0)-CF ₃	365

217> 제조예 60: 2-에틸아미노-1-아세틸옥시에탄

²¹⁸ 단계 A: 2-(BOC)아미노-1-아세틸옥시에탄

2-(BOC)아미노에탄올(3.2 g, 20.0 mmol)을 DCM(60 ml)에 녹이고 Et₃N(5.6 ml, 40.0 ml)을 적가한 다음, 아세틸 클로라이드(3.36 ml, 30 mmol)를 0℃에서 넣고 2시간 동안 교반하였다. 반응이 종결되면 용매를 제거하고 물에 녹인 다음 EtOAc로 유기물을 추출하였다. 추출한 유기용액을 1N HCl로 씻어준 다음, MgSO4로 건조시키고 감압 농축하고 칼럼 크로마토그라피(용리액: EtOAc/Hex = 1/10)로 정제하여 표제 화합물(3.2 g, 80 %)을 수득하였다.

 220 MS[M+H] = 204(M+1)

^{221>} 단계 B: 2-아미노-1-아세틸옥시에탄

단계 A에서 수득한 2-(BOC)아미노-1-아세틸옥시에탄(3.00 g, 15.0 mmol)를 DCM(15.0 ml)에 녹이고 TFA(15.0 ml)를 첨가한 후 30분 동안 상온에서 교반하였다. 용매를 감압 하에 제거하여 표제 화합물을 수득하고 추가의 정제 없이 다음 반응에 사용하였다.

MS[M+H] = 104(M+1)

224> 단계 C: 2-(2-니트로벤젠설포닐)아미노-1-아세틸옥시에탄

단계 B에서 수득한 2-아미노-1-아세틸옥시에탄(1.00 g, 10.0 mmol)를 DCM(30 ml)에 녹이고 Et₃N(2.80 ml, 20 mmol)을 적가한 다음, 2-니트로벤젠설포닐 클로라이드(2.43 g, 22 mmol)를 넣은 후 상온에서 4시간 동안 교반하였다. 반응이 종결되면 용매를 제거하고 물로 희석한다음 유기물을 EtOAc로 추출하였다. 추출한 유기용액을 1N HCl로 씻어준 다음, MgSO4로 건조시키고 감압 농축하고 칼럼 크로마토그라피(용리액: EtOAc/Hex = 1/3)로 정제하여 표제 화합물(2.72 g, 94.0 %)을 수득하였다.

MS[M+H] = 289(M+1)

227> 단계 D: 2-[(2-니트로벤젠설포닐)에틸]아미노-1-아세틸옥시에탄

만계 C에서 수득한 2-(2-니트로벤젠설포닐)아미노-1-아세틸옥시에탄(1.45 g, 5.00 mmol)과 P(Ph)₃(1.3 g, 5 mmol)를 THF(15 ml)에 녹이고 에탄올(0.40 ml, 15 mmol)과 DEAD(0.32 ml, 10.0 mmol)를 천천히 첨가하였다. 반응이 종결되면 용매를 제거하고 칼럼 크로마토그라피(용리액: EtOAc/Hex = 1/5)로 정제하여 표제 화합물(1.40 g, 80 %)을 수득하였다.

229 MS[M+H] = 317(M+1)

^{230>} 단계 E: 2-에틸아미노-1-아세틸옥시에탄

단계 D에서 수득한 2-[(2-니트로벤젠설포닐)에틸]아미노-1-아세틸옥시에탄(634 mg, 2.00 mmol)을 DMF(10 ml)에 녹이고 K₂CO₃(540 mg, 4 mmol)와 머캅토벤젠(330 mg, 1.5 mmol)을 첨가한 다음 상온에서 1시간동안 교반하고 감압 하에 용매를 제거하였다. 잔류물을 NaHCO₃ 수용액으로 희석하고 유기물을 EtOAc로 추출한 다음 MgSO₄로 건조시키고 감압 농축하여 표제 화합물을 수득하였다.

232 MS[M+H] = 132(M+1)

:233> 제조예 61-66:

234> 상업적으로 구입 가능한 아미노알콜 또는 (N-BOC)아미노에탄올을 제조예 60 에서와 동일한 방법으로 반응시켜 다음과 같은 화합물을 수득하였다.

제조	예	R	R'	R"	R"'	MS[M+H]
61		프로필	아세틸	Н	Н	146
62	2	에틸	메틸	Н	Н	104
63	3	사이클로프로필	아세틸	Н	Н	144
64	L	메틸록시에틸	아세틸	Н	Н	162
65	5	메틸	아세틸	메틸	메틸	146
66	3	메틸록시에틸	메틸	Н	Н	134

237> 제조예 67: (2R)-2-(BOC)아미노-N-{4-[사이클로헥실(하이드록시에틸카바모일)아미노]피 페리딘-1-일}-3-(4-클로로페닐)프로피온아미드

238> 단계 A: 4-[(사이클로헥실)아미노]피페리딘

239> 제조예 10에서 수득한 1-cbz-4-[(사이클로헥실)아미노]피페리딘을 제조예 26의 단계 C에 서와 동일한 방법으로 반응시켜 표제 화합물을 수득하였다.

240 MS[M+H] = 183(M+1)

241> 단계 B:

(2R)-2-(BOC)아미노-N-[4-(사이클로헥실아미노)피페리딘-1-일]-3-(4-클로로페닐)프로피온아미 드

- 상업적으로 구입 가능한 (2R)-2-(BOC)아미노-3-(4-클로로페닐)프로피온산과 단계 A에서
 수득한 4-[(사이클로헥실)아미노]피페리딘을 제조예 54의 단계 A에서와 동일한 방법으로 반응
 시켜 표제 화합물을 수득하였다.
- $^{(243)}$ MS[M+H] = 464(M+1)
- '244' 단계 C: N,N-사이클로헥실[(2R)-2-(BOC)아미노-3-(4-클로로페닐)프로피오닐]피페리딘-4-일}카바모일클로라이드
- 단계 B에서 수득한 (2R)-2-(BOC)아미노-N-[4-(사이클로헥실아미노)피페리딘-1-일]-3-(4-클로로페닐)프로피온아미드(4.63g, 10 mmol)를 DCM(30 ml)에 녹이고 포스겐(25 % in 톨루엔, 12.6 ml, 30 mmol)을 첨가하여 상온에서 4시간동안 교반 하였다. 용매를 감압하에 제거하고 칼럼 크로마토그래피(용리액, EtOAc/Hex = 1/3)로 정제하여 표제 화합물(4.58 g, 87%)을 수득하였다.
- MS[M+H] = 526(M+1)
- ·247> 단계 D: (2R)-2-(BOC)아미노-N-{4-[사이클로헥실(하이드록시에틸카바모일)아미노]피페리 딘-1-일}-3-(4-클로로페닐)프로피온아미드
- 전계 C에서 수득한 N,N-사이클로헥실[(2R)-2-(BOC)아미노-3-(4-클로로페닐)프로피오닐] 피페리딘-4-일}카바모일클로라이드와 아미노에탄올을 제조예 26의 단계 B에서와 동일한 방법으로 반응시켜 표제 화합물을 수득하였다.
- MS[M+H] = 551(M+1)
- ^{250>} 제조예 68-99:

'251' 상업적으로 구입 가능한 아미노알콜과 제조예 1-12에서 수득한 아민 화합물을 제조예 67 에서와 동일한 방법으로 반응시켜 다음과 같은 화합물들을 수득하였다.

:252>

<253>

제조예	R	R'	R"	n	*	MS[M+H]
68	Н	(BOC)아미노부틸	c-헥실	1	S	664
69	Н	(BOC)아미노프로필	c-텍실	1	S	650
70	Н	(BOC)아미노에틸	c-헥실	1	S	636
71	Н	하이드록시에틸	c-헥실	1	S	537
72	하이드록시에틸	하이드록시에틸	c-헥실	1	S	581
73	Н	메틸옥시에틸	c-핵실	1	S	551
74	3(S)-hydr	c-핵실	1	S	563	
75	2(S)-hydroxy	c-헥실	1	S	577	
76	메틸	하이드록시에틸	c~헥실	2		565
77	에틸	하이드목시에틸	c-헥실	2		579
78	프로필	하이드록시에틸	c-헥실	2		593
79	사이클로프로필	하이드록시에틸	c-헥실	· 2		591
80	메틸옥시에틸	하이드록시에틸	c-헥실	2		609
81	메틸	메틸옥시에틸	c-헥실	2		579
82	에틸	메틸옥시에틸	c-헥실	2		593
83	메틸옥시에틸	메틸옥시에틸	c-헥실	2		623
84	에틸	에틸	c-롁실	2		563
85	메틸	메틸옥시	c-헥실	2		551
86	메틸	하이드록시피발릴	c-헥실	2		593
87	메틸	하이드록시에틸	2,3-diF-페닐	2		593
88	메틸	메틸옥시에틸	2,3-diF-페닐	2		609
89	플루오로에틸	메틸옥시에틸	c-헥실	2		611
90	3(R)-hydr	oxy-Pyd-1-yl	c헥실	2		577
91	3(S)-hydr	oxy-Pyd-1-yl	c-헥실	2		577
92	2(R)-hydroxy	methyl-Pyd-1-yl	c-핵실	2		591
93	2(R)-hydroxy	methyl-Pyd-1-yl	c-헥실	2		591
94	(3S)-N-BOC-	amino-Pyd-1-yl	c-헥실	2		576
95	(3R)-N-BOC-	amino-Pyd-1-yl	c-헥실	2		576
96	(3R)∸hydr	oxy-Pid-1-yl	c-헥실	2		591
97	(3S)-hydr	oxy-Pid-1-yl	c-헥실	2		591
98	4-hydro	xy-Pid-1-yl	c-헥실	2		591
99	4- N-BOC-a	mino-Pid-1-yl	. c-핵실	2		590

²⁵⁴ 본 발명에 따른 화합물은 하기 실시예에 의거하여 보다 구체적으로 설명된다. 그러나 이들 실시예는 본 발명에 대한 이해를 돕기 위한 것일 뿐, 어떤 의미로든 본 발명의 범위가 이들로 한정되는 것은 아니다.

*255> 실시예 1: (2R)-2-아미노-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-하이드록시프로피오 닐)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 HC1 염

256> 단계 A: (2R)-2-(BOC-아미노)-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-아세틸옥시프로피오닐)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드

3(S)-3-[사이클로헥실((2R)-2-메틸-3-아세틸옥시프로피오닐)아미노]피롤리딘(917 mg, 3.30 mmol)을 DMF(30 ml)에 녹이고 DIPEA(1.15 ml, 6.70 mmol)를 적가하여 용액을 염기화시킨후 (2R)-2-(BOC)아미노-3-(4-클로로페닐)프로피온산(1.00 mg, 3.30 mmol), HOBT(668 mg, 5.00 mmol), 및 EDC(845 mg, 4.30 mmol)를 차례로 적가하였다. 반응물을 상온에서 12시간 교반한후 용액을 감압 농축하였다. 잔류물에 EtOAc를 넣어 희석시키고 포화 탄산수소나트륨 수용액과물, 1N 염산으로 씻어주었다. 남은 유기용액을 MgSO4로 건조하고 감압 농축한 후 잔류물을 칼럼 크로마토그래피(용리액: EtOAc:Hex = 1/2)로 정제하여 표제 화합물(1.58 g, 93.9 %)을 수득하였다.

258 MS[M+H] = 520(M+1)

259> 단계 B: (2R)-2-아미노-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-아세틸옥시프로피오닐) 아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 TFA 염

안계 A에서 수득한 (2R)-2-(BOC-아미노)-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-아세틸 옥시프로피오닐)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드를 DCM(7 mℓ)에 녹이고 TFA(7 mℓ)를 적가하였다. 반응물을 상은에서 1시간 교반한 후 감압 농축하여 표제 화합물을 수득하고 더 이상의 정제 없이 다음 반응에 사용하였다.

MS[M+1] = 420(M+1)

- ⁽²⁶²⁾ 단계 C: (2R)-2-아미노-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-하이드록시프로피오닐) 아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 TFA 염
- 단계 B에서 수득한 (2R)-2-아미노-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-아세틸옥시프로피오닐)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 TFA 염(592 mg, 1.00 mmol)을 메탄을 용액(MeOH/H₂O = 1/1, 10 ml)에 넣고 LiOH(70 mg, 2.00 mmol)를 적가한 후 반응용액을 상은에서 30분 동안 교반하였다. 반응이 종결 되면 감압하에 용매를 제거하고 잔류물을 NaHCO₃ 수용액으로 희석시킨 후 유기물을 EtOAc로 추출하였다. 유기용액을 MgSO₄로 건조하고 감압 농축한 후 잔류물을 HPLC로 정제하여 표제 화합물(495 mg, 90.0 %)을 수득하였다.
- MS[M+1] = 420(M+1)
- ^{265>} 단계 D: (2R)-2-아미노-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-하이드록시프로피오닐) 아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 HC1 염
- 266> 단계 C에서 수득한 (2R)-2-아미노-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-하이드록시프로피오닐)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 TFA 염을 메탄올에 녹인 후염산으로 치환된 이온 교환 수지를 통과시켜 표제 화합물을 수득하였다.
- MS[M+1] = 420(M+1)
- ^{268>} 실시예 2: (2R)-2-(아미노아세틸)아미노-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-하이 드록시프로피오닐)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 HCl 염
- ^{269>} 단계 A: (2R)-2-[(BOC-아미노)아세틸]아미노-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-아 세틸옥시프로피오닐)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드

- 270> 실시예 1의 단계 B에서 수득한 (2R)-2-아미노-N-{(3S)-3-[사이클로혝실((2R)-2-메틸-3-아세틸옥시프로피오닐)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드와 N-BOC-Gly을 실시예 1의 단계 A와 같은 방법으로 반응시켜 표제 화합물을 수득하였다.
- MS[M+H] = 635(M+1)
- 272> 단계 B: (2R)-2-(아미노아세틸)아미노-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-아세틸옥 시프로피오닐)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 TFA염
- 273> 단계 A에서 얻은 (2R)-2-[(BOC-아미노)아세틸]아미노-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-아세틸옥시프로피오닐)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드를 실시예 1의 단계 B와 같은 방법으로 반응시켜 표제 화합물을 수득하였다.
- MS[M+H] = 535(M+1)
- 275> 단계 C: (2R)-2-(아미노아세틸)아미노-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-하이드록 시프로피오닐)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 TFA 염
- 276> 단계 B에서 수득한 (2R)-2-(아미노아세틸)아미노-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-아세틸옥시프로피오닐)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드를 실시예 1의 단계 C와 같은 방법으로 반응시켜 표제 화합물을 수득하였다.
- MS[M+H] = 493(M+1)
- 278> 단계 D: (2R)-2-(아미노아세틸)아미노-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-하이드록 시프로피오닐)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 HC1 염

단계 C에서 수득한 (2R)-2-(아미노아세틸)아미노-N-{(3S)-3-[사이클로헥실((2R)-2-메틸 -3-하이드록시프로피오닐)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 TFA 염을 실시예 1의 단계 D와 같은 방법으로 반응시켜 표제 화합물을 수득하였다.

MS[M+H] = 493(M+1)

^{281>} 실시예 3: (2R)-2-(디메틸)아미노-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-하이드록시 프로피오닐)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 HCl 염

282> 단계 A: (2R)-2-(디메틸)아미노-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-아세틸옥시프로 피오닐)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드

실시예 1의 단계 B에서 수득한 (2R)-2-아미노-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-아세틸옥시프로피오닐)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 TFA 염(592 mg, 1.00 mmol)과 포르말린(0.72 ml, 10.0 mmol)을 DCE(3 ml)에 녹이고 NaBH(OAc)₃(460 mg, 2.00 mmol)를 천천히 적가한 후 반응물을 상온에서 4시간동안 교반하였다. NaHCO₃ 수용액을 반응물에 넣고 반응을 종결시킨 후 유기물을 DCM으로 추출하였다. 유기용액을 MgSO₄로 건조하고 여과한 후 감압 농축하고 잔류물을 칼럼 크로마토그래피(용리액: DCM/MeOH = 9/1)로 정제하여 표제화합물(512 mg, 90.0 %)을 수득하였다.

284 MS[M+H] = 563(M+1)

^{285>} 단계 B: (2R)-2-(디메틸)아미노-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-하이드록시프로 피오닐)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 TFA 염

286> 단계 A에서 수득한 (2R)-2-(디메틸)아미노-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-아세틸옥시프로피오닐)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 TFA 염을 실시예 1의 단계 C와 같이 반응시켜 표제 화합물을 수득하였다.

MS[M+H] = 521(M+1)

288> 단계 C: (2R)-2-(디메틸)아미노-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-하이드록시프로 피오닐)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 HCl 염

'289> 단계 B에서 수득한 (2R)-2-(디메틸)아미노-N-{(3S)-3-[사이클로헥실((2R)-2-메틸-3-하이드록시프로피오닐)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 TFA 염을 실시예 1의 단계 D와 같은 방법으로 반응시켜 표제 화합물을 수득하였다.

MS[M+H] = 521(M+1)

291> 실시예 4-58:

292> 제조예에서 합성된 피롤리딘, 피페리딘 유도체를 실시예 1 내지 3에서와 동일한 방법으로 반응시켜 하기 표에 서술된 실시예 화합물들을 수득하였다.

293>

:294>

시시세	R ¹	R ²	R ⁴	R⁵'	*	n	x	MS
실시예								[M+1]
	Н		c-헥실	C(Me) ₂ CH ₂ OH	S	1	1	464
	Н		c-헥실	C(Me) ₂ OH	S	1	1	436
6	Н	H	c-헥실	C(Me) ₂ (CH ₂) ₂ OH	S	1	1	478
7	Н	H	c-헥실	C(Me)(CH ₂ OH) ₂	S	1	1	466
8	Н	H	c-헥실	C(Me) ₂ CH ₂ OH	R	1	1	464
9	Н	Н	c-헥실	C(Me) ₂ CH ₂ OMe	S	1	1	464
10	Н	Н	c-헥실	C(Me) ₂ CH ₂ OBn	S	1	1	540
11	н	H	c-핵실	C(c-펜틸)CH ₂ OH	S	1	1	464
12	Н	Н	c-헥실	$C(Me)_2(CH_2)_3O-(2,4-diMe-Ph)$	S	1	1	582
13	Н	Н	c-헥실	C(Me)CH ₂ OAc	s	1	1	478
14	Н	Н	c-헥실	C(c-프로필)CH₂OH	S	1	1	436
15	Н	H	c-헥실	아미노프로필	s	1	2	450
16	Н	Н	c-헥실	아미노에틸	S	1	2	436
17	Н	H	c-헥실	아미노부틸	S	1	2	464
18	Н	Н	c-헥실	3-하이드록시페닐	S	1	1	470
19	Н	H	c-헥실	4-하이드록시페닐	S	1	1	470
20	н	Н	c-헥실	2-(CH ₂ OH)-1-(c-펜텐)-1-일	S	1	1	474
21	Н	Н	c-핵실	2-(CH ₂ OH)-1-(c-헥센)-1-일	S	1	1	488
22	Н	Н	c-헥실	1-Nos-피페리딘-4-일	S	1	1	646
23	н .	Н	c-핵실	피페리딘-4-일	S	1	2	461
24	Ме	Ме	c-핵실	C(Me)2CH2OH	S	1	1	487
25	Ме	Ме	c-핵실	C(Me)(CH ₂ OH) ₂	S	1	1	494
26	Ме	Me	c-핵실	C(Me)(-CH ₂ OC(=0)OCH ₂ -)	S	1	1	520
27	Et	Et	c-헥실	C(Me)2CH2OH	S	1	1	506
28	iPr	Н	c-헥실	C(Me)₂CH₂OH	s	1	1	492
29	-(CH ₂) ₅ -		c-헥실	C(Me)2CH2OH	S	1	1	518
30	하이드록시피발 로일	Н	c-헥실	C(Me) ₂ CH ₂ OH	s	1	0	550
31	이미다졸-2-일	Н	c-헥실	C(Me) ₂ CH ₂ OH	S	1	2	530
32	이미다졸-4-일	Н	c-헥실	C(Me) ₂ CH ₂ OH	S	1	2	530
33	이소부티릴	Н	c-헥실	C(Me) ₂ CH ₂ OH	S	1	0	520
34	Gly	Н	c-헥실	C(Me)2CH2OH	S	1	1	507
35	아미노부티릴	Н	c-헥실	C(Me)₂CH₂OH	S	1	1	535

<295>

200	(No.) N. Clea	Н	ু সাম	C(V-) CH OH	S	1	1	535
36	(Me) ₂ N-Gly	Н	c-헥실	C(Me) ₂ CH ₂ OH	3			
37	하이드록시부터 릴	Н	c-헥실	C(Me)₂CH₂OH	S	1	0	536
38	프로피오닐	H	c-헥실	C(Me) ₂ CH ₂ OH	S	1	0	506
39	피롤리딘-3-일	H	c-헥실	C(Me) ₂ CH ₂ OH	S	1	2	519
40	(S)Pyd-2-CH ₂ -	H	c-헥실	C(Me)2CH2OH	S	1	2	533
41	메톡시아세틸	Н	c-헥실	C(Me) ₂ CH ₂ OH	S	1	0	522
42	DTic	Н	c-헥실	C(Me) ₂ CH ₂ OH	S	1	1	609
43	아미노에틸	Н	c-헥실	C(Me) ₂ CH ₂ OH	S	1	2	493
44	(Me)N-에틸	Н	c-헥실	C(Me)2CH2OH	S	1	2	507
45	Pyd-2-CH ₂ -	Н	c-헥실	2-(CH ₂ OH)-1-(c-펜텐)-1-일	S	1	2	557
46	Н	Н	2,3-diF-페닐	C(Me)2CH2OH	S	1	1	480
47	Н	Н	3,5-DiMe-페닐	C(Me)2CH2OH	R,S	1	1	472
48	Н	Н	2,3-diF-페닐	C(Me)2CH2OH	R,S	1	1	480
49	Н	Н	4-Me-페닐	C(Me) ₂ CH ₂ OH	R,S	1	1	458
50	Н	Н	페닐	C(Me)2CH2OH	R,S	1	1	444
51	Н	Н	2-아다만틸	C(Me) ₂	S	1	1	472
52	н	Н	c-헥실	C(Me)2CH2OH	S	2	1	464
53	Н	Н	c-헥실	C(Me)2CH2OH	S	2		
54	н	Н	c-헥실	2-(CH ₂ OH)-1-(c-펜텐)-1-일	S	2	1	488
55	Н	Н	c-헥실	2-(CH ₂ OH)-1-(c-헥센)-1-일	S	2	1	502
56	Н	Н	2,3-diF-페닐	C(Me)2CH2OH	S	2	1	493
57	(R)Pyd-2-CH ₂ -	Н	2,3-diF-페닐	C(Me)2CH2OH	S	2	2	576
58	(R)Pyd-2-CH ₂ -	Н	c-헥실	C(Me)2CH2OH	S	2	2	546

^{296>} 실시예 59: (2R)-2-[이소프로필(메틸)]아미노-N-{(3S)-3-[사이클로헥실(하이드록시피발 로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 HC1 염

:297> 단계 A:

(2R)-2-[이소프로필(메틸)]아미노-N-{(3S)-3-[사이클로헥실(하이드록시피발로일)아미노]피롤리 딘-1-일}-3-(4-클로로페닐)프로피온아미드 TFA 염

298> 실시예 28에서 얻은 (2R)-2-(이소프로필)아미노-N-{(3S)-3-[사이클로헥실(하이드록시피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 TFA 염을 실시예 3의 단계 A와같은 방법으로 반응시키고 HPLC로 정제하여 표제 화합물을 수득하였다.

MS[M+1] = 492(M+H)

300> 단계 B: (2R)-2-[이소프로필(메틸)]아미노-N-{(3S)-3-[사이클로헥실(하이드록시피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 HCl 염

301> 단계 A에서 수득한 (2R)-2-[이소프로필(메틸)]아미노-N-{(3S)-3-[사이클로헥실(하이드록 시피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 TFA 염을 실시예 1의 단계 D와 같은 방법으로 반응시켜 표제 화합물을 수득하였다.

MS[M+1] = 492(M+H)

303> 실시예 60: (2R)-2-[(2-하이드록시-2-옥소)에틸]아미노-N-{(3S)-3-[사이클로헥실(하이 드록시피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 HC1 염

304> 단계 A: (2R)-2-[(2-하이드록시-2-옥소)에틸]아미노-N-{(3S)-3-[사이클로헥실(아세틸옥 시피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 TFA 염

실시예 4의 합성과정에서 수득한 (2R)-2-아미노-N-{(3S)-3-[사이클로헥실(아세틸옥시피 발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드(492 mg, 1.00 mmol)를 아세토 니트릴(5 ㎡)에 녹이고 DIEA(0.435 ㎡, 2.50 mmol)를 적가한 다음 메틸브로모아세테이트(0.085 ㎡, 1.00 mmol)를 천천히 첨가하였다. 반응 용액을 60℃에서 4시간 교반한 후 용매를 감압 하 에 제거하고 잔류물을 수용액에 희석 시키고 유기물을 EtOAc로 추출하였다. 유기용액을 1N HCl

로 씻어준 다음 MgSO₄로 건조하고 감압 농축하여 표제 화합물을 수득하고 정제 없이 다음 반응 에 사용하였다.

MS[M+H] = 564(M+1)

307> 단계 B: (2R)-2-[(2-하이드록시-2-옥소)에틸]아미노-N-{(3S)-3-[사이클로헥실(하이드록 시피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 TFA 염.

308> 단계 A에서 수득한

(2R)-2-[(2-하이드록시-2-옥소)에틸]아미노-N-{(3S)-3-[사이클로헥실(아세틸옥시피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 TFA 염을 실시예 1의 단계 C와 같은 방법으로 반응시켜 표제 화합물을 수득하였다.

MS[M+H] = 508(M+1)

310> 단계 C: (2R)-2-[(2-하이드록시-2-옥소)에틸]아미노-N-{(3S)-3-[사이클로헥실(하이드록·시피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 HCl 역

311> 단계 B에서 수득한

(2R)-2-[(2-하이드록시-2-옥소)에틸]아미노-N-{(3S)-3-[사이클로헥실(하이드록시피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 TFA 염을 실시예 1의 단계 D와 같은 방법으로 반응시켜 표제 화합물을 수득하였다.

MS[M+H] = 508(M+1)

313> 실시예 61: (2R)-2-[디(하이드록시아세틸)] 아미노-N-{(3S)-3-[사이클로헥실(하이드록시파발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 HCI 역

- (2R)-2-아미노-N-{(3S)-3-[사이클로헥실(아세틸옥시피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드를 실시예 60과 동일한 방법으로 반응시켜 표제 화합물을 수득하였다.
- (315) MS[M+H] = 566(M+1)
- ③16> 실시예 62: (2R)-2-아미노-N-{(3S)-3-[사이클로헥실(아미노부틸카바모일)아미노]피롤리 딘-1-일}-3-(4-클로로페닐)프로피온아미드 2HC1 염
- <317> 단계 A: (2R)-2-아미노-N-{(3S)-3-[사이클로헥실(아미노부틸카바모일)아미노]피롤리딘 -1-일}-3-(4-클로로페닐)프로피온아미드 2TFA 염
- 지조예 68에서 얻은 (2R)-2-(N-BOC)아미노-N-{(3S)-3-[사이클로헥실((N-BOC)아미노부틸 카바모일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드를 실시예 1의 단계 B와 같이 반응시켜 표제 화합물을 수득하였다.
- 4319 MS[M+H] = 549(M+1)
- 당계 A에서 얻은 (2R)-2-아미노-N-{(3S)-3-[사이클로헥실(아미노부틸카바모일)아미노]피롤리딘-1-일)-3-(4-클로로페닐)프로피온아미드 2TFA 염을 실시예 1의 단계 D와 같은 방법으로 반응시켜 표제 화합물을 수득하였다.
- 322 MS[M+H] = 549(M+1)

'323> 실시예 63-123:

324> 제조예 1 과 10 에서 합성된 피롤리딘 또는 피페리딘 유도체를 실시예 62 또는 실시예 3 에서와 동일한 방법으로 반응시켜 하기 표에 서술된 실시예 화합물들을 수득하였다.

:325>

:326>

실시예	R ¹	R ⁴	R ⁵	*	n	х	MS[M+1]
63	Н	c-헥실	아미노프로필아미노	S	1	2	450
64	Н	c-헥실	아미노에틸아미노	S	1	2	436
65	Н	c-헥실	하이드록시에틸아미노	S	1	1	437
66	Н	c-헥실	메톡시에틸아미노	S	1	1	451
67	Н	c-헥실	(3S)-3-(OH)-Pyd-1-일	S	1	1	463
68	Н	c-헥실	(2S)-2-(HOCH ₂)-Pyd-1-일	S	1	1	477
69	Н	c-헥실	N[(CH ₂) ₂ OH] ₂	S	1	1	495

<327>

70	н	c-헥실	N[(CH ₂) ₃ OH] ₂	S	1	1	523
71	Н	c-헥실	N(Me)(CH ₂) ₂ OH		2	1	465
72	Н	c-헥실	N(Et)(CH ₂) ₂ OH		2	1	479
73	Н	c-헥실	N(Et)(CH ₂) ₃ OH		2	1	493
74	Н	c~헥실	N(Et)(CH ₂) ₂ F		2	1	481
75	Н	c헥실	N(Et)(CH ₂) ₃ F		2	1	495
76	Н	c-헥실	N(n-Pr)(CH ₂) ₂ OH		2	1	493
77	Н	c-헥실	N(c-Pr)(CH ₂) ₂ OH		2	1	491
78	Н	c-헥실	N(i-Pr)(CH ₂) ₂ OH		2	1	493
79	Н	c-헥실	N[(CH ₂) ₂ OMe](CH ₂) ₂ OH		2	1	509
80	Н	c-헥실	N[(CH ₂) ₂ F](CH ₂) ₂ OH		2	1	497
81	Н	c-헥실	N(Me)(CH ₂) ₂ OMe		2	1	479
82	Н	c-헥실	N(H)(CH ₂) ₂ OMe		2	1	465
83	Н	c-헥실	N(Et)(CH ₂) ₂ OMe		2	1	493
84	Н	c-헥실	N[(CH ₂) ₂ OMe] ₂		2	1	523
85	Н	c-헥실	N(Me) ₂		2	1	435
86	Н	c-헥실	N(Et) ₂		2	1	463
87	Н	c-헥실	N(Me)OMe		2	1	451
88	Н	c-헥실	N(Me)(하이드록시피발로일)		2	1	493
89	Н	c-헥실 ·	N[(CH ₂) ₂ OMe][(CH ₂) ₂ F]		2	1	511
90	Н	c-헥실	(3S)-3-(OH)-Pyd-1-일		2	1	477
91	Н	c-헥실	(3R)-3-(OH)-Pyd-1-일		2	1	477
92	Н	c-헥실	(2R)-2-(HOCH ₂)-Pyd-1-일		2	1	491
93	Н	c-헥실	(2S)-2-(HOCH ₂)-Pyd-1-일		2	1	491
94	Н	c-헥실	(3R)-3-아미노-Pyd-1-일		2	1	476
95	Н	c-헥실	(3S)-3-아미노-Pyd-1-일		2	1	476
96	Н	c-핵실	(3R)-3-(OH)-Pid-1-일		2	1	491
97	Н	c-헥실	(3S)-3-(OH)-Pid-1-일		2	1	491
98	Н	c-헥실	4-(아)-Pid-1-일		2	1	491
99	Н	c-헥실	4-아미노-Pid-1-일		2	1	490
100	(R)Pyd-2-CH ₂	c-헥실	N(n-Pr)(CH ₂) ₂ OH		2	2	576
101	(R)Pyd-2-CH ₂	c-헥실	N[(CH ₂) ₂ OH] ₂		2	2	578
102	·(R)Pyd-2-CH ₂	c-헥실	N(Me)OMe		2	2	534
103	(R)Pyd-2-CH ₂	c-헥실	N(Me)(하이드록시피발릴)		2	2	562
			- A				

:328>

104	(R)Pyd-2-CH ₂	c-헥실	N(Et)(CH ₂) ₂ OH	2	2	576
105	(R)Pyd-2-CH ₂	c-헥실	N[(CH ₂) ₂ OMe] ₂	2	2	620
106	(R)Pyd-2-CH ₂	c-헥실	N(c-Pr)(CH ₂) ₂ OH	2	2	588
107	(R)Pyd-2-CH ₂	c~헥실	(3S)-3-(OH)-Pyd-1-일	2	2	560
108	(R)Pyd-2-CH ₂	c-헥실	(2R)-2-(HOCH₂)-Pyd-1-일	2	2	574
109	(R)Pyd-2-CH ₂	c-헥실	4-(OH)-Pid-1-일	2	2	574
110	(R)Pyd-2-CH ₂	c-헥실	(3R)-3-(0H)-Pid-1-일	2	2	574
111	(S)Pyd-3-yl	c-헥실	N[Et] ₂	2	2	532
112	(S)Pyd-3-yl	c-헥실	N(Me)(CH ₂) ₂ OH	2	2	548
113	NH ₂ -(CH ₂) ₂ -	c-헥실	N[(CH ₂) ₂ OH] ₂	2	2	552
114	(Me)N-(CH ₂) ₂ -	c-헥실	N[(CH ₂) ₂ OH] ₂	2	2	566
115	(iPr)N-(CH ₂) ₂ -	c-헥실	N(Et)(CH ₂) ₂ OH	2	2	564
116	Mor-ethyl	c-헥실	N(c-Pr)(CH ₂) ₂ OH	2	2	604
117	Mor-ethyl	c-핵실	N(Et)(CH ₂) ₂ OH	2	2	592
118	Mor-ethyl	c-헥실	N[(CH ₂) ₂ OMe] ₂	2	2	636
119	Н	2,3-diF-페닐	N(Me)(CH ₂) ₂ OH	2	1	495
120	Н	2,3-diF-페닐	N(Me)(CH ₂) ₂ OMe	2	1	495
121	(R)Pyd-2-CH ₂	2,3-diF-페닐	N(Me)(CH ₂) ₂ OH	2	2	578
123	(R)Pyd-2-CH ₂	2,3-diF-페닐	N(Me)(CH ₂) ₂ OMe	2	2	592

329> 실시예 124:

(2R)-2-(메틸)아미노-N-{(3S)-3-[사이클로헥실(하이드록시피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 2HC1 염

330> 단계 A: (2R)-2-(2-니트로벤젠설포닐)아디노-3-(4-클로로페닐)프로피온산 메틸에스테르 331> p-클로로페닐알라닌 메틸에스테르를 제조예 60의 단계 C와 같은 방법으로 반응시켜 표제화합물을 수득하였다.

332> MS[M+H] = 399(M+1)

333> 단계 B: (2R)-2-[(2-니트로벤젠설포닐)메틸]아미노-3-(4-클로로페닐)프로피온산 메틸에 스테르

당계 A에서 수득한 (2R)-2-(2-니트로벤젠설포닐)아미노-3-(4-클로로페닐)프로피온산 메틸에스테르(1 g, 2.51 mmol)를 DMF(10 ml)에 녹이고 K₂CO₃(678 mg, 5.00 mmol)를 적가한 다음 메틸요오다이드(427 mg, 3.01 mmol)를 천천히 첨가하였다. 반응 용액을 상온에서 12시간 교반한 후 용매를 감압 하에 제거하고 잔류물을 수용액에 희석시키고 유기물을 EtOAc로 추출하였다. 유기용액을 1N HCl로 씻어준 다음 MgSO₄로 건조하고 감압 농축한 후 잔류물을 칼럼 크로마토그래피(용리액: EtOAc:Hex = 1/2)로 정제하여 표제 화합물(932 mg, 90.0 %)을 수득하였다.

MS[M+H] = 413(M+1)

336> 단계 C: (2R)-2-[(2-니트로벤젠설포닐)메틸]아미노-3-(4-클로로페닐)프로피온산

337> 단계 B에서 수득한 (2R)-2-[(2-니트로벤젠설포닐)메틸]아미노-3-(4-클로로페닐)프로피온 산 메틸에스테르를 실시예 1의 단계 C와 같이 반응시켜 표제 화합물을 수득하였다.

MS[M+H] = 399(M+1)

339> 단계 D: (2R)-2-[(2-니트로벤젠설포닐)메틸]아미노-N-{(3S)-3-[사이클로헥실(아세틸옥시 피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드

작가 전계 C에서 수득한 (2R)-2-[(2-니트로벤젠설포닐)메틸]아미노-3-(4-클로로페닐)프로피온 산과 제조예 26에서 수득한 (3S)-3-[사이클로헥실(아세틸옥시피발로일)아미노]피롤리딘을 실시 예 2의 단계 A와 같은 방법으로 반응시켜 표제 화합물을 수득하였다.

MS[M+H] = 521(M+1)

- 342> 단계 E: (2R)-2-(메틸)아미노-N-{(3S)-3-[사이클로헥실(아세틸옥시피발로일)아미노]피롤 리딘-1-일}-3-(4-클로로페닐)프로피온아미드
- 단계 D에서 수득한 (2R)-2-[(2-니트로벤젠설포닐)메틸]아미노-N-{(3S)-3-[사이클로헥실(아세틸옥시피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드(691 mg, 1.00 mmol)를 DMF(5 ml)에 녹이고 K₂CO₃(270 mg, 2.00 mmol)와 머캅토벤젠(0.154 ml, 1.5 mmol)을 넣고 2시간동안 상온에서 교반하였다. 용매를 감압 하에 제거하고 잔류물을 수용액에 희석한다음 유기물을 EtOAc로 추출하였다. 유기용액을 1N HC1로 씻어준 다음 MgSO₄로 건조하고 감압 농축하여 표제 화합물을 수득하였고 추가의 정제 없이 다음 반응에 사용하였다.
- 344 MS[M+H] = 506(M+1)
- 345> 단계 F: (2R)-2-(메틸)아미노-N-{(3S)-3-[사이클로헥실(하이드록시피발로일)아미노]피롤 리딘-1-일}-3-(4-클로로페닐)프로피온아미드 2TFA 염
- 346> 단계 E에서 수득한 (2R)-2-(메틸)아미노-N-{(3S)-3-[사이클로헥실(아세틸옥시피발로일) 아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드를 실시예 1의 단계 C와 같은 방법으로 반응시켜 표제 화합물을 수득하였다.
- MS[M+H] = 464(M+1)
- 348> 단계 G: (2R)-2-(메틸)아미노-N-{(3S)-3-[사이클로헥실(하이드록시피발로일)아미노]피롤 리딘-1-일}-3-(4-클로로페닐)프로피온아미드 2HCl 염
- 349> 단계 F에서 수득한 (2R)-2-(메틸)아미노-N-{(3S)-3-[사이클로헥실(하이드록시피발로일) 아미노]피톨리딘-1-일}-3-(4-클로로페닐)프로피온아미드 2TFA 염을 실시예 1의 단계 D와 같은 방법으로 반응시켜 표제 화합물을 수득하였다.

350 MS[M+H] = 464(M+1)

- 351> 실시예 125: (2R)-2-[(디메틸아미노)에틸]아미노-N-{(3S)-3-[사이클로헥실(하이드록시 피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 2HC1 염
- 352> 단계 A: (2R)-2-(2-니트로벤젠설포닐)아미노-N-{(3S)-3-[사이클로헥실(아세틸옥시피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드
- 353> 실시예 4를 합성하는 과정에서 수득한 (2R)-2-아미노-N-{(3S)-3-[사이클로헥실(아세틸옥시피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드와 2-니트로벤젠설포닐클로라이드를 실시예 124의 단계 A와 동일한 방법으로 반응시켜 표제 화합물을 수득하였다.
- 354 MS[M+H] = 677(M+1)
- 355> 단계 B: (2R)-2-[디메틸아미노에틸(2-니트로벤젠설포닐)]아미노-N-{(3S)-3-[사이클로헥실(아세틸옥시피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)
- 356> 프로피온아미드.
- 357> 단계 A에서 수득한 (2R)-2-(2-니트로벤젠설포닐)아미노-N-{(3S)-3-[사이클로헥실(아세틸옥시피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드와 디메틸아미노에틸클로라이드를 실시예 124의 단계 B와 같은 방법으로 반응시켜 표제 화합물을 수득하였다.
- MS[M+H] = 748(M+1)
- 359> 단계 C:
 - (2R)-2-[디메틸아미노에틸]아미노-N-{(3S)-3-[사이클로헥실(아세틸옥시피발로일)아미노]피롤리 딘-1-일}-3-(4-클로로페닐)프로피온아미드

360> 단계 B에서 수득한 (2R)-2-[디메틸아미노에틸(2-니트로벤젠설포닐)]아미노-N-{(3S)-3-[사이클로헥실(아세틸옥시피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드를 실시예 124의 단계 E와 동일한 방법으로 반응시켜 표제 화합물을 수득하였다.

 361 MS[M+H] = 565(M+1)

362> 단계 D: (2R)-2-[디메틸아미노에틸]아미노-N-{(3S)-3-[사이클로헥실(하이드록시피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 2TFA 염

363> 단계 C에서 수득한 (2R)-2-[디메틸아미노에틸]아미노-N-{(3S)-3-[사이클로헥실(아세틸옥시피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드를 실시예 1의 단계 C와 동일한 방법으로 반응시켜 표제 화합물을 수득하였다.

MS[M+H] = 521(M+1)

:365> 다계 E:

(2R)-2-[디메틸아미노에틸]아미노-N-{(3S)-3-[사이클로헥실(하이드록시피발로일)아미노]피롤리 딘-1-일}-3-(4-클로로페닐)프로피온아미드 2HCI 염

단계 D에서 수득한 (2R)-2-[디메틸아미노에틸]아미노-N-{(3S)-3-[사이클로헥실(하이드록시피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 2TFA 염을 실시예 1의 단계 D와 동일한 방법으로 반응시켜 표제 화합물을 수득하였다.

MS[M+H] = 521(M+1)

368> 실시예 126-170:

369> 제조예에서 합성된 피롤리딘 또는 피페리딘 유도체를 실시예 124 또는 실시예 125 에서 와 동일한 방법으로 반응시켜 하기 표에 서술된 실시예 화합물들을 수득하였다.

:370>

:371>

실시예	R^1	R ⁴	R ⁵ '	*	n	х	MS[M+1]
126	Ме	c-헥실	C(Me)(CH ₂ OH) ₂	S	1	1	480
127	Me	c-핵실	C(Me)2CH2OMe	S	1	1	478
128	Ме	c-헥실	C(Me)2CH2OMOM	S	1	1	508
129	이소펜틸	c-헥실	C(Me)₂CH2OH	S	1	1	520
130	MeO-(CH ₂) ₂ -	c-헥실	C(Me) ₂ CH ₂ OH	S	1	1	508
131	하이드록시에틸	c-헥실	C(Me)2CH2OH	S	1	1	494
132	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	C(Me)(CH ₂ OH) ₂	S	1	2	537
133	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	C(Me) ₂ CH ₂ N(Me) ₂	S	1	3	548
134	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	C(Me) ₂ CH ₂ OMe	S	1	2	535
135	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	C(Me) ₂ CH ₂ OMOM	S	1	2	565
136	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	C(Me) ₂ CH ₂ OBn	S	1	2	611
137	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	C(Me) ₂ CH ₂ O(i-Bu)	S	1	2	577

<372>

							
138	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	C(Me)2CH2OPh	S	1	2	597
139	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	C(Me) ₂ CH ₂ SPh	S	1	2	613
140	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	C(Me)2CH2OCOPh	S	1	2	625
141	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	C(Me) ₂ CH ₂ OCO(c-Hex)	S	1	2	631
142	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	C(Me) ₂ CH ₂ OCOBn	s	1	2	639
143	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	C(Me)2CH2OCOBu	s	1	2	605
144	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	C(Me) ₂ CH ₂ OCO(i-Pr)	S	1	2	591
145	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	C(Me) ₂ CH ₂ OCO(2,5diF-Ph)	S	1	2	661
146	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	C(Me) ₂ OAc	S	1	2	563
147	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	2-(HOCH ₂)-1-(c-펜텐)-1-일	S	1	2	545
148	(Me) ₂ N-(CH ₂) ₂ -	c-헥실 ·	(3S)-3-(OH)-Pyd-1-일	S	1	2	534
149	(Me) ₂ N-(CH ₂) ₂ -	2,3-diF-Ph	C(Me) ₂ CH ₂ OH	S	1	2	566
150	(Me) ₂ N-(CH ₂) ₂ -	2,3-diF-Ph	N(Me) ₂	S	1	2	580
151	(Me) ₂ N-(CH ₂) ₂ -	c-핵실	N(Me)OMe		2	2	522
152	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	N(Et)(CH ₂) ₂ F		2	2	552
153	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	N(Et)(CH ₂) ₃ F		2	2	566
154	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	N(Et)(CH ₂) ₃ OH		2	2	564
155	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	N(Et)(CH ₂) ₂ OH		2	2	550
156	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	N(n-Pr)(CH ₂) ₂ OH		2	2	564
157	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	N(i-Pr)(CH ₂) ₂ OH		2	2	564
158	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	N[(CH ₂) ₂ OH] ₂		2	2	566
159	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	N[(CH ₂) ₂ OMe] ₂		2	2	594
160	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	(2R)-2-(HOCH ₂)-Pyd-1-일		2	2	562
161	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	4-아미노-Pid-1-일		2	2	561
162	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	N(Me)(CH ₂) ₂ OH		2	2	536
163	(Me) ₂ N-(CH ₂) ₂ -	c-헥실	N(Me)(CH ₂) ₂ OMe		2	2	550
164	(Et) ₂ N-(CH ₂) ₂ -	c-헥실	N(i-Pr)(CH ₂) ₂ OH		2	2	592
165	(Et) ₂ N-(CH ₂) ₂ -	c-헥실	N(Et)(CH ₂) ₂ OH		2	2	578
166	1-pyd-(CH ₂) ₂ -	c-헥실	N(Et)(CH ₂) ₂ F		2	2	578
167	1-pyd-(CH ₂) ₂ -	c-헥실	N(Et)(CH ₂) ₃ F		2	2	592
168	(R)-3-OBn-1-Pyd-(CH ₂) ₂ -	c-헥실	N(Et)(CH ₂) ₃ F		2	1	698
169	(R)-3-OBn-1-Pyd-(CH ₂) ₂ -	c-헥실	N(Et)(CH ₂) ₂ OH		2	1	682
170	(i-Pr)(Me)N-(CH ₂) ₂ -	c-헥실	N(Et)(CH ₂) ₃ F		2	20	594

- (373> 실시예 171: (2R)-2-[(디메틸아미노)에틸]아미노-N-{(3S)-3-[사이클로헥실((2-포밀)이 소부티릴)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 2HC1 염
- (374) 단계 A: (2R)-2-[(디메틸아미노)에틸]아미노-N-{(3S)-3-[사이클로헥실((2-포밀)이소부티릴)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 2TFA 염
- 실시예 125에서 수득한 (2R)-2-[(디메틸아미노)에틸]아미노-N-{(3S)-3-[사이클로헥실(하이드록시피발로일)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 2HCl 염(521 mg, 1 mmol)을 DCM(5 ml)에 녹이고 데스마틴 시약(4M in THF, 0.5 ml)을 첨가하였다. 반응이 종결되면 Na₂S₂O₃ 수용액을 적가하여 반응용액이 맑아질 때 NaHCO₃ 수용액을 첨가하였다. 유기물을 EtOAc로 추출해내고 MgSO₄로 건조한 후 감압 하에 농축하고 prep HPLC로 정제하여 표제화합물(610 mg, 85.1%)을 수득하였다.
- 376 MS[M+H] = 519(M+1)
- 377> 단계 B: (2R)-2-[(디메틸아미노)에틸]아미노-N-{(3S)-3-[사이클로헥실((2-포밀)이소부티 릴)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 2HCl 염
- 단계 A에서 수득한 (2R)-2-[(디메틸아미노)에틸]아미노-N-{(3S)-3-[사이클로헥실((2-포밀)이소부티릴)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 2TFA 염을 실시예 1의
 단계 D와 동일한 방법으로 반응시켜 표제 화합물을 수득하였다.
- 379 MS[M+H] = 519(M+1)
- 380> 실시예 172: (2R)-2-[(디메틸아미노)에틸]아미노-N-{(3S)-3-[사이클로헥실((2-메톡시이미노)이소부티릴)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 HC1 염

381> 단계 A: (2R)-2-[(디메틸아미노)에틸]아미노-N-{(3S)-3-[사이클로헥실((2-메톡시이미노)이소부티릴)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 TFA 염

실시예 171에서 수득한 (2R)-2-[(디메틸아미노)에틸]아미노-N-((3S)-3-[사이클로헥실 ((2-포밀)이소부티릴)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 2HCl 염(704 mg, 1.00 mmol)을 피리딘(5 ml)에 녹이고 메톡시아민 염산염(167 mg, 2.00 mmol)을 첨가하였다. 반응이 종결되면 감압 하에 용매를 제거하고 포화 NaHCO3 수용액을 넣고 유기물을 EtOAc로 추출하였다. MgSO4로 건조한 후 감압 하에 농축한 다음 prep HPLC로 정제하여 표제 화합물(500 mg, 91.2 %)을 수득하였다.

MS[M+H] = 617(M+1)

384> 단계 B: (2R)-2-[(디메틸아미노)에틸]아미노-N-{(3S)-3-[사이클로헥실((2-메톡시이미노)이소부티릴)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 HC1 염

 단계 A에서 수득한 (2R)-2-[(디메틸아미노)에틸]아미노-N-{(3S)-3-[사이클로헥실((2-메 톡시이미노)이소부티릴)아미노]피롤리딘-1-일}-3-(4-클로로페닐)프로피온아미드 TFA 염을 실시
 예 1의 단계 D와 동일한 방법으로 반응시켜 표제 화합물을 수득하였다.

386 MS[M+H] = 617(M+1)

【발명의 효과】

^{387>} 본 발명의 화합물은 하기 설명하는 A, B, 및 C의 방법에 따라 멜라노코틴 수용체(MCR)의 활성에 대한 항진능력(agonistic activity)과 MCR에 대한 결합능력을 측정하여 그 생리 활성 정도를 평가하였다.

^{388>} A. 루시퍼라제(Luciferase) 발현도 측정

389> 본 발명에 따른 화합물의 MCR 항진제로서의 활성을 측정하는 방법 중의 하나로서 세포내 cAMP 함량의 증가에 비례하는 표지 유전자(예, 루시퍼라제)의 발현양을 측정하였다.

먼저 각 서브타입(subtype)의 MCR 유전자와 CRE(cAMP Response Element) 조절하의 루시 390> 퍼라제 유전자(CRE-LUC)를 동시에 발현시키는 영구 발현 HEK(Human Embryonic Kidney) 세포주 (HEK MC1R-Luc, MC3R-Luc, MC4R-Luc, 또는 MC5R-Luc)들을 구축하였다. 상기 세포주들을 6% CO₂가 존재하는 37℃ 항온배양기에서 선택 배지(10% 열-불활성화된 소 태자 혈청(Gibco/BRL), 100unit/ml 페니실린(Gibco/BRL), 100unit/ml 스트렙토마이신(Gibco/BRL) 및 200μg/ml 제네티 신(G418)(Gibco/BRL)을 함유한 DMEM(Dulbecco's Modified Eagles Medium)을 사용하여 배양하였 다. 직경 100mm 배양접시에 세포가 전체면적의 70% 정도가 되었을 때 10ml의 Ca⁺⁺와 Mg⁺⁺이 함 유되지 않은 인산완충액(Phosphate Buffered Saline; PBS)으로 1회 세척한 다음, 0.05% 트립신 과 0.53mM EDTA를 함유한 PBS 용액 3ml를 가하였다. 상기 트립신/EDTA 용액을 제거하고 37℃ 항온 배양기에서 1분간 배양한 뒤 10㎖의 선택배지에 다시 현탁시키고 1500rpm에서 5분간 원심 분리하였다. 상층액을 제거한 뒤 침전된 세포들을 5㎖의 페놀레드(Phenol Red)가 함유되지 않 은 선택배지로 다시 현탁시켰다. 상기 세포현탁액을 96-웰 발광측정기(Luminometer)용 세포 배양 판(Costar)의 각 웰에 100世의 배양액에 5X10⁴ 세포가 되도록 첨가한 뒤 6% CO₂가 존재하 는 37℃ 항온 배양기에서 18시간 동안 배양하였다. 상기 배양액을 사용하여 각 단계별 농도로 회석시킨 MCR 항진제(실시예 화합물)를 최종 DMSO 농도가 1%를 넘지 않게 처리한 다음 6% CO2 가 존재하는 37℃ 항온 배양기에서 5시간 동안 배양하였다. 각 웰에 50此의 Bright-Glo 루시 퍼라제 시약(Promega)을 처리한 다음 15분간 상온에 방치한 뒤 발광측정기(Luminometer,

Victor)를 사용하여 각 웰의 발광 정도(Luminescence)를 측정하였다. 각 단계별 농도로 희석된 항진제에 의해 유도되는 Luminescence양은 10 μ M의 NDP-MSH 처리에 의해 나타나는 양에 대한 상대적인 % 값으로 환산하였다. EC50는 각 항진제에 의해 유도될 수 있는 최대 Luminescence양의 50%를 유도시키는 농도로 표시하였고 이 측정치는 통계 소프트웨어 (Prizm)를 사용하여 측정하였다.

:391> B. cAMP 측정

- 392> 본 발명에 따른 화합물의 MCR 항진제로서의 활성을 측정하는 또 다른 방법으로서 세포내 cAMP 함량의 증가를 측정하였다.
- 면저 상기 각 서브타입의 MCR 유전자를 발현시키는 영구 발현 HEK(Human Embryonic Kidney) 세포주(HEK MC1R, MC3R, MC4R, 또는 MC5R)들을 24-웰 세포 배양 판(Costar)의 각 웰당 1㎡의 배양액에 2X10⁵ 세포가 되도록 첨가한 뒤 6% CO₂가 존재하는 37℃ 항온 배양기에서 24시간 동안 배양하였다. 각 웰의 배지를 제거하고 0.5㎡의 차가운 DMEM으로 1회 세척해 주었다. 500 μ M IBMX(이소부틸메틸잔틴)를 함유한 DMEM 200ℓℓ 를 사용하여 단계별 농도로 희석시킨 MCR 항진제(실시예 화합물)를 최종 DMSO 농도가 1%를 넘지 않게 처리한 다음 6% CO₂가 존재하는 37℃ 항은 배양기에서 30분 동안 배양하였다. 각 세포 내 cAMP의 함량은 아머샴(Amersham) cAMP 측정 키트(TRK432)를 사용하여 측정하였다.
- 394> 좀 더 상세하게 서술하면, 각 웰에 14.4세의 6M PCA(60%)를 가하고 10분 동안 얼음에 방 치한 다음 200세씩을 취하여 미세원심분리튜브로 옮겼다. 여기에 11세의 5M KOH/1M 트리스를 가하여 중화시킨 뒤 12,000rpm으로 1분간 원심분리하였

다. 상층액 50μl를 취한 후 50μl의 ³H로 표지된 cAMP(0.9pmol, 0.025 μCi)를 가하고 100μl의 흡착 단백질(binding protein)을 첨가해 준 다음 5초간 흔들어 주었다. 2시간 동안 얼음에 방치한 후 100μl의 활성탄(charcoal)을 가하고 4℃에서 12,000rpm으로 3분간 원심분리하였다. 상층액 200μl를 취한 후 신틸레이션(scintillation) 바이알에 넣고 5ml의 신틸런트 (scintillant)를 가한 다음 방사능을 측정하였다.

395> 각 단계별 농도로 희석된 항진제에 의해 유도되는 cAMP의 양은 10μM의 NDP-MSH 처리에 의해 나타나는 양에 대한 상대적인 % 값으로 환산하였다. EC50은 각 항진제에 의해 유도될 수 있는 최대 cAMP양의 50%를 유도시키는 농도로 표시하였고 이 측정치는 통계 소프트웨어 (Prizm)를 사용하여 측정하였다.

396> C. 수용체 결합 시험

:397>

상기 각 서브타입의 MCR 유전자를 발현시키는 영구 발현 HEK(Human Embryonic Kidney)
세포주(HEK MC1R, MC3R, MC4R, 또는 MC5R)들을 96-웰 세포 배양 판(Costar)의 각 웰당 100ℓℓ의
배양액에 1X10⁵ 세포가 되도록 첨가한 뒤 6% CO₂가 존재하는 37℃ 항은 배양기에서 48시간 동
안 배양하였다. 각 웰의 배지를 제거하고 150ℓℓ의 차가운 흡착 완충액(binding buffer; 50mM
HEPES와 1% BSA를 함유한 DMEM)으로 1회 세척해 주었다. 0.1nM의 ¹²⁵I-NDP-MSH(NEN NEX352)와
단계별 농도로 희석시킨 MCR 항진제(실시예 화합물)를 함유한 100ℓℓ의 흡착 완충액을 가한 후
실온에서 2시간동안 방치하였다. 배지 제거 후 200ℓℓ의 차가운 흡착 완충액으로 1회 세척해
준 다음 150ℓℓℓ의 0.2N NaOH를 가하고 실온에서 15분 동안 방치하였다. 각 웰에 담긴 용액을 5
πℓ 시험관으로 옮긴 뒤 감마선 측정기(Wallac)로 방사능을 측정하였다.

398> 0.1nM의 ¹²⁵I-NDP-MSH만 첨가했을 때의 총 결합 양에서 5μM NDP-MSH 존재하에서의 0.1nM ¹²⁵I-NDP-MSH의 비특이적 결합 양을 제외한 값을 ¹²⁵I-NDP-MSH의 특이결합 양으로 사용하였다. 각 단계별 농도로 희석된 항진제에 의해 상기 ¹²⁵I-NDP-MSH의 특이결합이 저해되는 정도를 측 정하였다. IC50는 50%의 ¹²⁵I-NDP-MSH 특이결합을 저해하는 각 항진제의 농도로 표시하였고 이 측정치는 통계 소프트웨어(Prizm)를 사용하여 측정하였다.

399> 이상 설명한 방법에 따라 측정한 결과, 본 발명의 실시예 화합물은 각 MCR 에 대한 항진 효능 및 결합 효과를 나타내는 것으로 확인되었다. 이들은 특히 MC4R에 대해 우수한 항진 효능과 결합 효과를 보였으며 0.005 μM 내지 10 μM 의 EC50값과 0.01 μM 내지 50 μM 의 IC50 값을 나타내었다. 구체적으로 예를 들면, 실시예 화합물 1, 2 및 3은 MC4R에 대해 0.05 μM 내지 0.5 μM의 우수한 EC50 값과 0.1 μM 내지 0.5 μM의 우수한 IC50 값을 나타내었다.

400> 또한, 본 발명의 화합물은 하기 설명하는 D, E, F, G, H, 및 I의 방법에 따라 동물에서 의 효능을 평가할 수 있다.

401> D. 절식동물모델에서의 사료섭취억제효과시험

402> 멜라노코틴 수용체 효능제의 식욕억제 효과는 절식마우스 모델에서 사료섭취억제효과를 측정하여 평가하였다. 시험동물은 수컷 ddY 마우스를 이용하며 케이지당 한마리씩 수용하였다. 시험전날, 기초 일일사료섭취량을 토대로 군당 7~10 마리씩 군분리하고 사료를 제거하여 절식시켰다. 절식은 시험물질투여 전 20시간이며, 이 기간동안 물은 자유섭취시켰다. 시험당일 아

407>

출력 일자: 2004/10/14

침 각 동물에 매체 또는 시험물질용액을 존데를 이용하여 위내투여하고, 1시간 경과 후 사료를 공급하였다. 사료공급후 1시간동안 섭취한 사료량을 측정하였다. 매체 투여군에서의 사료섭취량과 비교하여 사료섭취량에 미치는 시험물질의 영향을 평가하였다.

:403> E. 야간사료섭취 억제효과시험

'404' 야행성인 설치류에서의 야간사료섭취억제효과는 수컷 ICR 마우스에서 시험하였다. 동물은 케이지당 한마리씩 사육하며 기초 일일사료섭취량을 토대로 군당 7-10마리씩 군분리하였다. 시험당일 야간기(夜間期) 시작 1시간 전 사료를 제거하고, 매체 또는 시험물질 용액을 존데를 사용하여 위내투여하였다. 소등 직후 사료를 공급하고 2시간째의 사료섭취량을 측정하였다.

⁴⁰⁵ F. ob/ob 비만 마우스에서의 체중감소효과시험

비만동물모델에서의 시험물질의 사료섭취억제 및 체중감소 효과는 8주령 수컷 ob/ob 마우스를 이용하여 평가하였다. 동물은 케이지당 한마리씩 사육하며 기초 일일사료섭취량을 토대로 군분리하였다. 매체 또는 시험물질 용액은 존데를 통하여 각 동물에 위내투여하며, 처치는일일 일회 14일간 실시하였다. 사료섭취량과 체중은 매일 측정하며, 피하지방과 복강내 지방의 무게는 마지막 투약 후 부검하여 측정하였다. 혈중 당, 인슐린, 중성지질과 콜레스테롤, 간내 중성지질 함유량 등은 부검 직전 취한 혈액에서 정량하였다. UCP3 mRNA와 UCP1 mRNA의 발현율은 부검시 적출한 장딴지근과 Brown fat pad에서 각각 측정하였다.

G. 고지질사료야기 비만마우스에서의 체중감소효과시험

:409>

출력 일자: 2004/10/14

408> 사람에서의 비만과 가장 유사한 특징을 보이는 고지질사료야기 비만마우스를 이용하여 시험물질의 사료섭취억제 및 체중감소 효과를 평가하였다. 실험동물은 4주령 C57BL/6 마우스에 60%kcal fat 사료를 8주 이상 공급하여 비만을 야기시켰다. 고지질사료야기 비만마우스는 케이지당 한마리씩 수용하며 기초 일일사료섭취량을 토대로 군분리하였다. 매체 또는 시험물질용액은 존대를 통하여 각 동물에 위내투여하며, 처치는 일일 일회 14일간 실시하였다. 사료섭취량과 체중은 매일 측정하였다. 혈중 당, 인슐린, 랩틴, 중성지질과 콜레스테롤, 간내 중성지질 함유량 등은 부검 직전 취한 혈액에서 정량하였다. UCP3 mRNA와 UCP1 mRNA의 발현율은 부검시 적출한 장딴지근과 Brown fat pad에서 각각 측정하였다.

H. 급성염증모델에서의 항염증효과시험

[411] I. 발기야기효과(Erectile effects)

시험물질의 발기야기효과는 수컷 SD 랫도에서의 발기 횟수를 측정하여 평가하였다. 각 동물은 관찰 상자 위에 놓인 2 리터 비이커에 한마리씩 넣어 관찰하며 시험시작 30분전부터 적 응시켰다. 비이커에 적응한지 30분 후 매체 또는 시험물질 용액을 투여하였다. 투여 30분 후부터 1시간동안 하품, 기지개, 몸치장, 발기의 횟수를 측정하였다. 발기여부는 시험동물의 자세 (hip constriction, hip thrust, tiptoe posture)로 판단하였다.

이상 설명한 방법에 따라 측정한 결과, 본 발명의 실시예 화합물들은 MCR 에 대한 사료 섭취와 체중감소는 물론 염증효과와 발기야기 효과를 나타내는 것으로 확인 되었다. 구체적으로 예를 들면, 절식야기 사료섭취억제효능 시험에서 실시예 화합물 1, 2 및 3을 10 내지 30 mg/kg 용량으로 경구 투여시 매체 대조군의 절식후 사료공급 1시간 사료섭취에 비하여 용량 상관적으로 20 내지 50%의 섭취 억제율을 보였으며, 야간사료섭취 억제효과시험에서는 동물의 정상적인 사료섭취를 억제하는 실시예 화합물들은 화합물의 체내흡수 및 약물지속시간에 따라, 야간주기 이후 수시간 동안 매체 대조군의 사료섭취에 비하여 용량 상관적으로 20 내지 40%의 억제율을 보였다. ob/ob 비만 마우스에서의 체중감소효과시험에서는, MC4R에 작용하여 사료섭취억제효과를 보이는 실시예 화합물들을 ob/ob 마우스에서 2-3주 경구 반복투여하여 체중감소효과가 있는 경우, 용량 상관적 체중감소, 혈당감소, 간내 중성지질함유량의 감소, 복강내 지방 및 피하지방감소 등을 야기시켰다. 또한, 고지질사료야기 비만마우스에서의 체중감소 효과시험의 경우, MC4R에 작용하여 사료섭취 억제효과를 보이는 실시예 화합물들을 고지질사료야기 비만마우스에서 2 내지 3주 경구 반복투여하여 체중감소 효과가 있는 경우, 용량 상관적 체중

감소, 혈당감소, 간내 중성지질 함유량의 감소, 복강내 지방 및 피하지방감소 등을 야기시켰다.

대생 급성염증모델에서의 항염증효과시험에서는 급성염증모델에서 유효한 항염증효과를 보이는 경우 매체 대조군에 비하여 다형핵 중성구의 수를 용량 상관적으로 15~60% 감소시켰으며, 발기야기효과를 보이는 시험물질의 경우 1시간의 관찰기간동안 매체 대조군에 비하여 3~12배의 발기 횟수를 보였다.

【특허청구범위】

【청구항 1】

하기 화학식 1의 화합물, 약제학적으로 허용되는 그의 염, 수화물, 용매화물 및 이성체: [화학식 1]

$$R^{1}$$
 N
 N
 R^{3}
 N
 N
 R^{4}

상기 식에서

n은 1 또는 2를 나타내고,

R ¹은 수소,

C₁-C₁₀-알킬,

C 1-C10-알킬카보닐,

C₁-C₁₀-알킬설포닐,

 $-(CH_2)_p-R^6$,

 $-(\mathrm{CH_2})_p$ – $\mathrm{CO-R^6}$,

 $-(CH_2)_p-SO_2-R^6$,

 $-(CH_2)_p$ -혜테로사이클,

-(CH₂)_D-헤테로아릴,

 $-CO-(CH_2)_p-R^6$,

-CO-(CH₂)_p-헤테로사이클,

-CO-(CH $_2$) $_p$ -헤테로아릴, 또는

-CO-(CH₂)_p-C₃-C₈-사이클로알킬을 나타내며,

여기서

p은 0, 1, 2, 또는 3을 나타내고,

R 6 은 아미노 및 하이드록시로 구성된 그룹으로부터 선택된 치환체에 의해 치환되거나 비치환된 C_1 - C_6 -알킬을 나타내거나, 아미노, C_1 - C_6 -알킬아미노, 디(C_1 - C_6 -알킬)아미노, C_1 - C_6 -알킬카보닐아미노, C_1 - C_6 -알킬성포닐아미노, C_1 - C_6 -알콕시, 또는 하이드록시를 나타내며,

 $-(CH_2)_p$ - 그룹에서 수소원자는 아미노, C_1 - C_6 -알킬, 이미다졸릴메틸, 또는 벤질에 의해 대체될 수 있고,

헤테로사이클 또는 헤테로아릴은 할로겐, 아미노, C_1 - C_6 -알킬, 하이드록시, C_1 - C_8 -알콕시, C_1 - C_6 -알킬카보닐, 및 옥소로 구성된 그룹으로부터 선택된 치환체에 의해 일치환 또는 다치환되거나 비치환되며,

사이클로알킬은 아미노에 의해 치환되거나 비치환되고,

R²는 수소,

C₁-C₈-알킬,

C3-C7-사이클로알킬, 또는

-CO-(CH₂)_p-R⁶를 나타내거나,

 \mathbb{R}^1 및 \mathbb{R}^2 는 함께 $-(CH_2)_q$ 를 나타내며, 여기에서 q 는 4, 5, 또는 6을 나타내고,

R ³는 수소,

C₁-C₆-알킬,

카바모일- C_1 - C_4 -알킬,

-(CH₂)_p-C₃-C₇-사이클로알킬,

-(CH₂)_p-C₆-C₁₀-아릴,

-(CH₂)_p-헤테로아릴, 또는

-(CH₂)_p-헤테로사이클을 나타내며,

여기서

아릴 또는 헤테로아릴은 할로겐, 하이드록시, C_1 - C_4 -알킬, C_1 - C_4 -알콕시, 아미노, C_1 - C_4 -알킬 아미노, 및 디 $(C_1$ - C_4 -알킬)아미노로 구성된 그룹으로부터 선택된 치환체에 의해 일치환 또는 다치환되거나 비치환되고,

알킬, 사이클로알킬, 또는 헤테로사이클은 할로겐, 하이드록시, C_1 - C_4 -알킬, C_1 - C_4 -알콕시, 아미노, C_1 - C_4 -알킬아미노, 디(C_1 - C_4 -알킬)아미노, 및 옥소로 구성된 그룹으로부터 선택된 치환체에 의해 일치환 또는 다치환되거나 비치환되며,

R 4는 수소,

C₁-C₈-알킬,

-(CH₂)_p-C₃-C₈-사이클로알킬,

-(CH₂)_p-C₆-C₁₀-아릴,

 $-(CH_2)_p$ -헤테로아릴, 또는

-(CH₂)_p-헤테로사이클을 나타내며,

여기서

아릴 또는 헤테로아릴은 할로겐, 하이드록시, C_1 - C_4 -알킬, C_1 - C_4 -알콕시, 아미노, C_1 - C_4 -알킬 아미노, 및 디 $(C_1$ - C_4 -알킬)아미노로 구성된 그룹으로부터 선택된 치환체에 의해 일치환 또는 다치환되거나 비치환되고,

사이클로알킬 또는 헤테로사이클은 할로겐, 하이드록시, C_1 - C_4 -알킬, C_1 - C_4 -알콕시, 아미노, C_1 - C_4 -알킬아미노, 디 $(C_1$ - C_4 -알킬)아미노, 및 옥소로 구성된 그룹으로부터 선택된 치환체에 의해 일치환 또는 다치환되거나 비치환되며,

R⁵는 -C(0)-R⁵' 를 나타내고,

여기에서

 R^{5} '는 하이드록시, 포르밀, 아미노, 디 $(C_1-C_8-알킬)$ 아미노, $C_1-C_8-알콕시$,

C₁-C₈-알콕시알콕시, C₁-C₈-알킬카보닐옥시, C₃-C₈-사이클로알킬카보닐옥시, C₂-C₈-알카노일옥시, C₁-C₈-알콕시이미노, 아르-C₁-C₈-알킬옥시, 아르-C₁-C₈-알킬카보닐옥시, 아릴옥시, 아릴디오, 할로겐에 의해 치환되거나 비치환된 아릴카보닐옥시, 및 디(C₁-C₈-알킬)아릴옥시로 구성된 그룹중에서 선택된 치환체에 의해 일치환 또는 다치환되거나 비치환된 C₁-C₈-알킬을 나타내거나,

하이드록시에 의해 치환된 아릴을 나타내거나,

니트로아릴설포널, 옥소, 하이드록시, C_1 - C_8 -알킬, 및 하이드록시- C_1 - C_8 -알킬로 구성된 그룹 중에서 선택된 치환체에 의해 일치환 또는 다치환되거나 비치환된 헤테로사이클을 나타내거나, 하이드록시, 할로겐, C_1 - C_8 -알콕시, 또는 아미노에 의해 치환되거나 비치환된 C_1 - C_8 -알킬에 의해, 또는 C_1 - C_8 -알콕시, C_3 - C_7 -사이클로알킬 또는 아미노- C_1 - C_8 -알킬카보닐에 의해 일 또는

이치환되거나 비치환된 아미노를 나타내거나,

하이드록시-C₁-C₈-알킬에 의해 치환되거나 비치환된 C₃-C₇-사이클로알케닐을 나타낸다.

【청구항 2】

제1항에 있어서, R¹이 수소, C₁-C₁0-알킬, -(CH₂)p-R6, -(CH₂)p-CO-R6, -(CH₂)p-헤테로사이클, -CO-(CH₂)p-R6, -CO-(CH₂)p-헤테로사이클, -CO-(CH₂)p-헤테로아릴, 또는 -CO-(CH₂)p-C₃-C₃-C₂-사이클로알킬을 나타내는 화학식 1의 화합물, 약제학적으로 허용되는 그의염, 수화물, 용매화물 및 이성체.

【청구항 3】

제2항에 있어서, R¹이 수소, 메틸, -(CH₂)₂-R⁶, -CH₂-CO-R⁶, -(CH₂)₂-헤테로사이클, -CO-CH₂-R⁶, -CO-CH₂-헤테로사이클, 또는 -CO-CH₂-헤테로아릴을 나타내는 화학식 1의 화합물, 약제학적으로 허용되는 그의 염, 수화물, 용매화물 및 이성체,

【청구항 4】

제1항에 있어서, R²가 수소 또는 C₁-C₆-알킬을 나타내는 화학식 1의 화합물, 약제학적으로 허용되는 그의 염, 수화물, 용매화물 및 이성체.

【청구항 5】

제1항에 있어서, R³가 각각 할로겐, 하이드록시, 및 C₁-C₄-알킬로 구성된 그룹으로부터 선택된 치환체에 의해 일치환 내지 삼치환되거나 비치환된 -CH₂-사이클로헥실, -CH₂-페닐, 또 는 -CH₂-인돌을 나타내는 화학식 1의 화합물, 약제학적으로 허용되는 그의 염, 수화물, 용매화 물 및 이성체.

【청구항 6】

제5항에 있어서, R^3 가 각각 할로겐, 하이드록시, 및 C_1 - C_4 -알킬로 구성된 그룹으로부터 선택된 치환체에 의해 일치환 내지 삼치환되거나 비치환된 - CH_2 -페닐을 나타내는 화학식 1의 화합물, 약제학적으로 허용되는 그의 염, 수화물, 용매화물 및 이성체.

【청구항 7】

제1항에 있어서, R⁴가 C₁-C₈-알킬을 나타내거나, 각각 할로겐, 하이드록시, C₁-C₄-알킬, C₁-C₄-알콕시, 아미노, C₁-C ₄-알킬아미노, 및 디(C₁-C₄-알킬)아미노로 구성된 그룹으로부터 선택된 치환체에 의해 일치환 내지 삼치환되거나 비치환된 C₃-C₈-사이클로알킬, 페닐, 혜테로아릴, 또는 헤테로사이클을 나타내는 화학식 1의 화합물, 약제학적으로 허용되는 그의 염, 수화물, 용매화물 및 이성체.

【청구항 8】

제7항에 있어서, R⁴가 각각 할로겐, C₁-C₄-알킬, 및 C₁-C₄-알콕시로 구성된 그룹으로부터 선택된 치환체에 의해 일치환 내지 삼치환되거나 비치환된 C₃-C₈-사이클로알킬 또는 페닐을 나타내는 화학식 1의 화합물, 약제학적으로 허용되는 그의 염, 수화물, 용매화물 및 이성체.

【청구항 9】

제8항에 있어서, R⁴가 메틸에 의해 일치환 내지 삼치환되거나 비치환된 사이클로헥실 또는 사이클로헵틸을 나타내거나, 할로겐 및 메톡시로 구성된 그룹으로부터 선택된 치환체에 의해 일치환 내지 삼치환되거나 비치환된 페닐을 나타내는 화학식 1의 화합물, 약제학적으로 허용되는 그의 염, 수화물, 용매화물 및 이성체.

【청구항 10】

약제학적으로 허용되는 담체와 함께 유효성분으로서 제1항에 정의된 화학식 1의 화합물, 약제학적으로 허용되는 그의 염, 수화물, 용매화물 또는 이성체를 함유함을 특징으로 하는 멜 라노코틴 수용체의 기능항진제 조성물.

【청구항 11】

제10항에 있어서, 비만의 예방 및 치료용 조성물.

【청구항 12】

제10항에 있어서, 당뇨의 예방 및 치료용 조성물.

【청구항 13】

제10항에 있어서, 염증의 예방 및 치료용 조성물.

【청구항 14】

제10항에 있어서, 발기부전증의 예방 및 치료용 조성물.