Verifying Array Manipulating Programs by Tiling

Supratik Chakraborty¹, Ashutosh Gupta¹, Divyesh Unadkat^{1,2}

Indian Institute of Technology Bombay¹
TCS Research²

Static Analysis Symposium (SAS), 2017

```
void foo(int A[], int N) {
 for (int i = 0; i < N; i++) {
    if(!(i==0 || i==N-1)) {
      if (A[i] < 5) {
        A[i+1] = A[i] + 1;
        A[i] = A[i-1];
   } else {
     A[i] = 5;
  assert(for k in 0..N-1, A[k] >= 5);
```

```
void foo(int A[], int N) {
 for (int i = 0; i < N; i++) {
    if(!(i==0 || i==N-1)) {
      if (A[i] < 5) {
        A[i+1] = A[i] + 1;
        A[i] = A[i-1]:
   } else {
      A[i] = 5:
  assert(for k in 0..N-1, A[k] >= 5);
```

Goal

- Programs manipulating arrays of parametric size in loops
- Multiple indices updated and/or accessed
- Prove quantified post-conditions over arrays

```
void foo(int A[], int N) {
 for (int i = 0; i < N; i++) {
    if(!(i==0 || i==N-1)) {
      if (A[i] < 5) {
        A[i+1] = A[i] + 1;
        A[i] = A[i-1]:
   } else {
      A[i] = 5:
  assert(for k in 0..N-1, A[k] >= 5);
```

Goal

- Programs manipulating arrays of parametric size in loops
- Multiple indices updated and/or accessed
- Prove quantified post-conditions over arrays

Classical Hoare logic-based method

- Needs a quantified loop invariant
- Difficult to compute precisely

```
void foo(int A[], int N) {
 for (int i = 0; i < N; i++) {
    if(!(i==0 || i==N-1)) {
      if (A[i] < 5) {
        A[i+1] = A[i] + 1;
        A[i] = A[i-1]:
   } else {
      A[i] = 5:
  assert(for k in 0..N-1, A[k] >= 5);
```

Necessary loop invariant:

$$\forall j. (0 \leq j < i) \implies (A[j] \geq 5)$$

Goal

- Programs manipulating arrays of parametric size in loops
- Multiple indices updated and/or accessed
- Prove quantified post-conditions over arrays

Classical Hoare logic-based method

- Needs a quantified loop invariant
- Difficult to compute precisely

Verifying Candidate Invariants to prove Post-condition

- Check validity of $\{\forall k.\phi(x) \land B\}$ L_{body}(x,x') $\{\forall k.\phi(x')\}$
- $\exists x, x'. \forall k. \phi(x) \land B \land Enc(\mathsf{L}_{body}(x, x')) \land \exists k. \neg \phi(x')$ must be unsat
- Check validity of $\forall k.\phi(x) \land \neg B \implies \forall k.\psi(x)$
- Both checks are hard as they involve a quantifier alternation

Verifying Candidate Invariants to prove Post-condition

- Check validity of $\{\forall k.\phi(x) \land B\}$ L_{body}(x,x') $\{\forall k.\phi(x')\}$
- $\exists x, x'. \forall k. \phi(x) \land B \land Enc(\mathsf{L}_{body}(x, x')) \land \exists k. \neg \phi(x')$ must be unsat
- Check validity of $\forall k.\phi(x) \land \neg B \implies \forall k.\psi(x)$
- Both checks are hard as they involve a quantifier alternation

Efficient verification tools available

- Bounded model checkers such as CBMC, Corral
 - Support rich program constructs
 - Do not support quantified reasoning

Verifying Candidate Invariants to prove Post-condition

- Check validity of $\{\forall k.\phi(x) \land B\}$ L_{body}(x,x') $\{\forall k.\phi(x')\}$
- $\exists x, x'. \forall k. \phi(x) \land B \land Enc(\mathsf{L}_{body}(x, x')) \land \exists k. \neg \phi(x')$ must be unsat
- Check validity of $\forall k.\phi(x) \land \neg B \implies \forall k.\psi(x)$
- Both checks are hard as they involve a quantifier alternation

Efficient verification tools available

- Bounded model checkers such as CBMC, Corral
 - Support rich program constructs
 - Do not support quantified reasoning
- SMT solvers such as Z3, CVC4, Yices
 - Support quantified reasoning
 - ► Can prove small quantified formulas with one or two of alternations
 - Scalability a concern; on-going research

```
void foo(int A[], int N) {
 for (int i = 0; i < N; i++) {
    if(!(i==0 || i==N-1)) {
      if (A[i] < 5) {
        A[i+1] = A[i] + 1;
       A[i] = A[i-1];
    } else {
      A[i] = 5;
  assert(for k in 0..N-1, A[k] >= 5);
```

```
void foo(int A[], int N) {
  for (int i = 0; i < N; i++) {
    if(!(i==0 || i==N-1)) {
      if (A[i] < 5) {
        A[i+1] = A[i] + 1;
        A[i] = A[i-1];
    } else {
      A[i] = 5;
  }
  assert(for k in 0..N-1, A[k] >= 5);
            Initial array
                            6 7 — Loop Counter
 0
                       5
      1
               3
                        5
                            6
                                     Indices
 0
 5
      9
                   9
                            8
                                      Cell Contents
           \neg \forall k.a[k] \geq 5
```

```
void foo(int A[], int N) {
  for (int i = 0; i < N; i++) {
    if(!(i==0 || i==N-1)) {
      if (A[i] < 5) {
         A[i+1] = A[i] + 1;
        A[i] = A[i-1]:
    } else {
      A[i] = 5:
  }
  assert(for k in 0..N-1, A[k] >= 5);
}
             Initial array
 0
                3
                     4
                         5
                              6
                                   7
 0
                3
                         5
                              6
 5
      9
                              8
           \neg \forall k.a[k] \geq 5
```

```
void foo(int A[], int N) {
                                                           3
                                                                     5
  for (int i = 0; i < N; i++) {
    if(!(i==0 || i==N-1)) {
                                                           3
                                                                     5
      if (A[i] < 5) {
                                             5
                                                  9
                                                                2
         A[i+1] = A[i] + 1;
        A[i] = A[i-1]:
    } else {
                                                  1
                                                      2
                                                           3
                                                                     5
      A[i] = 5;
                                                      2
                                                           3
                                                                     5
                                             0
                                             5
                                                  9
                                                                     3
  assert(for k in 0..N-1, A[k] >= 5);
             Initial array
                                                           3
                                                                     5
 0
                3
                     4
                          5
                               6
                                                  1
                                                      2
                                                                4
                                   7
                                                           3
 0
           2
                3
                          5
                               6
                                             0
                                                      2
                                                                4
                                                                     5
                                             5
 5
      9
                               8
                                                  9
            \neg \forall k.a[k] \geq 5
```

A Tile identifies the region of the array where the contribution of a generic loop iteration is localized

 $\mathsf{Tile} : \mathsf{LoopCounter} \times \mathsf{Indices} \to \{\mathsf{tt}, \mathsf{ff}\} \; \mathsf{for} \; \mathsf{loop} \; \mathsf{L}$

A Tile identifies the region of the array where the contribution of a generic loop iteration is localized

 $\mathsf{Tile} : \mathsf{LoopCounter} \times \mathsf{Indices} \to \{\mathsf{tt}, \mathsf{ff}\} \; \mathsf{for} \; \mathsf{loop} \; \mathsf{L}$

A Tile identifies the region of the array where the contribution of a generic loop iteration is localized

 $\mathsf{Tile} : \mathsf{LoopCounter} \times \mathsf{Indices} \to \{\mathsf{tt}, \mathsf{ff}\} \; \mathsf{for} \; \mathsf{loop} \; \mathsf{L}$

• Tile
$$(i,j) := i \le j \le i+1$$

A Tile identifies the region of the array where the contribution of a generic loop iteration is localized

Tile : LoopCounter \times Indices \rightarrow {tt, ff} for loop L

$\stackrel{\longleftrightarrow}{i}$							
5	9	7	7	7	3	8	1
0	1	2	3	4	5	6	7
0	1	2	3	4	5	6	7

• Tile $(i,j) := i \le j \le i+1$

A Tile identifies the region of the array where the contribution of a generic loop iteration is localized

Tile : LoopCounter \times Indices \rightarrow {tt, ff} for loop L

• Tile
$$(i,j) := i \le j \le i + 1$$

• Tile
$$(i, j) := j == i$$

Motivation for Tiling

Motivation for Tiling

Verification by Tiling

Verify quantified post-conditions over arrays of parametric size

- Programs contain complex array access expressions in loops
- Use candidate quantified invariants
- Use black box back-ends such as SMT solver and BMC's

Verification by Tiling

Verify quantified post-conditions over arrays of parametric size

- Programs contain complex array access expressions in loops
- Use candidate quantified invariants
- Use black box back-ends such as SMT solver and BMC's

Inductive Compositional Reasoning

- Infer array access patterns in loops
- Tile the set of indices using the inferred patterns
- Slice the assertion using the tile for a single iteration of the loop
 - Generates quantifier free hoare proof obligations for verification
- Compositionally prove universally quantified assertions on arrays
 - Composes verified quantifier free hoare proof obligations

Heuristic Tile Generation

```
void foo(int A[], int N) {
  int j;
 for (int i = 0; i < N; i++) {
    if(!(i==0 || i==N-1)) {
      if (A[i] < 5) {
        A[i+1] = A[i] + 1;
        A[i] = A[i-1]:
    } else {
      A[i] = 5:
    if(*) { j=i; }
    if(*) { j=i+1; }
  assert(for k in 0..N-1, A[k] >= 5);
```

Using array access patterns

- Store values of updated indices (say in j)
- Use arithmetic invariant generators to infer a relation between i and j
- Infer Tile $(i,j) := i \le j \le i+1$
- Remove overlapping indices Tile(i,j) := j == i

Syntactic Restrictions on Programs

```
\begin{array}{lll} \mathsf{PB} & ::= & \mathsf{St} \\ \mathsf{St} & ::= & \mathsf{v} := \mathsf{E} \mid A[\mathsf{E}] := \mathsf{E} \mid \mathsf{assume}(\mathsf{BoolE}) \mid \\ & & \mathsf{if}(\mathsf{BoolE}) \; \mathsf{then} \; \mathsf{St} \; \mathsf{else} \; \mathsf{St} \mid \\ & & \mathsf{for} \; (\ell := 0; \; \ell < \mathsf{E}; \; \ell := \ell + 1) \; \; \{\mathsf{St}\} \mid \\ & & \mathsf{St} \; ; \; \mathsf{St} \\ \mathsf{E} & ::= & \mathsf{E} \; \mathsf{op} \; \mathsf{E} \mid A[\mathsf{E}] \mid \mathsf{v} \mid \ell \mid \mathsf{c} \\ \mathsf{BoolE} & ::= & \mathsf{E} \; \mathsf{relop} \; \mathsf{E} \mid \; \mathsf{BoolE} \; \mathsf{AND} \; \mathsf{BoolE} \mid \\ & & \mathsf{NOT} \; \mathsf{BoolE} \mid \; \mathsf{BoolE} \; \mathsf{OR} \; \mathsf{BoolE} \end{array}
```

- No unstructured jumps
- Loop counter goes from 0 to some max value
- Assignment statements in body do not update loop counter

Formalization

- Notation
 - ► I denotes a sequence of array index variables
 - $ightharpoonup \mathcal{A}$ is a set of array variables
 - Inv is a (possibly weak) loop invariant for loop L

Formalization

- Notation
 - I denotes a sequence of array index variables
 - $ightharpoonup \mathcal{A}$ is a set of array variables
 - Inv is a (possibly weak) loop invariant for loop L
- Example Post-conditions/assertions
 - ▶ $\forall i$ between 0 and N, A[i] is greater equal to minimum
 - ▶ $\forall i$ if i is even & between 0 and N then A[i] = i

Formalization

- Notation
 - ► I denotes a sequence of array index variables
 - $ightharpoonup \mathcal{A}$ is a set of array variables
 - Inv is a (possibly weak) loop invariant for loop L
- Example Post-conditions/assertions
 - ▶ $\forall i$ between 0 and N, A[i] is greater equal to minimum
 - ▶ $\forall i$ if i is even & between 0 and N then A[i] = i
- Formalization of Post-conditions
 - ▶ Post $\triangleq \forall I (\Phi(I) \implies \Psi(A, I))$
 - ullet $\Phi(I)$ quantifier-free formula in theory of arithmetic over integers
 - $\Psi(A, I)$ quantifier-free formula in combined theory of arrays and arithmetic over integers

Proving Assertions using Tiles

If following conditions hold on the tile, we have proven the property

T1: Covers Range relevant to property

T2: Sliced post-condition holds inductively

T3: Non-interference across tiles

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
5 9 7 7 2 2 8 1

$$\overrightarrow{\text{Tile}(i,j)} := (j == i)$$

•
$$\eta_1 \equiv \forall j (\Phi(j) \Longrightarrow \exists i (\mathsf{Tile}(i,j)))$$

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
5 9 7 7 2 2 8 1

$$\overrightarrow{Tile}(i,j) := (j == i)$$

- $\eta_1 \equiv \forall j (\Phi(j) \Longrightarrow \exists i (\mathsf{Tile}(i,j)))$
- $\eta_2 \equiv \forall i, j (\mathsf{Tile}(i,j) \Longrightarrow \Phi(j))$

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
5 9 7 7 2 2 8 1

$$\overrightarrow{Tile}(i,j) := (j == i)$$

- $\eta_1 \equiv \forall j (\Phi(j) \Longrightarrow \exists i (\mathsf{Tile}(i,j)))$
- $\eta_2 \equiv \forall i, j (\mathsf{Tile}(i,j) \Longrightarrow \Phi(j))$
- Validity of $\eta_1 \wedge \eta_2$ ensures T1

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
5 9 7 7 2 2 8 1

$$\overrightarrow{Tile}(i,j) := (j == i)$$

- $\eta_1 \equiv \forall j (\Phi(j) \Longrightarrow \exists i (\mathsf{Tile}(i,j)))$
- $\eta_2 \equiv \forall i, j (\mathsf{Tile}(i,j) \Longrightarrow \Phi(j))$
- Validity of $\eta_1 \wedge \eta_2$ ensures T1
- Involves a quantifier alternation; can be handled by SMT solvers

• $\neg(\eta_1 \wedge \eta_2)$ must be unsat

- $\neg(\eta_1 \wedge \eta_2)$ must be unsat
- Negated smt formula is as shown below

```
(declare-fun size () Int)
(declare-fun i () Int)
(declare-fun j () Int)
(assert (or
    (and (>= j 0) (< j size)
        (forall ((i Int))
            (=> (and (>= i 0) (< i size)) (not (= j i)) )))
    (and (>= i 0) (< i size) (= j i)
        (not (and (>= j 0) (< j size))))))
(check-sat)
```

- $\neg(\eta_1 \wedge \eta_2)$ must be unsat
- Negated smt formula is as shown below

State-of-the-art solvers can prove unsatisfiability of such formulae

T1: Covers Range relevant to Property

Indices of interest must be covered by some tile

```
void foo(int A[], int N) {
  for (int i = 0; i < N; i++) {
    if(!(i==0 || i==N-1)) {
      if (i\%2==0 \&\& A[i] < 5) {
        A[i+2] = A[i] + 1;
        A[i] = A[i-2]:
    } else {
      A[i] = 5;
  assert(for k in 0..N-1 && k\frac{2}{2}=0, A[k]>=5);
```

T1: Covers Range relevant to Property

Indices of interest must be covered by some tile


```
void foo(int A[], int N) {
  for (int i = 0; i < N; i++) {
    if(!(i==0 || i==N-1)) {
      if (i\%2==0 \&\& A[i] < 5) {
        A[i+2] = A[i] + 1;
        A[i] = A[i-2]:
    } else {
      A[i] = 5;
  assert(for k in 0..N-1 && k\frac{2}{2}=0, A[k]>=5);
```

T1: Covers Range relevant to Property

Indices of interest must be covered by some tile


```
void foo(int A[], int N) {
  for (int i = 0; i < N; i++) {
    if(!(i==0 || i==N-1)) {
      if (i\%2==0 \&\& A[i] < 5) {
        A[i+2] = A[i] + 1;
        A[i] = A[i-2]:
    } else {
      A[i] = 5;
  assert(for k in 0..N-1 && k\frac{2}{2}=0, A[k]>=5);
```

- Tiles need not cover full-range of indices
- Non-compact tiles are allowed
- Tiles cover range relevant to the property

Post-condition wrt indices in the i^{th} tile holds inductively

Post-condition wrt indices in the ith tile holds inductively

• Sliced post-condition for the i^{th} tile $Post_i \triangleq \forall j \left(Tile(i,j) \land \Phi(j) \implies \Psi(A,j) \right)$

Post-condition wrt indices in the ith tile holds inductively

• Sliced post-condition for the i^{th} tile $Post_i \triangleq \forall j (Tile(i,j) \land \Phi(j) \implies \Psi(A,j))$

- Sliced post-condition for the i^{th} tile $Post_i \triangleq \forall j (Tile(i,j) \land \Phi(j) \implies \Psi(A,j))$
- $\{Inv \land \bigwedge_{i':0 \le i' < i} Post_{i'}\}\ L_{\mathrm{body}}\ \{Inv \land Post_i\}\ must\ be\ valid$

- Sliced post-condition for the i^{th} tile $Post_i \triangleq \forall j (Tile(i,j) \land \Phi(j) \implies \Psi(A,j))$
- $\{Inv \land \bigwedge_{i':0 \le i' < i} Post_{i'}\}\ L_{\mathrm{body}}\ \{Inv \land Post_i\}\ must\ be\ valid$
- Post_i and $\bigwedge_{i':0 \le i' < i} Post_{i'}$ are universally quantified formula

- Sliced post-condition for the i^{th} tile $Post_i \triangleq \forall j (Tile(i,j) \land \Phi(j) \implies \Psi(A,j))$
- $\{Inv \land \bigwedge_{i':0 \le i' < i} Post_{i'}\}\ L_{\mathrm{body}}\ \{Inv \land Post_i\}\ must\ be\ valid$
- Post_i and $\bigwedge_{i':0 \le i' < i} Post_{i'}$ are universally quantified formula
- Hoare logic-based reasoning tools that permit quantification have limited automation and scalability

Post-condition wrt indices in the i^{th} tile holds inductively

Post-condition wrt indices in the *i*th tile holds inductively

 \bullet $L_{\rm body}$ is a loop free fragment of the code

- ullet L_{body} is a loop free fragment of the code
- ullet $Rd_{\mathsf{L}}(i) = \{i, i-1\}$ Finite set of indices read in i^{th} iteration

- ullet L_{body} is a loop free fragment of the code
- $Rd_L(i) = \{i, i-1\}$ Finite set of indices read in i^{th} iteration
- $\zeta(i) := \bigwedge_{e_k \in Rd_L(i)} \left(\left((0 \le i' < i) \land \mathsf{Tile}(i', e_k) \land \Phi(e_k) \right) \Rightarrow \Psi(\mathsf{A}, e_k) \right)$

- ullet $L_{
 m body}$ is a loop free fragment of the code
- $Rd_L(i) = \{i, i-1\}$ Finite set of indices read in i^{th} iteration
- $\zeta(i) := \bigwedge_{e_k \in Rd_L(i)} \left(\left((0 \le i' < i) \land \mathsf{Tile}(i', e_k) \land \Phi(e_k) \right) \Rightarrow \Psi(\mathsf{A}, e_k) \right)$
- $\{\operatorname{Inv} \wedge \zeta(i) \wedge \operatorname{Tile}(i,j) \wedge \Phi(j)\} L_{\operatorname{body}} \{\operatorname{Inv} \wedge \Psi(A,j)\}$ must be valid

T2 -
$$\{Inv \land \bigwedge_{i':0 \le i' < i} Post_{i'}\}\ L_{body}\ \{Inv \land Post_i\}$$

T2 -
$$\{\operatorname{Inv} \wedge \bigwedge_{i':0 \le i' < i} \operatorname{Post}_{i'}\}\ \operatorname{L}_{\operatorname{body}}\ \{\operatorname{Inv} \wedge \operatorname{Post}_{i}\}$$

T2* -
$$\{\operatorname{Inv} \land \zeta(i) \land \operatorname{Tile}(i,j) \land \Phi(j)\} \mathsf{L}_{\operatorname{body}}\{\operatorname{Inv} \land \Psi(\mathsf{A},j)\}$$

T2 -
$$\{\operatorname{Inv} \wedge \bigwedge_{i':0 \leq i' < i} \operatorname{Post}_{i'}\} \ \mathsf{L}_{\operatorname{body}} \ \{\operatorname{Inv} \wedge \operatorname{Post}_{i}\}$$

T2* -
$$\{\operatorname{Inv} \land \zeta(i) \land \operatorname{Tile}(i,j) \land \Phi(j)\} L_{\operatorname{body}} \{\operatorname{Inv} \land \Psi(A,j)\}$$

- \star T2* \Rightarrow T2 and T2 \neq T2*
- ⋆ T2* is now a quantifier free formula and can be checked using bmc

Original Program

Transformed Program

Original Program

```
void foo(int A[], int N) {
  for (int i = 0; i < N; i++)
  {
    if(!(i==0 || i==N-1)) {
      if (A[i] < 5) {
        A[i+1] = A[i] + 1;
        A[i] = A[i-1];
    } else {
      A[i] = 5:
  assert(for k in 0..N-1, A[k] >= 5);
```

Transformed Program

```
i=*; j=*; jp=*;
assume(0 \le i \le N);
assume(j == i);
assume(jp == i-1);
assume(A[jp] >= 5);
if(!(i==0 || i==N-1)) {
  if (A[i] < 5) {
    A[i+1] = A[i] + 1;
    A[i] = A[i-1];
} else {
  A[i] = 5:
assert(A[i] >= 5);
```

Original Program

```
void foo(int A[], int N) {
  for (int i = 0; i < N; i++)
  {
    if(!(i==0 || i==N-1)) {
      if (A[i] < 5) {
        A[i+1] = A[i] + 1;
        A[i] = A[i-1];
    } else {
      A[i] = 5:
  assert(for k in 0..N-1, A[k] >= 5);
}
```

Transformed Program

```
i=*; j=*; jp=*;
assume(0 \le i \le N);
assume(j == i);
assume(jp == i-1);
assume(A[jp] >= 5);
if(!(i==0 || i==N-1)) {
  if (A[i] < 5) {
    A[i+1] = A[i] + 1;
    A[i] = A[i-1]:
} else {
  A[i] = 5:
assert(A[i] >= 5);
```

Use CBMC to ensure T2* by checking the loop free code

No iteration i > i' interferes with the truth of $Post_{i'}$, once established

• Sliced post-condition for the i'^{th} tile $\mathsf{Post}_{i'} \triangleq \forall j' \, (\mathsf{Tile}(i',j') \land \Phi(j') \implies \Psi(\mathsf{A},j'))$

- Sliced post-condition for the i'^{th} tile $\mathsf{Post}_{i'} \triangleq \forall j' (\mathsf{Tile}(i',j') \land \Phi(j') \implies \Psi(\mathsf{A},j'))$
- $\{Inv \land \bigwedge_{i':0 \le i' < i} Post_{i'}\} L_{\mathrm{body}} \{ \bigwedge_{i':0 \le i' < i} Post_{i'} \}$ must be valid

- Sliced post-condition for the i'^{th} tile $\mathsf{Post}_{i'} \triangleq \forall j' (\mathsf{Tile}(i',j') \land \Phi(j') \implies \Psi(\mathsf{A},j'))$
- $\{\operatorname{Inv} \wedge \bigwedge_{i':0 \leq i' < i} \operatorname{Post}_{i'}\} L_{\operatorname{body}} \{ \bigwedge_{i':0 \leq i' < i} \operatorname{Post}_{i'} \}$ must be valid
- ullet Post_i and $igwedge_{i':0 \leq i' < i}$ Post_{i'} are universally quantified formula

- Sliced post-condition for the i'^{th} tile $\mathsf{Post}_{i'} \triangleq \forall j' (\mathsf{Tile}(i',j') \land \Phi(j') \implies \Psi(\mathsf{A},j'))$
- $\{\operatorname{Inv} \wedge \bigwedge_{i':0 \leq i' < i} \operatorname{Post}_{i'}\} L_{\operatorname{body}} \{ \bigwedge_{i':0 \leq i' < i} \operatorname{Post}_{i'} \}$ must be valid
- Post_i and $\bigwedge_{i':0 \le i' < i} Post_{i'}$ are universally quantified formula
- Hoare logic-based reasoning tools that permit quantification have limited automation and scalability

T3 -
$$\{\operatorname{Inv} \wedge \bigwedge_{i':0 \le i' < i} \operatorname{Post}_{i'} \} L_{\operatorname{body}} \{ \bigwedge_{i':0 \le i' < i} \operatorname{Post}_{i'} \}$$

No iteration i > i' interferes with the truth of $Post_{i'}$, once established

T3 -
$$\{Inv \land \bigwedge_{i':0 \le i' < i} Post_{i'}\} L_{body} \{\bigwedge_{i':0 \le i' < i} Post_{i'}\}$$

T3* - {Inv
$$\land$$
 (0 \leq i' $<$ i) \land Tile(i' , j') \land $\Phi(j') \land \Psi(A, j')$ } L_{body} { $\Psi(A, j')$ }

i' and j' be free variables here

No iteration i > i' interferes with the truth of $Post_{i'}$, once established

T3 -
$$\{Inv \land \bigwedge_{i':0 \le i' < i} Post_{i'}\} L_{body} \{\bigwedge_{i':0 \le i' < i} Post_{i'}\}$$

T3* - {Inv
$$\land$$
 (0 \leq i' $<$ i) \land Tile(i' , j') \land $\Phi(j') \land \Psi(A, j')$ } L_{body} { $\Psi(A, j')$ }

i' and j' be free variables here

$$\star$$
 T3* \Rightarrow T3 and T3 \Rightarrow T3*

No iteration i > i' interferes with the truth of $Post_{i'}$, once established

T3 -
$$\{Inv \land \bigwedge_{i':0 \le i' < i} Post_{i'}\} L_{body} \{\bigwedge_{i':0 \le i' < i} Post_{i'}\}$$

T3* -
$$\{\operatorname{Inv} \wedge (0 \le i' < i) \wedge \operatorname{Tile}(i',j') \wedge \Phi(j') \wedge \Psi(A,j')\}\ L_{\operatorname{body}}\ \{\Psi(A,j')\}$$

i' and j' be free variables here

- \star T3* \Rightarrow T3 and T3 \Rightarrow T3*
- * T3* is now a quantifier free formula and can be checked using bmc

Original Program

Transformed Program

T3*: Non-interference(property) across Tiles

Original Program

```
void foo(int A[], int N) {
  for (int i = 0; i < N; i++)
  {
    if(!(i==0 || i==N-1)) {
      if (A[i] < 5) {
        A[i+1] = A[i] + 1;
        A[i] = A[i-1];
    } else {
      A[i] = 5:
  assert(for k in 0..N-1, A[k] >= 5);
```

Transformed Program

```
i=*; ip=*; jp=*;
assume(0 \le i \le N);
assume(0 \le ip \le i);
assume(jp == ip);
assume(A[jp] >= 5);
if(!(i==0 || i==N-1)) {
  if (A[i] < 5) {
    A[i+1] = A[i] + 1;
    A[i] = A[i-1];
} else {
  A[i] = 5;
}
assert(A[jp] >= 5);
```

T3*: Non-interference(property) across Tiles

Original Program

```
void foo(int A[], int N) {
  for (int i = 0; i < N; i++)
  {
    if(!(i==0 || i==N-1)) {
      if (A[i] < 5) {
        A[i+1] = A[i] + 1;
        A[i] = A[i-1];
    } else {
      A[i] = 5:
  assert(for k in 0..N-1, A[k] >= 5);
}
```

Transformed Program

```
i=*; ip=*; jp=*;
assume(0 \le i \le N);
assume(0 \le ip \le i);
assume(jp == ip);
assume(A[jp] >= 5);
if(!(i==0 || i==N-1)) {
  if (A[i] < 5) {
    A[i+1] = A[i] + 1;
    A[i] = A[i-1]:
} else {
  A[i] = 5:
}
assert(A[jp] >= 5);
```

Use CBMC to ensure T3* by checking the loop free code

Inductive Compositional Reasoning

Inductive Reasoning

T2 Sliced post-condition holds for each iteration

Inductive Compositional Reasoning

- Inductive Reasoning
 - T2 Sliced post-condition holds for each iteration
- Compositional Reasoning
 - T3 Truth of sliced post-condition once established is not altered subsequently
 - T1 Tiles cover the entire range of array indices of interest

Inductive Compositional Reasoning

- Inductive Reasoning
 - T2 Sliced post-condition holds for each iteration
- Compositional Reasoning
 - T3 Truth of sliced post-condition once established is not altered subsequently
 - T1 Tiles cover the entire range of array indices of interest

Theorem

Suppose Tile: LoopCounter \times Indices \rightarrow {tt, ff} satisfies T1, T2 and T3. If Pre \Rightarrow Inv holds and the loop L iterates at least once, then the Hoare triple {Pre} L {Post} holds.

Proof.

The proof proceeds by induction on values of LoopCounter (say i).

Given:

$$\mathsf{Pre} \Rightarrow \mathsf{Inv}$$
 (1)

Base Case:

Prove
$$\{Pre\}$$
 L_{body} $\{Post_i\}$ holds, where $i=0$

$$\{\operatorname{Inv}\} \ \mathsf{L}_{\operatorname{body}} \ \{\operatorname{Inv} \land \operatorname{Post}_i\} \tag{:. } \mathsf{72} \tag{2}$$

$$\{\mathsf{Pre}\}\ \mathsf{L}_{\mathrm{body}}\ \{\mathsf{Inv} \land \mathsf{Post}_i\} \qquad \qquad (\because \mathit{From}\ (1)\ \&\ (2)) \qquad (3)$$

$$\{\mathsf{Pre}\} \ \mathsf{L}_{\mathrm{body}} \ \{\mathsf{Post}_i\} \qquad \qquad (\because \mathsf{Inv} \land \{\mathsf{Post}_i\} \Rightarrow \{\mathsf{Post}_i\}) \quad (4)$$

Induction Hypothesis:

$$\{\mathsf{Pre}\}\ \left(\mathsf{L}_{\mathrm{body}}\right)^{i'}\ \left\{\bigwedge_{i':0 < i' < i} \mathsf{Post}_{i'}\right\} \qquad (\because \ T3) \tag{5}$$

Proof. Cont...

Induction:

Assuming hypothesis, prove $\{Pre\}$ $(L_{\mathrm{body}})^{i'}$ $\{\bigwedge_{i':0\leq i'\leq i}Post_{i'}\}$ holds.

$$\{\operatorname{Inv} \wedge \bigwedge_{i':0 \le i' < i} \operatorname{Post}_{i'}\} \ \operatorname{L}_{\operatorname{body}} \ \{\operatorname{Inv} \wedge \operatorname{Post}_{i}\}$$
 (:: *T*2) (6)

$$\{\operatorname{Inv} \wedge \bigwedge_{i':0 < i' < i} \operatorname{Post}_{i'}\} \ \operatorname{L}_{\operatorname{body}} \ \{\operatorname{Post}_i\} \qquad (::\operatorname{Inv} \wedge \operatorname{Post}_i \Rightarrow \operatorname{Post}_i) \ (7)$$

At the end of the i^{th} iteration of the loop L the following Hoare triple holds:

$$\{\mathsf{Pre}\}\ \left(\mathsf{L}_{\mathrm{body}}\right)^{i'}\ \left\{\bigwedge_{i':0\leq i'\leq i}\mathsf{Post}_{i'}\right\} \qquad (\because \mathit{From}\ (5)\ \&\ (7)) \qquad (8)$$

$$\bigwedge_{i} \mathsf{Post}_{i} \equiv \mathsf{Post} \tag{9}$$

```
void copynswap(int N)
 int i, tmp;
 int a[], b[], acopy[];
for (i = 0; i < N; i++) {
  acopy[i] = a[i];
for (i = 0; i < N; i++) {
  tmp = a[i];
  a[i] = b[i];
  b[i] = tmp;
for (i = 0; i < N; i++) {
   assert(b[i] == acopy[i]);
```

```
void copynswap(int N)
 int i, tmp;
 int a[], b[], acopy[];
for (i = 0; i < N; i++) {
   acopy[i] = a[i];
for (i = 0; i < N; i++) {
  tmp = a[i];
  a[i] = b[i];
  b[i] = tmp;
for (i = 0; i < N; i++) {
   assert(b[i] == acopy[i]);
```

Mid-conditions

- Invariants between sequentially composed loops
- Hard to generate precise invariants
- Identify candidate mid-conditions using annotation assistants

```
void copynswap(int N)
int i, tmp;
int a[], b[], acopy[];
for (i = 0; i < N; i++) {
  acopy[i] = a[i];
for (i = 0; i < N; i++) {
  tmp = a[i];
  a[i] = b[i];
  b[i] = tmp;
for (i = 0; i < N; i++) {
  assert(b[i] == acopy[i]);
```

Mid-conditions

- Invariants between sequentially composed loops
- Hard to generate precise invariants
- Identify candidate mid-conditions using annotation assistants

Candidate mid-conditions

- $\bullet \ \forall i(a[i] = acopy[i])$
- $\forall i(a[i] \neq b[i])$

```
void copynswap(int N)
int i, tmp;
int a[], b[], acopy[];
for (i = 0; i < N; i++) {
  acopy[i] = a[i];
for (i = 0; i < N; i++) {
  tmp = a[i];
  a[i] = b[i];
  b[i] = tmp;
for (i = 0; i < N; i++) {
  assert(b[i] == acopy[i]);
```

Mid-conditions

- Invariants between sequentially composed loops
- Hard to generate precise invariants
- Identify candidate mid-conditions using annotation assistants
- Prove them using Tiling

Candidate mid-conditions

- $\bullet \ \forall i(a[i] = acopy[i])$
- $\forall i(a[i] \neq b[i])$

Proved mid-conditions

• $\forall i(a[i] = acopy[i])$

Nested Loops

```
void nested(int N)
  int i, j, VAL=2, arr[];
  assume(N \% 5 == 0);
  for(i = 1; i \le N/5; i++)
    for(j = 1; j \le 5; j++)
      if(j \ge VAL)
        arr[i*5 - j] = j;
      else
        arr[i*5 - j] = 0;
  assert(for i in 0..N-1 (arr[i]>=VAL || arr[i]==0));
```

Nested Loops

```
void nested(int N)
  int i, j, VAL=2, arr[];
  assume(N \% 5 == 0);
  for(i = 1; i \le N/5; i++)
    for(j = 1; j \le 5; j++)
                                                     ff
      if(j >= VAL)
        arr[i*5 - j] = j;
      else
        arr[i*5 - j] = 0;
  assert(for i in 0..N-1 (arr[i]>=VAL || arr[i]==0));
```


Back-edge - Edge from a node within the body of a loop to the node representing the corresponding loop head

▶ Edges e_1 and e_2

Back-edge - Edge from a node within the body of a loop to the node representing the corresponding loop head

▶ Edges e_1 and e_2

Cut-Points - Target nodes of back-edges and Start and End nodes

▶ Nodes 1, 2, *S*, *E*

Back-edge - Edge from a node within the body of a loop to the node representing the corresponding loop head

• Edges e_1 and e_2

Cut-Points - Target nodes of back-edges and Start and End nodes

▶ Nodes 1, 2, *S*, *E*

Segments - Acyclic sub-graph of a CFG

- starts from a cut-point and ends at another cut-point
- does not pass through any other cut-point in between

Back-edge - Edge from a node within the body of a loop to the node representing the corresponding loop head

• Edges e_1 and e_2

Cut-Points - Target nodes of back-edges and Start and End nodes

▶ Nodes 1, 2, S, E

Segments - Acyclic sub-graph of a CFG

- starts from a cut-point and ends at another cut-point
- does not pass through any other cut-point in between

$$S\mapsto 1,\ 1\mapsto 2,$$

 $2\mapsto 3\mapsto \{4,6\}\mapsto 5\mapsto 7\mapsto 2,$
 $2\mapsto 8\mapsto 1,\ 1\mapsto E \text{ are segments}$

Segment-based Verification

Analysis now applies to each segment in the topological order

- c_1 and c_2 be two cut-points
- Segment s starts at c_1 , ends at c_2
- Inv_{c_1} and Inv_{c_2} are candidate invariants at c_1 and c_2
- Generate tiles for each segment
- Check T1, T2*, T3* for each segment s
- Invariants for the nested loop example
 - $lnv_1 := \forall k (0 \le k < 5 * i) \Longrightarrow$ (arr[k] >= VAL||arr[k] == 0)
 - ► $Inv_2 := \forall k (5*i-j \le k < 5*i) \Longrightarrow (arr[k] >= VAL||arr[k] == 0)$

Figure: Verifying a Segment

Tiler Tool Diagram

Figure: Tiler Tool Diagram

Tiler Implementation

- Built on top of LLVM/CLANG infrastructure in C++
- Mid-condition generation
 - ▶ Daikon learns candidate scalar invariants from concrete traces
 - Lift these to quantified invariants
- Heuristic tile generation
 - Determine indices in terms of loop counters
 - Get a closed form expression in terms of index expressions
 - Remove possible overlaps
- Checking conditions T1, T2 and T3
 - Z3 for checking the validity of T1
 - CBMC for checking the validity of T2 and T3

Tiler Benchmarking

- 60 benchmarks from industry and academia
- Performance compared with tools
 - SMACK+Corral Bounded model checker
 - Booster Acceleration based verification for arrays
 - Vaphor Distinguished cell abstraction for arrays
- Memory limit 1GB
- Time limit 900s

Benchmark	#L	Tiler	S+C	Booster	Vaphor
cpynrev.c	2	√ 3.8	†	√ 3.1	√ 5.4
cpynswp.c	2	√ 4.2	†	√ 12.4	√ 1.38
cpynswp2.c	3	√ 10.2	†	√ 198	√ 7.2*
maxinarr.c	1	√ 0.51	†	√ 0.01	√ 0.11
mininarr.c	1	√ 0.53	†	√ 0.02	√ 0.13
poly1.c	1	TO	†	√ 15.7	TO
poly2.c	2	? 6.44	†	? 19.5	TO
tcpy.c	1	? 0.65	†	TO	√ 25.1
rew.c	1	√ 0.48	†	√ 0.01	TO
skipped.c	1	√ 1.24	†	TO	TO
rewrev.c	1	√ 0.39	†	TO	TO
pr4.c	1	√ 0.68	†	TO	TO
pr5.c	1	√ 1.32	†	TO	TO
pnr4.c	1	√ 0.86	†	TO	TO
pnr5.c	1	√ 1.98	†	TO	TO
mbpr4.c	4	√ 12.75	†	TO	TO
mbpr5.c	5	√ 18.08	†	TO	TO
nr4.c	1-1	√ 2.43*	†	TO	TO
nr5.c	1-1	√ 2.90*	†	TO	TO
сору9и.с	9	X 0.16	X 4.48	X 0.44	X 30.8
skippedu.c	1	X 0.81	X 2.94	X 0.02	TO

Benchmark	#L	Tiler	S+C	Booster	Vaphor
cpynrev.c	2	√ 3.8	†	√ 3.1	√ 5.4
cpynswp.c	2	√ 4.2	†	√ 12.4	√ 1.38
cpynswp2.c	3	√ 10.2	†	√ 198	√ 7.2*
maxinarr.c	1	√ 0.51	†	√ 0.01	√ 0.11
mininarr.c	1	√ 0.53	†	√ 0.02	√ 0.13
poly1.c	1	TO	†	√ 15.7	TO
poly2.c	2	? 6.44	†	? 19.5	TO
tcpy.c	1	? 0.65	†	TO	√ 25.1
rew.c	1	√ 0.48	†	√ 0.01	TO
skipped.c	1	√ 1.24	†	ТО	TO
rewrev.c	1	√ 0.39	†	TO	TO
pr4.c	1	√ 0.68	†	ТО	TO
pr5.c	1	√ 1.32	†	ТО	TO
pnr4.c	1	√ 0.86	†	TO	TO
pnr5.c	1	√ 1.98	†	TO	TO
mbpr4.c	4	√ 12.75	†	ТО	TO
mbpr5.c	5	√ 18.08	†	TO	TO
nr4.c	1-1	√ 2.43*	†	TO	TO
nr5.c	1-1	√ 2.90*	†	TO	TO
сору9и.с	9	X 0.16	X 4.48	X 0.44	X 30.8
skippedu.c	1	X 0.81	X 2.94	X 0.02	TO

Benchmark	#L	Tiler	S+C	Booster	Vaphor
cpynrev.c	2	√ 3.8	†	√ 3.1	√ 5.4
cpynswp.c	2	√ 4.2	†	√ 12.4	√ 1.38
cpynswp2.c	3	√ 10.2	†	√ 198	√ 7.2*
maxinarr.c	1	√ 0.51	†	√ 0.01	√ 0.11
mininarr.c	1	√ 0.53	†	√ 0.02	√ 0.13
poly1.c	1	TO	†	√ 15.7	TO
poly2.c	2	? 6.44	†	? 19.5	TO
tcpy.c	1	? 0.65	†	TO	√ 25.1
rew.c	1	√ 0.48	†	√ 0.01	TO
skipped.c	1	√ 1.24	†	TO	TO
rewrev.c	1	√ 0.39	†	TO	TO
pr4.c	1	√ 0.68	†	TO	TO
pr5.c	1	√ 1.32	†	TO	TO
pnr4.c	1	√ 0.86	†	TO	TO
pnr5.c	1	√ 1.98	†	TO	TO
mbpr4.c	4	√ 12.75	†	TO	TO
mbpr5.c	5	√ 18.08	†	TO	TO
nr4.c	1-1	√ 2.43*	†	TO	TO
nr5.c	1-1	√ 2.90*	†	TO	TO
copy9u.c	9	X 0.16	X 4.48	X 0.44	X 30.8
skippedu.c	1	X 0.81	X 2.94	X 0.02	TO

Benchmark	#L	Tiler	S+C	Booster	Vaphor
cpynrev.c	2	√ 3.8	†	√ 3.1	√ 5.4
cpynswp.c	2	√ 4.2	†	√ 12.4	√ 1.38
cpynswp2.c	3	√ 10.2	†	√ 198	√ 7.2*
maxinarr.c	1	√ 0.51	†	√ 0.01	√ 0.11
mininarr.c	1	√ 0.53	†	√ 0.02	√ 0.13
poly1.c	1	TO	†	√ 15.7	TO
poly2.c	2	? 6.44	†	? 19.5	TO
tcpy.c	1	? 0.65	†	TO	√ 25.1
rew.c	1	√ 0.48	†	√ 0.01	TO
skipped.c	1	√ 1.24	†	TO	TO
rewrev.c	1	√ 0.39	†	TO	TO
pr4.c	1	√ 0.68	†	TO	TO
pr5.c	1	√ 1.32	†	TO	TO
pnr4.c	1	√ 0.86	†	TO	TO
pnr5.c	1	√ 1.98	†	TO	TO
mbpr4.c	4	√ 12.75	†	TO	TO
mbpr5.c	5	√ 18.08	†	TO	TO
nr4.c	1-1	√ 2.43*	†	TO	TO
nr5.c	1-1	√ 2.90*	†	TO	TO
copy9u.c	9	X 0.16	X 4.48	X 0.44	X 30.8
skippedu.c	1	X 0.81	X 2.94	X 0.02	TO

Benchmark	#L	Tiler	S+C	Booster	Vaphor
cpynrev.c	2	√ 3.8	†	√ 3.1	√ 5.4
cpynswp.c	2	√ 4.2	†	√ 12.4	√ 1.38
cpynswp2.c	3	√ 10.2	†	√ 198	√ 7.2*
maxinarr.c	1	√ 0.51	†	√ 0.01	√ 0.11
mininarr.c	1	√ 0.53	†	√ 0.02	√ 0.13
poly1.c	1	ТО	†	√ 15.7	TO
poly2.c	2	? 6.44	†	? 19.5	TO
tcpy.c	1	? 0.65	†	TO	√ 25.1
rew.c	1	√ 0.48	†	√ 0.01	TO
skipped.c	1	√ 1.24	†	TO	TO
rewrev.c	1	√ 0.39	†	TO	TO
pr4.c	1	√ 0.68	†	TO	TO
pr5.c	1	√ 1.32	†	TO	TO
pnr4.c	1	√ 0.86	†	TO	TO
pnr5.c	1	√ 1.98	†	TO	TO
mbpr4.c	4	√ 12.75	†	TO	TO
mbpr5.c	5	√ 18.08	†	TO	TO
nr4.c	1-1	√ 2.43*	†	TO	TO
nr5.c	1-1	√ 2.90*	†	TO	TO
copy9u.c	9	X 0.16	X 4.48	X 0.44	X 30.8
skippedu.c	1	X 0.81	X 2.94	X 0.02	TO

Battery Voltage Regulator

```
void BVR(int N, int MIN)
  int i, volArray[N];
  if(N % 4 != 0) { return; }
  for(i = 1; i \le N/4; i++)
    if(1 >= MIN)
      volArray[i*4-1] = 1;
    else
      volArray[i*4-1] = 0;
    if(3 >= MIN)
      volArray[i*4-2] = 3;
    else
      volArray[i*4-2] = 0;
```

```
if(7 >= MTN)
    volArray[i*4-3] = 7;
  else
    volArray[i*4-3] = 0;
  if(5 >= MIN)
    volArray[i*4-4] = 5;
  else
    volArray[i*4-4] = 0;
for(i = 0; i < N; i++)
  assert(volArray[i] >= MIN ||
    volArray[i] == 0);
```

Battery Voltage Regulator

```
void BVR(int N, int MIN)
  int i, volArray[N];
  if(N % 4 != 0) { return; }
  for(i = 1; i \leq N/4; i++)
    if(1 >= MIN)
      volArray[i*4-1] = 1;
    else
      volArrav[i*4-1] = 0;
    if(3 >= MIN)
      volArray[i*4-2] = 3;
    else
      volArray[i*4-2] = 0;
```

```
if(7 >= MTN)
    volArray[i*4-3] = 7;
  else
    volArray[i*4-3] = 0;
  if(5 >= MIN)
    volArray[i*4-4] = 5;
  else
    volArray[i*4-4] = 0;
for(i = 0; i < N; i++)
  assert(volArray[i] >= MIN ||
    volArray[i] == 0);
```

Tile
$$(i,j) := 4 * i - 4 \le j < 4 * i$$

Skipped Indices

```
void skip(int N)
{
  int i;
  int a[N];
  if(N \% 2 != 0)
    return;
  }
  assume(N \% 2 == 0);
  for(i = 1; i <= N/2; i++)
    if(a[2*i-2] > 2*i-2)
```

```
a[2*i-2] = 2*i-2;
  if(a[2*i-1] > 2*i-1)
   a[2*i-1] = 2*i-1;
for(i = 0; i < N; i++)
  assert(a[i] <= i);</pre>
return:
```

Skipped Indices

```
void skip(int N)
  int i:
  int a[N];
  if(N \% 2 != 0)
    return;
  }
  assume(N \% 2 == 0);
  for(i = 1; i \le N/2; i++)
    if(a[2*i-2] > 2*i-2)
```

```
a[2*i-2] = 2*i-2;
  if(a[2*i-1] > 2*i-1)
   a[2*i-1] = 2*i-1;
for(i = 0; i < N; i++)
  assert(a[i] <= i);
return:
```

Array Reversal

```
void revcopynswap(int N)
{
   int i;
   int tmp;
   int a[N];
   int b[N];
   int rev_copy[N];

for(i = 0; i < N; i++)
   {
     rev_copy[N-i-1] = a[i];
}</pre>
```

```
for(i = 0; i < N; i++)
{
   tmp = a[i];
   a[i] = b[i];
   b[i] = tmp;
}

for(i = 0; i < N; i++)
{
   assert(b[i] == rev_copy[N-i-1]);
}</pre>
```

Array Reversal

```
void revcopynswap(int N)
                                     for(i = 0: i < N: i++)
                                       tmp = a[i];
  int i:
                                       a[i] = b[i];
  int tmp;
  int a[N];
                                       b[i] = tmp;
  int b[N];
  int rev_copy[N];
                                     for(i = 0; i < N; i++)
  for(i = 0; i < N; i++)
                                        assert(b[i] == rev_copy[N-i-1]);
    rev_copy[N-i-1] = a[i];
Loop 1 - Tile(i, j) := j == N - i - 1
Loop 2 - Tile(i, j) := j == i
```

Tiles in Benchmarks

- Reverse the contents of the array
 - ► Tile(i,j) := j == N i 1
- A bunch of indices updated in a loop
 - ightharpoonup Tile(i, j) := 2 * i 2 < j < 2 * j
 - ► Tile(i,j) := 3 * $i 3 \le j < 3 * i$
 - ► Tile $(i,j) := 4 * i 4 \le j < 4 * i$
- Adjacent indices to the counter
 - ▶ Tile(i,j) := j == i 1
 - ▶ Tile(i,j) := j == i + 1
- Most common tile in array processing loops
 - ▶ Tile(i,j) := j == i

Tiler Limitations

```
void tcpy(int N)
  int i, a[N], reverse[N];
  if(N \% 2 != 0)
  { return; }
  assume(N \% 2 == 0);
  for (i = 0; i < N/2; i++)
     reverse[i] = a[N-i-1];
     reverse[N-i-1] = a[i];
  }
  for(i = 0; i < N; i++)
     assert(a[i] = reverse[N-i-1]);
```

```
void poly2(int N)
{
  int i, a[N];
  for(i=0; i<N; i++)
    a[i] = i*i + 2;
  for(i=0; i<N; i++)
    a[i] = a[i] - 2:
  for(i=0; i<N; i++)
    assert(a[i] == i*i);
```

Related Work

- Abstract Interpretation based
 - ▶ Jiangchao Liu and Xavier Rival (2015). "Abstraction of Arrays Based on Non Contiguous Partitions". In: VMCAI'15, pp. 282–299
 - ▶ Patrick Cousot, Radhia Cousot, and Francesco Logozzo (2011). "A parametric segmentation functor for fully automatic and scalable array content analysis". In: *POPL'11*, pp. 105–118
 - Sumit Gulwani, Bill McCloskey, and Ashish Tiwari (2008). "Lifting abstract interpreters to quantified logical domains". In: POPL'08, pp. 235–246

Abstraction based

- ▶ David Monniaux and Laure Gonnord (2016). "Cell Morphing: From Array Programs to Array-Free Horn Clauses". In: SAS'16, pp. 361–382
- Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina (2014).
 "Booster: An Acceleration-Based Verification Framework for Array Programs". In: ATVA'14, pp. 18–23
- Without explicit partitioning
 - ▶ Isil Dillig, Thomas Dillig, and Alex Aiken (2010). "Fluid Updates: Beyond Strong vs. Weak Updates". In: *ESOP'10*, pp. 246–266

Conclusion and Future Work

- Presented a novel verification technique that
 - proves universally quantified assertions over arrays
 - decomposes reasoning about arrays using tiles
 - is property driven, compositional and efficient
- Future directions
 - Automated synthesis of tiles
 - Combining the strengths of Booster, Vaphor and Tiler
 - Integration of other candidate invariant generators

Thank you