

$\begin{array}{c} \text{Module : Algèbre II} & \text{Filière : SMIA} \\ \textbf{Groupe 2} \end{array}$

Faculté Polydisciplinaire Larache - Université Abdelmalek Essaâdi

Durée: 1h00

Session: Normale 2021/2022 - Contrôle Final (Semestre 1)

Pr. Hamza El Mahjour

- 1. Chaque exercice peut être résolu indépendamment de l'autre.
- 2. Toutes les réponses doivent être justifiées et avec des calculs détaillés.

Bon courage!

• Exercice 1: (5 pts)

Répondez (en justifiant) si les assertions suivantes sont vraies ou fausses:

- (a) La multiplication " \times " est une loi de composition interne pour l'ensemble $E = \{-1, 0, 1\}$.
- (b) L'addition "+" est une loi de composition interne pour l'ensemble $E = \{-1, 0, 1\}$.
- (c) Le polynôme $5X^2 X + 1$ est irréductible dans $\mathbb{C}[X]$.
- (d) Le polynôme $5X^2 X + 1$ est irréductible dans $\mathbb{R}[X]$.
- (e) L'anneau $(\mathbb{Z}/17\mathbb{Z}, +, \times)$ est un corps.

• Exercice 2: (4 pts)

Soit $\mathcal{U} = \{ z \in \mathbb{C}, \quad z^5 = 1 \}.$

- (a) Montrer que (\mathcal{U}, \times) est un sous-groupe de (\mathbb{C}^*, \times) .
- (b) Trouver tous les éléments de l'ensemble \mathcal{U} .
- Exercice 3: (8 pts)
 - (a) Trouver le P.G.C.D des polynômes $2X^4 X^3 + 4X 2$ et $2X^3 + X^2 + X 1$.
 - (b) Donner le polynôme de $\mathbb{R}[X]$ qui vérifie :

$$P(1) = -1, P'(1) = 0, P^{(2)}(1) = P^{(3)}(1) = 6 \text{ et } P^{(n)}(1) = 0 \text{ pour } n > 3.$$

- (c) Trouver tous les polynômes vérifiant $4P = (P')^2$.
- (d) Décomposer en éléments simples dans $\mathbb{C}(X)$ puis dans $\mathbb{R}(X)$ la fraction $\frac{2}{X^3-1}$.

• Exercice 4: (3 pts)

Soit (G, \cdot) un groupe fini multiplicatif. On notera $(S(G), \circ)$ le groupe des permutations des éléments de G.

- Montrer que l'application $f_z: G \longrightarrow G \atop x \longmapsto zx$ est une bijection.
- En déduire que $f_z \in (S(G), \circ)$ pour tout z de G.
- Démontrer que

$$\varphi: \quad (G, \cdot) \longrightarrow (S(G), \circ)$$
$$z \longmapsto f_z$$

est un morphisme injectif de groupes.