데이터로 배우는 통계학

자연과학대학 통계학과 **장원철** 교수

자료의 유형과 요약

1. 이진 데이터란?

수술을 많이 한 병원이 치료를 잘할까?

1984년부터 1995년 사이에 브리스틀 병원에서 심장 수술을 한 아이들에게 무슨 일이 생긴 걸까?

- 1995년 1월 브리스틀 왕립병원에서 심장 수술을 받던 16개월 된 아기 조슈아가 수술 도중 사망함
- 1990년 초반 이래 브리스틀 병원에서 수술 생존율이 낮다는 이야 기가 지속적으로 나돌고 있었음
- 조슈아의 부모와 아이를 잃은 다른 부모의 항의로 영국의 종합의료위원회 (General Medical Council)의 조사 결과 1998년 병원장과 2명의 외과 의사가 유죄판결을 받음
- 이후 통계학자들이 1984년부터 1995년 사이 브리스틀 병원과 다른 병원의 생존율을 비교하는 조사를 함

수술을 많이 한 병원이 치료를 잘할까?

1984년부터 1995년 사이에 브리스틀 병원에서 심장 수술을 한 아이들에게 무슨 일이 생긴 걸까?

- 문제(Problem): 브리스틀 병원의 어린이 심장 수술 사망률은 다른 병원과 비교해서 현저히 낮았는가?
 - __ 어린이란? 16세 미만
 - △ 심장 수술이란? 인공심폐기를 이용하는 개복수술
 - → 사망의 기준은 무엇인가? 수술 이후 30일 이내 사망한 경우
- 계획(Plan): 심장 수술 데이터베이스를 이용하여 자료를 수집 후 다른 병원들의 사망률과 비교

수술을 많이 한 병원이 치료를 잘할까?

1984년부터 1995년 사이에 브리스틀 병원에서 심장 수술을 한 아이들에게 무슨 일이 생긴 걸까?

- 자료(Data): HES(Hospital Episode Statistics)와 CSR(Cardi -ac Surgical Registry)를 사용함 하지만 두 자료는 매우 상이하다는 것이 밝혀짐. 예를 들면 1991년부터 1995년 사이 개복수술 건수와 사망 건수로 모두 일치하지 않음
- 분석(Analysis): HES와 CSR, 그 외 다른 추가자료를 이용하여 사 망위험률 예측
- 결론(Conclusion): 일반적인 사망위험률 예측 기준으로 브리스틀 병원은 그 기간 동안 32명의 사망자가 나왔을 것을 생각됨(실제 사 망자는 62명)
- 이 사건을 계기로 영국에서 의료자료의 일반인에 대한 공개와 사용 체계가 확립됨

비율로 표시하는 데이터란?

- 특정 사건의 발생 유무와 같이 두 가지 값으로 이루어진 데이터를 이진 데이터(binary data)라고 한다.
- 이러한 이진 데이터들의 평균은 비율로 표시된다.
- 예를 들면 심장 수술 후 사망 여부를 나타내는 데이터는 이진 데이터(1=생존, 0=사망)로 볼 수 있다.
- 심장 수술 생존율은 전체 수술환자 중 생존자의 비율로 위의 이진 데이터의 평균으로 생각할 수 있다.

비율로 표시하는 데이터란?

병원	수술을 받은 어린이 수	수술 후 30일 이상 생존한 어린이 수	수술 후 30일 이내 사망한 어린이 수	생존율	사망률
London, Harley Street	418	413	5	96.8	1.2
Leicester	607	593	14	97.7	2.3
Newcastle	668	653	15	97.8	2.2
Glasgow	760	733	27	96.3	3.7
Southampton	829	815	14	98.3	1.7
Bristol	835	821	14	98.3	1.7
					•••
London, Great Ormond Steet	1,892	1,873	19	99.0	1.0
총합	12,933	12,670	263	98.0	2.0

[2012년부터 2015년 영국과 아일랜드 병원에서 어린이 심장수술 결과] (The Art of Statistics, p23)

긍정/부정 메시지 프레이밍

- "결론"의 주요 부분 중 하나는 분석 결과를 효과적으로 전달하는 것 이다.
- 앞 페이지 표와 같은 데이터의 경우 미국의 경우 수술 사망률을, 영국은 수술 생존율을 제시한다.
- 이와 같이 같은 데이터를 부정적, 혹은 긍정적 의미를 나타내는 결과로 전달하는 것을 부정/긍정 메시지 프레이밍이라고 한다. 5%의 사망률과 95%의 생존율은 똑같은 의미지만 95%의 생존율이 훨씬 긍정적으로 들린다.

정보(올바르게) 전달하기

- 2011년 영국 런던의 지하철역에 "런던에 사는 청소년의 99%가 심각한 폭력을 저지르지 않는다"는 광고가 등장한 적이 있었다.
- 부정 메시지 프레이밍으로 바꾼다면 1%의 청소년이 아주 심각한 폭력을 저지른다고 말할 수 있다.
- 런던의 인구가 약 9백만 명이라는 걸 고려하고 이 중 15~25세 인 구가 약 100만 명이라는 걸 고려한다면 아주 폭력적인 청소년이 만 명정도 된다는 결론에 도달할 수 있다!
- 정보를 정확히 전달하기 위해서는 결론을 긍정/부정 메시지 프레이 밍 모두를 사용해서 표현하고 절대적인 숫자와 상대적인 요약을 모두 제공하는 것이 중요하다.

이진 데이터의 비교

- 출처 #1의 자료를 병원들 간의 생존율 비교를 위해서 막대그래프 로 나타낸다고 하자.
- 이 경우 가로축의 시작이 어디인지가 중요하다. 0%로 시작할 경우 병원들 간 생존율은 거의 차이가 없어 보일 것이지만 95%에서 시 작한다면 병원들 간의 생존율 차이가 과대포장될 가능성이 높다.
- "How charts lie"라는 책의 저자 알베르토 카이로는 이런 경우 "논리적이고 의미 있는 기준선"을 강조한다.

막대그래프와 점 그림을 이용한 비율의 비교

각 병원의 30일 생존율 비교

[13개 병원의 30일 생존율을 나타낸 막대그래프] (The Art of Statistics. P26)

[13개 병원의 30일 생존율을 나타낸 점 그림(Dot plot)]

오늘 강의 요점

- 이진 데이터
- 긍정/부정 메시지 프레이밍
- 막대그래프 vs 점 그림

○ 출처

#1~2 D. Spiegelhater, (2019), The Art of Statistics, Penguin Random House #3 https://bit.ly/3lgfONi

자료의 유형과 요약

2. 범주형 자료의 소개

범주형 자료란?

- 변수(variable)란 주어진 상황에 따라 다른 값을 가지는 측정치라고 정의할 수 있다.
- 예를 들면 동전을 던져서 앞면이 나온 상황이라면 1의 값을 가진다고 하고 뒷면이 나오는 경우 0의 값을 가지는 변수를 생각할 수 있다.

범주형 자료란?

- 범주형 변수 (categorical variable) 는 2개 이상의 범주 (category)를 값으로 가지는 변수를 의미하며 다음과 같은 경우를 범주형 변수로 정의할 수 있다.
 - __ 순서가 없는 범주: 국적, 성별
 - 순서가 있는 범주: 군인계급(이병<일병 < 상병 < 병장)</p>
 - → 일련의 그룹으로 묶인 숫자들: BMI 기준 비만 측도 (정상의 경우 18.5 < BMI < 22.9)</p>

파이차트는 절대 사용하지 마세요!

[2012년부터 2015년까지 심장수술을 받은 어린이 환자의 병원별 비율] (The Art of Statistics, P29)

- 이 그림은 2012년부터 2015년 까지 심장 수술을 받은 어린이 환자의 병원별 비율을 나타낸 3D 파이차트이다.
- 사람의 눈은 면적의 차이를 식별하기 쉽지 않기 때문에 파이차트의 경우 실제 표시된 숫자를 보고고 영역의 비율을 인지하는 것이며 어느 영역이 더 크게 보이는지는 시각적인 효과만으로 분별하는 것은 거의 불가능하다!

파이차트 대신 막대그래프를 사용하라

[심장수술을 받은 어린이의 병원별 비율을 표시한 막대그래프] (The Art of Statistics, P30)

이 그림은 똑같은 자료를 막대그 래프로 표시한 것이다. 각 병원별 비율의 차이가 뚜렷하게 관측된 다.

상대위험도

- 2015년 11월 세계보건기구(WHO) 국제 암연구소(IARC)에서 가 공육이 담배와 석면이 속하는 1군 발암물질에 속한다고 발표했다.
- 연구소의 보고서에서는 매일 50g의 가공육을 먹으면 대장암 발병률이 18% 높아질 수 있다고 밝혔다.
- 여기서 18%가 의미하는 것은 상대위험도(relative risk)를 의미한다.
- 하루에 베이컨 2개가 들어가는 샌드위치를 먹는 집단은 그렇게 하지 않는 집단에 비해 대장암에 걸릴 위험이 18% 높다는 것을 말한다.

절대위험도

- 상대위험도와 대비되는 개념으로 절대 위험도(absolute risk)를 들수있다.
- 절대 위험도는 각 집단에서 위험 에 처해지는 비율을 의미한다.

[베이컨 샌드위치를 매일 먹는 경우 절대위험도를 설명한 그림] (The Art of Statistics, P33)

절대위험도

[베이컨 샌드위치를 매일 먹는 경우 절대위험도를 설명한 그림] (The Art of Statistics, P33)

- 영국에서 대장암의 유병율은 6% 이다. 즉 백 명 중 6명 정도 대장암 에 걸린다.
- 위의 백 명이 평생동안 매일 베이 컨 샌드위치를 먹는다면 대장암에 걸리는 사람은 한 명이 더 추가되 어서 7명이 대장암에 걸리게 되는 것이다.

절대위험도와 상대위험도

- 두 집단을 비교하는 경우 사용할 수 있는 측도로 절대위험도의 차이를 고려할 수 있다.
- 상대위험도의 경우 개개인에 대한 비교를 하는 경우 유용한 측도로 매일 베이컨을 먹는 사람과 그렇지 않은 사람의 (대장암의)절대위험도의 비율로 두 사람을 비교한다.

절대위험도와 상대위험도

- 상대위험도 = (위험요인이 있는 집단의 절대위험도)/(control group의 절대위험도)로 정의된다.
- 절대위험도의 차이는 (위험요인이 있는 집단의 절대위험도) -(control group의 절대위험도)로 정의된다.
- 상대위험도의 값이 높다고 하더라도 절대위험도 자체가 작을 경우 실제 위험 자체는 크게 문제가 되지 않을 수 있다.

기대빈도, 오즈와 오즈비

- 기대도수는 주어진 집단에서 특정 사건(예를 들면 대장암에 걸릴 경우)에 일어나는 개수의 예측값을 의미한다.
- 오즈는 도박에서 많이 사용된다. 예를 들면 월드컵에서 한국의 우승 확률이 1/32라고 하면 오즈는 (1/32)/(1-1/32)=1/31로 정의 된다. 쉽게 얘기하자면 32개의 경우의 수 중 31개는 한국이 우승하 지 못하는 경우이고 1개가 한국이 우승하는 경우라고 생각해서 (우 승의 경우의 수)/(우승하지 못하는 경우의 수)로 정의할 수 있다.

기대빈도, 오즈와 오즈비

- 오즈비는 (위험요인이 있는 집단의 오즈)/(control grop의 오즈) 로 정의된다.
- 만약 절대위험도가 굉장히 작은 경우 오즈비와 상대위험도의 값은 비슷해진다.

○ 여기서 매일 베이컨을 먹는 사람들의 유병률은 정확히 7.08%이며 상대위험도는 7.08/6 =1.18로 계산된다.

위험측도	매일 베이컨을 먹지 않는 사람	메일 베이컨을 먹는 사람
유병률 (절대위험도)	6%	7%
기대도수	6/100	7/100
	1/16	1/14
<u> 오</u> 즈	6/94	7/93

비교측도		
절대위험도 차이	1%	
상대위험도	1.18	
대장암 환자 1명 추가 시 필요한 사람 수	100	
오즈비	(7/93)/(6/94) =1.18	

[매일 베이컨 샌드위치를 먹는 사람과 그렇지 않은 사람들의 대장암 유병률 비교방법] (The Art of Statistics, P35)

스타틴은 근육통을 유발하는가?

○ 스타틴은 콜레스테롤을 낮추는 약으로 심장마비와 뇌졸중 예방에 도움이 된다고 알려진 약이다. 하지만 일부 의사들은 스타틴의 부작용에 대한 우려를 표시해왔다.

스타틴은 근육통을 유발하는가?

- 2013년에 행해진 한 연구에 따르면 스타틴을 복용한 사람 중 87% 가 근육통을 호소했고 control group에서 근육통을 호소한 비율은 85%였다.
- 이 경우 절대위험도의 차이는 2%, 상대위험도는 0.87/0.85= 1.02이지만 오즈비의 경우

(0.87/0.13)/(0.85/0.15)=1.18이다.

- 오즈비는 앞의 예제인 베이컨 샌드위치와 같지만 각 그룹의 절대위 험도는 전혀 다르다.
- 모 언론매체는 이 연구결과에서 오즈비를 상대위험도로 착각하여 스타틴이 근육통 발병률을 20%까지 증가할 수 있다고 보도했다!

오늘의 강의 요점

- 범주형 자료
- 두 비율의 비교
 - → 절대위험도 vs 오즈
 - → 상대위험도 vs 절대위험도 차이 vs 오즈비

○ 출처

#1~4 D. Spiegelhater, (2019), The Art of Statistics, Penguin Random House

자료의 유형과 요약

3. 연속형 자료와 요약

집단지성이란?

황소 몸무게 맞추기

- 1907년 찰스 다윈의 사촌이자 우생학의 창시자인 프랜시스 골턴이 다음과 같은 일화를 통해 집단지성(wisdom of crowds)를 소개하는 논문을 Nature에 출간하였다.
- 그해 항구도시 플리머스에 가축박람회가 열렸는데 거기서 나온 황소의 무게를 맞추는 게임을 진행하였다.

집단지성이란?

황소 몸무게 맞추기

- 총 787명의 참가자들이 6펜스를 내고 황소의 몸무게를 적어서 제출하였다. 골턴의 참가자들이 써낸 값 중 중앙값인 547kg을 황소의 몸무게로 추정하였는데 실제 몸무게는 543kg이었다.
- 골턴은 이러한 선택을 Vox Populi(voice of people)이라는 제목을 붙였는데 이러한 현상은 오늘날 집단지성으로 알려져 있다.

집단지성의 힘

젤리개수 맞추기

[젤리의 RO수는?] (The Art of Statistics, p41)

- 집단지성의 힘을 알아보기 위해 The Art of Statistics의 저자 데이비드 스 피겔헬터는 다음과 같은 실험을 유튜브 에서 실시하였다.
- 먼저 그림에 보이는 젤리상자를 유튜브 에서 보여준 후에 상자 안의 젤리의 개 수를 맞춰보라는 퀴즈를 제시하였다.
- 총 915명이 이 퀴즈에 참가하였다.

자료의 유형

- 젤리의 개수는 1, 2, 3 등과 같은 자연수로 표시될 수 있다.
- 우리가 이때까지 배운 자료의 유형은(분석목적의 관점에서) 다음과 같이 정리할 수 있다.

__ 범주형

- 순서가 있는 범주형
- 순서가 없는 범주형

__ 수치형

- 이산형: 값이 정수인 경우(예: 교통사고 횟수)
- 연속형: 값이 실수인 경우(예: 몸무게, 키)

자료의 요약

통계량과 분포

- 데이터가 굉장히 많은 경우 모든 데이터 값을 일일이 살펴보는 것은 불가능하다.
- 이럴 경우 자료의 특징을 나타내는 몇가지 요약값을 대신 제시할 수 있는데 이러한 요약치를 통계량(statistic)이라고 한다.
- 또한 데이터가 가지는 모든 값의 형태를 통칭해서 분포(distr -ibution)라고 한다.

strip-chart, 상자그림(boxplot), 히스토그램

[병속젤리개수에대한 915명의 추정값요약] (The Art of Statistics, P42)

 퀴즈 참가자 전원의 젤리 숫자에 관한 추정값을 보는 것은 전반적 인 경향을 파악하기 어렵기 때문 에 데이터 시각화를 통해서 전체 데이터를 살펴보자.

strip-chart, 상자그림(boxplot), 히스토그램

[병속젤리개수에대한 915명의 추정값요약] (The Art of Statistics, P42)

- 왼쪽 그림은 수치형 자료들의 대 표적인 3가지 시각화 방법을 이용 하여 젤리숫자 추정값을 제시하였 다.
 - → strip-chart(또 는 dot-diagr -am)
 - → 상자그림(box plot)
 - → 히스토그램

데이터의 치우침과 로그변환

[젤리 개수 추정치(로그스케일)] (The Art of Statistics, P45)

- 원래 그래프에서 소수의 극단값을 왼쪽에서 관측할 수 있었다.
- 실제로 9,000이상의 값을 임의로 제거한 후 그림을 그렸었다. 만약 이런값을 포함한다면 대부분의 데 이터들이 뭉쳐보여서 데이터 시각 화가 효율적으로 이루어지지 않을 수 있다.

데이터의 치우침과 로그변환

[젤리 개수 추정치(로그스케일)] (The Art of Statistics, P45)

- 이러한 극단값을 포함하면서 영향을 최소화하기 위해 데이터의 값을 로그변환 변환하는 것을 고려할 수 있다.
- 왼쪽 그림은 로그변환후의 시각화 결과를 제시하고 있으며 분포가 대칭적이고 극단값이 관측되지 않 음을 알 수 있다.

연속형 자료의 요약

자료의 위치 대푯값

- 연속형 자료의 중앙을 나타내는 대표적인 통계량(요약값)은 다음 3가지를 들 수 있다.
 - △ 평균: 데이터의 총합을 데이터의 개수로 나눈 값
 - → 중앙값: 자료를 순서대로 나열했을 때 가운데 값 만약 관측치의 개수가 짝 수라면 가운데에 가장 가까운 두개의 값의 평균을 사용
 - ▲ 최빈수: 가장 많이 관측되는 값

연속형 자료의 요약

자료의 위치 대푯값

- 소득과 같이 분포의 모양이 비대칭일 경우 평균은 좋은 대푯값이 아니다. 예를 들어 국회의원의 평균소득의 전체 국회의원의 소득을 대표한다고 얘기하기 힘들다.
- 젤리 개수 맞추기에서 중앙값은 1,775였으며 실제 젤리의 개수는 1,616이었다.

연속형 자료의 요약

자료의 퍼짐 대푯값

- 데이터의 중앙을 나타내는 대푯값과 더불어 데이터가 얼마나 퍼져 있는지 여부를 제시하는 대푯값은 자료의 요약에 필수적인 요소이 다.
- 대표적인 퍼짐을 나타내는 통계량은 다음과 같다.
 - △ 범위 = 최댓값 최솟값
 - IQR = Q_3 Q_1 , 여기서 Q_1 과 Q_3 는 1사분위수(하위 50%데이터의 중앙값) 과 3사분위수(상위 50%데이터의 중앙값)을 나타낸다.
 - 표준편차 = 분산의 제곱근, 여기서 분산은 각 데이터가 평균에서 떨어진 거리의 제곱의 평균이다.

자료의 퍼짐 대푯값

통계량	젤리 개수의 추정치		
평균	2,408		
중앙값	1,775		
최빈값	10,000		
범위	31,337-219=31,118		
IQR	2,599-1,109=1,490		
표 준 편차	2,422		

[젤리 추측값 915개를 요약한 다양한 통계량] (The Art of Statistics, P50)

- 왼쪽 표는 915개의 젤리 개수 추 정치에 대한 다양한 통계량을 보 여준다.
- 앞에서 본 것처럼 이 데이터에는 몇 개의 극단값이 존재한다. 평균 과 표준편차와 같은 통계량들은 이러한 극단값에 영향을 많이 받 는다.

자료의 퍼짐 대푯값

통계량	젤리 개수의 추정치		
평균	2,408		
중앙값	1,775		
최빈값	10,000		
범위	31,337-219=31,118		
IQR	2,599-1,109=1,490		
표준편차	2,422		

[젤리 추측값 915개를 요약한 다양한 통계량] (The Art of Statistics, P50) 만약 이 데이터에서 최댓값 31,337을 제외한다면 표준편차 는 2,422에서 1,398로 줄어든다.

영국인들의 평생 동안 얼마나 많은 사람들과 성관계를 가지는가?

영국의 성생활에 관한 설문조사

- 1980년대 에이즈가 심각한 공중보건의 위기문제로 대두되었을 때 사람들은 성생활에 대한 데이터가 전무하다는 것을 깨달았다.
- 사람들은 얼마마다 sex파트너를 바꿀까?
- 얼마나 많은 사람들이 동시에 여러 명과 성관계를 맺을까?
- 사람들은 어떤 종류의 성행위를 할까?

영국의 성생활에 관한 설문조사

- 이런 정보는 성병확산을 예방하고 공중보건 서비스를 설계하는데 꼭 필요한 정보이다.
- 이에 따라 1990년부터10년마다 영국에서 성생활에 관한 대규모 설 문조사 National Sexual Attitudes and Lifestyle Survey가 실 시되고 있다.

성관계 상대수	35-44세 남성	35-44세 여성				
평균	14.3	8.5				
중앙값	8	5				
최빈값	1	1				
범위	500-0=500	550-0=550				
IQR	18-4=14	10-3=7				
표 준 편차	24.2	19.7				

[영국 중년 성인의 성별 sex 파트너 숫자] (The Art of Statistics, P53)

- 왼쪽 표는 700만 파운드의 비용을 들여 2010년에 이루어진 3차설문조사의 자료 요약을 보여준다.
- 여기서 표준편차가 매우 크고 자료가 양수로만 이루어진다는 걸감안하며 sex 파트너 숫자의 분포는 오른쪽으로 꼬리가 긴 분포임을 알수 있다.

성관계 상대수	35-44세 남성	35-44세 여성			
평균	14.3	8.5			
중앙값	8	5			
최빈값	1	1			
범위	500-0=500	550-0=550			
IQR	18-4=14	10-3=7			
표준편차	24.2	19.7			

[영국 중년 성인의 성별 sex 파트너 숫자] (The Art of Statistics, P53)

- 또 하나의 특징은 여성에 비해서 남성의 평균이 월등히 높다는 점 이다. 이러한 현상은 중앙값을 기 준으로도 볼 수 있다.
- 하지만 비슷한 연령대의 남녀로 구성된 모집단에서 이성 성관계 상대 수의 평균은 남녀 모두 (거의) 동일해야 한다.

[영국 중년 성인의 성별 sex 파트너 숫자] (The Art of Statistics, P55)

- 왼쪽 그림은 실제 데이터를 보여 주고 있다. 예상했던대로 오른쪽 으로 긴 꼬리를 가지는 분포임을 알 수 있다.
- 실제 데이터에서 최댓값은 남녀 모두 500명 이상이라서 데이터를 잘 볼 수 있도록 50명까지만 데이 터를 제시하였다.

[영국 중년 성인의 성별 sex 파트너 숫자] (The Art of Statistics, P55)

또 하나의 특징은 10명 이상의 경우 남녀 모두 숫자를 5(또는 10)의 배수로 대답하는 경향이 있다는 점이다.

오늘의 강의 요점

- 자료의 유형
 - __ 범주형
 - __ 수치형
- 수치형 자료의 시각화
- 수치형 자료의 요약
 - → 자료의 중앙 대푯값
 - → 자료의 퍼짐 대푯값

○ 출처

#1~7 D. Spiegelhater, (2019), The Art of Statistics, Penguin Random House

자료의 유형과 요약

Lab 2: 자료의 요약과 시각화

평균과 분산

n개의 데이터 x_1, x_2, \dots, x_n 에 대해서 평균과 분산은 다음과 같이 계산할 수 있다.

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}, s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$$

○ 은행 융자 50건에 대한 이자율 자료를 가지고 있다고 하자. 평균은 다음과 같이 구할 수 있다.

$$\overline{x} = \frac{10.90\% + 9.92\% + 26.30\% + \dots + 6.08\%}{50} = 11.57\%$$

평균과 분산

이자율에 대한 분산은 다음과 같이 계산할 수 있다.

$$s^2 = \frac{(10.90 - 11.57)^2 + (9.92 - 11.57)^2 + \dots + (6.08 - 11.57)^2}{49} = 25.52$$

표준편차는 분산의 제곱근으로 위의 예제의 경우

$$s = \sqrt{25.52} = 5.05$$
이다.

분산공식

- \bigcirc 분산공식에서 분모는 n이 아니라 n-1일 이유는 무엇인가?
- 제곱대신 절대값을 사용하면 괜찮을까?

중앙값과 Q₁, Q₃

- 중앙값은 자료를 크기 순으로 나열했을 경우 중앙에 해당하는 값이다.
- 데이터가 짝수일 경우 중앙에 가장 가까운 두 값의 평균으로 중앙값을 사용한다.
- 이자율 데이터의 경우 데이터의 개수가 50이기 때문에 중앙에 (25.5)에 가장 가까운 값인 크기가 작은 순서로 25번째와 26번째 인 데이터의 값의 평균을 사용한다. 이 경우에 두 값이 동일해서 중 앙값은(9.93%+9.93%)/2=9.93%이다.

중앙값과 Q₁, Q₃

- Q₁ 과 Q₃는 데이터를 반으로 나는 후 하위와 상위 50% 자료의 중앙 값이 해당하면 각각 1사분위수(first quartile)와 3사분위수(third quartile)라는 명칭을 사용한다.
- 사분위수와 비슷한 개념으로 백분위수(percentile)를 들 수 있다. 예를 들면 1사분위수는 25 백분위수에 해당한다. 즉 25%의 자료가 25백분위수보다 작다.

그림 상자

- 그림 상자는 5가지 통계량(upper whisker, Q₃, 중앙값, Q₁, lower whisker)과 이상치를 함께 제시하는 시각화방식이다.
- 그림상자에서 whisker는 사분위수로부터 1.5×IQR 이내에 떨어진 점 혹은 최댓/최솟점을 말한다. 여기서 IQR = Q3 Q1이다. 먼저 max/min whisker reach를 정의하자.
 - max whisker reach = Q₁ 1.5×IQR
 - min whisker reach = Q₃ + 1.5 × IQR

그림 상자

[이자율에 대한 그림 상자] (OpenIntro Statistics, P49)

- 왼쪽 그림은 이자율 자료에 관한 그림상자이다.
- 여기서 lower whisker는 최솟 값으로, upper whisker는 max whisker reach아래 데이터 중 가장 큰 값으로 정의된다.

그림 상자

[이자율에 대한 그림 상자] (OpenIntro Statistics, P49)

- max whisker reach보다 더 큰 데이터가 2개 관측되는데 이러한 데이터를 이상점(outlier)이라 고한다.
- 이자율 데이터에서 이상점의 값 은 각각 24.85%와 26.30%이 다.

이상점과 로버스트 통계량(Robust Statistics)

63

- 이자율 데이터에서 최댓값인 26.3% 자료가 15%로 변경이 된다면 각종 통계량에는 어떤 변화가 생길까?
- 또한 이자율 데이터에서 최댓값인 26.3% 자료가 35%로 변경이 된다면 각종 통계량에는 어떤 변화가 생길까?
- 한 개의 데이터 값의 변화에 크게 좌우되지 않는 통계량을 로버스트 (Robust)하다고 한다.

	Robust 통계량		Robust 하지 않은 통계량	
	중앙값	IQR	평균	표준편차
원 자료	9.93%	5.76%	11.57%	5.05%
26.3%가 15%로 바뀐 경우	9.93%	5.76%	11.34%	4.61%
26.3%가 35%로 바뀐 경우	9.93%	5.76%	11.74%	5.68%

[로버스트 통계량] (OpenIntro Statistics, P51)

Strip chart (dot plot)

- O Strip chart는 점 그림(dot plot)으로도 많이 알려져 있다.
- 아래 그림에서 볼 수 있는 것처럼 자료들이 겹치는 부분은 진한 색으로 표시된다. 이럴 경우 시각적 효과를 살리기 위해 자료를 흐트려서 (jittering) 겹치지 않게 보이게 할 수 있다. 젤리 개수 추정치의 strip chart의 경우가 그렇게 표시된 예이다.
- 아래그림에서 빨간 삼각형이 가리키는 부분은 평균에 해당하는 지점이다.

[이자율에 대한 점 상자] (OpenIntro Statistics, P42)

히스토그램

65

[이자율에 대한 히스토그램] (OpenIntro Statistics, P45)

- Strip chart는 모든 데이터의 값은 정확히 보여주지만 데이터가 많은 경우 사용하기 어려울 수 있다.
- 이런 단점을 보완하기 위해 히스 토그램이 사용될 수 있다. 즉 데 이터를 몇 개의 구간으로 나눈 후 에 각 구간에 포함된 데이터 개수 를 그림으로 나타내는 것이다.

사진 출처 #4

히스토그램

66

[이자율에 대한 히스토그램] (OpenIntro Statistics, P45)

○ 왼쪽 그림은 이자율데이터를 총 9개의 구간으로 나눈 후 히스토 그램을 그린 것이다. 여기서 구간 의 길이는 2.5%이며 5%부터 구 간을 시작하였다.

분포의 형태

Modality와 Skewness

[분포의 형태] (Openintro Statistics Lecture Slide Chapter 2, p51)

사진 출처 #5 67

○ 출처

#1~4 Diez, D.M., Barr, C.D. and Çetinkaya-Rundel, M, (2019), OpenIntro Statistics, 4th edition, OpenIntro, Inc.

#5 Diez, D.M., Barr, C.D. and Çetinkaya-Rundel, M, (2019), Openintro Statistics Lecture Slide Chapter 2, https://bit.ly/3jCr7