```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.arima_model import ARIMA
import datetime
import itertools
import warnings
from sklearn.metrics import mean_squared_error
import seaborn as sns
import statsmodels
plt.style.use('fivethirtyeight')
%matplotlib inline
```

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: import pandas.util.testing as tm

```
from google.colab import drive
drive.mount('/content/drive')
```

df = pd.read_csv("/content/drive/MyDrive/Ineuron/data_stocks.csv")
df.head()

	DATE	SP500	NASDAQ.AAL	NASDAQ.AAPL	NASDAQ.ADBE	NASDAQ.ADI	NASDAQ.ADP
0	1491226200	2363.6101	42.3300	143.6800	129.6300	82.040	102.2300
1	1491226260	2364.1001	42.3600	143.7000	130.3200	82.080	102.1400
2	1491226320	2362.6799	42.3100	143.6901	130.2250	82.030	102.2125
3	1491226380	2364.3101	42.3700	143.6400	130.0729	82.000	102.1400
4	1491226440	2364.8501	42.5378	143.6600	129.8800	82.035	102.0600

5 rows × 502 columns

```
41261 2017-08-31 19:56:00

41262 2017-08-31 19:57:00

41263 2017-08-31 19:58:00

41264 2017-08-31 19:59:00

41265 2017-08-31 20:00:00

Name: DATE, dtype: datetime64[ns]

df.index = df['DATE']

df.drop('DATE',axis = 1,inplace=True)
```

SP500 NASDAQ.AAL NASDAQ.AAPL NASDAQ.ADBE NASDAQ.ADI NASDAQ.ADP NASDAQ.

DATE							
2017-08- 31 19:56:00	2472.22	44.72	164.11	155.090	83.67	106.565	11
2017-08- 31 19:57:00	2471.77	44.73	164.12	155.160	83.65	106.590	11
2017-08- 31 19:58:00	2470.03	44.74	164.01	155.065	83.62	106.520	11
2017-08- 31 19:59:00	2471.49	44.71	163.88	154.960	83.58	106.400	11
2017-08- 31 20:00:00	2471.49	44.74	163.98	155.160	83.69	106.470	11

5 rows × 501 columns

- NASDAQ.ADP

```
df_ADP = df[['NASDAQ.ADP']].copy()
df_ADP.tail()
```

NASDAQ.ADP

DATE	
2017-08-31 19:56:00	106.565
2017-08-31 19:57:00 df_ADP.count()	106 590
NASDAQ.ADP 41266 dtype: int64	

ZUI1-UU-JI ZU.UU.UU

df_ADP.plot()

<matplotlib.axes._subplots.AxesSubplot at 0x7f96167444a8>

from statsmodels.graphics.tsaplots import plot_acf
plot_acf(df_ADP)

##Converting series to stationary
df_ADP.shift(1)

NASDAQ.ADP

NaN
102.2300
102.1400
102.2125
102.1400
106.6300
106.5650
106.5900
106.5200
106.4000

41266 rows × 1 columns

warnings.filterwarnings('ignore')

pdq=list(itertools.product(p,d,q))

```
for param in pdq:
   try:
       model arima = ARIMA(train, order=param)
       model arima fit = model arima.fit()
       print(param, model arima fit.aic)
   except:
        continue
     (0, 0, 0) 124317.93290534396
     (0, 0, 1) 85271.48908067068
     (0, 1, 0) -80762.52187440016
     (0, 1, 1) -81075.63405539667
     (1, 0, 0) -80762.97956376115
     (1, 0, 1) -81077.32276388479
     (1, 1, 0) -81067.89180999548
     (1, 1, 1) -81073.99649148404
from statsmodels.tsa.arima model import ARIMA
model arima = ARIMA(train, order=(2,1,2))
model arima fit = model arima.fit()
#p,d,q
#p -> Periods taken for auto regressive model
#d -> Integrated order, difference
#q -> Periods in moving average model
from statsmodels.tsa.arima model import ARIMA
model_arima = ARIMA(train, order=(3,1,3))
model arima fit = model arima.fit()
print(model arima fit.aic)
     -81073.99649148404
predictions = model arima fit.forecast(steps=12380)[0]
predictions
    array([102.67200781, 102.67196666, 102.67198318, ..., 102.85692098,
            102.85693592, 102.85695086])
plt.plot(test)
plt.plot(predictions, color='red')
```

