Layer 2 Switch Modes & Related Concepts

The **OSI Model** (Open Systems Interconnection Model) is a conceptual framework used to describe how data moves through a network in **seven layers**, from physical transmission to user applications.

Here's the breakdown from bottom (Layer 1) to top (Layer 7):

Layer	Name	Main Function	Examples
7	Application	Interfaces directly with the user and provides network services.	HTTP, FTP, SMTP, DNS
6	Presentation	Formats, encrypts, and compresses data for the application layer.	SSL/TLS, JPEG, MP3
5	Session	Manages sessions and connections between devices.	NetBIOS, RPC
4	Transport	Ensures reliable or unreliable delivery, error checking, and segmentation.	TCP, UDP
3	Network	Handles logical addressing and routing of data packets.	IP, ICMP, OSPF
2	Data Link	Provides error detection/correction and physical addressing (MAC).	Ethernet, PPP, Switches
1	Physical	Transmits raw bits over a physical medium.	Cables, hubs, Wi-Fi radio signals

1. Introduction to Layer 2 Switches

A Layer 2 switch is a network device that operates at the **Data Link Layer** of the OSI model. It is primarily responsible for **switching frames** based on **MAC addresses**. Unlike routers (Layer 3), Layer 2 switches don't look at IP addresses for forwarding decisions.

Key Roles of a Layer 2 Switch:

- 1. **Learning** Records source MAC addresses into a **MAC address table** (CAM table).
- 2. **Forwarding/Filtering** Sends frames only to the correct destination port.
- 3. **Loop Prevention** Uses **Spanning Tree Protocol (STP)** to prevent broadcast storms.
- 4. **Segmentation** Divides networks into separate **collision domains**.

2. Cisco Switch Operating Modes (CLI Levels)

Cisco switches have **different modes**, each allowing a specific set of commands.

2.1 Privileged EXEC Mode

• Prompt:

Switch#

• Purpose:

Access all monitoring commands and some configuration commands.

- Access: From User EXEC mode using:
- Example Commands:

```
show running-config
show vlan brief
copy running-config startup-config
```

2.2 Global Configuration Mode

• Prompt:

```
Switch(config)#
```

• Purpose:

Make changes to the switch's global settings.

• Access:

```
bash
Switch# configure terminal
```

• Example Commands:

```
bash
hostname Switch1
no ip domain-lookup
```

2.3 Interface Configuration Mode

• Prompt:

```
scss
Switch(config-if)#
```

• Purpose:

Configure a specific physical port or interface.

Access:

```
bash
Switch(config)# interface FastEthernet0/1
```

• Example Commands:

```
bash
switchport mode access
switchport access vlan 10
description Connected to PC1
```

2.4 VLAN Configuration Mode

• Prompt:

```
scss
Switch(config-vlan)#
```

Purpose:

Create and name VLANs.

• Access:

```
bash
Switch(config) # vlan 10
```

• Example Commands:

```
name STUDENT VLAN
```

3. Related Operational Concepts

3.1 MAC Address Table (CAM Table)

- Stores mapping between MAC addresses and switch ports.
- View using:

```
bash
show mac address-table
```

• Process:

- 1. Switch learns source MAC from incoming frames.
- 2. Stores it in the table with associated port.
- 3. Forwards frame based on destination MAC.

3.2 Spanning Tree Protocol (STP)

- Prevents loops in a redundant Layer 2 network.
- STP States:
 - o Blocking
 - o Listening
 - o Learning
 - Forwarding
- View STP status:

bash

show spanning-tree

3.3 Port Types

- Access Port Belongs to a single VLAN; used for end devices.
- Trunk Port Carries multiple VLANs between switches.
- **Dynamic Port** Negotiates access/trunk via DTP (Dynamic Trunking Protocol).

3.4 Duplex & Speed

- Duplex:
 - o **Half-Duplex** One-way communication at a time.
 - o **Full-Duplex** Both ways simultaneously.
- Speed: 10 Mbps, 100 Mbps, 1 Gbps depending on port.
- Configure:

bash

speed 100
duplex full

	Running Configuration	Startup Configuration
Purpose	Holds the active , currently used settings of the switch	Holds the saved settings that load at the next boot
Location	Stored in RAM (volatile memory)	Stored in NVRAM (non-volatile memory)

Running Configuration Loaded immediately when changes Loaded immediately when changes

When loaded are made via CLI Loaded during switch boot-up

Persistence Lost when the switch is powered off Remains intact after reboot or restarted

How to View show running-config show startup-config

How to Save Changes are immediate but You must copy from running config using:

Changes temporary copy running-config startup-

Lab Work:

• Some basic switch commends (CLI)

- Change host name
- Create New User
- Show configuration
- Show vlan
- Switch between different modes