Name	Vorname	Matrikelnummer
Hauptfach	Nebenfach	Universität/Geburtsdatum (falls nicht Stud. der LMU)
Erzielte Ergebnisse:		
	+ + . 3) (A. 4) (A. 5)	

Ludwig-Maximilians-Universität München Institut für Informatik

WS 2002/2003

Prof. Dr. F. Kröger, Dr. M. Hölzl, Dr. D. Pattinson, J. Zappe

Probeklausur zu Informatik I

Aufgabe 1

Auswertung und Terminierung

(12 Punkte)

Die SML-Funktion pascal berechnet die Einträge im Pascalschen Dreieck wie folgt:

fun pascal
$$(n, k)$$
 = if k = 0 orelse k = n then 1 else pascal $(n-1, k-1)$ + pascal $(n-1, k)$

- a) Werten Sie pascal(3, 2) aus.
- b) Zeigen Sie: pascal terminiert für jede Eingabe $(n,k) \in \mathbb{N}_0 \times \mathbb{N}_0$ mit $k \leq n$.

Schreiben Sie Auswertungen in der veranschaulichten Form des Substitutionsmodells.

Aufgabe 2

Polynome als Listen

(12 Punkte)

Ein Polynom p(x) mit ganzzahligen Koeffizienten ist ein Ausdruck der Form

$$a_0x^0+\cdots+a_nx^n,$$

wobei $n \in \mathbb{N}_0$ und die Koeffizienten $a_0, \ldots, a_n \in \mathbb{Z}$ ganze Zahlen sind. Polynome können in SML als Liste ihrer Koeffizienten durch den Typ int list modelliert werden. Obigem Polynom entspricht beispielsweise die Liste $[a_0, \ldots, a_n]$.

- a) Schreiben Sie eine SML-Funktion polyval: int list \rightarrow int, die zu einem Polynom p (gegeben als Liste) diejenige Funktion bestimmt, die eine ganze Zahl z auf den Wert p(z) abbildet.
- b) Schreiben Sie eine SML-Funktion polyderiv, die zu einem (als Liste gegebenen) Polynom $a_0x^0 + \cdots + a_nx^n$ das Polynom $a_1x^0 + 2a_2x^1 + \cdots + na_nx^{n-1}$ (als Liste) berechnet.

(12 Punkte)

Wir betrachten das Alphabet $\Sigma = \{a, b, c, d\}$.

a) Geben Sie eine BNF-Grammatik G mit Startzeichen $\langle S \rangle$ an, für die

 $\mathcal{L}(\langle S \rangle) = \{ w \in \Sigma^* \mid \text{In } w \text{ folgt auf jedes } c \text{ unmittelbar ein } b \text{ oder ein } d;$ auf jedes d folgt unmittelbar ein $c \}$

gilt.

b) Zeigen Sie durch Angabe von Ableitungen, dass aabba und dedeb in $\mathcal{L}(\langle S \rangle)$ liegen.

Aufgabe 4

Tupel-Selektoren

(4 Punkte)

Geben Sie eine Herleitung folgender Typaussage an:

$$\emptyset > \mathbf{fn} \ x \Rightarrow (x * 2, 7 + 3) : \mathbf{int} \rightarrow (\mathbf{int} * \mathbf{int})$$

Aufgabe 5

Künstlervermittlung

(20 Punkte)

Eine Künstlervermittlung hat Sie beauftragt, ein SML-Programm zu schreiben, mit dem sie ihren Personalbestand verwalten kann. Von der Firma werden Zauberkünstler und Akrobaten vermittelt. Leider sind die von der Agentur vermittelten Künstler nicht sehr flexibel: Jeder Künstler kann nur einen Auftritt mit einer festen Länge absolvieren.

Für jeden Künstler sollen sein Name und die Dauer seines Auftritts gespeichert werden; bei Akrobaten zusätzlich die für einen Auftritt mindestens erforderliche Raumhöhe (diese ist für Zauberkünstler nicht erforderlich).

- a) Geben Sie eine datatype-Deklaration für *kuenstler* an. Sie können annehmen, dass Auftrittsdauer und Mindesthöhe natürliche Zahlen sind.
- b) Geben Sie ein SML-Programm dauer an, das für einen Künstler die Dauer seines Auftritts bestimmt, sowie ein SML-Programm gesamtdauer, das die Gesamtdauer aller Auftritte (d.h. die Summe der Dauer der Einzelauftritte) für eine Liste von Künstlern bestimmt.
- c) Geben Sie ein SML-Programm $hoch_genug$ vom Typ $int \rightarrow kuenstler \rightarrow bool$ mit folgender Eigenschaft an: $hoch_genug(h)(k)$ ist true genau dann, wenn die Raumhöhe h für einen Auftritt des Künstlers k ausreicht. Geben Sie ferner ein SML-Programm $koennen_auftreten$ vom Typ $int \rightarrow kuenstler$ $list \rightarrow bool$ an, so dass $koennen_auftreten(n)(l)$ genau dann true ist, wenn die Raumhöhe n für jeden Künstler in der Liste l ausreicht.
- d) Geben Sie ein SML-Programm engagement vom Typ int \rightarrow kuenstler list \rightarrow kuenstler list an, für das ein Aufruf engagement(h)(l) eine Liste zurückgibt, deren Elemente alle Listen l' von Künstlern sind, die man aus l durch Weglassen von (null oder mehreren) Künstlern erhält und für die koennen_auftreten(h)(l') den Wert true zurückgibt.

Hinweise:

- 1. Schreiben Sie auf jedes Blatt Ihren Namen und Ihre Matrikelnummer
- 2. Nummerieren Sie die Blätter, die Sie abgeben, fortlaufend.

Viel Erfolg wünscht ihr InfoI-Team.