PRÁCTICA 1: EFICIENCIA

Pablo Moreno Megías, Diego Lerena García, Manuel Vallejo Felipe, Ángel Díaz de la Torre, Francisco Navarro Morales, Marcel Kemp Muñoz y David Redondo Correa

Universidad de Granada

22 de marzo de 2017

Overview

- Eficiencia empírica
 - Algoritmos de orden nlogn.
 - Algoritmos de orden n^2 .
 - Algoritmo de orden n^3 .
 - Algoritmo de orden 2^n .
- 2 Eficiencia híbrida.
 - Algoritmos de orden nlogn.
 - Algoritmos de orden n^2 .
 - Algoritmo de orden n^3 .
 - Algoritmo de orden 2ⁿ.
- Otros análisis
 - Burbuja con distintas optimizaciones.
 - Comparación del Heapsort en distintos ordenadores.
 - Mal ajuste de la función de Hanoi
 - Comparación de Heapsort y Quicksort en el peor de los casos del Quicksort

Algoritmos de orden *nlogn*

Algoritmos de orden n^2 .

Algoritmo de orden n^3 .

Algoritmo de orden 2^n .

tamaño

Eficiencia híbrida

0.00 -

150000

200000

100000

50000

Ajustes obtenidos

- Heapsort: $f(n) = 4{,}34068 * 10^5 * nlog(0{,}901865 * n) + 0{,}00511096$
- Quicksort: $f(n) = 3.02225 * 10^9 * nlog(0.901855 * n) + 0.00171908$
- Mergesort: $f(n) = 3.02225 * 10^9 * nlog(0.901855 * n) + 0.00171908$

Algoritmo de Floyd

Algoritmo de Hanoi

Burbuja con distintas optimizaciones.

Comparación del Heapsort en distintos ordenadores

Mal ajuste de la función de Hanoi

Heapsort y Quicksort [VECTOR DESORDENADO]

Heapsort y Quicksort [VECTOR ORDENADO]

COMPUTADOR UTILIZADO EN LAS MEDIDAS

Figura: ARCH LINUX

The End