In [20]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import pickle
```

In [21]:

```
iris = pd.read_csv('C:\datasets\iris.csv')
```

In [22]:

```
iris.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):
```

#	Column	Non-Null Count	Dtype			
0	Id	150 non-null	int64			
1	SepalLengthCm	150 non-null	float64			
2	SepalWidthCm	150 non-null	float64			
3	PetalLengthCm	150 non-null	float64			
4	PetalWidthCm	150 non-null	float64			
5	Species	150 non-null	object			
dtyp	es: float64(4),	int64(1), object	t(1)			
	7 0 KB					

memory usage: 7.2+ KB

In [23]:

iris.head()

Out[23]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

```
In [24]:
```

```
iris.tail()
```

Out[24]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

In [25]:

```
iris.count()
```

Out[25]:

```
Id 150
SepalLengthCm 150
SepalWidthCm 150
PetalLengthCm 150
PetalWidthCm 150
Species 150
```

dtype: int64

In [26]:

```
iris.shape
```

Out[26]:

(150, 6)

In [27]:

```
iris.columns
```

Out[27]:

In [28]:

iris.describe()

Out[28]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

In [29]:

iris.groupby('Species').size()

Out[29]:

Species

Iris-setosa 50 Iris-versicolor 50 Iris-virginica 50

dtype: int64

In [30]:

iris.sample(10)

Out[30]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
46	47	5.1	3.8	1.6	0.2	Iris-setosa
14	15	5.8	4.0	1.2	0.2	Iris-setosa
119	120	6.0	2.2	5.0	1.5	Iris-virginica
136	137	6.3	3.4	5.6	2.4	Iris-virginica
23	24	5.1	3.3	1.7	0.5	Iris-setosa
34	35	4.9	3.1	1.5	0.1	Iris-setosa
100	101	6.3	3.3	6.0	2.5	Iris-virginica
84	85	5.4	3.0	4.5	1.5	Iris-versicolor
1	2	4.9	3.0	1.4	0.2	Iris-setosa
103	104	6.3	2.9	5.6	1.8	Iris-virginica

Removing the un-necessary column from the dataset

```
In [31]:
```

```
iris.drop("Id", axis=1, inplace = True)
```

In [32]:

```
iris.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
```

#	Column	Non-Null Count	Dtype
0	SepalLengthCm	150 non-null	float64
1	SepalWidthCm	150 non-null	float64
2	PetalLengthCm	150 non-null	float64
3	PetalWidthCm	150 non-null	float64
4	Species	150 non-null	object
d+vn	es: float64(4)	object(1)	

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

In [33]:

```
iris.head()
```

Out[33]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

In [34]:

iris.isnull()

Out[34]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	False	False	False	False	False
1	False	False	False	False	False
2	False	False	False	False	False
3	False	False	False	False	False
4	False	False	False	False	False
145	False	False	False	False	False
146	False	False	False	False	False
147	False	False	False	False	False
148	False	False	False	False	False
149	False	False	False	False	False

150 rows × 5 columns

EDA Analysis

In [35]:

```
fig = iris[iris.Species == 'Iris-setosa'].plot(kind='scatter', x='SepalLengthCm', y='SepalWiris[iris.Species == 'Iris-versicolor'].plot(kind='scatter', x='SepalLengthCm', y='SepalWidiris[iris.Species == 'Iris-virginica'].plot(kind='scatter', x='SepalLengthCm', y='SepalWidtfig.set_xlabel('Sepal Length')
fig.set_ylabel('Sepal Width')
fig.set_title('Sepal Length Vs Width')
fig=plt.gcf()
fig.set_size_inches(10, 7)
plt.show()
```


In [36]:

```
sns.FacetGrid(iris, hue='Species', size=5)\
.map(plt.scatter, 'SepalLengthCm', 'SepalWidthCm')\
.add_legend()
```

C:\ProgramData\Anaconda\lib\site-packages\seaborn\axisgrid.py:316: UserWarni
ng: The `size` parameter has been renamed to `height`; please update your co
de.

warnings.warn(msg, UserWarning)

Out[36]:

<seaborn.axisgrid.FacetGrid at 0x29995f39700>

In [37]:

```
fig = iris[iris.Species == 'Iris-setosa'].plot(kind='scatter', x='PetalLengthCm', y='PetalWiris[iris.Species == 'Iris-versicolor'].plot(kind='scatter', x='PetalLengthCm', y='PetalWidiris[iris.Species == 'Iris-virginica'].plot(kind='scatter', x='PetalLengthCm', y='PetalWidtfig.set_xlabel('Petal Length')
fig.set_ylabel('Petal Width')
fig.set_title('Petal Length Vs Width')
fig=plt.gcf()
fig.set_size_inches(10, 7)
plt.show()
```


In [38]:

```
iris.hist(edgecolor='black', linewidth=1.2)
fig = plt.gcf()
fig.set_size_inches(12,6)
plt.show()
```


In [39]:

```
plt.figure(figsize=(15,10))
plt.subplot(2,2,1)
sns.violinplot(x='Species', y = 'SepalLengthCm', data=iris)
plt.subplot(2,2,2)
sns.violinplot(x='Species', y = 'SepalWidthCm', data=iris)

plt.subplot(2,2,3)
sns.violinplot(x='Species', y = 'PetalLengthCm', data=iris)
plt.subplot(2,2,4)
sns.violinplot(x='Species', y = 'PetalWidthCm', data=iris)
```

Out[39]:

<AxesSubplot:xlabel='Species', ylabel='PetalWidthCm'>

In [40]:

```
from sklearn import svm # for SVM Algorithm
from sklearn.linear_model import LogisticRegression # for Logistic Regression Algorithm
from sklearn.model_selection import train_test_split # to split the dataset for training an
from sklearn.metrics import accuracy_score
from sklearn import metrics
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
```

In [41]:

train, test = train_test_split(iris, test_size=0.3) # our main data split into train and te
the attribute test_size=0.3 splits the data into 70% and 30% ratio. train=70% and test=30
print(train.shape)
print(test.shape)

(105, 5) (45, 5)

In [42]:

```
train_X = train[['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm']] # taking t
train_y = train.Species # output of the training data

test_X = test[['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm']] # taking tes
test_y = test.Species # output value of the test data
```

In [43]:

```
train_X.head()
```

Out[43]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
74	6.4	2.9	4.3	1.3
28	5.2	3.4	1.4	0.2
147	6.5	3.0	5.2	2.0
94	5.6	2.7	4.2	1.3
34	4.9	3.1	1.5	0.1

```
In [44]:
```

```
test_X.head()
```

Out[44]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
125	7.2	3.2	6.0	1.8
29	4.7	3.2	1.6	0.2
7	5.0	3.4	1.5	0.2
20	5.4	3.4	1.7	0.2
57	4.9	2.4	3.3	1.0

In [45]:

```
train_y.head()
```

Out[45]:

74 Iris-versicolor 28 Iris-setosa 147 Iris-virginica 94 Iris-versicolor 34 Iris-setosa

Name: Species, dtype: object

Decision Tree

```
In [48]:
```

```
model = DecisionTreeClassifier()
model.fit(train_X, train_y)
prediction = model.predict(test_X)
print('The accuracy of Decision Tree is: ', metrics.accuracy_score(prediction, test_y))
print('The confusion matrix for decision tree is: ',metrics.confusion_matrix(prediction,tes
print('The classification matrix for decision tree is: ',metrics.classification_report(test
```

```
The confusion matrix for decision tree is: [[19 0 0]
[ 0 14 0]
[ 0 1 11]]
The classification matrix for decision tree is:
                                                          precision
recall f1-score
                support
   Iris-setosa
                   1.00
                            1.00
                                     1.00
                                                19
                   1.00
                            0.93
                                     0.97
Iris-versicolor
                                                15
                                     0.96
Iris-virginica
                   0.92
                            1.00
                                                11
                                     0.98
                                                45
      accuracy
     macro avg
                   0.97
                            0.98
                                     0.97
                                                45
  weighted avg
                   0.98
                            0.98
                                     0.98
                                                45
```

Logistic Regression

In [47]:

```
model = LogisticRegression()
model.fit(train_X, train_y)
prediction = model.predict(test X)
print('The accuracy of Decision Tree is: ', metrics.accuracy_score(prediction, test_y))
print('The confusion matrix for decision tree is: ',metrics.confusion_matrix(prediction,tes
print('The classification matrix for decision tree is: ',metrics.classification_report(test
The confusion matrix for decision tree is: [[19 0 0]
 [ 0 14 0]
 [ 0 1 11]]
The classification matrix for decision tree is:
                                                              precision
recall f1-score
                  support
    Iris-setosa
                     1.00
                              1.00
                                       1.00
                                                   19
Iris-versicolor
                     1.00
                              0.93
                                       0.97
                                                   15
 Iris-virginica
                     0.92
                              1.00
                                       0.96
                                                   11
                                       0.98
                                                   45
      accuracy
                              0.98
                                       0.97
                     0.97
                                                   45
```

0.98

45

0.98

macro avg

0.98

weighted avg

In []:			