Gradient Descent: The Foundation of ML Optimization From Taylor Series to Modern Deep Learning

Nipun Batra and Teaching Staff

IIT Gandhinagar

August 28, 2025

Outline

- Mathematical Foundations
- Taylor Series: The Mathematical Foundation
- Gradient Descent Algorithm
- 4 Gradient Descent for Linear Regression
- Variants of Gradient Descent
- Mathematical Properties
- Computational Complexity
- 8 Advanced Topics and Extensions
- Practical Considerations
- 10 Summary and Key Takeaways

The Core ML Problem

$$\min_{\theta} f(\theta)$$

The Core ML Problem

$$\min_{\theta} f(\theta)$$

Examples everywhere:

- Linear regression: $min(y X\theta)^2$
- Neural networks: min classification/regression loss
- Logistic regression: min cross-entropy loss

The Core ML Problem

$$\min_{\theta} f(\theta)$$

Examples everywhere:

- Linear regression: $min(y X\theta)^2$
- Neural networks: min classification/regression loss
- Logistic regression: min cross-entropy loss

Challenge: Most ML problems have no closed-form solution

Geometric Intuition: Climbing Mountains

Imagine hiking in fog to reach the valley:

- Feel slope beneath your feet
- Strategy: Step in steepest downhill direction
- Gradient = steepest uphill
- Negative gradient = steepest downhill

Geometric Intuition: Climbing Mountains

Imagine hiking in fog to reach the valley:

- Feel slope beneath your feet
- **Strategy:** Step in steepest downhill direction
- Gradient = steepest uphill
- Negative gradient = steepest downhill

Think!

Think!

Why does following $-\nabla f$ lead us toward the minimum?

Think!

Think!

Why does following $-\nabla f$ lead us toward the minimum?

(Solution in Appendix)

Why Taylor Series?

Key insight: If we can't solve min f(x) exactly, approximate f(x) locally!

Why Taylor Series?

Key insight: If we can't solve min f(x) exactly, approximate f(x) locally! **Univariate Taylor expansion:**

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f'(x_0)(x - x_0)^2$$

Why Taylor Series?

Key insight: If we can't solve min f(x) exactly, approximate f(x) locally! **Univariate Taylor expansion:**

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2$$

- **Zero-order:** $f(x) \approx f(x_0)$ (constant)
- First-order: adds linear term (tangent)
- Second-order: adds quadratic curvature

Visual: Tangent Line Approximation

Linear approximation: Use tangent line to approximate function locally

Key insight: Tangent gives best local linear approximation!

Visual: Adding Quadratic Term

Key insight: Higher-order terms give better approximations!

Concrete Example: $f(x) = \cos(x)$ at $x_0 = 0$

$$f(0) = \cos(0) = 1 \tag{1}$$

$$f(0) = -\sin(0) = 0 \tag{2}$$

$$f''(0) = -\cos(0) = -1 \tag{3}$$

$$f'''(0) = \sin(0) = 0 \tag{4}$$

$$f^{(4)}(0) = \cos(0) = 1 \tag{5}$$

Concrete Example: $f(x) = \cos(x)$ at $x_0 = 0$

$$f(0) = \cos(0) = 1 \tag{1}$$

$$f'(0) = -\sin(0) = 0 \tag{2}$$

$$f''(0) = -\cos(0) = -1 \tag{3}$$

$$f'''(0) = \sin(0) = 0 \tag{4}$$

$$f^{(4)}(0) = \cos(0) = 1 \tag{5}$$

Taylor approximations:

Oth order:
$$f(x) \approx 1$$
 (6)

2nd order:
$$f(x) \approx 1 - \frac{x^2}{2}$$
 (7)
4th order: $f(x) \approx 1 - \frac{x^2}{2} + \frac{x^4}{24}$ (8)

High order:
$$f(x) \approx 1 - \frac{x^2}{2} + \frac{x^4}{24}$$
 (8)

Multivariate Taylor Series

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^T \nabla^2 f(\mathbf{x}_0) \Delta \mathbf{x}$$

Multivariate Taylor Series

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^T \nabla^2 f(\mathbf{x}_0) \Delta \mathbf{x}$$

where $\Delta x = x - x_0$

Multivariate Taylor Series

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^T \nabla^2 f(\mathbf{x}_0) \Delta \mathbf{x}$$

where $\Delta x = x - x_0$

Visual: Multivariate Case with Level Sets

Key: Gradient \bot level sets, tangent plane \bot gradient

Mathematical insight: Level set = $\{x : f(x) = c\}$ for constant c

Mathematical insight: Level set $= \{x : f(x) = c\}$ for constant c **On level sets:** Moving along the level curve keeps f(x) constant

- If x(t) parameterizes level curve: f(x(t)) = c (constant)
- Taking derivative: $\frac{d}{dt}f(\mathbf{x}(t)) = \nabla f(\mathbf{x}) \cdot \mathbf{x}'(t) = 0$

Mathematical insight: Level set $= \{x : f(x) = c\}$ for constant c **On level sets:** Moving along the level curve keeps f(x) constant

- If $\mathbf{x}(t)$ parameterizes level curve: $f(\mathbf{x}(t)) = c$ (constant)
- Taking derivative: $\frac{d}{dt}f(\mathbf{x}(t)) = \nabla f(\mathbf{x}) \cdot \mathbf{x}'(t) = 0$

Conclusion: $\nabla f(x) \perp x'(t)$ for any tangent direction x'(t)

Mathematical insight: Level set $= \{x : f(x) = c\}$ for constant c **On level sets:** Moving along the level curve keeps f(x) constant

- If $\mathbf{x}(t)$ parameterizes level curve: $f(\mathbf{x}(t)) = c$ (constant)
- Taking derivative: $\frac{d}{dt}f(\mathbf{x}(t)) = \nabla f(\mathbf{x}) \cdot \mathbf{x}'(t) = 0$

Conclusion: $\nabla f(\mathbf{x}) \perp \mathbf{x}'(t)$ for any tangent direction $\mathbf{x}'(t)$

Goal: Find Δx such that $f(x_0 + \Delta x) < f(x_0)$

Goal: Find Δx such that $f(x_0 + \Delta x) < f(x_0)$ **Using first-order Taylor approximation:**

$$f(\mathbf{x}_0 + \Delta \mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \Delta \mathbf{x}$$

Goal: Find Δx such that $f(x_0 + \Delta x) < f(x_0)$ Using first-order Taylor approximation:

$$f(\mathbf{x}_0 + \Delta \mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \Delta \mathbf{x}$$

To minimize, we need: $\nabla f(\mathbf{x}_0)^T \Delta \mathbf{x} < 0$

Goal: Find Δx such that $f(x_0 + \Delta x) < f(x_0)$ **Using first-order Taylor approximation:**

$$f(\mathbf{x}_0 + \Delta \mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \Delta \mathbf{x}$$

To minimize, we need: $\nabla f(x_0)^T \Delta x < 0$

Vector geometry insight: For vectors \mathbf{a} , \mathbf{b} : $\mathbf{a}^T \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)$

Minimum when $cos(\theta) = -1$ (opposite directions!)

Goal: Find Δx such that $f(x_0 + \Delta x) < f(x_0)$ **Using first-order Taylor approximation:**

$$f(\mathbf{x}_0 + \Delta \mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \Delta \mathbf{x}$$

To minimize, we need: $\nabla f(x_0)^T \Delta x < 0$

Vector geometry insight: For vectors \mathbf{a} , \mathbf{b} : $\mathbf{a}^T \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)$

Minimum when $\cos(\theta) = -1$ (opposite directions!)

Optimal choice: $\Delta x = -\alpha \nabla f(x_0)$ where $\alpha > 0$

Goal: Find Δx such that $f(x_0 + \Delta x) < f(x_0)$ **Using first-order Taylor approximation:**

$$f(\mathbf{x}_0 + \Delta \mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \Delta \mathbf{x}$$

To minimize, we need: $\nabla f(x_0)^T \Delta x < 0$

Vector geometry insight: For vectors \mathbf{a} , \mathbf{b} : $\mathbf{a}^T \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)$

Minimum when $\cos(\theta) = -1$ (opposite directions!)

Optimal choice: $\Delta x = -\alpha \nabla f(x_0)$ where $\alpha > 0$

$$oldsymbol{x}_{\mathsf{new}} = oldsymbol{x}_{\mathsf{old}} - lpha
abla f(oldsymbol{x}_{\mathsf{old}})$$

The Gradient Descent Algorithm

$$\theta_{t+1} = \theta_t - \alpha \nabla f(\theta_t)$$

The Gradient Descent Algorithm

$$ig|_{oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_t - lpha
abla f(oldsymbol{ heta}_t)}$$

Algorithm:

- **1 Initialize:** θ_0 (random or educated guess)
- **2** For $t = 0, 1, 2, \ldots$ until convergence:
 - Compute gradient: $\mathbf{g}_t = \nabla f(\boldsymbol{\theta}_t)$
 - Update parameters: $oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_t lpha oldsymbol{g}_t$
 - ullet Check convergence: $|oldsymbol{g}_t| < \epsilon$

The Gradient Descent Algorithm

$$\theta_{t+1} = \theta_t - \alpha \nabla f(\theta_t)$$

Algorithm:

- **1 Initialize:** θ_0 (random or educated guess)
- **2** For $t = 0, 1, 2, \ldots$ until convergence:
 - Compute gradient: $\mathbf{g}_t = \nabla f(\boldsymbol{\theta}_t)$
 - Update parameters: $oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_t lpha oldsymbol{g}_t$
 - Check convergence: $|\boldsymbol{g}_t| < \epsilon$

Key properties:

- First-order method (uses gradients, not Hessians)
- Greedy local search
- Guaranteed convergence for convex functions

Linear Regression Problem

Learn: $y = \theta_0 + \theta_1 x$ from data

X	у
1	1
2	2
3	3

Linear Regression Problem

Learn: $y = \theta_0 + \theta_1 x$ from data

X	у
1	1
2	2
3	3

Cost Function (Mean Squared Error):

$$MSE(\theta_0, \theta_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)^2$$

Linear Regression Problem

Learn: $y = \theta_0 + \theta_1 x$ from data

X	у
1	1
2	2
3	3

Cost Function (Mean Squared Error):

$$MSE(\theta_0, \theta_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)^2$$

Goal: $(\theta_0^*, \theta_1^*) = \operatorname{argmin}_{\theta_0, \theta_1} \mathsf{MSE}(\theta_0, \theta_1)$

Computing Gradients for Linear Regression

We need:
$$\nabla \text{MSE} = \begin{bmatrix} \frac{\partial \text{MSE}}{\partial \theta_0} \\ \frac{\partial \text{MSE}}{\partial \theta_1} \end{bmatrix}$$

Computing Gradients for Linear Regression

We need:
$$\nabla \mathsf{MSE} = \begin{bmatrix} \frac{\partial \mathsf{MSE}}{\partial \theta_0} \\ \frac{\partial \mathsf{MSE}}{\partial \theta_1} \end{bmatrix}$$

Partial derivatives:

$$\frac{\partial \mathsf{MSE}}{\partial \theta_0} = \frac{2}{n} \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)(-1) = -\frac{2}{n} \sum_{i=1}^n \epsilon_i \tag{9}$$

$$\frac{\partial \mathsf{MSE}}{\partial \theta_1} = \frac{2}{n} \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)(-x_i) = -\frac{2}{n} \sum_{i=1}^n \epsilon_i x_i \tag{10}$$

where $\epsilon_i = y_i - \hat{y}_i$ is the residual.

Computing Gradients for Linear Regression

We need:
$$\nabla MSE = \begin{bmatrix} \frac{\partial MSE}{\partial \theta_0} \\ \frac{\partial MSE}{\partial \theta_1} \end{bmatrix}$$

Partial derivatives:

$$\frac{\partial \mathsf{MSE}}{\partial \theta_0} = \frac{2}{n} \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)(-1) = -\frac{2}{n} \sum_{i=1}^n \epsilon_i \tag{9}$$

$$\frac{\partial \mathsf{MSE}}{\partial \theta_1} = \frac{2}{n} \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)(-x_i) = -\frac{2}{n} \sum_{i=1}^n \epsilon_i x_i \tag{10}$$

where $\epsilon_i = y_i - \hat{y}_i$ is the residual.

Matrix form: $\nabla MSE(\theta) = \frac{2}{n} \mathbf{X}^T (\mathbf{X}\theta - \mathbf{y})$

Step-by-Step Example

Initial:
$$\theta_0 =$$
 4, $\theta_1 =$ 0, $\alpha =$ 0.1

Step-by-Step Example

Initial: $\theta_0 = 4$, $\theta_1 = 0$, $\alpha = 0.1$ Iteration 1:

- Predictions: $\hat{y}_1 = 4$, $\hat{y}_2 = 4$, $\hat{y}_3 = 4$
- Errors: $\epsilon_1 = -3$, $\epsilon_2 = -2$, $\epsilon_3 = -1$
- $\bullet \ \frac{\partial \mathsf{MSE}}{\partial \theta_0} = -\frac{2}{3}(-6) = 4$
- $\frac{\partial MSE}{\partial \theta_1} = -\frac{2}{3}(-10) = 6.67$
- $\theta_0 = 4 0.1 \times 4 = 3.6$
- $\theta_1 = 0 0.1 \times 6.67 = -0.67$

Step-by-Step Example

Initial: $\theta_0 = 4$, $\theta_1 = 0$, $\alpha = 0.1$

Iteration 1:

- Predictions: $\hat{y}_1 = 4$, $\hat{y}_2 = 4$, $\hat{y}_3 = 4$
- Errors: $\epsilon_1 = -3$, $\epsilon_2 = -2$, $\epsilon_3 = -1$
- $\bullet \ \frac{\partial \mathsf{MSE}}{\partial \theta_0} = -\frac{2}{3}(-6) = 4$
- $\frac{\partial MSE}{\partial \theta_1} = -\frac{2}{3}(-10) = 6.67$
- $\theta_0 = 4 0.1 \times 4 = 3.6$
- $\theta_1 = 0 0.1 \times 6.67 = -0.67$

New parameters: $(\theta_0, \theta_1) = (3.6, -0.67)$

Visual: GD Path on Loss Surface

Notice: Algorithm takes larger steps when gradient is large!

The Gradient Descent Family

Three main variants based on data usage per update:

Method	Data per update	Updates per epoch	Convergence
Batch GD	n (all)	1	Smooth
SGD	1	n	Noisy
Mini-batch GD	b (batch size)	n/b	Balanced

The Gradient Descent Family

Three main variants based on data usage per update:

Method	Data per update	Updates per epoch	Convergence
Batch GD	n (all)	1	Smooth
SGD	1	n	Noisy
Mini-batch GD	b (batch size)	n/b	Balanced

Trade-offs: Computational cost vs. convergence stability vs. memory

The Gradient Descent Family

Three main variants based on data usage per update:

Method	Data per update	Updates per epoch	Convergence
Batch GD	n (all)	1	Smooth
SGD	1	n	Noisy
Mini-batch GD	b (batch size)	n/b	Balanced

Trade-offs: Computational cost vs. convergence stability vs. memory Modern ML: Mini-batch GD with batch sizes 32-256 is most common

- Good balance of stability and efficiency
- Enables parallel computation (GPUs love batches!)

Learning Rate Effects

Pop Quiz #1

Pop Quiz #1

For dataset with 1000 samples and batch size 50:

- How many iterations per epoch for mini-batch GD?
- If SGD takes 1000 epochs to converge, roughly how many epochs should mini-batch take?
- Why might SGD be noisier than batch GD?

Pop Quiz #1

Pop Quiz #1

For dataset with 1000 samples and batch size 50:

- How many iterations per epoch for mini-batch GD?
- If SGD takes 1000 epochs to converge, roughly how many epochs should mini-batch take?
- Why might SGD be noisier than batch GD?

(Solutions in Appendix)

Convergence Rates for Convex Functions

L-smooth convex: $\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \le L\|\mathbf{x} - \mathbf{y}\|$ With step size $\alpha \in (0, 1/L]$:

$$f(\mathbf{x}_t) - f(\mathbf{x}^*) \le \frac{L\|\mathbf{x}_0 - \mathbf{x}^*\|^2}{2t}$$

Convergence Rates for Convex Functions

L-smooth convex: $\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \le L\|\mathbf{x} - \mathbf{y}\|$ With step size $\alpha \in (0, 1/L]$:

$$f(\mathbf{x}_t) - f(\mathbf{x}^*) \le \frac{L\|\mathbf{x}_0 - \mathbf{x}^*\|^2}{2t}$$

Rate: O(1/t) (sublinear)

Convergence Rates for Convex Functions

L-smooth convex: $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$ With step size $\alpha \in (0, 1/L]$:

$$f(\mathbf{x}_t) - f(\mathbf{x}^*) \le \frac{L\|\mathbf{x}_0 - \mathbf{x}^*\|^2}{2t}$$

Rate: O(1/t) (sublinear) μ -strongly convex + L-smooth:

$$f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \left(1 - \frac{\mu}{L}\right)^t \left(f(\mathbf{x}_0) - f(\mathbf{x}^*)\right)$$

Rate: Linear convergence! Condition number $\kappa = L/\mu$

SGD as Unbiased Estimator

True gradient: $\nabla L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(f(\mathbf{x}_i; \theta), y_i)$ **SGD gradient estimate:** $\nabla \tilde{L}(\theta) = \nabla \ell(f(\mathbf{x}; \theta), y)$, where (\mathbf{x}, y) is sampled uniformly from $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$

SGD as Unbiased Estimator

True gradient: $\nabla L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(f(\mathbf{x}_i; \theta), y_i)$

SGD gradient estimate: $\nabla \tilde{L}(\theta) = \nabla \ell(f(x; \theta), y)$, where (x, y) is sampled uniformly

from $\{(x_i, y_i)\}_{i=1}^n$

Unbiased estimator property:

$$\mathbb{E}[\nabla \tilde{L}(\boldsymbol{\theta})] = \nabla L(\boldsymbol{\theta})$$

SGD as Unbiased Estimator

True gradient: $\nabla L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(f(\mathbf{x}_i; \theta), y_i)$

SGD gradient estimate: $\nabla \tilde{L}(\theta) = \nabla \ell(f(\mathbf{x}; \theta), y)$, where (\mathbf{x}, y) is sampled uniformly

from $\{(x_i, y_i)\}_{i=1}^n$

Unbiased estimator property:

$$\mathbb{E}[\nabla \tilde{L}(\boldsymbol{\theta})] = \nabla L(\boldsymbol{\theta})$$

Proof sketch:

$$\mathbb{E}[\nabla \tilde{L}(\boldsymbol{\theta})] = \sum_{i=1}^{n} \frac{1}{n} \nabla \ell(f(\boldsymbol{x}_i; \boldsymbol{\theta}), y_i) = \nabla L(\boldsymbol{\theta})$$

Implication: Individual SGD steps might be "wrong", but average in correct direction!

SGD Computational Graph: From Samples to Gradients

Visual Intuition 1: Individual Sample Loss Surfaces

Each data point creates its own loss landscape

Key: Each sample (x_i, y_i) defines loss $\ell_i(\theta)$ with different optimal θ_i^*

Visual Intuition 2: Averaging Individual Gradients

True gradient = Average of individual gradients

$$abla L(oldsymbol{ heta}) = rac{1}{n} [
abla \ell_1(oldsymbol{ heta}) +
abla \ell_2(oldsymbol{ heta}) +
abla \ell_3(oldsymbol{ heta})]$$

SGD: Pick one random individual gradient instead of computing expensive average!

Why Unbiasedness Matters

Intuitive analogy: Asking random people for directions

- Individual answers might be slightly off
- But if no systematic bias, average direction is correct
- SGD does the same with gradient estimates!

Why Unbiasedness Matters

Intuitive analogy: Asking random people for directions

- Individual answers might be slightly off
- But if no systematic bias, average direction is correct
- SGD does the same with gradient estimates!

The noise can be beneficial:

- Helps escape local minima in non-convex problems
- Provides implicit regularization
- Enables online learning

GD vs Normal Equation

For linear regression:

Normal equation: $\hat{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

• Time complexity: $O(d^2n + d^3)$

GD vs Normal Equation

For linear regression:

Normal equation: $\hat{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

• Time complexity: $O(d^2n + d^3)$

Gradient descent: $\theta_{t+1} = \theta_t - \alpha \mathbf{X}^T (\mathbf{X} \theta_t - \mathbf{y})$

- Time complexity per iteration: O(dn)
- Total: $O(T \cdot dn)$ for T iterations

GD vs Normal Equation

For linear regression:

Normal equation: $\hat{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

• Time complexity: $O(d^2n + d^3)$

Gradient descent: $\theta_{t+1} = \theta_t - \alpha \mathbf{X}^T (\mathbf{X} \theta_t - \mathbf{y})$

- Time complexity per iteration: O(dn)
- Total: $O(T \cdot dn)$ for T iterations

When to use which?

- Few features (d < 1000): Normal equation
- Many features (d > 10000): Gradient descent
- Non-linear models: Only gradient descent works

Beyond Basic Gradient Descent

Momentum: $\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1-\beta)\mathbf{g}_t$, $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t - \alpha \mathbf{v}_{t+1}$ **Adam:** Combines momentum + adaptive learning rates

$$oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_t - rac{lpha}{\sqrt{\hat{oldsymbol{
u}}_t} + \epsilon} \hat{oldsymbol{m}}_t$$

Defaults: $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 10^{-8}$

Beyond Basic Gradient Descent

Momentum: $\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1-\beta)\mathbf{g}_t$, $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t - \alpha \mathbf{v}_{t+1}$ **Adam:** Combines momentum + adaptive learning rates

$$oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_t - rac{lpha}{\sqrt{\hat{oldsymbol{
u}}_t} + \epsilon} \hat{oldsymbol{m}}_t$$

Defaults: $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 10^{-8}$

Why these improvements?

- Handle different parameter scales automatically
- Accelerate convergence in relevant directions
- Reduce oscillations in narrow valleys

Second-Order Methods

Newton's method: $\theta_{t+1} = \theta_t - \alpha [\nabla^2 f(\theta_t)]^{-1} \nabla f(\theta_t)$

Gauss-Newton: For least squares problems

L-BFGS: Quasi-Newton method (approximates Hessian)

Second-Order Methods

Newton's method: $\theta_{t+1} = \theta_t - \alpha [\nabla^2 f(\theta_t)]^{-1} \nabla f(\theta_t)$

Gauss-Newton: For least squares problems

L-BFGS: Quasi-Newton method (approximates Hessian)

Trade-off: Faster convergence vs. $O(d^3)$ cost per iteration

Second-Order Methods

Newton's method: $\theta_{t+1} = \theta_t - \alpha [\nabla^2 f(\theta_t)]^{-1} \nabla f(\theta_t)$

Gauss-Newton: For least squares problems

L-BFGS: Quasi-Newton method (approximates Hessian)

Trade-off: Faster convergence vs. $O(d^3)$ cost per iteration

Line search methods: Adaptive step size via Armijo condition

Gradient Descent in Deep Learning

Every modern deep learning framework uses GD variants! Key extensions:

- Backpropagation: Efficient gradient computation
- Automatic differentiation: PyTorch/TensorFlow handle gradients
- GPU acceleration: Parallel mini-batch gradients
- **Mixed precision:** 16-bit + 32-bit arithmetic

Learning Rate Selection

Common strategies:

- Grid search: $\alpha \in \{0.001, 0.01, 0.1, 1.0\}$
- Learning rate schedules: Start high, decay over time
- Adaptive methods: Let algorithm adjust automatically
- Learning rate finder: Gradually increase and watch loss

Learning Rate Selection

Common strategies:

- Grid search: $\alpha \in \{0.001, 0.01, 0.1, 1.0\}$
- Learning rate schedules: Start high, decay over time
- Adaptive methods: Let algorithm adjust automatically
- Learning rate finder: Gradually increase and watch loss

Warning signs:

- Loss exploding $\Rightarrow \alpha$ too high
- Very slow convergence $\Rightarrow \alpha$ too low
- Oscillating loss \Rightarrow Try smaller α or momentum

Other Practical Considerations

Feature scaling: Standardize features: $(x - \mu)/\sigma$ Convergence criteria:

- Gradient magnitude: $\|\nabla f(\theta)\| < \epsilon$
- Function change: $|f(\theta_{t+1}) f(\theta_t)| < \epsilon$
- Maximum iterations: Simple upper bound

Other Practical Considerations

Feature scaling: Standardize features: $(x - \mu)/\sigma$ **Convergence criteria:**

- Gradient magnitude: $\|\nabla f(\theta)\| < \epsilon$
- Function change: $|f(\theta_{t+1}) f(\theta_t)| < \epsilon$
- Maximum iterations: Simple upper bound

Common pitfalls:

- Poor initialization (use Xavier/He for neural networks)
- Poor feature scaling (different parameter scales)
- Not monitoring validation performance

Think!

Think!

For L-smooth function, why might $\alpha > 2/L$ cause divergence on a quadratic?

Think!

Think!

For *L*-smooth function, why might $\alpha > 2/L$ cause divergence on a quadratic?

(Solution in Appendix)

What We've Learned

Core journey:

- Mathematical foundation: Taylor series approximation
- **Key insight:** Follow $-\nabla f$ for steepest descent
- Algorithm: $\theta_{t+1} = \theta_t \alpha \nabla f(\theta_t)$
- Variants: Batch, SGD, mini-batch (use mini-batch!)
- Theory: Convergence rates depend on function properties

What We've Learned

Core journey:

- Mathematical foundation: Taylor series approximation
- **Key insight:** Follow $-\nabla f$ for steepest descent
- Algorithm: $\theta_{t+1} = \theta_t \alpha \nabla f(\theta_t)$
- Variants: Batch, SGD, mini-batch (use mini-batch!)
- **Theory:** Convergence rates depend on function properties

From theory to practice:

- Tune learning rates carefully
- Scale features properly
- Monitor diagnostics
- Consider advanced optimizers (Adam, momentum)

What We've Learned

Core journey:

- Mathematical foundation: Taylor series approximation
- **Key insight:** Follow $-\nabla f$ for steepest descent
- Algorithm: $\theta_{t+1} = \theta_t \alpha \nabla f(\theta_t)$
- Variants: Batch, SGD, mini-batch (use mini-batch!)
- **Theory:** Convergence rates depend on function properties

From theory to practice:

- Tune learning rates carefully
- Scale features properly
- Monitor diagnostics
- Consider advanced optimizers (Adam, momentum)

Gradient descent powers modern machine learning!

Deep Dive: Stochastic Gradient Descent Theory

For comprehensive mathematical analysis:

										•	X	(<u> </u>	•					
	•	٠	٠	٠	٠		٠	*	٠	٠	<u>J</u>		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		• ,	٠	٠	٠	٠	٠
	٠	٠	٠	٠			٠	٠	٠	•		u	٠	٠	_	•	٠	٠	٠		٠	7	-0	٠	٠	٠	٠	•	•
	٠	•	٠	٠	•		٠	•	٠	•	•	1	٠	٠	٠	٠	•	·	·			1.	Z	_	•	_	٠	٠	•
	٠	٠	٠	٠	•			•	٠	٠			٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
		٠	٠	٠	•		٠	٠	٠	٠		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	. •	٠	٠	٠	٠	٠	٠
	•	٠	٠	٠	٠		٠	٠	٠	٠		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠			٠	٠	٠	٠	٠	٠
	٠	٠	٠	٠				٠	٠	٠		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	٠
	٠	٠																				• .	٠			٠			
																						• •							
	٠	٠		٠									٠		٠	٠	٠		٠				٠	٠					
		٠															٠					٠.	. 1						
	૧	₽ ₽	٠.	4 ≣		∢ 3	7 ▶	. ⁴ ₫																					
				٠																									
	٠																												
								٠								٠			٠			• .							
	٠									٠												• .	٠						
																						•							
	•		-	-				•			4.	•									T	,	_						
2N 7N	٠	٠	٠	٠	٠		•	٠	٠	N	ţ'			٠	-		•		•	_	J .	1	. 4			_			٠

	× × × × × × × × × × × × × × × × × × ×											4	<u> </u>		$\hat{y} = f(x, \theta)$													
	٠	•		-	え	7 ·1	· 	•			•	•	•			y	<u>.</u>	٠	٠		٠	g					٠	
			٠						٠								٠					•						
			۰			•			۰	٠					٠		٠		٠	٠	٠	•	٠	٠	٠	٠	٠	
٠	٠		٠	٠		• ·			٠				٠		٠		٠	٠	٠	٠	٠		٠	٠		٠	٠	٠
						• .															· ·			· ·	•		٠	
			٠			• .			٠																			
			٠			•				٠									٠							٠		
			٠			• .				٠					٠		٠				٠	^		٠		٠	٠	
					. 9	د .	7	<u>.</u>	٠				- ·		٠	A			٠		٠	y	N	٠	٠	٠	٠	٠

LOSS SURFACE OVER 6N° EXAMPLES

LOSS SURFACE OVER 6N° EXAMPLES

LOSS SURFACE OVER 6N° EXAMPLES

Think! Solutions

Think! 1: Why does $-\nabla f$ lead toward minimum?

The gradient $\nabla f(\mathbf{x})$ points in direction of steepest ascent. To descend (minimize), we go in the opposite direction: $-\nabla f(\mathbf{x})$.

Think! Solutions

Think! 1: Why does $-\nabla f$ lead toward minimum?

The gradient $\nabla f(\mathbf{x})$ points in direction of steepest ascent. To descend (minimize), we go in the opposite direction: $-\nabla f(\mathbf{x})$.

Think! 2: Why might $\alpha > 2/L$ cause divergence?

For quadratic $f(x) = \frac{L}{2}x^2$, we have f'(x) = Lx. The update becomes:

 $x_{t+1} = x_t - \alpha L x_t = (1 - \alpha L) x_t$

If $\alpha L > 2$, then $|1 - \alpha L| > 1$, causing the sequence to diverge.

Pop Quiz Solutions

Pop Quiz #1: For 1000 samples, batch size 50:

- **10** Mini-batch iterations per epoch: 1000/50 = 20
- ② If SGD takes 1000 epochs, mini-batch might take \approx 50 epochs (rough estimate)
- SGD is noisier because it uses only 1 sample per update vs. all samples for batch GD

Pop Quiz Solutions

Pop Quiz #1: For 1000 samples, batch size 50:

- Mini-batch iterations per epoch: 1000/50 = 20
- If SGD takes 1000 epochs, mini-batch might take ≈ 50 epochs (rough estimate)
- SGD is noisier because it uses only 1 sample per update vs. all samples for batch GD

Additional insight: The noise in SGD can actually help escape local minima in non-convex optimization problems!

References & Further Reading

Essential references:

- Boyd & Vandenberghe: Convex Optimization
- Nocedal & Wright: Numerical Optimization
- Goodfellow et al.: Deep Learning, Chapters 4 & 8

References & Further Reading

Essential references:

- Boyd & Vandenberghe: Convex Optimization
- Nocedal & Wright: Numerical Optimization
- Goodfellow et al.: Deep Learning, Chapters 4 & 8

Interactive resources:

- Gradient descent visualizations online
- Implement from scratch in NumPy/PyTorch
- Experiment with different learning rates

References & Further Reading

Essential references:

- Boyd & Vandenberghe: Convex Optimization
- Nocedal & Wright: Numerical Optimization
- Goodfellow et al.: Deep Learning, Chapters 4 & 8

Interactive resources:

- Gradient descent visualizations online
- Implement from scratch in NumPy/PyTorch
- Experiment with different learning rates

Next lecture: Advanced Optimization Techniques Practice: Implement GD for your favorite ML model!