CAUSAL EFFECT

Figure 3.1: A causal diagram representing the effect of fumigants (X) on yields (Y).

$$Z_{0} = f_{0}(\epsilon_{0}), \qquad B = f_{B}(Z_{0}, \epsilon_{B}),$$

$$Z_{1} = f_{1}(Z_{0}, \epsilon_{1}), \qquad X = f_{X}(Z_{0}, \epsilon_{X}), \qquad (3.3)$$

$$Z_{2} = f_{2}(X, Z_{1}, \epsilon_{2}), \qquad Y = f_{Y}(X, Z_{2}, Z_{3}, \epsilon_{Y}),$$

$$Z_{3} = f_{3}(B, Z_{2}, \epsilon_{3}).$$

$$P(x_{1}, ..., x_{n}) = \prod_{i} P(x_{i} \mid pa_{i}), \qquad (3.5)$$

$$P(z_{0}, x, z_{1}, b, z_{2}, z_{3}, y) = P(z_{0})P(x|z_{0})P(z_{1}|z_{0}) \times P(b|z_{0})P(z_{2}|x, z_{1}) \times P(z_{3}|z_{2}, b)P(y|x, z_{2}, z_{3}).$$

$$(3.6)$$

Find $P(y|\hat{x})$ given $P(y,x,z_1,z_2,z_3)$

CAUSAL EFFECT

Definition 3.2.1 (Causal Effect)

Given two disjoint sets of variables, X and Y, the **causal effect** of X on Y, denoted either as $P(y|\hat{x})$ or as P(y|do(x)), is a function from X to the space of probability distributions on Y.

For each realization x of X, $P(y|\hat{x})$ gives the probability of Y=y induced by deleting from the model of (3.4) all equations corresponding to variables in X and substituting X=x in the remaining equations.

INTERVENTIONS AS VARIABLES

Figure 3.2: Representing external intervention F_i by an augmented network $G' = G \cup \{F_i \rightarrow X_i\}$.

$$P(x_i \mid pa_i') = \begin{cases} P(x_i \mid pa_i) & \text{if } F_i = \text{idle,} \\ 0 & \text{if } F_i = do(x_i') \\ & \text{and } x_i \neq x_i', \\ 1 & \text{if } F_i = do(x_i') \\ & \text{and } x_i = x_i'. \end{cases}$$

$$P(x_1, ..., x_n | \hat{x}_i') = P'(x_1, ..., x_n | F_i = do(x_i')),$$
(3.9)

where P' is represented by G'.

THE TRUNCATED FACTORIZATION FORMULA

$$P(x_1, ..., x_n | \hat{x}_i') = \begin{cases} \prod_{j \neq i} P(x_j | pa_j) & \text{if } x_i = x_i', \\ 0 & \text{if } x_i \neq x_i'. \end{cases}$$
(3.10)

$$P(x_1, \dots, x_n | \hat{x}_i') = \begin{cases} \frac{P(x_1, \dots, x_n)}{P(x_i' | pa_i)} & \text{if } x_i = x_i', \\ 0 & \text{if } x_i \neq x_i'. \end{cases}$$
(3.11)

$$P(x_1, ..., x_n | \hat{x}_i') = \begin{cases} P(x_1, ..., x_n | x_i', pa_i) P(pa_i) \\ & \text{if } x_i = x_i', \\ 0 & \text{if } x_i \neq x_i'. \end{cases}$$
(3.12)

Theorem 3.2.2 (Adjustment for Direct Causes)

Let PA_i denote the set of direct causes of variable X_i , and let Y be any set of variables disjoint of $\{X_i \cup PA_i\}$. The effect of the intervention $do(X_i = x_i')$ on Y is given by

$$P(y|\hat{x}_i') = \sum_{pa_i} P(y|x_i', pa_i) P(pa_i),$$
 (3.13)

where $P(y|x_i',pa_i)$ and $P(pa_i)$ represent preintervention probabilities.

EXAMPLE: PROCESS CONTROL

Figure 3.3:

Given samples from $P(y, z_1, ..., z_n, x_1, ..., x_n)$, find $P^*(y)$ where P^* obtains under a new strategy $S^*: P^*(x_k|x_{k-1}, z_k, z_{k-1})$

If
$$S^*$$
: $do(X_k = x_k)$, then

$$P^{*}(y) = P(y|\hat{x}_{1}, \hat{x}_{2}, \dots, \hat{x}_{n})$$

$$= \sum_{z_{1}, \dots, z_{n}} P(y|z_{1}, z_{2}, \dots, z_{n}, x_{1}, x_{2}, \dots, x_{n})$$

$$\prod_{k} P(z_{k}|z_{k-1}, x_{k-1})$$
(3.18)

IDENTIFIABILITY

Definition 3.2.3 (Identifiability)

Let Q(M) be any computable quantity of a model M. We say that Q is identifiable in a class M of models if, for any pairs of models M_1 and M_2 from M, $Q(M_1) = Q(M_2)$ whenever $P_{M_1}(v) = P_{M_2}(v)$.

If our observations are limited, and permit only a partial set F_M of features (of $P_M(v)$) to be estimated, we define Q to be identifiable from F_M if $Q(M_1) = Q(M_2)$ whenever $F_{M_1} = F_{M_2}$.

CAUSAL EFFECT IDENTIFIABILITY

Definition 3.2.4 (Causal Effect Identifiability)

The **causal effect** of X on Y is said to be **identifiable** from a graph G if the quantity $P(y|\hat{x})$ can be computed uniquely from any positive probability of the observed variables—that is, if $P_{M_1}(y|\hat{x}) = P_{M_2}(y|\hat{x})$ for every pair of models M_1 and M_2 with $P_{M_1}(v) = P_{M_2}(v) > 0$ and $G(M_1) = G(M_2) = G$.

Theorem 3.2.5

Given a causal diagram G of any Markovian model in which a subset V of variables are measured, the causal effect $P(y|\hat{x})$ is identifiable whenever $\{X \cup Y \cup PA_X\} \subseteq V$, that is, whenever X, Y, and all parents of variables in X are measured. The expression of $P(y|\hat{x})$ is then obtained by adjusting for PA_x , as in (3.13).

Corollary 3.2.6

Given the causal diagram G of any Markovian model in which all variables are measured, the causal effect $P(y|\hat{x})$ is identifiable for every two subsets of variables X and Y and is obtained from the truncated factorization of (3.14).

THE BACK-DOOR CRITERION

Definition 3.3.1 (Back-Door)

A set of variables Z satisfies the **back-door** criterion relative to an ordered pair of variables (X_i, X_j) in a DAG G if:

- (i) no node in Z is a descendant of X_i ; and
- (ii) Z blocks every path between X_i and X_j that contains an arrow into X_i .

Theorem 3.3.2 (Back-Door Adjustment)

If a set of variables Z satisfies the back-door criterion relative to (X,Y), then the causal effect of X on Y is identifiable and is given by the formula

$$P(y|\hat{x}) = \sum_{z} P(y|x,z)P(z).$$
 (3.19)

THE FRONT-DOOR CRITERION

Figure 3.4

Suppose X_1, X_2, X_3, X_4 , and X_5 are unobserved. Can we find $P(x_j|\hat{x}_i)$?

THE FRONT-DOOR CRITERION (Cont.)

Definition 3.3.3 (Front-Door)

A set of variables Z is said to satisfy the **front-door** criterion relative to an ordered pair of variables (X, Y) if:

- (i) Z intercepts all directed paths from X to Y;
- (ii) there is no back-door path from X to Z; and
- (iii) all back-door paths from Z to Y are blocked by X.

Theorem 3.3.4 (Front-Door Adjustment)

If Z satisfies the front-door criterion relative to (X,Y) and if P(x,z)>0, then the causal effect of X on Y is identifiable and is given by the formula

$$P(y|\hat{x}) = \sum_{z} P(z|x) \sum_{x'} P(y|x',z) P(x').$$
 (3.29)

PROOF OF FRONT-DOOR CRITERION

$$P(x, y, z, u) = P(u)P(x|u)P(z|x)P(y|z, u).$$
(3.22)

$$P(y, z, u | \hat{x}) = P(y|z, u)P(z|x)P(u).$$
 (3.23)

$$P(y|\hat{x}) = \sum_{z} P(z|x) \sum_{u} P(y|z,u) P(u).$$
 (3.24)

Eliminate u from this expression, using

$$P(u|z,x) = P(u|x),$$
 (3.25)

$$P(y|x,z,u) = P(y|z,u).$$
 (3.26)

yielding

$$P(y|\hat{x}) = \sum_{z} P(z|x) \sum_{x'} P(y|x',z) P(x').$$
 (3.28)

$$= \sum_{z} P(y|\hat{z}) P(z|\hat{x})$$

Theorem 3.4.1 (Rules of do Calculus)

Let G be the directed acyclic graph associated with a causal model as defined in (3.2), and let $P(\cdot)$ stand for the probability distribution induced by that model. For any disjoint subsets of variables X,Y,Z, and W we have the following rules.

Rule 1 (Insertion/deletion of observations):

$$P(y|\hat{x},z,w) = P(y|\hat{x},w)$$
 if $(Y \perp \!\!\! \perp Z|X,W)_{G_{\overline{X}}}$. (3.31)

Rule 2 (Action/observation exchange):

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},z,w)$$
 if $(Y \perp \!\!\! \perp Z|X,W)_{G_{\overline{X}\underline{Z}}}$.

(3.32)

Rule 3 (Insertion/deletion of actions):

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},w) \quad \text{if} \quad (Y \perp \!\!\! \perp Z|X,\ W)_{G_{\overline{X},\ \overline{Z(W)}}},$$

$$\textbf{(3.33)}$$

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in $G_{\overline{X}}$.

IMPLICATIONS OF do-CALCULUS

Corollary 3.4.2

A causal effect $q=P(y_1,...,y_k|\hat{x}_1,...,\hat{x}_m)$ is identifiable in a model characterized by a graph G if there exists a finite sequence of transformations, each conforming to one of the inference rules in Theorem 3.4.1, that reduces q into a standard (i.e. "hat"-free) probability expression involving observed quantities.

NOTATION FOR do CALCULUS

Figure 3.6: Subgraphs of G used in the derivation of causal effects.

 $G_{\overline{X}}$ remove arrows pointing to X

 $G_{\underline{X}}$ remove arrows emanating from X

 $G_{\overline{X}Z}$ remove ears of X and legs of Z

$$P(y|\hat{x},z) \stackrel{\Delta}{=} \frac{P(y,z|\hat{x})}{P(z|\hat{x})}$$

NONIDENTIFYING MODELS (EXAMPLES)

Figure 3.7: (a) A bow pattern: a confounding arc embracing a causal link $X \to Y$, thus preventing the identification of $P(y|\hat{x})$ even in the presence of an instrumental variable Z, as in (b). (c) A bowless graph that still prohibits the identification of $P(y|\hat{x})$.

$$P(y|\hat{x}, \hat{z_2}) = \sum_{z_1} P(y|z_1, \hat{x}, \hat{z_2}) P(z_1|\hat{x}, \hat{z_2})$$

$$= \sum_{z_1} P(y|z_1, x, z_2) P(z_1|x).$$
(3.47)

 $P(z_1|\hat{x},z_2)$ is not identified.

IDENTIFYING MODELS

Figure 3.8: Typical models in which the effect of X on Y is identifiable. Dashed arcs represent confounding paths, and Z represents observed covariates.

NONIDENTIFYING MODELS

Figure 3.9: Typical models in which $P(y|\hat{x})$ is not identifiable.