QCM n° 6

Un peu de calcul.

Échauffement n°1 Soit $A = \left\{ \frac{p \arctan(n)}{1+p} , (n,p) \in \mathbb{N}^2 \right\}$. Déterminer, s'ils existent, les inf, sup, min et max de A.

Échauffement n°2 Soit a=185236 et b=3524. Calculer : $a \wedge b$, $a \vee b$ et un couple de Bézout de (a,b).

QCM - cocher une case si la phrase qui suit est correcte.

Question n°1

- \Box Tout ensemble de $\mathbb N$ admet un minimum.
- \square Tout ensemble non vide de $\mathbb N$ admet un minimum.
- \square Tout ensemble non vide de \mathbb{N} admet un maximum.
- \square Tout ensemble non vide de \mathbb{Z} admet un minimum.
- \square Tout ensemble non vide et minoré de $\mathbb Z$ admet un minimum.
- \square Tout ensemble non vide et majoré de \mathbb{Z} admet un maximum.

Question n°2 Soit a et b deux réels non nuls tels que $a \leq b$. Alors

- $\square \ a^{-1} \geqslant b^{-1}$
- $\square \ a^2 \leqslant b^2.$
- \square pour tout réel $c, ac \leq bc$.

Question \mathbf{n}^{-3} Soit $a, b, c, a \in \mathbb{Z}^{+}$. Alors:
\square s'il existe u et v entiers tels que $au+bv=4$ alors $\operatorname{pgcd}(a,b)=4$.
\square si $7a - 9b = 1$ alors a et b sont premiers entre eux.
\square si a divise b et b divise c et c divise a, alors $ a = b $.
\square « a et b premiers entre eux » équivaut à « $\operatorname{ppcm}(a,b) = ab $ ».
\square si a divise c et b divise d, alors ab divise cd.
\square si 9 divise ab et si 9 ne divise pas a , alors 9 divise b .
\square si a divise b ou a divise c, alors a divise bc.
\square « a divise b » équivaut à « $\operatorname{ppcm}(a,b) = b $ ».
\square si a divise b , alors a n'est pas premier avec b .
\square si a n'est pas premier avec b , alors a divise b ou b divise a .
Question $n^{\circ}4$ Soit $a, b, c, d \in \mathbb{Z}^*$. Alors:
\square si a divise b et c, alors $c^2 - 2b$ est multiple de a.
\square s'il existe u et v entiers tels que $au + bv = d$ alors $\operatorname{pgcd}(a, b) = d $.
\square si a divise $b+c$ et $b-c$, alors a divise b et a divise c .
\square si 19 divise ab , alors 19 divise a ou 19 divise b .
\square si a est multiple de b et si c est multiple de d , alors $a+c$ est multiple de $b+d$.
\square si a divise b et b ne divise pas c, alors a ne divise pas c.
\square si 4 ne divise pas bc , alors b ou c est impair.
\square si 5 divise b^2 , alors 25 divise b^2 .