Phrase-Based Translation

Michael Collins, Columbia University

Roadmap for the Next Few Lectures

- ▶ Last time: IBM Models 1 and 2
- ► Today: *phrase-based* models

Overview

- Learning phrases from alignments
- ► A phrase-based model
- Decoding in phrase-based models

Phrase-Based Models

- ► First stage in training a phrase-based model is extraction of a phrase-based (PB) lexicon
- ► A PB lexicon pairs strings in one language with strings in another language, e.g.,

An Example (from tutorial by Koehn and Knight)

► A training example (Spanish/English sentence pair):

Spanish: Maria no daba una bofetada a la bruja verde English: Mary did not slap the green witch

► Some (not all) phrase pairs extracted from this example:

```
(Maria \leftrightarrow Mary), (bruja \leftrightarrow witch), (verde \leftrightarrow green), (no \leftrightarrow did not), (no daba una bofetada \leftrightarrow did not slap), (daba una bofetada a la \leftrightarrow slap the)
```

▶ We'll see how to do this using alignments from the IBM models (e.g., from IBM model 2)

Recap: IBM Model 2

- ▶ IBM model 2 defines a distribution p(a, f|e, m) where f is foreign (French) sentence, e is an English sentence, a is an alignment, m is the length of the foreign sentence
- A useful by-product: once we've trained the model, for any (f,e) pair, we can calculate

$$a^* = \arg\max_{a} p(a|f, e, m) = \arg\max_{a} p(a, f|e, m)$$

under the model. a^* is the **most likely alignment**

English: Mary did not slap the green witch

Spanish: Maria no daba una bofetada a la bruja verde

Representation as Alignment Matrix

	Maria	no	daba	una	bof'	а	la	bruja	verde
Mary	•								
did						•			
not		•							
slap			•	•	•				
the							•		
green									•
witch								•	

(Note: "bof" ' = "bofetada")

In IBM model 2, each foreign (Spanish) word is aligned to exactly one English word. The matrix shows these alignments.

Finding Alignment Matrices

- ▶ Step 1: train IBM model 2 for $p(f \mid e)$, and come up with most likely alignment for each (e, f) pair
- ▶ Step 2: train IBM model 2 for $p(e \mid f)$ and come up with most likely alignment for each (e, f) pair
- We now have two alignments: take intersection of the two alignments as a starting point

Alignment from $p(f \mid e)$ model:

_		-	(0 1 /						
	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary									
did									
not									
slap									
the									
green									
witch									

Alignment from $p(e \mid f)$ model:

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	•								
did		•							
not		•							
slap					•				
the									
green									
witch								•	

Intersection of the two alignments:

	Maria	no	daba	una	bof'	а	la	bruja	verde
Mary	•								
did									
not		•							
slap					•				
the							•		
green									•
witch								•	

The intersection of the two alignments has been found to be a very reliable starting point

Heuristics for Growing Alignments

- ▶ Only explore alignment in **union** of $p(f \mid e)$ and $p(e \mid f)$ alignments
- Add one alignment point at a time
- Only add alignment points which align a word that currently has no alignment
- At first, restrict ourselves to alignment points that are "neighbors" (adjacent or diagonal) of current alignment points
- ▶ Later, consider other alignment points

The final alignment, created by taking the intersection of the two alignments, then adding new points using the growing heuristics:

	Maria	no	daba	una	bof'	а	la	bruja	verde
Mary	•								
did		•							
not		•							
slap			•	•	•				
the						•	•		
green									•
witch								•	

Note that the alignment is no longer many-to-one: potentially multiple Spanish words can be aligned to a single English word, and vice versa.

Extracting Phrase Pairs from the Alignment Matrix

	Maria	no	daba	una	bof'	а	la	bruja	verde
Mary									
did		•							
not		•							
slap			•	•	•				
the						•	•		
green									•
witch								•	

- ▶ A phrase-pair consists of a sequence of English words, *e*, paired with a sequence of foreign words, *f*
- A phrase-pair (e, f) is *consistent* if: 1) there is at least one word in e aligned to a word in f; 2) there are no words in f aligned to words outside e; 3) there are no words in e aligned to words outside f
 - e.g., (Mary did not, Maria no) is consistent. (Mary did, Maria no) is not consistent
- ▶ We extract all consistent phrase pairs from the training example.

Probabilities for Phrase Pairs

lacktriangle For any phrase pair (f,e) extracted from the training data, we can calculate

$$t(f|e) = \frac{Count(f, e)}{Count(e)}$$

e.g.,

$$t(\mathsf{daba} \ \mathsf{una} \ \mathsf{bofetada} \ | \ \mathsf{slap}) = \frac{Count(\mathsf{daba} \ \mathsf{una} \ \mathsf{bofetada}, \mathsf{slap})}{Count(\mathsf{slap})}$$

An Example Phrase Translation Table

An example from Koehn, EACL 2006 tutorial. (Note that we have t(e|f) not t(f|e) in this example.)

▶ Phrase Translations for den Vorschlag

English	t(e f)	English	t(e f)
the proposal	0.6227	the suggestions	0.0114
's proposal	0.1068	the proposed	0.0114
a proposal	0.0341	the motion	0.0091
the idea	0.0250	the idea of	0.0091
this proposal	0.0227	the proposal ,	0.0068
proposal	0.0205	its proposal	0.0068
of the proposal	0.0159	it	0.0068
the proposals	0.0159		

Overview

- Learning phrases from alignments
- ► A phrase-based model
- Decoding in phrase-based models

```
Today
Heute werden wir uber die Wiedereroffnung
 des Mont-Blanc-Tunnels diskutieren
  Score =
                     \log q(\mathsf{Today} \mid *, *)
                      Language model
                   \log t(\mathsf{Heute} \mid \mathsf{Today})
                         Phrase model
                     Distortion model
```

```
Today | we shall be
Heute | werden wir | uber die Wiedereroffnung
  des Mont-Blanc-Tunnels diskutieren
    Score =
                        \log q(\text{we}|\text{*}, \text{Today}) + \log q(\text{shall}|\text{Today}, \text{we}) + \log q(\text{be}|\text{we}, \text{shall})
                                                      Language model
                        \log t(werden wir | we shall be)
                                   Phrase model
                         Distortion model
```

```
Today we shall be debating Heute werden wir uber die Wiedereroffnung des Mont-Blanc-Tunnels diskutieren
```

```
Score =  \underbrace{ \frac{\log q(\mathsf{debating}|\mathsf{shall},\,\mathsf{be})}{\mathsf{Language}\,\,\mathsf{model}} }_{\mathsf{Language}\,\,\mathsf{model}}  +  \underbrace{ \frac{\log t(\mathsf{diskutieren}\,|\,\mathsf{debating})}{\mathsf{Phrase}\,\,\mathsf{model}} }_{\mathsf{Phrase}\,\,\mathsf{model}}  +  \underbrace{ \eta \times 6}_{\mathsf{Distortion}\,\,\mathsf{model}}
```

Today we shall be debating the reopening

Heute werden wir uber die Wiedereroffnung des Mont-Blanc-Tunnels diskutieren

Today we shall be debating the reopening
of the Mont Blanc tunnel
Heute werden wir uber die Wiedereroffnung
des Mont-Blanc-Tunnels diskutieren