Importing the libraries

In []:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Loading of dataset

In []:

```
data = pd.read_csv("/content/abalone.csv")
```

Out[]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4177 rows × 9 columns

```
#modifying
data['Age'] = data.Rings + 1.5
data=data.rename(columns = {'Whole weight':'Whole_weight', 'Shucked weight': 'Shucked_we'

ight','Viscera weight': 'Viscera_weight',
                             'Shell weight': 'Shell_weight'})
data
```

Out[]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	

4177 rows × 10 columns

In []:

```
data.head()
```

Out[]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_wei
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.'
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0
4								+

Visualization

univarient analysis

sns.boxplot(x=data.Length,color='red')

Out[]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f88e2313c50>

In []:

sns.countplot(data['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWa rning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other argum ents without an explicit keyword will result in an error or misinterpretat ion.

FutureWarning

Out[]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f88e57d6cd0>


```
plt.pie(data['Sex'].value_counts(),labels=['Male','Female','Infant'])
```

Out[]:

```
([<matplotlib.patches.Wedge at 0x7f88e217ce50>,
  <matplotlib.patches.Wedge at 0x7f88e218a350>,
  <matplotlib.patches.Wedge at 0x7f88e218a310>],
 [Text(0.45010440780275796, 1.0036961801643607, 'Male'),
 Text(-1.0848393519507589, -0.18199884741134378, 'Female'),
 Text(0.6099659291018239, -0.9153914820091724, 'Infant')])
```


In []:

data.sum()

Sex	MMFMIIFFMFFMMFFMIFMMMIFFFFFMMMMFMFFMFFFMFFIIII
Length	2188.715
Diameter	1703.72
Height	582.76
Whole_weight	3461.656
Shucked_weight	1501.078
Viscera_weight	754.3395
Shell_weight	997.5965
Rings	41493
Age	47758.5
dtype: object	

data.mean()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarn ing: Dropping of nuisance columns in DataFrame reductions (with 'numeric_o nly=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

"""Entry point for launching an IPython kernel.

Out[]:

Length	0.523992
Diameter	0.407881
Height	0.139516
Whole_weight	0.828742
Shucked_weight	0.359367
Viscera_weight	0.180594
Shell_weight	0.238831
Rings	9.933684
Age	11.433684

In []:

data.median()

dtype: float64

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarn ing: Dropping of nuisance columns in DataFrame reductions (with 'numeric_o nly=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

"""Entry point for launching an IPython kernel.

Out[]:

Length	0.5450
Diameter	0.4250
Height	0.1400
Whole_weight	0.7995
Shucked_weight	0.3360
Viscera_weight	0.1710
Shell_weight	0.2340
Rings	9.0000
Age	10.5000

dtype: float64

bi-varient analysis

```
sns.stripplot(data['Rings'], data['Viscera_weight'])
plt.title('Rings vs Viscera Weight')
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWa rning: Pass the following variables as keyword args: x, y. From version 0. 12, the only valid positional argument will be `data`, and passing other a rguments without an explicit keyword will result in an error or misinterpr etation.

FutureWarning

Text(0.5, 1.0, 'Rings vs Viscera Weight')


```
sns.regplot(data['Rings'], data['Shell_weight'])
plt.title('Rings vs Shell weight')
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWa rning: Pass the following variables as keyword args: x, y. From version 0. 12, the only valid positional argument will be `data`, and passing other a rguments without an explicit keyword will result in an error or misinterpr etation.

FutureWarning

Text(0.5, 1.0, 'Rings vs Shell weight')


```
sns.boxenplot(data['Rings'],hue = data['Sex'], palette = 'Set2')
plt.title('Rings vs Sex', fontsize = 20)
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWa rning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other argum ents without an explicit keyword will result in an error or misinterpretat

FutureWarning

Out[]:

Text(0.5, 1.0, 'Rings vs Sex')

Multi-varient analysis

sns.pairplot (data) plt.show()

Descriptive statistics

In []:

data.describe()

Out[]:

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weigh
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.00000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.18059
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.10961
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.00050
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.09350
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.17100
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.25300
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.76000
4						>

Checking for null value

In []:

data.isnull()

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell	
0	False	False	False	False	False	False	False		
1	False	False	False	False	False	False	False		
2	False	False	False	False	False	False	False		
3	False	False	False	False	False	False	False		
4	False	False	False	False	False	False	False		
4172	False	False	False	False	False	False	False		
4173	False	False	False	False	False	False	False		
4174	False	False	False	False	False	False	False		
4175	False	False	False	False	False	False	False		
4176	False	False	False	False	False	False	False		
4177 rows × 10 columns									

```
data.isnull().sum()
```

Out[]:

Sex 0 Length 0 Diameter 0 Height 0 Whole_weight 0 Shucked_weight 0 0 Viscera_weight Shell_weight 0 Rings 0 Age 0 dtype: int64

Encoding

In []:

```
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
data.Sex = encoder.fit_transform(data.Sex)
data
```

Out[]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	
4172	0	0.565	0.450	0.165	0.8870	0.3700	0.2390	
4173	2	0.590	0.440	0.135	0.9660	0.4390	0.2145	
4174	2	0.600	0.475	0.205	1.1760	0.5255	0.2875	
4175	0	0.625	0.485	0.150	1.0945	0.5310	0.2610	
4176	2	0.710	0.555	0.195	1.9485	0.9455	0.3765	

4177 rows × 10 columns

Handling of Outliers

```
outliers=data.quantile(q=(0.25,0.75))
outliers
```

Out[]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_v
0.25	0.0	0.450	0.35	0.115	0.4415	0.186	0.0935	_
0.75	2.0	0.615	0.48	0.165	1.1530	0.502	0.2530	
4								•

In []:

```
a = data.Age.quantile(0.25)
b = data.Age.quantile(0.75)
c = b - a
lower_limit = a - 1.5 * c
data.median(numeric_only=True)
```

Out[]:

Sex	1.0000
Length	0.5450
Diameter	0.4250
Height	0.1400
Whole_weight	0.7995
Shucked_weight	0.3360
Viscera_weight	0.1710
Shell_weight	0.2340
Rings	9.0000
Age	10.5000
dtype: float64	

In []:

```
data['Age'] = np.where(data['Age'] < lower_limit, 7, data['Age'])
sns.boxplot(x=data.Age,showfliers = False,color = 'pink')</pre>
```

Out[]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f88dd9f6bd0>

Independent & dependent variables

```
In [ ]:
x = data.iloc[:,:8]
y = data.iloc[:,8:]
In [ ]:
print("Independent variables\n", x.head(10))
Independent variables
    Sex Length Diameter Height Whole_weight Shucked_weight
0
     2
         0.455
                   0.365
                            0.095
                                          0.5140
                                                           0.2245
1
     2
                            0.090
                                          0.2255
                                                           0.0995
         0.350
                   0.265
2
         0.530
                   0.420
                            0.135
                                                           0.2565
     0
                                          0.6770
3
         0.440
                   0.365
                            0.125
                                          0.5160
                                                           0.2155
     2
4
     1
         0.330
                   0.255
                            0.080
                                          0.2050
                                                           0.0895
5
     1
         0.425
                   0.300
                            0.095
                                          0.3515
                                                           0.1410
6
     0
         0.530
                   0.415
                            0.150
                                          0.7775
                                                           0.2370
7
     0
         0.545
                   0.425
                            0.125
                                          0.7680
                                                           0.2940
8
     2
         0.475
                   0.370
                            0.125
                                          0.5095
                                                           0.2165
9
     0
         0.550
                   0.440
                            0.150
                                          0.8945
                                                           0.3145
   Viscera_weight Shell_weight
0
           0.1010
                           0.150
1
           0.0485
                           0.070
2
           0.1415
                           0.210
3
           0.1140
                           0.155
4
           0.0395
                           0.055
5
           0.0775
                           0.120
6
                           0.330
           0.1415
7
           0.1495
                           0.260
8
           0.1125
                           0.165
9
           0.1510
                           0.320
In [ ]:
print("Dependent variables\n",y.head(10))
Dependent variables
    Rings
            Age
0
      15
         16.5
1
       7
           8.5
2
       9
         10.5
3
      10
         11.5
4
       7
           8.5
```

Feature scaling

8

20

9

19

9.5

21.5

10.5

20.5

16 17.5

5

6

7

8

9

```
In [ ]:
```

```
#standarization
from sklearn import preprocessing
standardScaler = preprocessing.StandardScaler()
new_x = standardScaler.fit_transform(x)
print("Standard scaling\n", new_x)
Standard scaling
 [[ 1.15198011 -0.57455813 -0.43214879 ... -0.60768536 -0.72621157
 -0.63821689]
 [ 1.15198011 -1.44898585 -1.439929 ... -1.17090984 -1.20522124
 -1.21298732]
 [-1.28068972 0.05003309 0.12213032 ... -0.4634999 -0.35668983
 -0.20713907]
 [ 1.15198011 0.6329849
                         0.67640943 ... 0.74855917 0.97541324
  0.49695471]
 [-1.28068972 0.84118198 0.77718745 ... 0.77334105 0.73362741
  0.41073914]
 1.84048058]]
Spliting of data
In [ ]:
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y)
In [ ]:
x_train.shape
Out[ ]:
(3132, 8)
In [ ]:
y_train.shape
Out[ ]:
(3132, 2)
In [ ]:
x test.shape
Out[ ]:
(1045, 8)
```

```
In [ ]:

y_test.shape

Out[ ]:

(1045, 2)

In [ ]:

x_test.head()
```

Out[]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_
3236	1	0.345	0.285	0.100	0.2225	0.0865	0.0580	
2774	0	0.580	0.425	0.150	0.8440	0.3645	0.1850	
2283	1	0.435	0.345	0.120	0.4475	0.2210	0.1120	
2547	1	0.230	0.180	0.050	0.0640	0.0215	0.0135	
795	2	0.515	0.405	0.145	0.6950	0.2150	0.1635	
4								

In []:

```
y_test.head()
```

Out[]:

	Rings	Age
3236	8	9.5
2774	9	10.5
2283	7	8.5
2547	5	6.5
795	15	16.5

Model building

```
In [ ]:
```

```
from sklearn.linear_model import LinearRegression
mlr=LinearRegression()
mlr.fit(x_train,y_train)
```

```
Out[ ]:
```

LinearRegression()

```
#testing and training
from sklearn.metrics import r2_score
r2_score(mlr.predict(x_test),y_test)
```

Out[]:

0.04828394826189408