Understand Mappings

Mappings, Linear Maps, Solving Linear Systems

Adam Datical Danasas

Mappings
 Linear Maps

COMP6208 Advanced Machine Learning

Inverse Problems

Transforming Data

- In the last lecture we spent time developing a sophisticate view of vector spaces and operators
- At a mathematical level machine learning can be viewed as performing an inverse mapping

 Although our mappings are not necessarily linear in either direction we learn a lot by understanding linear operators

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Linear Regression

 $ullet x_k^{\mathsf{T}} w$ depends on distance from separating

- ullet If m>p then ${f X}$ isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $ypprox \mathsf{X} w\Rightarrow \mathsf{no}$ "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Finding a Minimum

 \bullet The minima of a one dimensional function, f(x), are given by f'(x)=0

 \bullet The minima of an n-dimensions function $f(\boldsymbol{x})$ are given by the set of equations

$$\frac{\partial f(\boldsymbol{x})}{\partial x_i} = 0 \quad \forall i = 1, \dots n \blacksquare$$

- Given m observations $\{(\boldsymbol{x}_k,y_k)|k=1,...,m\}$ and p unknown $\boldsymbol{w}=(w_1,w_2,...w_p)$ such that $\boldsymbol{x}_k^{\mathsf{T}}\boldsymbol{w}=y_k$ then to find \boldsymbol{w}
- ullet Define the $design\ matrix$ as the matrix of feature vectors

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_{1}^{\mathsf{T}} \\ \mathbf{x}_{2}^{\mathsf{T}} \\ \dots \\ \mathbf{x}_{m}^{\mathsf{T}} \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mp} \end{pmatrix} \mathbf{I}$$

- and the target vector $\boldsymbol{y} = (y_1, y_2, \cdots, y_m)^\mathsf{T}$
- ullet Then if m=p we have $oldsymbol{y}={f X}{oldsymbol{w}}$ or $oldsymbol{w}={f X}^{-1}{oldsymbol{y}}$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Linear Least Squares

ullet The error of input pattern x_k is

$$\epsilon_k = \boldsymbol{x}_k^\mathsf{T} \boldsymbol{w} - y_k^\mathsf{I}$$

The squared error

$$E(\boldsymbol{w}|\mathcal{D}) = \sum_{k=1}^m \left(\boldsymbol{x}_k^{\mathsf{T}} \boldsymbol{w} - y_k\right)^2 = \sum_{k=1}^m \epsilon_k^2 = \|\boldsymbol{\epsilon}\|^2 \mathbf{I}$$

• We can define the error vector

$$\epsilon = Xw - y$$

(note that $\epsilon_k = \boldsymbol{x}_k^{\mathsf{T}} \boldsymbol{w} - y_k)^{\mathsf{L}}$

• Minimising this error is known as the least squares problem

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Gradients

ullet The $oldsymbol{\mathsf{grad}}$ operator $oldsymbol{
abla}$ is the gradient operator in high dimensions

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{pmatrix} \mathbf{I}$$

• The partial derivatives (curly d's)

$$\frac{\partial f(\boldsymbol{x})}{\partial x}$$

means differentiate with respect to x_i treating all other components x_i as constants

Least Squares Solution

• The least squared solution is give by

$$\begin{split} \boldsymbol{\nabla} E(\boldsymbol{w}|\mathcal{D}) &= \boldsymbol{\nabla} \|\boldsymbol{\epsilon}\|^2 \mathbf{I} = \boldsymbol{\nabla} \|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|^2 \mathbf{I} \\ &= \boldsymbol{\nabla} \left(\boldsymbol{w}^\mathsf{T} \mathbf{X}^\mathsf{T} \mathbf{X} \boldsymbol{w} - 2 \boldsymbol{w}^\mathsf{T} \mathbf{X}^\mathsf{T} \boldsymbol{y} + \boldsymbol{y}^\mathsf{T} \boldsymbol{y}\right) \mathbf{I} \\ &= 2 \left(\mathbf{X}^\mathsf{T} \mathbf{X} \boldsymbol{w} - \mathbf{X}^\mathsf{T} \boldsymbol{y}\right) \mathbf{I} = 0 \mathbf{I} \end{split}$$

• Or

$$oldsymbol{w} = \left(\mathbf{X}^\mathsf{T} \mathbf{X} \right)^{-1} \mathbf{X}^\mathsf{T} oldsymbol{y} = \mathbf{X}^+ oldsymbol{y}$$

- $X^+ = (X^TX)^{-1}X^T$ is known as the pseudo inverse
- For non-square matrices Matlab uses the pseudo inverse so in Matlab we can write

w = X/A

Adam Prügel-Bennet

COMP6208 Advanced Machine Learning

Computing Gradients

• To understand gradients we sometimes need to go back to components

 It is tedious to compute these things component-wise, but when you need to understand what is going on then go back to the basics

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Solving Inverse Problems

- Gauss showed us how to solve over-constrained problems (we have more observations than parameters)
- We seek a solution which isn't necessarily exact but minimises an
- But, what if we have more parameters than observations
- That is, we are under-constrained
- Note that in some directions you might be over-constrained and in other directions under-constrained
- This is very typical of most machine learning problems

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

What is the Inverse?

Many points can map to the same points

Missing Bits of the Mathematics

ullet Note that $\|oldsymbol{a}\|^2 = oldsymbol{a}^{\mathsf{T}}oldsymbol{a} = \sum_i a_i^2 oldsymbol{\mathbb{I}}$

$$\begin{split} \|\mathbf{X} \boldsymbol{w} - \boldsymbol{y}\|^2 &= (\mathbf{X} \boldsymbol{w} - \boldsymbol{y})^\mathsf{T} (\mathbf{X} \boldsymbol{w} - \boldsymbol{y}) \!\! \! \| \!\! = (\boldsymbol{w}^\mathsf{T} \mathbf{X}^\mathsf{T} - \boldsymbol{y}^\mathsf{T}) (\mathbf{X} \boldsymbol{w} - \boldsymbol{y}) \!\! \! \| \\ &= \boldsymbol{w}^\mathsf{T} \mathbf{X}^\mathsf{T} \mathbf{X} \boldsymbol{w} - 2 \boldsymbol{w}^\mathsf{T} \mathbf{X}^\mathsf{T} \boldsymbol{y} + \boldsymbol{y}^\mathsf{T} \boldsymbol{y} \!\! \| \end{split}$$

- $\bullet \text{ Where we have used } \boldsymbol{w}^\mathsf{T} \mathbf{X}^\mathsf{T} \boldsymbol{y} = \boldsymbol{y}^\mathsf{T} \mathbf{X} \boldsymbol{w} \mathbf{I} \sum_{i,j} w_i X_{ji} y_j = \sum_{i,j} y_i X_{ij} w_j \mathbf{I}$
- Also $\nabla w^{\mathsf{T}} \mathbf{M} w = \mathbf{M} w + \mathbf{M}^{\mathsf{T}} w$
- ullet If $oldsymbol{M} = oldsymbol{M}^{\mathsf{T}}$ (i.e. $oldsymbol{M}$ is symmetric) then $oldsymbol{
 abla} oldsymbol{w}^{\mathsf{T}} oldsymbol{M} oldsymbol{w} = 2 oldsymbol{M} oldsymbol{w}$
- \bullet $(X^TX)^T = X^TX$ so that X^TX is symmetric

dam Prügel-Bennett

COMP6208 Advanced Machine Learnin

Outline

- 1. Mappings
- 2. Linear Maps

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Under Constrained Systems

• If we have less data-points than parameters then there will be multiple solutions

Adam Prügel-Bennett

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Under-constrained Systems

- The system is under-constrained
- We have more unknowns than equations
- The inverse is not unique
- ullet Solving the inverse problem $(w = (X^\mathsf{T} X)^{-1} X^\mathsf{T} y)$ is said to be lacksquare ill-posed
- The inverse $(X^TX)^{-1}$ doesn't exist
- If we have a complicated learning machine and not sufficient data we often end with an ill-posed inverse problem (there are lots of sets of parameters that explain the data).

Adam Prügel-Bennett COMP6208 Advanced Machine Learning

COMP6208 Advanced Machine Learning

III-Conditions

- Singular matrices are rare (although they occur when we don't have enough data), but matrices that are close to being singular are common
- If a matrix is close to singular it is ill-conditioned
- Ill-conditioned matrices have some small eigenvalues
- All points get contracted towards a plane
- Large matrices are very often ill conditioned

Adam Prügel-Bennet

COMP6208 Advanced Machine Learning

III-Conditioning in ML

- Ill-conditioning in machine learning occurs when a very small change in the learning data causes a large change in the predictions of the learning machine!
- In linear regression the matrix X^TX is ill-conditioned when we have as many data points as parameters
- Much of machine learning is concerned with making learning machines better conditioned
- Adding regularisers is one approach to achieve this

III-Conditioned Matrices

Adam Prügel-Bennet

COMP6208 Advanced Machine Learning

Summary

- Linear mappings are commonly used in machine learning algorithms such as regression.
- We will often meet the pseudo-inverse involving inverting X^TX
- They can be inherently unstable to noise in the inputs

Adam Prügel-Bennett COMPO

COMP6208 Advanced Machine Learning

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

20