DA546: INTRODUCTION TO STATISTICAL LEARNING

REGRESSION
ANALYSIS ON
FACTORS
AFFECTING LIFE
EXPECTANCY

SUBMITTEDTO

RHYTHM GROVER

ASSISTANT PROFESSOR

MEHTA FAMILY SCHOOL OF DATA SCIENCE AND AI

SUBMITTED BY

RAJENDRA KUJUR (214161008)

M.TECH DATA SCIENCE

MOTIVATION

- Should a country having a lower life expectancy value(<65) increase its healthcare expenditure in order to improve its average lifespan?
- How does Infant and Adult mortality rates affect life expectancy?
- Does Life Expectancy has positive or negative correlation with eating habits, lifestyle, exercise.
- Does Life Expectancy have positive or negative relationship with drinking alcohol?
- Do densely populated countries tend to have lower life expectancy?

SOURCE OF DATASET

The Global Health Observatory (GHO) data repository under World Health Organization (WHO) keeps track of the health status as well as many other related factors for all countries The data sets are made available to public for the purpose of health data analysis. The data set related to life expectancy, health factors for 193 countries has been collected from the same WHO data repository website and its corresponding economic data was collected from United Nation website

ABOUT DATA SET

 We have total 22 features, out of which one feature is Life expectancy (target variable), rest features (independent variables)

ı	#	Column	Non-Null Count	Dtype
	0	Country	1649 non-null	object
•	1	Year	1649 non-null	int64
	2	Status	1649 non-null	
	3	Life expectancy	1649 non-null	float64
	4	Adult Mortality	1649 non-null	
	5	infant deaths	1649 non-null	
	6	Alcohol	1649 non-null	
	7	percentage expenditure	1649 non-null	float64
	8	Hepatitis B	1649 non-null	float64
	9	Measles	1649 non-null	int64
	10	BMI	1649 non-null	float64
	11	under-five deaths	1649 non-null	int64
	12	Polio	1649 non-null	float64
	13	Total expenditure	1649 non-null	float64
	14	Diphtheria	1649 non-null	float64
	15	HIV/AIDS	1649 non-null	float64
	16	GDP	1649 non-null	float64
	17	Population	1649 non-null	float64
	18	thinness 1-19 years	1649 non-null	float64
	19	thinness 5-9 years	1649 non-null	float64
	20	Income composition of resources	1649 non-null	float64
	21	Schooling	1649 non-null	float64
	-			

DATA PRE-PROCESSING

Which reduced our dataset from 2938 x 22 to 1649 x 22

Removed the missing value rows

Categorical Values updated to numeric values

Country Values: 0, 1, 2 N

Status: 0(Developing), I (Developed)

CORRELATION BETWEEN ALL THE ALL THE FEATURES

Higher the correlation value, better the linear associationship between two features

Schooling

~1.0

- 0.8

--0.2

-0.4

- Income composition of resources
- Adult Mortality
- HIV/AIDS
- BMI

SCATTER PLOT WITH THE HIGHLY CO-RRELATED FEATURES

Features in decreasing order of correlation coefficient

FINAL OUTPUT MODEL

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:		OLS Juares	Adj. F-st Prob		ic):	0.825 0.824 928.7 0.00 -2680.7 5373. 5403.		
			coef	std err	t	P> t	[0.025	0.975
const		52.	. 2870	0.665	78.627	0.000	50.982	53.592
Adult Mortality		-0.	.0175	0.001	-14.457	0.000	-0.020	-0.015
Income composition	of resources	12.	.2441	1.069	11.449	0.000	10.146	14.343
Schooling		0.	.9775	0.069	14.106	0.000	0.842	1.113
HIV/AIDS		-0.	.5211	0.025	-20.562	0.000	-0.571	-0.47
BMI		Θ.	.0346	0.007	4.877	0.000	0.021	0.049
Omnibus:	2	5.271	Durb	in-Watson:		1.851		
Prob(Omnibus):		0.000	Jarq	ue-Bera (JB):	43.311		
Skew: -0.18			Prob(JB):			3.94e-10		
Kurtosis:			Cond. No.			1.90e+03		

[2] The condition number is large, 1.9e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

Life Expectancy = $\beta 0 + \beta I^*$ (Adult Mortality) + $\beta 2^*$ (Income composition of resources) + $\beta 3^*$ Schooling + $\beta 4^*$ HIV/AIDS + $\beta 5^*$ BMI

Life Expectancy = 52.28 - 0.01*Adult Mortality +12.24*Income + 0.97*Schooling - 0.52*HIV/AIDS + 0.03*BMI

RESIDUAL DIAGNOSTICS

CONCLUSION

Adult Morality significantly affects the expected life expectancy.

Income Composition of Resources affects the Life expectancy

Yes, we know alchohol affects the health in a bad manner, but it is not our final predicted model, so we can say on an average its effect tends to go down.

Model doesn't mention about the country origin so it can be concluded that density of population has nothing to do with life expectancy

Better health leads to higher life expectancy.