Fouille de Données et Apprentissage

C1- Introduction générale

Lina Soualmia

Université de Rouen
LITIS - Équipe TIBS-CISMeF
lina.soualmia@chu-rouen.fr

18 janvier 2016

Organisation des séances

- Module : Fouille de données (5 séances; 9 h cours; 9 h
 TP) et Apprentissage (9 h cours; 9 h TP)
- Cours (lundi) :
 - ► Fouille : L. Soualmia du 18/01 au 29/02 puis Apprentissage : J. Grosjean
- TPs (mardi) :
 - ► Fouille : L. Soualmia du 19/01 au 01/03 puis Apprentissage : J. Grosjean
 - Mise en œuvre des concepts vus en cours
 - Logiciel : Weka (java)
- Évaluations :
 - Pratique 40% (TPs + un mini projet)
 - Écrit (examen) 60%

Contenu pédagogique

- Fouille de données : (L. Soualmia)
 - extraction de connaissances à partir de bases de données
 - découverte et extraction de motifs
 - extraction de règles d'associations (Algorithmes)
 - classification (introduction)
- Apprentissage automatique : (J.Grosjean)
 - classification
 - clustering
 - SVM (Support Vector Machines)
 - Naïve Bayes
 - knn

...

Crédits

- P.Poncelet (Montpellier)
- S.Ullman (Stanford)
- R.Rakotomalala (Lyon)
- N.Pasquier (Nice)
- parmi d'autres ...

Plan

- Pourquoi fouiller les données?
- Le processus d'extraction
- Quelques domaines d'application
- Un aperçu de quelques techniques

Pourquoi fouiller les données?

- De nombreuses données sont collectées et entreposées
 - Données du Web, e-commerce
 - Achats dans les supermarchés
 - Transactions cartes bancaires
- Les puces à ADN génèrent des expressions de gènes
- Les techniques traditionnelles ne sont pas adaptées
- Volume de données trop grands (trop de tuples, trop d'attributs)
 - Comment explorer des millions d'enregistrements avec des milliers d'attributs?
- Requêtes traditionnelles (SQL) impossibles
 - ► Rechercher tous les enregistrements indiquant une fraude
- Explosion du volume des données : nécessité d'en tirer des connaissances utiles

Définition

- La fouille de données (data-mining) est l'étape centrale du processus d'extraction de connaissances des bases de données (ECBD ou KDD pour Knowledge Discovery in Databases).
- Processus non trivial d'extraction de connaissances d'une base de données pour obtenir de nouvelles données, valides, potentiellement utiles, compréhensibles.
- Exploration et analyse, par des moyens automatiques ou semi-automatiques de grandes quantités de données en vue d'extraire des motifs intéressants.

Objectifs

- Un processus non trivial d'extraction de modèles valides, nouveaux, potentiellement utiles et compréhensibles à partir de grands volumes de données
- Objectifs:
 - Compréhension des données et des phénomènes sous-jacents (liens, récurrences, etc.)
 - Extrapolation d'informations pour la prédiction d'événements
 - Construction de modèles (calculs) pour la prédiction de valeurs (données)

Marketing:

- CRM (Customer Relationship Management), ventes croisées, Segmentation des marchés
 - Quels types de clients achètent quels types de produits?
 - Y-a-t-il des liens de causalité entre l'achat d'un produit A et d'un autre produit B?
 - Quel est le comportement des clients au cours du temps?
- Utiliser des données recueillies pour un produit similaire
 - Chercher des associations/corrélations entre produits
 - Chercher des segments dans les données décrivant les clients

Objectifs:

- profils de consommateurs et modèles d'achats
- constitution des rayonnages
- marketing ciblé

Domaines d'application

Assurances/Domaine bancaire

- Analyse et gestion des risques : accord de crédit
- Détection de fraudes : cartes de crédit
 - Peut-on caractériser les assurés qui font des déclarations d'accident frauduleuses?
 - ► Peut-on détecter un groupe de patients et un réseau de médecins qui ont des comportements anormaux?
 - Quels sont les clients "à risque" pour l'accord de crédit?

Domaines d'application

- Santé, Médecine
 - Aide au diagnostic
 - Étude de l'influence de certaines médications sur l'évolution d'une maladie
 - Recherche des médicaments les plus efficaces
- Biologie
 - Identifier des similarités dans des séquences d'ADN
 - Identifier les fonctions des gènes
- Astronomie
 - Identifier le type d'un objet à partir d'images stellaires données en pixels

Domaines d'application

- Web Mining
 - ▶ Etudier le contenu, la structure ou l'usage des pages web
- Text mining (news group, email, documents)
 - Routage de courrier, rapports d'activité, etc.
 - repose sur des données textuelles non structurées (vs. data mining qui repose sur des bases relationnelles; et traite des données structurées)

Méthode CRISP-DM

Cross Industry Standard Process for Data Mining

- Modèle de cycle de vie à six phases
- Arcs : dépendances les plus importantes et fréquentes
- Séquence non stricte : dans la plupart des projets, on passe d'une phase à l'autre en fonction des besoins

Étapes du processus :

- Comprendre le problème
 - Connaissance du domaine, buts poursuivis, données disponibles, déploiement des résultats
- Explorer : visualiser, questionner
- Créer la table de données (jeu de données)
 - Nettoyage et Intégration (60% du travail)
 - Réduction et Transformation
- Choisir la ou les fonctionnalités
 - Description, classification, régression, clustering, extraction d'associations, séries chronologiques

Étapes du processus

- Choisir la (les) méthodes (algorithmes)
- Effectuer l'extraction
 - Recherche des modèles intéressants
- Évaluation du modèle
- Présentation des résultats

Processus interactif et itératif

Base de données et base de connaissances

- Données :
 - ▶ Interprétées pour ce qu'elles sont (~faits)
- Connaissances :
 - Interprétées par des raisonnements
- Raisonnements déductifs :
 - S'appuient sur des connaissances
 - Souvent sous la forme de règles logiques
 - Socrate est un homme, tout homme est mortel donc Socrate est mortel
 - \bullet Homme \Longrightarrow mortel

Les connaissances

- Décrites dans une syntaxe particulière :
 - ▶ Un langage
- Ont une sémantique :
 - Leur donne un sens

Exemples:

- [0; 3[
 - Syntaxe : chaîne de caractères « [0; 3 [»
 - ▶ Sémantique : ensemble des réels x tels que $0 \le x < 3$
- Chat(x) et $Dort(x) \Longrightarrow Ronronne(x)$
 - Syntaxe : la formule elle-même (le texte de la formule)
 - ▶ Sémantique : si x est un chat qui dort, alors x ronronne
 - C ∩ D ⊆ R; avec C l'ensemble des chats, D les dormeurs, R les ronronneurs

Base de données/connaissances

Différence BD et BC:

Quand on interroge:

- Une base de données :
 - on n'obtient que des informations qui y sont déjà de façon explicite
- Une base de connaissances :
 - on peut obtenir des informations qui n'y sont pas explicitement

Exemple de base de connaissances :

- Règles
 - ▶ père(x,y) ⇒ parent(x,y); mère(x,y) ⇒
 parent(x,y)
 - ▶ $p\`ere(x,y) \land parent(y,z) \Longrightarrow grand-p\`ere(x,z)$
 - ▶ parent(x,y) ⇒ascendant(x,y)
 - ▶ $parent(x,y) \land ascendant(y,z) \Longrightarrow ascendant(x,z)$
- Faits
 - père(Marcel, Maurice); mère(Henriette, Maurice); père(Maurice, Léon); mère(Cunégonde, Léon)
- Exemple de requêtes sur cette base de connaissances
 - parand-père(Marcel, Léon);
 grand-père(?, Juliette); ascendant(?, Léon);
 ascendant(Henriette,?); ascendant(?,?)

Autre exemple de base de connaissances : les ontologies

- Une ontologie décrit un domaine par un ensemble de concepts de ce domaine et par les liens entre ces concepts.
- Parmi ces liens, le plus fréquemment utilisé est le lien de généralité entre concepts qui indique qu'un concept A est plus général qu'un concept B ce qui signifie que tous les individus dénotés par A le sont par B.
- Les concepts sont organisés en hiérarchie.

Exemple simple : zoologie

Décision

Promouvoir le produit P dans la région R durant la période N Réaliser un mailing sur le produit P aux familles de profil F

Connaissance(DM)

Une quantité Q du produit P est vendue en région R Les familles de profil P utilisent 11% de P durant la période N

Informations

X habite la région R Y a A ans

Z dépense son argent dans la ville V de la région R

Données

Consommateurs Magasins Ventes Démographie

Géographie

Data Mining ou non?

- Rechercher le salaire d'un employé
 - NON
- Les supporters achètent de la bière le samedi et de l'aspirine le dimanche
 - OUI
- Interroger un moteur de recherche Web pour avoir des informations sur le Data Mining
 - NON
- Regrouper ensemble des documents retournés par un moteur de recherche en fonction de leur contenu?

Extraction de connaissances à partir de BD

- Des années 60 à fin 80 : Développement de l'informatique et des bases de données relationnelles, méthodes de modélisation, optimisation des requêtes
- Fin des années 80 : situation data rich but information poor : disposition de grandes sources de données inexploitées, besoin d'outils d'analyse puissants pour aider les décideurs : naissance de l'informatique décisionnelle
- Depuis : les besoins en extraction de connaissances continuent d'augmenter avec le Web, le séquençage du génome humain ...etc.

Data Mining vs. Statistiques

- Data Mining :
 - intégration de techniques issues de plusieurs domaines :
 BD, Stats, Apprentissage automatique, analyse de données, visualisation ...
- Data Mining vs. Statistiques :
 - Découvrir plutôt que vérifier
- Data Mining vs. Machine Learning
 - Manipuler des BDs volumineuses plutôt que de petits ensembles d'apprentissage

Data Mining vs. Statistiques

La fouille de données se démarque des analyses statistiques par la puissance de calcul offerte :

- Fouille de données :
 - traitement de millions d'individus avec des centaines de variables (numériques et textuelles);
- Statistiques :
 - quelques centaines d'individus avec un nombre réduit de variables (numériques).
- Recueil des données :
 - Les données recueillies pour la statistiques l'ont été dans un cadre précis.
 - La fouille de données s'affranchit de cette contrainte (les systèmes effectuent un apprentissage des données qui leur sont fournies en entrée).

CRISP

Cross Industry Standard Process for Data Mining

- Modèle de cycle de vie à six phases
- Arcs : dépendances les plus importantes et fréquentes
- Séquence non stricte : dans la plupart des projets, on passe d'une phase à l'autre en fonction des besoins

- Adaptable : modèle aisément personnalisable
- Ces six phases couvrent la totalité du processus de Data Mining, y compris la façon de l'incorporer aux activités

Compréhension du problème : étape primordiale qui vise à

- déterminer des objectifs (commerciaux ou autres),
- analyser la situation,
- déterminer les objectifs en termes de Data Mining,
- établir une planification du projet.

Compréhension du problème :

- Identifier les différents objectifs à atteindre
- Déterminer les facteurs importants qui peuvent influencer l'aboutissement du projet
- Inventorier :
 - les ressources,
 - les contraintes,
 - les hypothèses.
- Déterminer les objectifs de la fouille de données en termes techniques
- Description exhaustive de toutes les étapes à venir

Compréhension des données : étape de sensibilisation à l'importance de bien maîtriser les ressources de données et leurs caractéristiques

- Elle aborde :
 - la collecte de données initiale,
 - la description et l'exploration des données,
 - la vérification de la qualité de ces données.

Compréhension des données :

- Charger les données
 - Rapport sur la nature, la localisation, les méthodes de récupération, les problèmes éventuels
- Examen rapide et superficiel des données
 - Les données satisfont-elles les conditions requises?
- Comprendre les données :
 - Utilisation de requêtes, outils de visualisation et de reporting.
 - Déterminer les attributs importants et leurs relations (redondantes)
 - Premiers résultats statistiques (graphiques, répartitions, etc.)
- Qualité des données
 - Données manquantes, erronées, incertaines?

Préparation des données : transformation des données à explorer afin d'assurer leur adéquation à la problématique et la pertinence des connaissances extraites

- Phase de préparation comprend
 - la sélection,
 - le nettoyage,
 - la construction.
 - l'intégration,
 - le formatage des données

Préparation des données :

- Sélection des variables et instances
 - Selon l'objectif, la qualité des données, les contraintes techniques (catégorielles, numériques, etc.)
- Traitements des données bruitées
 - Correction des erreurs, estimation de valeurs
- Construction
 - Créer des valeurs dérivées, transformer des valeurs (normalisation, discrétisation)
- Combiner les données de diverses sources, supprimer les données redondantes
- Représentations adaptées, contraintes techniques

Modélisation : élaboration des méthodes d'analyse qui seront utilisées pour extraire des connaissances à partir des données (cœur du processus)

- Cette étape consiste à
 - sélectionner des techniques de modélisation,
 - générer des conceptions de test,
 - construire et évaluer des modèles.

Modélisation:

- Sélectionner les techniques (extraction d'associations, classification, clustering)
- Définir les mécanismes pour évaluer la qualité et la validité du modèle
- Définition de jeux d'apprentissage et de test (échantillonnage)
- Exécution des algorithmes
 - Documenter les résultats (données, paramètres, modèles)
- Classer les modèles par interêt
- Faire appel aux experts du domaine

Évaluation : évaluer l'aide apportée par l'utilisation des modèles définis pour la concrétisation des objectifs poursuivis

- Cette étape aborde
 - l'évaluation des résultats,
 - la vérification du processus de Data mining,
 - la prise de décision des étapes à suivre.

Évaluation:

- Évaluer l'adéquation des modèles aux objectifs métier
 - Rapport d'analyse des résultats selon les critères de succés
 - Approbation des modèles
- Vérification du processus
 - Vérifier qu'aucun facteur important n'a été oublié
 - Vérifier le respect des critères de qualité
 - Évaluer l'utilité potentielle des données non utilisées
 - Les données utilisées seront-elles toujours disponibles?
- Décider des étapes suivantes
 - Le projet est-il prêt à être déployé?
 - Nouvelles itérations du processus nécessaires?

Déploiement : étape de rentabilisation des efforts

- Objectif: intégrer les nouvelles connaissances aux processus quotidiens pour résoudre le problème initial / améliorer l'activité
- Elle comprend
 - le déploiement du plan,
 - la surveillance et la maintenance,
 - la production d'un rapport final,
 - la révision du projet.

- Analyser les évaluations
 - Comment déployer les modèles dans l'organisation?
 - Comment analyser les bénéfices du modèle?
- Rapport final
 - Résumer le projet et l'expérience acquise
 - Présenter de façon compréhensible les résultats du data mining
- Bilan du processus
 - Analyser le processus et observer ce qui c'est bien ou mal déroulé
 - Les utilisateurs sont-ils pleinement satisfaits? Ont-ils besoin de support?

Principaux logiciels

- Logiciels « stand-alone »
 - SPSS Clementine
 - Salfort Systems CART
 - Weka, RapidMiner, Orange, Tanagra (logiciels libres)
- Outils intégrés
 - IBM Intelligent Miner (IBM DB2)
 - Oracle Data Mining (Oracle 10g)
 - ► DB Miner (IBM BD2)
 - SQL Server (Microsoft)

Interfaces logicielles

- Logiciels utilisant la méthode CRISP-DM
 - Représentations graphique des traitements
 - Graphes des flux de données et traitements enchaînés
 - Définition de « run-times » pour automatiser les traitements
 - Présentation des résultats sous forme de rapports
- Logiciels ou modules intégrés aux SGBD
 - Requêtes de Data Mining
 - Stockage relationnel des données
 - Langages SQL étendu, DMQL, opérateurs spécifiques
 - Modules de génération de rapports du SGBD
 - Interface avec les modules de data warehousing

Types de données

- Origine des données
 - BD relationnelles
 - Data Warehouses: relationnel, cubes multi-dimensionnels
 - Données de transactions
 - ▶ BD orientées objets, spatiales, multimédia, textuelles
 - Données temporelles et séries temporelles
 - Données du Web
- Mais le plus souvent, pré-traitées et intégrées dans une table unique sur laquelle la recherche d'un modèle est réalisée.

Extraction de connaissances à partir de BD

Définition de l'EC-BD

C'est un processus d'extraction de connaissances :

- Nouvelles :
 - c'est- à dire pas déjà connues
 - On extraira des connaissances connues mais ce n'est pas l'objectif ...
- Potentiellement utiles : réutilisables dans un processus de raisonnement
- et ayant un degré de plausibilité : on cherche à contrôler la plausibilité des connaissances extraites
- dans de grands volumes de données :
 - Nécessitent des processus automatiques
 - Permettent une certaine validité statistique des connaissances extraites

Exemple

- Supposons qu'on extrait la règle suivante d'une base de données :
 - ▶ Blanc ⇒ né aux Etats Unis avec une probabilité de 99,07%
- Cette règle est totalement dépendante des données étudiées
- Elle donne des connaissances sur la base de données considérée
- C'est le même problème que celui de l'échantillonnage en statistique

Restons simples

- Données binaires
- Recherche de motifs fréquents : « lait, oeufs et farine sont souvent achetés ensemble »
- Recherche de règles d'association : « dans 75 % des cas, l'achat de couches va de pair avec l'achat de bière »
- Pas de notion du temps
- Ni disjonctions, ni négations

Principe

- Entrée : des données
- Sortie : des connaissances
- Les données ont des structures hétérogènes
 - On les trouve dans des bases de données relationnelles
 - Bases de données objet
 - Sous forme de liste de fichiers
 - Sur des pages Web
 - Dans des textes

Étapes

- Intégration des sources de données et sélection des données intéressantes
- Transformation et formatage :
 - ▶ Données brutes → données préparées et formatées
 - ► Transformation : enlever les données bruitées, traiter les données manquantes
 - Formatage : sous forme traitable par les algorithmes de fouille
- Fouille de données :
 - ▶ données préparées et formatées → éléments d'information extraits
 - C'est l'étape algorithmique du processus d'ECBD
 - mise en œuvre de méthodes de fouilles
- Interprétation
 - ► Éléments d'information extraits → unités de connaissances

Processus

- Itératif : se fait en plusieurs passes
- Interactif: l'analyste est dans la boucle et il oriente le processus selon ses connaissances du domaine des données et selon son intuition
- L'analyste est un expert du domaine des données, s'il connait les principes de l'informatique et de l'ECBD c'est un plus
- C'est l'analyste qui effectue l'interprétation
- Les éléments d'information extraits des processus de fouille doivent être sous une forme compréhensible par l'analyste (intelligibilité)
- Il est utile d'avoir des connaissances du domaine représentées et manipulables informatiquement pour assister l'analyste.
 Ces connaissances du domaine sont souvent sous la forme d'une ou plusieurs ontologies.
- Si une connaissance extraite n'est pas nouvelle et qu'elle est représentée en machine, inutile de demander une confirmation de l'analyste

Objectifs : décrire ou prédire

- Caractérisation :
 - Identification de critères d'appartenance à une classe
- Discrimination :
 - Identification de critères discriminants entre l'appartenance à deux classes
- Extraction de règles d'association
 - Recherche de relations « attribut-valeur » qui occurrent ensemble fréquemment
- Classification
 - Construction d'un modèle ou d'une fonction à partir du jeu de données, pour permettre la prédiction de l'appartenance du nouvel objet à une classe
- Clustering
 - Regroupement d'objets de sorte à minimiser la distance entre objets similaires et à maximiser la distance entre objets différents

Caractérisation-Discrimination

- Requêtes SQL
- Requêtes OLAP (Online Analytical Processing)
- Description analytique
- Mesures statistiques

Analyse d'association (corrélation et causalité)

- Découvrir des règles d'association de la forme X →Y où X et Y sont des conjonctions de termes attributs-valeurs ou prédicats
- Les mesures de support et confiance indiquent la portée et la précision de la règle
- Exemples :
 - Achat=pain et Achat=café → Achat=beurre (support = 5%, confiance = 70%)
 - ▶ Age>20 et Age<29 et Revenu>1000 \rightarrow Achète_PC="oui" (support = 2%, confiance = 60%)

Clustering

- Trouver des groupes ou classes d'objets tels que la similarité intra-classe est élevée et la similarité inter-classes est faible
- Pas de variable identifiant la classe
- Classification (apprentissage) non-supervisé : classes inconnues à l'avance
- Exemples :
 - segmentation des clients
 - cluster d'étoiles caractérisées par leur luminosité et leur température

Classement et prédiction (classification supervisée)

- Apprendre un modèle qui associe un objet à une classe prédéfinie
- Apprendre une fonction permettant de prédire la valeur d'une variable numérique
- Exemples :
 - Classer des patients selon leur risque de développer une malade en fonction de leurs symptômes
 - Évaluer le risque d'un incident de remboursement en fonction des caractéristiques des demandeurs de crédit
- Forme du résultat :
 - ► Arbres de décision, règles de classification, réseaux de neurones, classifieurs Bayésiens ...etc.

Analyse de déviations

- Déviation : objet qui n'est pas conforme au comportement général
- Donnée bruitée ou exception : information utile dans le cas de détection de fraudes ou d'évènements rares

Recherche de corrélations

- Analyse statistique
- Recherche de motifs séquentiels
- Analyse de régression

Méthodes

Méthodes de fouille de données

- Il existe plusieurs moyens de différencier les méthodes de fouille de données.
- Un moyen classique est de les distinguer selon leur objectif
- Les méthodes descriptives
 - Caractérisation, discrimination
 - Extraction de règles d'association
 - Analyse de cas extrêmes
- Les méthodes prédictives
 - Classification
 - Clustering

Méthodes

Méthodes de fouille de données

- On peut les distinguer en fonction du type de données qu'elles traitent en entrée
- Méthodes symboliques
 - Extraction de motifs fréquents
 - Extraction de règles d'associations
 - Classification par treillis
 - Classification par arbres de décision
- Méthodes numériques issues de la reconnaissance des formes
 - Méthodes statistiques
 - Analyse de données (classification automatique, classification par composantes principales)
 - Modèles de Markov caché d'ordre 1 et 2 (très bons résultats en fouille de données en génomique)
 - Les méthodes neuronales, algorithmes génétiques
- Fouille de textes :

nour la décrire

Fouille de base de données bibliographiques d'un domaine

Limites

Deux points critiques au niveau des données :

- A cause du volume de données étudiées, il faut faire un passage à l'échelle pour passer :
 - Des algorithmes d'apprentissage standards qui ne sont applicables en pratique que sur des volumes de données relativement faibles
 - Aux algorithmes qui prennent en compte de très grands volumes de données
- Qualité des données :
 - Problèmes dus à l'absence de données (il en manque) et aux bruits (données erronées)
 - Nécessite d'avoir des méthodes pour améliorer cette qualité notamment par filtrage

- Données réelles imparfaites/endommagées
 - Incomplètes
 - Bruitées
 - Incohérentes
- Nécessité de préparer les données
 - Nettoyage
 - Intégration et transformation
 - Réduction
 - Discrétisation

Types de données

- Numériques linéaires :
 - Ex : poids, taille, longitude, vitesse, etc.
- Binaires : une valeur parmi deux possibles
 - 0 : la variable est absente, 1 : la variable est présente
- Nominales : valeur prise dans une liste finie
 - Ex : couleur peut être « vert, bleu, rouge, jaune, noir »
- Ordinales : l'ordre des valeurs est plus important
 - Ex : résultat d'un concours
- Par ratios : variables numériques sur une échelle exponentielle/logarithmique
 - Valeurs non-linéaires

- Nettoyage
 - Compléter les valeurs manquantes, lisser les données bruitées, supprimer les déviations et corriger les incohérences
- Intégration
 - Intégrer des sources de données multiples
- Transformation
 - Normaliser
- Réduction
 - Réduire le volume des données (agréger, supprimer une dimension, etc.)
- Discrétisation
 - Pour les attributs numériques, permet de réduire le volume

Nettoyage-Valeurs manquantes

- Les valeurs manquantes peuvent être codées par diverses valeurs :
 - Vide>, « 0 », « . », « NA », «? » , « NULL »
 - Il est nécessaire d'uniformiser le code
- Valeurs manquantes sont interdites
 - Ignorer le tuple
 - Compléter la valeur à la main
 - Utiliser une constate globale
 - Utiliser la valeur moyenne
 - Utiliser la valeur moyenne pour les exemples d'une même classe
 - Utiliser la valeur la plus probable

Nettoyage - Données bruitées

On peut:

- Trier et partitionner (discrétiser)
- Classifier (exceptions)
- Appliquer un modèle de prédiction (ex : une fonction de régression)

Partitionnement et lissage

- Les valeurs triées sont réparties en largeur (distance)
 - La suite triée est partitionnée en N intervalles de même amplitude
 - Amplitude de chaque intervalle $W = \frac{(max min)}{N}$
 - Solution la plus simple mais les exceptions peuvent dominer
- Les valeurs triées sont réparties en profondeur (fréquence)
 - ▶ La suite triée est partitionnée en N intervalles contenant le même nombre de valeurs

Partitionnement.

Exemple:

Données triées : 4 8 9 15 21 21 24 25 26 28 29 34

• Partition en profondeur :

Part 1: 4 8 9 15Part 2: 21 21 24 25

Part 3 : 26 28 29 34

Lissage

Exemple:

 Lissage par les moyennes : chaque valeur de la partition est remplacée par la moyenne

▶ Part 1:9999

▶ Part 2 : 23 23 23 23

Part 3 : 29 29 29 29

• Lissage par les extrêmes : chaque valeur de la partition est remplacé par la valeur extrême la plus proche

Part 1: 4 4 4 15

Part 2 : 21 21 25 25

Part 3 : 26 26 26 34

Nettoyage - Supprimer les déviations

Classifier

- Les valeurs similaires sont organisées en classes
- Les valeurs hors-classes sont considérées comme des déviations

Lissage par régression

- Les données sont lissées de manière à approcher une fonction
 - Régression linéaire
 - Régression linéaire multiple

Intégration

- Combinaison de données issues de différentes sources
- Intégration de schémas
 - Identifier les entités similaires
 - Ex : ID, Code, Matricule
- Détection et résolution de conflits
 - Résoudre les problèmes d'attributs symbolisant les mêmes entités avec des représentations différentes, des unités différentes
 - Ex : âge et date de naissance

Redondances

- Détection de données redondantes par analyse de corrélation
- Par ex. redondance entre attributs : Prix HT et TTC
- Mesure de la corrélation entre les attributs A et B

Transformation

Les transformations appliquées :

- Le lissage qui supprime les données bruitées
- L'agrégation qui calcule des sommes, moyennes . . . etc.
- La généralisation qui remonte dans une hiérarchie de concepts (taxonomie, ontologie)
- La normalisation qui ramène les valeurs dans un intervalle donné
- La construction d'attributs

Réduction

- Permet d'obtenir une représentation réduite d'ensembles volumineux de données
- Stratégies appliquées
 - Agrégation
 - Réduction de dimensions
 - Compression
 - Discrétisation

Réduction de dimensions

- Suppression d'attributs : la présence d'attributs non pertinents détériore les performances des algorithmes
 - Par exemple, les algorithmes d'induction d'arbres
- Pour assurer de bonnes performances aux algorithmes d'extraction :
 - Supprimer les données non pertinentes
 - Identifiants, attributs à valeur unique
 - Supprimer les données redondantes
 - Données déductibles d'autres données
 - Âge et année de naissance

Réduction - Discrétisation

- Permet de réduire le nombre de valeurs d'un attribut continu en divisant le domaine de valeurs en intervalles.
- Utile pour la classification, extraction d'associations.
- Des techniques de discrétisation peuvent être appliquées récursivement pour fournir un partitionnement hiérarchique de l'attribut.

Exemple – jeu de Tennis

Attribut de classe : Play (yes/no)

- Yes : jeu possible ;
- No : jeu impossible.

Autres attributs : météo

- Outlook : ciel (sunny, overcast, rainy)
- Température : degrés K
- Humidity : tx d'humidité
- Windy : présence de vent (Vrai/Faux)

				-
outlook	temperature	humidity	/ windy	play
sunny	85	85	false	no
sunny	80	90	true	no
overcast	83	86	false	yes
rainy	70	96	false	yes
rainy	68	80	false	yes
rainy	65	70	true	no
overcast	64	65	true	yes
sunny	72	95	false	no
sunny	69	70	false	yes
rainy	75	80	false	yes
sunny	75	70	true	yes
overcast	72	90	true	yes
overcast	81	75	false	yes
rainy	71	91	true	no

Discrétisation en largeur

Discrétisation par intervalles égaux des valeurs

• Peut entraîner des inégalités importantes dans les effectifs

Discrétisation en profondeur

- Discrétisation par effectifs égaux
- Tailles égales excepté pour le dernier intervalle

Valeurs de l'attribut *Température* : 64 65 68 69 70 71 72 72 75 75 80 81 83 85

Discrétisation: autres méthodes

- Présence de seuils significatifs
 - ► Ex : Age > 18 ans
- Discrétisation supervisée
 - Prend en compte la classification

 Utilise l'entropie pour mesurer l'information et obtenir un critère de « pureté »

- Comptage des occurrences de yes et no pour class
- Les intervalles maximisent les co-occurrences des valeurs

Jeu de données discrétisé

- Valeurs catégorielles uniquement
- Simplifie l'interprétation du résultat
- Améliore les performances (temps de calcul)

outlook	temperature	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

Sites et outils :

- LA référence : KDNuggets
 - http://www.kdnuggets.com/
- TheData Mine
 - http://www.the-data-mine.com/
- Weka : en TPs
 - http://www.cs.waikato.ac.nz/~ml/
- SPSS (SPSS Clementine)
 - http://www.spss.com/SPSSBI/Clementine/
- IBM (Intelligent Data Miner)
 - http://www.ibm.com/Stories/1997/04/data1.html

