ETH zürich

Adaptive Probabilities in Stochastic Optimization Algorithms

Lei Zhong Data Analytics Lab

Apr. 21, 2015

ETH zürich

Non-Uniform Sampling

2 Adaptive Sampling

3 Discussions and Experiments

4 Reference

Apr. 21, 2015 Data Analytics Lab 2 / 39

Part A

Non-Uniform Sampling Algorithms

Apr. 21, 2015 Data Analytics Lab 3 / 39

Problem

$$f(\mathbf{w}) := \ell(\mathbf{w}) + \lambda r(\mathbf{w}) \tag{1}$$

where

$$\ell(\mathbf{w}) := \frac{1}{n} \sum_{i=1}^{n} \ell(\langle \mathbf{x}_i, \mathbf{w} \rangle, y_i). \tag{2}$$

and

$$r(\mathbf{w}) := \frac{1}{2} \|\mathbf{w}\|_2^2 \tag{3}$$

Here, $\ell(., y_i) : \mathbb{R} \to \mathbb{R}$ is a loss function and r(.) takes the role of a regularizer.

Empirical Risk Minimization

 $\min_{\boldsymbol{w} \in \mathbb{R}^n} f(\boldsymbol{w})$

Apr. 21, 2015 Data Analytics Lab 4 / 39

ETH zürich

Notations

- x_i : feature vector of sample i
- y_i: label of sample i
- p_i : probability that sample i will be selected with $\sum_{j=1}^{n} p_j = 1$
- χ_i : subgradient of sample i
- \mathbf{g}_i : subgradient of sample i with $\mathbf{g}_i = \frac{\chi_i}{n\mathbf{p}_i}$
- w: solution of objective function
- η : stepsize for updating w

Apr. 21, 2015 Data Analytics Lab 5 / 39

NonUnifSGD

Algorithm 1: Non-Uniform Stochastic Gradient Discent

```
Input: \lambda > 0, p_i = \frac{\|x_i\|}{\sum_{i=1}^{n} \|x_i\|}, \forall i \in \{1, \dots, n\}.
Data: \{(x_i, y_i)\}_{i=1}^n.
Initialize: w^1 = 0
for t = 1, 2, ..., T
         Sample i_t from \{1, \ldots, n\} based on \boldsymbol{p};
         Set stepsize \eta_t \leftarrow \frac{1}{\lambda_t};
         Set \boldsymbol{\chi}_{i_t}^t(\boldsymbol{w}^t) \leftarrow \ell'(\langle \boldsymbol{w}^t, \boldsymbol{x}_{i_t} \rangle, y_{i_t}) \boldsymbol{x}_{i_t} + \lambda \nabla r(\boldsymbol{w}^t);
        Set \boldsymbol{g}_{i_t}^t \leftarrow \frac{\chi_{i_t}^t(\boldsymbol{w}^t)}{np_{i_t}};
Set \boldsymbol{w}^{t+1} \leftarrow \boldsymbol{w}^t - \eta_t \boldsymbol{g}_{i_t}^t;
```

end

Output: w^{T+1}

Key inequality

Taking the expectation over the random sampling at each step, we have the following bound:

$$\begin{split} \mathbb{E}[f(\boldsymbol{w}^t)] - f(\boldsymbol{w}^*) &\leq \frac{\eta_t}{2} \mathbb{E}[\|\boldsymbol{g}_{i_t}^t\|^2] \\ &+ \frac{1 - \lambda \eta_t}{2\eta_t} \mathbb{E}[\|\boldsymbol{w}^t - \boldsymbol{w}^*\|^2] - \frac{1}{2\eta_t} \mathbb{E}[\|\boldsymbol{w}^{t+1} - \boldsymbol{w}^*\|^2] \end{split}$$

Apr. 21, 2015 Data Analytics Lab 7 / 39

Convergence Theorem

Theorem

Suppose f is a λ -strongly convex function. If we choose the stepsize $\eta_t = \frac{1}{\lambda t}$, then after T iterations of NonUnifSGD (Algorithm 1) starting with $\mathbf{w}^1 = \mathbf{0}$, it holds that

$$\mathbb{E}\left[f\left(\frac{1}{T}\sum_{t=1}^{T}\boldsymbol{w}^{t}\right)\right] - f(\boldsymbol{w}^{*}) \leq \frac{1}{2\lambda T}\sum_{t=1}^{T}\frac{\mathbb{E}[\|\boldsymbol{g}_{i_{t}}^{t}\|^{2}]}{t}$$

where $\mathbf{g}_{i_t}^t = \frac{\chi_{i_t}^t(\mathbf{w}^t)}{np_{i_t}}$ and the expectation is taken with respect to the distribution \mathbf{p} .

Apr. 21, 2015 Data Analytics Lab **8** / 3

Proof Snapshot

Proof With stepsize $\eta_t = \frac{1}{\lambda t}$ plugged into (4.6), we have

$$\mathbb{E}[f(\boldsymbol{w}^t)] - f(\boldsymbol{w}^*) \le \frac{1}{2\lambda t} \mathbb{E}[\|\boldsymbol{g}_{i_t}^t\|^2] + \frac{\lambda(t-1)}{2} \mathbb{E}[\|\boldsymbol{w}^t - \boldsymbol{w}^*\|^2] - \frac{\lambda t}{2} \mathbb{E}[\|\boldsymbol{w}^{t+1} - \boldsymbol{w}^*\|^2]$$
(4.7)

We use convexity of the function f, as given by Jensen's inequality:

$$\mathbb{E}\big[f\bigg(\frac{1}{T}\sum_{t=1}^{T} \boldsymbol{w}^t\bigg)\,\big] - f(\boldsymbol{w}^*) \overset{\textit{Jensen}}{\leq} \mathbb{E}\big[\frac{1}{T}\sum_{t=1}^{T} f(\boldsymbol{w}^t)] - f(\boldsymbol{w}^*)$$

Summing up (4.7) over all steps t = 1...T, we can bound the right hand side of the above inequality

$$=\frac{1}{T}\sum_{t=1}^T\mathbb{E}[f(\boldsymbol{w}^t)]-f(\boldsymbol{w}^*)\leq \frac{1}{T}\sum_{t=1}^T\frac{\mathbb{E}[\|\boldsymbol{g}_{i_t}^t\|^2]}{2\lambda}\frac{1}{t}-\frac{\lambda}{2}\mathbb{E}[\|\boldsymbol{w}^{T+1}-\boldsymbol{w}^*\|^2]$$

(where we have used the telescoping sum of the norm terms.)

Re-arranging terms, and trivially bounding the left hand side of Jensen's inequality by $0 \le \mathbb{E}\left[f(\frac{1}{T}\sum_{t=1}^{T} w^t)\right] - f(w^*)$, we obtain the claimed bound

$$\mathbb{E}[\|m{w}^{T+1} - m{w}^*\|^2] \leq rac{1}{\lambda^2 T} \sum_{t=1}^T rac{\mathbb{E}[\|m{g}_{i_t}^t\|]^2}{t}.$$

Two corollaries

Definition

Define $G := \max_{i,t} \{ \| \chi_i^t(\mathbf{w}^t) \|^2 \}$ (i = 1 ... n, t = 1 ... T). Define $W := \max_{i,t} \{ \mathbb{E}[\| \chi_i^t(\mathbf{w}^t) \|^2] \}$ (i = 1 ... n, t = 1 ... T).

Corollary

Assume that $\max_t \{ \| \boldsymbol{\chi}_{i_t}^t(\boldsymbol{w}^t) \|^2 \} \le G$ for all t. $\mathbb{E}[\| \boldsymbol{\chi}_{i_t}^t(\boldsymbol{w}^t) \|^2] \le W$ for all t and $p_i > \epsilon$ for all $i = \{1, ..., n\}$,

$$\mathbb{E}\left[f\left(\frac{1}{T}\sum_{t=1}^{T}\boldsymbol{w}^{t}\right)\right] - f(\boldsymbol{w}^{*}) \leq \frac{1}{2\lambda T}\sum_{t=1}^{T}\frac{G}{\epsilon nt} \leq \frac{G(\ln T + 1)}{2\lambda \epsilon nT}$$

$$\mathbb{E}[f\left(\frac{1}{T}\sum_{t=1}^{T}\boldsymbol{w}^{t}\right)] - f(\boldsymbol{w}^{*}) \leq \frac{1}{2\lambda T}\sum_{t=1}^{T}\frac{W}{n^{2}\epsilon^{2}t} \leq \frac{W(\ln T + 1)}{2\lambda Tn^{2}\epsilon^{2}}$$

Dual Problem

Dual Objective Function

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^n} D(\boldsymbol{\alpha}) := \frac{1}{n} \sum_{i=1}^n -\ell_i^*(-\alpha_i) - \lambda r^*(\boldsymbol{v}(\boldsymbol{\alpha})).$$

The relationship between primal variable ${\it w}$ and dual variable ${\it lpha}$ is

$$\boldsymbol{w}(\alpha) := \nabla r^*(\boldsymbol{v}(\alpha)), \boldsymbol{v}(\alpha) := \frac{1}{\lambda n} \sum_{i=1}^n \alpha_i \boldsymbol{x}_i$$

where $\alpha \in \mathbb{R}^n$.

Apr. 21, 2015 Data Analytics Lab 11 / 39

NonUnifSDCA

Algorithm 2: Non-Uniform Stochastic Dual Coordinate Ascent

Input:
$$\lambda > 0$$
, $p_i = \frac{\|\mathbf{x}_i\|}{\sum_{j=1}^n \|\mathbf{x}_j\|}$, $\forall i \in \{1, \dots, n\}$.

Data: $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n$
Initialize: $\alpha^1 = \mathbf{0}$, $\mathbf{w}^1 = \mathbf{0}$.

for $t = 1, 2, \dots, T$
| Sample i_t from $\{1, \dots, n\}$ based on \mathbf{p} ;

Calculate $\Delta \alpha_{i_t}^t = \arg\max_{\Delta \alpha_{i_t}^t} [-\frac{\lambda n}{2} \|\mathbf{w}^t + \frac{1}{\lambda n} \Delta \alpha_{i_t}^t \mathbf{x}_{i_t}\|^2 - \ell_{i_t}^* (-(\alpha_{i_t}^t + \Delta \alpha_{i_t}^t))];$

Set $\alpha_{i_t}^{t+1} \leftarrow \alpha_{i_t}^t + \Delta \alpha_{i_t}^t;$

Set $\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \frac{1}{\lambda n} \Delta \alpha_{i_t}^t \mathbf{x}_{i_t};$

end

Output: w^{T+1}

Apr. 21, 2015 Data Analytics Lab 12 / 39

Part B

Adaptive Sampling Algorithms

Apr. 21, 2015 Data Analytics Lab 13 / 39

Idea behind SGD

$$\begin{split} \mathbb{E}[f(\boldsymbol{w}^{t+1})] - \mathbb{E}[f(\boldsymbol{w}^{t})] \\ &= \frac{\eta_{t}}{2}(1 + \lambda \eta_{t})\mathbb{E}[\|\boldsymbol{g}_{i_{t}}^{t}\|^{2}] - \eta_{t}\langle \boldsymbol{\chi}_{i_{t}}^{t}, \nabla \ell(\boldsymbol{w}^{t})\rangle + \lambda \eta_{t}\langle \boldsymbol{w}^{t}, \boldsymbol{\chi}_{i_{t}}^{t}\rangle. \\ & \min \mathbb{E}[\|\boldsymbol{g}_{i_{t}}^{t}\|^{2}] \stackrel{\textit{solution}}{\longrightarrow} \rho_{i} = \frac{\|\boldsymbol{\chi}_{i}\|}{\sum_{i=1}^{n} \|\boldsymbol{\chi}_{i}\|}. \end{split}$$

Apr. 21, 2015 Data Analytics Lab 14 / 39

ETH zürich

Two Updates

Algorithm 3: Aggressive Probability Update

$$\begin{array}{l} \textbf{for } j = 1, \dots, n \\ \mid & \mathsf{Set} \ p_j \leftarrow \frac{c_j}{\sum_{k=1}^n c_k}; \end{array}$$

end

Algorithm 4: Conservative Probability Update

Set
$$s \leftarrow \sum_{j=1,...,n,\mathbf{1}_i=0} c_j$$
;
Set $c \leftarrow |S|$ where $S \leftarrow \{j|\mathbf{1}_i=1\}$;
for $j=1,\ldots,n$
 $p_j > 0$? $p_j \leftarrow \frac{c_j}{s+c}$: $p_j \leftarrow \frac{1}{s+c}$;
end

 $\mathbf{1}_i$ is a indicator function which returns 1 if point i is correctly classified during all the k iterations, otherwise returns 0.

Apr. 21, 2015 Data Analytics Lab 15 / 39

AdaSGD

```
Algorithm 5: AdaSGD (Adaptive Non-Uniform Stochastic Gradient
Discent)
   Input: \lambda > 0
   Data: \{(x_i, y_i)\}_{i=1}^n
   Initialize: w^0 = 0, probabilities
                       p_i = \frac{\|\mathbf{x}_i\|^2 + \sqrt{\lambda}}{\sum_{i=1}^n \|\mathbf{x}_i\|^2 + \sqrt{\lambda}}, c_i = 0, \forall i \in \{1, \dots, n\}.
   for t = 1, 2, ..., T
         Sample i_t from \{1, \ldots, n\} based on p;
         Set \eta_t \leftarrow \frac{1}{\lambda t};
         Calculate \ell' \leftarrow \ell'(\langle x_i, w^t \rangle, y_i);
         Set \boldsymbol{\chi}_{i_t}^t(\boldsymbol{w}^t) \leftarrow \ell' \boldsymbol{x}_{i_t} + \lambda \nabla r(\boldsymbol{w}^t);
         if (t-1) mod n > n-k then
                for i = 1, 2, ..., n
                      Calculate \ell'(\langle x_i, w^t \rangle, y_i);
                      Set \mathbf{x}_i \leftarrow \ell'(\langle \mathbf{x}_i, \mathbf{w}^t \rangle, \mathbf{y}_i) \mathbf{x}_i + \lambda \nabla r(\mathbf{w}^t);
                      Set c_i \leftarrow \max\{c_i, \|\boldsymbol{\chi}_i\|\};
                end
         end
         if t \mod n = 0 then
                Option I: Run Algorithm 3 (Aggressive Update);
                Option II: Run Algorithm 4 (Conservative Update);
         end
         Set \mathbf{g}_{i_t}^t \leftarrow \frac{\mathbf{\chi}_{i_t}^t(\mathbf{w}^t)}{n\mathbf{v}_{i_t}};
         Set \boldsymbol{w}^{t+1} \leftarrow \boldsymbol{w}^{t} - \eta_{t} \boldsymbol{g}_{i}^{t};
```

Apr. 21, 2015

end

Output: w^{T+1}

Idea behind SDCA

Definition

Define the gap of point i as

$$\sigma_i^t = \ell(\mathbf{x}_i^\mathsf{T} \mathbf{w}^t) + \ell^*(-\alpha_i^t) + \alpha_i^t \mathbf{x}_i^\mathsf{T} \mathbf{w}^t$$

where \mathbf{w}^t here is assumed to be the corresponding primal vector for the current α^t , that is $\mathbf{w}^t(\alpha^t) := \frac{1}{\lambda n} \sum_{i=1}^n \alpha_i \mathbf{x}_i^t$.

The **duality gap** between the primal objective and dual objective at the t-th iteration is defined as

$$f(\mathbf{w}^t) - D(\alpha^t) = \frac{1}{n} \sum_{i=1}^n \sigma_i^t.$$

Apr. 21, 2015 Data Analytics Lab 17 / 39

AdaSDCA

```
Algorithm 7: AdaSDCA (Adaptive Non-uniform Stochastic Dual Coor-
dinate Ascent)
  Input: \lambda > 0
   Data: \{(x_i, y_i)\}_{i=1}^n
  Initialize: \alpha^1 = 0, w^1 = 0, probabilities p_i = \frac{1 + \frac{1}{\lambda_{n_{T_i}}}}{n + \sum_{i=1}^{n} \frac{1}{\lambda_{n_{T_i}}}} or
                     p_i = \frac{\|x_i\|}{\sum_{i=1}^n \|x_i\|}, c_i = 0, \forall i \in \{1, \dots, n\}.
   for t = 1, 2, ..., T
         Sample i_t from \{1, \ldots, n\} based on p;
         Calculate \Delta \alpha_i^t using following formulas:
         \Delta\alpha_{i_t}^t = \arg\max_{\Delta\alpha_{i_t}^t} [-\frac{\lambda n}{2} \| \boldsymbol{w}^t + \frac{1}{\lambda n} \Delta\alpha_{i_t}^t \boldsymbol{x}_{i_t} \|^2 - \ell_{i_t}^* (-(\alpha_{i_t}^t + \Delta\alpha_{i_t}^t))];
        Set \alpha_{i}^{t+1} \leftarrow \alpha_{i_t}^t + \Delta \alpha_{i_t}^t;
        Set w^{t+1} \leftarrow w^t + \frac{1}{\lambda n} \Delta \alpha_{i_t}^t x_{i_t};
         if (t-1) mod n > n-k then
               for i = 1, 2, ..., n
                     Calculate \sigma_i^t \leftarrow \ell(\mathbf{x}_i^\mathsf{T} \mathbf{w}^t) + l^*(-\alpha_i^t) + \alpha_i^t \langle \mathbf{x}_i, \mathbf{w}^t \rangle;
                   Set c_i \leftarrow \max\{c_i, \sigma_i^t\};
               end
         if t \mod n = 0 then
               Option I: Run Algorithm 3 (Aggressive Update);
               Option II: Run Algorithm 4 (Conservative Update);
         end
```

Apr. 21, 2015

end

Output: w^{T+1}

Part C

Discussions and Experiments

Apr. 21, 2015 Data Analytics Lab 19 / 39

Datasets for empirical study

Dataset	Training(n)	Test	Features (d)	Sparsity $\left(\frac{nnz}{nd}\right)$
rcv1	20,242	677,399	47,236	0.16%
astro-ph	29,882	32,487	99,757	0.08%

- rcv1 is a corpus from Reuters news stories.
- astro-ph is astronomy data.

Apr. 21, 2015 Data Analytics Lab 20 / 39

Cost per epoch and properties of algorithms

Algorithm	cost of an epoch	non-uniform	adaptive
NonUnifSGD	nnz	✓	Х
NonUnifSDCA	nnz	✓	X
AdaSGD	(k+1) nnz	✓	✓
AdaSVRG	nd + k nnz	✓	✓
AdaSDCA	(k+1) nnz	✓	✓
AdaSDCAS	(k+1) nnz	✓	✓
AdaGrad (by Duchi)	2nd	×	Х
AdaSDCA (by Csiba)	<i>n</i> nnz	✓	✓
AdaSDCA+ (by Csiba)	2 nnz	✓	✓

Apr. 21, 2015 Data Analytics Lab 21 / 39

Test Error with Different Values of λ

rcv1	1e-2	5e-3	1e-3	5e-4	1e-4
Test Error	0.05160	0.04833	0.04713	0.04913	0.05693
astro-ph	1e-2	5e-3	1e-3	5e-4	1e-4

Apr. 21, 2015 Data Analytics Lab 22 / 39

Verifying the Convergence of Duality Gap

Table: Average duality gap at different epochs for $\lambda = 0.001$

#epoch	duality gap on rcv1	duality gap on astro-ph
1	0.0863765	0.0883917
3	0.0105347	6.13163e-03
10	1.7485e-04	3.93673e-05
20	2.21547e-05	6.24779e-07
50	3.12797e-06	6.7474e-10
100	5.47897e-07	1.43083e-12

Apr. 21, 2015 Data Analytics Lab 23 / 39

Performance Metrics

Definition

The **primal sub-optimality** of algorithm is defined as $P(\mathbf{w}(\alpha)) - P(\mathbf{w}^*)$.

Definition

Test error is the error rate on test dataset.

Apr. 21, 2015 Data Analytics Lab 24 / 39

Performance of Two Updating Algorithms

Figure: Comparison of two updating algorithms for AdaSGD and AdaSDCA on rcv1

Apr. 21, 2015 Data Analytics Lab 25 / 39

Different Adaptive Strategies for AdaSDCA

Figure: Comparison of AdaSDCA and AdaSDCAS on rcv1

Apr. 21, 2015 Data Analytics Lab 26 / 39

Comparison of Average Time

Table: Detailed training time and total running time per epoch

rcv1	Training time(s)	Total running time(s)
AdaSGD	0.04765	0.2059
AdaSDCA	0.05042	0.2064
NonUnifSGD	0.04244	0.1988
NonUnifSDCA	0.04716	0.2037
astro-ph	Training time(s)	Total running time(s)
AdaSGD	0.07236	0.1363
AdaSDCA	0.07050	0.1343
NonUnifSGD	0.06284	0.1259
NonUnifSDCA	0.07054	0.1339

Apr. 21, 2015 Data Analytics Lab 27 / 39

Comparison of Adaptive Algorithms

Figure: Comparison of five adaptive algorithms on rcv1

Apr. 21, 2015 Data Analytics Lab 28 / 39

Comparison of Adaptive Algorithms cont.

Figure: Comparison of three adaptive algorithms on astro-ph

Apr. 21, 2015 Data Analytics Lab 29 / 39

Same Level of Optimality

Table: The number of epochs taken to reach the same level of optimality

rcv1	AdaSDCA	NonUnifSDCA	AdaSGD	NonUnifSGD
#epochs	9	35	210	500
astro-ph	AdaSDCA	NonUnifSDCA	AdaSGD	NonUnifSGD
#epochs	8	28	195	500

Apr. 21, 2015 Data Analytics Lab 30 / 39

Comparison of Time

Figure: Comparison of the total running time to reach the same optimality

Apr. 21, 2015 Data Analytics Lab 31 / 39

Comparison of Vector Operation

Figure: Comparison of the vector operations taken to reach the same optimality

Apr. 21, 2015 Data Analytics Lab 32 / 39

Adaptive vs. Non-Uniform Algorithms

Figure: Comparison of adaptive algorithms with non-adaptive algorithms on rcv1

Apr. 21, 2015 Data Analytics Lab 33 / 39

Adaptive vs. Non-Uniform Algorithms cont.

Figure: Comparison of adaptive algorithms with non-adaptive algorithms on astro-ph

Apr. 21, 2015 Data Analytics Lab 34 / 39

Summary

- We chose $\lambda = 0.001$ for both rcv1 and astro-ph.
- We compare the performance of Conservative Update and Aggressive Update on AdaSGD and AdaSDCA. Conservative Update works better on AdaSGD while Aggressive Update works better on AdaSDCA.
- AdaSDCA (adaptive algorithm with duality gap) performs better than AdaSDCAS (adaptive algorithm with subgradients).
- AdaSDCA has the best performance among all the adaptive algorithms (AdaSDCA, AdaSGD, AdaSVRG, AdaGrad and AdaSDCA+) and AdaSGD is the second best.

Apr. 21, 2015 Data Analytics Lab 35 / 39

ETH zürich

Summary cont.

- AdaSVRG achieves a slightly better performance per epoch than AdaSGD but sacrifices the running time on sparse datasets.
- To reach the same optimality given by 500 epochs run on NonUnifSGD, AdaSGD takes only around 200 epochs, whereas NonUnifSDCA takes around 30 which is three times more than AdaSDCA does.

Apr. 21, 2015 Data Analytics Lab 36 / 39

Reference

- [1] John Duchi, Elad Hazan, and Yoram Singer. "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization." JMLR, 12:21212159, August 2011.
- [2] Dominik Csiba, COM Zheng Qu, and Peter Richtárik. "Stochastic dual coordinate ascent with adaptive probabilities."
- [3] Peilin Zhao and Tong Zhang. "Stochastic Optimization with Importance Sampling." arXiv.org, January 2014.
- [4] Zheng Qu, Peter Richtárik, and Tong Zhang. "Randomized dual coordinate ascent with arbitrary sampling." arXiv preprint arXiv:1411.5873, 2014.
- [5] Rie Johnson and Tong Zhang. "Accelerating Stochastic Gradient Descent using Pre- dictive Variance Reduction." In NIPS, 2013.

Apr. 21, 2015 Data Analytics Lab 37 / 39

ETH zürich

Q&A

Thank You!

Acknowledgement:

Thanks to Martin for helpful discussions and suggestions!

Apr. 21, 2015 Data Analytics Lab 38 / 39