EQUATION SHEET

$$ec{F}=qec{E}$$

$$ec{E}=rac{q}{4\pi\epsilon_o|r|^2}\hat{r} \ \ \ {
m point\ charge}$$

Electric field due to a uniformly charged spherical shell: outside shell, like point charge; inside shell, 0.

$$\left|\vec{E}_{rod}\right| = \frac{1}{4\pi\varepsilon_o} \left[\frac{Q}{r\sqrt{r^2 + (L/2)^2}} \right]$$
 a perpendicular distance r from the center; $\left|\vec{E}_{rod}\right| \approx \frac{1}{4\pi\varepsilon_o} \frac{2(Q/L)}{r}$ if $r << L$

$$\left| \vec{E}_{ring} \right| = \frac{1}{4\pi\varepsilon_o} \frac{qz}{\left(z^2 + R^2\right)^{3/2}}$$
 a distance z along the axis

$$\left| \vec{E}_{disk} \right| = \frac{Q/A}{2\varepsilon_o} \left[1 - \frac{z}{\left(z^2 + R^2\right)^{1/2}} \right]$$
 a distance z along the axis; $\left| \vec{E}_{disk} \right| = \frac{Q/A}{2\varepsilon_o} \left[1 - \frac{z}{R} \right]$ if $z \ll R$

$$\left| \vec{E}_{capacitor} \right| = \frac{Q/A}{\varepsilon_o}$$
 for $+Q$ and $-Q$ disks; $\left| \vec{E}_{fringe} \right| = \frac{Q/A}{\varepsilon_o} \left(\frac{s}{2R} \right)$ just outside capacitor

$$\left|\vec{E}_{dipole,x}\right| \approx \frac{1}{4\pi\varepsilon_o} \frac{2qs}{x^3}$$
 along dipole axis, where $x >> s$; $\left|\vec{E}_{dipole,y}\right| \approx \frac{1}{4\pi\varepsilon_o} \frac{qs}{y^3}$ along perpendicular axis, for $y >> s$

electric dipole moment p = qs

Physical constants

$$\frac{1}{4\pi\varepsilon_o} = 9x10^9 \, \frac{N \cdot m_2}{C^2} \qquad \qquad \varepsilon_0 = 9x10^{-12} \, \frac{C^2}{N \cdot m^2}$$

$$c = 3x10^8 \text{ m/s}$$
 $e = 1.6x10^{-19} \text{ coulomb}$

$$m_{\text{proton}} \approx m_{\text{neutron}} \approx m_{\text{hydrogen atom}} = 1.7 \times 10^{-27} \,\text{kg}$$
 $m_{\text{electron}} = 9 \times 10^{-31} \,\text{kg}$ $g = 9.8 \,\text{N/kg}$

 6.02×10^{23} molecules/mole Atomic radius $\approx 10^{-10}$ m Proton radius $\approx 10^{-15}$ m

Electric field necessary to ionize air, about 3x10⁶ N/C

Geometry

area of circle = πr^2 circumference of circle = $2\pi r$ area of curved surface of cylinder = $2\pi rL$

surface area of sphere =
$$4\pi r^2$$
 volume of sphere = $\frac{4}{3}\pi r^3$ arc length = $r\Delta\theta$