SHAHEED BHAGAT SINGH STATE TECHNICAL CAMPUS, FEROZEPUR

ROLL No: Total number of pages: [2] Total number of questions:06

ME5th Sem

Numerical Method in Engg.

(RP1

Subject Code: ME-309

Paper ID: M/18 (for office use) Time allowed: 3 Hrs

Max Marks:60

To be specified by paper setter

Important Instructions:

- All questions are compulsory
- Assume any missing data
- Additional instructions, if any

PART A (2×10)

- 0.1. Short-Answer Questions:
 - (a) Define rate of convergence?
 - (b) Explain briefly the method of false position method to find root of the equation.
 - (c) Write the formula of Taylors Series method.
 - (d) If f(0)=8, f(1)=68 and f(5)=123, construct a divided differences table.
 - (e) Define Curve Fitting?
 - (f) Write Newtowns-Cote's quadrature formula.
 - (g) Write the formula of Tangent's method.
 - (h) What is difference between Gauss-Siedal and Jacobi Iterative method?
 - Write the normal equation of Straight line.
 - (j) Check whether 1.01x + 2y = 2.01, x+2y=2 is conditioned or not?

PART B (5×4)

- Find the real root of the equation $x^3 11 = 0$ by Secant method.
- Q. 3. Evaluate $\int_0^6 \frac{1}{v^2+1}$ by Trapezoidal Rule take n=6
- Find the maximum value of F(x) using following table:

X	-1	1	2	3
F(x)	21	10	6	2

Solve the initial value problem $\frac{dy}{dx} = x + y$; y (0)=1 for x=0.1 by Euler's Q. 5. method.

Q. 6. Solve the system of equation by Gauss-Elimination method 2x+y+z=10, 3x+2y+3z=18 and x+4y+9z=16

PART C (10×2)

- Q.7. Solve $x^3-3x-1=0$ by Newtown's –Raphson's Method.
- Q.8. Prove that rate of convergence of Regular falsi method is of linear order.
- Q.9. Solve the initial value problem $\frac{dy}{dx} = x^2 + y^2$; y (0)=1 for x=0.1 by Runge-Ku method of 4th order.