Soit f une fonction définie et continue sur $\mathbb{R}\setminus\{1\}$ et dont \mathscr{C}_f sa courbe représentative dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$:

Premier pas vers l'avenir

PR: YAHYA ASAAD [pr.yahya94@gmail.com] Limite et Continuité

Matière : Mathématiques

Niveau : 2éme année du cycle de Baccalauréat / Sciences physiques

Etablissement : Lycée ELFATH

Professeur : YAHYA ASAAD

Durée : leçon 15 H + évaluation 4 H

 Les orientations pédagogiques 	Capacités attendues	
\checkmark On adoptera la définition suivante : « f est continue au point x_0 , si $\lim_{x o x_0} f(x) = f(x_0)$ » ;	✓ Déterminer l'image d'un segment ou d'un intervalle : par une fonction continue. par une fonction continue et strictement monotone.	
✓ On admettra les résultats concernant la continuité des fonctions polynômes, des fonctions rationnelles, des fonctions trigonométriques et de la fonction $x \to \sqrt{x}$ et on mettra l'accent sur les applications de ces résultats ;	Appliquer le théorème des valeurs intermédiaires pour l'étude de quelques équations ou inéquations ou pour l'étude du signe de quelques expressions;	
✓ On admettra que l'image d'un segment par une fonction continue est un segment ainsi que l'image d'un intervalle est un intervalle et après on en déduira le théorème des valeurs intermédiaires ;	✓ Utiliser la dichotomie pour déterminer des valeurs approchées des solutions de l'équation f(x)= 1 ou pour encadrer ces solutions ; Appliquer le théorème des valeurs intermédiaires et le théorème de la fonction réciproque dans le cas d'une fonction continue et strictement monotone sur un intervalle.	
✓ On admettra que $f + g$ et $f \times g$ et λf sont des fonctions continues sur un intervalle I si f et g sont continues sur I ;		
On admettra que $g \circ f$ est une fonction continue sur un intervalle I si f est continue sur I et g est continue sur f (I) .		
♣ Les prés-requis	Les extensions	
✓ Limites et dérivation d'une fonction numérique ; ✓ Equations et inéquations et encadrement Polynômes , fonctions usuelles , fonctions trigonométrie	✓ Dérivation et étude d'une fonction ; ✓ Fonctions logarithmes et exponentielles ; Calcul intégral et primitives	

Activité

Déterminer les limites suivantes.

$$\begin{array}{l} \lim_{x\to 1} \frac{3x-1}{2x^3+2x-4}\,;\\ \lim_{x\to 2} \frac{\sqrt{4x+1}-3}{x^2-3x+2}\,; \! \lim_{x\to 0} \frac{\sin 7x}{5x} \end{array}$$

Activité

Considérons la fonction f définie par

$$\begin{cases} f(x) = \frac{x^2 - 4x + 3}{x - 1} \text{ si } x \neq 1 \\ f(1) = -2 \end{cases}$$

- 1) déterminer D_f .
- 2) a/ calculer $\lim_{x\to 1} f(x)$.
 - b/ comparer $\lim_{x \to 1} f(x)$ et f(1).

On dit que la fonction f est continue en $x_0 = 1$.

Activité

Considérons la fonction f définie

$$\begin{cases} f(x) = \frac{2x^3 - x - 14}{x^2 - x - 2} \text{ si } x > 2\\ f(x) = \frac{x - 2}{2x^2 + x - 10} \text{ si } x < 2\\ f(2) = \frac{1}{9} \end{cases}$$
 3) Continuité sur un intervalle Définition
1) Soit f une fonction définie sou \mathbb{C} .
$$f \text{ est continue sur } I \text{ si et seuler}$$

1) calculer $\lim_{x\to 2^+} f(x)$ et comparer avec f(2).

On dit que f n'est pas continue à droite de 2.

2) calculer $\lim_{x\to 2^-} f(x)$ et comparer avec f(2).

I- continuité en un point – continuité sur un intervalle

1) continuité en un point

Définition

Soit f une fonction numérique définie sur un intervalle ouvert I et x_0 un élément de I. on dit que la fonction f est <u>continue</u> au point x_0 si : $\lim_{x \to 0} f(x) = f(x_0)$.

Remarque

Si la fonction f est définie au point x_0 et n'admet pas de limite en x_0 ou sa limite est infini au point x_0 , on dit que f est discontinue au point x_0 .

2) continuité à droite – continuité à gauche

Définition

1) Soit f une fonction définie sur un intervalle de la forme

 $[x_0, x_0 + \alpha[$ où $\alpha \in \mathbb{R}_+^*$.

On dit que f est continue à droite en x_0 si : $\lim_{x \to x_0} f(x) = f(x_0)$

2)) Soit f une fonction définie sur un intervalle de la forme

 $]x_0 - \alpha$, $x_0]$ où $\alpha \in \mathbb{R}_+^*$.

On dit que f est continue à gauche en x_0 si : $\lim_{x \to x_0} f(x) = f(x_0)$

Proposition

Une fonction numérique f est continue au point x_0 si, et seulement si elle continue à droite et à gauche au point x_0 . En d'autres termes :

(f est continue au point
$$x_0$$
) $\Leftrightarrow \lim_{\substack{x \to x_0 \\ x > x_0}} f(x) = \lim_{\substack{x \to x_0 \\ x < x_0}} f(x) = f(x_0)$

1) Soit f une fonction définie sur un intervalle ouvert non vide I de $\mathbb R$ à valeurs dans $\mathbb R$

f est continue sur I si et seulement si f est continue en chaque point de I.

- 2) Soit fune fonction définie sur un intervalle I de la forme [a, b] (a réel et b réel ou infini et a < b) (resp. a, b] (b réel et a réel ou infini et a < b)) à valeurs dans \mathbb{R} ou \mathbb{C} . f est continue sur I si et seulement si f est continue en chaque point de a,b et continue à droite en a (resp. continue à gauche en b).
- 3) Soit f une fonction définie sur un intervalle I de la forme [a,b] (a et b réels et a < b) à valeurs dans \mathbb{R} ou \mathbb{C} .

f est continue sur I si et seulement si f est continue en chaque point de a, b, continue à droite en a et continue à gauche en b.

Exemple

Etudier la continuité de la fonction numérique définie par :

$$\begin{cases} f(x) = \frac{x^2 - 6x + 5}{x - 1} \text{ si } x \neq 1 \\ f(1) = -4 \end{cases}$$

Montrons que la fonction est continue au point $x_0 = 1$.

Exemple

Soit f la fonction numérique définie par :

$$f(x) = \begin{cases} 3 - x^2 & \text{si } x \le 0\\ \frac{x^2 - 3}{2x - 1} & \text{si } x > 0 \end{cases}$$

Etudions la continuité à droite et à gauche de la fonction f au point $x_0 = 0$.

Exemple

On considère la fonction f définie sur $[2, +\infty]$

Par:
$$\begin{cases} f(2) = 4 \\ \forall x > 2, f(x) = \frac{x^2 - 4}{x - 2} \end{cases}$$

Etudier la continuité de la fonction f sur l'intervalle sur $[2, +\infty[$

Etape 1 : justification de la continuité sur l'intervalle

La fonction $x \to x^2 - 4$ est continue sur $]2,+\infty[$

en tant que fonction polynôme de même , $x \rightarrow x - 2$ en tant que fonction polynôme, de plus, elle ne s'annule pas sur

 $|2,+\infty[$

Par quotient f est continue sur $[2, +\infty[$

On dit que f est continue à gauche de 2

Activité:

Le graphe ci-contre est le graphe de la fonction :

$$f(x) = x^2 + 2x$$

Déterminer graphiquement les images des intervalles :

$$I = [0,1], I = [-3,-1]$$

et $I = [-3,1]$.

Activité

Première Étape

Situation

Vous prenez l'ascenseur au deuxième étage. Vous fermez les yeux jusqu'à votre arrivée au douzième étage, vingt secondes plus tard.

II-Propriétés générales des fonctions continues

1) Continuité des fonctions usuelles

<u>Propriété</u>

Les fonctions usuelles, à savoir :

- Les fonctions polynômes (sommes de puissances de x),
- Les fonctions constantes,
- les fonctions rationnelles (quotients de polynômes), notamment la fonction inverse,
- la fonction racine carrée,
- les fonctions exponentielles,
- les fonctions trigonométriques que nous verrons ultérieurement, ainsi que les fonctions composées de ces fonctions usuelles sont des fonctions continues sur tout intervalle sur lequel elles sont définies.

2) Operations sur les fonctions continues

<u>Théorème</u>

Soient f et g deux fonctions continues en a, et k un nombre réel.

Les fonctions fg, f + g, kf et |f| sont continues en a .

Si $g(x) \neq 0$ alors les fonctions $\frac{1}{g}et \frac{f}{g}$ sont continues en a .

Conséquences

Les fonctions polynômes sont continues sur R

- Les fonctions rationnelles sont continues sur chaque intervalle de leur ensemble de définition .
- Si f est continue en a , alors $x \to f^n(x)$ est continue en a pour tout $n \in \mathbb{N}^*$

3) Continuité de la composition des fonctions continues

Théorème

Soient f une fonction définie sur un intervalle I et g une fonction définie sur un intervalle I tels que $f(I) \subset I$ et x_0 un élément de I.

1) Si f est continue en x_0 et g continue en $f(x_0)$ alors $g \circ f$ est continue en x_0 . Si f est continue sur f et g continue sur f(I) alors $g \circ f$ est continue sur f.

Etape 2 : Justification de la continuité aux points à problème

La fonction f est continue à droite en 2 , En effet :

Pour tout
$$x > 2$$
 $f(x) = \frac{(x-2\grave{a}(x+2))}{x-2} = (x+2)$
Ainsi $\lim_{\substack{2+\\2+}} f(x) = \lim_{\substack{2+\\2+}} (x+2) = 4$

On en déduit :

$$\lim_{2^+} f(x) = 4$$

par conséquent , la fonction f est continue à droite en 2

Etape3: Conclusion

La fonction f est continue sur $]2, +\infty[$ et à droite en 2.

On en conclut que la fonction f est continsur $[2, +\infty[$.

<u>Exemple</u>

La fonction $x \to (x-1)\sqrt{x}$ est continue sur $]0, +\infty[$ comme produit de deux fonctions continues .

La fonction $x \to -\frac{2}{x}$ est continue sur $]0, +\infty[$ comme produit d'une fonction continue et un scalaire donc

$$f: x \to (x-1)\sqrt{x} - \frac{2}{x}$$
 est continue sur $]0, +\infty[$ comme somme de deux fonctions continues sur $]0, +\infty[$.

<u>Exemple</u>

Soit f une fonction définie sur \mathbb{R} par $f(x) = \cos{(2x^2 - 3x + 4)}$ Montrons que f est continue sur \mathbb{R} Puisque les fonctions : $f_1(x): x \to 2x^2 - 3x + 4$ et $f_2(x): x \to \cos(x)$ sont continues sur \mathbb{R} Et $f_1(\mathbb{R}) \subset \mathbb{R}$ alors : $f = f_1 \circ f_2$ est continue sur \mathbb{R}

Questions

À quel moment environ l'ascenseur était-il au septième étage ? Justifier.

L'ascenseur est-il passé par le troisième étage ? le huitième ? Justifier.

L'ascenseur est-il passé par le treizième étage ? Justifier.

Deuxième étape

Situation

Le lendemain, vous prenez l'ascenseur au deuxième étage. De même, vous gardez vos yeux fermés, mais une autre personne monte à un autre étage que le deuxième. Vous continuez à garder les yeux fermés. À un moment donné, la personne descend. Une minute après, vous arrivez au douzième étage, où vous ouvrez les yeux.

Questions

L'ascenseur est-il passé par le septième étage ? Justifier.
L'ascenseur est-il passé par le treizième étage ? Justifier.
Quel est l'étage le plus haut par lequel est passé l'ascenseur après la descente de la personne, c'est-à-dire pendant la dernière minute ? L'étage le plus bas ? Est-ce garanti ? Justifier.

4) Limite de vou

Théorème :

Soit u une fonction définie sur un intervalle pointé de centre x_0 telle $\lim_{x \to x_0} u(x) = l$ si v est continue en l alors $\lim_{x \to x_0} v(x) = v(l)$

III-L 'image d'un intervalle par une fonction continue Théorème

• L'image d'un intervalle par une fonction continue est un intervalle .

L'image d'un segment par une fonction continue est un segment : si f est une fonction continue sur un intervalle [a,b] alors f([a,b]) = [m,M] où m et M sont respectivement la valeur minimale et la valeur maximale de la fonction f sur [a,b].

<u>Cas particulier (voir tableau)</u>:

Soit f une fonction continue sur un intervalle I , on a :

l'intervalle I	f est croissante sur I	f est décroissante sur I
[a;b]	[f(a); f(b)]	[f(b); f(a)]
[a;b[$[f(a); \lim_{x\to b^-} f(x)[$	$]\lim_{x\to b^{-}} f(x); f(a)]$
[a;b]	$]\lim_{x\to a^+} f(x); f(b)]$	$[f(b); \lim_{x \to a^+} f(x)[$
]a;b[$]\lim_{x\to a^+} f(x); \lim_{x\to b^-} f(x)[$	$\lim_{x\to b^-} f(x); \lim_{x\to a^+} f(x)[$
$[a; +\infty[$	$[f(a); \lim_{x\to+\infty} f(x)[$	$]\lim_{x\to+\infty}f(x);f(a)]$
$]-\infty;b]$	$\lim_{x\to-\infty} f(x); f(b)$	$[f(b); \lim_{x\to-\infty} f(x)]$

Exemple:

Déterminer la limite suivante :

$$\lim_{x\to 0} \sin\left(\frac{1-\cos x}{x^2}\pi\right)$$

Soient:
$$f: x \to \frac{1-\cos x}{x^2}$$
 et $g: x \to \sin(x)$

Puisque
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{\pi}{2}$$
, g est continue sur

$$\mathbb{R}$$
 Donc continue $x_0 = \frac{\pi}{2}$ donc

$$\lim_{x \to 0} \sin\left(\frac{1 - \cos x}{x^2}\pi\right) = \sin\left(\frac{\pi}{2}\right) = 1$$

Exemple

La fonction f definie par : $f(x) = x^2 + 1$ est strictement croissante sur $[0, +\infty[$.

-L'image par f de l'intervalle fermé [1,2] est :

$$f([1;2]) = [f(1);f(2)] = [2;5]$$

-L'image par f de l'intervalle semi-ouvert [0 ;1[est :

$$f([0;1]) = [f(0); \lim_{1^{-}} f(x)] = [1;2]$$

<u>Exercice</u>: Déterminer l'image de l'intervalle I par la fonction f dans les cas suivants :

$$f(x)=x^2+2x+1; l=[0; +\infty[$$

$$f(x)=\sin(x); I=[\frac{\pi}{2}; \frac{3\pi}{3}].$$

Exemple

L'équation $x^3 - x + 3$ admet au moins une solution dans l'intervalle]-2 ; 0[.

En effet, posons

 $f(x) = x^3 - x + 3$. Comme tout polynôme, f est une fonction continue. De plus

$$f(-2) = -3 et f(0) = 3,$$

 $f(-2) < 0 < f(0)$

On voit sur la figure ci-dessous que la courbe d'équation $y=x^3-x+3$ coupe l'axe des abscisses en un point sur l'intervalle]-2; 0[.

Troisième étape

Situation

Le jour suivant, même histoire, sauf que vous trichez et ouvrez les yeux pour observer que la personne descend au quinzième étage. Comme précédemment, tout ceci dure une minute.

Questions

L'ascenseur est-il passé par le septième étage ? Justifier. L'ascenseur est-il passé par le treizième étage ? Justifier. Établir une liste de tous les étages auxquels l'ascenseur aurait pu s'arrêter pendant la dernière minute.

Pouvez-vous garantir que l'ascenseur n'est jamais passé par le dix-septième étage ?

IV-Théorème des Valeurs intermédiaires (Théorème de Bolzano)

Théorème:

• Le théorème des valeurs intermédiaires s'énonce ainsi :

Soit f une fonction définie et continue sur un intervalle I, et a et b deux réels de I; pour tout réel k compris entre f(a) et f(b), il existe (au moins) un réel c compris entre a et b tel que f(c) = k.

Corollaire:

Si f est une fonction continue et strictement monotone sur un intervalle I alors, pour tout réel k de l'intervalle J = f(I), l'équation f(x) = k admet une unique solution dans I.

V-La fonction réciproque

<u>Théorème</u>: des fonctions réciproques

Théorème:

Soit f une fonction continue strictement monotone sur un intervalle IAlors:

- 1) f(I) est un intervalle I de même nature que I (fermé, ouvert ou semi ouvert) et ses extrémités sont les limites de I
- 2) La fonction f admet une fonction réciproque définie sur J=f(I); plus précisément, f définit une bijection de l'intervalle I sur l'intervalle J donc il existe une fonction notée f^{-1} de J dans I telle que

$$y = f(x) \iff y \in J$$

$$x = f^{-1}(x)$$

- 3) La fonction réciproque f^{-1} est continue et strictement monotone sur J de même sens de monotonie que f
- 4) De plus, si f est dérivable en un point x_0 de I et si $f'(x_0)$ est non nul, f^{-1} est dérivable au point $y_0 = f(x_0)$ et $f^{-1}(x_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$

Exemple

On considère la fonction numérique définie sur $I = [0, \sqrt{2}] par$:

 $x \to f(x) = \frac{x^3}{4-x^4}$ la fonction f est le quotient de deux fonctions g et h definies sur I par

$$x \rightarrow g(x) = x^3 et$$

 $x \rightarrow h(x) = 4 - x^4$

- o Les fonctions g et h sont continues sur I et h ne s'annule pas sur I, on en déduit que f est continue sur I.
- o Sur I, g est strictement croissante et positive, la fonction h est strictement decroissante et positive, donc la fonction $\frac{1}{h}$ est strictement croissante t positive, donc f est strictement croissante, comme produit de deux fonctions strictement croissantes positives. Comme la fonction f satisfait aux hypothèses du théorème des fonctions réciproques, on a les résultats suivants:

$$\circ \quad f([0,\sqrt{2}) = [f(0); \lim_{x \to \sqrt{2}} f(x)] =$$
 [0; +\infty]

Remarque:

la courbe représentative de f^{-1} est symétrique par rapport à la première bissectrice, de la courbe représentative de f .

 \circ La fonction f admet une fonction réciproque, notée f^- définie sur

$$J=[0;+\infty[\;;$$

On ne sait pas expliciter la fonction f^{-1} mais on sait que :

- o La fonction f^{-1} est continue sur $J = [0; +\infty[$
- o La fonction f^{-1} est strictement croissante sur I = $[0; +\infty[; f^{-1}([0; +\infty[) =$ $[0; \sqrt{2}[$ Avec $f^{-1}(0) = 0$ et

 $\lim_{+\infty} f^{-1}(x) = \sqrt{2}$ De plus les fonctions g et h étant dérivables sur I, f est dérivable comme quotient de deux fonctions dérivables, la fonction du dénominateur ne s'annulant pas sur *I* Sa dérivée, après calculs,

est la fonction
$$f': x \to \frac{x^2(12+x^4)}{(4-x^2)^2}$$

D'après le théorème des fonctions réciproques, la fonction f^{-1} est dérivable en tout point image d'un x tel que $f'(x) \neq 0$ Mais on a: $f'(x) = 0 \iff x = 0$ donc f^{-1} est dérivable en tout point autre que f(0) Donc f^{-1} est dérivable sur]0; +∞[et $\forall a \in$

$$], (f^{-1})'(0; +\infty[a]) = \frac{1}{f'(f^{-1}(a))}$$

Par exemple, f est définie en 1 et

$$f(1) = \frac{1}{3} \operatorname{Donc} f^{-1}$$
 est dérivable en $\frac{1}{3}$ et $(f^{-1})'(\frac{1}{3}) = \frac{1}{f'(1)} = \frac{9}{13}$

$$(f^{-1})'(\frac{1}{3}) = \frac{1}{f'(1)} = \frac{9}{13}$$

VI- La fonction racine n-ième

1. Théorème et propriétés

Dans tout ce paragraphe, n est un entier naturel ($n \ge 1$)

<u>Théorème</u>

La fonction $x \to x^n$ est continue et strictement croissante sur \mathbb{R}^+ , Elle admet donc une fonction réciproque que l'on nomme << racine n-ième>> et que l'on note $x \to \sqrt[n]{x}$. Ainsi pour tout x et y de \mathbb{R}^{+*} on a $y = x^n \iff x = \sqrt[n]{y}$

Remarque

$$\bullet \quad \sqrt[1]{x} = \sqrt{x}$$

$$\bullet \quad \chi^{\frac{1}{n}} = \sqrt[n]{\chi}$$

Propriétés des racines n-ième

•
$$\sqrt[n]{0} = 0$$
 et $\sqrt[n]{1} = 1$

•
$$\sqrt[n]{a^n} = (\sqrt[n]{a})^n = a \quad (a \in \mathbb{R}^{+*})$$

•
$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$
 $(a, b \in \mathbb{R}^{+*})$

$$\bullet \qquad \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

•
$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[nm]{a} = \sqrt[m]{\sqrt[n]{a}}$$

Propriété

Soit a un réel positif et n un entier naturel supérieur ou égal à 2 .

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

Représentation graphique de f et de f^{-1} dans un repère orthonormé.

Exemple:

$$5^{\frac{2}{3}} \times \sqrt[6]{25} = 5^{\frac{2}{3}} \times 25^{\frac{1}{6}} = 5^{\frac{2}{3}} \times (5^{2})^{\frac{1}{6}} = 5^{\frac{2}{3}} \times 5^{2 \times \frac{1}{6}} = 5^{\frac{2}{3}} \times 5^{\frac{1}{3}} = 5^{\frac{2+1}{3}} = 5^{1} = 5$$

$$0 \quad 2 \times \sqrt[10]{1024} = 2 \times (1024)^{\frac{1}{10}} = 2 \times (2^{10})^{\frac{1}{10}} = 2 \times 2^{1} = 4$$

$$\begin{array}{ll}
\circ & \sqrt[5]{85} \times 3^{\frac{1}{5}} = (85)^{\frac{1}{5}} \times 3^{\frac{1}{5}} = \\
& (3^4)^{\frac{1}{5}} \times (3)^{\frac{1}{5}} = 3^{\frac{4}{5}} \times 3^{\frac{1}{5}} = 3^{\frac{5}{5}} = 3
\end{array}$$

VII-Méthode de dichotomie

La méthode de dichotomie est une méthode pour trouver une solution approchée à une équation f(x)=0 Précisément, supposons que la fonction f est continue sur l'intervalle [a,b], avec $f(a) \leq 0$ et $f(b) \geq 0$. On sait donc qu'il existe au moins un réel c dans l'intervalle [a,b] tel que f(c)=0. L'idée est alors d'évaluer ce que vaut f au milieu de [a,b], et de distinguer les deux cas suivants :

- \star $si\ f(\frac{a+b}{2}) \le 0$, alors on sait qu'on a une racine dans l'intervalle $[\frac{a+b}{2},b]$.
- \Leftrightarrow Sinon, $f\left(\frac{a+b}{2}\right) > 0$ et on sait qu'on a une racine dans l'intervalle $\left[a, \frac{a+b}{2}\right]$

Ainsi, dans les deux cas, on a trouvé un intervalle de longueur moitié dans lequel est située une racine de l'équation f(x) = 0. On recommence alors avec cet intervalle, et ainsi de suite jusqu'à ce qu'on trouve une approximation qui nous convienne. Formellement, on définit les suites (a_n) et (b_n) en posant :

- $a_0 = a et b_0 = b$
- Si $f\left(\frac{a_n+b_n}{2}\right) \le 0$, alors $a_{n+1} = \frac{a_n+b_n}{2}$ et $b_{n+1} = b_n$
- Sinon $a_{n+1} = a_n \ et \ b_{n+1} = \frac{a_n + b_n}{2}$.

On a toujours une solution à l'équation f(x)=0 dans l'intervalle $[a_n,b_n]$, qui est de longueur $(\frac{b_n-a_n}{2n})$.

Exemple : Résultats numérique pour $\sqrt{10}$

Nous allons calculer une approximation de $\sqrt{10}$, Soit la fonction f définie par $f(x)=x^2-10$, c'est une fonction continue sur $\mathbb R$ qui s'annule en $\pm\sqrt{10}$,

De plus $\sqrt{10}$ est l'unique solution positive de l'équation (f(x) = 0). Nous pouvons restreindre la fonction f à l'intervalle [3,4]: en effet $3^2 = 9 \le 10$ donc $3 \le \sqrt{10}$ et $4^2 = 16 \ge 10$ donc $4 \ge \sqrt{10}$ En d'autre termes $f(3) \le 0$ et $f(4) \ge 0$, donc l'équation (f(x) = 0) admet une solution dans l'intervalle [3,4].

d'après le théorème des valeurs

intermédiaires, et par unicité c'est $\sqrt{10}$, donc $\sqrt{10} \in [3,4]$.

Notez que l'on ne choisit pas pour f la fonction $x \to x - \sqrt{10}$ car on ne connaît pas la valeur de $\sqrt{10}$. C'est ce que l'on cherche à calculer !

Voici toutes premières étapes :

- o On pose $a_0 = 3$ et $b_0 = 4$, on a bien $f(a_0) \le 0$ et $f(b_0) \ge 0$. On calcule $\frac{a_0 + b_0}{2} = 3.5$ puis $f\left(\frac{a_0 + b_0}{2}\right) = f(3.5) = 2.5 \ge 0$. Donc $\sqrt{10}$ est dans l'intervalle [3; 3,5] et on pose $a_1 = a_0 = 3$ et $b_1 = \frac{a_0 + b_0}{2} = 3.5$.
- $\begin{array}{ll} \text{O on sait donc que } f(a_1) \leq \\ & 0 \ et \ f(b_1) \geq 0 \ . \ \text{On calcule} \\ & f\left(\frac{a_1+b_1}{2}\right) = f\left(3,25\right) = 0,5625 \geq \\ & 0 \ \text{on pose } a_2 = 3 \ et \ b_2 = 3,25. \end{array}$

