

Existence of an Inverse
For an man matrix A, the following statements are equivalent:
• A^{-1} exists (A is nonsingular) • rank (A) = n • $A \longrightarrow I$ (via Gauss-Jordan) • $A \overrightarrow{x} = \overrightarrow{O}$ implies that $\overrightarrow{x} = \overrightarrow{O}$
Properties of Matrix Investor
For nonsingular matrices A and B, the following properties hold: o $(A^{-1})^{-1} = A$ o The product AB is also nonsingular o $(AB)^{11} = B^{-1}A^{-1}$ o $(A^{-1})^{T} = (A^{T})^{-1}$ and $(A^{-1})^{\#} = (A^{\#})^{\#}$
Gauss-Jordan elimination can be used to invert A by the reduction
[A I I] Gauss-Jordan [I A-1] The only way for this reduction to fail is fer a row of zeroes to emerge in the left-hand side of the augmented array, and this occurs if and only if A is a singular matrix.
1) Possible pitfall ∇ For two nxn matrices, what is $(A + B)^2$? $(A + B)^2 = (A + B)(A + B) = \begin{bmatrix} A^2 + AB + BA + B^2 \end{bmatrix}$ Note: not necessarily the case that $AB = BA \bigcirc$.
2) Show that, for every matrix A, the products ATA and AAT are symmetric matrices.
$A^{T}A_{i,j} = (A^{T})_{i,n} \cdot A_{i,j} = a_{i,1}^{T} \cdot a_{i,j} + a_{i,2}^{T} \cdot a_{i,j} + \cdots + a_{i,n}^{T} \cdot a_{i,j}$ $= a_{1,i} \cdot a_{1,j} + a_{2,i} \cdot a_{2,j} + \cdots + a_{n,i} \cdot a_{n,j}$ $= a_{1,i} \cdot a_{1,j} + a_{2,i} \cdot a_{2,j} + \cdots + a_{n,i} \cdot a_{n,j}$
$A^{T}A_{ji} = (A^{T}) \cdot A_{i} = a_{j1}^{T} \cdot a_{i} + a_{j2}^{T} \cdot a_{2i} + \cdots + a_{jn}^{T} \cdot a_{ni}$ $= a_{jj} \cdot a_{1i} + a_{2j} \cdot a_{2i} + \cdots + a_{nj} \cdot a_{ni} $

