

Electrónica Geral

José Gerald

Mestrado em Engenharia Aeroespacial Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia Aeroespacial

> MEAer: 1º ano, 1º semestre LEFT: 3º ano, 1º semestre LEAer: 3º ano, 1º semestre

> > 2021/2022

Capítulo 8 Circuitos Digitais

1. Introdução

1.1. Introdução

<u>Circuitos Digitais MOS:</u>

- Pequena área
- Fabrico simples
- Baixo consumo
- Elevada densidade de integração
- Sinais digitais: só dois estados lógicos, 0 e 1, com zona de separação

Escala de Integração: (Nº de portas por integrado)

- SSI 1 a 10
- MSI 10 a 100
- LSI 100 a 1000
- VLSI > 1000 (milhões)

1. Introdução

1.1. Introdução (Cont.)

Famílias lógicas:

- Mesma tecnologia
- Estruturas de circuitos semelhantes
- Desempenho básico igual

Famílias com FET

Família	P_{D}	Área	Freq. Máx.
NMOS	<>	<	< (MHz)
CMOS	<<	<	< (dez. MHZ- HCMOS)
BiCMOS	<>	>	>> (cent. GHz)
Pseudo-NMOS	<>	<	< (MHz)
GaAs MES	^	<	>> (dez. GHz)

Famílias com BJT

Família	P _D	Área	Freq. Máx.
TTL	^	>	> (cent. MHz)
ECL	>>	>>	>> (dez. GHz)

2.1 Inversor Pseudo-NMOS

 Q_p funciona como fonte de corrente (constante) mas só se $v_o \le V_T$ Vantagens:

- v_I só liga a 1 porta \Longrightarrow menor hardware, área e delay.
- Não apresenta efeito de corpo (source a V_{dd}).

Desvantagens:

- $v_{oL}>0$. Para minimizar este problema faz-se $K_n=4$ a 40 K_p .
- Consumo estático não nulo para $v_I = V_{DD}$. Usa-se para aplicações com v_o predominantemente no estado *high*.

Alternativas:

 Q_p NMOS de deplecção ou reforço. Melhora P_D e margem de ruído mas têm efeito de corpo.

2.2 Memórias

Acesso Aleatório

RAM – Random Access Memory. R/W e rápidas, usam-se para a memória principal

ROM – *Read Only Memory*. R/ e rápidas, usam-se para o sistema operativo, *lookup tables*, etc.

Memorização massiva de dados. Série ou sequencial Acesso Sequencial tipo disco ou fita. O tempo de acesso depende da localização dos dados.

2.2 Memórias (Cont.)

2.2 Memórias (Cont.)

Descodificador de endereço NOR

2.2 Memórias (Cont.)

2.2 Memórias (Cont.)

Célula regenerativa de memória SRAM

Leitura (Read): Pré-carrega-se B e B com $V_{DD}/2$. Quando os interruptores Q_5 e Q_6 fecharem a carga memorizada vai desequilibrar as tensões em B e B, o que é suficiente para o amplificador de leitura lêr e regenerar a célula.

Célula de memória DRAM

Para se ter D (Data) e D acrescenta-se outro espelho "dummy" carregado com $V_{DD}/2$. A diferença para D é suficiente para o amplificador de leitura lêr e regenerar a célula.

2.2 Memórias (Cont.)

Amplificador de Leitura (Sense Amplifier)

1) As linhas B e $\overline{\rm B}$ são pré-carregadas com ${\rm V_{DD}/2}.$

2) A célula a ser lida é ligada às linhas, o que provoca desequilíbrio diferencial em B e \overline{B} .

3) Via Q_5 e Q_6 é ligada a célula amplificadora diferencial regenerativa (idêntica à célula de memória SRAM) que amplifica a diferença e restaura os valores V_{DD} ou 0 em B e \overline{B} .

2.2 Memórias (Cont.)

Célula EPROM

Para programar aplica-se um tensão forte na gate "select gate" o que provoca deixar a "floating gate" com cargas negativas que lá irão ficar armazenadas. Estas cargas obrigam a tensões V_{GS} muito maiores para que haja condução.

2.2 Memórias (Cont.)

Célula EPROM na programação (dura 100 anos programada)

Durante a programação aparece um canal n (FET de reforço) devido a valores de V_{DS} muito elevados. Assim, os electrões fortemente acelerados no canal são também atraídos para a "select gate" pelo campo eléctrico, via óxido entre esta e o canal, ficando alguns presos na "floating gate". Estes electrões vão carregar negativamente esta gate o que posteriormente vai obrigar a valores de V_{GS} muito elevados para que haja formação de canal.

Na desprogramação usa-se uma luz ultravioleta (a "floating gate tem janela de quartzo) para que, com a energia dos fotões, se forneça energia suficiente aos electrões aprisionados a fim de voltarem para o substracto. Para as EEPROMs (usadas, por exemplo nas memórias *flash*) esta energia é fornecida por meios eléctricos.

3.1 Introdução

- Programáveis (não se personalizam camadas):
 - Matriz de céclulas lógicas básicas rodeadas por uma zona para interligações.
 - Programam-se as células e os portos de entrada e saída
 - Semelhantes aos PLDs, mas maiores e mais complexas. As FPGAs actuais permitem realizar sistema electrónicos complexos.
 - Ideais para prototipagem e pequenas séries

3.2 Configuração

- Configuração/programação de dispositivos FPGA:
 - A maior parte é baseada em RAM estática (SRAM), ou seja volátil.
 Configura-se quando se liga a alimentação (power-up).
 - Baseadas em Flash, em que existe uma Flash interna que mantém a configuração. Na ligação da alimentação, a SRAM pode ser configurada da Flash. Podem não ter SRAM para configuração.
 - Antifuse: menos vulneráveis a efeitos da radiação, mas só são programáveis uma vez.

3.2 Configuração (Cont.)

Configuração/programação de dispositivos FPGA:

- Fabricantes de FPGAs:
 - Xilinx: famílias Virtex (4, 5, 6, 7) e Spartan (baixo custo)

Family	Technology
Virtex	180 nm
Virtex-E	130 nm
Virtex-EM	90 nm
Virtex-II	130 nm
Virtex-II Pro	130 nm
Virtex-4	90 nm
Virtex-5	65 nm

- » Virtex 6 40 nm
- » Virtex 7 28 nm (2010)
- Altera: famílias Stratix-IV e Cyclone (baixo custo)
- Actel: mercados militar e aeroespacial. Menor densidade que as dada Xilinx e Altera. Têm dispositivos tolerantes à radiação (antifuse). Têm combinação com parte analógica.
- Lattice Semiconductor
- Atmel: principalmente microcontroladores mas têm uma família que combina AVR MCU com FPGA.

3.2 Configuração (Cont.)

- Elementos básicos da Xilinx (lógica):
 - CLB (Configurable Logic Block)
 - Hierarquia: CLB → slices → logic cells

3.2 Configuração (Cont.)

Slices:

Virtex 5, Virtex 6

Logic cells: LUTs, multiplexers, aritmética e registos (FF ou latches)

3.3 Projecto/Programação

- Projecto de um sistema electrónico em FPGA:
- A descrição do projecto de uma FPGA é feito a nível RTL (Register Transfer Level) que representa um circuito digital como base num conjunto de primitivas: somadores, contadores, multiplexers, registos, etc.
- Existem duas formas básicas para descrever o circuito/sistema a projectar::
 - diagrama esquemático ou descrição textual, mais simples de visualizar
 - linguagem textual HDL (Hardware Description Language), mais conveniente para grande projectos.

3.3 Projecto/Programação (Cont.)

- Linguagens mais utilizadas para descrever hardware de sistemas digitais:
 - VHDL (Hardware Description Language VHSIC)
 - IEEE standard 1076 (1987). Nova versão em 1993
 - ADA like (Pascal)
 - Verilog
 - comprada pela Cadence em 1989
 - do domínio público em 1990.
 - IEEE standard 1364 em 1995.
 - C-like
- Têm diferenças, mas as capacidades são semelhantes. A escolha da HDL depende de: preferências pessoais e disponibilidade de ferramentas de EDA.

3.3 Projecto/Programação (Cont.)

http://www.xilinx.com/itp/xilinx8/help/iseguide/html/ise_fpga_design_flow_overview.htm

• Desde 2012 o ISE deu lugar ao Vivado