

**Business Problem:** How can RappiCard predict and manage credit line utilization to optimize capital allocation and increase revenue

**Objective:** Develop robust occupation and risk assessment models to enhance financial stability and customer satisfaction.

**Approach:** Develop Credit limit and Risk models and use them as inputs for the Occupation model to optimally predict customer utilization rates.

- Occupation Model: Predict customer's credit utilization after credit limit increase
- Risk Assessment Model: Identify suitable customers for credit limit increases based on risk score
- Credit Limit Model: Predict account limit for each customer

**Impact:** Influence credit strategies, risk management, and targeted marketing, directly enhancing satisfaction and stability.

### **Machine Learning Techniques Used:**

- Linear & Logistic Regression
- Random Forest
- Neural Network
- Extreme Gradient Boosting (XGB)



### **Company Overview:**

- Founded in 2015, Rappi is a leading on-demand delivery platform in Latin America, headquartered in Colombia, with a significant presence in Mexico.
- Launched in partnership with Visa, RappiCard is a credit card solution by RappiPay, specifically
  designed to offer great rewards, cashback, and excellent customer service to its users in Mexico.
- Competitors: Nubank, Mercado Pago.
- Sponsor: Carlos Otiz, Division: Data Science

### **Business Problem:**

- Optimized Capital Allocation: Optimize capital reserves by understanding credit utilization for users
  - Enhanced Customer Insight: Understand how different customer segments use credit lines to tailor products
  - o Strategic Risk Management: Enhance risk management strategies to reduce bad debt exposure
  - o Dynamic Credit Limits: Implement a system for dynamic adjustment of credit limits



### **Utilization Model Data**

#### **Raw Data Overview**

- Data Span: January 2023 to December 2023
- Granularity: Monthly data for each customer
- Depth of Data: Up to 12 records per customer
- Number of Observations 1718976
- Number of Features 73
- Number of Unique Customer 200936
- Customers with 6+ months of active status = ~84%
- Customers with Credit Limit Change = ~24% of 84%

# Distribution of Credit Limit Change (6+ Months of Active Status)

| Change Type              | Count  | Avg Amount Change |
|--------------------------|--------|-------------------|
| Increase in Credit Limit | 39211  | 3490.178776       |
| Decrease in Credit Limit | 1576   | 7621.256345       |
| No Change                | 128710 |                   |





### Prediction Model

- Utilization Model: Utilization Average after the credit limit increase
- Risk Model: Probability of Default at 180 days after the credit limit increase
- Credit Limit Model: Amount of Credit Line Increase



## Performance Metrics

- Risk Model: R<sup>2</sup>, AUC
- Credit Limit Model: : R<sup>2</sup>, MAE
- Utilization Model: R<sup>2</sup>, RMSE



# Business Insight

- Cost : Expected Loss (= Reserve)
- Benefit : Revenue (Revolving interest)

Detailed Report and All the notebooks will be delivered

# **Solution Path**



- **Credit Reserve (or Reserve Balance)**: This is a portion of your available credit that is set aside by the credit card issuer to cover potential future charges, disputes, or other contingencies.
- Reserve = Exposure at Default \* Probability of Default \* Loss given Default

# Results and Recommendations



# ( Risk Model - Bivariate Analysis

### **Amount In Arrears**



### Last Amount



# **RDD - DataSet Creation**



Orange area - With change in account limit Blue area - Without change in account limit

# **Metrics Comparison**





Random Forest model appears to be the best choice

- High explanatory power (highest R-squared values)
- High prediction accuracy (low MAE values)
- Good generalization (small difference between train and test R-squared values).

# **Utilization Model - process**



# **Revenue Calculation**

**Interest Income** 

**Revolving Interest** 

+

Transactional Income

Exchange Fee ATM Fee Markup Fee **Financial Cost** 

Reserve

Transactional Expense

Transaction Fee Banking Fee ATM Fee

# **Additional Revolving Interest**

Reserve = TE \* PD \* LGD

TE- Total Exposure(Utilization Amount)
PD - Probability of Default
LGD -Loss Given Default

Total Customers = 11802
Sum of CL = 255 M
Sum of Utilization = 73 M
Avg Probability of Default = 0.62 %

Reserve = 2.8 M



Additional Revolving Interest = 777,277 from 11k Customers