1 Design topics

- Mapping features to various modules The functionality is separated to different modules (e.g. GPS module, Interrupt module, ...)
- Running synchronous to GPS data receiving (triggered by USART interrupt)
 - no timing/scheduling problems
 - simple integration of the basic features
 - no OS required
 - but: no complex user interaction possible (e.g. via touch screen)
- no OS is used
 - integration too time consuming
 - functions have to be reentrant
 - balancing of tasks pretty time consuming and complex (detailed design necessary)

2 The NMEA/PUBX Protocol

• NMEA: simple (serial) ASCII protocol (standardized)

• PUBX: proprietary NMEA extension (used for initialization)

3 Components

3.1 SPI (Serial Peripheral Interface)

- simple SPI-driver
- used for communication between μC and SD chip and the display

3.2 Display

3.2.1 Setting single pixels

Liquid crystal display

- direct pixel access via display data RAM
- RAM is organized in pages
- total size of (8pages * 8bit) * 132bit (actual only 128 bit, because of the display resolution of 128 x 64)
- internal SW buffer: sequential data structure (8 bit data type)
- positioning within the internal buffer for setting a pixel with coordinates X and Y: INDEX = (Y * 8) + (X/8)
- the actual bit is determined by : $BIT_NR = Y\&0x07$ (determining the actual row within a memory page)

• Summary: the index of the data buffer represents the 'column' number within the data memory, the result of a bit-wise AND operation with Y results in the actual row of the respective memory page

Listing 1: Example: display_putpixel() function * Set/Unset a single pixel on the display * For choosing the correct entry within the data structure (disp_ram[]) * first the concerning page of this pixel has to be determined. This * is done by dividing the Y coordinate by 8 (or better: do a right shift * of 3 bits). For choosing the entry in the array, the X coordinate multiplied \star by 8 (or better: left shifted by 3) has to be added to the actual page number. * The exact bit that shall be set/unset is determined by using the bitmask \star (y & 0x07). This selects the exact row of the respective memory page. 10 11 * Parameters: x X coordinate of the pixel 13 y Y coordinate of the pixel 14 */ 16 void display_putpixel(unsigned char x, unsigned char y, int pixel_status) 17 { if (x < DISP_WIDTH && y < DISP_HEIGHT) {</pre> 18 if (pixel_status == PIXEL_ON) 19 $disp_ram[(y >> 3) + (x << 3)] = (1 << (y & 0x07));$ 20 else 21 $disp_ram[(y >> 3) + (x << 3)] &= ~(1 << (y & 0x07));$ 22 23 24 }

3.2.2 Drawing BMPs/Text

- Converting BMPs into simple C-Arrays
- Text: using a 5x7 character set (organized in a simple one dimensional array)

3.3 LEDs

- simple IO access
- used as status indicator
- e.g. receiving of GPS data, recording of GPS data, ...

3.4 UART (Universal Asynchronous Receiver Transmitter)

- ullet simple driver module
- used for communication between PC and μ C

3.5 **GPS**

- initialization of the GPS receiver:
 - setting of the baud rate (for synchronization with the μ C
 - setting refresh rate to 1 per second (receiving one data set per second)
 - selection of required data sets (RMC, GGA, VTG)
- splitting of NMEA data sets (',*' separator)
- storage into internal data structure

3.6 SDC/FAT16

- tiny open source library
- horrible code (e.g. huge amount of magic numbers, magic bit shifting with several side effects)

3.7 Touch screen