How much unspanned volatility can different shocks explain?

Raul Riva

Northwestern University

2025 Midwest Macro Conference

May, 2025

Intro

Why should we care about volatility in the nominal US yield curve?

- Hedging of interest-rate derivatives: huge, liquid market with many players;
- **2** Tightly linked to volatility of holding returns for bonds: portfolio allocation;
- 3 Risk management of large bond portfolios from institutional investors;

Intro

Why should we care about *volatility* in the nominal US yield curve?

- Hedging of interest-rate derivatives: huge, liquid market with many players;
- 2 Tightly linked to volatility of holding returns for bonds: portfolio allocation;
- 3 Risk management of large bond portfolios from institutional investors;

Do we have good models for yield curve volatility? Yes and no:

- Workhorse: Dynamic Term Structure Models (very often affine ones);
- Tractable formulas for yields + arbitrage-free framework + convenient for estimation;
- Model-consistent separation between term premia and expected future short rates;

Intro

Why should we care about volatility in the nominal US yield curve?

- Hedging of interest-rate derivatives: huge, liquid market with many players;
- 2 Tightly linked to volatility of holding returns for bonds: portfolio allocation;
- 3 Risk management of large bond portfolios from institutional investors;

Do we have good models for yield curve volatility? Yes and no:

- Workhorse: Dynamic Term Structure Models (very often affine ones);
- Tractable formulas for yields + arbitrage-free framework + convenient for estimation;
- Model-consistent separation between term premia and expected future short rates;
- Poor time-series dynamics, sharp restrictions on how yields should behave;
- Important **today**: observed vol should be tightly connected to the cross-section of yields;

Can affine term structure models account for volatility in yields?

Mostly, no. In general, there is more variation than models allow. Some approaches:

- Regress returns from straddles on interest rate changes;
 - ► Collin-Dufresne & Goldstein (2002); Li & Zhao (2006)
- Regress changes of implied volatility from options/swaptions on interest rate changes;
 - Filipovic et al. (2017); Backwell (2021)
- Likelihood-ratio tests for conditions that connect yield volatility and in yield levels;
 - ► Bikbov & Chernov (2009)
- State-price density estimation from options data;
 - ► Li & Zhao (2009)
- Restrictions from high(er)-frequency data;
 - ► Andersen & Benzoni (2010)
 - ► Closest paper to mine, but we deal with jumps and different maturities very differently;

Any room for improvement?

- Jump-diffusion settings are not so common, but jumps are prevalent in bond markets (Piazzesi, 2010);
- What derivatives to use in an empirical test? Results seem dependent on this choice;
 - ► Swaptions? Caps and floors? Straddles? At the money? Out of the money?
 - Liquidity and availability of strikes also depend on overall volatility itself...
- Analyses done at the individual maturity level
 - ▶ Too many degrees of freedom;
 - ► What maturities should we pay attention to?

Any room for improvement?

- Jump-diffusion settings are not so common, but jumps are prevalent in bond markets (Piazzesi, 2010);
- What derivatives to use in an empirical test? Results seem dependent on this choice;
 - ► Swaptions? Caps and floors? Straddles? At the money? Out of the money?
 - Liquidity and availability of strikes also depend on overall volatility itself...
- Analyses done at the individual maturity level
 - ▶ Too many degrees of freedom;
 - What maturities should we pay attention to?
- **Crucially**: attempts to tie "excessive" volatility to real-world developments are rare;
 - ► This is where the money is! Super important for derivative hedging!
 - ▶ What can help explain this "unspanned" volatility? Probably not just noise...

This project: two contributions

New methodology: a new test for excess volatility with a number of advantages;

- Implications for non-parametric measures of yield volatility within the affine framework;
- Only zero-coupon yields needed;
- I don't analyze specific maturities, focus on a decomposition of the whole curve;
- Characterization of an unspanned volatility factor: 2/3 of the residual volatility;

This project: two contributions

New methodology: a new test for excess volatility with a number of advantages;

- Implications for non-parametric measures of yield volatility within the affine framework;
- Only zero-coupon yields needed;
- I don't analyze specific maturities, focus on a decomposition of the whole curve;
- Characterization of an unspanned volatility factor: 2/3 of the residual volatility;

New empirical results: what can explain this unspanned volatility factor?

- Focus on shocks from the literature on monetary policy, fiscal policy, and oil shocks;
- Forward-guidance-type shocks, oil, and fiscal policy shocks help driving this factor;
- These shocks explain $\approx 13\%$ of variation. Still a lot to explain (and write about!).

Data

- Yield curve data: daily zero-coupon curve from Liu & Wu (2021), from 1973 to 2022;
- Monetary policy shocks from Swanson (2021) monthly frequency;
- Oil shocks identified from Känzig (2021) monthly frequency;
- Fiscal shocks from different sources quarterly frequency:
 - ▶ Defense spending shocks from Ramey (2011) and Ramey & Zubairy (2018);
 - ► Tax policy shocks from Romer & Romer (2010);
 - ► Stock returns from top US government defense contractors Fisher & Peters (2010);

$$dX_{t} = K(\Theta - X_{t}) dt + \sum \sqrt{S_{t}} dW_{t}^{Q} + Z_{t} d\mathcal{N}_{t}^{Q}$$
(1)

$$dX_{t} = K(\Theta - X_{t}) dt + \Sigma \sqrt{S_{t}} dW_{t}^{Q} + Z_{t} d\mathcal{N}_{t}^{Q}$$
(1)

- K and Σ are $N \times N$ constant matrices; Θ is an $N \times 1$ vector of long-run means;
- S_t is an $N \times N$ diagonal matrix whose diagonal elements follow:

$$S_{t,[ii]} = s_{0,i} + s'_{1,i}X_t \tag{2}$$

$$dX_t = K(\Theta - X_t) dt + \sum \sqrt{S_t} dW_t^Q + Z_t dN_t^Q$$
 (1)

- K and Σ are $N \times N$ constant matrices; Θ is an $N \times 1$ vector of long-run means;
- S_t is an $N \times N$ diagonal matrix whose diagonal elements follow:

$$S_{t,[ii]} = s_{0,i} + s'_{1,i}X_t \tag{2}$$

- W_t^Q is a Brownian Motion and \mathcal{N}_t^Q a Poisson process with intensity $\lambda_t = \lambda_0 + \lambda_1' X_t$;
- $Z_t \sim \nu^Q$ represents a jump size, is independent of both W_t^Q and \mathcal{N}_t^Q , with $\mathbb{E}[Z_t Z_t'] = \Omega$;

$$dX_{t} = K(\Theta - X_{t}) dt + \sum \sqrt{S_{t}} dW_{t}^{Q} + Z_{t} d\mathcal{N}_{t}^{Q}$$
(1)

- K and Σ are $N \times N$ constant matrices; Θ is an $N \times 1$ vector of long-run means;
- S_t is an $N \times N$ diagonal matrix whose diagonal elements follow:

$$S_{t,[ii]} = s_{0,i} + s'_{1,i}X_t \tag{2}$$

- W_t^Q is a Brownian Motion and \mathcal{N}_t^Q a Poisson process with intensity $\lambda_t = \lambda_0 + \lambda_1' X_t$;
- $Z_t \sim \nu^Q$ represents a jump size, is independent of both W_t^Q and \mathcal{N}_t^Q , with $\mathbb{E}[Z_t Z_t'] = \Omega$;
- The short rate r_t is given by: $r_t = \delta_0 + \delta_1' X_t$;

Bond Prices and Bond Yields

- This setup ensures that zero-coupon yields $y_t^{(\tau)}$ are an affine function of state variables;
- If we trade J fixed maturities $(\tau_1,...,\tau_J)$ we can write for some vector A and matrix B:

$$Y_t = A + BX_t \tag{3}$$

Bond Prices and Bond Yields

- This setup ensures that zero-coupon yields $y_t^{(\tau)}$ are an affine function of state variables;
- If we trade J fixed maturities $(\tau_1,...,\tau_J)$ we can write for some vector A and matrix B:

$$Y_t = A + BX_t \tag{3}$$

• If B is full column rank (and it is for the US market - Bauer & Rudebusch (2017)):

$$X_t = (B'B)^{-1}B'(Y_t - A) = \tilde{A} + \tilde{B}Y_t$$
(4)

- ullet This is a path-by-path condition: movements in yields should reveal movements in X_t ;
- It connects the whole distribution of Y_t and X_t ;

The Quadratic Variation Process

Definition 1 (Just a fancy variance!)

For a real-valued process M_t , given a partition $\{t_0 = t, t_1, ..., t_{n-1}, t_n = t + h\}$, we define its

Quadratic Variation between t and t + h as

$$QV_{M}(t, t+h) \equiv \operatorname{p-lim}_{\delta_{n} \to 0} \sum_{k=1}^{n} (M_{t_{k}} - M_{t_{k-1}})^{2}, \quad \delta_{n} \equiv \sup_{0 \le k \le n} \{t_{k} - t_{k-1}\}$$
 (5)

The Quadratic Variation Process

Definition 1 (Just a fancy variance!)

For a real-valued process M_t , given a partition $\{t_0=t,t_1,...,t_{n-1},t_n=t+h\}$, we define its Quadratic Variation between t and t+h as

$$QV_{M}(t, t+h) \equiv \underset{\delta_{n} \to 0}{\text{p-lim}} \sum_{k=1}^{n} (M_{t_{k}} - M_{t_{k-1}})^{2}, \quad \delta_{n} \equiv \underset{0 \le k \le n}{\text{sup}} \{t_{k} - t_{k-1}\}$$
 (5)

Proposition 1

For any linear combination of yields $L_t = c' Y_t$, its Quadratic Variation between t and t + h is

$$QV_{L}(t,t+h) = \tilde{\gamma}_{0} + \sum_{j=1}^{J} \tilde{\gamma}_{1,j} \cdot \overline{y}^{(\tau_{j})}(t,t+h) + \sum_{k=1}^{N_{t+h}-N_{t}} v' Z_{T_{k}(t,t+h)} Z'_{T_{k}(t,t+h)} v$$
 (6)

Should be spanned by average yields

No requirement to span the jump-only part!

where $\overline{y}^{(\tau_j)}(t,t+h) \equiv \frac{1}{h} \int_t^{t+h} y_s^{(\tau_j)} ds$, $\{\tilde{\gamma}_0,\tilde{\gamma}_1\}$ and v depend on parameters;

Identification

- Measuring the QV of stochastic process is usually easy: Realized Variance!
- Here it would incorporate both the diffusive (spanned) part and the jump-driven part;
- Can we tease out the diffusive part from the jumps? Yes: Bipower Variation!

Identification

- Measuring the QV of stochastic process is usually easy: Realized Variance!
- Here it would incorporate both the diffusive (spanned) part and the jump-driven part;
- Can we tease out the diffusive part from the jumps? Yes: Bipower Variation!

Definition 2 (Barndorff-Nielsen & Shephard (2004, 2006))

For a real-valued process M_t , we define the Bipower Variation process over [t, t+h] as:

$$BPV_{M}(t, t+h) \equiv \underset{n \to \infty}{\text{p-lim}} \sum_{i=2}^{n} \left| M_{t+i \cdot \frac{h}{n}} - M_{t+(i-1) \cdot \frac{h}{n}} \right| \left| M_{t+(i-1) \cdot \frac{h}{n}} - M_{t+(i-2) \cdot \frac{h}{n}} \right|$$
(7)

Identification

- Measuring the QV of stochastic process is usually easy: Realized Variance!
- Here it would incorporate both the diffusive (spanned) part and the jump-driven part;
- Can we tease out the diffusive part from the jumps? Yes: Bipower Variation!

Definition 2 (Barndorff-Nielsen & Shephard (2004, 2006))

For a real-valued process M_t , we define the Bipower Variation process over [t, t+h] as:

$$BPV_{M}(t,t+h) \equiv \underset{n\to\infty}{\text{p-lim}} \sum_{i=2}^{n} \left| M_{t+i\cdot\frac{h}{n}} - M_{t+(i-1)\cdot\frac{h}{n}} \right| \left| M_{t+(i-1)\cdot\frac{h}{n}} - M_{t+(i-2)\cdot\frac{h}{n}} \right|$$
(7)

Proposition 2

Under this setup, the Bipower Variation of $L_t = c'Y_t$ identifies the diffusive part of QV_L :

$$BPV_L(t,t+h) = \frac{2}{\pi} \cdot \left| \tilde{\gamma}_0 + \sum_{j=1}^J \tilde{\gamma}_{1,j} \cdot \overline{y}^{(\tau_j)}(t,t+h) \right|$$
 (8)

- This condition can be tested:
 - ► We can approximate both the LHS and RHS;
 - ▶ I use daily data to compute these measures at the *monthly* frequency;
- Regressing bipower variation measures on average yields should yield significant coefficients + high R²;

- This condition can be tested:
 - ▶ We can approximate both the LHS and RHS;
 - ▶ I use daily data to compute these measures at the *monthly* frequency;
- Regressing bipower variation measures on average yields should yield significant coefficients + high R²;

But why to focus on linear combinations of yields?...

- US yield curve admits a low-rank representation (Litterman & Scheinkman (1991));
- A common decomposition is the one from Nelson & Siegel (1987);
- Three factors: a long-end factor β_1 , a short-end factor β_2 , and a medium-end factor β_3 ;
- Time-series characteristics of yields depend on how these factors evolve;

- This condition can be tested:
 - We can approximate both the LHS and RHS;
 - ▶ I use daily data to compute these measures at the *monthly* frequency;
- Regressing bipower variation measures on average yields should yield significant coefficients + high R²;

But why to focus on linear combinations of yields?...

- US yield curve admits a low-rank representation (Litterman & Scheinkman (1991));
- A common decomposition is the one from Nelson & Siegel (1987);
- Three factors: a long-end factor β_1 , a short-end factor β_2 , and a medium-end factor β_3 ;
- Time-series characteristics of yields depend on how these factors evolve;
- My JMP shows that there is **unspanned risk premium** *only* through β_2 ;
- What about volatility? Do we have unspanned volatility from every part of the curve?

- This condition can be tested:
 - We can approximate both the LHS and RHS;
 - ▶ I use daily data to compute these measures at the *monthly* frequency;
- Regressing bipower variation measures on average yields should yield significant coefficients + high R²;

But why to focus on linear combinations of yields?...

- US yield curve admits a low-rank representation (Litterman & Scheinkman (1991));
- A common decomposition is the one from Nelson & Siegel (1987);
- Three factors: a long-end factor β_1 , a short-end factor β_2 , and a medium-end factor β_3 ;
- Time-series characteristics of yields depend on how these factors evolve;
- My JMP shows that there is **unspanned risk premium** *only* through β_2 ;
- What about volatility? Do we have **unspanned volatility** from **every part** of the curve?

The Nelson-Siegel Representation

- $y_t^{(\tau)}$: zero-coupon rate at time t and maturity τ ;
- $\psi > 0$: a positive decay parameter;

$$y_t^{(\tau)} = \beta_{1,t} + \beta_{2,t} \left(\frac{1 - e^{-\psi\tau}}{\psi\tau} \right) + \beta_{3,t} \left(\frac{1 - e^{-\psi\tau}}{\psi\tau} - e^{-\psi\tau} \right)$$
(9)

- β_1 is a long-run factor: $\lim_{\tau \to \infty} y_t^{(\tau)} = \beta_{1,t}$;
- β_2 is a short-run factor: its absolute loading decreases with τ ;
- β_3 is a medium-run factor: its loading is hump-shaped;

How to estimate this???

Daily Factors

Average daily fitting error over maturities \approx 5bps;

Variation Measures

- Recall: diffusive variation should be an affine function of average yields;
- BPV_i : bipower variation of factor $i \in \{1, 2, 3\}$;
- $BPCov_{i,j}$: bipower covariation between factors i and j, using a polarization identity;
- Notation: $BPCov_{i,i} \equiv BPV_i$, for any i;

- Recall: diffusive variation should be an affine function of average yields;
- BPV_i : bipower variation of factor $i \in \{1, 2, 3\}$;
- $BPCov_{i,j}$: bipower covariation between factors i and j, using a polarization identity;
- Notation: $BPCov_{i,i} \equiv BPV_i$, for any i;
- The derivations suggest the following regression:

$$BPCov_{i,j}(t) = \delta_{i,j} + \theta'_{i,j}\overline{Y}_t + \eta_{i,j}(t), \qquad i,j = 1,2,3$$
(10)

- Recall: diffusive variation should be an affine function of average yields;
- BPV_i : bipower variation of factor $i \in \{1, 2, 3\}$;
- $BPCov_{i,j}$: bipower covariation between factors i and j, using a polarization identity;
- Notation: $BPCov_{i,i} \equiv BPV_i$, for any i;
- The derivations suggest the following regression:

$$BPCov_{i,j}(t) = \delta_{i,j} + \theta'_{i,j}\overline{Y}_t + \eta_{i,j}(t), \qquad i, j = 1, 2, 3$$
(10)

- But the yield curve has a low-rank factor structure... and what yields to include?
- Why not use the Nelson-Siegel factors directly?

- Recall: diffusive variation should be an affine function of average yields;
- BPV_i : bipower variation of factor $i \in \{1, 2, 3\}$;
- $BPCov_{i,j}$: bipower covariation between factors i and j, using a polarization identity;
- Notation: $BPCov_{i,i} \equiv BPV_i$, for any i;
- The derivations suggest the following regression:

$$BPCov_{i,j}(t) = \delta_{i,j} + \theta'_{i,j}\overline{Y}_t + \eta_{i,j}(t), \qquad i, j = 1, 2, 3$$
(10)

- But the yield curve has a low-rank factor structure... and what yields to include?
- Why not use the Nelson-Siegel factors directly?

$$BPCov_{i,j}(t) = \delta_{i,j} + \theta_{i,j}^{(1)} \overline{\beta}_{1,t} + \theta_{i,j}^{(2)} \overline{\beta}_{2,t} + \theta_{i,j}^{(3)} \overline{\beta}_{3,t} + \eta_{i,j}(t), \qquad i, j = 1, 2, 3$$
 (11)

- Recall: diffusive variation should be an affine function of average yields;
- BPV_i : bipower variation of factor $i \in \{1, 2, 3\}$;
- $BPCov_{i,j}$: bipower covariation between factors i and j, using a polarization identity;
- Notation: $BPCov_{i,j} \equiv BPV_i$, for any i;
- The derivations suggest the following regression:

$$BPCov_{i,j}(t) = \delta_{i,j} + \theta'_{i,j}\overline{Y}_t + \eta_{i,j}(t), \qquad i, j = 1, 2, 3$$
(10)

- But the yield curve has a low-rank factor structure... and what yields to include?
- Why not use the Nelson-Siegel factors directly?

$$BPCov_{i,j}(t) = \delta_{i,j} + \theta_{i,j}^{(1)} \overline{\beta}_{1,t} + \theta_{i,j}^{(2)} \overline{\beta}_{2,t} + \theta_{i,j}^{(3)} \overline{\beta}_{3,t} + \eta_{i,j}(t), \qquad i, j = 1, 2, 3$$
 (11)

(Don't worry! Robustness checks in the paper!)

Test - Post-Volcker Sample

Table: Post-Volcker Sample (September, 1987 - December, 2022)

	BPV_1	BPV_2	BPV ₃	BPCov ₂₁	BPCov ₃₁	BPCov ₃₂
Average β_1	-0.03	-0.01	0.36	0.06	0.02	-0.04
	(0.04)	(0.05)	(0.30)	(0.04)	(0.06)	(0.06)
Average β_2	-0.05	-0.03	-0.56	0.08	-0.04	0.00
	(0.07)	(80.0)	(0.52)	(0.06)	(0.10)	(0.12)
Average β_3	-0.10	-0.15	-0.21	0.11	0.12	-0.07
	(80.0)	(0.09)	(0.52)	(0.07)	(0.11)	(80.0)
N	424	424	424	424	424	424
R^2	0.07	0.08	0.06	0.13	0.02	0.01

Is everything just noise?

ullet Each regression delivers a time series of residuals \Longrightarrow Six residual series in total;

Is everything just noise?

• Each regression delivers a time series of residuals \implies Six residual series in total;

Figure: Spectral decomposition of residuals

- The first PC of residuals commands 2/3 of the unexplained variation;
- If the failure of the previous tests were due to pure noise, we wouldn't see such a dominant factor;

How does this factor look like?

- Realizations are skewed, spiking up during recessions and major events;
- It's hard to make the case this is pure noise;

What can explain this factor?

- Much of the yield curve volatility is not accounted by affine term structure models;
- Spikes in the unspanned volatility seem related to monetary policy;
- How much of this factor can monetary policy explain?

$$USV_t = \alpha + \theta \cdot |\mathsf{Shock}_t| + u_t \tag{12}$$

- Three types of monetary policy shocks from Swanson (2021);
 - Pure Fed Funds rate surprise, a forward-guidance shock, and a QE-type shock;
 - ▶ Identified using Fed Funds + Eurodollar futures (1991-2019);

What can explain this factor?

- Much of the yield curve volatility is not accounted by affine term structure models;
- Spikes in the unspanned volatility seem related to monetary policy;
- How much of this factor can monetary policy explain?

$$USV_t = \alpha + \theta \cdot |\mathsf{Shock}_t| + u_t \tag{12}$$

- Three types of monetary policy shocks from Swanson (2021);
 - ▶ Pure Fed Funds rate surprise, a forward-guidance shock, and a QE-type shock;
 - ▶ Identified using Fed Funds + Eurodollar futures (1991-2019);
- What about oil price shocks? ↑ inflation, ↑ inflation expectations (Känzig, 2021);
 - ▶ Monthly frequency, identified with daily oil futures prices (1975-2022);
- This is about the US sovereign debt... can fiscal policy help explai volatility? (Fisher & Peters, 2010; Romer & Romer, 2010; Ramey, 2011; Ramey & Zubairy, 2018);

Monetary Policy

	First PC of Residuals				
	(1)	(2)	(3)	(4)	
FFR	0.10		0.04		
	(0.10)		(0.09)		
FG		0.17**	0.16**	0.30*	
		(80.0)	(0.07)	(0.17)	
QE				-0.05	
				(0.09)	
Sample	1991-2019			2009-2016	
N	336	336	336	96	
R^2	0.01	0.03	0.03	0.08	

- 1 sd of FG $\approx \uparrow$ 6 bps on future Fed Funds 1 year ahead; Shocks Time Series
- Back of envelope: 25 bps worth of FG ≈ ↑ 0.64 standard deviations in unspanned vol;

Oil Price Shocks + Monetary Policy

Table: Projecting Jump-Robust Unspanned Vol

	(1)	(2)	(3)	(4)
Oil Shock	0.42***	0.43**	0.43**	0.43**
	(0.15)	(0.18)	(0.18)	(0.18)
FFR		0.05		0.02
		(0.06)		(0.05)
FG			0.11**	0.10**
			(0.05)	(0.05)
Sample	1975-2022		1991-2019	9

336

0.09

336

0.12

336

0.13

576

0.02

Ν

 R^2

- 10% oil price increase ≈ ↑ 0.42 standard deviations of USV;
- Oil shock + monetary policy explain at most 13% of the unspanned volatility factor;

Oil Shock Time Series

Fiscal Policy

Table: Projecting Unspanned Vol on Fiscal Policy Shocks

	(1)	(2)	(3)	(4)
Tax Changes	0.67*			0.70*
(Romer & Romer, 2010)	(0.39)			(0.39)
Defense Spending Shocks		0.04		-0.01
(Ramey & Zubairy, 2018)		(0.07)		(80.0)
Defense Contractors Returns			0.03*	0.02
(Fisher & Peters, 2010)			(0.02)	(0.02)
End of sample (quarterly data)	2007	2015	2008	2007
N	140	172	144	140
R^2	0.02	0.00	0.02	0.04

[•] A tax change worth 1% of GDP $\implies \uparrow 0.7$ standard deviations of *USV*;

Wrap Up

Main takeaways:

- I provide a jump-robust test for the presence of unspanned volatlity;
- I show that there is unspanned volatility steaming from the entire maturity spectrum;
- Unspanned volatility as a single factor, which I formally characterize;
- This factor is *partially* driven by monetary policy, fiscal policy, and oil shocks;

Wrap Up

Main takeaways:

- I provide a jump-robust test for the presence of unspanned volatlity;
- I show that there is unspanned volatility steaming from the entire maturity spectrum;
- Unspanned volatility as a single factor, which I formally characterize;
- This factor is *partially* driven by monetary policy, fiscal policy, and oil shocks;

Going forward:

- Allow for more general dynamics between the unspanned vol factor and shocks? VARs?
- What kind of other sources of variation are interesting here?

Wrap Up

Main takeaways:

- I provide a jump-robust test for the presence of unspanned volatlity;
- I show that there is unspanned volatility steaming from the entire maturity spectrum;
- Unspanned volatility as a single factor, which I formally characterize;
- This factor is *partially* driven by monetary policy, fiscal policy, and oil shocks;

Going forward:

- Allow for more general dynamics between the unspanned vol factor and shocks? VARs?
- What kind of other sources of variation are interesting here?

Thank you!

${\sf Appendix}$

Figures

Fitting Error

Realized Covariances

Test - Full Sample (1973-2022)

Table: Full Sample (1973-2022)

	BPV_1	BPV_2	BPV_3	BPCov ₂₁	BPCov ₃₁	BPCov ₃₂
Average β_1	0.34***	0.56***	2.90***	-0.14**	-0.56**	0.14
	(0.11)	(0.18)	(0.86)	(0.07)	(0.22)	(0.10)
Average β_2	0.34*	0.87***	3.77***	-0.15	-0.64**	0.04
	(0.17)	(0.32)	(1.38)	(0.11)	(0.30)	(0.10)
Average β_3	-0.25**	-0.54***	-1.68*	0.19**	0.25	0.03
	(0.12)	(0.21)	(88.0)	(80.0)	(0.17)	(80.0)
N	600	600	600	600	600	600
R^2	0.18	0.31	0.27	0.08	0.18	0.02

Spectral Decomposition of RV Residuals

Unspanned Factors: RV vs BP

Monetary Policy Shocks from Swanson (2021)

Oil Shocks from Känzig (2021)

Fiscal Shocks

Math and Tables

Estimating Nelson-Siegel Factors with OLS

- We estimate the factors using OLS: regress yields on coefficients;
- $\lambda > 0$ is fixed:
- No need of numerical solutions!

$$\begin{bmatrix} \widehat{\beta}_{1,t} \\ \widehat{\beta}_{2,t} \\ \widehat{\beta}_{3,t} \end{bmatrix} = (M'M)^{-1} M'Y_t, \qquad M \equiv \begin{bmatrix} 1 & \frac{1-e^{-\psi\tau_1}}{\psi\tau_1} & \frac{1-e^{\psi\tau_1}}{\psi\tau_1} - e^{-\lambda\tau_1} \\ 1 & \frac{1-e^{-\psi\tau_2}}{\psi\tau_2} & \frac{1-e^{\psi\tau_2}}{\psi\tau_2} - e^{-\lambda\tau_2} \\ \vdots & \vdots & \vdots \\ 1 & \frac{1-e^{-\psi\tau_J}}{\psi\tau_J} & \frac{1-e^{\psi\tau_J}}{\psi\tau_J} - e^{-\lambda\tau_J} \end{bmatrix}.$$

Back

How Jumpy Are The Factors?

- How much variation is coming from the diffusive part? How much from the jumps?
- Surprisingly stable over factors and over time!

$$JV_i(t) \equiv \max\{RCov_{ii}(t) - BPV_i(t), 0\}, \qquad JR_i(t) \equiv \frac{JV_i(t)}{RCov_{ii}(t)}$$
(13)

How Jumpy Are The Factors?

- How much variation is coming from the diffusive part? How much from the jumps?
- Surprisingly stable over factors and over time!

$$JV_i(t) \equiv \max\{RCov_{ii}(t) - BPV_i(t), 0\}, \qquad JR_i(t) \equiv \frac{JV_i(t)}{RCov_{ii}(t)}$$
(13)

Table: Average jumpiness of Nelson-Siegel factors

	JR_1	JR_2	JR_3
Whole Sample (1973-2022)	0.172	0.158	0.170
Months with MP activity	0.146	0.145	0.161
Months without MP activity	0.150	0.149	0.157
<i>p</i> -value for difference	0.799	0.808	0.812

References I

- Andersen, T. G. & Benzoni, L. (2010). Do bonds span volatility risk in the u.s. treasury market? a specification test for affine term structure models. *The Journal of Finance*, 65(2), 603–653.
- Backwell, A. (2021). Unspanned stochastic volatility from an empirical and practical perspective. *Journal of Banking & Finance*, 122, 105993.
- Barndorff-Nielsen, O. & Shephard, N. (2004). Power and bipower variation with stochastic volatility and jumps. *Journal of Financial Econometrics*, 2(1), 1–37.
- Barndorff-Nielsen, O. & Shephard, N. (2006). Econometrics of testing for jumps in financial economics using bipower variation. *Journal of Financial Econometrics*, 4(1), 1–30.
- Bauer, M. & Rudebusch, G. (2017). Resolving the spanning puzzle in macro-finance term structure models. *Review of Finance*, 21(2), 511–553.
- Bikbov, R. & Chernov, M. (2009). Unspanned stochastic volatility in affine models: Evidence from eurodollar futures and options. *Management Science*, 55(8), 1292–1305.
- Collin-Dufresne, P. & Goldstein, R. S. (2002). Do bonds span the fixed income markets? theory and evidence for unspanned stochastic volatility. The Journal of Finance, 57(4), 1685–1730.
- Filipovic, D., Larsson, M., & Trolle, A. (2017). Linear-rational term structure models. *The Journal of Finance*, 72(2), 655–704.

References II

- Fisher, J. D. & Peters, R. (2010). Using stock returns to identify government spending shocks. *The Economic Journal*, 120(544), 414–436.
- Känzig, D. R. (2021). The macroeconomic effects of oil supply news: Evidence from opec announcements. *American Economic Review*, 111(4), 1092–1125.
- Li, H. & Zhao, F. (2006). Unspanned stochastic volatility: Evidence from hedging interest rate derivatives. *The Journal of Finance*, 61(1), 341–378.
- Li, H. & Zhao, F. (2009). Nonparametric estimation of state-price densities implicit in interest rate cap prices. *Review of Financial Studies*, 22(11), 4335–4376.
- Litterman, R. B. & Scheinkman, J. (1991). Common factors affecting bond returns. *Journal of Fixed Income*, 1(1), 54–61.
- Liu, Y. & Wu, C. (2021). Reconstructing the yield curve. Journal of Financial Economics, 142(3), 1395-1425.
- Nelson, C. & Siegel, A. F. (1987). Parsimonious modeling of yield curves. Journal of Business, 60(4), 473-89.
- Piazzesi, M. (2010). Affine Term Structure Models, (pp. 691–766). Elsevier.
- Ramey, V. A. (2011). Identifying government spending shocks: It's all in the timing*. *The Quarterly Journal of Economics*, 126(1), 1–50.

References III

- Ramey, V. A. & Zubairy, S. (2018). Government spending multipliers in good times and in bad: Evidence from us historical data. *Journal of Political Economy*, 126(2), 850–901.
- Romer, C. D. & Romer, D. H. (2010). The macroeconomic effects of tax changes: Estimates based on a new measure of fiscal shocks. *American Economic Review*, 100(3), 763–801.
- Swanson, E. T. (2021). Measuring the effects of federal reserve forward guidance and asset purchases on financial markets. *Journal of Monetary Economics*, 118, 32–53.