Retail Forecasting

Problem Description:

The large beverage company in Australia needs to forecast demand for each of their products at the item level, on a weekly basis. Their sales are influenced by various factors including promotions, holidays, and seasonality. The company currently uses an in-house software solution for forecasting, but it often produces unreliable results. They want to explore Al/ML-based forecasting to replace their current system.

Business Understanding

Business Objectives:

- Develop an AI/ML-based forecasting model that can accurately predict weekly demand for each product
- Improve forecast accuracy compared to the current in-house solution
- Account for various influencing factors such as promotions, holidays, and seasonality
- Enable better inventory management and production planning
- Optimize promotional strategies based on accurate demand predictions

Target Audience:

- Sales and Operations Planning team
- Inventory Management team
- Production Planning team
- Marketing team (for promotional planning)

Data Understanding

The dataset we are analyzing is the "forecasting_case_study.xlsx" file, which contains 1218 rows and 12 features, comprising of "Product", "date", "Sales", "Price Discount (%)", "In-Store Promo", "Catalogue Promo", "Store End Promo", "Google_Mobility", "Covid_Flag", "V_DAY", "EASTER" and "CHRISTMAS". Surprisingly, there were no missing data in the file

The dataset contained six unique Products: SKU1, SKU2, SKU3, SKU4, SKU5, SKU6

Data Understanding

- 1. Product: SKU identifier (SKU1, SKU2, etc.) Dtype: object
- 2. Date: Weekly dates from 2017 to 2020 Dtype: object
- 3. Sales: Numeric sales figures Dtype: int64
- 4. Price Discount (%): Percentage of price discount offered Dtype: object
- 5. In-Store Promo: Binary (0 or 1) indicating in-store promotions Dtype: int64
- 6. Catalogue Promo: Binary (0 or 1) indicating catalogue promotions Dtype: int64
- 7. Store End Promo: Binary (0 or 1) indicating store end promotions Dtype: int64
- 8. Google_Mobility: Numeric values (possibly related to Google's mobility reports during COVID-19) Dtype: float64
- 9. Covid_Flag: Binary (0 or 1) indicating COVID-19 period Dtype: int64
- 10.**V_DAY**: Binary (0 or 1) possibly indicating Valentine's Day **Dtype: int64**
- 11.**EASTER**: Binary (0 or 1) indicating Easter holiday **Dtype: int64**
- 12. CHRISTMAS: Binary (0 or 1) indicating Christmas holiday Dtype: int64

Data Understanding

Sales Data Analysis: Insights and Trends

- Dataset: Sales data from February 2017 to December 2020
- Products: SKU1, SKU2, SKU3, SKU4, SKU5, SKU6
- Key variables: Sales, Promotions, Holidays, and COVID-19 impact

Sales Overview

Sales Data Analysis: Insights and Trends

- Overall Increasing Trend In sales from Feb 2017 to Dec 2020
- Significant spikes in sales, likely due to promotional activities
- Noticeable seasonality, with higher sales during certain periods

Key Insights

Sales Drivers and Patterns

- Promotions Impact: In-store promotions (correlation: 0.24) and Store End promotions (correlation: 0.24) have a positive effect on sales
- Seasonal Effects: Most of the seasons have negative correlations with Easter (-0.01), V_Day (-0.0084) and negative Christmas (-0.036)
- COVID-19 Impact: Negative correlation (-0.086) between sales and COVID-19 flag, indicating a slight decrease in sales during the pandemic

How Promotions Effect Sales

How Promotions Effect Sales

In the first two box plots, we noticed there was an increase in Sales on the In-Store and End Store Promotion, but the opposite effect for Catalogue Promotions.

This indicates that sellers should be more invested in these type of promotions

Seasonal Effects of Sales

Seasonal Effects of Sales

From our box plot, we can see that instead of an increase of Sales on Festive Seasons, there was a decrease, signifying that the holidays doesn't improve the sales of these products.

COVID-19 Impact on Sales

We can observe from the box plot on the right that COVID has a negative influence on the Sales of such product.

 This helps us understand that a pandemic could affect sales in a negative way.

Other External Factors

Price Discount

 From the scatter plot on the right, we see that the densely populated % is between 0 to 0.58. After that there's little to no correlation with the Sales

Recommendations

- From my observations on the products, SKU3 has the highest spikes, indicating that it's influenced by Promotions.
- SKU2 product has the least spike, even though it made the most sales throughout the 3 years, so its value isn't influenced by seasonality or promotions
- Even though SKU6 made the lowest sales, it has the same pattern of spikes of SKU3, also signifying how its sales are moved by promotions.
- The Seller should focus more on giving In-Store and End Promotions for most of their products, and maintain the price discount to 0.2.

Model Recommendation

One should use a Linear Regression Model Benefits of Using a Linear Regression Model

- Strength: Focuses on the relationship between sales and external predictors like promotions, discounts, or events. It assumes these relationships are linear and consistent over time.
- Implication: A relatively low RMSE(root mean square error) implies the external factors are strong predictors of sales, and timedependent patterns (like seasonality or trends) may not dominate the data.

Model Recommendation

Advisable to Use Random Forest Regressor Benefits of Using Random Forest Regressor

- Strength: Handles non-linear relationships and interactions between variables well. It doesn't assume a fixed functional form like Linear Regression.
- Implication: A slightly worse RMSE suggests that the data does not have substantial non-linear relationships or interactions that Random Forest could exploit.

Model Recommendation

Time Dependent Models such as AMIRA Benefits of Using ARIMA

- Strength: Focuses on temporal dependencies and trends by modeling the relationship between sales and its own past values (lags) and changes.
- Implication: ARIMA is useful if sales show a strong temporal pattern (like steady growth, periodic fluctuations, or trends). The poor performance of ARIMA (as indicated by potential issues in its residuals) suggests that external factors play a more significant role in driving sales than just its past values.

Information for Technical Users

Evaluating Model Performance with a Linear Regression model

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error

Select features and target variables

X = forecasting_df[["In-Store Promo", "Catalogue Promo", "Store End Promo", "Google_Mobility", "Covid_Flag", "V_DAY", "EASTER", "CHRISTMAS"]]

y = forecasting_df["Sales"]

Split data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Train a linear regression model

lg = LinearRegression()

lg.fit(X train, y train)

print(X train, "\n:",y train)

Information for Technical Users

Information for Technical Users

