Contents

1	Som	ne definition	1	
2	Graph			
	2.1	Dinic	1	
	2.2	Mincost	1	
	2.3	HLD	2	
	2.4	Cầu khớp	2	
	2.5	Monotone chain	2	
	2.6	MST	3	
3	Stri	tring		
	3.1	Aho Corasick	3	
	3.2	Manacher	3	
	3.3	Suffix Array	4	
	3.4	Z function	4	
4	Mat	Math		
	4.1	Derivatives and integrals	4	
	4.2	Sum	5	
	4.3	Series	5	
	4.4	Trigonometric	5	
	4.5	Geometry	5	
	4.6	Miller Rabin	5	
	4.7	Chinese Remainer	6	
	4.8	Extended Euclid	6	
	4.9	FFT	6	
	4.10	Hungarian	6	
	4.11	PollardRho	7	
5	Other		8	
	5.1	Bignum mul	8	
	5.2	Random	8	
	5.3	Builtin bit function	8	
	5.4	Sieve	8	
	5.5	Catalan	8	
	5.6	Prime under 100	8	
	5.7	Pascal triangle	8	
	5.8	Fibo	8	

1 Some definition

Tips

```
#include <bits/stdc++.h>

#define N
#define matrix_size 2
#define mod 100000007LL
#define eps 1e-8
#define base 137 // Or 37
```

2 Graph

2.1 Dinic

```
bool BFS()
  queue<int> q;
  for (int i=1; i<=n; i++) d[i]=0,Free[i]=true</pre>
  q.push(s);
  d[s]=1;
  while (!q.empty())
      int u=q.front(); q.pop();
      for (int i=0; i<DSK[u].size(); i++)</pre>
      {
           int v=DSK[u][i].fi;
           if (d[v] == 0 && DSK[u][i].se>f[u][v])
           {
               d[v]=d[u]+1;
               q.push(v);
           }
      }
  }
  return d[t]!=0;
int DFS(int x,int delta)
  if (x==t) return delta;
  Free[x]=false;
  for (int i=0; i<DSK[x].size(); i++)</pre>
      int y=DSK[x][i].fi;
      if (d[y] == d[x] + 1 && f[x][y] < DSK[x][i].se
     && Free[y])
      {
           int tmp=DFS(y,min(delta,DSK[x][i].se
   -f[x][y]));
           if (tmp>0)
           {
               f[x][y] += tmp; f[y][x] -= tmp;
   return tmp;
           }
      }
  return 0;
}
```

2.2 Mincost

8

```
int calc(int x,int y){ return (x>=0) ? y : 0-y
   ; }
bool findpath()
  for (int i=1; i<=n; i++){ trace[i]=0; d[i]=</pre>
   inf; } q.push(n); d[n]=0;
  while (!q.empty())
    int u=q.front(); q.pop(); inq[u]=false;
    for (int i=0; i<DSK[u].size(); i++)</pre>
      int v=DSK[u][i];
      if (c[u][v]>f[u][v] && d[v]>d[u]+calc(f[
   u][v],cost[u][v]))
      {
        trace[v]=u;
        d[v]=d[u]+calc(f[u][v],cost[u][v]);
        if (!inq[v])
           inq[v]=true;
          q.push(v);
      }
    }
  }
  return d[t]!=inf;
void incflow()
  int v=t,delta=inf;
  while (v!=n)
    int u=trace[v];
    if (f[u][v]>=0) delta=min(delta,c[u][v]-f[
    else delta=min(delta,0-f[u][v]);
    v=u:
  }
  v=t:
  while (v!=n)
    int u=trace[v];
    f[u][v]+=delta; f[v][u]-=delta;
    v=u;
  }
```

2.3 HLD

```
void DFS(int x,int pa)
{
   DD[x]=DD[pa]+1; child[x]=1; int Max=0;
   for (int i=0; i<DSK[x].size(); i++)
   {
     int y=DSK[x][i].fi;
     if (y==pa) continue;
     p[y]=x;
   d[y]=d[x]+DSK[x][i].se;
   DFS(y,x);</pre>
```

```
child[x]+=child[y];
    if (child[y]>Max)
      Max=child[y];
      tree[x]=tree[y];
  if (child[x]==1) tree[x]=++nTree;
void init()
  nTree=0;
  DFS(1,1);
  DD[0] = long(1e9);
  for (int i=1; i<=n; i++) if (DD[i]<DD[root[</pre>
   tree[i]]]) root[tree[i]]=i;
}
int LCA(int u,int v)
  while (tree[u]!=tree[v])
    if (DD[root[tree[u]]] < DD[root[tree[v]]]) v</pre>
   =p[root[tree[v]]];
    else u=p[root[tree[u]]];
  if (DD[u]<DD[v]) return u; else return v;</pre>
```

2.4 Cầu khớp

```
Nút u là khớp: if (low[v] >= num[u]) arti[u] = arti[u] || p[u] != -1 || child[u] >= 2; Cạnh u, v là cầu khi low[v] >= num[v]
```

2.5 Monotone chain

```
void convex_hull (vector<pt> & a) {
  if (a.size() == 1) { // ich có 1 đểim
    return;
  // Sort with respect to x and then y
  sort(a.begin(), a.end(), &cmp);
  pt p1 = a[0], p2 = a.back();
  vector<pt> up, down;
  up.push_back (p1);
  down.push_back (p1);
  for (size_t i=1; i<a.size(); ++i) {</pre>
    // Add to the upper chain
    if (i==a.size()-1 || cw (p1, a[i], p2)) {
      while (up.size()>=2 && !cw (up[up.size()
   -2], up[up.size()-1], a[i]))
        up.pop_back();
      up.push_back (a[i]);
```

```
// Add to the lower chain
if (i==a.size()-1 || ccw (p1, a[i], p2)) {
    while (down.size()>=2 && !ccw (down[down
    .size()-2], down[down.size()-1], a[i]))
        down.pop_back();
    down.push_back (a[i]);
}

// Merge 2 chains
a.clear();
for (size_t i=0; i < up.size(); ++i)
    a.push_back (up[i]);
for (size_t i=down.size()-2; i>0; --i)
    a.push_back (down[i]);
}
```

2.6 MST

Prim: remember to have visited array

3 String

3.1 Aho Corasick

```
struct Node
 int nxt[26], go[26];
 bool leaf;
 long long val, sumVal;
 int p;
 int pch;
 int link;
Node t[N];
int sz;
void New(Node &x, int p, int link, int pch)
 x.p = p;
 x.link = link;
 x.pch = pch;
 x.val = 0;
 x.sumVal = -1;
  memset(x.nxt, -1, sizeof(x.nxt));
  memset(x.go, -1, sizeof(x.go));
void AddString(const string &s, int val)
  int v = 0;
  for (char c : s)
    int id = c - 'A';
    if (t[v].nxt[id] == -1)
```

```
New(t[sz], v, -1, id);
      t[v].nxt[id] = sz++;
    }
    v = t[v].nxt[id];
  t[v].leaf = true;
 t[v].val = val;
int Go(int u, int c);
int Link(int u)
 if (t[u].link == -1)
   if (u == 0 || t[u].p == 0)
     t[u].link = 0;
      t[u].link = Go(Link(t[u].p), t[u].pch);
 return t[u].link;
int Go(int u, int c)
 if (t[u].go[c] == -1)
    if (t[u].nxt[c] != -1)
      t[u].go[c] = t[u].nxt[c];
      t[u].go[c] = (u == 0 ? 0 : Go(Link(u), c
   ));
  return t[u].go[c];
```

3.2 Manacher

```
void init() {
  cnt = 0;
  t[0] = '~';
  for (int i = 0; i<n; i++) {</pre>
    t[++cnt] = '#';t[++cnt] = s[i];
  t[++cnt] = '#'; t[++cnt] = '-';
void manacher() {
 int n = cnt - 2;
  int r = 1; int C = 1;
  int ans = 0;
  for (int i = 2; i<n; i++) {</pre>
    int i_mirror = C * 2 - i;
    z[i] = (r > i) ? min(z[i_mirror], r - i) :
    while (t[i + z[i] + 1] == t[i - z[i] - 1])
    z[i]++;
    if (i + z[i] > r) {
     C = i;
      r = i + z[i];
```

```
}
}
```

3.3 Suffix Array

```
struct SuffixArray {
 string s;
  int n;
 vector<int> SA, RA, tempSA, tempRA, LCP;
 int L[N];
 void reset(string st) {
    s = st;
   RA.clear();
    s.push_back('$');
   n = s.size();
   RA.resize(n + 1, 0);
    SA = RA, tempSA = tempRA = LCP = RA;
 }
 void BuildSA() {
    REP(i, n) SA[i] = i, RA[i] = s[i];
    for (int k = 1; k < n; k <<= 1) {</pre>
      radix_sort(k);
      radix_sort(0);
      tempRA[SA[O]] = O;
      for (int i = 1, r = 0; i < n; ++i) {
        if (getRA(SA[i - 1]) != getRA(SA[i])
   || getRA(SA[i - 1] + k) != getRA(SA[i] + k)
   ) ++r;
        tempRA[SA[i]] = r;
      REP(i, n) RA[i] = tempRA[i];
      if (RA[SA[n-1]] == n-1) break;
 }
 void BuildLCP() {
    // kasai
   REP(i, n) RA[SA[i]] = i;
    int k = 0;
    REP(i, n) {
      if (RA[i] == n - 1) {
        k = 0; continue;
      int j = SA[RA[i] + 1];
     while (i + k < n \&\& j + k < n \&\& s[i + k]
   ] == s[j + k]) ++k;
     LCP[RA[i]] = k;
      if (k) k--;
 }
private:
 inline int getRA(int i) { return (i < n ? RA</pre>
   [i] : 0); }
 void radix_sort(int k) {
    memset(L, 0, sizeof L);
    REP(i, n) L[getRA(i + k)]++;
    int p = 0;
    REP(i, N) {
      int x = L[i];
```

```
L[i] = p;
    p += x;
}
REP(i, n) {
    int &x = L[getRA(SA[i] + k)];
    tempSA[x++] = SA[i];
}
REP(i, n) SA[i] = tempSA[i];
}
};
```

3.4 Z function

```
vector<int> Zfunc(int n, vector<int> &a) {
  vector<int> z(n);
  z[0] = n;
  int l = 0, r = 0;
  FOR(i, 1, n - 1) {
    z[i] = (i <= r ? min(r - i + 1, z[i - 1])
    : 0);
  while (i + z[i] < n && a[z[i]] == a[i + z[i]])
  if (i + z[i] > r) {
    r = i + z[i] - 1;
    l = i;
  }
}
return z;
}
```

4 Math

4.1 Derivatives and integrals

$$\frac{d}{dx}\ln u = \frac{u'}{u} \quad \frac{d}{dx}\frac{1}{u} = -\frac{u'}{u^2}$$

$$\frac{d}{dx}\sqrt{u} = \frac{u'}{2\sqrt{u}}$$

$$\frac{d}{dx}\sin x = \cos x \quad \frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\cos x = -\sin x \quad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \quad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \quad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \quad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

4.2 Sum

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

4.3 Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, (-\infty < x < \infty)$$

4.4 Trigonometric

```
\sin(v+w) = \sin v \cos w + \cos v \sin w
\cos(v+w) = \cos v \cos w - \sin v \sin w
\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}
\sin v + \sin w = 2\sin \frac{v+w}{2}\cos \frac{v-w}{2}
\cos v + \cos w = 2\cos \frac{v+w}{2}\cos \frac{v-w}{2}
a\cos x + b\sin x = r\cos(x-\phi)
a\sin x + b\cos x = r\sin(x+\phi)
```

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

4.5 Geometry

```
struct line
{
  double a,b,c;
  line() {}
  line(double A,double B,double C):a(A),b(B),c
   (C){}
  line(Point A,Point B)
  {
```

```
a=A.y-B.y; b=B.x-A.x; c=-a*A.x-b*A.y;
};

Point intersect(line AB,line CD)
{
   AB.c=-AB.c; CD.c=-CD.c;
   double D=CROSS(AB.a,AB.b,CD.a,CD.b);
   double Dx=CROSS(AB.c,AB.b,CD.c,CD.b);
   double Dy=CROSS(AB.a,AB.c,CD.a,CD.c);
   if (D==0.0) return Point(1e9,1e9);
   else return Point(Dx/D,Dy/D);
}
```

4.6 Miller Rabin

```
// n < 4,759,123,141
                            3: 2, 7, 61
// n < 1,122,004,669,633
                           4 : 2, 13, 23,
   1662803
// n < 3,474,749,660,383
                                   6: pirmes
// n < 2<sup>64</sup>
// 2, 325, 9375, 28178, 450775, 9780504,
// Make sure testing integer is in range [2,
   -n2] if
// you want to use magic.
long long power(long long x, long long p, long
    long mod) {
  long long s = 1, m = x;
  while (p) {
    if (p & 1) s = mult(s, m, mod);
    p >>= 1;
    m = mult(m, m, mod);
  return s;
bool witness (long long a, long long n, long
   long u, int t) {
  long long x = power(a, u, n);
  for (int i = 0; i < t; i++) {</pre>
    long long nx = mult(x, x, n);
    if (nx == 1 && x != 1 && x != n - 1)
   return 1;
    x = nx;
 return x != 1;
bool miller_rabin(long long n, int s = 100) {
 // iterate s times of witness on n
  // return 1 if prime, 0 otherwise
 if (n < 2) return 0;</pre>
  if (!(n & 1)) return n == 2;
  long long u = n - 1;
  int t = 0;
  // n-1 = u*2^t
  while (!(u & 1)) {
    u >>= 1;
    t++;
  while (s--) {
```

```
long long a = randll() % (n - 1) + 1;
if (witness(a, n, u, t)) return 0;
}
return 1;
}
```

4.7 Chinese Remainer

```
// Solve linear congruences equation:
// - a[i] * x = b[i] MOD m[i] (mi don't need
   to be co-prime)
// Tested:
// - https://open.kattis.com/problems/
   generalchineseremainder
bool linearCongruences(const vector<11> &a,
   const vector<11> &b,
   const vector<11> &m, 11 &x, 11 &M) {
 ll n = a.size();
 x = 0; M = 1;
 REP(i, n) {
   ll a_{-} = a[i] * M, b_{-} = b[i] - a[i] * x, m_{-}
    = m[i];
   ll y, t, g = extgcd(a_, m_, y, t);
   if (b_ % g) return false;
   b_ /= g; m_ /= g;
   x += M * (y * b_  % m_);
   M *= m_{;}
 }
 x = (x + M) \% M;
 return true;
```

4.8 Extended Euclid

```
// other pairs are of the form:
// x' = x + k(b / gcd)
// y' = y - k(a / gcd)
// where k is an arbitrary integer.
// to minimize, set k to 2 closest integers
    near -x / (b / gcd)
// the algo always produce one of 2 small
    pairs.
int extgcd(int a, int b, int &x, int &y) {
    int g = a; x = 1; y = 0;
    if (b != 0) g = extgcd(b, a % b, y, x), y -=
        (a / b) * x;
    return g;
}
```

4.9 FFT

```
typedef complex < double > ComplexType;

const double PI = acos(-1);
const ComplexType I(0.0, 1.0);
// ceil(log2(n)) + 1
const int MAX2N = (1 << 15);

ComplexType root_unity[MAX2N + 1];

// DONT FORGET TO CALL INIT!</pre>
```

```
void init fft() {
  for (int i = 0; i <= MAX2N; ++i)</pre>
    root_unity[i] = exp(2 * PI * i / MAX2N * -
}
void fft(vector<ComplexType>& a, const vector<</pre>
   int > & p) {
  int n = a.size();
  vector < ComplexType > b(n);
  for (int i = 0; i < n; ++i)</pre>
    b[i] = a[p[i]];
  copy(b.begin(), b.end(), a.begin());
  for (int m = 1, t = MAX2N / 2; m < n; m *=</pre>
   2, t /= 2)
    for (int i = 0; i < n; i += m * 2)</pre>
      for (int j = 0; j < m; ++j) {
        int u = i + j, v = i + j + m;
        a[v] *= root_unity[j * t];
        ComplexType tmp = a[u] - a[v];
        a[u] += a[v];
        a[v] = tmp;
}
vector<long long> polymul(const vector<int>& a
    , const vector<int>& b) {
  int n = max(a.size(), b.size());
  if (__builtin_popcount(n) != 1) n = 1 << (32</pre>
    - __builtin_clz(n));
  n *= 2;
  vector < ComplexType > pa(n), pb(n);
  copy(a.begin(), a.end(), pa.begin());
  copy(b.begin(), b.end(), pb.begin());
  vector<int> p(n);
  for (int i = 1; i < n; ++i)</pre>
    if (i & 1) p[i] = p[i - 1] + n / 2;
    else p[i] = p[i / 2] / 2;
  fft(pa, p), fft(pb, p);
  transform(pa.begin(), pa.end(), pb.begin(),
   pa.begin(), multiplies < ComplexType > ());
  // inverse FFT
  for_each(pa.begin(), pa.end(), [](
   ComplexType &c) { c = conj(c); });
  fft(pa, p);
  vector<long long> res(n);
  transform(pa.begin(), pa.end(), res.begin(),
    [&](auto c) { return lround(c.real() / n);
    });
  return res;
```

4.10 Hungarian

```
struct Hungarian {
  long c[N][N], fx[N], fy[N], d[N];
  int mx[N], my[N], trace[N], arg[N];
  queue<int> q;
```

```
int start, finish, n, m;
const long inf = 1e18;
void Init(int _n, int _m) {
 n = _n, m = _m;
  FOR(i, 1, n) {
    mx[i] = my[i] = 0;
    FOR(j, 1, n) c[i][j] = inf;
  }
}
void addEdge(int u, int v, long cost) { c[u
 ][v] = min(c[u][v], cost); }
inline long getC(int u, int v) { return c[u
 ][v] - fx[u] - fy[v]; }
void initBFS() {
 while (!q.empty()) q.pop();
 q.push(start);
 FOR(i, 0, n) trace[i] = 0;
  FOR(v, 1, n) {
    d[v] = getC(start, v), arg[v] = start;
  finish = 0;
}
void findAugPath() {
  while (!q.empty()) {
    int u = q.front();
    q.pop();
    FOR(v, 1, n) if (!trace[v]) {
      long w = getC(u, v);
      if (!w) {
        trace[v] = u;
        if (!my[v]) { finish = v; return; }
        q.push(my[v]);
      if (d[v] > w) \{ d[v] = w; arg[v] = u;
 }
    }
 }
}
void subX_addY(){
  long delta = inf;
  FOR(v, 1, n) if (trace[v] == 0 \&\& d[v] <
 delta) delta = d[v];
  fx[start] += delta;
 FOR(v, 1, n) if (trace[v]) {
    int u = my[v];
    fy[v] -= delta, fx[u] += delta;
  } else d[v] -= delta;
  FOR(v, 1, n) if (!trace[v] && !d[v]) {
    trace[v] = arg[v];
    if (!my[v]) { finish = v; return; }
    q.push(my[v]);
  }
}
void Enlarge() {
```

```
do {
      int u = trace[finish], nxt = mx[u];
      mx[u] = finish, my[finish] = u, finish =
    } while (finish);
  long minCost() {
    FOR(u, 1, n) {
      fx[u] = c[u][1];
      FOR(v, 1, n) fx[u] = min(fx[u], c[u][v])
    }
   FOR(v, 1, n) {
      fy[v] = c[1][v] - fx[1];
      FOR(u, 1, n) fy[v] = min(fy[v], c[u][v]
   - fx[u]);
   }
    FOR(u, 1, n) {
      start = u;
      initBFS();
      while (finish == 0) {
        findAugPath();
        if (!finish) subX_addY();
      Enlarge();
    int res = 0;
    FOR(i, 1, n) res += c[i][mx[i]];
    return res;
 }
};
```

4.11 PollardRho

```
// does not work when n is prime
long long modit(long long x, long long mod) {
  if (x \ge mod) x -= mod;
  //if(x<0) x += mod;
  return x;
long long mult(long long x, long long y, long
   long mod) {
  long long s = 0, m = x \% mod;
  while (y) {
    if (y & 1) s = modit(s + m, mod);
    y >>= 1;
    m = modit(m + m, mod);
  }
  return s;
long long f(long long x, long long mod) {
  return modit(mult(x, x, mod) + 1, mod);
long long pollard_rho(long long n) {
  if (!(n & 1)) return 2;
  while (true) {
    long long y = 2, x = random() % (n - 1) +
   1, res = 1;
```

```
for (int sz = 2; res == 1; sz *= 2) {
    for (int i = 0; i < sz && res <= 1; i++)
    {
        x = f(x, n);
        res = __gcd(abs(x - y), n);
    }
    y = x;
}
if (res != 0 && res != n) return res;
}</pre>
```

5 Other

5.1 Bignum mul

```
string mul(string a,string b)
{
  int m=a.length(),n=b.length(),sum=0;
  string c="";
  for (int i=m+n-1; i>=0; i--)
  {
    for (int j=0; j<m; j++) if (i-j>0 && i-j<=
      n) sum+=(a[j]-'0')*(b[i-j-1]-'0');
    c=(char)(sum%10+'0')+c;
    sum/=10;
  }
  while (c.length()>1 && c[0]=='0') c.erase
    (0,1);
  return c;
}
```

5.2 Random

```
// Random using mt19937
mt19937 rng(chrono::steady_clock::now().
    time_since_epoch().count());

// For random long long
mt19937_64 rng(chrono::steady_clock::now().
    time_since_epoch().count());

// Random shuffle using mt19937 as the
    generator
shuffle(a.begin(), a.end(), rng);

// Random range
int random(int a, int b)
{
    return uniform_int_distribution<int>(a, b)(
        rng);
}
```

5.3 Builtin bit function

```
__builtin_popcount(x); // number of bit 1 in x
__builtin_popcountll(x); // for long long
__builtin_clz(x); // number of leading 0
__builtin_clzll(x); // for long long
__builtin_ctz(x); // number of trailing 0
```

```
__builtin_ctzll(x); // for long long

(x & ~x) : the smallest bit 1 in x

floor(log2(x)) : 31 - __builtin_clz(x | 1);

floor(log2(x)) : 63 - __builtin_clzll(x | 1);
```

5.4 Sieve

for (int j = i; j * i <= lim; ++j) not Prime[j * i] = true

5.5 Catalan

```
\frac{(2n)!}{(n+1)!n!} = \prod_{k=2}^{n} \frac{n+k}{k}
```

5.6 Prime under 100

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

5.7 Pascal triangle

```
C(n,k)=number from line 0, column 0

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1
```

5.8 Fibo

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

6 Tips

- 1. Test kĩ trước khi nộp. Code nhìn đúng chưa chắc đúng đâu
- 2. Test conner case
- 3. Giả sử nó là số nguyên tố đi. Giả sử nó liên quan tới số nguyên tố đi.
- 4. Giả sử nó là số có dang 2^n đi.
- 5. Giả sử chọn tối đa là 2, 3 số gì là có đáp án đi.
- 6. Có liên quan gì tới Fibonacci hay tam giác pascal?

- 7. Dãy này đơn điệu không em ei? Hay tổng của 2,3 số fibonacci?
- 8. $q \le 2$
- 9. Sort lại đi, biết đâu thấy điều hay hơn?
- 10. Chia nhỏ ra xem.
- 11. Bỏ hết những thẳng ko cần thiết ra

- 12. Áp đại data struct nào đấy vô
- 13. khóc
- 14. Cầu nguyện
- 15. Random shuffe để ac
- 16. Xoay mảng 45 độ