חלק 2 [50 נקודות]

- יש להציג את כל התוצאות עם שלוש ספרות אחרי נקודה עשרונית אלא אם צוין אחרת!
 - יש לרשום את כל התשובות על-גבי שאלון הבחינה בלבד
 - טיוטות החישוב ייגרסו ללא בדיקה

נתונות 20 תצפיות מתוך מאגר הנתונים HIGGS Data Set המכיל תוצאות סימולציה של ניסוי לזיהוי "החלקיק האלוהי" (בוזון היגס). התכונה הרציפה m_bb מסייעת לפיסיקאים להבדיל בין בוזון היגס (סיווג = 1) ליתר חלקיקים (סיווג = 0).

Record_ID	0	1	2	3	4	5	6	7	8	9
Class	1	0	1	0	0	1	1	1	0	1
m_bb	0.9	0.4	0.2	0.7	1.1	1.5	0.8	0.4	1.1	0.9

Record_ID	10	11	12	13	14	15	16	17	18	19
Class	0	0	1	0	1	0	1	1	0	0
m_bb	2	0.7	0.9	0.3	1.1	0.4	0.7	0.9	1.3	3.4

אל twoing-יש (Information Gain), מדד ה-נחוח האינפורמטיבי (ששתנה המטרה (Information Gain), א. יש לחשב את הרווח האינפורמטיבי (מדד הבאה של המשתנה של המשתנה "Class" עבור נקודת הפיצול הבאה של המשתנה Class"

Interval	Prob. (Interval)	Prob. (0)	Prob. (1)	Entropy	Information Gain	Gini Index	Gini Drop	Twoing
<= 0.7								
> 0.7								
Total								

וט החישוב (חובה) :
עבורו כדאי לגזום את העץ הנייל. $lpha$ ושב את הערך המינימלי של מקדם הסיבוכיות
: (חי שוב (חובה):
מתקיים עבור העץ שבניתם בסעיף אי. 5 נקודות. Fano דוק האם אי-שווין.
דוק האם אי-שווין Fano מתקיים עבור העץ שבניתם בסעיף אי. 5 נקודות.

דף הנוסחאות

Information Theory

- Entropy $H(X) = \sum -p(x)log_2p(x)$ Conditional Entropy $H(Y/X) = -\sum p(x, y)*log p(y/x)$
- Mutual Information $I(X;Y) = H(Y) H(Y/X) = \sum_{x,y} p(x,y) \cdot \log \frac{p(y/x)}{p(y)}$
- Conditional Mutual Information: $I(X;Y/Z) = H(X/Z) H(X/Y,Z) = \sum_{x,y} p(x,y,z) \bullet \log \frac{p(x,y/z)}{p(x/z) \bullet p(y/z)}$
- Fano's Inequality: $H(Y/X_1...X_n) \le H(P_e) + P_e \log_2(m-1)$

Decision Trees

- Confidence Interval for an Error Rate: $Err_{Test} \pm z_{\alpha} \sqrt{\frac{Err_{Test}(1 Err_{Test})}{..}}$ Confidence Interval for a difference between error rates: $\hat{d} \pm z_{\alpha} \sqrt{\frac{Err_{Test1}(1 - Err_{Test1})}{n} + \frac{Err_{Test2}(1 - Err_{Test2})}{n}}$
- Expected information needed to classify a tuple in *D* (before using *A*): $Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$
 - Expected information needed to classify a tuple in D (after using A): $Info_A(D) = \sum_{i=1}^{\nu} \frac{|D_i|}{|D_i|} \times I(D_j)$
- Information Gain: $Gain(A) = Info(D) Info_A(D)$
 - Chi-Square Statistic: $\sum_{i=1}^{c} \sum_{i=1}^{v} \frac{(o_{ij} e'_{ij})^2}{e'_{ii}} \Big|_{H_0} \sim \chi_{\alpha}^2((v-1)(c-1))$

Apparent (pessimistic) error rate:
$$q = \frac{N - n_C + 0.5}{N}$$

- Entropy induced by threshold T: $E(A,T;S) = \frac{|S_1|}{|S|} Ent(S_1) + \frac{|S_2|}{|S|} Ent(S_2)$
- Split Information: $SplitInfo_A(D) = -\sum_{i=1}^{\nu} \frac{|D_i|}{|D|} \times \log_2(\frac{|D_i|}{|D|})$

$$gini(T) = 1 - \sum_{j=1}^{n} p_j^2$$

Gini Index:

$$\frac{p_L p_R}{4} \left[\sum_{j} \left| p(j/t_L) - p(j/t_R) \right| \right]^2$$

- Twoing Splitting Rule:
- Cost-complexity function (CART): $R_{\alpha}(T) = R(T) + \alpha \cdot |\tilde{T}|$

