www. tremepapers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2008 question paper

9702 PHYSICS

9702/04

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper	
	GCE A/AS LEVEL – May/June 2008	9702	04	

Section A

1 (a) (i) angle (subtended) at centre of circle B1 by an arc equal in length to the radius (of the circle) **B1** [2] (ii) angle swept out per unit time / rate of change of angle M1 [2] by the string Α1 (b) friction provides / equals the centripetal force **B1** $0.72 W = md\omega^2$ C1 $0.72 \ mg = m \times 0.35 \omega^2$ $\omega = 4.49 \, (\text{rad s}^{-1})$ C1 $n = (\omega/2\pi) \times 60$ **B1** $= 43 \text{ min}^{-1} \text{ (allow 42)}$ **A1** [5] centripetal force increases as r increases (c) either centripetal force larger at edge M1 so flies off at edge first **A1** [2] $(F = mr\omega^2 \text{ so edge first} - treat as special case and allow one mark)$ 2 (a) molecule(s) rebound from wall of vessel / hits walls **B1 B1** change in momentum gives rise to impulse / force (many impulses) averaged to give constant force / pressure the molecules are in random motion or **B1** [3] **(b) (i)** $p = \frac{1}{3} \rho < c^2 >$ C1 $1.02 \times 10^5 = \frac{1}{3} \times 0.900 \times \langle c^2 \rangle$ $\langle c^2 \rangle = 3.4 \times 10^5$ C1 $c_{\rm RMS} = 580 \; {\rm m \; s^{-1}}$ **A1** [3] (ii) either $\langle c^2 \rangle \propto T$ or $\langle c^2 \rangle = 2 \times 3.4 \times 10^5$ C1 $c_{RMS} = 830 \text{ m s}^{-1} \text{ (allow 820)}$ [2] **A1** (c) c_{RMS} depends on temperature (alone) **B**1

B1

[2]

so no effect

-		gc c		GCE A/AS LEVEL – May/June 2008	9702	04	
				GCE AIAS LEVEL - May/Julie 2006	9102	U4	
3	(a)	(i)	ampl	itude = 0.5 cm		A1	[1]
		(ii)	perio	d = 0.8 s		A1	[1]
	(b)	(i)		$2\pi / T$ 7.85 rad s ⁻¹		C1	
			corre	ect use of $v = \omega \sqrt{(x_0^2 - x^2)}$ $7.85 \times \sqrt{(\{0.5 \times 10^{-2}\}^2 - \{0.2 \times 10^{-2}\}^2)}$		B1	
			= (if tar 3.6 ±	3.6 cm s ⁻¹ ngent drawn or clearly implied (B1) 0.3 cm s ⁻¹ (A2) llow 1 mark for > \pm 0.3 but $\leq \pm$ 0.6 cm s ⁻¹)		A1	[3]
		(ii)		15.8 cm		A1	[1]
	(c)	(i)	ampl	inuous) loss of energy / reduction in itude (from the oscillating system)	friedia a	B1	
				ed by force acting in opposite direction to the motion / ous forces	Triction /	B1	[2]
		(ii)	line c	e period / small increase in period displacement always less than that on Fig.3.2 (ignore in progressively smaller	first T/4)	B1 M1 A1	[3]
4	(a)			e moving unit positive charge ity to the point		M1 A1	[2]
	(b)	(i)	x =	18 cm		A1	[1]
		(ii)	(3.6 × q =	$V_{\rm B} = 0$ $\times 10^{-9}$) / $(4\pi\varepsilon_0 \times 18 \times 10^{-2}) + q$ / $(4\pi\varepsilon_0 \times 12 \times 10^{-2}) = 0$ -2.4×10^{-9} C of $V_{\rm A} = V_{\rm B}$ giving 2.4×10^{-9} C scores one mark))	C1 C1 A1	[3]
	(c)	ford	ce = c	ngth = (–) gradient of graph charge \times gradient / field strength or force ∞ gradient est at $x = 27$ cm		B1 B1 B1	[3]
5	(a)	ene 0.1	ergy =	s, $V = 2.5 \text{ V}$ $1/2CV^2$ $1/2 \times C \times (8.0^2 - 2.5^2)$ $1/2 \times C \times (8.0^2 - 2.5^2)$		C1 C1 M1 A0	[3]
	(b)			o capacitors in series in all branches of combination d into correct parallel arrangement		M1 A1	[2]

Mark Scheme

Syllabus

Paper

Page 3

Page 4		Mark Scheme		Syllabus	Paper				
				GC	E A/AS	LEVEL – May/June 2008	9702	04	
6	(a)	parallel ((to the field)		B1	[1]		
	(b)	(i)	2.1 > F =	ue = $F \times d$ × 10^{-3} = $F \times d$ 0.075 N • of 4.5 cm s				C1 A1	[2]
		(ii)	zero					A1	[1]
	(c)	0.07	75 =	$N(\sin\theta)$ $B \times 0.170 \times 10^{-2} \text{ T} = 0.00$		$0^{-2} \times 140$		C1 M1 A0	[2]
	(d)	(i)		uced) <u>e.m.f.</u> gnetic) flux (ortional to / equal to <u>rate of change</u>	of	M1 A1	[2]
		(ii)	char	nge in flux lir	=	= <i>BAN</i> = 0.070 × 4.5 × 10 ⁻² × 2.8 × 10 ⁻² × = 0.0123 Wb turns	140	C1	
					0.0123 88 mV	/ 0.14	let Several var Alexander	C1 A1	[3]
			•		•	ed treatment. A full treatment wou ding to a $\sqrt{2}$ factor)	ia ilivolve tile		
7	(a)	cha	rge is	s quantised /	/ discrete	e quantities		B1	[1]
	(b)	(i)				ric field is uniform / constant r oil drop will not drift sideways field is vertical		B1	
					or	electric force is equal to weight		B1	[2]
		(ii)	$q \times 8$	= <i>mg</i> 350 / (5.4 × 10 ⁻¹⁹		$7.7 \times 10^{-15} \times 9.8$ s negative		C1 C1 A1	[3]
	(c)			hanges by 1 e on electro		· ¹⁹ C between droplets / integral m × 10 ⁻¹⁹ C	ultiples	M1 A0	[1]
8	(a)	mor	since momentum before combining is zero momenta must be equal and opposite after equal momenta so photon energies equal			B1 B1 B1	[3]		
	(b)	(b) $E = mc^2$					C1		
	. ,	= $9.1 \times 10^{-31} \times (3.0 \times 10^8)^2$ = 8.19×10^{-14} (J)							
	$= 8.19 \times 10$ $= (8.19 \times 10)$				0 ⁻¹³)		C1		
				1 MeV		,		A1	[3]

Page 5	Mark Scheme	Syllabus	Paper	
	GCE A/AS LEVEL – May/June 2008	9702	04	

Section B

	333112		
9	(a) blocks labelled sensing device / sensor / transducer processor / processing unit / signal conditioning	B1 B1	[2]
	(b) (i) two LEDs with opposite polarities (ignore any series resistors) correctly identified as red and green	M1 A1	[2]
	(ii) correct polarity for diode to conduct identified hence red LED conducts when input (+)ve or vice versa	M1 A0	[1]
10	large / strong (constant) magnetic field nuclei rotate about direction of field / precess (1) radio frequency / r.f. pulse	B1 B1	
	causes resonance in nuclei , nuclei absorb energy (1) (pulse) is at the Larmor frequency (1) on relaxation / nuclei de-excite emit (pulse of) r.f. detected <u>and</u> processed non-uniform field (superimposed) allows for position of nuclei to be determined and for location of detection to be changed (1) (B6 plus any two extra details, 1 each, max 2)	B1 B1 B1 B1	[8]
11	(a) (i) frequency of carrier wave varies in synchrony with <u>displacement</u> of information signal	M1 A1	[2]
	 (ii) 1. zero (accept constant) 2. upper limit 530 kHz lower limit 470 kHz changes upper limit → lower limit → upper limit at 8000 s⁻¹ 	B1 B1 B1 B1	[1] [3]
	 (b) e.g. more radio stations required / shorter range more complex electronics larger bandwidth required (any two sensible suggestions, 1 each) 	B2	[2]
12	(a) (i) picking up of signal in one cable from a second (nearby) cable	M1 A1	[2]
	(ii) <u>random</u> (unwanted) signal / power that masks / added to / interferes with / distorts transmitted signal (allow this mark in (i) or (ii))	B1 B1	[2]
	(b) if P is power at receiver, $30 = 10 \lg(P / (6.5 \times 10^{-6}))$ $P = 6.5 \times 10^{-3} \text{ W}$ loss along cable = $10 \lg(\{26 \times 10^{-3}\} / \{6.5 \times 10^{-3}\})$ = 6.0 dB length = $6.0 / 0.2 = 30 \text{ km}$	C1 C1 C1 C1 A1	[5]