Topic 5: Priority Queues & Heaps

Read: Chpt. 6, Weiss

"Good" characteristics of BST:

- Simplicity.
- Support general search/delete as well as special searchMin(Max)/deleteMin(Max) operations.
- Can easily be sorted (inorder traversal).
- Can easily be stored (preorder traversal).
- Good average performance, $T_a(n) = O(\lg n)$.

"Bad" characteristics of BST:

- Worst-case complexity depends on height of tree. Hence, $T_w(n) = O(n)$.
- Inefficient when many items are having identical keys since height may increase.

Q: Can we design an efficient ADT:Search Tree with $T_w(n) = T_a(n) = O(\lg n)$?

A: Yes, but much more complex.

Observation: In many applications, a less powerful data structure may be sufficient. What if general delete operations are not required or if they are only performed infrequently?

设计一个快速删除最大值或者最小值的ADT

Q: Can we design an efficient ADT that will allow us to remove only those data objects with maximum (or minimum) priority whenever a delete operation is performed?

These applications lead us to the design of a class of ADTs called *priority queues*.

ADT: Priority Queue.

A collection class, whose items have all been assigned a priority, supports the following operations:

- 1. PQInsert(in newItem: PQItemType)
- 2. PQDelete(out priorityItem: PQItemType)
- 3. createPQ():
- 4. destroyPQ():
- 5. PQIsEmpty():
- 6. PQSize():

Min PQ:

PQDelete will delete an object with min priority.

Max PQ:

PQDelete will delete an object with max priority.

Simplest Approaches:

Sorted and unsorted array/linked list.

Better Approach:

BST.

Best Approach:

k-Heaps, $k \ge 2$.

Defn: A max (min) *k-heap* is a k-ary tree H such that it satisfies the following properties:

- (1) H is a complete k-ary tree, and
- (2) Max (Min) Heap-Ordered Tree Property: Priority of any node in $H \ge (\le)$ priority of all its descendants. Important!父母永远大于或小于所有的儿子

Remark: When k = 2, we have a 2-heap (heap).

Example: A max 2-heap H. Search: the max number O(1) = index 0 of array

Example: A min 3-heap H.

Implementations of k-Heaps, $k \ge 2$:

- 1. Pointer-based implementation: Inefficient. Why?
- 2. Array-based Implementation:

For a k-heap H with n nodes, H can be implemented using an array A[0:maxSize -1] such that

- (1) Root of H at A[0],
- (2) Parent of A[i] at A[(i-1)/k] if exists,
- (3) The jth child of A[i] at A[ki+j], $1 \le j \le k$, if exists.

Remarks:

- When i = 0, (i-1)/k = -1, implying that A[i] is the root of H.
- For $n \ge 1$, A[i] is a leaf iff $ki \ge n-1$.

- Given A[i], the parent and the children of A[i] can be computed in O(1) time.
- H can also be implemented using a similar array structure by storing the root at A[1]. (HW)

PQ Operations: Two-steps process,

- (1) After insertion/deletion, try to maintain a complete k-ary tree structure for H.
- (2) Re-structure (Heapify) the complete k-ary tree from (1) so that it will satisfy the heap-ordered tree property.

1. Insert(x,H):

Where can we find a location in H for insertion?

Consider inserting 9 into the following 2-heap H.

Q: Where will 9 go (in order to get back a complete binary tree)?

Heapifying/Restructuring resulting tree after insert:

After inserting a node with x into H, the newly inserted node may or may not satisfy the heap-ordered tree property. If the heap-ordered tree property is violated, x must have priority higher than its parent. Hence, we can simply swap x with its parent and verify the heap-ordered tree property again by comparing the priority of x with its new parent.

In general, for inserting a new item x into H, we need to find a *location* to insert x along the path from x (after insertion) to the root of H by repeatedly comparing x with his parent, grandparent, ..., until

either a node with priority $\geq x$ is found or the root of H is reached. Once the final location for x is found, it will then be inserted.

Remark: Do not insert and remove x repeatedly. Find the final location for x and then insert it. Once x is inserted, it stays.

Example: Consider inserting 9 into the heap H.

Create a new location for 9:

Compare 9 with its parent 6; 6 moves down:

Compare 9 with its parent 7; 7 moves down:

Compare 9 with its parent 8; 8 moves down:

Insert 9 into its final location; process terminates:

Insert 通过不停的和父母比较交换位置,找到正确的位置

Complexity Analysis:

Observe that a k-heap with m nodes has height $\lfloor \log_k m \rfloor$ and requires at most $\lfloor \log_k (m+1) \rfloor$ comparisons to insert a new node into this heap.

Hence,

$$T_w(n) = \lfloor \log_k(n+1) \rfloor = O(\log_k n).$$
 (= O(lgn))

Conclusion: Larger k results in better performance in insertions.

2. delete(H):

Consider deleting the highest priority item (root) from the original heap H.

Compare between a parent and children

After 8 is removed, in order to get back a complete 2-ary tree, one must replace the root of H with the last item (in level order) in H.

In general, we must replace the root (highest priority item) with the "last" item x and then percolate down along a path from the root to a leaf by repeatedly compare x with its child (children), swapping with the larger child if necessary, until $x \ge$ its children or a leaf is reached.

Example: Deleting the highest priority item (root).

Compare 5 with its two children, 7 moves up:

Compare 5 with its two children, 6 moves up:

Insert 5 into its final location; process terminates:

delete topdown, 把最后一个元素替换到最上面,然后不停比较儿子找到适合的位置

Complexity Analysis:

Observe that to move a node down one level in a k-heap requires k comparisons. Since a heap with m nodes has height $\lfloor \log_k m \rfloor$, it requires at most $k*\lfloor \log_k m \rfloor$ comparisons to delete its root.

Hence,

$$T_w(n) = k* \lfloor \log_k n \rfloor = O(k \log_k n). \quad (= O(\lg n))$$

Conclusion: Smaller k results in better performance in deletions.

Q: Given a set of data objects S. How do we construct an initial k-heap H for S?

Consider building a k-heap, $k \ge 2$.

Two build-heap methods:

1. Top-down approach:

Insert items of S one at a time, in the order given, into an initially empty heap.

Build time O(nlgn)

Example: Build a max 2-heap for $S = \{5,3,2,6,8,5,7,1,3,5\}$.

Insert 5, 3, 2, 6:

Insert 8:

Insert 5:

Insert 7:

Insert 1, 3, 5:

2. Bottom-up approach: Tn = Big O(n)

First form a complete binary tree H for S according to its given order. Observe that a leaf by itself is already a heap. If we scan the nodes of H in the reverse level order (leaf-to-root and right-to-left), two heaps can then be combined together by inserting a new element x as the new root of the resulting heap (as in delete operation). Hence, we can grow a heap for S in a bottom-up fashion by using *heapify* operations as in delete operation:

Example: Bottom-up approach to build a max 2-heap for $S = \{5,3,2,6,8,5,7,1,3,5\}$. Find node is not a leaf, compare, then swap; right side is shorter

第一个下标开始有叶子的

Observe that since n = 10, the first non-leaf node needs to be checked has array index $\lfloor 10/2 \rfloor - 1 = 4$, follows by nodes with index 3, 2, 1, 0.

For A[4], compare 8 with 5; no swap:

For A[3], compare 6 with 1 and 3; no swap:

For A[2], compare 2 with 5 and 7, swap with 7:

For A[1], compare 3 with 6 and 8, swap with 8:

Continued: Compare 3 with 5, swap with 5:

For A[0], compare 5 with 8 and 7, swap with 8:

Continued: Compare 5 with 6 and 5, swap with 6:

Continued: Compare 5 with 1 and 3, process terminates!

HW: Redo the above examples using arrays.

Q: Which build-heap method should we use to build an initial heap?

Complexity Analysis for buildHeap Operations:

Let's compare the two buildHeap operations using a 2-heap:

1. Top-down approach using insert operations:

Recall that it requires at most \[\llg(m+1) \rl \]

comparisons to insert a new node into a heap with m nodes. Hence,

$$\begin{split} T_w(n) &= \lfloor \lg 1 \rfloor + \lfloor \lg 2 \rfloor + \ldots + \lfloor \lg n \rfloor \\ &\leq \lg 1 + \lg 2 + \ldots + \lg n \\ &= O(\lg n!) \\ &= O(n \lg n) \end{split}$$

2. Bottom-up approach using heapify operations:
Recall that it requires at most 2 comparisons to
move a node down one level in a heap. For a node x
of height h(x), it will require at most 2*h(x) to
heapify x. Hence,

$$T_w(n) = \sum_{x \in I(H)} 2 * h(x).$$

Observe that, in a complete binary tree, there are

$$1 = 2^0$$
 node of height h(H),

$$2 = 2^1$$
 nodes of height h(H)-1,

$$4 = 2^2$$
 nodes of height h(H)-2,

2ⁱ nodes of height h(H)-i,

$$\leq 2^{h(H)}$$
 nodes of height 0.

By summing all the nodes according to their height,

$$T_{w}(n)$$

$$= \sum_{x \in I(H)} 2 * h(x)$$

$$= 2 \sum_{i=1}^{h(H)} i * 2^{h(H)-i}$$

$$= 2 * 2^{h(H)} \sum_{i=1}^{h(H)} \frac{i}{2^{i}}$$

$$\leq 4 * 2^{h(H)}$$

$$\leq 4n$$

$$= O(n).$$

Conclusion: bottom up faster than top down: O(n)<O(nlgn)

Always use the O(n) bottom-up approach to build an initial heap.

Application of Priority Queue to Sorting: PQ Sorting:

- 1. Build a PQ Q for S.
- 2. Repeatedly delete elements from Q until Q is empty.

Heap Sort:

- 1. Build a max-heap H for S.
- 2. Deletemax repeatedly until H is empty. (Swap max item with the current last item in array.)

Hence,
$$T(n) = O(n) + O(nlgn) = O(nlgn)$$
.

Final Remarks:

1. What is k in the k-heap?

Observe that there is a tradeoff between insert and delete operations since large k implies faster insert but slower delete.

For k-heap, $k \ge 2$:

Insert: $T_w(n) = O(log_k n)$ Delete: $T_w(n) = O(klog_k n)$

HW: Implement a 5-heap class.

2. Worst-Case Time Comparison of PQ Implementations:

	PQ Operation	<u>Heap</u> ^	BST	Sorted IList	Unsorted Array
)	Build/Organize	O(n)	$O(n^2)$	$O(n^2)$	O(n)
	Insert	O(lgn)	O(n)	O(n)	O(1)
	Find	O(n)	O(n)	O(n)	O(n)
	<i>GeneralDelete</i>	O(n)	O(n)	O(n)	O(n)
	DeleteMax	O(lgn)	O(n)	O(n)	O(n)
	DeleteMin	O(n)	O(n)	O(1)	O(n)

^{*}Max 2-heap.

Bottom up

3. Other operations such as find(x), change Key and delete(x,H) possible but inefficient. (HW)

HW: Given a min-heap H. Design and analyze a function deleteMax(H) to delete an object with max priority from H.

Extension:

How do we design an ADT that will support *both* deletemin(Q) and deletemax(Q) operations?

A **double-ended priority queue (DEPQ)** H is a collection of zero or more data objects together with the following operations:

- 1. findMin()
- 2.findMax()
- 3. insert(in newItem: DEQItemType)
- 4. deleteMin(out priorityItem: DEQItemType)
- 5. deleteMax(out priorityItem: DEQItemType)
- 6. createDEQ()
- 7. destroyDEQ()
- 8. DEQisEmpty()
- 9. DEQSize()

Simplest DEPQ:

Dual heap: A pair of min heap and a max heap with corresponding pointer between each pair of corresponding elements.

Example:

Operations:

1. inser(x): insert x into both min and max

heaps, set corresponding pointers.

2. deleteMin: deletMin from min heap; follow

pointer to max heap and delete

corresponding min element.

3. deleteMax: deletMax from max heap; follow

pointer to min heap and delete corresponding max element.

Complexity: Same as min or max heap.

$$T_w(n) = O(\lg n)$$
.

disadvantage of dual heap

Remark: Inefficient in memory; not as fast as minMax heap.

A Better DEPQ: Minmax Heap

A minmax heap H is an extension of 2-heap by fusing a min heap and a max heap together such that

- (1) H is a complete binary tree.
- (2) Each node x in H is either a **min node** (x is \leq all its descendants), or a **max node** (x is \geq all its descendants).
- (3) All nodes belong to the same level must be of the same type. A min-level (max-level) in H is a collection of all the min (max) nodes having the same level number.
- (4) Starting with the root of H at the min-level, nodes are alternating between min-level and max-level.

Observe that a minmax heap is a tree satisfying the following properties:

- 1. **Structural Property**: H is a complete binary tree.
- 2. **Relational Property**: H satisfies the minmax heap property such that, starting at the root at min-level, nodes are alternating between minlevel and max-level.

Remark: A maxmin heap can be defined in a similar fashion by requiring that, starting at the root at maxlevel, nodes are alternating between max-level and min-level.

Example: A minmax heap H.

HW: Define and explore maxmin heap.

Implementation:

Sequential array implementation with root of H at A[1]. $^{\text{Mul}}$

Example: Array implementation of H.

Minmax heap operations:

Two-step process as in binary heap:

- 1. Maintain complete binary tree structure after each insert/deleteMin/deleteMax operation.
- 2. Restructure resulting tree to restore minmax heap property.

1. Insert(x,H):

As in heap, insert x into the last+1 position and then restore the minmax heap property.

Consider the following two cases:

- (1) $H = \emptyset$: Return heap with x.
- (2) $H \neq \emptyset$: Consider the parent, p(x), of x, after inserting x into H.

If x = p(x), done; else consider x < p(x), or x > p(x).

- (a) Assume x < p(x): If p(x) is a min node, then x < y for all max node y on the path from x to the root of y. Similarly, if y is a max node, then y is a max node, then y is a max node y on the path from y to the root of y. Hence, we need only compare y with the min nodes along the path from y to the root in order to restore the minmax heap property as in a min heap.
- (b) Assume x > p(x): If p(x) is a min node, then x > y for all min node y on the path from x to the root of H. Similarly, if p(x) is a max node, then x > z for all min node z on the path from x to the root of H. Hence, we need only compare x with the max nodes along the path from x to the root in order to restore the minmax heap property as in a max heap.

Example: Build a minmax heap and a maxmin heap by inserting <6, 8, 5, 2, 7, 8, 2, 9, 12, 1> into an initially empty heap.

Minmax heap:

Maxmin heap:

Remark: A minmax heap can also be built using a modified bottom-up approach.

HW: Construct a minMax heap and a maxMinHeap for the given set of keys using both approaches.

Q: Given a node x at A[i]. How do you determine whether x is a min node or a max node?

Min node: $\lfloor \lg(i) \rfloor = \text{even}$ Max node: $\lfloor \lg(i) \rfloor = \text{odd}$

Q: How do you locate the grandparent of x if exists? Grandparent of A[i] at A[$\lfloor \frac{i}{4} \rfloor$].

HW: Implement insert(H) for minmax heap and maxmin heap.

Consider deleteMin/deleteMax operations.

Q: Where is the min (max) element in a minmax heap?

Min element: Root of H.

Max element: A child of root if |H| > 1.

General approach: Replace the min (max) element of H by an element in H.

- (1) Find the second smallest/largest element s in H and use it, or the last element in H, to patch up the hole left by the deletion of the min (max) element.
- (2) Remove and then re-insert the last element x (in level order traversal) back into H to patch up the "hole" left by the deletion of s if used.

2. Deletemin(H): MinMax Heap

Consider the following four cases:

- (1) $H = \emptyset$: Return error.
- (2) |H| = 1: Return \emptyset .
- (3) |H| = 2: Replace root with its only child.
- (4) $|H| \ge 3$: Delete root r and then find the second smallest element s in H, which is either a child (|H| = 3), or a grandchild, of r to patch up the hole. Compare the last element x in H with s (before removing any element from H).
 - (a) $x \le s$: Remove x; x becomes new root of H.
 - (b) x > s: Remove s; s become the new root of H. Observe that a new "hole" is now generated in H and we will delete x (the very first time) and use it to patch up the hole.
 - (i) If s is a child of r, then x can be used to patch up the hole vacated by s and we are done. (Why?)
 - (ii) If s is a grandchild of r, s is a min node and it has a parent p(s), which is a max node, in H. Compare x with p(s).
 - (a) If $x \le p(s)$, recursively use x to patch up the root of the minmax heap rooted at the original s location.

(b) If x > p(s), replace p(s) with x in H and then recursively use p(x) to patch up the root of the minmax heap rooted at the original s location.

Q: How about deletemax(H)? Similar method except using maxmin heap concept instead.

HW: Implement the deletemin(H) and deletemax(H) operations.

Complexity Analysis:

For insert, deleteMin, deleteMax operations, $T_w(n) = O(h(H)) = O(lgn)$.

3. Build-Heap(H):

Two approaches similar to building a binary heap:

- 1. Top-down O(nlgn) approach using insert operations.
- 2. Bottom-up O(n) approach using a modified heapify operations.

Example: Build a minmax heap for the set $S = \{6, 8, 5, 2, 7, 8, 2, 9, 12, 1\}$ using a modified bottom-up O(n) buildMinMaxHeap operation.

Considering delete and then re-insert the node as in deleteMin or deleteMax operations:

HW:

- 1. Build a minmax heap by inserting <3, 8, 10, 2, 7, 24, 5, 12, 26, 1, 28> into an initially empty heap.
- 2. Build a minmax heap for {13, 8, 10, 22, 7, 24, 5, 12, 26, 1, 28, 6} using the bottom-up O(n) approach.
- 3. Repeat (1) & (2) by building a maxmin heap.
- 4. Given a minmax heap [1, 28, 24, 3, 2, 10, 5, 8, 12, 7, 26]. Perform deletemin until the heap is empty.
- 5. Given a minmax heap [1, 28, 24, 12, 6, 10, 15, 18, 22, 7, 8]. Perform deletemax until the heap is empty.

10/7/2018