Mutiple Testing in Clinical Trials

Livio Finos

Weeks

Week 1:One test, Many test,Lab and simulation

o Week 2:

Multiple testing procedures (FamilyWise Error Rate)
Lab multiple testing procedures
Discussion with dr Glauco Cappellini (Quantiles Italia)

o Week 3:

False Discovery Rate and other measures Sequential Rejecton Principle for FamilyWise Error Rate

o Week 4:

Univariate and Multivariate Permutation Tests

American Statistical Association's Ethical Guidelines for Statistical Practice

Recognize that any frequentist statistical test has a random chance of indicating significance when it is not really present.

Selecting the one "significant" result from a multiplicity of parallel tests poses a grave risk of an incorrect conclusion.

Failure to disclose the full extent of tests and their results in such a case would be highly misleading

American Statistical Association's Ethical Guidelines for Statistical Practice

Recognize that any frequentist statistical test has a random chance of indicating significance when it is not really present.

Selecting the one "significant" result from a multiplicity of parallel tests poses a grave risk of an incorrect conclusion.

Failure to disclose the full extent of tests and their results in such a case would be highly misleading

e.g. VaxGen's AIDSVAX trial . . .

VaxGen's AIDSVAX trial?

VaxGen announced the results of the first-ever efficacy trial of an AIDS vaccine on 24 February 2003:

the vaccine prevent HIV infection?

	Total	Infected		
All subjects	1679	96	5.8%	PLACEBO
	3330	191	5.7%	VACCINE

"We saw absolutely no difference between the vaccine and placebo groups. Everyone was pretty depressed."

but the next day...

VaxGen's AIDSVAX trial

...by broking the data down into racial groups — which they say was part of the original design — the vaccine appeared to have worked in blacks:

	Total	Infected		Fisher's exact test	
White	1508	81	5.4%	$p_W = 0.898$	
	3003	179	6.0%	$p_W = 0.030$	
Black	111	9	8.1%	$p_B = 0.015$	
	203	4	2.2%	$p_B = 0.010$	
Asian	20	2	10.0%	$p_A = 0.301$	
	53	4	3.8%	$p_A = 0.301$	
Other	40	6	15.0%	$p_O = 0.345$	
	71	6	8.5%		

[&]quot;The numbers were small, which concerned us, but the result was highly statistically significant. They were pretty incredible results."

Criticisms

1. failure to account for multiplicity

"The p-values were not adjusted."

2. selective reporting (data snooping)

"It's all murky because it's all post hoc analysis. They might as well do a subgroup analysis based on signs of the zodiac."

If you torture your data long enough, they will confess you whatever you want to hear!

Revived interest in multiple testing

"-omics"

e.g. genomics experiments with microarray data: which genes are differentially expressed?

model selection

e.g. multiple regression: which coefficients matter?

econometric

e.g. comparing several strategies with a benchmark: any better? which ones?

. . .

clinical trials

sources of multiplicity

- multiple endpoints
- several treatments
- multiple time points
- subgroup analysis
- interim analysis

0 ...

regulatory guidelines

- statistical principles for clinical trials (ICH E9)
- points to consider on multiplicity issues in clinical trials (EMEA)
- 0 ...