Combinatorial Optimization Using Electro-Optical Vector by Matrix Multiplication

Dan E. Tamir, Natan T. Shaked, Wilhelmus J. Geerts and Shlomi Dolev

1

Search Space

Iterative Hill Climbing (ITHC)

Rendezvous

Traveling Salesman Problem (TSP)

Input:

- City map which...
 - contains N cities.
 - the distances (weights)
 between the cities can be calculated from it.

Output:

- Shortest Tour which...
 - visits all cities only once.
 - is a closed loop (starts and ends in the same city).

Number of edges (weights): N(N-1)/2

Number of feasible tours: (N-1)!/2

Traveling Salesman Problem (TSP)

Number of cities	N(N-1)/2 Number of edges	(N-1)!/2 Number of feasible tours
4	6	3
5	10	12
10	45	181440
15	105	4.359×10 ¹⁰
20	190	6.082×10 ¹⁶
100	4950	4.666×10 ¹⁵⁵
150	11175	1.905×10 ²⁶⁰

An Iterative Hill Climbing TSP

- A "TSP problem"
 - Given a complete weighted graph with N vertices and random weights, find the minimal Hamiltonian cycle
 - E.g., Given the 50 states a TSP wants to go from each Capital city to another without out repeating using the minimum total distance

There is a greedy algorithm

The algorithm finds a starting cycle
Local improvements butterfly.

$$O(N^2 \log(N))$$

2-opt — Butterfly

Current version - (a, b) and (c, d) are edges

Experiments

- Seeding
 - Random Restart
 - Greedy Enumeration
- Using Spatial and Temporal Locality to reduce repetitions
- Miss Ratios
- Speed-up