Assignment Project Exam Help

Virt https://eduassistpro.githac.b/e

Add WeChat edu_assist_pro

Reviewing the big picture

Review 1/2

- Apply Principle of Locality Recursively
- Reduce Miss Penalty? add a (L2) cache Assignment Project Exam Help
- Manage memory to https://eduassistpro.github.io/
 - Included protection
 - Use <u>Page Table</u> of mappings
 vs. tag/data in cache
- Virtual memory to Physical Memory Translation too slow?
 - Add a cache of Virtual to Physical Address Translations, called a <u>TLB</u>

Review 2/2

- Virtual Memory allows protected sharing of memory between processes with less swapping to disk, less fragmentation than always-swap
 Assignment Project Exam Help
- Spatial Locality mean https://eduassistpro.githisbalbthat must be in memory for process to https://eduassistpro.githisbalbthat must be in
- TLB to reduce performance cost of VM
- Need more compact representation to reduce memory size cost of simple 1-level page table (especially $32-\Rightarrow 64$ -bit address): 2-level page tables.

Principle of Locality (in time, in space) + Hierarchy of Memories of different speed, cost; exploit to improve cost-performance

Assignment Project Exam Help

Future changes t https://eduassistpro.github.io/ memory hierarchiead WeChat edu_assist_pro

Why Caches?

- 1989 first Intel CPU with cache on chip
- 1998 Pentium III has two levels of cache on chip

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Another View of the Memory Hierarchy

Why virtual memory? (1/2)

Protection

- Regions of the address space can be read only, execute only, ...
 Assignment Project Exam Help
- Flexibility
 - Portions of a program https://eduassistpro.gethwithiout relocation
- Expandability
 Add WeChat edu_assist_pro
 - Can leave room in virtual address space for objects to grow
- Storage management
 - Allocation/deallocation of variable sized blocks is costly and leads to (external) fragmentation; paging solves this

Why virtual memory? (2/2)

- Generality
 - Ability to run programs larger than size of physical memory
- Storage efficiency Assignment Project Exam Help
 - Retain only most impor am in memory
- Concurrent I/O https://eduassistpro.github.io/
 - Execute other processes while wading tedu_assist pro

Virtual Memory Overview (1/3)

- User program view of memory:
 - Contiguous
 - Start from some setsaignment Project Exam Help
 - Infinitely large

https://eduassistpro.github.io/

Is the only running pr

Add WeChat edu_assist_pro

- Reality:
 - Non-contiguous
 - Start wherever available memory is
 - Finite size
 - Many programs running at a time

Virtual Memory Overview (2/3)

- Virtual memory provides:
 - Illusion of contiguous memory Assignment Project Exam Help
 - All programs startin
 - Illusion of effectively https://eduassistpro.github.io/
 (2³² or 2⁶⁴ bytes) Add WeChat edu_assist_pro
 - Protection

Virtual Memory Overview (3/3)

- Implementation:
 - Divide memory into "chunks" (pages)
 Assignment Project Exam Help
 - Operating system co maps virtual addresses into physical address https://eduassistpro.github.io/
 - TLB is a cache for the pagewald hat edu_assist_pro
 - Can think of memory as a cache for disk

Why Translation Lookaside Buffer (TLB)?

- Paging is most popular implementation of virtual memory
- In a paged in plementation, every white all memory access must entry of the https://eduassistpro.github.io/stored in physical memory) We phot edu_assistion
- Cache of Page Table Entries (TLB) makes address translation possible without memory access (to read page table)
- TLB exploits temporal and spatial locality, making the common case memory accesses fast

Load data example

- Suppose we are fetching (loading) some data:
 - Check TLB (input: VPN, output: PPN)
 - hit: fetch translationignment Project Exam Help
 - miss: check page tab https://eduassistpro.github.io/
 - Page table hit: f
 - Page table miss: page fault Cleat edu_assistist to memory, return translation to TLB
 - Check cache (input: PA, output: data)
 - hit: return value
 - miss: fetch value from memory

Paging/Virtual Memory Review

Three Advantages of Virtual Memory

1) Translation

- Program can be given consistent view of memory, Assignment Project Exam Help even though physical memory is scrambled
- Makes mult https://eduassistpro.githleb.io/
- Only the most important edu_assise_pro, i.e., the "Working Set", must be i memory
- Contiguous structures (like stacks) use only as much
 physical memory as necessary yet still grow later

Three Advantages of Virtual Memory

2) Protection:

- Different processes protected from each other Assignment Project Exam Help
- Different pa
 al behaviour
 - (Read Onl https://eduassistpro.github.io/
- Kernel data protected hat edu_assist raras
- Very important for protection from malicious programs (viruses)
- Special Mode in processor ("Kernel mode") allows processor to change page table/TLB

Three Advantages of Virtual Memory

3) **Sharing**:

Can map same physical page to multiple users ("Shared memory")
 Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Crossing the System Boundary

• System loads user program into memory and "gives's stgusseent Project Example the processo"

Switch back

- SYSCALL

request service

I/O

- TRAP (overflow)
- Interrupt

Instruction Set Support for VM/OS

- How to prevent user program from changing page tables and go anywhere?
 - Bit in Status Register detelemnes whether it is the or OS (kernel) mode:

```
Assume https://eduassistpro.github.io/tatus Register

Add WeChat edu_assist_pro
```

Kernel/User bit (KU) (0 \Rightarrow kernel, 1 \Rightarrow user)

- On exception/interrupt disable interrupts (IE=0) and go into kernel mode (KU=0)
- Only change the page table when in kernel mode (Operating System)

Syscall

- How does user invoke the OS?
 - syscall instruction: invoke the kernel (Go to 0x80000080, change to kernel mode)
 - By software convent https://eduassistpro.gethwiceioequested: OS performs request
 Add WeChat edu_assist_pro

4 Questions for Memory Hierarchy

- Q1: Where can a block be placed in the upper level? (Block placement)
- Q2: How is a biock found fift is in the upper level? (Block identific https://eduassistpro.github.io/
- Q3: Which block should be r a miss? Add WeChat edu_assist_pro (Block replacement)
- Q4: What happens on a write? (Write strategy)

Q1: Where block placed in upper level?

- Block 12 placed in 8 block cache:
 - Fully associative, direct mapped, 2-way set associative
 - S.A. Mapping = Block Number Mod Number Sets

Q2: How is a block found in upper level?

Add WeChat edu_assist_pro

- Direct indexing (using in tag compares, or combination
- Increasing associativity shrinks index, expands tag

Q3: Which block replaced on a miss?

- Easy for Direct Mapped
- Set Associative or Fully Associative:
 - Random Assignment Project Exam Help
 - LRU (Least Rhttps://eduassistpro.github.io/

Miss Rates Example Add WeChat edu_assist_pro Add Seway

Size	LRU	Ran	LRU	Ran	LRU	Ran
16 KB	5.2%	5.7%	4.7%	5.3%	4.4%	5.0%
64 KB	1.9%	2.0%	1.5%	1.7%	1.4%	1.5%
256 KB	1.15%	1.17%	1.13%	1.13%	1.12%	1.12%

Q4: What to do on a write hit?

- Write-through
 - update the word in cache block and corresponding word in memory
- Write-back Assignment Project Exam Help
 - update word in cache bl
 - allow memory word tohttps://eduassistpro.github.io/
 - => add 'dirty' bit to each ling dod when block is replaced
 - => OS flushes cache before I/O !!!
- Performance trade-offs?
 - WT: read misses cannot result in writes
 - WB: no writes of repeated writes

Address Translation & 3 Concept tests

Virtual Address

Cache and Virtual Memory

- Virtual memory and cache work together
- Hierarchy must be preserved Assignment Project Exam Help
 - When a page is migr
 the page from the c https://eduassistpro.github.io/
 - Also modifies page table a well but edu_assistments to access data on migrated page will produce a fault.

Question

- 2
- A memory reference can encounter three different types of misses:

 Assignment Project Exam Help
 TLB miss, p
- Consider all https://eduassistpro.githubeio/ents with one or whole events durated edu_assistspholities).
- State if each event can actually occur and under what circumstances

Answer

TLB	PAGE TABLE	CACHE	POSSIBLE? HOW?
Hit	Hit	Miss	Possible, though page table not checked if TLB hits
Miss	Hit		Possible, though page table not checked if TLB hits gnment Project Exam Help at the misses, but entry found in page table; after retry, data is
Miss	Hit	Miss	https://eduassistpro.github.io/ misses in cache
Miss	Miss	Miss	Add WeChat edu_assist_pro TLB misses and is foledu_assist_pro must miss cache
Hit	Miss	Miss	impossible: cannot have a translation in TLB if page is not present in memory
Hit	Miss	Hit	impossible: cannot have a translation in TLB if page is not present in memory
Miss	Miss	Hit	impossible: data not allowed in cache if the page is not in memory

Understanding Program Performance

- Virtual memory allows a small memory to look like a large one
- A process that routinely accesses more virtual memory than it has physical memory
 will run slowly... It will the significant property for significant process.

 called thrashing
- Easiest solution: buy more https://eduassistpro.github.io/
- Better solution: examine algorithms and the locality, and reduce the number of pages y working set
- TLB misses a more common problem, and can be alleviated with larger page sizes (most computer architectures support variable page sizes, but not necessarily the OS).

Cache/VM/TLB Summary: #1/3

- The Principle of Locality:
 - Program access a relatively small portion of the address space at Assignment Project Exam Help
 - Temporal L
 - Spatial Loca https://eduassistpro.github.io/
- Caches, TLBs, Virtual Wernaredu_assist pred by examining how they deal with 4 questions:
 - 1) Where can block be placed?
 - 2) How is block found?
 - 3) What block is replaced on miss?
 - 4) How are writes handled?

Cache/VM/TLB Summary: #2/3

- Virtual Memory allows protected sharing of memory between processes with less swapping to disk, less fragmentation than always-swap or baseyisament Project Exam Help
- Three Problems: https://eduassistpro.github.io/
 - 1) Not enough memory: Spatial Localit all Working Set of pages OK Add WeChat edu_assist_pro
 - 2) TLB to reduce performance cost of VM
 - 3) Need more compact representation to reduce memory size cost of simple 1-level page table, especially for 64-bit address space (beyond scope of this course)

Cache/VM/TLB Summary: #3/3

- Virtual memory was controversial at the time: can software automatically manage 64KB across many programs?
 - 1000X DRAMsgigwtheramerejecorExcorarsMelp
- Today VM allow are single memory without having t https://eduassistpro.github.io/
 - VM protection taday weetfat edu_assist_promory hierarchy
- Today CPU time is a function of #operations and cache misses, rather than just a function of #operations.
 - What does this mean to Compilers, Data structures, Algorithms?

Review and More Information

- Textbook 5.7 Virtual Memory
- See also 5.8

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro