省选模拟赛题解

 $King_George$

2019.3.

冬

考虑如何计数。 不难发现对于一个点 u,和它相邻的比它大的任意两个点颜色肯定不同。 考虑如何计数。

不难发现对于一个点 u,和它相邻的比它大的任意两个点颜色肯定不同。

从大到小给每个点染色,那么每个点染色的方案数就是 n – 比它大的和它相邻的点的个数。乘法原理一下就可以得到答案了。问题变成怎么求点的度数。

考虑如何计数。

不难发现对于一个点 u,和它相邻的比它大的任意两个点颜色肯定不同。

从大到小给每个点染色,那么每个点染色的方案数就是 n – 比它大的和它相邻的点的个数。乘法原理一下就可以得到答案了。问题变成怎么求点的度数。

冬

从小往大枚举三元组里的 a,找到所有三元组,按这样的顺序就可以得到最终的图。

冬

从小往大枚举三元组里的 a,找到所有三元组,按这样的顺序就可以得到最终的图。

可以发现对于最终图中 u 与 v 有边,当且仅当在原图中存在一条 u 到 v 的路径使得路径中间的点 < min(u, v)。

从小往大枚举三元组里的 *a*,找到所有三元组,按这样的顺序就可以得到最终的图。

可以发现对于最终图中 u 与 v 有边,当且仅当在原图中存在一条 u 到 v 的路径使得路径中间的点 < min(u, v)。

按从小往大的顺序依次加点,加完点后维护当前的联通块情况以及每个联通块向外连的邻居。扫到i时,i所在联通块邻居个数就是i的度数。实现可以用启发式合并 $O(nlog^2n)$ 或者线段树合并O(nlogn)。

因数分解

考虑没有 b_i 不同的限制怎么做。把 n! 质因数分解一下,对每个 质因数 p^q 的 q,dp出 $\sum a_i \cdot x_i = q$ 的解的个数,然后乘起来。 dp时对每一堆相同的 a_i 求一下方案数,然后跑个背包就是分解 q 的方案数。

因数分解

考虑没有 b_i 不同的限制怎么做。把 n! 质因数分解一下,对每个 质因数 p^q 的 q,dp出 $\sum a_i \cdot x_i = q$ 的解的个数,然后乘起来。 dp时对每一堆相同的 a_i 求一下方案数,然后跑个背包就是分解 q 的方案数。

有 b_i 不等的限制就容斥一下,枚举哪些 b 相等,类似于搜划分数。复杂度 O(跑得过)。

求和

$$\sum_{i=0}^{N} \sum_{j=0}^{M} {i \choose j} \cdot [i \equiv 0 \pmod{2}] \cdot [j \equiv 0 \pmod{2}] \cdot [j \equiv 0 \pmod{2}] = \sum_{i=0}^{N} \sum_{j=0}^{M} [x^{j}](x+1)^{i} \cdot [i \equiv 0 \pmod{2}] \cdot [j \equiv 0 \pmod{2}] = \sum_{j=0}^{M} [j \equiv 0 \pmod{2}] \cdot [x^{j}] \sum_{i=0}^{N} (x+1)^{i} \cdot [i \equiv 0 \pmod{2}].$$

求和

$$\sum_{i=0}^{N} \sum_{j=0}^{M} {i \choose j} \cdot [i \equiv 0 \pmod{2}] \cdot [j \equiv 0 \pmod{2}] \cdot [j \equiv 0 \pmod{2}] = \sum_{i=0}^{N} \sum_{j=0}^{M} [x^{j}](x+1)^{i} \cdot [i \equiv 0 \pmod{2}] \cdot [j \equiv 0 \pmod{2}] \cdot [j \equiv 0 \pmod{2}] = \sum_{j=0}^{M} [j \equiv 0 \pmod{2}] \cdot [x^{j}] \sum_{i=0}^{N} (x+1)^{i} \cdot [i \equiv 0 \pmod{2}] \cdot [x^{j}] \cdot [x$$

求和

$$\sum_{i=0}^{N} \sum_{j=0}^{M} \binom{i}{j} \cdot [i \equiv 0 \pmod{2}] \cdot [j \equiv 0 \pmod{2}] \cdot [j \equiv 0 \pmod{2}] = \sum_{i=0}^{N} \sum_{j=0}^{M} [x^{j}](x+1)^{i} \cdot [i \equiv 0 \pmod{2}] \cdot [j \equiv 0 \pmod{2}] \cdot [j \equiv 0 \pmod{2}] \cdot [x^{j}] \sum_{i=0}^{N} (x+1)^{i} \cdot [i \equiv 0 \pmod{2}] \cdot [x^{j}] \sum_{i=0}^{N} (x+1)^{i} \cdot [i \equiv 0 \pmod{2}] \cdot [x^{j}] \cdot [i \equiv 0 \pmod{2}] \cdot [x^{j}] \cdot [x^{j}]$$

求和模 s 意义下的结果

由于
$$gcd(s, 2) = 1$$
,所以在模 s 意义下存在 2 的逆元 2^{-1} ,所以 $b_0 = a_1 2^{-1}$, $b_i = (a_i - b_{i-1}) 2^{-1}$ $(i > 0)$ 。

求和模 2^t 意义下的结果

可以发现
$$b_i = \sum_{j \ge i+2} (-2)^{j-(i+2)} a_j$$
,当 $j-(i+2) \ge t$ 时 $(-2)^{j-(i+2)} a_j = 0 \mod 2^t$,所以只用计算 $j < t+i+2$ 即可。