NOTE:

Projectname: sql-business-case-418004

Datasetname: geolocation

Tables used: customers, geolocation, order_items, order_reviews, orders, payments,

products, sellers

Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:

Q1) Data type of all columns in the "customers" table. ANS:

QUERY:

```
select column_name, data_type
from `sql-business-case-418004.geolocation.INFORMATION_SCHEMA.COLUMNS`
where table_name = 'customers'
```

ry results		▲ SAVE RESU
JOB INFORMATION RESU	JLTS CHART	JSON
column_name ▼	data_type ▼	/
customer_id	STRING	
customer_unique_id	STRING	
customer_zip_code_prefix	INT64	
customer_city	STRING	
customer_state	STRING	
	JOB INFORMATION RESU column_name ▼ customer_id customer_unique_id customer_zip_code_prefix customer_city	JOB INFORMATION RESULTS CHART column_name ▼

INSIGHTS: N/A

RECOMMENDATIONS: N/A

Q2) Get the time range between which the orders were placed. ANS:

QUERY

SELECT min(order_purchase_timestamp) as min_, max(order_purchase_timestamp) as max_

from `geolocation.orders`

INSIGHTS: Data is available only from '2016-09-04' to '2018-10-17'. It's not complete 3 years data.

RECOMMENDATION: N/A

Q3) Count the Cities & States of customers who ordered during the given period. ANS:

QUERY

SELECT count(distinct geolocation_city) as city_count, count(distinct geolocation_state) as state_count from `geolocation.geolocation`

INSIGHTS: N/A

RECOMMENDATION: N/A

In-depth Exploration:

Q1) Is there a growing trend in the no. of orders placed over the past years? ANS:

```
select YofSale,count(*) as no_of_orders from
(
SELECT order_id, EXTRACT(YEAR FROM order_purchase_timestamp) as YofSale from `geolocation.orders`) as o group by YofSale
order by YofSale
```

Quei	ry results		≛ SA	VE RESULTS 🔻
<	JOB INFORMATION	RESULTS	CHART	JSON
Row	YofSale ▼	no_of_orders ▼		
1	2016	329		
2	2017	45101		
3	2018	54011		

ORDERS THAT HAVE BEEN CANCELLED AMONG THEM:

	JOB IN	IFORMATION		RESULTS	СНА	RT
ı	Row	YofSale ▼	//	no_of_orders	V	
ı	1		2016		26	
	2		2017		265	
	3		2018		334	

INSIGHTS:

According to the data provided, As per my observation there is a visible growth in the number of sales from 2016 to 2018.

But the data in year 2016 is only available from '2016-09-04', so we are able to see very low orders in that year. If entire year data is available, then there might be variation in number of orders.

In year 2018, even though data is available till '2018-10-17', orders are higher than year 2017.

RECOMMENDATION: Even though data for 2016 is less, as November and December we have festival season which is a good chance increase our sales. If we should have made more advertisements and gave good discounts on products. Then there will be increase in number of sales.

Q2) Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

ANS:

OUERY:

```
SELECT EXTRACT(MONTH FROM order_purchase_timestamp) as MofSale, count(order_id) as
no_of_orders
from `geolocation.orders`
where order_status <> 'canceled'
group by MofSale
order by MofSale
```

Row	MofSale ▼	11	no_of_orders ▼
1		1	8032
2		2	8418
3		3	9834
4		4	9310
5		5	10520
6		6	9378
7		7	10249
8		8	10732
9		9	4268
10	,	10	4905
11		11	7507
12		12	5663

From the data we can see the number of sales are peaked during month of May, July and August. We can see from march to august the number of sales are more compared to other months due to summer and schools reopening. In the month of November we can see increase in sales, Might be because of thanksgiving festival. Jan and Feb also have high sales as new year and carnival festival happens.

RECOMMENDATIONS:

• 0-6 hrs : Dawn

We are facing more challenges during the period of September and October, we can increase our sales by giving discounts and promoting. And we can make a combo offer which includes high demand product with low sales product.

Q3) During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

```
7-12 hrs: Mornings
13-18 hrs: Afternoon
19-23 hrs: Night

ANS:

QUERY:
select order_time, count(*) as no_of_orders
from
(
select *, case
when hours < 6 then 'Dawn'
when hours > 6 and hours < 12 then 'Mornings'
when hours > 12 and hours < 18 then 'Afternoon'
else 'night'
end as order_time
from
(</li>
```

```
select order_purchase_timestamp,extract(hour from order_purchase_timestamp) as
hours
from `geolocation.orders`
) o
)
group by order_time
```


INSIGHTS: As most of the people sleep after 12PM we can clearly see the number of orders at Dawn are low. We can see that most orders are placed during the night time when everyone comes to home and ordering items as per their requirements.

<u>RECOMMENDATIONS</u>: As most of the orders are not being placed at dawn time. We can scale down our servers to decrease our expenses on servers.

Evolution of E-commerce orders in the Brazil region:

Q1) Get the month on month no. of orders placed in each state.

ANS:

```
select MofSale, YofSale, geolocation_state, count(*) as no_of_sale
from
(
select g.geolocation_state,extract(month from o.order_purchase_timestamp) as
MofSale,extract(year from o.order_purchase_timestamp) as YofSale
from `geolocation.orders` as o
left join `geolocation.customers` as c
on o.customer_id = c.customer_id
left join `geolocation.geolocation` as g
on c.customer_zip_code_prefix = g.geolocation_zip_code_prefix
)
group by YofSale,MofSale, geolocation_state
order by YofSale,MofSale, geolocation_state
```


As per my analysis from the data the most number of sales in a month are done in SP, this state made the top 10 highest sales of month in this period. AP and RR states are not having much sales in this time period.

RECOMMENDATIONS:

We can improve the sales in the low performing states by increasing discounts and combo offers and advertising products. We have to focus on states with low orders and have to improve them.

Q2) How are the customers distributed across all the states?

```
select geolocation_state, count(*) as no_of_cust
from
(
select c.geolocation_state
from `geolocation.geolocation` as c
left join `geolocation.customers` as g
on g.customer_zip_code_prefix = c.geolocation_zip_code_prefix
)
group by geolocation_state
order by no_of_cust desc
```

Que	ry results			≛ S
< DB	INFORMATION	RESULTS	CHART	JSON
Row	geolocation_state	~	no_of_cust ▼	/
1	SP	**	5620430	**
2	RJ		3015690	
3	MG		2878728	
4	RS		805370	
5	PR		626021	
6	SC		538638	
7	BA		365875	
8	ES		316654	
9	GO		133146	
10	MT		122395	
11	PE		114588	
12	DF		93309	
13	PA		83554	
14	CE		63507	

As per my analysis from the data the most number of customers are in SP state, we are getting more order from there too. But we are having less customers from AC, AM, AP and RR states.

RECOMMENDATIONS:

We can improve the sales in the low performing states by increasing discounts and combo offers and advertising products. We can make advertisements with celebrities to attract people and make local announcements as well.

Impact on Economy:

Q1) Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

You can use the "payment_value" column in the payments table to get the cost of orders.

ANS:

else null

from sample

end as increase_percentage

```
QUERY:
with cte as
select p.payment_value,extract(year from o.order_purchase_timestamp) as year,
extract(month from o.order_purchase_timestamp) as month
from `geolocation.payments` p
left join `geolocation.orders` o
on o.order_id = p.order_id
),
sample as (
select distinct year, sum(payment_value) over(partition by cte.year) as
cost_of_orders
from cte
where year in (2017,2018) and month between 1 and 8
group by year, payment_value
order by year
select *,case
```

when year = 2018 then ROUND(((cost_of_orders - (select cost_of_orders from sample where year = 2017))/(select cost_of_orders from sample where year = 2017))*100,2)

INSIGHTS: As per my findings, sales in year 2018 between January and August increased by 111% (i.e,number of orders are double) compared to year 2017 in the period between January and August.

Recommendation:

Number of orders has doubled in year 2018, we can increase sales by advertisements and discounts.

Q2) Calculate the Total & Average value of order price for each state.

ANS:

QUERY:

```
with cte as (
SELECT c.customer_state,i.price
from `geolocation.customers` c
left join `geolocation.orders` o
on c.customer_id = o.customer_id
left join `geolocation.order_items` i
on o.order_id = i.order_id
)
select customer_state, avg(price) as avg_price, sum(price) as total_price
from cte
group by customer_state
order by avg_price asc, total_price
```

Row	customer_state ▼	avg_price ▼	total_price ▼
1	SP	109.6536291597	5202955.050001
2	PR	119.0041393728	683083.7600000
3	RS	120.3374530874	750304.0200000
4	MG	120.7485741488	1585308.029999
5	ES	121.9137012411	275037.3099999
6	SC	124.6535775862	520553.3400000
7	RJ	125.1178180945	1824092.669999
8	DF	125.7705486284	302603.9399999
9	GO	126.2717316759	294591.9499999
10	ВА	134.6012082126	511349.9900000
11	AM	135.49599999999	22356.84000000
12	MS	142.6283760683	116812.6399999
13	MA	145.2041504854	119648.2199999
14	PE	145.5083222591	262788.0299999

INSIGHTS:

As per my Analysis,

<u>Set1</u>: PB, AL, AC, RO, PA are having very good average value of orders but when it comes to Total value made from orders those 5 are not in the top of list. These locations are not making more orders to stand in the top list of highest total value orders.

Set2: SP, RJ, MG, RS, PR, SC are the top total value making states.

The reason is because the number of orders from Set1 states might be less than Set2 states but they are purchasing products with high prices. When it comes to Set2 states, those states are purchasing products with high prices and low prices as well.

RECOMMENDATION:

As we have seen from our insights some people might not purchasing low price products and some people are purchasing them too. We can send survey forms to our customers, what products they are not able to find in our retails, what products they are finding not helpful. So we can take those feedback and improve our total sales.

Q3) Calculate the Total & Average value of order freight for each state. ANS:

QUERY:

```
with cte as (
SELECT c.customer_state,i.freight_value
from `geolocation.customers` c
left join `geolocation.orders` o
on c.customer_id = o.customer_id
left join `geolocation.order_items` i
on o.order_id = i.order_id
)
select customer_state, avg(freight_value) as avg_freight_value, sum(freight_value)
as total_freight_value
from cte
group by customer_state
order by total_freight_value desc
```

customer_state ▼ avg_freight_value ▼ total_freight_value ▼ SP 15.14727539041 718723.0699999 RJ 20.96092393168 305589.3100000 MG 20.63016680630 270853.4600000 RS 21.73580433039 135522.7400000 PR 20.53165156794 117851.6800000 BA 26.36395893656 100156.67999999 SC 21.47036877394 89660.26000000 PE 32.91786267995 59449.65999999 GO 22.76681525932 53114.979999999 ES 22.05877659574 49764.59999999 ES 22.05877659574 49764.59999999 PA 35.83268518518 38699.30000000 MA 38.25700242718 31523.77000000			
RJ 20.96092393168 305589.3100000 MG 20.63016680630 270853.4600000 RS 21.73580433039 135522.7400000 PR 20.53165156794 117851.6800000 BA 26.36395893656 100156.6799999 SC 21.47036877394 89660.26000000 PE 32.91786267995 59449.65999999 GO 22.76681525932 53114.97999999 DF 21.04135494596 50625.49999999 ES 22.05877659574 49764.59999999 CE 32.71420162381 48351.58999999 PA 35.83268518518 38699.30000000	customer_state ▼	avg_freight_value	total_freight_value
MG 20.63016680630 270853.4600000 RS 21.73580433039 135522.7400000 PR 20.53165156794 117851.6800000 BA 26.36395893656 100156.6799999 SC 21.47036877394 89660.26000000 PE 32.91786267995 59449.65999999 GO 22.76681525932 53114.979999999 DF 21.04135494596 50625.499999999 ES 22.05877659574 49764.59999999 CE 32.71420162381 48351.589999999 PA 35.83268518518 38699.30000000	SP	15.14727539041	718723.0699999
RS 21.73580433039 135522.7400000 PR 20.53165156794 117851.6800000 BA 26.36395893656 100156.6799999 SC 21.47036877394 89660.26000000 PE 32.91786267995 59449.65999999 GO 22.76681525932 53114.97999999 DF 21.04135494596 50625.49999999 ES 22.05877659574 49764.59999999 CE 32.71420162381 48351.58999999 PA 35.83268518518 38699.30000000	RJ	20.96092393168	305589.3100000
PR 20.53165156794 117851.6800000 BA 26.36395893656 100156.6799999 SC 21.47036877394 89660.26000000 PE 32.91786267995 59449.65999999 GO 22.76681525932 53114.97999999 DF 21.04135494596 50625.49999999 ES 22.05877659574 49764.59999999 CE 32.71420162381 48351.58999999 PA 35.83268518518 38699.30000000	MG	20.63016680630	270853.4600000
BA 26.36395893656 100156.6799999 SC 21.47036877394 89660.26000000 PE 32.91786267995 59449.65999999 GO 22.76681525932 53114.97999999 DF 21.04135494596 50625.49999999 ES 22.05877659574 49764.59999999 CE 32.71420162381 48351.58999999 PA 35.83268518518 38699.30000000	RS	21.73580433039	135522.7400000
SC 21.47036877394 89660.26000000 PE 32.91786267995 59449.65999999 GO 22.76681525932 53114.979999999 DF 21.04135494596 50625.499999999 ES 22.05877659574 49764.599999999 CE 32.71420162381 48351.589999999 PA 35.83268518518 38699.30000000	PR	20.53165156794	117851.6800000
PE 32.91786267995 59449.659999999 GO 22.76681525932 53114.979999999 DF 21.04135494596 50625.499999999 ES 22.05877659574 49764.599999999 CE 32.71420162381 48351.589999999 PA 35.83268518518 38699.300000000	BA	26.36395893656	100156.6799999
GO 22.76681525932 53114.97999999 DF 21.04135494596 50625.49999999 ES 22.05877659574 49764.59999999 CE 32.71420162381 48351.58999999 PA 35.83268518518 38699.30000000	SC	21.47036877394	89660.26000000
DF 21.04135494596 50625.499999999 ES 22.05877659574 49764.599999999 CE 32.71420162381 48351.589999999 PA 35.83268518518 38699.300000000	PE	32.91786267995	59449.65999999
ES 22.05877659574 49764.59999999 CE 32.71420162381 48351.58999999 PA 35.83268518518 38699.30000000	GO	22.76681525932	53114.979999999
CE 32.71420162381 48351.58999999 PA 35.83268518518 38699.30000000	DF	21.04135494596	50625.499999999
PA 35.83268518518 38699.30000000	ES	22.05877659574	49764.599999999
	CE	32.71420162381	48351.58999999
MA 38.25700242718 31523.77000000	PA	35.83268518518	38699.30000000
	MA	38.25700242718	31523.77000000

Results per page: $50 \checkmark 1 - 27 \text{ of } 27$

As per my Analysis, we are getting more orders from SP so we are having very high freight cost for that state. But we are spending less amount on each product(avg_freight_cost) for shipping and delivering. But in case of RR,PB,RO,AC,PI and few more states, we are spending more money on each product as number of orders being placed are very less.

RECOMMENDATIONS:

So in order to decrease the freight cost we have to increase the number of sales in the states having low orders. We can achieve this through advertisements and we can also use local warehouses to reduce the cost of transportation.

Analysis based on sales, freight and delivery time.

1)Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

- **time_to_deliver** = order_delivered_customer_date order_purchase_timestamp
- diff_estimated_delivery = order_delivered_customer_date order_estimated_delivery_date

ANS:

```
SELECT distinct order_id,o.order_status, g.geolocation_state,
DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp,DAY) as
`delivery_time`,
DATE_DIFF(order_delivered_customer_date,order_estimated_delivery_date,DAY) as
`diff_estimated_delivery`
FROM `geolocation.orders` o
left join `geolocation.customers` c
on o.customer_id = c.customer_id
left join `geolocation.geolocation` g
on g.geolocation_zip_code_prefix = c.customer_zip_code_prefix
where o.order_status = 'delivered'
```

Row	der_id ▼	order_status ▼	geolocation_state ▼	delivery_time ▼	diff_estimated_deli
1	35c894d068ac37e6e03dc54e	delivered	RS	30	-1
2)97562c3aee8bdedcb5c2e45	delivered	MT	32	0
3	3f47f50f04c4cb6774570cfde	delivered	SE	29	-1
4	'6e9ec344d3bf029ff83a161c	delivered	CE	43	4
5	le1a3c2b97fb0809da548a59	delivered	SC	40	4
6	04fa4105ee8045f6a0139ca5	delivered	PE	37	1
7)2bb8109d097a9fc6e9cefc5	delivered	RJ	33	5
8	i057d37308e787052a32828	delivered	AL	38	6
9)135c945c554eebfd7576c73	delivered	PA	36	2
10	193e45e7ca1084efcd38ddeb	delivered	MA	34	0
11)c77e51e0f179d75a64a6141	delivered	RS	42	11
12	'918e406132d7c81f1b84527	delivered	PB	35	3
13	3f6604e77ce6433e7d68dd86	delivered	RJ	32	7

INSIGHTS: As per my Analysis, some deliveries getting delivered faster than expected time and some are getting delayed. And some data is not available because the order might be in (created, shipped, approved, canceled, invoiced, processing, unavailable) state. So we are not able to find the delivery_time and diff_estimated_time for that particular orders.

RECOMMENDATIONS:

There are few states like RJ, ES, SP, SE, PA and some other states, for these states we are taking more time to deliver than expected time. If the reason is distance of transportation then it is better to install a warehouse to eliminate this high difference in delivery date. If order got delayed it might effect the order to be cancelled and impact customer satisfaction. If we are making good sales in those areas then it is better to install a warehouse for faster delivery.

Q2) Find out the top 5 states with the highest & lowest average freight value. ANS:

```
with cte as (
SELECT c.customer_state,i.freight_value
from `geolocation.customers` c
left join `geolocation.orders` o
on c.customer_id = o.customer_id
left join `geolocation.order_items` i
on o.order_id = i.order_id
(select customer_state, avg(freight_value) as avg_freight_value
from cte
group by customer_state
order by avg_freight_value desc
LIMIT 5)
UNION ALL
(select customer_state, avg(freight_value) as avg_freight_value
from cte
group by customer_state
order by avg_freight_value ASC
LIMIT 5)
```

Row /	customer_state ▼	avg_freight_val	ue 🍸	Row	customer_state ▼	avg_freight_value
1	RR	42.9844230769		1	SP	15.14727539041
2	PB	42.7238039867	71	2	PR	20.53165156794
3	RO	41.0697122302	21	3	MG	20.63016680630
4	AC	40.0733695652	21	4	RJ	20.96092393168
5	PI	39.1479704797	70	5	DF	21.04135494596
Row	customer_state ▼	//	avg	_freight	_value 🔀	
1	RR	**	42.	9844230	* * *	
2	PB		42.	7238039	98671	
3	RO		41.	0697122	23021	
4	AC		40.	073369	56521	
5	PI		39.	1479704	47970	
6	SP		15.	1472753	39041	
7	PR		20.	531651	56794	
8	MG		20.	6301668	30630	
9	RJ		20.	9609239	93168	
	DF		01	0413549	1506	

As per my Analysis, we are getting more orders from SP so we are having very low average freight cost for that state. But in case of RR,PB,RO,AC,PI, we are spending more money on delivering each product as number of orders being placed are very less.

RECOMMENDATIONS:

So in order to decrease the freight cost we have to increase the number of sales in the states. We can achieve this through advertisements, discounts and we can also use local warehouses to reduce the cost of transportation.

Q3) Find out the top 5 states with the highest & lowest average delivery time. ANS:

```
SELECT geolocation_state, avg(delivery_time) as avg_time
from(
SELECT g.geolocation_state,
DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp,DAY) as
`delivery_time`
FROM `geolocation.orders` o
left join `geolocation.customers` c
on o.customer_id = c.customer_id
left join `geolocation.geolocation` g
```

```
on g.geolocation_zip_code_prefix = c.customer_zip_code_prefix
where order_status = 'delivered'
group by geolocation_state
order by avg_time desc
limit 5
     JOB INFORMATION
                             RESULTS
                                            CHART
                                                         102L
   Row
            geolocation_state ▼
                                          avg_time ▼
            ΑP
       1
                                          27.99122623772...
       2
                                          24.65119678421...
            ΑM
       3
            RR
                                          24.52060133630...
                                          23.14352789271...
       4
            ΑL
       5
                                          22.55023982441...
            PΑ
SELECT geolocation_state, avg(delivery_time) as avg_time
SELECT g.geolocation_state,
DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp,DAY) as
`delivery_time`
FROM `geolocation.orders` o
left join `geolocation.customers` c
on o.customer_id = c.customer_id
left join `geolocation.geolocation` g
on g.geolocation_zip_code_prefix = c.customer_zip_code_prefix
where order_status = 'delivered'
group by geolocation_state
order by avg_time asc
limit 5
                                                           JS0
      JOB INFORMATION
                               RESULTS
                                              CHART
                                            avg_time ▼
     Row
              geolocation_state
         1
              SP
                                            8.470555045095...
         2
              PR
                                            11.03876404770...
         3
              MG
                                            11.41821678372...
              DF
         4
                                            12.49651789233...
         5
              SC
                                            14.48408434580...
```

INSIGHTS: As per my Analysis, Average delivery time of SP, PR, MG, DF, SC is very good. But in case of AP, AM, RR, AL, PA delivery time is very high due to distance or low number of orders being placed.

RECOMMENDATIONS:

For these states AP, AM, RR, AL, PA we are taking more time to deliver than expected time. If the reason is transportation then it is better to install a warehouse to eliminate this high

difference in delivery date. If order got delayed it might affect the order to be cancelled and impact customer satisfaction. If we are making good sales in those areas then it is better to install a warehouse for faster delivery.

Q4) Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

ANS:

QUERY:

```
SELECT distinct g.geolocation_state,
AVG(DATE_DIFF(order_delivered_customer_date,order_estimated_delivery_date,DAY)) as
`diff_estimated_delivery`
FROM `geolocation.orders` o
left join `geolocation.customers` c
on o.customer_id = c.customer_id
left join `geolocation.geolocation` g
on g.geolocation_zip_code_prefix = c.customer_zip_code_prefix
where o.order_status = 'delivered'and order_delivered_customer_date is not null and
order_estimated_delivery_date is not null
GROUP by g.geolocation_state
order by diff_estimated_delivery asc
LIMIT 5
```

Row /	geolocation_state ▼	diff_estimated_delive
1	RR	-20.4203786191
2	AM	-20.1326511967
3	RO	-18.6520972167
4	AC	-18.4614566719
5	AP	-18.1825778149

INSIGHTS:

For these states we are delivering faster than expected time of delivery. It seems like a good thing but if we display the estimated time of delivery to the customer, they may cancel their order out of concern for the projected delivery duration.

RECOMMENDATION:

My suggestion is to re-evaluate the delivery times for orders going to those states. This way, we can provide customers with a more accurate estimate of the delivery time.

Analysis based on the payments:

Q1) Find the month on month no. of orders placed using different payment types. ANS:

```
QUERY:
select MofSale, YofSale, payment_type, count(*) as no_of_sales
from
(
select o.order_id, p.payment_type, extract(month from o.order_purchase_timestamp) as
MofSale, extract(year from o.order_purchase_timestamp) as YofSale
from `geolocation.payments` as p
left join `geolocation.orders` as o
on o.order_id = p.order_id
)
group by YofSale, MofSale, payment_type
order by YofSale, MofSale, payment_type
```

MofSale ▼	YofSale ▼	payment_type ▼	no_of_sales ▼
9	2016	credit_card	3
10	2016	UPI	63
10	2016	credit_card	254
10	2016	debit_card	2
10	2016	voucher	23
12	2016	credit_card	1
1	2017	UPI	197
1	2017	credit_card	583
1	2017	debit_card	9
1	2017	voucher	61
2	2017	UPI	398
2	2017	credit_card	1356
2	2017	debit_card	13
2	2017	voucher	119

INSIGHTS: As per my analysis, most of payments are done using credit cards, the reason might be because of the offers available through the credit cards. And UPI is the second favourite payment method for our customers. And the other thing I've noticed was there is payment status of cash.

RECOMMENDATION: Some people may not credit card like people of lower age. So we have to make sure they also purchase good goods from us. We can give different discounts for children, so they can love purchasing from us.

Q2) Find the no. of orders placed on the basis of the payment installments that have been paid.

ANS:

```
select payment_installments, count(*) as no_of_sales
from
(
    select o.order_id,p.payment_installments,extract(month from
    o.order_purchase_timestamp) as MofSale,extract(year from
    o.order_purchase_timestamp) as YofSale
    from `geolocation.payments` as p
    left join `geolocation.orders` as o
    on p.order_id = o.order_id
)
group by payment_installments
order by payment_installments
```

low /	payment_installment	no_of_sales ▼
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644
11	10	5328
12	11	23
13	12	133
14	13	16

INSIGHTS: As per my Analysis, Most of the customers are paying their bills in one installment. And many customers are paying their Installments within an year.

RECOMMENDATION: N/A