

PRÁCTICA 1: PREPARACIÓN DE LAS HERRAMIENTAS

ANA BUENDÍA RUIZ-AZUAGA

Práctica 1: Preparación de las herramientas

Correo electrónico

anabuenrua@correo.ugr.es E.T.S. INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

Granada, a 27 de marzo de 2022

ÍNDICE GENERAL

1.	COPIA DE ARCHIVOS	4
	1.1. Envío mediante tar y scp	
	1.2. Comandos avanzados	4
2.	UTILIZANDO RSYNC	13
	2.1. Opciones avanzadas	13
3.	ACCESO MEDIANTE SSH SIN CONTRASEÑA	23
	3.1. Opciones avanzadas	23
	3.2. Copia de clave manual	23
4.	USANDO CRONTAB	31
	4.1. Opciones avanzadas	31
5.	BIBLIOGRAFÍA	34

Figura 1: Introduzco mi nombre y usuario de la ugr, con contraseña "Swap1234" durante la instalación de la máquina virtual m1-anabuenrua

COPIA DE ARCHIVOS

Vamos a comenzar enviando el directorio con tar, de forma simple. Comenzamos creando un directorio con un archivo como se ve en (2).

Y mandamos el directorio comprimido con tar (3). Como ya configuramos el acceso por ssh sin contraseña no nos la pide.

Finalmente descomprimimos y comprobamos que se ha mandado correctamente (4).

1.1 ENVÍO MEDIANTE TAR Y SCP

Ahora vamos a enviarlo mediante tar y scp. Para ello creamos el tar y lo mandamos mediante scp como se ve en (5)

Comprobamos en (6) que en la máquina 2 se encuentra directorio2.

1.2 COMANDOS AVANZADOS

Vamos a enviar el directorio esta vez usando scp y algunas de sus opciones.

Comenzamos son -r, que copia recursivamente directorios enteros, y -v nos da información de la copia y de ssh. Como vemos en (7) muestra mucha información.

También podemos usar la opción -q que desactiva que se muestren mensajes por si se mandan muchos archivos (8)

Finalmente, con -P podemos indicar el puerto. Por ejemplo de m2 a m1 como se muestra en (9)

Figura 2: Creación de directorio con un archivo en m1 y contenido de este archivo.

Figura 3: Envío del archivo comprimido con tar

Figura 4: Descompresión y comprobación del envío correcto del archivo. m2-anabuenrua (tras arreglar red) [Corriendo] - Oracle VM VirtualBox

m2-anabuenrua (tras arreglar red) [Corriendo] - Oracle VM VirtualBox —
Archivo Máquina Ver Entrada Dispositivos Ayuda
anabuenrua@m2-anabuenrua: ** Is
archivo.192 cookies.txt fichero.html swap.html
anabuenrua@m2-anabuenrua: **\$

anabuenrua@m2-anabuenrua: **

Sarchivo.192 cookies.txt fichero.html swap.html

Figura 5: Compresión con tar y envío mediante scp

m2-anabuenrua (tras arreglar red) [Corriendo] - Oracle VM VirtualBox — □ ⊗

Archivo Máquina Ver Entrada Dispositivos Ayuda
anabuenrua@m2-anabuenrua: "\$ 1s
archivo.igz cook.les.txt directorio directorio2.tgz fichero.html swap.html
anabuenrua@m2-anabuenrua: "\$ __

Directorio directorio directorio directorio2.tgz fichero.html swap.html

Directorio directorio directorio directorio directorio2.tgz fichero.html swap.html

Figura 6: Comprobación de la llegada de directorio2 a m2

Figura 7: Uso de scp con comandos avanzados

Figura 8: Uso de scp con comandos avanzados

Figura 9: Uso de scp con comandos avanzados

UTILIZANDO RSYNC

Rsync ya está instalado en ambas máquinas, comprobamos su versión en (10)

Con chown cambiamos el propietario de la carpeta var/www/ ejecutando el comando (11)

Y ejecutamos rsync en m1, para copiar los archivos a m2, como se muestra en (12):

Las opciones usadas son -a, que indica recursividad (archive), -e especifica el shell remoto que se va a utilizar, -v es verbose, para dar más información y -z para comprimir los archivos durante la trasnferencia.

2.1 OPCIONES AVANZADAS

Como opciones avanzadas vamos a usar --stats, que nos muestra estadísticas, --exclude, para excluir carpetas o directorios, --delete, para borrar en la máquina destino los ficheros borrados de la máquina origen y --dry-run, que permite a rsync hacer un çlonado de prueba", de forma que podemos ver lo que se va a clonar pero sin llegar a efectuarse la copia.

Comenzamos creando un directorio de prueba a clonar desde m1 a m2 (13).

Comenzamos realizando una prueba de lo que sería la copia con --dry-run, como mostramos en (14).

Así, comprobamos que en efecto se va a mandar lo que queremos, pero todavía no hemos clonado nada, como podemos comprobar en la máquina m2, se puede ver en (15)

Ahora sí, procedemos a realizar el envío quitando la opción --dry-run, en (16), y comprobamos que se ha copiado con éxito en (17)

Es claro que el argumento --exclude ha evitado que se copie el directorio nomandar.

Finalmente, probamos a eliminar el fichero fichero1.txt y repetir el clonado, comprobando así que la opción --delete lo elimina en m2 también, como se ve en (18)

Figura 10: Comprobación de la versión de Rsync.

Figura 11: Cambiamos el propietario de la carpeta /var/www/

Figura 12: Sincronización de la carpeta /var/www/ de m1 a m2

Figura 13: Creamos directorio de prueba para clonar usando rsync.

Figura 14: Ejecución de rsync don -dry-run

Figura 15: Estado de m2 tras la ejecución de rsync con -dry-run

Figura 16: Ejecución de rsync con opciones avanzadas.

Figura 17: Comprobando la copia correcta de los ficheros en m2.

Figura 18: Ejecución de rsync tras borrar fichero1 en m1 y el resultado en m2

ACCESO MEDIANTE SSH SIN CONTRASEÑA

El acceso por ssh sin introducir la contraseña manualmente ya se configuró en la práctica anterior.

Para ello, generamos en cada máquina una clave pública y privada, con ssh-keygen, como se muestra en (19).

Después compartimos las claves públicas de una máquina a otra con ssh-copy-id -p 2022 anabuer (de m2 a m1) y ssh-copy-id anabuenrua@192.168.56.102 (de m1 a m2). El caso de m2 a m1 puede verse en (20)

3.1 OPCIONES AVANZADAS

Cuando se realizó, se dejaron todas las opciones por defecto, pero se pueden usar algunos argumentos para modificar el comportamiento:

- t: Especifica el tipo de clave que se va a generar, por ejemplo rsa.
- -b: Indica el número de bits en la clave, por defecto es 2048.
- -f: Especifica el archivo de la clave.
- -1: No se usa al generar las claves, si no que se usa para ver el fingerprint de una clave pública.
- -v: Verbose.

Ejemplos de uso de estos argumentos son ssh-keygen -t rsa -b 4096 o (21).

Si al generar la clave no usamos la ruta por defecto, para mandarla con ssh-copy-id debemos especificar la ruta de la clave pública con -i, al igual que al acceder se especifica la de la clave privada con -i en ssh.

3.2 COPIA DE CLAVE MANUAL

Comenzamos en m2, accediendo a ~/.ssh/authorized_keys, donde está escrita la clave pública de m1. Editamos este fichero con nano borrando su contenido y comprobamos que ahora para acceder a m2 desde m1 nos pide contraseña, (22)

Figura 19: Generación de claves con ssh-keygen

Figura 20: Envío de claves públicas mediante ssh-sopy-id

Figura 21: Opciones avanzadas de ssh-keygen

Figura 22: Comprobación de que nos requiere contraseña para conectar mediante ssh tras borrar la clave previamente guardada.

Para volver a tener acceso sin contraseña, vamos a mandar nuestra clave pública a m2. Para ello copiamos la clave pública que se encuentra en ~/.ssh/id_rsa.pub de m1 mediante scp en el archivo ~/.ssh/authorized_keys de m2, como vemos en (23).

Finalmente comprobamos que nos podemos conectar de m1 a m2 sin contraseña de nuevo conectándonos por ssh como en (24).

Figura 23: Visualización y envío de la clave pública mediante scp y comprobación en la máquina m2 de que se ha realizado correctamente.

Figura 24: Conexión por ssh sin requerir introducir la contraseña.

USANDO CRONTAB

Comenzamos añadiendo una tarea que sincronice completamente las carpetas /var/www/de m1 y de m2 cada hora.

Para conseguirlo, usamos crontab para programar la ejecución del comando de rsync cada hora, editando el fichero /etc/crontab como sigue en (25).

4.1 OPCIONES AVANZADAS

Como opciones avanzadas, tenemos que mientras * es para cualquier valor y se pueden especificar varios valores concretos separados por ,, hay formas más fáciles de especificar cuándo ejecutar ciertas tareas.

Por ejemplo, - indica un rango, y / el paso o salto. Así, si añadimos la siguiente tarea para escribir "hola.en un fichero cronprueba.log cada 2 horas los días 1,2 y 3 (de 1 a 3) sería editando el fichero /etc/crontab como se ve en (26)

```
00 0-23/2 1-3 * * root echo "hola" >> cronprueba.log
```

Vemos que hemos especificado los minutos a oo y en las de horas de o a 23 cada 2, en los días 1 a 3.

Figura 25: Configuración del fichero /etc/crontab para programar la sincronización con rsync cada hora.

Figura 26: Configuración del fichero /etc/crontab para escribir hola en un fichero los días 1,2 y 3 cada 2 horas.

BIBLIOGRAFÍA

- Diapositivas y guión de la práctica.
- https://www.cyberciti.biz/faq/howto-change-ssh-port-on-linux-or-unix-server/
- https://www.thegeekstuff.com/2008/11/3-steps-to-perform-ssh-login-without-password-using-ssh-keygen-ssh-copy-id/
- https://curl.se/docs/manpage.html
- https://www.tecmint.com/change-apache-port-in-linux/
- https://linuxize.com/post/how-to-set-up-apache-virtual-hosts-on-ubuntu-18-04/