Oefeningen Numerieke Wiskunde: Oefenzitting 2

Tom Sydney Kerckhove

19 februari 2014

1 Probleem 1

De exponent gaat van -126 tot 127. Dit betekent dat hier 8 bits voor nodig zijn. Er blijven dus nog 32 - 8 = 23 bits over voor de mantisse want er is ook nog een tekenbit. Een andere manier om dit resultaat te bekomen is de formule voor de machine precisie te gebruiken.

$$\epsilon_{mach} = \frac{b^{1-p}}{2}$$

Hierin is b de basis en p het aantal juiste beduidende cijfers. Uit deze formule halen we de p.

$$p1 - \log_b(2\epsilon_{mach})$$

 $p = 1 - \log_2(2 \cdot 2^{-24}) = 23$

Volgens dezelfde redenering vinden we dat het aantal bits voor het teken, de mantisse en de exponent bij de dubbele-nauwkeurigheidsgetallen respectievelijk 1, 11 en 52 zijn.

2 Probleem 2

• We weten dat 1 en 2 respectievelijk als volgt voorgesteld worden.

$$1 = .100 \dots 00 \cdot 2^1$$

$$2 = .100 \dots 00 \cdot 2^2$$

Hier zitten dus $2^m - 1 = 2^{52} - 1$ getallen tussen.

• We weten dat 7 en 9 respectievelijk als volgt voorgesteld worden.

$$7 = .11100 \dots 00 \cdot 2^3$$

$$9 = .10010 \dots 00 \cdot 2^4$$

Hier zitten dus $2^{50} + 2^{49} - 1$ getallen tussen.

3 Probleem 3

Het laatste zinvolle getal in deze rij is 1000. De overgang van 999 naar 1000 resulteert niet in een fout want 1000 wordt als volgt voorgesteld.

$$0.100 \cdot 10^4$$

Als we hier echter nog 1 bij optellen gebeurt er een absolute afrondingsfout van precies -1. Vanaf dan is de beschreven rij dus constant (1000).

4 Probleem 4

- **bepaal_b** We beginnen met A = 1, dan vermenigvuldigen we A met 2 tot er een afrondingsfout gebeurd wanneer je (A+1)-A=1 evalueert. A is nu gelijk aan 2^{10} . Vervolgens initialiseren we i op 1 en hogen i op tot (A+i) = A geen afrondingsfout meer geeft. Dit is wanneer i 6 wordt. b is dus $.103 \cdot 10^4 .102 \cdot 10^4 = 10$.
 - **bepaal_p** We initialiseren p op 1 en z op 10. Nu hogen we p en de exponent van 10^1 op tot (z+1)-z=1 een afrondingsfout geeft. Dit is wanneer p=3 geldt.
- – bepaal_b Te Bewijzen

Bewijs.
$$TODO$$

bepaal_pTe Bewijzen

Bewijs. TODO

5 Probleem 5

1.

$$\overline{y} = fl\left(\frac{x}{fl\left(fl\left(\sqrt{fl(x+1)}\right) + 1\right)}\right)$$

$$= \frac{x(1+\epsilon_1)}{\left(\left(\sqrt{(x+1)(1+\epsilon_4)}\right)(1+\epsilon_3) + 1\right)(1+\epsilon_2)}$$

$$\overline{y} = y + \sum_{i=1}^4 \epsilon_i \frac{\delta F}{\delta \epsilon_i}(0,0,0,0)$$

2.

$$\frac{\delta \overline{y}}{\delta \epsilon_1}(\epsilon_1, 0, 0, 0) = \frac{x}{\sqrt{x+1}+1}$$

•

$$\frac{\delta \overline{y}}{\delta \epsilon_2}(0, \epsilon_2, 0, 0) = \frac{-x}{\left(\sqrt{x+1}+1\right)(1+\epsilon_2)^2}$$
$$\frac{\delta \overline{y}}{\delta \epsilon_2}(0, 0, 0, 0) = \frac{-x}{\sqrt{x+1}+1}$$

•

$$\frac{\delta \overline{y}}{\delta \epsilon_3}(0, 0, \epsilon_3, 0) = \frac{-x\sqrt{1+x}}{\left((\sqrt{1+x})(1+\epsilon_3)+1\right)^2}$$
$$\frac{\delta \overline{y}}{\delta \epsilon_3}(0, 0, 0, 0) = \frac{-x\sqrt{1+x}}{\left(\sqrt{1+x}+1\right)^2}$$

•

$$\frac{\delta \overline{y}}{\delta \epsilon_4}(0,0,0,\epsilon_4) = \frac{-x(x+1)}{2\sqrt{(x+1)(1+\epsilon_4)} \left(\sqrt{(x+1)(1+\epsilon_4)} + 1\right)^2}$$
$$\frac{\delta \overline{y}}{\delta \epsilon_4}(0,0,0,0) = \frac{-x(x+1)}{2\sqrt{x+1} \left(\sqrt{x+1} + 1\right)^2}$$

3.

$$\overline{y} = \frac{x}{\sqrt{x+1}+1}\epsilon_1 + \frac{-x}{\sqrt{x+1}+1}\epsilon_2 + \frac{-x\sqrt{1+x}}{\left(\sqrt{1+x}+1\right)^2}\epsilon_3 + \frac{-x(x+1)}{2\sqrt{x+1}\left(\sqrt{x+1}+1\right)^2}\epsilon_4$$

$$= y\epsilon_1 - y\epsilon_2 + y\frac{-\sqrt{1+x}}{\sqrt{1+x}+1}\epsilon_3 + y\frac{-(x+1)}{2\sqrt{x+1}(\sqrt{x+1}+1)}\epsilon_4$$

$$\overline{y} - y = \epsilon_1 - \epsilon_2 + \frac{-\sqrt{1+x}}{\sqrt{1+x}+1}\epsilon_3 + \frac{-(x+1)}{2\sqrt{x+1}(\sqrt{x+1}+1)}\epsilon_4$$

$$\frac{\overline{y} - y}{y} = \frac{\sqrt{x+1}+1}{x}\epsilon_1 - \frac{\sqrt{x+1}+1}{x}\epsilon_2 + \frac{-\sqrt{1+x}}{x}\epsilon_3 + \frac{-(x+1)}{2x\sqrt{x+1}}\epsilon_4$$

TODO

Oplossing:

$$\frac{\overline{y} - y}{y} \approx -\frac{1}{2} \frac{\sqrt{1+x}}{\sqrt{1+x}+1} \epsilon_1 - \frac{\sqrt{1+x}}{\sqrt{1+x}+1} \epsilon_2 - \epsilon_3 + \epsilon_4$$

6 Probleem 6

$$y = \frac{1 - \cos(x)}{r^2}$$

1.

$$\overline{y} = fl\left(\frac{fl(1 - fl(\cos(x)))}{fl(x^2)}\right)$$

$$\overline{y} = \frac{(1 - (\cos(x))(1 + \epsilon_1))(1 + \epsilon_2)}{(x^2)(1 + \epsilon_3)}(1 + \epsilon_4)$$

2.

$$\frac{\delta \overline{y}}{\delta \epsilon_1}(\epsilon_1, 0, 0, 0) = \frac{\delta}{\delta \epsilon_1} \frac{1 - (\cos(x))(1 + \epsilon_1)}{x^2} = -\frac{\cos(x)}{x^2}$$

$$\frac{\delta \overline{y}}{\delta \epsilon_2}(0, \epsilon_2, 0, 0) = \frac{\delta}{\delta \epsilon_2} \frac{(1 - \cos(x))(1 + \epsilon_2)}{x^2} = \frac{(1 - \cos(x))}{x^2}$$

$$\frac{\delta \overline{y}}{\delta \epsilon_3}(0, 0, \epsilon_3, 0) = \frac{\delta}{\delta \epsilon_3} \frac{1 - \cos(x)}{(x^2)(1 + \epsilon_3)} = \frac{1 - \cos(x)}{(x^2)} \frac{-1}{(1 + \epsilon_3)^2}$$

$$\frac{\delta \overline{y}}{\delta \epsilon_3}(0, 0, 0, 0, 0) = -\frac{1 - \cos(x)}{x^2}$$

$$\frac{\delta \overline{y}}{\delta \epsilon_4}(0, 0, 0, \epsilon_4) = \frac{\delta}{\delta \epsilon_4} \frac{(1 - \cos(x))(1 + \epsilon_4)}{x^2} = \frac{1 - \cos(x)}{x^2}$$

3.

$$\overline{y} \approx y - \frac{\cos(x)}{x^2} \epsilon_1 + \frac{(1 - \cos(x))}{x^2} \epsilon_2 - \frac{1 - \cos(x)}{x^2} \epsilon_3 + \frac{1 - \cos(x)}{x^2} \epsilon_4$$
$$\overline{y} \approx y - \frac{\cos(x)}{x^2} \epsilon_1 + y \epsilon_2 - y \epsilon_3 + y \epsilon_4$$

4.

$$\overline{y} - y \approx -\frac{\cos(x)}{x^2} \epsilon_1 + y \epsilon_2 - y \epsilon_3 + y \epsilon_4$$

$$\overline{y} - y \approx -\frac{\cos(x)}{x(1 - \cos(x))} \epsilon_1 + \epsilon_2 - \epsilon_3 + \epsilon_4$$

7 Probleem 7

$$S = \sum_{i=1}^{n} a_i$$

1.

$$\overline{S} = fl(fl(...fl(fl(fl(fl(a_1 + a_2) + a_3) + a_4)...) + a_n)$$

$$= ((...((((a_1 + a_2)(1 + \epsilon_2)) + a_3)(1 + \epsilon_3))...) + a_n)(1 + \epsilon_n)$$

•

$$\frac{\delta \overline{y}}{\delta \epsilon_2}(\epsilon_2, 0, ..., 0) = a_1 + a_2$$

•

$$\frac{\delta \overline{y}}{\delta \epsilon_3}(0, \epsilon_3, 0, ..., 0) = a_1 + a_2 + a_3$$

•

$$\frac{\delta \overline{y}}{\delta \epsilon_i}(0, ..., 0, \epsilon_i, 0, ..., 0) = \sum_{j=1}^i a_j$$

2.

$$\overline{S} \approx y + \sum_{k=2}^{n} \epsilon_k \sum_{i=1}^{k} a_i$$

3.

$$\overline{S} - S \approx \sum_{i=2}^{n} \epsilon_i \sum_{j=1}^{n} a_j$$

8 Probleem 8

(a)

$$y = x\sin(x)$$

$$\overline{y} = fl(xfl(\sin(x)))$$

$$\overline{y} = (x\sin(x)(1+\epsilon_1))(1+\epsilon_2)$$

$$\frac{\delta \overline{y}}{\delta \epsilon_1}(\epsilon_1, 0) = x \sin(x)$$

$$\frac{\delta \overline{y}}{\delta \epsilon_2}(0, \epsilon_2) = x \sin(x)$$

$$\overline{y} \approx y + x \sin(x)\epsilon_1 + x \sin(x)\epsilon_2$$

 $\overline{y} \approx y + y\epsilon_2 + y\epsilon_3$

4.

$$\overline{y} - y = y\epsilon_1 + y\epsilon_2$$
$$\frac{\overline{y} - y}{y} = \epsilon_1 + \epsilon_2$$

(b)

$$y = \frac{1 - \cos(x)}{\sin(x)}$$

1.

$$\overline{y} = fl\left(\frac{fl(1 - fl(\cos(x)))}{fl(\sin(x))}\right)$$

$$\overline{y} = \left(\frac{(1 - (\cos(x))(1 + \epsilon_1))(1 + \epsilon_2)}{(\sin(x))(1 + \epsilon_3)}\right)(1 + \epsilon_4)$$

2.

$$\frac{\delta \overline{y}}{\delta \epsilon_1}(\epsilon_1, 0, 0, 0) = \frac{\delta \overline{y}}{\delta \epsilon_1} \frac{1 - \cos(x)(1 + \epsilon_1)}{\sin(x)} = \frac{-\cos(x)}{\sin(x)}$$

•

$$\frac{\delta \overline{y}}{\delta \epsilon_2}(0, \epsilon_2, 0, 0) = \frac{\delta \overline{y}}{\delta \epsilon_2} \frac{(1 - \cos(x))(1 + \epsilon_2)}{\sin(x)} = \frac{1 - \cos(x)}{\sin(x)}$$

•

$$\frac{\delta \overline{y}}{\delta \epsilon_3}(0, 0, \epsilon_3, 0) = \frac{\delta \overline{y}}{\delta \epsilon_3} \frac{1 - \cos(x)}{(\sin(x))(1 + \epsilon_3)} = \frac{\cos(x) - 1}{\sin(x)(1 + \epsilon_3)^2}$$
$$\frac{\delta \overline{y}}{\delta \epsilon_3}(0, 0, 0, 0) = \frac{\cos(x) - 1}{\sin(x)}$$

•

$$\frac{\delta \overline{y}}{\delta \epsilon_4}(0, 0, 0, \epsilon_4) = \frac{\delta \overline{y}}{\delta \epsilon_4} \left(\frac{1 - \cos(x)}{\sin(x)} \right) (1 + \epsilon_4) = \frac{1 - \cos(x)}{\sin(x)}$$

3.

$$\overline{y} \approx y + \frac{-\cos(x)}{\sin(x)} \epsilon_1 + \frac{1 - \cos(x)}{\sin(x)} \epsilon_2 + \frac{\cos(x) - 1}{\sin(x)} \epsilon_3 + \frac{1 - \cos(x)}{\sin(x)} \epsilon_4$$
$$\overline{y} \approx y + \frac{-\cos(x)}{\sin(x)} \epsilon_1 + y \epsilon_2 - y \epsilon_3 + y \epsilon_4$$

4.

$$\overline{y} - y \approx \frac{-\cos(x)}{\sin(x)} \epsilon_1 + y \epsilon_2 - y \epsilon_3 + y \epsilon_4$$

$$\frac{\overline{y} - y}{y} \approx \frac{-\cos(x)}{1 - \cos(x)} \epsilon_1 + \epsilon_2 - \epsilon_3 + \epsilon_4$$

(c)

$$y = \frac{1 - e^{-2x}}{x}$$

1.

$$\overline{y} = fl\left(\frac{fl\left(1 - fl(e^{fl(-2x)})\right)}{x}\right)$$

$$\overline{y} = \left(\frac{\left(1 - \left(\left(e^{(-2x)(1+\epsilon_1)}\right)(1+\epsilon_2)\right)\right)(1+\epsilon_3)}{x}\right)(1+\epsilon_4)$$

2.

$$\frac{\delta \overline{y}}{\delta \epsilon_1}(\epsilon_1, 0, 0, 0) = \frac{\delta \overline{y}}{\delta \epsilon_1} \frac{1 - e^{(-2x)(1 + \epsilon_1)}}{x} = \frac{2xe^{(-2x)(1 + \epsilon_1)}}{x}$$
$$\frac{\delta \overline{y}}{\delta \epsilon_1}(0, 0, 0, 0) = \frac{2xe^{-2x}}{x}$$

•

$$\frac{\delta \overline{y}}{\delta \epsilon_2}(0, \epsilon_2, 0, 0) = \frac{\delta \overline{y}}{\delta \epsilon_2} \frac{1 - (e^{-2x})(1 + \epsilon_2)}{x} = \frac{-e^{-2x}}{x}$$

•

$$\frac{\delta \overline{y}}{\delta \epsilon_3}(0, 0, \epsilon_3, 0) = \frac{\delta \overline{y}}{\delta \epsilon_3} \frac{(1 - e^{-2x})(1 + \epsilon_3)}{x} = \frac{1 - e^{-2x}}{x}$$

•

$$\frac{\delta \overline{y}}{\delta \epsilon_4}(0, 0, 0, \epsilon_4) = \frac{\delta \overline{y}}{\delta \epsilon_4} \left(\frac{1 - e^{-2x}}{x} \right) (1 + \epsilon_4) = \frac{1 - e^{-2x}}{x}$$

3.
$$\overline{y} \approx y + \frac{2xe^{-2x}}{x} + \frac{-e^{-2x}}{x} + \frac{1 - e^{-2x}}{x} + \frac{1 - e^{-2x}}{x}$$
$$\overline{y} \approx y + \frac{2xe^{-2x}}{x} \epsilon_1 + \frac{-e^{-2x}}{x} \epsilon_2 + y\epsilon_3 + y\epsilon_4$$

4.
$$\overline{y} - y \approx \frac{2xe^{-2x}}{x}\epsilon_1 + \frac{-e^{-2x}}{x}\epsilon_2 + y\epsilon_3 + y\epsilon_4$$

$$\frac{\overline{y} - y}{y} \approx \frac{2xe^{-2x}}{1 - e^{-2x}}\epsilon_1 + \frac{-e^{-2x}}{1 - e^{-2x}}\epsilon_2 + \epsilon_3 + \epsilon_4$$

$$(d)$$

$$y = (1+x)^{\frac{1}{x}}$$

2.

1.
$$\overline{y} = fl\left((1+x)^{\frac{1}{x}}\right)$$

$$\overline{y} = \left(((1+x)(1+\epsilon_2))^{\left(\frac{1}{x}\right)(1+\epsilon_1)}\right)(1+\epsilon_3)$$

 $\frac{\delta \overline{y}}{\delta \epsilon_1}(\epsilon_1, 0, 0, 0) = \frac{\delta \overline{y}}{\delta \epsilon_1}(1+x)^{\left(\frac{1}{x}\right)(1+\epsilon_1)} = \frac{(x+1)^{\frac{\epsilon_1+1}{x}}ln(x+1)}{r}$

$$\frac{\delta \overline{y}}{\delta \epsilon_1}(0, 0, 0, 0) = \frac{(x+1)^{\frac{1}{x}} ln(x+1)}{x}$$

 $\frac{\delta \overline{y}}{\delta \epsilon_2}(0, \epsilon_2, 0, 0) = \frac{\delta \overline{y}}{\delta \epsilon_2}((1+x)(1+\epsilon_2))^{\frac{1}{x}} = \frac{(1+x)}{a}((1+x)(1+\epsilon_2))^{\frac{1}{x}-1}$

$$\frac{\delta \overline{y}}{\delta \epsilon_2}(0,0,0,0) = \frac{(1+x)}{a}(1+x)^{\frac{1}{x}-1} = \frac{(1+x)^{\frac{1}{x}}}{a}$$

$$\frac{\delta \overline{y}}{\delta \epsilon_3}(0, 0, \epsilon_3, 0) = \frac{\delta \overline{y}}{\delta \epsilon_3} \left((1+x)^{\frac{1}{x}} \right) (1+\epsilon_3) = \left((1+x)^{\frac{1}{x}} \right)$$

3.
$$\overline{y} \approx y + \frac{(x+1)^{\frac{1}{x}} \ln(x+1)}{x} \epsilon_1 + \frac{(1+x)^{\frac{1}{x}}}{a} \epsilon_2 + \left((1+x)^{\frac{1}{x}}\right) \epsilon_3$$
$$\overline{y} \approx y + \frac{\ln(x+1)}{x} y \epsilon_1 + \frac{1}{a} y \epsilon_2 + y \epsilon_3$$

$$\overline{y} - y \approx \frac{\ln(x+1)}{x} y \epsilon_1 + \frac{1}{a} y \epsilon_2 + y \epsilon_3$$
$$\frac{\overline{y} - y}{y} \approx \frac{\ln(x+1)}{x} \epsilon_1 + \frac{1}{a} \epsilon_2 + \epsilon_3$$

TODO

(e)

$$y =$$

1.

$$\overline{y} = \dots$$

$$\overline{y} = .$$

2.

$$\frac{\delta \overline{y}}{\delta \epsilon_1} (\epsilon_1, 0, 0, 0) = \frac{\delta \overline{y}}{\delta \epsilon_1} \dots = \frac{\delta \overline{y}}{\delta \epsilon_1} (0, 0, 0, 0) = \dots$$

•

$$\frac{\delta \overline{y}}{\delta \epsilon_2}(0, \epsilon_2, 0, 0) = \frac{\delta \overline{y}}{\delta \epsilon_2} \dots =$$

•

$$\frac{\delta \overline{y}}{\delta \epsilon_3}(0,0,\epsilon_3,0) = \frac{\delta \overline{y}}{\delta \epsilon_3}... =$$

•

$$\frac{\delta \overline{y}}{\delta \epsilon_4}(0,0,0,\epsilon_4) = \frac{\delta \overline{y}}{\delta \epsilon_4} \dots =$$

3.

$$\overline{y} \approx y + \dots$$

$$\overline{y} \approx y + \dots$$

4.

$$\overline{y} - y \approx \dots$$

$$\frac{\overline{y} - y}{y} \approx \dots$$

- 9 Probleem 9
- 10 Probleem 10
- 11 Probleem 11