Finding Dataset Shortcuts with Grammar Induction

Dan Friedman, Alexander Wettig, and Danqi Chen Department of Computer Science, Princeton University

Introduction

Many NLP datasets contain **shortcuts**, simple decision rules that achieve **high in-domain accuracy** but **fail to generalize** to the intended test distribution. **If we can identify shortcuts, we can mitigate them** by collecting more training data or using robust optimization methods.

Prior work Earlier work on finding shortcuts relied on **intuition** and **manually designed probes**. Prior work on automatically identifying shortcuts has focused on **simple features that can be explicitly enumerated**, like unigrams [6, 1], or **qualitative interpretability methods**, like saliency maps [2, 5].

Proposal: Induce dataset-specific grammars to formally characterize patterns in sentence and sentence-pair classification datasets.

Method

Given text classification dataset $\mathcal{D} \subseteq \mathcal{X} \times \mathcal{Y}$, where $y \in \mathcal{Y}$ is a categorical label and $x \in \mathcal{X}$ is either a sentence or a pair of sentences, $x = (x^a, x^b)$.

1. Grammar induction

Induce a grammar for (unlabeled) training instances x_1, \ldots, x_N and get maximum likelihood trees t_1, \ldots, t_N .

- Sentence datasets: **context-free grammar** (CFG)
- Sentence-pair datasets: **synchronous CFG** [7] Given a grammar \mathcal{G} , find parameters θ^* :

$$\theta^* = \arg\max_{\theta} \sum_{i=1}^{N} \log \sum_{t: \text{yield}(t) = x_i} p(t \mid \mathcal{G}, \theta)$$

2. Finding features

Define a boolean indicator feature $Z_s \in \{0,1\}$ for each complete subtree s and calculate the mutual information:

$$I(Z_s; Y) = \sum_{z_s \in \{0,1\}} \sum_{y \in \mathcal{Y}} p(y, z_s) \log \frac{p(y, z_s)}{p(y)p(z_s)}.$$

Group subtrees according to root label and majority class.

Finding Shortcuts

IMDb movie review dataset

Root	Desc.	Patterns	% Maj.
5	Negative actors	ed wood, steven seagal, uwe boll	95.5
29	Negative ratings	4 / 10, 3 / 10, 1 / 10, 2 / 10	96.8
8	Negative durations	30 minutes, 10 minutes, five minutes	76.7
5	Positive actors	walter matthau, jon voight, james stewart	88.6
29	Positive ratings	10 / 10, 8 / 10, 7 / 10	98.8
8	Positive durations	many years	69.1

Subjectivity dataset

Root	Desc.	Patterns	% Maj.
<u>27</u> <u>3</u>	Review NP Review VB	a movie, the film, the movie, this movie comes off, 's hard, makes up, 'd expect	86.3 87.4
27	Summary NP	his life, his wife, his father, his mother	80.1
3	Summary VB	finds himself, finds out, falls in love	85.5

SNLI

Root	Desc.	Patterns	% Maj.
44	Copy verb	walking/walking, running/running	68.4
14)	Subj. hypernym	a woman/a person, a man/a human	45.7
4	Expletive	a /there is, ϵ /there are, two /there are	63.0
14	Subj. antonym	a man/a woman, a boy/a girl, a dog/a cat	82.5
78	Verb antonym	standing/sitting, walking/sitting	92.6
85	Adj. antonym	black/white, red/blue, ϵ /empty, ϵ /living	76.9
35	Add object	$\epsilon/[UNK]$, $\epsilon/work$, ϵ/get , $\epsilon/friends$, $\epsilon/park$	59.8
85	Add adj.	$\epsilon/tall$, ϵ/sad , $\epsilon/[UNK]$, ϵ/new , ϵ/big	72.1
17)	Add PP phrase	$\epsilon/{\sf to}$ work, $\epsilon/{\sf to}$ get, $\epsilon/{\sf to}$ buy, $\epsilon/{\sf the}$ park	71.4

Quora Question Pairs

Root	Desc.	Patterns	% Maj.
70	Additions	$\epsilon/[UNK]$, ϵ/in , ϵ/a , $\epsilon/-$, ϵ/for	60.7
49	Deletions	$[UNK]/\epsilon$, in/ϵ , a/ϵ , $like/\epsilon$, of/ϵ	61.6
59	Change Q	why/how, why/what, how/why, why/can	70.8
14)	How-to	how can/how can, how do/how can	66.2
25	Topics	new year/new year, world war/world war	82.9
59	Same Q	how/how, why/why, when/when	60.3

Do Models Use these Shortcuts?

Generating counter-examples

SNLI

Edit	#	Sets	Error
Hypernyms		389	21.8 _{±0.8}
A man is smoking at sunset.			
A $\frac{man}{man}$ + person smoking a cigarette.			
Antonyms		281	$71.1_{\pm 3.8}$
Two black dogs splash around on the beach			
The dogs are playing with a $+$ white ball.			
Add adjective		1,470	45.6 _{±8.4}
A man taking photos of nature.			
A +sad man is taking photos of a wedding.			

Mitigating Shortcut Learning

Robust optimization methods on SNLI. Just Train Twice [4] assumes **shortcuts** are **unknown**. DRiFT [3] incorporates information about the **known shortcuts** we discovered.

Comparing grammar features and saliency maps

A woman pushing a coffee cart through a plaza. A coffee worker pushes a cart.

Label: Neutral, BERT prediction: Entailment

A man kneels next to a colorful display outside. The man is planting a backyard garden during spring.

Label: Contradiction, BERT prediction: Neutral

Conclusions

An approach for automatically **finding dataset shortcuts** by inducing **dataset-specific grammars**. The grammar can be used to:

• Discover interesting shortcut featu

- **Discover** interesting shortcut features
- Diagnose classifier errors
- Mitigate shortcut learning

References

- [1] Matt Gardner et al. "Competency Problems: On Finding and Removing Artifacts in Language Data". In: *EMNLP*. 2021.
- [2] Xiaochuang Han, Byron C Wallace, and Yulia Tsvetkov. "Explaining Black Box Predictions and Unveiling Data Artifacts through Influence Functions". In: *ACL*. 2020.
- [3] He He, Sheng Zha, and Haohan Wang. "Unlearn Dataset Bias in Natural Language Infer-
- ence by Fitting the Residual". In: *DeepLo*. 2019.

 [4] Evan Z Liu et al. "Just Train Twice: Improving group robustness without training group
- information". In: *ICML*. 2021.

 [5] Pouya Pezeshkpour et al. "Combining Feature and Instance Attribution to Detect Artifacts".
- In: ACL Findings. 2022.

 [6] Zhao Wang and Aron Culotta. "Identifying Spurious Correlations for Robust Text Classifi-
- cation". In: *EMNLP Findings*. 2020.

 [7] Dekai Wu. "Stochastic inversion transduction grammars and bilingual parsing of parallel

corpora". In: Computational Linguistics (1997).