Cognitive Algorithms Lecture 3

Linear Regression

Klaus-Robert Müller, Johannes Niediek, Hannah Boldt, Augustin Krause, Jonas Müller, Joanina Oltersdorff, Ken Schreiber

> Technische Universität Berlin Machine Learning Group

Organizational

Tutorials next week (changes due to holiday)					
Hannah	H2053	Tue 21.05.	12.00		
Augustin	FH 314	Tue 21.05.	14.00		
Joanina	Zoom	Wed 22.05.	10.00		
Jonas	MAR 4.033	Thu 23.05.	10.00		

Bi-weekly tutorials from June onwards					
Joanina	Zoom	Mondays	10.00		
Hannah	H2053	Tuesdays	12.00		
Augustin		no more tutorials			
Jonas	FH 303	Mondays	14.00		

Please remember the Q&A session via Zoom by Ken, each Wednesday at 12.00.

Recap

Correlations between features can affect classification accuracy

- Correlations between features can affect classification accuracy
- Linear Discriminant Analysis (LDA) maximizes between class variance while minimizing within class variance

- Correlations between features can affect classification accuracy
- Linear Discriminant Analysis (LDA) maximizes between class variance while minimizing within class variance
- If data has multivariate normal distribution with equal class covariances, then LDA is the optimal classifier

- Correlations between features can affect classification accuracy
- Linear Discriminant Analysis (LDA) maximizes between class variance while minimizing within class variance
- If data has multivariate normal distribution with equal class covariances, then LDA is the optimal classifier
- We want our model to generalize well. We need to test this on data that was not used during training.

Recap ooooooo

> Given n data points $\mathbf{x}_i \in \mathbb{R}^d$ in a data matrix $X \in \mathbb{R}^{d \times n}$ the empirical estimate of the covariance matrix is defined as

$$\hat{\Sigma} = \frac{1}{n} (X - \bar{X})(X - \bar{X})^{\top},$$

where the estimate of the expected value is given by the mean

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i, \quad \bar{X} = (\bar{\mathbf{x}}, \bar{\mathbf{x}}, \dots, \bar{\mathbf{x}}) \in \mathbb{R}^{d \times n}$$

The diagonal entries of $\hat{\Sigma}$ are estimates of the variance.

Estimating covariance matrices

Given n data points $\mathbf{x}_i \in \mathbb{R}^d$ in a data matrix $X \in \mathbb{R}^{d \times n}$ the empirical estimate of the covariance matrix is defined as

$$\hat{\Sigma} = \frac{1}{n} (X - \bar{X})(X - \bar{X})^{\top},$$

where the estimate of the expected value is given by the mean

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i, \quad \bar{X} = (\bar{\mathbf{x}}, \bar{\mathbf{x}}, \dots, \bar{\mathbf{x}}) \in \mathbb{R}^{d \times n}$$

The diagonal entries of $\hat{\Sigma}$ are estimates of the variance.

Correlated data and linear mappings

Uncorrelated

Recap

$$x \sim \mathcal{N}(0, 1)$$

$$XX^{\top} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Uncorrelated, scaled

$$\begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \lambda$$

$$XX^{\top} = \begin{bmatrix} 9 & 0 \\ 0 & 1 \end{bmatrix}$$

Scaled, rotated by 45°

$$\begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} X$$

$$XX^{\top} = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$$

Linear Discriminant Analysis (LDA)

Goal: Find a (normal vector of a linear decision boundary) \boldsymbol{w} that

- Maximizes mean class difference, and
- Minimizes variance in each class

Linear Discriminant Analysis (LDA)

Optimization problem:

$$\underset{\boldsymbol{w}}{\operatorname{argmax}} \frac{\boldsymbol{w}^{\top} S_{B} \boldsymbol{w}}{\boldsymbol{w}^{\top} S_{W} \boldsymbol{w}}$$

Setting the gradient to zero we obtained:

$$m{w} \propto S_W^{-1}(m{w}_o - m{w}_\Delta)$$

NCC vs. LDA

Whitening

Recap 00000000

Transforms data to data with covariance matrix that is the identity.

→ Data are decorrelated after whitening

Recap

Generalization and model evaluation

The goal of classification is **generalization**: Correct categorization/prediction of new data

How can we estimate generalization performance?

$\to \textbf{Test set}$

- Train model on part of data (training set)
- Test model on other part of data (test set)

From classification to regression

What if our labels are not in $\{-1, +1\}$ but in \mathbb{R} ?

$$y \in \{-1, +1\}$$

Classification

From classification to regression

What if our labels are not in $\{-1, +1\}$ but in \mathbb{R} ?

$$y \in \{-1, +1\}$$
 $y \in \mathbb{R}$ Classification **Regression**

From classification to regression

What if our labels are not in $\{-1, +1\}$ but in \mathbb{R} ?

$$y \in \{-1, +1\}$$
 $y \in \mathbb{R}$ Classification Regression

The most basic and best understood type of regression is **linear regression** (or ordinary least squares (OLS)) using a *least-squares cost function*.

Linear regression - application examples

- Estimate price of a house
- Describe processes in physics/engineering
- Control a hand prosthesis based on electric activity measured on the arm
- Predict sales as a function of advertisement budgets for TV, radio and newspaper.
- Predict stock prices
- ... many, many more...

Simple linear regression

How to find the regression line?

(data from kaggle, a great data science platform https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/)

Simple linear regression (one-dimensional data)

Given data $x_1, \ldots, x_n \in \mathbb{R}$ and labels $y_1, \ldots, y_n \in \mathbb{R}$, the goal is to predict new y using an (affine) linear function

$$f(x) = w \cdot x + b$$

Linear Regression

Given data $x_1, \ldots, x_n \in \mathbb{R}$ and labels $y_1, \ldots, y_n \in \mathbb{R}$, the goal is to predict new y using an (affine) linear function

$$f(x) = w \cdot x + b$$

We will first focus on a simpler version without intercept $f(x) = w \cdot x$. Approach: Minimize the squared error to find the w

$$\mathcal{E}(w) = \sum_{i=1}^{n} (y_i - w \cdot x_i)^2$$

- differentiable
- analytically solvable
- (optimal under normality assumptions)

Least-squares error: general case

Given data $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)$ with $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$ the goal is to find a weight vector $\mathbf{w} \in \mathbb{R}^d$ to predict v for a new \mathbf{x} via

$$y = \mathbf{w}^{\top} \mathbf{x}$$
.

Approach: find w by minimizing the least-squares error [Gauß, 1809; Legendre, 1805], defined as

$$\mathcal{E}_{LSQ}(\boldsymbol{w}) = \sum_{i=1}^{n} (y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i)^2$$
 (1)

A.M. Legendre (1752-1833)

Supplementary: optimality of LSE when assuming Gaussian noise

$$y = w \cdot x + \epsilon \qquad \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^{2})$$

$$p(y|w) = \mathcal{N}(y|w \cdot x, \sigma_{\epsilon}^{2})$$

$$= \frac{1}{\sqrt{2\pi}\sigma_{\epsilon}} \exp\left\{-\frac{1}{2} \left(\frac{y - w \cdot x}{\sigma_{\epsilon}}\right)^{2}\right\}$$

Maximizing p(y|w) as a function of w is equivalent to maximizing the logarithm of p(y|w)(because it is monotonically increasing).

Supplementary: optimality of LSE when assuming Gaussian noise

$$y = w \cdot x + \epsilon \qquad \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^{2})$$

$$p(y|w) = \mathcal{N}(y|w \cdot x, \sigma_{\epsilon}^{2})$$

$$= \frac{1}{\sqrt{2\pi}\sigma_{\epsilon}} \exp\left\{-\frac{1}{2} \left(\frac{y - w \cdot x}{\sigma_{\epsilon}}\right)^{2}\right\}$$

Maximizing p(y|w) as a function of w is equivalent to maximizing the logarithm of p(y|w) (because it is monotonically increasing).

$$\operatorname*{argmax}_{w} p(y|w) = \operatorname*{argmax}_{w} \log p(y|w)$$

Linear Regression

$$y = w \cdot x + \epsilon \qquad \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^{2})$$

$$p(y|w) = \mathcal{N}(y|w \cdot x, \sigma_{\epsilon}^{2})$$

$$= \frac{1}{\sqrt{2\pi}\sigma_{\epsilon}} \exp \left\{ -\frac{1}{2} \left(\frac{y - w \cdot x}{\sigma_{\epsilon}} \right)^{2} \right\}$$

Maximizing p(y|w) as a function of w is equivalent to maximizing the logarithm of p(y|w) (because it is monotonically increasing).

$$\underset{w}{\operatorname{argmax}} p(y|w) = \underset{w}{\operatorname{argmax}} \log p(y|w)$$

$$= \underset{w}{\operatorname{argmax}} \left(-\underbrace{(y - w \cdot x)^2}_{\text{least-squares error}} \right)$$

For more details, see Chapter 1.2.5 in Bishop [2007].

Simple linear regression: analytical solution

$$\mathcal{E}(w) = \sum_{i=1}^{n} (y_i - w \cdot x_i)^2$$

Compute the derivative w.r.t. w

$$\frac{\partial \mathcal{E}(w)}{\partial w} = \sum_{i=1}^{n} 2(y_i - w \cdot x_i) \cdot (-x_i).$$

Simple linear regression: analytical solution

$$\mathcal{E}(w) = \sum_{i=1}^{n} (y_i - w \cdot x_i)^2$$

Compute the derivative w.r.t. w

$$\frac{\partial \mathcal{E}(w)}{\partial w} = \sum_{i=1}^{n} 2(y_i - w \cdot x_i) \cdot (-x_i).$$

Set to zero and solve for w:

$$\sum_{i=1}^{n} 2(y_i - w \cdot x_i) \cdot (-x_i) = 0 \implies -\sum_{i=1}^{n} y_i x_i + w \sum_{i=1}^{n} x_i^2 = 0$$

Simple linear regression: analytical solution

$$\mathcal{E}(w) = \sum_{i=1}^{n} (y_i - w \cdot x_i)^2$$

Compute the derivative w.r.t. w

$$\frac{\partial \mathcal{E}(w)}{\partial w} = \sum_{i=1}^{n} 2(y_i - w \cdot x_i) \cdot (-x_i).$$

Set to zero and solve for w:

$$\sum_{i=1}^{n} 2(y_i - w \cdot x_i) \cdot (-x_i) = 0 \implies -\sum_{i=1}^{n} y_i x_i + w \sum_{i=1}^{n} x_i^2 = 0$$

$$\implies w = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i x_i}$$

How does OLS behave?

How does the predicted label behave for different samples (marked as \times)?

OLS is sensitive to outliers, because we minimize the squared distance between y and $w \cdot x$. Therefore, large deviations have a large effect.

Linear regression

Let's look at samples with more than one feature and write everything in matrix notation:

Let n be the number of samples, so $\mathbf{y} \in \mathbb{R}^{1 \times n}$ and $X \in \mathbb{R}^{d \times n}$. The prediction \hat{y} of our Linear Regression model then becomes

$$\mathbf{y} pprox \hat{\mathbf{y}} = \mathbf{w}^{\top} X.$$

Linear Regression

Let's look at samples with more than one feature and write everything in matrix notation:

> Let *n* be the number of samples, so $\mathbf{y} \in \mathbb{R}^{1 \times n}$ and $X \in \mathbb{R}^{d \times n}$. The prediction \hat{v} of our Linear Regression model then becomes

> > $\mathbf{v} \approx \hat{\mathbf{v}} = \mathbf{w}^{\top} X$.

$$n \rightarrow \qquad \qquad d \rightarrow \qquad \downarrow \qquad \chi$$

The goal is still to find \mathbf{w} that minimizes the least-squares error.

Linear regression

The target variable $\hat{y} \in \mathbb{R}$ is modeled as a linear combination $w \in \mathbb{R}^d$ of d features $x \in \mathbb{R}^d$

$$\hat{y} = \mathbf{w}^{\top} \mathbf{x}$$

$$\hat{y} = w_1 \cdot x_1 + w_2 \cdot x_2$$

Linear regression with basis functions

Linear Regression

The target variable $\hat{y} \in \mathbb{R}$ can be modeled as a **linear combination** $\pmb{w} \in \mathbb{R}^{ ilde{d}}$ of $ilde{d}$ features $\phi(\mathbf{x}) \in \mathbb{R}^{\tilde{d}}$

$$\hat{\mathbf{y}} = \mathbf{w}^{\top} \phi(\mathbf{x})$$

where $\phi(\mathbf{x}) = (\phi_1(\mathbf{x}), ..., \phi_{\tilde{a}}(\mathbf{x}))$ denotes a vector of (possibly non-linear) basis functions.

> The basis function can also be $\phi(\mathbf{x}) = \mathbf{x}$. Generally $\phi(\mathbf{x})$ allows us to model more complex functions.

Intercept term

For non-centered data: use an *intercept* (often called *bias*) term

$$\hat{y} = \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix}^T \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$

Intercept term

For non-centered data: use an *intercept* (often called *bias*) term

$$\hat{y} = \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix}^T \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} + w_0$$

Intercept term

For non-centered data: use an *intercept* (often called *bias*) term

$$\hat{y} = \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix}^T \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} + w_0$$

$$= \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}^T \cdot \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}$$

Intercept term

Linear Regression 0000000000000000000

For non-centered data: use an intercept (often called bias) term

$$\hat{y} = \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix}^T \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} + w_0$$

$$= \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}^T \cdot \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}$$

This unifies the notation. Basis function: $\phi([x_1, x_2, \dots, x_d]^T) = [1, x_1, x_2, \dots, x_d]^T$

Linear Regression: non-linear $\phi(\mathbf{x})$

The general model is
$$\hat{y} = \mathbf{w}^{\top} \phi(\mathbf{x})$$
 with $\hat{y} \in \mathbb{R}$, $\mathbf{w} \in \mathbb{R}^{\tilde{d}}$, $\mathbf{x} \in \mathbb{R}^{d}$, $\phi : \mathbb{R}^{d} \to \mathbb{R}^{\tilde{d}}$.

Linear Regression: non-linear $\phi(\mathbf{x})$

The general model is
$$\hat{y} = \mathbf{w}^{\top} \phi(\mathbf{x})$$
 with $\hat{y} \in \mathbb{R}$, $\mathbf{w} \in \mathbb{R}^{\tilde{d}}$, $\mathbf{x} \in \mathbb{R}^{d}$, $\phi : \mathbb{R}^{d} \to \mathbb{R}^{\tilde{d}}$.

Consider the following example:

$$\hat{y}=0.5x^3-3x.$$

Linear Regression: non-linear $\phi(\mathbf{x})$

The general model is
$$\hat{y} = \mathbf{w}^{\top} \phi(\mathbf{x})$$
 with $\hat{y} \in \mathbb{R}$, $\mathbf{w} \in \mathbb{R}^{\tilde{d}}$, $\mathbf{x} \in \mathbb{R}^{d}$, $\phi : \mathbb{R}^{d} \to \mathbb{R}^{\tilde{d}}$.

Consider the following example:

$$\hat{y}=0.5x^3-3x.$$

Here
$$d=1$$
, $\tilde{d}=2$, $\phi(x)=\begin{bmatrix} x^3\\x \end{bmatrix}$ and $\boldsymbol{w}=\begin{bmatrix} 0.5\\-3 \end{bmatrix}$.

The feature map ϕ is a fixed part of the model. The vector \mathbf{w} is found via linear regression (it depends on the data!).

23 / 57

Linear Regression: non-linear $\phi(\mathbf{x})$

The general model is
$$\hat{y} = \mathbf{w}^{\top} \phi(\mathbf{x})$$
 with $\hat{y} \in \mathbb{R}$, $\mathbf{w} \in \mathbb{R}^{\tilde{d}}$, $\mathbf{x} \in \mathbb{R}^{d}$, $\phi : \mathbb{R}^{d} \to \mathbb{R}^{\tilde{d}}$.

Consider the following example:

$$\hat{y}=0.5x^3-3x.$$

Here
$$d=1$$
, $\tilde{d}=2$, $\phi(x)=\begin{bmatrix} x^3\\x \end{bmatrix}$ and $\boldsymbol{w}=\begin{bmatrix} 0.5\\-3 \end{bmatrix}$.

The feature map ϕ is a fixed part of the model. The vector \mathbf{w} is found via linear regression (it depends on the data!).

We can use non-linear basis functions to apply linear regression in higher-dimensional space and predict a non-linear function!

Example with non-linear basis functions

House sale prices

To minimize the least-squares loss function in eq. 1

$$\mathcal{E}_{LSQ}(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2$$

$$= \|\mathbf{y} - \mathbf{w}^{\top} X\|^2$$

$$= \mathbf{y} \mathbf{y}^{\top} - 2 \mathbf{w}^{\top} X \mathbf{y}^{\top} + \mathbf{w}^{\top} X X^{\top} \mathbf{w}$$

To minimize the least-squares loss function in eq. 1

$$\mathcal{E}_{LSQ}(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2$$

$$= \|\mathbf{y} - \mathbf{w}^{\top} X\|^2$$

$$= \mathbf{y} \mathbf{y}^{\top} - 2\mathbf{w}^{\top} X \mathbf{y}^{\top} + \mathbf{w}^{\top} X X^{\top} \mathbf{w}$$

We compute the derivative with respect to \boldsymbol{w}

To minimize the least-squares loss function in eq. 1

$$\mathcal{E}_{LSQ}(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2$$

$$= \|\mathbf{y} - \mathbf{w}^{\top} X\|^2$$

$$= \mathbf{y} \mathbf{y}^{\top} - 2 \mathbf{w}^{\top} X \mathbf{y}^{\top} + \mathbf{w}^{\top} X X^{\top} \mathbf{w}$$

We compute the derivative with respect to \boldsymbol{w}

$$\frac{\partial \mathcal{E}_{LSQ}(\boldsymbol{w})}{\partial \boldsymbol{w}} = -2X\boldsymbol{y}^{\top} + 2XX^{\top}\boldsymbol{w}$$

set it to zero and solve for w

Linear Regression 00000000000000000000

To minimize the least-squares loss function in eq. 1

$$\mathcal{E}_{LSQ}(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2$$

$$= \|\mathbf{y} - \mathbf{w}^{\top} X\|^2$$

$$= \mathbf{y} \mathbf{y}^{\top} - 2 \mathbf{w}^{\top} X \mathbf{y}^{\top} + \mathbf{w}^{\top} X X^{\top} \mathbf{w}$$

We compute the derivative with respect to \boldsymbol{w}

$$\frac{\partial \mathcal{E}_{LSQ}(\mathbf{w})}{\partial \mathbf{w}} = -2X\mathbf{y}^{\top} + 2XX^{\top}\mathbf{w}$$

set it to zero and solve for w

$$-2X\mathbf{y}^{\top} + 2XX^{\top}\mathbf{w} = 0$$

$$XX^{\top}\mathbf{w} = X\mathbf{y}^{\top}$$

$$\mathbf{w} = (XX^{\top})^{-1}X\mathbf{y}^{\top}$$

Back to initial example

Linear Regression 000000000000000000000

Now you know how to calculate the regression line.

Data from kaggle, a great data science platform https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/

Does correlation influence the performance of linear regression?

For a new data point $\mathbf{z} \in \mathbb{R}^d$ and centered data, we have

$$\mathbf{z} \mapsto \mathbf{w}^{\top} \mathbf{z}$$

 $\mathbf{w} = (XX^{\top})^{-1} X \mathbf{y}^{\top}$

Linear Regression

Does correlation influence the performance of linear regression?

For a new data point $\mathbf{z} \in \mathbb{R}^d$ and centered data, we have

$$\mathbf{z} \mapsto \mathbf{w}^{\top} \mathbf{z}$$

 $\mathbf{w} = (XX^{\top})^{-1} X \mathbf{y}^{\top}$

We can decompose:

$$\mathbf{w}^{\top}\mathbf{z} = yX^{\top}(XX^{\top})^{-1}\mathbf{z} = y\underbrace{X^{\top}U\Lambda^{-1/2}}_{\text{whitened }X^{\top}} \underbrace{\Lambda^{-1/2}U^{\top}\mathbf{z}}_{\text{whitened }\mathbf{z}}$$

where $XX^{\top} = U\Lambda U^{\top}$ is the eigenvalue decomposition of XX^{\top}

Linear Regression 0000000000000000000

For a new data point $\mathbf{z} \in \mathbb{R}^d$ and centered data, we have

$$\mathbf{z} \mapsto \mathbf{w}^{\top} \mathbf{z}$$

 $\mathbf{w} = (XX^{\top})^{-1} X \mathbf{y}^{\top}$

We can decompose:

$$\mathbf{w}^{\top}\mathbf{z} = yX^{\top}(XX^{\top})^{-1}\mathbf{z} = y\underbrace{X^{\top}U\Lambda^{-1/2}}_{\text{whitened }X^{\top}} \underbrace{\Lambda^{-1/2}U^{\top}\mathbf{z}}_{\text{whitened }\mathbf{z}}$$

where $XX^{\top} = U\Lambda U^{\top}$ is the eigenvalue decomposition of XX^{\top}

⇒ LR is not susceptible to correlation in the features (different from NCC) (But note: numerical problems can occur, e.g. if X has near-collinear features)

Linear Regression for vector labels

We now want to predict vector-valued labels $y \in \mathbb{R}^m$

For a measurement $X \in \mathbb{R}^{d \times n}, \ Y \in \mathbb{R}^{m \times n}$ the model is

$$Y = W^{\top}X$$

where $W^{\top} \in \mathbb{R}^{m \times d}$ is a **linear mapping** from data to labels.

Linear Regression for Vector Labels

Given Data $X \in \mathbb{R}^{d \times n}$ and labels $Y \in \mathbb{R}^{m \times n}$, the error function for multiple linear regression is

$$\mathcal{E}_{MLR}(W) = ||Y - W^{\top}X||_F^2 \tag{3}$$

where $||A||_F = \sqrt{\sum_i^n \sum_j^d A_{ij}^2}$ denotes the Frobenius norm and $W^{ op} \in \mathbb{R}^{m imes d}$

Eq. 3 is minimized by (see also eq. 2)

$$W = (XX^{\top})^{-1}XY^{\top}$$

Linear Regression for Vector Labels

Linear Regression

Given Data $X \in \mathbb{R}^{d \times n}$ and labels $Y \in \mathbb{R}^{m \times n}$, the error function for multiple linear regression is

$$\mathcal{E}_{MLR}(W) = ||Y - W^{\top}X||_F^2 \tag{3}$$

where $||A||_F = \sqrt{\sum_i^n \sum_i^d A_{ii}^2}$ denotes the Frobenius norm and $W^\top \in \mathbb{R}^{m \times d}$

Eq. 3 is minimized by (see also eq. 2)

$$W = (XX^{\top})^{-1}XY^{\top}$$

wrist rotation

hand prosthesis Only 2 degrees of freedom are controlled (open/close, rotate) Controlled by muscle activity

Application example: myoelectric control of prostheses

Cimolato et al. [2022] Neurons activate muscles via electric discharges Electric activity can be measured non-invasively

hand prosthesis Only 2 degrees of freedom are controlled (open/close, rotate) Controlled by muscle activity

Acquisition of training data

Experimental Paradigm

Motion Capture System

Visual Feedback

Results from linear regression

Results linear regression - smoothed

Linear regression

Hand position is a *non-linear* function of muscle activation

Linear regression

Hand position is a non-linear function of muscle activation

Weak muscle activation

→ True hand position (gray) underestimated (dashed)

Strong muscle activation

→ True hand position **over**estimated

Hand position is *almost linearly* related to log of muscle activation

Linear(ized) Regression

Hand position is almost linearly related to log of muscle activation

Strong muscle activation \rightarrow hand position *less* **over**estimated

Results linear regression - smoothed and log features

The statistical model of linear regression

Linear Model:

$$y = \mathbf{w}^{\top} \cdot \mathbf{x} + \epsilon$$

Linear Regression: estimates

$$\hat{\boldsymbol{w}} = (XX^{\top})^{-1}Xy$$

from given data X, y.

Random variable (recap)

A mapping $X:\Omega\to\mathbb{R}$ which assigns a real value to every elementary event, is called a real-valued random variable.

 Ω is the sample space, the set of all possible outcomes.

Example: tossing a coin

$$X(\omega) = egin{cases} 0, ext{if} & \omega = ext{tail} \ 1, ext{if} & \omega = ext{head} \end{cases}$$
 for $\omega \in \Omega$

The sampling distribution of an estimator

Example: Mean of a random variable

The sampling distribution of an estimator

Example: Mean of a random variable

Consider random variables $x_i \sim \mathcal{N}(\mu, \sigma^2)$ independent, identically distributed (i.i.d.).

Draw n data points and estimate mean on n data points:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

 $\hat{\mu}$ is a function of the data and thus itself a random variable.

The sampling distribution is the distribution of values that $\hat{\mu}$ takes.

Desirable properties of estimators

Unbiased The estimator's expected value is the true value of the parameter being estimated (*A* in the Fig.)

Desirable properties of estimators

Unbiased The estimator's expected value is the true value of the parameter being estimated (*A* in the Fig.)

Small estimator variance (B has a smaller variance than A)

Desirable properties of estimators

Unbiased The estimator's expected value is the true value of the parameter being estimated (*A* in the Fig.)

Small estimator variance (B has a smaller variance than A)

Robust not unduly affected by outliers or other small deviations from the model assumptions

Bias and variance

Source: Ikompass [2019]

Gauss-Markov Theorem

Under the model assumption $y = \mathbf{w}^{\top} \cdot \mathbf{x} + \epsilon$ with uncorrelated noise ϵ , our ordinary least squares estimator $\hat{\mathbf{w}} = (XX^{\top})^{-1}Xy$ is the Best Linear Unbiased Estimator (BLUE), i.e. the minimum variance unbiased estimator that is linear in y.

Gauss-Markov Theorem

Under the model assumption $y = \mathbf{w}^{\top} \cdot \mathbf{x} + \epsilon$ with uncorrelated noise ϵ , our ordinary least squares estimator $\hat{\mathbf{w}} = (XX^{\top})^{-1}Xy$ is the Best Linear Unbiased Estimator (BLUE), i.e. the minimum variance unbiased estimator that is linear in y.

But: in some cases biased estimators with lower variance might be more suitable.

Example: polynomial regression

Higher degrees of polynomials are not necessarily better.

$$\phi_M(x) = [x^0, x^1, ..., x^M]^T$$
$$\hat{y} = \mathbf{w}^T \phi_M(x)$$

Example: polynomial regression

Higher degrees of polynomials are not necessarily better.

$$\phi_M(x) = [x^0, x^1, ..., x^M]^T$$
$$\hat{y} = \mathbf{w}^T \phi_M(x)$$

Weights:

	M = 0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

[Bishop, 2007]

The bias-variance trade-off

Careful. . .

Bias and variance are terms with multiple (related) usages

- $\mathbf{w}^{\top}\mathbf{x} + b, \ \mathbf{w} \cdot \mathbf{x} + b$
- Bias/variance of an estimator
- Bias/variance of a general ML model

Often it is important to **control the complexity** of the solution \boldsymbol{w} .

This is done by constraining the norm of \boldsymbol{w} (regularization)

$$\mathcal{E}_{RR}(\mathbf{w}) = ||\mathbf{y} - \mathbf{w}^{\top} X||^2 + \lambda ||\mathbf{w}||^2$$

Often it is important to **control the complexity** of the solution w.

This is done by constraining the norm of \boldsymbol{w} (regularization)

$$\mathcal{E}_{RR}(\mathbf{w}) = ||\mathbf{y} - \mathbf{w}^{\top} X||^2 + \lambda ||\mathbf{w}||^2$$

Often it is important to **control the complexity** of the solution w.

This is done by constraining the norm of \boldsymbol{w} (regularization)

$$\mathcal{E}_{RR}(\mathbf{w}) = ||\mathbf{y} - \mathbf{w}^{\top} X||^2 + \lambda ||\mathbf{w}||^2$$

Computing the derivative with respect to \boldsymbol{w} yields

$$\frac{\partial \mathcal{E}_{RR}(\mathbf{w})}{\partial \mathbf{w}} = -2X\mathbf{y}^{\top} + 2XX^{\top}\mathbf{w} + 2\lambda\mathbf{w}.$$

Computing the derivative with respect to \boldsymbol{w} yields

$$\frac{\partial \mathcal{E}_{RR}(\mathbf{w})}{\partial \mathbf{w}} = -2X\mathbf{y}^{\top} + 2XX^{\top}\mathbf{w} + 2\lambda\mathbf{w}.$$

Setting the gradient to zero and rearranging terms, the optimal ${m w}$ is

$$2XX^{\top} \boldsymbol{w} + 2\lambda \boldsymbol{w} = 2X\boldsymbol{y}^{\top}$$
$$(XX^{\top} + \lambda \boldsymbol{I})\boldsymbol{w} = X\boldsymbol{y}^{\top}$$
$$\boldsymbol{w} = (XX^{\top} + \lambda \boldsymbol{I})^{-1}X\boldsymbol{y}^{\top}$$

Computing the derivative with respect to \mathbf{w} yields

$$\frac{\partial \mathcal{E}_{RR}(\mathbf{w})}{\partial \mathbf{w}} = -2X\mathbf{y}^{\top} + 2XX^{\top}\mathbf{w} + 2\lambda\mathbf{w}.$$

Setting the gradient to zero and rearranging terms, the optimal \mathbf{w} is

$$2XX^{\top} \mathbf{w} + 2\lambda \mathbf{w} = 2X\mathbf{y}^{\top}$$
$$(XX^{\top} + \lambda I)\mathbf{w} = X\mathbf{y}^{\top}$$
$$\mathbf{w} = (XX^{\top} + \lambda I)^{-1}X\mathbf{y}^{\top}$$

One can show (calculate) that for $\lambda \neq 0$, this estimator is biased and has a smaller variance than the OLS estimator

```
Computes: Weight matrix W for linear mapping of \mathbb{R}^{d+1} \to \mathbb{R}^m
      Input: Data \{(x_1, y_1), \dots, (x_n, y_n)\}, x_i \in \mathbb{R}^d, y_i \in \mathbb{R}^m, ridge \lambda
                   Include offset parameters (row vector of n ones)
                   W = (XX^{\top} + \lambda I)^{-1}XY^{\top}
   Output: W
```

How do bias and variance of predicted labels behave

 \rightarrow Let's simulate

How do bias and variance of predicted labels behave

→ Let's simulate

How do bias and variance of predicted labels behave

→ Let's simulate

How do bias and variance of predicted labels behave

→ Let's simulate

How do bias and variance of predicted labels behave

 \rightarrow Let's simulate

How do bias and variance of predicted labels behave

→ Let's simulate

For LR it looks unbiased (on average correct), but high variance

How do bias and variance of predicted labels behave → Let's simulate
For LR it looks unbiased (on average correct), but high variance Let's look at the effect of regularization

Effect of λ on bias and variance

- For RR we see that estimates are biased, but less variance
- How can we choose optimal λ ?

Effect of λ on bias and variance

- For RR we see that estimates are biased, but less variance
- How can we choose optimal λ ?

Effect of λ on bias and variance

- For RR we see that estimates are biased, but less variance
- How can we choose optimal λ ?

Model selection

How can we find the best λ ?

Model selection

How can we find the best λ ? One option: grid search

 \rightarrow try out e.g. $\lambda \in \{0, 0.1, ..., 0.9, 1.0\}$ and choose the one with the lowest error on test set

Model selection

How can we find the best λ ? One option: grid search

 \rightarrow try out e.g. $\lambda \in \{0, 0.1, ..., 0.9, 1.0\}$ and choose the one with the lowest error on test set

What if we have a small data-set?

Standard approach

Split the data into train and test

$$\underbrace{\left[\underbrace{\mathsf{X}_{i_1},\mathsf{X}_{i_2},\mathsf{X}_{i_3},\mathsf{X}_{i_4}}_{\mathsf{train}},\underbrace{\mathsf{X}_{i_5},\mathsf{X}_{i_6}}_{\mathsf{test}}\right]}_{\mathsf{test}}$$

Then

Train your model on the training data

Test your model on the test data

We are not using the full data-set

Test set could be sampled badly

What if we have a small data-set?

Standard approach

Split the data into train and test

$$[\underbrace{x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}}_{train}, \underbrace{x_{i_5}, x_{i_6}}_{test}]$$

Then

Train your model on the training data

Test your model on the test data

We are not using the full data-set

Test set could be sampled badly

Solution

k-fold Cross-Validation:

$$\text{fold 1} \ \underbrace{[\underbrace{x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}}_{\mathcal{F}_1^{\text{train}}}, \underbrace{x_{i_5}, x_{i_6}}_{\mathcal{F}_1^{\text{test}}}]}_{\mathcal{F}_1^{\text{test}}}$$

fold 2
$$\underbrace{\left[x_{i_1}, x_{i_2}, \underbrace{x_{i_3}, x_{i_4}, x_{i_5}, x_{i_6}}\right]}_{\mathcal{F}_2^{\text{train}}}$$

fold 3 . . .

For each fold:

Train your model on the training data

Test your model on the test data

Cross-validation

Split data set in *k* different random **training** and **test** data

$$\begin{array}{c} \text{fold 1} \ \underbrace{[\underbrace{x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}}_{\mathcal{F}_1^{\text{train}}}, \underbrace{x_{i_5}, x_{i_6}}_{\mathcal{F}_1^{\text{test}}}]}_{\mathcal{F}_2^{\text{test}}} \\ \text{fold 2} \ \underbrace{[\underbrace{x_{i_1}, x_{i_2}, \underbrace{x_{i_3}, x_{i_4}, x_{i_5}, x_{i_6}}_{\mathcal{F}_2^{\text{train}}}]}_{\mathcal{F}_2^{\text{train}}} \end{array}$$

fold 3 ...

For each fold:

Train your model on the training data **Test** your model on the test data

Cross-validation

Algorithm 1: Cross-Validation

Require: Data $(x_1, y_1) \dots, (x_N, y_N)$, Number of CV folds F

- 1: # Split data in F disjunct folds
- 2: for folds $f = 1, \ldots, F$ do
- 3: # Train model on folds $\{1, \ldots, F\} \setminus f$
- 4: # Compute prediction error on fold f
- 5: end for
- 6: # Average prediction error

Model Evaluation

"How well does my model perform?"
Report mean evaluation score
- e.g. accuracy - across folds

Model Selection

"What hyperparameter should I use?" Do grid search on every fold. Take parameter with the highest mean test score across folds

Model Evaluation

"How well does my model perform?" Report **mean evaluation score**

– e.g. accuracy – across folds

Model Selection

"What hyperparameter should I use?"
Do grid search on every fold.
Take parameter with the highest mean test score across folds

You can't do both at the same time with simple cross-validation!

Model Evaluation

"How well does my model perform?" Report mean evaluation score

– e.g. accuracy – across folds

Model Selection

"What hyperparameter should I use?"
Do grid search on every fold.
Take parameter with the highest mean test score across folds

You can't do both at the same time with simple cross-validation!

If we did both on the same test fold:

Model Evaluation

"How well does my model perform?" Report **mean evaluation score**

– e.g. accuracy – across folds

Model Selection

"What hyperparameter should I use?" Do grid search on every fold. Take parameter with the highest mean test score across folds

You can't do both at the same time with simple cross-validation!

If we did both on the same test fold:

We would be too optimistic because we use same test set for optimizing and evaluating

Model Evaluation

"How well does my model perform?"
Report mean evaluation score

– e.g. accuracy – across folds

Model Selection

"What hyperparameter should I use?"
Do grid search on every fold.
Take parameter with the highest mean test score across folds

You can't do both at the same time with simple cross-validation!

If we did both on the same test fold:

We would be too optimistic because we use same test set for optimizing and evaluating

After CV you still need to train your model on the whole data-set

Comparison of Supervised Algorithms

Algorithm	Solution	Assumption	
NCC LDA	$w = Xy^T$ $w = S^{-1}Xy^T$	$y_t \in \left\{ rac{1}{n_{+1}}, -rac{1}{n_{-1}} ight\}$ NCC: Isotropic Normal distribution LDA: Equal within-class covariances, Multivariate Normal distribution	
Linear Regression	$w = (XX^{\top})^{-1}Xy^{\top}$	$y_i \in \mathbb{R}$ Gaussian Noise	

Summary

Linear Regression

is a generic framework for prediction straightforwardly extends to vector labels can model nonlinear dependencies between data and labels can be made more robust (Ridge Regression)

Cross-Validation

Data-efficient method for model selection & model evaluation Only use if your bottleneck is data

References

- C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). 2007.
- A. Cimolato, J. J. M. Driessen, L. S. Mattos, E. De Morni, M. Laffranchi, and L. De Michieli. EMG-driven control in lower limb prottheses: a topic-based systematic review. Journal of NeuroEngineering and Rehabilitation, 19 (1), 2022. 15581 1743-0003. doi: 10.1186/j.812984-022-01019-1.
- C. F. Gauß. Theoria motus corporum coelestium in sectionibus conicis solem ambientium. Göttingen, 1809.
- A. E. Hoerl and R. W. Kennar. Ridge regression: Applications to nonorthogonal problems. *Technometrics*, 12(1):69–82, 1970.
- Ikompass. Bias variance tradeoff, 2019. URL http://www.ikompass.edu.sg/trainings/data_science_ccc-big-data-foundation-2/darts/.
- A.-M. Legendre. Nouvelles méthodes pour la détermination des orbites des comètes, chapter Sur la methode des moindres quarres. Firmin Didot, http://imgbase-scd-ulp.u-strasbg.fr/displayimage.php?pos=-141297, 1805.
- A. N. Tychonoff. On the stability of inverse problems. Doklady Akademii Nauk SSSR, 39(5):195–198, 1943.