PHYS 20323/60323: Fall 2023 - LaTeX Example

1. The following questions refer to stars in the Table below. Note: There may be multiple answers.

Name	Mass	Luminosity	Lifetime	Temperature	Radius
η Car.	60. M⊙	$10^6L\odot$	$8.0 \times 10^5 years$		
ϵ Eri.	6.0 M⊙	$10^3L\odot$		20,000K	
δScu.	2.0 M⊙		$5.0 \times 10^8 years$		2R _O
β Cyg.	1.3 M⊙	3.5 L⊙			
α Cen.	1.0 M⊙				1R⊙
γ Del.	0.7 M⊙		4.5 x 10 ¹⁰ years	5000K	

- (a) (4 points) Which of these stars will produce a planetary nebula.
- (b) (4 points) Elements heavier than Carbon will be produced in which stars.
- 2. An electron is found to be in the spin state (in the z-basis): $X = A(\frac{3i}{4})$
- (a) (5 points) Determine the possible values of A such that the state is normalized.
 - (b) (5 points) Find the expectation values of the operators S_x, S_y, S_z and \overrightarrow{S}^2

The matrix representations in the z-basis for the components of electron spin operators are given by:

$$\mathbf{S}_x = \overline{\frac{h}{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \, \mathbf{S}_y = \overline{\frac{h}{2}} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}; \, \mathbf{S}_z = \overline{\frac{h}{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

3. The average electrostatic field in the earth's atmosphere in fair weather is approximately given:

$$\overrightarrow{E} = E_0 \left(Ae^{\alpha z} + Be^{-\beta z} \right) \hat{z},$$

where A, B, α , β are positive constants and z is the height above the (locally flat) earth surface.

- (a) (5 points) Find the average charge density in the atmosphere as a function of height
 - (b) (5 points) Find the electric potential as a function height above the earth.

Latex Example