## Lecture 2: Aug 20

## Last time

- Introduction
- Introduce yourself
- Course logistics

## Today

- Continue self-introduction
- Set theory (1.1)
- Axiomatic Foundations (1.2)
- Calculus of Probabilities (1.2)
- Conditional Probability (1.3)

## Set Theory

One of the main objectives of a statistician is to draw conclusions about a population of objects by conducting an experiment. The first step in this endeavor is to identify the possible outcomes or, in statistical terminology, the *sample space*.

Definition The set, S, of all possible outcomes of a particular experiment is called the *sample* space for the experiment.

Example The sample space of

• tossing a coin just once, contains two outcomes, heads and tails

$$S = \{H, T\}$$

- observing reported SAT scores of randomly selected students at a certain university
- an experiment where the observation is reaction time to a certain stimulus

Definition An *event* is any collection of possible outcomes of an experiment, that is, any subset of S (including S itself).

Let A be an event,

- A is a subset of S,
- $\bullet$  event A occurs if the outcome of the experiment is in the set A,
- we generally speak of the probability of an event, rather than a set.

Set operations:

• Containment:

$$A \subset B \iff x \in A \implies x \in B$$

• Equality:

$$A = B \iff A \subset B \text{ and } B \subset A$$

• Union: the union of A and B, written as  $A \cup B$ , is the set of elements that belong to either A or B or both

$$A \cup B = \{x : x \in A \text{ or } x \in B\}.$$

• Intersection: the intersection of A and B, written  $A \cap B$ , is the set of elements that belong to both A and B:

$$A \cap B = \{x : x \in A \text{ and } x \in B\}.$$

• Complementation: the complement of A, written  $A^c$ , is the set of all elements that are not in A:

$$A^c = \{x : x \notin A\}.$$

**Theorem** For any three events, A, B, and C, defined on a sample space S,

1. Commutativity

$$A \cup B = B \cup A$$
,  
 $A \cap B = B \cap A$ :

2. Associativity

$$A \cup (B \cup C) = (A \cup B) \cup C,$$
  
$$A \cap (B \cap C) = (A \cap B) \cap C;$$

3. Distributive Laws

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$
  
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C);$$

4. DeMorgan's Laws

$$(A \cup B)^c = A^c \cap B^c,$$
  
$$(A \cap B)^c = A^c \cup B^c;$$

We show the proof of  $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$  in the distributive laws. Caution: Venn diagrams are helpful in visualization, but they do not constitute a formal proof. To prove that two sets are equal, we need to show that each set contains the other. *proof:* 

- $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$ : Let  $x \in (A \cap (B \cup C))$ . By definition of intersection,  $x \in (B \cup C)$  that is, either  $x \in B$  or  $x \in C$ . Since x also must be in A, we have that either  $x \in (A \cap B)$  or  $x \in (A \cap C)$ ; therefore,  $x \in ((A \cap B) \cup (A \cap C))$ .
- $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$ : Let  $x \in ((A \cap B) \cup (A \cap C))$ . This implies that  $x \in (A \cap B)$  or  $x \in (A \cap C)$ . If  $x \in (A \cap B)$ , then x is in both A and B. Since  $x \in B$ , then  $x \in (B \cup C)$  and thus  $x \in (A \cap (B \cup C))$ . It follows the same argument when  $x \in (A \cap C)$ , we still have  $x \in (A \cap (B \cup C))$ .

Definition Two events A and B are disjoint (or mutually exclusive) if  $A \cap B = \emptyset$ . The events  $A_1, A_2, \ldots$  are pairwise disjoint (or mutually exclusive) if  $A_i \cap A_j = \emptyset$  for all  $i \neq j$ .

Definition If  $A_1, A_2, \ldots$  are pairwise disjoint and  $\bigcup_{i=1}^{\infty} A_i = A_1 \cup A_2 \cup \cdots = S$ , then the collection of  $A_1, A_2, \ldots$  forms a partition of S.

Example The sets  $A_i = [i, i+1), i = 0, 1, 2, ...$  form a partition of  $[0, \infty)$ .