Optimizing the cost of gradient computation with JAX for Experience with *Tunax*

Gabriel Mouttapa

Jaxathon March 12th 2025

Tunax

Ocean Single Column Model

1D vertical

• variables : T, S, b, u, v

- heat, wind, freshwater forcings
- turbulent kinetic diffusion -> physical closure
 - TKE, $k \varepsilon$, KPP, ...
 - physical parameters to calibrate $\theta \in \mathbb{R}^d$

Initial and final states of Kato-Phillips case run with $k-\varepsilon$ closure

Tunax

Calibration module

- best value of $\theta \in \mathbb{R}^d$ to fit a **database**
- differentiable calibration -> JAX
- use of jax.grad on the whole SCM
- databases
 - perfect model
 - observations
 - Large Eddy Simulations (LES)

Final states before and after the calibration of the parameter c_1

Tunax

Calculation cost issue

for non-trivial databases : explosion of calibration cost

• issue: gradient on an iterative function

$$U_{\theta}^{n} = \mathcal{M}_{\theta}(U^{0}) = \mathcal{S}_{\theta}^{n}(U^{0})$$

• ratio between model and gradient \simeq 30 instead of 3

Using jax.lax

work on inner vectorized functions

- jax.lax.scan > jax.lax.fori_loop
- work on integration loop
 - hard to implement but efficient (ratio 3)

jitograd vs. gradojit

- no jit
 - usually too long
- gradojit
 - user friendly (same function for direct model and gradient)
 - faster compilation
 - good for small functions
- jitograd
 - faster -> best choice

Reverse vs. forward

- reverse gradient
 - use of memory for long and complex functions -> potential bottleneck
- forward gradient (jax.jacfwd)
 - faster when more outputs than inputs

Results

- results on surrogate model with
 - forward gradient
 - jax.lax.scan on vectorized functions and integration loop
 - jitification ouside gradient
- ratio model/gradient 30 -> 3
- Next steps
 - study of memory cost
 - checkpointing for reverse gradient

