

#### République Tunisienne

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Carthage - École Supérieure de la Statistique et Analyse de l'Information



École Supérieure de la Statistique et Analyse de l'Information



# Rapport de Projet de Fin d'année

Atelier Statistique

\_\_\_\_\_

# Analyse temporelle des effets de la politique économique sur la croissance : Processus VAR et Application Empirique

Realisé Par Yahia Chammami Encadré Par Mme Selma Jelassi

# Remerciement

En guise de préambule je tiens à adresser mes remerciements à toutes les personnes grâce auxquelles ce travail a été rendu possible.

Je souhaite exprimer ma gratitude à notre professeur Madame Selma Jelassi, pour m'avoir donné envie de réaliser un mémoire sur le Processus VAR et Application Empirique.

Je le remercie également pour son accueil chaleureux à chaque fois que j'ai sollicité son aide, ainsi que pour ses multiples encouragements et pour ses multiples conseils dans ce rapport, qu'elle nous a apporté lors des différents suivis.

Je suis honoré d'avoir pu bénéficier de sa supervision et je lui suis extrêmement reconnaissant pour l'opportunité qui m'a été offerte.

## Table de Matières

## A. Partie Theorique

- 1. Introduction générale
- 2. Politique économique
- 3. Modélisation Var
- 4. Approche de Causalité
  - a. Au sens de Granger-Engle
  - b. Méthode de Sims
- 5. Approche de Cointégration
- 6. Effet d'impulsion

## B. Partie Pratique

- 1. Aperçu de la base
- 2. Etude des processus
- 3. Etude de stationnarité
- 4. Etude de var
- 5. Etude de causalité
- 6. Etude de Cointégration
- 7. Effet d'impulsion
- 8. Estimation VECM

Conclusion Générale Bibliographie

# A. Partie Théorique :

# 1. Introduction générale :

L'inflation, la masse monétaire et les Dépendes sont des piliers économiques étroitement intriqués, dont l'impact sur l'économie nationale est indéniable. L'inflation, marquée par une élévation généralisée et prolongée des prix, peut grever le pouvoir d'achat des consommateurs, entraver la croissance économique et ébranler la stabilité financière. D'un autre côté, la masse monétaire et les dépenses jouent un rôle crucial dans les manœuvres de politique monétaire orchestrées par les banques centrales.

Dans cette étude, notre objectif réside dans l'exploration de la dynamique entre ces variables, à travers une analyse VAR (Vector Auto-Régression) méticuleusement élaborée. Notre ambition est d'appréhender les interactions complexes entre ces deux variables et d'estimer les impacts à court et à long terme de la masse monétaire sur l'inflation, et vice versa. Cette approche permettra aux décideurs de mieux saisir comment les politiques monétaires peuvent influer sur la croissance de PIB, les armant ainsi de connaissances précieuses pour éclairer leurs décisions en matière de régulation monétaire.

# 2. Politique économique :

#### L'inflation:

L'inflation est la perte du pouvoir d'achat de la monnaie qui se traduit par une augmentation générale et durable des prix. Elle doit être distinguée de l'augmentation du coût de la vie. La perte de valeur de la monnaie est un phénomène qui frappe l'économie nationale dans son ensemble (ménages, entreprises, etc.).

#### La masse monétaire :

La masse monétaire représente l'ensemble des dépôts dans les institutions financières, ou l'encours de la monnaie et non pris en compte par aucune autre mesure. Cet argent est souvent très fluide, entre et sort du système, et constitue une mesure clé de la santé économique. Si la masse monétaire est trop importante, il pourrait en résulter une inflation. Si c'est trop peu, la croissance économique peut ne pas se produire.

## Les dépenses publiques

Les dépenses publiques sont les dépenses effectuées par l'État, les administrations de Sécurité sociale, les collectivités territoriales et les administrations et organismes qui leur sont rattachés. Les dépenses publiques sont l'ensemble des dépenses réalisées par les

administrations publiques. Leur financement est assuré par les recettes publiques (impôts, taxes, et cotisations sociales) et par l'excédent public.

#### Croissance du PIB

Le produit intérieur brut aux prix du marché vise à mesurer la richesse créée par tous les agents, privés et publics, sur un territoire national pendant une période donnée. Agrégat clé de la comptabilité nationale, il représente le résultat final de l'activité de production des unités productrices résidentes.

#### Test de racine unitaire et stationnarité :

Une série temporelle  $Y_{t(t=1,2...)}$  est dite stationnaire (au sens faible) si ses propriétés statistiques ne varient pas dans le temps (espérance, variance, autocorrélation). Un exemple de série temporaire stationnaire est le bruit blanc.

Identifier qu'une série n'est pas stationnaire permet ensuite d'étudier de quel type de non-stationnarité il s'agit. Une série non-stationnaire peut, entre autres, être stationnaire en différence :  $Y_t$  n'est pas stationnaire, mais différence mais  $Y_t - Y_{t-1}$  est stationnaire. C'est le cas de la marche aléatoire. Une série peut également être stationnaire en tendance.

Les tests de stationnarité permettent de vérifier si une série est stationnaire ou non.

Par exemple le test de **Dickey-Fuller** l'hypothèse nulle est que la série n'est pas stationnaire. Il, consiste à tester l'hypothèse  $\rho=1$ , contre l'hypothèse alternative  $\rho<1$ , dans l'équation suivante :

$$X_t = \rho X_{t-1} + u_t$$
 Où  $u_t$  est une erreur bruit blanc.

Si  $\rho = 1$  alors la variable  $X_t$  est une variable intégrée d'ordre 1. C'est le cas du modèle de marche aléatoire sans dérive.

Si  $\rho$  < 1 alors la variable  $X_t$  est stationnaire.

Si  $\rho = 1$ , la variance de  $X_t$  est dépendante de t, ce qui va à l'encontre de la condition de stationnarité. Par contre si  $\rho < 1$ , la variance de  $X_t$  est indépendante de t (constante). La statistique de ce test est la statistique t usuelle avec des valeurs critiques calculées par Dickey et Fuller.

## 3. Modélisation VAR:

La modélisation économétrique classique à plusieurs équations structurelles a connu beaucoup de critiques (Granger [1969] et Sims [1980]) et de défaillances face à un environnement économique très perturbé. Les prévisions élaborées à l'aide de ces modèles se sont révélées très médiocres. Les critiques principales formulées à l'encontre de ces modèles structurels concernent la simultanéité des relations et la notion de variable exogène. Soit une représentation VAR dans laquelle on considère deux variables  $Y_{1,t}$  et  $Y_{2,t}$ . Chacune de ces variables est fonction de ses propres valeurs passées et de celles de l'autre.

Les variables  $Y_{1t}$  et  $Y_{2t}$  sont considérées comme étant stationnaires, les perturbations  $\varepsilon_{1,t}$  et  $\varepsilon_{2,t}$  (les innovations ou les chocs) sont des bruits blancs de variances constantes et non auto corrélées. Nous pouvons immédiatement constater l'abondance de paramètres à estimer et les problèmes de perte de degrés de liberté qui en résultent. À la lecture de ce modèle, il apparaît qu'il n'est pas sous forme réduite : en effet,  $Y_{1t}$  a un effet immédiat sur  $Y_{2t}$  et réciproquement  $Y_{2t}$  a un effet immédiat sur  $Y_{1t}$ . Ce système initial est appelé forme structurelle de la représentation VAR.

Le système a dimension n est comme suit :

$$\begin{array}{l} Y_{1,t} = \ \alpha_1 + \beta_{11,1}Y_{1,t-1} + \cdots + \beta_{1p,1}Y_{n,t-1} + \ldots + \beta_{11,n}Y_{1,t-p} + \cdots + \ \beta_{1p,n}Y_{n,t-p} + v_t^{y_1} \\ Y_{2,t} = \ \alpha_2 + \beta_{11,1}Y_{1,t-1} + \cdots + \beta_{1p,1}Y_{n,t-1} + \ldots + \beta_{11,n}Y_{1,t-p} + \cdots + \ \beta_{1p,n}Y_{n,t-p} + v_t^{y_2} \\ \vdots \\ Y_{n,t} = \ \alpha_n + \beta_{11,1}Y_{1,t-1} + \cdots + \beta_{1p,1}Y_{n,t-1} + \ldots + \beta_{11,n}Y_{1,t-p} + \cdots + \ \beta_{1p,n}Y_{n,t-p} + v_t^{y_n} \end{array}$$

Les paramètres du processus VAR ne peuvent être estimés que sur des séries chronologiques stationnaires. Ainsi, après étude des caractéristiques des séries, soit les séries sont stationnarités par différence, préalablement à l'estimation des paramètres dans le cas d'une tendance stochastique, soit il est possible d'ajouter une composante tendance à la spécification VAR, dans le cas d'une tendance déterministe.

# 4. Approche de causalité:

## a. Au sens de Granger-Engle :

Soient  $(X_t)$  et  $(Y_t)$  deux séries temporelles, et notons le passé de  $((X_t)$  et  $(Y_t)$ ,

$$X_t = \{X_t, X_{t-1}, ...\} \text{ et } Y_t = \{Y_t, Y_{t-1}, ...\}.$$

Granger a introduit en 1969 différentes notions de causalité :

(i) Y cause X à la date t si et seulement si :

$$E(X_t|X_{t-1},Y_{t-1}) \neq E(X_t|X_{t-1})$$

(ii) Y cause X instantanément à la date t si et seulement si

$$E(X_t|X_{t-1},Y_t) \neq E(X_t|X_{t-1},Y_{t-1})$$

Il y a équivalence entre :

X ne cause pas Y instantanément à la date t Et Y ne cause pas X instantanément à la date t

## Test de Granger:

Supposons que P  $(X_t \mid \bar{X}_{t-1}, \bar{Y}_{t-1})$  est linéaire ou limitons-nous à la causalité linéaire. Si le processus a une représentation autorégressive,

$$X_t = \propto_0 + \sum_{i=1}^{\infty} \propto_i X_{t-i} + \sum_{i=1}^{\infty} \beta_i Y_{t-i} + \epsilon_t$$

Nous voulons tester que:

Y ne cause pas X

En testant l'hypothèse :

$$H_0: \beta_i = 0, i = 1, 2, ....$$

En pratique, on doit tronquer le modèle,

$$X_{t} = \propto_{0} + \sum_{i=1}^{n_{1}} \propto_{i} X_{t-i} + \sum_{j=1}^{n_{2}} \beta_{j} Y_{t-j} + \in_{t}$$

Et tester l'hypothèse

$$\overline{H}_0: \beta_i = 0, \ i = 1, 2, ..., n_2$$

Au moyen d'un test de Fisher

Si X<sub>t</sub> et Y<sub>t</sub> suivent des tendances linéaires, il est recommandable d'ajouter une variable de tendance (et, dans certains cas, des variables binaires de saisonnières) :

$$X_{t} = \propto_{\mathbf{0}} + \gamma_{t} + \sum_{i=1}^{n_{1}} \propto_{i} X_{t-i} + \sum_{i=1}^{n_{2}} \beta_{i} Y_{t-i} + \in_{t}$$

### b. Méthode de Sims:

Sims (1972) a proposé une méthode basée sur la caractérisation de la non-causalité en termes d'une régression bilatérale :

$$Y_{\rm t} = \propto_{\bf 0} + \sum_{k=n1}^{n2} \beta_k X_{t-k} + \ \mu_{Yt}$$
 Alors Y ne cause pas X ssi

$$H_0: \beta_k = 0, \ k < 0.$$

Si on désire tester que X cause Y, on peut considérer la régression :

$$X_{t} = \propto_{0} + \sum_{k=-n1}^{n2} \beta_{k} Y_{t-k} + \mu_{Xt}$$

Souvent on ajoute une variable de tendance et des variables binaires saisonnières. En général, les erreurs  $\mu_t$ sont autocorrélées, ce qui fait que le test F n'est pas asymptotiquement valide. Pour traiter cette difficulté, Sims (1972) a proposé de préfiltrer les séries avec $(1 - 0.75B)^2$ 

ce qui devrait réduire l'autocorrélation (solution très discutable).

Une autre solution consisterait à appliquer les moindres carrés généralisés en supposant que les erreurs suivent un certain processus ARMA, e.g.

$$\mu_t = \rho_1 \mu_{t-1} + \rho_2 \mu_{t-2} + \epsilon_t$$

On peut alors estimer conjointement les coefficients  $\rho_i$  et  $\beta_i$ , et appliquer un test de type Fisher sur le modèle corrigé pour l'autocorrélation.

## 5. Approche de cointegration:

Selon Jean-Louis Bourbonnais la cointégration est une propriété des séries chronologiques qui indique qu'elles ont une relation stable à long terme, malgré les fluctuations à court terme. Plus précisément, si deux ou plusieurs séries chronologiques sont cointégrées, cela signifie qu'elles ont une tendance commune et qu'un déséquilibre à court terme sera corrigé à long terme. En d'autres termes, la cointégration permet de modéliser les relations de long terme entre les variables, tout en prenant en compte les fluctuations à court terme.

Le théorème de Johannsen (1991) propose deux tests de ratio de vraisemblance. Le premier est appelé le **test**  $\lambda$ -**trace** et s'exprime de la façon suivante :

$$\lambda$$
-trace(r) = -2ln(Q) = -T  $\sum_{i=r+1}^{n} \ln(1 - \lambda_i)$ 

ou T est le nombre d'observations et les  $\lambda_i$  sont les (n-r) dernières racines caractéristiques trouvées en (4). L'hypothèse nulle :  $r^* \le r$  est ‡ l'effet que le nombre de vecteurs de cointégration est plus petit ou égal a r, contre une hypothèse alternative générale. Une façon alternative de tester la présence de cointégration est donnée par **le test**  $\lambda$ -max :

$$\lambda$$
-max(r) = -2 ln Q = - T ln(1 -  $\lambda_{r+1}$ )

L'hypothèse nulle :  $r^* = r$  du test  $\lambda$ -max(r) est à l'effet que le nombre de vecteurs de cointegration est exactement égal ‡ r, contre l'hypothèse alternative qu'il est exactement égal a (r+1).

## 6. Effet d'impulsion:

L'effet d'impulsion dans les séries temporelles fait référence à un modèle statistique où une observation est soudainement modifiée ou "impulsée" à un moment donné, puis reste constante par la suite. Cela peut être utilisé pour modéliser des événements uniques ou des interventions dans les données temporelles.

les équations typiques utilisées pour modéliser cet effet :

## Équation de la série temporelle sans impulsion :

 $yt = \mu t + \epsilon t y t = \mu t + \epsilon t$ 

où yt est la valeur observée à un moment donné t,  $\mu t$  est la composante de la série temporelle (tendance, saisonnalité, etc.) et  $\epsilon t$  est l'erreur aléatoire.

## Équation de la série temporelle avec impulsion :

$$yt = \mu t + \alpha Dt + \epsilon t$$

Dans cette équation :

- $\alpha$  représente l'ampleur de l'effet d'impulsion.
- *Dt* est une variable indicatrice qui vaut 1 au moment de l'impulsion et 0 sinon.

## 2. Équation de la tendance :

$$\mu t = \beta 0 + \beta 1 t + ... + \beta p t p$$

Cela représente la tendance générale de la série temporelle. Les termes  $\beta$  sont les coefficients de régression pour ajuster la tendance.

## 3. Équation de saisonnalité :

$$St=\sum i=1m \gamma i$$

Ici, St est la composante saisonnière et  $\gamma i$  sont les coefficients de régression pour ajuster la saisonnalité.

## 4. Équation d'erreur :

$$\epsilon t \sim N(0, \sigma 2)$$

Cela indique que l'erreur suit une distribution normale avec une moyenne de zéro et une variance constante  $\sigma$ 2.

# B. Partie Pratique

## 1. Apercu de la base:

| annee | Dépenses (% du PIB) | Inflation, prix à la consommation (% annuel) | Masse monétaire (% du PIB) | Croissance du PIB (% annuel) |
|-------|---------------------|----------------------------------------------|----------------------------|------------------------------|
| 1972  | 10.7754458508083    | 4.84351713859905                             | 122.356887953573           | 8.413547255176               |
| 1973  | 10.901609569277     | 11.6086235489221                             | 119.552539692199           | 8.03259997495039             |
| 1974  | 12.2091055179688    | 23.2222458076842                             | 114.273734341888           | -1.22523982778432            |
| 1975  | 12.7995152412795    | 11.7312661498708                             | 120.969393404502           | 3.09157591622022             |
| 1976  | 13.4335193476586    | 9.37403638606234                             | 124.420808001124           | 3.97498409121211             |
| 1977  | 14.0553449517263    | 8.16182689596842                             | 126.977614302719           | 4.39033795032562             |
| 1978  | 15.0305688675709    | 4.20956601068681                             | 131.928263584428           | 5.27194150290775             |
| 1979  | 15.7260465257613    | 3.70185092546269                             | 135.294717013188           | 5.48404183248661             |
| 1980  | 16.1963699043916    | 7.77858176555718                             | 136.841459895289           | 2.81759120761602             |
| 1981  | 16.3883445933029    | 4.91216291820523                             | 142.627211315878           | 4.26062449346863             |
| 1982  | 16.3474964745178    | 2.7410409556314                              | 148.322840620485           | 3.27974274286728             |
| 1983  | 16.3332660800725    | 1.89971971348485                             | 153.85823343905            | 3.63019857224671             |
| 1984  | 15.7991088131398    | 2.26161369193155                             | 156.710679601932           | 4.41088015361535             |
| 1985  | 15.4244197848795    | 2.0322773460849                              | 160.035405894265           | 5.15980790471274             |
| 1986  | 15.1124018651122    | 0.595586799453249                            | 166.475451338615           | 3.29404761337059             |
| 1987  | 14.7350598623528    | 0.126176841696584                            | 174.362999734779           | 4.64886139754491             |

Notre base de données contient les valeurs de dépenses, inflation et croissance de PIB pendant les années de 1972 jusqu'à 1987.

## 2. Etude des processus :

Le graphique ci-dessus nous donne une idée préliminaire sur les séries brutes qu'on va étudier :

## Dépenses (% du PIB) :



De 1972 à 1982 : Les dépenses augmentent de façon relativement constante, avec quelques fluctuations.

De 1982 à 2009 : On observe une période de stabilité suivie d'une augmentation significative des dépenses.

Depuis 2009 : Les dépenses ont continué à augmenter, avec une forte augmentation en 2020.

## ➤ Inflation, prix à la consommation (% annuel) :



De 1972 à 1982 : L'inflation connaît une augmentation progressive mais reste relativement stable.

De 1982 à 1999 : Une période de fluctuation, mais avec une tendance globale à la baisse. Depuis 1999 : L'inflation semble rester généralement basse, avec quelques exceptions.

## Masse monétaire (% du PIB) :



De 1972 à 1982 : La masse monétaire augmente progressivement.

De 1982 à 2022 : On observe une croissance continue de la masse monétaire, avec des fluctuations annuelles mais une tendance générale à la hausse.

Globalement, on remarque une augmentation des dépenses et de la masse monétaire au fil du temps, tandis que l'inflation a connu des périodes de volatilité mais semble généralement maîtrisée depuis la fin des années 1990.

## 3. Etude de stationnarité : test ADF

On a effectué le test de racines unitaires augmenté de Dickey-Fuller pour tester la stationnarité des variables et leurs degrés d'intégration.

## > Croissance du PIB



| Augmented Dick                                                                                                                                   | cey-Fuller Uni                                                                    | t Root Test o                                                                          | n CROISSA                                        | NCE                                                                   |                                                                | Correlogram         | of CROISS                                                     | ANCE                                                 |                                      |                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|---------------------|---------------------------------------------------------------|------------------------------------------------------|--------------------------------------|-------------------------------------------|
| A<br>Exogenous: Constant,<br>Lag Length: 0 (Automa                                                                                               |                                                                                   | C<br>SIC, maxlag=                                                                      | D<br>10)                                         | E                                                                     | Date: 05/05/24 Tin<br>Sample: 1972 2022<br>Included observatio |                     |                                                               |                                                      |                                      |                                           |
|                                                                                                                                                  |                                                                                   |                                                                                        | t-Statistic                                      | Prob.*                                                                | Autocorrelation                                                | Partial Correlation | AC                                                            | PAC                                                  | Q-Stat                               | Proh                                      |
| Augmented Dickey-Fu<br>Test critical values:                                                                                                     | ller test statisti<br>1% level<br>5% level<br>10% level                           | С                                                                                      | -6.256046<br>-4.152511<br>-3.502373<br>-3.180699 | 0.0000                                                                | Addeconcidion                                                  |                     |                                                               |                                                      | 9.3191                               | 0.002<br>0.002                            |
| *MacKinnon (1996) on                                                                                                                             | e-sided p-value                                                                   | es.                                                                                    |                                                  |                                                                       |                                                                |                     | 4 0.257<br>5 0.286<br>6 0.342                                 | 0.086<br>0.152                                       | 20.990<br>25.802                     | 0.000                                     |
| Augmented Dickey-Fu<br>Dependent Variable: D<br>Method: Least Squares<br>Date: 04/29/24 Time:<br>Sample (adjusted): 19<br>Included observations: | (CROISSANC<br>s<br>10:35<br>73 2022                                               | E)                                                                                     |                                                  |                                                                       |                                                                |                     | 9 0.191<br>10 0.201<br>11 0.297                               | 0.033<br>-0.011<br>0.013<br>0.028<br>0.155<br>-0.092 | 39.303<br>41.661<br>44.316<br>50.294 | 0.000<br>0.000<br>0.000<br>0.000          |
| Variable                                                                                                                                         | Coefficient                                                                       | Std. Error                                                                             | t-Statistic                                      | Prob.                                                                 |                                                                |                     | 13 0.063<br>14 -0.009                                         | -0.107<br>-0.166                                     | 52.720<br>52.726                     | 0.000                                     |
| CROISSANCE(-1)<br>C<br>@TREND("1972")                                                                                                            | -0.885755<br>4.104458<br>-0.090261                                                | 0.141584<br>0.946992<br>0.026319                                                       | -6.256046<br>4.334204<br>-3.429538               | 0.0000<br>0.0001<br>0.0013                                            |                                                                |                     | 15 0.093<br>16 0.111<br>17 0.057                              | 0.062<br>-0.001<br>-0.062                            | 53.371<br>54.328<br>54.583           | 0.000<br>0.000<br>0.000                   |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic)                 | 0.456676<br>0.433555<br>2.099006<br>207.0738<br>-106.4732<br>19.75224<br>0.000001 | Mean depen<br>S.D. depend<br>Akaike info d<br>Schwarz cri<br>Hannan-Qui<br>Durbin-Wats | lent var<br>riterion<br>terion<br>nn criter.     | -0.147698<br>2.788913<br>4.378929<br>4.493651<br>4.422616<br>2.024871 |                                                                |                     | 19 -0.060<br>20 -0.197<br>21 -0.169<br>22 -0.071<br>23 -0.073 | -0.120<br>-0.026<br>0.043                            | 54.936<br>58.322<br>60.888           | 0.000<br>0.000<br>0.000<br>0.000<br>0.000 |

## Intrepretation

On peut constater que la croissance de PIB modélisée avec le Trend et la constate est stationnaire. De plus, la p-value 0.00, ce qui montre qu'elle est significative. De plus, le correlogramme (ACF) nous permet de modéliser l'inflation comme étant un processus ARMA(1,1)

## ➤ Inflation, prix à la consommation (% annuel) :

| Augmented Di                                                                                                                                                             | ckey-Fuller U                                                                      | nit Root Tes                                                                              | t on INFLAT                                      | ION                                                                   | Augmented [                                                                                                                            | Dickey-Fuller Un                                                                  | it Root Test                                                                        | on INFLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TION                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| A                                                                                                                                                                        | В                                                                                  | С                                                                                         | D                                                | E                                                                     | A                                                                                                                                      | В                                                                                 | C                                                                                   | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                       |
| Null Hypothesis: INFLA<br>Exogenous: Constant,<br>Lag Length: 0 (Automa                                                                                                  | Linear Trend                                                                       |                                                                                           | 10)                                              |                                                                       | Null Hypothesis: INFI<br>Exogenous: Constar<br>Lag Length: 0 (Auton                                                                    | LATION has a un<br>nt                                                             | it root                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |
|                                                                                                                                                                          |                                                                                    |                                                                                           | t-Statistic                                      | Prob.*                                                                |                                                                                                                                        |                                                                                   |                                                                                     | t-Statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Prob.*                                                                                                                  |
| Augmented Dickey-Ful<br>Test critical values:                                                                                                                            | 1% level<br>5% level<br>10% level                                                  |                                                                                           | -3.171882<br>-4.152511<br>-3.502373<br>-3.180699 | 0.1018                                                                | Augmented Dickey-F<br>Test critical values:  *MacKinnon (1996) o                                                                       | 1% level<br>5% level<br>10% level                                                 |                                                                                     | -2.517218<br>-3.568308<br>-2.921175<br>-2.598551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                         |
| *MacKinnon (1996) one Augmented Dickey-Ful Dependent Variable: Di Method: Least Squares Date: 04/29/24 Time: Sample (adjusted): 197 Included observations:               | ler Test Equati<br>(INFLATION)<br>;<br>10:37<br>73 2022                            | on                                                                                        |                                                  |                                                                       | Augmented Dickey-F<br>Dependent Variable:<br>Method: Least Squar<br>Date: 04/29/24 Tim<br>Sample (adjusted): 1<br>Included observation | Fuller Test Equati<br>D(INFLATION)<br>res<br>e: 10:38<br>973 2022                 | on                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |
| Variable                                                                                                                                                                 | Coefficient                                                                        | Std. Error                                                                                | t-Statistic                                      | Prob.                                                                 | Variable                                                                                                                               | Coefficient                                                                       | Std. Error                                                                          | t-Statist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ic Prob.                                                                                                                |
| INFLATION(-1)                                                                                                                                                            | -0.370073<br>2.446777                                                              | 0.116673<br>1.138608                                                                      | -3.171882<br>2.148919                            | 0.0027<br>0.0368                                                      | INFLATION(-1)<br>C                                                                                                                     | -0.229626<br>0.486306                                                             | 0.091222<br>0.442615                                                                | -2.51721<br>1.09871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                         |
| @TREND("1972")  R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic                                                             | 0.177225<br>0.142213<br>2.680167<br>337.6150<br>-118.6940<br>5.061874              | Mean depend<br>S.D. depend<br>Akaike info c<br>Schwarz crit<br>Hannan-Quii<br>Durbin-Wats | ent var<br>riterion<br>erion<br>nn criter.       | -0.046916<br>2.893825<br>4.867760<br>4.982482<br>4.911447<br>1.657166 | R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic)       | 0.116614<br>0.098210<br>2.748052<br>362.4858<br>-120.4710<br>6.336388<br>0.015222 | Mean deper<br>S.D. depend<br>Akaike info d<br>Schwarz ch<br>Hannan-Qu<br>Durbin-Wat | dent var<br>criterion<br>terion<br>inn criter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.04691<br>2.89382<br>4.89883<br>4.97532<br>4.92796<br>1.78544                                                         |
| Prob(F-statistic)  Augmented Die                                                                                                                                         | 0.010212<br>ckev-Fuller U                                                          | nit Root Tes                                                                              | t on INFLA                                       | TION                                                                  |                                                                                                                                        | Correlo                                                                           | gram of INFL                                                                        | ATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                         |
| A<br>Null Hypothesis: INFLA<br>Exogenous: None<br>Lag Length: 0 (Automa                                                                                                  | B<br>TION has a u                                                                  | C<br>nit root                                                                             | D                                                | E                                                                     | Date: 05/05/24 Tir<br>Sample: 1972 2022<br>Included observation                                                                        | me: 21:22                                                                         |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |
|                                                                                                                                                                          |                                                                                    |                                                                                           | t-Statistic                                      | Prob.*                                                                | Autocorrelation                                                                                                                        | Partial Correlat                                                                  | ion AC                                                                              | PAC (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q-Stat Pro                                                                                                              |
| Augmented Dickey-Fu<br>Test critical values:                                                                                                                             | ller test statist<br>1% level<br>5% level<br>10% level                             | ic                                                                                        | -2.263214<br>-2.612033<br>-1.947520<br>-1.612650 | 0.0242                                                                |                                                                                                                                        |                                                                                   | 2 0.55<br>3 0.42<br>4 0.31                                                          | 3 -0.098<br>8 0.087<br>8 -0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |
| *MacKinnon (1996) on<br>Augmented Dickey-Fu<br>Dependent Variable: D<br>Method: Least Square:<br>Date: 04/29/24 Time:<br>Sample (adjusted): 19<br>Included observations: | ller Test Equa<br>(INFLATION)<br>s<br>10:39<br>73 2022                             | tion                                                                                      |                                                  |                                                                       |                                                                                                                                        |                                                                                   | 6 0.28<br>7 0.22<br>8 0.15<br>9 0.09<br>10 0.07<br>11 0.05<br>12 0.00<br>13 -0.00   | 1 0.162<br>4 -0.158<br>3 -0.005<br>9 -0.040<br>8 0.065<br>3 -0.029<br>9 -0.113<br>6 0.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69.034 0.00 73.784 0.00 76.879 0.00 78.349 0.00 78.985 0.00 79.388 0.00 79.580 0.00 79.580 0.00 79.580 0.00 79.604 0.00 |
| Variable                                                                                                                                                                 | Coefficient                                                                        | Std. Error                                                                                | t-Statistic                                      | c Prob.                                                               | 1 1 1                                                                                                                                  |                                                                                   | 15 0.04                                                                             | 6 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                         |
| INFLATION(-1)  R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat                                                       | -0.181659<br>0.094398<br>0.094398<br>2.753855<br>371.6021<br>-121.0919<br>1.831555 | 0.080266  Mean deper S.D. depen Akaike info Schwarz cr Hannan-Qu                          | dent var<br>criterion<br>iterion                 | -0.046916<br>2.893825<br>4.883678<br>4.921918<br>4.898240             |                                                                                                                                        |                                                                                   | 17 0.06<br>18 -0.00<br>19 -0.05<br>20 -0.08<br>21 -0.10<br>22 -0.11<br>23 -0.09     | 3 -0.053 (2 -0.096 (5 -0.002 (6 -0.039 (9 -0.063 (4 -0.010 (4 0.037 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.010 (6 -0.01 | 30.124 0.00<br>30.441 0.00<br>30.699 0.00<br>31.339 0.00<br>32.401 0.00<br>33.608 0.00<br>34.460 0.00<br>35.860 0.00    |

## Intrepretation

On peut constater que l'inflation modélisée sans le Trend et sans la constate est stationnaire. De plus, la p-value de la constante c'est 0.0242 < 0.05, ce qui montre qu'elle est significative. De plus, le correlogramme (ACF) nous permet de modéliser l'inflation comme étant un processus ARMA (1.2)

## > Dépenses (% du PIB):

| Α                                                                   | В                  | С  | D           | E      |
|---------------------------------------------------------------------|--------------------|----|-------------|--------|
| Null Hypothesis: DEP<br>Exogenous: Constant<br>Lag Length: 0 (Autom | , Linear Trend     |    | g=10)       |        |
|                                                                     |                    |    | t-Statistic | Prob.* |
| Augmented Dickey-Fu                                                 | ıller test statist | ic | -3.128096   | 0.1112 |
| Test critical values:                                               | 1% level           |    | -4.152511   |        |
|                                                                     | 5% level           |    | -3.502373   |        |
|                                                                     | 10% level          |    | -3.180699   |        |

\*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DEPENSE) Method: Least Squares Date: 04/29/24 Time: 10:41 Sample (adjusted): 1973 2022 Included observations: 50 after adjustments

| Variable                                                                                                                         | Coefficient                                                                       | Std. Error                                                                             | t-Statistic                                  | Prob.                                                                |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|
| DEPENSE(-1)<br>C<br>@TREND("1972")                                                                                               | -0.377659<br>5.080612<br>0.043627                                                 | 0.120731<br>1.634556<br>0.019105                                                       | -3.128096<br>3.108253<br>2.283535            | 0.0030<br>0.0032<br>0.0270                                           |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic) | 0.173400<br>0.138226<br>1.456257<br>99.67216<br>-88.19351<br>4.929725<br>0.011388 | Mean depen<br>S.D. depend<br>Akaike info c<br>Schwarz cri<br>Hannan-Qui<br>Durbin-Wats | lent var<br>riterion<br>terion<br>nn criter. | 0.237007<br>1.568705<br>3.647740<br>3.762462<br>3.691427<br>2.093422 |

## Intrepretation

Le test montre que la série Depenses est non stationnaire car le p-value est 0,112 > 0,05

## Masse monétaire (%du PIB) :

| Augmented D                                                                | ickey-Fulle    | r Unit Root T | est on MASS            | SE .   |
|----------------------------------------------------------------------------|----------------|---------------|------------------------|--------|
| Α                                                                          | В              | С             | D                      | E      |
| Null Hypothesis: MASSI<br>Exogenous: Constant, I<br>Lag Length: 0 (Automat | Linear Trend   |               | =10)                   |        |
|                                                                            |                |               | t-Statistic            | Prob.* |
| Augmented Dickey-Fulle                                                     | er test statis | tic           | -1.663513<br>-4.152511 | 0.7526 |

|                                                          | t-Statistic                                      | Prob.*             |
|----------------------------------------------------------|--------------------------------------------------|--------------------|
| ller test statistic<br>1% level<br>5% level<br>10% level | -1.663513<br>-4.152511<br>-3.502373<br>-3.180699 | 0.7526             |
|                                                          | 1% level<br>5% level                             | ler test statistic |

<sup>\*</sup>MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(MASSE) Method: Least Squares
Date: 04/29/24 Time: 10:43
Sample (adjusted): 1973 2022
Included observations: 50 after adjustments

| Variable                                                                                                                         | Coefficient                                                                       | Std. Error                                                                             | t-Statistic                                  | Prob.                                                                |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|
| MASSE(-1)<br>C<br>@TREND("1972")                                                                                                 | -0.136335<br>17.97385<br>0.440307                                                 | 0.081956<br>10.00893<br>0.241358                                                       | -1.663513<br>1.795782<br>1.824290            | 0.1029<br>0.0790<br>0.0745                                           |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic) | 0.066911<br>0.027205<br>7.851920<br>2897.674<br>-172.4379<br>1.685174<br>0.196421 | Mean depen<br>S.D. depend<br>Akaike info d<br>Schwarz cri<br>Hannan-Qui<br>Durbin-Wats | lent var<br>riterion<br>terion<br>nn criter. | 3.275578<br>7.960957<br>7.017518<br>7.132239<br>7.061204<br>1.721959 |

| Augmented Dickey-Fuller Unit Root Test on MASSE                         |  |  |      |  |  |  |  |  |
|-------------------------------------------------------------------------|--|--|------|--|--|--|--|--|
| A B C D E                                                               |  |  |      |  |  |  |  |  |
| Null Hypothesis: MASSI<br>Exogenous: Constant<br>Lag Length: 0 (Automat |  |  | =10) |  |  |  |  |  |

|                       |           | t-Statistic | Prob.* |
|-----------------------|-----------|-------------|--------|
| Augmented Dickey-Fu   |           | 0.200889    | 0.9700 |
| Test critical values: | 1% level  | -3.568308   |        |
|                       | 5% level  | -2.921175   |        |
|                       | 10% level | -2.598551   |        |

<sup>\*</sup>MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(MASSE) Method: Least Squares Date: 04/29/24 Time: 10:43 Sample (adjusted): 1973 2022

Included observations: 50 after adjustments

| Variable                                                                                                                         | Coefficient                                                                        | Std. Error                                                                                | t-Statistic                                | Prob.                                                                |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------|
| MASSE(-1)<br>C                                                                                                                   | 0.005375<br>2.253489                                                               | 0.026755<br>5.213332                                                                      | 0.200889<br>0.432255                       | 0.8416<br>0.6675                                                     |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic) | 0.000840<br>-0.019976<br>8.040077<br>3102.856<br>-174.1483<br>0.040356<br>0.841634 | Mean depend<br>S.D. depend<br>Akaike info c<br>Schwarz crit<br>Hannan-Quir<br>Durbin-Wats | ent var<br>riterion<br>erion<br>nn criter. | 3.275578<br>7.960957<br>7.045932<br>7.122413<br>7.075057<br>1.852168 |

| Α                     | В                 | С            | D           | E      |
|-----------------------|-------------------|--------------|-------------|--------|
| Null Hypothesis: MASS | SE has a unit     | root         |             |        |
| Exogenous: None       | -ti-              | - 010        | 10)         |        |
| Lag Length: 0 (Automa | atic - based or   | n SIC, maxia | ag=10)      |        |
|                       |                   |              | t-Statistic | Prob.* |
| Augmented Dickey-Fu   | Iller test statis | tic          | 2.879250    | 0.9987 |
| Test critical values: | 1% level          |              | -2.612033   |        |
|                       | 5% level          |              | -1.947520   |        |
|                       | 10% level         |              | -1.612650   |        |
| *MacKinnon (1996) or  | e-sided n-valu    | IES          |             |        |
| macramion (1000) or   | ic-sided p-vait   | aco.         |             |        |
|                       |                   |              |             |        |

Dependent Variable: D(MASSE)
Method: Least Squares
Date: 04/29/24 Time: 10:43
Sample (adjusted): 1973 2022
Included observations: 50 after adjustments

| Variable                                                                                                           | Coefficient                                                             | Std. Error                                                                 | t-Statistic                  | Prob.                                                    |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------|----------------------------------------------------------|
| MASSE(-1)                                                                                                          | 0.016661                                                                | 0.005787                                                                   | 2.879250                     | 0.0059                                                   |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>Durbin-Watson stat | -0.003049<br>-0.003049<br>7.973085<br>3114.934<br>-174.2454<br>1.865993 | Mean depend<br>S.D. depend<br>Akaike info c<br>Schwarz crit<br>Hannan-Quir | ent var<br>riterion<br>erion | 3.275578<br>7.960957<br>7.009817<br>7.048058<br>7.024380 |

## Intrepretation

Le test montre que la série Masse Monétaire est non stationnaire car le p-value est 0.112 > 0.05

Puisque le modèle VAR nécessite des séries stationnaires on va commencer donc par une différence première.

## > Diff\_Masse monetaire :

| Augmented D                                                                                                                                    | ickey-Fuller l                               | Jnit Root Tes                                             | t on DMAS                                    | SE                               | Augmented D                                                                                                                                     | ickey-Fuller l                                | Jnit Root Te                                              | st on DMAS                                      | SE                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------|----------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|----------------------------------------------|
| A                                                                                                                                              | В                                            | С                                                         | D                                            | Е                                | Α                                                                                                                                               | В                                             | С                                                         | D                                               | Е                                            |
| Null Hypothesis: DMAS<br>Exogenous: Constant,<br>Lag Length: 2 (Fixed)                                                                         |                                              | root                                                      |                                              |                                  | Null Hypothesis: DMAS<br>Exogenous: Constant<br>Lag Length: 2 (Fixed)                                                                           | SSE has a unit                                | root                                                      |                                                 |                                              |
|                                                                                                                                                |                                              |                                                           | t-Statistic                                  | Prob.*                           |                                                                                                                                                 |                                               |                                                           | t-Statistic                                     | Prob.*                                       |
| Augmented Dickey-Fu                                                                                                                            | ller test statisti                           | ic                                                        | -3.882573                                    | 0.0206                           | Augmented Dickey-Fu                                                                                                                             | ller test statisti                            | c                                                         | -3.895570                                       | 0.0042                                       |
| Test critical values:                                                                                                                          | 1% level                                     |                                                           | -4.165756                                    |                                  | Test critical values:                                                                                                                           | 1% level                                      |                                                           | -3.577723                                       |                                              |
|                                                                                                                                                | 5% level                                     |                                                           | -3.508508                                    |                                  |                                                                                                                                                 | 5% level                                      |                                                           | -2.925169                                       |                                              |
|                                                                                                                                                | 10% level                                    |                                                           | -3.184230                                    |                                  |                                                                                                                                                 | 10% level                                     |                                                           | -2.600658                                       |                                              |
| MacKinnon (1996) one-sided p-values.                                                                                                           |                                              |                                                           |                                              |                                  | *MacKinnon (1996) on                                                                                                                            | e-sided p-valu                                | es.                                                       |                                                 |                                              |
| Augmented Dickey-Fu<br>Dependent Variable: D<br>Method: Least Square<br>Date: 04/29/24 Time:<br>Sample (adjusted): 19<br>ncluded observations: | 0(DMASSE)<br>s<br>: 10:55<br>76 2022         |                                                           |                                              |                                  | Augmented Dickey-Fu<br>Dependent Variable: D<br>Method: Least Square<br>Date: 04/29/24 Time:<br>Sample (adjusted): 19<br>Included observations: | (DMASSE)<br>s<br>10:55<br>76 2022             |                                                           |                                                 |                                              |
| Variable                                                                                                                                       | Coefficient                                  | Std. Error                                                | t-Statistic                                  | Prob.                            | Variable                                                                                                                                        | Coefficient                                   | Std. Error                                                | t-Statistic                                     | Prob.                                        |
| DMASSE(-1)                                                                                                                                     | -1.035676                                    | 0.266750                                                  | -3.882573                                    | 0.0004                           | DMASSE(-1)                                                                                                                                      | -1.025419                                     | 0.263227                                                  | -3.895570                                       | 0.0003                                       |
| D(DMASSE(-1))                                                                                                                                  | 0.100607                                     | 0.217261                                                  | 0.463070                                     | 0.6457                           | D(DMASSE(-1))                                                                                                                                   | 0.093774                                      | 0.214664                                                  | 0.436840                                        | 0.6644                                       |
| D(DMASSE(-2))                                                                                                                                  | 0.045224                                     | 0.168959                                                  | 0.267666                                     | 0.7903                           | D(DMASSE(-2))                                                                                                                                   | 0.044718                                      | 0.167363                                                  | 0.267190                                        | 0.7906                                       |
| С                                                                                                                                              | 2.519827                                     | 2.796978                                                  | 0.900911                                     | 0.3728                           | С                                                                                                                                               | 3.560180                                      | 1.481284                                                  | 2.403442                                        | 0.0206                                       |
|                                                                                                                                                |                                              | 0.090526                                                  | 0.440142                                     | 0.6621                           |                                                                                                                                                 |                                               |                                                           |                                                 |                                              |
| @TREND("1972")                                                                                                                                 | 0.039844                                     | 0.000020                                                  |                                              |                                  | D                                                                                                                                               | 0.400000                                      | Manage dancer                                             |                                                 |                                              |
|                                                                                                                                                |                                              |                                                           | dent var                                     | -0.088616                        | R-squared                                                                                                                                       | 0.469328                                      | Mean deper                                                |                                                 | -0.088616                                    |
| R-squared                                                                                                                                      | 0.471765                                     | Mean depen                                                |                                              | -0.088616<br>11.00029            | Adjusted R-squared                                                                                                                              | 0.432305                                      | S.D. depend                                               | dent var                                        | 11.00029                                     |
| R-squared<br>Adjusted R-squared                                                                                                                | 0.471765<br>0.421457                         | Mean depen                                                | lent var                                     | 11.00029                         | Adjusted R-squared<br>S.E. of regression                                                                                                        | 0.432305<br>8.288230                          | S.D. depend<br>Akaike info                                | dent var<br>criterion                           | 11.00029<br>7.148815                         |
| R-squared<br>Adjusted R-squared<br>S.E. of regression                                                                                          | 0.471765<br>0.421457<br>8.367045             | Mean depen                                                | lent var<br>riterion                         | 11.00029<br>7.186767             | Adjusted R-squared<br>S.E. of regression<br>Sum squared resid                                                                                   | 0.432305<br>8.288230<br>2953.875              | S.D. depend<br>Akaike info d<br>Schwarz cri               | dent var<br>criterion<br>iterion                | 11.00029<br>7.148815<br>7.306275             |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid                                                                     | 0.471765<br>0.421457                         | Mean depen<br>S.D. depend<br>Akaike info d                | lent var<br>riterion<br>terion               | 11.00029                         | Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood                                                                 | 0.432305<br>8.288230<br>2953.875<br>-163.9972 | S.D. depend<br>Akaike info d<br>Schwarz cri<br>Hannan-Qui | dent var<br>criterion<br>iterion<br>inn criter. | 11.00029<br>7.148815<br>7.306275<br>7.208068 |
| R-squared<br>Adjusted R-squared<br>S.E. of regression                                                                                          | 0.471765<br>0.421457<br>8.367045<br>2940.313 | Mean depen<br>S.D. depend<br>Akaike info d<br>Schwarz cri | lent var<br>riterion<br>terion<br>nn criter. | 11.00029<br>7.186767<br>7.383591 | Adjusted R-squared<br>S.E. of regression<br>Sum squared resid                                                                                   | 0.432305<br>8.288230<br>2953.875              | S.D. depend<br>Akaike info d<br>Schwarz cri               | dent var<br>criterion<br>iterion<br>inn criter. | 11.00029<br>7.148815<br>7.306275             |

|                                                                              | Correlogram of D(DMASSE) |                                            |                                                                                                                                            |                                                                                                                              |                                                                                                                                                                                            |                                                                                                                                                       |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------|--------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Date: 05/06/24 Time: 19:33<br>Sample: 1972 2022<br>Included observations: 49 |                          |                                            |                                                                                                                                            |                                                                                                                              |                                                                                                                                                                                            |                                                                                                                                                       |  |  |  |  |  |  |  |
| Autocorrelation                                                              | Partial Correlation      |                                            | AC                                                                                                                                         | PAC                                                                                                                          | Q-Stat                                                                                                                                                                                     | Prob                                                                                                                                                  |  |  |  |  |  |  |  |
|                                                                              |                          | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 0.043<br>0.023<br>0.059<br>-0.310<br>0.265<br>-0.169<br>0.220<br>-0.093<br>-0.020<br>0.043<br>-0.077<br>0.042<br>-0.000<br>0.175<br>-0.360 | -0.309<br>-0.256<br>-0.227<br>-0.143<br>-0.061<br>-0.089<br>-0.311<br>-0.069<br>-0.299<br>-0.001<br>-0.056<br>0.009<br>0.085 | 9,9245<br>10.111<br>10.131<br>10.131<br>10.239<br>10.268<br>10.472<br>16.318<br>20.716<br>22.543<br>25.737<br>26.320<br>26.349<br>26.480<br>26.917<br>27.052<br>29.511<br>40.300<br>41.504 | 0.002<br>0.006<br>0.017<br>0.038<br>0.069<br>0.114<br>0.013<br>0.001<br>0.015<br>0.022<br>0.029<br>0.041<br>0.052<br>0.042<br>0.042<br>0.003<br>0.003 |  |  |  |  |  |  |  |

## Intrepretation

Après une premiere differenciation la serie Masse monetaire est devenir stationnaire, car le p-value est 0.042 < 0.05. De plus, le correlogramme (ACF) nous permet de modéliser D comme étant un processus ARMA(1,1)

## > Diff\_Depenses:

| Augmented Di                                                                                                                                   |                                               |                                          |                                     |                                  | Augmented Dic                                                                                                                                      |                                |                            |                      |                               |        |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------|-------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|----------------------|-------------------------------|--------|
| A                                                                                                                                              | В                                             | С                                        | D                                   | E                                | ΑΑ                                                                                                                                                 | B                              | C                          | D                    | E                             |        |
| Null Hypothesis: DDE                                                                                                                           |                                               | unit root                                |                                     |                                  | Null Hypothesis: DDEF                                                                                                                              | 'ENSE has a                    | unit root                  |                      |                               |        |
| Exogenous: Constant                                                                                                                            | Linear Trend                                  |                                          |                                     |                                  | Exogenous: Constant                                                                                                                                |                                |                            |                      |                               |        |
| Lag Length: 2 (Fixed)                                                                                                                          |                                               |                                          |                                     |                                  | Lag Length: 2 (Fixed)                                                                                                                              |                                |                            |                      |                               |        |
|                                                                                                                                                |                                               |                                          | t-Statistic                         | Prob.*                           |                                                                                                                                                    |                                |                            | t-Statistic          | Prob.*                        |        |
| Augmented Dickey-Fu                                                                                                                            | ller test statist                             | ic                                       | -3.975216                           | 0.0164                           | Augmented Dickey-Ful                                                                                                                               | ler test statist               | ic                         | -4.008903            | 0.0030                        |        |
| Test critical values:                                                                                                                          | 1% level                                      |                                          | -4.165756                           |                                  | Test critical values:                                                                                                                              | 1% level                       |                            | -3.577723            |                               |        |
|                                                                                                                                                | 5% level                                      |                                          | -3.508508                           |                                  |                                                                                                                                                    | 5% level                       |                            | -2.925169            |                               |        |
|                                                                                                                                                | 10% level                                     |                                          | -3.184230                           |                                  |                                                                                                                                                    | 10% level                      |                            | -2.600658            |                               |        |
| *MacKinnon (1996) on                                                                                                                           | e-sided p-valu                                | es.                                      |                                     |                                  | *MacKinnon (1996) one                                                                                                                              | e-sided p-valu                 | es.                        |                      |                               |        |
| Augmented Dickey-Fu<br>Dependent Variable: D<br>Method: Least Square<br>Date: 04/29/24 Time:<br>Sample (adjusted): 19<br>Included observations | )(DDEPENSE;<br>s<br>: 10:57<br>:76 2022       | )                                        |                                     |                                  | Augmented Dickey-Ful<br>Dependent Variable: D<br>Method: Least Squares<br>Date: 04/29/24 Time:<br>Sample (adjusted): 197<br>Included observations: | (DDEPENSE)<br>10:57<br>76 2022 |                            |                      |                               |        |
| Variable                                                                                                                                       | Coefficient                                   | Std. Error                               | t-Statistic                         | Prob.                            | Variable                                                                                                                                           | Coefficient                    | Std. Error                 | t-Statistic          | Prob.                         |        |
| DDEPENSE(-1)                                                                                                                                   | -1.327907                                     | 0.334046                                 | -3.975216                           | 0.0003                           | DDEPENSE(-1)                                                                                                                                       | -1.327994                      | 0.331261                   | -4.008903            | 0.000                         |        |
| D(DDEPENSÈ(-1))                                                                                                                                | 0.047023                                      | 0.277466                                 | 0.169473                            | 0.8662                           | D(DDEPENSE(-1))                                                                                                                                    | 0.053078                       | 0.274924                   | 0.193065             | 0.847                         |        |
| D(DDEPENSE(-2))                                                                                                                                | 0.054597                                      | 0.202303                                 | 0.269878                            | 0.7886                           | D(DDEPENSE(-2))                                                                                                                                    | 0.066430                       | 0.199412                   | 0.333130             | 0.740                         |        |
| С                                                                                                                                              | 0.017995                                      | 0.529332                                 | 0.033996                            | 0.9730                           | С                                                                                                                                                  | 0.269198                       | 0.241864                   | 1.113015             | 0.271                         |        |
| @TREND("1972")                                                                                                                                 | 0.009354                                      | 0.017493                                 | 0.534709                            | 0.5957                           |                                                                                                                                                    | 0.044500                       |                            |                      | 0.0000                        |        |
|                                                                                                                                                |                                               |                                          |                                     |                                  | R-squared                                                                                                                                          | 0.641536                       | Mean depen                 |                      | 0.0062                        |        |
|                                                                                                                                                | quared 0.643960 Mean dependent var 0.006246   |                                          |                                     |                                  | Adjusted R-squared                                                                                                                                 | 0.616527<br>1.595434           | S.D. depend<br>Akaike info |                      | 2.5763                        |        |
|                                                                                                                                                |                                               |                                          |                                     |                                  |                                                                                                                                                    | S.E. of regression             | 1.095434                   |                      |                               | 2.0524 |
| Adjusted R-squared                                                                                                                             | 0.610051                                      |                                          |                                     |                                  |                                                                                                                                                    | 100 4500                       |                            |                      |                               |        |
| R-squared<br>Adjusted R-squared<br>S.E. of regression                                                                                          | 0.610051<br>1.608848                          | Akaike info                              | criterion                           | 3.889202                         | Sum squared resid                                                                                                                                  | 109.4526                       | Schwarz cri                | terion               | 4.0108                        |        |
| Adjusted R-squared<br>S.E. of regression<br>Sum squared resid                                                                                  | 0.610051<br>1.608848<br>108.7125              | Akaike info o<br>Schwarz cr              | riterion<br>iterion                 | 3.889202<br>4.086027             | Sum squared resid<br>Log likelihood                                                                                                                | -86.55569                      | Schwarz cri<br>Hannan-Qui  | terion<br>nn criter. | 3.85343<br>4.01089<br>3.91268 |        |
| Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood                                                                | 0.610051<br>1.608848<br>108.7125<br>-86.39626 | Akaike info o<br>Schwarz cr<br>Hannan-Qu | criterion<br>iterion<br>inn criter. | 3.889202<br>4.086027<br>3.963269 | Sum squared resid<br>Log likelihood<br>F-statistic                                                                                                 | -86.55569<br>25.65208          | Schwarz cri                | terion<br>nn criter. | 4.0108                        |        |
| Adjusted R-squared<br>S.E. of regression<br>Sum squared resid                                                                                  | 0.610051<br>1.608848<br>108.7125              | Akaike info o<br>Schwarz cr              | criterion<br>iterion<br>inn criter. | 3.889202<br>4.086027             | Sum squared resid<br>Log likelihood                                                                                                                | -86.55569                      | Schwarz cri<br>Hannan-Qui  | terion<br>nn criter. | 4.0108<br>3.9126              |        |

| Augmented Dic                                                                                                                                      | key-Fuller U                                                          | nit Root Test                                                           | on DDEPEN                                        | NSE                                                      |                                                                 | Correlogram (       | of DDEPEN                                                  | SE                                  |                                                          |                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|---------------------|------------------------------------------------------------|-------------------------------------|----------------------------------------------------------|----------------------------------------------------|
| A Null Hypothesis: DDEF Exogenous: None Lag Length: 2 (Fixed)                                                                                      | B<br>PENSE has a I                                                    | C<br>unit root                                                          | D                                                | E                                                        | Date: 05/05/24 Tin<br>Sample: 1972 2022<br>Included observation |                     |                                                            |                                     |                                                          |                                                    |
|                                                                                                                                                    |                                                                       |                                                                         | t-Statistic                                      | Prob.*                                                   | Autocorrelation                                                 | Partial Correlation | AC                                                         | PAC                                 | Q-Stat                                                   | Prob                                               |
| Augmented Dickey-Ful<br>Fest critical values:                                                                                                      | ler test statisti<br>1% level<br>5% level<br>10% level                | C                                                                       | -3.841398<br>-2.615093<br>-1.947975<br>-1.612408 | 0.0003                                                   |                                                                 | 1 1 1               | 1 -0.276<br>2 0.094<br>3 -0.052<br>4 -0.001                | 0.019                               | 4.0368<br>4.5129<br>4.6643<br>4.6644                     | 0.045<br>0.105<br>0.198<br>0.323                   |
| *MacKinnon (1996) one                                                                                                                              | e-sided p-valu                                                        | es.                                                                     |                                                  |                                                          |                                                                 | 1 1                 | 5 0.008<br>6 -0.170<br>7 0.019                             |                                     | 4.6679<br>6.3837<br>6.4053                               | 0.458<br>0.382<br>0.493                            |
| Augmented Dickey-Ful<br>Dependent Variable: Di<br>Method: Least Squares<br>Date: 04/29/24 Time:<br>Sample (adjusted): 197<br>ncluded observations: | (DDEPENSE)<br>10:58<br>76 2022                                        | )                                                                       |                                                  |                                                          |                                                                 |                     |                                                            | -0.059<br>-0.168<br>0.282<br>0.056  | 7.5349<br>7.6206<br>8.9083<br>16.699<br>17.251<br>17.264 | 0.480<br>0.573<br>0.541<br>0.117<br>0.140<br>0.188 |
| Variable                                                                                                                                           | Coefficient                                                           | Std. Error                                                              | t-Statistic                                      | Prob.                                                    | [                                                               |                     | 14 -0.038<br>15 0.059                                      | -0.103<br>0.020                     | 17.370<br>17.628                                         | 0.237                                              |
| DDEPENSE(-1)<br>D(DDEPENSE(-1))<br>D(DDEPENSE(-2))                                                                                                 | -1.231191<br>-0.014790<br>0.038083                                    | 0.320506<br>0.268803<br>0.198315                                        | -3.841398<br>-0.055022<br>0.192035               | 0.0004<br>0.9564<br>0.8486                               |                                                                 | 1 1 1               |                                                            | 0.026<br>0.027                      | 17.705<br>17.840<br>17.886<br>18.465                     | 0.341<br>0.399<br>0.463<br>0.492                   |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>og likelihood<br>Durbin-Watson stat                                  | 0.631209<br>0.614446<br>1.599757<br>112.6058<br>-87.22314<br>2.008152 | Mean deper<br>S.D. depend<br>Akaike info d<br>Schwarz cri<br>Hannan-Qui | dent var<br>criterion<br>iterion                 | 0.006246<br>2.576388<br>3.839283<br>3.957377<br>3.883722 |                                                                 |                     | 20 0.031<br>21 -0.202<br>22 0.370<br>23 -0.172<br>24 0.043 | -0.027<br>-0.179<br>0.200<br>-0.031 | 18.548<br>22.201<br>34.925<br>37.784                     | 0.492<br>0.551<br>0.388<br>0.039<br>0.027<br>0.035 |

## Intrepretation

Apres une premiere differenciation la serie Masse monetaire est devenir stationnaire, car le p-value est 0,003 < 0,05. De plus, le correlogramme (ACF) nous permet de modéliser l'inflation comme étant un processus ARMA(1,1)

## 4. Etude de var :

## a. Estimation du VAR:

Notre modèle comprend deux variables (Inflation, Masse monétaire). On peut traduire le modèle par l'équation suivante :

$$Z_{t} = \begin{pmatrix} Inf_{t} \\ Mon_{t} \\ Dep_{t} \end{pmatrix} = \propto + \sum_{t=1}^{p} \beta_{i} Z_{t-i} + \varepsilon_{t}$$

## Avec:

- $Z_t$  est un vecteur de dimension 2
- $Inf_t$  est le taux d'inflation à l'année t qui est stationnaire en différence première.
- $Mon_t$  est la masse monétaire ta à l'année t qui est stationnaire en niveau.
- $Dep_t$  est la masse monétaire ta à l'année t qui est stationnaire en niveau.
- ∝ est un vecteur de dimension 2 qui représente la constante.
- $\beta_i$  est une matrice (2 × 2) qui représente les variables du modèle.
- $\varepsilon_t$  est un vecteur des résidus

•  $\rho$ , le retard optimal (à déterminer plus tard).



## Selection d'order de Lag:

Passant en 2éme étape à la détermination du lag optimal du VAR :

VAR Lag Order Selection Criteria

Endogenous variables: CROISSANCE DDEPENSE DMASSE INFLATION

Exogenous variables: C Date: 05/09/24 Time: 09:03 Sample: 1972 2022 Included observations: 46

| Lag | LogL                   | LR                   | FPE                  | AIC                  | SC                    | HQ                    |
|-----|------------------------|----------------------|----------------------|----------------------|-----------------------|-----------------------|
| 0   | -431.0666              | NA                   | 1928.420             | 18.91594             | 19.07495              | 18.97550              |
| 1 2 | -388.2678<br>-373.3957 | 76.29347<br>23.92469 | 603.4805<br>644.6756 | 17.75077<br>17.79981 | 18.54583*<br>19.23092 | 18.04861 <sup>3</sup> |
| 3   | -349.5258              | 34.24803*            | 477.8929*            | 17.45765*            | 19.52480              | 18.23202              |
| 4   | -343.6642              | 7.390711             | 807.3608             | 17.89845             | 20.60165              | 18.91108              |

<sup>\*</sup> indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

Le décalage optimal du VAR(.) estimé qui minimise les statistiques des critères d'informations LR, FPE, AIC, HQ est 3.

## Test de Wald:

VAR Lag Exclusion Wald Tests Date: 05/09/24 Time: 09:02 Sample: 1972 2022 Included observations: 47

| Chi-squared test statistics for lag exclusion:<br>Numbers in [ ] are p-values |           |           |           |           |           |  |  |  |  |  |  |
|-------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|--|--|--|--|--|--|
|                                                                               | CROISSAN  | DDEPENSE  | DMASSE    | INFLATION | Joint     |  |  |  |  |  |  |
| Lag 1                                                                         | 8.979692  | 7.672025  | 5.385284  | 9.188492  | 54.18788  |  |  |  |  |  |  |
|                                                                               | [ 0.0616] | [ 0.1044] | [ 0.2500] | [ 0.0566] | [ 0.0000] |  |  |  |  |  |  |
| Lag 2                                                                         | 3.329820  | 1.696957  | 0.565503  | 5.109435  | 11.87900  |  |  |  |  |  |  |
|                                                                               | [ 0.5042] | [ 0.7913] | [ 0.9668] | [ 0.2763] | [ 0.7523] |  |  |  |  |  |  |
| Lag 3                                                                         | 0.951378  | 0.959203  | 17.63406  | 2.361128  | 40.18425  |  |  |  |  |  |  |
|                                                                               | [ 0.9171] | [ 0.9159] | [ 0.0015] | [ 0.6697] | [ 0.0007] |  |  |  |  |  |  |
| df                                                                            | 4         | 4         | 4         | 4         | 16        |  |  |  |  |  |  |

Les résultats montrent que La statistique du Chi-carré jointe est de 54,18788 avec une valeur de p de 0,0000. Ces résultats indiquent que l'inclusion du retard 1 pour les deux variables est significative et nécessaire pour le modèle VAR.

Pour le retard 2, La statistique du Chi-carré jointe est de 11,87900, avec une valeur de p de 0,7523. Ces résultats indiquent que l'inclusion du retard 2 n'est pas significative

Or pour le retard 3, La statistique du Chi-carré jointe est de 40,18425 avec une valeur de p de 0,0007. Ces résultats indiquent que l'inclusion du retard 2 n'est pas significative

• Dans l'ensemble, sur la base des tests d'exclusion de lag VAR de Wald, nous devrions inclure le retard 1, 2 et 3 donc notre var est de retard 3.

## b. Vérification de la stationnarité du processus :



L'inverse des racines unitaires appartiennent au disque unité complexe. Aussi, le module de toutes les racines est inférieur à 1, par suite, le processus  $Zt \sim VAR$  (3) est bien stationnaire.

## Diagnostique du VAR estimé:

```
Dmasse = 0.31\ Dmasse(-1) - 0.028\ Dmasse(-2) + 0.233\ Dmasse(-3) + 0.35\ Ddep(-1) - 0494\ Ddep(-2) \\ - 5.8\ Ddep(-3) + 0.74\ CrPIB(-1) - 0.543\ CrPIB(-2) + 0.94\ CrPIB + 1.512inf(-1) \\ - 0.39inf(-2) - 0.95inf(-3) + 2.853 Ddep = 0.04\ Dmasse(-1) - 0.025\ Dmasse(-2) + 0.03\ Dmasse(-3) - 0.59\ Ddep(-1) - 0.307\ Ddep(-2) \\ - 0.259\ Ddep(-3) - 0.196\ CrPIB(-1) - 0.137\ CrPIB(-2) + 0.014\ CrPIB(-3) + 0.332inf(-1) \\ + 0.332inf(-1) - 0.127\ inf(-2) + 0.045\ inf(-3) + 0.380 CrPIB = 0.065\ Dmasse(-1) - 0.015\ Dmasse(-2) + 0.010\ Dmasse(-3) + 0.247\ Ddep(-1) + 0.247\ + 0.485\ Ddep(-2) - 0.114\ Ddep(-3) + 0.504\ CrPIB(-1) + 0.359\ CrPIB(-2) \\ + 0.007\ CrPIB(-3) - 0.4352inf(-1) + 0.230\ inf(-2) + 0.104\ inf(-3) - 0.112 inf = -0.005\ Dmasse(-1) - 0.035\ Dmasse(-2) - 0.022\ Dmasse(-3) + 0.193\ Ddep(-1) + 0.247\ Ddep(-1) + 0.406\ Ddep(-2) - 0.170\ Ddep(-3) + 0.268\ CrPIB(-1) + 0.118CrPIB(-2) \\ + 0.011\ CrPIB(-3) + 0.365\ inf(-1) + 0.086\ inf(-2) + 0.059\ inf(-3) - 0.247
```

## Validation et adéquation du modéle :

On effectue plusieurs tests afin d'étudier notre processus  $\{Z_t, t \in Z\} \sim VAR(3)$  afin de l'étudier.

## > Test d'autocorrélations de Portmanteau :

VAR Residual Portmanteau Tests for Autocorrelations Null Hypothesis: No residual autocorrelations up to lag h

Date: 05/09/24 Time: 10:18 Sample: 1972 2022 Included observations: 47

| Lags | Q-Stat   | Prob.* | Adj Q-Stat | Prob.* | df |
|------|----------|--------|------------|--------|----|
| 1    | 2.315179 |        | 2.365509   |        |    |
| 2    | 11.81711 |        | 12.28975   |        |    |
| 3    | 25.36811 |        | 26.76468   |        |    |
| 4    | 35.87561 | 0.0030 | 38.24962   | 0.0014 | 16 |

<sup>\*</sup>Test is valid only for lags larger than the VAR lag order. df is degrees of freedom for (approximate) chi-square distribution

Les résultats montrent que pour les lags 1, 2 et 3 les statistiques Q-Stat sont inférieures aux valeurs critiques, ce qui signifie qu'il n'y a pas suffisamment de preuves pour rejeter l'hypothèse nulle d'absence d'autocorrélation résiduelle jusqu'à ces lags. Dans ce cas, on confirme que le modèle VAR est bien spécifié et qu'il n'y a pas d'autocorrélations résiduelles significatives jusqu'au lag 3.

## > Test d'hétéroscédasticité :

Sample: 1972 2022 Included observations: 47

| Joint test: |     |        |
|-------------|-----|--------|
| Chi-sq      | df  | Prob.  |
| 224.5929    | 240 | 0.7544 |

#### Individual components:

| Dependent | R-squared | F(24,22) | Prob.  | Chi-sq(24) | Prob.  |
|-----------|-----------|----------|--------|------------|--------|
| res1*res1 | 0.338023  | 0.468075 | 0.9636 | 15.88710   | 0.8921 |
| res2*res2 | 0.254249  | 0.312519 | 0.9967 | 11.94969   | 0.9805 |
| res3*res3 | 0.478056  | 0.839589 | 0.6630 | 22.46865   | 0.5513 |
| res4*res4 | 0.391312  | 0.589305 | 0.8956 | 18.39167   | 0.7836 |
| res2*res1 | 0.245442  | 0.298173 | 0.9976 | 11.53577   | 0.9847 |
| res3*res1 | 0.364027  | 0.524695 | 0.9368 | 17.10928   | 0.8440 |
| res3*res2 | 0.283065  | 0.361925 | 0.9914 | 13.30407   | 0.9608 |
| res4*res1 | 0.527431  | 1.023085 | 0.4809 | 24.78925   | 0.4173 |
| res4*res2 | 0.307128  | 0.406330 | 0.9830 | 14.43504   | 0.9362 |
| res4*res3 | 0.372972  | 0.545257 | 0.9249 | 17.52970   | 0.8252 |

Le test conjoint indique une statistique de test de chi-carré de 224.5929 avec 240 degrés de liberté et une p-value de 0,750. Cela suggère qu'il n'y a pas suffisamment de preuves pour rejeter l'hypothèse nulle d'absence d'hétéroscédasticité résiduelle significative pour l'ensemble des variables.

## 5. Etude de causalité

## a. Test de causalité

Le test de causalité de Granger est une méthode statistique qui permet de tester si une variable a un pouvoir prédictif significatif sur une autre variable.

les résultats de ce test dans notre cas se présentent comme suit :

VAR Granger Causality/Block Exogeneity Wald Tests Date: 05/07/24 Time: 12:17

Date: 05/07/24 Time: 12: Sample: 1972 2022 Included observations: 47

| ependent variable: DI               | MASSE                            |             |                            | Dependent variable: CROISSANCE   |                                  |             |                            |  |
|-------------------------------------|----------------------------------|-------------|----------------------------|----------------------------------|----------------------------------|-------------|----------------------------|--|
| Excluded                            | Chi-sq                           | df          | Prob.                      | Excluded                         | Chi-sq                           | df          | Prob.                      |  |
| DDEPENSE<br>CROISSANCE<br>INFLATION | 20.03274<br>2.425106<br>2.987456 | 3<br>3<br>3 | 0.0002<br>0.4890<br>0.3936 | DMASSE<br>DDEPENSE<br>INFLATION  | 1.940799<br>3.347958<br>3.106703 | 3<br>3<br>3 | 0.5848<br>0.3410<br>0.3755 |  |
| All                                 | 23.60550                         | 9           | 0.0050                     | All                              | 13.63131                         | 9           | 0.1361                     |  |
| ependent variable: DI               | DEPENSE                          |             |                            | Dependent variable: INFLATION    |                                  |             |                            |  |
| Excluded                            | Chi-sq                           | df          | Prob.                      | Excluded                         | Chi-sq                           | df          | Prob.                      |  |
| DMASSE<br>CROISSANCE<br>INFLATION   | 1.482683<br>3.259656<br>3.520686 | 3<br>3<br>3 | 0.6863<br>0.3533<br>0.3181 | DMASSE<br>DDEPENSE<br>CROISSANCE | 1.279499<br>4.599054<br>10.05516 | 3<br>3<br>3 | 0.7340<br>0.2036<br>0.0181 |  |
| All                                 | 4.979473                         | 9           | 0.8361                     | All                              | 13.05535                         | 9           | 0.160                      |  |

## b. Interprétation

Selon les résultats du test de causalité de Granger, il est suggéré que

#### Pour la variable Dmasse:

Ddepense cause Dmasse avec une forte significativité statistique (p-value = 0.0002).

Les autres variables (croissance PIB et Inflation) ne semblent pas avoir une relation de causalité significative avec Dmasse.

#### Pour la variable Ddepense :

Aucune des autres variables n'a une relation de causalité significative avec Ddepense.

#### Pour la variable croissance PIB:

Inflation cause croissance PIB avec une significativité statistique modérée (p-value = 0.0181). Les autres variables (Dmasse et Ddepense) ne semblent pas avoir une relation de causalité significative avec croissance PIB.

#### Pour la variable Inflation:

croissance PIB cause Inflation avec une significativité statistique modérée (p-value = 0.0181). Les autres variables (Dmasse et Ddepense) ne semblent pas avoir une relation de causalité significative avec Inflation.

# 6. Etude de Cointégration

## a. Test de Cointégration



## b. Interprétation

Test de rang de cointégration non contraint (trace) :

Le test suggère qu'il y a 3 équations de cointégration au niveau de signification de 0.05. Cela signifie qu'il existe 3 combinaisons linéaires indépendantes de ces séries qui sont stationnaires.

Test de rang de cointégration non contraint (valeur propre maximale) :

Le test indique une équation de cointégration au niveau de signification de 0.05. Cela implique qu'une

seule combinaison linéaire des séries est stationnaire.

## Coefficients de cointégration non restreints (normalisés) :

Ces coefficients décrivent les pondérations des séries dans les équations de cointégration. Ils indiquent les relations linéaires entre les séries qui résultent en des combinaisons stationnaires.

## Coefficients d'ajustement non restreints :

Ces coefficients déterminent à quelle vitesse les écarts par rapport à l'équilibre sont corrigés.

## Équations de cointégration :

Les équations spécifient les relations linéaires entre les variables qui sont stationnaires. Elles montrent comment les séries réagissent pour restaurer l'équilibre à long terme.

# 7. Effet d'impulsion :

## a. Analyse graphique



| Response | e of INFLATION: |           |           |           | Response | of DMASSE: |           |           |           |
|----------|-----------------|-----------|-----------|-----------|----------|------------|-----------|-----------|-----------|
| Period   | INFLATION       | DMASSE    | CROISSA   | DDEPENSE  | Period   | INFLATION  | DMASSE    | CROISSA   | DDEPENSE  |
|          |                 |           |           |           |          |            |           |           |           |
| 1        | 1.113431        | 0.000000  | 0.000000  | 0.000000  | 1        | -1.352424  | 8.158856  | 0.000000  | 0.000000  |
|          | (0.11364)       | (0.00000) | (0.00000) | (0.00000) |          | (1.18569)  | (0.83271) | (0.00000) | (0.00000) |
| 2        | 0.462763        | -0.086636 | 0.398021  | 0.201182  | 2        | -0.119193  | 0.842815  | -1.160499 | 0.794212  |
|          | (0.11944)       | (0.18326) | (0.15196) | (0.17558) | _        | (0.69492)  | (1.29172) | (1.07867) | (1.29775) |
| 3        | 0.263911        | 0.155691  | 0.245950  | 0.422859  | 3        | 0.193842   | -0.259640 | -0.026099 | 1.603971  |
|          | (0.10540)       | (0.20824) | (0.15260) | (0.18384) | •        | (0.50429)  | (1.28858) | (0.93271) | (1.16805) |
| 4        | 0.180135        | 0.087465  | 0.326159  | 0.238720  | 4        | -0.047659  | -0.180279 | 0.508441  | -1.323940 |
|          | (0.09067)       | (0.15399) | (0.13305) | (0.13685) | •        | (0.33815)  | (0.50739) | (0.57401) | (0.85726) |
| 5        | 0.121745        | 0.103123  | 0.302511  | 0.232318  | 5        | 0.037300   | 0.283561  | -0.035124 | 0.550469  |
|          | (0.07982)       | (0.12898) | (0.12660) | (0.12021) | _        | (0.20912)  | (0.39327) | (0.41897) | (0.71052) |
| 6        | 0.090923        | 0.088855  | 0.265370  | 0.238093  | 6        | 0.010157   | -0.073654 | 0.037925  | 0.116052  |
|          | (0.07308)       | (0.11043) | (0.12572) | (0.09921) | -        | (0.10983)  | (0.26246) | (0.33380) | (0.46408) |
| 7        | 0.071946        | 0.073936  | 0.247003  | 0.192383  | 7        | 0.024446   | 0.021550  | 0.126529  | -0.032804 |
|          | (0.06512)       | (0.10128) | (0.12299) | (0.09388) |          | (0.06514)  | (0.14054) | (0.25270) | (0.33010) |
| 8        | 0.058711        | 0.068906  | 0.220184  | 0.169403  | 8        | 0.009800   | 0.035423  | 0.057393  | 0.043508  |
|          | (0.05847)       | (0.09148) | (0.12007) | (0.08780) | -        | (0.04631)  | (0.08321) | (0.19836) | (0.24179) |
| 9        | 0.049544        | 0.060667  | 0.193170  | 0.154968  | 9        | 0.015466   | 0.017315  | 0.044211  | 0.088811  |
|          | (0.05233)       | (0.08158) | (0.11668) | (0.08327) | •        | (0.04104)  | (0.06769) | (0.17292) | (0.18427) |
| 10       | 0.042563        | 0.052579  | 0.171732  | 0.134252  | 10       | 0.011381   | 0.008101  | 0.058555  | 0.013699  |
|          | (0.04649)       | (0.07310) | (0.11264) | (0.08039) |          | (0.03471)  | (0.05373) | (0.15281) | (0.12182) |
|          | (5.5 10 10)     | (0.01010) | (5.11201) | (5.55500) |          | (5.50111)  | (0.00010) | (5.10201) | (5.12102) |

| Response<br>Period | of CROISSAN<br>INFLATION | CE:<br>DMASSE | CROISSA    | DDEPENSE  | Response<br>Period | of DDEPENSI<br>INFLATION | E:<br>DMASSE | CROISSA   | DDEPENSE  |
|--------------------|--------------------------|---------------|------------|-----------|--------------------|--------------------------|--------------|-----------|-----------|
| 1                  | -0.120867                | -1.008202     | 1.674056   | 0.000000  | 1                  | -0.018097                | 1.000478     | -0.620464 | 1.107586  |
|                    | (0.28234)                | (0.26263)     | (0.17086)  | (0.00000) |                    | (0.23331)                | (0.20977)    | (0.17195) | (0.11304) |
| 2                  | -0.226964                | 0.269337      | 0.567278   | 0.265277  | 2                  | 0.062111                 | -0.125967    | 0.042405  | -0.587808 |
| _                  | (0.18477)                | (0.31579)     | (0.26175)  | (0.30783) |                    | (0.15463)                | (0.26323)    | (0.22501) | (0.26017) |
| 3                  | -0.002587                | 0.169182      | 0.413959   | 0.588394  | 3                  | 0.041144                 | 0.076179     | -0.056925 | 0.146373  |
|                    | (0.15484)                | (0.33153)     | (0.24326)  | (0.29391) |                    | (0.11292)                | (0.26000)    | (0.20420) | (0.24845) |
| 4                  | 0.016225                 | 0.063662      | 0.439181   | 0.136283  | 4                  | 0.005738                 | -0.037239    | -Ò.049317 | -0.003927 |
| •                  | (0.11015)                | (0.18697)     | (0.17474)  | (0.21862) |                    | (0.04853)                | (0.09365)    | (0.10155) | (0.21908) |
| 5                  | 0.044159                 | 0.126887      | 0.327061   | 0.276820  | 5                  | 0.010345                 | -0.003756    | -0.003238 | -0.024551 |
|                    | (0.09220)                | (0.15362)     | (0.16540)  | (0.18242) |                    | (0.02254)                | (0.04486)    | (0.05953) | (0.17017) |
| 6                  | 0.047588                 | 0.078587      | 0.275838   | 0.226509  | 6                  | -0.000844                | -0.001642    | -Ò.013375 | -0.024869 |
|                    | (0.07847)                | (0.11699)     | (0.15683)  | (0.13882) |                    | (0.01258)                | (0.03045)    | (0.04858) | (0.10675) |
| 7                  | 0.050171                 | 0.073352      | 0.250242   | 0.183904  | 7                  | 0.000860                 | -0.000879    | -0.016722 | 0.011731  |
| •                  | (0.06680)                | (0.10738)     | (0.14666)  | (0.11383) |                    | (0.00875)                | (0.02359)    | (0.03224) | (0.06120) |
| 8                  | 0.045608                 | 0.066494      | 0.215193   | 0.160627  | 8                  | -0.001225                | -0.006205    | -0.006889 | -0.015723 |
| _                  | (0.05872)                | (0.09130)     | (0.13984)  | (0.10304) | _                  | (0.00665)                | (0.01465)    | (0.02776) | (0.02457) |
| 9                  | 0.042396                 | 0.058288      | 0.186011   | 0.151147  | 9                  | -0.001130                | -0.000675    | -0.007774 | -0.005591 |
| _                  | (0.05169)                | (0.08178)     | (0.13408)  | (0.09601) | -                  | (0.00625)                | (0.00924)    | (0.02507) | (0.02084) |
| 10                 | 0.037867                 | 0.049594      | 0.165282   | 0.125988  | 10                 | -0.001408                | -0.002291    | -0.007646 | -0.004008 |
|                    | (0.04554)                | (0.07258)     | (0.12735)  | (0.09048) |                    | (0.00493)                | (0.00736)    | (0.02064) | (0.01771) |
|                    | (212 100 1)              | (/            | (21.21.00) | (2.230.0) |                    | (5.50 100)               | (5.55700)    | (5.52001) | (5.51771) |

## Effets d'impulsion sur DMASSE:

Les valeurs représentent les changements dans la variable DMASSE aux différents moments temporels après un choc dans les autres variables.

Par exemple, au premier moment temporel, DMASSE augmente de 7.16 après un choc de 1 dans DMASSE lui-même.Les écarts-types indiquent la précision de ces estimations.

## Effets d'impulsion sur DDEPENSE, CROISSANCE et INFLATION :

Les valeurs représentent les changements dans les variables DDEPENSE, CROISSANCE et INFLATION aux différents moments temporels après un choc dans les autres variables. Par exemple, au premier moment temporel, DDEPENSE augmente de 1.25 après un choc de 1 dans DDEPENSE lui-même. Les écarts-types indiquent la précision de ces estimations.

## Cholesky Ordering:

Cela indique l'ordre dans lequel les variables sont ordonnées dans le modèle.

DMASSE est considéré comme la première variable, suivie de DDEPENSE, puis de CROISSANCE, et enfin d'INFLATION.

## b. Décomposition de la variance

La décomposition de la variance permet de comprendre la part de variation de chaque variable explicative dans la variation totale de la variable cible (DMASSE, DDEPENSE, CROISSANCE, INFLATION) sur différentes périodes.

Les résultats de l'analyse de décomposition de la variance sont présentés comme suit :

| Variance Decomposition using Cholesky (d.f. adjusted) Factors |                      |                      |                      |                      |                      | Variance Deriod | Decomposition ( | of CROISSA<br>DMASSE | NCE:<br>DDEPENSE | CROISSA  | INFLATION |
|---------------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------|-----------------|----------------------|------------------|----------|-----------|
| Variance Decomposition of DMASSE:                             |                      |                      |                      |                      | 1                    | 2.021766        | 42.28251        | 8.993486             | 48.72400         | 0.000000 |           |
| Period                                                        | S.E.                 | DMASSE               | DDEPENSE             | CROISSA              | INFLATION            | 2               | 2.234054        | 34.96430             | 7.419703         | 52.84646 | 4.769538  |
|                                                               | 7.400044             | 400,0000             | 0.000000             | 0.000000             | 0.000000             | 3               | 2.353852        | 31.91289             | 7.456606         | 56.31017 | 4.320329  |
| 1                                                             | 7.160841<br>7.539769 | 100.0000<br>93.95626 | 0.000000<br>0.056746 | 0.000000<br>0.932979 | 0.000000<br>5.054017 | 4               | 2.444060        | 30.51262             | 10.52568         | 54.58931 | 4.372390  |
| 2<br>3                                                        | 7.578799             | 93.95020             | 0.056746             | 1.312558             | 5.391473             | 5               | 2.540747        | 29.35522             | 12.88906         | 53.70719 | 4.048536  |
| 3                                                             | 10.09647             | 62.86545             | 33.13670             | 0.926010             | 3.071839             | 6               | 2.594721        | 28.68144             | 12.82662         | 54.59370 | 3.898241  |
| 5                                                             | 10.31000             | 60.34082             | 33.26891             | 2.704251             | 3.686022             | 7               | 2.630604        | 28.46448             | 12.85241         | 54.88117 | 3.801937  |
| 6                                                             | 10.34559             | 60.41158             | 33.17312             | 2.722316             | 3.692979             | 8               | 2.661005        | 28.40602             | 13.13239         | 54.74394 | 3.717648  |
| 7                                                             | 10.34333             | 60.33314             | 33.08403             | 2.722310             | 3.872821             | 9               | 2.679871        | 28.28859             | 13.12644         | 54.91768 | 3.667288  |
| 8                                                             | 10.37708             | 60.25638             | 33.13099             | 2.742650             | 3.869986             | 10              | 2.691918        | 28.16873             | 13.06600         | 55.12510 | 3.640172  |
| 9                                                             | 10.37722             | 60.25486             | 33.13136             | 2.743057             | 3.870718             |                 |                 |                      |                  |          |           |
| 10                                                            | 10.38443             | 60.21332             | 33.17060             | 2.749244             | 3.866837             |                 | Decomposition ( |                      |                  |          |           |
|                                                               | 10.00110             | 00.21002             |                      | 2.7.102.11           |                      | Period          | S.E.            | DMASSE               | DDEPENSE         | CROISSA  | INFLATION |
|                                                               | ecomposition         |                      |                      |                      |                      | 1               | 1.153078        | 1.044343             | 1.192243         | 3.294726 | 94.46869  |
| Period                                                        | S.E.                 | DMASSE               | DDEPENSE             | CROISSA              | INFLATION            | 2               | 1.285826        | 3.823041             | 1.852622         | 8.206908 | 86.11743  |
|                                                               | 4.075005             | 44.40000             | 55 57004             | 0.000000             | 0.000000             | 3               | 1.408866        | 3.265926             | 8.295558         | 15.11275 | 73.32577  |
| 1                                                             | 1.675695             | 44.42366             | 55.57634             | 0.000000             | 0.000000             | 4               | 1.464531        | 3.025000             | 9.527690         | 17.38031 | 70.06700  |
| 2<br>3                                                        | 1.850199<br>1.854865 | 37.08300<br>37.08199 | 55.35964<br>55.28269 | 3.505466<br>3.491135 | 4.051898<br>4.144184 | 5               | 1.498104        | 3.155858             | 9.189228         | 19.30913 | 68.34579  |
| 3                                                             | 1.863613             | 36.84266             | 55.29595             | 3.458511             | 4.402880             | 6               | 1.533482        | 3.214618             | 8.881927         | 21.98404 | 65.91942  |
| 5                                                             | 1.864851             | 36.80625             | 55.29595             | 3.454019             | 4.442390             | 7               | 1.564795        | 3.189573             | 8.530082         | 24.55044 | 63.72991  |
| 6                                                             | 1.865013             | 36.80499             | 55.29734             | 3.454263             | 4.442390             | 8               | 1.590722        | 3.440304             | 8.514303         | 26.10230 | 61.94310  |
| 7                                                             | 1.867038             | 36.78698             | 55.29544             | 3.483480             | 4.434096             | 9               | 1.614006        | 3.770611             | 8.629493         | 27.30903 | 60.29087  |
| 8                                                             | 1.869828             | 36.72805             | 55.36473             | 3.480162             | 4.427060             | 10              | 1.632803        | 4.006838             | 8.631100         | 28.37248 | 58.98959  |
| 9                                                             | 1.870073             | 36.71841             | 55.35559             | 3.493718             | 4.432284             |                 | 1.002000        | 1.000000             | 0.001100         | 20.07240 |           |
| 10                                                            | 1.870287             | 36.71720             | 55.35561             | 3.493995             | 4.433193             |                 |                 |                      |                  |          |           |
|                                                               |                      |                      |                      |                      |                      |                 |                 |                      |                  |          |           |

### Décomposition de la variance de Dmasse:

Sur la première période, la variation de Dmasse est entièrement expliquée par elle-même (100%). Au fil du temps, l'impact de Dmasse diminue et d'autres variables commencent à contribuer à sa variation, en particulier Ddepense.

## Décomposition de la variance de Ddepense :

Au début, la variation de Ddepense est principalement due à elle-même (55.6% à la première période). Au fil du temps, l'impact de Ddepense diminue légèrement, tandis que celui de Dmasse augmente, indiquant une influence croissante de Dmasse sur la variation de Ddepense.

#### Décomposition de la variance de Croissance PIB :

Initialement, la variation de Croissance PIB est dominée par elle-même (48.7% à la première période), mais elle diminue rapidement au profit de Dmasse et Ddepense.

À partir de la deuxième période, Dmasse et Ddepense commencent à contribuer davantage à la variation de Croissance PIB.

### Décomposition de la variance d'Inflation :

Au départ, la variation d'Inflation est principalement expliquée par elle-même (94.5% à la première période).

Au fil du temps, l'impact d'Inflation diminue et celui de Dmasse, Ddepense et Croissance PIB augmente.

## 8. Estimation VECM:

|                                                                                                                                           | timates                                           |                                      | Vector Error Correction Estimates                 |                                                    |                                                                                                                              |                                                           |                                                  |                                                   |                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------|---------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------|
| Vector Error Correction I<br>Date: 05/09/24 Time: 11<br>Sample (adjusted): 1977<br>Included observations: 4<br>Standard errors in ( ) & t | 0:50<br>2022<br>6 after adjustme                  | ents                                 |                                                   |                                                    | D(DDEPENSE(-3))  D(CROISSANCE(-1))                                                                                           | -2.846819<br>(1.80941)<br>[-1.57334]<br>2.530194          | -0.458022<br>(0.42274)<br>[-1.08347]<br>0.060209 | -0.074247<br>(0.46447)<br>[-0.15985]<br>-0.646932 | 0.113010<br>(0.23360)<br>[ 0.48378]<br>-0.236469 |
| Cointegrating Eq:                                                                                                                         |                                                   |                                      |                                                   | D(CROISSANCE(-1))                                  | (1.15910)<br>[ 2.18289]                                                                                                      | (0.27080)<br>[ 0.22234]                                   | (0.29754)<br>[-2.17428]                          | (0.14964)<br>[-1.58023]                           |                                                  |
| DMASSE(-1)                                                                                                                                | 1.000000                                          |                                      |                                                   |                                                    | D(CROISSANCE(-2))                                                                                                            | 0.704666                                                  | -0.062425                                        | -0.240392                                         | 0.030265                                         |
| DDEPENSE(-1)                                                                                                                              | -40.22072<br>(15.7539)                            |                                      |                                                   |                                                    | , , , , , , , , , , , , , , , , , , , ,                                                                                      | (1.10584)<br>[ 0.63722]                                   | (0.25836)<br>[-0.24162]                          | (0.28387)<br>[-0.84685]                           | (0.14277)<br>[ 0.21199]                          |
| CROISSANCE(-1)                                                                                                                            | [-2.55306]<br>-18.84970<br>(5.28555)              |                                      |                                                   |                                                    | D(CROISSANCE(-3))                                                                                                            | -0.552352<br>(0.85934)<br>[-0.64276]                      | 0.059474<br>(0.20077)<br>[ 0.29623]              | -0.142056<br>(0.22059)<br>[-0.64398]              | 0.061560<br>(0.11094)<br>[ 0.55488]              |
| INFLATION(-1)                                                                                                                             | [-3.56627]<br>26.90804                            |                                      |                                                   |                                                    | D(INFLATION(-1))                                                                                                             | 0.747728<br>(0.96600)                                     | 0.175852<br>(0.22569)                            | -0.350722<br>(0.24797)                            | 0.032379<br>(0.12471)                            |
| INI DATION(-1)                                                                                                                            | (4.46971)<br>[6.02008]                            |                                      |                                                   |                                                    |                                                                                                                              | [ 0.77405]                                                | [ 0.77918]                                       | [-1.41438]                                        | [ 0.25963]                                       |
| C                                                                                                                                         | 4.049621                                          |                                      |                                                   |                                                    | D(INFLATION(-2))                                                                                                             | 1.019349<br>(0.83355)<br>[1.22290]                        | 0.070068<br>(0.19474)<br>[ 0.35979]              | -0.275526<br>(0.21397)<br>[-1.28768]              | -0.205697<br>(0.10761)<br>[-1.91146]             |
| Error Correction:                                                                                                                         | D(DMASSE)                                         | D(DDEPEN                             | . D(CROISS                                        | D(INFLATION)                                       | D(INFLATION(-3))                                                                                                             | 0.342321                                                  | 0.085505                                         | -0.218396                                         | 0.054134                                         |
| CointEq1                                                                                                                                  | 0.066616<br>(0.03288)<br>[2.02593]                | 0.008907<br>(0.00768)<br>[1.15937]   | -0.010481<br>(0.00844)<br>[-1.24171]              | -0.023216<br>(0.00425)<br>[-5.46893]               | D(INI DATION(-0))                                                                                                            | (0.59816)<br>[ 0.57229]                                   | (0.13975)<br>[ 0.61185]                          | (0.15355)<br>[-1.42235]                           | (0.07722)<br>[ 0.70101]                          |
| D(DMASSE(-1))                                                                                                                             | -0.391567<br>(0.24711)<br>[-1.58462]              | 0.035345<br>(0.05773)<br>[ 0.61223]  | 0.079554<br>(0.06343)<br>[1.25417]                | 0.007508<br>(0.03190)<br>[ 0.23535]                | С                                                                                                                            | 1.019016<br>(1.34023)<br>[ 0.76033]                       | 0.165480<br>(0.31312)<br>[ 0.52849]              | -0.477072<br>(0.34403)<br>[-1.38670]              | -0.238222<br>(0.17303)<br>[-1.37680]             |
| D(DMASSE(-2))                                                                                                                             | -0.537398<br>(0.20005)<br>[-2.68632]              | 0.007508<br>(0.04674)<br>[ 0.16064]  | 0.058101<br>(0.05135)<br>[1.13142]                | 0.001865<br>(0.02583)<br>[ 0.07222]                | R-squared<br>Adj. R-squared<br>Sum sq. resids<br>S.E. equation                                                               | 0.610052<br>0.451635<br>2166.600<br>8.228380              | 0.612684<br>0.455337<br>118.2617<br>1.922414     | 0.484150<br>0.274586<br>142.7653<br>2.112207      | 0.603943<br>0.443045<br>36.11125<br>1.062298     |
| D(DMASSE(-3))                                                                                                                             | -0.151566<br>(0.18074)<br>[-0.83858]              | 0.012843<br>(0.04223)<br>[ 0.30414]  | 0.031158<br>(0.04640)<br>[ 0.67156]               | -0.012754<br>(0.02333)<br>[-0.54656]               | F-statistic<br>Log likelihood<br>Akaike AIC<br>Schwarz SC                                                                    | 3.850934<br>-153.8734<br>7.298846<br>7.855389             | 3.893832<br>-86.98911<br>4.390831<br>4.947374    | 2.310275<br>-91.32007<br>4.579134<br>5.135677     | 3.753576<br>-59.70432<br>3.204536<br>3.761079    |
| D(DDEPENSE(-1))                                                                                                                           | 3.030197<br>(1.67472)                             | -0.950363<br>(0.39127)               | -0.243949<br>(0.42990)                            | -0.674813<br>(0.21621)                             | Mean dependent S.D. dependent                                                                                                | -0.020016<br>11.11167                                     | 0.005434<br>2.604851                             | -0.064051<br>2.479953                             | -0.149486<br>1.423431                            |
| D(DDEPENSE(-2))                                                                                                                           | [ 1.80937]<br>2.412101<br>(1.98250)<br>[ 1.21669] | -0.808505<br>(0.46318)<br>[-1.74557] | [-0.56746]<br>0.164786<br>(0.50890)<br>[ 0.32381] | [-3.12110]<br>-0.162239<br>(0.25594)<br>[-0.63388] | Determinant resid covaria<br>Determinant resid covaria<br>Log likelihood<br>Akaike information criterio<br>Schwarz criterion | 316.2182<br>74.05518<br>-360.0953<br>18.26501<br>20.65020 |                                                  |                                                   |                                                  |
| D(DDEPENSE(-3))                                                                                                                           | -2.846819                                         | -0.458022                            | -0.074247                                         | 0.113010                                           | Number of coefficients                                                                                                       |                                                           | 60                                               |                                                   |                                                  |

#### VAR Model - Substituted Coefficients:

\_\_\_\_\_

 $\label{eq:decomposition} \begin{aligned} & \mathsf{Dmasse} = 0.066^* \ \mathsf{Dmasse} \ (-1) - 40.22^* \mathsf{Ddep} (-1) - 18.84^* \mathsf{CrPIB} (-1) + 26.90^* \mathsf{Dinf} (-1) - 0.391^* \mathsf{Dmasse} (-1) - \\ & 0.537^* \mathsf{Dmasse} (-2) - 0.151^* \mathsf{Dmasse} (-3) + 3.030^* \mathsf{Ddep} (-1) + 2.412^* \mathsf{Ddep} (-2) - 2.84^* \mathsf{Ddep} (-3) + 2.53^* \mathsf{CrPIB} (-1) + \\ & 0.704^* \mathsf{CrPIB} (-2) - 0.552^* \mathsf{CrPIB} (-3) + 0.74^* \mathsf{Dinf} (-1) + 1.019^* \mathsf{Dinf} (-2) + 0.342^* \mathsf{Dinf} (-3) + 1.019 \end{aligned}$ 

 $\begin{aligned} &\text{CrPIB} = -0.0104^* \ \text{Dmasse} \ (-1) - 40.2^* \text{Ddep} \ (-1) - 18.84^* \text{CrPIB} \ (-1) + 26.90^* \text{Dinf} \ (-1) + 0.079^* \text{Dmasse} \ (-1) + \\ &0.058^* \text{Dmasse} \ (-2) + 0.031^* \text{Dmasse} \ (-3) - 0.243^* \text{Ddep} \ (-1) + 0.164^* \text{Ddep} \ (-2) - 0.074^* \text{Ddep} \ (-3) - 0.646^* \text{CrPIB} \ (-1) - \\ &0.240^* \text{CrPIB} \ (-2) - 0.142^* \text{CrPIB} \ (-3) - 0.350^* \text{Dinf} \ (-1) - 0.275^* \text{Dinf} \ (-2) - 0.218^* \text{Dinf} \ (-3) - 0.477 \end{aligned}$ 

 $\begin{aligned} & \text{Dinf} = -0.023*\text{DMASSE}(-1) - 40.22*\text{Ddep}(-1) - 18.84*\text{CrPIB}(-1) + 26.908*\text{Dinf}(-1) + 0.007*\text{Dmasse}(-1) + \\ & 0.001*\text{Dmasse}(-2) - 0.0127535681023*\text{Dmasse}(-3) - 0.67481283624*\text{Ddep}(-1) - 0.162238575231*\text{Ddep}(-2) + \\ & 0.1130*\text{Ddep}(-3) - 0.236*\text{CrPIB}(-1) + 0.030*\text{CrPIB}(-2) + 0.061*\text{CrPIB}(-3) + 0.0323*\text{Dinf}(-1) - 0.205*\text{Dinf}(-2) + \\ & 0.054*\text{Dinf}(-3) - 0.2382 \end{aligned}$ 

# **Conclusion:**

En résumé, notre étude de VAR montre que la relation entre la masse monétaire et l'inflation est complexe et elle peut être dépendante de nombreux autres facteurs économiques et politiques. Bien qu'il existe une corrélation positive entre ces deux variables à court terme, la relation peut être moins claire à long terme. D'autres facteurs tels que les fluctuations économiques, les politiques fiscales et monétaires, la productivité et les fluctuations des taux de change peuvent également jouer un rôle important dans la relation entre la masse monétaire et l'inflation. Par conséquent, il est important de considérer ces facteurs supplémentaires lors de l'analyse de la relation entre la masse monétaire et l'inflation aux Japon.

# **Bibliographie**

- Econométrie : Régis Bourbonnais
- ➤ Banque Mondiale
- ➤ https://www.macrotrends.net/
- ➤ Investments, economic growth and employment: var method for Romania, sciendo
- ➤ James D. Hamilton: Time Series Analysis, Princeton University Press (1994). Chapter 11, Pages 318-320
- Sørensen, B. E., (2005), Granger causality, Economics, 7395, accessible en ligne sur https://ssl.uh.edu/~bsorense/gra\_caus.pdf.
- ➤ Alloza, M., (2017), A Very Short Note on Computing Impulse Response Functions