Section 13.6 The Binomial Theorem

Objectives

- Expanding $(a+b)^n$
- The Binomial Coefficients
- The Binomial Theorem
- Proof of the Binomial Theorem

• Expanding $(a+b)^n$

An expression with two terms is called **binomial**, such as a + b or $4x + x^3$.

Compute:

•
$$(a+b)^1 = a + b$$

•
$$(a+b)^2 = (a+b)(a+b) = a^2 + 2ab + b^2$$

$$(a+b)^{2} = (a+b)(a+b) = a^{2} + 2ab + b^{3}$$

$$(a+b)^{3} = (a+b)(a+b)^{2} = (a+b)(a^{2}+2ab+b^{2}) = a^{3}+3a^{2}b+3ab^{2}+b^{3}$$

$$(a+b)^3 = (a+b)(a+b)^2 = (a+b)^4 = (a+b)^4 = (a+b)^4 + 4a^3b + 6a^2b^2 + 4ab^2 + b^4$$

$$(a+b)^{4} = a^{4} + 4a^{6} + 6a^{6} + 10a^{3}b^{2} + 10a^{2}b^{3} + 5ab^{4} + b5$$

$$(a+b)^{5} = a^{5} + 5a^{4}b + 10a^{3}b^{2} + 10a^{2}b^{3} + 5ab^{4} + b5$$

Khowthose

There is a simple pattern that emerges in the coefficients (called **binomial coefficients**) of the expansion of $(a+b)^n$ (called the oinomial expansion).

1.) There are n+1 terms; the first being a^n and the last being $_$

$$(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$$

As we move to the right, the exponents of a decrease by 1 and the exponents of b <u>uncond</u>

$$(a+b)^5 = \frac{a^5}{a^5} + 5\frac{a^4}{a^5}b + 10\frac{a^3}{a^5}b^2 + 10\frac{a^2}{a^2}b^3 + 5\frac{a}{a}b^4 + b^5$$

The sum of the exponents of a and b in each term is n.

h =
$$5$$
 $(a + b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$

There's tons of "hidden pattens" in the binomial coefficients! Can you discover any?

Question What about higher powers? The above 3 patterns can help us write:

$$(a+b)^8 = a^8 + ?a^7b + ?a^6b^2 + ?a^5b^3 + ?a^4b^4 + ?a^3b^5 + ?a^2b^6 + ?ab^7 + b^8$$

Question How do we determine the coefficients?

Of course, we can just expand $(a + b)^8$ the LONG way. But, is there a **shortcut?**

Pascal's Triangle

Yes, and it's thanks to a French mathematician named Blaise Pascal.

Key Property of Pascal's Triangle

Every entry (other than the 1 in the first row) is the SUM of the TWO entries DIAGONALLY ABOVE IT.

From the Key Property, it is easy to generate Pascal's triangle quickly.

Ex 2 Explaining Pascal's Triangle Expand $(a + b)^8$ using Pascal's triangle.

ProTip You can check your work using https://www.wolframalpha.com/ or https://www.symbolab.com/

$$(a+b)^{8} = a^{3} + 8 a^{7}b + 28 a^{6}b^{7} + 56 a^{5}b^{3} + 70 a^{4}b^{4} + 56 a^{3}b^{5} + 28 a^{2}b^{6} + 8 a^{6}b^{7} + b^{8}$$

Ex 3 Explaining Pascal's Triangle Let's look at the sixth, seventh, and eighth rows of Pascal's triangle and compare them to $(a+b)^5$, $(a+b)^6$, and $(a+b)^7$:

To see why this holds, we look at the expansions of $(a+b)^5$ and $(a+b)^6$

$$(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$$

On the other hand, we arrive at the expansion of $(a+b)^6$ by multiplying (a+b) and $(a+b)^5$, i.e.

$$(a+b)(a^5+5a^4b+10a^3b^2+\underline{10a^2b^3}+\underline{5ab^4}+b^5).$$

Notice that the circled term in the expansion of $(a + b)^6$ is obtained via this multiplication from the two circles above it.

Remarks on Pascal's Triangle Remarks on Pascal's Triangle.

- GOOD: it is easy to memorize how to generate! I would definitely practice until you can write it for n = 4, n = 5.
- GOOD: it is recursive, meaning you get a new row from the previous row.
- BAD: It is not practical for large values of n. Would you use it to find $(a+b)^{100}$? The fact that it is recursive means that we would need to find $(a+b)^n$ for $n=0,1,2,3,\ldots,99$ first and then we can find $(a+b)^{100}$. Ouch.

The Binomial Coefficients

We want a formula for the coefficients of a binomial expansion.

We review what a factorial is: the factorial of an integer n is the product of n with all successively decreasing values until 1.

Namely,

Namely,
$$n! = n \cdot (n - 1) \cdot (n - 2) \cdot \dots \cdot 3 \cdot 2 \cdot 1$$
 We also define $0! = 1$ out of convenience (and because it makes the formulas true for $n = 0$).

Defn 1 Binomial Coefficients

Let $n, r \in \mathbb{N}$ with $r \leq n$. A binomial coefficient is

"n chooser"

Ex 4 Test Title Compute:

(a)
$$\binom{10}{4}$$

(b)
$$\binom{10}{6}$$

$$\binom{n}{r} = \frac{n!}{r! (n-r)!}$$

Do part (a) by hand and the rest with your calculator.

$$\frac{16!}{4!} = \frac{16!}{4!(10-4)!} = \frac{16!}{4!6!} = \frac{10.1.8.7.(6!)}{(4.8.7.1)(6!)} = 10.3.7 = 210$$

$$\binom{16}{6} = \boxed{216}$$
 () $\binom{100}{97} = \boxed{161700}$ d) $\binom{106}{3} = \boxed{161700}$

Notice any patterns?

- What do you think is the pattern between $\binom{n}{r}$ and $\binom{n}{n-r}$ \longrightarrow a large or integral $\binom{n}{r}$ and $\binom{n}{n-r}$
- Is $\binom{n}{r}$ always an integer?

4) they should be if they are forty a Linourial creft!

There's a connection between the binomial coefficients and the binomial expansions (duh! what's in a name, anyways?):

$$\binom{5}{0} = 1 \quad \binom{5}{1} = 5 \quad \binom{5}{2} = 10 \quad \binom{5}{3} = 10 \quad \binom{5}{4} = 5 \quad \binom{5}{5} = 1$$

and compare that to:

$$(a+b)^5 = a^5 + \frac{5}{5}a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5.$$

So, because the coefficients of Pascal's triangle correspond to the coefficients of a binomial expansion, we get:

$$N = 6 \qquad {0 \choose 0}$$

$$N = 1 \qquad {1 \choose 0} \qquad {1 \choose 1}$$

$$N = 2 \qquad {2 \choose 0} \qquad {2 \choose 1} \qquad {2 \choose 2}$$

$$N = 3 \qquad {3 \choose 0} \qquad {3 \choose 1} \qquad {3 \choose 2} \qquad {3 \choose 3}$$

$${4 \choose 0} \qquad {4 \choose 1} \qquad {4 \choose 2} \qquad {4 \choose 3} \qquad {4 \choose 4}$$

$${5 \choose 0} \qquad {5 \choose 1} \qquad {5 \choose 2} \qquad {5 \choose 3} \qquad {5 \choose 4} \qquad {5 \choose 5}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$${n \choose 0} \qquad {n \choose 1} \qquad {n \choose 2} \qquad \vdots \qquad \vdots \qquad {n \choose n-1} \qquad {n \choose n}$$

rows: top # always same
on
on
on
on

from 0 to M

Of course, we need to prove this (exercise using mathematical induction)!

Theorem 1 Key Property of Binomial Coefficients

Let $n, r \in \mathbb{N}$ with $r \leq n$. Then

$$\left(\begin{array}{c} n \\ r-1 \end{array} \right) + \left(\begin{array}{c} n \\ r \end{array} \right) = \left(\begin{array}{c} n+1 \\ r \end{array} \right)$$

Notice that the two terms on the left-hand side of this equation are adjacent entries in the rth row of Pascal?s triangle and the term on the right-hand side is the entry diagonally below them, in the (r+1)st row.

Thus this equation is a restatement of the key property of Pascal's triangle in terms of the binomial coefficients.

The Binomial Theorem

This was originally discovered and proved by Newton (yes, THAT Newton)—one of the inventors of calculus.

Theorem 2 The Binomial Theorem

Let $n, r \in \mathbb{N}$ with $r \leq n$. A binomial coefficient is

$$(a+b)^n = \binom{n}{0}a^nb^0 + \binom{n}{1}a^{n-1}b^1 + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n-2}a^2b^{n-2} + \binom{n}{n-1}a^1b^{n-1} + \binom{n}{n}a^0b^n$$

Remarks Some helpful ProTips.

- Keep in mind the 3 properties for binomial expansion discussed earlier.
- The top numbers in each binomial coefficient is *n*.
- The bottom numbers in each binomial coefficient are increasing.
- The bottom numbers in each binomial coefficient match the exponent of b for that term.
- Finding a specific term: If we want the term with b^r , then using the previous remark, we see that it is ponent of a is n-r because it needs to sum to n.
 - (r)

The ex-

• Finding a specific term: If we want the term with a^r , then using the previous remark, we see that it is the symmetry of Pascal's triangle.

Ex 5 Binomial Expansion Expand $(x + y)^4$ using the Binomial Theorem.

$$\frac{Sol}{(x+y)}'' = (\frac{4}{3})x^{4}y^{0} + (\frac{4}{1})x^{3}y^{1} + (\frac{4}{1})x^{2}y^{2} + (\frac{4}{3})x^{4}y^{3} + (\frac{4}{1})x^{3}y^{4}$$

$$= [-x^{4} \cdot y^{0} + 4x^{2}y^{1} + 6x^{2}y^{2} + 4x^{4}y^{3} + 1 \cdot x^{0}y^{4}]$$

$$= (x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4})$$

$$\begin{pmatrix} y \\ 0 \end{pmatrix} = \frac{4!}{0!(4-0)} = \frac{4!}{1\cdot 4!} = 1$$

Check Pascali Thazle

Ex 6 Binomial Expansion Expand $(x-2y)^6$ using the Binomial Theorem.

Solution

Expand $(x-2y)^6$ using the Binomial Theorem. $(x-2y)^6 = (x-2y)^6 + (x$

 $= 1 \cdot x^{6} \cdot 1 + 6 \cdot x^{5} \cdot (-2) y + 15 \cdot x^{4} \cdot (4) y^{2} + 20 \cdot x^{3} \cdot (-8) y^{3} + 15 \cdot x^{2} (16) y^{4} + 6 \cdot x (-32) y^{5} + 1 \cdot 1 \cdot (64) y^{6}$

$$= \left[x^{6} - 12 x^{5}y + 60 x^{4}y^{2} - 160 x^{3}y^{3} + 240 x^{2}y^{4} - 192 xy^{5} + 64y^{6} \right]$$

Ex 7 Finding a single term Find the term in the expansion of $(2x+y)^{20}$ that contains x^5 .

Hint: Use
$$\binom{n}{n-r}(2x)^r(y)^{n-r}$$
.
$$\left(2x + y \right)^{2b} = \binom{2b}{2}(2x)^2(y)^2 + \binom{2b}{1}(2x)^2(y)^4 + \cdots + \binom{2b}{15}(2x)^5(y)^5 + \cdots$$

Ex 8 Binomial Expansion Expand
$$(4 - \sqrt{x})^5$$
 using the Binomial Theorem.

Sol $(4 - \sqrt{x})^5 = {5 \choose 0} 4^5 (\sqrt{x})^6 + {5 \choose 1} 4^4 (-\sqrt{x})^1 + {5 \choose 2} 4^3 (-\sqrt{x})^2 + {5 \choose 3} 4^2 (-\sqrt{x})^3 + {5 \choose 4} 4^3 (-\sqrt{x})^4 + {5 \choose 5} 4^2 (-\sqrt{x})^3 + {5 \choose 4} 4^3 (-\sqrt{x})^4 + {5 \choose 5} 4^2 (-\sqrt{x})^3 + {5 \choose 4} 4^3 (-\sqrt{x})^3 + {5 \choose 5} 4^3 (-\sqrt{x})^3 (-\sqrt{x})^3 + {5 \choose 5} 4^3 (-\sqrt{x})^3 (-\sqrt$

Expand
$$\left(x + \frac{1}{x}\right)^7$$
 using the Binomial Theorem.

Sol $\left(x + \frac{1}{x}\right)^6 + \left(\frac{1}{x}\right)^6 + \left(\frac{1}{x}\right)^6 + \left(\frac{1}{x}\right)^7 + \left(\frac{1}{x}\right)^$

$$= \left(1 \cdot \chi^{\frac{7}{4}} \cdot 1\right) + \left(7 \cdot \chi^{\frac{5}{4}} \cdot \frac{1}{\chi^{\frac{7}{4}}}\right) + \left(21 \cdot \chi^{\frac{7}{4}} \cdot \frac{1}{\chi^{\frac{7}{4}}}\right) + \left(35 \cdot \chi^{\frac{1}{4}} \cdot \frac{1}{\chi^{\frac{7}{4}}}\right) + \left(21 \cdot \chi^{\frac{7}{4}} \cdot \frac{1}{\chi^{\frac{7}{4}}}\right)$$

$$= \sqrt{\frac{7}{17} + \frac{7}{17}} + \frac{1}{17} + \frac{3}{17} + \frac{35}{17} \times \frac{25}{17} + \frac{21}{17} + \frac{7}{17} + \frac{1}{17}$$

Proof of the Binomial Theorem

We now prove the Binomial Theorem using The Principle of Mathematical Induction.

Let P(n): $(a+b)^n = \binom{n}{0}a^nb^0 + \binom{n}{1}a^{n-1}b^1 + \binom{n}{2}a^{n-2}b^2 + \cdots + \binom{n}{n-1}a^1b^{n-1} + \binom{n}{n}a^0b^n$ **Base Step:** For h=1, [(1) says: RHS = () a b + (!) a b = 1.a.1 + 1.a.b = a+b = (a+b)=LHS~ (IH) Assume : $(a+b)^k = {k \choose v} a^k b^o + {k \choose i} a^{k-1} b^i + {k \choose i} a^{k-2} b^2 + \cdots + {k \choose k-1} a^i b^{k-1} + {k \choose k} a^o b^k$ P(k) is trueP(k+1): $(a+b)^{k+1} = {\binom{k+1}{0}}a^{k+1}b^{0} + {\binom{k+1}{1}}a^{k}b^{1} + \cdots + {\binom{k+1}{1}}a^{0}b^{k} + {\binom{k+1}{1}}a^{0}b^{k+1}$ We have: $(a+b)^{k+1} = (a+b)(a+b)^{k}$ $= (a+b) \begin{bmatrix} k \\ 0 \end{bmatrix} a^{k}b^{0} + \binom{k}{1} a^{k-1}b^{1} + \cdots + \binom{k}{k-1}a^{1}b^{k-1} + \binom{k}{k}a^{0}b^{1}$ $= (a+b) \begin{bmatrix} k \\ 0 \end{bmatrix} a^{k}b^{0} + \binom{k}{1} a^{k}b^{1} + \cdots + \binom{k}{k-1}a^{1}b^{1} + \cdots + \binom{k}$ $= \frac{\binom{k}{0}}{\binom{k}{0}} + \frac{\binom{k}{1}}{\binom{k}{1}} + \binom{k}{1}} + \frac{\binom{k}{1}}{\binom{k}{1}} + \binom{k}{1}} + \binom{k}{1} + \binom{k}{1}} + \binom{k}{1} + \binom{k}{1} + \binom{k}{1} + \binom{k}{1} + \binom{k}{1} + \binom{k}{1} + \binom{k}{1}} + \binom{k}{1} + \binom{k}{1} + \binom{k}{1} + \binom{k}{1} + \binom{k}{1} + \binom{k}{1}} + \binom{k}{1} + \binom{$ $= \binom{\kappa}{0} a^{\kappa+1} b^{0} + \left(\binom{\kappa}{0} + \binom{\kappa}{1} \right) a^{\kappa} b^{1} + \left(\binom{\kappa}{1} + \binom{k}{2} \right) a^{\kappa-1} b^{2}$ $= \binom{\kappa}{0} a^{\kappa+1} b^{0} + \left(\binom{\kappa}{0} + \binom{\kappa}{1} \right) a^{\kappa} b^{1} + \left(\binom{\kappa}{1} + \binom{k}{2} \right) a^{\kappa-1} b^{2}$ $= \binom{\kappa}{0} a^{\kappa+1} b^{0} + \left(\binom{\kappa}{0} + \binom{\kappa}{1} \right) a^{\kappa} b^{1} + \left(\binom{\kappa}{1} + \binom{k}{2} \right) a^{\kappa} b^{1}$ $= \binom{\kappa}{0} a^{\kappa+1} b^{0} + \left(\binom{\kappa}{0} + \binom{\kappa}{1} \right) a^{\kappa} b^{1} + \left(\binom{\kappa}{1} + \binom{\kappa}{2} \right) a^{\kappa} b^{1} + \left(\binom{\kappa}{1} + \binom{\kappa}{2} \right) a^{\kappa} b^{1}$ $= \binom{\kappa}{0} a^{\kappa+1} b^{0} + \left(\binom{\kappa}{0} + \binom{\kappa}{1} + \binom{\kappa}{1} + \binom{\kappa}{1} + \binom{\kappa}{2} + \binom$ $+\cdots+\left[\binom{k}{k-1}+\binom{k}{k}\right]a^{i}b^{k}+\binom{k}{k}a^{0}b^{k+1}$ $= \binom{k+1}{0} \binom{k+1}{0} + \binom{k}{0} + \binom{k}{0} + \binom{k}{1} \binom{k}{1} \binom{k}{1} + \binom{k}{1} \binom{k}{2} \binom{k+1}{2} \binom{k}{2} \binom{k+1}{2} = 1$ $+ \cdots + \binom{k}{k+1} \binom{k}{1} \binom{k}{1} \binom{k}{1} \binom{k}{1} \binom{k}{1} \binom{k}{2} \binom{k+1}{2} \binom{k}{2} \binom{k+1}{2} \binom{k}{2} \binom{k+1}{2} \binom{k}{2} \binom{k+1}{2} \binom{k+1}$ "So, P(k+1) follows from P(k)." "Therefore, by the principle of mathematical induction, P(n) is true for all $n \in \mathbb{N}$."