

Construcción de árboles filogenéticos

Bradd Mendoza Guido

Genómica de procariontes B0634-SP8221

Evolución

• Cambio en las frecuencias alélicas de una población

- Mutación
- Flujo genético
- Deriva genética
- Selección natural.

Árbol filogenético

 Representación gráfica que muestras las relaciones evolutivas estimadas de un grupo de organismos.

Por qué crear árboles filogenéticos?

- Identificar especies
- Estudiar la relación entre dos o más especies
- Discriminar cepas, o poblaciones de una misma especie
- Descubrir nuevas variantes de genes y/o proteínas

Árboles genéticos vs protéicos

Genes

- Mayor número de caracteres
- Cambios en sus secuencias pueden no verse en las proteínas
- Genes bajo poca selección natural ayudan a entender mejor la historia evolutiva de los organismos asociada a tiempos biológicos

Proteínas

- Son las moléculas que realmente están bajo el efecto de la selección
- Ayudan a descifrar la derivación de nuevas moléculas
- Estudiar las relaciones evolutivas a nivel fenotípico

Métodos basados en caracteres

Parsimonia:

- El menor número de cambios para explica mejor los datos
- No toma en cuenta modelos evolutivos
 - Devolución de caracteres: C → T → C
 - Homoplasia

Ancestro común más reciente

DOI:10.1371/journal.pone.0013354

Maximum likelihood

- 1 TCAAAAATGGCTTTATTCGCTTAATGCCGTTAACCCTTGCGGGGGCCATG
- 2 TCCGTGATGGATTTATTTCTGCAATGCCTGTCATCTTATTCTCAAGTATC
- 3 TTCGTGATGGATTTATTGCTGGTATGCCAGTCATCCTTTTCTCATCTATC
- 4 TTCGTGACGGGTTTATCTCGGCAATGCCGGTCATCCTATTTTCGAGTATT

$$P_{\mathrm{Fig3}} = P_{\mathrm{A}} \times P_{\mathrm{AG}} \times P_{\mathrm{AC}} \times P_{\mathrm{AT}} \times P_{\mathrm{TT}} \times P_{\mathrm{TT}}$$

Extraídos del libro: Phylogenetics tree made easy

$$P_{\mathrm{Fig3}} = P_{\mathrm{A}} \times P_{\mathrm{AG}} \times P_{\mathrm{AC}} \times P_{\mathrm{AT}} \times P_{\mathrm{TT}} \times P_{\mathrm{TT}}$$

$$P = P^G \times P^{GG} \times P^{GC} \times P^{GA} \times P^{AT} \times P^{AT}$$

Extraídos del libro: Phylogenetics tree made easy

Inferencia bayesiana

- Probabilidad a posteriori
 - Calcula la probabilidad de que un árbol sea correcto basado en una serie de datos y modelos previos
 - Utiliza un algoritmo llamado Cadenas de Markov
 - Toma un árbol inicial y empieza a crear generaciones de nuevos árboles con modificaciones al primero.
 - Basado en toda la información previa define cuál es el árbol con la mayor probabilidad a posterior de cumplir con la hipótesis

Distribución gamma

Probability Density for Gamma Distribution with Variable Alpha and Beta=0.25

Cómo construir un árbol?

- Gen (o genes) "neutrales" que sean compartidos entre todas las especies a utilizar
- 16S, 18S, COI, etc.
- Los genes a utilizar pueden variar dependiendo del grupo de interés
- Outgroup taxonómico: Especie que sirve como base para plantar la raíz del árbol filogenético

GenBank

• Pegar la secuencia en un bloc de notas

Citrobacter freundii partial 16S rRNA gene, strain HLR20

GenBank: HG974539.1 GenBank Graphics

>HG974539.1 Citrobacter freundii partial 16S rRNA gene, strain HLR20 GGAGCTTGCTCCTTGGGTGACGAGTGGCGGACGGGTGAGTAATGTCTGGGAAACTGCCCGATGGAGGGGG ATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGACCAAAGAGGGGGACCTTCGGGCCTCT TGCCATCGGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGACGATCCCTA GCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGT GGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTATGAAGAAGGCCTTCGGGTTG TAAAGTACTTTCAGCGAGGAGGAAGGCGTTGTGGTTAATAACCGCAGCGATTGACGTTACTCGCAGAAGA AGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGG CGTAAAGCGCACGCAGGCGGTCTGTCAAGTCGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCC GAAACTGGCAGGCTAGAGTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATC TGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAG CAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGC GTGGCTTCCGGAGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGA ATTGACGGGGGCCCGCACAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTAC TCTTGACATCCAGAGAACTTAGCAGAGATGCTTTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGG CTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATCCTTTGTTGC CAGCGGTTAGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGATGACGTCAAG TCATCATGGCCCTTACGAGTAGGGCTACACACGTGCTACAATGGCATATACAAAGAGAGCGACCTCGCG AGAGCAAGCGGACCTCATAAAGTATGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGG AATCGCTAGTAATCGTGGATCAGAATGCCACGGTGAATACGTTCCCGGGCCTTGTACACACCCCCCGTCA CACCATGGGAGTGGGTTGCAAAAGAAGTA

 Combinar todas las secuencias en un solo archivo

>MN900682 1 Escherichia coli

AATTGAAGAGTTTGATCATGGCTCAGATTGAACGCTGGCGGCAGGCCTAACACATGCAAGTCGAACGGTA ACAGGAAGAAGCTTGCTCTTTGCTGACGAGTGGCGGACGGGTGAGTAATGTCTGGGAAACTGCCTGATGG AGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGACCAAAGAGGGGGACCTTCGG GCCTCTTGCCATCGGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGACGA TCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGC AGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTATGAAGAAGGCCTTC GGGTTGTAAAGTACTTTCAGCGGGGAGGAAGGGAGTAAAGTTAATACCTTTGCTCATTGACGTTACCCGC AGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATT ACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACT GCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTA GAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGT GGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCGACTTTGGAGGTTGTGCCCT TGAGGCGTGGCTTCCGGAGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTC AAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTT ACCTGGTCTTGACATCCACGGAAGTTTTCAGAGATGAGAATGTGCCTTCGGGAACCGTGAGACAGGTGCT GCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATCCTT TGTTGCCAGCGGTCCGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGATGAC GTCAAGTCATCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGCGAC CTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGA AGTCGGAATCGCTAGTAATCGTGGATCAGAATGCCACGGTGAATACGTTCCCGGGCCTTGTACACACCGC GTGATTCATGACTGGGGTGAAGTCGTAACAAGGTAACCGTAGGGGAACCTGCGGTTGGATCACCT

>KC990817 1 Klebsiella pneumoniae

GCTTGCTCTCGGGTGACGAGCGGCGGACGGGTGAGTAATGTCTGGGAAACTGCCTGATGGAGGGGGATAA CTACTGGAAACGGTAGCTAATACCGCATAATGTCGCAAGACCAAAGTGGGGGACCTTCGGGCCTCATGCC ATCAGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGACGATCCCTAGCTG GTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGG <u>AATATTGCACAATGGGCG</u>CAAGCCTGATGCAGCCATGCCGCGTGTGAAGAAGAAGGCCTTCGGGTTGTAAA GCACTTTCAGCGGGGAGGAAGGCGATAAGGTTAATAACCTTGTCGATTGACGTTACCCGCAGAAGAAGCA CCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTA AAGCGCACGCAGGCGGTCTGTCAAGTCGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATTCGAAA CTGGCAGGCTAGAGTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGA GGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAA

Ln 45, Col 25

Alineamiento

Mejor modelo evolutivo

• Frecuencia de tetranucleóticos (ATGC)

Contenido GC

E. coli GC: 50%

S. cerevisiae GC: 40%

D. melanogaster GC: 53%

DNA models

Base substitution rates

IQ-TREE includes all common DNA models (ordered by complexity):

Model	df	Explanation	Code
JC or JC69	0	Equal substitution rates and equal base frequencies (Jukes and Cantor, 1969).	000000
F81	3	Equal rates but unequal base freq. (Felsenstein, 1981).	000000
K80 or K2P	1	Unequal transition/transversion rates and equal base freq. (Kimura, 1980).	010010
HKY or HKY85	4	Unequal transition/transversion rates and unequal base freq. (Hasegawa, Kishino and Yano, 1985).	010010
TN or TN93	5	Like HKY but unequal purine/pyrimidine rates (Tamura and Nei, 1993).	010020
TNe	2	Like TN but equal base freq.	010020
K81 or K3P	2	Three substitution types model and equal base freq. (Kimura, 1981).	012210
K81u	5	Like K81 but unequal base freq.	012210
TPM2	2	AC=AT, AG=CT, CG=GT and equal base freq.	010212
TPM2u	5	Like TPM2 but unequal base freq.	010212
TPM3	2	AC=CG, AG=CT, AT=GT and equal base freq.	012012
TPM3u	5	Like TPM3 but unequal base freq.	012012
TIM	6	Transition model, AC=GT, AT=CG and unequal base freq.	012230
TIMe	3	Like TIM but equal base freq.	012230
TIM2	6	AC=AT, CG=GT and unequal base freq.	010232
TIM2e	3	Like TIM2 but equal base freq.	010232
TIM3	6	AC=CG, AT=GT and unequal base freq.	012032
TIM3e	3	Like TIM3 but equal base freq.	012032
TVM	7	Transversion model, AG=CT and unequal base freq.	012314
TVMe	4	Like TVM but equal base freq.	012314
SYM	5	Symmetric model with unequal rates but equal base freq. (Zharkikh, 1994).	012345
GTR	8	General time reversible model with unequal rates and unequal base freq. (Tavare, 1986).	012345

The last column Code is a 6-digit code defining the equality constraints for 6 relative substitution rates: A-C, A-G, A-T, C-G, C-T and G-T.

101010 means that A-G rate is equal to C-T rate (corresponding to 1 in the code) and the remaining four substitution rates are equal

Model selection may not be a mandatory step for phylogeny reconstruction

Shiran Abadi, Dana Azouri, Tal Pupko

& Itay Mayrose

✓

Nature Communications 10, Article number: 934 (2019) | Cite this article

Table 1 Model selection criteria procedures

From: Model selection may not be a mandatory step for phylogeny reconstruction

Criterion	Procedure
AIC	ML is computed for every candidate model and the model with minimal $\{-2\ell+2K\}$ is selected
AlCc	Based on AIC but penalizes also for the data size. Namely, the model with minimal $\{AIC+\frac{2K(K+1)}{n-K-1}\}$ is selected; advised to be used instead of AIC when $\frac{n}{K}<40^{29}$
BIC	ML is computed for every candidate model and the model with minimal $\{-2\ell+K\ln n\}$ is selected
DT	Based on BIC but incorporates relative branch-length error as a performance measure
hLRT/dLRT	Sequential likelihood ratio tests between pairs of nested models until one cannot be rejected. Topologies are fixed to allow nesting. While in hLRT the order in which parameters are added is defined a priori, in dLRT all models that differ in one parameter are compared in parallel and the hierarchy proceeds with the model that maximizes the log-likelihood difference. Thus, dLRT enables a different order of hypotheses testing for different datasets
BF	The ratio between the marginal likelihood of two models. A ratio above 10 implies strong support for the model at the numerator

https://www.nature.com/articles/s41467-019-08822-w/tables/1

Input Data Options

Nucleotide Sequences
Protein Sequences
Pairwise Distance

Right Alignment Gap
Identical Symbol

Rile:///C:/Users/PC/AppData/Local/MEGA11/MEGA11_11220624-x86_f

M11: Select Genetic Code \times <u>D</u>elete <u>V</u>iew **Statistics** Standard Vertebrate Mitochondrial Invertebrate Mitochondrial Yeast Mitochondrial Mold Mitochondrial Protozoan Mitochondrial Coelenterate Mitochondrial Mycoplasma Spiroplasma Ciliate Nuclear Dasycladacean Nuclear Hexamita Nuclear ☐ Echinoderm Mitochondrial Euplotid Nuclear ☐ Bacterial Plastid ☐ Plant Plastid Alternative Yeast Nuclear ∢ ок ? Help (x) Cancel

Model Selection (ML) Option Setting ANALYSIS Tree to Use → Automatic (Neighbor-joining tree) User Tree File → Not Applicable Statistical Method → Maximum Likelihood SUBSTITUTION MODEL Substitutions Type → Nucleotide Genetic Code Table → Not Applicable DATA SUBSET TO USE Gaps/Missing Data Treatment → Use all sites Site Coverage Cutoff (%) → Not Applicable Select Codon Positions → 2 1st 2 2nd 3rd Noncoding Sites Branch Swap Filter → None SYSTEM RESOURCE USAGE Number of Threads → 6 ? Help (x) Cancel ⟨√) ок

4)

M11: Analysis Preferences

MEGA Caption Expert: Find Best-Fit Substitution Model (ML)

	con capaon	expert rin	d best the substitution model (me)
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>H</u> elp
TXT I	= 💶 🗀		
Resul	ts		

Table. Max	Table. Maximum Likelihood fits of 24 different nucleotide substitution models Model Parameters BIC AICC InL (+I) (+G) R f(A) f(T) f(C) f(G) r(AT) r(AC) r(AG) r(TA) r(TC) r(TG) r(CA) r(CT) r(CG) r(GA) r(GT) r(GC)																						
Model	Parameters	BIC	AICc	InL	(+/)	(+G)	R	f(A)	f(T)	f(C)	f(G)	r(AT)	r(AC)	r(AG)	r(TA)	r(TC)	r(TG)	r(CA)	r(CT)	r(CG)	r(GA)	r(GT)	r(GC)
TN93+G	19	10564.156	10425.668	-5193.799	n/a	0.33	1.61	0.249	0.201	0.231	0.318	0.038	0.043	0.123	0.047	0.217	0.060	0.047	0.188	0.060	0.096	0.038	0.043
TN93+G+I	20	10573.449	10427.675	-5193.799	0.00	0.32	1.61	0.249	0.201	0.231	0.318	0.038	0.043	0.123	0.047	0.217	0.060	0.047	0.189	0.060	0.096	0.038	0.043
T92+G	16	10574.367	10457.736	-5212.843	n/a	0.32	1.58	0.225	0.225	0.275	0.275	0.043	0.053	0.169	0.043	0.169	0.053	0.043	0.138	0.053	0.138	0.043	0.053
T92+G+I	17	10583.660	10459.743	-5212.843	0.00	0.32	1.58	0.225	0.225	0.275	0.275	0.043	0.053	0.169	0.043	0.169	0.053	0.043	0.138	0.053	0.138	0.043	0.053
K2+G	15	10583.896	10474.551	-5222.254	n/a	0.32	1.56	0.250	0.250	0.250	0.250	0.049	0.049	0.152	0.049	0.152	0.049	0.049	0.152	0.049	0.152	0.049	0.049
HKY+G	18	10588.406	10457.203	-5210.570	n/a	0.32	1.63	0.249	0.201	0.231	0.318	0.039	0.045	0.195	0.048	0.142	0.062	0.048	0.123	0.062	0.153	0.039	0.045
GTR+G	22	10588.645	10428.302	-5192.104	n/a	0.33	1.62	0.249	0.201	0.231	0.318	0.049	0.033	0.123	0.061	0.217	0.059	0.036	0.189	0.058	0.096	0.037	0.042
K2+G+I	16	10593.189	10476.558	-5222.254	0.00	0.32	1.56	0.250	0.250	0.250	0.250	0.049	0.049	0.152	0.049	0.152	0.049	0.049	0.152	0.049	0.152	0.049	0.049
HKY+G+I	19	10597.700	10459.211	-5210.570	0.00	0.32	1.63	0.249	0.201	0.231	0.318	0.039	0.045	0.195	0.048	0.142	0.062	0.048	0.123	0.062	0.153	0.039	0.045
GTR+G+I	23	10597.937	10430.310	-5192.104	0.00	0.32	1.62	0.249	0.201	0.231	0.318	0.049	0.033	0.123	0.061	0.217	0.059	0.036	0.189	0.058	0.096	0.037	0.042
JC+G	14	10718.233	10616.175	-5294.068	n/a	0.36	0.50	0.250	0.250	0.250	0.250	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083
TN93+I	19	10721.891	10583.402	-5272.666	0.33	n/a	1.31	0.249	0.201	0.231	0.318	0.043	0.049	0.121	0.053	0.192	0.068	0.053	0.167	0.068	0.094	0.043	0.049
JC+G+I	15	10727.526	10618.182	-5294.069	0.00	0.36	0.50	0.250	0.250	0.250	0.250	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083
T92+I	16	10737.576	10620.945	-5294.447	0.33	n/a	1.30	0.225	0.225	0.275	0.275	0.049	0.059	0.156	0.049	0.156	0.059	0.049	0.128	0.059	0.128	0.049	0.059
K2+I	15	10745.762	10636.418	-5303.187	0.33	n/a	1.29	0.250	0.250	0.250	0.250	0.055	0.055	0.141	0.055	0.141	0.055	0.055	0.141	0.055	0.141	0.055	0.055
GTR+I	22	10746.242	10585.899	-5270.903	0.33	n/a	1.31	0.249	0.201	0.231	0.318	0.052	0.041	0.121	0.065	0.191	0.072	0.045	0.166	0.062	0.094	0.045	0.045
HKY+I	18	10753.046	10621.843	-5292.890	0.33	n/a	1.31	0.249	0.201	0.231	0.318	0.044	0.051	0.179	0.055	0.130	0.070	0.055	0.113	0.070	0.140	0.044	0.051
TN93	18	10847.591	10716.388	-5340.162	n/a	n/a	1.21	0.249	0.201	0.231	0.318	0.045	0.052	0.122	0.056	0.180	0.071	0.056	0.157	0.071	0.095	0.045	0.052
JC+I	14	10865.799	10763.742	-5367.852	0.33	n/a	0.50	0.250	0.250	0.250	0.250	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083
T92	15	10865.986	10756.641	-5363.299	n/a	n/a	1.21	0.225	0.225	0.275	0.275	0.051	0.062	0.151	0.051	0.151	0.062	0.051	0.124	0.062	0.124	0.051	0.062
GTR	21	10871.715	10718.656	-5338.286	n/a	n/a	1.21	0.249	0.201	0.231	0.318	0.053	0.044	0.122	0.065	0.179	0.077	0.047	0.156	0.066	0.095	0.049	0.048
K2	14	10873.060	10771.003	-5371.482	n/a	n/a	1.21	0.250	0.250	0.250	0.250	0.057	0.057	0.137	0.057	0.137	0.057	0.057	0.137	0.057	0.137	0.057	0.057
HKY	17	10882.988	10759.070	-5362.507	n/a	n/a	1.21	0.249	0.201	0.231	0.318	0.046	0.053	0.172	0.057	0.125	0.073	0.057	0.109	0.073	0.135	0.046	0.053
JC	13	10986.432	10891.662	-5432.814	n/a	n/a	0.50	0.250	0.250	0.250	0.250	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083

M11: Analysis Preferences Phylogeny Reconstruction Option Setting ANALYSIS Statistical Method -> Maximum Likelihood PHYLOGENY TEST Test of Phylogeny → Bootstrap method No. of Bootstrap Replications → 100 SUBSTITUTION MODEL Substitutions Type → Nucleotide Genetic Code Table → Not Applicable Model/Method → Tamura-Nei model RATES AND PATTERNS Rates among Sites → Gamma Distributed (G) No of Discrete Gamma Categories ightarrow Uniform Rates DATA SUBSET TO USE Has Invariant Sites (I) $\mathsf{Gaps/Missing\ Data\ Treatment} \to \overline{\mathsf{Gamma\ Distributed\ With\ Invariant\ Sites\ (G+I)}$ Site Coverage Cutoff (%) → Not Applicable TREE INFERENCE OPTIONS ML Heuristic Method → Nearest-Neighbor-Interchange (NNI) Initial Tree for ML → Make initial tree automatically (Default - NJ/BioNJ) Initial Tree File → Not Applicable Branch Swap Filter → None SYSTEM RESOURCE USAGE Number of Threads → 6 (x) Cancel √ ok

Figure 3. Dendrogram showing the genetic relationships between BD strains based on MLST. The dendrogram was created using seven molecular markers employing the "Neighbor-Joining" method and a bootstrap of 10000 subsamples.

Árbol filogenómico Fig4. relaciones representando las evolutivas de las bacterias aisladas. En los nodos se muestran los valores de boostrap, los colores representan los sitios de dónde se aislaron las bacterias y las barras en azul representan el número de ARGs presentes (los números entre representan los ARGs paréntesis encontrados en plásmidos). Se utilizaron 1489 genes de copia única y el método de máxima verosimilutd con el modelo evolutivo GTR.

Árbol filogenómico mostrando las relaciones evolutivas del género Streptomyces. En Verde se muestran los genomas más basales utilizados como outgroup, en azul el grupo de Streptomyces albidoflavus y en rojo el clado asociado al aislamiento de interés. Se utilizaron 71 genes de copia única y se realizó el método de inferencia bayesiana con el modelo evolutivo GTR con distribución gamma y proporción de sitios invariables.

Gracias ©

If you had a time machine what would you do? Me:

