[Problem 1]

(a) Give an example of a set A such that there is a set B with $B \in A$ but $B \nsubseteq A$

Let
$$A = \{\{X\}, \{Y\}, \{Z\}\}\$$

Let $B = \{X\}$

We claim that there exists a set B such that $B \in A$ but $B \nsubseteq A$.

B is an element of A - If $B = \{X\}$, we have $B \in A$

B is not a subset of A

 $A \subseteq B \iff \exists x (x \in A \cap x \notin B)$

- there exists at least one element in set A that is not in set B, being $\{Y\}$ or $\{Z\}$, thus $B \nsubseteq A$

Therefore, there exists a set B with $B \in A$ but $B \nsubseteq A$

(b) Give an example of a set A such that there is a set B with $B \subseteq A$ but $B \notin A$

Let
$$A = \{\{X\}, \{Y\}, \{Z\}\}\}$$

Let $B = \{\{X\}\}$

We claim that there exists a set B such that $B \subseteq A$ but $B \notin A$.

B is a subset of A

 $A \subseteq B$ if and only if $x \in A \rightarrow x \in B$

- iff $B = \{\{X\}\}$, it means every element of set B is also an element of set A, we have $B \subseteq A$

B is not an element of A

- The element of ${\it B}$ is a set itself
- B has the set {X}, which is an element of A, but B itself is not an element of A.
- The elements of A are a sets themselves

Therefore, there exists a set B with $B \subseteq A$ but $B \notin A$

[Problem 2]

 $P(\{\{\emptyset\}\}) = \{\emptyset, \{\emptyset\}\}\$

Cardinality: $|P(\{\{\emptyset\}\})| = 2^1 = 2$

```
Calculate the following powersets:
The cardinality (number of elements) of the power set of a set with n
elements is 2^n, including the empty set and the set itself.
P(A) is the set of all subsets of A
[0]
      P(\emptyset)
       i.e. the powerset of the empty set
       - has only one element
                Ø (the empty set)
       - the empty set has no elements, so the only subset it can have is
       the empty set.
       \therefore P(\emptyset) = \{\emptyset\}
[1] P(\{\emptyset\})
       i.e. the power set of the set containing only the empty set
       - has only one element
                Ø (the empty set)
       - powerset is the empty set and the set itself.
       \therefore P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\
       Cardinality: |P(\{\emptyset\})| = 2^1 = 2
[2] P(\{\emptyset, \{\emptyset\}\})
       i.e. the power set of the set containing the empty set & the set
       containing the empty set
        - has two elements,
               Ø (the empty set) &
               {Ø} (the set containing the empty set)
        - all possible subsets + the empty set and the set itself.
       P(\{\emptyset, \{\emptyset\}\}) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}
       Cardinality: |P(\{\emptyset, \{\emptyset\}\})| = 2^2 = 4
[3] P(\{\{\emptyset\}\}) = \{\emptyset, \{\emptyset\}\}
       i.e. the power set of the set containing the empty set
       - has only one element
                \{\emptyset\} (the set containing the empty set)
        - powerset is the empty set and the set itself.
       = \{\emptyset, \{\emptyset\}\}
```

```
[4] 	 P(P(\emptyset)) = {\emptyset, {\emptyset}}
        i.e. the powerset of the powerset of the empty set
        FROM [0] ABOVE
        P(\emptyset) i.e. the powerset of the empty set
        - has only one element
                 Ø (the empty set)
        - the empty set has no elements, so the only subset it can have is
        the empty set.
        = \{\emptyset\}
        substitute P(\emptyset) = \{\emptyset\} into P(P(\emptyset))
        P(P(\emptyset))
        \implies P(\{\emptyset\})
        FROM [1] ABOVE
        P(\{\emptyset\}) i.e. the power set of the set containing only the empty set
        - has only one element
                 Ø (the empty set)
        - powerset is the empty set and the set itself.
        \therefore P(P(\emptyset)) = \{\emptyset, \{\emptyset\}\}\
        Cardinality: |P(\{\emptyset\})| = 2^1 = 2
[5] P(P(\{\emptyset\}))
        i.e. the power set of the powerset of the set containing only the
        empty set
        FROM [1] ABOVE
        P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\
        - has only one element
                 \{\emptyset\} (the set containing the empty set)
        - all possible subsets + the empty set and the set itself.
        \therefore P(P(\{\emptyset\})) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}
        Cardinality: |P(P(\{\emptyset\}))| = 2^2 = 4
```

[Problem 3]

For each of the following functions determine the image of $S = \{x \in \mathbb{R} : 4 \le x^2\}$

```
bounds of x for which 4 \le x^2 x^2 will always be positive \therefore 4 \le x^2 \pm \sqrt{4} \le \sqrt{x^2} \pm 2 \le x x \ge 2 or x \ge -2 S = \{x \in \mathbb{R} : 4 \le x^2\} \Rightarrow S = \{x \in \mathbb{R} : x \le -2, x \ge 2\}
```

(a) $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 3x + 1.

Interval where
$$x \in \mathbb{R}$$
; $x \ge 2$:
 $f(x) = 3x + 1$
 $\Rightarrow f(2) \ge 3(2) + 1$
 $\Rightarrow f(2) \ge 7$

Interval where $x \in \mathbb{R}: , x \leq -2$: f(x) = 3x + 1 $\Rightarrow f(-2) \leq 3(-2) + 1$ $\Rightarrow f(-2) \leq -5$ Therefore, the Image of f is $\{x \in \mathbb{R}: f(x) \geq 7, f(x) \leq -5\}$

(b) $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = 4x^2$. Interval where $x \in \mathbb{R}: , x \ge 2$: $f(x) = 4(2)^2 = 16$

Interval where
$$x \in \mathbb{R}$$
:, $x \le -2$: $f(x) = 4(-2)^2 = 16$

 $4x^2$ will always be positive, as x^2 will always be positive Therefore, the Image of f is $\{x \in \mathbb{R}: f(x) \geq 0 \ , f(x) \leq 0\}$ i.e. set of non-negative real numbers

[Problem 4]

Consider the following two functions.

- (1) $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 3x 4.
- (2) $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = 4x^2$.

Determine whether the given functions are one-to-one correspondences.

A function $f:A\to B$ is said to be one-to-one correspondence iff f is both:

Injective (one-to-one): $f(x_1)=f(x_2)\Rightarrow x_1=x_2$ and, Surjective (ONTO): for all $b\in B$ there is some $a\in A$ such that f(a)=b

(1) $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 3x - 4.

INJECTIVE

Take $x_1, x_2 \in \mathbb{R}$ and assume that:

$$f(x_1) = f(x_2)$$

$$\Rightarrow 3x_1 - 4 = 3x_2 - 4$$

$$\Rightarrow 3x_1 = 3x_2$$

$$\Rightarrow x_1 = x_2$$

Therefore f is one-to-one, by definition of one-to-one.

SURJECTIVE

We need to find an x that maps to y.

$$3x - 4 = y$$

$$3x = y + 4$$

$$x = \frac{y+4}{3}S$$

(2) $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = 4x^2$.

INJECTIVE

Take $x_1, x_2 \in \mathbb{R}$ and assume that:

$$f(x_1) = f(x_2)$$

$$\Rightarrow 4x_1^2 = 4x_2^2$$

$$\Rightarrow \sqrt{4x_1^2} = \sqrt{4x_2^2}$$

$$\Rightarrow |2x_1| = |2x_2|$$

$$\Rightarrow |x_1| = |x_2|$$

The values for $x_1 \& x_2$ could be the same, with different signs.

e.g.

$$47 \neq -47$$

$$x_1 \neq -x_2$$

Therefore f is not one-to-one, by definition of one-to-one.