

deeplearning.ai

Basics of Neural Network Programming

Vectorizing Logistic Regression

Vectorizing Logistic Regression

$$Z^{(1)} = w^{T}x^{(1)} + b$$

$$Z^{(2)} = w^{T}x^{(2)} + b$$

$$Z^{(3)} = w^{T}x^{(3)} + b$$

$$Z^{(3)} = \sigma(z^{(3)})$$

$$Z^$$

Andrew Ng

deeplearning.ai

Basics of Neural Network Programming

Vectorizing Logistic Regression's Gradient Computation

Vectorizing Logistic Regression

$$d_{\xi}^{(i)} = \alpha^{(i)} - y^{(i)}$$

$$d_{\xi$$

$$db = \frac{1}{m} \sum_{i=1}^{n} dz^{(i)}$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(i)} dz^{(m)} \right]$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(i)} dz^{(m)} \right]$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(i)} dz^{(m)} \right]$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(i)} dz^{(m)} \right]$$

Implementing Logistic Regression

J = 0,
$$dw_1 = 0$$
, $dw_2 = 0$, $db = 0$

for $i = 1$ to m :

 $z^{(i)} = w^T x^{(i)} + b$
 $a^{(i)} = \sigma(z^{(i)}) \leftarrow$
 $J + -[y^{(i)} \log a^{(i)} + (1 - y^{(i)}) \log(1 - a^{(i)})]$
 $dz^{(i)} = a^{(i)} - y^{(i)} \leftarrow$
 $dw_1 + x_1^{(i)} dz^{(i)} dw_1 + x_2^{(i)} dw_2 + x_2^{(i)} dz^{(i)}$
 $db + dz^{(i)}$
 $db = db/m$
 $db = db/m$
 $db = db/m$
 dc
 dc

iter in range (1000):
$$C$$
 $Z = \omega^T X + b$
 $= n p \cdot dot (\omega \cdot T \cdot X) + b$
 $A = C(Z)$
 $A = C(Z)$
 $A = M \times dZ^T$
 $Ab = m \times dZ^T$
 $Ab = m \cdot mp \cdot sum(dZ)$
 $b := b - x db$