Ontology Development

Ontology Engineering

Step-By-Step: Developing an ontology

Examples of Developing an ontology

Ontology Engineering

It is a methodology issues that is applied in building ontologies, manually, reusing ontologies, and using semi-automatic methods

Constructing Ontologies main stages:

- 1. Determine scope
- 2. Enumerate terms
- Define concepts/taxonomy
- 4. Define properties
- 5. Define facets

How to build an ontology?

Steps:

- determine domain and scope
- enumerate important terms
- define classes and class hierarchies
- define slots
- define slot restrictions (cardinality, value-type)
 - » Slot-cardinality
 - Ex: Borders_with multiple, Start_point single
 - » Slot-value type
 - Ex: Borders_with- Country

Step 1: Determine Domain and Scope

Domain: geography

Application: route planning agent

Possible questions:

Distance between two cities?

What sort of connections exist between two cities?

In which country is a city?

How many borders are crossed?

Step 2: Enumerate Important Terms

Connection_on_land

city

capital

border

country

road

railway

Connection_on_water

currency

Connection_in_air connection

Step 3: Define Classes and Class Hierarchy

Step 4: Define Slots of Classes

Step 5: Define slot constraints

- Constraints are Background knowledge on the domain
 - Adult_Elephants weigh at least 2,000 kg
 - All Elephants are either African_Elephants or Indian_Elephants
 - No individual can be both a Herbivore and a Carnivore

Ontology Main Elements

- Defining terms in the domain and relations among them
 - Defining concepts in the domain (classes).
 - Arranging the concepts in a hierarchy (subclasssuperclass hierarchy).
 - Defining which attributes and properties (slots) classes can have and constraints on their values.
 - Property restrictions (type, cardinality, domain ...)
 - Relations between concepts (disjoint, equality ...)
 - Defining instance (individuals) and filling in slot values.

Ontology Components: Classes

- Classes are used to group things together.
- In most representations, members of classes must be *individuals*.
- In more expressive representations, classes may be also be allowed to be members of other classes.
- Classes can be subsumed by, or can subsume other classes ⇒ subclasses and superclasses.
- This leads to the class hierarchy, which is central to most ontologies.
- Some ontologies consist only of a class hierarchy
 - these are called taxonomy

Ontology Components: Individuals

- Individuals are instances or objects
- These are usually concrete
 (e.g. uk_prime_minister, FCI_student_1389203)
- They can be abstract (e.g. numbers and words)
- Two individuals may be equivalent
 (e.g. uk_prime_minister, Boris Johnson)
- It is not always clear whether something ought to be an individual or a class (e.g.uk_prime_minister)

Ontology Components: Attributes

- Attributes are aspects, properties, features, characteristics, or parameters that objects and classes can have.
- Attributes can link objects and classes to:
 - Specific values (integers, individuals or other literals)
 - Complex data types (e.g. enumerated lists)
 - Boolean values (true/false)
 - Other Classes

Ontology Components: Relations

- Relations describe how classes/individual relate to one another.
- Typically, relations are defined between classes, and instantiations of relations are between individuals.
 - course(Course_Name, instructor, Level, Credits, Year)
 - course(CS-SW, Abeer, 4, 3, 2021/2022)
- More restricted representations may limit this, e.g. only allow binary relations.

EXAMPLES OF DEVELOPING AN ONTOLOGY

Example1: animals ontology

- Purpose & scope:
- To provide an ontology for an index of a children's book of animals including
 - Where they live
 - What they eat
 - Carnivores, herbivores and omnivores
 - How dangerous they are
 - How big they are
 - A bit of basic anatomy
 - numbers of legs, wings, toes, etc.

Example1: Animals & Plants 1-Collect the concepts

- Dog
- Cat
- Cow
- Person
- Tree
- Grass
- Herbivore
- Male
- Female

- Carnivore
- Plant
- Animal
- Fur
- Child
- Parent
- Mother
- Father

- Dangerous
- Pet
- Domestic Animal
- Farm animal
- Food animal
- Fish
- Carp
- Goldfish

Example: Animals & Plants

Ontology Development

1-Organise the concepts

Ontology Development (cont.)

2-Organize the concepts "Laddering"

- Add abstractions where needed
 - e.g. "Living thing"
- Take a group of things and ask what they have in common
 - Then what other 'siblings' there might be
- e.g.
 - Plant, Animal → Living Thing
 - Might add Bacteria and Fungi but not now (scalability)
 - Cat, Dog, Cow, Person → Mammal
 - Others might be Goat, Sheep, Horse, Rabbit,...
 - Cow, Goat, Sheep, Horse → Hoofed animal
 - What others are there? Do they divide amongst themselves?
 - Wild, Domestic → Domestication

Vocabulary note: "Sibling" = "brother or sister"

Ontology Development (cont.)

Define:Self_standing_entities(concepts)

- Self-standing things vs. Modifiers
- Things that can exist on there own nouns
 - People, animals, houses, actions, processes, ...
 - Roughly nouns
- Modifiers-
- Things that modify ("inhere") in other things
 - (e.g., wild/domestic, male/female, healthy/sick, dangerous/safe)
 - Roughly adjectives and adverbs

Ontology Development (cont.) Identify definable things, and modifiers Arrange Concepts/Properties into Hierarchy

- Living Thing
 - Animal
 - Mammal
 - Cat
 - Dog
 - Cow
 - Person
 - Fish
 - Carp
 - Goldfish
 - Plant
 - Tree
 - Grass
 - Fruit

Define Property

- A property is a descriptions of self-standing things
- Identify the domain and range constraints for properties
- Animal eats LivingThing:
 - domain: Animal range: LivingThing
- Person owns LivingThing except Person
 - domain: Person range: LivingThing and not Person
- Animal parentOf Animal
 - domain: Animal range: Animal

Ontology Development (cont.)

- Identify relations
 - e.g. "eats", "owns", "parent of"
- Identify definable things
 - e.g. "child", "parent", "Mother", "Father"
 - Things where you can say clearly what it means
 - (Father, Herbivore, etc)
 - Try to define a dog precisely very difficult
 - » A "natural kind"

Definable things

 "A Parent is an Animal that is a parent of some other Animal"

Parent ≡ Animal u ∃parentOf.Animal

A Herbivore is an Animal that eats only Plants"

(NB: all Animals eat some LivingThings)

Herbivore ≡ Animal u ∀eats.Plant

 "An Omnivore is an Animal that eats both Plants and Animals"

Ontology Development (cont.)

Reorganise everything but "definable" things into pure trees

- Living Thing
 - Animal
 - Mammal
 - Cat
 - Dog
 - Cow
 - Person
 - Fish
 - Carp
 - Goldfish
 - Plant
 - Tree
 - Grass
 - Fruit

- Relations
 - eats
 - owns
 - parent-of
 -
- Definable
 - Carnivore
 - Herbivore
 - Child
 - Parent
 - Mother
 - Father
 - Food Animal

Ontology Development (cont.) Modifiers

- Identify modifiers that have mutually exclusive values (Domestication, Dangerousness, Gender, Age)
- Not mutually exclusive usage.
 - (can be both Draught and Food)
- There are two ways of specifying values for modifiers
 - value partitions (classes that partition a quality .e.g childadult)
 - ❖ value sets (individuals that enumerate all states of a quality e.g. Dangerousness: Dangerous, Risky, Safe)

Ontology Development (cont.)

Reorganise everything but "definable" things into pure trees

- Living Thing
 - Animal
 - Mammal
 - Cat
 - Dog
 - Cow
 - Person
 - Fish
 - Carp
 - Goldfish
 - Plant
 - Tree
 - Grass
 - Fruit

- Modifiers
 - domestic
 - pet
 - Farmed
 - Draft
 - Food
 - Wild
 - Health
 - healthy
 - sick
 - Gender
 - Male
 - Female
 - Age
 - Adult
 - Child

- Relations
 - eats
 - owns
 - parent-of
 - **.** . . .
- Definable
 - Carnivore
 - Herbivore
 - Child
 - Parent
 - Mother
 - Father
 - Food Animal

Ontology Example

2- How can we create an ontology for the academic research domain (people, publications, etc)?

14/08/2009, knud.moeller@deri.org

Building Ontologies

