CONVERTITORE DIGITALE / ANALOGICO

D A

PAROLA DIGITALE Di M-BITS DAC
convertitore
Digitale ANALOGICO

Yout oppure I out grandezza amalogica di usuta

Viet appure Iret grandizza analogica di riferimento.

TENSIONE DI FONDO SCALA (VFS): massimo valore della Tensione ensione di uscita

FULL SCALE RANGE (FBR): massima dinamica del sognale.
enalogica di uscita

CARATTERISTICA DI TRASFERIMENTO IDEALE

Biunge mai VFS, ma ne rimane distanziata di un LSB

DAC A R PESATE

Parola digitale (n bit): $D_{n-1}D_{n-2}...D_1D_0$

$$V_{out} = -\frac{1}{2} \left[\frac{1}{2} - \frac{V_{REF}}{R} \left[\frac{1}{2} \left[\frac{D_{N-1}}{2^{n}} + \frac{D_{N-2}}{2^{1}} + \dots + \frac{D_{N}}{2^{n-1}} \right] \cdot \frac{2^{n-1}}{2^{n-1}} \right] = -\frac{V_{REF}}{2^{n}} \left[2^{N-1}D_{N-1} + 2^{N-2}D_{N-2} + \dots + 2^{N}D_{N} \right] = -\frac{V_{REF}}{2^{n}} N_{D} = -\frac{V_{REF}}{2^{n}} N_{D} = -\frac{V_{REF}}{2^{n}} \left[\frac{D_{N-1}}{2^{n}} + \dots + \frac{D_{N}}{2^{n}} \right] = -\frac{V_{REF}}{2^{n}} N_{D} = -\frac{V_{REF}}{2^{n}} \left[\frac{D_{N-1}}{2^{n}} + \dots + \frac{D_{N}}{2^{n}} \right] = -\frac{V_{REF}}{2^{n}} N_{D} = -\frac{V_{REF}}{2^{n}} \left[\frac{D_{N-1}}{2^{n}} + \dots + \frac{D_{N}}{2^{n}} \right] = -\frac{V_{REF}}{2^{n}} N_{D} = -\frac{V_{REF}}{2^{n}} \left[\frac{D_{N-1}}{2^{n}} + \dots + \frac{D_{N}}{2^{n}} \right] = -\frac{V_{REF}}{2^{n}} N_{D} = -\frac{V_{REF}}{2^{n}} \left[\frac{D_{N-1}}{2^{n}} + \dots + \frac{D_{N}}{2^{n}} \right] = -\frac{V_{REF}}{2^{n}} N_{D} = -\frac{V_{REF}}{2^{n}} \left[\frac{D_{N-1}}{2^{n}} + \dots + \frac{D_{N}}{2^{n}} \right] = -\frac{V_{REF}}{2^{n}} N_{D} = -\frac{V_{REF}}{2^{n}} \left[\frac{D_{N-1}}{2^{n}} + \dots + \frac{D_{N}}{2^{n}} \right] = -\frac{V_{REF}}{2^{n}} N_{D} = -\frac{V_{REF}}{2^{n}} N_{D} = -\frac{V_{REF}}{2^{n}} \left[\frac{D_{N-1}}{2^{n}} + \dots + \frac{D_{N}}{2^{n}} \right] = -\frac{V_{REF}}{2^{n}} N_{D} = -\frac{V_{REF}}{2^{n}} N_{D} = -\frac{V_{REF}}{2^{n}} \left[\frac{D_{N-1}}{2^{n}} + \dots + \frac{D_{N}}{2^{n}} \right] = -\frac{V_{REF}}{2^{n}} N_{D} = -\frac{V_{REF}}{2^{n}} N_{D}$$

in una Tensione proporzionale al valore decimale No corrispondente alla parola digitale in ingresso.

EFFETTO DELLE NON - IDEALITA' DELL' OP-AMP E DEGLI SWITCH:

. TENSIONE DI OFFSET

contributo della tensione di offoet alla tensione di usuita

effette pulle curve ceratteristice del DAC: TRASLAZIONE di Vout

EFFETTO DELLE NON - IDEALITA' DELL'OP-AMP E DEGLI SWITCH:

· CORRENTI DI BIAS

La il conto buto delle comenti di bios pello Tensione di uscito è indipendente dal numoro di bit del DAC

effetto sullo curva ceratteristica del DAC : TRASLAZIONE Di Vout/18

al morsetto non invertente

EFFETTO DELLE NON - IDEALITA' DELL'OP-AMP E DEGLI SWITCH:

. DEVIATORI NON IDEALI

un deviatore reale si comporta come juna resistemza ri in serie al ramo in cui è inserito

4 cambia il passo del relativo bit

$$V_{out} = - \frac{V_{REF}}{2} \frac{R}{V_{o} + R} + \frac{D_{m-2}}{V_{o} + 2R} + \cdots + \frac{D_{o}}{V_{m-1} + 2^{m-1}R} = - \frac{V_{REF}}{2} \left[\frac{D_{m-1}}{d + \frac{V}{R}} + \frac{D_{m-2}}{2(1 + \frac{V}{2R})} + \cdots + \frac{D_{o}}{2^{m-1}(1 + \frac{V}{2^{m-1}R})} \right] = - \frac{V_{REF}}{2} \sum_{i=0}^{m-1} \frac{D_{m-1}-i}{2^{i}[1 + \frac{V}{2^{i}R}]} = - \frac{V_{REF}}{2} \sum_{i=0}^{m-1} \frac{D_{m-1}-i}{2^{i}[1 + \frac{V}{2^{i}R}]}$$

+ effetto sulla caralleristica: NON-LINEARITA

EFFETTO DELLE NON - IDEALITA' DELL' OP-AMP E DEGLI SWITCH:

Caratteristica non monotona del DAC: la tensione di uscita NON e' proporzionale al valore decimale corrispondente a D_{in}

ERRORI STATICI E NON LINEARITA PARAMETRI DINAMICI

- · Tipicamente Voppset ~ qualche mV
- · può essere regolato a sero mediante potenzionetti, ma il suo valore cambia nel tempo di funzionamento

ERRORI STATICI E NON LINEARITA PARAMETRI DINAMICI

NON-LINEARITA INTEGRALE: massimo acostamento presente

Tra un punto della caratteristica reale del DAC ed il comispondente
punto sulla caratteristica ideale

ERRORI STATICI E NON LINEARITA, PARAMETRI DINAMICI

del salto di tensione tra due valori di tensione, adia centi nispetto ad 115B

- · tipici valori per un buon DAC: DNL < ±0.5 LSB
- se DNL > 1LSB = la caratteristica di trasferimento del DAC può n'sultare non monotona. (condizione mon sufficiente!)

ERRORI STATICI E NON LINEARITA, PARAMETRI DINAMICI

- IMPEDENZA DI USCITA

Esempio: DAC ZV 558 D. Pout = 4 kp., Ver= 5V, 8 bits

Calcoliamo il valore minimo della resistenza che può espere conneccio in juscita perche l'errore sulla Tensione di juscita sion minore di /2 LSB:

Le condizione molto otringente, soprattutto de a valle ce un emplificatore invertente!

ERRORI STATICI E NON LINEARITA PARAMETRI DINAMICI

del DAC pi assesti untro uma banda di oscillazione assegnata quando l'ingrosso commuta da tutti i bita pari a si a tutti i bita pari a si a tutti i bita pari a si a tutti

exau bende di oscillazione tipicemente ensegnata è +0.515B

· parametro legato ella banda dell'opamp utilizzato

ERRORI STATICI E NON LINEARITA, PARAMETRI DINAMICI

- GLITCH SUL SEGNALE DI USCITA

Fenomeno provocato della mon istantaneità del comando degli switch

La sono prodotte Transitoriamente Jensioni di usula differenti da quella finale

ESEMPIO: DAC a 4 bit commutazione DIOI -+ dOII

Lalluscità dovrebbe commutare da Vout = 5 Veet

a Vout = 11 Veet

Se il 3° bit è lento mel commutare:

0 1 0 1 5/16 VREF

1(1) 1 1 15/16 VREF GLITCH!

10 1 1 1 16 VREF

Altrí Parametrí

Stabílita': indice del deterioramento nel tempo delle prestazioni del DAC.

Accuratezza: massima differenza che si puo' presentare tra l'uscita del convertitore reale e la corrispondente uscita del DAC ideale. Precisione: capacita' del DAC di fornire il medesimo valore analogico di uscita a parita' di parola digitale in ingresso.

SVANTAGGI E NON IDEAUTA:

- 1) si richiedono resistemae via via di valore croscente m=12 bit R=5kR - 2^{m-1}R = 10.24 MZ!!
 - La architettura adalla enclusivamente per DAC a basso mumero di biti (m=6 o 8 bits)
- 2) emori di int. e DNL deciventi de jun non perjetto metching dei velori delle resistenze, delle resistenze serie dei devetori a Mose della Jensione residua ai cepi degli interruttori
- aligitale in ingresso, pertanto cambia la cadula pulla resistenza serie del generature Vicer La Vicer lettettiva dipende dalla perola pligitale

→errore di «sovrapposizione»

possibile alternativa:

$$V_{out} = -V_{REF} \left[\frac{C}{2C} D_{n-1} + \frac{\frac{C}{2}}{2C} D_{n-2} + \dots + \frac{\frac{C}{2^{n-1}}}{2C} D_0 \right] = -V_{REF} \left[\frac{D_{n-1}}{2} + \frac{D_{n-2}}{4} + \dots \right] = 0$$

$$= -\frac{V_{REF}}{2^n} \left[2^{n-1} D_{n-1} + 2^{n-2} D_{n-2} + \dots + 2^0 D_0 \right] = -V_{REF} \frac{N}{2^n}$$

CONVERTITORI A SCALA R-ZR

- pendembermente della penala pligitale in ingranzo, grazie TREF = VREF

 al modo di Terra virtuale de corrente enogata da vireF:
- · corrente all'exercos la recistenza di retrozzione R:

$$I_{n-1} = \frac{V_{REF}}{2R}$$
; $I_{n-2} = \frac{I_{n-1}}{2}$; $I_{n-3} = \frac{I_{n-2}}{2} = \frac{I_{n-1}}{2^2}$
 $I_{n-1} = \frac{V_{REF}}{2^{n-1}} = \frac{V_{REF}}{2^n R}$

CONVERTITORI A SCALA R-ZR

· Tensione analogica di juscita

- © pesano le resistenze serie degli interruttori e la tensione di offset e le correnti di bias dell'opamp.
- il massimo valore di resistenza che deve essere integrato e' pari a 2R indipendentemente dal numero di bit del DAC.
- \odot resistenza vista da V_{REF} non dipende dalla parola digitale in ingresso \rightarrow la resistenza serie del generatore V_{REF} pesa come errore di guadagno (poco importante), ma non da' INL e DNL.
- ightarrow Per avere tensione di fondo scala positiva e' sufficiente scegliere V_{REF} negativa

CONVERTITORI A SCALA R-ZR BIPOLARE

J'uncite del DAC au occolo R-ZR viene Jeoslata di una quantità + VREF. R = + Veer grazie pl remo pogniuntivo

che offerisce of modo di Terra victuale

* parola digitale di Tutti 0: Vout = (VREF). R = + VREF

* penole algitale di Tutti 1 => No = 2 - 1

Vout =
$$-\frac{V_{REF}}{2^m}N_0 + \frac{V_{REF}}{2} = -\frac{V_{REF}}{2^m}(2^n-1) + \frac{V_{REF}}{2} = -\frac{V_{REF}}{2^m} + \frac{V_{REF}}{2^m}$$

Le 1LEB sotto il mensimo velore pelle Tensione ali uscita

DAC A PARTITORE DI TENSIONE

Considerismo ad exempso un DAC a 3 bit

- elevato numero di resistori richiesti > architettura idonea solo per un basso numero di bit.
- per límítare la potenza díssípata, uso dí resistenze dí valore abbastanza elevato
 dífficolta' dí integrazione
- Duo' facilmente essere reso bipolare ponendo il partitore di tensione riferito ad una alimentazione negativa invece che a massa.
- 😊 struttura a partitore di tensione garantisce l'intrinseca monotonicita' della caratteristica di questo DAC.
- non linearita' derivanti da: correnti di bias dell'operazionale, correnti di perdita degli interruttori, mismatch delle resistenze del partitore.

AMPLIFICATORE A GUADAGNO VARIABILE

La parola digitale (Dn-1 Dm-2... D, Do) releziona ne connellere le resistemae dei singdi rami a massa o alla Terra virtuale.

$$J_{avt} = -\frac{V_{i}}{12} \left(\frac{D_{m-1}}{2} + \frac{D_{m-2}}{2^{2}} + \dots + \frac{D_{1}}{2^{n-1}} + \frac{D_{0}}{2^{n}} \right) =$$

$$= -\frac{V_{i}}{2^{m}R} \left(2^{m-1}D_{m-1} + 2^{m-2}D_{m-2} + \dots + 2^{1}D_{1} + 2^{n}D_{0} \right) = -\frac{V_{i}}{2^{n}R} N$$

MA)
$$i_{\text{BUT}} = i_{\text{in}} = D$$
 $\frac{V_{\text{in}}}{R} = -\frac{V_{\text{OD}}}{Z^{\text{MR}}} N$

$$V_{\text{ED}} = V_{\text{OUT}}$$

QUADAGNO DELL'AMPLIFICATORE
VARIABILE DIGITALMENTE

La il circuito amplifica um segnale in ingresso da un mini mo oli 1 a un massimo oli 2^m volte a scconda della parda digitale impiegata per pilotare i soliveroi seviatori.