The group G is isomorphic to the projective special linear group PSL(2,11). Ordinary character table of $G \cong PSL(2,11)$:

	1a	2a	3a	5a	5b	6a	11a	11 <i>b</i>				
χ_1	1	1	1	1	1	1	1	1				
χ_2	5	1	-1	0	0	1	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^{10}$				
χ_3	5	1	-1	0	0	1	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^{10}$	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$				
χ_4	10	-2	1	0	0	1	-1	-1				
χ_5	10	2	1	0	0	-1	-1	-1				
χ_6	11	-1	-1	1	1	-1	0	0				
χ_7	12	0	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	1	1				
χ_8	12	0	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	1	1				

Trivial source character table of $G \cong PSL(2,11)$ at p = 2:

1111161135611666116616161616161616161616											
Normalisers N_i			N_1						N_3		
p-subgroups of G up to conjugacy in G			P_1						P_3		
Representatives $n_j \in N_i$		3a	5a	5b	11a	11b	1a	3a	1a	3b	3a
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	12	0	2	2	1	1	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	16	-2	1	1	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^{10}$	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	16	-2	1	1	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^{10}$	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	20	2	0	0	-2	-2	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8$	12	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	1	1	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8$	12	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	1	1	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	22	-2	2	2	0	0	2	2	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	10	1	0	0	-1	-1	2	-1	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	5	-1	0	0	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^{10}$	1	1	1	$E(3)^{2}$	E(3)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	5	-1	0	0	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^{10}$	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$	1	1	1	E(3)	$E(3)^2$

```
P_1 = Group([()]) \cong 1
```

$$N_1 = Group([(2,10)(3,4)(5,9)(6,7),(1,2,11)(3,5,10)(6,8,9)]) \cong PSL(2,11)$$

 $P_2 = Group([(2,4)(3,9)(5,10)(7,11)]) \cong C2$

 $P_3 = Group([(2,4)(3,9)(5,10)(7,11),(2,7)(3,9)(4,11)(6,8)]) \cong C2 \times C2$

 $[\]begin{split} N_1 &= Group([(2,10)(3,4)(5,9)(6,7),(1,2,11)(3,5,10)(6,8,9)]) \cong PSL(2,11) \\ N_2 &= Group([(2,4)(3,9)(5,10)(7,11),(1,8)(2,9)(3,4)(5,10),(2,7)(3,9)(4,11)(6,8)]) \cong D12 \\ N_3 &= Group([(2,7)(3,9)(4,11)(6,8),(2,4)(3,9)(5,10)(7,11),(3,8,5)(4,7,11)(6,10,9)]) \cong A4 \end{split}$