import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_percentage_error,r2_score
df=pd.read_csv('/content/drive/MyDrive/advertising.csv.xls')
df

→		TV	Radio	Newspaper	Sales
	0	230.1	37.8	69.2	22.1
	1	44.5	39.3	45.1	10.4
	2	17.2	45.9	69.3	12.0
	3	151.5	41.3	58.5	16.5
	4	180.8	10.8	58.4	17.9
	•••		•••		
	195	38.2	3.7	13.8	7.6
	196	94.2	4.9	8.1	14.0
	197	177.0	9.3	6.4	14.8
	198	283.6	42.0	66.2	25.5
	199	232.1	8.6	8.7	18.4

200 rows × 4 columns

df.head()

→		TV	Radio	Newspaper	Sales
	0	230.1	37.8	69.2	22.1
	1	44.5	39.3	45.1	10.4
	2	17.2	45.9	69.3	12.0
	3	151.5	41.3	58.5	16.5
	4	180.8	10.8	58.4	17.9

df.tail()

→		TV	Radio	Newspaper	Sales
	195	38.2	3.7	13.8	7.6
	196	94.2	4.9	8.1	14.0
	197	177.0	9.3	6.4	14.8
	198	283.6	42.0	66.2	25.5
	199	232.1	8.6	8.7	18.4

df.columns

Index(['TV', 'Radio', 'Newspaper', 'Sales'], dtype='object')

df.dtypes

\rightarrow	TV	float64
	Radio	float64
	Newspaper	float64
	Sales	float64
	dtype: objec	t

df.isna().sum()

\rightarrow	TV	0
	Radio	0
	Newspaper	0
	Sales	0
	dtype: int64	
	atype: int64	

x=df.iloc[:,:-1]
y=df.iloc[:,-1]

→		TV	Radio	Newspaper
	0	230.1	37.8	69.2
	1	44.5	39.3	45.1
	2	17.2	45.9	69.3
	3	151.5	41.3	58.5
	4	180.8	10.8	58.4
	•••			
	195	38.2	3.7	13.8
	196	94.2	4.9	8.1
	197	177.0	9.3	6.4
	198	283.6	42.0	66.2
	199	232.1	8.6	8.7

200 rows × 3 columns

```
22.1
       10.4
       12.0
3
       16.5
       17.9
       7.6
195
196
       14.0
197
       14.8
198
       25.5
199
       18.4
Name: Sales, Length: 200, dtype: float64
```

#regplot
import seaborn as sns
sns.regplot(x=df['TV'],y=y,color='r')

<Axes: xlabel='TV', ylabel='Sales'>

sns.regplot(x=df['Newspaper'],y=y,color='y')

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=42)
x_train

$\overline{\Rightarrow}$		TV	Radio	Newspaper		
	169	284.3	10.6	6.4		
	97	184.9	21.0	22.0		
	31	112.9	17.4	38.6		
	12	23.8	35.1	65.9		
	35	290.7	4.1	8.5		
	•••					
	106	25.0	11.0	29.7		
	14	204.1	32.9	46.0		
	92	217.7	33.5	59.0		
	179	165.6	10.0	17.6		
	102	280.2	10.1	21.4		
	140					

140 rows × 3 columns

```
model=LinearRegression()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
y_pred
 ⇒ array([17.15991908, 20.53369503, 23.68914396, 9.5191455, 21.60736836,
             12.78101318, 21.08636345, 8.76054246, 17.11499951, 16.68789636,
             8.97584663, 8.57645026, 18.33212325, 8.17863567, 12.64605571,
             14.94486946, 8.34939536, 17.83858948, 11.12172174, 20.37740648,
             20.9483297 , 13.04035779 , 11.01360656 , 22.51142595 , 9.40369784 ,
             7.98591291, 20.86943368, 13.77882255, 10.83407064, 8.00419229,
            15.88597618, 10.7027424 , 20.9521718 , 10.84679243, 21.50720813,
            21.07347295, 12.22673775, 22.85273767, 12.57698182, 6.54597206,
             11.93411853, 15.23490068, 10.07411153, 9.52159696, 17.11786382,
             7.28032677, 10.49404864, 15.24356754, 11.20742176, 11.78392665,
             14.01472163, 14.59884572, 10.82722434, 9.55839415, 9.03749681,
             12.51183313, 10.52551021, 25.01900824, 7.99334943, 15.73916263])
y_test
    95
            16.9
 \overline{\Sigma}
     15
            22.4
     30
            21.4
     158
             7.3
     128
            24.7
     115
            12.6
     69
            22.3
     170
             8.4
     174
            16.5
     45
            16.1
     66
            11.0
     182
             8.7
     165
            16.9
     78
             5.3
     186
            10.3
     177
            16.7
     56
             5.5
     152
            16.6
     82
            11.3
     68
            18.9
     124
            19.7
     16
            12.5
     148
            10.9
     93
            22.2
     65
            11.3
     60
             8.1
     84
            21.7
     67
            13.4
     125
            10.6
     132
             5.7
     9
            15.6
     18
            11.3
     55
            23.7
     75
             8.7
     150
            16.1
     104
            20.7
     135
            11.6
     137
            20.8
     164
            11.9
     76
             6.9
     79
            11.0
     197
            14.8
     38
            10.1
     24
             9.7
     122
            16.6
     195
             7.6
     29
            10.5
     19
            14.6
     143
            10.4
     86
            12.0
     114
            14.6
     173
             16.7
     5
             7.2
     126
             6.6
     117
             9.4
     73
            11.0
     140
            10.9
     98
            25.4
```

df1=pd.DataFrame({'Actual_value': y_test,'Predicted_value' :y_pred,'Difference':y_pred-y_test})
df1

	Actual value	Predicted_value	Difference	
95	16.9	17.159919	0.259919	
15	22.4	20.533695	-1.866305	
30	21.4	23.689144	2.289144	
158	7.3	9.519146	2.219146	
128	24.7	21.607368	-3.092632	
115	12.6	12.781013	0.181013	
69	22.3	21.086363	-1.213637	
170	8.4	8.760542	0.360542	
174	16.5	17.115000	0.615000	
45	16.1	16.687896	0.587896	
66	11.0	8.975847	-2.024153	
182	8.7	8.576450	-0.123550	
165	16.9	18.332123	1.432123	
78	5.3	8.178636	2.878636	
186	10.3	12.646056	2.346056	
177	16.7	14.944869	-1.755131	
56	5.5	8.349395	2.849395	
152	16.6		1.238589	
82	11.3	11.121722	-0.178278	
68	18.9	20.377406	1.477406	
124	19.7	20.948330	1.248330	
16	12.5	13.040358	0.540358	
148	10.9	11.013607	0.113607	
93	22.2	22.511426	0.311426	
65	11.3	9.403698	-1.896302	
60	8.1	7.985913	-0.114087	
84	21.7	20.869434	-0.830566	
67	13.4	13.778823	0.378823	
125	10.6	10.834071	0.234071	
132	5.7	8.004192	2.304192	
9	15.6	15.885976	0.285976	
int(model	.predict([[310	.3,12.3,21.4]]))		
_ /usr/	0536855] local/lib/pyt nings.warn(hon3.10/dist-pack	ages/sklearr	/base.py:439: UserWarning: X does not have valid feature name
int("slop st(zip(x,	e is") model.coef_))			
('Ra	', 0.05358869 dio', 0.10270	132706914), 676778771287), 07931667677316324	-)]	
int("cons	tant is",model	.intercept_)		
_		66701580685		
∍• const	ant is 4.7437	00/01303003		

print("MAPE IS",mean_absolute_percentage_error(y_test,y_pred))
print("R2 Score is",r2_score(y_test,y_pred))

10.121012

MAPE IS 0.10536440823029307 R2 Score is 0.9091484341849799

170	10.4	11.40/444	U.UU/444
86	12.0	11.783927	-0.216073
114	14.6	14.014722	-0.585278
173	16.7	14.598846	-2.101154
5	7.2	10.827224	3.627224
126	6.6	9 558394	2 958394