Semi-annual report for NASA Grant NAG5-1125 entitled

"The Role of Global Cloud Climatologies in Validating Numerical Models"

Principal Investigator:

Harshvardhan

Department of Earth and Atmospheric Sciences

Purdue University

West Lafayette, Indiana 47907

October 1, 1990 - March 31, 1991

(CACA-C1-168502) THE ROLF OF GLOBAL CLOUD CLIMATOLOGIES IN VALIDATING NUMERICAL MOSELS Leadennual Status Report, 1 Uct. 1970 - 31

Unclas 63/47 0019909

During the period October 1, 1990 - March 31, 1991, we have devoted ourselves to two major tasks. The first is the completion of a project to produce global maps of the net longwave radiation at the surface over oceanic areas. This was the thesis topic of Mr. Hui Zhi who defended his M.S. thesis in December, 1990. This work is being prepared for publication. In order to summarize his work for this report we have attached the Abstract, Table of Contents, List of Figures and Tables and all the figures in his thesis. The attachment will provide all the information that we have obtained from this project.

The second effort undertaken during this grant period has been the analysis of ISCCP C-1 cloud data. We have acquired this data from NSSDC for a period starting in October 1986 to their most current release. In addition, we have ISCCP and ERBE S-4 data for selected months. We have made a preliminary analysis of the distribution of cloud optical depths (or albedo) at two selected grid points. One is off the coast of California in the marine stratocumulus region. The other is a tropical convective area in the Western Pacific. We have studied the period July 17-31, 1985 for both areas.

Figure 1 shows the distribution of mean optical depth inferred from daytime GOES radiances as a function of the cloud fraction of the 2.5° lat × 2.5° long area centered at 36.25N, 126.25W. Figure 2 is a similar plot for the tropical convective area. Both plots show that exceedingly thick (or bright) clouds occur only when the area is completely filled with clouds. Current models assign cloud fraction and albedo (or optical depth) independently.

Figures 3 and 4 show the distribution of optical depth for all pixels. These distributions are very similar to the observations made during field experiments such as FIRE. The stratified distributions shown in Figures 3b and 4b can perhaps be used to model subgrid scale cloudiness.

Fig. 1. The distribution of mean optical depth (a) and mean diffuse albedo (b) versus cloud fraction for a marine stratocumulus area from ISCCP C-1 data.

Fig. 2. As in Fig. 1 but for a tropical convective area.

17-30 JULY, 1985 of 36.25N 126.25W

Fig. 3. The frequency distribution of all cloudy pixels for the area in Fig. l.

17-31 JULY, 1985 ot 3.75N 131.25E

Fig. 4. As in Fig. 3 but for the area in Fig. 2.

ATTACHMENT

CLOUD RADIATIVE FORCING AND THE SURFACE LONGWAVE RADIATION

A Thesis

Submitted to the Faculty

of

Purdue University

by

Hui Zhi

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

December 1990

TABLE OF CONTENTS

	Page
LIST OF TABLES	iv
LIST OF FIGURES	v
ABSTRACT	vi
1. INTRODUCTION	
2. RADIATIVE TRANSFER MODEL	6
3. DATA BASE	9
4. PROCEDURE	14
5. SURFACE RADIATIVE FIELDS	19
 5.1. Ratio of LW CRF at the Top to That at the Surface (Globally) 5.2. Longwave CRF at the Surface (Globally) 5.3. Downward Longwave Radiation Flux at the Surface (Globally) 5.4. Upward Longwave Radiation Flux at the Surface (Ocean only) 5.5. Net Upward Longwave Fluxes at the Surface (Ocean only) 	38 50
6. SUMMARY AND CONCLUSIONS	63
LIST OF REFERENCES	66

LIST OF TABLES

Table	Page
1. Percentage of vertical cloud area distributions	25
2. Average of LW CRFs and their ratios	37
3. Average of downward longwave fluxes	
4. Average of surface temp. and upward flux (ocean only)	
5. Average of net upward flux and surface CRF (ocean only)	62

LIST OF FIGURES

Fig	pure F	^o age
1.	Vertical structure of the ISCCP data	11
2.	Flow diagram of the procedure used to obtain maps of monthly mean longwave fluxes at the surface	18
3.	Ratio of longwave CRF at the top of the atmosphere to that at the surface for April, July, October and January	. 20
4.	Longwave CRF at the surface in W m ⁻² for April, July, October and January in 1985-86	28
5.	The zonal variation of longwave CRF in W m ⁻² for April, July, October and January in 1985-86	33
6.	Monthly mean clear-sky downward longwave fluxes (W m ⁻²) at the surface for April, July, October and January in 1985-86	39
7.	Monthly mean downward longwave fluxes (W m ⁻²) at the surface for April, July, October and January in 1985-86	43
	The zonal variation of downward longwave fluxes (W m ⁻²) at the surface for April, July, October and January in 1985-86	46
9.	Sea surface temperature (K) from ISCCP satellite data for April, July, October and January in 1985-86	51
10.	Upward fluxes (W m ⁻²) for April, July, October and January in 1985-86	53
11.	Monthly mean clear-sky net upward longwave fluxes (W m ⁻²) at the surface for April, July, October and January in 1985-86	57
12.	Monthly mean net upward longwave fluxes (W m ⁻²) at the surface for April, July, October and January in 1985-86	60

ABSTRACT

Zhi, Hui. M. S., Purdue University, December 1990. Cloud Radiative Forcing and the Surface Longwave Radiation. Major Professor: Dr. Harshvardhan.

Reliable estimates of the components of the surface radiation budget are important in studies of ocean-atmosphere interaction, land-atmosphere interaction, ocean circulation and in the validation of radiation schemes used in climate models. The methods currently under consideration must necessarily make certain assumptions regarding both the presence of clouds and their vertical extent. Because of the uncertainties in assumed cloudiness, all these methods involve perhaps unacceptable uncertainties. In this work, a theoretical framework that avoids the explicit computation of cloud fraction and the location of cloud base in estimating the surface longwave radiation has been presented.

Estimates of the global surface downward fluxes and the oceanic surface net upward fluxes have been made for four months (April, July, October and January) in 1985-86. These estimates are based on a relationship between cloud radiative forcing at the top of the atmosphere and the surface obtained from a general circulation model. Monthly mean clear sky downward longwave fluxes at the surface and upward surface emission are computed from the retrieved profiles (such as temperature and humidity profiles) that are included in the ISCCP (International Satellite Cloud Climatology

Project) data set. The radiation code is the version used in the UCLA/GLA general circulation model (GCM). The longwave cloud radiative forcing at the top of the atmosphere as obtained from Earth Radiation Budget Experiment (ERBE) measurements is used to compute the forcing at the surface by means of the GCM-derived relationship. This, along with clear-sky fluxes from the computations, yields maps of the downward longwave fluxes and net upward longwave fluxes at the surface.

The calculated results are discussed and analyzed. The results are consistent with current known meteorological knowledge and explainable on the basis of previous theoretical and observational works; therefore, it can be concluded that this method is applicable as one of the ways to obtain the surface longwave radiation fields from currently available satellite data.

Atmospheric parameters:

Pp = Tropopause pressure

Ps = Surface pressure (≤ 1000 mb)

Figure 1. Vertical structure of ISCCP data

Figure 2. Flow diagram of the procedure used to obtain maps of monthly mean longwave fluxes at the surface

::

Figure 3. Ratio of longwave CRF at the top of the atmosphere to that at the surface for April, July, October and January

Figure 3. Continued

Figure 4. Longwave CRF at the surface in Wm⁻² for April, July, October and January in 1985-86

Figure 4. Continued

Figure 5. The zonal variation of longwave CRF in Wm⁻² for April, July, October and January in 1985-86

Figure 5. Continued

Figure 6. Continued

Figure 6. Monthly mean clear-sky downward longwave fluxes (Wm⁻²) at the surface for April, July, October and January in 1985-86

Figure 7. Monthly mean downward longwave fluxes (Wm⁻²) at the surface for April, July, October and January in 1985-86

Figure 7. Continued

Figure 8. The zonal variation of downward longwave fluxes (Wm⁻²) at the surface for April, July, October and January in 1985-86

•			

Figure 9. Sea surface temperature (K) from ISCCP satellite data for April, July, October and January in 1985-86

Figure 9. Continued

Figure 10. Upward fluxes (Wm⁻²) for April, July, October and January in 1985-86

Figure 10. Continued

Figure 11. Monthly mean clear-sky net upward longwave fluxes (Wm⁻²) at the surface for April, July, October and January in 1985-86

Figure 11. Continued

Figure 12. Monthly mean net upward longwave fluxes (Wm⁻²) at the surface for April, July, October and January in 1985-86

Figure 12. Continued