

Text Representation

Feature extraction

Text classification task

Text Representation

- Three main approaches:
 - Bag of Words
 - Word embeddings
 - Contextual word embeddings

Bag of Words

- Each word is represented as a binary vector with D positions, where D is the size of the vocabulary (typically millions of tokens)
- The document is represented as the sum of the word vectors (counts of words)

Document	the	cat	sat	in	hat	with
the cat sat	1	1	1	0	0	0
the cat sat in the hat	2	1	1	1	1	0
the cat with the hat	2	1	0	0	1	1

Bag of Words

- The dimensionality of the dictionary is huge, so a machine learnin model needs to learn millions of parameters
- Each word is completely independed, there's no way to represent semantic relationships between words (e.g. amazing and awesome are as similar as amazing and terrible)

Word embeddings

- Each word is represented as a vector with D real numbers
- D is much smaller than the dictionary size (typically hundreds)

Word embeddings

- Most popular implementation: Word2Vec
 The vectors are obtained by training a neural network on the task of predicting a word from their neighbors.
- Very popular for translation tasks (words in one language might have the same vector representation in another language)
- Word representations are independent of their context
 E.g. apple (fruit) has exactly the same vector representation as Apple (company)

Contextual word embeddings

- Word representations are dependendent of their context.
- Most popular example: Transformers

Exercises