Semi-supervised learning II

CS534

Example: text classification

- Classify astronomy vs. travel articles
- Similarity measured by content word overlap

When labeled data alone fails

No overlapping words

Unlabeled data as stepping stones

 Labels "propagate" via similar unlabeled articles.

Another example

 Handwritten digits recognition with pixel-wise Euclidean distance

'indirectly' similar with stepping stones

Graph-based semi-supervised learning

- Nodes: $X_l \cup X_u$
- Edges: similarity weights computed from features, e.g.,
 - K-nearest-neighbor graph, unweighted (0, 1 weights)
 - Fully connected graph, weighted ($w = \frac{\exp(-|x_i x_j|^2)}{\sigma^2}$)
 - $-\epsilon$ -radius graph
- Assumption: instances that are connected by heavy edges tend to have the same label

The mincut algorithm

- Fix Y_l , find $Y_u \in \{0,1\}^{n-l}$ to minimize $\sum_{ij} w_{ij} |y_i y_j|^2$
- Equivalently, solve the following optimization problem:

 If binary label, can be solved by min-cut on a modified graph – adding source and sink nodes with large weights to labeled examples

Semi-supervised SVM (S^3VM)

SVMs

• S³VMs(Transductive SVMs)

Assumption: Unlabeled data from different classes are separated with large margin.

Standard soft margin SVMs

 keep labeled points outside the margin, while maximizing the margin:

Loss on training examples $\min_{h,b,\xi} \sum_{i=1}^{l} \xi_i + \lambda \|h\|_{\mathcal{H}_K}^2$ subject to $y_i(h(x_i) + b) \geq 1 - \xi_i$, $\forall i = 1 \dots l$ $\xi_i \geq 0$

Equivalent to

$$\min_{f} \sum_{i=1}^{l} (1 - y_i f(x_i))_+ + \lambda ||h||_{\mathcal{H}_K}^2$$

 $y_i f(x_i)$ known as the margin, $(1 - y_i f(x_i))_+$ the hinge loss

S^3VM

- To incorporate unlabeled points,
 - assign putative labels sign(f(x)) to $x \in X_u$
 - Hinge loss on unlabeled points becomes $(1 |f(x)|)_+$
- New objective:

$$\min_{f} \sum_{i=1}^{l} (1 - y_i f(x_i))_+ + \lambda_1 ||h||_{\mathcal{H}_K}^2 + \lambda_2 \sum_{i=l+1}^{n} (1 - |f(x_i)|)_+$$

The hat loss on unlabeled data

Prefers $f(x) \ge 1$ or $f(x) \le -1$, i.e., unlabeled instance away from decision boundary f(x) = 0.

Class balance regularization

- often unbalanced most points classified into one class
- Heuristic for encouraging class balance

$$\frac{1}{n-l} \sum_{i=l+1}^{n} f(x_i) = \frac{1}{l} \sum_{i=1}^{l} y_i.$$

Putting everything together

$$\min_{f} \sum_{i=1}^{l} (1 - y_i f(x_i))_{+} + \lambda_1 ||f||_{\mathcal{H}_k}^2 + \lambda_2 \sum_{i=l+1}^{n} (1 - |f(x_i)|)_{+}$$
s.t.
$$\frac{1}{n-l} \sum_{i=l+1}^{n} f(x_i) = \frac{1}{l} \sum_{i=1}^{l} y_i$$

- Computational difficulty
 - SVM objective is convex
 - $-S^3VM$ objective is non-convex

Summary: Semi-Supervised Learning

- Generative methods Mixture models
- Multi-view methods Co-training
- Graph-based methods
- Semi-Supervised SVMs assume unlabeled data from different classes have large margin
- Many others ...

SSL algorithms can use unlabeled data to help improve prediction accuracy if data satisfies appropriate assumptions