

Repite Automotion Statische Berechnung

Bauvorhaben: Dachgeschoss-Um-/Ausbau

Hentigstr.11a

10318 Berlin-Karlshorst

Bauherr: Jonas Klock

Hentigstraße 11a

10318 Berlin-Karlshorst

Tel.: 0178 3757411

E-Mail: jk@accidentalconcrete.de

Architekt Wilko Hoffmann

Cranachstraße 54

12157 Berlin

Tel.: 030 120535610 E-Mail: info@naice.one

Tragwerksplanung: Ingenieurbüro Pitbau

Joseph-Orlopp-Str. 32-26

10365 Berlin

Tel.: 0049(0)30 24358881

E-Mail: info@pitbau.de

Seiten 1 bis 285

Standsicherheit bauaufsichtlich geprüft

Seiten/Umfang: Seite: 1 bis 286

Index/Datum:

Prüfverzeichnis Nr.: 2023W281

Prüfbericht Nr.:

Prüfingenieur für Standsicherheit / Berlin, 28.04.2023

Fachrichtung Massivbau

Dipl.-Ing. Detlef Wolber

Hauptstraße 65, 12159 Berlin - Friedenau Tel: 419 000 0 Fax: 419 000 90 email: info@klw-berlin.de

Berlin, den

10.10.2023

Datum 28.04.2023 Inhaltsverzeichnis

Inhaltsverzeichnis

ТВ	Titelblatt	1
	Inhalt	2
Vorwort		5
1.	Allgemeines	5
2.	Grundlagen	11
3.	Konstruktive Hinweise	12
Lastanna	ahmen	13
4.	Lastannahmen (Pkt.:4.1. bis 4.6.)	13
4.6.	Wind- und Schneelastzonen	17
4.7.	Schnee u. Wind für Regelfall	18
Statisch	e Nachweise	28
Dachk	construktion	28
D1	Flachdachsparren der Gauben	28
D1.A	Sparrenanschluss an Gaubenpfette	34
D1.B	Sparrenanschluss an Firstpfette	37
D2	Steildachsparren	39
D3	Flachdachsparren über Treppenhaus	49
D3.1	Steildachsparrenbereich neben D3	56
WRB	Windrispenband	63
GP1	Gratsparren	67
KP1	Kehlsparren	77
P1	Mittelpfette	86
P5	TH-Pfette	92
P4	Pfetten für D3 Treppenhaus	98
P4.1	Balkenschuh	103
P2	Firstpfette Gaubenbereich	105

31.07.2023 Dipl.-Ing. D.Wolber

Inhaltsverzeichnis

Projekt Hentigstr.11a, 10318 Berlin-Karlshorst

Datum 28.04.2023

P2.1 Firstpfette ausserhalb der Gaube 110 P3 Gaubenpfette 114 HSW1 Holzständerwand 118 HSW1.1 Zugverankerung 123 HSW2 Holzständerwand 125 **HSW2.1** Zugverankerung 130 HSW3 Holzständerwand 132 **HSW3.1** Zugverankerung 136 HSW.DÜ Verdübelung 138 S1 Holz-Stütze 139 **S1.A** Winkelverbinder 145 S2 Holz-Stütze 148 S3 Strebe vom Windbock 154 S4 Holz-Randstütze 159 S4.1 Holz-Innenstütze 166 KBB1 Kopfbandbalken 172 KBB2 Kopfbandbalken 177 ST1 Fenstersturz 184 RB1 Ringbalken-Giebel 189 ST2 Türsturz 193 RB2 Ringbalken-TH 196 Decke über 3.0G zum DG 200 HS1 Bemessung der Holzschalung 200 **B**1 202 Holz-Balken mit Holz-Verstärkung B2 207 Holz-Balken mit Holz-Verstärkung В3 214 Holz-Balken mit Holz-Verstärkung B4 221 Holz-Balken mit Stahl-Verstärkung **B**5 229

31.07.2023

236

B6

Holz-Balken mit Stahl-Verstärkung

Holz-Balken mit Stahl-Verstärkung

Datum 28.04.2023 Inhaltsverzeichnis

B7	Holz-Balken mit Stahl-Verstärkung	243
B7.1.	Überzug bei Fenstern	251
B8	Holz-Balken mit Stahl-Verstärkung	254
B9	Holz-Balken mit Stahl-Verstärkung	262
B10	Deckenbalken über 2.OG	270
B11	Wechsel-Treppenauflager	275
B11.1.	Balkenschuh	278
ST3	Öffnungssturz	280
Positions	pläne	284
PP1	Positionsplandaten	284
PP2	Detail-Skizzen	285
PP3	Positionsplan	286

Datum: 28.04.2023 Position: 1.

Vorwort

Pos. 1. **Allgemeines**

Die entsprechenden Angaben sind bereits in der Baubeschreibung gemacht worden.

Allgemeine Angaben

- viergeschossiges Wohngebäude: Baujahr ca. Anfang 19. Jahrhundert
- Bestand mit Satteldachkonstruktion (Kehlbalkendach)

- Holzbalkendecken im Bestand (3.OG, bleibt erhalten & wird verstärkt)
- Bestand: Mauerwerksbau in Ziegelbauweise
- Gebäude nicht unterkellert

Die vorliegende statische Berechnung erbringt die erforderlichen Standsicherheits- und Festigkeitsnachweise für Dachgeschosses den Umbzw. Neubau des des Mehrfamilienhauses: Hentigstr. 11a in 10318 Berlin.

Die Kubatur des Bestandsdaches wird durch Gauben einem hofseitigen Terrassenausschnitt verändert. Bei der vorhandenen Dachkonstruktion im Bestand handelt es sich um ein Kehlbalkendach, das abgerissen und durch ein neues Pfettendach ersetzt werden soll. Die Konstruktion wird zimmermannsmäßig abgebunden. Die neue Windaussteifung wird durch Holzböcke, Holzständerwände und Windrispenbänder sichergestellt. Die vorhandene Decke zum Dachgeschoss ist als Holzbalkendecke ausgebildet und wird im Rahmen des Dachgeschoss-Umbaus wenn erforderlich verstärkt. Massivdecke, falls vorhanden, sind gesondert zu untersuchen!

Das Mehrfamilienhaus ist nicht unterkellert und wurde in Mauerwerksbauweise errichtet. Durch den Dachgeschoss-Umbau bleibt die Belastung der Gründung annähernd unverändert.

Alle in der statischen Berechnung getroffenen Annahmen sind vor Baubeginn und während der Baumaßnahmen von den ausführenden Unternehmen eigenverantwortlich zu prüfen. Bei wesentlichen Abweichungen ist der Aufsteller rechtzeitig zu benachrichtigen. Konstruktionsteile mit geringeren Spannweiten bzw. Belastungen als die nachgewiesenen Positionen sind baugleich auszuführen.

31.07.2023

Datum: **28.04.2023** Position: **1.**

Berechnungsgrundlagen

- vorliegende Planung vom 28.02.2022 im Maßstab 1:100 von: NAICE architects
- die einschlägigen bauaufsichtlich eingeführten technischen Baubestimmungen in ihrer zur Zeit gültigen Fassung

Dachkonstruktion

Die statische Konstruktion wird als Pfettendach hergestellt. Dachflächen erhalten in Teilbereichen Dachflächenfenster. Die komplette Dachkonstruktion wird erneuert. Bei den Statischen Nachweise werden in Teilen die Bestandsquerschnitte im 3.OG nachgewiesen und wenn erforderlich durch Verstärkungen ertüchtigt.

Sparren-/Stiel- und Pfettenverbindungen sind zug- und druckfest auszuführen. Die Stiele werden auf verstärkten Holzbalken oder neuen Stahlprofilträger der obersten Geschossdecke gelagert. Der Lastabtrag der Dach- und Deckenbauteile wird über die Außen- und Innenwände sichergestellt. Die Horizontallasten werden über die Dachscheibe, Windböcke und Holzständerwänden in den Bestand eingetragen. Bei der Bemessung wurde eine Photovoltaik-Anlage auf den Flachdächern der Gaube berücksichtigt.

Für Holzschutzmaßnahmen sind die anerkannten Regeln der Technik einzuhalten. Auf eine funktionstüchtige Entwässerung des Daches ist zu achten.

Die Hinweise/ Anmerkungen der nachfolgenden statischen Nachweisen sind zu beachten.

Ergänzende Bemerkungen, wenn nicht in den statischen Nachweise gesondert bemessen.

Befestigung der Dachflächen

Schalbretter sind mit wenigstens 2 Drahtnägeln nach DIN 1151 - Drahtnägel; Rund-, Flach-, Senkkopf oder mit gleichwertigen Verbindungsmitteln, z.B. Schrauben, an jedem Sparren, Binder oder Stiel zu befestigen. In Hirnholz eingeschlagene Nägel dürfen auf Herausziehen nicht in Rechnung gestellt werden.

Dachschalung aus Holzspan- oder Furnierplatten sind mit mindestens 6 Drahtnägeln / m² Dachfläche oder gleichwertigen Verbindungsmitteln, z.B. Schraubnägeln, zu befestigen. Im Rand- und Eckbereich von Flachdächern sind mindestens 12 bzw. 18 Drahtnägel je m² Dachfläche oder gleichwertige Verbindungsmittel anzuordnen. Für andere Dacheindeckungen, z.B. Verblechungen sind gleichwertige Verbindungsmittel zu verwenden.

31.07.2023

Datum: **28.04.2023** Position: **1.**

Befestigung der Teile von hölzernen Dachkonstruktionen

Bei hölzernen Dachkonstruktionen sind sämtliche Teile, wie Sparren, Pfetten, Pfosten, Kopfbänder, Schwellen, untereinander ausreichend zugfest zu verbinden, insbesondere an den Dachrändern und -ecken bzw. bei Dachüberständen. Mindestens jeder dritte Sparren ist an seinen Auflagerpunkten - außer der allgemeinen Befestigung durch Sparrennägel - zusätzlich durch Laschen, Zangen, Bolzen bzw. durch Sonderbauteile, z.B. Stahlblechformteile, die durch Nagelung befestigt werden, mit den Pfetten zu verbinden.

Verankerung der Dachkonstruktion

Die Dachkonstruktionen sind durch Stahlanker mit einem Nettoquerschnitt von mindestens 1,2 cm² - Flachstahlanker mindestens 4 mm dick, Rundstahlanker mindestens 14 mm Durchmesser - in den Eckbereichen in Abständen von höchstens 1m und im Randbereich in Abständen von höchstens 2 m mit der Unterkonstruktion zu verbinden. Die durch die Verankerung erfassten Bauteile müssen je Stahlanker 4,5 KN (450 kg) wiegen.

Bei Verankerung im Mauerwerk müssen die Anker in entsprechender Tiefe liegende waagerechte Bewehrungsstäbe oder Splinte umfassen. Bei Verankerung in Stahlbetonbauteilen sind die Anker möglichst vor dem Betonieren mit den entsprechenden Haftlängen nach Eurocode 2 - Bemessung und Konstruktion von Stahlbeton - einzubauen; werden sie nachträglich eingesetzt, so müssen sie genügend tief liegende waagerechte Bewehrungsstäbe umfassen (z.B. bei Platten mindestens 10 cm, sonst 15 cm tief). Verankerung durch Bolzen, die mit Bolzenwerkzeugen in Massivbauteilen eingeschossen werden, sind unzulässig.

Giebelwände im Dachgeschoss müssen mit dem Dachstuhl durch Anker mit Splinten zugfest verbunden werden, wenn sie nicht durch Querwände oder Pfeilervorlagen ausreichend ausgesteift sind.

Datum: 28.04.2023 Position: 1.

Decken:

Der alte Fußboden wird durch einen neuen Deckenaufbau entsprechend Architektenvorgaben ausgebildet. Durch den neuen Deckenaufbau erhält die oberste Geschossdecke eine Lasterhöhungen, die statisch nachgewiesen wird.

Es wird ein Standsicherheitsnachweis für die Bestandsholzbalkendecke mit neuem Aufbau geführt. Die zulässige Durchbiegung wird unter Berücksichtigung der Altbausituation und der vorhandenen Spannweiten mit L/300 berechnet.

Durch die gewählten Lastannahmen werden bei einigen Deckenbalken die Durchbiegungsbeschränkungen nach EC5 nicht eingehalten. Die Standsicherheit der Deckenbalken ist davon nicht beeinträchtigt. Es kann dadurch jedoch unter Umständen zu Unbehagen verursachenden Schwingungen kommen.

Die Deckenbalken werden, wenn erforderlich, entsprechend verstärkt oder die Ausführung erfolgt durch neu eingebrachte Träger. In Teilbereichen ist die Ausführung von seitlichen Balkenverstärkungen durchzuführen oder es werden neue Deckenträger aus Stahlprofilen zwischen die Deckenbalken verlegt.

Für Holzschutzmaßnahmen sind die anerkannten Regeln der Technik einzuhalten.

Holzbalkenverstärkungen:

Bei Balkenverstärkungen mittels Kanthölzern bzw. Bohlen muss die Einschraubtiefe der Holzschrauben um die Tiefe der Staakungsschlitze vergrößert werden, sollten diese im Bereich der Staakungsschlitze liegen. Bei Balkenverstärkungen aus Stahl und Anschluss mit Sonderdübeln dürfen keine Holzschrauben als Verbindungsmittel verwendet werden (nur zulässig bei Anschluss von Stahl an Brettschichtholz).

Die Balkenverstärkungen sind von Auflager zu Auflager zu führen und kraftschlüssig zu unterfüttern.

Datum: 28.04.2023 Position: 1.

Tragende Mauerwerkwände:

Die Bestandsaußenwände sind während der Baudurchführung zu untersuchen. Bei einer Schadfeststellung ist eine Sanierung durchzuführen und der Entwurfsverfasser hinzuzuziehen. Im Dachgeschoss wurde Vollziegelmauerwerk in Kalkmörtel verwendet. Als zulässige Spannung wird für dieses Mauerwerk bis zu sigma zul.= 1000 kN/m² zugelassen. Unter Einzellasten werden Pressungen von 1,3 x sigma zul. zugelassen. Zur Berechnungsannahme wird von einem Mauerwerk MZ10 / II angesetzt.

Stemmarbeiten

Alle Stemmarbeiten in tragenden Konstruktionen bedürfen der Zustimmung des Statikers. Stemmarbeiten sind möglichst erschütterungsfrei auszuführen. Durchbrüche sind mit einer Trennscheibe von beiden Seiten einzuschneiden und danach leicht heraus zu stemmen.

Schlitzen von Wänden

Das Stemmen von Schlitzen ist nicht zulässig. Schlitze und Aussparungen sind zu fräsen. Hierbei ist der Eurocode EC6 zugehörigen NA zu beachten.

Schließen vorhandener Wandöffnungen

Soll eine Wandöffnung geschlossen werden und der neue Mauerwerksbereich eine tragende Funktion erhalten, so sind sorgfältige Anschlüsse des neuen Mauerwerks an das alte Mauerwerk (Verzahnung) auszuführen.

Nach den Regeln der Technik sind folgende Angaben allgemeingültig:

- Für jede dritte Schicht ist eine 11,5 cm tiefe Verzahnung im Anschlußbereich zu stemmen.
- Um einen Verband herstellen zu können, soll die Steinhöhe des neuen Mauerwerks der des Alten entsprechen. Beim Ausmauern ist der Anschlußbereich ausreichend vorzunässen.
- Die Mauerwerksgüte des neuen Mauerwerks muß der des Altmauerwerks entsprechen.
- Der Spalt zwischen Wandoberkante und Sturzunterkante ist mit erdfeuchtem schwindarmen Beton satt auszustopfen.

on 2023 - Copynght 2022 - mb AEC Softwar

w olibati de

10

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: 1.

Mauerwerksanker:

Vorhandene Mauerwerksanker müssen erhalten bleiben und dürfen beim Auswechseln von Balken keinesfalls entfernt werden, da diese Anker allein die Standsicherheit parallel mit Balken verlaufender Außenwände garantieren.

Gründung:

Es können durch die Umbaumaßnahmen in bestimmten Bereichen höhere Spannungen als im Altzustand auftreten. Im Wesentlichen bleiben jedoch durch die veränderte Nutzung des Dachgeschosses die Lastannahmen der Fundamente unverändert. Die Standsicherheit ist bei Beachtung der geprüften Statik nicht beeinträchtigt.

Unbelastete Trennwände

Als neue Trennwände kommen leichte Gipskartonwände System Rigips zur Anwendung. Lichtkuppeln, wenn vorhanden, werden durch den Hersteller nachgewiesen.

Der vorhandene Grundriss wird durch Aufstellen leichter Trennwände verändert. Bei der Wahl dieser Wände ist auf folgende Punkte besonders zu achten:

- Es ist eine möglichst leichte Wandkonstruktion zu wählen (bis max. 120 kg/m).
- Es ist eine möglichst rissunempfindliche Wandkonstruktion zu wählen.
- Vor dem Verputzen sind die Fugen mit Gewebe zu überspannen.

Brandschutz

gemäß Brandschutzkonzept /-gutachten, nach den Vorgaben des Architekten auszuführen

Schallschutz

nicht Gegenstand dieser Berechnungsunterlagen

Wärmeschutz

nicht Gegenstand dieser Berechnungsunterlagen, gemäß aktuellem GEG-Nachweis

31.07.2023

Datum: 28.04.2023 Position: 2.

Pos. 2. Grundlagen

Vorschriften: Eurocode 0: Grundlagen der Tragwerksplanung (EN 1990)

Eurocode 1: Einwirkungen auf Tragwerke (EN 1991)

Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und

Spannbetontragwerken (EN 1992)

Eurocode 3: Bemessung & Konstruktion von Stahlbauten (EN 1993)

Eurocode 5: Bemessung & Konstruktion von Holzbauten (EN 1995)

Eurocode 6: Bemessung & Konstruktion v. Mauerwerksbauten (EN 1996)

Baustoffe: Holz: C24

OSB2/3

Profilstahl S235, korrosionsgeschützt behandelt

Mauerwerk: Bestand angesetzt: MZ 10, MG II

Grundlagen: Architektenplanung vom 28.02.2023

/

Seite:

11

12

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position:

Pos. 3. **Konstruktive Hinweise**

- 1. Die Baumaßnahmen haben entsprechend den geltenden Normen zu erfolgen.
- 2. Alle Maße, Spannrichtungen und Querschnitte sind vor Ort zu prüfen. Bei Abweichungen von den Annahmen ist der Statiker hinzuzuziehen.
- 3. Die Balkenfelder im Bad/Terrassenbereich sind zu entlüften.
- 4. Die Hinweise in der Baubeschreibung sind zu beachten.
- 5. Stark geschädigte Holzbalken sind zu ersetzen.
- 6. Nach Bebeilung ist der Statiker zur Festlegung der Verstärkung und evtl. statischen Nachweisen hinzuzuziehen.

- 8. Es können durch die Umbaumaßnahmen in bestimmten Bereichen höhere Spannungen als im Altzustand auftreten. Die Standsicherheit ist bei Beachtung der geprüften Statik nicht beeinträchtigt.
- 9. Die Aussteifung der Dachkonstruktion erfolgt durch die Windböcke und/oder Holzständerwände sowie durch die die Scheibenwirkung der Dachflächen.
- 10. In den Trennwänden mit angeordneten Stielen werden die Stiele mit Streben horizontal abgefangen. Die Anschlüsse sind Zug- und Druckfest auszuführen.
- 11. Die Wände sind mit Ankern an der Dachkonstruktion anzuschließen.

Datum: **28.04.2023** Position: **4.**

Lastannahmen

Pos. 4. Lastannahmen (Pkt.:4.1. bis 4.6.)

4.1.) Dachkonstruktion - Schrägdachflächen (DN 30°)

Dicke	Schicht	Gewicht:
		[kN / m²]
Eigenlasten		
	Ziegel auf Lattung	0,55
	Sparren (gemäß Statik)	(0,17)
	Dämmung (gemäß EnEV-Nachweis)	0,24
	Verkleidung (Gipskarton)	0,23
Σ : g	Summe	1,19
Schneelasten	Bauvorhaben in Berlin	sk=0,85
	Gebäudehöhe <17,28m ü. OFG	
	Geländehöhe <44m ü. NN	
Windlasten	Windlastzone 2, Geländekategorie 2	<u>qp=0,91</u>

Die Annahmen zum Aufbau sind zu prüfen, ob die erforderlichen Anforderungen zum Brandund Schallschutz erfüllt werden.

Datum: 28.04.2023

Seite:

14

4.2.) Dachkonstruktion - Flachdachflächen (DN3°)

Dicke	Schicht Gewicht:		
		[kN / m ²]	
Eigenlasten			
	PV-Anlage	0,30	
	Bitumendach	0,16	
24mm	Holz-Schalung (Bestand) oder OSB4	0,15	
	Sparren (gemäß Statik)	(0,17)	
	Dämmung (gemäß EnEV-Nachweis)	0,24	
	Verkleidung (Gipskarton)	0,23	
			/
Σ : g	Summe:	<u>0,95</u>	
Schneelasten	Bauvorhaben in Berlin	sk=0,85	
	Gebäudehöhe <22,6 m ü. OFG		
	Geländehöhe <44m ü. NN		
Windlasten	Flachdach: Es treten nur Windsogkräfte auf.		
	Windlastzone 2, Geländekategorie 2		

Die Lastannahmen sind zu prüfen, ob die erforderlichen Anforderungen zum Brand-, Schallund Feuchteschutz erfüllt werden.

Datum: **28.04.2023** Position: **4**

4.3.) Deckenkonstruktion - Decke zum Dachgeschoss

Dicke	Schicht	Gewicht: [kN / m²]
Eigenlast		
15mm	Belag (Parkett, Fliese etc. (≤28kg/m² !)	0,28
	Fertigteilestrich (≤ 63kg/m²)	0,63
33mm	Brio23 (Knauf) +	
	Abdeckplatte Vidiwall	
<70mm	Ausgleichsschüttung 550kg/m³ x 0,07m<=38,5kg/m²	0,39
25mm	Holzschalung (OSB)	0,14
100mm	Einschub (Schüttung <=100kg/m²)	1,00
(20 / 26 [cm])	Balkenlage (e≈0,90-0,95m im Bestand)	0,29
18 mm	Sparschalung (Bestand)	0,10
	Rohrputzdecke	0,35
	Eigenlast: Summe mit Holzbalken ohne Terrassenzuschlag	<u>3,18</u>
	Summe ohne Holzbalkenträger ohne TZuschlag	<u>2,89</u>
	Zuschlag für Terrassen (<46kg/m²!!!)	3,35 ✓
Verkehrslast	Wohnräume ohne ausreichende Queraussteifung Balkone/Terrassen	2,00 4,00

Die Lastannahmen zum Deckenaufbau sind zu prüfen, ob die angenommen Balkenquerschnitte und -Abstände vorhanden sind und ob die Anforderungen zum Brand- und Schallschutz erfüllt werden.

D-Viewer version zozo - Capprignt zozz - IIID AEC Gottware Gillion

Datum: **28.04.2023**

4.4.) Leichte Trennwände innerhalb einer Wohneinheit / Wohnungstrennwand

Dicke	Schicht	Gewicht:
		[kN / m²]
	Verkleidung	0,15 / 0,25
	Ständer	0,10
	Verkleidung	0,15 / 0,25
	Summe	<u>0,40 / 0,60</u>

Seite:

Position:

16

4.5.) Mauerwerkswände

Dicke entsprechend den statischen Anforderungen

Material: Bestand Mz - SFK10 ; MG-II 18 kN/m³

Material: Neu

Ausbesserungen: Mz - SFK10 ; MG-II 18 kN/m³

Datum: 28.04.2023

Pos. 4.6. Wind- und Schneelastzonen

Gebäude

Gebäudestandort	Postleitzahl	PLZ	=	10318
	Ortsname	Ort	=	Berlin
	Ortsteil	ОТ	=	Lichtenberg

Geodätische Daten	Geodätische Daten Geogr. Breite		=	52.52050
	Geogr. Länge	λ	=	13.40842

	Googi. Earigo	^		10.10012	
Geograf. Daten	Geländehöhe ü. NN	H_s	=	44.00	m
•	Windzone	WZ	=	2	
	Schneelastzone	SI 7	=	2	

 $\mathbf{S}_{\mathbf{k}}$

char. Schneelast Norddeutsches Tiefland

Übersicht Wind

Übersicht Schnee

Durch Kontrollrechnung geprüft

0.85 kN/m²

Seite:

Position:

17

4.6.

Datum: 28.04.2023 Position: 4.7.

Pos. 4.7.	Schnee u. Wind für Regelfall				
System Abmessungen	Gebäudedaten Gebäudebreite B = 11.87 m Gebäudelänge L = 13.42 m Gebäudehöhe H = 17.30 m				
Geograf. Angaben	Geländehöhe über NN Windzone Schneelastzone Standort A = 44.00 m WZ = 2 SLZ = 2 Binnenland				
Geometrie	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Wandöffnungen	geschlossene Außenwände				
Einwirkungen	Einwirkungen nach DIN EN 1990:2010-12				
Qk.S	Schnee Schnee- und Eislasten für Norddeutsches Tiefland Qk.S min/max Werte				
Qk.W	Wind Windlasten Qk.W min/max Werte				
Nordd. Tiefland	Aufgrund der Gebäudelage im norddeutschen Tiefland wird die Einwirkung Qk.S nach DIN EN 1991-1-3/NA, NDP zu 4.3(1) zusätzlich als außergewöhnliche Einwirkung mit 2.3-fachen Lastwerten berücksichtigt.				
Windlasten	Windlastermittlung nach DIN EN 1991-1-4:2010-12				
	Ermittlung im Regelfall nach NA.B.3.3 Anströmrichtung 0° auf Traufe links Basiswindgeschwindigkeit $v_{b,0} = 25.00$ m/s Basisgeschwindigkeitsdruck $q_{b,0} = 0.39$ kN/m² Bezugshöhe $z_e = 17.30$ m Geschwindigkeitsdruck $q_p = 0.81$ kN/m² Lasteinflussfläche $A \ge 10.00$ m²				

/

Seite:

18

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: 4.7.

Seite:

19

Qk.W.000 Richtung Θ=0°

Winddruckverteilung M 1:200

Bereichsgröße	e _D =	13.42	m
-	e _W =	13.42	m

Bereichseinteilung M 1:300

Datum: 28.04.2023 Position: 4.7.

M 1:200

Bereich	d,b	h	Cpe,1	Cpe,10	W e,10
	[m]	[m]	[-]	[-]	[kN/m²]
Α	2.68	17.30	-1.43	-1.22	-0.99
В	9.19	17.30	-1.10	-0.80	-0.65
D	13.42	13.42	1.00	0.80	0.59
D	13.42	3.88	1.00	0.80	0.65
E	13.42	17.30	-0.52	-0.50	-0.41

Bereich	d	b	Cpe,1	Cpe,10	W e,10
	[m]	[m]	[-]	[-]	[kN/m²]
F-	1.34	3.36	-1.57	-0.55	-0.45
F+	1.34	3.36	0.63	0.63	0.51
G-	1.34	6.71	-1.50	-0.54	-0.44
G+	1.34	6.71	0.63	0.63	0.51
H-	4.59	13.42	-0.21	-0.21	-0.17
H+	4.59	13.42	0.37	0.37	0.30
I	4.59	13.42	-0.40	-0.40	-0.32
J	1.34	13.42	-0.63	-0.57	-0.46

Durch Kontrollrechnung geprüft

Seite:

20

Datum: 28.04.2023 Position: 4.7.

Qk.W.090 Richtung Θ=90°

Bereichsgröße

11.87 $e_D =$ m ew = 11.87 m

Seite:

21

Bereichseinteilung M 1:300

31.07.2023

mb BauStatik S031.de 2023.009

Ingenieurbüro Pitbau - Statik & Energieberatung - www.pirbau.de

Seite:

Datum: 28.04.2023 Position: 4.7.

M 1:200

Bereich	d,b [m]	h [m]	С _{ре,1} [-]	С _{ре,10} [-]	W _{e,10} [kN/m²]
Α	2.37	17.30	-1.42	-1.21	-0.99
В	9.50	17.30	-1.10	-0.80	-0.65
С	1.55	17.30	-0.51	-0.50	-0.41
D	11.87	11.87	1.00	0.80	0.57
D	11.87	5.43	1.00	0.80	0.65
E	11.87	17.30	-0.51	-0.50	-0.41

Bereich	d [m]	b [m]	С _{ре,1} [-]	C _{pe,10} [-]	W _{e,10} [kN/m²]
F	1.19	2.97	-1.57	-1.13	-0.91
G	1.19	5.94	-2.00	-1.39	-1.13
Н	4.75	11.87	-1.20	-0.77	-0.63
1	7.49	11.87	-0.50	-0.50	-0.41

Durch Kontrollrechnung geprüft

Datum: **28.04.2023** Position: **4.7.**

Qk.W.180 Richtung Θ=180°

Winddruckverteilung M 1:200

Bereichsgröße $e_D = 13.42$ m $e_W = 13.42$ m

Bereichseinteilung M 1:300

31.07.2023

23

Seite:

Datum: 28.04.2023 Position: 4.7.

M 1:200

Bereich	d,b	h	C _{pe,1}	Cpe,10	W e,10
	[m]	[m]	[-]	[-]	[kN/m²]
Α	2.68	17.30	-1.43	-1.22	-0.99
В	9.19	17.30	-1.10	-0.80	-0.65
D	13.42	13.42	1.00	0.80	0.59
D	13.42	3.88	1.00	0.80	0.65
E	13.42	17.30	-0.52	-0.50	-0.41

Bereich	d	b	Cpe,1	Cpe,10	W e,10
	[m]	[m]	[-]	[-]	[kN/m²]
F-	1.34	3.36	-1.57	-0.55	-0.45
F+	1.34	3.36	0.63	0.63	0.51
G-	1.34	6.71	-1.50	-0.54	-0.44
G+	1.34	6.71	0.63	0.63	0.51
H-	4.59	13.42	-0.21	-0.21	-0.17
H+	4.59	13.42	0.37	0.37	0.30
1	4.59	13.42	-0.40	-0.40	-0.32
J	1.34	13.42	-0.63	-0.57	-0.46

Durch Kontrollrechnung geprüft

24

Seite:

Datum: **28.04.2023** Position: **4.7.**

Qk.W.270 Richtung Θ=270°

Winddruckverteilung M 1:200 Bereichsgröße $e_D = 11.87$ m $e_W = 11.87$ m

Bereichseinteilung M 1:300

Durch Kontrollrechnung geprüft

25

Seite:

31.07.2023

Datum: 28.04.2023 Position: 4.7.

M 1:200

Bereich	d,b [m]	h [m]	С _{ре,1} [-]	С _{ре,10} [-]	W _{e,10} [kN/m²]
Α	2.37	17.30	-1.42	-1.21	-0.99
В	9.50	17.30	-1.10	-0.80	-0.65
С	1.55	17.30	-0.51	-0.50	-0.41
D	11.87	11.87	1.00	0.80	0.57
D	11.87	5.43	1.00	0.80	0.65
Е	11.87	17.30	-0.51	-0.50	-0.41

Bereich	d	b	Cpe,1	Cpe,10	W e,10
	[m]	[m]	[-]	[-]	[kN/m²]
F	1.19	2.97	-1.57	-1.13	-0.91
G	1.19	5.94	-2.00	-1.39	-1.13
Н	4.75	11.87	-1.20	-0.77	-0.63
1	7.49	11.87	-0.50	-0.50	-0.41

Schneelasten Schneelastermittlung nach DIN EN 1991-1-3:2010-12

char. Schneelast auf Boden

	Formbeiwert für Schneelast	$\mu_2(\alpha_1)$	=	0.80	-
		$\mu_2(\alpha_r)$	=	0.80	<u>-</u> /
Qk.S.A	Fall (i): unverwehte Lastverteilung				-
	Schneelast auf dem Dach	SI	=	0.68	kN/m²
		Sr	=	0.68	kN/m²
Qk.S.B	Fall (ii): verwehte Lastverteilung				
	Schneelast auf dem Dach	Sı	=	0.34	kN/m²
		Sr		0.68	kN/m²
Qk.S.C	Fall (iii): verwehte Lastverteilung				•
	Schneelast auf dem Dach	Sı	=	0.68	kN/m²
		Sr	=	0.34	kN/m²

Durch Kontrollrechnung geprüft

31.07.2023

0.85

 $s_k =$

kN/m²

26

Seite:

R PITBAU			Seite:	27
TYPIIBAU	Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst Datum: 28.04.2023		Position:	4.7.
Schneeverwehung	Höhe des Aufbaus	h =	0.30	m
	Länge des Verwehungskeils	Is =	5.00	m
	Formbeiwerte	$\mu_1 =$	0.80	-
		$\mu_2 =$	0.80	-
	maximale Schneelast	s _A =	0.68	kN/m^2
	minimale Schneelast	s _E =	0.68	kN/m²
Nordd. Tiefland	Schneelastermittlung nach DIN EN 1991 als außergewöhnliche Einwirkung	-1-3:2010-12		/
Schneelasten	außergew. Schneelast auf Boden	s _{Ad} =	1.96	kN/m²
Qk.S.A	Fall (i): unverwehte Lastverteilung			
	Schneelast auf dem Dach	s _l =	1.56	kN/m²
		s _r =	1.56	kN/m²
01.0.0	= II ('')			
Qk.S.B	Fall (ii): verwehte Lastverteilung		0.70	1.1.1.2
	Schneelast auf dem Dach	s _l =	0.78	kN/m²
		s _r =	1.56	kN/m²
Qk.S.C	Fall (iii): verwehte Lastverteilung			
	Schneelast auf dem Dach	s _l =	1.56	kN/m²
		s _r =	0.78	kN/m²
Schneeverwehung	Formbeiwerte	$\mu_1 =$	0.80	-
		µ ₂ =	0.80	-
	maximale Schneelast	s _A =	1.56	kN/m²

minimale Schneelast

Durch Kontrollrechnung geprüft

1.56

kN/m²

3.0

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: D1

Statische Nachweise

Dachkonstruktion

Pos. D1 Flachdachsparren der Gauben

System M 1:50

1-Feld Sparren

Abmessungen Mat./Querschnitt	Feld	l [m]	Material		b/h [cm]
	1	5.00	NH C24		10.0/22.0
Auflager	Lager	x [m]	z [m]	K _{T,z} [kN/m]	Κ _{Τ,} , [kN/m]
	A B	0.00 5.00	0.00 0.24	fest fest	fes fre

Dachneigung	Dachneigungswinkel	δ =	2.8
0 0			

Einschnitttiefe am Auflager

Sparrenabstand Abstand a = 0.90

Einwirkungen Einwirkungen nach DIN EN 1990:2010-12

Gk Eigenlasten

Ständige Einwirkungen

Qk.S Schnee

Schnee- und Eislasten für Norddeutsches Tiefland

Qk.S min/max Werte

Qk.S.A Fall (i)

Qk.W Wind

Windlasten

Qk.W min/max Werte

Qk.W.000Anströmrichtung $\Theta = 0^{\circ}$ Qk.W.090Anströmrichtung $\Theta = 90^{\circ}$ Qk.W.180Anströmrichtung $\Theta = 180^{\circ}$ Qk.W.270Anströmrichtung $\Theta = 270^{\circ}$

Nordd. Tiefland Aufgrund der Gebäudelage im norddeutschen Tiefland wird die

Einwirkung Qk.S nach DIN EN 1991-1-3/NA, NDP zu 4.3(1) zusätzlich

als außergewöhnliche Einwirkung mit 2.3-fachen Lastwerten

berücksichtigt.

Durch Kontrollrechnung geprüft

31.07.2023

Datum: 28.04.2023 Position: D1

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen

Flächenlaster
in z-Richtung
Einw. <i>Gk</i>

Einw.	Gk
	Qk.S.A Qk.W.000
Einw.	Qk.W.090
Einw.	Qk.W.180

	Feld	Richt.	Komm.	•	•	~	a
	reiu	Riciit.	NOIIIIII.	a [m]	s [m]	q _a [kN/m²]	q _e [kN/m²]
	1	vert.DF	Eigengew	0.00	5.00	-	0.10
(a)	1	vert.DF	Eindeck.	0.00	5.00		0.61
(b)	1	vert.DF	Ausbau	0.00	5.00		0.47
	1	vert.GF	Volllast	0.00	5.00		0.68
	1	lokal	Ber. F	0.00	0.50		-1.63
	1	lokal	Ber. H	0.50	2.00		-0.70
	1	lokal	Ber. I	2.50	2.50		0.16
	1	lokal	Ber. F	0.00	1.25		-0.91
	1	lokal	Ber. F	3.75	1.25		-0.91
	1	lokal	Ber. G	1.25	2.50		-0.66
	1	lokal	Ber. H	0.00	5.00		-0.31
	1	lokal	Ber. F	4.50	0.50		-1.63
	1	lokal	Ber. H	2.50	2.00		-0.70
	1	lokal	Ber. I	0.00	2.50		0.16
	1	lokal	Ber. I	0.00	5.00		0.16
	PV-Ar	nlage			0.3 =	= 0.30) kN/m²
	Bitum	endach			0.16 =	= 0.16	6 kN/m²
	Holz-S	Schalung (0	OSB)		0.15 =	= 0.15	5 kN/m²
					=	= 0.6′	1 kN/m²

Verkleidung (Gipskarton)		
lokal:	lokale Belastung orthogonal zur Dachfläche	

vertikale Belastung bezogen auf die Dachfläche

vertikale Belastung bezogen auf die Grundfläche

Kombinationen

quasi-ständig

Lagesicherheit

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

Ek	KLED	Σ	(γ*ψ*EW)
_	_	-	

ständig/vorüberg.	2 ku 1.35*Gk	+1.50*Qk.S.A
-	10 ku/sk 1.35*Gk	+0.75*Qk.S.A

Dämmung pauschal

34 1.00*Gk

vert.DF:

vert.GF:

52 ku/sk 0.90*Gk

+1.50*Qk.W.090

31.07.2023

0.24

0.23

0.47

+1.50*Qk.W.090

kN/m²

kN/m²

kN/m²

Durch Kontrollrechnung geprüft

0.24 =

st./vor. Auflagerkr.

außerg. Auflagerkr

Brand

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023

Ek KLED Σ ($\gamma*\psi*EW$) 76 ku/sk 1.35*Gk +1.50*Qk.W.090 78 ku/sk 1.35*Gk +1.50*Qk.W.270 ku/sk 1.00*Gk 94 +1.50*Qk.W.090 119 ku/sk 1.00*Gk +2.30*Qk.S.A +0.20*Qk.W.270 129 1.00*Gk +0.20*Qk.W.270 ku: kurz

Mat./Querschnitt

Material- und Querschnittswerte nach DIN EN 1995-1-1

Material	Material	f _{mk}	f _{t0k}	f _{c0k} [N/r	f _{c90k} nm²]	f _{vk}	E _{mean}
	NH C24	24.0	14.5	21.0	2.5	4.0	11000

Art	b	h	Α	ly
	[cm]	[cm]	[cm²]	[cm ⁴]
RE	10.0	22.0	220	8873
	RE	[cm]	[cm] [cm] RE 10.0 22.0	[cm] [cm] [cm²] RE 10.0 22.0 220

RE: Rechteckquerschnitt

kurz/sehr kurz

Grafik Querschnittsgrafik [cm]

ku/sk:

M 1:5

Brandfall vierseitige Brandbeanspruchung

Feuerwiderstandsdauer

Abbrandrate

d_{char,n} b_r h_{r} $\mathbf{A}_{\mathbf{r}}$ $I_{y,r}$ [cm²] [cm] [cm] [cm] [cm] [cm⁴] 2.4 5.2 17.2 44.8 89.4 2205.0

Nutzungsklasse 1

Durch Kontrollrechnung geprüft

30

0.80

 $t_{req} =$

 $\beta_n =$

Seite:

Position:

30

D1

min

mm/min

Querschnittswerte

Restquerschnitt

Datum: 28.04.2023 Position: D1

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

9	-	. 2
Bied	Uľ	าต

Nachweis der Biogetragfähigkeit

Biegung	Nachweis der Biegetrag	jranigke	IT			
Abs. 6.1	x Ek	\mathbf{k}_{mod}	N_d	$\sigma_{0,d}$	$f_{0,d}$	η
	[m]	[-]	M _{yd} [kN,kNm]	σ _{my,d} [N/mm²]	f _{my,d} [N/mm²]	[-]
Feld 1	$(L = 5.01 m, k_{c,y} = 0.46)$					
	2.50 2	0.90	0.00	0.00	14.54	
			7.36	9.13	16.62	0.55 *
Querkraft	Nachweis der Querkraft	tragfähi	gkeit			/

Querkraft

o, a o i i i a i c	1 Tabilition	aoi waoin	i ai tu agiai ngik	J10			
Abs. 6.1.7	X	Ek	\mathbf{k}_{mod}	$V_{z,d}$	Td	$\mathbf{f}_{v,d}$	η
	[m]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
Feld 1	5.01	2	0.90	-5.88	0.80	2.77	0.29 *

Stabilität

Nachweis der Stabilität Abs. 6.3

Der Sparren wird in der Dachebene als gehalten betrachtet. Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.

Ersatzstablängen

	l	I _{ef,cy}
	[m]	[m]
Feld 1	5.01	5.01

Bieauna

Nachweis der Biegetragfähigkeit (geschwächter Querschnitt)

3 3		J	3 3	\J		,	
Abs. 6.1	t	Ek	\mathbf{k}_{mod}	N_d	$\sigma_{0,d}$	$f_{0,d}$	η
				\mathbf{M}_{yd}	$\sigma_{my,d}$	$\mathbf{f}_{my,d}$	
	[cm]		[-]	[kN,kNm]	[N/mm ²]	[N/mm ²]	[-]
Auflager A	3.0	10	1.00	-0.41	0.02	16.15	
-				0.00	0.00	18.46	0.00
Auflager B	3.0	2	0.90	0.29	0.02	10.04	
•				0.00	0.00	16.62	0.00

Querkraft

Querkraft	Nachweis	Nachweis der Querkrafttragfähigkeit (geschwächter Querschnitt					
Abs. 6.1.7	t	Ek	\mathbf{k}_{mod}	$V_{z,d}$	Td	$f_{v,d}$	η
	[cm]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
Auflager A	3.0	2	0.90	5.88	0.93	2.77	0.34
Auflager B	3.0	2	0.90	-5 88	0.93	2 77	0.34

Lagesicherheit

Lagesicherheitsnachweis in vertikaler Richtung nach NDP zu A1.3.1(3)

DIN EN 1990, 6.4.2	Aufl.	Ek [-]	F _{d,dst} [kN]	F _{d,stb} [kN]	η [-]
	Α	52	-3.68	2.40	1.53!
	В	52	-3.70	2.40	1.54!

Zugverankerung

standiç	g/voru	ıberg.
---------	--------	--------

Zagverankerang		
Aufl.	F _{d,anch} [kN]	EK
A	-1.01	94
В	-1.03	94

Für die Auflager A und B ist eine Zugkraftverankerung erforderlich.

Durch Kontrollrechnung geprüft

31.07.2023

Datum: 28.04.2023 Position: D1

Seite:

32

Nachweise (Brand)

Nachweise der Feuerwiderstandsfähigkeit nach DIN EN 1995-1-2, 4.2.3

Brandfall	Brandbeanspruchung							
	vierseitig	(oben/u	ınten/link	(s/rechts)			30	
Diagung	Nachwaia	dar Diamatra	نمانداد ا	4			 	
Biegung	nachweis	der Biegetrag	gianigkei					
Abs. 6.1	X	Ek	k _{mod,fi}	N _{d,fi} M _{yd,fi}	σ _{0,d,fi} σ _{my,d,fi}	f _{0,d,fi} f _{my,d,fi}	η	
	[m]		[-]	[kN,kNm]	[N/mm ²]	[N/mm ²]	[-]	
Feld 1		$h_{c,y} = 0.41$. , .	•			
	2.51	129	0.85	0.00	0.00	15.37		
			0.75	3.42	13.34	22.49	0.59 *	
Querkraft	Nachweis o	der Querkraft	ttragfähig	gkeit			/	
Abs. 6.1.7	x [m]	Ek	k _{mod,fi}	V _{z,d,fi} [kN]	T _{d,fi} [N/mm ²]	f _{v,d,fi} [N/mm²]	η [-]	
Feld 1	5.01	129	0.75	-2.73	0.92	3.75	0.24 *	

Stabilität Abs. 6.3

Nachweis der Stabilität

Der Sparren wird in der Dachebene als gehalten betrachtet. Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.

	l	$I_{ m ef,cy}$
	[m]	[m]
Feld 1	5.01	5.01

Nachweise (GZG)

Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1

Verformungen

Abs. 7.2	x [m]	Ek	Norm	w _{vorh} [mm]		W _{zul} [mm]	η [-]
Feld 1	(L=5.01 m,	NKL 1, k	$t_{def} = 0.60$				
	2.50	34	Wnet,fin	14.3	1/300=	16.7	0.85 *

Negative Verformungen wurden zur Bemessung nicht berücksichtigt.

Auflagerkräfte

je lfd. m (Windlasten mit c_{pe,10})

Nachweise der Verformungen

Char. Auflagerkr.

Orian / tanagoria.		_	_
	Aufl.	$F_{x,k}$	$F_{z,k}$
		[kN/m]	[kN/m]
Einw. <i>Gk</i>	Α	0.00	2.96
	В		2.96
Einw. <i>Qk.S.A</i>	A	0.00	1.70
	В		1.70
Einw. <i>Qk.W.000</i>	A	-0.07	-1.37
	В		-0.07
Einw. <i>Qk.W.090</i>	A	-0.22	-2.28
	В		-2.29
Einw. <i>Qk.W.180</i>	A	-0.07	-0.07
	В		-1.37
Einw. <i>Qk.W.270</i>	A	0.04	31.0702070
		Durch Kontrollrechnung geprüft	alleur für Stande

Datum: **28.04.2023** Position: **D1**

Seite:

33

	Aufl.			[k	F _{x,k} N/m]			[k	F _{z,k} [N/m]
	В								0.40
Ankerkräfte	je Sparre Lasteinzu					А	\ =	4.51	m ²
Bemankerkräfte									
ständig/vorüberg.	Aufl.	F _{x,d,min} [kN]	EK	F _{x,d,max} [kN]	EK	F _{z,d,min} [kN]	EK	F _{z,d,max} [kN]	EK
	A B	-0.36	76	0.05	78	-1.01 -1.03	94 94	6.21 6.22	85 85
außergewöhnlich	Aufl.	F _{x,d,min} [kN]	EK	F _{x,d,max} [kN]	EK	F _{z,d,min} [kN]	EK	F _{z,d,max} [kN]	EK
	A B	-0.05	117	0.01	119	5.56 5.56	122 122	6.26 6.26	119 119
Zusammenfassung	Zusamme	enfassung	der N	lachweise					
Nachweise (GZT)	Nachweise im Grenzzustand der Tragfähigkeit								
	Nachwei	S				Feld	x [m]		η [-]
	Biegung Querkraft Biegung Querkraft Lagesiche Zugv.: Für	erheit	A und E	3 ist eine Zugk	Auf	Feld 1 Feld 1 lager B lager B	2.50 5.01	OK OK OK OK Zugv.	0.55 0.29 0.00 0.34 1.54
Nachweise (Brand)	Brandfall	im Grenz	zustar	nd der Tra	gfähigk	ceit			V
	Nachwei	S				Feld	x [m]		η [-]
	Biegung Querkraft					Feld 1 Feld 1	2.51 5.01	OK OK	0.59 0.24
Nachweise (GZG)			nzzust	. der Gebr	auchs	tauglichke	eit		
	Nachwei	S				Feld	x [m]		η [-]
	ges. Endo	durchbieg	ung			Feld 1	2.50	OK	0.85

Durch Kontrollrechnung geprüft

D-Viewer version 2023 - Copyright 2022 - IIID AEC Software Gillion

34

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: **D1.A**

Pos. D1.A

Sparrenanschluss an Gaubenpfette

Sparrenauflager

Geometrie

Grafik M 1:10

Mat./Querschnitt	Bauteil	α [°]	Material	Querschnitt [cm]
	Pfette		NH C24	18.0/22.0
	Sparren	2.8	NH C24	10.0/22.0

2.50 Einschnitttiefe Sparren t =

Nutzungsklasse 2

Verbindungsmittel

Sparrenpfettenanker Simpson Strong Tie Anzahl der Sparrenpfettenanker pro Anschluss Lage der Sparrenpfettenanker

vertikal 4x 4.0x40mm pro Schenkel*

CNA Kammnägel (Europäische Technische Zulassung ETA-07/0137)

Es wird empfohlen, die Verbindungsmittel an den äußeren Enden anzuordnen.

Durch Kontrollrechnung geprüft

31.07.2023

Datum: 28.04.2023 Position: **D1.A**

Seite:

35

Belastungen

Belastungen für den Anschluss

Delastarigeri	Delastangen far den Anseniass			
Auflagerlasten	Komm.	F _x [kN]		F _z [kN]
Einw. <i>Gk</i>	(a)	0.00		2.66
Einw. Qk.S	(b)	0.00		1.53
Einw. Qk.W.000	(c,d)	0.04		0.36
Einw. <i>Qk.W.090</i>	(e,f)	0.36		-2.45
(a)	aus Pos. 'D1' A (Fz,anker), Gk (max)			~
		2.664 =	2.66	kN
(b)	aus Pos. 'D1' A (Fz,anker), Qk.S (max)			\
	,	1.530 =	1.53	kN
(c)	aus Pos. 'D1' A (Fx,anker), Qk.W (max)			\
	,	0.035 =	0.04	kN
(d)	aus Pos. 'D1' A (Fz,anker), Qk.W (max)			/
	(1.127.)	0.359 =	0.36	kN
(e)	aus Pos. 'D1' A (Fz,anker), Qk.W (max)			
	(max)	0.359 =	0.36	kN
(f)	aus Pos. 'D1' A (Fz,anker), Qk.W (min)	0.450 -	2.45	LAI
		-2.452 =	-2.45	kN
Kombinationen	Kombinationsbildung nach DIN EN Darstellung der maßgebenden Kon			\
	Ek KLED Σ (γ*ψ*EW)			
	(γ φ)			

ständig/vorüberg.

1.35*Gk 2 ku +1.50*Qk.S 4 ku/sk 1.35*Gk +1.50*Qk.W.090 12 ku/sk 1.00*Gk +1.50*Qk.W.090 ku/sk: kurz/sehr kurz

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1:2010-12

Querdruck

vertikale Druckkraft

Abs.	6.1.5	, Abs.	6.2.2

EK	Kmod [-]	Fd [kN]	α [°]	σ c,α,d [N/mm²]	Кс,90 [-]	fc,α,d [N/mm²]	η
2	0.90	5.89	87.2		1.50		0.09
			90.0	0.20	1.50	1.73	0.08

Sparren Pfette

Sparren

* Wert mit k_{c,90} modifiziert

horizo	ntale Druck	kraft					
Ek	Kmod [-]	Fa [kN]	α [°]	σ c,α,d [N/mm²]	k c,90 [-]	f _{c,α,d} [N/mm²]	η
4	1.00 Durch	0.54 Kontrollı	2.8 echnui	0.19 ng geprüft	1.50	15.98	*31.0702023

Nachweise (GZT)

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: D1.A

	Ek	Kmod [-]	Fd [kN]		σ [N/m	c,α,d m²]	Kc,90 [-]	f _{c,α,d} [N/mm²]	η
Pfette	* We	ert mit k _{c.90}	modifizier	90.0 t	(0.13	1.50	1.92	0.05
		5,55							
Sparrenpfettenanker	EK	kmod	Fzd [kN]	Rzd [kN]	Fxd [kN]	Rxd [kN]	Fy [kN	_	η
	12	1.00	-1.01	6.58					0.15
Zusammenfassung	Zusa	ammenfass	sung der N	lachweise	Э				/

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis		ղ [-]
Querdruck	OK	0.09
Sparrenpfettenanker	OK	0.15

/

Seite:

36

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: D1.B

Pos. D1.B Sparrenanschluss an Firstpfette

Geometrie Balkenträgernachweis

Grafik M 1:10

Mat./Querschni	t	1	Į	l																																									l	l		١								١		١								۱			١		Ì		l		,	,					Į	1		į	9				ļ	4					ľ	Ì	l							3			E						Į		,		١																							Į		Į		Į		ļ
----------------	---	---	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	--	---	--	--	--	--	--	--	--	---	--	---	--	--	--	--	--	--	--	---	--	--	---	--	---	--	---	--	---	---	--	--	--	--	---	---	--	---	---	--	--	--	---	---	--	--	--	--	---	---	---	--	--	--	--	--	--	---	--	--	---	--	--	--	--	--	---	--	---	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	---	--	---	--	---

Bauteil	Material	Querschnitt [cm]
Hauptträger	NH C24	14.0/36.0
Nebenträger	NH C24	10.0/22.0

Der Hauptträger ist torsionssteif gelagert.

Höhenversatz OK-Hauptträger zu Nebenträger: 14.0cm

Nutzungsklasse 2

Verbindungsmittel

Balkenträger Simpson Strong Tie

Kammnägel, 4-reihige Ausnagelung

BT4 90 (mit Einhängeöffnung) 8x CNA 4.0x50mm 4x 8.0x100mm

Seite:

37

Stabdübel (Allgemeine bauaufsichtl. Zulassung Nr. ETA-07/0245)

Belastungen

Belastungen für den Anschluss

Auflagerlasten	Komm.			Fz
				[kN]
Einw. Gk	(a)			2.96
Einw. Qk.S	(b)			1.70
Einw. Qk.W.090	(c)			-2.46
Einw. Qk.W.270	(d)			0.40
(a)	aus Pos. 'D1' B (Fz), Gk (max)			\
()	(), - ()	2.960 =	2.96	kN
4. \	5 15 41 5 45 \ 24 2 4 \ 2			

(b) aus Pos. 'D1' B (Fz), Qk.S (max)

1.700 = 1.70

(c) aus Pos. 'D1' B (Fz,anker), Qk.W.090 (max)

-2.464 = -2.46

31.07.2028

kN

Datum: 28.04.2023

D1.B

38

Seite:

Position:

(d)

aus Pos. 'D1' B (Fz), Qk.W.270

(max)

0.401 =0.40 kΝ

Kombinationen Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

Ek KLED $\Sigma (\gamma^* \psi^* EW)$

17 ku 1.00*Gk ku:

+2.30*Qk.S

Bem.-schnittgrößen

außergewöhnlich

Bemessungsschnittgrößen

Ek	F _{z,d}
	[kN]
17	6.87

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT) Nachweise im Grenzzustand der Tragfähigkeit

Nachweis		η [-]
Balkenträger	OK	0.96
Querzug	OK	0.94

Datum: **28.04.2023** Position: **D2**

Seite:

39

Pos. D2 Steildachsparren

2-Feld Sparren

System M 1:75

Abmessungen Mat./Querschnitt	Feld	l [m]	Material	b/h [cm]
	1	4.25	NH C24	10.0/20.0
	2	1.85		

Gelenke	Feld	X
		[m]
	1	4.25

Auflager	Lager	X	Z	$K_{T,z}$	K _{T,x}
J		[m]	[m]	[kN/m]	[kN/m]
	Α	0.00	0.00	fest	frei
	В	4.25	2.26	fest	fest
	С	6.10	3.24	fest	frei

	Einschnitttiefe am Auflager	t =	3.0	cm
Dachneigung	Dachneigungswinkel	δ =	28.0	0

Sparrenabstand	Abstand	a =	0.90	m
----------------	---------	-----	------	---

V

40

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: D2

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen

Qk.S.A

Qk.W.090

Gk

Qk.W.180

Qk.W.270

Flächenlasten
in z-Richtung
Einw. <i>Gk</i>

Einw.	Qk.S.A
Einw.	Qk.W.000

Einw. 0	⊋ <i>k.W.</i>	180
---------	---------------	-----

Einw. Qk.W.270

Feld	Richt.	Komm.	a [m]	s [m]	q _a [kN/m²]	q _e [kN/m²]
1	vert.DF	Eigengew	0.00	6.10		0.09
1	vert.DF	Eindeck.	0.00	6.10		0.55
1	vert.DF	Ausbau	0.00	6.10		0.47
1	vert.GF	Volllast	0.00	6.10		0.68
1	lokal	Ber. F	0.00	1.30		0.51
1	lokal	Ber. H	1.30	4.80		0.30
1	lokal	Ber. Flinks	0.00	3.00		-0.97
1	lokal	Ber. Glinks	3.00	3.10		-1.21
1	lokal	Ber. I	0.00	4.80		-0.32
2	lokal	Ber. J	0.55	1.30		-0.46
1	lokal	Ber. I _{links}	0.00	6.10		-0.40

lokal: lokale Belastung orthogonal zur Dachfläche vertikale Belastung bezogen auf die Dachfläche vertikale Belastung bezogen auf die Grundfläche vert.DF: vert.GF:

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

	EK	KLED		
ständig/vorüberg.	7	ku/sk 1.35*Gk	+1.50*Qk.S.A	+0.90*Qk.W.000
-	10	ku/sk 1.35*Gk	+0.75*Qk.S.A	+1.50*Qk.W.090
	18	ku/sk 1.00*Gk	+1.50*Qk.W.090	
quasi-ständig	34	1.00*Gk		
Lagesicherheit	52	ku/sk 0.90*Gk	+1.50*Qk.W.090	
st./vor. Auflagerkr.	74	ku 1.35*Gk	+1.50*Qk.S.A	
_	75	ku/sk 1.35*Gk	+1.50*Qk.W.000	
	76	ku/sk 1.35*Gk	+1.50*Qk.W.090	
	79	ku/sk 1.35*Gk	+1.50*Qk.S.A	+0.90*Qk.W.000
	94	ku/sk 1.00*Gk	+1.50*Qk.W.090	
Brand	126	1.00*Gk	+0.20*Qk.W.000	31.07.2023
	1 / 1	1 / 1 1		01.01.2020

kurz/sehr kurz Durch Kontrollrechnung gep<u>rüft</u>

ku/sk:

 f_{vk}

Emean

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: D2

f_{t0k}

f_{c0k}

f_{c90k}

ku: kurz

Material

RE: Rechteckquerschnitt

Mat./Querschnitt

Material

Material- und Querschnittswerte nach DIN EN 1995-1-1

f_{mk}

		[N/mm²]					
	NH C24	24.0	14.5	21.0	2.5	4.0	11000
Querschnitt	Art	b	h		Α		ly
		[cm]	[cm]		[cm ²]		[cm ⁴]
	RE	10.0	20.0		200		6667

Grafik Querschnittsgrafik [cm]

M 1:5

Brandfall vierseitige Brandbeanspruchung

Feuerwiderstandsdauer Abbrandrate $t_{req} = 30$ min $\beta_n = 0.80$ mm/min

Querschnittswerte Restquerschnitt

$d_{char,n}$	br	h _r	р	\mathbf{A}_{r}	$I_{y,r}$
[cm]	[cm]	[cm]	[cm]	[cm²]	[cm ⁴]
2.4	5.2	15.2	40.8	79.0	1521.8

Nutzungsklasse 1

Nachweise (GZT)

Feld 1

Feld 2

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

Biegung	Nachweis de	r Biegetr	ragfähigkeit
Abs. 6.1	X	Ek	k _{mod}

X	Ek	k _{mod}	N _d M _{vd}	$\sigma_{0,d}$ $\sigma_{my,d}$	f _{0,d} f _{my,d}	η
[m]		[-]	[kN,kNm]		[N/mm ²]	[-]
(L = 4.81 m)	$, k_{c,y} = 0.42)$					
2.35	7	1.00	-0.48	0.02	16.15	
			6.32	9.48	18.46	0.52 *
(L = 2.10 m)	$k_{c,y} = 0.91$					
1.07	7	1.00	0.16	0.01	11.15	
			1.18	1.77	18.46	0.10 *

Durch Kontrollrechnung geprüft

42

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: D2

Stabilität	Querkraft	Nachweis	der Querkra	fttragfähig	keit				
Feld 1	-	X		K _{mod}	$V_{z,d}$				
Feld 2	Fold 1		7				-		
Stabilität									
Der Sparren wird in der Dachebene als gehalten betrachtet. Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.	Stabilität		der Stabilitä					/	
Feld 1		Der Einflus	Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit						
Feld 1	Ersatzstablängen								
Abs. 6.1 t Ek k _{mod} M _{lyd} M _{lyd} O _{my,d} f _{my,d} f _{my,d} f _{my,d} [r _{my,d} f _{my,d} f _{my,d} f _{my,d} [r _{my,d} f _{my,d} [r _{my,d} f _{my,}					4.81			4.81	
Cm	Biegung	Nachweis	der Biegetra	gfähigkeit	(geschwäcl	hter Querso	chnitt)		
Com	Abs. 6.1	t	Ek	\mathbf{k}_{mod}		•	•	η	
Auflager A 3.0 18 1.00 0.59 0.03 11.15 0.00 0.00 18.46 0.00 Auflager B 3.0 10 1.00 3.70 0.22 11.15 0.00 0.00 18.46 0.02 Auflager C 3.0 7 1.00 1.20 0.07 11.15 0.00 0.00 18.46 0.01 Querkraft Abs. 6.1.7		[cm]		[-]	_			[-]	
Auflager B 3.0 10 1.00 3.70 0.22 11.15 0.00 0.00 18.46 0.02 Auflager C 3.0 7 1.00 1.20 0.07 11.15 0.00 0.00 18.46 0.01 Querkraft Abs. 6.1.7	Auflager A		18				_	• • •	
Auflager C 3.0 7 1.00 1.20 0.07 11.15 Querkraft Abs. 6.1.7								0.00	
Auflager C 3.0 7 1.00 1.20 0.07 11.15 0.00 Querkraft Abs. 6.1.7	Auflager B	3.0	10	1.00				0.00	
Nachweis der Querkrafttragfähigkeit (geschwächter Querschnitt) Abs. 6.1.7	Auflager C	3.0	7	1 00				0.02	
Abs. 6.1.7 t	, tanagor o	0.0	,	1.00				0.01	
Abs. 6.1.7 t	Querkraft	Nachweis der Querkrafttragfähigkeit (geschwächter Querschnitt)							
Auflager A Auflager B Auflager C 3.0 7 1.00 5.39 0.95 3.08 0.31 Auflager B 3.0 7 1.00 -5.22 0.92 3.08 0.30 Auflager C 3.0 7 1.00 -2.25 0.40 3.08 0.13 Lagesicherheit DIN EN 1990, 6.4.2 Lagesicherheitsnachweis in vertikaler Richtung nach NDP zu A1.3.1(3) Aufl. Ek Fd,dst Fd,stb T [kN] [kN] [kN] [kN] C 52 -3.66 2.17 1.69! B 52 -3.41 3.12 1.10! C 52 -1.94 0.94 2.05! Zugverankerung Ständig/vorüberg. Aufl. Fd,anch [kN] A -1.25 94 B 0.05* 94	Abs. 6.1.7				$V_{z,d}$	Td	$f_{v,d}$		
Auflager B Auflager C 3.0 7 1.00 -5.22 0.92 3.08 0.30 3.0 7 1.00 -2.25 0.40 3.08 0.13 Lagesicherheit DIN EN 1990, 6.4.2 Lagesicherheitsnachweis in vertikaler Richtung nach NDP zu A1.3.1(3) Aufl. Ek Fd,dst [-] [kN] [kN] [-] A 52 -3.66 2.17 1.69! B 52 -3.41 3.12 1.10! C 52 -1.94 0.94 2.05! Zugverankerung Ständig/vorüberg. Aufl. Fd,anch [kN] A B -1.25 94 B			_						
Auflager C 3.0 7 1.00 -2.25 0.40 3.08 0.13 Lagesicherheit DIN EN 1990, 6.4.2 Aufl. Ek F _{d,dst} F _{d,stb} η [-] [kN] [kN] [-] A 52 -3.66 2.17 1.69! B 52 -3.41 3.12 1.10! C 52 -1.94 0.94 2.05! Zugverankerung Ständig/vorüberg. Aufl. F _{d,anch} EK [kN] A -1.25 94 B 0.05* 94	•								
Lagesicherheit DIN EN 1990, 6.4.2 Lagesicherheitsnachweis in vertikaler Richtung nach NDP zu A1.3.1(3) Aufl. Ek F _{d,dst} F _{d,stb} η [-] [kN] [kN] [-] A 52 -3.66 2.17 1.69! B 52 -3.41 3.12 1.10! C 52 -1.94 0.94 2.05! Zugverankerung Aufl. F _{d,anch} EK [kN] A -1.25 94 B 0.05* 94									
DIN EN 1990, 6.4.2 Aufl. Ek F _{d,dst} F _{d,stb} η [kN] [kN] [-] A 52 -3.66 2.17 1.69! B 52 -3.41 3.12 1.10! C 52 -1.94 0.94 2.05! Zugverankerung ständig/vorüberg. Aufl. F _{d,anch} EK [kN] A -1.25 94 B 0.05* 94	Adilagel	5.0	,	1.00	-2.20	0.40	3.00	0.13	
C Fd,anch EK FkN] KN] C Fd,anch EK KN] C C C C C C C C C	•	Lagesiche	rheitsnachw	eis in verti	kaler Richtu	ing nach NI	DP zu A1.3.	1(3)	
A 52 -3.66 2.17 1.69! B 52 -3.41 3.12 1.10! C 52 -1.94 0.94 2.05! Zugverankerung Ständig/vorüberg. Aufl. Fd,anch [kN] A -1.25 94 B 0.05* 94	DIN EN 1990, 6.4.2	Aufl.							
B 52 -3.41 3.12 1.10! C 52 -1.94 0.94 2.05! Zugverankerung Aufl. Fd,anch [kN] A -1.25 94 B 0.05* 94		٨				_			
C 52 -1.94 0.94 2.05! Zugverankerung Aufl. F _{d,anch} EK [kN] A -1.25 94 B 0.05* 94									
ständig/vorüberg. Zugverankerung Aufl. Fd,anch EK [kN] A -1.25 94 B 0.05* 94									
ständig/vorüberg. Aufl. F _{d,anch} EK [kN] A -1.25 94 B 0.05* 94				_					
A -1.25 94 B 0.05* 94	ständig/vorüberg.		erung					EK	
B 0.05* 94		A						94	
C -0.89 94		В							
		С	=				-0.89	94	
*: nur konstruktive Zugkraftverankerung erforderlich		^: nur konstr	uktive ∠ugkraftve	rankerung erfo	raerlich	_			

Für die Auflager A , B und C ist eine Zugkraftverankerung erforderlich.

Durch Kontrollrechnung geprüft

31.07.2023 Ingenieurbüro Pitbau - Statik & Energieberatung - www.pitbau de

Datum: **28.04.2023** Position: **D2**

Anschlüsse Sparrenauflager A M 1:10 Nachweis der Anschlüsse des Sparrens Kontaktanschluss durch Aufklauung

2 gekreuzte Sparrenpfettenanker 170

Einschnitttiefe Sparren Pfette (Nadelholz C24)

t = 3.00 t = 12/12

cm

cm

Seite:

43

Querdruck

Abs. 6.1.5, Abs. 6.2.2

Sparren Pfette vertikale Druckkraft

Ek	K mod	Fd	α	σ c,α,d	K c,90	f c,α,d	η
	[-]	[kN]	[°]	[N/mm ²]	[-]	[N/mm ²]	
79	1.00	6.10	62.0	0.52	1.50	3.52 *	0.15
			90.0	0.60	1.50	1.92	0.21

^{*} Wert mit k_{c,90} modifiziert

Verankerung

mit 2x Sparrenpfettenanker Simpson Strong-Tie SPF 170 (außen, gekreuzt), jeweils 4 CNA Kammnagel 4.0x60 pro Schenkel.*
*: Es wird empfohlen, die Verbindungsmittel an den äußeren Enden anzuordnen.

EK	K mod	Fz,d [kN]	Rz,d [kN]	F _{x,d} [kN]	Rx,d [kN]	η
94	1 00	-1 25	5 64			0.22

Durch Kontrollrechnung geprüft

FALSCH!

Pfettenanker beide entweder liegend oder stehend einbauen. Bei Beanspruchung in vertikaler und horizontaler Richtung AB-Winkel o. ä. einbauen.

Datum: **28.04.2023** Position: **D2**

Sparrenauflager B M 1:15

Kontaktanschluss durch Aufklauung

2 gekreuzte Sparrenpfettenanker 170

Einschnitttiefe Sparren	t =	3.00	cm
Pfette (Nadelholz C24)	b/h =	14/20	cm

Querdruck

Abs. 6.1.5, Abs. 6.2.2

Sparren Pfette

Sparren Pfette vertikale Druckkraft

Ek	k mod [-]	Fa [kN]	α [°]	σ c,α,d [N/mm²]	k с,90 [-]	f _{c,α,d} [N/mm²]	η
74	0.90	7.47	62.0	0.64	1.50	3.17 *	0.20
			90.0	0.73	1 50	1 73	0.28

^{*} Wert mit k_{c,90} modifiziert

horizontale Druckkraft

Ek	Kmod [-]	Fd [kN]	α [°]	σ _{c,α,d} [N/mm²]	Кс,90 [-]	f _{c,α,d} [N/mm²]	η
75	1.00	1.50	28.0	0.24	1.50	8.02 *	0.03
			90.0	0.28	1.50	1.92	0.10

^{*} Wert mit k_{c,90} modifiziert

Verankerung

mit 2x Sparrenpfettenanker Simpson Strong-Tie SPF 170 (außen, gekreuzt), jeweils 4 CNA Kammnagel 4.0x60 pro Schenkel.*

•	Es wird emplomen, die Verbindungsmitter an den adiseren Enden anzdordnen.

EK	k mod	Fz,d	$R_{z,d}$	Fx,d	$\mathbf{R}_{\mathbf{x},\mathbf{d}}$	η
		[kN]	[kN]	[kN]	[kN]	
76	1.00	Durch Kontroll	rechnung	-4.79 geprüft	5.64	0.85

FALSCH!

Pfettenanker beide entweder liegend oder stehend einbauen. Bei Beanspruchung in vertikaler und horizontaler Richtung AB-Winkel o. ä. einbauen.

Datum: 28.04.2023 Position:

Sparrenauflager C M 1:15

Kontaktanschluss durch Aufklauung

FALSCH!

Pfettenanker beide entweder liegend oder stehend einbauen. Bei Beanspruchung in vertikaler und horizontaler Richtung AB-Winkel o. ä. einbauen.

Einschnitttiefe Sparren	t =	3.00	cm
Pfette (Nadelholz C24)	b/h =	14/36	cm

Querdruck

Abs. 6.1.5, Abs. 6.2.2

Sparren Pfette

vertik	ale L)ruck	kraft

Ek	Kmod [-]	Fa [kN]	α [°]	σ _{c,α,d} [N/mm²]	k с,90 [-]	f _{c,α,d} [N/mm²]	η
79	1.00	2.55	62.0	0.22	1.50	3.52 *	0.06
			90.0	0.25	1.50	1.92	0.09

^{*} Wert mit k_{c,90} modifiziert

Verankerung

mit 2x Sparrenpfettenanker Simpson Strong-Tie SPF 170 (außen, gekreuzt), jeweils 4 CNA Kammnagel 4.0x60 pro Schenkel.* Es wird empfohlen, die Verbindungsmittel an den äußeren Enden anzuordnen.

EK	K mod	F _{z,d} [kN]	Rz,d [kN]	F _{x,d} [kN]	Rx,d [kN]	η
94	1 00	-0.89	5 64			0.16

Nachweise (Brand)

Nachweise der Feuerwiderstandsfähigkeit nach DIN EN 1995-1-2, 4.2.3

Brandfall	Brandbeanspr	t _{req}	
			[min]
	vierseitig	(oben/unten/links/rechts)	30

Biegung Abs. 6.1

Nachweis der Biegetragfähigkeit k_{mod,fi}

Feld 1

[m] [-] [kN,kNm] $[N/mm^2]$ $[N/mm^2]$ $(L = 4.81 \text{ m}, k_{c,y} = 0.36)$ 2.35 126 0.59 -0.120.02 15.41 0.74 2.74 13.67 22.26 31.07.6223

Durch Kontrollrechnung geprüft

 $\sigma_{0,d,fi}$

 $\sigma_{my,d,fi}$

f_{0,d,fi}

f_{my,d,fi}

η

[-]

 $N_{d.fi}$

M_{vd,fi}

Seite:

D2

Datum: **28.04.2023** Position: **D2**

2.31

-0.98

0.87

0.37

Seite:

3.71

3.71

Wzul

0.10

46

	X	Ek	k _{mod,fi}	N _{d,fi} M _{yd,fi}	$\sigma_{0,d,fi}$ $\sigma_{my,d,fi}$	f _{0,d,fi} f _{my,d,fi}	η
	[m]		[-]	[kN,kNm]	[N/mm ²]	[N/mm ²]	[-]
Feld 2	(L = 2.10 m)	$k_{c,y} = 0.89$	9)				
	1.07	126	0.84	0.04	0.00	15.29	
			0.74	0.51	2.57	22.26	0.12 *
Querkraft	Nachweis o	ler Querkra	ıfttragfähig	jkeit 💮 💮			•
Abs. 6.1.7	x [m]	Ek	k _{mod,fi} [-]	V _{z,d,fi} [kN]	T _{d,fi} [N/mm²]	f _{v,d,fi} [N/mm²]	η [-]

Stabilität

Feld 1

Feld 2

Abs. 6.3

Nachweis der Stabilität

126

126

0.00

2.10

Der Sparren wird in der Dachebene als gehalten betrachtet. Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.

0.74

0.74

Ersatzstablängen		I	l _{ef,cy}
		[m]	[m]
	Feld 1	4.81	4.81
	Feld 2	2.10	2.10

Nachweise (GZG)

Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1

Verformungen	Nachweise der Verformungen				
Abs. 7.2	x	Ek	Norm		
	[m]				
Feld 1	(L=4.81 m)	NKL 1, ka	$t_{ef} = 0.60$		

Liii			Lumi		Lumi	[-]
(L=4.81 m,	NKL 1, k	$_{def} = 0.60$)				
2.41	34	Wnet,fin	13.5	1/300=	16.0	0.84 *
(L= 2.10 m,	NKL 1, k	$_{def} = 0.60)$				
1.05	34	Wnet,fin	0.5	1/300=	7.0	0.07 *

Wvorh

Negative Verformungen wurden zur Bemessung nicht berücksichtigt.

Auflagerkräfte

Feld 2

je lfd. m (Windlasten mit cpe,10)

Grian / tanagomin	Aufl.	F _{x,k}	F _{z,k}
		[kN/m]	[kN/m]
Einw. <i>Gk</i>	Α		2.68
	В	0.00	3.85
	С		1.17
Einw. <i>Qk.S.A</i>	A		1.45
	В	0.00	2.07
	С		0.63
Einw. <i>Qk.W.000</i>	A		1.11
	В	1.11	0.63
	С		0.35
Einw. <i>Qk.W.090</i>	A		-2.51
	В	-3.27	-2.32
	С		-1.32
Einw. <i>Qk.W.180</i>	A		-0.87
	В	-1.13 Durch Kontrollrechnung geprüft	31.0702723
		Durch Kontrolliechnung gepruit	. für Sta.

Datum: 28.04.2023 Position: D2

Seite:

	[kN/m			F _{x,k} N/m]	[kN/r				
Einw. Qk.W.270	A B C	C A B -1.30 C				-0.52 -1.09 -0.88 -0.47			
Bemauflagerkräfte				_					
ständig/vorüberg.	Aufl.	F _{x,d,min} [kN/m]	EK	F _{x,d,max} [kN/m]	EK	F _{z,d,min} [kN/m]	EK	F _{z,d,max} [kN/m]	EK
	A B C	-4.90	76	1.67	75	-1.08 0.36 -0.81	94 94 94	6.78 8.87 2.84	79 79 79
außergewöhnlich	Aufl.	F _{x,d,min} [kN/m]	EK	F _{x,d,max} [kN/m]	EK	F _{z,d,min} [kN/m]	EK	F _{z,d,max} [kN/m]	EK
	A B C	-0.65	117	0.22	116	5.37 7.96 2.29	122 122 122	6.22 8.74 2.68	116 116 116
Ankerkräfte		je Sparren (Windlasten mit c _{pe,A}) Lasteinzugsfläche des Sparren				A	\ =	6.22	m²
Bemankerkräfte									
ständig/vorüberg.	Aufl.	F _{x,d,min} [kN]	EK	F _{x,d,max} [kN]	EK	F _{z,d,min} [kN]	EK	F _{z,d,max} [kN]	EK
	A B C	-4.79	76	1.50	75	-1.25 0.05 -0.89	94 94 94	6.10 7.98 2.55	79 79 79
außergewöhnlich	Aufl.	F _{x,d,min} [kN]	EK	F _{x,d,max} [kN]	EK	F _{z,d,min} [kN]	EK	F _{z,d,max} [kN]	EK
	A B C	-0.64	117	0.20	116	4.79 7.13 2.04	122 122 122	5.60 7.87 2.42	116 116 116
Zusammenfassung	Zusammenfassung der Nachweise								

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Feld	X		η
		[m]		[-]
Biegung	Feld 1	2.35	OK	0.52
Querkraft	Feld 1	0.00	OK	0.26
Biegung	Auflager B		OK	0.02
Querkraft	Auflager A		OK	0.31
Sparrenauflager	Auflager B		OK	0.85
Lagesicherheit			Zugv.	2.05
Zugv.: Für die Auflager A , B und C ist eine Zug	kraftverankerung erf	orderlich.		

Nachweise (Brand)

Brandfall im Grenzzustand der Tragfähigkeit

Nachweis	Feld	X		η
		[m]		[-]
Biegung	Feld 1	2.35	OK	0.62
Querkraft	Feld 1	0.00	OK	0.24
				31 07 2023

Datum: 28.04.2023

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Feld	X		η
		[m]		[-]
ges. Enddurchbiegung	Feld 1	2.41	OK	0.84

48

D2

Seite:

Position:

49

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: D3

Pos. D3

Flachdachsparren über Treppenhaus

System M 1:50

2-Feld Sparren

berücksichtigt.

Abmessungen Mat./Querschnitt	Feld	l [m]	Material			b/h [cm]
Mat./ Quoroomint	1 2	0.85 1.15	NH C24		10	0.0/20.0
Auflager	Lager	x [m]	z [m]	K _{T,z} [kN/m]		K _{T,x} [kN/m]
	A B C	0.00 0.85 2.00	0.00 0.04 0.10	fest fest fest		frei fest frei
	Einschnitttiefe am Auflager			t =	3.0	cm
Dachneigung	Dachneigungs	swinkel		δ =	2.8	
Sparrenabstand	Abstand			a =	0.90	m
Einwirkungen	Einwirkungen nach DIN EN 1990:2010-12					
Gk	Eigenlasten	irkun ann				
Qk.S	Ständige Einwirkungen Schnee Schnee- und Eislasten für Norddeutsches Tiefland Qk.S min/max Werte					
Qk.W	Qk.S.A Wind Windlasten Qk.W Qk.W.000 Qk.W.090 Qk.W.180 Qk.W.270	Anströr Anströr Anströr	x Werte nrichtung Θ = 0° nrichtung Θ = 90° nrichtung Θ = 180° nrichtung Θ = 270°			
Nordd. Tiefland	Einwirkung Q l	k.S nach DIN	e im norddeutschen I EN 1991-1-3/NA, N wirkung mit 2.3-fach	NDP zu 4.3	(1) zusät	zlich

Durch Kontrollrechnung geprüft

50

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: D3

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen

Qk.W.090

Gk

Qk.W.180

Qk.W.000

2.00

Flächenlasten
in z-Richtung
Einw. <i>Gk</i>

Einw.	Qk.S.A
Einw.	Qk.W.000

Einw. Qk.W.270

(a)	

(h	١
١	_	,

	Feld	Richt.	Komm.	a [m]	s [m]	q _a [kN/m²]	q _e [kN/m²]
	1	vert.DF	Eigengew	0.00	2.00		0.09
(a)	1	vert.DF	Eindeck.	0.00	2.00		0.61
(b)		vert.DF	Ausbau	0.00	2.00		0.47
()	1	vert.GF	Volllast	0.00	2.00		0.68
	1	lokal	Ber. F	0.00	0.50		-1.86
	1	lokal	Ber. H	0.50	1.50		-0.86
	1	lokal	Ber. F	0.00	0.50		-0.41
	2	lokal	Ber. F	0.65	0.50		-0.41
	1	lokal	Ber. G	0.50	1.00		-0.32
	1	lokal	Ber. H	0.00	2.00		-0.67
	2	lokal	Ber. F	0.65	0.50		-1.86
	1	lokal	Ber. H	0.00	1.50		-0.86
	1	lokal	Ber. I	0.00	2.00		0.16
	D) / A				0.0		

PV-Anlage	0.3 =	0.30	kN/m ²
Bitumendach	0.16 =	0.16	kN/m²
Holz-Schalung (OSB)	0.15 =	0.15	kN/m²
	=	0.61	kN/m²

Dämmung pauschal	0.24 =	0.24	kN/m²
Verkleidung (Gipskarton)	0.23 =	0.23	kN/m²
	=	0.47	kN/m²

lokale Belastung orthogonal zur Dachfläche lokal: vert.DF: vertikale Belastung bezogen auf die Dachfläche vert.GF: vertikale Belastung bezogen auf die Grundfläche

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

	Ek	KLED Σ (γ*ψ*EW)	
ständig/vorüberg.	2	ku 1.35*Gk	+1.50*Qk.S.A
	17	ku/sk 1.00*Gk	+1.50*Qk.W.000
quasi-ständig	34	1.00*Gk	
Lagesicherheit	51	ku/sk 0.90*Gk	+1.50*Qk.W.000
	52	ku/sk 0.90*Gk	+1.50*Qk.W.090
	53	ku/sk 0.90*Gk	+1.50*Qk.W.180

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: D3

Seite:

51

Ek KLED Σ ($\gamma^*\psi^*EW$) st./vor. Auflagerkr. 75 ku/sk 1.35*Gk +1.50*Qk.W.000 78 ku/sk 1.35*Gk +1.50*Qk.W.270 92 ku/sk 1.00*Gk +1.50*Qk.W.000 94 ku/sk 1.00*Gk +1.50*Qk.W.090 96 ku/sk 1.00*Gk +1.50*Qk.W.180 +0.20*Qk.W.270 außerg. Auflagerkr 119 ku/sk 1.00*Gk +2.30*Qk.S.A Brand 129 1.00*Gk +0.20*Qk.W.270 ku: kurz ku/sk: kurz/sehr kurz

Mat./Querschnitt

Material- und Querschnittswerte nach DIN EN 1995-1-1

Material	Material	f _{mk}	f _{t0k}	f _{c0k} [N/ı	f _{c90k} nm²]	f _{vk}	E _{mean}
	NH C24	24.0	14.5	21.0	2.5	4.0	11000
Ougrechnitt	∧ rt	h	h		٨		

Querschnitt	Art	b	h	Α	ly
		[cm]	[cm]	[cm²]	[cm ⁴]
	RE	10.0	20.0	200	6667
	DE: Pochtock	guerechnitt			

RE: Rechteckquerschnitt

Grafik

Querschnittsgrafik [cm]

M 1:5

vierseitige Brandbeanspruchung Brandfall

Feuerwiderstandsdauer 30 min $t_{req} =$ mm/min

Abbrandrate $\beta_n =$ 0.80

Querschnittswerte hr \mathbf{A}_{r} d_{char,n} Restquerschnitt [cm] [cm] [cm] [cm²] [cm⁴] [cm] 5.2 2.4 40.8 79.0 1521.8 15.2

Nutzungsklasse 1

Datum: **28.04.2023** Position: **D3**

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

Biegung	Nachweis d	Nachweis der Biegetragfähigkeit						
Abs. 6.1	X	Ek	k _{mod}	N _d M _{yd}	$\sigma_{0,d}$ $\sigma_{my,d}$	f _{0,d} f _{my,d}	η	
	[m]		[-]	[kN,kNm]	[N/mm ²]	[N/mm ²]	[-]	
Feld 1	(L = 0.85 m)	$k_{c,y} = 1.00$)					
	0.85	2	0.90	0.07	0.00	10.04		
				-0.31	0.47	16.62	0.03 *	
Feld 2	L = 1.15 m	$k_{c,y} = 0.99$)					
	0.00	2	0.90	-0.08	0.00	14.54		
				-0.31	0.47	16.62	0.03 *	

Querkraft	Nachweis der Querkrafttragfähigkeit

Abs. 6.1.7	x [m]	Ek	K _{mod} [-]	V _{z,d} [kN]	T _d [N/mm ²]	f _{v,d} [N/mm²]	η [-]
Feld 1	0.85	2	0.90	-1.36	0.20	2.77	0.07 *
Feld 2	0.00	2	0.90	1.62	0.24	2.77	0.09 *

Stabilität

Abs. 6.3

Nachweis der Stabilität

Der Sparren wird in der Dachebene als gehalten betrachtet. Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.

Biegung Nachweis der Biegetragfähigkeit (geschwächter Querschnitt)

Diogang	Hadriwold	aci biogo	ii agiai iigitoi	t (goodhwad	intoi Quoio	Ji ii iicc <i>)</i>	
Abs. 6.1	t	Ek	k _{mod}	N _d	$\sigma_{0,d}$	f _{0,d}	η
				\mathbf{M}_{yd}	$\sigma_{my,d}$	$\mathbf{f}_{my,d}$	
	[cm]		[-]	[kN,kNm]	[N/mm ²]	[N/mm²]	[-]
Auflager A	3.0	17	1.00	0.02	0.00	11.15	
				0.00	0.00	18.46	0.00
Auflager B	3.0	2	0.90	0.07	0.00	10.04	
				-0.31	0.65	16.62	0.04
Auflager C	3.0	2	0.90	0.05	0.00	10.04	
				0.00	0.00	16.62	0.00
							/

Querkraft Nachweis der Querkrafttragfähigkeit (geschwächter Querschnitt)

Abs. 6.1.7	t	Ek	\mathbf{k}_{mod}	$V_{z,d}$	Td	$f_{v,d}$	η
	[cm]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
Auflager A	3.0	2	0.90	0.63	0.11	2.77	0.04
Auflager B	3.0	2	0.90	1.62	0.29	2.77	0.10
Auflager C	3.0	2	0.90	-1.08	0.19	2.77	0.07

Lagesicherheit

DIN EN 1990, 6.4.2

l agasiaharhaitanaahwaia	in vertikaler Diehtung	nach NDD zu A1	2 4/2)
Lagesicherheitsnachweis	in vertikaler Richtung	nach NDP zu A i	.ა. 🗤

Aufl.	Ek	$F_{d,dst}$	$F_{d,stb}$	η
	[-]	[kN]	[kN]	[-]
Α	51	-0.75	0.26	2.95!
В	52	-1.74	1.21	1.44 !
С	53	-1.02	0.44	2.34!

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: D3

	Zugverankerung		
ständig/vorüberg.	Aufl.	F _{d,anch} [kN]	EK
	A	-0.47	92
	В	-0.39	94
	С	-0.54	96

Für die Auflager A, B und C ist eine Zugkraftverankerung erforderlich.

Nachweise (Brand)

Nachweise der Feuerwiderstandsfähigkeit nach DIN EN 1995-1-2, 4.2.3

Brandfall	Brandbeans	t _{req}	
			[min]
	vierseitig	(oben/unten/links/rechts)	30

Biegung	Nachweis der Biegetragfähigkeit

Abs. 6.1	X	Ek	k _{mod,fi}	$N_{d,fi}$ $M_{yd,fi}$	σ _{0,d,fi} σ _{my,d,fi}	f _{0,d,fi} f _{my,d,fi}	η
	[m]		[-]	[kN,kNm]	[N/mm ²]	[N/mm ²]	[-]
Feld 1	(L = 0.85 m)	$k_{c,y} = 1.00$		_			
	0.85	129	0.84	0.03	0.00	15.29	
			0.74	-0.14	0.72	22.26	0.03 *
Feld 2	(L = 1.15 m)	$k_{c,y} = 0.98$					
	0.00	129	0.59	-0.04	0.00	15.41	
			0.74	-0.14	0.72	22.26	0.03 *

Querkraft	Nachweis der Querkrafttragfähigkeit

Abs. 6.1.7	x [m]	Ek	k _{mod,fi} [-]	V _{z,d,fi} [kN]	T _{d,fi} [N/mm ²]	, - ,	η [-]
Feld 1	0.85	129	0.74	-0.63	0.24	3.71	0.06 *
Feld 2	0.00	129	0.74	0.75	0.28	3.71	0.08 *

Stabilität

Nachweis der Stabilität Abs. 6.3

> Der Sparren wird in der Dachebene als gehalten betrachtet. Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.

Ersatzstablängen		ı	l.e
Lisaizsiabialiyeli		l l	lef,cy
		[m]	[m]
	Feld 1	0.85	0.85
	Feld 2	1 15	1 15

Nachweise (GZG)

Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1

Verformungen	Nachweise der Ve					
Abs. 7.2	x Ek [m]	Norm	w _{vorh} [mm]		W _{zul} [mm]	η [-]
Feld 1	(L= 0.85 m, NKL	$1, k_{def} = 0.60$				
	0.28 34	Wnet,fin	-	1/300=	2.8	0.00 *
Feld 2	(L= 1.15 m, NKL	$1, k_{def} = 0.60)$				
	0.64 34	Wnet.fin	-	1/300=	3.8	0.01 *

Negative Verformungen wurden zur Bemessung nicht berücksichtigt.

Durch Kontrollrechnung geprüft

Seite:

Datum: 28.04.2023 Position: D3

Auflagerkräfte

je lfd. m (Windlasten mit c_{pe,10})

Char. Auflagerkr.

Oriai. / tallageriti.			
-	Aufl.	F _{x,k} [kN/m]	F _{z,k} [kN/m]
Einw. <i>Gk</i>	Α	[]	0.31
	В	0.00	1.50
	С		0.54
Einw. Qk.S.A	<u>C</u> A		0.18
	В	0.00	0.87
	C A		0.31
Einw. <i>Qk.W.000</i>			-0.44
	В	-0.08	-0.88
	<u>C</u> A		-0.24
Einw. <i>Qk.W.090</i>			-0.21
	В	-0.07	-0.86
	<u>C</u> A		-0.34
Einw. <i>Qk.W.180</i>			-0.12
	В	-0.08	-0.87
	C A		-0.58
Einw. <i>Qk.W.270</i>	Α		0.04
	В	0.02	0.20
	С		0.07

Ankerkräfte

je Sparren (Windlasten mit c_{pe,A}) Lasteinzugsfläche des Sparren

1.80 A =

m²

Seite:

54

Bem.-ankerkräfte ständig/vorüberg.

Aufl.	F _{x,d,min} [kN]	EK	F _{x,d,max} [kN]	EK	F _{z,d,min} [kN]	EK	F _{z,d,max} [kN]	EK
Α					-0.47	92	0.66	85
В	-0.15	75	0.02	78	-0.39	94	3.15	85
С					-0.54	96	1.14	85
Aufl.	Fy d min	EK	Fy d may	EK	Fz d min	EK	Fz d may	EK

außergewöhnlich

Adii.	[kN]		[kN]	,	[kN]		[kN]	,
Α					0.55	121	0.67	119
В	-0.02	116	0.00	119	2.84	122	3.17	119
С					0.97	123	1.14	119

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Feld	X		η
		[m]		[-]
Biegung	Feld 1	0.85	OK	0.03
Querkraft	Feld 2	0.00	OK	0.09
Biegung	Auflager B		OK	0.04
Querkraft	Auflager B		OK	0.10
Lagesicherheit	_		Zugv.	2.95
7μαν · Für die Auflager Δ B μr	nd C. ist eine Zugkraftverankerung (erforderlich	-	

Datum: **28.04.2023** Position: **D3**

Nachweise (Brand) Brandfall im Grenzzustand der Tragfähigkeit

Nachweis	Feld	x [m]		η [-]
Biegung	Feld 2	0.00	OK	0.03
Querkraft	Feld 2		OK	0.08

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Feld	Х		η
		[m]		[-]
ges. Enddurchbiegung	Feld 2	0.64	OK	0.01

Durch Kontrollrechnung geprüft

55

Seite:

Datum: 28.04.2023 Position: D3.1

Seite:

56

m

Pos. D3.1 Steildachsparrenbereich neben D3

System M 1:50

1-Feld Sparren

Abmessungen	Feld	I	Material		b/h
Mat./Querschnitt		[m]			[cm]
	1	3.10	NH C24		10.0/20.0
Auflager	Lager	X	Z	$K_{T,z}$	K _{T,x}
-		[m]	[m]	[kN/m]	[kN/m]
	Δ	0.00	0.00	fest	fes

A B	0.00 3.10	0.00 1.65	test fest		fest frei
Einschnitttiefe	am Auflager		t =	3.0	cm

Dachneigung Dachneigungswinkel 28.0 0.90

Sparrenabstand Abstand

Belastungen auf das System Belastungen

Grafik Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen Gk Qk.S.A Qk.W.000

Datum: 28.04.2023 Position: D3.1

Seite:

57

Flächenlasten in z-Richtung	Feld	Richt.	Komm.	a [m]	s [m]	q _a [kN/m²]	q _e [kN/m²]
Einw. <i>Gk</i>	1	vert.DF	Eigengew	0.00	3.10		0.09
	1	vert.DF	Eindeck.	0.00	3.10		0.55
	1	vert.DF	Ausbau	0.00	3.10		0.47
Einw. <i>Qk.S.A</i>	1	vert.GF	Volllast	0.00	3.10		0.68
Einw. <i>Qk.W.000</i>	1	lokal	Ber. F	0.00	1.30		0.51
	1	lokal	Ber. H	1.30	1.80		0.30
Einw. <i>Qk.W.090</i>	1	lokal	Ber. Flinks	0.00	3.00		-1.08
	1	lokal	Ber. Glinks	3.00	0.10		-1.35
Einw. <i>Qk.W.180</i>	1	lokal	Ber. I	0.00	1.80		-0.32
	1	lokal	Ber. J	1.80	1.30		-0.48
Einw. <i>Qk.W.270</i>	1	lokal	Ber. I _{links}	0.00	3.10	<u> </u>	-0.40

 lokal:
 lokale Belastung orthogonal zur Dachfläche

 vert.DF:
 vertikale Belastung bezogen auf die Dachfläche

 vert.GF:
 vertikale Belastung bezogen auf die Grundfläche

KombinationenKombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

	Ek KLED Σ (γ*ψ*EW))	
ständig/vorüberg.	7 ku/sk 1.35*Gk	+1.50*Qk.S.A	+0.90*Qk.W.000
-	10 ku/sk 1.35*Gk	+0.75*Qk.S.A	+1.50*Qk.W.090
quasi-ständig	34 1.00*Gk		
Lagesicherheit	52 ku/sk 0.90*Gk	+1.50*Qk.W.090	
st./vor. Auflagerkr.	75 ku/sk 1.35*Gk	+1.50*Qk.W.000	
_	76 ku/sk 1.35*Gk	+1.50*Qk.W.090	
	79 ku/sk 1.35*Gk	+1.50*Qk.S.A	+0.90*Qk.W.000
	94 ku/sk 1.00*Gk	+1.50*Qk.W.090	
Brand	126 1.00*Gk	+0.20*Qk.W.000	
	ku/sk: kurz/sehr kurz		

Mat./Querschnitt

Material- und Querschnittswerte nach DIN EN 1995-1-1

Material	Materiai	Tmk	T _{t0k}	T _{c0k} T _{c90k} [N/mm ²]	T _{Vk}	⊏mean
	NH C24	24.0	14.5	21.0 2.5	4.0	11000
Querschnitt	Art	b [cm]	h [cm]	A [cm²]		l _y [cm⁴]
	RE: Rechteckqu	10.0 erschnitt	20.0	200		6667

Durch Kontrollrechnung geprüft

/

58

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: D3.1

Grafik

Querschnittsgrafik [cm]

M 1:5

Brandfall

vierseitige Brandbeanspruchung

Feuerwiderstandsdauer Abbrandrate

min 30 $t_{req} =$ $\beta_n =$ 0.80 mm/min

Querschnittswerte Restquerschnitt

d _{char,n}	b _r	h _r	р	A_r	$I_{y,r}$
[cm]	[cm]	[cm]	[cm]	[cm²]	[cm ⁴]
2.4	5.2	15.2	40.8	79.0	1521.8

Nutzungsklasse 1

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

Biegung	Nachweis der	Biegetragfä	ihigkeit
Abs. 6.1	X	Ek	k _{mod}

X	Ek	\mathbf{k}_{mod}	N_d	$\sigma_{0,d}$	$f_{0,d}$	η
[m]		[-]	M _{yd} [kN,kNm]	σ _{my,d} [N/mm²]	f _{my,d} [N/mm²]	[-]
(L = 3.51 m,	$k_{c,y} = 0.67$					
1.76	7	1.00	0.26	0.01	11.15	
			3.41	5.11	18.46	0.28 *

Feld 1

Querkraft Nachweis der Querkrafttragfähigkeit Abs. 6.1.7

x [m]	Ek	k _{mod}	V _{z,d} [kN]	T _d [N/mm ²]	f _{v,d} [N/mm ²]	η [-]
0.00	7	1.00	3.97	0.60	3.08	0.19 *

Feld 1

Nachweis der Stabilität

Stabilität Abs. 6.3

> Der Sparren wird in der Dachebene als gehalten betrachtet. Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.

Ersatzstablängen

	l	I _{ef,cy}
	[m]	[m]
Feld 1	3.51	3.51

Biegung Abs. 6.1

Nachweis der Biegetragfähigkeit (geschwächter Querschnitt)

DIN EN 1990, 6.4.2

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: **28.04.2023** Position: **D3.1**

Seite:

59

	t	Ek	\mathbf{k}_{mod}	N_d	$\sigma_{0,d}$	$f_{0,d}$	η
				\mathbf{M}_{yd}	$\sigma_{my,d}$	$\mathbf{f}_{my,d}$	
	[cm]		[-]	[kN,kNm]	[N/mm ²]	[N/mm ²]	[-]
Auflager A	3.0	10	1.00	-2.83	0.17	16.15	
-				0.00	0.00	18.46	0.00
Auflager B	3.0	7	1.00	2.04	0.12	11.15	
ŭ				0.00	0.00	18.46	0.01

Querkraft
Abs. 6.1.7

Nachweis der Querkrafttragfähigkeit (geschwächter Querschnitt)

t Ek k_{mod} V_{z,d} T_d f_{v,d}

ADS. 0.1.7	τ	⊏K	Kmod	V z,d	Td	Tv,d	η
	[cm]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
Auflager A	3.0	7	1.00	3.97	0.70	3.08	0.23
Auflager B	3.0	7	1.00	-3.83	0.68	3.08	0.22

Lagesicherheit Lagesicherheitsnachweis in vertikaler Richtung nach NDP zu A1.3.1(3)

Autl.	Ek	F _{d,dst}	$F_{d,stb}$	η
	[-]	[kN]	[kN]	[-]
Α	52	-1.61	1.58	1.02!
В	52	-2.94	1.58	1.86!

Zugverankerung

ständig/vorüberg.	Aufl.	F _{d,anch} [kN]	EK
	A	0.15*	94
	В	-1.18	94

*: nur konstruktive Zugkraftverankerung erforderlich

Für die Auflager A und B ist eine Zugkraftverankerung erforderlich.

Anschlüsse Nachweis der Anschlüsse des Sparrens Sparrenauflager B Kontaktanschluss durch Aufklauung

FALSCH!

Pfettenanker beide entweder liegend oder stehend einbauen. Bei Beanspruchung in vertikaler und horizontaler Richtung AB-Winkel o. ä. einbauen.

Einschnitttiefe Sparren Pfette (Nadelholz C24)

t = 3.00 cm b/h = 14/20 cm

Querdruck Abs. 6.1.5, Abs. 6.2.2 vertikale Druckkraft

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: D3.1

Seite:

60

	Ek	Kmod [-]	Fd [kN]	α [°]	σ c,α,d [N/mm²]	k с,90 [-]	f _{c,α,d} [N/mm²]	η
Sparren	79	1.00	4.34	62.0	0.37	1.50	3.52 *	0.11
Pfette				90.0	0.42	1.50	1.92	0.15

* Wert mit k_{c,90} modifiziert

Verankerung

mit 2x Sparrenpfettenanker Simpson Strong-Tie SPF 170 (außen, gekreuzt), jeweils 4 CNA Kammnagel 4.0x60 pro Schenkel.*

: Es wird empfohlen, die Verbindungsmittel an den äußeren Enden anzuordnen.

EK	K mod	Fz,d	$R_{z,d}$	Fx,d	$\mathbf{R}_{\mathbf{x},\mathbf{d}}$	η
		[kN]	[kN]	[kN]	[kN]	
94	1.00	-1.18	5.64			0.21

Nachweise (Brand)

Nachweise der Feuerwiderstandsfähigkeit nach DIN EN 1995-1-2, 4.2.3

Brandfall	Brandbeanspr	uchung	t _{req} [min]
	vierseitig	(oben/unten/links/rechts)	30

Biegung	Nachweis d	Nachweis der Biegetragfähigkeit						
Abs. 6.1	x	Ek	k _{mod,fi}	N _{d,fi} M _{yd,fi}	σ _{0,d,fi} σ _{my,d,fi}	f _{0,d,fi} f _{my,d,fi}	η	
	[m]		[-]	[kN,kNm]	[N/mm ²]	[N/mm ²]	[-]	
Feld 1	(L = 3.51 m)	$k_{c,y} = 0.59$	9)					
	1.76	126	0.84	0.06	0.01	15.29		
			0.74	1.47	7.32	22.26	0.33 *	

Querkraft Abs. 6.1.7

Nachweis de	er Querk	rafttragfähigke	it			
X	Ek	$\mathbf{k}_{mod,fi}$	$V_{z,d,fi}$	T _{d,fi}	$\mathbf{f}_{v,d,fi}$	r
[m]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-
0.00	126	0.74	1.69	0.64	3.71	0.17

Feld 1

Stabilität Nachweis der Stabilität

Abs. 6.3

Der Sparren wird in der Dachebene als gehalten betrachtet. Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.

Ersatzstablängen			I _{ef,cy}
3		[m]	[m]
	Feld 1	3.51	3.51

Nachweise (GZG)

Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1

idiigeii	Nachweist	Juci veno	mungen		
	X	Ek	Norm	Wvorh	
	[m]			[mm]	
	(l = 3.51 n)	NKI 1 k	dof = 0.60		

Nachweise der Verformungen

Feld 1

[mm] 1/300= 3.8 11.7 0.33° 1.76 34 Wnet.fin

Negative Verformungen wurden zur Bemessung nicht berücksichtigt.

Durch Kontrollrechnung geprüft

31.07.2023

Wzul

Datum: 28.04.2023 Position: D3.1

Seite:

61

EK

F_{z,d,max}

Auflagerkräfte

je lfd. m (Windlasten mit c_{pe,10})

Char. Auflagerkr.

	Auti.	F _{x,k}	►z,k
		[kN/m]	[kN/m]
Einw. <i>Gk</i>	Α	0.00	1.95
	В		1.95
Einw. Qk.S.A	A	0.00	1.05
	В		1.05
Einw. Qk.W.000	A	0.64	0.53
	В		0.67
Einw. Qk.W.090	A	-1.50	-1.00
	В		-1.82
Einw. Qk.W.180	A	-0.62	-0.35
	В		-0.81
Einw. Qk.W.270	A	-0.66	-0.44
	В		-0.80

F_{x,d,min} EK

Aufl.

Bem.-auflagerkräfte ständig/vorüberg.

		[kN/m]		[kN/m]		[kN/m]		[kN/m]	
	Α	-2.25	76	0.95	75	0.46	94	4.70	79
	В					-0.77	94	4.82	79
außergewöhnlich	Aufl.	F _{x,d,min} [kN/m]	EK	F _{x,d,max} [kN/m]	EK	F _{z,d,min} [kN/m]	EK	F _{z,d,max} [kN/m]	EK
	Α	-0.30	117	0.13	116	4.08	122	4.48	116
	R					3 02	122	<i>1</i> 51	116

 $F_{x,d,max}$

Ankerkräfte

je Sparren (vvindiasten mit c _{pe,A})			
Lasteinzugsfläche des Sparren	A =	3.16	m²

ΕK

F_{z,d,min} EK

Bem.-ankerkräfte ständig/vorüberg.

Aufl.	F _{x,d,min} [kN]	EK	F _{x,d,max} [kN]	EK	F _{z,d,min} [kN]	EK	F _{z,d,max} [kN]	EK
A	-2.42	76	0.86	75	0.15	94	4.23	79
В					-1.18	94	4.34	79
Aufl.	F _{x,d,min}	EK	F _{x,d,max}	EK	F _{z,d,min}	EK	F _{z,d,max}	EK

außergewöhnlich

	[kN]		[kN]		[kN]		[kN]	
Α	-0.32	117	0.11	116	3.64	122	4.04	116
В					3.46	122	4.06	116

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Feld	x [m]		η [-]
Biegung	Feld 1	1.76	OK	0.28
Querkraft	Feld 1	0.00	OK	0.19
Biegung	Auflager B		OK	0.01
Querkraft	Auflager A		OK	0.23
Sparrenauflager	Auflager B		OK	0.21
Lagesicherheit	-		Zugv.	1.86
Zugy · Für die Auflager A und R ist	aina Zuakraftvarankarung arfo	rderlich		

Zugv.: Für die Auflager A und B ist eine Zugkraftverankerung erforderlich

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: D3.1

Nachweise (Brand) Brandfall im Grenzzustand der Tragfähigkeit

Nachweis	Feld	x [m]		η [-]
Biegung	Feld 1	1.76	OK	0.33
Querkraft	Feld 1	0.00	OK	0.17

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Feld	X		η
		[m]		[-]
ges. Enddurchbiegung	Feld 1	1.76	OK	0.33

/

Seite:

62

Datum: 28.04.2023 Position: WRB

Pos. WRB Windrispenband **System** Sparrendach M 1:105 12.00 Gebäudeabmessungen Gebäudebreite (Giebelseite) B = 12.00 m Gebäudelänge (Traufenseite) L 13.42 m Gebäudehöhe (über OKG) 17.40 Η m Geländehöhe über Meeresniveau 44.00 mü.NN Satteldach Dachneigungswinkel δ = 28.00 Dachhöhe h = 3.19 m Stützweite 6.00 m Sparrenabstand a = 0.90 Nutzungsklasse 1 Einwirkungen Einwirkungen nach DIN EN 1990:2010-12 Gk Eigenlasten Ständige Einwirkungen Qk.S Schnee Schnee- und Eislasten für Norddeutsches Tiefland Qk.S min/max Werte Qk.S.A Fall (i) Qk.S.B Fall (ii) Qk.S.C Fall (iii) Qk.W Wind Windlasten Qk.W min/max Werte Qk.W.000 Anströmrichtung $\Theta = 0^{\circ}$ Qk.W.090 Anströmrichtung $\Theta = 90^{\circ}$ Qk.W.180 Anströmrichtung $\Theta = 180^{\circ}$ Nordd. Tiefland Aufgrund der Gebäudelage im norddeutschen Tiefland wird die Einwirkung Qk.S nach DIN EN 1991-1-3/NA, NDP zu 4.3(1) zusätzlich als außergewöhnliche Einwirkung mit 2.3-fachen Lastwerten berücksichtigt.

Durch Kontrollrechnung geprüft

Einwirkung Gk

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: WRB

Seite:

64

Belastungen

Eigengewicht Sparren (DF) $g_k = 0.09 \text{ kN/m}^2$

Eindeckung (DF) $g_k = 0.55 \text{ kN/m}^2$

Innenverkleidung (DF) $g_k = 0.47 \text{ kN/m}^2$

Lastart	Ort	Richtung	a [m]	s [m]	Qa [kN/m²]	qe [kN/m²]	F [kN/m]
Gleich	SpLi	vert.			0.11		
Gleich	SpRe	vert.			0.11		
Gleich	SpLi	vert.			0.62		
Gleich	SpRe	vert.			0.62		
Gleich	SpLi	vert.			0.53		
Gleich	SpRe	vert.			0.53		

Einwirkung Qk.S.A Schneelast

nach DIN EN 1991-1-3:2010-12

Schneelastzone 2

char. Schneelast auf dem Boden $s_k =$ 0.85 kN/m² Formbeiwert der Schneelast 0.80 $\mu_1 =$ Schneelast Fall (i) kN/m² 0.68/0.68 $s_l/s_r =$ Schneelast Fall (ii) $s_l/s_r =$ 0.68/0.34 kN/m² Schneelast Fall (iii) 0.34/0.68 $s_l/s_r =$ kN/m²

Lastart	Ort	Richtung	a [m]	s [m]	qa [kN/m²]	q _e [kN/m²]	F [kN/m]
Gleich Gleich	•				0.68 0.68	-	

Einwirkung Qk.S.B

Lastart	Ort	Richtung	a [m]	s [m]	Qa [kN/m²]	qe [kN/m²]	F [kN/m]
Gleich	SpLi	vert.			0.34		
Gleich	SpRe	vert.			0.68		

Einwirkung Qk.S.C

Lastart	Ort	Richtung	a [m]	s [m]	Qa [kN/m²]	q _e [kN/m²]	F [kN/m]
Gleich Gleich	SpLi SpRe				0.68 0.34		

Einwirkung Qk.W.000 Windlast

nach DIN EN 1991-1-4:2010-12 Windzone 2, Binnenland

vereinfachtes Verfahren Geschwindigkeitsdruck

Anströmrichtung

			L1	[]	[IXIA/III]
Block	SpLi	lokal	0.00	1.34	0.51
Block	SpLi	lokal	1.34	4.66	0.30
Block	SpRe	lokal	4.66	1.34	-0.46
Block	SpRe	lokal	0.00	4.66	-0.32

Durch Kontrollrechnung geprüft

31.07.2023

kN/m²

[kN/m]

m

0.80

0.00

1.34

[kN/m²]

q

θ

Datum: 28.04.2023 Position: **WRB**

Anströmr Länge de	_				θ = e/4 =	90.00 3.00	° m
Lastart	Ort	Richtung	a [m]	s [m]	qa [kN/m²]	qe [kN/m²]	F [kN/m]
Block	SpLi	lokal	0.00	3.00	-0.98		
Block	SpLi	lokal	3.00	3.00	-1.21		
Block	SpRe	lokal	0.00	3.00	-0.98		
Block	SpRe	lokal	3.00	3.00	-1.21		

Wind auf den Giebel Windangriffsfläche

A_{links} = 4.79 132 4.79 m² A_{rechts} = Cpe,10 [-]

Seite:

65

Bereich We,10 $[kN/m^2]$ [kN/m²] D 0.80 0.80 0.64 Ε 08.0 -0.50 -0.40

Einwirkung Qk.W.180

Anströmri Länge de	_	chs F und J			$\theta = e/10 =$	180.00 1.34	° m
Lastart	Ort	Richtung	a [m]	s [m]	qa [kN/m²]	qe [kN/m²]	F [kN/m]
Block	SpLi	lokal	4.66	1.34	-0.46		
Block	SpLi	lokal	0.00	4.66	-0.32		
Block	SpRe	lokal	0.00	1.34	0.51		
Block	SpRe	lokal	1.34	4.66	0.30		

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

ständig/vorüberg.

Ek KLED Σ ($\gamma*\psi*EW$) 11 ku/sk 1.35*Gk ku/sk: kurz/sehr kurz

+1.50*Qk.W.090 +0.75*Qk.S.A

Normalkräfte

Sparren	EK	Kmod	X	√l d^
			[m]	[kN]
links	11	1.00	3.40	-2.76
rechts	11	1.00	3.40	-2.76
* Es werden nur Druckkräft	e in den Sparren berück	sichtigt.		

Horizontalkräfte

Dachseite	Ek	\mathbf{k}_{mod}	$H_{Sp,d}$	$H_{Gie,d}$	Hd
			[kN]	[kN]	[kN]
links	11	1.00	0.53	7.47	8.00
rechts	11	1.00	0.53	7.47	8.00

Nachweise (GZT)

Nadelholz C24 Sparren

links	b/h =	10/20	cm
rechts	b/h =	10/20	cm
	e =	0.90	m

Windrispenband

Simpson Strong-Tie 60.0 x 1.5 mm

Anzahl links	erf.	2	Bänder	gew.	2*1	
Anzahl rechts	erf.	2	Bänder	gew.	2*1	

Durch Kontrollrechnung geprüft

Band Band

Datum: 28.04.2023 Position: WRB

Dachseite	Überspannte Felder	Neigung [°]	Ek	F _d [kN]	R _d [kN]	η [-]
links	7	47.2	11	11.77	41.11	0.29
rechts	7	47.2	11	11.77	41.11	0.29

Verbindungsmittel

CNA Kammnagel 4.0x40 mm

char. Tragfähigkeit $F_{v,Rk} = 1.85$ kN $\gamma_M = 1.30$ -

erf. Anzahl der Nägel je Verankerungspunkt

Dachseite	Ek	k _{mod}	F _{v,Ed} [kN]	Fuss n _{erf}		Feld n _{erf,Sp}
links	11	1.00	5.88	5		2
rechts	11	1.00	5.88	5		2
links:	anordbare Sparren für	· .		=	12	Nägel
rechts:	anordbare					\ \
	Sparren für	r 1 Band		=	12	Nägel

Skizze Fußpunkt

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis		η
		[-]
Windrispenband	OK	0.29

Durch Kontrollrechnung geprüft

/

66

Seite:

IIID-Viewei version 2023 - Cupyright 2022 - IIID AEC Software Gills

Datum: 28.04.2023 Position: **GP1**

Seite:

67

Pos. GP1

Gratsparren

System M 1:50

1-Feld Gratsparren

M 1:50

Gebäude	eabmessungen
---------	--------------

Geländehöhe über		A =	44.00	m		
Ort	Form	Breite	Läng	Länge		
		[m]	[n	ո]	[m]	
Hauptdach (HD)	Satteld.	10.00	12.0	0	17.40	
Nebendach (ND)	Satteld.	10.00	10.0	00	\	

Dachgeometrie

Ort	δ	h	
	[°]	[m]	[m]
Hauptdach	28.00	1.32	2.80
Nebendach	28.00	1.32	2.80
Gratsparren	20.61	1.32	3.74

Traufenwinkel

Durch Kontrollrechnung geprüft

Θ =

90.00

Stützweiten

Auflager

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023

 Ort
 Hauptdach [m]
 Nebendach [m]
 Sparren [m]

 Feld 1
 2.48
 2.48
 3.50

K_v horiz. Höhe Lager vert. Kh Ort [kN/m] [kN/m] [m] Α HD/ND 0.00 starr starr В HD/ND 1.32 starr starr

Nutzungsklasse 1

Baustoff Nadelholz C24

Querschnitt Sparren b/h = 12/16

cm

68

GP1

Seite:

Position:

Belastungen

Windbereiche M 1:175

#Wind90

Einwirkung Gk

Feld	g к,но	g _{k,ND}	g _{k,i,HD}	g _{k,i,ND}
	[kN/m²]	[kN/m²]	[kN/m²]	[kN/m²]
Feld 1	0.55	0.55	0.47	0.47

Lastart	Dach	Richtung	a [m]	s [m]	qa [kN/m]	qe [kN/m]	F [kN]
Gleich	Sp	vert.			0.09		
Trapez	HD	vert.	0.00	3.50	0.00	0.55	
Trapez	ND	vert.	0.00	3.50	0.00	0.55	
Trapez	HD	vert.	0.00	3.50	0.00	0.47	
Trapez	ND	vert.	0.00	3.50	0.00	0.47	

Datum: 28.04.2023 Position: **GP1**

Seite:

69

Einwirkung Qk.S.A Schneelast

nach DIN EN 1991-1-3:2010-12

Schneelastzone 2

Lastart	Dach	Richtung	a [m]	s [m]	qa [kN/m]	qe [kN/m]	F [kN]
Trapez	HD	vert.	0.00	3.50	0.00	0.60	
Trapez	ND	vert.	0.00	3.50	0.00	0.60	

Datum: 28.04.2023 Position: **GP1**

Einwirkung Qk.W.000 Windlast

nach DIN EN 1991-1-4:2010-12 Windzone 2, Binnenland vereinfachtes Verfahren Geschwindigkeitsdruck Anströmrichtung

q =	0.80	kN/m ²
θ =	0.00	0

Seite:

70

Bereich	e/10 _{HD}	I _{HD}	e/10 _{ND}	I _{ND}
	[m]	[m]	[m]	[m]
F	1.20		1.00	

Bereich	сре,но	W _{e,HD} [kN/m²]	cp _{e,ND}	W _{e,ND} [kN/m²]
F	-	_	-0.55	-0.44
L/H	-1.40	-1.12	0.37	0.30

Lastart	Dach	Richtung	а	s	Q a	Q e	F
			[m]	[m]	[kN/m]	[kN/m]	[kN]
Trapez	HD	lokal	0.00	3.50	0.00	-1.27	
Trapez	ND	lokal	0.00	3.50	0.00	0.28	
Block	ND	lokal	0.00	1.41	-0.87		

[kN/m]

Einwirkung Qk.W.090

Anströmrichtung

 $\theta = 90.00$

Bereich	сре,но	W _{e,HD} [kN/m²]	cp _{e,ND}	W _{e,ND} [kN/m²]
J/N	-0.74	-0.59	-0.21	-0.17

Lastart	Dach	Richtung	а	S	Qа	Q e	F
			[m]	[m]	[kN/m]	[kN/m]	[kN]
Trapez	HD	lokal	0.00	3.50	0.00	-0.74	
Trapez	ND	lokal	0.00	3.50	0.00	-0.16	

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: **GP1**

[kN/m]

71

Seite:

Einwirkung Qk.W.180

Anströmrichtung

 $\theta = 180.00$

Bereich		ср _{е,НD}	W _{e,HD} [kN/m²]		cp _e ,	ND	W _{e,ND} [kN/m ²]
M/J		-0.77	-0.62		-0.	74	-0.59
Lactart	Dach	Pichtung	2	•	O.	O.	F

Lastart	Dach	Richtung	а	S	Qа	Q e	F
			[m]	[m]	[kN/m]	[kN/m]	[kN]
Trapez	HD	lokal	0.00	3.50	0.00	-0.74	
Trapez	ND	lokal	0.00	3.50	0.00	-0.74	

[kN/m]

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

	Ek	KLED Σ (γ*ψ*EW)			
ständig/vorüberg.	2	ku 1.35*Gk	+1.50*Qk.S.A		
quasi-ständig	27	1.00*Gk			
Lagesicherheit	41	ku/sk 0.90*Gk	+1.50*Qk.W.000		
_	43	ku/sk 0.90*Gk	+1.50*Qk.W.180		
st./vor. Auflagerkr.	60	ku/sk 1.35*Gk	+1.50*Qk.W.000		
-	62	ku/sk 1.35*Gk	+1.50*Qk.W.180		
	74	ku/sk 1.00*Gk	+1.50*Qk.W.000		
	78	ku/sk 1.00*Gk	+1.50*Qk.W.180		
außerg. Auflagerkr	91	ku 1.00*Gk	+2.30*Qk.S.A		
Brand	99	1.00*Gk			
	ku:	kurz	alliana alamana an ana an		
	ku/sk: kurz/sehr kurzDurch Kontrollrechnung geprüft 31.			31.07.2023	

cm

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: GP1

Bemessung (GZT)

nach DIN EN 1995-1-1 und DIN EN 1995-1-2, 4.2.3

Baustoff Nadelholz C24

Verformungsbeiwert	k_def	=	0.60	-
char. Biegefestigkeit	$f_{m,y,k}$	=	24.00	N/mm ²
char. Druckfestigkeit∥	f _{c,0,k}	=	21.00	N/mm ²
char. Druckfestigkeit⊥	$f_{c,90,k}$	=	2.50	N/mm ²
char. Zugfestigkeit∥	$f_{t,0,k}$	=	14.50	N/mm ²
char. Schubfestigkeit	$f_{v,k}$	=	4.00	N/mm ²
Rissfaktor für Schubfestigkeit	k _{cr}	=	0.50	-
mittl. Elastizitätsmodul∥	E _{0,mean}	=	11000	N/mm ²
char. Elastizitätsmodul∥	E _{0,05}	=	7400	N/mm ²
mittl. Schubmodul	G_{mean}	=	690	N/mm ²
char. Schubmodul	G ₀₅	=	460	N/mm ²
Teilsicherheitsbeiwert	γм	=	1.30	-
	Υма	=	1.00	-
Teilsicherheitsbeiwert Brandfall	Y M,fi	=	1.00	-
Transformationsfaktor	Kfi	=	1.25	_

gewählt 12/16 Sparren

Brandfall vierseitige Brandbeanspruchung

Feuerwiderstandsdauer 30 min t_{req} = Abbrandrate β_n 0.80

mm/min 2.40 Abbrandtiefe d_{char,n} cm

Sparren $b_r/h_r =$ 7.2/11.2 cm

M 1:5

Querschnittswerte

	t	A/A n	$\mathbf{W}_{y}/\mathbf{W}_{y,n}$	ly	İy	
	[cm]	[cm²]	[cm³]	[cm ⁴]	[cm]	
Feld	-	179.33	395.84	3370.78	4.34	
Aufl A-B	3.0	143.33	246 80	_	_	

Querschnittswerte für Brandfall

 $\mathbf{A}_{\mathbf{r}}$ $\mathbf{W}_{y,r}$ l_{y,r} iy,r [cm⁴] [cm] [cm²] [cm³] [cm] 36.80 80.64 150.53 842.96 3.23

Knickwerte

Feld	lef,y	λγ	λrel,c,y	k с,у
	[m]	[-]	[-]	[-]
1	3.74	86.25	1.4625	0.3962

Durch Kontrollrechnung geprüft

Datum: **28.04.2023** Position: **GP1**

Seite:

73

Knickwerte für Brandfall		Feld	l _{ef,y} [m]		λ _{y,fi} [-]	λrel,c,	-		Kc,y,fi Γ_1	
iui bianulali		1	3.74	115	5.66	1.68	[-] 34		[-] 0.3092	
Nachweise (GZT)		Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1								
		Nachw	Nachweise der Querschnittstragfähigkeit							
Feld										
Biegung und Zug			2 (KLED kurz bende Stelle)		k _{mod}	=	0.90 2.16	- m	
		Normal	lkraft			$N_{t,0,d}$ $M_{y,d}$	=	0.01 3.72	kN kNm	
		Biegen Zugspa	annung			$\sigma_{t,0,d}$	=	0.00	N/mm ²	
		Zugfes				$\sigma_{m,y,d} \\ f_{t,0,d}$	=	9.40 10.04	N/mm ² N/mm ²	
	(6.17)		estigkeit 10.04 + 9.40) / 16.62		f _{m,y,d}	=	16.62 0.57	N/mm ² ≤ 1	
Schub aus Querkraft	` ,	für Ek 2	2 (KLED kurz)		k_{mod}	=	0.90	/	
		maßge	bende Stelle			Х	=	3.74	m	
		Querkr				$V_{z,d}$	=	-5.12	kN	
			spannung			$T_{z,d}$	=	0.86	N/mm ²	
	(6.13)		estigkeit 2.77			f _{v,d}	=	2.77 0.31	N/mm ² ≤ 1	
Auflager A	(0.10)		vächter Quers	schnitt (Kerv	/e)			0.01		
Druck parall. Faser			2 (KLED kurz)		k _{mod}	=	0.90	-	
		Normal				$N_{c,0,d}$	=	-1.00	kN	
			pannung			$\sigma_{c,0,d}$	=	0.06	N/mm ²	
	(0.0)		estigkeit			f _{c,0,d}	=	14.54	N/mm ²	
	(6.2)	0.06 /	14.54				=	0.00	≤ 1	
Schub aus Querkraft		für Ek 2 Querkr	2 (KLED kurz)		$k_{mod} \ V_{z,d}$	=	0.90 2.66	kN	
			spannung			T _{z,d}	=	0.56	N/mm ²	
			estigkeit			$f_{v,d}$	=	2.77	N/mm ²	
	(6.13)					· v,u	=	0.20	≤ 1	
		Nachw	eise der Stab	ilität mit Ers	atzstabverfah	ren			/	
Biegung und Druck			2 (KLED kurz)		k_{mod}	=	0.90	-	
		•	bende Stelle			Х	=	2.12	m	
		Normal				$N_{c,0,d}$	=	-0.02	kN	
		Biegen				$M_{y,d}$	=	3.72	kNm	
			pannung			$\sigma_{\text{c},0,\text{d}}$	=	0.00	N/mm ²	
			pannung			$\sigma_{m,y,d}$	=	9.40	N/mm ²	
			estigkeit			f _{c,0,d}	=	14.54	N/mm ²	
	(6.22)		estigkeit	0.40 / 16 6	27	f _{m,y,d}	=	16.62	N/mm ²	
	(6.23)	U.UU /(L).40*14.54) +	<i>3.</i> 40 / 10.0	12		-	0.57	≤ 1	

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: **GP1**

Lagesicherheit DIN EN 1990, 6.4.2		Lagesicherheitsnach Aufl. A B	nweis in verti Ek [-] 41 43	kaler Richt F _{d,dst} [kN] -2.34 -2.58	ung nach	NDP F _{d,stl} [kN 1.20 2.26])	3.1(3) n [-] 1.95! 1.14!
ständig/vorüberg.		Zugverankerung Aufl .					F _{d,an}	
		A B					[k] -1.(-0.(01 74
Nachweise (Brand)		Nachweise der Feue	erwiderstand	sfähigkeit r	nach DIN	EN 19	995-1-2	, 4.2.3
		Nachweise der Que	rschnittstragt	fähigkeit				
Biegung und Zug		für Ek 99			k _{mod,t,fi}		0.86	-
		maßgebende Stelle			k _{mod,m,fi}		0.77 2.15	- m
		Normalkraft			$N_{t,0,d,fi}$		0.00	kN
		Biegemoment			$M_{y,d,fi}$		1.72	kNm
		Zugspannung			$\sigma_{t,0,d,fi}$		0.00	N/mm ²
		Biegespannung			$\sigma_{m,y,d,fi}$		11.41	N/mm ²
		Zugfestigkeit			$f_{t,0,d,fi}$		15.62	N/mm ²
		Biegefestigkeit			$f_{m,y,d,fi}$	=	23.15	N/mm ²
((6.17)	0.00 / 15.62 + 11.4	1 / 23.15			=	0.49	≤ 1
Schub aus Querkraft		für Ek 99			$k_{mod,t,fi}$	=	0.86	
		maßgebende Stelle			X		3.74	m
		Querkraft			$V_{z,d,fi}$	=	-2.35	kN
		Schubspannung			T _{z,d,fi}		0.87	N/mm ²
		Schubfestigkeit			$f_{v,d,fi}$	=	3.86	N/mm ²
((6.13)	0.87 / 3.86				=	0.23	≤ 1
		Nachweise der Stab	ilität mit Ersa	atzstabverf	ahren			/
Biegung und Druck		für Ek 99			$k_{\text{mod,c,fi}}$	=	0.63	-
					$k_{\text{mod},m,fi}$	=	0.77	-
		maßgebende Stelle			Х	=	2.11	m
		Normalkraft			$N_{c,0,d,fi}$	=	-0.01	kN
		Biegemoment			$M_{y,d,fi}$	=	1.72	kNm
		Druckspannung			$\sigma_{\text{c,0,d,fi}}$	=	0.00	N/mm ²
		Biegespannung			$\sigma_{\text{m},\text{y},\text{d},\text{fi}}$	=	11.41	N/mm ²
		Druckfestigkeit			f _{c,0,d,fi}		16.67	N/mm ²
	, <u> </u>	Biegefestigkeit			f _{m,y,d,fi}		23.15	N/mm ²
((6.23)	0.00 /(0.31*16.67) +	11.41 / 23.1	5		=	0.49	≤ 1

Lag	esic	herhe	eit
DIN	ΕN	1990,	6.4.2

Lagesicherheitsnachweis in vertikaler Richtung nach NDP zu A1.3.1(3)

Aufl.	Ek	$F_{d,dst}$	$F_{d,stb}$	η
	[-]	[kN]	[kN]	[-]
Α	41	-2.34	1.20	1.95!
В	43	-2.58	2.26	1.14!

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: GP1

Seite:

75

ständig/vorüberg.

Aufl.

Fd,anch EK [kN]

A -1.01 74

B -0.07 78

Nachweise (GZG)

Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1

negative Verformungen werden nicht berücksichtigt

Grenzwerte Verform. Durchhang $C_d = 1/300$

A . . . CI

GI.		Ek	X	vorh w	zul w	η
			[m]	[mm]	[mm]	[-]
Wnet.fin	Feld	27	1.94	10.58	12.46	0.85

Auflagerkräfte

Char. Auflagerkr.

	Aufl.	F _{x,k}	⊢ _{z,k}
		[kN]	[kN]
Einw. <i>Gk</i>	A	0.00	1.33
	В	0.00	2.51
Einw. Qk.S.A	A	0.00	0.69
	В	0.00	1.39
Einw. Qk.W.000	A	-0.59	-1.56
	В	-0.53	-1.40
Einw. Qk.W.090	A	-0.20	-0.52
	В	-0.39	-1.05
Einw. Qk.W.180	A	-0.32	-0.86
	В	-0.65	-1.72

Bem.-auflagerkräfte ständig/vorüberg.

außergewöhnlich

Aufl.	F _{x,d,min} [kN]	EK	F _{x,d,max} [kN]		F _{z,d,min} [kN]		F _{z,d,max} [kN]	
Α	-0.88	60	0.00	58	-1.01	74	2.84	59
В	-0.97	62	0.00	58	-0.07	78	5.47	59
Aufl.	F _{x,d,min} [kN]		F _{x,d,max} [kN]		F _{z,d,min} [kN]		F _{z,d,max} [kN]	
Α	-0.12	92	0.00	91	2.55	96	2.93	91
В	-0.13	94	0.00	91	5.23	98	5.70	91

Ankerkräfte

Lasteinzugsfläche des Sparren $A = 3.06 \text{ m}^2$

Bem.-ankerkräfte ständig/vorüberg.

Aufl.	F _{x,d,min} E [kN]	K	F _{x,d,max} [kN]	EK	F _{z,d,min} [kN]	EK	F _{z,d,max} [kN]	EK
Α	-0.88 6	60	0.00	58	-1.01	74	2.84	59
В	-0.97 6	62	0.00	58	-0.07	78	5.47	59

außergewöhnlich

Aufi.	F _{x,d,min} EK	F _{x,d,max} EK	Fz,d,min EK	Fz,d,max EK
	[kN]	[kN]	[kN]	[kN]
Α	-0.12 92	0.00 91	2.55 96	2.93 91
В	-0.13 94	0.00 91	5.23 98	5,70, 9,1

Datum: 28.04.2023 Position: **GP1**

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Feld	x [m]		η [-]
Biegung	Feld	2.12	OK	0.57
Druck	Feld	-	OK	0.00
Querkraft	Feld	3.74	OK	0.31
Lagesicherheit			Zugv.	1.95
Zugy: Für die Δuflager Δ und R ist eine Zugkraf	tverankerung erfo	rderlich	3	

Zugv.: Für die Auflager A und B ist eine Zugkraftverankerung erforderlich.

Nachweise (Brand)

Brandfall im Grenzzustand der Tragfähigkeit

Nachweis	Feld	X		η
		[m]		[-]
Biegung	Feld	2.11	OK	0.49
Querkraft	Feld	3.74	OK	0.23

Nachweise (GZG)

Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Feld	x [m]		Υ [-]
Durchhang	Feld	1.94	OK	0.85

/

Seite:

76

Datum: 28.04.2023 Position: **KP1**

Seite:

77

Pos. KP1

Kehlsparren

System M 1:75

1-Feld Kehlsparren

M 1:50

Gebäudeabmessungen	Geländehöhe über I	A =	44.00 m		
	Ort	Form	Breite [m]	Länge [m]	Höhe [m]
	Hauptdach (HD) Nebendach (ND)	Satteld. Satteld.	10.00 10.00	12.00 10.00	
Dachgeometrie	Ort		δ [°]	h [m]	[m]
	Hauptdach Nebendach		28.00 28.00	1.65 1.65	3.51
	Kehlsparren		20.61	1.65	
	Traufenwinkel			Θ =	90.00

Stützweiten

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: KP1

Seite:

78

31.07.2023

Ort	Hauptdach	Nebendach	Sparren
	[m]	[m]	[m]
Feld 1	3.10	3.10	4.38

Auflager

Lager	Ort	vert.	K _v [kN/m]	horiz.	K _h [kN/m]	Höhe [m]
A B	HD/ND HD/ND	starr starr		starr starr	-	0.00 1.65

Nutzungsklasse 1

Baustoff Nadelholz C24

Querschnitt Sparren 12/22

Belastungen

Windbereiche M 1:175

Einwirkung Gk

Feld	g к,н D	gk,ND	g _{k,i,HD}	g _{k,i,ND}
	[kN/m²]	[kN/m²]	[kN/m²]	[kN/m²]
Feld 1	0.55	0.55	0.47	0.47

Lastart	Dach	Richtung	a [m]	s [m]	qa [kN/m]	qe [kN/m]	F [kN]
Gleich	Sp	vert.			0.12		
Trapez	HD	vert.	0.00	4.38	0.68	0.00	
Trapez	ND	vert.	0.00	4.38	0.68	0.00	
Trapez	HD	vert.	0.00	4.38	0.58	0.00	
Trapez	ND	vert.	0.00	4.38	0.58	0.00	

Datum: 28.04.2023 Position: KP1

Einwirkung Qk.S.A Schneelast

nach DIN EN 1991-1-3:2010-12

Schneelastzone 2

char. Schneelast auf dem Boden Formbeiwert der Schneelast Schneelast

0.85 kN/m² 0.80 0.68

Seite:

79

Lastart	Dach	Richtung	a [m]	S [m]	qa [kN/m]	Qe	F
Trapez	HD	vert.	[m] 0.00	[m] 4.38			[kN]
Trapez	ND	vert.	0.00	4.38	0.75	0.00	

Datum: 28.04.2023 Position: KP1

Einwirkung Qk.W.000 Windlast

nach DIN EN 1991-1-4:2010-12 Windzone 2, Binnenland vereinfachtes Verfahren Geschwindigkeitsdruck Anströmrichtung

q =	0.80	kN/m ²
θ =	0.00	٥

Seite:

80

Bereich	e/10 _{HD}	I _{HD}	e/10 _{ND}	I _{ND}
	[m]	[m]	[m]	[m]
G	1.20		1.00	

Bereich	ср е,но	W _{e,HD} [kN/m²]	Cp _{e,ND}	W _{e,ND} [kN/m²]
G	0.63	0.51	0.63	0.51
Н	0.37	0.30	0.37	0.30

Lastart	Dach	Richtung	a [m]	s [m]	qa [kN/m]	qe [kN/m]	F [kN]
Trapez	HD	lokal	0.00	4.38	0.35	0.00	
Block	HD	lokal	0.00	1.70	0.19		
Trapez	ND	lokal	0.00	4.38	0.35	0.00	
Block	ND	lokal	0.00	1.41	0.16		

Einwirkung Qk.W.180

Anströmrichtung

180.00

Bereich	e/10 _{HD}	I _{HD}	e/10 _{ND}	I _{ND}
	[m]	[m]	[m]	[m]
	1.20		1.00	

Bereich	ср е,нD	W _{e,HD} [kN/m²]	CP _{e,ND}	W _{e,ND} [kN/m²]
I	-0.40	-0.32	-0.40	-0.32
J	-0.57	-0.45	-0.57	-0.45

Lastart	Dach	Richtung	a [m]	s [m]	qa [kN/m]	q _e [kN/m]	F [kN]
Trapez	HD	lokal	0.00	4.38	-0.55	0.00	
Block	HD	lokal	2.69	1.70	0.14		
Trapez	ND	lokal	0.00	4.38	-0.55	0.00	
Block	NBuro	lokal ch Kontrollr	2.97 echnung	1.41 geprüf	0.11	3	1.07.2023

Datum: 28.04.2023 Position: **KP1**

[kN/m]

Seite:

81

KombinationenKombinationsbildung nach DIN EN 1990
Darstellung der maßgebenden Kombinationen

	Ek	KLED	Σ (γ*ψ*EW)		
ständig/vorüberg.	2	ku	1.35*Gk	+1.50*Qk.S.A	
	5	ku/sk	1.35*Gk	+1.50*Qk.S.A	+0.90*Qk.W.000
quasi-ständig	20		1.00*Gk		
Lagesicherheit	32	ku/sk	0.90*Gk	+1.50*Qk.W.180	
st./vor. Auflagerkr.	45	ku/sk	1.35*Gk	+1.50*Qk.W.000	
	46	ku/sk	1.35*Gk	+1.50*Qk.W.180	
	47	ku/sk	1.35*Gk	+1.50*Qk.S.A	+0.90*Qk.W.000
	58	ku/sk	1.00*Gk	+1.50*Qk.W.180	
Brand	74		1.00*Gk	+0.20*Qk.W.000	
	ku: ku/sk:	kurz kurz/s	sehr kurz		

Bemessung (GZT) nach DIN EN 1995-1-1 und DIN EN 1995-1-2, 4.2.3

Sparren

Abbrandrate

Baustoff	Nadelholz C24				
	Verformungsbeiwert	k_{def}	=	0.60	-
	char. Biegefestigkeit	$f_{m,y,k} \\$	=	24.00	N/mm ²
	char. Druckfestigkeit∥	$f_{c,0,k}$		21.00	N/mm ²
	char. Druckfestigkeit⊥	f c,90,k	=	2.50	N/mm ²
	char. Zugfestigkeit∥	$f_{t,0,k}$	=	14.50	N/mm ²
	char. Schubfestigkeit	$f_{v,k}$	=	4.00	N/mm ²
	Rissfaktor für Schubfestigkeit	k _{cr}	=	0.50	-
	mittl. Elastizitätsmodul∥	$E_{0,mean}$	=	11000	N/mm ²
	char. Elastizitätsmodul∥	E _{0,05}	=	7400	N/mm ²
	mittl. Schubmodul	G_{mean}	=	690	N/mm ²
	char. Schubmodul	G_{05}	=	460	N/mm ²
	Teilsicherheitsbeiwert	γ M	=	1.30	-
		Y MΑ	=	1.00	-
	Teilsicherheitsbeiwert Brandfall	γ M,fi	=	1.00	-
	Transformationsfaktor	k _{fi}	=	1.25	<u>~</u>

vierseitige Brandbeanspruchung

Durch Kontrollrechnung geprüft

Feuerwiderstandsdauer

-viewer version zuza - Copyrignt zuzz - mb AEC Software t

gewählt

Brandfall

 $t_{req} =$

 $\beta_n =$

12/22

30

08.0

cm

min

m.m/2013

Datum: 28.04.2023 Position: KP1

> $d_{char,n} =$ 2.40

[cm⁴]

82

cm

cm

[cm]

Seite:

Sparren 7.2/17.2 $b_r/h_r =$

M 1:5

[cm]

Abbrandtiefe

Querschnittswerte			t [cm]	A/A _n [cm²]	W _y /W _{y,n} [cm ³]	l _y [cm ⁴]	iy [cm]
	Feld		_	251.33	801.64	9234.08	6.06
	Aufl. A-B		3.0	215.33	580.78	-	~
Querschnittswerte für		р	Ar	V	V _{y,r}	l _{y,r}	İ y,r

[cm²]

Querschnittswerte für	
Brandfall	

	48.80	123.84	355.01	3053.07	4.97
Feld	lef,y [m]	λ _ν [-]		λrel,c,y [-]	k с,у [-]
1	4.68	77.27		1.3103	0.4757

[cm³]

Kni	ickwerte
für	Brandfall

Knickwerte

Feld	lef,y	∧ y,fi	Λrel,c,y,fi	K c,y,fi
	[m]	[-]	[-]	[-]
1	4.68	94.33	1.4105	0.4213

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

Nachweise der Querschnittstragfähigkeit

Feld

Biegung und Druck	für Ek 5 (KLED sehr kurz)	k_{mod}	=	1.00	-
-	maßgebende Stelle	X	=	1.97	m
	Normalkraft	$N_{c,0,d}$	=	-0.03	kN
	Biegemoment	$M_{y,d}$	=	8.48	kNm
	Druckspannung	$\sigma_{c,0,d}$	=	0.00	N/mm ²
	Biegespannung	$\sigma_{m,y,d}$	=	10.58	N/mm ²
	Druckfestigkeit	f _{c,0,d}	=	16.15	N/mm ²
	Biegefestigkeit	fm v d	=	18.46	N/mm ²

(6.19) $(0.00 / 16.15)^2 + 10.58 / 18.46$ 0.57

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: KP1 Schub aus Querkraft für Ek 5 (KLED sehr kurz) 1.00 $k_{mod} =$ maßgebende Stelle 0.00 x = m Querkraft 9.46 $V_{z,d} =$ kΝ Schubspannung $T_{z,d} =$ 1.13 N/mm² Schubfestigkeit N/mm² $f_{v,d} =$ 3.08 (6.13) 1.13 / 3.08 0.37 Auflager A geschwächter Querschnitt (Kerve) Druck parall. Faser für Ek 2 (KLED kurz) 0.90 $k_{mod} =$ Normalkraft $N_{c,0,d} =$ -3.03 kΝ Druckspannung 0.13 N/mm² $\sigma_{c.0.d}$ = Druckfestigkeit 14.54 $f_{c,0,d} =$ N/mm² (6.2) 0.13 / 14.54 0.01 Schub aus Querkraft für Ek 5 (KLED sehr kurz) $k_{mod} =$ 1.00 Querkraft $V_{z,d} =$ 9.46 kΝ Schubspannung $T_{z,d} =$ 1.32 N/mm² Schubfestigkeit 3.08 N/mm² $f_{v,d} =$ (6.13) 1.32 / 3.08 0.43 Nachweise der Stabilität mit Ersatzstabverfahren

Biegung und Druck	für Ek 5 (KLED sehr kurz)	k_{mod}	=	1.00	-
	maßgebende Stelle	X	=	1.94	m
	Normalkraft	$N_{c,0,d}$	=	-0.06	kN
	Biegemoment	$M_{y,d}$	=	8.48	kNm
	Druckspannung	$\sigma_{c,0,d}$	=	0.00	N/mm ²
	Biegespannung	$\sigma_{m,y,d}$	=	10.57	N/mm ²
	Druckfestigkeit	f _{c,0,d}		16.15	N/mm ²
	Biegefestigkeit	$f_{m,y,d}$		18.46	N/mm ²
	(6.23) 0.00 /(0.48*16.15) + 10.57 / 18.46		=	0.57	≤ 1

Lag	esic	herhe	eit
DIN	ΕN	1990,	6.4.2

Lagesicherheitsnachweis in vertikaler Richtung nach NDP zu A1.3.1(3)

DIN EN 1990, 6.4.2	Aufl.	Ek	$F_{d,dst}$	$F_{d,stb}$	η
		[-]	[kN]	[kN]	[-]
	Α	32	-2.29	3.56	0.64
	В	32	-0.72	1.90	0.38

Nachweise (Brand)

Nachweise der Feuerwiderstandsfähigkeit nach DIN EN 1995-1-2, 4.2.3

Nachweise der Querschnittstragfähigkeit

Biegung und Druck	für Ek 74	$k_{mod,c,fi}$	=	0.68	-
		$k_{mod,m,fi}$		0.80	-
	maßgebende Stelle		=	1.99	m
	Normalkraft	$N_{c,0,d,fi}$	=	-0.01	kN
	Biegemoment	$M_{y,d,fi}$	=	3.65	kNm
	Druckspannung	$\sigma_{c,0,d,fi}$	=	0.00	N/mm ²
	Biegespannung	$\sigma_{m,y,d,fi}$	=	10.29	N/mm ²
	Druckfestigkeit	f _{c,0,d,fi}	=	17.97	N/mm ²
	Biegefestigkeit	$f_{m,y,d,fi}$	=	24.09	N/mm ²
(6	19) $(0.00 / 17.97)^2 + 10.29 / 24.09$		=	0.43	< 1

Durch Kontrollrechnung geprüft

31.07.2023

83

Seite:

Datum: **28.04.2023** Position: **KP1**

Schub aus Querkraft		für Ek 74	$k_{\text{mod},t,fi}$	=	0.88	-
		maßgebende Stelle	X	=	0.00	m
		Querkraft	$V_{z,d,fi}$	=	4.02	kN
		Schubspannung	$T_{z,d,fi}$	=	0.97	N/mm ²
		Schubfestigkeit	$f_{v,d,fi}$	=	4.01	N/mm ²
((6.13)	0.97 / 4.01		=	0.24	≤ 1
		Nachweise der Stabilität mit Ersatzstabve	rfahren			/
Biegung und Druck		für Ek 74	$k_{mod,c,fi}$	=	0.68	_
0 0			k _{mod,m,fi}		0.80	_
		maßgebende Stelle	X		1.96	m
		Normalkraft	$N_{c,0,d,fi}$	=	-0.03	kN

Lag	esic	cherhe	eit
DIN	ΕN	1990,	6.4.2

Lagesicherheitsnachweis in vertikaler Richtung nach NDP zu A1.3.1(3)

old liellelt	Lagesichenie	Lagestone metishachweis in Vertikaler Nichtung hach NDF Zu A1.5.1(5)								
N 1990, 6.4.2	Aufl.	Ek	F _{d,dst}	$F_{d,stb}$	η					
		[-]	[kN]	[kN]	[-]					
	Α	32	-2.29	3.56	0.64					
	В	32	-0.72	1 90	0.38					

Nachweise (GZG)

Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN

1995-1-1

A . .£I

Biegemoment

Druckspannung

Biegespannung

Druckfestigkeit

Biegefestigkeit

(6.23) 0.00/(0.42*17.97) + 10.28/24.09

negative Verformungen werden nicht berücksichtigt

Grenzwerte Verform. Durchhang

Ca - 1/300	$C_{d} = 1/30$	U
------------	----------------	---

 $M_{y,d,fi} =$

 $\sigma_{c,0,d,fi}$ =

 $\sigma_{m,y,d,fi} =$

 $f_{c,0,d,fi} =$

 $f_{m,y,d,fi} =$

Seite:

3.65

0.43

0.00 N/mm²

10.28 N/mm²

17.97 N/mm²

24.09 N/mm²

kNm

84

GI.		Ek	X	vorh w	zul w	η
			[m]	[mm]	[mm]	[-]
Wnet,fin	Feld	20	2.26	11.99	15.61	0.77

Auflagerkräfte

Char. Auflagerkr.

Aufl.	F _{x,k}	F _{z,k}
	[kN]	[kN]
A	0.00	3.96
В	0.00	2.11
A	0.00	2.18
В	0.00	1.09
A	0.55	1.46
В	0.23	0.60
A	-0.57	-1.53
В	-0.18	-0.48
	Ā	[kN] A 0.00 B 0.00 A 0.00 B 0.00 A 0.55 B 0.23 A -0.57

Bem.-auflagerkräfte

ständig/vorüberg.	Aufl.	F _{x,d,min} EK [kN]	F _{x,d,max} EK [kN]	F _{z,d,min} EK [kN]	F _{z,d,max} EK [kN]
	Α	-0.86 46	0.82 45	1.67 58	9.92 47
	В	-0.27 46	0.34 45	1.39 58	5.03 47

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: **KP1**

außergewöhnlich	Aufl.	F _{x,d,min} [kN]		F _{x,d,max} [kN]		F _{z,d,min} [kN]		F _{z,d,max} [kN]		
	A	-0.11		0.11		8.47		9.26		
	В	-0.04	69	0.05	68	4.41	72	4.74	68	,
Ankerkräfte									\	
	Lasteinzug	sfläche o	les Sp	arren		Α	=	4.81	m²	
Bemankerkräfte										
ständig/vorüberg.	Aufl.	F _{x,d,min} [kN]	EK	F _{x,d,max} [kN]	EK	F _{z,d,min} [kN]	EK	F _{z,d,max} [kN]	EK	
	Α	-0.86		0.82		1.67	58	9.92	47	
	В	-0.27	46	0.34	45	1.39	58	5.03	47	
außergewöhnlich	Aufl.	$F_{x,d,min}$	EK	$F_{x,d,max}$	EK	$F_{z,d,min}$	EK	$F_{z,d,max}$	EK	
adisergewornilleri	Auli.	x,d,min [kN]	LIX	v,d,max	LK	z,d,min	LIX	z,d,max [kN]	LK	
	Α	-0.11	69	0.11	68	8.47	72	9.26	68	
	В	-0.04	69	0.05	68	4.41	72	4.74		
-	7	•							. /	
Zusammenfassung	Zusammen	itassung	der N	achweise						
Nachweise (GZT)	Nachweise im Grenzzustand der Tragfä					nigkeit				
	Nachweis					Feld	x [m]		η [-]	
	Biegung					Feld	1.94	OK	0.57	
	Druck					Feld	-	OK	0.01	
	Querkraft					Feld	-		0.43	
	Lagesicher	heit						OK		
Nachweise (Brand)	weise (Brand) Brandfall im Grenzzustand der Tragfähigkeit									
	Nachweis					Feld	X		η	
							[m]		[-]	
	Biegung					Feld	1.96		0.43	
	Querkraft					Feld	-	OK	0.24	
Nachweise (GZG)	Nachweise	im Gren	zzust.	der Gebra	auchs	stauglichkei	it		~	/
	Nachweis					Feld	x [m]		η [-]	
	Durchhang					Feld	2.26	OK	0.77	
	9									

Durch Kontrollrechnung geprüft

mb-Viewer Version 2023 - Copyngnt 2022 - mb AEC Software GmbH

85

Seite:

Datum: 28.04.2023 Position: P1

Seite:

86

Pos. P1 Mittelpfette **System** Holz-Einfeldträger System z-Richtung System y-Richtung M 1:75 3.30 NKL Feld Abmessungen Material b/h Mat./Querschnitt [m] [cm] 1 3.30 14.0/20.0 **NH C24** Auflager Lager b $K_{T,z}$ $K_{T,y}$ X [m] [cm] [kN/m] [kN/m]0.00 7.0 fest fest Α 7.0 В 3.30 fest fest Belastungen auf das System Belastungen Eigengewicht Α [cm²] [kN/m][kN/m³] 0.12 280.0 **Grafik** Belastungsgrafiken (einwirkungsbezogen) Einwirkungen Gk Qk.S.A Qk.W.000

Qk.W.270

/

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position:

Streckenlasten

in z-Richtung

Einw. Gk

Einw. Qk.S.A Einw. Qk.W.000 Einw. Qk.W.090 Einw. Qk.W.180

Einw. Qk.W.270

(a)

Streckenlasten in y-Richtung

Einw. Qk.W.000 Einw. Qk.W.090 Einw. Qk.W.180 Einw. Qk.W.270

(a)

Kombinationen

ständig/vorüberg.

selten quasi-ständig Brand Lagesicherheit st./vor. Auflagerkr.

außerg. Auflagerkr

Mat./Querschnitt

Material

Querschnittswerte

Gleichlasten

	CICIOI	ilaotori				
	Feld	Komm.	a [m]	s [m]	զ։ [kN/m]	q _{re} [kN/m]
	1	Eigengew	0.00	3.30		0.12
(a)	1		0.00	3.30		3.85
(a)	1		0.00	3.30		2.07
(a)	1		0.00	3.30		0.63
(a)	1		0.00	3.30		-2.32
(a)	1		0.00	3.30		-0.73
(a)	1		0.00	3.30		-0.88

aus Pos. 'D2', Lager 'B'

Gleichlasten

	Feld	Komm.	a []	S []	Qii Flahi/mai	Qre
			[m]	[m]	[kN/m]	[kN/m]
(a)	1		0.00	3.30		-1.11
(a)	1		0.00	3.30		3.27
(a)	1		0.00	3.30		1.13
(a)	1		0.00	3.30		1.30

aus Pos. 'D2', Lager 'B'

kurz/sehr kurz

ku/sk:

Kombinationsbildung nach DIN EN 1990

		aßgebenden	Kombinationer

65 ku/sk 1.00*Gk +2.30*Qk.S.A 66 ku/sk 0.95*Gk +2.30*Qk.S.A kurz

Material- und Querschnittswerte nach DIN EN 1995-1-1

Material	† _{mk}	T _{t0k}		t _{c90k} nm²]	tvk	Emean
NH C24	24.0	14.5	21.0	2.5	4.0	11000

b h Α lу [cm] [cm⁴] [cm] [cm²] [cm⁴] 14.0 9333 20.0 280 4573

Durch Kontrollrechnung geprüft

31.07.2023

Seite: 87

P1

+0.20*Qk.W.000

+0.20*Qk.W.090

Datum: 28.04.2023 Position: Р1

Querschnittsgrafik

Brandfall

vierseitige Brandbeanspruchung

Feuerwiderstandsdauer Abbrandrate

βn = 0.80 mm/min lz,r br l_{y,r} p [cm] [cm] [cm²] [cm⁴] [cm⁴] [cm] 9.2 15.2 48.8 140 2692 986

Querschnittswerte Restquerschnitt

Grafik M 1:5

Querschnittsgrafik

min

Seite:

30

 $t_{req} =$

88

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

Bieg	ung
Abs.	6.1

Biegung	ung Nachweis der Biegetrag					
Abs. 6.1	X	Ek	k _{mod}			

X	Ek	K mod	N _d M _{yd} M _{zd}	$oldsymbol{\sigma_{0,d}}{\sigma_{my,d}}$	f _{0,d} f _{my,d} f _{mz,d}	η
[m]		[-]	kN,kNm]	[N/mm²]	[N/mm ²]	[-]
(L = 3.30 m,	$k_{c,y} = 0.7$	$'1, k_{c,z} = 0.4.$	$3, k_{crit} = 1.0$	00)		
1.65	10	1.00	0.00	0.00	11.15	
			12.29	13.17	18.46	
			1.36	2.09	18.46	0.79 *

Querkraft	Nachweis o	der Querkr	afttragfähigk	eit			
Abs. 6.1.7	X	Ek	k _{mod}	$oldsymbol{V_{z,d}}{oldsymbol{V_{y,d}}}$	T _{z,d} T _{y,d}	$f_{zv,d} = f_{yv,d}$	η
	[m]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
Feld 1	0.22	2	0.90	12.07	1.29	2.77	0.47 3
				0.00	0.00	2.77	
	3.08	2	0.90	-12.07	1.29	2.77	0.47
				0.00	0.00	2.77	

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: Р1

Seite:

89

Stabilität Abs. 6.3

Nachweis der Stabilität

Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.

	I	$I_{ef,cy}$	$I_{ef,cz}$	$I_{ef,m}$
	[m]	[m]	[m]	[m]
Feld 1	3.30	3.30	3.30	3.30

Auflagernressung

Auflagerpressung	Nachweis	der Aufl	agerpress	ung				
Abs. 6.1.5	Ek	\mathbf{k}_{mod}	F_d	A_{ef}	k_{c90}	σ_{c90d}	f * _{c90d}	η
		[-]	[kN]	[cm ²]	[-]	[N/mm ²]	[N/mm ²]	[-]
Auflager A	2	0.90	13.96	140.0	1.00	1.00	1.73	0.58
Auflager B	2	0.90	13.96	140.0	1.00	1.00	1.73	0.58
-	f* l.	/ * f						4

Lagesicherheit DIN EN 1990, 6.4.2

Lagesicherhe	itsnachweis in ve	ertikaler Richtung	nach NDP zu A1.	.3.1(3)
Aufl.	Ek	$F_{d,dst}$	$F_{d,stb}$	η

Aufl.	Ek	$F_{d,dst}$	$F_{d,stb}$	η
	[-]	[kN]	[kN]	[-]
Α	47	-5.74	5.89	0.98
В	47	-5.74	5.89	0.98

Nachweise (GZG)

Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1

Verformungen

		_	
Abs.	7.2		

	Nach	weise	der	Verto	ormu	ngen
--	------	-------	-----	-------	------	------

Volloillialigoti	1440111100	acı vene	iiiiaiigoii				
Abs. 7.2	x [m]	Ek	Norm	W _{vorh} [mm]		W _{zul} [mm]	η [-]
Feld 1	(L=3.30 m,	NKL 1, k	$_{def} = 0.60$)				
	1.65	41	Winst	10.8	1/300=	11.0	0.98
	1.65	42	Wnet,fin	9.5	1/300=	11.0	0.87

Nachweise (Brand)

Nachweise der Feuerwiderstandsfähigkeit nach DIN EN 1995-1-2, 4.2.3

Brandfall	Brandbeans	spruchung	t _{req}
			[min]
	vierseitia	(oben/unten/links/rechts)	30

Biegung

Nachweis der Biegetragfähigkeit

Diegang	Naci Weis at	n biogoti	agiaingicit				
Abs. 6.1	X	Ek	$\mathbf{k}_{mod,fi}$	$N_{d,fi}$	$\sigma_{0,d,fi}$	$f_{0,d,fi}$	η
				$\mathbf{M}_{yd,fi}$	$\sigma_{my,d,fi}$	$\mathbf{f}_{my,d,fi}$	
				$M_{zd,fi}$	$\sigma_{mz,d,fi}$	$\mathbf{f}_{mz,d,fi}$	
	[m]		[-] [k	N,kNm]	[N/mm ²]	[N/mm ²]	[-]
Feld 1	(L = 3.30 m,	$k_{c,y} = 0.5$	$58, k_{c,z} = 0.25,$	$k_{crit} = 1.0$	00)		
	1.65	44	0.72	0.00	0.00	16.21	
			0.83	5.57	15.71	24.77	
			0.83	0.30	1.41	24.77	0.67 *

N	lachweis	der	Quer	kraft	tragfä	ıhigke	it

Querkraft	Nachweis d	er Querk	rafttragfähigke	eit			
Abs. 6.1.7	x	Ek	k _{mod,fi}	$V_{z,d,fi} \ V_{y,d,fi}$	T _{z,d,fi} T _{y,d,fi}	f _{zv,d,fi} f _{yv,d,fi}	η
	[m]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
Feld 1	0.22	44	0.89	5.83	1.25	4.13	0.30 *
				-0.32	0.07	4.13	
	3.08	44	0.89	-5.83	1.25	4.13	0.30
	_			0.32	0.07	4.13	31.07.2023
	Dur	ch Kontr	ollrechnung (geprüft			deur für Stange

Datum: **28.04.2023** Position:

Seite:

90

Р1

Stabilität Abs. 6.3 Nachweis der Stabilität

Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.

Ersatzstablängen		I	$I_{ef,cy}$	l _{ef,cz}	l _{ef,m}
		[m]	[m]	[m]	[m]
	Feld 1	3.30	3.30	3.30	3.30

Auflagerkräfte Charakteristische und Bemessungsauflagerkräfte

Char. Auflagerkr.

	Aufl.	$F_{z,k}$	$F_{y,k}$
		[kN]	[kN]
Einw. <i>Gk</i>	Α	6.54	0.00
	В	6.54	0.00
Einw. <i>Qk.S.A</i>	Α	3.42	0.00
	В	3.42	0.00
Einw. <i>Qk.W.000</i>	Α	1.04	-1.83
	В	1.04	-1.83
Einw. <i>Qk.W.090</i>	A	-3.83	5.39
	В	-3.83	5.39
Einw. <i>Qk.W.180</i>	Α	-1.20	1.86
	В	-1.20	1.86
Einw. <i>Qk.W.270</i>	A	-1.44	2.14
	В	-1.44	2.14

Bemauflagerkräfte	•
ständig/vorüberg.	

außergewöhnlich

Aufl.	F _{z,d,min} EK [kN]	F _{z,d,max} EK [kN]	F _{y,d,min} EK [kN]	F _{y,d,max} EK [kN]
Α	0.80 64	14.90 63	-2.75 62	8.08 64
В	0.80 64	14.90 63	-2.75 62	8.08 64
Aufl.	F _{z,d,min} EK [kN]	F _{z,d,max} EK [kN]	F _{y,d,min} EK [kN]	F _{y,d,max} EK [kN]
A ufl.	• •		• • •	
	[kN]	[kN]	[kN]	[kN]

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT) Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Feld/Auflager	x [m]		η [-]
Biegung Querkraft Auflagerpressung	Feld 1 Feld 1 Auflager A	1.65 0.22	OK OK OK	0.79 0.47 0.58
Lagesicherheit	, anager , c		OK	0.00

Nachweise (Brand) Brandfall im Grenzzustand der Tragfähigkeit

Nachweis	Feld/Auflager	x		η
	-	[m]		[-]
Biegung	Feld 1	1.65	OK	0.67
Querkraft	Feld 1	0.22	OK	31.070299
Durch Ko	ntrollrechnung geprüft			our für Stano

Datum: **28.04.2023** Position: **P1**

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Feld/Auflager	x [m]		η [-]
Verform. W _{inst}	Feld 1	1.65	OK	0.98
Verform. W _{net,fin}	Feld 1	1.65	OK	0.87

Durch Kontrollrechnung geprüft

91

Seite:

Datum: 28.04.2023 Position: P5

Seite:

92

Pos. P5 TH-Pfette

Die Pfette dient als Auflager für den Kehlsparren KB1, die Dachpfette P4 sowie die Sparren aus dem Steildach!

System Holz-Einfeldträger System z-Richtung System y-Richtung M 1:65

Abmessungen	Feld		Material	b/h	NKL
Mat./Querschnitt		[m]		[cm]	
	1	2.70	NH C24	14.0/20.0	1
Auflager	Lager	x	b	$K_{T,z}$	K _{T,y}

Lager	x [m]	b [cm]	K _{T,z} [kN/m]	Κ _{Τ,y} [kN/m]
Α	0.00	7.0	fest	fest
В	2.70	7.0	fest	fest

Belastungen auf das System

Grafik Belastungsgrafiken (einwirkungsbezogen)

Streckenlasten in z-Richtung

Einw. *Gk* Einw. *Qk.S.A* Einw. *Qk.W.000*

Blocklasten

	Feld	Komm.	а	s	qıi	Q re
			[m]	[m]	[kN/m]	[kN/m]
(a)	1		0.00	1.80		0.98
(a)	1		0.00	1.80		0.53
(a)	1		0.00	1.80		0.33

Datum: 28.04.2023 Position: P5

	Feld Komm.	а	S	Qıi	q re
		[m]	[m]	[kN/m]	[kN/m]
Einw. Qk.W.090	(a) 1	0.00	1.80		-0.91
Einw. Qk.W.180	(a) 1	0.00	1.80		-0.41
Einw. <i>Qk.W.270</i>	(a) 1	0.00	1.80		-0.40

aus Pos. 'I

D3.1', Lager 'B', Faktor = 0.50 (Seite 61)	/
en	•

Punktlasten

in z-Richtung

Einw. Gk

(a)

Einw. Qk.S.A

Einw. Qk.W.000

Einw. Qk.W.090 Einw. Qk.W.180

Einw. Qk.W.270

Einzellasten

	Feld	Komm.	а	Fz
			[m]	[kN]
(a)	1		1.80	2.61
(b)	1		1.80	2.11
(a)			1.80	1.31
(b)	_		1.80	1.09
(a)	4		1.80	-0.20
(b)	_		1.80	0.60
(a)	4		1.80	-2.06
(a)	4		1.80	-0.97
(b)	4		1.80	-0.48
(a)	4		1.80	-0.66

(a) aus Pos. 'P4', Lager 'B' (Seite 101)

aus Pos. 'KP1', Lager 'B' (Seite 84)

Punktlasten in y-Richtung

(b)

Einw. Qk.W.000 Einw. Qk.W.180

Einzellasten

Feld	Komm.	a	Fy
		[m]	[kN]
(a) 1		1.80	-0.23
(a) 1		1.80	0.18

aus Pos. 'KP1', Lager 'B' (Seite 84) (a)

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

	Ek	KLED	Σ (γ*ψ*EW)		
ständig/vorüberg.	2	ku	1.35*Gk	+1.50*Qk.S.A	
selten	39		1.00*Gk	+1.00*Qk.S.A	+0.60*Qk.W.000
quasi-ständig	41		1.00*Gk		
Brand	43		1.00*Gk	+0.20*Qk.W.000	
Lagesicherheit	48	ku/sk	0.90*Gk	+1.50*Qk.W.090	
st./vor. Auflagerkr.	64	ku/sk	1.35*Gk	+1.50*Qk.W.000	
	65	ku/sk	1.35*Gk	+1.50*Qk.S.A	+0.90*Qk.W.000
	66	ku/sk	1.00*Gk	+1.50*Qk.W.090	
	69	ku/sk	1.35*Gk	+1.50*Qk.W.180	
außerg. Auflagerkr	67	ku/sk	1.00*Gk	+2.30*Qk.S.A	+0.20*Qk.W.000
-	68	ku/sk	0.95*Gk	+2.30*Qk.S.A	+0.20*Qk.W.090
	80	ku/sk	1.00*Gk	+2.30*Qk.S.A	+0.20*Qk.W.180
	ku:	kurz			,
	ku/sk:	KUrZ/S	ehr kurz		

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: P5

Seite:

94

Mat./Querschnitt

Material- und Querschnittswerte nach DIN EN 1995-1-1

Material	Material	f _{mk}	f _{t0k}	f _{c0k} [N/r	f _{c90k} nm²]	f _{vk}	E _{mean}
	NH C24	24.0	14.5	21.0	2.5	4.0	11000

Querschnittswerte

b	h	Α	ly	lz
[cm]	[cm]	[cm ²]	[cm ⁴]	[cm ⁴]
14.0	20.0	280	9333	4573

Grafik M 1:5

Brandfall

vierseitige Brandbeanspruchung Feuerwiderstandsdauer

Querschnittswerte Restquerschnitt

Feuerwiderst	andsdauer			$t_{req} =$	30	min
Abbrandrate				βn =	0.80	mm/min
br	hr	р	A r		ly,r	Iz,r
[cm]	[cm]	[cm]	[cm²]		[cm ⁴]	[cm ⁴]
9.2	15.2	48.8	140		2692	986

Grafik M 1:5

Querschnittsgrafik

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

Biegung Abs. 6.1

Nachweis c	der Biegetra	agfähigkeit
X	Ek	\mathbf{k}_{mod}

Feld 1

X	EK	r€mod	INd	O 0,d	10,d	
			$M_{ m yd}$	$\sigma_{my,d}$	$\mathbf{f}_{my,d}$	
			M_{zd}	$\sigma_{mz,d}$	$f_{mz,d}$	
[m]		[-] [kN,kNm]	[N/mm ²]	[N/mm ²]	[-]
(L = 2.70 m,	$k_{c,y} = 0.8$	$k_{c,z} = 0.59$	$9, k_{crit} = 1.0$	00)		
1.80	2	0.90	0.00	0.00	10.04	
			7.12	7.63	16.62	
			0.00	0.00	16.62	0,46 *

Seite:

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: P5

Querkraft	Nachweis	der Querk	rafttragfäh	igkeit				
Abs. 6.1.7	X	Ek	k _{mod}	,-	Tz,d	f _{zv,d}	η	
	[m]		[-]	V _{y,d} [kN]	T _{y,d} [N/mm ²]	f _{yv,d} [N/mm²]	[-]	
Feld 1	0.22	2	0.90	5.38	0.58		0.21	
		_		0.00	0.00	2.77		
	1.80	2	0.90		0.85		0.31 *	
	2.48	2	0.90	0.00 -7.91	0.00 0.85	2.77 2.77	0.31	
	2.40	2	0.50	0.00	0.00	2.77	0.51	
Stabilität	Nachweis	der Stabili	tät				/	
Abs. 6.3	Dor Finflu	oo dar Ctal	silität ist im	. Nachwaia da	r Diogotro	afähiakoit		
				n Nachweis de blängen werde				
Ersatzstablängen				1	I _{ef,cy}	I _{ef,cz}	$I_{ef,m}$	
	E.1.14			[m]	[m]	[m]	[m]	
	Feld 1			2.70	2.70	2.70	2.70	
Auflagerpressung	Nachweis der Auflagerpressung							
Abs. 6.1.5	Ek	k _{mod}	F _d [kN]	A_{ef} k_{c90} [cm ²] [-]	σ _{c90d} [N/mm ²]	f* _{c90d} [N/mm ²]	η [-]	
Auflager A	2	0.90	5.85	140.0 1.00	0.42	-	0.24	
Auflager B	2	0.90	7.91	140.0 1.00	0.57	1.73	0.33	
	f* _{c90d} : k _c	₉₀ * f _{c90d}						
Lagesicherheit				rtikaler Richtu	ng nach Ni	DP zu A1.3.	1(3)	
DIN EN 1990, 6.4.2	Aufl.		Ek [-]	F _{d,dst} [kN]		d,stb kN]	η [-]	
	Α		48	-2.67		2.47	1.08!	
	В		48	-2.88			0.86	
	Zugverank	eruna					V	
ständig/vorüberg.	Aufl.	Clurig				F _{d,anch}	EK	
						[kN]		
	Α					0.08*	66	
	*: nur konstr	uktive Zugkraft	verankerung e	rforderlich				
außergewöhnlich	Aufl.					F _{d,anch}	. EK	
						[kN]		
	A *: nur konstr	uktive Zuakraft	vorankarung a	rfordorliob		5.55*	68	

	A *: nur konstruktive Zugkraftverankerung erforderlich	5.55*
Nachweise (GZG)	Nachweise im Grenzzustand der Gebrauchstauglichkeit nach 1995-1-1	DIN EN

Verformungen	Nachweise der Verforn	nungen
Abc 7.2	v Ek	Morn

Abs. 7.2	X	Ek	Norm	Wvorh		Wzul	η
	[m]			[mm]		[mm]	[-]
Feld 1	(L= 2.70 m,	NKL 1, k	$_{def} = 0.60$)				
	1.43	39	Winst	3.4	1/300=	9.0	0.38
	1.43	41	Wnet,fin	3.4	1/300=	9.0	0.38

Durch Kontrollrechnung geprüft

31.07.2023

Datum: **28.04.2023** Position: **P5**

Seite:

96

Nachweise (Brand)

Nachweise der Feuerwiderstandsfähigkeit nach DIN EN 1995-1-2, 4.2.3

Brandfall	Brandbeans	Brandbeanspruchung				
		•	[min]			
	vierseitig	(oben/unten/links/rechts)	30			

Biegung	Nachweis de	Nachweis der Biegetragfähigkeit				
Abs 6.1	Y	Fk	Kmod fi			

Abs. 6.1	x	Ek	$\mathbf{k}_{mod,fi}$	$N_{d,fi}$	$\sigma_{0,d,fi}$	$f_{0,d,fi}$	η
				$\mathbf{M}_{yd,fi}$	$\sigma_{my,d,fi}$	$\mathbf{f}_{my,d,fi}$	
				$M_{zd,fi}$	$\sigma_{mz,d,fi}$	$\mathbf{f}_{mz,d,fi}$	
	[m]			kN,kNm]	[N/mm ²]	[N/mm²]	[-]
Feld 1	(L = 2.70 n)	$n, k_{c,y} = 0.7$	74, $k_{c,z} = 0.36$	$6, k_{crit} = 1.0$	10)		
	1.80	43	0.72	0.00	0.00	16.21	
			0.83	3.44	9.72	24.77	
			0.83	0.03	0.13	24.77	0.40 *

Querkraft Nachweis der Querkrafttragfähigkeit

guciniait	1 NAOHWOIS (acı Qucik	rantiragiariigik	J11			•
Abs. 6.1.7	х	Ek	$\mathbf{k}_{mod,fi}$	$oldsymbol{V}_{z,d,fi} \ oldsymbol{V}_{y,d,fi}$	T _{z,d,fi} T _{y,d,fi}	f _{zv,d,fi} f _{yv,d,fi}	η
	[m]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
Feld 1	0.22	43	0.89	2.62	0.56	4.13	0.14
				-0.02	0.00	4.13	
	1.80	43	0.89	-3.83	0.82	4.13	0.20 *
				0.03	0.01	4.13	
	2.48	43	0.89	-3.83	0.82	4.13	0.20
				0.03	0.01	4.13	

Stabilität Nachweis der Stabilität Abs. 6.3

Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.

Ersatzstablängen		1	$I_{\rm ef,cy}$	I _{ef,cz}	$I_{ef,m}$
-		[m]	[m]	[m]	[m]
	Feld 1	2.70	2.70	2.70	2.70

Auflagerkräfte

Charakteristische und Bemessungsauflagerkräfte

Char. Auflagerkr.

· ·	Aufl.	F _{z,k}	$F_{y,k}$
		[kN]	[kN]
Einw. <i>Gk</i>	Α	2.75	0.00
	В	3.73	0.00
Einw. Qk.S.A	Ā	1.43	0.00
	В	1.92	0.00
Einw. Qk.W.000	A	0.54	-0.08
	В	0.47	-0.15
Einw. <i>Qk.W.090</i>	Ā	-1.78	0.00
	В	-1.92	0.00
Einw. <i>Qk.W.180</i>	A	-0.97	0.06
	В	-1.21	0.12
Einw. <i>Qk.W.270</i>	A	-0.70	0.00
	В	-0.68	0.00

Bem.-auflagerkräfte

Durch Kontrollrechnung geprüft

Datum: **28.04.2023** Position: **P5**

Seite:

97

ständig/vorüberg.	Aufl.	F _{z,d,min} EK [kN]	F _{z,d,max} EK [kN]	F _{y,d,min} EK [kN]	F _{y,d,max} EK [kN]
	Α	0.08 66	6.34 65	-0.11 64	0.09 69
	В	0.85 66	8.34 65	-0.23 64	0.18 69
außergewöhnlich	Aufl.	F _{z,d,min} EK [kN]	F _{z,d,max} EK [kN]	F _{y,d,min} EK [kN]	F _{y,d,max} EK [kN]
	Α	5.55 68	6.15 67	-0.02 67	0.01 80
	В	7.57 68	8.23 67	-0.03 67	0.02 80

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Feld/Auflager	X		η
		[m]		[-]
Biegung	Feld 1	1.80	OK	0.46
Querkraft	Feld 1	1.80	OK	0.31
Auflagerpressung	Auflager B		OK	0.33
Lagesicherheit	-		Zugv.	1.08
Zugv.: Für das Auflager A i	st eine Zugkraftverankerung erforderlich.			

Nachweise (Brand)

Brandfall im Grenzzustand der Tragfähigkeit

Nachweis	Feld/Auflager	X		η
		[m]		[-]
Biegung	Feld 1	1.80	OK	0.40
Querkraft	Feld 1	1.80	OK	0.20

Nachweise (GZG)

Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Feld/Auflager	x [m]		η [-]
Verform. W _{inst}	Feld 1	1.43	OK	0.38
Verform. W _{net,fin}	Feld 1	1.43	OK	

Datum: 28.04.2023 Position: P4

Pfetten für D3 Treppenhaus Pos. P4

System Holz-Einfeldträger

M 1:85

Seite:

98

Abmessungen
Mat./Querschnitt

Feld	Ī	Material	b/h	NKL
	[m]		[cm]	
1	3.70	NH C24	14.0/20.0	1

Auflager

Lager	x	b	Κ _{Τ,z}	К _{т,у}
	[m]	[cm]	[kN/m]	[kN/m]
A	0.00	7.0	fest	fest
B	3.70	7.0	fest	fest

Belastungen

Belastungen auf das System

Eigengewicht

g	γ	A	
[kN/m]	[kN/m³]	[cm²]	
0.12	4.2	280.0	

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen

Qk.W.090

Qk.W.180

Streckenlasten

	_			
in	7_R)ich	ıtun	\sim
	Z-1 '	VICI.	ıtur	u

Einw. Qk.W.090

Einw. Qk.W.180

n	Z-	R	İC	h	tu	ng	ı
	_			• •			,

⊏inw/	Ck

Gleichlasten

Feld	Komm.	а	s	qıi	Q re
		[m]	[m]	[kN/m]	[kN/m]
1	Eigengew	0.00	3.70		0.12
_(a) 1		0.00	3.70		0.32
(b) 1		0.00	3.70		0.98
(a) 1		0.00	3.70		0.18
(b) 1		0.00	3.70		0.53
(a) 1		0.00	3.70		-0.44
(b) 1		0.00	3.70		0.33
(a) 1		0.00	3.70		-0.20
(b) 1		0.00	3.70		-0.91
(a) 1		0.00	3.70		-0.12
(b) 1		0.00	3.70		31.0 <u>7</u> 02 <u>0</u> 24

Seite:

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: P4

	Feld	Komm.	a [m]	s [m]	qլ։ [kN/m]	q _{re} [kN/m]
Einw. Q <i>k.W.270</i>	(a) 1 (b) 1		0.00 0.00	3.70 3.70	[KIV/III]	0.04 -0.40

(a) aus Pos. 'D3', Lager 'A' (Seite 54)

aus Pos. 'D3.1', Lager 'B', Faktor = 0.50 (Seite 61)

Kombinationen

(b)

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

	Ek	KLED	Σ (γ*ψ*EW)		
ständig/vorüberg.	2	ku	1.35*Gk	+1.50*Qk.S.A	
selten	35		1.00*Gk	+1.00*Qk.S.A	
quasi-ständig	37		1.00*Gk		
Brand	38		1.00*Gk		
Lagesicherheit	41	ku/sk	0.90*Gk	+1.50*Qk.W.090	
st./vor. Auflagerkr.	45	ku	1.35*Gk	+1.50*Qk.S.A	
-	51	ku/sk	1.00*Gk	+1.50*Qk.W.090	
außerg. Auflagerkr	47	ku	1.00*Gk	+2.30*Qk.S.A	
	53	ku/sk	0.95*Gk	+2.30*Qk.S.A	+0.20*Qk.W.090
	ku:	kurz			
	ku/sk	kurz/s	sehr kurz		

Mat./Querschnitt

Material- und Querschnittswerte nach DIN EN 1995-1-1

Material	Material	f _{mk}	f _{t0k}	f _{c0k} [N/n	f _{c90k} nm²]	f _{vk}	E _{mean}
	NH C24	24.0	14.5	21.0	2.5	4.0	11000

lz	ly	Α	h	b
[cm ⁴]	[cm ⁴]	[cm ²]	[cm]	[cm]
4573	9333	280	20.0	14.0

Grafik M 1:5

Querschnittsgrafik

Brandfall

vierseitige Brandbeanspruchung Feuerwiderstandsdauer

Feuerwiderst Abbrandrate		J		$t_{req} = \beta_n =$	30 0.80	min mm/min
b r	hr	р	Ar	•	ly,r	Iz,r
[cm]	[cm]	[cm]	[cm²]	[CI	m ⁴]	[cm ⁴]
9.2	15.2	48.8	140	26	592	986

Querschnittswerte Restquerschnitt

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: P4

100

Seite:

Grafik M 1:5

Querschnittsgrafik

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

Bie	gu	ng
Abs	. 6	.1

Nachweis der Biegetragfähigkeit

x [m]	Ek	k _{mod}	N _d M _{yd} M _{zd} kN,kNm]	σ _{0,d} σ _{my,d} σ _{mz,d} [N/mm ²]	f _{0,d} f _{my,d} f _{mz,d} [N/mm ²]	n [-]
	$k_{c,v} = 0.6$	$62, k_{c,z} = 0.36$,	-		
1.85	2	0.90	0.00	0.00	10.04	
			5.08	5.44	16.62	
			0.00	0.00	16.62	0.33 *

Feld 1

Querkraft Abs. 6.1.7

Nachweis der Querkrafttragfähigkeit

		<u> </u>				
X	Ek	\mathbf{k}_{mod}	$V_{z,d}$	T _{z,d}	$f_{zv,d}$	η
			$V_{y,d}$	T _{y,d}	$\mathbf{f}_{yv,d}$	
[m]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
0.22	2	0.90	4.83	0.52	2.77	0.19
			0.00	0.00	2.77	
3.48	2	0.90	-4.83	0.52	2.77	0.19 *
			0.00	0.00	2.77	

Feld 1

Stabilität

Nachweis der Stabilität

Abs. 6.3

Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.

Ersatzstablängen

	l l	$I_{ef,cy}$	l _{ef,cz}	$I_{ef,m}$
	[m]	[m]	[m]	[m]
Feld 1	3.70	3.70	3.70	3.70

Auflagerpressung

Abs. 6.1.5

Auflager A Auflager B Nachweis der Auflagerpressung

	Ek	K _{mod}	Fd	Aef	K _C 90	σ_{c90d}	f *c90d	η
		[-]	[kN]	[cm ²]	[-]	[N/mm ²]	[N/mm ²]	[-]
	2	0.90	5.49	140.0	1.00	0.39	1.73	0.23
	2	0.90	5.49	140.0	1.00	0.39	1.73	0.23
f* - 00 -11		k-00 * f-00-						· · /

Lagesicherheit

DIN EN 1990, 6.4.2

Lagesicherheitsnachweis in vertikaler Richtung nach NDP zu A1.3.1(3)

Aufl.	Ek	$F_{d,dst}$	F _{d,stb}	ìη
	[-]	[kN]	[kN]	[-]
Α	$\bar{4}\bar{1}$	-3.09	2.35	1.32!
В	41 Durch Kontrollrechnu	-3.09	2.35	1.32!
	Durch Kontrolliechhai	ig gepit	AT C	31.07.2023

Datum: 28.04.2023

Position:

Seite:

101

P4

	Zugverankerung		
ständig/vorüberg.	Aufl.	F _{d,anch}	EK
		[kN]	
	Α	-0.48	51
	В	-0.48	51

Nachweise (GZG) Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1

Verformungen	Nachweise	der Verfo	rmungen				
Abs. 7.2	x [m]	Ek	Norm	w _{vorh} [mm]		W _{zul} [mm]	η [-]
Feld 1	(L=3.70 m,	NKL 1, k	$_{def} = 0.60$)				
	1.85	35	Winst	5.0	1/300=	12.3	0.41
	1 95	37	\A/ . c	5.1	1/300-	12.3	0.43

Nachweise der Feuerwiderstandsfähigkeit nach DIN EN 1995-1-2, 4.2.3 Nachweise (Brand)

Brandfall	Brandbeans	spruchung	t _{req}
			[min]
	vierseitig	(oben/unten/links/rechts)	30
Diagung	Nachweig de	or Diogotroofähigkoit	~

Biegung	Nachweis o	der Biege	tragfähigkeit				•
Abs. 6.1	x	Ek	k _{mod,fi}	N _{d,fi} M _{yd,fi} M _{zd,fi}	$\sigma_{0,d,fi}$ $\sigma_{my,d,fi}$ $\sigma_{mz,d,fi}$	f _{0,d,fi} f _{my,d,fi} f _{mz,d,fi}	η
	[m]		[-] [l	kN,kNm]	[N/mm ²]	[N/mm ²]	[-]
Feld 1	(L = 3.70 m)	$h, k_{c,y} = 0.$	$49, k_{c,z} = 0.20$	$0, k_{crit} = \bar{1}.0$	0)		
	1.85	38	0.72	0.00	0.00	16.21	
			0.83	2.41	6.81	24.77	
			0.83	0.00	0.00	24.77	0.27 *

Querkraft	Nachweis d	ler Querkı	rafttragfähigk	eit			
Abs. 6.1.7	x	Ek	k _{mod,fi}	$oldsymbol{V}_{z,d,fi} \ oldsymbol{V}_{y,d,fi}$	T _{z,d,fi} T _{y,d,fi}	f _{zv,d,fi} f _{yv,d,fi}	η
	[m]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
Feld 1	0.22	38	0.89	2.29	0.49	4.13	0.12
				0.00	0.00	4.13	
	3.48	38	0.89	-2.29	0.49	4.13	0.12 *
				0.00	0.00	4.13	

		0.00	0.00	4.13	
Stabilität Abs. 6.3	Nachweis der Stabilität				
ADS. 0.3	Der Einfluss der Stabilität ist im Nac	chweis der E	Biegetragfä	ähigkeit	

Ersatzstablängen	I	$I_{ef,cy}$	l _{ef,cz}	$I_{ef,m}$
-	[m]	[m]	[m]	[m]

enthalten. Folgende Ersatzstablängen werden berücksichtigt.

		[m] [[m] [r	n] [r	n]
I	Feld 1 3.	.70 3.	.70 3.7		

Auflagerkräfte	Charakteristische und Bemessungsauflagerkräfte

Char. Auflagerkr.			
-	Aufl.	F _{z,k}	$F_{y,k}$
		[kN]	[kN]
Einw. <i>Gk</i>	A	Durch Kontrollrechnung geprüft	31.070200

Datum: 28.04.2023 Position: P4

Seite:

102

	Aufl.	F _{z,k} [kN]	F _{y,k} [kN]
	В	2.61	0.00
Einw. Qk.S.A	A	1.31	0.00
	В	1.31	0.00
Einw. <i>Qk.W.000</i>	A	-0.20	0.00
	В	-0.20	0.00
Einw. <i>Qk.W.090</i>	A	-2.06	0.00
	В	-2.06	0.00
Einw. <i>Qk.W.180</i>	A	-0.97	0.00
	В	-0.97	0.00
Einw. <i>Qk.W.270</i>	A	-0.66	0.00
	В	-0.66	0.00

Bemauflagerkräfte
ständig/vorüberg.

außergewöhnlich

Aufl.	F _{z,d,min} [kN]	EK	F _{z,d,max} [kN]	EK	F _{y,d,min} [kN]		F _{y,d,max} [kN]	
Α	-0.48	51	5.49	45	0.00	43	0.00	43
В	-0.48	51	5.49	45	0.00	43	0.00	43
Aufl.	F _{z,d,min} [kN]		F _{z,d,max} [kN]		F _{y,d,min} [kN]		F _{y,d,max} [kN]	
Α	5.08	53	5.62	47	0.00	47	0.00	47
В	5.08	E 2	5.62	17	0.00	17	0.00	47

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Nachw	eis	Feld/Auflager	X		η
		_	[m]		[-]
Biegun	g	Feld 1	1.85	OK	0.33
Querkr	aft	Feld 1	3.48	OK	0.19
Auflage	erpressung	Auflager A		OK	0.23
Lagesid	cherheit	-		Zugv.	1.32
Zugv.:	Für die Auflager A und B	ist eine Zugkraftverankerung erfo	orderlich.		

Nachweise (Brand)

Brandfall im Grenzzustand der Tragfähigkeit

Nachweis	Feld/Auflager	X		η
		[m]		[-]
Biegung	Feld 1	1.85	OK	0.27
Querkraft	Feld 1	3.48	OK	0.12

Nachweise (GZG)

Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Feld/Auflager	x [m]		η [-]
Verform. winst	Feld 1	1.85	OK	0.41
Verform. w _{net,fin}	Feld 1	1.85	OK	0.43

Detailnachweis	Name	Ort	Detail
	P4.1	Lager B	Balkenschuh/Balkenträger

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: P4.1

Pos. P4.1 Balkenschuh

Geometrie

Balkenschuhnachweis

Grafik M 1:10

Mat./Querschnitt	Bauteil	Material	Querschnitt [cm]
	Hauptträger	NH C24	14.0/20.0
	Nebenträger	NH C24	14.0/20.0
	Nutzungsklasse 1		\checkmark

Verbindungsmittel

Balkenschuh Simpson Strong Tie CNA Kammnägel, Teilausnagelung (Europäische Technische Zulassung ETA-06/0270)

BSN 140/139mm (12+6)x 4.0x40mm

Belastungen

Belastungen für den Anschluss

Für die Wirkungslinie der Kraft Fy wird angenommen, dass sie an der Oberkante des Balkenschuhs angreift.

Aufla	agerlasten	

•		- <u>-</u>
		[kN]
Einw. <i>Gk</i>		1.00
Einw. Ed.1	(a) P4.1	2.61
Einw. Ed.2	(a) P4.1	3.52
Einw. Ed.3	(a) P4.1	4.58
Einw. <i>Ed.4</i>	(a) P4.1	5.49
Einw. Ed.5	(a) P4.1	-0.48
Einw. Ed.6	(a) P4.1	5.31
Einw. <i>Ed.7</i>	(a) P4.1	5.49
Einw. Ed.8	(a) P4.1	5.62
Einw. Ed.9	(a) P4.1	5.08
Einw. <i>Ed.10</i>	(a) P4.1	5.59
	•	

(a) aus Pos. 'P4', Ort 'P4.1' (Seite 98)

Komm.

Kombinationen Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

Ek KLED $\Sigma (\gamma^* \psi^* EW)$

ständig/vorüberg.

6 1.00*Ed.4 ku ku: kurz

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: P4.1

Zusammenfassung der Nachweise Zusammenfassung

Nachweise (GZT) Nachweise im Grenzzustand der Tragfähigkeit

Nachweis		η [-]
Balkenschuh	OK	0.68
Querzug	OK	0.32

104

Seite:

Datum: **28.04.2023** Position: **P2**

105

Seite:

Pos. P2

Firstpfette Gaubenbereich

Die Höhe der Pfette im Bereich der Gaube ist konstruktiv gewählt um die Flachdachsparren im unteren Pfettenabschnitt anzubinden. Siehe Position D1.B!

Flachdachsparren im	unteren Pfe	ettenabschn	itt anzubinden.	Siehe Position	n D1.B!		
System	Holz-Einfel	Holz-Einfeldträger mit Kragarm					
M 1:110	System z-R	Richtung	Systen	n y-Richtung			
WI 1.110	KZ A	<u> </u>	Ky A	1 4	<u>Ř</u> B		
	↓ 50 ↓	4.25	↓ 50 ↓	4.25	 		
	Y	4.75	+	4.75	 		
Abmessungen Mat./Querschnitt	Feld	l [m]	Material	[cn			
	KI 1	0.50 4.25	NH C24	14.0/36	.0 1		
Auflager	Lager	x [m]	b [cm]	Κ _{Τ,z} [kN/m]	K _{T,y} [kN/m]		
	A B	0.50 4.75	14.0 14.0	fest fest	fest fest		
Gelenke	Feld	4.70 X	14.0	Transl.	Rotat.		
Geletike		[m]		[kN/m]	[kNm/rad]		
	1	4.25		starr	frei		
Belastungen	Belastunge	n auf das Syst	em				
Eigengewicht		A [cm²]	γ [kN/m³]		g [kN/m]		
		504.0	4.2		0.21		
Grafik	Belastungs	grafiken (einwi	rkungsbezogen)				
Einwirkungen	Gk	(Qk.S.A	Qk.W.000	~		
	5.03 5.03		278 2.89	-2.81 -0.12 -50 4.25	<u></u>		
	Qk.W.000	(Qk.W.090	Qk.W.090			
	1.06 y	<u>2</u>	-3.90 -3.90 -4.25	0.79 Vy	<u>&</u>		

Qk.W.180

4.25

Qk.W.270

4.25

Qk.W.180

Datum: 28.04.2023 Position: P2

Streckenlasten
in z-Richtung

Gleichlasten

in z-Richtung	Feld	Komm.	a [m]	s [m]	զո [kN/m]	q _{re} [kN/m]
Einw. <i>Gk</i>	KI	Eigengew	0.00	0.50		0.21
	1	Eigengew	0.00	4.25		0.21
(a) 1		0.00	4.25		5.03
(_{b)} KI		0.00	0.50		2.33
Einw. Qk.S.A	a) 1		0.00	4.25		2.89
(_{b)} KI		0.00	0.50		1.26
Einw. <i>Qk.W.000</i>	a) 1		0.00	4.25		-0.12
(_{b)} KI		0.00	0.50		0.71
Einw. <i>Qk.W.090</i>	a) 1		0.00	4.25		-3.90
(_{b)} KI		0.00	0.50		-2.63
Einw. <i>Qk.W.180</i> (a) 1		0.00	4.25		-2.33
(_{b)} KI		0.00	0.50		-1.05
Einw. <i>Qk.W.270</i>	a) 1		0.00	4.25		0.68
(_{b)} KI		0.00	0.50		-0.95

(a)

aus Pos. 'D1', Lager 'B', Faktor = 1.70 (Seite 32)

(b)

aus Pos. 'D2', Lager 'C', Faktor = 2.00 (Seite 46)

in z-Richtung

Einw. Gk Einw. Qk.S.A Einw. Qk.W.000 Einw. Qk.W.090

Einw. Qk.W.180

Einzellasten

Feld	Komm.	a	Fz
		[m]	[kN]
_(a) KI		0.00	5.02
_(a) KI		0.00	2.78
(a) KI		0.00	-2.81
_(a) KI		0.00	-2.10
(a) KI		0.00	-3.45

(a)

aus Pos. 'GP1', Lager 'B', Faktor = 2.00 (Seite 75)

Punktlasten in y-Richtung

Einw. Qk.W.000 Einw. Qk.W.090 Einw. Qk.W.180

Einzellasten

Feld	Komm.	a	Fy
		[m]	[kN]
_(a) KI		0.00	1.06
(a) KI		0.00	0.79
(a) KI		0.00	1.30

(a)

aus Pos. 'GP1', Lager 'B', Faktor = 2.00 (Seite 75)

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

	Ek	KLED	Σ (γ*ψ*ΕW)		
ständig/vorüberg.	2	ku	1.35*Gk	+1.50*Qk.S.A	
selten	39		1.00*Gk	+1.00*Qk.S.A	+0.60*Qk.W.270
quasi-ständig	40		1.00*Gk		
Brand	42		1.00*Gk		
	45		1.00*Gk	+0.20*Qk.W.270	
Lagesicherheit	48	ku/sk	0.90*Gk	+1.50*Qk.W.090	
st./vor. Auflagerkr.	61	ku/sk	1.35*Gk	+1.50*Qk.S.A	+0.90*Qk.W.270
-	62	ku/sk	1.00*Gk	+1.50*Qk.W.090	
	65	ku/sk	1.35*Gk	+1.50*Qk.W.180	
außerg. Auflagerkr	63	ku/sk	1.00*Gk	+2.30*Qk.S.A	+0.20*Qk.W ₂ 2.79 _{.2023}

Datum: **28.04.2023** Position: **P2**

64 ku/sk 0.95*Gk +2.30*Qk.S.A +0.20*Qk.W.090 75 ku/sk 1.00*Gk +2.30*Qk.S.A +0.20*Qk.W.180

ku: kurz ku/sk: kurz/sehr kurz

Mat./Querschnitt

Material- und Querschnittswerte nach DIN EN 1995-1-1

Material	Material	f mk	f_{t0k}	f _{c0k}	f _{c90k}	f_{vk}	Emean
				[N/r	mm²]		
	NH C24	24.0	14.5	21.0	2.5	4.0	11000

Querschnittswerte	b	h	Α	ly	lz
	[cm]	[cm]	[cm²]	[cm ⁴]	[cm ⁴]
	14.0	36.0	504	54432	8232

Grafik Querschnittsgrafik M 1:5

Brandfall	vierseitige Brandbeanspruchung

	Feuerwiderstan	dsdauer	•	t _r	eq =	30 min
	Abbrandrate			ſ	$3_n = 0$	0.80 mm/min
Querschnittswerte	b r	hr	р	Ar	ly,r	Iz,r
Restquerschnitt	[cm]	[cm]	[cm]	[cm²]	[cm ⁴]	[cm ⁴]
	9.2	31.2	8.08	287	23285	2025

Durch Kontrollrechnung geprüft

/

107

Seite:

Datum: 28.04.2023 Position: P2

Grafik M 1:5

Querschnittsgrafik

Auflagerkräfte

Charakteristische und Bemessungsauflagerkräfte

Char. Auflagerkr.

	Aufl.	F _{z,k}	$F_{y,k}$
		[kN]	[kN]
Einw. <i>Gk</i>	Α	18.10	0.00
	В	10.48	0.00
Einw. Qk.S.A	Ā	9.91	0.00
	В	5.78	0.00
Einw. Qk.W.000	Ā	-3.02	1.18
	В	0.05	-0.12
Einw. Qk.W.090	Ā	-12.02	0.88
	В	-7.96	-0.09
Einw. Qk.W.180	A	-9.36	1.45
	В	-4.52	-0.15
Einw. Qk.W.270	A	0.95	0.00
	В	1.48	0.00

Bem.-auflagerkräfte ständig/vorüberg.

Auti.	F _{z,d,min} EK [kN]	F _{z,d,max} EK [kN]	F _{y,d,min} EK [kN]	F _{y,d,max} EK [kN]
Α	0.07 62	40.15 61	0.00 54	2.17 65
В	-1.47 62	24.14 61	-0.23 65	0.00 54
Aufl.	F _{z,d,min} EK [kN]	F _{z,d,max} EK [kN]	F _{y,d,min} EK [kN]	F _{y,d,max} EK [kN]
Α	37.58 64	41.08 63	0.00 58	0.29 75
R	21.65 64	24.06 63	_0_03_75	0.00 58

außergewöhnlich

	[KN]	[KN]	[KN]	[KN]
Α	37.58 64	41.08 63	0.00 58	0.29 75
В	21.65 64	24.06 63	-0.03 75	0.00 58

Gelenkkräfte

Charakteristische und Bemessungsgelenkkräfte

Durch Kontrollrechnung geprüft

31.07.2023

108

Seite:

Datum: **28.04.2023** Position: **P2**

Char. Gelenkkräfte

	Gel.	$V_{z,k}$	$V_{y,k}$
		[kN]	[kN]
Einw. <i>Gk</i>	1	-10.48	0.00
Einw. Qk.S.A	1	-5.78	0.00
Einw. <i>Qk.W.000</i>	1	-0.05	0.12
Einw. <i>Qk.W.090</i>	1	7.96	0.09
Einw. <i>Qk.W.180</i>	1	4.52	0.15
Einw. <i>Qk.W.270</i>	1	-1.48	0.00

Bem.-gelenkkräfte ständig/vorüberg.

außergewöhnlich

Gel.	V _{z,d,min} EK	V _{z,d,max} EK	V _{y,d,min} EK	V _{y,d,max} EK
	[kN]	[kN]	[kN]	[kN]
1	-24.14 22	1.47 10	0.00 1	0.23 3
Gel.	V _{z,d,min} EK	V _{z,d,max} EK	V _{y,d,min} EK	V _{y,d,max} EK
	[kN]	[kN]	[kN]	[kN]
1	-24.06 33	-22.17 8	0.00 4	0.03 9

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Nachv	veis	Feld/Auflager	X		η
		_	[m]		[-]
Biegur	ng	Feld 1	2.25	OK	0.45
Querk	raft	Feld 1	0.43	OK	0.45
Auflag	erpressung	Auflager A		OK	0.81
Lages	icherheit	-		Zugv.	1.27
Zugv.:	Für die Auflager A und	d B ist eine Zugkraftverankerung	g erforderlich.	_	

Nachweise (Brand)

Brandfall im Grenzzustand der Tragfähigkeit

Nachweis	Feld/Auflager	X		d/Auflager x r		η
		[m]		[-]		
Biegung	Feld 1	2.25	OK	0.30		
Querkraft	Feld 1	0.43	OK	0.24		

Nachweise (GZG)

Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Feld/Auflager	X		η
		[m]		[-]
Verform. winst	Kragarm links	0.00	OK	0.51
Verform. Wnet,fin	Kragarm links	0.00	OK	0.49

Durch Kontrollrechnung geprüft

/

109

Seite:

nb-Viewer Version 2023 - Copyright 2022 - mb AEC Software GmbH

Datum: 28.04.2023 Position: P2.1

Pos. P2.1 Firstpfette ausserhalb der Gaube

System Holz-Dreifeldträger

M 1:135

System z-Richtung

System y-Richtung

Abmessungen
Mat./Querschnitt

Feld	l [m]	Material	b/h [cm]	NKI
1	0.70	NH C24	14.0/20.0	•
2	2.50			•
3	2.60			
-				

Auflager

Lager	X	b	K _{T,z}	K _{T,y}
_	[m]	[cm]	[kN/m]	[kN/m]
Α	0.00	14.0	fest	fest
В	0.70	14.0	fest	fest
С	3.20	14.0	fest	fest
D	5.80	14.0	fest	fest

Gelenke

Feld	X	Transl.	Rotat.
	[m]	[kN/m]	[kNm/rad]
1	0.00	starr	frei

Belastungen

Belastungen auf das System

Eigengewicht

g	γ	Α
[kN/m]	[kN/m³]	[cm²]
0.12	4.2	280.0

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen

Qk.S.A

Qk.W.090

Qk.W.180

Qk.W.270

Streckenlasten in z-Richtung

Gleichlasten

Einw. *Gk*

Feld	Komm.	а	s	q ıi	q re
		[m]	[m]	[kN/m]	[kN/m]
1	Eigengew	0.00	5.80		0.12
(a) 1		0.00	5.80		2.33
(a) 1		0.00	5.80		31.07 1 2 26

Einw. Qk.S.A

Seite:

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: P2.1

Seite:

111

	Feld Komm.	a [m]	s [m]	qıi [kN/m]	q _{re} [kN/m]
Einw. Qk.W.000	(a) <u>1</u>	0.00	5.80		0.71
Einw. Q <i>k.W.090</i>	(a) <u>1</u>	0.00	5.80		-2.63
Einw. Q <i>k.W.180</i>	(a) <u>1</u>	0.00	5.80		-1.05
Einw. Q <i>k.W.270</i>	(a) 1	0.00	5.80		-0.95

(a) aus Pos. 'D2', Lager 'C', Faktor = 2.00

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

	Ek	KLED Σ (γ*ψ*EW)		
ständig/vorüberg.	3	ku/sk 1.35*Gk	+1.50*Qk.S.A	+0.90*Qk.W.000
	4	ku/sk 1.00*Gk	+1.50*Qk.W.090	
selten	36	1.00*Gk	+1.00*Qk.S.A	+0.60*Qk.W.000
quasi-ständig	37	1.00*Gk		
Brand	39	1.00*Gk	+0.20*Qk.W.000	
Lagesicherheit	42	ku/sk 0.90*Gk	+1.50*Qk.W.090	
	43	ku/sk 1.00*Gk	+2.30*Qk.S.A	+0.20*Qk.W.000
st./vor. Auflagerkr.	51	ku/sk 1.35*Gk	+1.50*Qk.S.A	+0.90*Qk.W.000
-	52	ku/sk 1.00*Gk	+1.50*Qk.W.090	
außerg. Auflagerkr	53	ku/sk 1.00*Gk	+2.30*Qk.S.A	+0.20*Qk.W.000
	54 ku/sk:	ku/sk 0.95*Gk	+2.30*Qk.S.A	+0.20*Qk.W.090
	ita/oit.	Kaiz/oom Kaiz		

Mat./Querschnitt

Material- und Querschnittswerte nach DIN EN 1995-1-1

Material	Material	f _{mk}	f _{t0k}	f _{c0k} [N/r	f _{c90k} nm²]	f _{vk}	E _{mean}
	NH C24	24.0	14.5	21.0	2.5	4.0	11000

Querschnittswerte

b	h	Α	ly	lz
[cm]	[cm]	[cm²]	[cm ⁴]	[cm ⁴]
14.0	20.0	280	9333	4573

Grafik M 1:5

Querschnittsgrafik

Brandfall vierseitige Brandbeanspruchung Feuerwiderstandsdauer

30 min $t_{req} =$ 0.80 mm/min Abbrandrate $\beta_n =$ br hr l_{y,r} [cm] [cm] [cm] [cm²] [cm⁴] [cm⁴] 9.2 15.2 48.8 140 2692 31.07.986

Durch Kontrollrechnung geprüft

Querschnittswerte

Restquerschnitt

Datum: 28.04.2023 Position: P2.1

Seite:

112

Grafik M 1:5

Querschnittsgrafik

Auflagerkräfte

Charakteristische und Bemessungsauflagerkräfte

Char. Auflagerkr.

· ·	Aufl.	F _{z,k}	$F_{y,k}$
		[kN]	[kN]
Einw. <i>Gk</i>	Α	-0.33	0.00
	В	4.72	0.00
	С	7.32	0.00
	<u>D</u> A	2.50	0.00
Einw. <i>Qk.S.A</i>	A	-0.17	0.00
	В	2.42	0.00
	С	3.76	0.00
	<u>D</u> A	1.28	0.00
Einw. <i>Qk.W.000</i>	A	-0.09	0.00
	В	1.36	0.00
	С	2.12	0.00
	D	0.72	0.00
Einw. <i>Qk.W.090</i>	<u>D</u> A	0.35	0.00
	В	-5.07	0.00
	С	-7.86	0.00
	D	-2.68	0.00
Einw. <i>Qk.W.180</i>	<u>D</u> A	0.14	0.00
	В	-2.02	0.00
	С	-3.13	0.00
	D	-1.07	0.00
Einw. <i>Qk.W.270</i>	D A	0.13	0.00
	В	-1.83	0.00
	С	-2.84	0.00
	D	-0.97	0.00

Bem.-auflagerkräfte ständig/vorüberg.

Aufl.	F _{z,d,min} EK [kN]	F _{z,d,max} EK [kN]	F _{y,d,min} EK [kN]	F _{y,d,max} EK [kN]
Α	-0.78 51	0.20 52	0.00 44	0.00 44
В	-2.89 52	11.23 51	0.00 44	0.00 44
С	-4.48 52	17.42 51	0.00 44	0.00 44
D	-1.53 52	5.94 51	0.00 44	0.00 44
Aufl.	Fzdmin EK	Fzdmay EK	Fydmin EK	Fud may EK

außergewöhnlich

Auii.	rz,d,min	ĽN	rz,d,max		⊏y,d,min	ĽΝ	ry,d,max ⊏r
	[kN]		[kN]		[kN]		[kN]
Α	-0.73	53	-0.63	54	0.00	48	0.00 48
В	9.04	.54	10.56	53	eprüft 0.00	48	0.007.248
	I)urch	Kont	rollrechniji	na a	enrutt		aur fur Sta

Datum: 28.04.2023 Position: P2.1

Seite:

113

Aufl.	F _{z,d,min} EK [kN]	F _{z,d,max} Ek [kN]	K F _{y,d,min} EK [kN]	F _{y,d,max} EK [kN]
С	14.03 54	16.39 53	0.00 48	0.00 48
D	4.78 54	5.59 53	0.00 48	0.00 48

Gelenkkräfte

Charakteristische und Bemessungsgelenkkräfte

Char. Gelenkkräfte

Einw.	Gk
Einw.	Qk.S.A
Einw.	Qk.W.000
Einw.	Qk.W.090
Einw.	Qk.W.180
Einw.	Qk.W.270

Gel.	$V_{z,k}$	$V_{y,k}$
	[kN]	[kN]
1	0.33	0.00
1	0.17	0.00
1	0.09	0.00
1	-0.35	0.00
1	-0.14	0.00
1	-0.13	0.00

Bem.-gelenkkräfte ständig/vorüberg.

Gel.	V _{z,d,min} [kN]	EK	V _{z,d,max} [kN]	EK	V _{y,d,min} [kN]	EK	V _{y,d,max} [kN]	EK
1	-0.78	3	0.20	4	0.00	1	0.00	1
Gel.	V _{z,d,min}	EK	V _{z,d,max}	EK	V _{y,d,min}	EK	V _{y,d,max}	EK

-0.64

0.00

2

0.00

außergewöhnlich

Zusammenfassung

Zusammenfassung der Nachweise

-0.73 31

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Feld/Auflager	X		η
	_	[m]		[-]
Biegung	Feld 3	0.00	OK	0.25
Querkraft	Feld 3	0.27	OK	0.27
Auflagerpressung	Auflager C		OK	0.32
Lagesicherheit	_		Zugv.	∞
Zumir. Für die Auflemen A	D. C. und D. int nine 7. almoft comm	leaning aufandaulie	.h.	

Zugv.: Für die Auflager A , B , C und D ist eine Zugkraftverankerung erforderlich.

Nachweise (Brand)

Brandfall im Grenzzustand der Tragfähigkeit

Nachweis	Feld/Auflager	X		η
		[m]		[-]
Biegung	Feld 3	0.00	OK	0.22
Querkraft	Feld 3	0.27	OK	0.18

Nachweise (GZG)

Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Feld/Auflager	x [m]		η [-]
Verform. winst	Feld 3	1.46	OK	0.14
Verform. w _{net,fin}	Feld 3	1.46	OK	0.13

Datum: 28.04.2023 Position: P3

Pos. P3 Gaubenpfette

System Holz-Dreifeldträger

M 1:100

System z-Richtung

System y-Richtung

Abmessungen
Mat./Querschnitt

eld	l	
	[m]	
-3	1.42	

wateriai	D/N	NKL
	[cm]	
NH C24	18.0/22.0	1

Seite:

114

Lager	X	b	K _{T,z}	K _{T,y}
_	[m]	[cm]	[kN/m]	[kN/m]
Α	0.00	10.0	fest	fest
В	1.42	10.0	fest	frei
С	2.84	10.0	fest	frei
D	4.26	10.0	fest	fest

Belastungen

Belastungen auf das System

Eigengewicht

Α	γ
[cm²]	[kN/m³]
396.0	4.2

g [**kN/m**] 0.17

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen

Qk.W.000

Qk.W.090

Qk.W.090

Qk.W.180

Qk.W.180

Qk.W.270

Qk.W.270

Durch Kontrollrechnung geprüft

qii

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: P3

Streckenlasten
in z-Richtung

Gleichlasten

Einw.	Gk
	•

	Feld	Komm.	а	S	q li	q re
			[m]	[m]	[kN/m]	[kN/m]
	1	Eigengew	0.00	4.26		0.17
(a)	1		0.00	4.26		2.96
(a)	1		0.00	4.26		1.70
(a)	1		0.00	4.26		-1.37
(a)	1		0.00	4.26		-2.28
(a)	1		0.00	4.26		-0.07
(a)	1		0.00	4.26		0.40

Einw. *Qk.S.A*Einw. *Qk.W.000*Einw. *Qk.W.090*Einw. *Qk.W.180*Einw. *Qk.W.270*

aus Pos. 'D1', Lager 'A' (Seite 32)

(a)

Gleichlasten

Streckenlasten in y-Richtung

Feld	K	om

Einw. *Qk.W.000* Einw. *Qk.W.090*

	[m]	[m]	[kN/m]	[kN/m]
1	0.00	4.26		0.07
1	0.00	4.26		0.22
1	0.00	4.26		1.00
1	0.00	4.26		0.07
1	0.00	4.26		-0.04
	1 1 1 1	1 0.00 1 0.00 1 0.00 1 0.00 1 0.00	1 0.00 4.26 1 0.00 4.26 1 0.00 4.26 1 0.00 4.26 1 0.00 4.26	1 0.00 4.26 1 0.00 4.26 1 0.00 4.26 1 0.00 4.26 1 0.00 4.26

Einw. *Qk.W.180* Einw. *Qk.W.270*

Kombinationen

aus Pos. 'D1', Lager 'A' (Seite 32)

(a)

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

	Ek	KLED	Σ (γ*ψ*EW)		
ständig/vorüberg.	2	ku	1.35*Gk	+1.50*Qk.S.A	
	8	ku/sk	1.35*Gk	+0.75*Qk.S.A	+1.50*Qk.W.090
selten	37		1.00*Gk	+0.50*Qk.S.A	+1.00*Qk.W.090
quasi-ständig	40		1.00*Gk		
Brand	42		1.00*Gk	+0.20*Qk.W.090	
	43		1.00*Gk	+0.20*Qk.W.270	
Lagesicherheit	46	ku/sk	0.90*Gk	+1.50*Qk.W.090	
st./vor. Auflagerkr.	62	ku/sk	1.35*Gk	+1.50*Qk.S.A	+0.90*Qk.W.270
	63	ku/sk	1.00*Gk	+1.50*Qk.W.090	
	67	ku/sk	1.35*Gk	+1.50*Qk.W.270	
außerg. Auflagerkr	64	ku/sk	1.00*Gk	+2.30*Qk.S.A	+0.20*Qk.W.270
	65	ku/sk	0.95*Gk	+2.30*Qk.S.A	+0.20*Qk.W.090
	ku:	kurz	alea luura		
	ku/sk	: Kurz/s	ehr kurz		

Mat./Querschnitt

Material- und Querschnittswerte nach DIN EN 1995-1-1

Material

Material	f _{mk}	f _{t0k}	f _{c0k} [N/ı	f _{c90k} nm²]	f_{vk}	E _{mean}
NH C24	24.0	14.5	21.0	2.5	4.0	11000

Querschnittswerte

h	h	Δ	l _v	Y ₇
[om]	[om]	[cm ²]	rom41	[cm ⁴]
[cm]	[cm]		[cm ⁴]	
18.0	22.0	396	15972	10692

Durch Kontrollrechnung geprüft

Datum: **28.04.2023** Position: **P3**

Grafik M 1:5

Querschnittsgrafik

Brandfall

vierseitige Brandbeanspruchung

Feuerwiderstandsdauer Abbrandrate $t_{req} = 30 \text{ min}$ $\beta_n = 0.80 \text{ mm/min}$

Seite:

116

Querschnittswerte Restquerschnitt

hr br l_{y,r} Iz,r p [cm] [cm] [cm] [cm²] [cm⁴] [cm⁴] 13.2 17.2 60.8 227 5597 3297

Grafik M 1:5

Auflagerkräfte

Charakteristische und Bemessungsauflagerkräfte

Char. Auflagerkr.

Oriai. / tailagoriti.			
-	Aufl.	F _{z,k} [kN]	F _{y,k} [kN]
Einw. <i>Gk</i>	Α	1.78	0.00
	В	4.88	0.00
	С	4.88	0.00
	D	1.78	0.00
Einw. Qk.S.A	A	0.97	0.00
	В	2.66	0.00
	С	2.66	0.00
	D	0.97	0.00
Einw. Qk.W.000	A	-0.78	0.15
	В	-2.14	0.00
	С	-2.14	0.00
	D	-0.78	0.15
Einw. <i>Qk.W.090</i>	Α	-1.30	2.61
	В	-3.57	31.070202
		Ourch Kontrollrechnung geprüft	our für Stano

Datum: **28.04.2023** Position: **P3**

Seite:

117

	Aufl.	$F_{z,k}$	$F_{y,k}$
		[kN]	[kN]
	С	-3.57	0.00
	D	-1.30	2.61
Einw. <i>Qk.W.180</i>	A	-0.04	0.15
	В	-0.11	0.00
	С	-0.11	0.00
	D	-0.04	0.15
Einw. Qk.W.270	A	0.23	-0.08
	В	0.62	0.00
	С	0.62	0.00
	D	0.23	-0.08

Bemauf	lagerkräfte
ständig/ve	orüberg.

Aufl.	F _{z,d,min} E [kN]	K	F _{z,d,max} [kN]		F _{y,d,min} [kN]		F _{y,d,max} [kN]	
Α	-0.17 6	33	4.05	62	-0.12	67	3.91	63
В	-0.47 6	33	11.14	62	0.00	55	0.00	55
С	-0.47 6	33	11.14	62	0.00	55	0.00	55
D	-0.17 6	3	4.05	62	-0.12	67	3.91	63

außergewöhnlich

Aufl.	F _{z,d,min} [kN]		F _{z,d,max} [kN]		F _{y,d,min} [kN]		F _{y,d,max} [kN]	EK
Α	3.65	65	4.04	64	-0.02	64	0.52	65
В	10.03	65	11.12	64	0.00	59	0.00	59
С	10.03	65	11.12	64	0.00	59	0.00	59
D	3.65	65	4.04	64	-0.02	64	0.52	65

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Feld/Auflager	X		η
		[m]		[-]
Biegung	Feld 2	0.71	OK	0.19
Querkraft	Feld 1	1.15	OK	0.11
Auflagerpressung	Auflager B		OK	0.27
Lagesicherheit	-		Zugv.	1.22
Zugy : Für die Auflager A I	B C und D ist eine Zugkraftveran	keruna erforderli	ch	

Nachweise (Brand)

Brandfall im Grenzzustand der Tragfähigkeit

Nachweis	Feld/Auflager	x [m]		η [-]
Biegung	Feld 2	0.00	OK	0.06
Querkraft	Feld 3	0.27	OK	0.06

Nachweise (GZG)

Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Feld/Auflager	x [m]		η [-]
Verform. w _{inst}	Feld 2	0.71	OK	0.94
Verform. w _{net,fin}	Feld 3	0.79	OK	0.02

Durch Kontrollrechnung geprüft

Seite:

118

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: HSW1

Pos. HSW1 Holzständerwand

System M 1:35

Bemessung einer Holz-Wandscheibe, DIN EN 1995-1-1

Wanda	bmessungen
-------	------------

wandlange	
Wandhöhe	
Rippenabstar	٦d

-	=	3.75
h_{W}	=	2.60
\mathbf{a}_{R}	=	0.625

m m

Rippen

Material	b	h	NKL
[-]	[cm]	[cm]	[-]
Nadelholz C24			
Vertikale Rippe 1	14.0	14.0	1
Vertikale Rippe 2-5	8.0	14.0	1
Vertikale Rippe 6-7	14.0	14.0	1
Nadelholz C24			
Horizontale Rippen	10.0	14.0	1
• •			

Beplankung

t	bт	NKL
[mm]	[m]	[-]
16.0	1.25	1
		[mm] [m]

Verbindungsmittel

Art	f u,k	dn x ln	av
[-]	[N/mm²]	[mm]	[cm]
Holzschraube SST CSA (Vollgewinde	e, Linsenkop	f)	
zweiseitig		5.0x80	15.0

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: **HSW1**

Seite:

119

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen

Gk

Qk.N

Qk.W

Punktlasten summiert

am Wandkopf

(a) Bei Windlast aus D+E greift pro HSW 25% der Gesamteinzellast an da 4 HSW vorhanden

(0.65+0.41)*4.5*2.5/4 =

2.98

kN

31.07.2023

Datum: 28.04.2023 Position: HSW1

120

Seite:

Gleichflächenlasten Flächenlasten Komm. in x-Richtung s а qu [m] $[kN/m^2]$ [kN/m²][m] Einw. Gk Eigengew 0.00 2.60 0.33 Flächenlasten Gleichflächenlasten in z-Richtung Komm. а S $[kN/m^2]$ [m] [m] $[kN/m^2]$ Einw. Qk.N 0.00 2.60 0.50 Einw. Qk.W 0.00 2.60 1.00

KombinationenKombinationsbildung nach DIN EN 1990
Darstellung der maßgebenden Kombinationen

	Ek	KLED Σ (γ*ψ*EW)		
ständig/vorüberg.	1	st 1.35*Gk		
	3	ku/sk 1.35*Gk	+1.50*Qk.W	
	5	ku/sk 1.35*Gk	+1.05*Qk.N	+1.50*Qk.W
	8	ku/sk 1.00*Gk	+1.50*Qk.W	
Lagesicherheit	16	st 0.90*Gk		
_	18	ku/sk 0.90*Gk	+1.50*Qk.W	
	st: ku/sk	ständig kurz/sehr kurz		

Mat./Querschnitt

Rippen	Material	f _{my,k}	f _{c,0,k}	f _{c,90,k}	f _{t,0,k}	E _{0,mean}
	[-]	[N/mm²]	[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]
vertikal	NH C24	24.0	21.0	2.5	14.5	11000
horizontal	NH C24	24.0	21.0	2.5	14.5	11000
Beplankung	Material			f v,k	fc,0,k	Gmean
	[-]		[N	//mm²]	[N/mm²]	[N/mm ²]

OSB/4	6.9	17.6	1090
Тур		$F_{v,Rk}$	av
[-]		[kN]	[cm]
	OSB/4	OSB/4 6.9 Typ [-]	OSB/4 6.9 17.6 Typ

L-J	[KN]	[cm]
Holzschraube SST CSA	1.23	15.0
(Vollgewinde, Linsenkopf) 5.0x80		

eff. Steifigkeit	im GZ Gebrauchstauglichkeit	El _{ef} =	56046	kNm²
	im GZ Tragfähigkeit	El _{ef} =	34291	kNm²

Nachweise (GZT) nach DIN EN 1995-1-1

Imperfektionen der Wand werden nicht berücksichtigt. Die erforderlichen Randbedingungen nach 9.2.4.2 (NA.18) wurden überprüft.

Scheibenbeanspr. Abs. 9.2.3	Ri. nr. 1 2 ¹ 7	EK [-] 3 3 3	Kmod [-] 1.00 1.00 1.00	F _{v,d} [kN] 4.47 4.47 4.47	Ms,z,d [kNm] 0.00 0.00 0.00	\$v,0,d [N/mm] 1.19 1.19 1.19	fv,0,d [N/mm] 12.58 12.58 12.58	n [-] 0.09 0.09 0.09
Schwellenpressung Abs. 6.1.5	Ri. nr. 1	EK [-] 1	k mod [-] 0.60	Fri,d [kN] 0.36	A _{ef} ² [cm ²] 238.0	k c,90 [-] 1.25	f _{c,90,d} ³ [N/mm ²] 1.38 ₁	n [-] 0_01

Datum: 28.04.2023 Position: **HSW1**

Seite:

121

Ri. nr.		Kmod [-]	FRi,d [kN]	A _{ef} ² [cm ²]	k с,90 [-]	fc,90,d ³ [N/mm²]	η [-]
21	1	0.60	0.72	196.0	1.25	1.38	0.02
7	3	1.00	3.46	238.0	1.25	2.31	0.05
2:	2: Schwellenpressung bei voller Auflagerung der Schwelle						
3:							

Normal- u. Biegesp.

Abs. 6.3.2

Ri. nr.	EK	K mod	N 0,d M y,d	σ 0,d σ my,d	k c	f 0,d f my,d	η
[-]	[-]	[-]	[kN,kNm]	[N/mm ²]	[-]	[N/mm²]	[-]
1	5	1.00	-2.74	-0.14	-	11.15	0.05
			0.53	1.17		18.46	
21	5	1.00	0.72	0.06	0.62	16.15	0.23
			1.07	4.09		18.46	
7	5	1.00	3.46	0.18	0.62	16.15	0.08
			0.53	1.17		18.46	

¹ maximal beanspruchte Innenrippe

ven	ormungen	1
NCI	Zu 9.2.4.2	

EK	Fv,d	Kges	U d	U zul	η
[-]	[kN]	[kN/m]	[mm]	[mm]	[-]
3	4.47	5853	0.8	26.0	0.03

Lagesicherheit DIN EN 1990, 6.4.2 NDP zu A1.3.1(3)

Ri.	EK	Fstb,d	е	F _{dst,d}	F _{z,d}
nr.	[-]	[kN]	[m]	[kN]	[kN]
1	18	1.44	0.00	-3.10	-1.66!
7	16	1.44	0.00	_*	1.44

^{*:} Es sind keine destabilisierenden Kräfte vorhanden.

! Zugverankerung erforderlich. Zu verankernde Kraft Fanch,d.

Zugveran	kerung
----------	--------

Ri.	EK	Fstb,d	е	Fdst,d	Fanch,d
nr.	[-]	[kN]	[m]	[kN]	[kN]
1	8	1.60	0.00	-3.10	-1.50

Nachweise (GZG)

nach DIN EN 1995-1-1

Verformungen

EK	F _{v,k}	Uk	U zul	η
[-]	[kN]	[mm]	[mm]	[-]
3	2 98	0.3	17.3	

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis		η [-]
Scheibenbeanspruchung	OK	0.09
Schwellenpressung	OK	0.05
Normal- und Biegespannung	OK	0.23
Verformungen	OK	0.03
•		

Nachweise (GZG)

Nachweise im Grenzzust. der Gebrauchstauglichkeit

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: **HSW1**

Nachweis		η [-]
Verformungen	OK	0.02

/

122

Seite:

Datum: 28.04.2023 Position: HSW1.1

Pos. HSW1.1

Zugverankerung

Geometrie

Grafik M 1:8

Mat./Querschnitt	Bauteil	NKL	Material	Que	rschnitt [cm]
	vert. Rippe	1	NH C24	1	4.0/14.0
	horiz. Rippe	1	NH C24	1	0.0/14.0
Beplankung	Material		Seite	t	NKL
				[mm]	[-]
	OSB-Platten (OSB/4	innen	16.0	1
	OSB-Platten (OSB/4	außen	16.0	1
Verbindungsmittel					M12G-B
	CNA Kammnägel			6 2	x 4.0x60
	(Europäische Technische Zulassung ETA 07/0285)				

Belastungen

Belastungen auf das System

Auflagerlasten	Komm.	F _x
		[kN]
Einw. <i>Ed.1</i>	(a) HSW1	1.60
Einw. <i>Ed.2</i>	(a) HSW1	2.16
Einw. Ed.3	(a) HSW1	1.60
Einw. <i>Ed.4</i>	(a) HSW1	2.16
Einw. Ed.5	(a) HSW1	-1.50
Einw. <i>Ed.</i> 6	(a) HSW1	0.30

(a) aus Pos. 'HSW1', Ort 'HSW1'

KombinationenKombinationsbildung nach DIN EN 1990
Darstellung der maßgebenden Kombinationen

Ek KLED Σ ($\gamma*\psi*EW$)

ständig/vorüberg. 5 ku/sk 1.00*Ed.5 ku/sk: kurz/sehr kurz

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: HSW1.1

Bem.-schnittgrößen Bemessungsschnittgrößen

Ek		$F_{x,d}$
		[kN]
5		-1.50

Mat./Querschnitt

Material- und Querschnittsangaben nach DIN EN 1995-1-1

Material	Bauteil	Material	f _{m,k} [N/mm²]	-, -,	f _{c,0,k} [N/mm ²]	•
	vert. R.	NH C24	24.0	14.5	21.0	4.0
	horiz. R.	NH C24	24.0	14.5	21.0	4.0

Beplankung	Seite	Material	f∨,k [N/mm²]	f _{c,0,k} [N/mm²]	G _{mean} [N/mm²]
	innen	OSB/4	6.9	17.6	1090
	außen	OSB/4	6.9	17.6	1090

Die Beplankung innen ist kraftübertragend mit der Rippe verbunden. Die Beplankung außen ist kraftübertragend mit der Rippe verbunden.

Zuganker	Тур	$R_{x,k,DIN}$	$R_{x,k,ETA}$
		[kN]	[kN]
	HD340M12G-B	-9 70	-11 78

Kammnägel	CNA 4.0x60
Anzahl der Nägel in der vertikalen Rippe	6

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1:2010-12 und H. J. Blaß und B. Laskewitz

Ek	k _{mod} [-]	F _{1,d} [kN]	n _{ef}	R _{1,d} [kN]	η [-]
1	0.60	0.00	5.41	-5.44	0.00
2	0.60	0.00	5.41	-5.44	0.00
3	0.80	0.00	5.41	-7.25	0.00
4	0.80	0.00	5.41	-7.25	0.00
5	1.00	-1.50	5.41	-7.46	0.20
6	1.00	0.00	5.41	-9.07	0.00
Erforderliche Bolzentr	agfähigkeit		$F_{B,d} =$	1.79	kN

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis		η [-]
Zuganker	OK	0.20

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: HSW2

Pos. HSW2

Holzständerwand

System M 1:30

Bemessung einer Holz-Wandscheibe, DIN EN 1995-1-1

	W	and	lab	mes	sun	gen
--	---	-----	-----	-----	-----	-----

Vandlänge
Vandhöhe
Rippenabstand

Art

$$I = 3.30$$

 $h_W = 2.60$
 $a_R = 0.66$

Seite:

125

Rippen

Material	b	h	NKL
[-]	[cm]	[cm]	[-]
Nadelholz C24			
Vertikale Rippe 1	14.0	14.0	1
Vertikale Rippe 2-3	8.0	14.0	1
Vertikale Rippe 4	14.0	14.0	1
Vertikale Rippe 5	8.0	14.0	1
Vertikale Rippe 6	14.0	14.0	1
Nadelholz C24			
Horizontale Rippen	10.0	14.0	. 1,
• •			

Beplankung

Material	t	bт	NKL
[-]	[mm]	[m]	[-]
OSB-Platten OSB/4			
zweiseitig	16.0	1.32	1

Verbindungsmittel

[-]	[N/mm²]
Holzschraube SST CSA (Vollgewinde	e, Linsenkopf)
zweiseitia	ı

dn x In [mm]

5.0x80

15.0 31.07.2023

[cm]

m

m

Durch Kontrollrechnung geprüft

fu,k

Datum: 28.04.2023 Position: HSW2

Seite:

126

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen

Gk

Qk.N

Qk.W

Punktlasten summiert

am Wandkopf

Komm. F_x $F_{s,y}$ $M_{s,z}$ [kN] [kNm] (a) 0.00 2.98 0.00

(a)

Einw. Qk.W

Bei Windlast aus D+E greift pro HSW 25% der Gesamteinzellast an da 4 HSW vorhanden

(0.65+0.41)*4.5*2.5/4 =

2.98

kN

Datum: 28.04.2023 Position: **HSW2**

Flächenlasten	Gleichflächenlasten					
in x-Richtung	Komm.	a [m]	s [m]	q _u [kN/m²]	q₀ [kN/m²]	
Einw. Gk	Eigengew	0.00	2.60		0.33	
Flächenlasten	Gleichflächenlaste	en				
in z-Richtung	Komm.	а	s	q u	qo	
		[m]	[m]	[kN/m²]	[kN/m²]	
Einw. Qk.N		0.00	2.60		0.50	
Einw. Qk.W		0.00	2.60		1.00	

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

	Ek	KLED Σ (γ*ψ*EW)		
ständig/vorüberg.	1	st 1.35*Gk		
	3	ku/sk 1.35*Gk	+1.50*Qk.W	
	4	ku/sk 1.35*Gk	+1.50*Qk.N	+0.90*Qk.W
	5	ku/sk 1.35*Gk	+1.05*Qk.N	+1.50*Qk.W
	8	ku/sk 1.00*Gk	+1.50*Qk.W	
Lagesicherheit	16	st 0.90*Gk		
-	18	ku/sk 0.90*Gk	+1.50*Qk.W	
	st: ku/sk	ständig : kurz/sehr kurz		

Mat./Querschnitt

Rippen	Material 	f _{my,k}	f _{c,0,k}	f _{c,90,k}	f _{t,0,k}	E _{0,mean}
	[-]	[N/mm²]	[N/mm²]	[N/mm ²]	[N/mm²]	[N/mm ²]
vertikal	NH C24	24.0	21.0	2.5	14.5	11000
horizontal	NH C24	24.0	21.0	2.5	14.5	11000
Beplankung	Material			f v,k	f c,0,k	Gmean
	[-]		[N	/mm²]	[N/mm²]	[N/mm ²]
	OSB/4		-	6.9	17.6	1090
Verbindungsmittel	Тур [-]				F _{v,Rk} [kN]	a _v [cm]
	Holzschraube SST CSA (Vollgewinde, Linsenkopf) 5.0x80				1.23	15.0
eff. Steifigkeit	im GZ Gebrauchstaugl im GZ Tragfähigkeit	ichkeit		Ele Ele		
Nachweise (GZT)	nach DIN EN 1995-1-1					

Imperfektionen der Wand werden nicht berücksichtigt. Die erforderlichen Randbedingungen nach 9.2.4.2 (NA.18) wurden überprüft.

Scheibenbeanspr.	Ri.	EK	k mod	$F_{v,d}$	$M_{s,z,d}$	Sv,0,d	f v,0,d	
Abs. 9.2.3	nr.	[-]	[-]	[kN]	[kNm]	[N/mm]	[N/mm]	
	1	3	1 00	4 47	0.00	1 35	12 58	

nr.	[-]	[-]	[kN]	[kNm]	[N/mm]	[N/mm]	[-]
1	3	1.00	4.47	0.00	1.35	12.58	0.11
2 ¹	3	1.00	4.47	0.00	1.35	12.58	0.11
6	3	1.00	4.47	0.00	1.35	12.58	0.11

Durch Kontrollrechnung geprüft

31.07.2023

127

Seite:

Datum: 28.04.2023 Position: HSW2

Seite:

128

					_			
Schwellenpressung	Ri.	EK	Kmod	FRi,d	Aef ²	K c,90	fc,90,d ³	η
Abs. 6.1.5	nr.	[-]	[-]	[kN]	[cm²]	[-]	[N/mm²]	[-]
	1 2 ¹	1	0.60	0.38	238.0	1.25	1.38	0.01
	6	3 3	1.00	1.47	196.0	1.25	2.31	0.03
	_	-	1.00	3.90 ler Auflagerung	238.0	1.25	2.31	0.06
				1) mit Erhöhung				
								•
Normal- u. Biegesp.	D:	ΓV	le .	NI.	-	l.	4	
Abs. 6.3.2	Ri.	EK	K mod	No,d	σ 0,d	K c	f 0,d	η
	nr.	r 1		My,d	Omy,d		fmy,d	
	[-] 1	[-] 4	[-] 1.00	[kN,kNm] -1.73	[N/mm²] -0.09	[-]	[N/mm²] 11.15	[-] 0.05
	I	4	1.00	0.46	-0.09 1.01	-	18.46	0.05
	2 ¹	5	1.00	0.46	0.07	0.62	16.40	0.24
	۷.	5	1.00	1.13	4.32	0.02	18.46	0.24
	6	5	1.00	3.90	0.20	0.62	16.15	0.09
	U	3	1.00	0.56	1.23	0.02	18.46	0.03
				0.50	1.20		10.40	
	¹ ma	aximal be	eanspruch	nte Innenrip	ре			/
Verformungen	EK			Fv,d	Kges	U d	U zul	η
NCI Zu 9.2.4.2	[-]			[kN]	[kN/m]	[mm]	[mm]	[-]
	3			4.47	4934	0.9	26.0	0.03
		-1.7		_		_		_ \
Lagesicherheit	Ri.	EK		Fstb,d	e	Fdst,d		Fz,d
DIN EN 1990, 6.4.2 NDP	nr.	[-]		[kN]	[m]	[kN]		[kN]
zu A1.3.1(3)	1	18		1.27	0.00	-3.52 -*	-	2.25!
	6 *: E	16	a destabilisiere	1.27 enden Kräfte vor	0.00	-*		1.27
		3 3iiiu koiik	o destabilisiere	chach Maile von	nandon.			
	! Zu	gverank	erung erfo	orderlich. Zu	ı verankern	ide Kraft Fan	ch,d.	
Zugverankerung	Ri.	EK		Fstb,d	е	Fdst,d	Fa	nch,d
	nr.	[-]		[kN]	[m]	[kN]		[kN]
	1	8		1.41	0.00	-3.52	-	-2.11
Nasharaisa (070)		. DIN 5	N 400E 4					
Nachweise (GZG)	naci	1 DIN EI	N 1995-1-	1				
Verformungen	EK			Fv,k		Uk	U zul	η
3								
3	[-] 3			[kN] 2.98		[mm]	[mm] 17.3	[-] 0.02

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT) Nachweise im Grenzzustand der Tragfähigkeit

Nachweis		η [-]
Scheibenbeanspruchung	OK	0.11
Schwellenpressung	OK	0.06
Normal- und Biegespannung	OK	0.24
Verformungen	OK	0.03

Durch Kontrollrechnung geprüft

31.07.2023

Datum: 28.04.2023 Position: HSW2

Nachweise (GZG)

Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis		η
		[-]
Verformungen	OK	0.02

129

Seite:

Datum: 28.04.2023 Position: HSW2.1

Pos. HSW2.1 Zugverankerung

Geometrie

Grafik M 1:8

Zugverankerung im Holztafelbau

Mat./Querschnitt	Bauteil	NKL	Material	Quer	schnitt [cm]
	vert. Rippe horiz. Rippe	1 1	NH C24 NH C24		1.0/14.0 0.0/14.0
Beplankung	Material		Seite	t [mm]	NKL [-]
	OSB-Platten OS OSB-Platten OS		innen außen	16.0 16.0	1 1
Verbindungsmittel	Zuganker Simpson Strong Tie CNA Kammnägel (Europäische Technische Zulassung ETA 07/0285)			HD340M12G-B 6 x 4.0x60	
Belastungen	Belastungen auf das System				/

Belastungen	Belastungen auf das S

Auflagerlasten	Komm.	F _x [kN]
Einw. Ed.1	(a) HSW2	1.41
Einw. Ed.2	(a) HSW2	1.91
Einw. Ed.3	(a) HSW2	1.41
Einw. <i>Ed.4</i>	(a) HSW2	1.91
Einw. <i>Ed.5</i>	(a) HSW2	-2.11
Einw. Ed.6	(a) HSW2	-0.20

(a)		aus Pos.	'HSW2'	, Ort 'HSW2'
-----	--	----------	--------	--------------

Kombinationen	Kombinationsbildung nach DIN EN 1990
	Darstellung der maßgebenden Kombinationen

Durch Kontrollrechnung geprüft

31.07.2023

ständig/vorüberg.

131

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: HSW2.1

Bem.-schnittgrößen Bemessungsschnittgrößen

 $F_{x,d}$ [kN] 5 -2.11

Mat./Querschnitt

Material- und Querschnittsangaben nach DIN EN 1995-1-1

Material Bauteil Material f_{m,k} f_{c,0,k} $f_{v,k}$ f_{t,0,k} [N/mm²] [N/mm²] [N/mm²] [N/mm²] vert. R. **NH C24** 24.0 14.5 21.0 4.0 horiz. R. **NH C24** 24.0 14.5 21.0 4.0

Beplankung Seite Material fv,k fc,0,k Gmean [N/mm²] [N/mm²] [N/mm²] innen OSB/4 6.9 17.6 1090 außen OSB/4 6.9 17.6 1090

> Die Beplankung innen ist kraftübertragend mit der Rippe verbunden. Die Beplankung außen ist kraftübertragend mit der Rippe verbunden.

Zuganker $R_{x,k,ETA}$ Typ $R_{x,k,DIN}$ [kN] [kN] -9.70 HD340M12G-B -11.78

> Kammnägel CNA 4.0x60 Anzahl der Nägel in der vertikalen Rippe

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1:2010-12 und H. J. Blaß und B. Laskewitz

Zuganker

\mathbf{k}_{mod}	F _{1,d}	n _{ef}	$R_{1,d}$	η
[-]	[kN]		[kN]	[-]
0.60	0.00	5.41	-5.44	0.00
0.60	0.00	5.41	-5.44	0.00
0.80	0.00	5.41	-7.25	0.00
0.80	0.00	5.41	-7.25	0.00
1.00	-2.11	5.41	-7.46	0.28
1.00	-0.20	5.41	-7.46	0.03
	[-] 0.60 0.60 0.80 0.80 1.00	[-] [kN] 0.60 0.00 0.60 0.00 0.80 0.00 0.80 0.00 1.00 -2.11	[-] [kN] 0.60 0.00 5.41 0.60 0.00 5.41 0.80 0.00 5.41 0.80 0.00 5.41 1.00 -2.11 5.41	[-] [kN] [kN] 0.60 0.00 5.41 -5.44 0.60 0.00 5.41 -5.44 0.80 0.00 5.41 -7.25 0.80 0.00 5.41 -7.25 1.00 -2.11 5.41 -7.46

Zusammenfassung der Nachweise Zusammenfassung

Nachweise (GZT) Nachweise im Grenzzustand der Tragfähigkeit

Erforderliche Bolzentragfähigkeit

Nachweis		η [-]
Zuganker	OK	0.28

Durch Kontrollrechnung geprüft

31.07.2023

2.51

kΝ

 $F_{B,d} =$

Seite:

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: **HSW3**

Pos. HSW3

Holzständerwand

System M 1:25

Bemessung einer Holz-Wandscheibe, DIN EN 1995-1-1

Wandabmessungen

Wandlänge Wandhöhe Rippenabstand I = 1.65 $h_W = 2.60$ $a_R = 0.55$

Rippen

Material [-]	b [cm]	h [cm]	NKL [-]
Nadelholz C24			
Vertikale Randrippen	14.0	14.0	1
Nadelholz C24			
Vertikale Innenrippen	8.0	14.0	1
Nadelholz C24			
Horizontale Rippen	10.0	14.0	1

Beplankung

			~
Material	t	bт	NKL
[-]	[mm]	[m]	[-]
OSB-Platten OSB/4			
zweiseitig	16.0	1 65	1

Durch Kontrollrechnung geprüft

31.07.2023

m

m

Datum: 28.04.2023 Position: HSW3

Art Verbindungsmittel **f**u,k dn x In av [-] [N/mm²] [mm] [cm] Holzschraube SST CSA (Vollgewinde, Linsenkopf) 5.0x80 15.0

zweiseitig

Belastungen Belastungen auf das System

Grafik Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen Gk

Qk.W

Punktlasten summiert am Wandkopf

	Komm.	F _x	F _{s,y}	M _{s,z}
		[kN]	[kN]	[kNm]
Einw. Qk.W	(a)	0.00	2.98	0.00

Bei Windlast aus D+E greift pro (a) HSW 25% der Gesamteinzellast an da 4 HSW vorhanden

> (0.65+0.41)*4.5*2.5/4 =2.98

Flächenlasten	Komm.	а	S	q u	qo
in x-Richtung		[m]	[m]	[kN/m ²]	[kN/m ²]
Einw. <i>Gk</i>	Eigengew	0.00	2.60		0.37
					/

Kombinationen Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

mb BauStatik S821.de 2023.010

kΝ

Datum: 28.04.2023 Position: HSW3

Seite:

134

Ek KLED Σ ($\gamma*\psi*EW$)

4 ku/sk 1.00*Gk +1.50*Qk.W

Lagesicherheit 7 st 0.90*Gk

8 ku/sk 0.90*Gk +1.50*Qk.W

st: ständig ku/sk: kurz/sehr kurz

Mat./Querschnitt

Rippen	Material	f _{my,k}	f _{c,0,k}	f _{c,90,k}	f _{t,0,k}	E _{0,mean}
	[-]	[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]
vertikal Rand	NH C24	24.0	21.0	2.5	14.5	11000
vertikal Innen	NH C24	24.0	21.0	2.5	14.5	11000
horizontal	NH C24	24.0	21.0	2.5	14.5	11000

 Beplankung
 Material
 fv,k
 fc,0,k
 Gmean

 [-]
 [N/mm²]
 [N/mm²]
 [N/mm²]

 OSB/4
 6.9
 17.6
 1090

Verbindungsmittel

Typ

[-]

Holzschraube SST CSA

(Vollgewinde, Linsenkopf) 5.0x80

Fv,Rk

av

[kN]

[kN]

[cm]

1.23

15.0

eff. Steifigkeit im GZ Gebrauchstauglichkeit $El_{ef} = 25456$ kNm² im GZ Tragfähigkeit $El_{ef} = 16023$ kNm²

Nachweise (GZT) nach DIN EN 1995-1-1

Imperfektionen der Wand werden nicht berücksichtigt. Die erforderlichen Randbedingungen nach 9.2.4.2 (NA.18) wurden überprüft.

EK Scheibenbeanspr. Ri. **k**mod F_{v,d} Ms,z,d Sv,0,d **f**v,0,d η Abs. 9.2.3 nr. [-] [-] [kN] [kNm] [N/mm][N/mm][-] 1.00 4.47 2.71 12.58 0.22 1 2 0.00 2 1.00 21 4.47 0.00 2.71 12.58 0.22 2 4 1.00 4.47 0.00 2.71 12.58 0.22

Schwellenpressung Ri. EK **k**mod FRi,d Aef² **K**c.90 fc,90,d³ η Abs. 6.1.5 [cm²] [N/mm²] [-] [kN] [-] nr. [-] [-] 1 1 0.60 0.35 238.0 1.25 1.38 0.01 0.04 21 2 1.00 2.12 196.0 1.25 2.31 4 1.00 7.40 238.0 1.25 2.31 0.11

Schwellenpressung bei voller Auflagerung der Schwelle
 gem. NCI Zu 9.2.4.2 (NA.21) mit Erhöhung um 20%

Normalspannung Ri. EK kmod Fo,d o

kс fo,d **℧**0,d η Abs. 6.3.2 [kN] [N/mm²] nr. [-] [-] [-] [N/mm²] [-] -6.69 -0.3411.15 0.03 1.00 1 2 0.62 21 1 0.60 0.71 0.06 9.69 0.01 4 2 7.40 1.00 0.38 0.62 16.15 0.04

¹ maximal beanspruchte Innenrippe

EK Verformungen F_{v,d} Kges Ud **U**zul η NCI Zu 9.2.4.2 [kN] [-] [-] [kN/m][mm] [mm] 2 4.47 2735 1.6 26.0 0.06

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: HSW3

Lagesicherheit	Ri.	EK	Fstb,d	е	Fdst,d	Fz,d
DIN EN 1990, 6.4.2 NDP	nr.	[-]	[kN]	[m]	[kN]	[kN]
zu A1.3.1(3)	1	8	0.71	0.00	-7.05	-6.34!
, ,	4	7	0.71	0.00	_*	0.71
	*: E	Es sind keine d	lestabilisierenden Kräfte vorh	anden.		/

! Zugverankerung erforderlich. Zu verankernde Kraft Fanch,d.

Zugverankerung	Ri.	EK	Fstb,d	е	F _{dst,d}	Fanch,d
	nr.	[-]	[kN]	[m]	[kN]	[kN]
	1	4	0.79	0.00	-7.05	-6.26

Nachweise (GZG) nach DIN EN 1995-1-1

Verformungen	EK	Fv,k	Uk	U zul	η
	[-]	[kN]	[mm]	[mm]	[-]
	2	2.98	0.7	17.3	0.04

Zusammenfassung Zusammenfassung der Nachweise

Nachweise im Grenzzustand der Tragfähigkeit

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis		η [-]
Verformungen	OK	0.04

Seite:

135

Datum: 28.04.2023 Position: HSW3.1

Pos. HSW3.1

Zugverankerung

Geometrie

Grafik M 1:8

Mat./Querschnitt	Bauteil	NKL	Material	Que	rschnitt [cm]
	vert. Rippe	1	NH C24	1-	4.0/14.0
	horiz. Rippe	1	NH C24	1	0.0/14.0
Beplankung	Material		Seite	t [mm]	NKL [-]
	OSB-Platten O	SB/4	innen	16.0	1
	OSB-Platten O	SB/4	außen	16.0	1
Verbindungsmittel	Zuganker Simp CNA Kammnäg	gel			W12G-B x 4.0x60,
	(Europäische Technische Zulassung ETA 07/0285)				

Belastungen

Belastungen auf das System

Auflagerlasten	Komm.	F _x
		[kN]
Einw. <i>Ed.1</i>	(a) HSW3	0.79
Einw. Ed.2	(a) HSW3	1.06
Einw. Ed.3	(a) HSW3	-6.26
Einw. Ed.4	(a) HSW3	-5.99

(a) aus Pos. 'HSW3', Ort 'HSW3'

Kombinationen Kombinationsbildung nach DIN EN 1990

Darstellung der maßgebenden Kombinationen

KLED $\Sigma (\gamma^* \psi^* EW)$

ständig/vorüberg. 3 ku/sk 1.00*Ed.3 ku/sk: kurz/sehr kurz

Bem.-schnittgrößen Bemessungsschnittgrößen

Ek

3 Durch Kontrollrechnung geprüft

Mat./Querschnitt Material- und Querschnittsangaben nach DIN EN 1995-1-1 31.07.202

 $F_{x,d}$ [kN]

-6.26

Datum: 28.04.2023 Position: HSW3.1

Seite:

137

Material	Bauteil	Material	f _{m,k} [N/mm²]	f _{t,0,k} [N/mm ²]	f _{c,0,k} [N/mm ²]	f _{v,k} [N/mm²]	
	vert. R. horiz. R.	NH C24 NH C24	24.0 24.0	14.5 14.5	21.0 21.0	4.0 4.0	
Beplankung	Seite	Material		f _{v,k} [N/mm²]	f _{c,0,k} [N/mm²]	G _{mean} [N/mm²]	
	innen außen	OSB/4 OSB/4		6.9 6.9	17.6 17.6	1090 1090	
	Die Beplankung innen ist kraftübertragend mit der Rippe verbunden. Die Beplankung außen ist kraftübertragend mit der Rippe verbunden.						
Zuganker	Тур		$R_{x,k,l}$			$R_{x,k,ETA}$ [kN]	
	HD340M12G-	В	- 9.	-		-11.78	
	Kammnägel Anzahl der Nä	igel in der vertik	alen Rippe		CI	NA 4.0x60	
Nachweise (GZT)		Grenzzustand d H. J. Blaß und			DIN EN 19	95-1-	
Zuganker	Ek	k _{mo}	od F _{1,d} -] [kN]	n _{ef}	R _{1,d} [kN]	η [-]	
	1	0.6	0.00	5.41	-5.44	0.00	
	2 3	0.6 1.0		5.41 5.41	-5.44 -7.46	0.00 0.84	
	4	1.0		5.41	-7.46	0.80	

Zusammenfassung

Zusammenfassung der Nachweise

Erforderliche Bolzentragfähigkeit

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis		η [-]
Zuganker	OK	0.84

 $F_{B,d} =$

7.45

/

Querschnitt

138

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: HSW.DÜ

Pos. HSW.DÜ Verdübelung

Geometrie M 1:13

Holz-Verbindungsmittelnachweis

Material

			[°]	[cm]			
	Haupt	1	0.0		NH C24		24.0/20.0
	Neben	1	0.0	16.0	S 235		15/50
Verbindungsmittel	Art			n _{längs}	n _{quer}	Mat.	Abm.
	Bolzen			1	1	4.8	M12

NKL

Verstärkung

Mat./Querschnitt

Keine Verstärkungen vorhanden.

Belastungen

Einw. Nd

Belastungen auf das System

[kN]	[kN]	[kN]
		9.00
	[KN]	[KN] [KN]

KombinationenKombinationsbildung nach DIN EN 1990
Darstellung der maßgebenden Kombinationen

Ek KLED Σ (γ*ψ*EW)

ständig/vorüberg. 1 ku/sk 1.00*Nd

Zusammenfassung Zusammenfassung der Nachweise

Bauteil

Nachweise (GZT) Nachweise im Grenzzustand der Tragfähigkeit

Nachweis		η
		[-]
Verbindungsmittel	OK	0.94

Die maximal aufzunehmende Bolzenlast beträgt 7,45 kN aus Position HSW3.1. Somit sind alle Dübelanschlüsse der Zugverankerungen der HSW nachgewiesen!

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: \$1

Pos. S1 Holz-Stütze **System** Pendelstütze aus Holz nach DIN EN 1995-1-1 System M 1:100 3.00 Abmessungen Material b_y/b_z Mat./Querschnitt [m] [cm] 3.00 **NH C24** 14/14 Nutzungsklasse 1 beheizte Innenräume Belastungen auf das System Belastungen **Grafik** Belastungsgrafiken (einwirkungsbezogen) Einwirkungen Gk Gk Qk.N Qk.N Qk.S.A 10.5 5.78 Qk.S.A Qk.W.000 Qk.W.000 Qk.W.090 Qk.W.090 -7.96 5.78 0.05 -0.09 -0.12

Durch Kontrollrechnung geprüft

139

Seite:

Datum: 28.04.2023 Position: \$1

Seite:

140

Streckenlasten

in x-Richtung

Einw. Gk

Punktlasten

in x-Richtung

Einw. Gk

Einw. Qk.S.A

Einw. Qk.W.000 Einw. Qk.W.090

Einw. Qk.W.180

Einw. Qk.W.270

(a)

Streckenlasten Gleichla

in y-Richtung

Einw. Qk.N

Punktlasten in y-Richtung

Einw. Qk.W.000

Einw. Qk.W.090

Einw. Qk.W.180

Gleichlasten

Komm.	а	S	Qu	qo
	[m]	[m]	[kN/m]	[kN/m]
Eigengew	0.00	3.00		0.08

Einzellasten

Komm.	а	F _x	e _y	ez
	[m]	[kN]	[cm]	[cm]
(a)	3.00	10.48	0.0	0.0
(a)	3.00	5.78	0.0	0.0
(a)	3.00	0.05	0.0	0.0
(a)	3.00	-7.96	0.0	0.0
(a)	3.00	-4.52	0.0	0.0
(a)	3.00	1.48	0.0	0.0

aus Pos. 'P2', Lager 'B' (Seite 108)

Gleichlasten

•				
Komm.	а	s	q u	q o
	[m]	[m]	[kN/m]	[kN/m]
	0.00	3.00		0.50

Einzellasten

Komm.	а	F _v
	[m]	[kN]
(a)	3.00	-0.12
(a)	3.00	-0.09
(a)	3.00	-0.15

aus Pos. 'P2', Lager 'B' (Seite 108)

Streckenlasten

in z-Richtung

(a)

Einw. Qk.N

Gleichlasten

Kombinationen

ständig/vorüberg.

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

Ek KLED Σ (γ*ψ*EW)

2 mi 1.35*Gk +1.50*Qk.N 3 ku 1.35*Gk +1.50*Qk.S.A

38 ku/sk 1.00*Gk 46 ku/sk 1.00*Gk +1.50*Qk.W.090 +1.05*Qk.N

+1.50*Qk.W₂Q90_{.2023}

Brand

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: \$1

Seite:

+0.20*Qk.W.270

141

Ek KLED Σ ($\gamma*\psi*EW$)

201 1.00*Gk +0.20*Qk.W.270

205 1.00*Gk +0.30*Qk.N

mi: mittel ku: kurz ku/sk: kurz/sehr kurz

Mat./Querschnitt Material- und Querschnittswerte nach DIN EN 1995-1-1

Material	Material	f _{mk}	f_{t0k}	f _{c0k}	f _{c90k}	f_{vk}	Emean
				[N/r	nm²]		
	NH C24	24.0	14.5	21.0	2.5	4.0	11000

Querschnitt	Art	by	bz	Α	ly	lz
		[cm]	[cm]	[cm²]	[cm⁴]	[cm ⁴]
	RE	14.0	14.0	196	3201	3201
	RE: Rech	teckquerschnitt				

Grafik Querschnittsgrafik [cm]

M 1:10

Knick-/Kippbeiwerte	Achse	i	λ	$\lambda_{ m rel}$	k _c
		[cm]	[-]	[-]	[-]
	у	4.04	74.23	1.26	0.51
	Z	4.04	74.23	1.26	0.51
	m	9.09	32.99	0.37	1.00

Brandfall
Brandbeanspruchung
treq
[min]
vierseitig (oben/unten/links/rechts)
30

Querschnittswerte l_{y,r} β_n br hr p \mathbf{A}_{r} Iz,r Restquerschnitt [mm/min] [cm] [cm] [cm] [cm²] [cm⁴] [cm⁴] 0.80 9.2 9.2 36.8 84.6 597.0 597.0

Grafik Querschnittsgrafik M 1:10

Knick-/Kippbeiwerte	Achse	İr	λ_{fi}	$\lambda_{ m rel,fi}$	k _{c,fi}
		[cm]	[-]	[-]	[-]
	у	2.66	112.96	1.66	0.32
	Z	2.66	112.96	1.66	0.32
	m	5.98	50.20	0.43	1.00

Durch Kontrollrechnung geprüft

Datum: **28.04.2023** Position: **\$1**

Seite:

142

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

 Die Berücksichtigung des Kriechens ist nach DIN EN 1995-1-1/NA NCI NA.5.9 für NKL 1 nicht erforderlich.

Biegung Abs. 6.1 Nachweis der Biegetragfähigkeit

x	Ek	k _{mod}	N _d M _{yd} M _{zd}	$\sigma_{0,d}$ $\sigma_{my,d}$ $\sigma_{mz,d}$	f _{0,d} f _{my,d} f _{mz,d}	η
[m]		[-]	[kN,kNm]	[N/mm ²]	[N/mm ²]	[-]
(L = 3.00 m)						
3.00	46	1.00	1.47	0.07	11.15	
			0.00	0.00	18.46	
			0.00	0.00	18.46	0.01
3.00	38	1.00	1.47	0.07	11.15	
			0.00	0.00	18.46	
			0.00	0.00	18.46	0.01
1.50	46	1.00	1.34	0.07	11.15	
			0.59	1.29	18.46	
			-0.59	1.29	18.46	0.13
1.50	2	0.80	-14.31	0.73	12.92	
			0.84	1.84	14.77	
			-0.84	1.84	14.77	0.32
0.00	3	0.90	-23.14	1.18	14.54	
			0.00	0.00	16.62	
			0.00	0.00	16.62	0.16
0.00	2	0.80	-14.48	0.74	12.92	
			0.00	0.00	14.77	
			0.00	0.00	14.77	0.11

Querkraft Abs. 6.1.7 Nachweis der Querkrafttragfähigkeit

macriweis der	Quer	kraittragianigkeit				•
X	Ek	K _{mod}	$egin{aligned} V_{z,d} \ V_{y,d} \end{aligned}$	T _{z,d} T _{y,d}	$egin{aligned} f_{ extsf{zv,d}} \ f_{ extsf{yv,d}} \end{aligned}$	η
[m]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
3.00	46	1.00	-0.79	0.12	3.08	0.06
			-0.79	0.12	3.08	
3.00	2	0.80	-1.13	0.17	2.46	0.10
			-1.13	0.17	2.46	

Stabilität Abs. 6.3 Nachweis der Stabilität

Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.

Ersatzstablängen

	$I_{ef,cy}$	$I_{ef,cz}$	l _{ef,m}
[m]	[m]	[m]	[m]
3.00	3.00	3.00	3.00

Auflagerpressung

Abs. 6.1.5

Stützenkopf Stützenfuß Nachweis der Auflagerpressung

I	Ek	k _{mod} [-]	F _d [kN]	A _{ef} [cm ²]		σ_{c90d} [N/mm ²]	f* _{c90d} [N/mm ²]	η [-]
	3	0.90	22.81	280.0	1.00	0.81	1.73	0.47
	3	0.90	23.14	280.0	1.00	0.83	1.73	0.48
f*		k * f						

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: \$1

Seite:

143

treq

Nachweise (Brand)

Nachweise der Feuerwiderstandsfähigkeit nach DIN EN 1995-1-2, 4.2.3

Brandfall Brandbeanspruchung

vierseitig (oben/unten/links/rechts) [min]

Biegung Abs. 6.1 Nachweis der Biegetragfähigkeit

x [m]	Ek	k _{mod,fi}	N _{d,fi} M _{yd,fi} M _{zd,fi} [kN,kNm]	σ _{0,d,fi} σ _{my,d,fi} σ _{mz,d,fi} [N/mm ²]	f _{0,d,fi} f _{my,d,fi} f _{mz,d,fi} [N/mm ²]	n [-]
(L = 3.00 m)						
1.48	205	0.65	-10.90	1.29	17.12	
		0.78	0.17	1.30	23.48	
		0.78	-0.17	1.30	23.48	0.33
0.00	205	0.65	-11.02	1.30	17.12	
		0.78	0.00	0.00	23.48	
		0.78	0.00	0.00	23.48	0.24
0.00	201	0.65	-11.02	1.30	17.12	
		0.78	0.00	0.00	23.48	
		0.78	0.00	0.00	23.48	0.24

Querkraft Abs. 6.1.7 Nachweis der Querkrafttragfähigkeit

X	Ek	$\mathbf{k}_{mod,fi}$	$V_{z,d,fi}$	T _{z,d,fi}	$\mathbf{f}_{\mathbf{zv},\mathbf{d},\mathbf{fi}}$	η
			$V_{y,d,fi}$	T y,d,fi	$\mathbf{f}_{yv,d,fi}$	
[m]		[-]	[kN]	[N/mm²]	[N/mm ²]	[-]
3.00	86	0.78	-0.23	0.08	3.91	0.03
			-0.23	0.08	3.91	

Stabilität

Nachweis der Stabilität

Abs. 6.3

Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.

I	$I_{ef,cy}$	$I_{ef,cz}$	$I_{ef,m}$
[m]	[m]	[m]	[m]
3.00	3.00	3.00	3.00

Auflagerkräfte

Char. Auflagerkr.

, and the second	Aufl.	F _{x,k} [kN]	F _{z,k} [kN]	M _{y,k} [kNm]	F _{y,k} [kN]	M _{z,k} [kNm]
Einw. <i>Gk</i>	Α	10.72	0.00	0.00	0.00	0.00
	В		0.00		0.00	
Einw. Qk.N	A	0.00	0.75	0.00	0.75	0.00
	В		0.75		0.75	
Einw. Qk.S.A	A	5.78	0.00	0.00	0.00	0.00
	В		0.00		0.00	
Einw. Qk.W.000	A	0.05	0.00	0.00	0.00	0.00
	В		0.00		-0.12	
Einw. Qk.W.090	A	-7.96	0.00	0.00	0.00	0.00
	В		0.00		-0.09	
Einw. Qk.W.180	A	-4.52	0.00	0.00	0.00	0.00
	В		0.00		-0.15	31.07.2023

Datum: **28.04.2023** Position: **\$1**

Seite:

144

	Aufl.		F _{x,k} [kN]		F _{z,k} [kN]	rı	M _{y,k} kNm]		F _{y,k} [kN]	Г	M _{z,k} kNm]	
Einw. Qk.W.270	A B		1.48		0.00	•	0.00		0.00		0.00	
Bemauflagerkräfte												
ständig/vorüberg.	Aufl.	F _{x,d,min} F _{x,d,max} [kN]	$F_{z,d,max}$		$M_{y,d,max}$		$F_{y,d,max}$		$M_{z,d,max}$		EK	
	A B	-1.22 24.47	119 100	0.00 1.13 0.00 1.13	77 78 77 78	0.00 0.00	77 77	0.00 1.13 -0.2 1.13	77 78 82 78	0.00 0.00	77 77	
außergewöhnlich	Aufl.	F _{x,d,min} F _{x,d,max} [kN]		z,d,min z,d,max [kN]	M	y,d,min y,d,max [kNm]		y,d,min y,d,max [kN]	N	M _{z,d,min} M _{z,d,max} [kNm]	EK	
	A B	21.88 24.31	189 181	0.00 0.38 0.00 0.38	176 177 176 177	0.00 0.00	176 176	0.00 0.38 0.0 0.38	176 177 180 177	0.00 0.00	176 176	
Zusammenfassung	Zusammenfassung der Nachweise											
Nachweise (GZT)	Nachweise im Grenzzustand der Tragfähigkeit											
	Nachweis						X [m]				η	
	Biegu Druck Querk					[m] 1.50 0.00 3.00		50 C	OK OK OK	[-] 0.32 0.48 0.10		
Nachweise (Brand)	Brandfall im Grenzzustand der Tragfähigkeit										/	
	Nach	weis						Γı	x m]		η [-]	
	Biegu Querk							1.4	48 C	OK OK	0.33 0.03	
Detailnachweis	Name			Ort		Det						
	S1.A									. /		

Durch Kontrollrechnung geprüft

IIID-Viewei Version 2023 - Oppyright 2022 - IIID AEO Sottware Gillion

Datum: 28.04.2023 Position: \$1.A

Seite:

145

Pos. S1.A Winkelverbinder

Die bemessenen Winkelverbinder für S1 sollen die abhebenden Zugkräfte aus dem Dach abfangen und in die Deckenkonstruktion 3.OG leiten. Sie sind sowohl unten an den Deckenbalken als auch oben an den jeweiligen Pfetten anzubringen.

S2 benötigt keine Winkel, da Teil einer Holzständerwand bzw. Teil eines Windbocks.

S4 benötigt keine Winkel da Teil einer Holzständerwand. Ausnahme bildet S4 auf der Seite des Windbocks mit S2+S3, dort konstruktiv ansetzen.

S4.1 benötigt jeweils nur einen Winkelverbinder, vor allem auch wegen der geringeren Dicke und der geringeren abhebenden Last.

Geometrie M 1:5

Winkelverbinder für Stütze auf Träger nach DIN EN 1995-1-1

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: \$1.A

Mat./Querschnitt

Bauteil NKL Material Querschnitt

[cm]

Stütze 1 NH C24 14.0/14.0

Träger 1 NH C24 20.0/24.0

Verbindungsmittel Winkelverbinder Simpson Strong-Tie ABR170

(Nagelbild 3)

CNA Kammnägel 2 x 14 x 4.0x50

(Europäische Technische Zulassung ETA 04/0013)

CNA Kammnägel 2 x 9 x 4.0x50

(Europäische Technische Zulassung ETA 04/0013)

Belastungen auf das System

Audianalastas		_	_	_
Auflagerlasten	Komm.	F _x	Fy	Fz
E:	04.4	[kN]	[kN]	[kN]
Einw. Ed.1	(a) S1.A	0.00	0.00	10.72
Einw. Ed.2	(a) S1.A	0.00	0.00	14.48
Einw. Ed.3	(a) S1.A	1.12	1.12	14.48
Einw. <i>Ed.4</i>	(a) <u>S1.A</u>	1.12	1.12	14.48
Einw. <i>Ed.5</i>	(a) S1.A	1.12	1.12	10.72
Einw. <i>Ed.</i> 6	(a) S1.A	1.12	1.12	14.48
Einw. <i>Ed.7</i>	(a) S1.A	1.12	1.12	14.48
Einw. Ed.8	(a) S1.A	1.12	1.12	14.48
Einw. Ed.9	(a) S1.A	1.12	1.12	18.81
Einw. <i>Ed.10</i>	(a) S1.A	1.12	1.12	15.06
Einw. <i>Ed.11</i>	(a) S1.A	0.00	0.00	23.14
Einw. <i>Ed.12</i>	(a) S1.A	1.12	1.12	18.81
Einw. <i>Ed.13</i>	(a) S1.A	1.12	1.12	14.52
Einw. <i>Ed.14</i>	(a) S1.A	0.00	0.00	-1.22
Einw. <i>Ed.15</i>	(a) S1.A	0.00	0.00	24.47
Einw. <i>Ed.16</i>	(a) S1.A	1.12	1.12	14.52
Einw. <i>Ed.17</i>	(a) S1.A	0.38	0.38	24.01
Einw. <i>Ed.18</i>	(a) S1.A	0.00	0.00	23.48
Einw. <i>Ed.19</i>	(a) S1.A	0.00	0.00	24.01
Einw. <i>Ed.20</i>	(a) S1.A	0.38	0.38	24.01
Einw. <i>Ed.21</i>	(a) S1.A	0.22	0.22	24.02
Einw. <i>Ed.22</i>	(a) S1.A	0.00	0.00	21.88
Einw. <i>Ed.2</i> 3	(a) S1.A	0.00	0.00	24.31
Einw. <i>Ed.24</i>	(a) S1.A	0.22	0.22	24.02

(a) aus Pos. 'S1', Ort 'S1.A' (Seite 139)

Kombinationen Kombinationsbildung nach DIN EN 1990

Darstellung der maßgebenden Kombinationen

Ek KLED $\Sigma (\gamma^* \psi^* EW)$

ständig/vorüberg. 14 ku/sk 1.00*Ed.14

ku/sk: kurz/sehr kurz

Durch Kontrollrechnung geprüft

31.07.2023

146

Datum: 28.04.2023 Position: \$1.A

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach ETA-06/0106

Winkelverbinder Nachweis des Winkelverbinders nach ETA-06/0106

EK	\mathbf{k}_{mod}	е	F _{1,d}	η
		f	R _{1,d}	
		[cm]	[kN]	
14	1.00	-	1.22	0.17
		_	7.38	

- Für beidseitige Winkelverbinder ABR170 ist nur ein Lastangriff fim Schubmittelpunkt zulässig.

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT) Nachweise im Grenzzustand der Tragfähigkeit

Nachweis		η [-]
Winkelverbinder	OK	0.17

/

Seite:

147

Datum: **28.04.2023** Position: **\$2**

Seite:

148

Pos. S2 Holz-Stütze **System** Pendelstütze aus Holz nach DIN EN 1995-1-1 System M 1:100 Abmessungen Material b_y/b_z Mat./Querschnitt [m] [cm] 2.60 **NH C24** 14/14 Nutzungsklasse 1 beheizte Innenräume Belastungen auf das System Belastungen Grafik Belastungsgrafiken (einwirkungsbezogen) Einwirkungen Gk Gk Qk.N Qk.N Qk.S.A 6.84 Qk.S.A Qk.W.000 Qk.W.000 Qk.W.090 Qk.W.090 -3.67 10.8

Durch Kontrollrechnung geprüft

Datum: **28.04.2023** Position: **S2**

Seite:

149

Streckenlasten

in x-Richtung

Einw. Gk

Gleichlasten

Komm.	а	S	q u	qo
	[m]	[m]	[kN/m]	[kN/m]
Eigengew	0.00	2.60		0.08

Punktlasten in x-Richtung

Einw. Gk Einw. Qk.S.A Einw. Qk.W.000 Einw. Qk.W.180 Einw. Qk.W.270 Einzellasten

Komm.	а	F _x	e _v	ez
	[m]	[kN]	[cm]	[cm]
(a)	2.60	13.08	0.0	0.0
(a)	2.60	6.84	0.0	0.0
(a)	2.60	2.08	0.0	0.0
(a)	2.60	-7.66	0.0	0.0
(a)	2.60	-2.41	0.0	0.0
(a)	2.60	-2.89	0.0	0.0

(a)

aus Pos. 'P1', Lager 'A', Faktor = 2.00

Streckenlasten in y-Richtung

Einw. Qk.N

G	le	icl	٦l	as	ter	1

Komm.	а	s	Qu	q o
	[m]	[m]	[kN/m]	[kN/m]
	0.00	2.60		0.50

Punktlasten in y-Richtung

Einw. Qk.W.000 Einw. Qk.W.090 Einw. Qk.W.180 Einw. Qk.W.270 Einzellasten

Komm.	а	F_v
	[m]	[kN]
(a)	2.60	-3.67
(a)	2.60	10.78
(a)	2.60	3.73
(a)	2.60	4.28

(a)

aus Pos. 'P1', Lager 'A', Faktor = 2.00

Streckenlasten

in z-Richtung

Einw. Qk.N

Gleichlasten
Komm.

Komm.	а	S	q u	qo
	[m]	[m]	[kN/m]	[kN/m]
	0.00	2.60		0.50

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

Ek KLED Σ ($\gamma*\psi*EW$) ständig/vorüberg. 2 mi 1.35*Gk +1.50*Qk.N 3 ku 1.35*Gk +1.50*Qk.S.A **Brand** 198 1.00*Gk +0.20*Qk.W.000 +0.30*Qk.N +0.20*Qk.W₃QQQ_{.2023} 202 1.00*Gk mi: mittel Durch Kontrollrechnung geprüft

mb-viewer version 2023 - Copyngnt 2022 - mb AEC Software

Datum: 28.04.2023 Position: S2

kurz

Mat./Querschnitt

Material- und Querschnittswerte nach DIN EN 1995-1-1

Material	Material	f _{mk}	f _{t0k}	f _{c0k} [N/ı	f _{c90k} nm²]	f _{vk}	E _{mean}
	NH C24	24.0	14.5	21.0	2.5	4.0	11000

Querschnitt	Art	b _y [cm]	b _z [cm]	A [cm²]	l _y [cm⁴]	I _z [cm ⁴]
	RE	14.0	14.0	196	3201	3201

RE: Rechteckquerschnitt

Grafik

Querschnittsgrafik [cm]

M 1:10

Knick-/Kippbeiwerte	Achse	i	λ	$\lambda_{ m rel}$	k _c
		[cm]	[-]	[-]	[-]
	у	4.04	64.33	1.09	0.62
	Z	4.04	64.33	1.09	0.62
	m	9.09	28.59	0.34	1.00

Brandfall	Brandbeans	pruchun	g				t _{req} [min]
	vierseitig	(oben/	unten/lin	ks/rechts)			30
Querschnittswerte Restquerschnitt	β _n [mm/min]	br [cm]	hr [cm]	p [cm]	Ar [cm²]	l _{y,r} [cm ⁴]	Iz,r [cm ⁴]

9.2

9.2

Grafik

M 1:10

Querschnittsgrafik

08.0

	beflammte Querschnittsseiten

36.8

84.6

597.0

Knick-/Kippbeiwerte	Achse	Ĭŗ	λ_{fi}	$\lambda_{ m rel,fi}$	k _{c,fi}
		[cm]	[-]	[-]	[-]
	у	2.66	97.90	1.44	0.41
	Z	2.66	97.90	1.44	0.41
	m	5.98	43.50	0.40	1.00

Durch Kontrollrechnung geprüft

597.0

150

Seite:

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: S2

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

Die Berücksichtigung des Kriechens ist nach DIN EN 1995-1-1/NA NCI NA.5.9 für NKL 1 nicht erforderlich.

Biegung Abs. 6.1

Nachweis der Biegetragfähigkeit

x [m]	Ek	k _{mod}	N _d M _{yd} M _{zd} [kN,kNm]	σ _{0,d} σ _{my,d} σ _{mz,d} [N/mm ²]	f _{0,d} f _{my,d} f _{mz,d} [N/mm ²]	n [-]
(L = 2.60 m)						
1.30	2	0.80	-17.80	0.91	12.92	
			0.63	1.39	14.77	
			-0.63	1.39	14.77	0.27
0.00	3	0.90	-28.21	1.44	14.54	
			0.00	0.00	16.62	
			0.00	0.00	16.62	0.16
0.00	2	0.80	-17.95	0.92	12.92	
			0.00	0.00	14.77	
			0.00	0.00	14.77	0.11

Querkraft Abs. 6.1.7 Nachweis der Querkrafttragfähigkeit

Nacinwe	JIS UCI	Queir	i aitti ayiai iigkeit				
2	(Ek	\mathbf{k}_{mod}	$V_{z,d}$	T _{z,d}	$\mathbf{f}_{zv,d}$	η
				$V_{y,d}$	T _{y,d}	$\mathbf{f}_{yv,d}$	
[m	1]		[-]	[kN]	[N/mm²]	[N/mm ²]	[-]
2.6	0	2	0.80	-0.98	0.15	2.46	0.09
				-0.98	0.15	2.46	

Stabilität Abs. 6.3

Nachweis der Stabilität

Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.

I	$I_{ef,cy}$	$I_{ef,cz}$	l _{ef,m}
[m]	[m]	[m]	[m]
2.60	2.60	2.60	2.60

Auflagerpressung

Nachweis der Auflagerpressung

Abs. 6.1.5	Ek	k _{mod} [-]	F _d [kN]	A _{ef} [cm ²]	k _{c90} [-]	σ_{c90d} [N/mm ²]	f* _{c90d} [N/mm²]	n [-]
Stützenkopf	3	0.90	27.92	280.0	1.00	1.00	1.73	0.58
Stützenfuß	f*.oo.i: k	0.90	28.21	280.0	1.00	1.01	1.73	0.58

Nachweise (Brand)

Nachweise der Feuerwiderstandsfähigkeit nach DIN EN 1995-1-2, 4.2.3

Brandfall	Brandbeans	pruchung	t _{req}
		-	[min]
	vierseitig	(oben/unten/links/rechts)	30

Biegung Abs. 6.1

Nachweis der Biegetragfähigkeit

Durch Kontrollrechnung geprüft

Datum: **28.04.2023** Position: **\$2**

Seite:

152

x [m]	Ek	k _{mod,fi}	N _{d,fi} M _{yd,fi} M _{zd,fi} [kN,kNm]	σ _{0,d,fi} σ _{my,d,fi} σ _{mz,d,fi} [N/mm ²]	f _{0,d,fi} f _{my,d,fi} f _{mz,d,fi} [N/mm ²]	η [-]
(L = 2.60 m))		-			
1.28	202	0.65	-13.60	1.61	17.12	
		0.78	0.13	0.98	23.48	
		0.78	-0.13	0.98	23.48	0.30
0.00	202	0.65	-13.71	1.62	17.12	
		0.78	0.00	0.00	23.48	
		0.78	0.00	0.00	23.48	0.23
0.00	198	0.65	-13.71	1.62	17.12	
		0.78	0.00	0.00	23.48	
		0.78	0.00	0.00	23.48	0.23

Querkraft

Abs. 6.1.7

Nachweis der Querkrafttragfähigkeit

rtaonittoio aoi	Q G C I	Manuagiaingion				
X	Ek	$\mathbf{k}_{mod,fi}$	$V_{z,d,fi}$	T _{z,d,fi}	$\mathbf{f}_{\mathbf{zv},\mathbf{d},\mathbf{fi}}$	η
			$V_{y,d,fi}$	T _{y,d,fi}	$\mathbf{f}_{yv,d,fi}$	
[m]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
2.60	83	0.78	-0.20	0.07	3.91	0.02
			-0.20	0.07	3.91	

Stabilität

Abs. 6.3

Nachweis der Stabilität

Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.

l	l _{ef,cy}	l _{ef,cz}	l _{ef,m}
[m]	[m]	[m]	[m]
2.60	2.60	2.60	2.60

Auflagerkräfte

Char. Auflagerkr.

Einw.	Gk
Einw.	Qk.N
Einw.	Qk.S.A
Einw.	Qk.W.000
Einw.	Qk.W.090

EINW.	QK.VV.180
Einw.	Qk.W.270

Bem.-auflagerkräfte ständig/vorüberg.

Aufl.	F _{x,k} [kN]	F _{z,k} [kN]	M _{y,k} [kNm]	F _{y,k} [kN]	M _{z,k} [kNm]
Α	13.29	0.00	0.00	0.00	0.00
В		0.00		0.00	
A	0.00	0.65	0.00	0.65	0.00
В		0.65		0.65	
A	6.84	0.00	0.00	0.00	0.00
В		0.00		0.00	
A	2.08	0.00	0.00	0.00	0.00
В		0.00		-3.67	
A	-7.66	0.00	0.00	0.00	0.00
В		0.00		10.78	
A	-2.41	0.00	0.00	0.00	0.00
В		0.00		3.73	
A	-2.89	0.00	0.00	0.00	0.00
В		0.00		4.28	
	Durah I/	بطم معالم عطمه			

Aufl.	$F_{x,d,min}$	EK F	z,d,min	EKN	$I_{y,d,min}$	EK F	y,d,min	EKN	$I_{z,d,min}$	EK
	$F_{x,d,max}$	F	z,d,max	M	y,d,max	F	y,d,max	M	z,d,max	
	[kN]		[kN]		[kNm]		[kN]		[kNm]	
Α	1.80	119	0.00	77	0.00	77	0.00	77	0.0007	7.2 0 28

Datum: **28.04.2023** Position: **\$2**

Seite:

153

	Aufl.	F _{x,d,min} F _{x,d,max} [kN]	F	z,d,min z,d,max [kN]	M	l _{y,d,min} l _{y,d,max} [kNm]		y,d,min y,d,max [kN]	N	M _{z,d,min} M _{z,d,max} [kNm]	EK
	В	30.08	94	0.98 0.00 0.98	78 77 78	0.00	77	0.98 -5.5 16.8	78 80 89	0.00	77
außergewöhnlich	Aufl.	F _{x,d,min} F _{x,d,max} [kN]		z,d,min z,d,max [kN]	M	l _{y,d,min} l _{y,d,max} [kNm]		y,d,min y,d,max [kN]	N	M _{z,d,min} M _{z,d,max} [kNm]	EK
	A B	26.84 29.45	189 178	0.00 0.33 0.00 0.33	176 177 176 177	0.00	176 176	0.00 0.33 -0.7 2.35	176 177 178 183	0.00	176 176
Zusammenfassung	Zusam	nmenfass	ung de	r Nach	weise						/
Nachweise (GZT)	Nachw	veise im G	Grenzz	ustand	der T	ragfähi	gkeit				
	Nachv	veis						ſr	x n]		η [-]
	Biegur Druck Querk	J						1.3 0.0 2.6	30 C	OK OK OK	0.27 0.58 0.09
Nachweise (Brand)	Brand	fall im Gre	enzzus	tand d	er Tra	gfähigk	eit				/
	Nachv	veis						[r	x n]		η [-]
	Biegur Querk	•						1.2 2.6	28 C	OK OK	0.30 0.02

2.60 OK 0.02

Datum: 28.04.2023 Position: S3

Pos. S3 Strebe vom Windbock

Pos.: ST3 = Strebe der neuen Windböcke

siehe PP2: Detail (III): Zug- und Druckfester Anschluss der Windböcke

Seite:

154

System

Pendelstütze aus Holz nach DIN EN 1995-1-1

System

M 1:100

Abmessungen Mat./Querschnitt

I	Material	b _y /b _z
[m]		[cm]
4.50	NH C24	14/14

Nutzungsklasse 1 beheizte Innenräume

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen

Streckenlasten

Gleichlasten in x-Richtung Komm. [m] [m] [kN/m][kN/m]Einw. Gk 4.50 Eigengew 0.00 0.08

Durch Kontrollrechnung geprüft

Datum: **28.04.2023**

155

S3

10.00

10.00

Seite:

Position:

Streckenlasten Gleichlasten in y-Richtung Komm. а s qu [kN/m][kN/m][m] [m] Einw. Qk.W 0.00 4.50 1.00 Streckenlasten Gleichlasten Komm. in z-Richtung а S qu [kN/m] [m] [m] [kN/m]Einw. Gk 0.00 4.50 1.00 **Punktlasten** Einzellasten F_z in z-Richtung Komm. а [m] [kN]

Kombinationen

Einw. Gk

Einw. Qk.W

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

0.00

0.00

KLED $\Sigma (\gamma^* \psi^* EW)$ 1.35*Gk ständig/vorüberg. 1 st 2 ku/sk 1.35*Gk +1.50*Qk.W Brand 11 1.00*Gk 12 1.00*Gk +0.20*Qk.W ständig st: ku/sk: kurz/sehr kurz

Mat./Querschnitt

Material- und Querschnittswerte nach DIN EN 1995-1-1

Material Material f_{c90k} f_{vk} Emean fmk f_{t0k} f_{c0k} [N/mm²] **NH C24** 24.0 21.0 4.0 11000 14.5 2.5 Querschnitt Art bz Α by [cm²] [cm⁴] [cm] [cm] [cm⁴] 14.0 14.0 196 3201 3201 RE: Rechteckquerschnitt

Grafik

Querschnittsgrafik [cm]

M 1:10

Knick-/Kippbeiwerte	Achse	i	λ	$\lambda_{ m rel}$	k c
		[cm]	[-]	[-]	[-]
	у	4.04	111.35	1.89	0.25
	Z	4.04	111.35	1.89	0.25
	m	9.09	49.48	0.45	1.00

Brandfall	Brandbeans	Brandbeanspruchung		
			[min]	
	vierseitig	(oben/unten/links/rechts)	30	
			31.07.2023	

156 Seite:

S3

Datum: 28.04.2023 Position:

βn	br	hr	р	Ar	ly,r	lz,r
[mm/min]	[cm]	[cm]	[cm]	[cm ²]	[cm ⁴]	[cm ⁴]
0.80	9.2	9.2	36.8	84.6	597.0	597.0

Grafik M 1:10

Querschnittsgrafik

Knick-/Kippbeiwerte

Achse	İr	λ_{fi}	$\lambda_{ m rel,fi}$	$\mathbf{k}_{c,fi}$
	[cm]	[-]	[-]	[-]
у	2.66	169.44	2.49	0.15
Z	2.66	169.44	2.49	0.15
m	5.98	75.30	0.53	1.00

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

- Die Berücksichtigung des Kriechens ist nach DIN EN 1995-1-1/NA NCI NA.5.9 für NKL 1 nicht erforderlich.

Biegung Abs. 6.1

Nachweis der Biegetragfähigkeit

X	Eĸ	k _{mod}	N _d M _{yd} M _{zd}	$\sigma_{0,d}$ $\sigma_{my,d}$ $\sigma_{mz,d}$	$\begin{array}{c} f_{0,d} \\ f_{my,d} \\ f_{mz,d} \end{array}$	η
[m]		[-]	[kN,kNm]	[N/mm²]	[N/mm ²]	[-]
(L = 4.50 m)						
2.25	2	1.00	-0.25	0.01	16.15	
			3.42	7.47	18.46	
			-3.80	8.30	18.46	0.74
2.24	1	0.60	-0.25	0.01	9.69	
			3.42	7.47	11.08	
			0.00	0.00	11.08	0.48
0.00	2	1.00	-0.50	0.03	16.15	
			0.00	0.00	18.46	
			0.00	0.00	18.46	0.01
0.00	1	0.60	-0.50	0.03	9.69	
			0.00	0.00	11.08	
			0.00	0.00	11.08	0.01

Querkraft Abs. 6.1.7

Nachweis de	r Querki	rafttragfähigkeit
x	Ek	k _{mod}

 vaci iwcia uci	Quci	Manuagianighon				
X	Ek	k _{mod}	$V_{z,d}$ $V_{y,d}$	T _{z,d} T _{v.d}	$f_{zv,d}$ $f_{vv,d}$	η
[m]		[-]	[kN]	[N/mm ²]	• .	[-]
4.50	2	1.00	-3.04	0.46	3.08	0.23
			-3.38	0.52	3.08	
4.50	1	0.60	-3.04	0.46	1.85	0.25
			0.00	0.00	1.85	

Stabilität Abs. 6.3

Nachweis der Stabilität Durch Kontrollrechnung geprüft

Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.

Datum: 28.04.2023 Position: S3

157

Seite:

Ersatzstablängen	I	$I_{ef,cy}$	I _{ef,cz}	$I_{ef,m}$
	[m]	[m]	[m]	[m]
	4.50	4.50	4.50	4.50

Nachweise (Brand)

Nachweise der Feuerwiderstandsfähigkeit nach DIN EN 1995-1-2, 4.2.3

Brandfall	Brandbeans	Brandbeanspruchung	
	vierseitig	(oben/unten/links/rechts)	[min] 30

Biegung

Abs. 6.1

Nachweis der Biegetragfähigkeit

X	Ek	k _{mod,fi}	N _{d,fi} M _{yd,fi} M _{zd,fi}	$\sigma_{0,d,fi}$ $\sigma_{my,d,fi}$ $\sigma_{mz,d,fi}$	$f_{0,d,fi}$ $f_{my,d,fi}$ $f_{mz,d,fi}$	η
[m]		[-]	[kN,kNm]	[N/mm ²]	[N/mm ²]	[-]
(L = 4.50 m)						
2.24	12	0.65	-0.19	0.02	17.12	
		0.78	2.53	19.50	23.48	
		0.78	-0.51	3.90	23.48	0.96
2.24	11	0.65	-0.19	0.02	17.12	
		0.78	2.53	19.50	23.48	
		0.78	0.00	0.00	23.48	0.84
0.00	12	0.65	-0.37	0.04	17.12	
		0.78	0.00	0.00	23.48	
		0.78	0.00	0.00	23.48	0.02
0.00	11	0.65	-0.37	0.04	17.12	
		0.78	0.00	0.00	23.48	
		0.78	0.00	0.00	23.48	0.02

Querkraft

Abs. 6.1.7

Nachweis	der Querk	krafttragfähigkei	it
		I.	

Nacilweis dei	Queir	dandayianiyked				
x	Ek	k _{mod,fi}	$V_{z,d,fi}$ $V_{y,d,fi}$	T _{z,d,fi} T _{y,d,fi}	f _{zv,d,fi} f _{yv,d,fi}	η
[m]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
4.50	6	0.78	-2.25	0.80	3.91	0.21
			-0.45	0.16	3.91	
4.50	5	0.78	-2.25	0.80	3.91	0.20
			0.00	0.00	3.91	

Stabilität

Abs. 6.3

Nachweis der Stabilität

Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.

Ersatzstablängen	I	$I_{ef,cy}$	I _{ef,cz}	$I_{ef,m}$
	[m]	[m]	[m]	[m]
	4.50	4.50	4.50	4.50

Auflagerkräfte

Char. Auflagerkr.

Einw. Gk

Einw. Qk.W

IVIZ,K	ı y,ĸ	IVIY,K	I Z,K	ı x,k	Auii.
[kNm]	[kN]	[kNm]	[kN]	[kN]	
0.00	0.00	0.00	12.25	0.37	Α
	0.00		2.25		В
31.07.2023	2.25	0.00	10.00	0.00	A

Datum: **28.04.2023** Position: **\$3**

Aufl.	F _{x,k}	F _{z,k}	M _{y,k}	F _{y,k}	M _{z,k}
	[kN]	[kN]	[kNm]	[kN]	[kNm]
В	[KI4]	0.00	[KIVIII]	2.25	[KIAIII]

Zusammenfassung Z

Zusammenfassung der Nachweise

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	X		η
	[m]		[-]
Biegung	2.25	OK	0.74
Querkraft	4.50	OK	0.25

Nachweise (Brand)

Brandfall im Grenzzustand der Tragfähigkeit

Nachweis	X		η
	[m]		[-]
Biegung	2.24	OK	0.96
Querkraft	4.50	OK	0.21

158

Seite:

Datum: 28.04.2023 Position: \$4

Pos. S4 Holz-Randstütze

System Pendelstütze aus Holz nach DIN EN 1995-1-1

System

M 1:100

Abmessungen Mat./Querschnitt

1	Material	b _y /b _z
[m]		[cm]
2.50	NH C24	14/14

Nutzungsklasse 1 beheizte Innenräume

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen

Qk.W.090

Qk.S.A

Qk.W.090

Qk.W.180

Qk.W.180

Qk.W.270

Qk.W.270

159

Seite:

Streckenlasten

in x-Richtung

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023

2.50

Gleichlasten Komm. а S [kN/m] [kN/m] [m] [m] Eigengew 0.00 2.50 0.08

Punktlasten in x-Richtung

Einw. Gk

Einw. Gk Einw. Qk.S.A Einw. Qk.W.000 Einw. Qk.W.090 Einw. Qk.W.180 Einw. Qk.W.270 (a)

Einzellasten Komm. F_x а e_v ez [kN] [m] [cm] [cm] 2.50 1.78 0.0 0.0 (a) 2.50 0.97 0.0 0.0 (a) 2.50 0.0 0.0 -0.78(a) 2.50 -1.300.0 0.0 2.50 -0.04 0.0 0.0

aus Pos. 'P3', Lager 'A' (Seite 116)

Streckenlasten in y-Richtung

Einw. Qk.N

Gleichlasten

(a)

Komm. q_u [m] [m] [kN/m][kN/m]0.00 2.50 0.50

Punktlasten in y-Richtung

Einw. Qk.W.000 Einw. Qk.W.090 Einw. Qk.W.180 Einw. Qk.W.270 Einzellasten

Komm.	а	Fy
	[m]	[kN]
(a)	2.50	0.15
(a)	2.50	2.61
(a)	2.50	0.15
(a)	2.50	-0.08

(a) aus Pos. 'P3', Lager 'A' (Seite 116)

3

243

Streckenlasten in z-Richtung

Einw. Qk.N Einw. Qk.W Gleichlasten

Komm.	a	s	qu	qo
	[m]	[m]	[kN/m]	[kN/m]
	0.00	2.50		0.50
	0.00	2.50		1.00

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

ständig/vorüberg.

32 ku/sk 1.35*Gk 46 ku/sk 1.00*Gk 56 ku/sk 1.00*Gk

4 ku/sk 1.35*Gk

12 ku/sk 1.35*Gk

Ek KLED Σ ($\gamma^*\psi^*EW$)

ku 1.35*Gk

+1.50*Qk.S.A

+1.50*Qk.W +1.05*Qk.N +1.05*Qk.N

+1.50*Qk.W +0.75*Qk.S.A

+0.20*Qk.W

+1.50*Qk.W

1.00*Gk

+1.50*Qk.W.090 +1.05*Qk.N

+0.30*Qk.N

+1.50*Qk.W.090 +0.20*Qk.W.270

Brand

244 1.00*Gk kurz ku: ku/sk: kurz/sehr kurz

Durch Kontrollrechnung geprüft

160

S4

0.0

Seite:

Position:

0.0

0.23

Datum: 28.04.2023 Position: \$4

Mat./Querschnitt

Material- und Querschnittswerte nach DIN EN 1995-1-1

Material	Material	f _{mk}	f _{t0k}	f _{c0k} [N/r	f _{c90k} nm²]	f _{vk}	E _{mean}
	NH C24	24.0	14.5	21.0	2.5	4.0	11000

Querschnitt	Art	b _y [cm]	b _z [cm]	A [cm²]	l _y [cm⁴]	I _z [cm ⁴]
	RE	14.0	14.0	196	3201	3201

RE: Rechteckquerschnitt

Grafik

Querschnittsgrafik [cm]

M 1:10

Knick-/Kippbeiwerte	Achse	i	λ	$\lambda_{ m rel}$	kc
		[cm]	[-]	[-]	[-]
	у	4.04	61.86	1.05	0.65
	Z	4.04	61.86	1.05	0.65
	m	9.09	27.49	0.34	1.00

Brandfall
Brandbeanspruchung
treq
[min]
vierseitig (oben/unten/links/rechts)
30

Querschnittswerte β_{n} br hr $\mathbf{A}_{\mathbf{r}}$ $I_{y,r}$ Iz,r Restquerschnitt [mm/min] [cm²] [cm⁴] [cm⁴] [cm] [cm] [cm] 0.80 9.2 36.8 84.6 597.0 597.0

Grafik M 1:10

Achse	İr	λ_{fi}	$\lambda_{ m rel,fi}$	k _{c,fi}
	[cm]	[-]	[-]	[-]
у	2.66	94.13	1.38	0.44
Z	2.66	94.13	1.38	0.44
m	5.98	41.83	0.40	1.00

Durch Kontrollrechnung geprüft

161

Datum: 28.04.2023 Position: \$4

Seite:

162

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

 Die Berücksichtigung des Kriechens ist nach DIN EN 1995-1-1/NA NCI NA.5.9 für NKL 1 nicht erforderlich.

Biegung Abs. 6.1 Nachweis der Biegetragfähigkeit

Nachweis der Biegetragfähigkeit						
X	Ek	k _{mod}	Nd	σ _{0,d}	f _{0,d}	η
			M _{yd}	σ _{my,d}	f _{my,d}	
[m]		[-]	M _{zd} [kN,kNm]	σ _{mz,d} [N/mm²]	f _{mz,d} [N/mm²]	[-]
(L = 2.50 m)		r_1	[KI4,KI4III]	[14/11111]	[IA/IIIIII]	[-]
2.50	56	1.00	0.17	0.01	11.15	
2.00	00	1.00	0.00	0.00	18.46	
			0.00	0.00	18.46	0.00
2.50	46	1.00	0.17	0.01	11.15	0.00
			0.00	0.00	18.46	
			0.00	0.00	18.46	0.00
1.25	56	1.00	0.07	0.00	11.15	
			0.41	0.90	18.46	
			-0.41	0.90	18.46	0.08
1.25	32	1.00	-3.26	0.17	16.15	
			1.58	3.46	18.46	
			-0.41	0.90	18.46	0.24
1.25	12	1.00	-2.54	0.13	16.15	
			1.58	3.46	18.46	
			-0.41	0.90	18.46	0.23
1.25	4	1.00	-2.54	0.13	16.15	
			1.17	2.56	18.46	
			0.00	0.00	18.46	0.15
0.00	56	1.00	-0.04	0.00	16.15	
			0.00	0.00	18.46	
	4.0		0.00	0.00	18.46	0.00
0.00	46	1.00	-0.04	0.00	16.15	
			0.00	0.00	18.46	0.00
0.00	20	4.00	0.00	0.00	18.46	0.00
0.00	32	1.00	-3.40	0.17	16.15	
			0.00	0.00	18.46	0.02
0.00	10	1.00	0.00	0.00	18.46	0.02
0.00	12	1.00	-2.68 0.00	0.14 0.00	16.15 18.46	
			0.00	0.00	18.46	0.01
0.00	4	1.00	-2.68	0.00	16.46	0.01
0.00	7	1.00	0.00	0.00	18.46	
			0.00	0.00	18.46	0.01
0.00	3	0.90	-4.12	0.00	14.54	0.01
0.00	3	0.00	0.00	0.00	16.62	
			0.00	0.00	16.62	0.02
			5.53	5.50		

Querkraft Abs. 6.1.7

Nachweis der Querkrafttragfähigkeit							•
	X	Ek	k _{mod}	$oldsymbol{V}_{z,d} \ oldsymbol{V}_{y,d}$	T _{z,d} T _{y,d}	f _{zv,d} f _{yv,d}	η
	[m]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
	2.50	56	1.00	-0.66	0.10	3.08	0.05
				-0.66	0.10	3.08	
	2.50	32	1.00	-2.53	0.39	3.08	0.13 31.07.2023
	Durch Ko	ontrolli	echnung geprü	$ff^{0.66}$	0.10	3.08	31.07.2023

Datum: 28.04.2023 Position: \$4

x [m]	Ek	k _{mod} [-]	V _{z,d} V _{y,d} [kN]	T _{z,d} T _{y,d} [N/mm²]	f _{zv,d} f _{yv,d} [N/mm ²]	ր [-]
2.50	12	1.00	-2.53 -0.66	0.39 0.10	3.08 3.08	0.13
2.50	4	1.00	-1.88 0.00	0.29 0.00	3.08 3.08	0.09

Stabilität

Nachweis der Stabilität

Abs. 6.3

Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.

Ersatzstablängen

1	$I_{ef,cy}$	l _{ef,cz}	$I_{ef,m}$
[m]	[m]	[m]	[m]
2.50	2.50	2.50	2.50

Nachweise (Brand)

Nachweise der Feuerwiderstandsfähigkeit nach DIN EN 1995-1-2, 4.2.3

Brandfall

Brandbeansp	t _{req}	
		[min]
vierseitig	(oben/unten/links/rechts)	30

Biegung Abs. 6.1 Nachweis der Biegetragfähigkeit

x	Ek	k _{mod,fi}	N _{d,fi} M _{yd,fi} M _{zd,fi}	$\sigma_{0,d,\mathrm{fi}}$ $\sigma_{my,d,fi}$ $\sigma_{mz,d,fi}$	$f_{0,d,fi}$ $f_{my,d,fi}$ $f_{mz,d,fi}$	η
[m]		[-]	[kN,kNm]	[N/mm²]	[N/mm²]	[-]
(L = 2.50 m)	1)					
1.24	244	0.65	-1.88	0.22	17.12	
		0.78	0.27	2.11	23.48	
		0.78	-0.12	0.90	23.48	0.15
0.00	244	0.65	-1.98	0.23	17.12	
		0.78	0.00	0.00	23.48	
		0.78	0.00	0.00	23.48	0.03
0.00	243	0.65	-2.03	0.24	17.12	
		0.78	0.00	0.00	23.48	
		0.78	0.00	0.00	23.48	0.03

Querkraft Abs. 6.1.7 Nachweis der Querkrafttragfähigkeit

1001111010 00		a a.g.ag	-			
X	Ek	$\mathbf{k}_{mod,fi}$	$V_{z,d,fi}$	T _{z,d,fi}	$\mathbf{f}_{zv,d,fi}$	η
Free 7			$V_{y,d,fi}$	Ty,d,fi	f _{yv,d,fi}	
[m]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
2.50	100	0.78	-0.44	0.16	3.91	0.04
			₋∩ 10	0.07	3 01	

Stabilität Abs. 6.3 Nachweis der Stabilität

Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.

Ersatzstablängen

I	$I_{ef,cy}$	$I_{ef,cz}$	$I_{ef,m}$
[m]	[m]	[m]	[m]
2.50	2.50	2.50	2.50

Durch Kontrollrechnung geprüft

31.07.2023

163

Datum: **28.04.2023** Position: **\$4**

Seite:

164

Auflagerkräfte

Char. Auflagerkr.

	Aufl.	$F_{x,k}$	$F_{z,k}$	$M_{y,k}$	$F_{y,k}$	$M_{z,k}$
		[kN]	[kN]	[kNm]	[kN]	[kNm]
Einw. <i>Gk</i>	Α	1.98	0.00	0.00	0.00	0.00
	В		0.00		0.00	
Einw. <i>Qk.N</i>	A	0.00	0.63	0.00	0.63	0.00
	В		0.63		0.63	
Einw. <i>Qk.S.A</i>	A	0.97	0.00	0.00	0.00	0.00
	В		0.00		0.00	
Einw. <i>Qk.W</i>	A	0.00	1.25	0.00	0.00	0.00
	В		1.25		0.00	
Einw. Qk.W.000	A	-0.78	0.00	0.00	0.00	0.00
	В		0.00		0.15	
Einw. Qk.W.090	A	-1.30	0.00	0.00	0.00	0.00
	В		0.00		2.61	
Einw. Qk.W.180	A	-0.04	0.00	0.00	0.00	0.00
	В		0.00		0.15	
Einw. Qk.W.270	A	0.23	0.00	0.00	0.00	0.00
	В		0.00		-0.08	

Bem.-auflagerkräfte ständig/vorüberg.

Aufl.	F _{x,d,min} F _{x,d,max} [kN]		z,d,min z,d,max [kN]	M	l _{y,d,min} y,d,max [kNm]		y,d,min y,d,max [kN]	M	I _{z,d,min} I _{z,d,max} [kNm]	EK
Α	0.04	144	0.00	93	0.00	93	0.00	93	0.00	93
	4.33	121	2.53	104	0.00	93	0.94	94	0.00	93
В			0.00	93			-0.1	100		
			2.53	104			4.57	108		

außergewöhnlich

Aufl.	$F_{x,d,min}$	EK F	z,d,min	EKN	l _{y,d,min}	EK F	y,d,min	EKN	z,d,min	EK
	F _{x,d,max}	F	z,d,max		l _{y,d,max}	F	y,d,max		z,d,max	
	[kN]		[kN]		[kNm]		[kN]		[kNm]	
Α	3.85	229	0.00	213	0.00	213	0.00	213	0.00	213
	4.25	219	0.44	220	0.00	213	0.31	214	0.00	213
В			0.00	213			0.0	219		
			0.44	220			0.71	222		

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

X		η
[m]		[-]
1.25	OK	0.24
2.50	OK	0.13
	1.25	1.25 OK

Nachweise (Brand)

Brandfall im Grenzzustand der Tragfähigkeit

Nachweis	x [m]		η [-]
Biegung	1.24	OK	0.15
Querkraft	2.50	OK	0.04

Detailnachweis

Durch Kontrollrechnung geprüft

Datum: **28.04.2023** Position: **\$4**

Name	Ort	Detail
ST4.B	Lager A	Winkelverbinder

Durch Kontrollrechnung geprüft

IIID-VIEWEI VEISIOI 2023 - Copyright 2022 - IIID AEC SOftwale Gillion

165

Datum: 28.04.2023 Position: \$4.1

Pos. S4.1 Holz-Innenstütze System Pendelstütze aus Holz nach DIN EN 1995-1-1 System M 1:100 Abmessungen Material b_y/b_z Mat./Querschnitt [m] [cm] 2.50 **NH C24** 10/14 Nutzungsklasse 1 beheizte Innenräume Belastungen Belastungen auf das System **Grafik** Belastungsgrafiken (einwirkungsbezogen) Einwirkungen Gk Gk Qk.N Qk.N Qk.S.A Qk.S.A Qk.W Qk.W.000 Qk.W.000 Qk.W.090 -3.57

Durch Kontrollrechnung geprüft

166

Datum: 28.04.2023 Position: S4.1

Streckenlasten in x-Richtung

Einw. Gk

Punktlasten in x-Richtung

Einw. Gk Einw. Qk.S.A Einw. Qk.W.000 Einw. Qk.W.090 Einw. Qk.W.180

Einw. Qk.W.270

(a)

Streckenlasten in y-Richtung

Einw. Qk.N

Streckenlasten in z-Richtung

Einw. Qk.N Einw. Qk.W Gleichlasten

010101110101011				
Komm.	а	s	q u	qo
	[m]	[m]	[kN/m]	[kN/m]
Eigengew	0.00	2.50		0.06

Einzellasten

Komm.	а	F _x	e _v	ez
	[m]	[kN]	[cm]	[cm]
(a)	2.50	4.88	0.0	0.0
(a)	2.50	2.65	0.0	0.0
(a)	2.50	-2.14	0.0	0.0
(a)	2.50	-3.57	0.0	0.0
(a)	2.50	-0.11	0.0	0.0
(a)	2.50	0.62	0.0	0.0

aus Pos. 'P3', Lager 'B' (Seite 116)

Gleichlasten

Komm.	а	S	q u	qo
	[m]	[m]	[kN/m]	[kN/m]
	0.00	2.50		0.50

Gleichlasten

ku/sk:

kurz/sehr kurz

Komm.	а	S	q u	qo
	[m]	[m]	[kN/m]	[kN/m]
	0.00	2.50		0.50
	0.00	2.50		1.00

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

	Ek	KLED Σ (γ*ψ*EW)		
ständig/vorüberg.	3	ku 1.35*Gk	+1.50*Qk.S.A	
	4	ku/sk 1.35*Gk	+1.50*Qk.W	
	12	ku/sk 1.35*Gk	+1.05*Qk.N	+1.50*Qk.W
	32	ku/sk 1.35*Gk	+1.05*Qk.N	+0.75*Qk.S.A
		+1.50*Qk.W		
	46	ku/sk 1.00*Gk	+1.50*Qk.W.090	
	56	ku/sk 1.00*Gk	+1.05*Qk.N	+1.50*Qk.W.090
Brand	243	1.00*Gk	+0.20*Qk.W.270	
	244	1.00*Gk	+0.30*Qk.N	+0.20*Qk.W
	ku:	kurz		

Durch Kontrollrechnung geprüft

31.07.2023

167

Datum: 28.04.2023 Position: \$4.1

Mat./Querschnitt

Material- und Querschnittswerte nach DIN EN 1995-1-1

Material	Material		f _{mk}	f _{t0k}	f _{c0k} [N/r	f _{c90k} nm²]	f _{vk}	E _{mean}
	NH C24		24.0	14.5	21.0	2.5	4.0	11000
Querschnitt	Art	b _v	bz		Α	ı	v	lz

[cm] [cm] [cm²] [cm⁴] [cm⁴]
RE 10.0 14.0 140 2287 1167

RE: Rechteckquerschnitt

Grafik

Querschnittsgrafik [cm]

M 1:10

Knick-/Kippbeiwerte	Achse	i	λ	$\lambda_{ m rel}$	k c
		[cm]	[-]	[-]	[-]
	у	4.04	61.86	1.05	0.65
	Z	2.89	86.60	1.47	0.39
	m	5.34	46.78	0.44	1.00

Brandfall
Brandbeanspruchung
treq
[min]
vierseitig (oben/unten/links/rechts)
30

lz,r Querschnittswerte β_{n} br hr $\mathbf{A}_{\mathbf{r}}$ $I_{y,r}$ Restquerschnitt [mm/min] [cm²] [cm⁴] [cm⁴] [cm] [cm] [cm] 0.80 5.2 28.8 47.8 337.4 107.8

Grafik Querschnittsgrafik M 1:10

Knick-/Kippbeiwerte

Achse	i _r [cm]	λ _{fi} [-]	λ _{rel,fi} [-]	k _{c,fi} [-]
у	2.66	94.13	1.27	0.50
Z	1.50	166.54	2.25	0.18
m	2.36	105.75	0.61	1.00

Durch Kontrollrechnung geprüft

168

169

Seite:

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: 28.04.2023 Position: \$4.1

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

 Die Berücksichtigung des Kriechens ist nach DIN EN 1995-1-1/NA NCI NA.5.9 für NKL 1 nicht erforderlich.

Biegung Abs. 6.1 Nachweis der Biegetragfähigkeit

Nachweis der Biegetragfähigkeit								
X	Ek	k _{mod}	N _d M _{yd} M _{zd}	$\sigma_{0,d}$ $\sigma_{my,d}$ $\sigma_{mz,d}$	f _{0,d} f _{my,d} f _{mz,d}	η		
[m]		[-]	[kN,kNm]	[N/mm ²]	[N/mm ²]	[-]		
(L = 2.50 m)								
2.50	56	1.00	0.47	0.03	11.15			
			0.00	0.00	18.46			
			0.00	0.00	18.46	0.00		
2.50	46	1.00	0.47	0.03	11.15			
			0.00	0.00	18.46			
			0.00	0.00	18.46	0.00		
1.25	56	1.00	0.39	0.03	11.15			
			0.41	1.26	18.46			
			-0.41	1.76	18.46	0.15		
1.25	32	1.00	-8.68	0.62	16.15			
			1.58	4.84	18.46			
			-0.41	1.76	18.46	0.39		
1.25	12	1.00	-6.69	0.48	16.15			
			1.58	4.84	18.46			
	_		-0.41	1.76	18.46	0.37		
1.25	4	1.00	-6.69	0.48	16.15			
			1.17	3.59	18.46			
		4 00	0.00	0.00	18.46	0.24		
0.00	32	1.00	-8.78	0.63	16.15			
			0.00	0.00	18.46			
0.00	40	4.00	0.00	0.00	18.46	0.10		
0.00	12	1.00	-6.79	0.49	16.15			
			0.00	0.00	18.46	0.00		
0.00		4.00	0.00	0.00	18.46	0.08		
0.00	4	1.00	-6.79	0.49	16.15			
			0.00	0.00	18.46	0.00		
0.00	0	0.00	0.00	0.00	18.46	0.08		
0.00	3	0.90	-10.77	0.77	14.54			
			0.00	0.00	16.62	0.40		
			0.00	0.00	16.62	0.13		

Querkraft Abs. 6.1.7 Nachweis der Querkrafttragfähigkeit

x	Ek	\mathbf{k}_{mod}	$V_{z,d}$	T _{z,d}	$\mathbf{f}_{zv,d}$	η
			$V_{y,d}$	T _{y,d}	$\mathbf{f}_{yv,d}$	
[m]		[-]	[kN]	[N/mm²]	[N/mm ²]	[-]
2.50	56	1.00	-0.66	0.14	3.08	0.06
			-0.66	0.14	3.08	
2.50	32	1.00	-2.53	0.54	3.08	0.18
			-0.66	0.14	3.08	
2.50	12	1.00	-2.53	0.54	3.08	0.18
			-0.66	0.14	3.08	
2.50	4	1.00	-1.88	0.40	3.08	0.13
			0.00	0.00	3.08	

Durch Kontrollrechnung geprüft

Datum: 28.04.2023

Stabilität Abs. 6.3 Nachweis der Stabilität

Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.

Ersatzstablängen

1	$I_{ef,cy}$	l _{ef,cz}	$I_{ef,m}$
[m]	[m]	[m]	[m]
2.50	2.50	2.50	2.50

170

S4.1

Seite:

Position:

Nachweise (Brand)

Nachweise der Feuerwiderstandsfähigkeit nach DIN EN 1995-1-2, 4.2.3

Brandfall

Brandbean	t_{req}	
		[min]
vierseitig	(oben/unten/links/rechts)	30

Biegung Abs. 6.1 Nachweis der Biegetragfähigkeit

x [m]	Ek	k _{mod,fi}	N _{d,fi} M _{yd,fi} M _{zd,fi} [kN,kNm]	σ _{0,d,fi} σ _{my,d,fi} σ _{mz,d,fi} [N/mm ²]	f _{0,d,fi} f _{my,d,fi} f _{mz,d,fi} [N/mm ²]	n [-]
(L = 2.50 m))					
1.23	244	0.52	-4.96	1.04	13.61	
		0.70	0.27	3.73	20.97	
		0.70	-0.12	2.83	20.97	0.68
0.00	244	0.52	-5.03	1.05	13.61	
		0.70	0.00	0.00	20.97	
		0.70	0.00	0.00	20.97	0.43
0.00	243	0.52	-5.15	1.08	13.61	
		0.70	0.00	0.00	20.97	
		0.70	0.00	0.00	20.97	0.44

Querkraft Abs. 6.1.7 Nachweis der Querkrafttragfähigkeit

Nacilweis de	i Queir	Manuayianiykei	L			
X	Ek	$\mathbf{k}_{mod,fi}$	$V_{z,d,fi}$	$\mathbf{T}_{\mathbf{z},\mathbf{d},\mathbf{fi}}$	$\mathbf{f}_{zv,d,fi}$	η
			$V_{y,d,fi}$	Ty,d,fi	$\mathbf{f}_{yv,d,fi}$	
[m]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
2.50	100	0.70	-0.44	0.27	3.49	0.09
			-0.19	0.12	3.49	

Stabilität Abs. 6.3 Nachweis der Stabilität

Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Ersatzstablängen werden berücksichtigt.

Ersatzstablängen

	$I_{ef,cy}$	I _{ef,cz}	l _{ef,m}
[m]	[m]	[m]	[m]
2.50	2.50	2.50	2.50

Auflagerkräfte

Char. Auflagerkr.

Einw. Gk

Einw. Qk.N

Aufl.	F _{x,k} [kN]	F _{z,k} [kN]	M _{y,k} [kNm]	F _{y,k} [kN]	M _{z,k} [kNm]
Α	5.03	0.00	0.00	0.00	0.00
В		0.00		0.00	
A	0.00	0.63	0.00	0.63	0.00
В		0.63		0.63	31.07.2023

lewer Version 2023 - Copyright 2022 - mb AEC Soπware G

Datum: 28.04.2023 Position: \$4.1

Seite:

171

	Aufl.		F _{x,k} [kN]		F _{z,k} [kN]	[I	M _{y,k} kNm]		F _{y,k} [kN]	[I	M _{z,k} kNm]
Einw. Qk.S.A	Α		2.66		0.00	•	0.00		0.00	•	0.00
	B A				0.00				0.00		
Einw. Qk.W			0.00		1.25		0.00		0.00		0.00
Einw. <i>Qk.W.000</i>	B A		-2.14		0.00		0.00		0.00		0.00
EIIW. QX.77.000	В	•	-2.14		0.00		0.00		0.00		0.00
Einw. Qk.W.090	Ā		-3.57		0.00		0.00		0.00		0.00
					0.00				0.00		
Einw. <i>Qk.W.180</i>	B A		-0.11		0.00		0.00		0.00		0.00
	B A				0.00				0.00		
Einw. <i>Qk.W.270</i>	A B		0.62		0.00		0.00		0.00		0.00
Bemauflagerkräfte											
ständig/vorüberg.	Aufl.	$F_{x,d,min}$	EK F	z,d,min	EKN	1 _{y,d,min}	EK F	y,d,min	EK	M _{z,d,min}	EK
		F _{x,d,max} [kN]		z,d,max [kN]		l _{y,d,max} [kNm]		y,d,max [kN]		M _{z,d,max} [kNm]	
	Α	-0.32	144	0.00	93	0.00	93	0.00	93		93
	В	11.33	121	2.53	104	0.00	93	0.94	94	0.00	93
	В			0.00 2.53	93 104			0.00 0.94	93 94		
				2.55	104			0.94	94		
außergewöhnlich	Aufl.	$F_{x,d,min}$	EK F	z,d,min	EKN	1 _{y,d,min}	EK F	y,d,min	EK	M _{z,d,min}	EK
		$F_{x,d,max}$	F	z,d,max		l _{y,d,max}	F	y,d,max	ľ	M _{z,d,max}	
	^	[kN]	220	[kN]		[kNm]	040	[kN]	242	[kNm]	040
	Α	10.17 11.26	229 219	0.00 0.44	213 220	0.00	213 213	0.00 0.31	213 214	0.00	213 213
	В	11.20	213	0.00	213	0.00	213	0.00	213	0.00	213
	J			0.44	220			0.31	214		,
Zusammenfassung	Zusam	nmenfass	ung de	r Nach	weise						•
Nachweise (GZT)	Nachw	eise im C	Grenzz	ustand	der T	ragfähi	gkeit				
	Nachv	veis						r.	X 1		η
	Biegur	20							n] 25 (ЭK	[-] 0.39
	Querk									OK OK	0.39
	Quon	idit						2.\		5 10	0.10
Nachweise (Brand)	Brandf	all im Gre	enzzus	tand d	er Traç	gfähigk	eit				•
	Nachv	veis						_	X		η
	Pio au	20							n])K	[-]
	Biegur Querk							1 2.		OK OK	0.68
	QUEIK	iait						۷.۰	00 (บ.บฮ
Detailnachweis	Name			Ort		Det	tail				
	ST4.B			Lage	r A	Wir	nkelver	binder			. /

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: KBB1

Seite:

172

Datum. **20.04.2023**

Kopfbandbalken

System

Pos. KBB1

Holz-Kopfbandbalken, DIN EN 1995-1-1

M 1:30

Abmessungen Prette
Mat./Querschnitt

 Feld
 I
 Material
 b/h NKL

 [m]
 [cm] [-]

 1
 3.30
 NH C24
 14/20
 1

Abmessungen Stützen Mat./Querschnitt

 Aufl.
 I
 lef,c
 Art
 Material
 bz/by
 NKL

 [m]
 [m]
 [cm]
 [-]

 A-B
 2.60
 2.60
 frei
 NH C24
 14/14
 1

Abmess. Kopfbänder Mat./Querschnitt

Aufl.	aıi	hii	lii	Material	bz/by	NKL
	are [m]	h _{re} [m]	l _{re} [m]		[cm]	[-]
Α	• •	• •		-		
	0.90	0.90	1.27	NH C24	14/14	1
В	0.90	0.90	1.27	NH C24	14/14	1

Anschlüsse

Anschlüsse übertragen Druck und Zug.

Auflager

Aufl.	X	Transl. x	Transl. z	Rot. y
	[m]	[kN/m]	[kN/m]	[kNm/rad]
Α	0.00	starr	starr	frei
В	3.30	starr	starr	frei

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: KBB1

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen

Qk.S.A

Seite:

173

Qk.W.000

Qk.W.090

Qk.W.180

Qk.W.270

Streckenlasten

in z-Richtung

Einw. Gk

Einw. Qk.S.A Einw. Qk.W.000

Gleichlasten

	Feld	Komm.	а	S	qıi	Q re
			[m]	[m]	[kN/m]	[kN/m]
	1	Eigengew	0.00	3.30		0.12
(a)	1		0.00	3.30		3.85
(a)	1		0.00	3.30		2.07
(a)	1		0.00	3.30		31.07 0 2 63

Datum: 28.04.2023 Position: KBB1

Seite:

+1.50*Qk.W.090

174

	Feld Komm.	а	S	qıi	q re
		[m]	[m]	[kN/m]	[kN/m]
Einw. Qk.W.090	(a) 1	0.00	3.30		-2.32
Einw. Qk.W.180	(a) 1	0.00	3.30		-0.73
Einw. <i>Qk.W.270</i>	(a) 1	0.00	3.30		-0.88

(a)

aus Pos. 'D2', Lager 'B'

Punktlasten in z-Richtung

Einw. Gk

Einze	ellasten		
Feld	Komm.	а	Fz
		[m]	[kN]
1	Eigengew	0.00	0.32
1	Figengew	3 30	0.32

Normalkräfte

Einw. Qk.W.090

Norm	alkräfte			\checkmark
Feld	Komm.	а	S	N _x
		[m]	[m]	ľkNi

3.30

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

ständig/vorüberg.

Ek	KLED	Σ (γ*ψ*EW)	
2	ku	1.35*Gk	+1.50*Qk.S.A
4	ku/sk	1.00*Gk	+1.50*Qk.W.090
9	ku/sk	1 35*Gk	+0 75*Qk S A

0.00

ku: kurz ku/sk: kurz/sehr kurz

Mat./Querschnitt

Knick-/Kippbeiwerte	Achse	i	λ	$\lambda_{ m rel}$	k c
		[cm]	[-]	[-]	[-]
Stab 1	У	5.77	25.98	0.44	0.97
	Z	4.04	81.65	1.38	0.43
	m	7.38	44.69	0.43	1.00
Stab 2	У	4.04	64.33	1.09	0.62
	Z	4.04	64.33	1.09	0.62
	m	9.09	28.59	0.34	1.00
Stab 3	У	4.04	64.33	1.09	0.62
	Z	4.04	64.33	1.09	0.62
	m	9.09	28.59	0.34	1.00
Stab 4	у	4.04	31.49	0.53	0.94
	Z	4.04	31.49	0.53	0.94
	m	9.09	14.00	0.24	1.00
Stab 5	у	4.04	31.49	0.53	0.94
	Z	4.04	31.49	0.53	0.94
	m	9.09	14.00	0.24	1.00

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

- Die Berücksichtigung des Kriechens auf das Biegeknicken ist nach DIN EN 1995-1-1/NA NCI NA.5.9 für NKL 1 nicht erforderlich.

Normal- und	Stab x	Ek	K mod	N_{xd}	♂ 0d	f od	η
Biegespannung				M yd	σ myd	f myd	
Abs. 6.1	[m]		[-]	[kNm]	[N/mm ²]	[N/mm ²]	[-]
	1 (L=3.30 m)						
	0.00	4	1.00	-13.78	0.49	16.15	31.0 0.207 3
		Du	rch Kontro	llrechnung	n genrüft		our für Stano

Datum: 28.04.2023 Position: KBB1

Seite:

175

Stab	X	Ek	K mod	Nxd M	σ 0d	f 0d	η
	[m]		[-]	M _{yd} [kNm]	σ _{myd} [N/mm²]	f _{myd} [N/mm²]	[-]
	[]		[-]	0.00	0.00	18.46	r-1
	1.65	2	0.90	-1.99	0.07	14.54	0.41*
				6.36	6.81	16.62	
	3.30	9	1.00	8.32	0.30	11.15	0.03
				-0.00	0.00	18.46	
2 (L=2	.60 m)						
_ (0.00	2	0.90	-14.39	0.73	14.54	0.08
				-0.00	0.00	16.62	
	1.70	4	1.00	-5.51	0.28	16.15	0.73*
				5.93	12.96	18.46	
	2.60	2	0.90	-8.66	0.44	14.54	0.05
				-0.00	0.00	16.62	
3 (L=2	.60 m)						
•	0.00	2	0.90	-14.39	0.73	14.54	0.08
				0.00	0.00	16.62	
	1.70	9	1.00	-11.75	0.60	16.15	0.95*
				7.49	16.37	18.46	
	2.60	2	0.90	-8.66	0.44	14.54	0.05
				0.00	0.00	16.62	
4 (L=1	.27 m)						
•	0.00	4	1.00	14.24	0.73	11.15	0.07
				0.00	0.00	18.46	
	1.27	4	1.00	14.24	0.73	11.15	0.07
				0.00	0.00	18.46	
5 (L=1	.27 m)						
•	0.00	9	1.00	-18.00	0.92	16.15	0.06
				0.00	0.00	18.46	
	1.27	9	1.00	-18.00	0.92	16.15	0.06
				0.00	0.00	18.46	

Schubspannung
Abs 617

Stab	x [m]	Ek	Kmod [-]	V _{zd} [kN]	Tzd [N/mm²]	f _{zd} [N/mm²]	η [-]
1	0.00	2	0.90	8.23	0.88	2.77	0.32
	3.30	2	0.90	-8.23	0.88	2.77	0.32*
2	0.00	4	1.00	3.49	0.53	3.08	0.17
	1.70	4	1.00	-6.58	1.01	3.08	0.33*
	2.60	4	1.00	-6.58	1.01	3.08	0.33
3	0.00	9	1.00	4.40	0.67	3.08	0.22
	1.70	9	1.00	-8.32	1.27	3.08	0.41*
	2.60	9	1.00	-8.32	1.27	3.08	0.41

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: KBB1

Stabilität (BDK)

Nachweis der Stabilität

Abs. 6.3

Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Knick-/Kipplängen werden berücksichtigt.

Knick-/Kipplängen

Feld	von x	bis x	lef,cy	lef,cz	lef,m	
	[m]	[m]	[m]	[m]	[m]	
1	0.00	3.30	1.50	3.30	3.30	

Die Knick- und Kipplängen der Stützen und Kopfbänder entsprechen den Stablängen.

Auflagerkräfte

Charakteristische Auflagerkräfte

Char. Auflagerkr.

	Aufl.	⊢ _{x,k}	⊢ _{z,k}
		[kN]	[kN]
Einw. <i>Gk</i>	Α	-0.93	6.86
	В	0.93	6.86
Einw. Qk.S.A	A	-0.49	3.42
	В	0.49	3.42
Einw. <i>Qk.W.000</i>	A	-0.15	1.04
	В	0.15	1.04
Einw. <i>Qk.W.090</i>	A	2.94	-7.61
	В	1.86	-0.05
Einw. <i>Qk.W.180</i>	A	0.17	-1.20
	В	-0.17	-1.20
Einw. Qk.W.270	A	0.21	-1.44
	В	-0.21	-1.44

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Stab	X		η
		[m]		[-]
Biegung	Stab 3	1.70	OK	0.95
Querkraft	Stab 3	1.70	OK	0.41

/

176

Seite:

Holz-Kopfbandbalken, DIN EN 1995-1-1

Datum: 28.04.2023 Position: KBB2

Seite:

177

Pos. KBB2

Kopfbandbalken

System

M 1:40

Abmessungen Pfette
Mat./Querschnitt

Abmessungen Stützen Mat./Querschnitt

Abmess. Kopfbänder Mat./Querschnitt

Feld	l [m]			Material	b/h [cm]	NKL [-]
1	4.30			NH C24	14/36	1
Aufl.	l [m]	lef,c [m]	Art	Material	bz/by [cm]	NKL [-]
A-B	2.60	2.60	frei	NH C24	14/14	1

Aufl.	ali	hii lii		Material	bz/by	NKL	
	are [m]	h _{re} [m]	l _{re} [m]		[cm]	[-]	
Α	-	-		-	-	-	
	0.90	0.90	1.27	NH C24	14/14	1	
В	0.90	0.90	1.27	NH C24	14/14	1	

Anschlüsse

Anschlüsse übertragen Druck und Zug.

Auflager

Aufl.	X	Transl. x	Transl. z	Rot. y
	[m]	[kN/m]	[kN/m]	[kNm/rad]
Α	0.00	starr	starr	frei
В	4.30	starr	starr	frei

Datum: 28.04.2023 Position: KBB2

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen

Qk.S.A

Seite:

178

Qk.W.000

Qk.W.090

Qk.W.180

Qk.W.270

Streckenlasten

in z-Richtung

Einw. Gk

Einw. *Qk.S.A* Einw. *Qk.W.000* Einw. *Qk.W.090* Einw. *Qk.W.180*

Einw. Qk.W.270

Gleichlasten

	Feld	Komm.	а	s	q _{li}	q re
			[m]	[m]	[kN/m]	[kN/m]
	1	Eigengew	0.00	4.30		0.21
(a) (a) (a) (a) (a) (a) (a)	1		0.00	4.30		5.92
	1		0.00	4.30		3.40
	1		0.00	4.30		-0.14
	4		0.00	4.30		-4.59
	4		0.00	4.30		-2.74
	1		0.00	4.30		0.80

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: KBB2

179

Seite:

(a) aus Pos. 'D1', Lager 'B', Faktor = 2.00 (Seite 32)

Punktlasten Einzellasten

in z-Richtung

Feld Komm.

a

Fz

[m]

[kN]

Einw. Gk

1 Eigengew
0.00
0.32
1 Eigengew
4.30
0.32

Normalkräfte Normalkräfte

KombinationenKombinationsbildung nach DIN EN 1990
Darstellung der maßgebenden Kombinationen

Ek KLED $\Sigma (\gamma^* \psi^* EW)$ ständig/vorüberg. 2 1.35*Gk +1.50*Qk.S.A ku 4 ku/sk 1.00*Gk +1.50*Qk.W.090 8 ku/sk 1.35*Gk +0.75*Qk.S.A +1.50*Qk.W.090 1.00*Gk quasi-ständig 11 Brand +0.20*Qk.W.090 13 1.00*Gk 15 1.00*Gk +0.20*Qk.W.270 ku: kurz ku/sk: kurz/sehr kurz

Mat./Querschnitt

Knick-/Kippbeiwerte	Achse	i	λ	$\lambda_{ m rel}$	kc
Tallok /Tappbolworto	7.01.00	[cm]	[-]	[-]	[-]
Stab 1	у	10.39	24.06	0.41	0.97
	Z	4.04	106.40	1.80	0.27
	m	4.73	90.87	0.61	1.00
Stab 2	у	4.04	64.33	1.09	0.62
	Z	4.04	64.33	1.09	0.62
	m	9.09	28.59	0.34	1.00
Stab 3	у	4.04	64.33	1.09	0.62
	Z	4.04	64.33	1.09	0.62
	m	9.09	28.59	0.34	1.00
Stab 4	у	4.04	31.49	0.53	0.94
	Z	4.04	31.49	0.53	0.94
	m	9.09	14.00	0.24	1.00
Stab 5	у	4.04	31.49	0.53	0.94
	Z	4.04	31.49	0.53	0.94
	m	9.09	14.00	0.24	1.00
Knick-/Kippbeiwerte	Achse	i _r [cm]	λ _{fi} [-]	λ _{rel,fi} [-]	k _{c,fi} [-]

		[cm]	[-]	[-]	[-]
Stab 1	у	9.70	25.77	0.41	0.98
	Z	2.66	161.91	2.56	0.14
	m	2.29	187.64	0.86	0.92
Stab 2	y	2.66	97.90	1.50	0.38
	Z	2.66	97.90	1.50	0.38
	m	5.98	43.50	0.41	1.00
Stab 3	y	2.66	97.90	1.50	0.38
	Z	2.66	97.90	1.50	0.38
	m	5.98	43.50	0.41	1.00
Stab 4	У	2.66	47.92	0.74	31.070286

Tewer version 2023 - Copyright 2022 - IIID AEC

Datum: 28.04.2023 Position: KBB2

180

Seite:

Achse	i _r [cm]	λ _{fi} [-]	λ _{rel,fi} [-]	k _{c,fi} [-]
Z	2.66	47.92	0.74	0.86
m	5.98	21.30	0.29	1.00
У	2.66	47.92	0.74	0.86
Z	2.66	47.92	0.74	0.86
m	5.98	21.30	0.29	1.00

Nachweise (GZT)

Stab 5

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

- Die Berücksichtigung des Kriechens auf das Biegeknicken ist nach DIN EN 1995-1-1/NA NCI NA.5.9 für NKL 1 nicht erforderlich.

Normal- und Biegespannung Abs. 6.1

Stab	X	Ek	K mod	Nxd Myd	σ 0d σ myd	fod fmyd	η
	[m]		[-]	[kNm]	[N/mm²]	[N/mm²]	[-]
1 (L=4.3	30 m)						
·	0.00	4	1.00	-14.21 0.00	0.28 0.00	16.15 18.46	0.06
	2.15	2	0.90	-2.01 25.70	0.04 8.50	14.54 16.62	0.51*
	4.30	8	1.00	7.92 0.00	0.16 0.00	11.15 18.46	0.01
2 (L=2.6	60 m)						
•	0.00	2	0.90	-29.19 -0.00	1.49 0.00	14.54 16.62	0.16
	1.70	4	1.00	5.65 6.31	0.29 13.80	11.15 18.46	0.77*
	2.60	2	0.90	-23.39 -0.00	1.19 0.00	14.54 16.62	0.13
3 (L=2.6	60 m)						
V (= =	0.00	2	0.90	-29.19 0.00	1.49 0.00	14.54 16.62	0.16
	1.70	8	1.00	-13.27 7.13	0.68 15.59	16.15 18.46	0.91*
	2.60	2	0.90	-23.39 0.00	1.19 0.00	14.54 16.62	0.13
4 (L=1.2	27 m)						
,	0.00	4	1.00	15.16 0.00	0.77 0.00	11.15 18.46	0.07
	1.27	4	1.00	15.16 0.00	0.77 0.00	11.15 18.46	0.07
5 (L=1.2	27 m)						
•	0.00	8	1.00	-17.13 0.00	0.87 0.00	16.15 18.46	0.06
	1.27	8	1.00	-17.13 0.00	0.87 0.00	16.15 18.46	0.06

Schubspannung	
Abs. 6.1.7	

Stab	X	Ek	k mod	V_{zd}	Tzd	f zd	η
	[m]		[-]	[kN]	[N/mm ²]	[N/mm²]	[-]
1	0.00	2	0.90	22.96	1.37	2.77	0.49* 31.07.2023 0.49
	4.30	2	0.90	-22.96	1.37	2.77	0.49

Datum: 28.04.2023 Position: KBB2

Stab	x [m]	Ek	Kmod [-]	V _{zd} [kN]	Tzd [N/mm²]	f _{zd} [N/mm²]	η [-]
2	0.00	4	1.00	3.71	0.57	3.08	0.18
	1.70	4	1.00	-7.01	1.07	3.08	0.35*
	2.60	4	1.00	-7.01	1.07	3.08	0.35
3	0.00	8	1.00	4.19	0.64	3.08	0.21
	1.70	8	1.00	-7.92	1.21	3.08	0.39*
	2.60	8	1.00	-7.92	1.21	3.08	0.39

Nachweise (GZG)

Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1

max. Verformungen Pfette

Ptette Abs. 7.2

	X	NKL	Kdef	Ek	Wz	zul w	η
	[m]				[mm]	[mm]	[-]
Stab 1 (L =	4.30 m)						
Wnet,fin	2.15	1	0.6	11	6.1	14.3	0.43

Nachweise (Brand)

Nachweise der Feuerwiderstandsfähigkeit nach DIN EN 1995-1-2, 4.2.3

 $t_{req} =$

30

Brandfall

Pfette dreiseitig beflammt (unten/vorne/hinten) Stützen und Kopfbänder vierseitig beflammt

Feuerwiderstandsdauer

Normal- und Biegespannung Abs. 6.1

Stab	X	Ek	k mod,fi	Nxd,fi Myd,fi	σ 0d,fi σ myd,fi	f 0d,fi f myd,fi	η
	[m]		[-]	[kNm]	[N/mm ²]	[N/mm ²]	[-]
1 (L=4.3	30 m)						
•	0.00	13	0.88	-0.39	0.01	21.06	0.00
				0.00	0.00	26.29	
	2.15	15	0.88	-0.94	0.03	21.06	0.29*
				12.09	6.98	26.29	
	4.30	13	0.88	2.39	0.08	16.77	0.00
				0.00	0.00	26.29	
2 (L=2.6	60 m)						
•	0.00	15	0.84	-13.85	1.64	19.40	0.22
				-0.00	0.00	25.11	
	1.70	15	0.84	-13.85	1.64	19.40	0.72*
				-1.61	12.38	25.11	
	2.60	15	0.84	-11.12	1.31	19.40	0.18
				-0.00	0.00	25.11	
3 (L=2.6	60 m)						
,	0.00	15	0.84	-13.85	1.64	19.40	0.22
				0.00	0.00	25.11	
	1.70	13	0.84	-12.11	1.43	19.40	0.85*
				2.15	16.55	25.11	
	2.60	15	0.84	-11.12	1.31	19.40	0.18
				0.00	0.00	25.11	

4 (L=1.27 m)

Durch Kontrollrechnung geprüft

31.07.2023

181

Datum: 28.04.2023 Position: KBB2

182

Seite:

Stab	X	Ek	K mod,fi	Nxd,fi Myd,fi	σ 0d,fi σ myd,fi	f 0d,fi f myd,fi	η
	[m]		[-]	[kNm]	[N/mm ²]	[N/mm ²]	[-]
	0.00	15	0.84	-3.86	0.46	19.40	0.03
				0.00	0.00	25.11	
	1.27	15	0.84	-3.86	0.46	19.40	0.03
				0.00	0.00	25.11	
5 (L=1.	27 m)						
	0.00	13	0.84	-5.16	0.61	19.40	0.04
				0.00	0.00	25.11	
	1.27	13	0.84	-5.16	0.61	19.40	0.04
				0.00	0.00	25.11	

Schu	bspannung
Abs.	6.1.7

Stab	x [m]	Ek	Kmod,fi [-]	V _{zd,fi} [kN]	Tzd,fi [N/mm²]	f _{zd,fi} [N/mm²]	η [-]
1	0.00	15	0.88	10.80	1.05	4.38	0.24*
	4.30	15	0.88	-10.80	1.05	4.38	0.24
2	0.00	15	0.84	-0.94	0.33	4.18	0.08
	1.70	15	0.84	1.78	0.63	4.18	0.15*
	2.60	15	0.84	1.78	0.63	4.18	0.15
3	0.00	13	0.84	1.26	0.45	4.18	0.11
	1.70	13	0.84	-2.39	0.85	4.18	0.20*
	2.60	13	0.84	-2.39	0.85	4.18	0.20

Stabilität (BDK)

Abs. 6.3

Nachweis der Stabilität

Der Einfluss der Stabilität ist im Nachweis der Biegetragfähigkeit enthalten. Folgende Knick-/Kipplängen werden berücksichtigt.

Kn	ICK-	/Kipı	olān	aen

Feld	von x	bis x	lef,cy	lef,cz	lef,m
	[m]	[m]	[m]	[m]	[m]
1	0.00	4.30	2.50	4.30	4.30

Die Knick- und Kipplängen der Stützen und Kopfbänder entsprechen den Stablängen.

Auflagerkräfte

Charakteristische Auflagerkräfte

Char. Auflagerkr.

3	Aufl.	F _{x,k} [kN]	F _{z,k} [kN]
Einw. <i>Gk</i>	Α	-0.92	13.50
	В	0.92	13.50
Einw. <i>Qk.S.A</i>	A	-0.51	7.31
	В	0.51	7.31
Einw. <i>Qk.W.000</i>	A	0.02	-0.31
	В	-0.02	-0.31
Einw. <i>Qk.W.090</i>	A	3.09	-12.77
	В	1.71	-6.96
Einw. <i>Qk.W.180</i>	A	0.41	-5.90
	В	-0.41	-5.90
Einw. Qk.W.270	A	-0.12	31.07 1 2 022

Datum: 28.04.2023 Position: KBB2

Aufl.	$F_{x,k}$	$F_{z,k}$
	[kN]	[kN]
В	0.12	1.72

Zusammenfassung Zusammenfassung der Nachweise

Nachweise (GZT) Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Stab	X		η
		[m]		[-]
Biegung	Stab 3	1.70	OK	0.91
Querkraft	Stab 1	2.15	OK	0.49

Nachweise (Brand) Brandfall im Grenzzustand der Tragfähigkeit

Nachweis	Stab	X		η
		[m]		[-]
Biegung	Stab 3	1.70	OK	0.85
Querkraft	Stab 1	2.15	OK	0.24

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Stab	X		η
		[m]		[-]
Durchhang	Stab 1	2.15	OK	0.43

/

183

Seite:

Durch Kontrollrechnung geprüft

ion 2023 - Copyngnt 2022 - mb AEC Sottware GmbH

Datum: 28.04.2023 Position: ST1

Pos. ST1 Fenstersturz

Sturz ist Teil des Ringbalkens

Abmessungen	Feld	1	Material	b/h
Mat./Querschnitt		[m]		[cm]
	1	3.50	C 25/30	24.0/25.0

Expositionsklassen WF, XC4 und XF1

Auflager	Lager	x	b	Art	$K_{T,z}$
· ·	_	[m]	[cm]		[kN/m]
	A	0.00	20.0	Mauerw.	fest
	В	3.50	20.0	Mauerw.	fest

Belastungen Belastungen auf das System

Grafik Belastungsgrafiken (einwirkungsbezogen)

Streckenlasten	Gleich	nlasten				
in z-Richtung	Feld	Komm.	a [m]	s [m]	q _{li} [kN/m]	q _{re} [kN/m]
Einw. <i>Gk</i>	1	Eigengew	0.00	3.50		1.50
	_(a) 1	S2	0.00	3.50		3.85
	(b) 1	MW	0.00	3.50		3.00
Einw. <i>Qk.S.A</i>	(a) 1	S2	0.00	3.50		2.07
Einw. <i>Qk.W.000</i>	(a) 1	S2	0.00	3.50		0.63
Einw. <i>Qk.W.090</i>	(a) 1	S2	0.00	3.50		-2.32
Einw. <i>Qk.W.180</i>	(a) 1	S2	0.00	3.50		-0.73
Einw. <i>Qk.W.270</i>	(a) 1	S2	0.00	3.50		-0.88

Durch Kontrollrechnung geprüft

184

Datum: **28.04.2023** Position: **ST1**

(a) aus Pos. 'D2', Lager 'B'

(b) Giebel-MW paschal 3 = 3.00 kN/m

Kombinationen gemäß DIN EN 1992-1-1 und DIN EN 1990

ständig/vorüberg. 1 1.00*Gk 2 1.35*Gk +1.50*Qk.S.A +0.90*Qk.W.000

 $\Sigma (\gamma^* \psi^* EW)$

3 1.00*Gk +1.50*Qk.W.090

Ek Σ (γ*ψ*EW)

Ek

außergewöhnlich 4 1.00*Gk +2.30*Qk.S.A +0.20*Qk.W.000 5 1.00*Gk +2.30*Qk.S.A +0.20*Qk.W.090

Mat./Querschnitt

Material- und Querschnittswerte nach DIN EN 1992-1-1:2011-01

 Material
 f_{yk} f_{ck}
 E [N/mm²]
 [N/mm²]
 [N/mm²]

 C 25/30
 25 31000
 31000
 200000

 B 500SA
 500
 200000

 Querschnitt
 Art
 b
 h
 A
 Iy

 [cm]
 [cm]
 [cm²]
 [cm⁴]

 RE
 24.0
 25.0
 600
 31250

RE: Rechteckquerschnitt

Grafik Querschnittsgrafik [cm]

M 1:10

Expositionsklassen Abs. 4.2, 4.4

4.2, 4.4 Feld 1 Expositionsklassen

Seite KI Kommentar umlaufend XC4 wechselnd nass und trocken

XF1 Mäßige Wassersättigung ohne

Taumittel

WF Häufig oder längere Zeit

feuchter Beton

Bewehrungsanordnung Achsabstände, Betondeckungen

	Bezug	C _{min} [mm]	Δc _{dev} [mm]	C _{nom} [mm]	c _v [mm]	d' [mm]
Feld 1	oben	25	15	40	40	54
	unten	25	15	40	40	54
	links	25	15	40	40	-
	rechts	25	15	40	40	-

Bemessung (GZT)

für den Grenzzustand der Tragfähigkeit nach DIN EN 1992-1-1:2011-01

Durch Kontrollrechnung geprüft

31.07.2023

185

Datum: 28.04.2023 Position: ST1

Biegung Abs. 6.1

Feld 1

Bemessung für Biegebeanspruchung

X	Ek	M _{yd,o} M _{yd,u}	x/d _o x/d _u	$oldsymbol{z_o}{oldsymbol{z_u}}$	$oldsymbol{A}_{s,o}$ $oldsymbol{A}_{s,u}$	A _{s,o,erf} A _{s,u,erf}
[m]		[kNm]		[cm]	[cm²]	[cm²]
(L = 3.50)	m)					
0.00	1	-	-	-	-	$0.66_{\rm e}$
	1	-	0.004	19.6	-	0.86_{q}
0.10a	3	0.83	-	-	-	0.66 _e
	2	2.54	0.043	19.3	0.29	0.86_{q}
1.75*	3	7.45	-	-	-	-
	2	22.88	0.240	17.6	2.93	2.93
3.40a	3	0.83	-	-	-	0.66 _e
	2	2.54	0.043	19.3	0.29	0.86_{q}
3.50	1	-	-	-	_	0.66 _e
	1	-	0.004	19.6	-	0.86_{q}

a: Auflagerrand

Querkraft

Abs. 6.2

Feld 1

Bemessung für Querkraftbeanspruchung

x [m]	Ek	V _{Ed} [kN]	θ [°]	V _{Rd,max} [kN]	V _{Rd,c} [kN]	a _{sw,erf} [cm²/m]
(L = 3.50)	m)					
0.00	2	21.73_{R}	18.4	90.27	-	-
0.10_a	2	21.73_{R}	18.4	90.27	-	2.00_{M}
0.30_{v}	2	21.73	18.4	90.27	23.28	2.00_{M}
1.75	3	- R	18.4	90.27	27.15	2.00_{M}
3.20_{v}	2	21.73	18.4	90.27	23.28	2.00_{M}
3.40_a	2	21.73_{R}	18.4	90.27	-	2.00_{M}
3.50	2	21.73_{R}	18.4	90.27	-	-

a: Auflagerrand

Bewehrungswahl

untere Längsbewehrung

Feld	gew.	As [cm²]	a [m]	l [m]	l _{bd,I} [m]	l _{bd,r} [m]	Lage
1	GB 2ø12	2.26	-0.02	3.54	0.12	0.12	1
	2ø12	2.26	0.45	2.61	0.25	0.25	1

(Längen inkl. Verankerungslängen, ohne Stöße)

obere Längsbewehrung

Feld	gew.	As	а	1	l bd,I	lbd,r	Lage
		[cm²]	[m]	[m]	[m]	[m]	
1	GB 2ø12	2.26	-0.05	3.60	0.15	0.15	1

(Längen inkl. Verankerungslängen, ohne Stöße)

Durch Kontrollrechnung geprüft

31.07.2023

186

^{*:} maximales Feldmoment

e: Endauflagereinspannung nach 9.2.1.2(1)

q: aus VEd im Endauflager nach Abs. 9.2.1.4(2)

v: Abstand d vom Auflagerrand

R: Querkraft reduziert

M: Mindestbewehrung nach Abs. 9.2.2

Datum: 28.04.2023 Position: ST1

Seite:

187

Längsbewehrung M 1:35 As

oben Lage 1:

unten Lage 1:

[cm²]

erf. Längsbewehrung / Zugkraftdeckungslinie
...... verl. Feldbewehrung gemäß DIN EN 1992-1-1, 9.2.1.4(1)

vorhandene Längsbewehrung — Verankerungslängen

Querkraftbewehrung (Bügel)

Querkraftbewehrung M 1:35

Nachweise (GZG)

im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1992-1-1:2011-01

Biegeschlankheit

Begrenzung der Biegeschlankheit

Referenzbewehrungsgrad

 $\rho_0 = 0.50$

Der Vergrößerungsfaktor ($A_{s,vorh}/A_{s,erf}$) in Gl. 7.17 wurde auf 1,1 begrenzt.

Feld	vorh.l/d	ρ	ρ'	K	zul.l/d	η
	[-]	[%]	[%]	[-]	[-]	[-]
1	17.86	0.62	0.00	1.00	18.74	0.95

Durch Kontrollrechnung geprüft

%

Datum: 28.04.2023 Position: ST1

Zusammenfassung Zusammenfassung der Nachweise

Nachweise (GZT) Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Ort	r [-]
Expositionsklassen	OK	
Biegung	OK	
Querkraft	OK	
Bewehrungswahl	OK	
-		

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Ort	x [m]	η [-]
Biegeschlankheit	Feld 1	OK	0.95

/

188

Seite:

Datum: 28.04.2023 Position: RB1

189

Seite:

Pos. RB1 Ringbalken-Giebel

System Stahlbeton-Ringbalken mit Doppelbiegung

horizontal M 1:105

vertikal

M 1:105

M 1:105

Abmessungen Mat./Querschnitt	Feld	l [m]	Material	a [cm]	b/h [cm]
4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1	4.15	C 25/30	0.0	24.0/25.0
	2	3.50			
	3	4.15			~

Auflager	Lager	X	b
J	3	[m]	[cm]
	A	0.00	20.0
	В	4.15	20.0
	С	7.65	20.0
	D	11.80	20.0
	V ₁ Durch Kontrollred	chnung geprüft 4.15	31.07.25.0

Datum: 28.04.2023 Position: RB1

Seite:

190

Lager	x	b
	[m]	[cm]
V_2	7.65	25.0

Öffnungen

Nr.	Feld	а	I	Eii	Ere
		[m]	[m]	[%]	[%]
1	2	0.10	3.30	0.0	0.0

Expositionsklassen

WF, XC4 und XF1

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkung Gk

Gk

Qk.W

Ed.1

2

Für das vertikale System werden nur die Lasten bzw. Lastanteile angesetzt, die über den Öffnungen liegen.

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

Ek Σ (γ*ψ*EW)

ständig/vorüberg.

1.35*Gk +1.50*Qk.W

Durch Kontrollrechnung geprüft

31.07.2023

Seite:

191

RB1

Datum: 28.04.2023 Position:

Mat./Querschnitt

Material- und Querschnittswerte nach DIN EN 1992-1-1:2011-01

Material	Material	f _{yk} [N/mm²]	f _{ck} [N/mm²]	E [N/mm²]
	C 25/30	_	25	31000
	B 500SA	500		200000

Grafik

Querschnittsgrafik [cm]

M 1:10

Expositionsklassen Abs. 4.2, 4.4

Expositionsklassen

Seite	KI	Kommentar
umlaufend	XC4	wechselnd nass und trocken
	XF1	Mäßige Wassersättigung ohne
		Taumittel
	WF	Häufig oder längere Zeit
		feuchter Reton

Bewehrungsanordnung

Achsabstände, Betondeckungen

Bezug	c _{min} [mm]	Δc _{dev} [mm]	C _{nom} [mm]	c _v [mm]	d' [mm]
oben	25	15	40	40	54
unten	25	15	40	40	54
links	25	15	40	40	54
rechts	25	15	40	40	54

Bewehrungswahl

Längsbewehrung	x [m]	gew. innen gew. außen	A _{s,i} A _{s,a} [cm ²]	gew. oben gew. unten	A s,o A s,u [cm²]
Feld 1	1.58	2ø12	2.26	-	
		2ø12	2.26	-	-
Feld 2	7.65	2ø12	2.26	-	_
		2ø12	2.26	-	-
Feld 3	7.65	2ø12	2.26	-	
		2ø12	2.26	-	<u> </u>

Durch Kontrollrechnung geprüft

31.07.2023

Datum: 28.04.2023 Position: RB1

Querkraftbewehrung	x [m]	ds,B	s [cm]	n	as,w [cm²/m]
Feld 1	1.58	Ø 8	15.0	2	6.70
	4.15	Ø 8	15.0	2	6.70
Feld 2	4.15	ø8	15.0	2	6.70
Feld 3	7.65	ø8	15.0	2	6.70

Die maximalen Bügelabstände gem. DIN EN 1992-1-1/NA, NDP zu 9.2.2 wurden berücksichtigt.

M 1:15

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Ort		η [-]
Expositionsklassen		OK	
Druckstreben	Feld 3	OK	0.20

Nachweise (GZG)

Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Ort		η [-]
Biegeschlankheit	Feld 2	OK	0.67

Seite:

192

Abmessungen

Mat./Querschnitt

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: **28.04.2023** Position: **ST2**

Achsen

Material

193

Profil

Seite:

Pos. ST2 Türsturz System Einfeldträger System z-Richtung

Lage

[°]

	1	1.40	0.0	fest	S 23	55	2x HEA 120
Auflager	Lager	X	b		Art	K _{T,z}	K _{R,y}
	A	[m] 0.00	[cm] 20.0			[kN/m] fest	[kNm/rad] frei
	В	1.40	20.0			fest	frei

[m]

Belastungen Belastungen auf das System

Feld

Eigengewicht	Feld	Feld Einzelprofil		g
			[cm²]	[kN/m]
	1	2x HEA 120	50.6	0.40

Grafik Belastungsgrafiken (einwirkungsbezogen)

Streckenlasten	Gleich	nlasten					
in z-Richtung	Feld	Komm.	a [m]	s [m]	qլ։ [kN/m]	q _{re} [kN/m]	e [cm]
Einw. Gk	1 (a) 1	Eigengew	0.00 0.00	1.40 1.40		0.40 8.31	0.0

(a)	Mauerwerksauflast	18*1.5*0.25 =	6.75	kN/m
. ,	Ringbalkenlast	25*0.25*0.25 =	1.56	kN/m
		=	8.31	kN/m

Punktlasten	Einze	ellasten			
in z-Richtung	Feld	Komm.	а	Fz	е
			[m]	[kN]	[cm]
Einw. <i>Gk</i>	(a) 1	P1	0.50	13.08	0.0
Einw. Qk.S.A	(a) 1	P1	0.50	6.84	31.07.2020
					477 - 479

Datum: **28.04.2023** Position: **ST2**

Seite:

194

	Feld	Komm.	а	Fz	е
			[m]	[kN]	[cm]
Einw. <i>Qk.W.000</i>	(a) 1	P1	0.50	2.08	0.0
Einw. <i>Qk.W.090</i>	(a) 1	P1	0.50	-7.66	0.0
Einw. <i>Qk.W.180</i>	(a) 1	P1	0.50	-2.41	0.0
Einw. <i>Qk.W.270</i>	(a) 1	P1	0.50	-2.89	0.0

(a) aus Pos. 'P1', Lager 'B', Faktor = 2.00

Kombinationen Kombinationsbildung nach DIN EN 1990

	Ek	Σ (γ*ψ*ΕW)		
ständig/vorüberg.	1	1.00*Gk		
-	2	1.00*Gk	+1.50*Qk.W.090	
	3	1.35*Gk	+1.50*Qk.S.A	+0.90*Qk.W.000
außergewöhnlich	4	1.00*Gk	+2.30*Qk.S.A	+0.20*Qk.W.000
•	5	1.00*Gk	+2.30*Qk.S.A	+0.20*Qk.W.090
quasi-ständig	6	1.00*Gk		

Bem.-schnittgrößen Bemessungsschnittgrößen

Tabelle Schnittgrößen (Umhüllende)

	x [m]	M _{y,d,min} [kNm]	EK	M _{y,d,max} [kNm]	EK	V _{z,d,min} [kN]	EK	V _{z,d,max} [kN]	ЕK
Feld 1	0.00	0.00	2	0.00	3	7.12	2	27.39	3
	0.50	2.47	2	12.22	3	2.76	2	21.51	3
	0.50	2.47	2	12.22	3	-8.70	4	1.17	2
	1.40	0.00	2	0.00	3	-18.87	3	-6.66	2

Mat./Querschnitt

Material- und Querschnittswerte nach DIN EN 1993

Querschnitt	Feld	QS	Einzelprofil	\mathbf{W}_{y}	Sy	ly	It
				W _z [cm³]	S _z [cm³]	I _z [cm⁴]	[cm ⁴]
	1	1	2x HEA 120	212.0	119.4	1212.0	12.0
				77.0	30.0	462.0	

Material	Material	fyk	E
		[N/mm²]	[N/mm ²]
	S 235	235.00	210000.00

HEA 120

M 1:9

Auflagerkräfte

Charakteristische Auflagerkräfte

Char. Auflagerkr.

Durch Kontrollrechnung geprüft

31.07.2023

Datum: **28.04.2023** Position: **ST2**

	Aufl.	F _{z,k,min} [kN]	F _{z,k,max} [kN]
Einw. <i>Gk</i>	A	14.51	14.51
	В	10.77	10.77
Einw. Qk.S.A	A	4.40	4.40
	В	2.44	2.44
Einw. Qk.W.000	A	1.34	1.34
	В	0.74	0.74
Einw. Qk.W.090	A	-4.92	-4.92
	В	-2.74	-2.74
Einw. Qk.W.180	A	-1.55	-1.55
	В	-0.86	-0.86
Einw. Qk.W.270	A	-1.86	-1.86
	В	-1.03	-1.03

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Feld	X	η
		[m]	[-]
Nachweis E-E	Feld 1	0.50 OK	0.25
Stabilität	Feld 1	0.50 OK	0.27

Nachweise (GZG)

Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Feld	X	η
		[m]	[-]
Verformung	Feld 1	0.67 OK	0.09

195

Seite:

Seite:

196

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: **28.04.2023** Position: **RB2**

Pos. RB2

Ringbalken-TH

horizontal

System

Stahlbeton-Ringbalken mit Doppelbiegung

M 1:75

M 1:75

vertikal

M 1:75

M 1:10

/

Abmessungen	
Mat./Querschnitt	

Feld	l l	Material	а	b/h
	[m]		[cm]	[cm]
1	4.30	C 25/30	0.0	24.0/25.0

Auflager

Lager	X	b
	[m]	[cm]
A	0.00	20.0
В	4.30	20.0
V_1	0.08	25.0
V_2	1.53	25.0

Durch Kontrollrechnung geprüft

31.07.2023

Datum: 28.04.2023

Position: RB2

197

Seite:

Öffnungen	Nr.	Feld	а	I	Eii	Ere
· ·			[m]	[m]	[%]	[%]
	1	1	0.20	1.20	0.0	0.0

Expositionsklassen XC1 und XF1

Belastungen Belastungen auf das System

Grafik Belastungsgrafiken (einwirkungsbezogen)

Einwirkung Gk

Gk

Qk.W

Ed.1

Für das vertikale System werden nur die Lasten bzw. Lastanteile angesetzt, die über den Öffnungen liegen.

Kombinationen Kombinationsbildung nach DIN EN 1990

Darstellung der maßgebenden Kombinationen

Ek **Σ** (γ*ψ*EW)

ständig/vorüberg. 2 1.35*Gk +1.50*Qk.W

> 3 1.00*Ed.1

Material- und Querschnittswerte nach DIN EN 1992-1-1:2011-01 Mat./Querschnitt

> Ε Material fyk fck [N/mm²][N/mm²][N/mm²] C 25/30 25 31000 3200000 **B 500SA** 500

Durch Kontrollrechnung geprüft

Material

Datum: 28.04.2023 Position: RB2

Seite:

198

Querschnitt

Art	b	h	Α	ly -	lz
	[cm]	[cm]	[cm²]	[cm ⁴]	[cm ⁴]
RE	24.0	25.0	600	31250	28800

RE: Rechteckquerschnitt

Grafik

Querschnittsgrafik [cm]

M 1:10

Expositionsklassen Abs. 4.2, 4.4

Expositionsklassen

Seite KI Kommentar

umlaufend XC1 trocken oder ständig nass

XF1 Mäßige Wassersättigung ohne Taumittel

Bewehrungsanordnung

Achsabstände, Betondeckungen

Bezug	C _{min}	Δc_{dev}	Cnom	Cv	d'
	[mm]	[mm]	[mm]	[mm]	[mm]
oben	10	10	20	20	34
unten	10	10	20	20	34
links	10	10	20	20	34
rechts	10	10	20	20	34

Bewehrungswahl

Längsbewehrung	x	gew. innen gew. außen	As,i As,a	gew. oben gew. unten	As,o As,u
	[m]		[cm ²]	_	[cm ²]
Feld 1	0.03	2ø12	2.26	-	-
		2ø12	2.26	-	-

Querkraftbewehrung

Feld 1

X	d s,B	S	n	a s,w
[m]		[cm]		[cm ² /m]
0.00	ø8	15.0	2	6.70

Die maximalen Bügelabstände gem. DIN EN 1992-1-1/NA, NDP zu 9.2.2 wurden berücksichtigt.

Durch Kontrollrechnung geprüft

31.07.2023

Datum: **28.04.2023** Position: **RB2**

M 1:15

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Ort		η [-]
Expositionsklassen Druckstreben	Feld 1	OK OK	0.15

Durch Kontrollrechnung geprüft

31.07.2023

199

Datum: 28.04.2023 Position: HS1

Decke über 3.OG zum DG

Pos. HS1

Bemessung der Holzschalung

Nachfolgende Bemessung dient nur dem Nachweis der oberseitigen Schalung/Beplankung.

Annahme:

Auflagerabstand ≤ 77cm !!!

Auflast auf Holzschalung: Eigenlast≤130kg/m²; Verkehrslast≤400kg/m²

200

Seite:

System

Einachsig gespannte Holz-Balkendecke

M 1:50

Abmessungen / Nutzungsklassen

Auflager

Aufl.	x [m]	b [cm]	Transl. [kN/m]	Rotat. [kNm/rad]
Α	0.00	20.00	starr	frei
В	5.50	20.00	starr	frei

Material/ Querschnitt

Bauteil	Material	Querschnitt [cm]
Balken	NH C24	20/24
Beplankung	OSB OSB/2 ^p	t = 25 mm
p: Beanspruchungsrichtung paralle	zur Deckfurnierfaser	

Balkenabstand

0.77 Deckenbreite 10.00

System in Querrichtung als Zweifeldträger mit konstanter Stützweite

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen

Flächenlasten

in z-Richtung

Gleichflächenlasten

	Feld	Komm.	а	s	qıi	q re
			[m]	[m]	[kN/m²]	[kN/m²]
(a)	1	Eigengew	0.00	5.50	_	0.40
` ,	1		0.00	5.50		31.0712.330

Datum: 28.04.2023 Position: HS1

	Feld K	omm.	a [m]	s [m]	q _{li} [kN/m²]		q _{re} [kN/m²]
Einw. <i>Qk.N</i>	1		0.00	5.50			4.00
(a)	Holzbalk Beplankı		0.2	*0.24*4.2/0.77 0.025*5.5		0.26 0.14 0.40	kN/m² kN/m² kN/m²
Kombinationen		tionsbildung na ng der maßgeb					/
	Ek KLE	D Σ (γ*ψ*EW))				
ständig/vorüberg. quasi-ständig Lagesicherheit	3 m 5 8 st	1.00*Gk		50*Qk.N 30*Qk.N			
st./vor. Auflagerkr.	10 st mi: mittel	1.00*Gk					

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise im Grenzzustand der Tragfähigkeit

ständig

Nachweis	Feld/Auflager	X		η	
		[m]		[-]	
Biegung	Feld 1	2.75	OK	0.85	
Querkraft	Feld 1	0.00	OK	0.45	
Beplankung			OK	0.71	
Lagesicherheit			OK		

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Feld	X []	X r			
		[m]		[-]		
gesamte Enddurchb.	Feld 1	2.75	OK	0.92		
Beplankung			OK	0.99		

Nachweisführung nur für die Beplankung. Nachweise der Deckenbalken siehe nachfolgende Positionen.

Durch Kontrollrechnung geprüft

IIID-Viewei versiai zaza - Copyiigii zazz - IIID AEC soliwale Giiidh

201

Datum: 28.04.2023 Position: B1

Pos. B1

Holz-Balken mit Holz-Verstärkung

Balkenabstand: e≤90cm (Achsmaß)

System

Balken

M 1:50

Abmessungen / Nutzungsklassen

Feld	I	NKL
	[m]	
1	5.50	1

Balken

reia	a	S	D/N	Materiai
	[m]	[m]	[cm/cm]	
1	0.00	0.00	20/24	NH C24

Verstärkung

eia	a	S	Seiten	D/II	wateriai
	[m]	[m]		[cm/cm]	
	0.00	5.50	vorne	8/24	NH C24

Verbundstellen

n Verbindungs- [-] mittel	Abmessung	FkI	K _{ser} [kN/m]
7 Dübel Typ C1	dc = 62 mm		9765
Bolzen	M12	4.8	

Abstände Verbundst.

ео,і	е	e 0,r
[cm]	[cm]	[cm]
20.0	6 * 85 0	20.0

Auflager

Lager	x [m]	b [cm]	Balken gelag.	Verst. gelag.	K _{T,z} [kN/m]	K _{R,y} [kNm/rad]
Α	0.00	15.0	Х		fest	frei
В	5.50	15.0	Х		fest	frei

Durch Kontrollrechnung geprüft

202

Datum: 28.04.2023 Position: B1

203

Seite:

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkung

Gk

Qk.N

	_			_	ev			
ın	7	_	٧ı	ch	∩†	111	$\gamma \epsilon$	Υ.

in z-Richtung

Einw. Gk

Eig	en	gewicht	
_			

Bauteil	Kommentar	Qz
		[kN/m]
Balken	Eigengew	0.20
V1	Eigengew	80.0
	• •	

Streckenlasten

in z-Richtung

Einw. Gk

Einw. Qk.N

Streckenlasten

 Feld
 Kommentar
 a
 s

 [m]
 [m]

 (a) 1
 0.00
 5.50

 Balken

(b) 1 0.00 *Balken*

(a) Eigenlast incl. neuem Aufbau

2.89*0.90 = 2.60

5.50

qz,li

[kN/m]

q_{z,re}

2.60

2.60

1.80

1.80

kN/m

31.07.2023

[kN/m]

(b) Verkehrslast Wohnraum 2.00*0.90 = 1.80 kN/m

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

	Ek	KLED	Σ (γ*ψ*EW)	
ständig/vorüberg.	3	mi	1.35*Gk	+1.50*Qk.N
quasi-ständig	6		1.00*Gk	(1) +0.30*Qk.N

Datum: 28.04.2023 Position: B1

Seite:

204

Ek KLED Σ ($\gamma*\psi*EW$)

Lagesicherheit 9 st 0.90*Gk st./vor. Auflagerkr. 11 st 1.00*Gk

mi: mittel st: ständig

Mat./Querschnitt

Querschnittswerte

Material und Querschnittsangaben nach DIN EN 1995-1-1

Material	Bauteil	Material	f _{m,k} [N/mm²]	f _{t,0,k} [N/mm ²]	-,-,	f _{v,k} [N/mm²]
	Balken	NH C24	24.0	14.5	21.0	4.0
	Verst.1	NH C24	24.0	14.5	21.0	4.0

Mauerwerk an Auflagern A, B
Steinart Mauerziegel
Steintyp Vollziegel Mz
Steindruckfestigkeitsklasse SFK 10
Mörtelgruppe Normalmauermörtel M2,5

charakt. Druckfestigkeit

Bauteil	b [cm]	h [cm]	A [cm²]	W _y [cm³]	l _y [cm⁴]
Balken	20.0	24.0	480.0	1920.0	23040
Verst.1	8.0	24.0	192.0	768.0	9216

 $f_k =$

4.83 N/mm²

Grafik Querschnittsgrafiken

Verstärkung V1

M 1:21

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

Biegung	Nachweis der Biegetragfähigkeit des Holzbalkens						
Abs. 6.1	x	Ek	\mathbf{k}_{mod}	M_{yd}	$\sigma_{\text{m,d}}$		

	[m]		[-]	[kNm]	[N/mm ²] [N/mm ²]	[-]
Feld 1	(L = 5.50 m)					
	2.59	3	0.80	17.67	9.20 14.77	0.62

Querkraft	Nachweis der Querkrafttragfähigkeit des Holzbalkens

Abs. 6.1.7	X	Ek	\mathbf{k}_{mod}	$V_{z,d}$	Td	$f_{v,d}$	η
	[m]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
Feld 1	0.00	3	0.80	11.78	0.74	2.46	0.30

Durch Kontrollrechnung geprüft

31.07.2023

f_{m,d}

Datum: 28.04.2023

Biegung Verst. Nachweis der Biegetragfähigkeit der Verstärkung Abs. 6.1 Ek $\sigma_{\mathsf{m},\mathsf{d}}$ **k**_{mod} f_{m.d} [m] [kNm] [N/mm²] [N/mm²] [-] [-] Feld 1 (L = 5.50 m)3 0.80 7.33 9.55 2.75 14.77 0.65 Nachweis der Querkrafttragfähigkeit der Verstärkung **Querkraft Verst.** Abs. 6.1.7 Ek X $V_{z,d}$ $f_{v,d}$ **k**_{mod} [m] [-] [kN] [N/mm²] [N/mm²] [-] Feld 1 0.20 3 0.80 4.45 2.46 0.70 0.28 Verbindungsmittel Nachweis der Tragfähigkeit auf Abscheren je Scherfuge Abs. 8.2 Ek **k**mod F_{v,Rd} [m] [kN] [kN] [-] [-] Feld 1 5.30 0.80 90.00 4.47 9.76 0.46Auflagerpressung Nachweis der Auflagerpressung Abs. 6.1.5 Aef k_{c90} σ_{c90d} **f***c90d **k**_{mod} F_d η [-] [N/mm²] [N/mm²] [cm²] [-] [-] [kN] 3 Auflager A 18.13 0.80 360.0 1.00 0.50 1.54 0.33

Mauerwerksauflager

Abs. 6.1.3

Auflager B

Nachweis o	der Aufla	agerpressur	ng nach	DIN EN	1 1996

18.13

Lager	Ek	β [-]	A _b [cm ²]	f _d [N/mm²]	N _{Ed,c} [kN]	N _{Rd,c} [kN]	η [-]
A-B	3	1.00	300.0 _A	2.74	18.13	82.10	0.22

1.00

0.50

1.54

0.33

A: Tragrichtung senkrecht zur Wandrichtung

0.80

 k_{c90} * f_{c90d}

3

f*c90d:

Lagesicherheit DIN EN 1990, 6.4.2 Lagesicherheitsnachweis in vertikaler Richtung nach NDP zu A1.3.1(3)

360.0

Aufl.	Ek	$F_{d,dst}$	$F_{d,stb}$	η
	[-]	[kN]	[kN]	[-]
Α	9	0.00	7.14	0.00
В	9	0.00	7.14	0.00

Nachweise (GZG)

Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1

 Die Verstärkung wird bei einem Bestandsbauteil angebracht. Das E-Modul des Holzbalkens zum Zeitpunkt t = 0 wird reduziert.

Verformungen

Abs. 7.2

Feld 1

Nachweise der Verformungen

X	Ek	Norm	Wvorh		Wzul	η
[m]			[mm]		[mm]	[-]
(L=5.50 m, I)	NKL 1, k	$_{def} = 0.60$)				
2.75	6	Wnet fin	18.6	1/300=	18.3	1.02

Auflagerkräfte

Charakteristische Auflagerkräfte

Char. Auflagerkr.

	Auti.	►z,k,min	F _{z,k,max}
		[kN]	[kN]
Einw. <i>Gk</i>	Α	7.93	7.93
	В	7.93	7.93
Einw. Qk.N	A	4.95	4.95
	В	4.95	4.95

Durch Kontrollrechnung geprüft

31.07.2023

205

B1

Seite:

Position:

Datum: 28.04.2023

Zusammenfassung Zusammenfassung der Nachweise

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Ort	x [m]		η [-]
Biegung	Feld 1	2.59	OK	0.62
Querkraft	Feld 1	0.00	OK	0.30
Biegung Verstärkung	Feld 1	2.75	OK	0.65
Querkraft Verstärkung	Feld 1	0.20	OK	0.28
Auflagerpressung	Auflager B		OK	0.33
Verbindungsmittel	Feld 1	5.30	OK	0.46
Mauerwerksauflager	Lager A	0.00	OK	0.22
Lagesicherheit	-		OK	

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Ort	X		η
		[m]		[-]
gesamte Enddurchbiegung	Feld 1	2.75	OK	1.02

/

206

В1

Seite:

Position:

Datum: **28.04.2023** Position: **B2**

Pos. B2

Holz-Balken mit Holz-Verstärkung

Balkenabstand: e≤90cm (Achsmaß)

System

Balken

Lager

M 1:50

Nutzungsklassen Feld I NKL [m]								
Teld a s b/h Material	Abmessungen /	Feld					Ĩ	NKL
Balken Feld a s b/h Material [m] [m] [cm/cm] NH C24 Verstärkung Feld a s Seiten b/h Material [m] [m] [cm/cm] [cm/cm] NH C24 Verbundstellen n Verbindungs- Abmessung Fkl Kser [-] mittel [kN/m] 7 Dübel Typ C1 dc = 62 mm 9765	Nutzungsklassen						[m]	
[m] [m] [cm/cm] 1 0.00 0.00 20/24 NH C24 Verstärkung Feld a s Seiten b/h Material [m] [m] [cm/cm] 1 0.00 5.50 beide 12/24 NH C24 Verbundstellen n Verbindungs- Verbind		1					5.50	1
Verstärkung Feld a s Seiten b/h Material [m] [m] [cm/cm] 1 0.00 5.50 beide 12/24 NH C24 Verbundstellen n Verbindungs- Abmessung Fkl Kser [-] mittel [kN/m] 7 Dübel Typ C1 dc = 62 mm 9765	Balken	Feld		_				Material
[m] [m] [cm/cm] 1 0.00 5.50 beide 12/24 NH C24 Verbundstellen n Verbindungs- Abmessung Fkl Kser [kN/m] [-] mittel [kN/m] 7 Dübel Typ C1 dc = 62 mm 9765	Verstärkung	1	0.00	0.00		20/24		NH C24
Verbundstellenn Verbindungs- [-] mittel 7 Dübel Typ C1Abmessung FkI (be see FkI) Abmessung FkI (c) Kser [kN/m] (dc = 62 mm)Kser [kN/m] (p) 9765	Verstärkung	Feld		_	Seiten			Material
[-] mittel [kN/m] 7 Dübel Typ C1 dc = 62 mm 9765		1	0.00	5.50	beide	12/24		NH C24
· · · · · · · · · · · · · · · · · · ·	Verbundstellen			;-	Abmes	ssung F	kl	
Bolzen M12 4.8		7	Dübel Typ C1		dc = 62	2 mm		
· · · · · · · · · · · · · · · · · · ·			Bolzen		M12	4	.8	\vee
Abstände Verbundst. e _{0,1} e e _{0,r} [cm] [cm]	Abstände Verbundst.			-,				•
20.0 6 * 85.0 20.0								

b

[cm]

15.0

15.0

[m]

0.00

5.50

Durch Kontrollrechnung geprüft

Balken

gelag.

Χ

Χ

ower version cock - copyright cock - the ALC Colleges of

frei

frei

207

Seite:

Auflager

Verst.

gelag.

Χ

Х

K_{T,z}

fest

fest

[kN/m] [kNm/rad]

Datum: **28.04.2023** Position: **B2**

Seite:

208

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkung

Gk

Qk.N

Qk.S.A

Durch Kontrollrechnung geprüft

Datum: **28.04.2023** Position: **B2**

Seite:

209

Qk.W.090

Qk.W.180

Qk.W.270

Durch Kontrollrechnung geprüft

31.07.2023

Datum: 28.04.2023 Position: B2

Seite:

210

Eigengewicht Eigengewicht in z-Richtung Bauteil Kommentar qz [kN/m] Einw. Gk Balken Eigengew 0.20 V1-V1b Eigengew 0.12 Streckenlasten Streckenlasten Kommentar in z-Richtung Feld а $q_{z,li}$ q_{z,re} [m] [m] [kN/m][kN/m]Einw. Gk 0.00 5.50 2.60 (a) 1 Balken 2.60 3.00 Terrasse 2.50 0.41 (b) 1 Balken 0.41 Einw. Qk.N 0.00 5.50 1.80 (c) 1 Balken 1.80 Terrasse 2.50 1.80 3.00 (d) 1 Balken 1.80 (a) Eigenlast incl. neuem Aufbau 2.89*0.90 =2.60 kN/m Mehrlast der Terrasse (b) 0.46*0.9 =0.41 kN/m Verkehrslast Wohnraum 2.00*0.90 =(c) 1.80 kN/m Mehrlast der Terrasse (d) 2*0.9 = 1.80 kN/m Punktlasten Einzellasten und -momente Feld Kommentar in z-Richtung Fz а Mν [m] [kN] [kNm] Einw. Gk S4.1 3.52 3.00 (a) 1 (b) 1 T-Wand 3.00 1.62 Einw. Qk.S.A S4.1 3.00 1.86 (a) 1 Einw. Qk.W.000 S4.1 3.00 -1.50 (a) 1 Einw. Qk.W.090 S4.1 3.00 -2.50 (a) 1 Einw. Qk.W.180 S4.1 3.00 -0.08(a) 1 Einw. Qk.W.270 S4.1 3.00 0.44 (a) 1 (a) aus Pos. 'S4.1', Lager 'A', Faktor = 0.70 (Seite 170) Terrassenwand (0.6*3)*0.9 =1.62 kΝ (b) **** WARNUNG **** Der Lastabtrag liefert Lasten in x-Richtung, die nicht ausgewertet werden können.

Kombinationen

Kombinationsbildung nach DIN EN 1990

	Ek	KLED	Σ (γ*ψ*EW)	
ständig/vorüberg.	2	mi	1.35*Gk	+1.50*Qk.N
				(1)
quasi-ständig	78		1.00*Gk	+0.30*Qk.N
				(1)
Lagesicherheit	81	ku/sk	0.90*Gk	+1.50*Qk.W.090
st./vor. Auflagerkr.	91	ku/sk	1.00*Gk	+1.50*Qk.W.090
außerg. Auflagerkr	95	ku/sk	0.95*Gk	+2.30*Qk.S.A
0 0	mi:	mittel		

Durch Kontrollrechnung geprüft

+0.20*Qk.W.090

Datum: **28.04.2023** Position: **B2**

ku/sk: kurz/sehr kurz

Mat./Querschnitt

Material und Querschnittsangaben nach DIN EN 1995-1-1

Material	Bauteil	Material	[]	f _{m,k} N/mm²]	f _{t,0,k} [N/mm ²]	f _{c,0,k} [N/mm²]	f _{v,k} [N/mm²]
	Balken	NH C24	_	24.0	14.5	21.0	4.0
	Verst.1	NH C24		24.0	14.5	21.0	4.0
Mauerwerk	an Auflagern A Steinart Steintyp Steindruckfes Mörtelgruppe charakt. Druck	tigkeitsklass	e		Norr f _k	Ma Vol nalmauerm	•
Querschnittswerte	Bauteil	b [cm]	h [cm]	[cm	A 1 ²]	W _y [cm³]	l _y [cm ⁴]
	Balken	20.0	24.0	480	0.0	1920.0	23040
	Verst.1	12.0	24.0	288	3.0	1152.0	13824
Verbindungsmittel	Тур						F _{v,Rk} [kN]
	Dübel Typ C1	dc = 62 mm	1				7.94
	Bolzen M12, 4	4.8					7.93

Grafik Querschnittsgrafiken

Verstärkung V1

M 1:33

Nachweise (GZT) Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

Biegung	Nachweis der	Bieget	ragfähigkeit de	s Holzba	lkens		
Abs. 6.1	x [m]	Ek	k _{mod} [-]	M _{yd} [kNm]	$\sigma_{\text{m,d}}$ [N/mm ²]	f _{m,d} [N/mm²]	η [-]
Feld 1	(L = 5.50 m) 3.00	2	0.80	19.27	10.04	14.77	0.68
Querkraft	Nachweis der	· Querkı	rafttragfähigke	it des Hol	zbalkens		\
Abs. 6.1.7	x [m]	Ek	k _{mod} [-]	V _{z,d} [kN]	T _d [N/mm ²]	f _{v,d} [N/mm²]	η [-]
Feld 1	5.50	2	0.80	-13.17	0.82	2.46	0.33
Biegung Verst.	Nachweis der	Bieget	ragfähigkeit de	r Verstär	kung		_
Abs. 6.1	X	Ek	k _{mod}	M _{yd}	σ _{m,d}	f _{m,d}	η

Abs. 6.1 x Ek k_{mod} M_{yd} $\sigma_{m,d}$ $f_{m,d}$ η [m] [-] [kNm] [N/mm²] [N/mm²] [-] Feld 1 (L = 5.50 m) 2.75 2 0.80 10.85 9.42 14.77 0.64

Querkraft Verst. Nachweis der Querkrafttragfähigkeit der Verstärkung Abs. 6.1.7

Durch Kontrollrechnung geprüft

31.07.2023

211

Datum: **28.04.2023** Position: **B2**

Seite:

212

0.13

0.16

180.62

180.62

	X	Ek	k	C mod	$V_{z,d}$	Td	$\mathbf{f}_{v,d}$	η
	[m]			[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
Feld 1	5.50	2	(0.80	-6.36	0.66	2.46	0.27
Mandain along graittal	NI a alauwai	- d T	ئے دارد: داید:4	A I	-l:-	C = = = = = = = = = = = = = = = = = = =	_	\ /
Verbindungsmittel					•	Scherfuge		
Abs. 8.2	X		K	Kmod	α	$F_{v,Ed}$	$F_{v,Rd}$	η
	[m]			[-]	[°]	[kN]	[kN]	[-]
Feld 1	3.60	2	(0.80	90.00	2.91	9.76	0.30
A £l a sua ma ma a a	NI a alauwai	l A£I						
Auflagerpressung		s der Aufl	• .		_			·
Abs. 6.1.5	Ek	\mathbf{k}_{mod}	Fd	A		σ c90d	f *c90d	η
		[-]	[kN]	[cm ²		[N/mm ²]	[N/mm²]	[-]
Auflager A	2	0.80	11.95	360.	0 1.00	0.33	1.54	0.22
Auflager A, V1	2	0.80	5.89	216.	0 1.00	0.27	1.54	0.18
Auflager B	2	0.80	14.82	360.	0 1.00	0.41	1.54	0.27
Auflager B, V1	2	0.80	6.99	216.	0 1.00	0.32	1.54	0.21
•	f* _{c90d} :	$k_{c90} * f_{c90d}$						
Mauerwerksauflager	Nachwei	s der Aufla	agerpres	sung nad	ch DIN EN	N 1996		
Abs. 6.1.3	Lager	Ek	β	Ab	f_d	$N_{Ed,c}$	$N_{Rd,c}$	η
	_			[cm²]	[N/mm ²]	[kN]	[kŃ]	[-j

1.00

1.00

A: Tragrichtung senkrecht zur Wandrichtung

Lagesicherheit

DIN EN 1990, 6.4.2

Lagesicherheitsnachweis in vertikaler Richtung nach NDP zu A1.3.1(3)

 660.0_{A}

660.0_A

2.74

2.74

24.37

29.57

9		9		- (-,
Aufl.	Ek	$F_{d,dst}$	$F_{d,stb}$	η
	[-]	[kN]	[kN]	[-]
Α	81	-1.70	9.85	0.17
В	81	-2.04	10.78	0.19

Nachweise (GZG)

Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1

 Die Verstärkung wird bei einem Bestandsbauteil angebracht. Das E-Modul des Holzbalkens zum Zeitpunkt t = 0 wird reduziert.

Verformungen	Nachweise o	der Verfo	rmungen				
Abs. 7.2	x [m]	Ek	Norm	w _{vorh} [mm]		W _{zul} [mm]	η [-]
Feld 1	(L= 5.50 m, 2.80	NKL 1, k 78	$_{def} = 0.60$) W _{net,fin}	18.9	I/300=	18.3	1.03

Auflagerkräfte

Charakteristische Auflagerkräfte

11

11

Α

В

Char. Auflagerkr.

	Aufl.	$F_{z,k,min}$	$F_{z,k,max}$
		[kN]	[kN]
Einw. <i>Gk</i>	Α	10.94	10.94
	В	11.98	11.98
Einw. <i>Qk.N</i>	A	5.97	5.97
	В	8.43	8.43
Einw. <i>Qk.S.A</i>	A	0.84	0.84
	В	1.01	1.01
Einw. <i>Qk.W.000</i>	A	-0.68	-0.68
	В	-0.82	-0.82
Einw. <i>Qk.W.090</i>	A	-1.13 Durch Kontrollrechnung geprüft	31.07 1 20 23

Einw. Qk.W.180

Einw. Qk.W.270

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: **28.04.2023** Position: **B2**

Aufl.	F _{z,k,min} [kN]	F _{z,k,max} [kN]
В	-1.3 6	-1.36
A	-0.03	-0.03
В	-0.04	-0.04
A	0.20	0.20
В	0.24	0.24

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Ort	x [m]		η [-]
Biegung	Feld 1	3.00	OK	0.68
Querkraft	Feld 1	5.50	OK	0.33
Biegung Verstärkung	Feld 1	2.75	OK	0.64
Querkraft Verstärkung	Feld 1	5.50	OK	0.27
Auflagerpressung	Auflager B		OK	0.27
Verbindungsmittel	Feld 1	3.60	OK	0.30
Mauerwerksauflager	Lager A	0.00	OK	0.16
Lagesicherheit			OK	

Nachweise (GZG)

Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Ort x		η	
		[m]		[-]
gesamte Enddurchbiegung	Feld 1	2.80	OK	1.03

/

Seite:

213

Datum: 28.04.2023 Position: **B3**

Pos. B3

Holz-Balken mit Holz-Verstärkung

Balkenabstand: e≤90cm (Achsmaß)

System

Balken

M 1:45

Abmessungen / Nutzungsklassen	Feld					l [m]	NKL
-	1					5.30	1
Balken	Feld	a [m]	s [m]		b/l [cm/cm		Material
	1	0.00	0.00		20/2	-	NH C24
Verstärkung	Feld	a [m]	s [m]	Seiten	b/l [cm/cm		Material
	1	0.00	5.30	vorne	12/24	4	NH C24
Verbundstellen	n Ver [-] mit	bindung tel	s-	Abmes	J	FkI	K _{ser} [kN/m]
	7 Dük Bolz	oel Typ C zen	1	dc = 62 M12		1.8	9765
Abstände Verbundst.			e _{0,i} [cm]		e [cm]		e _{0,r} [cm]
			20.0		6 * 81.7		20.0
Auflager	Lager	x [m]	b [cm]	Balken gelag.	Verst. gelag.	K _{T,z} [kN/m]	K _{R,y} [kNm/rad]
	Α	0.00	15.0	Х	x	fest	frei
	В	5.30	15.0	Х	Х	fest	frei

Durch Kontrollrechnung geprüft

214

Datum: 28.04.2023 Position: B3

Seite:

215

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkung

Gk

Qk.N

Qk.S.A

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: B3

Seite:

216

Qk.W.000

Qk.W.090

Qk.W.180

Qk.W.270

Eigengewicht in z-Richtung

Einw. *Gk*

Eigengewicht		
Bauteil	Kommentar	
		[k
Balken	Eigengew	
V1	Eigengew	31.0

Durch Kontrollrechnung geprüft

0.20

31.0702922

Datum: 28.04.2023 Position: **B3**

Streckenlasten	Streck	kenlasten				
in z-Richtung	Feld	Kommentar	a [m]	s [m]	q _{z,li} [kN/m]	q _{z,re} [kN/m]
Einw. Gk	(a) 1	Balken	0.00	5.30	[KIV/III]	2.60 2.60
Einw. Qk.N	(b) 1	Balken	0.00	5.30		1.80 1.80
(a)	Figen	last incl. neuem Aufba	ıIJ			
(4)	go			2.89*0.90	= 2.6	60 kN/m
(b)	Verke	hrslast Wohnraum		2.00*0.90	= 1.8	30 kN/m
Punktlasten	Einzel	lasten und -momente				
in z-Richtung	Feld	Kommentar	a [m]	rı	Fz kN]	M _y [kNm]
	_(a) 1 _(b) 1	S4.1 T-Wand	1.00 1.00	5	.03 .62	[KNIII]
Einw. Qk.S.A	_(a) 1	S4.1 S4.1	1.00 1.00	2	.66 .14	
	_(a) 1 _(a) 1	S4.1	1.00		.57	
_	(a) 1	S4.1	1.00	_	.11	,
Einw. <i>Qk.W.270</i>	_(a) 1	S4.1	1.00	0	.62	
(a)	aus P	os. 'S4.1', Lager 'A' (S	eite 170)			•
(b)	Terras	ssenwand		(0.6*3)*0.9	= 1.6	62 kN
**** WARNUNG ****		astabtrag liefert Las en können.	ten in x-Ri	chtung, die	nicht ausge	ewertet

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen Kombinationen

	Ek	KLED	Σ (γ*ψ*EW)		
ständig/vorüberg.	1	st	1.35*Gk		
	2	mi	1.35*Gk	+1.50*Qk.N	
				(1)	
quasi-ständig	78		1.00*Gk	+0.30*Qk.N	
				(1)	
Lagesicherheit	82	ku/sk	0.90*Gk	+1.50*Qk.W.090	
st./vor. Auflagerkr.	93	ku/sk	1.00*Gk	+1.50*Qk.W.090	
außerg. Auflagerkr	97	ku/sk	0.95*Gk	+2.30*Qk.S.A	+0.20*Qk.W.090
-	st:	ständi	ig		
	mi: ku/sk	mittel kurz/s	sehr kurz		

Mat./Querschnitt Material und Querschnittsangaben nach DIN EN 1995-1-1

Material	Bauteil	Material	f _{m,k} [N/mm²]	f _{t,0,k} [N/mm ²]	f _{c,0,k} [N/mm²]	f _{v,k} [N/mm²]
	Balken	NH C24	24.0	14.5	21.0	4.0
	Verst.1	NH C24	24.0	14.5	21.0	4.0

Durch Kontrollrechnung geprüft

31.07.2023

217

Datum: **28.04.2023** Position: **B3**

Seite:

218

Mauerwerk an Auflagern A, B Mz 10/M2,5 Steinart Mauerziegel Steintyp Vollziegel Mz Steindruckfestigkeitsklasse **SFK 10** Mörtelgruppe Normalmauermörtel M2,5 charakt. Druckfestigkeit $f_k =$ 4.83 N/mm² Querschnittswerte **Bauteil** W_y b h Α [cm] [cm²] [cm³] [cm] [cm⁴] Balken 20.0 24.0 480.0 1920.0 23040 13824 Verst.1 24.0 12.0 288.0 1152.0 Verbindungsmittel Typ $F_{v,Rk}$

Verbindungsmittel

I yp

[kN]

Dübel Typ C1 dc = 62 mm

7.94

Bolzen M12, 4.8

7.93

Grafik Querschnittsgrafiken

Verstärkung V1

M 1:24

Nachweise (GZT)	Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1
-----------------	--

Biegung	Nachweis der Biegetragfähigkeit des Holzbalkens							
Abs. 6.1	X	Ek	k _{mod}	$M_{ m yd}$	$\sigma_{m,d}$	$f_{m,d}$	η	
	[m]		[-]	[kNm]	[N/mm ²]	[N/mm ²]	[-]	
Feld 1	(L = 5.30 m)							
	2.29	2	0.80	17.45	9.09	14.77	0.62	

Querkraft	Nachweis der Querkrafttragfähigkeit des Holzbalkens							
Abs. 6.1.7	X	Ek	\mathbf{k}_{mod}	$V_{z,d}$	Td	$\mathbf{f}_{\mathbf{v},\mathbf{d}}$	η	
	[m]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]	
Feld 1	0.00	2	0.80	15.82	0.99	2.46	0.40	

Biegung Verst.	Nachweis der Biegetragfähigkeit der Verstärkung						
Abs. 6.1	x [m]	Ek	k _{mod} [-]	M _{yd} [kNm]	$\sigma_{m,d}$ [N/mm ²]	f _{m,d} [N/mm²]	η [-]
Feld 1	(L = 5.30 m) 2.65	2	0.80	10.72	9.31	14.77	0.63

Querkraft Verst.	Nachweis de	er Querkr	afttragfähigke	it der Ver	stärkung		
Abs. 6.1.7	X	Ek	\mathbf{k}_{mod}	$V_{z,d}$	Td	$\mathbf{f}_{v,d}$	η
	[m]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
Feld 1	0.00	2	0.80	7.15	0.74	2.46	0.30

Verbindungsmittel	Nachweis der Tragfähigkeit auf Abscheren je Scherfuge						
Abs. 8.2	X	Ek	k mod	α	$F_{v,Ed}$	$F_{v,Rd}$	η
	[m]		[-]	[°]	[kN]	[kN]	[-]
Feld 1	1.02	1	0.60	90.00	2.64	7.32	0.36

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: **B**3

Auflagerpressung

Nachweis der Auflagerpressung Abs. 6.1.5 Ek Aef **f***c90d **k**_{mod} F_d k_{c90} σ_{c90d} η [cm²] [-] [N/mm²] [N/mm²] [-] [kN] [-] 2 Auflager A 0.80 16.79 360.0 1.00 0.47 1.54 0.30 Auflager A, V1 2 0.80 1.00 0.38 1.54 0.24 8.11 216.0 2 Auflager B 0.80 12.99 360.0 1.00 0.36 1.54 0.23 Auflager B, V1 2 0.80 6.32 216.0 1.00 0.29 1.54 0.19

Mauerwerksauflager

Abs. 6.1.3

Nachweis der Auflagerpressung nach DIN EN 1996

Lager	Ek	β [-]	A _b [cm ²]	f _d [N/mm²]	N _{Ed,c} [kN]	N _{Rd,c} [kN]	η [-]
Α	14	1.00	480.0 _A	2.74	26.51	131.36	0.20
В	14	1.00	480.0_{A}	2.74	19.68	131.36	0.15
A. Transial	احمم حمدنا	abt \A/a	un alvi a la tu un au				

Tragrichtung senkrecht zur Wandrichtung

 k_{c90} * f_{c90d}

Lagesicherheit

DIN EN 1990, 6.4.2

Lagesicherheitsnachweis in vertikaler Richtung nach NDP zu A1.3.1(3)

Aufl.	Ek	$F_{d,dst}$	$F_{d,stb}$	η
	[-]	[kN]	[kN]	[-]
Α	82	-4.34	11.83	0.37
В	82	-1.01	8.10	0.12

Nachweise (GZG)

Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1

Die Verstärkung wird bei einem Bestandsbauteil angebracht. Das E-Modul des Holzbalkens zum Zeitpunkt t = 0 wird reduziert.

Verformungen

Abs. 7.2

Feld 1

Nachweise der Verformungen

X	Ek	Norm	Wvorh		\mathbf{W}_{zul}	η
[m]			[mm]		[mm]	[-]
(L=5.30 m,	NKL 1, k	$_{def} = 0.60$)				
2.56	78	Wnet,fin	18.5	1/300=	17.7	1.05

Auflagerkräfte

Charakteristische Auflagerkräfte

Char. Auflagerkr.

	Aufl.	F _{z,k,min} [kN]	F _{z,k,max} [kN]
Einw. <i>Gk</i>	A	13.14	13.14
	В	9.00	9.00
Einw. Qk.N	A	4.77	4.77
	В	4.77	4.77
Einw. Qk.S.A	A	2.15	2.15
	В	0.50	0.50
Einw. Qk.W.000	A	-1.73	-1.73
	В	-0.40	-0.40
Einw. Qk.W.090	A	-2.89	-2.89
	В	-0.67	-0.67
Einw. Qk.W.180	A	-0.09	-0.09
	В	-0.02	-0.02
Einw. Qk.W.270	A	0.51	0.51
	В	0.12	0.12

Durch Kontrollrechnung geprüft

Datum: **28.04.2023** Position: **B3**

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT) Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Ort	x [m]		η [-]
Biegung	Feld 1	2.29	OK	0.62
Querkraft	Feld 1	0.00	OK	0.40
Biegung Verstärkung	Feld 1	2.65	OK	0.63
Querkraft Verstärkung	Feld 1	0.00	OK	0.30
Auflagerpressung	Auflager A		OK	0.30
Verbindungsmittel	Feld 1	1.02	OK	0.36
Mauerwerksauflager	Lager A	0.00	OK	0.20
Lagesicherheit			OK	
-				. /

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Ort	Х		η
		[m]		[-]
gesamte Enddurchbiegung	Feld 1	2.56	OK	1.05

220

Seite:

Durch Kontrollrechnung geprüft

Datum: **28.04.2023** Position: **B4**

Pos. B4

Holz-Balken mit Stahl-Verstärkung

Die Stahl-Verstärkungen sind mit einem Betonpolster zu unterfüttern!!!!!

System Balken

M 1:45

Abmessungen / Nutzungsklassen	Feld					l [m]	NKL
-	1					5.30	1
Balken	Feld	a [m]	s [m]		b/l [cm/cm		Material
	1	0.00	0.00		20/2	4	NH C24
Verstärkung	Feld	a [m]	s [m]	Seiten	Profi	il	Material
	1	0.00	5.30	vorne	U 180)	S 235
Verbundstellen		rbindung ttel	S-	Abmes	sung I	FkI	K _{ser} [kN/m]
		bel Typ C lzen	2	62x16.4 M16		1.8	19530
Abstände Verbundst.			e _{0,i} [cm]		e [cm]		e _{0,r} [cm]
			20.0		7 * 70.0		20.0
Auflager	Lager	x [m]	b [cm]	Balken gelag.	Verst. gelag.	K _{T,z} [kN/m]	K _{R,y} [kNm/rad]
	Α	0.00	15.0	X	X	fest	frei
	В	5.30	15.0	х	Х	fest	frei

Durch Kontrollrechnung geprüft

221

Datum: **28.04.2023** Position: **B4**

Seite:

222

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkung

Gk

Qk.N

Qk.S.A

Durch Kontrollrechnung geprüft

Datum: **28.04.2023** Position: **B4**

Seite:

223

Qk.W.000

Qk.W.090

Qk.W.180

Qk.W.270

Eigengewicht in z-Richtung

Einw. *Gk*

Eigengewic	ht	
Bauteil	Kommentar	qz
		[kN/m]
Balken	Eigengew	0.20
V1	Eigengew Durch Kontrollrechnung geprüft	31.07 0 2 22
	Durch Kontrollrechnung geprüft	our für Stange

Datum: **28.04.2023** Position: **B4**

Seite:

224

Streckenlasten	Strec	kenlasten					
in z-Richtung	Feld	Kommentar	a [m]	s [m]	q _{z,li} [kN/m]		q _{z,re} [kN/m]
Einw. Gk	(a) 1		0.00	5.30	[KI4/III]		2.60
Einw. Qk.N	(b) 1	Balken	0.00	5.30			<i>2.60</i> 1.80
	(5)	Balken	0.00	0.00			1.80
(a)	Eigen	ılast incl. neuem Aufb	au				
				2.89*0.90	= 2	2.60	kN/m
(b)	Verke	ehrslast Wohnraum		2.00*0.90	= '	1.80	kN/m
Punktlasten		llasten und -momente)		_		
in z-Richtung	Feld	Kommentar	a [m]	Г	Fz kN]		My [kNm]
	(a) 1	S4	1.00	1	.98		
	(b) 1 (c) 1	P1 T-Wand	3.80 1.00		3.54 ⊺.62		
	(d) 1	Treppe	3.80	1	.25		
	_(e) 1 _(a) 1	Treppe S4	3.80 1.00		7.50).97		
	(b) 1	P1	3.80	3	3.42		
	(a) 1 (b) 1	S4 P1	1.00 3.80).78 .04		
Einw. <i>Qk.W.090</i>	_(a) 1	S4	1.00	-1	.30		
	_(b) 1 _(a) 1	P1 S4	3.80 1.00		3.83).04		
	(b) 1	P1	3.80	-1	.20		
	(a) 1 (b) 1	S4 P1	1.00 3.80).23 .44		
(a)	. ,	' ' Pos. 'S4', Lager 'A' (Se		- '			
		,	,				
(b)	aus P	Pos. 'P1', Lager 'A' (Se	eite 90)				
(c)	Terra	ssenwand		(0.6*3)*0.9	= '	1.62	kN
(d)	Trepp	oenlast <=50kg/m2		0.5*5/2	= '	1.25	kN
(e)	Trepp	oen-Nutzlast <=300kg	/m2	3*5/2	= 7	7.50	kN
**** WARNUNG ****		.astabtrag liefert Las en können.	ten in x-R	Richtung, die	nicht aus	gewe	ertet 🗸
Kombinationen		oinationsbildung nach ellung der maßgeben					
	Ek I	KLED Σ (v*w*EW)					

	Ek	KLED	Σ (γ*ψ*ΕW)		
ständig/vorüberg.	2	mi	1.35*Gk	+1.50*Qk.N	
				(1)	
	5	ku	1.35*Gk	+1.50*Qk.N	+0.75*Qk.S.A
				(1)	
quasi-ständig	78		1.00*Gk	+0.30*Qk.N	
				(1)	
Lagesicherheit	81	ku/sk	0.90*Gk	+1.50*Qk.W.090	
st./vor. Auflagerkr.	87	ku	1.35*Gk	+1.50*Qk.N	+0.75*Qk.S.Å ^{1.07.2023}
			Durch Kontro	ollrechnung geprüft	New für Stange

Datum: **28.04.2023** Position: **B4**

	Ek KLEI	Σ (γ*ψ*EW)				
außerg. Auflagerkr	92 ku/sk 93 ku	1.00*Gk 1.00*Gk	(1) +1.50*Qk +0.50*Qk (1)		+2.30*Qk.	S.A
	mi: mitte ku: kurz		+2.30*Qk	S.A	+0.20*Qk.	W.090
Mat./Querschnitt	Material ur	nd Querschnittsanga	ben nach [OIN EN 199	95-1-1	~
Material	Bauteil	Material	,	f _u [N/mm ²]		E [N/mm²]
	Verst.1	S 235	235.0	360.0		210000
	Bauteil	Material	f _{m,k} [N/mm²]	f _{t,0,k} [N/mm ²]	f _{c,0,k} [N/mm²]	f _{v,k} [N/mm²]
	Balken	NH C24	24.0	14.5	21.0	4.0
Mauerwerk	Mörtelgrup	festigkeitsklasse			M: Vol malmauerm	Iz 10/M2,5 auerziegel Ilziegel Mz SFK 10 iörtel M2,5 i3 N/mm³

Querschnittswerte	Bauteil	b	h	Α	\mathbf{W}_{y}	ly
		[cm]	[cm]	[cm²]	[cm³]	[cm ⁴]
	Balken	20.0	24.0	480.0	1920.0	23040
	Bauteil		Profil	A	W _y	_ ly

Bauteil	Profil	Α	VV y	ly
		[cm²]	[cm³]	[cm ⁴]
Verst.1	U 180	28.0	150.0	1350

Verbindungsmittel	Тур	$F_{v,Rk}$
-		[kN]
	Dübel Typ C2 62x16.4 mm	8.79
	Bolzen M16, 4,8	12.75

Grafik	Querschnittsgrafiken
--------	----------------------

verstarkung vi	
42 8	•
7 20	

Durch Kontrollrechnung geprüft

225

Seite:

M 1:21

Datum: 28.04.2023 Position: **B4**

Nachweise (GZT) Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1 **Biegung** Nachweis der Biegetragfähigkeit des Holzbalkens Abs. 6.1 Ek X **k**_{mod} M_{vd} $\sigma_{\text{m.d}}$ f_{m.d} η [m] [-] [kNm] $[N/mm^2]$ $[N/mm^2]$ [-] Feld 1 (L = 5.30 m)2 0.80 3.80 16.25 8.47 14.77 0.57 Nachweis der Querkrafttragfähigkeit des Holzbalkens Querkraft Abs. 6.1.7 Ek **k**_{mod} $V_{z,d}$ Td $f_{v,d}$ [m] [kN] $[N/mm^2]$ $[N/mm^2]$ [-] [-] 2 Feld 1 4.40 0.80 -14.580.91 2.46 0.37 Nachweis E-E Verst. Nachweis der Verstärkung (Biegung und Querkraft) Abs. 6.2 Ek X $N_{x,d}$ $M_{v,d}$ σ_{d} Td $\sigma_{v,d}$ [kN] [kNm] [kN] [N/mm²] [m] [-] Feld 1 5 3.00 0.00 33.43 222.89 0.95 3.79 2.28 222.92 Verbindungsmittel Nachweis der Tragfähigkeit auf Abscheren je Scherfuge Abs. 8.2 X Ek **k**mod F_{v,Ed} F_{v,Rd} [m][kN] [kN] [-] Feld 1 3.70 2 0.80 90.00 10.08 13.25 0.76 Nachweis der Auflagerpressung Auflagerpressung Abs. 6.1.5 Ek F_d Aef k_{c90} σ_{c90d} **f***c90d **k**_{mod} η [cm²] [N/mm²] [N/mm²] [-] [-] [kN] [-] Auflager A 2 0.80 10.34 360.0 1.00 0.29 1.54 0.19 2 0.80 11.17 360.0 1.00 0.31 1.54 0.20 Auflager B f*_{c90d}: k_{c90} * f_{c90d} **** HINWEIS **** Die Lasteinleitungen der Stahlverstärkung an den Auflagern A und B müssen gesondert nachgewiesen werden. Mauerwerksauflager Nachweis der Auflagerpressung nach DIN EN 1996

Abs. 6.1.3

Lager Ek β A_b fd N_{Ed.c} N_{Rd,c} η [cm²] [N/mm²] [kN] [kN] [-] [-] 5 405.0_{A} Α 2.74 29.39 110.83 1.00 0.27 В 5 1.00 405.0_A 2.74 36.47 110.83 0.33

A: Tragrichtung senkrecht zur Wandrichtung

Lagesicherheit DIN EN 1990, 6.4.2 Lagesicherheitsnachweis in vertikaler Richtung nach NDP zu A1.3.1(3)

Aufl.	Ek	$F_{d,dst}$	$F_{d,stb}$	η
	[-]	[kN]	[kN]	[-]
Α	81	-3.20	11.82	0.27
В	81	-4.49	12.85	0.35

Durch Kontrollrechnung geprüft

226

Datum: 28.04.2023 Position: B4

227

Seite:

Nachweise (GZG)

Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1

- Die Verstärkung wird bei einem Bestandsbauteil angebracht. Das E-Modul des Holzbalkens zum Zeitpunkt t = 0 wird reduziert.

Verformungen

Abs. 7.2

Feld 1

Nachweise (der	Verformui	ngen
-------------	-----	-----------	------

X	Ek	Norm	Wvorh		Wzul	η
[m]			[mm]		[mm]	[-]
(L=5.30 m,	NKL 1, k	$_{def} = 0.60$)				
2 73	78	\M/mat fin	15 1	1/300=	17 7	0.86

Auflagerkräfte

Charakteristische und Bemessungsauflagerkräfte

Char. Auflagerkr.

	Autl.	F _{z,k,min}	F _{z,k,max}
		[kN]	[kN]
Einw. <i>Gk</i>	Α	13.14	13.14
	В	14.27	14.27
Einw. Qk.N	A	6.89	6.89
	В	10.15	10.15
Einw. Qk.S.A	Ā	1.75	1.75
	В	2.64	2.64
Einw. <i>Qk.W.000</i>	Ā	-0.34	-0.34
	В	0.60	0.60
Einw. <i>Qk.W.090</i>	A	-2.14	-2.14
	В	-2.99	- 2.99
Einw. <i>Qk.W.180</i>	A	-0.37	-0.37
	В	-0.87	-0.87
Einw. <i>Qk.W.270</i>	A	-0.22	-0.22
	В	-0.99	-0.99

Bem.-auflagerkräfte ständig/vorüberg.

ständig/vorüberg.	Aufl.	F _{z,d,min} [kN]	EK	F _{z,d,max} [kN]	EK
	Α	9.93	92	29.39	87
	В	9.79	92	36.47	87
außergewöhnlich	Aufl.	F _{z,d,min} [kN]	EK	F _{z,d,max} [kN]	EK
	Α	16.08	97	20.61	93
	В	19.02	97	25.41	93

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Ort	x [m]		η [-]
Biegung	Feld 1	3.80	OK	0.57
Querkraft	Feld 1	4.40	OK	0.37
Nachweis E-E Verstärkung	Feld 1	3.00	OK	0.95
Auflagerpressung	Auflager B		OK	0.20
Verbindungsmittel	Feld 1	3.70	OK	0.76
Mauerwerksauflager Durch Kontrollrechnung g	Lager A	0.00	OK	31.07 2023

Datum: **28.04.2023** Position:

Nachweis Ort x in [m] [-Lagesicherheit OK

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Ort	Х		η
		[m]		[-]
gesamte Enddurchbiegung	Feld 1	2.73	OK	0.86

Durch Kontrollrechnung geprüft

Die Stahl-Verstärkungen sind mit einem Betonpolster zu unterfüttern!!!!!

228

В4

Seite:

p-Viewer Version 2023 - Copyngnt 2022 - mb AEC Software GmbH

Datum: **28.04.2023** Position: **B5**

Pos. B5

Holz-Balken mit Stahl-Verstärkung

Die Stahl-Verstärkungen sind mit einem Betonpolster zu unterfüttern!!!!!

System Balken M 1:45

Abmessungen / Nutzungsklassen	Feld					l [m]	NKL	
	1					5.30	1	
Balken	Feld	a [m]	s [m]		b/h [cm/cm]		Material	,
	1	0.00	0.00		20/24		NH C24	
Verstärkung	Feld	a [m]	s [m]	Seiten	Profil		Material	
	1	0.00	5.30	vorne	U 220		S 235	
Verbundstellen	n Ver [-] mit	bindung: tel	s-	Abmes	•	K I	K _{ser} [kN/m]	•
	10 Düb Bolz	el Typ C zen	2	62x16.4 M16	1 mm 4.	8	19530	/
Abstände Verbundst.			e₀ [cm	•	e [cm]		e _{0,r} [cm]	
			20.0	0	9 * 54.4		20.0	
Auflager	Lager	x [m]	b [cm]	Balken gelag.	Verst. gelag.	K _{T,z} [kN/m]	K _{R,y} [kNm/rad]	
	A B	0.00 5.30	15.0 15.0	X X	X X	fest fest	frei frei	
	ט	5.50	13.0	^	^	1631	1161	

Durch Kontrollrechnung geprüft

229

Datum: **28.04.2023** Position: **B5**

Seite:

230

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkung

Gk

Qk.N

Qk.S.A

Durch Kontrollrechnung geprüft

Datum: **28.04.2023** Position: **B5**

Seite:

231

Qk.W.000

Qk.W.090

Qk.W.180

Qk.W.270

Eigengewicht in z-Richtung

Einw. *Gk*

Eigengewicht		•
Bauteil	Kommentar	q _z [kN/m]
Balken	Eigengew	0.20
V1	Eigengew	31.07 0<u>2</u>29

Datum: 28.04.2023 Position: **B5**

Seite:

232

Streckenlasten	Strec	kenlasten				
in z-Richtung	Feld	Kommentar	a [m]	s [m]	q _{z,li} [kN/m]	q _{z,re} [kN/m]
Einw. <i>Gk</i>	(a) 1	Balken	0.00	5.30		2.60 2.60
	(b) 1		0.00	5.30		1.80
Einw. Qk.N	(c) 1	Balken Balken	0.00	5.30		1.80 1.80 1.80
(a)	Eiger	nlast incl. neuem A	ufbau	2.89*0.90	= 2.60	kN/m
(b)	WE-V	Vand		0.6*3	= 1.80	kN/m
(c)	Verke	ehrslast Wohnraur	n	2.00*0.90	= 1.80	kN/m
Punktlasten	Einze	llasten und -mom	ente			
in z-Richtung	Feld	Kommentar	a [m]	Γ	Fz [kN]	My [kNm]
Einw. Gk	(a) 1	ST2	3.80	13	3.29	[icitiii]
Einw. Qk.N Einw. Qk.S.A Einw. Qk.W.000 Einw. Qk.W.090 Einw. Qk.W.180 Einw. Qk.W.270	(b) 1 (c) 1 (a) 1 (a) 1 (a) 1 (a) 1 (a) 1	Treppe Treppe ST2 ST2 ST2 ST2 ST2 ST2 ST2	3.80 3.80 3.80 3.80 3.80 3.80 3.80	-1 -1 -2	1.25 7.50 5.84 2.08 7.66 2.41 2.89	
(a)	aus F	Pos. 'S2', Lager 'A'	(Seite 152)			
(b)	Trepp	oenlast <=50kg/m2	2	0.5*5/2	= 1.25	kN
(c)	Trepp	oen-Nutzlast <=30	0kg/m2	3*5/2	= 7.50	kN
Kombinationen		oinationsbildung na ellung der maßge				
	Ek	KLED Σ (γ*ψ*EW	/)			
ständig/vorüberg.	2	mi 1.35*Gk	+1.50* (1)	Qk.N		
	4	ku 1.35*Gk	+1.05* (1)	Qk.N	+1.50*Qk.S	A
	5	ku/sk 1.35*Gk	+1.05* (1)	Qk.N	+1.50*Qk.S	A
		+0.90*Qk.V	V.000			
quasi-ständig	78	1.00*Gk	+0.30* (1)	Qk.N		
Lagesicherheit st./vor. Auflagerkr. außerg. Auflagerkr	93 97 mi: ku:	ku/sk 0.90*Gk ku/sk 1.00*Gk ku/sk 0.95*Gk mittel kurz	+1.50* +1.50*	Qk.W.090 Qk.W.090 Qk.S.A	+0.20*Qk.W	7.090
	ku/sk:	kurz/sehr kurz				•

Durch Kontrollrechnung geprüft

Datum: **28.04.2023** Position: **B5**

Mat./Querschnitt

Material und Querschnittsangaben nach DIN EN 1995-1-1

Material	Bauteil	Material	f _y [N/mm ²]	f _u [N/mm²]	E [N/mm²]
	Verst.1	S 235	235.0	360.0	210000

Bauteil	Material	f _{m,k} [N/mm²]	, ,	-,-,	f _{v,k} [N/mm²]
Balken	NH C24	24.0	14.5	21.0	4.0

Mauerwerk an Auflagern A, B

Steinart
Steintyp
Steindruckfestigkeitsklasse
Mörtelgruppe
charakt. Druckfestigkeit

Mz 10/M2,5 Mauerziegel Vollziegel Mz SFK 10

233

Seite:

Normalmauermörtel M2,5 $f_k = 4.83 \text{ N/mm}^2$

Querschnittswerte

Bauteil	b	h	Α	\mathbf{W}_{y}	ly
	[cm]	[cm]	[cm²]	[cm³]	[cm ⁴]
Balken	20.0	24.0	480.0	1920.0	23040

Bauteil	Profil	Α	\mathbf{W}_{y}	ly
		[cm²]	[cm³]	[cm ⁴]
Verst.1	U 220	37.4	245.0	2690

Verbindungsmittel

Тур	F _{v,Rk} [kN]
Dübel Typ C2 62x16.4 mm	8.79
Bolzen M16, 4.8	13.41

Grafik

Querschnittsgrafiken

M 1:21

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

Bied	ung
Abs.	6.1

Nachweis der Biegetragfähigkeit des Holzbalkens **x Ek k**_{mod} **M**_{vd}

Feld 1

x Ek k_{mod} M_{yd} $\sigma_{m,d}$ $f_{m,d}$ η [m] [-] [kNm] [N/mm²] [N/mm²] [-] (L = 5.30 m) 3.80 4 0.90 18.04 9.39 16.62 0.57

Querkraft Abs. 6.1.7

Nachweis der Querkrafttragfähigkeit des Holzbalkens x Ek k_{mod} V_{z,d} T

Feld 1

 x
 Ek
 k_{mod} $V_{z,d}$ T_d $f_{v,d}$ η

 [m]
 [-]
 [kN]
 [N/mm²]
 [N/mm²]
 [-]

 4.01
 4
 0.90
 -24.81
 1.55
 2.77
 0.56

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: **B5**

Seite:

234

Nachweis E-E Verst. Nachweis der Verstärkung (Biegung und Querkraft) Abs. 6.2 $N_{x,d}$ $M_{v.d}$ σ_{d} η Td $\sigma_{v,d}$ [m] [kN] [kNm] [kN] [N/mm²] Feld 1 3.47 5 0.00 52.82 -13.91 215.60 5.96 215.85

Verbindungsmittel

Abs. 8.2

Feld 1

Nachweis der Tragfähigkeit auf Abscheren je Scherfuge

x	Ek	K mod	α	$F_{v,Ed}$	$F_{v,Rd}$	η
[m]		[-]	[°]	[kN]	[kN]	[-]
4.01	2	0.80	90.00	12.80	13.66	0.94

 k_{c90}

 σ_{c90d}

f*_{c90d}

Auflagerpressung

Abs. 6.1.5

Auflager A Auflager B

f*c90d:

Nachweis der Auflagerpressung Ek **k**_{mod} F_d

[-] [N/mm²] [N/mm²] [-] [kN] [cm²] 2 1.54 8.65 360.0 0.24 0.16 0.80 1.00 2 0.80 9.50 360.0 1.00 0.26 1.54 0.17

Aef

**** HINWEIS ****

Die Lasteinleitungen der Stahlverstärkung an den Auflagern A und B müssen gesondert nachgewiesen werden.

Mauerwerksauflager Abs. 6.1.3

Nachweis der Auflagerpressung nach DIN EN 1996

La	ger Ek	β	A_b	f _d	$N_{Ed,c}$	$N_{Rd,c}$	η
		[-]	[cm²]	[N/mm ²]	[kN]	[kN]	[-]
Α	14	1.00	420.0 _A	2.74	34.86	114.94	0.30
В	5	1.00	420.0 _A	2.74	50.95	114.94	0.44
A:	A: Tragrichtung senkrecht zur Wandrichtung						

Lagesicherheit

Lagesicherheitsnachweis in vertikaler Richtung nach NDP zu A1.3.1(3) DIN EN 1990, 6.4.2

Aufl.	Ek [-]	F _{d,dst} [kN]	F _{d,stb} [kN]	ົ່ງ [-]
Α	82	-3.25	15.38	0.21
В	82	-8.24	21.06	0.39

Nachweise (GZG)

Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1

- Die Verstärkung wird bei einem Bestandsbauteil angebracht. Das E-Modul des Holzbalkens zum Zeitpunkt t = 0 wird reduziert.

Verformungen

Abs. 7.2

Feld 1

Nachweise der Verformungen

x [m]	Ek	Norm	W _{vorh} [mm]		W _{zul} [mm]	η [-]
(L=5.30 m,	NKL 1, k	$_{def} = 0.60$)				
2.83	78	Wnet fin	13.4	1/300=	17.7	0.76

Auflagerkräfte

Charakteristische Auflagerkräfte

Char. Auflagerkr.

	Aufl.	$F_{z,k,min}$	$F_{z,k,max}$
		[kN]	[kN]
Einw. <i>Gk</i>	Α	17.09	17.09
	В	23.40	23.40
Einw. Qk.N	A	6.89	31.07 6289
		Durch Kontrollrechnung geprüft	our für Stano

Datum: **28.04.2023** Position: **B5**

	Aufl.	F _{z,k,min} [kN]	F _{z,k,max} [kN]
	В	10.15	10.15
Einw. <i>Qk.S.A</i>	A	1.94	1.94
	В	4.91	4.91
Einw. <i>Qk.W.000</i>	A	0.59	0.59
	В	1.49	1.49
Einw. <i>Qk.W.090</i>	A	-2.17	-2.17
	В	-5.49	-5.49
Einw. <i>Qk.W.180</i>	A	-0.68	-0.68
	В	-1.73	-1.73
Einw. <i>Qk.W.270</i>	A	-0.82	-0.82
	В	-2.07	-2.07

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Ort	X		η
		[m]		[-]
Biegung	Feld 1	3.80	OK	0.57
Querkraft	Feld 1	4.01	OK	0.56
Nachweis E-E Verstärkung	Feld 1	3.47	OK	0.92
Auflagerpressung	Auflager B		OK	0.17
Verbindungsmittel	Feld 1	4.01	OK	0.94
Mauerwerksauflager	Lager A	0.00	OK	0.44
Lagesicherheit	•		OK	

Nachweise (GZG)

Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Ort	X		η
		[m]		[-]
gesamte Enddurchbiegung	Feld 1	2.83	OK	0.76

Die Stahl-Verstärkungen sind mit einem Betonpolster zu unterfüttern!!!!!

Durch Kontrollrechnung geprüft

IIID-Viewer version 2023 - Copyright 2022 - IIID AEC Sonware Gillon

235

Datum: 28.04.2023 Position: **B6**

Pos. B6

Holz-Balken mit Stahl-Verstärkung

Die Stahl-Verstärkungen sind mit einem Betonpolster zu unterfüttern!!!!!

System

Balken

M 1:45

Abmessungen / Feld Nutzungsklassen [m] 1 5.30

b/h Balken Feld Material s [m] [m] [cm/cm] 1 **NH C24** 0.00 0.00 20/24

Feld Seiten **Profil** Material Verstärkung а [m] [m] 1 0.00 5.30 beide U 180 S 235

Verbundstellen n Verbindungs-**Abmessung** FkI Kser [kN/m][-] mittel 8 Dübel Typ C2 62x16.4 mm 19530 4.8 Bolzen M16

Abstände Verbundst. **e**0,1 **e**0,r [cm] [cm] [cm]

20.0

Auflager b Balken Verst. Lager X $K_{T,z}$ $K_{R,y}$ [kN/m] [kNm/rad] [m] [cm] gelag. gelag. 0.00 15.0 fest frei Α Х Χ В 5.30 15.0 fest frei

Durch Kontrollrechnung geprüft

Χ

31.07.2023

20.0

236

NKL

Seite:

7 * 70.0

Datum: 28.04.2023 Position: **B6**

Seite:

237

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkung

Gk

Qk.N

Qk.S.A

Durch Kontrollrechnung geprüft

Datum: **28.04.2023** Position: **B6**

Qk.W.090

Qk.W.180

Durch Kontrollrechnung geprüft

238

Datum: 28.04.2023 Position: B6

Qk.W.270

Eigengewicht in z-Richtung

Einw. Gk

Eigengewicht

Bauteil	Kommentar	qz
		[kN/m]
Balken	Eigengew	0.20
V1-V1b	Eigengew	0.22

Streckenlasten

in z-Richtung

Einw. *Gk*

Einw. Qk.N

Streck	kenlasten				
Feld	Kommentar	a [m]	s [m]	q _{z,li} [kN/m]	q _{z,re} [kN/m]
(a) 1		0.00	5.30		2.60
	Balken				2.60
(b) 1		0.00	5.30		1.80
	Balken				1.80
_(c) 1		0.00	5.30		1.80
	Balken				1.80

(a) Eigenlast incl. neuem Aufbau

2.89*0.90 =

2.60 kN/m

Seite:

239

(b)

WE-Wand

0.6*3 =

1.80 kN/m

(c)

Verkehrslast Wohnraum

2.00*0.90 =

1.80 kN/m

Punktlasten

in z-Richtung

Einw.	Gk
Einw.	Qk.S.A
Einw.	Qk.W.000
Einw.	Qk.W.090
Einw.	Qk.W.180
Einw.	Qk.W.270

Einzellasten und -momente

Feld	Kommentar	а	Fz	Му
		[m]	[kN]	[kNm]
(a) 1	ST2	3.80	13.29	
(a) 1	ST2	3.80	6.84	
(a) 1	ST2	3.80	2.08	
(a) 1	ST2	3.80	-7.66	
(a) 1	ST2	3.80	-2.41	
(a) 1	ST2	3.80	-2.89	

(a)

aus Pos. 'S2', Lager 'A'

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

ständig/vorüberg.

Ek KLED Σ (γ*ψ*EW)1 st 1.35*Gk

1 st 1.35*Gk 2 mi 1.35*Gk

+1.50*Qk.N

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: **B6**

Seite:

240

	Ek	KLED Σ (γ*ψ*EW)		
	4	ku 1.35*Gk	+1.05*Qk.N (1)	+1.50*Qk.S.A
	29	ku/sk 1.35*Gk	+1.05*Qk.N (1)	+1.50*Qk.S.A
		+0.90*Qk.W.000	` ,	
quasi-ständig	78	1.00*Gk	+0.30*Qk.N (1)	
Lagesicherheit	82	ku/sk 0.90*Gk	+1.50*Qk.W.090	
st./vor. Auflagerkr.	94	ku/sk 1.00*Gk	+1.50*Qk.W.090	
außerg. Auflagerkr	98	ku/sk 0.95*Gk	+2.30*Qk.S.A	+0.20*Qk.W.090
	st: mi: ku: ku/sk:	ständig mittel kurz kurz/sehr kurz		\

Mat./Querschnit	t
-----------------	---

Material und Querschnittsangaben nach DIN EN 1995-1-1

Material	Bauteil	Material	f _y [N/mm ²]	f _u [N/mm²]		E [N/mm²]
	Verst.1	S 235	235.0	360.0		210000
	Bauteil	Material	f _{m,k} [N/mm ²]	f _{t,0,k} [N/mm ²]	f _{c,0,k} [N/mm ²]	f _{v,k} [N/mm²]
	Balken	NH C24	24.0	14.5	21.0	4.0
Mauerwerk	an Auflager	nΑR			M	7 10/M2 5

Querschnittswerte	Bauteil	b	h	Α	W_{y}	ly
		[cm]	[cm]	[cm²]	[cm³]	[cm ⁴]
	Balken	20.0	24.0	480.0	1920.0	23040
	Bauteil		Profil	Α	Wy	ly
				[cm²]	[cm³]	[cm ⁴]
	Verst.1		U 180	28.0	150.0	1350

Verbindungsmittel	Тур	$F_{v,Rk}$
		[kN]
	Dübel Typ C2 62x16.4 mm	8.79
	Bolzen M16, 4.8	12.75

Grafik Querschnittsgrafiken

Verstärkung V1

M 1:26

Durch Kontrollrechnung geprüft

31.07.2023

viewei veision 2023 - Copyrigin 2022 - IIID AEC Sontwale Gillion

Trojekt. Hentigsti. Tru, 10010 Beriin-Kurishorst

Datum: **28.04.2023** Position: **B6**

Seite:

241

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

Biegung	Nachweis der	Bieget	ragfähigkeit de	es Holzba	lkens		
Abs. 6.1	x [m]	Ek	k _{mod} [-]	M _{yd} [kNm]	$\sigma_{m,d}$ [N/mm ²]	f _{m,d} [N/mm²]	η [-]
Feld 1	(L = 5.30 m) 3.80	1	0.60	9.28	4.83	11.08	0.44

Querkraft	Nachweis der Querkrafttragfähigkeit des Holzbalkens						
Abs. 6.1.7	X	Ek	\mathbf{k}_{mod}	$V_{z,d}$	Td	$\mathbf{f}_{v,d}$	η
	[m]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
Feld 1	3.70	4	0.90	18.64	1.16	2.77	0.42

Nachweis E-E Verst.	Nachwei	s der ∖	/erstärkung (E	Biegung und	Querkraft)		
Abs. 6.2	X	Ek	$N_{x,d}$	$\mathbf{M}_{y,d}$	$V_{z,d}$	σ _d τ _d	η
	[m]		[kN]	[kNm]	[kN]	σ _{v,d} [N/mm²]	[-]
Feld 1	3.00	29	0.00	23.52	3.63	156.78 2.19	0.67 *
						156.83	

Verbindungsmittel	Nachweis de	er Tragfäh	igkeit auf Al	bscheren je	Scherfuge	!	
Abs. 8.2	x	Ek	k mod	α	Fv,Ed	$F_{v,Rd}$	η
	[m]		[-]	[°]	[kN]	[kN]	[-]
Feld 1	3.70	1	0.60	90.00	5.58	9.94	0.56

Auflagerpressung	Nachweis	Nachweis der Auflagerpressung						
Abs. 6.1.5	Ek	k _{mod} [-]	F _d [kN]	A _{ef} [cm ²]	k _{c90} [-]	σ _{c90d} [N/mm ²]	f* _{c90d} [N/mm²]	η [-]
Auflager A	2	0.80	7.69	360.0	1.00	0.21	1.54	0.14
Auflager B	f*	0.60	6.00	360.0	1.00	0.17	1.15	0.14

**** HINWEIS ****	Die Lasteinleitungen der Stahlverstärkung an den Auflagern A und B
	müssen gesondert nachgewiesen werden.

Mauerwerksauflager	erwerksauflager Nachweis der Auflagerpressung nach DIN EN 1996							
Abs. 6.1.3	Lager	Ek	β	Ab	f_d	$N_{Ed,c}$	$N_{Rd,c}$	η
			[-]	[cm ²]	[N/mm ²]	[kN]	[kN]	[-]
	Α	14	1.00	510.0 _A	2.74	31.73	139.57	0.23
	В	29	1.00	510.0_{A}	2.74	44.62	139.57	0.32
	A: Tragric	htung senk	krecht zur Wa	andrichtung				

Lagesicherheit	Lagesicherh	eitsnachweis in ve	rtikaler Richtung	nach NDP zu A	1.3.1(3)
DIN EN 1990, 6.4.2	Aufl.	Ek	$F_{d,dst}$	$F_{d,stb}$	η
		[-]	[kN]	[kN]	[-]
	Α	82	-3.25	15.41	0.21
	В	82	-8.24	20.60	0.40

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: **B6**

Nachweise (GZG)

Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1

- Die Verstärkung wird bei einem Bestandsbauteil angebracht. Das E-Modul des Holzbalkens zum Zeitpunkt t = 0 wird reduziert.

Verformungen

Abs. 7.2

Feld 1

Nachweise de	r Verfor	mungen

X	Ek	Norm	Wvorh		Wzul	η
[m]			[mm]		[mm]	[-]
(L=5.30 m,	NKL 1, k	$_{def} = 0.60$)				
2.70	78	\A/ . c	12 /	1/300-	177	0.70

Auflagerkräfte

Charakteristische Auflagerkräfte

Char. Auflagerkr.

	Aufl.	F _{z,k,min} [kN]	F _{z,k,max} [kN]
Einw. <i>Gk</i>	Α	17.12	17.12
	В	22.89	22.89
Einw. <i>Qk.N</i>	A	4.77	4.77
	В	4.77	4.77
Einw. <i>Qk.S.A</i>	A	1.94	1.94
	В	4.91	4.91
Einw. <i>Qk.W.000</i>	A	0.59	0.59
	В	1.49	1.49
Einw. <i>Qk.W.090</i>	A	-2.17	-2.17
	В	-5.49	-5.49
Einw. <i>Qk.W.180</i>	A	-0.68	-0.68
	В	-1.73	-1.73
Einw. <i>Qk.W.270</i>	A	-0.82	-0.82
	В	- 2.07	-2.07

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Ort	x [m]		η [-]
Biegung	Feld 1	3.80	OK	0.44
Querkraft	Feld 1	3.70	OK	0.42
Nachweis E-E Verstärkung	Feld 1	3.00	OK	0.67
Auflagerpressung	Auflager B		OK	0.14
Verbindungsmittel	Feld 1	3.70	OK	0.56
Mauerwerksauflager	Lager A	0.00	OK	0.32
Lagesicherheit	•		OK	

Nachweise (GZG)

Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Ort	X		η
		[m]		[-]
gesamte Enddurchbiegung	Feld 1	2.79	OK	0.70

Durch Kontrollrechnung geprüft

Die Stahl-Verstärkungen sind mit einem Betonpolster zu unterfüttern !!!!!!

Datum: 28.04.2023 Position: B7

Seite:

243

Pos. B7

Holz-Balken mit Stahl-Verstärkung

Die Stahl-Verstärkungen sind mit einem Betonpolster zu unterfüttern!!!!!

System

Balken

M 1:45

Abmessungen / NKL Feld Nutzungsklassen [m] 5.30 Balken Feld b/h Material s [m] [m] [cm/cm] 1 0.00 20/24 NH C24 0.00 **Material** Verstärkung Feld Seiten **Profil** а [m] [m] 1 0.00 5.30 beide U 160 S 235 Verbundstellen n Verbindungs-**Abmessung** FkI Kser [-] mittel [kN/m]8 Dübel Typ C2 62x16.4 mm 19530 4.8 Bolzen M16

Abstände Verbundst.

ео,і	е	e 0,r
[cm]	[cm]	[cm]
20.0	7 * 70.0	20.0

Auflager

Lager	X	b	Balken	Verst.	$K_{T,z}$	$\mathbf{K}_{R,y}$
	[m]	[cm]	gelag.	gelag.	[kN/m]	[kNm/rad]
Α	0.00	15.0	Х	X	fest	frei
В	5.30	15.0	Х	X	fest	frei

Durch Kontrollrechnung geprüft

mb BauStatik S353.de 2023.010

Ingenieurbüro Pitbau - Statik & Energieberatung - www.pitbau.de

31.07.2023

mb-viewer version zuzs - Capyrignt zuzz - mb AEC sonware Gmi

Datum: **28.04.2023** Position: **B7**

Seite:

244

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkung

Gk

Qk.N

Qk.S.A

Durch Kontrollrechnung geprüft

Datum: **28.04.2023** Position: **B7**

Seite:

245

Qk.W.090

Qk.W.180

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: **B7**

Qk.W.270

Eigengewicht in z-Richtung

Einw. Gk

Eigengewicht

Bauteil	Kommentar	qz
		[kN/m]
Balken	Eigengew	0.20
V1-V1b	Eigengew	0.19

Streckenlasten

in z-Richtung

Einw. Gk

Einw. Qk.N

Streckenlasten

Feld	Kommentar	а	S	q z,li	q _{z,re}
		[m]	[m]	[kN/m]	[kN/m]
(a) 1		0.00	5.30		2.60
	Balken				2.60
(b) 1		0.00	5.30		1.80
` '	Balken				1.80

(a)

Eigenlast incl. neuem Aufbau

2.89*0.90 =

2.60 kN/m

Seite:

246

(b)

Verkehrslast Wohnraum

2.00*0.90 =

1.80 kN/m

> Мy [kNm]

Punktlasten

Einw. Qk.W.180

Einw. Qk.W.270

in z-Richtung
Einw. Gk
Einw. Qk.S.A
Einw. Qk.W.000
Einw. Qk.W.090

Einzellasten und -momente Feld Kommentar

ı cıa	Moninicital	a	1 2
		[m]	[kN]
(a) 1	S4	1.00	1.98
(b) 1	P1	3.80	6.54
(c) 1	T-Wand	1.00	1.62
(a) 1	S4	1.00	0.97
(b) 1	P1	3.80	3.42
(a) 1	S4	1.00	-0.78
(b) 1	P1	3.80	1.04
(a) 1	S4	1.00	-1.30
(b) 1	P1	3.80	-3.83
(a) 1	S4	1.00	-0.04
(b) 1	P1	3.80	-1.20
(a) 1	S4	1.00	0.23
(b) 1	P1	3.80	-1.44

(a)

aus Pos. 'S4', Lager 'A' (Seite 164)

(b)

aus Pos. 'P1', Lager 'A' (Seite 90)

(c)

Terrassenwand

(0.6*3)*0.9 =

1.62

kΝ 31.07.2023

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: B7

**** WARNUNG ****

Der Lastabtrag liefert Lasten in x-Richtung, die nicht ausgewertet

werden können.

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

	Ek	KLED	Σ (γ*ψ*EW)		
ständig/vorüberg.	1	st	1.35*Gk		
	2	mi	1.35*Gk	+1.50*Qk.N	
				(1)	
	6	ku	1.35*Gk	+1.05*Qk.N	+1.50*Qk.S.A
				(1)	
	14	ku/sk	1.35*Gk	+1.05*Qk.N	+1.50*Qk.S.A
				(1)	
			+0.90*Qk.W.000	,	
quasi-ständig	78		1.00*Gk	+0.30*Qk.N	
				(1)	
Lagesicherheit	82	ku/sk	0.90*Gk	+1.50*Qk.W.090	
st./vor. Auflagerkr.	88	ku	1.35*Gk	+1.50*Qk.N	+0.75*Qk.S.A
•				(1)	
	94	ku/sk	1.35*Gk	+1.05*Qk.N	+1.50*Qk.S.A
				(1)	
			+0.90*Qk.W.000		
	96	ku/sk	1.00*Gk	+1.50*Qk.W.090	
außerg. Auflagerkr	97	ku	1.00*Gk	+0.50*Qk.N	+2.30*Qk.S.A
				(1)	
	101	ku/sk	0.95*Gk	+2.30*Qk.S.A	+0.20*Qk.W.090
	st:	ständi	g		
	mi: ku:	mittel kurz			

Mat./Querschnitt

Material und Querschnittsangaben nach DIN EN 1995-1-1

B. #	- 4		н
n_{II}	210	MI O	

Bauteil	Material	f _y [N/mm ²]	f _u [N/mm²]	E [N/mm²]
Verst.1	S 235	235.0	-	210000

Bauteil	Material	f _{m,k} [N/mm²]	f _{t,0,k} [N/mm ²]	f _{c,0,k} [N/mm ²]	f _{v,k} [N/mm²]
Balken	NH C24	24.0	14.5	21.0	4.0

Mauerwerk an Auflagern

an Auflagern A, B
Steinart
Steintyp
Steindruckfestigkeitsklasse
Mörtelarunge

Mörtelgruppe charakt. Druckfestigkeit

Bauteil

kurz/sehr kurz

ku/sk:

Normalmauermörtel M2,5 $f_k = 4.83 \text{ N/mm}^2$

 W_v

Querschnittswerte

	[cm]	[cm]	[cm²]	[cm³j	[cm ⁴]
Balken	20.0	24.0	480.0	1920.0	23040
Bauteil		Profil	A [cm²]	W _y [cm³]	l _y [cm ⁴]
Verst.1		U 160	24.0	116.0	925

Durch Kontrollrechnung geprüft

31.07.2023

Mz 10/M2,5

Mauerziegel

SFK 10

Vollziegel Mz

247

Seite:

D-Viewer version 2023 - Copyright 2022 - Hib AEC Software G

Datum: 28.04.2023

Verbindungsmittel Typ $F_{v,Rk}$ [kN] 8.79 Dübel Typ C2 62x16.4 mm Bolzen M16, 4.8 12.75

Grafik Querschnittsgrafiken

Verstärkung V1

M 1:25

Nachweise (GZT)	Nachweise i	m Grenzz	ustand der	Tragfähigk	eit nach DII	N EN 1995	-1-1
Biegung	Nachweis de	er Biegetra	agfähigkeit o	des Holzba	lkens		
Abs. 6.1	x [m]	Ek	k _{mod} [-]	M _{yd} [kNm]	σ _{m,d} [N/mm²]	f _{m,d} [N/mm²]	r [-]
Feld 1	(L = 5.30 m) 3.80	6	0.90	9.93	5.17	16.62	0.31
Querkraft	Nachweis de	er Querkra	afttragfähigk	eit des Ho	Izbalkens		

Querkiait	Macriweis u	el Quelkia	aitti aylaniyke	it aes noi	ZDAINEIIS		
Abs. 6.1.7	X	Ek	\mathbf{k}_{mod}	$V_{z,d}$	Td	$f_{v,d}$	η
	[m]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
Feld 1	0.90	1	0.60	6.53	0.41	1.85	0.22

Nachweis E-E Verst.	Nachwei	s der Ve	erstärkung (B	iegung und	Querkraft)		V
Abs. 6.2	X	Ek	$N_{x,d}$	$M_{y,d}$	$V_{z,d}$	σ _d τ _d	η
	[m]		[kN]	[kNm]	[kN]	σ _{v,d} [N/mm²]	[-]
Feld 1	3.00	14	0.00	14.21	-1.48	122.48	0.52 *

T CIU T	0.00	1.0	υ 1 1 .Δ1	-1.40	1.09 122.50
Verbindungsmittel	Nachweis	der Tragfähigke	eit auf Abscher	en ie Scherf	uge

Verbindangsimile	Nacinvels ac	i ilagic	ariigiteit aar 7 to	our crem je	5 Concinage	•	
Abs. 8.2	X	Ek	k mod	α	$F_{v,Ed}$	$F_{v,Rd}$	η
	[m]		[-]	[°]	[kN]	[kN]	[-]
Feld 1	3.70	6	0.90	90.00	4.24	14.91	0.28

Auflagerpressung	Nachweis	der Aufla	agerpressi	ung				•
Abs. 6.1.5	Ek	\mathbf{k}_{mod}	F_d	A_{ef}	k_{c90}	σ_{c90d}	f *c90d	η
		[-]	[kN]	[cm²]	[-]	[N/mm ²]	[N/mm²]	[-]
Auflager A	2	0.80	7.48	360.0	1.00	0.21	1.54	0.14
Auflager B	2	0.80	7.16	360.0	1.00	0.20	1.54	0.13
-	f* _{c90d} :	c ₉₀ * f _{c90d}						

**** HINWEIS ****	Die Lasteinleitungen der Stahlverstärkung an den Auflagern A und B
	müssen gesondert nachgewiesen werden.

Durch Kontrollrechnung geprüft

31.07.2023

248

B7

Seite:

Position:

Datum: 28.04.2023 Position: **B7**

Seite:

249

Mauerwerksauflager	Nachwe	is der A	Auflagerpi	ressung na	ach DIN EN	1996		
Abs. 6.1.3	Lager	Ek	β [-]	A _b [cm ²]	f _d [N/mm²]	N _{Ed,c} [kN]	N _{Rd,c} [kN]	η [-]
	Α	20	1.00	495.0 _A	2.74	26.29	135.46	0.19
	В	14	1.00	495.0_{A}	2.74	28.12	135.46	0.21
	A: Tragric	htung senl	krecht zur Wa	andrichtung				V

Lagesicherheit DIN EN 1990, 6.4.2 Lagesicherheitsnachweis in vertikaler Richtung nach NDP zu A1.3.1(3)

Aufl.	Ek	$F_{d,dst}$	$F_{d,stb}$	η
	[-]	[kN]	[kN]	[-]
Α	82	-3.20	11.88	0.27
В	82	-4.49	12.41	0.36

Nachweise (GZG)

Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1

- Die Verstärkung wird bei einem Bestandsbauteil angebracht. Das E-Modul des Holzbalkens zum Zeitpunkt t = 0 wird reduziert.

Verformungen	Nachweise o	der Verfo	rmungen				
Abs. 7.2	X	Ek	Norm	Wvorh		Wzul	η
	[m]			[mm]		[mm]	[-]
Feld 1	(L=5.30 m,	NKL 1, k	$_{def} = 0.60$)				
	2.70	78	Wnet,fin	11.0	1/300=	17.7	0.62

Auflagerkräfte

Charakteristische und Bemessungsauflagerkräfte

Char. Auflagerkr.

Oriai. / tailagoriti.			
	Aufl.	F _{z,k,min}	F _{z,k,max}
		[kN]	[kN]
Einw. <i>Gk</i>	Α	13.20	13.20
	В	13.79	13.79
Einw. Qk.N	A	4.77	4.77
	В	4.77	4.77
Einw. Qk.S.A	A	1.75	1.75
	В	2.64	2.64
Einw. Qk.W.000	A	-0.34	-0.34
	В	0.60	0.60
Einw. Qk.W.090	A	-2.14	-2.14
	В	-2.99	-2.99
Einw. Qk.W.180	A	-0.37	-0.37
	В	-0.87	-0.87
Einw. Qk.W.270	A	-0.22	-0.22
	В	-0.99	-0.99

Rem -auflagerkräfte

ständig/vorüberg.	Aufl.	F _{z,d,min} [kN]	EK	F _{z,d,max} [kN]	EK
	Α	9.99	96	26.29	88
	В	9.31	96	28.12	94
außergewöhnlich	Aufl.	F _{z,d,min} [kN]	EK	F _{z,d,max} [kN]	EK
	Α	16.14	101	19.61	97
	В	18.57	101	22.24 31.07	97 7.2023

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: B7

Zusammenfassung Zusammenfassung der Nachweise

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Ort	x [m]		η [-]
Biegung	Feld 1	3.80	OK	0.31
Querkraft	Feld 1	0.90	OK	0.22
Nachweis E-E Verstärkung	Feld 1	3.00	OK	0.52
Auflagerpressung	Auflager A		OK	0.14
Verbindungsmittel	Feld 1	3.70	OK	0.28
Mauerwerksauflager	Lager A	0.00	OK	0.21
Lagesicherheit	-		OK	

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Ort	X		η
		[m]		[-]
gesamte Enddurchbiegung	Feld 1	2.70	OK	0.62

Durch Kontrollrechnung geprüft

Die Stahl-Verstärkungen sind mit einem Betonpolster zu unterfüttern!!!!!

b-Viewer Version 2023 - Copyright 2022 - mb AEC Software GmbH

250

Datum: 28.04.2023 Position: B7.1.

Pos. B7.1. Überzug bei Fenstern

Pos.: B7.1. ist als Überzug bei Öffnungen zur Lastverteilung zu platrzieren

siehe PP2: Detail (II)

Abmessungen

Material

251

Profil

Seite:

System Einfeldträger

M 1:10 System z-Richtung

Achsen

Mat./Querschnitt		[m]	[°]				
	1	1.00	0.0	fest	S 2	35	HEA 100
Auflager	Lager	x [m]	b [cm]		Art	K _{T,z} [kN/m]	K _{R,y} [kNm/rad]
	Α	0.00	20.0			fest	frei
	В	1.00	20.0			fest	frei
Belastungen	Belastun	gen auf da	as System				/

Lage

Belastungen Belastungen auf das System

Feld

Eigengewicht	Feld	Einzelprofil	Α	g
			[cm²]	[kN/m]
	1	HEA 100	21.2	0.17

Grafik Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen Gk Qk.N Qk.S.A

Streckenlasten in z-Richtung	Feld	Komm.	a [m]	s [m]	qլi [kN/m]	q _{re} [kN/m]	e [cm]
Einw. <i>Gk</i>	1	Eigengew	0.00	1.00		0.17	0.0

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: B7.1.

Punktlasten Einzellasten

in z-Richtung	Feld	Komm.	а	Fz	е
_			[m]	[kN]	[cm]
Einw. <i>Gk</i>	(a) 1	B7	0.50	13.20	0.0
Einw. Qk.N	(a) 1	B7	0.50	4.77	0.0
Einw. Qk.S.A	(a) 1	B7	0.50	1.75	0.0
Einw. Qk.W.000	(a) 1	B7	0.50	-0.34	0.0
Einw. Qk.W.090	(a) 1	B7	0.50	-2.14	0.0
Einw. Qk.W.180	(a) 1	B7	0.50	-0.37	0.0
Einw. Qk.W.270	(a) 1	B7	0.50	-0.23	0.0

(a) aus Pos. 'B7', Lager 'A' (Seite 249)

Kombinationen Kombinationsbildung nach DIN EN 1990

Ek	Σ (γ*ψ*EW)		
1	1.00*Gk		
2	1.00*Gk	+1.50*Qk.W.090	
3	1.35*Gk	+1.50*Qk.N	+0.75*Qk.S.A
4	1.00*Gk	+2.30*Qk.S.A	+0.20*Qk.W.090
5	1.00*Gk	+0.50*Qk.N	+2.30*Qk.S.A
6	1.00*Gk		
7	1.00*Gk	+0.30*Qk.N	
	1 2 3 4 5	1 1.00*Gk 2 1.00*Gk 3 1.35*Gk 4 1.00*Gk 5 1.00*Gk 6 1.00*Gk	1 1.00*Gk 2 1.00*Gk +1.50*Qk.W.090 3 1.35*Gk +1.50*Qk.N 4 1.00*Gk +2.30*Qk.S.A 5 1.00*Gk +0.50*Qk.N 6 1.00*Gk

Bem.-schnittgrößen Bemessungsschnittgrößen

Tabelle Schnittgrößen (Umhüllende)

	X	$M_{y,d,min}$	Ek	$M_{y,d,max}$	Ek	$V_{z,d,min}$	Ek	$V_{z,d,max}$	Ek
	[m]	[kNm]		[kNm]		[kN]		[kN]	
Feld 1	0.00	0.00	2	0.00	3	5.08	2	13.26	3
	0.50	2.52	2	6.60	3	5.00	2	13.14	3
	0.50	2.52	2	6.60	3	-13.14	3	-5.00	2
	1 00	0.00	2	0.00	3	-13 26	3	-5.08	2

Auflagerkräfte Charakteristische Auflagerkräfte

Char. Auflagerkr.

	Aufl.	F _{z,k,min}	F _{z,k,max}
		[kN]	[kN]
Einw. <i>Gk</i>	Α	6.68	6.68
	В	6.68	6.68
Einw. Qk.N	A	2.39	2.39
	В	2.39	2.39
Einw. Qk.S.A	A	0.88	0.88
	В	0.88	0.88
Einw. Qk.W.000	A	-0.17	-0.17
·	В	-0.17	-0.17
Einw. Qk.W.090	A	-1.07	-1.07
	В	-1.07	-1.07
Einw. Qk.W.180	A	-0.19	-0.19
	В	-0.19	-0.19
Einw. Qk.W.270	A	-0.11	-0.11
	В	-0.11	-0.11

Durch Kontrollrechnung geprüft

31.07.2023

252

Datum: 28.04.2023 Position: B7.1.

Zusammenfassung Zusammenfassung der Nachweise

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Feld	X		η	
		[m]		[-]	
Nachweis E-E	Feld 1	0.50	OK	0.39	
Stabilität	Feld 1	0.50	OK	0.42	

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Feld	X	η
		[m]	[-]
Verformung	Feld 1	0.50 OK	0.13

Durch Kontrollrechnung geprüft

253

Datum: **28.04.2023** Position: **B8**

Pos. B8

Holz-Balken mit Stahl-Verstärkung

Die Stahl-Verstärkungen sind mit einem Betonpolster zu unterfüttern!!!!!

System

Balken

M 1:50

Abmessungen / Nutzungsklassen	Feld					l [m]	NKL
J	1					5.50	1
Balken	Feld	a [m]	s [m]		b/h [cm/cm]		Material
	1	0.00	0.00		20/24		NH C24
Verstärkung	Feld	a [m]	s [m]	Seiten	Profil		Material
	1	0.00	5.50	beide	U 180)	S 235
Verbundstellen		rbindungs- ttel	-	Abmess	sung F	kl	K _{ser} [kN/m]
		ibel Typ C2 Izen		62x16.4 M16		.8	19530
Abstände Verbundst.			е _{о,і} [cm]		e [cm]		e _{0,r} [cm]
			20.0		7 * 72.9		20.0
Auflager	Lager	X	b	Balken	Verst.	K _{T,z}	K _{R,y}

[cm]

15.0

15.0

[m]

0.00

5.50

Α

Durch Kontrollrechnung geprüft

gelag.

Χ

frei

frei

[kN/m] [kNm/rad]

fest

fest

254

Seite:

gelag.

Х

Datum: **28.04.2023** Position: **B8**

Seite:

255

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkung

Gk

Qk.N

Qk.S.A

Durch Kontrollrechnung geprüft

/

Datum: 28.04.2023 Position: B8

Seite:

256

Qk.W.090

Qk.W.180

Qk.W.270

Durch Kontrollrechnung geprüft

Datum: **28.04.2023** Position: **B8**

Seite:

257

Eigengewicht		gewicht					
in z-Richtung	Baute	P11	Kommentar				qz [kN/m]
Einw. <i>Gk</i>	Balke V1-V1		Eigengew Eigengew				0.20 0.22
Streckenlasten	Streck	cenlasten					\
in z-Richtung	Feld	Kommentar	a [m]	s [m]	q _{z,i} [kN/m]		q _{z,re} [kN/m]
Einw. <i>Gk</i>	_(a) 1		0.00	5.50	[KIN/III]	J	2.60
	" . 1	Balken	0.00	5.50			2.60 1.80
	(b) 1	Balken	0.00	3.30			1.80
	_(c) 1	Terrasse <i>Balken</i>	3.00	2.50			0.41 <i>0.41</i>
Einw. Qk.N	(d) 1		0.00	5.50			1.80
	_(e) 1	<i>Balken</i> Terrasse	3.00	2.50			<i>1.80</i> 1.80
	(-)	Balken					1.80
(a)	Eigen	last incl. neuem	n Aufbau				•
				2.89*0.90	=	2.60	kN/m
(b)	Wand	last		0.6*3	=	1.80	kN/m
(c)	Mehrla	ast der Terrass	е	0.46*0.9	=	0.41	kN/m
(d)	Verke	hrslast Wohnra	um	2.00*0.90	=	1.80	kN/m
(e)	Mehrla	ast der Terrass	е	2*0.9	=	1.80	kN/m
Punktlasten	Einzel	lasten und -mo	mente				
in z-Richtung	Feld	Kommentar	a [m]	ı	Fz [kN]		M _y [kNm]
Einw. <i>Gk</i>	_(a) 1	S4	3.00		1.39		[KIAIII]
	(b) 1		0.30		0.72		
	_(c) 1 _(d) 1	T-Wand	1.90 3.00		3.29 1.62		
	(a) 1 (a) 1	S4	3.00		0.68		
	(b) 1		0.30		5.78		
	(c) 1		1.90		6.84		
	(a) 1	S4	3.00		0.54		
	(b) 1		0.30 1.90		0.05 2.08		
_	_(c) 1 _(a) 1	S4	3.00		2.00 0.91		
	(a) 1 (b) 1	.	0.30		7.96		
	(c) 1		1.90		7.66		
	(a) 1	S4	3.00		0.03		
	(b) 1		0.30		4.52		
	_(c) 1 _(a) 1	S4	1.90 3.00		2.41 0.16		
	(a) 1 (b) 1	.	0.30		1.48		
	(c) 1		1.90		2.89		/

Durch Kontrollrechnung geprüft

Datum: **28.04.2023** Position: **B8**

258

Seite:

aus Pos. 'S4', Lager 'A', Faktor = 0.70 (Seite 164)

(b) aus Pos. 'S1', Lager 'A' (Seite 143)

(c) aus Pos. 'S2', Lager 'A' (Seite 152)

(d) Terrassenwand (0.6*3)*0.9 = 1.62 kN

Kombinationen Kombinationen DIN EN 1990

Darstellung der maßgebenden Kombinationen

		1/1 === - / + +===		
	EK	KLED Σ (γ*ψ*EW)		
ständig/vorüberg.	1	st 1.35*Gk		
	3	mi 1.35*Gk	+1.50*Qk.N	
			(1)	
	4	ku 1.35*Gk	+1.05*Qk.N	+1.50*Qk.S.A
			(1)	
	15	ku/sk 1.35*Gk	+1.05*Qk.N	+1.50*Qk.S.A
			(1)	
		+0.90*Qk.W.000		
quasi-ständig	78	1.00*Gk	+0.30*Qk.N	
			(1)	
Lagesicherheit	82	ku/sk 0.90*Gk	+1.50*Qk.W.090	
st./vor. Auflagerkr.	97	ku/sk 1.00*Gk	+1.50*Qk.W.090	
außerg. Auflagerkr	102	ku/sk 0.95*Gk	+2.30*Qk.S.A	+0.20*Qk.W.090
	st:	ständig		
	mi: ku:	mittel kurz		
	ku/sk:	kurz/sehr kurz		

Mat./Querschnitt

Material und Querschnittsangaben nach DIN EN 1995-1-1

Material	Bauteil	Mat	erial	fy	fu		E		
				[N/mm ²]	[N/mm ²]		[N/mm²]		
	Verst.1	S	235	235.0	360.0		210000		
	Bauteil	Material		$f_{m,k}$	$f_{t,0,k}$	f _{c,0}	$f_{v,k}$		
				[N/mm ²]	[N/mm ²]	[N/mm ²	²] [N/mm ²]		
	Balken	NH C24		24.0	14.5	21.	0 4.0		
	A. A. A. A. A. A. D.								
Mauerwerk	an Auflagern A, B Mz 10/M2,5								
	Steinart Mauerziegel								
	Steintyp Vollziegel Mz								
	Steindruckfes	tigkeitsklasse	Э				SFK 10		
	Mörtelgruppe	-			Norr	nalmaue	rmörtel M2,5		
	charakt. Druc						4.83 N/mm ²		
		J							
Querschnittswerte	Bauteil	b	ŀ	1	Α	W_{v}	ly		
		[cm]	[cm] [cn	1 ²]	[cm³]	[cm ⁴]		
	Balken	20.0	24.0	-	-	1920.0	23040		

Verbindungsmittel

Typ F_{v,Rk} **[kN]**Dübel Typ C2 62x16.4 mm

31.078,779

[cm²]

28.0

Durch Kontrollrechnung geprüft

Profil

U 180

wei version 2023 - Capyright 2022 - IIID AEC 30

Bauteil

Verst.1

Wy

[cm³]

150.0

[cm⁴]

1350

Datum: **28.04.2023** Position: **B8**

259

Seite:

Тур	$F_{v,Rk}$
	[kN]
Bolzen M16, 4.8	12.75

Grafik Querschnittsgrafiken

Verstärkung V1

M 1:26

Nachweise (GZT) Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

Nachweis der Biegetragfähigkeit des Holzbalkens							
X	Ek	\mathbf{k}_{mod}	$M_{ m yd}$	$\sigma_{m,d}$	$\mathbf{f}_{m,d}$	η	
[m]		[-]	[kNm]	[N/mm ²]	[N/mm ²]	[-]	
(L = 5.50 m)							
1.90	1	0.60	11.80	6.14	11.08	0.55	
	x [m] (L = 5.50 m)	x Ek [m] (L = 5.50 m)	x Ek k _{mod} [m] [-] (L = 5.50 m)		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[m] [-] [kNm] [N/mm ²] [N/mm ²] $(L = 5.50 \text{ m})$	

Querkraft	Nachweis der Querkrafttragfähigkeit des Holzbalkens						
Abs. 6.1.7	X	Ek	\mathbf{k}_{mod}	$V_{z,d}$	Td	$\mathbf{f}_{v,d}$	η
	[m]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
Feld 1	0.26	4	0.90	25.80	1.61	2.77	0.58

Nachweis E-E Verst.	Nachweis	Nachweis der Verstärkung (Biegung und Querkraft)						
Abs. 6.2	x	x Ek		$\mathbf{M}_{y,d}$	$\mathbf{M}_{y,d}$ $\mathbf{V}_{z,d}$		η	
	[m]		[kN]	[kNm]	[kN]	σ _{v,d} [N/mm²]	[-]	
Feld 1	2.39	15	0.00	32.15	4.09	214.35 2.46	0.91 *	
						214.39		

Verbindungsmittel	Nachweis de	er Tragfäh	nigkeit auf A	bscheren je	e Scherfuge	:	
Abs. 8.2	X	Ek	K mod	α	F _{v,Ed}	$F_{v,Rd}$	η
	[m]		[-]	[°]	[kN]	[kN]	[-]
Feld 1	1.66	1	0.60	90.00	5.90	9.94	0.59

Auflagerpressung	Nachwei	s der Aufl	agerpress	ung				
Abs. 6.1.5	Ek	k _{mod} [-]	F _d [kN]	A _{ef} [cm ²]	k _{c90} [-]	σ _{c90d} [N/mm ²]	f* _{c90d} [N/mm ²]	η [-]
Auflager A	4	0.90	23.38	360.0	1.00	0.65	1.73	0.38
Auflager B	3	0.80	10.50	360.0	1.00	0.29	1.54	0.19
	f* _{c90d} :	k _{c90} * f _{c90d}						

**** HINWEIS **** Die Lasteinleitungen der Stahlverstärkung an den Auflagern A und B müssen gesondert nachgewiesen werden.

Durch Kontrollrechnung geprüft

mb BauStatik S353.de 2023.010

Ingenieurbüro Pitbau - Statik & Energieberatung - www.bijau.de

Datum: 28.04.2023 Position:

Mauerwerksauflager Abs. 6.1.3

Nachweis der Auflagerpressung nach DIN EN 1996

Lager	Ek	β [-]	A _b [cm²]	f _d [N/mm²]	N _{Ed,c} [kN]	N _{Rd,c} [kN]	η [-]
Α	15	1.00	510.0_{A}	2.74	69.01	139.57	0.49
В	20	1.00	510.0_{A}	2.74	43.93	139.57	0.31
A: Tragrichtung senkrecht zur Wandrichtung							

260

B8

Seite:

Lagesicherheit DIN EN 1990, 6.4.2 Lagesicherheitsnachweis in vertikaler Richtung nach NDP zu A1.3.1(3)

		- · · · · · · · · · · · · · · · · · · ·		
Aufl.	Ek	$F_{d,dst}$	$F_{d,stb}$	η
	[-]	[kN]	[kN]	[-]
Α	82	-19.43	30.88	0.63
В	82	-5.36	19.34	0.28

Nachweise (GZG)

Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1

- Die Verstärkung wird bei einem Bestandsbauteil angebracht. Das E-Modul des Holzbalkens zum Zeitpunkt t = 0 wird reduziert.

Verformungen Abs. 7.2

Feld 1

Nachweise der Verformungen

x [m]	Ek	Norm	W _{vorh} [mm]		W _{zul} [mm]	η [-]
(L=5.50 m,	NKL 1, k	$_{def} = 0.60$)				
2.66	78	Wnet fin	17.8	1/300=	18.3	0.97

Auflagerkräfte

Charakteristische Auflagerkräfte

Char. Auflagerkr.

	Aufl.	F _{z,k,min}	F _{z,k,max}
	_	[kN]	[kN]
Einw. <i>Gk</i>	Α	34.31	34.31
	В	21.48	21.48
Einw. <i>Qk.N</i>	A	5.97	5.97
	В	8.43	8.43
Einw. Qk.S.A	A	10.25	10.25
	В	3.05	3.05
Einw. <i>Qk.W.000</i>	A	1.16	1.16
	В	0.42	0.42
Einw. <i>Qk.W.090</i>	A	-12.96	-12.96
	В	-3.58	-3.58
Einw. <i>Qk.W.180</i>	A	-5.86	-5.86
	В	-1.09	-1.09
Einw. <i>Qk.W.270</i>	A	-0.42	-0.42
	В	-0.83	-0.83

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Na	achweis	Ort	x [m]		η [-]
Bi	egung	Feld 1	1.90	OK	0.55
	uerkraft	Feld 1	0.26	OK	0.58
Na	achweis E-E Verstärkung	Feld 1	2.39	OK	0.91
Αι	uflagerpressung	Auflager A		OK	0.38
Ve	erbindungsmittel	Feld 1	1.66	OK	31.0702629
					eur für Stanz

Nachweise (GZG)

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: **28.04.2023** Position: **B8**

Nachweis	Ort	x [m]		η [-]		
Mauerwerksauflager Lagesicherheit	Lager A	0.00	OK OK	0.49		
Nachweise im Grenzzust. der Gebrauchstauglichkeit						

gesamte Enddurchbiegung Feld 1 2.66 OK 0.97

Ort

Die Stahl-Verstärkungen sind mit einem Betonpolster zu unterfüttern!!!!!

Nachweis

Durch Kontrollrechnung geprüft

261

Datum: 28.04.2023 Position:

Pos. B9

Holz-Balken mit Stahl-Verstärkung

Die Stahl-Verstärkungen sind mit einem Betonpolster zu unterfüttern!!!!!

System Balken

M 1:50

NKL Abmessungen / Feld Nutzungsklassen [m] 5.50 1 Balken Feld b/h Material а S [cm/cm] [m] [m] 1 0.00 0.00 20/24 NH C24 Feld Verstärkung Seiten **Profil** Material s [m] [m] 1 5.50 U 220 S 235 0.00 vorne

Verbundstellen n Verbindungs-Kser Abmessung Fkl [-] mittel [kN/m]8 Dübel Typ C2 62x16.4 mm 19530 4.8 Bolzen M16

Abstände Verbundst. **e**0,1 е [cm] [cm] [cm] 7 * 72.9 20.0

Auflager Lager b Balken Verst. K_{T,z} $K_{R,y}$ X [kN/m] [kNm/rad] [m] [cm] gelag. gelag. Α 0.00 15.0 fest frei Χ Х В 5.50 15.0 fest frei Х

Durch Kontrollrechnung geprüft

e0,r

20.0

262

B9

Seite:

Χ

Datum: 28.04.2023 Position: B9

Seite:

263

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkung

Gk

Qk.N

Qk.S.A

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: B9

Qk.W.000

Qk.W.090

Qk.W.180

Qk.W.270

Eigengewicht in z-Richtung

Einw. Gk

Eigengewicht	
Bauteil	Kommentar
Balken V1	Eigengew Eigengew
	Durch Kontrollrechnung geprüft

qz [kN/m] 0.20 0.29

31.07.2023

264

Datum: 28.04.2023 Position: B9

265

Seite:

Streckenlasten	Streck	enlasten					
in z-Richtung	Feld	Kommentar	a [m]	s [m]	qz [kN/m		q _{z,re} [kN/m]
Einw. <i>Gk</i>	(a) 1	5. "	0.00	5.50	[KIWIII	•	1.30
	(b) 1	Balken	0.00	5.50			1.30 1.80
		<i>Balken</i> Terrasse	3.00	2.50			<i>1.80</i> 0.21
	(c) 1	Balken					0.21
Einw. Qk.N	(d) 1	Balken	0.00	5.50			0.90 <i>0.90</i>
	_(e) 1	Terrasse <i>Balken</i>	3.00	2.50			0.90 <i>0.90</i>
(a)	Eigenl	ast incl. neuem Aufb	au				~
. ,				2.89*0.45	=	1.30	kN/m
(b)	Wandl	last		0.6*3	=	1.80	kN/m
(c)	Mehrla	ast der Terrasse		0.46*0.45	=	0.21	kN/m
(d)	Verkel	hrslast Wohnraum		2.00*0.45	=	0.90	kN/m
(e)	Mehrla	ast der Terrasse		2*0.45	=	0.90	kN/m
Punktlasten		lasten und -momente	•				
in z-Richtung	Feld	Kommentar	a [m]		Fz [kN]		M _y [kNm]
Einw. <i>Gk</i>	(a) 1	S4	3.00		1.39		[iciviii]
	(b) 1 (c) 1		0.30 1.90		0.72 3.29		
	(d) 1	T-Wand	3.00		0.81		
Einw. Qk.S.A	(a) 1	S4	3.00		0.68		
	(b) 1		0.30 1.90		5.78 6.84		
Einw. Qk.W.000	(c) 1 (a) 1	S4	3.00		0.54		
	(b) 1		0.30		0.05		
	(c) 1		1.90		2.08		
Einw. <i>Qk.W.090</i>	(a) 1	S4	3.00		0.91		
	(b) 1		0.30		7.96 7.66		
Einw. Qk.W.180	(c) 1	S4	1.90 3.00		7.66 0.03		
LIIW. QA.W.700	(a) 1 (b) 1	04	0.30		4.52		
	(c) 1		1.90		2.41		
Einw. <i>Qk.W.270</i>	(a) 1	S4	3.00		0.16		
	(b) 1		0.30		1.48		
	(c) 1		1.90	-	2.89		
(a)	aus Po	os. 'S4', Lager 'A', Fa	ktor = 0.70	(Seite 164)		/	
(b)	aus Po	os. 'S1', Lager 'A' (Se	eite 143)				
(c)	aus Po	os. 'S2', Lager 'A' (Se	eite 152) Durch	Kontrollred	chnuna a	geprüf	t
(d)	Terras	senwand		(0.6*3)*0.45		0.81	kN

Kombinationsbildung nach DIN EN 1990

Kombinationen

Datum: 28.04.2023 Position: В9

Darstellung der maßgebenden Kombinationen

Ek	KLED Σ (γ*ψ*EW)		
1	st 1.35*Gk		
3	mi 1.35*Gk	+1.50*Qk.N	
		(1)	
4	ku 1.35*Gk	+1.05*Qk.N	+1.50*Qk.S.A
		(1)	
12	ku/sk 1.35*Gk	+1.05*Qk.N	+1.50*Qk.S.A
		(1)	
	+0.90*Qk.W.000	. ,	
78	1.00*Gk	+0.30*Qk.N	
		(1)	
82	ku/sk 0.90*Gk	+1.50*Qk.W.090	
97	ku/sk 1.00*Gk	+1.50*Qk.W.090	
102	ku/sk 0.95*Gk	+2.30*Qk.S.A	+0.20*Qk.W.090
st:	ständig		
mı: ku:	kurz		
ku/sk:	kurz/sehr kurz		
r	1 3 4 12 78 82 97 102 st: ni: cu:	3 mi 1.35*Gk 4 ku 1.35*Gk 12 ku/sk 1.35*Gk +0.90*Qk.W.000 78 1.00*Gk 82 ku/sk 0.90*Gk 97 ku/sk 1.00*Gk 102 ku/sk 0.95*Gk ständig mittel ku: kurz	1 st 1.35*Gk 3 mi 1.35*Gk +1.50*Qk.N (1) 4 ku 1.35*Gk +1.05*Qk.N (1) 12 ku/sk 1.35*Gk +1.05*Qk.N (1) +0.90*Qk.W.000 78 1.00*Gk +0.30*Qk.N (1) 82 ku/sk 0.90*Gk +1.50*Qk.W.090 97 ku/sk 1.00*Gk +1.50*Qk.W.090 102 ku/sk 0.95*Gk +2.30*Qk.S.A st: ständig mittel ku: kurz

Mat./Querschnitt

Material und Querschnittsangaben nach DIN EN 1995-1-1

Material	Bauteil	Mate	erial	f _y [N/mm ²]	f _u [N/mm²]		E [N/mm²]
	Verst.1	S	235	235.0	360.0		210000
	Bauteil	Material		f _{m,k} [N/mm ²]	f _{t,0,k} [N/mm ²]	f _{c,0} [N/mm	
	Balken	NH C24		24.0	14.5	21	.0 4.0
Mauerwerk	an Auflagern A, B Steinart Steintyp Steindruckfestigkeitsklasse Mörtelgruppe charakt. Druckfestigkeit				_	nalmau	Mz 10/M2,5 Mauerziegel Vollziegel Mz SFK 10 ermörtel M2,5 4.83 N/mm²
Querschnittswerte	Bauteil	b [cm]	[cm]] [cm	-	W _y [cm³]	l _y [cm⁴]
	Balken	20.0	24.0) 480	0.0	1920.0	23040

	Verst.1	U 220	37.4	245.0	2690
Verbindungsmittel	Тур				F _{v,Rk} [kN]
	Dübel Typ C2 62	x16 4 mm			8 79

Bauteil

Bolzen M16, 4.8

Durch Kontrollrechnung geprüft

Profil

31.07.2023

13.41

266

Seite:

Α

[cm²]

[cm³]

Datum: 28.04.2023 Position: **B9**

Seite:

267

Grafik

Querschnittsgrafiken

M 1:21

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

Biegung	Nachweis der Biegetragfähigkeit des Holzbalkens								
Abs. 6.1	X	Ek	\mathbf{k}_{mod}	$M_{ m yd}$	$\sigma_{m,d}$	$\mathbf{f}_{m,d}$	η		
	[m]		[-]	[kNm]	[N/mm ²]	[N/mm ²]	[-]		
Feld 1	(L = 5.50 m)								
	1.90	1	0.60	10.90	5.68	11.08	0.51		

Querkraft	Nachweis de	er Querkra	afttragfähigke	eit des Holzb	alkens
Abs. 6.1.7	X	Ek	kmod	V ₂ d	-

Abs. 6.1.7	X	Ek	\mathbf{k}_{mod}	$V_{z,d}$	Td	$f_{v,d}$	η
	[m]		[-]	[kN]	[N/mm ²]	[N/mm ²]	[-]
Feld 1	0.29	4	0.90	24.41	1.53	2.77	0.55

Nachweis E-E Verst.	Nachweis	der Verstär	kung (Biegu	ing und Quei	rkraft)
Abs. 6.2	X	Ek	$N_{x,d}$	$M_{y,d}$	$V_{z,d}$

ADS. U.Z	^	LN	I¶x,a	iviy,a	¥ z,a	O _a	''
						Td	
						$\sigma_{v,d}$	
	[m]		[kN]	[kNm]	[kN]	[N/mm ²]	[-]
Feld 1	2.39	12	0.00	52.46	-6.95	214.12	0.91 *
						2.98	
						214.18	

V	erb	inc	lur	ngs	mi	ittel

Verbindungsmittel Nachweis der Tragfähigkeit auf Abscheren je Scherfuge					е		
Abs. 8.2	X	Ek	k mod	α	$F_{v,Ed}$	$F_{v,Rd}$	
	[m]		[-]	[°]	[kN]	[kN]	
Feld 1	1.66	1	0.60	90.00	10.11	10.25	

Auflagerpressung	Nachweis der Auflagerpressung
Nhc 615	C

Abs. 6.1.5	E	k	\mathbf{k}_{mod}	Fd	A_{ef}	k_{c90}	σ_{c90d}	f *c90d	η
			[-]	[kN]	[cm ²]	[-]	[N/mm ²]	[N/mm ²]	[-]
Auflager A		1	0.60	15.02	360.0	1.00	0.42	1.15	0.36
Auflager B		3	0.80	7.35	360.0	1.00	0.20	1.54	0.13
-	f * _{c90d} :		k _{c90} * f _{c90d}						

**** HINWEIS ****

Die Lasteinleitungen der Stahlverstärkung an den Auflagern A und B müssen gesondert nachgewiesen werden.

Mauerwerksauflager Abs. 6.1.3

Nachweis der Auflagerpressung nach DIN EN 1996

Lager	Ek	β [-]	A _b [cm ²]	f _d [N/mm²]	N _{Ed,c} [kN]	N _{Rd,c} [kN]	η [-]
Α	12	1.00	420.0 _A	2.74	59.85	114.94	0.52
В	12	1.00	420.0_{A}	2.74	31.88	114.94	0.28
A: Tragric	chtung senk	recht zur Wa	andrichtung				

Durch Kontrollrechnung geprüft

31.07.2023

0.99

Datum: **28.04.2023** Position: **B9**

Lagesicherheit DIN EN 1990, 6.4.2 Lagesicherheitsnachweis in vertikaler Richtung nach NDP zu A1.3.1(3)

9		<u> </u>		- (-/
Aufl.	Ek	$F_{d,dst}$	$F_{d,stb}$	η
	[-]	[kN]	[kN]	[-]
A	82	-19.43	26.86	0.72
В	82	-5.36	15.00	0.36

Nachweise (GZG)

Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1

 Die Verstärkung wird bei einem Bestandsbauteil angebracht. Das E-Modul des Holzbalkens zum Zeitpunkt t = 0 wird reduziert.

Verformungen

Abs. 7.2

Feld 1

Einw. Gk

Einw. Qk.N

Einw. Qk.S.A

Einw. Qk.W.000

Einw. Qk.W.090

Einw. Qk.W.180

Einw. Qk.W.270

Nachweise der Verformungen

x [m]	Ek	Norm	w _{vorh} [mm]		W _{zul} [mm]	η [-]
(L=5.50 m,	NKL 1, k	$_{def} = 0.60$)				
2.58	78	Wnet,fin	14.5	1/300=	18.3	0.79

Auflagerkräfte

Charakteristische Auflagerkräfte

Char. Auflagerkr.

Aufl.	F _{z,k,min} [kN]	F _{z,k,max} [kN]
Α	29.85	29.85
В	16.67	16.67
A	2.99	2.99
В	4.21	4.21
A	10.25	10.25
В	3.05	3.05
A	1.16	1.16
В	0.42	0.42
A	-12.96	-12.96
В	-3.58	-3.58
A	-5.86	-5.86
В	-1.09	-1.09
A	-0.42	-0.42
В	-0.83	-0.83

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Ort	x [m]		η [-]
Biegung	Feld 1	1.90	OK	0.51
Querkraft	Feld 1	0.29	OK	0.55
Nachweis E-E Verstärkung	Feld 1	2.39	OK	0.91
Auflagerpressung	Auflager A		OK	0.36
Verbindungsmittel	Feld 1	1.66	OK	0.99
Mauerwerksauflager	Lager A	0.00	OK	0.52
Lagesicherheit	_		OK	

Durch Kontrollrechnung geprüft

mb BauStatik S353.de 2023.010

Datum: 28.04.2023

В9

Seite:

Position:

269

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Ort	X		η
		[m]		[-]
gesamte Enddurchbiegung	Feld 1	2.58	OK	0.79

Durch Kontrollrechnung geprüft

Die Stahl-Verstärkungen sind mit einem Betonpolster zu unterfüttern!!!!!

Datum: 28.04.2023 Position: B10

Pos. B₁₀

Deckenbalken über 2.OG

Die Stahl-Verstärkungen sind mit einem Betonpolster zu unterfüttern!!!!!

System Balken M 1:45

NKL Abmessungen / Feld Nutzungsklassen [m] 1 5.30 Feld Materia Balken b/h s а [m] [m] [cm/cm] 1 20/24 **NH C24** 0.00 0.00 Feld Material Verstärkung Seiten **Profil** а s [m] [m] U 160 S 235 0.00 5.30 vorne Verbundstellen n Verbindungs-**Abmessung** Fkl Kser mittel [kN/m] [-] 8 Dübel Typ C2 62x16.4 mm 19530 Bolzen M16 4.8 Abstände Verbundst. **e**0,1 e_{0,r} [cm] [cm] [cm] 7 * 70.0 20.0 20.0 Auflager b Balken Verst. K_{T,z} Lager X $K_{R,y}$ [cm] [kN/m] [kNm/rad] [m] gelag. gelag. 0.00 15.0 fest frei Α Χ Χ

15.0

Durch Kontrollrechnung geprüft

Х

Х

frei

fest

270

Seite:

В

5.30

Datum: 28.04.2023 Position: **B10**

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkung

Gk

Qk.N

Eigengewicht

in z-Richtung

Einw. Gk

Eige	n	ge	wic	ht
_				

Streckenlasten

Feld

(a) 1

(b) 1

Bauteil	Kommentar	Qz
		[kN/m]
Balken	Eigengew	0.20
V1	Eigengew	0.19

а

[m]

0.00

0.00

Streckenlasten

in z-Richtung

Einw. Gk

Einw. Qk.N

(a)

(b)

Eigenlast incl.	neuem Aufbau

Kommentar

Balken

Balken

Verkehrslast Wohnraum

2.89*0.90 =	2.60

s

[m]

5.30

5.30

2.00*0.90 = 1.80 kN/m

q_{z,li}

[kN/m]

Durch Kontrollrechnung geprüft

31.07.2023

q_{z,re}

2.60

2.60

1.80

1.80

kN/m

[kN/m]

271

Datum: **28.04.2023** Position: **B10**

Seite:

272

Punktlasten	Einze	llasten und -mo	mente		
in z-Richtung	Feld	Kommentar	a [m]	Fz [kN]	My [kNm]
Einw. <i>Gk</i> Einw. <i>Qk.N</i>	(a) 1 (b) 1	Treppe Treppe	[m] 1.00 1.00	1.25 7.50	[kNm]
(a)	Trepp	enlast <50kg/n	12	0.5*5/2 =	1.25 kN
(b)	Trepp	7.50 kN			
Kombinationen	Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen				
	Ek k	(LED Σ (γ*ψ*Ε	EW)		
ständig/vorüberg.	3	mi 1.35*Gk	+1.50 (1))*Qk.N	
quasi-ständig	6	1.00*Gk	` ,)*Qk.N	
Lagesicherheit st./vor. Auflagerkr.		st 0.90*Gk st 1.00*Gk ittel ändig			
Mat./Querschnitt	Mater	ial und Querscl	nnittsangaben na	ch DIN EN 1995-1-1	
Material	Baute	eil	Material [N/m	f _y f _u m²] [N/mm²]	E [N/mm²]

			- у	- u		_
			[N/mm ²]	[N/mm ²]		[N/mm ²]
	Verst.1	S 235	235.0	360.0		210000
	Bauteil	Material	f _{m,k} [N/mm²]	f _{t,0,k} [N/mm ²]	f _{c,0,k} [N/mm²]	f _{v,k} [N/mm²]
	Balken	NH C24	24.0	14.5	21.0	4.0
Mauerwerk	an Auflagern Steinart Steintyp Steindruckfes Mörtelgruppe charakt. Druc	tigkeitsklasse			Ma	•
Querschnittswerte	Bauteil	b	h	Α	W _v	l _v

Balken	[cm] 20.0	[cm] 24.0	[cm²] 480.0	[cm³] 1920.0	[cm⁴] 23040
Bauteil		Profil	A [cm²]	W _y [cm³]	I [cm ⁴
.1		U 160	24.0	116.0	925

Verbindungsmittel	Тур	F _{v,Rk} [kN]
	Dübel Typ C2 62x16.4 mm Bolzen M16, 4.8	8.79 12.75

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: B10

Grafik

Querschnittsgrafiken

M 1:20

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

Biegung Abs. 6.1

ADS. O. I

Feld 1

Querkraft Abs. 6.1.7

Feld 1

Nachweis der Biegetragfähigkeit des Holzbalkens

Ek **k**_{mod} Myd $f_{m,d}$ X $\sigma_{m,d}$ [m] [kNm] [N/mm²] [N/mm²] [-] (L = 5.30 m)3 0.80 1.20 11.58 6.03 14.77

Nachweis der Querkrafttragfähigkeit des Holzbalkens

Nachweis E-E Verst.

Abs. 6.2

Feld 1

Nachweis der Verstärkung (Biegung und Querkraft)

η	$\sigma_{\sf d}$	$V_{z,d}$	$\mathbf{M}_{y,d}$	$N_{x,d}$	Ek	X
	Td					
	$\sigma_{v,d}$					
[-]	[N/mm²]	[kN]	[kNm]	[kN]		[m]
0.71 *	166.54	1.82	19.32	0.00	3	2.30
	1.34					
	166.56					

Verbindungsmittel

Abs. 8.2

Feld 1

Nachweis der Tragfähigkeit auf Abscheren je Scherfuge

X	Ek	k mod	α	$F_{v,Ed}$	$F_{V,Rd}$	η
[m]		[-]	[°]	[kN]	[kN]	[-]
0.90	3	0.80	90.00	6.08	13.25	0.46

Auflagerpressung

Abs. 6.1.5

Auflager A Auflager B

Abs. 6.1.3

.go. _

Nachweis der Auflagerpressung

	Ek	k _{mod} [-]	F _d [kN]	A _{ef} [cm ²]		σ _{c90d} [N/mm ²]		η [-]
	3	0.80	12.74	360.0	1.00	0.35	1.54	0.23
	3	0.80	9.24	360.0	1.00	0.26	1.54	0.17
f*.00d		koon * foond						

**** HINWEIS **** Die Lasteinleitungen der Stahlverstärkung an den Auflagern A und B müssen gesondert nachgewiesen werden.

Mauerwerksauflager Nachweis der Auflagerpressung nach DIN EN 1996

 $N_{\text{Ed,c}}$ Lager Ek β A_b N_{Rd,c} fd [-] [cm²] [N/mm²] [kN] [kN] [-] Α 3 1.00 397.5_A 2.74 28.35 108.78 0.26 В 3 2.74 108.78 0.19 1.00 397.5_A 20.30

A: Tragrichtung senkrecht zur Wandrichtung

Durch Kontrollrechnung geprüft

31.07.2023

273

Datum: **28.04.2023** Position:

Lagesicherheit Lagesicherheitsnachweis in vertikaler Richtung nach NDP zu A1.3.1(3) DIN EN 1990, 6.4.2 Aufl. Ek F_{d,dst} F_{d,stb} [-] [kN] [kN] 0.00 Α 9 8.05 0.00 9 В 0.00 7.35 0.00

Nachweise (GZG)

Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1

 Die Verstärkung wird bei einem Bestandsbauteil angebracht. Das E-Modul des Holzbalkens zum Zeitpunkt t = 0 wird reduziert.

Verformungen

Abs. 7.2	x [m]	Ek	Norm	w _{vorh} [mm]		W _{zul} [mm]	η [-]
Feld 1	(L=5.30 m,	NKL 1, k	$_{def} = 0.60$)				
	2.60	6	Wnet,fin	12.0	I/300=	17.7	0.68

Auflagerkräfte

Charakteristische Auflagerkräfte

A . .£I

Nachweise der Verformungen

Char. Auflagerkr.

	Auii.	Γz,k,min	⊏z,k,max
		[kN]	[kN]
Einw. <i>Gk</i>	Α	8.94	8.94
	В	8.16	8.16
Einw. Qk.N	A	10.85	10.85
	В	6.19	6.19

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Ort	x [m]		η [-]
Biegung	Feld 1	1.20	OK	0.41
Querkraft	Feld 1	0.90	OK	0.37
Nachweis E-E Verstärkung	Feld 1	2.30	OK	0.71
Auflagerpressung	Auflager A		OK	0.23
Verbindungsmittel	Feld 1	0.90	OK	0.46
Mauerwerksauflager	Lager A	0.00	OK	0.26
Lagesicherheit	· ·		OK	/

Nachweise (GZG)

Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Ort	x [m]		η [-]
gesamte Enddurchbiegung	Feld 1	2.60	OK	0.68

Durch Kontrollrechnung geprüft

Die Stahl-Verstärkungen sind mit einem Betonpolster zu unterfüttern!!!!!

31.07.2023

274

B10

Datum: 28.04.2023 Position: **B11**

Wechsel-Treppenauflager Pos. B11

System Holz-Einfeldträger

M 1:25

System z-Richtung

1.00

Abmessungen Mat./Querschnitt

Feld	I	Material	b/h	NKL
	[m]		[cm]	
1	1.00	NH C24	14.0/24.0	1

Auflager

Lager	x [m]	b [cm]	K _{T,z} [kN/m]	К _{т,у} [kN/m]
Α	0.00	20.0	fest	fest
В	1.00	20.0	fest	fest

Belastungen

Belastungen auf das System

Eigengewicht

Α	γ	
[cm²]	[kN/m³]	
336.0	4.2	

275

Seite:

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Gk

Einwirkungen

Qk.N

Qk.N

Gk

Streckenlasten

in z-Richtung

Einw. Gk

Einw.	Qk.N	

Gleichlasten

	Feld	Komm.	a	S	qii	Q re
			[m]	[m]	[kN/m]	[kN/m]
	1	Eigengew	0.00	1.00		0.14
(a)	, 1		0.00	1.00		1.25
(h)	\ 1		0.00	1 00		7.50

Treppenalst <50kg/m2

0.5*5/2 =1.25 kN/m

Treppenlast: <=300kg/m2

3*5/2 =

7.50 kN/m

Durch Kontrollrechnung geprüft

Datum: 28.04.2023

Streckenlasten Gleichlasten in y-Richtung Feld Komm. а S qıi **q**re [kN/m][kN/m] [m] [m] Einw. Gk 0.00 1.00 1.00 Einw. Qk.N 0.00 1.00 1.00

KombinationenKombinationsbildung nach DIN EN 1990
Darstellung der maßgebenden Kombinationen

KLED $\Sigma (\gamma^* \psi^* EW)$ 1.35*Gk ständig/vorüberg. 3 mi +1.50*Qk.N selten 6 1.00*Gk +1.00*Qk.N 8 1.00*Gk +0.30*Qk.N quasi-ständig Brand 10 1.00*Gk +0.30*Qk.N mittel

Mat./Querschnitt Material- und Querschnittswerte nach DIN EN 1995-1-1

Material Material f_{mk} f_{t0k} f_{c0k} f_{c90k} f_{vk} Emean [N/mm²] **NH C24** 24.0 4.0 11000 14.5 21.0 2.5

Querschnittswerte b h Α lz lу [cm] [cm] [cm²] [cm⁴] [cm⁴] 14.0 24.0 336 16128 5488

Grafik Querschnittsgrafik M 1:5

Brandfall vierseitige Brandbeanspruchung Feuerwiderstandsdauer

60 $t_{req} =$ min Abbrandrate $\beta_n =$ 0.80 mm/min Querschnittswerte br hr Ar l_{y,r} Iz,r Restquerschnitt [cm] [cm] [cm] [cm²] [cm⁴] [cm⁴] 4.4 14.4 37.6 63 1095 102

Durch Kontrollrechnung geprüft

276

B11

Seite:

Position:

Datum: 28.04.2023 Position: B11

Seite:

277

Grafik M 1:5

Querschnittsgrafik

Auflagerkräfte

Charakteristische Auflagerkräfte

Char. Auflagerkr.

G	Aufl.	F _{z,k,min} [kN]	F _{z,k,max} [kN]	F _{y,k,min} [kN]	F _{y,k,max} [kN]
Einw. <i>Gk</i>	Α	0.70	0.70	0.50	0.50
	В	0.70	0.70	0.50	0.50
Einw. Qk.N	A	3.75	3.75	0.50	0.50
	В	3.75	3.75	0.50	0.50

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Feld/Auflager	X		η
	_	[m]		[-]
Biegung	Feld 1	0.50	OK	0.10
Querkraft	Feld 1	0.69	OK	0.09
Auflagerpressung	Auflager A		OK	0.13

Nachweise (Brand)

Brandfall im Grenzzustand der Tragfähigkeit

Nachweis	Feld/Auflager	X [m]		η
Biegung	Feld 1	[m] 0.50	OK	[-] 0.27
Querkraft	Feld 1	0.69	OK	0.10

Nachweise (GZG)

Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Feld/Auflager	X		η	
	-	[m]		[-]	
Verform. winst	Feld 1	0.50	OK	0.02	
Verform. wnet,fin	Feld 1	0.50	OK	0.02	

Detailnachweis

name	Ort	Detail
B11 1	Lager A	Balkenschuh/Balkenträger

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: B11.1.

Pos. B11.1. Balkenschuh

Geometrie

Balkenschuhnachweis

Grafik M 1:10

Mat./Querschnitt

Bauteil	Material	Querschnitt [cm]
Hauptträger	NH C24	20.0/24.0
Nebenträger	NH C24	14.0/24.0

Nutzungsklasse 1

Verbindungsmittel

Balkenschuh Simpson Strong Tie CNA Kammnägel, Teilausnagelung (Europäische Technische Zulassung ETA-06/0270) BSN 140/180mm (16+8)x 4.0x40mm

Belastungen

Belastungen für den Anschluss

Für die Wirkungslinie der Kraft F_y wird angenommen, dass sie an der Oberkante des Balkenschuhs angreift.

Auflagerlasten	Komm.	Fy	Fz
		[kNj	[kN]
Einw. <i>Gk</i>		0.00	1.00
Einw. <i>Ed.1</i>	(a) B11.1.	0.50	0.70
Einw. Ed.2	(a) B11.1.	0.68	0.94
Einw. Ed.3	(a) B11.1.	0.50	0.70
Einw. <i>Ed.4</i>	(a) B11.1.	0.68	0.94
Einw. <i>Ed.5</i>	(a) B11.1.	1.25	6.32
Einw. Ed.6	(a) B11.1.	1.43	6.56
Einw. <i>Ed.7</i>	(a) B11.1.	1.25	6.32
Einw. <i>Ed.</i> 8	(a) B11.1.	1.43	6.56

(a) aus Pos. 'B11', Ort 'B11.1.'

KombinationenKombinationsbildung nach DIN EN 1990
Darstellung der maßgebenden Kombinationen

Ek KLED Σ (γ*ψ*EW)
8 mi 1.00*Ed.6
mi: mittel

Durch Kontrollrechnung geprüft

granding graph and

ständig/vorüberg.

Datum: 28.04.2023 Position: B11.1.

Zusammenfassung Zusammenfassung der Nachweise

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis		η [-]
Balkenschuh	OK	0.65
Querzug	OK	0.31

279

Seite:

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: \$T3

Pos. ST3 Öffnungssturz System Einfeldträger System z-Richtung

Abmessungen Mat./Querschnitt	Feld	l [m]	Lage [°]	Achsen Material		ial	Profil		
	1	1.20	0.0	fest	S 2	35	3x HEA 120		
Auflager	Lager	x [m]	b [cm]		Art	K _{T,z} [kN/m]	K _{R,y} [kNm/rad]		
	Α	0.00	20.0		Mauerw.	fest	frei		

20.0

Lager	a _{1,min} [m]	h _c [m]	Art
Α	0.00	2.60	Mz 10/M2,5
В	0.00	2.60	Mz 10/M2,5

Mauerw.

fest

1.35

Belastungen Belastungen auf das System

В

Grafik Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen	Gk	Qk.N	Qk.S

1.20

Durch Kontrollrechnung geprüft

31.07.2023

280

frei

Datum: **28.04.2023** Position: **ST3**

Streckenlasten Gleichlasten in z-Richtung Feld Komm. а S qli е **q**re [kN/m] [kN/m][m] [m] [cm] Einw. Gk 1 Eigengew 0.00 1.20 0.60 0.0 B3+B2 (a) 1 0.00 1.20 19.95 0.0 Einw. Qk.N B3+B2 0.00 1.20 10.74 0.0 (b) 1 Einw. Qk.S 1.20 1.35 0.0 B3+B2 0.00 (c) 1 Einw. Qk.W (d) 1 B3+B2 0.00 1.20 0.32 0.0 (a) aus Pos. 'B2' A (Fz), Gk (max) 10.944 =10.94 kN/m aus Pos. 'B3' B (Fz), Gk (max) 9.00 9.002 =kN/m 19.95 kN/m (b) aus Pos. 'B2' A (Fz), Qk.N (max) 5.973 = 5.97 kN/m aus Pos. 'B3' B (Fz), Qk.N (max) 4.770 =4.77 kN/m 10.74 kN/m (c) aus Pos. 'B2' A (Fz), Qk.S.A (max) 0.845 =0.84 kN/m aus Pos. 'B3' B (Fz), Qk.S.A (max) 0.501 =0.50 kN/m 1.35 kN/m (d) aus Pos. 'B2' A (Fz), Qk.W.270 (max) 0.198 =0.20 kN/m aus Pos. 'B3' B (Fz), Qk.W.270 (max) 0.118 =0.12 kN/m 0.32 kN/m Punktlasten Einzellasten in z-Richtung Feld Komm. а F_z [m] [kN] [cm] Einw. Gk (a) 1 **B7** 0.20 13.79 0.0 0.20 34.31 0.0 $(b)_1$ **B8** Einw. Qk.N (a) 1 **B7** 0.20 4.77 0.0 5.97 0.0 B8 0.20 (b) 1 Einw. Qk.S.A (a) 1 Β7 0.20 2.64 0.0 B8 0.20 10.25 0.0 (b) 1 Einw. Qk.W.000 (a) 1 B7 0.20 0.60 0.0 **B8** 0.20 1.16 0.0 (b) 1 Einw. Qk.W.090 (a) 1 0.0 В7 0.20 -2.99**B8** 0.20 -12.96 0.0 (b) 1 Einw. Qk.W.180 (a) 1 В7 0.20 0.0 -0.87

Durch Kontrollrechnung geprüft

0.20

0.20

0.20

B8

B7

B8

_(b) 1

(a) 1

(b) 1

31.07.2023

0.0

0.0

0.0

-5.86

-0.99

-0.42

281

Seite:

Einw. Qk.W.270

Datum: 28.04.2023 Position: ST3

aus Pos. 'B7', Lager 'B' (Seite 249) (a)

aus Pos. 'B8', Lager 'A' (Seite 260) (b)

Kombinationen Kombinationsbildung nach DIN EN 1990

	Ek	Σ (γ*ψ*EW)		
ständig/vorüberg.	1	1.00*Gk		
-	2	1.00*Gk	+1.50*Qk.W.090	
	3	1.35*Gk	+1.05*Qk.N	+1.50*Qk.S.A
		+0.90*Qk.W.000		
	4	1.35*Gk	+1.50*Qk.N	+0.75*Qk.S.A
	5	1.00*Gk	+0.75*Qk.S	+1.50*Qk.W.090
außergewöhnlich	6	1.00*Gk	+2.30*Qk.S.A	+0.20*Qk.W.000
-	7	1.00*Gk	+2.30*Qk.S	+0.20*Qk.W.090
	8	1.00*Gk	+0.50*Qk.N	+2.30*Qk.S.A
quasi-ständig	9	1.00*Gk		
•	10	1.00*Gk	+0.30*Qk.N	

Bem.-schnittgrößen

Bemessungsschnittgrößen

Tabelle Schnittgrößen (Umhüllende)

	x [m]	M _{y,d,min} [kNm]	Ek	M _{y,d,max} [kNm]	Ek	V _{z,d,min} [kN]	Ek	V _{z,d,max} [kN]	Ek
Feld 1	0.00	0.00	2	0.00	3	32.48	2	104.35	3
	0.20	6.08	2	20.09	3	28.37	2	96.55	3
	0.20	6.08	2	20.09	3	-4.80	6	4.59	5
	1.20	0.00	2	0.00	4	-41.43	4	-16.36	2

Mat./Querschnitt

Material- und Querschnittswerte nach DIN EN 1993, DIN EN 1996

Querschnitt	Feld	QS	Einzelprofil	$egin{aligned} \mathbf{W_y} \ \mathbf{W_z} \end{aligned}$	S _y Sz	l _y Iz	lt
				[cm ³]	[cm³]	[cm ⁴]	[cm ⁴]
	1	1	3x HEA 120	318.0	179.1	1818.0	18.1
				115.5	31.6	693.0	

0		. .	·
Stahlbau	Material	fyk	E
		[N/mm²]	[N/mm ²]
	S 235	235.00	210000.00

an Auflagern A, B	Mz 10/M2,5
Steinart	Mauerziegel
Steintyp	Vollziegel Mz
Steindruckfestigkeitsklasse	SFK 10
	Steinart Steintyp

Mörtelgruppe Normalmauermörtel M2,5 charakt. Druckfestigkeit $f_k =$ 4.83 N/mm²

Durch Kontrollrechnung geprüft

mb BauStatik S312.de 2023.010

31.07.2023 Ingenieurbüro Pitbau - Statik & Energieberatung - www.pibau.de

282

Datum: **28.04.2023** Position: **ST3**

283

Seite:

M 1:14

HEA 120

Mauerwerksauflager

Nachweis der Auflagerpressung nach DIN EN 1996

Abs. 6.1.3

Lager	Ek	β	A_b	f_d	$N_{Ed,c}$	$N_{Rd,c}$	η
		[-]	[cm²]	[N/mm²]	[kN]	[kN]	[-]
Α	3	1.00	720.0_{A}	2.74	104.35	197.03	0.53
В	4	1.00	720.0_A	2.74	41.43	197.03	0.21
			1 1 1 4				

A: Tragrichtung senkrecht zur Wandrichtung

Auflagerkräfte

Charakteristische Auflagerkräfte

Char. Auflagerkr.

	Aufl.	$F_{z,k,min}$	$F_{z,k,max}$
		[kN]	[kN]
Einw. <i>Gk</i>	Α	52.41	52.41
	В	20.34	20.34
Einw. <i>Qk.N</i>	Α	15.40	15.40
	<u>B</u> A	8.24	8.24
Einw. <i>Qk.S</i>	Α	0.81	0.81
	В	0.81	0.81
Einw. <i>Qk.S.A</i>	A	10.74	10.74
	<u>B</u> A	2.15	2.15
Einw. <i>Qk.W</i>	A	0.19	0.19
	<u>B</u> A	0.19	0.19
Einw. <i>Qk.W.000</i>	A	1.47	1.47
	<u>B</u>	0.29	0.29
Einw. <i>Qk.W.090</i>	A	-13.29	-13.29
	<u>B</u> A	-2.66	-2.66
Einw. <i>Qk.W.180</i>	A	-5.61	-5.61
	В	-1.12	-1.12
Einw. <i>Qk.W.270</i>	A	-1.18	-1.18
	В	-0.24	-0.24

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Ort	X		η
	[m]		[-]
Lager A	0.00	OK	0.53
Feld 1	0.00	OK	0.51
Feld 1	0.20	OK	0.30
	Lager A Feld 1	[m] Lager A 0.00 Feld 1 0.00	[m] Lager A 0.00 OK Feld 1 0.00 OK

Nachweise (GZG)

Nachweise im Grenzzust. der Gebrauchstauglichkeit

Ort	X	η
	[m]	[-]
Feld 1	0.55 C	OK 0.10
		[m]

Durch Kontrollrechnung geprüft

Datum: 28.04.2023 Position: PP1

284

Seite:

Positionspläne

Pos. PP1 Positionsplandaten

_			
Dac	hko	nstrı	uktion

Pos.	Querschnitt	Material
D1	b/h = 10/22 cm	NH C24
D1.A	2*170	-
D1.B	90	-
D2	b/h = 10/20 cm	NH C24
D3	b/h = 10/20 cm	NH C24
D3.1	b/h = 10/20 cm	NH C24
WRB	b/h = 60/1.5 mm	SST
GP1	b/h = 12/16 cm	NH C24
KP1	b/h = 12/22 cm	NH C24
P1	b/h = 14/20 cm	NH C24
P5	b/h = 14/20 cm	NH C24
P4	b/h = 14/20 cm	NH C24
P4.1	BSN 140/139	-
P2	b/h = 14/36 cm	NH C24
P2.1	b/h = 14/20 cm	NH C24
P3	b/h = 18/22 cm	NH C24
HSW1	b/h = 8/1414/14 cm, h = 16 mm	n NH C24, OSB OSB/4
HSW1.1	HD340M12G-B	-
HSW2	b/h = 8/1414/14 cm, h = 16 mn	n NH C24, OSB OSB/4
HSW2.1		- NULCO4 COD COD/4
HSW3	b/h = 8/1414/14 cm, h = 16 mn	n NH C24, OSB OSB/4
HSW3.1		- 4.0
HSW.DU S1	Bolzen M12 b/h = 14/14 cm	4.8 NH C24
S1.A	ABR170	NH C24
S1.A S2	b/h = 14/14 cm	NH C24
S2 S3	b/h = 14/14 cm	NH C24
S4	b/h = 14/14 cm	NH C24
S4.1	b/h = 10/14 cm	NH C24
KBB1	b/h = 14/1414/20 cm	NH C24
KBB2	b/h = 14/1414/36 cm	NH C24
ST1	b/h = 24/25 cm	B 500SA, C 25/30
RB1	b/h = 24/25 cm	B 500SA, C 25/30
ST2	2x HEA 120	S 235
RB2	b/h = 24/25 cm	B 500SA, C 25/30
		2 3332. 1, 3 20/00
	_	

Decke über 3.OG

Pos.	Querschnitt	Material
B1	b/h = 8/2420/24 cm	NH C24
B2	b/h = 20/242*12/24 cm	NH C24
B3	b/h = 12/2420/24 cm	NH C24
B4	U 180, b/h = 20/24 cm	NH C24, S 235
B5	U 220, b/h = 20/24 cm	NH C24, S 235
B6	2*U 180, b/h = 20/24 cm	NH C24, S 235
B7	2*U 160, b/h = 20/24 cm	NH C24, S 235
B7.1.	HEA 100	S 235
B8	2*U 180, b/h = 20/24 cm	NH C24, S 235
B9	U 220, b/h = 20/24 cm	NH C24, S 235
B10	U 160, b/h = 20/24 cm	NH C24, S 235
B11	b/h = 14/24 cm	NH C24
		31.07.2023

IIID-VIEWEI VEISION 2023 - COPYIIGIN 2022 - IIID AEC SONWAI E GIIIDH

Seite:

Projekt: Hentigstr.11a, 10318 Berlin-Karlshorst

Datum: **28.04.2023** Position: **PP2**

Pos. PP2

Detail-Skizzen

bei Pos B6 l B7 ûber Fersterôfrung: Ciberzup anovdenen!

· Detail: III Windbock Rup- and DrudtoN angerdlopper

