Hash Tables

	ArrayList	LinkedList		
get()	O(1)	O(n)		
add()	O(1)	O(1) amortized		
remove()	O(n)	O(n)		

Dictionary

□ Dictionary:

- Dynamic-set data structure for storing items indexed using keys.
- Supports operations Insert, Search, and Delete.
- Applications:
 - Symbol table of a compiler.
 - Memory-management tables in operating systems.
 - Large-scale distributed systems.

Hash Tables:

- Effective way of implementing dictionaries.
- Generalization of ordinary arrays.

Direct-Address Tables

- Direct-address Tables are ordinary arrays
- Facilitate direct addressing
 - Element whose key is k is obtained by indexing into the kth position of the array
- Applicable when we can afford to allocate an array with one position for every possible key
 - \square i.e. when the universe of keys U is small
- Dictionary operations can be implemented to take O(1) time

Direct-Address Tables

- □ Suppose:
 - \square The range of keys is 0..m-1
 - Keys are distinct
- □ The idea:
 - □ Set up an array T[0..m-1] in which

```
T[i] = x 		 if x \in T 	 and 	 key[x] = i
```

- T[i] = NULL otherwise
- □ This is called a *direct-address table*
 - Operations take O(1) time !
 - □ *So what's the problem?*

Direct-Address Tables

- □ Direct addressing works well when the range *m* of keys is relatively small
- □ But what if the keys are 32-bit integers?
 - □ Problem 1: direct-address table will have 2³² entries, more than 4 billion
 - Problem 2: even if memory is not an issue, the time to initialize the elements to NULL may be
- □ Solution: map keys to smaller range 0..*m*-1
- This mapping is called a hash function

Hash Tables

- Motivation: symbol tables
 - □ A compiler uses a *symbol table* to relate symbols to associated data
 - Symbols: variable names, procedure names, etc.
 - Associated data: memory location, call graph, etc.
 - □ For a symbol table (also called a *dictionary*), we care about search, insertion, and deletion
 - We want these to be fast, but don't care about sorted order
- ☐ The structure we will use is a *hash table*
 - \square Supports all the above in O(1) expected time!

Hash Tables

□ Notation:

- \Box *U*: Universe of all possible keys.
- \square *K*: Set of keys actually stored in the dictionary.
- |K| = n.
- □ When U is very large,
 - Arrays are not practical.
 - |K| << |U|.
- \square Use a table of size proportional to |K| The hash tables.
 - However, we lose the direct-addressing ability.
 - Define functions that map keys to slots of the hash table.

Hashing

■ Hash function h: Mapping from U to the slots of a hash table T[0..m-1].

$$h: U \to \{0, 1, ..., m-1\}$$

- \square With arrays, key k maps to slot A[k].
- With hash tables, key k maps or "hashes" to slot T[h[k]].
- h[k] is the *hash value* of key k.

Hashing

Issues with Hashing

- Multiple keys can hash to the same slot collisions are possible.
 - Design hash functions such that collisions are minimized.
 - But avoiding collisions is impossible.
 - Design collision-resolution techniques.
- \square Search will cost $\Theta(n)$ time in the worst case.
 - □ However, all operations can be made to have an expected complexity of $\Theta(1)$.

Methods of Resolution

Chaining:

- Store all elements that hash to the same slot in a linked list.
- Store a pointer to the head of the linked list in the hash table slot.

0 k_1 k_2 k_4 k_4 k_4 k_4 k_4 k_4

Open Addressing:

- All elements are stored in hash table itself.
- When collisions occur, use a systematic (consistent) procedure to store elements in free slots of the table.

Methods of Resolution

Chaining:

- Store all elements that hash to the same slot in a linked list.
- Store a pointer to the head of the linked list in the hash table slot.

0 k_1 k_2 k_3 k_4 k_4 k_4 k_4 k_5 k_4 k_7 k_8

Open Addressing:

- All elements are stored in hash table itself.
- When collisions occur, use a systematic (consistent) procedure to store elements in free slots of the table.

Methods of Resolution

Chaining:

- Store all elements that hash to the same slot in a linked list.
- Store a pointer to the head of the linked list in the hash table slot.

$\begin{array}{c} 0 \\ k_1 \\ k_2 \\ k_3 \\ m-1 \end{array}$

Open Addressing:

- All elements are stored in hash table itself.
- When collisions occur, use a systematic (consistent) procedure to store elements in free slots of the table.

Collision Resolution by Chaining

Collision Resolution by Chaining

Chaining puts elements that hash to the same slot in a linked list:

Chaining

□ *How do we insert an element?*

Chaining

□ *How do we delete an element?*

Chaining

□ How do we search for a element with a given key?

Chaining Example

- h(k) = 2k%5
- □ keys:
 - **2**, 15, 23, 40, 62, 75

- □ Assume *simple uniform hashing*: each key in table is equally likely to be hashed to any slot
- □ Given *n* keys and *m* slots in the table: the load factor $\alpha = n/m = \text{average } \# \text{ keys per slot}$
- □ What will be the average cost of an unsuccessful search for a key?

- Assume simple uniform hashing: each key in table is equally likely to be hashed to any slot
- □ Given *n* keys and *m* slots in the table, the load factor $\alpha = n/m = \text{average } \# \text{ keys per slot}$
- □ What will be the average cost of an unsuccessful search for a key? A: $O(1+\alpha)$

- □ Assume *simple uniform hashing*: each key in table is equally likely to be hashed to any slot
- □ Given *n* keys and *m* slots in the table, the load factor $\alpha = n/m = \text{average } \# \text{ keys per slot}$
- □ What will be the average cost of an unsuccessful search for a key? A: $O(1+\alpha)$
- □ What will be the average cost of a successful search?

- □ Assume *simple uniform hashing*: each key in table is equally likely to be hashed to any slot
- □ Given *n* keys and *m* slots in the table, the load factor $\alpha = n/m = \text{average } \# \text{ keys per slot}$
- □ What will be the average cost of an unsuccessful search for a key? A: $O(1+\alpha)$
- □ What will be the average cost of a successful search? A: $O(1 + \alpha/2) = O(1 + \alpha)$

Draw the 11-item hash table that results from using the hash function $h(k) = (2k + 5) \mod 11$, to hash the keys 12, 44, 13, 88, 23, 94, 11, 39, 20, 16, and 5, assuming collisions are handled by chaining.

Draw the 11-item hash table that results from using the hash function $h(k) = (2k + 5) \mod 11$, to hash the keys 12, 44, 13, 88, 23, 94, 11, 39, 20, 16, and 5, assuming collisions are handled by chaining.

Open Addressing

- □ Basic idea:
 - □ To insert: if slot is full, try another slot, ..., until an open slot is found (*probing*)
 - □ To search, follow same sequence of probes as would be used when inserting the element
 - If reach element with correct key, return it
 - If reach a NULL pointer, element is not in table
- Good for fixed sets (adding but no deletion)
 - Example: spell checking
- Table needn't be much bigger than *n*

Probe Sequence

- Sequence of slots examined during a key search constitutes a probe sequence.
- □ Probe sequence must be a permutation of the slot numbers.
 - □ We examine every slot in the table, if we have to.
 - We don't examine any slot more than once.
- ☐ The hash function is extended to:

$$\square \ h: U \times \{0, 1, ..., m-1\} \rightarrow \{0, 1, ..., m-1\}$$
probe number
slot number

 \Box $\langle h(k, 0), h(k, 1), ..., h(k, m-1) \rangle$ should be a permutation of $\langle 0, 1, ..., m-1 \rangle$.

Computing Probe Sequences

- ☐ The ideal situation is *uniform hashing*:
 - Generalization of simple uniform hashing.
 - Each key is equally likely to have any of the m! permutations of (0, 1, ..., m-1) as its probe sequence.
- □ It is hard to implement true uniform hashing.
 - □ Approximate with techniques that at least guarantee that the probe sequence is a permutation of $\langle 0, 1, ..., m-1 \rangle$.
- □ Some techniques:
 - □ Use auxiliary hash functions.
 - Linear Probing.
 - Quadratic Probing.
 - Double Hashing.
 - Can't produce all m! probe sequences.

Linear Probing

- □ The initial probe determines the entire probe sequence.
 - T[h'(k)], T[h'(k)+1], ..., T[m-1], T[0], T[1], ..., T[h'(k)-1]
 - \square Hence, only *m* distinct probe sequences are possible.
- □ Suffers from *primary clustering*:
 - Long runs of occupied sequences build up.
 - Long runs tend to get longer, since an empty slot preceded by i full slots gets filled next with probability (i+1)/m.
 - Hence, average search and insertion times increase.

Ex: Linear Probing

Example:

- $h'(k) = k \mod 13$
- $h(k, i) = (h'(k) + i) \mod 13$
- □ Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

Operation Insert

□ Act as though we were searching, and insert at the first NIL slot found.

```
Hash-Insert(T, k)
1. i \leftarrow 0
2. repeat j \leftarrow h(k, i)
3. if T[j] = NIL
               then T[j] \leftarrow k
4.
5.
                     return j
         else i \leftarrow i + 1
7. until i = m
8. error "hash table overflow"
```

Pseudo-code for Search

```
Hash-Search (T, k)

1. i \leftarrow 0

2. repeat j \leftarrow h(k, i)

3. if T[j] = k

4. then return j

5. i \leftarrow i + 1

6. until T[j] = \text{NIL or } i = m

7. return NIL
```

- Example:
 - $h'(k) = k \mod 13$
 - $h(k, i) = (h'(k) + i) \mod 13$
 - □ Insert keys 17,30,43 in this order; delete 30; search 43;

Deletion

- □ Cannot just turn the slot containing the key we want to delete to contain NIL. Why?
- □ Use a special value DELETED instead of NIL when marking a slot as empty during deletion.
 - □ *Search* should treat DELETED as though the slot holds a key that does not match the one being searched for.
 - □ *Insert* should treat DELETED as though the slot were empty, so that it can be reused.
- \square **Disadvantage:** Search time is no longer dependent on α .
 - Hence, chaining is more common when keys have to be deleted.

Quadratic Probing

- The initial probe position is T[h'(k)], later probe positions are offset by amounts that depend on a quadratic function of the probe number i.
- Must constrain c_1 , c_2 , and m to ensure that we get a full permutation of $\langle 0, 1, ..., m-1 \rangle$.
- □ Can suffer from *secondary clustering*:
 - If two keys have the same initial probe position, then their probe sequences are the same.

- $h(k, i) = (h'(k) + i^2) \mod 7$
- h'(k) = k%7
- □ insert keys: 76, 40, 48, 5, 55

0	1	2	3	4	5	6
48		5	55		40	76

- □ insert keys: 76, 40, 48, delete key 76 (replace with NIL), search 48
 - not found

0	1	2	3	4	5	6
48					40	76 NIL

Double Hashing

- □ Two auxiliary hash functions.
 - \square h_1 gives the initial probe. h_2 gives the remaining probes.
- Must have $h_2(k)$ relatively prime to m, so that the probe sequence is a full permutation of $\langle 0, 1, ..., m-1 \rangle$.
 - Choose m to be a power of 2 and have $h_2(k)$ always return an odd number. Or,
 - □ Let m be prime, and have $1 < h_2(k) < m$.
- \square $\Theta(m^2)$ different probe sequences.
 - One for each possible combination of $h_1(k)$ and $h_2(k)$.
 - Close to the ideal uniform hashing.

One good choice is to choose a prime $R \le \text{size}$ and: $hash_2(x) = R - (x \mod R)$

$$b(k,i) = (h_1(k) + i h_2(k)) \bmod 7$$

$$h_1(k) = k\%7$$
,

$$h_2(k) = 5 - (k\%5)$$

□ keys: 76, 40, 47, 55, 10, 93,

0	1	2	3	4	5	6
	47	93	10	55	40	76

Consider an open-addressing hash table as shown below. The table already contains four data items. Assume that collisions are handled by the hash function

$$h(k,i) = (h'(k) + ih2(k)) \mod 13$$
, where $h'(k) = (2k + ih2(k)) \mod 13$

7) mod 13 and h2(k) = (k + 5) mod 13.

By showing calculations, redraw the table after

- (i) insert 90;
- (ii) insert 83
- □ What is collision?
- Chaining vs Open Addressing; pros cons