

RECEIVED
CENTRAL FAX CENTER

DEC 04 2007

In the Claims

Claims remaining in the application are as follows:

1. (Original): A method for establishing a secure channel through an indeterminate number of nodes in a network comprising:
enrolling a smart card with a unique key per smart card, the unique key derived from a private key that is assigned and distinctive to systems and a card base of a card issuer, an enrolled smart card containing a stored public entity-identifier and the secret unique key;
transacting at a point of entry to the network, the transaction creating a PIN encryption key derived from the smart card unique key and a transaction identifier that uniquely identifies the point of entry and transaction sequence number;
communicating the PIN encryption key point-to-point in encrypted form through a plurality of nodes in the network; and
recovering the PIN at a card issuer server from the PIN encryption key using the card issuer private key.

2. (Original): The method according to Claim 1 further comprising:
defining public key values (e, N) that are exclusive to a card issuer system and card base, the key value e being a public exponent and the key value N being a modulus in an RSA (Rivest, Shamir, and Adelman Public Key Cryptosystem) system;
defining a private key value d that is exclusive to the card issuer system and card base, the private key value d being a secret RSA private key;
computing a secret key u that is unique to the smart card using an equation of the form:

$$u = x^d \pmod{N},$$

where x is an entity-identifier that identifies the smart card and the entity; and storing the secret key u on the smart card with public key values x, e, and N.

KOESTNER BERTANI LLP
2192 MARTIN ST.
SUITE 150
IRVINE, CA 92612
TEL: (714) 251-0239
FAX: (714) 251-0260

3. (Original): The method according to Claim 1 further comprising:
receiving at an entity-activated terminal an entity-entered Personal Identification
Number (PIN) and an entity-inserted smart card;
passing the PIN to the smart card;
computing at the smart card an equation of the form:

$$K = u \cdot TSN^H \pmod{N},$$

where K is a keying code, u is a secret key, TSN is a transaction
sequence identifier that identifies the terminal and a sequence number for
a transaction originating at the terminal, H is a hash of transaction data
elements, and N is a modulus in an RSA (Rivest, Shamir, and Adelman
Public Key Cryptosystem) system; and
hashing at the smart card the keying code K to form the PIN encryption key KPE
according to an equation of the form:

$$KPE = h(K),$$

where h() is a hashing algorithm.

4. (Original): The method according to Claim 3 further comprising:
hashing at the smart card the keying code K to form an encryption key according
to an encryption definition selected from a triple Data Encryption Standard
(3-DES) and an Advanced Encryption Standard (AES).

5. (Original): The method according to Claim 3 further comprising:
padding the keying code K with transaction-related data prior to the hash
operation h(K).

6. (Original): The method according to Claim 3 further comprising:
deriving the PIN encryption key KPE uniquely as a function of the secret key u
for each transaction, the encryption key KPE being secure from an
adversary because the secret key u is unknown.

KOESTNER BERTANI LLP
2102 MARTIN ST.
SUITE 130
IRVINE, CA 92612
TEL (714) 251-0250
FAX (714) 251-0260

7. (Original): The method according to Claim 6 further comprising:
maintaining the private key value d as a secret known only to the card issuer as
the only entity capable of decrypting the cryptogram C .
8. (Original): The method according to Claim 1 further comprising:
receiving a PIN encryption key KPE at a card issuer server;
computing a hash H of transaction data;
computing an RSA (Rivest, Shamir, and Adelman Public Key Cryptosystem)
system encryption t of a transaction sequence identifier TSN that
identifies a transaction terminal and a sequence number for a transaction
originating at the terminal according to an equation of the form:
$$t = TSN^e \pmod{N},$$

where N is a modulus in an RSA system;
computing a cryptogram quantity C using public data according to an equation of
the form:
$$C = x \cdot t^H \pmod{N},$$

where x is an entity-identifier that identifies the smart card and the entity;
decrypting the cryptogram quantity C using the private key value d that is
exclusive to the card issuer system and card base, the private key value d
being a secret RSA private key, the decryption according to an equation
of the form:
$$K = C^d \pmod{N};$$
 and
decrypting the PIN using the PIN encryption key $KPE = h(K)$ where $h()$ is a
hashing algorithm.
9. (Withdrawn): The method according to Claim 1 further comprising:
encrypting a PIN at the smart card using perfect forward secrecy based on a
random number generation whereby compromise of persistent secret
data does not jeopardize data security of prior transactions.

KOESTNER BERTANI LLP
2162 MARTIN CIR.
SUITE 130
IRVINE, CA 92612
TEL: (949) 251-0250
FAX: (949) 251-0250

10. (Withdrawn): The method according to Claim 1 further comprising: receiving at an entity-activated terminal an entity-entered Personal Identification Number (PIN) and an entity-inserted smart card; passing the PIN to the smart card; generating a random number r at the smart card that is unique to a transaction; computing at the smart card an RSA (Rivest, Shamir, and Adelman Public Key Cryptosystem) system encryption t according to an equation of the form:

$$t = r^e \pmod{N},$$

where e is the public exponent and N the modulus of the RSA system; computing at the smart card a hash H of common public transaction data; computing at the smart card a keying code K and a PIN encryption key KPE according to equations of the form:

$$K = u \cdot r^H \pmod{N}, \text{ and}$$

$$KPE = h(K),$$

where u is a secret key and H is a hash of transaction data elements, and sending the PIN encryption key KPE and RSA system encryption t through the network; and erasing the random number r .

11. (Withdrawn): The method according to Claim 10 further comprising: receiving a PIN encryption key KPE and encryption t at a card issuer server; computing a hash H of transaction data; computing a cryptogram quantity C using public data according to an equation of the form:

$$C = x \cdot t^H \pmod{N},$$

where x is an entity-identifier that identifies the smart card and the entity; decrypting the cryptogram quantity C using the private key value d that is exclusive to the card issuer system and card base, the private key value d being a secret RSA private key, the decryption according to an equation of the form:

$$K = C^d \pmod{N}; \text{ and}$$

KOESTNER BERTANI LLP
2192 MARTIN ST.
SUITE 150
IRVINE, CA 92612
TEL (949) 251-0250
FAX (949) 251-0260

decrypting the PIN using the PIN encryption key $KPE = h(K)$ where $h()$ is a hashing algorithm.

12. (Original): The method according to Claim 1 further comprising: computing at the smart card a hash H of transaction data; communicating the transaction data hash to a card issuer server; computing at the card issuer server a hash of transaction data; and verifying the communicated hash with the server-computed hash for authentication and integrity checking.

13. (Original): A data security apparatus comprising: a smart card capable of establishing a secure channel through an indeterminate number of nodes in a network comprising: an interface capable of communicating with a card reader and/or writer; a processor coupled to the interface; and a memory coupled to the processor that stores a public entity-identifier and a secret unique key derived from a private key that is assigned and distinctive to systems and a card base of a card issuer, the memory further comprising a computable readable program code embodied therein that creates a PIN encryption key derived from the smart card unique key and a transaction identifier that uniquely identifies the point of entry and transaction sequence number.

14. (Original): The apparatus according to Claim 13 further comprising: a secret unique key u stored in the memory with public key values x , e , and N where x is an entity-identifier that identifies the smart card and the entity, a key value e is a public exponent and a key value N is a modulus in an RSA (Rivest, Shamir, and Adelman Public Key Cryptosystem) system, the public key values (e , N) being exclusive to a card issuer system and card base; wherein: the secret key u is unique to the smart card and computed using an equation of the form:

KOESTNER BERTANI LLP
2102 MARTIN ST
SUITE 150
IRVINE, CA 92612
TEL (714) 251-0250
FAX (714) 251-0260

$$u = x^d \pmod{N},$$

where a private key value d is exclusive to the card issuer system and card base, the private key value d being a secret RSA private key.

15. (Original): The apparatus according to Claim 13 wherein the memory further comprises:

a computable readable program code capable of causing the processor to receive an entity-entered Personal Identification Number (PIN);
a computable readable program code capable of causing the processor to compute an equation of the form:

$$K = u \cdot TSN^H \pmod{N},$$

where K is a keying code, u is a secret key, TSN is a transaction sequence identifier that identifies the terminal and a sequence number for a transaction originating at the terminal, H is a hash of transaction data elements, and N is a modulus in an RSA (Rivest, Shamir, and Adelman Public Key Cryptosystem) system; and

a computable readable program code capable of causing the processor to hash the keying code K to form the PIN encryption key KPE according to an equation of the form:

$$KPE = h(K),$$

where h() is a hashing algorithm.

16. (Original): The apparatus according to Claim 15 wherein the memory further comprises:

a computable readable program code capable of causing the processor to hash the keying code K to form an encryption key according to an encryption definition selected from a triple Data Encryption Standard (3-DES) and an Advanced Encryption Standard (AES).

KOESTNER BERTANI LLP
2192 MARTIN ST.
SUITE 150
IRVINE, CA 92612
TEL: (949) 351-0250
FAX: (949) 351-0260

17. (Original): The apparatus according to Claim 15 wherein the memory further comprises:

a computable readable program code capable of causing the processor to pad the keying code K with transaction-related data prior to the hash operation $h(K)$.

18. (Withdrawn): The apparatus according to Claim 13 wherein the memory further comprises:

a computable readable program code capable of causing the processor to receive an entity-entered Personal Identification Number (PIN);

a computable readable program code capable of causing the processor to generate a random number r that is unique to a transaction;

a computable readable program code capable of causing the processor to compute an RSA (Rivest, Shamir, and Adelman Public Key Cryptosystem) system encryption t according to an equation of the form:

$$t = r^e \pmod{N},$$

where e is the public exponent and N the modulus of the RSA system;

a computable readable program code capable of causing the processor to compute a hash H of common public transaction data;

a computable readable program code capable of causing the processor to compute a keying code K and a PIN encryption key KPE according to equations of the form:

$$K = u \cdot r^H \pmod{N}, \text{ and}$$

$$KPE = h(K),$$

where u is a secret key and H is a hash of transaction data elements;

a computable readable program code capable of causing the processor to send the PIN encryption key KPE and RSA system encryption t through the network; and

a computable readable program code capable of causing the processor to erase the random number r .

KOESTNER BERTANI LLP
2192 MARTIN ST.
SUITE 130
IRVINE, CA 92612
TEL (949) 231-0230
FAX (949) 231-0260

19. (Original): The apparatus according to Claim 13 wherein the memory further comprises:

a computable readable program code capable of causing the processor to hash transaction data elements and communicate the hash point-to-point to a card issuer enabling simultaneous key management and integrity checking.

20. (Original): A data security apparatus comprising:
an enrollment system capable of usage for establishing a secure channel through an indeterminate number of nodes in a network, the enrollment system comprising:

a communication interface capable of communicating with a writer configured to accept a smart card;
a processor coupled to the communication interface; and
a memory coupled to the processor and having a computable readable program code embodied therein capable of causing the processor to initialize and personalize a smart card with a unique key per smart card, the unique key derived from a private key that is assigned and distinctive to systems and a card base of a card issuer.

21. (Original): The apparatus according to Claim 20 wherein the memory further comprises:

a computable readable program code capable of causing the processor to write to an enrolled smart card a stored public entity-identifier and the secret unique key.

22. (Original): The apparatus according to Claim 20 wherein the memory further comprises:

a computable readable program code capable of causing the processor to define public key values (e, N) that are exclusive to a card issuer system and card base, the key value e being a public exponent and the key value N

KOESTNER BERTANI LLP
1192 MARTIN ST.
SUITE 150
IRVINE, CA 92614
TEL (949) 231-0250
FAX (949) 231-0260

being a modulus in an RSA (Rivest, Shamir, and Adelman Public Key Cryptosystem) system;

a computable readable program code capable of causing the processor to define a private key value d that is exclusive to the card issuer system and card base, the private key value d being a secret RSA private key;

a computable readable program code capable of causing the processor to compute a secret key u that is unique to the smart card using an equation of the form:

$$u = x^d \pmod{N},$$

where x is an entity-identifier that identifies the smart card and the entity; and

a computable readable program code capable of causing the processor to store the secret key u on the smart card with public key values x , e , and N .

23. (Original): A data security apparatus comprising:

a card issuer server capable of usage for establishing a secure channel through an indeterminate number of nodes in a network, the card issuer server comprising:

a communication interface capable of communicating with the network;

a processor coupled to the communication interface; and

a memory coupled to the processor and having a computable readable program code embodied therein capable of causing the processor to recover a Personal Identification Number (PIN) from a transaction PIN encryption key received via the network using a card issuer private key, the transaction PIN encryption key being derived from a smart card unique key initialized and personalized to the smart card and derived from the card issuer private key, and a transaction identifier that uniquely identifies the point of entry and transaction sequence number.

KOESTNER BERTANI LLP
2192 MARIIN ST
SUITE 150
IRVINE, CA 92612
TEL (949) 251-0250
FAX (949) 251-0260

24. (Original): The apparatus according to Claim 23 wherein:
the smart card unique key is a secret key u that is unique to the smart card and
is computed by a card enrollment system using an equation of the form:

$$u = x^d \pmod{N},$$

where x is an entity-identifier that identifies the smart card and the entity;
a private key value d is a secret RSA private key, and key value N is a
modulus in an RSA (Rivest, Shamir, and Adelman Public Key
Cryptosystem) system, the key values d and N being exclusive to a card
issuer system and card base.

25. (Original): The apparatus according to Claim 23 wherein the memory
further comprises:

a computable readable program code capable of causing the processor to
receive a PIN encryption key KPE at a card enrollment server;
a computable readable program code capable of causing the processor to
compute a hash H of transaction data;
a computable readable program code capable of causing the processor to
compute an RSA (Rivest, Shamir, and Adelman Public Key
Cryptosystem) system encryption t of a transaction sequence identifier
TSN that identifies a transaction terminal and a sequence number for a
transaction originating at the terminal according to an equation of the
form:

$$t = TSN^e \pmod{N},$$

where N is a modulus in an RSA system;

a computable readable program code capable of causing the processor to
compute a cryptogram quantity C using public data according to an
equation of the form:

$$C = x \cdot t^H \pmod{N},$$

where x is an entity-identifier that identifies the smart card and the entity;

a computable readable program code capable of causing the processor to
decrypt the cryptogram quantity C using the private key value d that is

KOESTNER BERTANI LLP
2192 MARTIN ST.
SUITE 100
IRVINE, CA 92612
TEL (714) 251-0250
FAX (714) 251-0250

exclusive to the card issuer system and card base, the private key value d being a secret RSA private key, the decryption according to an equation of the form:

$$K = C^d \pmod{N}; \text{ and}$$

a computable readable program code capable of causing the processor to decrypt the PIN using the PIN encryption key $KPE = h(K)$ where $h()$ is a hashing algorithm.

26. (Withdrawn): The apparatus according to Claim 23 wherein the memory further comprises:

a computable readable program code capable of causing the processor to receive a PIN encryption key KPE and encryption t ;

a computable readable program code capable of causing the processor to compute a hash H of transaction data;

a computable readable program code capable of causing the processor to compute a cryptogram quantity C using public data according to an equation of the form:

$$C = x \cdot t^H \pmod{N},$$

where x is an entity-identifier that identifies the smart card and the entity;

a computable readable program code capable of causing the processor to decrypt the cryptogram quantity C using the private key value d that is exclusive to the card issuer system and card base, the private key value d being a secret RSA private key, the decryption according to an equation of the form:

$$K = C^d \pmod{N}; \text{ and}$$

a computable readable program code capable of causing the processor to decrypt the PIN using the PIN encryption key $KPE = h(K)$ where $h()$ is a hashing algorithm.

KOESTNER BERTANI LLP
2192 MARTIN ST.
SUITE 130
IRVINE, CA 92613
TEL (714) 251-0350
FAX (714) 251-0260

27. (Original): The apparatus according to Claim 23 wherein the memory further comprises:

a computable readable program code capable of causing the processor to hash transaction data elements and compare the hash from a hash received point-to-point from a smart card enabling simultaneous key management and integrity checking.

28. (Original): A transaction system comprising:

a network;

a plurality of servers and/or hosts mutually coupling to the network;

a plurality of terminals coupled to the servers and/or hosts via the network and available for transacting;

a plurality of smart cards enrolled in the transaction system and capable of insertion into the terminals and transacting via the servers; and

a plurality of processors distributed among the smart cards, the servers, and/or the terminals, at least one of the processors being capable of establishing a secure channel through an indeterminate number of nodes in the network by creating, communicating, and decrypting a PIN encryption key derived from a smart card unique key and a transaction identifier that uniquely identifies a point of entry terminal and transaction sequence number, the smart card unique key being derived from a private key that is assigned and distinctive to systems and a card base of a card issuer.

29. (Original): A transaction system comprising:

a network;

a plurality of servers and/or hosts mutually coupling to the network;

a plurality of terminals coupled to the servers and/or hosts via the network and available for transacting;

a plurality of smart cards enrolled in the transaction system and capable of insertion into the terminals and transacting via the servers; and

KOESTNER BERTANI LLP
2192 MARTIN ST
SUITE 150
IRVINE, CA 92612
TEL (949) 251-0250
FAX (949) 251-0260

a plurality of processors distributed among the smart cards, the servers, and/or the terminals, at least one of the processors being capable of establishing a secure channel through an indeterminate number of nodes in the network by creating, communicating, and decrypting a PIN encryption key derived from a smart card unique key and a hash of transaction data elements, enabling simultaneous key management and integrity checking.

30. (Original): A transaction system capable of establishing a secure channel through an indeterminate number of nodes in a network comprising:
means for enrolling a smart card with a unique key per smart card, the unique key being derived from a private key that is assigned and distinctive to systems and a card base of a card issuer, an enrolled smart card containing a stored public entity-identifier and the secret unique key;
means for transacting at a point of entry to the network, the transaction creating a PIN encryption key derived from the smart card unique key and a transaction identifier that uniquely identifies the point of entry and transaction sequence number;
means for communicating the PIN encryption key point-to-point in encrypted form through a plurality of nodes in the network; and
means for recovering the PIN at a card issuer server from the PIN encryption key using the card issuer private key.

KOESTNER BERTANI LLP
2102 MARTIN ST
SUITE 150
IRVINE, CA 92612
TEL (949) 251-0250
FAX (949) 251-0260