Logistic Regression

Example - A customer purchase decision for onion during her visits to a vegetable store are shown below in the table.

Visit Index	1	2	3	4	5	6	7	8	9	10
Price	2	2	2	2	2	3	3	3	3	4
Decision	Y	Y	Y	N	Y	Y	Y	N	N	Y

Visit Index	11	12	13	14	15	16	17	18	19	20
Price	4	4	4	4	4	5	5	5	5	5
Decision	N	N	Υ	N	N	N	N	N	N	Y

Logistic Regression

Example - A customer purchase decision for onion during her visits to a vegetable store are shown below in the table.

Visit Index	1	2	3	4	5	6	7	8	9	10
Price	2	2	2	2	2	3	3	3	3	4
Decision	Y	Y	Y	N	Y	Y	Y	N	N	Υ

Visit Index	11	12	13	14	15	16	17	18	19	20
Price	4	4	4	4	4	5	5	5	5	5
Decision	N	N	Y	N	N	N	N	N	N	Y

When the price is 2.5, what is the probability that the person will make a purchase?

Example Contd-

When the price is 2.5, what is the probability that the person will make a purchase?

Price	No. of Visits	No. of Purchases	Probability of Purchase
2	5	4	0.8
3	4	2	0.5
4	6	2	0.33
5	5	1	0.2

Example Contd-

When the price is 6, what is the probability that the person will make a purchase?

Price	No. of Visits	No. of Purchases	Probability of Purchase
2	5	4	0.8
3	4	2	0.5
4	6	2	0.33
5	5	1	0.2

Ideas to answer the problem

Objective - Find the probability of purchase as a function of price

$$P(purchase) = f(Price)$$

Can we make use of linear regression??

Logistic regression

Attempt for a non-linear fit???

Limitations of Linear Regression

- Doesn't explicitly recognize 0-1 nature of the response
- The impact of change in price on probability of purchase decision is different at different levels of price
- Assumed Linear regression equation treats it as a constant

22 / 30

Logistic Regression - Main Ideas

23 / 30

Maximum Likelihood Principle - Ideas

Rain Prediction Model							
Monday Tuesday Wednesday Thursday							
Model A	0.3	0.6	0.7	0.2			
Model B	0.2	0.4	0.9	0.6			
Rained?	N	Υ	Υ	N			

M.M. (0.1

0.6

Which Model is better??

M. W D 0.1 0.9

Maximum Likelihood Principle - Example

Logistic Regression - Implementation in Python

Logistic Regression - Multiple Classes

Multinomial Regression

Multinomial Regression - Softmax Function

Softmax Function - Implementation in Python