MAT 343 LAB 3 - Jordan Ledbetter

Question 1

Enter the matrices E1, E2 and E3 in Example 1 (suppress the output).

```
E1 = eye(4);
E1([4,3],:) = E1([3,4],:)
```

```
E2 = eye(4);

E2(4,4) = -4
```

E3 =
$$eye(4)$$
;
E3(2,4) = -5

Generate the matrix A

$$A = floor(10*rand(4,3))$$

Compute the product E1*A

E1*A

ans =
$$4 \times 3$$

8 6 6
7 3 1
0 0 2
1 3 8

Describe the effect on A of left multiplication by E1:

The multiplication of E1 and A caused matrix A to switch rows 3 and 4.

Compute the product E2*A

E2*A

Describe the effect on A of left multiplication by E2:

The multiplication of E2 and A caused row 4 of matrix A to be multiplied by -4.

Compute the product E3*A

E3*A

Describe the effect on A of left multiplication by E3

Answer: The multiplication of E3 and A caused the value positioned at (2,2) to change from 0 to 5, then row 2 of matrix A is multiplied by -4.

What is the effect of multiplying a matrix A on the left by an elementary matrix?

Answer: Multiplying a matrix A on the left by an elementary matrix leaves an effect on the rows of matrix A, causing the matrix to undergo elementary row operations

Question 2

Enter the matrix A

$$A = [4,3,4;-8,0,2;4,-1,-1]$$

(a)

```
format rat
E1 = eye(3);
E1(2,1) = 2
```

E1*A

ans =

```
4 3 4
0 6 10
4 -1 -1
```

$$E2 = eye(3);$$

 $E2(3,1) = -1$

(b)

$$L = inv(E1) * inv(E2) * inv(E3)$$

ans =
$$3\times3$$

 10^{-15} ×
0 0 0 0
0 0 0
0 0.2220 0

Question 3

Enter the commands to generate p, E and generate the matrix A.

```
p = 1 \times 5
5 4 1 2 3
```

```
E = eye(length(p))
```

```
E = 5 \times 5
                                 0
                                          0
       1
               0
                        0
       0
                1
                        0
                                 0
                                          0
       0
               0
                        1
                                          0
       0
               0
                                 1
                                          0
       0
               0
                                          1
```

$$E = E(p,:)$$

$E = 5 \times$:5			
0	0	0	0	1
0	0	0	1	0
1	. 0	0	0	0
0) 1	0	0	0
0	0	1	0	0

A = floor(10*rand(5))

(a)

Compute the product EA

E*A

```
ans = 5 \times 5
               0
                       5
                                2
                                        2
       4
       3
               0
                       1
                                8
                                        1
      8
               9
                       3
                                4
                                        6
      6
               8
                       2
                                8
                                        9
                                        7
```

How are the matrices A and EA related? (be specific)

Answer: Matrices A and EA are both 5x5 matrices with the same values; however, the rows are rearranged in EA. When A is multiplied to the elementary matrix E, EA produces matrix A's matrix values with rows rearranged in the order [5,4,1,2,3].

Compute the product AE

A*E

ans	= 5×5	5			
	3	4	6	9	8
	2	8	9	8	6
	0	6	7	2	5
	1	8	1	0	3
	5	2	2	0	4

How are the matrices A and AE related? (be specific)

Answer: Matrices A and AE are both 5x5 matrices however, the columns are rearranged in AE. When the elementary matrix E is multiplied to matrix A, AE produces matrix A's matrix values with columns rearranged in the order [3,4,5,2,1].

(b)

Compute E^{-1} and E^{T}

E^-1							
ans =	5×5						
0	0	1	0	0			
_							
0	0	0	1	0			
0	0	0	0	1			
0	1	0	0	0			
1	0	0	0	0			
_	U	Ū	U	Ū			
E'							
ans =	5×5						
0	0	1	0	0			
_		1					
0	0	0	1	0			
0	0	0	0	1			
0	1	0	0	0			
1	0	0	0	0			
1	U	U	U	U			

How are E^{-1} and E^{T} related?

Answer: Matrices E^-1 and E^T both have the same dimensions and values.

Question 4

Enter the matrix A and the vector b

```
format short
A = [4,1,6,-5;-6,-7,-4,1;-6,-8,-1,-2;-7,-2,-2]
```

$$b = [-1; -9; -2; 32]$$

$$b = 4 \times 1 \\
-1 \\
-9 \\
-2 \\
32$$

(a)

Compute the LU factorization and verity that PA=LU.

```
[L,U,P] = lu(A)
```

P*A - L*U

```
ans = 4 \times 4
10^{-15} \times
            0
                          0
                                        0
                                                      0
                          0
                                        0
                                                      0
            0
                          0
                                -0.8882
                                                      0
            0
            0
                          0
                                        0
                                              -0.2220
```

(b)

Solve the system Ax = b and store the solution in x_lu .

m = P*b

 $\mathbf{m} = 4 \times 1$

32

-2

-1 -9

 $y = L \m$

 $y = 4 \times 1$

32.0000

-29.4286

17.9545

-0.9765

 $x_lu = U y$

 $x_lu = 4 \times 1$

-8.0000

5.0000

6.0000

2.0000

(c)

Enter the vector x (exact solution) and compute norm(x_lu-x)

 $x = L \m$

```
x = 4×1
32.0000
-29.4286
17.9545
-0.9765
```

```
norm(x_lu-x)
```

ans = 54.1950

Question 5

Generate the matrix A and the vectors A, x and b (use semicolon to suppress the output).

```
A = rand(800);
x = ones(800,1);
b = A*x;
```

(a)

Solve using the rref and calculate the elapsed time (the only output should be the time)

```
tic; R = rref([A, b]); x_rref = R(:,end); toc
```

Elapsed time is 2.144374 seconds.

(b)

Solve using the LU factorization and calculate the elapsed time (the only output should be the time)

```
tic; [L,U,P] = lu(A); y = L \setminus (P*b); x_lu = U \setminus y; toc;
```

Elapsed time is 0.014415 seconds.

Which method is faster?

The method using LU factorization produces a much faster elapsed time than the method using RREF.

(c)

Compare the accuracy of the solutions from part (a) and part (b)

```
norm(x_rref - x)

ans = 1.7565e-10

norm(x_lu - x)

ans = 3.9600e-10
```

How does the accuracy of the two method compare?

Answer: I do not believe that LU factorization is particularly more or less accurate than RREF. After running this code 5 times, in 3 of the instances, RREF was more accurate and in 2 of the instances, LU factorization was more accurate.