# Digitalna vezja UL, FRI

P4 – XOR, XNOR, Seštevalniki, Odštevalniki

#### Vsebina

- Funkcijsko polni sistemi operatorji XOR, XNOR
- Linearna funkcija
- Dvojiška aritmetika
  - Polovični seštevalnik
  - Polni seštevalnik
  - Polovični odštevalnik
  - Polni odštevalnik
- n-bitni podatki (Seštevalnik, Odštevalnik)

# XOR, XNOR

| X | у | $x \oplus y$ |
|---|---|--------------|
| 0 | 0 | 0            |
| 0 | 1 | 1            |
| 1 | 0 | 1            |
| 1 | 1 | 0            |

| X | $\oplus$ $\mathcal{V}$ =   |   |
|---|----------------------------|---|
| = | $\bar{X}.Y \vee X.\bar{y}$ | 7 |

| X | y | (x⊕y) |
|---|---|-------|
| 0 | 0 | 1     |
| 0 | 1 | 0     |
| 1 | 0 | 0     |
| 1 | 1 | 1     |

$$\overline{X \oplus y} =$$

$$= \overline{X}.\overline{y} \vee X.y$$







## Funkcijsko polni sistem

- Zapis logičnih funkcij NOT, AND, OR z izbranim naborom operatorjev:
- ► (XOR, AND, I)

$$X \oplus Y = \overline{X}.Y \vee X.\overline{Y}$$

$$\overline{X} = \overline{X}.1 \vee X.0 = X \oplus 1$$

$$X \vee Y = \overline{\overline{X} \vee Y} = \overline{(\overline{X}.\overline{Y})} = (X \oplus 1).(Y \oplus 1) \oplus 1$$

Vse funkcije je mogoče realizirati z novim naborom operatorjev

a) PDNO  

$$f(x,y,z) = \overline{x}.\overline{y}.z \vee \overline{x}.y.\overline{z}$$

b)(XOR, AND,1)  

$$f(x,y,z) = \overline{x}.(\overline{y}.z \lor y.\overline{z}) =$$

$$= \overline{x}.(y \oplus z) =$$

$$= (x \oplus 1).(y \oplus z)$$



## Linearna funkcija

- Linearne funkcije: (XOR, I):  $f(X_1, X_2, ... X_n) = a_0 \oplus a_1 . X_1 \oplus a_2 . X_2 \oplus ... \oplus a_n . X_n$
- Vhodne kombinacije zapis enačb za

| $\mathbf{x}_1$ | $X_2$ | $f(x_1, x_2)$ |
|----------------|-------|---------------|
| 0              | 0     | 0             |
| 0              | 1     | 1             |
| 1              | 0     | 1             |
| 1              | 1     | 0             |

Izračun koeficientov:

$$f(X_1,X_2)=a_0\oplus a_1.X_1\oplus a_2.X_2$$

$$f_0 = 0 = a_0 \oplus a_1.0 \oplus a_2.0 = a_0$$
  
 $f_1 = 1 = a_0 \oplus a_1.0 \oplus a_2.1 = a_0 \oplus a_2$   
 $f_2 = 1 = a_0 \oplus a_1.1 \oplus a_2.0 = a_0 \oplus a_1$   
 $f_3 = 0 = a_0 \oplus a_1.1 \oplus a_2.1 = a_0 \oplus a_1 \oplus a_2$ 

$$0 = a_0$$

$$1 = a_0 \oplus a_2 = 0 \oplus a_2 \Rightarrow a_2 = 1$$

$$1 = a_0 \oplus a_1 = 0 \oplus a_1 \Rightarrow a_1 = 1$$

$$0 = a_0 \oplus a_1 \oplus a_2 = 0 \oplus 1 \oplus 1 = 0$$

Funkcija:  $f(X_1, X_2) = 0 \oplus 1.X_1 \oplus 1.X_2 = X_1 \oplus X_2$ 

#### Grafična predstavitev linearnih funkcij



#### Preverjanje pogoja linearnosti



▶ Izračun koeficientov:  $a_0, a_1, a_2, a_3$ 



Slika 6.4: Enačbe za izračun koeficientov  $a_0, a_1, a_2, a_3$ 

$$\Rightarrow a_0 = 0$$

$$a_0 \nabla a_3 = 1 \quad 0 \nabla a_3 = 1 \quad \Rightarrow a_3 = 1$$

$$a_0 \nabla a_2 = 1 \quad 0 \nabla a_2 = 1 \quad \Rightarrow a_2 = 1$$

$$a_0 \nabla a_1 = 0 \quad 0 \nabla a_1 = 0 \quad \Rightarrow a_1 = 0$$

Zapis linearne enačbe

$$f(X_1, X_2, X_3) = a_0 \oplus a_1.X_1 \oplus a_2.X_2 \oplus a_3.X_3 = 0 \oplus 0.X_1 \oplus 1.X_2 \oplus 1.X_3 = X_2 \oplus X_3$$

## Primer 1: Linearna funkcija

- Funkcija g(x,y,z) ima vrednost I takrat, ko:
  - > so na vhodu same ničle
  - je liho število enic na vhodu
- Zapis funkcije z XOR
- ? Linearna funkcija

| X | у | Z | g      | g |
|---|---|---|--------|---|
| 0 | 0 | 0 | 1      | 0 |
| 0 | 0 | 1 | 0      | 1 |
| 0 | 1 | 0 | 0<br>1 | 1 |
| 0 | 1 | 1 | 1      | 0 |
| 1 | 0 | 0 | 0      | 1 |
| 1 | 0 | 1 | 1      | 0 |
| 1 | 1 | 0 | 1      | 0 |
| 1 | 1 | 1 | 0      | 1 |

| I |      |
|---|------|
|   | Ι    |
| I |      |
|   | I    |
|   | <br> |

Z

| $\overline{g}$              | Z | Z |
|-----------------------------|---|---|
| $\overline{x} \overline{y}$ |   | I |
| $\overline{x}$ y            | I |   |
| ху                          |   | I |
| $x \overline{y}$            |   |   |

$$g = \overline{X}.\overline{y}.\overline{Z} \vee \overline{X}.y.Z \vee X.\overline{y}.Z \vee X.y.\overline{Z} =$$

$$= \overline{X}.(\overline{y}.\overline{Z} \vee y.Z) \vee X.(\overline{y}.Z \vee y.\overline{Z}) =$$

$$= \overline{X}.(\overline{y} \oplus \overline{Z}) \vee X.(y \oplus Z) =$$

$$= \overline{X} \oplus y \oplus \overline{Z}$$

$$\overline{g} = \overline{X}.\overline{y}.Z \vee \overline{X}.y.\overline{Z} \vee X.\overline{y}.\overline{Z} \vee X.y.Z = 
= \overline{X}.(\overline{y}.Z \vee y.\overline{Z}) \vee X.(\overline{y}.\overline{Z} \vee y.Z) = 
= \overline{X}.(y \oplus z) \vee X.(\overline{y} \oplus \overline{z}) = 
= X \oplus y \oplus z$$

#### Primer 2

Podano logično funkcijo zapišite v Veitchev diagram

$$f = 1 \oplus x \oplus y \oplus z \oplus w$$



Zapišite podano logično funkcijo z operatorji XOR, AND, I. Preverite ali je funkcija linearna in jo zapišite kot linearni polinom.



В

## Primer 3: Grayeva koda - MDNO→XOR

Pretvorba dvojiške kode v Grayevo kodo

| b <sub>2</sub> | b <sub>1</sub> | b <sub>0</sub> | $g_2$ | g <sub>1</sub> | $g_0$ |
|----------------|----------------|----------------|-------|----------------|-------|
| 0              | 0              | 0              | 0     | 0              | 0     |
| 0              | 0              | 1              | 0     | 0              | 1     |
| 0              | 1              | 0              | 0     | 1              | 1     |
| 0              | 1              | 1              | 0     | 1              | 0     |
| 1              | 0              | 0              | 1     | 1              | 0     |
| 1              | 0              | 1              | 1     | 1              | 1     |
| 1              | 1              | 0              | 1     | 0              | 1     |
| 1              | 1              | 1              | 1     | 0              | 0     |

| $ \mathcal{G}_1 $              | $\overline{b}_0$ | $b_0$ |
|--------------------------------|------------------|-------|
| $\overline{b}_2\overline{b}_1$ |                  |       |
| $\overline{b}_2 b_1$           |                  |       |
| $b_2 b_1$                      |                  |       |
| $b_2 \overline{b}_1$           |                  |       |

| $ \mathcal{G}_0 $              | $\overline{b}_0$ | , b <sub>0</sub> |
|--------------------------------|------------------|------------------|
| $\overline{b}_2\overline{b}_1$ |                  | 1                |
| $\overline{b}_2 b_1$           |                  |                  |
| $b_2 b_1$                      |                  |                  |
| $b_2 \overline{b}_1$           |                  | Ι                |

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$



## Dvojiška aritmetika - seštevanje

Seštevanje dveh vrednosti  $x_0$  in  $y_0$  (bit 0 pri seštevanju) (rezultat = vsota  $z_0$  in prenos  $c_0$ )

$$0+0=0$$
, prenos je  $0$   
 $0+1=1$ , prenos je  $0$   
 $1+0=1$ , prenos je  $0$   
 $1+1=0$ , prenos je  $1$   $(1+1=10)$   
Splošna oblika:  $z_0=x_0+y_0$ , prenos  $c_0$ 



Seštevanje treh vrednosti x<sub>1</sub> in y<sub>1</sub> in c<sub>0</sub>
 (upošteva se prenos z nižjega mesta):

Splošna oblika:  $z_i = x_i + y_i + c_{i-1}$ , prenos  $c_i$ 

|                | $x_{l}$        | $x_0$                 |
|----------------|----------------|-----------------------|
|                | y <sub>I</sub> | <b>y</b> <sub>0</sub> |
| c <sub>I</sub> | c <sub>0</sub> | C <sub>-1</sub>       |
|                | z <sub>I</sub> | $z_0$                 |

### Polovični seštevalnik

> Vhoda:  $x_0, y_0$ 

> Izhoda:  $z_0, c_0$ 

> Funkciji:  $z_0 = x_0 + y_0$ ;

$$c_0 = 1$$
, če je  $x_0 + y_0 = 2$ 

| $\mathbf{x}_0$ | $y_0$ | $\mathbf{c_0}$ | $\mathbf{z}_0$ |
|----------------|-------|----------------|----------------|
| 0              | 0     | 0              | 0              |
| 0              | 1     | 0              | 1              |
| 1              | 0     | 0              | 1              |
| 1              | 1     | 1              | 0              |





$$c_0 = x_0.y_0$$

$$z_0 = x_0 \oplus y_0$$

### Polni seštevalnik

> Vhodi:  $x_0, y_0, c_{-1}$ 

ightharpoonup Izhoda:  $z_0, c_0$ 

> Funkciji:  $z_0 = x_0 + y_0 + c_{-1}$ ;

$$c_0 = 1$$
, če je  $x_0 + y_0 + c_{-1} > = 2$ 

| <b>x</b> <sub>0</sub> | $y_0$ | <b>c</b> <sub>-1</sub> | $c_0$ | $z_0$ |
|-----------------------|-------|------------------------|-------|-------|
| 0                     | 0     | 0                      | 0     | 0     |
| 0                     | 0     | 1                      | 0     | 1     |
| 0                     | 1     | 0                      | 0     | 1     |
| 0                     | 1     | 1                      | 1     | 0     |
| 1                     | 0     | 0                      | 0     | 1     |
| 1                     | 0     | 1                      | 1     | 0     |
| 1                     | 1     | 0                      | 1     | 0     |
| 1                     | 1     | 1                      | 1     | 1     |

|       | <b>&gt;</b> | <b>(</b> 0 |                |  |
|-------|-------------|------------|----------------|--|
| $y_0$ | 1           | 1          | 1              |  |
| 1     |             | 1          |                |  |
|       |             | (          | - <sub>1</sub> |  |

$$C_0 = X_0 \cdot Y_0 \vee X_0 C_{-1} \vee Y_0 C_{-1}$$



$$C_{-1}$$
 $0 = a_0$ 
 $1 = a_0 \oplus a_3 = 0 \oplus 1 \rightarrow a_3 = 1$ 
 $1 = a_0 \oplus a_2 = 0 \oplus 1 \rightarrow a_2 = 1$ 
 $1 = a_0 \oplus a_1 = 0 \oplus 1 \rightarrow a_1 = 1$ 

$$Z_0 = X_0 \oplus Y_0 \oplus C_{-1}$$





## Polni seštevalnik malo drugače

Polni seštevalnik- sestavljata ga dva polovična seštevalnika

$$Z_{0} = X_{0} \oplus Y_{0} \oplus C_{-1} = (X_{0} \oplus Y_{0}) \oplus C_{-1} = Z_{01} \oplus C_{-1}$$

$$C_{0} = \overline{X}_{0}.Y_{0}.C_{-1} \vee X_{0}.\overline{Y}_{0}.C_{-1} \vee X_{0}.Y_{0}.\overline{C}_{-1} \vee X_{0}.Y_{0}.C_{-1}$$

$$= C_{-1}.(\overline{X}_{0}.Y_{0} \vee X_{0}.\overline{Y}_{0}) \vee X_{0}.Y_{0}.(\overline{C}_{-1} \vee C_{-1})$$

$$= C_{-1}.(X_{0} \oplus Y_{0}) \vee X_{0}.Y_{0}$$

$$= C_{-1}.Z_{01} \vee C_{01}$$

$$= C_{02} \vee C_{01}$$



# Dvojiška aritmetika - odštevanje

Odštevanje ( rezultat: razlika in sposodek)

$$0-0 = 0$$
, sposodek je 0

$$0-1=1$$
, sposodek je 1

$$1-0=1$$
, sposodek je 0

$$1-1=0$$
, sposodek je 0

> Splošna oblika:  $d_0 = x_0 - y_0$ , sposodek  $b_0$ 

|                | <b>x</b> <sub>0</sub> |
|----------------|-----------------------|
|                | <b>y</b> <sub>0</sub> |
| b <sub>0</sub> | $d_0$                 |

Odštevanje i-tega mesta (i=0):

$$d_i = x_i - y_i - b_{i-1}$$
, sposodek  $b_i$ 

- Polovični odštevalnik
- Polni odštevalnik

|                | x <sub>I</sub> | × <sub>0</sub>  |
|----------------|----------------|-----------------|
|                | y <sub>I</sub> | $y_0$           |
| b <sub>I</sub> | b <sub>0</sub> | b <sub>-I</sub> |
|                | d <sub>I</sub> | $d_0$           |

#### Odštevalnik

#### Polovični odštevalnik

 $\triangleright$  Vhoda:  $x_0, y_0$ 

 $\triangleright$  Izhoda:  $d_0$ ,  $b_0$ 

> Funkciji:  $d_0 = x_0 - y_0$ ;

$$b_0 = 1$$
, če je  $x_0 - y_0 = -1$ 

| $d_0$ | $y_0$ | $\mathbf{b_0}$ | $\mathbf{d_0}$ |
|-------|-------|----------------|----------------|
| 0     | 0     | 0              | 0              |
| 0     | 1     | 1              | 1              |
| 1     | 0     | 0              | 1              |
| 1     | 1     | 0              | 0              |

$$b_0 = X_0.Y_0$$

$$d_0 = X_0 \oplus Y_0$$

#### Polni odštevalnik

> Vhodi:  $x_0, y_0, b_{-1}$ 

 $\rightarrow$  Izhoda:  $d_0$ ,  $b_0$ 

> Funkciji:  $d_0 = x_0 - y_0 - b_{-1}$ ;

$$b_0 = 1$$
, če je  $x_0 - y_0 - b_{-1} < = -1$ 

| <b>x</b> <sub>0</sub> | <b>y</b> <sub>0</sub> | <b>b</b> <sub>-1</sub> | $b_0$ | $d_0$ |
|-----------------------|-----------------------|------------------------|-------|-------|
| 0                     | 0                     | 0                      | 0     | 0     |
| 0                     | 0                     | 1                      | 1     | 1     |
| 0                     | 1                     | 0                      | 1     | 1     |
| 0                     | 1                     | 1                      | 1     | 0     |
| 1                     | 0                     | 0                      | 0     | 1     |
| 1                     | 0                     | 1                      | 0     | 0     |
| 1                     | 1                     | 0                      | 0     | 0     |
| 1                     | 1                     | 1                      | 1     | 1     |



$$\overline{X}_0.Y_0 \vee \overline{X}_0 b_{-1} \vee Y_0 b_{-1}$$

## n-bitni podatki (Seštevalnik, Odštevalnik)

#### Vhodi:

- $X=(x_{n-1},x_{n-2},...,x_0)$
- $Y=(y_{n-1},y_{n-2},...,y_0)$
- ▶ Izhodi:
  - $Z=(z_{n-1},z_{n-2},...,z_0)$
  - $ightharpoonup C prenos (c_{n-1})$
- Operacija:
  - Seštevanje
  - Odštevanje
- Način izvedbe
  - X,Y paralelno seštevanje, prenos c<sub>i</sub> zaporedni izračun
  - X,Y, c<sub>i</sub> paralelen izračun (vnaprejšnji izračun prenosov)



#### Primer 1: 4-bitni seštevalnik

Nepredznačena števila

X=6, Y=5, Z=5+6=11

Število bitov seštevalnika: 4 (4-bit ripple adder)

Računanje prenosa poteka po korakih od bita 0 do bita 3.

|   |                | b3             | b2 | bІ             | b0 |
|---|----------------|----------------|----|----------------|----|
| X |                | 0              | I  | I              | 0  |
| Υ |                | 0              | I  | 0              | I  |
|   | 0              | I              | 0  | 0              |    |
|   | c <sub>3</sub> | c <sub>2</sub> | cı | c <sub>0</sub> |    |
| Z |                |                | 0  |                |    |

$$c_3 = C - zastavica$$



#### Primer 2: 4-bitni odštevalnik

Odštevalnik - izvedba s seštevalniki: D = X - Y = X + (-Y)

Negativna vrednost -Y (zapis v dvojiškem komplementu)

$$(5 \rightarrow -5)$$
:

$$0101 \rightarrow 1010 + 1 = 1011$$

$$X=6$$
  $0110_2$   $Y=-5$   $+1011_2$   $Z=1$   $10001_2$ 

prenos  $c_3=1$ 

|    |    |   |   | b3 | b2 | bІ | b0 |
|----|----|---|---|----|----|----|----|
| -Y | X  |   |   | 0  |    |    | 0  |
|    | ľK | + |   | _  | 0  | _  | 0  |
|    | +1 | + |   |    |    |    |    |
|    | С  | + | I | I  | I  | 0  |    |
|    | Z  |   |   | 0  | 0  | 0  |    |

Log. vrata NOT izvedejo eniški komplement, na mestu i=0 ( $c_{-1}$ ) pa prištejemo 1.

 $c_{-1}$ 



### Primer 3: 4-bitni seštevalnik (predznačena števila)

#### Predznačena števila - izračun **preliva V**

