Kvantumséták szimulációja klasszikus számítógépen

Nemkin Viktória

dr. Friedl Katalin Számítástudományi és Információelméleti Tanszék

Gráfbolyongások

- Véletlen séta a gráf csúcsain (speciális Markov-lánc).
- Klasszikusan:
 - Google kereső: PageRank
 - Közelítő algoritmusok: SAT megoldó, részgráf keresése
- Kvantumosan:
 - ▶ Gyorsabb: $O(N^2) \rightarrow O(N)$ (elérés a szélére)
 - Kvantum párhuzamosság
 - Destruktív / konstruktív interferencia
 - ► Korszerű, ma is aktívan kutatott, nem letisztult / kidolgozott

Kvantumséták kutatása

Kvantum hardver: kevés qubit o Szimuláció klasszikus számítógépen

Package	Frissítve	Architektúra	Gráfok	Klasszikus szimuláció?	Kezdők számára?
QWalk	2018	C++, optimalizációra kihegyezett	rács molekula- szerkezet	×	X: kvantum Monte Carlo elektronstruktúra számítások
QwViz	2016	C, szkript jellegű	irányítatlan gráfok, mátrix kézzel megadva	×	×: C forráskód technikai
Hiperwalk	2017 ¹	Python & Neblina, szkript jellegű, nested if-ek	egyenes, kör rács, tórusz	×	√: saját bemeneti nyelv, de bővíteni nehéz
QuantumWalk.jl	2020	Julia, szép architektúra de: Szegedy-féle sétára	irányított gráfok	×	✓

Nem diszkrét séták:

- PyCTQW: 2014, csak folytonos idejű szimuláció
- QSWalk.jl: 2020, csak quantum stochastic walk szimuláció (generalizáció)

¹2021: Python 2 \rightarrow 3 átállás

Feladat

Elméleti matematikai

- Markov-láncok, valószínűségszámítás
- Gráfelméleti algoritmusok: körlefedés, teljes párosítás
- Kvantuminformatika, komplex lineáris algebra
- Diszkrét idejű kvantumséták: position-coin notation, (arc notation, Szegedy-féle séta)
- Kvantummechanikából származtatva (Kempe): 1 dimenziós séta = részecske → hullámcsomag + spintől függő irány + detektálás valószínűsége

Szoftvermérnöki

- Architekturális tervezés: Strategy minta
- Clean code elvek: Újrafelhasználhatóság, egységbe zárás, olvashatóság
- Futásidő és memóriahasználat optimalizálása: Szomszédossági orákulum
- Eszközök megválasztása:
 - Nyelv: Python3
 - Lineáris algebrai műveletek: Numpy
 - Eredmények vizualizációja: Matplotlib
 - Report fájl generálása: Latex

1 dimenziós séta

Kvantumérme

- Kvantum regiszer: $|c\rangle \rightarrow$ Érme aktuális állapota
- Evolúció operátor: $|C\rangle \rightarrow$

Fourier
$$(\omega = e^{\frac{2\pi i}{N}})$$

Fourier
$$(\omega = e^{\frac{2\pi i}{N}})$$

$$\begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \omega^{N-1} \\ 1 & \omega^2 & \omega^4 & \dots & \omega^{2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \dots & \omega^{(N-1)(N-1)} \end{pmatrix}$$

$$\begin{pmatrix} \frac{2}{N} - 1 & \frac{2}{N} & \dots & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N} - 1 & \dots & \frac{2}{N} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{2}{N} & \frac{2}{N} & \vdots & \frac{2}{N} - 1 \end{pmatrix}$$

Hadamard

$$\mathsf{H} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

$$H_n = H^{\otimes i}$$

$$\begin{pmatrix} \frac{2}{N} - 1 & \frac{2}{N} & \dots & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N} - 1 & \dots & \frac{2}{N} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{2}{N} & \frac{2}{N} & \vdots & \frac{2}{N} - 1 \end{pmatrix}$$

Kvantum shift operátor: Saját munkám

- ullet Több egydimenziós érme + kvantum shift operátor o n dimenziós rács
 - Bizonyítottam, hogy a kvantum shift operátor felbomlik n darab független 2 dimenziós operátorra.
 - Ezt felhasználva a memóriaigény lecsökkenthető:
 - * A d-től nem exponenciálisan, csak lineárisan függ.
 - ★ A futásidőt d-szeresére növelve a memóriaigény d-ben konstans.
- ullet Egy többdimenziós érme o d-reguláris gráf
 - Explicit unitér mátrixos felírás (függvények és implicit helyett).
 - ▶ Bizonyítás: Shift operátor a gráf körlefedéséből (élszínosztályokból) kiindulva konstruálható

1 dimenziós bolyongás

1 dimenziós bolyongás körbeér

Rácson bolyongás

Hiperkockán bolyongás

Kitekintés

- Szimulátor szoftver: github.com/nemkin/quantum (open source, MIT licensz)
- Kutatási irány:
 - kvantumséta alapú keresési algoritmus
 - klasszikusan NP-teljes problémák (protein folding) megoldására

Bíráló kérdései

- Miként értelmezhető a hitting time ábrákon a görbék folytonossága a vízszintes tengely mentén?
 - ▶ Nem a megfelelő grafikontípust választottam a diszkrét jellegű adatok szemléltetésére.

Bíráló kérdései

- Mi a TDK dolgozat elsődleges célja? A kvantumséta kutatása, vagy egy szimulátor írása, amely alkalmas a kvantumsétákkal kapcsolatos kutatások támogatására?
 - ▶ A TDK dolgozatom célja a kvantum shift operátorral kapcsolatos 2 elméleti eredmény bemutatása, továbbá ezekre építve a szimulátor szoftver implementálása volt. Hosszú távon ezt a szoftvert felhasználva szeretnék kvantumsétákra alapuló kvantumos keresőalgoritmusok kutatásával foglalkozni.
- "Mátrix elemzés" a szerző által ismert szimulátorokról a dolgozatban javasolt 5 értékelési szempont alapján.
 - A 3. dián látható a dolgozatból hiányzó mátrix elemzés.