

Aula 2

Enzo Tonon Morente, in/EnzoTM

Presença

- Linktree: Presente na bio do nosso instagram
- Presença ficará disponível até 1 hora antes da próxima aula
- É necessário 70% de presença para obter o certificado

Presença e Github

Revisão

• O Perceptron nos dá a melhor decision boundary?

- Queremos deixar uma margem na decision boundary do modelo
- Essa margem irá servir para generalização de dados ainda não

vistos

Margin Boundary

Definição Decision Boundary

Definição Decision Boundary

Se o ponto foi corretamente classificado

Se o ponto está dentro ou fora da margem

Se o ponto foi corretamente classificado

$$y_i(\vec{\theta} \cdot \vec{x} + \theta_0) \le 0$$

Se o ponto está dentro ou fora da margem

Se o ponto foi corretamente classificado

$$y_i(\vec{\theta} \cdot \vec{x} + \theta_0) \le 0$$

Se o ponto está dentro ou fora da margem

$$d(\vec{x_i}, \theta.\vec{x} + \theta_0 = 0) > \frac{1}{\|\vec{\theta}\|}$$

Ponto: (x_1, x_2)

Ponto: (x_1, x_2)

Reta: $(A_1x_1 + A_2x_2 + B = 0)$

Ponto: (x_1, x_2)

Reta: $(A_1x_1 + A_2x_2 + B = 0)$

Distância do ponto a reta: $\frac{\mid \vec{A}.\vec{x}+B\mid}{\mid \mid \vec{A}\mid\mid}$

Ponto: (x_1, x_2)

Reta: $(A_1x_1 + A_2x_2 + B = 0)$

Distância do ponto a reta: $\frac{|\vec{A}.\vec{x}+B|}{||\vec{A}||}$

Ponto: (x_1, x_2)

Ponto:
$$(x_1, x_2)$$

Reta:
$$(A_1x_1 + A_2x_2 + B = 0)$$

Distância do ponto a reta:
$$\frac{|\vec{A}.\vec{x}+B|}{||\vec{A}||}$$

Ponto: (x_1, x_2) Reta: $\vec{\theta} \cdot \vec{x} + \theta_0 = 0$

Ponto:
$$(x_1,x_2)$$

Ponto:
$$(x_1, x_2)$$
 Ponto: (x_1, x_2) Reta: $(A_1x_1 + A_2x_2 + B = 0)$ Reta: $\vec{\theta} \cdot \vec{x} + \theta_0 = 0$

Distância do ponto a reta:
$$\frac{|A.\vec{x}+B|}{\|\vec{A}\|}$$

Distância do ponto a reta:
$$\frac{|\vec{A}.\vec{x}+B|}{||\vec{A}||}$$
 Distância do ponto a reta: $\frac{|\theta.x+\theta_0|}{||\vec{\theta}||}$

Construindo função Gamma

Distância:
$$\frac{\mid \theta.x + \theta_0 \mid}{\mid \mid \vec{\theta} \mid \mid}$$

Numerador sempre positivo

Construindo função Gamma

Distância:
$$\frac{\mid \theta.x + \theta_0 \mid}{\mid \vec{\theta} \mid \mid}$$

Loss:
$$y_i(\vec{\theta}.\vec{x_i} + \theta_0)$$

Numerador sempre positivo

É capaz de dizer se houve um erro ou acerto

Construindo função Gamma

Distância:
$$\frac{\mid \theta.x + \theta_0 \mid}{\mid \mid \vec{\theta} \mid \mid}$$

Loss:
$$y_i(\vec{\theta}.\vec{x_i} + \theta_0)$$

$$\gamma(\theta, \theta_0) = \frac{y_i(\vec{\theta}.\vec{x_i} + \theta_0)}{\|\vec{\theta}\|}$$

$$\gamma(\theta, \theta_0) = \frac{y_i(\vec{\theta}.\vec{x_i} + \theta_0)}{\|\vec{\theta}\|}$$

$$\gamma(\theta, \theta_0) > 0$$
, exemplo corretamente classificado

$$\gamma(\theta, \theta_0) < 0$$
, exemplo classificado errado

$$|\gamma(\theta,\theta_0)| > \frac{1}{\|\theta\|}$$
, exemplo for da margem

$$0<|\gamma(\theta,\theta_0)|<\frac{1}{\|\theta\|}$$
, exemplo dentro da margem

Resumindo

Queremos deixar uma margem para o modelo generalizar

$$\gamma(\theta, \theta_0) = \frac{y_i(\vec{\theta}.\vec{x_i} + \theta_0)}{\|\vec{\theta}\|}$$

Aprendemos a quantificar o acerto/erro e a distância do ponto em relação a margem

Nova Loss

Loss da aula passada quantificava erro ou acerto

$$Loss = y_i(\vec{\theta} \cdot \vec{x} + \theta_0) \le 0$$

- A nova Loss deve ser capaz de quantificar:
 - erro ou acerto
 - fora ou dentro da margem
 - se erro, a magnitude do erro (distância)

Hinge Loss

$$Loss_h(z) = \begin{cases} 0 & \text{if } z \ge 1, \\ 1 - z & \text{if } z < 1. \end{cases}$$

$$z = y_i \cdot (\vec{\theta} \cdot \vec{x_i} + \theta_0)$$

Problema da Optimização

Optimização

- A nossa Loss quantifica a quantidade de erros e o quão errado está cada um
- Queremos fazer com que a Loss seja a mínima possível

Optimização

• Queremos fazer com que a Loss seja a mínima possível

$$Loss_h(z) = \begin{cases} 0 & \text{if } z \ge 1, \\ 1 - z & \text{if } z < 1. \end{cases}, onde \ z = y_i \cdot (\vec{\theta} \cdot \vec{x_i} + \theta_0)$$

Optimização

• Queremos fazer com que a Loss seja a mínima possível

$$Loss_h(z) = \begin{cases} 0 & \text{if } z \ge 1, \\ 1 - z & \text{if } z < 1. \end{cases}, onde \ z = y_i \cdot (\vec{\theta} \cdot \vec{x_i} + \theta_0)$$

Isso não é o suficiente

O que estamos pedindo pro modelo

- Estamos pedindo para que o modelo diminua o erro durante o treinamento
- Quantificamos para o modelo que o erro agora deve levar em consideração a magnitude
- Não estamos levando em consideração que queremos ter uma margem

Melhoramos a forma de quantificar o erro, não a generalização

Regularização

- Técnica que nos permita expandir a capacidade de generalização de nosso modelo
- Fazer com que o modelo n\u00e3o fique hiper fixado nos dados de treinamento
- Como fazer isso?

- A regularização está totalmente ligada a margem
- Para fazer o modelo generalizar queremos que o mesmo tenha uma certa margem
- Temos que favorecer margens grandes

- Quanto maior o valor de theta, menor a distância à margem
- Quanto menor o valor de theta, maior a distância à margem

- Queremos beneficiar margens 'grandes'
 - Capacidade de generalizar

$$d = \frac{1}{\|\vec{\theta}\|}$$

- Queremos beneficiar margens 'grandes'
 - Capacidade de generalizar

$$max(\frac{1}{\|\theta\|})$$

$$d = \frac{1}{\|\vec{\theta}\|}$$

$$min(Loss) \ and \ max(\frac{1}{\|\theta\|})$$

$$max(\frac{1}{\|\theta\|}) = min(\|\theta\|)$$

$$min(\|\theta\|) = min(\frac{1}{2}\|\theta\|^2)$$

$$min(Loss)$$
 and $min(\frac{1}{2}||\theta||^2)$

Função Objetivo

Queremos minimizar a seguinte função objetivo

$$J(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} Loss(y_i(\vec{\theta} \cdot \vec{x} + \theta_0)) + \frac{\lambda}{2} ||\theta||^2$$

A genialidade de minimizar essa função é que minimizar J significa minimizar a loss e θ , e, minimizar θ significa aumentar a margem

Função Objetivo

$$J(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} Loss(y_i(\vec{\theta} \cdot \vec{x} + \theta_0)) + \frac{\lambda}{2} ||\theta||^2$$

- Leva em consideração a Loss
- Leva em consideração ter margens grandes
- Quem é lambda?

$$J(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} Loss(y_i(\vec{\theta} \cdot \vec{x} + \theta_0)) + \frac{\lambda}{2} ||\theta||^2$$

- Lambda é o termo de regularização
- Define o grau de importância que theta tem em J

$$J(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} Loss(y_i(\vec{\theta} \cdot \vec{x} + \theta_0)) + \frac{\lambda}{2} ||\theta||^2$$

- Lambda alto: importância dada à se ter uma margem alta
- Lambda baixo: importância dada à se ter uma Loss baixa

A complexidade do nosso modelo é definida por: $c=rac{1}{\lambda}$

- Lambda alto -> alta margem: baixa complexidade
- Lambda baixo -> Loss baixa: alta complexidade
 - Modelo muito complexo é aquele que está super ajustado aos dados de treinamento
 - Chamamos isso de Overfitting

Overfitting: decora os dados de treinamento, invés de aprender padrões

Underfitting: muito simples e não consegue capturar a complexidade dos dados

Melhor valor de Lambda: validação

Gradiente Descendente

Gradiente Descendente

- Gradiente Descendente é a forma que iremos utilizar para minimizar a nossa função objetivo
- Para falarmos sobre Gradiente precisamos primeiro introduzir a noção de derivada

Derivada

Taxa de variação de uma função em um certo ponto

- Andar na direção da derivada:
 - aumentar o valor da função
- Andar contrário da derivada:
 - diminuir o valor da função

Learning Rate

Gradiente Descendente

 Vimos que para minimizar uma função devemos ir ao sentido oposto da função com uma certa learning rate

$$\theta = \theta - \eta \nabla_{\theta}[J]$$

$$\theta_0 = \theta_0 - \eta \nabla_{\theta_0} [J]$$

Stochastic Gradiente Descendente

- 1. θ = valor aleatório; θ_0 = valor aleatório
- 2. for t in range(T)
- 3. sortear i em: $\{x_0, x_1, ..., x_n\}$
- 4. $\theta = \theta \eta \nabla_{\theta}[J]$
- 5. $\theta_0 = \theta_0 \eta \nabla_{\theta_0}[J]$

Calculando Gradiente

$$\nabla_{\theta} J = \begin{cases} 0, & \text{if loss } 0, \\ -y_i x_i, & \text{if loss } < 0 \end{cases} + \lambda \theta$$

$$\nabla_{\theta_0} J = \begin{cases} 0, & \text{if loss } 0, \\ -y_i, & \text{if loss } < 0 \end{cases}$$

Stochastic Gradiente Descendente

- 1. θ = valor aleatório; θ_0 = valor aleatório
- 2. for t in range(T)
- 3. sortear i em: $\{x_0, x_1, \ldots, x_n\}$
- 4. if Loss < 0:
- 4. $\theta = \theta + \eta \cdot (x_i y_i) \eta(\lambda \theta)$
- 5. $\theta_0 = \theta_0 + \eta y_i$
- 6. else:
- 7. $\theta = \theta \eta(\lambda \theta)$

Bag of Words

Bag of Words

	the	red	dog	cat	eats	food
 the red dog —> 	1	1	1	0	0	0
 cat eats dog → 	0	0	1	1	1	0
 dog eats food→ 	0	0	1	0	1	1
 red cat eats → 	0	1	0	1	1	0

- @data.icmc
- /c/DataICMC
- /icmc-data
 - **∇** data.icmc.usp.br

obrigado por sua presença!