Circles & their Angles

Warm Up

1. A_{sector} = ______

Arc length = ______

21

120°

- 2. Find the degree measure of the arc of a sector with area 36π if the area of the circle is 144π .
- 3. The shaded area of the circle below is 24π in², and the radius is 12 cm. Find x.

Vocab

Label the following circle with diameter, radius, chord, tangent, and secant.

(When these lines intersect, special angle/arc relationships occur.)

Central Angles:

Inscribed Angles:

Discovery Activity

Goal: Create a "Angles Formed by Secants, Tangents, & Chords" Booklet
This will be graded as a quiz!

Supplies you'll need:

- at least 3 half-sheet papers
- compass
- protractor
- pencils & colored pencils

Page 1: "Tangent & Chord Meeting On the Circle"

- 1.) Draw a circle on the half sheet and make a dot at the center.
- 2.) Draw a random chord through your circle with endpoints A and B.
- 3.) Create a tangent line from the chord's endpoints B in one direction.
- 4.) Measure the arc intercepted AB by the chord by measuring the central angle. (Use dashed line for all central angle measuring!)
- 5.) Measure the angle ABC created between the chord and the tangent line. _____
- 6.) Divide the intercepted arc AB by 2.

7.) What is the relationship between the intercepted arc of a chord and the angle formed by a tangent?

Page 2: "Two Secants Meeting Outside the Circle"

- 1.) Draw a circle on the half sheet and make a dot at the center.
- 2.) Draw two secant lines through the circle that meet at the outside of the circle. Label A, B, C, D, and E according to the following picture.
- 3.) Measure the arc AD using the central angle. _____
- 4.) Measure the arc BC using the central angle. _____
- 5.) Measure the angle BEC. _____
- 6.) Compute (arc AD arc BC)/2. _____

7.) What is the relationship between the angle created by two secants meeting outside the circle and the two intercepted arcs of the secants?

Page 3: "Secant & Tangent Meeting Outside the Circle"

- 1.) Draw a circle on the half sheet and make a dot at the center.
- 2.) Draw one secant lines through the circle and one tangent line that meet at the outside of the circle. Label A, B, C, and D according to the following picture.
- 3.) Measure the arc AC using the central angle. _____
- 4.) Measure the arc BC using the central angle. _____
- 5.) Measure the angle BDC. _____
- 6.) Compute (arc AC arc BC)/2.
- 7.) What is the relationship between the angle created by a secant and a tangent meeting outside the circle and the two intercepted arcs of the lines?

Page 4: "Two Tangents Meeting Outside the Circle"

- 1.) Draw a circle on the half sheet and make a dot at the center.
- 2.) Draw two tangent line that meet at the outside of the circle. Label A, B, C, and D according to the following picture.
- 3.) Measure the arc AC using the central angle. _____
- 4.) Measure the arc ABC using the central angle (or 360 rule). _____
- 5.) Measure the angle ADC. _____
- 6.) Compute (arc ABC arc AC)/2.

7.) What is the relationship between the angle created by two tangent lines meeting outside the circle and the two intercepted arcs of the lines?

Page 5: "Two Secants Meeting Inside the Circle"

- 1.) Draw a circle on the half sheet and make a dot at the center.
- 2.) Draw two secant lines that meet within the circle, but not at the center. Label A, B, C, D, and E according to the following picture.
- 3.) Measure the arc AB using the central angle. _____
- 4.) Measure the arc CD using the central angle. _____
- 5.) Measure the angle AEB = _____
- 6.) Compute (arc AB + arc CD)/2. _____
- 7.) What is the relationship between the angle created by two secant lines meeting inside the circle and the two intercepted arcs of the lines?

Recap

ПСОЦР		T
A C C	Tangent & Chord Meeting On the Circle	Ex:
E C D	Two Secants Meeting Outside the Circle	X° Sg° Ng° Ng° Ng° Ng° Ng° Ng° Ng° Ng° Ng° N
D C	Secant & Tangent Meeting Outside the Circle	E A G1° X° C
A . B	Two Secants Meeting Outside the Circle	110° L
A B C D	Two Secants Meeting Inside the Circle	43° x° 41°

Homework!

Inscribed / Central Angles: Find the values of the missing arc, (?) or find x.

1)

2)

3)

 $m\widehat{EFC}$

4)

5)

6)

Secants, Tangents, & Chords: Find the values of the missing value (?) or find x.

1.

2.

3.

