Chamblandes 2014 — Problème 2

1.
$$4x^{2}$$
 -4 $2x-1$ $2x+1$ $2x+1$ $-2x+1$ -3

y = 2x + 1 est l'équation de l'asymptote oblique de f.

Commençons par étudier le signe de
$$f$$
.
$$f(x) = \frac{4x^2 - 4}{2x - 1} = \frac{4(x^2 - 1)}{2x - 1} = \frac{4(x - 1)(x + 1)}{2x - 1}$$

	-:	1	$\frac{1}{2}$ 1	
4	+	+	+	+
x-1		_	_ (+
x+1	- () +	+	+
2x-1		_	+	+
f(x)	- () +	- (+

On constate, en particulier, que la fonction f est positive sur l'intervalle [1;3].

Calculons à présent l'aire recherchée :

$$\int_{1}^{3} \frac{4x^{2} - 4}{2x - 1} dx = \int_{1}^{3} \left(2x + 1 - \frac{3}{2x - 1}\right) dx = \int_{1}^{3} \left(2x + 1 - \frac{3}{2} \cdot \frac{2}{2x - 1}\right) dx = \left[x^{2} + x - \frac{3}{2} \ln(|2x - 1|)\right]_{1}^{3} = \left(3^{2} + 3 - \frac{3}{2} \ln(|2 \cdot 3 - 1|)\right) - \left(1^{2} + 1 - \frac{3}{2} \ln(|2 \cdot 1 - 1|)\right) = 12 - \frac{3}{2} \ln(5) - 2 + \frac{3}{2} \ln(1) = \boxed{10 - \frac{3}{2} \ln(5)}$$