#### Fast arithmetics for Artin-Schreier extensions

L. De Feo joint work with Éric Schost

École Polytechnique, Paris, France

February 27, 2009 LIP6, Séminaire Salsa, Paris

#### Artin-Schreier

#### Definition (Artin-Schreier polynomial)

 $\mathbb{K}$  a field of characteristic p,  $\alpha \in \mathbb{K}$ 

$$X^p - X - \alpha$$

is an Artin-Schreier polynomial.

#### **Theorem**

 $\mathbb{K}$  finite.  $X^p - X - \alpha$  irreducible  $\Leftrightarrow \operatorname{Tr}_{\mathbb{K}/\mathbb{F}_p}(\alpha) \neq 0$ . If  $\eta \in \mathbb{K}$  is a root, then  $\eta + 1, \ldots, \eta + (p-1)$  are roots.

## Definition (Artin-Schreier extension)

 $\mathcal{P}$  an irreducible Artin-Schreier polynomial.

$$\mathbb{L} = \mathbb{K}[X]/\mathcal{P}(X).$$

 $\mathbb{L}/\mathbb{K}$  is called an Artin-Schreier extension.

#### Our context

$$\mathbb{U}_{k} = \frac{\mathbb{U}_{k-1}[X_{k}]}{P_{k-1}(X_{k})}$$

$$\downarrow^{p}$$

$$\mathbb{U}_{k-1}$$

$$\downarrow^{l}$$

$$\downarrow^{l}$$

$$\mathbb{U}_{1} = \frac{\mathbb{U}_{0}[X_{1}]}{P_{0}(X_{1})}$$

$$\downarrow^{p}$$

$$\mathbb{U}_{0} = \mathbb{F}_{p^{d}} = \frac{\mathbb{F}_{p}[X_{0}]}{Q(X_{0})}$$

#### Towers over finite fields

$$P_i = X^p - X - \alpha_i$$

We say that  $(\mathbb{U}_0,\ldots,\mathbb{U}_k)$  is defined by  $(\alpha_0,\ldots,\alpha_{k-1})$  over  $\mathbb{U}_0$ .

 ${\sf ANY}$  extension of degree p can be expressed this way

#### **Motivations**

- p-torsion points of abelian varieties;
- Isogeny computation [Couveignes '96].

## Elliptic curves over finite fields

$$\mathbf{E} : Y^2 = X^3 + aX + b$$



$$a,b \in \mathbb{F}_q = \mathbb{F}_{p^d} \qquad p \neq 2,3$$

 $\mathcal{O}$ , the point at infinity, is the zero of the law

## Elliptic curves - Multiplication

$$[m]P = \underbrace{P + P + \dots + P}_{m \text{ times}}$$

#### Multiplication

$$[m]P = \left(\frac{\phi_m(X,Y)}{\psi_m^2(X,Y)}, \frac{\omega_m(X,Y)}{\psi_m^3(X,Y)}\right)$$

with  $\deg \psi^2 \approx \deg \phi \approx m^2$ ,  $\psi_m(X_P, Y_P) = 0 \Leftrightarrow [m]P = \mathcal{O}$ .

$$\psi_m(X_P, Y_P) = 0 \iff [m]P = \mathcal{O}.$$

#### Torsion group

$$\begin{split} E[m] &= \left\{ P \in E(\bar{\mathbb{F}}_q) \mid [m]P = \mathcal{O} \right\} \\ E[m] &\cong (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/m\mathbb{Z}) \quad \text{if $m$ prime to $p$} \\ E[p^k] &\cong \begin{cases} \mathbb{Z}/p^k\mathbb{Z} & \textit{ordinary case} \\ \{\mathcal{O}\} & \textit{supersingular case} \end{cases} \end{split}$$

## Structure of the $p^k$ -torsion



## Structure of the $p^k$ -torsion

#### $p^k$ -torsion

- ullet  $E[p^i]$  not necessarily defined over  $\mathbb{F}_q$ ,
- ullet if  $E[p^i]$  defined over  $\mathbb{K}$ , then  $E[p^{i+1}]$  defined over  $\mathbb{K}[X]/\psi_p(X)$ ,
- ullet  $\psi_p(X) = V(X)^p$  with V separable of degree p.

#### **Theorem**

Let  $(\mathbb{K}=\mathbb{U}_0,\ldots,\mathbb{U}_k)$  be the tower of minimal degree s.t.  $E[p^i]\subset E(\mathbb{U}_i)$  for any i. Then there is a  $i_0$  s.t.  $\mathbb{U}_{i_0}=\mathbb{U}_0$  and for  $i\geqslant i_0$ 

$$[\mathbb{U}_{i+1}:\mathbb{U}_i]=p,$$

#### Going further

- Generalizes to higher genus curves:  $C[p^k] = (\mathbb{Z}/p^k\mathbb{Z})^g$ .
- ullet Applications to point counting: interpolate rational maps over the  $p^k$ -torsion points.

## Size, complexities

$$\#\mathbb{U}_i = p^{p^i d}$$

 $\mathbb{U}_k$ 

#### Optimal representation

All common representations achieve it:  $O(p^i d \log p)$ 

 $\mathbb{U}_{k-1}$ 

## Complexities in $\mathbb{F}_p$ -operations

 $O(p^id)$ optimal:

quasi-optimal:  $\tilde{O}(i^a p^i d)$ FFT multiplication

 $\tilde{O}(i^a p^{i+b} d)$ almost-optimal:

 $\tilde{O}(i^a p^{i+b} d^c)$ suboptimal:

 $\tilde{O}\left(i^a(p^{i+b})^ed^c\right)$ too bad: naive multiplication

#### Multiplication function M(n)

FFT:  $M(n) = O(n \log n \log \log n)$ ,

addition

Naive:  $M(n) = O(n^2)$ .

## Representation matters!

# $\mathbb{U}_k$

## Multivariate representation of $v \in \mathbb{U}_i$

$$v = X_0^{d-1} X_1^{p-1} \cdots X_i^{p-1} + 2X_0^{d-1} X_1^{p-1} \cdots X_i^{p-2} + \cdots$$

 $\mathbb{U}_{k-1}$ 

Univariate representation of  $v \in \mathbb{U}_i$ 

- $\bullet \ \mathbb{U}_i = \mathbb{F}_p[x_i],$
- $v = c_0 + c_1 x_i + c_2 x_i^2 + \dots + c_{p^i d-1} x_i^{p^i d-1}$  with  $c_i \in \mathbb{F}_p$ .

#### How much does it cost to...

- Multiply?
- Express the embedding  $\mathbb{U}_{i-1} \subset \mathbb{U}_i$ ?
- Express the vector space isomorphism  $\mathbb{U}_i = \mathbb{U}_{i-1}^p$ ?
- Switch between the representations?

## A primitive tower

 $\mathbb{U}_k$ 

 $\mathbb{U}_{k-1}$ 

 $\mathbb{U}_1$ 

 $\mathbb{U}_0$ 

## Definition (Primitive tower)

A tower is primitive if  $\mathbb{U}_i = \mathbb{F}_n[X_i]$ .

In general this is not the case. Think of  $P_0 = X^p - X - 1$ .

## Theorem (extends a result in [Cantor '89])

Let  $x_0 = X_0$  such that  $\operatorname{Tr}_{\mathbb{U}_0/\mathbb{F}_n}(x_0) \neq 0$  , let

$$P_0 = X^p - X - x_0$$

$$P_i = X^p - X - x_i^{2p-1}$$

with  $x_{i+1}$  a root of  $P_i$  in  $\mathbb{U}_{i+1}$ .

Then, the tower defined by  $(P_0, \ldots, P_{k-1})$  is primitive.

Some tricks to play when p=2.

## Computing the minimal polynomials

We look for  $Q_i$ , the minimal polynomial of  $x_i$  over  $\mathbb{F}_p$ 

 $\mathbb{U}_k$  $\mathbb{U}_{k-1}$  $\mathbb{U}_1$ 

## Algorithm [Cantor '89]

• 
$$Q_0 = Q$$

easy,

• 
$$Q_1 = Q_0(X^p - X)$$

easy,

Let  $\omega$  be a 2p-1-th root of unity,

• 
$$q_{i+1}(X^{2p-1}) = \prod_{j=0}^{2p-2} Q_i(\omega^j X)$$

not too hard<sup>a</sup>,

• 
$$Q_{i+1} = q_{i+1}(X^p - X)$$

easy.

#### Complexity

$$O\left(\mathsf{M}(p^{i+2}d)\log p\right)$$

 $<sup>^{\</sup>rm a}{\rm No}$  need to factor  $\Phi_{2p-1},$  one can simply work modulo it. (Proof by Chinese remindering)

## Level embedding



#### Push-down

Input  $v \dashv \mathbb{U}_i$ .

**Output**  $v_0, \ldots, v_{p-1} \dashv \mathbb{U}_{i-1}$  such that  $v = v_0 + \cdots + v_{p-1} x_i^{p-1}$ .

#### Lift-up

Input  $v_0, \ldots, v_{p-1} \dashv \mathbb{U}_{i-1}$ ,

**Output**  $v \dashv \mathbb{U}_i$  such that  $v = v_0 + \cdots + v_{p-1} x_i^{p-1}$ .

#### Complexity function L(i)

It turns out that the two operations lie in the same complexity class, we note L(i) for it:

$$L(i) = O\left(pM(p^{i}d) + p^{i+1}d\log_{n}(p^{i}d)^{2}\right)$$

## Level embedding

#### Change of order

$$\begin{cases} X_i^p - X_i - X_{i-1}^{2p-1} = 0 \\ Q_{i-1}(X_{i-1}) = 0 \end{cases} \longleftrightarrow \begin{cases} Q_i(X_i) = 0 \\ X_{i-1} = R(X_i)/S(X_i) \end{cases}$$

## Rational Univariate Representation ([Rouillier '99])

- Push-down: left-to-right,
- Lift-up: right-to-left,
- going right-to-left = looking for RUR,
- equivalently, changing from lex to revlex order.
- Many optimisations for finite fields case.



#### Push-down

#### Push-down

Input  $v \dashv \mathbb{U}_i$ , Output  $v_0, \ldots, v_{p-1} \dashv \mathbb{U}_{i-1}$  s.t.  $v = v_0 + \cdots + v_{p-1}x_i^{p-1}$ .

- Reduce v modulo  $x_i^p x_i T^{2p-1}$  by a divide-and-conquer approach,
- ullet each of the coefficients of  $x_i$  has degree in  $x_{i-1}$  less than  $2\deg(v)$ ,
- reduce each of the coefficients.

## Duality I

#### Dual vector space

 $\mathbb{U}_i^*$  the space of  $\mathbb{F}_p$ -linear forms over  $\mathbb{U}_i$ 

## Multiplication

Let  $v \in \mathbb{U}_i$ , multiplication by v is a linear application  $\mathbb{U}_i \to \mathbb{U}_i$  with matrix  $M_v$ :

$$\left( \begin{array}{c} M_v \end{array} \right) \left( x \right) \; \mapsto \; \left( vx \right)$$

#### Transposed multiplication

Let  $v \in \mathbb{U}_i$ ,  $\ell \in \mathbb{U}_i^*$ , transposed multiplication  $v \cdot \ell$  is the linear form

$$\left( \begin{array}{ccc} v \cdot \ell \end{array} \right) \left( x \right) \; = \; \left( \begin{array}{ccc} \ell \end{array} \right) \left( \begin{array}{ccc} M_v \end{array} \right) \left( x \right) \; \mapsto \; \left( \begin{array}{ccc} \ell \end{array} \right) \left( vx \right) \; = \; \ell(vx)$$

hence  $M_v^T$  is the linear application computing  $v \cdot \ell$  from  $\ell$ .

## Duality II

#### Change of basis

Vector spaces  $V^B=V^D$  with bases B and D.

$$M~:~V^B \to V^D$$

$$M^T \; : \; V^{D^*} \rightarrow V^{B^*}$$

 $M^T$  is the dual change of basis.

#### Push-down

Push-down is a change of basis  $P: \mathbb{U}_i^U \to \mathbb{U}_i^D$ 

U = polynomial basis in  $x_i$ 

D = bivariate basis in  $x_i, x_{i-1}$ 

hence  $P^T: \mathbb{U}_i^{D^*} \to \mathbb{U}_i^{U^*}$ .

## Truncated power series

 $P^T$  sends linear forms  $\ell \in \mathbb{U}_i^{D^*}$  onto the basis  $U^*$ :

$$\ell(1), \quad \ell(x_i), \quad \ell(x_i^2), \quad \dots, \quad \ell(x_i^{p^i d - 1})$$

These can be seen as the first coefficients of a formal power series ([Shoup '99]):

$$\sum\nolimits_{j>0}\ell(x_i^j)Z^j$$

## Dualities and transposition principle

"From every *linear algorithm* computing a linear application we can deduce another *linear algorithm* computing the transpose application using *about* the same space and time resources."

## Category theory justification



## Lift-up

## Trace formulae [Pascal, Schost '06, Rouillier '99]

Let  $\operatorname{Tr} \in \mathbb{U}_i^{D^*}$  be the trace form, let  $v_D \in \mathbb{U}_i^D$  , then

is in  $\mathbb{F}_p(Z)$ . Then the image of  $v_D$  in  $\mathbb{U}_i^U$  is

$$\sum_{j>0} v_D \cdot \operatorname{Tr}(x_i^j) Z^j = \frac{N_v(Z)}{\operatorname{rev} Q_i(Z)}$$

$$v_U = \frac{\operatorname{rev} N_v(x_i)}{Q_i'(Z)} \bmod Q_i(Z).$$

## Transposition principle (see [Bürgisser, Clausen, Shokrollahi])

- ullet We don't bother computing the matrices  $M_v$  and P,
- we use transposition principle instead.
- ullet computing  $v_D\cdot {
  m Tr}$  is transposed multiplication in  ${\Bbb U}_i^D$ ,
- computing the power series is transposed Push-down.



## Lift-up

#### Lift-up

 $\begin{array}{ll} \text{Input} & v_0,\dots,v_{p-1}\dashv \mathbb{U}_{i-1}\\ \text{Output} & v\dashv \mathbb{U}_i \quad \text{s.t.} \quad v=v_0+\dots+v_{p-1}x_i^{p-1} \end{array}$ 

- lacksquare Compute the linear form  $\operatorname{Tr} \in \mathbb{U}_i^{D^*}$ ,
- $\bullet$  compute  $\ell = (v_0 + \cdots + v_{p-1}x_i^{p-1}) \cdot \operatorname{Tr}$ ,
- $\bullet$  compute  $P_v = \mathsf{Push}\text{-}\mathsf{down}^T(\ell)$ ,
- compute  $N_v(Z) = P_v(Z) \cdot \operatorname{rev}(Q_i)(Z) \mod Z^{p^i d 1}$
- return  $\operatorname{rev}(N_v)/Q_i' \operatorname{mod} Q_i$ .





## Divide and conquer

We improve some operations in  $\mathbb{U}_i$ 

push-down the operands;

$$\begin{array}{c}
\operatorname{op}(v) \\
\downarrow \\
v_0, & \cdots, & v_{p-1}
\end{array}$$

#### Where it works

- traces,
- p-th roots,
- pseudotraces,

- inversion,
- iterated frobenius,
- . .

20 / 29



### Divide and conquer

We improve some operations in  $\mathbb{U}_i$ 

- push-down the operands;
- recursively solve p instances

$$\begin{array}{ccc}
\operatorname{op}(v) \\
\downarrow \\
\operatorname{op}(v_0), & \cdots, & \operatorname{op}(v_{p-1})
\end{array}$$

#### Where it works

- traces,
- p-th roots,
- pseudotraces,

- inversion,
- iterated frobenius,



 $\mathbb{U}_k$ 

 $\mathbb{U}_{k-1}$ 

We improve some operations in  $\mathbb{U}_i$ 

- push-down the operands;
- recursively solve p instances in  $\mathbb{U}_{i-1}$ :
- combine the results;

$$\begin{array}{ccc}
\operatorname{op}(v) \\
\downarrow \\
\operatorname{op}(v_0), & \cdots, & \operatorname{op}(v_{p-1}) \\
w_0, & \cdots, & w_{p-1}
\end{array}$$

#### Where it works

- traces,
- p-th roots,
- pseudotraces,

- inversion,
- iterated frobenius,



#### Divide and conquer

We improve some operations in  $\mathbb{U}_i$ 

- push-down the operands;
- recursively solve p instances in  $\mathbb{U}_{i-1}$ ;
- combine the results;
- lift-up.



#### Where it works

- traces,
- p-th roots,
- pseudotraces,

- inversion,
- iterated frobenius,
- . .

## Example: Iterated frobenius

#### Truisms

$$\bullet \ v \in \mathbb{U}_i \ \Rightarrow \ v^{p^{p^i d}} = v,$$

• 
$$v^{p^{p^j d}} = \sum_{h=0}^{p-1} v_h^{p^{p^j d}} (x_i + \beta_{i-1,j})^h$$

#### **IterFrobenius**

**Input** v, i, j with  $v \dashv \mathbb{U}_i$  and  $j \geqslant 0$ .

Output  $v^{p^{p^{j}d}} \dashv \mathbb{U}_i$ .

- If  $i \leqslant j$ , return v.
- 2 Let  $v_0 + v_1 x_i + \dots + v_{p-1} x_i^{p-1} = \mathsf{Push-down}(v)$ ,
- $\bullet$  for  $h \in [0, \dots, p-1]$ , let  $t_h = \mathsf{IterFrobenius}(v_h, i-1, j)$ ,
- $\bullet \text{ let } w = \sum_{h=0}^{p-1} t_h (x_i + \beta_{i-1,j})^h,$
- $\bullet$  return Lift-up(w).



#### **Truisms**

$$x_i^{p^{p^jd}} = x_i + \beta_{i-1,j} \text{ where } \\ \beta_{i-1,j} = \sum_{h=0}^{p^jd-1} (x_{i-1}^{2p-1})^{p^h},$$

$$\bullet \ v \in \mathbb{U}_i \ \Rightarrow \ v^{p^{p^i d}} = v,$$

• 
$$v^{p^{p^j d}} = \sum_{h=0}^{p-1} v_h^{p^{p^j d}} (x_i + \beta_{i-1,j})^h$$

#### **IterFrobenius**

**Input** v, i, j with  $v \dashv \mathbb{U}_i$  and  $j \geqslant 0$ .

Output  $v^{p^{p^{j_d}}} \dashv \mathbb{U}_i$ .

- If  $i \leqslant j$ , return v.
- 2 Let  $v_0 + v_1 x_i + \dots + v_{p-1} x_i^{p-1} = \mathsf{Push-down}(v)$ ,
- $\bullet$  for  $h \in [0, \dots, p-1]$ , let  $t_h = \mathsf{IterFrobenius}(v_h, i-1, j)$ ,
- $\bullet \text{ let } w = \sum_{h=0}^{p-1} t_h (x_i + \beta_{i-1,j})^h,$
- return Lift-up(w).

## Important example: Generic towers



#### Generic towers

- ullet Let  $(lpha_0,\ldots,lpha_{k-1})$  define a generic tower over  $\mathbb{U}_0$ ,
- if we find an isomorphism we can bring fast arithmetics to it.

## Computing the isomorphism [Couveignes '00]

**Goal:** factor  $X^p - X - \alpha_i$  in  $U_{i+1}$ .

- Change of variables  $X' = X \mu$  s.t.
- $X'^p X' \alpha_i$  has a root in  $\mathbb{U}_i$ ,
- ullet Push-down, solve recursively, result is  $\Delta$ ,
- Lift-up  $\Delta$ ,
- return  $\Delta + \mu$ .

 $\mathbb{U}'_{k}$ 

 $\mathbb{U}_1'$ 

 $\mathbb{U}_0$ 

## Implementation

#### Implementation in NTL

Three types

- ullet GF2: p=2, no FFT, bit optimisation,
- zz\_p:  $p < 2^{\lfloor \log \rfloor}$ , FFT, no bit-tricks,
- ZZ\_p: generic p, like zz\_p but slower.

#### Comparison to Magma

Three ways of handling field extensions

- quo<U|P>: quotient of multivariate polynomial ring + Gröbner bases
- f e ext<k|P>: field extension by  $X^p-X-lpha$ , precomputed bases + multivariate
- ext<k|p>: field extension of degree p, precomputed bases + multivariate

#### Benchmarks (on 14 AMD Opteron 2500)

- p = 2, d = 1, height varying,
- Three modes p varying, d = 1, height = 2,
  - p = 5, d varying, height = 2.

## Construction of the tower + precomputations





## Multiplication





## Isomorphism ([Couveignes '00] vs Magma)



## Benchmarks on isogenies ([Couveignes '96])

Over  $\mathbb{F}_{2^{101}}$ , on an AMD Athlon 64 X2 Dual Core Processor 4000+, 5GB ram



## Bibliography



P. Bürgisser, M. Clausen, and A. Shokrollahi.

Algebraic complexity theory, volume 315 of Grundlehren Math. Wiss. Springer-Verlag, 1997.



D. G. Cantor.

On arithmetical algorithms over finite fields. *Journal of Combinatorial Theory*, Series A 50, 285-300, 1989.



J.-M. Couveignes.

Computing  $\ell$ -isogenies with the p-torsion.

Lecture Notes in Computer Science vol. 1122, pages 59–65, Springer-Verlag, 1996.



J.-M. Couveignes.

Isomorphisms between Artin-Schreier tower.

Math. Comp. 69(232): 1625-1631, 2000.



L. De Feo.

Calcul d'isogénies.

Master thesis. http://www.lix.polytechnique.fr/~defeo

## Bibliography



C. Pascal and É. Schost.

Change of order for bivariate triangular sets.

In ISSAC'06, pages 277-284. ACM, 2006.



F. Rouillier.

Solving zero-dimensional systems through the Rational Univariate Representation.

Appl. Alg. in Eng. Comm. Comput., 9(5):433-461, 1999.



V. Shoup.

Efficient computation of minimal polynomials in algebraic extensions of finite fields.

In ISSAC'99, ACM Press, 1999.



J.F. Voloch.

Explicit p-descent for Elliptic Curves in Characteristic p.

Compositio Mathematica 74, pages 247-58, 1990.