Seminar in Toric Varieties

Talk 3: Affine Toric Varieties

Alejandro Plaza Gallán

30 May 2022

1 Group ring of a monoid

Definition. A monoid (S, +) is a set S together with an associative operation $+: S \times S \to S$ that has a neutral element $0 \in S$.

If the operation + is commutative, then S is called a commutative monoid.

A monoid homomorphism $x: S_1 \to S_2$ between two monoids $(S_1, +_1), (S_2, +_2)$ is a map such that:

- for all $u, u' \in S_1$, $x(u +_1 u') = x(u) +_2 x(u')$,
- $x(0_1) = 0_2$.

Example. $(\mathbb{N}_0, +), (\mathbb{Z}, +), (\mathbb{C}, \cdot).$

Definition. Let S be a commutative monoid. Let $\{u_i\}_{i\in I}\subseteq S$ be a family of elements in S. We say that $\{u_i\}_{i\in I}$ are generators of S if

$$S = \sum_{i \in I} \mathbb{N}_0 u_i,$$

i.e. if $\forall s \in S \ \exists u_{i_1}, \dots, u_{i_n}, \ \exists \lambda_1, \dots, \lambda_n \in \mathbb{N}_0$ such that $s = \lambda_1 u_{i_1} + \dots + \lambda_n u_{i_n}$. In case there is a finite family of generators, we say that S is finitely generated.

Example. \mathbb{N}_0^n is a monoid with generators e_1, \ldots, e_n .

Every $(\lambda_1, \ldots, \lambda_n) \in \mathbb{N}_0^n$ can be expressed as

$$(\lambda_1,\ldots,\lambda_n)=\lambda_1e_1+\cdots+\lambda_ne_n.$$

 \mathbb{Z}^n is a monoid with generators $e_1, -e_1, \dots, e_n, -e_n$. Every $(\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$ can be expressed as

$$(\lambda_1,\ldots,\lambda_n)=\lambda_1^+e_1+\lambda_1^-(-e_1)+\cdots+\lambda_n^+e_n+\lambda_n^-(-e_n),$$

where

$$\lambda_i^+ = \left\{ \begin{array}{ll} \lambda_i & \text{if } \lambda_i \ge 0, \\ 0 & \text{if } \lambda_i < 0, \end{array} \right. \quad \lambda_i^- = \left\{ \begin{array}{ll} 0 & \text{if } \lambda_i \ge 0, \\ -\lambda_i & \text{if } \lambda_i < 0. \end{array} \right.$$

Definition. Given a commutative monoid S, we define its **group ring** $\mathbb{C}[S]$ to be

$$\mathbb{C}[S] := \bigoplus_{u \in S} \mathbb{C}\chi^u,$$

with the multiplication

$$\cdot : \mathbb{C}[S] \times \mathbb{C}[S] \longrightarrow \mathbb{C}[S].$$
$$(\chi^{u}, \chi^{u'}) \longmapsto \chi^{u+u'}$$

Note that $\bigoplus_{u \in S} \mathbb{C}\chi^u$ is defined as the \mathbb{C} -vector space that has S as a basis.

Proposition. 1) The group ring is in fact a commutative \mathbb{C} -algebra with unit χ^0 .

- 2) If $\{u_i\}_{i\in I}$ is a system of generators of S, then $\{\chi^{u_i}\}_{i\in I}$ is a system of generators of $\mathbb{C}[S]$ as a \mathbb{C} -algebra.
- 3) In particular, if S is finitely generated, then $\mathbb{C}[S]$ is a \mathbb{C} -affine algebra, i.e. it is finitely generated.

Proof. 1) By definition, $\mathbb{C}[S]$ is a \mathbb{C} -vector space. If we want the multiplication to satisfy associativity and distributivity, it must be defined as

$$\left(\sum_{i=1}^n \lambda_i \chi^{u_i}\right) \left(\sum_{j=1}^m \mu_j \chi^{u_j}\right) = \sum_{i=1}^m \sum_{j=1}^n \lambda_i \mu_j \chi^{u_i + u_j}.$$

Check: χ^0 is the unity, the distributivity, the compatibility with scalars, the associativity and the commutativity.

2) Let $\sum_{j=1}^{m} \mu_j \chi^{v_j} \in \mathbb{C}[S]$. We can choose generators u_1, \ldots, u_n such that

$$v_j = \sum_{i=1}^n \lambda_{ij} u_i,$$

for some $\lambda_{ij} \in \mathbb{N}_0$. Hence,

$$\sum_{j=1}^{m} \mu_j \chi^{v_j} = \sum_{j=1}^{m} \mu_j \chi^{\sum_{i=1}^{n} \lambda_{ij} u_i} = \sum_{j=1}^{m} \mu_j (\chi^{u_1})^{\lambda_{1j}} \cdots (\chi^{u_n})^{\lambda_{nj}}.$$

Thus, $\{\chi^{u_i}\}_{i\in I}$ generate $\mathbb{C}[S]$ as a \mathbb{C} -algebra.

Proposition. Given a homomorphism $x: S_1 \to S_2$ of commutative monoids, there exists a unique \mathbb{C} -algebra homomorphism $\varphi: \mathbb{C}[S_1] \to \mathbb{C}[S_2]$ such that $\forall u \in S_1 \ \varphi(\chi^u) = \chi^{x(u)}$.

- x is injective if and only if φ injective.
- x is surjective if and only if φ is surjective.

• In particular, if x is a monoid isomorphism, then φ is a \mathbb{C} -algebra isomorphism.

Proof. Let $x: S_1 \to S_2$ be a monoid homomorphism. Define

$$\varphi: \mathbb{C}[S_1] \longrightarrow \mathbb{C}[S_2].$$

$$\sum_{i=1}^n \lambda_i \chi^{u_i} \longmapsto \sum_{i=1}^n \lambda_i \chi^{x(u_i)}$$

We already know from linear algebra that a map $x: S_1 \to S_2$ between bases of two vector spaces defines a unique linear map φ between the vector spaces. The only thing remaining to show is that our φ preserves the multiplication.

Check: φ preserves the multiplication.

The points about injectivity and surjectivity of x and φ follow from the already known structure of vector spaces.

Proposition. 1) $\mathbb{C}[\mathbb{N}_0^n] \cong \mathbb{C}[X_1, \dots, X_n]$.

2)
$$\mathbb{C}[\mathbb{Z}^n] \cong \mathbb{C}[X_1, X_1^{-1}, \dots, X_n, X_n^{-1}].$$

Proof. 2) Consider the set of monomials

$$S := \{X_1^{\alpha_1} \cdots X_n^{\alpha_n} \mid \alpha_1, \dots, \alpha_n \in \mathbb{Z}\} \subseteq \mathbb{C}[X_1, X_1^{-1}, \dots, X_n, X_n^{-1}],$$

with the multiplication as operation. The multiplication is closed in S and $1 = X_1^0 \cdots X_n^0 \in S$, so S is a monoid.

Observe that $\mathbb{C}[X_1, X_1^{-1}, \dots, X_n, X_n^{-1}] = \mathbb{C}[S]$, because S is a basis of $\mathbb{C}[X_1, X_1^{-1}, \dots, X_n, X_n^{-1}]$ because every polynomial can be written as a unique linear combination of monomials. Furthermore, the multiplication is compatible by construction.

Now, consider the map

$$x: \mathbb{Z}^n \longmapsto S,$$

 $(\alpha_1, \dots, \alpha_n) \longmapsto X_1^{\alpha_1} \cdots X_n^{\alpha_n}$

which is surjective by definition of S. Let's see that it is a monoid homomorphism. Let $(\alpha_1, \ldots, \alpha_n), (\beta_1, \ldots, \beta_n) \in \mathbb{Z}^n$. Then

$$x((\alpha_1, \dots, \alpha_n) + (\beta_1, \dots, \beta_n)) = x(\alpha_1 + \beta_1, \dots, \alpha_n + \beta_n) = X_1^{\alpha_1 + \beta_1} \cdots X_n^{\alpha_n + \beta_n}$$
$$= X_1^{\alpha_1} \cdots X_n^{\alpha_n} X_1^{\beta_1} \cdots X_n^{\beta_n} = x(\alpha_1, \dots, \alpha_n) x(\beta_1, \dots, \beta_n).$$

It is also injective, because for $(\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}^n$, if

$$x(\alpha_1, \dots, \alpha_n) = X_1^{\alpha_1} \cdots X_n^{\alpha_n} = 1,$$

then $\alpha_1 = \cdots = \alpha_n = 0$, so $(\alpha_1, \ldots, \alpha_n) = 0$.

By the previous proposition, it extends uniquely to a \mathbb{C} -algebra isomorphism

$$\varphi: \mathbb{C}[\mathbb{Z}^n] \longrightarrow \mathbb{C}[X_1, X_1^{-1}, \dots, X_n, X_n^{-1}]$$

Notice that $x(e_i) = X_i$ and $x(-e_i) = X_i^{-1}$. Hence, it will hold also $\varphi(\chi^{e_i}) = X_i$ and $\varphi(\chi^{-e_i}) = X_i^{-1}$.

1) As \mathbb{N}_0^n is a submonoid of \mathbb{Z}^n , $\mathbb{C}[\mathbb{N}_0^n]$ is a subalgebra of $\mathbb{C}[\mathbb{Z}^n]$. Hence, the previous \mathbb{C} -algebra isomorphism $\varphi: \mathbb{C}[\mathbb{Z}^n] \to \mathbb{C}[X_1, X_1^{-1}, \dots, X_n, X_n^{-1}]$ restricts to a \mathbb{C} -algebra isomorphism $\tilde{\varphi}: \mathbb{C}[\mathbb{N}_0^n] \to \varphi(\mathbb{C}[\mathbb{N}_0^n])$.

We have said that e_1, \ldots, e_n are generators of the monoid \mathbb{N}_0^n , so $\chi^{e_1}, \ldots, \chi^{e_n}$ are generators of the \mathbb{C} -algebra $\mathbb{C}[\mathbb{N}_0^n]$, so $\varphi(\chi^{e_1}) = X_1, \ldots, \varphi(\chi^{e_n}) = X_n$ are generators of the \mathbb{C} -algebra $\varphi(\mathbb{C}[\mathbb{N}_0^n])$. Hence, $\varphi(\mathbb{C}[\mathbb{N}_0^n]) = \mathbb{C}[X_1, \ldots, X_n]$. Thus,

$$\tilde{\varphi}: \mathbb{C}[\mathbb{N}_0^n] \to \mathbb{C}[X_1, \dots, X_n]$$

is a C-algebra isomorphism.

2 Geometrical interpretation of the spectrum

Theorem. (Hilbert's nullstellensatz) Let $R = \mathbb{C}[X_1, \ldots, X_n]$. There is a bijection

$$\mathbb{C}^n \longleftrightarrow \{\mathfrak{m} \subseteq R \mid \mathfrak{m} \text{ is a maximal ideal}\} = \operatorname{Spec}_{max} R$$
$$(\xi_1, \dots, \xi_n) \longmapsto (X_1 - \xi_1, \dots, X_n - \xi_n)$$

Moreover, for an ideal $I \subseteq R$, this restricts to the bijection

$$\{\xi\in\mathbb{C}^n\,|\,\forall f\in I\ f(\xi)=0\}=\widetilde{V}(I)\longleftrightarrow\{\mathfrak{m}\subseteq R\,|\,I\subseteq\mathfrak{m},\mathfrak{m}\ is\ maximal\}=V(I)\cap\operatorname{Spec}_{max}R$$

This theorem gives an equivalence between the space \mathbb{C}^n and the maximal spectrum $\operatorname{Spec}_{\max} R$ of the ring of polynomials. Furthermore, the affine varieties $\widetilde{V}(I)$ in \mathbb{C}^n correspond to closed subsets of the maximal spectrum with the Zariski topology.

Because of this, every affine variety $\widetilde{V}(I)$ can be seen as a closed subset V(I) of the spectrum. If \mathcal{A} is an affine \mathbb{C} -algebra, if $\{a_1, \ldots, a_n\}$ are generators of \mathcal{A} , then the map

$$\mathbb{C}[X_1,\ldots,X_n] \longrightarrow \mathcal{A}$$

 $X_i \longmapsto a_i$

is a surjective \mathbb{C} -algebra homomorphism. Let I be its kernel. Then by the isomorphism theorem, $\mathbb{C}[X_1,\ldots,X_n]/I\cong\mathcal{A}$. Hence,

$$\operatorname{Spec} \mathcal{A} \cong \operatorname{Spec} \mathbb{C}[X_1, \dots, X_n]/I \longleftrightarrow \{\mathfrak{p} \in \operatorname{Spec} \mathbb{C}[X_1, \dots, X_n] \mid I \subseteq \mathfrak{p}\} = V(I) \subseteq \operatorname{Spec} \mathbb{C}[X_1, \dots, X_n],$$

which is just an affine variety in the n-dimensional complex space.

Remember that given a ring R and $f \in R$, we define the localisation $R_f = S^{-1}R$, where $S = \{1, f, f^2, \ldots\}$.

$$\operatorname{Spec} R_f \longleftrightarrow \{\mathfrak{p} \in \operatorname{Spec} R \mid \mathfrak{p} \cap S = \emptyset\} = \{\mathfrak{p} \in \operatorname{Spec} R \mid f \notin \mathfrak{p}\} = D(f) = \operatorname{Spec} R \setminus V(f).$$

Example. Consider the ring of Laurent polynomials

$$R = \mathbb{C}[X_1, X_1^{-1}, \dots, X_n, X_n^{-1}] = \mathbb{C}[X_1, \dots, X_n]_{X_1, \dots, X_n} = \mathbb{C}[X_1, \dots, X_n]_{X_1 \dots X_n}.$$

Spec $R = \operatorname{Spec} \mathbb{C}[X_1, \dots, X_n]_{X_1 \dots X_n} \cong \operatorname{Spec} \mathbb{C}[X_1, \dots, X_n] \setminus V(X_1 \dots X_n) \cong \mathbb{C}^n \setminus \widetilde{V}(X_1 \dots X_n) = (\mathbb{C}^*)^n$, where $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ is the multiplicative group of \mathbb{C} .

Proposition. Given a finitely generated commutative monoid S, there exists a 1-1 correspondence

$$\operatorname{Spec}_{max} \mathbb{C}[S] \longleftrightarrow \operatorname{Hom}(S, \mathbb{C}),$$

where $\operatorname{Hom}(S,\mathbb{C})$ are the monoid homomorphisms from S to (\mathbb{C},\cdot) .

Proof. Given a monoid homomorphism $x:S\to\mathbb{C}$, there is a unique extension to a \mathbb{C} -algebra homomorphism

$$\varphi: \mathbb{C}[S] \longrightarrow \mathbb{C}.$$

$$\chi^u \longmapsto x(u)$$

It is clearly surjective, since $\forall \lambda \in \mathbb{C} \ \varphi(\lambda \chi^0) = \lambda$. Hence, $\mathbb{C}[S]/\ker \varphi \cong \mathbb{C}$, which is a field, so $\ker \varphi$ is a maximal ideal of $\mathbb{C}[S]$.

Now, let $\mathfrak{m} \subseteq \mathbb{C}[S]$ be a maximal ideal. We have a map

$$\mathbb{C} \xrightarrow{i} \mathbb{C}[S]$$

$$\downarrow^{p}$$

$$\mathbb{C}[S]/\mathfrak{m}.$$

By Hilbert's nullstellensatz, $p \circ i : \mathbb{C} \to \mathbb{C}[S]/\mathfrak{m}$ is a \mathbb{C} -algebra isomorphism. Hence, we have a monoid homomorphism

$$S \longrightarrow \mathbb{C}[S] \longrightarrow \mathbb{C}[S]/\mathfrak{m} \longrightarrow \mathbb{C}.$$

$$u \longmapsto \chi^u \longmapsto \overline{\chi^u} = \overline{\lambda}\overline{\chi^0} \longmapsto \lambda$$

Let's check that these associations are mutually inverse.

Let $x: S \to \mathbb{C}$ be a monoid homomorphism. We extend it into $\varphi: \mathbb{C}[S] \to \mathbb{C}$. We get the maximal ideal ker φ . Notice that $\forall u \in S$

$$\varphi(\chi^u - x(u)\chi^0) = x(u) - x(u)x(0) = x(u) - x(u) = 0,$$

so the monoid homomorphism we finally get

$$S \longrightarrow \mathbb{C}[S] \longrightarrow \mathbb{C}[S]/\ker \varphi \longrightarrow \mathbb{C}$$

 $u \longmapsto \chi^u \longmapsto \overline{\chi^u} = \overline{x(u)\chi^0} \longmapsto x(u)$

is again x.

Conversely, for maximal ideal $\mathfrak{m} \subseteq \mathbb{C}[S]$, its monoid homomorphism is $S \to \mathbb{C}[S] \stackrel{p}{\to} \mathbb{C}[S]/\mathfrak{m} \stackrel{\cong}{\to} \mathbb{C}$, that induces the \mathbb{C} -algebra homomorphism $\mathbb{C}[S] \stackrel{p}{\to} \mathbb{C}[S]/\mathfrak{m} \stackrel{\cong}{\to} \mathbb{C}$, which has kernel \mathfrak{m} .

3 Affine toric varieties

Definition. Given a strongly convex rational polyhedral cone σ , we set $A_{\sigma} = \mathbb{C}[S_{\sigma}]$. We call

$$U_{\sigma} = \operatorname{Spec} \mathbb{C}[S_{\sigma}] = \operatorname{Spec} A_{\sigma}$$

the correspondent affine toric variety of σ .

Example. Take $V = \mathbb{R}^n$, $N = \mathbb{Z}^n$, $M = \text{Hom}(N, \mathbb{Z})$.

1) $\sigma = \{0\}$. In this case $S_{\{0\}} = M = (\mathbb{Z}^n)^{\vee} \cong \mathbb{Z}^n$. The isomorphism between \mathbb{Z}^n and $(\mathbb{Z}^n)^{\vee}$ is given by the basis: $e_i \mapsto e_i^*$.

Hence,

$$\mathbb{C}[S_{\{0\}}] = \mathbb{C}[X_1, X_1^{-1}, \dots, X_n, X_n^{-1}],$$

where we identify e_i^* with X_i and $-e_i^*$ with X_i^{-1} . Thus, the affine toric variety of $\sigma = \{0\}$ is

$$U_{\{0\}} = \operatorname{Spec} \mathbb{C}[X_1, X_1^{-1}, \dots, X_n, X_n^{-1}] = (\mathbb{C}^*)^n.$$

We call $T = T_N := \operatorname{Spec} \mathbb{C}[(\mathbb{Z}^n)^{\vee}] = (\mathbb{C}^*)^n$ the *n*-dimensional torus.

If τ is a cone contained in σ , then S_{σ} is a submonoid of S_{τ} and A_{σ} is a subalgebra of A_{τ} , so we have a morphism $U_{\tau} \to U_{\sigma}$. Taking $\{0\}$, which is contained in any cone σ , this gives a morphism

$$T_N \longrightarrow U_\sigma$$

from the torus $T_N = (\mathbb{C}^*)^n$ to the affine toric variety U_{σ} . This is why these affine varieties are called "toric": because they always contain a torus.

2) Let $\sigma \subseteq \mathbb{R}^2$ be the cone generated by e_2 and $2e_1 - e_2$. We want to calculate the dual cone.

There are two facets: τ_1 generated by e_2 and τ_2 generated by $2e_1 - e_2$. These are generated by $u_1 = e_1^*$ and $u_2 = e_1^* + 2e_2^*$ respectively, because $u_1, u_2 \in \sigma^{\vee}$ and $\tau_1 = \sigma \cap u_1^{\perp}, \tau_2 = \sigma \cap u_2^{\perp}$.

Hence, $\{t_1u_1 + t_2u_2 \mid 0 \leq t_1, t_2 \leq 1\}$ is a system of generators of S_{σ} , so it is generated by $e_1^*, e_1^* + e_2^*, e_1^* + 2e_2^*$. Hence, $A_{\sigma} = \mathbb{C}[S_{\sigma}]$ is generated by $X_1, X_1X_2, X_1X_2^2$, i.e.

$$A_{\sigma} = \mathbb{C}[X_1, X_1 X_2, X_1 X_2^2] = \mathbb{C}[X, Y, Z]/(Y^2 - XZ),$$

$$U_{\sigma} = \operatorname{Spec} \mathbb{C}[X, Y, Z]/(Y^2 - XZ) = V(Y^2 - XZ) = \{(X, Y, Z) \in \mathbb{C}^3 \mid Y^2 = XZ\}.$$

The affine toric variety of the cone σ generated by $e_2, 2e_1 - e_2$ is the quadric cone $Y^2 = XZ$.

