Circuits numériques Logique combinatoire

Plan

- De la numération et de l'Algèbre de Boole
- La logique combinatoire
 - Principes et notions fondamentales
 - Portes de base
 - Tableau de Karnaugh
 - Synthèse de fonctions logiques
- Des exemples de fonctions logiques

Des 1 et des 0

- Systèmes électroniques : communication par chaîne de BITs (Binary digiT) (John Tukey, popularisé par Shannon)
- L'information
 - Sa représentation : 0, 1
 - Son traitement : manipulation des 0 et des 1
- Réalisation physique de « 0 » et de « 1 »
 - électronique (tension, courant), optique (puissance optique, polarisation)
 - mécanique (levier, poulies), méca. flu. (fluides, vanne ...)
 - Physique quantique (spin)
 - Objets : fiches perforées, pièces de monnaie

Représentation des nombres

- En base 10 : utilisée tous les jours
 - Élément de 0 à 9

Représentation des nombres

- En base 2 (1 ou 0)
 - Élément 0 ou 1

Codage des nombres

- octet (byte) = 8 bits
- mot (word) = 2 octets = 16 bits
- double mot (double word) = 2 mots = 32 bits
- kilo, mega, giga, tera ...:
 - -1Ko = 2^{10} octets = 1024 octets
 - $-1Mo = 2^{20}$ octets = 1024 ko = 1 048 576 octets
 - -1Go = 2^{30} octets = 1024 Mo = 1073 741 824 octets
 - $-1To = 2^{40}$ octets = 1024 Go = 1 1099511627776 octets

Représentation des nombres

- En base 2 (1 ou 0): binaire
- En base 16 (0, 1, 2 ... D, E, F) : hexadécimal
 - représentation simple de groupes de données binaires
 - 1 quartet (2⁴ combinaisons) = un caractère

0000	0	1000	8	10110101
0001	1	1001	9	
0010	2	1010	A	
0011	3	1011	В	1011 0101
0100	4	1100	C	
0101	5	1101	D	
0110	6	1110	E	
0111	7	1111	F	D 5

Virgule fixe

- Nombres entiers, non-signés
 - $-0 \le valeur \le 2^{N}-1$
 - $-10110101 = 1*2^7 + 1*2^5 + 1*2^4 + 1*2^2 + 1*2^0 = 181$
 - $-B5 = 11*16^1+5*16^0 = 181$
 - Erreur de quantification = $2^{0}/2$ (quantum, q)

Virgule fixe

- Nombres entiers, signés
 - MSB = bit de signe : 1=négatif, 0=positif
 - $-2^{(N-1)} \le valeur \le 2^{(N-1)}-1$
 - -10110101 = 1*(-2⁷)+1*2⁵+1*2⁴+1*2²+1*2⁰ = -75
 - B5 = $11*16^1+5*16^0$ (-2^N si MSB=1) = -75 (181-256)

$$01111111_b = 7F_h = 127_d$$

$$00000000_b = 00_h = 0_d$$

$$11111111_b = FF_h = -1_d$$

$$10110101_b = B5_h = -75_d$$

$$10000000_b = 80_h = -128_d$$

$$-2^{(N-1)}$$

CENTRALELYON

Complément à 2

- Représentation de nombres négatifs
- Elle exploite le nombre limité de bits (troncature à gauche) et permet la soustraction simple
- $-x = [2^{N}-x]-2^{N}$
 - -2^{N} = nombre non-représentable sur N bits
 - $-2^{N}-x = /x + 1$
 - Ex.
 - $x=1_d=00000001_b$; $/x=111111110_b$; $/x+1=11111111_b$
 - y-x = $+4_d$ - 1_d = 00000100_b + 111111111_b = (1 non représenté) 00000011_b = 3_d
 - Complément à 10 : $-x=[10^N-x]-10^N$; ex. 40-1 = 40+[100-1] = (1 non représenté) 39

Virgule fixe

- Nombres fractionnaires, signés
 - Position de la virgule à v bits avant LSB
 - $-2^{(N-1-v)} \le valeur \le (2^{(N-1)}-1)*2^{-v}$
 - -v=2:10110101 (=101101.01) = 1*(-2⁵)+1*2³+1*2²+1*2⁰+1*2⁻² = -18.75
 - $-B5 = 11*16^1+5*16^0 (-2^{N-v} \text{ si MSB}=1) = -18.75$

 $(-75/2^{\circ} = -75/4)$

 $-q=2^{-v-1}$

$$01111111_b = 7F_h = 127_d*2^{-v}$$

$$0000000_{b} = 00_{h} = 0_{d}$$

 $11111111_{b} = FF_{h} = -1_{d}*2^{-v}$
 $10110101_{h} = B5_{h} = -75_{d}*2^{-v}$

$$10000000_b = 80_h = -128_d * 2^{-v}$$

Virgule flottante

- Nombre signé virgule fixe = mantisse, M
- Facteur de mise à l'échelle = exposant, E

signe exposant mantisse

- Valeur = M * 2^E
- Permet une grande précision de représentation (échelle logarithmique grâce à l'exposant)
- Format typique: 32-bits, E sur 8 bits
- Ex. 8-bits, E sur 2 bits
 - -10110101 = 10110101
 - $-E=1_d$, $M=110101_b=-/(110101-1)=-11$
 - $Valeur = -11*2^1 = 22$

Algèbre de Boole

- Signaux numériques : 0 et 1
 - Nécessité d'une algèbre
 - Monde numérique : 2 valeurs, algèbre booléenne

• Boole: 1850

 Shannon : 1938 (machine à relais utilisant l'algèbre de Boole)

Algèbre de Boole

- Manipule des 0 et des 1
 - Résultat de même taille que les opérandes
 - Inversion (NOT)
 changement de valeur (complément)

Α	S
0	1
1	0

- ET logique (AND)
A.B = 1 si A et B = 1

Α	В	S
0	0	0
0	1	0
1	0	0
1	1	1

OU logique (OR)A + B = 1 si A ou B ou A et B = 1

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	1

Algèbre de Boole

• Idempotence

$$A \cdot A = A$$

$$A + A = A$$

Constantes

$$A . 0 = 0$$

$$A + 0 = A$$

$$A + 0 = A$$
 $A + 1 = 1$ $A \cdot 1 = A$

$$A . 1 = A$$

Commutativité

$$A \cdot B = B \cdot A$$

$$A + B = B + A$$

Complément

$$A \cdot /A = 0$$

$$A + /A = 1$$

Théorème de De Morgan

$$/A \cdot /B = / (A + B)$$
 $/A + /B = / (A \cdot B)$

$$/A + /B = / (A.B)$$

Portes logiques

- Inverseur (NOT)
- Non ET (NAND)
- Non OU (NOR)
- ET (AND)

• OU (OR)

AND

INVERSEUR NOT

NON ET

NON OU

NOR

Portes logiques: niveau transistor

Portes logiques : équivalences

Autres portes logiques

• OU EXCLUSIF (XOR)

XOR

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	0

$$S = A \oplus B = A \cdot \overline{B} + \overline{A} \cdot B$$

Autres portes logiques

- Buffer 3 états (0 / 1 / Z)
- Interrupteur avec regénération du signal

Autres portes logiques

- Porte de transmission
- Interrupteur sans regénération du signal

EN	Α	Υ
0	0	Z
0	1	Z
1	0	0
1	1	1

Si EN=1:

A=1 : PMOS passant A=0 : NMOS passant

Si EN=0:

A=X: PMOS, NMOS bloqués

Réalisation de circuits combinatoires

• Rechercher l'implémentation physique d'un

- Recherche d'une solution optimale en surface ou vitesse
 - Méthode:
 - Table de vérité : mise en forme du problème
 - Tableau de Karnaugh (ou algèbre !) : recherche d'équation minimale
 - Dessin du schéma électrique

Table de vérité: exemple de l'additionneur

 Ecrire les sorties en fonction des entrées (intuitif!)

Enoncé: addition binaire 3 entrées(donc il faut 2 sorties)

Ci	а	b	S	C o
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Tableau de Karnaugh: exemple de l'additionneur

 Pour chaque sortie, réécrire les valeurs différemment

- Tableau de la sortie Co

Valeurs de Co

	B A Ci	00	01	11	10
	0	, 0	0	1	0
_	1	0	1	1	1

Binaire codage gray

- Tableau de la sortie S

Valeurs _ de S

B A Ci	00	01	11	10
0	, 0	1	0	1
1	1	0	1	0

Tableau de Karnaugh: exemple de l'additionneur

 Faire les regroupements les plus grands possibles en base 2 entière (1,2,4,8...),
 Résolution sur les "1":

Tableau de la sortie Co

Valeurs de Co

B A Ci	00	01	11	10
0	, 0	0	1	0
1	0	1	1	1

- Tableau de la sortie S

B A Ci	00	01	11	10
0	, 0	1	0	1
1	1	0	1	0

Valeurs / de S

$$S = \frac{Ci \cdot B \cdot A}{Ci \cdot B \cdot A} + \frac{Ci \cdot B \cdot A}{Ci \cdot B \cdot A} + \frac{Ci \cdot B \cdot A}{Ci \cdot B \cdot A} = Ci \oplus B \oplus A$$

STI tc1

Schéma électrique: exemple de l'additionneur

 Schéma libre (utilisation de toutes les portes de base)

Schéma électrique: exemple de l'additionneur

- Schéma imposé: utiliser uniquement des portes NAND
 - Théorème de De Morgan

$$S=Ci \cdot B \cdot A+Ci \cdot B \cdot A+Ci \cdot B \cdot A$$

$$S=Ci \cdot B \cdot A+Ci \cdot B \cdot A+Ci \cdot B \cdot A$$

$$S=Ci \cdot B \cdot A+Ci \cdot B \cdot A+Ci \cdot B \cdot A$$

$$A \quad B \quad Ci$$

$$Co=Ci \cdot A+Ci \cdot B+A+B$$

Co=Ci.A.Ci.B.A.B

Etat X: don't care

- X vaut 1 ou 0, sans incidence sur le résultat
- Ex. détecter les nombres premiers sur les nombres 0,1,2,3,4,5. On doit donc utiliser 3 bits pour coder les nombres possibles

Е	E2	E1	EO	S
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	X
7	1	1	1	X

N'arrive jamais car ne fait pas partie des nombres d'entrée!

Etat X: don't care

• Exemple: détecter les nombres premiers sur les nombres 0,1,2,3,4,5. On doit donc utiliser 3 bits pour coder les nombres

E1 E0 E2	00	01	11	10
0	0	1	1	1
1	0	1	0	0

sans X

$$S = E_1 \cdot E_0 + E_2 \cdot E_0 + E_2 \cdot E_1$$

E1 E0 E2	00	01	11	10
0	0	1	1	1
1	0	1	X	X

avec
$$X$$

 $S=E_0+E_1$

Autres circuits utiles

 Multiplexeur (MUX), Démultiplexeur (DEMUX)

{sel1, sel0}
permettent de
sélectionner 1 entrée
parmi 4
(MUX)

S = A , B , C ou D selon sel1 sel0

{sel1, sel0}
permettent de
sélectionner 1 sortie
parmi 4
(DEMUX)

 $A => S_0$, S_1 , S_2 ou S_3 selon sel1 sel0

Autres circuits utiles

• Unité Arithmétique et Logique (UAL, ALU)

OP1	OP0	S
0	0	A+B
0	1	A-B
1	0	AxB
1	1	A.B

Bibliographie

- Logique combinatoire et séquentielle, C. Brie, coll. Technosup, Bibli ECL: 005.131 BRE
- Introduction aux circuits logiques, J. Letocha, McGraw-Hill, 1985