Applied modeling with BART: How, Why, and When

Sameer K. Deshpande

University of Wisconsin-Madison

18 May 2024

Follow along!

- GitHub Repo: https://go.wisc.edu/0f5xi5
- Slides & code (as RMarkdown documents & R scripts

Demo

• Where's the signal?

Demo

• Where's the signal?

Demo

- Where's the signal?
- BART estimate & uncertainty estimate look pretty good!
- And all we had to was call BART::wbart(x,y)

Nonparametric regression & classification

- Observed data: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ with $\mathbf{x}_n \in [0, 1]^p$
- Regression: $y_n = f(\mathbf{x}_n) + \sigma \epsilon_n$; $\epsilon_n \sim \mathcal{N}(0, 1)$
- Classification (w/ probit link): $\mathbb{P}(Y = 1) = \Phi(f(x))$
- Simultaneous (and often competing) goals:
 - ▶ Prediction: value of $f(x^*)$ & y^*
 - ▶ UQ: uncertainty intervals for $f(x^*)$ & y^*
 - ▶ Variable importance/selection: on which X_j does f depend?

Approaches to learning f

- Assume $f(\mathbf{x}) = \sum_{\mathbf{d}} \beta_{\mathbf{d}} \phi_{\mathbf{d}}(\mathbf{x})$
 - ▶ Basis $\{\phi_d\}$ could be linear, polynomial, splines, Fourier, etc.
 - ▶ Estimate β_d 's with OLS, LASSO, Bayesian linear regression, etc.
 - ${\mathfrak C}$ Correctly specifying $\{\phi_D\}$ is extremely hard!

Approaches to learning f

- Assume $f(\mathbf{x}) = \sum_{\mathbf{d}} \beta_{\mathbf{d}} \phi_{\mathbf{d}}(\mathbf{x})$
 - ▶ Basis $\{\phi_d\}$ could be linear, polynomial, splines, Fourier, etc.
 - \blacktriangleright Estimate β_d 's with OLS, LASSO, Bayesian linear regression, etc.
 - ${\mathfrak C}$ Correctly specifying $\{\phi_D\}$ is extremely hard!
- Classification & regression trees
 - ► Train a single regression tree to approximate f
 - © Interpretable, accurate, avoids pre-specifying form of f
 - Often unstable & non-smooth

Approaches to learning f

- Assume $f(\mathbf{x}) = \sum_{\mathbf{d}} \beta_{\mathbf{d}} \phi_{\mathbf{d}}(\mathbf{x})$
 - ▶ Basis $\{\phi_d\}$ could be linear, polynomial, splines, Fourier, etc.
 - \blacktriangleright Estimate β_d 's with OLS, LASSO, Bayesian linear regression, etc.
 - ${\mathfrak C}$ Correctly specifying $\{\phi_D\}$ is extremely hard!
- Classification & regression trees
 - ► Train a single regression tree to approximate f
 - \odot Interpretable, accurate, avoids pre-specifying form of f
 - Often unstable & non-smooth
- Ensemble methods
 - ▶ Approximate *f* with a (weighted) average of "weak learners":

$$\hat{f}(\boldsymbol{x}) = \sum_{m=1}^{M} w_m \hat{f}_m(\boldsymbol{x})$$

- ▶ Each \hat{f}_m may not fit data well but together they do
- © Tremendous empirical success (e.g. Netflix Prize, Kaggle)

Step function approximations

- Step functions are universal function approximators!
- Step functions can be represented as binary regression trees

Step function approximations

- Step functions are universal function approximators!
- Step functions can be represented as binary regression trees
- $oxed{S}$ Often need very deep tree to appx complicated f well

Sums of trees

- Sum of step functions is just another step function!
- Sums of regression trees is a more complicated regression tree!
- Averaging/ensembling introduces certain degree of smoothness

Digression: Pointillism

A Sunday afternoon on the island of La Grande Jatte, Georges Seurat Source

Preliminaries

Introducing BART

BART in practice

Parting Thoughts

Bayesian Additive Regression Trees

- Regression: $y_n = f(\mathbf{x}_n) + \sigma \varepsilon_n$; $\varepsilon_n \sim \mathcal{N}(0,1) \& \mathbf{x}_n \in [0,1]^p$
- Main idea: approximate f(x) with sum of M regression trees
- Prior encourages trees to be "weak learners"
- Gibbs sampler: update each tree conditionally on fit of all others

Posterior computation & implementation

- Metropolis-within-Gibbs: update each tree sequentially fixing others
 - ▶ Update decision tree with MH (randomly grow or prune tree)
 - ▶ Update leaf parameters / tree outputs conditional on tree
- No optimization involved!!

Outline

Preliminaries

Introducing BART

BART in practice

Parting Thoughts

Several implementations

- BART: Sparapani, Spanbauer, & McCulloch (2021)
 - Support for many extensions (e.g., classification, survival)
 - ▶ Based on efficient C++ regression tree class & sampler
- **dbarts**: Dorie (2020)
 - ▶ Makes it easy to include a sum-of-trees component in a larger model
 - ► E.g. $y_i = \mathbf{x}_i^{\top} \beta + f(\mathbf{x}_i) + \sigma \epsilon_i$
- flexBART: available at (GitHub repo)
 - ► Flexibly handle categorical predictors and observations on networks
 - Much faster than BART
 - Still under active development
- bartMachine: Kapelner & Bleich (2014)
 - Core fitting written in Java
 - ⊖ Non-trivial overhead in installing & setting up system
- PyMC-BART: From the PyMC team
 - ▶ Uses sequential Monte Carlo & is rather different than the above

Outline

Preliminaries

Introducing BART

BART in practice

Parting Thoughts

Variable importance & selection

- Variable importance in treed models is still area of on-going research
- For BART, counting # decision rules using X_i not recommended

Variable importance & selection

- Variable importance in treed models is still area of on-going research
- For BART, counting # decision rules using X_i not recommended
- Partial dependence plots
 - $\overline{f}_{j}(x) = n^{-1} \sum_{i} f(x_{i,1}, \dots, x_{i,j-1}, x, x_{i,j+1}, \dots, x_{i,p})$
 - ▶ Implemented in dbarts::pdbart and easy to do by hand

Variable importance & selection

- Variable importance in treed models is still area of on-going research
- For BART, counting # decision rules using X_i not recommended
- Partial dependence plots
 - $\overline{f}_{j}(x) = n^{-1} \sum_{i} f(x_{i,1}, \dots, x_{i,j-1}, x, x_{i,j+1}, \dots, x_{i,p})$
 - ▶ Implemented in dbarts::pdbart and easy to do by hand
- Linero (2018) modifies BART so that
 - ▶ Split on X_i with prob. θ_i (in prior & in MH transition)
 - \triangleright θ given a sparsity-inducing Dirichlet prior
 - ▶ Adaptation: more accepted splits on $X_j \Rightarrow$ more proposed splits on X_j
 - ▶ Select X_j if more than 50% of ensembles involve a split on X_j

BART extensions

- Survival/time-to-event: Sparapani et al. (2016)
- Heteroscedasticity: Pratola et al. (2020)
 - $y_n = f(\mathbf{x}_n) + \sigma(\mathbf{x}_n)\varepsilon_n$, write $\log(\sigma^2(\mathbf{x}))$ as a sum-of-trees!
- Monotonic BART: Chipman et al. (2019)
- Smooth functions: Starling et al. (2020); Yee & D. (2024+)
- Varying coefficient models: D. et al. (2020+)
 - $Y = \beta_0(Z) + \beta_1(Z)X_1 + \dots + \beta_p(Z)X_p + \sigma\epsilon$
 - ► E.g. time & demographic varying mediation effects
- Expected runs/points: Yee & D. (2024)
- Conditional density estimates: Orlandi et al. (2024+)
- Causal inference: Hill (2011) & Hahn et al (2020)

Concluding remarks

- BART: approximate f with sum of regression trees
- Avoids pre-specification of functional form of $f(x) = \mathbb{E}[Y \mid X = x]$
- Excellent performance off-the-shelf
- Lots still in development ... get in touch!

Concluding remarks

- BART: approximate f with sum of regression trees
- Avoids pre-specification of functional form of $f(x) = \mathbb{E}[Y \mid X = x]$
- Excellent performance off-the-shelf
- Lots still in development ... get in touch!

Thanks, y'all!

Email: sameer.deshpande@wisc.edu

Website: https://skdeshpande91.github.io

Twitter: @skdeshpande91

Workshop Material: https://go.wisc.edu/0f5xi5

A prior over regression trees

- Branching process prior on graphical structure
- Overwhelming prior prob. that tree depth < 5

A prior over regression trees

- Branching process prior on graphical structure
- ullet Overwhelming prior prob. that tree depth < 5
- Decision rule $\{X_j \in \mathcal{C}\}$
 - \triangleright X_i continuous: \mathcal{C} is an interval [0,c)
 - ▶ X_j categorical: C is a discrete subset of X_j 's levels

A prior over regression trees

- Branching process prior on graphical structure
- ullet Overwhelming prior prob. that tree depth < 5
- Decision rule $\{X_j \in \mathcal{C}\}$
 - $ightharpoonup X_i$ continuous: C is an interval [0,c)
 - ▶ X_j categorical: C is a discrete subset of X_j 's levels
- Leaf outputs $\mu_{\ell} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \tau^2/M)$

Decision rule prior

- 1. Draw $j \sim \text{Multinomial}(\theta_1, \dots, \theta_p)$ where $\theta_i = \mathbb{P}(\text{split on } X_i)$
- 2. Compute set of all available values A_i
 - \triangleright A_i determined by rules at ancestors
 - X_i continuous $o \mathcal{A}$ is an interval
 - $ightharpoonup X_j$ categorical $ightharpoonup \mathcal{A}$ is discrete set
- 3. Draw random subset $\mathcal C$ from $\mathcal A_j$
 - ▶ X_j ccontinuous: draw $c \sim \mathcal{U}(A_j)$ and set C = [0, c)
 - ▶ X_j categorical: assign elements of A_j to C with probability 0.5

