Задание 1. Свободное движение. Дана система 2-го порядка, представленная в форме Вход-Выход

$$\ddot{y} + a_1 \dot{y} + a_0 y = u.$$

Самостоятельно придумайте семь наборов (λ_1, λ_2) корней характеристического уравнения, соответствующих

- 1. двум устойчивыми апериодическим модам;
- 2. устойчивой и неустойчивой апериодическим модам;
- 3. нейтральной и апериодической модам;
- 4. нейтральной и линейной* модам;
- 5. паре консервативных мод;
- 6. паре устойчивых колебательных мод;
- 7. паре неустойчивых колебательных мод.

Вычислите коэффициенты a_1, a_0 системы и найдите аналитическое выражение для свободной составляющей её движения $y_{cs}(t)$. В отчёте приведите все вычисления и полученные результаты. Проанализируйте устойчивость каждой из систем на основании корневого критерия, сделайте соответствующие выводы.

Для каждой системы выберите ненулевые начальные условия y(0) и $\dot{y}(0)$. Составьте схему для моделирования свободного движения и проведите моделирование сначала с нулевыми начальными условиями, а затем с выбранными ненулевыми. В отчёте приведите графики зависимостей y(t) и $\dot{y}(t)$. Сделайте выводы.

Задание 2. Фазовые портреты. Самостоятельно изучите, что такое фазовые портреты системы. Для каждого набора значений корней (λ_1, λ_2) из задания 1 и произвольно выбранных трех наборов ненулевых начальных условий постройте (на одном графике) фазовые портреты (фазовые траектории) $\dot{y}(y)$. Сделайте выводы о виде фазового портрета в зависимости от типа устойчивости системы.

Минутка творчества! Проявите креативность, исследовав изменения фазового портрета в зависимости от выбранных корней характеристического уравнения. Можно менять величину корней по модулю, менять величину мнимых и вещественных частей по отдельности. Чем объёмнее и полнее исследование у вас получится, тем лучше!

Задание 3. Вынужденное движение. Выберите три системы из задания 1 с разными типами устойчивости (асимптотически устойчивую, на границе устойчивости и неустойчивую). Для каждого входного воздействия u(t) осуществите моделирование вынужденного движения системы при $t \geq 0$ с начальными условиями y(0) = -1; 0; 1 и $\dot{y}(0) = 0$. Входные сигналы u(t) возьмите в Табл. 1. в соответствии со своим вариантом. В отчёте приведите графики выходных сигналов y(t). Сделайте выводы.

^{*} Под «линейной» мы понимаем моду, пропорциональную времени t.

(Подсказка: для повышения наглядности рекомендуем для каждой системы и каждого входного воздействия построить графики выхода с различными начальными условиями на одних координатных осях. Всего должно получиться по 3 изображения для каждой системы, на каждом из которых будет 3 траектории выхода, полученные для разных начальных условий).

Задание 4. Область устойчивости. Соберите схему моделирования линейной системы третьего порядка (рис. 1), установив значение постоянных времени T_1 и T_2 таким образом, чтобы полюса соответствующих передаточных функций совпали с первым набором корней (λ_1, λ_2) из задания 1.

Рис. 1: Схема моделирования для задания 4

Определите аналитически границу устойчивости в пространстве параметров K и T_1 для системы с фиксированным значением T_2 , опираясь на критерий Гурвица. Приведите графическое изображение границы устойчивости на плоскости двух параметров $K(T_1)$ и определите область устойчивости системы. Сделайте выводы.

Определите аналитически границу устойчивости в пространстве параметров K и T_2 для системы с фиксированным значением T_1 , опираясь на критерий Гурвица. Приведите графическое изображение границы устойчивости на плоскости двух параметров $K(T_2)$ и определите область устойчивости системы. Сделайте выводы.

Возьмите три набора параметров K, T_1 и T_2 таких, чтобы первый набор соответствовал устойчивой системе, второй – системе на границе устойчивости, а третий – неустойчивой системе. Выполните моделирование при g(t)=1 и сделайте выводы.

Задание 5. Вновь свободное движение. Придумайте такую систему вида

$$\begin{cases} \dot{x} = Ax, \\ y = Cx \end{cases}$$

с ненулевыми начальными условиями x(0), чтобы выход системы при свободном движении совпадал с желаемым выходом (см. Табл. 2) в соответствии с вашим вариантом задания. В отчёте приведите матрицы A и C полученной системы, схему моделирования и результаты моделирования свободного движения системы с заданными начальными условиями. Выполните сравнение полученного выхода с желаемым. Сделайте выводы.

Таблица 1: Исходные данные для задания 3

Вариант	Входной сигнал		
1	1	0.5t	$\sin t$
2	1.5	0.6t	$\sin 2t$
3	2	0.7t	$\sin 3t$
4	2.5	0.8t	$\sin 4t$
5	1	0.5t	$\sin 5t$
6	1.5	0.6t	$\sin 4t$
7	2	0.7t	$\sin 3t$
8	2.5	0.8t	$\sin 2t$
9	1	0.5t	$\sin t$
10	1.5	0.6t	$\sin 2t$
11	2	0.7t	$\cos 3t$
12	2.5	0.8t	$\cos 4t$
13	1	0.5t	$\cos 5t$
14	1.5	0.6t	$\cos 4t$
15	2	0.7t	$\cos 3t$
16	2.5	0.8t	$\cos 2t$
17	1	0.5t	$\cos t$
18	1.5	0.6t	$\cos 2t$
19	2	0.7t	$\cos 3t$
20	2.5	0.8t	$\cos 4t$

Таблица 2: Исходные данные для задания 5

Вариант	Желаемый выход системы	Вариант	Желаемый выход системы
1	$y(t) = \sin t + e^{3t} \cos 9t$	11	$y(t) = \sin(-5t) + e^{-7t}\sin 9t$
2	$y(t) = \cos(-2t) + e^{6t}\sin 5t$	12	$y(t) = \cos 4t + e^{-8t} \cos 5t$
3	$y(t) = \sin 3t + e^{9t} \cos t$	13	$y(t) = \sin t + e^{-3t} + e^{4t}$
4	$y(t) = \cos 8t + e^{8t} \sin(-2t)$	14	$y(t) = \cos(-2t) + e^{-8t} + te^{-8t}$
5	$y(t) = \sin(-6t) + e^{2t} + e^{-t}$	15	$y(t) = \sin 9t + e^{-8t} + te^{7t}$
6	$y(t) = \cos 5t + e^t + e^{-5t}$	16	$y(t) = \cos 7t + e^{5t} + e^{4t}$
7	$y(t) = \sin(-5t) + e^{5t}\cos(-5t)$	17	$y(t) = \cos 6t + e^{-2t} \cos 3t$
8	$y(t) = \sin(-3t) + e^{-9t} + e^{-t}$	18	$y(t) = \sin 7t + e^{-t} \sin 7t$
9	$y(t) = \cos 2t + e^{6t} + e^{-2t}$	19	$y(t) = \sin 3t + e^{5t} + e^{6t}$
10	$y(t) = \cos 6t + e^{-4t} \cos 8t$	20	$y(t) = \cos(-4t) + e^{4t} + te^{4t}$