1

Assignment 11

Yenigalla Samyuktha EE20MTECH14019

Abstract—This document explains a proof on linear transformations.

Download all latex-tikz codes from

https://github.com/EE20MTECH14019/EE5609/ tree/master/Assignment 11

1 Problem

Let \mathbb{W} be the set of all 2×2 complex Hermitian matrices, that is the <u>sset</u> of 2×2 complex matrices **A** ssuch that $\mathbf{A}_{ij} = \overline{\mathbf{A}_{ji}}$ (the bar denoting complex conjugation). \mathbb{W} is a vector space over the field of real numbers, under the usual operations. Verify that

$$\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \rightarrow \begin{pmatrix} t + x & y + iz \\ y - iz & t - x \end{pmatrix}$$
 (1.0.1)

is an isomorphism of \mathbb{R}^4 onto \mathbb{W} .

2 Solution

1) **Check for linearity:** The transformation T is given by

$$T: \mathbb{R}^4 \to \mathbb{W} \tag{2.0.1}$$

$$T \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} t + x & y + iz \\ y - iz & t - x \end{pmatrix}$$
 (2.0.2)

Let $\mathbf{x} = \begin{pmatrix} x \\ y \\ t \\ z \end{pmatrix}$. Expressing R.H.S of equation

(2.0.2) using Kronecker Product,

$$T(\mathbf{x}) = \begin{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix} \mathbf{x} & \begin{pmatrix} 0 & 1 & i & 0 \end{pmatrix} \mathbf{x} \\ \begin{pmatrix} 0 & 1 & -i & 0 \end{pmatrix} \mathbf{x} & \begin{pmatrix} -1 & 0 & 0 & 1 \end{pmatrix} \mathbf{x} \end{pmatrix}$$

$$= \left(\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -i & 0 \end{pmatrix} \mathbf{x} \quad \begin{pmatrix} 0 & 1 & i & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix} \mathbf{x} \right)$$
(2.0.4)

$$= \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 & i & 0 \\ 0 & 1 & -i & 0 & -1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x & 0 \\ y & 0 \\ z & 0 \\ t & 0 \\ 0 & x \\ 0 & y \\ 0 & z \\ 0 & t \end{pmatrix}$$

$$(2.0.5)$$

$$\implies T(\mathbf{x}) = \begin{pmatrix} \mathbf{A} & \mathbf{B} \end{pmatrix} \begin{pmatrix} \mathbf{x} & \mathbf{0}_{4\times 1} \\ \mathbf{0}_{4\times 1} & \mathbf{x} \end{pmatrix} \quad (2.0.6)$$

Where **A** and **B** are block matrices.

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -i & 0 \end{pmatrix} \tag{2.0.7}$$

$$\mathbf{B} = \begin{pmatrix} 0 & 1 & i & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix} \tag{2.0.8}$$

The Kronecker Product of I_2 and x gives the block matrix in equation (2.0.6).

$$\mathbf{I}_{2\times 2} \otimes \mathbf{x}_{4\times 1} = \begin{pmatrix} \mathbf{x} & \mathbf{0} \\ \mathbf{0} & \mathbf{x} \end{pmatrix}_{8\times 2} \tag{2.0.9}$$

Hence we can write equation (2.0.6) as,

$$T(\mathbf{x}) = (\mathbf{A} \quad \mathbf{B})(\mathbf{I} \otimes \mathbf{x}) \tag{2.0.10}$$

Let $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^4$ and $\alpha, \beta \in \mathbb{R}$.

$$T (\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) = (\mathbf{A} \quad \mathbf{B}) (\mathbf{I} \otimes (\alpha \mathbf{x}_1 + \beta \mathbf{x}_2))$$

$$(2.0.11)$$

$$= \alpha (\mathbf{A} \quad \mathbf{B}) (\mathbf{I} \otimes \mathbf{x}_1) + \beta (\mathbf{A} \quad \mathbf{B}) (\mathbf{I} \otimes \mathbf{x}_2)$$

$$(2.0.12)$$

$$= \alpha T \mathbf{x}_1 + \beta T \mathbf{x}_2$$

$$(2.0.13)$$

Therefore from equation (2.0.13), we can say T is linear transformation.

2) Check for one-one property: For transformation T to be one-one, we can prove if $T(\mathbf{x}) = \mathbf{0}$, that implies $\mathbf{x} = \mathbf{0}$. From the equation (2.0.10),

$$T(\mathbf{x}) = \mathbf{0} \tag{2.0.14}$$

$$(\mathbf{A} \quad \mathbf{B})(\mathbf{I} \otimes \mathbf{x}) = \mathbf{0} \tag{2.0.15}$$

$$\implies \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 & i & 0 \\ 0 & 1 & -i & 0 & -1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x & 0 \\ y & 0 \\ z & 0 \\ t & 0 \\ 0 & x \\ 0 & y \\ 0 & z \\ 0 & t \end{pmatrix} = \mathbf{0}_{2 \times 2}$$

$$(2.0.16)$$

From equation (2.0.2),

$$\begin{pmatrix} t+x & y+iz \\ y-iz & t-x \end{pmatrix} = \mathbf{0}_{2\times 2}$$
 (2.0.17)

$$\implies x = 0, y = 0, z = 0, t = 0$$
 (2.0.18)

$$\implies \mathbf{x} = \mathbf{0}$$
 (2.0.19)

Hence from (2.0.14) and (2.0.19), T is one-one and that implies $T: \mathbb{R}^4 \to \mathbb{W}$ is isomorphism.