Мехмат МГУ, 4ый курс, 8 семестр Практикум по ЭВМ, 2023

Задача №16

Лещенко Сергей 411

31 мая 2023

1 Постановка задачи

Для системы уравнений теории упругости в единичном квадрате

$$\begin{cases}
-\nabla u - \Delta divu = f \\
u \mid_{\partial\Omega} = 0 \\
u = (u_1, u_2)
\end{cases}$$

построить разностную схему второго порядка аппроксимации и решить полученную ЛАУ при помощи метода Ричардсона с переобуславливателем.

2 Численное решение

2.1 Сетка

В данной области

$$\Omega = \{(x, y) : 0 \le x \le 1, 0 \le y \le 1\}$$

рассмотрим равномерную сетку

$$\omega_h = \{x_i = ih, y_j = jh, i, j = 0, 1, 2..., N\}$$

с шагом $h=\frac{1}{N}$, где N - число точек.

2.2 Разностная схема

Распишем исходную систему уравнений, положив $f = (f_1, f_2)$. Тогда:

$$-\nabla u - \Delta divu = -\left(\frac{\partial^2 u_1}{\partial x^2} + \frac{\partial^2 u_1}{\partial y^2}, \frac{\partial^2 u_2}{\partial x^2} + \frac{\partial^2 u_2}{\partial y^2}\right) - \left(\frac{\partial^2 u_1}{\partial x^2} + \frac{\partial^2 u_2}{\partial x \partial y}, \frac{\partial^2 u_1}{\partial x \partial y} + \frac{\partial^2 u_2}{\partial y^2}\right) = -\frac{\partial^2 u_1}{\partial x^2} + \frac{\partial^2 u_2}{\partial y^2} + \frac{\partial^2 u_2}{\partial y^2$$

$$=-\left(2\frac{\partial^2 u_1}{\partial x^2}+\frac{\partial^2 u_2}{\partial x \partial y}+\frac{\partial^2 u_1}{\partial y^2},\frac{\partial^2 u_1}{\partial x \partial y}+2\frac{\partial^2 u_2}{\partial y^2}+\frac{\partial^2 u_2}{\partial x^2}\right)=(f_1,f_2)$$

Решение разностного уравнения в точке (x_i, y_i) обозначим $u_{i,i}$.

Так как надо аппроксимировать вторые производные, то воспользуемся трехточечным шаблоном, состоящим из узлов. Далее, для удобства, полагаем, что $u_1(x_i, y_j) = u_{i,j}, u_2(x_i, y_j) = v_{i,j}$. Получим:

$$(L_{xx}u)_{i,j} := \frac{\partial^2 u}{\partial x^2} \simeq \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2}$$

$$(L_{yy}u)_{i,j} := \frac{\partial^2 u}{\partial y^2} \simeq \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^2}$$

$$(L_{xy}u)_{i,j} := \frac{\partial^2 u}{\partial x \partial y} \simeq \frac{u_{i+1,j+1} - u_{i-1,j+1} - u_{i+1,j-1} + u_{i-1,j-1}}{4h^2}$$

Для v получаем аналогичную аппроксимацию.

Откуда получаем соответствующую разностную схему в узле (x_i, y_j) :

$$\begin{cases} f_1(x_i,y_j) = -\frac{2}{h^2}u_{i+1,j} + \frac{6}{h^2}u_{i,j} - \frac{2}{h^2}u_{i-1,j} - \frac{1}{h^2}u_{i,j+1} - \frac{1}{h^2}u_{i,j-1} - \frac{1}{h^2}v_{i+1,j+1} + \frac{1}{4h^2}v_{i+1,j-1} + \frac{1}{4h^2}v_{i-1,j+1} - \frac{1}{4h^2}v_{i-1,j-1} \\ f_2(x_i,y_j) = -\frac{2}{h^2}v_{i,j+1} + \frac{6}{h^2}v_{i,j} - \frac{2}{h^2}v_{i,j-1} - \frac{1}{h^2}v_{i+1,j} - \frac{1}{h^2}v_{i-1,j} - \frac{1}{4h^2}u_{i+1,j+1} + \frac{1}{4h^2}u_{i-1,j+1} + \frac{1}{4h^2}u_{i+1,j-1} - \frac{1}{4h^2}u_{i-1,j-1} \end{cases}$$

2.3 Метод решения

Решение задачи сводится к решению СЛАУ вида Ax = f методом Ричардсона, где коэффициенты матрицы A получены из уравнений разностной схемы.

Представим матрицу A в виде A=L+R+D, где D - диагональная матрица, L,R- левая нижняя и правая верхняя с нулевыми диагоналями треугольные матрицы соответственно. Для простоты, в качестве предобуслевателя B возьмем D. Положим, что начальное приближенное решение системы x^0 - нулевой вектор.

Будем последовательно вычислять

$$x^{k+1} = (1-\tau)x^k + \tau D^{-1}(f - (L+R)x^k)$$

до тех пор, пока $\|x^{k+1} - x^k\|_2 < eps.$

3 Точное решение

В качестве точного решения возьмем достаточно гладкие функции

$$u_1 = (x-1)(y-1)xy,$$

$$u_2 = (x-1)(y-1)\sin x \sin y.$$

Далее вычислим все вторые производные и найдем из исходной системы f_1, f_2 . В качестве $\|error\| := \|u - u_r\|_2$, где u_r - решение, полученное итерационно.

4 Таблица результатов

N	au	$\ error\ $	$\frac{\ error_{i-1}\ }{\ error_i\ }$
5	0.97	0.000978445	_
10	0.97	0.000485586	2.03
20	0.97	0.000241506	2.01
40	0.97	0.000118869	2.04
80	0.97	5.33851e-05	2.21

Список литературы

[1] Разностные методы для эллиптических уравнений. А. А. Самарский, В. Б. Анд реев. Главная редакция физико-математической литературы изд-ва «Наука», М., 1976.