Exercises 6

1) Let V be the boundary curve of the portion of the plane 2x+y+z=2 in the first octant. Let Y be oriented so that it's projection on the xy-plane is oriented counter-cluckwise. Calculate

Px XZdx + xydy + 3xzdz

Solution: Le have gy F'.dr = I Con F. Wds

First calculate Curl F.

Curl F = | $\vec{e_1}$ | $\vec{e_2}$ | $\vec{e_3}$ | $\vec{e_3}$ | $\vec{e_3}$ | $\vec{e_4}$ | $\vec{e_5}$ | $\vec{e_7}$ |

S CurIF·N dS = S (0, x-3=y) · √G dxdy $= \iint x-3z+y \, dxdy = \iint x-3(z-2x-y)+y \, dxdy$

 $-\int_{0}^{1} \int_{0}^{2-2x} 7x + 3y - 6 \, dy \, dx =$ $= \int_{0}^{1} \left[7xy - \frac{3y^{2}}{4} - 6y \right]_{0}^{2-2x} dx =$ $= \int_{0}^{1} 7x (2-2x) - \frac{3}{2} (2-2x)^{2} - 12 + 12x dx = \int_{0}^{1} -18 + 38x - 26 x^{2} dx =$ $= -18 + \frac{38}{2} - \frac{26}{3} = -\frac{23}{3}$

2) Let
$$F(x_1y_1z) = (-y + x\sqrt{x^2+y^2}, x + y\sqrt{x^2+y^2}, z)$$

Write the vector field in extindrical coordinates that is find F_R , f_0 and F_z in

$$F = F_R \hat{r} + F_0 \hat{r} + F_z \hat{r} = F_z \hat{r} + F_0 \hat{r} + F_z \hat{r} = F_z \hat{r} + F_0 \hat{r} + F_z \hat{r} = F_z \hat{r} + F_0 \hat{r} + F_z \hat{r} = F_z \hat{r} + F_0 \hat{r} + F_z \hat{r} = F_z \hat{r} + F_0 \hat{r} + F_z \hat{r} = F_z \hat{r} + F_0 \hat{r} + F_z \hat{r} = F_z \hat{r} + F_z \hat{r} = F_z \hat{r} + F_z \hat{r} = F_z \hat{r} + F_z \hat{r}$$

=> F= R2 R+ RO+Z2

3) Define curvilinear coordinates in
$$xy$$
-space via $F'(u,v) = (\chi(u,v), y(u,v)) = (u^2-v^2, 2uv)$

Show that this curvilinear coordinate system is orthogonal when $(x_{iy}) \neq (0,0)$. Sketch the coordinate curves $u = u_0$ and $v = v_0$.

Solution:
$$\frac{\partial \vec{r}}{\partial u} = (2u, 2v)$$
 and $\frac{\partial \vec{r}}{\partial v} = (-2v, 2u)$

Also
$$\hat{u} = \frac{1}{h_u} \frac{\partial \hat{v}}{\partial u}$$
 and $\hat{v} = \frac{1}{h_v} \frac{\partial \hat{v}}{\partial v}$

$$\frac{\partial \vec{r}}{\partial u} = \frac{1}{h_u h_v} \frac{\partial \vec{r}}{\partial u} = \frac{1}{h_u h_v} \left(2u \left(-2v \right) + 2v 2u \right)$$

We shatch the coordinate curves

Coordinate curve u= u0

$$X = u_0^2 - v^2$$
 and $y = 2u_0v$
gives $X = u_0^2 - \frac{y^2}{4u^2}$ if $u_0 \neq 0$

$$x=-v^2$$
 and $y=0$ if $u_0=0$

