A Phylogenetic Analysis of GPT and GPT2 Evolution

Jacob Thomas May 10, 2016

What is GPT/GPT2?

- Glutamic pyruvate transaminase (2)
 - Also called Alanine Aminotransferase (ALT1/ALT2)
- GPT is expressed in the cytosol of humans and mouse
- GPT2 is in the mitochondria
 - Chromosomal gene

Glutamate + Pyruvate ketoglutarate + alanine

Why Study GPT2?

 Loss of GPT2 has been shown to cause developmental encephalopathy

J Inherit Metab Dis (2015) 38:941–948 DOI 10.1007/s10545-015-9824-x

ORIGINAL ARTICLE

Loss of function mutation in glutamic pyruvate transaminase 2 (GPT2) causes developmental encephalopathy

Katrina Celis • Scott Shuldiner • Eden V. Haverfield • Joshua Cappell • Rongze Yang • Da-Wei Gong • Wendy K. Chung

My Question

GPT and GPT2 are conserved in a number of species. Did they evolve separately from a common ancestor or are have they evolved uniquely in each species?

Methods

- Identify gene and protein sequences using data from Homologene
 - I chose to only use species with both GPT and GPT2
- Using a process similar to that from hydroildolina assignment
 - Alignment with mafft → RAxML
 - GTRGAMMA for mRNA data
 - PROTGAMMAWAG

Species	Protein Family	Gene Name
Homo sapiens	GPT	GPT
Pan troglodytes	GPT	GPT
Macaca mulatta	GPT	GPT
Bos taurus	GPT	GPT
Mus musculus	GPT	Gpt
Rattus norvegicus	GPT	Gpt
Xenopus tropicalis	GPT	gpt2
Danio rerio	GPT	gpt2l
Saccharomyces cerevisiae	GPT	ALT2
Homo sapiens	GPT2	GPT2
Pan troglodytes	GPT2	GPT2
Macaca mulatta	GPT2	GPT2
Bos taurus	GPT2	GPT2
Mus musculus	GPT2	Gpt2
Rattus norvegicus	GPT2	Gpt2
Xenopus tropicalis	GPT2	gpt2
Danio rerio	GPT2	gpt2
Saccharomyces cerevisiae	GPT2	ALT1

Results: mRNA "control" trees

0.3

Results: protein "control" trees

0.2

Saocharomyces perevisiae:

Results: concatenated "control" trees

0.2

Conclusions

- Difficult to draw conclusions about cellular localizations as I could only find data for human mouse and rat.
- Raises some questions for me about homologene:
 - They use protein sequence as opposed to mRNA?
 - Why does yeast group separately in both but are assigned to different homologene groups?