

High dimensional time series analysis

5. Forecast reconciliation

robjhyndman.com/hdtsa

Outline

- 1 Hierarchical and grouped time series
- 2 Forecast reconciliation
- 3 Example: Australian tourism
- 4 Lab Session 10

Outline

- 1 Hierarchical and grouped time series
- 2 Forecast reconciliation
- 3 Example: Australian tourism
- 4 Lab Session 10

Australian Pharmaceutical Benefits Scheme

PBS sales

PBS

```
## # A tsibble: 65,219 x 9 [1M]
               Concession, Type, ATC1, ATC2 [336]
## # Kev:
          Month Concession Type ATC1 ATC1_desc ATC2
                                                     ATC2_desc Scripts
##
                          <chr> <chr> <chr>
                                                                 <dbl>
##
          <mth> <chr>
                                                <chr> <chr>
##
       1991 Jul Concessio~ Co-p~ A Alimenta~ A01
                                                      STOMATOL~
                                                                 18228
##
       1991 Aug Concessio~ Co-p~ A Alimenta~ A01
                                                      STOMATOL~
                                                                 15327
##
   3
       1991 Sep Concessio~ Co-p~ A Alimenta~ A01
                                                      STOMATOL ~
                                                                 14775
##
       1991 Oct Concessio~ Co-p~ A
                                      Alimenta~ A01
                                                      STOMATOL~
                                                                 15380
   5
       1991 Nov Concessio~ Co-p~ A
                                      Alimenta~ A01
                                                      STOMATOL~
                                                                 14371
##
##
   6
       1991 Dec Concessio~ Co-p~ A
                                      Alimenta~ A01
                                                      STOMATOL ~
                                                                 15028
##
       1992 Jan Concessio~ Co-p~ A
                                      Alimenta~ A01
                                                      STOMATOL~
                                                                 11040
                                                                 15165
##
       1992 Feb Concessio~ Co-p~ A
                                      Alimenta~ A01
                                                      STOMATOL~
   8
##
       1992 Mar Concessio~ Co-p~ A
                                     Alimenta~ A01
                                                      STOMATOL ~
                                                                 16898
##
       1992 Apr Concessio~ Co-p~ A
                                      Alimenta~ A01
                                                      STOMATOL ~
                                                                 18141
  10
  # ... with 65,209 more rows, and 1 more variable: Cost <dbl>
```

ATC drug classification

- A Alimentary tract and metabolism
- B Blood and blood forming organs
- C Cardiovascular system
- D Dermatologicals
- G Genito-urinary system and sex hormones
- Systemic hormonal preparations, excluding sex hormones and insulins
- J Anti-infectives for systemic use
- L Antineoplastic and immunomodulating agents
- M Musculo-skeletal system
- N Nervous system
- P Antiparasitic products, insecticides and repellents
- R Respiratory system
- S Sensory organs
- V Various

ATC drug classification

A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.

A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.

Examples

- PBS sales by ATC groups
- Tourism demand by states, zones, regions

Australian tourism

Australian tourism

tourism

```
## # A tsibble: 24,320 x 5 [1Q]
##
  # Key:
          Region, State, Purpose [304]
##
     Quarter Region
                       State
                                       Purpose
                                                Trips
##
        <atr> <chr> <chr>
                                       <chr>
                                                <dbl>
    1 1998 01 Adelaide South Australia Business
                                                 135.
##
    2 1998 Q2 Adelaide South Australia Business
                                                 110.
##
##
    3 1998 03 Adelaide South Australia Business
                                                 166.
##
    4 1998 Q4 Adelaide South Australia Business
                                                 127.
    5 1999 O1 Adelaide South Australia Business
                                                 137.
##
##
    6 1999 Q2 Adelaide South Australia Business
                                                 200.
    7 1999 Q3 Adelaide South Australia Business
                                                 169.
##
    8 1999 Q4 Adelaide South Australia Business
                                                 134.
##
##
     2000 O1 Adelaide South Australia Business
                                                 154.
     2000 02 Adelaide South Australia Business
                                                 169.
```

Australian tourism

- Quarterly data on visitor night from 1998:Q1 2013:Q4
- From: *National Visitor Survey*, based on annual interviews of 120,000 Australians aged 15+, collected by Tourism Research Australia.
- Split by 7 states, 27 zones and 76 regions (a geographical hierarchy)
- Also split by purpose of travel
 - Holiday
 - Visiting friends and relatives (VFR)
 - Business
 - Other
- 304 bottom-level series

Grouped time series

A grouped time series is a collection of time series that can be grouped together in a number of non-hierarchical ways.

Grouped time series

A grouped time series is a collection of time series that can be grouped together in a number of non-hierarchical ways.

Examples

- Tourism by state and purpose of travel
- Retail sales by product groups/sub groups, and by countries/regions

Creating aggregates

```
PBS %>%
  aggregate_key(ATC1/ATC2, Scripts = sum(Scripts)) %>%
  filter(Month == yearmonth("1991 Jul")) %>% print(n=18)
```

```
## # A tsibble: 98 x 4 [?]
                ATC1, ATC2 [98]
## # Key:
##
     ATC1
                   ATC2
                                   Month Scripts
##
     <chr>
                   <chr>
                                   <mth>
                                           <dbl>
##
    1 <aggregated> <aggregated> 1991 Jul 8090395
##
   2 A
                   <aggregated> 1991 Jul
                                         799025
   3 B
                   <aggregated> 1991 Jul 109227
##
##
   4 C
                   <aggregated> 1991 Jul 1794995
##
   5 D
                   <aggregated> 1991 Jul 299779
   6 G
                   <aggregated> 1991 Jul
                                         300931
   7 H
                   <aggregated> 1991 Jul
                                         112114
##
   8 J
                   <aggregated> 1991 Jul 1151681
   9 1
                   <aggregated> 1991 Jul
                                           24580
##
## 10 M
                   <aggregated> 1991 Jul
                                          562956
## 11 N
                   <aggregated> 1991 Jul 1546023
## 12 P
                   <aggregated> 1991 Jul
                                           47661
## 13 R
                   <aggregated> 1991 Jul 859273
## 14 S
                   <aggregated> 1991 Jul 391639
## 15 V
                   <aggregated> 1991 Jul
                                           38705
## 16 Z
                   <aggregated> 1991 Jul
                                           51806
## 17 A
                                1991 Jul
                                          22615
                   A 0 1
## 18 A
                   A02
                               1991 Jul 299251
## # ... with 80 more rows
```

Creating aggregates

```
tourism %>%
  aggregate_key(Purpose * (State / Region), Trips = sum(Trips)) %>%
  filter(Quarter == yearquarter("1998 Q1")) %>% print(n=15)
```

```
## # A tsibble: 425 x 5 [?]
              Purpose, State, Region [425]
## # Key:
##
     Purpose
                 State
                                Region
                                            Quarter Trips
##
     <chr>
                 <chr>>
                                <chr>
                                            <atr>
                                                     <dbl>
                                <aggregated> 1998 Q1 23182.
##
   1 <aggregated> <aggregated>
##
   2 Business <aggregated>
                              <aggregated> 1998 Q1 3599.
##
   3 Holiday <aggregated> <aggregated> 1998 01 11806.
   4 Other <aggregated> <aggregated> 1998 Q1 680.
##
##
   5 Visiting <aggregated> <aggregated>
                                            1998 01 7098.
##
   6 <aggregated> ACT
                              ~ <aggregated> 1998 Q1 551.
## 7 <aggregated> New South Wale~ <aggregated>
                                            1998 01 8040.
  8 <aggregated> Northern Terri~ <aggregated> 1998 01 181.
##
##
   9 <aggregated> Queensland ~ <aggregated>
                                            1998 01
                                                     4041.
## 10 <aggregated> South Australi~ <aggregated> 1998 Q1
                                                    1735.
## 11 <aggregated> Tasmania ~ <aggregated> 1998 01
                                                    982.
## 12 <aggregated> Victoria ~ <aggregated> 1998 01
                                                     6010.
## 13 <aggregated> Western Austra~ <aggregated>
                                            1998 01
                                                     1641.
                              ~ Canberra ~ 1998 Q1 551.
## 14 <aggregated> ACT
## 15 <aggregated> New South Wale~ Blue Mounta~ 1998 01 196.
## # ... with 410 more rows
```

Creating aggregates

- Similar to summarise() but using the key structure
- A grouped structure is specified using grp1 * grp2
- A nested structure is specified via parent / child.
- Groups and nesting can be mixed:

```
(country/region/city) * (brand/product)
```

- All possible aggregates are produced.
- These are useful when forecasting at different levels of aggregation.

Outline

- 1 Hierarchical and grouped time series
- 2 Forecast reconciliation
- 3 Example: Australian tourism
- 4 Lab Session 10

The problem

- How to forecast time series at all nodes such that the forecasts add up in the same way as the original data?
- 2 Can we exploit relationships between the series to improve the forecasts?

The problem

- How to forecast time series at all nodes such that the forecasts add up in the same way as the original data?
- Can we exploit relationships between the series to improve the forecasts?

The solution

- Forecast all series at all levels of aggregation using an automatic forecasting algorithm.

 (e.g., ETS, ARIMA, ...)
- Reconcile the resulting forecasts so they add up correctly using least squares optimization (i.e., find closest reconciled forecasts to the original forecasts).
 - This is available using reconcile().

Forecast reconciliation

```
tourism %>%
  aggregate_key(Purpose*(State/Region), Trips=sum(Trips)) %>%
  model(ets = ETS(Trips)) %>%
  reconcile(ets_adjusted = min_trace(ets)) %>%
  forecast(h = 2)
```

```
## # A fable: 1,700 x 7 [10]
  # Key: Purpose, State, Region, .model [850]
##
##
     Purpose
              State
                        Region .model
                                          Quarter Trips
##
     <chr> <chr> <chr> <chr> <chr>
   1 Business ACT ~ Canberra ~ ets
##
                                          2018 Q1 144.
##
   2 Business ACT ~ Canberra ~ ets
                                          2018 Q2 203.
                                          2018 Q1 144.
   3 Business ACT
                     ~ <aggregat~ ets
##
   4 Business ACT ~ <aggregat~ ets
                                          2018 Q2 203.
##
   5 Business New South~ Blue Moun~ ets
                                          2018 01 19.7
##
   6 Business
              New South~ Blue Moun~ ets
                                          2018 02 19.7
##
                                          2018 Q1 36.1 <sup>18</sup>
##
   7 Business
              New South~ Capital C~ ets
```

Hierarchical and grouped time series

Every collection of time series with aggregation constraints can be written as

$$y_t = Sb_t$$

where

- \mathbf{y}_t is a vector of all series at time t
- b_t is a vector of the most disaggregated series at time t
- **S** is a "summing matrix" containing the aggregation constraints.

y_t: observed aggregate of all series at time t.

y_{X,t}: observation on series X at time t.

b_t: vector of all series at bottom level in time *t*.

y_t: observed aggregate of all series at time t.

 $y_{X,t}$: observation on series X at time t.

b_t: vector of all series at bottom level in time *t*.

$$\mathbf{y}_{t} = \begin{pmatrix} \mathbf{y}_{t} \\ \mathbf{y}_{A,t} \\ \mathbf{y}_{B,t} \\ \mathbf{y}_{C,t} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{Y}_{A,t} \\ \mathbf{y}_{B,t} \\ \mathbf{y}_{C,t} \end{pmatrix}$$

y_t: observed aggregate of all series at time t.

y_{X,t}: observation on series X at timet.

b_t: vector of all series at bottom level in time t.

$$\mathbf{y}_{t} = \begin{pmatrix} y_{t} \\ y_{A,t} \\ y_{B,t} \\ y_{C,t} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{S}} \underbrace{\begin{pmatrix} y_{A,t} \\ y_{B,t} \\ y_{C,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

$$y_t = Sb_t$$

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t .

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (In general, they will not "add up".)

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (In general, they will not "add up".)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SG}\hat{\mathbf{y}}_{n}(h)$$

for some matrix G.

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (In general, they will not "add up".)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SG}\hat{\mathbf{y}}_{n}(h)$$

for some matrix G.

- **G** extracts and combines base forecasts $\hat{\mathbf{y}}_n(h)$ to get bottom-level forecasts.
- S adds them up

Optimal combination forecasts

Main result

The best (minimum sum of variances) unbiased forecasts are obtained when $\mathbf{G} = (\mathbf{S}'\Sigma_h^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_h^{-1}$, where Σ_h is the h-step base forecast error covariance matrix.

Optimal combination forecasts

Main result

The best (minimum sum of variances) unbiased forecasts are obtained when $\mathbf{G} = (\mathbf{S}' \Sigma_h^{-1} \mathbf{S})^{-1} \mathbf{S}' \Sigma_h^{-1}$, where Σ_h is the h-step base forecast error covariance matrix.

$$\tilde{\mathbf{y}}_{\mathsf{n}}(h) = \mathbf{S}(\mathbf{S}' \Sigma_h^{-1} \mathbf{S})^{-1} \mathbf{S}' \Sigma_h^{-1} \hat{\mathbf{y}}_{\mathsf{n}}(h)$$

Problem: Σ_h hard to estimate, especially for h > 1.

Solutions:

- Ignore Σ_h (OLS) [min trace(method='ols')]
- Assume $\Sigma_h = k_h \Sigma_1$ is diagonal (WLS) [min trace(method='wls')]
- Assume $\Sigma_h = k_h \Sigma_1$ and estimate it (GLS) [min trace(method='shrink') (the default)]

Features

- Covariates can be included in initial forecasts.
- Adjustments can be made to initial forecasts at any level.
- Very simple and flexible method. Can work with any hierarchical or grouped time series.
- Conceptually easy to implement: regression of base forecasts on structure matrix.

Outline

- 1 Hierarchical and grouped time series
- 2 Forecast reconciliation
- 3 Example: Australian tourism
- 4 Lab Session 10

```
fc %>%
  filter(is_aggregated(Purpose) & is_aggregated(State)) %>%
  autoplot(tourism_agg, level=95)
```



```
fc %>%
  filter(is_aggregated(Purpose) & Region=="Melbourne") %>%
  autoplot(tourism_agg, level=95)
```



```
fc %>%
    filter(is_aggregated(Purpose) & Region=="Snowy Mountains") %>%
    autoplot(tourism_agg, level=95)
```



```
fc %>%
  filter(Purpose=="Holiday" & Region=="Barossa") %>%
  autoplot(tourism_agg, level=95)
```



```
fc %>%
  filter(is_aggregated(Purpose) & Region=="MacDonnell") %>%
  autoplot(tourism_agg, level=95)
```



```
fc <- tourism_agg %>%
  filter_index(. ~ yearquarter("2015 Q4")) %>%
  model(
   ets = ETS(Trips),
    arima = ARIMA(Trips)
  ) %>%
  mutate(
    comb = (ets+arima)/2
  ) %>%
  reconcile(
    ets_adj = min_trace(ets),
    arima_adj = min_trace(arima),
    comb_adj = min_trace(comb)
    ) %>%
  forecast(h = "2 years")
```

Forecast evaluation

fc %>% accuracy(tourism_agg)

```
# A tibble: 2,550 x 12
     .model Purpose
##
                       State
                                  Region
                                            .type
                                                     ME
                                                         RMSE
                       <chr>
                                  <chr>
                                            <chr> <dbl> <dbl>
##
     <chr>
            <chr>
##
   1 arima Business
                       ACT
                                ~ Canberra ~ Test 35.9
                                                         45.7
   2 arima Business
                       ACT
                                ~ <aggregat~ Test 35.9
                                                         45.7
##
                       New South~ Blue Moun~ Test 1.93
##
   3 arima Business
                                                         10.6
##
   4 arima Business
                       New South~ Capital C~ Test 8.08
                                                         15.6
   5 arima
            Business
                       New South~ Central C~ Test
                                                  10.0
                                                         14.5
##
   6 arima
            Business
                       New South~ Central N~ Test
                                                  17.7
                                                         31.9
##
##
   7 arima Business
                       New South~ Hunter ~ Test
                                                  35.3
                                                         43.9
##
   8 arima Business
                       New South~ New Engla~ Test
                                                  23.1
                                                         31.8
           Business
##
   9 arima
                       New South~ North Coa~ Test
                                                  24.8
                                                         40.1
##
  10 arima
           Business
                       New South~ Outback N~ Test 6.87
                                                         11.0
  # ... with 2,540 more rows, and 5 more variables:
                                                             33
##
      MAE <dbl>, MPE <dbl>, MAPE <dbl>, MASE <dbl>,
```

Forecast evaluation

```
fc %>% accuracy(tourism_agg) %>%
  group_by(.model) %>%
  summarise(MASE = mean(MASE)) %>%
  arrange(MASE)
```

```
## # A tibble: 6 x 2
## .model MASE
## <chr> <dbl>
## 1 ets_adj 1.02
## 2 comb_adj 1.02
## 3 ets 1.04
## 4 comb 1.04
## 5 arima_adj 1.07
## 6 arima 1.09
```

Outline

- 1 Hierarchical and grouped time series
- 2 Forecast reconciliation
- 3 Example: Australian tourism
- 4 Lab Session 10

Lab Session 10

- Prepare aggregations of the PBS data by Concession, Type, and ATC1.
- Use forecast reconciliation with the PBS data, using ETS, ARIMA and SNAIVE models, applied to all but the last 3 years of data.
- Which type of model works best?
- Does the reconciliation improve the forecast accuracy?
- Why doesn't the reconcililation make any difference to the SNAIVE forecasts?