The Effect of Vitamin C on Tooth Growth in Guinea Pigs

Simin Talebpour

Overview

In this project I want to analyze the effect of vitamin C on tooth growth in guinea pigs using ToothGrowth data in the R datasets package. First I'll perform some basic exploratory data analyses, and then use hypothesis tests to compare tooth growth by supplement type and dose level.

Exploratory data analyses

```
## Warning: package 'ggplot2' was built under R version 3.4.4
```

```
## 'data.frame': 60 obs. of 3 variables:
## $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp: Factor w/ 2 levels "OJ","VC": 2 2 2 2 2 2 2 2 2 2 2 ...
## $ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
```

```
## [1] 0.5 1.0 2.0
```

ToothGrowth data includes 60 observations of 3 variables:

len: numeric variable - tooth length

supp: factor variable with 2 levels: "OJ"(Orange Juice) and "VC"(Vitamin C)

dose: numeric valriable - Dose in milligrams/day

Each animal received one of three dose levels of vitamin C (0.5, 1, and 2 mg/day) by one of two delivery methods, orange juice or ascorbic acid (a form of vitamin C and coded as VC). The response is the length of odontoblasts (cells responsible for tooth growth) in 60 guinea pigs.

Tooth Growth vs. Dose Level for Each Supplement Type

Looking at box plots, I can say by increaing dosage, tooth growth increases for both delivery method(orange juice and Vitamin C).

Tooth Growth vs. Supplement Type for Differnt Dose Levels

For lower dosages (0.5, 1) orange juice has been more effective, but for dosage = 2, we can't make a conclusion.

Hypothesis Tests

Hypothesis 1: The supplement type doesn't effect on the tooth growth

```
##
## Welch Two Sample t-test
##
## data: len by supp
## t = 1.9153, df = 55.309, p-value = 0.06063
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1710156 7.5710156
## sample estimates:
## mean in group OJ mean in group VC
## 20.66333 16.96333
```

p-value(0.06) > significant value(0.05),so I fail to reject the null hypothesis.

Hypothesis 2: The dose levels '1' and '2' have the same effect on the tooth growth

```
##
## Welch Two Sample t-test
##
## data: len by dose
## t = -4.9005, df = 37.101, p-value = 1.906e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -8.996481 -3.733519
## sample estimates:
## mean in group 1 mean in group 2
## 19.735 26.100
```

P-value(1.906e-05) < significance value(0.05), so I reject the null hypothesis. Tooth growth is not the same for dose = 1 and dose = 2.

Hypothesis 3: The dose levels '1' and '0.5' have the same effect on the tooth growth

```
##
## Welch Two Sample t-test
##
## data: len by dose
## t = -6.4766, df = 37.986, p-value = 1.268e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.983781 -6.276219
## sample estimates:
## mean in group 0.5 mean in group 1
## 10.605 19.735
```

P-value(1.268e-07) < significance value(0.05), so I reject the null hypothesis. Tooth growth is not the same for dose = 1 and dose = 0.5.

Hypothesis 4: The dose levels '2' and '0.5' have the same effect on the tooth growth

```
##
##
   Welch Two Sample t-test
##
## data: len by dose
## t = -11.799, df = 36.883, p-value = 4.398e-14
## alternative hypothesis: true difference in means is not equal to \theta
## 95 percent confidence interval:
##
   -18.15617 -12.83383
## sample estimates:
## mean in group 0.5
                       mean in group 2
##
              10.605
                                 26.100
```

P-value(4.398e-14) < significance value(0.05), so I reject the null hypothesis. Tooth growth is not the same for dose = 2 and dose = 0.5.

Conclusion

I investigated ToothGrowth dataset to see if there is any differnce in guinea pig's tooth growth based on the type and dose level of vitamin C supplement they recieved. To naswer this question I performed four independent two-sample t-tests assuming the followings:

- The two samples in each test are independent.
- The two samples in each test follow normal distributions.
- The two samples in each test have differnt variance.

These are my test results:

The supplement type doesn't effect the tooth growth, however the extra dose increases the tooth growth.

Appendix

Exploratory Data Analysis

```
# Load required packages
library(ggplot2)
#Load data
data("ToothGrowth")
#Show statistics
str(ToothGrowth)
#Show Unique values
unique(ToothGrowth$dose)
```

```
#First Plot
ggplot(ToothGrowth, aes(x = factor(dose), y = len)) +
    geom_boxplot(aes(fill = supp))+
    facet_grid(.~supp)+
    ggtitle("Tooth Growth vs. Dose Level for Each Supplement Type")+
    xlab("Dose Level(mg/Day)")+
    ylab("Tooth Length")

#Second Plot
ggplot(ToothGrowth, aes(x = supp, y = len, fill = factor(dose))) +
    geom_boxplot()+
    facet_grid(.~dose)+
    ggtitle("Tooth Growth vs. Supplement Type for Differnt Dose Levels ")+
    xlab("Supplement Type")+
    ylab("Tooth Length")
```

Hypothesis Tests

Hypothysis 1

```
t.test(len ~ supp, ToothGrowth, paired = FALSE, var.equal = FALSE)
```

Hypothysis 2

```
ToothGrowth12 <- subset(ToothGrowth, dose %in% c(1,2)) #select doses 1 and 2 from dataset t.test(len ~ dose, ToothGrowth12, paired = FALSE, var.equal = FALSE)
```

Hypothysis 3

```
ToothGrowth12 <- \ subset(ToothGrowth, \ dose \ \%in\% \ c(1,0.5)) \#select \ doses \ 1 \ and \ .5 \ from \ dataset \\ t.test(len \sim dose, ToothGrowth12, paired = FALSE, var.equal = FALSE)
```

Hypothysis 4

```
ToothGrowth12 <- subset(ToothGrowth, dose %in% c(2,0.5))#selec doses 2 and .5 from dataset t.test(len \sim dose, ToothGrowth12, paired = FALSE, var.equal = FALSE)
```