Strutture Aeronautiche Esercitazione 1 Prof.re Franco Mastroddi

Matteo Hakimi 1455230

Indice

1	Introduzione	3
2	Carico applicato lungo z 2.1 Soluzione con irridimenti longitudinali	
3	Carico applicato lungo x	6
4	Momento torcente applicato attorno a y	7
	4.1 Soluzione con irrigidimenti longitudinali	7
	4.2 Soluzione senza irrigidimenti longitudinali	8

1 Introduzione

Si vuole calcolare il campo di spostamenti, in diverse condizioni di carico di una struttura costituita da un cassone alare in castrato da un lato , in lega metallica leggera (Alluminio E=68GPa $\nu=0.3~\rho=2650\frac{Kg}{m^3}$) di lunghezza longitudinale pari a L=4m , una cross section rettangolare di dimensioni 0.6mx 0.1m costituita da 4 pannelli di spessore t=0.003m , e da 4 irriggi dimenti (longheroni) posti ai vertici della sezione trasversale, che per corrono la struttura nella direzione longitudinale, di sezione pari a $A=0.0025m^2$. Il calcolo verrá svolto tramite l'uso di solutore agli elementi finiti, discretizzando opportunamente la struttura. In fine si effettuerá il confronto della soluzione con quella ottenuta per via analitica.

Figura 1: Cassone Alare

2 Carico applicato lungo z

Il primo caso che verrá analizzato é il calcolo della risposta statica (SOL 101) della struttura sottoposta ad un carico di estremitá P=10000N realizzato con la ripartizione su due forze concentrate applicate a due nodi dell'estremitá alare (ciascuna di intensitá di 5000N) uno al bordo d'attacco a l'altro al bordo d'uscita (nodi 28 e 42) entrambe in direzione verticale verso l'alto. Successivamente verranno rimossi i logheroni e verrá reiterato il calcolo. Il modello agli elementi finiti é costituito da elementi monodimensionali (ROD con sezione pari a $0.0025m^2$) ed elementi bidimensionali (SHELL con spessore di 0.003 m).

2.1 Soluzione con irridimenti longitudinali

Si é rappresentata la deformata, attraverso l'ausilio di Matlab, lungo una linea di nodi di un bordo di uno dei longheroni, dove si riportano gli spostamenti lungo z al variare dell'ascissa y adimensionalizzata rispetto alla lunghezza longitudinale del cassone, a confronto con i risultati offerti dalla teoria della trave inflessa.

Figura 2: Confronto soluzione analitica con Fem caso flessione

Si puó notare come la soluzione ottenuta col solutore presenta un andamento molto prossimo a quello offerto dalla teoria analitica (trave Eulero Bernulli). Si riporta nel dettaglio il valore di displacement e rotazione del nodo 13

Point ID	T1	T2	Т3
13	3.666635E-06	-1.700912E-03	9.253278E- 02
Point ID	R1	R2	R3
13	3.407605 E-02	5.869038E-05	4.054110 E-05

L' errore relativo al tip sullo spostamento lungo z é pari a $\epsilon = 3.99 \ 10^{-3} m$ rispetto a quello analitico (9.6530920 $10^{-2} m$) e sulla rotazione attorno a x di $\epsilon = 2.1210^{-3} rad$ rispetto a quello analitico (3.6199095 10^{-2} rad). Si riportano i valori delle componenti della reazione vincolare del nodo 1:

Point ID	T1	T2	Т3
1	-9.921290E + 03	$1.999500\mathrm{E}\!+\!05$	-2.498879E + 03
Point ID	R1	R2	R3
1	-2.497716E+00	-1.682029E -01	$2.796296\mathrm{E}{+00}$

La forza lungo l'asse z é quella necessaria per contrastare il carico applicato (un quarto, essendo 4 i nodi vincolati). La forza lungo l'asse y é positiva essendo il nodo 1 sulla parte superiore del cassone infatti é necessaria per contrastare la compressione indotta sulla parte superiore dalla flessione. Sui due nodi vincolati della parte inferiore sono presenti reazioni vincolari uguali e contrarie per contrastare la trazione. La somma delle 4 reazioni vincolari lungo y é nulla. Il momento attorno a x generato dalle forze delle reazioni vincolari agenti lungo y equilibra il momento flettente generato dal carico.

2.2 Soluzione senza irrigidimenti longitudinali

Analogamente a quanto visto nel primo sottocaso si procede con il calcolo con l'unica eccezione che questa volta sono stati rimossi i longheroni (Rod). Nel codice corrisponde a porre uguale a 0 l'area dei correnti.

Si é notata una notevole differenza nella soluzione a dimostrazione del fatto che i correnti, contribuiscono a contrastare la deformazione del cassone quando é applicato un carico lungo l'asse z all'estremitá del cassone. Sempre nel nodo 13 si ottiene:

Point ID	T1	T2	Т3
13	1.255903E-05	-6.139704E-03	3.264377E-01
Point ID	R1	R2	R3
13	1.227434E-01	2.282389E-04	1.419131E-04

Si riporta inoltre il confronto lungo una linea di nodi disposti lungo un longherone tra il primo sottocaso e il secondo.

Figura 3: Confronto spostamenti flessionali con irrigidimenti e senza

3 Carico applicato lungo x

Il secondo caso fa riferimento alla stessa geometria e carico del primo caso differendo da quest'ultimo per la direzione di applicazione del carico stesso; infatti il carico é stato ripartito sui nodi 13 e 28 e la sua direzione é parallela all'asse x.

Ora si nota che la deformazione più consistente si ha lungo l'asse x e che essa é minore della massima deformazione lungo l'asse z trovata nel caso 1 siccome l'inerzia della sezione attorno l'asse z é $1.062 \ 10^{-3} m^4$, maggiore rispetto a quella attorno l'asse x $(3.45 \ 10^{-5} m^4)$:

Point ID	T1	Т2	Т3
13	3.371049E-03	-3.328972E-04	-3.680786E -07
Point ID	R1	R2	R3
13	-2.064145E-06	-3.728811E-07	-1.167187E-03

Lo spostamento al tip differisce del $\epsilon=4.11\ 10^{-4}m$ da quello analitico offerto dalla teoria della trave ($2.9596744\ 10^{-3}m$). La rotazione al tip calcolata con MSC Nastran é di -1.167187 $10^{-3}rad$ mentre quella calcolata con la teoria della trave é -1.1098779 $10^{-3}rad$.

4 Momento torcente applicato attorno a y

Nel terzo caso sono state applicate due forze, di intensitá pari a 5000 N all'estremitá del cassone. Una verso l'alto sul nodo 28 e una verso il basso sul nodo 14. Complessivamente ne deriva un momento torcente applicato di intensitá pari a 3000 Nm, dato il braccio b=0.6 m.Analogamente a quanto visto nella prima sezione il calcolo della risposta statica verrá reiterato successivamente avendo rimosso gli irrigidimenti longitudinali.

4.1 Soluzione con irrigidimenti longitudinali

In figura é riportato il confronto tra la soluzione del modello approssimato e quella analitica ottenuta con la teoria di Bredt, e il campo di spostamenti e rotazioni per il nodo 13.

Figura 4: Confronto soluzione analitica con Fem caso torsione

Per il nodo 13 si ha:

Point ID	T1	T2	Т3
13	7.160255 E-04	5.416122E-05	-4.391133E-03
Point ID	R1	R2	R3
13	-1.214607E-03	1.486716E-02	1.097381E-04

Sono stati analizzati i risultati e confrontati con quelli analitici forniti dalla teoria di Bredt (G=26.9 GPa, $S=0.06m^2B=8.31\ 10^5Nm^2$). La rotazione in funzione di y fornita dalla teoria di Bredt risulta essere: $\phi(y)=3.61\ 10^{-3}$ y . La rotazione massima risulta essere quindi di 1.444 $10^{-2}rad$, in buon accordo con i risultati di Nastran (1.486716 $10^{-2}rad$). L'errore é pari a $\epsilon=4.27\ 10^{-4}rad$.

4.2 Soluzione senza irrigidimenti longitudinali

Si procede con il calcolo della soluzione rimuovendo gli irrigidimenti .In figura viene riportato il confronto tra il caso attuale e quello precedente

Figura 5: Confronto rotazione torsionale con irrigidimenti e senza

Si puó osservare che nel caso della torsione pura i longheroni non influenzano in modo significativo il comportamento a torsione della struttura. A titolo esplicativo vengono, infine, riportati gli spostamenti e rotazioni del nodo 13.

Point ID	T1	T2	Т3
13	7.303965 E-04	4.580828E- 05	-4.479178E-03
Point ID	R1	R2	R3
13	-1.048825E-03	1.487031E-02	8.150756 E-05