Série 2

Equilibres de Nash en stratégies pures.

Exercice 1

On considère le jeu décrit par la matrice suivante :

1/2	u	V	W
X	(3,0)	(0,2)	(0,3)
Y	(2,0)	(1,1)	(2,0)
Z	((0,3)	(0,2)	(3,0)

- 1) Déterminer les correspondances des meilleures réponses de chacun des deux joueurs.
- 2) Ce jeu possède-t-il des équilibres de Nash en stratégie pure ? si c'est le cas les déterminer.

Exercice 2 (Le jeu des marchands de crème glacée)

Imaginons une plage ou deux vendeurs de crème glacée, doivent s'installer en début de saison. Ils vendent leur produit à un prix fixé par le fabricant, mais en revanche libre de choisir leur localisation. Les clients sont des touristes venant tous les jours s'installer en plage. Ils se répartissent à distance égale de leurs voisins. Les touristes n'aiment pas se déplacer à cause de l'encombrement de la plage. Dès lors ils choisissent de d'acheter au vendeur le plus proche.

Est-il possible de déterminer un équilibre de Nash en localisation pour les deux vendeurs ? et que sera-t-il ? set il unique ?

Exercice 3

Soit le jeu sous forme stratégique suivante :

1/2	t	u	v
X	(3,2)	(4,0)	(5,1)
y	(1,0)	(7, 3)	(2,5)
Z	(2,0)	(8,5)	(1,7)

- 1) Ce jeu comporte-t-il des stratégies strictement /faiblement dominées ? si oui les quelles ?
- 2) Ce jeu comporte-t-il des équilibres de Nash? si oui les quels?
- 3) Quels sont les profils qui en dominent d'autres en sens de Pareto?
- 4) Quel est le niveau de sécurité de chacun des joueurs ?

Exercice 4

Soit le jeu sous forme stratégique suivante

1/2	t	u
a	(x,y)	(2,0)
b	(1,2)	(3,6)

MASTER 1 Informatique Visuelle Module Théorie des jeux Département Informatique/FEI/USTHB Proposé par Dr Djamila Dahmani

Dire pour chacune des conditions suivantes, quelles sont les valeurs nécessaires pour x et / ou y pour qu'elle soit vérifiée :

- a) Le profil (a,t) est un équilibre de Nash.
- b) Le profil (a,t) Pareto-domine les autres.
- c) La stratégie a domine strictement la stratégie b).
- d) Le profil (b,u) est obtenu comme résultat d'une élimination itératives des stratégies dominées.

Exercice5

Deux joueurs décident de se partager un dinar. Le processus de marchandage se déroule de la manière suivante : les joueurs annoncent simultanément la part qu'ils veulent recevoir s_1 et s_2 , $0 \le s_1$, $s_2 \le 1$. Alors les joueurs recevraient les parts qu'ils ont demandées si $s_1 + s_2 \le 1$, 0 sinon.

- a) (0.3, 0.7)
- b) (0.5, 0.5)
- c) (1,1)
- d) Tous les trois précédents

Exercice 6:

On considère N fermiers qui peuvent chacun produire à un cout nul autant de blé qui le désirent. Si le $k^{\acute{e}me}$ fermier produit q_k , la quantité totale produite est $Q=q_1+q_2+\cdots+q_N$. Le prix du blé est déterminé alors par e^{-Q} .

- 1) Faire le tableau de variation de la fonction $f(x) = xe^{-x}$ pour $x \ge 0$.
- 2) En utilisant le point précédent, montrer que la stratégie qui consiste à produire une unité de blé est dominante pour chaque fermier. En déduire que le profit correspondant à chaque fermier est e^{-N} .
- 3) Supposons que les fermiers se mettent d'accord pour que chacun produise $\frac{1}{N}$ unité de blé. Toujours en se basant sur le premier point montrer que le produit total est alors maximal. Vérifier alors que le profit de chaque fermier est $\frac{e^{-1}}{N}$. Un tel accord peut il être respecté ?
- 4) Pourquoi ce jeu est-il une généralisation du dilemme du prisonnier ?

Exercice 7 (modèle de Bertrand Duopoly)

Deux firmes produisant un même bien, avec un coût de production égal à C >0 par unité.

Chaque firme impose un prix positif ou nul $(p_1 et p_2)$ respectivement.

Tous les clients achètent de la firme au prix le plus bas si $p_1 \neq p_2$, la moitié des clients achètent de chacune des firmes si les prix sont égaux.

D est la demande totale.

Le profit d'une firme i sera calculé comme suit :

 $0 \text{ si } p_i > p_j \text{ (aucun n'achète de la firme i)}$

MASTER 1 Informatique Visuelle Module Théorie des jeux Département Informatique/FEI/USTHB Proposé par Dr Djamila Dahmani

$$D(p_i - c)/2$$
 si $p_i = p_j$

$$D(p_i-c)$$
 si $p_i>p_j$ (Tous les clients achètent de la firme i)

Trouver l'équilibre de Nash en stratégie pure est ce :

- a) Toutes les deux proposent le prix 0
- b) La première propose 0 et la deuxième C.
- c) Les deux proposent le prix C.
- d) Ne possède pas d'équilibre de Nash en stratégie pure.