Assignment #3 - TidyR

Jacob Burke 02/10/2019

Problem 1

```
library(tidyr)
library(gapminder)
library(stringr)
library(lubridate)
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
##
       date
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:lubridate':
##
       intersect, setdiff, union
##
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(kableExtra)
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
##
       group_rows
library(knitr)
library(ggplot2)
## a)
unique(gapminder$continent)
## [1] Asia
                Europe
                         Africa
                                   Americas Oceania
## Levels: Africa Americas Asia Europe Oceania
## Therefore there are 5 continents in data set
```

```
## b)
length(unique(gapminder$country))
## [1] 142
## 142 countries
Africa <- filter(gapminder, gapminder$continent == "Africa")
length(unique(Africa$country))
## [1] 52
## 52 countries for Africa
Asia <- filter(gapminder, gapminder$continent == "Asia")
length(unique(Asia$country))
## [1] 33
## 33 countries for Asia
Americas <- filter(gapminder, gapminder$continent == "Americas")</pre>
length(unique(Americas$country))
## [1] 25
## 25 countries for Americas
Europe <- filter(gapminder, gapminder$continent == "Europe")</pre>
length(unique(Europe$country))
## [1] 30
## 30 countries for Europe
Oceania <- filter(gapminder, gapminder$continent == "Oceania")</pre>
length(unique(Oceania$country))
## [1] 2
## 2 countries for Oceania
## c)
Report <- gapminder
Report <- Report %>% group_by(continent) %>%
  summarise(PopTot = sum(as.numeric(pop)), GDPTot = sum(as.numeric(gdpPercap))) %>%
  arrange(continent, PopTot, GDPTot)
## d)
Report_1952 <- filter(gapminder, year == 1952)</pre>
Report_2007 <- filter(gapminder, year == 2007)</pre>
Report_1952 %<>% group_by(continent) %>%
  summarise(GDPTot = sum(as.numeric(gdpPercap))) %>%
  arrange(continent, GDPTot)
```

Table 1: GDP Totals: 1952, 2007

1952		2007		
continent	GDPTot	continent	GDPTot	
Africa	65133.77	Africa	160629.70	
Americas	101976.56	Americas	275075.79	
Asia	171450.97	Asia	411609.89	
Europe	169831.72	Europe	751634.45	
Oceania	20596.17	Oceania	59620.38	

```
Report_2007 %<>% group_by(continent) %>%
  summarise(GDPTot = sum(as.numeric(gdpPercap))) %>%
  arrange(continent, GDPTot)
table <- cbind(Report_1952, Report_2007)</pre>
kable(table, digits = 2, format = "latex", booktabs=TRUE, caption = "GDP Totals: 1952, 2007") %>% kable
  add_header_above(c("1952" = 2, "2007" = 2))
## e)
table2 <- rbind(Report_1952, Report_2007)</pre>
table2_Africa <- filter(table2, continent == "Africa")</pre>
table2_Africa <- mutate(table2_Africa, year = c("1952", "2007"))</pre>
table2_Asia <- filter(table2, continent == "Asia")
table2_Asia <- mutate(table2_Asia, year = c("1952", "2007"))</pre>
table2_Americas <- filter(table2, continent == "Americas")</pre>
table2_Americas <- mutate(table2_Americas, year = c("1952", "2007"))</pre>
table2_Europe <- filter(table2, continent == "Europe")</pre>
table2 Europe <- mutate(table2 Europe, year = c("1952", "2007"))
table2_Oceania <- filter(table2, continent == "Oceania")</pre>
table2_Oceania <- mutate(table2_Oceania, year = c("1952", "2007"))
plot_GDP <- rbind(table2_Africa, table2_Americas, table2_Asia, table2_Europe, table2_Oceania)</pre>
ggplot(plot_GDP) + geom_point(mapping = aes(x = year, y = GDPTot, colour = continent))
```



```
## We can see that there is no continent with decreased GDP

## f)

Report_1952 <- filter(gapminder, year == 1952)

Report_2007 <- filter(gapminder, year == 2007)

Report_1952 %<>% group_by(continent) %>%
    summarise(PopTot = sum(as.numeric(pop))) %>%
    arrange(continent, PopTot)

Report_2007 %<>% group_by(continent) %>%
    summarise(PopTot = sum(as.numeric(pop))) %>%
    arrange(continent, PopTot)

Report_2007 <- mutate(Report_2007, year = rep("2007", 5))
Report_1952 <- mutate(Report_1952, year = rep("1952", 5))

plot_pop <- rbind(Report_2007, Report_1952)

ggplot(plot_pop) + geom_point(mapping = aes(x = year, y = PopTot, colour = continent))</pre>
```



```
## again we can see no negative pop growth for each continent from 1952 to 2007

## g)

rate <- NULL

## getting Rate for each continent
for(i in seq(1,10, 2)){

    r <- abs(plot_GDP$GDPTot[i] - plot_GDP$GDPTot[i+1])/(55)
    rate <- c(rate, r)

}

GDP_Rate <- cbind(rate, c("Africa", "Asia", "America", "Europe", "Oceania"))

colnames(GDP_Rate) <- c("rate", "continent")

## Therefore we can see that Europe had the highest Rate of GDP growth over 55 years from 1952 to 2007</pre>
```

Problem 2

```
library(AER)
```

```
## Loading required package: car
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
##
       recode
## Loading required package: lmtest
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
       as.Date, as.Date.numeric
##
## Loading required package: sandwich
## Loading required package: survival
data("Fertility")
Fertility <- as_tibble(Fertility)</pre>
?Fertility
## starting httpd help server ...
## done
Fertility <- mutate(Fertility, gender_combo = NA)
Fertility$gender_combo[Fertility$gender1 == "male" & Fertility$gender2 == "male"] <- "MM"
Fertility$gender_combo[Fertility$gender1 == "male" & Fertility$gender2 == "female"] <- "MF"
Fertility$gender_combo[Fertility$gender1 == "female" & Fertility$gender2 == "male"] <- "FM"
Fertility$gender_combo[Fertility$gender1 == "female" & Fertility$gender2 == "female"] <- "FF"
table(Fertility$gender_combo)
##
##
      FF
            FM
                  MF
                        MM
## 60946 62724 63185 67799
genderc <- table(Fertility$gender_combo)</pre>
ggplot(Fertility) + geom_bar(mapping = aes(x = gender_combo, fill = gender_combo))
```



```
## contrasting years for women in 20s versus women older than 29

Fertility <- mutate(Fertility, agerange = NA)

Fertility$agerange[Fertility$age >= 20 & Fertility$age <=29] <- "20s"

Fertility$agerange[Fertility$age > 29] <- "30s"

ggplot(Fertility) + geom_bar(mapping = aes(x = gender_combo, fill = factor(agerange)))</pre>
```



```
## as we can see there's fairly even frequencie distribution for women in their 20s and 30s
##b)

Fertility <- mutate(Fertility, morethan2 = NA)

Fertility$morethan2[Fertility$morekids == 'yes'] <- 1
Fertility$morethan2[Fertility$morekids == 'no'] <- 0

## contrasting more than 2 kids based on race (hispanic)

ggplot(Fertility) + geom_bar(aes(x = morekids, fill = hispanic))</pre>
```



```
## as you can see, there is more of a difference with people not
## hispanic, while hispanics have more of a 50:50 split with number
## of kids higher and lower than 2
```

Problem 3

```
library(stringr)
data(mpg)
data(mtcars)

## a)
number_e <- str_count(rownames(mtcars), "e")

sum(number_e)

## [1] 25

## therefore 25 times does an e show up in row names of mtcars

## b)
number_merc_mt <- str_count(row.names(mtcars), "Merc")
sum(number_merc_mt)</pre>
```

[1] 7

```
## 7 times
## c)
number_merc <- str_count(mpg$manufacturer, "merc")</pre>
sum(number_merc)
## [1] 4
## 4 times
## d)
mpg <- mutate(mpg, merc = number_merc)</pre>
mtcars <- mutate(mtcars, merc = number_merc_mt)</pre>
mpg_merc <- filter(mpg, merc == 1)</pre>
mtcars_merc <- filter(mtcars, merc == 1)</pre>
## contrasting mpg mileage column of mtcars, and hwy mileage of mpg
ggplot() + geom_histogram(aes(x = mpg_merc$hwy), fill ='red',
                           color = 'black') + geom_histogram(aes(x =
                           mtcars_merc$mpg), fill = 'blue', color =
                           'black') + xlab("Mileage")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


mpg in red, and mtcars in blue

Problem 4

```
library(babynames)
data(babynames)

babynames<- as_tibble(babynames)

## a) (top baby names)

set.seed(2019)

baby_sample <- babynames[sample(nrow(babynames), 500000),]

## 1880

baby1880 <- filter(baby_sample, year == 1880)
baby1880male <- filter(baby1880, sex == "M")

baby1880male <- baby1880male[
    with(baby1880male, order(-n)),]

baby1880male <- select(baby1880male, name)</pre>
```

```
baby1880female <- filter(baby1880, sex == "F")</pre>
baby1880female <- baby1880female[</pre>
  with(baby1880female, order(-n)),]
baby1880female <- select(baby1880female, name)</pre>
baby 1880 <- cbind(baby1880male[1:3, ], baby1880female[1:3, ])
## 1920
baby1920 <- filter(baby_sample, year == 1920)</pre>
baby1920male <- filter(baby1920, sex == "M")</pre>
baby1920male <- baby1920male[</pre>
  with(baby1920male, order(-n)),]
baby1920male <- select(baby1920male, name)</pre>
baby1920female <- filter(baby1920, sex == "F")</pre>
baby1920female <- baby1920female[</pre>
  with(baby1920female, order(-n)),]
baby1920female <- select(baby1920female, name)</pre>
baby_1920 <- cbind(baby1920male[1:3, ], baby1920female[1:3, ])
## 1960
baby1960 <- filter(baby_sample, year == 1960)</pre>
baby1960male <- filter(baby1960, sex == "M")</pre>
baby1960male <- baby1960male[</pre>
  with(baby1960male, order(-n)),]
baby1960male <- select(baby1960male, name)</pre>
baby1960female <- filter(baby1960, sex == "F")</pre>
baby1960female <- baby1960female[</pre>
  with(baby1960female, order(-n)),]
baby1960female <- select(baby1960female, name)</pre>
baby_1960 <- cbind(baby1960male[1:3, ], baby1960female[1:3, ])</pre>
## 2000
baby2000 <- filter(baby_sample, year == 2000)</pre>
baby2000male <- filter(baby2000, sex == "M")</pre>
```

Table 2: Top Baby Boy and Girl Names By Year

188	:O	192	1920		1960		2000	
Boy	Girl	Boy	Girl	Boy	Girl	Boy	Girl	
name	name	name	name	name	name	name	name	
William Charles Joe	Mary Annie Cora	Harold Donald Arthur		James William Thomas	Mary Linda Karen	Jacob Matthew Andrew	Alexis Jessica Lauren	

```
baby2000male <- baby2000male[</pre>
  with(baby2000male, order(-n)),]
baby2000male <- select(baby2000male, name)</pre>
baby2000female <- filter(baby2000, sex == "F")</pre>
baby2000female <- baby2000female[</pre>
  with(baby2000female, order(-n)),]
baby2000female <- select(baby2000female, name)</pre>
baby_2000 <- cbind(baby2000male[1:3, ], baby2000female[1:3, ])</pre>
## Bringing each year tables together
babynames_rank <- cbind(</pre>
                   baby_1880, baby_1920, baby_1960,
                   baby_2000)
## table
kable(babynames_rank, digits = 2, format = "latex", booktabs=TRUE,
      caption = "Top Baby Boy and Girl Names By Year") %% kable_styling() %%
      add_header_above(c("Boy" = 1, "Girl" = 1, "Boy" = 1, "Girl" = 1, "Boy" = 1,
                          "Girl" = 1, "Boy" = 1, "Girl" =1)) %>%
      add_header_above(c("1880" = 2, "1920" = 2, "1960" = 2, "2000" = 2))
## b)
baby_male <- filter(baby_sample, sex == "M")</pre>
baby_female <- filter(baby_sample, sex == "F")</pre>
match <- intersect(baby male$name, baby female$name)</pre>
length(match)
## [1] 7438
## Therefore there is overlap with 7464 names, all included in the "match" vector
## c)
```

Name Frequency from 1800 to 2017

####

baby_1800s <- filter(baby_sample, 1800 <= year &

1