

Outline

- Workshop Preparation (5min)
- Presentation (15min)
 - Background
 - Chronos Time Series Analysis Application Framework
 - Benchmark Result
 - Summary
- Demo and hands-on experience (40min)

Workshop Preparation

- We will use Google Colab for this workshop
- All notebook and workshop material can be found in:
 - https://github.com/intel-analytics/Chronos-workshop
 - 2 notebooks in /notebook/*
- Please run the installation now to save time (They are designed to crash!)

Install bigdl-chronos

You can install the latest pre-release version using pip install --pre

```
[ ] # Install latest pre-release version of bigdl-chronos
    # Installing bigdl-chronos from pip will automatically instal
!pip install --pre --upgrade bigdl-chronos
!pip uninstall -y torchtext # uninstall torchtext to avoid ve
exit() # refresh the pkg you just install
```

Install bigdl-chronos

You can install the latest pre-release version with automl support using pip install --pre --

```
[ ] print("This block is designed to exit(crash) for refreshing installed pkg.")

!pip install --pre --upgrade bigdl-chronos[all] # Install latest pre-release versi
!pip install neural-compressor==1.8.1 # install INC for quantization
!pip uninstall -y torchtext # uninstall torchtext to avoid version conflict
!pip install opencv-python-headless==4.1.2.30 # change opencv to avoid version confidence
exit() # restart the runtime to refresh installed pkg
```

Background

Time Series Data

- A series of data that is observed sequentially in time.
- E.g., Sales volume, CPU/IO monitoring data, network traffic ...
- Time Series Forecasting
 - Use history data to predict future data
 - Deep learning method is replacing traditional method
- Other Time series analysis
 - Anomaly detection (in this workshop)
 - Synthetic Data Generation (not in this workshop)

Fig. Time Series Forecasting

Last Observed Data

Chronos - Overview

Full pipeline

- Time series processing and automatic feature generation.
- Model Training and Inferencing
- Pipeline Save & Load

Optimizations

- AutoML (mainly HPO)
- Multi-process, Quantization ...
- Intel optimized lib and BKMs

Chronos – Time Series Forecasting API

TSDataset

Forecaster

```
from bigdl.chronos.forecaster import TCNForecsater

# Data sampling
tsdata_train.roll(lookback=24, horizon=10)
tsdata_test.roll(lookback=24, horizon=10)
x_train, y_train = tsdata_train.to_numpy()
x_test, y_test = tsdata_test.to_numpy()

# Forecaster fitting & predicting
f = TCNForecsater(past_seq_len=24, future_seq_len=10)
f.fit(data=(x_train, y_train), epoch=10)
pred = f.predict(x_test)
```

AutoTSEstimator

Chronos – AutoTS Runtime

Search Algorithm

- Suggest next round hyper parameters combination.
- Many algorithm available: Random, Grid Search, Bayesian, SigOpt...

Schedule Algorithm

 Early stop trials that is not promising to save computation resources.

Each trial runs a different combination

of hyper parameters

 Many algorithm available: FIFO, HyperBand...

Accuracy on public dataset

Improvement on nyc_taxi and TCN

More Benchmark on Public Dataset

nyc_taxi	network_traffic

	AutoModel (MSE)	AutoTS (MSE)	AutoModel (MSE)	AutoTS (MSE)
Prophet	7.36%	1	6.68%	1
LSTM	64.13%	87.56%	45.07%	49.04%
TCN	67.03%	82.61%	40.60%	60.10%
Seq2Seq	27.54%	61.79%	41.34%	53.04%

 AutoModel tunes the model, while AutoTS tunes data preprocessing + model

Performance in training and inferencing on IA

- Based on Bigdl-Nano
- Training performance
 - Multi-processing training
 - Intel OpenMP, IPEX, ...
 - Adaptive environment configurations
- Inference performance
 - Intel Neural Compresser
 - OnnxRuntime

Hands-on Experience

- We will use Google Colab for this workshop
- All notebook and workshop material can be found in:
 - https://github.com/intel-analytics/Chronos-workshop

Reference

- Chronos Document and Tutorial
 - User Guide: https://bigdl.readthedocs.io/en/latest/doc/Chronos/Overview/chronos.html
 - Deep Dive: https://bigdl.readthedocs.io/en/latest/doc/Chronos/Overview/deep_dive.html
 - Tutorial: https://bigdl.readthedocs.io/en/latest/doc/Chronos/QuickStart/index.html
- Use Case Reference & Blog
 - https://networkbuilders.intel.com/solutionslibrary/intelligent-5g-l2-mac-scheduler-powered-by-capgemini-netanticipate-5g-on-intel-architecture
 - https://networkbuilders.intel.com/solutionslibrary/sk-telecom-intel-build-ai-pipeline-to-improve-network-quality
 - https://www.anyscale.com/blog/from-ray-to-chronos-build-end-to-end-ai-use-cases-using-bigdl-on-top-of-ray

#