Lecture 7 More On The Bayes' Theorem

BIO210 Biostatistics

Xi Chen

Spring, 2022

School of Life Sciences
Southern University of Science and Technology

Conditional Probability

The Multiplication Rule

$$P(\cap_{i=1}^{n} A_i) = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_1 \cap A_2) \cdot P(A_4 | A_1 \cap A_2 \cap A_3) \cdot \dots \cdot P(A_n | \cap_{i=1}^{n-1} A_i)$$

Conditional Probability

The Total Probability Rule

$$P(B) = P[(A_1 \cap B) \cup (A_2 \cap B) \cup \dots \cup (A_n \cap B)]$$

$$= P(A_1 \cap B) + P(A_2 \cap B) + \dots + P(A_n \cap B)$$

$$= \sum_{i=1}^{n} P(A_i) \cdot P(B|A_i)$$

Sample space Ω

Conditional Probability

Bayes' Theorem

$$P(A_i|B) = \frac{P(A_i) \cdot P(B|A_i)}{P(B)}$$
$$= \frac{P(A_i) \cdot P(B|A_i)}{\sum_{i=1}^{n} P(A_i) \cdot P(B|A_i)}$$

Sample space Ω $A_1 \qquad A_2 \qquad A_3$

Virus Detection

Who Is Steve

Amos Tversky & Daniel Kahneman

"Steve is very shy and withdrawn, invariably helpful, but with little interest in people, or in the world of reality. A meek and tidy soul, he has a need for order and structure, and a passion for detail. How do people assess the probability that Steve is engaged in a particular occupation from a list of possibilities (for example, farmer, salesman, airline pilot, librarian, or physician)?"

Who Is Steve

Lipkakian

Farmer

When To Use Bayes' Theorem

You have a hypothesis	You have observed some evidence	You want
The person carries the virus; Steve is a librarian	Test result is positive; Steve's characters	Probability of the hypothesis given the evidence, $P(H E)$

Bayes' Theorem

$$P(H_i|E) = \frac{P(E|H_i)}{\sum_{i=1}^{n} P(H_i) \cdot P(E|H_i)} \cdot P(H_i)$$

 $P(H_i)$: prior probability

 $P(H_i|E)$: posterior probability

Carroll's Pillow Problem #5

There is a ball inside a non-transparent bag. The colour of the ball is unknown, but it is equally likely to be either blue or red. Now you put a red ball into the bag, shake the bag, and take a ball without looking inside. The ball you have just taken out is red. What is the probability that the colour of the remaining ball that is still inside the bag is red?

Pedigree Analysis

