

8279Programabilni interfejs

tastature i displeja

8279

fizička organizacija pinova

- DB₀-DB₇ (Data Bus) bidirekciona magistrala podataka
- CLK (Clock) sistemski takt
- A₀ (Buffer Address) šta je na DB linijama; 1 komande ili status, 0 – podaci
- IRQ (Interrupt Request) u keyboard modu postaje aktivan kad god postoji podatak u FIFO RAM-u (deaktivira se čitanjem, i ponovo aktivira ako ima još podataka), u sensor modu aktivira se kad god postoji promena u polju senzora.
- SL₀-SL₃ (Scan Lines) selekcija vrste u matrici tastature/senzora ili cifre na displeju (može biti kodiran 1 od 16 ili dekodiran 1 od 4)
- RL₀-RL₇ (Return Line) stanje vrste u matrici senzora/tastature (ulazne linije su na 1, a pritisak tastera postavlja 0)
- SHIFT (Shift) stanje shift tastera, pritisnut generiše
 0
- CNTL/STB (Control/Strob) stanje control tastera (pritisnut je 0) ili strob signal kojim se upisuju podaci (na uzlaznu ivicu) u FIFO RAM u strobe input modu.
- OUT A₀-OUT A₃ OUT B₀-OUT B₃- (Outputs) izlazni portovi za 16x4 displej, sinhronizovani sa SL_x linijama
- **BD** (*Blank Display*) briše displej

Logička organizacija pinova

Sistemski blok dijagram

Ulazni modovi

 Scanned Keyboard – sa kodiranim (tastatura sa 8x8 tastera) ili dekodiranim (tastatura sa 4x8 tastera) scan linijama. Svaki pritisnuti taster generiše 6-bitni kod, koji se zajedno sa control i shift statusom smeštaju u FIFO RAM. Debaunsing (uklanjanje treperenja) se vrši automatski sa 2-key lockout ili N-key rollover

MSB						LSB
CNTL	SHIFT	S	CAN		RETURN	

Ulazni modovi

 Scanned Sensor Matrix – sa kodiranim (matrica 8x8 tastera) ili dekodiranim (matrica 4x8 tastera) scan linijama. Status tastera (otvoren ili zatvoren) smešta se u RAM.

MSB	_	_	_	_			LSB
RL ₇	RL_6	RL ₅	RL_4	RL ₃	RL ₂	RL_1	RL_0

 Strobed Input – slično kao prethodno, ali se stanje upisuje u FIFO RAM kada se javi control/strobe signal

Izlazni modovi

- Multipleksirani displej sa 8 ili 16 karaktera, koji može biti organizovan kao dva 4-bitna ili jedan osmobitni ($A_3=D_7$.. $B_0=D_0$)
- Unos sa leve ili desne strane

Blok dijagram

Komande

- Komande postavljaju mod rada 8279
- Komande se postavljaju na Data magistralu, kada je CS = 0 i A₀ = 1, a upisuju se na rastuću ivicu WR.
- Komande su:
 - Keyboard/Display Mod Set
 - Program Clock
 - Read FIFO/Sensor RAM
 - Read Display RAM
 - Write Display RAM
 - Display Write Inhibit/Blanking
 - Clear
 - End Interrupt/Error Mode Set

Keyboard/Display Mod Set

Displej mod:

00 – 8x8-bit karater displej – unos sleva

01 – 16x8-bit karater displej – unos sleva (podrazumevano)

10 – 8x8-bit karater displej – unos zdesna

11 – 16x8-bit karater displej – unos zdesna

Mod tastature:

000 – tastatura sa kodiranim skenom

2-key lockout

001 – tastatura sa dekodiranim

skenom 2-key lockout

010 – tastatura sa kodiranim skenom

N-key rollover

011 – tastatura sa dekodiranim

skenom N-key rollover

100 – senzorska matrica sa kodiranim

skenom

101 – senzorska matrica sa

dekodiranim skenom

110 – strobovani ulaz sa kodiranim

skenom

111 – strobovani ulaz sa dekodiranim

skenom

Unos sleva

- 1. unos 1
- 2. unos 1 2
- •
- 16. unos 1 2 ... 15 16
- 17. unos 17 2 ... 15 16
- 18. unos 17 18 ... 15 16

Unos zdesna

• 1. unos – 1

• 2. unos – 1 2

•

• 16. unos – 1 2 ... 15 16

• 17. unos – 2 3 ... 16 17

• 18. unos – 3 4 ... 17 18

Metode skeniranja tastature 2-key lockout

- Kada se pritisne taster, aktivira se debaunsing logika i ostali tasteri su "zaključani" tokom naredna dva skena.
- Ako se ne jave drugi pritisnuti tasteri, kod pritisnutog tastera (zajedno sa CNTL i SHIFT) se upisuje u FIFO RAM.
- Ako je FIFO bio prazan, aktivira se IRQ.
- Ako je FIFO pun, ne upisuje se novi karakter i postavlja se fleg da signalizira grešku.
- Ako je detektovan pritisak još nekog tastera, ne unosi se ništa u FIFO.
- Ako se ostali tasteri otpuste pre tekućeg, onda se ipak upisuje u FIFO.
- Ako se otpusti pre ostalih, ignoriše se pritisak.
- Taster se unosi samo jednom u FIFO za svaki pritisak, bez obzira koliko je tastera u međuvremenu pritisnuto i kojim redom.
- Ako su dva tastera istovremeno pritisnuta tokom debaunsing perioda, nijedan neće biti upisan u FIFO dok se drugi ne otpusti. Onaj koji ostane poslednji pritisnut, tumačiće se kao da je samo on pritisnut.

Metode skeniranja tastature N-key rollover

- Svaki taster se tretira nezavisno od svih ostalih.
- Kada se pritisne taster, kolo za debaunsing čeka 2 skena tastature i zatim proverava da li je taster još pritisnut.
- Ako jeste, kod tastera se unosi u FIFO RAM.
- Bez obzira koliko je tastera već pritisnuto, novi pritisak će biti prepoznat i unet u FIFO.
- Ako je više tastera istovremeno pritisnuto, svaki od njih se prepoznaje i biće unet u FIFO RAM u redosledu koji određuje procedura skeniranja tastature.

Mod matrice senzora

- Debaunsing logika je sasvim isključena.
- Stanje prekidača (senzora) se direktno upisuje u RAM na odgovarajuću poziciju (nije FIFO).
- RAM čuva sliku stanja svih prekidača u matrici senzora.
- CPU može direktno očitavati stanja svih prekidača.
- Senzore bi, radi lakše analize, trebalo grupisati (funkcionalno) po vrstama, jer ih u tom redosledu (i formatu) CPU očitava.
- IRQ se aktivira ako bilo koji promeni svoje stanje, a deaktivira sa prvim čitanjem (bilo čega), ako je Auto-Increment fleg 0, ili End Interrupt komandom, ako je Auto-Increment fleg 1.

Programski takt

- Sve operacije u 8279 obavljaju se po taktu koji se dobija iz preskaler-a.
- Preskaler deli eksterni takt (doveden na pin 3) celobrojnom vrednošću zadatu sa PPPPP (2-31).
- Preporuka je da se izabere faktor koji će dati frek. od 100kHz, jer to omogućuje scan na 5ms i debaunsing na 10ms.

Čitanje FIFO/Senzor RAM-a

- Postavljanjem ove komande, CPU priprema 8279 za čitanje FIFO memorije.
- U modovima za skeiranje tastature, i AI i AAA polja se ignorišu. 8279 automatski postavlja karaktere na Data magistralu za svako sukcesivno čitanje ($A_0 = 0$) u redosledu kako su uneti u memoriju.
- U modu matrice senzora, AAA selektuje jednu od 8 vrsta senzor RAM-a. Ako je AI postavljeno, svako naredno čitanje će biti iz sledeće vrste.

Čitanje/upis u displej RAM

- Čitanje displej RAM-a se inicijalizuje izdavanjem ove komande.
- Adresni bitovi (AAAA) selektuju jednu od 16 vrsta iz displej RAM-a.
- Ako je IA (*increment address*) postavljen, adresa vrste se inkrementra sa svakim narednim čitanjem (ili upisom).
- Obzirom da se koristi isti brojač i za čitanje i za upis, automatska inkrementacija se istovremeno uključuje/isključuje za obe operacije.

1	0	0	AI	Α	Α	Α	Α
---	---	---	----	---	---	---	---

- Upis u displej RAM se inicijalizuje izdavanjem ove komande.
- Adresiranje i auto-inkrementiranje je identično kao kod čitanja.

Ilustracija automatskog inkrementiranja pri upisu

Inhibiranje/brisanje ispisa na displeju

				Α	В	Α	В
1	0	1	Х	IW	IW	BL	BL

- **IW** bitovi služe za maskiranje polubajta A ili B, ako aplikacija zahteva zasebne 4-bitne displej portove.
- Postavljanjem IW flega (IW = 1) za jedan od portova, taj port se maskira tako da odgovarajući sadržaj u displej RAM-u ne utiče na prikaz.
- A port predstavlja viši polubajt, a B niži polubajt u displej RAM-u.
- BL fleg briše odgovarajući polubajt.
- Poslednja izdata Clear komanda definiše vrednost kojom će biti izvršeno brisanje

Brisanje Clear komanda

- C_D bitovi definišu brisanje sve vrste u displej RAM-u
 - 10X briše se postavljenjem svih 0
 - 110 briše se postavljenjem koda 0010 0000 (20_H)
 - 111 briše se postavljenjem svih 1
- Ako je C_F postavljen, FIFO status se briše, IRQ se resetuje, senzor RAM pokazivač se postavlja na 0 vrstu.
- C_A resetuje sve (ima isti efekat kao da su postavljeni ostali C bitovi, C_D (prvi od 3) i C_F). Za brisanje displeja se koristi kod postavljen nižim C_D bitovima. Ovaj reset resinhronizuje interni tajming.

End Interrupt/Error Mode Set

- Za modove matrice senzora, ova komanda deaktivira IRQ liniju i omogućuje dalji upis u RAM. IRQ se aktivira sa detekcijom promene vrednosti u matrici senzora, čime se istovremeno brani dalji upis u RAM.
- Za N-kez rollover modove, ako je E = 1, komponenta radi u specijalnom "Error" modu. U njemu debaunsing radi normalno. Ako su pritusnuta dva tastera tokom debauns ciklusa, postavlja se error fleg, koji sprečava upis u FIFO i aktivira IRQ, ako već nije aktivan. U ovom modu se može očitati error fleg, čitanjem statusne reči. Error fleg se briše prethodnom komandom i postavljanjem C_F flega.

FIFO statusna reč

- U modu tastature i strobovanom ulazu, služi da pokaže koliko je karaktera u FIFO RAM-u i da li je nastala greška.
- D_U u kazuje da displej još nije spreman, jer je u toku brisanje (Clear Display ili Clear All komande su u toku izvršenja)
- U modu matrice senzora S/E indicira da postoji bar jedan pritisak (zatvoren taster) u matrici, a u specijalnom Error modu S/E indicira da postoji simultani pritisak više tastera