Patient Management System

Nathaniel Pyo & Jimmy Cheung

Introduction

Problem Statement: Hospital patient management queues can be difficult to arrange when considering both severity and the time a patient has been waiting.

Project Scope
The aim is to construct an algorithm the receives patient information and organizes a priority queue structured around two principles: severity and wait time.

Objectives | Goals
Prioritize patient severity
over arrival order
Prevent excessive delays
and address time-sensitivity
Incorporate a timer to
override past a max wait
time threshold

Literature Review

Priority Queue

```
Array: 10 2 4 8 6 9
```

Priority Queue: 10 9 8 6 4 2

```
Array: 10 2 4 8 6 9
```

Priority Queue : 2 4 6 8 9 10

Methodology

Clerk Window

- 1. The window will be open for 5 seconds, check duration to verify
- 2. Add and serve patients while the window is open
- 3. Print current patient served and line status
- 4. Implement a slight delay between new patients added
- 5. Close window and serve remaining patients

Clerk Window

- 1. The window will be open for 5 seconds, check duration to verify
- 2. Add and serve patients while the window is open
- 3. Print current patient served and line status
- 4. Implement a slight delay between new patients added
- 5. Close window and serve remaining patients

```
chrono::time_point<std::chrono::system_clock> open = chrono::system_clock::now();
double close;
PriorityQueue patientLine;
srand((unsigned)time(0));
while (close < 5){
    patientLine.nPatients(0);
    patientLine.dispOrder();
    chrono::time_point<std::chrono::system_clock> curtime = chrono::system_clock::now();
    chrono::duration<double> dur = curtime - open;
    close = dur.count();
    this thread::sleep for(chrono::seconds(1));
cout << "Window has closed, no new patients." << endl;</pre>
while(!patientLine.isEmpty()) {
    patientLine.nPatients(1);
    patientLine.dispOrder();
    this thread::sleep for(chrono::seconds(1));
```

Add Patients

- Generate random number 0-3 representing number of new patients
- 2. Generate random number 1-3 for each patient representing severity
- 3. Record patient ID, severity arrival order, and arrival time in vector
- 4. Record severity in priority queue

Num Patients: 3	Patient 1, Severity 2	Patient 2, Severity 1	Patient 3, Severity 3
Patient ID (v_int)	1	2	3
Severity (pq_int)	3	2	1
Arrival Order (v_int)	2	1	3
Arrival Time (v_time)	0.25	0.50	0.75

Serve Patients

- Check if wait time threshold of 3 seconds has been reached
 Call function to calculate duration after being sent arrival time
- 2. If max wait time not reached, serve highest severity patient
- 3. If max wait time reached, serve patient for which max time reached
- 4. Match and remove all data attributes (ID, severity, order, time)
 - a. Call auxiliary functions to match up data attribute indices

Time Complexity

- Window operations utilize a while loop: O(n)
- 2. Adding patients uses a combination of if statements and for loops
 - a. priority_queue.push() is O(logn) complexity
 - b. Push function contained within for loop: O(n*logn)
- 3. Serving patients uses a combination of if and for
 - a. priority_queue.pop() is O(logn) complexity
 - b. Pop function contained within for/while loop: O(n*logn)
- 4. For loops in aux functions for matching indices and checking wait time: O(n)

Total for queueing algorithm: **O(n logn)**

Analysis and Results

Patients added: P1(3) Arrival Order: P3(1) Serving patient P1 with severity: 3 Patients added: P4(3) P5(3) P6(3) Line is empty. Serving patient P4 with severity: 3 Arrival Order: P3(1) P5(3) P6(3) Patients added: Patients added: Waiting for customers... Serving patient P5 with severity: 3 Line is empty. Patients added: Arrival Order: P3(1) P6(3) Waiting for customers... Window has closed, no new patients. Line is empty. Max wait time reached. Serving patient P3 with severity: 1 first. Patients added: P2(2) P3(1) Arrival Order: P6(3)

Serving patient P2 with severity: 2

New Patients: 1	P1, Severity 3		Time: 0.00	
Patient ID	P1			
Severity	3			
Arrival Order	3			
Arrival Time	0.33			

Patients added: P1(3) Arrival Order: P3(1) Serving patient P1 with severity: 3 Patients added: P4(3) P5(3) P6(3) Line is empty. Serving patient P4 with severity: 3 Arrival Order: P3(1) P5(3) P6(3) Patients added: Patients added: Waiting for customers... Serving patient P5 with severity: 3 Line is empty. Patients added: Arrival Order: P3(1) P6(3) Waiting for customers... Window has closed, no new patients. Line is empty. Max wait time reached. Serving patient P3 with severity: 1 first. Patients added: P2(2) P3(1) Arrival Order: P6(3) Max wait time reached. Serving patient P6 with severity: 3 first. Serving patient P2 with severity: 2

New Patients: 0				Time: 1.00
Patient ID				
Severity				
Arrival Order				
Arrival Time				

Patients added: P1(3) Arrival Order: P3(1) Serving patient P1 with severity: 3 Patients added: P4(3) P5(3) P6(3) Line is empty. Serving patient P4 with severity: 3 Arrival Order: P3(1) P5(3) P6(3) Patients added: Patients added: Waiting for customers... Serving patient P5 with severity: 3 Line is empty. Patients added: Arrival Order: P3(1) P6(3) Waiting for customers... Window has closed, no new patients. Line is empty. Max wait time reached. Serving patient P3 with severity: 1 first. Patients added: P2(2) P3(1) Arrival Order: P6(3) Max wait time reached. Serving patient P6 with severity: 3 first. Serving patient P2 with severity: 2

New Patients: 0	Time: 1.33		
Patient ID			
Severity			
Arrival Order			
Arrival Time			

Patients added: P1(3) Arrival Order: P3(1) Serving patient P1 with severity: 3 Patients added: P4(3) P5(3) P6(3) Line is empty. Serving patient P4 with severity: 3 Arrival Order: P3(1) P5(3) P6(3) Patients added: Patients added: Waiting for customers... Serving patient P5 with severity: 3 Line is empty. Patients added: Arrival Order: P3(1) P6(3) Waiting for customers... Window has closed, no new patients. Line is empty. Max wait time reached. Serving patient P3 with severity: 1 first. Patients added: P2(2) P3(1) Arrival Order: P6(3)

Serving patient P2 with severity: 2

New Patients: 2	P2, Severity 2	P3, Severity 1	Time: 1.67
Patient ID	P2	P3	
Severity	2	1	
Arrival Order	2	1	
Arrival Time	1.67	2.00	

Patients added: P1(3) Arrival Order: P3(1) Serving patient P1 with severity: 3 Patients added: P4(3) P5(3) P6(3) Line is empty. Serving patient P4 with severity: 3 Patients added: Arrival Order: P3(1) P5(3) P6(3) Waiting for customers... Patients added: Serving patient P5 with severity: 3 Line is empty. Patients added: Arrival Order: P3(1) P6(3) Waiting for customers... Window has closed, no new patients. Line is empty. Max wait time reached. Serving patient P3 with severity: 1 first. Patients added: P2(2) P3(1) Arrival Order: P6(3)

Serving patient P2 with severity: 2

New Patients: 3	P4: Severity 3	P5: Severity 3	P6: Severity 3	Time: 2.67
Patient ID	P3	P4	P5	P6
Severity	3	1	1	1
Arrival Order	1	3	3	3
Arrival Time	2.00	2.67	3.00	3.33

Patients added: P1(3) Arrival Order: P3(1) Serving patient P1 with severity: 3 Patients added: P4(3) P5(3) P6(3) Line is empty. Serving patient P4 with severity: 3 Arrival Order: P3(1) P5(3) P6(3) Patients added: Patients added: Waiting for customers... Serving patient P5 with severity: 3 Line is empty. Patients added: Arrival Order: P3(1) P6(3) Waiting for customers... Window has closed, no new patients. Line is empty. Max wait time reached. Serving patient P3 with severity: 1 first. Patients added: P2(2) P3(1) Arrival Order: P6(3)

Serving patient P2 with severity: 2

New Patients: 0	Time: 4.00			
Patient ID	P3	P5	P6	
Severity	3	3	1	
Arrival Order	1	3	3	
Arrival Time	2.00	3.00	3.33	

Patients added: P1(3) Arrival Order: P3(1) Serving patient P1 with severity: 3 Patients added: P4(3) P5(3) P6(3) Line is empty. Serving patient P4 with severity: 3 Arrival Order: P3(1) P5(3) P6(3) Patients added: Patients added: Waiting for customers... Serving patient P5 with severity: 3 Line is empty. Patients added: Arrival Order: P3(1) P6(3) Waiting for customers... Window has closed, no new patients. Line is empty. Max wait time reached. Serving patient P3 with severity: 1 first. Patients added: P2(2) P3(1) Arrival Order: P6(3) Max wait time reached. Serving patient P6 with severity: 3 first.

Window Closed			Time: 5.33	
Patient ID	P3	P6		
Severity	3	1		
Arrival Order	1	3		
Arrival Time	2.00	3.33		

Serving patient P2 with severity: 2

Patients added: P1(3) Arrival Order: P3(1) Serving patient P1 with severity: 3 Patients added: P4(3) P5(3) P6(3) Line is empty. Serving patient P4 with severity: 3 Arrival Order: P3(1) P5(3) P6(3) Patients added: Patients added: Waiting for customers... Serving patient P5 with severity: 3 Line is empty. Patients added: Arrival Order: P3(1) P6(3) Waiting for customers... Window has closed, no new patients. Line is empty. Max wait time reached. Serving patient P3 with severity: 1 first. Patients added: P2(2) P3(1) Arrival Order: P6(3) Max wait time reached. Serving patient P6 with severity: 3 first. Serving patient P2 with severity: 2

New Patients: 0			Time: 6.33	
Patient ID	P6			
Severity	3			
Arrival Order	3			
Arrival Time	3.33			

Key Findings and Implications

- Order Preservation: Input order is only preserved in priority queues for identical elements
- Allows for the algorithm to sync data attributes by finding the first match
- Wait Time Check: Logically, the patient that is first in the arrival order vector will have been waiting the longest, time complexity is reduced by only checking wait time for that patient
- Hours Spent: 6 per week, 24 per month

Project Limitations and Conclusions

Space Limitations: The algorithm solution is optimized for time complexity but utilizes 4 different data attributes across all functions. These data attributes are dynamically modified.

Priority Queues: The automatic sort functionality is considerably useful but does not preserve order. For algorithms where order preservation is unnecessary, priority queues are incredibly efficient and compact for their auto-sort capabilities.

Project Limitations and Conclusions

Time Complexity: The time complexity of the algorithm was simplified due to the efficiency of priority queues. Some of the most efficient sorting algorithms are O(n*logn), and for the push and pop functions being O(logn), operating across all array elements is consistent at O(n*logn)

Future Work

Connect with potential client

Step 1

Step 3

Step 2

Create a GUI

Implement the algorithm

Step 3

Expand