Lista 6

Zadanie 1 (Wyznacznik macierzy klatkowej). Dla macierzy kwadratowych M_1, \ldots, M_k rozważamy macierz M postaci ($macierz \ klatkowa$):

$$\begin{bmatrix} M_1 & & & & \\ & M_2 & & & \\ & & \ddots & & \\ & & & M_k \end{bmatrix} ,$$

tzn. przekątna M pokrywa się z przekątnymi macierzy $M_1,\dots,M_k,$ a poza tymi macierzami M ma same zera. Pokaż, że

$$\det(M) = \prod_{i=1}^k \det(M_i) .$$

Wskazówka: Pokaż najpierw dla dwóch macierzy.

Zadanie 2 (* Alternatywny dowód tw. Cauchy'ego; nie liczy się do podstawy). Zadanie to polega na pokazaniu alternatywnego dowodu tw. Cauchy'ego.

Niech A, B, C będą macierzami wymiaru $n \times n$, gdzie C = AB oraz $\mathrm{rk}(A) = \mathrm{rk}(B) = n$.

Rozważ macierz $\begin{bmatrix} A & \mathbf{0} \\ -\operatorname{Id} & B \end{bmatrix}$. Ile wynosi jej wyznacznik?

Pokaż, że przy pomocy operacji kolumnowych (tj. zamiany kolumn i dodawania do kolumny wielokrotności innej kolumny) można macierz $\begin{bmatrix} A & \mathbf{0} \\ -\operatorname{Id} & B \end{bmatrix}$ przekształcić do macierzy $\begin{bmatrix} A & C \\ -\operatorname{Id} & \mathbf{0} \end{bmatrix}$ a tą do macierzy $\begin{bmatrix} C & A \\ \mathbf{0} & -\operatorname{Id} \end{bmatrix}$. Ile wynosi wyznacznik tej macierzy?

Zadanie 3. Pokaż, że układ równań uzyskany przez

- zamianę i-tego oraz j-tego równania
- dodanie do j-tego równania wielokrotności i-tego
- przemnożenie *i*-tego równania przez stałą $\alpha \neq 0$
- usunięcie trywialnego równania $\sum_i 0 \cdot x_i = 0$

jest równoważny wejściowemu.

szowe operacje elementarne, które są odwracalne.

Wskazówka: Można na palcach, ale prościej jest zinterpretować (wszystko poza ostanią operacją) jako wier-

Zadanie 4. Rozwiąż przy użyciu wzorów Cramera, tj. $x_i = \frac{\det(A_{x_i})}{\det(A)}$, układy równań:

$$\begin{bmatrix} 2 & -1 \\ 1 & 16 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 17 \end{bmatrix}, \qquad \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \cos \beta \\ \sin \beta \end{bmatrix}, \qquad \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \\ 2 \end{bmatrix}.$$

Zadanie 5. Ile rozwiązań ma poniższy układ równań w zależności od parametru λ ? Układ jest nad \mathbb{Z}_{13} , tym samym $\lambda \in \mathbb{Z}_{13}$.

$$\begin{cases} \lambda x + \lambda^2 y + \lambda^3 z = 1\\ x + \lambda^2 y + \lambda^3 z = \lambda\\ x + y + \lambda^3 z = \lambda^2 \end{cases}.$$

Zadanie 6. Ile rozwiązań mają poniższe układy równań (w zależności od parametru p):

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 2 & 1 & 3 & 2 \\ 4 & 1 & 5 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2p \\ p \end{bmatrix}, \qquad \begin{bmatrix} p & p & p \\ 1 & p & p \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} p \\ p \\ p \end{bmatrix}.$$

Zadanie 7. Podaj jedno rozwiązanie szczególne oraz postać rozwiązania ogólnego dla:

$$\begin{bmatrix} 2 & 5 & -8 \\ 4 & 3 & -9 \\ 2 & 3 & -5 \\ 1 & 8 & -7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 8 \\ 9 \\ 7 \\ 12 \end{bmatrix}, \quad \begin{bmatrix} -9 & 6 & 7 & 10 \\ -6 & 4 & 2 & 7 \\ -3 & 2 & -11 & -15 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \\ 10 \end{bmatrix}, \begin{bmatrix} 5 & 3 & 5 & 12 \\ 2 & 2 & 3 & 5 \\ 1 & 7 & 9 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 10 \\ 4 \\ 2 \end{bmatrix}.$$

Preferowana metoda eliminacji.

Zadanie 8. Ile rozwiązań mają poniższe układy równań (w zależności od parametru λ):

$$\begin{bmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \begin{bmatrix} 1+\lambda & 1 & 1 \\ 1 & 1+\lambda & 1 \\ 1 & 1 & 1+\lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ \lambda \\ \lambda^2 \end{bmatrix}.$$

Zadanie 9. Niech A będzie macierzą kwadratową, rozpatrzmy układ równań postaci

$$A\vec{X} = \vec{B}$$
.

Niech A_{x_i} oznacza macierz powstałą przez zastąpienie *i*-tej kolumny A przez \vec{B} (czyli jak we wzorach Cramera).

Pokaż, że jeśli $\det(A) = 0$ oraz istnieje i takie, że $\det(A_{x_i}) \neq 0$, to układ jest sprzeczny.

Pokaż też, że nie jest prawdziwe poniższe "twierdzenie" o wzorach Cramera (tzn. podaje kontrprzykład):

Jeśli $\det(A) = 0$ oraz dla każdego i mamy $\det(A_{x_i}) = 0$, to układ równań ma rozwiązanie.

Dla zaangażowanych: popraw odpowiednie hasło w polskiej Wikipedii i zablokuj edycję, żeby ten błąd nie wracał.

'souoziezszoi ι souoziezszoi κατασικό το κατασικό

Zadanie 10. Opisz przestrzeń rozwiązań poniższych układów równań (np. poprzez podanie bazy odpowiedniej przestrzeni liniowej)

$$\begin{cases} x_1 & -x_3 & = & 0 \\ x_2 & -x_4 & = & 0 \\ -x_1 + & x_3 & -x_5 & = & 0 \\ -x_2 + & x_4 & -x_6 & = & 0 \\ -x_4 & +x_6 & = & 0 \end{cases}, \begin{cases} x_1 & +x_2 & = & 0 \\ x_1 & +x_2 & +x_3 & = & 0 \\ x_2 & +x_3 & +x_4 & = & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{cases}, \begin{cases} x_1 & +x_2 & -2x_3 & +2x_4 & = & 0 \\ 3x_1 & +5x_2 & +6x_3 & -4x_4 & = & 0 \\ 4x_1 & +5x_2 & -2x_3 & +3x_4 & = & 0 \\ 3x_1 & +8x_2 & +24x_3 & -19x_4 & = & 0 \end{cases}$$

Zadanie 11. Pokaż, że jeśli λ jest wartością własną macierzy A to λ^k jest wartością własną A^k .