2019Fall STAT5107 Assignment 4

Department of Statistics, The Chinese University of Hong Kong Due 9:30pm, Thursday, November 14, 2019

1. For a binary response variable Y and an explanatory variable X, let $\pi(x) = P(Y = 1|X = x) = 1 - P(Y = 0|X = x)$. The logistic regression model is

$$\pi(x) = \frac{exp(\alpha + \beta x)}{1 + exp(\alpha + \beta x)}.$$

When $\pi(x)$ is small, explain why one can interpret $exp(\beta)$ approximately as $\pi(x+1)/\pi(x)$.

- 2. A study for several professional sports used the model $logit(\pi) = \alpha + \beta logd$ to study the effect of a player's draft position d (d = 1, 2, 3...) (of selection from the pool of potential players in a given year) on the probability π of eventually being named an all star.
 - a. Show that $\pi/(1-\pi) = e^{\alpha}d^{\beta}$. Show that $e^{\alpha} = \text{odds}$ for the first draft pick.
 - b. In the United States, Berry reported $\hat{\alpha}=2.3$ and $\hat{\beta}=-1.1$ for probasketball and $\hat{\alpha}=0.7$ and $\hat{\beta}=-0.6$ for pro baseball. This suggests that in basketball a first draft pick is more crucial and picks with high d are relatively less likely to be all-stars. Try to give some explaination.
- 3. For a study using logistic regression to determine characteristics associated with remission in cancer patients, the first Table below shows the most important explanatory variable, a labeling index (LI). This index measures proliferative activity of cells after a patient receives an injection of tritiated thymidine, representing the percentage of cells that are "labeled." The response Y measured whether the patient achieved remission (1=yes). Software reports the second Table below for a logistic regression model using LI to predict the probability of remission, where the model is:

$$logit(E[Y = 1|LI = x]) = logit(\pi(x)) = \alpha + \beta x$$

TABLE

LI		Number of Remissions			Number of Remissions			Number of Remissions
8	2	0	18	1	1	28	1	1
10	2	0	20	3	2	32	1	0
12	3	0	22	2	1	34	1	1
14	3	0	24	1	0	38	3	2
16	3	0	26	1	1			

Source: Data reprinted with permission from E. T. Lee, Comput. Prog. Biomed. 4: 80-92 (1974).

		Criterion -2LogL	C	ercept nly .372			1	
		Testing G	lobal N	ull Hypoth	esis: E	BETA = 0		
	Test	_		Square			ChiSq	
	Likeli	hood Ratio		2988			0040	
	Score					0.0049		
	Wald			.9594			0146	
	mara			. 5554	-	0.0	7140	
Param	eter	Estimate	Standa	rd Error	Chi-S	quare	Pr > ChiSq	
Inter	cept	-3.7771	1.	3786	7.5	064	0.0061	
li	_	0.1449	0.	0593	5.9	594	0.0146	
			Odds Ra	tio Estima	ates			
E	ffect	Point Es	timate	95% Wa	ld Cont	fidence	Limits	
1:	i	1.19	6		1.029	1.298	3	
		Est	imated	Covariance	Matrix	2		
		Variable	Int	ercept	1	i		
		Intercept	1	900616	-0.0	7653		
	li		-0.07653					
Obs	li	remiss	n	pi_hat	10	ower	upper	
1	8	0	2	0.06797	0.0	01121	0.31925	
2	10	0	2	0.08879	0.0	01809	0.34010	
								_

(The fitted parameters intercept $\hat{\alpha}$, li $\hat{\beta}$, their standard error and other results are showed in above.)

- a. Show how software obtained $\hat{\pi}=0.068$ when LI=8.
- b. Show that $\hat{\pi} = 0.5$ when LI = 26.0.
- c. Show that the rate of change in $\hat{\pi}$ is 0.009 when LI=8 and 0.036 when LI=26.
- d. The lower quartile and upper quartile for LI are 14 and 28. Show that $\hat{\pi}$ increases by 0.42, from 0.15 to 0.57, between those values.
- e. For a unit change in LI, show that the estimated odds of remission multiply by 1.16.
- f. Please explain how to obtain the confidence interval reported for the odds ratio.
- g. Construct a Wald test for the effect. And try to interpret it.
- h. Conduct a likelihood-ratio test for the effect, showing how to construct the test statistic using the -2logL values reported.
- 4. Table below is a $2 \times 2 \times 2$ contingency table-two rows, two columns, and two layers-from an article that studied effects of racial characteristics on whether persons convicted of homicide received the death penalty. The 674 subjects classified in the table were the defendants in indictments involving cases with muliple murders in Florida between 1976 and 1987. The variables are Y=death penalty verdict, having the categories (yes, no), X=race of defendant, Z=race of victims, each having the categories (white, black).

TABLE Death Penalty Verdict by Defendant's Race and Victims' Race

Victims'	Defendant's	Death	Percent		
Race	Race	Yes	No	Yes	
White	White	53	414	11.3	
	Black	11	37	22.9	
Black	White	0	16	0.0	
	Black	4	139	2.8	
Total	White	53	430	11.0	
	Black	15	176	7.9	

Source: M. L. Radelet and G. L. Pierce, Florida Law Rev. 43: 1-34 (1991). Reprinted with permission from the Florida Law Review.

Below another Table shows the results of fitting a logit model, treating death penalty as the response (1=yes), treating defendant's race (1=white) and victims' race (1=white) as dummy predictors. The model is:

$$logit(E[Y=1|X=x,Z=z]) = logit[\pi(x,z)] = \alpha + \beta_1 x + \beta_2 z$$

where α is intercept, β_1 and β_2 are parameters of defendant's race and victim's race respectively.

TABLE Computer Output

			For Assessi	_			
	Criterion			DF	Va	lue	
	Deviance				(0.3798	
Pearson Chi-Square Log Likelihood				1 0.1978 -209.4783			
			Standard	Like	elihoo	od Ratio	Chi-
Parameter Estimate		ate	Error	95% Conf Limits		Limits	Square
Intercept	Intercept -3.5961		0.5069	-4.7754 -		-2.7349	50.33
def	-0.8678		0.3671	-1.5633		-0.1140	5.59
vic	2.4	044	0.6006	1.3068		3.7175	16.03
			LR Stat:	istics			
5	Source	DF	Chi-Sq	uare	Pr	> ChiSq	
(def	1	_	5.01		0.0251	
,	vic	1		20.35		<.0001	

- a. Please interpret parameter estimates. Which group is most likely to have the yes response? Find the estimated probability in that case.
- b. Interpret 95% confidence intervals for conditional odds ratios (in terms of victim's race) given defendant's race.
- c. Test the effect of defendant's race, controlling for victims' race, using a (i) Wald test, and (ii) likelihood-ratio test.