Problem Set 1

1 Conditions for Normal Equation

Prove the following theorem: The matrix A^TA is invertible if and only if the columns of A are linearly independent.

Solution: We first prove A^TA is invertible if the columns of A are linear independent. We denote by $\mathcal{N}(A)$ the null space of A. Due to the linear independence of A, $\mathcal{N}(A) = \{\vec{0}\}$ where $\vec{0}$ is a vector where all elements are zeros. Let $\mathcal{N}(A^TA)$ be the null space of the square matrix A^TA . For each $v \in \mathcal{N}(A^TA)$, we have $A^TAv = \vec{0}$, and thus $v^TA^TAv = 0$. Therefore, $(Av)^TAv = ||Av||_2^2 = 0$, which implies $Av = \vec{0}$. It is demonstrated that, if $v \in \mathcal{N}(A^TA)$, then $Av = \vec{0}$ and $v \in \mathcal{N}(A)$. Recalling $\mathcal{N}(A) = \{\vec{0}\}$, we have $v = \vec{0}$. Finally, we have $\mathcal{N}(A^TA) = \{\vec{0}\}$. Hence, the columns of A^TA is linearly independent with each other, and we conclude that A^TA is invertible.

We then prove that if A^TA is invertible, the columns of A are linearly independent. Since A^TA is invertible, we have $\mathcal{N}(A^TA) = \{\vec{0}\}$. For $\forall v \in \mathcal{N}(A)$, we have $Av = \vec{0}$ and hence $A^TAv = \vec{0}$. Therefore, v also belongs to the null space of A^TA , i.e., $v \in \mathcal{N}(A^TA)$. Recalling $\mathcal{N}(A^TA) = \{\vec{0}\}$, then $v = \vec{0}$. We are done.

2 Regularized Normal Equation for Linear Regression

Given a data set $\{x^{(i)}, y^{(i)}\}_{i=1,\dots,m}$ with $x^{(i)} \in \mathbb{R}^n$ and $y^{(i)} \in \mathbb{R}$, the general form of regularized linear regression is as follows

$$\min_{\theta} \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$
 (1)

Derive the normal equation.

Solution: The objective function can be reformulated as

$$J(\theta) = \frac{1}{2m} \left[(X\theta - \vec{y})^T (X\theta - \vec{y}) + \lambda \theta^T L\theta) \right]$$

where
$$X = \begin{bmatrix} -x^{(1)} - \\ \vdots \\ -x^{(m)} - \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix}$ and $L = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$. Therefore, we

have

ve

$$\nabla_{\theta} J(\theta) = \frac{1}{2m} \left[\nabla_{\theta} (X\theta - \vec{y})^T (X\theta - \vec{y}) + \nabla_{\theta} \lambda \theta^T L \theta) \right]$$

$$= \frac{1}{2m} \left[\nabla_{\theta} (\theta^T X^T X \theta - \theta^T X^T \vec{y} - \vec{y}^T X \theta + \vec{y}^T \vec{y}) + \nabla_{\theta} \lambda \theta^T L \theta) \right]$$

$$= \frac{1}{2m} (2X^T X \theta - 2X^T \vec{y} + 2\lambda L \theta)$$

$$= \frac{1}{m} (X^T X \theta - X^T \vec{y} + \lambda L \theta)$$

$$= 0$$

Hence,

$$\theta = (X^T X + \lambda L)^{-1} X^T \vec{y}$$