Àlgebra (Grau en Enginyeria Informàtica) Solucions dels exercicis de la lliçó 13 **Robert Fuster**

Exercici 13.1. *Trobeu (si és possible) bases dels quatre subespais associats a les matrius següents:*

(a)
$$M_1 = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

(b)
$$M_2 = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 2 & -1 \end{bmatrix}$$

(a) Amb una sola operació elemental trobem una forma esglaonada de M₁:

$$S_1 = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

Així que rang $M_1 = 3$. En conseqüència,

$$\begin{aligned} & \text{Col } M_1 = \mathbb{R}^3 \\ & \text{Fil } M_1 = \langle (1,0,1,-1), (0,1,1,0), (1,0,1,1) \rangle \end{aligned}$$

i podem escollir les bases següents:

$$B_{\text{Col M}_1} = \{(1,0,0), (0,1,0), (0,0,1)\}$$

$$B_{\text{Fil M}_1} = \{(1,0,1,-1), (0,1,1,0), (1,0,1,1)\}$$

L'espai nul esquerre és Nul $M_1^t = \{\vec{0}\}$, que no té cap base. Finalment, per a trobar l'espai nul cal resoldre un sistema homogeni, la matriu de coeficents del qual és M₁, així que acabarem de calcular la forma esglaonada reduïda d'aquesta matriu:

$$\mathsf{R}_1 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

La solcuió del sistema $M_1\vec{x} = \vec{0}$ és $x_1 = -\alpha$, $x_2 3 = -\alpha$, $x_3 = \alpha$, $x_4 = 0$, així que

$$B_{\text{Nul}\,M_1} = \{(-1, -1, 1, 0)\}$$

és una base de l'espai nul.

(b) La forma esglaonada reduïda de la matriu M₂ és

$$\mathsf{R}_2 = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Per tant, obtenim immediatament les bases següents, per als espais columna, fila i nul:

$$B_{\text{Col}M_2} = \{(1,0,1), (0,1,1)\}$$

$$B_{\text{Fil}M_2} = \{(1,0,1,-1), (0,1,1,0)\}$$

$$B_{\text{Nul}M_2} = \{(-1,-1,1,0), (1,0,0,1)\}$$

Per a determinar l'espai nul esquerre calculem la foema esglaonada reduïda de M_2^t ; és aquesta:

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

per tant, podem escollir aquesta base:

$$B_{\text{Nul}\,\mathsf{M}_2^t} = \{(-1, -1, 1)\}\$$

(c) Notem que les tres darreres columnes de la matriu M_3 són combinacions lineals de la primera. En conseqüència, com a base de l'espai columna modem elegir

$$B_{\text{Col}\,M_3} = \{(1, 2, -1)\}$$

Llavors, l'espai fila també té dimensió 1, així que podem triar qualsevol fila per a construir la base. Per exemple,

$$B_{\text{Fil M}_3} = \{(1, 0, 1, -1)\}$$

L'espai nul és l'espai solució de l'equació

$$x_1 + 0x_2 + x_3 - x_4 = 0$$

i aquesta n'és una base:

$$B_{\text{Nul}\,\mathsf{M}_3} = \{(0,1,0,0), (-1,0,1,0), (1,0,0,1)\}$$

Per últim, l'espai nul esquerre és la solució de l'equació

$$x_1 + 2x_2 - x_3 = 0$$

i aquesta n'és una base:

$$B_{\text{NulM}_{2}^{t}} = \{(-2, 1, 0), (1, 0, 1)\}\$$

Exercici 13.2. La matriu A té 7 files i 5 columnes i el seu rang és 4. Quines són les dimensions dels quatre subespais associats a aquesta matriu?

 $\dim \operatorname{Col} A = 4$

 $\dim \operatorname{Fil} A = 4$

 $\dim \text{Nul } A = 1$

 $\dim \operatorname{Nul} A^t = 3$

Exercici 13.3. (a) Quina condició ha de complir la matriu $m \times n$ A perquè l'espai columna de A siga \mathbb{R}^m ?

- (b) I perquè l'espai nul siga $\{\vec{0}\}$?
- (c) Si A és una matriu $n \times n$ invertible, quins són els quatre subespais associats a A?

- (a) Ha de ser rang A = m
- (b) rang A = n
- (c) Col A = Fil A = \mathbb{R}^n , Nul A = Nul A^t = $\{\vec{0}\}$

Exercici 13.4. Donada la matriu

$$A = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & -2 & -4 \end{bmatrix}$$

- (a) Calculeu la forma esglaonada reduïda R de la matriu A, la matriu T tal que R = TA i la matriu inversa $L = T^{-1}$ (tot això requereix únicament una operació elemental).
- (b) Trobeu els quatre subespais deduïts de A.
- (c) Quina relació hi ha entre l'espai columna de A i les columnes de L? Per què?
- (d) Quina relació hi ha entre l'espai nul de A^t i les files de T? Per què?
- (e) Sabent que

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 5 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 & 5 \\ 0 & 0 & 1 & 16 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

determineu bases dels quatre subespais associats a A sense calcular explícitament la matriu A.

(a)

$$\mathsf{A} = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & -2 & -4 \end{bmatrix} \xrightarrow{\mathsf{E}_{3,1}(-2)} \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \mathsf{R}$$

Aquesta darrera és la forma esglaonada reduïda de A. Les matrius T i T^{-1} són

$$T = \mathsf{E}_{3,1}(-2) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \qquad \mathsf{L} = \mathsf{T}^{-1} = \mathsf{E}_{3,1}(2) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

(b)

Col A =
$$\langle (1,0,2), (0,1,0) \rangle$$

Fil A = $\langle (1,0,-1,-2), (0,1,0,1) \rangle$
Nul A = $\langle (1,0,1,0), (2,-1,0,1) \rangle$

La forma esglaonada reduïda de la matriu A^t es troba molt fàcilment:

$$\mathbf{A}^{t} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ -1 & 0 & -2 \\ -2 & 1 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Llavors

$$\operatorname{Nul} A^t = \langle (-2, 0, 1) \rangle$$

(c) Anomenem $\vec{l}_1, \vec{l}_2, \vec{l}_3$ les columnes de L. Si eliminem les columnes lliures de A i R en

$$\mathsf{A} = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & -2 & -4 \end{bmatrix} = \begin{bmatrix} \vec{l}_1 & \vec{l}_2 & \vec{l}_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \mathsf{T}^{-1}\mathsf{R}$$

obtindrem

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} \vec{l}_1 & \vec{l}_2 & \vec{l}_3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \vec{l}_1 & \vec{l}_2 \end{bmatrix}$$

De manera que $\{\vec{l}_1, \vec{l}_2\}$ és una base de Col A. En general, si rang A = r, llavors les r primeres columnes de T^{-1} formen una base de Col A.

(d) Un vector \vec{x} és un element de l'espai nul esquerre si $\vec{x}A = 0$. Com que TA = R i la darrera fila de R és nul·la, resulta que la darrera fila de R, multiplicada per R és nul·la:

$$\begin{bmatrix} -2 & 0 & 1 \end{bmatrix} A = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

Per tant, (-2,0,1) és un element de Nul A^t. En general, com que la dimensió de l'espai nul esquerre és el nombre de files nul·les de R, les files de T corresponents a aquestes són una base de l'espai nul esquerre. Així, podem trobar la base de l'espai nul esquerre sense esglaonar A^t: Si rang A = r, llavors les m - r darreres files de T formen una base de Nul A^t.

(e) Com que el rang de A és 2, les dues primeres columnes de L són una base de Col A:

$$B_{\text{Col A}} = \{(1, 2, 5), (0, 1, 0)\}$$

La base de l'espai nul de A s'obté resolent el sistema $R\vec{x} = \vec{0}$:

$$B_{\text{NulA}} = \{(1, 0, 1, 0), (2, -1, 0, 1)\}\$$

Com a base de l'espai fila agafem les files no nul·les de R:

$$B_{\text{FilA}} = \{(1, 0, -1, -2), (0, 1, 0, 1)\}$$

Finalment, com que el rang de A és 2, la dimensió de l'espai nul esquerre és 3-2=1 i podem prendre com a base la darrera fila de $T=L^{-1}$. Com que

$$T = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -5 & 0 & 1 \end{bmatrix}$$

obtenim aquesta base:

$$B_{\text{Nul}\,\mathsf{A}^t} = \{(-5,0,1)\}$$

Exercici 13.5. Trobeu els valors del paràmetre λ per als quals l'espai nul de la matriu $A_{\lambda} = \begin{bmatrix} 1-\lambda & 2\\ 2 & 1-\lambda \end{bmatrix}$ no és el subespai $\{\vec{0}\}$.

El que ha de passar, perquè l'espai nul de A_{λ} no siga l'espai zero, és que el rang d'aquesta matriu no siga igual a 2. Calculem aquest rang:

$$\operatorname{rang}\begin{bmatrix} 1-\lambda & 2\\ 2 & 1-\lambda \end{bmatrix} = \operatorname{rang}\begin{bmatrix} 0 & 2-\frac{1}{2}(1-\lambda)^2\\ 2 & 1-\lambda \end{bmatrix}$$

(a la primera fila hi hem restat la segona multiplicada per $(1/2)(1 - \lambda)$). La condició perquè aquest rang no siga 2 és

$$2 - \frac{1}{2}(1 - \lambda)^2 = 0$$

és a dir,

$$4 - (1 - \lambda)^2 = 0$$

Els valors que cerquem són aquests: $\lambda = -1$ o $\lambda = 3$.

Exercici 13.6. Trobeu l'ortogonal del conjunt $A = \{(1,0,1,0), (0,1,0,1)\}$. Quina relació hi ha entre A i $(A^{\perp})^{\perp}$?

 A^{\perp} és el conjunt de solucions del sistema lineal

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \vec{x} = \vec{0}$$

és a dir,

$$A^{\perp} = \langle (-1, 0, 1, 0), (0, -1, 0, 1) \rangle$$

Per a calcular $(A^{\perp})^{\perp}$ haurem de resoldre un altre sistema lineal:

$$\begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \vec{x} = \vec{0}$$

El que obtindrem és

$$(A^{\perp})^{\perp} = \langle (1,0,1,0), (0,1,0,1) \rangle$$

així que $(A^{\perp})^{\perp} = \langle A \rangle$

Exercici 13.7. Quina condició s'ha de complir perquè $A = (A^{\perp})^{\perp}$?

En general, $A \subset (A^{\perp})^{\perp}$. Perquè siguen iguals, A ha de ser un subespai vectorial.

Exercici 13.8. *Si F i G són dos subconjunts de* \mathbb{R}^n *i F* \subset *G, quina relació hi ha entre F*^{\perp} *i G*^{\perp}? Observem que, si $\vec{u} \in G^{\perp}$, llavors \vec{u} és ortogonal a tots els vectors de *G*; però com que *F* \subset *G*, llavors \vec{u} també és ortogonal a tots els vectors de *F*. És a dir, que

$$\vec{u} \in G^{\perp} \Longrightarrow \vec{u} \in F^{\perp}$$

I hem provat que $G^{\perp} \subset F^{\perp}$

Exercici 13.9. Quina relació hi ha entre els conjunt A i B, si $A^{\perp} = B^{\perp}$?

Si $A^{\perp} = B^{\perp}$, llavors $(A^{\perp})^{\perp} = (B^{\perp})^{\perp}$ i, com que $(A^{\perp})^{\perp} = \langle A \rangle$, obtindrem que $\langle A \rangle = \langle B \rangle$.

És fàcil veure que no té perquè ser A = B: si elegim dues bases diferents, A i B, del mateix subespai F, llavors $A^{\perp} = B^{\perp} = F^{\perp}$, però $A \neq B$.

Exercici 13.10. Expresseu cadascun dels subespais següents com l'espai columna d'una matriu i com l'espai nul d'una altra matriu.

(a)
$$F_1 = \langle (1, -1, 2) \rangle$$

(b)
$$F_2 = \langle (1,1,0), (-2,0,1) \rangle$$

(c)
$$F_3 = \{(a, a+b, a+2b, -a) : a, b \in \mathbb{R}\}\$$

(d)
$$F_4 = \{(x_1, x_2, x_3, x_4) : x_1 + x_2 = 0, x_2 - x_3 - x_4 = 0\}$$

(a) Expressar F_1 com un espai columna és immediat: $F_1 = \text{Col}\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$

L'ortogonal de F_1 és Nul $\begin{bmatrix} 1 & -1 & 2 \end{bmatrix} = \langle (1,1,0)(-2,0,1) \rangle$ així que

$$F_1 = \text{Nul} \begin{bmatrix} 1 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

(b) $F_2 = \text{Col}\begin{bmatrix} 1 & -2 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$

L'ortogonal de F_2 és Nul $\begin{bmatrix} 1 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$ = Nul $\begin{bmatrix} 1 & 0 & -1/2 \\ 0 & 1 & 1/2 \end{bmatrix}$ = $\langle (1/2, -1/2, 1) \rangle$ així que $F_2 = \text{Nul} \begin{bmatrix} 1/2 & -1/2 & 1 \end{bmatrix}$

o, de manera equivalent,

$$F_2 = \text{Nul} \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}$$

(els resultats dels dos primers apartats són curiosament simètrics; evidentment, això és perquè $F_1^\perp = F_2$)

(c) Un vector genèric de F_3 es pot escriure com

$$(a, a + b, a + 2b, -a) = a(1, 1, 1, -1) + b(0, 1, 2, 0)$$

de manera que

$$F_3 = \text{Col} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ -1 & 0 \end{bmatrix}$$

Calculem l'espai nul de la matriu transposada:

$$\operatorname{Nul}\begin{bmatrix} 1 & 1 & 1 & -1 \\ 0 & 1 & 2 & 0 \end{bmatrix} = \operatorname{Nul}\begin{bmatrix} 1 & 0 & -1 & -1 \\ 0 & 1 & 2 & 0 \end{bmatrix} = \langle (1, -2, 1, 0), (1, 0, 0, 1) \rangle$$

Llavors,

$$F_3 = \text{Nul} \begin{bmatrix} 1 & -2 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

(d) F_4 és el conjunt de les solucions del sistema lineal

$$x_1 + x_2 = 0$$

$$x_2 - x_3 - x_4 = 0$$

és a dir,

$$F_4 = \text{Nul} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 \end{bmatrix} = \text{Nul} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1 \end{bmatrix}$$

(i ja l'hem expressat com un espai nul). Resolent el sistema lineal homogeni, tenim

$$F_4 = \langle (-1, 1, 1, 0), (-1, 1, 0, 1) \rangle$$

així,

$$F_4 = \text{Col} \begin{bmatrix} -1 & -1 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Exercici 13.11. Trobeu una base i les equacions de cadascun dels subespais de l'exercici anterior.

(a)

Base de
$$F_1$$
: {(1, -1, 2)}
Equacions de F_1 : $x_1 + x_2 = 0$, $-2x_1 + x_3 = 0$

(b)

Base de
$$F_2$$
: {(1,1,0),(-2,0,1)}
Equacions de F_2 : $x_1 - x_2 + 2x_3 = 0$

(c)

Base de
$$F_3$$
: {(1,1,1,-1), (0,1,2,0}
Equacions de F_3 : $x_1 - 2x_2 + x_3 = 0$, $x_1 + x_4 = 0$

(d) Les equacions de F_4 ja les coneixem:

$$x_1 + x_2 = 0$$
, $x_2 - x_3 - x_4 = 0$

i la base pot ser aquesta:

$$B_{F_4} = \{(-1, 1, 1, 0), (-1, 1, 0, 1)\}$$

Exercici 13.12. Trobeu les equacions del subespai $F = \langle (1, 1, 1, 1), (0, 1, 1, 0) \rangle$ i una base del subespai $G = \{(x_1, x_2, x_3, x_4) : x_1 + x_2 - x_3 - x_4 = 0\}.$

F és l'espai columna de la matriu

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$$

Per trobar-ne les equacions, calculem una base de l'ortogonal de *F*:

$$F^{\perp} = \text{Nul} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} = \text{Nul} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} = \langle (-1, 0, 0, 1), (0, -1, 1, 0) \rangle$$

així que

$$F = \text{Nul} \begin{bmatrix} -1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \end{bmatrix}$$

i les equacions de F són

$$-x_1 + x_4 = 0$$
, $-x_2 + x_3 = 0$

Alternativament, per trobar les equacions del subespai F, podem fer el raonament següent: si (x_1, x_2, x_3, x_4) és un vector de F, llavors rang $\begin{bmatrix} 1 & 0 & x_1 \\ 1 & 1 & x_2 \\ 1 & 1 & x_3 \\ 1 & 0 & x_4 \end{bmatrix} = 2$ (perquè la tercera columna és combinació lineal de les dues primeres). Esglaonant aquesta matriu, obtindrem

$$2 = \operatorname{rang} \begin{bmatrix} 1 & 0 & x_1 \\ 1 & 1 & x_2 \\ 1 & 1 & x_3 \\ 1 & 0 & x_4 \end{bmatrix} = \operatorname{rang} \begin{bmatrix} 1 & 0 & x_1 \\ 0 & 1 & -x_1 + x_2 \\ 0 & 1 & -x_1 + x_3 \\ 0 & 0 & -x_1 + x_4 \end{bmatrix} = \operatorname{rang} \begin{bmatrix} 1 & 0 & x_1 \\ 0 & 1 & -x_1 + x_2 \\ 0 & 0 & -x_2 + x_3 \\ 0 & 0 & -x_1 + x_4 \end{bmatrix}$$

Ara, perquè el rang de la darrera matriu siga 2, les dues files últimes han de ser nul·les, és a dir, el que s'ha de complir és

$$-x_2 + x_3 = 0$$
, $-x_1 + x_4 = 0$

Aquestes són les equacions de f.

Per a trobar una base de G, l'únic que hem de fer és resoldre l'equació $x_1 + x_2 - x_3 - x_4 = 0$:

$$B_G = \{(-1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)\}$$