

Unit 1: Probability Theory

- 1. History of Machine Learning
- 2. Probability in Machine Learning
- 3. Probability Theory
- 4. Probability Distributions

Introduction to Probabilistic Machine Learning

Unit 2: Inference and Decision Making

- 1. Inference Methods
 - Bayesian Inference
 - Maximum Likelihood Estimation
- 2. Decision Making

Introduction to Probabilistic Machine Learning

Unit 3: Graphical Models: Independence

- 1. Graphical Models
- 2. Bayesian Networks
- 3. Conditional Independence

Introduction to Probabilistic Machine Learning

Unit 4: Graphical Models: Inference

- 1. Factor Graphs
- 2. The Sum-Product Algorithm
- 3. Practical Considerations in Message Passing
- 4. Approximate Message Passing

Introduction to Probabilistic Machine Learning

Unit 5: Bayesian Ranking

- 1. Ranking Problem
- 2. Probabilistic Ranking Models
- 3. TrueSkill: Expectation Propagation on Ranking Factor Graphs
- 4. TrueSkill Through Time

Introduction to Probabilistic Machine Learning

Unit 6: Linear Basis Function Models

- Linear Basis Function Models
- Modelling Data
 - Modelling Text
 - Modelling Images
- 3. Linear Algebra
 - Vector Spaces
 - Linear Mappings and Matrices
 - Matrix Derivatives
- 4. Maximum A Posterior Learning and (Regularized) Least Squares

Introduction to Probabilistic Machine Learning

Unit 7: Bayesian Regression

- 1. Bayesian Linear Regression
- 2. Bayesian Linear Regression via Message Passing
 - Normal Distribution Revisited
 - Posterior and Predictive Distribution
- 3. Fast Bayesian Linear Regression
- 4. Bayesian Linear Regression via Linear Algebra

Introduction to Probabilistic Machine Learning

Unit 8: Bayesian Classification

- 1. Bayesian Classification Learning
- 2. Bayesian Classification Learning via Approximate Message Passing
- 3. Appendix: Bayesian Classification via Optimization
 - Laplace Approximation
 - Bayesian Linear Logit Regression

Introduction to Probabilistic Machine Learning

Unit 9: Non-Bayesian Classification Learning

- 1. Geometry of Linear Classifiers
- 2. Fisher's Linear Discriminant
- 3. Perceptron Learning Algorithm
- 4. Logistic Regression

Introduction to Probabilistic Machine Learning

Unit 10: Gaussian Processes

- 1. Basic Concepts
- 2. Gaussian Processes for Regression
 - Weight-Space View
- 3. Gaussian Processes for Classification
- 4. Evidence Maximization for Gaussian Processes

Introduction to Probabilistic Machine Learning

Unit 11: Information Theory

- 1. Basics of Information Theory
- 2. Arithmetic Coding
- 3. Distance Measures for Probabilities

Introduction to Probabilistic Machine Learning

Unit 12: Real-World Applications

- 1. adPredictor: Bayesian Probit in e-Commerce
- 2. MatchBox: Bayesian Recommendation Systems
- 3. The Path of Go: Bayesian Pattern Ranking for Games

Introduction to Probabilistic Machine Learning

See you at the exam!