IMPLEMENTASI REGRESI COX PROPOTIONAL HAZARD PADA KETAHANAN HIDUP PASIEN DIABETES MELLITUS

Nama: Aditya Agral Serhansyah

NRP: 2043201082

Latar Belakang

Tahun 2000, WHO menyatakan

57 Juta

3,2 Juta

kematian disebabkan oleh penyakit tidak menular

akibat Diiabetes Mellitus

WHO memprediksi di Indonesia

Indonesia berada pada peringkat ke-4 dunia

Faktor Risiko Diabetes Mellitus

- **Dalam**: keturunan atau gen, tubuh tidak menghasilkan insulin atau kerusakan pankreas sejak kecil
- Luar: konsumsi gula, pola makan tidak baik, jarang olahraga

Diduga terdapat pengaruh terhadap **ketahanan hidup** pasien Diabetes Mellitus

Regresi Cox Propotional Hazard

- Digunakan untuk regresi data survival atau waktu hidup.
- **Pada situasi** dimana kemungkinan kegagalan individu pada suatu waktu yang dipengaruhi oleh satu atau lebih variabel independen.

Sehingga dapat diperoleh informasi tentang faktor-faktor yang berpengaruh signifikan terhadap ketahanan hidup pasien Diabetes Mellitus di RSUD RAA Soewondo Pati

Rumusan Masalah

- Bagaimana karakteristik faktor-faktor yang diduga mempengaruhi ketahanan hidup pasien Diabetes Mellitus di RSUD RAA Soewondo Pati?
- Bagaimana model regresi cox propotional hazard serta faktor yang berpengaruh terhadap ketahanan hidup pasien Diabetes Mellitus di RSUD RAA Soewondo Pati?

Tujuan Penelitian

- **Mengetahui karakteristik** faktor-faktor yang diduga mempengaruhi ketahanan hidup pasien Diabetes Mellitus di RSUD RAA Soewondo Pati.
- Mendapatkan model regresi cox propotional hazard serta informasi faktor yang berpengaruh terhadap ketahanan hidup pasien Diabetes Mellitus di RSUD RAA Soewondo Pati.

Batasan Masalah

- Data yang digunakan data sekunder hasil penelitian pasien Diabetes Mellitus di RSUD RAA Soewondo Pati tahun 2011.
- Pengolahan dan analisis data menggunakan software R.

Manfaat Penelitian

- Memberikan kontribusi di dunia penelitian dan ilmu pengetahuan mengenai penerapan model regresi Cox Propotional Hazard pada studi kasus analisis survival pasien Diabetes Mellitus.
- **Mengetahui faktor-faktor** yang mempengaruhi ketahanan hidup pasien Diabetes Mellitus di RSUD RAA Soewondo Pati.

Tinjauan Pustaka

Analisis survival merupakan sekumpulan prosedur statistika yang digunakan untuk menganalisis data, dimana respon yang diperhatikan ada;ah waktu sampai terjadinya *event* tertentu. *Event* adalah suatu kejadian khusus yang terjadi pada individu, seperti kematian, munculnya penyakit, dan sembuh setelah pengobatan.

Fungsi survival

- Misalkan T adalah waktu bertahan hidup sampai munculnya kejadian tertent. Kejadian yang dimaksud misalnya kematian, berkembangnya penyakit tertentu, dan lain-lain. Fungsi survival S(t) mendefinisikan probabilitas dari suatu individu untuk bertahan setelah waktu yang ditetapkan, namakan t.
- Fungsi survival S(t) dapat diperoleh dengan cara mengintegralkan fungsi kepadatan probabilitas (PDF) dari T yaitu f(t).

$$S(t) = Pr(T > t) = \int_{t}^{\infty} f(t) dt$$

Fungsi Hazards h(t) mendefinisikan laju kegagalan dari suatu individu untuk mampu bertahan setelah melewati waktu yang ditetapkan yaitu t. Dengan persamaan sebagai berikut :

$$h(t) = \frac{f(t)}{S(t)} = -\frac{d}{dt} \left[\ln S(t) \right] \text{ dengan fungsi kepadatan probabilitasnya adalah: } f(t) = h(t) \cdot S(t)$$

Model Regresi Cox Propotional Hazards, model regresi cox mengasumsikan bahwa fungsi hazards sebagai berikut:

$$h(t;x) = h_0(t) \cdot r_i(t)$$

Fungsi eksponensial menjamin h positif untuk setiap B, sehingga bentuk umum regresi Cox adalah :

$$h(t) = h_0(t) \cdot \exp(\beta_1 X_1(t) + ... + \beta_p X_p(t))$$

Metodologi Penelitian

Sumber Data

- Data Sekunder hasil penelitian (Rahayu, 2013)
- Rekam Medik dan Wawancara 65 Pasien Diabetes Mellitus di RSUD RAA Soewondo Pati
- Periode Januari Desember tahun 2011

Variabel Penelitian

Variabel	Keteragan	Satuan/Kategori	Skala
T	Waktu bertahan hidup	Tahun	Rasio
d	Status pasien	0 : Hidup (tersensor) 1 : Meninggal	Nominal
X ₁	Genetik	0 : Tidak ada keturunan diabetes 1 : Ada keturunan diabetes	Nominal
X ₂	Usia	0 : ≤49 tahun 1 : ≥50 tahun	Nominal
X ₃	Diet	0 : Ya, teratur 1 : Kadang-kadang 2 : Tidak diet	Nominal
X ₄	Olahraga	0 : Ya, teratur 1 : Kadang-kadang 2 : Tidak olahraga	Nominal
X ₅	Berat Badan	Kg	Rasio

Langkah Analisis

- 1. Analisis **statistika deskriptif** untuk mengetahui karakteristik dari pasien Diabetes Mellitus di RSUD RAA Soewondo Pati
- 2. Melakukan **estimasi parameter** model regresi *Cox Propotional Hazard* dengan menggunakan metode MLE
- 3. Membentuk model awal regresi Cox Propotional Hazard
- 4. Melakukan **uji signifikansi parameter** dengan uji serentak dan uji parsial
- 5. Melakukan **seleksi model terbaik** berdasarkan perubahan nilai -2 Log Likelihood
- 6. **Membentuk model** regresi *Cox Propotional Hazard* sesuai dengan variabel **prediktor yang berpengaruh** secara signifikan
- 7. Interpretasi hasil analisis
- 8. Menarik **kesimpulan dan saran**

Hasil dan Pembahasan

Karakteristik Data

Metode Data Waktu Hidup

Estimasi Parameter Model Awal

Variabel	$\widehat{m{eta}}$	$\exp(\widehat{eta})$	$SE(\widehat{eta})$	Z	P-value
(X ₁) Gen	1,6103	5,0043	0,7103	2,267	0,0234
(X ₂) Usia	-2,6284	0,0722	0,8070	-3,257	0,0011
(X ₃) Diet	0,9236	2,5183	0,3741	2,469	0,0135
(X ₄) Olahraga	-0,1610	0,8513	0,3492	-0,461	0,6448
(X ₅) Berat Badan	-0,0286	0,9718	0,0545	-0,525	0,5996

Berdasarkan P-value variabel yang siginifikan dimana P-value < alpha=0,05 adalah:

- Gen (X1) = 0,0234 < 0,05 *signifikan
- Usia (X2) = 0,0011 < 0,05 *signifikan
 Diet (X3) = 0,0135 < 0,05 *signifikan

Diperoleh model awal regresi Cox Propotional Hazard sebagai berikut :

$$h(t) = h_0(t) \cdot \exp(1,6103X_1 - 2,6284X_2 + 0,9236X_3 - 0,161X_4 - 0,0286X_5)$$

Kemudian dilakukan perhitungan perbandingan risiko (hazard ratio) dengan menggambil salah satu variabel yaitu variabel Gen (X1). Pasien yang memiliki gen Diabetes Mellitus = 1. yang tidak memiliki gen Diabetes Mellitus = 0. Diperoleh perhitungan sebagai berikut :

$$\frac{h(t|X_1^*)}{h(t|X_1)} = \frac{h_0(t) \cdot \exp(\beta' X_1^*)}{h_0(t) \cdot \exp(\beta' X_1)} = \exp[\beta' (X_1^* - X_1)]$$

$$\frac{h(t|X_1^*)}{h(t|X_1)} = \exp[1,6103(1-0)]$$

$$\frac{h(t|X_1^*)}{h(t|X_1)} = \exp(1,6103) = 5,0043$$

Pasien yang memiliki gen Diabetes Mellitus memiliki risiko kegagalan sebesar 5,0043 kali lebih besar daripada pasien yang tidak memiliki gen Diabetes Mellitus

Pemilihan Model Terbaik

Langkah-langkah pemilihan model adalah sebagai berikut:

- 1.Perhitungan nilai -2 Log Likelihood model Null (model tanpa variabel independen)
- 2.Diambil model pertama dengan satu variabel independen dan dihitung nilai -2 Log Likelihood-nya masing-masing
- 3.Nilai -2 Log Likelihood yang terkecil pada model dipilih untuk masuk ke langkah berikutnya
- 4. Ditambahkan variabel independen satu per satu pada model yang dihasilkan langkah ke-tiga kemudian dibandingkan nilai -2 Log Likelihood-nya
- 5. Apabila setelah penambahan variabel independen perbandingan nilai -2 Log Likelihood antar model berbeda signifikan, maka kembali ke langkah 3
- 6.Apabila setelah penambahan variabel independen perbandingan nilai -2 Log Likelihood antar model tidak berbeda signifikan, maka proses penambahan variabel pada model dihentikan.

Sehingga **model terpilih** adalah **X2 + X1 + X3** yang kemudian di bentuk model baru sebagai model terbaik dalam kasus ini

Langkah	Model	-2 Log Likelihood	Keterangan	
1	Null	103,5846		
	X 1	97,1339		
	X ₂	89,8388	Nilai -2 Log Likelihood X₂ paling kecil dibandingkan	
2	X ₃	100,6321	variabel lain. Oleh karena itu X₂ disertakan ke	
	X ₄	103,5796	langkah selanjutnya.	
	X ₅	101,9864		
3	$X_2 + X_1$	84,3681	Variabel X₂ dimodelkan dengan variabel X1, X3, X4 dan X5 diperoleh nilai -2 Log Likelihood X2 + X1 palii kecil sehingga model X2 + X1 dilanjutkan ke langka	
	X2 + X3	85,9080		
	$X_2 + X_4$	89,2601		
	$X_2 + X_5$	88,9051	berikutnya.	
4	X ₂ + X ₁ + X ₃	78,8648	Madel V . V . V manualitis miles. O Law	
	X ₂ + X ₁ + X ₄	84,6461	Model X₂ + X₁ + X₃ memiliki nilai -2 Log Likelihoodpaling kecil sehingga model X₂ + X₁ + X₃ - yang diambil.	
	X ₂ + X ₁ + X ₅	84,4752		
5	$X_2 + X_1 + X_3 + X_4$	78,6507	Dilakukan penambahan variabel X4dan X5 pada	
	$X_2 + X_1 + X_3 + X_5$	78,5833	model X₂ + X₁ + X₃ tetapi tidak terjadi perubahan nilai yang berarti maka proses berhenti.	

Model Terbaik

Variabel	β	$\exp(\widehat{\beta})$	$SE(\widehat{eta})$	Z	P-value
(X ₂) Usia	-2,799	0,0608	0,779	-3,60	0,0003
(X ₁) Gen	1,566	4,7868	0,661	2,37	0,0180
(X ₃) Diet	0,885	2,4220	0,363	2,44	0,0150

Berdasarkan P-*value* semua variabel yang siginifikan dimana P-*value* < alpha=0,05 adalah :

- Usia (X2) = 0,0003 < 0,05 *signifikan
- Gen (X1) = 0.0180 < 0.05 *signifikan
- Diet (X3) = 0.0150 < 0.05 *signifikan
- Koefisien **(X2) Usia** sebesar -2,799 bernilai negatif menunjukkan bahwa pasien yang berusia kurang atau sama dengan 49 tahun memiliki risiko kegagalan **0,0608 kali lebih kecil** daripada pasien yang berusia kurang atau sama dengan 49 tahun.
- Koefisien (X1) Gen sebesar 1,566 bernilai positif menunjukkan bahwa pasien yang memiliki keturunan/Gen Diabetes Mellitus memiliki risiko kegagalan 4,7868 kali lebih besar daripada pasien yang tidak memiliki keturunan/Gen Diabetes Mellitus.
- Koefisien **(X3) Diet** sebesar 0,885 bernilai positif menunjukkan bahwa pasien yang tidak melakukan diet teratur memiliki risiko kegagalan sebesar **2,4220 kali lebih besa**r daripada pasien yan melakukan diet teratur.

Sehingga model regresi Cox Propotional Hazard yang digunakan pada kasus ini adalah sebagai berikut :

$$h(t) = h_0(t) \cdot \exp(-2,799X_2 + 1,566X_1 + 0,885X_3)$$

Kesimpulan

01

Pasien Diabetes Mellitus di RSUD RAA Soewondo Pati memiliki beberapa faktor ketahanan hidup diantaranya gen, usia, diet, olahraga, dan berat badan. Pasien Diabetes Mellitus memiliki karakteristik faktor diantaranya **ada keturunan** Diabetes Mellitus (54%), ber**usia > 49 tahun** (78%), menjalankan **diet teratur** (54%), **tidak melakukan olahraga** (58%), dan memiliki **berat badan rata-rata 63 Kg**.

02

Model regresi Cox Propotional Hazard adalah sebagai berikut:

$$h(t) = h_0(t) \cdot \exp(-2,799X_2 + 1,566X_1 + 0,885X_3)$$

Faktor yang berpengaruh terhadap ketahanan hidup pasien Diabetes Mellitus di RSUD RAA Soewondo Pati adalah **Usia** (X2), **Gen** (X1), dan **Diet** (X3).

Saran

- Pada penelitian selanjutnya, sebaiknya waktu penelitian lebih dari satu tahun karena Diabetes Mellitus lebih efektif jika diukur selama lebih dari satu tahun agar seluruh kelas/kelompok pada data terwakili.
- Perlu ditambahkan variabel prediktor lain yang berhubungan dengan ketahanan hidup pasien Diabetes Mellitus.

Terima Kasih

