

# Федеральное государственное бюджетное образовательное учреждение высшего образования

### «МИРЭА - Российский технологический университет»

#### РТУ МИРЭА

Институт Информационных Технологий Кафедра Вычислительной Техники (BT)

### ОТЧЁТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 4

«Счетчик с произвольным модулем счета»

по дисциплине

«Архитектура вычислительных машин и систем»

| Выполнил студент группы         | Тринеев Павел Сергеевич    |
|---------------------------------|----------------------------|
| ИКБО-13-22                      |                            |
| Принял преподаватель кафедры ВТ | Рыжова Анастасия Андреевна |
| Практическая работа выполнена   | « » 2023 г.                |
| «Зачтено»                       | «_»2023 г.                 |

# СОДЕРЖАНИЕ

| <u>1</u> | BB         | <u>ведение</u>                                             | . 3 |
|----------|------------|------------------------------------------------------------|-----|
|          | <u>1.1</u> | <u>Цель работы</u>                                         | . 3 |
|          | <u>1.2</u> | Задание                                                    | . 3 |
| <u>2</u> | XC         | <u>Д РАБОТЫ</u>                                            | . 4 |
|          | <u>2.1</u> | Таблица перекодировки состояний автомата и их двоичный код | . 4 |
|          | <u>2.2</u> | Новые значения в графе состояний                           | . 5 |
|          | 2.3        | Таблица истинности автомата                                | . 6 |
|          | <u>2.4</u> | Функциональная схема                                       | . 7 |
|          | <u>2.5</u> | Временная диаграмма схемы.                                 | . 7 |
|          | <u>2.6</u> | <u>Описание схемы на языке AHDL</u>                        | . 8 |
|          | 2.7        | Временная диаграмма описания                               | . 9 |
| 3        | ВЬ         | ІВОД                                                       | . 9 |

### 1 ВВЕДЕНИЕ

### 1.1 Цель работы

Ознакомиться с САПР QUARTUS II фирмы Altera, получить практические навыки создания проектов по схемотехнике ЭВМ в САПР (ввод схем, компиляция и моделирование).

### 1.2 Задание

- 1) Согласно своему варианту графа состояний автомата разработать функциональную электрическую схему цифрового программируемого устройства преобразования кодов.
  - 2) Включить ЭВМ и запустить САПР QUARTUS II.
- 3) Создать проект, ввести разработанную схему, откомпилировать и смоделировать её.
- 4) Проверить полученные результаты, сверив их с таблицей истинности устройства.

## 2 ХОД РАБОТЫ

## Вариант 9:

Таблица 1. Состояния графа согласно индивидуальному варианту

| 0  | 1 | 2 | 3 | 4 | 5  | 6 | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|----|---|---|---|---|----|---|---|---|----|----|----|----|----|----|----|
| 13 | 4 | 6 | 7 | 8 | 14 | 2 | 9 | 1 | 12 | 11 | 3  | 0  | 5  | 15 | 10 |

### 2.1 Таблица перекодировки состояний автомата и их двоичный код

| № состояния | № состояния из<br>Таблица 1 | Двоичный код<br>q3, q2, q1, q0 |
|-------------|-----------------------------|--------------------------------|
| 0           | 13                          | 1101                           |
| 1           | 4                           | 0100                           |
| 2           | 6                           | 0110                           |
| 3           | 7                           | 0111                           |
| 4           | 8                           | 1000                           |
| 5           | 14                          | 1110                           |
| 6           | 2                           | 0010                           |
| 7           | 9                           | 1001                           |
| 8           | 1                           | 0001                           |
| 9           | 12                          | 1100                           |
| 10          | 11                          | 1011                           |
| 11          | 3                           | 0011                           |
| 12          | 0                           | 0000                           |
| 13          | 5                           | 0101                           |
| 14          | 15                          | 1111                           |
| 15          | 10                          | 1010                           |

# 2.2 Новые значения в графе состояний



Рисунок 1. Граф, полученный с учетом таблицы перекодировки

### 2.3 Таблица истинности автомата

| Старое с | остояние | Условие | Новое со | остояние |
|----------|----------|---------|----------|----------|
| №        | код      |         | №        | код      |
| 13       | 1101     |         | 4        | 0100     |
| 4        | 0100     | A=0     | 1        | 0001     |
| 4        | 0100     | A=1     | 6        | 0110     |
| 1        | 0001     |         | 12       | 1100     |
| 12       | 1100     |         | 11       | 1011     |
| 11       | 1011     | B=0     | 0        | 0000     |
| 11       | 1011     | B=1     | 3        | 0011     |
| 0        | 0000     |         | 9        | 1001     |
| 9        | 1001     |         | 5        | 0101     |
| 5        | 0101     |         | 15       | 1111     |
| 15       | 1111     |         | 10       | 1010     |
| 10       | 1010     |         | 13       | 1101     |
| 6        | 0110     |         | 7        | 0111     |
| 7        | 0111     | B=0     | 8        | 1000     |
| 7        | 0111     | B=1     | 14       | 1110     |
| 8        | 1000     |         | 2        | 0010     |
| 2        | 0010     |         | 9        | 1001     |
| 3        | 0011     |         | 9        | 1001     |
| 14       | 1110     |         | 2        | 0010     |

### 2.4 Функциональная схема



### 2.5 Временная диаграмма схемы



#### 2.6 Описание схемы на языке AHDL

```
SUBDESIGN 'lab42'(
   a, b, clock: input;
   q[3..0]: output;
VARIABLE
     st[0..15] : NODE;
     r[0..5] : NODE;
     newq[0..3]: NODE;
     na: NODE;
     nb: NODE;
     nq[3..0] : NODE;
     reg[0..3] : DFF;
BEGIN
              na=(not(a));
      nb = (not(b));
      nq[3..0] = (not(q[3..0]));
      st0 = (nq0 \text{ and } nq1 \text{ and } nq2 \text{ and } nq3);
      st1 = (q0 \text{ and } nq1 \text{ and } nq2 \text{ and } nq3);
      st2 = (nq0 \text{ and } q1 \text{ and } nq2 \text{ and } nq3);
      st3 = (q0 \text{ and } q1 \text{ and } nq2 \text{ and } nq3);
      st4 = (nq0 \text{ and } nq1 \text{ and } q2 \text{ and } nq3);
      st5 = (q0 \text{ and } nq1 \text{ and } q2 \text{ and } nq3);
      st6= (nq0 and q1 and q2 and nq3);
      st7 = (q0 \text{ and } q1 \text{ and } q2 \text{ and } nq3);
      st8 = (nq0 \text{ and } nq1 \text{ and } nq2 \text{ and } q3);
      st9 = (q0 \text{ and } nq1 \text{ and } nq2 \text{ and } q3);
      st10 = (nq0 \text{ and } q1 \text{ and } nq2 \text{ and } q3);
      st11 = (q0 \text{ and } q1 \text{ and } nq2 \text{ and } q3);
      st12 = (nq0 \text{ and } nq1 \text{ and } q2 \text{ and } q3);
      st13 = (q0 \text{ and } q1 \text{ and } q2 \text{ and } q3);
      st14 = (nq0 \text{ and } q1 \text{ and } q2 \text{ and } q3);
      st15 = (q0 \text{ and } q1 \text{ and } q2 \text{ and } q3);
      r0= (na and st4);
      r1= (a and st4);
      r2= (nb and st11);
      r3 = (b \text{ and } st11);
      r4= (nb and st7);
      r5= (b and st7);
      newq0 = (st0 \text{ or } st2 \text{ or } st3 \text{ or } st5 \text{ or } st6 \text{ or } st9 \text{ or } st10 \text{ or } st12 \text{ or } r0 \text{ or } r3);
      newq1 = (st5 \text{ or } st6 \text{ or } st8 \text{ or } st12 \text{ or } st14 \text{ or } st15 \text{ or } r1 \text{ or } r3 \text{ or } r5);
```

```
newq2= (st1 or st5 or st6 or st9 or st10 or st13 or r1 or r5);
newq3= (st0 or st1 or st2 or st3 or st5 or st10 or st12 or st15 or r4 or r5);

q0= DFF(newq0, clock,,);
q1= DFF(newq1, clock,,);
q2= DFF(newq2, clock,,);
q3= DFF(newq3, clock,,);
END;
```

#### 2.7 Временная диаграмма описания



### 3 ВЫВОД

Ознакомление с САПР QUARTUS II фирмы Altera и получение практических навыков создания проектов по схемотехнике ЭВМ является важным шагом в понимании и применении цифровой электроники и разработке цифровых систем. QUARTUS II представляет собой мощное программное обеспечение, которое позволяет инженерам и студентам проектировать, анализировать и моделировать цифровые схемы и компоненты с высокой степенью гибкости и точности.

В процессе ознакомления с CAПР QUARTUS II, пользователи получают возможность создавать проекты с использованием графического интерфейса, вводя схемы, задавая параметры компонентов и соединения между ними. Это позволяет визуально описывать структуру цифровых систем, что является важным элементом при проектировании и анализе сложных электронных устройств.

Компиляция и моделирование в CAПР QUARTUS II предоставляют возможность анализа созданных проектов, проверки их правильности и производительности. Этот этап позволяет пользователю убедиться в том, что цифровая схема работает корректно и соответствует заданным требованиям.

Полученные практические навыки в работе с САПР QUARTUS II могут быть применены в различных областях цифровой электроники, включая проектирование микропроцессоров, программируемых логических устройств, цифровых систем связи, счетно-измерительных устройств и многих других приложений. Эти навыки оказываются ценными как для студентов, обучающихся в области электроники и компьютерных наук, так и для инженеров, занимающихся разработкой и анализом цифровых систем. Поэтому ознакомление с САПР QUARTUS II и приобретение соответствующих навыков является важным шагом на пути к успешной карьере в области цифровой электроники и САПР.