Lecture 7 Dependency Parsing

Linguistice Structure

Sytactic Amiguities

- Grammars are declarative
 - They don't specify how the parse tree will be constructed
- Ambiguity
 - Prepostional phrase(PP) attachment ambiguity
 - o a key parsing decision is how we attach various constitutents
 - Verb attachment ambiuity
 - Anaphoric ambiguity
 - Coordination Scope
 - 'I ate [red (apples] and bananas)'
 - Particles pr Prepositions
 - some verbs are followed by adverb particles, and some particles are detached from the verb and put after the noun
 - adverb particle: partic is closely tied to its verb to form idiomatic expressions
 - Preposition is closely tied to the noun or pronoun it modifies.
 - Gerund or adjective
 - Dancing shoes can provide noce experience
 - Сар
 - 'She nerver saw a dog and did not smile'
- Views of linguistic structure

- Constituency Grammar
 - Immediate constituent analysis
 - one to one/more relation.
 - For every word in a sentence, there is at least one node in the suntactic structure that corresponds to that word
 - o a basic observatione: groups of word (constituents) = a single unit
 - constituents: similar internal structure and behave similarity with respect to other units
 - e.g. noun phrases(NP) \(\text{verb phrases(VP)} \(\text{preppositional phrases(PP)} \)

— Dependencu Grammar

- Functional dependecy relations
- For every word in a sentence, there is exactly one node in the syntactic structure that corresponds to that word.

Constituency Parsing Dependency Parsing

- Sample context-free grammar
 - Starting unit: words are give a category (PoS)

I, prefer, a, morning, flight

PRP, VBP, DT, NN, NN

Grammar rule	Example
$S \rightarrow NPVP$	I + want a morning flight
$NP \rightarrow Pronoun$	I
$NP \rightarrow Proper-Noun$	Sydney
$NP \rightarrow Det Nominal$	a flight
Nominal → Nominal Noun	morning flight
$Nominal \to Noun$	flights
VP → Verb	do
$VP \rightarrow Verb NP$	want + a flight
$VP \rightarrow Verb NPPP$	leave + Melbourne + in the morning
$VP \rightarrow VerbPP$	leaving + onThursday
PP → Preposition NP	from + Sydney

— Combining words into phrases with categories

— combining phrases into bigger phrases recursively

Treebanks

- Treebanks are generally created by
 - parsing texts with an existing parser
 - having human annotators correct the result
- Penn Treebank (English annotators)

Dependency Structure

 Syntactic structure: Dependencies, lexical items linked by binary asymmetrical relations("arrows")

- modeifier: dependent, child, subordinate
- head: governor, parent,regent

determine the syntactic/semantic category of the construct

-compound: dependency relations

The arrows are typed with the name of grammatical relations

- Dependency Parsing
 - Represents lexical/syntactic dependencies between words
 - Dependencies from a tree (connected, acyclic, single-head)
 - How to make the dependencies a tree- Constraints
 - only one wordis a dependent of ROOT(the main predicate of a sentence)
 - 2. Don't want cycles A->B,B->A

- 3. Usally add one fake ROOT to avoid the difference among ways of the drawing arrows, so every word is a dependent of precisely one other node
- 4. Projevtivity vs Non-projectivity
 - No crossing dependency arcs when the words are laid out in their linear order, with all arcs above the words
 - Dependencies parallel to a Context-Free-Grammar(CFG) tree
 must be projective
 - Forming dependencies by taking 1 child of each category as head
 - Dependency theory does allow non-projective structures to account for displaces constituents.
- Advantage: Treebank
 - Reusability of the labor: many parsers, PoS taggers, valuable resource for linguistics
 - o Broad coverage, not just a few intuitions
 - Frequency and distributional information
 - A way to evaluate systems
- Dependency Conditioning Preference
 - Source of information for dependency parsing
 - o Bilexical affinities
 - Dependency distance
 - Intervening material
 - Valency of heads

Dependency Parsing Algorithms

- Dynamic programming
 - $O(n^3)$: producing parse items with heads at the ends rather than in the middle
- Constraint Satisfication

- edges are eliminated that don't satisfy hard constraints
- Graph-based Dependency parsing (MST)
 - Non-deterministic dependency parsing
 - build a complete graph with directed weighted edges
 - Find the highest scoring tree from a couplete dependency graph
 - create a Minimum Spanning Tree for a sentence
 - o computing a score for every possible dependency for each edge
 - Add an edge from each word to the highest scoring candidate head
 - Repeat the same process for each other word
 - MST parser scores dependencies independently using a ML classifier

- Transition-based Dependency parsing (Greedy Algorithm)
 - Deterministic dependecy parsing
 - build a tree by applying a sequence of transition actions
 - o Find the highest scoring action sewuence that builds a legal tree
- Neural Network-based Dependency Parsing

Transition-based Parsing

Greeding Transition-based parsing

- A form of greedy discriminatiove dependecy parser
- Design a dumber but really fast algorithm and let the machine learning do the rest
- Eisner's Algorithm (Dynamic Programming-based Dependency parsing) searches over many different dependency trees at the same time
- a transition-bsed dependency parser only builds one tree, in one leftto-right sweep over the input

Transition-based parsing- the arc-standard algorithm

- The arc-standard algorithm is a simple algorithm for transition-based dependency parsing
- A sequence of bottom up actions:
- Like "shift" or "reduce" in a shift-reduce parser, but the "reduce" actions are specialized to create dependencies with head on left or right
- Most pretical transition-based dependency parser including MaltParser

- Initial configuration
 - All words are in the buffer
 - the stack is empty or starts with the ROOT symbol
 - the dependency graph is empty
 - ROOT cannot have incoming arc
- Possible Transaction
 - Shift: Push the next word in buffer onto the stack
 - Left-Arc:
 - \circ Add an arc form the topmost word to the 2^{nd} topmost word on the stack
 - Remove 2nd word from stack
 - o Require 2 elements in stack to be applied
 - Right-Arc:
 - \circ Add an arc from the 2^{nd} -topmost word to the topmoset word on the stack
 - Remove the topmost word from stack
 - Require 2 elements in stack to be applied
- Terminal configuration
 - The buffer is empty
 - The stack contains a single word

•

Start: $\sigma = [ROOT], \beta = w_1, ..., w_n, A = \emptyset$

- 1. Shift $\sigma, w_i | \beta, A \rightarrow \sigma | w_i, \beta, A$
- 2. Left-Arc_r $\sigma|w_i|w_j$, β , $A \rightarrow \sigma|w_j$, β , $A \cup \{r(w_j, w_i)\}$ $\sigma|w_i|w_j$, β , $A \rightarrow$
- 3. Right-Arc_r $\sigma | w_i, \beta, A \cup \{r(w_i, w_j)\}$

Finish: $\sigma = [w]$, $\beta = \emptyset$

- choose the next action (ML)
 - Goal: predict the next transition(class), given the current configuration
 - Let the parser run on gold-standard trees
 - Every time there is a choice to make, we just looke into the tree to do the right thing
 - Collect all (configuration, transition) pairs and train a classifier on them
 - When parsing unseen senteces, we use the trained class classifier as a guide
- Handling the large number of pairs: Feature representation
 - define a set of features of configurations that would be relevant for the task of predicting athe next transition.
 - e.g. word forms of the topmost two words on the stack and the next two words in the buffer
 - o Describe every configuration in terms of a feature vector

- o In practics, thousands of features and hundrends of transitions
- use ML (preceptor, decision tree, Sam, memory-based learning)

Deep Learning-based Dependency parsing

Distributed Representations

- Represent each word as a d-dimensional dense vector (word embedding)
 - o Similar words are expected to have close vector
 - NNS (plural noun) should be close to NN(singular noun)
- PoS and dependency labels are also represented as the d-dimensional vector
- Similar discrete sets also represents similar semantic

