Natural Language Processing — Lecture 3

Kenneth Enevoldsen 2024

Agenda

- Recap of what we have learned
- A simple neuron
 - The perceptron
- Stacking neurons → A neural network
- How do we **train** a neural network
- Overfitting and regularization
- A couple of linguistic examples

Quiz

• https://www.menti.com/al3iseftv5ce

Recap: Representing Meaning

- · Central question: How do we represent meaning computationally?
 - → analyse, classify and generate text
- One-hot vectors
 - → (Sparse) co-occurance with reweighting PPMI, TF-iDF
 - → dense vector approaches Word2Vec, GloVE

Recap: Static Embedding

- Central question: How do we represent meaning computationally?
 - → analyse, classify and generate text
- One-hot vectors
 - → (Sparse) co-occurance with reweighting PPMI, TF-iDF
 - → dense vector approaches Word2Vec, GloVE
- Resolved

Semantic similarity, low dimensional vector representations

Remaining Issues

Polysemy, compositionality, homonomy

Recap: Incorperating context

- Two approaches,
 - Recurrent neural networks
 - Attention
- Requires an understanding of Neural Networks

The artificial brain perspective

- Neural networks as "artificial brains"
 - Builts poor intuition
- Neural networks as univervals approximators
 - flexible learning systems
 - Want to run fast and efficiently

Neural networks as artificial brains

Neural networks as universal function approximators

Biological Neuron vs (Artificial) Neuron

- Recieved inputs from other neurons
- Outputs excitatory or inhibitory signal
- A "computing element", which transforms a signal

- Recieved inputs from other neurons
- Outputs value
- A "computing element", which transforms a signal

Question: What could these be?

In the weights to make it simpler

Activation function (e.g. **sigmoid**)

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Non-linear function $y = \sigma(\sum_{i=1}^{m} w_i x_i)$ $\uparrow \qquad \downarrow \qquad \downarrow \qquad \uparrow$ Output \uparrow Linear combination Linear classifier

- Predict binary output
- Defines hyperplane that seperates the classes in feature space

How to we train it? Intuition

Idea 1: Naïve approach

- 1. Set weight randomly
- 2. Measure performance
- 3. If better: save weights
- 4. Repeat from step 1

Linear combination

Idea 2: Slightly smarter approach

- 1. For each weight
 - i. Change weight slighly up or down

Let us call how much we change it the learning rate

- ii. If it gives better performance choose the one that it best
- 2. Repeat from step 1. until satisfied

Idea 3: Gradient Descent

We just approximated gradient decent

- 1. Choose a loss
- 2. Calculate a gradient
 - i. Take a step down the gradient proportional to the gradient
- 3. Repeat from step 1. until satisfied

Measuring what is good: MSE Loss

• $L(y, \hat{y}) = \text{how much does my prediction } \hat{y} \text{ differs from the true label } y$ $L(y, \hat{y}) = \frac{1}{n} \sum_{i} \|y_i - \hat{y}_i\|^2$

- For binary signal is between 0-1
- Good for regression

Measuring what is good: Cross-Entropy Loss

For Classification:

• $L(y, \hat{y}) = \text{how much does my prediction } \hat{y} \text{ differs from the true label } y$

$$L(y, \hat{y}) = y \log \hat{y} + (1 - y) \log(1 - \hat{y})$$

Cross-entropy loss

for a single example

Measuring what is good: Cross-Entropy Loss

For Classification:

• $L(y, \hat{y}) = \text{how much does my prediction } \hat{y} \text{ differs from the true label } y$

 $L(y, \hat{y}) = y \log \hat{y} + (1 - y) \log(1 - \hat{y})$

• Cross-entropy loss for a single example

Example in PyTorch

- Forward pass
- Backward pass

More on this in class

```
import torch
perceptron = torch.nn.Linear(2, 1)
# Weights
print(perceptron.weight)
# Parameter containing:
# tensor([[0.0224, 0.0251]], requires_grad=True)
# Bias
print(perceptron.bias)
# Parameter containing:
# tensor([-0.1012], requires_grad=True)
# Forward pass
x = torch.tensor([0.5, 0.5])
output = perceptron(x)
output = torch.sigmoid(output) # activation function
print(output)
# tensor([0.4806], grad_fn=<SigmoidBackward0>)
```


Example in PyTorch

- Forward pass
- Backward pass

More on this in class

```
# Loss
y = torch.tensor([1.0]) # true value
loss = torch.nn.functional.mse_loss(output, y)
loss.backward() # calculate gradients

# Examining the gradient
print(perceptron.bias.grad)
# tensor([-1.1061])
```

We calculate the gradient here

Beyond the Perceptron

A lot of real data in non-linear

Beyond the Perceptron

- A lot of real data in non-linear
- Question: How would you solve ————
 hint: what would you do in a
 linear model?
- Interaction!

Beyond the Perceptron

- What about this one
- We need something that in non-linear and arbitrarily complex

- A **network** of neurons
- Also called
 - multilayer perceptron (MLP)
 - Fully-connected feedforward neural network (FFN, FFNN)
 - Dense neural network
- Stacking neurons with non-linear activations allow us to model arbitrarily complex functions*
 - Layer in the middle are called hidden layers

Where:

$$a_k = \sigma(\sum_{i=1}^m w_{i,k} x_i)$$

• Where:

$$a_k = \sigma(\sum_{i=1}^m w_{i,k} x_i)$$

$$=\sigma(WX)$$

Matrix notation to simplify

Multilayer Neural Networks

- Can have any number of layers (deep neural network)
- Or any number of nodes (wide neural networks)
- Computational complexity grows fast!
 - 300 dimensional input
 - -> 1000 wide hidden layer
 - 300,000 connections
 - A single layer (e.g. linear regression) is just 300

Deep Neural Network

Figure 12.2 Deep network architecture with multiple layers.

Fitting a neural Network

- 1. Randomly initialize weights of the network
- 2. Calculate the **forward pass** (produce \hat{y})
- 3. Calculate the **loss** (prediction error)
- 4. Calculate the gradient (backward pass)
- 5. Adjust weights based on gradient
- 6. Repeat until satisfied

Goal

• Find the best parameters θ that minimized the cross entropy over all examples m:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} L_{CE} f(x_i; \theta), y_i)$$

• We do this using derivatives

Gradient descent with one weight

- **Randomly** initialize weights at w_0
- 2. Compute the derivative "How to change the weight to decrease $w_{new} = w_{old} - \alpha \frac{d}{dw} L(f(x; w), y)$ loss"
- 3. Update the weight according to the derivate (weigthed by the learning rate)
- 4. We repeat until we converge on the

Derivative of the loss with respect to W

Learning rate

Importance of Learning Rate

Modern optimizers update LR dynamically

Gradient descent with multiple parameters

- In practice we optimize multiple parameters
- N-dimensional space, where N is the number of parameters

$$w_{new} = w_{old} - \alpha \nabla L(f(x; w), y)$$
Derivative with respect to all w

Stocastic Gradient Descent

- Optimizing across all samples is expensive
 - Especially with large dataset
 - A solution is to calculate the gradient across N samples
 - we call N is the batch size
- We can compute the forward pass for each sample in parellel

Loss Landscape

Not all functions are convex

 Low learning rates will get you stuck in a local minima

Loss landscape differ drastically based on how you set up your neural network

No residual connections

Same general network architecture

Backpropagation

How do we update across multiple layers?

Chain rule!

$$h(x) = f(g(x))$$

$$h'(x) = f'(g(x))g'(x)$$

by how much should update w_1 and w_2 to produce an output that yields a lower loss – i.e., what is the gradient for w_1 ?

The derivative of the composition of multiple functions is the product of the partial derivatives of each of the functions. That is, if z = f(x), and y = g(z), which is equivalent to y = g(f(x)), then:

$$h'(x) = f'(g(x))g'(x)$$
 \longrightarrow $\frac{\partial y}{\partial x} = \frac{\partial y}{\partial z} * \frac{\partial z}{\partial x}$

In our case, this means that the gradient for w_2 is:

$$\frac{\partial L(\hat{y}, y)}{\partial w_2} = \frac{\partial L(\hat{y}, y)}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_2}$$

The gradient for w_1 is, on the other hand:

$$\frac{\partial L(\hat{y}, y)}{\partial w_1} = \frac{\partial L(\hat{y}, y)}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_1}$$

Applying the chain rule:

$$\frac{\partial L(\hat{y}, y)}{\partial w_1} = \frac{\partial L(\hat{y}, y)}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z} * \frac{\partial z}{\partial w_1}$$

Backpropagation

- The process through which **errors** is being propegated throught the network is called **backpropagation**
- In practice uses Jacobian matrices rather single values
- Most packages implements automatic differentiation (autodiff)
- Overall workflow:
 - Forward pass
 - Compute loss
 - Backward pass (calculate gradient using chain rule)
 - Update weights

Activations Function (Again)

- Derivatives are good for parameters updated
- But derivatives of sigmoid is close to zero at the ends
 - Max is 0.25
- Given what we know about neural networks is this a problem?

Vanishing Gradient

Gradient gets smaller across layers

Values below 1

$$\frac{\partial L(\hat{y}, y)}{\partial w_1} = \frac{\partial L(\hat{y}, y)}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z} * \frac{\partial z}{\partial w_1}$$

- Known as the vanishing gradient problen
- Potential solutions
 - Skip-connections
 - Activations functions

Deep Neural Network

Figure 12.2 Deep network architecture with multiple layers.

Activation Function: Rectified Linear Unit

- Benefits
 - Easy to differentiate
 - Activation function add non-linearity
- Other alternatives such as swiGLU, geGLU,

$$ReLU = max(0, x)$$

Leaky ReLU =
$$f(x) = \begin{cases} x, & \text{if } x > 0 \\ 0.01x, \text{ otherwise} \end{cases}$$

Skip connections

Overfitting

Overfitting

Example Architectures

A few simple ones

Simple Sentiment networks

- Bullet 1
- Bullet 2
- Bullet 3

Input: Average word2vec vectors for all words in the target sentence

Named Entities with Context

CBOW Word2Vec with Neural Network

