GameBoy Opcode Summary

The GameBoy has instructions & registers similiar to the 8080, 8085, & Z80 microprocessors. The internal 8-bit registers are A, B, C, D, E, F, H, & L. Theses registers may be used in pairs for 16-bit operations as AF, BC, DE, & HL. The two remaining 16-bit registers are the program counter (PC) and the stack pointer (SP).

The F register holds the cpu flags. The operation of these flags is identical to their Z80 relative. The lower four bits of this register always read zero even if written with a one.

	Fl	ag	Re	gi	ste	er	
7	6	5	4	3	2	1	0
Z	N	Н	C	0	0	0	0

The GameBoy CPU is based on a subset of the Z80 microprocessor. A summary of these commands is given below.

l	Mnemonic	Symbolic Operation	Comments	CPU Clocks	Flags - Z,N,H,C
п		<u> </u>			2 , , ,

8-Bit Loads

LD r,s	r ← s	s=r,n,(HL)	r=4, n=8, (HL)=8
LD d,r	d ← r	d=r,(HL)	r=4, (HL)=8
LD d,n	d ← n	u=1,(11L)	r=8, (HL)=12
LD A,(ss)	A ← (ss)	ss=BC,DE,HL,nn	[BC,DE,HL]=8, nn=16
LD (dd),A	(dd) ← A	dd=BC,DE,HL,nn	[BC,DE,11L]=8, IIII=10
LD A,(C)	A ← (\$FF00+C)		8
LD (C),A	(\$FF00+C) ← A		8
LDD A,(HL)	A ← (HL), HL ← HL - 1		8
LDD (HL),A	(HL) ← A, HL ← HL - 1		8
LDI A,(HL)	$A \leftarrow (HL), HL \leftarrow HL + 1$	-	8
LDI (HL),A	$(HL) \leftarrow A, HL \leftarrow HL + 1$		8
LDH (n),A	(\$FF00+n) ← A		12
LDH A,(n)	A ← (\$FF00+n)		12

16-Bit Loads

LD dd,nn	dd ← nn	dd=BC,DE,HL,SP	12			
LD (nn),SP	(nn) ← SP		20	- -	-	-
LD SP,HL	SP ← HL	-	8			
LD HL,(SP+e)	HL ← (SP+e)		12	0	*	*
PUSH ss	$(SP-1) \leftarrow ssh, (SP-2) \leftarrow ssl, SP \leftarrow SP-2$	ss=BC,DE,HL,AF	16			
POP dd	$ddl \leftarrow (SP), ddh \leftarrow (SP+1), SP \leftarrow SP+2$	dd=BC,DE,HL,AF	12		-	

8-Bit ALU

ADD A,s	A 4 − A + s			*		*	*
ADC A,s	$A \leftarrow A + s + CY$						
SUB s	A ← A - s	CY is the carry flag. s=r,n,(HL)		*	1	*	*
SBC A,s	A ← A - s - CY		r-1 n-8 (HI)-8				
AND s	$A \leftarrow A \wedge s$		11—4, 11—6, (11L <i>)</i> —6	*	0	1	0
OR s	A ← A ∨ s						0
XOR s	A ← A ⊕ s						
CP s	A - s			*	1	*	*
INC s	s ← s + 1	s=r,(HL)	r=4 (HI)−12	*	0	*	-
DEC s	s ← s - 1	5-1,(11L)	r=4, (HL)=12		1	*	-

16-Bit Arithmetic

ADD HL,ss	HL ← HL + ss		8	-) *	*
ADD SP,e	$SP \leftarrow SP + e$	ag-DC DE HI SD	16	0) *	*
INC ss	ss 4 ss + 1	ss=BC,DE,HL,SP	8			
DEC ss	ss 4 ss - 1		8			

Miscellaneous

SWAP s	7 43 0	Swap nibbles. s=r,(HL)	r=8, (HL)=16	*	0	0	0
DAA	Converts A into packed BCD.		4	*	-	0	*
CPL	A ← /A	-	4	-	1	1	-
CCF	CY ←/CY	CV is the communities	4	-	0	0	*
SCF	CY ← 1	CY is the carry flag.	4	-	0	0	1
NOP	No operation.		4				
HALT	Halt CPU until an interrupt occurs.		4				
STOP	Halt CPU.	-	4]-	-	-	-
DI	Disable Interrupts.		4				
EI	Enable Interrupts.		4				

Rotates & Shifts

Bit Opcodes

BIT b,s Z — /sb		r=8, (HL)=12	 	1	
SET b,s sb ← 1	Z is zero flag. s=r,(HL)	,-0 (III)-16			
RES b,s sb ← 0		-0, (HL)-10 -	-	-	-

Jumps

JP nn	PC ← nn		16
JP cc,nn	If cc is true, PC ← nn, else continue.		If cc is true, 16 else 12.
JP (HL)	PC ← HL	-	4
JR e	PC ← PC + e		12
JR cc,e	if cc is true, PC PC + e, else continue.		If cc is true, 12 else 8.

Calls

CALL nn	(SP-1) ← PCh, (SP-2) ← PCl, PC ← nn, SP←SP-2	24
CALL cc,nn	If condition cc is false continue, else same as CALL nn.	If cc is true, 24 else 12.

Restarts

$$\boxed{ \text{RST f} | (\text{SP-1}) \leftarrow \text{PCh, (SP-2}) \leftarrow \text{PCl, PCh} \leftarrow 0, \text{PCl} \leftarrow \text{f, SP} \leftarrow \text{SP-2} | - | 16 |}$$

Returns

RET	$pcl \leftarrow (SP), pch \leftarrow (SP+1), SP \leftarrow SP+2$		16
RET cc	If cc is true, RET else continue.	-	If cc is true, 20 else 8.
RETI	Return then enable interrupts.		16

Terminology

-	Flag is not affected by this operation.
*	Flag is affected according to result of operation.
b	A bit number in any 8-bit register or memory location.
С	Carry flag.
cc	Flag condition code: C,NC,NZ,Z

d	Any 8-bit destination register or memory location.
dd	Any 16-bit destination register or memory location.
e	8-bit signed 2's complement displacement.
f	8 special call locations in page zero.
Н	Half-carry flag.
N	Subtraction flag.
NC	Not carry flag
NZ	Not zero flag.
n	Any 8-bit binary number.
nn	Any 16-bit binary number.
r	Any 8-bit register. (A,B,C,D,E,H, or L)
s	Any 8-bit source register or memory location.
sb	A bit in a specific 8-bit register or memory location.
ss	Any 16-bit source register or memory location.
Z	Zero Flag.