See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/239693353

OH kinetics and photochemistry of HNO 3 in the presence of water vapor

ARTICLE in CHEMICAL PHYSICS LETTERS · JUNE	2001
Impact Factor: 1.9 · DOI: 10.1016/S0009-2614(01)00468-7	
CITATIONS	READS

11

4 AUTHORS, INCLUDING:

10

Geert K. Moortgat

Max Planck Institute for Chemistry

261 PUBLICATIONS 9,030 CITATIONS

SEE PROFILE

CHEMICAL PHYSICS LETTERS

Chemical Physics Letters 341 (2001) 93-98

www.elsevier.nl/locate/cplett

OH kinetics and photochemistry of HNO₃ in the presence of water vapor

Shaun A. Carl ^{a,1}, Trevor Ingham ^{a,2}, Geert K. Moortgat ^a, John N. Crowley ^{a,*}

^a Max-Planck-Institut für Chemie, Division of Atmospheric Chemistry, Postfach 3060, 55020 Mainz, Germany Received 15 March 2001; in final form 9 April 2001

Abstract

The pulsed-laser-photolysis technique was used to determine the rate constant of the gas-phase reaction between the hydroxyl radical (OH) and HNO₃ for the first time under conditions of high relative humidity at (295 ± 3) K. The value obtained, at a total pressure of 200 Torr N₂, was $1.64^{+0.11}_{-0.20}\times10^{-13}$ cm³ s⁻¹ (error limits include assessment of systematic errors), in excellent agreement with the most recent determinations [J. Phys. Chem. 103 (1999) 3031], and was invariant with relative humidity up to 0.50. The shape of the HNO₃ absorption bands between 210 and 350 nm also showed negligible variation with relative humidity. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Nitrogen oxides play an extremely important role in tropospheric photochemistry, where they participate in catalytic cycles involving the oxidation of CH_4 , non-methane hydrocarbons, and CO, that can lead either to overall production or to overall loss of $[O_3]$ and $[HO_r]$.

$$NO + O_3(or RO_2) \rightarrow NO_2 + O_2(or RO),$$
 (1)

$$NO_2 + hv(+O_2) \rightarrow NO + O_3,$$
 (2)

where R represents H or an organic group (e.g. CH_3 , $CH_3C(O)$). HNO_3 is a major oxidation product of NO_x and acts as a relatively stable reservoir for active nitrogen:

$$NO_2 + OH + M \rightarrow HNO_3 + M,$$
 (3)

$$HNO_3 + hv \rightarrow NO_2 + OH,$$
 (4)

$$HNO_3 + OH \rightarrow NO_3 + H_2O.$$
 (5)

Reactions (1) and (2) establish the fast photochemical equilibrium between NO and NO₂, whereas reactions (3)–(5) set up the HNO₃–NO_x photochemical cycle, which can reach steady state in 1–3 days, depending on altitude. To a first approximation, the magnitude of the HNO₃/NO₂ ratio depends on the relative rates of activation and de-activation of NO_x in the above gas-phase processes, though the heterogeneous hydrolysis of N₂O₅ to HNO₃ can also play a role in some parts of the troposphere [2]. Presently there is a discrepancy between field measurements and the

^{*}Corresponding author. Fax: +49-6131-305436. *E-mail address:* crowley@mpch-mainz.mpg.de (J.N. Crowley).

¹ Present address: Department of Chemistry, University of Leuven, Celestijnenlaan 200 F, 3001 Heverlee, Belgium.

² Present address: Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 183-901, 4800 Oak Grove Drive, Pasadena, CA 91109, USA.

predictions of photochemical models of the [HNO₃]/[NO_x] ratio in the remote, free troposphere, in which models persistently predict this ratio to be significantly larger than has been measured (see e.g. [2,3] and references therein) though some of this discrepancy may be resolved by using updated rate coefficients for some key reactions of NO₂ and HNO₃ [4]. In this work we present results of experimental investigations into the possibility that the chemical reactivity of HNO₃ towards the OH radical (5) is modified by the presence of water vapor. Rationale for this hypothesis is provided by drawing analogy to the HO₂ self-reaction (6), which, like the reaction of OH with HNO₃, is bimolecular, yet has a pronounced pressure dependence. The pressure dependence of reaction (5) has been rationalized in terms of formation of a vibrationally excited association complex, OH-HNO₃*, which may either dissociate back to reactants or be stabilized by collision and proceed to products. The HO₂ selfreaction is also believed to owe its pressure dependence to initial formation of a vibrationally excited HO₂-HO₂ association complex. In addition, the rate constant for reaction (6) is known to be significantly influenced by the presence of water vapor, with the rate constant enhanced by a factor 1.7 at 10 Torr of H₂O and 298 K [5] compared to dry conditions. In the lower troposphere, and especially in tropical regions, H₂O concentrations in excess of 10 Torr are often encountered (1 Torr = 133 Pa).

$$HO_2 + HO_2(+H_2O) \rightarrow H_2O_2 + O_2(+H_2O).$$
 (6)

To date, all experimental data (see [4] for a summary) obtained on the reaction of OH with HNO₃ have been obtained in the absence of H₂O vapor or under conditions of very low relative humidity. If a similar dependence on H₂O vapor exists as seen for the HO₂ self-reaction, these data may not be applicable to all of the atmosphere. In the present work, we examine the possibility that the presence of H₂O can enhance the rate constant of reaction (5), either by more efficiently quenching the association complex, or by forming a complex with HNO₃ in the gas-phase, that increases the rate of stabilization of the modified (larger) association complex.

Apart from reaction with OH, the regeneration of NO_x from HNO₃ also occurs via photodissociation, the rate of which depends on the magnitude of overlap with solar actinic flux (i.e., on the UV absorption spectrum of HNO₃) and on the quantum yield for dissociation. The UV absorption spectrum and photodissociation quantum yields of HNO₃ may potentially be modified in the presence of H₂O if strong molecular interactions can alter the geometry of either its ground state or the dissociating excited states. A change in the absorption cross-section of HNO3 would have greatest impact at wavelengths greater than 290 nm where the tropospheric actinic flux rises sharply. For this reason, we have re-measured the absorption crosssections of HNO₃ in dry bath gas, and in the presence of up to 8 Torr of H₂O between 210 and 350 nm.

2. Experimental

The experimental apparatus has been described in detail elsewhere [6]. For the present experiments, a Pyrex cylinder, 6.5 cm in diameter, with a heated quartz window attachment (≈30 K above ambient) at each end, was used as the reaction vessel. The quartz windows provided coupling for three optical beams, from an excimer laser, a deuterium lamp and a diode laser to the gaseous mixture for purposes of generation of OH (reaction (4)), and for monitoring reactant and product concentrations. All three beams traveled along the cylindrical axis of the reaction vessel, each beam having a total path length of 104 cm.

HNO₃, diluted to ca. 1% in N₂ (99.999% purity), or Ar (99.999% purity) for some measurements, was introduced to the reaction vessel from a blackened 10 L bulb. N₂ was admitted into the vessel directly from its cylinder via a flow controller to achieve the desired total pressure of 200 Torr at (295 ± 3) K. The reaction vessel was then isolated from the mixing lines and pumps, and the optical/kinetic measurements were carried out on the static gas mixture.

Reaction (5) was initiated by generating OH radicals through photo-dissociation of a small fraction of HNO₃ (typically 5×10^{-4}) using a

pulsed excimer laser (25 ns pulse duration) operating at 248 nm. The apertured photolysis beam of diameter 7 mm traveled through a relatively small volume of the HNO_3/N_2 or $HNO_3/N_2/H_2O$ mixture along the vessel's cylindrical axis and well away from its wall. The course of reaction (5) was followed for several milliseconds after the photolysis pulse by continuously monitoring the resulting product, NO₃, via its absorption band centered at 662 nm ($\sigma_{662 \text{ nm}} = 2.1 \times 10^{-17} \text{ cm}^2$ [7]), using a 3 mW, cw diode laser operating at $\lambda = 662.1$ nm. The diode laser beam traveled along the same path as the photolysis beam and within the volume swept out by it, before its relative intensity was measured using a photomultiplier tube (PMT). The stability of the diode laser beam intensity on the millisecond time scale allowed a NO₃ concentration profile with a good signal-to-noise ratio to be constructed by averaging 10 absorption profiles at 0.2 Hz.

The concentration of HNO₃ was determined by monitoring the attenuation of light from a D₂ lamp between 210 and 290 nm using an intensified, diode array detector and comparison with the current recommendation of cross-sections for HNO₃ at 295 K [5]. By this method, HNO₃ concentrations, which are needed for the determination of the rate constant, are known to $\pm 5\%$. In a separate set of experiments, the optical absorption of HNO₃ was measured both in the presence and absence of H₂O between 290 and 335 nm: the wavelength region responsible for most of HNO₃ photolysis in the troposphere. These measurements were similar to those carried out for monitoring HNO₃ concentrations in the reaction cell, the main differences being use of a 174 cm long absorption cell equipped with monochromator, diode array and deuterium lamp. Spectra were collected for mixtures of HNO₃ vapor in N₂, and of HNO₃ vapor and H₂O (8 Torr) in N₂ to a total cell pressure of 100 Torr. Both HNO₃ vapor and H₂O were admitted to the absorption cell directly from their liquid reservoirs. Pure HNO₃ (liq) was prepared by reaction of H₂SO₄(liq) (99% purity) with KNO₃(s) (greater than 99% purity) under vacuum at 273 K. Optical measurements on the HNO₃(g) revealed an initial impurity of NO₂ of less than 0.5%.

3. Results

3.1. Kinetic measurements

The determination of the rate constant of reaction (5), utilizes NO₃ as a spectroscopic marker for OH. Formation of NO₃ and H₂O, as written in reaction (5), is the only significant reaction pathway [8]. In the absence of any other loss processes for NO₃ and OH, the time profile of NO₃ following the Excimer pulse may then be expressed as

$$[NO_3]_t = [OH]_0 \{ 1 - \exp(-k_5't) \},$$
 (i)

where $k_5't = k_5[HNO_3]$. In the presence of other removal processes for both NO₃ and OH, which is mainly provided by the NO₂ impurity in the HNO₃ sample, the time dependence of [NO₃] takes the following form:

$$[NO_3]_t = [OH]_0 A \exp(-k_7' t) - \exp(-(k_5' + k_3')t),$$
 (ii)

where $A = k'_5/(k'_5 + k'_3 - k'_7)$, $k'_3 = k_3[NO_2]$ and $k'_7 = k_7[NO_2]$, and k_3 and k_7 are the bimolecular rate constants for reactions (7) and (3) at the pressure and temperature of the measurements, respectively.

$$NO_2 + NO_3 + M \rightarrow N_2O_5 + M.$$
 (7)

Diffusion of OH or NO₃ out of the observation region was negligible on the time scales of collection of a NO₃ decay.

 k_5' was derived by computer fitting the [NO₃]_t profiles to Eq. (ii), using literature values of k_3 and k_7 at the appropriate pressure and temperature, and allowing both [OH]₀ and [NO₂] to vary. Note that the result obtained does not depend on absolute values of k_3 and k_7 , but on their relative value (see below). The loss rate of OH due to reaction with NO₂ was always less that 15% of its loss rate due to reaction with HNO₃.

Fig. 1 shows examples of NO₃ concentration profiles derived from absorption measurements at 662 nm following 248 nm photolysis of HNO₃ in the presence of 10 Torr H₂O vapor. Each [NO₃] profile is related to a different HNO₃ concentration. The time dependence of the NO₃ profiles are well described by Eq. (ii) (solid lines). A numerical simulation [9] of the chemical system using

Fig. 1. Examples of [NO₃] derived from absorption measurements at 662 nm following pulsed photolysis of HNO₃ vapor at 248 nm in the presence of 10 Torr of H₂O vapor. (a) [HNO₃] = 2.28×10^{16} cm⁻³; (b) [HNO₃] = 1.66×10^{16} cm⁻³; (c) [HNO₃] = 9.07×10^{15} cm⁻³. Solid lines are best fits to Eq. (ii).

recommended rate constants [4,5] showed that at the laser fluences used the reaction of OH with NO_3 ($k=2.2\times10^{-11}$ cm³ s⁻¹) does not substantially influence the NO_3 profile, and an error (overestimation) in the rate constant arising because of this reaction would be $\leq10\%$. In addition, the OH self-reaction (to form H_2O_2) accounted for no more than 1% of its overall loss rate.

Fig. 2 summarizes the pseudo first-order rate constants derived from the [NO₃] profiles (k'_5) as a function of HNO₃ concentration in the presence of 3, 6 and 10 Torr of water vapor and in dry N₂ bath gas, all at a total pressure of 200 Torr. An examination of this figure shows that is there is no significant difference between the data sets obtained at different humidity. For this reason we quote a value of k_5 obtained from all the data of: $1.64^{+0.11}_{-0.20} \times 10^{-13}$ cm³ s⁻¹, independent of the concentration of H₂O between 0 and 10 Torr. The error limits are derived from an assessment of systematic errors, and include the effect of varying the k_3/k_7 ratio by $\pm 30\%$, an uncertainty of 5% for the HNO₃ concentration and the effects of secondary removal of OH and NO₃ via their reaction

Fig. 2. Plot of k_5' versus HNO₃ concentration. Solid triangles, $p(H_2O) = 3$ Torr; solid circles, $p(H_2O) = 6$ Torr; open squares, $p(H_2O) = 10$ Torr; open circles, $p(H_2O) = 0$ Torr.

(see text above) which can result in an overestimation of k_5 by max 10%.

The 295 K, 200 Torr rate constant thus derived is in excellent agreement with the currently recommended value [4] for this reaction at 295 K and 200 Torr of N_2 of 1.56×10^{-13} cm³ s⁻¹.

3.2. Absorption spectrum of HNO₃

Absorption due to HNO_3 both under 'dry' conditions and under conditions of high relative humidity was recorded in the wavelength region 210–286 nm in order to derive HNO_3 concentrations needed for the kinetic analysis (see above). Similar spectroscopic measurements were carried out with water pressures of 3 and 6 Torr, and in the absence of water vapor. In all cases, the variation of optical density with wavelength showed the same functional form. This indicates the reliability of this method to monitor $[HNO_3]$ in the presence of large concentrations of H_2O , and further shows that there are no changes in shape of the HNO_3 absorption spectrum ($\pm 2\%$) due to the presence of H_2O in this region of the spectrum.

This region of the spectrum is however not important for the photodissociation of HNO₃ in the lower atmosphere where it occurs predominantly between 290 and 335 nm. The photolysis rate of HNO₃ falls off at the shorter wavelength

side of this range due to a rapidly decreasing actinic flux, and becomes negligible at $\lambda < 290$ nm. The long wavelength fall-off of photolysis rate is due to the decreasing absorption cross-section of HNO₃, and photolysis again becomes negligible at $\lambda > 335$ nm. For this reason we made a detailed study of the influence of H₂O vapor on the absorption spectrum of HNO₃ between 290 and 350 nm.

Fig. 3 shows an absorption profile obtained in the presence of 10 Torr water vapor. The uppermost curve is raw data before numerically stripping the absorption due to the NO_2 impurity (dashed line) in the HNO_3 sample. A small amount of structure remains in the resultant absorption (monotonically decreasing with wavelength) at $\lambda > 330$ nm due to signal noise and to a very small, miscancelled NO_2 residual absorption. The signal-to-noise ratio becomes unity at about 340 nm. The absorption spectrum is, however, plotted to 350 nm, and compared with the recommended literature spectrum of HNO_3 at 5 nm intervals (circles). Clearly there is good agreement, and no significant deviation due to the presence of H_2O is observed.

Fig. 3. The absorption spectrum of HNO_3 between 290 and 350 nm measured in the presence of 8 Torr of H_2O vapor under 0.4 nm resolution. Curve (A) shows the raw spectra containing contributions due to the absorption of NO_2 . Curve (B) shows the remaining absorption spectrum due to HNO_3 following numerical stripping of the NO_2 absorption (curve C). Burkholder '93, Relative absorption based on the literature recommendation for the HNO_3 spectrum [14].

By plotting the ratio of HNO₃ absorption obtained both under wet and dry conditions in this study (not shown), we can put an upper limit of 15% to an enhancement of the HNO₃ absorption cross-sections at $\lambda > 320$ nm. Although this might at first glance seem significant, we note that at wavelengths greater than 315 nm the contribution to HNO₃ photolysis rapidly falls, thus the total *J*-value for dry HNO₃ compared to 'wet' HNO₃ are unlikely to be significantly different. Calculations of HNO₃ *J*-values for ground level, 50°N, solar zenith angle 25° and a column density of 300 DU using both wet and dry spectra results in values that agree within $\pm 1\%$ even if the upper limit of 15% is used.

4. Discussion

Our results have shown that neither the kinetics of the reaction of OH with HNO₃ nor the absorption cross-section of HNO₃ are influenced by water vapor. We now consider why this is the case, and where the differences between the HO₂ self-reaction (which is strongly influenced by the presence of H₂O) and the reaction of OH with HNO₃ lie. It is believed [10,11] that the enhancement in rate constant for the HO₂ self-reaction in the presence of water vapor is due to the efficient formation of a complex between HO₂ and H₂O:

$$HO_2 + H_2O + M \iff HO_2 \cdot H_2O + M,$$
 (8)

which is now known to be formed with a binding energy of $\approx 30 \text{ kJ/mol}$ [12]. The significant increase in the vibrational degrees of freedom of the $HO_2 \cdot H_2O$ complex compared to the free HO_2 radical can account for the increase in the rate constant of the HO_2 self-reaction if a significant fraction of HO_2 (and thus the association complex formed) is bound to $H_2O \cdot HNO_3$ can also form a complex with a water molecule:

$$HNO_3 + H_2O + M \iff HNO_3 \cdot H_2O + M$$
 (9)

and indeed the binding energy (\approx 40 kJ/mol [13]) is even greater than that of HO₂. The important difference between the H₂O complexes of HO₂ and HNO₃ is related to the equilibrium fraction of complex compared to free molecules. In the case of

 HO_2 , the equilibrium fraction of $HO_2 \cdot H_2O$ at 298 and 100% humidity (\approx 10 Torr H₂O) is calculated to be >50% [12]. For HNO₃, despite the larger binding energy of the complex compared to HO₂, an unfavorable change in entropy means that the fraction of complexed HNO₃ under the same conditions is estimated to be only 1% [13]. Thus, even if a HNO₃ · H₂O complex were to react five times as rapidly with OH as free monomeric HNO₃, at such low equilibrium concentrations, no detectable change in rate constant in our experiments, nor a significant enhancement in the rate of this process in the atmosphere is to be expected. The equilibrium constant for HNO₃ · H₂O formation is strongly temperature dependent, and complex formation is favored at low temperatures such as those found around the tropopause. We note also that the pressure dependence of the reaction between OH and HNO₃ is greater at low temperatures [1] and thus would expect that any third-body effect of H₂O would be maximized under these conditions. However, these positive effects which may be expected at low temperatures are more than offset by the reduction in the equilibrium vapor pressure of H₂O which decreases by e.g. a factor of \approx 10 between 298 and 265 K. The steep, decreasing vertical gradient of atmospheric H₂O also implies that the fraction of HNO₃ bound to H_2O will actually decrease to $\approx 10^{-4}$ at the tropopause [13].

5. Conclusion and atmospheric implications

The rate coefficient for the reaction of OH with $\rm HNO_3$ was determined for the first time in the presence of atmospherically relevant amounts of water vapor. The rate constant obtained at 298 K showed, within experimental uncertainty, no dependence on $\rm H_2O$ up to 10 Torr, in a total pressure of 200 Torr $\rm N_2$ and is in excellent agreement with the latest recommendations. This result rules out a significantly enhanced third body effect for $\rm H_2O$ compared to $\rm N_2$ under our experimental conditions. As our data were obtained at a $\rm H_2O/N_2$ ratio of up to 0.05, which is \approx twice the maximum ratio encountered anywhere in the atmosphere, we

exclude the possibility that this mechanism can enhance the $OH + HNO_3$ rate constant. Our results are also consistent with calculations that suggest that HNO_3 is not present at a significant fraction as $HNO_3 \cdot H_2O$ in our experiments, or in the atmosphere. Our measurements of the UV-absorption spectrum of HNO_3 in the presence of varying amounts of H_2O also reveal no significant difference to the spectrum of anhydrous HNO_3 , and significant perturbation of the photodissociation lifetime of HNO_3 due to molecular interaction with H_2O vapor can also be excluded.

References

- S.S. Brown, R.K. Talukdar, A.R. Ravishankara, J. Phys. Chem. 103 (1999) 3031.
- [2] M.G. Schultz, D.J. Jacob, J.D. Bradshaw, S.T. Sandholm, J.E. Dibb, R.W. Talbot, H.B. Singh, J. Geophys. Res. 105 (2000) 6669.
- [3] A.N. Thakur, H.B. Singh, P. Mariani, Y. Chen, Y. Wang, D.J. Jacob, G. Brasseur, J.-F. Müller, M. Lawrence, Atmos. Environ. 33 (1999) 1403.
- [4] S.P. Sander, R.R. Friedl, W.B. DeMore, D.M. Golden, M.J. Kurylo, R.F. Hampson, R.E. Huie, G.K. Moortgat, A.R. Ravishankara, C.E. Kolb, M.J. Molina, Chemical kinetics and photochemical data for use in stratospheric modelling, Supplement to evaluation 12, Updata of key reactions, Jet Propulsion Laboratory, 2000.
- [5] W.B. DeMore, S.P. Sander, D.M. Golden, R.F. Hampson, M.J. Kurylo, C.J. Howard, A.R. Ravishankara, C.E. Kolb, M.J. Molina, Chemical kinetics and photochemical data for use in stratospheric modelling, No. 12, Jet Propulsion Laboratory, 1997.
- [6] D. Bauer, T. Ingham, S.A. Carl, G.K. Moortgat, J.N. Crowley, J. Phys. Chem. 102 (1998) 2857.
- [7] R.P. Wayne, I. Barnes, P. Biggs, J.P. Burrows, C.E. Canosa-Mas, J. Hjorth, G. Le Bras, G.K. Moortgat, D. Perner, G. Poulet, G. Restelli, H. Sidebottom, Atmos. Environ. 25A (1991) 1.
- [8] S.S. Brown, J.B. Burkholder, R.K. Talukdar, A.R. Ravishankara, J. Phys. Chem. 105 (2001) 1605.
- [9] A.R. Curtis, W.P. Sweetenham, Facsimile; AERE, Report R-12805, 1987.
- [10] C.C. Kircher, S.P. Sander, J. Phys. Chem. 88 (1984) 2082.
- [11] R.-R. Lii, M.C. Sauer, S. Gordon, J. Phys. Chem. 85 (1981) 2833.
- [12] S. Aloisio, J.S. Francisco, J. Phys. Chem. 102 (1998) 1899.
- [13] F.M. Tao, K. Higgins, W. Klemperer, D.D. Nelson, Geophys. Res. Lett. 23 (1996) 1797.
- [14] J.B. Burkholder, R.K. Talukdar, A.R. Ravishankara, S. Solomon, J. Geophys. Res. 98 (1993) 22937.