WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International Patent Classification 6: WO 97/48275 (11) International Publication Number: A01N 37/18, A61K 38/00, C07K 1/00, A1 (43) International Publication Date: 24 December 1997 (24.12.97) 2/00, 4/00, 7/00, 14/00, 16/00, 17/00, C07H 21/02, 21/04 (21) International Application Number: PCT/US97/10942 (81) Designated States: AU, CA, JP, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, (22) International Filing Date: 19 June 1997 (19.06.97) PT, SE). (30) Priority Data: Published 60/020,150 20 June 1996 (20.06.96) US With international search report. 08/878,474 18 June 1997 (18.06.97) US (71) Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA [US/US]; 22nd floor, 300 Lakeside Drive, Oakland, CA 94612 (US). (72) Inventors: DE ROBERTIS, Edward, M.; 16958 Dulce Ynez Lane, Pacific Palisades, CA 90272 (US). BOUWMEESTER, Tewis; Apartment 708, 827 Levering Avenue, Los Angeles, CA 90024 (US). (74) Agents: SIEBERT, J., Suzanne et al.; Majestic, Parsons, Siebert & Hsue, Suite 1100, Four Embarcadero Center, San Francisco, CA 94111 (US).

(54) Title: ENDODERM, CARDIAC AND NEURAL INDUCING FACTORS

(57) Abstract

Novel proteins have been designated "cerberus" and "frzb-1", respectively. Cerebus is expressed as a secreted peptide during embryogenesis of the Xenopus embryo, and is expressed specifically in the head organizer region. This new molecule has endodermal, cardiac, and neural tissue inducing activity, that should prove useful in therapeutic, diagnostic, and clinical applications requiring regeneration, differentiation, or repair of these and other tissues. Frzb-1 is a soluble antagonist of growth factors of the Wnt family that acts by binding to Wnt growth factors in the extracellular space. A third novel protein is termed PAPC which promotes the formation of dorsal mesoderm and somites in the embryo.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	.ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	lТ	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan ·	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	Ll	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

15

20

25

ENDODERM, CARDIAC AND NEURAL INDUCING FACTORS

5 Field of the Invention

The invention generally relates to growth factors, neurotrophic factors, and their inhibitors, and more particularly to several new growth factors with neural, endodermal, and cardiac tissue inducing activity, to complexes and compositions including the factors, and to DNA or RNA coding sequences for the factors. Further, one of the novel growth factors should be useful in tumor suppression gene therapy.

This application claims the benefit of U.S. Provisional Application No. 60/020,150, filed June 20, 1996.

This invention was made with Government support under grant contract number HD-21502, awarded by the National Institutes of Health. The Government has certain rights in this invention.

Background of the Invention

Growth factors are substances, such as polypeptide hormones, which affect the growth of defined populations of animal cells in vivo or in vitro, but which are not nutrient substances. Proteins involved in the growth and differentiation of tissues may promote or inhibit growth, and promote or inhibit differentiation, and thus the general term "growth factor" includes cytokines, trophic factors, and their inhibitors.

WO 97/48275

5

10

15

20

25

30

35

PCT/US97/10942

Widespread neuronal cell death accompanies normal development of the central and peripheral nervous systems. Studies of peripheral target tissues during development have shown that neuronal cell death results from the competition among neurons for limiting amounts of survivor factors ("neurotrophic factors"). The earliest identified of these, nerve growth factor ("NGF"), is the most fully characterized and has been shown to be essential for the survival of sympathetic and neural crest-derived sensory neurons during early development of both chick and rat.

One family of neurotropic factors are the Whits, which have dorsal axis-inducing activity. Most of the Whit proteins are bound to cell surfaces. (See, e.g., Sokol et al., Science, 249, pp. 561-564, 1990.) Dorsal axis-inducing activity in Xenopus embryos by one member of this family (Xwht-8) was described by Smith and Harland in 1991, Cell, 67, pp. 753-765. The authors described using RNA injections as a strategy for identifying endogenous RNAs involved in dorsal patterning to rescue dorsal development in embryos that were ventralized by UV irradiation.

Another member of the growth and neurotropic factor family was subsequently discovered and described by Harland and Smith, which they termed "noggin." (Cell, 70, pp. 829-840 (1992).) Noggin is a good candidate to function as a signaling molecule in Nieuwkoop's center, by virtue of its maternal transcripts, and in Spemann's organizer, through its zygotic organizer-specific expression. Besides noggin, other secreted factors may be involved in the organizer phenomenon.

Another Xenopus gene designated "chordin" that begins to be expressed in Spemann's organizer and that can completely rescue axial development in ventralized

15

20

25

30

embryos was described by Sasai et al., Cell, 79, pp. 779-790, 1994. In addition to dorsalizing mesoderm, chordin has the ability to induce neural tissue and its activities are antagonized by Bone Morphogenetic Protein-4 (Sasai et al., Nature, 376, pp. 333-336, 1995).

Therefore, the dorsal lip or Spemann's organizer of the Xenopus embryo is an ideal tissue for seeking novel growth and neurotrophic factors. New growth and neurotrophic factors are useful agents, particularly those that are secreted due to their ability to be used in physiologically active, soluble forms because these factors, their receptors, and DNA or RNA coding sequences therefore and fragments thereof are useful in a number of therapeutic, clinical, research, diagnostic, and drug design applications.

Summary of the Invention

In one aspect of the present invention, the sequence of the novel peptide that can substantially purified form is shown by SEQ ID NO:1. The Xenopus derived SEQ ID NO:1 has been designated "cerberus," and this peptide is capable of inducing endodermal, cardiac, and neural tissue development in vertebrates when expressed. The nucleotide sequence which, when expressed results in cerberus, illustrated by SEQ ID NO:2. Since peptides of the invention induce endodermal, cardiac, and neural tissue differentiation in vertebrates, they should be able to be prepared in physiologically active form for a number of therapeutic, clinical, and diagnostic applications.

Cerberus was isolated during a search for molecules expressed specifically in Spemann's organizer containing a secretory signal sequence. In addition to cerberus, two other novel cDNAs were identified.

10

15

20

25

30

The Xenopus derived peptide that can be deduced from SEQ ID NO:3 encodes a novel protein we had earlier designated as "frazzled," a secreted protein of 318 amino acids that has dorsalizing activity in Xenopus We now designate the novel protein as embryos. "frzb-1." The gene for frzb-1 is expressed in many adult tissues of many animals, three of the cDNAs (Xenopus, mouse, and human) have been cloned by us. accession numbers for the Xenopus, mouse, and human frzb-1 cDNA sequences of the gene now designated frzb-1 are U68059, U68058, and U68057, respectively. has some degree of sequence similarity to the Drosophila gene frizzled which has been shown to encode a seventransmembrane protein that can act both as a signalling and as a receptor protein (Vinson et al., Nature, 338, pp. 263-264, 1989; Vinson and Adler, Nature, 329, pp. 549-551, 1987). Vertebrate homologues of Frizzled have been isolated and they too were found to be anchored to the cell membrane by seven membrane spanning domains (Wang et al., J. Biol. Chem., 271, pp. 4468-4476, 1996). Frzb-1 differs from the frizzled proteins in that it is an entirely soluble, diffusible secreted protein and therefore suitable as a therapeutic agent. nucleotide sequence derived from Xenopus that, when expressed, results in frzb-1 protein is illustrated by SEQ ID NO:4. The frzb-1 protein derived from mouse is shown as SEQ ID NO:7, while the mouse frzb-1 nucleotide sequence is SEQ ID NO:8. The human derived frzb-1 protein is illustrated by SEQ ID NO:9, and the human frzb-1 nucleotide sequence is SEQ ID NO:10.

Frzb-1 is an antagonist of Whts in vivo, and thus is believed to find utility as a tumor suppressor gene, since overexpressed Wht proteins cause cancer. Frzb-1 may also be a useful vehicle for solubilization

15

20

25

30

35

and therapeutic delivery of Wnt proteins complexed with it.

The final cDNA isolated containing a signal sequence results in a peptide designated Paraxial Protogadherin (PAPC). The cDNA for PAPC is a divergent member of the cadherin multigene family. PAPC is most related to protocadherin 43 reported by Sano et al., The EMBO J., 12, pp. 2249-2256, 1993. As shown in SEQ ID NO:5, the PAPC gene encodes a transmembrane protein of amino acids, of which 187 are part of intracellular domain. PAPC is a cell adhesion molecule, and microinjection of PAPC mRNA constructs into Xenopus embryos suggest that PAPC acts as a molecule involved in mesoderm differentiation. A soluble form of the PAPC extracellular domain is able to block muscle and mesoderm formation in Xenopus embryos. The nucleotide sequence encoding Xenopus PAPC is provided in SEQ ID NO:6.

Cerberus, frzb-1, or PAPC or fragments thereof (which also may be synthesized by in vitro methods) may be fused (by recombinant expression or in vitro covalent methods) to an immunogenic polypeptide and this, in turn, may be used to immunize an animal in order to raise antibodies against the novel proteins. Antibodies are recoverable from the serum of immunized animals. Alternatively, monoclonal antibodies may be prepared from cells from the immunized animal in conventional fashion. Immobilized antibodies are useful particularly in the diagnosis (in vitro or in vivo) or purification of cerberus, frzb-1, or PAPC.

Substitutional, deletional, or insertional mutants of the novel polypeptides may be prepared by in vitro or recombinant methods and screened for immunocrossreactivity with cerberus, frzb-1, or PAPC and for cerberus antagonist or agonist activity.

10

15

20

25

30

Cerberus or frzb-l also may be derivatized in vitro in order to prepare immobilized and labelled proteins, particularly for purposes of diagnosis of insufficiencies thereof, or for affinity purification of antibodies thereto.

Among applications for the novel proteins are tissue replacement therapy and, because frzb-1 is an antagonist of Wnt signaling, tumor suppression therapies. The cerberus receptor may define a novel signalling pathway. In addition, frzb-1 could permit the isolation of novel members of the Wnt family of -growth factors.

Brief Description of the Drawings

Figure 1 illustrates the amino acid sequence (SEQ ID NO:1) of the Fig. 2 cDNA clone for cerberus;

Figure 2 illustrates a cDNA clone (SEQ ID NO:2) for cerberus derived from Xenopus. Sense strand is on top (5' to 3' direction) and the antisense strand on the bottom line (in the opposite direction);

Figures 3 and 4 show the amino acid and nucleotide sequence, respectively, of full-length frzb-1 from Xenopus (SEQ ID NOS:3 and 4);

Figures 5 and 6 show the amino acid and nucleotide sequence, respectively, of full-length PAPC from Xenopus (SEQ ID NOS:5 and 6);

Figures 7 and 8 show the amino acid and nucleotide sequence, respectively, of full-length frzb-1 from mouse (SEQ ID NOS:7 and 8); and

Figures 9 and 10 show the amino acid and nucleotide sequence, respectively, of full-length frzb-1 from human (SEQ ID NOS:9 and 10).

10

15

20

25

30

7

Detailed Description of the Preferred Embodiments

Among the several novel proteins and their nucleotide sequences described herein, is a novel endodermal, cardiac, and neural inducing factor in vertebrates that we have named "cerberus." referring to cerberus, the present invention also contemplates the use of fragments, derivatives, agonists, or antagonists of cerberus molecules. Because cerberus has no homology to any reported growth factors, it is proposed to be the founding member of a novel family of growth factors with potent biological __activities, which may be isolated using SEQ ID NO:2.

The amphibian organizer consists of several cell populations with region-specific On the basis of morphogenetic movements, activities. three very different cell populations First, cells with distinguished in the organizer. crawling migration movements involute, fanning out to form the prechordal plate. Second, cells involute through the dorsal lip driven by convergence and extension movements, giving rise to the notochord of the trunk. Third, involution ceases and the continuation of mediolateral intercalation movements leads to posterior extension movements and to the formation of the tail notochord and of the chordoneural hinge. The three cell populations correspond to the head, trunk, and tail organizers, respectively.

The cerberus gene is expressed at the right time and place to participate in cell signalling by Spemann's organizer. Specifically, cerberus is expressed in the head organizing region that consists of crawling-migrating cells. The cerberus expressing region corresponds to the prospective foregut, including the liver and pancreas anlage, and the heart mesoderm.

10

15

20

25

30

Cerberus expression is activated by chordin, noggin, and organizer-specific homeobox genes.

Our studies were conducted in early embryos of the frog Xenopus laevis. The frog embryo is well suited to experiments, particularly experiments pertaining to generating and maintaining regional differences within the embryo for determining roles in tissue differentiation. It is easy to culture embryos with access to the embryos even at very early stages of development (preceding and during the formation of body pattern and differentiation) and the embryos are large. The initial work with noggin and chordin also had been in Xenopus embryos, and, as predicted, was highly conserved among vertebrates. Predictions based on work with Xenopus as to corresponding human noggin were proven true and the ability to clone the gene for human noggin was readily accomplished. (See the description of Xenopus work and cloning information in PCT application, published March 17, 1994, WO 9 405 800, and the subsequent human cloning based thereon in the PCT application, also published March 17, 1994, as WO 9 405 791.)

CLONING

The cloning of cerberus, frzb-1, and PAPC resulted from a comprehensive screen for cDNAs enriched in Spemann's organizer. Subtractive differential screening was performed as follows. In brief, poly A*RNA was isolated from 300 dorsal lip and ventral marginal zone (VMZ) explants at stage 10½. After first strand cDNA synthesis approximately 70-80% of common sequences were removed by substraction with biotinylated VMZ poly A*RNA prepared from 1500 ventral gastrula halves. For differential screening, duplicate filters (2000 plaques per 15 cm plate, a total of 80,000 clones

10

screened) of an unamplified oriented dorsal lip library were hybridized with radiolabeled dorsal lip or VMZ cDNA. Putative organizer-specific clones were isolated, grouped by sequence analysis from the 5' end and whole-mount in situ hybridization, and subsequently classified into known and new dorsal-specific genes. Rescreening of the library (100,000 independent phages) with a cerberus probe resulted in the isolation of 45 additional clones, 31 of which had similar size as the longest one of the 11 original clones indicating that they were presumably full-length cDNAs. The longest cDNAs for cerberus, frzb-1, and PAPC were completely sequenced.

To explore the molecular complexity of

Spemann's organizer we performed a comprehensive
differential screen for dorsal-specific cDNAs. The
method was designed to identify abundant cDNAs without
bias as to their function. As shown in Table 1, five
previously known cDNAs and five new ones were isolated,
of which three (expressed as cerberus, frzb-1, and PAPC,
respectively) had secretory signal sequences.

10

TABLE 1

	Previously Known Genes	Gene Product	No. of Isolates
	Chordin	novel secreted protein	70
	Goosecoid	homeobox gene	3
5	Pintallavis/XFKH-1	forkhead/transcription factor	2
	Xnot-2	homeobox gene	1
	Xiim-1	homeobox gene	1
	New Genes		
	Cerberus	novel secreted protein	11
10	PAPC	cadherin-like/transmembrane	2
	Frzb-1	novel secreted protein	1
	Sox-2	sry/transcription factor	1
	Fkh-like	forkhead/transcription factor	1

The most abundant dorsal-specific cDNA was chordin (chd), with 70 independent isolates. The second most abundant cDNA was isolated 11 times and named cerberus (after a mythological guardian dog with multiple heads). The cerberus cDNA encodes a putative secreted polypeptide of 270 amino acids, with an amino terminal hydrophobic signal sequence and a carboxy terminal cysteine-rich region (Fig. 1). Cerberus is expressed specifically in the head organizer region of the Xenopus embryo, including the future foregut.

An abundant mRNA found in the dorsal region of
the Xenopus gastrula encodes the novel putative secreted
protein we have designated as cerberus. Cerberus mRNA
has potent inducing activity in Xenopus embryos, leading
to the formation of ectopic heads. Unlike other
organizer-specific factors, cerberus does not dorsalize
mesoderm and is instead an inhibitor of trunk-tail
mesoderm. Cerberus is expressed in the anterior-most

15

20

25

30

35

domain of the gastrula including the leading edge of the deep layer of the dorsal lip a region that, as shown here, gives rise to foregut and midgut endoderm. Cerberus promotes the formation of cement gland, olfactory placodes, cyclopic eyes, forebrain, and duplicated heart and liver (a foregut derivative). Because the pancreas is also derived from this foregut region, it is likely that cerberus induces pancreas in addition to liver. The expression pattern and inducing activities of cerberus suggest a role for a previously neglected region of the embryo, the prospective foregut endoderm, in the induction of the anterior head region of the embryo.

Turning to Fig. 1, Xenopus cerberus encodes a putative secreted protein transiently expressed during embryogenesis and the deduced amino acid sequence of Xenopus cerberus is shown. The signal peptide sequence and the nine cysteine residues in the carboxy-terminus are indicated in bold. Potential N-linked glycosylation sites are underlined. In database searches the cerberus protein showed limited similarity only to the mammalian Dan protein, a possible tumor suppressor proposed to be a DNA-binding protein.

Cerberus appears to be a pioneer protein, as its amino acid sequence and the spacing of its 9 cysteine residues were not significantly similar to other proteins in the databases (NCBI-Gen Bank release 93.0). We conclude that the second most abundant dorsal-specific cDNA encodes a novel putative secreted factor, which should be the founding member of a novel family of growth factors active in cell differentiation.

<u>Cerberus Demarcates an Anterior Organizer</u> <u>Domain</u>. Cerberus mRNA is expressed at low levels in the unfertilized egg, and zygotic transcripts start accumulating at early gastrula. Expression continues WO 97/48275 PCT/US97/10942

during gastrula and early neurula, rapidly declining during neurulation. Importantly, cerberus expression starts about one hour after that of chd, suggesting that cerberus could act downstream of the chd signal.

5

10

15

20

25

30

35

Whole-mount in situ hybridizations reveal that expression starts in the yolky endomesodermal cells located in the deep layer of the organizer. The cerberus domain includes the leading edge of the most anterior organizer cells and extends into the lateral mesoderm. The leading edge gives rise to liver, pancreas, and foregut in its midline, and the more lateral region gives rise to heart mesoderm at later stages of development.

Fig. 2 sets out the sequence of a full length Xenopus cDNA for cerberus.

This entirely new molecule has demonstrated physiological properties that should prove useful in therapeutic, diagnostic, and clinical applications that require regeneration, differentiation, or repair of tissues, such wound repair, neuronal regenerational or transplantation, supplementation of heart muscle differentiation, differentiation of pancreas and liver, and other applications in which cell differentiation processes are to be induced.

The second, novel, secreted protein we have discovered is called "frzb-1," which was shown to be a secreted protein in Xenopus oocyte microinjection experiments. Thus it provides a natural soluble form of the related extracellular domains of Drosophila and vertebrate frizzled proteins. We propose that the latter proteins could be converted into active soluble forms by introducing a stop codon before the first transmembrane domain. We have noted that the cysteinerich region of frzb-1 and frizzled contains some overall structural homology with Wnt proteins using the Profile

Search homology program (Gribskov, Meth. Enzymol., 183, pp. 146-159, 1990). This had raised the interesting possibility that frzb-1 could interact directly with Wnt growth factors in the extracellular space. because we had found that when microinjected into Xenopus embryos, frzb-1 constructs have dorsalizing activity, leading to the formation of embryos with enlarged brain and head, and shortened Somatic muscle differentiation, which requires Xwnt-8, was inhibited. 10 In the case of frzb-1, an attractive hypothesis, suggested by the structural ---homologies, was that it may act as an inhibitor of Wnt-8, a growth factor that has ventralizing activity in the Xenopus embryo (Christian and Moon, Genes Dev., 7, pp. 13-28, 1993). We have shown that frzb-1 can 15 interact with Xwnt-8 and Wnt-1, and it is expected that it could also interact with other members of the Wnt family of growth factors, of which at least 15 members exist in mammals. In addition, a possible interaction with Wnts was suggested by the recent discovery that 20 dishevelled, a gene acting downstream of wingless, has strong genetic interaction with frizzled mutants in Drosophila (Krasnow et al., Development, 121, pp. 4095-This possibility has been explored in 4102, 1995). 25 depth (Leyns et al., Cell, 88, pp. 747-756, March 21, 1997), because a soluble antagonist of the Wnt family of proteins is expected to be of great therapeutic value. Examples 1 and 2 illustrate tests that show antagonism of Xwnt-8 by binding to frzb-1.

Vertebrate homologues of Frizzled have been isolated and they too are anchored to the cell membrane by seven membrane spanning domains (Wang et al., J. Biol. Chem., 271, pp. 4468-4476, 1996). Frzb-1 differs from the frizzled proteins in that it is an entirely soluble, diffusible secreted protein and

15

20

25

30

35

therefore suitable as a therapeutic agent. The nucleotide sequence that when expressed results in frzb-1 protein is illustrated by SEQ ID NO:4.

ID NO:4 corresponds to the Xenopus homolog, but by using it in BLAST searches (and by cloning mouse frzb-1) we had been able to assemble the sequence of the entire mature human frzb-1 protein, SEQ Indeed, human frzb-1 is encoded in six ID NO:9. expressed sequence tags (ESTs) available in Genebank. human frzb-1 sequence can be assembled by overlapping in the 5' to 3' direction the ESTs with the following accession numbers in Genebank: R63748, W38677, W44760, H38379, and N71244. No function yet been assigned to these EST sequences, but we believe and thus propose here that human frzb-1 will have similar functions in cell differentiation to those described above for Xenopus frzb-1. The nucleotide sequence of human frzb-1 is shown in SEQ ID NO:10.

In particular, we believe that frzb-1 will prove useful in gene therapy of human cancer cells. In this rapidly developing field, one approach is to introduce vectors expressing anti-sense sequences to block expression of dominant ocogenes and growth factor receptors. Another approach is to produce episomal vectors that will replicate in human cells in a controlled fashion without transforming the cells. For an example of the latter (an episomal expression vector system for human gene therapy), reference is made to U.S. Patent 5,624,820, issued April 29, 1997, inventor Cooper.

mouse frzb-1 protein and nucleotide sequences are

provided by SEQ ID NOS:7 and 8, respectively.

Gene therapy now includes uses of human tumor suppression genes. For example, U.S. Patent 5,491,064, issued February 13, 1996, discloses a tumor suppression

10

15

20

25

30

gene localized on chromosome 11 and described as potentially useful for gene therapy in cancers deleted or altered in their expression of that gene. Frzb-1 maps to chromosome 2q31-33 and loss of one copy of the 2q31-33 and loss of one copy of the 2q arm has been observed with high incidence in lung carcinomas, colo-rectal carcinomas, and neuroblastomas, which has lead to the proposal that the 2q arm carries a tumor suppressor gene. We expect frzb to be a tumor suppressor gene, and thus to be useful in tumor suppression applications.

A number of applications for cerberus and frzb-1 are suggested from their pharmacological (biological activity) properties.

For example, the cerberus and frzb-1 cDNAs should be useful as a diagnostic tool (such as through use of antibodies in assays for proteins in cell lines or use of oligonucleotides as primers in a PCR test to amplify those with sequence similarities to the oligonucleotide primer, and to determine how much of the novel protein is present).

Cerberus, of course, might act upon its target cells via its own receptor. Cerberus, therefore, provides the key to isolate this receptor. Since many receptors mutate to cellular oncogenes, the cerberus receptor should prove useful as a diagnostic probe for certain tumor types. Thus, when one views cerberus as ligand in complexes, then complexes in accordance with the invention include antibody bound to cerberus, antibody bound to peptides derived from cerberus, cerberus bound to its receptor, or peptides derived from cerberus bound to its receptor or other factors. Mutant forms of cerberus, which are either more potent agonists or antagonists, are believed to be clinically useful.

WO 97/48275 PCT/US97/10942

Such complexes of cerberus and its binding protein partners will find uses in a number of applications.

Practice of this invention includes use of an oligonucleotide construct comprising a sequence coding for cerberus or frzb-1 and for a promoter sequence operatively linked in a mammalian or a viral expression vector. Expression and cloning vectors contain a nucleotide sequence that enables the vector to replicate in one or more selected host cells. Generally, in cloning vectors this sequence is one that enables the replicate vector to independently of the chromosomes,—and includes origins -of replication or autonomously replicating sequences. The well-known plasmid pBR322 is suitable for most gram negative bacteria, the 2μ plasmid origin for yeast and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells.

10

15

20

25

30

35

Expression and cloning vectors should contain a selection gene, also termed a selectable marker. Typically, this is a gene that encodes a protein necessary for the survival or growth of a host cell transformed with the vector. The presence of this gene ensures that any host cell which deletes the vector will not obtain an advantage in growth or reproduction over transformed hosts. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g. ampicillin, neomycin, methotrexate or tetracycline, (b) complement auxotrophic deficiencies.

Examples of suitable selectable markers for mammalian cells are dihydrofolate reductase (DHFR) or thymidine kinase. Such markers enable the identification of cells which were competent to take up the cerberus nucleic acid. The mammalian cell transformants are placed under selection pressure which only the transformants are uniquely adapted to survive by virtue

15

20

25

30

of having taken up the marker. Selection pressure is imposed by culturing the transformants under conditions in which the concentration of selection agent in the medium is successively changed. Amplification is the process by which genes in greater demand for production a protein critical of for growth are reiterated in tandem within the chromosomes of successive generations of recombinant cells. quantities of cerberus or frzb-1 can therefor be synthesized from the amplified DNA.

For example, cells transformed with the DHFR selection gene_are first_identified by culturing all of the transformants in a culture medium which contains methotrexate (Mtx), a competitive antagonist of DHFR. An appropriate host cell in this case is the Chinese hamster ovary (CHO) cell line deficient in activity, prepared and propagated as described by Urlaub and Chasin, Proc. Nat. Acac. Sci., 77, 4216 (1980). transformed cells then are exposed to increased levels of Mtx. This leads to the synthesis of multiple copies of the DHFR gene and, concomitantly, multiple copies of other DNA comprising the expression vectors, such as the DNA encoding cerberus or frzb-1. Alternatively, host cells transformed by an expression vector comprising DNA sequences encoding cerberus or frzb-1 and aminoglycoside 3' phosphotransferase (APH) protein can be selected by cell growth in medium containing an aminoglycosidic antibiotic such as kanamycin or neomycin or G418. Because eukaryotic cells do not normally express an endogenous APH activity, genes encoding APH protein, commonly referred to as neo resistant genes, may be used as dominant selectable markers in a wide range of eukaryotic host cells, by which cells transformed by the vector can readily be identified.

25

30

Expression vectors, unlike cloning vectors, should contain a promoter which is recognized by the host organism and is operably linked to the cerberus nucleic acid. Promoters are untranslated sequences located upstream from the start codon of a structural 5 gene (generally within about 100 to 1000 bp) that control the transcription and translation of nucleic acid under their control. They typically fall into two inducible and constitutive. classes, Inducible 10 promoters are promoters that initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, e.g. the presence or absence of a nutrient or a change in temperature. At this time a large number of promoters 15 recognized by a variety of potential host cells are well These promoters can be operably linked to known. cerberus encoding DNA by removing them from their gene of origin by restriction enzyme digestion, followed by insertion 5' to the start codon for cerberus or frzb-1.

Nucleic acid is operably linked when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein which participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, operably linked means that the DNA sequences being linked are contiguous and, in the case of a secretory leader, contiguous and in reading phase. Linking is accomplished by ligation at convenient restriction sites. If such sites do not

10

15

20

25

30

35

exit then synthetic oligonucleotide adapters or linkers are used in accord with conventional practice.

Transcription of the protein-encoding DNA in mammalian host cells is controlled by promoters obtained from the genomes of viruses such as polyoma, cytomegalovirus, adenovirus, retroviruses, hepatitis-B virus, and most preferably Simian Virus 40 (SV40), or from heterologous mammalian promoters, e.g. the actin promoter. Of course, promoters from the host cell or related species also are useful herein.

Cerberus and frzb-1 are clearly useful as a component of culture media for use in culturing cells, such as endodermal, cardiac, and nerve cells, in vitro. We believe cerberus and frzb-1 will find uses as agents for enhancing the survival or inducing the growth of liver, pancreas, heart, and nerve cells, such as in tissue replacement therapy.

The final cDNA isolated containing a signal sequence results in a peptide designated Paraxial Protocadherin (PAPC). The cDNA for PAPC is a divergent member of the cadherin multigene family. PAPC is most related to protocadherin 43 reported by Sano et al., The EMBO J., 12, pp. 2249-2256, 1993. As shown in SEQ ID NO:5, the PAPC gene encodes a transmembrane protein of 896 amino acids, of which 187 are part of intracellular domain. PAPC is a cell adhesion molecule, and microinjection of PAPC mRNA constructs into Xenopus embryos suggest that PAPC acts in mesoderm differentiation. The nucleotide sequence encoding Xenopus PAPC is provided in SEQ ID NO:6.

Therapeutic formulations of the novel proteins may be prepared for storage by mixing the polypeptides having the desired degree of purity with optional physiologically acceptable carriers, excipients or stabilizers, in the form of lyophilized cake or agueous

10

15

20

25

30

35

solutions. Acceptable carriers, excipients stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin or immunoglobulins. Other components can include glycine, blutamine, asparagine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as -EDTA; -sugar -alcohols such as mannitol or sorbitol; saltforming counterions such as sodium; and/or nonionic surfactants such as Tween, Pluronics or PEG.

Polyclonal antibodies to the novel proteins generally are raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of cerberus or frzb-1 and an adjuvant. It may be useful to conjugate these proteins or a fragment containing the target amino acid sequence to a protein which is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine N-hydroxysuccinimide (through residues), lysine residues), glutaraldehyde, succinic anhydride, SOCl2, or $R^1N = C = NR$.

Animals can be immunized against the immunogenic conjugates or derivatives by combining 1 mg or 1 µg of conjugate (for rabbits or mice, respectively) with 3 volumes of Freund's complete adjuvant and injecting the solution intradermally in multiple sites. One month later the animals are boosted with 1/5 to 1/10 the original amount of conjugate in Fruend's complete

10

15

adjuvant by subcutaneous injection at multiple sites. Seven to 14 days later animals are bled and the serum is assayed for anti-cerberus titer. Animals are boosted until the titer plateaus. Preferably, the animal is boosted with the conjugate of the same cerberus or frzb-l polypeptide, but conjugated to a different protein and/or through a different cross-linking agent. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are used to enhance the immune response.

Monoclonal antibodies are prepared by recovering spleen cells from immunized animals and immortalizing the cells in conventional fashion, e.g. by fusion with myeloma cells or by EB virus transformation and screening for clones expressing the desired antibody.

Antibodies are useful in diagnostic assays for cerberus, frzb-1, or PAPC or their antibodies and to identify family members. In one embodiment of a receptor binding assay, an antibody composition which 20 binds to all of a selected plurality of members of the cerberus family is immobilized on an insoluble matrix, the test sample is contacted with the immobilized antibody composition in order to adsorb all cerberus 25 family members, and then the immobilized family members are contacted with a plurality of antibodies specific of each member, each the antibodies being individually identifiable as specific for a predetermined family member, as by unique labels such as discrete fluorophores or the like. By determining the 30 presence and/or amount of each unique label, the relative proportion and amount of each family member can be determined.

The antibodies also are useful for the 35 affinity purification of the novel proteins from

recombinant cell culture or natural sources. Antibodies that do not detectably cross-react with other growth factors can be used to purify the proteins free from these other family members.

5 EXAMPLE 1

Frzb-1 Antagonizes Xwnt-8 Non-Cell Autonomously

test whether To frzb-1 can antagonize secondary axes caused by Xwnt-8 after secretion by injected cells, an experimental design was used. 10 -frzb-1 mRNA was injected into each of the four animal blastomeres of eight-cell embryos, and subsequently, a single injection of Xwnt-8 mRNA was given to a vegetalventral blastomere at the 16-32 cell stage. independent experiments, we found that injection of frzb-1 alone (n=13) caused mild dorsalization with 15 enlargement of the cement gland in all embryos and that injection of Xwnt-8 alone (n=53) lead to induction of complete secondary axes in 67% of the embryos. injection of frzb-1 into animal caps abolished the 20 formation of complete axes induced by Xwnt-8 (n=27), leaving only a residual 14% of embryos with very weak The double-injected embryos retained secondary axes. the enlarged cement gland phenotype caused by injection of frzb-1 mRNA alone. Because both mRNAs encode 25 secreted proteins and were microinjected into different cells, we conclude that the antagonistic effects of frzb-1 and Xwnt-8 took place in the extracellular space after these proteins were secreted.

15

20

25

30

23

EXAMPLE 2

Membrane-Anchored Wnt-1 Confers Frzb-1 Binding

To investigate a possible interaction between frzb-1 and Wnts, the first step was to insert an HA epitope tag into a Xenopus frzb-1 construct driven by the CMV (cytomegalovirus) promoter. Frzb1-HA was tested in mRNA microinjection assays in Xenopus embryos and found to be biologically active. Conditioned medium from transiently transfected cells contained up to 10 μ g/ml of Frzb1-HA (quantitated on Western blots using an HA-tagged protein standard).

Transient transfection of 293 cells has been instrumental in demonstrating interactions between wingless and frizzled proteins. We therefore took advantage of constructs in which Wnt-1 was fused at the amino terminus of CD8, generating a transmembrane protein containing biologically active Wnt-1 exposed to the extracellular compartment. A Wnt1CD8 cDNA construct (a generous gift of Dr. H. Varmus, NIH) was subcloned into the pcDNA (Invitrogen) vector and transfected into 293 cells. After incubation with Frzbl-HA-conditioned medium (overnight at 37°C), intensely labeled cells were observed by immunofluorescence. As a negative control, a construct containing 120 amino acids of Xenopus chordin, an unrelated secreted protein was used. Transfection of this construct produced background binding of Frzbl-HA to the extracellular matrix, both uniform and punctate. Cotransfection of Wnt1CD8 with showed that transfected cells pcDNA-LacZ stained positively for Frzb1-HA and Lacz. Since WntlCD8 contains the entire CD8 molecule, a CD8 cDNA was used as an additional negative control. After transfection with Lacz and full-length CE8, Frzb1-HA failed to bind to the transfected cells. Although most of our experiments

15

were carried out at 37°C, Frzb1-HA-conditioned medium also stained WntlCD8-transfected cells after incubation at 4°C for 2 hours.

Attempts to biochemically quantitate the binding of Frzb-1 to Wnt1CD8-transfected cells were unsuccessful due to high background binding to control cultures, presumably due to binding to the extracellular matrix. Thus, we were unable to estimate a K_D for the affinity of the Frzb-1/Wnt-1 interaction. However, when serial dilutions of conditioned medium containing Frzb1-HA were performed (ranging from 2.5 x 10^{-7} to 1.25 x 10^{-10} M), staining of Wnt1CD8-transfected cells was found at all concentrations.

Although we have been unable to provide biochemical evidence for direct binding between Whats and frzb-1, this cell biological assay indicates that Frzb1-HA can bind, directly or indirectly, to What-1 on the cell membrane in the 10-10 M range.

It is to be understood that while the invention has been described above in conjunction with preferred specific embodiments, the description and examples are intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims.

It is Claimed:

- 1. A substantially pure protein characterized by a physiologically active form and comprising an amino acid sequence encoded by the DNA of SEQ ID NO:2.
- 2. The protein as in claim 1 having neurotrophic, growth or differentiation factor activity.
- 3. A composition comprising the protein of claim 1 and a physiologically acceptable carrier with which the peptide is admixed.
 - 4. An oligonucleotide construct comprising a sequence coding for a protein and an expression vector operatively linked therewith, the protein having neurotrophic, growth or differentiation factor activity and being expressible from SEQ ID NO:2.
 - 5. The construct as in claim 4 wherein the expression vector is a mammalian or viral expression vector.
 - 6. A substantially pure protein characterized by a physiologically active form and comprising an amino acid sequence encoded by the DNA of SEQ ID NO:4, SEQ ID NO:8, or SEQ ID NO:10.
 - 7. The protein as in claim 6 having neurotrophic, growth or differentiation factor activity.
 - 8. A composition comprising the protein of claim 6 and a physiologically acceptable carrier with which the protein is admixed.

- 9. An oligonucleotide construct comprising a sequence coding for a protein and an expression vector operatively linked therewith, the protein being expressible from SEQ ID NO:4, SEQ ID NO:8 or SEQ ID NO:10.
- 10. The construct as in claim 9 wherein the protein is expressible in soluble form.
- 11. The construct as in claim 9 wherein the expression vector is a mammalian or viral expression vector.
- 12. A complex comprising a substantially pure frzb-1 protein complexed with at least one Wnt protein.
- 13. A substantially pure protein characterized by a physiologically active form and comprising an amino acid sequence encoded by the DNA of SEQ ID NO:6.
- 14. The protein as in claim 13 having mesoderm differentiation activity.
- 15. A composition comprising the protein of claim 13 and a physiologically acceptable carrier with which the protein is admixed.

.1/18

MLLNVLRICI	IVCLVNDGAG	KHSEGRERTK	TYSLNSRGYF	40
RKERGARRSK	ILLVNTKGLD	EPHIGHGDFG	LVAELFDSTR	80
THTNRKEPDM	NKVKLFSTVA	HG <u>NKS</u> ARRKA	YNGSRRNIFS	120
RRSFDKRNTE	VTEKPGAKMF	WNNFLVKMNG	APQ <u>NTS</u> HGSK	160
AQEIMKEAC K	TLPFTQNIVH	ENCDRMVIQN	NLCFGKCISL	200
HVPNQQDRRN	TCSHCLPSKF	TLNHLTLNCT	GSKNVVKVVM	240
MVEECTCEAH	KSNFHQTAQF	NMDTSTTLHH		270

Figure 1

SUBSTITUTE SHEET (RULE 26)

GAATTCCCAG	CAAGTCGCTC	AGAAACACTG	CAGGGTCTAG	ATATCATACA	atgttactaa	60
	GTTCAGCGAG					
ATGTACTCAG	GATCTGTATT	ATCGTCTGCC	TTGTGAATGA	TGGAGCAGGA	AAACACTCAG	120
	CTAGACATAA		•			
AAGGACGAGA	AAGGACAAAA	ACATATTCAC	TTAACAGCAG	AGGTTACTTC	AGAAAAGAAA	180
	TTCCTGTTTT					
GAGGAGCACG	TAGGAGCAAG	ATTCTGCTGG	TGAATACTAA	AGGTCTTGAT	GAACCCCACA	240
	ATCCTCGTTC					
TTGGGCATGG	TGATTTTCGC	TTAGTAGCTG	AACTATTTGA	TTCCACCAGA	ACACATACAA	300
	ACTAAAAGCG					
ACAGAAAAGA	GCCAGACATG	AACAAAGTCA	AGCTTTTCTC	AACAGTTGCC	CATGGAAACA	360
	CGGTCTGTAC					
AAAGTGCAAG	AAGAAAAGCT	TACAATGGTT	CTAGAAGGAA	TATTTTTCCT	CGCCGTTCTT	420
	TTCTTTTCGA					
TTGATAAAAG	AAATACAGAG	GTTACTGAAA	AGCCTGGTGC	CAAGATGTTC	TGGAACAATT	480
	TTTATGTCTC					
TTTTGGTTAA	AATGAATGGA	GCCCCACAGA	ATACAAGCCA	TGGCAGTAAA	GCACAGGAAA	540
	TTACTTACCT					
TAATGAAAGA	AGCTTGCAAA	ACCTTGTTTT	TCACTCAGAA	TATTGTACAT	Gaaaactgtg	600
	TCGAACGTTT				*	
ACAGGATGGT	GATACAGAAC	AATCTGTGCT	TTGGTAAATG	CATCTCTCTC	CATGTTCCAA	660
	CTATGTCTTG					
ATCAGCAAGA	TCGACGAAAT	ACTTGTTCCC	ATTGCTTGCC	GTCCAAATTT	ACCCTGAACC	720
	AGCTGCTTTA					
ACCTGACGCT	GAATTGTACT	GGATCTAAGA	atgtagtaaa	GGTTGTCATG	atggtagagg	780
	CTTAACATGA					
AATGCACGTG	TGAAGCTCAT	AAGAGCAACT	TCCACCAAAC	TGCACAGTTT	aacatggata	840
	ACTTCGAGTA				•	
CATCTACTAC	CCTGCACCAT	TANAGGACTG	CCATACAGTA	TGGAAATGCC	Cttttgttgg	900
	GGACGTGGTA					
AATATTTGTT	ACATACTATG	CATCTAAAGC	ATTATGTTGC	CTTCTATTTC	ATATAACCAC	960
	TGTATGATAC					
ATGGAATAAG	GATTGTATGA	ATTATAATTA	ACARATGGCA	TTTTGTGTAA	CATGCAAGAT	1020
TACCTTATTC	CTARCATACT	TAATATTAAT	TGTTTACCGT	AAAACACATT	GTACGTTCTA	

Figure 2A

SUBSTITUTE SHEET (RULE 28)

CTCTGTTCCA TCAGTTGCAA					1080
GAGACAAGGT AGTCAACGTT	CTATTTTCCG	TTATAAACAA	ACTGAAAAAA	AGATGTTTTA	
GAATACCCAA ATATATGATA	AGATAATGGG	GTCAAAACTG	TTAAGGGGTA	ATGTAATAAT	1140
CTTATGGGTT TATATACTAT	TCTATTACCC	CAGTTTTGAC	AATTCCCCAT	TACATTATTA	
1000100110 ###					
AGGGACTANG TTTGCCCAGG					1200
TCCCTGATTC AAACGGGTCC	TCGTCACTGG	GTATTGTTGG	TTAGTCGTCC	ATACTAAATG	
TGGTCACCTG TTTAAAAGCA	AACATCTTAT	TGGTTGCTAT	GGGTTACTGC	TTCTGGGCAA	1260
ACCAGTGGAC AAATTTTCGT					-200
AATGTGTGCC TCATAGGGGG					1320
TTACACACGG AGTATCCCCC	CAATCACACA	ACACATGACT	TATTTAACAT	aaataaagta	
TGTTACAAAA AAAAAAAA					
ACAATGTTTT TTTTTTTT					

Figure 2B

SUBSTITUTE SHEET (RULE 26)

DPVAPIPNKN	SNSRQARS					
SGCLCPQLVA	NEEYIIMGYE	DKERTRLLLV	EGSLAEKWRD	RLAKKVKRWD	QKLRRPRKSK	300
KPMKATQKTY	LKNNYNYVIR	AKVKEVKVKC	HDATAIVEVK	EILKSSLVNI	PKDTVTLYTN	240
KYRHTWPESL	ACEELPVYDR	GVCISPEAIV	TVEQGTDSMP	DESMOSHNGN	CGSGREHCKC	180
AILAIEQFEG	LLTTECSQDL	LFFLCAMYAP	ICTIDFQHEP	IKPCKSVCER	ARAGCEPILI	120
MSRTRKVDSL	LLLAIPGLAL	LLLPNAYCAS	CEPVRIPMCK	SMPWNMTKMP	nhlhhstqan	60

Figure 3

GAATICCCTI	TCACACAGGA	CICCIGGCAG	AGGTGAATGG	TTAGCCCTAT	GGATTTGGTT	60
CTTAAGGGAA	AGTGTGTCCT	GAGGACCGTC	TCCACTTACC	AATCGGGATA	CCTAAACCAA	
TGTTGATTTT	GACACATGAT	TGATTGCTTT	CAGATAGGAT	TGAAGGACTT	GGATTTTAT	120
ACAACTAAAA	CTGTGTACTA	ACTAACGAAA	GTCTATCCTA	ACTTCCTGAA	CCTAAAAATA	120
CTAATTCTGC	ACTTTTAAAT	TATCTGAGTA	ATTGTTCATT	TTGTATTGGA	TGGGACTAAA	180
GATTAAGACG	TGAAAATTTA	ATAGACTCAT	TAACAAGTAA	AACATAACCT	ACCCTGATTT	100
GATAAACTTA	ACTCCTTGCT	TTTGACTTGC	CCATAAACTA	TAAGGTGGGG	TGAGTTGTAG	240
CTATTTGAAT	TGAGGAACGA	AAACTGAACG	GGTATTTGAT	ATTCCACCCC	ACTCAACATC	
TTGCTTTTAC	ATGTGCCCAG	ATTTTCCCTG	TATTCCCTGT	ATTCCCTCTA	AAGTAAGCCT	300
AACGAAAATG	TACACGGGTC	TAAAAGGGAC	ATAAGGGACA	TAAGGGAGAT	TTCATTCGGA	
ACACATACAG	GTTGGGCAGA	ATAACAATGT	CTCGAACAAG	GAAAGTGGAC	TCATTACTGC	360
TGTGTATGTC	CAACCCGTCT	TATTGTTACA	GAGCTTGTTC	CTTTCACCTG	AGTAATGACG	
TACTGGCCAT	ACCTGGACTG	GCGCTTCTCT	TATTACCCAA	TGCTTACTGT	GCTTCGTGTG	420
	•			ACGAATGACA		
AGCCTGTGCG	GATCCCCATG	TGCAAATCTA	TGCCATGGAA	CATGACCAAG	ATGCCCAACC	480
				GTACTGGTTC		
ATCTCCACCA	CAGCACTCAA	GCCAATGCCA	TCCTGGCAAT	TGAACAGTTT	GAAGGTTTGC	540
				ACTTGTCAAA		
TGACCACTGA	ATGTAGCCAG	GACCTTTTGT	TCTTTCTGTG	TGCCATGTAT	GCCCCCATTT	600
*				ACGGTACATA		
GTACCATCGA	TTTCCAGCAT	GAACCAATTA	AGCCTTGCAA	GTCCGTGTGC	GAAAGGGCCA	660
				CAGGCACACG		
GGGCCGGCTG	TGAGCCCATT	CTCATAAAGT	ACCGGCACAC	TTGGCCAGAG	AGCCTGGCAT	720
				AACCGGTCTC		
GTGAAGAGCT	GCCCGTATAT	GACAGAGGAG	TCTGCATCTC	CCCAGAGGCT	ATCGTCACAG	780
				GGGTCTCCGA		
TGGAACAAGG	AACAGATTCA	ATGCCAGACT	TCTCCATGGA	TTCAAACAAT	GGAAATTGCG	840
				AAGTTTGTTA		
GAAGCGGCAG	GGAGCACTGT	AAATGCAAGC	CCATGAAGGC	AACCCAAAAG	ACGTATCTCA	900
				TTGGGTTTTC		
AGAATAATTA	CAATTATGTA	ATCAGAGCAA	AAGTGAAAGA	GGTGAAAGTG	AAATGCCACG	960
				CCACTTTCAC	•	
ACGCAACAGC	AATTGTGGAA	GTAAAGGAGA	TTCTCAAGTC	TTCCCTAGTG	AACATTOCTA	1020
19001101CG	LIMACACCTT	CATTTCCTCT	AAGAGTTCAG	AAGGGATCAC	TTGTAAGGAT	

Figure 4A

SUBSTITUTE SHEET (RULE 26)

AAGACACAGT TTCTGTGTCA						1080
AGGAATACAT TCCTTATGTA						1140
GATCCTTGGC CTAGGAACCG						1200
AGCTTCGACG TCGAAGCTGC				AATTCCCAAC TTAAGGGTTG		1260
ATTCCAGACA TAAGGTCTGT				TGGAAACTCT ACCTTTGAGA		1320
AAACTAAGAT TTTGATTCTA	TTGCATTGTT AACGTAACAA	GGAAGAGCAA CCTTCTCGTT	AAAAGAAATT TTTTCTTTAA	GCACTACAGC CGTGATGTCG	ACGTTATATT TGCAATATAA	1380
				TCTCCTTTCC AGAGGAAAGG		1440
				TTCAACTTCC AAGTTGAAGG		1500
				TCTGATCAAC AGACTAGTTG		1560
				TAAATCAGAG ATTTAGTCTC		1620
CAATGTTGCT GTTACAACGA	TTTCCTGTAG AAAGGACATC	ATGAACAAGT TACTTGTTCA	GAGAGATCAC CTCTCTAGTG	atttaartga Taaatttact	TGATCACTTT ACTAGTGAAA	1680
				GGATGCACCT CCTACGTGGA		1740
				actgttggga tgacaaccct		1800
				ATTAAGTCCT TAATTCAGGA	AAAAAATAAA TTTTTTTATTT	1860
AAAAAAAAA TTTTTTTTT		•	,			

Figure 4B

SUBSTITUTE SHEET (RULE 26)

ML.	LLFKAIPM	TUTGEMANGE	DCEIAGITID	EEEPPGTVIA	VLSQHSIFNT	TDIPATNERL	60
MK(QFNNSLIG	VRESDGQLSI	MERIDREQIC	RQSLHCNLAL	DVVSFSKGHF	KLLNVKVEVR	120
DI	NDHSPHFP	SEIMHVEVSE	SSSVGTRIPL	EIAIDEDVGS	NSIQNFQISN	nshfsidvlt	180
RA	DGVKYADL	VLMRELDREI	QPTYIMELLA	MDGGVPSLSG	TAVVNIRVLD	FNDNSPVFER	240
ST	IAVDLVED	APLGYLLLEL	HATDDDEGVN	GEIVYGFSTL	ASQEVRQLFK	INSRTGSVTL	300
EG	QVDFETKQ	TYEFEVQAQD	LGPNPLTATC	KVTVHILDVN	DNTPAITITP	LTTVNAGVAY	360
IP:	etatkenf	IALISTTDRA	SGSNGQVRCT	LYGHEHFKLQ	QAYEDSYMIV	TTSTLDRENI	420
AA	YSLTVVAE	DLGFPSLKTK	KYYTVKVSDE	ndnapveskp	QYEASILENN	APGSYITTVI	480
AR	DSDSDQNG	KVNYRLVDAK	VMGQSLTTFV	SLDADSGVLR	avrsldyekl	KQLDFEIEAA	540
DN	GIPQLSTR	VQLNLRIVDQ	NDNCPVITHP	LLNNGSGEVL	LPISAPQNYL	VFQLKAEDSD	600
EG	HNSQLFYT	ILRDPSRLFA	INKESGEVFL	KKQLNSDHSE	DLSIVVAVYD	LGRPSLSTNA	660
TV	KFILTDSF	PSNVEVVILQ	PSAEEQHQID	MSIIFIAVLA	GGCALLLLAI	FFVACTCKKK	720
AG	efkqvpeq	HGTCNEERLL	STPSPQSVSS	SLSQSESCQL	SINTEȘENCS	VSSNQEQEQQ	780
TG	IKHSISVP	SYHTSGWHLD	NCAMSISGHS	HMGHISTKVQ	WAKEIVTSMT	VTLILVENQK	840
RR	ALSSQCRH	KPVLNTQMNQ	QGSDMPITIS	ATESTRVQKM	GTARCNMKRA	IDCLTL	

Figure 5 SUBSTITUTE SHEET (HULE 26)

GAATTCCCAG	AGATGAACTC	CTTGAGATTG	TTTTAAATGA	CTGCAGGTCT	GGAAGGATTC	60
CTTAAGGGTC	TCTACTTGAG	GAACTCTAAC	AAAATTTACT	GACGTCCAGA	CCTTCCTAAG	•
ACATTGCCAC	ACTGTTTCTA	GGCATGAAA	B B CTCC			100
TGTAACGGTG	TGACAAAGAT	CCGTACTTTT	TTCACCTTCA	ARCHICARCITIC	ARRAGOROG	120
AACTTTGATT	CTTCAAGATG	CTGCTTCTCT	TCAGAGCCAT	TCCAATGCTG	CTGTTGGGAC	180
TTGAAACTAA	GAAGTTCTAC	GACGAAGAGA	AGTCTCGGTA	AGGTTACGAC	GACAACCCTG	
TGATGGTTTT	ACAAACAGAC	TGTGAAATTG	CCCAGTACTA	CATAGATGAA	GAAGAACCC	240
ACTACCAAAA	TGTTTGTCTG	ACACTTTAAC	GGGTCATGAT	GTATCTACTT	CTTCTTCCC	240
			•			
CTGGCACTGT	AATTGCAGTG	TTGTCACAAC	ACTCCATATT	TAACACTACA	GATATACCTG	300
GACCGTGACA	TTAACGTCAC	AACAGTGTTG	TGAGGTATAA	Attgtgatgt	CTATATGGAC	
CAACCAATTT	CCGTCTAATG	AAGCAATTTA	ስጥል አጥጥጥር ጥ	**************************************	CCTC3 C3 CTC	2.00
GTTGGTTAAA	GGCAGATTAC	TTCGTTAAAT	TATTARCCCA	PANCOCAGIC	CCACAGAGAG	360
ATGGGCAGCT	GAGCATCATG	GAGAGGATTG	ACCGGGAGCA	AATCTGCAGG	CAGTCCCTTC	420
TACCCGTCGA	CTCGTAGTAC	CTCTCCTAAC	TGGCCCTCGT	TTAGACGTCC	GTCAGGGAAG	
•						
ACTGCAACCT	GGCTTTGGAT	GTGGTCAGCT	TTTCCAAAGG	ACACTTCAAG	CTTCTGAACG	480
TGACGTTGGA	CCGAAACCTA	CACCAGTCGA	AAAGGTTTCC	TGTGAAGTTC	GAAGACTTGC	
TGAAAGTGGA	GGTGAGAGAC	ATTARTCACC	るがなくくくくののくる		C11151100	
ACTITCACCT	CCACTCTCTG	TARTORCO	TARCCCCICA	CTTTCCCAGT	GAAATAATGC	540
	*					
ATGTGGAGGT	GTCTGAAAGT	TCCTCTGTGG	GCACCAGGAT	TCCTTTAGAA	ATTGCAATAG	600
TACACCTCCA	CAGACTTTCA	AGGAGACACC	CGTGGTCCTA	AGGAAATCTT	TAACGTTATC	000
ATGAAGATGT	TGGGTCCAAC	TCCATCCAGA	ACTITCAGAT	CTCAAATAAT	AGCCACTTCA	660
TACTTCTACA	ACCCAGGTTG	AGGTAGGTCT	TGAAAGTCTA	GAGTTTATTA	TCGGTGAAGT	
CCATTCATCT	CCTAACCACA	CCLCLECCO	501115150			
CCTARCTACA	GCTAACCAGA	CCAGATGGGG	TGAAATATGC	AGATTTAGTC	TTAATGAGAG	720
COIMICIACA	CGATTGGTCT	CGTCTACCC	ACTITATACG	TCTAAATCAG	AATTACTCTC	
AACTGGACAG	GGAAATCCAG	CCARCATACA	TAATGGAGCT	ACTAGCA ATG	GATCCCCCTC	700
TTGACCTGTC	CCTTTAGGTC	GGTTGTATGT	ATTACCTCGA	TGATCGTTAC	CTACCCCCAC	780
TACCATCACT	ATCTGGTACT	GCAGTGGTTA	ACATCCGAGT	CCTGGACTTT	AATGATAACA	840
atggtagtga	TAGACCATGA	CGTCACCAAT	TGTAGGCTCA	GGACCTGAAA	TTACTATTGT	
GCCCAGTGTŤ	TGAGAGAAGC	ACCATTGCTG	TGGACCTAGT	AGAGGATGCT	CCTCTCCCs =	900
CGGGTCACAA	ACTCTCTTCG	TGGTAACGAC	ACCTGGATCA	TOTOCTACCA	CCACACOCTA	300
		•	•			
ACCTTTTGTT	GGAGTTACAT	GCTACTGACG	ATGATGAAGG	AGTGAATGGA	GAAATTGTTT	960
TGGAAAACAA	CCTCAATGTA	CGATGACTGC	TACTACTTCC	TCACTTACCT	CTTTAACAAA	
ATGGATTCAG	CACTTTGGCA	ሞርሞርክ ክርቱ ሩሩ	#100#010#		3.00mm/m	
TACCTAAGTC	GTGAAACCGT	ACACTTCTCC	ATCCACTOCA	ATTIMAMATT	AACTCCAGAA	1020

Figure 6A SUBSTITUTE SHEET (RULE 26)

CTGGCAGTGT T	ACTOTTGAA	GGCCAAGTTG	ATTTTGAGAC	CAAGCAGACT	TACGAATTTG	1080
AGGTACAAGC C	CAAGATTTG GTTCTAAAC	GGCCCCAACC CCGGGGTTGG	CACTGACTGC	TACTTGTAAA ATGAACATTT	GTAACTGTTC CATTGACAAG	1140
ATATACTTGA 1			•			
TATATGAACT A	CATTTACTA	TTATGGGGTC	GGTAGTGATA	ATGGGGAGAC	TGATGACATT	1200
ATGCAGGAGT 1	GCCTATATT	CCAGAAACAG	CCACAAAGGA	GAACTTTATA	GCTCTGATCA	1260
TACGTCCTCA A	CGGATATAA	GGTCTTTGTC	GGTGTTTCCT	CTTGAAATAT	CGAGACTAGT	
GCACTACTGA	CAGAGCCTCT	GGATCTAATG	GACAAGTTCG	CTGTACTCTT	TATGGACATG	1320
CGTGATGACT (
AGCACTITAA A	CTACAGCAA	GCTTATGAGG	ACAGTTACAT	GATAGTTACC	ACCTCTACTT	1380
•						
TAGACAGGGA A ATCTGTCCCT 1	AACATAGCA TTGTATCGT	GCGTACTCTT CGCATGAGAA	TGACAGTAGT ACTGTCATCA	TGCAGAAGAC ACGTCTTCTG	CTTGGCTTCC GAACCGAAGG	1440
CCTCATTGAA G	CACCAAAAAG	TACTACACAG	ጥር እ አርርጥሞ እር	TCATCACAAT	ころであるずごであて	1500
GGAGTAACTT (CTGGTTTTTC	ATGATGTGTC	AGTTCCAATC	ACTACTCTTA	CTGTTACGTG	1300
CTGTATTTTC 1	TAAACCCCAG	TATGAAGCTT	CTATTCTGGA	AAATAATGCT	CCAGGCTCTT	1560
GACATAAAAG A	ATTTGGGGTC	ATACTTCGAA	GATAAGACCT	TTTATTACGA	GGTCCGAGAA	
ATATAACTAC A	AGTGATAGCC	AGAGACTCTG	ATAGTGATCA	AAATGGCAAA	GTAAATTACA	1620
TATATTGATG						
GACTTGTGGA 1	rgcaaaagtg acgttttcac	ATGGGCCAGT TACCCGGTCA	CACTAACAAC	ATTTGTTTCT TAAACAAAGA	CTTGATGCGG GAACTACGCC	1680
ACTCTGGAGT I	PARCTCTCGA	CAATCCAGAA	ATCTGATACT	AAAACTTAAA TTTTGAATTT	CAACTGGATT	1740
TTGAAATTGA A	AGCTGCAGAC	AATGGGATCC	CTCARCTCTC	でみてかくなくなかず	CARCTARATC	1800
AACTTTAACT	CGACGTCTG	TTACCCTAGG	GAGTTGAGAG	GTGAGCGCAA	GTTGATTTAG	
TCAGAATAGT	IGATCAAAAT	GATAATTGCC	CTGTGATAAC	TAATCCTCTT	CTTAATAATG	1860
AGTCTTATCA	ACTAGTTTTA	CTATTAACGG	GACACTATTG	ATTAGGAGAA	GAATTATTAC	
GCTCGGGTGA A						1920
•						
AAGCCGAGGA !	TTCAGATGAA AAGTCTACTT	GGGCACAACT	CCCAGCTGTT	CTATACCATA	CTGAGAGATC GACTCTCTAG	1980
	·					
CAAGCAGATT (GTTCGTCTAA (CAAACGGTAA	TIGITICTT	CACCACTTCA	CAAGGACTTT	AAACAATTAA TTTGTTAATT	2040
ACTCTGACCA	TTCAGAGGAC	TTGAGCATAG	TAGTTGCAGT	GTATGACTTG	GGAAGACCTT	2100
TGAGACTGGT						
CATTATOCAC	CAATGCTACA	GTTAAATTCA	TCCTCACCGA	CTCTTTTCCT	TCTAACGTTG	2160
GTAATAGGTG	GTTACGATGT	CAATTTAAGT	AGGAGTGGCT	GAGAAAAGGA	AGATTGCAAC	

Figure 6B SUBSTITUTE SHEET (RULE 26)

					GATCGATATG CTAGCTATAC		2220
					GGCCATCTTT CCGGTAGAAA		2280
	GTACTTGTAA CATGAACATT	AAAGAAAGCT TTTCTTTCGA	GGTGAATTTA CCACTTAAAT	AGCAGGTACC TCGTCCATGG	TGAACAACAC ACTTGTTGTG	GGAACATGCA CCTTGTACGT	2340
	ATGAAGAACG TACTTCTTGC	CCTGTTAAGC GGACAATTCG	ACCCCATCTC TGGGGTAGAG	CCCAGTCGGT GGGTCAGCCA	CTCTTCTTCT GAGAAGAAGA	ttgtctcagt Aacagagtca	2400
•	CTGAGTCATG GACTCAGTAC	CCAACTCTCC GGTTGAGAGG	ATCAATACTG TAGTTATGAC	AATCTGAGAA TTAGACTCTT	TTGCAGCGTG AACGTCGCAC	TCCTCTAACC AGGAGATTGG	2460
	AAGAGCAGCA TTCTCGTCGT	TCAGCAAACA AGTCGTTTGT	GGCATAAAGC CCGTATTTCG	ACTCCATCTC TGAGGTAGAG	TGTACCATCT ACATGGTAGA	TATCACACAT ATAGTGTGTA	2520
					ACATTCTCAC TGTAAGAGTG		2580
					AATGACAGTG TTACTGTCAC		2640.
					CAGGCACAAG GTCCGTGTTC		2700
					TATTTCAGCC ATAAAGTCGG		2760
					AAGGGCTATA TTCCCGATAT		2820
					ATGCCTAACC TACGGATTGG		2880
	GAACCATACC CTTGGTATGG	CTTAGAGACC GAATCTCTGG	CTTATTACCA GAATAATGGT	TATCAATAAT ATAGTTATTA	CCTGTTGCTA GGACAACGAT	ATCGGATGCA TAGCCTACGT	2940
	GGCGGAATAT CCGCCTTATA	GAAAGAGATT CTTTCTCTAA	TAGTCAACAG ATCAGTTGTC	AAGTGCAACG TTCACGTTGC	TTATCTCCGC AATAGAGGCG	AGAGATOGTC TCTCTAGCAG	3000
					AGACAGCTTC TCTGTCGAAG		3060
						GCAAGTGCTT CGTTCACGAA	3120
					TGATGGATGG ACTACCTACC	GGGGAGACAC CCCCTCTGTG	3180
						ATTTTTTGTT TAAAAAACAA	3240
	TTTTTTACAT AAAAAATGTA	TTTTATTTA	CCTGAATTGA GGACTTAACT	ATGTGACATT	GTCCTGTCAC CAGGACAGTG	CTAACTAGCA GATTGATCGT	3300

Figure 6C

SUBSTITUTE SHEET (RULE 26)

.11/18

CAGACCTACA GTCTGGATGT			3360
 GGCCTTTTTA CCGGAAAAAT	 	 	3420
 GTCCTGAGTA CAGGACTCAT	 -		3480
 CATAATAGGA GTATTATCCT			3540
 GCATTTTGTG CGTAAAACAC		•	3600
 TTGTAAATTA AACATTTAAT	-		

Figure 6D

SUBSTITUTE SHEET (RULE 26)

MVCCGPGRML	LGWAGLLVLA	ALCLLQVPGA	QAAACEPVRI	PLCKSLPWNM	TKMPNHLHHS	60
TQANAILAME	QFEGLLGTHC	SPDLLFFLCA	MYAPICTIDF	QHEPIKPCKS	VCERARQGCE	120
PILIKYRHSW	PESLACDELP	VYDRGVCISP	EAIVTADGAD	FPMDSSTGHC	RGASSERCKC	180
KPVRATQKTY	FRNNYNYVIR	AKVKEVKMKC	HDVTAVVEVK	EILKASLVNI	PRDTVNLYTT	240
SGCLCPPLTV	NEEYVIMGYE	DEERSRLLLV	EGSIAEKWKD	RLGKKVKRWD	MKLRHLGLGK	300
TDASDSTQNQ	KSGRNSNPRP	ARS.			•	

Figure 7
SUBSTITUTE SHEET (RULE 26)

AAGCCTGGGA	CCATGGTCTG	CTGCGGCCCG	GGACGGATGC	TGCTAGGATG	GGCCGGGTTG	60
	GGTACCAGAC					
	CTGCTCTCTG					120
GATCAGGACC	GACGAGAGAC	GGACGAGGTC	CACGGGCCTC	GAGTCCGACG	TCGGACACTC	
	TCCCGCTGTG					180
	AGGGCGACAC					
	GCACCCAGGC					240
	CGTGGGTCCG		,			
	GCAGCCCGGA					300
	CGTCGGGCCT					
	TCCAGCACGA	· · · · · · · · · · · · · · · · · · ·				360
	AGGTCGTGCT					
	AGCCCATTCT					420
	TCGGGTAAGA					
	CGGTGTACGA					480
	GCCACATGCT	•				
	ATTTTCCTAT	· · · · · · · · · · · · · · · · · · ·				540
	TAAAAGGATA					600
	GTAAGCCTGT					600
	CATTCGGACA					660
	GGGCTAAAGT CCCGATTTCA					. 660
	AGGAAATTCT					720
	TCCTTTAAGA					720
CACCIICACI	ICCITIAGA	TITCCGIAGI	GACCATTIGI	MAGGITCCCT	GIGGCAGIIA	
CTTTATACCA	CCTCTGGCTG	CCTCTGTCCT	CCACTTACTG	TCAATGAGGA	ATATGTCATC	780
	GGAGACCGAC					
ATGGGCTATG	AAGACGAGGA	ACGTTCCAGG	TTACTCTTGG	TAGAAGGCTC	TATAGCTGAG	840
TACCCGATAC	TTCTGCTCCT	TGCAAGGTCC	AATGAGAACC	ATCTTCCGAG	ATATCGACTC	
	ATCGGCTTGG					900
	TAGCCGAACC	•				
	AAACTGATGC					960
CCTGACCCAT	TTTGACTACG	ATCGCTAAGG	TGAGTCTTAG	TCTTCAGACC	GTCCTTGAGA	

Figure 8A SUBSTITUTE SHEET (RULE 26)

	CAGCACGCAG					1020
TTAGGGGCCG	GTCGTGCGTC	GATTTAGGAC	TTTACATTTT	CCGGTGTGGG	TGCCTGAGGG	
TTCTAAGACT	GGCGCTGGTG	GACTAACAAA	GGAAAACCGC	ACAGTTGTGC	TCGTGACCGA	1080
	CCGCGACCAC					2000
	CAGACACCGC					1140
AACAAATGGC	GTCTGTGGCG	CACCGATGGC	TTCAATGAAG	GCCAGGGGAA	AGAGGACGAA	
CTTAATGGCG	TGGGGTTAGA	TCCTTTAATA	TGTTATATAT	TCTGTTTCAT	CAATCACGTG	1200
GAATTACCGC	ACCCCAATCT	AGGAAATTAT	ACAATATATA	AGACAAAGTA	GTTAGTGCAC	
GGGACTGTTC	TTTTGCAACC	AGAATAGTAA	ATTAAATATG	TTGATGCTAA	GGTTTCTGTA	1260
CCCTGACAAG	AAAACGTTGG	TCTTATCATT	TAATTTATAC	AACTACGATT	CCAAAGACAT	
CTGGACTCCC	TGGGTTTAAT	TTGGTGTTCT	GTACCCTGAT	TGAGAATGCA	ATGTTTCATG	1320
	ACCCAAATTA					
TAAAGAGAGA	ATCCTGGTCA	TATCTCAAGA	ACTAGATATT	GCTGTAAGAC	AGCCTCTGCT	1380
	TAGGACCAGT					
GCTGCGCTTA	TAGTCTTGTG	TTTGTATGCC	TTTGTCCATT	TCCCTCATGC	TGTGAAAGTT	1440
CGACGCGAAT	ATCAGAACAC	AAACATACGG	AAACAGGTAA	AGGGAGTACG	ACACTTTCAA	
ATACATGTTT	ATAAAGGTAG	AACGGCATTT	TGAAATCAGA	CACTGCACAA	GCAGAGTAGC	1500
TATGTACAAA	TATTTCCATC	TTGCCGTAAA	ACTITAGICI	GTGACGTGTT	CGTCTCATCG	
CCAACACCAG	GAAGCATTTA	TGAGGAAACG	CCACACAGCA	TGACTTATTT	TCAAGATTGG	1560
GGTTGTGGTC	CTTCGTAAAT	ACTCCTTTGC	GGTGTGTCGT	ACTGAATAAA	AGTTCTAACC	
CAGGCAGCAA	AATAAATAGT	GTTGGGAGCC	AAGAAAAGAA	TATTTTGCCT	GGTTAAGGGG	1620
GTCCGTCGTT	TTATTTATCA	CAACCCTCGG	TTCTTTCTT	ATAAAACGGA	CCAATTCCCC	
CACACTGGAA	TCAGTAGCCC	TTGAGCCATT	AACAGCAGTG	TTCTTCTGGC	AAGTTTTTGA	1680
	AGTCATCGGG					
TTTGTTCATA	AATGTATTCA	CGAGCATTAG	AGATGAACTT	ATAACTAGAC	ATCTGTTGTT	1740
AAACAAGTAT	TTACATAAGT	GCTCGTAATC	TCTACTTGAA	TATTGATCTG	TAGACAACAA	
ATCTCTATAG	CTCTGCTTCC	TTCTAAATCA	AACCCATTGT	TGGATGCTCC	CTCTCCATTC	1800
					GAGAGGTAAG	

Figure 8B SUBSTITUTE SHEET (RULE 26)

		GTATTAAAGT CATAATTTCA	 1860
		 AAAAGACTAT TTTTCTGATA	 1920
		TTGCTTTGGG AACGAAACCC	 1980
		 TAGGTTTAAG ATCCAAATTC	 2040
		 CTAGACATTA GATCTGTAAT	 2100
	 ,	 AATATGGTTG TTATACCAAC	 2160
CGACAACAAC	 	 •	

GCTGTTGTTG TTGTTT

Figure 8C SUBSTITUTE SHEET (RULE 26)

MVCGSPGGML	LLRAGLLALA	ALCLLRVPGA	RAAACEPVRI	PLCKSLPWNM	TKMPNHLHHS	60
TQANAILAIE	QFEGLLGTHC	SPDLLFFLCA	MYAPICTIDF	QHEPIKPCKS	VCERARQGCE	120
PILIKYRHSW	PENLACEELP	VYDRGVCISP	EAIVTADGAD	FPMDSSNGNC	RGASSERCKC	180
KPIRATQKTY	FRNNYNYVIR	AKVKEIKTKC	HDVTAVVEVK	EILKSSLVNI	PRDTVNLYTS	240
SGCLCPPLNV	NEEYIIMGYE	DEERSRLLLV	EGSIAEKWKD	RLGKKVKRWD	MKLRHLGLSK	300
SDSSNSDSTO	SOKSGRNSNP	ROARN.				

Figure 9 SUBSTITUTE SHEET (RULE 26)

GCCGGAGCGG	GCCTTTTGGC	GTCCACTGCG	CGGCTGCACC	CTGCCCCATC	TGCCGGGATC	60
CCGCCTCGCC	CGGAAAACCG	CAGGTGACGC	GCCGACGTGG	GACGGGGTAG	ACGGCCCTAG	
ATGGTCTGCG	GCAGCCCGGG	AGGGATGCTG	CTGCTGCGGG	CCGGGCTGCT	TGCCCTGGCT	120
TACCAGACGC	CGTCGGGCCC	TCCCTACGAC	GACGACGCCC	GGCCCGACGA	ACGGGACCGA	
CTCTCTGCC	TGCTCCGGGT	GCCCGGGGCT	CGGGCTGCAG	CCTGTGAGCC	CGTCCGCATC	180
CGAGAGACGG	ACGAGGCCCA	CGGGCCCCGA	GCCCGACGTC	GGACACTCGG	GCAGGCGTAG	
CCCTGTGCA	AGTCCCTGCC	CTGGAACATG	ACTAAGATGC	CCAACCACCT	GCACCACAGC	240
GGGACACGT	TCAGGGACGG	GACCTTGTAC	TGATTCTACG	GGTTGGTGGA	CGTGGTGTCG	
ACTCAGGCCA	ACGCCATCCT	GGCCATCGAG	CAGTTCGAAG	GTCTGCTGGG	CACCCACTGC	300
	TGCGGTAGGA					
AGCCCCGATC	TGCTCTTCTT	CCTCTGTGCC	ATGTACGCGC	CCATCTGCAC	CATTGACTTC	360
	ACGAGAAGAA					
CAGCACGAGC	CCATCAAGCC	CTGTAAGTCT	GTGTGCGAGC	GGGCCCGGCA	GGGCTGTGAG	420
	GGTAGTTCGG				ė.	
CCCATACTCA	TCAAGTACCG	CCACTCGTGG	CCGGAGAACC	TGGCCTGCGA	GGAGCTGCCA	480
	AGTTCATGGC					
	GGGGCGTGTG					540
	CCCCGCACAC				•	
	ATTCTAGTAA					600
	TAAGATCATT			•		
	GAGCTACACA					660
	CTCGATGTGT					• •
	AAGAGATAAA					720
	TTCTCTATTT					
	AGTCCTCTCT					780
	TCAGGAGAGA	,				
	TCTGCCCTCC					840
AGACCGACGG	AGACGGGAGG	TGAATTACAA	TTACTCCTTA	ጥልጥልርጥልርጥል	CCCCATACTT	

Figure 10A SUBSTITUTE SHEET (RULE 26)

,18/18

GATGAGGAAC CTACTCCTTG	GTTCCAGATT CAAGGTCTAA	ACTCTTGGTG TGAGAACCAC	GAAGGCTCTA CTTCCGAGAT	TAGCTGAGAA ATCGACTCTT	GTGGAAGGAT CACCTTCCTA	900
	AAAAAGTTAA TTTTTCAATT					960
AGTGATTCTA TCACTAAGAT	GCAATAGTGA CGTTATCACT	TTCCACTCAG AAGGTGAGTC	AGTCAGAAGT TCAGTCTTCA	CTGGCAGGAA GACCGTCCTT	CTCGAACCCC GAGCTTGGGG	1020
CGGCAAGCAC GCCGTTCGTG	GCAACTAAAT CGTTGATTTA	CCCGAAATAC GGGCTTTATG	AAAAAGTAAC TTTTTCATTG	ACAGTGGACT TGTCACCTGA	TCCTATTAAG AGGATAATTC	1080
TGAATGAACG	ATTGCTGGAC TAACGACCTG	ATCGTTTCCT	TTTAACGTGA	TAACGTGTAG	TATAAGATAA	1140
CAAATGATAT	AAAATCATGT TTTTAGTACA	CTATTGACTA	ATAATGAAGA	CAAAGAGAAA	ACCAAAGACG	1200
	TCTCAACCCC AGAGTTGGGG					1260
	TCACTAATCA AGTGATTAGT					1320
	AGAGCCTCTT TCTCGGAGAA					1380
	AATATTGGAT TTATAACCTA					1440
	TACTCTGCCG ATGAGACGGC					1500
	TTAGAAAGTT AATCTTTCAA					1560
	GCAAAGCAAT CGTTTCGTTA					1620
	TTGAGACTGT AACTCTGACA					1680
					TAGCATTCTT ATCGTAAGAA	1740
					GAAATGAATT CTTTACTTAA	1800
					TTTAAATAAA TTTATTTAAA	1860
	AAAGTCAAAA TTTCAGTTTT					

Figure 10B SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/10942

A. CLASSIFICATION OF SUBJECT MA' IPC(6) :Please See Extra Sheet. US CL : 530/300, 350; 514/2; 536/23.1	FTER					
According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS SEARCHED						
Minimum documentation searched (classification	system followed by class	sification symbols)	·			
U.S. : 530/300, 350; 514/2; 536/23.1						
Documentation searched other than minimum docu	imentation to the extent t	hat such documents are included	in the fields searched			
Electronic data base consulted during the internal	•	• • •	` .			
DIALOG (MEDLINE, BIOSIS, EMBASE, W xenopus	PI, USPATFULL) AUT	HUR AND WORD. search t	terms: e.g. cerberus,			
C. DOCUMENTS CONSIDERED TO BE	RELEVANT					
Category* Citation of document, with indic	ation, where appropriat	e, of the relevant passages	Relevant to claim No.			
Y, P BOUWMEESTER et al. factor expressed in the organizer. Nature. 15 pages 595-601, see en	1-15					
Further documents are listed in the continu	uation of Box C.	See patent family annex.				
 Special categories of cited documents: A* document defining the general state of the art which he of continues relevance. 	"T" is not considered	later document published after the inte date and not in conflict with the applic principle or theory underlying the inv	stion but cited to understand the			
E cartier document published on or after the internati	onal filing date	document of particular relevance; the				
L document which may throw doubts on priority cla cited to establish the publication date of another		when the document is taken alone document of particular relevance; th	•			
O document referring to an oral disclosure, use, e: means	•	considered to involve an inventive combined with one or more other suc- being obvious to a person skilled in the	step when the document is a documents, such combination			
P document published prior to the international filing the priority date claimed		document member of the same patent				
Date of the actual completion of the international 29 AUGUST 1997	search Date of	mailing of the international sea 11 SEP 1997	irch report			
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231		zed officer ATHER BAKALYAR	St,			
Paralle No. (700) 205 2000	1	N (500) 000 0106				

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/10942

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):	
A01N 37/18; A61K 38/00; C07K 1/00, 2/00, 4/00, 7/00, 14/00, 16/00, 17/00; C07H 21/02,	, 21/04
	·
	·

Form PCT/ISA/210 (extra sheet)(July 1992)*