# FERGUSSON COLLEGE (AUTONOMOUS), PUNE

**DEPARTMENT OF STATISTICS** 



**TYBSC STATISTICS PROJECT 2023-24** 

# Watt the Future Holds

**ILLUMINATING INDIA'S ENERGY TAPESTRY** 



#### Deccan Education Society's

# Fergusson College (Autonomous), Pune

Department of Statistics

T. Y. B. Sc.

Year 2023-24

STS3609: Statistics Practical III

# **CERTIFICATE**

| This is to certify | y that Mr./Ms.                                              |
|--------------------|-------------------------------------------------------------|
| Roll no            | , has satisfactorily completed the project work entitled    |
| "Watt the Futi     | are Holds: Illuminating India's Energy Tapestry" during     |
| the academic ye    | ear 2023 – 24 as per the rules and regulations laid down by |
| FERGUSSON (        | COLLEGE (Autonomous), Pune.                                 |
|                    |                                                             |

Place: Pune

Date: / / 2024

Ms Deepa Kulkarni Project Guide Dr Subhash Shende Head of the Department, Vice Principal, Department of Statistics

# **Group Members:**

| Roll No             | Name   |
|---------------------|--------|
|                     |        |
| Jai Lunkad          | 212230 |
| Janhavi Tamhankar   | 212235 |
| Ashokkumar Kushwaha | 212237 |
| Vedika Patil        | 212260 |
| Sanket Brahmankar   | 212244 |
| Leena Patil         | 212248 |

# **Acknowledgement**

We would like to express our sincere gratitude to all those who have contributed to the successful completion of this project.

First and foremost, we would like to thank our esteemed project guide, Prof. Deepa Kulkarni, for her invaluable guidance and support throughout the entire project journey. Her insightful feedback and constant encouragement were a driving force for us. We are immensely grateful for her dedication and mentorship, without which this project would not have been possible.

We extend our heartfelt gratitude to the Department of Statistics, Fergusson College, for providing the necessary infrastructure, facilities, and resources that significantly aided our research and project development. We appreciate the department's commitment to fostering a supportive learning environment.

Finally, we would like to acknowledge and thank all the individuals who directly or indirectly contributed to this project. Their support, both seen and unseen, has been instrumental in our success.

# <u>Index</u>

| Sr. No | Topic                                    | Page |  |
|--------|------------------------------------------|------|--|
| 1.     | Introduction                             | 5    |  |
| 2.     | Abstract                                 | 6    |  |
| 3.     | Motivation                               | 7    |  |
| 4.     | Objectives                               | 8    |  |
| 5.     | Methodology                              | 9    |  |
| 6.     | Exploratory Data Analysis                | 11   |  |
| 7.     | Confirmatory Analysis:                   | 15   |  |
|        | <ul> <li>Time Series Analysis</li> </ul> | 15   |  |
|        | <ul> <li>Regression Analysis</li> </ul>  | 34   |  |
|        | <ul> <li>Correlation Analysis</li> </ul> | 48   |  |
| 8.     | Conclusion                               | 50   |  |
| 9.     | Scope and Limitations                    | 52   |  |
| 10.    | References                               | 53   |  |
| 11.    | Appendix-1                               | 54   |  |

# **Introduction**

In today's digital age, electricity serves as the invisible backbone of society, powering everything from homes to industries. Understanding electricity consumption patterns becomes crucial for a nation like India, experiencing rapid development and population growth. This project delves into the heart of India's energy landscape, employing a two-pronged approach.

First, we scrutinize national-level electricity demand data. We want to analyse monthly data for various sources to identify seasonal variations, long-term trends, and unexpected fluctuations. By examining these relationships and leveraging forecasting models, we aim to predict future shifts in the country's electric pulse.

Secondly, we zoom in on the microcosm of Pune's households. A comprehensive survey will explore the tapestry of factors influencing household electricity bills. Through statistical analysis, we aim to isolate the most significant contributors to residential energy costs.

Ultimately, this research strives to illuminate a path towards a more energy-conscious and cost-effective future. By unravelling the complexities of electricity consumption in India, both nationally and within individual households, we hope to generate valuable insights that can inform future interventions and policy recommendations.

# **Abstract**

Electricity is essential in our daily lives, powering everything from our homes to industries. It plays a vital role in shaping how we live, work, and connect, making it a cornerstone of modern society. From charging our phones to running factories, its impact is pervasive and indispensable. Without it, many aspects of our lives would come to a standstill, highlighting its crucial importance in our interconnected world.

This project explores the dynamic landscape of electricity consumption in India, with a keen focus on both macro and micro-level analysis. Through a meticulous examination of monthly electricity demand data, encompassing hydro, solar, wind, and total electricity consumption, the project aims to unveil time series patterns, identifying seasonality, long-term trends, and fluctuations. Additionally, by analysing correlations between different sources of electricity demand and the overarching total electricity demand, the project seeks to unravel the interplay of these variables, leveraging forecasting models to predict future trends and assessing the reliability of these forecasts.

Furthermore, the project delves into household electricity consumption in Pune through a comprehensive survey, aiming to unearth the factors influencing household electricity bills. From the physical attributes of homes to lifestyle choices and awareness levels regarding electricity consumption, various factors will be examined. Statistical techniques, including regression analysis, will be employed to pinpoint the most significant factors affecting household electricity bills, paving the way for informed interventions and policy recommendations to promote energy efficiency and cost savings in households.

# **Motivation**

India, as one of the world's fastest-growing economies, faces the challenge of meeting the energy demands of its rapidly expanding population while minimizing environmental degradation. A project on electricity consumption and sustainable development addresses this urgent need for balanced growth that doesn't compromise the needs of future generations. There are many aspects of looking for renewable resources along with sustainable development in India:

#### 1. Environmental Concerns:

The reliance on fossil fuels for electricity generation contributes significantly to environmental challenges, including air pollution and climate change. By focusing on renewable energy sources such as solar, wind, and hydroelectric power, the project aims to reduce carbon emissions and mitigate the impact of climate change.

#### 2. Access to Energy:

Despite progress in electrification efforts, millions of people in India still need access to reliable electricity. By promoting sustainable development through renewable energy sources, the project aims to address this energy access gap. Off-grid and decentralized renewable energy solutions can provide power to remote and underserved communities, improving their quality of life and enabling socio-economic development.

#### 3. Energy Security:

Our country's dependence on imported fossil fuels makes its energy security vulnerable to global market fluctuations and geopolitical tensions. Embracing renewable energy sources enhances energy security by diversifying the energy mix and reducing reliance on imports, thus bolstering India's resilience to external disruptions.

Further narrowing down to Pune, we are interested in finding how much the population is aware of sustainable development and the changes they make to incorporate sustainability in their daily lives. The overall aspect of the project is to have more knowledge on how the supply and demand of electricity with the help of renewable resources is met in India. Additionally, we will also know how the general public (concentrated in Pune) is helping to build a sustainable future.

# **Objectives**

- 1. Analyse historical energy production trends in India.
- 2. Investigate variations in electricity consumption across India.
- 3. Assess the proportion of electricity generated from renewable sources (Solar, Wind, and Hydro) in India's energy consumption.
- 4. Model and estimate domestic electricity consumption patterns in Pune city, considering factors such as House Area (in square feet), Household Size, Appliance Count, High-power Appliance Quantity, Presence and utilization of Electric Vehicles (EVs), Adoption of non-conventional energy sources, and Use of energy-efficient appliances.
- 5. Evaluate the awareness level regarding sustainable electricity usage within Pune households and examine its correlation with electricity consumption behaviour.

# **Methodology**

#### The project consists of three major parts:

#### 1. Analysis of Electricity Production and Consumption in India:

The initial phase of the project involves an in-depth examination of electricity production and consumption trends in India. This analysis is conducted utilizing secondary data obtained from the official government website, **GRID CONTROLLER OF INDIA LIMITED** (formerly known as the Power System Operation Corporation Limited). Monthly reports issued by the Government of India serve as the primary source for data extraction.

#### Data Collection:

Monthly production and consumption data from various sources, including solar, wind, and hydro, as well as total production and consumption figures, are collected from the aforementioned reports.

#### Analysis Technique:

**Time Series Analysis** is employed to model the gathered data effectively. This analytical method enables the projection of future electricity consumption patterns, focusing on the contribution of renewable energy sources.

#### 2. Modelling Domestic Electricity Consumption in Pune:

The subsequent phase of the project entails modelling domestic electricity consumption within the city of Pune, utilizing primary data obtained through a comprehensive survey.

#### • Data Collection:

A structured survey is distributed among households in Pune to gather information about electricity consumption and its influencing factors. A random sample of respondents is used to estimate consumption patterns for the entire city.

#### • Regression Analysis:

The collected data is subjected to Regression Analysis to discern the relationship between various independent variables and the dependent variable (electricity bill amount).

The following variables are considered:

**Dependent Variable (Y):** Electricity bill amount in different seasons.

#### **Independent Variables (X):**

**X1:** Area of House (in square feet)

**X2:** Number of occupants in the household

X3: Number of appliances in the household

**X4:** Existence and usage of Electric Vehicles (EVs) at home (Binary)

**X5:** Utilization of non-conventional energy sources (Binary)

**X6:** Deployment of energy-efficient appliances in the household (Binary)

#### 3. Awareness and Sustainability

In addition to conducting time series analysis and multiple regression for estimating domestic electricity consumption in Pune, this project incorporates **correlation analysis** to assess the relationship between awareness levels about sustainable electricity usage and actual electricity consumption.

#### Data Collection:

The awareness levels are determined based on responses to a set of 7 questions included in the survey, with responses measured on an ordinal scale ranging from 1 to 5.

#### Correlation analysis:

Responses on the ordinal scale (1-5) are converted into numerical values to facilitate correlation analysis. **Spearman's Correlation coefficient** and **Kendall's Tau Correlation coefficient** are calculated between the two defined variables.

#### **Tools Used:**

- **R Software:** The statistical analysis is predominantly conducted using R software due to its extensive capacity for statistical computing and analysis. The functionalities of R enable Regression Analysis, Time Series Analysis, and correlation assessment.
- Microsoft Excel is utilized for data storage and initial Exploratory Data Analysis (EDA).

# **Exploratory Data Analysis (EDA)**

### **Energy Production in India**



- The graph above shows the Electricity production in India between 2012 and 2023.
- The blue line represents non-renewable electricity generation. The red line represents renewable electricity generation. The graph shows a clear distinction between renewable and fossil fuel electricity generation over the years. The blue line, representing fossil fuel electricity generation, shows a steep increasing trend, whereas the red line, representing renewable electricity generation, appears relatively flat.

#### **Energy Consumption in India**



- The above graph shows the Electricity Consumption in India between 2012 and 2023.
- The red line shows the amount of renewable energy consumed over time. It starts at a low point in 2012 and increases steadily to a higher value in 2023.
   This suggests that the consumption of renewable energy is increasing over time.
- The blue line shows the amount of total electricity consumed over time. It also started at a low point in 2012 and increased steadily to a higher value by 2022. However, the increase in total consumption appears to be steeper than the increase in renewable consumption. This suggests that the total consumption of electricity is growing faster than renewable consumption.

# **Electricity Consumption of Pune City**



#### **Electricity Consumption in Summer**



**Electricity Consumption in Monsoon** 



**Electricity Consumption in Summer** 



**Electricity Consumption in the three seasons** 

- The graphs above show the electricity consumption i.e. the average monthly electricity bill amount of Pune households, in three seasons- Summer, Monsoon and Winter.
- Overall, the histograms suggest that most electricity bills in Pune during any season fall within the 2000-4000 rupees range. However, there is a significant variation in bills, with some residents incurring considerably higher bills than others.

# **Confirmatory Analysis**

## **Time Series Analysis**

#### **Total Renewable Energy Consumption in India**

To model and forecast the electricity consumed (in MU) in India, generated from renewable sources (Hydroelectricity, Solar and Wind energy).

#### **Time Series Plot:**



#### Decomposition of additive time series



- We may observe a slightly increasing trend, there is a seasonal component in the data, and the irregularities seem sufficiently random.
- The electricity supply from renewable sources tends to increase from the beginning of the year. It peaks in August and then starts to decline.
- We consider the three main sources of renewable electricity- Hydro, Solar and Wind. Thus, the behaviour of supply depends on the factors that affect these three sources, each of which is explained in the later sections.

#### **Exponential Smoothing to Forecast Total Renewable Energy Consumption**

Using single, double and triple exponential smoothing on the data, we get the following results:

#### 1. Single Exponential Smoothing:

#### Single Exponential Plot



Smoothing parameters:

 $\alpha$  = **0.9999339** 

• Root Mean Square Error = 48055.83

#### 2. Double Exponential Smoothing

**Double Exponential Plot** 



Smoothing parameters:

$$\alpha = 1$$

$$\beta$$
 = **0.8665156**

• Root Mean Square Error = **46397.12** 

#### 3. Triple Exponential Smoothing

#### **Triple Exponential Forecast**



• Smoothing parameters:

$$\alpha$$
 = **46397.12**

$$\beta$$
 = **0.005199607**

$$\gamma = \textbf{0.5170413}$$

- Root Mean Square Error = **1690.307**
- → As the RMSE value for triple exponential smoothing is the lowest, it is the most appropriate for forecasting.

## Forecasting for 2024 with Triple Exponential Smoothing:

#### Triple Exponential Forecast



| Sr. No. | Time           | Forecasted Renewable<br>Electricity consumption (in<br>MU) |
|---------|----------------|------------------------------------------------------------|
| 1       | January 2024   | 20720.25                                                   |
| 2       | February 2024  | 20258.87                                                   |
| 3       | March 2024     | 22809.12                                                   |
| 4       | April 2024     | 24283.38                                                   |
| 5       | May 2024       | 31262.40                                                   |
| 6       | June 2024      | 35472.20                                                   |
| 7       | July 2024      | 39468.71                                                   |
| 8       | August 2024    | 42700.79                                                   |
| 9       | September 2024 | 35955.10                                                   |
| 10      | October 2024   | 27515.85                                                   |
| 11      | November 2024  | 20677.85                                                   |
| 12      | December 2024  | 21658.89                                                   |

#### **Hydroelectricity Consumption in India**

To model and forecast the electricity consumed (in MU) in India that was produced from hydropower.

#### **Time Series Plot:**



#### Decomposition of additive time series



- We may observe a slight increasing trend, there is a seasonal component in the data, and the irregularities seem fairly random.
- The supply of hydroelectricity tends to increase from the beginning of the year, it peaks around August and then starts to decline.

This is caused by the rainfall patterns in the country as monsoons in India persist between June and September, leading to increased water flow. Also, after the monsoons, during September towards January of the next year, the conservation of stored water to ensure reliable power generation during the dry seasons is prioritized.

#### **Using Exponential Smoothing to Forecast Hydroelectricity Supply**

Using single, double and triple exponential smoothing on the data, we get the following results:

#### 1. Single Exponential Smoothing:



• Smoothing parameters:

$$\alpha$$
 = **0.9999339**

• Root Mean Square Error = **33973.36** 

#### 2. Double Exponential Smoothing:



Smoothing parameters:

$$\alpha = 1$$

 $\beta = 0.04263834$ 

• Root Mean Square Error = **35102.55** 

### 3. Triple Exponential Smoothing:



• Smoothing parameters:

 $\alpha$  = **0.3065658** 

 $\beta$  = **0.02984244** 

 $\gamma = 0.5672972$ 

• Root Mean Square Error = **16053.74** 

→ As the RMSE value for triple exponential smoothing is the lowest, it is the most appropriate for forecasting.

#### Forecasting for 2024 with Triple Exponential Smoothing:





| Sr. No. | Time           | Forecasted Hydroelectricity consumption (in MU) |
|---------|----------------|-------------------------------------------------|
| 1       | January 2024   | 5812.159                                        |
| 2       | February 2024  | 5948.097                                        |
| 3       | March 2024     | 7066.672                                        |
| 4       | April 2024     | 8390.581                                        |
| 5       | May 2024       | 11404.900                                       |
| 6       | June 2024      | 14515.881                                       |
| 7       | July 2024      | 18619.929                                       |
| 8       | August 2024    | 21675.639                                       |
| 9       | September 2024 | 18037.442                                       |
| 10      | October 2024   | 12806.033                                       |
| 11      | November 2024  | 7014.314                                        |
| 12      | December 2024  | 6018.573                                        |

#### **Wind Energy Consumption in India**

To model and forecast the electricity consumed (in MU) in India that was produced from wind power.

#### **Time series Plot:**



#### Decomposition of additive time series



- We can observe a slightly increasing trend, there is a seasonal component in the data, and the irregularities seem fairly random.
- The wind energy supply tends to increase from the start of the year, peaks in June and then starts to decline.

- India experiences seasonal changes in wind patterns due to the
  monsoon season. During the summer months, especially from March to
  May, India experiences the southwest pre-monsoon winds, which
  brings strong and consistent winds to many parts of the country,
  particularly along the western coast and in certain inland regions. This
  leads to an increase in wind energy production during these months.
  The combined effect of strong pre-monsoon winds and relatively less
  rain might lead to the highest wind speeds and power generation in
  June.
- As the monsoon progresses and transitions into the post-monsoon season (August onwards), the wind speeds generally weaken. This reduction in wind speed translates to lower power generation from wind farms.

#### **Using Exponential Smoothing to Forecast Wind Energy Supply**

Using single, double and triple exponential smoothing on the data, we get the following results:

#### 1. Single Exponential Smoothing:

**Single Exponential Smoothing Plot** 



• Smoothing parameters:

 $\alpha$  = **0.9999339** 

Root Mean Square Error = 20691.21

#### 2. Double Exponential Smoothing:



Smoothing parameters:

 $\alpha = 1$ 

 $\beta$  = **0.7355735** 

• Root Mean Square Error = 22300.99

#### 3. Triple Exponential Smoothing:

**Triple Exponential Smoothing Plot** 



• Smoothing parameters:

 $\alpha$  = **0.1176794** 

 $\beta$  = **0.02922646** 

 $\gamma =$ **0.4594893** 

- Root Mean Square Error = **11613.38**
- → As the RMSE value for triple exponential smoothing is the lowest, it is the most appropriate for forecasting.

#### Forecasting for 2024 with Triple Exponential Smoothing:





| Sr. No. | Time           | Forecasted Hydroelectricity consumption (in MU) |
|---------|----------------|-------------------------------------------------|
| 1       | January 2024   | 5314.386                                        |
| 2       | February 2024  | 4408.902                                        |
| 3       | March 2024     | 5177.087                                        |
| 4       | April 2024     | 5432.358                                        |
| 5       | May 2024       | 8908.189                                        |
| 6       | June 2024      | 11153.862                                       |
| 7       | July 2024      | 12114.180                                       |
| 8       | August 2024    | 11432.677                                       |
| 9       | September 2024 | 8238.109                                        |
| 10      | October 2024   | 4381.860                                        |
| 11      | November 2024  | 4217.725                                        |
| 12      | December 2024  | 5465.047                                        |

#### **Solar Energy Consumption in India**

To model and forecast the electricity consumed (in MU) in India that was produced from wind power.

#### **Time Series Plot:**



#### Decomposition of additive time series



- We can observe a slight increasing trend, a seasonal component may be present in the data, and the irregularities seem fairly random.
- India's solar power dips after May due to a shift in the sun's angle, reducing direct sunlight captured by panels. Additionally, the monsoon season (June onwards) brings increased cloud cover, further hindering solar energy generation. While dust storms can also play a minor role, advancements in solar panel technology are helping mitigate some of these seasonal variations.

#### **Using Exponential smoothing to forecast Solar Energy Supply**

Using single, double and triple exponential smoothing on the data, we get the following results:

#### 1. Single Exponential Smoothing:



Time

Single Exponential Smoothing Plot

Smoothing parameters:

 $\alpha$  = **0.5098932** 

Root Mean Square Error = 7911.696

#### 2. Double Exponential Smoothing:

**Double Exponential Smoothing Plot** 



Smoothing parameters:

 $\alpha$  = **0.4482388** 

 $\beta$  = **0.01781607** 

• Root Mean Square Error = **7859.637** 

#### 3. Triple Exponential Smoothing:

**Triple Exponential Smoothing Plot** 



• Smoothing parameters:

$$\alpha$$
 = **0.2402498**

$$\beta = 0$$

$$\gamma = 0.213544$$

- Root Mean Square Error = **6428.832**
- → As the RMSE value for triple exponential smoothing is the lowest, it is the most appropriate for forecasting.

## Forecasting for 2024 with Triple Exponential Smoothing:

#### Triple Exponential Forecast



| Sr. No. | Time           | Forecasted Solar energy consumption (in MU) |
|---------|----------------|---------------------------------------------|
| 1       | January 2024   | 9106.112                                    |
| 2       | February 2024  | 9355.783                                    |
| 3       | March 2024     | 9907.751                                    |
| 4       | April 2024     | 9952.507                                    |
| 5       | May 2024       | 10492.544                                   |
| 6       | June 2024      | 9458.969                                    |
| 7       | July 2024      | 8876.101                                    |
| 8       | August 2024    | 9348.672                                    |
| 9       | September 2024 | 9560.066                                    |
| 10      | October 2024   | 10133.017                                   |
| 11      | November 2024  | 9573.538                                    |
| 12      | December 2024  | 9934.911                                    |

# **Multiple Linear Regression**

In general, the response Y may be related to k regressors or predictor variables.

Following is the multiple regression model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k + \epsilon$$

The parameters  $\beta_j$ , j = 0, 1..., k, are called the regression coefficients. This model describes a hyperplane in the k-dimensional space of the regressor variables  $X_j$ . The parameter  $\beta_j$  represents the expected change in the response y per unit change in  $X_j$  when all remaining regressor variables  $x_j$  ( $i \neq j$ ) are held constant. For this reason, the parameters  $\beta_j$ , j = 1, 2..., k, are often called **partial regression coefficients**.

#### **Modelling Household Electricity Consumption of Pune City**

To model the electricity consumption of Pune's households, primary data is collected through a survey for the following variables, and an adequate random sample is selected.

Three models are fit, one for each of the seasons.

The following variables are considered:

**Response/Dependent Variable (Y):** Electricity bill amount in different seasons.

**Y<sub>1</sub>:** Average monthly electricity bill amount during Summer

Y2: Average monthly electricity bill amount during Monsoon

Y3: Average monthly electricity bill amount during Winter

#### Regressors/Independent Variables (X):

X<sub>1</sub>: Area of House (in square feet)

X<sub>2</sub>: Number of occupants in the household

X<sub>3</sub>: Number of appliances in the household

X4: Existence and charging of Electric Vehicles (EVs) at home (Binary)\*

X<sub>5</sub>: Utilization of non-conventional energy sources (Binary)\*

X<sub>6</sub>: Deployment of energy-efficient appliances in the household (Binary)\*

\*Note: The variables  $X_4$  and  $X_5$  would be measured by the following rule:

| X₄: Existence and usage of Electric<br>Vehicles (EVs) at home |         | Existence of EVs   |                   |
|---------------------------------------------------------------|---------|--------------------|-------------------|
|                                                               |         | Yes (1)            | No (0)            |
| Charged at Home                                               | Yes (1) | X <sub>4</sub> = 1 | X <sub>4</sub> =0 |
|                                                               | No (0)  | X <sub>4</sub> =0  | X <sub>4</sub> =0 |

| X <sub>5</sub> : Utilization of non-conventional energy sources |         | Existence of Sources |        |
|-----------------------------------------------------------------|---------|----------------------|--------|
|                                                                 |         | Yes (1)              | No (0) |
| Energy generated from these sources at home                     | Yes (1) | X6= 1                | X6=0   |
|                                                                 | No (0)  | X6=0                 | X6=0   |

\*\*Further as the sample size is large enough, the binary variables are converted into Standard Normal Variates using the Central Limit Theorem:

As X<sub>4</sub>, X<sub>5</sub>, X<sub>6</sub> are all Binomial random variables and sample size(n) is large,

$$\frac{x_i - \mu_i}{\sigma_i} \sim N(0,1)$$

where  $\mu_i$ : Mean of  $x_i$ 

 $\sigma_i$ : Standard Deviation of  $x_i$ 

#### Log-Transform of Response variables to meet Normality Assumption

The histograms of the response variables suggest that  $Y_1$ ,  $Y_2$  and  $Y_3$  seem positively skewed, suggesting that these variables might be lognormal.

So, if  $Y_1$ ,  $Y_2$  and  $Y_3$  are lognormal variates then their natural logs should be normally distributed.

Checking the normality of response variables using Shapiro-Wilk Test for normality:

• The hypothesis to be tested:

H<sub>0</sub>: The sample comes from normal distribution

Vs

H<sub>1</sub>: The sample does not come from normal distribution

• Decision criterion:

We reject  $H_0$  if the *p-value* < 0.05, otherwise we accept  $H_0$ .

| Variable | Υ <sub>1</sub> | Y <sub>2</sub> | Υ <sub>3</sub> |
|----------|----------------|----------------|----------------|
| P-value  | 1.64e-11       | 2.013e-08      | 8.136e-10      |

| Variable | In(Y <sub>1</sub> ) | In(Y <sub>2</sub> ) | In(Y₃) |
|----------|---------------------|---------------------|--------|
| P-value  | 0.181               | 0.2368              | 0.2267 |

#### Decision and Conclusion:

As P- value<0.05 for  $Y_1$ ,  $Y_2$  and  $Y_3$ , thus we may conclude that they are not normally distributed.

On the other hand, as P- value>0.05 for natural logs of  $Y_1$ ,  $Y_2$  and  $Y_3$ , thus  $In(Y_1)$ ,  $In(Y_2)$  and  $In(Y_3)$  are normally distributed.

As a consequence of the above result, we use the log transformation of the response variables to fit the regression model.

**Consider:** 

$$Y_1^* = In(Y_1)$$

$$Y_2^* = In(Y_2)$$

$${Y_3}^* = In(Y_3)$$

## Multiple Regression Model of Household Electricity Consumption in Summer

#### **Complete Multiple Regression Model:**

$$Y_1^* = 6.3489898 + (0.0007298)X_1 + (-0.0188885)X_2 + (0.0285456)X_3 + (0.0824444)X_4 + (0.0385655)X_5 + (0.0352542)X_6$$

This is a preliminary model which might not be optimal.

#### **Backward Elimination Method of Variable Selection:**

We use the backwards elimination method to find the best fit model to remove the *unnecessary* variables.

| Coefficients   | Estimate  | Std. Error | t value | P- Value     |
|----------------|-----------|------------|---------|--------------|
| (Intercept)    | 6.297e+00 | 8.279e-02  | 76.067  | < 2e-16 ***  |
| X <sub>1</sub> | 1.5222    | 0.1499     | 10.152  | < 2e-16 ***  |
| X <sub>3</sub> | 228.2366  | 72.7923    | 3.135   | 2.55e-05 *** |
| X <sub>4</sub> | 259.8187  | 76.2894    | 3.406   | 0.00299 **   |
| X <sub>6</sub> | 4.271e-02 | 2.737e-02  | 1.561   | 0.12146      |

Thus, after the backward elimination method, we are only left with three regressors- $X_1$ ,  $X_3$ ,  $X_4$  and  $X_6$ .

The best-fit model obtained is:

$$Y_1^* = 6.2971937 + (0.0007008) X_1 + (0.0282784) X_3 + (0.0874918) X_4 + (0.0427100) X_6$$

Verifying the model by checking the Significance of regressors:

#### • The hypothesis to be tested:

$$H_0: \beta_i = 0 \ Vs \ H_1: \beta_i ; i=1,2,...6$$

#### • Decision Criterion:

We reject  $H_0$  if the *p-value* < 0.05, otherwise we accept  $H_0$ .

| Coefficients          | Estimate   | Std. Error | t value | P- Value     |
|-----------------------|------------|------------|---------|--------------|
| (Intercept)           | 6.349e+00  | 8.948e-02  | 70.953  | < 2e-16 ***  |
| X <sub>1</sub>        | 7.298e-04  | 8.225e-05  | 8.873   | 1.68e-14 *** |
| X <sub>2</sub>        | -1.889e-02 | 1.734e-02  | -1.090  | 0.27832      |
| X <sub>3</sub>        | 2.855e-02  | 6.430e-03  | 4.440   | 2.18e-05 *** |
| X <sub>4</sub>        | 8.244e-02  | 2.904e-02  | 2.839   | 0.00541 **   |
| <b>X</b> <sub>5</sub> | 3.857e-02  | 3.076e-02  | 1.254   | 0.21269      |
| X <sub>6</sub>        | 3.525e-02  | 2.774e-02  | 1.271   | 0.20645      |

#### Decision and Conclusion

As P- value<0.05 for X<sub>1</sub>, X<sub>3</sub>, X<sub>4</sub> and X<sub>6</sub>, there is a linear relation between the Electricity Bill in summer and only the **Area of the House, Number of appliances in the household, Existence and charging of Electric Vehicles (EVs) at home, Deployment of energy-efficient appliances in the household.** 

Therefore, the best fit model obtained is:

$$Y_1^* = 6.2971937 + (0.0007008) X_1 + (0.0282784) X_3 + (0.0874918) X_4 + (0.0427100) X_6$$

With a coefficient of determination:  $R^2 = 0.7752$ 

#### Multicollinearity:

**VIF:** The VIF for each term in the model measures the combined effect of the dependencies among the regressors on the variance of that term. One or more large VIFs indicate multicollinearity. Practical experience indicates that if any of the VIFs exceeds 5 or 10, it is an indication that the associated regression coefficients are poorly estimated because of multicollinearity.

| X <sub>1</sub> | Х <sub>3</sub> | X <sub>4</sub> | <b>X</b> <sub>6</sub> |
|----------------|----------------|----------------|-----------------------|
| 1.581171       | 1.154029       | 1.322094       | 1.192720              |

Therefore, as the VIF values for all variables are close to 1, there is no multicollinearity in our model.

#### **Diagnostic Checking:**

Diagnostic plots for our model:



From the above diagnostic plots, we can observe that all the assumptions of linear regression are satisfied, thus our model is adequate.

# Multiple Regression Model of Household Electricity Consumption in Monsoon

#### **Complete Multiple Regression Model:**

$$Y_2^* = 6.1440296 + (0.0006769)X_1 + (-0.0074799)X_2 + (0.0303099)X_3 + (0.0990281)X_4 + (0.0163887)X_5 + (0.0318239)X_6$$

This is a preliminary model which might not be optimal.

#### **Backward Elimination Method of Variable Selection:**

We use the backwards elimination method to find the best-fit model to remove the *unnecessary* variables.

| Coefficients   | Estimate  | Std. Error | t value | P- Value     |
|----------------|-----------|------------|---------|--------------|
| (Intercept)    | 6.095e+00 | 8.203e-02  | 74.297  | < 2e-16 ***  |
| X <sub>1</sub> | 6.931e-04 | 5.573e-05  | 12.436  | < 2e-16 ***  |
| X <sub>3</sub> | 2.948e-02 | 6.578e-03  | 4.481   | 1.82e-05 *** |
| X <sub>4</sub> | 1.017e-01 | 2.958e-02  | 3.438   | 0.000827 *** |

Thus, after the backward elimination method, we are only left with three regressors- $X_1$ ,  $X_3$ , and  $X_4$ .

The best-fit model obtained is:

$$Y_2^* = 6.0948395 + (0.0006931) X_1 + (0.0294751) X_3 + (0.1016741) X_4$$

#### Verifying the model by checking the Significance of regressors:

#### • The hypothesis to be tested:

$$H_0: \beta_i = 0 \ Vs \ H_1: \beta_i; i=1,2,...6$$

#### • Decision Criterion:

We reject  $H_0$  if the *p-value* < 0.05, otherwise we accept  $H_0$ .

| Coefficients   | Estimate   | Std. Error | t value | P- Value     |
|----------------|------------|------------|---------|--------------|
| (Intercept)    | 6.144e+00  | 9.249e-02  | 66.432  | < 2e-16 ***  |
| X <sub>1</sub> | 6.768e-04  | 8.501e-05  | 7.962   | 1.83e-12 *** |
| X <sub>2</sub> | -7.480e-03 | 1.792e-02  | -0.417  | 0.408        |
| X <sub>3</sub> | 3.031e-02  | 6.646e-03  | 4.561   | 1.35e-05 *** |
| X <sub>4</sub> | 9.903e-02  | 3.001e-02  | 3.299   | 0.00131 **   |
| X <sub>5</sub> | 1.639e-02  | 3.180e-02  | 0.515   | 0.60731      |
| X <sub>6</sub> | 3.182e-02  | 2.867e-02  | 1.110   | 0.26943      |

#### Decision and Conclusion

As p-value < 0.05 for  $X_1$ ,  $X_3$ , and  $X_4$ , there is a linear relation between the Electricity Bill in summer and only the **Area of the House, the Number of appliances in the household and the Existence and charging of Electric Vehicles (EVs) at home.** 

Therefore, the best-fit model obtained is:

$$Y_2^* = 6.0948395 + (0.0006931) X_1 + (0.0294751) X_3 + (0.1016741) X_4$$

With a coefficient of determination:  $R^2 = 0.7596$ 

### **Multicollinearity:**

VIF:

| <b>X</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | <b>X</b> <sub>4</sub> |
|-----------------------|-----------------------|-----------------------|
| 1.375249              | 1.145217              | 1.321849              |

Therefore, as the VIF values for all variables are close to 1, there is no multicollinearity in our model.

### **Diagnostic Checking:**

Diagnostic plots for our model:



From the above diagnostic plots, we can observe that all the assumptions of linear regression are satisfied, thus our model is adequate.

# Multiple Regression Model of Household Electricity Consumption in Winter

#### **Complete Multiple Regression Model:**

$$Y_3^* = 5.9563410 + (0.0007408)X_1 + (-0.0024377)X_2 + (0.0242238)X_3 + (0.1124401)X_4 + (0.0250122)X_5 + (0.0116217)X_6$$

This is a preliminary model which might not be optimal.

#### **Backward Elimination Method of Variable Selection:**

We use the backwards elimination method to find the best fit model to remove the *unnecessary* variables.

| Coefficients   | Estimate  | Std. Error | t value | P- Value     |
|----------------|-----------|------------|---------|--------------|
| (Intercept)    | 5.919e+00 | 8.722e-02  | 67.855  | < 2e-16 ***  |
| X <sub>1</sub> | 7.653e-04 | 5.926e-05  | 12.914  | < 2e-16 ***  |
| X <sub>3</sub> | 2.367e-02 | 6.995e-03  | 3.384   | 0.000989 *** |
| X <sub>4</sub> | 1.159e-01 | 3.145e-02  | 3.686   | 0.000354 *** |

Thus, after the backward elimination method, we are only left with three regressors- $X_1$ ,  $X_3$ , and  $X_4$ .

The best-fit model obtained is:

$$Y_3^* = 5.9186546 + (0.0007653) X_1 + (0.0236684) X_3 + (0.1159253) X_4$$

Verifying the model by checking the Significance of regressors:

#### • The hypothesis to be tested:

$$H_0: \beta_i = 0 \ Vs \ H_1: \beta_i ; i=1,2,...6$$

#### • Decision Criterion:

We reject  $H_0$  if the *p-value* < 0.05, otherwise we accept  $H_0$ .

| Coefficients   | Estimate   | Std. Error | t value | P- Value     |
|----------------|------------|------------|---------|--------------|
| (Intercept)    | 5.956e+00  | 9.885e-02  | 60.259  | < 2e-16 ***  |
| X <sub>1</sub> | 7.408e-04  | 9.085e-05  | 8.154   | 6.86e-13 *** |
| X <sub>2</sub> | -2.438e-03 | 1.915e-02  | -0.127  | 0.898943     |
| X <sub>3</sub> | 2.422e-02  | 7.103e-03  | 3.411   | 0.000666 *** |
| X <sub>4</sub> | 1.124e-01  | 3.208e-02  | 3.505   | 0.00131 **   |
| X <sub>5</sub> | 2.501e-02  | 3.398e-02  | 0.736   | 0.463313     |
| X <sub>6</sub> | 1.162e-02  | 3.064e-02  | 0.379   | 0.705207     |

#### Decision and Conclusion

As p-value < 0.05 for  $X_1$ ,  $X_3$ , and  $X_4$ , there is a linear relation between the Electricity Bill in summer and only the **Area of the House, Number of appliances in the household and Existence and charging of Electric Vehicles (EVs) at home.** 

Therefore, the best-fit model obtained is:

$$Y_3^* = 5.9186546 + (0.0007653) X_1 + (0.0236684) X_3 + (0.1159253) X_4$$

With coefficient of determination:  $R^2 = 0.7613$ 

### Multicollinearity:

VIF:

| X <sub>1</sub> | <b>X</b> <sub>3</sub> | <b>X</b> <sub>4</sub> |
|----------------|-----------------------|-----------------------|
| 1.375249       | 1.145217              | 1.321849              |

Therefore, as the VIF values for all variables are close to 1, there is no multicollinearity in our model.

## **Diagnostic Checking:**

Diagnostic plots for our model:



From the above diagnostic plots, we can observe that all the assumptions of linear regression are satisfied, thus our model is adequate.

#### A confidence interval for household electricity consumption in Pune

The obtained multiple regression model can be written in the form:

$$Y = \beta X$$

Thus, the estimated value of response variable, say  $Y_0$  for particular values of regressors ( $\underline{X_0}$ = X1, X2..., Xn) can be defined as

$$\hat{Y}_0 = \hat{\beta} \underline{X_0}$$

A  $100(1-\alpha)$  percent confidence interval for these estimates can be given by:

$$(\hat{Y}_0 - t_{\alpha,n-p}\sqrt{\hat{\sigma}^2(1 + {X_0}'(X'X)^{-1}X_0)},\hat{Y}_0 + t_{\alpha,n-p}\sqrt{\hat{\sigma}^2(1 + {X_0}'(X'X)^{-1}X_0)})$$

From our data, the 95% confidence interval is:

 $7.153448 \le {Y_1}^* \le 7.671032$ 

 $6.942798 \le Y_2^* \le 7.477703$ 

 $6.790203 \le Y_3^* \le 7.361897$ 

Thus the 95% confidence interval for Average Electricity Bill Amount of a household in Pune (in Rs.) is:

During Summer:  $1278.506 \le Y_1 \le 2145.294$ 

During monsoon:  $1035.664 \le Y_2 \le 1768.174$ 

During Winter:  $889.0944 \le Y_3 \le 1574.8213$ 

Thus the 95% confidence interval for the Average Electricity consumed by a household in Pune (in Units):

During Summer:  $109.1807 \le Z_1 \le 183.2019$ 

During monsoon:  $88.44266 \le Z_2 \le 150.99692$ 

During Winter:  $75.92608 \le Z_3 \le 134.48516$ 

<sup>\*</sup>Where Z is the Average Electricity consumed

# **Correlation Analysis**

## Correlation between Energy Consumption and Awareness about Sustainable Practices

To check if there is enough awareness among people in Pune and if it affects their Electricity consumption, the awareness levels are determined based on responses to a set of questions included in the survey, with responses measured on an ordinal scale ranging from 1 to 5.

To find the association between electricity consumption and awareness levels, as the awareness data is on an ordinal scale, **Spearman's Correlation coefficient** and **Kendall's Tau Correlation coefficient were used.** 

Kendall's Tau and Spearman's rank correlation coefficient assess statistical associations based on the ranks of the data. Ranking data is carried out on the variables that are separately put in order and numbered.

A value of  $\pm$  1 indicates a perfect degree of association between the two variables. As the correlation coefficient value goes towards 0, the relationship between the two variables will be weaker. The direction of the relationship is indicated by the sign of the coefficient; a + sign indicates a positive relationship and a – sign indicates a negative relationship.

Let,

Y: Average monthly Electricity bill of the household.

AS: The awareness score of individuals

Here,

There is a set of seven questions asked in the survey, the responses were measured on an ordinal scale ranging from 1 to 5 for each. So, the maximum and minimum scores possible are 35 and 7 respectively. Thus, the scores were converted into percentages and then further to an ordinal scale.

So, 0-10 %  $\rightarrow$  1, 11-20 %  $\rightarrow$  2 and so on.

For our data, the correlation between Y and AS is:

- Spearman's Correlation Coefficient = -0.01595184
- Kendall's Tau Coefficient = -0.02089948

These values of the correlation coefficients suggest that

- 1. There is almost no association between electricity consumption and people's awareness of sustainable electricity usage.
- 2. The little association that might be there is negative.

This might be because even when there is awareness, people lack the proactiveness to adopt these practices in everyday life. Also, People might be aware of the need for sustainability but lack specific knowledge about impactful actions in their daily lives.

# **Conclusion**

#### 1. Analysis of Energy Consumption in India

In India, the total consumption of energy (from renewable as well as non-renewable sources) has shown an increase in the last decade. The increase in total consumption appears to be steeper than the increase in consumption of energy from renewable sources. This suggests that the total consumption of electricity is growing faster than renewable consumption.

#### The Total Renewable Energy Consumption:

India's total renewable energy supply is steadily increasing. However, this rise is accompanied by fascinating seasonal variations depending on the specific renewable resource.

#### **Hydroelectricity**:

The supply of hydroelectricity depends largely on monsoons. As rainfall peaks in August, hydropower generation surges. But, with an eye towards long-term sustainability, water is then conserved for drier months, leading to a decline in output.

#### Wind Energy:

India's wind power follows a rhythm dictated by the monsoon cycle. Premonsoon winds, particularly strong in June, propel wind energy production to its zenith. However, as the monsoon progresses, wind speeds weaken, causing a decrease in a generation.

#### Solar Energy:

Solar energy production is the highest during the summer seasons. But then, as the sun's angle shifts and the monsoon brings cloud cover, solar energy dips. While dust storms can also play a temporary dampener, advancements in technology are helping to lessen the impact of these seasonal fluctuations.

### 2. Modelling Household Electricity Consumption of Pune City

Pune's household Electricity consumption depends on the square footage area of the household, Number of appliances in the household and Existence

and charging of Electric Vehicles (EVs) at home. Factors such as the Number of Occupants in the household and the Deployment of energy-efficient appliances in the household were found to have no significant effect.

In addition to this, only during the summer, deployment of energy-efficient appliances in the household was also found to have an effect.

# 3. Correlation between Energy Consumption and Awareness about Sustainable Practices

There seems to be almost no association between electricity consumption and people's awareness of sustainable electricity usage. This might be because even when people are aware, they lack the proactiveness to adopt these practices in everyday life. People might understand the importance of sustainable practices but lack the motivation or resources to implement them. Also, People might be aware of the need for sustainability but lack specific knowledge about impactful actions in their daily lives.

# **Scope and Limitations**

- More historical data would allow for time series modelling, providing more precise forecasts.
- Considering geographic and economic factors would refine our forecasts for a more nuanced view.
- This project could be further expanded by conducting the same analysis at a regional level to explore the diversity in consumption patterns in India.
- The modelling of household electricity consumption would be carried out with greater accuracy with a larger sample size.
- The assessment of awareness among the public that was carried out was relatively vague, and a more sophisticated test would have given us a more accurate measure that potentially could have been incorporated into the model itself for a more holistic view.

# References

#### Links:

- 1. Grid Controller of India Limited- https://posoco.in/en/
- 2. Journal of Electrical Systems and Information Technologyhttps://jesit.springeropen.com/articles/10.1186/s43067-023-00104-2
- Analysing and Projecting Indian Electricity Demand to 2030 Thomas Spencer, Fellow, TERI, & Associate Fellow, IDDRI Aayushi Awasthy, Associate Fellow, TERI- <a href="https://www.teriin.org/sites/default/files/2019-02/Analysing%20and%20Projecting%20Indian%20Electricity%20Demand%20to%202030.pdf">https://www.teriin.org/sites/default/files/2019-02/Analysing%20and%20Projecting%20Indian%20Electricity%20Demand%20to%202030.pdf</a>
- Energy Consumption Analysis Based on Energy Efficiency Approach: A Case of Suburban Areahttps://www.researchgate.net/publication/312310279 Energy Consumption Analysis Based on Energy Efficiency Approach A Case of Suburban Are a

#### **Books:**

- 1. Introduction to Linear Regression Analysis- Book by Douglas C. Montgomery, Elizabeth A. Peck, and G. Geoffrey Vining
- 2. The analysis of time series- Book by Christopher Chatfield

# **Appendix-1**

#### Questions about awareness of Sustainable Lifestyle Practices in the survey;

- 1. How aware are you of the energy consumption of different household appliances?
- 2. How often do you consciously turn off lights and appliances when not in use?
- 3. How likely are you to invest in energy-efficient upgrades for your home? (irrespective of affordability)
- 4. How aware are you about the concept of carbon footprint and its effect on electricity consumption?
- 5. To what extent do you believe individuals can make a significant impact on reducing electricity consumption and promoting sustainability?
- 6. How much do you believe cultural and societal norms influence electricity consumption patterns in your household and community?
- 7. Overall, how satisfied are you with your household's current efforts towards sustainable electricity consumption?

## Responses assessed on a 5-point Likert scale:

| 1          | 2        | 3          | 4      | 5          |
|------------|----------|------------|--------|------------|
| Not at all | Somewhat | Moderately | Mostly | Completely |