Operators of Finite Rank

Pcf: X. Y. n.v.s. $A = X \longrightarrow Y$ is called finite rank operator if Im A has finite rank.

e.1. & x* EX. Yy eY. Define:

Consider $(\gamma \otimes x^*)^* : Y^* \longrightarrow X^*$. for $\forall \eta^*. x$ $((\eta \otimes x^*)^* (\eta^*), x) = (\eta^*. (\eta \otimes x^*)(x))$ $= \eta^*(\eta) x^*(x) = ((x^* \otimes \eta)(\eta^*). x)$ $= (\eta \otimes x^*)^* = x^* \otimes \eta$

RMK: Define sum of such operator: $\hat{\Sigma}_{\eta} : \otimes \chi_{i}^{*} : (\hat{\Sigma}_{\eta} : \otimes \chi_{i}^{*}) (\chi) =$ $\hat{\Sigma}_{\chi} : (\chi)_{\eta} : \in Y, \quad for \; \forall \chi \in X.$

Prop. Any finite rank. bhl operator $T: X \xrightarrow{linear} Y$,

has form: $\tilde{\Sigma}$ $\eta: \otimes X_i^*$. Where $n = \lim_{n \to \infty} I_n T$.

Itis.". $I \times X_i^*$ are I : I = I = I.

If: Choose η_i : spanl η_i]," = ImT. $\forall x \in X$. $T(x) = \tilde{\Sigma} \tau_i(x) \eta_i$

- (i) dick) is linear:

 Chark: Tox+42) = Tox) + aTo2)

 with [Mi] are l.i.
- 2') $\pi(x)$ is $\beta(x)$: $\|T\|\|\|x\|\| \ge \|T(x)\| = \|T_{\pi}(x)\eta\|\|$ $\Rightarrow G_{\pi}^{\pi}\|\pi(x)\|\|\eta\|\|$ $\Rightarrow G_{\pi}^{\pi}\|\pi(x)\|$ $\Rightarrow G_{\pi}^{\pi}\|\pi(x)\|$ $\Rightarrow G_{\pi}^{\pi}\|\pi(x)\|$ $\Rightarrow G_{\pi}^{\pi}\|\pi(x)\|$

by equi of norm in finite rank LS. $\Rightarrow \alpha(i) \in X^{*} : T = \hat{\Sigma} \eta(\mathcal{O}q).$

3') Chark $\{S_i\}$ are 1.i.

If $S_i = \sum_{k=1}^{n} k_i q_i \Rightarrow J_m T = Span \{\eta_i + k_i \eta_i\}_{i=1}^{n}$ then $\lim_{k \to \infty} I_m T < n$. Contradict.

Cor. For BLO with finite rank: T.

Aim ImT = Lim ImTx.

Rmk: Its expression is n't unique.

7hm. X n.v.s. F(x) = I BLD with finite rank from X to X.

For $K \in F(x) \Rightarrow \text{Im } (I-k) \text{ is closed. } \text{Lim } (\text{kercI-ki})$ = $\text{Lim } \text{ku}(I-k^*)$.

Pf: $\gamma \in Im (I-k)$. $k = \frac{n}{\lambda} \gamma_i \otimes \chi_i^*$. $\lim_{n \to \infty} \lim_{n \to$

$$|i\rangle \gamma = \chi - \frac{1}{2} \chi_i^*(x) \chi_i \iff \begin{pmatrix} \chi_i^*(y) \\ \chi_n^*(y) \end{pmatrix} = (I-m) \begin{pmatrix} \tau_i \\ \tau_n \end{pmatrix}$$

has solution, where $M = (\chi_i^*(x_j))_{n \times n}$.

$$\frac{Pf: (\Rightarrow)}{\sum_{x_{n}^{+}(y_{1})}^{(x_{n}^{+}(x_{1}))}} = (I-m) \begin{pmatrix} x_{n}^{+}(x_{1}) \\ \vdots \\ x_{n}^{+}(x_{n}) \end{pmatrix} = (I-m) \begin{pmatrix} x_{n}^{+}(x_{1}) \\ \vdots \\ x_{n}^{+}(x_{n}) \end{pmatrix}.$$

(E) Intuitively, set
$$x = \eta + \tilde{Z} \tau i X i$$
, check $x_i = X^{\dagger} \iota X \iota$

$$\begin{pmatrix} x_i^{\dagger} \iota x_i \\ \vdots \\ x_n^{\dagger} \iota x_i \end{pmatrix} = \begin{pmatrix} x_i^{\dagger} \iota y_i \\ \vdots \\ x_n^{\dagger} \iota y_i \end{pmatrix} + M q^{\tau} = (I - M) q^{\tau} + M q^{\tau}$$

All so A consultation of the second s

3") For
$$|I-m|=0$$
. Note that $\eta \in I_m(I-k) \iff$

$$\begin{pmatrix} x_i^{*}(\eta) \\ \vdots \\ x_n^{*}(\eta) \end{pmatrix} \in C(I-m) \iff \beta^{T} \begin{pmatrix} x_i^{*}(\eta) \\ \vdots \\ x_n^{*}(\eta) \end{pmatrix} = 0$$
. $\forall \beta \neq C^{\dagger}(I-m)$

: Im (I-k) = [] \(\frac{1}{2} \) \(\frac{1}{2

4°) Chwk:
$$kar(I-\frac{1}{2}x_i\otimes x_i^{\dagger})=\{\sum_{i=1}^{n}T_ix_i\mid (I-m)_{T=0}\}$$

$$\frac{f}{f}\{(T_i,\dots,q_n)\mid (I-m)_{T=0}\}=kar(I-m)$$

$$f$$
 is bijection.

E = F. Kin E = E. Wyou'te Certica Elmin et