

DM2583 Big Data in Media Technology Fall 2022

Lab 2: Sentiment Classification with Support Vector Machine

September 22, 2022

Group 10: Senane Zineb, Oumhamed Younes, Oliver Gui

Emails: {senane, oumhamed, ocwgui}@kth.se

Professor: Haibo Li

1 Diagram of Sentiment Analysis Process

Figure 1: Systematic diagram of Sentiment Analysis Process

2 Data Processing and Feature Extraction

We applied the same data processing and feature extraction steps as in Lab 1.

3 Model Selection

We used a Support Vector Machine (SVM) to perform sentiment classification on the data. SVMs using a linear kernel can classify linearly separable data, but not non-linearly separable data. To account for this possibility, we used kernels such as the Gaussian Radial Basis Function (RBF) and Sigmoid. These kernels aim to project non-linearly separable data in lower dimensions to linearly separable data in higher dimensions.

4 Model Evaluation

As per Lab 1, we used accuracy as the metric for model performance. Additionally, we will use the F1-score. The use case of the model will determine which metric is more relevant, with accuracy more relevant if the cost of false negatives and false positives are similar, and F1-score more relevant otherwise. The highest accuracy and F1-score for test and evaluation data is obtained with the RBF kernel and Tf-IDF.

Models		Bag Of Words			Tf IDF Vectorizer		
		Training	Testing	Evaluation	Training	Testing	Evaluation
Accuracy	Naive Bayes	92.2%	82.3%	80.1%	93.2%	82.8%	81.0%
	Linear SVM	99.0%	81.2%	80. 2%	95.6%	83.8%	83,4%
	SVM with RBF	99.9%	59.2%	50.3%	98.0%	84.7%	84.2%
	SVM with Sigmoid	68.9%	67.3%	70.1%	92.4%	83.5%	83.5%
F1 score	Naive Bayes	92.2%	82.2%	80.1%	93.2%	82.8%	80.9%
	Linear SVM	99.0%	81.2%	80.1%	95.5%	83.8%	83.4%
	SVM with RBF	99.9%	52.1%	35.0%	98.0%	84.7%	84.2%
	SVM with Sigmoid	68.9%	67.3%	69.3%	92.4%	83.5%	83.5%

5 Results and Limitations

Comparing the results of the SVM with the Naïve Bayesian Classifier, we observe that the SVM model applied on data processed with TF-IDF produces a better accuracy and F1-score compared to Naïve Bayesian Classifier. However, even with the models that produce the highest accuracy and F1-scores on the test and evaluation datasets, we noticed a significant drop-off in performance when using the classification model on unseen data. Hence, this shows that our model suffers from overfitting. We can ameliorate the model performance by tuning the hyper-parameters and using cross-validation. Better performance might be obtained using deep learning models such as a word-based Convolutional Neural Network or Long-Short Term Memory Recurrent Neural Network.