TIN úloha č. 1

Dávid Bolvanský xbolva00

- 1. S využitím uzáverových vlastností dokážte alebo vyvráťte nasledujúce vzťahy:
 - (a) $L_1, L_2 \in \mathcal{L}_3 \Rightarrow L_1 \setminus L_2 \in \mathcal{L}_3$
 - (b) $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2^D \Rightarrow L_1 \setminus L_2 \in \mathcal{L}_2^D$
 - (c) $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2 \Rightarrow L_1 \setminus L_2 \in \mathcal{L}_2$

 \mathcal{L}_2^D značí triedu deterministických bezkontextových jazykov.

Riešenie

- (a) $L_1 \setminus L_2$ je možné upraviť na ekvivalentný tvar obsahujúci operácie prienik a doplnok: $L_1 \cap \overline{L_2}$. Podľa vety 3.23^1 trieda regulárnych jazykov tvorí množinovú Boolovu algebru. Z Boolovej algebry plynie mimo iné aj uzavretosť voči prieniku a doplnku. Ak $L_2 \in \mathcal{L}_3$, tak aj $\overline{L_2} \in \mathcal{L}_3$. Ďalej, ak teda platí $L_1 \in \mathcal{L}_3$, $L_2 \in \mathcal{L}_3$, potom platí aj $L_1 \cap \overline{L_2}$, resp. $L_1 \setminus L_2 \in \mathcal{L}_3$. Zadaný vzťah platí.
- (b) Veta 4.27^1 hovorí o tom, že deterministické bezkontextové jazyky sú uzavrené voči prieniku s regulárnymi jazykmi a doplnku. $L_1 \setminus L_2$ je možné prepísať na tvar $L_1 \cap \overline{L_2}$. Tento tvar obsahuje prienik s regulárnym jazykom a doplnok k bezkontextovému jazyku, o ktorých podľa vety 4.27 je známe, že sú uzavreté. Zadaný vzťah platí.
- (c) Veta 4.24^1 hovorí o tom, že bezkontextové jazyky nie sú uzavrené voči prieniku a doplnku. Keď že tvar $L_1 \cap \overline{L_2}$ obsahuje doplnok bezkontextového jazyka, je táto uzáverová vlastnosť porušená.

Dôkaz sporom:

Predpokladám, že zadaný vzťah platí. Nech L_1 a L_2 sú jazyky nad konečnou abecedou Σ . Za L_1 si zvolím jazyk Σ^* , ktorý je regulárny a je teda možné vytvoriť KA, ktorý tento jazyk prijíma (veta 3.8^1). Po dosadení do pravej strany vzťahu sa získa $\Sigma^* \setminus L_2$. Tento výraz vyjadruje doplnok jazyka L_2 . Keďže doplnok BKJ nie je uzavretý podľa vety 4.24, potom nemusí platiť $\overline{L_2} \in \mathcal{L}_2$ a teda ani $L_1 \setminus L_2 \in \mathcal{L}_2$. Zadaný vzťah neplatí.

 $^{^{1} \}rm http://www.fit.vutbr.cz/study/courses/TIN/public/Texty/TIN-studijni-text.pdf$

2. Nech $\Sigma = \{0, 1, 2\}$. Uvažujme jazyk L nad abecedou $\Sigma \cup \{\#\}$ definovaný následovne:

$$L = \{ w_1 \# w_2 \mid w_1, w_2 \in \Sigma^*, \#_1(w_1) + (2 * \#_2(w_1)) = \#_1(w_2) + (2 * \#_2(w_2)) \}.$$
 Zostrojte deterministický zásobníkový automat M_L taký, že $L(M_L) = L$.

Riešenie

$$M_L = (\{q_0, q_1, q_2, q_3\}, \{0, 1, 2, \#\}, \{1, z_0\}, \delta, q_0, z_0, \{q_3\})$$

Prechodová funkcia δ je definovaná nasledovne:

$$\begin{split} &\delta(q_0,0,z_0) = \{(q_0,z_0)\} & \delta(q_0,1,z_0) = \{(q_0,1z_0)\} & \delta(q_0,2,z_0) = \{(q_0,11z_0)\} \\ &\delta(q_0,\#,z_0) = \{(q_1,z_0)\} & \delta(q_0,0,1) = \{(q_0,1)\} & \delta(q_0,1,1) = \{(q_0,11)\} \\ &\delta(q_0,2,1) = \{(q_0,111)\} & \delta(q_0,\#,1) = \{(q_1,1)\} & \delta(q_1,0,1) = \{(q_1,1)\} \\ &\delta(q_1,1,1) = \{(q_1,\varepsilon)\} & \delta(q_1,2,1) = \{(q_2,\varepsilon)\} & \delta(q_1,\varepsilon,z_0) = \{(q_3,z_0)\} \\ &\delta(q_2,\varepsilon,1) = \{(q_1,\varepsilon)\} & \delta(q_3,0,z_0) = \{(q_3,z_0)\} \end{split}$$

3. Dokážte, že jazyk L z predchádzajúceho príkladu nie je regulárny.

Riešenie

Predpokladajme, že jazyk Lje regulárny jazyk. Potom podľa vety 3.17^1 o Pumping lemme platí:

$$\exists k > 0 : \forall w \in L : |w| \ge k \Rightarrow \exists x, y, z \in \Sigma^* :$$

$$w = xyz \ \land \ y \ne \varepsilon \ \land |xy| \le k \ \land \forall m \ge 0 : xy^mz \in L$$

Vyberiem si reťazec w:

$$w = 1^k \# 1^k, w \in L$$
$$|w| = 2k + 1 \ge k$$

x, y, z si vyberiem nasledovne:

$$x = 1^{l}$$
 $l \ge 0$
 $y = 1^{m}$ $m > 0$
 $z = 1^{k-m-l} \# 1^{k}$ $l + m \le k$

Iterácia
$$m=0$$
: $xy^0z=1^l(1^m)^01^{k-m-l}\#1^k=1^{k-m}\#1^k$

Ale $1^{k-m}\#1^k\notin L$ - došlo k sporu. Predpoklad, že jazyk L je regulárny, neplatí. Jazyk L nie je regulárny.

Nech $G_P = (N, \Sigma, P, S)$ je pravá lineárna gramatika. Navrhnite a formálne popíšte algoritmus, ktorý pre zadanú pravú lineárnu gramatiku $G_P = (N, \Sigma, P, S)$ vytvorí ľavú lineárnu gramatiku G_L takú, že $L(G_P) = L(G_L)$.

Algoritmus demonštrujte na gramatike $G=(\{S,A,B\},\{a,b\},P,S)$ s nasledujúcimi pravidlami:

$$S \rightarrow abA \mid bS$$

$$A \rightarrow bB \mid S \mid ab$$

$$B \rightarrow \varepsilon \mid aA$$

Riešenie

Vstup: pravá lineárna gramatika $G_P = (N, \Sigma, P, S)$ **Výstup:** ľavá lineárna gramatika $G_L = (N', \Sigma', P', S')$ taká, že $L(G_P) = L(G_L)$

Netoda:
1.
$$N' = N \cup \{S'\}, S' \notin N$$

2. $\Sigma' = \Sigma$
3. $P' =$

$$2. \Sigma' = \Sigma$$

3.
$$P' =$$

$$\{B \rightarrow Ax \mid (A \rightarrow xB) \in P \land A, B \in N \land x \in \Sigma^*\}$$

$$\cup$$

$$\{S' \rightarrow Ax \mid (A \rightarrow x) \in P \land A \in N \land x \in \Sigma^*\}$$

$$\cup$$

$$\{S \rightarrow \varepsilon\}$$

4. S' je štartovací symbol v G_L

Demonštrácia algoritmu na zadanej gramatike G:

1.
$$N' = N \cup \{S'\}$$

$$2. \Sigma' = \Sigma$$

3. Aplikovanie bodu 3 vytvoreného algoritmu spôsobí nasledovné transformácie:

pravidlo v P	pravidlo v P'
$S \to abA$	$A \rightarrow Sab$
$S \to bS$	$S \to Sb$
$A \rightarrow bB$	$B \to Ab$
$A \to S$	$S \to A$
$A \rightarrow ab$	$S' \to Aab$
$B \to \varepsilon$	$S' \to B$
$B \to aA$	$A \rightarrow Ba$
	$S \to \varepsilon$

Množina pravidiel P' obsahuje nasledovné pravidlá:

$$S^{'} \rightarrow Aab \mid B$$

$$S \rightarrow A \mid Sb \mid \varepsilon$$

$$A \rightarrow Sab \mid Ba$$

$$B \rightarrow Ab$$

Príklad derivácie pomocou pravidiel gramatík
$$G_P$$
 a G_L na reťazec $ababb$: $S \underset{G_P}{\Longrightarrow} abA \underset{G_P}{\Longrightarrow} abS \underset{G_P}{\Longrightarrow} ababA \underset{G_P}{\Longrightarrow} ababbB \underset{G_P}{\Longrightarrow} ababb$

$$S^{'} \underset{G_{L}}{\Longrightarrow} B \underset{G_{L}}{\Longrightarrow} Ab \underset{G_{L}}{\Longrightarrow} Sabb \underset{G_{L}}{\Longrightarrow} Aabb \underset{G_{L}}{\Longrightarrow} Sababb \underset{G_{L}}{\Longrightarrow} ababb$$

- 5. Dokážte, že jazyk $L=\{w\in\{a,b\}^*\mid \#_a(w)mod\ 3\neq 0\land \#_a(b)>0\}$ je regulárny. Postupujte nasledovne:
 - Definujte \sim_L pre jazyk L.
 - \bullet Zapíšte rozklad Σ^*/\sim_L a určite počet tried tohto rozkladu.
 - Ukážte, že jazyk L je zjednotením niektorých tried rozkladu Σ^*/\sim_L .

Riešenie

- (a) $\forall u, v \in \Sigma^* : u \sim_L v \Leftrightarrow (\#_a(u) mod \ 3 = \#_a(v) mod \ 3) \wedge [(\#_b(u) = 0 \wedge \#_b(v) = 0) \vee (\#_b(u) > 0 \wedge \#_b(v) > 0)]$
- (b) Σ^*/\sim_L : $L_1 = \{w \in \{a,b\}^* \mid \#_a(w) \mod 3 = 0 \land \#_b(w) = 0\}$ $L_2 = \{w \in \{a,b\}^* \mid \#_a(w) \mod 3 = 0 \land \#_b(w) > 0\}$ $L_3 = \{w \in \{a,b\}^* \mid \#_a(w) \mod 3 = 1 \land \#_b(w) = 0\}$ $L_4 = \{w \in \{a,b\}^* \mid \#_a(w) \mod 3 = 1 \land \#_b(w) > 0\}$ $L_5 = \{w \in \{a,b\}^* \mid \#_a(w) \mod 3 = 2 \land \#_b(w) = 0\}$ $L_6 = \{w \in \{a,b\}^* \mid \#_a(w) \mod 3 = 2 \land \#_b(w) > 0\}$

Počet tried rozkladu je 6.

(c) $L = L_4 \cup L_6$

Relácia \sim_L má konečný index (index = 6) a L je zjednotením niektorých tried rozkladu (L_4, L_6) . Podľa vety 3.20^1 je potom ekvivalentným tvrdením, že jazyk L je prijímaný DKA. Jazyk L je regulárny jazyk.