Trabajo de dinámica

Konrad Tolivia Golubinski

22 de mayo de 2019

Índice

1.	Método Denavit-Hartenberg	2
2.	Cálculo de los momentos de inercia	3
	2.1. Aproximación a cilindros rígidos	3
	2.2. Pares resultantes en configuración más desfavorable	5
3.	Documentación de los motores	7

Resumen

El objetivo del trabajo es el modelado dinámico y la selección de motores junto a sus respectivas reducciones del robot IRB1520ID

1. Método Denavit-Hartenberg

Figura 1. Posicionamiento de los ejes según norma. Los ejes inclinados indican dirección perpendicular al papel hacia persona. Los sistemas de ejes 4 y 5 están superpuestos en el círculo señalado en el dibujo.

	θ	d	a	α
0-1	$ heta_1$	453	160	$\frac{\pi}{2}$
1-2	$\theta_2 + \frac{\pi}{2}$	0	590	0
2-3	θ_3	0	200	$\frac{\pi}{2}$
3-4	$ heta_4$	723	0	$-\frac{\pi}{2}$
4-5	θ_5	0	0	$\frac{\pi}{2}$
5-6	$\theta_6 + \pi$	200	0	0

Tabla 1. Tabla Denavit-Hartenberg basada en los ejes de la figura Figura 1.

2. Cálculo de los momentos de inercia

En este apartado se calcularán los momentos de inercia de los eslabones del robot. Se hará uso de una aproximación a cilindros rígidos de radio r y altura h. La aproximación la he llevado a cabo debido a que el programa inventor no calculaba los momentos del segundo eslabón, y no dejaba cambiar las propiedades de masa. No obstante, menos el segundo eslabón, el cuál es una aproximación, el volumen del resto de eslabones está calculado con el programa Inventor.

2.1. Aproximación a cilindros rígidos

Se cogerá el volumen de cada eslabón calculado en inventor, incluida la base, que no más adelante no habrá que tenerla en cuenta para las inercias, se suma el volumen total:

$$V_{tot} = 0.081436902 \ [m^3]$$

siendo las masa $m=170\ Kg$, la densidad media de cada eslabón será:

$$\rho = \frac{m}{V_{tot}} = 2087,\!6826 \; [Kg/m^3]$$

Con éstos datos calcularemos las inercias respecto del centro de masas de cilindro:

$$I_{xx} = I_{yy} = \frac{1}{12}m(3r^2 + h^2) [Kg \cdot m^2]$$

$$I_{zz} = \frac{1}{2}mr^2 [Kg \cdot m^2]$$
(1)

Con el teorema de Steiner calcularemos los mo-Figura 2. Represen- mentos respecto del sistema DH. tación cilindro rígido

$$I = I_{CM} + md^2 (2)$$

El la tabla siguiente se muestran las inercias y en el caso de la columna $I_{xx}=I_{yy}$ se muestra el añadido del teorema de Steiner. La componente I_{zz} no se ve afectada. La distancia d se considera h/2 en todos los casos.

	h	r	V	$I_{xx} = I_{yy}$	I_{zz}
1	0,25	0,151	0,0179	0,408 + 0,5839	0,426
2	0,5	0,1358	0,027	1,443 + 3,52	0,5381
3	0,18	0,14055	0,0111	$0,\!178 + 0,\!189$	0,23
4	0,4	0,0465	$2,69 \cdot 10^{-3}$	0,078 + 0,2246	$6,07 \cdot 10^{-3}$
5	0,2	0,029	$5,\!28\cdot10^{-4}$	$3.9 \cdot 10^{-3} + 0.011$	$4,63 \cdot 10^{-4}$
6	0,035	0,029	$9,2\cdot 10^{-5}$	$6 \cdot 10^{-5} + 5.9 \cdot 10^{-5}$	$8,07 \cdot 10^{-5}$

Tabla 2. Tabla con las medidas de los cilindros aproximados y los momentos respecto a los sistemas de *Denavit-Hartenberg* representados en la figura Figura $\tilde{1}$. Todos los parámetros se encuentran en sistema internacional [Kg, m].

2.2. Pares resultantes en configuración más desfavorable

La configuración más desfavorable del robot en cuanto a pares ejercidos (configuración articular de pares máximos) será en la que el robot se disponga de manera cuasi horizontal (la morfología del robot impide la extensión de los eslabones en línea). Las coordenadas para esta configuración serán las siguientes:

$$q = \left[0 \ , \ -\frac{4}{9}\pi \ , \ \frac{4}{9}\pi \ , \ 0 \ , \ 0 \ , \ 0\right]$$

Figura 3. Configuración de posición más desfavorable

Insertando los datos de nuestro robot en el script *motor_selection.m* y tras haber conseguido una configuración óptima de reducciones, tras haber probado distintos tipos y con los catálogos adjuntos, obtenemos los siguientes datos:

(a) Velocidades máximas articulares

(b) Aceleraciones máximas articulares

(c) Pares que se ejercen en la posición más desfavorable

(d) Pares que ejercen los motores, tras aplicar los coeficientes de reducción

(e) Velocidades en r.p.m de los motores

,4 200
,4 200
,1 200
170
,3 50
,2 20
,6 20
]

Tabla 3. Tabla con los valores de pares y sus velocidades de giro tras aplicar la reducción. Medidas expresedades en $N\cdot m$ y r.p.m .

Los motores elegidos para cada articulación son los siguientes:

- 1. BSM63N233
- 2. BSM80N233
- 3. BSM63N133
- 4. Correspondiente a los tres últimos motores BSM60R-140XX

Los datos de los motores se encuentran más adelante; se ha insertado sólo las páginas de los motores utilizados para ahorrar tiempo de búsqueda.

3. Documentación de los motores

AC servo motors BSM N-series performance curves

BSM63N-133

BSM63N-150

Model number		BSM63N-133	BSM63N-150	BSM63N-175
General				
Continuous stall torque	lb-in	6.8	6.8	6.8
	Nm	0.77	0.77	0.77
Continuous current	amps	2.01	1.83	1.01
Peak torque	lb-in	27.25	27.25	27.25
	Nm	3.08	3.08	3.08
Peak current	amps	7.24	6.59	3.64
Thermal resistance	°C/watt	2.2	2.2	2.2
Thermal time constant	Min	13	1.3	13
Mechanical time constant	msec	1	1.1	1
Electrical time constant	msec	1.5	2	2.1
Rated speed @ 300 volts	rpm	9000	6000	4000
Rated speed @ 160 volts	rpm	4000	3200	2130
Electrical				
Torque constant	lb-in/amp	3.75	4.12	7.46
	Nm/amp	0.425	0.467	0.844
Voltage constant	Vpk/krpm	36.3	39.9	72.1
	Vrms/krpm	25.7	28.2	51
Resistance	ohms	9.4	12.1	37.4
Inductance	mH	12.77	17.2	53.63
Mechanical				
Inertia	lb-in-s ²	0.00018	0.00018	0.00018
	Kg-cm ²	0.2031	0.2031	0.2031
Maximum speed (1)	rpm	10,000	10,000	10,000
Number of motor poles	_	4	4	4
Weight	lbs/Kg	3.7/1.68	3.7/1.68	3.7/1.68

(1) Maximum speed can be limited by bus volts and feedback types.

BSM63N-175

AC servo motors BSM N-series performance curves

BSM63N-233

BSM63N-250

Model number		BSM63N-233	BSM63N-250	BSM63N-275
General				
Continuous stall torque	lb-in	13	13	13
	Nm	1.47	1.47	1.47
Continuous current	amps	3.93	2.82	1.94
Peak torque	lb-in	52.04	52.04	52.04
	Nm	5.88	5.88	5.88
Peak current	amps	14.1	10.1	6.96
Thermal resistance	°C/watt	1.9	1.9	1.9
Thermal time constant	Min	19	19	19
Mechanical time constant	msec	0.69	0.64	0.62
Electrical time constant	msec	1.5	2	2.1
Rated speed @ 300 volts	rpm	9000	6000	4000
Rated speed @ 160 volts	rpm	4800	3200	2130
Electrical				
Torque constant	lb-in/amp	3.67	5.12	7.47
	Nm/amp	0.415	0.579	0.844
Voltage constant	Vpk/krpm	35.4	49.4	72.1
	Vrms/krpm	25	34.9	51
Resistance	ohms	3.1	5.6	11.6
Inductance	mH	4.75	11.57	24.77
Mechanical				
Inertia	lb-in-s ²	0.00034	0.00034	0.00034
	Kg-cm ²	0.384	0.384	0.384
Maximum speed (1)	rpm	10,000	10,000	10,000
Number of motor poles	_	4	4	4
Weight	lbs/Kg	5/2.3	5/2.3	5/2.3

(1) Maximum speed can be limited by bus volts and feedback types.

BSM63N-275

AC servo motors BSM N-series performance curves

BSM80N-233

BSM80N-250

Model number		BSM80N-233	BSM80N-250	BSM80N-275
General				
Continuous stall torque	lb-in	28.3	28.3	28.3
	Nm	3.2	3.2	3.2
Continuous current	amps	8.76	5.61	4
Peak torque	lb-in	113.28	113.28	113.28
	Nm	12.8	12.8	12.8
Peak current	amps	31.5	20.2	14
Thermal resistance	°C/watt	1.5	1.5	1.5
Thermal time constant	Min	28	28	28
Mechanical time constant	msec	0.95	0.84	0.72
Electrical time constant	msec	3.2	2.9	3.9
Rated speed @ 300 volts	rpm		6000	4000
Rated speed @ 160 volts	rpm	4800	3200	2130
Electrical				
Torque constant	lb-in/amp	3.59	5.6	8
	Nm/amp	0.406	0.633	0.904
Voltage constant	Vpk/krpm	34.7	54.1	77.3
	Vrms/krpm	24.6	38.29	54.7
Resistance	ohms	0.832	1.81	3.2
Inductance	mH	2.73	5.3	12.73
Mechanical				
Inertia	lb-in-s ²	0.00162	0.00162	0.00162
	Kg-cm ²	1.82	1.82	1.82
Maximum speed	rpm	7,000	7,000	7,000
Number of motor poles	_	4	4	4
Weight	lbs/Kg	10/4.6	10/4.6	10/4.6

BSM80N-275

BSM R performance and specification

Catalog Number		BSM60R-140XX	BSM60R-240XX	BSM60R-340XX	BSM80R-340XX
Output power	Watts	100	200	400	750
General					
Rated torque	Nm	0.32	0.64	1.27	2.39
Rated current	Arms	0.9	1.7	3.3	5.0
Peak torque	Nm	0.95	1.91	3.82	7.16
Peak current	Arms	2.6	5.0	9.7	14.5
Continuous stall torque	N·m	0.32	0.64	1.27	2.39
Continuous current	Arms	0.8	1.6	3.2	4.8
Rated speed	rpm	3000	3000	3000	3000
Electrical		•		· 	
Torque constant	N·m/amp	0.38	0.39	0.40	0.50
Voltage constant	Vrms/krpm	23.0	23.7	24.0	30.1
Resistance	Ohms	13.47	5.00	1.93	0.87
Inductance	mH	33.33	16.00	7.33	5.20
Electrical time constant	ms	2.5	3.2	3.8	6.0
Mechanical	<u>I</u>		<u> </u>	L	
Inertia [with brake]	1	0.18	0.27	0.43	1.30
[without brake]	kg-cm ²	0.086	0.18	0.34	1.06
Maximum speed	rpm	5000	5000	5000	5000
Mechanical time constant					
[with brake]	ms	2.5	1.3	0.8	0.7
[without brake]		1.2	0.9	0.6	0.6
Number of motor poles		8	8	8	8
Max radial load	N (at 20mm)	78.4	196.0	196.0	343.0
Max thrust load	N	39.2	68.6	68.6	98
Weight [with brake]	kg	0.9	1.4	1.8	3.4
[without brake]		0.6	0.9	1.3	2.5
Brake data	100/	104	0.4	104	0.4
Rated voltage	VDC ±10%	24	24	24	24
Rated torque (min)	Nm	1.27	1.27	1.27	2.39
Rated current	Arms	0.33	0.33	0.33	0.33
Rated input power	W	8	8	8	8
Armature release time (max)	ms	20	20	20	30
Armature pull-in time (max)	ms	50	50	50	60

BSM R performance and specification

