Ćwiczenia laboratoryjne - 4

Projektowanie i harmonogramowanie produkcji – metoda CPM-COST

Metody analizy sieciowej

1) Deterministyczne – czasy trwania czynności są określane jednoznacznie (jedna liczba)

CPM (ang. Critical Path Method) - metoda ścieżki krytycznej

CPM-COST - metoda rozszerzona o analizę kosztową

Metody CPM stosuje się do planowania i kontroli projektów, dla których są znane technologie i powiązania organizacyjne. Wszystkie czynności w strukturze muszą być zorganizowane. Przykłady projektów: inwestycje budowlane i remontowe, przedsięwzięcia związane z produkcją skomplikowanych produktów

2) Stochastyczne - czasy trwania czynności są określane z pewnym prawdopodobieństwem

PERT (ang. Program Evaluation and Review Technique) – technika oceny i kontroli programu

PERT-COST - metoda rozszerzona o analizę kosztową

Metody CPM-COST i PERT-COST

Metody CPM-COST i PERT-COST uwzględniają obok analizy ilościowej aspekt ekonomiczny przedsięwzięcia oraz możliwość modyfikacji modelu przez kompresję sieci wynikającą ze zbyt długiego dla np. inwestora/odbiorcy okresu realizacji przedsięwzięcia. Czas trwania przedsięwzięcia obliczony za pomocą sieci, jest tzw. czasem normalnym, tj. związanym z najniższym bezpośrednim kosztem realizacji danego przedsięwzięcia.

Optymalizacja czasowo kosztowa przedsięwzięcia związana jest ze skracaniem **normalnych okresów** trwania czynności lezących w danym momencie na **ścieżce krytycznej**.

Zakładając liniowy przebieg zależności kosztów wykonania czynności od czasu jej trwania obliczamy tzw. średni gradient kosztu.

- K współczynnik wzrostu kosztów bezpośrednich czynności na skutek skrócenia czasu jaj trwania o Δt (średni gradient kosztów),
- t_n normalny czas trwania czynności, któremu odpowiadają najniższe koszty wykonania czynności K_n ,
- t_{gr} graniczny czas, najkrótszy ze względów technicznych i technologicznych przy koszcie granicznym K_{gr} .

Algorytm kompresji sieci

- 1). Na podstawie normalnych czasów trwania czynności wyznacza się termin końcowy i ścieżkę krytyczną.
- 2). Zestawienie czynności krytycznych i obliczenie dla nich gradientów kosztów.
- 3). Wyeliminowanie z zestawienia tych czynności krytycznych, dla których $t_n = t_{gr}$.
- 4). Proces skracania czynności przedsięwzięcia rozpoczyna się od czynności krytycznej o najniższym gradiencie kosztów.
- 5). Należy starać się skrócić maksymalnie czas trwania czynności. Występują dwa ograniczenia:
 - a) czas graniczny danej czynności,
 - b) pojawienie się nowej ścieżki krytycznej.

- 6). Jeżeli występuje dwie lub więcej ścieżek krytycznych w sieci, to skraca się czas o tę samą wielkość na wszystkich równoległych ścieżkach krytycznych.
- 7). Najkrótszy termin realizacji przedsięwzięcia uzyskuje się, gdy wszystkie czynności leżące na którejkolwiek ścieżce krytycznej osiągają czasy graniczne. Dalsze jej skracanie jest wówczas niemożliwe.
- 8). Koszty przyspieszenia na każdym etapie oblicza się jako iloczyn gradientu kosztów dla danej czynności i liczby jednostek czasu, o które dana czynność krytyczna została skrócona.

$$Kp_{i-j}=K_{i-j}\cdot\Delta t$$

Łączne koszty przyspieszenia są sumą kosztów poniesionych na poszczególnych etapach.

$$Kp_c = \sum Kp_{i-j}$$

- **Koszty bezpośrednie** koszty, które mogą być odniesione wprost na jednostki kalkulacyjne na podstawie dokumentacji źródłowej bez konieczności dodatkowych przeliczeń (np. materiały, płace)
- Koszty pośrednie koszty, których nie można na podstawie dokumentów źródłowych przypisać do konkretnych jednostek kalkulacyjnych, są one rozliczane za pomocą tzw. Kluczy podziałowych (np. koszty wydziałowe)
- **Jednostka kalkulacyjna** np. wyrób, część wyrobu, wyodrębniona faza procesu technologicznego.
 - Koszt całkowity = koszty bezpośrednie + koszty pośrednie

Zadanie 1

Proszę dokonać skrócenia całkowitego czasu montażu suwnicy bramowej na nowym stanowisku do składowania złomu, tak aby koszt przedsięwzięcia był jak najmniejszy

i-j	t_n , dni	t_{gr} , dni	K_n , tys zł	K_{gr} , tys zł	opis czynności
1-2	8	8	220	280	montaż szyn jezdnych
1-4	10	5	100	150	montaż mostów
2-3	6	4	300	400	montaż pomostu
3-6	12	10	260	300	doprowadzenie zasilania
4-5	15	15	150	150	montaż instalacji elektrycznej
5-6	10	2	200	360	montaż napędów

Logistyka w Hutnictwie

Ćw. 4

Zadanie 2

Na podstawie danych z tabeli proszę zbudować sieć zależności oraz dokonać analizy czasowo-kosztowej pewnego procesu walcowania na walcowni gorącej blach. Koszty pośrednie realizacji tego procesu wynoszą 50 000 zł. Ustalono, że skrócenie czasu realizacji procesu spowoduje redukcję kosztów pośrednich o 2000 zł na każdą godzinę.

czyn ność	nast. zdarz.	t_n , h	t_{gr} , h	K_n , tys zł	K_{gr} , tys zł	opis czynności
A	1-2	6	4	10	16	transport slabów
В	2-3	4	3	13	15	nagrzewanie w piecach przepychowych
C	3-4	5	5	12	12	walcowanie
D	3-5	8	6	14	16	walcowanie
Е	4-6	10	10	6	6	prostowanie blach
F	5-7	6	6	11	11	prostowanie blach
G	6-7	3	2	4	8	obróbka cieplna
Н	7-8	2	2	3	3	spedycja

Logistyka w Hutnictwie

Ćw. 4