NewTH4-24 [大阪大]

図のようなシリンダーに組み込まれたコンデンサーを考える.断面積Sのシリンダーに2つの導体の極板A, Bが挿入されている.極板A, B は,図のように導線によって,内部抵抗の無視できる起電力 V_0 の電池,抵抗,スイッチとつながれている.極板A は固定されていて,極板B は極板A と平行を保ったまま,なめらかに動けるようになっており,ピストンの役割をしている.A とB の間には,n [mol] の単原子分子理想気

体 C が閉じ込められている。シリンダーの外は圧力 p_0 ,温度 T_0 の外気である。シリンダーおよび気体は絶縁体であり,気体の誘電率は ε_0 である。シリンダーには開閉式の放熱窓があり,開いているときには気体 C と外気の間で熱のみを通し,閉じているときには熱を通さない。シリンダーの他の部分および極板は熱を通さない。また,シリンダー内部にはヒーターがあり,気体 C に熱を加えることができる。極板,およびシリンダーの熱容量は無視する。極板間の距離はシリンダーの半径に比べて十分に小さいとする。気体定数を R として,以下の問いに答えよ。

まず,スイッチが切れていて放熱窓が開いている場合を考える.気体 C の温度は T_0 で圧力は p_0 になっている.極板 A,B は帯電していなかった.このときの極板 A,B の間の距離を l_0 とする.

(1) l_0 を, n, R, p_0 , T_0 , S のうち必要なものを用いて表せ.

次に、スイッチを切ったまま放熱窓を閉じ、ヒーターで熱を加え、温度がTになったところで加熱をやめた.

- (2) 極板 B が外気に対してした仕事を, p_0 , T_0 , T, S, l_0 のうち必要なものを用いて表せ.
- (3) この過程でヒーターから加えた熱量を,n,R, T_0 ,T のうち必要なものを用いて表せ.

次に、放熱窓を開き、気体 C の温度が T_0 になるまで待つ。その後、スイッチを入れたところ、極板 B は、ゆっくり動いて止まった。このとき、極板 A に -q、極板 B に +q (q>0) の電荷が表れ、極板 A,B 間の電界(電場)の強さは E となった.

- (4) E を ε_0 , q, S, l_0 のうち必要なものを用いて表せ.
- (5) 気体 C の圧力を、q、E、 p_0 、S のうち必要なものを用いて表せ、ただし、極板 B が電界から受ける力の大きさは $\frac{qE}{2}$ であることに注意せよ、これは、極板 B 上の電荷は、極板 A 上の電荷 -q が作る電界 $\left(\text{強さ}\frac{E}{2}\right)$ のみから力を受けるためである.
- (6) 極板 A, B の間の距離を, q, E, p_0 , S, l_0 のうち必要なものを用いて表せ.

- (7) 電荷 q を, ε_0 , V_0 , p_0 , S, l_0 のうち必要なものを用いて表せ. ただし, $V_0=0$ のときには q=0 と なることに注意せよ.
- (8) スイッチを入れた後,電池がした仕事は qV_0 である.また,外気は極板 B に対して仕事をしている. これらのエネルギーの行き先として当てはまるものを,次からすべて選び,記号を記せ.
 - ① 気体 C の内部エネルギーの増加
 - ② 放熱窓を通して外気に逃げた熱
 - ③ 抵抗から発生したジュール熱
- (9) (8) の解答以外のエネルギーの行き先を1つ挙げよ.