

MODULE TITLE	Complex Analysis	CREDIT VALUE	15
MODULE CODE	MTH2009	MODULE CONVENER	Dr Henri Johnston (Coordinator)
DURATION: TERM	1	2	3
DURATION: WEEKS	0	11	0
Number of Students Takin	g Module (anticipated	200	

DESCRIPTION - summary of the module content

The central object of study in analysis is the limit and related notions of convergence, continuity, differentiation, and integration.

In this module, we carefully and rigorously develop an understanding of the analysis of functions of a complex variable. You will learn how to rigorously handle differentiation, integration, analyticity, contour integration, power series, and topology of the complex plane. Quite surprisingly, complex analysis is in many ways simpler than real analysis and has many practical applications.

The material in this module provides foundations for the study of Analytic Number Theory (MTHM041) and MTHM041 (Analytic Number Theory), etc. in pure mathematics as well as being the basis for many techniques for solving practical problems in economics, science, and engineering. Hence it is highly recommended to all mathematics students

Pre-requisite modules: MTH2008 (or equivalent)

AIMS - intentions of the module

The objective of this module is to provide you with a logically based introduction to complex analysis. The primary objective is to define all the basic concepts clearly and to develop them sufficiently to provide proofs of useful theorems. This enables you to see the reason for studying analysis, and develops the subject to a stage where you can use it in a wide range of applications.

INTENDED LEARNING OUTCOMES (ILOs) (see assessment section below for how ILOs will be assessed)

On successful completion of this module, you should be able to:

Module Specific Skills and Knowledge:

- 1 state and prove key theorems in complex analysis using a rigorous approach;
- 2 understand properties of analytic functions over the complex numbers;
- 3 use contour integrals for computational and theoretical purposes;

Discipline Specific Skills and Knowledge:

- 4 apply fundamental mathematical concepts, manipulations and results in analysis;
- 5 formulate rigorous arguments as part of your mathematical development;

Personal and Key Transferable/ Employment Skills and Knowledge:

- 6 think analytically and use logical argument and deduction;
- 7 communicate your ideas effectively in writing and verbally;
- 8 manage your time and resources effectively.

SYLLABUS PLAN - summary of the structure and academic content of the module

- Epsilon-delta function limits; continuity; differentiability in the complex plane;
- Basic topology in the plane;
- Cauchy-Riemann equations: contrast to real analytic functions:
- Contour integrals; poles and singularities (isolated, removable, essential); residues; Cauchy's Theorem; Cauchy integral formulae; Taylor series and Laurent series;
- Maximum modulus principle, Liouville's theorem, fundamental theorem of algebra, meromorphic functions, residue theorem;
- Rouché's theorem, principle of the argument;
- Applications to definite integrals, summation of series and location of zeros.

LEARNING AND TEACHING							
LEARNING ACTIVITIES AND TEACHING METHODS (given in hours of study time)							
LEARNING ACTIVITIES AND TEACHING I	ALTITODS (give	in in flours of study time,					
Scheduled Learning & Teaching Activities	38.00	38.00 Guided Independent Study		Placement / Study Abroad	0.00		
DETAILS OF LEARNING ACTIVITIES AND TEACHING METHODS							
Category	Hours of study time		Descrip	tion			
Scheduled Learning and Teaching Activities	33		Lectures including example classes				
Scheduled Learning and Teaching Activities				Tutorials			
Guided Independent Study 112			Lecture	and assessment preparation; wider re	eading		

Λ	22	FC	SM	IFN	JТ
м.	33	ட	יוכ		4 I

FORMATIVE ASSESSMENT - for feedback and development purposes; does not count towards module grade

Size of Assessment (e.g. Form of Assessment II Os Assessed Feedback Method duration/length)

Discussion at tutorials: tutor feedback on Exercise sheets 5 x 10 hours ΑII

submitted answers

SUMMATIVE	ASSESSMENT	(% of credit)	
JOHNINATIVE	ASSESSIMENT	(/o Oi Ciedit)	

Practical Exams Coursework 10 Written Exams 90

DETAILS OF SUMMATIVE ASSESSMENT

Form of Assessment	% of Credit	Size of Assessmen (<u>e.g.</u> duration/length)	t ILOs Assessed	Feedback Method
Written Exam - closed book	90%	2 hours (Summer)	All	Written/verbal on request, SRS
Coursework Exercises 1	5%	15 hours	All	Annotated script and written/verbal feedback
Coursework Exercises 2	5%	15 hours	All	Annotated script and written/verbal feedback

DETAILS OF RE-ASSESSMENT (where required by referral or deferral)

Original Form of Assessment	Form of Re-assessment	ILOs Re-assessed	Time Scale for Re-reassessment
Written Exam*	Written Exam (2 hours) (90%)	All	August Ref/Def Period
Coursework Exercises 1*	Coursework exercises (5%)	All	August Ref/Def Period
Coursework Exercises 2*	Coursework exercises (5%)	All	August Ref/Def Period

^{*}Please refer to reassessment notes for details on deferral vs. Referral reassessment

RE-ASSESSMENT NOTES

Deferrals: Reassessment will be by coursework and/or exam in the deferred element only. For deferred candidates, the module mark will be uncapped.

Referrals: Reassessment will be by a single written exam worth 100% of the module only. As it is a referral, the mark will be capped at 40%.

RESOURCES

INDICATIVE LEARNING RESOURCES - The following list is offered as an indication of the type & level of information that you are expected to consult. Further guidance will be provided by the Module Convener

Web based and Electronic Resources:

ELE: http://vle.exeter.ac.uk

KEY WORDS SEARCH

Reading list for this module:

Туре	Author	Title			Edition	Publisher	Year	ISBN	Search
Set	Stewart, I. & Tall, D.	Complex Analysis (the Hitchniker's Gillide to the Plane)				Cambridge University Press	1983	000-0-521- 28763-4	[Library]
Set	Set Priestley, H.A. Introduction to Complex Analysis				Oxford University Press	2003	000-0-198- 53428-0	[Library]	
Set	Howie, John Complex Analysis					Springer	2003	000-1-852- 33733-8	[Library]
Set	Spiegel, M.R.	iegel, M.R. Schaum's outline of theory and problems of complex variables: with an introduction to conformal mapping and its appreciation				McGraw Hill	1981	000-0-070- 84382-1	[Library]
Set	Rudin, R.	Principles of Mathematical Analysis			3rd	McGraw-Hill Book Co.	1976		[Library]
CRED	OIT VALUE		15	ECTS VALUE		15			
PRE-	REQUISITE M	ODULES	MTH2008						
CO-R	EQUISITE MO	DULES							
NQF	NQF LEVEL (FHEQ)		5	AVAILABLE AS DISTANCE	LEARNIN	IG No			
ORIGIN DATE			Wednesday 26 February 2020	LAST REVISION DATE		Wednesday 20	Wednesday 20 September 2023		

Complex numbers; analysis; series; functions; limits; continuity; derivatives; integration; residue; contour integral