

LEARNING BY EXAMPLE

ARTIFICIAL INTELLIGENCE | COMP 131

- Machine Learning paradigms
- Data, discriminate functions, performance, and clusters
- Supervised learning
- Decision trees
- Questions?

- No human experts
 - Industrial and manufacturing control
 - Mass spectrometer analysis, drug design, astronomic discovery
- Black-box human expertise
 - Face, handwriting, and speech recognition
 - Driving a car, flying a plane
- Rapidly changing phenomena
 - Credit scoring and financial modeling
 - Diagnosis, fraud detection
- Need for customization/personalization
 - Personalized news reader
 - Movie/book recommendation

- There are many types of learning: rote learning, associative learning, learning by being told, learning from examples, learning by analogy
- Humans tend to learn from past experiences
- A computer system does not have life experiences
- A computer system learns from data as a representation of past experiences of an application domain

The ultimate goal of **Machine learning** is to learn a target function that can be used to predict the values of another unknown or complex function.

Machine Learning paradigms

- Type of feedback:
 - Labeled examples: supervised
 - None or unlabeled examples: unsupervised
 - Reward: reinforcement
- Data representation:
 - Feature vector: attribute-based
 - First-order logic or graph: relational
- Origin of the knowledge:
 - Knowledge-free: empirical
 - Knowledge-guided: analytical

The design of a ML system is affected by:

- Performance element used: utility-based agent, reactive agent, logical agent
- Functional component to be learned: classifier, evaluation function, perception-action function
- Representation of functional component: weighted linear function, logical theory, HMM
- **Feedback available**: correct action, reward, relative preferences

Supervised learning finds a prediction function given **features** and **associated labels**. The prediction function is used to **predict** the label of features **never seen:**

Classification: a finite set of labels

Ranking: Labels are a ranking number

Regression: Labels are real-valued numbers

Classification

- Face recognition
- Low-risk and high-risk loans
- Character recognition
- Spam detection
- Medical diagnosis: From symptoms to illnesses
- Biometrics: Recognition and authentication using physical and/or behavioral characteristics: Face, iris, signature, etc

Regression

- Economics/Finance: predict the value of a stock
- Epidemiology
- Car/plane navigation: angle of the steering wheel, acceleration, ...
- Temporal trends: weather over time
- Price of a used car

Ranking

- Netflix movie queue ranking
- iTunes
- Flight search
- Web pages ranking

Unsupervised learning finds a prediction function given **features** without **associated labels**. The prediction function is used to **cluster or group** the label of features **never seen:**

Unsupervised learning

Applications of Unsupervised learning are:

- Customer segmentation/grouping
- Image compression
- Protein structure motifs
- Data dimensionality reduction

Reinforcement learning learns what action to take in a sequence of examples or states to maximize a reward at the end of a sequence of actions.

BACKGAMMON

Data, discriminate functions, performance, and clusters

Data: A set of data records (also called **examples**, **instances**, or **cases**) described by:

- k attributes: A k-dimensional array representing $X_1, X_2, ... X_k$
- a class: A label for the attributes array

ATTRIBUTE SPACE

$$X = [x_1, x_2]$$

A **discriminate function** divides the space in areas that belong to different classes.

f(X) = WX = 0 will allow you to discriminate class A from B.

The problem is that we do not know the appropriate values for w_0 , w_1 , w_2 .

ATTRIBUTE SPACE

 $X = [x_1, x_2]$

Features used during learning can be anything:

- Raw pixels
- Income/ Level of savings
- Histograms
- Price/Mileage
- Image descriptors

A **learned model** helps the system to perform *T* **better** as compared to no learning. Measuring the **performance** of the model is done via several metrics:

Accuracy:
$$Accuracy = \frac{Number\ of\ correct\ classifications}{Total\ number\ of\ test\ cases}$$

Confusion matrix:

		CLASS 1	CLASS 2	CLASS 3
PREDICTED OUTPUT	CLASS 1	95%	4%	1%
	CLASS 2	0%	97%	3%
	CLASS 3	0%	0%	100%

ACTUAL OUTPUT

CLASS 1 examples are correctly classified as CLASS 1 in 95% of the cases; 4% are erroneously classified as CLASS 2; 1% are erroneously classified as CLASS 3.

RMSE:
$$RMSE = \left[\frac{1}{N}\sum_{c=1}^{N}(o_p - o_a)^2\right]^{\frac{1}{2}}$$

Clusters are groups of examples with similar features. A good cluster has the following properties:

- The intra-cluster similarity, or similarity among members of the same class, is high
- The inter-class similarity, or similarity among members of different classes, is low

How do we measure similarity or purity of a cluster?

A simple measure of purity can be the ratio between the dominant class in the cluster and its size:

$$P(C) = \frac{1}{|C|} \max_{j}(n_{j}) \quad j \in C$$

This measure assumes two things:

- Purity is measured with respect to some ground truth
- Assume that there are C clusters

Information theory provides a mathematical basis for measuring the information content.

- Information theory measures the added value of information:
 - With a fair coin, there is no information about the result of the tossing, so any prior information to the event is extremely valuable
 - With a rigged coin, the information is much less valuable
- Information theory uses bits to measure information content

Entropy can be used to measure the **impurity** or **disorder** of a cluster:

$$E(C) = -\sum_{i=1}^{|C|} P(c_i) \log_2 P(c_i) \qquad \sum_{i=1}^{|X|} P(c_i) = 1$$

This measure assumes two things:

- Purity is measured with respect to some ground truth
- Assume that there are C clusters

Supervised learning

- Training (or learning): Learn a model using the training data to minimize the prediction error of the discriminate function f
- Testing: Using unseen test data, assess the model accuracy applying f to never before testing data

Given:

- a data set D
- a task T
- a performance measure M

A computer system is said to **learn** from D to perform the task T if after learning the system's performance on T improves as measured by M.

TESTING PHASE

The data must be split in three mutually exclusive sets:

- **Training set**: It is a set of labeled examples $\{(x_1, y_1), \dots, (x_N, y_N)\}$, used for the training of the model.
- **Validation set**: It is a set of labeled examples $\{(x_1, y_1), \cdots, (x_N, y_N)\}$, used in the training phase to detect over-fitting.
- **Testing set**: It is a set of labeled examples $\{(x_1, y_1), \dots, (x_N, y_N)\}$, used after the training phase to determine the actual performance of the model.

Considerable care must be put into creating the sets.

Decision trees

Should a loan to be issues to a person?

ID	AGE	HAS JOB	OWNS HOUSE	CREDIT RATING	LOAN?
1	Young	False	False	Fair	No
2	Young	False	False	Excellent	No
3	Young	True	False	Good	Yes
4	Young	True	True	Good	Yes
5	Young	False	False	Fair	No
6	Middle	False	False	Fair	No
7	Middle	False	False	Good	No
8	Middle	True	True	Good	Yes
9	Middle	False	True	Excellent	Yes
10	Middle	False	True	Excellent	Yes
11	Old	False	True	Excellent	Yes
12	Old	False	True	Good	Yes
13	Old	True	False	Good	Yes
14	Old	True	False	Excellent	Yes
15	Old	False	False	Fair	No

Decision tree learning is a widely used techniques for classification. The **classification model** is a **tree**, called **decision tree**.

The basic idea is a **greedy divide-and-conquer recursively partition** of the training set according to the **most important** attribute (category or continuous values) of the examples.

Conditions for stopping:

- All examples for a given node belong to the same class
- There are no remaining attributes for further partitioning – majority class is the leaf
- There are no examples left

```
function DT-learning (EXAMPLES, ATTRIBUTES, P-EXAMPLES)
      return TREE
      if EXAMPLES is empty then
        return PLURALITY-VALUE (P-EXAMPLES)
      else if all EXAMPLES have the same classification then
        return the classification
      else if ATTRIBUTES is empty then
        return PLURALITY-VALUE (EXAMPLES)
      else
10
        A = argmax_{a \in attributes} Importance (a, EXAMPLES)
         tree = a new decision tree with root test A
        for each value v_k of A do
           exs = \{e : e \in examples \land e : A = v_k\}
13
           subtree = DT-learning(exs, ATTRIBUTES - A, EXAMPLES)
14
           add subtree to tree with label (A = v_k)
15
        return TREE
16
```

In order to branch the tree, we choose the attribute according to the principal of **information gain**, that is the expected reduction of entropy caused by the partitioning.

Intuitively a **good attribute** splits the examples into subsets that are (ideally) homogeneous.

Given a set of examples D:

en a set of examples D:
• We compute its entropy:
$$E(D) = -\sum_{i=1}^{|C|} P(c_i) \log_2 P(c_i)$$

• Selecting the attribute A_i will partition D into subsets $D_1, D_2, ..., D_n$. For A_i , the estimated entropy is:

$$E_{A_i}(D) = \sum_{i=1}^{v} \frac{|D_i|}{|D|} E(D_i)$$

• The **information gained** by selecting A_i to partition the data is:

$$gain(D, A_i) = E(D) - E_{A_i}(D)$$

Choose the attribute A_i with maximum information gain

Should a loan to be issues to a person?

ID	AGE	HAS JOB	OWNS HOUSE	CREDIT RATING	LOAN?
1	Young	False	False	Fair	No
2	Young	False	False	Excellent	No
3	Young	True	False	Good	Yes
4	Young	True	True	Good	Yes
5	Young	False	False	Fair	No
6	Middle	False	False	Fair	No
7	Middle	False	False	Good	No
8	Middle	True	True	Good	Yes
9	Middle	False	True	Excellent	Yes
10	Middle	False	True	Excellent	Yes
11	Old	False	True	Excellent	Yes
12	Old	False	True	Good	Yes
13	Old	True	False	Good	Yes
14	Old	True	False	Excellent	Yes
15	Old	False	False	Fair	No

$$E(D) = -\frac{6}{15} \times \log_2 \frac{6}{15} - \frac{9}{15} \times \log_2 \frac{9}{15} = \mathbf{0.971}$$

Should a loan be issued?

$$E_{Owns_house}(D) = \frac{6}{15} E(D_1) + \frac{9}{15} E(D_2) = \mathbf{0.551}$$

Owns =
$$T$$
 $D_{1 NO} = \{\}$ $D_{1 YES} = \{4, 8, 9, 10, 11, 12\}$ $E(D_1) = 0$
Owns = F $D_{2 NO} = \{1, 2, 5, 6, 7, 15\}$ $D_{2 YES} = \{3, 13, 14\}$ $E(D_2) = 0.918$

$$E_{Age}(D) = \frac{5}{15} E(D_3) + \frac{5}{15} E(D_4) + \frac{5}{15} E(D_5) = \mathbf{0.888}$$

$$Age = \text{Young}$$
 $D_{3NO} = \{1, 2, 5\}$ $D_{3YES} = \{3, 4\}$ $E(D_3) = 0.971$
 $Age = \text{Middle}$ $D_{4NO} = \{6, 7\}$ $D_{4YES} = \{8, 9, 10\}$ $E(D_4) = 0.971$
 $Age = \text{Old}$ $D_{5NO} = \{15\}$ $D_{5YES} = \{11, 12, 13, 14\}$ $E(D_5) = 0.722$

$$E_{Has_job}(D) = \mathbf{0.647}$$

 $E_{Credit_rating}(D) = \mathbf{0.608}$

$$gain(D, Owns_house) = 0.971 - 0.551 = \mathbf{0.420}$$

 $gain(D, Age) = 0.971 - 0.888 = \mathbf{0.083}$
 $gain(D, Has_job) = 0.971 - 0.647 = \mathbf{0.324}$
 $gain(D, Credit_rating) = 0.971 - 0.608 = \mathbf{0.363}$

The best first attribute is:

 $gain(D, Owns_house) = 0.420$

An important aspect of decision trees is that they can be **converted** to a set of human-readable **rules**:

Each path from the root to a leaf is a rule:


```
Own_house = TRUE → CLASS = YES

Own_house = FALSE ∧ Has_job = TRUE → CLASS = YES

Own_house = FALSE ∧ Has_job = FALSE → CLASS = NO
```

One can handle continuous values attributes by splitting into two (or more) intervals at each node:

How to find the best threshold to divide?

- Use information gain or gain ratio again
- Sort all the values of a continuous attribute in increasing order $\{v_1, v_2, ..., v_r\}$
- Select one threshold between two adjacent values v_i and v_{i+1} . Try all possible thresholds and find the one that maximizes the gain (or gain ratio)

A tree may **overfit** the training data when:

- The accuracy is very good on training data but poor on test data
- The tree too deep and too many branches, some may reflect anomalies due to noise or outliers

Two approaches to avoid overfitting:

- Pre-pruning: Halt tree construction early. It is difficult to decide because we do not know what may happen subsequently if we keep growing the tree
- Post-pruning: Remove branches or sub-trees from a fully formed tree. Statistical methods can be used to estimates the errors at each node for pruning

Random forest classification is a machine learning technique that:

- Randomly divides the examples in groups
- Generates a tree for each group of examples
- Classifies incoming data seeking an answer from all the trees
- Selects the class of belonging of the example via a majority vote

GOOD

- It is one of the most widely used techniques for classification
- The classification accuracy is competitive with other methods
- It is very efficient

BAD

- Decision trees are not unique
- Finding the best tree is NP-hard
- All current tree building algorithms are heuristic algorithm

QUESTIONS?

ARTIFICIAL INTELLIGENCE COMP 131

FABRIZIO SANTINI