Applying Theorems on Triangle Inequality

Jonathan R. Bacolod

Sauyo High School

1. measures greater than $m\angle 7$

1. measures greater than $m\angle 7$ $\angle 5, \angle 9$

2. measures less than $m\angle 7$

2. measures less than $m \angle 7$ $\angle 1, \angle 3$

3. measures greater than $m\angle 6$

3. measures greater than $m\angle 6$ $\angle 2, \angle 9$

4. measures less than $m \angle 2$

4. measures less than $m\angle 2$ $\angle 6, \angle 8$

5. measures greater than $m\angle 2$

5. measures greater than $m\angle 2$ $\angle 4$

1.
$$m \angle 1 > m \angle 3$$

3. $m \angle 7 < m \angle 1$

 $4. \ \text{m} \angle 4 < \text{m} \angle 6$

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

1. 7, 14, 9

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

1. 7, 14, 9

$$7 + 14 > 9$$

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$7 + 14 > 9$$

True

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$7 + 14 > 9$$

$$14 + 9 > 7$$

True

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$7 + 14 > 9$$

 $14 + 9 > 7$

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$7 + 14 > 9$$

 $14 + 9 > 7$

$$14+9>7$$
 True $7+9>14$

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$7 + 14 > 9$$
 True $14 + 9 > 7$ True $7 + 9 > 14$ True

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$7 + 14 > 9$$
 True $14 + 9 > 7$ True $7 + 9 > 14$ True

Yes

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

2. 4, 6, 2

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$4 + 6 > 2$$

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$4 + 6 > 2$$

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$4 + 6 > 2$$

$$6 + 2 > 4$$

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$4 + 6 > 2$$

$$6 + 2 > 4$$

True

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$4 + 6 > 2$$

$$6 + 2 > 4$$

$$4 + 2 > 6$$

True

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

4 + 6 > 2	True
6 + 2 > 4	True
4 + 2 > 6	False

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$4+6>2$$
 True $6+2>4$ True $4+2>6$ False

No

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

3.8,3,8

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$8 + 3 > 8$$

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$8 + 3 > 8$$

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$8 + 3 > 8$$

$$3 + 8 > 8$$

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$8 + 3 > 8$$

$$3 + 8 > 8$$

True

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$8 + 3 > 8$$

$$3 + 8 > 8$$

$$8 + 8 > 3$$

True

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

8 + 3 > 8	True
3 + 8 > 8	True
8 + 8 > 3	True

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

3. 8, 3, 8

8+3>8 True 3+8>8 True 8+8>3 True

Yes

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

4. 6, 5, 8

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

4. 6, 5, 8

$$6 + 5 > 8$$

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$6 + 5 > 8$$

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$6 + 5 > 8$$

$$5 + 8 > 6$$

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$6+5>8$$

$$5 + 8 > 6$$

True

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$6 + 5 > 8$$

$$5 + 8 > 6$$

$$6 + 8 > 5$$

True

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

6 + 5 > 8	True
5 + 8 > 6	True
6 + 8 > 5	True

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

4. 6, 5, 8

6+5>8 True 5+8>6 True 6+8>5 True

Yes

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

5. 1, 13, 11

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

5. 1, 13, 11

$$1 + 13 > 11$$

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$1 + 13 > 11$$

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$1 + 13 > 11$$

 $13 + 11 > 1$

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$1 + 13 > 11$$

 $13 + 11 > 1$

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$1 + 13 > 11$$

 $13 + 11 > 1$
 $1 + 11 > 13$

True True

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$1 + 13 > 11$$

 $13 + 11 > 1$
 $1 + 11 > 13$

Using the Triangle Inequality theorem, write Yes if the given measures can form a triangle or *No* if not.

$$1 + 13 > 11$$
 True $13 + 11 > 1$ True $1 + 11 > 13$ False

No

Using the Triangle Inequality theorem, find the range of possible measures for the third side of $\triangle ABC$.

1.
$$a = 5, b = 8$$

1.
$$a = 5, b = 8$$

$$a+b>c$$

1.
$$a = 5, b = 8$$

$$a + b > c$$

5 + 8 > c

1.
$$a = 5, b = 8$$

$$a + b > c$$

 $5 + 8 > c$
 $13 > c$

1.
$$a = 5, b = 8$$

$$a+b>c$$
 $b+c>a$
 $5+8>c$
 $13>c$

1.
$$a = 5, b = 8$$

$$a+b>c$$
 $b+c>a$
 $5+8>c$ $8+c>5$
 $13>c$

1.
$$a = 5, b = 8$$

$$a+b>c$$
 $b+c>a$
 $5+8>c$ $8+c>5$
 $13>c$ $8-8+c>5-8$

1.
$$a = 5, b = 8$$

$$a+b>c$$
 $b+c>a$
 $5+8>c$ $8+c>5$
 $13>c$ $8-8+c>5-8$
 $c>-3$

1.
$$a = 5, b = 8$$

$$a+b>c$$
 $b+c>a$
 $5+8>c$ $8+c>5$
 $13>c$ $8-8+c>5-8$
 $c>-3$

1.
$$a = 5, b = 8$$

$$a+b>c$$
 $b+c>a$
 $5+8>c$ $8+c>5$
 $13>c$ $8-8+c>5-8$
 $c>-3$

1.
$$a = 5, b = 8$$

$$a+b>c$$
 $b+c>a$ $a+c>b$
 $5+8>c$ $8+c>5$ $5+c>8$
 $13>c$ $8-8+c>5-8$ $5-5+c>8-5$
 $c>-3$

1.
$$a = 5, b = 8$$

$$a+b>c$$
 $b+c>a$
 $5+8>c$ $8+c>5$
 $13>c$ $8-8+c>5-8$
 $c>-3$

1.
$$a = 5, b = 8$$

$$a+b>c$$
 $b+c>a$
 $5+8>c$ $8+c>5$
 $13>c$ $8-8+c>5-8$
 $c>-3$

$$\therefore 3 < c < 13$$

2.
$$a = 5, c = 10$$

2.
$$a = 5, c = 10$$

$$a+b>c$$

2.
$$a = 5, c = 10$$

$$a + b > c$$

5 + b > 10

2.
$$a = 5, c = 10$$

$$a+b>c$$

 $5+b>10$
 $5-5+b>10-5$

2.
$$a = 5, c = 10$$

$$a+b>c$$

 $5+b>10$
 $5-5+b>10-5$
 $b>5$

Using the Triangle Inequality theorem, find the range of possible measures for the third side of $\triangle ABC$.

b+c>a

2.
$$a = 5, c = 10$$

$$a+b>c$$

 $5+b>10$
 $5-5+b>10-5$
 $b>5$

$$C$$
 B
 C
 C

2.
$$a = 5, c = 10$$

$$a+b>c$$

 $5+b>10$
 $5-5+b>10-5$
 $b>5$

$$b + c > a$$

 $b + 10 > 5$

2.
$$a = 5, c = 10$$

$$a+b>c$$
 $b+c>a$
 $5+b>10$ $b+10>5$
 $5-5+b>10-5$ $b+10-10>5-10$
 $b>5$

2.
$$a = 5, c = 10$$

$$a+b>c$$
 $b+c>a$
 $5+b>10$ $b+10>5$
 $5-5+b>10-5$ $b+10-10>5-10$
 $b>5$

2.
$$a = 5, c = 10$$

$$a+b>c$$
 $b+c>a$ $a+c>b$
 $5+b>10$ $b+10>5$
 $5-5+b>10-5$ $b+10-10>5-10$
 $b>5$ $b>-5$

2.
$$a = 5, c = 10$$

$$a+b>c$$
 $b+c>a$ $a+c>b$
 $5+b>10$ $b+10>5$ $5+10>b$
 $5-5+b>10-5$ $b+10-10>5-10$
 $b>5$

2.
$$a = 5, c = 10$$

$$a+b>c$$
 $b+c>a$ $a+c>b$
 $5+b>10$ $b+10>5$ $5+10>b$
 $5-5+b>10-5$ $b+10-10>5-10$ $15>b$
 $b>5$

2.
$$a = 5, c = 10$$

$$a+b>c$$
 $b+c>a$ $a+c>b$
 $5+b>10$ $b+10>5$ $5+10>b$
 $5-5+b>10-5$ $b+10-10>5-10$ $15>b$
 $b>5$

$$\therefore 5 < b < 15$$

3.
$$b = 10, c = 8$$

3.
$$b = 10, c = 8$$

$$a+b>c$$

3.
$$b = 10, c = 8$$

$$a + b > c$$

 $a + 10 > 8$

3.
$$b = 10, c = 8$$

$$a + b > c$$

 $a + 10 > 8$
 $a + 10 - 10 > 8 - 10$

3.
$$b = 10, c = 8$$

$$a + b > c$$

 $a + 10 > 8$
 $a + 10 - 10 > 8 - 10$
 $a > -2$

3.
$$b = 10, c = 8$$

$$a + b > c$$

 $a + 10 > 8$
 $a + 10 - 10 > 8 - 10$
 $a > -2$

$$b+c>a$$

3.
$$b = 10, c = 8$$

$$a + b > c$$

 $a + 10 > 8$
 $a + 10 - 10 > 8 - 10$
 $a > -2$

$$b + c > a$$

 $10 + 8 > a$

3.
$$b = 10, c = 8$$

$$a+b>c$$

 $a+10>8$
 $a+10-10>8-10$
 $a>-2$
 $b+c>a$
 $10+8>a$
 $10+8>a$

3.
$$b = 10, c = 8$$

$$a+b>c$$
 $b+c>a$ $a+c>b$
 $a+10>8$ $10+8>a$
 $a+10-10>8-10$ $18>a$
 $a>-2$

3.
$$b = 10, c = 8$$

$$a+b>c$$
 $b+c>a$ $a+c>b$
 $a+10>8$ $10+8>a$ $a+8>10$
 $a+10-10>8-10$ $18>a$
 $a>-2$

3.
$$b = 10, c = 8$$

$$a+b>c$$
 $b+c>a$ $a+c>b$
 $a+10>8$ $10+8>a$ $a+8>10$
 $a+10-10>8-10$ $18>a$ $a+8-8>10-8$
 $a>-2$

3.
$$b = 10, c = 8$$

$$a + b > c$$

 $a + 10 > 8$
 $a + 10 - 10 > 8 - 10$
 $a > -2$

3.
$$b = 10, c = 8$$

$$a+b>c$$

 $a+10>8$
 $a+10-10>8-10$
 $a>-2$
 $b+c>c$
 $10+8>$
 $18>a$

$$\therefore 2 < a < 18$$

4.
$$a = 3, b = 12$$

4.
$$a = 3, b = 12$$

$$a+b>c$$

4.
$$a = 3, b = 12$$

$$a + b > c$$

3 + 12 > c

4.
$$a = 3, b = 12$$

$$a + b > c$$

3 + 12 > c
15 > c

4.
$$a = 3, b = 12$$

$$a+b>c$$
 $b+c>a$
 $3+12>c$
 $15>c$

4.
$$a = 3, b = 12$$

$$a+b>c$$
 $b+c>a$
 $3+12>c$ $12+c>3$
 $15>c$

4.
$$a = 3, b = 12$$

$$a+b>c$$
 $b+c>a$
 $3+12>c$ $12+c>3$
 $15>c$ $12-12+c>3-12$

4.
$$a = 3, b = 12$$

$$a+b>c$$
 $b+c>a$
 $3+12>c$ $12+c>3$
 $15>c$ $12-12+c>3-12$
 $c>-9$

Using the Triangle Inequality theorem, find the range of possible measures for the third side of $\triangle ABC$.

4.
$$a = 3, b = 12$$

$$a+b>c$$
 $b+c>a$
 $3+12>c$ $12+c>3$
 $15>c$ $12-12+c>3-12$
 $c>-9$

a+c>b

4.
$$a = 3, b = 12$$

$$a+b>c$$
 $b+c>a$
 $3+12>c$ $12+c>3$
 $15>c$ $12-12+c>3-12$
 $c>-9$

4.
$$a = 3, b = 12$$

$$a+b>c$$
 $b+c>a$ $a+c>b$
 $3+12>c$ $12+c>3$ $3+c>12$
 $15>c$ $12-12+c>3-12$ $3-3+c>12-3$
 $c>-9$

4.
$$a = 3, b = 12$$

$$a+b>c$$
 $b+c>a$ $a+c>b$
 $3+12>c$ $12+c>3$ $3+c>12$
 $15>c$ $12-12+c>3-12$ $3-3+c>12-3$
 $c>-9$ $c>9$

4.
$$a = 3, b = 12$$

$$a+b>c$$
 $b+c>a$ $a+c>b$
 $3+12>c$ $12+c>3$ $3+c>12$
 $15>c$ $12-12+c>3-12$ $3-3+c>12-3$
 $c>-9$ $c>9$

$$\begin{array}{c|c}
c & b \\
\hline
a + c > b \\
3 + c > 12 \\
3 - 3 + c > 12 - 3 \\
c > 9
\end{array}$$

∴
$$9 < c < 15$$

Using the Hinge theorem, write <, >, or = to relate the measures of the given pair of segments.

1. \overline{WX} , \overline{ST}

Using the Hinge theorem, write <, >, or = to relate the measures of the given pair of segments.

1. \overline{WX} , \overline{ST}

Using the Hinge theorem, write <, >, or = to relate the measures of the given pair of segments.

2. \overline{BC} , \overline{EF}

Using the Hinge theorem, write <, >, or = to relate the measures of the given pair of segments.

2. \overline{BC} , \overline{EF}

Using the Hinge theorem, write <, >, or = to relate the measures of the given pair of segments.

3. \overline{JI} , \overline{JG}

Using the Hinge theorem, write <, >, or = to relate the measures of the given pair of segments.

3. \overline{JI} , \overline{JG}

Using the Hinge theorem, write <, >, or = to relate the measures of the given pair of segments.

4. \overline{BC} , \overline{EF}

Using the Hinge theorem, write <, >, or = to relate the measures of the given pair of segments.

4. \overline{BC} , \overline{EF}

Using the Hinge theorem, write <, >, or = to relate the measures of the given pair of segments.

5.
$$\overline{IG}$$
, \overline{LJ}

Using the Hinge theorem, write <, >, or = to relate the measures of the given pair of segments.

5.
$$\overline{IG}$$
, \overline{LJ}

Using the Converse of Hinge theorem, write <,>, or = to relate the measures of the given pair of angles.

1. ∠1,∠2

Using the Converse of Hinge theorem, write <,>, or = to relate the measures of the given pair of angles.

1. ∠1,∠2

Using the Converse of Hinge theorem, write <,>, or = to relate the measures of the given pair of angles.

2. ∠*C*,∠*F*

Using the Converse of Hinge theorem, write <,>, or = to relate the measures of the given pair of angles.

Using the Converse of Hinge theorem, write <,>, or = to relate the measures of the given pair of angles.

3. $\angle M, \angle N$

Using the Converse of Hinge theorem, write <,>, or = to relate the measures of the given pair of angles.

3. $\angle M, \angle N$

Using the Converse of Hinge theorem, write <,>, or = to relate the measures of the given pair of angles.

 $4. \angle 1, \angle 2$

Using the Converse of Hinge theorem, write <,>, or = to relate the measures of the given pair of angles.

 $4. \angle 1, \angle 2$

Using the Converse of Hinge theorem, write <,>, or = to relate the measures of the given pair of angles.

 $5. \angle 1, \angle 2$

Using the Converse of Hinge theorem, write <,>, or = to relate the measures of the given pair of angles.

$$m\angle 1 > m\angle 2$$

Using the Hinge theorem or its converse, write an inequality to describe the possible values of x.

1.
$$48 > 7x - 6$$

1.
$$48 > 7x - 6$$

$$-7x + 48 - 48 > 7x - 7x - 6 - 48$$

1.
$$48 > 7x - 6$$

$$-7x + 48 - 48 > 7x - 7x - 6 - 48$$

$$-7x > -54$$

1.
$$48 > 7x - 6$$

 $-7x + 48 - 48 > 7x - 7x - 6 - 48$
 $-7x > -54$
 $\frac{-7x}{-7} > \frac{-54}{-7}$

1.
$$48 > 7x - 6$$

 $-7x + 48 - 48$
 $-7x > -54$
 $\frac{-7x}{-7} > \frac{-54}{-7}$
 $x < \frac{54}{7}$

$$2.54 > 11x - 12$$

2.
$$54 > 11x - 12$$

$$-11x + 54 - 54 > 11x - 11x - 12 - 54$$

2.
$$54 > 11x - 12$$

$$-11x + 54 - 54 > 11x - 11x - 12 - 54$$

$$-11x > -66$$

2.
$$54 > 11x - 12$$

$$-11x + 54 - 54 > 11x - 11x - 12 - 54$$

$$-11x > -66$$

$$\frac{-11x}{-11} > \frac{-66}{-11}$$

2.
$$54 > 11x - 12$$

$$-11x + 54 - 54 > 11x - 11x - 12 - 54$$

$$-11x > -66$$

$$\frac{-11x}{-11} > \frac{-66}{-11}$$

3.
$$4x - 7 > 21$$

3.
$$4x - 7 > 21$$

$$4x - 7 + 7 > 21 + 7$$

3.
$$4x - 7 > 21$$

$$4x - 7 + 7 > 21 + 7$$

 $4x > 28$

3.
$$4x - 7 > 21$$

 $4x - 7 + 7 > 21 + 7$

$$\frac{4x>28}{4x}>\frac{28}{4}$$

3.
$$4x - 7 > 21$$

 $4x - 7 + 7 > 21 + 7$
 $4x > 28$
 $\frac{4x}{4} > \frac{28}{4}$
 $x > 7$

4.
$$23 > 3x + 2$$

Using the Hinge theorem or its converse, write an inequality to describe the possible values of x.

4.
$$23 > 3x + 2$$

$$-3x + 23 - 23 > 3x - 3x + 2 - 23$$

23

3x + 2

Using the Hinge theorem or its converse, write an inequality to describe the possible values of x.

4.
$$23 > 3x + 2$$

$$-3x + 23 - 23 > 3x - 3x + 2 - 23$$

 $-3x > -21$

Using the Hinge theorem or its converse, write an inequality to describe the possible values of x.

4.
$$23 > 3x + 2$$

4.
$$23 > 3x + 2$$

$$-3x + 23 - 23 > 3x - 3x + 2 - 23$$

$$-3x > -21$$

$$-3x - 21$$

Using the Hinge theorem or its converse, write an inequality to describe the possible values of x.

4.
$$23 > 3x + 2$$

$$-3x + 23 - 23 > 3x - 3x + 2 - 23$$

 $-3x > -21$
 $-3x - 21$

Using the Hinge theorem or its converse, write an inequality to describe the possible values of x.

 $(4 + 14x)^{\circ}$

Using the Hinge theorem or its converse, write an inequality to describe the possible values of x.

5. 4 + 14x > 32

5.
$$4 + 14x > 32$$

$$4-4+14x>32-4$$

5.
$$4 + 14x > 32$$

$$4-4+14x > 32-4$$

 $14x > 28$

5.
$$4 + 14x > 32$$

$$4-4+14x > 32-4$$

 $14x > 28$
 $14x = 28$

$$\frac{14x}{14} > \frac{28}{14}$$

Using the Hinge theorem or its converse, write an inequality to describe the possible values of x.

5.
$$4 + 14x > 32$$

 $4 - 4 + 14x > 32 - 4$
 $14x > 28$
 $\frac{14x}{14} > \frac{28}{14}$
 $x > 2$

32°

 $(4 + 14x)^{\circ}$

Thank you for attending the virtual class.