Cloth and Fur Energy Functions

Michael Kass

Hair Model

Limp hair: Just a set of springs.

Hair Model

Add body: Angular Springs

Hair Model

Alternative: More Linear Springs

Discretization

Make sure energy independent of sampling.

$$E = \frac{1}{2}k\sum (l - l_{\text{rest}})^2$$

$$E = \frac{1}{2}nk\left(\frac{L}{n}\right)^2$$

Constant energy implies:

$$k \propto n$$

or

$$k_i \propto \frac{1}{l_i}$$

Note: High sampling --> stiffness

Discretization

Consider a discretized circle.

$$E = \frac{1}{2}k\sum \theta^2$$

Again, constant energy implies:

$$k \propto n$$

$$k_i \propto \frac{1}{l_i}$$

Clothing

- Start with warp and weft threads.
- Weave them together.
- Add angular springs so threads want to stay perpendicular.

Cloth Properties

Cloth Resists

- Stretching
- Shearing
- Bending

Warp and Weft directions are special.

A and B will move differently

Rest Mesh Options

Model in 3D

- Clothing already on characters.
- Can directly craft desired 3D shape.
- Annotate warp/weft directions.
- Clothing probably will not locally flatten.

Model in 2D

- Must put clothing on characters
- Hire a tailor to get the pattern right.
- Sew parts together.
- Clothing guaranteed to flatten locally.
- Greater realism.

Non-flat Cloth

Non-flat cloth is strange stuff:

A baseball with no seams?

Wrinkles give strength?

Clothing cut out of a volume?

Convexities that pop?

Even 4 Triangles are over-constrained: 16 rest angles, 8 rest lengths. 24 constraints on 15 dofs. Must be consistent!

Stretch (Continuum Version)

$$S_u = \left\| \frac{\partial \vec{x}}{\partial u} \right\| - 1 \qquad E = \frac{1}{2}$$

$$E = \frac{1}{2}k\int (S_u^2 + S_v^2)du\,dv$$

Shear (Continuum Version)

$$\theta = \cos^{-1}\left(\frac{\widehat{\partial x}}{\partial u} \cdot \frac{\widehat{\partial x}}{\partial v}\right) \qquad E = \frac{1}{2}k\int \theta^2 du \, dv$$

Bend (Continuum Version)

$$E = \frac{1}{2}k\int (\kappa_u^2 + \kappa_v^2)du\,dv$$

Discretization

Triangle Energy

First, compute the affine transformation T that maps: $T: a \rightarrow c'$

$$b \rightarrow b'$$
 $c \rightarrow c'$

$$c \rightarrow c'$$

Triangle Stretch Energy

Now compute the stretch energy.

$$S_u = ||T(\hat{u})|| - 1$$

$$E_{\text{stretch}} = \frac{1}{2}k(S_u^2 + S_v^2)A$$

Triangle Shear Energy

Next compute the shear energy.

$$\theta = \cos^{-1}(T(\hat{u}) \cdot T(\hat{v}))$$

$$E_{\text{shear}} = \frac{1}{2}k\theta^2 A$$

Triangle Bend Energy

Finally compute the bend energy.

$$\kappa = \frac{\theta}{l_{perp}}$$

$$E_{\rm bend} = \frac{k}{2} (\kappa^2) A$$