Departamento de Física Universidade de Aveiro

Modelação de Sistemas Físicos

4ª Aula Teórica

Sumário:

Cap. 3 Forças e vetores

Bibliografia:

Cap. 3: Serway, cap. 3 e 5; Sørenssen, cap. 5 e 6; Villate, cap. 4

Cap. 3 Forças e vetores

Força = massa × aceleração

Forças alteram o movimento

Cap. 3 Forças e vetores

FORÇA é um VETOR indica-se \vec{F} a sua intensidade por $|\vec{F}|$

Cap. 3 Forças e vetores

Os princípios da Mecânica:

1º lei de Newton: Quando $\vec{F} = 0$

o corpo ou está parado ou move-se a uma velocidade constante.

Isaac Newton 1642 - 1726

$$\vec{F} = m \vec{a}$$

$$\vec{F} = \sum_i \vec{F}_i$$

A variação da velocidade de um corpo (aceleração) é proporcional à resultante das forças (soma das forças) aplicadas ao corpo.

A constante de proporcionalidade é a massa m do corpo.

É a propriedade de cada corpo que especifica a resistência à variação da velocidade.

3º lei de Newton: Quando 2 corpos interatuam,

 \vec{F}_{12} a força no corpo 1 devido à interação com o corpo 2, e

 $ec{F}_{21}$ a força no corpo 2 devido à interação com corpo 1,

$$\vec{F}_{12} = -\vec{F}_{21}$$

$$\vec{F} = m \vec{a}$$

$$\vec{F} = \sum_{i} \vec{F}_{i}$$

A variação da velocidade de um corpo (aceleração) é proporcional à resultante das forças (soma das forças) aplicadas ao corpo. A constante de proporcionalidade é a massa m do corpo.

A massa é a propriedade de cada corpo que especifica a resistência à variação da velocidade.

Se as forças aplicadas ao um objeto forem conhecidas, pode-se determinar o movimento do objeto – a sua posição e velocidade.

Forças determinam-se por experiências Ou por modelos teóricos, que aplicados aos dados experimentais, concordam com eles.

Cap. 3 Forças e vetores

Cap. 3 Forças e vetores

Vetor \vec{a}

 $|\vec{a}|$ = módulo ou norma = intensidade, magnitude ou comprimento de \vec{a}

 $\vec{c} = \lambda \vec{a}$ outro vetor, mesma direção, magnitude diferente

$$|\vec{c}| = |\lambda| |\vec{a}|$$

Vetor unitário: \hat{i} tem $|\hat{i}|=1$ usado para indicar direção e sentido

ex.
$$\hat{a} = \frac{\vec{a}}{|\vec{a}|} \iff \vec{a} = |\vec{a}| \hat{a}$$

Soma de 2 vetores

Diferença de 2 vetores

Produto escalar
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

também chamado produto interno

- Maior quando os vetores são mais alinhados
- Zero quando são perpendiculares

Produto vetorial

 $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \, \hat{p}$

é um vetor perpendicular a amobs os vetores

vetor unitário perpendicular ao plano de \vec{a} e \vec{b}

Sentido de \hat{p}

$$\vec{b} \times \vec{a} = -\vec{a} \times \vec{b}$$

também chamado produto externo

- Máximo quando os vetores são perpendiculares
- Zero quando são paralelos

2 dimensões

$$|\hat{i}| = 1$$

$$|\hat{j}| = 1$$

$$\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{i} = 0$$

2 dimensões

Posições dos pontos

Orígem (0,0)

A em (2,3)

B em (-1.5,-2.5)

2 dimensões

Posição A também indicada por um vetor \vec{r}_A , do orígem ao ponto A.

$$\vec{r}_A = \vec{r}_{Ax} + \vec{r}_{Ay}$$

 $\vec{r}_{Ax} = A_x \hat{\imath}$ componente paralelo ao eixo X $\vec{r}_{Ay} = A_y \hat{\jmath}$ componente paralelo ao eixo Y

$$A_{x} = \vec{r}_{A} \cdot \hat{\imath}$$

$$A_{y} = \vec{r}_{A} \cdot \hat{\jmath}$$

$$\vec{r}_A = A_x \hat{\imath} + A_y \hat{\jmath}$$

Espaço a 2D – coordenadas polares

Vetor \vec{r} definido por dois valores

(x, y) coordenadas cartesianas

$$x = \vec{r} \cdot \hat{\imath} = |\vec{r}| \cos \theta$$

$$y = \vec{r} \cdot \hat{\jmath} = |\vec{r}| \sin \theta$$

ou

 (r, θ) coordenadas polares

$$r = |\vec{r}| = \sqrt{x^2 + y^2}$$

$$\theta = \cos^{-1} x / \sqrt{x^2 + y^2}$$

$$= \sin^{-1} y / \sqrt{x^2 + y^2}$$

$$|\hat{\imath}| = |\hat{\jmath}| = |\hat{k}| = 1$$

$$\hat{\imath} \cdot \hat{\jmath} = \hat{\imath} \cdot \hat{k} = \hat{\jmath} \cdot \hat{k} = 0$$

$$\hat{\imath} \times \hat{\jmath} = \hat{k}$$

$$\hat{\jmath} \times \hat{k} = \hat{\imath}$$

$$\hat{k} \times \hat{\imath} = \hat{\jmath} \quad \hat{\imath} \times \hat{k} = -\hat{\jmath}$$

$$\vec{a} = (a_x, a_y, a_z)$$

$$= a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$$

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

$$\vec{b} = (b_x, b_y, b_z)$$

$$\vec{a} + \vec{b} = (a_x + b_x, a_y + b_y, a_z + b_z)$$

Vetores em referenciais cartesianos: 3 dimensões

Produto escalar

$$\vec{a} = a_x \hat{\imath} + a_y \hat{\jmath} + a_z \hat{k}$$

$$\vec{b} = b_x \hat{\imath} + b_y \hat{\jmath} + b_z \hat{k}$$

$$\vec{a} \cdot \vec{b} = (a_x \hat{\imath} + a_y \hat{\jmath} + a_z \hat{k}) \cdot (b_x \hat{\imath} + b_y \hat{\jmath} + b_z \hat{k})$$

$$= a_x b_x \hat{\imath} \cdot \hat{\imath} + a_y b_y \hat{\jmath} \cdot \hat{\jmath} + a_z b_z \hat{k} \cdot \hat{k}$$

$$\text{desde que} \qquad \hat{\imath} \cdot \hat{\jmath} = \hat{\imath} \cdot \hat{k} = \hat{\jmath} \cdot \hat{k} = 0$$

$$= a_x b_x + a_y b_y + a_z b_z \quad \text{escalar}$$

$$\hat{\imath} \cdot \hat{\imath} = 1 \text{ etc.}$$

Vetores em referenciais cartesianos: 3 dimensões

Produto vetorial

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$= (a_y b_z - a_z b_y)\hat{i} + (a_z b_x - a_x b_z)\hat{j} + (a_x b_y - a_y b_x)\hat{k}$$

Ex.

$$\hat{i} \times \hat{j} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix}$$
$$= (0 - 0)\hat{i} + (0 - 0)\hat{j} + (1 - 0)\hat{k}$$
$$= \hat{k}$$

Igualdade entre vetores

$$\vec{a} = a_x \hat{\imath} + a_y \hat{\jmath} + a_z \hat{k}$$

$$\vec{b} = b_x \hat{\imath} + b_y \hat{\jmath} + b_z \hat{k}$$

$$\vec{a} = \vec{b} \qquad \Leftrightarrow \begin{cases} a_{\chi} = b_{\chi} \\ a_{y} = b_{y} \\ a_{z} = b_{z} \end{cases}$$

$$\vec{c} = c_x \hat{\imath} + c_y \hat{\jmath} + c_z \hat{k}$$

$$\vec{c} = \vec{a} - \vec{b} \qquad \Leftrightarrow \begin{cases} c_x = a_x - b_x \\ c_y = a_y - b_y \\ c_z = a_z - b_z \end{cases}$$

Vetores em referenciais cartesianos: 3 dimensões

Problemas

A. Considere

$$\vec{a}$$
=(1,2,0) e \vec{b} =(3,-2,2).

Calcule

- a) A sua soma
- b) A sua diferença
- c) O seu produto escalar
- d) O seu produto vetorial

B. Considere

 \vec{a} =(2,1,0) e \vec{b} =(1,2,0). (Vetores a duas dimensões, pois ambos tem z=0)

Calcule

- a) O módulo de cada vetor e o ângulo que formam.
- b) O seu produto vetorial