Chapitre 4

INÉGALITÉS ET INÉQUATIONS

I - Propriétés des inégalités

Propriété : Ordre dans $\mathbb R$

Si a, b et c sont des réels tels que a < b et b < c alors a < c.

Propriétés: Somme

Soient $a, b, x, y \in \mathbb{R}$.

• $a < x \Leftrightarrow a + b < x + b$

- $a < x \Leftrightarrow a b < x b$
- Si a < x et b < y, alors a + b < x + y.

Propriétés : Produit

Soient $a, x \in \mathbb{R}$ et $b \in \mathbb{R}^*$.

• Si b > 0, alors $a < x \Leftrightarrow ba < bx$

• Si b < 0, alors $a < x \Leftrightarrow ba > bx$

Remarque

On a plusieurs conséquences du résultat précédent.

- $0 < a < b \Leftrightarrow 0 < \frac{1}{b} < \frac{1}{a}$
- Si $n \in \mathbb{N}^*$ et $a, b \in \mathbb{R}_+$, alors $a \le b \Leftrightarrow a^n \le b^n$.

II - Valeur absolue

Définition : Valeur absolue

Soit $x \in \mathbb{R}$. On définit |x| la valeur absolue de x comme suit :

• Si x > 0, alors |x| = x

• Si x < 0, alors |x| = -x

Exemples

• |5| = 5

• |-2.5| = -(-2.5) = 2.5

Remarques

- Une valeur absolue est toujours positive.
- Soit $x \in \mathbb{R}$, alors $\sqrt{x^2} = |x|$

Propriété

Soient $a, x \in \mathbb{R}$ et $r \in \mathbb{R}^*_+$.

$$|x-a| \le r \Leftrightarrow a-r \le x \le a+r \Leftrightarrow x \in [a-r,a+r]$$

III - Inéquations

Définition: Inéquations

Une **inéquation** d'inconnue x est une inégalité qui peut être vraie pour certaines valeurs de x et fausse pour d'autres.

Résoudre dans \mathbb{R} une inéquation d'inconnue x, c'est trouver l'ensemble de ses **solutions**, c'est-à-dire l'ensemble des nombres réels pour lesquels l'inégalité est vraie.

Exemples

• $3x + 2 > 7 \Leftrightarrow 3x + 2 - 2 > 7 - 2 \Leftrightarrow 3x > 5 \Leftrightarrow \frac{3x}{3} > \frac{5}{3} \Leftrightarrow x > \frac{5}{3}$

L'ensemble des solutions de 3x + 2 > 7 dans \mathbb{R} est $\mathcal{S} = \left[\frac{5}{3}; +\infty\right[$.

• $-x + 9 \ge -2 \Leftrightarrow -x + 9 - 9 \ge -2 - 9 \Leftrightarrow -x \ge -11 \Leftrightarrow (-1) \times (-x) \le (-1) \times (-11)$

Notons bien que l'inégalité **a changé de sens** puisque nous avons multiplié par un nombre **négatif**. Finalement, $-x + 9 \ge -2 \Leftrightarrow x \le 11$.

L'ensemble des solutions de $-x + 9 \ge -2$ dans \mathbb{R} est $\mathcal{S} =]-\infty;11[$.

IV - Encadrements de réels et arrondis

Propriétés

Soient x un nombre réel et n un nombre entier relatif.

- Il existe un unique nombre entier relatif a tel que $\frac{a}{10^n} \le x < \frac{a+1}{10^n}$. Cet encadrement est l'encadrement décimal de x à 10^{-n} près.
- L'arrondi de x à 10^{-n} près est celui des deux nombres $\frac{a}{10^n}$ ou $\frac{a+1}{10^n}$ qui est le plus proche de x.

Exemple

On a:

$$\frac{16\,812}{10^3} \le 16,812\,7 < \frac{16\,813}{10^3}$$

donc l'**encadrement** de 16,8127 à 10^{-3} près est $16,812 \le 16,8127 < 16,813$ et l'**arrondi** de 16,8127 à 10^{-3} près est 16,813.