2a Avaluació Camp gravitatori Nom i cognoms:	Física	2n Batxillerat Data: Qualificació:
	est cas. Heu d'identificar claramen	u servir la cara posterior si necessiteu més nt les respostes i mostrar el procés per tal entre parèntesis.
	entre galàctic seguint aproximac 3 milions d'anys. Determineu:	dament una òrbita circular amb un radi
(a) (1 pt) La velocitat orbi	ital del Sol al voltant del centre	galàctic.
(b) (1 pt) La massa del cer en el seu centre.	ntre galàctic suposant que tota	la massa es concentra en un forat negre
Dades: Constant de gravitace	ió universal, $G = 6,67 \cdot 10^{-11} N$	Tm^2kg^{-2}
-	9	de la Terra, i la velocitat d'escapament des la velocitat d'escapament terrestre.

(b) (1 p) La relació entre les acceleracions de la gravetat en punts de la superfície del planeta i de

(a) (1 pt) La relació entre els radis del planeta i de la Terra.

Determineu:

la Terra.

- 3. Considereu un planeta de massa $1,95 \cdot 10^{25} \, kg$ i radi $5500 \, km$. Determineu:
 - (a) (1 pt) El mòdul de l'acceleració de la gravetat a la superfície d'aquest planeta.
 - (b) (1 pt) La velocitat d'escapament des de la superfície del planeta.

Dades: Constant de gravitació universal, $G = 6,67 \cdot 10^{-11} Nm^2kg^{-2}$

- 4. El planeta Mart, en el seu moviment al voltant del Sol, descriu una òrbita el·líptica. Al punt de l'òrbita més proper al Sol, periheli, es troba a $2067 \cdot 10^6 \, km$, mentre que al punt de l'òrbita més allunyat del Sol, afeli, és a $249, 2 \cdot 10^6 \, km$. Si la velocitat de Mart en el periheli és de $26, 50 \, km \cdot s^{-1}$, determineu:
 - (a) (1 pt) La velocitat de Mart en l'afeli.
 - (b) (1 pt) L'energia mecànica total de Mart en l'afeli.

Dades: Constant de gravitació universal, $G=6,67\cdot 10^{-11}~Nm^2kg^{-2}$; Massa de Mart, $M_{\text{C}}=6,42\cdot 10^{23}~kg$; Massa del Sol, $M_{\odot}=1,99\cdot 10^{30}~kg$

- 5. Es vol situar un satèl·lit de massa, $m=10^3\,kg$, a una alçada $h=R_\oplus$ respecte de la superfície de la Terra. Determineu:
 - (a) (1 pt) L'energia cinètica mínima requerida per situar el satèl·lit a l'altura $h = R_{\oplus}$.
 - (b) (1 pt) L'energia cinètica addicional requerida perquè es mantingui en òrbita circular a aquesta alçada.

Dades: Constant de gravitació universal, $G=6,67\cdot 10^{-11}\,Nm^2kg^{-2}$; Radi de la Terra, $R_\oplus=6,37\cdot 10^6\,m$; Massa de la Terra, $M_\oplus=5,97\cdot 10^{24}\,kg$