MÜZİK SINIFLANDIRMASI BEYİN BİLGİSAYAR ARAYÜZÜ UYGULAMALARI İÇİN BİR ALTERNATİF OLABİLİR Mİ?

Nurhan GÜRSEL ÖZMEN¹, Ebru DURMUŞ², Zhaleh SADREDDINI³

¹Karadeniz Teknik Üniversitesi, ²İzmir Katip Çelebi Ünversitesi, ³ Giresun Üniversitesi

Özet

Bu çalışmada, müzik dinleme görevlerinin, beyin bilgisayar arayüzü (BBA) sisteminde kullanılabilirliği araştırılmıştır. Elde edilen sonuçlara bağlı olarak, müzik dinlenme görevinin beyinde farklı frekanslarda etki yarattığı ve bu farklılığın tıbbi, askeri ya da sanal oyun gibi beyin bilgisayar ara yüzü uygulamalarında kullanılması önerilmektedir.

Deneysel Çalışma

Müzik türlerinin her birinin insan beyninde farklı bölümlerde, farklı frekans bantlarında ortaya çıktığı bilinmektedir.

Tablo 1. Yedi farklı görevin üç farklı denek için ikili sınıflandırma sonuçları

Görev	Yöntem	(%) Sınıflandırma Performansı																	
			Kisi1							Kisi2			Kisi3						
		C3	C4	P3	P4	01	02	C3	C4	P3	P4	01	02	C3	C4	P3	P4	01	02
	k_NN	40	27	63	67	57	77	63	43	24	50	47	63	77	37	43	50	47	57
1/6	SVM	60	37	47	60	70	50	57	40	53	37	63	60	60	43	53	57	50	67
	ANN	95	83	80	85	61	76	80	85	77	82	57	67	84	80	82	76	53	76
	k_NN	100	100	90	93	100	100	95	87	85	90	90	93	90	95	82	82	90	77
2/6	SVM	100	97	47	70	94	94	92	85	77	85	97	95	97	98	87	63	78	80
	ANN	96	95	95	92	96	93	76	98	90	90	93	90	85	87	90	76	80	83
	k_NN	93	93	90	100	90	93	87	83	82	90	94	98	100	90	85	87	87	94
3/6	SVM	97	97	80	100	80	94	97	95	87	82	90	100	95	90	87	82	80	97
	ANN	90	96	96	94	98	94	93	93	90	90	90	90	96	94	98	90	94	96
	k_NN	93	93	77	90	93	90	90	79	80	87	78	78	87	80	78	67	77	89
4/6	SVM	80	67	84	97	80	94	78	63	78	76	74	84	77	73	68	67	67	80
	ANN	95	93	96	100	95	96	85	87	87	85	80	82	100	77	77	78	80	85
	k_NN	93	93	93	93	93	93	78	56	68	70	72	78	70	60	66	68	66	76
5/6	SVM	97	94	94	94	94	94	93	92	90	89	80	89	78	76	56	60	68	72
	ANN	72	77	77	89	86	80	80	75	75	75	76	78	80	56	78	78	70	82
	k_NN	97	6	60	80	60	87	79	76	54	46	34	80	79	77	75	75	75	75
1/7	SVM	97	9	50	94	74	97	67	56	58	70	72	78	70	72	68	66	64	56
	ANN	100	94	84	93	90	86	96	86	86	67	78	90	92	94	94	90	92	96
	k_NN	100	63	63	73	80	87	88	76	66	66	66	76	45	56	60	66	64	66
2/7	SVM	100	74	24	57	84	84	68	37	55	68	56	78	74	70	70	70	72	76
	ANN	92	82	85	80	85	84	85	83	77	78	83	85	90	80	83	83	83	85
	k_NN	83	93	80	80	80	77	68	66	66	66	66	75	78	67	56	56	23	72
3/7	SVM	100	100	87	94	87	84	98	86	67	67	56	84	89	77	72	67	70	78
	ANN	98	100	98	98	91	98	90	88	88	88	88	88	86	85	85	88	86	86
	k_NN	87	70	67	77	67	83	66	63	63	66	66	77	77	76	56	60	56	60
4 /7	SVM	90	97	97	90	77	90	88	83	83	85	78	94	78	77	24	67	77	80
	ANN	91	75	83	82	81	74	90	87	83	87	87	93	89	87	87	76	54	88
	k_NN	100	100	100	100	100	100	100	88	88	89	90	95	89	90	90	90	90	96
5/7	SVM	100	100	100	100	100	100	100	77	87	87	98	100	99	90	91	92	90	99
	ANN	93	91	92	95	87	95	100	100	99	97	97	99	100	100	100	100	100	100
	k_NN	77	90	90	90	90	90	78	78	69	94	96	98	89	80	81	82	80	87
6/7	SVM	100	100	100	100	100	100	100	90	91	97	98	98	99	98	98	99	99	100
	ANN	90	96	95	94	95	96	89	88	89	89	89	89	91	86	84	88	75	94

Üç sağlıklı katılımcı ile gerçekleştirilen deneysel çalışmada, yedi farklı görevin ikili sınıflandırma sonuçları elde edilmektedir.

- Rahat durum (Görev 1)
- Matematiksel işlem (Görev 2)
- Sağ el hareketi hayali (Görev 3)
- Sol el hareketi hayali (Görev 4)
- A harfi hayali (Görev 5)
- Klasik müzik dinleme (Görev 6)

Verilerinden Öz bağlanım (AR) parametreleri, Hjorth parametreleri, güç spektral yoğunluk (PSD) parametreleri ve

PSD+frekans karakteristikleri öznitelik olarak çıkarılmış ve performansları Destek Vektör Makinesi (DVM), k-En Yakın

Komşuluk (k-NN) ve Yapay Sinir Ağları (ANN) sınıflandırıcıları ile değerlendirilmiştir. Ayrıca farklı müzik türlerinin

(klasik, rock) kendi aralarındaki ve diğer zihinsel ve motor görevlerle aralarındaki sınıflandırma performansları

• Rock müzik dinleme (Görev 7)

Şekil 1. Elektrot yerleşim düzeni ve seçilen elektrotlar

Sonuçlar

- Bu çalışmada en yüksek sınıflandırma başarısı AR parametreleri ile elde edilmiştir. Sınıflandırıcılar açısından ise ANN sınıflandırıcısı az farkla SVM'den daha başarılı olmuştur. Fakat, işlem süresinin kısalığı açısından SVM yönteminin daha üstün olması nedeniyle gerçek zamanlı uygulamalarda tercih edilme olasılığı daha yüksektir.
- İki farklı müzik türünün ayırt edilmesinde, müzik türlerinin farklı frekanslarda olüştüğü ve bu farklılığın ortaya koyulabileceği anlaşılmıştır.
- Elde edilen sonuçlar ışığında, müzik dinleme görevinin BBA sistemlerinde kullanılması önerilebilir. Örneğin kişiye özgü web-destekli öğrenme ya da sanal oyun uygulamaları üzerinde denenerek, karar verilebilir.
- Son olarak, en başarılı kanal C3 olarak gözlenmiştir. Bu sonuca göre, tekil kanal uygulamalı bir BBA sistemi geliştirilebilir.

İletişim

gnurhan@ktu.edu.tr zh.sadreddini@ktu.edu.tr

karşılaştırılmıştır.

Kaynaklar

Sadreddini Z., Durmuş E., Özmen N.G., "EEG Verilerinden Farklı Müzik Türü ve Zihinsel Görevlerin Ayırt Edilmesi", Akıllı sistemlerde Yenilik ve Uygulamaları, ASYU 2014, İzmir, Türkiye, 9-10 Ekim 2014, 44-48.