Especificaciones Técnicas de un Actuador Lineal para un Simulador de Vuelo

Diego García Bouron 9no. Semestre

David Aguilera 9no. Semestre Germán Ulloa 9no. Semestre

Gerardo Viscarra 9no. Semestre Fernando Soto 9no. Semestre

Ing. Erik Pozo Diseño de Sistemas Mecatrónicos

Abstract—En este documento se describen cuáles son las características técnicas más importantes del actuador lineal que se está diseñando como trabajo final de la materia de Diseño de Sistemas Mecatrónicos.

I. INTRODUCCIÓN

Desde la primera mitad del siglo XX se empezaron a desarrollar simuladores de vuelo para entrenar a pilotos principiantes y evitar siniestros debido a la falta de experticia.

El primer simulador de vuelo fue desarrollado por la compañía francesa Antoinette en 1910 por iniciativa de comandantes de la fuerza aérea francesa. Este simulador contaba con un marco y un barril para reproducir la cabina de vuelo (Vincenzi, Wise, Mouloua, & Hancock, 2009).

Con el paso del tiempo y las necesidades que surgieron debido a las dos guerras mundiales, fueron apareciendo simuladores cada vez más avanzados y sofisticados como el de Edwin Link, el cual contaba con actuadores neumáticos. Este simulador fue muy utilizado por la compañía de correo estadounidense y el Ejército de Estados Unidos durante la Segunda Guerra Mundial (Mechanical & Landmark, 2000).

En 1954 United Airlines compró el primer simulador que incluía sonido e imágenes fabricado por Curttis-Wright. Este fue el primer simulador de vuelo usado para aeronaves comerciales. Este simulador contaba con actuadores hidráulicos lineales ("Airline Pilots Fly Anywhere in the World - Without Leaving the Ground," 1954).

Los actuadores hidráulicos lineales son actualmente muy utilizados en este tipo de simuladores. Sin embargo, no son el único tipo de actuadores usados. Existen muchos simuladores y propuestas de simuladores que utilizan actuadores eléctricos lineales (Van Roy, 2015). En este proyecto se realizará un actuador lineal eléctrico compuesto por un motor DC, una correa dentada para el cambio de movimiento circular a lineal y un pistón.

II. DEFINICIÓN DEL PROBLEMA

Los aviones modernos son sistemas que requieren de una preparación rigurosa para poder ser pilotados sin riesgo alguno para el piloto mismo y los pasajeros. Por esta razón el uso de simuladores de vuelo es algo menester dentro de la industria aeronáutica. Sin embargo, este tipo de simuladores se caracterizan por sus precios elevados ya que en su mayoría utilizan actuadores hidráulicos. Por esta razón son prácticamente inaccesibles para compañías aeronáuticas pequeñas como las que están presentes en nuestro país.

III. OBJETIVOS

A. Objetivo General

Aplicar los conocimientos adquiridos durante la carrera de Ingeniería Mecatrónica para desarrollar un actuador eléctrico lineal de una plataforma de simulador de vuelo de una aeronave Cessna 177.

B. Objetivos Específicos

- Realizar el diseño mecánico del actuador lineal
- Realizar el diseño eléctrico del sistema
- Realizar la programación del controlador (Arduino Uno)

IV. ESPECIFICACIONES TÉCNICAS

A. Función del Actuador

- Grados de Libertad: 1
- Tipo de movimiento: lineal
- Peso máximo admitido: 50 kg.
- Velocidad de actuación: 0.5 m/s
- Aceleración de actuación:
- Longitud de Carrera: 50,23 cm

B. Casos de Uso para Subproceso

- 1) Se transmite por serial una velocidad y se recibe por potenciómetro retroalimentación.
- 2) Se acción uno de los finales de carrera deteniendo el actuador.

V. PROPUESTA TÉCNICA

A. Diseño General

a. Vista lateral

b. Vista planta

c. Vista frontal

d. Otras vistas

e. Vistas detalladas por pieza Véase anexo de planos de piezas

B. Diseño Estructural

a. Cálculo de elásticos

Primero determinamos el coeficiente de elasticidad experimentalmente.

Usamos un peso de 25N para estirar el elástico y dio como resultado una deformación de 0.6m. Por lo tanto, el cálculo para determinar el coeficiente k fue el siguiente:

$$F = -kx$$

$$k = \frac{F}{x}$$

$$k = \frac{25N}{0.6m}$$

$$k = 41.6N / m$$

Con dicho coeficiente determinamos la cantidad de elásticos necesarios para alzar 28kg, tomando en cuenta que la máxima deformación permitida es de 0.7m dadas las características del diseño de la estructura.

$$\sum F = m \cdot a$$

$$F - yF_R = m \cdot \ddot{x}$$

$$mg - y(kx) = m \cdot \ddot{x}$$

$$274 - y(41.6 \cdot 0.7) = 0$$

$$274 = y \cdot 29.12$$

$$y = 9.4 \cong 9$$

Por lo tanto, son necesarios 9 elásticos de 0.7m o 9 vueltas de nuestro elástico con una longitud final de 0.7m.

b. Cálculo de Poleas

Se tomó en cuenta la siguiente ecuación de relación de transmisión de poleas:

$$V_2 \cdot d_2 = V_1 \cdot d_1$$

En base a dicha ecuación se calculó la fuerza final en Newton.

Relacion de transmision de las poleas con el motor de la cueva								
Poleas	Diametro [mm]	Velocidad [RPM]	Torque [Nm]	Fuerza [N]				
1	40	161	2,2					
2	120	53,66	6,73					
3	60	53,66	6,73	224,3333				

En la tabla se especifican los diámetros de nuestras poleas y el torque final que sería de 6.73Nm y la fuerza sería de 224.33N, lo que significa que el sistema podría soportar 22.8kg. Si sumamos el 22.8kg mas los 28 kg conseguidos con el sistema elástico, entonces da como resultado 50.8kg, que sería la masa que soportaría el actuador lineal que estamos construyendo.

Lista de Materiales Mecánicos

Descripcion	Codigo	Precio/Item	Cant.	Subtotal
Venesta de MDF 1.83 x 1.375 12mm		250,00	1	250
Rodamientos	61904	20,00	4	80
Pernos 20M - 140 longitud	24018	25,00	2	50
Tubo 18mm		30,00	1	30
Tuerca		2,00	20	40
Tornillo encarne		0,50	50	25
Correa 25M		90,00	2	180
Correa 19M		60,00	1	60
Ganchos		5,00	20	100
Elastico		8,90	12	106,8
pernos M6		1,00	20	
SL	IBTOTAL			941,8

Para encontrar una versión de mayor calidad de la tabla véase anexos.

C. Diseño Electrico

a. Voltaje necesario: 19V

b. Corriente Necesaria: $I_a = \frac{0.1[m]*F}{K_t}$

En base a las siguientes ecuaciones:

$$\tau = F \cdot r$$
$$r_1 = 3$$

$$r_2 = 6$$

$$r_3 = 2$$

$$i = \frac{1}{3}$$

$$\tau_2 = \tau_1$$

$$\tau_3 = \frac{1}{3} \cdot \tau_2$$

$$\tau_3 = \frac{1}{3} \cdot 150$$

$$\tau_3 = 50Kg \cdot cm \cdot \frac{9.8N}{1Kg} \cdot \frac{1m}{100cm} = 4.9Nm$$

$$\tau_m = F \cdot \frac{9.8}{100} = F \cdot 0.1$$

$$\tau_{\scriptscriptstyle m} = k_{\scriptscriptstyle t} \cdot I_{\scriptscriptstyle a}$$

$$I_a = \frac{0.1F}{k_*}$$

D. Analisis de motores y eleccion

	iten	Motor	voltaje	corriente	torque	potencia	potencia	potencia	velocidad
	iten	Motor		(A)	(Nm)	(hp)	(cv)	(w)	(rpm)
	1	motor de la cueva	19	2	2,22	0,051	0,052	38	161
	2	caminadora	220	5	2,11	1,500	1,520	1118,55	5000
	3	arrancador de moto	12	100	23,54	1,973	2,026	1491,4	60-100
	4	JK57HS112-3004 (paso a paso NEMA23)	4,8	3	2,80	0,020	0,020	15	60
	5	PG16M050(0501212000)	12	0,16	0,98	0,003	0,003	2,4	9600
	6	HTVZ MOTOR (MOTOR DE PARABRIZAS)	12	13	1,996	0,209	0,212	156	75

Para encontrar una versión de mayor calidad de la tabla véase anexos.

Se utilizará el motor de la cueva ya que este cumple con los requisitos buscados para este proyecto, que son un buen par motor, y consumo aceptable, en comparación a las demás propuestas, el siguiente a ser escogido es el motor caminador, por la disponibilidad inmediata. El siguiente será el arrancador de moto.

E. Elección de Fuente

Esta fuente tiene las siguientes características: 24V dc y 5 amp. Ya que el consumo del motor es de 19 v y 3 amp.

F. Diseño Electronico y computacional

a. Diseño Electrónico

Esquema electrónico del PUENTE H propuesto para el control de giro y velocidad del actuador. Para mayor detalle véase Anexo de Plano Electrónico

Lista de Materiales Electrónicos

PRESUPUESTO DE PARTES ELECTRONICAS									
Descripcion	Descripcion Codigo Precio/Item Cant.								
Arduino	MEGA 2560	130,00	1	130					
OCTOACOPLADOR	4N32	11,50	2	23					
MOSFET PARA ALTO VOLTAJE/TIPO N	JS44N50H	5,27	4	21,06					
220 OHM- 1/4 W	RESISTENCIA	4,00	2	8					
1KOHM- 1/4 W	RESISTENCIA	7,76	2	15,52					
10 KOHM-1/4W	RESISTENCIA	4,00	4	16					
2200UF-250V	CAPACITOR	4,00	1	4					
10UF-250V	CAPACITOR	4,00	1	4					
diodo 15amp	N-HFA15TB60	4,85	4	19,4					
puente de diodos	KBU1010	10,10	1	10,1					
Fuente 24Vdc 5A		110,00	1	110					
SU	361,08								

Para encontrar una versión de mayor calidad de la tabla véase anexos.

b. Diseño computacional

Para encontrar una versión de mayor calidad de este diagrama véase anexo.

- Interfaz de usuario: Monitor serial de Arduino IDE
- Entradas: Potenciómetros, Final de Carrera
- Salidas: Control PWM

G. Cronograma

Véase anexo de cronograma

H. Propuesta Economica

La propuesta económica es de 1647.08 Bolivianos (Véase anexos).

VI. REFERENCIAS

Van Roy, R. (2015). Simproject.nl. Retrieved May 2, 2019, from http://simprojects.nl/

Airline Pilots Fly Anywhere in the World - Without Leaving the Ground. (1954). Popular Mechanics.

Mechanical, A. H., & Landmark, E. (2000). The Link Flight Trainer.

Vincenzi, D. A., Wise, J. A., Mouloua, M., & Hancock, P. A. (Eds.). (2009). Human Factors in Simulation and Training. CRC Pres

ID	Nombre de tarea	Duration	Start	Finish	Prede	e Encargado	April 2019 May 19 24 29 3 8 13 18 23 28 3
1	Plataforma de Movimiento para Simulación de Vuelo MMG	22 days	Mon 1/4/19	Tue 30/4/19		Todo el equipo	19 24 29 3 6 13 10 23 26 3
2	Definición de Cronograma	5 days	Mon 1/4/19	Fri 5/4/19		Todo el equipo	
3	Diseño Estructural	22 days	Mon 1/4/19	Tue 30/4/19		Diego García, German Ulloa	
4	Busqueda de Bibliografía	2 days	Mon 1/4/19	Tue 2/4/19		Diego García, German Ulloa	
5	Diseño de Partes Estructurales	5 days	Wed 3/4/19	Tue 9/4/19	4	Diego García, German Ulloa	*
6	Selección de materiales a ser utilizadas	2 days	Wed 10/4/19	Thu 11/4/19	5	Diego García, German Ulloa	*
7	Determinar presupuesto de partes	2 days	Thu 25/4/19	Fri 26/4/19			•
8	Compra de materiales	2 days	Mon 29/4/19	Tue 30/4/19	6	Diego García, German Ulloa	*
9	Diseño Eléctrico	22 days	Mon 1/4/19	Tue 30/4/19		Gerardo Viscarra, Fernando Soto	
10	Busqueda de Bibliografía	2 days	Mon 1/4/19	Tue 2/4/19		Gerardo Viscarra, Fernando Soto	
11	Diseño de Circuitos de Alimentación Eléctrica	3 days	Wed 3/4/19	Fri 5/4/19	10	Gerardo Viscarra, Fernando Soto	
12	Materiales eléctricos a utilizar	2 days	Mon 8/4/19	Tue 9/4/19	11	Gerardo Viscarra, Fernando Soto	*
13	Presupuesto Electrico	2 days	Mon 1/4/19	Tue 2/4/19			
14	Compra de materiales	4 days	Thu 25/4/19	Tue 30/4/19		Gerardo Viscarra, Fernando Soto	
15	Documento de Comparacion de Motores	5 days	Mon 22/4/19	Fri 26/4/19		Gerardo Viscarra, Fernando Soto	_
16	Dimencionamiento de la Bateria	5 days	Tue 23/4/19	Mon 29/4/19		Gerardo Viscarra, Fernando Soto	
17	Diseño Electrónico / Computacional	22 days	Mon 1/4/19	Tue 30/4/19		David Aguilera, Diego Garcia	<u> </u>
18	Busqueda de Bibliografía	2 days	Mon 1/4/19	Tue 2/4/19		David Aguilera, Diego Garcia, German Ulloa, Fernando Soto	
19	Diseño de Circuito Electrónicos	2 days	Wed 3/4/19	Thu 4/4/19	18	David Aguilera, Diego Garcia	
20	Diseño Computacional y Algoritmos de Drivers	1 wk	Wed 3/4/19	Tue 9/4/19	18	David Aguilera, Diego Garcia	
21	Materiales Electrónicos	3 days	Wed 10/4/19	Fri 12/4/19	20	David Aguilera, German Ulloa	— —
22	Presupuesto Electrónico	2 days	Thu 25/4/19	Fri 26/4/19		David Aguilera, Fernando Soto	
23	Compra de materiales electronicos	4 days	Thu 25/4/19	Tue 30/4/19		David Aguilera, German Ulloa	
24	Propuesta Económica	3 days	Thu 25/4/19	Mon 29/4/19	21	Todo el equipo	

Presupuesto de Proyecto

PRESUPUESTO DE PARTES ELECTRONICAS								
Descripcion	Codigo	Precio/Item	Cant.	Subtotal				
Arduino	MEGA 2560	130,00	1	130				
OCTOACOPLADOR	4N32	11,50	2	23				
MOSFET PARA ALTO VOLTAJE/TIPO N	JS44N50H	5,27	4	21,06				
220 OHM- 1/4 W	RESISTENCIA	4,00	2	8				
1KOHM- 1/4 W	RESISTENCIA	7,76	2	15,52				
10 KOHM-1/4W	RESISTENCIA	4,00	4	16				
2200UF-250V	CAPACITOR	4,00	1	4				
10UF-250V	CAPACITOR	4,00	1	4				
diodo 15amp	N-HFA15TB60	4,85	4	19,4				
puente de diodos	KBU1010	10,10	1	10,1				
Fuente 24Vdc 5A		110,00	1	110				
SUBTOTAL								
	TO DE PARTES	MECANICAS						
Descripcion	Codigo	Precio/Item	Cant.	Subtotal				
Venesta de MDF 1.83 x 1.375 12mm		250,00	1	250				
Rodamientos	61904	20,00	4	80				
Pernos 20M - 140 longitud	24018	25,00	2	50				
Tubo 18mm		30,00	1	30				
Tuerca		2,00	20	40				
Tuerca Tornillo encarne		2,00 0,50	20 50	40 25				
Tornillo encarne		0,50	50	25				
Tornillo encarne Correa 25M		0,50 90,00	50 2	25 180				
Tornillo encarne Correa 25M Correa 19M		0,50 90,00 60,00	50 2 1	25 180 60				
Tornillo encarne Correa 25M Correa 19M Ganchos		0,50 90,00 60,00 5,00	50 2 1 20	25 180 60 100				
Tornillo encarne Correa 25M Correa 19M Ganchos Elastico pernos M6	TOTAL	0,50 90,00 60,00 5,00 8,90	50 2 1 20 12	25 180 60 100 106,8				

Analisis de Motores

item	Motor	voltaje(v-dc)	corriente(A)	torque(Nm)	potencia(hp)	potencia(cv)	potencia(w)	velocidad(rpm)
1	motor de la cueva	19,000	2,000	2,222	0,051	0,052	38,000	161,000
2	caminadora	220,000	5,000	2,106	1,500	1,520	1118,550	5000,000
3	arrancador de moto	12,000	100,000	23,540	1,973	2,026	1491,400	60-100
4	JK57HS112-3004 (paso a paso NEMA23)	4,800	3,000	2,800	0,020	0,020	15,000	60,000
5	PG16M050(0501212000)	12,000	0,160	0,980	0,003	0,003	2,400	9600,000
6	HTVZ MOTOR (motor de parabrisas)	12,000	13,000	1,996	0,209	0,212	156,000	75,000

