Ex no 1 Install Virtual box Workstation with different flavours of Linux on top of windows 10

Date:

Aim:

To Install Virtual box Workstation with of Linux on top of windows 10.

Procedure:

Step 1- Download Link

Link for downloading the software

https://www.techspot.com/downloads/ 4481-virtualbox.html

Download Ubuntu

 $\underline{\text{https://ubuntu.com/download/desktop/thankyou?version=22.04.1\&architecture=amd64\#download/desktop/thankyou?version=22.04.04.1\&architecture=amd64\#download/desktop/thankyou?version=22.04.1\&architecture=amd64\#downl$

Download the software for windows.

Step 2 -Click a Add key & Create Name & Next Step

Step 3 - Memory Allocated

Step 4 – Select Create a virtual hard disk now & click create

Step 5 – Choose VDI & Click to Next

Step 6 - Choose Dynamically Allocated Click to Next

Step 7 - Choose location and size Click to Create

Step 8 -Click Start on Pop -up of the windows

Step 9 – Select check box and Click ok

Step 10 -Select Install Ubuntu

Step 11 - Ubuntu is Running

Output:

Ex no: 2 Install a C compiler in the virtual machine created using virtual box and execute Simple Programs

Date:

Aim:

To install a c compiler is the virtual machine created using virtual box and execute simple programs

Procedure:

Step1: Download virtual box and install ubuntu

Step 2: Click Start

- Step 3: Open Terminal
- Step 4: Type 'sudo apt install gcc' to install the c compiler
- **Step 5 :** Type 'gcc --version to check for the version
- **Step 6:** Provide command 'touch filename.c' so that a new file is created in desktop
- Step 7: Open the file folder & type the following 'C Program' for further execution
- **Step 8 :** Save the program in the file folder
- Step 9: Now return to terminal to proceed further with execution of the program
- Step 10: Type "ls" on Terminal to see all files under current folder
- Step 11: Type "gcc hello.c" to compile

Step 12: On Successful compilation, type "./a.out" to run the C program in terminal in ubuntu

Program:

```
#include<stdio.h>
Void main()
{
    Printf("helloworld");
}
```

Result:

Thus to install a c compiler is the virtual machine created using virtual box and to execute simple programs was executed successfully

Output:

Ex no: 3 Install Google App Engine. Create hello world app simple web applications

Date: using python

Aim:

To perform the installation of the Google App Engine Software Development Kit (SDK) on a Microsoft Windows and running a simple application.

Procedure:

The App Engine SDK allows you to run Google App Engine Applications on your local computer. It simulates the run-time environment of the Google App Engine infrastructure.

Step 1: To install python

Download and Install Python 2.5.4 from:

http://www.python.org/download/releases/2.5.4/

Step 2: To install Google App Engine

Download and Install the Google App Engine SDK by going to:

http://code.google.com/appengine/downloads.html

Download the Windows installer – the simplest thing is to download it to your Desktop.

Double Click on the Google Application Engine installer.

Click through the installation wizard, and it should install the App Engine.

Step 3: Making of the First Application

Make a folder for your Google App Engine applications. I am going to make the folder on my desktop.

Make two subfolders app.yaml and index.py.

Using a text editor, create a file called app.yaml and index.py with the following contents.

app.yaml

runtime: python27

api_version: 1

threadsafe: false

handlers:

- url: /

script: index.py

index.py

print ('welcome to cloud lab');

Step 4: Run the program

Google-cloud-sdk\bin\dev_appserver.py "app.yaml"

Result:

Thus the installation of the Google App Engine Software Development Kit (SDK) on a Microsoft Windows and running a simple application was executed successfully.

Output:

http://localhost:8080 into browser and to see application as follows:

Ex no: 4 Use GAE Launcher to launch the web Application

Date:

Aim:

To Use GAE Launcher to launch the web application.

Procedure:

Step1:Download google cloud SDK.

python and google cloud SDK set the python part in the google app engine launcher.

https://cloud.google.com/sdk/docs/install

Step 2: Install python.

http://www.python.org/download/releases/2.5.4/

Step 3: Making of the First Application

Make a folder for your Google App Engine applications. I am going to make the folder on my desktop.

Make four subfolders app.yaml, index.html,main.py and result.html.

Using a text editor, create a file called app.yaml, index.html, main.py and result.html with the following contents.

Program:

App.yaml:

```
runtime: python27
threadsafe: true
handlers:
- url: /
script: main.app
index.html:
<html>
<Style>
WeatherText {
    font-family: 'lato', sans-serif;
font-size: 24px;
text-align: center;
WeatherForm {
padding: 20px;
    Weather Submit {
color: white;
background-color: #083375;
padding: 5px 20px;
border-radius: 5px;
margin-top: 20px;
}
WeatherSubmit:hover {
cursor: pointer;
}
body {
display: flex;
justify-content: center;
align-items: center;
```

```
. card{
border: 2px solid black;
width: 50%;
justify-content: center;
align-items: center;
}
<style>
<head>
<title class="alignct">Post Office Finder</title>
link
href="https://fonts.googleapis.com/css2?family=Lato:wght@400;700&display=swap"
rel="stylesheet"
/>
<head>
<body>
<div class="card">
<h2 class="weatherText">Post Office Finder Using WebApp</h2>
<h1 id="error_head" style="display: none"
value="{{error}}">{{error}}</h1>
<form class="weather Text" id="weatherForm action="/"</pre>
method="post">
Location Zip Code:
<input
class="weather Text"
id="weather Input"
type="text"
name="zipCode"
/><br/>
<input
class="weatherText"
id="weatherSubmit"
type="submit
value="Submit"/>
```

```
<but
id="weather Submit"
class="weather Text"
onclick="document.getElementById(
'weatherInput').value = " ">
Clear
</button>
</form>
</div>
<!-- <script>
let err = document.getElementById('error head');
function myFunction() {
alert('Please Enter the Valid Pin Code!');
}
if (err) {
myFunction();
</script>-->
</body>
</html>
Main.py
import os
import json
import urllib
import webapp2
from google.appengine.ext.webapp import template
class MainPage(webapp2.RequestHandler):
def get(self):
template_values = {}
path = os.path.join(os.path.dirname(__file__), 'index.html')
self.response.out.write(template.render(path, template_values))
def post(self):
pincode = self.request.get('zipCode')
```

```
if not pincode.isnumeric() or not len(pincode) == 6:
template_values = {
"error": "Incorrect Pin Code (String / False Code entered)"
path = os.path.join(os.path.dirname( file ), 'index.html')
return self.response.out.write(template.render(path, template_values))
url = "https://api.postalpincode.in/pincode/"+pincode
data = urllib.urlopen(url).read()
data = json.loads(data)
if(data[0]['Status'] == 'Success'):
post office = data[0]['PostOffice'][0]['State']
 name = data[0]['PostOffice'][0]['Name']
 block = data[0]['PostOffice'][0]['Block']
 district = data[0]['PostOffice'][0]['District']
template_values = {
 "post office":post office,
 "name": name,
 "block": block,
 "district": district
path = os.path.join(os.path.dirname( file ), 'results.html')
self.response.out.write(template.render(path, template_values))
else:
template values = {}
path = os.path.join(os.path.dirname( file ), 'error.html')
self.response.out.write(template.render(path, template_values))
app = webapp2.WSGIApplication([('/', MainPage)], debug=True)
result.html
<!DOCTYPE html>
<html lang="en">
<style>
body {
display: flex;
```

```
justify-content: center;
align-items: center;
#weatherResults {
background-color: #83e9c2;
font-family: 'Lato', sans-serif;
font-size: 24px;
padding: 30px;
display: inline-block;
text-align: center;
margin: 20px;
margin-top: 10%;
border: 2px solid black;
border-radius: 5px;
}
</style>
<head>
<meta charset="UTF-8"/>
<title>Post Office Information</title>
link
href="https://fonts.googleapis.com/css2?family=Lato:wght@400;700&display=swap"
rel="stylesheet"
/>
</head>
<body>
<div id="weatherResults">
<h3>State of Post Office: </h3>
<h3>{{ post_office }}</h3>
```

```
<h3>Name of Post Office :</h3>
< h3 > \{ \{ name \} \} < /h3 >
<h3>Block of Post Office:</h3>
< h3 > \{\{block\}\} < /h3 >
<h3>District of Post Office:</h3>
<h3>{{ district }}</h3>
<a href=<u>http://localhost:8080/</u><h4>Back to the Home page</h4></a>
</div>
</body>
</html>
```

Thus the GAE Launcher to launch the web application was executed successfully.

Result:

Output:

Post Office Finder Using WebApp Location Zip Code: 422601 Submit Clear

State of Post Office: Maharashtra

Name of Post Office: Agasti SSK

Block of Post Office: Akole

District of Post Office: Ahmed Nagar

Back to the Home page

State of Post Office: Maharashtra

Name of Post Office: Badgi

Block of Post Office: Sangamner

District of Post Office: Ahmed Nagar

Back to the Home page

Ex.no: 5 Simulate a cloud scenario using Cloudsim and run a scheduling algorithm that is not present in Cloudsim.

Date:

Aim:

To Simulate a cloud scenario using CloudSim and run a scheduling algorithm that is not present in CloudSim.

To use cloudsim in eclipse:

Step 1: Download CloudSim install ablefiles from https://code.google.com/p/cloudsim/downloads/lis tand unzip

Step 2: Install java jdk

Step 3: Environment variable for your account

Step 4: Go to new paste set path for java bin

Step 5: Go to example

program

package org.cloudbus.cloudsim.examples;

import java.text.DecimalFormat;

import java.util.ArrayList;

import java.util.Calendar;

import java.util.LinkedList; import java.util.List; import org.cloudbus.cloudsim.Cloudlet; $import\ org. cloud bus. clouds im. Cloud let Scheduler Time Shared;$ import org.cloudbus.cloudsim.Datacenter; import org.cloudbus.cloudsim.DatacenterBroker; import org.cloudbus.cloudsim.DatacenterCharacteristics; import org.cloudbus.cloudsim.Host; import org.cloudbus.cloudsim.Log; import org.cloudbus.cloudsim.Pe; import org.cloudbus.cloudsim.Storage; import org.cloudbus.cloudsim.UtilizationModel; import org.cloudbus.cloudsim.UtilizationModelFull; import org.cloudbus.cloudsim.Vm; import org.cloudbus.cloudsim.VmAllocationPolicySimple; import org.cloudbus.cloudsim.VmSchedulerTimeShared; import org.cloudbus.cloudsim.core.CloudSim; import org.cloudbus.cloudsim.provisioners.BwProvisionerSimple; import org.cloudbus.cloudsim.provisioners.PeProvisionerSimple; import org.cloudbus.cloudsim.provisioners.RamProvisionerSimple; /*** A simple example showing how to create

- 11 shiple example showing how to create
- * a datacenter with one host and run two
- * cloudlets on it. The cloudlets run in
- * VMs with the same MIPS requirements.
- * The cloudlets will take the same time to

```
* complete the execution.
*/public class CloudSimExample2 {
/** The cloudlet list. */
private static List<Cloudlet&gt; cloudletList;
/** The vmlist. */
private static List<Vm&gt; vmlist;
/*** Creates main() to run this example
*/public static void main(String[] args) {
Log.printLine("Starting CloudSimExample2...");
try {
// First step: Initialize the CloudSim package. It should be called
// before creating any entities.
int num_user = 1; // number of cloud users
Calendar calendar = Calendar.getInstance();
boolean trace_flag = false; // mean trace events
// Initialize the CloudSim library
CloudSim.init(num_user, calendar, trace_flag);
// Second step: Create Datacenters
//Datacenters are the resource providers in CloudSim. We need at list one of them
to run a CloudSim simulation
@SuppressWarnings("unused")
Datacenter datacenter0 =
createDatacenter("Datacenter_0");
//Third step: Create Broker
DatacenterBroker broker = createBroker();
```

```
int brokerId = broker.getId();
//Fourth step: Create one virtual machine
vmlist = new ArrayList<Vm&gt;();
//VM description
int vmid = 0;
int mips = 250;
long size = 10000; //image size (MB)
int ram = 512; //vm memory (MB)
long bw = 1000;int pesNumber = 1; //number of cpus
String vmm = "Xen"; //VMM name
//create two VMs
Vm vm1 = new Vm(vmid, brokerId, mips, pesNumber, ram, bw, size, vmm, new
CloudletSchedulerTimeShared());
vmid++;
Vm vm2 = new Vm(vmid, brokerId, mips, pesNumber, ram, bw, size, vmm, new
CloudletSchedulerTimeShared());
//add the VMs to the vmList
vmlist.add(vm1);
vmlist.add(vm2);
//submit vm list to the broker
broker.submitVmList(vmlist);
//Fifth step: Create two Cloudlets
cloudletList = new ArrayList<Cloudlet&gt;();
//Cloudlet properties
int id = 0;
```

```
pesNumber=1;
long length = 250000;
long fileSize = 300;
long outputSize = 300;
UtilizationModel utilizationModel = new UtilizationModelFull();
Cloudlet cloudlet1 = new Cloudlet(id, length, pesNumber, fileSize, outputSize,
utilizationModel, utilizationModel, utilizationModel);
cloudlet1.setUserId(brokerId);
id++;
Cloudlet cloudlet2 = new Cloudlet(id, length, pesNumber, fileSize, outputSize,
utilizationModel, utilizationModel, utilizationModel);
cloudlet2.setUserId(brokerId);
//add the cloudlets to the list
cloudletList.add(cloudlet1);
cloudletList.add(cloudlet2);
//submit cloudlet list to the broker
broker.submitCloudletList(cloudletList);
//bind the cloudlets to the vms. This way, the broker
// will submit the bound cloudlets only to the specific VM
broker.bindCloudletToVm(cloudlet1.getCloudletId(),vm1.getId());
broker.bindCloudletToVm(cloudlet2.getCloudletId(),vm2.getId());
// Sixth step: Starts the simulation
CloudSim.startSimulation();
// Final step: Print results when simulation is over
List<Cloudlet&gt; newList = broker.getCloudletReceivedList();
```

```
CloudSim.stopSimulation();
printCloudletList(newList);
Log.printLine("CloudSimExample2 finished!");
}catch (Exception e) {
e.printStackTrace();
Log.printLine("The simulation has been terminated due to an unexpected error");
}}
private static Datacenter createDatacenter(String name){
// Here are the steps needed to create a PowerDatacenter:
// 1. We need to create a list to store
// our machine
List<Host&gt; hostList = new ArrayList&lt;Host&gt;();
// 2. A Machine contains one or more PEs or CPUs/Cores.
// In this example, it will have only one core.
List<Pe&gt; peList = new ArrayList&lt;Pe&gt;();
int mips = 1000;
// 3. Create PEs and add these into a list.
peList.add(new Pe(0, new PeProvisionerSimple(mips))); // need to store Pe id and
MIPS Rating
//4. Create Host with its id and list of PEs and add them to the list of machines
int hostId=0;
int ram = 2048; //host memory (MB)
long storage = 1000000; //host storage
int bw = 10000;
hostList.add(
```

```
new Host(
hostId,
new RamProvisionerSimple(ram),
new BwProvisionerSimple(bw),
storage,
peList,
new VmSchedulerTimeShared(peList)
)); // This is our machine
// 5. Create a DatacenterCharacteristics object that stores the
// properties of a data center: architecture, OS, list of
// Machines, allocation policy: time- or space-shared, time zone
// and its price (G$/Pe time unit).
String arch = "x86"; // system architecture
String os = "Linux"; // operating system
String vmm = "Xen";
double time_zone = 10.0; // time zone this resource located
double cost = 3.0; // the cost of using processing in this resource
double costPerMem = 0.05; // the cost of using memory in this resource
double costPerStorage = 0.001; // the cost of using storage in this resource
double costPerBw = 0.0; // the cost of using bw in this resource
LinkedList<Storage&gt; storageList = new LinkedList&lt;Storage&gt;(); //we are not adding
SAN devices by now
DatacenterCharacteristics characteristics = new DatacenterCharacteristics(
arch, os, vmm, hostList, time_zone, cost, costPerMem, costPerStorage, costPerBw);
// 6. Finally, we need to create a PowerDatacenter object.
```

```
Datacenter datacenter = null;
try {datacenter = new Datacenter(name, characteristics, new
VmAllocationPolicySimple(hostList), storageList, 0);
} catch (Exception e) {e.printStackTrace();
}return datacenter;}
//We strongly encourage users to develop their own broker policies, to submit vms and
cloudlets according
//to the specific rules of the simulated scenario
private static DatacenterBroker createBroker(){
DatacenterBroker broker = null;
try {
broker = new DatacenterBroker("Broker");
} catch (Exception e) {
e.printStackTrace();
return null;}return broker;
}/*** Prints the Cloudlet objects
* @param list list of Cloudlets*/
private static void printCloudletList(List<Cloudlet&gt; list) {
int size = list.size();
Cloudlet cloudlet;
String indent = " ";
Log.printLine();
Log.printLine("Cloudlet ID" + indent + "STATUS" + indent +
```

```
"Data center ID" + indent + "VM ID" + indent + "Time" +
indent + "Start Time" +
indent + "Finish Time");

DecimalFormat dft = new DecimalFormat("###.##");

for (int i = 0; i < size; i++) {
    cloudlet = list.get(i);

    Log.print(indent + cloudlet.getCloudletId() + indent + indent);
    if (cloudlet.getCloudletStatus() == Cloudlet.SUCCESS){
        Log.print(&quot;SUCCESS&quot;);

        Log.printLine( indent + indent + cloudlet.getResourceId() + indent + indent + indent
        + cloudlet.getVmId() +
        indent + indent + dft.format(cloudlet.getActualCPUTime()) + indent + indent +
        dft.format(cloudlet.getFinishTime()));
    }
}}
```

Result:

Thus Simulate a cloud scenario using CloudSim and run a scheduling algorithm that is not present in CloudSim was executed successfully.

Output

Starting CloudSimExample2...

Initialising...

Starting CloudSim version 3.0

Datacenter_0 is starting...

Broker is starting...

Entities started.

0.0: Broker: Cloud Resource List received with 1 resource(s)

0.0: Broker: Trying to Create VM #0 in Datacenter_0

0.0: Broker: Trying to Create VM #1 in Datacenter_0

0.1: Broker: VM #0 has been created in Datacenter #2, Host #0

0.1: Broker: VM #1 has been created in Datacenter #2, Host #0

0.1: Broker: Sending cloudlet 0 to VM #0

0.1: Broker: Sending cloudlet 1 to VM #1

1000.1: Broker: Cloudlet 0 received

1000.1: Broker: Cloudlet 1 received

1000.1: Broker: All Cloudlets executed. Finishing...

1000.1: Broker: Destroying VM #0

1000.1: Broker: Destroying VM #1

Broker is shutting down...

Simulation: No more future events

CloudInformationService: Notify all CloudSim entities for shutting down.

Datacenter_0 is shutting down...

Broker is shutting down...

Simulation completed.

Simulation completed.

====== OUTPUT ======

Cloudlet ID STATUS Data center ID VM ID Time Start Time Finish

Time

0 SUCCESS 2 0 1000 0.1 1000.1

1 SUCCESS 2 1 1000 0.1 1000.1

CloudSimExample2 finished!

Ex no: 6 Find a procedure to transfer the files from one virtual machine to another virtual machine.

Date:

Aim:

To find a procedure to transfer the files from one virtual machine to another virtual machine.

Procedure:

Step 1: Install Ubuntu.

Step 2: go to device option.

Step 3: open the share folder

Step 4: Choose the folder in windows.

Step 5: write the command.

Result

Thus the Find a procedure to transfer the files from one virtual machine to another virtual machine was executed successfully.

Output

Ex no: 7 **Install Hadoop single node cluster and run simple applications**

Date: like wordcount

Aim:

To install Hadoop single node cluster and run simple applications like wordcount.

Procedure:

- **Step 1:** To download the Java 8 Package. Save this file in your home directory.
- **Step 2**: Extract the Java Tar File and install Java SE development kit 8 and set destination directory to C:/Java.
- Step 3: Now merge this "Java" folder with the folder that is in program file named "java".
- **Step 4:** Download the Hadoop 3.3.0 Package.
- **Step 5:** Extract the Hadoop tar File.
- **Step 6:** Edit the system environment variables by adding a new variable JAVA_HOME and value (path of JDK bin folder).
- **Step 7:** Download the Hadoop Configuration files then extract it to paste the bin folder to Hadoop bin.

Step 8: Go to Hadoop folder->etc->Hadoop and edit 5 files with the following code.

core-site.xml

```
<configuration>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9000</value>

</configuration>
```

mapred-site.xml

```
<configuration>
  <name>mapreduce.framework.name</name>
  <value>yarn</value>
  </property>
</configuration>
```

yarn-site.xml

```
<configuration>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<name>yarn.nodemanager.auxservices.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
</configuration>
```

Create folder "data" under "C:\Hadoop"
Create folder "datanode" under "C:\Hadoop\data"
Create folder "namenode" under "C:\Hadoop\data"

hdfs-site.xml

- </configuration>
- Step 9: In hadoop-env.cmd update "JAVA_HOME" with JDK path.
- **Step 10:** Now set path variable name "HADOOP_HOME" and value (path of bin folder inside hadoop folder).

Step 11: Edit path in system variable and add both "bin" and "sbin" path here.

Step 12: Run "cmd" as administrator and connect to hadoop server.

->hdfs namenode -format

```
According to the control of the control to the cont
```

- -> C:\WINDOWS\system32>cd/
- ->C:\>cd hadoop
- ->C:\hadoop>cd sbin

-> C:\hadoop\sbin>start-all

-> C:\hadoop\sbin>jps

C:\hadoop\sbin>cd..

- ->Make input directory in HDFS
 - -hadoop fs -mkdir /input_dir

C:\hadoop>hadoop fs -mkdir /input_dir

- ->Copy the input text file in the input directory.
 - -hadoop fs -put C:/input_file.txt /input_dir

- ->Verify input_file.txt available in HDFS input directory.
 - -hadoop fs -ls /input_dir/
- ->You can verify content.
 - -hadoop dfs -cat /input_dir/input_file.txt
- ->Now work for word count.
- $-hadoop\ jar\ C:/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.0. jar\ wordcount\ /input_dir\ /output_dir$

Result:

Thus the Hadoop single node cluster was installed and wordcount program was executed successfully.

Output:

-hadoop dfs -cat /output_dir/*

```
Administrator Command Prompt

Reduce Input proups=343
Reduce shuffle bytes=4625
Reduce input records=343
Reduce output records=343
Reduce output records=343
Spilled Records=686
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=161
CPU time spent (ms)=2872
Physical memory (bytes) snapshot=502587392
Virtual memory (bytes) snapshot=790160112
Total committed heap usage (bytes)=460324864
Peak Map Physical memory (bytes)=460324864
Peak Map Virtual memory (bytes)=38632448
Peak Reduce Physical memory (bytes)=38612448
Peak Reduce Virtual memory (bytes)=3851526912
Shuffle Errors
BAD ID=0
CONNECTION=0
TO ERROR=0
NONG REDUCE=0
File Input Format Counters
Bytes Read=9516
File Output Format Counters
Bytes Read=9516
File Output Format Counters
Bytes Read=9516
File Output Format Counters
Bytes Read=9516
Sytes Written=3274

*\haddoop>haddoop dfs -cat /output dir/*
```