## Solución de recurrencias

### Guillermo Palma

Universidad Simón Bolívar Departamento de Computación y T.I.

CI-2612: Algoritmos y Estructuras de Datos II



(USB) Solución de recurrencias CI-2612 ene-mar 2020 1 / 18

## Plan

- Introducción
- Método de sustitución
- Método del árbol de recursión
- Método maestro



(USB) Solución de recurrencias CI-2612 ene-mar 2020 2 / 18

## Recurrencias

### Relación de recurrencia

Es una ecuación que recursivamente define una secuencia que se caracteriza por dar el término actual, en función de los términos anteriores.

Ejemplos de recurrencias:

0

$$T(n) = egin{cases} 0 & ext{si } n = 0 \ 3T(n \div 2) + n & ext{de lo contrario} \end{cases}$$

Fibonacci

$$f(n) = egin{cases} n & ext{si } n = 0 \lor n = 1 \\ f(n-1) + f(n-2) & ext{de lo contrario} \end{cases}$$



(USB)

Solución de recurrencia:

CI-2612 ene-mar 2020

4/18

Introducción

## Sobre las recurrencias

- Las recurrencias pueden surgir cuando se quiere caracterizar el tiempo de ejecución de algoritmos con llamadas recursivas
- Se quiere saber cual es el tiempo de ejecución de un algoritmo con llamadas recursivas
- Para determinar el tiempo de un algoritmo con llamadas recursivas, es necesario resolver la recurrencia
- Se quiere encontrar la expresión que es solución de la recurrencia
- Se quiere encontrar la cota superior de la expresión que es solución de la recurrencia



(USB) Solución de recurrencias

# Ejemplos de recurrencias

- T(n) = T(n/2) + c. La solución es  $\Theta(\log n)$
- T(n) = 2T(n/2) + n. La solución es  $\Theta(n \log n)$
- T(n) = T(n/2) + n. La solución es  $\Theta(n)$
- T(n) = T(n-1) + n. La solución es  $\Theta(n^2)$
- T(n) = 2T(n/2) + c. La solución es  $\Theta(n)$



(USB) Solución de recurrencias CI-2612 ene-mar 2020 6 / 18

#### Método de sustitución

# Pasos para resolver una recurrencia usando el método de sustitución

- Se propone una solución
  - La solución propuesta es del tipo T(n) = O(f(n))
  - ▶ Hipótesis inductiva:  $T(k) \le c f(k)$ , para todo k < n
  - ▶ Se quiere probar:  $T(n) \le c f(n)$ , para algún c > 0 y  $n \ge n_0$
- Se prueba la solución propuesta por inducción. La idea es usar la hipótesis inductiva para encontrar valores para las constantes c y no, para los cuales se cumple la tesis a probar.



(USB) Solución de recurrencias CI-2612 ene-mar 2020 8 / 18

# Ejemplo 1 del Método de sustitución

Recurrencia: T(n) = T(n-1) + n

## Solución

- Se propone:  $T(n) = O(n^2)$
- Se quiere probar:  $T(n) \le c n^2$ , para algún c y  $n \ge n_0$
- Hipótesis inductiva :  $T(n-1) \le c (n-1)^2$  para todo k < n

## Prueba por inducción

$$T(n) = T(n-1) + n \le c (n-1)^2 + n$$
  
=  $cn^2 - 2cn + c + n = cn^2 - (2cn - c - n) \le cn^2$ 

Se tiene que esto se cumple si  $2cn-c-n \ge 0$  lo que implica que  $c \ge \frac{1}{2-1}$ 

Para  $n \ge 1$  se tiene que  $2 - \frac{1}{n} \ge 1$  entonces para  $c \ge 1$  es válida

(USB)

Solución de recurrencias

CI-2612 ene-mar 2020

9/18

#### Método de sustitución

# Ejemplo 2 del Método de sustitución

Recurrencia: T(n) = 2T(n/2) + n

## Solución

- Se propone:  $T(n) = O(n \log n)$
- Se quiere probar:  $T(n) \le c \ n \log(n)$ , para algún c y  $n \ge n_0$
- Hipótesis inductiva :  $T(n/2) \le c (n/2) \log(n/2)$

## Prueba por inducción

$$T(n) = 2T(n/2) + n \le 2c(n/2)\log(n/2) + n$$
  
=  $cn\log n - cn + n \le cn\log n$ 

Se tiene que esto se cumple si  $-cn+n \le 0$ 

lo que implica que para  $c \ge 1$  es válida

WILLIAM PROPERTY OF THE PARTY O

# Pasos para resolver una recurrencia usando el método del árbol de recursión

- Cada nodo representa el costo de la función en los diferentes niveles de recursión
- Se suma el costo de todos los niveles del árbol para obtener el costo de la recurrencia



(USB)

Solución de recurrencias

CI-2612 ene-mar 2020

12/18

Método del árbol de recursión

# Ejemplo del método del árbol de recursión

Recurrencia:  $W(n) = 2 W(n/2) + n^2$ 



Figura: Árbol de recursión generado por las llamadas a la función. Fuente [1]



(USB) Solución de recurrencias CI-2612 ene-mar 2020 13 / 18

# Ejemplo del método del árbol de recursión

Recurrencia:  $W(n) = 2 W(n/2) + n^2$ 

- El tamaño del problema de la entrada de la recurrencia a nivel i es  $n/2^i$
- El tamaño del problema de la entrada de la recurrencia es 1 cuando  $1 = n/2^i$ , esto es cuando el nivel i es  $i = \log n$
- El número de nodos al nivel i es  $i = 2^i$
- El costo del problema al nivel i es  $(n/2^i)^2$ .
- $W(n) = \sum_{i=0}^{\log n 1} \frac{n^2}{2^i} + 2^{\log n} W(1) = n^2 \sum_{i=0}^{\log n 1} \frac{1}{2^i} + n \le n^2 \sum_{i=0}^{\infty} \frac{1}{2^i} + O(n) = n^2 (1 + \sum_{i=1}^{\infty} \frac{1}{2^i}) + O(n) = n^2 (1 + 1) + O(n) = 2n^2 + O(n)$
- Por lo tanto,  $W(n) = O(n^2)$



(USB) Solución de recurrencias CI-2612 ene-mar 2020 14 / 18

Método maestro

## Método maestro

## Ecuación de recurrencia del método maestro

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

donde  $a \ge 1$ , b > 1 y f(n) positiva

- Caso 1:  $f(n) = O(n^{\log_b a \epsilon})$  para  $\epsilon > 0$  entonces  $T(n) = \Theta(n^{\log_b a})$
- Caso 2:  $f(n) = \Theta(n^{\log_b a})$  entonces  $T(n) = \Theta(n^{\log_b a} \log n)$
- Caso 3:  $f(n) = \Omega(n^{\log_b a + \epsilon})$  para  $\epsilon > 0$  y si  $af(n/b) \le cf(n)$  para algun c < 1, entonces  $T(n) = \Theta(f(n))$



16 / 18

SB) Solución de recurrencias

# Ejemplo del método maestro

- Recurrencia T(n) = 2T(n/2) + n
- a = 2, b = 2 y  $\log_2 2 = 1$
- Se compara  $n^{\log_2 2}$  con f(n) = n
- $f(n) = \Theta(n)$ , esto es caso 2
- $T(n) = \Theta(n \log n)$



(USB) Solución de recurrencias CI-2612 ene-mar 2020 17 / 18

## Referencias

T. Cormen, C. Leirserson, R. Rivest, and C. Stein. *Introduction to Algorithms*.

McGraw Hill, 3ra edition, 2009.



(USB)