Digital Image Processing COSC 6380/4393

Lecture – 17

Mar. 21st, 2023

Pranav Mantini

Slides from Dr. Shishir K Shah and S. Narasimhan

2D Discrete Fourier Transform

If I is an image of size N then

Sin image
$$I_1(i,j) = \sin\left[\frac{2\pi}{N}\left(ui + vj\right)\right] \text{ for } 0 \leq i,j \leq N\text{-}1$$

$$Cos image \qquad I_2(i,j) = \cos\left[\frac{2\pi}{N}\left(ui + vj\right)\right] \text{ for } 0 \leq i,j \leq N\text{-}1$$

• Let \tilde{I} be the DFT of the I

$$\tilde{I}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i,j) e^{-\sqrt{-1}\frac{2\pi}{N}(ui+vj)}$$

$$F(u,v) = \sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} f(i,j)e^{-\sqrt{-1}(ui+vj)}$$

2D Inverse Discrete Fourier Transform

• Let \tilde{I} be the DFT of the I

$$I(i,j) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \tilde{I}(u,v) e^{\sqrt{-1}\frac{2\pi}{N}(ui+vj)}$$

$$f(i,j) = \sum_{u=-\infty}^{\infty} \sum_{v=-\infty}^{\infty} F(u,v)e^{\sqrt{-1}(ui+vj)}$$

Example

$$I = \begin{bmatrix} 5 & 7 \\ 8 & 3 \end{bmatrix}$$

$$\tilde{I}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i,j) e^{-\sqrt{-1}\frac{2\pi}{N}(ui+vj)}$$

$$\tilde{I}(0,0) = \sum_{i=0}^{2-1} \sum_{j=0}^{2-1} I(i,j) e^{-\sqrt{-1}\frac{2\pi}{2}(0*i+0*j)}$$

$$= \sum_{i=0}^{1} \sum_{j=0}^{1} I(i,j) = 21$$

$$\tilde{I}(0,1) = 3.+0. \sqrt{-1}$$

$$\tilde{I}(1,0) = 1. +0. \sqrt{-1}$$
 $\tilde{I}(1,1) = -7. +0. \sqrt{-1}$

23	
	-7.+0.j

Example

$$I = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$\tilde{I}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} I(i,j) e^{-\sqrt{-1}(\frac{2\pi}{N}ui + \frac{2\pi}{M}vj)}$$

$$\tilde{I}(0,0) = \sum_{i=0}^{2-1} \sum_{j=0}^{3-1} I(i,j) e^{-\sqrt{-1}(\frac{2\pi}{N}0*i + \frac{2\pi}{M}0*j)}$$

$$= \sum_{i=0}^{1} \sum_{j=0}^{2} I(i,j) = 21 \quad \tilde{I}(0,1) = -3 + 1.732051j \qquad \tilde{I}(0,2) = -3 - 1.732051j$$

$$\tilde{I}(1,0) = -9$$

$$\tilde{I}(1,0) = -9$$
 $\tilde{I}(1,1) = 0 + 0j$

$$\tilde{I}(1,2) = 0 + 0j$$

$$\tilde{I} = \begin{bmatrix} 21 + 0\sqrt{-1} & -3 + 1.73\sqrt{-1} & -3 - 1.73\sqrt{-1} \\ -9 + 0\sqrt{-1} & 0 + 0\sqrt{-1} & 0 + 0\sqrt{-1} \end{bmatrix}$$

Complex **Image**

Properties of DFT Matrix

- We can understand the DFT matrix better by studying some of its properties.
- Any image I of interest to us is composed of real integers.
- However, the DFT of I is generally complex.
- It can be written in the form

$$\mathbf{\tilde{I}} = \mathbf{\tilde{I}}_{\text{real}} + \sqrt{-1} \, \mathbf{\tilde{I}}_{\text{imag}}$$

where $\tilde{\boldsymbol{I}}_{\text{real}}$ and $\tilde{\boldsymbol{I}}_{\text{imag}}$ have components

$$\tilde{I}_{real}(u, v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \cos \left[\frac{2\pi}{N} (ui + vj) \right]$$

$$\tilde{I}_{imag}(u, v) = -\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \sin \left[\frac{2\pi}{N} (ui + vj) \right]$$

i.e.,

$$\tilde{I}(u, v) = \tilde{I}_{real}(u, v) + \sqrt{-1} \tilde{I}_{imag}(u, v) \text{ for } 0 \le u, v \le N-1$$

(These are taken directly from the original DFT equation).

Therefore I has a **magnitude** and a **phase**.

$21 + 0\sqrt{-1}$	$-3 + 1.73 \sqrt{-1}$	$-3 - 1.73 \sqrt{-1}$
$-9 + 0\sqrt{-1}$	$0 + 0 \sqrt{-1}$	$0 + 0\sqrt{-1}$

21	-3	-3
-9	0	0

0	1.73	- 1.73
0	0	0

Magnitude and Phase of DFT

The magnitude of the DFT is the matrix

$$\left|\tilde{\boldsymbol{I}}\right| = \left[\left|\tilde{I}(u,\,v)\right|\,;\, 0 \leq \,u,\,v \leq \,N\text{-}1\right]$$
 with elements

$$\left| \tilde{I}(u, \, v) \right| = \sqrt{\tilde{I}_{\text{real}}^{\, 2}(u, v) + \tilde{I}_{\text{imag}}^{\, 2}(u, v)}$$

21	3.46	3.46
9	0	0

which are just the magnitudes of the complex components of ${f I}$

The phase of the DFT is the matrix

$$\angle \tilde{\mathbf{I}} = \left[\angle \tilde{\mathbf{I}}(u, v) ; 0 \le u, v \le N-1\right]$$

with elements

$$\label{eq:interpolation} \begin{split} \angle \tilde{I}(u,\,v) = tan^{\text{-}1} \big[\tilde{I}_{imag}(u,\,v) \, / \, \tilde{I}_{real}(u,\,v) \big] \end{split}$$

Therefore which are just the phases of the complex components of \(\tilde{\ell}\).

$$\tilde{I}(u, v) = \left|\tilde{I}(u, v)\right| \exp\left\{\sqrt{-1}\angle\tilde{I}(u, v)\right\}$$

Symmetry of DFT

 Depiction of the symmetry of the DFT (magnitude).

 The highest frequencies are represented near (u, v) = (N/2, N/2).

Periodic Extension of DFT

Periodic Extension of Image

Frequencies DFT

 The highest frequencies are represented near (u, v) = (N/2, N/2).

Displaying the DFT

- Usually, the DFT is displayed with its center coordinate (u, v) = (0, 0) at the center of the image.
- This way, the lower frequency information (which usually dominates an image) is clustered together near the origin at the center of the display.
- This can be accomplished in practice by taking the DFT of the alternating image (for display purposes only!)

$$[(-1)^{i+j}I(i,j); 0 \le i, j \le N-1]$$

Observe that

$$(-1)^{i+j} = e^{\sqrt{-1}\pi \; (i+j)} = e^{\sqrt{-1} \; \frac{2\pi}{N} \; N(i+j)/2} = W_N^{N(i+j)/2}$$
 so
$$DFT\Big[(-1)^{i+j} I(i,j) \Big] = \sum_{i=0}^{N-1} \; \sum_{j=0}^{N-1} \; I(i,j) \; (-1)^{i+j} \; W_N^{(ui+vj)}$$

$$= \sum_{i=0}^{N-1} \; \sum_{j=0}^{N-1} \; I(i,j) \; W_N^{(ui+vj)} \; W_N^{-N(i+j)/2}$$

$$= \sum_{i=0}^{N-1} \; \sum_{j=0}^{N-1} \; I(i,j) \; W_N^{[(u-N/2)i+(v-N/2)j]}$$

$$= \tilde{I}(u - \frac{N}{2}, \, v - \frac{N}{2})$$

Centered DFT

Original DFT

Centered DFT

Displaying the DFT

- Since the DFT is complex one can display only either the magnitude or phase as an image at a time.
- Usually the phase is very difficult to interpret visually.
- To display the magnitude, usually it's best to logarithmically compress it:

$$\log \left[1 + \left|\tilde{I}(u, v)\right|\right]$$

prior to display, since (visually) the low-amplitude frequencies will be hard to see.

 Following the logarithm, it is necessary to use a linear point operation to stretch the contrast, since the log values will be very small.

The Meaning of Image Frequencies

- It is sometimes easy to lose track of the meaning of the DFT and of the frequency content of an image in all the math.
- The DFT is precisely that a description of the frequency content.
- By looking at the DFT or spectrum of an image (especially its magnitude), we can determine much about the image.

Qualitative Properties of DFT

- We may regard the DFT as an **image of frequency content**.
- Bright regions in the DFT "image" correspond to frequencies that have large magnitudes in the real image.
- It is very intuitive to think of the frequency content of an image in terms of its **granularity** (distribution of radial frequencies) and its **orientation**.

Periodic Noise removal

Periodic Noise removal

Narrowband Image

• It is also possible to produce an images that are highly granular **and** highly oriented:

 This mask was created by (pointwise) multiplying the midfrequency mask with one of the oriented masks.

Filtered Image

Linear Image Filtering

Linear Image Filtering

- Correlation and Convolution are basic operations that we will perform to extract information from images
- Two operations
 - Correlation
 - Used as a tool to measure the similarity between two signals
 - Convolution
 - Used to modify one signal using another signal.
- The two operations in essence are the same with a minor difference.

Spatial Correlation Operator

1									, /	\ I					
f	0	0	0	1	0	0	0	0	7	\sqrt{w}	1	2	3	2	8

0	0	0	1	0	0	0	0
---	---	---	---	---	---	---	---

1 2 3 2 8

									. 🔥	ı					
f	0	0	0	1	0	0	0	0	X	W	1	2	3	2	8

Full Correlation result

0	0	0	8	2	3	2	1	0	0	0	0
---	---	---	---	---	---	---	---	---	---	---	---

f	0	0	0	1	0	0	0	0	₩ X	w	1	2	3	2	8

Cropped Correlation result

0 8 2 3 2 1	0	0
-------------	---	---

Spatial Correlation Operator

The correlation of a filter w(x) of size m with an signal f(x), denoted as $w(x) \not \searrow f(x)$

$$w(x) \stackrel{\wedge}{\bowtie} f(x) = \sum_{s=-a}^{a} w(s) f(x+s)$$

Spatial Convolution Operator

|--|

w rotated by 180^{0}

UNIVERSITY of HOUSTON

	f	0	0	0	1	0	0	0	0	$\bigvee w$	1	2	3	2	8
--	---	---	---	---	---	---	---	---	---	-------------	---	---	---	---	---

Full Convolution result

0	0	0	1	2	3	2	8	0	0	0	0
---	---	---	---	---	---	---	---	---	---	---	---

UNIVERSITY of HOUSTON

	f	0	0	0	1	0	0	0	0	$ \bigotimes w $	1	2	3	2	8
--	---	---	---	---	---	---	---	---	---	--------------------	---	---	---	---	---

Cropped Convolution result

0	1	2	3	2	8	0	0
---	---	---	---	---	---	---	---

Spatial Correlation Operator

The correlation of a filter w(x) of size m with an signal f(x), denoted as $w(x) \otimes f(x)$

$$w(x) \otimes f(x) = \sum_{s=-a}^{a} w(s) f(x-s)$$

Spatial Filtering

Linear spatial filtering of an image of size MXN with a filter of size mXn is given by

Spatial Filtering

Spatial Correlation Operator

Spatial Correlation Operator

The correlation of a filter w(x, y) of size $m \times n$ with an image f(x, y), denoted as $w(x, y) \Leftrightarrow f(x, y)$

$$w(x, y) \stackrel{\wedge}{\approx} f(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)$$

Spatial Convolution Operator

The convolution of a filter w(x, y) of size $m \times n$ with an image f(x, y), denoted as $w(x, y) \otimes f(x, y)$

$$w(x, y) \otimes f(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x-s, y-t)$$

MENT OF COMPUTER SCIENCE

/	- (Orig	gin	f(x,	y)		
0	()	()	0	0			
0	()	()	0	()	w	(x,]	y)
()	()	1	0	0	1	2	3
0	0	()	0	0	4	5	6
0	0	()	0	0	7	8	9
				(a)			

FIGURE 3.30

Correlation (middle row) and convolution (last row) of a 2-D filter with a 2-D discrete, unit impulse. The 0s are shown in gray to simplify visual analysis.

Linear Systems And Linear Image Filtering

- A process that accepts a signal or image I as input and transforms it by an act of linear convolution is a type of linear system
- Example

Goals of Linear Image Filtering

- Process sampled, quantized images to transform them into
 - images of **better quality** (by some criteria)
 - images with certain features enhanced
 - images with certain features de-emphasized or eradicated

Some Specific Goals

- smoothing remove noise from bit errors, transmission, etc
- deblurring increase sharpness of blurred images
- sharpening emphasize significant features, such as edges
- combinations of these