函数与极限

1.1 映射与函数

♡映射{x}→{y}

定义: 两个非空集合X、Y,若存在法则 f,使X中每个元素x在Y中都能确定唯一元素y与之对应,则称 f为 X到Y的映射,记作 f: $x \rightarrow y$

■ $X:\{0,1,2,3\}\to Y:\{0,2,4,6\};$ 有 $f: x\to y$ 即 y=f[x]=2x

♡ 函数y=f[x]

定义: 数集 $D \subset R$,则称映射 $f: D \to R$ 为定义在 D上的函数,记为 y = f(x), $x \in D$, x为自变量,y为因变量,D为定义 total

■ $f(x)=Sin(x), x \in [-\pi, 2\pi];$

$\mathsf{Plot}\big[\mathsf{Sin}[\mathsf{x}],\{\mathsf{x},-\pi,2\pi\}\big]$

♡ 基本初等函数

■幂函数

2 1.1映射与函数.nb

• $f[x] = x^a$, $x \in [-\pi, 2\pi]$;

Manipulate $[Plot[x^a, \{x, -\pi, 2\pi\}], \{a, -3, 5, 1\}]$

■指数函数

• $f[x] = a^x, x \in [-\pi, 2\pi];$

Manipulate $[Plot[a^x, \{x, -\pi, 2\pi\}], \{a, 1, 5, 1\}]$

■对数函数

• $f[x] = Log_a x, x \in [0, 2\pi];$

Manipulate[Plot[Log[a,x], $\{x,0,2\pi\}$], $\{a,2,6,1\}$]

■三角函数

• $f[x]=Cos[a x], x \in [-\pi, 2\pi];$

Manipulate[Plot[Cos[a x],{x,- π ,2 π }],{a,-3,3}]

■ 反三角函数

• $f[x]=ArcSin[a x], x \in [-\pi, 2\pi];$

$\label{eq:manipulate_plot_arcSin[a x], {x,-\pi,2\pi}], {a,-3,3}]} \\$

