Computational Analysis of Protein Coevolution and Interaction

Fábio Madeira, PhD student

CENTRIA-DI, Faculdade de Ciências e Tecnologia

Outline

- I. Introduction
- 2. Motivation
- 3. Objectives
- 4. Results
- 5. Summary

Play a crucial role in biological systems

Protein interactions of RNR (STRING)

- > Play a crucial role in biological systems
- Invaluable in expanding our understanding of diverse biological processes

Protein interactions of RNR (STRING)

- Play a crucial role in biological systems
- Invaluable in expanding our understanding of diverse biological processes
- Hard to determine by experimental methods

Protein interactions of RNR (STRING)

- > Play a crucial role in biological systems
- Invaluable in expanding our understanding of diverse biological processes
- Hard to determine by experimental methods
- Hard to determine by computational methods

Protein interactions of RNR (STRING)

I. Search

I. Search

Accumulation of sequence changes in one protein triggered by changes in other regions of the same protein or in another protein

- Accumulation of sequence changes in one protein triggered by changes in other regions of the same protein or in another protein
- Applied successfully for:
 - Prediction of protein interactions
 - To guide protein docking

The "classic" coevolution workflow

I. Homologous sequences

DPSLDRPFISEGTTLKDLIYDMTT

VEGMIKLALSTASGLAHLHMEI

I. Homologous sequences

DPSLDRPFISEGTTLKDLIYDMTT

----EPRPDSGRDWSVELQEL-----KPGPDLGRDWSVELQEL-----EPESDSGRDWSAELPEL-----EPEPGSGGDCSEELPEL-PEPEQEPEPDSGGDCSAELPEL-RKOGLHSMNMMEAACSEPSLDL--

2. MSA computation

VEGMIKLALSTASGLAHLHMEI

WGSSLRMALSLAQGLAFLHEER
WGSSLRMALSLAQGLAFLHEER
WGSSLRMALSLAQGLAFLHEER
WGSSLSMALSLAEGLAFLHGRR
WGSSLSMALSLAEGLAFLHERR
--SSMSMALSLAQGLAFLHERR
--SSCRLAHSITRGLAYLHTRR

I. Homologous sequences

DPSLDRPFISEGTTLKDLIYDMTT

----EPRPDSGRDWSVELQEL-----KPGPDLGRDWSVELQEL--

----EPESDSGRDWSAELPEL--

----EPEPGSGGDCSEELPEL--

----DPEPGSGGDCSEELPEL--

PEPEOEPEPDSGGDCSAELPEL--

RKQGLHSMNMMEAACSEPSLDL--

X

3. Coevolution

analysis

2. MSA computation

VEGMIKLALSTASGLAHLHMEI

WGSSLRMALSLAQGLAFLHEER
WGSSLRMALSLAQGLAFLHEER
WGSSLRMALSLAQGLAFLHEER
WGSSLSMALSLAEGLAFLHGRR
WGSSLSMALSLAEGLAFLHERR
--SSMSMALSLAQGLAFLHER--SSCRLAHSITRGLAYLHTRR

- Matrix-based
 - Physicochemical propensities and contact preferences (CPVN, CLM, etc.)
- Correlation-based
 - Correlation coefficient (Pearson's, Spearman's, Quartets, OMES, etc.)
- Statistical-based
 - Perturbation of MSA (MI, SCA, ELSC, etc.)
- Phylogenetic-based
 - Similarity of phylogenetic trees (e.g. Mirrortree, etc.)

MSA =

Multiple Sequence Alignments

Multiple Sequence Alignments

- Insufficient evolutionary divergence
- Sample size effects
- Small taxa coverage
- False correlations as result of misalignments
- Underlying assumption of independent mutations

Outline

- I. Introduction
- 2. Motivation
- 3. Objectives
- 4. Results
- 5. Summary

Coevolution data can help predict protein interaction and to guide docking

- Coevolution data can help predict protein interaction and to guide docking
- ➤ BiGGER can use contact information to constraint the search space and improve the quality of the models

- Coevolution data can help predict protein interaction and to guide docking
- ➤ BiGGER can use contact information to constraint the search space and improve the quality of the models
- Limitations of MSA, such as the assumption of independent mutations

Outline

- I. Introduction
- 2. Motivation
- 3. Objectives
- 4. Results
- 5. Summary

The computational analysis of protein coevolution and interaction will focus on:

- The computational analysis of protein coevolution and interaction will focus on:
 - Refinement of Multiple Sequence Alignments
 - Integration of protein coevolution data in the protein docking workflow
 - Development and assessment of different coevolution measures
 - Development of new scoring methods to rank docking solutions

Outline

- I. Introduction
- 2. Motivation
- 3. Objectives
- 4. Results
- 5. Summary

Pycoevol

Madeira F. and Krippahl L. 2012. PYCOEVOL: A Python workflow to study protein-protein coevolution. BIOINFORMATICS 2012, pp.143-9.

Pycoevol

Madeira F. and Krippahl L. 2012. PYCOEVOL: A Python workflow to study protein-protein coevolution. BIOINFORMATICS 2012, pp.143-9.

Organism1 DPSLDRPFISEGTTLKDLIYDMTT Organism2 ----EPRPDSGRDWSVELQEL--Organism3 ----KPGPDLGRDWSVELQEL--Organism4 ----EPESDSGRDWSAELPEL--Organism5 ----EPEPGSGGDCSEELPEL--Organism6 ----DPEPGSGGDCSEELPEL--Organism7 PEPEOEPEPDSGGDCSAELPEL--Organism8 RKQGLHSMNMMEAACSEPSLDL--

Organism3
Organism1
Organism9
Organism8
Organism5
Organism10
Organism2
Organism11

VEGMIKLALSTASGLAHLHMEI
WGSSLRMALSLAQGLAFLHEER
WGSSLRMALSLAQGLAFLHEER
WGSSLRMALSLAQGLAFLHEER
WGSSLSMALSLAEGLAFLHGRR
WGSSLSMALSLAEGLAFLHERR
--SSMSMALSLAQGLAFLHERR
--SSCRLAHSITRGLAYLHTRR

Org	gar	iis	m1
Org	gar	is	m2
Org	gar	is	m3
Org	gar	nis	m4
Org	gar	is	m5
Org	gar	nis	m6
Org	gar	nis	m7
Org	gar	is	m8

DPSLDRPFISEGTTLKDLIYDMTT
----EPRPDSGRDWSVELQEL-----KPGPDLGRDWSVELQEL-----EPESDSGRDWSAELPEL-----EPEPGSGGDCSEELPEL-PEPEQEPEPDSGGDCSAELPEL-RKOGLHSMNMMEAACSEPSLDL--

Organism3
Organism1
Organism8
Organism5
Organism10
Organism2
Organism11

VEGMIKLALSTASGLAHLHMEI
WGSSLRMALSLAQGLAFLHEER
WGSSLRMALSLAQGLAFLHEER
WGSSLRMALSLAQGLAFLHEER
WGSSLSMALSLAEGLAFLHGRR
WGSSLSMALSLAEGLAFLHERR
--SSMSMALSLAQGLAFLHERR
--SSCRLAHSITRGLAYLHTRR

Organism1
Organism2
Organism3
Organism4
Organism5
Organism6
Organism7
Organism8

DPSLDRPFISEGTTLKDLIYDMTT
----EPRPDSGRDWSVELQEL-----KPGPDLGRDWSVELQEL-----EPESDSGRDWSAELPEL-----EPEPGSGGDCSEELPEL-PEPEQEPEPDSGGDCSAELPEL-RKOGLHSMNMMEAACSEPSLDL--

Organism3
Organism1
Organism9
Organism8
Organism5
Organism10
Organism10
Organism2

VEGMIKLALSTASGLAHLHMEI
WGSSLRMALSLAQGLAFLHEER
WGSSLRMALSLAQGLAFLHEER
WGSSLSMALSLAEGLAFLHERR
WGSSLSMALSLAEGLAFLHERR
--SSMSMALSLAQGLAFLHER--SSCRLAHSITRGLAYLHTRR

Organism1
Organism2
Organism3
Organism4
Organism5
Organism6
Organism7
Organism8

DPSLDRPFISEGTTLKDLIYDMTT
----EPRPDSGRDWSVELQEL-----KPGPDLGRDWSVELQEL-----EPESDSGRDWSAELPEL-----EPEPGSGGDCSEELPEL-PEPEQEPEPDSGGDCSAELPEL-RKQGLHSMNMMEAACSEPSLDL--

Organism1 Organism3 Organism2 Organism5 Organism8

DPSLDRPFISEGTTLKDLIYDMTT
----KPGPDLGRDWSVELQEL-----EPRPDSGRDWSVELQEL-----EPEPGSGGDCSEELPEL-RKQGLHSMNMMEAACSEPSLDL--

Organism3
Organism1
Organism9
Organism8
Organism5
Organism10
Organism2
Organism11

Organism1 Organism3 Organism2 Organism5 Organism8 VEGMIKLALSTASGLAHLHMEI
WGSSLRMALSLAQGLAFLHEER
WGSSLRMALSLAQGLAFLHEER
WGSSLSMALSLAEGLAFLHERR
WGSSLSMALSLAEGLAFLHERR
--SSMSMALSLAQGLAFLHERR
--SSCRLAHSTTRGLAYLHTRR

WGSSLRMALSLAQGLAFLHEER
VEGMIKLALSTASGLAHLHMEI
--SSMSMALSLAQGLAFLHERWGSSLSMALSLAEGLAFLHGRR
WGSSLRMALSLAQGLAFLHEER

> p-distance [Jukes and Cantor, 1969]

$$d = p = \frac{N_{dif}}{N_{total}}$$

Jukes-Cantor [Jukes and Cantor, 1969]

$$d = -\frac{19}{20}log(1 - p * \frac{20}{19})$$

Kimura distance [Kimura, 1983]

$$d = -ln(1 - p - 0.2^2)$$

➤ Pairwise score using Dayhoff or PAM matrices [Gonnet, 2000]

$$d = \sum \frac{1 - S_{ij}}{S_{ii}} * \frac{1 - S_{ij}}{S_{jj}}$$

Median m of the slopes $(y_j - y_i)/(x_j - x_i)$ determined by all pairs of sample points $\in (x,y)$, which have distinct x-coordinates [Theil, 1950] and [Sen, 1968]

Pycoevol

Madeira F. and Krippahl L. 2012. PYCOEVOL: A Python workflow to study protein-protein coevolution. BIOINFORMATICS 2012, pp.143-9.

Pycoevol

Madeira F. and Krippahl L. 2012. PYCOEVOL: A Python workflow to study protein-protein coevolution. BIOINFORMATICS 2012, pp.143-9.

Refinement of Multiple Sequence Alignments

Constraint Programming

misalignments

Accounts for correlated mutations

Correia, M. Madeira, F., Barahona, P. and Krippahl, L. 2011. Improving Multiple Sequence Alignments with Constraint Programming and Local Search. WCB11, pp.37-44.

Pycoevol

Madeira F. and Krippahl L. 2012. PYCOEVOL: A Python workflow to study protein-protein coevolution. BIOINFORMATICS 2012, pp.143-9.

Pycoevol

Madeira F. and Krippahl L. 2012. PYCOEVOL: A Python workflow to study protein-protein coevolution. BIOINFORMATICS 2012, pp.143-9.

- Contact Preferences, Volume Normalized (CPVN) [Glaser et al, 2001]
- Contact PDB-derived Likelihood Matrix (CLM) [Singer et al, 2002]
- Residue-residue Volume Normalized (VOL) [Esque et al, 2010]

$$CM_{x,y} = \sum_{i}^{n} \sum_{j}^{n} \frac{S_{ij}}{n}$$

- Pearson's correlation (Pearson) [Göbel et al, 1994]
- Spearman's rank correlation (Spearman) [Pazos et al, 1997]
- McLachlan Based Substitution Correlation (McBASC) [Fodor and Aldrich, 2004]
- Quartets [Galitsky, 2002]

$$CM_{x,y} = \frac{1}{N^2} \sum_{i} \sum_{j} \frac{W_{ij}(S_{xij} - \langle S_x \rangle)(S_{yij} - \langle S_y \rangle)}{\sigma_x \sigma_y}$$

Observed Minus Expected Squared (OMES) [Kass and Horovitz, 2002]

$$CM_{x,y} = \sum_{l}^{L} \frac{(N_{obs} - \frac{C_{xi}C_{yj}}{N_{valid}})^2}{N_{valid}}$$

- Mutual Information (MI) [Gloor et al, 2005]
- MI by pair Entropy (MI/E) [Martin et al, 2005]
- Row and Column Weighed MI (RCW MI) [Gouveia-Oliveira et al, 2007]

$$MI_{x,y} = \sum_{i} \sum_{j} P(x_i y_j) log \frac{P(x_i y_j)}{P(x_i)P(y_j)}$$

Statistical Coupling Analysis (SCA) [Lockless and Ranganathan, 1999]

$$\Delta \Delta G_{x,y} = \sqrt{\sum_{i} (\ln P_{x|\delta y}^{i} - P_{x}^{i})^{2}}$$

Explicit Likelihood of Subset Covariation (ELSC) [Dekker et al, 2004]

$$\Lambda_x^y = \prod_{r}^{20} \frac{\binom{N_{r,y}}{n_{r,y}}}{\binom{N_{r,y}}{m_{r,y}}}$$

Output results

Development of an integrated system

Protein complex TGF- β 3/TGF- β receptor type II (1ktz)

- Most residues were at the surface level
- 3 out of 23 residues were at the interface
- 8 residues from TGF-β3
- 15 residues from TGB-β receptor

- Possible pairs of contacts = 11772
- Tested contacts = 120
- Reduced the search space to 0.01% of possible contact points

Difficult complex to model

- Possible pairs of contacts = 11772
- Tested contacts = 120
- Reduced the search space to 0.01% of possible contact points

Difficult complex to model

➤ Given the complexity of protein-protein docking, finding even only one positive interface contact can help constraint the search space and improve the accuracy of constrained docking algorithms such as BiGGER [Palma et al, 2000]

Survey which method is better suited for the identification of interface contact points using a large protein complex dataset (unpublished) Survey which method is better suited for the identification of interface contact points using a large protein complex dataset (unpublished)

Outline

- I. Introduction
- 2. Motivation
- 3. Objectives
- 4. Results
- 5. Summary

> Set of tools for the study of inter-protein coevolution and interaction

- > Set of tools for the study of inter-protein coevolution and interaction
- Implements the classic workflow with extended capabilities

- > Set of tools for the study of inter-protein coevolution and interaction
- Implements the classic workflow with extended capabilities
- Automates access to remote databases and third-party applications

- > Set of tools for the study of inter-protein coevolution and interaction
- Implements the classic workflow with extended capabilities
- Automates access to remote databases and third-party applications
- Simplifies the coevolution analysis and the interpretation of results

- > Set of tools for the study of inter-protein coevolution and interaction
- Implements the classic workflow with extended capabilities
- Automates access to remote databases and third-party applications
- > Simplifies the coevolution analysis and the interpretation of results
- Implemented in Python and platform independent

- > Set of tools for the study of inter-protein coevolution and interaction
- Implements the classic workflow with extended capabilities
- Automates access to remote databases and third-party applications
- Simplifies the coevolution analysis and the interpretation of results
- Implemented in Python and platform independent
- Open source

- > Set of tools for the study of inter-protein coevolution and interaction
- Implements the classic workflow with extended capabilities
- > Automates access to remote databases and third-party applications
- Simplifies the coevolution analysis and the interpretation of results
- Implemented in Python and platform independent
- Open source
- Source code at https://github.com/fmadeira/pycoevol

Thanks for your attention!

Computational Analysis of Protein Coevolution and Interaction

Fábio Madeira - fmadeira@campus.fct.unl.pt

CENTRIA-DI, Faculdade de Ciências e Tecnologia

