573_HW_1

Matthew Stoebe

2024-11-03

```
# Load the Johnson & Johnson data
data("JohnsonJohnson")
jj_data <- data.frame(</pre>
 Year = as.numeric(time(JohnsonJohnson)),
  EPS = as.numeric(JohnsonJohnson)
)
jj_data$log_EPS <- log(jj_data$EPS)</pre>
jj_data$t <- jj_data$Year</pre>
jj_data$Quarter <- as.factor(cycle(JohnsonJohnson))</pre>
jj_data$Q1 <- ifelse(jj_data$Quarter == 1, 1, 0)</pre>
jj_data$Q2 <- ifelse(jj_data$Quarter == 2, 1, 0)</pre>
jj data$Q3 <- ifelse(jj data$Quarter == 3, 1, 0)</pre>
jj data$Q4 <- ifelse(jj data$Quarter == 4, 1, 0)</pre>
model \leftarrow lm(log EPS \sim t + Q1 + Q2 + Q3 + Q4 - 1, data = jj data)
summary(model)
##
## Call:
## lm(formula = log EPS \sim t + Q1 + Q2 + Q3 + Q4 - 1, data = jj_data)
## Residuals:
##
        Min
                  10
                       Median
                                              Max
                                     30
## -0.29318 -0.09062 -0.01180 0.08460 0.27644
##
## Coefficients:
##
        Estimate Std. Error t value Pr(>|t|)
## t
       1.672e-01 2.259e-03
                             74.00 <2e-16 ***
## Q1 -3.283e+02 4.451e+00
                             -73.76
                                      <2e-16 ***
                                      <2e-16 ***
## Q2 -3.282e+02 4.451e+00
                             -73.75
## Q3 -3.282e+02 4.452e+00
                             -73.72
                                      <2e-16 ***
                                      <2e-16 ***
## Q4 -3.284e+02 4.452e+00
                             -73.77
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1254 on 79 degrees of freedom
```

```
## Multiple R-squared: 0.9935, Adjusted R-squared: 0.9931
## F-statistic: 2407 on 5 and 79 DF, p-value: < 2.2e-16
beta <- coef(model)["t"]</pre>
cat("Estimated average annual increase in logged earnings per share:", beta,
"\n")
## Estimated average annual increase in logged earnings per share: 0.1671722
alpha3 <- coef(model)["Q3"]</pre>
alpha4 <- coef(model)["Q4"]</pre>
delta alpha <- alpha4 - alpha3
cat("Change from Q3 to Q4 in logged earnings:", delta_alpha, "\n")
## Change from Q3 to Q4 in logged earnings: -0.2687577
percentage_change <- (delta_alpha)/abs(alpha3)</pre>
cat("Percentage change from Q3 to Q4:", percentage_change, "%\n")
## Percentage change from Q3 to Q4: -0.0008189384 %
The average Log earnings rate decreases slightly from Q3 to Q4
model with intercept \leftarrow lm(log EPS \sim t + Q1 + Q2 + Q3 + Q4, data = jj data)
summary(model_with_intercept)
##
## Call:
## lm(formula = log_EPS \sim t + Q1 + Q2 + Q3 + Q4, data = jj_data)
## Residuals:
        Min
                  1Q
                       Median
                                     3Q
                                             Max
## -0.29318 -0.09062 -0.01180 0.08460 0.27644
##
## Coefficients: (1 not defined because of singularities)
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.284e+02 4.452e+00 -73.771 < 2e-16 ***
## t
                1.672e-01 2.259e-03 73.999 < 2e-16 ***
## Q1
                1.705e-01 3.873e-02 4.403 3.31e-05 ***
## Q2
                1.986e-01 3.871e-02 5.132 2.01e-06 ***
## Q3
                2.688e-01 3.870e-02
                                        6.945 9.50e-10 ***
## Q4
                       NA
                                  NA
                                           NA
                                                    NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1254 on 79 degrees of freedom
## Multiple R-squared: 0.9859, Adjusted R-squared: 0.9852
## F-statistic: 1379 on 4 and 79 DF, p-value: < 2.2e-16
jj_data$fitted <- fitted(model)</pre>
```

Logged Earnings per Share with Fitted Values

acf(jj_data\$residuals, main = "ACF of Residuals")

ACF of Residuals

The Residuals do Residuals do not look like white noise in between 1970 and 1975 where we seem to systematically under predict. This model is OK but not great