Project 1 Write Up

In trying to regress upon financial indicators the first step we took was to clean and explore our dataset. That meant dropping all n/a values first and then calling the Pandas functions "describe" and "columns" to see what types of data we might be working with and their distributions.

Our next step was to visualize the data and get an understanding of what financial indicators are strongly dependent on other features. We began with a choropleth plot to visualize the unemployment percentage averaged across the states. This choropleth seemed to

2015 Unemployment Averages by State

demonstrate that higher unemployment is primarily concentrated in the west coast and southeast of America- with the northeast contributing median levels of unemployment and the midwest seeing very little unemployment. Intuitively, the causal factor *could* be that states with higher unemployment also have a larger population and are forced to disperse limited work across a larger population. This choropleth plot also demonstrated a pattern in the unemployment data that we could likely regress upon; so we decided to explore more about unemployment. We then plotted a scatter diagram of unemployment and income and found

an approximately linearly - possibly logarithmic- trend. This implored us to first of all linearize the Income data when regressing on unemployment, by taking the negative log of the data, and second to explore income per capita as a possible financial predictor to regress upon. In exploring income and income per capita we realized both had somewhat strong linear relationships with certain job types and ethnicities. This helped us decide that regression upon

income per capita would likely yield reasonable results. Finally, we decided on poverty as our third financial indicator after plotting poverty vs professional workers and poverty vs race. We

saw once again somewhat strong relationships between races (specifically black, white, and hispanic) and poverty levels, as well as a relationship between the percentage of professional workers in a county and poverty levels. We deemed these relationships as well as the relationships not shown to be sufficient to regress upon, concluding our three financial predictors to be poverty, unemployment, and income per capita.

After visualizing and exploring our data in depth we began regression to predict our three financial indicators. The first step was to visualize the distributions of our financial indicators so we could assess reasonable mean squared error values, so we plotted seaborn histograms of each of our financial indicators.

These histograms helped give us an idea of the distributions our linear regression should ideally be fitting. We then ran linear regression upon each of the three financial indicators and got a validation MSE of 3.835 for poverty, 5.162 for unemployment, and 5711083.42888 for income per capita. We tried polynomial feature regression which made almost no significant effect on our dataoverfitting very quickly- and only increased our runtime. As well, we tried LASSO regression in an attempt to bring down the MSE for our income per capita regression in particular. However, none of these techniques seemed to work very well, so we settled for the high MSE on income per capita. Finally we outputted the summary of our models and noted the R² values of 0.940 for poverty level, 0.636 for unemployment level, and 0.877 for income per capita. This perhaps explains at least some of the high MSE, however, the linear model for unemployment seemed to fit better than the model for income per capita which contradicts what the R² values would suggest. As the summaries for our models showed, we saw high coefficients for job type and somewhat high coefficients for ethnicity in our models, signalling that those variables were stronger predictors than others. As well, transportation and working from home seemed to be two variables whose weights were much higher than we anticipated. Overall, linear regression may not have been the best model for our financial predictors; we achieved acceptable degrees of accuracy, but no linear model truly seemed to capture the underlying probability distributions.

30

Project 1 Skeleton Code

March 1, 2018

1 Project 1: Data Cleaning, Visualization, and Mining

```
In [2]: # Add all of your import statements here
    import numpy as np
    import pandas as pd
    %matplotlib inline
    import matplotlib.pyplot as plt
    import seaborn as sns
    import plotly as py
    import plotly.offline as py
    import plotly.graph_objs as go
    import plotly.tools as tls
    py.init_notebook_mode(connected=True)
```

2 Setup, Cleaning, Organizing, and Exploring the Data

Let's now try to read in the data, clean up the data by getting rid of NAs, and explore the data. Feel free to use any commands to do these parts. As always, report your steps in the writeup.

```
In [3]: #read in the data
       df = pd.read_csv('acs2015_county_data.csv')
        #drop the NAs
       df = df.dropna()
        #show the head
       df.head()
Out[3]:
          CensusId
                      State
                              County
                                      TotalPop
                                                  Men Women Hispanic White Black \
       0
              1001 Alabama Autauga
                                         55221 26745
                                                       28476
                                                                   2.6
                                                                         75.8
                                                                                18.5
       1
              1003 Alabama Baldwin
                                        195121 95314 99807
                                                                   4.5
                                                                         83.1
                                                                                 9.5
       2
                                                                                46.7
              1005 Alabama Barbour
                                         26932 14497
                                                                   4.6
                                                                         46.2
                                                       12435
       3
              1007 Alabama
                                Bibb
                                         22604 12073 10531
                                                                   2.2
                                                                         74.5
                                                                                21.4
        4
              1009 Alabama Blount
                                         57710 28512 29198
                                                                   8.6
                                                                         87.9
                                                                                 1.5
          Native
                                Walk OtherTransp WorkAtHome MeanCommute
                                                                            Employed
       0
             0.4
                                 0.5
                                              1.3
                                                          1.8
                                                                      26.5
                                                                               23986
        1
             0.6
                                 1.0
                                              1.4
                                                          3.9
                                                                      26.4
                                                                               85953
```

	2	0.2	1.8	1.5	1.6	24.1	8597
		0.4	0.6	1.5	0.7	28.8	8294
	4	0.3	0.9	0.4	2.3	34.9	22189
		vateWork Pub		mployed Family	-	-	
	0	73.6	20.9	5.5	0.0	7.6	
	1	81.5 71.8	12.3	5.8	0.4	7.5	
	2 3	71.8 76.8	20.8 16.1	7.3 6.7	0.1	17.6	
	4	82.0	13.5	4.2	0.4	8.3 7.7	
	7	02.0	13.3	4.2	0.4	1.1	
	[5 row	rs x 37 column	s]				
In [4]:	#get a	n idea of the pe	shape				
Out[4]:	(3218,	37)					
In [5]:	df.col	umns					
Out[5]:	Index('White', 'Bl 'IncomeErr', 'ChildPovert	ack', 'Native' 'IncomePerCap	ty', 'TotalPop' , 'Asian', 'Pac ', 'IncomePerCa nal', 'Service' rpool', 'Transi	ific', 'Citi pErr', 'Pove , 'Office',	zen', 'Inc erty', 'Construct	ome',
			, 'MeanCommute d', 'FamilyWor	', 'Employed', k', 'Unemployme	'PrivateWork		-
In [6]:		'SelfEmploye	, 'MeanCommute d', 'FamilyWor	', 'Employed',	'PrivateWork		-
In [6]:	df.des	'SelfEmploye dtype='object	, 'MeanCommute d', 'FamilyWorl ')	', 'Employed', k', 'Unemployme	'PrivateWork	c', 'Public	vork',
	df.des	'SelfEmploye dtype='object cribe()	, 'MeanCommute d', 'FamilyWor ') TotalPop	', 'Employed', k', 'Unemployme	'PrivateWork nt'], Wome	c', 'Public' en Hisp	work',
	df.des	'SelfEmploye dtype='object cribe() CensusId 3218.000000	, 'MeanCommute d', 'FamilyWorl ') TotalPop 3.218000e+03	', 'Employed', k', 'Unemployme Men	'PrivateWork nt'], Wome 3.218000e+0	en Hisp 3 3218.00	work', anic \
	df.des	'SelfEmploye dtype='object cribe() CensusId 3218.000000	, 'MeanCommute d', 'FamilyWorl ') TotalPop 3.218000e+03 9.947107e+04	Men 3.218000e+03 4.892729e+04	'PrivateWork nt'], Wome 3.218000e+0	en Hisp 03 3218.00 04 11.00	anic \ 0000 6029
	df.des	'SelfEmploye dtype='object cribe() CensusId 3218.000000 31393.444065	, 'MeanCommute d', 'FamilyWorl ') TotalPop 3.218000e+03 9.947107e+04 3.193951e+05	Men 3.218000e+03 4.892729e+04 1.567252e+05	'PrivateWork nt'], Wome 3.218000e+0 5.054378e+0	en Hisp 03 3218.00 04 11.00 05 19.24	anic \ 0000 6029 2390
	df.des	'SelfEmploye dtype='object cribe() CensusId 3218.000000 31393.444065 16291.853976	TotalPop 3.218000e+03 9.947107e+04 3.193951e+05 2.670000e+02	Men 3.218000e+03 4.892729e+04 1.567252e+05 1.360000e+02	"PrivateWork "nt'], Wome 3.218000e+0 5.054378e+0 1.627076e+0	en Hisp 03 3218.00 04 11.00 05 19.24 02 0.00	anic \ 0000 6029 2390 0000
	df.des	'SelfEmploye dtype='object cribe() CensusId 3218.000000 31393.444065 16291.853976 1001.000000	, 'MeanCommute d', 'FamilyWorl ') TotalPop 3.218000e+03 9.947107e+04 3.193951e+05 2.670000e+02 1.122525e+04	Men 3.218000e+03 4.892729e+04 1.567252e+05 1.360000e+02 5.657750e+03	Wome 3.218000e+0 5.054378e+0 1.627076e+0 1.310000e+0	en Hisp 03 3218.00 04 11.00 05 19.24 02 0.00 03 1.90	anic \ 0000 6029 2390 0000
	count mean std min 25%	'SelfEmploye dtype='object cribe() CensusId 3218.000000 31393.444065 16291.853976 1001.000000 19033.500000	, 'MeanCommute d', 'FamilyWorl ') TotalPop 3.218000e+03 9.947107e+04 3.193951e+05 2.670000e+02 1.122525e+04 2.607950e+04	Men 3.218000e+03 4.892729e+04 1.567252e+05 1.360000e+02 5.657750e+03 1.294700e+04	Wome 3.218000e+0 5.054378e+0 1.627076e+0 1.310000e+0 5.574250e+0	en Hisp 03 3218.00 04 11.00 05 19.24 02 0.00 03 1.90 04 3.90	anic \ 0000 6029 2390 0000 0000
	count mean std min 25% 50%	'SelfEmploye dtype='object cribe() CensusId 3218.000000 31393.444065 16291.853976 1001.000000 19033.500000 30024.000000	TotalPop 3.218000e+03 9.947107e+04 3.193951e+05 2.670000e+02 1.122525e+04 2.607950e+04 6.645750e+04	Men 3.218000e+03 4.892729e+04 1.567252e+05 1.360000e+02 5.657750e+03 1.294700e+04 3.299825e+04	"PrivateWork "nt'], Wome 3.218000e+0 5.054378e+0 1.627076e+0 1.310000e+0 5.574250e+0 1.306300e+0	en Hisp 03 3218.00 04 11.00 05 19.24 02 0.00 04 3.90 04 9.80	anic \ 0000 6029 2390 0000 0000 0000
	count mean std min 25% 50% 75% max	'SelfEmploye dtype='object cribe() CensusId 3218.000000 31393.444065 16291.853976 1001.000000 19033.500000 30024.000000 72153.0000000 White	, 'MeanCommute d', 'FamilyWorl ') TotalPop 3.218000e+03 9.947107e+04 3.193951e+05 2.670000e+02 1.122525e+04 2.607950e+04 6.645750e+04 1.003839e+07	Men 3.218000e+03 4.892729e+04 1.567252e+05 1.360000e+02 5.657750e+03 1.294700e+04 3.299825e+04 4.945351e+06	"PrivateWork "nt'], Wome 3.218000e+0 5.054378e+0 1.627076e+0 1.310000e+0 5.574250e+0 1.306300e+0 3.352250e+0 5.093037e+0	en Hisp 03 3218.00 04 11.00 05 19.24 02 0.00 03 1.90 04 3.90 04 9.80 06 99.90 Pacific	anic \ 0000 6029 2390 0000 0000 0000
	count mean std min 25% 50% 75% max count	'SelfEmploye dtype='object scribe() CensusId 3218.000000 31393.444065 16291.853976 1001.000000 19033.500000 30024.000000 46104.5000000 72153.0000000 White 3218.000000	TotalPop 3.218000e+03 9.947107e+04 3.193951e+05 2.670000e+02 1.122525e+04 2.607950e+04 6.645750e+04 1.003839e+07 Black 3218.000000	Men 3.218000e+03 4.892729e+04 1.567252e+05 1.360000e+02 5.657750e+03 1.294700e+04 3.299825e+04 4.945351e+06 Native 3218.000000 32	Wome 3.218000e+0 5.054378e+0 1.627076e+0 1.310000e+0 5.574250e+0 1.306300e+0 3.352250e+0 5.093037e+0 Asian	en Hisp 03 3218.00 04 11.00 05 19.24 02 0.00 03 1.90 04 3.90 04 9.80 06 99.90 Pacific 3218.000000	anic \ 0000 6029 2390 0000 0000 0000
	count mean std min 25% 50% 75% max count	'SelfEmploye dtype='object cribe() CensusId 3218.000000 31393.444065 16291.853976 1001.000000 19033.500000 30024.000000 72153.000000 White 3218.000000 75.451243	TotalPop 3.218000e+03 9.947107e+04 3.193951e+05 2.670000e+02 1.122525e+04 2.607950e+04 6.645750e+04 1.003839e+07 Black 3218.000000 8.670883	Men 3.218000e+03 4.892729e+04 1.567252e+05 1.360000e+02 5.657750e+03 1.294700e+04 3.299825e+04 4.945351e+06 Native 3218.000000 32 1.720603	Wome 3.218000e+0 5.054378e+0 1.627076e+0 1.310000e+0 5.574250e+0 1.306300e+0 3.352250e+0 5.093037e+0 Asian 18.000000 3 1.223244	en Hisp 03 3218.00 04 11.00 05 19.24 02 0.00 03 1.90 04 3.90 04 9.80 06 99.90 Pacific 3218.000000 0.071815	anic \ 0000 6029 2390 0000 0000 0000
	count mean std min 25% 50% 75% max count mean std	'SelfEmploye dtype='object cribe() CensusId 3218.000000 31393.444065 16291.853976 1001.000000 19033.500000 30024.000000 72153.000000 White 3218.000000 75.451243 22.922274	TotalPop 3.218000e+03 9.947107e+04 3.193951e+05 2.670000e+02 1.122525e+04 2.607950e+04 6.645750e+04 1.003839e+07 Black 3218.000000 8.670883 14.281924	Men 3.218000e+03 4.892729e+04 1.567252e+05 1.360000e+02 5.657750e+03 1.294700e+04 3.299825e+04 4.945351e+06 Native 3218.000000 32 1.720603 7.252676	Wome 3.218000e+0 5.054378e+0 1.627076e+0 1.310000e+0 5.574250e+0 1.306300e+0 3.352250e+0 5.093037e+0 Asian 18.000000 3 1.223244 2.610159	en Hisp 03 3218.00 04 11.00 05 19.24 02 0.00 03 1.90 04 3.90 04 9.80 06 99.90 Pacific 3218.000000 0.071815 0.393455	anic \ 0000 6029 2390 0000 0000 0000
	count mean std min 25% 75% max count mean std min	'SelfEmploye dtype='object cribe() CensusId 3218.000000 31393.444065 16291.853976 1001.000000 46104.500000 72153.000000 75.451243 22.922274 0.0000000	TotalPop 3.218000e+03 9.947107e+04 3.193951e+05 2.670000e+02 1.122525e+04 2.607950e+04 6.645750e+04 1.003839e+07 Black 3218.000000 8.670883 14.281924 0.000000	Men 3.218000e+03 4.892729e+04 1.567252e+05 1.360000e+02 5.657750e+03 1.294700e+04 3.299825e+04 4.945351e+06 Native 3218.000000 32 1.720603 7.252676 0.000000	Wome 3.218000e+0 5.054378e+0 1.627076e+0 1.310000e+0 5.574250e+0 1.306300e+0 3.352250e+0 5.093037e+0 Asian 18.000000 1.223244 2.610159 0.000000	en Hisp 03 3218.00 04 11.00 05 19.24 02 0.00 03 1.90 04 3.90 04 9.80 06 99.90 Pacific 3218.000000 0.071815 0.393455 0.000000	anic \ 0000 6029 2390 0000 0000 0000
	count mean std min 25% 50% 75% max count mean std min 25%	'SelfEmploye dtype='object cribe() CensusId 3218.000000 31393.444065 16291.853976 1001.000000 46104.500000 72153.000000 75.451243 22.922274 0.000000 64.100000	TotalPop 3.218000e+03 9.947107e+04 3.193951e+05 2.670000e+02 1.122525e+04 2.607950e+04 6.645750e+04 1.003839e+07 Black 3218.000000 8.670883 14.281924 0.000000 0.500000	Men 3.218000e+03 4.892729e+04 1.567252e+05 1.360000e+02 5.657750e+03 1.294700e+04 3.299825e+04 4.945351e+06 Native 3218.00000 32 1.720603 7.252676 0.000000 0.100000	Wome 3.218000e+0 5.054378e+0 1.627076e+0 1.310000e+0 5.574250e+0 1.306300e+0 3.352250e+0 5.093037e+0 Asian 18.000000 1.223244 2.610159 0.000000 0.200000	en Hisp 03 3218.00 04 11.00 05 19.24 02 0.00 03 1.90 04 3.90 04 9.80 06 99.90 Pacific 3218.000000 0.071815 0.393455 0.000000	anic \ 0000 6029 2390 0000 0000 0000
	count mean std min 25% 75% max count mean std min	'SelfEmploye dtype='object cribe() CensusId 3218.000000 31393.444065 16291.853976 1001.000000 46104.500000 72153.000000 75.451243 22.922274 0.0000000	TotalPop 3.218000e+03 9.947107e+04 3.193951e+05 2.670000e+02 1.122525e+04 2.607950e+04 6.645750e+04 1.003839e+07 Black 3218.000000 8.670883 14.281924 0.000000	Men 3.218000e+03 4.892729e+04 1.567252e+05 1.360000e+02 5.657750e+03 1.294700e+04 3.299825e+04 4.945351e+06 Native 3218.000000 32 1.720603 7.252676 0.000000	Wome 3.218000e+0 5.054378e+0 1.627076e+0 1.310000e+0 5.574250e+0 1.306300e+0 3.352250e+0 5.093037e+0 Asian 18.000000 1.223244 2.610159 0.000000	en Hisp 03 3218.00 04 11.00 05 19.24 02 0.00 03 1.90 04 3.90 04 9.80 06 99.90 Pacific 3218.000000 0.071815 0.393455 0.000000	anic \ 0000 6029 2390 0000 0000 0000

max	99.800000	85.900000	92.100000	41.600000	11.100000	
		Walk	OtherTransp	WorkAtHome	MeanCommute	\
count		3218.000000	3218.000000	3218.000000	3218.000000	
mean		3.310534	1.609105	4.628713	23.282474	
std		3.699291	1.654761	3.173193	5.596578	
min		0.000000	0.000000	0.000000	4.900000	
25%		1.400000	0.900000	2.700000	19.500000	
50%		2.400000	1.300000	3.900000	23.000000	
75%		4.000000	1.900000	5.600000	26.800000	
max		71.200000	39.100000	37.200000	44.000000	
	Employed	PrivateWork	PublicWork	SelfEmployed	FamilyWork	\
count	3.218000e+03	3218.000000	3218.000000	3218.000000	3218.000000	
mean	4.562182e+04	74.235643	17.543350	7.932846	0.288285	
std	1.497417e+05	7.817393	6.458126	3.914249	0.455222	
min	1.660000e+02	29.500000	5.800000	0.000000	0.000000	
25%	4.562000e+03	70.500000	13.100000	5.400000	0.100000	
50%	1.052200e+04	75.700000	16.200000	6.900000	0.200000	
75%	2.864425e+04	79.700000	20.500000	9.400000	0.300000	
max	4.635465e+06	88.300000	66.200000	36.600000	9.800000	
	Unemployment					
count	3218.000000					
mean	8.094779					
std	4.093038					
min	0.000000					
25%	5.500000					
50%	7.600000					
75%	9.900000					
max	36.500000					

.

44 000000

[8 rows x 35 columns]

.

0- 00000

3 Visualizing the Data

This is the most fun part of the project! Now you can go ahead and create your graphs (appropriately labeled of course), models, and other visualizations. Make sure you demonstrate your ability to create rich graphs by creating various different types of graphs, both for numerical as well as categorical data.

Here are some types of graphs that you will want to create for this project. Remember to browse the online documentation for many Python graphing and visualization packages such as plotly, seaborn, and matplotlib if you need to borrow any code or get some help! 1. Creating multiple graphs that plot important financial indicators (y-axis) like the median annual income, per capita income, poverty rate, childhood poverty rate, and/or unemployment rate present in a particular county AGAINST several features in the dataset (x-axis) that might affect these factors, such as the total population of the county; the racial demographics of the county; or the

occupations of different workers (professionals, service workers, construction, manufacturing).

2. Using plotly as a graphing library to visualize these financial indicators in the 2015 American Community Survey data on a geographical map of the United States on a state-wide or county-based level (similar to what we did in class when we visualized global average temperatures for different countries on a global map).

In [7]: #state codes dictionary to convert to a state code for plotting us_state_codes = { 'Alabama': 'AL', 'Alaska': 'AK', 'Arizona': 'AZ', 'Arkansas': 'AR', 'California': 'CA', 'Colorado': 'CO', 'Connecticut': 'CT', 'Delaware': 'DE', 'Florida': 'FL', 'Georgia': 'GA', 'Hawaii': 'HI', 'Idaho': 'ID', 'Illinois': 'IL', 'Indiana': 'IN', 'Iowa': 'IA', 'Kansas': 'KS', 'Kentucky': 'KY', 'Louisiana': 'LA', 'Maine': 'ME', 'Maryland': 'MD', 'Massachusetts': 'MA', 'Michigan': 'MI', 'Minnesota': 'MN', 'Mississippi': 'MS', 'Missouri': 'MO', 'Montana': 'MT', 'Nebraska': 'NE', 'Nevada': 'NV', 'New Hampshire': 'NH', 'New Jersey': 'NJ', 'New Mexico': 'NM', 'New York': 'NY', 'North Carolina': 'NC', 'North Dakota': 'ND', 'Ohio': 'OH', 'Oklahoma': 'OK', 'Oregon': 'OR', 'Pennsylvania': 'PA', 'Rhode Island': 'RI',

```
'South Carolina': 'SC',
            'South Dakota': 'SD',
            'Tennessee': 'TN',
            'Texas': 'TX',
            'Utah': 'UT',
            'Vermont': 'VT',
            'Virginia': 'VA',
            'Washington': 'WA',
            'West Virginia': 'WV',
            'Wisconsin': 'WI',
            'Wyoming': 'WY',
            'District of Columbia': 'DC',
            'Puerto Rico': 'PR'
        }
In [8]: #choropleth plot of United States
        #make a copy of the dataframe
        data_copy = df.copy()
        #convert all to string data
        states = np.unique(df['State'])
        state_codes = []
        unemployment = []
        #append all mean unemployments to unemployment by state
        for state in states:
            #append unemployment
            unemployment.append(df[df['State'] == state]['Unemployment'].mean())
            state_codes += [us_state_codes[state]]
        #out of plotly documentation
        scl = [[0.0, 'rgb(242,240,247)'], [0.2, 'rgb(218,218,235)'], [0.4, 'rgb(188,189,220)'], 
                    [0.6, 'rgb(158,154,200)'],[0.8, 'rgb(117,107,177)'],[1.0, 'rgb(84,39,143)']
        #begin the plotting
        data = [ dict(
                type='choropleth',
                colorscale=scl,
                autocolorscale = False,
                locations = state_codes,
                z = unemployment,
                locationmode = 'USA-states',
                text = states,
                marker = dict(
                    line = dict (
                        color = 'rgb(255, 255, 255)',
                        width = 2
                    )),
```

```
colorbar = dict(
                    title = "Unemployment %")
                ) ]
        layout = dict(
                title = '2015 Unemployment Averages by State',
                geo = dict(
                    scope='usa',
                    projection=dict( type='albers usa' ),
                    showlakes = True,
                    lakecolor = 'rgb(255, 255, 255)'),
                     )
        fig = dict(data=data, layout=layout)
       py.iplot(fig, validate=False, filename='statesmap')
In [9]: #plotting gender vs income
       plt.title("Gender vs. Income")
       plt.xlabel("Count Gender")
       plt.ylabel("Income")
       plt.scatter(df['Men'], df['Income'], label="Men")
       plt.scatter(df['Women'], df['Income'], label="Women")
       plt.legend(loc='upper right')
```

Out[9]: <matplotlib.legend.Legend at 0x102c1ccf8>

Out[10]: <matplotlib.collections.PathCollection at 0x1a13caf6d8>

Out[11]: <matplotlib.legend.Legend at 0x1a13daecf8>

Out[12]: <matplotlib.collections.PathCollection at 0x1a13e864a8>

Out[13]: <matplotlib.legend.Legend at 0x1a1407cda0>

Out[14]: <matplotlib.legend.Legend at 0x1a140b5a90>

Out[15]: <matplotlib.legend.Legend at 0x1a141cfef0>

Out[16]: <matplotlib.legend.Legend at 0x1a142ae710>

Out[17]: <matplotlib.collections.PathCollection at 0x1a14479e80>

4 Linear Regression

```
In [18]: from sklearn.feature_selection import RFECV
from sklearn.linear_model import LinearRegression
from sklearn import datasets
from sklearn.preprocessing import PolynomialFeatures
from sklearn.metrics import mean_squared_error
import statsmodels.api as sm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LassoCV
```

/Users/joey/anaconda3/lib/python3.6/site-packages/statsmodels/compat/pandas.py:56: FutureWarni:

The pandas.core.datetools module is deprecated and will be removed in a future version. Please

Make sure you also demonstrate your ability to create regressions on your data. In this part of the project, you will pick 3 financial indicators (like the median annual income, per capita income, poverty rate, childhood poverty rate, and/or unemployment rate) in the dataset. You will then train 3 linear regression models in scikit-learn that attempt to predict these 3 financial indicators of a county from the rest of the data collected in the dataset. You should analyze the accuracy of your linear regression model and report important predictors or features in your dataset that had the highest effect size on these 3 financial indicators (as discovered by your regression model).

Optional: You can try adding regularization to see if you can get better results.

```
In [75]: sns.distplot(df['Poverty'])
```

Testing set MSE: 3.68106477534

Out[75]: <matplotlib.axes._subplots.AxesSubplot at 0x1c23afa400>


```
In [76]: #regression for poverty level
         df['Income'] = -np.log(df["Income"])
         features = df.drop(['Poverty', 'State', 'CensusId', 'County'], axis=1)
         labels = df['Poverty']
         features = sm.add_constant(features)
         #split into train and test
         train_x, test_x, train_y, test_y = train_test_split(features, labels, test_size=0.2)
         ols = sm.OLS(train_y, train_x).fit()
         #predict the values
         validation_predictions = ols.predict(test_x)
         train_predictions = ols.predict(train_x)
         #compute MSE
         val_mse = mean_squared_error(test_y, validation_predictions)
         train_mse = mean_squared_error(train_y, train_predictions)
         print("Training set MSE: " + str(train_mse) + "\nTesting set MSE: " + str(val_mse))
Training set MSE: 4.06374270114
```

In [77]: ols.summary()

Out[77]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	Poverty	R-squared:	0.940
Model:	OLS	Adj. R-squared:	0.940
Method:	Least Squares	F-statistic:	1250.
Date:	Thu, 01 Mar 2018	Prob (F-statistic):	0.00
Time:	09:26:48	Log-Likelihood:	-5456.9
No. Observations:	2574	AIC:	1.098e+04
Df Residuals:	2541	BIC:	1.117e+04

Df Model: 32

Covariance Type: nonrobust

=======================================						
	 coef 	std err	 t 	P> t	[0.025	0.975]
const	122.9761	110.373	1.114	0.265	-93.454	339.406
TotalPop	2.465e-07	1.78e-06	0.139	0.890	-3.24e-06	3.73e-06
Men	4.342e-05	1.02e-05	4.257	0.000	2.34e-05	6.34e-05
Women	-4.317e-05	1.03e-05	-4.204	0.000	-6.33e-05	-2.3e-05
Hispanic	0.0409	0.028	1.487	0.137	-0.013	0.095
White	-0.0068	0.028	-0.242	0.808	-0.062	0.048
Black	-0.0007	0.028	-0.024	0.981	-0.055	0.054
Native	0.0511	0.030	1.694	0.090	-0.008	0.110
Asian	0.1166	0.039	3.008	0.003	0.041	0.193
Pacific	-0.0477	0.145	-0.330	0.742	-0.332	0.236
Citizen	-4.805e-06	2.75e-06	-1.747	0.081	-1.02e-05	5.87e-07
Income	11.4546	0.442	25.939	0.000	10.589	12.320
IncomeErr	7.168e-05	3.2e-05	2.240	0.025	8.94e-06	0.000
${\tt IncomePerCap}$	-8.439e-05	1.85e-05	-4.559	0.000	-0.000	-4.81e-05
${\tt IncomePerCapErr}$	-0.0002	6.11e-05	-2.588	0.010	-0.000	-3.83e-05
${\tt ChildPoverty}$	0.3774	0.008	48.312	0.000	0.362	0.393
Professional	0.7944	0.633	1.255	0.210	-0.447	2.036
Service	0.6061	0.633	0.957	0.338	-0.635	1.848
Office	0.6349	0.633	1.003	0.316	-0.607	1.876
Construction	0.6090	0.633	0.962	0.336	-0.632	1.850
Production	0.6057	0.633	0.957	0.339	-0.636	1.847
Drive	-0.1856	0.579	-0.321	0.748	-1.320	0.949
Carpool	-0.1961	0.579	-0.339	0.735	-1.331	0.939
Transit	-0.1209	0.578	-0.209	0.835	-1.255	1.013
Walk	-0.0876	0.579	-0.151	0.880	-1.222	1.047
${\tt OtherTransp}$	-0.1894	0.578	-0.327	0.743	-1.324	0.945
WorkAtHome	-0.1833	0.579	-0.317	0.752	-1.319	0.952
MeanCommute	0.0337	0.009	3.751	0.000	0.016	0.051
Employed	6.007e-06	4.6e-06	1.305	0.192	-3.02e-06	1.5e-05
PrivateWork	-0.3932	0.708	-0.555	0.579	-1.782	0.995

PublicWork	-0.4017	0.708	-0.567	0.571	-1.790	0.987
SelfEmployed	-0.5469	0.708	-0.773	0.440	-1.934	0.841
FamilyWork	-0.3831	0.710	-0.540	0.590	-1.775	1.009
Unemployment	0.1239	0.016	7.717	0.000	0.092	0.155
=======================================		=======				====
Omnibus:		577.794	Durbin-Watson:		2	.038
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Bera (JB):		4413.403	
Skew:	0.850		Prob(JB):		0.00	
Kurtosis:		9.185	Cond. No.		8.86	e+15
		========				====

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly speci [2] The smallest eigenvalue is 8.2e-18. This might indicate that there are
- strong multicollinearity problems or that the design matrix is singular.

In [78]: sns.distplot(df['Unemployment'])

Out[78]: <matplotlib.axes._subplots.AxesSubplot at 0x1c274357b8>

features_unemployment = sm.add_constant(features_unemployment)

#split into train and test

train_x, test_x, train_y, test_y = train_test_split(features_unemployment, labels_unemployment, labels_unemployment)

ols_unemployment = sm.OLS(train_y, train_x).fit()

#predict the values

validation_predictions_unemployment = ols_unemployment.predict(test_x)
train_predictions_unemployment = ols_unemployment.predict(train_x)

#compute MSE

val_mse = mean_squared_error(test_y, validation_predictions_unemployment)
train_mse = mean_squared_error(train_y, train_predictions_unemployment)
print("Training set MSE: " + str(train_mse) + "\nTesting set MSE: " + str(val_mse))

Training set MSE: 5.87221442132 Testing set MSE: 6.61068727403

In [80]: ols_unemployment.summary()

Out[80]: <class 'statsmodels.iolib.summary.Summary'>

11 11 11

OLS Regression Results

Dep. Variable:	Unemployment	R-squared:	0.636
Model:	OLS	Adj. R-squared:	0.632
Method:	Least Squares	F-statistic:	139.0
Date:	Thu, 01 Mar 2018	Prob (F-statistic):	0.00
Time:	09:26:49	Log-Likelihood:	-5930.6
No. Observations:	2574	AIC:	1.193e+04
Df Residuals:	2541	BIC:	1.212e+04
Df Model:	32		

Covariance Type: nonrobust

=========	.========				========	========
	coef	std err	t	P> t	[0.025	0.975]
const	8.7933	134.368	0.065	0.948	-254.689	272.276
TotalPop	2.761e-06	2.07e-06	1.337	0.181	-1.29e-06	6.81e-06
Men	3.57e-05	1.26e-05	2.836	0.005	1.1e-05	6.04e-05
Women	-3.294e-05	1.26e-05	-2.623	0.009	-5.76e-05	-8.32e-06
Hispanic	0.0049	0.034	0.145	0.884	-0.061	0.071
White	-0.0121	0.034	-0.352	0.725	-0.080	0.055
Black	0.0239	0.034	0.700	0.484	-0.043	0.091
Native	0.0593	0.037	1.590	0.112	-0.014	0.132
Asian	0.0127	0.048	0.266	0.790	-0.081	0.106
Pacific	-0.1781	0.172	-1.034	0.301	-0.516	0.160

Citizen	1.681e-05	3.35e-06	5.023	0.000	1.02e-05	2.34e-05
Income	4.1059	0.587	6.991	0.000	2.954	5.258
IncomeErr	8.71e-06	3.78e-05	0.230	0.818	-6.54e-05	8.29e-05
${\tt IncomePerCap}$	8.868e-05	2.18e-05	4.076	0.000	4.6e-05	0.000
${\tt IncomePerCapErr}$	-0.0003	7.34e-05	-3.936	0.000	-0.000	-0.000
Poverty	0.1777	0.024	7.454	0.000	0.131	0.224
${\tt ChildPoverty}$	-0.0173	0.013	-1.326	0.185	-0.043	0.008
Professional	0.6117	0.766	0.799	0.425	-0.890	2.114
Service	0.7301	0.766	0.953	0.341	-0.772	2.232
Office	0.7287	0.766	0.951	0.342	-0.773	2.231
Construction	0.6202	0.766	0.810	0.418	-0.881	2.122
Production	0.6871	0.766	0.897	0.370	-0.815	2.189
Drive	-0.3064	0.702	-0.437	0.662	-1.682	1.069
Carpool	-0.2737	0.702	-0.390	0.697	-1.650	1.103
Transit	-0.3167	0.701	-0.452	0.652	-1.692	1.059
Walk	-0.2941	0.702	-0.419	0.675	-1.670	1.082
OtherTransp	-0.1549	0.702	-0.221	0.825	-1.531	1.221
WorkAtHome	-0.2930	0.702	-0.417	0.676	-1.669	1.083
MeanCommute	0.1651	0.010	16.010	0.000	0.145	0.185
Employed	-2.977e-05	6.03e-06	-4.934	0.000	-4.16e-05	-1.79e-05
PrivateWork	-0.0225	0.857	-0.026	0.979	-1.704	1.659
PublicWork	0.0347	0.857	0.041	0.968	-1.646	1.715
SelfEmployed	-0.1157	0.857	-0.135	0.893	-1.795	1.564
FamilyWork	0.0741	0.859	0.086	0.931	-1.611	1.759
Omnibus:		300.915	Durbin-Wat			2.005
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Ber	a (JB):	1941.949	
Skew:		0.347	Prob(JB):			0.00

Warnings:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec [2] The smallest eigenvalue is 5.73e-18. This might indicate that there are strong multicallinearity problems or that the design matrix is singular.

Cond. No.

1.06e+16

strong multicollinearity problems or that the design matrix is singular.

7.198

11 11 11

In [81]: sns.distplot(df['IncomePerCap'])

Out[81]: <matplotlib.axes._subplots.AxesSubplot at 0x1c21b2bd68>


```
In [82]: #regression for IncomePerCap
         features = df.drop(['IncomePerCap', 'State', 'CensusId', 'County'], axis=1)
         labels = df['IncomePerCap']
         features = sm.add_constant(features)
         #split into train and test
         train_x, test_x, train_y, test_y = train_test_split(features, labels, test_size=0.2)
         #train the model
         ols = sm.OLS(train_y, train_x).fit()
         #predict the values
         validation_predictions = ols.predict(test_x)
         train_predictions = ols.predict(train_x)
         #compute MSE
         val_mse = mean_squared_error(test_y, validation_predictions)
         train_mse = mean_squared_error(train_y, train_predictions)
         print("Training set MSE: " + str(train_mse) + "\nTesting set MSE: " + str(val_mse))
Training set MSE: 4612296.19563
Testing set MSE: 4810137.50296
```

In [83]: ols.summary()

Out[83]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

_____ IncomePerCap R-squared: Dep. Variable: 0.877 OLS Adj. R-squared: Model: 0.876 Method: Least Squares F-statistic: 567.6 Thu, 01 Mar 2018 Prob (F-statistic): Date: 0.00 Time: 09:26:49 Log-Likelihood: -23400. No. Observations: 2574 AIC: 4.687e+04 2541 BIC: 4.706e+04 Df Residuals:

Df Model: 32

Covariance Type: nonrobust

Covariance Type	: 	nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	5.625e+04	1.18e+05	0.476	0.634	-1.76e+05	2.88e+05
TotalPop	-0.0215	0.002	-12.097	0.000	-0.025	-0.018
Men	-0.0195	0.011	-1.769	0.077	-0.041	0.002
Women	-0.0020	0.011	-0.177	0.860	-0.024	0.020
Hispanic	6.3272	29.374	0.215	0.829	-51.273	63.927
White	15.4052	29.780	0.517	0.605	-42.990	73.800
Black	4.2570	29.651	0.144	0.886	-53.886	62.400
Native	-28.5579	32.180	-0.887	0.375	-91.660	34.544
Asian	51.7758	41.350	1.252	0.211	-29.307	132.858
Pacific	140.9987	143.457	0.983	0.326	-140.306	422.303
Citizen	0.0175	0.003	5.811	0.000	0.012	0.023
Income	-1.419e+04	449.003	-31.608	0.000	-1.51e+04	-1.33e+04
IncomeErr	-0.1247	0.035	-3.597	0.000	-0.193	-0.057
${\tt IncomePerCapErr}$	1.1494	0.060	19.132	0.000	1.032	1.267
Poverty	-88.1188	21.024	-4.191	0.000	-129.345	-46.893
${\tt ChildPoverty}$	58.7174	11.253	5.218	0.000	36.652	80.783
Professional	922.2149	670.218	1.376	0.169	-392.015	2236.444
Service	757.5177	670.195	1.130	0.258	-556.665	2071.701
Office	745.6728	670.425	1.112	0.266	-568.962	2060.308
Construction	691.5057	670.091	1.032	0.302	-622.474	2005.485
Production	682.2672	670.323	1.018	0.309	-632.168	1996.703
Drive	-1090.0056	615.833	-1.770	0.077	-2297.591	117.580
Carpool	-1161.7230	615.935	-1.886	0.059	-2369.509	46.063
Transit	-915.3854	615.331	-1.488	0.137	-2121.987	291.216
Walk	-1035.2466	615.803	-1.681	0.093	-2242.773	172.280
${\tt OtherTransp}$	-1049.6966	615.790	-1.705	0.088	-2257.197	157.804
WorkAtHome	-1097.6117	616.440	-1.781	0.075	-2306.389	111.165
MeanCommute	-6.9009	9.596	-0.719	0.472	-25.717	11.915
Employed	0.0459	0.005	9.489	0.000	0.036	0.055
PrivateWork	-1545.9904	752.535	-2.054	0.040	-3021.635	-70.346
PublicWork	-1658.2977	752.492	-2.204	0.028	-3133.858	-182.737
SelfEmployed	-1497.2056	752.130	-1.991	0.047	-2972.055	-22.356

${ t Family Work}$	-1714.1271	755.035	-2.270	0.023	-3194.674	-233.580
Unemployment	64.5259	17.520	3.683	0.000	30.170	98.881
=========						====
Omnibus:		433.600	Durbin-Wats	on:		2.036
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	825	8.803
Skew:		0.138	Prob(JB):			0.00
Kurtosis:		11.771	Cond. No.		1.0	5e+16

Warnings:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly spec

^[2] The smallest eigenvalue is 5.54e-18. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.