A Book of Abstract Algebra (2nd Edition)

Chapter 27, Problem 4EI Bookmark Show all steps: ON	
Problem	
Let $a(x) = a_0 + a_1x + \cdots + a_nx^n \in F[x]$. The <i>derivative</i> of $a(x)$ is the following polynomial $a'(x) \in F[x]$:	
$a'(x) = a_1 + 2a_2x + \dots + na_nx^{n-1}$	
(This is the same as the derivative of a polynomial in calculus.) We now prove the analogs of the formal rules of differentiation, familiar from calculus.	
Let $a(x)$, $b(x) \in F[x]$, and let $k \in F$.	
Prove part:	
If F has characteristic 0 and $a'(x) = 0$, then $a(x)$ is a constant polynomial. Why is this conclusion not necessarily true if F has characteristic $p \neq 0$?	
Step-by-step solution	
Step 1 of 3 🐣	
Consider the arbitrary field F and let $a(x) = a_0 + a_1 x + \cdots + a_n x^n \in F(x)$. The derivative of $a(x)$ will be given by	
$a'(x) = a_1 + 2a_2x + \dots + na_nx^{n-1} \in F(x)$	
Suppose that F has characteristic 0 and $a'(x) = 0$. Objective is to prove that $a(x)$ is a constant polynomial.	
Since characteristic of F is 0, therefore there does not exist any positive integer n such that $n \cdot a = 0$ for any $a \in F$.	
Comment	
Step 2 of 3 A	
Also $a_1 + 2a_2x + \cdots + na_nx^{n-1} = 0$. Since $n \cdot a \neq 0$ for any $a \in F$, therefore the condition $a'(x) = 0$ implies that all the coefficients must be zero. That is, $a_i = 0$ for all $i = 1, \dots, n$. Thus, in $a(x)$, only the constant term is arbitrary rest all will be zero.	
Hence, $a(x)$ will be a constant polynomial.	
Consider the field Z_5 , whose characteristic is 5. Let	
$a(x) = x^{15} + 3x^{10} + 4x^5 + 1 \in Z_5[x].$	
Note that $a'(x) = 15x^{14} + 30x^9 + 20x^4$. Since $15, 20, 30 \equiv 0$ in Z_5 , therefore $a'(x) = 0$.	
Comment	
Step 3 of 3	
Hence, conclusion is not necessarily true if characteristic of F is nonzero.	
Comment	

2 4 B