

Faculty of Computer Science and Information Technology

Discrete Mathematics

Lecture 2 Logic and Proofs

Part 2

- ➤ Implication(p→q)
- If p and q are propositions, then $p\rightarrow q$ is a conditional statement or implication which is read as "if p, then q".

"P implies q "

The Truth Table for the Conditional Statement $p \rightarrow q$.					
p	\boldsymbol{q}	$p \rightarrow q$			
Т	T	Т			
T	F	F			
F	T	Т			
F	F	Т			

➤ Implication(p→q)

Example 1

Let p be the statement "Maria learns discrete mathematics" and q the statement "Maria will find a good job." Express the statement $p \rightarrow q$ as a statement in English.

"If Maria learns discrete mathematics, then she will find a good job."

"Maria will find a good job when she learns discrete mathematics."

Example 2

"If today is Friday, then 2 + 3 = 6."

is true every day except Friday, even though 2 + 3 = 6 is false.

➤ Implication(p→q)

The conditional statement $p \rightarrow q$ is false when p is true and q is false, and true otherwise.

• In $p\rightarrow q$, p is the hypothesis and q is the conclusion.

```
"if p, then q"

"if p, q"

"p is sufficient for q"

"q if p"

"q when p"

"a necessary condition for p is q"

"q unless \neg p"
```

```
"p implies q"

"p only if q"

"a sufficient condition for q is p"

"q whenever p"

"q is necessary for p"

"q follows from p"
```

- ➤ Biconditional(p↔q)
- If p and q are propositions, then we can form the biconditional proposition $p \leftrightarrow q$, read as "p if and

only if q."

"p iff q"

The Truth Table for the Biconditional $p \leftrightarrow q$.					
p	q	$p \leftrightarrow q$			
Т	T	Т 🛨			
T	F	F			
F	T	F			
F	F	T +			

➤ Biconditional(p↔q)

The biconditional statement $p \leftrightarrow q$ is true when p and q have the same truth values, and is false otherwise. Biconditional statements are also called *bi-implications*.

- > Expressing the Biconditional:
- $p \leftrightarrow q$ biconditional "if p then q , and if q then p"
- $\bullet p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

Example:

" you can take the flight if and only if you buy a ticket."

> Truth Tables of Compound Propositions

Example 1

• Construct the truth table of the Compound Proposition $(p \lor \neg q) \rightarrow (p \land q)$

	The Truth Table of $(p \lor \neg q) \to (p \land q)$.							
p	$(p \vee \neg q) \to (p \wedge q)$							
T	Т	F	Т	T	Т			
Т	F	T	T	F	F			
F	T	F	F	F	T			
F	F	T	T	F	F			

Precedence of Logical Operators

p \vee q $\rightarrow \neg$ r is equivalent to (p \vee q) $\rightarrow \neg$ r If the intended meaning is p \vee (q $\rightarrow \neg$ r) then parentheses must be used.

	Operator	Precedence
\neg		1
	^ _	2 3
	$\overset{\rightarrow}{\leftrightarrow}$	4 5

> Truth Tables of Compound Propositions

Example 2

• Construct the truth table for $p \lor q \rightarrow \neg r$

р	q	r	⊸r	p∨q	$p \lor q \rightarrow \neg r$
Т	Т	Т	F	Т	F
Т	Т	F	Т	Т	Т
Т	F	Т	F	Т	F
Т	F	F	Т	Т	Т
F	Т	Т	F	Т	F
F	Т	F	Т	Т	Т
F	F	Т	F	F	Т
F	F	F	Т	F	Т

Example 3

• Construct the truth table of the Compound Proposition $(p \land \neg q) \rightarrow r$

p	q	r	$\neg q$	$p \wedge \neg q$	$(p \wedge \neg q) \rightarrow r$
T	T	T	F	F	T
T	T	F	F	F	T
T	F	T	T	T	T
T	F	F	T	T	F
F	T	T	F	F	T
F	T	F	F	F	T
F	F	T	T	F	T
F	F	F	T	F	T

Compound Propositions Classification

Compound Propositions Classification

Example 4:

 Show that following conditional statement is a tautology by using truth table

$$(p \land q) \rightarrow p$$

p	q	$p \wedge q$	$(p \land q) \rightarrow$		p
T	T	T		T	
T	F	F		T	
F	T	F		T	
F	F	F		T	

Compound Propositions Classification

- A tautology is a proposition which is always true.
 Example: p v¬p
- A contradiction is a proposition which is always false. Example: p ∧¬p
- A contingency is a proposition that is sometimes true and sometimes false, such as p

P	$\neg p$	p∨¬p	$p \land \neg p$
T	F	T	F
F	T	T	F

> Logically equivalent:

- •We write this as $p \Leftrightarrow q$ or as $p \equiv q$ where p and q are compound propositions.
- •Two compound propositions p and q are equivalent if and only if the columns in a truth table giving their truth values agree.

> Example 5:

Show that $\neg p \lor q$ and $p \rightarrow q$ are Logically equivalent.

p	q	$\neg p$	$\neg p \lor q$	$p \rightarrow q$
T	T	F	T	T
T	F	F	F	F
F	T	Т	Т	Т
F	F	T	T	Т

- > Example 6:
- > Show that $p\rightarrow q$ and $\neg q\rightarrow \neg p$ are Logically equivalent.

Solution:

p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$\neg q \rightarrow \neg p$
T	T	F	F	T	Т
Т	F	F	T	F	F
F	T	Т	F	Т	Т
F	F	Т	Т	Т	Т

De Morgan's Laws

$$\neg(p \land q) \equiv \neg p \lor \neg q$$
$$\neg(p \lor q) \equiv \neg p \land \neg q$$

This truth table shows that De Morgan's first Law holds.

р	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg p$	$\neg p \lor \neg p$
Т	Т	Т	F	F	F	F
Т	F	F	Т	F	Т	Т
F	Т	F	Т	Т	F	Т
F	F	F	Т	Т	Т	Т

> De Morgan's Laws

This truth table shows that De Morgan's Second Law holds.

Show that $\neg (p \lor q)$ and $\neg p \land \neg q$ are logically equivalent.

Truth Tables for $\neg (p \lor q)$ and $\neg p \land \neg q$.										
p	\boldsymbol{q}	$p \lor q$		$\neg (p \lor q)$		$\neg p$	$\neg q$		$\neg p \land \neg q$	
T	T	T		F		F	F		F	
T	F	T		F		F	T		F	
F	T	T		F		T	F		F	
F	F	F		T		T	T		T	

> Using a Truth Table to Show Nonequivalence

Show that $p \rightarrow q$ and $\neg p \rightarrow \neg q$ are not equivalent.

Solution:

p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$\neg p \rightarrow \neg q$
Т	Т	F	F	Т	Т
T	F	F	T	F	T
F	Т	Т	F	Т	F
F	F	Т	T	T	Т

Translating English Sentences

- Steps to convert an English sentence to a statement in propositional logic
- Identify atomic propositions and represent using propositional variables.
- Determine appropriate logical connectives

Example 7

You can access the Internet from campus only if you are a computer science major or you are not a student.

Translating English Sentences

Example 7

(You can access the Internet from campus) only if (you are a computer science major or you are not a student).

Solution:

Let p, q and r be the propositions:

p: You can access the Internet from campus.

q: You are a computer science major.

r: You are a student.

The sentence can be represented by logic as

$$p \rightarrow (q \vee \neg r)$$

Translating English Sentences

Example 8

(The automated reply cannot be sent)when(the file system is full.)

Solution:

Let p and q be the propositions:

p: The automated reply can be sent.

q: The file system is full.

The sentence can be represented by logic as

$$q \rightarrow \neg p$$

Logic Circuits

• A logic circuit (or digital circuit) receives input signals p1, p2, ..., pn, each a bit [either 0 (off) or 1 (on)], and produces output signals s1, s2, ..., sn, each a bit.

Logic Circuits

The three basic circuits, called gates.

Logic Circuits

Example 9

 Determine the output for the combinatorial circuit in the following figure.

Logic Circuits

Example 9

Solution:

Logic Circuits

Example 10

 Determine the output for the combinatorial circuit in the following figure.

Logic Circuits

Example 11

 Determine the output for the combinatorial circuit in the following figure.

 $[A \land B] \lor [(B \lor C) \land (B \land C)]$

Questions?