2-Month Data Science & Machine Learning Training Program

Applications-Driven Approach for Career Development

Program Overview

• Duration: 8 weeks (2 months)

• **Schedule:** 3 sessions per week × 3 hours per session

• Total Hours: 72 hours

• Target Audience: Graduate students seeking industry-ready skills

• Approach: Project-based learning with portfolio development

• Outcome: Job-ready skills with 8-10 completed projects on GitHub — since you want to **teach with** more emphasis on applications and already have this curated **GitHub repo of projects**, we can build your 2-month, 24-session training outline **around these projects** instead of abstract theory. This way, the student gets **portfolio-ready work** while learning the concepts.

Here's a refined 8-week (24 sessions) plan using the repo projects:

2-Month Data Science & ML Training (Applications-Driven)

Format: 3x/week × 3 hrs x 8 weeks Focus: Hands-on projects → GitHub portfolio

Detailed Weekly Curriculum

Week 1: Foundations & Exploratory Data Analysis (EDA)

Focus: Building strong Python foundations for data science

Session 1 (3 hours): Python Fundamentals & Environment Setup

Topics:

- Python refresher: data types, control structures, functions
- Jupyter notebook setup and best practices
- Introduction to data science libraries ecosystem
- Git and GitHub setup for portfolio development

- Set up development environment (Anaconda, Jupyter, VS Code)
- Create GitHub repository structure
- Basic Python exercises with data structures

Session 2 (3 hours): Data Manipulation with Pandas & NumPy

Topics:

- Pandas DataFrames: creation, indexing, filtering, grouping
- NumPy arrays: mathematical operations, broadcasting
- Data loading from various sources (CSV, JSON, APIs)
- Basic data cleaning techniques

Practical Activities:

- Load and explore multiple datasets
- Practice data manipulation exercises
- Introduction to the Iris Dataset

Session 3 (3 hours): Data Visualisation & EDA Techniques

Topics:

- Matplotlib fundamentals: plots, subplots, customisation
- Seaborn for statistical visualisation
- EDA methodology: univariate, bivariate, multivariate analysis
- Statistical summaries and distributions

Project: Iris Dataset Classification

- Complete EDA with visualisations
- Build first ML model (basic classification)
- Document findings and push to GitHub

Week 1 Deliverable: Comprehensive Jupyter notebook with EDA + ML model on GitHub

Week 2: Data Preprocessing & Regression Analysis

Focus: Advanced data cleaning and regression modelling

Session 4 (3 hours): Advanced Data Cleaning & Feature Engineering

Topics:

- Handling missing values: imputation strategies
- · Outlier detection and treatment
- Data type conversions and categorical encoding
- Feature scaling and normalisation techniques

- Work with messy datasets
- · Implement various imputation methods
- Create feature engineering pipeline

Session 5 (3 hours): Regression Fundamentals & Implementation

Topics:

- Linear regression theory and assumptions
- Multiple regression and polynomial features
- Regularisation techniques (Ridge, Lasso, Elastic Net)
- Model evaluation metrics for regression

Project Start: House Price Regression

- Load and explore housing dataset
- Feature engineering for price prediction
- Implement multiple regression models

Session 6 (3 hours): Advanced Regression & Business Applications

Topics:

- Cross-validation techniques
- Hyperparameter tuning with GridSearch
- Feature selection methods
- Business interpretation of model results

Projects:

- Complete House Price Regression with model tuning
- Start BigMart Sales Prediction project
- Compare different regression approaches

Week 2 Deliverable: Two complete regression projects with documentation and model comparison

Week 3: Classification Algorithms & Evaluation

Focus: Binary and multi-class classification problems

Session 7 (3 hours): Classification Fundamentals

Topics:

- Logistic regression: theory and implementation
- · Decision trees: splitting criteria, pruning
- Classification vs regression: key differences
- Probability interpretation in classification

Project Start: Loan Prediction

- Explore loan approval dataset
- Implement logistic regression
- Feature importance analysis

Session 8 (3 hours): Ensemble Methods & Advanced Classification

Topics:

- Random Forest: bagging and feature randomness
- Gradient Boosting and XGBoost
- Ensemble voting methods
- Handling imbalanced datasets

Practical Activities:

- Compare individual vs ensemble models
- Implement SMOTE for imbalanced data
- Cross-validation for model selection

Session 9 (3 hours): Model Evaluation & Business Metrics

Topics:

- Confusion matrix and classification report
- ROC curves and AUC interpretation
- Precision, recall, F1-score trade-offs
- Business-specific evaluation metrics

Project: Titanic Survival Prediction

- Complete end-to-end classification pipeline
- Comprehensive model evaluation
- Feature engineering for survival prediction

Week 3 Deliverable: Two classification projects with comprehensive evaluation metrics and business insights

Week 4: Natural Language Processing (NLP)

Focus: Text data processing and sentiment analysis

Session 10 (3 hours): Text Preprocessing & NLP Fundamentals

Topics:

- Text cleaning: tokenisation, stemming, lemmatisation
- Stop words removal and text normalisation
- Regular expressions for text processing
- Introduction to NLTK and spaCy libraries

- Process raw text data from various sources
- Build text preprocessing pipeline
- Explore Twitter and news datasets

Session 11 (3 hours): Feature Extraction from Text

Topics:

- Bag of Words (BoW) model
- TF-IDF (Term Frequency-Inverse Document Frequency)
- N-grams and character-level features
- Word embeddings introduction

Project Start: Sentiment Analysis

- Amazon reviews dataset exploration
- Implement BoW and TF-IDF approaches
- Compare feature extraction methods

Session 12 (3 hours): NLP Classification & Applications

Topics:

- Naive Bayes for text classification
- Support Vector Machines for text
- Model evaluation for NLP tasks
- Handling multi-class text classification

Projects:

- Complete Twitter Sentiment Analysis
- Fake News Detection implementation
- Email Classification (spam vs ham)

Week 4 Deliverable: Three NLP projects demonstrating different text classification approaches

Week 5: Introduction to Deep Learning

Focus: Neural networks and computer vision basics

Session 13 (3 hours): Neural Network Fundamentals

Topics:

- Perceptron and multi-layer perceptrons
- Backpropagation algorithm
- Activation functions and their properties
- Introduction to TensorFlow/Keras

- Build neural network from scratch
- Implement simple MLP with Keras
- Understand gradient descent visualisation

Session 14 (3 hours): Convolutional Neural Networks (CNNs)

Topics:

- CNN architecture: convolution, pooling, fully connected layers
- Feature maps and filters
- CNN for image classification
- Transfer learning concepts

Project: Handwritten Digit Recognition (MNIST)

- Load and preprocess MNIST dataset
- Build CNN from scratch
- Compare with traditional ML approaches

Session 15 (3 hours): Deep Learning Best Practices

Topics:

- Overfitting prevention: dropout, early stopping
- Batch normalisation and optimisation
- Model architecture design principles
- Hyperparameter tuning for deep learning

Project: Wine Quality Prediction

- Apply deep learning to tabular data
- Compare neural networks with ensemble methods
- Document model architecture decisions

Week 5 Deliverable: Two deep learning projects with architecture documentation and performance analysis

Week 6: Computer Vision Applications

Focus: Advanced image processing and real-world CV applications

Session 16 (3 hours): OpenCV Fundamentals & Image Processing

Topics:

- Image loading, manipulation, and basic operations
- Colour spaces and transformations
- Edge detection and contour analysis
- Basic image filtering and morphological operations

Project: Color Detection

- Implement colour detection system
- · Real-time colour tracking with webcam
- HSV colour space applications

Session 17 (3 hours): Advanced CNN Architectures & Transfer Learning

Topics:

- Pre-trained models: VGG, ResNet, MobileNet
- Transfer learning strategies
- Fine-tuning vs feature extraction
- Model optimisation for deployment

Project: Traffic Signs Recognition

- Use German Traffic Sign Recognition Benchmark
- Implement transfer learning with pre-trained CNN
- Real-time traffic sign detection

Session 18 (3 hours): Real-time Computer Vision Applications

Topics:

- Facial landmark detection
- Real-time video processing
- Integration of deep learning with OpenCV
- Model deployment considerations

Project: Driver Drowsiness Detection

- Eye blink detection using facial landmarks
- Real-time drowsiness alert system
- Combine OpenCV with deep learning models

Week 6 Deliverable: Three computer vision applications with real-time capabilities and deployment documentation

Week 7: Machine Learning Systems & Recommendation Engines

Focus: Unsupervised learning and production ML systems

Session 19 (3 hours): Unsupervised Learning & Clustering

Topics:

- K-means clustering algorithm and implementation
- · Hierarchical clustering methods
- DBSCAN for density-based clustering
- Dimensionality reduction with PCA

Project: Customer Segmentation

- RFM analysis for customer segmentation
- K-means clustering implementation

• Business insights from clustering results

Session 20 (3 hours): Recommendation Systems

Topics:

- Collaborative filtering vs content-based filtering
- Matrix factorisation techniques
- Similarity metrics and nearest neighbours
- Evaluation metrics for recommendation systems

Project Start: Movie Recommendation System

- Implement collaborative filtering
- Content-based filtering with movie features
- Hybrid recommendation approach

Session 21 (3 hours): Anomaly Detection & Production Systems

Topics:

- Statistical methods for anomaly detection
- Isolation Forest and One-Class SVM
- Model deployment with Streamlit/Gradio
- API development for ML models

Projects:

- Complete Movie Recommendation System with web interface
- Credit Card Fraud Detection using anomaly detection
- Deploy recommendation system as web application

Week 7 Deliverable: Deployed web applications for recommendation system and fraud detection

Week 8: Capstone Project & Career Preparation

Focus: End-to-end ML project and job readiness

Session 22 (3 hours): Capstone Project Planning & Advanced Applications

Topics:

- · Project planning and requirement analysis
- Advanced deep learning applications
- Medical image analysis with CNNs
- Transfer learning for specialised domains

Capstone Project Options:

- Covid-19 X-ray Classification (medical imaging)
- Human Activity Recognition (time series + sensors)

• Custom project based on student interest

Session 23 (3 hours): Model Development & Evaluation

Topics:

- End-to-end ML pipeline development
- Model versioning and experiment tracking
- Advanced evaluation techniques
- A/B testing concepts for ML

Activities:

- Develop complete capstone project
- Implement comprehensive evaluation framework
- Document methodology and results

Session 24 (3 hours): Portfolio Optimization & Career Preparation

Topics:

- GitHub portfolio structuring and documentation
- Technical resume optimisation
- LinkedIn profile enhancement
- Interview preparation and mock interviews

Career Activities:

- Portfolio review and optimisation
- README documentation for all projects
- Resume and LinkedIn profile updates
- Mock technical interviews with feedback

Week 8 Deliverable: Complete portfolio with capstone project + career preparation materials

Project-to-Week Mapping Summary

Week	Repository Projects Used	Difficulty Level
1	Iris Dataset Classification	Basic
2	House Price Regression, BigMart Sales Dataset	Basic
3	Loan Prediction, Titanic Dataset	Basic
4	Sentiment Analysis, Fake News Detection, Email Classification	Basic/Intermediate
5	Handwritten Digit Recognition, Wine Quality	Intermediate
6	Color Detection, Traffic Signs Recognition, Driver Drowsiness Detection	Intermediate/Advanced

Week	Repository Projects Used	Difficulty Level
7	Customer Segmentation, Song/Movie Recommendation, Credit Card Fraud Detection	Advanced
8	Covid-19 X-ray Classification, Human Activity Recognition	Advanced

Session-by-Session Breakdown

Session	Week	Duration	Learning Objectives	Practical Activities	Assessment
1-3	1	3hrs each	Python DS fundamentals, EDA techniques	Iris dataset exploration and classification	Code review + project submission
4-6	2	3hrs each	Data preprocessing and regression modeling	House price prediction with feature engineering	Model performance evaluation
7-9	3	3hrs each	Classification algorithms and metrics	Binary and multi-class classification projects	Confusion matrix and ROC analysis
10-12	4	3hrs each	Natural Language Processing fundamentals	Text classification and sentiment analysis	NLP pipeline implementation
13-15	5	3hrs each	Deep learning and neural networks	CNN implementation for image classification	Model architecture documentation
16-18	6	3hrs each	Computer vision applications	Real-time image processing with OpenCV	Live demo + code deployment
19-21	7	3hrs each	Unsupervised learning and systems	Recommendation system with web interface	Functional web application
22-24	8	3hrs each	Capstone project and career preparation	End-to-end ML project + portfolio review	Final presentation + portfolio

Learning Outcomes & Portfolio Components

Component	Description	Industry Relevance	Portfolio Impact
Technical Skills	Python, pandas, scikit-learn, TensorFlow/PyTorch, OpenCV	Direct application in DS/ML roles	Demonstrates coding proficiency
Project Portfolio	8-10 complete projects with documentation	Shows practical problem-solving ability	Differentiates from theoretical candidates
Domain Knowledge	Finance, healthcare, NLP, computer vision applications	Versatility across industries	Appeals to diverse employers

Component	Description	Industry Relevance	Portfolio Impact	
Deployment Skills	Streamlit, Gradio, GitHub Pages integration	End-to-end development capability	Shows production-	
Communication Technical documentation, README files, presentations		Essential for team collaboration	Demonstrates professional readiness	

Assessment & Evaluation Framework

Evaluation Type	Weight	Frequency	Criteria
Project Submissions	60%	Weekly	Code quality, documentation, results analysis
Technical Presentations	20%	Bi-weekly	Communication skills, technical depth
Peer Code Reviews	10%	Ongoing	Collaboration, feedback incorporation
Final Capstone	10%	Week 8	End-to-end project execution

Career Preparation Components

Activity	Timeline	Objective	Deliverable
GitHub Portfolio Setup	Week 1- 2	Professional online presence	Structured repository with README
LinkedIn Optimization	Week 6	Network building and visibility	Updated profile with project highlights
Resume Enhancement	Week 7	Job application readiness	Technical resume with quantified achievements
Interview Preparation	Week 8	Technical interview skills	Mock interview performance + feedback
Industry Networking	Ongoing	Professional connections	LinkedIn engagement + community participation

Expected Outcomes

Upon completion of this program, students will have:

- Technical Portfolio: 8-10 documented projects demonstrating ML/DS capabilities
- Industry Skills: Proficiency in Python ecosystem and modern ML frameworks
- Practical Experience: End-to-end project development from data to deployment
- Career Materials: Professional GitHub profile, optimized resume, and interview skills
- Domain Expertise: Applied knowledge across multiple industries and problem types