Security - functions

Problem Statement

Before we jump into the concepts of Security, let us familiarize ourselves with the mathematical background required for it.

A set X is a collection of elements. $X = \{1, 2, 3\}$ is one such example. A collection of integers is also a set.

Given two sets X and Y, we define a function f which maps every element in X to precisely 1 element in Y.

if
$$X=\{1,2,3\}$$
 and $Y=\{\alpha,\beta,\gamma,\delta\}$ a function f can be

$$f(1) = \alpha$$
, $f(2) = \gamma$ and $f(3) = \delta$.

Let us define a function $f_1(x)=x_r$, such that $x\in X$ and $x_r\in Y$ where x_r is defined as the remainder of x when divided by 11.

Your task is to complete the function which takes the input x and **returns** x_r

Constraints

 $1 \le x \le 1000$