Euclidean Geometry: An Introduction to Mathematical Work Math 3600 Spring 2015

More Triangle Centers

Now it is time to play. We have studied lots of interesting topics, and we can use our understanding to prove beautiful theorems.

17.1 Conjecture. Let *ABC* be a triangle with *D* the midpoint of *AB* and *E* the midpoint of *AC*. Then *BC* is twice *DE*.

Definition. Let ABC be a triangle, and let D be the midpoint of side BC. The segment AD is called the *median* of ABC at A.

17.2 Conjecture. Suppose that m and ℓ are two medians of a triangle ABC. The point where m and ℓ intersect lies on each median 2/3 of the way from the vertex to the opposite side.

17.3 Conjecture. The medians of a triangle are concurrent.

Definition. The point just found is called the *centroid* of the triangle.

Definition. Let *ABC* be a triangle. A line from a vertex which is perpendicular to the opposite side is called an *altitude*.

Definition. Let *ABC* be a triangle. The triangle formed by joining the midpoints of the sides of *ABC* by segments is called the *medial triangle* of *ABC*.

17.4 Conjecture. Let ABC be a triangle with DEF its medial triangle. An altitude of DEF is a perpendicular bisector of one of the sides of ABC.

17.5 Conjecture. The three altitudes of a triangle are concurrent.

Definition. The point of concurrence of the altitudes of a triangle is called the *orthocenter* of the triangle. The traditional notation is to label this point *H*.

17.6 Problem. Let *ABC* be a triangle with circumcenter *O*, centroid *G* and orthocenter *H*. Show that *O*, *H* and *G* are collinear, and *GH* is twice *OG*.

Definition. The line found in the last problem is called the *Euler line* of triangle *ABC*.

A many hundreds of notions of what could be the "center" of a triangle have been investigated. A detailed list is compiled at the web page http://faculty.evansville.edu/ck6/tcenters/.