

Druhy kamerových senzorů a optika

Strojové vidění a zpracování obrazu (BI-SVZ)

Obsah přednášky

- Kamerové senzory
- Dělení kamerových senzorů
 - Dle snímaného spektra
 - Dle způsobu snímání
 - Dle komunikačního rozhraní
- Objektivy
 - Uchycení ke kameře
 - Vlastnosti (pracovní vzdálenost, clona, ostření, ohnisková vzdálenost)
 - Filtry
- Vady optiky
 - Vinětace, Chromatická aberace, Difrakce, Distorze
- Kalibrace kamery

Druhy kamerových senzorů

Druhy kamerových senzorů

UV kamera

Běžná kamera (maticová)

Termokamera

LIDAR

Mnoho dalších

- Řádkové kamery
- Vysokorychlostní kamery
- Hloubkové kamery
- Kamery s vysokým rozlišením
- Vícečipové
- Hyperspektrální

Multispektrální

Druhy kamerových senzorů - UV

Druhy kamerových senzorů –Termo

Druhy kamerových senzorů - LIDAR

Druhy kamerových senzorů - Multispektrální

Druhy kamerových senzorů - Hyperspektrální

Druhy kamerových senzorů

- Rozdělení dle snímaného spektra
 - Viditelné spektrum: 380 650 nm
 - Infračervené:
 - Vlnová délka: 8 –12 μm (LWIR)
 - Vlnová délka: 3 –5 μm (MWIR)
 - Vlnová délka: 1 –2 μm (SWIR)
 - UV
 - LIDAR

Druhy kamerových senzorů

- Rozdělení dle způsobu snímání
 - Běžné kamery (maticové)
 - Obraz je snímaný najednou
 - Řádkové kamery
 - Snímají řádek po řádku vysokou frekvencí, stejně jako skener
- Maticovou kameru použijeme tam, kde potřebujeme najednou zaznamenat celé obrazové pole
- Řádkové kamery jsou využity pro snímání nekonečných pásů či rotujících předmětů

Velikost a formát senzorů

- Velikost senzoru je odvozena od velikosti pixelu
 - Větší pixely jsou lepší pro svoji citlivost

 $velikost_{senzoru} = velikost_{pixelu} \cdot počet_{pixelu}$

- Formát senzoru určuje vhodnost objektivu
- Historicky se používá 1" = 16 mm (vidicon tube sensor)

Formát senzoru	Diagonála (mm)	
1/3 "	6	
1/2 "	8	
1/1.8 "	8,93	
2/3 "	11	
1 "	16	
4/3 "	21,6	

https://www.digicamdb.com/sensor-sizes/

Druhy komunikačního rozhraní

GigE Vision (5GigE, 10GigE)

- Přenos obrazu i na velké vzdálenosti
- Více kamer v jedné síti
- PTP časová synchronizace (precision time protocol)
- Levné kabely i kamery

USB3 Vision

- Přenos na řádu metrů
- Snadné připojení
- Více kamer
- Dražší kabely, levné kamery

CoaXPress

- Rychlost se řeší počtem kanálů
- Levné kabely, dražší kamery
- Zvláštní frame grabber

Druhy komunikačního rozhraní – aktuální

*cable length depending on cable quality and types

Druhy komunikačního rozhraní – výhled

*cable length depending on cable quality and types

Rozdíl mezi IP a průmyslovou kamerou

- IP kamera
 - Komprimovaný video záznam

 nízký datový tok
 - Většinou bez důmyslného nastavení
 - Přístup přes webové rozhraní
- Průmyslová kamera
 - Nekomprimovaný video záznam > cílem je nasnímat co nejkvalitnější data pro pozdější zpracování
 - Nutnost promyslet snímané prostředí a nastavit několik parametrů kamery k zisku chtěných dat
- Oba typy uzpůsobeny k nepřetržitému provozu

Objektivy

Objektivy – typ závitu na kameře

- C-mount
 - Hloubka 17,5 mm
- CS-mount
 - Hloubka 12,5 mm
- F-mount (Nikon)
 - Hloubka 46,5 mm
- Další závity: M42, V-mount, S-mount

Objektivy – minimální pracovní vzdálenost

- Pracovní vzdálenost se určuje od okraje objektivu
- Objektivy pro průmyslové kamery jsou optimalizovány pro krátké pracovní vzdálenosti

Objektivy – ostření

- Objektivy pro průmyslové kamery mají upravenou stupnici pro přesnější zaostření na krátkou vzdálenost
- Nastavovací prvky jsou obvykle jištěny šroubky proti posunutí
- Objektivy odolné proti otřesům a vibracím mají robustnější zamykací systém

Objektivy – filtry

- · Objektivy mívají závit pro připojení optického filtru
- Filtry se dají šroubovat na sebe
- Některé širokoúhlé objektivy s vypouklou čočkou nemají filtrový závit (řešeno adaptérem)
- Polarizační, pásmové, ...

- Určuje zorné pole a zvětšení
- Může být pevná nebo proměnlivá

- Objektivy s pevnou ohniskovou vzdáleností mají
 - Jednoduchý design
 - Vysoké rozlišení a lepší optickou kvalitu
 - Možnost kalibrace měření => vysoká přesnost měření

■ COMPARISON OF MONITORING IMAGES

	TRISON OF MONTIORING TWAGES			
Object distance	2m	5m	10m	20m
f=2.8mm	3			
f=3.5mm	1811			Successive
f=8mm				
f=30mm	Comput			3
f=50mm	comp			

1700 mm

Objektivy – strojové vidění

- Telecentrický
 - Eliminuje perspektivní zkreslení
 - Zachovává konstantní zvětšení
 - Ideální pro přesné měření
- Boroskopická sonda
 - umožňují inspekci těžko přístupných míst
- Pericentrický
 - Díky speciálně vybroušeným čočkám umožnuje sledovat objekt i ze strany
- Liquid lens
 - Rychlé a dynamické zaostřování pomocí změny tvaru kapaliny uvnitř čočky
 - Ideální pro proměnlivé pracovní vzdálenosti
- Ultra širokoúhly s minimální distorzí
 - Patentovaná technologie výrobcem <u>Theia</u>
- Mnoho dalších

Objektivy – strojové vidění

Objektivy – strojové vidění

Telecentrický

Boroskopická sonda

Ultra širkoký bez distorze

Vady optiky

- Vinětace
- Aberace
- Difrakce
- Zkreslení (distorze)

Vady optiky – vinětace

- Efekt způsobený tím, že do středu snímku dopadá více světla než do krajů
- Způsobeno konstrukčními vlastnostmi objektivů
- Vinětaci lze nalézt na libovolně kvalitním objektivu
- Vinětace se zmírňuje zacloněním objektivu
- Jak moc nám efekt vinětace vadí?

Vady optiky – chromatická aberace (barevná vada)

- Projevuje se jako barevné lemování ostrých přechodů mezi světlem a stínem
- Každá barva má jinou vlnovou délku a index lomu je tedy pro každou barvu jiný
- Efekt je zmírněn zacloněním objektivu

Vady optiky – difrakce

- Projevuje se snížením ostrosti obrazu
- Vzniká přílišným zacloněním objektivu (vysoké clonové číslo)
- Každý objektiv má:
 - "sweet spot" při kterém poskytuje maximální míru hloubky ostrosti a zároveň zanedbatelné množství difrakce
 - Jiné chování průběhu difrakce

Vady optiky – distorze

- Zjednodušeně objektiv zobrazuje zakřivené čáry, kde by měly být rovné čáry (porušení geometrické podobnosti)
- Lze pozorovat zejména u širokoúhlých objektivů
- Nastavení kamery nemá na distorzi vliv
- Proč je to problém?

Kalibrace kamery

- Obecně slouží k získání vnitřních, vnějších parametrů kamery (camera intrinsics, extrinsics) a parametrů zkreslení objektivu
- Následně se tyto parametry využívají k odstranění zkreslení nebo k částečné 3D rekonstrukci snímané scény
- Nejčastěji se používá šachovnicový vzor
- Kalibrace se provádí pro konkrétní pár kamery a objektivu
- Přesnost je zvýšená správným zaostřením objektivu

Kalibrace kamery - algoritmus

- Základem kalibrace je správné vyhledání zkreslených přímek nebo jejich úseků v obraze
- Poté nalezení koeficientů degradační funkce, pomocí které dojde k vyrovnání zkreslených přímek a tedy i celého obrazu
- Přímky se budeme pokoušet vyrovnat pomocí inverzní funkce k funkci, která obraz zkreslila
- K běhu algoritmu je nutné zaznamenat 10 30 snímků při různém naklonění šachovnice

Kalibrace kamery - OpenCV

OpenCV odstraňuje 2 druhy distorze:

- Radiální
 - $x_{\text{distorted}} = x(1 + k_1 * r^2 + k_2 * r^4 + k_3 * r^6)$
 - $y_{\text{distorted}} = y(1 + k_1 * r^2 + k_2 * r^4 + k_3 * r^6)$
 - x, y souřadnice nezkreslených bodů, k_1, k_2, k_3 koeficienty distorze, r^2 : $x^2 + y^2$
- Tangenciální
 - Způsobeno nepřesnou centrací jednotlivých čoček vůči kamerovému snímači
 - $x_{\text{distorted}} = x + [2 * p_1 * x * y + p_2 * (r^2 + 2 * x^2)]$
 - $y_{\text{distorted}} = y + [p_1 * (r^2 + 2 * y^2) + 2 * p_2 * x * y]$
 - x, y souřadnice nezkreslených bodů, p_1, p_2 koeficienty distorze, r^2 : $x^2 + y^2$

No distortion

Positive radial distortion (Barrel distortion)

Negative radial distortion (Pincushion distortion)

Zdroje

- https://www.the-digital-picture.com/Canon-Lenses/Canon-Lens-Vignetting.aspx
- http://www.bobatkins.com/photography/technical/diffraction.html
- https://de.mathworks.com/help/vision/ug/camera-calibration.html
- https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_ 3d_reconstruction.html
- https://docs.opencv.org/3.1.0/dc/dbb/tutorial_py_calibration.html