Given a set of files $\mathcal{F}=\{F_1,...,F_f\}$ with equal size s, where s is the number of packets in F_i , and we generate $s'=(1+\theta)s$ packets where $\theta\in[0,1]$. We represent each file $F_i\in\mathcal{F}$ as a node $F_i=< s_i,d_i,Generate_i>$ where s_i,d_i denote the source and destination for that file and $Generate_i$ is the time when the file is generated. For each node $F_i=< s_i,d_i,Generate_i>$, we add a virtual source node sv_i having an edge with capacity s' into file node F_i . And we add a virtual destination node dv_i having an incoming edge of infinite capacity from all the connection nodes which contain d_i as destinations. In this way we can model this problem as multi-commodity flow problem with f different kinds of commodities with f source and destination pairs of (sv_i,dv_i) .

Formulation 1: Maximize the total number of files that can be successfully decoded.

Let $\lambda \in [0,1]$ be the threshold percentage for each file to be successfully decoded, which means if $\lambda s'$ of s' packets can be delivered to destination, file F_i can be treated as successfully delivered. We use a variable x_i to represent whether or not F_i is successfully delivered. This problem thus becomes an Integer Linear Programming (ILP).

Input: Directed Connection Graph G(V, E), File set \mathcal{F} with f files

Source-sink pair
$$(sv_i,dv_i)$$
 and threshold $\lambda, \ \forall F_i \in F$

Capacity $c(u,v) \quad \forall (u,v) \in E$

Variable: Flow $f_{(u,v)}^i \quad \forall F_i \in F, (u,v) \in E$
 $x_i \quad \forall F_i \in F$

Maximize $\sum_{i=1}^f x_i$

Subject to $\sum_{(sv_i,v)\in E} f_{(sv_i,v)}^i = f_i, \quad \forall F_i \in F$

$$\sum_{(u,v)\in E} f_{(u,v)}^i = \sum_{(v,u)\in E} f_{v,u}^i, \quad \forall F_i \in F, \forall v \in V - \{sv_i,dv_i\}$$

$$\sum_{i=1}^f f_{(u,v)}^i \leq c_{(u,v)}, \quad \forall (u,v) \in E$$

$$f_{(u,v)}^i \geq 0, \quad \forall F_i \in F, \forall (u,v) \in E$$

$$f^i \leq s', \quad \forall F_i \in F$$

$$f^i \geq x_i \lambda s', \quad \forall F_i \in F$$

$$x_i \in \{0,1\}, \quad \forall x_i$$

Let OPT_f be the total amount commodities delivered by solving the linear relaxation LP of IP in Formulation 1 where the variables x_i are relaxed to assume any value in [0,1]. It is obvious to see that $OPT_f = \sum \tilde{x_i} \times (1+\epsilon)$, and let $\beta(\epsilon) = (1+\epsilon)ln(1+\epsilon) - \epsilon$. Define the solution from the above algorithm as ALG, and total amount of commodities delivered by ALG as OPT_{ALG} .

Claim 1.
$$Pr[OPT_{ALG} < \frac{1-\epsilon}{1+\epsilon} \cdot OPT_f] \le e^{-\beta(-\epsilon) \cdot OPT_f/(1+\epsilon)}$$

Proof: For each commodity i, the expectation of x_i is $E(x_i) = 1 \cdot \tilde{x_i} + 0 \cdot (1 - \tilde{x_i}) = \tilde{x_i}$. Let $\mu = \sum \tilde{x_i} = \frac{OPT_f}{1+\epsilon}$, and $OPT_{ALG} = \sum x_i$.

Algorithm 1 Random Rounding Algorithm for Formulation 1

Input:

Directed Connection Graph G(V, E);

File set $F = \{F_1, ..., F_f\};$

Source-sink pair (sv_i, dv_i) and threshold λ associated for each $F_i \in F$;

Capacity $c(u, v), \forall (u, v) \in E$;

Output:

- 1: Divide all edge capacities by $1 + \epsilon$, where $0 < \epsilon < 1$, i.e., $\tilde{c_e} = \frac{c_e}{(1+\epsilon)}$;
- 2: Change the last constraint to be $0 \le x_i \le 1$;
- 3: Then it is relaxed to an LP, solve this LP and get optimal solution \tilde{x}_i ;
- 4: With probability $\tilde{x_i}$, set $x_i = 1$, otherwise set it to 0;
- 5: Scale up the fractional flow $f_{j,e}$ from the LP solution on edge e for commodity j by $\tilde{x_j}$, i.e., $f_{j,e} = f_{j,e}^* \times \frac{1}{\tilde{x_j}}$;

$$Pr[OPT_{ALG} < \frac{1-\epsilon}{1+\epsilon} \cdot OPT_f] = Pr[\sum_{i} x_i < (1-\epsilon) \cdot \mu]$$

$$\leq e^{-\beta(-\epsilon)\mu}$$

$$\leq e^{-\beta(-\epsilon) \cdot OPT_f/(1+\epsilon)}$$

If $OPT_f \geq \alpha \cdot \ln f$, then, $Pr[OPT_{ALG} \geq \frac{1-\epsilon}{1+\epsilon} \cdot OPT_f]$ is at least $1 - \frac{1}{poly(f)}$. If $OPT_f < \alpha \cdot \ln f$, then, $OPT_{ALG} < \alpha \cdot \ln f$, even if we get 0 file, we are off from OPT_f by no more than $\alpha \cdot \ln f$ additive factor. Putting it all together, with probability $1 - \frac{1}{poly(f)}$, we get at least $\max\{0, (1-\epsilon)/(1+\epsilon) \cdot OPT_f - \alpha \ln f\}$.

Claim 2. $Pr[ALG \ does \ not \ satisfy \ edge \ capacity \ contraints] \leq \frac{1}{|E|}$

Proof: Fix an edge $e \in E$, for commodity j, with probability $1 - \tilde{x_j}$, the flow on edge e for commodity j is set to 0, i.e., $f_{j,e} = 0$, with probability $\tilde{x_j}$, the flow on edge e for commodity j is set to $\tilde{f_{j,e}} \cdot \frac{1}{\tilde{x_j}}$. Then the expectation of $f_{j,e}$ is $E(f_{j,e}) = \tilde{f_{j,e}} \cdot \frac{1}{\tilde{x_j}} \cdot \tilde{x_j} + 0 \cdot (1 - \tilde{x_j}) = \tilde{f_{j,e}}$. Let F_e denotes the flow on edge e by ALG, then $F_e = \sum_{j,f_{j,e} \neq 0} f_{j,e}$ and the expectation of F_e is $E[F_e] = \sum_{j,f_{j,e} \neq 0} \tilde{f_{j,e}} \cdot \frac{1}{\tilde{x_j}} \cdot \tilde{x_j} = \sum_{j,f_{j,e} \neq 0} \tilde{f_{j,e}} \leq \tilde{c_e}$.

Let
$$X_j = \frac{f_{j,e}}{d}$$
, then, $F(e) \ge (1 + \epsilon) \cdot \tilde{c_e}$ iff

 $\sum_{j,f_{j,e}\neq 0} X_j \geq (1+\epsilon) \cdot \frac{\tilde{c}_e}{d}. \text{ Therefore, } Pr[F(e) \geq (1+\epsilon) \cdot \tilde{c}_e] \leq e^{-\beta(\epsilon) \cdot \tilde{c}_e/d}. \text{ By scaling up the capacities by } \epsilon, \text{ i.e., } c_e = (1+\epsilon) \cdot \tilde{c}_e, \text{ and } \beta(\epsilon) \geq \frac{2\epsilon^2}{4\cdot 2+\epsilon}, \text{ and by assumption } \tilde{c}_e/d \geq \frac{4\cdot 2+\epsilon}{\epsilon^2} \cdot ln|E|, \text{ we have } Pr[F(e) \geq c_e] \leq \frac{1}{|E|^2}. \text{ By applying union bound over all edges, we can get } Pr[ALG does not satisfy edge capacity contraints] \leq \frac{1}{|E|}.$