Cálculo Numérico

Capítulo 6: Resolução numérica de equações diferenciais

Indíce

Introdução

- 2 Métodos de passo simples
 - Método de Euler progressivo
 - ullet Métodos de Taylor de ordem n
 - Métodos de Runge-Kutta de ordem 2

Problemas de valor inicial

Neste capítulo, vamos estudar métodos que permitam obter soluções aproximadas para o seguinte tipo de problemas de valor inicial: Dados $\alpha \in \mathbb{R}$ e uma função $f:D\subseteq \mathbb{R}^2 \longrightarrow \mathbb{R}$ determinar y=y(t) que satisfaz o problema de valor inicial

$$\begin{cases} y'(t) = f(t, y(t)), & t \in (a, b] \quad (a < b) \\ y(a) = \alpha \end{cases}$$

Os métodos numéricos que iremos estudar têm como característica a de fornecerem os valores da solução aproximada num conjunto discreto de pontos t_i (nodos da malha) pertencentes a $[t_0, T]$.

Problemas de valor inicial

$$\begin{cases} y'(t) = f(t, y(t)), & t \in (a, b] \quad (a < b) \\ y(a) = \alpha \end{cases}$$
 (1)

No que se segue os problemas de valor inicial que consideramos são problemas bem postos.

Com efeito, o problema (1) é um problema bem posto se :

- 1. o problema (1) tem uma única solução;
- 2. existirem contantes $\varepsilon_0 > 0$ e k > 0 tais que para cada $0 < \varepsilon < \varepsilon_0$, quaisquer que sejam $\delta_0 \in \mathbb{R}$ com $|\delta_0| < \varepsilon$ e $\delta(t)$ contínua em [a,b] satisfazendo $|\delta(t)| < \varepsilon$, $\forall t \in [a,b]$, exista uma única solução z(t) do problema

$$\begin{cases} z'(t) = f(t, z(t)) + \delta(t), & t \in (a, b] \\ z(a) = \alpha + \varepsilon_0 \end{cases}$$

satisfazendo $|y(t) - z(t)| \le k \varepsilon, \ \forall t \in [a, b].$

Existência e unicidade de solução

Teorema 1:

Suponhamos que f é contínua num domínio

$$D = \left\{ (t, y) \in \mathbb{R}^2 : \quad t_0 \le t \le T, \, y \in \mathbb{R} \right\}$$

e que satisfaz a condição de Lipschitz na variável y, i.e, existe L>0 tal que

$$|f(t, y_1) - f(t, y_2)| \le L|y_1 - y_2|, \quad \forall (t, y_1), \ (t, y_2) \in D.$$

Então, o problema

$$\begin{cases} y'(t) = f(t, y(t)), & t \in [a, b] \\ y(a) = \alpha \end{cases}$$

é **bem posto**.

Considere o problema de valor inicial

$$\begin{cases} y'(t) = t\sin(y), & t \in [0, 2] \\ y(0) = 0.5 \end{cases}$$
 (2)

Prove que o problema de valor inicial (2) é um problema bem posto.

Neste caso,

$$D = \{(t,y) \in \mathbb{R}^2 : 0 \le t \le 2, y \in \mathbb{R}\} \text{ e } f(t,y) = t \sin(y).$$

Assim, f é contínua em D pois é uma função de classe C^{∞} em \mathbb{R}^2 .

Por outro lado, $\left|\frac{\partial f}{\partial y}(t,y)\right| = |t\cos(y)| \le 2, \forall (t,y) \in D$, pelo que prova-se que

$$|f(t,y_1)-f(t,y_2)| \le \max_{(t,y)\in D} \left|\frac{\partial f}{\partial y}(t,y)\right| |y_1-y_2| \le 2|y_1-y_2|, \quad \forall (t,y_1), \ (t,y_2)\in D.$$

A função f verifica o Teorema 1, pelo que o problema de valor inicial (2) é um problema bem posto.

Métodos de passo simples

Começamos por definir uma malha uniforme de pontos no intervalo [a,b]

Um conjunto de pontos $\{t_i\}_{i=0,1,\dots,N}$ forma uma malha uniforme do intervalo [a,b] se

- $a = t_0 < t_1 < ... < t_N = b$ (este pontos são designados nós da malha);
- $t_{i+1} t_i = h$, i = 0, 1, ..., N 1 (passo da malha, h, é constante).

No que se segue vamos designar por $w_i = w_h(t_i)$ a aproximação de $y(t_i)$.

Método de Euler progressivo

Considere-se o problema de valor inicial

$$\begin{cases} y'(t) = f(t, y(t)), & t \in (a, b] \quad (a < b) \\ y(a) = \alpha. \end{cases}$$
 (2)

Seja $h = \frac{b-a}{N}$ o passo da malha uniforme

$$t_i = a + ih, i = 0, 1, ..., N.$$

Suponhamos que a solução do problema é tal que $y \in C^2([a,b])$.

▶ Usando o desenvolvimento de Taylor em torno do ponto t_i , i = 0, 1, ..., N - 1, temos:

$$y(t_{i+1}) = y(t_i) + (t_{i+1} - t_i)y'(t_i) + \frac{(t_{i+1} - t_i)^2}{2}y''(\xi_i), \quad \xi_i \in]t_i, t_{i+1}[$$

$$= y(t_i) + hf(t_i, y(t_i)) + \underbrace{\frac{h^2}{2}y''(\xi_i)}_{}.$$

Método de Euler progressivo

Assim, desprezando o termo R_i obtém-se

$$y(t_{i+1}) \sim y(t_i) + hf(t_i, y(t_i)), i = 0, 1, ..., N - 1.$$

O método resultante desta aproximação designa-se **método de Euler progressivo** e é dado por:

$$\begin{cases} w_0 = \alpha \\ w_{i+1} = w_i + h f(t_i, w_i), \quad i = 0, 1, ..., N - 1. \end{cases}$$
 (3)

▶ O método de Euler progressivo é um *método explícito de passo simples* pois o valor de w_{i+1} é determinado, explicitamente, apenas à custa de w_i .

Consideremos novamente o problema de valor inicial (bem posto)

$$\begin{cases} y'(t) = t\sin(y), & t \in (0,2] \\ y(0) = 0.5, \end{cases}$$

$$\tag{4}$$

e a malha $t_i = 0 + \frac{2}{10}i, \ i = 0, 1, ..., 10 \ (h = \frac{2}{10}).$

O método de Euler progressivo para este problema é dado por

$$\begin{cases} w_0 = 0.5 \\ w_{i+1} = w_i + hf(t_i, w_i) = w_i + \frac{2}{10}t_i\sin(w_i), & i = 0, 1, ..., 9. \end{cases}$$
 (5)

Exemplo. cont.

Neste caso, temos:

$$w_1 = w_0 + \frac{2}{10}t_0\sin(w_0) = w_0 = 0.5$$

$$w_2 = w_1 + \frac{2}{10}t_1\sin(w_1) = 0.5 + \frac{2}{10} \times 0.2 \times \sin(0.5) \sim 0.519177$$

$$w_3 = w_2 + \frac{2}{10}t_2\sin(w_2) \sim 0.55887, \quad etc...$$

Valores aproximados de y determinados pelo **Método de Euler progressivo:** •: h = 2/10, •: h = 2/20. —: solução exacta do problema de valor inicial, y(t).

Exemplo. cont.

	h = 0.2		h = 0.1	
i	w_i	$ y(t_i)-w_i $	w_{2i}	$ y(t_{2i})-w_{2i} $
0	0.5	0	0.5	0
1	0.5	0.2656×10^{-2}	0.504794	0.2138×10^{-2}
2	0.519177	0.1817×10^{-2}	0.529229	0.8235×10^{-2}
3	0.55887	0.1057×10^{-1}	0.575533	0.6092×10^{-2}
4	0.622498	0.3749×10^{-1}	0.648187	0.1180×10^{-1}
5	0.715788	0.8538×10^{-1}	0.754224	0.4694×10^{-1}
6	0.847031	0.1502×10^{0}	0.903324	0.9389×10^{-1}
7	1.02687	0.2206×10^{0}	1.10679	0.1407×10^{0}
8	1.26646	0.2798×10^{0}	1.37346	0.1728×10^{0}
9	1.57175	0.3111×10^{0}	1.70022	0.1826×10^{0}
10	1.93175	0.3098×10^{0}	2.05978	0.1818×10^{0}

Valores aproximados do problema de valor inicial (4), obtidos pelo método de Euler $com\ h=0.2\ e\ h=0.1.$

Método de Taylor de ordem n

Considere-se o problema de valor inicial

$$\begin{cases} y'(t) = f(t, y(t)), & t \in [a, b] \quad (a < b) \\ y(a) = \alpha \end{cases}$$

e a malha uniforme $a = t_0 < t_1 < \dots < t_N = b \ (h = (b-a)/N)$ do intervalo [a, b].

Suponhamos que $y \in C^{n+1}([a, b])$.

Usando o desenvolvimento de Taylor em torno do ponto t_i temos:

$$y(t_{i+1}) = y(t_i) + (t_{i+1} - t_i)y'(t_i) + \frac{(t_{i+1} - t_i)^2}{2}y''(t_i) + \dots + \frac{(t_{i+1} - t_i)^n}{n!}y^{(n)}(t_i) +$$

$$+ \frac{(t_{i+1} - t_i)^{n+1}}{(n+1)!}y^{(n+1)}(\xi_i) \quad \xi_i \in]t_i, t_{i+1}[$$

$$= y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2}f'(t_i, y(t_i)) + \dots + \frac{h^n}{n!}f^{(n-1)}(t_i, y(t_i)) +$$

$$+ \underbrace{\frac{h^{n+1}}{(n+1)!}f^{(n)}(\xi_i, y(\xi_i))}_{R_i}.$$

Assim, desprezando o termo R_i obtém-se

$$y(t_{i+1}) \sim y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2}f'(t_i, y(t_i)) + \dots + \frac{h^n}{n!}f^{(n-1)}(t_i, y(t_i)), \quad i = 0, 1, \dots, N-1.$$
(6)

O método resultante desta aproximação designa-se por **método de** Taylor de ordem n e é dado por:

$$\begin{cases} w_0 = \alpha \\ w_{i+1} = w_i + h f(t_i, w_i) + \frac{h^2}{2} f'(t_i, w_i) + \ldots + \frac{h^n}{n!} f^{(n-1)}(t_i, w_i), & i = 0, 1, ..., N - 1. \end{cases}$$

Método de Taylor de ordem n

- ▶ O método de Euler progressivo é um caso particular dos métodos de Taylor de ordem n, é o método de Taylor de ordem 1.
- \triangleright Os métodos de Taylor de ordem n são métodos de passos simples e explícitos.

Consideremos novamente o problema de valor inicial (4). O método de Taylor de ordem 2 para este problema é dado por

$$\begin{cases} w_0 = 0.5 \\ w_{i+1} = w_i + h f(t_i, w_i) + \frac{h^2}{2} f'(t_i, w_i), & i = 0, 1, ..., 9. \end{cases}$$
 (8)

No caso do problema (4) a função f é definida por $f(t,y)=t\sin(y(t)),$ pelo que

$$f'(t, y(t)) = \frac{\partial}{\partial t} f(t, y) + \frac{\partial}{\partial y} f(t, y) y'(t) = \sin(y(t)) + t \cos(y) \underbrace{t \sin(y(t))}_{y'(t)}$$
$$= \sin(y(t)) \left(1 + t^2 \cos(y(t))\right).$$

Assim, o método de Taylor de ordem 2 para o problema (4) é dado por:

$$\begin{cases} w_0 = 0.5 \\ w_{i+1} = w_i + ht_i \sin(w_i) + \frac{h^2}{2} \sin(w_i) \left(1 + t_i^2 \cos(w_i)\right), \ i = 0, 1, ..., N - 1. \end{cases}$$
(9)

Exemplo. cont.

i	w_i	$ y(t_i) - w_i $
0	0.5	0
1	0.53835	0.1736×10^{-1}
2	0.66704	0.7052×10^{-2}
3	0.93939	0.5782×10^{-1}
4	1.4463	0.9998×10^{-1}
5	2.1860	0.5561×10^{-1}

Valores aproximados do problema (4), obtidos pelo método de Taylor de ordem 2 com h = 0.4.

•: Valores aproximados de y determinados pelo Método de Taylor de ordem 2 com h = 0.4, -:solução exacta do problema, y(t).

Métodos de Runge-Kutta de ordem 2

Nos *métodos de Runge-Kutta de ordem 2* as fórmulas têm a forma geral

$$w_{i+1} = w_i + h \left[c_1 f(t_i, w_i) + c_2 f(t_i + \alpha h, w_i + \beta h f(t_i, w_i)) \right], \quad i = 0, 1, ..., N$$

ou seja a função Φ que define estes métodos é dada por

$$\Phi(t,w) = c_1 f(t,w) + c_2 f(t+\alpha h, w + \beta h f(t,w)).$$

As constantes c_1 , c_2 , α e β são escolhidas de modo a que o *erro de truncatura local* seja proporcional a h^2 (tal como acontece no método de Taylor de ordem 2).

Tal condição implica

$$c_1 = 1 - c_2, \ \alpha = \beta = \frac{1}{2c_2}, \quad c_2 \in \mathbb{R} \setminus \{0\}.$$

Métodos de Runge-Kutta de ordem 2

Considerando $c_2 = \frac{1}{2}$ obtém-se o *Método de Heun*:

$$\begin{cases} w_0 = \alpha \\ w_{i+1} = w_i + \frac{h}{2} \left[f(t_i, w_i) + f(t_i + h, w_i + hf(t_i, w_i)) \right], & i = 0, 1, ..., N - 1. \end{cases}$$

▶ Considerando $c_2 = 1$ obtém-se o Método de Euler-Cauchy:

$$\left\{ \begin{array}{l} w_0 = \alpha \\ w_{i+1} = w_i + hf(t_i + \frac{1}{2}h, w_i + \frac{1}{2}hf(t_i, w_i)), \quad i = 0, 1, ..., N-1. \end{array} \right.$$

Consideremos novamente problema de valor inicial (4).

- ▲ Malha uniforme: $t_i = 0 + i\frac{2}{5}$, i = 0, 1, ..., 5.
- O método de Euler-Cauchy para este problema é dado por

$$\begin{cases} w_0 = 0.5 \\ w_{i+1} = w_i + \left(t_i + \frac{1}{2}h\right) \sin\left(w_i + \frac{h}{2}t_i \sin(w_i)\right), & i = 0, 1, ..., 9. \end{cases}$$

Exemplo. cont.

i	w_i	$ y(t_i)-w_i $
0	0.5	0
1	0.53835	0.1736×10^{-1}
2	0.66975	0.9763×10^{-2}
3	0.94794	0.4927×10^{-1}
4	1.4575	0.8884×10^{-1}
5	2.1624	0.7916×10^{-1}

Valores aproximados do problema (4), obtidos pelo Método de Euler-Cauchy com h = 0.4.

•: Valores aproximados de y determinados pelo **Método de Euler-Cauchy** com h = 2/5, -:solução exacta do problema, y(t).