레이와 구체의 충돌 여부를 판단하는 수식 유도

1 레이와 구체의 충돌 여부 판단

레이와 구체의 충돌 여부를 판단하는 판별식(discriminant)을 유도하기 위해서는 먼저 레이와 구체의 수학적 표현을 이해하고, 이를 결합하여 충돌 조건을 도출해야 합니다.

1.1 레이의 수학적 표현

레이(Ray)는 3D 공간에서 하나의 시작점(원점)과 방향으로 정의됩니다. 레이는 다음과 같이 표현할 수 있습니다:

$$\mathbf{P}(t) = \mathbf{O} + t \cdot \mathbf{D}$$

여기서,

- P(t)는 레이 상의 한 점을 나타냅니다.
- O는 레이의 시작점(원점, origin)입니다.
- D는 레이의 방향 벡터(direction)입니다.
- t는 매개변수로, 레이의 시작점에서부터 얼마나 멀리 떨어져 있는지를 나타냅니다. t는 음수일 수도 있고, 양수일 수도 있습니다.

1.2 구체의 수학적 표현

구체(Sphere)는 중심점 \mathbb{C} 과 반지름 r으로 정의됩니다. 구체는 다음 방정식으로 나타낼 수 있습니다:

$$(\mathbf{P} - \mathbf{C}) \cdot (\mathbf{P} - \mathbf{C}) = r^2$$

여기서,

- P는 구체 표면 위의 한 점입니다.
- C는 구체의 중심점(center)입니다.
- *r*는 구체의 반지름(radius)입니다.
- ·은 벡터의 내적(dot product)을 의미합니다.

1.3 레이-구체 충돌 문제

레이와 구체가 만난다는 것은 레이의 어떤 점 $\mathbf{P}(t)$ 가 구체의 표면 위에 있다는 것을 의미합니다. 따라서, $\mathbf{P}(t)$ 를 구체의 방정식에 대입하여 충돌 여부를 판별할 수 있습니다.

레이의 표현 $P(t) = O + t \cdot D$ 를 구체의 방정식에 대입하면:

$$(\mathbf{O} + t \cdot \mathbf{D} - \mathbf{C}) \cdot (\mathbf{O} + t \cdot \mathbf{D} - \mathbf{C}) = r^2$$

이를 전개하면:

$$(\mathbf{O} - \mathbf{C}) \cdot (\mathbf{O} - \mathbf{C}) + 2t \cdot (\mathbf{D} \cdot (\mathbf{O} - \mathbf{C})) + t^2 \cdot (\mathbf{D} \cdot \mathbf{D}) = r^2$$

이 방정식은 t에 대한 2차 방정식입니다. 표준적인 2차 방정식의 형태로 정리하면:

$$t^{2} \cdot (\mathbf{D} \cdot \mathbf{D}) + 2t \cdot (\mathbf{D} \cdot (\mathbf{O} - \mathbf{C})) + ((\mathbf{O} - \mathbf{C}) \cdot (\mathbf{O} - \mathbf{C}) - r^{2}) = 0$$

이를 t에 대한 일반적인 2차 방정식의 형태로 나타내면:

$$at^2 + bt + c = 0$$

여기서,

- $a = \mathbf{D} \cdot \mathbf{D}$: 레이 방향 벡터 \mathbf{D} 의 자기 내적, 즉 방향 벡터의 크기의 제곱입니다. 일반적으로 방향 벡터는 정규화되어 있으므로 a = 1이 됩니다.
- b = 2 · (D · (O − C)): 레이의 방향 벡터와 구체 중심에서 레이의 시작점으로 향하는 벡터 간의 내적에 2를 곱한 값입니다.
- $c = (\mathbf{O} \mathbf{C}) \cdot (\mathbf{O} \mathbf{C}) r^2$: 레이 시작점에서 구체 중심까지의 거리의 제곱에서 구체의 반지름의 제곱을 뺀 값입니다.

1.4 판별식(Discriminant)의 유도

2차 방정식의 해는 다음과 같은 판별식으로 구할 수 있습니다:

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

여기서 중요한 부분은 루트 안의 표현인 $b^2 - 4ac$ 입니다. 이것을 **판별식** (discriminant)이라고 합니다.

- 판별식 > 0: 레이와 구체가 두 점에서 만난다는 의미입니다. 레이가 구체를 통과합니다.
- 판별식 = 0: 레이와 구체가 한 점에서 만난다는 의미입니다. 레이가 구체에 접합니다.
- **판별식** < 0: 레이와 구체가 만나지 않는다는 의미입니다. 레이는 구체를 비켜갑니다.

따라서, 함수에서는 판별식 $b^2 - 4ac$ 의 값이 0보다 큰지를 검사하여 레이와 구체의 충돌 여부를 판단합니다:

float discriminant = b * b - 4.0 * a * c;
return discriminant > 0;

2 요약

레이-구체 충돌 문제는 레이와 구체의 수학적 방정식을 결합하여 2차 방정식의 형태로 나타냅니다. 이 2차 방정식의 해의 존재 여부를 판별식(discriminant)을 통해 판단하며, 이 값이 양수이면 레이와 구체가 교차하고, 음수이면 교차하지 않는다는 결론을 내립니다.