LECTURE PLAN

Principles of Communication Engineering. (ECL2150) (3-1-0)

Faculty: Shashi Bhushan Kotwal

Week	Topics			
Week 1, (17-21 Jul)				
	Introduction about signals& communication systems			
Week 2, (24-28 Jul)	Frequency Domain Analysis of Signals and Systems: Fourier transform, Properties of Fourier transform, Dirac delta function,			
Week 3, (31 Jul-04 Aug)	Fourier transform of periodic signals, brief idea about spectral density & its uses.			
Week 4, (07 Aug-11 Aug)	Analog communication systems: Introduction to modulation, amplitude modulation, DSB-SC, SSB, VSB,			
Week 5, (14 Aug-18 Aug)	Implementation of AM modulators & demodulators, signal multiplexing,			
Week 6, (21 Aug-26 Aug)	Angle modulation- phase & frequency modulation, implementation of angle modulators & demodulators,			
Week7, (28 Aug-01 Sep)				
<i>Зер)</i>	Noise on analog communication systems- introduction of noise,			
Sep 03-06	Minor I			
Week 8, (11-15 Sep)	Random processes, Gaussian & white processes, effect of noise on various communication systems,			
Week 9, (18 -22 Sep)	Sampling theorem, PAM, Quantization, Quantization error,			
Week 10, (25-28 Sep)	Digital communication systems: PCM, DPCM, DM, Adaptive DM,			
Week 11, (02-06 Oct)	Effect of noise, introduction to multiple access techniques			
Oct 10- 13	Minor II			
Week 12, (16 - 20 Oct)	Information theory and coding: Discrete messages, concept of information, entropy, information rate, mutual information,			
Week 13, (23-27 Oct)	Shannon's theorem, channel capacity, capacity of Gaussian channel, B/W and S/N trade off,			
Week 14, (30 Oct-03				
Nov) Week 15, (06 - 07	Introductory ideas of different types of coding, parity check coding, Block code, convolution coding.			
Nov)	Block code, convolution coding.			
Week 16, (08-15)	Revision Week			
Nov 17-26	Major Exams			

Text Books

- George Kennedy: Electronic Communication Systems, 5th Edition , McGraw Hill
- <u>Simon Haykin</u> & <u>Michael Moher</u>: An Introduction to Analog and Digital Communications, 2nd Edition, John Willey & Sons

Reference Books:

- Communication Systems Engineering, Proakis & Salehi, Pearson Education
- Principles of Communication Systems, Taub Schilling Tata McGraw Hill
- Modern Digital and Analog Communication Systems, 3rd Edition, Oxford University Press.

COURSE OBJECTIVES:

- 1. To familiarize students with the fundamentals and Evolution of Electronic Communication systems
- To familiarize students with various techniques for generation of modulation and demodulation of Analog and Digital signals
- 3. To develop the students' ability to determine the effects of noise and Bandwidth on Communication systems
- 4. To develop the understanding of Information from Quantitative perspective and understand the various information coding techniques

COURSE OUTCOMES:

On Completion of the course the student will be able to:

- 1. Understand and identify the fundamental concept and various components of analog and digital communication systems.
- 2. Apply mathematical techniques used in communication system for its implementation.
- 3. Explain the signal to noise ratio, noise figure and errors associated in communication systems.
- 4. To Compare and contrast the strengths and weakness of various communication systems.
- 5. To explain the need for information coding and compare them.

Principles of Communication Engineering Lab. (ECP2150) 0 - 0 - 2 = 1

- 1. To Study Signal Synthesis using Fourier Series
- 2. To study and calculate the modulation index of AM wave
- 3. To study the demodulation of AM wave and find out modulation frequency
- 4. To Study modulation and detection of single side band AM.
- 5. Study of various AM receivers
- 6. To study and observe frequency modulation
- 7. To study the sample and hold process.
- 8. To study PAM and its demodulation
- 9. To study PCM, DPCM and Delta Modulation and demodulation
- 10. Noise power spectral density measurement