- 1. Let Ω = {1,2,...,6}. Provide 3 distinct σ-fields on Ω.
- 2. Let F, and F2 be two offields on D. Then, prove or disprove:
 - a. F, UFz is a offield on I.
 - b. F, n F2 is a o-field on R.
- 3. Let B denote the σ -field (on R) generated by a collection $\{(-\infty, \kappa] : \kappa \in \mathcal{B}_{\delta}\}$. Show that following type of sets belong to B:

 (a) $(-\infty, \kappa)$ (b) $(\kappa, +\infty)$ (c) $[\kappa, +\infty)$ (d) $[\kappa, \kappa_2]$ (e) (κ_1, κ_2) (f) $[\kappa_1, \kappa_2)$ (e) $(\kappa_1, \kappa_2]$.
 - 4. Let $\{x_n\}_{n\geq 1}$ be a sequence of real numbers. Define, $y_n = \inf_{k\geq n} x_k \ d \ \exists_n = \sup_{k\geq n} x_k$.
 - a. Prove that flynfnz, and f3ngnz, converge or diverge, but never oscillate. Hence, lim y and lim z is well define.
 - b. Show that 3 xngmz, converges to se if and only if x= lim yn = lim gn.

lim zn is called lim inf zn and lim zn is called lim sup zn.

5. For a sequence of sets $\{An\S_{n\geq 1}, define\}$ $\lim\sup_{n \neq \infty} A_n = \{\omega: \limsup_{n \neq \infty} \{A_n(\omega) = 1\} \}$ $\lim\inf_{n \neq \infty} A_n = \{\omega: \liminf_{n \neq \infty} \{A_n(\omega) = 1\} \}.$

Show the following:

- 1. lim sup An = D U Ax (denote by A)
- 2. Lim inf $A_n = \bigcup_{n=1}^{\infty} \bigcap_{\kappa=n}^{\infty} A_{\kappa} \left(denok by \underline{A} \right)$
- 3. If Pangner EF, then AEF & A EF.
- 4. A 2 A.
- 5. show that $P(A) \leq \liminf_{n \neq \infty} P(A_n)$.
- 6. show that P(A) > lim sup P(An)
- 7. Show that if A = A, then define $\lim_{n \to \infty} A_n = A = A$ and show that $P(A) = \lim_{n \to \infty} P(A_n)$.