Estimating When to Switch Treatment for Hypotensive ICU Patients Using Longitudinal Targeted Maximum Likelihood Estimation

Andre Waschka and Romain Pirracchio

Department of Statistics, University of California, Berkeley Department of Anesthesia, University of California, San Francisco

February 23, 2023

Background

Large observational databases are routinely collected in ICU should be used to

- guide clinicians' decision-making process in real time,
- aid in developing more precise (individualized) interventions for patients,
- answer questions of comparative effectiveness of different clinical protocols.

The longitudinal structure of these observational data sets allows researchers to estimate the potential impacts of different time-dependent treatment strategies.

Motivating Question

How can data driven statistical analysis be used to gain a better understanding of the treatment for hypotensive patients, susceptible to septic shock, in intensive care units?

Current Protocol

Hour-1 Surviving Sepsis Campaign Bundle of Care recommends the following steps for patients in septic shock:

- Measure lactate level. Remeasure if initial lactate is > 2 mmol/L
- Obtain blood cultures prior to administration of antibiotics
- Administer broad spectrum antibiotics
- Begin rapid administration of 30ml/kg crystalloid to be completed within 3 hrs.
- Apply vasopressors if patient is hypotensive during or after fluid resuscitation

Research Questions

- At what time from onset of hypotension should one switch from IV fluids to vasopressors (ignoring the rate the IV fluids)?
- What is the amount of IV fluids a patient should receive before switching to vasopressors?

Treatment Regimes

Our research questions formulate the following two treatment regimes:

- Static Treatment considering time to switch from IV fluids to vasopressors
- Oynamic Treatment accounting for both the time and the amount of IV fluid to switch to vasopressors

MIMIC dataset

MIMIC is an openly available dataset developed by the MIT Lab for Computational Physiology, comprising deidentified health data associated with 40,000 critical care patients. It includes demographics, vital signs, laboratory tests, medications, and more.

Cleaned Dataset

- Data Structure after cleaning.
- Showing the first 32 patients over baseline and treatment at hour 1.

gender	1 201 1	hr2_dishauser	hr0,Weight,kg	M0,603	hrt.50fA	PreftypoVolperkg	HO,HE	hrit, System	hr0,NeanSP	NO,DUSP	h40,88	hr0,5902	hr9_Temp_C	hr0_Amerial_lactors	hrb_Arterial_EE	hr0_mechvent	HYTHILIdeporks	hr0_Fs02_Fi02	C1	hr1_vaxoflagupdate	M1,HR
1	0 48.29521		77.50000	15	11	18.054516	119.00000	\$1,00000	58,00000	49.00000	15,00000	97,00068	39.55555	5.100000	-5.00000000		14.193348390	88.00000	uncersored		0 118.0000
2	1 74.52265		109.68333			63.820068	71.00000	155,00000	99.00000	63.00000	10.00000	100.00068	36.61111	3.400000	-1.89008900		0.000000000	380.00000	uncersored		0 71.0000
8	1 23.63611		62.50000	15		85.247200	92.00000	96.00000	62,66623	46.00000	20.00000	99.00000	36.22222	2,200000	-6.00000000		0.000000000	461.99476	uncensored		0 90.0000
4	0 31.11230		65.50000			114.503817	106.00000	113.00000	99.00000	47,09000	28.00000	190,00000	17,66667	2.001961	0.80006000		1.000000000	1197.59000	unconsored	1	1 106.0000
5	0 79.65106		85,00000	12		102.941176	69.77778	131.00000	79,77778	53.00000	19.44444	95,00000	36.83333	2.306000	0.00000000		1.058241176	262.22222	unconsored		0 65.000
6	0 71.31736		73,40000	15	2	89.000630	108.00000	85,00000	89,66647	50.00000	23.66667	95,66667	36.11111	3.091852	0.00000000		0.040873935	292.59000	uncersored		0 102.000
2	0 74.31739		104.70000	3	12	42,979943	81.00000	168.00000	\$7,00000	60.00000	13.00000	99,00068	37.16667	2,400000	1.89008900		1.000000000	399.00000	uncersored		0 81.000
	0 27.17326		120,00000	15		136.526188	109.00000	94.75000	72.75000	58.75000	16.00000	100.00000	36.72222		-5.80000000		18.592188060	354.59000	uncensored		0 112.333
9	1 79.45297		49,00000		12	123.571429	103.00090	133.00000	85.00000	43,00000	12.00000	84,00000	36.33333	5.806000	-9.00000000		1.000000000	462.60000	unconsored		0 103.000
0	1 45.75223		66,60000	13	7	135.065120	110.00000	111.00000	79.00000	63,00000	22,00000	95,00000	37.88889	7.323637	9.32291667		1.799760761	192.65625	uncersored		0 111.000
1	0 87.75353		74,70000	15		66.934464	79.00000	116.00000	64,00000	38.00000	14.00000	97,00066	36.38889	4.000000	-1.25773196		0.000000000	1209.13108	uncersored		0 79.000
2	0 57.80676		99.80000		16	\$0,100199	120.00000	110.00000	78.00000	63.80000	10.00000	99,00068	37,94445		-12.89008900		1.000000000	179.89000	uncersored		0 138.000
8	1 43.52962		99.70000	15		127.933805	100.00000	121.50000	76.50000	57.00000	22.41379	96.50000	37.11111	7.001306	2.59000900		1.504511587	423.21429	uncensored		0 98.500
	0 52.41503		78.00000	35		42.907692	72,00000	141.00000	84,00000	55.59000	22,00000	190,00000	37.81113	1.206000	5.21052632		0.000000000	518.38393	unconsored		0 61.00
5	1 79.50059		56,70000	15		25.793651	124,00000	123.00000	77,00000	54,00000	28.00000	94,00000	37.22222	2.400000	0.00000000		2.645502646	257.42025	uncersored		0 107.000
6	0 55.23663		82.50000	15		29.757576	68.00000	124.00000	\$1,00000	64.00000	16.00000	100,00066	56.22222	2.200000	2.00000000		0.000000000	345.00000	uncersored		0 68.00
,	1 69.14366		72.10000	15		6.924613	75.00000	185.00000	70.00060	\$2,50000	14.00000	98,00068	35.94444	2.500000	0.00000000		0.000000000	68.47361	uncensored		0 75.000
k .	0 32.97106		79.66000			6.281407	86.00000	190.00000	73.00000	\$7.00000	18.00000	100.00068	36.22222	3.706900	-2.89008900		0.000000000	1212.49996	unconsored		0 91.00
9	1 77.04335		61.30000	35	15	5.152257	88.80000	111.60000	64,20000	49,59000	23.20000	94,40000	37,27778	2.100000	-4.00000000		8.771506253	59.40000	unconsored		0 88.500
0	1 21.15799		77,10000	34	13	79.092068	89,00000	194,90000	68,66679	51,00000	19,00000	100,00000	37.72222	2.386496	0.82702703		0.000000000	108.75676	uncersored		0 88.000
1	0 79.56675	- 1	62.10000	4		18.148149	61.00000	97.00000	68,00000	58.00000	20.00000	100,00066	34.55555	2.100000	-6.00000000		2.045088617	885.24999	uncersored		0 62,000
2	1 36.77735		70,00000	13		93,609024	96.61111	\$1,00000	86.33333	17.59000	14.00000	100,00068	36.37037	3.500000	-10.80008000		0.182632619	255.80000	uncensored		0 100.500
k	0 82.92912		73.50000	22		33.061224	82.00000	182.00000	70.00060	61.00000	13.00000	94,00068	20,26689	2.200000	7.80000000		2.721088435	\$97.88000	unconsored		0 68.800
4	1 79.43806		75.20000	35		81.313833	74.80000	123.40000	78.40000	53,69000	20.80000	94,60000	37.11111	5.500000	6.00000000		1.555851127	254.00000	uncensored		0 78.660
5	0 57.65890		100.10000			33.756244	66.00000	121.00000	82,00000	62,59000	36,00000	99,00000	37.83333	2.200000	0.00000000		1.458501499	364.09000	uncersored		0 65.00
5	1 60.05117		50,70000	11		64.833788	80.00000	90.00000	63,00000	49.50000	14.00000	100,00000	36.55556	2,400000	-1.89008900		1.359739645	366.00000	uncersored		0 91.49
	0 79,79948		95,90000	15		26.120959	84.00000	125.00000	91,00000	61,89000	10.00000	100.00068	35.88889	2.054333	0.50000000		0.000000000	527.85715	uncensored		0 84.00
	0 58.21939		115.50000	3	10	41.125541	67,00000	99.00000	77,00060	61.00000	14.00000	100.00068	22,86689	2.166000	-1.80000000		8.800000000	466.80000	unconsored		0 67.25
,	0 69.63093		76.60000	13		2.154047	78.66667	109.33333	76.33333	59.83333	14.66657	97,00000	36.66667	4.333818	-2.89636964		0.000000000	154,71875	uncensored		0 80.33
,	1 78.50149		54,90000	15	13	102.914390	109,60000	194,80000	65,20000	62,89000	23.80000	90.50000	37,66867	3.000000	-1.99009900		38.894960530	56.00000	uncersored	1	1 102.00
	1 57,77862		75,00000	15	,	9.133333	49.00000	115.00000	76,00000	55.50000	14.00000	94,00000	36,72222	2.418526	-0.62500000		0.000000000	188.59756	uncersored		0 51.00
2	1 59,36925		102,10000	15		25.513225	57,00000	111,00000	94,00000	49,50000	14,00000	100,00068	16.11111	2.953613	1.38463539		1.486325187	186,98598	uncensored		0 75.00

Summary of Data at Baseline

Covariate	Summary
# of Patients	933
% Mortality	11.46%
Avg Age	60.97
Avg SOFA	7.451
Avg Pre-Study Volperkg	62.63
Avg Weight (kg)	84.32
Arterial Lactate	3.347
Mechanical Ventilation	52.84%
Avg GCS	11.22
Avg HR	89.59
Avg SysBP	113.4
Avg DiaBP	52.37

Causal Model and LTMLE

Our analysis with be based on the causal inference model and the LTMLE model.

- The Causal Model will be used to "translate" the problem that we outlined into a statistical problem.
- We will then have a targeted statistical parameter, the estimand, that the *LTMLE* model will estimate.
- The LTMLE incorporates and relies on the Super Learner which is a powerful machine learning cross-validation-based estimator selection approach.

Structural Causal Model

The Structural Causal Model (SCM) reflecting our belief about the time-ordering and relationships between the treatment, covariates, and outcome of interest was:

$$L_0 = f_{L_0}(U_{L_0})$$
 $A_1 = f_{A_1}(L_0, U_{A_1})$ \vdots $A_{C} = f_{A_1}(L_0, A_1, L_1, A_2, L_2, A_3, L_3, A_4)$

$$Y = f_Y(L_0, A_1, L_1, A_2, L_2, A_3, L_3, A_4, L_4, A_5, L_5, A_6, U_Y)$$

where $U_t=(U_Y,U_{L_t} \text{ and } U_{A_t})$, $\mathbf{t}=\mathbf{0},...,\mathbf{6}$ are unmeasured exogenous random variables from some underlying probability distribution P_U . This causal model specifies how each of the variables in the data are generated, with randomness arising only from from the exogenous variables U.

Causal Diagram

Longitudinal Observed Data

- Discrete time scale: Starting with the hour before hypotension and continuing for the first 6 hours of hypotension.
 - t = 0, ..., 6
- Covariates L_t :
 - Baseline: gender, age, elixhauser, patient weight in kg, GCS, SOFA, Fluids administered prior to time 0 (Vol per kg)
 - Time-varying: HR, SysBP, MeanBP, DiaBP, RR, SpO2, Temp C, Arterial lactate, Arterial BE, mechvent, Fluids administered (Vol per kg), PaO2 FiO2
- Outcome Y: Indicator of Mortality in hospital

Longitudinal Observed Data

- Treatment E_t : Indicator of receiving vasopressors at time t. Once a patient goes on treatment, they remain on treatment for the remainder of the observed study.
- **Right Censoring** C_t : Indicator patient wasn't followed during time t and on.
- "Intervention" Nodes: $A_t = (E_t, C_t)$
 - $\bar{A}_t = A_1, ..., A_t$
 - Censoring treated as an additional "Intervention" node: evaluate effect of vasopressors in the absence of censoring

Observed Data and Statistical Model

Our observed data structure on a randomly sampled subject :

$$O = (L_0, A_1, L_1, A_2, L_2, A_3, L_3, A_4, L_4, A_5, L_5, A_6, Y = L_6)$$
$$= (\bar{L}_6, \bar{A}_6) \sim P_0$$

where P_0 is the true underlying distribution from which the data are drawn.

- The ordering of the elements of O represents their assumed causal ordering.
- Statistical Model \mathcal{M} : $P_0 \in \mathcal{M}$
 - Model should reflect real knowledge: large enough to contain the true ${\cal P}_0$
 - In practice this generally implies a semi-parametric or non-parametric statistical model.

Returning to Research Questions

- At what time should we switch from IV fluids to vasopressors?
- What is the amount of IV fluids a patient should receive before switching to vasopressors?

Time to Switch Results

Our statistical parameter (estimand):

$$E[Y_{\bar{a}}] = E[...[E(Y|\bar{A}_6 = \bar{a}_6, \bar{L}_5)|\bar{A}_5 = \bar{a}_5, \bar{L}_4)|...|L_0]$$

- Our results show the 7 different estimates we obtained from each of the possible static treatment regimes we defined.
 (ex: Always treat, Treat starting at hour 2, Never Treat)
- From these results we can see that there is a significant
 difference in mortality rate between patients treated with
 vasopressors within the first three hours and patients who were
 treated after the first three hours.
- The final observation primarily shows patients who were never treated and as a result they also have a low mortality rate.

Time to Switch Results

Mortality Rate amongst ICU patients by when treatment was started

18/27

Research Question 2

- At what time should we switch from IV fluids to vasopressors?
- What is the amount of IV fluids a patient should receive before switching to vasopressors?

Results for Dynamic Treatment Regimes

- Let V, be Fluids administered (vol/kg) from the covariates L,
- For dynamic regimes, we define $d_{t,\theta}$ as a function that incorporates fluid administered to a subject up to time t-1

$$d_{t,\theta}(V_t,A_{t-1}) = I(A_{t-1}=1) + I(A_{t-1}=0)I(V_t>\theta)$$
 > for θ = (5,10,15,20,25,35,40,45,50)

Our statistical parameter (estimand):

$$\begin{split} \Psi_{d_{\theta}}(P_{0}) &= E[E[...[E(E(Y|\bar{A}_{6} = d_{\theta}(\bar{V}_{6}),\bar{L}_{5})|\\ &\bar{A}_{5} = d_{\theta}(\bar{V}_{5}),\bar{L}_{4})|...]|L_{0}]\\ &-[E[...[E(E(Y|\bar{A}_{6} = d_{30}(\bar{V}_{6}),\bar{L}_{5})|\\ &\bar{A}_{5} = d_{30}(\bar{V}_{5}),\bar{L}_{4})|...]|L_{0}]] \end{split}$$

 These results show us the difference in mortality rates between each 0 and the currently recommended 30ml/kg threshold before switching to vasopressors. We can see that its beneficial for patients to be switched to vasopressors from fluids after a much smaller, amount than the guidelines recommend.

Results for Dynamic Treatment Regimes

Current Work

- Unmeasured Confounding:
 - Unmeasured Confounding is a potential source of concern for our results
 - Unmeasured Confounding is untestable
- Simulations
 - Generate the data
 - Generate potential confounders
 - Estimate their effect

Simulation

3 main simulation types

- Simple Simulation:
 - Uses no information from the data
 - Used to see how a method may work on a generic dataset
- Advanced Simulation:
 - Uses some information about data (variable names, means, etc)
 - Makes strong (and incorrect) assumptions about data distribution
 - Builds a dataset that roughly approximates the true data for a specific problem
- Nonparametric Simulation:
 - Uses the current dataset to build a simulated dataset
 - Assumptions are justifiable
 - Uses machine learning to estimate the probability of landing in a specific "bin"
 - Covariate value is randomly generated according to the estimated nonparametric probability distribution

Potential Issues and Limitations, Future Developments

- Issues and Limitations:
 - Data transformation loses information
 - Restricted target population
 - Positivity
- Future developments:
 - Moving to a interval based definition of treatments
 - Understanding positivity issues for extreme treatments and critically assessing the causal assumptions
 - Moving to Optimal Dynamic Treatments to be able to identify which of our better rules is the best.

References

Bang H, and Robins JM. Doubly-robust estimation in missing data and causal inference models. Biometrics, 61:962 - 972, 2005.

Decker AL, Hubbard A, Crespi CM, et al. Semiparametric estimation of the impacts of longitudinal interventions on adolescent obesity using targeted maximum-likelihood: accessible estimation with the Itmle package. J Causal Inference. 2014; 2(1):95-108

Pearl J. Causal diagrams for empirical research. Biometrika, 82(4): 669-688, 1995.

Petersen ML, van der Laan MJ. Causal models and learning from data: integrating causal modeling and statistical estimation. Epidemiology. 2014;25(3):418-426.

Robins JM. The control of confounding by intermediate variables. Statistics in medicine, 8(6):679-701, 1989.

Robins JM. A new approach to causal inference in mortality studies with sustained exposure periods - application to control of the healthy worker survivor effect. Mathematical Modelling, 7:1393 - 1512, 1986.

van der Laan MJ, and Gruber S. Targeted Minimum Loss Based Estimation of Causal Effects of Multiple Time Point Interventions. The International Journal of Biostatistics, 8(1), Jan. 2012. ISSN 1557-4679. doi: 10.1515/1557-4679.1370.

References

van der Laan MJ, Rubin D. Targeted maximum likelihood learning. Int J Biostat. 2006;2(1):1-38.

van der Laan MJ, Rose S. Targeted Learning: Causal Inference for Observational and Experimental Data. New York, NY: Springer-Verlag; 2011.

van der Laan MJ, Rose S. Targeted Learning: Causal Inference for Complex Longitudinal Studies a. New York, NY: Springer-Verlag; 2018.

Thank you!