Ch 9.2: Support Vector Classifier Lecture 19 - CMSE 381

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Wed, 4/3, 2024

Announcements

Last time:

• 9.1 Maximal Margin Classifier

This lecture:

• 9.2 Support Vector Classifier

Announcements:

(MSU-CMSE) Wed, 4/3, 2024 2 / 23

Section 1

Last time

MSU-CMSE) Wed, 4/3, 2024

Separating Hyperplane

Require that for every data point:

$$eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_p x_{ip} > 0 \text{ if } y_i = 1$$

 $eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_p x_{ip} < 0 \text{ if } y_i = -1$

Equivalently

Require that for every data point

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip}) > 0$$

Separating hyperplane becomes a classifier

If you have a separating hyperplane:

Check

$$f(x^*) = \beta_0 + \beta_1 x_1^* + \beta_2 x_2^* + \dots + \beta_p x_p^*$$

- If positive, assign $\hat{y} = 1$
- If negative, assign $\hat{y} = -1$

5/23

MSU-CMSE) Wed, 4/3, 2024

Maximal margin classifier

- For a hyperplane, the *margin* is the smallest distance from any data point to the hyperplane.
- Observations that are closest are called support vectors.
- The maximal margin hyperplane is the hyperplane with the largest margin
- The classifier built from this hyperplane is the *maximal margin classifier*.

(MSU-CMSE) Wed, 4/3, 2024 6/23

Mathematical Formulation

$$\underset{\beta_0,\beta_1,...,\beta_p,M}{\operatorname{maximize}} M$$

subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1$$
,

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M \ \forall \ i = 1, \dots, n$$

- Unit normal requirement, we can always write a given hyperplane this way.
- Last eq forces points to be on the correct side of the hyperplane in order for M > 0
- The product is the distance from the point to the hyperplane

7 / 23

 Making M as big as possible is the maximal margin hyperplane

(MSU-CMSE) Wed, 4/3, 2024

Support vectors

Support vectors are those training data that either fall inside or on the boundary of the margin.

- Sketch the maximal margin hyperplane.
- What is the equation of this line in the form $\beta_0 + \beta_1 X_1 + \beta_2 X_2 = 0$?
- Circle the support vectors. What is their distance from the line?
- Which side of the line has $\beta_0 + \beta_1 X_1 + \beta_2 X_2 > 0$

desmos.com/calculator/lgms253gfg

Wed. 4/3, 2024

Example: Find support vectors

Suppose the MMC of a dataset

- **1** is defined by the line $2\sqrt{2} \frac{\sqrt{2}}{2}X_1 \frac{\sqrt{2}}{2}X_2 = 0$
- ② with the maximal margin equal to $\frac{\sqrt{2}}{2}$.

Which of the following training data are support vectors?

(0,3), (3,2), (4,2)

desmos.com/calculator/lqms253gfq

(MSU-CMSE) Wed, 4/3, 2024

Problems

Might be no separating hyperplane

Sensitivity to new points

10 / 23

(MSU-CMSE) Wed, 4/3, 2024

Section 2

Support Vector Classifier

MSU-CMSE) Wed, 4/3, 2024

Basic idea

- Be ok with having a classifier that isn't quite perfect
- Aim for greater robustness to individual observations
- Better classification of most of the training observations
- Result is a support vector classifier
- Soft margin classifier

(MSU-CMSE) Wed, 4/3, 2024 12 / 23

Soft margin

Some points on wrong side of margin

Some points on wrong side of hyperplane (Misclassified)

13 / 23

SU-CMSE) Wed, 4/3, 2024

Mathematical Formulation of SVC

- *C* is nonnegative tuning parameter
- *M* is the width of the margin
- $\varepsilon_1, \dots, \varepsilon_n$ are slack variables allowing observations to go to the other side

(MSU-CMSE) Wed, 4/3, 2024 14/23

Find positive ε 's that will satisfy this

Suppose I know
$$M=\sqrt{2}$$
 $y_i(-rac{4}{\sqrt{2}}+rac{1}{\sqrt{2}}X_1+rac{1}{\sqrt{2}}X_1)\geq M(1-arepsilon_i)$

- *M* is distance from center hyperplane to noted margin.
- A is on the correct side of the hyperplane.
 - ▶ Left side is already bigger than M, so set $\varepsilon_i = 0$.
- *C* is on the wrong side of the hyperplane for its label.
 - Left side of the equation is negative. What ε satisfies this?
 - $-\frac{\sqrt{2}}{2} = \sqrt{2}(1-\varepsilon)$
 - $\epsilon = 3/2$

(MSU-CMSE)

What is ε ?

Fix
$$M = \sqrt{2}$$
 $y_i(-\frac{4}{\sqrt{2}} + \frac{1}{\sqrt{2}}X_1 + \frac{1}{\sqrt{2}}X_1) \ge M(1 - \varepsilon_i)$

Fill in the table so that the inequality is satisfied.

Point	Left Side	ε_i	$M(1-arepsilon_i)$
A	$2\sqrt{2}$	0	$\sqrt{2}$
В			
С			
X			
Y			
Z			
'	'	•	'

16 / 23

MSU-CMSE) Wed, 4/3, 2024

What is ε ?

- If $\varepsilon_i = 0$, then on correct side of margin
- If $\varepsilon_i > 0$ then on the wrong side of margin (Violated margin)
- If $\varepsilon_i > 1$ then on the wrong side of hyperplane

17 / 23

MSU-CMSE) Wed, 4/3, 2024

What is C?

$$\max_{\beta_0,\beta_1,\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M} M$$
subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1,$$

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i),$$

$$\epsilon_i \ge 0, \quad \sum_{i=1}^n \epsilon_i \le C,$$

- Bounds sum of ε_i , so controls number & severity of violating margin (budget)
- C = 0 means no violations allowed
- C > 0 means at most C observations can be on wrong side of hyperplane
- In previous example, our total of ε was 4, so would be a valid hyperplane for C at most 4.

(MSU-CMSF)

Wed, 4/3, 2024

Examples messing with C

• For increasing *C*, we have more flexibility, so more points allowed violate margin/hyperplane

•

(MSU-CMSE) Wed, 4/3, 2024

What affects the hyperplane?

- Only observations on the margin or violating the margin affect the hyperplane
- These observations are called support vectors
- Changing other points positions doesn't affect hyperplane found

•

SU-CMSE) Wed, 4/3, 2024 20 / 23

SVC via inner products

$$f(x) = \beta_0 + \sum_{i=1}^n \alpha_i \langle x, x_i \rangle$$

- Via some magic, there are coefficients α_i which give the linear support vector classifier
- In this notation, the x_i 's are all the training points
- if x_i is not a support vector, then we can just set $\alpha_i = 0$.

- How to actually get it is outside the scope of this class
- To estimate the paramters $\alpha_1, \dots, \alpha_n$ and β_0 , need $\binom{n}{2} = n(n-1)/2$ inner products $\langle x_i, x_{i'} \rangle$

(MSU-CMSE) Wed, 4/3, 2024 21/23

Example

$$-2\sqrt{2}+\frac{\sqrt{2}}{2}X_1+\frac{\sqrt{2}}{2}X_2=0$$

$$-2\sqrt{2}+\frac{\sqrt{2}}{18}\langle (X_1,X_2),(0,3)\rangle+\frac{\sqrt{2}}{6}\langle (X_1,X_2),(3,2)\rangle=0$$

•
$$f(1,1) = -2\sqrt{2} + \frac{\sqrt{2}}{18}\langle (1,1), (0,3)\rangle + \frac{\sqrt{2}}{6}\langle (1,1), (3,2)\rangle$$

22 / 23

$$\bullet = -2\sqrt{2} + \frac{\sqrt{2}}{18} \cdot 3 + \frac{\sqrt{2}}{6} \cdot 5$$

MSU-CMSE) Wed, 4/3, 2024

Summary

Maximal Margin Classifier

$$\max_{\beta_0,\beta_1,\ldots,\beta_p,M} M$$

subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1$$
,

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M \ \forall i = 1, \dots, n$$

Support Vector Classifier

$$\max_{\beta_0,\beta_1,\ldots,\beta_n,\epsilon_1,\ldots,\epsilon_n,M} M$$

subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1$$
,

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i),$$

$$\epsilon_i \ge 0, \quad \sum_{i=1}^n \epsilon_i \le C,$$

