NLP Assignment I: SVM-based Sentiment Classification - Bag of Words

Theodora I. Zamfirache, Newnham College, tiz20@cam.ac.uk November 2018

I. INTRODUCTION

The task of classifying documents by overall sentiment, e.g. determining whether a movie review is positive or negative, can be performed using bag-of-features techniques and a suite of machine learning classifiers, such as Naive Bayes and Support Vector Machines. The present work aims to replicate some of the findings of Pang et al[1], one of the most prominent papers in the domain.

II. DATASET

The dataset that was used in the experiment consisted of 2000 movie reviews from IMDB, split equally into 1000 positive reviews and 1000 negative reviews, annotated with groundtruth¹. Reviews are tokenised, and later each token is stemmed using NLTK's version of Porter Stemmer[2]. Pang et al uses a similar dataset, although no stemming is applied.

III. METHODOLOGY

Two machine learning methods were used: Naive Bayes and SVMs. The chosen framework was that of bag-of-features, where the features $\{f_1, ..., f_n\}$ are unigrams, bigrams or a combination of the two. Each document is represented as a vector of size n, where the i^{th} entry represents either the occurrence frequency or simply the presence of feature f_i in the document.

Feature cutoffs were applied to the models that used frequency, with unigrams being limited to those appearing more than 3 times in the data, and bigrams more than 7 times. These values were chosen so as to maintain a reasonable amount of data while also reducing the computation time - no accuracy testing was performed, so as not to risk overfitting.

Data was split into 10 equal-sized folds, with balanced class distribution in each fold. Round-Robin cross-validation was used in calculating the accuracy of each model, where 9 of the folds where used for training and 1 fold for testing.

The models were implemented using the Scikit-learn library[3].

- The Naive Bayes models used MultinomialNB with Laplace smoothing.
- The **SVM** models used *svm.SVC* with a linear kernel.

IV. EVALUATION

The results of the tests are displayed in Table I.

A. Unigrams vs Bigrams vs Unigrams+Bigrams

Bigrams and Unigrams+Bigrams give higher accuracy than unigrams, indicating that bigrams help capture the context more effectively.

B. Frequency vs. presence

Pang et al found that feature presence gives better accuracy than feature frequency, and indeed, the same applies for the present work.

C. Stemming

The data tokens have been stemmed using Porter stemmer. Counterintuitively, very few tests where stemming is applied exceed the accuracy of their no-stemming counterpart.

D. Naive Bayes vs. SVM

To measure statistical significance of the results, the two-tailed sign test was used, and a value of p=0.1 was set as the threshold for rejecting the Null hypothesis. However, none of the experiments resulted in a p value below this threshold, therefore the difference in accuracy between the two systems must be due to noise.

Features	Freq or Pres	Stem	NB	SVM
unigram	freq	stem	81.60%	83.60%
unigram	freq	no	81.55%	83.78%
unigram	pres	stem	82.60%	83.25%
unigram	pres	no	82.80%	85.75%
bigram	freq	stem	83.75%	82.65%
bigram	freq	no	84.00%	81.55%
bigram	pres	stem	86.65%	83.60%
bigram	pres	no	85.85%	84.05%
unigram+bigram	freq	stem	83.75%	85.00%
unigram+bigram	freq	no	83.95%	84.90%
unigram+bigram	pres	stem	85.90%	87.60%
unigram+bigram	pres	no	85.50%	88.00%

TABLE I: Mean accuracy for each of the models

V. CONCLUSIONS

Despite the simplicity of the model, Naive Bayes does well in this task, as there is no statistical significant difference between it and SVMs. Accuracy-wise, the SVM with unigram+bigram and feature presence performed best, achieving 88.00%.

REFERENCES

- Pang, Bo, Lillian Lee, and Shivakumar Vaithyanathan. "Thumbs up?: sentiment classification using machine learning techniques." Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10. Association for Computational Linguistics, 2002.
- [2] http://www.nltk.org/howto/stem.html, Accessed 9 November 2018
- [3] https://scikit-learn.org/, Accessed 9 November 2018

¹Data was given as part of an assignment for a course on NLP