Esercizio 1. Let $\Phi \subseteq L$ be a set of sentences and suppose that $\vdash \psi \leftrightarrow \bigvee \Phi$ for some sentence ψ . Prove that there is a finite $\Phi_0 \subseteq \Phi$ such that $\vdash \psi \leftrightarrow \bigvee \Phi_0$.

Nota. Anche se $\bigvee \Phi$ non è una formula del prim'ordine la semantica è quella naturale: $M \models \bigvee \Phi$ se qualche formula in Φ è vera in M.

Esercizio 2. Prove that for every $b \in N \models T_{rg}$ the set r(b, N) is a random graph. Assume N is countable. Is every random graph $M \subseteq N$ of the form r(b, N) for some $b \in N$?

Esercizio 3. Let $a,b,c \in N \models T_{rg}$. Prove that $r(a,N) = r(b,N) \cap r(c,N)$ occurs only in the trivial case a = b = c.

Esercizio 4. Let $A \subseteq N \models T_{rg}$ and let $\varphi(x) \in L(A)$, where |x| = 1. Prove that if $\varphi(N)$ is finite then $\varphi(N) \subseteq A$.

 $Suggerimento.\ Una\ dimostrazione\ concisa\ si\ ottiene\ usando\ l'omogeit\`a\ dei\ grafi\ aleatori.$