Optimización Comercial

Marco Aias et al.

4 de mayo de 2021

1. A realizar

Sea una cierta compañía de trenes de alta velocidad; la cual ofrece servicios de transporte entre distintas ciudades españolas, desde y hacia Madrid.

Sea el trayecto que nos compete Madrid-Bilbao, hemos de determinar la mejor manera de comercializar los asientos de tal tren según los distintos productos ofrecidos.

Consiste en determinar la cantidad de asientos esperados a ser vendidos para cada producto, con tal de que el total vendido sea óptimo.

Para tal se empleará un modelo de manejo de ingresos; ámpliamente usado, el algoritmo heurístico EMSR-b (Expected Marginal Seat Revenue).

Con tal información de demanda esperada para cada producto, se ha de determinar el número de vagones a configurar para el tren, atendiendo a las tasas implicadas.

2. Productos

Clase de reserva	Tarifa [€]	Cambios permitidos	Sala Vip	Fast Track	Elección asiento
A	180	Sí	Sí	Sí	Sí
В	130	Solo 1 (penalización 25 €)	No	Sí	Sí
С	100	Solo 1 (penalización 60 €)	No	No	Sí
D	80	No	No	No	No
E	40	No	No	No	No

Tabla 1: Servicios y precio de cada clase.

3. Demanda

Un departamento de *forecasting* ha proyectado para un día en concreto la demanda esperada para cada producto. Ésta viene recogida en la tabla 2.

Se asume que la demanda para cada clase es independiente del resto; se asume la llegada de los clientes según la tarifa: primero se venden los asientos de la clase E, antes de ser vendidos aquellos con una tarifa más elevada.

Clase de reserva	μ	σ
A	?	?
В	87	8
C	89	9
D	?	?
E	60	9

Tabla 2: Proyección de demanda para cada clase. (Trayecto MAD - BIO)

$$\sigma_1 = e^{\mu/7} + 2 \tag{1}$$

$$\sigma_2 = \frac{1}{10}\mu^3 - 20\mu + 20\tag{2}$$

La tabla 2 y las ecuaciones (1) y (2) corresponden al trayecto MAD - BIO; las ecuaciones aplican a las clases A y D.

Figura 1: Representación de las ecuaciones (1) y (2)

Figura 2: Ecuación (1) - (2)

Sea el espacio de la solución:

$$\{5 \le \mu \le 35\}, \{1 \le \sigma \le 30\}$$

Según las figuras 1 y 2, la solución se encuentra en un entorno alrededor de $\mu \approx 14$.

4. Probabilidad EMSR

Para el cálculo de los EMSR(s), se requiere conocer la probabilidad de demanda; para lo cual el modelo toma los datos de demanda proyectados en la tabla 2 y forma una distribución normal de probabilidades.

La distribución gaussiana:

Campana de Gauss

Figura 3: Ecuación (3) $\mu=0$, $\sigma=$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right)$$
 (3)

$$P(t) = \int_{-\infty}^{t} f(x) dx = 1$$

$$(4)$$

La integral (4) no se puede resolver de forma analítica, sino por aproximación por el *método del trapecio* y también por el método de Simpson.

Dado que la función (3) es simétrica, la integral (4) es igual a $\frac{1}{2}$. Entonces no es necesario calcular entre $(-\infty,t)$, sino $\frac{1}{2}+\int_{\mu}^{t}f(x)\,\mathrm{d}x$ lo que alivia muchos recursos computacionales.

$$P(t) = \frac{1}{2} + \int_{\mu}^{t} f(x) dx$$
 (5)

5. Algoritmo EMSR-b

Consiste en proteger suficientes asientos de respectivas clases con tal de maximizar el ingreso total.

Se basa en la Regla de Littlewood:

Figura 4: Probabilidad acumulada en función de t y (μ, σ) (5)

Regla 1 La razón entre las tarifas de respectivas clases ha de ser igual a la probabilidad de ser ocupado el asiento de la clase de la tarifa superior

Ha de encontrarse el número de asientos protegidos (t) que satisfaga la probabilidad (P(t)) (5) de ser ocupados requerida por la razón de las respectivas tarifas.

Ampliamos la tabla 2 para calcular los parámetros relativos a los EMSR(s); [Wik17; Zen14]

$Clase_i$	$Tarifa_i$	μ_i	σ_i	tmp_i	$\overline{\mu}_i$	$\overline{\sigma}_i$	Protección
A_1	180	?	?				
B_2	130	87	8				
C_3	100	89	9				
D_4	80	?	?				
E_5	40	60	9	-	-	-	-

Tabla 3: Valores EMSR-b

Según el algoritmo EMSR-b se comparan las clases en orden ascendente de precio. Se aplica la regla de Littlewood entre una clase y el resto cuál sea de mayor tarifa. i.e. la clase E (i=5) se compara con el conjunto de las clases A, B, C y D; la clase C (i=3) se compara con A y B etc.

Entonces se obtiene la tarifa media ponderada de un conjunto de clases como:

Complementario

Figura 5: Complementario de CDF

Tarifa media ponderada_i
$$\equiv \text{tmp}_i = \frac{\sum_{k=1}^{i} \text{tarifa}_k \cdot \mu_k}{\sum_{k=1}^{i} \mu_k}$$
 (6)

Para el conjunto de demanda se agregan las demandas:

$$\overline{\mu}_i = \sum_{k=1}^i \mu_k \tag{7}$$

Para la desviación conjunta se toma la raíz cuadrada del sumatorio de las varianzas:

$$\overline{\sigma}_i = \sqrt{\sum_{k=1}^i \sigma_k^2} \tag{8}$$

Dados estos parámetros conjuntos, se procede a aplicar la regla de Littlewood entre cada clase y el conjunto restante.

$$\frac{\operatorname{tarifa}_{i+1}}{\operatorname{tmp}_i} = P(x > \theta_i) \tag{9}$$

Ha de encontrarse un valor θ_i para cada conjunto de clase, que representa el número de asientos protegidos, para el cuál la probabilidad de que tantos sean ocupados sea igual a la razón de tarifas.

Figura 6: Resolución de (10)

$$g(\theta) = \frac{1}{2} - \int_{\mu_i}^{\theta} f(x) dx - \frac{\operatorname{tarifa}_{i+1}}{\operatorname{tmp}_i} = 0$$
 (10)

Se puede resolver por linealización, i.e. Newton.

Se resuelve para todos los valores EMSR y completa la tabla 3.

5.1. Valores preliminares

$Clase_i$	$Tarifa_i$	μ_i	σ_i	tmp_i	$\overline{\mu}_i$	$\overline{\sigma}_i$	Protección
A_1	180	14	9	180	14	9	9
B_2	130	87	8	137	101	12	94
C_3	100	89	9	120	190	15	183
D_4	80	14	9	117	204	18	211
E_5	40	60	9	(99)	(264)	(20)	(289)*

Tabla 4: Valores EMSR-b preliminares

6. Vagones

Han de determinarse el número óptimo de vagones a llevar. Sea entre un mínimo de 2 vagones, a un máximo de 4 vagones, configurados en la clase

Figura 7: Distribuciones

Figura 8: Distribuciones

turista, con 80 plazas cada vagón.

Las tasas relativas al número de vagones y al número de pasajeros se recojen en la tabla 5.

Concepto	Tasa [€]
Tasa por pasajero	1,5
Coste por vagón	500

Tabla 5: Conceptos relativos a vagones y pasajeros

Sea la manera en la que se llenen los vagones, desde la clase más alta a la más baja, tal que no afecta a la demanda esperada ni a los niveles de protección.

Se define una función de coste y beneficio, $\gamma(\theta)$, la cuál recoge el beneficio neto en función del número de pasajeros θ y conversamente, del número de vagones aplicando las tasas asociadas.

Para cada valor de θ se atribuye un incremento de beneficio relativo al tipo de intervalo en el que se encuentra. Véase la figura 9 y la tabla 4. i.e. si $0 < \theta < A$ el beneficio a sumar por 1 pasajero extra corresponde a la tarifa A (180), menos la tasa de pasajeros. En total, para cada vagón se añade su tasa.

$$\gamma(\theta) = \sum_{k=1}^{\theta} \frac{\text{Tarifa}_i}{\left\{\min(i) \mid k < \theta_i^*\right\}} - \left(\left\lceil \frac{\theta}{n_{\text{plazas}}} \right\rceil \frac{\text{Coste}}{\text{vag\'{o}n}} + \theta \frac{\text{Tasa}}{\text{pasajero}} \right)$$
(11)

$$\delta(\theta) = \sum_{k=1}^{\theta} \left[\left(\text{Tarifa}_{i} - \frac{\text{Tasa}}{\text{pasajero}} \right) \left(1 - P(\theta) \atop (\overline{\mu}_{i}, \sigma_{i}) \right) \right] - \left[\frac{\theta}{n_{\text{plazas}}} \right] \frac{\text{Coste}}{\text{vag\'{o}n}} \quad (12)$$

Similar a la distribución de ingresos según (11), se pueden designar variaciones, como $\delta(\theta)$ (12). Varias implementaciones se pueden ver en la figura 10.

Figura 9: Distribución de ingresos en función del número de pasajeros y para distintas tasas

Figura 10: $\delta(\theta)$, según distintas funciones de probabilidad de demanda

Figura 11: $\delta(\theta)$ según distintas tasas

La función $\delta(\theta)$ es una medida del ingreso esperado ponderado según la probabilidad para cada asiento. La probabilidad, las tasas, y las tarifas están delimitadas por los niveles de protección y corresponden individualmente a cada clase determinada por estos niveles.

Entonces el algoritmo aquí propuesto para determinar el número óptimo de vagones consiste en encontrar un valor máximo para la función $\delta(\theta)$, tal que la probabilidad para que θ^* asientos sean ocupados o más, sea superior a 0,5. Véase en la figura 11.

$$N_{\text{vagones}} = \left\lceil \frac{\theta^*}{n_{\text{plazas}}} \right\rceil \mid \theta^* \mid \max\left(\delta(\theta^*)\right) > \epsilon\left(\delta(\theta)\right) \mid 1 - \underset{(\overline{\mu}_n, \overline{\sigma}_n)}{P(\theta^*)} > \frac{1}{2} \quad (13)$$

7. Monte Carlo

Con tal de comprobar el grado de certeza de todos los algoritmos propuestos, en especial los respectivos al cálculo de vagones, se pueden realizar simulaciones para tal efecto.

La principal característica de estos métodos de simulación es que parten de la aleatoriedad. Y para tal aleatoriedad se tomarán los datos de la tabla 2.

Se trata de cobrar valores aleatorios que se conjuguen con las distribuciones normales descritas en la tabla de demanda.

Para ello se partirán de valores aleatorios *lineales*, que pueden ser recuperados de una muestra, y transformarlos en normales según la figura 6, reemplazando la razón de tarifas por un valor aleatorio (0,1) lineal.

Todos estos valores aleatorios corresponden, por supuesto, con el número de pasajeros esperados para cada producto. Se sumarán los totales ingresados para comparación de las predicciones de ingreso.

Referencias

- [Zen14] Rick Zeni. Revenue Management EMSRb Part 4. 2014. URL: https://www.youtube.com/watch?v=mZY4CU05PLw.
- [Wik17] Wikipedia. Expected marginal seat revenue. 2017. URL: https://en.wikipedia.org/wiki/Expected_marginal_seat_revenue.