6.852: Distributed Algorithms Fall, 2015

Class 21

Today's plan

- Final remarks on wait-free computability.
- Wait-free vs. f-fault-tolerant computability
- Reading:
 - [Borowsky, Gafni, Lynch, Rajsbaum]
 - [Attiya, Welch, Section 5.3.2]
 - [Attie, Guerraoui, Kouznetsov, Lynch, Rajsbaum]
- Next time:
 - Shared memory vs. networks
 - Consensus in asynchronous networks
 - Reading:
 - Chapter 17
 - [Lamport] The Part-Time Parliament (the Paxos paper)

Final remarks on wait-free computability

- 1. n-process consensus objects + registers can't be used to implement (n+1)-process consensus objects [Jayanti, Toueg].
- 2. Irreducibility theorem [Chandra, Hadzilacos, Jayanti, Toueg].

Consensus objects

 Theorem: n-process consensus objects + registers can't implement (n+1)-process consensus objects.

Proof:

- Assume they can.
- Can find a decider: bivalent, any step produces univalence.
- At least one is 0-valent, one 1-valent.
- Let P_0 = processes that produce 0-valence, P_1 = processes that produce 1-valence.
- Consider any i_0 in P_0 , i_1 in P_1 .
- They must access the same object.
 - Else commutativity yields a contradiction.
- Must be a consensus object.
 - If it's a register, get [Loui, Abu-Amara] contradiction.
- By considering all i₀ in P₀, i₁ in P₁, can conclude all n+1 processes must access the same consensus object.
- But it's just an n-process consensus object, contradiction.

Irreducibility Theorem

- [Chandra, Hadzilacos, Jayanti, Toueg]
- Theorem: For every n ≥ 1 and every set S of types:
 - If there is a wait-free implementation of an (n+1)-process consensus object from n-process consensus objects, objects of types in S, plus registers,
 - Then there is a wait-free implementation of (n+1)-process consensus from just objects of types in S plus registers.
- That is, the n-process consensus objects don't contribute anything!
- Proof: An interesting series of constructions, rather complicated, LTTR.

Annoying, specific open question

 Can wait-free 2-process consensus objects plus registers be used to implement a waitfree 3-process queue?

Wait-free computability vs. f-fault-tolerant computability

[Borowsky, Gafni, Lynch, Rajsbaum]

Wait-free computability vs. f-fault-tolerant computability

- We've considered computability (of atomic objects) when any number of processes can fail (wait-free).
- Now consider a bounded number, f, of failures.
- [Borowsky, Gafni, et al.] transformation converts any n-process, f-fault-tolerant distributed shared r/w memory algorithm to an (f+1)-process f-fault-tolerant (wait-free) shared r/w memory algorithm, that solves a "closely related problem".
- Can derive wait-free algorithms from f-fault-tolerant algorithms.
- Not obvious:
 - E.g., perhaps some shared-memory algorithm depends on having a majority of nonfaulty processes.
 - This says (in a sense) that this can't happen.
- Can infer impossibility results for f-FT shared-memory model from impossibility for wait-free shared-memory model.
 - E.g., impossibility for 2-process wait-free consensus [Herlihy] implies impossibility for 1-FT n-process consensus [Loui, Abu-Amara].

Another consequence: k-consensus

- Theorem: k-consensus is unsolvable for k+1 processes, with wait-free termination.
 - Proved by three teams:
 - [Borowsky, Gafni], [Herlihy, Shavit], [Saks, Zaharoglu]
 - Godel Prize
- [BG] transformation implies impossibility for nprocess k-consensus with k failures, n ≥ k+1.

BG simulation

Citations:

- Original ideas presented informally: [Borowsky, Gafni STOC 93]
- More complete, more formal: [B, G, Lynch, Rajsbaum]

A New Notion of "Problem"

Recall Herlihy:

- Problem = variable type
- Studies wait-free algorithms that implement an atomic object corresponding to a given variable type.
- Problems involve ongoing interactions.

• BG:

- Problems are one-shot:
 - Inputs arrive on some ports, at most one per port.
 - Outputs produced on some of those ports, at most one per port.
- Problem = n-process decision problem = set of pairs (I,O), where:
 - · I and O are n-vectors over an underlying value domain V, and
 - Each I has at least one corresponding O.

Example: k-consensus, for n processes

- I = O = n-vectors over V.
- (I,O) \in D if and only if:
 - Every value in O appears somewhere in I, and
 - At most k distinct values appear in O.
- Consensus: Special case of k-consensus for k = 1.

Solving a Problem

- An n-process shared-variable system solves an ndecision problem D, tolerating f failures, if all its executions satisfy:
 - Well-formedness: Produces answers only on ports where inputs are received, no more than once each.
 - Correct answers: If inputs occur on all ports, forming a vector I, then the outputs that are produced could be completed to a vector O such that (I,O) ∈ D.
 - f-failure termination: If inputs occur on all ports and at most f stop events occur, then an output occurs on each nonfailing port.
- Same style as our earlier definitions for consensus.

Relating two problems

The BG simulation:

- Takes a system that solves an n'-process decision problem D', tolerating f failures.
- Produces a system that solves an n-process decision problem D, also with f failures.
- Special case where n = f+1 yields wait-freedom.
- D and D' are not the same decision problem---e.g., they
 use different numbers of ports.
- But they must be related in some way.
- For some problems, the relationship is "obvious":
 - Consensus, k-consensus defined by the same correctness conditions for n ports and n' ports.
- In general, we need translation rules; express by:
 - A mapping G for input vectors, mapping n-vectors to n'-vectors.
 - A mapping H for output vectors, mapping n'-vectors to n-vectors.

Input translation G

• g_i:

- For each i, $1 \le i \le n$, function g_i maps an element of V (process i's input) to an n'-vector of V (proposed inputs for the simulated processes).

• G:

 Mix and match, arbitrarily assigning each position in the n'-vector a value from any of the vectors produced by the g_i functions.

Example: k-consensus

- $g_i(v) = (v, v, ..., v), n' entries$
- E.g., for k = 2, n = 3, n' = 5:
 - G(0, 0, 0) consists of (0,0,0,0,0) only.
 - G(0, 1, 1) consists of all vectors of 0s and 1s.

Output translation H

h_i:

- For each i, $1 \le i \le n$, h_i maps any "reduced" n'-vector of V (an n'-vector of V with up to f values replaced by \bot) to a value in V.
- Represents process i's output, calculated from the output it sees from the simulated n'-process algorithm (which might be missing up to f entries, because of failures).

• H:

- Uses h_i to compute i's entry in the output n-vector.
- Example: k-consensus, k > f
 - h_i picks the first non-⊥ element of the reduced vector.

Combining the pieces

What we need:

 If we combine G and H with the relation D' (problem specification for the simulated algorithm), we should satisfy the relation D (problem specification for the simulating algorithm).

More precisely:

- Take any input n-vector I.
- Apply individual mappings g_i and mix-and-match arbitrarily using G to get an input n'-vector l' for D'.
- Choose any output vector O' such that $(I', O') \in D'$.
- For each i separately:
 - Reduce O' by setting up to f positions (arbitrarily chosen) to ⊥.
 - Apply h_i to the reduced vector.
- Assemble n-vector O from all the h_i outputs.
- Then (I,O) should satisfy D.
- Example: Works for consensus, k-consensus, where D and D' are the "same problem".

The BG construction

- Given: A system P', with n' processes, solving D', tolerating f failures.
- Assumptions about P':
 - P' uses wait-free snapshot shared memory.
 - One shared snapshot variable, mem'.
 - Each P' process is deterministic:
 - Unique start state.
 - In any state, at most one non-input action is enabled.
 - Any (old state, action) has at most one new state.
- Produce: A system P, with n processes, solving D, also tolerating f failures.
- Assumptions about P:
 - P uses wait-free snapshot shared memory.
 - One shared snapshot variable, mem.
- Processes of P simulate processes of P'.

The BG construction

- Given: System P', n' processes, solving D', tolerating f failures.
- Assumptions about P':
 - P' uses wait-free snapshot shared memory.
 - Each P' process is "deterministic":
- Produce: System P, n processes, solving D, tolerating f failures.
- Assumptions about P:
 - P uses wait-free snapshot shared memory.
- Read/write shared memory instead of snapshot memory:
 - Same construction works if the two systems use read/write memory, but the proof is harder.
 - Alternatively, result carries over to the read/write case, using the fact that wait-free snapshots can be implemented from wait-free read/write registers.
- Q: How can the processes of P simulate an execution of P'?

How P simulates P'

- Each P process simulates an execution of entire P' system.
- We would like all of them to simulate the same execution.
- Since the P' processes are assumed to be deterministic, most of the steps are determined, and can be simulated consistently by the P processes on their own.
- However, P processes must do something to agree on:
 - The P' processes' initial inputs.
 - What the P' processes see whenever they take snapshots of mem'.

Consensus

- How? Use a consensus service?
 - Well-formedness, agreement, strong validity.
 - What termination guarantee?
 - Would like f-failure termination, since f processes of P can fail.
 - But not implementable from snapshot memory [Loui, Abu-Amara].
- So we are forced to use something weaker...something we can implement from snapshot shared memory...

Safe Agreement

- A new kind of consensus service.
- Guarantees agreement, strong validity, failure-free termination, as usual.
- But now, susceptibility to failure on each port is limited to a designated "unsafe" part of the consensus execution.
- New interface:
 - Add safe outputs.
 - safe_i anounces to user at port i that the "unsafe" part of the execution at i has completed.
 - decide(v)_i provides the final decision, as usual.

Well-formedness:

- For each i, init()_i, safe_i, decide()_i
 occur in order.
- The service must preserve well-formedness.

Safe Agreement

init(v)_i safe_i decide(v)_i

SafeAgreement

- Well-formedness
- Wait-free safe announcements:
 - In any fair execution, for every i, if an init; occurs and stop; does not occur, then safe; eventually occurs.
 - That is, any process that initiates and does not fail eventually gets a safe response---it can't be blocked by other processes.

Safe termination:

- In any fair execution, either:
 - For every i, if an init_i occurs and stop_i does not occur, then a decide_i eventually occurs, or
 - There is some i such that init, occurs and safe, does not occur.
- That is, the component acts like a wait-free implementation, unless someone fails in the unsafe part of its execution.
- Separating the termination guarantees in this way leads to an implementable specification, using snapshot or read/write shared memory.

Safe consensus implementation

- [BGLR, p. 133-134].
- Snapshot memory, component i:
 - val(i), in $V \cup \{\perp\}$, initially \perp
 - level(i), in { 0, 1, 2 }, initially 0

Process i:

- When init(v)_i occurs, set val(i) := v, level(i) := 1.
- Perform one snapshot, determining everyone else's levels.
- If anyone has level = 2, reset level(i) := 0, else set level(i) := 2.
- In either case, move on, become safe, output safe;.
- Next, take repeated snapshots until you see no one with level = 1.
- At this point (we can show that) someone has |eve| = 2.
- Decide on v = val(j), where j is the min index for which level(j) = 2, output decide(v)_i.

Correctness

- Well-formedness, strong validity: Obvious.
- Agreement:
 - Suppose process i is first to take a deciding snapshot.
 - Say it decides on value v obtained from process k.
 - At the point of i's deciding snapshot, process i sees level ≠ 1 for every process, and k is the min index with level = 2.
 - Claim: Subsequently, no process changes its level to 2.
 - Why:
 - Suppose some process j does so.
 - At the point of i's deciding snapshot, level(j) = 0 (can't = 1).
 - So j must first raise level(j) from 0 to 1, and then perform its initial snap.
 - But then it would see level(k) = 2 in its initial snap, reset level(j) to 0, and never reach level 2.
 - So, any process that takes its deciding snapshot after i does so, also sees k as the min index with level = 2, so decides on k's value v.

Liveness properties

- Wait-free safe announcements:
 - Obvious. No delays.
- Safe termination:
 - Suppose there is no process j for which init_j occurs and safe_j doesn't (no one fails in the unsafe portion of the algorithm).
 - Then there is no process j whose level remains 1 forever.
 - So, eventually every process' level stabilizes at 0 or 2.
 - Thereafter, any non-failing process will succeed in any subsequent snapshot, and decide.

Back to the BG simulation...

- Each P process simulates an execution of the entire P' system.
- All of them should simulate the same execution.
- Since P' processes are deterministic, many of the steps are determined, and so, can be simulated by the P processes on their own.
- However, P processes must do something to agree on:
 - The P' processes' initial inputs.
 - What the P' processes see whenever they take snapshots of mem'.
- Use safe-agreement.

BG simulation

- Safe-agreement algorithm guarantees:
 - Well-formedness.
 - Agreement, strong validity, failure-free termination.
 - Wait-free safe announcements.
 - Safe termination.
- The main BG simulation algorithm uses (countably many) safe-agreement services.

BG simulation

- Processes of system P use (countably many) safeagreement services to help them to agree on initial values and snapshot results, for P' processes.
- Follow a discipline whereby each P process is in the unsafe part of at most one safe-agreement at a time.
- So if a P process fails, it "kills" at most one safe-agreement service, and so, kills at most one simulated P' process.
 - The one for which the safe-agreement service is trying to decide on an initial value or snapshot result.
- At most f failures among P processes are reflected in at most f failures of P' processes.
- So we get the f-fault-tolerance guarantees of system P', which imply that the nonfaulty P' processes terminate, which implies that the nonfaulty P processes terminate.

The main construction

- P has n processes.
- Shared memory:
 - mem, a single snapshot shared variable, with a component mem(i) for each i:
 - mem(i).sim-mem
 - mem(i).sim-steps
- Safe agreement modules:
 - $A_{i,l}$, $1 \le j \le n'$, I any nonnegative integer
 - Infinitely many safe-agreement modules for each process j of P'.
 - A_{j,0}: To agree on initial value for process j.
 - A_{j,l}, l ≥ 1: To agree on the lth simulated snapshot result obtained by process j.

- Other steps get simulated locally, no consensus.
- In the overall algorithm, the A_{j,l} modules are replaced by safe-agreement implementations.

The main construction

- Code, p. 135-136 of [BGLR].
- Process i of P simulates all processes of P'.
- Simulates steps of each j of P' sequentially.
- Works concurrently on different j.
- Simulates deterministic steps locally, uses safe-agreement for inputs and snapshot results.
- Ensures that it is in unsafe portion of its execution for at most one simulated process j at a time.
- Process i keeps track of its progress in simulating each process j of P'.
- In shared memory mem, process i records:
 - mem(i).sim-mem: The latest value i knows for the snapshot variable mem' of P'.
 - mem(i).sim-steps, a vector giving the number of steps that i has simulated for each process j of P', up to and including the latest step at which process j updated mem'(j).

Determining "latest" value for mem'

- Different P processes can get out of synch in their simulations, making different amounts of progress in simulating different P' processes.
- Thus, different mem(i)s can reflect different stages of the simulation of P'.
- Function latest combines information in the various mem(i)s, to give the maximum progress any simulating process has made, for each j of P'.
 - Returns a single vector of values, one value per process j of P', giving the latest value written by j to mem' in anyone's simulation.
 - Determined by choosing the sim-mem(j) associated with the largest value of sim-steps(j).

Simulating snapshots

- When P_i simulates a snapshot step of P'_j:
 - P_i takes a snapshot of mem, thus determining what all processes of P are up to in their simulations of P'.
 - Uses latest function to obtain a candidate value for the simulated memory mem'.
 - However, P_i doesn't just use that candidate mem' for the simulated snapshot response.
 - Instead, it submits the candidate mem' to the designated safe-agreement module.
 - This ensures that everyone will use the same candidate mem' snapshot value when they simulate this snapshot step of j.

The code

- init(v)_i: Just record your own input, locally.
- propose(v)_{j,0,i}:
 - Compute (using g_i) a candidate input value for process j of P'.
 - Initiate safe-agreement, provided you are not in the unsafe portion of any other safe-agreement.
- agree(v)_{i,0,i}: Get agreement on j's initial value.
- Then start simulating process j locally.
- snap_{j,i}: When up to a snap step of j, do an actual snapshot from mem and compute a candidate snapshot result.
- propose(w)_{i,l,i}, l ≥ 1:
 - Propose candidate snapshot result to next safe-agreement for j, provided you are not in the unsafe part of any other safeagreement.
- agree(w)_{i,l,i}, l ≥ 1: Get agreement on j's lth snapshot result.

A code bug

- Paper has a small code bug, involving liveness.
- As written, this code doesn't guarantee fair turns to each j:
 - When process i is about to propose an initial value or snapshot result for j to a safe-agreement module, it checks that it is not in the unsafe region of any other safe-agreement module, i.e., no other simulated process is unsafe.
 - It's possible that, every time i tries to give j a turn, i might be in the unsafe region of some other process j', so j could be stalled forever.
- Solution: Add a priority mechanism:
 - E.g., when there's a choice of processes for a safe-agreement, favor the j for which i has simulated the fewest snapshot steps so far.
 - E.g., [Attiya, Welch] use a simple round-robin discipline, LTTR.

The code, continued

- Other simulated steps are easier:
- sim-update_{i,i}:
 - Deterministic.
 - Process i determines j's update value locally.
 - Writes it to the actual snapshot memory, mem:
 - Update mem(i).sim-mem and mem(i).sim-steps.
- sim-local_{i,i}: Does this locally.
- sim-decide, : Computes a simulated decision value for j, locally.
- decide(v)_i:
 - Process i computes its final decision, using h_i.
 - Outputs the decision.

Liveness proof

f-failure termination:

- Assume at most f failures occur in P.
- (With the added priority mechanism) P emulates a fair execution of P' with at most f failures.
- There are at most f failures in the simulated execution of P', because each failed process in P can block at most one safe-agreement service, hence can kill at most one process of P'.
- By f-failure termination of P', the non-failed processes of P' eventually decide, yielding enough decisions to allow all non-failed processes of P to decide.

Correct emulation of P'

- Key idea: The distributed system P emulates a centralized simulation of P'.
 - The simulated memory of P' in the centralized simulation, corresponds to the latest information any of the P processes has about mem'.
 - Likewise for simulated states of P' processes.
 - Initial value of process j of P' is the value determined by safeagreement A_{j,0}; the init_j is deemed to occur when the first decide step of A_{i,0} occurs.
 - Result of the Ith snapshot by j is the value determined by safe-agreement A_{j,l}; the snap_j is deemed to occur when the candidate snapshot that eventually wins is first defined (as part of a snapshot in P).
- Can formalize all this using simulation relations. LTTR.

BG for read/write memory

- Same result holds if P and P' use read/write memory instead of snapshot memory.
- Can see this by implementing P's snapshots using read/write registers, as in [Afek, et al.]
- Can avoid the overhead of implementing snapshots by:
 - Defining a slightly modified version of the BG construction for read/write memory, and arguing that it still works [BGLR].
 - Harder proof.
 - Uses an argument similar to the one we used earlier, to show correctness of a simple implementation of a read/increment atomic object.

Recap: [BGLR]

- Theorem (paraphrase): For any n, n' ≥ f:
 - If there is an n'-process, f-fault-tolerant read/write shared memory algorithm A' solving a problem D', then there is an n-process, f-fault-tolerant read/write shared memory algorithm A solving a "closely related" problem D.
- Proof involves simulating steps of A', rather than using D' as a "black box" object.
- [Chandra, Hadzilacos, Jayanti, Toueg] sketch a similar result, allowing other types of shared memory.

A Non-Boosting Result [Attie, Guerraoui, Kouznetsov, Lynch, Rajsbaum]

Non-boosting result

- Q: Can some set of f-fault-tolerant objects, plus reliable registers, be used to implement an n-process (f+1)-faulttolerant consensus object?
- Now consider black-box implementations.
- We already know:
 - Wait-free (f+1)-process consensus + registers cannot implement wait-free (f+2)-process consensus.
 - [BGLR], [CHJT]: There are close relationships between n-process, (f+1)-fault-tolerant algorithms and wait-free (f+2)-process algorithms.
- So we might expect the answer to be no.
- Here is a simple, direct formulation and impossibility proof.

f-resilient atomic objects

- Model f-resilient atomic objects as canonical f-resilient atomic object automata.
- State variables:
 - val, copy of the variable
 - inv-buffer, resp-buffer for each port, FIFO queues
 - Expect at most one active invocation at a time, on each port.
 - failed, subset of ports

Tasks:

- For every port i, one i-perform task, one i-output task.
- Explicitly program fault-tolerance:
 - Keep track of which ports have failed.
 - When > f failures have occurred, the object need not respond to anyone (but it might).
 - When ≤ f failures have occurred, the object must respond to every invocation on a non-failing port.
 - Convention: Each i-task includes a dummy action that's enabled after failures (either of i itself, or of > f ports overall).

Concurrent invocations

- Since f-fault-tolerant objects can die, a nonfaulty process i might invoke an operation on a dead object and get no response.
- If process i accesses objects sequentially, this would block it forever.
- Avoid this anomaly by allowing a process to issue accesses concurrently on different objects.
- This issue doesn't arise in the wait-free case.

System Model

- Consists of:
 - Processes P_i, i ∈ I
 - f-resilient services S_k , $k \in K$
 - Reliable registers S_r , $r \in R$
- Process P_i:
 - Automaton with one task.
- f-resilient service S_k:
 - Canonical f-resilient atomic object of some type, with some number of ports.
- Register S_r:
 - Wait-free atomic read/write object.
- Complete system:
 - Compose everything, arbitrary connection pattern between processes and services/registers.
 - Tasks: 1 for each process, 2 for each port in each service/register.

Boosting Impossibility Result

• Theorem: Suppose $n \ge 2$, $f \ge 0$. Then there is no (f+1)-resilient n-process implementation of consensus from f-resilient services (of any types) and reliable registers.

Proof:

- Uses the delays within the services.
- By contradiction, assume an algorithm.
- Determinism:
 - WLOG, assume processes are deterministic:
 - One task.
 - From each state, exactly one action enabled, leading to exactly one new state.
 - WLOG, variable types are deterministic.
 - Tasks determine execution.
- As usual, get a bivalent initialization (inputs for all processes).
- From there, construct a "decider":

A Decider

- Tasks e and e' are both applicable after α , and e and e' e yield opposite valence.
- Clearly, e and e' are different tasks.
- Claim: The step of e after α and the step of e' after α must involve a common process, service, or register.
- Proof: If not, we get commutativity, contradiction.
- Three cases:
 - Steps involve a common process P_i.
 - Steps involve a common f-resilient service S_k.
 - Steps involve a common reliable register S_r.

1-valent

Case 1: Common process Pi

- The step of task e after α and the step of task e' after α must involve only P_i, plus (possibly) inv-buffer_i and resp-buffer_i within some services and registers.
- So the step of e after α e' also involves only P_i and its buffers.
- Then α e and α e' e can differ only in the state of P_i and contents of its buffers within services and registers.
- Now fail i after α e and α e' e:
 - Let the other processes run fairly, with i taking no further steps.
 - Also, let no i-perform or i-output task take a step in any service or register.
 - Failing i allows services/registers to stop performing work on behalf of i.
- These two executions look the same to the others, decide the same, contradiction.

1-valent

Case 2: Common f-resilient service S_k

- By Case 1, we can assume no common process.
- If e after α involves S_k and P_i, and e' after α involves just S_k (i.e., is a perform inside S_k):
 - Then commute, contradiction.
- If e after α involves just S_k , and e' after α involves S_k and P_i .
 - Then commute, contradiction.
- If e after α involves S_k and P_i , and e' after α involves S_k and P_i :
 - Then $i \neq j$ by assumption of no common process.
 - Commute, contradiction.
- Remaining case: e after α and e' after α both involve just S_k :

Case 2: Common f-resilient service S_k, cont'd

- If e after α and e' after α involve just S_k :
 - Then both are performs.
 - Might not commute!
 - But only service S_k can tell the difference.
- Fail f+1 processes connected to S_k , after α e and α e' e:
 - If fewer processes are connected to S_k, fail all processes connected to S_k.
 - Fails service S_k, allows it to stop taking steps.
 - Run the rest of the system with S_k failed, after α e and α e' e.
 - Behaves the same, contradiction.

1-valent

Case 3: Common register object S_r

- Argument is the same as for Case 2, until the last step.
- Again, we get 2 perform steps, don't commute.
- But now we can't fail the register by failing f+1 processes, since it's assumed to be reliable (wait-free).
- Instead, we rely on the [Loui, Abu-Amara] arguments for registers.
- Again, a contradiction.

Recap: [AGKLR]

Theorem: Suppose n ≥ 2, f ≥ 0. Then there
is no (f+1)-resilient n-process implementation
of consensus from f-resilient services (of any
types) and reliable registers.

In contrast...

- Theorem: There is no (f+1)-resilient n-process implementation of consensus from f-resilient services and reliable registers.
- Example: Can sometimes boost resiliency
 - Can build a wait-free (5-resilient) 6-process, 3-consensus object from three 2-process wait-free (1-resilient) 1-consensus services.
 - Each process P_i
 submits its initial value
 to its own consensus
 service.
 - The service responds, since it's wait-free.
 - Then P_i outputs the result.

Where are we?

General goals:

- Classify atomic object types: Which types can be used to implement which others, for which numbers of processes and failures?
- A theory of relative computability, for objects in distributed systems.
- What we have so far:
 - Herlihy's classification based on solving consensus (wait-free), for different numbers of processes.
 - General transformation showing close relationship between (f+1)process f-failure (wait-free) computability and n-process f-failure computability.
 - Non-boosting result for number of failures, for consensus.
- Much more work remains.

Next time...

- Shared memory vs. networks
- Consensus in asynchronous networks
- Reading:
 - Chapter 17
 - [Lamport] The Part-Time Parliament (Paxos)