SEQUENCE LISTING

- <110> Rittershaus, Charles W.

 Thomas, Lawrence J.

 Avant Immunotherapeutics, Inc.
- <120> Xenogeneic Cholesteryl Ester Transfer Protein (CETP) for Modulation of CETP Activity
- <130> TCS-420.1 PCT seglist
- <140> PCT/US98/22145
- <141> 1998-10-20
- <150> 08/954,643
- <151> 1997-10-20
- <160> 7
- <170> PatentIn Ver. 2.0
- <210> 1
- <211> 476
- <212> PRT
- <213> Homo sapiens
- <300>
- <301> Drayna, Dennis
- <302> Cloning and Sequencing of Human Cholesteryl Ester
 Transfer cDNA
- <303> Nature
- <304> 327
- <306> 632-634
- <307> 1987-06-18
- <313> 1 TO 476
- <400> 1
- Cys Ser Lys Gly Thr Ser His Glu Ala Gly Ile Val Cys Arg Ile Thr

 1 5 10 15
- Lys Pro Ala Leu Leu Val Leu Asn His Glu Thr Ala Lys Val Ile Gln
- Thr Ala Phe Gln Arg Ala Ser Tyr Pro Asp Ile Thr Gly Glu Lys Ala
 35 40 45
- Met Met Leu Gly Gln Val Lys Tyr Gly Leu His Asn Ile Gln Ile 50 55 60

320

305

Ser 65	His	Leu	Ser	Ile	Ala 70	Ser	Ser	Gln	Val	Glu 75	Leu	Val	Glu	Ala	Eys 80
Ser	Ile	Asp	Val	Ser 85	Ile	Gln	Asn	Val	Ser 90	Val	Val	Phe	Lys	Gly 95	Thr
Leu	Lys	Tyr	Gly 100	Tyr	Thr	Thr	Ala	Trp 105	Trp	Leu	Gly	Ile	Asp 110	Gln	Ser
Ile		Phe 115	Glu	Ile	Aap	Ser	Ala 120	Ile	Авр	Leu	Gln	Ile 125	Asn	Thr	Gln
Leu	Thr 130	Сув	Asp	Ser	Gly	Arg 135	Val	Arg	Thr	qaA	Ala 140	Pro	Asp	Cys	Tyr
Leu 145	Ser	Phe	His	Lys	Leu 150	Leu	Leu	His	Leu	Gln 155	Gly	Glu	Arg	Glu	Pro 160
Gly	Trp	Ile	Lys	Gln 165	Leu	Phe	Thr	Asn	Phe 170	Ile	Ser	Phe	Thr	Leu 175	Lys
Leu	Val	Leu	Lys 180	Gly	Gln	Ile	Суз	Lys 185	Glu	Ile	Asn.	Val	Ile 190	Ser	Asn
Ile	Met	Ala 195	Asp	Phe	Val	Gln	Thr 200	Arg	Ala	Ala	Ser	Ile 205	Leu	Ser	Авр
Gly	Asp 210	Ile	Gly	Val	Asp	Ile 215	Ser	Leu	Thr	Gly	Asp 220	Pro	Val	Ile	Thr
Ala 225	Ser	Tyr	Leu	Glu	Ser 230	His	His	Lys	Gly	His 235	Phe	Ile	Tyr	Lys	Asn 240
Val	Ser	Glu	Asp	Leu 245	Pro	Leu	Pro	Thr	Phe 250	Ser	Pro	Thr	Leu	Leu 255	Gly
Asp	Ser	Arg	Met 260	Leu	Tyr	Phe	Trp	Phe 265	Ser	Glu	Arg	Val	Phe 270	His	Ser
Leu	Ala	Lys 275	Val	Ala	Phe	Gln	Asp 280	Gly	Arg	Leu	Met	Leu 285	Ser	Leu	Met
Gly	Авр 290	Glu	Phe	Lys	Ala	Val 295	Leu	Glu	Thr	Trp	Gly 300	Phe	Asn	Thr	Asn

310

Gln Glu Ile Phe Gln Glu Val Val Gly Gly Phe Pro Ser Gln Ala Gln

Val Thr Val His Cys Leu Lys Met Pro Lys Ile Ser Cys Gln Asn Lys 325 330 335

Gly Val Val Asn Ser Ser Val Met Val Lys Phe Leu Phe Pro Arg 340 345 350

Pro Asp Gln Gln His Ser Val Ala Tyr Thr Phe Glu Glu Asp Ile Val 355 360 365

Thr Thr Val Gln Ala Ser Tyr Ser Lys Lys Lys Leu Phe Leu Ser Leu 370 375 380

Leu Asp Phe Gln Ile Thr Pro Lys Thr Val Ser Asn Leu Thr Glu Ser 385 390 395 400

Ser Ser Glu Ser Ile Gln Ser Phe Leu Gln Ser Met Ile Thr Ala Val 405 410 415

Gly Ile Pro Glu Val Met Ser Arg Leu Glu Val Val Phe Thr Ala Leu
420 425 430

Met Asn Ser Lys Gly Val Ser Leu Phe Asp Ile Ile Asn Pro Glu Ile 435 440 445

Ile Thr Arg Asp Gly Phe Leu Leu Gln Met Asp Phe Gly Phe Pro 450 455 460

Glu His Leu Leu Val Asp Phe Leu Gln Ser Leu Ser 465 470 475

<210> 2

<211> 1428

<212> DNA

<213> Homo sapiens

<300>

<301> Drayna, Dennis

<302> Cloning and Sequencing of Human Cholesteryl Ester Transfer cDNA

<303> Nature

<304> 327

<306> 632-634

<307> 1987-06-18

<313> 1 TO 476

<400> 2

```
tgetecaaag geacetegea egaggeagge ategtgtgee geateaceaa geetgeeete 60
ctggtgttga accacgagac tgccaaggtg atccagaccg ccttccagcg agccagctac 120
ccagatatca cgggcgagaa ggccatgatg ctccttggcc aagtcaagta tgggttgcac 180
aacatccaga tcagccactt gtccatcgcc agcagccagg tggagctggt ggaagccaag 240
tecattgatg tetecattca gaacgtgtet gtggtettea aggggaceet gaagtatgge 300
tacaccactg cotggtggct gggtattgat cagtccattg acttcgagat cgactctgcc 360
attgacetce agateaacac acagetgace tgtgactetg gtagagtgeg gacegatgee 420
cotgactgot acctgtottt coataagotg otcotgoato tocaagggga gogagagoot 480
gggtggatca agcagctgtt cacaaatttc atctccttca ccctgaagct ggtcctgaag 540
ggacagatct gcaaagagat caacgtcatc tctaacatca tggccgattt tgtccagaca 600
agggctgcca gcatcctttc agatggagac attggggtgg acatttccct gacaggtgat 660
cccgtcatca cagcetecta cctggagtee cateacaagg gteattteat etacaagaat 720
gtctcagagg acctccccct ccccaccttc tegeccacac tgctggggga ctcccgcatg 780
ctgtacttct ggttctctga gcgagtcttc cactcgctgg ccaaggtagc tttccaggat 840
ggccgcctca tgctcagcct gatgggagac gagttcaagg cagtgctgga gacctggggc 900
ttcaacacca accaggaaat cttccaagag gttgtcggeg gcttccccag ccaggcccaa 960
gtcaccgtcc actgcctcaa gatgcccaag atctcctgcc aaaacaaggg agtcgtggtc 1020
aattetteag tgatggtgaa atteetettt eeaegeeeag accageaaca ttetgtaget 1080
tacacatttg aagaggatat cgtgactacc gtccaggcct cctattctaa gaaaaagctc 1140
ttcttaagcc tcttggattt ccagattaca ccaaagactg tttccaactt gactgagagc 1200
ageteegagt ceatecagag etteetgeag teaatgatea eegetgtggg catecetgag 1260
gtcatgtete ggctcgaggt agtgtttaca gccctcatga acagcaaagg cgtgagcctc 1320
ttcgacatca tcaaccctga gattatcact cgagatggct tcctgctgct gcagatggac 1380
tttggcttcc ctgagcacct gctggtggat ttcctccaga gcttgagc
<210> 3
```

<211> 496

<212> PRT

<213> Oryctolagus cuniculus

<300>

<301> Nagashima, Mariko

<302> Cloning and mRNA tissue distribution of rabbit cholesteryl ester transfer protein

<303> J. Lipid Res.

<304> 29

<306> 1643-1649

<307> 1988

<313> 1 TO 496

<400>3

Cys Pro Lys Gly Ala Ser Tyr Glu Ala Gly Ile Val Cys Arg Ile Thr

Lys Pro Ala Leu Leu Val Leu Asn Gln Glu Thr Ala Lys Val Val Gln 30 25 20

Thr Ala Phe Gln Arg Ala Gly Tyr Pro Asp Val Ser Gly Glu Arg Ala

35

Val	Met	Leu	Leu	Gly	Arg	Val	Lvs	Tvr	Glar	T.ou	***		Leu Gln	
	50				_			-1-	GLY	neu	HIB	Asn	Leu Gln	Ile
						55					60			

Ser His Leu Ser Ile Ala Ser Ser Gln Val Glu Leu Val Asp Ala Lys
65 70 75

Thr Ile Asp Val Ala Ile Gln Asn Val Ser Val Val Phe Lys Gly Thr
85 90 95

Leu Asn Tyr Ser Tyr Thr Ser Ala Trp Gly Leu Gly Ile Asn Gln Ser 100 105 110

Val Asp Phe Glu Ile Asp Ser Ala Ile Asp Leu Gln Ile Asn Thr Glu 115 120 125

Leu Thr Cys Asp Ala Gly Ser Val Arg Thr Asn Ala Pro Asp Cys Tyr
130 135 140

Leu Ala Phe His Lys Leu Leu Leu His Leu Gln Gly Glu Arg Glu Pro 145 150 155 160

Gly Trp Leu Lys Gln Leu Phe Thr Asn Phe Ile Ser Phe Thr Leu Lys
165 170 175

Leu Ile Leu Lys Arg Gln Val Cys Asn Glu Ile Asn Thr Ile Ser Asn 180 185 190

Ile Met Ala Asp Phe Val Gln Thr Arg Ala Ala Ser Ile Leu Ser Asp
195 200 205

Gly Asp Ile Gly Val Asp Ile Ser Val Thr Gly Ala Pro Val Ile Thr 210 215 220

Ala Thr Tyr Leu Glu Ser His His Lys Gly His Phe Thr His Lys Asn 225 230 235 240

Val Ser Glu Ala Phe Pro Leu Arg Ala Phe Pro Pro Gly Leu Leu Gly
245 250 255

Asp Ser Arg Met Leu Tyr Phe Trp Phe Ser Asp Gln Val Leu Asn Ser 260 265 270

Leu Ala Arg Ala Ala Phe Gin Glu Gly Arg Leu Val Leu Ser Leu Thr 275 280 285

Gly Asp Glu Phe Lys Lys Val Leu Glu Thr Gln Gly Phe Asp Thr Asn

	290					295					300				
Gln 305	Glu	Ile	Phe	Gln	Glu 310	Leu	Ser	Arg	Gly	Leu 315	Pro	Thr	Gly	Gln	Ala 320
Gln	Val	Ala	Val	His 325	Сув	Leu	Lys	Val	Pro 330	Lys	Ile	Ser	Сув	Gln 335	Asn
Arg	Gly	Val	Val 340	Val	Ser	Ser	Ser	Val 345	Ala	Val	Thr	Phe	Arg 350	Phe	Pro
Arg	Pro	Asp 355	Gly	Arg	Glu	Ala	Val 360	Ala	Tyr	Arg	Phe	Glu 365	Glu	Asp	Ile
Ile	Thr 370	Thr	Val	Gln	Ala	Ser 375	Tyr	Ser	Gln	Lys	Lys 380	Leu	Phe	Leu	His
Leu 385	Leu	Asp	Phe	Gln	Cys 390	Val.	Pro	Ala	Ser	Gly 395	Arg	Ala	Gly	Ser	Ser 400
Ala	Asn	Leu	Ser	Val 405	Ala	Leu	Arg	Thr	Glu 410	Ala	Lys	Ala	Val	Ser 415	Asn
Leu	Thr	Glu	Ser 420	Arg	Ser	Glu	Ser	Leu 425	Gln	Ser	Ser	Leu	Arg 430	Ser	Leu
Ile	Ala	Thr 435	Val	Gly	Ile	Pro	Glu 440	Val	Met	Ser	Arg	Leu 445	Glu	Val	Ala
Phe	Thr 450	Ala	Leu	Met	Asn	Ser 455	Lys	Gly	Leu	Asp	Leu 460	Phe	Glu	Ile	Ile
Asn 465	Pro	Glu	Ile	Ile	Thr 470	Leu	Asp	Gly	Cys	Leu 475	Leu	Leu	Gln	Met	Asp 480
Phe	Gly	Phe	Pro	Lys	His	Leu	Leu	Val	Asp	Phe	Leu	Gln	Ser	Leu	Ser

<210> 4

<211> 1488

<212> DNA

<213> Oryctolagus cuniculus

485

<300>

490

```
<301> Nagashima, Mariko
```

<302> Cloning and mRNA tissue distribution of rabbit cholesteryl ester transfer protein

<303> J. Lipid Res.

<304> 29

<306> 1643-1649

<307> 1988

<313> 1 TO 496

<400> 4

```
tgtcccaaag gcgcctccta cgaggctggc atcgtgtgtc gcatcaccaa gcccgccctc 60
ttggfgftga accaagagac ggccaaggtg gtccagacgg ccttccagcg cgccggctat 120
ccggacgtca gcggcgagag ggccgtgatg ctcctcggcc gggtcaagta cgggctgcac 180
aacctccaga tcagccacct gtccatcgcc agcagccagg tggagctggt ggacgccaag 240
accategacg tegecateca gaacgtgtee gtggtettea aggggaceet gaactacage 300
tacacgagtg cctgggggtt gggcatcaat cagtctgtcg acttcgagat cgactctgcc 360
attgacetee agateaacae agagetgace tgegaegetg geagtgtgeg caccaatgee 420
cccgactgct acctggcttt ccataaactg ctcctgcacc tccaggggga gcgcgagccg 480
gggtggctca agcagctctt cacaaacttc atctccttca ccctgaagct gattctgaag 540
cgacaggtct gcaatgagat caacaccatc tccaacatca tggctgactt tgtccagacg 600
agggeegeca geatectete agatggagae ateggggtgg acattteegt gaegggggee 660
cetgteatea cagecaceta cetggagtee cateacaagg gteactteac gcacaagaac 720
gteteegagg cetteeceet eegegeette eegeceggte ttetggggga etecegeatg 780
ctctacttct ggttctccga tcaagtgctc aactccctgg ccagggccgc cttccaggag 840
ggccgtctcg tgctcagcct gacaggggat gagttcaaga aagtgctgga gacccagggt 900
ttcgacacca accaggaaat cttccaggag ctttccagag gccttcccac cggccaggcc 960
caggtagecg tecaetgeet taaggtgeee aagateteet gecagaaceg gggtgtegtg 1020
gtgtettett eegtegeegt gaegtteege tteeceegee cagatggeeg agaagetgtg 1080
gcctacaggt ttgaggagga tatcatcacc accgtccagg cctcctactc ccagaaaaag 1140
etetteetae acetettgga titteeagtge gigeeggeea geggaaggge aggeagetea 1200
gcaaatctct ccgtggccct caggactgag gctaaggctg tttccaacct gactgagagc 1260
egeteegagt ceetgeagag eteteteege teeetgateg ceaeggtggg cateeeggag 1320
gtcatgtctc ggctcgaggt ggcgttcaca gccctcatga acagcaaagg cctggacctc 1380
ttegaaatea teaaccecga gattateact etegatgget geetgetget geagatggac 1440
ttcggttttc ccaagcacct gctggtggat ttcctgcaga gcctgagc
```

<210> 5

<211> 477

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: humanized rabbit CETP protein

<400> 5

Cys Pro Lys Gly Ala Ser Tyr Glu Ala Gly Ile Val Cys Arg Ile Thr
1 5 10 15

Lys Pro Ala Leu Leu Val Leu Asn Gln Glu Thr Ala Lys Val Val Gln
20 25 30

Thr Ala Phe Gln Arg Ala Gly Tyr Pro Asp Val Ser Gly Glu Arg Ala
35 40 45

Val Met Leu Leu Gly Arg Val Lys Tyr Gly Leu His Asn Leu Gln Ile 50 55 60

Ser Ris Leu Ser Ile Ala Ser Ser Gln Val Glu Leu Val Asp Ala Lys 65 · · 70 75 80

Thr Ile Asp Val Ala Ile Gln Asn Val Ser Val Val Phe Lys Gly Thr 85 90 95

Leu Asn Tyr Ser Tyr Thr Ser Ala Trp Gly Leu Gly Ile Asn Gln Ser 100 105 110

Val Asp Phe Glu Ile Asp Ser Ala Ile Asp Leu Gln Ile Asn Thr Glu 115 120 125

Leu Thr Cys Asp Ala Gly Ser Val Arg Thr Asn Ala Pro Asp Cys Tyr 130 135 140

Leu Ala Phe His Lys Leu Leu Leu His Leu Gln Gly Glu Arg Glu Pro 145 150 155 160

Gly Trp Leu Lys Gln Leu Phe Thr Asn Phe Ile Ser Phe Thr Leu Lys 165 170 175

Leu Ile Leu Lys Arg Gln Val Cys Asn Glu Ile Asn Thr Ile Ser Asn 180 185 190

Ile Met Ala Asp Phe Val Gln Thr Arg Ala Ala Ser Ile Leu Ser Asp 195 200 205

Gly Asp Ile Gly Val Asp Ile Ser Val Thr Gly Ala Pro Val Ile Thr 210 215 220

Ala Thr Tyr Leu Glu Ser His His Lys Gly His Phe Thr His Lys Asn 225 230 235 240

Val Ser Glu Ala Phe Pro Leu Arg Ala Phe Pro Pro Gly Leu Leu Gly
245 250 255

Asp Ser Arg Met Leu Tyr Phe Trp Phe Ser Asp Gln Val Leu Asn Ser 260 265 270

Leu	Ala	Arg	Ala	Ala	Phe	Gln	Glu	Gly	Arg	Leu	Val	Leu	Ser	Leu	Thr
		275					280					285			

- Gly Asp Glu Phe Lys Lys Val Leu Glu Thr Gln Gly Phe Asp Thr Asn 290 295 300
- Gln Glu Ile Phe Gln Glu Leu Ser Arg Gly Leu Pro Thr Gly Gln Ala 305 310 315 320
- Gln Val Ala Val His Cys Leu Lys Val Pro Lys Ile Ser Cys Gln Asn 325 330 335
- Arg Gly Val Val Val Ser Ser Ser Val Ala Val Thr Phe Arg Phe Pro 340 345 350
- Arg Pro Asp Gly Arg Glu Ala Val Ala Tyr Arg Phe Glu Glu Asp Ile 355 360 365
- The Thr Val Gln Ala Ser Tyr Ser Gln Lys Lys Leu Phe Leu His 370 375 380
- Leu Leu Asp Phe Gln Cys Val Pro Lys Ala Val Ser Asn Leu Thr Glu 385 390 395 400
- Ser Arg Ser Glu Ser Leu Gln Ser Ser Leu Arg Ser Leu Ile Ala Thr 405 410 415
- Val Gly Ile Pro Glu Val Met Ser Arg Leu Glu Val Ala Phe Thr Ala 420 425 430
- Leu Met Asn Ser Lys Gly Leu Asp Leu Phe Glu Ile Ile Asn Pro Glu
 435 440 445
- Ile Ile Thr Leu Asp Gly Cys Leu Leu Gln Met Asp Phe Gly Phe 450 455 460
- Pro Lys His Leu Leu Val Asp Phe Leu Gln Ser Leu Ser 465 470 475
- <210> 6
- <211> 496
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence: humanized

225

rabbit CETP protein

<400	0> 6														
Cvs	Pro	Lvs	Glv	Ala	Ser	ጥረም	Glu	λla	G) w	TIA	TeV	Cre	2 ~~	Ile	mp =
1		-1-	1			-,-					V 44.4	Cyn	n. g		1111
				5					10					15	
				•											
Lys	Pro	Ala	Leu	Leu	Val	Leu	Asn	Gln	Glu	Thr	Ala	Lys	Val	Val	Gln
			20					25					30		
The se	A 7 a	Dha	C1-	X ~~~	X 7 -	~ 1	(T)	D		17. T	a	~ 11	G3	3	
THE	NT.G		GIII	ALG	MIG	GTA	_	PLO	Авр	vaı	ser	-	GIU	Arg	ATA
		35					40					45			_
	• •														•.
Val	Met	Leu	Leu	Gly	Arg	Va1	Lys	Tyr	Gly	Leu	His	Asn	Leu	Gln	Ile
	50			_	-	55	-	-	-		60				
						-					•				
_		_				_	_								
Ser	His	Leu	Ser	Ile	Ala	Ser	Ser	Gln	Val	Glu	Leu	Val	Asp	Ala	Lys
65					70					75	•				80
Thr	Ile	Asp	Val	Ala	Tle	Gln	Asn	Val	Ser	Va1	Val	Phe	Lva	Gly	Thr
								,					_,_	-	
				85					90					95	
Leu	Asn	Tyr	Ser	Tyr	Thr	Ser	Ala	Trp	Gly	Leu	Gly	Ile	Asn	Gln	Ser
			100					105					110		
17-1	2 00	Dha	C1.,	T1.	2	e	212	T1.	>	7	~ 1 -	T1.	3	PTT have	~1
vai	мвр		GIU	116	АБР	ser		TTE	Asp	теп	GIN		ABII	Thr	GTU
		115					120					125			
				•											
Leu	Thr	Сув	Asp	Ala	Gly	Ser	Val	Arg	Thr	Asn	Ala	Pro	Asp	Cys	Tyr
	130					135					140				
• • • •		n 1 -	**.2 -	•	•	•	•	·- · -		-	a 1	~ 3	•	a 1	.
	WIG	rue	uis	гув		ren	Leu	HIS	rea		GIY	GIA	Arg	Glu	
145					150					155					160
Gly	Trp	Leu	Lys	Gln	Leu	Phe	Thr	Asn	Phe	Ile	Ser	Phe	Thr	Leu	Lvs
•	•		•	165					170					175	•
				100					2,0						
	_					_							_		
Leu	Ile	Leu	Lys	Arg	Gln	Val	Сув	Asn	Glu	Ile	Asn	Thr	Ile	Ser	Asn
			180					185					190		
Tla	Met	A7 =	Agn	Dhe	Va 1	GIn	ጥኮኍ	Ara	ב ו ב	212	Ser	T1-	T.e.	Ser	lon
***	با تندنه		wah	£ 11¢	***	- II		y	a-a	A44	ner		M-G U	C.T	vaħ
		195					200					205			
Gly	Asp	Ile	Gly	Val	Asp	Ile	Ser	Val	Thr	Gly	Ala	Pro	Val	Ile	Thr
	210					215					220				
87-	M3	60h	•	61	0	TT	**! -	T	~1·-	TT .	5 1	ent	170	+	
wrg	TUL	TAX	ren	GIU	ser	n18	#18	цуs	GTA	als	rne	TDI	HIS	Lys	ABD

235

240

230

Val	Ser	Glu	Ala	Phe	Pro	Leu	Arg	Ala	Phe	Pro	Pro	Gly	Leu	Leu	Gly
				245					250					255	-

- Asp Ser Arg Met Leu Tyr Phe Trp Phe Ser Asp Gln Val Leu Asn Ser 260 265 270
- Leu Ala Arg Ala Ala Phe Gln Glu Gly Arg Leu Val Leu Ser Leu Thr 275 280 285
- Gly Asp Glu Phe Lys Lys Val Leu Glu Thr Gln Gly Phe Asp Thr Asn 290 295 300
- Gln Glu Ile Phe Gln Glu Leu Ser Arg Gly Leu Pro Thr Gly Gln Ala 305 310 315 320
- Gln Val Ala Val His Cys Leu Lys Val Pro Lys Ile Ser Cys Gln Asn 325 330 335
- Arg Gly Val Val Val Ser Ser Ser Val Ala Val Thr Phe Arg Phe Pro 340 345 350
- Arg Pro Asp Gly Arg Glu Ala Val Ala Tyr Arg Phe Glu Glu Asp Ile
 355 360 365
- Ile Thr Thr Val Gln Ala Ser Tyr Ser Gln Lys Lys Leu Phe Leu His 370 375 380
- Leu Leu Asp Phe Gln Cys Val Pro Ala Ser Gly Arg Ala Gly Ser Ser 385 390 395 400
- Ala Asn Leu Ser Val Ala Leu Arg Thr Glu Ala Lys Ala Val Ser Asn 405 410 415
- Leu Thr Glu Ser Arg Ser Glu Ser Leu Gln Ser Ser Leu Arg Ser Leu 420 425 430
- Ile Ala Thr Val Gly Ile Pro Glu Val Met Ser Arg Leu Glu Val Ala
 435 440 445
- Phe Thr Ala Leu Met Asn Ser Lys Gly Leu Asp Leu Phe Glu Ile Ile 450 455 460
- Asn Pro Glu Ile Ile Thr Leu Asp Gly Cys Leu Leu Leu Gln Met Asp 465 470 475 480
- Phe Gly Phe Pro Glu His Leu Leu Val Asp Phe Leu Gln Ser Leu Ser 485 490 495

<210> 7

<211> 31

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: fusion protein of a tetanus toxoid segment and human CETP C-terminus

-400× 7

Cys Gln Tyr Ile Lys Ala Asn Ser Lys Phe Ile Gly Ile Thr Glu Phe

1 5 10 15

Gly Phe Pro Glu His Leu Leu Val Asp Phe Leu Gln Ser Leu Ser