# Analysis of Algorithms

#### Neerja Mhaskar

Dept. of Computing and Software, McMaster University, Canada

**Acknowledgments:** Material mainly based on the textbook Algorithms by Robert Sedgewick and Kevin Wayne (Chapters 1.4) Prof. Janicki's course slides

#### Measuring the running time of a Program - I

- The running time of a program depends on factors such as:
  - the input to the program,
  - the quality of code generated by the compiler used to create the object program,
  - the nature and speed of the instructions on the machine used to execute the program, and
  - the time complexity of the algorithm underlying the program.
- The fact that running time depends on the input tells us that the running time of a program should be defined as a function of the input.
- Often, the running time depends not on the exact input but only on the size of the input.

#### Measuring the running time of a Program - II

- It is customary, then, to talk of T(n), the running time of a program, on inputs of size n. For example, some program may have a running time  $T(n)=cn^2$ , where c is a constant.
- The units of T(n) will be left unspecified, but we can think of T(n) as being the number of instructions executed on an idealized computer.
- For many programs, the running time is really a function of the particular input, and not just of the input size.
- In that case we define T(n) to be the worst case running time, that is, the maximum, over all inputs of size n, of the running time on that input.

#### Measuring the running time of a Program - III

- We also consider  $T_{avg}(n)$ , the average, over all inputs of size n, of the running time on that input.
- While  $T_{avg}(n)$  appears a fairer measure, it is often fallacious to assume that all inputs are equally likely.
- In practice, the average running time is often much harder to determine than the worst-case running time, both because the analysis becomes mathematically intractable and because the notion of average input frequently has no obvious meaning.
- Thus, we shall use worst-case running time as the principal measure of time complexity, although we shall mention average-case complexity wherever we can do so meaningfully.

# Cost of Basic Operations

Most primitive operations take constant time. Below is the table giving the running time of some of the basic operations used in programs.

| operation            | example       | nanoseconds †     |
|----------------------|---------------|-------------------|
| variable declaration | int a         | $c_1$             |
| assignment statement | a = b         | $c_2$             |
| integer compare      | a < b         | C3                |
| array element access | a[i]          | C4                |
| array length         | a.length      | C5                |
| 1D array allocation  | new int[N]    | c6 N              |
| 2D array allocation  | new int[N][N] | c7 N <sup>2</sup> |

McMaster University Comp Sci 2C03 Algorithm Analysis - 4 / 20

### **Big-Oh Notation**

**Big-Oh Notation:**  $T(n) \in O(f(n))$  if there exist constants c > 0 and  $n_0 \ge 0$  such that  $0 \le T(n) \le c \cdot f(n)$  for all  $n \ge n_0$ . Note that O(f(n)) is a set of functions.



#### Example

$$T(n) = 32n^2 + 17n + 1$$
, then

- $T(n) \in O(n^2) \longrightarrow \mathsf{chose}\ c = 50, n_0 = 1$
- $T(n) \in O(n^3)$
- $T(n) \notin O(n)$  and  $T(n) \notin O(n \log n)$

McMaster University Comp Sci 2C03 Algorithm Analysis - 5 / 20

### Big-Omega Notation

**Big-Omega Definition:**  $T(n) \in \Omega(f(n))$  if there exist constants c > 0 and  $n_0 \ge 0$  such that  $T(n) \ge c \cdot f(n)$  for all  $n \ge n_0$ . Note that  $\Omega(f(n))$  is a set of functions.



#### Example

$$T(n) = 32n^2 + 17n + 1$$
, then

- $T(n) \in \Omega(n^2) \longrightarrow \mathsf{chose}\ c = 32, n_0 = 1$
- $T(n) \in \Omega(n)$
- $T(n) \notin \Omega(n^3)$  and  $T(n) \notin \Omega(n^3 \log n)$

### Big-Theta Notation

**Big-Theta Notation:**  $T(n) \in \Theta(f(n))$  if there exist constants  $c_1 > 0$ ,  $c_2 > 0$  and  $n_0 \geq 0$  such that  $c_1 \cdot f(n) \leq T(n) \leq c_2 \cdot f(n)$  for all  $n \geq n_0$ . Note that  $\Theta(f(n))$  is a set of functions.



In short,  $T(n) \in \Theta(f(n))$ , if  $T(n) \in O(f(n))$  and  $T(n) \in \Omega(f(n))$ .

#### Example

$$T(n) = 32n^2 + 17n + 1$$
, then

- $T(n) \in \Theta(n^2) \longrightarrow \mathsf{chose}\ c_1 = 32, c_2 = 50, n_0 = 1$
- $T(n) \notin \Theta(n)$  and  $T(n) \notin \Theta(n^3)$

McMaster University Comp Sci 2C03 Algorithm Analysis - 7 / 20

#### **Notation Abuses**

- Equals sign: O(f(n)) is a set of functions, but computer scientists often write T(n) = O(f(n)) instead of  $T(n) \in O(f(n))$ . Same is the case with Big-Omega and Big-Theta notations.
- **Domain** The domain of f(n) is typically the set of natural numbers  $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ .
- Nonnegative functions: When using big-Oh (big-Omega and big-Theta) notation, we assume that the functions involved are (asymptotically) nonnegative.

### Useful facts

- If  $\lim_{n\to\infty} \frac{f(n)}{g(n)} \neq \infty$ , then  $f(n) \in O(g(n))$ .
- If  $\lim_{n\to\infty} \frac{f(n)}{g(n)} \neq 0$ , then  $f(n) \in \Omega(g(n))$ .
- If  $\lim_{n\to\infty} \frac{f(n)}{g(n)} \neq 0, \infty$ , then  $f(n) \in \Theta(g(n))$ .

# Tilde $(\sim)$ Notation (textbook)

In the textbook, if  $f(n) \in \Theta(g(n))$  then  $f(n) \sim g(n)$ .

Formally, if  $f(n) \sim g(n)$ , if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$$

# Big-Oh Notation with multiple variables

#### **Big-Oh Notation with multiple variables:**

 $T(m,n) \in O(f(m,n))$  if there exist constants c>0  $m_0>0$  and  $n_0\geq 0$  such that  $0\leq T(m,n)\leq c\cdot f(m,n)$  for all  $m\geq m_0$  and  $n\geq n_0$ .

#### Example

$$T(n) = 32mn^2 + 17mn + 32n^3$$
, then

- ullet T(m,n) is both in  $O(n^3+mn^2)$  and  $O(mn^3)$
- $T(m,n) \notin O(mn^2)$  and  $T(m,n) \notin O(n^3)$

## Why it matters

**Table 2.1** The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10<sup>25</sup> years, we simply record the algorithm as taking a very long time.

|               |         |              | , ,     |              |                  |                 |                 |
|---------------|---------|--------------|---------|--------------|------------------|-----------------|-----------------|
|               | п       | $n \log_2 n$ | $n^2$   | $n^3$        | 1.5 <sup>n</sup> | $2^n$           | n!              |
| n = 10        | < 1 sec | < 1 sec      | < 1 sec | < 1 sec      | < 1 sec          | < 1 sec         | 4 sec           |
| n = 30        | < 1 sec | < 1 sec      | < 1 sec | < 1 sec      | < 1 sec          | 18 min          | $10^{25}$ years |
| n = 50        | < 1 sec | < 1 sec      | < 1 sec | < 1 sec      | 11 min           | 36 years        | very long       |
| n = 100       | < 1 sec | < 1 sec      | < 1 sec | 1 sec        | 12,892 years     | $10^{17}$ years | very long       |
| n = 1,000     | < 1 sec | < 1 sec      | 1 sec   | 18 min       | very long        | very long       | very long       |
| n = 10,000    | < 1 sec | < 1 sec      | 2 min   | 12 days      | very long        | very long       | very long       |
| n = 100,000   | < 1 sec | 2 sec        | 3 hours | 32 years     | very long        | very long       | very long       |
| n = 1,000,000 | 1 sec   | 20 sec       | 12 days | 31,710 years | very long        | very long       | very long       |

### Commonly encountered Order growth functions

| order of growth      |            |
|----------------------|------------|
| description          | function   |
| constant             | 1          |
| logarithmic          | $\log N$   |
| linear               | N          |
| linearithmic         | $N \log N$ |
| quadratic            | $N^2$      |
| cubic                | $N^3$      |
| exponential          | $2^N$      |
| Commonly encountered |            |

order-of-growth functions

Order of the growth functions: constant < logarithmic <linear < linearithmic < quadratic < cubic < ... < exponential

#### Some helpful results

- $\bullet \ O(f(n)) + O(g(n)) = O(f(n) + g(n)) = O(\max(f(n), g(n)))$
- O(f(n))O(g(n)) = O(f(n)g(n))
- Polynomials: Let  $T(n) = a_0 + a_1 n + \ldots + a_d n^d$ . with  $a_d > 0$ , Then  $T(n) = \Theta(n^d)$ . This is due to the fact that

$$\lim_{n\to\infty} \frac{a_0 + a_1 n + \ldots + a_d n^d}{n^d} = a_d \neq 0, \infty.$$

• Exponentials and polynomials: For every r > 1, and every d > 0,  $n^d \in O(r^n)$ . Since

$$\lim_{n \to \infty} \frac{n^d}{r^n} = 0.$$

McMaster University Comp Sci 2C03 Algorithm Analysis - 14 / 20

### Questions

$$O(2^n + n^{10000000000}) = ?$$

$$O(n^{10000000000}) = ?$$

 $O(2^n) ? O(n^k),$  for any k

# How to Compute T(n) of an algorithm - I

```
public class ThreeSum
       public static int count(int[] a)
          int N = a.length:
          int cnt = 0:
blocks of statements
          for (int i = 0; i < N; i++
                    if (a[i] + a[j] + a[k]
          return cnt;
       public static void main(String[] args)
                                                        inner
                                                        loop
          int[] a = In.readInts(args[0]):
          StdOut.println(count(a));
```

Anatomy of a program's statement execution frequencies

# How to Compute T(n) of an algorithm - $\ensuremath{\mathsf{II}}$

| statement<br>block | time in seconds | frequency             | total time                                                                                                                         |
|--------------------|-----------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------|
| E                  | $t_0$           | x (depends on input)  | $t_0 x$                                                                                                                            |
| D                  | $t_1$           | $N^3/6 - N^2/2 + N/3$ | $t_1(N^3/6 - N^2/2 + N/3)$                                                                                                         |
| С                  | $t_2$           | $N^2/2 - N/2$         | $t_2(N^2/2-N/2)$                                                                                                                   |
| В                  | $t_3$           | N                     | $t_3 N$                                                                                                                            |
| Α                  | $t_4$           | 1                     | $t_4$                                                                                                                              |
|                    |                 | grand total           | $\begin{array}{l} (t_{1}/6)\ N^{3} \\ +\ (t_{2}/2-t_{1}/2)\ N^{2} \\ +\ (t_{1}/3-t_{2}/2+t_{3})\ N \\ +\ t_{4}+t_{0}x \end{array}$ |
|                    |                 | tilde approximation   | $\sim$ $(t_1/6) N^3$ (assuming x is small)                                                                                         |
|                    |                 | order of growth       | $N^3$                                                                                                                              |

McMaster University Comp Sci 2C03 Algorithm Analysis - 17 / 20

Analyzing the running time of a program (example)

# Useful approximations of functions for analysis of algorithms

| description              | approximation                                                          |
|--------------------------|------------------------------------------------------------------------|
| harmonic sum             | $H_N = 1 + 1/2 + 1/3 + 1/4 + + 1/N \sim \ln N$                         |
| triangular sum           | $1+2+3+4+\ldots+N \sim N^2/2$                                          |
| geometric sum            | $1 + 2 + 4 + 8 + + N = 2N - 1 \sim 2N \text{ when } N = 2^n$           |
| Stirling's approximation | $\lg N! = \lg 1 + \lg 2 + \lg 3 + \lg 4 + \ldots + \lg N \sim N \lg N$ |
| binomial<br>coefficients | $\binom{N}{k} \sim N^k/k!$ when k is a small constant                  |
| exponential              | $(1-1/x)^x \sim 1/e$                                                   |

Useful approximations for the analysis of algorithms

McMaster University Comp Sci 2C03 Algorithm Analysis - 18 / 20

# Types of Analyses

- Best case. Lower bound on cost.
  - Determined by "easiest" input.
  - Provides a goal for all inputs.
- Worst case. Upper bound on cost.
  - Determined by "most difficult" input.
  - Provides a guarantee for all inputs.
- Average case. Expected cost for random input.
  - Need a model for "random" input.
  - Provides a way to predict performance.

#### Caveats

When trying to analyze program performance in detail, many a times you might get inconsistent or misleading results, possibly due to the following:

- Large Constants
- Non-dominant inner loop
- Instruction Time
- System Consideration
- Too close to call
- Strong dependence on inputs
- Multiple problem parameters