STAT 4100 Lecture Note

Week Four (Sep 26, 28, & 30, 2022)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2022/Sep/25 03:38:17

Generating functions (con'd)

Moment generating function (con'd)

- Application
 - Characterizing distributions: $M_{\mathbf{X}}(t)$ and $M_{\mathbf{Y}}(t)$ are both well-defined and equal for all t in a neighborhood of $\mathbf{0} \Leftrightarrow \mathbf{X} \stackrel{d}{=} \mathbf{Y}$
 - * Proofs for laws of large numbers and central limit theorems.
 - Computing moments

 - * nth raw moment $\mu'_n = EX^n = \sum_{k=0}^n \binom{n}{k} \mu_k (\mu'_1)^{n-k}$ * nth central moment $\mu_n = E(X EX)^n = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} \mu'_k (\mu'_1)^{n-k}$

Characteristic function

- For univariate X: $\phi_X(t) = \operatorname{E} \exp(itX)$ for all $t \in \mathbb{R}$

 - Fourier transform of f_X Inverse: $f_X(x) = (2\pi)^{-1} \int_{\mathbb{R}} \phi_X(t) \exp(-itx) dt$
 - $\mu'_n = EX^n = (-i)^n \phi_X^{(n)}(0)$
- For Multivariate $\mathbf{X} = (X_1, \dots, X_p)^{\top}$: $\phi_{\mathbf{X}}(t) = \operatorname{E} \exp(it^{\top}\mathbf{X})$ for all $t \in \mathbb{R}^p$
 - Fourier transform of $f_{\mathbf{X}}$
 - Inverse: $f_{\mathbf{X}}(\mathbf{x}) = (2\pi)^{-p} \int_{\mathbb{R}^p} \phi_{\mathbf{X}}(\mathbf{t}) \exp(-i\mathbf{t}^{\top}\mathbf{x}) d\mathbf{t}$
- $\phi_{\mathbf{X}}(t) = \phi_{\mathbf{Y}}(t)$ for all $t \in \mathbb{R}^p \Leftrightarrow \mathbf{X} \stackrel{d}{=} \mathbf{Y}$

Example Lec6.2

- Find the characteristic functions of following distributions.
 - $-\mathcal{N}(\mu,\sigma^2).$
 - $MVN(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$
 - Cauchy distribution: $f_X(x) = {\pi(1+x^2)}^{-1}, x \in \mathbb{R}.$

Other generating functions

- Cumulant generating function
 - $-K_X(t) = \ln M_X(t) = \sum_{n=0}^{\infty} \kappa_n t^n / n!$
 - $-\kappa_n = K_X^{(n)}(0)$
- Probability-generating function
 - For discrete r.v. X taking values from $\{0,1,\ldots\}$, $G(z)=\mathrm{E}t^X=\sum_{x=0}^\infty t^x p_X(x)$.
 - $-p_X(n) = \Pr(X = n) = G^{(n)}(1)/n!$

Estimating equations

Parametric models

- A parametric model is a set of distributions indexed by unknown $\theta \in \Theta \subset \mathbb{R}^p$ with small or moderate p Say $\{f(\cdot \mid \theta) : \theta \in \Theta \subset \mathbb{R}^p\}$, where f is either a pdf or a pmf and Θ is the set of all the possbile values of θ
- Believed that the true parameter (vector) $\boldsymbol{\theta}_0$ ($\in \boldsymbol{\Theta} \subset \mathbb{R}^p$) is fixed
 - Rather than making θ_0 random in the Bayesian philosophy

Exponential family (CB Sec 3.4)

• Original parameterization

$$f(x \mid \boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp \left\{ \sum_{i=1}^{k} w_i(\boldsymbol{\theta})t_i(x) \right\}$$

• Normal (CB Example 3.4.4):

$$-h(x) = \mathbf{1}_{\mathbb{R}}(x)
-c(\mu, \sigma) = (2\pi\sigma^{2})^{-1/2} \exp\{-\mu^{2}/(2\sigma^{2})\} \mathbf{1}_{\mathbb{R}}(\mu) \mathbf{1}_{\mathbb{R}^{+}}(\sigma)
-w_{1}(\mu, \sigma) = \sigma^{-2} \mathbf{1}_{\mathbb{R}^{+}}(\sigma) & w_{2}(\mu, \sigma) = \mu\sigma^{-2} \mathbf{1}_{\mathbb{R}^{+}}(\sigma)
-t_{1}(x) = -x^{2}/2 & t_{2}(x) = x$$

• Binomial (CB Example 3.4.1):

$$-h(x) = {n \choose x} \mathbf{1}_{\{0,\dots,n\}}(x)
-c(p) = (1-p)^n \mathbf{1}_{\{0,1\}}(p)
-w_1(p) = \ln\{p/(1-p)\} \mathbf{1}_{\{0,1\}}(p)
-t_1(x) = x$$

• Other special cases: gamma, beta, Poisson, negative binomial

Method of moments (MOM, CB Sec 7.2.1)

- Procedure
 - 1. Equate raw moments to their empirical counterparts.
 - 2. Solve the resulting simultaneous equations for $\theta = (\theta_1, \dots, \theta_p)$.
- Features
 - Easy implementation
 - Start point for more complex methods
 - No constraint
 - Not uniquely defined
 - No guarantee on optimality

Exercise Lec7.1

• Let X_1, \ldots, X_n iid follow the following distributions. Find MOM estimators for (θ_1, θ_2) .

- a. $N(\theta_1, \theta_2), (\theta_1, \theta_2) \in \mathbb{R} \times \mathbb{R}^+$.
- b. Binom (θ_1, θ_2) with pmf

$$p_X(x \mid \theta_1, \theta_2) = \binom{\theta_1}{x} \theta_2^x (1 - \theta_2)^{\theta_1 - x} \mathbf{1}_{\{0, \dots, \theta_1\}}(x), \quad (\theta_1, \theta_2) \in \mathbb{Z}^+ \times (0, 1).$$

Exercise Lec7.2

• Let X_1, \ldots, X_n iid follow pdf $f(x \mid \theta) = \theta x^{\theta-1} \mathbf{1}_{[0,1]}(x), \theta > 0$.

- a. Find an MOM estimator of θ .
- b. Can we employ the second (raw) moment instead of the first one?

Maximum Likelihood Estimator (MLE, CB Sec 7.2.2)

• Likelihood function: $L: \Theta \to \mathbb{R}$ such that, given x (a realization of X),

$$L(\boldsymbol{\theta}; \boldsymbol{x}) = f_{\mathbf{X}}(\boldsymbol{x} \mid \boldsymbol{\theta}),$$

where $f_{\mathbf{X}}$ is the joint pdf or pmf.

• For each x, let $\hat{\theta}(x)$ be the maximizer of $L(\theta;x)$ (or log-likelihood $\ell(\theta;x) = \ln L(\theta;x)$) with respect to $\boldsymbol{\theta}$ constrained in $\boldsymbol{\Theta}$, i.e.,

$$\hat{\boldsymbol{\theta}}(\boldsymbol{x}) = \arg\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\boldsymbol{\theta}; \boldsymbol{x}) = \arg\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \ell(\boldsymbol{\theta}; \boldsymbol{x}).$$

Then the statistic $\hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}}(\mathbf{X})$ is the MLE for $\boldsymbol{\theta} \in \boldsymbol{\Theta}$.

- Invariance property of MLE (CB Thm 7.2.10): As long as $\hat{\theta}$ is the MLE of θ , for ANY function q, the $q(\hat{\boldsymbol{\theta}})$ is teh MLE of $q(\boldsymbol{\theta})$.
- If $\ell(\theta; x)$ is differentiable, the score funtion **S** is defined as its gradient

$$\mathbf{S}(oldsymbol{ heta}; oldsymbol{x}) = \left[rac{\partial}{\partial heta_1} \ell(oldsymbol{ heta}; oldsymbol{x}), \ldots, rac{\partial}{\partial heta_p} \ell(oldsymbol{ heta}; oldsymbol{x})
ight]^ op.$$

• If $\ell(\theta; x)$ is twice differentiable, we have hessian of $\ell(\theta; x)$

$$\mathbf{H}(m{ heta};m{x}) = \left[rac{\partial^2}{\partial heta_i\partial heta_j}\ell(m{ heta};m{x})
ight]_{p imes p}.$$

- Procedure
 - A direct maximization if ℓ or L is monotonic OR
 - Solving simultaneous equations $S(\theta; x) = 0$ for θ . Specifically,
 - 1. Collect solutions with negative definite Hessian (indicating interior local maximizers)
 - 2. Compare likelihoods (or log-likelihoods) corresponding to all candidates (consisting of previously picked solutions plus boundary values of Θ)
 - 3. May involve discussions on different values of x

Exercise Lec7.3

- Suppose X_1, \ldots, X_n are iid as the following distributions. Find MLEs for corresponding parameters.
 - a. $N(\mu, \sigma^2), (\mu, \sigma) \in \mathbb{R} \times \mathbb{R}^+$.

 - b. Bernoulli(θ): $p(x \mid \theta) = \theta^x (1 \theta)^{1-x} \mathbf{1}_{\{0,1\}}(x), \ \theta \in [0,1/2].$ c. Two-parameter exponential: $f(x \mid \alpha, \beta) = \beta^{-1} \exp\{-(x \alpha)/\beta\} \mathbf{1}_{(\alpha,\infty)}(x), \ (\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^+.$

Other examples of estimating equations

- Least-squares estimator
- Generalized estimating equations (GEE)
- M-estimator

Evaluating estimators

Mean squared error (MSE)

- Univariate: $E(\hat{\theta} \theta_0)^2 = \{E(\hat{\theta}) \theta_0\}^2 + var(\hat{\theta}_0)$
- Multivariate: $E\{(\hat{\boldsymbol{\theta}} \boldsymbol{\theta}_0)^{\top}(\hat{\boldsymbol{\theta}} \boldsymbol{\theta}_0)\} = \{E(\hat{\boldsymbol{\theta}}) \boldsymbol{\theta}_0\}^{\top}\{E(\hat{\boldsymbol{\theta}}) \boldsymbol{\theta}_0\} + cov(\hat{\boldsymbol{\theta}})$
- Best unbiased estimator (a.k.a. (uniform) minimum variance unbiased estimator, abbr. UMVUE/MVUE): if $\hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}}(\mathbf{X})$ satisfies that
 - $-\hat{\boldsymbol{\theta}}$ is unbiased for $\boldsymbol{\theta}$, i.e., $E(\hat{\boldsymbol{\theta}}) = \boldsymbol{\theta}$;
 - $-\operatorname{var}(\hat{\boldsymbol{\theta}}) \leq \operatorname{var}(\hat{\boldsymbol{\theta}}^*)$ for all $\boldsymbol{\theta} \in \boldsymbol{\Theta}$ and all $\hat{\boldsymbol{\theta}}^*$ such that $\operatorname{E}(\hat{\boldsymbol{\theta}}^*) = \boldsymbol{\theta}$.
- UMVUE is unique (CB Thm 7.3.19)

Cramer-Rao lower bound (CB Thm 7.3.9 & Lemma 7.3.11)

- Only consider the univariate case, i.e., one-dimensional unknown parameter θ
- Fisher information: $I(\theta) = \text{var}(S(\theta; \mathbf{X})) = \mathbb{E}[\{S(\theta; \mathbf{X})\}^2] = -\mathbb{E}[\{H(\theta; \mathbf{X})\}^2]$
 - score function $S(\theta; \mathbf{X})$ and Hessian $H(\theta; \mathbf{X})$ both scalar
- Cramer-Rao lower bound: $var(\hat{\theta}) \geq \{(d/d\theta)E(\hat{\theta})\}^2/I(\theta) \text{ for } \hat{\theta} \text{ satisfying regularity conditions}$
 - Proof: Cauchy-Schwarz inequality (CB Thm 4.7.3) \Rightarrow covariance inequality (CB Example 4.7.4)
- (CB Coro 7.3.15) $\hat{\theta}$ attains the lower bound $\Leftrightarrow \exists a(\theta) \text{ s.t. } S(\theta; \mathbf{X}) = a(\theta) \{ \hat{\theta} \mathbf{E}(\hat{\theta}) \}$
- The unbiased $\hat{\theta}$ attaining the lower bound is UMVUE.

Example Lec8.1

- Find the lower bound for unbiased estimators for σ^2 in the following cases.
 - a. $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ with known μ and unknown σ^2 .
 - b. $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ with unknown (μ, σ^2) .

Sufficiency (CB Sec 6.2.1)

- A statistic $\mathbf{T} = \mathbf{T}(\mathbf{X})$ is sufficient for $\boldsymbol{\theta} = (\theta_1, \dots, \theta_p) \Leftrightarrow$ the distribution of \mathbf{X} conditioning on \mathbf{T} and $\boldsymbol{\theta}$, say $f_{\mathbf{X}|\mathbf{T},\boldsymbol{\theta}}(\boldsymbol{x} \mid \boldsymbol{t},\boldsymbol{\theta})$, is free of $\boldsymbol{\theta}$.
- Fisher-Neyman factorization theorem (CB Thm 6.2.6; HMC Thm 7.2.1): **T** is sufficient for $\theta \Leftrightarrow$ the likelihood function can be factored into two parts, one of them not depending on θ , i.e.,

$$L(\boldsymbol{\theta}; \boldsymbol{x}) = h(\boldsymbol{x})q(\mathbf{T}(\boldsymbol{x}), \boldsymbol{\theta}),$$

for all the possible values of x and θ .

- (HMC Thm 7.3.2) If **T** is sufficient for θ and $\hat{\theta}$ is the unique MLE of θ , then $\hat{\theta}$ must be a function of **T**.
- Nonuniqueness
 - Trivial examples
 - * X is always sufficient.
 - * $(X_{(1)}, \ldots, X_{(n)})$ is always sufficient if X_i 's are iid, with $X_{(1)} \leq \cdots \leq X_{(n)}$.
 - **T** is sufficient and $g(\cdot)$ is a one-to-one mapping $\Rightarrow g(\mathbf{T})$ is also sufficient.
- Minimal sufficiency: a sufficient statistic that is a function of all the other sufficient statistics.
 - How to find a minimal sufficient sufficient statistic (CB Thm 6.2.13):
 - 1. Find the sufficient and necessary condition for $L(\theta; x)/L(\theta; y)$ to be free of θ ;

2. If the condition is of the form $\mathbf{T}(x) = \mathbf{T}(y)$, then $\mathbf{T}(\mathbf{X})$ is a minimal sufficient statistic for $\boldsymbol{\theta}$.

Example Lec8.2

- Find the minimal sufficient statistics in the following scenarios.
 - a. $X_1, \ldots, X_n \sim \mathrm{Unif}(1, \ldots, \theta)$ with unknown positive integer θ . b. $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ with unknown μ and σ^2 .