LoRA: Low-Rank Adaptation of Large Language Models

Motivation: The Fine-tuning Problem

Fine-tuning large language models presents significant challenges:

- Parameter Inefficiency: Fine-tuning requires updating all parameters (often billions)
- Memory Requirements: Storing optimizer states, gradients, and model copies demands substantial VRAM
- Storage Overhead: Each fine-tuned model requires saving a complete copy of all parameters
- Training Cost: Full fine-tuning is computationally expensive and time-consuming

Enter LoRA: Parameter-Efficient Fine-tuning

LoRA (Low-Rank Adaptation) solves these challenges by recognizing that updates to pre-trained weights during fine-tuning have a **low intrinsic rank**. By low intrinsic rank we mean that when a large pre-trained model is fine-tuned for a specific task, the changes required in its weight matrices are structured and do not span the full high-dimensional space of the original weights. Instead of updating all weights directly, LoRA injects trainable rank decomposition matrices into the model.

Core Concept: Low-Rank Decomposition

The key insight is that we can represent the weight update matrix as a product of two lower-rank matrices:

$$\Delta W = B \times A$$

Where:

- ullet Original weight matrix W has dimensions d imes k
- ullet B has dimensions d imes r
- A has dimensions $r \times k$
- $r << \min(d, k)$ (significantly lower rank than the original matrix)

The updated forward pass becomes:

$$h = Wx + \Delta Wx = Wx + BAx$$

LoRA in Practice: Applying to Transformer Weights

LoRA typically targets specific weight matrices in the model:

- Query and Key projections in self-attention layers
- Value projections in self-attention layers
- Output projections after self-attention
- Feed-forward network weights

For each target weight matrix, we:

- 1. Freeze the original pre-trained weights ${\it W}$
- 2. Initialize low-rank matrices A and B
 - A is initialized with random Gaussian values
 - B is initialized with zeros (ensuring no impact at the start)
- 3. Scale the contribution with a parameter lpha
- 4. Apply the update during the forward pass: $Wx + rac{lpha}{r}(BA)x$

Advantages of LoRA

- Parameter Efficiency: Only trains a small fraction of parameters (typically <1%)
- Memory Efficiency: Significantly reduced memory footprint during training
- Storage Efficiency: Can store multiple task adaptations with minimal overhead

- Inference Efficiency: LoRA matrices can be merged with original weights at inference time
- Composition: Multiple LoRA adaptations can be combined or swapped

Mathematical Representation

Standard Fine-tuning

During traditional fine-tuning, we update weights from W to W':

$$W' = W + \Delta W$$

LoRA Approach

With LoRA, we approximate the update using low-rank matrices:

$$W' = W + \frac{\alpha}{r}BA$$

Where:

- $oldsymbol{\cdot}$ $W \in \mathbb{R}^{d imes k}$ is the pre-trained weight matrix
- ullet $B \in \mathbb{R}^{d imes r}$ and $A \in \mathbb{R}^{r imes k}$ are trainable low-rank matrices
- ullet r is the rank (hyperparameter, typically 4-64)
- α is a scaling factor (hyperparameter)

Training Process

- 1. Initialize A with random Gaussian values: $A \sim N(0,\sigma^2)$
- 2. Initialize B with zeros: B=0
- 3. Freeze the pre-trained weights ${\it W}$
- 4. Train only the parameters in A and B
- 5. During inference, compute: $h = Wx + rac{lpha}{r}(BA)x$

Hyperparameters

The most critical hyperparameters in LoRA are:

- Rank (r): Controls the expressiveness of the adaptation (higher values = more capacity)
- Alpha (α): Scales the contribution of the low-rank update
- Target modules: Which weight matrices to apply LoRA to

• Learning rate: Often higher learning rates can be used compared to full fine-tuning

Performance Comparison

Method	Trainable Parameters	Memory Usage	Storage	Training Time
Full Fine- tuning	100%	High	Full model copy	Slow
LoRA (r=8)	<1%	Low	Small adapter	Fast
LoRA (r=16)	<1%	Low	Small adapter	Fast
LoRA (r=32)	<1%	Low	Small adapter	Fast

In This Assignment

You will implement LoRA for your SmolLM model, focusing on:

- 1. Creating the LoRA adaptation layers
- 2. Freezing pre-trained weights
- 3. Applying LoRA to specific weight matrices
- 4. Training and evaluating the LoRA-adapted model
- 5. Comparing performance against full fine-tuning

Additional Resources

Original Paper

LoRA: Low-Rank Adaptation of Large Language Models - Hu et al., 2021

Video Explanations

- LoRA explained (and a bit about precision and quantization) Good introduction to LoRA
- Fine-tuning LLMs with PEFT and LoRA Practical walkthrough