불량 반도체 탐지 프로그램 개발

YOLO v5를 이용한 객체 검출 알고리즘의 활용

목차

1 프로젝트 소개

2 데이터 분석 및 모델 개발

3 Web Application 구현

4 프로젝트 정리 및 소감

Part 1 프로젝트 소개

기획배경및목적 데이터셋소개 개발환경

기획배경및목적

- 5G시장확대, 비대면 경제확산지속
 - → 전반적인 **반도체 산업 수요 증가**
- 기업체의 수요 대비 부족한 전문인력

반도체산업의성장방향에맞춘

객관적인 **공정 자동화** 및 **전문 인력 보완** 요소의 필요성 증대

자료 출처: IC인사이츠, 매일경제

기획배경및목적

기존 EDS 공정의 한계	딥러닝알고리즘도입시 기대 효과				
검출자의숙련도나컨디션에 크게 영향을 받음	기존 결함 학습을 통한 객관적인 결함 탐지				
반도체공정의미세화에따른 기계고장으로 인한신규 결함 발생	실시간으로 발생하는 새로운 결함에도 즉각적인 대처 가능				
⇒ 검출자의 영향을 받지 않으며 일정 수준 이상의 검출 능력을 갖춘 자동화 시스템으로					
반도체수율상승, 인건비절감등의 기업 경쟁력 제고					

데이터셋소개

패턴 1 패턴 2

- 데이터형식: JPG 이미지(1000*1000 px)
- **데이터개수**: 280장
- 동일한환경에서촬영된반도체웨이퍼사진

Part 2 데이터 분석 및 모델 개발

데이터분석및모델개발

프로세스요약 데이터가공 (어노테이션/데이터증식/라벨링) 모델링

Step 1

결함의유형파악후 **바운딩박스**처리

Step 2

YOLO Series
Faster R-CNN
RetinaNet

>>

데이터셋에 적합한 객체 검출 알고리즘 찾기

Step 3

>>

시 # 해석 및 모델 파라미터 최적화

Step 4

>>

기술확장을위한 Web Application 구현

구분	어노테이션 명	결함예시	
작은점	dot		
큰점	spot		
곡선형 이물질	line		
긁힌자국	scratch		

데이터가공 어노테이션

구분	어노테이션 명	결함 예시	구분	어노테이션 명	결함 예시
튀어나온결함	bulge circuit		길게잘린회로	cut circuit	
구멍결함	circle		짧게잘린회로	short circuit	
곡선형 결함	curve circuit		굵은회로	fat circuit	
사선으로잘린결함	edge circuit		가는회로	thin circuit	

한정된 객체의 수, **비정형 결함**의 존재

"어떻게 하면 학습 효율을 높일 수 있을까?"

데이터가공-데이터증식

특정 결함의 절대량 부족 전체이미지 280장중line **11**개, scratch **10**개

합성을통해새롭게생성한데이터

데이터가공-데이터증식

데이터가공-레팅

<최종데이터셋>

1차라벨링

- 단순이물결함어노테이션세분화
- 비정형 결함은 **폴리곤** 처리
 - → 지나친세분화로 검출 결과 혼재 결함의 특징 학습 못함

2차리벨링

- 단순이물결함4종으로통합
- 회로결함8종추가
- 긴결함은나눠서바운당박스처리

→ 객체자체검출능력 ↑ 바운딩박스개수차이로인한**mAP하락**

3차라벨링

- 비정형결함은하나로묶어서라벨링
- dot와 spot은 영역을 좁게 리벨링
- 부족한객체는합성으로증식

→ 비슷한객체간구분능력 ↑mAP@0.50.96 달성

모델링

- VJ Det.
- HOG Det.···

Traditional Detection

One-Stage Detector

- SSD (2016)
- RetinaNet (2017)
- YOLO v5 (2020) ★
- YOLO X (2021) ★

Deep Learning Based Detection

Two-Stage Detector

- R-CNN (2014)
- Fast R-CNN (2015)
- Faster R-CNN (2016) ★
- Mask R-CNN (2017)

모델링

mAP@0.5(비증식) 0.964 Small mAP@0.5(증식) 0.962 1시간이내 소요시간 YOLO v5 mAP@0.5(비증식) 0.96 Medium mAP@0.5(증식) 0.97 약1시간30분 소요시간 YOLO v5 mAP@0.5(비증식) 0.964 Large mAP@0.5(증식) 0.972 소요시간 약2시간

학습이미지 640px mAP@0.5 **0.972**

학습이미지 1,024px mAP@0.5 **0.964** spot 0.85

※비증식 Train Data 200장/증식 Train Data 600장

최종모델파라미터

- YOLO v5 L
- Train Image Size: 1,024 px
- Batch Size: 10
- Epochs: 200

최종데이터셋

- 원본데이터 280장
- 합성데이터 40장
- Train: Validation = 70:30
- Train Data 202장약 3배증식 → 573장

모델링

실제 환경 구현 - 양품 90%, 결함품 10%

loU 임계수준을 넘지못한 일부 결함 mAP가 하락했으나 결함품 이미지 내 **12가지 객체 탐지 모두 성공**

Part 3 Web Application 구현

Part 4 프로젝트 정리 및 소감

프로젝트정리

#2차_프로젝트 #영상이미지 #YOLO #참여_소감

용지영 | 기획총괄

이미지데이터를 사용해 본적은 처음이라 많이 생소한 작업이었지만 그만큼 이번 프로젝트에서 많이 배울 수 있어서 뿌듯합니다.

김재경 | Web구현발표

다양한객체탐지모델과 웹페이지구성의전체적인짜임새를 배울수있었고,팀플레이의중요성을 다시한번깨달았습니다.

어정호 | 모델최적화

관심 있던 object detection과 이미지 데이터에 대해 공부할 수 있어 유익한시간이었고, 컴퓨터 비전 분야에 대해 더 흥미가 생기게 되었습니다.

이재우 | 뫼번

이미지에서 객체를 탐지하기 위해 설계된 딥러닝 모델의 동작 방식과 우리의 목적에 부합한 모델을 채택하는 과정을 배울 수 있어 좋았습니다.

정현우 | 데이터정제

객체탐지의전체적인호름을 알수있는좋은기회였고, 특히ROBOFLOW의 빠르고편리함이 인상깊었습니다.

최지원 | 모델링및PPT

딥러닝기술이기존산업과 만나 어떻게시너지효과를일으키는지 그가능성을 직접확인할수 있었던 뜻깊은 경험이었습니다.

감사합니다

