Matrix Representation

- 1) Adjacency Matrix
- 2 Incidence Matrix
- 3 Cut-set Matrix
 - (4) Circuit (Cycle Matrix)
- (5) Palt matix
- 1) Adjacency Matrix: A.M. of G with n vertices and no parallel edges is nxn binary (0-1) matrix

M(G) = [mij]

	a	b	د	d
o	0	1		1
ط	ı	0	0	0
۲	1	0	1	1
d		0	1	b
,	•			

2) Incidence Matrix: 9f G, |V|=n, |E|=m, without self-loop Then incidence Matrix of G, is nxm matrix (bine) A(G) = [aij]
mi —on vi St.

aij = { 1 if jit edge is incident on ith verter of the verter of th b é3 a 1 -AG)=0 D b 1 0 0 Notes: (Adjacency): 1) 9 f principal diagonal is all zero -> Ihere is no self book 2) it can't represent 11 edges

- 3) for Simple graph dagree of vertex is no of 1's in cornesponding now.
- 4) for disconnected graph G (wilt g, h components) adjacency Matrix

$$M(G) = \begin{bmatrix} M(g) & 0 \\ 0 & M(h) \end{bmatrix}$$

I Note (Incidency Matrix):

- 1) it can't represent self loops
- 2) deg. of Vi is no of 1's in that now
- 3) the row with all D's stand for isolated very
- 4) Incidence Mafrix for disconnected grouph G with 9, h components

$$A(G) = \begin{bmatrix} A(G) & O \\ O & A(h) \end{bmatrix}$$

200 9 noidence Matrix (Di-graph)

9f G a di-graph

aij = { 1 if ej is outgoing edge from vi aij = { 0 if ej is not incident on vi -1 if ej is incident into vi

	eı	e ₂	ez	e4	es	e ₆	e 7
a	-1						
Ь	1	~1	0	0	O	-1	0
C	0	1	- (O	1	O	D
d	0	O	1	-1	D	1)