Semaine 7 - Développements limités et équations différentielles

Valentin De Bortoli email : valentin.debortoli@gmail.com

1 Développements limités et dérivabilité

- 1 Montrer que f est continue en 0 si et seulement si f admet un développement limité d'ordre 0 en 0.
- 2 Montrer que f est dérivable en 0 si et seulement si f admet un développement limité d'ordre 1 en 0.
- 3 Montrer que si f est deux fois dérivable en 0 alors f admet un développement limité d'ordre 2 en 0.
- 4 Montrer que $x\mapsto x^3\sin(\frac{1}{x})$ définie sur \mathbb{R}^* et prolongée par continuité en 0 admet un développement limité à l'ordre 2 mais n'est pas 2 fois dérivable en 0.

2 Calcul de développements limités

- 1 Justifier l'existence et calculer un développement limité en $\frac{\pi}{2}$ à l'ordre 2 de $x\mapsto \ln(\sin(x))$.
- **2** Justifier l'existence et calculer un développement limité en $\frac{\pi}{2}$ à l'ordre 2 de $x \mapsto (1 + \cos(x))^{\frac{1}{x}}$.

3 Fonction décroissante et équivalent

Soit f une fonction décroissante qui de \mathbb{R} dans \mathbb{R} . On suppose que $f(x) + f(x+1) \underset{x \to +\infty}{\sim} \frac{1}{x}$.

- 1 Montrer que f admet une limite et la calculer.
- **2** Donner un équivalent de f.

4 Calcul de limites (1)

- 1 Montrer que $x\mapsto \frac{x^{\ln(x)}}{\ln(x)}$ admet une limite en $+\infty$ et la calculer.
- **2** Montrer que $x \mapsto \left(\frac{x}{\ln(x)}\right)^{\frac{\ln(x)}{x}}$ admet une limite en $+\infty$ et la calculer.
- 3 Montrer que $x\mapsto \frac{\ln(x+\sqrt{x^2+1})}{\ln(x)}$ admet une limite en $+\infty$ et la calculer.

5 Calcul de limites (2)

- 1 Montrer que $x \mapsto (x+1)e^x xe^{x+1}$ admet une limite en $+\infty$ et la calculer.
- 2 Montrer que $x \mapsto (x+1)\ln(x) x\ln(x+1)$ admet une limite en $+\infty$ et la calculer.

6 Développement limité et approximation par une fraction rationnelle d'ordre 2

- $\textbf{1} \quad \text{Déterminer } (a,b) \in \mathbb{R}^2 \text{ telle que la partie principal de } x \mapsto \cos(x) \tfrac{1+ax^2}{1+bx^2} \text{ en } 0 \text{ soit la plus petite possible.}$
- **2** Donner un équivalent de $x \mapsto \cos(x) \frac{1+ax^2}{1+bx^2}$ en 0 pour les valeurs de (a,b) trouvées.

7 Suite et équivalent (1)

- 1 Montrer que $\forall n \in \mathbb{N}, \exists x_n \in]n\pi \frac{\pi}{2}, n\pi + \frac{\pi}{2}[\mid \tan(x_n) = x_n.$
- **2** Montrer $x_n \sim n\pi$.
- **3** Montrer $x_n n\pi \frac{\pi}{2} \underset{+\infty}{\rightarrow} 0$.
- 4 Montrer que $x_n = n\pi + \frac{\pi}{2} \frac{1}{n\pi} + \frac{1}{2\pi n^2} + o(\frac{1}{n^2}).$

8 Suite et équivalent (2)

- 1 Montrer que $e^x + x n = 0$ admet une unique solution sur \mathbb{R} . On la note u_n .
- **2** En posant $v_n = u_n \ln(n)$, montrer que $v_n \to 0$.
- **3** Trouver un équivalent de v_n en $+\infty$.
- **4** En déduire un développement asymptotique de u_n .

9 Réciproque et développement limité

- 1 Montrer que $f: x \mapsto 2\tan(x) x$ est une bijection \mathcal{C}^{∞} de $]-\frac{\pi}{2}, \frac{\pi}{2}[$ dans \mathbb{R} . Montrer que f^{-1} est impaire.
- **2** Donner un développement limité à l'ordre 6 de f^{-1} .

10 Résolution d'une équation différentielle (2)

1 Résoudre en y sur $]-\infty,-1[$, sur]-1,1[et sur $]1,+\infty[$ l'équation suivante : $(1-x^2)y'(x)-2xy(x)=x^2$.

11 Résolution d'une équation différentielle (3)

1 Résoudre en y sur $]-\infty,0[$ et sur $]0,+\infty[$ l'équation suivante : $|x|y'(x)+(x-1)y(x)=x^3$.

12 Résolution d'une équation différentielle (4)

1 Résoudre en y sur $\mathbb R$ l'équation suivante : $x^2y'(x)-y(x)=0$

13 Fonctions trigonométriques et équation différentielle

- 1 Calculer $\cos(\arctan(x))$ pour $x \in]-1,1[$.
- **2** Calculer $\sin(\arctan(x))$ pour $x \in]-1,1[$.