# CX1104: Linear Algebra for Computing

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}}_{n \times n} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}}_{m \times 1}$$

Chap. No: **6.2.1** 

Lecture: Orthogonality

Topic: Orthogonality

**Definition of Orthogonality and** 

Concept: Orthogonal Complements

Instructor: A/P Chng Eng Siong

TAs: Zhang Su, Vishal Choudhari

LAST REVISED: 25 Sep 2021

Rev: 26<sup>th</sup> June 2020

# **Orthogonality Definition**

#### The Standard Unit Vectors





▲ Figure 3.2.2

When a rectangular coordinate system is introduced in  $R^2$  or  $R^3$ , the unit vectors in the positive directions of the coordinate axes are called the *standard unit vectors*. In  $R^2$  these vectors are denoted by

$$i = (1, 0)$$
 and  $j = (0, 1)$ 

and in  $R^3$  by

$$\mathbf{i} = (1, 0, 0), \quad \mathbf{j} = (0, 1, 0), \quad \text{and} \quad \mathbf{k} = (0, 0, 1)$$

(Figure 3.2.2). Every vector  $\mathbf{v} = (v_1, v_2)$  in  $R^2$  and every vector  $\mathbf{v} = (v_1, v_2, v_3)$  in  $R^3$  can be expressed as a linear combination of standard unit vectors by writing

$$\mathbf{v} = (v_1, v_2) = v_1(1, 0) + v_2(0, 1) = v_1\mathbf{i} + v_2\mathbf{j}$$

$$\mathbf{v} = (v_1, v_2, v_3) = v_1(1, 0, 0) + v_2(0, 1, 0) + v_3(0, 0, 1) = v_1\mathbf{i} + v_2\mathbf{j} + v_3\mathbf{k}$$

**DEFINITION 1** Two nonzero vectors  $\mathbf{u}$  and  $\mathbf{v}$  in  $R^n$  are said to be *orthogonal* (or *perpendicular*) if  $\mathbf{u} \cdot \mathbf{v} = 0$ . We will also agree that the zero vector in  $R^n$  is orthogonal to *every* vector in  $R^n$ .

Recall from Formula (20) in the previous section that the angle  $\theta$  between two *nonzero* vectors **u** and **v** in  $\mathbb{R}^n$  is defined by the formula

$$\theta = \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}\right)$$

It follows from this that  $\theta = \pi/2$  if and only if  $\mathbf{u} \cdot \mathbf{v} = 0$ . Thus, we make the following definition.

#### **EXAMPLE 1 Orthogonal Vectors**

- (a) Show that  $\mathbf{u} = (-2, 3, 1, 4)$  and  $\mathbf{v} = (1, 2, 0, -1)$  are orthogonal vectors in  $\mathbb{R}^4$ .
- (b) Let  $S = \{i, j, k\}$  be the set of standard unit vectors in  $\mathbb{R}^3$ . Show that each ordered pair of vectors in S is orthogonal.

Solution (a) The vectors are orthogonal since

$$\mathbf{u} \cdot \mathbf{v} = (-2)(1) + (3)(2) + (1)(0) + (4)(-1) = 0$$

**Solution (b)** It suffices to show that

$$\mathbf{i} \cdot \mathbf{j} = \mathbf{i} \cdot \mathbf{k} = \mathbf{j} \cdot \mathbf{k} = 0$$

because it will follow automatically from the symmetry property of the dot product that

$$\mathbf{j} \cdot \mathbf{i} = \mathbf{k} \cdot \mathbf{i} = \mathbf{k} \cdot \mathbf{j} = \mathbf{0}$$

Although the orthogonality of the vectors in *S* is evident geometrically from Figure 3.2.2, it is confirmed algebraically by the computations

$$\mathbf{i} \cdot \mathbf{j} = (1, 0, 0) \cdot (0, 1, 0) = 0$$

$$\mathbf{i} \cdot \mathbf{k} = (1, 0, 0) \cdot (0, 0, 1) = 0$$

$$\mathbf{j} \cdot \mathbf{k} = (0, 1, 0) \cdot (0, 0, 1) = 0$$

### Lines and Planes Determined by Points and Normals

One learns in analytic geometry that a line in  $R^2$  is determined uniquely by its slope and one of its points, and that a plane in  $R^3$  is determined uniquely by its "inclination" and one of its points. One way of specifying slope and inclination is to use a *nonzero* vector  $\mathbf{n}$ , called a *normal*, that is orthogonal to the line or plane in question. For example, Figure 3.3.1 shows the line through the point  $P_0(x_0, y_0)$  that has normal  $\mathbf{n} = (a, b)$  and the plane through the point  $P_0(x_0, y_0, z_0)$  that has normal  $\mathbf{n} = (a, b, c)$ . Both the line and the plane are represented by the vector equation

$$\mathbf{n} \cdot \overrightarrow{P_0 P} = 0 \tag{1}$$

where P is either an arbitrary point (x, y) on the line or an arbitrary point (x, y, z) in the plane. The vector  $\overrightarrow{P_0P}$  can be expressed in terms of components as

$$\overrightarrow{P_0P} = (x - x_0, y - y_0)$$
 [line]  
 $\overrightarrow{P_0P} = (x - x_0, y - y_0, z - z_0)$  [plane]

Thus, Equation (1) can be written as

$$a(x - x_0) + b(y - y_0) = 0$$
 [line] (2)

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$
 [plane] (3)

These are called the *point-normal* equations of the line and plane.



Note, **n** above represents components of the normal vector and not coordinates.

**Remark** It may have occurred to you that an ordered pair  $(v_1, v_2)$  can represent either a vector with *components*  $v_1$  and  $v_2$  or a point with *coordinates*  $v_1$  and  $v_2$  (and similarly for ordered triples). Both are valid geometric interpretations, so the appropriate choice will depend on the geometric viewpoint that we want to emphasize (Figure 3.1.11).



Figure 3.3.1

#### **EXAMPLE 2 Point-Normal Equations**

It follows from (2) that in  $\mathbb{R}^2$  the equation

$$6(x-3) + (y+7) = 0$$

represents the line through the point (3, -7) with normal  $\mathbf{n} = (6, 1)$ ; and it follows from (3) that in  $\mathbb{R}^3$  the equation

$$4(x-3) + 2y - 5(z-7) = 0$$

represents the plane through the point (3, 0, 7) with normal  $\mathbf{n} = (4, 2, -5)$ .

## Lines and Planes Determined by Points and Normals

$$\mathbf{n} \cdot \overrightarrow{P_0 P} = 0 \tag{1}$$

Thus, Equation (1) can be written as

$$a(x - x_0) + b(y - y_0) = 0$$
 [line] (2)

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$
 [plane] (3)

These are called the *point-normal* equations of the line and plane.

#### **THEOREM 3.3.1**

(a) If a and b are constants that are not both zero, then an equation of the form

$$ax + by + c = 0 (4)$$

represents a line in  $\mathbb{R}^2$  with normal  $\mathbf{n} = (a, b)$ .

If a, b, and c are constants that are not all zero, then an equation of the form

$$ax + by + cz + d = 0 ag{5}$$

represents a plane in  $\mathbb{R}^3$  with normal  $\mathbf{n} = (a, b, c)$ .



► Figure 3.3.1

## Lines and Planes Determined by Points and Normals

Let P = (x, y, z) be an arbitrary point in the plane. Then the vector  $\overrightarrow{\mathbf{P_0P}}$  is in the plane and therefore orthogonal to  $\mathbf{N}$ . This means

$$\mathbf{N} \cdot \overrightarrow{\mathbf{P_0 P}} = 0$$

$$\Leftrightarrow \langle a, b, c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

$$\Leftrightarrow a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

We call this last equation the point-normal form for the plane.



**Example 1:** Find the plane through the point (1,4,9) with normal (2,3,4).

**Answer:** Point-normal form of the plane is 2(x-1)+3(y-4)+4(z-9)=0. We can also write this as 2x+3y+4z=50.

# **Orthogonal Complements**

If a vector  $\mathbf{z}$  is orthogonal to every vector in a subspace W of  $\mathbb{R}^n$ , then  $\mathbf{z}$  is said to be **orthogonal to** W. The set of all vectors  $\mathbf{z}$  that are orthogonal to W is called the **orthogonal complement** of W and is denoted by  $W^{\perp}$  (and read as "W perpendicular" or simply "W perp").

- 1. A vector **x** is in  $W^{\perp}$  if and only if **x** is orthogonal to every vector in a set that spans W.
- 2.  $W^{\perp}$  is a subspace of  $\mathbb{R}^n$ .



FIGURE 7

A plane and line through **0** as orthogonal complements.

**EXAMPLE 6** Let W be a plane through the origin in  $\mathbb{R}^3$ , and let L be the line through the origin and perpendicular to W. If  $\mathbf{z}$  and  $\mathbf{w}$  are nonzero,  $\mathbf{z}$  is on L, and  $\mathbf{w}$  is in W, then the line segment from  $\mathbf{0}$  to  $\mathbf{z}$  is perpendicular to the line segment from  $\mathbf{0}$  to  $\mathbf{w}$ ; that is,  $\mathbf{z} \cdot \mathbf{w} = 0$ . See Figure 7. So each vector on L is orthogonal to every  $\mathbf{w}$  in W. In fact, L consists of all vectors that are orthogonal to the  $\mathbf{w}$ 's in W, and W consists of all vectors orthogonal to the  $\mathbf{z}$ 's in L. That is,

$$L = W^{\perp}$$
 and  $W = L^{\perp}$ 

## **Orthogonal Complements**



**FIGURE 8** The fundamental subspaces determined by an  $m \times n$  matrix A.

#### THEOREM 3

Let A be an  $m \times n$  matrix. The orthogonal complement of the row space of A is the null space of A, and the orthogonal complement of the column space of A is the null space of  $A^T$ :

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$
 and  $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$ 

**PROOF** The row-column rule for computing  $A\mathbf{x}$  shows that if  $\mathbf{x}$  is in Nul A, then  $\mathbf{x}$  is orthogonal to each row of A (with the rows treated as vectors in  $\mathbb{R}^n$ ). Since the rows of A span the row space,  $\mathbf{x}$  is orthogonal to Row A. Conversely, if  $\mathbf{x}$  is orthogonal to Row A, then  $\mathbf{x}$  is certainly orthogonal to each row of A, and hence  $A\mathbf{x} = \mathbf{0}$ . This proves the first statement of the theorem. Since this statement is true for any matrix, it is true for  $A^T$ . That is, the orthogonal complement of the row space of  $A^T$  is the null space of  $A^T$ . This proves the second statement, because Row  $A^T = \operatorname{Col} A$ .

Remark: A common way to prove that two sets, say S and T, are equal is to show that S is a subset of T and T is a subset of S. The proof of the next theorem that Nul  $A = (\text{Row } A)^{\perp}$  is established by showing that Nul A is a subset of  $(\text{Row } A)^{\perp}$  and  $(\text{Row } A)^{\perp}$  is a subset of Nul A. That is, an arbitrary element  $\mathbf{x}$  in Nul A is shown to be in  $(\text{Row } A)^{\perp}$ , and then an arbitrary element  $\mathbf{x}$  in  $(\text{Row } A)^{\perp}$  is shown to be in Nul A.

### Ref: Lay 5e, pg 337