Gaussian Discriminant Analysis

Isaac Osei Nyantakyi, PH.D

Generative vs Discriminative (Recap)

Two approaches to classification:

- Discriminative approach: estimate parameters of decision boundary/class separator directly from labeled examples.
 - ▶ Model $p(t|\mathbf{x})$ directly (logistic regression models)
 - ▶ Learn mappings from inputs to classes (linear/logistic regression, decision trees etc)
 - ► Tries to solve: How do I separate the classes?
- Generative approach: model the distribution of inputs characteristic of the class (Bayes classifier).
 - $ightharpoonup Model p(\mathbf{x}|t)$
 - ▶ Apply Bayes Rule to derive $p(t|\mathbf{x})$.
 - ▶ Tries to solve: What does each class "look" like?

Classification: Diabetes Example

- Gaussian discriminant analysis (GDA) is a Bayes classifier for continuous-valued inputs.
- Observation per patient: White blood cell count & glucose value.

• $p(\mathbf{x} \mid t = k)$ for each class is shaped like an ellipse \implies we model each class as a multivariate Gaussian

Gaussian Discriminant Analysis

- Gaussian Discriminant Analysis in its general form assumes that $p(\mathbf{x}|t)$ is distributed according to a multivariate Gaussian distribution
- Multivariate Gaussian distribution:

$$p(\mathbf{x} \mid t = k) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}_k|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \mathbf{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right]$$

where $|\Sigma_k|$ denotes the determinant of the matrix.

- ullet Each class k has associated mean vector $oldsymbol{\mu}_k$ and covariance matrix $oldsymbol{\Sigma}_k$
- How many parameters?
 - ▶ Each μ_k has D parameters, for DK total.
 - ► Each Σ_k has $\mathcal{O}(D^2)$ parameters, for $\mathcal{O}(D^2K)$

GDA: Learning

- Learn the parameters for each class using maximum likelihood
- For simplicity, assume binary classification

$$p(t \mid \phi) = \phi^t (1 - \phi)^{1-t}$$

• You can compute the ML estimates in closed form (ϕ and μ_k are easy, Σ_k is tricky)

$$\begin{split} \phi &= \frac{1}{N} \sum_{i=1}^{N} r_{1}^{(i)} \\ \boldsymbol{\mu}_{k} &= \frac{\sum_{i=1}^{N} r_{k}^{(i)} \cdot \mathbf{x}^{(i)}}{\sum_{i=1}^{N} r_{k}^{(i)}} \\ \boldsymbol{\Sigma}_{k} &= \frac{1}{\sum_{i=1}^{N} r_{k}^{(i)}} \sum_{i=1}^{N} r_{k}^{(i)} (\mathbf{x}^{(i)} - \boldsymbol{\mu}_{k}) (\mathbf{x}^{(i)} - \boldsymbol{\mu}_{k})^{\top} \\ r_{k}^{(i)} &= \mathbb{1}[t^{(i)} = k] \end{split}$$

GDA Decision Boundary

• Recall: for Bayes classifiers, we compute the decision boundary with Bayes' Rule:

$$p(t \mid \mathbf{x}) = \frac{p(t) p(\mathbf{x} \mid t)}{\sum_{t'} p(t') p(\mathbf{x} \mid t')}$$

• Plug in the Gaussian $p(\mathbf{x} \mid t)$:

$$\log p(t_k|\mathbf{x}) = \log p(\mathbf{x}|t_k) + \log p(t_k) - \log p(\mathbf{x})$$

$$= -\frac{D}{2}\log(2\pi) - \frac{1}{2}\log|\mathbf{\Sigma}_k| - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^{\top}\mathbf{\Sigma}_k^{-1}(\mathbf{x} - \boldsymbol{\mu}_k) + \log p(t_k) - \log p(\mathbf{x})$$

Decision boundary:

$$(\mathbf{x} - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k) = (\mathbf{x} - \boldsymbol{\mu}_\ell)^{\top} \boldsymbol{\Sigma}_\ell^{-1} (\mathbf{x} - \boldsymbol{\mu}_\ell) + \text{Const}$$

What's the shape of the boundary?

ightharpoonup We have a quadratic function in \mathbf{x} , so the decision boundary is a conic section!

GDA Decision Boundary

GDA Decision Boundary

• Our equation for the decision boundary:

$$(\mathbf{x} - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k) = (\mathbf{x} - \boldsymbol{\mu}_\ell)^{\top} \boldsymbol{\Sigma}_\ell^{-1} (\mathbf{x} - \boldsymbol{\mu}_\ell) + \text{Const}$$

• Expand the product and factor out constants (w.r.t. **x**):

$$\mathbf{x}^{\mathsf{T}} \mathbf{\Sigma}_{k}^{-1} \mathbf{x} - 2 \boldsymbol{\mu}_{k}^{\mathsf{T}} \mathbf{\Sigma}_{k}^{-1} \mathbf{x} = \mathbf{x}^{\mathsf{T}} \mathbf{\Sigma}_{\ell}^{-1} \mathbf{x} - 2 \boldsymbol{\mu}_{\ell}^{\mathsf{T}} \mathbf{\Sigma}_{\ell}^{-1} \mathbf{x} + \text{Const}$$

- What if all classes share the same covariance Σ ?
 - ▶ We get a linear decision boundary!

$$-2\boldsymbol{\mu}_k^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x} = -2\boldsymbol{\mu}_{\ell}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x} + \text{Const}$$
$$(\boldsymbol{\mu}_k - \boldsymbol{\mu}_{\ell})^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x} = \text{Const}$$

GDA Decision Boundary: Shared Covariances

GDA vs Logistic Regression

• Binary classification: If you examine $p(t = 1 | \mathbf{x})$ under GDA and assume $\Sigma_0 = \Sigma_1 = \Sigma$, you will find that it looks like this:

$$p(t \mid \mathbf{x}, \phi, \boldsymbol{\mu}_0, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x} - b)}$$

where (\mathbf{w}, b) are chosen based on $(\phi, \boldsymbol{\mu}_0, \boldsymbol{\mu}_1, \boldsymbol{\Sigma})$.

• Same model as logistic regression!

GDA vs Logistic Regression

When should we prefer GDA to logistic regression, and vice versa?

- GDA makes a stronger modeling assumption: assumes class-conditional data is multivariate Gaussian
 - ▶ If this is true, GDA is asymptotically efficient (best model in limit of large N)
 - ▶ If it's not true, the quality of the predictions might suffer.
- Many class-conditional distributions lead to logistic classifier.
 - ▶ When these distributions are non-Gaussian (i.e., almost always), LR usually beats GDA
- GDA can handle easily missing features (how do you do that with LR?)

Gaussian Naive Bayes

- \bullet What if **x** is high-dimensional?
 - ▶ The Σ_k have $\mathcal{O}(D^2K)$ parameters, which can be a problem if D is large.
 - ▶ We already saw we can save some a factor of *K* by using a shared covariance for the classes.
 - ▶ Any other idea you can think of?
- Naive Bayes: Assumes features independent given the class

$$p(\mathbf{x} | t = k) = \prod_{j=1}^{D} p(x_j | t = k)$$

- Assuming likelihoods are Gaussian, how many parameters required for Naive Bayes classifier?
 - ▶ This is equivalent to assuming the x_j are uncorrelated, i.e. Σ is diagonal.
 - ▶ Hence, only D parameters for Σ !

Gaussian Naïve Bayes

 Gaussian Naïve Bayes classifier assumes that the likelihoods are Gaussian:

$$p(x_j | t = k) = \frac{1}{\sqrt{2\pi}\sigma_{jk}} \exp\left[\frac{-(x_j - \mu_{jk})^2}{2\sigma_{jk}^2}\right]$$

(this is just a 1-dim Gaussian, one for each input dimension)

- Model the same as GDA with diagonal covariance matrix
- Maximum likelihood estimate of parameters

$$\begin{array}{lcl} \mu_{jk} & = & \frac{\sum_{i=1}^{N} r_k^{(i)} \, x_j^{(i)}}{\sum_{i=1}^{N} r_k^{(i)}} \\ \\ \sigma_{jk}^2 & = & \frac{\sum_{i=1}^{N} r_k^{(i)} \, (x_j^{(i)} - \mu_{jk})^2}{\sum_{i=1}^{N} r_k^{(i)}} \\ \\ r_k^{(i)} & = & \mathbbm{1}[t^{(i)} = k] \end{array}$$

Decision Boundary: Isotropic

- We can go even further and assume the covariances are spherical, or isotropic.
- In this case: $\Sigma = \sigma^2 \mathbf{I}$ (just need one parameter!)
- Going back to the class posterior for GDA:

$$\log p(t_k|\mathbf{x}) = \log p(\mathbf{x}|t_k) + \log p(t_k) - \log p(\mathbf{x})$$

$$= -\frac{D}{2}\log(2\pi) - \frac{1}{2}\log|\mathbf{\Sigma}_k^{-1}| - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^{\top}\mathbf{\Sigma}_k^{-1}(\mathbf{x} - \boldsymbol{\mu}_k) + \log p(t_k) - \log p(\mathbf{x})$$

• Suppose for simplicity that p(t) is uniform. Plugging in $\Sigma = \sigma^2 \mathbf{I}$ and simplifying a bit,

$$\log p(t_k \mid \mathbf{x}) - \log p(t_\ell \mid \mathbf{x}) = -\frac{1}{2\sigma^2} \left[(\mathbf{x} - \boldsymbol{\mu}_k)^\top (\mathbf{x} - \boldsymbol{\mu}_k) - (\mathbf{x} - \boldsymbol{\mu}_\ell)^\top (\mathbf{x} - \boldsymbol{\mu}_\ell) \right]$$
$$= -\frac{1}{2\sigma^2} \left[\|\mathbf{x} - \boldsymbol{\mu}_k\|^2 - \|\mathbf{x} - \boldsymbol{\mu}_\ell\|^2 \right]$$

Decision Boundary: Isotropic

• The decision boundary bisects the class means!

Example

Generative models - Recap

- GDA has quadratic (conic) decision boundary.
- With shared covariance, GDA is similar to logistic regression.
- Generative models:
 - ▶ Flexible models, easy to add/remove class.
 - Handle missing data naturally.
 - More "natural" way to think about things, but usually doesn't work as well.
- Tries to solve a hard problem (model $p(\mathbf{x})$) in order to solve a easy problem (model $p(t | \mathbf{x})$).