Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods

Maciej Pióro, Krzysztof Tomala

Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods

Dylan Slack* University of California, Irvine dslack@uci.edu Sophie Hilgard* Harvard University ash798@g.harvard.edu Emily Jia Harvard University ejia@college.harvard.edu

Sameer Singh University of California, Irvine sameer@uci.edu Himabindu Lakkaraju Harvard University hlakkaraju@seas.harvard.edu

Presentation outline

- Problem statement
- Intuition behind proposed solution
- Technical solution
- Experiments
- Conclusions

Setup

- A dataset is given with some sensitive attribute (e. g. race, gender)
- Adversary provides a classifier (biased classifier)
- The training datapoints come from a distribution unknown to the adversary
- Customer / regulator uses a dataset from the same distribution (train / test) to explain the classifier with LIME / SHAP
- We want the explanation not to indicate the classifier is biased (fool it)

Intuition

- LIME / SHAP construct local linear interpretable approximations of a black box model based on perturbed inputs
- Perturbed datapoints are often OOD (out of distribution) they are clearly visible after dimensionality reduction using PCA

Intuition - cont'd

 We can create a classifier that is biased on real datapoints and fair on perturbed datapoints (scaffolding)

Building an adversarial classifier

 ψ - fair classifier using features uncorrelated with the sensitive features, f biased classifier, e - adversarial classifier

$$e(x) = \begin{cases} f(x), & \text{if } x \in X_{dist} \\ \psi(x), & \text{otherwise} \end{cases}$$

Detecting OOD samples

- We are given a training set
- Perturb points in the dataset, add synthetic datapoints to the dataset
- Assign label TRUE to the synthetic datapoints, FALSE otherwise
- Train a classifier to discern between synthetic and real datapoints

Datasets

Dataset	Size	Features	Positive Class	Sensitive Feature
COMPAS	6172	criminal history, demographics, COMPAS risk score, jail and prison time	High Risk (81.4%)	African-American (51.4%)
Communities & Crime	1994	race, age, education, police demographics, marriage status, citizenship	Violent Crime Rate (50%)	White Population (continuous)
German Credit	1000	account information, credit history, loan purpose, employment, demographics	Good Customer (70%)	Male (69%)

Experiments

- Biased classifier is making prediction based purely on a sensitive feature
- For LIME, we generate perturbations by adding random noise
- For SHAP, we randomly choose a subset of features for each data point and mark their values as missing by replacing them with their corresponding values from background distribution
- OOD classifier is a random forest with 100 trees
- Unbiased classifier is making prediction based purely on one or two features uncorrelated with a sensitive feature

COMPAS

Communities and Crime

German credit

Sensitivity Analysis

(a) LIME COMPAS Sensitivity Analysis

(b) SHAP COMPAS Sensitivity Analysis

Conclusions

- Adversarial methods against post hoc methods exist and they work with black-box models
- Using LIME / SHAP to detect model bias is risky
- LIME is more susceptible to adversarial attacks than SHAP
- The attacks are somewhat robust to the hyperparameters
- The more the adversary knows about the explanation, the more successful they can be
- XAI-free metrics can be used to evaluate models

Questions?

Thank you for your attention