Numerical Methods for Financial Derivatives

Hwan C. Lin
Department of Economics
UNC Charlotte

Lecture 8: Fast Fourier Transform using Python

Introduction to Fast Fourier Transform (FFT)

- FFT is a discrete Fourier transform algorithm; see Wolfram.
- FFT was Developed by Cooley and Tukey (1965)
 - James W. Cooley and John W. Tukey. 1965. An algorithm for the machine calculation of complex Fourier series.
 Mathematics of Computation, 19 (90): 297-301.
- FFT provides a more efficient algorithm for calculating a set of discrete inverse Fourier transforms with sample points that are powers of two.

From Continuous to Discrete

 Computers and digital processing systems can work with finite sums only. To turn the continuous into the discrete and finite requires that a signal be both time-limited and band-limited. That is,

$$f(t)=0$$
 for $t\notin [0,L]$ $\hat{f}(s)=0$ for $s\notin [-B,B]$ or $s\notin [0,2B]$

- Start with a signal f(t) and its Fourier transform $\hat{f}(s)$, both functions of a continuous variable. We want to:
 - Find a discrete version of f(t) that's a reasonable approximation of f(t).
 - Find a discrete version of $\hat{f}(s)$ that's a reasonable approximation of $\hat{f}(s)$.

The Fourier Transform Pair: Continuous vs. Discrete

The continuous Fourier transform pair

$$\hat{f}(s) = \int_{-\infty}^{\infty} f(t)e^{-2\pi i s t} dt$$

$$f(t) = \int_{-\infty}^{\infty} \hat{f}(s)e^{2\pi i s t} ds$$

The discrete Fourier transform pair

$$\hat{f}_m = \sum_{n=0}^{N-1} f_n e^{-2\pi i m n/N}$$

$$f_n = \frac{1}{N} \sum_{n=0}^{N-1} \hat{f}_m e^{2\pi i m n/N}$$

where $f_n \equiv f(t_n)$ and $\hat{f}_m \equiv \hat{f}(s_m)$, n, m = 0, 1, ..., N-1

Sample Points and Discrete Fourier Transform (DFT)

• The function f(t) is limited to $0 \le t \le L$ and we sample N evenly spaced samples at points t_n , while the function $\hat{f}(s)$ is limited to $0 \le s \le 2B$ and the DFT of $f(t_n)$ is $\hat{f}(s_m)$:

$f(t_n)$	$\hat{f}(s_m)$
$t_0 \longrightarrow f(t_0)$	$s_0 \longrightarrow \hat{f}(s_0)$
$t_1 o f(t_1)$	$s_1 o \hat{f}(s_1)$
$t_{N-1} \longrightarrow f(t_{N-1})$	$s_{N-1} \longrightarrow \hat{f}(s_{N-1})$

• where $t_0 = 0$, $t_1 = \frac{1}{2B}$, $t_2 = \frac{2}{2B}$, ..., $t_{N-1} = \frac{N-1}{2B}$; $s_0 = 0$, $s_1 = \frac{1}{L}$, $s_2 = \frac{2}{L}$, ..., $s_{N-1} = \frac{N-1}{L}$; the number of sample points is $N = \frac{L}{1/(2B)} = 2BL$ in the t-domain and $N = \frac{2B}{1/L} = 2BL$ in the s-domain.

The DFT

• The discrete version of f(t) is the list of sampled values $f(t_0), f(t_1), \ldots, f(t_{N-1})$:

$$f = [f(t_0), f(t_1), \dots, f(t_{N-1})] \equiv [f_0, f_1, \dots, f_{N-1}]$$

• The **DFT** of $f = [f(t_0), f(t_1), ..., f(t_{N-1})]$ is the N - tuple $\hat{f} = [(\hat{f}(s_0), \hat{f}(s_1), ..., \hat{f}(s_{N-1})]$ defined by

$$\hat{f}(s_m) = \sum_{n=0}^{N-1} f(t_n) e^{-2\pi i m n/N}, \text{ or } \hat{f}_m = \sum_{n=0}^{N-1} f_n e^{-2\pi i m n/N}$$

• The inverse DFT of $\hat{f}(s_m)$ is

$$f(t_n) = \frac{1}{N} \sum_{m=0}^{N-1} \hat{f}(s_m) e^{2\pi m n/N}$$
 or $f_n = \frac{1}{N} \sum_{m=0}^{N-1} \hat{f}_m e^{2\pi i m n/N}$

A Heuristic Proof for the DFT

$$\mathcal{F}\lbrace f\rbrace(s_m) = \int_0^L f(t)e^{-2\pi i s_m t} dt$$

$$\approx \sum_{n=0}^{N-1} f(t_n)e^{-2\pi i (\frac{m}{L})t_n} \triangle t$$

$$= \sum_{n=0}^{N-1} f(t_n)e^{-2\pi i (\frac{m}{L})(\frac{n}{2B})} \triangle t$$

$$= \frac{1}{2B} \sum_{n=0}^{N-1} f(t_n)e^{-2\pi i m n/N} \equiv \frac{1}{2B} \hat{f}(s_m)$$

Thus,

$$\hat{f}(s_m) = \sum_{n=0}^{N-1} f(t_n) e^{-2\pi i m n/N}$$

A Heuristic Proof for the Inverse DFT

$$f(t_n) = \frac{1}{2B} \int_0^{2B} \hat{f}(s) e^{2\pi i s t_n} ds$$

$$\approx \frac{1}{2B} \sum_{m=0}^{N-1} \hat{f}(s_m) e^{2\pi i (\frac{m}{L}) t_n} \triangle s$$

$$= \frac{1}{2B} \sum_{m=0}^{N-1} \hat{f}(s_m) e^{2\pi i (\frac{m}{L}) (\frac{n}{2B})} \triangle s$$

$$= \frac{1}{2BL} \sum_{m=1}^{N-1} \hat{f}(s_m) e^{2\pi i m n/N}$$

$$= \frac{1}{N} \sum_{m=1}^{N-1} \hat{f}(s_m) e^{2\pi i m n/N}$$

FFT and Python

- We can implement fast Fourier transform (FFT) using Python's module numpy.fft.
- In Python, the DFT is defined as

$$A_m = \sum_{n=0}^{N-1} a_n \exp\left\{-2\pi i \frac{mn}{N}\right\}, \quad m = 0, 1, \dots, N-1$$

and the inverse DFT is defined as

$$a_n = \frac{1}{N} \sum_{m=0}^{N-1} A_m \exp\left\{2\pi i \frac{mn}{N}\right\}, \quad n = 0, 1, \dots, n-1$$
 (1)

- The fast Fourier transform algorithm developed by Cooley and Tukey (1965) and later extended by many others provide a more efficient algorithm for calculating DFT or inverse DFT with sample points that are powers of two. That is, $N=2^j,\ j\in\{1,2,\ldots,\}$. Note: in Python, a different set of indexes are used.
- The Cooley-Tukey FFT algorithm can reduce the number of multiplications from N² to N log N.

Computing European Options using Trapezoidal rule

From Lecture 7, we obtain

$$V(k) = \frac{e^{-\alpha k}}{2\pi} \int_{-\infty}^{\infty} e^{i\omega k} \hat{\nu}(\omega) d\omega$$

or $V(k) = \text{Re}\left\{\frac{e^{-\alpha k}}{\pi} \int_{0}^{\infty} e^{i\omega k} \hat{\nu}_{P}(\omega) d\omega\right\}$

 As demonstrated in Lecture 7, we can apply the Trapezoidal rule to compute $V(k_n)$

$$V(k_n) \approx \text{Re} \left\{ \frac{e^{-\alpha k}}{\pi} \sum_{m=0}^{N} e^{i\omega_m k_n} \hat{\nu}(\omega_m) \triangle \omega_m \right\}$$
 (2)

where

$$\triangle \omega_m \begin{cases} = \frac{h}{2}, & m = 0 \text{ or } N \\ = h, & m \neq 0 \text{ or } N \end{cases}$$

$$\hat{\nu}(\omega) = \frac{e^{-r(T-t_0)} \cdot \hat{q}(\omega + (\alpha + 1)i)}{(\alpha - i\omega)(\alpha - i\omega + 1)}$$

Adjusting Pricing Integral for Implementation of FFT

- To apply Python's FFT to (2), we need to rewrite (2) to fit in the form of (1). To do so, we do the following substitutions:
 - We drop the very last term in the summation series:

$$\frac{e^{-\alpha k}}{\pi} \sum_{m=0}^{N} e^{i\omega_{m}k_{n}} \hat{\nu}(\omega_{m}) \triangle \omega_{m} \approx \frac{e^{-\alpha k}}{\pi} \sum_{m=0}^{N-1} e^{i\omega_{m}k_{n}} \hat{\nu}(\omega_{m}) \triangle \omega_{m}$$

• We rewrite $e^{i\omega_{m}k_{n}}$ as

$$e^{i\omega_{\boldsymbol{m}}k_{\boldsymbol{n}}}=e^{i(mh)(k_{\boldsymbol{0}}+n\triangle k)}=e^{i(mh)(n\triangle k)}e^{i(mh)k_{\boldsymbol{0}}}$$

• We set $h\triangle k = \frac{2\pi}{N}$ so that

$$e^{i\omega_{m}k_{n}} = e^{2\pi i \left(\frac{mn}{N}\right)} e^{i\omega_{m}k_{0}}$$

• Then (2) can be rewritten as

$$V(k_n) \approx \text{Re}\left\{\frac{e^{-\alpha k_n}}{\pi} \sum_{m=0}^{N-1} e^{2\pi i \left(\frac{mn}{N}\right)} \cdot e^{i\omega_m k_0} \hat{\nu}(\omega_m) \triangle \omega_m\right\}$$
(3)

Adjusting Pricing Integral for Implementation of FFT (2)

• Define $A_m = e^{i\omega_m k_0} \hat{\nu}(\omega_m) \triangle \omega_m \cdot N$. Then

$$V(k_n) = \frac{e^{-\alpha k_n}}{\pi} \cdot \text{Re} \left\{ \frac{1}{N} \sum_{m=0}^{N-1} A_m e^{2\pi i \left(\frac{mn}{N}\right)} \right\}$$

That is,

$$a_n = \frac{1}{N} \sum_{m=0}^{N-1} A_m e^{2\pi i \left(\frac{mn}{N}\right)}$$

and

$$V(k_n) = \frac{e^{-\alpha k_n}}{\pi} \cdot \operatorname{Re}(a_n)$$

Using Python,

$$a_n = np.fft.ifft(A_m)$$

Implementation of Fast Fourier Transform

Discretization of frequency ω and strike price k

- Choose h = B/(N-1) and $N = 2^p$ with p being an even integer.
- Choose $\triangle k$ base on $h\triangle k = \frac{2\pi}{N}$.
- Set $\omega_m = mh$, m = 0, ... N 1; therefore, $\omega_{N-1} = (N-1)h = B$
- Set $k_n = k_0 + n \triangle k$, n = 0, ..., N-1; therefore, $k_{max} = k_0 + (N-1) \triangle k$
- Set $\alpha > 0$ for European calls and $\alpha < 0$ for European puts.

Implementation of Fast Fourier Transform (2) Prepare the A_m vector

$$A = \begin{pmatrix} A_0 \\ A_1 \\ \vdots \\ A_{N-1} \end{pmatrix} = \begin{pmatrix} e^{i\omega_0 k_0} \hat{\nu}(\omega_0) \frac{h}{2} \cdot N \\ e^{i\omega_1 k_0} \hat{\nu}(\omega_1) h \cdot N \\ \vdots \\ e^{i\omega_{N-1} k_0} \hat{\nu}(\omega_{N-1}) h \cdot N \end{pmatrix}$$

where

$$\hat{\nu}(\omega_m) = \frac{e^{-rT} \cdot \hat{q}(\omega_m + (\alpha + 1)i)}{(\alpha - i\omega_m)(\alpha - i\omega_m + 1)}, \quad m = 0, \dots, N - 1$$

and $\hat{q}(\omega_m + (\alpha + 1)i) = \overline{\varphi}_X(\omega_m + (\alpha + 1)i)$, a complex conjugate of the characteristic function.

Implementation of Fast Fourier Transform (3) Computing inverse DFT

- import numpy as np
- a = np.fft.ifft(A)
- Calculate $V(k_n) = \frac{e^{-\alpha k_n}}{\pi} \cdot \text{Re}(a_n)$:

$$V = \left(egin{array}{c} V(k_0) \\ V(k_1) \\ \vdots \\ V(k_{N-1}) \end{array}
ight) = \left(egin{array}{c} rac{e^{-lpha k_0}}{\pi} \mathrm{Re}(a_0) \\ rac{e^{-lpha k_1}}{\pi} \mathrm{Re}(a_1) \\ \vdots \\ rac{e^{-lpha k_{N-1}}}{\pi} \mathrm{Re}(a_{N-1}) \end{array}
ight)$$