

AMENDMENTS TO THE CLAIMS

- 1 1. (Currently amended) A network device-based method comprising:
2 sending a plurality of packets;
3 receiving a plurality of acknowledgements, wherein each of the plurality of
4 acknowledgements acknowledges receipt of at least one of the plurality of
5 packets, wherein the plurality of acknowledgements includes at least one
6 duplicate acknowledgement containing no more information than is contained in a
7 previously received one of the plurality of acknowledgements;
8 determining and retaining, upon receiving acknowledgement of receipt of new datathe
9 plurality of acknowledgements, an excess number of duplicate
10 acknowledgements, by at least determining a number representing how many
11 additional packets were co-acknowledged with the duplicate acknowledgements;
12 wherein the excess number of duplicate acknowledgements is a number that represents an
13 amount of duplicate acknowledgements and is determined based upon a
14 difference between a count of consecutive duplicate acknowledgement packets
15 and the number of co-acknowledged packets; and
16 taking a network packet transmission recovery action based upon said excess number of
17 duplicate acknowledgements.
- 1 2. (Previously presented) The network device-based method of Claim 1 further comprising:
2 determining whether a congestion window is inflated prior to deciding whether to
3 determine said excess number of duplicate acknowledgements.
- 4 3. (Original) The network device-based method of Claim 1 wherein a value of the excess
5 number of duplicate acknowledgements is a count of bytes in the duplicate
6 acknowledgements used to determine the excess number of duplicate acknowledgements
7 and wherein said taking a network packet transmission recovery action further comprises:
8 deflating a congestion window upon said value being less than a number of bytes in a
9 transmission control protocol sender segment.

1 4. (Original) The network device-based method of Claim 1 wherein said taking a network
2 packet transmission recovery action further comprises:
3 optimizing a size of a congestion window to match a reduction in a quantity of
4 unacknowledged data upon said excess number of duplicate acknowledgements
5 being greater than a TCP sender segment.

1 5. (Original) The network device-based method of Claim 1 wherein said taking a network
2 packet transmission recovery action further comprises:
3 comparing said excess number of duplicate acknowledgements with a duplicate
4 acknowledgement threshold.

1 6. (Original) The network device-based method of Claim 5 wherein said taking a network
2 packet transmission recovery action further comprises:
3 performing a fast retransmit upon said comparing said excess number of duplicate
4 acknowledgements with a duplicate acknowledgement threshold indicating that
5 said excess number of duplicate acknowledgements is greater than or equal to said
6 duplicate acknowledgement threshold.

1 7. (Original) The network device-based method of Claim 6, wherein said taking a network
2 packet transmission recovery action further comprises:
3 analyzing a size of a congestion window.

1 8. (Original) The network device-based method of Claim 7, wherein said taking a network
2 packet transmission recovery action further comprises:
3 resizing said congestion window upon said analyzing said size of said congestion window
4 showing said size is greater than a predefined size.

1 9. (Original) The network device-based method of Claim 5, wherein said taking a network
2 packet transmission recovery action further comprises:

3 analyzing a size of a congestion window upon said comparing said excess number of
4 duplicate acknowledgements with a duplicate acknowledgement threshold
5 indicating that said excess number of duplicate acknowledgements is less than
6 said duplicate acknowledgement threshold.

1 10. (Original) The network device-based method of Claim 9, wherein said taking a network
2 packet transmission recovery action further comprises:

3 resizing said congestion window upon said analyzing said size of said congestion window
4 showing said size is greater than a predefined size.

1 11. (Original) The network device-based method of Claim 1 wherein said method is included
2 in Transmission Control Protocol congestion avoidance.

1 12. (Currently amended) A network device-based method comprising:
2 receiving a plurality of acknowledgements, wherein each of the plurality of
3 acknowledgements acknowledges receipt of at least one of the plurality of
4 packets;
5 wherein the plurality of acknowledgements includes at least one duplicate
6 acknowledgement, which is an acknowledgement containing no more information
7 than is contained in a previously received acknowledgement of one of the
8 plurality of acknowledgements;
9 determining and retaining, upon receiving ~~acknowledgement of receipt of new data~~the
10 plurality of acknowledgements, an excess number of duplicate
11 acknowledgements, by at least determining a number representing how many
12 additional packets were acknowledged with the duplicate acknowledgements,
13 which are thereby co-acknowledged packets;

14 wherein the excess number of duplicate acknowledgements is a number that ~~represents an~~
15 ~~amount of duplicate acknowledgements and is determined based upon a~~
16 ~~difference between a count of consecutive duplicate acknowledgement packets~~
17 ~~and the number of co-acknowledged packets; and~~
18 deflating a congestion window upon said value of said excess number of duplicate
19 acknowledgements being less than a transmission control protocol sender
20 segment; and
21 optimizing a size of said congestion window to match a reduction in a quantity of
22 unacknowledged data upon said excess number of duplicate acknowledgements
23 being greater than a transmission control protocol sender segment.

1 13. (Original) The network device-based method of Claim 12 wherein a value of the excess
2 number of duplicate acknowledgements is a count of bytes in the duplicate
3 acknowledgements used to determine the excess number of duplicate acknowledgements
4 and further comprising:
5 comparing said excess number of duplicate acknowledgements with a duplicate
6 acknowledgement threshold upon said excess number of duplicate
7 acknowledgements being greater than a number of bytes in a TCP sender
8 segment.

1 14. (Original) The network device-based method of Claim 13 further comprising:
2 performing a fast transmit upon said comparing said excess number of duplicate
3 acknowledgements with a duplicate acknowledgement threshold indicating that
4 said excess number of duplicate acknowledgements is greater than or equal to said
5 duplicate acknowledgement threshold.

1 15. (Original) The network device-based method of Claim 14 further comprising:
2 analyzing a size of said congestion window.

- 1 16. (Original) The network device-based method of Claim 15 further comprising:
2 resizing said congestion window upon said analyzing said size of said congestion window
3 showing said size is greater than a predefined size.

- 1 17. (Original) The network device-based method of Claim 12 further comprising:
2 analyzing a size of said congestion window upon said comparing said excess number of
3 duplicate acknowledgements with a duplicate acknowledgement threshold
4 indicating that said excess number of duplicate acknowledgements is less than
5 said duplicate acknowledgement threshold.

- 1 18. (Original) The network device-based method of Claim 17 further comprising:
2 resizing said congestion window upon said analyzing said size of said congestion window
3 showing said size is greater than a predefined size.

- 1 19. (Original) The network device-based method of Claim 12 wherein said method is
2 included in Transmission Control Protocol congestion avoidance.

- 1 20. Cancelled.

- 1 21. (Currently amended) A network device comprising:
2 a processor; and
3 a memory coupled to said processor, and storing a fast recovery extended method
4 wherein upon execution of said fast recovery extended method by said processor, causes
5 said network device to:
6 send a plurality of packets;

7 receive a plurality of acknowledgements, wherein each of the plurality of
8 acknowledgements acknowledges receipt of at least one of the plurality of
9 packets;
10 wherein the plurality of acknowledgements includes at least one duplicate
11 acknowledgement, which is an acknowledgement containing no more
12 information than is contained in a previously received acknowledgement
13 of one of the plurality of acknowledgements;
14 determine, upon receiving acknowledgement of receipt of the plurality of
15 acknowledgements~~new data~~, an excess number of duplicate
16 acknowledgements, by at least determining a number representing how
17 many additional packets were acknowledged with the duplicate
18 acknowledgements, which are thereby co-acknowledged packets;
19 wherein the excess number of duplicate acknowledgements is a number that is
20 determined ~~represents an amount of duplicate acknowledgements and is~~
21 based upon a difference between a count of consecutive duplicate
22 acknowledgement packets and the number of co-acknowledged packets;
23 retain said excess number of duplicate acknowledgements in said memory; and
24 take a network packet transmission recovery action based upon said excess
25 number of duplicate acknowledgements.

1 22. (Canceled)

1 23. (Previously presented) The network device of Claim 21, wherein said fast recovery
2 extended method further comprises:
3 determining whether a congestion window is inflated prior to deciding whether to
4 determine said excess number of duplicate acknowledgements.

1 24. (Previously presented) The network device of Claim 21, wherein a value of the excess
2 number of duplicate acknowledgements is a count of bytes in the duplicate

3 acknowledgements used to determine the excess number of duplicate acknowledgements
4 and wherein said taking a network packet transmission recovery action further comprises:
5 deflating a congestion window upon said value of said excess number of duplicate
6 acknowledgements being less than a number of bytes in a transmission control
7 protocol sender segment.

1 25. (Previously amended) The network device of Claim 21, wherein said taking a network
2 packet transmission recovery action further comprises:
3 optimizing a size of a congestion window to match a reduction in a quantity of
4 unacknowledged data upon said excess number of duplicate acknowledgements
5 being greater than a TCP sender segment.

1 26. (Previously presented) The network device of Claim 21, wherein said taking a network
2 packet transmission recovery action further comprises:
3 comparing said excess number of duplicate acknowledgements with a duplicate
4 acknowledgement threshold.

1 27. (Original) The network device of Claim 26 wherein said taking a network packet
2 transmission recovery action further comprises:
3 performing a fast retransmit upon said comparing said excess number of duplicate
4 acknowledgements with a duplicate acknowledgement threshold indicating that
5 said excess number of duplicate acknowledgements is greater than or equal to said
6 duplicate acknowledgement threshold.

1 28. (Original) The network device of Claim 27, wherein said taking a network packet
2 transmission recovery action further comprises:
3 analyzing a size of a congestion window.

- 1 29. (Original) The network device of Claim 28, wherein said taking a network packet
2 transmission recovery action further comprises:
3 resizing said congestion window upon said analyzing said size of said congestion window
4 showing said size is greater than a predefined size.
- 1 30. (Original) The network device of Claim 26, wherein said taking a network packet
2 transmission recovery action further comprises:
3 analyzing a size of a congestion window upon said comparing said excess number of
4 duplicate acknowledgements with a duplicate acknowledgement threshold
5 indicating that said excess number of duplicate acknowledgements is less than
6 said duplicate acknowledgement threshold.
- 1 31. (Original) The network device of Claim 30, wherein said taking a network packet
2 transmission recovery action further comprises:
3 resizing said congestion window upon said analyzing said size of said congestion window
4 showing said size is greater than a predefined size.
- 1 32. (Previously presented) The network device of Claim 21, wherein said method is included
2 in Transmission Control Protocol congestion avoidance.
- 1 33. (Currently amended) A programmable memory including a fast recovery extended
2 method wherein said fast recovery extended method upon execution comprises:
3 sending a plurality of packets;
4 receiving a plurality of acknowledgements, wherein each of the plurality of
5 acknowledgements acknowledges receipt of at least one of the plurality of
6 packets;
7 wherein the plurality of acknowledgements includes at least one duplicate
8 acknowledgement, which is an acknowledgement containing no more information

9 than is contained in a previously received acknowledgement of one of the
10 plurality of acknowledgements;
11 determining and retaining, upon receiving acknowledgement of receipt of new data the
12 plurality of acknowledgements, an excess number of duplicate
13 acknowledgements, by at least determining a number representing how many
14 additional packets were acknowledged with the duplicate acknowledgements,
15 which are thereby co-acknowledged packets;
16 wherein the excess number of duplicate acknowledgements is a number that is
17 determined represents an amount of duplicate acknowledgements and is based
18 upon a difference between a count of consecutive duplicate acknowledgement
19 packets and the number of co-acknowledged packets; and
20 taking a network packet transmission recovery action based upon said excess number of
21 duplicate acknowledgements.

1 34. Cancelled.

1 35. (Currently amended) A network device comprising:
2 means for sending a plurality of packets;
3 means for receiving a plurality of acknowledgements, wherein each of the plurality of
4 acknowledgements acknowledges receipt of at least one of the plurality of
5 packets;
6 wherein the plurality of acknowledgements includes at least one duplicate
7 acknowledgement, which is an acknowledgement containing no more information
8 than is contained in a previously received acknowledgement of one of the
9 plurality of acknowledgements;
10 means for determining, upon receiving acknowledgement of receipt of new data the
11 plurality of acknowledgements, an excess number of duplicate
12 acknowledgements,

13 by at least determining a number representing how many additional packets were
14 acknowledged with the duplicate acknowledgements, which are thereby co-
15 acknowledged packets;
16 wherein the excess number of duplicate acknowledgements is a number that represents an
17 amount of duplicate acknowledgements and is determined based upon a
18 difference between a count of consecutive duplicate acknowledgement packets
19 and the number of co-acknowledged packets; and
20 means for retaining said excess number of duplicate acknowledgements; and
21 means for taking a network packet transmission recovery action based upon said excess
22 number of duplicate acknowledgements.

1 36. (Previously presented) A method for recovery of multiple transmission units comprising:
2 transmitting a plurality of transmission units from a sender to a receiver,
3 wherein the receiver is an entity that is currently receiving transmission units, and
4 wherein the sender is an entity that is currently sending the transmission units;
5 the receiver transmitting acknowledgements of receipt of the transmission units received;
6 setting a duplicate acknowledgements threshold, wherein a duplicate acknowledgement is
7 an acknowledgement of receipt of a transmission unit for which an
8 acknowledgement already exists;
9 setting a size for a congestion window;
10 determining a value representing a count of consecutive duplicate acknowledgements;
11 if the value is equal to the duplicate acknowledgement threshold,
12 performing a first fast retransmit operation in which at least one of the
13 transmission units is retransmitted, and
14 resizing the size of the congestion window;
15 determining whether any subsequent duplicate acknowledgements were received;
16 in response to receipt of each of the subsequent duplicate acknowledgements,
17 increasing the size of the congestion window, and
18 if transmitting another segment is permitted, transmitting another segment; and
19 when an acknowledgement for the transmission unit that was retransmitted is received,
20 performing a fast recovery including at least
21 a get excess operation which at least

22 determines a value representing an excess number of duplicate acknowledgements
23 by at least determining a number representing how many additional
24 packets were acknowledged with the duplicate acknowledgements, which
25 are thereby co-acknowledged packets;
26 wherein the excess number of duplicate acknowledgements is a
27 number that is determined based upon a difference between
28 the value of the count of consecutive duplicate
29 acknowledgements for the retransmitted transmission units
30 and the number of co-acknowledged packets;,,
31 a recovery action operation, in which at least the sender initiates one or
32 more network packet transmission recovery actions based upon the
33 excess duplicate acknowledgements, wherein the network packet
34 transmission recovery actions include at least
35 taking no further action,
36 deflating the size of the congestion window,
37 resizing the size of the congestion window to a more
38 optimal size,
39 performing another fast retransmit,
40 resizing the size of the congestion window from the more
41 optimal size, and
42 resizing the size congestion window after the deflating, and
43 a set duplicate acknowledgment operation in which at least the value
44 representing the count of the duplicate acknowledgements is set
45 equal to the value representing the excess duplicate
46 acknowledgements.

- 1 37. (New) A method according to claim 1, wherein the taking of the network packet
2 transmission recovery action based on the excess number of duplicate acknowledgements
3 includes at least:
4 determining based on the excess number of duplicate acknowledgements whether the number of
5 duplicate acknowledgements is equal to or less than the number of co-acknowledged
6 segments;

- 7 if the number of duplicate acknowledgements is equal to or less than the number of co-
- 8 acknowledged segments determining the network packet transmission recovery action
- 9 based on the number of duplicate acknowledgements; and
- 10 if the number of duplicate acknowledgements is not equal to or less than the number of co-
- 11 acknowledged segments determining the network packet transmission recovery action
- 12 based on the excess number of duplicate acknowledgements.