Chapter 1:

- Software Crisis: inability of software companies to deliver high quality products on schedule. Projects also became over budget.
- Why SE?
 - Complexity reduced
 - Flexibility increased
 - Can accommodate change
 - Time to develop reduce
 - Cost Effective
- What is SE?
 - Engineering discipline concerned with all aspects of software production from system specification through to deployment and maintenance.
 - Also includes project management tools and devops in order to support software production.
- Maintenance is more costly as compared to development.
- · Why Projects fails?
 - Increasing system complexity, however SE techniques helps us build such complex projects in short span of time
 - Failure to use SE methods, causes unreliable and unmaintainable code to be written
- Software: Programs along with relevant documentation. Maybe for a single user to general market
- Attributes of a good software:
 - Maintainable:
 - should be easier / adapting to change with customer requirements
 - Flexible
 - Security:
 - Should be secure: no unwanted access of data
 - Should be safe: not life threatening, or loss of capital
 - o Efficient:
 - should not waste system resources, memory cycles. Responsive and good memory utilization
 - Should deliver required functionality to user
 - also easier for other users along with compatibility with other systems

- Fundamental SE activities:
 - Software Specification: (Requirements Specification) *Critical Phase
 - customers define what is to be produced and engineers decide on the constraints of its development
 - Software Development:
 - designing and programming
 - Software Validation:
 - testing for errors and whether output satisfies user requirements
 - Software Evolution:
 - modified to meet changing user and market demands
- SE v/s CS:
 - CS: focuses on theory / fundamentals
 - o SE: focuses on practicality of development and delivery of software
- Key Challenges in SE:
 - Increased diversity
 - o Developing trustworthy software
 - Reduced delivery times
- Software Products:
 - Generic:
 - general purpose / off the shelf software for catering needs of general market. Such as MS Office etc.
 - Specification and decision on software changes rest with the developer
 - Customized
 - Bespoke / Tailor made software, made to meet requirements of a specific customer. Example embedded systems, traffic control system
 - Customer decides pertaining to specification and changes
- General Issue affecting software:
 - Heterogeneity:
 - need for distributable software to be run over multiple devices mobile, computing etc.
 - o Business and social change:
 - ability to change existing software and to develop new software based on new tech
 - Security and trust:
 - should be secure and safe

- Scale:
 - should be developed for a wide variety of systems from small embedded systems to cloud based system

SE Diversity:

- SE methods depend on type of application, platform and customer requirements.
- Application types:
 - Stand-alone:
 - application on a personal desktop, without network connectivity
 - Transaction-based:
 - applications on remote servers accessed by users from own terminals such as e-commerce applications
 - Embedded:
 - that control, manage hardware devices
 - Batch processing:
 - designed to process large batches of data
 - Entertainment:
 - for personal use, entertainment e.g consoles
 - Modelling / Simulation:
 - to model / simulate scientific process
 - Data-Collection:
 - for recording data using sensors and sending to other systems
 - Systems of systems:
 - Composed of a number of software as SAP ERP systems (avoids data duplications and centralized)

SE Fundamentals:

- should be developed using a managed and understood developed process
- o should have good software attributes as dependability, efficiency etc.
- o should display clear understanding of user and software specification
- o should be reused where appropriate instead of writing again

Web based SE:

- o replacing need for local systems
- allow functionality to be accessed over web, hence can be used on any platform
- Cloud computing: applications can now be accessed remotely without having to install on pc, payed on use
- o Advantages:

- Software reuse
- Incremental and agile development:
 - no need to specify its requirements in advance. Can be delivered in 'increments'
- Service-oriented systems
- Rich Interfaces (user friendly GUI)

SE Ethics:

- Confidentiality:
 - should respect privacy of employers or clients, irrespective of agreement
- o Competence:
 - should not accept work in which they have a lower expertise
- Intellectual property rights:
 - intellectual property of clients, employers should be protected.
- o Computer misuse:
 - should not use technical skills to misuse other's computer

Case study:

- o Embedded systems
 - should be safety-critical
 - perform reliably, deliver when required
- Management systems
 - centralized systems
 - does not require much network connectivity (can be downloaded when online)
 - support CRUD operations
 - Report generations
 - Privacy (security) ensured. Also safety(provide data when needed)
- o Data collection systems
 - allow for maintenance / dynamic reconfiguration in case of system failure
 - efficient data processing and data transmission
 - Suitable data archiving
 - Good power management
- Digital learning environment (Service oriented)
 - independently accessed
 - rich user interface
 - provide configuration services, application services

READ THIS IF TOO MUCH FREE!

Ethical principles

- 1. PUBLIC Software engineers shall act consistently with the public interest.
- CLIENT AND EMPLOYER Software engineers shall act in a manner that is in the best interests of their client and employer consistent with the public interest.
- PRODUCT Software engineers shall ensure that their products and related modifications meet the highest professional standards possible.
- JUDGMENT Software engineers shall maintain integrity and independence in their professional judgment.
- MANAGEMENT Software engineering managers and leaders shall subscribe to and promote an ethical approach to the management of software development and maintenance.
- PROFESSION Software engineers shall advance the integrity and reputation of the profession consistent with the public interest.
- COLLEAGUES Software engineers shall be fair to and supportive of their colleagues.
- 8. SELF Software engineers shall participate in lifelong learning regarding the practice of their profession and shall promote an ethical approach to the practice of the profession.