991 Microelectronic Circuits I (Final Exam)

date: 2011/01/13 (Thur)

time:15:30 ~ 17:20

ps. 試題可帶回,可使用計算機。

- 1. The circuit parameters are given as: V_{CC} = 20 V, R_1 = 10 k Ω , R_2 = 1 k Ω , R_3 = 200 k Ω , R_4 = 8 k Ω , and β = 50.
- (a) Based on dc analysis, find the values of I_{C1} and I_{C2} . (10%)
- (b) What is the small-signal gain of v_o/v_i ? (13%)

- 2. For the following circuit,
- (a) Using β is infinite, design the circuit so that the bias currents in Q_1 , Q_2 , and Q_3 are 2mA, 2mA, and 4mA, respectively, and $V_3=0$, $V_5=-4V$, and $V_7=2V$. (5%)
- (b) Now, for $\,\beta=30,$ find the values of $\,V_3,\,\,V_4,\,\,V_5,\,\,V_6,$ and $\,V_7.$ (5%)

- 3. For the following circuits, let's assume we can use some circuit to generate I_1 and I_2 such that $I_1=I_2$ and $V_{o1}=V_{o2}$. Also, the emitter size of Q_1 is N times larger than that of Q_2 .
- (a) What's the value of I_1 ? Express the answer in terms of $V_T = (kT/q)$ and N. (6%)
- (b) Express V_{o1} in terms of V_T and V_{BE1} . For a given current I_1 , what's the temperature coefficient of V_{o1} =(dV_{o1}/dT)? Is it possible to obtain zero temperature coefficient for V_{o1} ? If so, what's the condition? (10%)
- (c) Now, due to some noise perturbation I at I_1 so that some voltage perturbation V appears at V_{o1} . Express V in terms of I $_1$ R $_2$ and N. (6%)

- 4. For the amplifier circuit shown below, the NMOS transistor has the following parameters: W/L = $0.9 \text{m}/0.18 \text{m} \text{U}_{\text{I}} \text{C}_{\text{ox}} = 1600 \text{A}/\text{V}^2$, threshold voltage V_{TN} = 0.5 V, and V_A = 10 V. Both capacitors are coupling capacitors.
- (a) Calculate the DC operation point of the amplifier (find V_G , V_D , and I_D). (7%)
- (b) Find the amplifier gain (V_{out}/V_{in}) . (7%)
- (c) If the resistor R_G is changed to 10 k, how does this affect the DC operating point? What is the amplifier gain (V_{out}/V_{in}) now? (9%)

- 5. Consider the PMOS common-gate circuit in the following circuit. The transistor parameters are: V_{TP} = -1V, K_p =0.5 mA/V², and λ =0.
- (a) Determine R_S and R_D such that I_D =0.5mA and V_{SD} =6V. (6%)
- (b) Determine the input impedance R_i and the output impedance R_o . (6%)
- (c) Determine the load current i_o and the output voltage v_o , if i_i = $5sin(\omega t)~\mu A$ (10%).

