А. Ю. Пирковский

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ

Лекция 22

22.1. Операторы в гильбертовом пространстве. Сопряженный оператор

До сих пор мы занимались линейными операторами между произвольными банаховыми пространствами; сосредоточимся теперь на операторах в гильбертовом пространстве. Основная специфика гильбертова случая состоит в том, что на алгебре $\mathscr{B}(H)$ ограниченных линейных операторов в гильбертовом пространстве H имеется дополнительная операция — uнволюция, или переход к сопряженному оператору. Наличие этой операции существенно обогащает теорию операторов и расширяет диапазон ее приложений.

Пусть H_1, H_2 — гильбертовы пространства и $T: H_1 \to H_2$ — ограниченный линейный оператор. У него, как и у всякого ограниченного линейного оператора между нормированными пространствами, есть сопряженный оператор $T^*: H_2^* \to H_1^*$ (см. определение 7.2). Вспомним теперь теорему Рисса 7.3, согласно которой для любого гильбертова пространства H существует антилинейная изометрическая биекция

$$R_H \colon H \to H^*, \quad [R_H(x)](y) = \langle y, x \rangle \qquad (x, y \in H).$$

Используя биекции $R_1 = R_{H_1}$ и $R_2 = R_{H_2}$, можно «заставить» сопряженный оператор T^* действовать не между сопряженными пространствами H_2^* и H_1^* , а между самими пространствами H_2 и H_1 . Формальное определение таково.

Определение 22.1. Пусть H_1, H_2 — гильбертовы пространства и $T \colon H_1 \to H_2$ — ограниченный линейный оператор. Оператор

$$T^{\dagger} \colon H_2 \to H_1, \quad T^{\dagger} = R_1^{-1} T^* R_2,$$

называется гильбертово сопряженным к Т.

Иначе говоря, T^{\dagger} однозначно определен следующей коммутативной диаграммой:

$$H_{2}^{*} \xrightarrow{T^{*}} H_{1}^{*}$$

$$R_{2} \uparrow \qquad \uparrow R_{1}$$

$$H_{2} \xrightarrow{T^{\dagger}} H_{1}$$

$$(22.1)$$

Предложение 22.1. Оператор T^{\dagger} линеен, ограничен, $u \|T^{\dagger}\| = \|T\|$.

Доказательство. Линейность T^{\dagger} следует из того, что T^{*} линеен, а R_{1} и R_{2} антилинейны. Ограниченность T^{\dagger} и равенство $||T^{\dagger}|| = ||T||$ следуют из равенства $||T^{*}|| = ||T||$ и изометричности R_{1} и R_{2} .

Полезно иметь следующую характеризацию оператора T^{\dagger} , не использующую сопряженных пространств.

Предложение 22.2. Оператор T^{\dagger} — это единственное отображение из H_2 в H_1 , удовлетворяющее любому из следующих эквивалентных условий:

$$\langle Tx, y \rangle = \langle x, T^{\dagger}y \rangle \qquad (x \in H_1, \ y \in H_2);$$
 (22.2)

$$\langle T^{\dagger}y, x \rangle = \langle y, Tx \rangle \qquad (x \in H_1, \ y \in H_2).$$
 (22.3)

Доказательство. Эквивалентность условий (22.2) и (22.3) очевидна. Заметим теперь, что условие (22.2) может быть записано в виде

$$[R_1(T^{\dagger}y)](x) = [R_2(y)](Tx) = [T^*(R_2(y))](x) \qquad (x \in H_1, \ y \in H_2).$$

Но это и означает, что $R_1T^{\dagger} = T^*R_2$, т.е. $T^{\dagger} = R_1^{-1}T^*R_2$.

Конечно, операторы T^* и T^\dagger — это, строго говоря, не одно и то же. Тем не менее из формулы $T^\dagger = R_1^{-1} T^* R_2$ и изометричности R_1 и R_2 легко понять, что у этих операторов много общего. В частности, инъективность (сюръективность) T^\dagger равносильна инъективности (сюръективности) T^* , изометричность (коизометричность) T^\dagger — изометричности (коизометричности) T^* , и т.п. (продолжите список сами). Поэтому обычно принимают следующее соглашение.

Соглашение 22.1. Гильбертово сопряженный оператор $T^{\dagger} \colon H_2 \to H_1$ будет в дальнейшем обозначаться через T^* и называться *сопряженным* к T.

К путанице это соглашение обычно не приводит¹. Если оператор действует между гильбертовыми пространствами H_1 и H_2 , то необходимости рассматривать его «обычный» сопряженный оператор $T^* \colon H_2^* \to H_1^*$, как правило, нет. Поэтому для операторов между гильбертовыми пространствами под сопряженным оператором по умолчанию всегда понимается гильбертово сопряженный оператор.

Предложение 22.3. Пусть H_1, H_2, H_3 — гильбертовы пространства.

- (i) Ecau $S, T \in \mathcal{B}(H_1, H_2)$ $u \lambda, \mu \in \mathbb{C}$, mo $(\lambda S + \mu T)^* = \bar{\lambda} S^* + \bar{\mu} T^*$.
- (ii) $Ecnu \ T \in \mathcal{B}(H_1, H_2) \ u \ S \in \mathcal{B}(H_2, H_3), \ mo \ (ST)^* = T^*S^*.$
- (iii) $T^{**} = T$ для всех $T \in \mathcal{B}(H_1, H_2)$;
- (iv) $||T^*|| = ||T|| \partial_{\mathcal{A}} \sec x \ T \in \mathscr{B}(H_1, H_2);$
- (v) $(C^*$ -тождество) $||T^*T|| = ||T||^2$ для всех $T \in \mathscr{B}(H_1, H_2)$.

Доказательство. Утверждения (i) и (ii) сразу следуют из аналогичных свойств сопряженных операторов между сопряженными пространствами (см. предложение 7.1) и диаграммы (22.1). Утверждение (iii) — простое следствие предложения 22.2. Утверждение (iv) уже упоминалось выше (предложение 22.1). Чтобы доказать (v), заметим, что

$$||T^*T|| \le ||T^*|| ||T|| = ||T||^2$$

в силу (iv). С другой стороны, из неравенства Коши–Буняковского–Шварца следует, что

$$||T||^2 = \sup_{\|x\| \le 1} \langle Tx, Tx \rangle = \sup_{\|x\| \le 1} \langle T^*Tx, x \rangle \le \sup_{\|x\| \le 1} ||T^*Tx|| = ||T^*T||.$$

 $^{^{1}}$ Интересно, что физики в этом отношении более последовательны, чем математики: гильбертово сопряженный оператор они чаще всего обозначают именно T^{\dagger} .

Свойства операции $T\mapsto T^*$, сформулированные в предложении 22.3, приводят к следующим определениям.

Определение 22.2. Пусть A — алгебра (как обычно, ассоциативная и над \mathbb{C}). Отображение $A \to A$, $a \mapsto a^*$, называется *инволюцией*, если оно удовлетворяет условиям (i)—(iii) предложения 22.3. Алгебра, снабженная инволюцией, называется *инволютивной алгеброй* или *-алгеброй.

Инволютивная банахова алгебра или *банахова *-алгебра* — это банахова алгебра, снабженная изометрической инволюцией.

Наконец, C^* -алгебра — это инволютивная банахова алгебра, в которой выполняется C^* -тождество (v) из предложения 22.3.

Определение 22.3. Подалгебра B *-алгебры A называется *-nodanrefpou, если для любого $b \in B$ выполнено $b^* \in B$.

Очевидно, любая *-подалгебра сама является *-алгеброй. Если A — банахова *-алгебра (соответственно, C*-алгебра), то любая ее замкнутая *-подалгебра является банаховой *-алгеброй (соответственно, C*-алгеброй).

Пример 22.1. Поле $\mathbb C$ является C^* -алгеброй относительно инволюции $\lambda^* = \bar{\lambda}$.

Пример 22.2. Если H — гильбертово пространство, то $\mathcal{B}(H)$ — C^* -алгебра (см. предложение 22.3). То же самое верно и для любой ее замкнутой *-подалгебры. В частности, $\mathcal{K}(H)$ — C^* -алгебра.

Пример 22.3. Если X — множество, то $\ell^{\infty}(X) - C^*$ -алгебра относительно инволюции $f^*(x) = \overline{f(x)}$.

Пример 22.4. Если X — топологическое пространство, то $C_b(X)$ и $C_0(X)$ — замкнутые *-подалгебры в $\ell^{\infty}(X)$ и, следовательно, являются C^* -алгебрами. В частности, если X компактно, то C(X) — C^* -алгебра.

Пример 22.5. Если (X, μ) — пространство с мерой, то $L^{\infty}(X, \mu)$ — C^* -алгебра относительно той же инволюции, что и в примере 22.3.

Пример 22.6. Алгебра $C^n[a,b]$ (см. пример 15.7) является банаховой *-алгеброй относительно той же инволюции, что и в примере 22.3, однако не является C^* -алгеброй (см. листок 18).

Пример 22.7. Дисковая алгебра $\underline{\mathscr{A}}(\overline{\mathbb{D}})$ (см. пример 15.8) является банаховой *-алгеброй относительно инволюции $f^*(z) = \overline{f(\bar{z})}$, однако не является C^* -алгеброй (см. листок 18).

Определение 22.4. Если A, B-*-алгебры, то гомоморфизм $\varphi \colon A \to B$ называется инволютивным гомоморфизмом или *-гомоморфизмом, если $\varphi(a^*) = \varphi(a)^*$ для всех $a \in A$.

Пример 22.8. Пусть (X,μ) — пространство с мерой. Для каждой $f \in L^{\infty}(X,\mu)$ обозначим через M_f оператор умножения на f, действующий в $L^2(X,\mu)$ (см. пример 2.5). Легко видеть, что отображение

$$L^{\infty}(X,\mu) \to \mathscr{B}(L^2(X,\mu)), \quad f \mapsto M_f,$$

является *-гомоморфизмом.

Теория C^* -алгебр — это довольно обширная и очень красивая наука, имеющая много приложений в теории операторов, топологии, некоммутативной геометрии и теории квантовых групп. В этом курсе C^* -алгебры будут встречаться нам лишь эпизодически; более подробно познакомиться ними желающие смогут на спецкурсе, запланированном на следующий учебный год.

Вернемся к операторам между гильбертовыми пространствами. С каждым таким оператором удобно связать некоторую полуторалинейную форму:

Определение 22.5. Пусть H_1, H_2 — предгильбертовы пространства и $T: H_1 \to H_2$ — линейный оператор. Легко видеть, что функция

$$f_T \colon H_1 \times H_2 \to \mathbb{C}, \quad f_T(x, y) = \langle Tx, y \rangle,$$

является полуторалинейной формой. Говорят, что f_T ассоциирована с T. Если $H_2 = H_1$, то ассоциированная с f_T комплексно-квадратичная форма (см. определение 4.3)

$$q_T \colon H_1 \to \mathbb{C}, \quad q_T(x) = f_T(x, x) = \langle Tx, x \rangle,$$

называется комплексно-квадратичной формой, ассоциированной с Т.

Следующее предложение показывает, что формы f_T и q_T содержат в себе всю информацию об операторе T.

Предложение 22.4. Пусть $H_1, H_2 - n$ редгильбертовы пространства, $S, T: H_1 \to H_2 - n$ инейные операторы. Тогда:

- (i) $S = T \iff f_S = f_T$;
- (ii) ecnu $H_1 = H_2$, mo $S = T \iff q_S = q_T$.

Доказательство. (i) Достаточно доказать, что T=0 тогда и только тогда, когда $f_T=0$ (объясните, почему). Очевидно, если T=0, то $f_T=0$. Обратно, если $f_T=0$, то $\langle Tx, Tx \rangle = 0$ для всех $x \in H_1$, а значит, T=0.

(ii) Следует из (i) и следствия 4.8.
$$\Box$$

Обсудим взаимосвязь между свойствами оператора и его сопряженного. Следующие два предложения легко выводятся из доказанных ранее утверждениях об операторах между банаховыми пространствами.

Предложение 22.5. Пусть H_1, H_2 — гильбертовы пространства и $T: H_1 \to H_2$ — ограниченный линейный оператор. Справедливы следующие утверждения:

- (i) Ker $T^* = (\text{Im } T)^{\perp};$
- (ii) $\overline{\operatorname{Im} T} = (\operatorname{Ker} T^*)^{\perp};$
- (iii) $H_2 = \overline{\operatorname{Im} T} \oplus \operatorname{Ker} T^*;$
- (iv) T топологически инъективен $\iff T^*$ сюръективен;
- (v) T изометричен \iff T^* коизометричен.

Доказательство. (i), (ii) Следует из предложения 13.8 с учетом того, что каноническая биекция между гильбертовым пространством и его сопряженным переводит ортогональное дополнение в аннулятор (см. наблюдение 13.1).

- (iii) Следует из (ii) с учетом теоремы 5.9 об ортогональном дополнении.
- (iv), (v) Следует из теорем 13.10 и 13.12.

Предложение 22.6. Пусть H — гильбертово пространство и $T \in \mathcal{B}(H)$. Тогда

- (i) $\sigma(T^*) = {\bar{\lambda} : \lambda \in \sigma(T)};$
- (ii) $\sigma_p(T^*) \subseteq \{\bar{\lambda} : \lambda \in \sigma_p(T) \cup \sigma_r(T)\};$
- (iii) $\sigma_c(T^*) = {\bar{\lambda} : \lambda \in \sigma_c(T)};$
- (iv) $\sigma_r(T^*) \subseteq {\bar{\lambda} : \lambda \in \sigma_p(T)}.$

Доказательство. Следует из предложений 16.10 и 16.11 с учетом того, что $(T - \lambda \mathbf{1})^* = T^* - \bar{\lambda} \mathbf{1}$.

Введем теперь операторы, которые играют очень важную роль как в самом функциональном анализе, так и во всевозможных его приложениях.

Определение 22.6. Пусть A - *-алгебра. Элемент $a \in A$ называется самосопряженным (или эрмитовым), если $a^* = a$. Если H - гильбертово пространство, то ограниченный самосопряженный оператор¹ в H - это самосопряженный элемент алгебры $\mathcal{B}(H)$.

Пример 22.9. Если A — любая из функциональных *-алгебр, упомянутых в примерах 22.3–22.6, то функция $f \in A$ является самосопряженным элементом тогда и только тогда, когда $f(x) \in \mathbb{R}$ для всех (в примере 22.5 — для почти всех) x.

На инволюцию в алгебре $\mathscr{B}(H)$ можно смотреть как на аналог операции комплексного сопряжения в \mathbb{C} . С этой точки зрения самосопряженные операторы играют роль действительных чисел. Следующее предложение подчеркивает эту аналогию.

Предложение 22.7. Пусть A - *-алгебра. Каждый элемент $a \in A$ единственным образом представим в виде a = b + ic, где $b, c \in A - c$ амосопряженные элементы.

Доказательство. Легко видеть, что элементы

$$b = \frac{a+a^*}{2}, \quad c = \frac{a-a^*}{2i}$$

удовлетворяют нужным условиям. Единственность докажите сами в качестве упражнения. \Box

Самосопряженные операторы нетрудно охарактеризовать в терминах соответствующих полуторалинейных и комплексно-квадратичных форм.

Предложение 22.8. Пусть H — гильбертово пространство. Следующие свойства оператора $T \in \mathcal{B}(H)$ эквивалентны:

- (i) $T^* = T$:
- (ii) $\langle Tx, y \rangle = \langle x, Ty \rangle$ dan $\sec x, y \in H$;
- (iii) $\langle Tx, x \rangle \in \mathbb{R}$ das $ecex \ x \in H$.

Доказательство. (i) \iff (ii). Следует из предложения 22.2.

(ii) \iff (iii). Заметим, что равенство (i) означает в точности, что форма f_T эрмитова (см. определение 4.4). Остается воспользоваться следствием 4.9.

¹Следует отметить, что не менее важную роль в приложениях (в том числе в квантовой механике) играют *неограниченные* самосопряженные операторы. К сожалению, на их обсуждение у нас, скорее всего, не хватит времени...

Следствие 22.9. Пусть H — гильбертово пространство, $T \in \mathcal{B}(H)$ — самосопряженный оператор и $H_0 \subseteq H$ — замкнутое T-инвариантное подпространство. Тогда $T|_{H_0}$ — самосопряженный оператор в H_0 .

Доказательство. См. п. (iii) предложения 22.8.

К обсуждению самосопряженных операторов мы еще не раз вернемся и докажем про них несколько важных теорем. Основным результатом о самосопряженных операторах является так называемая спектральная теорема, которая полностью описывает строение таких операторов, а при надлежащей интерпретации классифицирует их с точностью до унитарной эквивалентности. Для компактных операторов спектральная теорема превращается в теорему Гильберта—Шмидта о диагонализации, которую мы докажем на следующей лекции. Спектральная теорема для произвольных ограниченных самосопряженных операторов будет доказана в конце нашего курса.

Следующий класс операторов включает в себя как самосопряженные, так и унитарные операторы.

Определение 22.7. Пусть A — *-алгебра. Элемент $a \in A$ называется нормальным, если $aa^* = a^*a$. Если H — гильбертово пространство, то ограниченный нормальный оператор в H — это нормальный элемент алгебры $\mathcal{B}(H)$.

Многие утверждения, которые мы будем доказывать впоследствии для самосопряженных операторов, сохраняют силу и для нормальных операторов. См. по этому поводу задачи из листка 18.

Одна из замечательных особенностей инволюции в $\mathcal{B}(H)$ состоит в том, что с ее помощью многие геометрические свойства линейных операторов могут быть записаны в виде простых алгебраических тождеств. Приведем несколько иллюстраций этого принципа.

Предложение 22.10. Пусть H_1, H_2 — гильбертовы пространства и $T \in \mathcal{B}(H_1, H_2)$. Тогда:

- (i) T изометрия тогда и только тогда, когда $T^*T = \mathbf{1}_{H_1}$;
- (ii) T коизометрия тогда и только тогда, когда $TT^* = \mathbf{1}_{H_2}$.

Доказательство. (i) Оператор T изометричен тогда и только тогда, когда

$$\langle x, x \rangle = \langle Tx, Tx \rangle = \langle T^*Tx, x \rangle$$
 для всех $x \in H_1$,

т.е. тогда и только тогда, когда $q_{T^*T}=q_{\mathbf{1}_{H_1}}$. Остается воспользоваться предложением 22.4.

Следствие 22.11. Пусть H_1, H_2 — гильбертовы пространства. Линейный оператор $U \in \mathcal{B}(H_1, H_2)$ унитарен (см. определение 5.1) тогда и только тогда, когда он обратим и $U^* = U^{-1}$.

Предложение 22.12. Пусть H — гильбертово пространство. Следующие свойства оператора $P \in \mathcal{B}(H)$ эквивалентны:

(i) $P - npoe\kappa mop \ u \operatorname{Im} P \perp \operatorname{Ker} P$;

(ii)
$$P^* = P = P^2$$
.

Доказательство. Заметим, что для $P \in \mathcal{B}(H)$ равенства $P = P^2$ и $P^* = (P^*)^2$ эквивалентны. Иначе говоря, P — проектор тогда и только тогда, когда P^* — проектор (см. определение 12.3). Ясно, что два проектора равны тогда и только тогда, когда у них одинаковые ядра и образы. Но из предложения 22.5 следует, что $\ker P^* = (\operatorname{Im} P)^{\perp}$ и $\operatorname{Im} P^* = (\operatorname{Ker} P)^{\perp}$. Таким образом, $P = P^*$ тогда и только тогда, когда $\ker P = (\operatorname{Im} P)^{\perp}$, как и требовалось.

Определение 22.8. Оператор, удовлетворяющий условиям предложения 22.12, называется *ортогональным проектором*.

Соглашение 22.2. Как правило, когда говорят об операторах в гильбертовом пространстве, ортогональные проекторы называют просто проекторами. К путанице это не приводит.

Следующий класс операторов включает в себя все изометрии, коизометрии и ортогональные проекторы.

Предложение 22.13. Пусть H — гильбертово пространство. Следующие свойства оператора $V \in \mathcal{B}(H)$ эквивалентны:

- (i) $VV^*V = V$;
- (ii) $V^*V npoe\kappa mop$;
- (iii) ограничение V на $(\operatorname{Ker} V)^{\perp}$ изометрия.

Доказательство. Упражнение.

Определение 22.9. Оператор, удовлетворяющий условиям предложения 22.13, называется *частичной изометрией*.

Предложение 22.14. Пусть V — частичная изометрия в гильбертовом пространстве H. Справедливы следующие утверждения:

- (i) $Onepamop\ V^*$ частичная изометрия.
- (ii) Положим $H_0 = (\text{Ker } V)^{\perp}$ и $H_1 = \text{Im } V$. Тогда операторы $V|_{H_0} \colon H_0 \to H_1$ и $V^*|_{H_1} \colon H_1 \to H_0$ обратные друг другу изометрические изоморфизмы, V^*V ортогональный проектор на H_0 , а VV^* ортогональный проектор на H_1 .

Доказательство. Упражнение.

Определение 22.10. Пусть V — частичная изометрия в гильбертовом пространстве H. Проектор V^*V называется ее *начальным проектором*, а проектор VV^* — ее *конечным проектором*.

Перейдем теперь к обсуждению спектров введенных выше операторов.

Предложение 22.15. Пусть A- унитальная алгебра, $p\in A$, $p^2=p$, причем $p\neq 0$ и $p\neq 1_A$. Тогда $\sigma(p)=\{0,1\}$. В частности, спектр любого проектора в гильбертовом пространстве, отличного от 0 и 1, равен $\{0,1\}$.

Доказательство. Упражнение.

Предложение 22.16. Пусть H — гильбертово пространство и $U \in \mathcal{B}(H)$ — унитарный оператор. Тогда $\sigma(U) \subseteq \mathbb{T}$.

Доказательство. Если $\lambda \in \sigma(U)$, то $|\lambda| \leqslant ||U|| = 1$ (см. теорему 15.5 (ii)). С другой стороны, $\lambda^{-1} \in \sigma(U^{-1})$ (см. следствие 14.11), а оператор U^{-1} , очевидно, также унитарен. По только что доказанному, $|\lambda^{-1}| \leqslant 1$, т.е. $|\lambda| \geqslant 1$. Отсюда окончательно получаем $|\lambda| = 1$, как и требовалось.

Предложение 22.17. Пусть H — гильбертово пространство и $T \in \mathcal{B}(H)$ — самосо-пряженный оператор. Тогда $\sigma(T) \subseteq \mathbb{R}$.

Доказательство. Пусть $\lambda \in \mathbb{C}$, $\alpha = \text{Re }\lambda$, $\beta = \text{Im }\lambda$, причем $\beta \neq 0$. Тогда $T - \lambda \mathbf{1} = (T - \alpha \mathbf{1}) - i\beta \mathbf{1}$, причем оператор $T - \alpha \mathbf{1}$ самосопряжен. Заменяя T на $T - \alpha \mathbf{1}$, мы видим, что нам остается доказать обратимость оператора $T - i\beta \mathbf{1}$ для любого $\beta \in \mathbb{R} \setminus \{0\}$.

Для любого $x \in H$ с учетом самосопряженности T имеем

$$\|(T - i\beta \mathbf{1})x\|^2 = \langle Tx - i\beta x, Tx - i\beta x \rangle = \|Tx\|^2 + \beta^2 \|x\|^2 \geqslant \beta^2 \|x\|^2.$$

Аналогично устанавливается оценка $\|(T+\beta \mathbf{1})x\|^2 \geqslant \beta^2 \|x\|^2$. Следовательно, операторы $T \pm i\beta \mathbf{1}$ топологически инъективны. Но эти операторы сопряжены друг другу, поэтому, применяя предложение 22.5 (iv), заключаем, что они оба сюръективны, а значит, обратимы.

Следствие 22.18. Остаточный спектр самосопряженного оператора пуст.

Доказательство. Пусть T — самосопряженный оператор и $\lambda \in \sigma_r(T)$. Из предложений 22.6 (iv) и 22.17 следует, что $\lambda \in \sigma_p(T)$. Противоречие.

Следствие 22.19. Пусть H — гильбертово пространство и $T \in \mathcal{B}(H)$ — самосопряженный оператор. Тогда r(T) = ||T||.

Доказательство. Применяя C^* -тождество, получаем равенства $||T^2|| = ||T^*T|| = ||T||^2$. Отсюда по индукции легко следует, что $||T^{2^n}|| = ||T||^{2^n}$ для всех $n \in \mathbb{N}$. С учетом формулы Бёрлинга (16.1) это дает равенства

$$r(T) = \lim_{n \to \infty} ||T^n||^{1/n} = \lim_{n \to \infty} ||T^{2^n}||^{1/2^n} = ||T||.$$

C учетом того, что спектр самосопряженного оператора содержится в \mathbb{R} , следствие 22.19 можно переформулировать следующим образом.

Следствие 22.20. Пусть H — гильбертово пространство и $T \in \mathcal{B}(H)$ — самосопряженный оператор. Тогда $\sigma(T) \subseteq [-\|T\|, \|T\|]$, причем хотя бы один из концов этого отрезка принадлежит $\sigma(T)$.

Следствие 22.21. Собственные векторы самосопряженного оператора, соответствующие разным собственным значениям, ортогональны.

Доказательство. Пусть $T \in \mathcal{B}(H)$ — самосопряженный оператор, $x, y \in H$, $Tx = \lambda x$, $Ty = \mu y$, причем $\lambda \neq \mu$. В силу предложения 22.17, $\lambda, \mu \in \mathbb{R}$. Следовательно,

$$\langle \lambda x, y \rangle = \langle Tx, y \rangle = \langle x, Ty \rangle = \mu \langle x, y \rangle.$$

Отсюда получаем $\langle x, y \rangle = 0$, как и требовалось.

В заключение сделаем несложное, но полезное наблюдение об инвариантных подпространствах операторов в гильбертовом пространстве.

Предложение 22.22. Пусть H — гильбертово пространство и $T \in \mathcal{B}(H)$. Замкнутое векторное подпространство $H_0 \subseteq H$ T-инвариантно тогда и только тогда, когда H_0^{\perp} T^* -инвариантно.

Доказательство. Включение $T(H_0) \subseteq H_0 = H_0^{\perp \perp}$ означает в точности, что $\langle Tx, y \rangle = 0$ для всех $x \in H_0$ и всех $y \in H_0$. Это равносильно тому, что $\langle x, T^*y \rangle = 0$ для тех же x и y, а это и означает, что $T^*(H_0^\perp) \subseteq H_0^\perp$.

Следствие 22.23. Пусть H- гильбертово пространство и $T\in \mathscr{B}(H)-$ самосопряженный оператор. Замкнутое векторное подпространство $H_0\subseteq H$ T-инвариантно тогда и только тогда, когда H_0^\perp T-инвариантно.