Exercício 1.2 Determine as derivadas parciais de primeira ordem da função.

(a)
$$z = f(x, y) = xe^{3y}$$

(b)
$$z = f(x,y) = (2x+3y)^{10}$$

(c)
$$f(x,y) = \frac{x-y}{x+y}$$

(a)
$$z = f(x,y) = xe^{-y}$$

(b) $z = f(x,y) = (2x+3y)^{10}$
(c) $f(x,y) = \frac{x-y}{x+y}$
(d) $f(r,s) = r\ln(r^2 + s^2)$
(e) $w = \frac{e^v}{(u+v^2)}$
(f) $w = ze^{xyz}$

(e)
$$w = \frac{e^{v}}{(u+v^2)}$$

(f)
$$w = ze^{xyz}$$

Exercício 1.3 Determine todas as derivadas parciais de segunda ordem.

(a)
$$f(x,y) = x^3y^5 - 2x^4y$$

(b)
$$f(x,y) = \sin^2(mx + ny)$$

(b)
$$f(x,y) = \sin^2(mx + ny)$$

(c) $f(x,y) = \frac{xy}{x-y}$

Exercício 1.4 Verifique que a conclusão do Teorema de Clairaut é válida, isto é, $u_{xy} = u_{yx}$.

(a)
$$u = x \sin(x + 2y)$$

(b) $u = \ln \sqrt{x^2 + y^2}$

(b)
$$u = \ln \sqrt{x^2 + y^2}$$

(c)
$$u = xye^y$$

Exercício 2.1 Determine, se existir, o plano tangente ao gráfico das funções dadas nos pontos indicados.

(a)
$$z = x^2 + y^2$$
 nos pontos: $P(0,0,0)$ e $P(1,1,2)$.

(b)
$$z = \sqrt{2x^2 + y^2}$$
 nos pontos: $P(0,0,0)$ e $P(1,1,\sqrt{3})$.

Exercício 2.2 Determine uma equação do plano tangente à superfície no ponto especificado.

(a)
$$z = f(x,y) = 4x^2 - y^2 + 2y$$
, no ponto $(-1,2,4)$

(a)
$$z = f(x,y) = 4x^2 - y^2 + 2y$$
, no ponto $(-1,2,4)$
(b) $z = f(x,y) = 3(x-1)^2 + 2(y+3)^2 + 7$, no ponto $(2,-2,12)$

(c)
$$z = f(x, y) = \sqrt{xy}$$
, no ponto (1, 1, 1)

(d)
$$z = f(x,y) = y \ln x$$
, no ponto (1,4,0)

(e)
$$z = f(x, y) = y\cos(x - y)$$
, no ponto (2,2,2)
(f) $z = f(x, y) = e^{x^2 - y^2}$, no ponto (1, -1,1)

(f)
$$z = f(x, y) = e^{x^2 - y^2}$$
, no ponto $(1, -1, 1)$