

PHYSICS Chapter 18

ÁREA DE CT

COLORES SUGERIDOS

PARA EL TÍTULO

fdgkdnfladkf

SUB TÍTULO

fdgkdnfladkf

SUB TÍTULO

SUB TÍTULO

HEORY HELICOMOTIVACIÓN

CALOR Y

TEMPERATURA

Es la cantidad física escalar que caracteriza el grado de agitación

molecular en un cuerpo.

Es la energía que se transfiere de manera espontanea, debido a una diferencia de temperatura entre ella

¿Qué efectos produce el calor sobre las sustancias?

Cambio

temp

de

Cambio de

Dilatació

HEORHELICOTEORIA

EQUILIBRIO

Es el estado en el que se igualan las temperaturas de dos cuerpos que inicialmente se encontraban a diferentes temperaturas. Al igualarse las temperaturas se suspende la transferencia de calor, y el sistema formados por esos cuerpos lega a su equilibrio térmico.

Otfliziremos el "diagrama lineal de temperatura" para analizar la transmisión de calor de un cuerpo a otro.

 ΔT_1 ΔT_2 T_1 $T_{Equi} = ?$ T_2

Para el equilibrio térmico; se cumple:

$$Q_G = Q_P$$

Someoneast-O-Matte-com Ver animación

CALOR SENSIBLE:

Unidad: caloría (da0)00 cal = 1 kcal

Es la cantidad de calor que debe de absorber o ceder toda sustancia (solida; liquida o gaseosa) para aumentar

o disminuir su temperatura.

Su valor se obtiene con:

$$Q_{\mathcal{S}} = Ce \cdot m \cdot \Delta T$$

Donde:

 $Ce = calor \ espec$ ífico $de \ la \ sustancia \ \left(\frac{cal}{g^{\circ}C}\right)$

m = masa(g)

 $\Delta T = variación en la temperatura (°C)$

Para fines prácticos, considerar

$$\Delta T = T_{mayor} - T_{menor}$$

RACTICA PRACTICA

Determine la cantidad de calor que requiere absorber 60 g de agua para variar su temperatura en 12 °C. $(Ce_{H_2O} = 1cal/g \cdot °C)$

RESOLUCIÓN:

Datos:

$$m = 60 g$$

 $\Delta T = 12 \,^{\circ}C$

Al absorber calor, se produce sólo variación en la temperatura; por lo tanto, se produce un calor sensible

Realizamos el "Diagrama lineal de temperatura"

Aplicamos:

$$Q_S = Ce \cdot m \cdot \Delta T$$

$$Q_S = 1 \frac{cal}{g \cdot {}^{\circ}C} \cdot 60 \ g \cdot 12 \ {}^{\circ}C$$

$$\therefore Q_S = 720 \ cal$$

RACHE ELICOPRACTICA

Determine la cantidad de calor que requiere 95 g de agua para elevar su temperatura de 15°C a 50 °C.

RESOLUCIÓN:

Datos:

$$m = 95 g$$

 $T_O = 15 \,^{\circ}\text{C}$
 $T_f = 50 \,^{\circ}\text{C}$

Para elevar su temperatura el agua absorbe calor; por lo tanto, se produce un calor sensible ya que sólo hay variación en la temperatura. Realizamos el "Diagrama lineal de temperatura"

Aplicamos:

$$Q_S = Ce \cdot m \cdot \Delta T$$

$$Q_S = 1 \frac{cal}{g \cdot {}^{\circ}C} \cdot 95 \ g \cdot 35 \ {}^{\circ}C$$

$$\therefore Q_S = 3325 \ cal$$

RACHE ELICOPRACTICA

Un cuerpo de 200 g eleva su temperatura de 5°C a 25°C. Determine las calorías que ganó durante el proceso.

$$(Ce_{cuerpo} = 0.7cal/g \cdot ^{\circ}C)$$

RESOLUCIÓN:

Datos:

$$m = 200 g$$

 $T_O = 5 \,^{\circ}\text{C}$
 $T_f = 25 \,^{\circ}\text{C}$

Para elevar su temperatura el cuerpo absorbe calor; por lo tanto, se produce un calor sensible ya que sólo hay variación Realizamos el "Diagrama lineal de temperatura"

Aplicamos:

$$Q_S = Ce \cdot m \cdot \Delta T$$

$$Q_S = 0.7 \frac{cal}{g \cdot {}^{\circ}\text{C}} \cdot 200 \ g \cdot 20 \ {}^{\circ}\text{C}$$

$$\therefore Q_S = 2800 \ cal$$

m = 300 g

 $T_0 = 90 \, ^{\circ}\text{C}$

Se mezclan 100 g de agua a 10 °C con 300 g de agua a 90 °C. Determine la temperatura de equilibrio de la mezcla. $(Ce_{H_2O} = 1cal/g \cdot °C)$

RESOLUCIÓN:

 $T_{Eq} = ?$

Realizamos el "Diagrama lineal de temperatura"

Se produce calor sensible ya que sólo hay variación en la temperatura.

Aplicamos:

$$Q_G = Q_P$$

$$(Ce \cdot m \cdot \Delta T)_{1} = (Ce \cdot m \cdot \Delta T)_{2}$$

$$1 \frac{cal}{g^{\circ}C} \cdot 100 g \cdot (T_{Eq} - 10^{\circ}C) = 1 \frac{cal}{g^{\circ}C} \cdot 300 g \cdot (90^{\circ}C - T_{Eq})$$

$$T_{Eq} - 10^{\circ}C = 3(90^{\circ}C - T_{Eq})$$

 $T_{Eq} - 10^{\circ}C = 270^{\circ}C - 3T_{Eq}$
 $4T_{Eq} = 280^{\circ}C$

$$\therefore T_{Eq} = 70^{\circ}\text{C}$$

m = 100 g

 $T_0 = 10 \, {}^{\circ}\text{C}$

RACHE ELICOPRACTICA

01

Determine la temperatura de equilibrio cuando se mezclan 400 g de agua a 15 °C con 200 g de agua a 25 °C (Crón: 1 cal/g°C)

Realizamos el "Diagrama lineal de temperatura"

Se produce calor sensible ya que sólo hay variación en la temperatura.

Aplicamos:

$$Q_{G} = Q_{P}$$

$$(Ce \cdot m \cdot \Delta T)_{1} = (Ce \cdot m \cdot \Delta T)_{2}$$

$$1 \frac{cal}{g^{\circ}C} \cdot 400 \ g \cdot (T_{Eq} - 15^{\circ}C) = 1 \frac{cal}{g^{\circ}C} \cdot 200 \ g \cdot (45^{\circ}C - T_{Eq})$$

$$4(T_{Eq} - 15^{\circ}C) = 2(45^{\circ}C - T_{Eq})$$

$$4T_{Eq} - 60^{\circ}C = 90^{\circ}C - 2T_{Eq}$$

$$6T_{Eq} = 150^{\circ}C$$

$$\therefore T_{Eq} = 25^{\circ}\text{C}$$

RACTICA PRACTICA

mezclan 100 g de agua a 80 °C con 50 g de agua 20 °C. Determine la temperatura de equilibrio. RESOLT CHOMP°C)

Agua: m = 50 g

$$T_O = 20 \,{}^{\circ}\text{C}$$

Agua:

$$m = 100 g$$

 $T_0 = 80 \,^{\circ}\text{C}$

$$T_{\text{Eq}} = ?$$
 $T_O = 80 \, ^{\circ}\text{C}$

Realizamos el "Diagrama lineal de temperatura"

Se produce calor sensible ya que sólo hay variación en la temperatura.

Aplicamos:

$$Q_G = Q_P$$

$$(Ce \cdot m \cdot \Delta T)_1 = (Ce \cdot m \cdot \Delta T)_2$$

$$1 \frac{cal}{g^{\circ}C} \cdot 50 \ g \cdot (T_{Eq} - 20^{\circ}C) = 1 \frac{cal}{g^{\circ}C} \cdot 100 \ g \cdot (80^{\circ}C - T_{Eq})$$

$$T_{Eq} - 20^{\circ}C = 2(80^{\circ}C - T_{Eq})$$

$$T_{Eq} - 20^{\circ}C = 160^{\circ}C - 2T_{Eq}$$

$$3T_{Eq} = 180^{\circ}C$$

$$\therefore T_{Eq} = 60^{\circ}\text{C}$$

Se mezclan iguales cantidades de agua a 50°C y 80°C. Determine la temperatura final de la mezcla. $(Ce_{H_2O} = 1cal/g^{\circ}C)$

RESOLUCIÓN:

Realizamos el "Diagrama lineal de temperatura"

Se produce calor sensible ya que sólo hay variación en la temperatura.

Aplicamos:

$$Q_{G} = Q_{P}$$

$$(Ce \cdot m \cdot \Delta T)_{1} = (Ce \cdot m \cdot \Delta T)_{2}$$

$$1\frac{cal}{g^{\circ}C} \cdot \mathbf{M} g \cdot (T_{Eq} - 50^{\circ}C) = 1\frac{cal}{g^{\circ}C} \cdot \mathbf{M} g \cdot (80^{\circ}C - T_{Eq})$$

$$T_{Eq} - 50^{\circ}C = 80^{\circ}C - T_{Eq}$$

$$2T_{Eq} = 130^{\circ}C$$

01

RACHE ELICOPRACTICA

hervir Solemos agua a diario en una tetera o en una olla. Si la temperatura inicial del agua al medio ambiente de 20 es aproximadamente, ¿qué cantidad de calor debemos suministrarle aproximadamente a 500 g de agua al medio ambiente con la finalidad de que el agua empiece a hervir si a nivel del mar el agua hierve a 100 °C?.

RESOLUCIÓN:

Para que el agua empiece a hervir tiene que alcanzar los 100°C

Datos:

$$m = 500 g$$

 $T_O = 20 \,^{\circ}\text{C}$
 $T_f = 100 \,^{\circ}\text{C}$

Al absorber calor, se produce sólo variación en la temperatura; por lo tanto, se da un calor sensible.

Realizamos el "Diagrama lineal de temperatura"

Aplicamos:

$$Q_S = Ce \cdot m \cdot \Delta T$$

$$Q_S = 1 \frac{cal}{g \cdot {}^{\circ}\text{C}} \cdot 500 \ g \cdot 80 \ {}^{\circ}\text{C}$$

$$Q_S = 40000 \ cal = 40 \ kcal$$