Algorithme Lvox

Problème de l'estimation des données manquantes

Enguerran Grandchamp, LAMIA, UA

Plan

- Objectifs opérationels
- Principe LiDAR
 - Acquisition des données
 - LiDAR terrestre
 - MultiScan
- Algorithme LVox
 - Fusion des scans
 - Calcul des densités
 - Profils
 - PAD
- Intégration LiDAR aérien
- Outils
- Problèmes rencontrés
 - Estimation des données manquantes
 - Principe / validation

Objectifs opérationnels

- Meilleur caractérisation des forêts
- Estimation de la biomasse

Approche globale

- Acquisition des données
 - LiDAR terrestre
- Traitement et analyse des données
 - Algorithme LVox
- Définition des modèles de biomasse à partir de relevés manuels et mise en correspondance avec le LiDAR terrestre.
- Mise en correspondance LiDAR terrestre et aéroporté
- Généralisation du modèle de biomasse

Principe d'acquisition: LiDAR terrestre

- Alternative relevé manuel
- A l'échelle d'une placette
- Calcul de distance par mesure Laser
- → Nuage de points en 3D, ou 3D+I

Acquisition des scènes

- Juillet 2015
- 19 scènes acquises
- 5 scans minimum par scène
- 20 Millions de points par Scan (140 Go)

Acquisition des scènes

- Juillet 2015
- 19 scènes acquises
- 5 scans minimum par scène
- 20 Millions de points par Scan (140 Go)

Données

Données brutes 3D

Projection sur une section

Lvox: décomposition en voxels

Représentation par Voxel

Siedel et al. (2012) Agric. For. Meteorol.

LVox: Nt, Nb, Ni

 Nt : nombre de rayons théoriques que le voxel doit recevoir sans occultation

 Nb : nombre de rayons bloqués avant le voxel

 Ni : nombre de rayons interceptés par le voxel

Lvox: densité

Nt-Nb-Ni = nombre de rayons traversant

- Densité d = Ni / (Nt Nb) (VDI : Vegetal Density Index)
- Hypothèse : L'interception est proportionnelle à la densité de végétation
- Si Nt = Nb : Voxel sans hit (NA)
- → 5 Matrices par Scan

LVox: fusion des *n* scans

- Critère choix unique
 - $d_{xyz} = \max_{s=1,n} (d_{xyz}^s) = \max_{s=1,n} (Ni_{xyz}^s / (Nt_{xyz}^s Nb_{xyz}^s))$
 - $d_{xyz} = d_{xyz}^{S0} | S_0 = \underset{s=1,n}{\operatorname{ArgMax}} (Nt_{xyz}^{S} Nb_{xyz}^{S})$
 - $d_{xyz} = d_{xyz}^{S0} | S_0 = \underset{s=1,n}{\operatorname{ArgMax}} ((Nt_{xyz}^{S} Nb_{xyz}^{S}) / Nt_{xyz}^{S})$
 - $d_{xyz} = d_{xyz}^{S0} | S_0 = \underset{s=1,n}{\operatorname{ArgMax}} (Ni_{xyz}^{S})$
- Calcul d'une nouvelle densité
 - $d_{xyz} = \sum_{s=1}^{n} Ni_{xyz}^{s} / \sum_{k=1}^{n} (Nt_{xyz}^{s} Nb_{xyz}^{s})$
- Seuil sur Nt-Nb : 10 ?
- Prise en compte des scans en fonction de leur position par rapport au voxel ?

LVox: profil

- Vertical (z)
- Global

- Par tranche (selon x ou y)
 - >variabilité

Lvox: PAD

- Hypothèse:
- Plant Area Density (m²/m³)
- Densité surfacique ans un voxel
- Profil PAD

Wox: perspectives intégration du LiDAR aéroporté

- A l'échelle d'une région
- Plusieurs retours possibles
- Adaptation de la méthode de calcul des Nt Nb Ni
 - MNHV : Modèle Numérique de Hauteur de la Végétation
 - MNH : Modèle Numérique de Hauteur

Habitations

Forêts

LVox: outils

- Computree
 - UdS, ONF
 - C++
- Code JAVA

Problème rencontré : estimation des données manquantes

- Valeur manquante : pas d'observation pour une variable (retours) donnée pour un individu (voxel) donné
- Origine
 - Occultation

Problème rencontré : estimation des données manquantes

- Problème
 - On ne peut pas faire de nouvelles mesures
 - Ne peuvent pas être ignorées (données pertinentes et informatives) au delà d'un certain seuil (à définir)
- Solutions
 - Calculer une valeur pour les données manquantes : imputation
 - Développer un modèle robuste ou un algorithme prenant en compte les données manquantes

Caractéristiques des données manquantes

- La probabilité qu'une observation soit manquante dépend elle des mesures observées ou non observées ?
 - Si elle ne dépend d'aucune des deux : les données manquantes sont dites complètement aléatoires (MCAR)
 - $P(r \mid Xobs, XnonObs) = P(r)$
 - Si elle ne dépend pas des données non observées : les données manquantes sont dites aléatoires (MAR)
 - $P(r \mid Xobs, XnonObs) = P(r \mid Xobs)$
- Approche statistique
 - Cas des données manquantes aléatoirement : les méthodes basées sur la vraisemblance restent valides si on ignore les données manquantes. D'autres méthodes comme les moments seront biaisés.
 - Cas des données manquantes non aléatoirement (MNAR) : on ne peut pas ignorer ces données
- Intuitivement il y a dépendance (au moins dans un voisinage à définir) : organisation spatiale du matériel, diminution du nombre de rayons avec la distance. A Démontrer
 - Modéliser le processus d'observation

Analyse des données complètes

- Avant ou après fusion des scans
 - Avant : n observations d'un même voxel
 - Après : 1 observation d'un même voxel
- Données complètes
 - Peu de voxel complets par construction (observation depuis des angles différents)

Imputation

- Par la moyenne ou la médiane
 - De la couche (z constant) : méthode actuelle
 - Inconvénients
 - même valeur pour toutes les données manquantes d'une couche
 - sous estime la variance
- Par tirage conditionnel
 - Moyenne du voisinage : lequel ? K-ppv ? LOCF (Last Observation Carried Forward) : propagation d'une observation. CMCF (Concept Most Common Attribute Value Fitting)
 - Construire un modèle de régression par rapport aux données renseignées et prédire les données manquantes.
- Imputation multiple : n tirages (5 en pratique) et répéter les analyses → unique estimateur
 - Algorithme EM (Espectation-Maximisation)
 - Méthode MCMC (Monte Carlo Markov Chain)
- Imputation par analyse factorielle
 - Exemple : estimation de la matrice de covariance à partir des observations, estimation paramètres ACP,

Autres méthodes possibles

- Prise en compte des scans en fonction de leur position par rapport au voxel ?
- Prise en compte de la signification physique des données
 - $Nt \ge Nb + Ni$
- Introduction de la position du voxel dans les variables d'observation ?
- Validation des approches
 - Validation croisée

Quelques références

- LiDAR et Forêt
 - Silvilaser: https://silvilaser2015.teledetection.fr/
 - http://forestsat2014.com/
 - Computree
 - http://computree.onf.fr/?lang=fr
 - http://rdinnovation.onf.fr
 - Logiciel LIDAR pour la foret
 - http://www.liforest.com/#/
 - http://gisiana.info/gis-software/gis-for-forestry/
 - http://www.inigis.net/gis-for-forestry/
 - Rasterizing Perfect Canopy Height Models from LiDAR November 4, 2014, Martin Isenburg
- Estimation de données manquantes
 - Imputation des données manquantes : Comparaison de différentes approches.
 Mélanie Glasson-Cicognani & André Berchtold Université de Lausanne
 - Les données manquantes en statistique. N Meyer. Laboratoire de Biostatistique. Strasbourg