# 自由摆上的平板控制系统

# 一、任务

设计并制作一个自由摆上的平板控制系统,其尺寸要求及参考结构如图 1 所示。



## 二、要求

#### 1.基本要求

- (1) 用手缓慢推动摆杆旋转任意角度(0-360°),要求推动过程中在液晶屏上实时显示摆杆角度位置(以自然下垂时的角度为0°)。
- (2) 设定工作模式,进行基本要求(1)时,平板保持水平状态。
- (3) 设定工作模式,进行基本要求(1)时,平板保持与摆杆相互垂直的状态。

### 2.发挥部分

- (1) 在平板上粘贴一张画有一组间距为 1cm 平行线的打印纸。用手推动摆杆至 60°,调整平板角度,在平板中心稳定放置一枚 1 元硬币;启动后放开摆杆让其自由摆动。在摆杆摆动过程中,要求控制平板状态,使硬币在 5 个摆动周期中不从平板上滑落,记录最终硬币偏离中心的距离。
- (2) 用手推动摆杆至 45°, 调整平板角度, 在平板中心稳定叠放 1 元硬币, 启动后放开摆杆让其自由摆动。在摆杆摆动过程中, 要求控制平板状态使硬币在摆杆的 5 个摆动周期中不从平板上滑落, 并保持叠放状态。硬币数从两枚开始, 逐渐加大叠放的硬币数, 记录最终可保持硬币堆叠状态的最大数量。
- (3) 其他。

## 三、说明

- 1. 摆杆材质不限,长度(即从摆杆转轴到电机转轴的距离)为 70cm±5cm;要求摆杆 在手动推至 30°释放后,可至少自由摆动七个周期以上。
- 2. 平板不允许有磁性,要求表面平整且粘贴有普通打印纸,尺寸要求为 10cm×6cm; 平板状态只能受电机控制,机械结构包括但不限于图 1 的形式。
- 3. 电机、编码器形式不限。
- 4. 主控与电机及传感器直接可采用有线的方式连接,但导线不可干扰摆杆和平板的摆

动。

- 5. 可以采用预编程或按键形式切换工作模式,手动将摆杆推至某个角度释放后,则不可人为干预。
- 6. 测试发挥部分所有项目时,不要求显示摆杆角度。

# 二、评分标准

|      | 项目      | 主要内容        | 分数 |
|------|---------|-------------|----|
| 设计报告 | 系统方案    | 比较与选择       | 2  |
|      |         | 方案描述        |    |
|      | 理论分析与计算 | 机械结构设计      | 8  |
|      |         | 摆杆与平板数学模型分析 |    |
|      |         | 其他          |    |
|      | 电路与程序设计 | 电路设计        | 4  |
|      |         | 程序设计        |    |
|      | 测试方案与测试 | 测试方案及测试条件   | 4  |
|      | 结果      | 测试结果完整性     |    |
|      |         | 测试结果分析      |    |
|      | 设计报告结构及 | 摘要          | 2  |
|      | 规范性     | 设计报告正文的结构   |    |
|      |         | 图表的规范性      |    |
|      | 总分      |             | 20 |
| 基本要求 | 完成 (1)  |             | 10 |
|      | 完成(2)   |             | 20 |
|      | 完成(3)   |             | 20 |
|      | 总分      |             | 50 |
| 发挥部分 | 完成 (1)  |             | 20 |
|      | 完成(2)   |             | 25 |
|      | 完成(3)   |             | 5  |
|      | 总分      |             | 50 |