TLS in the wild Internet scans for security

Presented by Ralph Holz

School of Information Technologies

This is joint work

Team TLS

- Johanna Amann (ICSI)
- Olivier Mehani, Dali Kafaar (Data61)
- Matthias Wachs (TUM)

Team BGP

- Johann Schlamp, Georg Carle (TUM)
- Quentin Jacquemart, Ernst Biersack (Eurecom)

About me

Quick CV

- Lecturer at University of Sydney
- Visiting Fellow at UNSW
- Previously Researcher at Data61 (ex-NICTA)
- PhD from Technical University of Munich
- And I do Internet security measurement...
- (Also: blockchains)

About this lecture

This is a story about

- ...how security measurements can identify shortcomings in deployed technology
- ...how data from active scans can be reused for further, benign purposes

There are three parts to this story

- From identifying the problem to scanning the Web
- New insights about electronic communication: email and chat
- Reusing data in new contexts. Here: security of Internet routing!

Background: a typical Internet experience

Reason (not a UX fail)

Technical Details

www.symantec.com.au uses an invalid security certificate.

The certificate is only valid for the following names:

symantec.com, norton.com, careers.symantec.com, customercare.symantec.com, jobs.symantec.com, www.account.norton.com, account.norton.com, mynortonaccount.com, www.nortonaccount.com, nortonaccount.com, downloads.guardianedge.com, www.pgp.com, store.pgp.com, na.store.pgp.com, eu.store.pgp.com, uk.store.pgp.com, row.store.pgp.com, nukona.com, www.nukona.com

(Error code: ssl_error_bad_cert_domain)

The X.509 Public Key Infrastructure (PKI)

Much of our Internet security is built on X.509

- Every TLS-secured protocol uses X.509
- Further use cases: email, code-signing, ...

All X.509 PKIs share the same principle

- Certificates bind an entity name to a public key
- Certification Authorities (CAs) act as certificate issuers
- Browsers/OSes preconfigured with CAs' 'root' certificates

Root certificate not in Root Store

Best-of attacks on X.509

- Dec 2008:
 - 'Error' in Comodo subseller: no identity check
- Mar 2011: Comodo CA hacked
 - Blacklisting of \approx 10 certificates
- Jul 2011: DigiNotar CA melt-down
 - 531 fake certificates in the wild
- 2012: Türktrust's 'accidental Man-in-the-middle'
- 2012: Trustwave: issued surveillance certs for years
- I stopped tracking it in around that time (PhD was done)

2008–2011: we assess the quality of X.509 for the Web

X.509 should:

- ...allow HTTPS on all WWW hosts
- ...contain only valid certificates
- ...offer good cryptographic security

And there should be:

- Long keys, only strong hash algorithms, ...
- Correctly deployed certs

Does it?

Data sets: 25m certificates

Active scans to measure deployed PKI

- Scan hosts on Alexa Top 1 million Web sites
- Nov 2009 Apr 2011: 8 scans from Germany
- April 2011: 8 scans from around the globe

Passive monitoring to measure user-encountered PKI

- Munich Research Network
- Real SSL/TLS as caused by users

TLS in the wild | Ralph Holz

TLS in the wild | Ralph Holz

TLS in the wild | Ralph Holz

TLS in the wild | Ralph Holz

Domain names in certificates

Are certificates issued for the right domain name?

- Tested for scans of Alexa Top 1m
- Compare name in certificate against domain name, incl. wildcard matching
- Only 18% of certificates are fully verifiable
- More than 80% of the deployed certificates show errors

What about...

Email?

- Email: 4.1B accounts in 2014; 5.2B in 2018
- Most prevalent, near-instant form of communication

Chat?

- Once dominant instant-messaging (IRC!)
- Newer: XMPP (also proprietary use)

Research question: how secure are these?

Securing email and chat

SSL/TLS is the common solution

- Responder authenticates with certificate
- Initiator usually uses protocol-specific method
- Direct SSL/TLS vs. STARTTLS in-band upgrade
 - Susceptible to active man-in-the-middle attack

Email protocols

- Email submission: SMTP, SUBMISSION (= SMTP on 587)
- Email retrieval: IMAP, POP3

Investigated properties

In this lecture:

- Deployment numbers
- STARTTLS
- Versions
- Ciphers used/negotiated
- Responder authentication
- Initiator authentication

Focus mostly on email. There is more in the paper.

Data collection (July 2015)

Active scans

- To determine state of deployment
- zmap in the 'frontend', openss1-based 'backend'

Passive monitoring

- To determine actual use
- Bro monitor, UCB network

Active scans (July 2015)

Protocol (port)	No. hosts	SSL/TLS	Certs	Interm. (unique)
SMTP ^{†,‡} (25)	12.5M	3.8M	1.4M	2.2M (1.05%)
SMTPS [‡] (465)	7.2M	3.4M	801k	2.6M (0.4%)
SUBMISSION ^{†,‡} (587)	7.8M	3.4M	754k	2.6M (0.62%)
IMAP ^{†,‡} (143)	8M	4.1 M	1M	2.4M (0.54%)
IMAPS (993)	6.3M	4.1 M	1.1M	2.8M (0.6%)
POP3 ^{†,‡} (110)	8.9M	4.1 M	998k	2.3M (0.44%)
POP3S (995)	5.2M	2.8M	748k	1.8M (0.44%)
IRC [†] (6667)	2.6M	3.7k	3k	0.6k (13.17%)
IRCS (6697)	2M	8.6k	6.3k	2.5k (12.35%)
XMPP, C2S ^{†,‡} (5222)	2.2M	54k	39k	5.9k (32.28%)
XMPPS, C2S (5223)	2.2M	70k	39k	33k (8.5%)
XMPP, S2S ^{†,‡} (5269)	2.5M	9.7k	6.2k	5.9k (32.28%)
XMPPS, S2S [‡] (5270)	2M	1.7k	1.1k	0.8k (18.77%)
HTTPS (443)	42.7M	27.2M	8.6M	25M (0.93%)

 $\dagger = {\sf STARTTLS}$, $\ddagger = {\sf fallback}$ to SSL 3.

Passive observation (July 2015)

Protocol	Port	Connections	Servers	
SMTP [†]	25	3.9M	8.6k	
SMTPS	465	37k	266	
SUBMISSION [†]	587	7.8M	373	
IMAP [†]	143	26k	239	
IMAPS	993	4.6M	1.2k	
POP3 [†]	110	19k	110	
POP3S	995	160k	341	
IRC [†]	6667	50	2	
IRCS	6697	18k	15	
XMPP, C2S [†]	5222	14k	229	
XMPPS, C2S	5223	911k	2k	
XMPP, S2S [†]	5269	1 <i>75</i>	2	
XMPPS, S2S	5270	0	0	

 $[\]dagger = \mathsf{STARTTLS}.$

STARTTLS support and use

Protocol	Active probing	Passive monitoring			
	Supported & upgraded	Supporting servers	Offering connections	Upgraded connections	
SMTP	30.82%	59%	97%	94%	
SUBMISSION	43.03%	98%	99.9%	97%	
IMAP	50.91%	77%	70%	44%	
POP3	45.62%	55%	73%	62%	

- Deployment as scanned: 30-50%—not good
- **Use** as monitored: better, but still not very good
 - SMTP: almost all connections upgrade
 - But not in IMAP/POP3

SSL/TLS versions in use (passive observation)

Active probing Version Negotiated with serve		Passive monitoring Observed connections	
SSL 3	0.02%	1.74%	
TLS 1.0	39.26%	58.79%	
TLS 1.1	0.23%	0.1%	
TLS 1.2	60.48%	39.37%	

- SSL 3 is almost dead, some use left—are these old clients?
- TLS 1.2 most common in deployments, but not in use (not good)

Ciphers and forward secrecy (from monitoring)

- RC4 has use (up to 17%, not good)
- ECDHE has much use
- DHE: 76% are 1024 bit, 22% 2048 bit, 1.4% are 768 bit

Responder authentication (monitored o use)

Responder authentication (scanned o deployed)

Initiator authentication: SUBMISSION

Combinations offered	Advertised	Servers	
PLAIN, LOGIN	2.1M	75.15 %	
LOGIN, PLAIN	224k	8.51%	
LOGIN, CRAM-MD5, PLAIN	96k	3.45%	
LOGIN, PLAIN, CRAM-MD5	45k	1.63%	
DIGEST-MD5, CRAM-MD5, PLAIN, LOGIN	36k	1.30%	
CRAM-MD5, PLAIN, LOGIN	29k	1.04%	
PLAIN, LOGIN, CRAM-MD5	25k	0.89%	
•••			

- Plaintext-based methods the vast majority
- Even where CRAM is offered, it's usually not first choice
- No SCRAM

Risks and threats: SSL/TLS-level

STARTTLS

- Less than 50% of servers support upgrade
- But big providers do, have large share of traffic
- MITM vulnerability (reported to be exploited)

Ciphers

- For some protocols, 17% of RC4 traffic (WWW: 10%)
- For some protocols, $\approx 30\%$ of connections not forward-secure
- Diffie-Hellman keys \leq 1024 bit in > 60% of connections

Risks and threats: authentication

Responder

- Many self-signed or expired certs, broken chains
- Big providers have correct setups
- Sending mail to 'small' domain/provider means risks of MITM
- We know from Foster et al. that mail servers do not verify certs in outgoing connections

Initiator

- Plain-text login pervasive
- CRAM not used much (and no implementations for SCRAM?)

Scans are intrusive

Scans are intrusive

Actually, that is so wrong. We do nmap 0.0.0.0/0 | grep | sort -u | wc -1

Scans are intrusive

Let's show them what insights **only** scans can give. Our example will be Internet routing!

The fragility of Internet routing

Origin Relocation Attacks

Monitoring Internet routing

Attack detection systems for BGP exist

- But they mostly address other kinds of attacks
- Or they have enormous false-positive rates

So we built HEAP

- A filter chain to link to attack detection system
- A powerful system to rule out false positives
- The goal is to cut down the number of reported events to a more manageable size

Reason with external data

Idea: rule out benign events, investigate rest

Figure: Hijacking Event Analysis Program (figure courtesy J. Schlamp)

Data source: SSL/TLS scans

IPv4-wide scans

- Create ground truth
 - Identify beacon hosts with unique keys
 - Filter out all hosts which were in suspicious prefix at scan-time
- With this ground truth:
 - During suspicious event, scan hosts in affected prefixes
 - If key is still the same: not an attack
 - Attacker unlikely to compromise both host(s) and BGP

How to evaluate

Lack of input sources

- Most attack detectors do not focus on subprefix attacks
- Or they are discontinued
- We thus had to build our own, very coarse, 'detector'
- Essentially, we just counted every subprefix (subMOAS) events as an 'attack'
- Gross overestimate of real attacks, but it creates a worst case for our evaluation setup
- We discounted events of less than 2 hrs duration

Evaluation results

	total	in %
All subMOAS events	14,050	100.0%
IRR analysis	5,699	40.56%
topology reasoning	2,328	16.57%
SSL/TLS scans	2,639	18.78%
Legitimate events (cum.)	7,998	56.93%

l.e. we can rule out more than half of ${\bf all}$ events in our super-coarse detector.

Case study: IP space of Top 1M (Alexa)

Assumption: this is valuable IP space

	total	in %
All subMOAS events	849	100.0%
IRR analysis	294	34.63%
topology reasoning	146	17.20%
SSL/TLS scans	576	67.85%
Legitimate events (cum.)	689	81.15%

One conclusion: run a Web server in your prefix, and you increase chances we can monitor your IP space.

Conclusion

A good step forward

- We can rule out 57% of all events shorter than 2 hrs
- For important IP spaces, this rises to 80%
- We can show commercial detectors have at least 10% false positives

We offer two conclusions

- IRR data is immensely useful—we wish operators would enter it into the DB more often
- Scans are very useful, too—and 'opt-in' to HEAP is as simple as setting up a small Web server with unique key

Summary

Security measurements point out weaknesses in email

- Connections between big providers are already (reasonably) secure
- The risk lies with mail from/to remaining providers
- Authentication mechanisms (initiator) are very poor
- (PS: The Web's security is a mess, too)

Scans can be immensely useful to improve security, too

Monitor Internet routing and filter alarms

Summary

Security measurements point out weaknesses in email

- Connections between big providers are already (reasonably) secure
- The risk lies with mail from/to remaining providers
- Authentication mechanisms (initiator) are very poor
- (PS: The Web's security is a mess, too)

Scans can be immensely useful to improve security, too

Monitor Internet routing and filter alarms

Questions?

email: ralph.holz@sydney.edu.au

Recommendations

A few things we can do

- Warnings in user agents that mail will be sent in plain
 - ightarrow Google has implemented this now
- Flag-day for encryption (as for XMPP)
- Combine setup with automatic use of, e.g., Let's Encrypt
- Ship safe defaults
- Follow guides, e.g., bettercrypto.org
- More in the paper

Recommendations

A few things we can do

- Warnings in user agents that mail will be sent in plain
 - ightarrow Google has implemented this now
- Flag-day for encryption (as for XMPP)
- Combine setup with automatic use of, e.g., Let's Encrypt
- Ship safe defaults
- Follow guides, e.g., bettercrypto.org
- More in the paper

Questions?

email: ralph.holz@sydney.edu.au

Can X.509 be reinforced?

No 'silver bullet' known that would resolve all issues

- Attacker model of SSL/TLS + X.509 \approx protect credit card numbers
- State-scale attacks were not in scope back in the 1990s

New mechanisms

- Pinning: store client-local information about a site
- Store information in the DNS, use DNSSEC
- Notary principle
- Public logs

Attacker models important for assessment

- Weaker attacker:
 - E.g., on WiFi access point, or some local network gateway
 - May control DNS traffic, but cannot interfere with DNSSEC
- Regional attacker:
 - Controls all traffic of a country
 - Control over routing, control over DNS
 - Controls own top-level domain (DNSSEC!)
 - May compromise CA
- Supra-regional attacker. Same as above, plus:
 - 'Cyber-war': a state risking 'digital military confrontation'
 - Attacks on global routing (BGP, possible)
 - Attacks on infrastructure to control DNSSEC

Hardening certification

Vendor efforts

- CA/Browser Forum is a body of browser vendors and CAs
 - Extended Validation standard (2010)
 - Baseline Requirements standard (2012)

Extended Validation (EV)

- Require state-issued documents before certification
- Certificates have OID that browsers evaluate

Base Line Requirements

- Minimum requirements for validation, forbid less secure practices

Discussion of these standards

- Sanctions for standard violations unclear
 - What justifies removal from root store?
- CAs have repeatedly violated the standards agreed upon:
 - Certificates without revocation information
 - Certificates with keys that are too short
 - Certificates with expiry periods that are too long
- These standards address operational practices, but are hard to enforce
- The standards do not address stronger attackers, e.g., a compromised CA like DigiNotar

Pinning

Defence against rogue CAs issuing malicious certs

- Idea: client stores information about a host/Web site on first contact
- E.g., store the public key of a site
- Use this information to reidentify a site later
- E.g., if public key is suddenly different on next connect: warn user

Pinning assumes a secure first connection

- Thus also known as 'trust-on-first-use'
- Inherent bootstrapping problem

Two pinning variants

Static pinning

- Preloaded pins for important sites:
 - Implemented in Google Chrome and Mozilla Firefox
- User-driven pinning:
 - add-ons for browsers that allow users to store and compare public keys of sites

Dynamic pinning

Idea: communicate helpful information to aid clients with pinning

Issues with pinning

- For certain users, secure first contact may not be possible
 - E.g., dissidents in authoritarian countries
- Life-cycle problem
 - Servers may (legitimately) update/upgrade their keys—synchronise pinning information
- Scalability
 - Browsers cannot come preloaded with pins of all sites

HSTS: HTTP Strict Transport Security

- Dynamic 'pinning': tell clients that this site supports HTTPS
- Example:

```
Strict-Transport-Security: max-age=31536000;
includeSubDomains
```

- Instructs browser:
 - To expect HTTPS for next 12 months, including subdomains
 - To redirect on port 443
 - To disallow user override of certificate warnings
- Simple, powerful
- Very little danger for server operators to misconfigure (and lose customers)

HPKP: HTTP Public Key Pinning

- Dynamic pinning
- Servers communicate life-time and hash value of their X.509 public key in the HTTP header

```
- Public-Key-Pins: pin-sha256="cUPcT...";
max-age=5184000;
report-uri="https://www.example.net/hpkp-report"
```

- Addresses short-comings of simple pinning:
 - Life-cycle management for key upgrade/compromise:
 'backup pins' communicated in addition to the primary ones
- Easy to deploy, no problems for clients that are not aware of the pinning
- Features reporting function: report key mismatches to a URL!

Asssessment of pinning

- Extremely strong if assumption of secure first connection holds
- Attacker can only attack client or server, but there is no other Trusted Third Party to compromise
- Practical usefulness first demonstrated by Google:
 - Google pins all Google sites in their browser (static pinning)
 - This was how the DigiNotar incident was detected!
- Concept can hold up to any attacker who cannot compromise either client or server
 - Hence, addresses the stronger forms of attacker

Cross-validation with public logs

- Idea: log information about certificate issuance with a number of distinct parties
- Logs store information publicly and append-only: audit trail
 - No way to delete previous entries
 - Sign and timestamp new entries
- Certificate Transparency (CT):
 - Make transparent who issued certificates to whom and when
 - Anyone can verify logs' content and their correct operation
 - Enables detecting rogue CA issuing certificates for a domain
 - Proposed: 30+ logs around the globe, run by different parties
 - Note: goal is detection, not a direct defence for clients!

Public log: a Merkle Hash Tree

Figure: Log is a Merkle tree, d_i are new certificate chains.

Proving properties of Merkle Hash Trees

The tree structure is beneficial for proving certain conditions are met

- Proofs do not require full copies of the tree—a subset, logarithmic in size, is enough
- Algorithms to determine the subsets, and how to carry out the proofs, are described in RFC 6962
- Logs must allow to retrieve the necessary subset for any given certificate in the tree
- So-called monitors and auditors are entities that continously watch the operation of logs and use these proofs to determine the logs are well-behaving

- Cross-validation: watching the watchers

Proofs

Consistency

- Prove the append-only property
- Prove that no certificate was removed from the tree, or some certificate injected in the wrong position
- Works by obtaining subset of nodes needed to prove that tree from a certain moment t_0 on always adhered to the append-only property
- In other words: the logs cannot fake the logged history once they have started logging

Inclusion (audit path proof)

- Prove that a certificate has been included in the tree

Watchers: monitors

Computationally powerful entities tracking the operation of several logs

- Primary function: continously verify the append-only property (consistency checks)
- Act on behalf of less powerful entities, e.g. browsers or domain owners
- Possible parties fulfilling this role: ISPs, CAs. But anyone is free to set up a monitor.
- Secondarily, they may also keep copies of logs
- This enables them to search for violating certificate issuances:
 - E.g. they have a list of domains to 'protect'
 - They may watch continously if a second certificate for a domain appears, which the domain owner never authorised

Watchers: auditors

Auditors are computationally less powerful entities

- Typically, they do not keep copies of the logs
- Typical parties fulfilling this role: browsers
- Auditors may check either consistency (like monitors, but without having copies of the logs)
- They may also do inclusion checks

Figure: logs and TLS/X.509

Source: certificate-transparency.org

Interactions: logs and other parties

Certification: CAs and logs

- When issuing a cert, CA must send it to at least two logs for incorporation
- Log returns a Signed Certificate Timestamp (SCT) proving it has accepted the cert
- SCT must be forwarded to actual domain operator
- Client learns about SCT
 - with OCSP request (stapling, current status), or
 - can retrieve as DNS record,
 - or as TLS extension or,
 - CA may directly add to X.509 cert
- SCT is sent to any TLS client connecting to the domain: client knows which logs track this cert

Browsers can be auditors, CAs can be monitors

This is an example configuration—anyone can audit or monitor

Source: certificate-transparency.org

Gossiping

Problem: split-horizon attacks

- Monitors and auditors cannot prevent logs from keeping 'alternate histories', where one history is the real one, shown some parties, and the other is a fake one, shown to other parties
- With considerable effort, such split-horizon attacks can be used by attackers to bypass the cross-validation system and trick clients
- Thus: gossiping between auditors, monitors, TLS clients
- Gossiping is not yet specified, but here are the main ideas:
 - Clients, auditors and monitors should notify domains which tree head they see
 - This means that logs showing alternate histories to some clients will be ultimately detected

Discussion of Certificate Transparency

Advantages

- Adds transparency to X.509 in the hope of detecting malicious behaviour early
- Google pushed this into the market
- Has already proven its worth on several occasions
- CT is strong reinforcement of X.509, thwarting even state-level attackers

Problems

- Expensive!
- No direct, immediate help for clients
- Very complex setup

Certificate Authority Authorization (CAA)

Store which CA is responsible for a domain in the DNS

- E.g., Google may add value symantec.com to resource records for google.com
 - Try it: dig +short -t TYPE257 google.com
- The value is a unique identifier for a CA
- Before issuing a certificate for a domain, a CA must query the CAA record
- Also define a URL where one can report violations, e.g. if you find a certificate that is not from the CA defined in the CAA record
- Problem: DNS itself is not secure

Discussion of CAA

Advantages

- Very simple, cheap
- CAs can quickly query if the domain owner wants them to be responsible
- Avoiding DNSSEC reduces complexity
- The URL for reporting is very valuable addition

Issues

- No DNSSEC means well-positioned attacker can interfere with DNS query (even weakest attacker we discussed)
- No direct protection for clients
- No defence at all when a CA is compromised

DANE: DNS-based authentication of named entities

TLSA record: additional trust anchor

- Very flexible ways to store trust anchor in DNS entry
- Selector field:
 - Store full certificate or just public key
- Matching Type field:
 - Exact value provided or hash value (SHA256 or SHA512)
- Certificate Usage field specifies:
 - Cert (or public key) of issuing CA
 - Cert (or public key) of end-host certificate if CA-issued
 - Cert (or public key) of self-signed certificate
- DANE-TLSA mandates use of DNSSEC
 - Mandates to abort connection on mismatch between DNS entry and TLS cert

75

Discussion of DANE-TLSA

Advantages

- Out-of-band mechanism with strong reassurance on certificate validity
- Protects completely against our weaker, local attacker

Potential issues

- DNS operators need to become PKI operators—requires extra care and training
- Mandated 'hard fail' is disincentive for operators—same
- Countries are often in control of their TLDs—think of bit.ly. This enables state-level attacks:
 - Regional attacker: can modify TLSA records of his zone
 - Global attacker: may be able to modify some other zones

Notary-based systems

When connecting to a host and receiving the TLS certificate...

Notary-based systems

...connect to some special notaries elsewhere and double-check

Perspectives: a notary system

- Assumption: no attacker can control all paths through the Internet
- A number of notary systems are distributed around the globe, run by independent operators
- Notaries scan a list of domains regularly. Store and sign which certificates they see, at which time.
- Each notary also shadows a number of other notaries:
 - Downloads their observations and signs and stores them, too
 - Checks for inconsistencies: no contradicting entries
 - Defence against misbehaving or compromised notaries
- When clients connect to a domain, they receive a certificate. They
 double-check with 1-2 notaries and their shadows.

Discussion: Perspectives

- Security depends on:
 - Attacker's capability to compromise notaries and his position in network
 - Attacker being able to predict which notaries and shadows a client will use
 - Many notaries necessary—else attacker can compromise 'just enough' of them
 - Attacker sitting on 'last hop' to server can trick all notaries
- Huge problem: which notaries should a user trust?
 - Most users do not have background for such a decision
 - Preconfigure it? Then everyone uses the same notaries
- In practice, notary systems have so far failed because they are not acceptable to the typical user base.

Notary-based systems

Examples

- Perspectives (CMU, 2009): browser plug-in
 - In operation
 - But shadow concept never implemented
 - Few notaries—project cannot guarantee their benign intentions
- Convergence (Marlinspike, 2011): browser plug-in, discontinued
- Crossbear (Holz, 2011):
 - Different goal: detect attacks by finding mismatches between notaries and clients
 - Interpret a mismatch as potential attack, try to determine position of attacker

Crossbear

Goal: detection and localisation

Current status and gazing into crystal ball

- Certificate Transparency is supported and deployed for EV certs
 - Has detected misbehaving logs and CAs
- HSTS seems to have some traction among important sites
 - But HPKP has little deployment: risk to operator
- DANE-TLSA has little deployment so far (as does DNSSEC)
- Notary concepts have no deployment to mention

On XMPP

Majority of certs for XMPP are self-signed.

- Inspection of Common Names shows: proprietary use
 - Content Distribution Network (incapsula.com)
 - Apple Push
 - Samsung Push
 - Unified Communication solutions

Oddity of scans

The Internet has background noise.

- Independent of port you scan, about 0.07-0.1% of IPs reply with SYN/ACK, but do not carry out a handshake
- Confirmed with authors of zmap
- Important to keep in mind when investigating protocols with smaller deployments, where SSL/TLS does not seem to succeed very often

Certificate reuse—valid certs

Much reuse, even among valid certs

Certificate reuse—self-signed

Many default certs from default configurations

Key reuse across all protocols

Oddity in IMAPS...

Common name	Occurrences
*.securesites.com	88k
*.sslcert35.com	31k
localhost/emailAddress=webaster@localhost	27k
localhost/emailAddress=webaster@localhost	21k
*.he.net	19k
www.update.microsoft.com	19k
*.securesites.net	11k
*.cbeyondhosting2.com	11k
*.hostingterra.com	11k
plesk/emailAddress=info@plesk.com	6k

Table: Selected Common Names in IMAPS certificates.

Oddity in IMAPS...

Common name	Occurrences	
*.securesites.com	88k	
*.sslcert35.com	31k	
localhost/emailAddress=webaster@localhost	27k	
localhost/emailAddress=webaster@localhost	21k	
*.he.net	19k	
www.update.microsoft.com	19k	
*.securesites.net	11k	
*.cbeyondhosting2.com	11k	
*.hostingterra.com	11k	
plesk/emailAddress=info@plesk.com	6k	

Table: Selected Common Names in IMAPS certificates.

Mapping to ASes

AS number	Registration information	CIRCL rank
3257	TINET-BACKBONE Tinet SpA, DE	9532
3731	AFNCA-ASN - AFNCA Inc., US	4804
4250	ALENT-ASN-1 - Alentus Corporation, US	9180
4436	AS-GTT-4436 - nLayer Communications, Inc., US	10,730
6762	SEABONE-NET TELECOM ITALIA SPARKLE S.p.A., IT	11,887
11346	CIAS - Critical Issue Inc., US	557
13030	INIT7 Init7 (Switzerland) Ltd., CH	6255
14618	Amazon.com Inc., US	4139
16509	Amazon.com Inc., US	3143
18779	EGIHOSTING - EGIHosting, US	4712
21321	ARETI-AS Areti Internet Ltd.,GB	2828
23352	SERVERCENTRAL - Server Central Network, US	11,135
26642	AFAS - AnchorFree Inc., US	_
41095	IPTP IPTP LTD, NL	6330
54500	18779 - EGIHosting, US	_