Angewandte Mathematik

Unendliche Folgen und Reihen

Jahrgang 4 - Semester 2 - Schularbeit 3

Markus Reichl

11. Juni 2017

Inhaltsverzeichnis

1	Wie	derholung und Vertiefung	2
	1.1	Mengen und Folgen	2
	1.2		2
2	Wirt	tschaftsmathematik	3
	2.1	Abschreibungen	3
			3
			4
	2.2		4
	2.3		5
			6
	2.4	0 01	6
3	Pote	enzreihen	7
	3.1	Einführung	7
			7
			7
		3.1.3 Idee	7
			7
	3.2	0	8
	3.3		9
	0.0	-9	9
			L1
	3.4		2
	0.1		2
		1	2
			.3
		5.1.5 Grenzwerte	ر.

1 Wiederholung und Vertiefung

1.1 Mengen und Folgen

	Mengen	Folgen
Formel	Mengenklammer {}	Folgenklammer <>
Enthalten	Elemente	Glieder
Aufzählung	$\{1, 2, 3\}$	<1,2,3>
Beschreibung	$\{ n \in N \mid 0 < n < 4 \}$	$\langle a_i + 1 = a_i + 1 \rangle$
Inhalt	Reihenfolge ist irrelevant	Reihenfolge ist wesentlich

1.2 Spezielle Folgen

	Arithmetische Folgen	Geometrische Folgen
Bildungsgesetz	$\langle a_1, a_2, a_3, \dots \rangle$	$\langle b_1, b_2, b_3, \dots \rangle$
Implizit	$\to a_{n+1} = a_n + d$	$\to b_{n+1} = b_n * q$
Explizit	$\to a_n = a_0 + n * d$	$\to b_n = b_0 * q^n$
	$\to a_n = a_1 + (n-1) * d$	$\to b_n = b_1 * q^{n-1}$
Mittel	$a_n = \frac{a_{n-1} + a_{n+1}}{2}$	$a_n = \sqrt{a_{n-1} * a_{n+1}}$
Summenformel	$s_n = \sum_{i=0}^n a_0 + i * d$	$s_n = a_0 \sum_{i=0}^n q^i$
	$s_n = (n+1) * \frac{a_0 + a_n}{2}$	$s_n = b_0 * \frac{q^{n+1} - 1}{q - 1}$
	$s_n = (n+1) * (a_0 + \frac{n*d}{2})$	$s_n = b_1 * \frac{q^n - 1}{q - 1}$
	$s_n = n * \frac{a_1 + a_n}{2}$	
	$s_n = n * (a_1 + \frac{(n-1)*d}{2})$	
Spezialfälle		q > 1 Limes gegen unendlich
		$q=1$ Konstant $ ightarrow$ Limes gegen b_1
		0 < q < 1 Limes gegen 0

2 Wirtschaftsmathematik

2.1 Abschreibungen

Wirtschaftsgüter verlieren mit der Zeit ihren Wert, dementsprechend spricht man von einem **Buchwert** und einem **Restwert**. Die Art der Wertminderung und die Aufteilung auf die Nutzungsdauer nennt sich **Abschreibung**. Der Nutzwert eines Objekts ergeben sich aus der folgenden Gleichung, beziehungsweise Reihe:

$$R_1 = R_0 - A_1$$

$$\downarrow$$

$$R_n = R_{n-1} - A_n$$

$$R_{n-1}= {
m Anschaffungskosten}$$
 $R_n= {
m Restwert\ nach\ einem\ Jahr}$ $A_n= {
m Abschreibung}$

2.1.1 Lineare Abschreibung

Bei einer linearen Abschreibung ist der jährliche Abschreibungswert konstant.

$$R_1 = R_0 - A$$

$$\downarrow$$

$$R_n = R_{n-1} - A$$

$$R_n = R_0 - A * n$$

Beispiel:

$$Preis = 65000 \; Euro$$
 $Nutzungsdauer = 5 \; Jahre$
 $Schrottwert = 5000 \; Euro$

_	Jahr	Restwert zu Jahresbeginn	Abschreibung	Restwert zu Jahresende		
	1	65 000	12 000	53 000		
	2	53 000	12 000	•••		
	3		12 000	•••		
	4	•••	12 000	5 000		

2.1.2 Geometrisch Degressive Abschreibung

Bei einer geometrisch degressiven Abschreibung wird jährlich ein Prozentsatz i des Restwertes R abgeschrieben.

$$R_1 = R_0 - R_0 * i$$

$$\downarrow$$

$$R_n = R_{n-1} * (1 - i)$$

$$R_n = R_0 * (1 - i)^n$$

$$R = \text{Restwert}$$
 $i = \text{Zinsen}$

Beispiel

Jahr	Restwert zu Jahresbeginn	Abschreibung	Restwert zu Jahresende		
0	65 000	40%	39 000		
1		40%			
2	26 000	40%	23 400		
3		40%			
0	R_0	$A_0 = R_0 * i$	$R_1 = R_0 - A_0 = R_0 * (1 - i)$		
1	$R_1 = R_0 * (1 - i)$	$A_1 = R_1 * i$	$R_2 = R_1 - A_1 = R_1 * (1 - i)^2$		
n	$R_n = R_0 * (1-i)^n$	$A_n = R_n * i$	$R_{n+1} = R_n - A_n$		

2.2 Rente

Eine Rente ist eine Folge von Zahlungen, in gleicher Höhe und in gleichen Zeitabschnitten. Erfolgt die Zahlung zu Beginn des Zeitabschnitts, ist sie **vorschüssig**, erfolgt sie am Ende ist sie **nachschüssig**. Die Anzahl der Zeitabschnitte definiert die **Laufzeit**.

Beispiele: Rückzahlung von Krediten, Versicherungen, Alterspension, ...

$$\begin{array}{c|c} \textbf{nachschüssig} & \textbf{vorschüssig} \\ \textbf{Endwert} \ (\textbf{Aufzinsen}) & E_n = R_0 * \frac{q^n-1}{q-1} & E_v = R_0 * q * \frac{q^n-1}{q-1} \\ \textbf{Barwert} \ (\textbf{Abzinsen}) & B_n = \frac{E_n}{q^n} & B_v = \frac{E_v}{q^n} \\ & R = \textbf{Restwert} \\ & q = 1+i \\ & i = \textbf{Zinsen} \end{array}$$

2.3 Kredittilgung

Die Kredittilgung beschreibt die Veränderung einer **Schuld** zu einem bestimmten **Zinssatz**, über eine vorgegebene **Laufzeit**, um einen fixierten Betrag, die **Annuität**. Die Differenz zwischen alter und neuer Schuld nennt sich **Tilgung**.

Annuität

Die Annuität A wird auch Wiedergewinnungswert oder Anniutätenfaktor genannt und ist als Kehrwert des Barwerts B definiert.

Nachschüssig

$$A_N = R_0 * q^n * \frac{q-1}{q^n - 1}$$

$$Z_n = R_n * i$$

$$T_n = Z_n - A$$

$$R_{n+1} = R_n - T_n$$

$$\downarrow$$

$$R_n = R_{n-1} * q - A$$

$$R_n = R_0 * q^n - \sum_{i=0}^{n-1} A * q^i$$

Vorschüssig

$$A_{V} = R_{0} * q^{n-1} * \frac{q-1}{q^{n}-1}$$

$$T_{n} = (R_{n} - A) * i$$

$$R_{n+1} = R_{n} - T_{n}$$

$$\downarrow$$

$$R_{n} = (R_{n-1} - A) * q$$

$$R_{n} = R_{0} * q^{n} - \sum_{i=1}^{n} A * q^{i}$$

$$A=$$
 Annuität, $R=$ Restschuld, $n=$ Laufzeit, $q=1+i,\ i=$ Zinssatz
$$Z=$$
 Zinsen, $T=$ Tilgung

2.3.1 Tilgungsplan

Ein Kredit von 10 000 Euro, über 4 Jahre, zu einem Zinssatz von 10% wird zurückgezahlt. Dieser Prozess soll anhand einer Tabelle dargestellt. Die Rentenzahlung erfolgt zu Jahresende.

Jahr Schuld Zinsen		Zinsen Annuität Tilgun		Restschuld	
1	10000	1000	3154.71	2154.71	7845.29
2	7845.29	784.53	3154.71	2370.18	5475.11
3	5475.11	547.51	3154.71	2607.20	2867.92
4	2867.92	286.79	3154.71	2867.92	$0 \rightarrow$ Schuld beglichen!

2.4 Angebotsrechnung

Die Angebotsrechnung vergleicht verschiedene Angebote auf ihren langfristigen Nutzen. Die Berechnung ähnelt dabei der Kredittilgung, nur wird hier die Annuität addiert.

Nachschüssig

$$K_n = K_{n-1} * q + A$$

$$K_n = K_0 * q^n + \sum_{i=0}^{n-1} A * q^i$$

Vorschüssig

$$K_n = (K_{n-1} + A) * q$$

 $K_n = K_0 * q^n + \sum_{i=1}^n A * q^i$

$$K = \text{Kapital}, \ A = \text{Annuit\"at}, \ q = 1 + i, \ i = \text{Zinssatz}$$

Äquivalenzprinzip

Zahlungen dürfen nur verglichen werden, wenn diese am selben Stichtag verzinst wurden.

Beispiel

Gegeben sei eine Firma, mit 2 Angeboten zu einem Kalkulationszinssatz von 5% pro Jahr:

- → **Angebot A:** 8 Millionen Euro sofort und dann 7 mal 2 Millionen Euro zu Jahresende
- → **Angebot B:** 5 mal 4 Millionen Euro zu Jahresende

Vergleich:

		0	1	2	3	4	5	6	7	Jahre
	A	8	10.4	12.92	15.57	18.34	21.26	24.32	27.54	Mio. Euro
-	В	0	4	8.2	12.61	17.24	22.10			

Das Angebot A ist für den Abnehmer besser geeignet, da dieses auf Dauer mehr einbringt.

3 Potenzreihen

3.1 Einführung

3.1.1 Definition

Ist $< a_n >$ eine Folge von Zahlen und $x_0 \in \mathbb{C}$ dann ist die Reihe $\sum_{n=0}^{\infty} a_n * x^n$ eine **Potenzreihe** mit dem **Entwicklungspunkt** x_0 .

Die Potenzreihe ist also die Summe einer Reihe $< a_n * x^n = a_0 + a_1 * x^1 + a_2 * x^2 + ... + a_n * x^n >$, wobei a_n den Koeffizienten des Glieds x^n darstellt.

3.1.2 Konvergenzradius

Der Konvergenzradius R einer Potenzreihe, ist als das Supremum aller Zahlen ≥ 0 definiert, für welche mindestens ein x mit |x| < R konvergiert^I.

Wenn $a_n \neq 0$ gilt und der angegebene Limes existiert, dann kann der Konvergenzradius wie folgt berechnet werden.

$$R = \lim_{n \to \infty} |\frac{a_n}{a_{n+1}}|$$

3.1.3 Idee

Anstatt eine Funktion f(x) auszuwerten, entwickelt man eine Potenzreihe \rightarrow Es werden Zahlenwerte für die einzelnen Koeffizienten berechnet.

Beispiel:

$$sin(x) = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} \pm \dots \pm \frac{x^n}{n!}$$

3.1.4 Verwendung

- Berechnung von Funktionswerten
- Näherungsformeln
- Integration

^I Besitzt eine Folge einen Grenzwert, wird sie konvergent, andernfalls divergent genannt.

3.2 Anwendung

Angenommen man wüsste die Entwicklung einer Potenzreihe f(x) als

$$f(x) = a_0 + a_1 * x + a_2 * x^2 + \dots + a_n * x^n$$

und nehme an, die Zahlen wären bestimmt. Dann könne man anschreiben:

$$f(x) = a_3 * x^3 + a_2 * x^2 + a_1 * x + a_0$$

$$f'(x) = 3 * a_3 * x^2 + 2 * a_2 * x + a_1$$

$$f''(x) = 5 * a_3 * x + 2 * a_2$$

$$f'''(x) = 6 * a_3$$

Wobei gilt:

$$f(0) = a_0$$

$$f'(0) = a_1$$

$$\frac{1}{2} * f''(0) = a_2$$

$$\frac{1}{6} * f'''(0) = a_3$$

Der Wert von f(0) ist bei vielen Funktionen bekannt (z. B.: sin(0) = 0, cos(0) = 1) und der Quotient ergibt sich aus der Fakultät^I (!) des Grades der Ableitung (n).

Daraus ergibt sich folgende Regel für die Stelle f(0):

$$f(0) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0) x^n}{n!}$$

^I Produkt aller Zahlen von 1 bis n Bsp.: $3! \rightarrow 1*2*3 = 6$

3.3 Taylorreihe

Eine Funktion, die unendlich oft differenzierbar ist, bildet eine Taylorreihe. Diese dient zur Näherung an eine Funktion, an einer bestimmten Stelle. ^I

Die hergeleitete Funktion stellt eine spezielle Form der Taylorreihe mit der Entwicklungsstelle a=0 dar. Diese Reihe wird auch **MacLaurin-Reihe** genannt.

3.3.1 Definition

Eine Funktion f(x) entspricht einer **Taylorreihe** mit unendlich vielen **Gliedern**. Die Stelle a ist die **Entwicklungsstelle**, in deren Umgebung die Funktion beobachtet wird.

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} * (x - a)^n$$

Jedes Glied einer Taylorreihe entspricht mit seinen Vorgängern einem Taylorpolynom^{II}. Je mehr Polynome (je höher der Grad), desto genauer ist die Näherung.

Beispiel Eine einfache Taylorreihe bildet die Näherung an den Sinus. Dafür sind zunächst einmal die Ableitungen wichtig, welche sind:

$$f(x) = sin(x)$$

$$f'(x) = cos(x)$$

$$f''(x) = -sin(x)$$

$$f'''(x) = -cos(x)$$

$$f''''(x) = sin(x)$$

Wie man sieht ist die Ableitung beliebig oft wiederholbar und nach 4 durchgängen wieder beim Ursprung. Dieses Wissen in die Taylorreihe eingesetzt führt zu folgender Reihe.

$$sin(x) = \sum_{n=0}^{\infty} \frac{sin(a)^{(n)}}{n!} * (x-a)^n$$

^I Taschenrechner beispielsweise nutzen Taylorreihen, um den Sinus und andere trigonometrische Funktionen zu berechnen, was sonst zu rechenintensiv wäre.

 $^{^{\}rm II}$ Eine Taylorreihe mit
n Gliedern nennt man auch eine Taylorreihe n-ten Grades.

In diesem Fall ist die Umgebung 0 interessant, also wird dieser Wert eingesetzt, was zu einer MacLaurin-Reihe führt.

$$sin(x) = \sum_{n=0}^{\infty} \frac{sin(0)^{(n)}}{n!} * x^n$$

Damit kann der Sinus auf einen beliebigen Genauigkeitsgrad bestimmt werden. Als Beispiel werden hier 5 Glieder berechnet.

$$sin(x) = \frac{sin(0)}{0!} * x^{0} + \frac{sin(0)'}{1!} * x^{1} + \frac{sin(0)''}{2!} * x^{2} + \frac{sin(0)'''}{3!} * x^{3} + \frac{sin(0)''''}{4!} * x^{4}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$sin(x) = sin(0) + \frac{cos(0)}{1!} * x - \frac{sin(0)}{2!} * x^{2} - \frac{cos(0)}{3!} * x^{3} + \frac{sin(0)}{4!} * x^{4}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$sin(x) = \frac{x}{1} - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} \pm \dots$$

Diese Formel resultiert bereits in ein relativ genaues Ergebnis.

Grafisch

Grafisch kann dieser Prozess wie folgt veranschaulicht werden:

Abbildung 1: Taylorreihe sin(x)

3.3.2 Euler'sche Formel

Ein weiteres Beispiel für die Anwendung von Taylorreihen ist die Euler'sche Formel, welche zur Darstellung von komplexen Zahlen verwendet wird.

$$e^{j*\varphi} = cos(\varphi) + j*sin(\varphi)$$

$$j = \sqrt{-1}, \varphi = \text{Realteil}$$

Eine Exponentialfunktion lässt sich anhand einer Taylorreihe darstellen. Unter Verwendung der Funktion ergibt sich dabei folgende Reihe.

$$e^x = \sum_{n=0}^{\infty} \frac{e^{0(n)}}{n!} * x^n$$

Es gilt dabei $e^0 = 1$ und $e^{x'} = e^x$, die Funktion kann also vereinfacht werden.

$$e^{j*\varphi} = \sum_{n=0}^{\infty} \frac{1}{n!} * j * \varphi$$

Als Taylorreihe 4. Grades:

$$e^{j*\varphi} = 1 + j*\varphi + \frac{j*\varphi}{2!} + \frac{j*\varphi}{3!} + \frac{j*\varphi}{4!} \pm \dots$$

Durch auflösen von j:

$$e^{j*\varphi}=1-\frac{\varphi^2}{2!}+\frac{\varphi^4}{4!}\pm\ldots+j*(\varphi-\frac{\varphi^3}{3!}+\frac{\varphi^5}{5!}\pm\ldots)$$

Es handelt sich hierbei offensichtlich um die Taylorreihen des Cosinus und des Sinus. Man könnte also auch einfach schreiben:

$$e^{j*\varphi} = cos(\varphi) + j*sin(\varphi)$$

3.4 Näherungsformeln

3.4.1 Multiplikation

Die Multiplikation nach der Reihenentwicklung erlaubt das Multiplizieren zweier Teil-Reihen.

Beispiel

$$e^{-\frac{x}{3}} * sin(2 * x)$$

Wird genähert berechnet durch:

$$taylor(e^{-\frac{x}{3}})*taylor(sin(2*x))$$

$$\downarrow$$

$$2x + \dots * 1 - \frac{x}{3} + \frac{x^2}{18} + \dots$$

$$\downarrow$$

$$2x - \frac{2x^2}{3} + \dots$$

3.4.2 Integration

Viele Funktionen sind an sich nicht lösbar und müssen daher genähert werden. Da eine gesamte Taylorreihe gliedweise integriert werden kann, eignet sich diese perfekt.

Beispiel

$$G(u) = 0.5 * \frac{1}{\sqrt{2 * \pi}} * \int_{0}^{1} e^{-\frac{x^{2}}{2}}$$

Diese Funktion ist aufgrund ihres Integrals nicht berechenbar und soll daher als Taylorreihe dargestellt werden. Da diese integriert werden kann wird einfach eingesetzt:

$$G(u) = 0.5 * \frac{1}{\sqrt{2 * \pi}} * \int_{0}^{1} taylor(e^{-\frac{x^{2}}{2}})$$

$$\downarrow$$

$$G(u) = 0.5 * \frac{1}{\sqrt{2 * \pi}} * \int_{0}^{1} 1 - \frac{x^{2}}{2} + \frac{x^{4}}{8} - \frac{x^{6}}{48} + \frac{x^{8}}{384} - \frac{x^{10}}{3840} + \dots$$

$$\downarrow$$

$$G(u) = 0.5 - \frac{63u^{11} - 770u^{9} + 7920u^{7} - 66528u^{5} + 443520u^{3} - 2661120u}{103952^{\frac{17}{2}} \sqrt{\pi}}$$

$$\downarrow$$

$$G(u) = 0.8413441191604388$$

3.4.3 Grenzwerte

Ähnlich wie bei der Integration können auch manche Grenzwerte nicht berechnet werden. Diese können ebenso mit der Taylorreihe genähert werden, da auch der Grenzwert einer Reihe bestimmt werden kann.

Beispiel

$$\lim_{x \to 0} \frac{x\sin(x)}{x}$$

Dieser Grenzwert kann nicht berechnet werden da 0 durch 0 dividiert werden würde. Stattdessen kann man jedoch schreiben:

$$\lim_{x \to 0} 1 - \frac{x^2}{6} + \frac{x^4}{120} - \frac{x^6}{5040} + \frac{x^8}{362880} - \frac{x^{10}}{39916800} + \dots$$

Literatur

- [1] http://matheguru.com/analysis/88-taylorreihe.html
- [2] https://www.math.tugraz.at/ ganster/lv_differenzialrechnung/06_potenzreihen.pdf
- [3] http://walter.bislins.ch/blog/index.asp?page=Eulerformel
- [4] https://de.wikipedia.org/wiki/Annuitätendarlehen
- [5] https://de.wikipedia.org/wiki/Tilgungsplan
- [6] https://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/arithmetische-folgen
- [7] https://de.wikipedia.org/wiki/Grenzwert_(Folge)

Abbildungsverzeichnis