Apprentissage Machine / Statistique

Analyse discriminante décisionnelle

PHILIPPE BESSE

INSA de Toulouse Institut de Mathématiques

Notations

- p variables quantitatives explicatives X^j
- une variable qualitative *T* (*m* modalités)
- un échantillon Ω de taille n.
- $\{\mathbf{g}_{\ell}; \ell = 1, \dots, m\}$ désignent les barycentres des classes
- x le barycentre global

Objectif

- affecter un nouvel individu $\mathbf{x} = [x_1, \dots, x_p]'$
- dans une classe \mathcal{T}_{ℓ} de T
- Définir des règles d'affectation

Règle élémentaire avec m classes

Affecter l'individu x à la modalité de T minimisant :

$$d_{\mathbf{S}_r^{-1}}^2(\mathbf{x},\mathbf{g}_\ell), \ell=1,\ldots,m.$$

- Métrique de Mahalanobis
- $d_{\mathbf{S}_r^{-1}}^2(\mathbf{x}, \mathbf{g}_\ell) = \|\mathbf{x} \mathbf{g}_\ell\|_{\mathbf{S}_r^{-1}}^2 = (\mathbf{x} \mathbf{g}_\ell)'\mathbf{S}_r^{-1}(\mathbf{x} \mathbf{g}_\ell)$
- Ceci revient à maximiser

$$\mathbf{g}_{\ell}'\mathbf{S}_{r}^{-1}\mathbf{x}-\frac{1}{2}\mathbf{g}_{\ell}'\mathbf{S}_{r}^{-1}\mathbf{g}_{\ell}.$$

• Règle linéaire en x.

Règle élémentaire avec 2 classes

- Un seul axe discriminant Δ passant par \mathbf{g}_1 et \mathbf{g}_2 .
- Règle de Fisher : x affecté à T₁ si

$$\mathbf{g}_{1}'\mathbf{S}_{r}^{-1}\mathbf{x} - \frac{1}{2}\mathbf{g}_{1}'\mathbf{S}_{r}^{-1}\mathbf{g}_{1} > \mathbf{g}_{2}'\mathbf{S}_{r}^{-1}\mathbf{x} - \frac{1}{2}\mathbf{g}_{2}'\mathbf{S}_{r}^{-1}\mathbf{g}_{2}$$

ou si
$$(\mathbf{g}_1 - \mathbf{g}_2)' \mathbf{S}_r^{-1} \mathbf{x} > (\mathbf{g}_1 - \mathbf{g}_2)' \mathbf{S}_r^{-1} \frac{\mathbf{g}_1 + \mathbf{g}_2}{2}.$$

- Règle simple mais inadaptée si les variances sont différentes
- Ne tient pas compte de l'échantillonnage.

Risque bayésien : notations

- $\{\mathcal{T}_1, \dots, \mathcal{T}_m\}$ muni d'une loi de probabilités π_1, \dots, π_m .
- qui sont les probabilités *a priori* des classes ω_{ℓ} .
- x | T admet une loi de densité

$$f_{\ell}(\mathbf{x}) = P[\mathbf{x} \mid \mathcal{T}_{\ell}].$$

- Application $\delta: \Omega \longmapsto \{\mathcal{T}_1, \dots, \mathcal{T}_m\}$ dépendant de la
 - connaissance ou non de coûts de mauvais classement,
 - connaissance ou non des lois a priori sur les classes,
 - nature aléatoire ou non de l'échantillon.

Risque bayésien : définition

• Associé à δ ou coût moyen :

$$R_{\delta} = \sum_{k=1}^{m} \pi_k \sum_{\ell=1}^{m} c_{\ell \mid k} \int_{\{\mathbf{x} \mid \delta(\mathbf{x}) = \mathcal{T}_{\ell}\}} f_k(\mathbf{x}) d\mathbf{x}$$

Avec

- $c_{\ell \mid k}$: coût du classement dans \mathcal{T}_{ℓ} d'un individu de \mathcal{T}_{k} .
- $\int_{\{\mathbf{x} \mid \delta(\mathbf{x}) = \mathcal{T}_{\ell}\}} f_k(\mathbf{x}) d\mathbf{x}$:
- Probabilité d'affecter \mathbf{x} à \mathcal{T}_{ℓ} alors qu'il est dans \mathcal{T}_{k} .

Coûts inconnus supposés égaux

- Règle de Bayes : affecter x à la classe la plus probable
- Celle qui maximise la probabilité conditionnelle a posteriori : P[T_ℓ | x].

$$P[\mathcal{T}_{\ell} \mid \mathbf{x}] = \frac{P[\mathcal{T}_{\ell} \text{ et } \mathbf{x}]}{P[\mathbf{x}]} = \frac{P[\mathcal{T}_{\ell}].P[\mathbf{x} \mid \mathcal{T}_{\ell}]}{P[\mathbf{x}]}$$

La règle de décision s'écrit :

$$\delta(\mathbf{x}) = \arg\max_{\ell=1,\dots,m} \pi_{\ell} f_{\ell}(\mathbf{x}).$$

Les probabilités a priori π_ℓ sont

- connues comme proportions de groupes
- estimées sur un échantillon aléatoire
- inconnues et considérées égales

Si les probabilités a priori sont égales

- On maximise $f_{\ell}(\mathbf{x})$
- C'est la vraisemblance de x au sein de T_{ℓ}
- Si m=2, \mathbf{x} est affectée à T_1 si :

$$\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} > \frac{\pi_2}{\pi_1}$$
 (rapport de vraisemblance)

ullet Problème : estimer les densités conditionnelles $f_\ell(\mathbf{x})$

Cas gaussien, variances inégales

- ullet Hypothèse : $\mathbf{x} \mid T \sim \mathcal{N}(oldsymbol{\mu}_\ell, oldsymbol{\Sigma}_\ell)$
- Densité de x au sein de \mathcal{T}_{ℓ} :

$$f_\ell(\mathbf{x}) = \frac{1}{\sqrt{2\pi}(\det(\mathbf{\Sigma}_\ell))^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_\ell)' \boldsymbol{\Sigma}_\ell^{-1}(\mathbf{x} - \boldsymbol{\mu}_\ell)\right].$$

• Affectation de **x** par maximisation de $\pi_{\ell}.f_{\ell}(\mathbf{x})$:

$$\max_{\ell} \left[\ln(\pi_{\ell}) - \frac{1}{2} \ln(\det(\mathbf{\Sigma}_{\ell})) - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_{\ell})' \mathbf{\Sigma}_{\ell}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\ell}) \right].$$

Cas gaussien, variances inégales

- Les matrices Σ_{ℓ} dépendent de ℓ .
- Le critère d'affectation est *quadratique* en x.
- Les π_{ℓ} sont connues ou égales.
- les μ_{ℓ} et les Σ_{ℓ} sont estimées :

$$\widehat{oldsymbol{\mu}_\ell} = \mathbf{g}_\ell \quad ext{et} \quad \mathbf{S}_{Rl}^* = rac{1}{n_\ell - 1} \sum_{i \in \Omega_\ell} (\mathbf{x}_i - \mathbf{g}_\ell) (\mathbf{x}_i - \mathbf{g}_\ell)'.$$

Cas gaussien, variances égales

- Le critère devient : $\ln(\pi_\ell) \frac{1}{2}\mu'_\ell \Sigma^{-1}\mu_\ell + \mu'_\ell \Sigma^{-1} \mathbf{x}$
- linéaire en x.
- Σ est estimée par : $\mathbf{S}_R^* = \frac{1}{n-m} \sum_{\ell=1}^m \sum_{i \in \Omega_\ell} (\mathbf{x}_i \mathbf{g}_\ell) (\mathbf{x}_i \mathbf{g}_\ell)'$
- Si les probabilités π_{ℓ} sont égales :

$$\overline{\mathbf{x}_{\ell}}'\mathbf{S}_{R}^{*-1}\mathbf{x} - \frac{1}{2}\overline{\mathbf{x}_{\ell}}'\mathbf{S}_{R}^{*-1}\overline{\mathbf{x}_{\ell}}$$

• C'est le critère élémentaire issu de l'AFD.

Introduction Estimation de la densité Algorithme des k plus proches voisins Exemples

Cas non paramétrique

- Pas d'hypothèse (normalité) sur la loi
- Hypothèse de régularité sur la fonction de densité f
- Estimation fonctionnelle de la densité f(x) par $\widehat{f}(x)$.
- Échantillon de grande taille surtout si p est grand
- The curse of dimensionality ou fléau de la dimension
- Pour l'analyse discriminante : estimation des $f_{\ell}(\mathbf{x})$

Méthode du noyau

- x₁,...,x_n n observations d'une v.a.r. X de densité f inconnue.
- K(y) (noyau): densité de probabilité unidimensionnelle;
- h (largeur de fenêtre) un réel positif.

$$\widehat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right).$$

• K est choisi gaussien, uniforme ou triangulaire.

Application à l'analyse discriminante

- Estimation non paramétrique de chaque $f_{\ell}(\mathbf{x})$
- Noyau K* multidimensionnel
- K*densité d'une loi multivariée ou
- ou produit de lois univariées $K^*(\mathbf{x}) = \prod_{j=1}^p K(x^j)$

$$\widehat{f}_{\ell}(\mathbf{x}) = \frac{1}{n_{\ell}h^{p}} \sum_{i \in \Omega_{\ell}} K^{*} \left(\frac{\mathbf{x} - \mathbf{x}_{i}}{h} \right).$$

k-pp : *k* plus proches voisins

- **1** Choix d'un entier $k: 1 \ge k \ge n$
- **2** Calculer les distances $d_{\mathbf{S}_R^{-1}}(\mathbf{x}, \mathbf{x}_i)$, $i = 1, \dots, n$
- $\mathbf{v}_{(1)}, \dots, \mathbf{v}_{(k)}$, les k observations les plus proches;
- Nombres d'occurences k_1, \ldots, k_m que ces k observations dans chacune des classes,
- **5** Estimer les densités par $\widehat{f_\ell}(\mathbf{x}) = \frac{k_\ell}{kV_k(\mathbf{x})}$; où $V_k(\mathbf{x})$ est le volume de l'ellipsoïde $\{\mathbf{z}|(\mathbf{z}-\mathbf{x})'\mathbf{S}_R^{-1}(\mathbf{z}-\mathbf{x}) = d_{\mathbf{S}_R^{-1}}(\mathbf{x},\mathbf{x}_{(k)})\}.$

Remarques

- Version simplifiée : $V_k(\mathbf{x}) = 1$
- Si k = 1, x est affecté à la classe du plus proche élément
- Si k = 1, erreur d'estimation nulle!
- Choix important de la distance entre observations
- Réglage des paramètre : h(largeur de fenêtre) ou k
- par validation croisée ou échantillon de validation
- Estimation de densité déconseillée par Vapnik

Introduction Estimation de la densité Algorithme des $\it k$ plus proches voisins Exemples

Cancer: taux d'erreur

Méthode	apprentissage	validations croisée	test
linéaire	1,8	3,8	3,6
kNN	2,5	2,7	2,9

Concentration d'ozone : taux d'erreur

Méthode	apprentissage	validations croisée	test
linéaire	11,9	12,5	12,0
quadratique	12,7	14,8	12,5

Carte visa: taux d'erreur

Méthode	apprentissage	validations croisée	test
linéaire	16,5	18,3	18
quadratique	17,8	22,0	30
kNN	23,5	29,8	29

Carte visa : deux exécutions de la validation croisée.

