生命科学基础I

第三章 物质代谢基础 维生素与辅酶 预习课件

孔字

西安交通大学生命科学与技术学院 2020年2月27日

≫ 预习后思考并试着完成

生物大分子分解代谢有共有的代谢过程,如:

- ❖脱羧 基:
- ❖脱氢:

特殊的

- ❖氨基酸需要转(脱)氨基:
- ❖脂肪酸需要活化:

另:合成代谢需要:

◆羧基化:甲基化(省略)

预习完课件后, 请将 相应过程(红色字) 涉及的维生素或辅酶 名称试着写在后面。

维生素(Vitamin)

◇定义:维持生 水体正常生命 活动必不可少 的一类小分子 有机化合物。

- ❖特点
- ❖需要量甚少(mg或 μ g/人.天)
- ❖体内不能合成,或合成量不足, 必须摄入;
- ❖既不是构成细胞组织的原料, 也不是供能的物质;但在代谢调 节、促进生长发育和维持生理功 能等方面却发挥重要的作用;

常见维生素及建议摄入量

维生素名 称	建议摄入量 19 [~] 70 岁,! 性	男最高摄入量	维生素名称	建议摄入量 19 [~] 70岁,! 性	男最高摄入量
Vitamin A	900 μg	3,000 μg	<u>Vitamin B₉</u>	400 μg	1,000 μg
Vitamin B ₂	1.2 mg	N/D	Vitamin B ₁₂	2.4 μg	N/D
Vitamin B ₂	1.3 mg	N/D	Vitamin C	90.0 mg	2,000 mg
Vitamin B	16.0 mg	35.0 mg	<u>Vitamin D</u>	10 μg	50 μg
Vitamin B	5.0 mg	N/D	<u>Vitamin E</u>	15.0 mg	1,000 mg
Vitamin B _e	1.3–1.7 mg	100 mg	<u>Vitamin K</u>	120 μg	N/D
Vitamin B ₂	30.0 μg	N/D	1	没有发现编	号不连续?

维生素分类

脂溶性维生素: A、D、E、K

水溶性维生素:B₁、B₂、PP、B₆、泛酸、

生物素、叶酸、B₁₂

维生素B1(抗脚气病维生素或硫胺素)

- ❖来源:多数天然食物中均含有VB1
 - ■活性形式: 焦磷酸硫胺素(Thiamine, TPP)

$$H_3C$$
 H $+$ CO_2 H_3C H_3C

焦磷酸硫胺素(TPP)-自学

 α -酮酸脱羧机理
 (由α -酮酸脱羧酶 催化,辅基为TPP) * TPP: 酶催或二脱所羧的化α酸羧以化α酸发以化酶酮酮氧应称酶以化糖酶酮酮氧应称酶

维生素B₂(核黄素riboflavin)

√化学本质:核醇十 6,7-二甲基异咯嗪

√活性形式:黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD)

≫ 反应举例

维生素B3 (维生素pp)

▶化学本质: 吡啶衍生物-尼克酸及尼克酰胺;

▶活性形式:尼克酰胺二核苷酸(NAD+)和尼克酰胺二核苷酸磷酸(NADP+),NAD+和NADP+是多种不需氧脱氢酶的辅酶 ,是氢的传递体

尼克酸,nicotinic acid

尼克酰胺,nicotinamide

多种重要脱氢酶的辅酶

V_{B3}AMP化: NAD+ /NADP+

烟酰胺-腺嘌呤 磷酸二核 苷酸:

甘酸:辅酶Ⅱ

反应特点:

得2e一个氢离子

$$NAD^{+} + H^{+} + 2e^{-} \longrightarrow NADH$$

泛酸 (pantothenic acid, V_{B5})

- 广泛存在于动植物组织中, 又称遍多酸。
- 由α, γ-二羟基- β β -二甲基丁酸和β- 丙氨酸缩合而成

α,γ-二羟-β,β-二甲基丁酸

β-丙氨酸

活性形式:CoA(辅酶A)

- ◆(乙)酰化酶的辅酶:含泛酸的复合核苷酸。
- ◆生理功能:传递酰基,是形成代谢中间产物的重要辅酶;
- **◆**CoA-SH

☑ CoA-SH的应用举例

A SA THE SECOND SECOND

维生素B6(吡哆素)

》化学本质: 吡啶衍生物,包括: 吡哆醇、吡哆醛和吡哆胺,活性形式:磷酸吡哆醛和磷酸吡哆胺

活性形式-磷酸吡哆醛和磷酸吡哆胺

磷酸吡哆醛是转氨酶和脱羧酶(α、β)的辅酶

磷酸吡哆醛

磷酸吡哆胺

维生素B6

- ◆ 磷酸吡哆醛通过 Schiff碱与酶蛋白的 Lys-ε-NH₂结合
- ◆ 磷酸吡哆醛可参与多 种涉及氨基酸的反应
 - 转氨基作用
 - 氨基酸脱羧
 - 氨基酸消旋
 -
- ◆ B₆广泛地存在于动植 物中,肠道细菌可合 成,因此不易缺乏。

转氨酶催化的反应

HO
$$R^1$$
HO R^1
HO R^1
HO R^1
HO R^1
HO R^1
HO R^1
HO R^2
HO R^2
HO R^2
HO R^2
HO R^2

谷丙转氨酶(GPT)和谷草转氨酶(GOT) 丙酮酸、天冬氨酸、谷氨酸

A STATE OF THE STA

生物素-biotin

- ❖动植物体内广泛分布 ,肠道细菌也能合成 ,不易发生缺乏症;
- ❖化学本质: 噻吩与尿 素相结合的骈环+戊 酸;
- ❖生物素本身是羧化酶 的辅酶,参与体内 CO₂的固定及羧化;

生物素催化羧基化过程示意图

Acetyl-CoA carboxylase -biotin

transfers carboxyl groups

辅酶Q

》又称泛醌,广泛存在于动物和细菌的线粒体中。活性部位: 醌环结构, 为线粒体呼吸链氧化-还原酶的辅酶, 在酶与底物分子之间传递氢。

$$CH_3O$$
 CH_3
 CH_3O
 $CH_2CH=C-CH_2)_nH$
 CH_3
 CH_3
 CH_3

辅酶Q的化学结构及其电子的传递功能

