11.09.2025, AACHEN YUZHI ZHENG

INSTITUTE FOR THERMODYNAMICS OF MOBILE ENERGY CONVERSION SYSTEMS & CENTER FOR MOBILE PROPULSION

SUPERVISOR:

PROF. DR.-ING STEFAN PISCHINGER M.SC WENBIN LI

THE FINAL REPORT OF MASTER THESIS

AGENDA

CHAPTER 1 INTRODUCTION

CHAPTER 2 THEORY & DATA FOUNDATIONS

CHAPTER 3 METHODOLOGY

CHAPTER 4 EXPERIMENTS & RESULTS

CHAPTER 5 CONCLUSION

CHAPTER 1

Introduction

- 1-1 Background & Motivation
- 1-2 Basic Concepts
- 1-3 The Main Methods of RUL Prediction
- 1-4 Our Main Focus
- 1-5 Our Contributions

1-1 BACKGROUND & MOTIVATION

"RUL- Empowering Battery Health"

Enabling Early Maintenance and Risk Prevention

1-2 BASIC CONCEPTS

1-3 THE MAIN METHODS OF RUL PREDICTION

1-4 OUR MAIN FOCUS: DATA DRIVEN

DIERECT RUL PREDICTION¹⁾

2

ONE-SHOT PREDICITON²⁾

3 ITERATIVE PREDICTION³⁾

No complete trajectory

- One-Shot Model
 Input
 Output
 Ncurrent
 NEOL
 - Trajectory-based prediction
 - Limited prediction accuracy

1-5 OUR CONTRIBUTIONS

CHAPTER 2

Theory & Data Foundations

- 2-1 The Workflow Of RUL Predicition
- 2-2 The Battery Dataset & Operating Conditions
- 2-3 Health Indicators
- 2-4 Data Preprocessing
- 2-5 Sliding Window Construction
- 2-6 Time Series Modeling

2-1 THE WORKFLOW OF RUL PREDICTION

2-2 BATTERY DATASET & OPERATING CONDITIONS

NASA DATASET FY08Q4

- 4 Cells: B05/06/07/18
- Each cycle: charge & discharge profile
 - Charge profile: CC+CV modul
 - Voltage; Current; Tempreture; Time
 - Discharge profile:
 - Same as charge + Discharge capacity
- Charge operating conditions: Identical
- Discharge Operating Conditions: Different
 - Discharge Cut-Off Voltage
 - B05 (Test battery): 2.7V
 - B06/07/18 (Train batteries): 2.5V, 2.2V, 2.5V

FOUR HEALTH INDICATORS

- Directly related to aging
 - HI1: Capacity
- Indirectly related to aging
 - HI2: Peak Point of Incremental Capacity Curve
 - HI3: Voltage Difference of Equal Time Interval
 - HI4: Constant Current Charging Time
 - Extracted HI from discharge profile
 - Extracted HI from charge profile

2-3 HEALTH INDICATORS

CORRELATION ANALYSIS

- Pearson correlation
 - Assess representativeness of HI2/3/4 for battery aging
 - All exhibit strong correlation

$$r = \frac{\sum_{1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{1}^{n} (x_{i} - \bar{x})^{2} \sum_{1}^{n} (y_{i} - \bar{y})^{2}}}$$

PROBLEMS

- Problem1: Noise and regeneration
 - Solution: DWT denoise
- Problem 2: Different scales
 - Solution: Min-Max normalization

DWT: Discrete Wavelet Transformation; HI2: Peak Point of Incremental Capacity Curve (ICC_Peak); HI3: Discharge Voltage Difference of Equal Time Interval (DVD_ETI); HI4: Constant Current Charging Time (CCCT) 13 | Yuzhi Zheng, 11.09.2025

2-3 DATA PREPROCESSING

The pipeline of Discrete Wavelet Transformation (DWT)

2-3 DATA PREPROCESSING

MIN-MAX NORAMLIZATION

Formel:

$$X_{\text{normalized}} = \frac{X - X_{\text{min}}}{X_{\text{max}} - X_{\text{min}}}$$

- Purposes:
 - Scale into [0,1]
 - Accelerate convergence
 - Prevent numerical instability

2-4 SLIDING WINDOW SAMPLES CONSTRUCTION

SLIDING WINDOW

- What is the sliding window?
 - Input Window= Model Input
 - Output Window= Model Label
- Why build sliding window?
 - Break long sequences into short
 - Capture local degradation patterns
 - Improve data utilization

2-5 TIME-SERIES MODEL

TIME-SERIES MODEL

- Why LSTM?
 - Control information flow through three gates
 - Capture sequential dependencies
- Why Stacked LSTM?
 - Extract deeper features
 - Learn more complex prediction task

CHAPTER 3

Methodology

- 3-1 Twin Model Prediction Framework
- 3-2 Our Sampling Training Stategy
- 3-3 Pesudo-Battery Transfer Learning
- 3-4 Metrics

3-1 TWIN MODEL PREIDICTION FRAMEWORK

TWIN MODEL STRUTURE

- LSTM4to4
 - 4 HIs input; Output 4 predicted HIs
 - Challenge: Error Accumulation Error → Error → Error → Error
 - Solution: Sampling strategy (Chapter 3-2)
- LSTM4to1
 - 4 HIs input; Output predicted capacity
 - Challenge: Different Operating Conditions
 - Solution: Transfer learning (Chapter 3-3)

3-2 OUR SAMPLING TRAININIG STATEGY

BASELINE

- Adopt always ground truth to train the model
 - Good stability
 - Problem: Conflict with real-world scenario

OUR PROPOSAL

- Sampling with probability ε
- ε is related to epoch
- Aim: Add self-predicted values gradually into training

3-3 PESUDO BATTERY TRANSFORER LEARNING

BASELINE

- Adopt another battery with same operating conditions
 - Problem: Lack of data

OUR PROPOSAL

- Use target battery to generate pseudo battery
 - Pseduo battery can represent same operating conditions

3-4 METRICS

- Absoult Error (AE)
 - AE: To evaluate the predicition performance in every cycle

- Mean Absolute Error (MAE)
 - MAE: To evaluate general predicition performance in all cycles

$$MAE = \frac{1}{n} * \sum_{i=1}^{n} |y_i - \widehat{y_i}|$$

- R²: To evaluate the generalization ability of the model
- R² more closer to 1, the better the model learn the degradation pattern.

$$R^{2} = 1 - \frac{\sum_{1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{1}^{n} (y_{i} - \bar{y})^{2}}$$

CHAPTER 4

Experiments & Results

- 4-1 The Comparison of Models
- 4-2 Effect of Varying Start Points
- 4-3 Different Fine-Tuning Data Proportions
- 4-4 Ablation Experiments

4-1 MODEL COMPARSION

DESIGN

- Different encoder as baselines
- Compare best pefermence

RESULTS

- Capacity Prediction
 - Our Model: High performence
 - Transformer: Acceptable performence
 - CNN: Unacceptable performence
- RUL Prediction
 - Real RUL: 98 Cycles
 - Our Model: 92 cycles -> 6% (Relative Error)
 - Transformer: 81 cycles -> 17%
 - CNN: 79 cycles -> 19%

4-1 MODEL COMPARSION

DISCUSSION

Effect of different input distributions

RESULTS

Our model exhibits strong Robustness

4-2 VARYING START POINTS

DESIGN

- Try different Start Points (SP)
- Each run 5 times and compare MAE and R²

RESULTS

Our model has good early-stage prediction capability

4-3 DIFFERENT FINE-TUNING DATA PROPORTIONS

DESIGN

- Try different fine-tuning data proportions
- Each run 5 times and compare MAE and R²

RESULTS

- No significant difference of mean values
- Effective fine-tuning can with only 10%

4-4 ABLATION EXPERIMENTS

Design	DWT	Stacked	Sampling	Transfer Learning	
Type1 Type2 Type3 Type4	X	X	X		

Resul	ts 1st Run	2nd Run	3rd Run	4th Run	5th Run	Mean R ²
Type1	0.9518	0.8125	0.7153	0.9135	-1.3776	0.4031
Type2	0.3248	0.9524	0.3102	0.9359	0.9249	0.6896
Type3	0.9069	0.7588	0.8224	0.9340	0.8506	0.8546
Type4	0.9559	0.8782	0.9220	0.9364	0.9231	0.9232

DESIGN

- Different 4 types
- Type 1: Without DWT denoise
- Type 2: Without stacked LSTM
- Type 3: Without sampling strategy
- Type 4: Our proposal
- Each run 5 times and compare mean R²

RESULTS

- Low Performance
- Normal Performance
- High Performance

CHAPTER 5

Conclusion

• 5-1: Final Conclusion

Chapter 5: Conclusion

5-1 FINAL CONCLUSION

We proposed a denoising pipeline to obtain cleaner and more reliable health indicators.

We developed a twin-model framework for robust iterative prediction. It also worked well with limited target battery data, reducing data requirements.

Our approach achieved **higher accuracy and stability** compared to common baselines.

Operating conditions of NASA dataset differ slightly How about other battery dataset?

Thank you for your attention!

Look forward to questions and suggestions!

Institute für Combustion Engines – Forckenbeckstraße 4 – 52074 Aachen – Germany – www.TME.rwth-aachen.de

BACKUP

- 1. Model Based RUL Prediction
- 2. Discret Wavelet Transformation
- 3. Three-Gate Structure of LSTM
- 4. Pesudo-Curve Generation

1. MODEL BASED RUL PREDICTION 1)

2. DISCRET WAVELET TRANSFORMATION

WHY CYCLES BECOME HALF?

3. THREE-GATE STRUCTURE OF LSTM h_{t} **Output For Next Layer Input Cell State** C_{t-1} tanh **Outputs For** Ot **Next Cell** \mathbf{f}_{t} tanh σ ht h_{t-1} **Input Hidden State** Forget Input Output Gate Gate Gate Input X_t

4. PESUDO-CURVE GENERATION

Pesudo- Code

Step	Description					
1	Input the target capacity trajectory $y = [y_1, y_2, \dots, y_T]$ of cycles-length T					
2	Construct cycle index $x = [1, 2,, T]$					
3	Fit a degree-3 polynomial ridge regression model:					
	- Feature construction: PolynomialFeatures(degree=3)					
	- Model: Ridge(alpha=0.1)					
	- Fitting: model.fit(x, y)					
4	Extract regression coefficients $\beta = [\beta_0, \beta_1, \beta_2, \beta_3]$					
5	Apply parameter perturbation with $\epsilon=0$ 10:					
	$\tilde{\beta}_i = \beta_i \cdot (1 + \epsilon \cdot \mathcal{N}(0,1))$ for each $i \in \{0,1,2,3\}$					
6	Compute pseudo curve: $\tilde{y} = x \cdot \tilde{\beta} + \tilde{\beta}_0$					
7	Normalize \tilde{y} to $[0, 1]$ using MinMax scaling					
8	Output the pseudo curve \tilde{y} for model fine-tuning					

- Target capacity trajectory as input.
 - Cycle as x
 - Capacity as y
- Fitting function: $Q = \beta_0 + \beta_1 \cdot x^1 + \beta_2 \cdot x^2 + \beta_3 \cdot x^3$
- Extract parameters: β_0 , β_1 , β_2 , β_3
- *Parameter perturbation

New parameters, put them back Q(x)

68%