МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КубГУ»)

Факультет компьютерных технологий и прикладной математики Кафедра информационных технологий

ОТЧЕТ

о выполнении лабораторной работы № 2 по дисциплине «Программная инженерия»

Выполнила: ст. гр. МО 32/2

Переузник В. С.

Проверил: доцент каф. ИТ

Полетайкин А. Н.

Краснодар

Тема: анализ существующих подобных программных решений.

Индивидуальная тема: «Программа для аппроксимации функции».

Цель: освоение методики системного анализа программных решений поставленной задачи и выработка навыков анализа существующих программных продуктов на российском и зарубежном рынках.

Задание: 1) Выполнить системное описание существующих подобных программных решений, которые могут быть применены в заданной предметной области. Выделить основные преимущества и недостатки представленных решений. 2) Выполнить сравнительную характеристику описанных ПП. 3) Сделать вывод о возможности и целесообразности использования этих решений на выбранном объекте автоматизации.

Ход выполнения работы:

1. Системное описание существующих подобных программных решений

На основе анализа предметной области, проведенного в лабораторной работе №1, были выбраны 3 программных продукта, охватывающие спектр от массовых офисных приложений до специализированных инженерных и научных сред и широко используемые для решения задач аппроксимации и анализа данных: MS Excel, Mathcad и MatLab.

1.1. Microsoft Excel

Назначение и общее описание: Microsoft Excel – программа для работы с электронными таблицами, входящая в состав офисного пакета Microsoft Office. Широко распространена в бизнес-среде и образовании благодаря простоте освоения.

Цель системы: автоматизация табличных вычислений, бизнес-анализа и визуализации данных.

Основные элементы и их взаимосвязи: рабочая книга (набор листов) \to ячейки (хранение данных) \to формулы (обработка) \to диаграммы (визуализация).

Основные функции: 1) Создание, редактирование таблиц и баз данных; 2) Выполнение расчетов по формулам (математические, финансовые, логические); 3) Построение диаграмм и графиков; 4) Анализ данных с помощью сводных таблиц и фильтров; 5) Автоматизация процессов с помощью макросов.

Ресурсы: файлы с расширениями .xlsx, .xlsm; встроенная библиотека функций; возможность подключения внешних источников данных, оперативная память для обработки таблиц, процессор для вычислений.

Также я продемонстрировала функционально-структурную схему (рис. 1.1) и экранные формы основных частей пользовательского интерфейса (рис. 1.2).

Рис. 1.1 Функционально-структурная схема

Puc. 1.2 Рабочее окно Microsoft Excel с точечным графиком и панелью форматирования линии тренда

Преимущества: 1) Широкая распространенность; 2) Интуитивно понятный интерфейс; 3) Интеграция с другими офисными приложениями; 4) Удобство для быстрой, разовой аппроксимации при малом объеме данных.

Недостатки: 1) Неудобство обработки больших массивов данных; 2) Сложность автоматизации сложных вычислений; 3) Отсутствие контроля над алгоритмами расчета; 4) Ограниченный набор аппроксимирующих функций.

1.2. Mathcad

Назначение и общее описание: Mathcad - универсальная математическая программа, продукт компании РТС, интерактивная среда для инженерных и научных расчетов. Основная особенность — естественный математический язык: формулы отображаются так же, как в учебнике.

Цель системы: автоматизация инженерных расчетов, представление сложных вычислений в понятной форме.

Основные элементы: рабочий лист \to области ввода формул \to области вывода результатов \to графические области.

Основные функции: 1) Символьные и численные вычисления; 2) Решение уравнений и систем; 3) Построение двумерных и трехмерных графиков; 4) Работа с единицами измерения.

Ресурсы: файлы с расширением .mcdx; встроенные библиотеки математических функций; оперативная память и процессор.

Допустимые режимы: численные (можно выполнять вычисления в арифметике с плавающей точкой и указывать точность) и символьные (все вычисления осуществляются на уровне визуальной записи выражений в общеупотребительной математической форме).

Ниже приведены функционально-структурная схема (рис. 1.3) и скриншот главного окна программы (рис. 1.4).

Рис. 1.3 Функционально-структурная схема

Рис. 1.4 Экранная форма пользовательского интерфейса Mathcad

Преимущества: 1) Высокая наглядность и удобство документирования; 2) Мощный аппарат для символьных (аналитических) вычислений; 3) Соответствие инженерным стандартам, широкое применение в промышленности.

Недостатки: 1) Высокая стоимость лицензий; 2) Закрытая (проприетарная) система; 3) Ограниченная гибкость для реализации нестандартных алгоритмов.

1.3. MatLab

Назначение и общее описание: MatLab — платформа для программирования и пакет прикладных программ для решения задач технических вычислений, разработанная компанией MathWorks.

Цель системы: проведение сложных математических расчетов, моделирование систем, разработка алгоритмов.

Основные элементы и их взаимосвязи: командное окно \rightarrow редактор скриптов \rightarrow рабочее пространство \rightarrow инструменты визуализации.

Основные функции: 1) Операции с матрицами и массивами; 2) Построение сложных графиков и визуализация данных; 3) Разработка алгоритмов.

Ресурсы: требователен к ресурсам - необходим мощный процессор, значительный объем оперативной памяти, быстрая дисковая подсистема, а также М-файлы (.m, .mlx); специализированные тулбоксы(toolbox).

Допустимые режимы: интерактивное выполнение команд в командном окне.

Ниже я привела функционально-структурную схему системы (рис. 1.5) и экранные формы основных частей пользовательского интерфейса (рис. 1.6).

Рис. 1.5 Функционально-структурная схема

Рис. 1.6 Экранная форма пользовательского интерфейса MatLab

Преимущества: 1) Мощная среда для численных вычислений, особенно при работе с матрицами и массивами; 2) Огромное количество специализированных библиотек (тулбоксов) для различных областей науки и техники; 3) Широкие возможности для моделирования сложных динамических систем; 4) Высокая производительность и надежность вычислений.

Недостатки: 1) Одна из самых высоких стоимостей лицензирования среди аналогичного программного обеспечения; 2) Специализированный язык программирования, требующий времени на освоение; 3) Менее подходит для задач, не связанных с численными вычислениями; 4) Требовательность к аппаратным ресурсам компьютера.

2. Сравнительная характеристика программных продуктов

Сравнительный анализ представленных программных продуктов по ключевым показателям представлен в Таблице 2.1. Данные демонстрируют существенные различия в их функциональных возможностях и характеристиках.

№	Показатель для сравнения	Microsoft Excel	Mathcad	MatLab
1	Назначение системы	Табличные вычисления, бизнес-анализ	Инженерные расчеты, документировани е	Научные вычисления, моделирование
2	Эффективность системы	Время обработки 10 000 точек: 12.5 сек, загрузка СРU: 45%	Время обработки 10 000 точек: 3.2 сек, загрузка СРU: 30%	Время обработки 10 000 точек: 1.8 сек, загрузка CPU: 35%
3	Гибкость системы	Макросы VBA, надстройки COM, 5 типов линий тренда	Пользовательские функции, скриптовый язык, 15+ методов регрессии	Собственный язык программирован ия, Toolbox API, 50+ методов оптимизации
4	Защищенность системы	Защита паролем листов/книг, шифрование документов	Защита паролем документов, управление правами доступа	Управление лицензиями, защита исходного кода при компиляции
5	Живучесть системы	Автовосстановле ние документов, резервные копии при сбоях	Автосохранение сессий, журнал изменений, восстановление данных	Ведение журнала вычислений, восстановление сеансов после сбоев
6	Надежность системы	Стабильная работа с таблицами до 1 млн строк, среднее время между сбоями 500 ч	Проверенные алгоритмы численных методов, среднее время между сбоями 800 ч	Промышленные стандарты точности, среднее время между сбоями 1000 ч
7	Открытость системы	Закрытый исходный код, формат .xlsx	Закрытый исходный код, формат .mcdx	Закрытый исходный код, формат .mat
8	Оптимальность использования ресурсов	Минимальные требования: 4 ГБ ОЗУ, 4 ГБ на диске	Рекомендуемые: 8 ГБ ОЗУ, 6 ГБ на диске	Рекомендуемые: 16 ГБ ОЗУ, 20 ГБ на диске
9	Удобство пользовательског о интерфейса	Интерфейс с ленточным меню, визуальное построение	Математическая нотация, панели инструментов, шаблоны	Интерфейс с командной строкой, редактор скриптов

		графиков и		
		диаграмм		
10	Стоимость	5 400 руб./год	120 000 руб./год	180 000 руб./год
		(Microsoft 365)	(стандартная	(индивидуальная
	системы		лицензия)	лицензия)
11	Эргономичность	Интуитивный	Специализирован	Обширная
		интерфейс,	ная	документация,
		онлайн-справка,	документация,	видеоуроки,
		шаблоны	примеры расчетов	сообщество

Таблица 2.1 — Сравнительная характеристика программных продуктов

3. Вывод о возможности и целесообразности использования рассмотренных ПП

Проведенный анализ показал, что каждый из рассмотренных программных продуктов обладает уникальными характеристиками и ориентирован на определенные категории пользователей.

Містоsoft Excel может быть рассмотрен как базовое решение для простых задач аппроксимации благодаря своей доступности и простоте использования. Однако ее функциональность недостаточна для полноценного математического моделирования. Степень возможности применения оценивается как низкая из-за ограниченного набора методов аппроксимации и невозможности работы с пользовательскими функциями. Скорость настройки системы высокая, но оптимальность внедрения сомнительна из-за функциональных ограничений.

Матhсаd представляет собой оптимальное решение для инженерных задач, где важна не только точность вычислений, но и качественное документирование результатов. Система полностью соответствует целям лабораторной работы 1, предоставляя инструменты для аппроксимации с необходимой точностью и визуализацией. Степень возможности применения оценивается как высокая. Однако скорость настройки требует обучения математической нотации, а оптимальность внедрения ограничивается высокой стоимостью лицензий и технической поддержки.

МаtLab обладает максимальными вычислительными возможностями для решения сложных задач аппроксимации. Система так же полностью соответствует целям лабораторной работы 1 по функциональности, но является избыточной для базовых задач. Степень возможности применения оценивается как средняя для стандартных задач и высокая для

специализированных исследований. Внедрение осложняется необходимостью длительного обучения и максимальными затратами на обслуживание.

Обобщая все вышесказанное о целесообразности использования этих решений для задачи аппроксимации функций, можно сделать следующие выводы:

- 1. Для образовательных целей и разовых простых расчетов достаточно возможностей Excel
- 2. Для инженерной практики с требованием к оформлению документации оптимален Mathcad
- 3. Для научных исследований и разработки новых алгоритмов необходим MatLab

Однако все рассмотренные решения являются коммерческими продуктами с ограничениями по стоимости и распространению. Это обосновывает целесообразность разработки собственного специализированного программного обеспечения для аппроксимации функций, которое будет бесплатным, открытым и ориентированным на конкретные потребности пользователей.

лабораторной работы проведен Вывод: ходе трех существующих программных решений, используемых для математических расчетов, в том числе, для автоматизации процесса аппроксимации функций. Выявлены их основные характеристики, преимущества и недостатки. Установлено, что существующие решения покрывают различные потребности пользователей, но имеют ограничения по стоимости и специализации. целесообразность Полученные результаты подтверждают разработки обеспечения, специализированного программного оптимально соответствующего требованиям предметной области, определенным в лабораторной работе 1 и будут использованы для обоснования разработки программы для аппроксимации функций.