### **Quantitative Decision Making in Business**

**Summer University 2018** 

Topic 11: Basics of Dynamic Programming





### 2. Basics of Dynamic Programming







- a. Introduction
  - Games to play
  - A Machine Replacement Model
  - Predictive Maintenance
- b. Dynamic Programming Basics
  - Components of a finite-horizon Markov Decision Process
  - The Optimality Equations
- c. Solving the Optimality Equations

Case Study 3: Sea Crest B&B

Picture <a href="https://xkcd.com/399/">https://xkcd.com/399/</a> (The travelling salesman problem)



#### What is new...

#### so far:

one-shot or **episodic decision problems** in which the utility (or expected value) of each action is known



#### from now on:

**sequential decision problems** in which the agent's utility depends on a sequence of decisions. The best action is not always the greedy one.



Russell, Norvig (2010)

### there are some games to play...



10x10 500\*10<sup>15</sup> CHECKERS: in 2007 the game was weakly solved by the help of CHINOOK: From the standard starting position, both players can guarantee a draw with perfect play. It took 18 years to "learn".



"In checkers, the number of possible moves in any given situation is so small that we can confidently expect a complete digital computer solution to the problem of optimal play in this game." (Bellman, 1965)

Though actually there are around 500 quadrillion possible positions which is 500,000,000,000,000 or 500\*10<sup>15</sup>.



8x8 10<sup>43</sup>

#### CHESS: grand prize of \$100,000 was awarded to DEEP BLUE in 1997



"The decisive game of the match was Game 2, which left a scar in my memory . . . we saw something that went well beyond our wildest expectations of how well a computer would be able to foresee the long-term positional consequences of its decisions. The machine refused to move to a position that had a decisive short-term advantage—showing a very human sense of danger." (Kasparov, 1997)

Russell, Norvig (2010)

### there are some games to play...



19x19 2x10<sup>170</sup>

GO: "you may place your stone (playing piece) on any point on the board, but if I surround that stone, I may remove it."

Now the best programs play *most* of their moves at the master level; the only problem is that over the course of a game they usually make at least one serious blunder that allows a strong opponent to win.

## and Atari games...





## Introduction deterministic



### Example 1: Machine Replacement

Consider a machine that has to be operated throughout a planning horizon of N periods. The decision maker decides whether to replace the machine at the beginning of every year or not.

The problem of interest is to determine a cost-minimizing replacement policy under the following set of assumptions:

- The annual operating cost of an i-year-old machine is c(i);
- The price of a new machine is b;
- At the end of the planning horizon, an i-year-old machine can be sold at salvage value s(i).
- You face a discount factor of  $\alpha$ .

#### Example:

Suppose N = 3, starting age = 2, b=65€,  $\alpha$ =1.

|      | i=0 | i=1 | i=2 | i=3 | i=4 | i=5 |
|------|-----|-----|-----|-----|-----|-----|
| c(i) | 10  | 20  | 33  | 50  | 70  |     |
| s(i) |     | 30  | 15  | 10  | 5   | 0   |

## Introduction

## deterministic



## Example 1: Machine Replacement

| n | x <sub>n</sub> | Replace (R) | Don't Replace (D) | Max E[Reward]<br>in state x at stage<br>n | Best<br>action |
|---|----------------|-------------|-------------------|-------------------------------------------|----------------|
|   |                |             |                   |                                           |                |
|   |                |             |                   |                                           |                |
|   |                |             |                   |                                           |                |
|   |                |             |                   |                                           |                |
|   |                |             |                   |                                           |                |
|   |                |             |                   |                                           |                |
|   |                |             |                   |                                           |                |
|   |                |             |                   |                                           |                |
|   |                |             |                   |                                           |                |
|   |                |             |                   |                                           |                |
|   |                |             |                   |                                           |                |
|   |                |             |                   |                                           |                |
|   |                |             |                   |                                           |                |

## Introduction stochastic



### Example 2: Predictive Maintenance

Consider a machine that has to be operated throughout a planning horizon of N periods. The decision maker decides whether to replace the machine at the beginning of every year or not.

The problem of interest is to determine a cost-minimizing replacement policy under the following set of assumptions:

- The annual operating cost of an i-year-old machine is c(i);
- The price of a new machine is b;
- At the end of the planning horizon, an i-year-old machine can be sold at salvage value s(i).
- You face a discount factor of α,
- the machine faces a certain probabilty p(i) of breaking down (and then has to be replaced at the end of the period with additional costs c).

#### Example:

Suppose N = 3, starting age = 2, b=65€,  $\alpha$ =1, c=35€.

|      | i=0 | i=1  | i=2 | i=3 | i=4  | i=5 |
|------|-----|------|-----|-----|------|-----|
| c(i) | 10  | 20   | 33  | 50  | 70   |     |
| s(i) |     | 30   | 15  | 10  | 5    | 0   |
| p(i) | 0   | 0.05 | 0.1 | 0.2 | 0.35 | 0.4 |

## Introduction stochastic



## Example 2: Predictive Maintenance

| n | X <sub>n</sub> | Replace<br>(R) | Don't Replace (D) | Max E[Reward]<br>in state x at<br>stage n | Best<br>action |
|---|----------------|----------------|-------------------|-------------------------------------------|----------------|
|   |                |                |                   |                                           |                |
|   |                |                |                   |                                           |                |
|   |                |                |                   |                                           |                |
|   |                |                |                   |                                           |                |
|   |                |                |                   |                                           |                |
|   |                |                |                   |                                           |                |
|   |                |                |                   |                                           |                |
|   |                |                |                   |                                           |                |
|   |                |                |                   |                                           |                |
|   |                |                |                   |                                           |                |
|   |                |                |                   |                                           |                |
|   |                |                |                   |                                           |                |
|   |                |                |                   |                                           |                |

### Sequence of events



**Total rewards:** 

$$r_0(x_0,a_0) + \alpha r_1(x_1,a_1) + \alpha^2 r_2(x_2,a_2) + \alpha^3 r_3(x_3,a_3)$$

Maximize expected discounted rewards:

$$E[ r_0(x_0,a_0) + \alpha r_1(x_1,a_1) + \alpha^2 r_2(x_2,a_2) + \alpha^3 r_3(x_3,a_3) ]$$

Task is to find a policy  $\pi$  so that whenever we are in state x at time n we will perform action a. This policy will generate the following value:

$$V^{\pi}(x_n) = r(s_n, a_n) + \alpha \sum_{x'_{n+1} \in \mathbb{X}_n} p_n(x_n, a_n, x'_{n+1}) V^{\pi}(x'_{n+1})$$

The optimal policy is given by:

$$V^*(x_n) = \max_{\pi} V^{\pi}(x_n)$$

### 2. Basics of Dynamic Programming







- a. Introduction
  - Games to play
  - A Machine Replacement Model
  - Predictive Maintenance
- b. Dynamic Programming Basics
  - Components of a Stochastic Dynamic Program (Markov Decision Process)
  - The Optimality Equations
- c. Solving the Optimality Equations

Case Study 3: Sea Crest B&B

Picture <a href="https://xkcd.com/399/">https://xkcd.com/399/</a> (The travelling salesman problem)

## Markov assumption (memorylessness)



Andrei Markov (1856-1922)

The current state only depends on a *finite fixed number* of previous states.

In the **first-order Markov process**, the current state depends only on the previous state and not on any earlier states. In other words, a state provides enough information to make the future conditionally independent of the past, and we have

$$P(X_{t+1} = x' | X_t = x_t, A_t = a_t, X_{t-1} = x_{t-1}, A_{t-1} = a_{t-1,...}, X_0 = x_0)$$

$$=$$

$$P(X_{t+1} = x' | X_t = x_t, A_t = a_t)$$

So, a sequential decision problem for a fully observable, stochastic environment with a Markovian transition model and additive rewards is called a **Markov decision process**, or **MDP**, and consists of a set of states (with an initial state  $x_0$ ); a set A(x) of actions in each state; a transition model  $P(x' \mid x, a)$ ; and a reward function r(x). For finite-horizon problems these also depend on the time n.

#### How to think about a finite-horizon Markov decision process...

A finite-horizon Markov Decision Process (MDP) describes a stochastic system that is observed at discrete times n = 0,...,N. If at time n system state  $x_n$  from the state space  $\mathbb{X}$  is observed, a decision-maker chooses an action  $a_n$  among the admissible actions  $\mathbb{A}_n(x_n)$ . This action results in an immediate one-stage reward  $r_n(x_n,a_n)$  and a transition to system state  $x_{n+1}$  at time n+1 with probability  $p_n(x_n,a_n,x_{n+1})$ . At time n=N a terminal reward  $V_N(x_N)$  is gained and the sequence is stopped.



for finite state and action spaces, we know  $|X| < \infty$  and  $|A| < \infty$ 

# How to think about a finite-horizon Markov decision process...



### Components of a finite-horizon MDP

- (i) The planning horizon  $N \in \mathbb{N}$ ;
- (ii) The countable **state space**  $\mathbb{X}$  with  $\mathbb{X}_n \subseteq \mathbb{X}$  denoting the non-empty subset of possible states in period n=0,..,N;
- (iii) The countable **action spaces**  $\mathbb{A}_n$ .  $\mathbb{A}_n(x)$  is the non-empty finite set of admissible actions in state  $x \in \mathbb{X}_n$  at time  $0 \le n < N$ ; the union of all n-stage action spaces is  $\mathbb{A}$ ;
- (iv) Transition laws  $p_n$ :  $\mathbb{K}_n = \{(x, a) \mid x \in \mathbb{X}_n, a \in \mathbb{A}_n(x)\} \times \mathbb{X}_{n+1} \rightarrow [0,1]$ , which represent the probability  $p_n(x,a,x')$  for a **transition** from state  $x \in \mathbb{X}_n$  to  $x' \in \mathbb{X}_{n+1}$  given action  $a \in \mathbb{A}_n(x)$  at time  $0 \le n < N$ ;
- (v) Immediate **reward** functions  $r_n: \mathbb{K}_n \to \mathbb{R}$ , which represent the reward  $r_n(x, a)$  for choosing action a in state x at time  $0 \le n < N$ ;
- (vi) **Terminal reward**  $V_N: X_N \to \mathbb{R}$ , which represents the reward  $V_N(x)$  for ending in state x at time N;
- (vii) One-stage **discount factor**  $0 \le \alpha \le 1$ .

## Components (N, $\mathbb{X}$ , $\mathbb{A}$ , p, r, $V_N$ , $\alpha$ )

Components

 $(N, X, A, p, r, V_N, \alpha)$ 

## In Example 1: Machine Replacement

- (i) Ν
- (ii)  $X_n$



(iii) A<sub>n</sub>

(iv) p<sub>n</sub>

(v)  $r_n$ 

(vi)  $V_N$ 

### Solution approach

A solution must specify what the agent should do for any state that the agent might reach.

A solution of this kind is called a **policy**. It is traditional to denote a policy by  $\pi$ , and  $\pi(x)$  is the action recommended by the policy  $\pi$  for state x.

If the agent has a complete policy, then no matter what the outcome of any action, the agent will always know what to do next.





## Components (N, X, A, p, r, $V_N$ , $\alpha$ )

# $\begin{array}{ll} \text{Decision rule} & f_n\left(x\right) \\ \text{Policy} & \pi \\ \text{Value function } V_n(x) \end{array}$

#### **Definitions**

- Let  $f_n: X \to \mathbb{A}_n(x)$  be a deterministic Markovian **decision rule**, which specifies the action  $f_n(x) \in \mathbb{A}_n(x)$  to be taken in state x at time  $0 \le n < N$ ,  $f_n \in \mathbb{F}_n$ , the set of all deterministic Markovian decision rules;
- Let  $\pi$ =( $f_0$ ,..., $f_{N-1}$ ) $\in \Pi$ =  $\mathbb{F}_0 \times \mathbb{F}_1 \times ... \times \mathbb{F}_{N-1}$  be an N-stage deterministic Markovian **policy**;
- The **expected total discounted reward** under policy  $\pi$  over time periods n,n+1,..,N is random, it is

$$R_{N,\alpha}^{\pi}(x) = E_x^{\pi} \{ \sum_{n=0}^{N-1} [\alpha^n r_n(X_n, f_n(X_n))] + \alpha^N V_N(X_N) \} \};$$

- **Goal**: find the policy that maximizes  $R_{N,\alpha}^{\pi}(x)$
- A policy  $\pi^*$  is called optimal if  $R_{N,\alpha}^{\pi^*}(x) \geq R_{N,\alpha}^{\pi}(x)$  for all  $x \in \mathbb{X}$ ,  $\pi \in \Pi$ ;
- The value function is defined as the maximum expected reward that can be achieved starting from state x at time n

$$V_n(x) = \sup_{\pi \in \Pi} R_{N,\alpha}^{\pi}(x);$$

#### Grid world -deterministic

$$r = -0.04$$
,  $\alpha = 1$   
 $V_T(x) = 0$   
deterministic movements





#### Grid world - stochastic

#### Deterministic Grid World



#### Stochastic Grid World



Klein, Abbeel, CS 188, UC Berkeley

#### Grid world – finite-horizon



→ in a finite-horizon environment we have a non-stationary optimal policy

## Grid world – differing rewards

 $V_T(x)=0$ ,  $\alpha=1$  stochastic movements

$$r(x) = -2$$



$$r(x) = -0.01$$



$$r(x) = -0.4$$





Components (N, X, A, p, r,  $V_N$ ,  $\alpha$ )

 $\begin{array}{ll} \text{Decision rule} & f_n\left(x\right) \\ \text{Policy} & \pi \\ \text{Value function } V_n(x) \end{array}$ 

## **Optimality Equations**

Under some weak assumption, the value function is the unique solution to the optimality equation

$$V_n(x) = \max_{a \in A_n(x)} \left\{ r_n(x, a) + \alpha \sum_{x' \in X_{n+1}} p_n(x, a, x') V_{n+1}(x') \right\}$$

for all  $x \in \mathbb{X}_n$  and n=0,...,N-1, which can be obtained for n=N-1,...,0 iteratively, starting with  $V_N(x)$ . Every policy  $\pi^*$  consisting of actions  $a=f_n^*(x)$  maximizing the right hand side of the equation is optimal.

(This weak assumption is fulfilled if the state space  $\mathbb{X}$  is finite or the one-stage reward and the terminal reward are bounded by a constant.)

#### Grid world – infinite-horizon

r = -0.04,  $\alpha = 1$   $V_T(x) = 0$ stochastic movements



| 0.812 | 0.868 | 0.918 | +1    |
|-------|-------|-------|-------|
| 0.762 |       | 0.660 | -1    |
| 0.705 | 0.655 | 0.611 | 0.388 |

value function results

| $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | +1       |
|---------------|---------------|---------------|----------|
| <b>↑</b>      |               | <b>↑</b>      | -1       |
| <b>↑</b>      | <b>←</b>      | <b>←</b>      | <b>←</b> |

optimal policy

→ choose the action that maximizes the expected value of the subsequent state:

$$\pi^*(x) = \arg\max_{a \in \mathbb{A}(x)} \sum_{x'} p(x, a, x') V(x')$$



#### **Optimality Equations**

$$V_n(x) = \max_{a \in A_n(x)} \left\{ r_n(x, a) \right\}$$

## In Example 1: Machine Replacement I

## In Example 1: Machine Replacement II

Components (N,  $\mathbb{X}$ ,  $\mathbb{A}$ , p, r,  $V_N$ ,  $\alpha$ )

Decision rule  $f_n(x)$ Policy  $\pi$ Value function  $V_n(x)$ 

#### **Optimality Equations**

$$V_n(x) = \max_{a \in \mathbb{A}_n(x)} \left\{ r_n(x, a) \right\}$$

### 2. Basics of Dynamic Programming







- a. Introduction
  - Games to play
  - A Machine Replacement Model
  - Predictive Maintenance
- b. Dynamic Programming Basics
  - Components of a Stochastic Dynamic Program (Markov Decision Process)
  - The Optimality Equations
- c. Solving the Optimality Equations

Case Study 3: Sea Crest B&B

Picture https://xkcd.com/399/ (The travelling salesman problem)

## Components (N, X, A, p, r, $V_N$ , $\alpha$ )

Decision rule  $f_n(x)$ Policy  $\pi$ Value function  $V_n(x)$ 

#### **Optimality Equations**

$$V_n(x) = \max_{a \in \mathbb{A}_n(x)} \left\{ r_n(x, a) \right\}$$

### Solving the Optimality Equations

#### 1. Backward Induction (Value Iteration)

- Determine  $V_N(x)$  for all  $x \in X_N$
- For all n = N-1,...,0:
  - For  $x \in X_n$ 
    - Evaluate the value function  $V_n(x)$  using the optimality equations;
    - Let a\* be the action that maximized the right hand side of the optimality equation.
    - Then,  $f_n(x) = a^*$ .

## Solving the Optimality Equations

Components (N,  $\mathbb{X}$ ,  $\mathbb{A}$ , p, r,  $V_N$ ,  $\alpha$ )

2. Linear Programming

Solve:

 $\min \sum_{n=0}^{N} \sum_{x \in \overline{X}_n} w_{n,x}$ 

Policy  $\pi$  Value function  $V_n(x)$ 

Decision rule  $f_n(x)$ 

s.t.

Optimality Equations

$$V_n(x) = \max_{a \in \mathbb{A}_n(x)} \left\{ r_n(x, a) \right\}$$

 $w_{n,x} \ge r_n(x,a) + \alpha \sum_{x' \in X_{n+1}} p_n(x,a,x') w_{n+1,x'}$  for all n<N,  $x \in X_n$ ,  $a \in A_n(x)$ 

$$w_{N,x} \ge V_N(x)$$
 for all  $x \in X_n$ 

- Let  $V_n(x) = W_{n,x}$
- Let  $a^* \in A_n(x)$  be the action that corresponds to a condition with a slack of 0. Then,  $f_n(x) = a^*$ .

## In Example 1: Machine Replacement



#### **Optimality Equations**

$$V_n(x) = \max_{a \in \mathbb{A}_n(x)} \left\{ r_n(x, a) \right\}$$

## In Example 1: Machine Replacement

#### **GAMS** Code

ord() returns position of a member in a set; the first element will be 1

card() returns the number of members in a set

```
n time periods /0*3/,
x age range /0*10/,
xn(x) age start n / 1*5/;
parameter
b costs of new machine /65/;
parameter
c(x) maintenance costs /
0 10
1 20
2 33
3 50
4 70
5*10 1000/ ;
parameter
s(xn) salvage value /
2 15
3 10
4 5
5 0/ ;
variable
    objective value,
w(xn,n) expected value starting in state x at n;
equations
objective
condition replace
condition keep
condition terminal;
objective..
                                                      z = e = sum((xn,n), w(xn,n));
condition replace (xn,n) $ (ord(n) < card(n))..
                                                     w(xn,n) = g = -c('0') - b + w('1',h+1);
condition keep (xn,n) (ord(n) < card(n))...
                                                     w(xn,n) = g = -c(xn) + w(xn+1,n+1);
condition terminal (xn,n) (ord(n) = card(n)).. w(xn,n) = g = s(xn);
model replacement /all/;
solve replacement minimizing z using lp;
display z.l, w.l;
```

#### GAMS Code Analyze Output

## In Example 1: Machine Replacement

```
44 VARIABLE z.L
                                           -1029.000
                                                      objective value
    44 VARIABLE w.L expected value starting in state x at n
 -98.000
             -43.000
                          -5.000
                                      30.000
-113.000
             -78.000
                         -23.000
                                      15.000
-118.000
             -80.000
                         -45.000
                                      10.000
-118.000
             -80.000
                         -45.000
                                       5.000
-118.000
             -80.000
                         -45.000
```

| EQU condition_replace |         |         |       |          |  |  |
|-----------------------|---------|---------|-------|----------|--|--|
|                       | LOWER   | LEVEL   | UPPER | MARGINAL |  |  |
| 1.0                   | -75.000 | -55.000 | +INF  |          |  |  |
| 1.1                   | -75.000 | -38.000 | +INF  |          |  |  |
| 1.2                   | -75.000 | -35.000 | +INF  |          |  |  |
| 2.0                   | -75.000 | -70.000 | +INF  |          |  |  |
| 2.1                   | -75.000 | -73.000 | +INF  |          |  |  |
| 2.2                   | -75.000 | -53.000 | +INF  |          |  |  |
| 3.0                   | -75.000 | -75.000 | +INF  | 1.000    |  |  |
| 3.1                   | -75.000 | -75.000 | +INF  | 2.000    |  |  |
| 3.2                   | -75.000 | -75.000 | +INF  | 3.000    |  |  |
| 4.0                   | -75.000 | -75.000 | +INF  | 1.000    |  |  |
| 4.1                   | -75.000 | -75.000 | +INF  | 1.000    |  |  |
| 4.2                   | -75.000 | -75.000 | +INF  | 1.000    |  |  |
| 5.0                   | -75.000 | -75.000 | +INF  | 1.000    |  |  |
| 5.1                   | -75.000 | -75.000 | +INF  | 1.000    |  |  |
| 5.2                   | -75.000 | -75.000 | +INF  | 1.000    |  |  |

|   |     | EQU condi | tion_keep |       |          |
|---|-----|-----------|-----------|-------|----------|
|   |     | LOWER     | LEVEL     | UPPER | MARGINAL |
|   | 1.0 | -20.000   | -20.000   | +INF  | 1.000    |
|   | 1.1 | -20.000   | -20.000   | +INF  | 4.000    |
|   | 1.2 | -20.000   | -20.000   | +INF  | 5.000    |
|   | 2.0 | -33.000   | -33.000   | +INF  | 1.000    |
|   | 2.1 | -33.000   | -33.000   | +INF  | 2.000    |
|   | 2.2 | -33.000   | -33.000   | +INF  | 5.000    |
|   | 3.0 | -50.000   | -38.000   | +INF  |          |
|   | 3.1 | -50.000   | -35.000   | +INF  |          |
|   | 3.2 | -50.000   | -50.000   | +INF  |          |
|   | 4.0 | -70.000   | -38.000   | +INF  |          |
|   | 4.1 | -70.000   | -35.000   | +INF  |          |
|   | 4.2 | -70.000   | -45.000   | +INF  |          |
|   | 5.0 | -1000.000 | -118.000  | +INF  |          |
|   | 5.1 | -1000.000 | -80.000   | +INF  |          |
|   | 5.2 | -1000.000 | -45.000   | +INF  |          |
| ı |     |           |           |       |          |

| EQU condition_terminal |        |        |       |          |  |  |  |
|------------------------|--------|--------|-------|----------|--|--|--|
|                        | LOWER  | LEVEL  | UPPER | MARGINAL |  |  |  |
| 1.3                    | 30.000 | 30.000 | +INF  | 6.000    |  |  |  |
| 2.3                    | 15.000 | 15.000 | +INF  | 6.000    |  |  |  |
| 3.3                    | 10.000 | 10.000 | +INF  | 6.000    |  |  |  |
| 4.3                    | 5.000  | 5.000  | +INF  | 1.000    |  |  |  |
| 5.3                    |        |        | +INF  | 1.000    |  |  |  |

#### Group Work

#### Case 3: Sea Crest B&B



Read the case study and answer the following question:

- 1. Formulate the decision problem as a finite-horizon Markov Decision Process. Determine the components: N,  $\mathbb{X}$ ,  $\mathbb{A}$ , p, r,  $V_N$ ,  $\alpha$ .
- (i) N
- (ii)  $X_n$
- (iii)  $\mathbb{A}_n$
- (iv) p<sub>n</sub>
- (v)  $r_n$
- (vi)  $V_N$
- (vii)  $\alpha$

#### Group Work

### Case 3: Sea Crest B&B



Read the case study and answer the following question:

2. Formulate the optimality equations.

## Group Task : GAMS + Excel



#### Use:

171023\_stopping.gms 171023\_Case3\_SeaCrest\_Templat e.xls

#### Case 3: Sea Crest B&B

3. Determine the optimal policy using GAMS.

Hint: Adapt the Stopping Problem Code.

4. Suppose that the family agrees to accept the first offer of \$3 million dollars or more (or 1 million if the first 10 offers were unacceptable). Develop a simulation to estimate the expected value and the standard deviation of the net proceeds (selling price less the cost of the consultant). Use a sample size of 500.

Use: Excel Table "171023\_Case3\_SeaCrest\_Template", sheet "SimulateSeacrest"

- 4. Calculate a 95% confidence interval for the expected net proceeds you obtained.
- 5. Some members of the Crest family argue that \$3 million is too low, since even the expected value of one month is higher than that. This part of the family believes that no offer less than \$4.5 million should be accepted. Use your simulation to help them estimate the expected net proceeds and standard deviation of net proceeds for this proposed decision rule.
- 6. What would you advise the Crest family to do? Compare your GAMS solution to the solution path in "BestDecisions". Compare the simulation results to task 4 and 6.

#### Outlook

### Typical Applications of finite-horizon MDPs

- Selling perishable products or services
- Production planning
- Patient admission and scheduling (hospitals)
- Assigning workers to incoming orders
- Queueing models (often modelled over an infinite horizon)
- Search problems

### **Dynamic Programming**

- Formulation as a finite-horizon Markov Decision Process containing all the necessary components
- Formulation of the optimality equations (Bellman equation)
- Solving the problem by hand via backward induction (value iteration)
- Formulation of the according Linear Problem
- Understanding GAMS Code and analyzing output to find the optimal decision rule
- Using simultation to evaluate different decision rules