

Medidas de associação Felipe

. . ~

Figueiredo

Medidas de associação Correlação Linear

Felipe Figueiredo

UNIAN - Centro Universitário Anhanguera de Niterói

Sumário

Medidas de associação

Felipe Figueiredo

Correlação

- Correlação
 - Associação entre duas variáveis
 - Covariância entre duas amostras
 - Coeficiente de correlação de Pearson

Sumário

Medidas de associação

Felipe Figueiredo

Correlação
Associação
Covariância

- Associação entre duas variáveis
- Covariância entre duas amostras
- Coeficiente de correlação de Pearson

Medidas de associação
Felipe

Figueiredo

- Considere duas amostras X e Y, de dados numéricos contínuos.
- Vamos representar os dados em pares ordenados (x,y) onde:
 - X: variável independente (ou variável explanatória)
 Y: variável dependente (ou variável resposta)

Medidas de associação

Felipe Figueiredo

- Considere duas amostras X e Y, de dados numéricos contínuos.
- Vamos representar os dados em pares ordenados (x,y) onde:
 - X: variável independente (ou variável explanatória)
 - Y: variável dependente (ou variável resposta)

Medidas de associação
Felipe

Figueiredo

- Considere duas amostras X e Y, de dados numéricos contínuos.
- Vamos representar os dados em pares ordenados (x,y) onde:
 - X: variável independente (ou variável explanatória)
 - Y: variável dependente (ou variável resposta)

Medidas de associação

Felipe Figueiredo

- Considere duas amostras X e Y, de dados numéricos contínuos.
- Vamos representar os dados em pares ordenados (x,y) onde:
 - X: variável independente (ou variável explanatória)
 - Y: variável dependente (ou variável resposta)

Medidas de associação
Felipe

Figueiredo orrelação

- Como definir (e mensurar!) o grau de associação entre duas variáveis aleatórias (VAs)?
- Se uma VA é dependente de outra, é razoável assumir que isso possa ser observável por estatísticas sumárias
- Como resumir esta informação em uma única grandeza numérica?

Medidas de associação
Felipe

Figueiredo Correlação

- Como definir (e mensurar!) o grau de associação entre duas variáveis aleatórias (VAs)?
- Se uma VA é dependente de outra, é razoável assumir que isso possa ser observável por estatísticas sumárias
- Como resumir esta informação em uma única grandeza numérica?

Medidas de associação
Felipe

Figueiredo orrelação

- Como definir (e mensurar!) o grau de associação entre duas variáveis aleatórias (VAs)?
- Se uma VA é dependente de outra, é razoável assumir que isso possa ser observável por estatísticas sumárias
- Como resumir esta informação em uma única grandeza numérica?

 Quando uma associação é forte, podemos identificá-la subjetivamente

- Para isto, analisamos o diagrama de dispersão dos pares (x,y)
- Um gráfico deste tipo é feito simplesmente plotando os pontos no plano cartesiano

Medidas de associação
Felipe

Figueiredo orrelação

 Quando uma associação é forte, podemos identificá-la subjetivamente

 Para isto, analisamos o diagrama de dispersão dos pares (x,y)

 Um gráfico deste tipo é feito simplesmente plotando os pontos no plano cartesiano Medidas de associação
Felipe

Figueiredo orrelação

Medidas de associação
Felipe

Figueiredo orrelação

- Quando uma associação é forte, podemos identificá-la subjetivamente
- Para isto, analisamos o diagrama de dispersão dos pares (x,y)
- Um gráfico deste tipo é feito simplesmente plotando os pontos no plano cartesiano

Exemplo

Medidas de associação

Felipe Figueiredo

Exemplo

Medidas de associação Felipe Figueiredo

Associação

(Fonte: Triola)

Exemplo

Medidas de associação

Felipe Figueiredo

Associação

between x and y (Fonte: Triola) (h) Nonlinear relationship between x and y

Sumário

Medidas de associação

Felipe Figueiredo

- Correlação
 - Associação entre duas variáveis
 - Covariância entre duas amostras
 - Coeficiente de correlação de Pearson

Variância

 Relembrando: a variância (assim como o desvio-padrão) é uma medida da dispersão da amostra

- Medida sumária que resume o quanto os dados se desviam da média
- Podemos usar um raciocínio análogo para comparar quanto uma amostra se desvia em relação à outra

Medidas de associação Felipe

Figueiredo Correlação

Variância

Medidas de associação Felipe

Figueiredo

- Relembrando: a variância (assim como o desvio-padrão) é uma medida da dispersão da amostra
- Medida sumária que resume o quanto os dados se desviam da média
- Podemos usar um raciocínio análogo para comparar quanto uma amostra se desvia em relação à outra

Variância

Medidas de associação Felipe

Figueiredo

- Relembrando: a variância (assim como o desvio-padrão) é uma medida da dispersão da amostra
- Medida sumária que resume o quanto os dados se desviam da média
- Podemos usar um raciocínio análogo para comparar quanto uma amostra se desvia em relação à outra

Covariância entre duas amostras

Medidas de associação

Felipe Figueiredo

Associação
Covariância

Definition

A covariância entre duas variáveis X e Y é uma medida de quanto ambas variam juntas (uma em relação à outra).

 Obs: duas variáveis independentes tem covariância igual a zero!

Covariância entre duas amostras

Medidas de associação

Felipe Figueiredo

Associação

Covariância

Pearson

Definition

A covariância entre duas variáveis X e Y é uma medida de quanto ambas variam juntas (uma em relação à outra).

 Obs: duas variáveis independentes tem covariância igual a zero!

Medidas de associação Felipe

Figueiredo

Covariância
Pearson

Definition

A correlação é a associação estatística entre duas variáveis.

Para medir essa associação, calculamos o coeficiente de correlação *r*.

Sumário

Medidas de associação Felipe

Figueiredo

- Associação entre duas variáveis
- Covariância entre duas amostras
- Coeficiente de correlação de Pearson

Medidas de associação
Felipe

Figueiredo orrelação

Associação Covariância

Pearson

Definition

O coeficiente de correlação r é a medida da direção e força da associação entre duas variáveis.

Propriedades:

- É um número entre −1 e 1.
- Mede a associação linear entre duas variáveis.
 - Diretamente proporcional, inversamente proporcional ou ausência de proporcionalidade.

Definition

O coeficiente de correlação r é a medida da direção e força da associação entre duas variáveis.

Propriedades:

- É um número entre −1 e 1.
- Mede a associação linear entre duas variáveis.
 - Diretamente proporcional, inversamente proporcional ou ausência de proporcionalidade.

Medidas de associação

Felipe Figueiredo

Definition

O coeficiente de correlação r é a medida da direção e força da associação entre duas variáveis.

Propriedades:

- É um número entre −1 e 1.
- Mede a associação linear entre duas variáveis.
 - Diretamente proporcional, inversamente proporcional, ou ausência de proporcionalidade.

Medidas de associação

Felipe Figueiredo

Definition

O coeficiente de correlação r é a medida da direção e força da associação entre duas variáveis.

Propriedades:

- É um número entre −1 e 1.
- Mede a associação linear entre duas variáveis.
 - Diretamente proporcional, inversamente proporcional, ou ausência de proporcionalidade.

Medidas de associação
Felipe

Figueiredo

Associação Covariância

Medidas de associação Felipe Figueiredo

Correlação
Associação
Covariância

- O coeficiente de correlação de Pearson é a covariância normalizada
- Pode ser calculado para populações (ρ) ou amostras (r)
- Amostra:

$$r = \frac{\sum xy - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

 Utilizando uma fórmula semelhante, encontramos o coeficiente ρ para uma população

Medidas de associação Felipe Figueiredo

Pearson

- O coeficiente de correlação de Pearson é a covariância normalizada
- Pode ser calculado para populações (ρ) ou amostras (r)
- Amostra:

$$r = \frac{\sum xy - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

Utilizando uma fórmula semelhante, encontramos o

Medidas de associação

Pearson

Felipe Figueiredo

- O coeficiente de correlação de Pearson é a covariância normalizada
- Pode ser calculado para populações (ρ) ou amostras (r)
- Amostra:

$$r = \frac{\sum xy - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

Utilizando uma fórmula semelhante, encontramos o

Medidas de associação

Felipe Figueiredo

Pearson

- O coeficiente de correlação de Pearson é a covariância normalizada
- Pode ser calculado para populações (ρ) ou amostras (r)
- Amostra:

$$r = \frac{\sum xy - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

 Utilizando uma fórmula semelhante, encontramos o coeficiente ρ para uma população

Medidas de associação
Felipe

Figueiredo

- Uma forte associação positiva corresponde a uma correlação próxima de 1.
- Uma forte associação negativa corresponde a uma correlação próxima de -1.
- A ausência de associação corresponde a uma correlação próxima de 0.

Medidas de associação Felipe

Figueiredo

Pearson

- Uma forte associação positiva corresponde a uma correlação próxima de 1.
- Uma forte associação negativa corresponde a uma
- A ausência de associação corresponde a uma

 Uma forte associação positiva corresponde a uma correlação próxima de 1.

- Uma forte associação negativa corresponde a uma correlação próxima de -1.
- A ausência de associação corresponde a uma correlação próxima de 0.

Medidas de associação Felipe

Figueiredo

Medidas de associação Felipe

Figueiredo orrelação

Associação Covariância

Pearson

- Uma forte associação positiva corresponde a uma correlação próxima de 1.
- Uma forte associação negativa corresponde a uma correlação próxima de -1.
- A ausência de associação corresponde a uma correlação próxima de 0.

Example

Pesquisadores queriam entender por que a insulina varia tanto entre indivíduos. Imaginaram que a composição lipídica das células do músculo afetam a sensibilidade do músculo para a insulina. Para isto, eles injetaram insulina em 13 jovens adultos, e determinaram quanta glicose eles precisariam injetar nos sujeitos para manter o nível de glicose sanguínea constante. A quantidade de glicose injetada para manter o nível sanguíneo constante é, então, uma medida da sensibilidade à insulina.

(Fonte: Motulsky, 1995)

Medidas de associação

Felipe Figueiredo

Medidas de associação Felipe

Figueiredo

Covariância

Pearsor

Example

Os pesquisadores fizeram uma pequena biópsia nos músculos para aferir a fração de ácidos graxos poliinsaturados que tem entre 20 e 22 carbonos (%C20-22). Como variável resposta, mediram o índice de sensibilidade à insulina.

Valores tabelados a seguir.

Table 17.1. Correlation Between %C20–22 and Insulin Sensitivity

% C20-22				
Polyunsaturated	Insulin Sensitivity			
Fatty Acids	(mg/m²/min)			
17.9	250			
18.3	220			
18.3	145			
18.4	115			
18.4	230			
20.2	200			
20.3	330			
21.8	400			
21.9	370			
22.1	260			
23.1	270			
24.2	530			
24.4	375			

Medidas de associação

Felipe Figueiredo

Exemplo: Diagrama de dispersão dos dados

Medidas de associação

Felipe Figueiredo

Correlação
Associação
Covariância
Pearson

Obs: na verdade, r = 0.77.

Por que as duas variáveis são tão correlacionadas? Considere 4 possibilidades:

- o conteúdo lipídico das membranas determina a sensibilidade à insulina
- A sensibilidade à insulina de alguma forma afeta o conteúdo lipídico
- tanto o conteúdo lipídico quanto a sensibilidade à insulina estão sob o efeito de algum outro fator (talvez algum hormônio)
- as duas variáveis não são correlacionads na população, e a estimativa observada nessa amostra é mera coincidência

Medidas de associação

Felipe Figueiredo

Por que as duas variáveis são tão correlacionadas? Considere 4 possibilidades:

- o conteúdo lipídico das membranas determina a sensibilidade à insulina
- A sensibilidade à insulina de alguma forma afeta o conteúdo lipídico
- tanto o conteúdo lipídico quanto a sensibilidade à insulina estão sob o efeito de algum outro fator (talvez algum hormônio)
- as duas variáveis não são correlacionads na população, e a estimativa observada nessa amostra é mera coincidência

Medidas de associação

Felipe Figueiredo

Por que as duas variáveis são tão correlacionadas? Considere 4 possibilidades:

- o conteúdo lipídico das membranas determina a sensibilidade à insulina
- A sensibilidade à insulina de alguma forma afeta o conteúdo lipídico
- tanto o conteúdo lipídico quanto a sensibilidade à insulina estão sob o efeito de algum outro fator (talvez algum hormônio)
- as duas variáveis não são correlacionads na população, e a estimativa observada nessa amostra é mera coincidência

Medidas de associação

Felipe Figueiredo

Por que as duas variáveis são tão correlacionadas? Considere 4 possibilidades:

- o conteúdo lipídico das membranas determina a sensibilidade à insulina
- A sensibilidade à insulina de alguma forma afeta o conteúdo lipídico
- tanto o conteúdo lipídico quanto a sensibilidade à insulina estão sob o efeito de algum outro fator (talvez algum hormônio)
- 4 as duas variáveis não são correlacionads na população, e a estimativa observada nessa amostra é mera coincidência

Medidas de associação

Felipe Figueiredo

Medidas de associação

Felipe Figueiredo

Correlação
Associação
Covariância
Pearson

Exercício

Dados de gastos com propaganda (x) e vendas (x), ambos em \$1000 de uma empresa.

	2.4							
У	225	184	220	240	180	184	186	215

Qual é a correlação entre os gastos de propaganda e as vendas? O que podemos concluir deste valor?

Fonte: Larson & Farber.

Cola

•
$$\bar{x} = 1.975$$

$$\bar{y} = 204.25$$

$$s_x = 0.420034$$

$$s_V = 23.34065$$

$$n = 8$$

•
$$\sum xy = 3289.8$$

$$r - \sum xy - n\bar{x}$$

$$o_{r} = \frac{1}{(n-1)s_{x}s_{y}}$$

$$r = \frac{3289.8 - (8 \times 1.975 \times 204.25)}{7 \times 0.420034 \times 23.34065} = 0.9129053 \approx 0.913$$

Medidas de associação

Felipe Figueiredo

Cola

$$\bar{x} = 1.975$$

$$\bar{y} = 204.25$$

$$s_x = 0.420034$$

•
$$s_V = 23.34065$$

$$n = 8$$

•
$$\sum xy = 3289.8$$

$$r = \frac{\sum xy - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

Medidas de associação Felipe

Figueiredo

Associação Covariância Pearson

Solução

$$r = \frac{3289.8 - (8 \times 1.975 \times 204.25)}{7 \times 0.420034 \times 23.34065} = 0.9129053 \approx 0.913$$

Interprete

Cola

•
$$\bar{x} = 1.975$$

•
$$\bar{y} = 204.25$$

•
$$s_x = 0.420034$$

•
$$s_v = 23.34065$$

$$n = 8$$

•
$$\sum xy = 3289.8$$

$$r = \frac{\sum xy - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

Medidas de associação Felipe

Figueiredo

Associação Covariância

Covariância Pearson

Solução

$$r = \frac{3289.8 - (8 \times 1.975 \times 204.25)}{7 \times 0.420034 \times 23.34065} = 0.9129053 \approx 0.913$$

Interprete

Cola

•
$$\bar{x} = 1.975$$

•
$$\bar{y} = 204.25$$

•
$$s_x = 0.420034$$

•
$$s_v = 23.34065$$

•
$$\sum xy = 3289.8$$

$$r = \frac{\sum xy - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

Medidas de associação Felipe

Figueiredo orrelação

Associação Covariância Pearson

Solução

$$r = \frac{3289.8 - (8 \times 1.975 \times 204.25)}{7 \times 0.420034 \times 23.34065} = 0.9129053 \approx 0.913$$

Interprete!

Cola

•
$$\bar{x} = 1.975$$

$$\bar{y} = 204.25$$

•
$$s_x = 0.420034$$

•
$$s_v = 23.34065$$

•
$$\sum xy = 3289.8$$

$$r = \frac{\sum xy - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

Medidas de associação Felipe

Figueiredo

Associação Covariância Pearson

Solução

$$r = \frac{3289.8 - (8 \times 1.975 \times 204.25)}{7 \times 0.420034 \times 23.34065} = 0.9129053 \approx 0.913$$

Interprete!

 Relembrando: calculamos a variância de uma amostra para saber a dispersão dos dados

- Sua interpretação é confusa, portanto preferimos usar o desvio-padrão
- No caso do r é o contrário: a interpretação de r² é mais simples
- Obs: o valor r² também é chamado coeficiente de determinação, como veremos a seguir.

Medidas de associação
Felipe

Figueiredo orrelação

Correlação
Associação
Covariância

- Relembrando: calculamos a variância de uma amostra para saber a dispersão dos dados
- Sua interpretação é confusa, portanto preferimos usar o desvio-padrão
- No caso do r é o contrário: a interpretação de r² é mais simples
- Obs: o valor r² também é chamado coeficiente de determinação, como veremos a seguir.

Medidas de associação Felipe

Figueiredo orrelação

Medidas de associação Felipe Figueiredo

Pearson

- Relembrando: calculamos a variância de uma amostra. para saber a dispersão dos dados
- Sua interpretação é confusa, portanto preferimos usar o desvio-padrão
- No caso do r é o contrário: a interpretação de r² é mais simples
- Obs: o valor r² também é chamado coeficiente de

 Relembrando: calculamos a variância de uma amostra para saber a dispersão dos dados

- Sua interpretação é confusa, portanto preferimos usar o desvio-padrão
- No caso do r é o contrário: a interpretação de r² é mais simples
- Obs: o valor r² também é chamado coeficiente de determinação, como veremos a seguir.

Medidas de associação

Felipe Figueiredo

Interpretando o r^2

Medidas de associação Felipe

Figueiredo orrelação

Associação
Covariância
Pearson

• No exemplo anterior, $r^2 = 0.59$

- no caso, 59% da variabilidade da tolerância à insulina pode ser explicada pelo conteúdo lipídico
- Ou seja: conhecer o conteúdo lipídico permite explicar 59% da variância na sensibilidade à insulina
- Isto deixa 41% da variância que pode ser explicada por outros fatores ou erros de medição

Interpretando o r²

Medidas de associação
Felipe

Figueiredo orrelação

Associação Covariância

- No exemplo anterior, $r^2 = 0.59$
- no caso, 59% da variabilidade da tolerância à insulina pode ser explicada pelo conteúdo lipídico
- Ou seja: conhecer o conteúdo lipídico permite explicar
 59% da variância na sensibilidade à insulina
- Isto deixa 41% da variância que pode ser explicada por outros fatores ou erros de medição

Interpretando o r^2

Medidas de associação

Felipe Figueiredo

Associação Covariância

- No exemplo anterior, $r^2 = 0.59$
- no caso, 59% da variabilidade da tolerância à insulina pode ser explicada pelo conteúdo lipídico
- Ou seja: conhecer o conteúdo lipídico permite explicar 59% da variância na sensibilidade à insulina
- Isto deixa 41% da variância que pode ser explicada por outros fatores ou erros de medição

Interpretando o r^2

Medidas de associação

Felipe Figueiredo

- No exemplo anterior, $r^2 = 0.59$
- no caso, 59% da variabilidade da tolerância à insulina pode ser explicada pelo conteúdo lipídico
- Ou seja: conhecer o conteúdo lipídico permite explicar 59% da variância na sensibilidade à insulina
- Isto deixa 41% da variância que pode ser explicada por outros fatores ou erros de medição