Gliederung

- 1. Einführung
- 2. Berechenbarkeitsbegriff
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursion
- 5. Grenzen der LOOP-Berechenbarkeit
- (Un-)Entscheidbarkeit, Halteproblem
- 7. Aufzählbarkeit & (Semi-)Entscheidbarkeit
- 8. Reduzierbarkeit
- 9. Satz von Rice
- 10. Das Postsche Korrespondenzproblem
- 11. Komplexität Einführung
- [12. NP-Vollständigkeit]
 - 13 PSPACE

SAT

Eingabe: aussagenlogische Formel *F*

Frage: Ist F erfüllbar, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in F verwendeten Boo-

leschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird?

SAT

Eingabe: aussagenlogische Formel *F*

Frage: Ist F erfüllbar, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in F verwendeten Boo-

leschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird?

Beispiele

0, 1,

 $\underline{x_1}, \underline{x_2}, \overline{x_3},$

 $(x_1 \wedge \overline{x_2})$

SAT

Eingabe: aussagenlogische Formel *F*

Frage: Ist F erfüllbar, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in F verwendeten Boo-

leschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird?

Beispiele

 $0, 1, \qquad x_1, x_2, \overline{x_3},$

 $(x_1 \wedge \overline{x_2}),$

 $(\overline{(x_1 \wedge \overline{x_2})} \vee x_2 \vee \overline{x_3})$

Theorem (Satz von Cook und Levin)

SAT ist NP-vollständig.

SAT

Eingabe: aussagenlogische Formel *F*

Frage: Ist F erfüllbar, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in F verwendeten Boo-

leschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird?

Beispiele

 $0,1, x_1, x_2, \overline{x_3},$

 $(x_1 \wedge \overline{x_2}),$

 $(\overline{(x_1 \wedge \overline{x_2})} \vee x_2 \vee \overline{x_3})$

Theorem (Satz von Cook und Levin)

SAT ist NP-vollständig.

, quess & check

Beweis (Idee, Details später)

Teil 1: "SAT ∈ NP": rate erfüllende Belegung (Zertifikat) und verifiziere sie.

 $\underline{\textbf{Teil 2:}} \text{ "SAT ist NP-schwer": mit } \underline{\textbf{\textit{L}} \in \text{NP}} \text{ beliebig,}$

transformiere NTM N mit T(N) = L in Formel $\varphi(x)$ sodass $x \in L \Leftrightarrow \varphi(x) \in SAT$.

CNF-SAT

Konjunktion v. Disjunktione (x1vx2)A (x1vx2vx3)A... **Eingabe:** aussagenlogische Formel F in "konjunktiver Normalform"

lst F erfüllbar, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in F verwendeten Boo-Frage:

leschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird?

CNF-SAT

Eingabe: aussagenlogische Formel F in "konjunktiver Normalform"

lst F erfüllbar, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in F verwendeten Boo-Frage:

leschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird?

Theorem

 $SAT \leq_m^p CNF-SAT (\sim CNF-SAT NP-vollständig)$

CNF-SAT

Eingabe: aussagenlogische Formel *F* in "konjunktiver Normalform"

Frage: Ist F erfüllbar, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in F verwendeten Booleschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird?

Theorem

 $\underline{\operatorname{SAT}} \leq_m^p \operatorname{CNF-SAT}$ ($\sim \operatorname{CNF-SAT}$ NP-vollständig)

Beweis (Skizze)

Reduktion: $\varphi \rightarrow \text{erf\"{u}llbarkeits}$ -äquivalente Formel ψ :

CNF-SAT

Theorem

Eingabe: aussagenlogische Formel *F* in "konjunktiver Normalform"

Ist F erfüllbar, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in F verwendeten Boo-Frage: leschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird?

$SAT <_m^p CNF-SAT (\sim CNF-SAT NP-vollständig)$

Beweis (Skizze)

Reduktion: $\varphi \sim \text{erfüllbarkeits}$ -äquivalente Formel ψ :

Mathias Weller (TU Berlin)

$$\psi = (\gamma_{\Lambda} \leftrightarrow (\overline{\chi}_{\Lambda} \wedge \chi_{2} \wedge \chi_{\Lambda}))_{\Lambda} (\gamma_{2} \leftrightarrow (\chi_{\Lambda} \wedge \overline{\chi}_{3}))$$

$$\chi_{\delta \Lambda} (\gamma_{3} \leftrightarrow ...)_{\Lambda} (\gamma_{4} \leftrightarrow (\gamma_{\Lambda} \vee \chi_{2}))_{\Lambda} (\gamma_{5} \leftrightarrow (\chi_{4} \wedge \overline{\chi}_{3}))$$

X=1 x=1 x=0 Beispiel

CNF-SAT

Eingabe: aussagenlogische Formel *F* in "konjunktiver Normalform"

Frage: Ist F erfüllbar, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in F verwendeten Boo-

Theorem leschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird?

Theorem

 $SAT \leq_m^p CNF-SAT (\sim CNF-SAT NP-vollständig)$

Beweis (Skizze)

Reduktion: $\varphi \sim$ **erfüllbarkeits**-äquivalente Formel ψ :

- (1) neue Variable y_i für jeden Knoten im "Formelbaum"
- mit "äquivalentem Wahrheitswert"
- (2) neue Klausel für die Wurzel

CNF-SAT

Eingabe: aussagenlogische Formel F in "konjunktiver Normalform"

Ist F erfüllbar, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in F verwendeten Boo-Frage:

leschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird? Theorem

 $SAT <_m^p CNF-SAT (\sim CNF-SAT NP-vollständig)$

Beweis (Skizze)

Reduktion: $\varphi \sim \text{erfüllbarkeits}$ -äquivalente Formel ψ :

- (1) neue Variable *y_i* für jeden Knoten im "Formelbaum" mit "äguivalentem Wahrheitswert"
- (2) neue Klausel für die Wurzel

$$\psi$$
 erfüllbar $\Leftrightarrow \underline{\varphi}$ erfüllbar \checkmark

CNF-SAT

Eingabe: aussagenlogische Formel F in "konjunktiver Normalform"

Ist F erfüllbar, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in F verwendeten Boo-Frage:

leschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird? Theorem

 $SAT \leq_m^p CNF-SAT (\sim CNF-SAT NP-vollständig)$

Beweis (Skizze)

Reduktion: $\varphi \sim \text{erfüllbarkeits}$ -äquivalente Formel ψ :

- (1) neue Variable *y_i* für jeden Knoten im "Formelbaum" mit "äguivalentem Wahrheitswert"
- (2) neue Klausel für die Wurzel

 ψ erfüllbar $\Leftrightarrow arphi$ erfüllbar 🗸

poly-time computable ✓ (ab jetzt implizit)

CONSAT COCONE (NF-SAT

Beispiel $((\overline{x_1} \wedge x_2 \wedge x_1) \vee (x_1 \wedge \overline{x_3})) \wedge \overline{(x_1 \wedge \overline{x_2})}$ 3-SAT ist NP-vollständig

Theorem

Formeling

Theorem

(x, v x, x, x,), (), (), () , ()

 $\underline{\text{CNF-SAT}} \leq_m^p \underline{3}\underline{-}\underline{\text{SAT}}$ (also ist 3-SAT NP-vollständig).

Theorem

CNF-SAT \leq_m^p 3-SAT (also ist 3-SAT NP-vollständig).

Beweis (Skizze)

Reduktion: CNF-Formel $\varphi \sim$ **erfüllbarkeits**-äquivalente <u>3CNF-Formel</u> ψ Für jede Klausel $c_j = (\ell_1 \vee \ell_2 \vee \ldots \vee \ell_r) \in \varphi$,

Theorem

CNF-SAT \leq_m^p 3-SAT (also ist 3-SAT NP-vollständig).

Beweis (Skizze)

Reduktion: CNF-Formel $\varphi \leadsto \text{erf\"{u}llbarkeits}$ -äquivalente 3CNF-Formel ψ Für jede Klausel $c_j = (\ell_1 \lor \ell_2 \lor \ldots \lor \ell_{\textbf{r}}) \in \varphi$,

▶ falls $r \leq 3$, dann füge c_i zu ψ hinzu;

Theorem

CNF-SAT $<_{m}^{p}$ 3-SAT (also ist 3-SAT NP-vollständig).

Beweis (Skizze)

Reduktion: CNF-Formel $\varphi \sim$ erfüllbarkeits-äquivalente 3CNF-Formel ψ

Für jede Klausel
$$c_j = (\underline{\ell_1} \vee \underline{\ell_2} \vee \ldots \vee \ell_r) \in \varphi$$
,

▶ falls
$$r \leq 3$$
, dann füge c_i zu ψ hinzu;

$$c'_j := (\ell_1 \vee \ell_2 \vee \gamma_1) \wedge (\overline{\gamma_1} \vee \ell_3 \vee \gamma_2)$$

wobei
$$y_1, \dots, y_{r-3}$$
 neue Variablen sind.

$$c'_j := \underbrace{(\ell_1 \vee \ell_2 \vee y_1)}_{l_1, \ldots, y_{r-3}} \wedge \underbrace{(\overline{y_1} \vee \ell_3 \vee y_2) \wedge (\overline{y_2} \vee \ell_4 \vee y_3)}_{l_2, \ldots, l_r} \dots (\overline{y_{r-3}} \vee \ell_{r-1} \vee \ell_r)$$

Fall 2: 13(4,)=1 -> 31>2 B(P1)=1 -> B enfill CT NP-Vollständigkeit

Theorem

CNF-SAT \leq_m^p 3-SAT (also ist 3-SAT NP-vollständig).

Beweis (Skizze)

Reduktion: CNF-Formel $\varphi \leadsto \text{erf\"{u}llbarkeits}$ -äquivalente 3CNF-Formel ψ Für jede Klausel $c_j = (\ell_1 \lor \ell_2 \lor \ldots \lor \ell_r) \in \varphi$,

- ▶ falls $r \leq 3$, dann füge c_i zu ψ hinzu;
- ► sonst füge c'_i hinzu mit

$$c'_j := (\ell_1 \vee \ell_2 \vee y_1) \wedge (\overline{y_1} \vee \ell_3 \vee y_2) \wedge (\overline{y_2} \vee \ell_4 \vee y_3) \dots (\overline{y_{r-3}} \vee \ell_{r-1} \vee \ell_r)$$

wobei y_1, \ldots, y_{r-3} neue Variablen sind.

 \sim Belegung β erfüllt $c_j \Leftrightarrow$ Erweiterung von β erfüllt c_j'

Theorem

CNF-SAT $\leq_m^p 3$ -SAT (also ist 3-SAT NP-vollständig).

Beweis (Skizze)

Reduktion: CNF-Formel $\varphi \sim$ **erfüllbarkeits**-äquivalente 3CNF-Formel ψ Für jede Klausel $c_i = (\ell_1 \vee \ell_2 \vee \ldots \vee \ell_r) \in \varphi$,

- ▶ falls $r \leq 3$, dann füge c_i zu ψ hinzu;
- ► sonst füge c'_i hinzu mit

$$c_j' \coloneqq (\ell_1 \vee \ell_2 \vee y_1) \wedge (\overline{y_1} \vee \ell_3 \vee y_2) \wedge (\overline{y_2} \vee \ell_4 \vee y_3) \dots (\overline{y_{r-3}} \vee \ell_{r-1} \vee \ell_r)$$

wobei y_1, \ldots, y_{r-3} neue Variablen sind.

 \rightarrow Belegung β erfüllt $c_j \Leftrightarrow$ Erweiterung von β erfüllt c_i'

 ψ erfüllbar $\Leftrightarrow \varphi$ erfüllbar 🗸

Theorem

CNF-SAT $\leq_m^p 3$ -SAT (also ist 3-SAT NP-vollständig).

Beweis (Skizze)

Reduktion: CNF-Formel $\varphi \sim$ **erfüllbarkeits**-äquivalente 3CNF-Formel ψ Für jede Klausel $c_i = (\ell_1 \vee \ell_2 \vee \ldots \vee \ell_r) \in \varphi$.

- ▶ falls $r \leq 3$, dann füge c_i zu ψ hinzu;
- ► sonst füge c' hinzu mit

$$c_j' \coloneqq (\ell_1 \vee \ell_2 \vee y_1) \wedge (\overline{y_1} \vee \ell_3 \vee y_2) \wedge (\overline{y_2} \vee \ell_4 \vee y_3) \dots (\overline{y_{r-3}} \vee \ell_{r-1} \vee \ell_r)$$

wobei y_1, \ldots, y_{r-3} neue Variablen sind.

 \rightarrow Belegung β erfüllt $c_j \Leftrightarrow$ Erweiterung von β erfüllt c_i'

 ψ erfüllbar $\Leftrightarrow \varphi$ erfüllbar 🗸

Bemerkung: $|\psi| \leq 2|\varphi|$

Theorem

 $3-SAT \leq_m^p VERTEX COVER.$

Theorem

 $3-SAT \leq_m^p VERTEX COVER.$

Beweis (Skizze)

Formel
$$\varphi \rightsquigarrow (G, \underline{k} = \# Var + 2 \# Klauseln)$$

Beispiel: $(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3)$

Theorem

 $3-SAT \leq_m^p VERTEX COVER.$

Beweis (Skizze)

Formel $\varphi \sim (G, k = \#Var + 2\#Klauseln)$

1. Variablen-Gadget: Variable $x_i \sim 2$ benachbarte Knoten mit Beschriftungen x_i und $\overline{x_i}$

Theorem

 $3-SAT \leq_m^p VERTEX COVER.$

Beweis (Skizze)

Formel $\varphi \sim (G, k = \#Var + 2\#Klauseln)$

- 1. Variablen-Gadget: Variable $x_i \sim 2$ benachbarte Knoten mit Beschriftungen x_i und $\overline{x_i}$
- 2. Klausel-Gadget: Klausel $(\ell_{i_1} \vee \ell_{i_2} \vee \ell_{i_3}) \sim$ Dreieck mit Beschriftungen $\ell_{i_1}, \ell_{i_2}, \ell_{i_3}$

Theorem

 $3-SAT \leq_m^p VERTEX COVER.$

Beweis (Skizze)

Formel $\varphi \sim (G, k = \#Var + 2\#Klauseln)$

- 1. Variablen-Gadget: Variable $x_i \sim 2$ benachbarte Knoten mit Beschriftungen x_i und $\overline{x_i}$
- 2. Klausel-Gadget: Klausel $(\ell_{i_1} \vee \ell_{i_2} \vee \ell_{i_3}) \rightsquigarrow \text{Dreieck mit Beschriftungen } \ell_{i_1}, \ell_{i_2}, \ell_{i_3}$
- [3. Verbinde Knoten mit gleicher Beschriftung zwische Var-gadgets & Klausel-Godgets

Theorem

 $3-SAT \leq_m^p VERTEX COVER.$

Beweis (Skizze)

Formel
$$\varphi \rightsquigarrow (G, k = \#Var + 2\#Klauseln)$$

- 1. Variablen-Gadget: Variable $x_i \sim 2$ benachbarte Knoten mit Beschriftungen x_i und $\overline{x_i}$
- 2. Klausel-Gadget: Klausel $(\ell_i, \vee \ell_i, \vee \ell_i) \sim$ Dreieck mit Beschriftungen ℓ_i, ℓ_i, ℓ_i
- 3. Verbinde Knoten mit gleicher Beschriftung
- "⇒": aus Variablen-Gadget, wähle entsprechend der Belegung
- → alle anderen Kanten mit 2 Knoten aus jedem Klausel-Gadget überdeckt
 - (1) Kanten in Vor.- Gadgets V
 - 2 Kanten in Klauset Gadgets 1
 - 3 Kanten zwischen VGs & KGs V

Theorem

 $3-SAT \leq_m^p VERTEX COVER.$

Beweis (Skizze)

Formel $\varphi \sim (G, \underline{k} = \#Var + 2\#Klauseln)$

- 1. Variablen-Gadget: Variable $x_i \sim 2$ benachbarte Knoten mit Beschriftungen x_i und $\overline{x_i}$
- 2. Klausel-Gadget: Klausel $(\ell_{i_1} \vee \ell_{i_2} \vee \ell_{i_3}) \sim$ Dreieck mit Beschriftungen $\ell_{i_1}, \ell_{i_2}, \ell_{i_3}$
- 3. Verbinde Knoten mit gleicher Beschriftung
- "⇒": aus Variablen-Gadget, wähle entsprechend der Belegung
- → alle anderen Kanten mit 2 Knoten aus jedem Klausel-Gadget überdeckt
- "⇐":
- (a) ≥ 1 Knoten von jedem Variablen-Gadget in jeder VC-Lösung
- (b) \geq 2 Knoten von jedem Klausel-Gadget in jeder VC-Lösung.

Theorem

 $3-SAT \leq_m^p VERTEX COVER.$

Beweis (Skizze)

Formel $\varphi \sim (G, k = \#Var + 2\#Klauseln)$

- 1. Variablen-Gadget: Variable $x_i \sim 2$ benachbarte Knoten mit Beschriftungen x_i und $\overline{x_i}$
- 2. Klausel-Gadget: Klausel $(\ell_{i_1} \vee \ell_{i_2} \vee \ell_{i_3}) \sim$ Dreieck mit Beschriftungen $\ell_{i_1}, \ell_{i_2}, \ell_{i_3}$
- 3. Verbinde Knoten mit gleicher Beschriftung
- "⇒": aus Variablen-Gadget, wähle entsprechend der Belegung
- → alle anderen Kanten mit 2 Knoten aus jedem Klausel-Gadget überdeckt
- "←":
- (a) = 1 Knoten von jedem Variablen-Gadget in jeder VC-Lösung
- (b) $\underline{=2}$ Knoten von jedem Klausel-Gadget in jeder VC-Lösung.

Theorem

 $3-SAT \leq_m^p VERTEX COVER.$

Beweis (Skizze)

Formel $\varphi \rightsquigarrow (G, k = \#Var + 2\#Klauseln)$

- 1. Variablen-Gadget: Variable $x_i \sim 2$ benachbarte Knoten mit Beschriftungen x_i und $\overline{x_i}$
- 2. Klausel-Gadget: Klausel $(\ell_{i_1} \vee \ell_{i_2} \vee \ell_{i_3}) \sim$ Dreieck mit Beschriftungen $\ell_{i_1}, \ell_{i_2}, \ell_{i_3}$
- 3. Verbinde Knoten mit gleicher Beschriftung
- "⇒": aus Variablen-Gadget, wähle entsprechend der Belegung
- ightarrow alle anderen Kanten mit 2 Knoten aus jedem Klausel-Gadget überdeckt
- "**←**":
- (a) = 1 Knoten von jedem Variablen-Gadget in jeder VC-Lösung
- (b) = 2 Knoten von jedem Klausel-Gadget in jeder VC-Lösung.
- → jedes Klausel-Gadget benachbart zu einem Knoten in VC-Lösung

Theorem

 $3-SAT \leq_m^p VERTEX COVER.$

Beweis (Skizze)

Formel $\varphi \rightsquigarrow (G, k = \#Var + 2\#Klauseln)$

- 1. Variablen-Gadget: Variable $x_i \sim 2$ benachbarte Knoten mit Beschriftungen x_i und $\overline{x_i}$
- 2. Klausel-Gadget: Klausel $(\ell_{i_1} \vee \ell_{i_2} \vee \ell_{i_3}) \sim$ Dreieck mit Beschriftungen $\ell_{i_1}, \ell_{i_2}, \ell_{i_3}$
- 3. Verbinde Knoten mit gleicher Beschriftung
- "⇒": aus Variablen-Gadget, wähle entsprechend der Belegung
- ightarrow alle anderen Kanten mit 2 Knoten aus jedem Klausel-Gadget überdeckt
- "⇐":
- $\mathsf{(a)} = 1$ Knoten von jedem Variablen-Gadget in jeder VC-Lösung
- (b) 2 Knoten von jedem Klausel-Gadget in jeder VC-Lösung.
- ightarrow jedes Klausel-Gadget benachbart zu einem Knoten in VC-Lösung
- → entsprechende Belegung erfüllt die Formel!

Theorem

Vertex Cover \leq_m^p Dominating Set.

Theorem

Vertex Cover \leq_m^p Dominating Set.

Beweis (Skizze)

$$(G,\underline{k}) \rightsquigarrow (G',\underline{k})$$

Theorem

Vertex Cover \leq_m^p Dominating Set.

Beweis (Skizze)

$$(G,k) \sim (G',k)$$

1. setze initial G' = G

Theorem

Vertex Cover \leq_m^p Dominating Set.

Beweis (Skizze)

$$(G,k) \rightsquigarrow (G',k)$$

- 1. setze initial G' = G
- 2. für jede Kante $e = \{u, v\}$ in G:
 - erzeuge einen neuen (grauen) Knoten in G' und verbinde ihn mit u und v

Theorem

Vertex Cover \leq_m^p Dominating Set.

Beweis (Skizze)

$$(G,k) \sim (G',k)$$

- 1. setze initial G' = G
- 2. für jede Kante $e = \{u, v\}$ in G:

erzeuge einen neuen (grauen) Knoten in G' und verbinde ihn mit u und v

Korrektheit: $\underline{"} \Rightarrow "$: VC-Lösung in G ist auch DS-Lösung in G'

Theorem

Vertex Cover \leq_m^p Dominating Set.

Beweis (Skizze)

$$(G,k) \sim (G',k)$$

- 1. setze initial G' = G
- 2. für jede Kante $e = \{u, v\}$ in G:

erzeuge einen neuen (grauen) Knoten in G' und verbinde ihn mit u und v

Korrektheit: " \Rightarrow ": VC-Lösung in G ist auch DS-Lösung in G' " \Leftarrow ": Sei $X \subseteq V(G')$ eine DS-Lösung für G' mit $X \subseteq K$

Theorem

Vertex Cover \leq_m^p Dominating Set.

Beweis (Skizze)

$$(G,k) \sim (G',k)$$

- 1. setze initial G' = G
- 2. für jede Kante $e = \{u, v\}$ in G:

erzeuge einen neuen (grauen) Knoten in G' und verbinde ihn mit u und v

Korrektheit: " \Rightarrow ": VC-Lösung in G ist auch DS-Lösung in G'

- $A \leftarrow$ ": Sei $X \subseteq V(G')$ eine DS-Lösung für G' mit |X| < k
- (a) neuer (grauer) Knoten ← DS-Lösung → mit weißem Nachbarn fauschen (X \ {4}) u(v) ist DS-L654
- → Lösung ohne graue Knoten

DOMINATING SET ist NP-vollständig

Theorem

Vertex Cover \leq_m^p Dominating Set.

Beweis (Skizze)

$$(G,k) \sim (G',k)$$

- 1. setze initial G' = G
- 2. für jede Kante $e = \{u, v\}$ in G:

erzeuge einen neuen (grauen) Knoten in G' und verbinde ihn mit u und v

Korrektheit: " \Rightarrow ": VC-Lösung in G ist auch DS-Lösung in G'

- "←": Sei $X \subseteq V(G')$ eine DS-Lösung für G' mit $|X| \le k$
- (a) neuer (grauer) Knoten \in DS-Lösung \leadsto mit weißem Nachbarn tauschen
- → Lösung ohne graue Knoten
- (b) graue Knoten dominiert \sim jede Kante in G hat Endpunkt in X
- $\sim X$ ist vertex cover in G

CLIQUE ist NP-vollständig

Clique

Eingabe: ungerichteter Graph G und Zahl $k \in \mathbb{N}$

Frage: Hat G einen vollständigen Teilgraph G' mit $\geq k$ Knoten?

CLIQUE ist NP-vollständig

Clique

Eingabe: ungerichteter Graph G und Zahl $k \in \mathbb{N}$

Frage: Hat G einen vollständigen Teilgraph G' mit $\geq k$ Knoten?

Theorem

INDEPENDENT SET \leq_m^p CLIQUE.

CLIQUE ist NP-vollständig

Clique

Eingabe: ungerichteter Graph G und Zahl $k \in \mathbb{N}$

Frage: Hat G einen vollständigen Teilgraph G' mit $\geq k$ Knoten?

Theorem

INDEPENDENT SET \leq_m^p CLIQUE.

Beweis (Skizze)

 $(\underline{G} = (\underline{V}, \underline{E}), \underline{k}) \leadsto (\overline{\underline{G}} = (\underline{V}, (\underline{\underline{V}}) \setminus \underline{E}), \underline{k})$ Korrektheit:

Jede unabhängige Knotenmenge in G

bildet eine Clique in \overline{G} und umgekehrt, also:

 $(G, k) \in \text{Independent Set} \Leftrightarrow (\overline{G}, k) \in \text{Clique}$

Independent Set Clique

Leine Kante zoisha

Wenn ein Dominostein fiele...

SATER 3-SATER VC SE IS SE CLIQUESESAT

. . .

Eingabe:

- (1) Grundmenge ("Universum") $\underline{U} := \{x_1, x_2, \dots, x_n\}$, (2) eine Teilmengenfamilie $\mathcal{F} := \{S_1, S_2, \dots, S_m\}$ mit $S_i \subseteq U$ für $1 \le i \le m$ und (3) ein $k \in \mathbb{N}$

Eingabe:

- (1) Grundmenge ("Universum") $U := \{\underline{x_1}, x_2, \dots, \underline{x_n}\},$
- (2) eine Teilmengenfamilie $\mathcal{F} := \{S_1, S_2, \dots, S_m\}$ mit $S_i \subseteq U$ für $1 \leq i \leq m$ und
- (3) ein $k \in \mathbb{N}$

Hitting Set

Frage: Existiert eine Teilmenge $X \subseteq U$ mit $|X| \le k$ und $X \cap S_i \ne \emptyset$ für jedes S_i ?

Eingabe:

- (1) Grundmenge ("Universum") $U := \{x_1, x_2, \dots, x_n\}$,
- (2) eine Teilmengenfamilie $\mathcal{F} := \{S_1, S_2, \dots, S_m\}$ mit $S_i \subseteq U$ für $1 \leq i \leq n$ und
- (3) ein $k \in \mathbb{N}$

Hitting Set

Frage: Existiert eine Teilmenge $X \subseteq U$ mit $|X| \le k$ und $X \cap S_i \ne \emptyset$ für jedes S_i ?

Set Cover

Frage: Existiert ein $\underline{\mathcal{Z} \subseteq \mathcal{F}}$ mit $|\mathcal{Z}| \leq k$ und $\bigcup_{S \in \mathcal{Z}} S = U$?

Eingabe:

- (1) Grundmenge ("Universum") $U := \{x_1, x_2, \dots, x_n\}$,
- (2) eine Teilmengenfamilie $\mathcal{F} := \{S_1, S_2, \dots, S_m\}$ mit $S_i \subseteq U$ für $1 \leq i \leq n$ und (3) ein $k \in \mathbb{N}$

Hitting Set

Frage: Existiert eine Teilmenge $X \subseteq U$ mit $|X| \le k$ und $X \cap S_i \ne \emptyset$ für jedes S_i ?

Set Cover

Frage: Existiert ein $\mathcal{Z} \subseteq \mathcal{F}$ mit $|\mathcal{Z}| \leq k$ und $\bigcup_{S \in \mathcal{Z}} S = U$?

- (1) $U = \{1, 2, 3, 4, 5, 6\}$.

(1)
$$S = \{1, 2, 3, 4, 5, 0\}$$
,
(2) $S_1 = \{1, 3\}$, $S_2 = \{3, 4\}$, $S_3 = \{1, 5\}$, $S_4 = \{2, 4, 6\}$, $S_5 = \{1, 3, 5\}$
(3) $k = 2$

Eingabe:

- (1) Grundmenge ("Universum") $U := \{x_1, x_2, \dots, x_n\}$,
- (2) eine Teilmengenfamilie $\mathcal{F} := \{S_1, S_2, \dots, S_m\}$ mit $S_i \subseteq U$ für $1 \leq i \leq n$ und
- (3) ein $k \in \mathbb{N}$

Hitting Set

Frage: Existiert eine Teilmenge $X \subseteq U$ mit $|X| \le k$ und $X \cap S_i \ne \emptyset$ für jedes S_i ?

Set Cover

Frage: Existiert ein $\mathcal{Z} \subseteq \mathcal{F}$ mit $|\mathcal{Z}| \leq k$ und $\bigcup_{S \in \mathcal{Z}} S = U$?

Beispiel

- (1) $U = \{1, 2, 3, 4, 5, 6\},\$
- (2) $S_1 = \{1,3\}$, $S_2 = \{3,4\}$, $S_3 = \{1,5\}$, $S_4 = \{2,4,6\}$, $S_5 = \{1,3,5\}$
- (3) k = 2

$$\sim X = \{1, 4\}, \ \mathcal{Z} = \{S_4, S_5\}.$$

HITTING SET ist NP-vollständig

Theorem

Vertex Cover \leq_m^p Hitting Set.

HITTING SET ist NP-vollständig

Theorem

Vertex Cover \leq_m^p Hitting Set.

Beweis (Skizze)

$$(G = (V, E), k) \sim (\underline{U} = V, \underline{\mathcal{F}} = \underline{E}, \underline{k})$$

Korrektheit: klar

In der Tat ist VERTEX COVER auch bekannt als "2-Hitting Set".

HITTING SET ist NP-vollständig

Theorem

Vertex Cover \leq_m^p Hitting Set.

Beweis (Skizze)

$$(G = (V, E), k) \sim (U = V, \mathcal{F} = E, k)$$

Korrektheit: klar

In der Tat ist VERTEX COVER auch bekannt als "2-Hitting Set".

$$U = \{v_1, v_2, v_3, v_4\}$$

$$\mathcal{F} = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_3, v_4\}\}$$

Theorem

HITTING SET \leq_m^p SET COVER.

Theorem

HITTING SET \leq_m^p SET COVER.

Theorem

HITTING SET \leq_m^p SET COVER.

Beweis (Skizze)

$$(\underbrace{U,\mathcal{F},k}) \leadsto (\underbrace{U_{SC} = \mathcal{F},\mathcal{F}_{SC}}_{F_{SC}} = \{F_x \mid x \in U\},k)$$
 mit $F_x := \{\underline{S_i \in \mathcal{F} \mid x \in S_i}\}$

Theorem

HITTING SET \leq_m^p SET COVER.

Beweis (Skizze)

$$(U, \mathcal{F}, k) \sim (U_{SC} = \mathcal{F}, \mathcal{F}_{SC} = \{F_x \mid x \in U\}, k)$$

mit $F_x := \{S_i \in \mathcal{F} \mid x \in S_i\}$

Theorem

HITTING SET \leq_m^p SET COVER.

Beweis (Skizze)

$$(U, \mathcal{F}, k) \sim (\underline{U_{SC} = \mathcal{F}}, \mathcal{F}_{SC} = \{F_x \mid x \in U\}, k)$$

mit $\underline{F_x := \{S_i \in \mathcal{F} \mid x \in S_i\}}$

Korrektheit:

$$X \subseteq U \text{ ist ein Hitting Set für } \mathcal{F}$$

$$\Leftrightarrow \forall_{S_i \in \mathcal{F}} \exists_{x \in X} \ x \in S_i$$

$$\Leftrightarrow \bigcup_{x \in X} F_x = \mathcal{F}$$

$$\Leftrightarrow \mathcal{Z} := \{F_x \mid x \in X\} \text{ ist ein Set Cover für } \mathcal{F} = U_{SC}$$

Netzwerk polynomieller Reduktionen II

Subset Sum

Ein Problem u.a. aus dem Bereich "Scheduling" (Ablaufsteuerung).

Subset Sum

Eingabe: Multi-Menge $U := \{u_1, u_2, \dots, u_n\}$ von natürlichen Zahlen und eine Zahl $B \in \mathbb{N}$

Frage: Existiert eine Teilmenge $X \subseteq U$, die sich zu B summiert, d.h. $\sum_{u \in X} u = B$?

$$U = \{4, 4, 11, 16, \underline{21}\} \text{ und } \underline{B} = \underline{29}.$$

Subset Sum

Ein Problem u.a. aus dem Bereich "Scheduling" (Ablaufsteuerung).

Subset Sum

Eingabe: Multi-Menge $U:=\{u_1,u_2,\ldots,u_n\}$ von natürlichen Zahlen und eine Zahl $B\in\mathbb{N}$

Frage: Existiert eine Teilmenge $X \subseteq U$, die sich zu B summiert, d.h. $\sum_{u \in X} u = B$?

Beispiel

$$U = \{4, 4, 11, 16, 21\}$$
 und $B = 29$.
 $X = \{4, 4, 21\}$.

$\underset{\textbf{Theorem}}{\operatorname{SUBSET}} \ \operatorname{SUM} \ \text{ist NP-vollständig}$

 $3-SAT \leq_m^p SUBSET SUM.$

 $3-SAT \leq_m^p SUBSET SUM.$

Beweis (Skizze)

Konstruktion: Variablen $\underline{x_1, \ldots, x_n}$, Klauseln $\underline{c_1, \ldots, c_m}$

 $c_1: x_1 \lor x_2 \lor \overline{x_3}$ $c_2: \overline{x_1} \lor x_2 \lor x_3$ $c_3: \overline{x_1} \lor \overline{x_2} \lor \overline{x_3}$

 $3-SAT <_m^p SUBSET SUM.$

Beweis (Skizze)

Konstruktion: Variablen x_1, \ldots, x_n , Klauseln c_1, \ldots, c_m

1. Für jedes x_i bilde zwei Dezimalzahlen $y_i, z_i \in \{0, 1\}^{\underline{n+m}}$ mit: Vordere \underline{n} Ziffern: \underline{i} -te Stelle von y_i und z_i ist 1, alle anderen sind 0. Hintere \underline{m} Ziffern: \underline{j} -te Stelle von $\underline{y_i}$ ist 1 falls $\underline{x_i} \in c_j$, und sonst 0. \underline{j} -te Stelle von $\underline{z_i}$ ist 1 falls $\overline{x_i} \in c_j$, und sonst 0.

 $3-SAT \leq_m^p SUBSET SUM.$

Beweis (Skizze)

Konstruktion: Variablen x_1, \ldots, x_n , Klauseln c_1, \ldots, c_m

j-te Stelle von z_i ist 1 falls $\overline{x_i} \in c_i$, und sonst 0.

1. Für jedes x_i bilde zwei Dezimalzahlen $y_i, z_i \in \{0, 1\}^{n+m}$ mit: Vordere n Ziffern: i-te Stelle von y_i und z_i ist 1, alle anderen sind 0. Hintere m Ziffern: j-te Stelle von y_i ist 1 falls $x_i \in c_i$, und sonst 0.

Q→ J 3-SAT withilfe von Sum -× C⇒ Q € 3-SAT

SUBSET SUM ist NP-vollständig Theorem

 $3-SAT <_m^p SUBSET SUM.$

Beweis (Skizze)

Konstruktion: Variablen x_1, \ldots, x_n , Klauseln c_1, \ldots, c_m

- 1. Für jedes x_i bilde zwei Dezimalzahlen $y_i, z_i \in \{0, 1\}^{n+m}$ mit: Vordere *n* Ziffern: *i*-te Stelle von y_i und z_i ist 1, alle anderen sind 0. Hintere *m* Ziffern: *j*-te Stelle von y_i ist 1 falls $x_i \in c_i$, und sonst 0.
- *j*-te Stelle von z_i ist 1 falls $\overline{x_i} \in c_i$, und sonst 0. 2. Für jede Klausel c_i , bilde zwei **dezimale** "Füllzahlen" g_i , h_i

 $3-SAT <_m^p SUBSET SUM.$

Beweis (Skizze)

Konstruktion: Variablen x_1, \ldots, x_n , Klauseln c_1, \ldots, c_m

- 1. Für jedes x_i bilde zwei Dezimalzahlen $y_i, z_i \in \{0, 1\}^{n+m}$ mit: Vordere n Ziffern: i-te Stelle von y_i und z_i ist 1, alle anderen sind 0. Hintere m Ziffern: j-te Stelle von y_i ist 1 falls $x_i \in c_j$, und sonst 0. j-te Stelle von z_i ist 1 falls $\overline{x_i} \in c_i$, und sonst 0.
- 2. Für jede Klausel c_j , bilde zwei **dezimale** "Füllzahlen" g_j , h_j

Beispiel $C_1: X_1 \vee X_2 \vee \overline{X_3}$ $c_2: \overline{X_1} \vee X_2 \vee X_3$ C_3 : $\overline{X_1} \vee \overline{X_2} \vee \overline{X_3}$

Subset Sum ist NP-vollständig

 $3-SAT \leq_m^p SUBSET SUM.$

Beweis (Skizze)

Konstruktion: Variablen x_1, \ldots, x_n , Klauseln c_1, \ldots, c_m

- 1. Für jedes x_i bilde zwei <u>Dezimal</u>zahlen $y_i, z_i \in \{0, 1\}^{n+m}$ mit: Vordere n Ziffern: i-te Stelle von y_i und z_i ist 1, alle anderen sind 0. Hintere m Ziffern: j-te Stelle von y_i ist 1 falls $x_i \in c_j$, und sonst 0. j-te Stelle von z_i ist 1 falls $\overline{x_i} \in c_i$, und sonst 0.
- 2. Für jede Klausel c_j , bilde zwei **dezimal**e "Füllzahlen" g_j, h_j
- 3. Setze Dezimalzahl $B := \underbrace{1 \dots 1}_{3 \dots 3}$.

```
Beispiel
              C_1: X_1 \vee X_2 \vee \overline{X_3}
              C_2: \overline{X_1} \vee X_2 \vee X_3
              C_3: \overline{X_1} \vee \overline{X_2} \vee \overline{X_3}
                             X3 C_1 C_2
-2Z1:
    y3:
```

Subset Sum ist NP-vollständig

 $3-SAT \leq_m^p SUBSET SUM.$

Beweis (Skizze)

Konstruktion: Variablen x_1, \ldots, x_n , Klauseln c_1, \ldots, c_m

- 1. Für jedes x_i bilde zwei Dezimalzahlen $y_i, z_i \in \{0, 1\}^{n+m}$ mit: Vordere n Ziffern: i-te Stelle von y_i und z_i ist 1, alle anderen sind 0.
- *j*-te Stelle von z_i ist 1 falls $\overline{x_i} \in c_j$, und sonst 0. 2. Für jede Klausel c_i , bilde zwei **dezimale** "Füllzahlen" g_i , h_i

Hintere *m* Ziffern: *j*-te Stelle von y_i ist 1 falls $x_i \in c_i$, und sonst 0.

3. Setze Dezimalzahl $B := \underbrace{1 \dots 1}_{n} \underbrace{3 \dots 3}_{m}$.

Korrektheit " \Rightarrow ": Sei β eine erfüllende Belegung.

$$\sim$$
 Lösung = $\{y_i \mid \beta(x_i) = 1\} \cup \{\underline{z_i} \mid \beta(x_i) = 0\} + \text{geeignete } g_i \& h_i$

Beispiel $C_1: X_1 \vee X_2 \vee \overline{X_3}$ $c_2: \overline{X_1} \vee X_2 \vee X_3$ $C_3: \overline{X_1} \vee \overline{X_2} \vee \overline{X_3}$

SUBSET SUM ist NP-vollständig Theorem

 $3-SAT \leq_m^p SUBSET SUM.$

Beweis (Skizze)

Mathias Weller (TU Berlin)

Konstruktion: Variablen x_1, \ldots, x_n , Klauseln c_1, \ldots, c_m

- 1. Für jedes x_i bilde zwei Dezimalzahlen $y_i, z_i \in \{0, 1\}^{n+m}$ mit:
 - Vordere *n* Ziffern: *i*-te Stelle von y_i und z_i ist 1, alle anderen sind 0. Hintere *m* Ziffern: *j*-te Stelle von y_i ist 1 falls $x_i \in c_i$, und sonst 0.
- *j*-te Stelle von z_i ist 1 falls $\overline{x_i} \in c_i$, und sonst 0. 2. Für jede Klausel c_i, bilde zwei **dezimale** "Füllzahlen" g_i, h_i
- 3. Setze Dezimalzahl $B := 1 \dots 13 \dots 3$.

Korrektheit " \Rightarrow ": Sei β eine erfüllende Belegung.

$$\sim$$
 Lösung = { $y_i \mid \beta(x_i) = 1$ } ∪ { $z_i \mid \beta(x_i) = 0$ } + geeignete $g_i \& h_i$,, \Leftarrow ": Sei X eine Menge von Zahlen mit $\sum_{u \in X} u = B$. erste n Ziffern $\sim y_i \in X \Leftrightarrow z_i \notin X$

Berechenbarkeit und Komplexität

Die Belegung β mit $\beta(x_i) = 1$ falls $y_i \in X$, und $\beta(x_i) = 0$ sonst, ist erfüllend.

NP-Vollständigkeit

$$c_1: x_1 \lor x_2 \lor \overline{x_3}$$

 $c_2: \overline{x_1} \lor x_2 \lor x_3$

Beispiel

 $C_3: \overline{X_1} \vee \overline{X_2} \vee \overline{X_3}$

$$egin{pmatrix} -0 & 0 \\ 0 & 1 \\ 1 & 0 \\ \end{pmatrix}$$

Netzwerk polynomieller Reduktionen III

