Prof. Amador Martin-Pizarro Übungen: Michael Lösch

Logik für Studierende der Informatik

Blatt 5

Abgabe: 27.11.2018 14 Uhr Gruppennummer angeben!

Aufgabe 1 (4 Punkte).

Zeige, dass die folgenden \mathcal{L} -Formeln allgemeingültig sind.

- (a) $(\exists x (\varphi \land \psi) \to (\exists x \varphi \land \psi))$, falls x nicht frei in ψ vorkommt.
- (b) $(\exists x \forall y \varphi[x, y] \to \forall y \exists x \varphi[x, y]).$

Aufgabe 2 (6 Punkte).

Leite die folgenden \mathcal{L} -Formeln aus dem Hilbertkalkül (für \mathcal{L}) ab.

- (a) $(\exists x (\varphi \land \psi) \to (\exists x \varphi \land \psi))$, falls x nicht frei in ψ vorkommt.
- (b) $(\exists x \forall y (f(y) \doteq x) \rightarrow \forall y \forall z (f(y) \doteq f(z)))$, wobei \mathcal{L} das einstellige Funktionszeichen f enthält.

Aufgabe 3 (4 Punkte).

In der Sprache \mathcal{L} sei T eine Theorie und χ , θ_1 , θ_2 Aussagen derart, dass $(\theta_1 \to \theta_2)$ aus $T \cup \{\chi\}$ folgt. Zeige, dass

$$T \cup \{ \neg \theta_2 \} \models (\chi \rightarrow \neg \theta_1).$$

Aufgabe 4 (6 Punkte).

Wir arbeiten in der Sprache \mathcal{L} , welche aus einem zweistelligen Relationszeichen < besteht. Sei \mathcal{R} die \mathcal{L} -Struktur (\mathbb{R} , <). Mit $\mathcal{L}(\mathbb{R})$ bezeichnen wir die Sprache $\mathcal{L} \cup \{d_r\}_{r \in \mathbb{R}}$, wobei $\{d_r\}_{r \in \mathbb{R}}$ eine Menge neuer paarweise verschiedener Konstantenzeichen ist. Beachte, dass \mathcal{R} in natürlicher Weise als $\mathcal{L}(\mathbb{R})$ -Struktur gesehen werden kann.

- (a) Gegeben eine Einbettung F von \mathcal{R} in die \mathcal{L} -Struktur \mathcal{M} , zeige, dass $F(\mathbb{R})$ die Grundmenge einer Unterstruktur $F(\mathcal{R})$ von \mathcal{M} ist. Ferner ist $F(\mathcal{R})$ isomorph zu \mathcal{R} .
- (b) Sei $\operatorname{Diag}^{at}(\mathcal{R})$ die Menge aller quantorenfreien $\mathcal{L}(\mathbb{R})$ -Aussagen, welche in \mathcal{R} gelten. Zeige, dass eine $\mathcal{L}(\mathbb{R})$ -Struktur \mathcal{N} genau dann ein Modell von $\operatorname{Diag}^{at}(\mathcal{R})$ ist, wenn die Abbildung

$$F: \mathbb{R} \to N$$

$$r \mapsto d_r^{\mathcal{N}}$$

eine Einbettung liefert.

(c) Sei nun Diag(\mathcal{R}) die Menge aller $\mathcal{L}(\mathbb{R})$ -Aussagen, welche in \mathcal{R} gelten. Zeige, dass eine $\mathcal{L}(\mathbb{R})$ Struktur \mathcal{N} genau dann ein Modell von Diag(\mathcal{R}) ist, wenn für die obige Abbildung $F: \mathbb{R} \to N$ gegeben durch $r \mapsto d_r^{\mathcal{N}}$ gilt, dass $F(\mathcal{R})$ eine elementare Unterstruktur von \mathcal{N} ist (siehe Blatt 4, Aufgabe 3). Insbesondere ist F eine elementare Abbildung (siehe Skript).

DIE ÜBUNGSBLÄTTER MÜSSEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IN DEN (MIT DEN NUMMERN DER ÜBUNGSGRUPPEN GEKENNZEICHNETEN) FÄCHERN IM EG DES GEBÄUDES 51.