EE4415: Integrated Circuits Design

IEEE Fellow
Editor-in-Chief, IEEE Transactions on Circuits & Systems II
Dept. of ECE, NUS

Provost's Chair Professor Yong LIAN

Office: E4-05-38 Phone: 65162993

Course Websites & Ref. Books

- http://ivle.nus.edu.sg
- Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic, "Digital Integrated Circuits", 2E, Prentice-Hall.
- Sung-Mo Kang, and Yusuf Leblebici, "CMOS Digital Integrated Circuits: Analysis and Design", 3E, McGraw Hill.
- Himanshu Bhatnagar, "Advanced ASIC Chip Synthesis Using Synopsys Design Compiler, Physical Compiler, and PrimeTime", Kluwer Academic Publishers, 2002.
- Stephen Brown Zvonko Vranesic, "Fundamentals of Digital Logic with Verilog Design", McGraw Hill.

Topics Covered

The first part covers the digital IC design including:

- Introduction to IC design
- ASIC Design Methodology
- Synthesis Basics using Synopsys
- Design exercises = 30% CA

What Is IC Design?

IC design is a process of the transformation of an idea into a manufacturable device that carries out an intended function.

Introduction to Digital IC Design

- Why is designing digital ICs different today than it was before?
- Will it change in future?

The First Computer

The Babbage Difference Engine (1832)

25,000 parts cost: ? 7,470

ENIAC : The first electronic computer (1946)

The Transistor Revolution

First transistor Bell Labs, 1948

The First Integrated Circuits

Bipolar logic 1960's

ECL 3-input Gate Motorola 1966

Intel 4004 Micro-Processor

1971 1000 transistors 1 MHz operation

Intel Pentium (IV) microprocessor

The Trend in IC Design

- System integration : moving from board to chip → System-on-Chip (SoC)
- What is SoC ?

The Challenges

The algorithmic driving force → design complexity

Moore's Law

- In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months.
- He made a prediction that semiconductor technology will double its effectiveness every 18 months

Moore's Law Year of introduction **Transistors** 4004 1971 2,250 8008 1972 2,500 8080 1974 5,000 8086 1978 29,000 286 1982 120,000 386™ 1985 275,000 486™ DX 1989 1,180,000 **Pentium®** 1993 3,100,000 Pentium II 1997 7,500,000 Pentium III 1999 24,000,000 Pentium 4 2000 42,000,000

Technology Scaling

- Technology shrinks by ~0.7 per generation
- With every generation can integrate 2x more functions on a chip; chip cost does not increase significantly
- Cost of a function decreases by 2x
- But ...
 - How to design chips with more and more functions?
 - Design engineering population does not double every two years...
- Hence, a need for more efficient design methods
 - Exploit different levels of abstraction

Considerations in IC Design

- Chip size (cost)
- Operation speed (value)
- Power consumption (energy efficiency)
- Manufacturability
- Testability
- Reliability
- Time-to-market
- Constrains in design