Sucesiones

Definición. Una sucesión de números reales es una función con dominio igual a \mathbb{N} y conjunto de llegada igual a \mathbb{R} .

Ejemplo. $a: \mathbb{N} \to \mathbb{R}$, $a(n) = \frac{3n+4}{n}$. Tenemos

$$a(1) = \frac{3+4}{1} = 7, \quad a(2) = \frac{3\cdot 2+4}{2} = 5, \quad a(3) = \frac{3\cdot 3+4}{3} = \frac{13}{3}, \dots,$$

 $a(1000) = \frac{3\cdot 1000+4}{1000} = \frac{3004}{1000}, \dots$

Usualmente se escribe a_n en vez de a(n).

Límite de sucesiones

Motivación informal: Tendremos por ejemplo que

$$\lim_{n \to \infty} \frac{3n+4}{n} = 3,$$

pues si evaluamos $\frac{3n+4}{n}$ en números n's muy grandes, el resultado se parece mucho a 3.

También se cumplirá que si $a_n = (-1)^{n+1}$, entonces

$$\lim_{n\to\infty} a_n \text{ no existe},$$

pues los valores $a_1=1, a_2=-1, a_3=1, a_4=-1, a_5=1, \ldots$ saltan de 1 a -1, y no se van pareciendo a ningún número fijo en particular para n's grandes.

Definición. Sea $\{a_n\}$ una sucesión de números reales. Se dice que

$$\lim_{n \to \infty} a_n = \ell$$

(y se lee "el límite para n que tiende a infinito de a_n es igual a ℓ ") si

$$\forall \varepsilon > 0 \ \exists N \ \text{tal que} \ (n > N \Rightarrow |a_n - \ell| < \varepsilon).$$
 (1)

Dado un número $N \in \mathbb{R}$, la cola de la sucesión a_n a partir de N es $\{a_n \mid n > N\}$. Por ejemplo, la cola a partir de N = 1000 es $\{a_{1001}, a_{1002}, a_{1003}, \dots\}$.

Ahora presentamos (1) con más palabras:

Para todo número positivo ε (por más pequeño que sea) debemos encontrar un número N (suficientemente grande, que depende del número ε dado) tal que todos los elementos de la cola a partir de N estén a distancia de ℓ menor que el número ε dado.

Notar que, dado $\varepsilon>0$, si N hace cumplir la implicación en (1), entonces todo número N'>N también.

Ejemplo gráfico. A partir de N, los puntos del gráfico de la sucesión están en la franja horizontal de ancho 2ε centrada en ℓ .

Ejemplo. Verificar que

$$\lim_{n \to \infty} \frac{3n+4}{n} = 3.$$

Dado $\varepsilon > 0$, debemos encontrar N tal que

$$n > N \Rightarrow \left| \frac{3n+4}{n} - 3 \right| < \varepsilon.$$

Planteamos

$$\left|\frac{3n+4}{n}-3\right|=\left|\frac{3n+4-3n}{n}\right|=\left|\frac{4}{n}\right|=\frac{4}{n}<\varepsilon.$$

Despejando, obtenemos que la desigualdad vale para $n > \frac{4}{\varepsilon}$. Así, podemos tomar $N = \frac{4}{\varepsilon}$. Por ejemplo, para $\varepsilon = 10^{-4}$, se puede tomar $N = \frac{4}{10^{-4}} = 4 \cdot 10^4 = 40000$.

Ejemplo. Verificar que

$$\lim_{n \to \infty} \sqrt{n+1} - \sqrt{n} = 0.$$

Dado $\varepsilon > 0$, buscamos N tal que

$$n > N \Longrightarrow \left| \sqrt{n+1} - \sqrt{n} - 0 \right| < \varepsilon.$$

Planteamos

$$\left| \sqrt{n+1} - \sqrt{n} - 0 \right| = \sqrt{n+1} - \sqrt{n} = \left(\sqrt{n+1} - \sqrt{n} \right) \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}}$$

$$= \frac{\left(\sqrt{n+1} \right)^2 - \left(\sqrt{n} \right)^2}{\sqrt{n+1} + \sqrt{n}} = \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}}$$

$$= \frac{1}{\sqrt{n+1} + \sqrt{n}} \le \frac{1}{\sqrt{n}} < \varepsilon.$$

 $(\geq abajo de \leq recuerda que mayorar una fracción conlleva minorar el denominador).$

Ahora bien,

$$\frac{1}{\sqrt{n}} < \varepsilon \quad \text{sii} \quad n > \frac{1}{\varepsilon^2}.$$

Luego podemos tomar $N = 1/\varepsilon^2$.

Por ejemplo, para $\varepsilon = \frac{1}{1000}$, si

$$n > N = \frac{1}{\left(\frac{1}{1000}\right)^2} = 1000000$$

se tiene que $\left|\sqrt{n+1} - \sqrt{n} - 0\right| < \frac{1}{1000}$.

Ejercicio. Mostrar que

$$\lim_{n \to \infty} \frac{1}{n} = 0 \qquad \text{y} \qquad \lim_{n \to \infty} c = c$$

para toda sucesión constante c (es decir, la sucesión tal que $a_n = c$ para todo n).

Nota. Los problemas 1 y 2 de la guía se resuelven de manera similar a los ejemplos anteriores.

Para calcular límites muchas veces no se recurre a la definición, sino más bien a las reglas de cálculo de límites, que enunciamos a continuación y demostramos más adelante.

Proposición. Sea $c \in \mathbb{R}$. Si

$$\lim_{n \to \infty} a_n = \ell \qquad \text{y} \qquad \lim_{n \to \infty} b_n = m,$$

entonces

a)
$$\lim_{n\to\infty} ca_n = c\ell$$
, b) $\lim_{n\to\infty} a_n + b_n = \ell + m$,

c)
$$\lim_{n\to\infty} a_n b_n = \ell m$$
, d) $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\ell}{m}$ (si $m \neq 0$).

Ejemplo. Calcular

$$\lim_{n \to \infty} \frac{3n^2 - 5n + 2}{7n^2 - 1}.$$

No se puede aplicar (d) directamente, pues los límites del numerador y del denominador no existen.

$$\lim_{n\to\infty}\frac{3n^2-5n+2}{7n^2-1}=\lim_{n\to\infty}\frac{\frac{3n^2-5n+2}{n^2}}{\frac{7n^2-1}{n^2}}=\lim_{n\to\infty}\frac{3-\frac{5}{n}+\frac{2}{n^2}}{7-\frac{1}{n^2}}.$$

Ahora, como lím $_{n\to\infty}\frac{1}{n}=0$ y lím $_{n\to\infty}3=3$, por (a), (b) y (c) tenemos que

$$\lim_{n \to \infty} 3 - \frac{5}{n} + \frac{2}{n^2} = 3.$$

Análogamente, para el denominador,

$$\lim_{n\to\infty} 7 - \frac{1}{n^2} = 7 \neq 0.$$

Luego, por (d), el límite buscado es igual a $\frac{3}{7}$.

Nota. El problema 3 de la guía se resuelve de manera similar al ejemplo anterior.

Proposición. Si la sucesión a_n tiene límite, entonces ese límite es único. es decir, si

$$\lim_{n \to \infty} a_n = \ell_1 \qquad \text{y} \qquad \lim_{n \to \infty} a_n = \ell_2,$$

entonces $\ell_1 = \ell_2$.

Prueba. Supongamos que $\ell_1 < \ell_2$ (si $\ell_2 < \ell_1$, el argumento es similar). Sabemos

$$\forall \varepsilon_1 > 0 \; \exists \; N_1 \; \text{tal que} \; (n > N_1 \Rightarrow |a_n - \ell_1| < \varepsilon_1).$$

 $\forall \varepsilon_2 > 0 \; \exists \; N_2 \; \text{tal que} \; (n > N_2 \Rightarrow |a_n - \ell_2| < \varepsilon_2).$

Tomamos

$$\varepsilon_1 = \varepsilon_2 = \frac{\ell_2 - \ell_1}{2}.$$

Para $n > N_2$ tenemos que

$$|a_n - \ell_2| < \varepsilon_2 = \frac{\ell_2 - \ell_1}{2},$$

y también, para $n > N_1$,

$$|a_n - \ell_1| < \varepsilon_1 = \frac{\ell_2 - \ell_1}{2}.$$

Recordemos que $|y| < \varepsilon$ si y solo si $-\varepsilon < y < \varepsilon$. Luego, si $n > N_1$ y $n > N_2$ (o sea, si $n > \max\{N_1, N_2\}$, se cumple que

$$a_n - \ell_2 > -\frac{\ell_2 - \ell_1}{2}$$
 y $a_n - \ell_1 < \frac{\ell_2 - \ell_1}{2}$.

Equivalentemente,

$$a_n > \ell_2 - \frac{\ell_2 - \ell_1}{2} = \frac{2\ell_2 - \ell_2 + \ell_1}{2} = \frac{\ell_2 + \ell_1}{2},$$

$$y \quad a_n < \ell_1 + \frac{\ell_2 - \ell_1}{2} = \frac{2\ell_1 + \ell_2 - \ell_1}{2} = \frac{\ell_2 + \ell_1}{2},$$

absurdo que provino de suponer que $\ell_1 \neq \ell_2$. Entonces $\ell_1 = \ell_2$.

Teorema. El límite de la suma es la suma de los límites. Más precisamente, si

$$\lim_{n \to \infty} a_n = \ell \qquad \text{y} \qquad \lim_{n \to \infty} b_n = m,$$

entonces

$$\lim_{n \to \infty} a_n + b_n = \ell + m.$$

Prueba. Sabemos que

$$\forall \varepsilon_1 > 0 \exists N_1 \text{ tal que } (n > N_1 \Rightarrow |a_n - \ell| < \varepsilon_1).$$

 $\forall \varepsilon_2 > 0 \exists N_2 \text{ tal que } (n > N_2 \Rightarrow |a_n - m| < \varepsilon_2).$

Queremos que ver que

$$\forall \varepsilon > 0 \ \exists \ N \ \text{tal que} \ (n > N \Rightarrow |a_n + b_n - (\ell + m)| < \varepsilon)$$
.

O sea, dado $\varepsilon > 0$, buscamos N que haga cumplir esa implicación. Planteamos

$$|a_n + b_n - (\ell + m)| = |a_n + b_n - \ell - m| = |a_n - \ell + b_n - m|$$

 $< |a_n - \ell| + |b_n - m| < \varepsilon_1 + \varepsilon_2$

La última desigualdad se cumpla si $n > N_1$ y $n > N_2$ (o sea, si $n > \max\{N_1, N_2\}$). Luego, tomando

$$\varepsilon_1 = \varepsilon_2 = \frac{\varepsilon}{2}$$
 y $N = \max\{N_1, N_2\}$

resulta que si n > N, entonces

$$|a_n + b_n - (\ell + m)| < \varepsilon,$$

como queríamos.

Proposición. Si $\lim_{n\to\infty} a_n$ existe, entonces la imagen de la sucesión, o sea, $\{a_n \mid n \in \mathbb{N}\}$, es un subconjunto acotado de \mathbb{R} . Es decir, existe C tal que $|a_n| \leq C$ para todo n.

Prueba. Llamamos $\ell = \lim_{n \to \infty} a_n$. Sabemos que

$$\forall \varepsilon > 0 \ \exists \ N = N(\varepsilon) \ \text{tal que} \ (n > N \Rightarrow |a_n - \ell| < \varepsilon).$$

Para todo $\varepsilon > 0$ es posible encontrar N que hace cumplir la implicación, en particular para $\varepsilon = 1$. Luego, para n > N (1) tenemos

$$|a_n - \ell| < 1,$$

o equivalentemente,

$$-1 < a_n - \ell < 1.$$

Sumando ℓ miembro a miembro, resulta

$$\ell - 1 < a_n < \ell + 1$$
.

O sea, logramos acotar a_n para n > N(1). Solo queda una cantidad finita de valores de la sucesión a considerar: $a_1, a_2, a_3, \ldots, a_{N(1)}$. Veamos que

$$C = \max\{|a_1|, |a_2|, |a_3|, \dots, |a_{N(1)}|, |\ell - 1|, |\ell + 1|\}$$

satisface lo que necesitamos:

Si $n \leq N(1)$, claramente $|a_n| \leq C$.

Si
$$n > N(1)$$
, con paciencia se ve que $|a_n| \le \max\{|\ell - 1|, |\ell + 1|\} \le C$ (no lo hacemos). \square

Teorema. El límite del producto es el producto de los límites. Más precisamente, si

$$\lim_{n \to \infty} a_n = \ell \qquad \text{y} \qquad \lim_{n \to \infty} b_n = m,$$

entonces

$$\lim_{n \to \infty} a_n b_n = \ell m.$$

Prueba. Sabemos que

$$\forall \varepsilon_1 > 0 \ \exists \ N_1 \text{ tal que } (n > N_1 \Rightarrow |a_n - \ell_1| < \varepsilon_1).$$
 (2)

$$\forall \varepsilon_2 > 0 \ \exists \ N_2 \text{ tal que } (n > N_2 \Rightarrow |a_n - \ell_2| < \varepsilon_2).$$
 (3)

Queremos que ver que

$$\forall \varepsilon > 0 \ \exists \ N \ \text{tal que} \ (n > N \Rightarrow |a_n b_n - \ell m| < \varepsilon).$$

O sea, dado $\varepsilon > 0$, buscamos N que haga cumplir esa implicación. Debemos encontrar una expresión equivalente a $a_n b_n - \ell m$, que involucre las expresiones $a_n - \ell_1$ y $a_n - \ell_2$ de las hipótesis, para poder usarlas. Planteamos

$$|a_n b_n - \ell m| = |a_n b_n - \ell b_n + \ell b_n - \ell m| = |(a_n - \ell) b_n + \ell (b_n - m)|$$

$$\leq |a_n - \ell| |b_n| + |\ell| |b_n - m| \leq |a_n - \ell| C + |\ell| |b_n - m|$$

con C > 0 (en la última desigualdad hemos usado la proposición anterior: Como b_n tiene límite, entonces está acotada).

Luego, por (2) y (3), si $n > N_1$ y $n > N_2$ se cumple que

$$|a_n b_n - \ell m| < C\varepsilon_1 + |\ell| \varepsilon_2$$

La última desigualdad vale si $n > N_1$ y $n > N_2$ (o sea, si $n > \max\{N_1, N_2\}$).

Del ε que nos dieron, destinamos la mitad al primer sumando de $C\varepsilon_1 + |\ell| \varepsilon_2$ y la mitad al segundo. Así,

$$C\varepsilon_1 = \frac{\varepsilon}{2}$$
 y $|\ell| \, \varepsilon_2 = \frac{\varepsilon}{2}$.

Luego, tomando

$$\varepsilon_1 = \frac{\varepsilon}{2C}, \quad \varepsilon_2 = \frac{\varepsilon}{2|\ell|} \quad \text{y} \quad N = \max\{N_1, N_2\}$$

resulta que si n > N, entonces

$$|a_n b_n - \ell m| < C \frac{\varepsilon}{2C} + |\ell| \frac{\varepsilon}{2|\ell|} = \varepsilon,$$

como queríamos.

Corolario. Sea $c \in \mathbb{R}$. Si $\lim_{n \to \infty} a_n = \ell$, entonces $\lim_{n \to \infty} ca_n = c\ell$.

Prueba. Es inmediata del teorema anterior, recurriendo a una sucesión constante igual a c.

No demostramos que el límite del cociente es el cociente de los límites, siempre que el denominador no se anule.

Lema del sandwich (o de las sucesiones encajadas). Si $a_n \leq b_n \leq c_n$ para todo n y

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = \ell,$$

entonces $\lim_{n\to\infty} b_n = l$.

Ejemplo. Veamos que

$$\lim_{n \to \infty} \frac{10^n}{n!} = 0.$$

Comentario. Se dice que n! tiende a ∞ más rápido que 10^n .

Prueba. Sea n_o un número natural mayor que a y tomamos $n > n_o$. Escribimos

$$0 \le \frac{10^n}{n!} = \frac{10 \cdot 10 \cdot 10 \cdot \dots \cdot 10}{1 \cdot 2 \cdot 3 \cdot \dots \cdot 10} \cdot \frac{10}{11} \cdot \dots \cdot \frac{10}{n-1} \cdot \frac{10}{n} \le C.1 \frac{10}{n}$$

(hemos llamado C al primer factor, igual a $10^{10}/10!$). La segunda desigualdad se deduce de que los demás factores son menores que 1.

Entonces

$$0 \le \frac{10^n}{n!} \le C\frac{1}{n}.$$

Como $\lim_{n\to\infty} 0 = \lim_{n\to\infty} \frac{C}{n} = 0$, por el lema del sandwich, $\lim_{n\to\infty} \frac{10^n}{n!} = 0$.

Nota. El problema 4 de la guía se resuelve de manera similar al ejemplo anterior.

Prueba del lema. Sabemos que

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = \ell,$$

o sea,

$$\forall \varepsilon_1 > 0 \; \exists \; N_1 \text{ tal que } (n > N_1 \Rightarrow |a_n - \ell| < \varepsilon_1).$$
 (4)

$$\forall \varepsilon_2 > 0 \ \exists \ N_2 \text{ tal que } (n > N_2 \Rightarrow |c_n - \ell| < \varepsilon_2).$$
 (5)

Dado $\varepsilon > 0$, buscamos $N = N(\varepsilon)$ tal que

$$n > N \Rightarrow |b_n - \ell| < \varepsilon$$
.

Pero

$$|a_n - \ell| < \varepsilon_1$$
 si y solo si $\varepsilon_1 < a_n - \ell < \varepsilon_1$,
 $|c_n - \ell| < \varepsilon_2$ si y solo si $\varepsilon_2 < c_n - \ell < \varepsilon_2$.

Por hipótesis, $a_n \leq b_n \leq c_n$. Restamos miembro a miembro ℓ y usamos (4) y (5), obteniendo

$$-\varepsilon_1 < a_n - \ell \le b_n - \ell \le c_n - \ell < \varepsilon_2. \tag{6}$$

Podemos tomar $\varepsilon_1 = \varepsilon_2 = \varepsilon$ y $N = \max\{N_1, N_2\}$. En efecto, si n > N, entonces $n > N_1$ y $n > N_2$. Luego valen la primera designaldad y la última designaldad en (6), y en particular,

$$\varepsilon = \varepsilon_1 < b_n - \ell < \varepsilon_2 = \varepsilon,$$

o equivalentemente,

$$|b_n - \ell| < \varepsilon$$
,

como queríamos.

Definición. Se dice que una sucesión a_n tiende a infinito, y se denota

$$\lim_{n\to\infty} a_n = \infty,$$

 \sin

$$\forall M > 0 \; \exists N \; \text{tal que} \; (n > N \Longrightarrow a_n > M).$$

En otras palabras, si para todo número M (por más grande que sea) es posible encontrar un número N (que depende del M dado) tal que todos los elementos de la cola de la sucesión a partir de N son mayores que M.

Ejemplo. Verificar que $\lim_{n\to\infty} \sqrt{n} = \infty$.

Dado M > 0, buscamos N = N(M) tal que

$$n > N \Longrightarrow \sqrt{n} > M$$
.

Despejando n, vemos que podemos tomar $N=M^2$. En efecto, si $n>N=M^2$, tomando raíz cuadrada miembro a miembro, y usando que $0 < x < y \Longrightarrow \sqrt{x} < \sqrt{y}$ (conocemos la implicación equivalente $a,b>0,\ a^2 < b^2 \Longrightarrow a < b$) llegamos a que $\sqrt{n} > M$, como queríamos.

Ejemplo. Es trivial mostrar que $\lim_{n\to\infty} n = \infty$ (dado M > 0, se puede tomar N = M).

Ejemplo. Verificar por definición que

$$\lim_{n \to \infty} \frac{n^3 + n}{3n + 1} = \infty.$$

Dado M > 0, buscamos N = N(M) tal que

$$n > N \Longrightarrow \frac{n^3 + n}{3n + 1} > M.$$

Planteamos

$$\frac{n^3 + n}{3n + 1} \ge \frac{n^3}{3n + n} = \frac{n^3}{4n} = \frac{n^2}{4} > M.$$

Despejando n, observamos que podemos tomar $N = \sqrt{4M} = 2\sqrt{M}$.

Por ejemplo, si $M=10^4$, para n>200 tendremos

$$\frac{n^3 + n}{3n + 1} > 10^4.$$

Nota. El problema 5 de la guía se resuelve de manera similar a los ejemplos anteriores.

Ejercicio. ¿Cómo se definiría lím $_{n\to\infty} a_n = -\infty$?

De la misma manera que en el caso de un límite finito ℓ , para mostrar que el límite es ∞ muchas veces no se recurre a la definición, sino más bien a las reglas de cálculo, que enunciamos a continuación y demostramos más adelante.

Proposición. Si

$$\lim_{n \to \infty} a_n = \infty, \quad \lim_{n \to \infty} b_n = \infty \quad \text{y} \quad \lim_{n \to \infty} c_n = \ell \neq 0,$$

entonces

- $\begin{array}{ll} \text{a) } \lim_{n\to\infty}a_n+b_n=\infty, & \text{b) } \lim_{n\to\infty}a_nb_n=\infty, \\ \text{c) } \lim_{n\to\infty}a_n+c_n=\infty, & \text{d) } \lim_{n\to\infty}\frac{1}{a_n}=0, \\ \text{e) } \lim_{n\to\infty}a_nc_n=\infty, & \text{si } \ell>0 & \text{f) } \lim_{n\to\infty}a_nc_n=-\infty, & \text{si } \ell<0. \end{array}$

Ejemplo. Verificar que

$$\lim_{n \to \infty} 5n^3 + \pi n^2 + \frac{n^3 + 1}{2n^3 + 5} = \infty.$$

Como $\lim_{n\to\infty} n = \infty$, aplicando (b) varias veces resulta que

$$\lim_{n \to \infty} 5n^3 = \infty \qquad \text{y} \qquad \lim_{n \to \infty} \pi n^2 = \infty.$$

También,

$$\lim_{n \to \infty} \frac{n^3 + 1}{2n^3 + 5} = \lim_{n \to \infty} \frac{\frac{n^3 + 1}{n^3}}{\frac{2n^3 + 5}{n^3}} = \lim_{n \to \infty} \frac{1 + \frac{1}{n^3}}{2 + \frac{5}{n^3}} = \frac{1 + 0}{2 + 0} = \frac{1}{2}.$$

Entonces, por (a) y (c), el límite buscado es ∞ .

Nota. El problema 6 de la guía se resuelve de manera similar al ejemplo anterior.

Prueba de la proposición. Demostramos solo (b). Sabemos que

$$\forall M_1 > 0 \exists N_1 \text{ tal que } (n > N_1 \Longrightarrow a_n > M_1),$$

 $\forall M_2 > 0 \exists N_2 \text{ tal que } (n > N_2 \Longrightarrow b_n > M_2).$

Debemos mostrar que

$$\forall M > 0 \; \exists N \; \text{tal que} \; (n > N \Longrightarrow a_n b_n > M)$$
.

Sea M > 0. Planteamos

$$a_n b_n > M_1 M_2 = M$$
.

Luego podemos tomar $M_1 = M_2 = \sqrt{M}$. Si $n > N_1\left(\sqrt{M}\right)$ y $n > N_2\left(\sqrt{M}\right)$, entonces

$$a_n b_n > \sqrt{M} \sqrt{M} = M.$$

Así
$$N = \max \left\{ N_1 \left(\sqrt{M} \right), N_2 \left(\sqrt{M} \right) \right\}.$$

Situaciones indeterminadas

Si

$$\lim_{n \to \infty} a_n = \infty \qquad \text{y} \qquad \lim_{n \to \infty} a_n = \infty,$$

 $\lim_{n\to\infty}a_n=\infty \qquad \text{y} \qquad \lim_{n\to\infty}a_n=\infty,$ y queremos hallar lím $_{n\to\infty}\frac{a_n}{b_n}$, decimos que estamos en una situación indeterminada $\frac{\infty}{\infty}$. Significa que hay que seguir trabajando para calcular el límite.

Ahora mostramos tres ejemplos de la situación $\frac{\infty}{\infty}$ con resultados diferentes:

$$\lim_{n\to\infty}\frac{n}{n^2}=\lim_{n\to\infty}\frac{1}{n}=0,\qquad \lim_{n\to\infty}\frac{n^2}{n}=\lim_{n\to\infty}n=\infty,\qquad \lim_{n\to\infty}\frac{n}{n}=\lim_{n\to\infty}1=1.$$

Otra situción indeterminada es $0 \cdot \infty$:

$$\lim_{n \to \infty} \frac{1}{n^2} n^3 = \lim_{n \to \infty} n = \infty, \qquad \lim_{n \to \infty} \frac{5}{n^3} n^3 = \lim_{n \to \infty} 5 = 5.$$

Teorema. Toda sucesión creciente acotada superiormente tiene límite. Más precisamente, si a_n es una sucesión que cumple

- 1) $a_n \leq a_{n+1}$ para todo n,
- 2) $a_n \leq M$ para todo n y cierto M.

Entonces $\lim_{n\to\infty} a_n$ existe y es igual a

$$\sup \{a_n \mid n \in \mathbb{N}\}\$$

Prueba. Notemos que el supremo existe por (2), lo llamamos ℓ . Debemos mostrar que

$$\forall \varepsilon > 0 \ \exists \ N = N(\varepsilon) \ \text{tal que} \ (n > N \Rightarrow |a_n - \ell| < \varepsilon),$$

es decir, dado $\varepsilon > 0$, buscamos N que haga cumplir la implicación.

Como ℓ es el supremo de $\{a_n \mid n \in \mathbb{N}\}$, entonces existe un elemento de ese conjunto, o sea a_{n_o} para cierto n_o , tal que

$$\ell - \varepsilon < a_{n_o} \le \ell. \tag{7}$$

Como la sucesión es creciente, si $n > n_o$, tenemos que

$$a_{n_o} < a_n \le \ell. \tag{8}$$

Restando ℓ miembro a miembro en (7) y (8), por transitividad resulta

$$-\varepsilon < a_{n_o} - \ell < a_n - \ell \le 0 < \varepsilon,$$

o sea, $|a_n - \ell| < \varepsilon$ si $n > n_o$. Luego, podemos tomar $N = n_o$.

Nota. Aprovechamos para repasar la definición de supremo y observamos el signo \leq en (7).

Ejemplo (sucesiones definidas de manera recursiva). Estudiamos la convergencia de la sucesión

$$\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \sqrt{2\sqrt{2\sqrt{2}\sqrt{2}}}, \dots$$
 (9)

Formalmente, sea $\{a_n\}$ la sucesión definida inductivamente mediante

$$a_1 = 1, \qquad a_{n+1} = \sqrt{2a_n}.$$
 (10)

a) Encontrar $a_2, a_3, a_4 y a_5$.

Son los números en (9).

b) Mostrar que si lím $_{n\to\infty}\,a_n$ existe y entonces debe valer 0 o 2.

Lo llamamos ℓ . La segunda expresión de (10) se puede escribir como $a_n = \frac{1}{2}a_{n+1}^2$. Tomando límite miembro a miembro, tenemos

$$\ell = \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{2} a_{n+1}^2 = \frac{1}{2} \ell^2.$$

Luego $\ell^2 = 2\ell$, o equivalentemente, $\ell(\ell - 2) = 0$, con lo cual $\ell = 0$ o $\ell = 2$.

Notar que hemos probado que **si el límite existe**, entonces vale 0 o 2. No sabemos todavía si existe.

c) Mostrar que el límite existe y vale 2, verificando que la sucesión es monotóna creciente. Para ello ver que si 0 < a < 2 entonces

$$a < \sqrt{2a} < 2. \tag{11}$$

Multiplicamos miembro a miembro 0 < a < 2 por a y por 2, obteniendo

$$0 < a^2 < 2a < 4.$$

Tomando raíz cuadrada miembro a miembro (ya vimos que la desigualdad se preserva), llegamos a la expresión deseada.

Veamos ahora que a_n es creciente. Como $a_1 = 1$ está entre 0 y 2, por inducción, usando (11), es fácil ver que $0 < a_n < 2$ para todo n. Luego, de nuevo por (11), $a_{n+1} = \sqrt{2a_n} > a_n$. Así, la sucesión es monótona creciente. Como está acotada superiormente por 2, tiene límite (que no puede ser cero) por la proposición anterior.

d) ¿Qué sucede si se pone $a_1 = 3$?

Nota. Los problemas 7 y 8 de la guía se resuelven de manera similar al ejemplo anterior.

Subsucesiones

Sea a_n una sucesión. De manera informal, una subsucesión b_j de a_n es una nueva sucesión que se forma tomando algunos términos de a_n , posiblemente salteando algunos, pero nunca volviendo atrás.

Definición. Sea $a:\mathbb{N}\to\mathbb{R}$ una sucesión. Una subsucesión $b:\mathbb{N}\to\mathbb{R}$ de a es una sucesión de la forma

$$b = a \circ n : \mathbb{N} \to \mathbb{R},$$

donde $n: \mathbb{N} \to \mathbb{N}$ es estrictamente creciente:

$$\begin{array}{ccc}
\mathbb{N} & \xrightarrow{a} & \mathbb{R} \\
\uparrow n & \nearrow b \\
\mathbb{N} & \end{array}$$

Aquí, b(j) = a(n(j)) para todo $j \in \mathbb{N}$. Escrito de la otra manera, $b_j = a_{n(j)}$.

Ejemplo. Si a_n es una sucesión, entonces $b_j = a_{2j}$ es una subsucesión de a_n , con n(j) = 2j, o sea,

$$b_1 = a_2, b_2 = a_4, b_3 = a_6, \dots$$

Se verifica que si una sucesión converge a ℓ , entonces toda subsucesión converge a ℓ también. O sea,

$$\lim_{n \to \infty} a_n = \ell \qquad \Longrightarrow \qquad \lim_{j \to \infty} a_{n_j} = \ell.$$

A continuación, lo enunciamos de forma más precisa:

Proposición. Si $\lim_{n\to\infty} a_n = \ell$ y b_j es una subsucesión de a_n , entonces

$$\lim_{j \to \infty} b_j = \ell.$$

Ejemplos. No es difícil verificar que las siguientes afirmaciones son verdaderas.

- a) Se cumple que $\lim_{n\to\infty} s_n = \lim_{n\to\infty} s_{n+n_0}$.
- b) $\lim_{n\to\infty} s_n = l$ si y solo si $(\lim_{n\to\infty} s_{2n} = l$ y $\lim_{n\to\infty} s_{2n+1} = l$).

Para mostrar que una sucesión **no tiene límite**, generalmente conviene recurrir a subsucesiones. En general, es mucho más eficiente que hacerlo negando la definición de límite (existe $\varepsilon > 0$ tal que para todo N ...).

Ejemplo. Mostrar que

$$\lim_{n\to\infty} \left(-1\right)^n$$

no existe. Llamamos $a_n=(-1)^n$, o sea, a es la sucesión $-1,1,-1,1,-1,1,-1,\ldots$ Sean

$$b_j = a_{2j} = (-1)^{2j} = 1$$
 y $c_j = a_{2j+1} = (-1)^{2j+1} = -1$.

Son subsucesiones de a_n que cumplen

$$\lim_{j \to \infty} b_j = 1 \quad \text{y} \quad \lim_{j \to \infty} c_j = -1.$$

Si la sucesión a_n tuviera límite, digamos ℓ , por la proposición anterior se cumpliría $\ell=-1$ y $\ell=1$, absurdo. Luego a_n no tiene límite.

Nota. El problema 9 de la guía se resuelve de manera similar al ejemplo anterior.

Lema. Si una función $f: \mathbb{N} \to \mathbb{N}$ es estrictamente creciente, entonces $f(n) \geq n$ para todo n.

Geométricamente, el gráfico de f está sobre la diagonal principal, o por encima de ella.

Prueba. Lo hacemos por inducción, llamando P(n): f(n) > n.

P(1) es $f(1) \geq 1$; verdadera pues $f(n) \in \mathbb{N}$.

Suponemos ahora que vale P(k), o sea, $f(k) \ge k$. Tenemos que

$$f(k+1) > f(k) > k$$

(la primera desigualdad vale pues f es estrictamente creciente; la segunda por la hipótesis inductiva). Luego $f(k+1) \ge k+1$, como queríamos.

Prueba de la proposición. Suponemos que $b_j = a_{f(j)}$ con $f: \mathbb{N} \to \mathbb{N}$ estrictamente creciente.

Sabemos que $\lim_{n\to\infty} a_n = \ell$, o sea,

$$\forall \varepsilon > 0 \ \exists \ N = N(\varepsilon) \ \text{tal que} \ (n > N \Rightarrow |a_n - \ell| < \varepsilon).$$

Queremos ver que $\lim_{j\to\infty} b_j = \ell$, o sea,

$$\forall \varepsilon_1 > 0 \ \exists J = J(\varepsilon_1) \text{ tal que } (j > J \Rightarrow |b_j - \ell| < \varepsilon_1).$$

Dado $\varepsilon_1 > 0$, buscamos J que haga cumplir esa implicación. Planteamos

$$|b_j - \ell| = |a_{f(j)} - \ell| < \varepsilon_1.$$

Esa desigualdad vale si $f(j) > N(\varepsilon_1)$.

Pero por el lema, si $j > N(\varepsilon_1)$, tenemos que $f(j) \ge j > N(\varepsilon_1)$.

Entonces podemos tomar $\varepsilon = \varepsilon_1 \text{ y } J = N(\varepsilon_1).$