DIFFERENTIAL AND INTEGRAL CALCULUS ASSIGNMENT 3

AAKASH JOG ID: 989323563

Exercise 1.

Prove or disprove:

- (1) There exist two sequence $\{a_n\}$, $\{b_n\}$ such that $b_n \to -\infty$ and $a_n + b_n \to \infty$.
- (2) If a_n and b_n are divergent sequences, then a_nb_n is divergent.
- (3) If $\{a_n\}$ has a subsequence that tends to infinity and $\{b_n\}$ has a subsequence that tends to infinity, then $a_n + b_n$ is divergent.
- (4) If a_n is a convergent sequence, then $\lim_{n\to\infty} (a_{n+1}-a_n)=0$.

Solution 1.

(1) Let

$$a_n = 2n$$
$$b_n = -n$$

Therefore,

$$\lim_{n \to \infty} b_n = -\infty$$

$$\lim_{n \to \infty} a_n + b_n = \lim_{n \to \infty} n$$

$$= \infty$$

(2) Let

$$a_n = (-1)^n$$
$$b_n = (-1)^n$$

Therefore

$$a_n b_n = (-1)^{2n}$$
$$= 1$$

Therefore $a_n b_n$ converges.

Therefore the statement is false.

Date: Thursday 16th April, 2015.

(3) Let $k \in \mathbb{N}$. Let

$$a_n = \begin{cases} n & ; & n = 2k \\ -n & ; & n \neq 2k \end{cases}$$
$$b_n = \begin{cases} -n & ; & n = 2k \\ n & ; & n \neq 2k \end{cases}$$

Therefore,

$$a_n + b_n = \begin{cases} n + (-n) & ; \quad n = 2k \\ -n + n & ; \quad n \neq 2k \end{cases}$$

Therefore $a_n + b_n$ converges.

Therefore the statement is false.

(4) Let

$$\lim_{n \to \infty} a_n = l$$

Therefore,

$$\lim_{n \to \infty} a_{n+1} - a_n = \lim_{n \to \infty} a_{n+1} - \lim_{n \to \infty} a_n$$
$$= l - l$$
$$= 0$$

Exercise 2.

Let $\{a_n\}$ be a sequence. Prove that if the subsequences a_{2k} and a_{2k+1} converge to the same limit L then $\lim_{n\to\infty} a_n = L$.

Solution 2.

$$\{a_n\} = a_1, a_2, \dots, a_{2k}, a_{2k+1}, \dots$$

 $\therefore, \{a_n\} = \{a_k, a_{2k+1}\}$

Therefore, as $n \to \infty$, if the even terms of $\{a_n\}$ and the odd terms of $\{a_n\}$ all tend to L, then $\{a_n\}$ itself tends to L.

Exercise 3.

Show that if $\{a_n\}$ is a sequence that is unbounded from above (i.e $\forall M>0$ there exists $n\in\mathbb{N}$ such that $a_n>M$) then there exists a subsequence $\{a_{n_k}\}$ such that $\lim_{k\to\infty}a_{n_k}=\infty$.

Solution 3.

If possible, $\nexists \{a_{n_k}\}$ such that $\lim_{k\to\infty} a_{n_k} = \infty$.

Therefore, there must be a maximum term in $\{a_n\}$, say a_p .

Therefore, $\{a_n\}$ is bounded from above by any number greater than or equal to a_p .

However, this contradicts the assumption that $\{a_n\}$ is unbounded from above. Therefore, there must exist a subsequence $\{a_{n_k}\}$ which tends to infinity.

Exercise 4.

Let $\{a_n\}$ be a sequence. Show that if $a_{n+1}a_n \leq 0$, $\forall n \in \mathbb{N}$ and the limit $\lim_{n \to \infty} a_n$ exists, then $\lim_{n \to \infty} a_n = 0$.

Solution 4.

$$a_{n+1}a_n \leq 0$$

Therefore, either a_{n+1} and a_n must have opposite parity, or at least one must be zero.

If $\forall n \in \mathbb{N}$, a_{n+1} and a_n have opposite parity, then $\{a_n\}$ diverges. This contradicts the existence of $\lim_{n\to\infty} a_n$. Therefore at least one of them must be zero.

Therefore $\lim_{n\to\infty} a_n = 0$.

Exercise 5.

Give an example of a sequence $\{a_n\}_{n=1}^{\infty}$ that satisfies $\lim_{n\to\infty} (a_{n+1}-a_n) = 0$, but the limit $\lim_{n\to\infty} a_n$ does not exist (in the strict sense).

Solution 5.

Let

$$a_n = \ln n$$

$$\therefore \lim_{n \to \infty} a_{n+1} - a_n = \lim_{n \to \infty} \ln(n+1) - \ln n$$

$$= \lim_{n \to \infty} \ln\left(\frac{n+1}{n}\right)$$

$$= \lim_{n \to \infty} \ln\left(1 + \frac{1}{n}\right)$$

$$= 0$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \ln n$$
$$= \infty$$

Therefore, $\lim_{n\to\infty} a_{n+1} - a_n = 0$, but $\lim_{n\to\infty} a_n$ does not exist.

Exercise 6.

Find the following limits:

(1)
$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n$$
 for $x \in \mathbb{R}$.

(2)
$$\lim_{n\to\infty} n \tan^{-1} \left(\frac{1}{n}\right)$$

Solution 6.

(1)

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^{\frac{n}{x} \cdot x}$$

$$= \lim_{n \to \infty} \left(\left(1 + \frac{x}{n} \right)^{\frac{n}{x}} \right)^x$$

$$= e^x$$

(2)

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$

$$\therefore \tan^{-1} \left(\frac{1}{n}\right) = \frac{1}{n} - \frac{1}{3n^3} + \frac{1}{5n^5} - \frac{1}{7n^7} + \dots$$

$$\therefore n \tan^{-1} \left(\frac{1}{n}\right) = n \left(\frac{1}{n} - \frac{1}{3n^3} + \frac{1}{5n^5} - \frac{1}{7n^7} + \dots\right)$$

$$= 1 - \frac{1}{3n^2} + \frac{1}{5n^4} - \frac{1}{7n^6} + \dots$$

$$= \sum_{i=0}^{\infty} \frac{(-1)^i}{(2i+1)n^{2i}}$$