# KU Leuven Summer School Segment 4 Misclassification and COVID tests

Paul Gustafson

September 16, 2022

## A "fun" research project back Spring 2020

Burstyn et al. BMC Medical Research Methodology https://doi.org/10.1186/s12874-020-01037-4 (2020) 20:146

BMC Medical Research Methodology

#### **RESEARCH ARTICLE**

Open Access

Towards reduction in bias in epidemic curves due to outcome misclassification through Bayesian analysis of time-series of laboratory test results: case study of COVID-19 in Alberta, Canada and Philadelphia, USA

Igor Burstyn<sup>1,2\*</sup>, Neal D. Goldstein<sup>2</sup> and Paul Gustafson<sup>3</sup>

(Last datapoint: March 27, 2020)

(First version posted to medRxiv: April 11, 2020)

Paper: doi.org/10.1186/s12874-020-01037-4

Data and JaGS code:

github.com/paulgstf/misclass-covid-19-testing

### Alberta daily testing data

 $Y_t^*$  out of  $n_t$  tests came back positive on day t.

As a proportion:  $Y_t^*/n_t$ :



### PCR test for current covid infection

Test result (-/+) imperfect surrogate for true infection status (-/+)

Assume that amongst the t-th day testing population, the test has specificity Sp, but sensitivity  $Sn_t$ .

Why is it that (perhaps!) static specificity, but time-varying sensitivity, is appropriate (as a prior assertion)

## Nature of the PCR test (very, very roughly, 1 of 2)

Nasal swab looking for virus particles

How can a false positive arise?

Cross-contamination of the swab (seriously, apparently). So "lab quality" issue, no particular reason to think specificity time-varying.

## Nature of the PCR test (very, very roughly, 2 of 2)

Nasal swab looking for virus particles

### How can a false negative arise?

There is a little bit of virus in the nasal cavity, but the swab misses it. So maybe. . .

At one period of time, only people with heavy respiratory symptoms are eligible to get a test. Amongst such people, the true positives were likely infected a while back, hence lots of virus to find, hence higher sensitivity.

At another period of time, testing is used to screen a population that's largely asymptomatic. At least some true positives within this population will be very recently infected, hence less virus to find, hence lower sensitivity.

## Statistical model (observables and latents, given params)

$$f(y_{1:T}^*, y_{A,1:T}, y_{B,1:T}y_{1:T} | r_{1:T}, Sn_{1:T}, Sp) = \prod_{t=1}^{T} f(y_t | r_t) f(y_{A,t} | y_t, Sn_t) f(y_{B,t} | y_t, Sp) f(y_t^* | y_{A,t}, y_{B,t})$$

**Parameters:** Sp,  $Sn_{1:T}$  (as already defined), and  $r_{1:T}$ , where  $r_t$  is the population prevalence of infection amongst the day t testing pool.

#### Latents:

 $Y_t$  is the number (out of the  $n_t$  tested that day) that are *truly* infected. So  $(Y_t|r_t) \sim Bin(n_t, r_t)$ .

 $Y_{A,t}$  is the number of truly infected who test positive. So  $(Y_{A,t}|Y_t,Sn_t)\sim Bin(Y_t,Sn_t)$ .

 $Y_{B,t}$  is the number of truly uninfected who test positive. So  $(Y_{B,t}|Y_t,Sn_t)\sim Bin(n_t-Y_t,1-Sp)$ .

### Statistical model, continued

#### **Observables:**

 $Y_t^*$  is the number (that day) who test positive. So  $(Y_t^*|Y_{A,t},Y_{B,t})$  is deterministic, simply  $Y_t^* \equiv Y_{A,t} + Y_{B,t}$ .

## And prior distributions for parameters

- $ightharpoonup r_{1:T}$  piecewise-linear in time,
  - reating  $(r_1, r_6, r_{11}, r_{16}, r_{22})$  as the five unknown parameters,
  - $\triangleright$  each of which is, independently, ascribed a *Unif* (0,0.5) prior.
- ▶ Very roughly (but see upcoming slide for actual),  $Sn_{1:T}$  is treated this same way.
  - each of  $(Sn_1, Sn_6, Sn_{11}, Sn_{16}, Sn_{22})$  ascribed a Unif(0.6, 0.9) prior.
- ► *Sp* ~ *Unif* (0.95, 1).

## Example JAGS coding, prior for $r_{1:22}$

```
### prevalence parameterized by value at knots
for (i in 1:num.kn) {
  r.kn[i] ~ dunif(0, r.hi[i])
### these imply the daily values
for (i in 1:(num.kn-1)) {
  for (j in 0:(spc.kn[i]-1)) {
      r[knts[i]+j] \leftarrow ((spc.kn[i]-j)*r.kn[i]+j*r.kn[i+1])/
                       (spc.kn[i])
r[knts[num.kn]] <- r.kn[num.kn]
```

## Example JAGS coding $\dots$ latents + observables given parameters

```
for (i in 1:(knts[num.kn])) {
  y[i] ~ dbinom(r[i], n[i])  ### true positives
  ya[i] ~ dbinom(sn[i], y[i])  ### correct positives
  yb[i] ~ dbinom(1-sp, n[i]-y[i])  ### false positives
  ystr[i] ~ sum(ya[i], yb[i])
}
```

## Prior on Sn, deeper dive $Sn_t = wSn_t^{(L)} + (1 - w)Sn_t^{(J)}(t)$

## Deeper dive continued

- ▶ Not showing you this because it's necessarily exemplary
- ▶ Indeed, the works was done in haste, and in hindsight there may have been other (desirable) prior specifications to handle the time-varying prevalence and sensitivity.
- ► Am showing you this as an example of "Can we build this? Yes we can!"
  - We could dream up a probability distribution for  $(r_1, \ldots, r_{22}, Sn_1, \ldots, Sn_{22}, Sp)$ .
  - We could express this in JAGS code and press go.

## Primary analysis: inference on true number of positives per day

E.g., inference about latent  $Y_{1:T}$  rather than simply reporting the oberved counts  $Y_{1:t}^*$ 



## Sidenote: Augmenting versus Collapsing

## Secondary analysis: Do the data supply any info about how good/bad the PCR test is?

Sensitivity? No, not really.



## Secondary analysis, continued: Do the data supply any info about how good/bad the PCR test is?

Specificity? **Yes.** 



Intuition for why the data are so quiet concerning  $Sn_{1:T}$ ?

More space for intuition?

Intuition for why the data are quite loud concerning Sp?

More space for intuition?