V семестр

Лектор: Виктор Львович Селиванов Записывали: Глеб Минаев, Иван Кабашный Редактировал: Борис Алексеевич Золотов

МКН СПбГУ, осень 2022

Содержание

1	Логика предикатов			1
	1.1	Истинность и доказуемость		
		1.1.1	Структура	1
		1.1.2	Термы и формулы	2
		1.1.3	Значение термов и формул	3
		1.1.4	Ультрафильтры и компактность	3

1 Логика предикатов

1.1 Истинность и доказуемость

1.1.1 Структура

Бурбаки классифицировал структуры как:

- 1) операции,
- 2) частичные порядки,
- 3) топологические структуры.

Последние не имеют приложения в логике — их мы рассматривать не будем. "Операции" — это структуры алгебраические, "частичные порядки" — это структуры, снабжённые каким-либо отношением.

Определение 1. *Сигнатура* — набор функциональных, предикатных и константных символов вместе с функцией, задающей арность этих символов.

Функциональные символы интерпретируются как функции $A^n \to A$, предикатные символы — как функции $A^m \to \{u; \pi\}$, а константы — как элементы A (или, что равносильно, функции $\{\varnothing\} \to A$).

Будем называть σ -структурой (структурой сигнатуры σ) пару (A, I), где A — непустое множество, а I — интерпретация сигнатурных символов σ в A.

Пример 1. Сигнатура упорядоченного кольца — $\langle +, \cdot; <; 0, 1 \rangle$. Можно добавить вычитание и взятие противоположного, но они выражаются в имеющейся сигнатуре.

Определение 2. \mathbb{A} , $\mathbb{B} - \sigma$ -структуры. Тогда отображение $\varphi : \mathbb{A} \to \mathbb{B}$ называется гомоморфизмом, если оно задаёт $\varphi : A \to B$, что для всякой функции f^n из сигнатуры σ и для всяких $a_1, \ldots, a_n \in A$

$$\varphi(f_A(a_1,\ldots,a_n))=f_B(\varphi(a_1),\ldots,\varphi(a_n)),$$

для всякого предиката P^m в сигнатуре σ и всяких $a_1, \ldots, a_m \in A$

$$P_A(a_1,\ldots,a_m) \implies P_B(\varphi(a_1),\ldots,\varphi(a_m))$$

и для всякой константы c сигнатуры σ

$$\varphi(c_A) = c_B.$$

 φ — изоморфизм, если φ — гомоморфизм, биективен, и φ^{-1} — гомоморфизм.

 \mathbb{A} называется $nodcmpyкmypoй\ \mathbb{B}\ (\mathbb{A}\subseteq\mathbb{B}),$ если $A\subseteq B$ и $\varphi:A\to B, a\mapsto a$ гомоморфизм.

1.1.2 Термы и формулы

Определение 3. Фиксируем некоторое множество V — "множество переменных" — символы \land , \lor , \rightarrow , \neq и символы $\forall x$ и $\exists x$ для всякого $x \in V$.

Терм — это понятие, рекурсивно определяемое следующими соотношениями:

- переменная терм,
- константа терм,
- \bullet для всяких термов t_1, \ldots, t_n и функции f^n выражение $f(t_1, \ldots, t_n)$ терм.

Формула — это понятие, рекурсивно определяемое следующими соотношениями:

- для всяких термов t_1 , t_2 выражение $t_1 = t_2$ формула,
- для всяких предиката P^n из σ и термов t_1, \ldots, t_n выражение $P(t_1, \ldots, t_n)$ формула,
- для всяких формул φ и ψ выражения $\varphi \wedge \psi$, $\varphi \vee \psi$, $\varphi \rightarrow \psi$, $\neq \varphi$ формулы,
- \bullet для всяких формулы φ и переменной x выражения $\forall x \varphi$ и $\exists x \varphi$ формулы.

 For_{σ} — множество всех формул с сигнатурой σ .

Пример 2. В кольцах всякий терм можно свести к полиному с целыми коэффициентами. В мультипликативных группа — моному с целым коэффициентов.

Задача 1. Семейства термов и формул задаются контекстно свободными грамматиками.

Определение 4. Переменная x называется csofoolnoй в формуле φ , если есть вхождение x не покрывается никаким квантором $\forall x$ и никаким квантором $\exists x$. $\mathrm{FV}(\varphi)$ — множество всех свободных переменных формулы φ .

1.1.3 Значение термов и формул

Определение 5. Пусть t — терм в сигнатуре σ , а \mathbb{A} — σ -структура. Тогда $t^{\mathbb{A}}: A^n \to A$ — σ -означивание t, некоторая функция, полученная подставлением вместо констант их значений в \mathbb{A} и последующим рекурсивным означиванием по синтаксическому дереву t. Аналогично получается означивание формулы $f^{\mathbb{A}}: A^n \to \{\mathfrak{u}; \pi\}$.

Определение 6. *Предложение* в сигнатуре σ — формула без свободных переменных.

$$\varphi^{\mathbb{A}} \in \{T, F\},$$
$$\varphi^{\mathbb{A}} = T \Longleftrightarrow \mathbb{A} \models \varphi.$$

Определение 7. *Моделью* данного множества предложения Γ называется структура, в которой все предложения из Γ истины. Если \mathbb{A} — это модель, то иногда пишут $\mathbb{A} \models \Gamma$.

Если Γ — множество предложений, φ — предложение. Говорят, что φ логически следует из Γ ($\Gamma \models \varphi$), если φ истино в любой модели Γ .

Определение 8. Предложение φ называется тождественно истино, если оно истино в любой структуре. Иногда пишут $\models \varphi$.

Утверждение 1.

- $\Gamma \models \varphi$ тогда и только тогда, когда $\Gamma \cup \{\neg \varphi\}$ не имеет модели.
- ullet φ тождественная истина тогда и только тогда, когда $\models \varphi$.
- Γ конечное; $\Gamma \models \varphi$ тогда и только тогда, когда $(\land \Gamma) \rightarrow \varphi$ тожественная истина.

1.1.4 Ультрафильтры и компактность

Определение 9. Пусть I — непустое множество. Φ ильтром на множестве I называется непустое множество $F \subseteq P(I)$ (где P(I) — множество всех подмножеств), которое замкнуто относительно пересечения и взятия надмножеств и такое, что $\emptyset \notin F$.

Фильтр F называется ультрафильтром, если $A \in F$ или $\overline{A} \in F$ для любого $A \subseteq I$.

Утверждение 2.

- Фильтр F является ультрафильтром тогда и только тогда, когда он является максимальным по включению среди всех фильтров (то есть, нет фильтра, который бы его расширял).
- Пусть F ультрафильтр u A, $B \subseteq I$, тогда $A \in F \iff \overline{A} \notin F$; $A \cup B \in F \iff A \in F$ или $B \in F$.
- Любой фильтр содержится в некотором ультрафильтре.

Доказательство.

- Пусть F ультрафильтр. Утверждается, что нет фильтра F', который содержал бы F ($F' \supseteq F$). Предположим противное, т.е. что существует такое A, что оно принадлежит F' и не принадлежит F. Раз $A \notin F$, то $\overline{A} \in F$. В силу того, что $F \subseteq F'$, то \overline{A} также принадлежит F'. Таким образом, $\emptyset = A \cap \overline{A} \in F'$, противоречие. В обратную второну, F максимальный по влючению фильтр. От противного, пусть есть множество $A \subseteq I$ такое, что $A, \overline{A} \notin F$. Рассмотрим $F' = \{X \subseteq I | \exists B \in F(A \cap B \subseteq X)\}$. F' должно быть фильтром (замкнутость вверх по включению понятна, замкнутость относительно пересечения также верна, так как если $X, Y \in F', A \cap B \subseteq X, A \cap C \subseteq Y$ для $B, C \in F$, то $A \cap B \cap C \subseteq (X \cap Y)$. $B \cap C \in F$, а значит, $X \cap Y \in F'$. и последнее, если бы $\emptyset \in F'$, то получается очевидное противоречие из того, что $A \cap B$ всегда непусто).
- Пусть F ультрафильтр. Одновременно A и \overline{A} принадлежать F не могут. Имеем $A \in F \vee \overline{A} \in F$, откуда понятно. Второе утверждение очевидно в левую сторону. В другую сторону, имеем $A \cup B \in F$, предоположим противное. Пусть $A, B \notin F$, значит, $\overline{A}, \overline{B} \in F$, а тогда $\overline{A} \cap \overline{B} \in F$. По закону деМоргана, $\overline{A \cup B} \in F$, откуда $A \cup B \notin F$.
- Пусть имеется F. Утверждается, что существует ультрафильтр F^* , который сожержит F ($F^* \supseteq F$). Данное утверждение нетривиально и в каком-то смысле схоже с аксиомой выбора. Применим лемму Цорна.

Лемма 3 (Цорн). Пусть $(P; \leq)$ — частичный порядок, в котором всякая линейная цепь $A \supseteq P$ имеет верхнюю границу. Тогда в этом частичном порядке есть максимальный элемент.

Рассмотрим множество всех фильтров $P = \{G^- \text{ фильтр } | F \subseteq G\}$, и порядок \subseteq . Пусть \mathfrak{F} — множество фильтров $F_1 \subseteq F_2 \vee F_2 \subseteq F$, а $F' = \bigcup \mathfrak{F}$. F' — фильтр, что проверяется ручками. По лемме, существует F^* — максимальное расширение.

Пример 3.

• Пусть есть I, тогда $\{I\}$ — фильтр.

• Пусть $\emptyset \neq A \subseteq I$, тогда $F = \{X \subseteq |A \subseteq X\} -$ фильтр.

Задача 2. Если I бесконечное, то в P(I) есть неглавные ультрафильтры. Для доказательства рассматриваем $F = \{A \subseteq I | A^- \text{ коконечно}\}$, и существующий по доказанному ранее $F^* \supseteq F$.

Пусть имеется некоторое проиндексированное семейство σ -структур $\{A_i\}_{i\in I}$.

Определение 10 (Декартово произведение). $\mathbb{A} = \prod_{i \in I} \mathbb{A}_i$ — определяем σ -структуру.

 $A = \prod_{i \in I} A_i$ — множество функций a на множестве I, такое что $a(i) \in A_i$ для любого $i \in I$. $a : I \to \bigcup_{i \in I} A_i$ — проектирование $(a \mapsto a(i))$. $c^{\mathbb{A}}(i) = c^{\mathbb{A}_i}$, таким образом получается интерпретация константного символа. $f^{\mathbb{A}}(a_1, \ldots, a_n)(i) = f^{\mathbb{A}_i}(a_1(i), \ldots, a_n(i))$. Предикат $P^{\mathbb{A}}(-//-) \iff P^{\mathbb{A}_i}(a_1(i), \ldots, a_n(i)) = T \ \forall i \in I$.

Если же имеется ещё и F — фильтр на множестве I, определим фильтрованное произведение, которое будем обозначать $\mathbb{A}_F = \mathbb{A}/_{\equiv_F}$. Эквивалентность определяется следующим образом. Пусть $a,b\in A$, тогда $a\equiv_F b \stackrel{\mathrm{def}}{\Longleftrightarrow} \{i\in I|a(i)=b(i)\}\in F\ (a(i)=b(i)$ для F-большинства i). Нетрудно убедиться в том, что мы получили действительно отношение эквивалентности, и более того, отношение конгруэнтности на структуре \mathbb{A} .

 $A/_{\equiv_F}\{[a]|a\in A\}$ соответственно отображению $A\stackrel{p}{\to}A/_{\equiv_F}(a\mapsto [a])$ и $[a]_F=\{b|b\equiv_F a\}.$

$$\mathbb{A}_F = (A/_{\equiv_F}; I)$$
, где

- $c^{\mathbb{A}_F} = [c^{\mathbb{A}}];$
- $f^{\mathbb{A}_F}([a_1], \dots, [a_n]) = [f^{\mathbb{A}}(a_1, \dots, a_n)];$
- $P^{\mathbb{A}_F}([a_1],\ldots,[a_n])-T \Longleftrightarrow P^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$ для F-большинства i.

Если F — ультрапроизведение, то $\mathbb{A}/_F$ называется ультрапроизведением.

Теорема 4 (об ультрапроизведениях). Пусть F — ультрафильтр на множестве I, \mathbb{A}_i — семейство стркутур, $\varphi(x_1, \ldots, x_k)$ — σ -формула и пусть $a_1, \ldots, a_k \in \prod_i A_i$. Тогда $\mathbb{A}_F \models \varphi([a_1], \ldots, [a_k])$ тогда и только тогда, когда $\mathbb{A}_i \models \varphi(a_1(i), \ldots, a_n(i))$ для F-большинства индексов.

Теорема 5. Бесконечное множество Γ имеет модель, если каждое его конечное поднмонжество Γ имеет модель.