Analisi della dispersione di soglia

Luca Ghislotti

09/04/2022

Versione 2

Analisi della dispersione di soglia ed ottimizzazione sulla base delle soglie medie calcolate su tutti gli ASIC. Si è considerata una larghezza di bin fissa $Vth_gb = 4keV$. Di seguito si riporta l'analisi condotta su tutti gli ASIC e sui soli ASIC di "classe A". L'intera analisi è stata condotta per il solo tempo di picco τ_6 .

L'analisi è così organizzata:

- 1. analisi di tutti gli ASIC partendo dalle soglie già ottimizzate localmente tramite ottimizzazione fine;
- 2. analisi dei soli ASIC di "classe A" partendo dalle soglie già ottimizzate localmente tramite ottimizzazione fine;
- 3. plot della variazione di media e deviazione standard della distribuzione della soglia sui singoli canali per tutti gli ASIC in funzione della variazione della larghezza del bin Vth_gb che viene fatto variare tra 0 e 10 con incremento di 0.001. Questa analisi è stata effettuata sulla base dei dati già ottimizzati localmente tramite soglia "fine" e relativi a tutti gli ASIC. Le variazioni $\Delta \mu$ e $\Delta \sigma$ sono da intendersi come differenziali rispetto alla rispettiva distribuzione non ottimizzata; in particolare, la variazione in termini di deviazione standard $\Delta \sigma$ può essere interpretata come indicatore della bontà del metodo nel ridurre la dispersione della soglia;
- 4. risultati dell'applicazione di due metodi sviluppati allo scopo di ridurre la dispersione della soglia lavorando sui soli ASIC di "classe A" al fine di individuare i migliori 250 ASIC su 311 con i quali è possibile ottenere la minima dispersione di soglia possibile:
 - (a) rimozione di 61 ASIC le cui soglie medie presentano la massima dispersione: questo metodo si è dimostrato solo parzialmente efficace, secondo una considerazione per la quale la rimozione di tutti i 32 canali di un ASIC la cui media delle soglie si discosta molto dalla media globale comporta l'eliminazione indiscriminata di canali ad alta e bassa dispersione (vale solo in media);
 - (b) rimozione di 61 ASIC che presentano il maggior numero di canali con dispersione maggiore di $Vth_{-}gb = 4keV$: ciò ha permesso di rimuovere gli ASIC i cui canali incidono maggiormente sulla dispersione complessiva;
- 5. barplot del numero di canali per ASIC di "classe A" di cui al punto (b): utile per valutare come anche i cosiddetti ASIC di "classe A" presentino in effetti canali con elevata dispersione;
- 6. distribuzione delle soglie di tutti i canali per ASIC di "classe A" senza effettuare la rimozione degli outlier.

1 Ottimizzazione delle soglia di tutti gli ASIC

1.1 Dati già soggetti ad ottimizzazione fine della soglia

1.1.1 Distribuzione iniziale delle soglie medie (per ASIC)

1.1.2 Distribuzione ottimizzata delle soglie medie (per ASIC)

1.1.3 Distribuzione iniziale delle soglie di tutti i canali

1.1.4 Distribuzione ottimizzata delle soglie di tutti i canali

- 1.2 Dati non soggetti ad ottimizzazione fine della soglia
- 1.2.1 Distribuzione iniziale delle soglie medie (per ASIC)

1.2.2 Distribuzione ottimizzata delle soglie medie (per ASIC)

1.2.3 Distribuzione iniziale delle soglie di tutti i canali

1.2.4 Distribuzione ottimizzata delle soglie di tutti i canali

2 Ottimizzazione delle soglia dei soli ASIC di "classe A"

- 2.1 Dati già soggetti ad ottimizzazione fine della soglia
- 2.1.1 Distribuzione iniziale delle soglie medie (per ASIC)

2.1.2 Distribuzione ottimizzata delle soglie medie (per ASIC)

2.1.3 Distribuzione iniziale delle soglie di tutti i canali

2.1.4 Distribuzione ottimizzata delle soglie di tutti i canali

3 Plot di $\Delta\mu$ e $\Delta\sigma$ vs Vth_gb

Plot realizzato sulla base dell'ottimizzazione effettuata sui dati provenienti da tutti gli ASIC già soggetti ad ottimizzazione fine della soglia.

4 Risultati dell'applicazione di due ulteriori metodi di ottimizzazione

4.1 Primo metodo

4.2 Secondo metodo

5 Canali per ASIC con dispersione superiore a 4 keV (311 ASIC di classe A)

6 Distribuzione delle soglie di tutti i canali per ASIC di "classe A" senza effettuare la rimozione degli outlier

