

Paths in graphs

Consider a digraph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$. The *weight* of path $p = v_1 \to v_2 \to \cdots \to v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

Paths in graphs

Consider a digraph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$. The *weight* of path $p = v_1 \to v_2 \to \cdots \to v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

Example:

Shortest paths

A shortest path from u to v is a path of minimum weight from u to v. The shortest-path weight from u to v is defined as

 $\delta(u, v) = \min\{w(p) : p \text{ is a path from } u \text{ to } v\}.$

Note: $\delta(u, v) = \infty$ if no path from u to v exists.

Well-definedness of shortest paths

If a graph *G* contains a negative-weight cycle, then some shortest paths do not exist.

Well-definedness of shortest paths

If a graph *G* contains a negative-weight cycle, then some shortest paths do not exist.

Example:

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Triangle inequality

Theorem. For all $u, v, x \in V$, we have $\delta(u, v) \leq \delta(u, x) + \delta(x, v)$.

Triangle inequality

Theorem. For all $u, v, x \in V$, we have $\delta(u, v) \leq \delta(u, x) + \delta(x, v)$.

Proof.

Single-source shortest paths (nonnegative edge weights)

Problem. Assume that $w(u, v) \ge 0$ for all $(u, v) \in E$. (Hence, all shortest-path weights must exist.) From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.

IDEA: Greedy.

- 1. Maintain a set *S* of vertices whose shortest-path distances from *s* are known.
- 2. At each step, add to S the vertex $v \in V S$ whose distance estimate from S is minimum.
- 3. Update the distance estimates of vertices adjacent to ν .

Dijkstra's algorithm

```
d[s] \leftarrow 0

for each v \in V - \{s\}

do d[v] \leftarrow \infty

S \leftarrow \emptyset

Q \leftarrow V \triangleright Q is a priority queue maintaining V - S, keyed on d[v]
```


Dijkstra's algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
    do d[v] \leftarrow \infty
S \leftarrow \emptyset
                   \triangleright Q is a priority queue maintaining V-S,
Q \leftarrow V
                     keyed on d[v]
while Q \neq \emptyset
    do u \leftarrow \text{Extract-Min}(Q)
         S \leftarrow S \cup \{u\}
         for each v \in Adj[u]
             do if d[v] > d[u] + w(u, v)
                      then d[v] \leftarrow d[u] + w(u, v)
```


Dijkstra's algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
    \operatorname{do} d[v] \leftarrow \infty
S \leftarrow \emptyset
                  \triangleright Q is a priority queue maintaining V-S,
Q \leftarrow V
                     keyed on d[v]
while Q \neq \emptyset
    do u \leftarrow \text{Extract-Min}(Q)
         S \leftarrow S \cup \{u\}
        for each v \in Adj[u]
                                                             relaxation
             do if d[v] > d[u] + w(u, v)
                      then d[v] \leftarrow d[u] + w(u, v)
                                        Implicit Decrease-Key
```


Graph with nonnegative edge weights:

S: { A }

S: { A }

S: { A, C }


```
while Q \neq \emptyset

do u \leftarrow \text{Extract-Min}(Q)

S \leftarrow S \cup \{u\}

for each v \in Adj[u]

do if d[v] > d[u] + w(u, v)

then d[v] \leftarrow d[u] + w(u, v)
```



```
|V|
times
```

```
while Q \neq \emptyset

\mathbf{do} \ u \leftarrow \text{Extract-Min}(Q)

S \leftarrow S \cup \{u\}

\mathbf{for} \ \text{each} \ v \in Adj[u]

\mathbf{do} \ \mathbf{if} \ d[v] > d[u] + w(u, v)

\mathbf{then} \ d[v] \leftarrow d[u] + w(u, v)
```



```
|V| times degree
```

```
while Q \neq \emptyset

do u \leftarrow \text{Extract-Min}(Q)

S \leftarrow S \cup \{u\}

for each v \in Adj[u]

do if d[v] > d[u] + w(u, v)

then d[v] \leftarrow d[u] + w(u, v)
```



```
times while Q \neq \emptyset
do u \leftarrow \text{Extract-Min}(Q)
S \leftarrow S \cup \{u\}
for each \ v \in Adj[u]
do \text{ if } d[v] > d[u] + w(u, v)
then \ d[v] \leftarrow d[u] + w(u, v)
```

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.


```
times while Q \neq \emptyset
do u \leftarrow \text{Extract-Min}(Q)
S \leftarrow S \cup \{u\}
for each \ v \in Adj[u]
do \text{ if } d[v] > d[u] + w(u, v)
then \ d[v] \leftarrow d[u] + w(u, v)
```

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.

Time =
$$\Theta(V \cdot T_{\text{EXTRACT-MIN}} + E \cdot T_{\text{DECREASE-KEY}})$$

Note: Same formula as in the analysis of Prim's minimum spanning tree algorithm.

$$Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

T_{EXTRACT-MIN} T_{DECREASE-KEY}

Total

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

$$Q \quad T_{\text{EXTRACT-MIN}} \quad T_{\text{DECREASE-KEY}} \quad \text{Total}$$

$$\text{array} \quad O(V) \qquad O(1) \qquad O(V^2)$$

$$Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Q	T _{EXTRACT-MIN}	T _{DECREASE-KEY}	Total
array	O(V)	<i>O</i> (1)	$O(V^2)$
binary heap	$O(\lg V)$	$O(\lg V)$	$O(E \lg V)$

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Q	T _{EXTRACT-MIN}	T _{DECREASE-KEY}	Y Total
array	O(V)	<i>O</i> (1)	$O(V^2)$
binary heap	$O(\lg V)$	$O(\lg V)$	$O(E \lg V)$
Fibonacci heap	i $O(\lg V)$ amortized	O(1) amortized	$O(E + V \lg V)$ worst case

