Степанов Линейная алгебра. .

Содержание

1	02.0	02.24 1 лекция
	1.1	Ранг Матрицы
	1.2	Минор Матрицы
	1.3	Теорема об инвариантности ранга при элементарных преобразованиях
	1.4	Теорема о базисном миноре
2	09.02.24 2 лекция	
	2.1	Определение 1. Векторное (линейное) пространство
	2.2	Определение 2. Прямое произведение
	2.3	Определение 3. Подпространство
	2.4	Определение 4. Прямая сумма семейства
	2.5	Определение 5. Отображение из векторного пространства

1 02.02.24 1 лекция

1.1 Ранг Матрицы

 $\mathbf{A} \in M_{m,n}(\mathbb{R})$. Строки столбы матрицы могут быть ЛЗ, ЛНЗ.

$$a_1,\ldots,a_m$$
 строки ЛЗ \iff \exists $\lambda_1,\ldots,\lambda_m \in \mathbb{R}$ $\lambda_1^2+\cdots+\lambda_m^2\neq 0$ $\lambda_1a_1+\cdots+\lambda_ma_m=0=\overbrace{(0,\ldots,0)}^m$

 $r_1(A)$ - строчный ранг матрицы A - максимальное количество ЛНЗ строк матрицы A. $0 \leq r_1(A) \leq m$

 $r_2(A)$ - столбчатый ранг матрицы A - максимальное количество ЛНЗ столбцов матрицы A. 0 ≤ $r_1(A)$ ≤ n

1.2 Минор Матрицы

Определение 1. Минором порядка k, где k $1 \le k \le min\{m,n\}$ называется определителем матрицы,образованной элементами стоящими на пересечение некоторых выбранных k строк и k столбцов матрицы A.

$$1 \le i_1 < i_2 < \dots < i_k \le m$$

 $1 \le j_1 < j_2 < \dots < j_k \le n$

$$M^{j_1\dots j_k}_{i_1\dots i_k}$$
 — минор, обр
зованный строками с номерами i_1,\dots,i_k и столбцами j_1,\dots,j_k

Пример

$$A_{3,4} = \begin{pmatrix} \boxed{0} & \boxed{2} & \boxed{1} & \boxed{3} \\ 4 & \boxed{5} & \boxed{0} & -1 \\ \boxed{2} & \boxed{2} & \boxed{1} & \boxed{1} \end{pmatrix}$$

$$M_2^4 = a_{24} = -1$$
 $M_{13}^{24} = \begin{vmatrix} 2 & 3 \\ 2 & 1 \end{vmatrix} = -4$

Ранг матрицы A, r(A) = максимальный порядок не нулевого минора матрицы A. r(A) = $\max\{0 \le k \le \min\{m,n\}\}|\exists$ ненулевой минор порядка k в A, но миноры большого порядка либо \exists либо все не равны 0.

Пример

$$M_{123}^{123} = \begin{pmatrix} 0 & 2 & 1 \\ 4 & 5 & 0 \\ 2 & 2 & 1 \end{pmatrix} \neq 0 \quad \Rightarrow \quad r(A) = 3$$

1.3 Теорема об инвариантности ранга при элементарных преобразованиях

Если матрица A' получена из матрицы A последовательностью элементарных преобразований строк и столбцов, то $r_1(A') = r_1(A)$ и $r_2(A') = r_2(A)$ Доказательство после теории размерности векторных пространств.

Следствие 1. \forall матрицы $A r_1(A) = r_2(A)$

Доказательство: Приведем матрицу А к ступенчатому виду

$$A' = \begin{pmatrix} 0 & \dots & a_{1j_1} & \dots & a_{1j_{n-1}} & a_{1j_n} \\ 0 & \dots & 0 & a_{2j_2} & \dots & a_{2j_n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & 0 & a_{rj_r} \\ 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & \dots & 0 & 0 & 0 & 0 \end{pmatrix} \quad 1 \leq j_1 < j_2 < \dots < j_r \leq n \qquad a_{1j_1}, \dots, a_{rj_r} \neq 0$$

Далее поделим k-ую строку на a_{kj_k} и переместим столбы j_1,\dots,j_r в начало матрицы.

$$A' \Rightarrow A'' = \begin{pmatrix} 1 & a''_{12} & \dots & a''_{1n} \\ 0 & 1 & a''_{23} & \dots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Из второго столбца вычтем первый с коэффициентом a_{12}'' ... из n-го 1-й с коэффициентом a_{1n}'' и т.д для 2-го столбца и 2 строки и т.д.

$$A \sim A''' = \left(\begin{array}{c|c} E_r & 0 \\ \hline 0 & 0 \end{array}\right)$$

$$Teop_1 \Rightarrow r_i(A) = r_i(A'''), i = 1,2$$
 Первые r строк матрицы A''' : $e_1 = (1,0,\ldots,0,\ldots,0)$ $e_2 = (0,1,\ldots,0,\ldots,0)$ \vdots $e_r = (0,0,\ldots,1,\ldots,0)$

Если $\Sigma \lambda_i e_i = 0 = (0, \dots, 0) \Rightarrow (\lambda_1, \dots, \lambda_r, \dots, 0) \Rightarrow \lambda_1 = \dots = \lambda_r = 0 \Rightarrow \exists$ ти строки ЛНЗ $\Rightarrow r_1(A''') = r$. Аналогично $r_2(A''') = r \Rightarrow r_1(A) = r_2(A)$ Ч.Т.Д.

Замечание Вычисление ранга матрицы методом элементарных преобразований: Нужно привести матрицу A к ступенчатому виду путём преобразований строк. Тогда $r_1(A) = r_2(A) = r$ – количеству ненулевых строк в ступенчатом виде.

Определение 2. Пусть M – некоторый минор матрицы A минор M' матрицы A называется окаймляющим для M если M' получается из M добавлением одной строки и одного столбца.

Пример:

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 1 \\ 2 & -1 & 3 & 2 \end{pmatrix} \quad M = M_{13}^{13} = \begin{vmatrix} 1 & 3 \\ 2 & 3 \end{vmatrix} = -3$$

Окаймляющие: $M_{123}^{\prime 123}$, $M_{123}^{\prime 134}$

Определение 3 Минор М матрицы А называется базисным если М ≠ 0, а все его окаймляющие миноры либо ∄, либо равны 0. Строки и столбцы входящие в базисные миноры называются базисными.

1.4 Теорема о базисном миноре

Базисные строки (столбцы) любой матрицы ЛНЗ. Остальные строки(столбцы) линейно выражаются через базисные.

Доказательство: Для строк, для столбцов аналогично. Если базисные строки $\Pi 3$, то и строки базисного минора $\Pi 3 \Rightarrow$ он равен 0 – противоречие.

Будем считать, что базисный минор $\mathbf{M}=M^{1,\dots,r}_{1,\dots,r}$ Рассмотрим определители M', которые получаются добавлением к \mathbf{M} і-й строки, і > г и \forall столбцов матрицы \mathbf{A} .

Если мы добавим j-й столбце с $j \le r$ то в M'два одинаковых столбца $\Rightarrow M' = 0$.

Если j > r, то M' – окаймлённный минор для $M \Rightarrow M' = 0$

$$a_{ij} = -\frac{A'_{1j}}{M}a_{1j} - \dots - \frac{A'_{rj}}{M}a_{rj} \quad \forall j = 1, \dots, n$$
 (1)

Формула (1) выражает элемент і - й строки через соответствующие элементы 1-й, ... , г-й строк. Коэффициенты не зависят от $j \Rightarrow$ і-я строка линейно выражается через базисные строки. ЧТД.

Следствие 2(Теорема о ранге матрицы) \forall матриц A $r_1(A) = r_2(A) = r(A)$ и равны порядку любого базисного минора.

Доказательство $r_1(A) = r_2(A)$ — уже доказано. Пусть М — базисный минор матрицы А.

 $M_{12...r}^{12...r}$. (r+1)-я,...,m-я строки – линейная комбинация базисных строк.

$$A \sim egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} & a_{r2} & \dots & a_{rn} \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \end{pmatrix} = A'$$
 из теоремы $1 \Rightarrow r_1(A) = r_1(A')$

Строки (1),...,(r) ЛНЗ $\Rightarrow r_1(A') = r$. r — порядок базисного минора. Если M — максимальный по порядку минор $\neq 0$, то он автоматически базисный $\Rightarrow r(A) = r = r_1(A) = r_2(A)$

Определение 4 Рангом матрицы A называется число rkA определённое любым выше указанным эквивалентным способом.

2 09.02.24 2 лекция

2.1 Определение 1. Векторное (линейное) пространство

Векторное (Линейное) пространство – это множество V с введенными на нём двух операций + и λ · , $\lambda \in \mathbb{R}$ которые удовлетворяют следующим условиям (аксиомам векторного пространства)

- 1. $\forall x, y, z \in V (x + y) + z = x + (y + z)$ ассоциативность
- 2. $\forall x, y \in V \ x + y = y + x$ коммутативность
- 3. $\exists 0$ –нулевой вектор: $\forall x \in V \ x + 0 = x$
- 4. $\forall x \in V \ \exists -x \in V : \ x + (-x) = -x + x = 0$ (V,+) образуют Абелеву группу.
- 5. $\forall \lambda \in \mathbb{R} \ \forall x, y \in V \ \lambda(x+y) = \lambda x + \lambda y$
- 6. $\forall \lambda, \mu \in \mathbb{R} \quad \forall x \in V \quad (\lambda + \mu)x = \lambda x + \mu x$
- 7. $\forall \lambda, \mu \in \mathbb{R} \quad \forall x \in V \quad \lambda(\mu x) = (\lambda \mu) x$
- 8. $\forall x \in V \ 1 \cdot x = x$

Замечание

Аксиома 2 следует из остальных, докажем это

$$(1+1)(x+y) \stackrel{5}{=} (1+1)x + (1+1)y \stackrel{6,1}{=} 1 \cdot x + 1 \cdot x + 1 \cdot y + 1 \cdot y \stackrel{8}{=} x + x + y + y \tag{1}$$

$$(1+1)(x+y) \stackrel{6}{=} 1 \cdot (x+y) + 1(x+y) \stackrel{5,1}{=} 1 \cdot x + 1 \cdot y + 1 \cdot x + 1 \cdot y \stackrel{8}{=} x + y + x + y$$
 (2)

(1) и (2) равны $\Rightarrow x + x + y + y = x + y + x + y$. Из 4 аксиомы $\exists -x, -y$ прибавим их слева и справа $\Rightarrow 0 + x + y + 0 = 0 + y + x + 0 \stackrel{3}{\Rightarrow} x + y = y + x$

Простые следствия из аксиом

- 1. $0 \in V$ единственный: если 0' второй нулевой вектор. то $0+0' \Rightarrow 0'=0$
- 2. $\forall x \in V$ x тоже единственный: пусть x' второй x + x + (-x') = -x' + 0 = -x' $x + (x + (-x')) = -x + 0 = -x \Rightarrow -x' = -x$

- 3. $\forall x \in V \ 0 \cdot x = 0$: $(0+0)x^{0+0=0} = 0 \cdot x = 0 \cdot x + 0 \cdot x \Rightarrow$ добавим противоположный вектор $0 \cdot x \Rightarrow$ $0 \cdot x = 0$
- 4. $\forall \lambda \in \mathbb{R}$ $\lambda \cdot 0 = 0$ рассмотрим $\lambda \cdot (0+0)$ доказательство аналогично 3)
- 5. $\forall x \in V x = (-1)x$: Рассмотрим выражения $(1-1) \cdot x$ $0 \cdot x = 0$ из (3) с другой стороны: $(1-1) \cdot x = 1 \cdot x + (-1)x = x + (-1)x \implies x + (-1)x = 0 \implies$ из единственности противоположного вектора(-1)x = -x

Определим операцию вычитания векторов: $x - y \stackrel{def}{=} x + (-y)$

Примеры

- 0. $(V_3, \mathbf{x}, \lambda \cdot)$
- 1. 0 векторное (линейное) пространство из 1 элемента (нулевое векторное пространство)
- 2. ℝ с обычными операциями
- 3. пусть I некоторое множество, $(V_i)_{i \in I}$ семейство векторных пространств

2.2 Определение 2. Прямое произведение

Прямым произведением семейства $(V_i)_{i \in I}$ называется множество $\prod_i V_i = \{x: I \to \bigcup_i V_i | \ \forall i \in I \ x_i \in V_i \} \ \text{с операциями} \ (x+y)(i) \stackrel{def}{=} x(i) + y(i) - \text{сумма в } V_i \ \text{и}$ $(\overline{\lambda}x)(i) = \lambda x(i)$ — умножение на скаляр в V_i $\prod V_i$, +, λ · – векторное пространство

Например, докажем что аксиома 5 справедлива в V_i . $(\lambda \cdot (x+y))(i) = \lambda [(x+y)(i)] = \lambda (x(i)+y(i)) = \lambda \cdot x(i) + \lambda \cdot y(i) = (\lambda x)(i) + (\lambda y)(i) = (\lambda x + \lambda y)(i) \Rightarrow \lambda (x+y) = (\lambda x + \lambda y)(i) = (\lambda x + \lambda y)(i) \Rightarrow \lambda (x+y) = (\lambda x + \lambda y)(i) \Rightarrow \lambda (x+y) = (\lambda x + \lambda y)(i) \Rightarrow \lambda (x+y) = (\lambda x + \lambda y)(i) \Rightarrow \lambda (x+y) = (\lambda x + \lambda y)(i) \Rightarrow \lambda (x+y) = (\lambda x + \lambda y)(i) \Rightarrow \lambda (x+y) = (\lambda x + \lambda y)(i) \Rightarrow \lambda (x+y) = (\lambda x + \lambda y)(i) \Rightarrow \lambda (x+y) = (\lambda x + \lambda y)(i) \Rightarrow \lambda (x+y) = (\lambda x + \lambda y)(i) \Rightarrow \lambda (x+y) = (\lambda x + \lambda y)(i) \Rightarrow \lambda (x+y) = (\lambda x + \lambda y)(i) \Rightarrow \lambda (x+y) = (\lambda x + \lambda y)(i) \Rightarrow \lambda (x+y) = (\lambda x + \lambda y)(i) \Rightarrow \lambda (x+y) = (\lambda x + \lambda y)(i) \Rightarrow \lambda (x+y)(i) \Rightarrow \lambda (x+$ $\lambda x + \lambda y$ Ч.Т.Д.

Также докажем что аксиома 3 справедлива для V_i : 0 в $\prod V_i$ – это функция которая $\forall i \in I \ 0(i) = 0 \in V_i$

Важные частные случаи

а. Пусть все $V_i \in \mathbb{R}$: Тогда $\bigcup V_i = \mathbb{R}$

 $I \in I$ $\prod V_i$ — это множество всех функций из I в $\mathbb R$ с обычными операциями.

Обозначим : $\prod V_i = R^I = \{f : I \to \mathbb{R}\}$

 $A = \{a_1, \dots, a_m\}$ $B = \{b_1, \dots, b_n\}$ всего имеем n^m отображений из А в В

b. $I = \{1, 2, ..., n\}, V_i = \mathbb{R} \ \forall i$

Обозначение $R^i = R^n = \{(x_1, ..., x_n) | x_1, ..., x_n \in \mathbb{R}\}$

$$x + y = (x_1 + y_1, \dots, x_n + y_n); \lambda \cdot x = (\lambda x_1, \dots, \lambda x_n)$$

 \mathbb{R}^n – n-мерное арифметическое пространство

с. $I = \{1,2\}, \ V_1 = U, \ V_2 = W$ — два разных пространства $\prod V_i = U \times W$ — прямое произведение

 $U \times W = \{(u, w) \mid u \in U; w \in W\}$

(u,w)+(u',w')=(u+u',w+w') — в такой ситуации $U\times W$ называется прямой суммой U и Wи обозначается ⊕ $\lambda(u,m) = (\lambda u + \lambda w)$

2.3 Определение 3. Подпространство

V – векторное пространство. Подмножество $U \subseteq V$ называется векторным (линейным) подпространством если выполнены следующие условия

- 1. $0 \in U$
- 2. $\forall x, y \in U \quad x + y \in U$
- 3. $\forall x \in U$, $\forall \lambda \in \mathbb{R}$ $\lambda x \in U$

Примеры

- 1. $\{0\} \subseteq V$ тривиальное подпространство. $V \subseteq V$ — несобственное подпространство.
- 2. $(V_i)_{i \in I}$ семейство векторных пространств

Определение 4. Прямая сумма семейства 2.4

Прямой суммой семейства $(V_i)_{i \in I}$ называется такое подмножество $\underset{i \in I}{\oplus} V_i = \{X: I \to \bigcup_{i \in I} V_i \mid \forall i \in I \ x(i) \in V_i$ и множество таких i, что $x(i) \neq 0,$ конечно возможно пустое подмножество $\} \subseteq \prod V_i$

Утверждение: $\underset{i \in I}{\oplus} V_i$ –подпространство в $\underset{i \in I}{\prod} V_i$

Действительно $0 \in \underset{i \in I}{\oplus} V_i$; если $\mathbf{x}(\mathbf{i}) = 0$, то и $\lambda \mathbf{x}(i) = 0 \forall i$

x+y:

x+y может быть $\neq 0$ лишь на объединение множества, где $x\neq 0$ и $y\neq 0$ Объединение конечных множеств кончено.

Замечание: если множество I конечно, то $\oplus V_i = \prod_i$ (множества финитных функций)

2.5 Определение 5. Отображение из векторного пространства

Отображение $\phi: V \to W$ из векторного пространства V в векторное пространство V в векторное производство V в векторное пространство W называют линейным если $\forall x,y \in U$ $\lambda,\mu\mathbb{R}$ $\phi(\lambda y + \mu x) = \lambda\phi(x) + \mu\phi(y)$

Если $\phi: V \to V$, то ϕ называется линейным преобразованием или линейным оператором