CPEN 400Q Lecture 03 Measurement

Monday 16 January 2023

Announcements

- Quiz 1 today
- Assignment 0 due tonight
- Assignment 1 and literacy assignment 1 coming this week

We learned about the three Pauli rotations

	Math	Matrix	Code	Special cases
RZ	$e^{-i\frac{\theta}{2}Z}$	$\begin{pmatrix} e^{-i\frac{\theta}{2}} & 0 \\ 0 & e^{i\frac{\theta}{2}} \end{pmatrix}$	qml.RZ	$Z(\pi), S(\pi/2), T(\pi/4)$
RY	$e^{-i\frac{\theta}{2}Y}$	$ \begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} $	qml.RY	$Y(\pi)$
RX	$e^{-i\frac{\theta}{2}X}$	$ \begin{pmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} $	qml.RX	$X(\pi), SX(\pi/2)$

We saw how qubits can be represented in 3D space on the Bloch sphere, and how unitary operations rotate the Bloch vector.

Image credit: Codebook node I.6

We learned how to implement quantum circuits in PennyLane.

```
import pennylane as qml

dev = qml.device('default.qubit', wires=1, shots=100)

@qml.qnode(dev)
def my_circuit():
    qml.Hadamard(wires=0)
    qml.PauliZ(wires=0)
    qml.PauliX(wires=0)
    return qml.sample()

result = my_circuit()
```

We distinguished between two types of phase in a quantum state.

Global phase:

Relative phase:

We tried to do the following exercise: Design a quantum circuit to prepare the state

$$|\psi
angle=rac{\sqrt{3}}{2}|0
angle-rac{1}{2}{
m e}^{irac{5}{4}}|1
angle$$

These are the same gate, up to a global phase

$$RZ(\theta) = egin{pmatrix} e^{-irac{ heta}{2}} & 0 \ 0 & e^{irac{ heta}{2}} \end{pmatrix}, \quad RZ'(heta) = egin{pmatrix} 1 & 0 \ 0 & e^{i heta} \end{pmatrix}$$

In PennyLane, you can find the latter explicitly as

qml.PhaseShift(theta, wires=0)

Learning outcomes

- Define a universal gate set
- Compute the inner product between two quantum states
- Perform a projective measurement
- Measure a qubit in different bases
- Measure single-qubit expectation values

General rotations

What about H?

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

This does not have the form of RX, RY, or RZ.

But, we can use a combination of these to make an H (actually, just need two of the three).

Deep dive: unitary operations

The $n \times n$ unitary matrices are a mathematical group under matrix multiplication, U(n):

- 1. Closure: for U, V unitary, UV is also unitary
- 2. Associativity: (UV)W = U(VW)
- 3. Identity: 1
- 4. Inverses: $U^{-1} = U^{\dagger}$

Deep dive: unitary operations

The $n \times n$ unitary matrices are a mathematical group under matrix multiplication, U(n):

- 1. Closure: for U, V unitary, UV is also unitary
- 2. Associativity: (UV)W = U(VW)
- 3. Identity: 1
- 4. Inverses: $U^{-1} = U^{\dagger}$

Any unitary matrix can be written in terms of a finite set of real-valued parameters:

$$U(\phi, \theta, \omega) = e^{i\alpha} \begin{pmatrix} e^{-i(\phi+\omega)/2} \cos(\theta/2) & -e^{i(\phi-\omega)/2} \sin(\theta/2) \\ e^{-i(\phi-\omega)/2} \sin(\theta/2) & e^{i(\phi+\omega)/2} \cos(\theta/2) \end{pmatrix}$$

Universal gate sets: Pauli rotations

With just RZ and RY (or RZ/RX, RY/RX), we can implement any single-qubit unitary operation¹:

$$U = e^{i\alpha}RZ(\omega)RY(\theta)RZ(\phi)$$

 $\{RZ,RY\}$ is universal for single-qubit quantum computing.

Hands-on...

For more fun: do text exercises in Codebook node I.3 and I.7.

¹Note that the α technically doesn't matter.

Universal gate sets: H and T

With just H and T, we can approximate any single-qubit rotation up to arbitrary accuracy. For example, we can implement RZ(0.1) up to accuracy 10^{-10} :

This was generated using the newsynth Haskell package: https://www.mathstat.dal.ca/~selinger/newsynth/

Universal gate sets: H and T

Or to accuracy 10^{-100} :

HTHTHTHTHTSHTSHTSHTHTHS

...we'll talk more about this in a few weeks when we discuss quantum compilation.

We can now create every single single-qubit quantum state: how do we *compare* them?

Recall what things look like in a classical vector space.

We can define an **inner product** between two vectors that tells us how much overlap they have.

Take just one of these representations:

The Hilbert space has complex valued vectors. The inner product looks *similar*, but slightly different. Let

The inner product is defined as

This notation is cumbersome, so let's complete our knowledge of Dirac notation by introducing the **bra**:

The inner product is defined as

Written another way,

Pro tip:

Exercise: compute the inner product of the state

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

with itself.

Exercise: compute the inner product between all possible combinations of $|0\rangle$ and $|1\rangle$.

$\langle 0 0\rangle$	
$\langle 0 1 \rangle$	
$\langle 1 0 \rangle$	
$\langle 1 1 \rangle$	

Orthonormal bases

For a single qubit, a pair of states that are **normalized** and **orthogonal** constitute an **orthonormal** basis for the Hilbert space.

Exercise: do the states

$$|p\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{i}{\sqrt{2}}|1\rangle, \quad |m\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{i}{\sqrt{2}}|1\rangle$$

form an orthonormal basis?

Projective measurements

Measurement is performed with respect to a basis; we perform **projections** to determine the overlap with a given basis state.

(Image for expository purposes only!)

Projective measurements

When we measure state $|\varphi\rangle$ with respect to basis $\{|\psi_i\rangle\}$, the probability of obtaining outcome i is

If we observe outcome i, following the measurement the system will be left in state $|\psi_i\rangle$.

Measurement in computational basis

Let
$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
.

Then if we measure $|\psi\rangle$ is the computational basis,

Measurement in computational basis

So far we've seen 3 ways of extracting information out of a QNode:

- 1. qml.state()
- 2. qml.probs(wires=x)
- 3. qml.sample()

These return results of measurements taken with respect to the computational basis; and most hardware only allows for computational basis measurements.

How can we measure with respect to *different bases* with that restriction? (and what does that mean?)

Measurement in computational basis

Exercise: what are the measurement outcome probabilities if we measure

$$|p\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{i}{\sqrt{2}}|1\rangle, \quad |m\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{i}{\sqrt{2}}|1\rangle$$

in the computational basis?

Projective measurements can be performed with respect to any orthonormal basis. For example, $\{|+\rangle, |-\rangle\}$:

Image credit: Codebook node I.9

Use a basis rotation to "trick" the quantum computer.

Suppose we want to measure in the "Y" basis:

$$|p\rangle = \frac{1}{\sqrt{2}} (|0\rangle + i|1\rangle), \quad |m\rangle = \frac{1}{\sqrt{2}} (|0\rangle - i|1\rangle).$$

Unitary operations preserve length *and* angles between normalized quantum state vectors.

There exists some unitary transformation that will convert between this basis and the computational basis.

Exercise: determine a quantum circuit that sends

$$|0\rangle \rightarrow |p\rangle = \frac{1}{\sqrt{2}} (|0\rangle + i|1\rangle)$$

 $|1\rangle \rightarrow |m\rangle = \frac{1}{\sqrt{2}} (|0\rangle - i|1\rangle)$

At the end of our circuit, we can then apply the reverse (adjoint) of this transformation rotate *back* to the computational basis.

That way, if we measure and observe $|0\rangle$, we know that this was previously $|p\rangle$ in the Y basis (and similarly for $|m\rangle$).

Adjoints

In PennyLane, we can compute adjoints of operations and entire quantum functions using qml.adjoint:

```
def some_function(x):
    qml.RZ(Z, wires=0)

def apply_adjoint(x):
    qml.adjoint(qml.S)(wires=0)
    qml.adjoint(some_function)(x)
```

qml.adjoint is a special type of function called a **transform**. We will cover transforms in more detail later in the course.

Basis rotations: hands-on

Let's run the following circuit, and measure in the Y basis

$$|0\rangle$$
 $RX(x)$ $RY(y)$ $RZ(z)$

Hands-on time...

Generally, we are interested in measuring real, physical quantities. In physics, these are called observables.

Observables are represented mathematically by Hermitian matrices. An operator (matrix) H is Hermitian if

$$H = H^{\dagger}$$

Why Hermitian? The possible measurement outcomes are given by the eigenvalues of the operator, and eigenvalues of Hermitian operators are real.

Example:

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Z is Hermitian:

Its eigensystem is

Example:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

X is Hermitian and its (normalized) eigensystem is

Example:

$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Y is Hermitian and its (normalized) eigensystem is

Expectation values

When we measure X, Y, or Z on a state, for each shot we will get one of the eigenstates (/eigenvalues). If we take multiple shots, what do we expect to see *on average*?

Analytically, the **expectation value** of measuring the observable M given the state $|\psi\rangle$ is

$$\langle \mathbf{M} \rangle = \langle \psi | \mathbf{M} | \psi \rangle.$$

Expectation values: analytical

Example: consider the quantum state

$$|\psi\rangle = \frac{1}{2}|0\rangle - i\frac{\sqrt{3}}{2}|1\rangle.$$

Let's compute the expectation value of Y:

Expectation values and the Bloch sphere

The Bloch sphere offers us some more insight into what a projective measurement is.

Exercise: derive the expression in blue by computing $\langle \psi | Y | \psi \rangle$.

Expectation values and the Bloch sphere

Expectation values: from measurement data

Let's compute the expectation value of Z for the following circuit using 10 samples:

```
dev = qml.device('default.qubit', wires=1, shots=10)

@qml.qnode(dev)
def circuit():
    qml.RX(2*np.pi/3, wires=0)
    return qml.sample()
```

Results might look something like this:

```
[1, 1, 1, 0, 1, 1, 1, 0, 1, 1]
```

Expectation values: from measurement data

The expectation value pertains to the measured eigenvalue; recall Z eigenstates are

$$\lambda_1 = +1, \qquad |\psi_1\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$$
 $\lambda_2 = -1, \qquad |\psi_2\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$

So when we observe $|0\rangle$, this is eigenvalue +1 (and if $|1\rangle$, -1). Our samples shift from

to

$$[-1, -1, -1, 1, -1, -1, -1, 1, -1, -1]$$

Expectation values: from measurement data

The expectation value is the weighted average of this, where the weights are the eigenvalues:

where

- n_1 is the number of +1 eigenvalues
- n_{-1} is the number of -1 eigenvalues
- *N* is the total number of shots

For our example,

Expectation values

Let's do this in PennyLane instead:

```
dev = qml.device('default.qubit', wires=1)

@qml.qnode(dev)
def measure_z():
    qml.RX(2*np.pi/3, wires=0)
    return qml.expval(qml.PauliZ(0))
```

Recap

- Define a universal gate set
- Compute the inner product between two quantum states
- Perform a projective measurement
- Measure a qubit in different bases
- Measure single-qubit expectation values

Next time

Content:

- Mathematical representation of multi-qubit systems
- Multi-qubit gates
- Entanglement

Action items:

- 1. Finish assignment 0
- 2. Keep an eye out for A1 and literacy assignment

Recommended reading:

- From today: Codebook nodes I.9-I.10
- For next time: Codebook nodes I.11-I.14
- Nielsen & Chuang 4.3