Foundation of Cryptography (0368-4162-01), Lecture 4 Interactive Proofs and Zero Knowledge

Iftach Haitner, Tel Aviv University

November 29, 2011

Part I

Interactive Proofs

Definition 1 (NP)

 $\mathcal{L} \in NP$ iff $\exists \ell \in \text{poly}$ and poly-time algorithm V such that:

- $\forall x \in \mathcal{L} \cap \{0,1\}^n$ there exists $w \in \{0,1\}^{\ell(n)}$ s.t. V(x,w) = 1
- $V(x, \cdot) = 0$ for every $x \notin \mathcal{L}$

Definition 1 (NP)

 $\mathcal{L} \in \text{NP}$ iff $\exists \ell \in \text{poly}$ and poly-time algorithm V such that:

- $\forall x \in \mathcal{L} \cap \{0,1\}^n$ there exists $w \in \{0,1\}^{\ell(n)}$ s.t. V(x,w) = 1
- $V(x, \cdot) = 0$ for every $x \notin \mathcal{L}$
- Non-interactive proof

Definition 1 (NP)

 $\mathcal{L} \in \text{NP}$ iff $\exists \ell \in \text{poly}$ and poly-time algorithm V such that:

- $\forall x \in \mathcal{L} \cap \{0,1\}^n$ there exists $w \in \{0,1\}^{\ell(n)}$ s.t. V(x,w) = 1
- $V(x, \cdot) = 0$ for every $x \notin \mathcal{L}$
- Non-interactive proof
- Interactive proofs?

Definition 1 (NP)

 $\mathcal{L} \in \text{NP}$ iff $\exists \ell \in \text{poly}$ and poly-time algorithm V such that:

- $\forall x \in \mathcal{L} \cap \{0,1\}^n$ there exists $w \in \{0,1\}^{\ell(n)}$ s.t. V(x,w) = 1
- $V(x, \cdot) = 0$ for every $x \notin \mathcal{L}$
- Non-interactive proof
- Interactive proofs?

Interactive algorithm

- Interactive algorithm
- Protocol $\pi = (A, B)$

- Interactive algorithm
- Protocol $\pi = (A, B)$
- RV describing the parties joint output $\langle A(i_A), B(i_B))(i) \rangle$

- Interactive algorithm
- Protocol $\pi = (A, B)$
- RV describing the parties joint output $\langle A(i_A), B(i_B) \rangle$
- *m*-round algorithm, *m*-round protocol

Definition 2 (Interactive Proof (IP))

A protocol (P,V) is an interactive proof for $\mathcal{L},$ if V is PPT and the following hold:

Completeness $\forall x \in \mathcal{L}, \Pr[\langle (P, V)(x) \rangle = \texttt{Accept}] \geq 2/3$

Soundness $\forall x \notin \mathcal{L}$, and *any* algorithm P*

$$\Pr[\langle (\mathsf{P}^*,\mathsf{V})(x) \rangle = \texttt{Accept}] \leq 1/3$$

Definition 2 (Interactive Proof (IP))

A protocol (P,V) is an interactive proof for $\mathcal{L},$ if V is PPT and the following hold:

Completeness
$$\forall x \in \mathcal{L}, \Pr[\langle (P, V)(x) \rangle = \texttt{Accept}] \geq 2/3$$

Soundness $\forall x \notin \mathcal{L}$, and *any* algorithm P^*

$$\Pr[\langle (\mathsf{P}^*,\mathsf{V})(x) \rangle = \texttt{Accept}] \leq 1/3$$

 \bullet IP = PSPACE

Definition 2 (Interactive Proof (IP))

A protocol (P,V) is an interactive proof for $\mathcal{L},$ if V is PPT and the following hold:

Completeness
$$\forall x \in \mathcal{L}, \Pr[\langle (P, V)(x) \rangle = \texttt{Accept}] \geq 2/3$$

Soundness $\forall x \notin \mathcal{L}$, and *any* algorithm P*

$$\Pr[\langle (\mathsf{P}^*,\mathsf{V})(x) \rangle = \texttt{Accept}] \leq 1/3$$

- \bullet IP = PSPACE
- We typically consider (and achieve) perfect completeness

Definition 2 (Interactive Proof (IP))

A protocol (P, V) is an interactive proof for \mathcal{L} , if V is PPT and the following hold:

Completeness
$$\forall x \in \mathcal{L}$$
, $\Pr[\langle (P, V)(x) \rangle = \texttt{Accept}] \ge 2/3$
Soundness $\forall x \notin \mathcal{L}$, and any algorithm P^*
 $\Pr[\langle (P^*, V)(x) \rangle = \texttt{Accept}] \le 1/3$

- \bullet IP = PSPACE
- We typically consider (and achieve) perfect completeness
- Negligible "soundness error" achieved via repetition.

Definition 2 (Interactive Proof (IP))

A protocol (P, V) is an interactive proof for \mathcal{L} , if V is PPT and the following hold:

Completeness
$$\forall x \in \mathcal{L}$$
, $\Pr[\langle (P,V)(x) \rangle = \texttt{Accept}] \ge 2/3$
Soundness $\forall x \notin \mathcal{L}$, and any algorithm P^*
 $\Pr[\langle (P^*,V)(x) \rangle = \texttt{Accept}] \le 1/3$

- \bullet IP = PSPACE
- We typically consider (and achieve) perfect completeness
- Negligible "soundness error" achieved via repetition.
- soundness only against PPT. computationally sound proofs/interactive arguments.

Definition 2 (Interactive Proof (IP))

A protocol (P,V) is an interactive proof for $\mathcal{L},$ if V is PPT and the following hold:

Completeness
$$\forall x \in \mathcal{L}$$
, $\Pr[\langle (P,V)(x) \rangle = \texttt{Accept}] \ge 2/3$
Soundness $\forall x \notin \mathcal{L}$, and any algorithm P^*
 $\Pr[\langle (P^*,V)(x) \rangle = \texttt{Accept}] \le 1/3$

- \bullet IP = PSPACE
- We typically consider (and achieve) perfect completeness
- Negligible "soundness error" achieved via repetition.
- soundness only against PPT. computationally sound proofs/interactive arguments.
- efficient provers via "auxiliary input"

Section 1

IP for GNI

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

Graphs $G_0 = ([m], E_0)$ and $G_1 = ([m], E_1)$ are isomorphic, denoted $G_0 \equiv G_1$, if $\exists \pi \in \Pi_m$ such that $(u, v) \in E_0$ iff $(\pi(u), \pi(v)) \in E_1$. GI = $\{(G_0, G_1) : G_0 \equiv G_1\}$.

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

Graphs $G_0=([m],E_0)$ and $G_1=([m],E_1)$ are isomorphic, denoted $G_0\equiv G_1$, if $\exists \pi\in\Pi_m$ such that $(u,v)\in E_0$ iff $(\pi(u),\pi(v))\in E_1$. GI = $\{(G_0,G_1)\colon G_0\equiv G_1\}$.

Assume reasonable mapping from graphs to strings

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

Graphs $G_0=([m],E_0)$ and $G_1=([m],E_1)$ are isomorphic, denoted $G_0\equiv G_1$, if $\exists \pi\in\Pi_m$ such that $(u,v)\in E_0$ iff $(\pi(u),\pi(v))\in E_1$. $GI=\{(G_0,G_1)\colon G_0\equiv G_1\}.$

- Assume reasonable mapping from graphs to strings
- GI ∈ NP

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

Graphs $G_0 = ([m], E_0)$ and $G_1 = ([m], E_1)$ are isomorphic, denoted $G_0 \equiv G_1$, if $\exists \pi \in \Pi_m$ such that $(u, v) \in E_0$ iff $(\pi(u), \pi(v)) \in E_1$. GI = $\{(G_0, G_1) : G_0 \equiv G_1\}$.

- Assume reasonable mapping from graphs to strings
- $GI \in NP$
- Does $GNI = \{(G_0, G_1) : G_0 \not\equiv G_1\} \in NP?$

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

Graphs $G_0=([m],E_0)$ and $G_1=([m],E_1)$ are isomorphic, denoted $G_0\equiv G_1$, if $\exists \pi\in\Pi_m$ such that $(u,v)\in E_0$ iff $(\pi(u),\pi(v))\in E_1$. $GI=\{(G_0,G_1)\colon G_0\equiv G_1\}.$

- Assume reasonable mapping from graphs to strings
- GI ∈ NP
- Does GNI = $\{(G_0, G_1): G_0 \not\equiv G_1\} \in NP$?
- We will show a simple interactive proof for GNI

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

Graphs $G_0=([m],E_0)$ and $G_1=([m],E_1)$ are isomorphic, denoted $G_0\equiv G_1$, if $\exists \pi\in\Pi_m$ such that $(u,v)\in E_0$ iff $(\pi(u),\pi(v))\in E_1$. $GI=\{(G_0,G_1)\colon G_0\equiv G_1\}.$

- Assume reasonable mapping from graphs to strings
- GI ∈ NP
- Does GNI = $\{(G_0, G_1): G_0 \not\equiv G_1\} \in NP$?
- We will show a simple interactive proof for GNI Idea: Beer tasting...

IP for GNI

Protocol 4 ((P, V))

Common input $G_0 = ([m], E_0), G_1 = ([m], E_1)$

- V chooses $b \leftarrow \{0,1\}$ and $\pi \leftarrow \Pi_m$, and sends $\pi(E_b) = \{(\pi(u), \pi(v)) : (u, v) \in E_b\}$ to P
- ② P send b' to V (tries to set b' = b)
- \circ V accepts iff b' = b

IP for GNI

Protocol $\overline{4((P,V))}$

Common input $G_0 = ([m], E_0), G_1 = ([m], E_1)$

- V chooses $b \leftarrow \{0, 1\}$ and $\pi \leftarrow \Pi_m$, and sends $\pi(E_b) = \{(\pi(u), \pi(v)) : (u, v) \in E_b\}$ to P
- 2 P send b' to V (tries to set b' = b)
- 3 V accepts iff b' = b

Claim 5

The above protocol is IP for GNI, with perfect completeness and soundness error $\frac{1}{2}$.

 Graph isomorphism is an equivalence relation (separates the set of all graph pairs into separate subsets)

- Graph isomorphism is an equivalence relation (separates the set of all graph pairs into separate subsets)
- $([m], \pi(E_i))$ is a random element in $[G_i]$ the equivalence class of G_i

- Graph isomorphism is an equivalence relation (separates the set of all graph pairs into separate subsets)
- $([m], \pi(E_i))$ is a random element in $[G_i]$ the equivalence class of G_i

Hence,

$$G_0 \equiv G_1$$
: $\Pr[b' = b] \leq \frac{1}{2}$.

- Graph isomorphism is an equivalence relation (separates the set of all graph pairs into separate subsets)
- $([m], \pi(E_i))$ is a random element in $[G_i]$ the equivalence class of G_i

Hence,

```
G_0 \equiv G_1: \Pr[b' = b] \le \frac{1}{2}.

G_0 \not\equiv G_1: \Pr[b' = b] = 1 (i.e., i can, possibly inefficiently, extracted from \pi(E_i))
```

Part II

Zero knowledge Proofs

The concept of zero knowledge

Proving w/o revealing any addition information.

The concept of zero knowledge

- Proving w/o revealing any addition information.
- What does it mean?

The concept of zero knowledge

- Proving w/o revealing any addition information.
- What does it mean?
 Simulation paradigm.

Zero knowledge Proof

Definition 6 (computational ZK)

An interactive proof (P, V) is computational zero-knowledge proof (CZKP) for \mathcal{L} , if \forall PPT V*, \exists PPT S such that $\{\langle (P,V^*)(x)\rangle\}_{x\in\mathcal{L}}\approx_c \{S(x)\}_{x\in\mathcal{L}}.$

Zero knowledge Proof

Definition 6 (computational ZK)

An interactive proof (P,V) is computational zero-knowledge proof (CZKP) for \mathcal{L} , if \forall PPT V^* , \exists PPT S such that $\{\langle (P,V^*)(x)\rangle\}_{x\in\mathcal{L}}\approx_{\mathcal{C}}\{S(x)\}_{x\in\mathcal{L}}.$

Perfect ZK (PZKP)/statistical ZK (SZKP) – the above dist. are identically/statistically close, even for *unbounded* V*.

Zero knowledge Proof

Definition 6 (computational ZK)

An interactive proof (P, V) is computational zero-knowledge proof (CZKP) for \mathcal{L} , if \forall PPT V^* , \exists PPT S such that $\{\langle (P, V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_{\mathcal{C}} \{S(x)\}_{x \in \mathcal{L}}$.

Perfect ZK (PZKP)/statistical ZK (SZKP) – the above dist. are identically/statistically close, even for *unbounded* V*.

ZK is a property of the prover.

Zero knowledge Proof

Definition 6 (computational ZK)

An interactive proof (P, V) is computational zero-knowledge proof (CZKP) for \mathcal{L} , if \forall PPT V^* , \exists PPT S such that $\{\langle (P, V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_{\mathcal{C}} \{S(x)\}_{x \in \mathcal{L}}$.

- ZK is a property of the prover.
- ZK only required to hold with respect to true statements.

Zero knowledge Proof

Definition 6 (computational ZK)

An interactive proof (P, V) is computational zero-knowledge proof (CZKP) for \mathcal{L} , if \forall PPT V^* , \exists PPT S such that $\{\langle (P, V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_{\mathcal{C}} \{S(x)\}_{x \in \mathcal{L}}$.

- ZK is a property of the prover.
- ZK only required to hold with respect to true statements.
- wlg. V*'s outputs is its "view".

Zero knowledge Proof

Definition 6 (computational ZK)

An interactive proof (P, V) is computational zero-knowledge proof (CZKP) for \mathcal{L} , if \forall PPT V^* , \exists PPT S such that $\{\langle (P, V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_{\mathcal{C}} \{S(x)\}_{x \in \mathcal{L}}$.

- ZK is a property of the prover.
- ZK only required to hold with respect to true statements.
- wlg. V*'s outputs is its "view".
- **1** Trivial to achieve for $\mathcal{L} \in \mathsf{BPP}$

Zero knowledge Proof

Definition 6 (computational ZK)

An interactive proof (P, V) is computational zero-knowledge proof (CZKP) for \mathcal{L} , if \forall PPT V^* , \exists PPT S such that $\{\langle (P, V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_{\mathcal{C}} \{S(x)\}_{x \in \mathcal{L}}$.

- ZK is a property of the prover.
- ZK only required to hold with respect to true statements.
- wlg. V*'s outputs is its "view".
- **1** Trivial to achieve for $\mathcal{L} \in BPP$
- 5 Extension: P gets auxiliary input (e.g., NP witness)

Zero knowledge Proof

Definition 6 (computational ZK)

An interactive proof (P, V) is computational zero-knowledge proof (CZKP) for \mathcal{L} , if \forall PPT V^* , \exists PPT S such that $\{\langle (P, V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_{\mathcal{C}} \{S(x)\}_{x \in \mathcal{L}}$.

- ZK is a property of the prover.
- ZK only required to hold with respect to true statements.
- wlg. V*'s outputs is its "view".
- lacktriangle Trivial to achieve for $\mathcal{L} \in \mathsf{BPP}$
- Extension: P gets auxiliary input (e.g., NP witness)
- The "standard" NP proof is typically not zero knowledge

Zero knowledge Proof

Definition 6 (computational ZK)

An interactive proof (P, V) is computational zero-knowledge proof (CZKP) for \mathcal{L} , if \forall PPT V^* , \exists PPT S such that $\{\langle (P, V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_{\mathcal{C}} \{S(x)\}_{x \in \mathcal{L}}$.

- ZK is a property of the prover.
- ZK only required to hold with respect to true statements.
- wlg. V*'s outputs is its "view".
- **1** Trivial to achieve for $\mathcal{L} \in \mathsf{BPP}$
- Extension: P gets auxiliary input (e.g., NP witness)
- The "standard" NP proof is typically not zero knowledge
- Next class ZK for all NP

Section 2

ZK Proof for GI

${\bf Z}{\bf K}$ Proof for Graph Isomorphism

Idea: route finding

ZK Proof for Graph Isomorphism

Idea: route finding

Protocol 7 ((P, V))

Common input
$$x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$$

P's input a permutation π such that $\pi(E_1) = E_0$

- **1** P chooses $\pi' \leftarrow \Pi_m$ and sends $E = \pi'(E_0)$ to V
- ② V sends b ← {0,1} to P
- **3** if b = 0, P sets $\pi'' = \pi'$, otherwise, it sends $\pi'' = \pi' \circ \pi$ to V
- V accepts iff $\pi''(E_b) = E$

ZK Proof for Graph Isomorphism

Idea: route finding

Protocol 7 ((P, V))

Common input $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

P's input a permutation π such that $\pi(E_1) = E_0$

- **1** P chooses $\pi' \leftarrow \Pi_m$ and sends $E = \pi'(E_0)$ to V
- V sends b ← {0, 1} to P
- **3** if b = 0, P sets $\pi'' = \pi'$, otherwise, it sends $\pi'' = \pi' \circ \pi$ to V
- V accepts iff $\pi''(E_b) = E$

Claim 8

The above protocol is SZKP for GI, with perfect completeness and soundness $\frac{1}{2}$.

Proving Claim 8

Completeness Clear

Proving Claim 8

Completeness Clear

Soundness If exist $j \in \{0, 1\}$ for which $\nexists \pi' \in \Pi_m$ with $\pi'(E_j) = E$, then V rejects w.p. at least $\frac{1}{2}$.

Proving Claim 8

Completeness Clear

Soundness If exist $j \in \{0,1\}$ for which $\nexists \pi' \in \Pi_m$ with $\pi'(E_j) = E$, then V rejects w.p. at least $\frac{1}{2}$. Assuming V rejects w.p. less than $\frac{1}{2}$ and lett π_0 and π_1 be the values guaranteed by the above observation (i.e., mapping E_0 and E_1 to E respectively).

Proving Claim 8

Completeness Clear

Soundness If exist $j \in \{0, 1\}$ for which $\nexists \pi' \in \Pi_m$ with $\pi'(E_j) = E$, then V rejects w.p. at least $\frac{1}{2}$. Assuming V rejects w.p. less than $\frac{1}{2}$ and lett π_0 and π_1 be the values guaranteed by the above observation (i.e., mapping E_0 and E_1 to E respectively).

Then $\pi_0^{-1}(\pi_1(E_1)) = \pi_0$

Proving Claim 8

Completeness Clear

Soundness If exist $j \in \{0, 1\}$ for which $\nexists \pi' \in \Pi_m$ with

 $\pi'(E_j) = E$, then V rejects w.p. at least $\frac{1}{2}$. Assuming V rejects w.p. less than $\frac{1}{2}$ and lett π_0

and π_1 be the values guaranteed by the above observation (i.e., mapping E_0 and E_1 to E respectively).

Then $\pi_0^{-1}(\pi_1(E_1)) = \pi_0 \implies (G_0, G_1) \in GI.$

Proving Claim 8

Completeness Clear

Soundness If exist $j \in \{0, 1\}$ for which $\nexists \pi' \in \Pi_m$ with

 $\pi'(E_j) = E$, then V rejects w.p. at least $\frac{1}{2}$.

Assuming V rejects w.p. less than $\frac{1}{2}$ and lett π_0 and π_1 be the values guaranteed by the above observation (i.e., mapping E_0 and E_1 to E respectively).

Then
$$\pi_0^{-1}(\pi_1(E_1)) = \pi_0 \implies (G_0, G_1) \in GI$$
.

ZK Idea: for $(G_0, G_1) \in GI$, it is easy to generate a random transcript for Steps 1-2, and to be able to open it with prob $\frac{1}{2}$.

The simulator

For a start we consider a deterministic cheating verifier V^* that never aborts.

The simulator

For a start we consider a deterministic cheating verifier V* that never aborts.

Algorithm 9 (S)

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$ Do |x| times:

- **①** Choose $b' \leftarrow \{0,1\}$ and $\pi \leftarrow \Pi_m$, and "send" $\pi(E_{b'})$ to $V^*(x)$.
- Let b be V*'s answer. If b = b', send π to V*, and output V*'s output.
 Otherwise, rewind the simulation to its first step.

Abort

The simulator

For a start we consider a deterministic cheating verifier V* that never aborts.

Algorithm 9 (S)

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

Do |x| times:

- **1** Choose $b' \leftarrow \{0,1\}$ and $\pi \leftarrow \Pi_m$, and "send" $\pi(E_{b'})$ to $V^*(x)$.
- Let b be V*'s answer. If b = b', send π to V*, and output V*'s output.
 Otherwise, rewind the simulation to its first step.

Abort

Claim 10

$$\{\langle (P,V^*)(x)\rangle\}_{x\in GI}\approx \{S(x)\}_{x\in GI}$$

Proving Claim 10

Algorithm 11 (S')

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

Do |x| times:

- **①** Choose $\pi \leftarrow \Pi_m$ and sends $E = \pi(E_0)$ to $V^*(x)$.
- 2 Let b be V*'s answer.

w.p. $\frac{1}{2}$, find π' such that $E = \pi'(E_b)$, send it to V* and output V*'s output.

Otherwise, rewind the simulation to its first step.

Abort

Proving Claim 10

Algorithm 11 (S')

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

Do |x| times:

- Choose $\pi \leftarrow \Pi_m$ and sends $E = \pi(E_0)$ to $V^*(x)$.
- 2 Let b be V*'s answer.

w.p. $\frac{1}{2}$, find π' such that $E = \pi'(E_b)$, send it to V* and output V*'s output.

Otherwise, rewind the simulation to its first step.

Abort

Claim 12

$$S(x) \equiv S'(x)$$
 for any $x \in GI$.

Proving Claim 10

Algorithm 11 (S')

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

Do |x| times:

- **①** Choose $\pi \leftarrow \Pi_m$ and sends $E = \pi(E_0)$ to $V^*(x)$.
- 2 Let b be V*'s answer.

w.p. $\frac{1}{2}$, find π' such that $E = \pi'(E_b)$, send it to V* and output V*'s output.

Otherwise, rewind the simulation to its first step.

Abort

Claim 12

$$S(x) \equiv S'(x)$$
 for any $x \in GI$.

Proof: ?

Proving Claim 10 cont.

Algorithm 13 (S")

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

- **①** Choose $\pi \leftarrow \Pi_m$ and sends $E = \pi(E_0)$ to $V^*(x)$.
- ② find π' such that $E = \pi'(E_b)$, send it to V* and output V*'s output.

Proving Claim 10 cont.

Algorithm 13 (S")

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

- **①** Choose $\pi \leftarrow \Pi_m$ and sends $E = \pi(E_0)$ to $V^*(x)$.
- ② find π' such that $E = \pi'(E_b)$, send it to V* and output V*'s output.

Claim 14

 $\forall x \in GI$ it holds that

• $SD(S''(x), S'(x)) \leq 2^{-|x|}$.

Proving Claim 10 cont.

Algorithm 13 (S")

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

- **①** Choose $\pi \leftarrow \Pi_m$ and sends $E = \pi(E_0)$ to $V^*(x)$.
- ② find π' such that $E = \pi'(E_b)$, send it to V* and output V*'s output.

Claim 14

 $\forall x \in \mathsf{GI}$ it holds that

- SD(S"(x), S'(x)) $\le 2^{-|x|}$.
- $(\mathsf{P}, \mathsf{V}^*(x)) \rangle \equiv \mathsf{S}''(x).$

Proof: ?

Remarks

 $\textbf{0} \ \ \text{We proved that} \ \ \text{GI} \in SZKP$

- $\textbf{0} \ \ \text{We proved that} \ \ \text{GI} \in SZKP$
- Aborting verifiers

- We proved that $GI \in SZKP$
- Aborting verifiers
- Randomized verifiers

- We proved that $GI \in SZKP$
- Aborting verifiers
- Randomized verifiers
- Negligible soundness error?

- We proved that $GI \in SZKP$
- Aborting verifiers
- Randomized verifiers
- Negligible soundness error?
- Auxiliary inputs (for both parties)

- We proved that $GI \in SZKP$
- Aborting verifiers
- Randomized verifiers
- Negligible soundness error?
- Auxiliary inputs (for both parties)
- Perfect ZK for "expected time simulators"

- We proved that $GI \in SZKP$
- Aborting verifiers
- Randomized verifiers
- Negligible soundness error?
- Auxiliary inputs (for both parties)
- Perfect ZK for "expected time simulators"
- "Black box" simulation

Section 3

Black-box ZK

Black-box simulators

Definition 15 (Black-box simulator)

(P,V) is CZKP with black-box simulation for \mathcal{L} , if \exists oracle-aided PPT S s.t. for every deterministic polynomial-time V^* ,

$$\{(\mathsf{P}(y_x),\mathsf{V}^*(z))(x)\}_{x\in\mathcal{L}}\approx_{c}\{\mathsf{S}^{\mathsf{V}^*(x,z_x,\cdot)}(x,|z_x|)\}_{x\in\mathcal{L}}$$

where $y_x \in R_{\mathcal{L}}(x)$, $z_x \in \{0,1\}^*$ and $V^*(x,z_x,\cdot)$ is the next message function of V^* on input x and auxiliary input z_x .

Black-box simulators

Definition 15 (Black-box simulator)

(P,V) is CZKP with black-box simulation for \mathcal{L} , if \exists oracle-aided PPT S s.t. for every deterministic polynomial-time V^* ,

$$\{(\mathsf{P}(y_x),\mathsf{V}^*(z))(x)\}_{x\in\mathcal{L}}\approx_{c}\{\mathsf{S}^{\mathsf{V}^*(x,z_x,\cdot)}(x,|z_x|)\}_{x\in\mathcal{L}}$$

where $y_x \in R_{\mathcal{L}}(x)$, $z_x \in \{0,1\}^*$ and $V^*(x,z_x,\cdot)$ is the next message function of V^* on input x and auxiliary input z_x . Prefect and statistical variants are defined analogously.

Black-box simulators

Definition 15 (Black-box simulator)

(P,V) is CZKP with black-box simulation for \mathcal{L} , if \exists oracle-aided PPT S s.t. for every deterministic polynomial-time V^* ,

$$\{(\mathsf{P}(y_x),\mathsf{V}^*(z))(x)\}_{x\in\mathcal{L}}\approx_c \{\mathsf{S}^{\mathsf{V}^*(x,z_x,\cdot)}(x,|z_x|)\}_{x\in\mathcal{L}}$$

where $y_x \in R_{\mathcal{L}}(x)$, $z_x \in \{0,1\}^*$ and $V^*(x,z_x,\cdot)$ is the next message function of V^* on input x and auxiliary input z_x . Prefect and statistical variants are defined analogously.

"Most simulators" are black box (including the one we gave above)

Black-box simulators

Definition 15 (Black-box simulator)

(P,V) is CZKP with black-box simulation for \mathcal{L} , if \exists oracle-aided PPT S s.t. for every deterministic polynomial-time V^* ,

$$\{(\mathsf{P}(y_x),\mathsf{V}^*(z))(x)\}_{x\in\mathcal{L}}\approx_{c}\{\mathsf{S}^{\mathsf{V}^*(x,z_x,\cdot)}(x,|z_x|)\}_{x\in\mathcal{L}}$$

where $y_x \in R_{\mathcal{L}}(x)$, $z_x \in \{0,1\}^*$ and $V^*(x,z_x,\cdot)$ is the next message function of V^* on input x and auxiliary input z_x . Prefect and statistical variants are defined analogously.

- "Most simulators" are black box (including the one we gave above)
- 2 Strictly weaker then general simulation!