Report for Programming Problem 2 - ARChitecture

Team:

Student ID: 2018293871 **Name** Sofia Margarida Ribeiro da Silva **Student ID:** 2018296218 **Name** Sofia Meireles Fonseca Costa

1. Algorithm description

Para resolver o problema 2 resolvemos utilizar uma abordagem bottom-up. Criámos uma tabela com um array onde colocámos a informação sobre a subida (posição 0) e a informação sobre a descida (posição 1). Relativamente à subida, para calcular o novo valor da tabela, guardamos a soma dos elementos da coluna anterior e adicionamos/subtraímos os valores necessários, dependendo da posição em que estamos. Relativamente à descida, o princípio é o mesmo, mas aqui somamos tanto os valores da subida como os valores da descida. Esta abordagem é adequada, uma vez que eliminamos a necessidade de voltar a percorrer a tabela para calcular as somas. Para realizar estas operações usámos as funções *mod_add* e *mod_sub*, disponibilizadas pelo professor.

De forma a não percorrer partes desnecessárias da matriz, utilizámos uma variável aux que nos permitiu percorrer apenas os arcos que chegam efetivamente ao chão.

2. Data structures

Relativamente às estruturas de dados utilizadas, optámos por ter dois vetores de 3 dimensões. Estes têm dimensão H-h+1 linhas por 1 coluna. Cada elemento do vetor é composto por outro vetor com 2 elementos.

De forma a guardar a soma da subida, a soma da descida e o contador do número de opções possíveis para fazer o arco, recorremos a inteiros.

3. Correctness

Inicialmente obtivemos 180 pontos com Memory Limit Exceed, pelo que tivemos de diminuir a nossa tabela e passámos a utilizar apenas duas colunas. No entanto, com esta nova abordagem, em cada coluna é necessário copiar todos os valores para um novo array, o que faz com que a complexidade da solução não seja a melhor e daí ficarmos com 180 Time Limit Exceed.

Uma solução seria passar os valores por referência, não sendo necessário fazer uma cópia.

4. Algorithm Analysis

A complexidade temporal do nosso algoritmo é de $\mathrm{O}(n^2)$). Em relação à memória, a sua complexidade é de $2n^2$.

5. References

Slides fornecidos pelo professor.