COMPUTER GAMES IN 1980-2020: ANNUAL SALES

Data analysis & visualization

Data Description

- Rank rank number (ordered)
- Name game
- Platform game's platform
- Year year when released
- Genre genre
- Publisher game's publisher
- NA Sales sales in North America, millions of copies
- EU_Sales sales in Europe, millions of copies
- JP_Sales sales in Japan, millions of copies
- Other_Sales sales in other countries, millions of copies
- Global_Sales global sales, millions of copies

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
plt.style.use('seaborn')
```

IMPORTING DATA

```
In [2]:
# Raw data - first Look
df = pd.read_csv('data.csv')
df.head(3)
```

Out[2]:	Rank	Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
	0 1	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	3.77	8.46	82.74

	Rank	Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	3.79	3.31	35.82

1 - 'Sports' genre sales in Japan - linear plot, by year, 1980-2020

```
In [3]: # Framing data
    sales_sports_Japan = df[df['Genre'] == 'Sports'].groupby('Year').sum()['JP_Sales']

# Instantiating Figure & Axes classes - now we have a plot and a sublpot
    fi, ax0 = plt.subplots(figsize = (12,6))

# Filling the subplot with lines
    ax0.plot(sales_sports_Japan)
    ax0.set_title("total game sales in japan for 'sports', 1980-2020".upper())
    ax0.set_xlabel('years'.upper())
    ax0.set_ylabel('sales, mln usd'.upper())
    ax0.axhline(sales_sports_Japan.median(), color = 'black', label = 'Median value')
    ax0.axhline(sales_sports_Japan.mean(), color = 'orange', label = 'Mean value')

# Let's show!
    ax0.legend()
    plt.show()
```


2 - 'Activision' Sales

North America, Europe, Japan, globally

by year, 1980-2020

3 - 'Activision' Sales

by region

1980-2020

```
ax.plot(region['region'].index, region['region'], label = region['label'])

bins_width = (region['region'].index.max() - region['region'].index.min())/18

xticks = [region['region'].index.min() + i*float(bins_width) for i in range(19)]

ax.set_xticks(xticks)

ax.set_title(f"Activision Sales in {region['label']}".upper(), pad = 20)

ax.set_xlabel('Years'.upper())

ax.set_ylabel('Sales, mln USD'.upper())

ax.legend()

# Let's show!
plt.show()
```

ACTIVISION SALES IN NORTH AMERICA

ACTIVISION SALES IN EUROPE

ACTIVISION SALES IN JAPAN

Key outlines:

1998 - current - game sales are growing up due to high-speed spread of gadgets in all the regions Formiddable growth can also be associated with new graphic technologies coming to games

4 - 'Activision Sales' - four plots (for comparison)

```
figure, axes = plt.subplots(nrows = 2, ncols = 2, sharex = True, figsize = (17, 12))

for reg in regions:
    axes[reg['i'], reg['j']].plot(reg['region'].index, reg['region'])
    axes[reg['i'], reg['j']].set_title(reg['label'])
    axes[reg['i'], reg['j']].axhline(reg['region'].median(), color = 'orange', label = 'Median value')
    axes[reg['i'], reg['j']].axhline(reg['region'].mean(), color = 'red', label = 'Mean value')

for ax in axes:
    for ax_ax in ax:
        ax_ax.set_xlabel('Years')
        ax_ax.set_ylabel('Sales in mln USD')
```

```
bins_width = (look_for[0]['NA_Sales'].index.max() - look_for[0]['NA_Sales'].index.min())/9
    xticks = [look_for[0]['NA_Sales'].index.min() + i*float(bins_width) for i in range(10)]

    ax_ax.set_xticks(xticks)
    ax_ax.legend()

figure.suptitle('sales of Activision, 1980 - 2020 yy'.upper(), y = 1)
figure.tight_layout()
plt.show()
```


5 - 'Microsoft Game Studios' & 'Take-Two Interactive' sales distribution, 1980-2020

```
In [7]:
         sales g MGS = df[df['Publisher'] == 'Microsoft Game Studios'].groupby('Year').sum()['Global Sales']
         sales g TTI = df[df['Publisher'] == 'Take-Two Interactive'].groupby('Year').sum()['Global Sales']
         figure, axes = plt.subplots(figsize = (17, 7))
         x ticks = []
         for item in [sales g MGS, sales g TTI]:
             _, bins, _ = axes.hist(item, alpha = 0.3, bins = 10)
             x ticks += list(bins)
         axes.set xticks(x ticks)
         axes.set title('Global sales distibution, MGS, TTI, 1980-2020'.upper(), pad = 25)
         axes.set xlabel('Global Sales, mln USD'.upper())
         axes.set ylabel('Number of years'.upper())
         axes.axvline(sales g MGS.mean(), color = 'green', linestyle = '--', label = f'MGS median')
         axes.axvline(sales g TTI.median(), color = 'red', linestyle = '--', label = f'TTI median')
         # Let's show
         axes.legend()
         plt.show()
```


Sales in Japan - platforms of best-selling games, 1980-2020

by year

```
platforms = df[['Platform', 'JP_Sales']].groupby('Platform').sum().sort_values('JP_Sales', ascending = False).head(5)
platforms['color'] = 'orange'
platforms.loc[platforms['JP_Sales'] == platforms['JP_Sales'].max(), 'color'] = 'green'
platforms.loc[platforms['JP_Sales'] == platforms['JP_Sales'].min(), 'color'] = 'red'

figure2, ax2 = plt.subplots(figsize = (17,5))
ax2.bar(platforms.index, platforms['JP_Sales'], color = platforms['color'], alpha = 0.5)
ax2.axhline(platforms['JP_Sales'].median(), color = 'green', label = 'Median value')
```

```
ax2.set_title('Platforms of best-selling games in Japan'.upper(), pad = 20)
ax2.set_xlabel('Platforms'.upper())
ax2.set_ylabel('Sales, mln USD'.upper())

# Let's show
ax2.legend()
plt.show()
```

PLATFORMS OF BEST-SELLING GAMES IN JAPAN

Sales of 'Nintendo' - by year

```
In [10]:
    df['Sum'] = 1
    sales_Nin = df[df['Publisher'] == 'Nintendo'][['Name', 'Year', 'Sum']]
    sales_Nin_new = sales_Nin.drop_duplicates()
    sales_Nin_grouped = sales_Nin_new.groupby('Year').sum()
    min_35 = sales_Nin_grouped[sales_Nin_grouped['Sum'] > 35].index.min()
    data_max = sales_Nin_grouped[sales_Nin_grouped['Sum'] > 35].index.max()
```

```
fg l, ax l = plt.subplots(figsize = (17, 5))
sns.lineplot(data = sales_Nin_grouped,
             x = 'Year',
             y = 'Sum')
ax 1.set title('Nintendo, Games release by year 1980-2020'.upper(), pad = 20)
ax 1.set xlabel('Year'.upper())
ax l.set ylabel('Games released'.upper())
# Добавление прямоугольника
ax_1.axvspan(xmin = min_35, xmax = data_max, color = 'green', alpha = 0.3)
ax l.axhline(35, linestyle = '--', label = '35 games'.upper())
# Переопределение оси Х
bins width = (sales Nin grouped.index.max() - sales Nin grouped.index.min())/16
ax l.set xticks([int(sales Nin grouped.index.min()) + int(i*bins width) for i in range(17)])
# Показ
ax 1.legend()
plt.show()
```

NINTENDO, GAMES RELEASE BY YEAR 1980-2020


```
In [19]: sales_Genre_3 = df.groupby('Genre').sum()[['NA_Sales', 'Global_Sales']].sort_values('Global_Sales', ascending = False).head(3)
    print(f"\n\n{'sales for three best-selling genres'.upper()}\n\n{sales_Genre_3}")
    sales_Platforms_4 = df.groupby('Platform').sum()[['NA_Sales', 'Global_Sales']].sort_values('Global_Sales', ascending = False).head
    print(f"\n\n{'sales for four best-selling platforms'.upper()}\n\n{sales_Platforms_4}")
```

SALES FOR THREE BEST-SELLING GENRES

	NA_Sales	Global_Sales
Genre		
Action	877.83	1751.18
Sports	683.35	1330.93
Shooter	582.60	1037.37

SALES FOR FOUR BEST-SELLING PLATFORMS

NA_Sales	Global_Sales
583.84	1255.64
601.05	979.96
392.26	957.84
507.71	926.71
	583.84 601.05 392.26

sales_final = df[(df['Platform'].isin(list(sales_Platforms_4.index))) & (df['Genre'].isin(list(sales_Genre_3.index)))][['Platform'].isin(list(sales_final))]

Out[20]:

	Platform	Genre	NA_Sales	Global_Sales
0	Wii	Sports	41.49	82.74
3	Wii	Sports	15.75	33.00
13	Wii	Sports	8.94	22.72
14	Wii	Sports	9.09	22.00
16	PS3	Action	7.01	21.40
•••				
16458	Wii	Action	0.00	0.01
16476	X360	Shooter	0.00	0.01

	Platform	Genre	NA_Sales	Global_Sales
16517	Wii	Action	0.00	0.01
16533	X360	Action	0.00	0.01
16581	Wii	Sports	0.00	0.01

2969 rows × 4 columns

In [22]:

print('North America (x) - World (y) sales correlations for best-selling platforms and genres'.upper())
sns.FacetGrid(data = sales_final, row = 'Platform', col = 'Genre').map(sns.scatterplot, x = sales_final['NA_Sales'], y = sales_fin
plt.show()

NORTH AMERICA (X) - WORLD (Y) SALES CORRELATIONS FOR BEST-SELLING PLATFORMS AND GENRES

