

# 19 BUNDESREPUBLIK DEUTSCHLAND

# **® Offenlegungsschrift** @ DE 4441323 A 1

(6) Int. Cl.6: H 04 B 1/64

H 03 G 7/00 H 04 J 11/00 H 04 B 7/005



PATENTAMT

(21) Aktenzeichen:

P 44 41 323.8

② Anmeldetag:

22, 11, 94

 Offenlegungstag: 30. 5.96

(ii) Anmelder:

Daimler-Benz Aktiengesellschaft, 70587 Stuttgart,

② Erfinder:

Pauli, Mathias, Dipl.-Ing., 30163 Hannover, DE; Kuchenbecker, Hans-Peter, Prof. Dr.-Ing., 30419 Hannover, DE; Boer, Gerrit de, Dipl.-Ing., 30171 Hannover, DE

Entgegenhaltungen:

DE 36 04 832 A1 Le Flich B. etal., Digital Sound Broadcasting to Mobile Receivers, in: IEEE, Transactions on Consumer Electronics, Vol. 35, No. 3, August 1989, S. 493-503;

Prüfungsantrag gem. § 44 PatG ist gestellt

- (A) Verfahren zur Übertragung von OFDM-Signalen und dieses verwendende Funknetzanlage
- Derzeitige mobile Kommunikationssysteme besitzen vergleichsweise niedrige Datenraten. In manchen Bereichen liegt ein Bedarf noch lokaler, mobiler Datenkommunikation mit höheren Datenraten vor. Die bekannte OFDM-Übertragungstechnik besitzt zwar hohe Übertragungsraten, sle besitzt jedoch eine hohe Dynamik der Einhüllenden des Signals. Diese Technik ist daher bislang nur in ortsfesten, zentralen Sendestationen Im Einsatz, bei denen ein hoher Hardwareaufwand zur Linearislerung des Sendeverstärkerverhaltens praktikabel lat.

Es wird ein Verfahren vorgeschlagen, bei dem die Dynamik der OFDM-Signale vor einem Sendeverstärker durch Multiplikation mit einer Dynamikreduktionsfunktion reduziert wird. Das dynamikreduzierte OFDM-Signal läßt sich anschließend durch Aussteuerung des Sendeverstärkers innerhalb seines im wesentlichen linearen Verstärkungsbereichs verstärken, ohne daß letzterer in den nichtlinearen Sättigungsbereich gerät. Insgesamt ergibt sich mit dieser Maßnahme, gegebenenfalls unterstützt von einer Vorverzerrung zur Linearisierung des Sendeverstärkerverhaltens, eine verringerte Außerbandstrahlung, wodurch sich das Verfahren auch für Funknetzanlagen mit mobilen, untereinander in bidirektionalem Datenaustausch mit hoher Übertragungsrate stehenden Stationen eignet.

Verwendung für Millimeterwellenfunknetze mit Mobilstatlo-

## 1 Beschreibung

Die Erfindung bezieht sich auf ein Verfahren zur Übertragung von OFDM-Signalen sowie auf eine dieses Verfahren benutzende Funknetzanlage mit mehreren, insbesondere mobilen, Stationen, die für bidirektionalen Datenaustausch eingerichtet sind.

Das Bedürfnis nach höheren Datenübertragungsraten in modernen Kommunikationssystemen macht eine größere Frequenzbandbreite erforderlich. Dies gilt besonders auch für mobile Kommunikationssysteme, wobei derzeit gängige Systeme, wie zum Beispiel GSM und DCS1800, mit ihren vergleichsweise niedrigen Übertragungsraten in der Größenordnung von einigen kBit/s in erster Linie den Bedarf an Sprachkommunikation abdecken, während sich im Bereich der Fertigungstechnik zunehmend ein Bedarf nach lokaler und mobiler Datenkommunikation mit höheren Übertragungsraten ergibt. Für derartige Systeme ist der Bereich hoher Frequenzen, z. B. 60 GMz interessant, da hier die nötige Band- 20 breite zur Verfügung steht. Dabei ist ein ökonomischer Umgang mit den verwendeten Frequenzen in solchen lokalen Funknetzwerken (RLANs - Radio Lokal Area Networks) wünschenswert.

Als ein mögliches Übertragungsverfahren für Kom- 25 munikationssysteme ist die Datenübertragung mittels OFDM (Orthogonal Frequency Devision Multiplexing)-Signalen bekannt, bei der im Gegensatz zum ebenfalls gebräuchlichen Frequenz-Multiplex-System das gesamte Übertragungsband in eine Mehrzahl (N) von überlappenden Subkanälen unterteilt wird. Die zu übertragende serielle Symbolfolge wird auf die Subkanäle verteilt, so daß N Symbole gleichzeitig gesendet werden können. Durch diese parallele Übertragung wird die Symboldauer um den Faktor N größer. Bei 35 vorausgesetzt ungestörter Übertragung ist eine Rekonstruktion der Information auf der Empfängerseite aufgrund der Orthogonalität der Subträgerschwingungen ohne Fehler möglich. Fügt man dem Übertragungsmodell noch eine Kanalcodierung hinzu, wird das Verfahren mit COFDM (Coded Orthogonal Frequency Division Multiplexing) bezeichnet. Dieses Übertragungsverfahren ist durch Verwendung von effizienten FFT (Fast Fourier Transform)-Algorithmen mit relativ geringem Aufwand realisierbar. Der gesamte, einer A/D-Wandlerstufe nachfolgende Empfängerteil kann als integrierter Schaltkreis aufgebaut sein. Des weiteren ist keine Entzerrung erforderlich, da durch die relativ große Symboldauer eine Störung durch Intersymbolinterferenz vermindert wird. Um dem Effekt verlorengegangener Orthogonalität der einzelnen Träger an der Empfängerseite aufgrund von Mehrwegeausbreitung entgegenzuwirken, wird üblicherweise ein Schutzintervall vor jedem Symbol gesendet. Zu obigen und weiteren Eigenschaften von Übertragungsverfahren mit OFDM-Signa- 55 len wird auf die hierzu vorhandene Literatur Bezug genommen, siehe beispielsweise die Beiträge von J. L. Cimini, "Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing", IEEE Transactions on Communications, Bd. 60 COM-33, Nr. 7, Seiten 665 bis 675, Juli 1985, von S. B. Weinstein, "Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform in IEEE-Transactions on Communication Technology Bd. COM-19, Nr. 5, Seiten 628 bis 634, Oktober 1971, von 65 J.C. Rault, D. Castelain und B. Le Floch, "The Coded Orthogonal Frequency Division Multiplexing (COFDM) Technique, and its Application to Digital Radio Broad-

casting Towards Mobile Receivers" in IEEE GLOBE-COM, Bd. 1, S. 12.3.1 bis 12.3.5, November 1989 und von M. Alard und R. Lassalle, "Principles of modulation and channel coding for digital broadcasting for mobile receivers" in EBU Technical Review, Nr. 224, S. 186-191, August 1987.

Für das OFDM bzw. das COFDM-Verfahren ist der nichtkonstante Verlauf des Betrags der komplexen Einhüllenden des COFDM-Signals wegen der Mehrzahl (N) von Subkanälen charakteristisch. Diese Schwankungen der Einhüllenden des Signals stellen hohe Anforderungen an den verwendeten Sendeverstärker hinsichtlich Linearität über einen möglichst großen Bereich. Hier besteht die Schwierigkeit, daß derzeit jedenfalls ohne übermäßigen Aufwand keine Sendeverstärker zur Verfügung stehen, die bei ausreichender Ausgangsleistung eine lineare Kennlinie über den geforderten Bereich bei den gewünschten hohen Übertragungsfrequenzen, zum Beispiel im Bereich von 60 GHz aufweisen. Während diese Schwierigkeit beim Einsatz des COFDM-Modulationsverfahren in einem digitalen Rundfunksystem (DAB) aufgrund des dort nur unidirektonalen Datenflusses durch höheren Aufwand bei der Realisierung des nur einen erforderlichen Sendeverstärkers etwas entschärft werden kann, ist ein solcher Sendeverstärker-Hardwareaufwand in Funknetzsystemen mit bidirektionalem Datenaustausch zwischen mobilen Stationen, in die jeweils ein Sendeverstärker zu integrieren ist, nicht mehr vertretbar. Wünschenswert ist in jedem Fall, den Sendeverstärker zur Erzielung eines hohen Wirkungsgrades bis zur Sättigung auszusteuern, ohne daß die entstehende Außerbandstrahlung der OFDM-Signale den zulässigen maximalen Wert überschreitet. Zur Reduktion der Außerbandstrahlung bei der Übertragung von OFDM-Signalen sind prinzipiell zwei Methoden bekannt. Bei der ersten Methode wird das Signal verändert, bevor es auf den Sendeverstärker gegeben wird. Bei der zweiten Methode wird direkt Einfluß auf das Verhalten des Sendeverstärkers genom-40 men. Als Hardware-Eingriffe, die direkt das Verstärkerverhalten beeinflussen, sind eine vorwärtsregelnde Technik und eine rückkoppelnde Technik bekannt, siehe zum Beispiel R.G. Meyer, R. Eschenbach und M. W. Edgerley, "A Wide-Band Feedforward Amplifier", IEEE Journal of Solid-State Circuits, Bd. sc-9, Nr. 6, Dezember 1974 sowie M. Johannson und Th. Mattson, "Transmitter Linearization using cartesian Feedback for linear TDMA Modulation", ICC 1991. Um Synchronisationsschwierigkeiten zu beheben, kann ein Pilotton verwendet werden, mit dem ein Mikroprozessor den Sendeverstärker regeln kann, so daß sich Dämpfungen der Au-Berbandstrahlung von über 30 dB erzielen lassen, siehe S. Narahashi und T. Nojima, "Extremely Low-Distorsion Multi-Carrier Amplifier - Self Adjusting Feed Forward (SAFF) Amplifier -", ICC 1991, S. 1485 bis 1490. Wegen des hohen Hardwareaufwands eignen sich diese Techniken in erster Linie für stationäre Basisstationen. Als eine signalverändernde Methode ist das Verfahren zur Linearisierung von Verstärkern durch Vorverzerrung bekannt, siehe zum Beispiel G. Lazzarin und S. Pupolin, "Nonlinearity Compensation in Digital Radio Systems", IEEE Tansactions on Communications, Bd. COM-42, Nr. 2, 3, 4, S. 988-999, Feb. 1994. Diese Methode spielt jedoch bei Mehrträgerverfahren mit nichtkonstanter Einhüllenden nur eine untergeordnete Rolle, da es nur möglich ist, die Kennlinie bis zum Sättigungspunkt des Sendeverstärkers zu linearisieren, während es

ohne Maßnahmen nicht zu verhindern ist, daß der Ver-

stärker in die Sättigung gerät.

Der Erfindung liegt als technisches Problem die Bereitstellung eines Verfahrens zur Übertragung von OFDM-Signalen, mit dem sich die OFDM-Signale auch bei höheren Trägerfreqenzen, zum Beispiel im Millimeterwellengebiet, mit ausreichender Leistung bei vergleichsweise geringem Hardwareaufwand und möglichst geringer Signalverfälschung, d. h. geringer Außerbandstrahlung, übertragen lassen, sowie einer dieses Verfahren verwendenden Funknetzanlage zugrunde.

Dieses Problem wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 sowie durch eine Funknetzanlage mit den Merkmalen des Anspruchs 6 gelöst. Verfahrensgemäß wird die Dynamik der OFDM-Signale, d. h. deren maximale Amplitudenschwankung, vor ei- 15 nem jeweiligen Sendeverstärker durch Multiplikation mit einer Dynamikreduktionsfunktion reduziert. Diese Maßnahme generiert zwar durch die von ihr verursachte Signalveränderung eine gewisse Erhöhung der Au-Berbandstrahlung, sie ermöglicht es jedoch andererseits, 20 den Dynamikbereich der OFDM-Signale ganz oder jedenfalls in einem größeren Maße als bei herkömmlichen Verfahren dieser Art in den linearen Bereich des Sendeverstärkers zu legen, ohne an diesem beträchtlichen Hardwarezusatzaufwand vornehmen zu müssen. Im 25 Gegensatz zu den herkömmlichen Systemen erzeugt daher der Sendeverstärker keine oder jedenfalls nur eine vergleichsweise geringe weitere Signalveränderung. Es zeigt sich, daß bei geeigneter Wahl der Dynamikreduktionsfunktion das erfindungsgemäße Verfahren zu einer geringeren Außerbandstrahlung führt als diejenige, die bei Übertragung der vollen Signaldynamik durch die Aussteuerung des Sendeverstärkers auch in seinem nichtlinearen Bereich verursacht wird. Da diese Art der Außerbandstrahlungsunterdrückung keinen 35 hohen Hardwarezusatzaufwand am Sendeverstärker erfordert, eignet sich das Verfahren in besonderer Weise für den Einsatz in Funknetzanlagen mit mobilen, untereinander in bidirektionalem Datenaustausch stehenden Stationen, wozu dann eine die Dynamikreduktion 40 des OFDM-Signals durchführende Einheit, die mit relativ geringem Aufwand realisierbar ist, vor dem in jeder Station befindlichen Sendeverstärker angeordnet ist.

Eine Weiterbildung der Erfindung nach Anspruch 2 hat den Vorteil, daß die Dynamikreduktion um ein ge- 45 ner Vorverzerrungsmaßnahme, wünschtes Maß mit insgesamt relativ geringer Signalveränderung erreicht wird, indem ganz spezifisch die hohen, über einem vorgegebenen Schwellenwert liegenden Amplitudenbeträge der Einhüllenden des OFDM-Signals durch Multiplikation mit Funktionswer- 50 ten der Dynamikreduktionsfunktion kleiner als eins reduziert werden, während in den übrigen Bereichen das OFDM-Signal aufgrund der dort höheren, bis zum Wert eins ansteigenden Funktionswerte der Dynamikreduktionsfunktion weitestgehend unverändert bleibt. Dabei 55 kann gemäß einer weiteren Ausgestaltung dieser Maßnahme gemäß Anspruch 3 die Dynamikreduktionsfunktion in den Signalbereichen, in denen eine Dynamikreduktion vorzunehmen ist, einen jeweiligen inversen Gaußfunktionsabschnitt zur Bereitstellung der Funk- 60 tionswerte kleiner als eins aufweisen, wobei jeder Gaußfunktionsabschnitt endseitig stetig auf den Wert eins geführt wird und die Dynamikreduktionsfunktion zwischen diesen Gaußfunktionsabschnitten den Wert eins annimmt. Die Verwendung der inversen Gaußfunk- 65 tionsabschnitte ergibt aufgrund der bekannten mathematischen Eigenschaften von Gaußfunktionen eine besonders zufriedenstellende spektrale Beschaffenheit der

Dynamikreduktionsfunktion und des resultierenden dynamikreduzierten Signals. Zudem läßt sich eine solche Dynamikreduktionsfunktion in einfacher Weise dadurch generieren, daß beim Überschreiten des vorgegebenen Schwellenwertes durch das OFDM-Signal Impulse erzeugt und auf ein Gaußfilter gegeben werden.

Eine Weiterbildung der Erfindung nach Anspruch 4 sieht in vorteilhafter Weise die Kombination der Dynamikreduktion mit der an sich bekannten Technik der Vorverzerrung zur Erzielung eines besser linearisierten Sendeverstärkerverhaltens vor. Durch die bessere Linearisierung des Sendeverstärkerverhaltens reduziert die Vorverzerrung zusätzlich den störenden Außerbandstrahlungsanteil.

Falls die mit der Multiplikation des OFDM-Signals mit der Dynamikreduktionsfunktion einhergehenden Signalveränderungen auf der Empfängerseite störend in Erscheinung treten, kann dem vorteilhaft mit einer Weiterbildung der Erfindung nach Anspruch 5 entgegengewirkt werden. Dabei werden die für eine empfängerseitige Rekonstruktion der Dynamikreduktionsfunktion nötigen Informationen zusätzlich zum eigentlichen OFDM-Signal von der Sender- zur Empfängerseite übertragen, so daß letztere die Dynamikreduktionsfunktion rekonstruieren und damit aus dem empfangenen OFDM-Signal das ursprüngliche OFDM-Signal vor der Dynamikreduktion zurückgewinnen kann. Mit besonderem Vorteil läßt sich diese Methode beispielsweise in dem Fall anwenden, in dem die Dynamikreduktionsfunktion als dynamikreduzierende Funktionsbereiche die inversen Gaußfunktionsabschnitte aufweist, die durch auf ein Gaußfilter gegebene Impulse generiert werden. Denn in diesem Fall genügt die Übertragung lediglich der Impulse, um auf der Empfängerseite die Rekonstruktion der Dynamikreduktionsfunktion zu er-

Eine bevorzugte Ausführungsform der Erfindung ist in den Zeichnungen dargestellt und wird nachfolgend beschrieben. Hierbei zeigen:

Fig. 1 ein schematisches Blockschaltbild des erfindungswesentlichen Teils einer mobilen Station einer Millimeterwellen-Funknetzanlage,

Fig. 2 ein Kennliniendiagramm für den in Fig. 1 verwendeten Sendeverstärker zur Veranschaulichung ei-

Fig. 3 ein Diagramm des Zeitverlaufs des Betrags der komplexen Einhüllenden eines in den Stationen gemäß Fig. 1 erzeugbaren OFDM-Signals vor und nach einer Dynamikreduzierung mittels einer ebenfalls gezeigten Dynamikreduktionsfunktion,

Fig. 4 ein Diagramm zur Veranschaulichung der spektralen Leistungsdichte des Betrags der komplexen Einhüllenden des OFDM-Signals gemäß Fig. 3 mit bzw. ohne Dynamikreduktion und der Dynamikreduktionsfunktion,

Fig. 5 ein Diagramm zur Veranschaulichung der spektralen Leistungsdichte für das gemäß Fig. 1 gesendete OFDM-Signal mit bzw. ohne Dynamikreduktion

Fig. 6 ein Diagramm zur Veranschaulichung der Bitfehlerrate des gemäß Fig. 1 gesendeten OFDM-Signals mit bzw. ohne Dynamikreduktion.

Die Fig. 1 zeigt stark schematisiert eine (5) von mehreren mobilen Stationen einer Millimeterwellen-Funknetzanlage, bei der die Mobilstationen untereinander durch Übertragung von OFDM-Signalen in bidirektionalem Datenaustausch stehen. Jede Mobilstation (5) beinhaltet einen hier nicht weiter interessierenden Emp-

fängerteil (6) sowie einen Senderteil (4). Die OFDM-Signale werden in dem Senderteil (4) von einer herkömmlichen OFDM-Signalerzeugungseinheit (1) generiert. Bei Hinzufügung einer Kanalkodierung ist in gleicher Weise die Datenübertragung mittels COFDM-Signalen möglich. Typischerweise sind hierfür einige zehn bis einige hundert Nutzkanäle (N) vorgesehen, mit denen N Symbole bei N-fach größerer Symboldauer gleichzeitig gesendet werden können. Üblicherweise erzielbare Bitraten liegen im Bereich von einigen zehn Mbit/s. Eine 10 solche OFDE-Signalerzeugungseinheit (1) kann unter anderem einen Datencoder, eine nachgeschaltete Seriell-Parallel-Wandlereinheit und eine nachfolgende IFT-Einheit zur Durchführung einer inversen, schnellen Fourier-Transformation enthalten. An letztere kann 15 sich eine Schutzintervalleinheit anschließen, um vor den Daten jedes Symbols ein Schutzintervall zu senden, dessen Dauer mindestens der Länge der Kanalstoßantwort entspricht, was merkliche Nachbarkanalstörungen unterdrückt.

Das von der OFDM-Signalerzeugungseinheit (1) abgegebene Ausgangssignal (SR) wird in einer nachfolgenden Dynamikreduktionseinheit (2) einer Dynamikreduktion unterzogen. Das am Ausgang der Dynamikreduktionseinheit (2) abgegebene, dynamikreduzierte 25 OFDM-Signal (SD) wird dann einem TWT (travelling wave tube)-Sendeverstärker (3) zugeführt, der das dynamikreduzierte OFDM-Signal (SD) verstärkt und das verstärkte, dynamikreduzierte OFDM-Signal (Ss) über die Millimeterwellenfunkstrecke abgibt, die auf einer hohen Trägerfrequenz von zum Beispiel 60 GHz arbeitet, um eine hohe Bandbreite für große Datenübertragungsraten zur Verfügung zu haben. In Fig. 5 sind die typischen Kennlinien eines solchen TWT-Verstärkers für Betrag und Phase des übertragenen Signals mit der 35 durchgezogenen (a) bzw. der strichpunktierten Linie (b) im Bereich bis zur Sättigung des Verstärkers wiedergegeben. In diesem Bereich läßt sich das Verstärkerverhalten durch die herkömmliche Technik der Vorverzerrung linearisieren. Bei idealer Vorverzerrung ergibt dies die 40 in Fig. 5 gestrichelt eingezeichnete, bis zur Sättigung lineare Kennlinie (c). Im nicht gezeigten, anschließenden Sättigungsbereich bei noch höheren Eingangssignalspannungen (Ue) flacht selbst die durch Vorverzerrung Richtung horizontalem Verlauf ab.

Würde das von der OFDM-Signalerzeugungseinheit (1) generierte OFDM-Signal (SR) mit seiner vollen Dynamik, d. h. mit der vollen Amplitudenschwankung der komplexen Einhüllenden des OFDM-Signals, auf den 50 Sendeverstärker (3) gegeben, wäre es bei der gewünschten, hohen Übertragungsfrequenz nicht möglich, letzteren nur in dem durch Vorverzerrung linearisierten Bereich zu betreiben. Vielmehr würde der Verstärker (3) zwangsläufig auch in den Sättigungsbereich hinein an- 55 gesteuert, wodurch das nichtlineare Verstärkerverhalten eine hohe Außerbandstrahlung erzeugen würde. Diesem Problem wird durch die Einfügung der Dynamikreduktionseinheit (2) abgeholfen. Die Dynamikreduktionseinheit (2) verringert in nachfolgend beschriebener 60 Weise die Amplitudenschwankung des generierten OFDM-Signals (SR) gerade so weit, daß das entstehende, dynamikreduzierte OFDM-Signal (SD) ganz im durch Vorverzerrung linearisierten Übertragungsbereich des nachfolgenden Sendeverstärkers (3) liegt. 65 Zwar erzeugt die Dynamikreduktion zwangsläufig eine gewisse, mit der Signalveränderung einhergehende Au-Berbandstahlung, diese läßt sich jedoch beträchtlich

kleiner halten als diejenige, die vom Sendeverstärker (3) bei Aussteuerung in seinen nichtlinearen Kennlinienbereich hinein generiert würde. Dabei ist zu beachten, daß der Sendeverstärker (3) keine zusätzliche Außerbandstrahlung bei Übertragung des in seinem linearen Überliegenden, dynamikreduzierten tragungsbereich OFDM-Signals (SD) erzeugt, weshalb durch die Maßnahme der Dynamikreduktion des OFDM-Signals in Kombination mit der das Verstärkerübertragungsverhalten linearisierenden Vorverzerrung eine deutliche Reduktion der störenden Außerbandstrahlung erzielt wird.

Die in diesem Beispiel verwendete Art der von der Dynamikreduktionseinheit (2) durchgeführten Dynamikreduktion ist in Fig. 3 veranschaulicht. Dort ist in einem typischen Zeitausschnitt der auf den Effektivwert normierte Betrag (SRB) der komplexen Einhüllenden des von der OFDN-Signalerzeugungseinheit (1) abgegebenen OFDM-Signals (SR) gezeigt. In der Dynamikreduktionseinheit (2) wird dieses Betragssignal (SRB) mit einer ebenfalls in Fig. 3 wiedergegebenen Dynamikreduktionsfunktion (d) multipliziert. Die Dynamikre-duktionsfunktion (d) wird von der Dynamikreduktionseinheit (2) folgendermaßen festgelegt. Solange der Betrag (SRB) der komplexen Einhüllenden des eingehenden OFDM-Signals (SR) unterhalb eines vorgegebenen Schwellenwertes (SW) liegt, der vorliegend auf das Doppelte des Effektivwertes gesetzt wurde, wird der Funktionswert der Dynamikreduktionsfunktion (d) konstant auf eins gehalten. Sobald der Betrag (SRB) der komplexen Einhüllenden des eingehenden OFDM-Signals (SR) diesen Schwellenwert überschreitet, was in Fig. 3 an zwei Stellen (e, f) der Fall ist, erzeugt die Dynamikreduktionseinheit (2) einen zugehörigen Impuls, der auf ein Gaußfilter zur Generierung eines inversen Gaußfunktionsabschnitts (G1, G2) der Dynamikreduktionsfunktion (d) gegeben wird. Die Dynamikreduktionsfunktion (d) verläuft infolgedessen in den Bereichen, in denen der Betrag (SRB) der komplexen Einhüllenden des OFDM-Signals (SR) den vorgegebenen Schwellenwert (SW) überschreitet, wie aus Fig. 3 ersichtlich, als jeweilige inverse Gaußfunktion (GI, G2) mit Funktionswerten kleiner eins, wobei die Gaußfunktionsabschnitte (G1, G2) jeweils an ihren Endbereichen erhaltene Kennlinie für die Ausgangsspannung (Ua) in 45 stetig in den horizontalen Abschnitt der Dynamikreduktionsfunktion (d) mit dem Funktionswert eins übergehen. Die Multiplikation des Betrags (SRB) der komplexen Einhüllenden des eingehenden OFDM-Signals (SR) mit der so bestimmten Dynamikreduktionsfunktion (d) ergibt den in Fig. 3 gezeigten, dynamikreduzierten solchermaßen dynamikreduzierten OFDM-Signals (SD). Dabei ist durch passende Wahl des Minimumwertes jedes inversen Gaußfunktionsabschnitts (G1, G2) dafür gesorgt, daß der Betrag (SDB) der dynamikreduzierten komplexen Einhüllenden unter dem vorgegebenen Schwellenwert (SW) liegt. Da die Dynamikreduktionsfunktion in denjenigen Bereichen, in denen bereits das von der OFDM-Signalerzeugungseinheit (1) erzeugte OFDM-Signal (SR) unterhalb des Schwellenwertes (SW) liegt, den Funktionswert eins besitzt, wird das OFDM-Signal (SR) in diesen Bereichen nicht verändert. Die Veränderung bleibt vielmehr vorteilhafterweise auf die Bereiche mit für den linearen Übertragungsbereich des Sendeverstärkers (3) zu hoher OFDM-Signaldynamik beschränkt.

Die Multiplikation des Betrags (SRB) der komplexen Einhüllenden des eingehenden OFDM-Signals (SR) mit der Dynamikreduktionsfunktion (d) entspricht einer

Faltung im Frequenzbereich, weshalb durch die Dynamikreduktion das Frequenzspektrum des OFDM-Signals aufgeweitet wird. Wünschenswert ist daher eine möglichst schmalbandige Dynamikreduktionsfunktion, wie dies durch das vorliegende Beispiel aufgrund der günstigen spektralen Eigenschaften von Gaußfunktionen der Fall ist. In Fig. 4 ist der Einfluß der Dynamikreduktion auf die Frequenzcharakteristik dargestellt. Es ist erkennbar, daß das Frequenzspektrum (h) des Betrags (SDB) der komplexen Einhüllenden des dynamikreduzierten OFDM-Signals (SD) gegenüber demjenigen (g) des Betrags (SRB) der komplexen Einhüllenden des eingehenden OFDM-Signals (SR) vor der Dynamikreduktion eine etwas erhöhte Außerbandstrahlung aufweist, die von der Dynamikreduktion verursacht wird. 15 Zusätzlich ist in Fig. 4 das Frequenzspektrum (i) der Dynamikreduktionsfunktion (d) ohne Gleichanteil wiedergegeben. Im Vergleich zu den OFDM-Signalen besitzt die Dynamikreduktionsfunktion (d) erkennbar ein schmalbandiges Frequenzspektrum mit geringer Lei- 20 stung, wobei die Frequenzspektren der OFDM-Signale und der Dynamikreduktionsfunktion (d) merklich von der Wahl des Schwellenwertes (SW) abhängig sind. Je niedriger der Schwellenwert (SW) gelegt wird, desto mehr inverse Gaußfunktionsabschnitte und mit um so 25 kleinem Minimumwert entstehen, wodurch die Dynamikreduktionsfunktion breitbandiger wird und sich der Außerbandstrahlungsanteil wegen der stärkeren Veränderung des OFDM-Signals aufgrund der Dynamikreduktion etwas erhöht. Je höher die Dynamikreduktion, 30 um so größer ist zwar einerseits der zusätzlich entstehende Außerbandstrahlungsanteil, jedoch werden die Anforderungen an die Linearität des Verstärkerverhaltens geringer, wobei je nach Anwendungsfall der geeigre Dynamikreduzierung ermöglicht es, die Sendeleistung für das OFDM-Signal bei gleicher Außerbandstrahlung erhöhen zu können. Durch die Dynamikreduzierung reicht zur Signalverstärkung und -übertragung die Aussteuerung des Sendeverstärkers (3) in seinem 40 durch Vorverzerrung linearisierten Bereich aus, ohne daß hierdurch zusätzliche Außerbandstrahlung entsteht.

Fig. 5 zeigt anschaulich die deutliche Verbesserung der Signalübertragungsqualität durch die kombinierte Maßnahme von Dynamikreduktion und Vorverzerrung 45 im Vergleich zu einer direkten Verstärkung und Übertragung des OFDM-Signals (SR) aus der OFDM-Signalerzeugungseinheit (1) mit der vollen Dynamik. In letzterem Fall ergibt sich typischerweise ein Frequenzspektrum (k) des vom Sendeverstärker (3) abgegebenen 50 dingte Außerbandstrahlung erzeugt wird. OFDM-Signals (Ss), das aufgrund der Aussteuerung des Verstärkers (3) in seinem nichtlinearen Sättigungsbereich einen vergleichsweise hohen Außerbandstrahlungsanteil aufweist. Wird hingegen das von der OFDM-Signaleinheit (1) generierte OFDM-Signal (SR) 55 der Dynamikreduktion unterzogen und nur in dem durch Vorverzerrung linearisierten Kennlinienbereich des Verstärkers (3) von letzterem verstärkt, so zeigt das Frequenzspektrum (1) dieses gesendeten OFDM-Signals (Ss) zwar ebenfalls einen gewissen Außerbands- 60 trahlungsanteil aufgrund der Dynamikreduktion, dieser ist jedoch deutlich geringer als derjenige, der durch eine Aussteuerung des Sendeverstärkers (3) in seinen nichtlinearen Sättigungsbereich erzeugt wird, so daß sich insgesamt ein deutlich verbessertes Übertragungsverhal- 65 ten ergibt. Zwar stellt die Dynamikreduktion aufgrund der Veränderung des OFDM-Signals eine Quelle möglicher zusätzlicher Übertragungsfehler dar, eine Simula-

tion des in Fig. 1 gezeigten OFDM-Signalsenderteils (4) ergibt jedoch das in Fig. 6 veranschaulichte Ergebnis, daß die Bitfehlerrate (BER) nach Dynamikreduktion des OFDM-Signals (Kurve m) nur geringfügig höher liegt als ohne Dynamikreduktion (Kurve n). Wenn diese Erhöhung der Bitfehlerrate stört, kann vorgesehen werden, die zur Rekonstruktion der Dynamikreduktionsfunktion (d) auf der Empfängerseite benötigte Information zusammen mit dem OFDM-Signal (Ss) zu übertragen. Durch Rekonstruktion der Dynamikreduktionsfunktion (d) im Empfängerteil (6) der Zielstation kann dieser eine Korrektur des dynamikreduzierten OFDM-Signals (SD) vornehmen und damit die darauf zurückzuführenden Übertragungsfehler verhindern. Vorteilhaft einfach läßt sich dies für die Dynamikreduktionsfunktion (d) nach Fig. 3 erreichen, die aus den einzelnen inversen Gaußfunktionsabschnitten (G1, G2) an den Stellen zu hoher OFDM-Signaldynamik und ansonsten aus dem Funktionswert eins besteht. Denn zur Rekonstruktion dieser Dynamikreduktionsfunktion (d) genügt die Übertragung der Impulse für das die inversen Gaußfunktionsabschnitte (G1, G2) generierende Gaußfilter von der Sender- zur Empfängerseite, was mit vergleichsweise geringem Zusatzübertragungsaufwand möglich ist.

Eine nach diesem Verfahren arbeitende Funknetzanlage läßt sich beispielsweise in Form eines lokalen Funknetzwerkes auf Millimeterwellenbasis mit einem ausreichend geringen Hardwareaufwand realisieren, der die Verwendung des Systems in Anlagen mit einzelnen, in bidirektionalem Datenaustausch stehenden Mobilstationen praktikabel macht. Die Realisierbarkeit der OFDM-Signalübertragung mittels leistungsfähiger FFT-Algorithmen ohne eine notwendige Entzerrung nete, optimale Kompromiß aufzusuchen ist. Eine stärke- 35 auf der Empfängerseite wirkt sich weiter vorteilhaft vereinfachend auf den Hardwareaufwand aus. Es versteht sich, daß das oben beschriebene Verfahren der OFDM-Signalübertragung mit Signaldynamikreduzierung auch für andere Systeme mit OFDM-Signalübertragung nutzbringend einsetzbar ist, z.B. für digitale Rundfunksysteme. Auch bei Wahl eines UHF-Verstärkers als Sendeverstärker wirkt sich die erfindungsgemä-Be, der Verstärkung vorausgehende Dynamikreduktion vorteilhaft aus, indem die Außerbandstrahlung des verstärkten OFDM-Signals gegenüber einer Übertragung ohne Dynamikreduktion deutlich reduziert wird, selbst wenn das Verstärkerverhalten in der Praxis auch im Bereich unterhalb der Sättigung nicht genau linear verlaufen sollte und daher eine gewisse verstärkungsbe-

### Patentansprüche

1. Verfahren zur Übertragung von OFDM-Signalen, dadurch gekennzeichnet, daß die Dynamik der OFDM-Signale (SR) vor einem Sendeverstärker (3) durch Multiplikation mit einer Dynamikre-

duktionsfunktion (d) reduziert wird.

2. Verfahren nach Anspruch 1, weiter dadurch gekennzeichnet, daß die Dynamikreduktionsfunktion (d) stetig verlaufend so gewählt ist, daß sie in den Bereichen, in denen der Betrag (SRB) der komplexen Einhüllenden des OFDM-Signals (SR) einen vorgegebenen Schwellenwert (SW) überschreitet, Werte kleiner als eins und zwischen solchen Bereichen höhere Werte bis zum Wert eins annimmt.

3. Verfahren nach Anspruch 2, weiter dadurch gekennzeichnet, daß die Dynamikreduktionsfunktion

#### 44 41 323 A1 DE

10

(d) in den Bereichen (e, f), in denen der Betrag (SRB) der komplexen Einhüllenden des OFDM-Signals (SR) den vorgegebenen Schwellenwert (SW) überschreitet, jeweils aus einem inversen Gaußfunktionsabschnitt (G1, G2) besteht, wobei letztere endseitig stetig auf den Wert eins geführt sind und die Dynamikreduktionsfunktion in den zwischenliegenden Bereichen den Wert eins annimmt.

4. Verfahren nach einem der Ansprüche 1 bis 3, weiter dadurch gekennzeichnet, daß das dynami- 10 kreduzierte OFDM-Signal (SD) in einem durch Vorverzerrung linearisierten Bereich des Sende-

verstärkers (3) liegt.

5. Verfahren nach einem der Ansprüche 1 bis 4, weiter dadurch gekennzeichnet, daß zusätzlich zu 15 den OFDM-Signalen (Ss) Informationen über die Dynamikreduktionsfunktion (d), die deren Rekonstruktion erlauben, zur Empfängerseite übertragen werden.

6. Funknetzanlage mit mehreren, insbesondere mo- 20 bilen. Stationen, die für bidirektionalen Datenaustausch eingerichtet sind, dadurch gekennzeichnet, daß der Datenaustausch zwischen den Stationen gemäß dem Verfahren nach einem der Ansprüche 1 bis 5 erfolgt, wozu jede Station einen Senderteil (4) 25 und einen Empfängerteil (6) für OFDM-Signale besitzt, wobei der Senderteil eine Einheit (2) zur Dynamikreduktion des OFDM-Signals (SR) nach einer Einheit (1) zur Erzeugung von ÖFDM-Signalen und vor dem Sendeverstärker (3) aufweist.

Hierzu 3 Seite(n) Zeichnungen

35

40

45

50

55

60

- Leerseite -

.

.

·

·

Nummer: Int. Cl.<sup>6</sup>:

Offenlegungstag:

DE 44 41 323 A1 H 04 B 1/64 30. Mai 1996





Nummer: Int. Cl.<sup>6</sup>: Offenlegungstag:

H 04 B 1/64 30. Mai 1996



Fig. 3



Nummer:

Int. Cl.<sup>6</sup>: Offenlegungstag: DE 44 41 323 A H 04 B 1/64 30. Mai 1996



