Math 340 Homework 4

Dr. Ebrahimian

Due 9/27/2024 before the class starts

- You are expected to solve all of the following problems, but only problems under "Problems for Grading" must be submitted for grading. You will have a quiz on Friday 9/27/2024 based on these problems. Late submission will not be accepted.
- If you are not typing your work (which is fine) please make sure your work is legible.
- Prove all of your answers.

Problems for Grading

Instructions for submission: Same as before!

- 1. (10 pts) Determine if each of the following is a linear transformation. If it is linear, provide a proof using the definition of linear mappings. If it is not, by an example prove that it fails to satisfy one of the conditions of linear mappings.
 - (a) $L: \mathbb{R}^2 \to \mathbb{R}^3$, L(x, y) = (x + 2y, y, -x).
 - (b) $L: \mathbb{R}^3 \to \mathbb{R}^2$, L(x, y, z) = (x + y, z 1).
- 2. (10 pts) Find all linear transformations $T: \mathbb{R}^3 \to \mathbb{R}^2$ satisfying all of the following:

$$T(1,2,0) = (0,2), T(-1,1,1) = (-2,3), \text{ and } T(1,-2,-1) = (1,-3).$$

- 3. (10 pts) Let $\alpha \in [0, 2\pi)$ be an angle. Consider the transformation $T_{\alpha} : \mathbb{R}^3 \to \mathbb{R}^3$ which rotates every point around the z-axis with angle α . Assume we know T_{α} is linear. Find $M_{T_{\alpha}}$.
- 4. (15 pts) True or false? If true provide a proof, and if false provide a counter-example.
 - (a) If for a square matrix A we have $A^2 = 0$, then A = 0.
 - (b) If the two products AB and BA are defined, then A and B must be square matrices.
 - (c) AB = BA for every two 2×2 matrices A and B
- 5. (10 pts) Suppose $T: V \to W$ is a linear transformation between vector spaces. Using induction, prove that for every $c_1, \ldots, c_n \in \mathbb{R}$ and every $\mathbf{v}_1, \ldots, \mathbf{v}_n \in V$, we have

$$T(c_1\mathbf{v}_1 + \dots + c_n\mathbf{v}_n) = c_1T(\mathbf{v}_1) + \dots + c_nT(\mathbf{v}_n).$$

6. (10 pts) Suppose $L: V \to W$ is a bijective linear transformation. Prove that $L^{-1}: W \to V$ is linear.

Practice Problems

The following examples and exercises are from the "Honors Linear Algebra and Multivariable Calculus" PDF file posted on ELMS under "Files".

- 7. Example 4.12.
- 8. Example 4.13.
- 9. Example 4.16.
- 10. Example 4.17.
- 11. Example 4.20.
- 12. Exercise 4.9.
- 13. Exercise 4.14.

Challenge Problem

Exercises 4.23, 4.24, and 4.27.