Support Vector Machines Homework 04

Due March 08, 2016

Robert Brown

1 Problem 7.1

Given $\phi(x) = x^2 - x$ and g(x) = x - 3 we construct $L(\alpha, w, b)$ according to $L(\alpha, w, b) = \phi(x) - \sum_{i=1}^{c} \alpha_i g_i(x)$ and find $L(\alpha, w, b) = \phi(x) - \alpha g(x) = (x^2 - x) - \alpha(x - 3)$.

We know that L is minimized with respect to α when $\frac{\partial L}{\partial \alpha} = 0$ and similarly maximized with respect to x when $\frac{\partial L}{\partial x} = 0$.

$$\frac{\partial L}{\partial x} = (2x - 1) - \alpha = 0$$

$$\frac{\partial L}{\partial \alpha} = 3 - x = 0$$

$$x = 3$$

$$\alpha = 5$$

Figure 1: global minima (x)

Figure 2: Solution space

Figure 3: global maxima (α)

2 Problem 7.3

$$L(\boldsymbol{\alpha}, \mathbf{w}, b) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{i=1}^{\ell} \alpha_i y_i \mathbf{w} \cdot \mathbf{x_i} + b \sum_{i=1}^{\ell} \alpha_i y_i + \sum_{i=1}^{\ell} \alpha_i$$

Equation 7.41

$$\frac{\partial L(\boldsymbol{\alpha}, \mathbf{w}, b)}{\partial \mathbf{w}} = \frac{\partial}{\partial \mathbf{w}} (\frac{1}{2} \mathbf{w} \cdot \mathbf{w}) - \frac{\partial}{\partial \mathbf{w}} (\sum_{i=1}^{\ell} \alpha_i y_i \mathbf{w} \cdot \mathbf{x_i}) + \frac{\partial}{\partial \mathbf{w}} (b \sum_{i=1}^{\ell} \alpha_i y_i) + \frac{\partial}{\partial \mathbf{w}} (b \sum_{i=1}^{\ell} \alpha_i y_i) + \frac{\partial}{\partial \mathbf{w}} (\mathbf{w} \cdot \mathbf{w}) - \sum_{i=1}^{\ell} \alpha_i y_i \frac{\partial}{\partial \mathbf{w}} (\mathbf{w} \cdot \mathbf{x_i}) \\
= \frac{1}{2} \left[\frac{\partial}{\partial w_1} \quad \frac{\partial}{\partial w_2} \quad \cdots \quad \frac{\partial}{\partial w_n} \right] \mathbf{w} \cdot \mathbf{w} - \left[\frac{\partial}{\partial w_1} \quad \frac{\partial}{\partial w_2} \quad \cdots \quad \frac{\partial}{\partial w_n} \right] \sum_{i=1}^{\ell} \alpha_i y_i \mathbf{w} \cdot \mathbf{x_i} \\
= \frac{1}{2} \sum_{i=1}^{n} \frac{\partial}{\partial w_i} (w_i^2) \hat{e}_i - \sum_{i=1}^{\ell} \left(\alpha_i y_i \sum_{k=1}^{n} \frac{\partial}{\partial w_k} (w_k x_k) \hat{e}_k \right) = \sum_{i=1}^{n} w_i \hat{e}_i - \sum_{i=1}^{\ell} \left(\alpha_i y_i \sum_{k=1}^{n} x_k \hat{e}_k \right)$$

Since \mathbf{w} and \mathbf{x} are both in the same bector space (\mathbf{R}^n) , they share the same standard basis vectors $(\hat{e_1}, \hat{e_2}, \dots, \hat{e_n})$ this finally simplifies to $\mathbf{w} - \sum_{i=1}^{\ell} \alpha_i y_i \mathbf{x_i}$.

Equation 7.43

$$\frac{\partial L(\boldsymbol{\alpha}, \mathbf{w}, b)}{\partial \mathbf{w}} = \underbrace{\frac{\partial}{\partial b} \left(\frac{1}{2} \mathbf{w} \cdot \mathbf{w} \right)}_{l} - \underbrace{\frac{\partial}{\partial b} \left(\sum_{i=1}^{\ell} \alpha_i y_i \mathbf{w} \cdot \mathbf{x} \right)}_{l} + \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} + \underbrace{\frac{\partial}{\partial b} \left(\sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i y_i \right)}_{l} = \underbrace{\frac{\partial}{\partial b} \left(b \sum_{i=1}^{\ell} \alpha_i$$

3 Problem 7.5

$$L(\boldsymbol{\alpha}, \mathbf{w}, b) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{i=1}^{\ell} \alpha_i y_i \mathbf{w} \cdot \mathbf{x} + b \sum_{i=1}^{\ell} \alpha_i y_i + \sum_{i=1}^{\ell} \alpha_i$$

By equation 7.43, we have $\sum_{i=1}^{\ell} \alpha_i y_i = 0$, and $\boldsymbol{w}^* = \sum_{i=1}^{\ell} \alpha_i y_i \mathbf{x_i}$ by equation 7.42.

Now, consider the quantity w^*w^* :

$$\boldsymbol{w^*w^*} = \left(\sum_{i=1}^{\ell} \alpha_i y_i \mathbf{x_i}\right) \cdot \left(\sum_{j=1}^{\ell} \alpha_j y_j \mathbf{x_j}\right) = \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \alpha_j \alpha_i y_j y_i \mathbf{x_j} \cdot \mathbf{x_i}$$

And substitue these values into our laplacian:

$$\frac{\partial L(\boldsymbol{\alpha}, \mathbf{w}, b)}{\partial \mathbf{w}} = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{i=1}^{\ell} \alpha_i y_i \mathbf{w} \cdot \mathbf{x} + b \sum_{i=1}^{\ell} \alpha_i y_i + \sum_{i=1}^{\ell} \alpha_i$$

$$= \frac{1}{2} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \alpha_j \alpha_i y_j y_i \mathbf{x}_j \cdot \mathbf{x}_i - \sum_{i=1}^{\ell} \alpha_i y_i \left(\sum_{j=1}^{\ell} \alpha_j y_j \mathbf{x}_j \right) \cdot \mathbf{x}_i + \sum_{i=1}^{\ell} \alpha_i$$

$$= \frac{1}{2} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \alpha_j \alpha_i y_j y_i \mathbf{x}_j \cdot \mathbf{x}_i - \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \alpha_j \alpha_i y_j y_i \mathbf{x}_j \cdot \mathbf{x}_i + \sum_{i=1}^{\ell} \alpha_i$$

$$= \sum_{i=1}^{\ell} \alpha_i - \frac{1}{2} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \alpha_j \alpha_i y_j y_i \mathbf{x}_j \cdot \mathbf{x}_i$$