photo: South Dakota

Artificial Intelligence

Curse of dimensionality

- If the number of features is too big we have the 'curse of dimensionality' problem
 - number of possible 'states' is too big to find any similarities in data
- Typical dataset:
 - A lot of irrelevevant features
 - Correlations between features
- For example:
 - Images and pixel values as features
 - 250,000 features for 500x500 images!

Feature extraction

- All previously mentioned algorithms treat input as a set of independent features
 - preferably not correlated
- So the first and most important part of classification is feature extraction from real data
- For instance in image classification it could be [1]:
 - Color Color Channel Statistics (Mean, Standard Deviation) and Color Histogram
 - Shape Hu Moments, Zernike Moments
 - Texture Haralick Texture, Local Binary Patterns (LBP)
 - Others Histogram of Oriented Gradients (HOG), Threshold Adjancency Statistics (TAS)

[1] https://gogul09.github.io/software/image-classification-python

Convolutional Neural Networks

- Network that is not "dense"
 - neuron from layer N+1 is not connected to every neuron in layer N
- It preserves "local connectivity"
 - Features (pixels) close to each other are processed together
- Such a network is in fact doing automatic feature extraction in input layers
- Two key properties:
 - not all neurons are connected
 - there are common weights for many connections

Brief history

- 1982 Kunihiko Fukushima, Neocognitron
 - pattern recognition
- 1989 Yann LeCunn, LeNet-5
- 2010 ImageNet Competition
 - 1000 classes, over million of images
- 2012 Alex Krirzevsky, George Hinton: AlexNet
 - 15% error rate for ImageNet (runner-up: 26%)
 - 8 layers
- 2015 Deep Residual Nets wins ImageNet
 - over 150 layers!

AlexNet

- Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E.
 Hinton. "Imagenet classification with deep
 convolutional neural networks." *Communications of*the ACM 60.6 (2017): 84-90.
 - Cited by 73,253

https://m.marefa.org/

Why now?

- Neural Network training and predicting involves a lot of calculations
 - Only new computers are capable to calculate it in the reasonable time (esp. with CUDA/GPU)
- Neural Network training requires a lot of training data
 - Huge datasets like ImageNet were not available before
 - Everybody may easily create their own dataset using internet resources
- Some advancements in algorithms
 - optimizers, learning rate adjustments, RELU,...

Convolutional Filter

- The filter (matrix NxM) applied to each pixel and its neighborhood
 - sharpening filters
 - smoothing filters
 - edge detection filters
- Examples:
 - https://setosa.io/ev/image-kernels/

CNN - 1D example

CNN - stride=1

CNN - stride=1, padding=1

CNN - 2D

CNN – 2D, many filters

Convolutional Layer

• Parameters:

- filters how many kernels
- kernel size 1D or 2D
- stride step for applying the kernel
- padding add borders with zeroes
 - VALID no padding
 - SAME padding to preserve size (if STRIDE=1)

Keras:

— Conv2D(filters=64, kernel_size=(3,3), padding=SAME, input_shape=(256,256))

Advantages of CNN

- Takes into account spatial/temporal relationships between features
- May find patterns in data
- Builds own filters that extract useful information
- The output from convolutional layer is a set of filters representing various properties of the image
 - i.e. features! which are automatically created

Example of CNN

CNN Layers in Keras

- Conv2D(filters=16, kernel_size=(3, 3), padding="same",input_shape=(120,120))
 - classic layer
- MaxPooling2D(pool_size=(2, 2))
 - calculate max for given area
 - reduces size
- Dropout(rate=0.25)
 - randomly set rate percent of weights to zero
 - helps to prevent overfitting
- BatchNormalization(axes=-1)
 - normalizes output from the layer

Cascade of layers

- Conv2D>MaxPooling>Conv2D>MaxPooling>Dropout
- Example:

https://www.hackerearth.com/practice/notes/

Another example

https://www.researchgate.net/publication/266734716

Flowers as images

flowers.ipynb

- Classification using:
 - Classic ANN
 - Decision Tree
 - Convolutional Neural Network

