

MSC316DC High-Integrated IP Camera SoC Processor

Preliminary Product Brief Version 0.3

© 2017 MStar Semiconductor, Inc. All rights reserved.

MStar Semiconductor makes no representations or warranties including, for example but not limited to, warranties of merchantability, fitness for a particular purpose, non-infringement of any intellectual property right or the accuracy or completeness of this document, and reserves the right to make changes without further notice to any products herein to improve reliability, function or design. No responsibility is assumed by MStar Semiconductor arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

MStar is a trademark of MStar Semiconductor, Inc. Other trademarks or names herein are only for identification purposes only and owned by their respective owners.

REVISION HISTORY

Revision No.	Description	Date
0.1	Ÿ Initial release	03/01/2017
0.2	ÿ Updated Electrical Specifications	03/29/2017
0.3	Ÿ Updated Block Diagram	05/05/2017
	Ÿ Updated Electrical Specifications	

FEATURES

n High Performance Processor Core

- Y ARM Cortex-A7 single Core 800MHz
- Ÿ Neon and FPU
- Ÿ Memory Management Unit for Linux support
- Ÿ DMA Engine

n Image/Video Processor

- Ϋ́ Supports 10/12-bit parallel interface for raw data input
- Ϋ́ Supports MIPI interface with 2 data lanes and 1 clock lane
- Ÿ Supports 8/10-bit CCIR656 interface
- Ϋ́ Supports 2M pixels video recording and image snapshot
- Ÿ Bad pixel compensation
- Ÿ Noise Reduction (NR)
- Ÿ Optical black correction
- Ÿ Lens shading compensation
- Ϋ́ Auto White Balance (AWB) / Auto Exposure(AE) / Auto Focus (AF)
- Ÿ CFA color interpolation
- Ÿ Color correction
- Ÿ Gamma correction
- Ÿ Video stabilization
- Ÿ Wide Dynamic Range (WDR)
- Ÿ Rotation with 90 or 270 degree
- Ÿ Lens distortion correction
- Ÿ Fully programmable multi-function scaling engines

n MStar Advanced Color Engine (MStarACE)

- Ÿ Luma gain/offset adjustment
- Y Supports 2D peaking
- Ÿ Horizontal noise masking
- Ÿ Direct Luma Correction (DLC)
- Ÿ Black/White Level Extension (BLE/WLE)
- Ÿ IHC/ICC/IBC for chroma adjustment
- Ÿ Histogram statistics

n H.265/HEVC Encoder

- Ϋ́ Supports H.265/HEVC baseline and main profile encoding
- Ÿ Supports MVs: 32x32, 16x16, 8x8
- Ÿ Supports up to quarter-pixel
- Ÿ Supports one reference frame
- Ÿ Supports Max. 2Mp/30fps encoding

n H.264 Encoder

- Ϋ́ Supports H.264 baseline and main profile encoding
- Ÿ Supports MVs: 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 4x4
- Ÿ Supports up to quarter-pixel
- Ÿ Supports two reference frames
- Ÿ Supports rate control and ROI
- Ÿ Supports Max. 2Mp/30fps encoding

n JPEG Encoder

- Ÿ Supports JPEG baseline encoding
- Ÿ Supports YUV422 or YUV420 formats

n Video Encoding Performance

- ÿ Supports 2Mp30 + +VGAp30+ QCIFp30 H.265/HEVC or H.264 encoding
- Ÿ Supports MJPEG up to 2Mp15fps encoding

n Audio Processor

- Ÿ One mono ADC for microphone inputs
- Ÿ One mono DAC for lineouts
- Ÿ Supports 8K/16K/32KHz sampling rate audio recording
- Ÿ Digital and analog gain adjustment

n NOR Flash Interface

Ϋ́ Compliant with standard, dual and quad SPI Flash memory components

n SDIO 2.0 Interface

- Ϋ́ Compatible with SDIO spec. 2.0, data bus 1/4 bit mode
- Ϋ́ Compatible with SD spec. 2.0, data bus 1/4 bit mode

n USB 2.0 Interface

- Ÿ One USB 2.0 configurable host or device
 - Host mode supports EHCI specification
 - Device mode supports 6 endpoints

n DRAM Memory

- Ÿ Embedded DDR3 DRAM memory
 - Memory size up to 1Gb

n Connectivity

- Ÿ Built-in 10/100M Ethernet MAC and Ethernet PHY
- Ÿ One USB 2.0 OTG Controller could be used for USB Wi-Fi Dongle or Module
- Ϋ́ One SDIO 2.0 Host Controller could be used for SDIO Wi-Fi module
- Ÿ Supports Wakeup on LAN (WOL)

n Security Engines

- Ÿ Supports AES/DES/TDES
- Ÿ Supports secure booting

n Peripherals

- Ÿ Dedicated GPIOs for system control
- Ÿ Four PWM outputs shared with GPIOs
- Ÿ Two generic UARTs and one fast UART with flow control
- Ÿ Three generic timers and one watchdog timer
- Ÿ Two SPI masters
- Ÿ One I2C Masters
- Ÿ Built-in SAR ADC with 3 channels analog inputs for different kinds of applications
- Ÿ One IR input

n Operating Voltage Range

Ÿ Core: 0.9V

Ÿ I/O: 1.8 ~ 3.3V

Ÿ DRAM: 1.5V

Ÿ Power Consumption: TBD

n Package

Ÿ M2QFN, 9mmx9mm

GENERAL DESCRIPTIONS

The MSC316DC is a highly integrated SOC. Based on ARM Cortex-A7, it integrates Image Signal Processor (ISP), Color Engine, Video (H.264/H.265/MJPEG) Encoders and other useful peripherals for IP camera applications.

A typical utilization of the MSC316DC application processor is demonstrated in the following block diagram. The complete system includes a camera module (CMOS sensor), a connectivity module (WiFi or Ethernet), and a non-volatile storage (NOR flash or SD card). The ISP and Color Engine handle images captured from the camera sensor, and the video stream is composed of lots images. There are pre- and post- video processing stages. The pre-video processing rotates images, reduces noises, enhances signals and translates color domains. The post-video processing corrects lens distortion, adjusts color quality, and generates multiple video streams with different resolutions. Multimedia Encoders can compress those video streams with different compressing standards at the same time. The well compressed video/audio streams could be streamed or stored in the cloud server through Wi-Fi or Ethernet or stored in a local SD Card. The NOR flash is usually reserved for operating system and application software. Moreover, other peripherals like SAR ADC, Audio ADC/DAC, UARTs, PWMs, GPIOs and SPI are supported to realize applications with maximal flexibility.

Besides, the MSC316DC supports secure booting and personalization authentication mechanism for securing system. The AES/DES/3DES cipher engines could also help encrypt the compressed video/audio streams to protect privacy.

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

Video Encoder

I. JPE Feature Description

n JPE features

- Ÿ Supports JPEG encoding 3Mp
 - Frame mode
 - IMI row mode
- Ÿ Supports YUYV input format
- Ϋ́ Supports NV12 input format
- Ÿ Supports DCT mode to accelerate SW encoding

II. H.264 Feature Description

n H.264 features

- Ÿ Supports H264 baseline encoding
- Ÿ Baseline profile, level 3.0
- Ÿ Supports MVs: 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 4x4
- Ÿ Supports up to quarter-pel
- Ÿ Supports up to two reference frames
- Ÿ Max resolutions
 - H264 supported are 2Mp
- Ÿ Frame-level & mb-level rate control
- Ÿ Supports YUYV input format
- Ÿ Supports NV12 input format
- Ÿ Supports 16/235 and 0/255 Range Converter
- Ÿ Supports cost-penalty adjustment
- Ÿ Supports force zero-motion
- Ÿ Supports intra16x16 planar mode

n Stream combination

- Ÿ 2M@30fps+VGA@30fps+CIF@30fps
- ÿ 960p@30fps+VGA@30fps+CIF@30fps
- ÿ 960p@30fps+D1@30fps

III. H.265 Brief Feature Description

n Stream combination

- Ÿ 2M@30fps+VGA@30fps+CIF@30fps
- Ÿ 960p@30fps+VGA@30fps+CIF@30fps
- Ÿ 960p@30fps+D1@30fps

ISP

I. Brief Feature Description

The ISP design is used to transfer raw sensor data output to YUV data and also supports YUV sensor at ISP bypass mode default.

- Ÿ Supports to FHD@30Hz, 2M@30, sensor input
- Ÿ Fix pattern noise correction
- Ÿ Bad pixel compensation
- Ÿ Green equal
- Ÿ Supports rgbir2x2 or rgbir4x4 mode input
- Ÿ Optical black correction
- Ÿ Len shading compensation
- Ÿ Asymmetric Lens shading compensation
- Ÿ Statistic for AWB/AE/AF
- Ÿ Bayer domain de-noise
- Ÿ Supports Bayer domain rotation
- Ÿ White Balance PreGain and PostGain can be enable at the same time.
- Ÿ CFA color interpolation
- Ÿ Gamma correction
- Ÿ Video stabilization statistic
- Ÿ Supports menuload for ALSC_gain/DefectPxl/Gamma table

Peripheral

I. USB Brief Feature Description

One port of host/OTG controller is fully compliant with the USB 2.0 specification and the Enhanced Host Controller Interface (EHCI) specification. This Host/OTG Controller can support FS/LS transactions, Interrupt/Control/Bulk transfers and split/preamble transactions for hub.

II. MIPI CSI Interface

The features are listed below:

- Ÿ CSI-2 1.1/D-PHY 1.1 compliant receiver with maximum Input Frequency 1GHz
- Ÿ Supports 1 clock lane, 2 data lanes
- Ϋ́ Supports YUV422 8-bit, Raw8, Raw10, Raw12, Generic 8-bit long packet and User defined byte-based data type
- Ÿ Supports 1-bit error correction/2-bit error detection for packet header
- Y Supports checksum error detection for payload data

Y Supports timing generation for Vsync and Hsync

III. Ethernet MAC Brief Feature Description

- Ÿ IEEE Std 802.3 compatible
- Ÿ Supports 10/100 Mbit/s operation.
- Ÿ Full/Half duplex support.
- Ÿ Automatic pad and CRC generation on transmitted packet.
- Ÿ Supports transmit packet(IP/TCP/UDP) checksum generate
- Ÿ Receiver & Transmitter Packet management by internal storage with descriptor header control
- Y Internal async-FIFO for receiver & transmitter frame wire speed operation
- Ÿ Supports Tagged frame
- Ÿ Supports IPV6 check-sum
- Ÿ Supports IEEE802.3az EEE function

IV. EPHY Brief Feature Description

The Ethernet PHY (EPHY) is an IEEE 802.3 compliant single-port Ethernet Transceiver for both 100Mbps and 10Mbps operations. The EPHY acts as an interface between the physical signaling and the Media Access Controller (MAC). It supports the Auto-Negotiation function to simplify the network installation and maintenance. The major functions of EPHY included:

- Ÿ 10/100Mbps TX/RX
- Ÿ Full-duplex or half duplex
- Ÿ Supports IEEE 802.3u auto-negotiation
- Ÿ DSP-based PHY Transceiver technology
- Ÿ Supports WOL (Wake on Lan) feature (Magic Packet only)
- Ÿ Supports IEEE 802.3az EEE function

V. Encryption Brief Feature Description

AESDMA is a secure IP for Secure Boot and HDMI Key Authentication. There are three engines inside this IP:

- Ÿ AES: ECB, CBC (dvs042), ECB_CTS, CBC_CTS, CTR
- Ÿ SHA: SHA 1, SHA 256
- Ÿ RSA: RSA_2048 in HW key mode, programmable size in SW key mode

PIN DIAGRAM (MSC316DC)

PIN CHARACTERISTICS

QFN Pin Location	Pin Name	Multi Function	PAD Power	Driving Capability	Pull Resistor	Core-Off Status	5V-Tolerant
12	PAD_SAR_GPI O3	SAR_ASI3 SAR_GPIO[3]	AVDD_NODIE	>4mA	Hi-Z	Hi-Z	Yes
13	PAD_SAR_GPI O2	SAR_ASI2 SAR_GPIO[2]	AVDD_NODIE	>4mA	Hi-Z	Hi-Z	Yes
14	PAD_SAR_GPI O1	SAR_ASI1 SAR_GPIO[1]	AVDD_NODIE	>4mA	Hi-Z	Hi-Z	Yes
15	PAD_SAR_GPI O0	SAR_ASI0 SAR_GPIO[0]	AVDD_NODIE	>4mA	Hi-Z	Hi-Z	Yes
19	PAD_PM_SD_ CDZ	SD_CDZ SD_CDZ_GPIO	AVDD_NODIE	>4mA	PU=86kohm (±15%)/39uA(±15%)	PU	Yes
20	PAD_PM_IRIN	IRIN IRIN_GPIO	AVDD_NODIE	>4mA	PU=86kohm (±15%)/39uA(±15%)	PU	Yes
21	PAD_PM_RESE T	HW_RESET	AVDD_NODIE		PD=64kohm (±15%)/52uA(±15%)	PD	Yes
22	PAD_PM_UAR T_RX	UART_RX	AVDD_NODIE	>4mA	PU=86kohm (±15%)/39uA(±15%)	PU	Yes
23	PAD_PM_UAR T_TX	UART_TX	AVDD_NODIE	>4mA	PU=86kohm (±15%)/39uA(±15%)	PU	Yes
25	PAD_PM_GPIO 4	GPIO_PM[4]	AVDD_NODIE	>4mA	PU=86kohm (±15%)/39uA(±15%)	PU	Yes
26	PAD_PM_SPI_ CZ	SPI_CZ1 SPI_CZ2 SPI_GPIO[0]	AVDD_NODIE	>4mA/8mA	PU=86kohm (±15%)/39uA(±15%)	PU	Yes
27	PAD_PM_SPI_ DI	SPI_DI SPI_GPIO[2]	AVDD_NODIE	>4mA/8mA	PU=86kohm (±15%)/39uA(±15%)	PU	Yes
28	PAD_PM_SPI_ WPZ	SPI_WPZ SPI_GPIO[4]	AVDD_NODIE	>4mA/8mA	PU=86kohm (±15%)/39uA(±15%)	PU	Yes
29	PAD_PM_SPI_ DO	SPI_DO SPI_GPIO[3]	AVDD_NODIE	>4mA/8mA	PU=86kohm (±15%)/39uA(±15%)	PU	Yes
30	PAD_PM_SPI_ CK	SPI_CK SPI_GPIO[1]	AVDD_NODIE	>4mA/8mA	PD=64kohm (±15%)/52uA(±15%)	PD	Yes
31	PAD_PM_SPI_ HLD	SPI_HLDZ SPI_GPIO[5]	AVDD_NODIE	>4mA/8mA	PU=86kohm (±15%)/39uA(±15%)	PU	Yes
32	PAD_PM_LED0	ETH_LED0 LED_GPIO[0]	AVDD_NODIE	>4mA	PD=64kohm (±15%)/52uA(±15%)	PD	Yes
33	PAD_PM_LED1	ETH_LED1 LED_GPIO[1]	AVDD_NODIE	>4mA	PD=64kohm (±15%)/52uA(±15%)	PD	Yes
35	PAD_XTAL_IN	XTAL_IN	AVDD_XTAL				
36	PAD_XTAL_OU T	XTAL_OUT	AVDD_XTAL				
38	PAD_ETH_RN	ETH_RN ETH_GPIO[0]	AVDD_ETH				
39	PAD_ETH_RP	ETH_RP ETH_GPIO[1]	AVDD_ETH				
40	PAD_ETH_TN	ETH_TN ETH_GPIO[2]	AVDD_ETH				
41	PAD_ETH_TP	ETH_TP ETH_GPIO[3]	AVDD_ETH				

QFN Pin Location	Pin Name	Multi Function	PAD Power	Driving Capability	Pull Resistor	Core-Off Status	5V-Tolerant
43	PAD_FUART_R X	FUART_RX UARTO_RX EJ_TCK SPIO_CZ PWM0 FUART_GPIO[0]	VDDP_1	>4mA	PU=86kohm (±15%)/39uA(±15%)	PU	Yes
44	PAD_FUART_T X	FUART_TX UART0_TX EJ_TMS SPI0_CK PWM1 FUART_GPI0[1]	VDDP_1	>4mA	PU=86kohm (±15%)/39uA(±15%)	PU	Yes
45	PAD_FUART_C TS	FUART_CTS UART1_RX EJ_TDO SPI0_DI PWM2 FUART_GPI0[2]	VDDP_1	>4mA	PU=86kohm (±15%)/39uA(±15%)	PU	Yes
46	PAD_FUART_R TS	FUART_RTS UART1_TX EJ_TDI SPI0_DO PWM3 FUART_GPI0[3]	VDDP_1	>4mA	PU=86kohm (±15%)/39uA(±15%)	PU	Yes
48	PAD_I2C1_SC L	I2C1_SCL SR_SCL I2C1_GPIO[0]	VDDP_2	>4mA/8mA	Option PU = 90kohm (+/-15%) Option PD = 64kohm (+/-15%)	PU	No
49	PAD_I2C1_SD A	I2C1_SDA SR_SDA I2C1_GPIO[1]	VDDP_2	>4mA/8mA	Option PU = 90kohm (+/-15%) Option PD = 64kohm (+/-15%)	PU	No
51	PAD_SR_IO02	SR_D[9] SR_D[8] SR_D[4] SR_HS SR_D[2] CCIR_IN_D[0] SR_GPIO[2]	VDDP_2	>4mA/8mA	Option PU = 90kohm (+/-15%) Option PD = 64kohm (+/-15%)	PU	No
52	PAD_SR_IO03	SR_D[7] SR_D[6] SR_D[2] SR_D[0] SR_D[3] CCIR_IN_D[1] SR_GPIO[3]	VDDP_2	>4mA/8mA	Option PU = 90kohm (+/-15%) Option PD = 64kohm (+/-15%)	PU	No
53	PAD_SR_IO04	SR_PCK SR_D[4] SR_D[1] CCIR_IN_D[2] SR_GPIO[4]	VDDP_2	>4mA/8mA	Option PU = 90kohm (+/-15%) Option PD = 64kohm (+/-15%)	PU	No
54	PAD_SR_IO05	SR_D[1] SR_D[2] SR_D[0] SR_D[5] CCIR_IN_D[3] SR_GPIO[5]	VDDP_2	>4mA/8mA	Option PU = 90kohm (+/-15%) Option PD = 64kohm (+/-15%)	PU	No

QFN Pin Location	Pin Name	Multi Function	PAD Power	Driving Capability	Pull Resistor	Core-Off Status	5V-Tolerant
55	PAD_SR_IO06	SR_D[0] SR_PCK SR_D[2] SR_D[3] SR_D[6] CCIR_IN_D[4] SR_GPIO[6]	VDDP_2	>4mA/8mA	Option PU = 90kohm (+/-15%) Option PD = 64kohm (+/-15%)	PU	No
56	PAD_SR_IO07	SR_D[3] SR_D[1] SR_PCK SR_D[9] SR_D[4] SR_D[7] CCIR_IN_D[5] SR_GPIO[7]	VDDP_2	>4mA/8mA	Option PU = 90kohm (+/-15%) Option PD = 64kohm (+/-15%)	PU	No
57	PAD_SR_IO08	SR_D[5] SR_D[0] SR_D[1] SR_D[3] SR_D[8] CCIR_IN_D[6] SR_GPIO[8]	VDDP_2	>4mA/8mA	Option PU = 90kohm (+/-15%) Option PD = 64kohm (+/-15%)	PU	No
58	PAD_SR_IO09	SR_D[4] SR_D[9] SR_D[7] SR_D[6] CCIR_IN_D[7] SR_GPIO[9]	VDDP_2	>4mA/8mA	Option PU = 90kohm (+/-15%) Option PD = 64kohm (+/-15%)	PU	No
59	PAD_SR_IO10	SR_D[6] SR_D[3] SR_D[5] SR_RST SR_MCK SR_D[10] CCIR_IN_D[8] SR_GPIO[10]	VDDP_2	>4mA/8mA	Option PU = 90kohm (+/-15%) Option PD = 64kohm (+/-15%)	PU	No
60	PAD_SR_IO11	SR_MCK SR_D[7] SR_D[3] SR_D[5] SR_D[11] CCIR_IN_D[9] SR_GPIO[11]	VDDP_2	>4mA/8mA	Option PU = 90kohm (+/-15%) Option PD = 64kohm (+/-15%)	PU	No
61	PAD_SR_IO12	SR_HS SR_RST SR_D[9] SR_VS SR_D[8] SR_PDN CCIR_IN_CLK SR_GPIO[12]	VDDP_2	>4mA/8mA	Option PU = 90kohm (+/-15%) Option PD = 64kohm (+/-15%)	PU	No
62	PAD_SR_IO13	SR_VS SR_D[5] SR_HS SR_D[9] SR_RST SR_GPIO[13]	VDDP_2	>4mA/8mA	Option PU = 90kohm (+/-15%) Option PD = 64kohm (+/-15%)	PU	No

QFN Pin Location	Pin Name	Multi Function	PAD Power	Driving Capability	Pull Resistor	Core-Off Status	5V-Tolerant
63	PAD_SR_IO14	SR_D[8] SR_VS SR_PDN SR_D[10] SR_HS SR_GPIO[14]	VDDP_2	>4mA/8mA	Option PU = 90kohm (+/-15%) Option PD = 64kohm (+/-15%)	PU	No
64	PAD_SR_IO15	SR_D[2] SR_HS SR_MCK SR_D[11] SR_PCK SR_GPIO[15]	VDDP_2	>4mA/8mA	Option PU = 90kohm (+/-15%) Option PD = 64kohm (+/-15%)	PU	No
65	PAD_SR_IO16	SR_PDN SR_PCK SR_VS SR_GPIO[16]	VDDP_2	>4mA/8mA	Option PU = 90kohm (+/-15%) Option PD = 64kohm (+/-15%)	PU	No
66	PAD_SR_IO17	SR_RST SR_MCK SR_GPIO[17]	VDDP_2	>4mA/8mA	Option PU = 90kohm (+/-15%) Option PD = 64kohm (+/-15%)	PU	No
70	PAD_SPI0_CZ	SPI0_CZ TTL_B[7] PWM4 SPI0_GPIO[0]	VDDP_3	>4mA/8mA/ 12mA/16mA	PU=86kohm (±15%)/39uA(±15%)	PU	No
71	PAD_SPI0_CK	SPI0_CK TTL_LCK PWM5 SPI0_GPI0[1]	VDDP_3	>4mA/8mA/ 12mA/16mA	PD=64kohm (±15%)/52uA(±15%)	PD	No
72	PAD_SPI0_DI	SPI0_DI TTL_LVSYNC PWM6 SPI0_GPI0[2]	VDDP_3	>4mA/8mA/ 12mA/16mA	PD=64kohm (±15%)/52uA(±15%)	PD	No
73	PAD_SPI0_DO	SPI0_DO TTL_LHSYNC PWM7 SPI0_GPI0[3]	VDDP_3	>4mA/8mA/ 12mA/16mA	PD=64kohm (±15%)/52uA(±15%)	PD	No
74	PAD_PWM0	I2C0_SCL I2C1_SCL TTL_LDE PWM0 PWM_GPIO[0]	VDDP_3	>4mA/8mA	PU=86kohm (±15%)/39uA(±15%)	PU	Yes
75	PAD_PWM1	I2C0_SDA I2C1_SDA PWM1 PWM_GPIO[1]	VDDP_3	>4mA	PU=86kohm (±15%)/39uA(±15%)	PU	Yes
77	PAD_SD_CLK	SDIO_CLK SD_GPIO[0]	VDDP_3	>4mA/8mA	PD=64kohm (±15%)/52uA(±15%)	PD	Yes
78	PAD_SD_CMD	SDIO_CMD SD_GPIO[1]	VDDP_3	>4mA/8mA	Option PU=86kohm (±15%)/39uA(±15%)	Hi-Z	Yes
79	PAD_SD_D0	SPI1_CZ SDIO_D[0] SD_GPIO[2]	VDDP_3	>4mA/8mA	Option PU=86kohm (±15%)/39uA(±15%)	Hi-Z	Yes
80	PAD_SD_D1	SPI1_CK SDIO_D[1] SD_GPIO[3]	VDDP_3	>4mA/8mA	Option PU=86kohm (±15%)/39uA(±15%)	Hi-Z	Yes

QFN Pin Location	Pin Name	Multi Function	PAD Power	Driving Capability	Pull Resistor	Core-Off Status	5V-Tolerant
81	PAD_SD_D2	SPI1_DI SDIO_D[2] SD_GPIO[4]	VDDP_3	>4mA/8mA	Option PU=86kohm (±15%)/39uA(±15%)	Hi-Z	Yes
82	PAD_SD_D3	SPI1_DO SDIO_D[3] SD_GPIO[5]	VDDP_3	>4mA/8mA	Option PU=86kohm (±15%)/39uA(±15%)	Hi-Z	Yes
84	PAD_USB_DM	USB_DM USB_GPIO[0]	AVDD_USB	>4mA	Hi-Z		
85	PAD_USB_DP	USB_DP USB_GPIO[1]	AVDD_USB	>4mA	Hi-Z		
87	PAD_AUD_VA G	AUD_VAG	AVDD_AUD				
88	PAD_AUD_VR M_ADC	AUD_VRM_ADC	AVDD_AUD				
88	PAD_AUD_VR M_DAC	AUD_VRM_DAC	AVDD_AUD				
1	PAD_AUD_MIC IN0	AUD_MICIN0	AVDD_AUD				
2	PAD_AUD_MIC CM0	AUD_MICCM0	AVDD_AUD				
3	PAD_AUD_LIN EOUT_L0	AUD_LINEOUT_L0	AVDD_AUD				
6, 47, 67, 68, 76	VDD						
4, 7, 18	AVDDIO_DRA M						
11	DVDD_DDR						
11	DVDD_DDR_R X						
16	DVDD_NODIE						
86	AVDD_AUD						
37	AVDD_ETH						
17	AVDD_NODIE						
10	AVDD_PLL						
83	AVDD_USB						
34	AVDD_XTAL						
5	VDDIO_CMD						
8,9	VDDIO_DATA						
42	VDDP_1						
50	VDDP_2						
69	VDDP_3						
EPAD	VSS						

SIGNAL DESCRIPTION

Image Sensor

Signal Name	Signal Type	Function	Pin Location
SR_D[0]	Input	Image Sensor Data Bus	55,57,54
SR_D[1]	Input	Image Sensor Data Bus	54,56,57
SR_D[2]	Input	Image Sensor Data Bus	64,54,55
SR_D[3]	Input	Image Sensor Data Bus	56,59,60
SR_D[4]	Input	Image Sensor Data Bus	58,53,53
SR_D[5]	Input	Image Sensor Data Bus	57,62.59
SR_D[6]	Input	Image Sensor Data Bus	59,52,52
SR_D[7]	Input	Image Sensor Data Bus	52,60,58
SR_D[8]	Input	Image Sensor Data Bus	63,51,51
SR_D[9]	Input	Image Sensor Data Bus	51,58,61
SR_HS	Input	Image Sensor Horizontal Sync Signal	61,64,62
SR_VS	Input	Image Sensor Vertical Sync Signal	62,63,63
SR_PCK	Input	Image Sensor Pixel Clock	53,55,56
SR_PDN	Output	Image Sensor Power Down Control	65,65,65
SR_RST	Output	Image Sensor Reset Control	66,61,66
SR_MCK	Output	Image Sensor Reference Clock	60,66,64
SR_SCL	Output	Image Sensor I2C Serial Clock	48
SR_SDA	Input/Output	Image Sensor I2C Serial Data	49

CCIR Sensor

Signal Name	Signal Type	Function	Pin Location
CCIR_IN_D[0]	Input	CCIR Data Bus	51
CCIR_IN_D[1]	Input	CCIR Data Bus	52
CCIR_IN_D[2]	Input	CCIR Data Bus	53
CCIR_IN_D[3]	Input	CCIR Data Bus	54
CCIR_IN_D[4]	Input	CCIR Data Bus	55
CCIR_IN_D[5]	Input	CCIR Data Bus	56
CCIR_IN_D[6]	Input	CCIR Data Bus	57
CCIR_IN_D[7]	Input	CCIR Data Bus	58
CCIR_IN_D[8]	Input	CCIR Data Bus	59
CCIR_IN_D[9]	Input	CCIR Data Bus	60
CCIR_IN_CLK	Input	CCIR Sample Clock	61

Audio Interface

Signal Name	Signal Type	Function	Pin Location
AUD_LINEOUT_L0	Output	Audio Left Channel Line Output	3
AUD_VAG	Output	Audio Reference Voltage from 1/2 AVDD_AUD	87
AUD_VRM_ADC	Input	Audio Reference Voltage for ADC	88
AUD_VRM_DAC	Input	Audio Reference Voltage for DAC	88
AUD_MICIN0	Input	Audio Left Channel Microphone Postive Input	1
AUD_MICCM0	Input	Audio Left Channel Microphone Negative Input	2

10/100 Ethernet Interface

Signal Name	Signal Type	Function	Pin Location
ETH_RN	Input	10/100 Ethernet Negative Receiving Input	38
ETH_RP	Input	10/100 Ethernet Positive Receiving Input	39
ETH_TN	Output	10/100 Ethernet Negative Transmitting Output	40
ETH_TP	Output	10/100 Ethernet Positive Transmitting Output	41

SDIO Interface

Signal Name	Signal Type	Function	Pin Location
SDIO_CLK	Output	SDIO 2.0 Clock	77
SDIO_CMD	Output	SDIO 2.0 Command	78
SDIO_D[0]	Input/Output	SDIO 2.0 Data Bus	79
SDIO_D[1]	Input/Output	SDIO 2.0 Data Bus	80
SDIO_D[2]	Input/Output	SDIO 2.0 Data Bus	81
SDIO_D[3]	Input/Output	SDIO 2.0 Data Bus	82
SD_CDZ	Input	SD Card Detect (active low)	19

SPI Flash Interface

Signal Name	Signal Type	Function	Pin Location
SPI_CK	Output	SPI Flash Clock	30
SPI_CZ1	Output	SPI Flash Chip Select 1 (active low)	26
SPI_DI	Output	SPI Flash Serial DataTo Device	27
SPI_DO	Input	SPI Flash Serial Data From Device	29
SPI_WPZ	Output	SPI Flash Write Protect Control (active low)	28

USB 2.0 Interface

Signal Name	Signal Type	Function	Pin Location
USB_DM	Input/Output	USB 2.0 Inverting Data	84
USB_DP	Input/Output	USB 2.0 Non-inverting Data	85

Master SPI Interface

Signal Name	Signal Type	Function	Pin Location
SPI0_CZ	Output	Master SPI 0 Chip Select (active low)	70
SPIO_CK	Output	Master SPI 0 Serial Clock	71
SPI0_DI	Output	Master SPI 0 Serial Data In	72
SPI0_DO	Input	Master SPI 0 Serial Data Out	73

Master I2C Interface

Signal Name	Signal Type	Function	Pin Location
I2C1_SCL	Output	Master I2C 1 Serial Clock	48
I2C1_SDA	Input/Output	Master I2C 1 Serial Data	49

UART Interface

Signal Name	Signal Type	Function	Pin Location
UART_RX0	Input	UART 0 Receiver	43
UART_TX0	Output	UART 0 Transmitter	44
UART_RX1	Input	UART 1 Receiver	45
UART_TX1	Output	UART 1 Transmitter	46

Fast UART Interface

Signal Name	Signal Type	Function	Pin Location
FUART_RX	Input	Fast UART Receiver	43
FUART_TX	Output	Fast UART Transmitter	44
FUART_CTS	Input	Fast UART Clear to Set	45
FUART_RTS	Output	Fast UART Request to Set	46

IR Interface

Signal Name	Signal Type	Function	Pin Location
IRIN	Input	IR Receiver	20

SAR Interface

Signal Name	Signal Type	Function	Pin Location
SAR_ASI0	Input	SAR Analog Signal Channel 0	15
SAR_ASI1	Input	SAR Analog Signal Channel 1	14
SAR_ASI2	Input	SAR Analog Signal Channel 2	13
SAR_ASI3	Input	SAR Analog Signal Channel 3	12

System

Signal Name	Signal Type	Function	Pin Location
PAD_XTAL_IN	Input	24MHz Crystal Output	35
PAD_XTAL_OUT	Output	24MHz Crystal Input	36
HW_RESET	Input	Chip Reset (active high)	21
UART_RX	Input	Debug Port for UART Receiver or Slave I2C Serial Clock	22
UART_TX	Output	Debug Port for UART Transmitter or Slave I2C Serial Data	23
GND_EFUSE	Input	Power Source if eFuse Burning (connect to ground)	24

GPIO Interface

Signal Name	Signal Type	Function	Pin Location
FUART_GPIO[0]	Input/Output	General Purpose Input/Output	43
FUART_GPIO[1]	Input/Output	General Purpose Input/Output	44
FUART_GPIO[2]	Input/Output	General Purpose Input/Output	45
FUART_GPIO[3]	Input/Output	General Purpose Input/Output	46
I2C0_GPIO[0]	Input/Output	General Purpose Input/Output	48
I2C0_GPIO[1]	Input/Output	General Purpose Input/Output	49
SPI0_GPIO[0]	Input/Output	General Purpose Input/Output	70
SPI0_GPIO[1]	Input/Output	General Purpose Input/Output	71
SPI0_GPIO[2]	Input/Output	General Purpose Input/Output	72
SPI0_GPIO[3]	Input/Output	General Purpose Input/Output	73
SD_GPIO[0]	Input/Output	General Purpose Input/Output	77
SD_GPIO[1]	Input/Output	General Purpose Input/Output	78
SD_GPIO[2]	Input/Output	General Purpose Input/Output	79
SD_GPIO[3]	Input/Output	General Purpose Input/Output	80

Signal Name	Signal Type	Function	Pin Location
SD_GPIO[4]	Input/Output	General Purpose Input/Output	81
SD_GPIO[5]	Input/Output	General Purpose Input/Output	82
SR_GPIO[2]	Input/Output	General Purpose Input/Output	51
SR_GPIO[3]	Input/Output	General Purpose Input/Output	52
SR_GPIO[4]	Input/Output	General Purpose Input/Output	53
SR_GPIO[5]	Input/Output	General Purpose Input/Output	54
SR_GPIO[6]	Input/Output	General Purpose Input/Output	55
SR_GPIO[7]	Input/Output	General Purpose Input/Output	56
SR_GPIO[8]	Input/Output	General Purpose Input/Output	57
SR_GPIO[9]	Input/Output	General Purpose Input/Output	58
SR_GPIO[10]	Input/Output	General Purpose Input/Output	59
SR_GPIO[11]	Input/Output	General Purpose Input/Output	60
SR_GPIO[12]	Input/Output	General Purpose Input/Output	61
SR_GPIO[13]	Input/Output	General Purpose Input/Output	62
SR_GPIO[14]	Input/Output	General Purpose Input/Output	63
SR_GPIO[15]	Input/Output	General Purpose Input/Output	64
SR_GPIO[16]	Input/Output	General Purpose Input/Output	65
SR_GPIO[17]	Input/Output	General Purpose Input/Output	66
USB_GPIO[0]	Input/Output	General Purpose Input/Output	84
USB_GPIO[1]	Input/Output	General Purpose Input/Output	85
PM_GPIO[4]	Input/Output	General Purpose Input/Output	25
SD_CDZ_GPIO	Input/Output	General Purpose Input/Output	19
IRIN_GPIO	Input/Output	General Purpose Input/Output	20
SPI_GPIO[0]	Input/Output	General Purpose Input/Output	26
SPI_GPIO[1]	Input/Output	General Purpose Input/Output	30
SPI_GPIO[2]	Input/Output	General Purpose Input/Output	27
SPI_GPIO[3]	Input/Output	General Purpose Input/Output	21
SPI_GPIO[4]	Input/Output	General Purpose Input/Output	28
SAR_GPIO[0]	Input/Output	General Purpose Input/Output	15
SAR_GPIO[1]	Input/Output	General Purpose Input/Output	14
SAR_GPIO[2]	Input/Output	General Purpose Input/Output	13
SAR_GPIO[3]	Input/Output	General Purpose Input/Output	12
ETH_GPIO[0]	Input/Output	General Purpose Input/Output	38
ETH_GPIO[1]	Input/Output	General Purpose Input/Output	39
ETH_GPIO[2]	Input/Output	General Purpose Input/Output	40

Signal Name	Signal Type	Function	Pin Location
ETH_GPIO[3]	Input/Output	General Purpose Input/Output	41

Cortex-A7 JTAG

Signal Name	Signal Type	Function	Pin Location
EJ_TCK	Input	CA7 JTAG Clock	43,70
EJ_TMS	Intpu	CA7 JTAG Mode Select	44,71
EJ_TDO	Output	CA7 JTAG Data Out	45,72
EJ_TDI	Input	CA7 JTAG Data In	46,73

Power Pins

Signal Name	Signal Type	Function	Pin Location
VDD	Input	Digital Power	6,47,67,68,76
DVDD_DDR	Input	Digital Power for DDR	11
DVDD_DDR_RX	Input	Digital Power for DDR	11
DVDD_NODIE	Output	PM LDO Output	16
AVDD_AUD	Input	Analog Power for Audio	86
AVDD_ETH	Input	Analog Power for Ethernet	37
AVDD_NODIE	Input	Analog Power for PM	17
AVDD_PLL	Input	Analog Power for PLL	10
AVDD_USB	Input	Analog Power for USB	83
AVDD_XTAL	Input	Analog Power for XTAL	34
VDDIO_CMD	Input	Analog Power for DDR	5
VDDIO_DATA	Input	Analog Power for DDR	8,9
VDDP_1	Input	Pad Power	42
VDDP_2	Input	Pad Power	50
VDDP_3	Input	Pad Power	69
AVDDIO_DRAM	Input	Stack DRAM Power	4,7,18

MECHANICAL DIMENSIONS

0.4 Note: E-pad have to connect to system GND net.

0.35

0.4

0.45

0.012

0.014

е

0.3

0.35

66

0.016 0.016

0.016 0.018

ELECTRICAL SPECIFICATIONS

Interface Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit
DIGITAL INPUTS					
Input Voltage, High	V_{IH}	2.5			V
Input Voltage, Low	V_{IL}			0.8	V
Input Current, High	${ m I}_{ m IH}$			-1.0	uA
Input Current, Low	${ m I}_{ m IL}$			1.0	uA
Input Capacitance			5		pF
DIGITAL OUTPUTS					
Output Voltage, High	V_{OH}	VDDP-0.1Note			V
Output Voltage, Low	V_{OL}			0.1	V
SAR ADC Input		0		V_{VDD_33}	٧
AUDIO OUTPUTS					
Line-Out			2.54		Vp-p

Note: 1. VDDP can be V_{VDD_33}, V_{VDD_15}

2. 0.9Vrms @10Kohm load

Recommended Operating Conditions

Parameter	Symbol	Min	Тур.	Max.	Unit
3.3V Supply Voltage	V_{VDD_33}		3.3		٧
1.5V Supply Voltage (DDR III)	V _{VDD 15}		1.5		٧
Core Power Supply Voltage (Core)	V_{VDD_core}	0.87	0.9		٧
Ambient Operation Temperature	T _A	-40		85	°C
Junction Temperature	T _J			125	°C

Absolute Maximum Ratings

Parameter	Symbol	Min	Тур.	Max.	Unit
3.3V Supply Voltage	V_{VDD_33}			3.63	V
1.5V Supply Voltage (DDR III)	V_{VDD_15}			1.65	V
Core Power Supply Voltage (Core)	V_{VDD_core}			1.26	V
Storage Temperature	T_{STG}	-40		150	°C

Note: Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and does not imply functional operation of device. Exposure to absolute maximum ratings for extended periods may affect device reliability.

HARDWARE POWER SEQUENCE PROCEDURE

The timing requirements of the hardware reset signal are shown as below:

Hardware Reset

HWRESET: Chip Reset; High Reset (Level)

The HWRESET pin is suggested to connect with 3.3V standby as shown in Figure 1. The VIH is 2V (Typ) +/- 10% (2.2V \sim 1.8V); the VIL is 1.2V (Typ) +/- 10% (1.08V \sim 1.32V). The power sequence is as shown in Figure 2.

Figure 1: Reset Application Circuit

External Reset IC with External LDO

The timing is shown as Figure 2. The RST and power waveform must satisfy Figure 2 with parameters listed in Table 1.

Note:

- *3.3V standby power (AVDD_NODIE, AVDD_XTAL, AVDD_ETH)
- *1.0V/0.9V (VDD, DVDD_DDR_RX)
- *1.5V (AVDDIO_DRAM, VDDIO_DATA, VDDIO_CMD)
- *1.8V (VDDP_2)
- *3.3V normal power (AVDD_AUD, AVDD_PLL, AVDD_USB, VDDP_1, VDDP_3)

Figure 2: Power on Sequence

Table 1: Power Requirements

Time	Description	Min	Typ.	Max	Unit
t_1	XTAL stable to Reset falling	5	1	1	ms
t_2	Reset pulse width	5	1	1	ms
t ₃	Normal 3.3V, 1.8V, and 1.5V, VDDC power rising time (0% to 100%)	_	ı	20	ms
t ₄	Normal 3.3V, 1.8V, and 1.5V to VDDC lead time	1	_	_	ms

Without external Reset IC with External LDO

The timing is shown as Figure 3. The power waveform must satisfy Figure 3 with parameters listed in Table 1.

Note:

- *3.3V standby power (AVDD_NODIE, AVDD_XTAL, AVDD_ETH)
- *1.0V/0.9V (VDD, DVDD_DDR_RX)
- *1.5V (AVDDIO_DRAM, VDDIO_DATA, VDDIO_CMD)
- *1.8V (VDDP_2)
- *3.3V normal power (AVDD_AUD, AVDD_PLL, AVDD_USB, VDDP_1, VDDP_3)

Figure 3: Power on Sequence

Table 2: Power Requirements

Time	Description	Min	Typ.	Max	Unit
t ₁	Normal 3.3V, 1.8V, 1.5V, VDDC power rising time (0% to 100%)	_	ı	20	ms
t_2	Normal 3.3V, 1.8V, 1.5V to VDDC lead time	1	ı	_	ms

ORDERING GUIDE

Part	•	Package	Package
Number		Description	Option
MSC316DC	-40°C to +85°C	M2QFN	88-pin

MARKING INFORMATION

DISCLAIMER

MSTAR SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. NO RESPONSIBILITY IS ASSUMED BY MSTAR SEMICONDUCTOR ARISING OUT OF THE APPLICATION OR USER OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

Electrostatic charges accumulate on both test equipment and human body and can discharge without detection. MSC316DC comes with ESD protection circuitry, however, the device may be permanently damaged when subjected to high energy discharges. The device should be handled with proper ESD precautions to prevent malfunction and performance degradation.