O estimador Ridge Regression

$$\widetilde{\beta} = arg min_{\beta} (Y - X\beta)^{T} (Y - X\beta)$$

Sujeito $a : \sum_{i=1}^{p} \beta_{i}^{2} \leq c$

O estimador LASSO Least Absolute Shrinkage Selection Operator

$$\tilde{\beta}$$
 = arg ming $(Y-X\beta)^T(Y-X\beta)$
sujeito a: $\sum_{i=1}^{p} |\beta_i| \leq c$

Ridge ou LASSO - $\sum_{i=1}^{p} \beta_i^2$ ou $\sum_{i=1}^{p} |\beta_i|$?

vamos supor
$$p=2$$
 $\sum \beta_i^2 = \beta_1^2 + \beta_2^2 \le c$ (a)

$$\sum |\beta_i| = |\beta_i| + |\beta_2| \leq C \quad (6)$$

(a)
$$\beta_1^2 + \beta_2^2 = C$$

(b)
$$|\beta_1| + |\beta_2| = C$$

(i)
$$\beta_1 > 0 = \beta_2 > 0 - |\beta_1| + |\beta_2| = c - |\beta_1| + |\beta_2| + |\beta_2$$

(ii)
$$\beta_a > 0$$
 e $\beta_z < 0$ \longrightarrow $|\beta_1| + |\beta_2| = c$ \longrightarrow $\beta_1 - \beta_2 = c$ \longrightarrow $\beta_2 = \beta_1 - c$

(iii)
$$\beta_0 < 0$$
 e $\beta_2 < 0$ \longrightarrow $|\beta_0| + |\beta_2| = c$ \longrightarrow $-\beta_0 - \beta_2 = c$ \longrightarrow $\beta_2 = -\beta_1 - c$

então:

01/03/2021

 $\sum_{i=1}^{p} |\beta_i| \le c$ pode ser escrito como um conjunto de restrições lineares na forma $C\beta \le D$

no exemplo:
$$\beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$$

$$\begin{bmatrix} +1 & +1 \\ +1 & -1 \\ -1 & -1 \\ -1 & +1 \end{bmatrix} \times \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} \leqslant \begin{bmatrix} C \\ C \\ C \\ C \end{bmatrix}$$

pg. 92:

$$\hat{\beta} = \hat{\beta} - (X^T X)^{-1} C^T \left[C(X^T X)^{-1} C^T \right]^{-1} \left[c\hat{\beta} - D \right]$$

$$H = X (X^{T}X)^{-1} \{ X^{T} - C^{T} [C(X^{T}X)^{-1} C^{T}]^{-1} C(X^{T}X)^{-1} X^{T} \}$$

Jembrando que:
$$PRESS = \sum_{i=1}^{n} \left(\frac{r_i}{1-h_{ii}}\right)^2$$

$$R_{Pred}^2 = 1 - \frac{PRESS}{SQT}$$

neste caso, o valor do Rpred e' sensível ao parâmetro c (minúsculo).