Symulacja układu regulującego temperaturę płynu chłodzącego

Podstawy automatyki – karta projektu

Mateusz Bąk Rafał Prominski (136682) (136784)

1 Opis projektu

Projekt ma na celu zasymulowanie pracy układu regulującego temperaturę płynu chłodniczego w silniku. Sterowanie wartością temperatury odbywa się poprzez zmianę stopnia otwarcia zaworu, przez który płyn chłodzący doprowadzany jest do chłodnicy. Model układu składa się z: systemu obiegowego płynu chłodzącego, czujnika temperatury, zaworu, oraz regulatora, który na podstawie odpowiednio dobranych parametrów, biorąc pod uwagę temperaturę czujnika, steruje stopniem otwarcia zaworu. Płyn chłodzący, w zależności od otwarcia zaworu, może przepływać przez chłodnicę, która odprowadza dostarczone ciepło.

2 Schemat

3 Model matematyczny

Użyte wielkości:

 $\theta(t)$ – temperatura czujnika [K]

T(t) – temperatura płynu chłodzącego przy czujniku [K]

 $T_r(t)$ – temperatura płynu chłodzącego we wnętrzu chłodnicy [K]

 $T_e(t)$ – temperatura płynu chłodzącego we wnętrzu silnika [K]

q – przyrost temperatury silnika w czasie (bez uwzględniania chłodzenia) $\left[\frac{K}{a}\right]$

 h_r – współczynnik przyrostu temperatury w chłodnicy określający zmianę temperatury płynu chłodzącego w jednostce czasu na jednostkę różnicy temperatur $\left[\frac{K}{s \cdot K}\right]$

 h_e – współczynnik przyrostu temperatury czujnika $\left[\frac{K}{s \cdot K}\right]$

 h_{max} – współczynnik przyrostu temperatury płynu chłodzącego przy całkowitym otwarciu zaworu $\left[\frac{K}{s\cdot K}\right]$ ω – stopień otwarcia zaworu

Wszystkie temperatury są wyrażone względem temperatury otoczenia.

$$\frac{d\theta}{dt} = h_e(T(t) - \theta(t)) \tag{1}$$

$$\frac{dT_e}{dt} = q - \omega h_{max} \left(T_e \left(t \right) - T_r \left(t \right) \right) \tag{2}$$

$$\frac{dT_r}{dt} = \omega h_{max} (T_e(t) - T_r(t)) - h_r T_r(t)$$
(3)

$$T(t) = T_e(t), \quad T_e(0) = T_{e0}, \quad T_r(0) = T_{r0}, \quad \theta(0) = \theta_0$$
 (4)

Sprawozdanie

Przy użyciu języka programowania Python dokonano symulacji rozważanego układu automatycznej regulcji. Program umożliwia dostosowanie za pomocą interfejsu użytkownika następujących parametrów:

- tempo dostarczania ciepła do układu (q)
- wartość zadana temperatury (T_w)
- współczynniki przyrostu temperatury (h_r, h_e, h_{max})

Podczas działania symulacji generowany jest na bieżąco wykres zależności temperatury płynu chłodzącego w silniku (T_e) od czasu. Używając panelu użytkownika można obserwować reakcje układu na zachodzące zmiany. Poniżej zaprezentowano przebieg symulacji dla kilku przykładowych scenariuszy.

Rysunek 1: Początkowy przebieg symulacji: widoczne jest przejście od warunków początkowych do wartości zadanej

Rysunek 2: Reakcje układu na zmiany w szybkości dostarczania ciepła: bezpośrednio po zmianie wartości q temperatura chwilowo wzrasta, jednak po chwili wraca do wartości zadanej

Rysunek 3: Reakcja układu na zmianę zadanej temperatury: po osiągnięciu zadanej wartości temperatura nadal rośnie ze względu na inercję, jednak po chwili zaczyna spadać i stabilizuje się na żądanej wartości

Rysunek 4: Dla pewnych wartości parametrów może dojść do oscylacji

Zbyt wysoka wartość q prowadzi do sytuacji, w której układ nie nadąża odprowadzać dostarczanego do niego ciepła. Istnieje więc pewna wartość progowa, po przekroczeniu której temperatura płynu chłodzącego w stanie ustalonym będzie wyższa, niż wartość zadana. Na podstawie równań opisujących układ można zapisać warunek poprawnego jego działania w następującej postaci:

$$q \le \frac{h_r \cdot h_{max}}{h_r + h_{max}} T_w \tag{5}$$

Dla przykładowych wartości $h_r = 2.14 \frac{K}{s \cdot K}$, $h_{max} = 1.5 \frac{K}{s \cdot K}$ oraz $T_w = 10$ K prawa strona nierówności wynosi w przybliżeniu $8.819 \frac{K}{s}$. Na przeprowadzonej symulacji stopień otwarcia zaworu dla $q = 8.8 \frac{K}{s}$ przy podanych parametrach wynosi 0.999, a temperatura płynu w silniku utrzymuje się blisko wartości zadanej. Zgodnie z przewidywaniami układ znajduje się na granicy swojej zdolności odprowadzania ciepła.

Po zwiększeniu warości q zawór jest całkwicie otwarty, a temperatura w stanie ustalonym przekracza wartość zadaną.

Podsumowanie

Według danych z symulacji zamodelowany układ działa zgodnie z założeniami. Temperatura płynu chłodzącego we wnętrzu silnika ustala się w pobliżu wartości zadanej, pod warunkiem, że tempo dostarczania ciepła do układu nie przekracza zdolności układu do jego odprowadzania.