Compiling to Categories

Our attempt to explain what Conal Elliott is up to

T. Mark Ellison and Siva Kalyan

November 12, 2017

Australian National University

Table of contents

Haskell and Category Theory

Haskell	Category Theory
Category	Category
Туре	Object
Function	Morphism
<u>Hask</u>	Set
	Terminal Objects
Value	Global Element
Tuple	Product
Currying, Function Application	Cartesian Closure
Type Constructor, Functor	Functor
	Natural Transformation
Applicative	
	Adjoint Functor Pair
Monad	Monad

Categories

Categories

A category $\underline{\mathbf{C}}$ consists of

- 1. a class $\mathrm{Obj}(\underline{\mathbf{C}})$ of *objects*, and
- 2. for each pair of objects $A, B \in \mathrm{Obj}(\underline{\mathbb{C}})$, a set $\mathrm{Hom}_{\underline{\mathbb{C}}}(A, B)$ of arrows (or morphisms) from A to B, known as a hom-set.

$$A \xrightarrow{\operatorname{Hom}_{\underline{\mathbf{C}}}(A,B)} B$$

Many familiar parts of Haskell form a category <u>Hask</u>: objects are *types* (Int, Char, etc.), and arrows are *functions* between types (e.g. ord :: Int -> Char).

Category Laws

In a category $\underline{\mathbf{C}}$:

- 1. Given arrows $f: A \to B$ and $g: B \to C$ in $\underline{\mathbf{C}}$, the composition $g \circ f: A \to C$ (= g.f) is also in $\underline{\mathbf{C}}$.
- 2. Given arrows $f: A \rightarrow B$, $g: B \rightarrow C$ and $h: C \rightarrow D$, $(h \circ g) \circ f = h \circ (g \circ f) = h \circ g \circ f$.

3. Every object $A \in \mathrm{Obj}(\underline{\mathbb{C}})$ is associated with an *identity arrow* $1_A \colon A \to A \ (= \mathrm{id})$. Given any arrow $f \colon A \to B$, we have

Examples

	Set	<u>Hask</u>	<u>POrd</u>	Cat
Objects	sets	types	items	small cats
Morphisms	functions	functions	$a \leq b$	functors
Composition	$f \circ g$	f.g	transitivity	$F \circ G$
Identity	1_A	id	a = a	1 <u>c</u>

Not everything in Haskell can be in $\underline{\mathbf{Hask}}$ if we want it to be a category. Every type in the language contains a $\mathrm{Bottom}\ (\bot)$ or $\mathrm{undefined}\ value$, but these 'values' cause mayhem with the category laws (in particular the $\mathrm{Identity}\ constraint$). So when we talk about $\underline{\mathrm{Hask}}\ we'll$ be talking about vanilla $\underline{\mathrm{Hask}}\ without$ these abnormal values. Haskell wiki page on $\underline{\mathrm{Hask}}\$

Category Theory: Terminal Objects

A terminal object is a type 1 (a.k.a. T) in $Obj(\underline{\mathbb{C}})$, such that there is only a single mapping from any other type A onto that type:

$$\forall A \in \mathrm{Obj}(\underline{\textbf{C}}), \left|\mathrm{Hom}_{\underline{\textbf{C}}}(A,1)\right| = 1.$$

$$A = 0$$

$$B = 0$$

$$C = 0$$

In Hask:

```
() — the type corresponding to 1, containing only itself terminalMap :: t —> () terminalMap _ = ()
```

Global Elements

A global element of an object A in category $\underline{\mathbf{C}}$ with terminal object 1 is an arrow $a:1\to A$.

$$1 \stackrel{a}{-\!\!\!-\!\!\!-\!\!\!-} A$$

In \underline{Hask} , if we have a value v in some type a, we can upgrade it to the global element by use of \underline{const} v.

```
const :: a -> b -> a -- but for our purposes, choose b = ()
const v = \ \_ -> v
```

Examples

	<u>Set</u>	<u>Hask</u>	POrd	<u>Cat</u>
Objects	sets	types	items	small cats
Morphisms	functions	functions	$a \leq b$	functors
Composition	$f \circ g$	f.g	transitivity	$F \circ G$
Identity	1_A	id	a = a	1 <u>c</u>
Terminal obj.	{*}	()	upper bound	<u>1</u>

Products

Given objects A, B in $\underline{\mathbf{C}}$ there may be a (pairwise) product $A \sqcap B \in \mathrm{Obj}(\underline{\mathbf{C}})$ and projection arrows $\pi_A \colon A \sqcap B \to A$ and $\pi_B \colon A \sqcap B \to B$ such that for any object X in the same category and arrows $a \colon X \to A$ and $b \colon X \to B$ there is a unique arrow $x \colon X \to A \sqcap B$ such that $a = \pi_A \circ x$ and $b = \pi_B \circ x$:

In other words: Given a particular way of mapping X to A and to B, there's only *one* way of mapping X to $A \sqcap B$ such that everything's consistent.

9

Products

Alternatively, the triplet $\langle A \sqcap B, \pi_A, \pi_B \rangle$ is a *terminal object* in the category whose objects are diagrams of the form

$$A \longleftarrow C \longrightarrow B$$

and whose arrows are (commutative) diagrams of the form

Products in Haskell

```
(a,b) — the type containing pairs from types a and b (A \sqcap B)

fst :: (a,b) —> a — the projection function \pi_A

fst (x,y) = x

snd :: (a,b) —> b — the projection function \pi_B

snd (x,y) = y

factorThroughProd :: (c —> a) —> (c —> b) —> (c —> (a,b))

factorThroughProd f g = \ x —> (f x,g x)
```

It should be obvious that

```
 \begin{aligned} &\textbf{fst}.(\mathsf{factorThroughProd}\ f\ g) = \mathsf{f},\ \mathsf{and}\\ &\textbf{snd}.(\mathsf{factorThroughProd}\ f\ g) = \mathsf{g}. \end{aligned}
```

Examples

	<u>Set</u>	<u>Hask</u>	<u>POrd</u>	<u>Cat</u>
Objects	sets	types	items	small cats
Morphisms	functions	functions	$a \leq b$	functors
Composition	$f \circ g$	f.g	transitivity	$F \circ G$
Identity	1_A	id	a = a	1 <u>c</u>
Terminal obj.	{*}	()	upper bound	<u>1</u>
Product	$A \times B$	(a,b)	min(a, b)	<u>C</u> × <u>D</u>

Exponential Objects

Given objects A and B in $\underline{\mathbb{C}}$, an exponential object B^A (also written $[A \to B]$) is an object with an arrow eval_B^A such that for any C and any arrow $f: C \sqcap A \to B$,

Alternatively, the pair $\langle B^A, \operatorname{eval}_B^A \rangle$ constitutes a terminal object in the category whose objects are diagrams of the form

$$C \sqcap A \longrightarrow B$$
.

and whose arrows are commutative diagrams of the form

Exponential Objects in Haskell

In <u>Hask</u>, the exponential object of two types a and b is the *function type* (a -> b) (it's akin to the *hom-set* of a and b). Let's see how this satisfies the above definition.

```
eval :: ((a -> b),a) -> b

eval (f,x) = f x

factoredArrow :: ((c,a) -> b) -> ((c,a) -> ((a -> b),a))

factoredArrow f = (y,x) -> ((x' -> f(y,x')),x)
```

(Spot the currying!)

It can be proven that eval . (factoredArrow f) = f — and that factoredArrow is the *only* arrow for which this is true.

Functors

Functors

A functor is a mapping $F \colon \underline{\mathbf{C}} \to \underline{\mathbf{D}}$ that takes objects in $\underline{\mathbf{C}}$ to objects in $\underline{\mathbf{D}}$ and arrows in $\underline{\mathbf{C}}$ to arrows in $\underline{\mathbf{D}}$, in such a way that

1. for any $A \in \mathrm{Obj}(\underline{\mathbf{C}})$, $F(1_A) = 1_{F(A)}$:

$$\begin{array}{ccc}
A & \xrightarrow{1_A} & A \\
\downarrow & & \downarrow & \downarrow \\
F(A) & \xrightarrow{1_{F(A)}} & F(A)
\end{array}$$
;

2. for any $f: A \to B$ and $g: B \to C$ in $\underline{\mathbf{C}}$, $F(g \circ f) = F(g) \circ F(f)$:

Functors in Haskell

In Haskell, functors are *type constructors*: they take a type (a) and produce another type (F a); and via fmap, they take an arrow between two types (a -> b) and produce an arrow between the images of those two types (F a -> F b).

E.g. the list constructor:

```
data [] a = [] | a : [a] -- "[]" is the type constructor for lists

fmap f [] = [] -- mapping f over an empty list does nothing

fmap f (x : xs) = (f x) : (fmap f xs)

-- to turn f into a list function, apply f to the head of the list,

-- apply the list version of f to the tail of the list, and construct
```

You can verify the functor laws in **Hask**:

```
\begin{split} &\text{fmap } \mathbf{id} \; (x:xs) = (\mathbf{id} \; x): \; (\text{fmap } \mathbf{id} \; xs) = \mathbf{id} \; (x:xs), \; \text{and that} \\ &\text{fmap } f \; (\text{fmap } g \; (x:xs)) = \text{fmap } f \; ((g\; x): \; (\text{fmap } g\; xs)) \\ &= (f\; g\; x): \; (\text{fmap } f \; (\text{fmap } g\; xs)) = \text{fmap } f \; g \; (x:xs). \end{split}
```

Examples

	Set	<u>Hask</u>	POrd	Cat
Objects	sets	types	items	small cats
Morphisms	functions	functions	$a \leq b$	functors
Composition	$f \circ g$	f.g	transitivity	$F \circ G$
Identity	1_A	id	a = a	1 <u>c</u>
Terminal obj.	{*}	()	upper bound	<u>1</u>
Product	$A \times B$	(a,b)	min(a, b)	$\underline{\textbf{C}}\times\underline{\textbf{D}}$
Endofunctors	functors	type const.	OPTS	nat. trans.

Cartesian-Closed Categories

Cartesian-Closed Categories (CCC)

There is a terminal object 1.

There are binary products \sqcap .

There is a two-argument functor taking $A \sqcap B$ onto B^A , obeying the following rules:

$$A \cong 1 \sqcap A \cong A^1$$

$$\operatorname{Hom}_{\underline{\mathbf{C}}}(A \sqcap B, C) \cong \operatorname{Hom}_{\underline{\mathbf{C}}}(A, C^B)$$
 (3.1)

The latter relation is called the *Howard-Curry isomorphism*, or *currying*.

Cartesian-Closed Categories

 $\underline{\underline{Set}}$ the singleton set, pairs, sets of functions

$$\underline{\text{Hask}}$$
 (), (a,b), a -> b

There are more examples, but they're pretty complicated.

Further Reading

Further Reading