Nieklasyczne modele kolorowania grafów

Def. Jeśli wierzchołki grafu G można podzielić na k takich zbiorów niezależnych $C_1,...,C_k$, że $||C_i|| - |C_j|| \le 1$ dla wszystkich i,j = 1,...,k, to mówimy, że G jest sprawiedliwie k-kolorowalny. Najmniejsza liczba k, dla której graf G jest sprawiedliwie k-kolorowalny jest sprawiedliwą liczbą chromatyczną grafu i oznaczamy ją symbolem $\chi_{=}(G)$.

Uwaga: Prawdziwe jest oszacowanie $\chi(G) \le \chi_{=}(G)$, gdyż każde sprawiedliwe pokolorowanie jest jednocześnie pokolorowaniem klasycznym.

Przykład: Różnica $\chi_{=}(G) - \chi(G)$ może być dowolnie duża – przykładem są grafy S_n .

Tw. Dla dowolnego grafu G zachodzi $\chi_{=}(G) \leq \Delta(G) + 1$.

Tw. Prawdziwe jest oszacowanie dolne

$$\left\lceil \frac{n}{\alpha(G - (N(v) \cup \{v\})) + 2} \right\rceil \leq \chi_{=}(G),$$

gdzie $\alpha(G)$ jest liczbą stabilności grafu (moc najliczniejszego zbioru niezależnego w G) natomiast v jest dowolnym wierzchołkiem grafu G.

Dowód:

- liczba wierzchołków zaetykietowana kolorem przydzielonym v nie przekracza $\alpha(G (N(v) \cup \{v\}))+1$,
- skoro chcemy otrzymać pokolorowanie sprawiedliwe, to krotność każdego innego koloru nie przekracza $\alpha(G (N(v) \cup \{v\}))+2$.

Tw. Wzory na sprawiedliwą liczbę chromatyczną w przypadku podstawowych klas grafów:

$$\chi_{=}(Q_{n}) = 2$$

$$\chi_{=}(K_{1,n}) = \lceil n/2 \rceil + 1$$

$$\chi_{=}(W_{n}) = \lceil (n-1)/2 \rceil + 1$$

$$\chi_{=}(C_{2k+1}) = 3$$

$$\chi_{=}(C_{2k}) = 2$$

$$\mathbf{Tw.} \quad \chi_{=}(K_{r_1,\ldots,r_s}) \leq \Delta(K_{r_1,\ldots,r_s}).$$

Wniosek $\chi_{=}(K_{r_1,\dots,r_s}) = s$ wtedy i tylko wtedy, $gdy |r_i - r_j| \le 1$ dla wszystkich i,j.

Tw. Niech G będzie grafem dwudzielnym o n wierzchołkach. Jeśli G składa się z r składowych i $r \ge n/k$ dla pewnej liczby naturalnej k, to G jest sprawiedliwie k-kolorowalny.

Dowód:

- załóżmy, że G jest sumą grafów dwudzielnych $(V_1 \cup U_1, E_1), ..., (V_r \cup U_r, E_r),$
- porządkujemy wierzchołki ustawiając je w ciąg $V_1,...,V_r,U_1,...,U_r$, przy czym w obrębie każdego ze zbiorów wierzchołki są posortowane dowolnie,
- dzielimy ten ciąg na segmenty o rozmiarach $\lceil n/k \rceil$, $\lceil (n-1)/k \rceil$,..., $\lceil (n-k+1)/k \rceil$,
- każdy z tych segmentów jest zbiorem niezależnym, gdyż w przeciwnym razie istnieje segment S taki, że S obejmuje r podzbiorów (V_i, U_i) wraz z dodatkowym wierzchołkiem, co oznacza $\lceil n/k \rceil \ge r + 1 \ge 1 + n/k > \lceil n/k \rceil \text{sprz}$,

Tw. Jeśli G jest sumą sprawiedliwie k-kolorowalnych grafów, to G jest sprawiedliwie k-kolorowalny.

Def. Niech c będzie wierzchołkowym pokolorowaniem grafu G. Sumą chromatyczną (wierzchołkową) grafu G nazywamy liczbę

$$\sum_{c}(G) = \min_{c} \sum_{c}(G, c),$$

gdzie

$$\sum (G,c) = \sum_{v \in V(G)} c(v).$$

Pokolorowaniem optymalnym jest każde takie pokolorowanie c, że

$$\sum(G) = \sum(G, c).$$

Przez c_{\max} oznaczamy najwyższy kolor użyty przez pokolorowanie c, natomiast s(G) jest minimalną liczbą kolorów użytych przez pokolorowanie optymalne. Jak poprzednio, C_i oznacza zbiór niezależny zawierający wierzchołki o kolorze i (w pokolorowaniu c).

Tw. Dla dowolnego optymalnego pokolorowania c zachodzi $|C_1| \ge |C_2| \ge \dots \ge |C_{c_{\max}}|.$

Dowód: Przypuśćmy, że $|C_i| < |C_j|$ dla i < j. Jeśli wierzchołki należące do zbioru C_i otrzymają kolor j oraz wierzchołki należące do C_j otrzymają kolor i, to otrzymane pokolorowanie jest poprawne oraz jego suma jest mniejsza o $(j-i)(|C_j|-|C_i|) > 0$ od sumy pokolorowania wyjściowego. Sprzeczność.

Tw. Dla dowolnego optymalnego pokolorowania c zachodzi

$$\forall_{i < j} \forall_{v \in C_j} \exists_{u \in C_i} \{u, v\} \in E(G).$$

Dowód: Gdyby pewien wierzchołek v ze zbioru C_j nie był połączony z żadnym wierzchołkiem z pewnego zbioru C_i dla i < j, to v może otrzymać kolor i. Sprzeczność.

Tw. *Dla grafu G zachodzą oszacowania*:

(1)
$$n \le \sum (G) \le \frac{n(n+1)}{2}$$

(2) $\sum (G) \le n+m$

$$(2) \qquad \sum (G) \le n + m$$

Dowód:

- (1) wynika z faktu, że kolory mają wartości nie mniejsze niż 1 oraz suma jest największa jeśli wszystkie kolory są parami różne.
- (2) Z poprzedniego twierdzenia wynika, że liczba krawędzi łączących wierzchołki z C_i , j > 2 z wierzchołkami z $C_1 \cup ... \cup C_{i-1}$ wynosi co najmniej $|C_i|(j-1)$. Zatem

$$\sum (G, c) = |C_1| + \sum_{j>1} |C_j| (j-1) + n - |C_1| \le n + m$$

Tw. Prawdziwe są następujące wzory na sumę chromatyczną:

$$(1) \qquad \qquad \sum (P_n) = \lfloor 3n/2 \rfloor$$

(2)
$$\sum (C_n) = 3 \lceil n/2 \rceil$$

(3)
$$\sum (W_n) = \begin{cases} 3(n+1)/2, \text{ gdy } n \text{ nieparzyste} \\ 3n/2 + 4, \text{ gdy } n \text{ parzyste} \end{cases}$$

(4)
$$\sum_{r=0}^{\infty} (K_{r,s}) = r + s + \min\{r, s\}$$

(5)
$$\sum (K_n) = \frac{n(n+1)}{2}$$
(6)
$$\sum (C_{r,s}) = \lfloor 3s/2 \rfloor + r + 2,$$

(6)
$$\sum (C_{r,s}) = \lfloor 3s/2 \rfloor + r + 2,$$

gdzie $C_{r,s}$ jest kometą z r promieniami i warkoczem długości s.

Kolorowanie zwarte

Def. Podzbiór *A* liczb naturalnych nazywamy *przedziałem* jeśli zawiera wszystkie liczby pomiędzy min*A* oraz max*A*.

Def. Niech *G* będzie dowolnym grafem. Funkcja odwzorowująca zbiór krawędzi grafu w zbiór liczb naturalnych jest pokolorowaniem *zwartym* jeśli sąsiednie krawędzie otrzymują różne kolory oraz dla każdego wierzchołka *v*, zbiór kolorów przydzielonych krawędziom incydentnym do *v* jest przedziałem.

Przykład Zwarte pokolorowanie drzewa.

Kolorowanie zwarte

Tw. Grafy dające się pokolorować w sposób zwarty są grafami klasy 1. Dowód:

Niech c będzie zwartym pokolorowaniem grafu G. Definiujemy funkcję $g: E \rightarrow \{0,...,\Delta-1\}$ następująco: $g(e) = c(e) \mod \Delta$ dla każdej krawędzi e. Tak określona funkcja g jest pokolorowaniem krawędzi grafu, ponieważ zbiór kolorów przydzielonych krawędziom incydentnym do wolnego wierzchołka v jest przedziałem o mocy nie większej niż Δ .

Przykład: Implikacja odwrotna nie jest prawdziwa:

Iloczyn kartezjański grafów

Def. Niech będą dane grafy $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$. Iloczyn kartezjański $G_1 \times G_2$ to graf o zbiorze wierzchołków $V_1 \times V_2$ i zbiorze krawędzi

$$E(G_1 \times G_2) = \{ \{ (v_1, v_2), (u_1, u_2) \} : (v_1 = u_1 \land \{v_2, u_2\} \in E_2) \lor (v_2 = u_2 \land \{v_1, u_1\} \in E_1) \}.$$

Przykład: Wyznaczmy graf $C_4 \times P_3$.

Kolorowanie zwarte

Tw. Załóżmy, że grafy $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$ mają zwarte pokolorowania c_1 oraz c_2 , zużywające odpowiednio r_1 i r_2 kolorów. Wówczas $G_1 \times G_2$ można pokolorować zwarcie za pomocą $r_1 + r_2$ kolorów.

Dowód: Dla dowolnego wierzchołka $v_i \in V_i$, i = 1,2 definiujemy liczby:

```
\min_{i}(v_{i}) = \min\{c(\{v,u\}): \{v,u\} \in E_{i}\}, \\ \max_{i}(v_{i}) = \max\{c(\{v,u\}): \{v,u\} \in E_{i}\}.
```

Określamy pokolorowanie grafu $G_1 \times G_2$ definiując kolor dla każdej krawędzi:

- krawędź postaci $\{(v,u),(w,u)\}$, gdzie $\{v,w\} \in E_1$ otrzymuje kolor $c_1(\{v,w\}) + \min_2(u)$,
- krawędź postaci $\{(v,u),(v,w)\}$, gdzie $\{u,w\} \in E_2$ otrzymuje kolor $c_2(\{u,w\})+\max_1(v)+1$.

Krawędzie pierwszego typu otrzymują parami różne kolory tworzące przedział $\{\min_1(v) + \min_2(u), ..., \max_1(v) + \min_2(u)\}.$

Krawędzie drugiego typu otrzymują parami różne kolory tworzące przedział $\{\min_2(u)+\max_1(v)+1,...,\max_2(u)+\max_1(v)+1\}.$

Def. Funkcja $c: V(G) \rightarrow \{0,...,k\}$ jest *uporządkowanym k-pokolorowaniem* wierzchołków grafu G, jeśli każda ścieżka łącząca wierzchołki u,v takie, że c(u) = c(v) zawiera wierzchołek w o kolorze c(w) > c(u). Najmniejszą liczbę k, dla której istnieje uporządkowane k-pokolorowanie grafu G nazywamy *uporządkowaną liczbą chromatyczną* grafu G i oznaczamy symbolem $\chi_r(G)$. *Uporządkowane kolorowanie krawędzi* grafu to kolorowanie wierzchołków grafu krawędziowego. *Uporządkowany indeks chromatyczny* (najmniejsze k, dla którego istnieje pokolorowanie krawędzi za pomocą k kolorów) oznaczamy symbolem $\chi_r(G)$.

Fakt. Jeśli G jest grafem spójnym, to w każdym jego uporządkowanym k-pokolorowaniu kolor k jest użyty jednokrotnie.

Przykład: Optymalne (używające minimalną liczbę kolorów) pokolorowania grafu Petersena.

Lemat Zbiór kolorów S użytych jednokrotnie w uporządkowanym pokolorowaniu grafu G stanowi jego separator lub S = V(G).

Wniosek Jeśli $G \neq K_n$, to powyższy zbiór S jest separatorem.

Tw. Jeśli $G \neq K_n$, to zachodzi wzór

$$\chi(G) = \min_{S \in Sep(G)} \{ |S| + \max{\{\chi(G_1), ..., \chi(G_j)\}} \},$$

gdzie Sep(G) jest zbiorem wszystkich minimalnych separatorów grafu G (przez separator minimalny S rozumiemy taki, że żaden właściwy podzbiór S nie jest separatorem w G) oraz $G_1,...,G_j$ są składowymi spójności grafu G-S.

Dowód:

- wiemy, że zbiór jednokrotnie użytych kolorów stanowi separator S',
- jeśli istnieje wierzchołek v w S' taki, że $S'\setminus\{v\}$ jest separatorem w G, to usuwamy v z S',
- powyższy krok powtarzamy, aż dla każdego $v \in S'$ mamy, że $S' \setminus \{v\}$ nie jest separatorem, co oznacza, że separator S' jest minimalny,
- uwzględniając, że $\chi_r(K_n) = n$ oraz korzystając z powyższych faktów można twierdzenie dowieść indukcyjnie względem n.

Tw. Zachodzą następujące wzory:

$$\chi(P_n) = \lfloor \log_2 n \rfloor + 1,$$

$$\chi(C_n) = \lfloor \log_2 (n-1) \rfloor + 2,$$

$$\chi(W_n) = \lfloor \log_2 (n-2) \rfloor + 3,$$

$$\chi(K_{r_1, \dots, r_s}) = n - \max\{r_1, \dots, r_s\} + 1,$$

$$\chi(T) \leq \lfloor \log_2 n \rfloor + 1,$$

gdzie T jest drzewem.

Tw.
$$\chi_r(P_n \times P_n) \ge n$$
.

Wniosek *Istnieją grafy planarne dla których* $\chi_r \geq \sqrt{n}$.

Def. Ścieżki P_1, P_2 nazywamy *kolidującymi* w G, jeśli zawierają wspólną krawędź.

Def. Niech *G* będzie grafem prostym, natomiast *P* pewnym zbiorem (multizbiorem) ścieżek w *G*. Przyporządkowanie ścieżkom w *P* liczb naturalnych 1,...,*k* nazywamy *k-pokolorowaniem* zbioru *P*, o ile dowolne dwie kolidujące ścieżki otrzymują różne barwy.

Def. Jeśli *G* jest grafem oraz *P* zbiorem ścieżek w *G*, to *grafem konfliktów* jest graf, którego wierzchołki odpowiadają ścieżkom w *P*. Dwa wierzchołki w grafie konfliktów są sąsiednie, jeśli odpowiadające im ścieżki są kolidujące.

Uwaga Problem optymalnego (używającego minimalnej liczby kolorów) pokolorowania zbioru P jest równoważny problemowi optymalnego kolorowania wierzchołków grafu konfliktów.

Def. Jeśli G jest grafem, a P zbiorem ścieżek w G, to $\chi_G(P)$ jest najmniejszą liczbą naturalną k, dla której istnieje k-pokolorowanie zbioru P.

Def. Dla G oraz P definiujemy obciążenie krawędzi e jako liczbę ścieżek zawierających e i oznaczamy symbolem $L_G(e,P)$. $Obciążeniem L_G(P)$ zbioru P definiujemy następująco: $L_G(P) = \max_{e \in E(G)} \{L_G(e,P)\}.$

 $e \in E(G)$

Lemat $\chi_G(P) \ge L(P)$.

Przykład: Graf $S_4 = (\{a,b,c,d\}, \{\{a,b\}, \{a,c\}, \{a,d\}\})$ oraz zbiór $P = \{b-a-c, b-a-d, c-a-d\}$ to przykład, gdy powyższa nierówność jest ostra.

Uwaga: Powyższe pojęcia można w naturalny sposób uogólnić na przypadek digrafów.

Def. Zgłoszeniem na grafie G nazywamy dowolną uporządkowaną parę wierzchołków (u,v). W przypadku grafów nieskierowanych zgłoszenia (u,v) oraz (v,u) są tożsame.

Def. Niech R będzie zbiorem zgłoszeń na grafie G. Routing zbioru R polega na wyborze takiego zbioru ścieżek P_R , że każda ścieżka z P_R realizuje jedno zgłoszenie z R, oraz znalezieniu optymalnego pokolorowania tego zbioru ścieżek. Definiujemy

$$\chi(R) = \min_{P_R} \{\chi(P_R)\} - \text{liczba chromatyczna},$$

$$L(R) = \min_{P_R} \{L(P_R)\} - \text{obciazenie},$$

gdzie min są liczone po wszystkich możliwych zbiorach realizujących R. Problem routingu polega na minimalizacji $\chi(R)$.

Uwaga $\chi(R) \ge L(R)$.

Uwaga Problem routingu dla digrafów definiujemy analogicznie. Kolejność wierzchołków w zgłoszeniu jest w tym przypadku istotna.

Def. Dla digrafu
$$D = (V, A)$$
 definiujemy graf prosty $G(D) = (V, E)$: $\{u, v\} \in E \Leftrightarrow ((u, v) \in A \text{ lub } (v, u) \in A).$

Tw. Dla dowolnego digrafu D zachodzi $2L_D(R) \geq L_{G(D)}(R) \geq L_D(R).$

Przykład: Lewa nierówność jest osiągana dla gwiazdy $S_4 = (\{a,b,c,d\}, \{a,b\}, \{a,c\}, \{a,d\}\})$ digrafu D_4 , gdzie $A = \{(a,b), (a,c), (a,d), (b,a), (c,a), (d,a)\}$ oraz zbioru zgłoszeń $R = \{(b,c), (c,d), (d,b)\}.$

Tw.
$$\chi_D(R) \leq \chi_{G(D)}(R)$$
.

Tw. Jeśli G,R,P to, odpowiednio, graf, zbiór zgłoszeń oraz zbiór ścieżek, to $\chi_G(R) \leq 2\sqrt{|E(G)|}L(R),$ $\chi_G(R) \leq (L(P)-1)l+1, \ gdzie \ l$ to maksymalna długość ścieżki w P.

Tw. Jeśli G jest drogą, to dla dowolnego zbioru ścieżek P zachodzi równość $\chi(P) = L(P)$.

Wniosek Istnieje wielomianowy algorytm rozwiązujący problem kolorowania ścieżek w przypadku gdy G jest ścieżką.

Tw. Niech G będzie grafem prostym. Równość $\chi(P) = L(P)$ jest spełniona dla dowolnego zbioru ścieżek w G wtedy i tylko wtedy, gdy G jest drogą.

Tw. Jeśli G jest cyklem, to dla dowolnego zbioru zgłoszeń R zachodzi $\chi(R) \leq 2L(R)$.

Wniosek Dla zadanego zbioru ścieżek w cyklu C_n istnieje wielomianowy 2-przybliżony algorytm kolorowania zbioru ścieżek P.

Wybrane zastosowania

Kolorowanie ścieżek – sieci optyczne

- pojedyncze włókno przenosi sygnały o różnych długościach fal, więc jedno połączenie pomiędzy węzłami umożliwia przesłanie wielu strumieni danych,
- długość fali dla danego pakietu danych jest ustalana przed transmisją,
- pakiety danych oczekujące na transmisję wysyłają zgłoszenia i rozwiązywany jest problem routingu,
- kolory ścieżek = długości fal

Uogólnienia:

- stosunkowo niewielkim kosztem można dokonać zmiany długości fali w węźle pośrednim, więc różne fragmenty ścieżki mogą otrzymywać różne kolory,
- jeśli istnieje kilka połączeń pomiędzy parą węzłów, to w ograniczonym zakresie pozwalamy na użycie tej samej barwy dla kilku kolidujących ścieżek,

Kolorowanie sumacyjne – szeregowanie zadań

- danych jest *n* zadań $J_1,...,J_n$,
- każde zadanie wymaga dostępu do podzbioru zasobów $M_1,...,M_n$,
- czasy wykonywania zadań są jednostkowe,
- przez *konflikt* rozumiemy sytuację, w której dwa zadania J_i, J_j wykonują się w tym samym czasie i wymagają dostępu do wspólnego zasobu, tzn. $M_i \cap M_i \neq \emptyset$,
- dążymy do znalezienia takiego harmonogramu, aby nie występowały konflikty oraz średni czas oczekiwania zadania na wykonanie był minimalny,
- tworzymy graf konfliktów, którego wierzchołki odpowiadają zadaniom oraz pomiędzy wierzchołkami J_i, J_i istnieje krawędź, o ile $M_i \cap M_i \neq \emptyset$,
- znajdujemy optymalne sumacyjne pokolorowanie c grafu konfliktów; wówczas zadanie J_i wykonywane jest w przedziale czasu $[c(J_i) 1, c(J_i)]$,

Kolorowanie uporządkowane – relacyjne bazy danych

- dane jest zapytanie do relacyjnej bazy danych,
- zamierzamy uszeregować złączenia poszczególnych relacji w taki sposób, że w danej turze (przedziale czasowym) można wykonać dwie operacje złączenia relacji, jeśli żadna relacja nie uczestniczy w obu złączeniach,
- minimalizujemy liczbę tur potrzebnych na złączenie wszystkich relacji (≈czas potrzebny na wykonanie zapytania),
- w tym celu tworzymy graf G (ang. qurey graph), którego wierzchołki odpowiadają relacjom oraz krawędzie operacjom złączenia,
- znajdujemy drzewo spinające *T* grafu *G*, którego uporządkowany indeks chromatyczny jest minimalny,
- kolorujemy T w sposób uporządkowany,
- wówczas kolor przydzielony krawędzi oznacza turę, w której należy wykonać odpowiadające jej złączenie tabel; stąd, liczba kolorów jest równa liczbie tur,