Math 111C HW8

Zih-Yu Hsieh

June 6, 2025

1

Question 1 Show that every finite separable extension K/F has only finitely many sub-extensions.

Pf:

Since K/F is a finite separable extension, there exists $\alpha_1, ..., \alpha_n \in K$, such that $F(\alpha_1, ..., \alpha_n) = K$ (and all α_i are separable over F by definition).

Which, fix \overline{F} such that $K \subseteq \overline{F}$, and take $A = \{m_{\alpha_1,F}(x),...,m_{\alpha_n,F}(x)\} \subset F[x]$. Consider $L \subseteq \overline{F}$ to be the splitting field of A, then since each polynomial in A must split completely over L, it must necessarily contain all the roots of all polynomials in A; on the other hand, since each $\alpha_i \in K \subseteq \overline{F}$ is a root of $m_{\alpha_i,F}(x) \in A$, then $\alpha_i \in L$, hence $K = F(\alpha_1,...,\alpha_n) \subseteq L$.

Now, because each α_i is separable, then $m_{\alpha_i,F}(x) \in A$ is also a separable polynomial, hence A is consists of finitely many separable polynomials. Then, because L is a splitting field of A, then L/F is in fact a finite Galois Extension. Hence, $|\operatorname{Gal}(L/F)| = [L:F] < \infty$.

Which, based on **Galois Correspondance** of finite Galois Extension, any subfield $F \subseteq E \subseteq L$ corresponds to a unique subgroup $H \leq \operatorname{Gal}(L/F)$ (where $E = L^H$). Then, for any sub-extension of K, given as E (where $F \subseteq E \subseteq K \subseteq L$), we know E corresponds to a unique subgroup $H \leq \operatorname{Gal}(L/F)$. Then, since $\operatorname{Gal}(L/F)$ is proven to be finite, there are only finitely many subgroups. Hence, this implies that K/F can only have finitely many sub-extensions, since each distinct sub-extension must correspond to a unique subgroup of $\operatorname{Gal}(L/F)$.

So, we concluded that K/F (as a finite separable extension), must have only finitely many sub-extensions.

Question 2 Let $L \subseteq \mathbb{C}$ be the splitting field of $f(x) = x^3 - 3x + 1$ over \mathbb{Q} . Let $\alpha, \beta, \gamma \in L$ be roots of f(x).

- (a) Calculate $Gal(L/\mathbb{Q})$ as a group of permutations of $\{\alpha, \beta, \gamma\}$.
- (b) Is there an automorphism of L that acts on $\{\alpha, \beta, \gamma\}$ as the transposition (α, β) ?

(Hint:- For a polynomial $f(x) = x^3 + ax^2 + bx + c \in \mathbb{Q}[x]$ with roots $\alpha, \beta, \gamma \in \mathbb{C}$, the discriminant of f(x), D is defined as

$$D = (\alpha - \beta)^2 (\beta - \gamma)^2 (\gamma - \alpha)^2$$

It is known that $D = 18abc + a^2b^2 - 4b^3 - 4a^3c - 27c^2$.

Pf:

Before starting the question, we'll try to understand the relations between the roots, and some implications we could make: Since f(x) (for the discriminant calculation) has a = 0, b = -3, and c = 1, then we get $D = -4(-3)^3 - 27 \cdot 1^2 = 27 \cdot 4 - 27 = 81 > 0$. This implies that f(x) has three distinct real roots. And, based on Rational Root Theorem, f(x) only has possible rational roots ± 1 , and since these are not the actual roots (by plugging in f(x)), then f(x) has no rational roots. Also, because f(x) has degree 3, then it is irreducible over \mathbb{Q} .

Notice that $L = \mathbb{Q}(\alpha, \beta, \gamma)$ (since L is the splitting field of f(x), which is generated by the roots of f(x)). Also, based on **Vieta's Formula**, the x^2 coefficient satisfies $0 = -(\alpha + \beta + \gamma)$, and the constant coefficient $1 = \alpha\beta\gamma$. So, in terms of α , β satisfies the following formula:

$$\gamma = -\alpha - \beta, \quad \alpha\beta\gamma = \alpha\beta(-\alpha - \beta) = 1 \implies \alpha\beta^2 + \alpha^2\beta + 1 = 0$$
(1)

Hence, β satisfies the equation $\alpha x^2 + \alpha^2 x + 1 = 0$, which is a root of $\alpha x^2 + \alpha^2 x + 1 \in \mathbb{C}[x]$ (similar logic can be applied to γ). Hence, by quadratic formula, we get the following relation:

$$\beta, \gamma = \frac{-\alpha^2 \pm \sqrt{(\alpha^2)^2 - 4\alpha}}{2\alpha} = -\frac{\alpha}{2} \pm \sqrt{\frac{\alpha^2}{4} - \frac{1}{\alpha}}$$
 (2)

WLOG, assume β is the root with positive sign. Notice that this implies $L = \mathbb{Q}(\alpha, \beta, \gamma) = \mathbb{Q}\left(\alpha, \sqrt{\frac{\alpha^2}{4} - \frac{1}{\alpha}}\right)$ (since β, γ can be created by combinations of α and $\sqrt{\frac{\alpha^2}{4} - \frac{1}{\alpha}}$, while conversely $\sqrt{\frac{\alpha^2}{4} - \frac{1}{\alpha}}$ can also be created by $\frac{\beta - \gamma}{2}$). Also, we get the following relations:

$$\begin{cases}
\alpha - \beta = \frac{3\alpha}{2} - \sqrt{\frac{\alpha^2}{4} - \frac{1}{\alpha}} \\
\beta - \gamma = 2\sqrt{\frac{\alpha^2}{4} - \frac{1}{\alpha}} \\
\gamma - \alpha = -\frac{3\alpha}{2} - \sqrt{\frac{\alpha^2}{4} - \frac{1}{\alpha}}
\end{cases} \tag{3}$$

Hence, without considering the "usual" square root in \mathbb{R} , define $\sqrt{D} := (\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)$, we get:

$$\sqrt{D} = \left(\frac{3\alpha}{2} - \sqrt{\frac{\alpha^2}{4} - \frac{1}{\alpha}}\right) \left(2\sqrt{\frac{\alpha^2}{4} - \frac{1}{\alpha}}\right) \left(-\frac{3\alpha}{2} - \sqrt{\frac{\alpha^2}{4} - \frac{1}{\alpha}}\right) \\
= \left(\frac{9\alpha^2}{4} - \left(\frac{\alpha^2}{4} - \frac{1}{\alpha}\right)\right) 2\sqrt{\frac{\alpha^2}{4} - \frac{1}{\alpha}} = \left(4\alpha^2 + \frac{1}{\alpha}\right)\sqrt{\frac{\alpha^2}{4} - \frac{1}{\alpha}} \tag{4}$$

Which, because \sqrt{D} can be created by α and $\sqrt{\frac{\alpha^2}{4} - \frac{1}{\alpha}}$, $\sqrt{D} \in \mathbb{Q}\left(\alpha, \sqrt{\frac{\alpha^2}{4} - \frac{1}{\alpha}}\right) = L$; also, because $D = 81 \neq 0$, so $\sqrt{D} \neq 0$, which shows that $4\alpha^2 + \frac{1}{\alpha} \neq 0$. Hence, $\sqrt{\frac{\alpha^2}{4} - \frac{1}{\alpha}} = \sqrt{D}\left(4\alpha^2 - \frac{1}{\alpha}\right)^{-1} \in \mathbb{Q}(\alpha, \sqrt{D})$. These two relations show that $L = \mathbb{Q}\left(\alpha, \sqrt{\frac{\alpha^2}{4} - \frac{1}{\alpha}}\right) = \mathbb{Q}(\alpha, \sqrt{D})$.

As a consequence, since D=81 for f(x) in this problem, then $\sqrt{D}=\pm 9\in \mathbb{Q}$ (Note: this \sqrt{D} is what we've defined above, not the actual square root of \mathbb{R} ; hence, depending on the arrangement of the roots, \sqrt{D} could be positive or negative). Hence, $L=\mathbb{Q}(\alpha,\sqrt{D})=\mathbb{Q}(\alpha)$. On the other hand, because α is a root of $f(x)=x^3-3x+1$, which has proven to be irreducible initially (and monic), then $L=\mathbb{Q}(\alpha)\cong\mathbb{Q}[x]/(f(x))$, showing that $[L:\mathbb{Q}]=[\mathbb{Q}[x]/(f(x)):\mathbb{Q}]=\deg(f(x))=3$. Hence, $|\mathrm{Gal}(L/\mathbb{Q})|=[L:\mathbb{Q}]=3$.

(a) First, since for any $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$ fixes all elements of \mathbb{Q} , then for all $k \in L$ and the fact that $f(x) \in \mathbb{Q}[x]$, we have $\sigma(f(k)) = f(\sigma(k))$. Hence, for any $k \in \{\alpha, \beta, \gamma\}$ (the roots of f(x)), we must have $0 = \sigma(f(k)) = f(\sigma(k))$, showing that $\sigma(k) = 0$. Therefore, $\sigma(k)$ is again a root of f(x), showing that $\sigma(k) \in \{\alpha, \beta, \gamma\}$.

This shows that σ can only send roots of f(x) to roots of f(x), hence it acts on the set $\{\alpha, \beta, \gamma\}$ as a permutation; also, because $L = \mathbb{Q}(\alpha, \beta, \gamma)$, then the structure of σ is solely determined by its action on $\{\alpha, \beta, \gamma\}$. Hence, σ can be identified by a unique permutation in S_3 , and therefore $Gal(L/\mathbb{Q}) \cong H \leq S_3$ for some subgroup H.

However, initially we've determined that $|\operatorname{Gal}(L/\mathbb{Q})| = 3$, which shows that |H| = 3. Then, because S_3 (with $|S_3| = 6$) only has one subgroup with order $\frac{6}{2} = 3$, namely A_3 (the collection of all 3-cycles together with identity in this case), then we must have $\operatorname{Gal}(L/\mathbb{Q}) \cong H = A_3 \cong \mathbb{Z}_3$.

(b) In **part** (a) we've identified that $Gal(L/\mathbb{Q}) \cong A_3 \leq S_3$, which shows that every element is either the identity or a 3-cycle, hence there has no transpositions at all. Therefore, as a consequence there is no automorphism in $Gal(L/\mathbb{Q})$ that acts as a transposition (α, β) on $\{\alpha, \beta, \gamma\}$.

Question 3 Repeat the above question with $f(x) = x^3 - 4x + 1$.

Pf:

For this problem, we'll try a different approach (as a practice). For f(x) in the question, to calculate discriminant, we have $a=0,\ b=-4$, and c=1. Hence, we get $D=-4(-4)^3-27\cdot 1^2=256-27=229$, this indicates that f(x) has three distinct real roots (which we'll use the same notation $\{\alpha,\beta,\gamma\}$).

Notice that by Rational Root Theorem, the only possible rational roots of f(x) are ± 1 ; but, none of these values are actual roots of f(x), hence f(x) has no rational roots. Since it has degree 3, f(x) is irreducible over \mathbb{Q} .

Now, define $\sqrt{D} := (\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)$, since $L = \mathbb{Q}(\alpha, \beta, \gamma)$, then we have $\sqrt{D} \in L$, or $\mathbb{Q}(\sqrt{D}) \subseteq L$. Which, because D = 229, then $\sqrt{D} = \pm \sqrt{229} \notin \mathbb{Q}$; because \sqrt{D} is a root of $x^2 - 229 \in \mathbb{Q}[x]$, and this polynomial has no roots in \mathbb{Q} , then it is irreducible over \mathbb{Q} . Hence, $x^2 - 229$ (which is monic) is the minimal polynomial of \sqrt{D} over \mathbb{Q} , so we get that $\mathbb{Q}(\sqrt{D}) \cong \mathbb{Q}[x]/(x^2 - 229)$, showing that $[\mathbb{Q}(\sqrt{D}) : \mathbb{Q}] = 2$. As a consequence, because $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{D}) \subseteq L$, then $[L : \mathbb{Q}]$ is divisible by $[\mathbb{Q}(\sqrt{D}) : \mathbb{Q}] = 2$.

On the other hand, we also know that $\mathbb{Q} \subseteq \mathbb{Q}(\alpha) \subseteq L$, and α is a root of f(x) while f(x) is irreducible and monic over \mathbb{Q} , hence it is the minimal polynomial of α . Hence, $\mathbb{Q}(\alpha) \cong \mathbb{Q}[x]/(f(x))$, showing that $[\mathbb{Q}(\alpha):\mathbb{Q}] = \deg(f(x)) = 3$. With $\mathbb{Q} \subseteq \mathbb{Q}(\alpha) \subseteq L$, it implies that $[L:\mathbb{Q}]$ is divisible by 3.

Hence, $[L:\mathbb{Q}]$ is divisible by 6 = lcm(2,3).

- (a) Again, since $L = \mathbb{Q}(\alpha, \beta, \gamma)$, then any $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$ is purely determined by its action on $\{\alpha, \beta, \gamma\}$; also, since for any $k \in L$, because $f(x) \in \mathbb{Q}[x]$ (which has coefficients fixed by σ), then $\sigma(f(k)) = f(\sigma(k))$. Hence, for any root $k \in \{\alpha, \beta, \gamma\}$, we must have $0 = \sigma(f(k)) = f(\sigma(k))$, showing that $\sigma(k)$ is also a root of f(x), or $\sigma(k) \in \{\alpha, \beta, \gamma\}$. Hence, σ acts on the three roots as a permutation, showing that $\operatorname{Gal}(L/\mathbb{Q})$ has a permutation action on the three roots. So, $\operatorname{Gal}(L/\mathbb{Q}) \cong H \leq S_3$ (since it acts as a permutation of a 3-element set, it can be characterized by a subgroup of S_3).
 - Now, based on the subgroup relation, $[L:\mathbb{Q}] = |\operatorname{Gal}(L/\mathbb{Q})| \le |S_3| = 6$; also, because we've proven beforehand that 6 divides $[L:\mathbb{Q}]$, which shows that $|\operatorname{Gal}(L/\mathbb{Q})| = [L:\mathbb{Q}] \ge 6$. So, $|\operatorname{Gal}(L/\mathbb{Q})| = [L:\mathbb{Q}] \ge 6$, which enforces $\operatorname{Gal}(L/\mathbb{Q}) \cong H = S_3$ (since the only subgroup of S_3 with order 6 is S_3 itself).
- (b) Because in **part** (a), $Gal(L/\mathbb{Q})$ is proven to have a permutation action on $\{\alpha, \beta, \gamma\}$ and is isomorphic to S_3 as groups, then there exists automorphism that acts as a transposition (α, β) .

Question 4 Let $L \subseteq \mathbb{C}$ be the splitting field of $f(x) = (x^2 - 2)(x^2 - 3)$ over \mathbb{Q} .

- (a) Show that $L = \mathbb{Q}(\sqrt{2} + \sqrt{3})$ and $[L : \mathbb{Q}] = 4$. (b) Find $Gal(L/\mathbb{Q})$ as a group of permutations of the roots of f.
- (c) Which elements of your ansewr to (b) belong to the subgroup $Gal(L/\mathbb{Q}(\sqrt{6}))$?

Pf:

First, $f(x) = (x^2 - 2)(x^2 - 3)$ over $\mathbb C$ can be factored as $(x - \sqrt{2})(x + \sqrt{2})(x - \sqrt{3})(x + \sqrt{3})$, hence the roots are $\pm\sqrt{2},\pm\sqrt{3}$. This indicates that the splitting field $L=\mathbb{Q}(\sqrt{2},\sqrt{3})$.

(a) First, it is clear that $\sqrt{2} + \sqrt{3} \in L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$, hence $\mathbb{Q}(\sqrt{2} + \sqrt{3}) \subseteq L$; on the other hand, this element satisfies the below relation:

$$(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2}) = 3 - 2 = 1 \implies \sqrt{3} - \sqrt{2} = \frac{1}{\sqrt{2} + \sqrt{3}}$$
 (5)

Hence, $\sqrt{3} - \sqrt{2} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Then, $\sqrt{3} = \frac{1}{2}((\sqrt{3} + \sqrt{2}) + (\sqrt{3} - \sqrt{2})) \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$, which also implies that $\sqrt{2} = (\sqrt{2} + \sqrt{3}) - \sqrt{3} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Hence, $L = \mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2} + \sqrt{3})$, which proves that $L = \mathbb{Q}(\sqrt{2} + \sqrt{3})$.

Now, to consider the degree, we'll use the relation $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$: Since $\sqrt{2}$ has minimal polynomial $x^2 - 2 \in \mathbb{Q}[x]$, then $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$.

Now, consider the minimal polynomial of $\sqrt{3}$ over $\mathbb{Q}(\sqrt{2})$: Since it satisfies x^2-3 , then the minimal polynomial must divide $x^2 - 3$; then, to prove that $x^2 - 3$ is the minimal polynomial, we'll show that x^2-3 has no roots in $\mathbb{Q}(\sqrt{2})$.

Suppose the contrary that it has roots in $\mathbb{Q}(\sqrt{2})$, then for some $a,b\in\mathbb{Q}$, $(a+b\sqrt{2})$ satisfies the following:

$$(a+b\sqrt{2})^2 - 3 = 0 \implies (a^2 + 2b^2) + 2ab\sqrt{2} = 3 = 3 + 0 \cdot \sqrt{2}$$
(6)

Since $1, \sqrt{2}$ forms a basis of $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$, this equation implies that 2ab = 0, which a = 0 or b = 0. Yet, if b=0, we have $a^2=3$, or $a=\pm\sqrt{3}\in\mathbb{Q}$, which violates the fact that $\sqrt{3}$ is irrational; on the other hand, if a=0, we have $(b\sqrt{2})^2=2b^2=3$. Since $b=\frac{p}{q}$ for some $p,q\in\mathbb{Z},\ q\neq 0$, and $\gcd(p,q)=1$, then the equation implies $2\frac{p^2}{q^2} = 3$, showing that $2p^2 = 3q^2$.

Then, this implies $2 \mid 3q^2$, and while $2 \nmid 3$, we must have $2 \mid q^2$, or $2 \mid q$, hence q = 2k for some $k \in \mathbb{Z}$; now, we have $2p^2 = 3q^2 = 3(2k)^2$, then $p^2 = 3 \cdot 2k^2$, showing that $2 \mid p^2$, or $2 \mid p$. Therefore, 2 is a common factor of p and q, yet this violates the assumption that gcd(p,q) = 1, so we reach a contradiction. Hence, the assumption is false, showing that $x^2 - 3$ has no roots over $\mathbb{Q}(\sqrt{2})$, hence it is irreducible over $x^2 - 3$.

As a consequence, since x^2-3 is monic, while $\sqrt{3}$ is a root of it, it is the minimal polynomial of $\sqrt{3}$ over $\mathbb{Q}(\sqrt{2}), \text{ showing that } \mathbb{Q}(\sqrt{2},\sqrt{3}) = \mathbb{Q}(\sqrt{2})(\sqrt{3}) = \mathbb{Q}(\sqrt{2})[x]/(x^2-3), \text{ hence } [\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}(\sqrt{2})] = 2.$

Together with the initial degree of $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$, we get the following:

$$[L:\mathbb{Q}] = [\mathbb{Q}(\sqrt{2}, \sqrt{3}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{2}, \sqrt{3}):\mathbb{Q}(\sqrt{2})] \cdot [\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2 \cdot 2 = 4 \tag{7}$$

- (b) From the degree derived in **part** (a), $|Gal(L/\mathbb{Q})| = [L : \mathbb{Q}] = 4$. Then, since $4 = 2^2$ (which has order of a prime square), then not only $Gal(L/\mathbb{Q})$ is abelian, we know it is isomorphic to either \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$. Now, we'll consider $\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3}) \subseteq L$ respectively:
 - First, since $[L:\mathbb{Q}]=4$ and $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$, then $[L:\mathbb{Q}(\sqrt{2})]=2$. Hence, $|\operatorname{Gal}(L/\mathbb{Q}(\sqrt{2}))|=[L:\mathbb{Q}(\sqrt{2})]=2$, showing that $\operatorname{Gal}(L/\mathbb{Q}(\sqrt{2}))\cong\mathbb{Z}_2$. Which, Since $L=\mathbb{Q}(\sqrt{2},\sqrt{3})=\mathbb{Q}(\sqrt{2})(\sqrt{3})$ (and we know this is isomorphic to $\mathbb{Q}(\sqrt{2})[x]/(x^2-3)$ with the map $\overline{x}\mapsto \sqrt{3}$ based on the relation proven in **part (a)**), hence, since $\mathbb{Q}(\sqrt{2})[x]/(x^2-3)$ has an automorphism given by $\overline{x}\mapsto -\overline{x}$ (which fixes all elements in $\mathbb{Q}(\sqrt{2})$), as a consequence, this means it has a corresponding automorphism $\sigma\in\operatorname{Gal}(L/\mathbb{Q}(\sqrt{2}))$ that is characterized by $\sigma(\sqrt{3})=\sigma(-\sqrt{3})$.
 - Then, using similar logic, we know $[L:\mathbb{Q}]=4$ and $[\mathbb{Q}(\sqrt{3}):\mathbb{Q}]=2$, showing that $[L:\mathbb{Q}(\sqrt{3})]=2$ also, so $|\mathrm{Gal}(L/\mathbb{Q}(\sqrt{3}))|=[L:\mathbb{Q}(\sqrt{3})]=2$, showing that $\mathrm{Gal}(L/\mathbb{Q}(\sqrt{3}))\cong\mathbb{Z}_2$. Again, since $L=\mathbb{Q}(\sqrt{2},\sqrt{3})=\mathbb{Q}(\sqrt{3})(\sqrt{2}),\,L/\mathbb{Q}(\sqrt{3})$ is a degree 2 extension implies that $\sqrt{2}$ has the minimal polynomial over $\mathbb{Q}(\sqrt{3})$ being degree 2; then, because it is a root of x^2-2 while this polynomial is monic and with degree 2, then x^2-2 must be the minimal polynomial of $\sqrt{2}$ over $\mathbb{Q}(\sqrt{3})$. Hence, $L=\mathbb{Q}(\sqrt{3})(\sqrt{2})\cong\mathbb{Q}(\sqrt{3})[x]/(x^2-2)$. Notice that $\mathbb{Q}(\sqrt{3})[x]/(x^2-2)$ again has an automorphism given by $\overline{x}\mapsto -\overline{x}$ that fixes $\mathbb{Q}(\sqrt{3})$, while the field has an isomorphism to L given by $\overline{x}\mapsto \sqrt{2}$, then under suitable compositions, we get that there exists an automorphism $\psi\in\mathrm{Gal}(L/\mathbb{Q}(\sqrt{3}))$ that satisfies $\psi(\sqrt{2})=-\sqrt{2}$.

From the above, we have two automorphisms acting on the set of roots $\{\sqrt{2}, -\sqrt{2}, \sqrt{3}, -\sqrt{3}\}$.

 $\sigma \in \operatorname{Aut}(L/\mathbb{Q}(\sqrt{2}))$ fixes $\sqrt{2}, -\sqrt{2}$, while acting as a transposition $(\sqrt{3}, -\sqrt{3})$; on the other hand, $\psi \in \operatorname{Aut}(L/\mathbb{Q}(\sqrt{3}))$ fixes $\sqrt{3}, -\sqrt{3}$, while acting as a transposition $(\sqrt{2}, -\sqrt{2})$.

Now, if compose the two together, $\psi \circ \sigma \in \operatorname{Gal}(L/\mathbb{Q})$ is characterized by the composition of transpositions $(\sqrt{2}, -\sqrt{2})(\sqrt{3}, -\sqrt{3})$ (which is an order 2 permutation, since it is composed by two disjoint transpositions, which both have order 2).

Then, notice that σ , ψ , $\psi \circ \sigma$, $\mathrm{Id}_L \in \mathrm{Gal}(L/\mathbb{Q})$ all represents different elements (since they each correspond to a different permutation), together with the fact that $|\mathrm{Gal}(L/\mathbb{Q})| = 4$, these must be all the elements.

On the other hand, notice that none of the element has order 4 (proved above), then $\operatorname{Gal}(L/\mathbb{Q}) = \{\operatorname{Id}_L, \ \sigma, \ \psi, \ \psi \circ \sigma\}$ cannot be isomorphic to \mathbb{Z}_4 . Then, we must have $\operatorname{Gal}(L/\mathbb{Q}) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

(c) Finally, since $\sqrt{6} = \sqrt{2} \cdot \sqrt{3} \in L$, and it satisfies $(\sqrt{6})^2 - 6 = 0$, hence it is a root of $x^2 - 6 \in \mathbb{Q}[x]$. However, since this polynomial is irreducible and monic (because the roots $\pm \sqrt{6} \notin \mathbb{Q}$, so as a degree 2 polynomial with no roots in \mathbb{Q} , it is irreducible), it is the minimal polynomial of $\sqrt{6}$. Then, we have $\mathbb{Q}(\sqrt{6}) \cong \mathbb{Q}[x]/(x^2 - 6)$, hence $[\mathbb{Q}(\sqrt{6}) : \mathbb{Q}] = 2$. As a consequence, $[L : \mathbb{Q}(\sqrt{6})] = 2$, showing that $|\mathrm{Gal}(L/\mathbb{Q}(\sqrt{6}))| = [L : \mathbb{Q}(\sqrt{6})] = 2$.

Now, we know $\operatorname{Id}_L \in \operatorname{Gal}(L/\mathbb{Q}(\sqrt{6}))$; also, if consider $\psi \circ \sigma \in \operatorname{Gal}(L/\mathbb{Q})$, we know it acts on the roots as composition of disjoint transpositions $(\sqrt{2}, -\sqrt{2})(\sqrt{3}, -\sqrt{3})$. Then, if plug in $\sqrt{6}$, we get:

$$\psi \circ \sigma(\sqrt{6}) = \psi \circ \sigma(\sqrt{2}) \cdot \psi \circ \sigma(\sqrt{3}) = (-\sqrt{2})(-\sqrt{3}) = \sqrt{6}$$
(8)

Then, because $\psi \circ \sigma$ fixes the generator $\sqrt{6}$ of $\mathbb{Q}(\sqrt{6})$, then $\psi \circ \sigma$ fixes $\mathbb{Q}(\sqrt{6})$. Hence, it belongs to $\mathrm{Gal}(L/\mathbb{Q}(\sqrt{6}))$.

Which, because it is a group of order 2, and we have the above two distinct elements, then $\operatorname{Gal}(L/\mathbb{Q}(\sqrt{6})) = \{\operatorname{Id}_L, \ \psi \circ \sigma\}$ (corresponds to $\{e, \ (\sqrt{2}, -\sqrt{2})(\sqrt{3}, -\sqrt{3})\}$ as a set of permutations).

Question 5 The Galois group of a polynomial f(x) over a perfect field F is defined as Gal(K/F) where K is a splitting field of f(x). Find the Galois groups of $x^6 - 1$ over \mathbb{F}_5 , \mathbb{F}_{5^2} , and \mathbb{F}_{5^3} .

Pf:

1. Relations of the 6th Roots of Unity in Arbitrary Field:

Before starting, just based on factorization, we know $x^6 - 1 = (x^3 - 1)(x^3 + 1) = (x - 1)(x^2 + x + 1)(x + 1)(x^2 - x + 1)$. So, the splitting field of $x^6 - 1$ is the same as the splitting field of $(x^2 + x + 1)$ and $(x^2 - x + 1)$.

Also, the roots of the two polynomials above are also related: Let α be a root of $x^2 - x + 1$ (so $\alpha \neq 0$, since 0 is not a root of $x^2 - x + 1$), then if consider α^{-1} , we get the following relationship:

$$\alpha^2 \neq 0$$
, $\alpha^2(\alpha^{-2} - \alpha^{-1} + 1) = 1 - \alpha + \alpha^2 = 0 \implies \alpha^{-2} - \alpha^{-1} + 1 = 0$ (9)

Hence, α^{-1} is also a root of $x^2 - x + 1$. Notice that $\alpha^{-1} \neq \alpha$, since if they're the same (which $\alpha^{-1} = \alpha \implies \alpha^2 = 1$), then we must have $\alpha = \pm 1$; but since ± 1 are not the roots of $x^2 - x + 1$, it'll form a contradiction. So, the distinct roots of $x^2 - x + 1$ are α, α^{-1} .

Now, if consider $-\alpha$, notice that it satisfies the following equation:

$$(-\alpha)^2 + (-\alpha) + 1 = \alpha^2 - \alpha + 1 = 0 \tag{10}$$

Hence, $-\alpha$ is a root of $x^2 + x + 1$. On the other hand, if consider $-\alpha^{-1}$, we also get the following:

$$\alpha^{2}((-\alpha^{-1})^{2} + (-\alpha^{-1}) + 1) = \alpha^{2}(\alpha^{-2} - \alpha^{-1} + 1) = 1 - \alpha + \alpha^{2} = 0 \implies (-\alpha^{-1})^{2} + (-\alpha^{-1}) + 1 = 0 \quad (11)$$

So, this implies that $-\alpha^{-1}$ is also a root of x^2+x+1 . Beforehand, we already know $\alpha^{-1} \neq \alpha$, hence $-\alpha^{-1} \neq -\alpha$. So, the roots of x^2+x+1 is then given by $-\alpha, -\alpha^{-1}$.

As a conclusion, the splitting field of $x^2 - x + 1$ (regardless of the base field) automatically contains all the roots of $x^2 + x + 1$, hence it forms a splitting field of $x^6 - 1$ (since the potential nonlinear factors $(x^2 - x + 1), (x^2 + x + 1)$ all splits completely over the splitting field of $x^2 - x + 1$, and it cannot have any smaller fields with this property). So, for the below sections, we'll directly consider the splitting field of $x^2 - x + 1$.

2. Galois Group of $x^6 - 1$ over \mathbb{F}_5 :

Given $x^2 - x + 1$ over \mathbb{F}_5 , the following are the results if we plug in the elements:

$$\begin{cases}
0^{2} - 0 + 1 = 1 \neq 0 \\
1^{2} - 1 + 1 = 1 \neq 0 \\
2^{2} - 2 + 1 = 4 - 2 + 1 = 3 \neq 0 \\
3^{2} - 3 + 1 = (9 \mod 5) - 3 + 1 = 4 - 3 + 1 = 2 \neq 0 \\
4^{2} - 4 + 1 = (16 \mod 5) - 4 + 1 = 1 - 4 + 1 = (-2 \mod 5) = 3 \neq 0
\end{cases}$$
(12)

Hence, since $x^2 - x + 1$ is a degree 2 polynomial with no roots in \mathbb{F}_5 , it is irreducible over \mathbb{F}_5 . Then, its splitting field can be obtained through $K = \mathbb{F}_5[x]/(x^2 - x + 1)$ (since this is the smallest field containing the

root of $x^2 - x + 1$, and because it's degree 2, it automatically contains all the possible roots). Hence, K/\mathbb{F}_5 is a splitting field of $x^2 - x + 1$, hence a splitting field of $x^6 - 1$.

Which, because $[K: \mathbb{F}_5] = \deg(x^2 - x + 1) = 2$, then as a consequence, $|\operatorname{Gal}(K/\mathbb{F}_5)| = [K: \mathbb{F}_5] = 2$, showing that $\operatorname{Gal}(K/\mathbb{F}_5) \cong \mathbb{Z}_2$. So, the Galois Group of $x^6 - 1$ over \mathbb{F}_5 is \mathbb{Z}_2 .

3. Galois Group of $x^6 - 1$ over \mathbb{F}_{5^2} :

Recall that \mathbb{F}_{5^2} is obtained by considering a splitting field of $x^{5^2} - x \in \mathbb{F}_5[x]$. Which, this polynomial has the following factorization:

$$x^{5^2} - x = x(x^{24} - 1) = x(x^{12} - 1)(x^{12} + 1) = x(x^6 - 1)(x^6 + 1)(x^{12} + 1)$$
(13)

Then, since $x^{5^2} - x$ splits completely over \mathbb{F}_{5^2} , as a polynomial factor of it, $x^6 - 1$ must also split completely over \mathbb{F}_{5^2} . Since this is the base field, then $x^6 - 1$ has splitting field \mathbb{F}_{5^2} over the base field that's also the same. Hence, its Galois Group $\operatorname{Gal}(\mathbb{F}_{5^2}/\mathbb{F}_{5^2}) = \{\operatorname{Id}_{\mathbb{F}_{5^2}}\}$, which is a trivial group.

4. Galois Group of $x^6 - 1$ over \mathbb{F}_{5^3} :

First, we need to find the splitting field of $x^2 - x + 1$ over \mathbb{F}_{5^3} , and we'll claim that it doesn't have a root in \mathbb{F}_{5^2} (which as a consequence it doesn't split over \mathbb{F}_{5^3} since it is a degree 2 polynomial).

Suppose the contrary that $x^2 - x + 1$ has roots in \mathbb{F}_{5^3} , since we know the prime field of \mathbb{F}_{5^3} is \mathbb{F}_5 , and $x^2 - x + 1$ doesn't have any root in \mathbb{F}_5 , then let $\alpha \in \mathbb{F}_{5^3}$ be a root of $x^2 - x + 1 \in \mathbb{F}_5[x]$, we know $\mathbb{F}_5(\alpha) \subseteq \mathbb{F}_{5^3}$. However, since $x^2 - x + 1$ is proven to be irreducible over \mathbb{F}_5 in **section 2** of this question, with it being monic and α being its root, it is a minimal polynomial of α . Hence, $\mathbb{F}_5(\alpha) \cong \mathbb{F}_5[x]/(x^2 - x + 1)$, showing that $[\mathbb{F}_5(\alpha) : \mathbb{F}_5] = 2$. But, since we know $[\mathbb{F}_{5^3} : \mathbb{F}_5] = 3$, and $\mathbb{F}_5 \subseteq \mathbb{F}_5(\alpha) \subseteq \mathbb{F}_{5^3}$, then we must have $[\mathbb{F}_5(\alpha) : \mathbb{F}_5] = 2 \mid 3 = [\mathbb{F}_{5^3} : \mathbb{F}_5]$, which is a contradiction.

Therefore, our assumption is false, $x^2 - x + 1$ cannot have a root in \mathbb{F}_{5^3} , which further implies that it is irreducible over \mathbb{F}_{5^3} . Now, consider $K = \mathbb{F}_{5^3}[x]/(x^2 - x + 1)$: it is the smallest field extension of \mathbb{F}_{5^3} containing the roots of $x^2 - x + 1$, which forms a splitting field of it. Hence, $[K : \mathbb{F}_{5^3}] = \deg(x^2 - x + 1) = 2$. As a consequence, since it is also a splitting field of $x^6 - 1$, then the galois group of $x^6 - 1$ has $|\operatorname{Gal}(K/\mathbb{F}_{5^3})| = [K : \mathbb{F}_{5^3}] = 2$, showing that $\operatorname{Gal}(K/\mathbb{F}_{5^3}) \cong \mathbb{Z}_2$.