应用运筹学基础:组合优化(5)-近似算法选讲(3)

这节课首先介绍了 bin packing 的另一种线性规划模型: configuration LP, 之后提出了一种渐进比为 1 的 bin packing 近似算法。

Configuration LP

我们将 n 个物品按体积分类,设共有 k 种不同的体积,记为 c_1, c_2, \ldots, c_k ,每种体积有物品 b_1, b_2, \ldots, b_k 个。

对于一个 bin, 我们枚举体积为 c_1 的物品放几个, c_2 的放几个, ..., c_k 的放几个。

假设一共有 N 种不同的方案(又称为 pattern),记 $t_{i,j}$ 表示第 i 种方案中,体积为 c_j 的物品放了几个。我们设 x_i 表示对一个 bin packing 问题得到的答案中,第 i 种方案的 bin 用了几个。

那么,我们能写出 bin packing 的线性规划问题:
$$egin{array}{ll} & \displaystyle \min_x & \sum_{i=1}^N x_i \ & ext{s.t.} & \displaystyle \sum_{i=1}^N t_{i,j} x_i \geq b_j & orall j \in \{1,2,\ldots,k\} \ & x \geq 0 \end{array}$$

这个线性规划看起来变量很多,但是可以通过某种神奇的方法在比较好的多项式时间内求解。

近似算法

下面将提出一种渐进比为 1 的近似算法。记 N(I) 表示该算法对 bin packing 的实例 I 算出来的答案,我们将要证明 $N(I) \leq \mathrm{OPT}_{LP}(I) + O(\log^2 \mathrm{OPT}_{LP}(I))$ 。算法步骤如下:

\1. 记 c(I) 表示实例 I 中物品的体积总和,先将体积小于 $\frac{1}{c(I)}$ 的物品拿走。等其它物品用迭代算法分配完后,再把小的物品用 first fit 安排进去。

\2. 使用迭代算法分配剩下的物品。

为什么最后分配"小"的物品不影响结论呢?下面先证明一个引理。

引理:设 I 为 bin packing 问题的实例,g 是一个 0~1 之间的实数。我们称体积至少为 $\frac{g}{2}$ 的物品为"大"物品,其它物品是"小"物品。我们首先分配大物品,设一共用了 A 个 bin。此时再用 first fit 把小物品也分配进去,则总共使用的 bin 数至多为 $\max(A,(1+g)c(I)+1)$ 。

证明: 设总共使用的 bin 数量为 B。如果最后的 first fit 没有再开新的 bin,那么 B=A;否则至多有一个 bin 体积小于 $1-\frac{g}{2}$,那么我们可以推出 $c(I)\geq (1-\frac{g}{2})(B-1)$,再结合 $0\leq g\leq 1$,就有 $B\leq \frac{2}{2-g}c(I)+1\leq (1+g)c(I)+1$ 。

回到我们的算法,算法的第 1 步其实就是让 $\frac{1}{c(I)}=\frac{g}{2}$,即 $c(I)=\frac{2}{g}$ 。只要有 $c(I)\geq 2$ (c(I)<2 用 first fit 就行了,反正要证的是渐进比嘛…),那么用 first fit 分配小物品后,使用的总 bin 数就是 $(1+\frac{2}{c(I)})c(I)+1=c(I)+3$ (然后和 A 取个 max),不改变我们渐进比为 1 的结论。下面我们只要证明 A 也符合结论就行了。

迭代算法与证明

下面说明要用到的迭代算法,并证明算法的结果仍然符合渐进比为 1 的结论。每一次迭代考虑当前的实例 I,进行以下步骤:

第一步

求出 configuration LP 的解。设第 i 个 pattern 用了 x_i 次,由于 LP 只有 k 个限制,那么非零量至多只有 k 个(所以不用担心因为非零量太多直接变成指数级算法)。

第二步

把实例 I 拆成两部分, I_1 包含了解的整数部分(即 $\lfloor x \rfloor$), I_2 包含了解的小数部分(即 $x - \lfloor x \rfloor$)。由于我们使用的 pattern 种数至多为 k,那么小数部分物品的体积总和不超过 k。

很容易发现, I_1 的最优解就是恰好放满 $OPT_{LP}(I_1)$ 个 bin,那么容易有 $OPT_{LP}(I_1) + OPT_{LP}(I_2) = OPT_{LP}(I)$ 。

举个例子:

假如有 2 种物品 c_1, c_2 和 2 种 pattern。

第 1 个 pattern 有 3 个 c_1 与 1 个 c_2 ;

第 2 个 pattern 有 1 个 c_1 与 3 个 c_2 。

Configuration LP 的解为 2.5 个 pattern 1 与 1.5 个 pattern 2。

那么我们把I拆成两个部分,

 $I_1 \equiv 4 \times 2 + 1 \times 1 = 7 \uparrow c_1 = 1 \times 2 + 3 \times 1 = 5 \uparrow c_2$

 I_2 里有 $3 \times 0.5 + 1 \times 0.5 = 2 \uparrow c_1$ 和 $1 \times 0.5 + 3 \times 0.5 = 2 \uparrow c_2$ 。

第三步

把 I_2 中的所有物品按体积总大到小排序,设为 $d_1 \geq d_2 \geq \ldots$ 。

我们把这些物品分堆: 首先找到最小的 n_1 ,把 d_1 到 d_{n_1} 分成第一堆,且堆内物品体积总和至少为 2;再找到最小的 n_2 ,把 d_{n_1+1} 到 d_{n_2} 分成第二堆,且堆内体积总和至少为 2;…这样分成 p 堆,显然只有最后一堆的体积总和可能小于 2。

由于每个物品的体积都至多为 1,每一堆的体积总和肯定小于 3。还容易发现,由于物品是按体积从大到小排序的,有 $n_1 \leq n_2 \leq \cdots \leq n_{p-1}$ 。

接下来,我们去掉第一堆和第 p 堆。在第 2 到 p-1 堆中,对于第 i 堆,我们只留下最大的 n_{i-1} 个物品(去掉剩下的 n_i-n_{i-1} 个物品),并且把这些物品的体积都放大到第 i 堆里最大的体积。将我们留下来的物品构成实例 I'。

不难注意到,如果我们把 I' 也进行分堆,那么 I' 里第一堆的物品数和 I_2 里第一堆的物品数相同,但体积都没有 I_2 第一堆的大,其它堆也是如此。所以我们有 $\mathrm{OPT}(I') \leq \mathrm{OPT}(I_2)$ 。我们只要把 I' 作为新一轮迭代的实例进行迭代即可。

不过,我们要迭代多少轮呢?注意到 I_2 分堆后,每一堆的体积至少为 2,那么 I' 中体积不同的 物品种数至多为 $\frac{c(I_2)}{2}$ 。别忘了我们在第二步中发现的结论:小数部分物品的体积总和不超过体 积不同的物品种数。所以每一轮 I_2 的体积都会折半,那么 $\log c(I)$ 轮之后迭代就会结束。

最后我们再来看看被我们去掉的物品总体积是多少。

首先,我们去掉了第一堆和第p堆,这两堆的体积之和至多为6。

再来看第 2 堆到第 p-1 堆。对于第 i 堆,我们去掉了 n_i-n_{i-1} 个物品,它们的体积均值不会 超过 $\frac{3}{n_i}$ (只考虑小的值,均值会变小)。我们来求个和

$$6+\sum_{i=2}^{p-1}(n_i-n_{i-1})rac{3}{n_i}$$

$$=$$
 $6+3\sum_{i=2}^{p-1}(rac{1}{n_i}+rac{1}{n_i}+\cdots+rac{1}{n_i})$ 别忘了我们一开始就把体积小于 $rac{1}{c(I)}$ 的物品拿走 \leq $6+3\sum_{i=2}^{p-1}(rac{1}{n_{i-1}+1}+rac{1}{n_{i-1}+2}+\cdots+rac{1}{n_i})$

$$\leq 6 + 3 \sum_{i=2}^{p-1} (rac{1}{n_{i-1}+1} + rac{1}{n_{i-1}+2} + \cdots + rac{1}{n_i})$$

$$\leq \qquad \qquad 6+3\sum_{i=1}^{n_{p-1}}rac{1}{i}$$

了,那么 $n_{p-1} \leq 3 \nabla \cdot \frac{1}{c(I)} = 3c(I)$,那么去掉的物品总体积就是 $O(\log c(I))$ 的了。

我们最后再把这些去掉的物品 first fit 一下就好了。我们知道 first fit 近似比是 1.7 的,不会改变 大O的结论。

回顾一下

每次迭代都会把当前实例 I 分成 I_1 和 I_2 。 I_1 里的物品由于恰好装满箱子,肯定是最优解的一部 分,那么比最优解差的部分就来自于 I_2 中被去掉的物品。而 I_2 中被去掉的物品总体积为 $O(\log c(I))$, 迭代最多进行 $\log c(I)$ 次, 所以算法的结果就是 $\mathrm{OPT}_{LP}(I) + O(\log^2 C(I)) \leq \mathrm{OPT}_{LP}(I) + O(\log^2 \mathrm{OPT}_{LP}(I))$, 这就完成了证明。