Resumen de SQL

Álvaro González Sotillo

24 de marzo de 2020

$\mathbf{\acute{I}ndice}$

1. Orden de ejecución de una <i>query</i>	1	
2. Funciones sobre valores	2	
3. Funciones sobre grupos	2	
4. Producto cartesiano	2	
5. Vistas	5	
6. Query en un from	5	
7. Query traducida a valor	5	
3. Query traducida a lista		
9. Having	6	
10.Referencias	6	
1. Orden de ejecución de una query		
1. from		
2. where		
3. group by		
4. having		
5. select		
6. order by		
<pre>select location, count(*) as ocupacion from</pre>		

```
group by
  location
having
  count(*) < 10
order by
  ocupacion;</pre>
```

2. Funciones sobre valores

- upper, lower: Mayúsculas y minúsculas
- trunc: quita decimales a números, horas y minutos a las fechas
- substr: partes de un varchar
- mod, sqrt...: funciones matemáticas

3. Funciones sobre grupos

- avg: media
- max: mínimo
- min: máximo
- count: cuenta valores de columnas
- count (distict): cuenta valores distintos
- count (*): cuenta todas las filas, incluidos los valores null

4. Producto cartesiano

- Es una operación de conjuntos
- \bullet Para calcular $P = A \times B$
 - Por cada elemento $a \in A$
 - ∘ Por cada elemento $b \in B$ ⋄ (ab) es un elemento de P
- Ejemplo
 - $A = \{ \text{Juan, María} \}$
 - $B = \{González, Pérez, García\}$
 - $P = \{$ Juan González, Juan Pérez, Juan García, María González, María Pérez, María García $\}$
- \bullet Se llama producto porque $|P| = |A| \cdot |B|$

Cuadro 1: VENTAS

$\underline{\text{Producto}}$	Precio	Cantidad	Fecha pedido	$\underline{\text{Cliente}}$
Pera	1	2	1-1	Pepe
Manzana	2	4	1-1	Pepe
Naranja	3	3	1-1	María
Manzana	2	6	1-2	María
Pera	1	5	1-2	Juan
Narania	3	3	1-2	Juan

4.1. Tabla original

- Solo un pedido al día
- No respeta 2FN (Precio depende de parte de la clave)

4.2. Tablas normalizadas

Cuadro 2: PRODUCTOS

$\underline{\text{Producto}}$	Precio
Pera	1
Manzana	2
Naranja	3

Cuadro 3: PEDIDOS

Producto	Cantidad	Fecha pedido	Cliente
Pera	2	1-1	Pepe
Manzana	4	1-1	Pepe
Naranja	3	1-1	María
Manzana	6	1-2	María
Pera	5	1-2	Juan
Naranja	3	1-2	Juan

4.3. Cómo recuperar información original

- \blacksquare La tabla original VENTAS puede seguir siendo necesaria para un informe
- Se puede recuperar con los siguientes pasos:
 - \bullet Se calcula la tabla PRODUCTOS \times PEDIDOS
 - $\bullet\,$ Quitamos las filas que no respeten la foreign key

4.3.1. PRODUCTOS \times PEDIDOS

PRODUCTO.producto	PRODUCTO.precio	PEDIDOS.producto	PEDIDOS.cantidad	PEDIDOS.Fecha pedido	ΡI
Pera	1	Pera	2	1-1	Pe
Pera	1	Manzana	4	1-1	Р
Pera	1	Naranja	3	1-1	Μ
Pera	1	Manzana	6	1-2	Μ
Pera	1	Pera	5	1-2	Jυ
Pera	1	Naranja	3	1-2	Jυ
Manzana	2	Pera	2	1-1	Р
Manzana	2	Manzana	4	1-1	Р
Manzana	2	Naranja	3	1-1	Μ
Manzana	2	Manzana	6	1-2	Μ
Manzana	2	Pera	5	1-2	Jυ
Manzana	2	Naranja	3	1-2	Jυ
Naranja	3	Pera	2	1-1	Р
Naranja	3	Manzana	4	1-1	Р
Naranja	3	Naranja	3	1-1	Μ
Naranja	3	$\overline{\text{Manzana}}$	6	1-2	Μ
Naranja	3	Pera	5	1-2	Jυ
Naranja	3	<u>Naranja</u>	3	1-2	Jυ

4.3.2. PRODUCTOS \times PEDIDOS, filtrado

■ Nos quedamos solo con las filas where PRODUCTO.producto = PEDIDOS.producto

PRODUCTO.producto	PRODUCTO.precio	PEDIDOS.producto	PEDIDOS.cantidad	PEDIDOS.Fecha pedido	PI
Pera	1	Pera	2	1-1	Pe
Pera	1	Pera	5	1-2	Jυ
Manzana	2	Manzana	4	1-1	Р
Manzana	2	Manzana	6	1-2	Μ
Naranja	3	Naranja	3	1-1	\mathbf{M}
Naranja	3	Naranja	3	1-2	Jυ

4.4. Sintaxis SQL

```
select
   *
from
   PRODUCTOS, PEDIDOS
where
   PRODUCTOS.producto = PEDIDOS.producto;
```

```
select
   *
from
   PRODUCTOS join PEDIDOS on PRODUCTOS.producto = PEDIDOS.producto;
```

5. Vistas

- Una query puede guardarse como una vista
- Las vistas se comportan como tablas con la orden select, extrayendo información de las tablas originales
- En general, no se pueden modificar datos de una vista, hay que modificar las tablas de origen.

```
create view ALUMNOS as
select student_id as clave, first_name as nombre, last_name as apellidos from student;
select * from alumnos;
```

6. Query en un from

- En el from no es obligatorio poner tablas
- Se puede poner cualquier cosa con filas y columnas:
 - Tablas
 - Vistas
 - Otras queries

```
select * from (
    select student_id as clave, first_name as nombre, last_name as apellidos from student
);
```

7. Query traducida a valor

■ Se puede poner una consulta que devuelva una fila y una columna en cualquier lugar donde se necesite un valor simple

```
select * from student
where upper(last_name) = (
    select max(upper(last_name)) from student
);
```

8. Query traducida a lista

• Se puede poner una consulta que devuelva una columna y muchas filas en una condición in

```
select distinct course_no from section where capacity = 25 order by course_no;
select * from course where course_no = 20 or course_no = 220 or course_no = 134;
select * from course where course_no in (20,220,134);
select * from course where course_no in (
    select distinct course_no from section where capacity = 25
);
```

9. Having

- having sirve para poner condiciones a los grupos de una consulta
- Se puede simular con una subconsulta en el from

```
select * from
(
    select
    location, count(*) as ocupacion
    from
        section
    group by
    location
)
where ocupacion < 10;

select
    location, count(*) as ocupacion
from
    section
group by
location
having
count(*) < 10;</pre>
```

10. Referencias

- Formatos:
 - Transparencias
 - PDF
- Creado con:
 - Emacs
 - \bullet org-reveal
 - Latex