

ABB MEASUREMENT & ANALYTICS | FICHE PRODUIT

TTR200

Transmetteur de température, montage sur rails

Measurement made easy

Transmetteur de température pour le protocole HART Pour toutes les exigences standards

Câblage d'entrée et communication

- Entrée de capteur universelle pour thermomètres à résistance (RTD) et thermocouples
- Communication via signal 4 à 20 mA et protocole HART

Sécurité

- Homologations globales pour la protection antidéflagrante jusqu'à la zone 0
- Sécurité fonctionnelle SIL 2 / SIL 3 selon CEI 61508
- Versionnement des appareils conforme NE 53
- Deux LED de fonction
- Surveillance continue de la tension d'alimentation
- Surveillance de rupture de fil / de corrosion selon NE 89

Conditions ambiantes

• Température ambiante -40 à 85 °C (-40 à 185 °F)

Utilisation

 Configuration selon FDT / DTM, EDD ou FDI (Field Information Manager, FIM)

Caractéristiques techniques

Données générales

Marquage CE

Selon les directives applicables, l'appareil répond à toutes les exigences relatives au marquage CE.

Séparation galvanique

3,5 kV DC (env. 2,5 kV AC), 60 s, entrée contre sortie

Temps MTBF

190 ans à une température ambiante de 40 °C (104 °F)

Filtre d'entrée

50 / 60 Hz

Relais temporisé

< 10 s ($I_a \le 3,6$ mA pendant la mise sous tension)

Délai de préchauffage

5 minutes

Temps de montée t90

400 à 1000 ms

Actualisation des valeurs de mesure

10/s, indépendamment du type et du câblage du capteur

Filtre de sortie

Filtre numérique 1er ordre : 0 à 100 s

Poids

180 g

Matériau du boîtier

Boîtier : polycarbonateCouleur : gris RAL9002

Matériau de scellement de l'électronique de l'appareil

Polyuréthane (PUR), WEVO PU-417

Conditions d'installation

• Lieu de montage : pas de limitations

 Possibilités de montage : montage sur rail (35 mm) selon EN 60175

Raccordement électrique

- Bornes de raccordement avec vis acier imperdables et raccord à vis enfichable
- Fils jusqu'à max. 2,5 mm² (AWG 14)

Dimensions

Voir **Dimensions** à la page 11.

Conditions ambiantes

Température ambiante

- Standard: -40 à 85 °C (-40 à 185 °F)
- Plage restreinte pour version Ex :
 Voir le certificat correspondant

Température de transport / de stockage

-40 à 85 °C (-40 à 185 °F)

Classe climatique selon DIN EN 60654-1

Cx -40 à 85 °C (-40 à 185 °F) pour une humidité relative de l'air de 5 à 95 %

Humidité max. admise selon IEC 60068-2-30

100 % d'humidité relative de l'air

Résistance à l'oscillation selon IEC 60068-2-6

 $10\ \grave{\rm a}\ 2000\ Hz$ pour 5 g, en fonctionnement et lors du transport

Résistance aux chocs selon IEC 68-2-27

Gn = 30, en fonctionnement et lors du transport

Indice de protection IP

IP 20 ou indice de protection IP du boîtier

... Caractéristiques techniques

Compatibilité électromagnétique

Immunité aux émissions parasites IEC EN 61326 et Namur NE 21.

Résistance aux interférences selon IEC 61326 et Namur NE 21 Pt100 : plage de mesure 0 à 100 °C (32 à 212 °F), étendue 100 K

Catégorie de contrôle	Acuité de contrôle	Influence
Décharge sur signal et communication	2 kV	< 0,5 %
Décharge statique		
 Plaque de couplage (indirect) 	8 kV	non
 Bornes d'alimentation* 	6 kV	non
Bornes de capteur*	4 kV	non
champ rayonnant		
80 MHz à 2 GHz	10 V/m	< 0,5 %
Couplage		
150 kHz à 80 MHz	10 V	< 0,5 %
Surtension		
entre les fils d'alimentation	0,5 kV	Pas de
Fil mis à la terre	1 kV dysf	onctionnement

^{*} Décharge dans l'air (écart 1 mm [0,04 in])

Sécurité fonctionnelle SIL

Avec conformité selon IEC 61508 pour l'utilisation dans des applications liées à la sécurité jusqu'à SIL niveau 3 (redondant).

- Avec l'utilisation d'un convertisseur de mesures, l'appareil répond aux exigences de la norme SIL 2.
- En cas d'utilisation de convertisseurs de mesure à commande redondante, les exigences selon SIL 3 peuvent être remplies.

Vous trouverez des informations à ce sujet dans le SIL-Safety Manual.

Entrée – thermomètre à résistance / résistances

Thermomètre de résistance

- Pt100 selon IEC 60751, JIS C1604, MIL-T-24388
- Ni selon DIN 43760
- Cu selon la recommandation OIML R 84

Mesure de la résistance

- 0 à 500 Ω
- 0 à 5000 Ω

Type de raccordement du capteur

circuit à deux, trois, quatre conducteurs

Ligne de transfert

- Résistance de câble de capteur maximale : par conducteur 50 Ω selon NE 89
- Circuit à trois fils : résistances de ligne du capteur symétriques
- Circuit à deux fils : résistance de ligne compensable jusqu'à 100 Ω

Courant de mesure

< 300 µA

Court-circuit du capteur

 $< 5 \Omega$ (pour thermomètres à résistance)

Rupture de fil du capteur

- Plage de mesure 0 à 500 Ω > 0,6 à 10 k Ω
- Plage de mesure 0 à 5 k Ω > 5,3 à 10 k Ω

Contrôle de la corrosion selon NE 89

- Mesure de la résistance à trois fils : > 50 Ω
- Mesure de la résistance à quatre fils : > 50 Ω

Signalisation d'erreur du capteur

- Thermomètre à résistance : court-circuit du capteur et rupture de fil du capteur
- Mesure de résistance linéaire : rupture de fil du capteur

Entrée - thermocouples / tensions

Types

- B, E, J, K, N, R, S, T selon IEC 60584
- U, L selon DIN 43710
- C. D selon ASTM E-988

Tensions

- -125 à 125 mV
- –125 à 1100 mV

Ligne de transfert

• Résistance de câble de capteur maximale (RW) : par conducteur 1,5 k Ω , somme 3 k Ω

Contrôle de rupture de fil du capteur NE 89

- Pulsé avec 1 μA hors de l'intervalle de mesure
- Mesure de thermocouple 5,3 à 10 kΩ
- Mesure de la tension 5,3 à 10 kΩ

Résistance d'entrée

> 10 MΩ

Point de comparaison interne Pt1000, IEC 60751 Kl. B

(aucun pont électrique supplémentaire)

Signalisation d'erreur du capteur

- Thermocouple: rupture de fil du capteur
- Mesure de tension linéaire : rupture de fil du capteur

Sortie HART®

Comportement de transmission

- Température linéaire
- Résistance linéaire
- · Tension linéaire

Signal de sortie

- Configurable 4 à 20 mA (standard)
- Configurable 20 à 4 mA

(Plage de crête : 3,8 à 20,5 mA selon NE 43)

Mode de simulation

3,5 à 23,6 mA

Consommation propre

< 3,5 mA

Courant de sortie maximal

23,6 mA

Signal de courant de défaut configurable

- Écrêtage 22 mA (20,0 à 23,6 mA)
- Sous-excitation 3,6 mA (3,5 à 4,0 mA)

Alimentation

Technologie à deux fils, protection contre les inversions de polarité; fils d'alimentation = fils de signalisation

Remarque

Les calculs suivants sont valables pour les applications standards. Prendre en compte, le cas échéant, un courant maximal plus élevé.

Tension d'alimentation

Ne convient pas à une application Ex:

 $U_S = 11 \text{ à } 42 \text{ V DC}$

Applications Ex:

 $U_S = 11 \text{ à } 30 \text{ V DC}$

Ondulation résiduelle maximale admissible de la tension d'alimentation

Pendant la communication, elle correspond à la spécification HART® FSK « Physical Layer ».

Détection de sous-tension au niveau du convertisseur de mesure

Si la tension de la borne au niveau du convertisseur de mesure passe en dessous des 10 V, l'intensité de sortie est alors de $I_a \le 3,6$ mA.

Charge maximale

 $R_B = (U_S - 11 V) / 0,022 A$

- (A) TTR200
- B TTR200 Dans les applications Ex
- © Résistance de communication HART® (R_B)

Figure 1: Charge maximale en fonction de la tension d'alimentation

Puissance absorbée maximale

- $P = U_s \times 0,022 A$
- Exemple : U_s = 24 V → P_{max} = 0,528 W

... Caractéristiques techniques

Précision de mesure

Y compris erreur de linéarité, reproductibilité / hystérésis à 23 °C (73,4 °F) \pm 5 K et 20 V de tension réseau. Les caractéristiques relatives à la précision de mesure correspondent à 3 σ (loi normale gaussienne). Dérive à long terme : \pm 0,05 °C (\pm 0,09 °F) ou \pm 0,05 % par an, la valeur la plus élevée s'applique.

Capteur		Limites de capteur de mesure	Échelle de mesure		Précision de mesure
			minimale	Entrée	Sortie analogique*
				(convertisseur A / D	(convertisseur D / A
				24 bits)	16 bits)
Thermomètre à	résistance / résistance				_
DIN IEC 60751	Pt10 (a=0,003850)	-200 à 850 °C (-328 à 1 562 °F)	10 °C (18 °F)	±0,80 °C (±1,44 °F)	±0,05 %
	Pt50 (a=0,003850)			±0,16 °C (±0,29 °F)	±0,05 %
	Pt100 (a=0,003850)**			±0,08 °C (±0,14 °F)	±0,05 %
	Pt200 (a=0,003850)			±0,24 °C (±0,43 °F)	±0,05 %
	Pt500 (a=0,003850)			±0,16 °C (±0,29 °F)	±0,05 %
	Pt1000 (a=0,003850)			±0,08 °C (±0,14 °F)	±0,05 %
JIS C1604	Pt10 (a=0,003916)	−200 à 645 °C (−328 à 1193 °F)	10 °C (18 °F)	±0,80 °C (±1,44 °F)	±0,05 %
	Pt50 (a=0,003916)			±0,16 °C (±0,29 °F)	±0,05 %
	Pt100 (a=0,003916)			±0,08 °C (±0,14 °F)	±0,05 %
MIL-T-24388	L-T-24388 Pt10 (a=0,003920) -200 à 850 °C (-328 à 1 562 °F) 10 °C (18 °F) Pt50 (a=0,003920)	10 °C (18 °F)	±0,80 °C (±1,44 °F)	±0,05 %	
			±0,16 °C (±0,29 °F)	±0,05 %	
	Pt100 (a=0,003920)	-		±0,08 °C (±0,14 °F)	±0,05 %
	Pt200 (a=0,003920)			±0,24 °C (±0,43 °F)	±0,05 %
	Pt1000 (a=0,003920)			±0,08 °C (±0,14 °F)	±0,05 %
DIN 43760	Ni50 (a=0,006180)	−60 à 250 °C (−76 à 482 °F)	10 °C (18 °F)	±0,16 °C (±0,29 °F)	±0,05 %
	Ni100 (a=0,006180)			±0,08 °C (±0,14 °F)	±0,05 %
	Ni120 (a=0,006180)				±0,05 %
	Ni1000 (a=0,006180)				±0,05 %
OIML R 84	Cu10 (a=0,004270)	-50 à 200 °C (-58 à 392 °F)	10 °C (18 °F)	±0,80 °C (±1,44 °F)	±0,05 %
	Cu100 (a=0,004270)			±0,08 °C (±0,14 °F)	±0,05 %
	Mesure de la résistance	0 à 500 Ω	4 Ω	±32 mΩ	±0,05 %
		0 à 5000 Ω	40 Ω	±320 mΩ	±0,05 %

^{*} Pourcentages de l'échelle de mesure configurée

^{**} Version standard

Capteur		Limites de capteur de mesure	Échelle de mesure		Précision de mesure
			minimale	Entrée	Sortie analogique*
				(convertisseur A / D	(convertisseur D / A
				24 bits)	16 bits)
Thermocouple	s ^{**} / Tensions				
IEC 60584	Type K (Ni10Cr-Ni5)	-270 à 1 372 °C (-454 à 2 502 °F)	50 °C (90 °F)	±0,35 °C (±0,63 °F)	±0,05 %
	Type J (Fe-Cu45Ni)	-210 à 1 200 °C (-346 à 2 192 °F)			±0,05 %
	Type N (Ni14CrSi-NiSi)	-270 à 1 300 °C (-454 à 2 372 °F)			±0,05 %
	Type T (Cu-Cu45Ni)	-270 à 400 °C (-454 à 752 °F)			±0,05 %
	Type E (Ni10Cr-Cu45Ni)	-270 à 1 000 °C (-454 à 1 832 °F)			±0,05 %
	Type R (Pt13Rh-Pt)	-50 à 1 768 °C (-58 à 3 215 °F)	100 °C (180 °F)	±0,95 °C (±1,71 °F)	±0,05 %
	Type S (Pt10Rh-Pt)				±0,05 %
	Type B (Pt30Rh-Pt6Rh)	-0 à 1 820 °C (32 à 3 308 °F)			±0,05 %
DIN 43710	Type L (Fe-CuNi)	-200 à 900 °C (-328 à 1 652 °F)	50 °C (90 °F)	±0,35 °C (±0,63 °F)	±0,05 %
	Type U (Cu-CuNi)	-200 à 600 °C (-328 à 1 112 °F)			±0,05 %
ASTM E 988	Type C	-0 à 2 315 °C (32 à 4 200 °F)	100 °C (180 °F)	±1,35 °C (±2,43 °F)	±0,05 %
	Type D				±0,05 %
	Mesure de tension	-125 à 125 mV	2 mV	±12 μV	±0,05 %
	-	−125 à 1 100 mV	20 mV	±120 μV	±0,05 %

^{*} Pourcentages de l'échelle de mesure configurée

^{**} Pour la précision de mesure numérique, il faut ajouter l'erreur de point de comparaison : Pt1000, DIN IEC 60751 Kl. B

... Caractéristiques techniques

Influence opérationnelle

Les pourcentages se rapportent à l'échelle de mesure configurée.

Influence de la tension d'alimentation / influence de la charge :

Dans des valeurs limites de tension / de charge, l'influence générale est inférieure à 0,001 % par volt

Défaut en mode commun :

pas d'influence jusqu'à 100 $V_{\rm eff}$ (50 Hz) ou 50 VDC

Influence de la température ambiante :

basée sur 23 °C (73,4 °F) pour une plage de température ambiante de -40 ... 85 °C (-40 ... 185 °F)

Capteur	oteur Influence de la température ambiante par 1 °C (1,8 °F) écart par rapport		1,8°F) écart par rapport à 23°C (73,4°F)
		Entrée	Sortie analogique*
		(convertisseur A / D 24 bits)	(convertisseur D / A 16 bits)
Thermomètre à rés	sistance, deux, trois ou quatre fils		
IEC, JIS, MIL	Pt10	±0,04 °C (±0,072 °F)	±0,003 %
	Pt50	±0,008 °C (±0,014 °F)	±0,003 %
	Pt100	±0,004 °C (±0,007 °F)	±0,003 %
IEC, MIL	Pt200	±0,02 °C (±0,036 °F)	±0,003 %
	Pt500	±0,008 °C (±0,014 °F)	±0,003 %
	Pt1000	±0,004 °C (±0,007 °F)	±0,003 %
DIN 43760	Ni50	±0,008 °C (±0,014 °F)	±0,003 %
	Ni100	±0,004 °C (±0,007 °F)	±0,003 %
	Ni120	±0,003 °C (±0,005 °F)	±0,003 %
	Ni1000	±0,004 °C (±0,007 °F)	±0,003 %
OIML R 84	Cu10	±0,04 °C (±0,072 °F)	±0,003 %
	Cu100	±0,004 °C (±0,007 °F)	±0,003 %
Mesure de la résist	tance		
	0 à 500 Ω	±0,002 Ω	±0,003 %
	0 à 5000 Ω	±0,02 Ω	±0,003 %
Thermocouple, tou	us les types définis		±0,003 %
	±[(0,001 % x (N	1E[mV] / MS[mv]) + (100 % x (0,009 °C / MS [°C])]**	±0,003 %
Mesure de tension			
	-125 à 125 mV	±15 μV	±0,003 %
	−125 à 1 100 mV	±15 μV	±0,003 %

^{*} Pourcentages de l'étendue de mesure configurée du signal de sortie analogique

MA = valeur de tension du thermocouple en début d'échelle de mesure selon la norme

MS = valeur de tension du thermocouple sur l'échelle de mesure selon la norme. MS = (ME - MA)

^{**} ME = valeur de tension du thermocouple à la fin de la plage de mesure selon la norme

Raccordements électriques

Affectation des raccordements

- A Potentiomètre, circuit à quatre conducteurs
- B Potentiomètre, circuit à trois conducteurs
- © Potentiomètre, circuit à deux conducteurs
- (D) RTD, circuit à quatre conducteurs
- (E) RTD, circuit à trois conducteurs
- F RTD, circuit à deux conducteurs

Figure 2 : Schéma de raccordement TTR200

- (G) Mesure de tension
- (H) Thermocouple
- Broche 11 : mesure du courant de sortie 4 à 20 mA sans ouverture / Interruption de la boucle de courant
- (J) Sans fonction
- (1) à (4) Port du capteur (de l'élément de mesure)

Éléments de commande et d'affichage du

- PWR / LED verte : affichage de la tension d'alimentation
- ERR / LED rouge : signalisation du capteur, du câble du capteur et des erreurs d'appareil
- Commutateur DIP 1 : on -> Protection en écriture matérielle activée
- Commutateur DIP 2 : sans fonction

Communication

Paramètre de configuration

Type de mesure

- Type de capteur, catégorie de raccordement
- Signalisation d'erreur
- Plage de mesure
- Données générales p ex. numéro TAG
- Amortissement
- Simulation de signal de la sortie

Pour les détails, se reporter au **Configuration formulaire de commande** à la page 17

Protection en écriture

Taquet logiciel

Informations de diagnostic selon NE 107

- Signalisation d'erreur du capteur (Rupture de fil ou court-circuit)
- Erreur de l'appareil
- Dépassement par le bas / haut des limites
- Dépassement par le bas / haut de la plage de mesure
- Simulation active

Communication HART®

L'appareil figure dans la liste de FieldComm Group.

- (1) Convertisseur de mesure
- (2) Terminal portatif
- (3) Modem HART®
- 4 Ordinateur avec Asset Management Tool
- 5) Mise à la terre (en option)
- 6 Appareil d'alimentation (interface processus)
- R_B Résistance ohmique (si nécessaire)

Figure 3: Exemple de connexion HART

Manufacturer-ID	0x1A
Device Type ID	0x0D
Profil	HART® 5.1
Configuration	DTM, EDD, FDI (FIM)
Signal de transmission	BELL Standard 202

Modes de fonctionnement

- Mode de communication point à point standard (adresse générale 0)
- Mode multidrop (adressage 1 à 15)
- · Mode rafale

Message de diagnostic

- Seuil de dépassement supérieur / inférieur selon NE 43
- Diagnostic HART®

Configurations possibles / outils

- Outils de gestion d'appareils / de gestion des équipements
- Technologie FDT par pilote TTX200-DTM (Asset Vision Basic / DAT200)
- EDD par pilote TTX200 EDD (terminal portatif Field Information Manager / FIM)
- Technologie FDI par TTX200 Package (Field Information Manager / FIM)

Dimensions

Figure 4: Dimensions en mm (in)

Utilisation dans les zones à risque d'explosion selon ATEX et IECEx

Identification Ex

Remarque

- Pour de plus amples informations sur l'homologation Ex des appareils, veuillez vous rapporter aux certifications de contrôle (sur www.abb.com/temperature).
- En fonction de la version, un marquage spécifique selon ATEX ou IECEx s'applique.

Sécurité intrinsèque ATEX

L'appareil, si la commande l'exige, satisfait les exigences de la directive ATEX 2014/34/EU et il est homologué pour les zones 0, 1 et 2.

Modèle TTR200-E1		
Attestatio	on d'examen « CE » de type	PTB 05 ATEX 2017 X
II 1 G	Ex ia IIC T6 Ga	
II 2 (1) G	Ex [ia IIC Ga] ib IIC T6 Gb	
II 2 G (1D)	Ex [ia IIIC Da] ib IIC T6 Gb	

Données de température

Sécurité intrinsèque ATEX / IECEx

Classe de température	Plage de température ambiante admissib	
	Utilisation catégorie d'appareils 1	Utilisation catégories d'appareils 2 et 3
T6	-40 à 44 °C	−40 à 56 °C
	(-40 à 111,2 °F)	(-40 à 132,8 °F)
T4-T1	-40 à 60 °C	−40 à 85 °C
	(-40 à 140,0 °F)	(-40 à 185,0 °F)

ATEX anti-étincelles

Classe de température	Utilisation catégorie d'appareils 3
Т6	-40 to 56 °C (-40 to 132,8 °F)
T5	-40 to 71 °C (-40 to 159,8 °F)
T4	-40 to 85 °C (-40 to 185,0 °F)

ATEX sans étincelles

L'appareil, si la commande l'exige, satisfait les exigences de la directive ATEX 2014/34/EU et il est homologué pour la zone 2.

Modèle TTR200-E2	
Déclaration de conformité	
II 3 G Ex nA IIC T1-T6 Gc	

Sécurité intrinsèque IECEx

Homologué pour les zones 0, 1 et 2.

IECEx PTB 09.0014X

Données électriques

Mode de protection sécurité intrinsèque Ex ia IIC (partie 1)

	Circuit d'alimentation
Tension maximale	U _i = 30 V
Courant de court-circuit	I _i = 130 mA
Puissance maximale	P _i = 0,8 W
Inductance interne	L _i = 160 μH*
Capacité interne	C _i = 0,57 nF**

^{*} À partir de la version matérielle 1.12, précédemment L_i = 0,5 mH.

Mode de protection sécurité intrinsèque Ex ia IIC (partie 2)

Thermocouples, tensions

	Courant de court- circuit : thermomètre à ci	Courant de court- ircuit : thermocouples,
	résistance, résistances	tensions
Tension maximale	U _o = 6,5 V	U _o = 1,2 V
Courant de court-circuit	I _o = 17,8 mA*	I _o = 50 mA
Puissance maximale	P _o = 29 mW**	P _o = 60 mW
Inductance interne	L _i = 0 mH	L _i = 0 mH
Capacité interne	C _i = 118 nF***	C _i = 118 nF***
Inductance externe maximale	L _o = 5 mH	L _o = 5 mH
Capacité externe maximale	C _o = 1,55 μF	C _o = 1,05 μF

^{*} À partir de la version matérielle 1.12, précédemment I_o = 25 mA.

^{**} À partir de la version matérielle 1.07, précédemment C_i = 5 nF.

^{**} À partir de la version matérielle 1.12, précédemment $P_{\rm O}$ = 38 mW.

^{***} À partir de la version matérielle 1.12, précédemment C_i = 49 nF.

Utilisation en zones à risque d'explosion selon FM et CSA

Remarque

- Pour de plus amples informations sur l'homologation Ex des appareils, veuillez vous rapporter aux certifications de contrôle (sur www.abb.com/temperature).
- Selon la version, un marquage spécifique FM ou CSA s'applique.

Identification Ex

FM Intrinsically Safe

Modèle TTR200-L6				
Control Drawing	TTR200-L6H (I.S.)			
Class I, Div. 1 + 2, Groups A, B, C, D				
Class I, Zone 0, AEx ia IIC T6				

FM Non-Incendive

Modèle TTR200-L6					
Control Drawing	TTR200-L6H (N.I.)				
Class I, Div. 2, Groups A, B, C, D					

CSA Intrinsically Safe

Modèle TTR200-R6				
Control Drawing	TTR200-R6H (I.S.)			
Class I, Div. 1 + 2, Groups A, B, C, D				
Class I, Zone 0, Ex ia Group IIC T6				

CSA Non-Incendive

Modèle TTR200-R6				
Control Drawing	TTR200-R6H (N.I.)			
Class I, Div. 2, Groups A, B, C, D				

Informations de commande

TTR200

Modèle de base	TTR200	ХX	X	хх
Transmetteur de température TTR200 pour montage sur rails, HART, Pt100 (RTD), thermocouples, séparation galvanique				
Protection Ex				
Sans protection Ex		Y0		
Mode de protection ATEX sécurité intrinsèque : Zone 0 : Il 1 G Ex ia IIC T6 Ga, Zone 1 (0) : Il 2 (1) G Ex [ia IIC Ga] ib IIC T6 Gb,				
Zone 1 (20) : II 2 G (1D) Ex [ia IIIC Da] ib IIC T6 Gb		E1		
Mode de protection ATEX sans étincelles : Zone 2 : II 3 G Ex nA IIC T1-T6 Gc		E2		
Mode de protection IECEx sécurité intrinsèque : Zone 0 : Ex ia IIC T6 Ga, Zone 1 (0) : Ex [ia IIC Ga] ib IIC T6 Gb,		H1		
Zone 1 (20) : Ex [ia IIIC Da] ib IIC T6 Gb				
FM Intrinsic Safety (IS): Class I, Div. 1+2, Groups A, B, C, D, Class I, Zone 0, AEx ia IIC T6				
Non-incendive (NI) : Class I, Div. 2, Groups A, B, C, D		L6		
CSA Intrinsic Safety (IS): Class I, Div. 1+2, Groups A, B, C, D / Class I, Zone 0, Ex ia Group IIC T6,				
Non-incendive (NI) : Class I, Div. 2, Groups A, B, C, D		R6		
GOST Russie - Autorisation métrologique		G1		
GOST Russie - Métrologique et EAC Ex sécurité intrinsèque, Ex i - Zone 0		P2		
GOST Kazakhstan - Autorisation métrologique		G3		
GOST Kazakhstan – Métrologique et EAC Ex sécurité intrinsèque, Ex i - Zone 0		T2		
GOST Biélorussie - Autorisation métrologique		M5		
GOST Biélorussie – Métrologique et EAC Ex sécurité intrinsèque, Ex i - Zone 0		U2		
Inmetro Ex ia IIC T6T4 Ga, Ex ib [ia Ga] IIC T6T4 Gb Ex ib [ia IIIC Da] IIC T6T4 Gb		C1		
Protocole de communication				
HART			Н	
Configuration				
Configuration standard				В:
Configuration spécifique au client sans courbe caractéristique d'utilisateur spécifique				BF

^{*} P. ex. plage de mesure spécifique au client, n° d'identification

... Informations de commande

Informations de commande complémentaires TTR200

	xx	XX	XXX	XX	
Certificats et attestations					
Déclaration de conformité SIL2	CS				
Certificat usine selon EN 10204-2.1, conformité de commande	C4				
Certificat de réception selon EN 10204-3.1 de contrôle visuel, dimensionnel et fonctionnel	C6				
Certificat d'étalonnage					
Avec certificat d'étalonnage en usine en 5 points		EM			
Certificat de réception selon EN 10204-3.1 pour étalonnage en 5 points		EP			
Utilisation des certificats					
Envoi par e-mail			GHE		
Envoi par la poste			GHP		
Envoi express			GHD		
Envoi avec instrument			GHA		
Archivage uniquement			GHS		
Versions spécifiques au client					
(A indiquer)				Z 9	
Langue de la documentation					
Allemand					ı
Anglais					1
Kit linguistique Europe occidentale / Scandinavie (langues : DA, ES, FR, IT, NL, PT, FI, SV)					١
Kit linguistique Europe orientale (langues : EL, CS, ET, LV, LT, HU, HR, PL, SK, SL, RO, BG)					1

^{*} P. ex. plage de mesure spécifique au client, n° d'identification

Configuration formulaire de commande

Version de l'appareil HART : indications pour configuration spécifique au client

Configuration		Sélection			
IEC 60751	Thermomètres à résistance	□ Pt10 □ Pt50 □ Pt100 (standard) □ Pt200 □ Pt500 □ Pt1000			
JIS C1604		□ Pt10 □ Pt50 □ Pt100			
MIL-T-24388		□ Pt10 □ Pt50 □ Pt100 □ Pt200 □ Pt1000			
DIN 43760		□ Ni50 □ Ni100 □ Ni120 □ Ni1000			
OIML R 84		□ Cu10 □ Cu100			
	Mesure de la résistance	\square 0 à 500 Ω \square 0 à 5 000 Ω			
IEC 60584	Thermocouple	□TypeK □TypeJ □TypeN □TypeR □TypeS □TypeT □TypeE □TypeB			
DIN 43710		□ Type L □ Type U			
ASTM E-988		□ Type C □ Type D			
	Mesure de tension	□ -125 à 125 mV □ -125 à 1100 mV			
Circuit de capteur		☐ Deux fils ☐ trois fils (standard) ☐ quatre fils			
(pour les thermomètres à résistance et la mesure		Circuit à deux fils : compensation de la résistance du circuit du capteur max. 100 $\boldsymbol{\Omega}$			
de résistance seulement)		□ Capteur 1 : Ω			
Point de comparaison		☐ Interne (pour thermocouple standard sauf type B) ☐ aucun (type B)			
(pour les thermocouples seulement)		☐ Externe / Température : °C			
Plage de mesure		☐ Début de mesure de plage : (standard : 0)			
		☐ Fin de mesure de plage : (standard : 100)			
Unité		☐ Celsius (standard) ☐ Fahrenheit ☐ Rankine ☐ Kelvin			
Comportement de la courbe caractéristique		□ croissant 4 à 20 mA (standard) □ décroissant 20 à 4 mA			
Comportement d	le sortie en cas d'erreur	☐ Ecrêtage / 22 mA (standard) ☐ Sous-excitation / 3,6 mA			
Sortie amortisser	ment (T ₆₃)	☐ Arrêt (standard) ☐ secondes (1 à 100 s)			
Numéro TAG		□ (8 caractères max.)			
Taquet logiciel		☐ Arrêt (standard) ☐ Marche			

Marques déposées

HART est une marque déposée de la FieldComm Group, Austin, Texas, USA

ABB France SAS Measurement & Analytics

3 avenue du Canada Les Ulis F-91978 COURTABOEUF Cedex

France

Tel: +33 1 64 86 88 00 Fax: +33 1 64 86 99 46

ABB Automation Products GmbH Measurement & Analytics

Schillerstr. 72 32425 Minden Germany

Tel: +49 571 830-0 Fax: +49 571 830-1806

abb.com/temperature

ABB Inc.

Measurement & Analytics

3450 Harvester Road Burlington Ontario L7N 3W5 Canada

Tel: +905 639 8840 Fax: +905 639 8639

ABB Automation Products GmbH Measurement & Analytics

Im Segelhof 5405 Baden-Dättwil Schweiz

Tel: +41 58 586 8459 Fax: +41 58 586 7511

Email: instr.ch@ch.abb.com

Nous nous réservons le droit d'apporter des modifications techniques ou de modifier le contenu de ce document sans préavis. En ce qui concerne les commandes, les caractéristiques spéciales convenues prévalent.

ABB ne saura en aucun cas être tenu pour responsable des erreurs potentielles ou de l'absence d'informations constatées dans ce document.

Tous les droits de ce document, tant ceux des textes que des illustrations, nous sont réservés. $Toute\ reproduction,\ divulgation\ \grave{a}\ des\ tiers\ ou\ utilisation\ de\ son\ contenu\ (en\ tout\ ou\ partie)\ est$ strictement interdite sans l'accord écrit préalable d'ABB.

03.2019 DS/TTR200-FR Rev. D