

Maestría en Inteligencia Artificial Aplicada

Proyecto Final Grupo 10

Análisis de datos y visualización

Docente: PhD. Janneth Alexandra Chicaiza Espinoza

Integrantes:

- -Rafael Guillermo Castro Merino
- -Santiago Andrés Mendieta Carrión

Dataset (Ventas de Autos)

Número de filas: 500

Número de atributos/variables: 9 variables (3 categóricas y 6 numéricas).

Información de las variables:

customer name: nombre del cliente

customer e-mail: correo electrónico del cliente

country: país de origen y de residencia del cliente

gender: género del cliente (0 para Femenino, 1 para Masculino)

age: edad del cliente

annual Salary: salario anual del cliente

credit card debt: deudas en la tarjeta de crédito del cliente

net worth: patrimonio neto del cliente(activos menos pasivos)

car purchase amount: monto de compra del automóvil que realiza el cliente

Valores nulos: Ninguno

Autor: Mohd Shahnawaz Aadil

URL: https://www.kaggle.com/datasets/mohdshahnawazaadil/sales-prediction-

dataset/data

- Mediante un análisis inicial descubrimos que el dataset proporcionado no tiene valores nulos, es decir que no existen valores faltantes
- También podemos observar que existen 4 variables categóricas:
 Customer name, customer e-mail, country y gender. Gender ya estaba convertida a valores binarios para clasificar el sexo de cliente
- Para las variables numéricas contamos con 5 variables:
 Age, annual salary, credit card debt, net worth y car purchase amount

```
Resumen general de los atributos del dataset:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 9 columns):
                         Non-Null Count Dtype
    Column
    customer name 500 non-null
                                         object
    customer e-mail 500 non-null
                                         object
                 500 non-null
                                         object
    country
             500 non-null
    gender
                                         int64
4 age 500 non-null
5 annual Salary 500 non-null
6 credit card debt 500 non-null
                                         float64
                                        float64
                                        float64
                     500 non-null
    net worth
                                         float64
    car purchase amount 500 non-null
                                         float64
dtypes: float64(5), int64(1), object(3)
memory usage: 35.3+ KB
```


EDA

Automatizacion del EDA Univariado:

---- skimpy summary -----

Data Summary

dataframe	Values
Number of rows	500
Number of columns	9

Data Types

Column Type	Count
float64	5
string	3
int32	1

number

column_name	NA	NA %	mean	sd	р0	p25	p50	p75	p100	hist	
gender	0	0	0.506	0.5005	0	0	1	1	1		
age	0	0	46.24	7.979	20	40.95	46.05	51.61	70		
annual Salary	0	0	62130	11700	20000	54390	62920	70120	100000		
credit card debt	0	0	9608	3489	100	7398	9655	11800	20000		
net worth	0	0	431500	173500	20000	299800	426800	557300	1000000		
car purchase amount	0	0	44210	10770	9000	37630	44000	51250	80000	_===	.

string

column_name	NA	NA %	words per row	total words
customer name	0	0	2.2	1099
customer e-mail	0	0	1	500
country	0	0	1.5	748

End -

Top 10 most frequent values of country

Preprocesamiento

• Eliminación de outliers: Se eliminan en total 15 filas del dataframe. Lo cual corresponde al 3,09% del mismo.

Cantidad y porcentaje de outliers por cada variable

	Columna	Cantidad Outliers	Porcentaje Outliers
0	age	4	0.8
1	annual Salary	2	0.4
2	credit card debt	7	1.4
3	net worth	1	0.2
4	car purchase amount	5	1.0

		country	gender	age	annual Salary	credit card debt	net worth	car purchase amount
	0	Bulgaria	0	41.851720	62812.09301	11609.380910	238961.2505	35321.45877
	1	Belize	0	40.870623	66646.89292	9572.957136	530973.9078	45115.52566
	2	Algeria	1	43.152897	53798.55112	11160.355060	638467.1773	42925.70921
	3	Cook Islands	1	58.271369	79370.03798	14426.164850	548599.0524	67422.36313
	4	Brazil	1	57.313749	59729.15130	5358.712177	560304.0671	55915.46248
	480	Nepal	0	41.462515	71942.40291	6995.902524	541670.1016	48901.44342
	481	Zimbabwe	1	37.642000	56039.49793	12301.456790	360419.0988	31491.41457
	482	Philippines	1	53.943497	68888.77805	10611.606860	764531.3203	64147.28888
	483	Botswana	1	59.160509	49811.99062	14013.034510	337826.6382	45442.15353
	484	marlal	1	46.731152	61370.67766	9391.341628	462946.4924	45107.22566

485 rows × 7 columns

Dimensión del dataframe

Preprocesamiento

 Modificación de variables: Se transforma la variable 'country' en numérica, y se redondea la variable 'age'.

Dataframe obtenido .LabelEncoder() annual Salary credit card debt net worth car purchase amount country age aender 42 27 0 62812.09301 11609.380910 238961.2505 35321.45877 country country 41 17 66646.89292 9572,957136 530973,9078 45115.52566 (categórica) (numérica) 43 53798.55112 11160.355060 638467.1773 42925.70921 object int 32 14426,164850 548599,0524 41 58 79370.03798 67422,36313 57 5358.712177 560304.0671 26 59729.15130 55915.46248 .round() 480 127 41 71942.40291 6995.902524 541670.1016 48901.44342 481 38 207 56039.49793 12301.456790 360419.0988 31491.41457 age age 482 143 54 68888.77805 10611.606860 764531.3203 64147.28888 (numérica) (numérica) 483 24 59 49811.99062 14013.034510 337826.6382 45442,15353 float64 int 32 484 208 61370.67766 9391.341628 462946.4924 45107.22566 Variables modificadas

Exploración inicial

 Importancia de las variables: Mediante el modelo 'decision tree' se explora la importancia de cada variable.

Entrenamiento

Parámetros

feature_importances_

	Columna	Importancia
0	annual Salary	0.421085
1	age	0.335691
2	net worth	0.228583
3	credit card debt	0.009735
4	country	0.004277
5	gender	0.000628

Exploración inicial

Gráfico de barras sobre la importancia de las variables

neth worth age annual Salary

Variables de poca importancia

Exploración inicial

Evaluación

Modelo de exploración: Decision Tree

Modelado

 Modelo 1 (Decision Tree): Para el entrenamiento del modelo se utilizó GridSearch y Cross Validation.

Variables predictoras age annual Salary net worth Variable a predecir car purchase amount

Entrenamiento

Modelado

Parámetros

Max_features: 1

Min_simples_leaf: 2

Max_Depth: 14

Min_simples_split: 2

Tabla: valor real vs predecido

	Valor real	Valor predecido
152	31837.22537	33498.401830
380	47970.76767	46972.798880
262	39549.13039	38965.699270
358	29754.66271	37675.933607
312	22630.25982	26183.412870
474	59538.40327	62883.551285
441	32967.20191	30914.966435
199	51683.60859	53159.055930
421	35475.00344	38103.885565
359	60960.83428	61073.324360

Gráfico: valor real vs predecido

Modelado

 Modelo 2 (Random Forest): Para el entrenamiento del modelo se utilizó GridSearch y Cross Validation.

Entrenamiento

```
#############
# Trainina
#############
rf = RandomForestRegressor(n estimators= 100,
                           random state = 10,
                          max features=1.0,
                           oob score=True)
params ={'max depth':range(9,13),
         'min samples leaf':range(1,3),
         'min samples split':range(2,10,2)
grid search = GridSearchCV(rf,param grid=params,cv=10)
grid search.fit(X train, y train) #Entrenamiento
           GridSearchCV
 ▶ estimator: RandomForestRegressor
     ► RandomForestRegressor
```


Modelado

Parámetros

Max_features: 1

Min_simples_leaf: 1

Max_Depth: 12

Min_simples_split: 2

Tabla: valor real vs predecido

	Valor real	Valor predecido
152	31837.22537	35893.424074
380	47970.76767	48144.450085
262	39549.13039	39929.035494
358	29754.66271	33603.334493
312	22630.25982	25184.504242
474	59538.40327	61113.856475
441	32967.20191	32639.844663
199	51683.60859	50724.391144
421	35475.00344	37769.925924
359	60960.83428	58711.548071

15

10

Gráfico: valor real vs predecido

30

25

20

30000

0

5

Evaluación de modelos

 Para la evaluación de los modelos se calcularon las siguientes métricas: precisión del dataset de entrenamiento, precisión del modelo y el MSE del modelo.

Modelo 1: Decision Tree

Modelo 2: Random Forest

Evaluación de modelos

Modelo 1: Decision Tree Modelo 2: Random Forest Score Datos de Datos de entrenamiento entrenamiento 0,988689 Score Datos de test Datos de test 0,894966 MSE Datos de test Datos de test 12040481,352483

Explicación de resultados

 Se elaboró un dataframe para exponer los resultados obtenidos de los dos modelos realizados: Decision Tree (DT) y Random Forest (RF).

Dataframe de los resultados

Conclusiones

Conclusión 1

• Se concluye que la variable género (gender), el país (country) y la deuda en la tarjeta de crédito (credit card debt) influyen muy poco en el monto de compra de automóviles (car purchase amount).

Conclusión 2

• Se puede afirmar que el patrimonio neto (net worth), la edad (age) y los ingresos anuales (annual Salary) son las características que se deben tomar en cuenta para poder predecir el monto de compra de automóviles (car purchase amount).

Conclusión 3

 Se concluye que el modelo 2, correspondiente a Random Forest es el que mejor predice la variable 'car purchase amount', alcanzando una precisión bastante alta.

Gracias por su Atención

