Sec. 2.5 Globally Convergent Methods for Solving One Equation in One Unknown (from section 2.5 of Dennis & Schnabel) Suppose that we are looking for the root x_* in $f(x_*) = 0$. ASSUMe: * To and Zo are given to us, and sign (f(xo)) + sign (f(zo)), * There is only one root in [xo, Zo]. (First condition is easy to check.) The bisection method may then be used to provide an interval around

the root.

D-1 8 1. Setup $t(x^{\circ}) > 0$

2. Pick the middle point:

$$\chi_1 = (\chi_0 + \overline{\chi_0})$$

 $x_1 = (x_0 + z_0)$ and "move z_1 " so that: $sign(f(x_1)) \neq sign(f(z_1))$.

can move to Z=xo, or Stay: 2, = 70.

3. Repeat 2 until the interval is small 'enough'.

Pseudoco de: