MATH 524 - Lecture 4 (08/31/2023)

X properties of IK)
Today: X star, closed star, link
X simplicial maps
X Abstract simplicial complexes didn't get to it (19)

Properties of KI Munkres - Elements of Algebraic Topology

Lemma 2.2 [M] If L C K is a subcomplex, then |L| is a closed subspace of |K|. In particular, if $\sigma \in K$, then σ is a closed subspace of |K|.

To be precise, but notice σ and $|\sigma|$ are identical!

Lemma 2.3[M] A map $f:|K| \to X$ is continuous Iff $f:|K| \to X$ is continuous for each $\sigma \in K$.

Recall the barycentric coordinates of $\overline{x} \in \mathcal{T}$ ($t_{\overline{a}_i}(\overline{x})$ for vertices \overline{a}_i). We can naturally extend the barycentric coordinates to $\overline{x} \notin \mathcal{T}$.

Def $||x| \in |K|$, then |x| is interior to precisely one simplex in K, whose vertices are, say, $||\bar{a}_0|| - ||\bar{a}_n||$. Then $||x|| = \sum_{i=0}^n t_i \bar{a}_i|$, where $|t_i| > 0$ $|t_i|$, $||\dot{z}| = 1$.

If \overline{v} is an arbitrary vertex of K, then the barycentric coordinate of \overline{x} w.r.t \overline{v} , $t_{\overline{v}}(\overline{x})$, is defined as $t_{\overline{v}}(\overline{x}) = 0$ if $\overline{v} \notin \{\overline{a}_0,...,\overline{a}_n\}$, and $t_{\overline{v}}(\overline{x}) = t_i$ if $\overline{v} = \overline{a}_i$.

Notice that $t_{\overline{z}}(\overline{x})$ is continuous on |K|, as $t_{\overline{a}_i}(\overline{x})$ are continuous, as we noted in the last lecture, and then by Lemma 2.3.

Lemma 2.4[M] |K| is Hausdorff.

A space X is Hausdorff if every pair of distinct points $\bar{x}, \bar{y} \in X$ can be surrounded by open sets $u, v \in X$ s.t. $x \in \mathcal{U}, \ \overline{y} \in \mathcal{V}, \ \mathcal{U} \cap \mathcal{V} = \phi$

Proof For $\overline{x}_i + \overline{x}_j$ in |K|, by definition, there exists at least one \overline{v} (vertex) s.t. $t_{\overline{v}}(\overline{x}_i) \neq t_{\overline{v}}(\overline{x}_j)$. Choose r in between $t_{\overline{v}}(\overline{x}_i)$ and $t_{\overline{v}}(\overline{x}_i)$ and define $\mathcal{U} = \{\overline{x} \mid t_{\overline{v}}(\overline{x}) < r\}$ and $V=\{\overline{x}\mid t_{\overline{b}}(\overline{x})>r\}$ as the required open sets.

We now study some important subspaces of IKI.

Three Subspaces of 1K1

Def I to is a vertex of K, then the star of to in K, denoted Stor (or St(\overline{v},K)) is the union of the interiors of all simplices in K that contain re as a vertex. The closure of St to denoted Sto or ClSto, is the closed star of Te. It is the union of all simplices of K which have \overline{v} as a vertex Clst \overline{v} is a polytope of a subcomplex of K. Clst \overline{v} — St \overline{v} is called the link of to, denoted Lk to.

We illustrate these subcomplexes on K_6 for vertices V_0 and V_1 . Note that the unchaded triangle below V_0 is not part of K_6 .

St vo

CISE Vo

Lkv

add to get ClStv. Note that Lke = ClStv-Stv.

Mso note that $v \in St v$ (indeed, Int v = v, and v is a Simplex that contains v as a vertex, trivially).

st v,

CISt o_i

LK V;

Properties of star, closed star, link

* Stop is open in |k| -> We could use $t_{\bar{v}}(\cdot)$ to prove.

* The complement of Stre is the union of all Simplices that do not contain to as a nestex, and hence it is the polytope of a subcomplex of K.

* Ikie is the polytope of a subcomplex of K.

* Lk To = Cl St To (Complement of St To).

* Stre and Clstre are both path-connected. X is path-connected if $\forall \bar{u}, \bar{u} \in X, \bar{u} \neq \bar{u}, \bar{u} \neq \bar{u$

* Uk ve need not be connected.

Def A simplicial complex K is locally finite if each vertex of K belongs to only finitely many simplices of K. Equivalently, K is locally finite if each closed star is the polytope of a finite subcomplex of K.

Note: A locally finite simplicial complex could be infinite, e.g., Kz.

(the edges continue forever) K₇ ...

Simplicial Maps

We study maps between simplicial complexes as a first step toward developing the tools to compare spaces modeled by the simplicial complexes.

Def Let K, L be simplicial complexes A function f: |K|-> |L| is a (linear) simplicial map if it takes simplices of K linearly onto simplices of L. In other words, if JEK, then $f(\sigma) \in L$.

Linearly: If $\nabla = \text{conv}\{\overline{v}_0, ..., \overline{v}_n\}$ and $\overline{X} = \sum_{i=0}^n t_i \overline{v}_i$, $t_i \overline{z}_i 0$, $\sum_{i=0}^n t_i = 1$, then $f(\overline{X}) = \sum_{i=0}^n t_i f(\overline{v}_i)$.

Note that $\{f(\overline{v_0}),...,f(\overline{v_n})\}$ Span a simplex T of L, which Could be of a lower dimension than J.

Munkres takes a slightly different approach in defining simplicial maps. [M]: Starts with f: K(0) => L(0), then insist that when 名で、、、で、 Span oek, 名(で。)、…。f(で) Span TEL.

If $g: |K| \rightarrow |L|$ and $h: |L| \rightarrow |M|$ are simplicial maps, then $f = h \circ g$ is a simplicial map from |K| to |M|.

If we further insist that $f: K^{(0)} \to L^{(0)}$ is a bijective correspondence such that vertices $\overline{\mathcal{V}}_{0},...,\overline{\mathcal{V}}_{n}$ of K span a simplex of L, then simplex of K iff $f(\overline{\mathcal{V}}_{0}),...,f(\overline{\mathcal{V}}_{n})$ span a simplex of L, then the induced simplicial map $g: |K| \to |L|$ is a homeomorphism. We call this map an isomorphism of K with L (or a simplicial homeomorphism).