Tópicos Especiais em Computação I Aprendizado Estatístico

Patrícia Lucas

Bacharelado em Sistemas de Informação IFNMG - Campus Salinas

Salinas Março 2021

Referência

Aprendizado Estatístico

Capítulo 2: Statistical Learning.

An Introduction to Statistical Learning: with Applications in R. G. James, D. Witten, T. Hastie, and R. Tibshirani. Springer, 2013.

Aprendizado Estatístico

A aprendizagem estatística refere-se a um vasto conjunto de ferramentas para a compreensão de dados.

Essas ferramentas podem ser classificadas como supervisionadas ou não supervisionadas.

- Em termos gerais, o aprendizado estatístico supervisionado envolve a construção de um modelo estatístico para prever ou estimar uma saída com base em uma ou mais entradas.
- Com o aprendizado estatístico não supervisionado, existem entradas, mas nenhuma saída de supervisão; no entanto, podemos aprender relacionamentos e estruturas a partir de tais dados.

Aprendizado Estatístico

Exemplo de problema onde o **aprendizado supervisionado** é usado:

Aprendizado Estatístico

Exemplo de problema onde o **aprendizado não supervisionado** é usado:

Isso é conhecido como um problema de cluster e, ao contrário do exemplo anterior, aqui não estamos tentando prever uma variável de saída.

Aprendizado Estatístico

Suponha que sejamos consultores estatísticos contratados por um cliente para aconselhar sobre como melhorar as vendas de um determinado produto.

O conjunto de dados de publicidade consiste nas vendas desse produto em 200 mercados diferentes, juntamente com orçamentos de publicidade para o produto em cada um desses mercados para três meios de comunicação diferentes: TV, rádio e jornal.

Se determinarmos que existe uma associação entre publicidade e vendas, podemos instruir nosso cliente a ajustar os orçamentos de publicidade, aumentando indiretamente as vendas.

Aprendizado Estatístico

Os orçamentos de publicidade são variáveis de entrada, enquanto a entrada de vendas é uma variável de saída.

Variáveis de entrada ou variáveis independentes: são os orçamentos de publicidade (com TV, Rádio e Jornal). Vamos chamá-las de X_1 , X_2 e X_3 .

Variável de saída ou variável dependente: são as vendas. Vamos chamá-la de Y.

Aprendizado Estatístico

Objetivo: desenvolver um modelo preciso que possa ser usado para prever vendas com base nos três orçamentos de mídia.

Para isso, podemos assumir que existe uma relação entre Y e X:

$$Y = f(X) + \epsilon \tag{1}$$

Onde:

- f(X) é uma função desconhecida de $X_1, X_2 e X_3$.
- ϵ é um erro aleatório, independente de X e com média zero.

Aprendizado Estatístico

Exemplo: o gráfico sugere que alguém pode ser capaz de prever a renda usando anos de educação.

No entanto, a função f que conecta a variável de entrada à variável de saída é geralmente desconhecida e devemos estimá-la com base nos pontos observados.

Aprendizado Estatístico

Aqui, a curva azul mostra a função f e as linhas verticais representam os termos de erro (ϵ).

Notamos que algumas das 30 observações estão acima da curva azul e algumas abaixo dela, ou seja, o erro médio é aproximadamente 0.

Aprendizado Estatístico

Em geral, a função f pode envolver mais de uma variável de entrada.

Nesse exemplo, representamos a renda em função dos anos de educação e da idade.

Agora, f é uma superfície bidimensional que deve ser estimada com base nos dados observados.

Aprendizado Estatístico

Em essência, a aprendizagem estatística se refere a um conjunto de abordagens para estimar f.

Por que desejamos estimar f?

- Para fazer previsões para Y.
- Para fazer inferências, ou seja, para entender como Y é afetado quando $X_1, ..., X_n$ mudam.

Aprendizado Estatístico

Como podemos estimar f?

- Métodos paramétricos: envolvem uma abordagem baseada em modelo.
- Métodos não-paramétricos: não fazem suposições explícitas sobre a forma de f.

Métodos paramétricos

Aprendizado Estatístico

Primeiro, fazemos uma suposição sobre a forma de f. Por exemplo, uma suposição muito simples é que f é linear em X:

$$f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p$$
 (2)

Uma vez que assumimos que f é linear, o problema de estimar f é bastante simplificado, pois precisamos estimar apenas os coeficientes $\beta_0, \beta_1, ..., \beta_p$.

Após a seleção de um modelo, precisamos de um procedimento que use os dados de treinamento para ajustar ou treinar o modelo.

Métodos paramétricos X não-paramétricos

Aprendizado Estatístico

- Ao evitar a suposição de uma forma específica para f, os métodos não-paramétricos têm o potencial de ajustar com precisão uma faixa mais ampla de formas possíveis para f.
- Qualquer abordagem paramétrica traz a possibilidade de que a forma usada para estimar f seja muito diferente da f verdadeira, caso em que o modelo resultante não se ajustará bem aos dados.
- Mas abordagens não paramétricas sofrem de uma grande desvantagem: como não reduzem o problema de estimar f para um pequeno número de parâmetros, é necessário um número muito grande de observações (muito mais do que o normalmente necessário para uma abordagem paramétrica) para obter uma estimativa precisa de f.

Métodos paramétricos X não-paramétricos

Aprendizado Estatístico

Paramétrico

Não-paramétrico

O trade-off entre precisão e interpretabilidade

Aprendizado Estatístico

Por que escolheríamos usar um método mais restritivo em vez de uma abordagem mais flexível?

Aprendizado Supervisionado

Aprendizado Estatístico

Regressão X Classificação

Avaliação da precisão do modelo

Aprendizado Estatístico

Por que é necessário introduzir tantas abordagens diferentes de aprendizagem estatística, em vez de apenas um único método melhor?

Não há almoço grátis em estatística: nenhum método domina todos os outros sobre todos os conjuntos de dados possíveis.

Portanto, é uma tarefa importante decidir, para qualquer conjunto de dados, qual método produz os melhores resultados.

Selecionar a melhor abordagem pode ser uma das partes mais desafiadoras do desempenho do aprendizado estatístico na prática.

Medindo a qualidade do ajuste

Aprendizado Estatístico

A fim de avaliar o desempenho de um método de aprendizado estatístico em um determinado conjunto de dados, precisamos de alguma forma para medir o quão bem suas previsões realmente correspondem aos dados observados.

Ou seja, precisamos quantificar até que ponto o valor de resposta previsto para uma determinada observação está próximo do valor de resposta verdadeiro para essa observação.

Para minimizar o erro de teste esperado, precisamos selecionar um método de aprendizado estatístico que alcance simultaneamente baixa variância e baixo viés.

Aprendizado Estatístico

Variância:

- A variância refere-se à mudança que \hat{t} sofreria se a estimássemos usando um conjunto de dados de treinamento diferente.
- Como os dados de treinamento são usados para se ajustar ao método estatístico de aprendizado, diferentes conjuntos de dados de treinamento resultam em um \hat{f} diferente.
- Idealmente, a estimativa para f n\u00e3o deve variar muito entre os conjuntos de treinamento.
- Quando um método tem alta variância, pequenas alterações nos dados de treinamento podem resultar em grandes alterações em f.

Aprendizado Estatístico

Viés:

- O viés refere-se ao erro.
- Por exemplo: a regressão linear assume que há uma relação linear entre Y e X₁, X₂, ·, X_p. É improvável que qualquer problema da vida real realmente tenha uma relação linear tão simples e, portanto, a realização da regressão linear resultará, sem dúvida, em algum viés na estimativa de f.

Aprendizado Estatístico

Gráfico à direita:

- Curva vermelha: erro de teste.
- Curva cinza: erro de treino.

Aprendizado Estatístico

Underfitting: ocorre em modelos com alto viés e baixa variância. Exemplo: linha amarela.

Overfitting: ocorre em modelos com baixo viés e alta variância. Exemplo: curva verde.

Aprendizado Estatístico

