

Planning, Learning and Decision Making

Lecture 1. Reinforcement learning: Model-based methods

On to today's stuff...

Challenge 1

Amy had the following grades in the first 3 labs+homework:

HW1	HW2	HW3
19.4	14.8	17.1

What's her current lab grade?

$$(19.4 + 14.8 + 17.1) / 3 = 17.1$$

Great!

Challenge 1

- Her current lab average (after 3 labs) is 17.1
- Her fourth lab grade was 12.7
- What's her updated average?

$$(17.1 \times 3 + 12.7) / 4 = 16$$

What is the average?

Is the value x simultaneously closer to all samples:

$$\min \sum_{n=1}^{N} (x - x_n)^2$$

Derive and equate to 0

$$\sum_{n=1}^{N} x = \sum_{n=1}^{N} x_n$$

What is the average?

Is the value x simultaneously closer to all samples:

$$\min \sum_{n=1}^{N} (x - x_n)^2$$

$$\text{Derive and}$$

$$\text{equate to 0}$$

 $x = \frac{1}{N} \sum_{n=1}^{N} x_n$

What is the average?

- Is the value x simultaneously closer to all samples
- From the observed samples, it's the best prediction for the "next sample"

$$\bar{x}_N = \frac{1}{N} \sum_{n=1}^N x_n$$

How to recompute the average with a new sample?

New average

• If we observe a new sample x_{N+1}

$$\bar{x}_{N+1} = (\bar{x}_N \times N + x_{N+1})/(N+1)$$

Previous average corresponds to N samples

New average

• If we observe a new sample x_{N+1}

$$\bar{x}_{N+1} = \frac{N}{N+1}\bar{x}_N + \frac{1}{N+1}x_{N+1}$$

$$= \frac{N+1-1}{N+1}\bar{x}_N + \frac{1}{N+1}x_{N+1}$$

$$= \left(1 - \frac{1}{N+1}\right)\bar{x}_N + \frac{1}{N+1}x_{N+1}$$

$$= \bar{x}_N + \frac{1}{N+1}(x_{N+1} - \bar{x}_N)$$

New average

• If we observe a new sample x_{N+1}

Previous estimate

Challenge 2

Consider the function:

Challenge 2

You can query a black box:

How do you solve this?

Start anywhere

Query value of function

If H(x) < 0, move back

If
$$H(x) \ll 0$$
, move **far** back

If
$$H(x) > 0$$
, move forward

If
$$H(x) \gg 0$$
, move **far** forward

• Compute the sequence

$$x_{n+1} = x_n + \alpha_n H(x_n)$$

Compute the sequence

Iterative algorithms to compute the solution to the equation

$$\mathbb{E}\left[H(x)\right] = 0$$

where H is some function that can be queried

Take the general form

$$x_{n+1} = x_n + \alpha_n H(x_n)$$

$$= x_n + \alpha_n h(x_n) + \alpha_n (H(x_n) - h(x_n))$$
Zero-mean noise

Iterative algorithms to compute the solution to the equation

$$\mathbb{E}\left[H(x)\right] = 0$$

where H is some function that can be queried

Take the general form

$$x_{n+1} = x_n + \alpha_n H(x_n)$$

Example: Computing the mean

$$\bar{x}_{N+1} = \bar{x}_N + \frac{1}{N+1}(x_{N+1} - \bar{x}_N)$$

Iterative algorithms to compute the solution to the equation

$$\mathbb{E}\left[H(x)\right] = 0$$

where H is some function that can be queried

Take the general form

$$x_{n+1} = x_n + \alpha_n H(x_n)$$

Example: Computing the mean

$$\bar{x}_{N+1} = \bar{x}_N + \alpha_n(x_{N+1} - \bar{x}_N)$$

Markov decision process

Computing J^{π}

We have that

$$J^{\pi}(x) = c_{\pi}(x) + \gamma \sum_{y \in \mathcal{X}} \mathsf{P}_{\pi}(y \mid x) J^{\pi}(y)$$

which is equivalent to

Computing Q*

We have that

What if we don't?

Interactive learning

- We let the agent into the environment
- At each moment, the agent observes the state x_t
- The agent then selects an action a_t
- The agent observes the resulting cost c_t
- The process repeats

Interactive learning

At each step, the agent collects a "data point":

$$(x_t, a_t, c_t, x_{t+1})$$

- Agent must compute the optimal policy by collecting many such data points
- The agent learns from "reward and punishment" (in the cost)
 - This form of learning is called reinforcement learning

How?

Three families of approaches

Model-based methods:

Slide

Three families of approaches

Value-based methods:

Slide

Three families of approaches

Policy-based methods:

Slide

Model-based methods

Estimating c

- We can estimate the cost c by keeping track of the observed costs at different states and actions
- At each step t, we just set

$$c(x_t, a_t) = c_t$$

What if there is noise in the costs?

Estimating c

- We can estimate the cost c by keeping track of the observed costs at different states and actions
- At each step t, we just set

$$\bar{c}_{t+1}(x_t, a_t) = \bar{c}_t(x_t, a_t) + \alpha_t(c_t - \bar{c}_t(x_t, a_t))$$

We just compute the average!

Estimating P

- What about **P**?
- The transition probabilities can be seen as

N. of transitions from x to y after selecting a

 $P(y \mid x, a) = \frac{N(x, a, y)}{N(x, a)}$

was selected in x

It's also an average!

Estimating P

- What about **P**?
- The transition probabilities can be seen as

$$P(y \mid x, a) = \frac{1}{N(x, a)} \sum_{t=1}^{N} \mathbb{I}(x_t = x, a_t = a, x_{t+1} = y)$$

It's also an average!

Estimating P

- We can estimate the transition probabilities P by keeping track of the how often we transition between states
- At each step t, we just set

$$\bar{\mathsf{P}}_{t+1}(y \mid x_t, a_t) = \bar{\mathsf{P}}_t(y \mid x_t, a_t) + \alpha(\mathbb{I}(\mathsf{x}_{t+1} = y) - \bar{\mathsf{P}}_t(y \mid x_t, a_t))$$

Use VI or PI with the model

- Once you have estimates for **P** and **c**
 - You can use VI to compute

$$J^{\pi}(x) = c_{\pi}(x) + \gamma \sum_{y \in \mathcal{X}} \mathsf{P}_{\pi}(y \mid x) J^{\pi}(y)$$

or

$$Q^*(x, a) = c(x, a) + \gamma \sum_{y \in \mathcal{X}} \mathsf{P}_a(y \mid x) \min_{a' \in \mathcal{A}} Q^*(y, a')$$

Use VI or PI with the model

- Once you have estimates for **P** and **c**
 - You can use PI to compute

$$\pi^*(x) = \underset{a \in \mathcal{A}}{\operatorname{argmin}} \left[c(x, a) + \gamma \sum_{y \in \mathcal{X}} \mathsf{P}(y \mid x, a) J^*(y) \right]$$

Does this work?

- We are computing averages:
 - We estimate c(x, a) as an average (for each x and a)
 - We estimate $P(\cdot \mid x, a)$ as an average (for each x and a)
- How many "data points" do we need for each x and a?
 - An infinite number!
- The model-based approach described converges to the true parameters P and c as long as every state and action are visited infinitely often.

So when do we run VI?

• In practice, we interleave steps of model learning with steps of value/policy iteration

- Given a sample (x_t, c_t, x_{t+1}) , where the action was selected from π ,
- Compute

$$\bar{P}_{t+1}(y \mid x_t) = \bar{P}_t(y \mid x_t) + \alpha(\mathbb{I}(x_{t+1} = y) - \bar{P}_t(y \mid x_t))$$
$$\bar{c}_{t+1}(x_t) = \bar{c}_t(x_t) + \alpha_t(c_t - \bar{c}_t(x_t))$$

Compute

$$J_{t+1}(x_t) = \bar{c}_{t+1}(x_t) + \gamma \sum_{y \in \mathcal{X}} \bar{\mathbf{P}}_{t+1}(y \mid x_t) J_t(y)$$

Update only affected entries

- Given a sample (x_t, a_t, c_t, x_{t+1})
- Compute

$$\bar{P}_{t+1}(y \mid x_t, a_t) = \bar{P}_t(y \mid x_t, a_t) + \alpha(\mathbb{I}(x_{t+1} = y) - \bar{P}_t(y \mid x_t, a_t))$$
$$\bar{c}_{t+1}(x_t, a_t) = \bar{c}_t(x_t, a_t) + \alpha_t(c_t - \bar{c}_t(x_t, a_t))$$

Compute

$$Q_{t+1}(x_t, a_t) = \bar{c}_{t+1}(x_t, a_t) + \gamma \sum_{y \in \mathcal{X}} \bar{\mathbf{P}}_{t+1}(y \mid x_t, a_t) \min_{a' \in \mathcal{A}} Q_t(y, a')$$

Update only affected entries