Practicals

stanislasduche@gmail.com

1 Simulations of Random Variables

R Reminder. runif allows simulating *i.i.d.* realizations from the distribution $\mathcal{U}([0,1])$. R provides random generators for most common distributions. However, they will not be used in this section except for comparison purposes.

1.1 Inverse Function and Transformations

Exercise 1 (Simulation of a discrete random variable). Let X be a discrete random variable over the set $\{5, 6, 7, 8\}$. The distribution ν of X is defined by

$$\mathbb{P}[X=5] = 0.4$$
, $\mathbb{P}[X=6] = 0.2$, $\mathbb{P}[X=7] = 0.3$, $\mathbb{P}[X=8] = 0.1$

- 1. Simulate a sample ${\bf x}$ of 10000 i.i.d. random variables following the distribution ν using the inverse function method.
- 2. Compare the barplot of the sample \mathbf{x} to that of v.

R Reminder. barplot (height = ...) plots the barplot of categorical or discrete variables. height is a vector containing the height of the bars or the contingency table of the sample. For a sample \mathbf{x} , the contingency table can be obtained with table(\mathbf{x}).

Self-Evaluation. Number of times the following elements appear in the solution.

Question	c()	for	while	if-else	Vectorize	apply
1.	0	0	0	0	0	0

Exercise 2 (Exponential distribution and related distributions). Let X_1, \ldots, X_n be i.i.d. random variables following the exponential distribution $\mathcal{E}(\lambda)$, i.e. $\mathbb{E}[X_1] = \lambda^{-1}$.

- 1. (a) Simulate 10000 realizations of the distribution $\mathscr{E}(\lambda)$ for $\lambda=2$ using the inverse function method.
 - (b) Check with a histogram and a Quantile-Quantile plot that the distribution of this sample matches the distribution $\mathscr{E}(\lambda)$.
- 2. Recall that $S_n = X_1 + \ldots + X_n$ follows the gamma distribution $\Gamma(n,\lambda)$, i.e. $\mathbb{E}[S_n] = n\lambda^{-1}$.
 - (a) Based on this result, simulate 10000 realizations of the gamma distribution $\Gamma(n,\lambda)$ with $\lambda=1.5$ and n=10.
 - (b) Graphically verify that the distribution of this sample matches the gamma distribution $\Gamma(n,\lambda)$.
- 3. Let $N = \sup\{n \ge 1 : S_n \le 1\}$ (by convention N = 0 if $S_1 > 1$). Then N follows the Poisson distribution $\mathscr{P}(\lambda)$
 - (a) Based on this result, simulate 10000 realizations of the Poisson distribution $\mathcal{P}(\lambda)$ with $\lambda = 4$.
 - (b) Graphically verify that the distribution of this sample matches the Poisson distribution $\mathscr{P}(\lambda)$.

R Reminder

- hist(x, freq = F) displays the histogram of a sample x. The freq option specifies whether the histogram is represented in frequency density (freq = TRUE by default) or probability density (freq = FALSE).
- lines(x, y) adds a piecewise linear curve connecting the points with abscissa x and ordinate y.
- quantile(x, probs) returns the quantiles of a sample x for a vector of probabilities probs.
- dexp, pexp, and qexp correspond respectively to the density, distribution function, and quantile function of an exponential distribution.
- dgamma, pgamma, and qgamma correspond respectively to the density, distribution function, and quantile function of a gamma distribution.
- dpois, ppois, and qpois correspond respectively to the density, distribution function, and quantile function of a Poisson distribution.

Self-Evaluation. Number of times the following elements appear in the solution.

Questions	c()	for	while	if-else	Vectorize	apply
1.	0	0	0	0	0	0
2.	0	≤ 1	0	0	0	0
3.	0	≤ 1	1	0	0	0

1.2 Normal Distribution, Gaussian Vectors, and Brownian Motion

Exercise 3 (Box-Muller Algorithm).

- 1. Write a function $\mathrm{BM}(n)$ that returns n realizations of the normal distribution $\mathcal{N}(0,1)$ using the Cartesian version of the Box-Muller method.
- 2. Validate the algorithm using a graphical tool.

R Reminder. dnorm, pnorm, and qnorm correspond respectively to the density, distribution function, and quantile function of a normal distribution.

Self-Evaluation. Number of times the following elements appear in the solution.

Question	c()	for	while	if-else	Vectorize	apply
1.	0	0	0	≤ 1	0	0

Exercise 4 (Simulation of Gaussian Vectors). Let $\mathbf{X} = (X_1, X_2)$ follow the distribution $\mathcal{N}(\mu, \Sigma)$, with

$$\mu = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $\Sigma = \begin{pmatrix} 4 & 3 \\ 3 & 9 \end{pmatrix}$

- 1. Simulate a sequence of vectors $(X^{(n)})_{n\geq 1}=(X_{1,n},X_{2,n})_{n\geq 1}$ that follow the distribution of **X**.
- 2. What is the distribution of $X_1 + X_2$? Validate this result graphically.

Self-Evaluation. Number of times the following elements appear in the solution.

Question	c()	for	while	if-else	Vectorize	apply
1.	0	0	0	0	0	0

Exercise 5 (Simulation of Brownian Motion). Using the properties of Brownian increments, simulate a realization of Brownian motion at the times (t_1, \ldots, t_{1110}) defined by $t_i = i/100$ for $i \in [1, 100]$, $t_i = 1 + (i - 100)/10$ for $i \in [101, 110]$, and $t_i = 2 + (i - 110)/1000$ for $i \in [111, 1110]$.

Self-Evaluation. Number of times the following elements appear in the solution.

c()	for	while	if-else	Vectorize	apply
0	0	0	0	0	0

1.3 Rejection Algorithm

Exercise 6 (Rejection - A First Example). Let f be a density function defined for all real numbers x by

$$f(x) = \frac{2}{\pi} \sqrt{1 - x^2} \mathbb{1}_{\{x \in [-1,1]\}}$$

- 1. Use the rejection method to simulate 10,000 realizations following the distribution with density f.
- 2. Plot the histogram of this sample and compare it to the density f.

Self-Evaluation. Number of times the following elements appear in the solution.

Version	c()	for	while	if-else	Vectorize	apply
* * * *	0 1	1 0	1	0	0	0

Exercise 7. Use the rejection method to simulate 5,000 realizations following the uniform distribution over the unit disk $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$.

Self-Evaluation. Number of times the following elements appear in the solution.

Version	c()	for	while	if-else	Vectorize	apply
* * * *	0 1	1 0	1	0	0	0

Exercise 8 (Truncated Normal Distribution). The normal distribution $\mathcal{N}(\mu, \sigma^2)$, $\mu > 0$, $\sigma > 0$, truncated with support $[b, +\infty[$ has a density f defined for all real numbers x by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}\Phi\left(\frac{\mu-b}{\sigma}\right)} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] \mathbb{1}_{\{x \ge b\}}$$

where Φ is the cumulative distribution function of the standard normal distribution $\mathcal{N}(0,1)$. Instrumental Density $\mathbf{n}^{\circ}1: \mathcal{N}(\mu, \sigma^2)$.

- 1. Write a function tr_norm (n, b, mean, sd) to simulate n realizations following the normal distribution \mathcal{N} (mean, sd²) truncated with support $[b, +\infty[$.
- 2. Simulate 10,000 realizations following the normal distribution $\mathcal{N}(0,2)$ truncated with support $[2,+\infty[$. Validate your algorithm graphically.

Instrumental Density n° 2. The translated exponential distribution from $b, \tau \mathcal{E}(\lambda, b)$, has a density

$$g_{\lambda}(x) = \lambda e^{-\lambda(x-b)} \mathbb{1}_{\{x \ge b\}}, \quad x \in \mathbb{R}.$$

In the following, we fix λ to the optimal value obtained in TD°2.

- 3. Write a function tr_norm_2 (n, b, mean, sd) to simulate n realizations following the normal distribution \mathcal{N} (mean, sd²) truncated with support $[b, +\infty[$.
- 4. Simulate 10,000 realizations following the normal distribution $\mathcal{N}(0,2)$ truncated with support $[2,+\infty[$. Validate your algorithm graphically.
- 5. Compare the performances of tr_norm and tr_norm_2.

Self-Evaluation. Number of times the following elements appear in the solution.

Version	c()	for	while	if-else	Vectorize	apply
1.* * * *	0 1	1 0	1	0	0	0
4.* * * *	0 1	1 0	1	0	0	0

2 Classical Monte Carlo Method

Exercise 9 (Estimation of π).

- 1. Using the classical Monte Carlo method with n=150000 draws, propose an estimation of π based on the generation of
 - (a) U_1, \ldots, U_n i.i.d. random variables with uniform distribution $\mathscr{U}([0,1])$;
 - (b) $(U_{1,1}, U_{2,1}), \ldots, (U_{1,n}, U_{2,n})$ pairs of i.i.d. random variables following the distribution $\mathscr{U}([0,1]) \otimes \mathscr{U}([0,1])$.
- 2. Which estimator is the most efficient?
- 3. Using Bienaymé-Tchebychev's inequality or the asymptotic regime hypothesis at a 95% confidence level, for what value of n do we achieve a precision of 10^{-2} ? Discuss the results obtained.

Self-Evaluation. Number of times the following elements appear in the solution.

Questions	c()	for	while	if-else	Vectorize	apply
1.	0	0	0	0	0	0
3.	0	0	0	0	0	0

Exercise 10 (Integral Calculation). We are interested in calculating the following integral

$$\delta = \int_{2}^{+\infty} \int_{0}^{5} \sqrt{x+y} \sin\left(y^{4}\right) \exp\left(-\frac{3x}{2} - \frac{y^{2}}{4}\right) dx dy$$

- 1. Propose an estimation of δ using the classical Monte Carlo method with:
 - (a) a uniform distribution generator and a normal distribution generator;
 - (b) an exponential distribution generator and a normal distribution generator;
 - (c) an exponential distribution generator and a truncated normal distribution generator.
- 2. Determine the computational cost of these methods. Conclude which method is preferable to use.

Self-Evaluation. Number of times the following elements appear in the solution.

Questions	c ()	for	while	if-else	Vectorize	apply
1.* * * *	0 1	$1 \mid 0$	1	0	0	0

3 Variance Reduction Methods

3.1 Importance Sampling

Exercise 11 (Cauchy Distribution). Let X be a random variable following the Cauchy distribution $\mathcal{C}(0,1)$. We are interested in estimating

$$p := \mathbb{P}[X \ge 50] = \int_{50}^{+\infty} \frac{1}{\pi (1 + x^2)} \mathrm{d}x.$$

We propose to compare the classical Monte Carlo method and the importance sampling method based on the Pareto distribution whose cumulative distribution function is given for $x \in \mathbb{R}$ by

$$F(x) = \left[1 - \left(\frac{a}{x}\right)^k\right] \mathbb{1}_{\{x \ge a\}}, \quad \text{with} \quad a > 0 \quad \text{and} \quad k > 0.$$

We will consider n = 10000 draws.

- 1. Provide an estimation of p from simulations following the Cauchy distribution $\mathscr{C}(0,1)$.
- 2. (a) What values of a and k should be chosen for the importance sampling method?
 - (b) Use these to estimate p with the importance sampling method.
- 3. Determine the relative efficiency between these two methods.

Self-Evaluation. Number of times the following elements appear in the solution.

Questions	c()	for	while	if-else	Vectorize	apply
2.	0	0	0	0	0	0
3.	0	0	0	0	0	0

Exercise 12 (Rejection vs. Importance Sampling). We revisit the calculation of the integral

$$\delta = \int_{2}^{+\infty} \int_{0}^{5} \sqrt{x+y} \sin\left(y^{4}\right) \exp\left(-\frac{3x}{2} - \frac{y^{2}}{4}\right) dx dy$$

- 1. By expressing δ as an expectation with respect to the exponential distribution and the translated exponential distribution, propose an estimation of δ using the importance sampling method.
- 2. Compare the performance of this method with the classical Monte Carlo method based on an exponential distribution generator and a truncated normal distribution generator.

Self-Evaluation. Number of times the following elements appear in the solution.

Questions	c ()	for	while	if-else	Vectorize	apply
2.* * * *	0 1	1 0	1	0	0	0

3.2 Other Variance Reduction Methods

Exercise 13 (Gaussian Integral and Variance Reduction). We aim to estimate

$$\mathscr{I} = \int_0^2 e^{-x^2} \, \mathrm{d}x$$

using Monte Carlo methods. In this exercise, we will consider n = 10000 draws.

- 1. Provide an estimation of \mathscr{I} using the classical Monte Carlo method based on two different distributions.
- 2. For these estimators, propose a new estimation of \mathscr{I} based on an antithetic variable.
- 3. (a) Calculate the k^{th} moment for $k \in \mathbb{N}^*$ of a uniform random variable on [0,2].
 - (b) Use the series expansion of $x \mapsto \exp(-x^2)$ truncated at order $k \in \mathbb{N}^*$ as a control variate. Propose a method to find the value of k to use in practice.
 - (c) Deduce an estimation of \mathscr{I} using the control variate method.
- 4. Consider an estimator based on the $\mathcal{U}([0,2])$ distribution generator.
 - (a) Choose a stratification variable Z and a partition D_1, \ldots, D_K such that $\mathbb{P}[Z \in D_k] = 1/K$.
 - (b) Provide an estimation of \mathscr{I} using the stratified sampling method with proportional allocation and K = 10. Study the influence of K on the precision of the method.
- 5. Determine the relative efficiency of these different methods.

Self-Evaluation. Number of times the following elements appear in the solution.

Questions	c ()	for	while	if-else	Vectorize	apply
3.b.	0	2	0	0	0	0
3.c.	0	1	0	0	0	0
4.b. (*)	0	1	0	0	0	0
4.b. $(\star \star \star)$	0	0	0	0	0	1
4.c.	0	1	0	0	0	0

Exercise 14 (Brownian Motion and Finance). Let $\mathbf{X} = (X_1, X_2)$ be a Gaussian vector with distribution $\mathcal{N}(0, \Sigma)$, where

$$\Sigma = \left(\begin{array}{cc} 1 & 0.5 \\ 0.5 & 1 \end{array}\right)$$

We want to estimate

$$\mathscr{I} = \mathbb{E}\left[\max\left\{0, \frac{1}{2}e^{-\sigma^2/2 + \sigma X_1} + \frac{1}{2}e^{-\sigma^2/2 + \sigma X_2} - 1\right\}\right].$$

For numerical applications, we will use $\sigma = 2$, n = 5000 draws, and provide a 95% asymptotic confidence interval.

1. Provide an estimation of \mathcal{I} using the classical Monte Carlo method.

We are initially interested in the antithetic variate method. Let

$$\mathbf{Z} \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right)$$
 and $A = \frac{\sqrt{2}}{2}\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$

- 2. (a) Show that the vector $A\mathbf{Z}$ has the same distribution as \mathbf{Z} .
 - (b) Provide an estimation of \mathcal{I} using the antithetic variate method.
 - (c) Does the antithetic variate method reduce variance?

Finally, we consider the control variate method.

- 3. (a) Calculate $\mathbb{E}\left[\exp\left(\sigma X_1\right) + \exp\left(\sigma X_2\right)\right]$.
 - (b) Deduce an estimation of $\mathscr I$ using the control variate method.
- 4. Determine the relative efficiency of these three methods.

Self-Evaluation. Number of times the following elements appear in the solution.

Questions	c()	for	while	if-else	Vectorize	apply
1.	0	0	0	0	0	0
2.	0	0	0	0	0	0
3.	0	1	0	0	0	0

Exercise 15. The number of precipitation events S in a month is modeled by a Poisson distribution with parameter $\lambda = 3.7$. The amount of water Q_s falling during a precipitation event s is modeled by a Weibull distribution with shape parameter k = 0.5 and scale parameter $\lambda = 2$ (assuming that the precipitation events are independent). The total amount of rain in a month is

$$X = \begin{cases} 0 & \text{, if } S = 0\\ \sum_{s=1}^{S} Q_s & \text{, otherwise} \end{cases}$$

We are interested in months with low precipitation and aim to estimate $p = \mathbb{P}[X < 3]$ (i.e., less than 3 cm of rain per month).

- 1. Provide an estimation of p using the classical Monte Carlo method. Provide the 95% confidence interval
- 2. Provide an estimation of p using the stratified sampling method with proportional allocation, specifying the strata used. Provide the 95% confidence interval.
- 3. Propose a method to estimate p using the stratified sampling method with optimal allocation. What difficulties do you encounter?
- 4. Compare the variances and relative efficiency of these three estimation methods. Discuss the results briefly.

Self-Evaluation. Number of times the following elements appear in the solution.

Questions	c()	for	while	if-else	Vectorize	apply
1.* * * *	0	1 0	0	0	0	0 1
2.* * * *	0	$5 \mid 2$	0	0	0	0 4