| Name: |  |
|-------|--|
| CWID: |  |

## Part II: Attempt all questions [70 pts].

## **Database Context:**

1. Consider the following database schema (**R\_S\_U**) to answer the following questions.

Relation, R

| Α    | В | C  | D     |
|------|---|----|-------|
| cat  | 1 | 10 | Red   |
| cat  | 1 | 20 | Blue  |
| dog  | 1 | 30 | Green |
| dog  | 1 | 40 | Green |
| bat  | 1 | 50 | Blue  |
| bat  | 1 | 60 | Blue  |
| bird | 1 | 70 | red   |

| Relation, S |        |   |
|-------------|--------|---|
| С           | E      | F |
| 20          | male   | 1 |
| 20          | male   | 2 |
| 60          | female | 3 |
|             |        |   |

male

male

10

20

| Relation, U |      |
|-------------|------|
| H           | G    |
| 1           | P001 |
| 1           | P002 |
| 5           | P003 |

## Metadata table

| r lotadata tabio |            |  |
|------------------|------------|--|
|                  | Sizes      |  |
| attributes       | (in bytes) |  |
| Α                | 10 bytes   |  |
| В                | 4 bytes    |  |
| С                | 4 bytes    |  |
| D                | 20 bytes   |  |
| E                | 20 bytes   |  |
| F                | 4 bytes    |  |
| G                | 8 bytes    |  |

Estimate the result sizes of the queries (Q1 to Q5) below: (**Assume** A = 10 bytes of String; B = 4 bytes of integer; C = 4 bytes of integer; D = 20 bytes of String; E = 20 bytes of String; F= 4 bytes of integer; G = 8 bytes of String - as shown in the metadata table).

a. Q1 =  $\pi_{A, B}$  (R) [5 pts]

Name: CWID:

Final Exam Spring 2024 CS525: Advanced Database Organization IIT.edu

b.  $Q2 = \sigma_{A \neq 10}(R)$  [5 pts] C !=10

correction

c. Q3 =  $\sigma_{A+10VB>5}$  (R) [5 pts]

correction C != 10 V B>5

d. Q4 = R ⋈ S **[5 pts]** 

e. Q5 = R ⋈ S ⋈ U **[5 pts]** 

| Name: |  |
|-------|--|
| CWID: |  |

2. Suppose each B+-tree node can hold up to two (2) keys. Draw the B+-trees that would result after insertion (a) and deletion (b) operations as shown below.

## (a) Insertion [5 pts]

First, insert 6. Then, insert 21 [Show individual trees at each insertion].



| Name: |  |  |
|-------|--|--|
| CWID: |  |  |

(b) Deletion: Use the tree after inserting 21 in part (a) [15 pts]

First, delete 13; then delete 16; next, delete 20; after that, delete 23; and finally, delete 7 [Show individual trees at each deletion].

| Name: |  |
|-------|--|
| CWID: |  |

[cont'd: Show individual trees at each deletion].

| Name: |  |  |
|-------|--|--|
| CWID: |  |  |

3. Consider the following schedules (S1, S2 and S3) with two transactions T1 and T2 as shown below.

Schedule 1 (S1)

| Instructions | T1_         | T2         |
|--------------|-------------|------------|
| 1            | Read (A);   |            |
| 2            | A:= A + 10; |            |
| 3            | Write (A);  |            |
| 4            | Read (B);   |            |
| 5            | B:= B + 10; |            |
| 6            | Write(B);   |            |
| 7            |             | Read (A);  |
| 8            |             | A:= A*2;   |
| 9            |             | Write (A); |
| 10           |             | Read(B);   |
| 11           |             | B:= B*2;   |
| 12           | Commit1     | Write (B); |
| 13           |             | Commit2    |

Schedule 2 (S2)

|                | T4          | T2         |
|----------------|-------------|------------|
| _Instructions_ | T1          | T2         |
| 1              | Read (A);   |            |
| 2              | A:= A + 10; |            |
| 3              | Write (A);  |            |
| 4              |             | Read (A);  |
| 5              |             | A:= A*2;   |
| 6              |             | Write (A); |
| 7              | Read (B);   |            |
| 8              | B:= B + 10; |            |
| 9              | Write(B);   |            |
| 10             |             | Read(B);   |
| 11             |             | B:= B*2;   |
| 12             | Commit1     | Write (B); |
| 13             |             | Commit2    |
|                |             |            |

Schedule 3 (S3)

| Instructions | T1_         | T2_        |
|--------------|-------------|------------|
| 1            | Read (A);   |            |
| 2            | A:= A + 10; |            |
| 3            | Write (A);  |            |
| 4            |             | Read (A);  |
| 5            |             | A:= A*2;   |
| 6            |             | Write (A); |
| 7            |             | Read (B);  |
| 8            |             | B:= B*2;   |
| 9            |             | Write (B); |
| 10           | Read (B);   |            |
| 11           | B:= B + 10; |            |
| 12           | Write(B);   | Commit2    |
| 13           | Commit1     |            |
|              |             |            |

a. Are S2 and S3 serializable schedules? Please explain along with any form of evidence or proof. Assume an initial value: A = 100 + x, B = 100 + x [8 pts]

| Name: | ] |
|-------|---|
| CWID: |   |

b. Is schedule S3 recoverable? Explain [5 pts].

| Name: |                                       |
|-------|---------------------------------------|
| CWID: | Final Exam Spring 2024                |
|       | CS525: Advanced Database Organization |
|       |                                       |

4. Check whether schedule S is conflict serializable or not. If S is conflict serializable, give all possible schedules equivalent to Schedule S [12 pts]

Schedule S: R1(A), W1(A), R3(B), W3(B), R2(A), W2(A), R5(A), R4(B), W4(B), R5(B), W5(A), W5(B).

IIT.edu