Midterm Mock Exam #2

1. Use a protractor and ruler to classify the triangle by its angles and sides.

1._____

2. Find x, AB, BC, AC if $\triangle ABC$ is isosceles.

2. _____

3. Find the measure of the sides of the triangle if the vertices of $\triangle EFG$ are E(1, 4), F(5, 1), and G(2, -3). Then classify the triangle by its sides.

3._____

Find the measure of each angle.

4. *m*∠1

4. _____

5. m∠2

6. *m*∠3

6. _____

Identify the congruent triangles and name their corresponding congruent angles.

7. _____

8. Verify that $\triangle JKL \cong \triangle J'K'L'$ preserves congruence, assuming that corresponding angles are congruent.

8

9. In quadrilateral JKLM, $\overline{JK}\cong \overline{LK}$ and \overline{MK} bisects $\angle LKJ$. Name the postulate that could be used to prove $\triangle MKL\cong\triangle MKJ$. Choose from SSS, SAS, ASA, and AAS.

9. _____

10._____

11. Use the figure to find $m \angle 1$.

11._____

12. Find *x*.

12._____

13. Position and label equilateral $\triangle KLM$ with side lengths 3a units long on the coordinate plane.

13._____

14. \overline{MN} joins the midpoint of \overline{AB} and the midpoint of \overline{AC} in $\triangle ABC$. Find the coordinates of \underline{M} and N, and the slopes of \overline{MN} and \overline{BC} .

14.____

1. Find the value of
$$4 + 6^2 \div 9 - 3$$
.

**

2. Evaluate
$$\frac{5a - b^2}{3c}$$
 if $a = 4$, $b = 3$, and $c = 2$.

2. _____

For Questions 3 and 4, evaluate each expression if a=3.5 and b=-10.

3.
$$-|b+2a|$$

3. _____

4.
$$|-3-a|-\left|\frac{b}{2}\right|$$

4. _____

5. Use
$$I = prt$$
, the formula for simple interest over t years, to find I when $p = 2000 , $r = 6\%$, and $t = 18$ months.

5. _____

Name the sets of numbers to which each number belongs.

6.
$$\sqrt{16}$$

6.

$$7. -2.5$$

7. _____

8.
$$\frac{7}{9}$$

8. _____

For Questions 9 and 10, name the property illustrated by each equation.

9.
$$3ab + (-3ab) = 0$$

9. _____

10.
$$1xyz = xyz$$

10. _____

11. Simplify
$$\frac{1}{5}(10x - 15) + 4(2x - 5)$$
.

11. _____

12. _____

Solve each equation.

13.
$$5n - 3 = 12$$

13. _____

14.
$$7x - 10 = 4x + 11$$

14. _____

15.
$$|6w + 3| = 9$$

15. _____

16.
$$|x-4|-5=-2$$

16. _____

Define a variable, write an equation, and solve the problem.

- 17. The sum of 3 times a number and 1 is 25. Find the number.
- 17. _____
- 18. The length of a rectangular garden is 7 feet longer than its width. The perimeter of the garden is 38 feet. Find the width and length of the garden.
- 18. _____

For Questions 19-24, solve each inequality. Describe the solution set using set builder or interval notation. Then, graph the solution set on a number line.

19.
$$10t - 14 < 6$$

20.
$$3(4x-2) \ge 7x + 19$$

21.
$$-7 < 9x + 2 < 11$$

22.
$$5n + 7 < 2$$
 or $17 - 2n \le 11$

23.
$$|x-5| > 3$$

24.
$$|2x+1| \le 9$$

- 25. Define a variable and write an inequality. Then solve the resulting inequality. The 25 coins in Danielle's piggy bank have a value of at least \$1.44. The bank contains only nickels and dimes. What is the fewest number of dimes that could be in the bank?
- 25. _____