Direct Application of Volume Shift to Z-Factor

M. Burgoyne, August 2025

Given the following:

$$v = v_{EOS} - c$$
, $s = \frac{c}{b}$, $b = \Omega_B \frac{RT_c}{P_c}$, and $B = \frac{bP}{RT} = \Omega_B \frac{P_r}{T_r}$

So:

$$c = s \cdot b = s \Omega_B \frac{RT_c}{P_c}$$
 and $v = v_{EOS} - s \Omega_B \frac{RT_c}{P_c}$

Knowing that:

$$v = \frac{ZRT}{P}$$

$$\frac{ZRT}{P} = \frac{Z_{EOS}RT}{P} - s\Omega_B \frac{RT_c}{P_c}$$

Dividing through by $\frac{RT}{P}$ yields:

$$Z = Z_{EOS} - s\Omega_B \frac{P}{T} \cdot \frac{T_c}{P_c} = Z_{EOS} - s\Omega_B \frac{P_r}{T_r} = Z_{EOS} - sB$$

When applying to a multi-component system this becomes:

$$Z = Z_{EOS} - \sum_{i=1}^{N} x_i s_i B_i$$