MATH 250 (Linear Algebra)

Lecturer: Ahmad Parsian

Office#

Office Hours: T & F 14-16

Email: aparsian@yahoo.com

Midterm: 05/??/2023, Final: 07/??/2023

HWs: handout every F, Due date: Every T HW: 20%, Midterm 35%, Final 45%

Lectures:

1- Systems of Linear Equations

- 1.1 What is a system of linear equations?
- 1.2 Matrices
- 1.3 Solving linear systems
- 1.4 Geometric interpretation of the solution set

Objectives of This Lecture:

After this lecture Students should know the following:

- what a linear system is
- what it means for a linear system to be consistent and inconsistent
- what matrices are
- what are the matrices associated to a linear system
- what the elementary row operations are and how to apply them to simplify a linear system
- what it means for two matrices to be row equivalent
- how to use the method of back substitution to solve a linear system
- what an inconsistent row is
- how to identify using elementary row operations when a linear system is inconsistent
- the geometric interpretation of the solution set of a linear system????

2- Row Reduction and Echelon Forms

- 2.1 Row echelon form (REF)
- 2.2 Reduced row echelon form (RREF)
- 2.3 Existence and uniqueness of solutions

Objectives of This Lecture:

After this lecture you should know the following:

- what the REF is and how to compute it
- what the RREF is and how to compute it
- how to solve linear systems using row reduction (Practice!!!)
- how to identify when a linear system is inconsistent

- how to identify when a linear system is consistent
- what is the rank of a matrix
- how to compute the number of free parameters in a solution set
- what are the three possible cases for the solution set of a linear system

3- Vector Equations

- 3.1 Vectors in Rⁿ
- 3.2 The linear combination problem
 - 3.3 The span of a set of vectors

Objectives of This Lecture:

After this lecture you should know the following:

- what a vector is what a linear combination of vectors is
- what the linear combination problem is
- the relationship between the linear combination problem and the problem of solving linear systems of equations
- how to solve the linear combination problem
- what the span of a set of vectors is
- the relationship between what it means for a vector b to be in the span of v_1, v_2, \ldots, v_p and the problem of writing b as a linear combination of v_1, v_2, \ldots, v_p
- the geometric interpretation of the span of a set of vectors

4- The Matrix Equation Ax = b

- 4.1 Matrix-vector multiplication
- 4.2 Matrix-vector multiplication and linear combinations
- 4.3 The matrix equation problem

Objectives of This Lecture:

After this lecture you should know the following:

- how to multiply a matrix A with a vector x
- that the product Ax is a linear combination of the columns of A
- how to solve the matrix equation Ax = b if A and b are known
- how to determine if a set of vectors $\{v_1, v_2, ..., v_p\}$ in R^m spans all of R^m
- the relationship between the equation Ax = b, when b can be written as a linear combination of the columns of A, and when the augmented matrix [A b] is consistent
- when the columns of a matrix $A \in M_{m \times n}$ span all of R^m
- the basic properties of matrix-vector multiplication

5- Homogeneous and Nonhomogeneous Systems

- 5.1 Homogeneous linear systems
- 5.2 Nonhomogeneous systems

Objectives of This Lecture:

After this lecture you should know the following:

- what a homogeneous/nonhomogeneous linear system is
- when a homogeneous linear system has nontrivial solutions

- how to write the general solution set of a homogeneous system in parametric vector form
- how to write the solution set of a nonhomogeneous system in parametric vector form
- the relationship between the solution sets of the nonhomogeneous equation Ax = b and the homogeneous equation Ax = 0

6- Linear Independence

- 6.1 Linear independence
- 6.2 The maximum size of a linearly independent set

Objectives of This Lecture:

After this lecture you should know the following:

- the definition of linear independence and be able to explain it to a colleague
- how to test if a given set of vectors are linearly independent
- the relationship between the linear independence of $\{v_1, v_2, ..., v_p\}$ and the solution set of the homogeneous system Ax = 0, where $A = [v_1, v_2, ..., v_p]$
- ullet that in R^n , any set of vectors consisting of more than n vectors is automatically linearly dependent

7- Matrix Algebra

- 7.1 Sums of Matrices
- 7.2 Matrix Multiplication
- 7.3 Matrix Transpose

Objectives of This Lecture:

After this lecture you should know the following:

- know how to add and multiply matrices
- that matrix multiplication corresponds to composition of linear mappings
- the algebraic properties of matrix multiplication
- how to compute the transpose of a matrix
- the properties of matrix transposition

8- Invertible Matrices

- 8.1 Inverse of a Matrix
- 8.2 Computing the Inverse of a Matrix

Objectives of This Lecture:

After this lecture you should know the following:

- how to compute the inverse of a matrix
- properties of matrix inversion and matrix multiplication
- the characterizations of invertible matrices

9- Determinants

- 9.1 Determinants of 2×2 and 3×3 Matrices
- 9.2 Determinants of $n \times n$ Matrices
- 9.3 Triangular Matrices

Objectives of This Lecture:

After this lecture you should know the following:

- how to compute the determinant of any sized matrix
- that the determinant of A is equal to the determinant of AT
- the determinant of a triangular matrix is the product of its diagonal entries

10- Properties of the Determinant

- 10.1 Elementary Row Operations and Determinants
- 10.2 Determinants and Invertibility of Matrices
- 10.3 Properties of the Determinant

Objectives of This Lecture:

After this lecture you should know the following:

- how the determinant behaves under elementary row operations
- that A is invertible if and only if det $A \neq 0$
- that det(AB) = det(A) det(B)

11- Applications of the Determinant

- 11.1 The Cofactor Method
- 11.2 Cramer's Rule
- 11.3 Volumes

Objectives of This Lecture:

After this lecture you should know the following:

- what the Cofactor Method is
- what Cramer's Rule is
- the geometric interpretation of the determinant (volume)

12- Vector Spaces

- 12.1 Vector Spaces
- 12.2 Subspaces of Vector Spaces

Objectives of This Lecture:

After this lecture you should know the following:

- what a vector space/subspace is
- be able to give some examples of vector spaces/subspaces
- that the span of a set of vectors in V is a subspace of V

13-Subspaces

13.1 Null space, Row space and Column space

Objectives of This Lecture:

After this lecture you should know the following:

• what the null space of a matrix is and how to compute it

- what the column space of a matrix is and how to determine if a given vector is in the column space
- what the row space of a matrix is and how to determine if a given vector is in the row space

14- Linear Independence, Bases, and Dimension

14.1 Linear Independence

14.2 Bases

14.3 Dimension of a Vector Space

14.1 The Rank of a Matrix

Objectives of This Lecture:

After this lecture you should know the following:

- what it means for a set to be linearly independent/dependents
- what a basis is (a spanning set that is linearly independent)
- what is the meaning of the dimension of a vector space
- how to determine if a given set in Rⁿ is linearly independent
- how to find a basis for the null space and column space of a matrix A
- what the rank of a matrix is and how to compute it
- what the nullity of a matrix is and how to compute it
- the Rank Theorem

15-Inner Products and Orthogonality

15.1 Inner Product on Rⁿ

15.2 Orthogonality

15.3 Orthonormal Basis

Objectives of This Lecture:

After this lecture you should know the following:

- how to compute inner products, norms, and distances
- how to normalize vectors to unit length
- what orthogonality is and how to check for it
- what an orthogonal and orthonormal basis is

16- Eigenvalues and Eigenvectors

16.1 Eigenvectors and Eigenvalues

16.2 When $\lambda = 0$ is an eigenvalue

Objectives of This Lecture:

After this lecture you should know the following:

- what eigenvalues are
- what eigenvectors are and how to find them when eigenvalues are known
- the behavior of a discrete dynamical system when the initial condition is set to an eigenvector of the system matrix

17- The Characteristic Polynomial

17.1 The Characteristic Polynomial of a Matrix 17.2 Eigenvalues and Similarity

Objectives of This Lecture:

After this lecture you should know the following:

- what the characteristic polynomial is and how to compute it
- how to compute the eigenvalues of a matrix
- ullet that when a matrix A has distinct eigenvalues, we are guaranteed a basis of R^n consisting of the eigenvectors of A
- that when a matrix A has repeated eigenvalues, it is still possible that there exists a basis of R n consisting of the eigenvectors of A
- what is the algebraic multiplicity and geometric multiplicity of an eigenvalue
- that eigenvalues of a matrix do not change under similarity

18- Diagonalization

- 18.1 Eigenvalues of Triangular Matrices
- 18.2 Diagonalization
- 18.3 Conditions for Diagonalization

Objectives of This Lecture:

After this lecture you should know the following:

- Determine if a matrix is diagonalizable or not
- Find the algebraic and geometric multiplicities of an eigenvalue
- Apply the Facts introduced in this lecture

19- Diagonalization of Symmetric Matrices

- 19.1 Symmetric Matrices
- 19.2 Eigenvectors of Symmetric Matrices
- 19.3 Symmetric Matrices are Diagonalizable.

Objectives of This Lecture:

After this lecture you should know the following:

• a symmetric matrix is diagonalizable with an orthonormal set of eigenvectors