

Assignment

- Read sections 6.1 and 6.2 of Chapter 6
- Do all self-check exercises (easy and ... no programming involved)

A tree (definition)

 A directed acyclic graph in which every vertex except one has only one incoming edge

Prove that every tree has at least one leaf.

A recursive definition

A tree may be

- □ a single node (both the root and the leaf) r; or
- \Box (r, { t_1 , t_2 , ... t_n }), where t_i is a tree.

Binary trees

- In a binary tree each non-leaf node has two successors
- Binary trees can be implemented using both arrays and pointer data structures
- Binary trees are effective in supporting sorting and searching

More terminology

Even more terminology!

A generalization of the parent-child relationship is the ancestor-descendant relationship

And more

A tree consists of a collection of elements or nodes, with each node linked to its successors

Node level

The *level of a node* is a measure of its distance from the root

A recursive property of level

- If node n is the root of tree T, its level is 1
- If node n is not the root of tree T, its level is
 1 + the level of its parent

Tree height

Binary Trees

- In a binary tree, each node has two subtrees
- A set of nodes T is a binary tree if either of the following is true
 - T has only one node, which is both the root and the leaf; or
 - Its root node has two subtrees, T_L and T_R, such that T_L and T_R are binary trees

```
(T_L = left subtree; T_R = right subtree)
```

Expression Tree

- Each node contains an operator or an operand
- Operands are stored in leaf nodes

- □ Parentheses are not stored in the tree because the tree structure dictates the order of operand evaluation
- Operators in nodes at higher levels are evaluated after operators in nodes at lower levels

Huffman Tree

- A Huffman tree represents Huffman codes for characters that might appear in a text file
- As opposed to ASCII or Unicode, Huffman code uses different numbers of bits to encode letters; more common characters use fewer bits
- Use: Encoding, cryptography, cryptanalysis.

Huffman Tree example

Huffman Tree example

