数学特論・講義録

最終更新: 2024年9月25日

2 目次

C H A P T E R

目次

1	第1週	3
1.1	位相 (general topology)	6
1.2	点列の定義	7
1.3	1 変数複素関数	8

CHAPTER

数学特論の講義内容

- (1) 1変数複素関数論
- (2) Cauchy の積分公式
- (3) 実積分への応用
- (4) 多変数複素関数とは
- (5) 擬凸性と岡の定理
- (6) 大沢・竹腰の拡張定理

数学用語解説

◆ A ◆ ギリシャ文字

表 1.1 ギリシャ文字一覧

大文字	小文字		読み方	大文字	小文字		読み方	
A	α	Alpha	アルファ	N	ν	Nu	ニュー	
В	β	Beta	ベータ	Ξ	ξ	Xsi	グザイ (クシー)	
Γ	γ	Gamma	ガンマ	О	o	Omikron	オミクロン	
Δ	δ	Delta	デルタ	П	π , ϖ	Pi	パイ	
E	$\epsilon, arepsilon$	Epsilon	イプシロン	P	ρ, ϱ	Rho	ロー	
\mathbf{Z}	ζ	Zeta	ゼータ	Σ	σ	Sigma	シグマ	
Н	η	Eta	イータ (エータ)	Γ	au	Tau	タウ	
Θ	θ, ϑ	Theta	シータ	Υ	v	Upsilon	ウプシロン	
I	ι	Iota	イオタ	Φ	ϕ, φ	Phi	ファイ (フィー)	
K	κ	Kappa	カッパ	X	χ	Chi	カイ	
Λ	λ	Lambda	ラムダ	Ψ	ψ	Psi	プサイ (プシー)	
M	μ	Mu	ミュー	Ω	ω	Omega	オメガ	

◆ B ◆ 数学用語

4 1 第1週

(1) 定義 (Definition)

数学の概念の意味や内容を定めたもの. 絶対に守らないといけない.

(2) 定理(Theorem)

正しいことが確かめられた数学の主張で重要なもの. (2) \sim (5) はそれが正しいことだという **証明** (**Proof**) が必要.

(3) 命題 (Proposition)

少し軽めの主張.

(4) 補題 (Lemma)

定理や命題を証明するために補助的に使われる主張.

(5) \Re (Corollary)

定理の結論から直ちに得られる主張.

◆ C ◆ 数の集合

- (1) № 自然数の集合.
- (2) ℤ 整数の集合.
- (3) ℚ 有理数の集合.
- (4) ℝ 実数の集合.
- (5) ℂ 複素数の集合.

Tip [例]

複素数zは、実数a, bを用いて

$$z = a + ib \tag{1.1}$$

と表される. このとき, $z \in \mathbb{C}$, $a, b \in \mathbb{R}$.

◆ D ◆ 集合·論理記号

まずは、『新基礎数学 改訂版』 p.61 を参照して復習.

- (1) $A \subset B$
 - A は B の部分集合. | 例 | $A = \{1, 2\}, B = \{0, 1, 2, 3\}$ のとき $A \subset B$
- (2) $a \in A$

a は A の要素 (元). 例 $A = \{x \mid x > 5\}$ のとき、7 は A の元.

(3) $\{x \mid P(x)\}, \{;\}, \{:\}$

集合の書き表し方の1つ. 条件P(x)を満たす対象だけを全て集めた集合.

- $(4) \quad A \quad \Longrightarrow \quad B$
 - $\lceil A \cos B \rfloor$.
- (5) $A \iff B$

同値. $\lceil A$ ならば $B \rfloor$ かつ $\lceil B$ ならば A. \rfloor

(6) $A \iff B$

主に定義するときに用いる.

(7) $A := B, \stackrel{\Delta}{=}, \equiv$

Aというものを Bで定義するという意味.

(8) \forall Any (任意の). $\boxed{\emptyset}^{\forall \varepsilon} > 0$ … 任意の正数 ε .

(9) \exists Exist (存在する). $\boxed{\emptyset}$ $\exists N \in \mathbb{N}$ … ある自然数 N が存在する.

(10) s.t. Such that (のような). $\boxed{\emptyset}$ A s.t. B … Aであるような B.

 $A \geq B$ の積集合.
(12) $\bigcap_{n} A_i = A_1 \cap A_2 \cap \cdots \cap A_n$

 $(12) \quad \bigcap_{i=1} A_i = A_1 \cap A_2 \cap \dots \cap A_n$

(13) $A \cup B$ $A \geq B$ の和集合.

(11) $A \cap B$

 $(14) \quad \bigcup_{i=1} A_i = A_1 \cup A_2 \cup \dots \cup A_n$

(15) $S \setminus A$, S - A A の差集合. 集合 S から集合 A を除いた集合. 例 $\mathbb{R} \setminus \mathbb{Q}$ … 実数から有理数を除いた集合 = 無理数の集合.

(16) CA, A^c A の補集合. 差集合のうち、集合 S が全体集合 U である場合に用いる.

(17) 山 非交和. 交わりを持たない和. その族に属する部分集合のどの 2 つとも互いに素であること.

(19) $x \stackrel{f}{\longmapsto} y$ 元 x が写像 f によって y に写されること.

◆ E ◆ 解析系

(1) C^n 級関数

関数がn回微分可能で、n次導関数が連続関数である関数. $\boxed{\textbf{例}}$ 多項式関数, \sin , \cos , e^x は何回でも微分可能で導関数が連続なので C^∞ 級関数.

(2) $\operatorname{Re}(z)$ 複素数 z の実部. 例 z = a + ib のとき、 $\operatorname{Re}(z) = a$.

(3) $\operatorname{Im}(z)$ 複素数 z の虚部. $\boxed{\emptyset}$ z=a+ib のとき、 $\operatorname{Im}(z)=b$.

(4) ||z|| z のノルム. 平面・空間ベクトルでの大きさに相当する.

6 1 第1週

1.1 位相 (general topology)

集合論と複素数の計算は既知とする.

複素数を n 個並べた $\{z_1, z_2, \dots, z_n\}$ 全体の集まりを \mathbb{C}^n と書く:

$$\mathbb{C}^n = \{ (z_1, \ z_2, \ \cdots, \ z_n) \mid z_j \in \mathbb{C} \ (j = 1, \ 2, \ \cdots, \ n) \}$$
 (1.2)

◆ A ◆ 開集合·閉集合の定義

定義 1.1: 開集合

 $D \subset \mathbb{C}^n$ は**開集合**であるということは、以下を満たすことを言う:

- (1) D 内の任意の z に対して、十分小さな正数 δ が存在するような $B^n(z, \delta)$ が D の部分集合である.
- (2) $B^n(z, \delta)$ は、z とくの距離が δ 未満である集合である.

これを論理記号で書くと

$$D \subset \mathbb{C}^n \, \, \mathring{\mathcal{T}} \, \stackrel{\text{def}}{\Longrightarrow} \quad \, \forall z \in D, \, \, \exists \delta > 0 \quad \text{s.t.} \quad \, B^n(z, \, \delta) \subset D \tag{1.3}$$

ただし、 $B^n(z, \delta) \coloneqq \{\zeta \in \mathbb{C}^n \mid ||z - \zeta|| < \delta\}$ 、 $||\zeta - z|| \coloneqq \sqrt{(\zeta_1 - z_1)^2 + \dots + (\zeta_n - z_n)^2}$. つまり、開集合 D の中の任意の点では必ず $B^n(z, \delta)$ が定義できる.

定義 1.2: 閉集合

 $D \subset \mathbb{C}^n$ は**閉集合**であるということは、以下を満たすことを言う:

(1) \mathbb{C}^n から D を除いた集合 (D の補集合) が開集合である.

これを論理記号で書くと

$$D \subset \mathbb{C}^n$$
 が**閉集合** \iff $\mathbb{C}D = \{ \zeta \in \mathbb{C}^n \mid \zeta \notin D \}$ が開集合である. (1.4)

定義 1.3: コンパクト集合

K が**コンパクトである**ということは、以下を満たすことを言う:

$$K \subset \mathbb{C}^n$$
 がコンパクトである $\stackrel{\text{def}}{\Longleftrightarrow}$ K が有界¹⁾ かつ 閉集合である (1.5)

◆ B ◆ 位相境界の定義

開集合又は閉集合 $A \subset \mathbb{C}^n$ に対して、A を含む最小の閉集合を \overline{A} と表し、A の**閉包**という.このとき、

$$\partial A = \overline{A} - A \tag{1.6}$$

を A の位相境界という.

¹⁾ 十分大きな円板 $B^n(0, L)$ に K が含まれること.

 $\overline{A} \subset B$ かつ \overline{A} がコンパクトであるとき, A は B に**コンパクトに埋め込まれている**といい, $A \in B$ と表す.

1.2 点列の定義

定義 1.4: 点列の極限(arepsilon-N 論法)

点列 $\{z_{\nu}\}\subset\mathbb{C}^n$ が、 $\alpha\in\mathbb{C}^n$ に収束するということを次のように定義する:

(1) 任意の正数 ε に対し、ある自然数 $N(\varepsilon)$ が存在するとき、 $N(\varepsilon)$ 以上の全ての ν に対して、 $z_{\nu}-\alpha$ のノルムが ε 未満である.

これを論理記号で書くと

$$\lim_{\nu \to \infty} z_{\nu} = \alpha \quad \stackrel{\text{def}}{\iff} \quad {}^{\forall} \varepsilon > 0, \quad {}^{\exists} N(\varepsilon) \in \mathbb{N} \quad \text{s.t.} \quad {}^{\forall} \nu \ge N(\varepsilon) \quad \Longrightarrow \quad \|z_{\nu} - \alpha\| < \varepsilon \quad (1.7)$$

集合 D の点を項とする任意の収束する点列 $\{z_{\nu}\}$ の極限は必ずしも D 内の点であるとは限らない. しかし, D が \mathbb{C}^n 上の閉集合であれば, このような点列の極限は必ず D の点になる. また, 逆も成り立つ. よって, 閉集合は点列を用いて定義することができる.

定理 1.1: 点列を用いた閉集合の定義

収束する点列 $\forall \{z_{\nu}\} \subset D$ に対して

$$D$$
 が閉集合 $\stackrel{\text{def}}{\Longleftrightarrow}$ $\lim_{\nu \to \infty} z_{\nu} \subset D$ (1.8)

→ 閉集合は極限値が全て入る集合のことである.

Tip [例]

複素数 z の正の実部を部分集合 B とする:

$$B = \left\{ z \in \mathbb{C} \mid \text{Re}(z) > 0 \right\} \tag{1.9}$$

このとき、B は閉集合であるか.

Bの点を項とする任意の収束する点列の極限が Bの点であればいい.

点列 $z_{\nu}=\frac{1}{\nu}$ を定めたとき, $\lim_{\nu\to\infty}\frac{1}{\nu}=0$ である.しかし,0 は B の点ではないので,B は閉集合ではない.

命題 1.1: 閉包

 $\forall \zeta \in \overline{A}$ に対して,

$$\exists \{z_{\nu}\} \subset A \quad \text{s.t.} \quad \lim_{\nu \to \infty} = \zeta \in \overline{A} \tag{1.10}$$

が成り立つ. また, これを用いて、Aの閉包は次のように定義できる:

$$\overline{A} = \left\{ \zeta \in \mathbb{C}^n \mid \exists \{z_\nu\} \subset A \quad \text{s.t.} \quad \lim_{\nu \to \infty} z_\nu = \zeta \right\}$$
(1.11)

8 1 第1週

1.3 1 変数複素関数

◆ A ◆ 関数の連続

定義 1.5: 関数の連続

関数 $f: D \longrightarrow \mathbb{C}$ と収束する点列 $\forall \{z_{\nu}\} \subset D$ に就いて

関数
$$f$$
 が連続 $\stackrel{\text{def}}{\Longleftrightarrow}$ $\lim_{\nu \to \infty} f(z_{\nu}) = f\left(\lim_{\nu \to \infty} z_{\nu}\right)$ (1.12)

定義 1.6: 滑らかな関数の定義

実 1 変数関数 $\gamma: [\alpha, \beta] \longrightarrow D \subset \mathbb{C}^n$ に就いて

関数
$$\gamma$$
が滑らか(C^1 -級曲線)である (1.13)

$$\stackrel{\text{def}}{\Longleftrightarrow}$$
 $\begin{bmatrix} \gamma_1(t) \\ \vdots \\ \gamma_n(t) \end{bmatrix}$ の各成分が微分可能かつ $\gamma_j'(t)$ が連続である (1.14)

◆ B ◆ Jordan 曲線

定義 1.7: Jordan 曲線の定義

関数 $\gamma: [\alpha, \beta] \longrightarrow D$ に就いて

(1) Jordan 曲線

$$\gamma$$
 が Jordan 曲線 $\stackrel{\text{def}}{\Longleftrightarrow}$
$$\begin{cases} \gamma \text{ は滑らかである} \\ \forall t_1 \neq t_2 \in [\alpha, \beta] \text{ に対し,} \quad \gamma(t_1) \neq \gamma(t_2) \end{cases}$$
 (1.15)

(2) Jordan 閉曲線

$$\gamma$$
 が Jordan 閉曲線 $\stackrel{\text{def}}{\Longleftrightarrow}$
$$\begin{cases} \gamma \text{ は滑らかである} \\ ^{\forall}t_1 \neq t_2 \in (\alpha, \ \beta) \text{ に対し}, \quad \gamma(t_1) \neq \gamma(t_2) \\ \gamma(\alpha) = \gamma(\beta) \end{cases}$$
 (1.16)

Jordan 曲線は自己交叉なしの曲線で、Jordan 閉曲線は始点と終点以外の自己交叉がない曲線.

定理 1.2: Jordan の曲線定理

Jordan 閉曲線 $\gamma: [\alpha, \beta] \longrightarrow \mathbb{C}^1$ に就いて、 γ は \mathbb{C}^1 を有界な開集合 V_1 と非有界な開集合 V_2 に分割し、

$$\mathbb{C}^1 = \gamma \sqcup V_1 \sqcup V_2 \tag{1.17}$$

が成り立つ.

有界な開集合 V_1 を γ の内部といい, V_2 を γ の外部という. γ の内部を左側に見て進む向きをを

正の向きという.

定義 1.8: 連結

 ${}^\forall \alpha, \ \beta \in D$, 折れ線 $\tau : [\alpha, \ \beta] \longrightarrow D$ に就いて

$$D \subset \mathbb{C}^n$$
 が連結 $\stackrel{\text{def}}{\Longleftrightarrow}$ $\tau(a) = \alpha, \ \tau(b) = \beta$

(1.18)