中国作家协会

```
#1. Show the mode (maximum) of the multivariate Gaussian distribution. Next [w, o2) = = exp(-102 (x-pus2))
 Solution: fixed or, to maximize N's to maximize exp(-50-1(x-m)2) => maximizing -50-(x-m)2 => x=m.
COLUMN: f^{x} \vee a \cup f, To maximize (V \otimes AV ) movement. If so it is a variable (X \in [0,1]) is sume #2. Sps detaset of observations X^{2} = (X_{1}, X_{2}, ..., X_{N})^{T}, N observations of scalar binary obvariable (X \in [0,1]). Assume observations from Bernaulli (P^{y}) which is a logical property of the scalar binary obvariable (X \times (X \in [0,1])). Assume (X \times (X \in [0,1])) is a logical property of the scalar binary obvariable (X \times (X \in [0,1])). Assume (X \times (X \in [0,1])) is a logical property of the scalar binary obvariable (X \times (X \in [0,1])). Assume (X \times (X \in [0,1])) is a scalar binary obvariable (X \times (X \in [0,1])). Assume (X \times (X \in [0,1])) is a scalar binary obvariable (X \times (X \in [0,1])). Assume (X \times (X \in [0,1])) is a scalar binary obvariable (X \times (X \in [0,1])). Assume (X \times (X \in [0,1])) is a scalar binary obvariable (X \times (X \in [0,1])). Assume (X \times (X \in [0,1])) is a scalar binary obvariable (X \times (X \in [0,1])). Assume (X \times (X \in [0,1])) is a scalar binary obvariable (X \times (X \in [0,1])). Assume (X \times (X \in [0,1])) is a scalar binary obvariable (X \times (X \in [0,1])). Assume (X \times (X \in [0,1])) is a scalar binary obvariable (X \times (X \in [0,1])). Assume (X \times (X \in [0,1])) is a scalar binary obvariable (X \times (X \in [0,1])). Assume (X \times (X \in [0,1])) is a scalar binary obvariable (X \times (X \in [0,1])). Assume (X \times (X \in [0,1])) is a scalar binary obvariable (X \times (X \in [0,1])). Assume (X \times (X \in [0,1])) is a scalar binary obvariable (X \times (X \in [0,1])). Assume (X \times (X \in [0,1])) is a scalar binary obvariable (X \times (X \in [0,1])). Assume (X \times (X \in [0,1])) is a scalar binary obvariable (X \times (X \in [0,1])). Assume (X \times (X \in [0,1])) is a scalar binary obvariable (X \times (X \in [0,1])). Assume (X \times (X \in [0,1])) is a scalar binary obvariable (X \times (X \in [0,1])) is a scalar binary obvariable (X \times (X \in [0,1])). By the scalar binary obvariable (X \times (X \in [0,1])) is a scalar binary obvariable (X \times (X \in [0,1])). By the scalar binary obvariable (X \times (X \in [0,1])) is a scalar binary obvar
           check and derivative <0 at MML => V.
E[(Xi-W)]= E[(Xi-E(Xn))] by the def of ever, E[(xn-w)] is the true variance or for x. E[(xi-m)]= or Vi. Thus E(on))
       E(om)= E(+ 5%(xi-m))= +15/4(E(xi-p))]
 Prof. E[L] = Syco2 p(x,+) dx dt + St2 p(x,+) dxdt -2 Syco t p(x,+) dxdt = Syco px dx+ St2 p(t) dt -2 Syco dx St p(t) p px dt

- Syco2 p(x,+) dx dt + St2 - Sycondary C(t) - Syco
                                           = Jyw2pwdx + EIt7 -2 JywdapwE(t/x)dx = Et(t2)+Ex[yw32-2ywE(t/x)]
 #5. linear basis func. reg model. X=(x1, -, xx), target value t=(ti, -, tn). Assume iid obs., likelihood func.
                       p(t | Y, w, B) = TT My N(to | WT p(Xn), 02). Consider zero mean Gaussian prior governed by single precision parameter
     d: p(w/x)=N(w/o, d-I) _ marginal likelihood?
     (a). p(t|X, N,B)= \( p(t|x,w,B) \( p(w|a) \) \( dw = \int \pi_{m=1}^{N} \) \( \frac{1}{200} \) \( exp(-\frac{1}{200} \) \( exp(-\frac{1}{200} \) \( exp(-\frac{1}{200} \) \) \( exp(-\frac{1}{200} \) \( exp(-\frac{1}{200} \) \)
     (C7. Show movinizing the log of posterior distribution unt w is <=> minimizing the som-of-squares error function, with addition to a galadratic regularization term with 12 0.00
         posterior: p(w|D) since p(w|D) or p(w) ·p(D|w)
posterior: p(w|D) = C. exp(-\frac{1}{2}\sum_{n\text{2}}^{N} + (n-w^{\pi} \phi(x_n))^{2}] \cdot exp(-\frac{1}{2}w^{\pi}w), c constant
                                             logp(w D) = - B Ind (to-w p(xn))2- 2 wtw + constant
                                                              = B[ = \(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\
                                                                                          sum of square error quadratic term with \lambda = \frac{1}{\beta} = 0.0^2 ( \beta = (0^2)^{-1}) precision
   #6 Bayesian logistic reg for binary classification, parametrized by w. [Xn, tn], tn \ [0,1], n=1,..., W.

Eero mean Gaussian prior over to governed by a single precision pack: p(w/o)=N(w/o, a T)
      (a) posterior distribution over w for Bayesian Logistic regression:
                      p(w/x,t) \ p(t/x,w) p(w/a) :p(w/d) = N(w/o, d-I)
                                    log p(w|x,t)=log p(+|x,w) + logp(w|x)+constant = - \frac{1}{2} w^T x I w + \sum_{n=1}^{N} [t_n lny_n + (1-t_n)ln (1-y_n)] + cons.
     (b). Show I properly to construction with addition quadratic regularization term.
                                                                                                                                                                                                                                                                             1-h(1-yn) if th=0. SEn is cross-entroppe
efficient
        Samilar to 5(b): 1/0g p(w(x,t) C=> V-E()+ &ww= 5 m En+ &ww. En= (-by) if the
                                                                                                                                                                                                                                                                                                                                                  enor in total.
                                                                                                                                                                  Il d= d. as regularization coefficient.
   (C). Compte deriv of Ecross-entropy with.
```

Selected problems.

中国作家协会

.10. x,z independent. Show mean & variance of their sum satisfies E(x+2) = E(x)+E(x).

(x+2) = \(\frac{1}{2}\) \(\frac{1}{2

the training of the second to the second to the

to the expression of the source of

The state of the s

the and it is a man of the contract to the contract to

productivale: Ey[Ex[xly]] = [[xp(xly)dx]p(y)dy = [] xp(x,y) dxdy = [xp(x)dx = Ex[x]]

Ey[Ex[xly]] + Var(Ex[xly]) = Ey[Ex[xly]] - Ex[xly]] + EyEx[xly]] - Ey[ExDxly]] = --- /