Contrôle 2

Durée: trois heures

Documents et calculatrices non autorisés

Nom : DAd D

Prénom : Clément

Classe: BZ

Entourer votre professeur de TD : Mme Boudin / Mme Daadaa /M. Ghanem/ M. Goron / Mme Trémoulet

Consignes:

- vous devez répondre directement sur les feuilles jointes.
- aucune autre feuille, que celles agrafées fournies pour répondre, ne sera corrigée.
- aucune réponse au crayon de papier ne sera corrigée.
- toute personne ne respectant pas ces consignes se verra attribuer la note 00/20.

Exercice 1 (4,5 points)

1. Via une double intégration par parties, calculer $I = \int_1^e \sin(\ln(x)) dx$.

2. Via une integration par parties, calculer $J = \int_0^1 \arctan(x) dx$.

Exercice 2 (3 points)

Soient (u_n) et (v_n) deux suites réelles strictement positives telles que pour tout $n \in \mathbb{N}$,

$$\frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n}$$

Montrer que si a_n → 0 alors u_n → 0.

2. Mostrer que si $u_n \xrightarrow[n \to +\infty]{} +\infty$ alors $v_n \xrightarrow[n \to +\infty]{} +\infty$.

Exercice 3 (3 points)

Encadrer le numéro des questions contenant les énoncés vrais.

Contrairement à d'habitude, les réponses erronées ne retirent pas de point!

- Soient (u_n) une suite réelle et ℓ ∈ R. Alors l'assertion « si (u_n) converge vers ℓ alors, pour tout n ∈ N, u_n ≤ ℓ » est équivalente à l'assertion « s'il existe n ∈ N tel que u_n > ℓ, alors (u_n) 'ne converge pas vers ℓ ».
- 2. Si (u_n) est une suite géométrique non nulle de raison $q \in \mathbb{R}^*$, alors $\left(\frac{1}{u_n}\right)$ est une suite géométrique de raison $\frac{1}{q}$.
- 3. Si (u_n) est une suite réelle bornée, il existe une suite extraite de (u_n) convergente.
- [4] Soit (u_n) une suite réclie. Alors (u_{6n}) est extraite de (u_{2n}).
- 5. Soit (u_n) une suite réelle. Alors (u_{3.2n+1}) est extraite de (u_{6n}).
- 6. Rien de ce qui précède.

Exercice 4 (3 points)

Scient (u_n) et (u_n) définies pour tout $n \in \mathbb{N}$ par $u_n = \sum_{k=1}^{2n-1} \frac{(-1)^k}{(2k)!}$ et $u_n = u_n + \frac{1}{(4n+4)!}$

Mostirer que $\langle u_n \rangle$ et $\langle v_n \rangle$ sexet adjacentes.

Un ed sur suite crossante

Va est une suite decrossante

Resignates Un el viu sont donc adjacentes

Exercice 5 (2 points)

Soit $(u_n)_{n\in\mathbb{N}^*}$ définie pour tout $n\in\mathbb{N}^*$ par $u_n=\frac{\ln(n!)}{n^2}$

1. Soit $n \in \mathbb{N}^*$. Montrer (sans récurrence) que $\ln(n!) \leq n \ln(n)$.

2. En déduire la limite de la suite $(u_n)_{n\in\mathbb{N}^*}$.

$$\lim_{n \to \infty} \frac{\ln (n!)}{\ln n!} \leq n^2 \quad \text{donc} \quad \frac{\ln (n!)}{\ln n^2} \leq n^2$$

Exercice 6 (5,5 points)

Soit (u_n) la suite réelle définie pour tout $n \in \mathbb{N}$ par $u_n = \sum_{k=0}^n \frac{1}{k!}$

1. Soient $n \in \mathbb{N}^*$ et $q \in \mathbb{R} \setminus \{1\}$. Que vaut la somme $\sum_{k=1}^n q^{k-1} = 1 + q + q^2 + \dots + q^{n-1}$?

$$\underbrace{\sum_{k=1}^{n} q^{k-1}}_{k-1} = U_0\left(\frac{1-q^{m}}{1-q}\right) = \frac{1-q^{m}}{1-q}$$

2. Soit $n \in \mathbb{N}^*$. Via la question précédente, montrer (sans récurrence), que $\sum_{k=1}^{n} \frac{1}{2^{k-1}} = 2 - \frac{1}{2^{n-1}}$

$$\frac{z}{k=1} q^{k-1} = \frac{1-q^{2}}{1-q} douc \underbrace{z}_{k=1} \frac{1}{z^{k-1}} = \frac{1-(\frac{1}{z})^{2}}{1-\frac{1}{z}}$$

$$\frac{z}{k=1} \frac{1}{z^{k-1}} = \frac{1-\frac{1}{z}}{\frac{1}{z}} = z - \frac{1}{z^{k-1}}$$

3. Soit $k \in \mathbb{N}$ tel que $k \ge 2$. Montrer (sans récurrence) que $\frac{1}{k!} = \frac{1}{2 \times 3 \times \cdots \times k} \le \frac{1}{2^{k-1}}$

Vérifier que l'inégalité est encore vraie pour k=1.

4. Montrer que (u_n) est croissante.

done & the est strictement consistants of the strictement consistants of

5. Montrer (sans récurrence), via les questions 2 et 3, que pour tout $n \in \mathbb{N}$, $u_n \leq 3$.

Un & & de N Un & 3

6. (u_n) est-elle convergente? Justifier votre réponse.

Un est strictement avissante et Un 63 donc Un est contregante.