Analysis II HS21

by plaffranchi

2 ODE (ordinary differential equation)

Theorem 2.1.6

Let $F: \mathbb{R}^2 \to \mathbb{R}$ be differentiable. Let $x_0 \in \mathbb{R}$ and $y_0 \in \mathbb{R}^2$. Then the ODE y' = F(x, y) has a unique solution f defined on a "largest" open interval I containing x_0 such that $f(x_0) = y_0$.

Definition 2.2.1

Let $I \subset \mathbb{R}$ be an open interval and $k \in \mathbb{N}_0$. An homogeneous linear ODE of order k on I is of the form $y^{(k)} + a_{k-1}y^{(k-1)} + \cdots + a_1y' + a_0y = 0$ where the coefficients a_0, \ldots, a_{k-1} are complex-valued functions on I, and the unknown is a function $I \to \mathbb{C}$ that is k-times differentiable on I. An equation of the form $y^{(k)} + a_{k-1}y^{(k-1)} + \cdots + a_1y' + a_0y = b$, where $b: I \to \mathbb{C}$ is another function, is called an inhomogeneous linear ODE.

Recognize an ODE

- 1. no coefficients before the highest derivative
- 2. all coefficients are continuous
- 3. no products of y or their derivatives
- 4. no powers of y or their derivatives
- 5. no functions depending on y or their derivatives

Proposition 2.3.1

Any solution of y' + ay = 0 is of the form $f(x) = z \exp(-A(x))$ where A is a primitive of a. The unique solution with $f(x_0) = y_0$ is $f(x) = y_0 \exp(A(x_0) - A(x))$.

Solving inhomogeneous equations

Case 1: Make a guess. For example $y' = y + x^2$ guess $f(x) = ax^2 + bx + c$, and solve the equation.

Case 2: Use the variation of the constant. Assume $f_p = z(x) \exp(-A(x))$ for $z: I \to \mathbb{C}$. Then $z'(x) = b(x) \exp(A(x)) \Longrightarrow k(x) = \int b(x) \exp(A(x)) dx$.

Definition Linear differential equations with constant coefficients

Let $k \in \mathbb{N}_0$, $a_0, ..., a_{k-1} \in \mathbb{C}$ fixed and b a general continuous function, then $y^{(k)} + a_{k-1}y^{(k-1)} + \cdots + a_1y' + a_0y = b$ is such equation.

Solution of hom. diff. eq. with constant coefficients

Look for solutions of the form $f(x) = e^{\alpha x}$ for $\alpha \in \mathbb{C}$. Then we have $f^{(j)}(x) = \alpha^j e^{\alpha x}$ for all $j \ge 0$ and for all x, which means that

$$f^{(k)}(x) + a_{k-1}f^{(k-1)}(x) + \dots + a_1f'(x) + a_0f(x)$$

= $e^{\alpha x} (\alpha^k + a_{k-1}\alpha^{k-1} + \dots + a_1\alpha + a_0)$.

This translates into finding the zeros of the characteristic polynomial:

$$P(X) = X^{k} + a_{k-1}X^{k} + \dots + a_{1}X + a_{0}$$

= $(X - \alpha_{1}) \cdots (X - \alpha_{k}) = 0$

Imaginary roots

If a root is not real i.e. $\alpha = \beta + i\gamma$, the solution $f(x) = e^{\alpha x}$ does not take real values, but $\overline{\alpha} = \beta - i\gamma$ is also a root, hence we can write $\widetilde{f}_1(x) = e^{\beta x} \cos(\gamma x)$, $\widetilde{f}_2(x) = e^{\beta x} \sin(\gamma x)$ instead of $f_1(x) = e^{\alpha x}$, $f_2(x) = e^{\overline{\alpha}x}$

Multiple roots

Case 1: no multiple roots. Any solution of the equation is of the form $f(x) = z_1 e^{a_1 x} + \cdots + z_k e^{a_k x}$.

Case 2: multiple roots. Suppose that α is a multiple root of order j with $2 \leq j \leq k$. Then the k functions $f_{\alpha,0}(x) = e^{\alpha x}$, $f_{\alpha,1}(x) = xe^{\alpha x}$, \cdots , $f_{\alpha,j-1}(x) = x^{j-1}e^{\alpha x}$ are linearly independent solutions. Taking the union of the functions $f_{\alpha,j}$ for all roots of P, each with its multiplicity, gives a basis of the space of solutions.

3 Differential calculus in \mathbb{R}^n

Definition 3.2.1.

Let $(x_k)_{k\in\mathbb{N}}$ where $x_k \in \mathbb{R}^n$. Write $x_k = (x_{k,1}, \dots, x_{k,n})$. Let $y = (y_1, \dots, y_n) \in \mathbb{R}^n$. The sequence (x_k) converges to (\to) y as $k \to +\infty$ if $\forall \varepsilon > 0$, if $\exists N \ge 1$ such that $\forall n \ge N$, we have $||x_k - y|| < \varepsilon$.

Lemma 3.2.2.

 $(x_k) \to y \text{ as } k \to +\infty \iff \text{ either: } (1) \ \forall i, 1 \leqslant i \leqslant n, \text{ the sequence of real numbers } (x_{k,i}) \to y_i. \ (2) \text{ The sequence of real numbers } ||x_k - y|| \to 0 \text{ as } k \to +\infty.$

Definition 3.2.3.

Let $X \subset \mathbb{R}^n$ and $f: X \to \mathbb{R}^m$. (1) Let $x_0 \in X$. f is continuous at x_0 if $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.t.} \ \|x - x_0\| < \delta \implies \|f(x) - f(x_0)\| < \varepsilon, \ \forall x \in X$. (2) f is continuous on X if it is continuous at $x_0 \ \forall x_0 \in X$.

Proposition 3.2.4.

Let $X \subset \mathbb{R}^n$ and $f: X \to \mathbb{R}^m$. Let $x_0 \in X$. The function f is continuous at $x_0 \iff \forall (x_k)_k \geqslant 1$ in X s.t. $x_k \to x_0$ as $k \to +\infty$, the sequence $(f(x_k))_k \geqslant 1$ in \mathbb{R}^m converges to f(x).

Definition 3.2.5.

Let $X \subset \mathbb{R}^n$ and $f: X \to \mathbb{R}^m$. Let $x_0 \in X$ and $y \in \mathbb{R}^m$. We say that f has the limit y as $x \to x_0$ with $x \neq x_0$ if for every $\varepsilon > 0$, there exists $\delta > 0$, s.t. $\forall x \in X, x \neq x_0$, s.t. $||x - x_0|| < \delta$, we have $||f(x) - y|| < \varepsilon$. We then write $\lim_{\substack{x \to x_0 \\ x \neq x_0}} f(x) = y$.

Proposition 3.2.7

Let $X \subset \mathbb{R}^n$ and $f: X \to \mathbb{R}^m$. Let $x_0 \in X$ and $y \in \mathbb{R}^m$. We have $\lim_{\substack{x \to x_0 \\ x \neq x_0}} f(x) = y \iff \forall (x_k) \in X \text{ s.t. } x_k \to x \text{ as } k \to +\infty$, and $x_k \neq x_0$, the sequence $(f(x_k))$ in \mathbb{R}^m converges to y.

Proposition 3.2.9

Let $X \subset \mathbb{R}^n, Y \subset \mathbb{R}^m$ and $p \geqslant 1$ an integer. Let $f: X \to Y$ and $g: Y \to \mathbb{R}^p$ be continuous functions. Then the composite $g \circ f$ is continuous.

Definition 3.2.11.

(1) A subset $X \subset \mathbb{R}^n$ is bounded if the set of ||x|| for $x \in X$ is bounded in \mathbb{R} . (2) A subset $X \subset \mathbb{R}^n$ is closed if for every sequence (x_k) in X that converges in \mathbb{R}^n to some vector $y \in \mathbb{R}^n$, we have $y \in X$. (3) A subset $X \subset \mathbb{R}^n$ is compact if it is bounded and closed.

Proposition 3.2.13.

Let $g: \mathbb{R}^n \to \mathbb{R}^m$ be a continuous map. For any closed set $Y \subset \mathbb{R}^m$, $f^{-1}(Y) = x \in \mathbb{R}^n : f(x) \in Y \subset \mathbb{R}^n$ is closed.

Theorem 3.2.15.

Let $X \subset \mathbb{R}^n$ be a non-empty compact set and $f: X \to \mathbb{R}$ a continuous function. Then f is bounded and achieves its max and min. I.e. $\exists x_+, x_- \in X \text{ s.t. } f(x_+) = \sup_{x \in X} f(x), f(x_-) = \inf_{x \in X} f(x).$

Definition 3.3.1.

A subset $X \subset \mathbb{R}^n$ is open if, for any $x = (x_1, \dots, x_n) \in X$, there exists $\delta > 0$ such that the set

$$\{y = (y_1, \dots, y_n) \in \mathbb{R}^n : |x_i - y_i| < \delta \text{ for all } i\}$$

is contained in X. In other words: any point of \mathbb{R}^n obtained by changing any coordinate of x by at most δ is still in X.

Proposition 3.3.2.

A set $X \subset \mathbb{R}^n$ is open if and only if the complement $Y = \{x \in \mathbb{R}^n : x \notin X\}$ is closed.

Corollary 3.3.3.

If $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous and $Y \subset \mathbb{R}^m$ is open, then $f^{-1}(Y)$ is open in \mathbb{R}^n .

Definition 3.3.5

Let $X \subset \mathbb{R}^n$ be an open set. Let $f: X \to \mathbb{R}^m$ be a function. Let $1 \leq i \leq n$. We say that f has a partial derivative on X with respect to the i-th variable, or coordinate, if for all $x_0 = (x_{0,1}, \ldots, x_{0,n}) \in X$, the function defined by

$$g(t) = f(x_{0,1}, \dots, x_{0,i-1}, t, x_{0,i+1}, \dots, x_{0,n})$$

on the set $I = \{t \in \mathbb{R} : (x_{0,1}, \dots, x_{0,i-1}, t, x_{0,i+1}, \dots, x_{0,n}) \in X\}$ is differentiable at $t = x_{0,i}$. Its derivative $g'(x_{0,i})$ at $x_{0,i}$ is denoted

$$\frac{\partial f}{\partial x_i}(x_0), \quad \partial_{x_i} f(x_0), \quad \partial_i f(x_0)$$

Proposition 3.3.7.

Consider $X \subset \mathbf{R}^n$ open and f, g functions from X to \mathbf{R}^m . Let $1 \leq i \leq n$. (1) If f and g have partial derivatives with respect to the i-th coordinate on X, then f + g also does, and

$$\partial_{x_i}(f+g) = \partial_{x_i}(f) + \partial_{x_i}(g).$$

(2) If m=1, and if f and g have partial derivatives with respect to the i-th coordinate on X, then fg also does and

$$\partial_{x_i}(fg) = \partial_{x_i}(f)g + f\partial_{x_i}(g).$$

Furthermore, if $g(x) \neq 0$ for all $x \in X$, then f/g has a partial derivative with respect to the *i*-th coordinate on X, with

$$\partial_{x_i}(f/g) = (\partial_{x_i}(f)g - f\partial_{x_i}(g))/g^2.$$

Definition 3.3.9.

Let $X \subset \mathbf{R}^n$ open and $f: X \to \mathbf{R}^m$ a function with partial derivatives on X. Write

$$f(x) = (f_1(x), \dots, f_m(x)).$$

For any $x \in X$, the matrix

$$J_f(x) = \left(\partial_{x_j} f_i(x)\right)_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}}$$

with m rows and n columns is called the Jacobi matrix of f at x.