Assignment 1

Deadline: Friday, 17th of April

- 1. **(0.5 points)** Consider $\mathcal{H} = \{h_{\theta_1} : \mathbb{R} \to \{0,1\}, h_{\theta_1}(x) = \mathbf{1}_{[x \ge \theta_1]}(x) = \mathbf{1}_{[\theta_1, +\infty)}(x), \theta_1 \in \mathbb{R} \}$ U $\{h_{\theta_2}(x) = \mathbf{1}_{[x < \theta_2]}(x) = \mathbf{1}_{(-\infty, \theta_2)}(x), \theta_2 \in \mathbb{R} \}$. Compute VCdim(\mathcal{H}).
- 2. **(0.75 points)** Consider \mathcal{H} to be the class of all centered in origin sphere classifiers in the 3D space. A centered in origin sphere classifier in the 3D space is a classifier h_r that assigns the value 1 to a point if and only if it is inside the sphere with radius r > 0 and center given by the origin $\mathbf{O}(0,0,0)$.
 - a. show that the class \mathcal{H} can be (ϵ, δ) PAC learned by giving the algorithm A and determining the sample complexity $m_H(\epsilon, \delta)$ such that the definition of PAC-learnability is satisfied. (0.5 points)
 - b. compute VCdim(H). (0.25 points)
- 3. (1 **point**) What is the VC-dimension of the set of subsets I_{θ} of the real line parameterized by a single parameter θ where $I_{\theta} = [\theta, \theta + 1] \cup [\theta + 2, \infty)$?
- 4. **(1.25 points)** An axis aligned square classifier in the plane is a classifier that assigns the value 1 to a point if and only if it is inside a certain square. Formally, given the real numbers $a_1, a_2, r > 0 \in \mathbb{R}$ we define the classifier $h_{(a_1,a_2,r)}$ by

$$h_{(a_1,a_2,r)}(x_1,x_2) = \begin{cases} 1, & \text{if } a_1 \le x_1 \le a_1 + r, a_2 \le x_2 \le a_2 + r \\ 0, & \text{otherwise} \end{cases}$$

The class of all axis aligned squares in the plane is defined as

$$\mathcal{H} = \{h_{(a_1,a_2,r)} \colon \mathbb{R}^2 \to \{0,1\} | a_1, a_2, r \in \mathbb{R}, r > 0\}$$

Consider the realizability assumption.

- **a.** give a learning algorithm A that return a hypothesis h_S from \mathcal{H} , $h_S = A(S)$ consistent with the training set S (h_S has empirical risk 0 on S); (0.5 points)
- **b.** find the sample complexity $m_H(\epsilon, \delta)$ in order to show that $\mathcal H$ is PAC learnable. (0.5 points)
- c. compute VCdim(H). (0.25 points)

Bonus Problem (1 point)

Compute the VC-dimension of the class of convex d-gons (convex polygons with exactly d sides) in the plane. Provide a detailed proof of your result.