3. Deriving Length Contraction

Let an object of length to be at rest on the x cxis in S frame. The coordinates of its two endpoints are x_1 and x_2 , to = $x_2 - x_1$.

The coordinates of its two end points in S' frame are x_1' and x_2' . The length is $l = x_2' - x_1'$

$$X = X(X' + Vt')$$

$$X_{2}-X_{1} = \chi(X_{2}+Vt_{2}') - \chi(X_{1}'+Vt_{1}')$$

$$= \zeta_{0} = \chi(X_{2}+Vt_{2}') - \chi(X_{1}'+Vt_{1}')$$

 $\frac{t_2' = t_1'}{t_2' = t_1'}$ $\Rightarrow \frac{t_2' = t_1'}{t_2' = t_1'}$ An observer in S measure this length by measuring χ_2' and χ_1' at the same t_1' me.

4. Deriving time dilation

The proper time means

the time intenal between two

events that happes at the same

location in space $\Rightarrow |X_2 = X_1|$ $\Delta t = t_2 - t_1$ $\Delta t_0 = t_2' - t_1'$ S'

$$t = \delta(t' + \frac{\sqrt{x'}}{c^2})$$

$$t_2 - t_1 = \delta(t_2' + \frac{\sqrt{x'}}{c^2}) - \delta(t_1' + \frac{\sqrt{x'}}{c^2})$$

$$t_2 - t_1 = \delta(t_2' - \delta(t_1' + \frac{\sqrt{x'}}{c^2}))$$

$$|\Delta t| = \delta \Delta t_0$$