

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS

Programa de Pós-Graduação em Modelagem Matemática e Computacional

Otimização Linear

Professor: Sérgio Ricardo de Souza

Sumário

1	Conjuntos	5		
	1.1 Operações entre conjuntos	6		
2	Vetores	8		
	2.1 Vetores Especiais	8		
3	Espaço Vetorial Linear	9		
	3.1 Subespaço Linear	13		
4	Norma	14		
5	Produto Interno	15		
6	Desigualdade de Cauchy-Schwartz			
7	Combinação Linear			
8	Dependência e Independência Linear			
9	Base	21		
	9.1 Alteração da Base	22		
10	Matrizes	24		
	10.1 Matrizes especiais	25		
	10.2 Operações com matrizes	28		
	10.3 Determinante	33		
	10.3.1 Definição	33		
	10.3.2 Propriedades	35		

	10.4	Espaço Imagem de uma Matriz	36
		10.4.1 Definição	36
		10.4.2 Posto (rank) de uma matriz A	36
	10.5	Espaço Nulo de uma Matriz	37
		10.5.1 Nulidade de uma matriz A	37
	10.6	Operações Elementares sobre Matrizes	40
	10.7	Processo de Eliminação de Gauss	42
	10.8	Inversa de uma matriz	46
		10.8.1 Definição	46
		10.8.2 Propriedades	46
		10.8.3 Cálculo da inversa:	46
		10.8.4 Eliminação de Gauss-Jordan	47
		10.8.5 Decomposição LU	49
		10.8.6 Significado Geométrico da Inversa	49
	10.9	Sistemas de Equações Lineares	50
11	Con	ijuntos Convexos	67
			68
		Propriedades	69
		Ponto Extremo	71
		Raio	
		Direção de um conjunto convexo	
		Direção extrema de um conjunto convexo	73
		Cone Convexo	74
		Hiperplano	75
	11.8	Poliedro Convexo	76
12	Fun	ção Convexa	78
		Problema Convexo	80

1 Conjuntos

Definição 1 Um conjunto é definido como uma agregação de objetos.

• Pode ser especificado ou listando-se seus elementos entre chaves:

$$\mathbb{C} = \{0, 1, 2, 3, 4\}$$

ou evidenciando-se propriedades comuns entre eles:

$$\mathbb{C} = \{x : 0 \le x \le 4\}$$

• O estado lógico ou relação de associação de um elemento x a um conjunto qualquer \mathbb{C} é representado por:

$$x \in \mathbb{C} \rightarrow x \text{ pertence a } \mathbb{C}$$

$$x \notin \mathbb{C} \rightarrow x$$
 não pertence a \mathbb{C}

Exemplo 1 Conjunto de números reais Sejam a e b números reais. Então:

$$[a,b] = \{ x : a \le x \le b \}$$

$$(a,b) = \{ x : a < x < b \}$$

1.1 Operações entre conjuntos

• União:

$$\mathbb{C}_1 \bigcup \mathbb{C}_2 = \{x : x \in \mathbb{C}_1 \text{ ou } x \in \mathbb{C}_2\}$$

• Intersecção:

$$\mathbb{C}_1 \cap \mathbb{C}_2 = \{x : x \in \mathbb{C}_1 \text{ e } x \in \mathbb{C}_2\}$$

• Complemento:

$$\overline{\mathbb{C}} = \{ x : x \notin \mathbb{C} \}$$

 \bullet S é um subconjunto de $\mathbb C$ se:

$$x \in \mathbb{S} \Rightarrow x \in \mathbb{C}$$

 $\mathbb{S} \subseteq \mathbb{C} \text{ ou } \mathbb{C} \supseteq \mathbb{S}$

Definição 2 Supremo de um conjunto.

Se \mathbb{C} é um conjunto de números reais e $\exists \overline{x} < +\infty$ tal que:

$$x \leq \overline{x}$$
, $\forall x \in \mathbb{C}$

Então o conjunto \mathbb{C} é limitado superiormente e \overline{x} é o menor limitante superior de \mathbb{C} ou o supremo de \mathbb{C} .

$$\overline{x} = \sup_{x \in \mathbb{C}} x$$
 (sup : $supremo$)

$$= \sup \{ x : x \in \mathbb{C} \}$$

 $=+\infty$, se $\mathbb C$ não é limitado superiormente

Definição 3 Ínfimo de um conjunto

Se \mathbb{C} é um conjunto de números reais e $\exists \underline{x} > -\infty$ tal que:

$$x \ge \underline{x}$$
, $\forall x \in \mathbb{C}$

Então o conjunto \mathbb{C} é limitado inferiormente e \underline{x} é o maior limitante inferior de \mathbb{C} ou o ínfimo de \mathbb{C} .

$$\underline{x} = \inf_{x \in \mathbb{C}} x$$
 (inf : *ínfimo*)

$$= \inf \{ x : x \in \mathbb{C} \}$$

 $=-\infty$, se $\mathbb C$ não é limitado inferiormente

2 Vetores

Definição 4 Arranjo ordenado de n elementos em forma de linha ou coluna.

Exemplo 2

•
$$x = \begin{bmatrix} 1 & 2 & -1 & 3 \end{bmatrix} \rightarrow vetor linha (n = 4)$$

$$x = \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix} \longrightarrow vetor\ colunn\ (n = 3)$$

• \Re^n : conjunto de todos os vetores reais de tamanho (ordem) n com elementos reais.

2.1 Vetores Especiais

- Vetor zero ou nulo: todos os componentes são iguais a zero.
- i-ésimo vetor unitário: vetor com elementos iguais a zero, exceto na i-ésima posição.

$$x = [0 \ 0 \ 1 \ 0 \ 0] = e_3$$

- \rightarrow vetor de coordenadas.
- Vetor soma: todos os elementos são iguais a 1.

3 Espaço Vetorial Linear

Definição 5 Um espaço vetorial linear (X, \mathbb{F}) consiste de um conjunto X de elementos (vetores) e de um campo \mathbb{F} , sobre os quais estão definidas as operações:

i) Adição vetorial:

$$\forall x, y \in \mathbb{X}, (x+y) \in \mathbb{X}$$
 $x = [x_1 \ x_2 \ \dots \ x_n]$
 $y = [y_1 \ y_2 \ \dots \ y_n]$
 $(x+y) = [(x_1+y_1) \ (x_2+y_2) \ \dots \ (x_n+y_n)]$

ii) Multiplicação por escalar:

$$\left. \begin{array}{c} \forall \ x \in \mathbb{X} \\ \\ \forall \ \alpha \in \mathbb{F} \end{array} \right\} \quad \Rightarrow \quad (\alpha, x) \in \mathbb{X}$$

$$\alpha x = \alpha [x_1 \ x_2 \ \dots \ x_n]$$

$$= [\alpha x_1 \ \alpha x_2 \ \dots \ \alpha x_n]$$

Leis Axiomáticas

a)
$$x + y = y + x$$
 $(x \in \mathbb{X}, y \in \mathbb{X})$

b)
$$(x+y)+z = x + (y+z)$$
 $(x \in X, y \in X, z \in X)$

$$(\alpha\beta)x = \alpha(\beta x)$$
 $(x \in \mathbb{X}, \alpha \in \mathbb{F}, \beta \in \mathbb{F})$

c)
$$\alpha(x+y) = \alpha x + \alpha y$$
 $(x \in \mathbb{X}, y \in \mathbb{X}, \alpha \in \mathbb{F})$

$$(\alpha + \beta)x = \alpha x + \beta x$$
 $(x \in \mathbb{X}, \alpha \in \mathbb{F}, \beta \in \mathbb{F})$

$$\mathbf{d)} \ x + 0 = x \qquad (x \in \mathbb{X} \ , \ 0 \in \mathbb{X})$$

$$1 \cdot x = x \qquad (x \in \mathbb{X} , 1 \in \mathbb{X})$$

$$\mathbf{e)} \ 0 \ . \ x = 0 \qquad (x \in \mathbb{X} \ , \ \ 0 \in \mathbb{F})$$

f)
$$\forall x \in \mathbb{X}$$
, $\exists (-x) \in \mathbb{X}$: $x + (-x) = 0$

Consequências dos Axiomas

a)
$$x + y = x + z \implies y = z$$

b)
$$\alpha x = \alpha y$$
 e $\alpha \neq 0 \Rightarrow x = y$

c)
$$\alpha x = \beta x$$
 e $x \neq 0 \Rightarrow \alpha = \beta$

d)
$$(\alpha - \beta)x = \alpha x - \beta x$$

e)
$$\alpha(x-y) = \alpha x - \alpha y$$

f)
$$\alpha . 0 = 0$$

Exemplo 3 Espaços vetoriais lineares.

- a) (\Re, \Re) : espaço vetorial linear real.
- **b)** $(\mathfrak{C}, \mathfrak{R})$
- **c)** (\Re^n, \Re) , sendo cada vetor de \Re^n representado como:

$$x = [\alpha_1 \ \alpha_2 \ \dots \ \alpha_n]$$

para

$$\alpha_1, \alpha_2, \dots, \alpha_n \in \Re$$

3.1 Subespaço Linear

Seja (X, \mathbb{F}) um espaço vetorial linear e S um subconjunto de X. Então (S, \mathbb{F}) é um subespaço linear de (X, \mathbb{F}) se S forma um espaço linear sobre \mathbb{F} através das mesmas operações definidas sobre (X, \mathbb{F}) .

Exemplo 4 Subespaços lineares

- **a)** $(\{0\}, \Re)$ subespaço de (\Re^n, \Re)
- **b)** (\Re^n, \Re) subespaço de $(\mathfrak{C}^n, \mathfrak{C})$

Propriedades

a) (\mathbb{Y}, \mathbb{F}) é um subespaço linear de (\mathbb{X}, \mathbb{F}) se:

$$\forall x, y \in \mathbb{Y} \implies (\alpha x + \beta y) \in \mathbb{Y}, \ \forall \alpha, \beta \in \mathbb{F}$$

- **b)** Se (\mathbb{S}, \mathbb{F}) e (\mathbb{T}, \mathbb{F}) são subespaços de (\mathbb{X}, \mathbb{F}) então:
 - b1) $(\mathbb{S}, \mathbb{F}) \cap (\mathbb{T}, \mathbb{F})$ é um subespaço de (\mathbb{X}, \mathbb{F}) .
 - b2) (S, F) + (T, F) é um subespaço de (X, F).

4 Norma

Definição 6 A função que associa a cada $x \in \mathbb{X}$ um número real, representado por ||x||, é chamada de norma de x.

Axiomas

$$\mathbf{a)} \parallel x \parallel \geq 0, \ \forall \ x \in \mathbb{X}$$

b)
$$||x|| = 0 \iff x = 0$$

c)
$$|| x + y || \le || x || + || y || \quad \forall x, y \in \mathbb{X}$$

d)
$$\| \alpha x \| = |\alpha| \| x \|, \forall x \in x, \forall \alpha \in \mathbb{F}$$

Exemplos

a) Norma 1:
$$||x||_1 = \sum_{i=1}^{i=n} |x_i|$$

b) Norma 2:
$$||x||_2 = \left(\sum_{i=1}^{i=n} x_i^2\right)^{1/2}$$

c) Norma
$$\infty$$
: $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$

5 Produto Interno

- Definido sobre $\mathbb{X} \times \mathbb{X}$, associa a cada par de vetores $x, y \in \mathbb{X}$, um escalar representado por $\langle x, y \rangle$.
- O produto interno satisfaz os seguintes axiomas:

$$\mathbf{a}) < x, y > = \overline{< y, x >}$$

b)
$$< x + y, z > = < x, z > + < y, z >$$

$$\mathbf{c}$$
) $< \lambda x, y > = \lambda < x, y >$

d)
$$< x, x > \ge 0$$

e)
$$< x, x > = 0 \iff x = 0$$

• No \Re^n , o produto interno de dois vetores é defindo como:

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

para

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

ullet Dois vetores x,y são ortogonais se:

$$< x, y > = 0$$

 \bullet Um vetor x é ortogonal a um conjunto \mathbb{S} se,

$$\forall s \in \mathbb{S} \Rightarrow \langle x, s \rangle = 0$$

• Norma 2:
$$||x||_2 = \left(\sum_{i=1}^{i=n} x_i^2\right)^{1/2} = \langle x, x \rangle^{1/2}$$

6 Desigualdade de Cauchy-Schwartz

Sejam x e y dois vetores de mesma dimensão. Então:

$$| \langle x, y \rangle | \le ||x|| ||y||$$

 \bullet Propriedade: A quantidade $\sqrt{< x,y>}$ é uma norma para (\mathbb{X},\mathbb{F})

$$||x||_2 = \sqrt{\langle x, y \rangle}$$

 \bullet Se $x, y \in \mathbb{X}$ forem ortogonais, então:

$$||x+y||_2^2 = ||x||_2^2 + ||y||_2^2$$

7 Combinação Linear

Seja $\mathbb{S} = \{ x_1, x_2, \dots, x_n \}$ um subconjunto de um espaço linear (\mathbb{X}, \mathbb{F}) . Um vetor y é dito ser uma combinação linear de elementos de \mathbb{S} se

$$y = \sum_{i=1}^{n} \alpha_i x_i$$

sendo

$$\alpha_i \in \mathbb{F}$$
, $i = 1, \ldots, n$

- O conjunto de todas as combinações lineares de elementos de \mathbb{S} é chamado de subespaço gerado, representado por $[\mathbb{S}]$.
- Propriedade: [S] é um subespaço linear de (X, F).

8 Dependência e Independência Linear

Um vetor y é linearmente dependente em relação a um conjunto de vetores \mathbb{S} se y puder ser expresso como uma combinação linear de elementos de \mathbb{S} , ou seja, se $y \in [\mathbb{S}]$.

Uma coleção de vetores é linearmente dependente se existirem escalares $\alpha_i, i = 1, ..., n$, nem todos nulos, tais que

$$\sum_{i=1}^{n} \alpha_i x_i = 0$$

Teorema 1 Independência Linear

Um conjunto de vetores $\mathbb{S} = \{x_1, x_2, \dots, x_n\}$ é linearmente independente se e somente se a expresão

$$\sum_{i=1}^{n} \alpha_i x_i = 0$$

for verdadeira unicamente para

$$\alpha_i = 0, \quad \forall i, \quad i = 1, \dots, n$$

<u>Prova</u>: (Suficiência) Seja $\mathbb{S} = \{ x_1, x_2, \dots, x_n \}$ um conjunto de vetores. O conceito de dependência linear implica que, para algum $x_r \in \mathbb{S}$, então $x_r \in [\mathbb{S}]$, ou seja,

$$x_r = \sum_{\substack{i=1\\i \neq r}}^n \alpha_i x_i$$

ou ainda:

$$x_r - \sum_{\substack{i=1\\i \neq r}}^n \alpha_i x_i = 0$$

Porém, se x_1, x_2, \ldots, x_n são linearmente independentes, então a expressão acima implica que $\alpha_i = 0, i = 1, 2, \ldots, n$. (Necessidade) Suponha agora que, para algum r, tem-se que $\alpha_r \neq 0$. Então, pela expressão acima

$$x_r = \sum_{i \neq r} \left(\frac{\alpha_i}{\alpha_r}\right) x_i$$

ou seja, o conjunto de vetores é linearmente dependente.

Exemplo 5 Independência Linear

$$x_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 $x_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ $x_3 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

$$\alpha_1 x_1 + \alpha_2 x_2 = 0 \iff \alpha_1 = \alpha_2 = 0$$

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 = 0 \iff \begin{cases} \alpha_1 = 2 \\ \alpha_2 = -1 \\ \alpha_3 = 3 \end{cases}$$

9 Base

Um conjunto finito \mathbb{S} de vetores linearmente independentes forma uma base para (\mathbb{X}, \mathbb{F}) se \mathbb{S} gera (\mathbb{X}, \mathbb{F}) e, se qualquer elemento de \mathbb{S} for retirado, então a coleção de vetores restantes não gera (\mathbb{X}, \mathbb{F}) .

Exemplo 6 Os vetores

$$x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 $x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

formam uma base para \Re^2 , pois $\forall x \in \Re^2$ pode ser escrito na forma

$$x = \alpha_1 x_1 + \alpha_2 x_2$$

e

$$\beta_1 x_1 + \beta_2 x_2 = 0 \iff \beta_1 = 0 , \quad \beta_2 = 0$$

Propriedades

- a) A representação de um vetor numa determinada base é única.
- **b)** Quaisquer bases de um espaço vetorial de dimensão finita têm o mesmo número de elementos.

9.1 Alteração da Base

Considere que o conjunto de vetores

$$x_1, x_2, \ldots, x_j, \ldots, x_n$$

forme uma base para o espaço vetorial (X, \mathbb{F}) .

Deseja-se substituir x_j por y.

Primeiramente, observe que, para $y \in X$:

$$y = \sum_{i=1}^{n} \alpha_i x_i$$

Considere, então, que $\alpha_j \neq 0$.

Logo, para que ocorra a substituição, devem existir escalares μ e μ_i $(i \neq j)$ tais que:

$$\sum_{i \neq j}^{n} \mu_i x_i + \mu y = 0$$

pois o conjunto de vetores

$$x_1, x_2, \ldots, x_{j-i}, y, x_{j+1}, \ldots, x_n$$

deve formar uma nova base para o espaço (X, \mathbb{F}) .

Substituindo o valor de y:

$$\sum_{i \neq j}^{n} \mu_i x_i + \mu \sum_{i=1}^{n} \alpha_i x_i = 0$$

ou seja:

$$\sum_{\substack{i=1\\i\neq j}}^{n} (\mu_i + \mu\alpha_i) x_i + \mu\alpha_j y = 0$$

Mas, como $x_1, x_2, \ldots, x_j, \ldots, x_n$ são LI, então:

$$\mu \alpha_j = 0$$

$$\mu_i + \mu \alpha_i = 0 , \quad i \neq j$$

Por hipótese, $\alpha_j \neq 0 \Rightarrow \mu = 0$.

Consequentemente:

$$\mu_i = 0$$
 para $i \neq j$

Portanto:

$$\sum_{i \neq j} \mu_i x_i + \mu y = 0 \implies \begin{cases} \mu = 0 \\ \mu_i = 0, & i \neq j \end{cases}$$

$$\implies x_1, x_2, \ldots, x_{j-i}, y, x_{j+1}, \ldots, x_n \text{ são LI}$$

⇒ uma nova base foi determinada

10 Matrizes

Definição 7 Arranjo ordenado de $m \times n$ elementos a_{ij} (i = 1, 2, ..., m; j = 1, 2, ..., n) escrito na forma:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

O conjunto de todas as matrizes reais $m \times n$ com elementos reais é representado por $\Re^{m \times n}$.

Propriedades

- a) $(\Re^{m \times n}, \Re)$ é um espaço vetorial linear.
- **b)** Uma matriz pode ser interpretada como um operador linear que mapeia elementos \Re^n no espaço \Re^m :

$$y = Ax, \ x \in \Re^n$$
$$y \in \Re^m$$

10.1 Matrizes especiais

• Matriz retangular deitada (m < n)

$$A = \left[\dots \dots \right] m$$

ullet Matriz retangular de pé (m>n)

$$A = \begin{bmatrix} \dots \\ \dots \\ \dots \\ \dots \end{bmatrix} m$$

• Matriz quadrada (m = n)

$$A = \left[\begin{array}{c} n \\ \cdots \\ \cdots \\ \end{array} \right] m$$

- Matriz triangular
 - -A é uma matriz triangular inferior se é quadrada e $a_{ij} = 0, \ \forall i > j.$

$$\begin{bmatrix} a_{11} & 0 & 0 & \dots & 0 \\ a_{12} & a_{22} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & a_{3n} & \dots & a_{nn} \end{bmatrix}$$

- Triangular superior se $a_{ij} = 0$, $\forall i < j$.

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

- Matriz diagonal A é diagonal se A é quadrada e $a_{ij} = 0, \ \forall i \neq j.$
- Matriz simétrica A é uma matriz simétrica se $a_{ij} = a_{ji}, \forall i, j$.

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{bmatrix}$$

- Matriz identidade Matriz diagonal, tendo $a_{ij} = 1, \forall i$
- Matriz nula $a_{ij} = 0, \forall i, j$
- Matriz coluna

$$A = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \in \Re^{n \times 1}$$

• Matriz linha

$$A = \left[a_1 \ldots a_n \right] \in \Re^{1 \times n}$$

10.2 Operações com matrizes

• Adição:

$$A + B = \{a_{ij} + b_{ij}\}, \quad \forall i, j$$

$$A \in \Re^{m \times n}, \ B \in \Re^{m \times n}$$

• Multiplicação por escalar:

$$\alpha A = \{\alpha a_{ij}\} , \quad \forall i, j$$

$$A \in \Re^{m \times n}, \quad \alpha \in \Re$$

• Multiplicação de matrizes:

$$C = AB = \{c_{ij}\} = \left\{\sum_{k=1}^{n} a_{ik} b_{kj}\right\}$$

$$A \in \Re^{m \times n}$$
, $B \in \Re^{n \times p}$, $C \in \Re^{m \times p}$

Propriedades:

- a) $AB \neq BA$, em geral;
- **b)** IA = A;
- **c)** A(B+C) = AB + AC;
- **d)** (B+C)A = BA + CA;
- Transposta:

$$A' = \{a_{ij}\}' = \{a_{ji}\}, \quad A \in \Re^{m \times n}$$

Propriedades:

- **a)** (AB)' = B'A';
- **b)** Se $A = A' \Rightarrow A$ é simétrica;
- c) $A = -A' \Rightarrow A$ é anti-simétrica;
- **d)** (A + B)' = A' + B'
- Potência:

$$A^k = \underbrace{A \times A \times A \dots \times A}_{\text{k vezes}}$$

$$A \in \Re^{m \times n}$$

• Traço:

Traço de
$$A = \mathbf{Tr}(A) = \sum_{i=1}^{n} a_{ij}$$

$$A \in \Re^{n \times n}$$

Propriedades:

a)
$$\mathbf{Tr}(\alpha A + \beta B) = \alpha \mathbf{Tr}(A) + \beta \mathbf{Tr}(B)$$
, $\forall \alpha, \beta \in \Re$

b)
$$\mathbf{Tr}(AB) = \mathbf{Tr}(BA)$$
, $A \in \Re^{m \times n}$, $B \in \Re^{n \times m}$

• Adjunta:

$$A \in \Re^{m \times n}$$

Adjunta de
$$A = \mathbf{Adj}(A) = \{c'_{ij}\}$$

 c_{ij} : cofator do elemento a_{ij} , $\forall i, j$

Propriedades:

a)
$$A \operatorname{Adj}(A) = \det(A) I$$

b)
$$\mathbf{Adj}(A) \ A = \det(A) \ I$$

• Submatriz:

Matriz resultante da remoção de linhas e/ou colunas completas de uma dada matriz $A \in \Re^{m \times n}$.

• Partição de uma matriz:

Divisão de uma matriz em submatrizes.

Exemplo 7

$$A = \begin{bmatrix} 2 & 3 & -2 & 4 \\ 0 & 1 & 1 & 0 \\ 2 & -1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

Exemplo 8 Casos Especiais:

$$A = \begin{bmatrix} A_4 & A_{12} \\ 0 & A_{22} \end{bmatrix} \Rightarrow Bloco \ Triangular$$

$$A = \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix} \Rightarrow Bloco \ Diagonal$$

Exemplo 9 Sejam A e B matrizes de mesmas dimensões:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

- Adição de submatrizes:

Se cada par (A_{ij}, B_{ij}) tem as mesmas dimensões;

$$A \pm B = \begin{bmatrix} A_{11} \pm B_{11} & A_{12} \pm B_{12} \\ A_{21} \pm B_{21} & A_{22} \pm B_{22} \end{bmatrix}$$

- Multiplicação de submatrizes:

Se

$$A = \left[A_{11} \ A_{12} \right]$$

e

$$B = \begin{bmatrix} B_{11} \\ B_{21} \end{bmatrix}$$

e os produtos $A_{11}B_{12}$ e $A_{12}B_{21}$ são possíveis, então:

$$AB = \begin{bmatrix} A_{11} & A_{12} \end{bmatrix} \begin{bmatrix} B_{11} \\ B_{21} \end{bmatrix}$$
$$= A_{11}B_{11} + A_{12}B_{21}$$

10.3 Determinante

10.3.1 Definição

Seja $A \in \Re^{n \times n}$. Então:

$$|A| = \det(A)$$

$$= \sum_{i=1}^{n} a_{ij} C_{ij}, \text{ para qualquer } j$$

$$= \sum_{j=1}^{n} a_{ij} C_{ij}, \text{ para qualquer } i$$

$$C_{ij} = (-1)^{i+j} M_{ij} \rightarrow \text{cofator do elemento } a_{ij}$$

 $M_{ij} = \text{determinante}$ da matriz formada retirando-se a i-ésima linha e a j-ésima coluna.

Exemplo 10

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & -3 \\ -3 & 2 & 1 \end{bmatrix}$$

$$\det(A) = a_{31}C_{31} + a_{32}C_{32} + a_{33}C_{33}$$

$$= (-3)\det\begin{bmatrix} 0 & 1 \\ 1 & -3 \end{bmatrix} + (-2)\det\begin{bmatrix} 1 & 1 \\ 2 & -3 \end{bmatrix} + (1)\det\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$= 14$$

10.3.2 Propriedades

- a) $\det(AB) = \det(A) \det(B)$;
- $\mathbf{b)} \det(A') = \det(A);$
- **c)** $\det(A^{-1}) = [\det(A)]^{-1}$ se $\det(A) \neq 0$;
- d) $det(A) \neq 0$ se e somente se as linhas (ou colunas) de A forem LI;
- e) Seja B obtida a partir de A, trocando-se duas linhas. Então:

$$\det(B) = -\det(A)$$

f) Seja B obtida a partir de A, multiplicando-se uma linha (ou coluna) por uma constante k. Então:

$$det(B) = k \ det(A)$$

g) Seja B obtida a partir de A, adicionando-se uma linha a outra, vezes uma constante. Então:

$$\det(B) = \det(A)$$

h)

$$A = \begin{bmatrix} B & C \\ 0 & D \end{bmatrix} \Rightarrow \det(A) = \det(B) \det(D)$$

10.4 Espaço Imagem de uma Matriz

10.4.1 Definição

Seja uma matriz $A \in \Re^{m \times n}$. Então, o conjunto

$$\Re(A) = \{ y \in \Re^m : y = Ax, \quad x \in \Re^n \}$$

é o espaço imagem (range) da matriz A.

Propriedades:

- a) $\Re(A)$ é um subespaço do \Re^m
- **b)** $y = Ax = x_1a_1 + x_2a_2 + \ldots + x_na_n$
- c) $\Re(A)$: conjunto de todas as possíveis combinações lineares das colunas de A.

$_{10.4.2}$ Posto (rank) de uma matriz A

O posto de uma matriz $A \in \Re^{m \times n}$, representado por $\rho(A)$, é o número máximo de colunas LI de A, ou ainda, a dimensão do espaço imagem de A.

Propriedades:

- **a)** $\rho(A) = \rho(A')$
- **b)** $\rho(A) \leq \min(n, m)$
- **c)** $\rho(A) = \dim\{(\Re(A))\}\$

10.5 Espaço Nulo de uma Matriz

O espaço nulo ou kernel de uma matriz $A \in \Re^{m \times n}$ é o conjunto definido como:

$$\mathcal{N}(A) = \{ x \in \Re^n : Ax = 0 \}$$

Propriedade:

a) $\mathcal{N}(A)$ é um subespaço do \Re^n .

10.5.1 Nulidade de uma matriz A

Dimensão do espaço nulo de uma matriz A, representada por $\nu(A)$.

Propriedades:

a)
$$\nu(A) = 0 \Longrightarrow \mathcal{N}(A) = \{0\};$$

b)
$$\nu(A) = \gamma \Longrightarrow Ax = 0$$
 possui γ soluções LI ;

c)
$$\rho(A) + \nu(A) = n$$
.

Exemplo 11

$$Ax = x_1 \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}^{a_1} + x_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}^{a_2} + x_3 \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}^{a_3} + x_4 \begin{bmatrix} 0 \\ 2 \\ 4 \end{bmatrix}^{a_4} + x_5 \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}^{a_5}$$

Note que:

$$a_3 = a_1 + a_2$$
; $a_4 = 2a_1$; $a_5 = a_4 - a_3 = a_1 - a_2$.

Portanto:

$$Ax = x_1a_1 + x_2a_2 + x_3(a_1 + a_2) + x_4(2a_1) + x_5(a_1 - a_2)$$

= $(x_1 + x_3 + 2x_4 + x_5)a_1 + (x_2 + x_3 - x_5)a_2$

Como a_1 e a_2 são LI:

$$Ax = 0 \implies \begin{cases} x_1 + x_3 + 2x_4 + x_5 = 0 \\ x_2 + x_3 - x_5 = 0 \end{cases}$$

- Número de incógnitas: 5
- Número de equações: $2 = \rho(A)$
- Número de graus de liberdade: $3 = \nu(A)$

$$(x_3, x_4, x_5)' = (1 \ 0 \ 0)' \rightarrow \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$(x_3, x_4, x_5)' = (0 \ 1 \ 0)' \rightarrow \begin{bmatrix} -2 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$(x_3, x_4, x_5)' = (0 \ 0 \ 1)' \rightarrow \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

10.6 Operações Elementares sobre Matrizes

a) Troca de 2 linhas (ou colunas) de A:

Duas linhas i_1 e i_2 ($i_1 < i_2$) podem ser trocadas prémultiplicando-se A pela matriz:

$$E^{1} = \begin{bmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & & \\ & & 0 & \cdots & \cdots & \ddots & 1 \\ & & \vdots & 1 & & \vdots & & \\ & \vdots & & \ddots & & \vdots & & \\ & & \vdots & & \ddots & \vdots & & \\ & & \vdots & & \ddots & \vdots & & \\ & & 1 & \cdots & \cdots & 0 & & \\ & & & & 1 & & \\ & & & & \ddots & & \\ & & & & & 1 \end{bmatrix}$$
 (i_{1})

b) Multiplicar uma linha (ou coluna) de A por uma constante k:

$$E^{2} = \begin{bmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & k & & \\ & & & 1 & & \\ & & & \ddots & \\ & & & & 1 \end{bmatrix}$$
 (i)

c) Soma de uma linha (ou coluna) i_2 multiplicada por uma constante k com outra linha (ou coluna) i_1 :

$$E^{3} = \begin{bmatrix} 1 & & & & & & & \\ & \ddots & & & & & \\ & & 1 & \dots & & & & \\ & & \ddots & & & \vdots & & \\ & & & 1 & & \vdots & & \\ & & & \ddots & \vdots & & \\ & & & & 1 & & \\ & & & & \ddots & \vdots & \\ & & & & & 1 \end{bmatrix} (i_{1})$$

ou

$$E^{3} = \begin{bmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & & \\ & & \vdots & \ddots & & & \\ & & \vdots & & 1 & & \\ & & \vdots & & \ddots & & \\ & & k & \dots & \dots & 1 & & \\ & & & & \ddots & & \\ & & & & 1 \end{bmatrix}$$
 (i_{2})

10.7 Processo de Eliminação de Gauss

Aplicação sucessiva de operações elementares para reduzir uma matriz $A \in \Re^{m \times n}$ a uma matriz mais simples contendo, em particular, mais zeros que a matriz original.

Exemplo 12

$$A = \begin{bmatrix} 0 & 1 & 2 & -1 \\ -2 & 0 & 0 & 6 \\ 4 & -2 & -4 & -10 \end{bmatrix}$$

- Multiplicação da segunda linha por $\frac{-1}{2}$:

$$A_1 = E_1^2 A = \begin{bmatrix} 0 & 1 & 2 & -1 \\ 1 & 0 & 0 & -3 \\ 4 & -2 & -4 & -10 \end{bmatrix}$$

- Multiplicação da segunda linha por -4 e adicionar o resultado à terceira linha:

$$A_2 = E_2^3 A_1 = \begin{bmatrix} 0 & 1 & 2 & -1 \\ 1 & 0 & 0 & -3 \\ 0 & -2 & -4 & 2 \end{bmatrix}$$

- Troca das duas primeiras linhas:

$$A_3 = E_3^1 A_2 = \begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 2 & -1 \\ 0 & -2 & -4 & 2 \end{bmatrix}$$

- Multiplicação da segunda linha por 2 e adicionar o resultado à terceira linha:

$$A_4 = E_4^3 A_3 = \begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- Multiplicar a primeira coluna por 3 e adicionar o resultado à quarta coluna:

$$A_5 = A_4 E_5^3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- Multiplicar a segunda coluna por -2 e adicionar o resultado à terceira coluna:

$$A_6 = A_5 E_6^3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- Somar as colunas 2 e 4 e manter o resultado na última:

$$A_7 = A_6 E_7^3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Propriedades:

a) Seja $A \in \Re^{m \times n}$ uma matriz não-nula. Então, existe uma sequência finita de matrizes elementares $E_1, E_2, \ldots, E_{l+n}$ tal que:

$$E_{l} E_{l-1} \ldots E_{l}, A E_{l+1} E_{l+2} \ldots E_{l+n}$$

está reduzida a uma das formas:

$$\begin{bmatrix} I_m & 0 \end{bmatrix}, \begin{bmatrix} I_n \\ 0 \end{bmatrix}, \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix}, I_n$$

- **b)** Para qualquer matriz $A \in \mathbb{R}^{m \times n}$, existe uma matriz não-singular $P \in \mathbb{R}^{m \times n}$ e uma matriz não-singular $Q \in \mathbb{R}^{m \times n}$ tal que a matriz PAQ está em uma das formas acima.
- c) O rank de uma matriz $A \in k$ se e somente se esta matriz puder ser reduzida a:

$$\left[\begin{array}{cc} I_k & Q \\ 0 & 0 \end{array}\right]$$

através de uma sequência finita de operações elementares.

10.8 Inversa de uma matriz

10.8.1 Definição

Seja $A \in \Re^{n \times n}$. Se existe $B \in \Re^{n \times n}$ tal que $AB = BA = \mathbf{I}$, então B é denominada matriz inversa de A.

$$A \times A^{-1} = A^{-1} \times A = \mathbf{I}$$

Se A possui inversa, é denominada matriz não-singular; caso contrário, matriz singular.

10.8.2 Propriedades

a)
$$(A^{-1})^{-1} = A$$

b)
$$(AB)^{-1} = B^{-1} \times A^{-1}$$

c)
$$(A^{-1})' = (A')^{-1}$$

d) Condição de existência: $A \in \Re^{n \times n}$ possui inversa se e somente se as linhas (ou colunas) são LI.

10.8.3 Cálculo da inversa:

- a) Eliminação de Gauss-Jordan;
- **b)** Decomposição LU;
- c) Cofator, adjunta, determinante.

10.8.4 Eliminação de Gauss-Jordan

Seqüência de operações elementares sobre as linhas da matriz aumentada $[A \ \mathbf{I}]$, de modo a reduzi-la à matriz $[\mathbf{I} \ A^{-1}]$.

Exemplo 13

$$A = \begin{bmatrix} 1 & 2 & 6 \\ 1 & 3 & 8 \\ 2 & 4 & 16 \end{bmatrix}$$

a1) Montando a matriz aumentada [$A : \mathbf{I}$]:

$$\begin{bmatrix}
1 & 2 & 6 & \vdots & 1 & 0 & 0 \\
1 & 3 & 8 & \vdots & 0 & 1 & 0 \\
2 & 4 & 16 & \vdots & 0 & 0 & 1
\end{bmatrix}$$

a2) Pivoteando sobre o elemento indicado:

$$\begin{bmatrix} 1 & 2 & 6 & \vdots & 1 & 0 & 0 \\ 0 & \boxed{1} & 2 & \vdots & -1 & 1 & 0 \\ 0 & 0 & 4 & \vdots & -2 & 0 & 1 \end{bmatrix}$$

 \Rightarrow Equivale à pré-multiplicar a matriz aumentada por:

$$P(1,1) = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

a3) Pivoteando novamente:

$$\begin{bmatrix} 1 & 0 & 2 & \vdots & 3 & -2 & 0 \\ 0 & 1 & 2 & \vdots & -1 & 1 & 0 \\ 0 & 0 & \boxed{4} & \vdots & -2 & 0 & 1 \end{bmatrix}$$

 \Rightarrow Equivale à pré-mulitiplicar a matriz aumentada por:

$$P(2,2) = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

a4) Finalmente:

$$\begin{bmatrix} 1 & 0 & 0 & \vdots & 4 & -2 & -1/2 \\ 0 & 1 & 0 & \vdots & 0 & 1 & -1/2 \\ 0 & 0 & 1 & \vdots & -1/2 & 0 & 1/4 \end{bmatrix}$$

 \Rightarrow Equivale à pré-multiplicar a matriz aumentada por:

$$P(3,3) = \begin{bmatrix} 1 & 0 & -1/2 \\ 0 & 1 & -1/2 \\ 0 & 0 & 1/4 \end{bmatrix}$$

Portanto:

$$P(3,3)P(2,2)P(1,1)[A : I] = [I : A^{-1}]$$

10.8.5 Decomposição LU

$$A = LU$$

L = matriz triangular inferior;

U = matriz triangular superior.

⇒ Solução de sistemas lineares.

10.8.6 Significado Geométrico da Inversa

A partir do exemplo apresentado:

$$\underbrace{\begin{bmatrix} 4 & -2 & -1/2 \\ 0 & 1 & -1/2 \\ -1/2 & 0 & 1/4 \end{bmatrix}}_{A^{-1}} \underbrace{\begin{bmatrix} 1 & 2 & 6 \\ 1 & 3 & 8 \\ 2 & 4 & 16 \end{bmatrix}}_{A} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\mathbf{I}}$$

$$\begin{bmatrix} v^1 \\ v^2 \\ v^3 \end{bmatrix} \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix}$$

$$\longrightarrow \begin{cases} v^i a_j = 1, & \text{para } i = j \to \text{normais} \\ \\ v^i a_j = 0, & \text{para } i \neq j \to \text{ortogonais} \end{cases}$$

⇒ Os vetores são ortonormais e ordenados.

10.9 Sistemas de Equações Lineares

Considere o sistema de equações lineares:

$$Ax = b$$

sendo

$$A \in \Re^{m \times n}$$

$$x \in \Re^n \longrightarrow \text{variável}$$

$$b \in \Re^m$$

• O problema central em PL é solucioná-lo

Sistema de m equações lineares a n variáveis (ou incógnitas)

- Determinar a solução deste sistema corresponde a:
- a) Determinar se há inconsistência entre suas equações:
 - \rightarrow Um sistema é dito inconsistente se existir um vetor $y \in \Re^m$ tal que:

$$yA = 0$$
, $yb \neq 0$, $y \neq \mathbf{0}$

Exemplo 14 Seja o sistema:

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 7 \end{bmatrix}$$

Para

$$y = \begin{bmatrix} 3 & -1 & -1 \end{bmatrix} \neq \mathbf{0}$$

tem-se que:

$$\begin{array}{ccc} yA &=& \mathbf{0} \\ yb &\neq& 0 \end{array} \right\} \quad \Longrightarrow \quad Inconsistência$$

Teorema 2 $Seja \ a \ equação \ Ax = b.$

i) Dados $A \in \mathbb{R}^{m \times n}$ $e \ b \in \mathbb{R}^m$, existe $x \in \mathbb{R}^n$ tal que Ax = b se e somente se $b \in \mathbb{R}(A)$, ou seja, se:

$$\rho(A) = \rho\left(\begin{bmatrix} A & : & b \end{bmatrix}\right)$$

ii) Dado $A \in \mathbb{R}^{m \times n}$, para cada $b \in \mathbb{R}^m$ existe $x \in \mathbb{R}^n$ tal que Ax = b se e somente se $\Re(A) = \Re^m$, isto é, se:

$$\rho(A) = m$$

- b) Determinar se há equações redundantes e eliminá-las.
 - → Uma equação é dita redundante em um sistema linear se é uma combinação linear de outras equações do sistema.
 - \rightarrow Se existir $y \in \Re^m$, $y \neq 0$, tal que:

$$yA = 0$$
, $yb = 0$

então, para $y_i \neq 0$, a i-ésima equação é redundante;

- → Equação redundante não inclui nova informação; portanto, pode ser eliminada;
- \rightarrow Dois sistemas:

$$\overline{A}x = \overline{b}$$
 e $Ax = b$

são equivalentes se e somente se possuem a mesma solução;

→ Ao se retirar uma linha redundante em um sistema de equações, está-se obtendo um sistema equivalente ao original.

Exemplo 15 Seja o sistema E_1 :

$$E_1: \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 8 \end{bmatrix}$$

Para

$$y = [3 -1 -1]$$

tem-se que

$$yA = \mathbf{0} \\ yb = 0$$
 \Rightarrow Redundância

Eliminando a primeira equação, encontra-se:

$$E_2: \begin{bmatrix} 2 & 3 & 1 \\ 1 & 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 8 \end{bmatrix}$$

Considere, porém, os sistemas:

$$E_3: \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

$$E_4: \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$E_5: \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

 $H\acute{a}$ alguma relação entre eles e E_2 ?

- Observe que:
 - i) Realize as operações:

$$l_1 \leftarrow l_1 - l_2$$
$$l_2 \leftarrow l_2 - l_1 + l_2$$

produzindo:

$$E_{2.1}: \begin{bmatrix} 1 & 0 & -1 \\ 0 & 3 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 9 \end{bmatrix}$$

ii) $Em\ seguida,\ pivotear\ sobre\ o\ elemento\ a_{22}$:

$$E_{2.2}: \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

iii) Equivale a pré-multiplicar o sistema E_2 pela matriz:

$$P = \begin{bmatrix} 1 & -1 \\ -1/2 & 2/3 \end{bmatrix}$$

• Por fim, note que:

 $Em E_3 \rightarrow x_3 \ variável \ livre;$

 $Em E_4 \rightarrow x_2 \ variável \ livre;$

 $Em E_5 \rightarrow x_2 \ variável \ livre.$

- Resolver Ax = b equivale, portanto, a:
 - a) Determinar inconsistência;
 - **b)** Detectar redundância e eliminá-la;
 - c) Determinar soluções para o sistema.

• Três casos são, então, possíveis:

a)
$$Ax = b$$
, $A \in \Re^{m \times n}$, $b \in \Re^m$, $m > n$

b)
$$Ax = b$$
, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $m < n$

Na ausência de inconsistências e eliminadas as redundâncias, existe uma infinidade de soluções.

c)
$$Ax = b$$
, $A \in \Re^{m \times n}$, $b \in \Re^m$, $m = n$

$$\implies \left\{ \begin{array}{l} \text{Ou \'e inconsistente;} \\ \\ \text{Ou \'e redundante} \longrightarrow \text{retorna ao caso anterior.} \end{array} \right.$$

Exemplo 16 Considere o sistema E_3 anterior, para m = 2 e n = 3. A variável x_3 é uma variável livre.

O conjunto de todas as soluções é dado por:

$$\mathbb{C}_3 = \{ x = [x_1 \ x_2 \ x_3] \ : \ x_1 = -1 + x_3, \ x_2 = 3 - x_3 \}$$

 $J\acute{a}\ em\ E_4,\ x_2\ \acute{e}\ a\ variável\ livre.\ O\ conjunto\ de\ todas\ as\ soluç\~{o}es\ \acute{e}:$

$$\mathbb{C}_4 = \{ x = [x_1 \ x_2 \ x_3] : x_1 = 2 - x_2, \ x_3 = 3 - x_2 \}$$

Para E_5 , x_2 também é a variável livre e portanto:

$$\mathbb{C}_5 = \{ x = [x_1 \ x_2 \ x_3] : x_1 = 2 - x_1, \ x_3 = 3 - x_2 \}$$

 $Mas\ E_1,\ E_2,\ E_3,\ E_4,\ E_5\ s\~ao\ equivalentes,\ pois\ s\~ao\ solu\~c\~oes\ do\ mesmo\ sistema\ E_1\ original.$

Considere, então, E_3 .

Seja:

$$I = \{1, 2\}$$

o conjunto de índices associados às variáveis não-livres. Seja:

$$J = \{3\}$$

o conjunto de índices associados às variáveis livres.

Assim:

$$A = \left[A_I : A_J \right]$$

$$x = \begin{bmatrix} x^I \\ x^J \end{bmatrix}$$

$$I\oplus J=\{1,\ 2,\ 3\}$$

ou seja:

$$A_I x^I + A_J x^J = b$$

$$\implies x^I = A_I^{-1} \left[b - A_J x^J \right]$$

 $x^I \implies Vetor \ de \ variáveis \ dependentes$

 $x^{J} \implies Vetor \ de \ variáveis \ independentes \ ou \ livres$

- Note que:
 - a) Existem C_n^m maneiras de escolher o conjunto I;
 - **b)** Para cada conjunto I, existem (n-m) variáveis independentes que podem, cada uma, serem arbitradas em qualquer valor (de $-\infty$ a $+\infty$). Existem, portanto, n-m graus de liberdade;
 - c) A_I deve ser inversível, ou seja, seus vetores-coluna devem formar uma base.

 A_I : matriz-base;

I: conjunto de variáveis básicas.

d) Assim, E_3 , E_4 e E_5 são soluções de E_1 com relação aos conjuntos-base $I_3 = \{1, 2\}$, $I_4 = \{1, 3\}$ e $I_5 = \{3, 1\}$, respectivamente.

• Generalizando:

Solucionar Ax = b corresponde a:

a) Verificar consistência;

Se
$$\rho([A \ b]) > \rho(A) \longrightarrow \text{Inconsistência}$$
.

b) Verificar redundância;

Se
$$\rho([A \ b]) = \rho(A) = k < m \longrightarrow \text{Redundância}.$$

Particionar Ax = b de modo que

$$\begin{bmatrix} A_1 \\ A_2 \end{bmatrix} x = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

$$A_1 \in \Re^{k \times n} , A_2 \in \Re^{(m-k) \times n}$$

$$b_1 \in \Re^k , \qquad b_2 \in \Re^{m-k}$$

$$\rho\left(\begin{bmatrix} A_1 & b_1 \end{bmatrix}\right) = \rho(A) = k$$

$$\implies$$
 eliminar $A_2x = b_2$

c) Solucionar

c1) Se
$$\rho([A \ b]) = \rho(A) = k < n$$

→ Infinitas soluções

$$Ax = b \implies [A_I : A_J] \begin{bmatrix} x^I \\ x^J \end{bmatrix} = b$$

$$A_I \in \Re^{k \times k}$$

$$A_J \in \Re^{k \times (n-k)}$$

$$A_I = \text{matriz base}$$

$$A_I = \text{matriz base}$$
 $A_J = \text{matriz não-básica}$

 x^{I} = variáveis básicas x^{J} = variáveis não-básicas

$$A_I x^I + A_J x^J = b$$

$$\Rightarrow x^I = A_I^{-1}b - A_I^{-1}A_Ix^J$$

c2) Se
$$\rho([A \ b]) = \rho(A) = k = n$$

$$\implies$$
 Solução única $\Rightarrow A_J = \mathbf{0}$

$$x = x_I = A_I^{-1}b$$

 $\Longrightarrow A_I$ deve ser inversível;

• Solucionar, portanto, corresponde a reduzir

$$Ax = b$$

à forma:

$$\begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix} x = \begin{bmatrix} A_I^{-1}b_I \\ 0 \end{bmatrix}$$

através de operações elementares, ou a pivotear sobre a matriz aumentada:

$$\begin{bmatrix} A_I : A_J : \mathbf{I} : b \end{bmatrix}$$

$$\downarrow$$

$$\begin{bmatrix} I : A_I^{-1}A_J : A_I^{-1} : A_I^{-1}b \end{bmatrix}$$

Exemplo 17 Solucione o seguinte sistema:

$$\begin{bmatrix} 0 & 2 & 4 & 10 & 2 & 2 \\ 2 & 4 & -2 & 8 & -1 & 2 \\ 20 & 26 & 2 & 40 & 1 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \\ 34 \end{bmatrix}$$

Consider and o

$$I = \{6, 1, 3\}$$
$$J = \{2, 4, 5\}$$

determine também $(A_I)^{-1}$.

$$\mathbf{a)} \ M = [A_I \ A_J \ I \ b]$$

$$M = \begin{bmatrix} 2 & 0 & 4 & 2 & 10 & 2 & 1 & 0 & 0 & 8 \\ 2 & 2 & -2 & 4 & 8 & -1 & 0 & 1 & 0 & 4 \\ 6 & 20 & 2 & 26 & 40 & 1 & 0 & 1 & 34 \end{bmatrix}$$

Pivoteando sobre o elemento indicado:

$$M_1 = \begin{bmatrix} 1 & 0 & 2 & : & 1 & 5 & 1 & : & 1/2 & 0 & 0 & : & 4 \\ 0 & 2 & -6 & : & 2 & -2 & -3 & : & -1 & 1 & 0 & : & -4 \\ 0 & 20 & -10 & : & 20 & 10 & -5 & : & -3 & 0 & 1 & : & 10 \end{bmatrix}$$

Equivale a pré-multiplicar M por

$$P_1 = \begin{bmatrix} 1/2 & 0 & 0 \\ -1 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \quad \Rightarrow \quad M_1 = P_1 M$$

b) Pivotear sobre o elemento indicado:

$$M_2 = \begin{bmatrix} 1 & 0 & 2 & : & 1 & 5 & 1 & : & 1/2 & 0 & 0 & : & 4 \\ 0 & 1 & -3 & : & 1 & -1 & -3/2 & : & -1/2 & 1/2 & 0 & : & -2 \\ 0 & 0 & 50 & : & 0 & 30 & 25 & : & 7 & -10 & 1 & : & 50 \end{bmatrix}$$

$$P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & -10 & 1 \end{bmatrix} \Rightarrow M_2 = P_2 M_1 = P_2 P_1 M$$

c) Novamente:

$$M_3 = \begin{bmatrix} 1 & 0 & 0 & : & 1 & 19/5 & 0 & : & 11/50 & 2/5 & -1/25 & : & 2 \\ 0 & 1 & 0 & : & 1 & 4/5 & 0 & : & -2/25 & -1/10 & 3/50 & : & 1 \\ 0 & 0 & 1 & : & 0 & 3/5 & 1/2 & : & 7/50 & -1/5 & 1/50 & : & 1 \end{bmatrix}$$

$$P_3 = \begin{bmatrix} 1 & 0 & -2/50 \\ 0 & 1 & 3/50 \\ 0 & 0 & 1/50 \end{bmatrix} \Rightarrow M_3 = P_3 M_2 = P_3 P_2 P_1 M$$

d) Portanto:

$$M_3 = [I_I : \hat{A}_J : (A_I)^{-1} : \hat{b}]$$

11 Conjuntos Convexos

Definição 8 Um conjunto \mathbb{C} é chamado convexo se, para quaisquer dois pontos x_1 e $x_2 \in \mathbb{C}$, o segmento de linha unindo-os também pertence ao conjunto.

Figura 1: Conjunto Convexo

Figura 2: Conjunto Não-Convexo

Portanto, se \mathbb{C} é convexo, $\forall x_1 \in \mathbb{C}$, $\forall x_2 \in \mathbb{C}$ e $\alpha \in [0, 1]$:

$$x = \alpha x_1 + (1 - \alpha) x_2 \quad \Rightarrow \quad x \in \mathbb{C}$$

De forma geral, um conjunto convexo é definido como:

$$\mathbb{C} = \left\{ x : x = \sum_{i=1}^{N} \alpha_i x_i, \sum_{i=1}^{N} \alpha_i = 1, \alpha_i \ge 0 \right\}$$

11.1 Propriedades

a) Se \mathbb{C} é um conjunto convexo e β um número real, então:

$$\beta \mathbb{C} = \{ x : x = \beta y, y \in \mathbb{C} \}$$

é convexo.

b) Se \mathbb{C} e \mathbb{D} são conjuntos convexos, então:

$$\mathbb{S} = C + D = \{x : x = y + z, y \in \mathbb{C}, z \in \mathbb{D}\}$$
é convexo.

c) A intersecção de conjuntos convexos é um conjunto convexo.

$$\mathbb{S} = C \cap D = \{x : x \in \mathbb{C} \text{ e } x \in \mathbb{D}\}$$

é convexo.

11.2 Ponto Extremo

Definição 9 Um ponto x em um conjunto convexo \mathbb{X} é chamado um ponto extremo de \mathbb{X} se não puder ser representado como uma combinação convexa estrita de pontos distintos de \mathbb{X} .

Ou seja, para $\forall x_1, x_2 \in X$, se

$$x = \lambda x_1 + (1 - \lambda)x_2$$
 para $\lambda \in (0, 1)$

⇒ combinação convexa estrita

 $\implies x = x_1 = x_2 \implies x_1 \in x_2 \text{ pontos extremos de } X.$

 x_1, \ldots, x_5 : pontos extremos

 x_1, x_2 : não são pontos extremos

Qualquer ponto $x \in \mathbb{X}$ pode ser representado como uma combinação convexa entre os pontos extremos (ou vértices) do conjunto \mathbb{X} .

$$x = \sum_{i=1}^{6} \alpha_i \ x_i$$

sendo

$$\sum_{i=1}^{6} \alpha_i = 1$$

$$\alpha_i \geq 0$$
, $i = 1, \ldots, 6$

11.3 Raio

Definição 10 Um raio é uma coleção de pontos na forma:

$$\{x_o + \lambda d : \lambda \ge 0\}$$

sendo

x_o: vértice do raio;

d: direção do raio.

11.4 Direção de um conjunto convexo

Definição 11 Um vetor não-nulo d é denominado uma direção de um conjunto convexo \mathbb{C} se, para cada ponto $x_o \in \mathbb{C}$, o raio $\{x_o + \lambda d : \lambda \geq 0\}$ também pertence ao conjunto.

Exemplo 18 Seja o conjunto poliedral não-vazio:

$$X = \{x : Ax \le b, x \ge 0\}$$

Então, o vetor $d \neq 0$ é uma direção de X se e somente se:

$$A\left(x + \lambda d\right) \le b \tag{1}$$

$$x + \lambda d \ge 0 \tag{2}$$

para $\lambda \neq 0$ $e \forall x \in X$. Assim, note que (1) pode ser escrita como:

$$Ax + \lambda Ad \le b$$

Pela definição de X, $\forall x \in X$, tem-se que $Ax \leq b$. Portanto, (1) é verdadeira se e somente se $Ad \leq 0$, para $\lambda \geq 0$ tendo valor arbitrariamente alto. Ao mesmo tempo, e do mesmo modo, (2) é verdadeira se e somente se $d \geq 0$, para $\lambda \geq 0$ tendo valor arbitrariamente alto. Então, d é uma direção (de minimização) de X se:

$$d \ge 0$$

$$d \ne 0$$

$$Ad \le 0$$

Exemplo 19 O conjunto das direções de minimização $D = \{d : Ad \leq 0, d \geq 0, d \neq 0\}$ é um conjunto convexo.

11.5 Direção extrema de um conjunto convexo

Definição 12 Duas direções d_1 e d_2 são ditas distintas ou não-equivalentes se d_1 não pode ser representada como um múltiplo positivo de d_2 .

Definição 13 Uma direção extrema de um conjunto convexo é uma direção que não pode ser representada como uma combinação positiva de duas direções distintas do conjunto.

Direções de um conjunto convexo

11.6 Cone Convexo

Definição 14 $Um\ conjunto\ \mathbb{C}\ \acute{e}\ um\ cone\ se:$

$$x \in \mathbb{C} \quad \Rightarrow \quad \alpha x \in \mathbb{C}$$

Caso o conjunto \mathbb{C} seja convexo \Rightarrow Cone convexo.

Conjunto \mathbb{C} não-convexo \Rightarrow Cone Não-Convexo

Conjunto \mathbb{C} convexo \Rightarrow Cone Convexo

11.7 Hiperplano

Um hiperplano é um conjunto da forma

$$H = \{ x : p'x = \alpha \}$$

para $p \neq 0$ e α um escalar.

p: vetor normal ou vetor gradiente ao hiperplano.

- \longrightarrow Generaliza o conceito de linha no \Re^2 e de plano no \Re^3 .
- → Divide o espaço em duas regiões, chamadas de semiespaços:

$$H_{+} = \{ x : \rho' x \ge \alpha \}$$

$$H_{-} = \{ x : \rho' x \le \alpha \}$$

→ Semi-espaços são conjuntos convexos.

11.8 Poliedro Convexo

- Intersecção de um número finito de semi-espaços.
- Politopo: conjunto poliedral limitado.

Exemplo 20 Poliedro Convexo

a) O conjunto

$$\mathbb{C} = \{x : Ax \le b\}$$

é um poliedro convexo, pois cada semi-espaço pode ser escrito na forma:

$$A^i x \leq b_i$$
, $i = 1, \ldots, m$

Da mesma forma:

$$\mathbb{C} = \{ x : Ax \le b , x \ge 0 \}$$

define um poliedro convexo.

b) Mostre, no plano $x_1 \times x_2$, o conjunto das soluções do sistema de inequações:

$$\begin{bmatrix} -2 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} (a)$$

$$(b)$$

$$x \ge 0$$

→ O conjunto das soluções factíveis do problema linear:

$$\min \quad z = c'x \\
 \sup. \quad a \quad Ax \ge \quad b \\
 \quad x \ge \quad 0$$

é um poliedro convexo.

12 Função Convexa

Uma função $f(\cdot)$ definida em um conjunto convexo \mathbb{C} é convexa se, para $\lambda \in [0,1], \forall x_1 \in \mathbb{C} \ e \ \forall x_2 \in \mathbb{C}$

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Função convexa

Função côncava

Nem convexa, nem côncava

$$\begin{cases} x_1, \ x_2 : \text{ \'otimos locais} \\ x_3 : \text{ \'otimo global} \end{cases}$$

- → Uma função é convexa se seu epígrafo é convexo.
- \longrightarrow Uma função f é côncava se e somente se (-f) é convexa.

12.1 Problema Convexo

- → O problema matemático "determine o mínimo de uma função convexa em um conjunto convexo" é denominado problema convexo.
- → Em um problema convexo, um ótimo local é um ótimo global.

 $\left\{egin{array}{ll} f(x_1,\;x_2) \;:\; ext{n\~ao} \; ext{convexa e nem c\^oncava} \ & x' \;:\; ext{\'otimo focal} \ & x^* \;:\; ext{\'otimo global} \end{array}
ight.$

12.2 Otimização Linear e Convexidade

→ Um problema de otimização linear é um problema convexo.

 \longrightarrow Seja $\mathbb X$ um conjunto convexo e $\mathbb S\subseteq\mathbb X$ um segmento de linha. O conjunto $\mathbb S$ será chamado uma "aresta" se, para todo ponto $s\in\mathbb S$ tal que

$$s = \lambda x_1 + (1 - \lambda)x_2 , \quad \lambda \in (0, 1)$$

então $x_1 \in \mathbb{S}$ e $x_2 \in \mathbb{S}$, sendo $x_1 \in \mathbb{X}$ e $x_2 \in \mathbb{X}$.

→ Dois vértices (ou pontos extremos) de um conjunto convexo poliedral são denominados "adjacentes" se existir uma "aresta" que os une.