Automata

David Robinson

Finite Automaton

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ that consists of:

- 1. Q: A finite set of states
- 2. Σ : An alphabet
- 3. $\delta = Q \times \Sigma \to P(Q)$: A transition function
- 4. $q_0 \in Q$: A start state
- 5. $F \subseteq Q$: A set of accept states

Acceptance

Let $M = (Q, \Sigma, \delta, q_0, F)$ and $w = w_1 w_2 \dots w_n$ be a string of length n over Σ .

M accepts w if there exists a sequence of states in Q, r_0, r_1, \ldots, r_n so that:

- 1. $r_0 = q_0$
- 2. For *i* from 0 to n-1, $\delta(r_i, w_{i+1}) = r+1$
- 3. $r_n \in F$

Recognition

A machine M recognizes language A if $A = \{w \mid M \text{ accepts } w\}$.

Regular Language

A language is regular if and only if it can be recognized by a DFA.

Nondeterminism

A Nondeterministic Finite Automata (NFA):

- 1. Can have more than one possible transition per state per input symbol.
- 2. Doesn't have to have a transition for every state for every input symbol.
- 3. Can transition on the empty string.

A DFA accepts if the path for the input string ends on an accept state, while an NFA accepts if any path for the input string ends on an accept state.