

Properties of Number Systems Order Relation

튜터링

Def Cortesian Product of A and B $A \times B = \{(a,b) \mid a \in A, b \in B\}$ Cordered pair

T sometimes denote (u,b) by axb (not multiplication?)

Def Relation of A and B

R is called a relation of A and B if $R \subseteq A \times B$.

if $(a,b) \in R$, denote aRb

Examples)

"="
$$\leq A \times A$$
 S.t." = $1 = \{(a, a) \mid a \in A\}$
 $\leq \|R \times \|R\|$ S.t. $\leq = \{(a, b) \mid a < b, a, b \in |R\}$
" ≤ 1 " ≤ 1 ", " $\neq 1$ ", ...

Let f be a function from A to B. Define $F = \{(a, f(a)) \mid a \in A\} \subseteq A \times B$. $\rightarrow f$ is a relation

Def Order Relation on A Let C he a relation on A s.t. (1) tryeA w/x +y, either xCy or yCx (2) there is no xGA s.t. xAx (3) if x Cy and y Cz, then x Cz We say C is an order relation (simple order, linear order) F_{x}) < , > order relations =, \leq , \geq , \leq , \geq not order valuations

Some Proporties of Number System M, W, IR nutural number M (1) () $\in \mathbb{N}$ $\int SUCCESSOT OF N$ (2) $N \in \mathbb{N} \longrightarrow N+1 \in \mathbb{N}$ (3) / Sutisfies "the Well-ordering Proporty" (2)* $\gamma + m = n + 1 + \cdots + 1 / a < b$ iff $\exists m \in \mathbb{N}$ s.e. a + m = b $\gamma m + imes$ Corder relation Def Let X he a set w/ order relation < . (X, <)
We say X has the well-ordering property if
every nonempty subset U of X has a least elt.

Type U is a least element if $\forall x \in U$, either $m < \chi$ or $m = \chi$ $m \leq \chi$

N V Z, Q, IR x Mathematical Induction

(i) P(i) true

(ii) if P(n) true, then P(n+1) true.

Then $\forall n \in \mathbb{N}$, P(n) true

$$-N: N+(-n)=0 + Z$$

(X, <) Let $S \subseteq X$. We call S is bounded if $\exists x \in X$ s.e. $\forall y \in S$, $y \in x$.

In this case, we say x is an upper bound of S.

Lemmu IV is not bounded.

D Sps viol, say N is an upper bound of M. Since $M \in M$, $N+1 \in M$. $\longrightarrow MH \leq N \Rightarrow$ Rational Number (2) $\forall q \in \mathbb{Q}$ has a form $q = \frac{n}{m}$ for some $n_{i}m \in \mathbb{Z}$ where $m \neq 0$ (2) $\forall p, q \in \mathbb{Q}$ is dense.

Lef Let (X, <). For $U \subseteq X$, we say $u \in X$ is an upper bound of Uif $\forall x \in \mathcal{U}$, $x \leq y$ $\exists x \in \mathcal{U}$ $\exists x \in$ Def Let 5 he an upper bound of U s.t. if $U \in X$ is another upper bound of U, then $S \leq U$. hen We say s is the least upper bound (or supremum) denote $S = \sup \mathcal{U}$.

ri = imfU

Def Let (X, <).

If every nonempty $U \subseteq X$ which his an upper bound his sup $U \subseteq X$, we say X his "the Leust Upper Bound Proporty".

Ex) Q does not have the L. U.B.P sup $\{x \in Q \mid x^2 \le 2\} = \sqrt{2}$.

Note) IR hus the L.U.B.P (completeness)

M: W.O.P W: Dense R: Complete · For any zell, = Nell s.t. x<N

· For any & EIR W/ E>O, = n E/N S.E. O< t < E

· For any x, y = 1R w/ x < y, = 9 = Q 5.2. 1/9 < y

Def Let (X, X) and A < b in X. $(A, b) = \{x \mid A < x < b\} \text{ is called an open interval in } X$ I not ordered pair $\text{if } (a,b) = \emptyset, \quad A : \text{immediate predecessor of } b$ $\text{b} : \text{imme diate successor} \quad \text{of } a$

[x] X = M, $(n, n+1) = \phi$

Sps S=X hus a supremum.

$$\rightarrow 0$$
 $\forall x \in S, x \leq sup S$

② if \mathcal{U} is an upper bound of S, sup $S \leq \mathcal{U}$.

R satisfies the Least Uper Bound Property "

Ul

X bounded above, X has sup X.