INT307 Multimedia Security System

Information Retrieval with Deep Learning

Shengchen Li

Xi'an Jiaotong-Liverpool University

07th Oct 2022

Basics

Aims

Basics

- Master the working principle of deep learning
- Understand basic knowledge related to deep learning
- Master the framework of multimedia information retrieval via machine learning

Recall INT104

The boundaries between classes are not necessary linear but can be approximate as a combination of linear functions.

- Could be single layer or multiple layer
- There is a threshold process after the output of each neuron, which is named as activation function

Artificial Neural Networks

Data

Basics 00000

- Input Layer
- Hidden Layer
- **Output Layer**

- Feature Extraction
- Classification

Basics

00000

- Neurons effectively represent a mapping between feature spaces
- In neural networks, the mapping is represented as weighted sums with activation functions

Figure 3-2. Incremental calculation steps in a multilayer perceptron

Applications of Deep Learning

Forward Propagation

Basics

00000

- Diagram 28 × 28
- 784 input neurons
- Two hidden layers with 56 neurons each
- RELU as activation functions

Applications of Deep Learning

Common Tricks

Basics 0000

Dropout

Batch Normalisation

Image Processing with Deep Learning

- Scene classification
- Object detection and localisation
- Semantic segmentation
- Facial recognition

Figure 4-2. An example of image segmentation!

Recall

How images are presented by computer systems?

Filter and Convolution

Feature filter	Image segment a		Elemer multipl		1	
-1 1 -1	135 220 57		-135	220	-57	
-1 1 -1	100 200 72	=	-100	200	-72	Average = 6
-1 1 -1	75 198 123		-75	198	-123	(good match to filter)
Feature filter	Image segment b		Elemer multipl		1	
Feature filter	Image segment b				-68	
		=	multipl	ication		Average = -29

Figure 4-4. Application of a simple 3 x 3 filter to two different image segments

Figure 4-3. A convolutional filter is applied iteratively across an image

Convolutional Layers

- Kernel
 - Size
 - Padding
 - Нор
- Feature Maps

Figure 4-5. Typical layering pattern in a CNN

Question

- Why convolution?
- 2 Why multiple feature maps?

Convolutional Neural Network

- Convolutional Layers
- **Pooling Layers**
- **Fully Connected** Layers
- Classifier

Basics

Figure 4-6. An example CNN image classification architecture

Common Image Processing Networks

- VGG
 - VGG-16
 - VGG-19

- Inception
 - 22 Layers
 - With many variations

Recall: Audio Representation

- Waveform
- 2 Sampling
- 3 Quantisation
- 4 Linear Transform*

Figure 4-8. The effect of reduced sample rate and bits per sample in digital audio

- Usually waveform is transformed to time-frequency domain before being processed
- Commonly used time-frequency transforms are:
 - DFT (FFT)
 - DCT

Basics

- Mel-Spectrogram (MFCC)
- Wavelet Transform

Figure 4-9. A spectrogram depicts changing intensities at different frequencies over time

Recurrent Neural Network

- Recurrent Neural Network is commonly used to process sequential media
- RNN features time slice analysis
 - Commonly used time-frequency transforms are:
 - LSTM (Long Short Time Memory)
 - GRU (Gated Recurrent Unit)

Figure 4-10. Basic concept underpinning RNN architectures

Typical Processing Chain for Audio

Figure 4-11. Typical processing chain for audio, with spectrogram preprocessing

Complex Networks

- A deep learning neural network can combine multiple types of structures
 - CNN = CNN + DNN
 - CRNN = CNN + RNN + DNN
- Discussion: Why CRNN can be considered as a way to analyse audio in multi-scale?

Image Processing Audio Processing Advanced Deep Learning Applications of Deep Learning O0000 O00000

Residue Network

Attention

Transformer

Figure 1: The Transformer - model architecture.

Connectionist Temporal Classification

Face Recognition

Fingerprint Recognition

Applications of Deep Learning

00000

Audio Fingerprint

Audio Event Detection

Image Processing
Audio Processing
Advanced Deep Learning
Applications of Deep Learning

00000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
<td

Audio Event Detection

Translation

