

Формальні мови, граматики і автомати

АБСТРАКТНІ ЦИФРОВІ АВТОМАТИ

Практика

Петровська Інна Юріївна +360662977511

АБСТРАКТНІ ЦИФРОВІ АВТОМАТИ Завдання абстрактного автомата

- Абстрактний кінцевий автомат описується трьома кінцевими множинами і двома функціями:
- $A = \{X, Y, S, \delta, \lambda\},\$
- де X множина вхідних сигналів або вхідний алфавіт,
- Y множина вихідних сигналів або вихідний алфавіт,
- S множина станів або алфавіт станів,
- δ функція переходів, $s(t+1) = \delta(s(t), x(t))$,
- λ функція виходів, $y(t) = \lambda(s(t), x(t))$.

Завдання абстрактного автомата.

- Функція переходів δ задає відображення ($X \square S$) ΞS та показує, що автомат A, знаходячись у деякому стані $s_i \coprod S$, під час появи вхідного сигналу $x_j \coprod X$ переходить в деякий стан $s_p \coprod S$. Це записується виразом $s_p = \delta(s_i, x_i)$.
- $S \not\equiv Y$ та показує, що автомат A, знаходячись в деякому стані $s_i \boxplus S$, під час появи вхідного сигналу $x_j \boxplus X$, виробляє вихідний сигнал $y_k \boxplus Y$. Це записується виразом $y_k = (s_i, x_i)$.
 - Абстрактний цифровий автомат називається *ініціальним*, якщо на множині його станів S виділяється спеціальний початковий стан s_0 \blacksquare S, тобто ініціальний абстрактний автомат описується сукупністю S

Задача 1

- Маємо англійський текст, який містить букви a, b, c...z та пробіл. Підрахувати кількість слів, які починаються на букву «b» та закінчуються на «d». «beard»..oid"
- Рішити задачу через «основну таблицю абстрактного автомата»

Рішення

- Вихідні сигнали Уот-не рахуємо слово
- Y1t-рахуємо слово
- Визначаємо множину вхідних сигналів. Через те, що на вхід подаються 27 різних сигналів беремо з них значущі. Значення мають b, d та пробіл.
- X={x₀, x₁, X₂, X₃} X₀-поява букви b; X₁- поява букв b..d; X₂- поява пробілу; X₃- else.
- Визначаємо множину станів або алфавіт станів:
- S0-початковий стан;
- S1-поява букви b ;
- S2-поява букв b..d;
- S3-очікування пробілу.

Основна таблиця абстрактного автомата

СТАНИ	входи			
	X0t b	X1t d	X2t ent	X3t else
S0(t-1)	S1/y0t	S3/y0t	S0/y0t	S3/y0t
S1(t-1) b	S1/y0t	S2/y0t	S0/y0t	S1/y0t
S2(t-1) .bd	S1/y0t	S2/y0t	S0/y1t	S1/y0t
S3(t-1) очікує проб	S3/y0t	S3/y0t	S0/y0t	S3/y0t

граф-схема абстрактного автомата

Задача 2

- Підкидають монету. Побудувати абстрактний автомат, який видає приз, якщо випадає два орла, або дві решки підряд.
- Рішати через «повну матрицю абстрактного автомата» та «основну таблицю абстрактного автомата»; побудувати графсхему автомата
- «Повна матриця» описує всі можливі переходи
- В кожній строчці мають бути всі X, тобто вся множина вхідних сигналів.

Задача 2 Рішення

- Вихідні сигнали $Y = \{y_0, y_1\}: y_{0t}$,-нічого не робити
- у1t-видати приз
- Визначаємо множину вхідних сигналів. $X = \{x_1, x_2, \} x_1$ поява орла; x_2 поява решки
- Визначаємо множину станів або алфавіт станів: S={S0, S1, S2,}
- S0-початковий стан;
- S1-поява орла;
- S2-поява решки;

Задача 2 Рішення

• Основна таблиця абстрактного автомата

СТАНИ	ВХІДНІ СИГНАЛИ		
	X1t o	X2t p	
SO(t-1)	S1/y0	S2/y0	
S1(t-1) o	S0/y1	S0/y0	
S2(t-1) p	S0/y0	S0/y1	

• Повна матриця абстрактного автомата

Стани автомата	Стани автомата Sjt			
Si(t-1)	S0t	S1t	S2t	
S0(t-1)		X1/y0	X2/y0	
S1(t-1)	X1/y1 X2/y0	1	-	
S2(t-1)	X1/y0 X2/y1	-	-	

Задача З

- Маємо англійський текст, який містить букви a, b, c...z та пробіл. Підрахувати кількість слів, які починаються на букви «**bre**» .
- Рішити задачу через «повну матрицю абстрактного автомата»
- У1-рахуємо слово
- У0-не рахуємо
- $A = \{X, Y, S, \delta, \lambda\},\$
- X= X₁-b, X₂-r, X₃-e, X₄-entr, X₅-else
- S

Задача З Рішення Основна таблиця абстрактного автомата

СТАНИ	ВХІДНІ СИГНАЛИ				
	X1t b	X2t r	X3t e	X4t ent	X5t else
S0(t-1)					
S1(t-1) b					
S2(t-1) br					
S3 bre	\$3/y0	\$3/y0	S3/y0	S0/y1	S3/y0
S4(t-1) очікування проб					

•Задача З Рішення Повна матриця абстрактного автомата

Стани автомата Si(t-1)	Стани автомата Sjt				
	S0t	S1t	S2t	S3t	S4t
S0(t-1)	X4/y0	X1/y0			X2, X3,X5/y0
S1(t-1)	X4/y0	-	X2/y0		X3/y0,X5/y0 X1/y0,
S2(t-1)	X4/y0		-	X3/y0	X1/y0, X2/y0, X5/y0
S3(t-1)	X4/y1	-	-	X1,X2,X3,X5 /y0	-
S4(t-1)	X4/y0	-	-	-	X1,X2,X3. X5/y0

Задача З Рішення граф-схема абстрактного автомата

Задача 4 (DZ)

- На вхід пристрою подаються цифри 0,1,2.
- Автомат подає на вихід одиничний сигнал, якщо накопичена сума вхідних сигналів дорівнює або більше 3. Синтезувати абстрактний автомат.
- Основна таблиця абстрактного автомата
- Повна матриця абстрактного автомата
- Граф-схема абстрактного автомата
- X1-0, X2-1, X3-2.
- У1---, У2 одиничний сигнал
- S0-початковий, S1-1 S2-2

Задача 4. Рішення Основна таблиця абстрактного автомата

• СТАНИ	• ВХІДНІ СИГНАЛИ		
	X1t	X2t	X3t
• S0(t-1)	S0/y0	S1/y0	S2/y0
• S1(t-1)	S1/y0	S2/y0	S0/y1
• S2(t-1)	S2/y0	S0/y1	S0/y1

Задача 4. Рішення Повна матриця абстрактного автомата

Стани автомата Si(t-1)	Стани автомата Sjt		
	S0t	S1t	S2t
S0(t-1)	X1/yo	X2/y0	X3/y0
S1(t-1)	X3/y1	X1/y0	X2/y0
S2(t-1)	X2/y1 X3/y1		X1/y0

Таблиці виходів автоматів Мілі та Мура.

Таблиця виходів автомата Мілі

$$y(t) = \mathcal{J}[s(t), x(t)], s(t+1) = \delta[s(t), x(t)],$$

	Входи		
Стани	X_{1t}	X_{2t}	
$S_{0(t-1)}$	y_{0t}	y _{0t}	
$S_{1(t-1)}$	y_{0t}	y _{0t}	
$S_{2(t-1)}$	y_{0t}	y_{1t}	

Таблиця виходів автомата Мура

$$y(t) = \mathcal{S}[s(t),], s(t+1) = \delta[s(t), x(t)],$$

Стани	Виходи
$S_{0(t-1)}$	y_{0t}
$S_{1(t-1)}$	y_{0t}
S _{2(t-1)}	y_{1t}

Задача 5 (DZ)

- Синтезуйте абстрактний автомат для продажу проїзних квитків в метрополітені. Проїзд коштує 3 гривні. Автомат приймає монети по 50 копійок, а також 1 або 2 гривні. Автомат може видавати здачу.
- X0=50коп, X1=1, X2=2
- S0-початковий, S1-50k, S2-1, S3-1,50, S4-2, S5-2,5
- Ү1- видає квиток, У2-квиток+50коп, У3- квиток+1гр, У0---,
- У4- квиток+1,50.

• СТАНИ	• ВХІДНІ СИГНАЛИ		
	X1t 50	X2t 1	X3t 2
• S0(t-1)	S1/y0	S2/y0	S4/y0
• S1(0,50)	S2/y0	S3/y0	S5/y0
• S2(1)	S3/y0	S4/y0	S0/y1
S3(1,50)	S4/y0	S5/y0	S0/y2
S4(2)	S5/y0	S0/y1	S0/y3
S5(2,5)	S0/y1	S0/y2	S0/y4

Задача 6

- Синтезуйте абстрактний автомат Автомат для продажу морозива.
- Принцип дії.
- - Ціна одного шарика з морозивом 5грн, цена двух одиниць, 10грн;
- - Автомат приймає купюри номиналом 1/2/5грн;
- - Купюри любого іншого номиналу не приймются;
- - Кнопка «Купить один шарик мороженого» нажимается в том случае, когда нужная сумма набрана, чтобы автомат выдал мороженное;
- - Кнопка «Купить два шарика мороженого» нажимается в том случае, когда нужная сумма набрана, чтобы автомат выдал мороженое;
- - Кнопка «Выдать сдачу», нажимается в том случае, когда покупатель хочет получить сдачу, НО она нажимается после того, как морожено куплено;
- - Кнопка «Отмена», нажимается в том случае, когда покупатель передумал покупать мороженое. Автомат возвращается в начальное состояние и выдает внесенную сумму.