SMUO 2024

lista 7:

- 1. (Quasi-lewostronna ciągłość) Ustalmy $x \in S$. Niech $(T_n)_{n\geq 1}$ będzie ściśle rosnącym ciągiem czasów zatrzymania, a $T=\lim_n T_n$. Zakładamy, że istnieje stała $C<\infty$ taka, że $T\leq C$. Celem ćwiczenia jest pokazanie, że $X_{T-}=X_T$, \mathbf{P}_x -prawie wszędzie.
 - (a) Niech $f \in \mathcal{D}(L)$ oraz h = Lf. Pokaż, że dla każdego $n \geq 1$,

$$\mathbf{E}_x \left[f(X_T) \mid \mathcal{F}_{T_n} \right] = f(X_{T_n}) + \mathbf{E}_x \left[\int_{T_n}^T h(X_s) \, \mathrm{d}s \middle| \mathcal{F}_{T_n} \right].$$

(b) Przypominamy z RP2R, że

$$\mathbf{E}_{x}\left[f(X_{T})\mid\mathcal{F}_{T_{n}}\right]\to\mathbf{E}_{x}\left[f(X_{T})\left|\widetilde{\mathcal{F}}_{T}\right|\right]$$

prawie pszędzie i w L_1 , gdzie

$$\widetilde{\mathcal{F}}_T = \bigvee_{n=1}^{\infty} \mathcal{F}_{T_n}.$$

Wnioskuj z punktu (a), że

$$\mathbf{E}_x \left[f(X_T) \left| \widetilde{\mathcal{F}}_T \right| = f(X_{T-}). \right.$$

(c) Pokaż, że teza punktu (b) pozostaje prawdziwa, jeśli przyjmiemy jedynie, że $f \in C_0(S)$, oraz wywnioskuj, że dla każdych $f, g \in C_0(S)$,

$$\mathbf{E}_{x}[f(X_{T})g(X_{T-})] = \mathbf{E}_{x}[f(X_{T-})g(X_{T-})].$$

Wnioskuj, że $X_{T-} = X_T$, \mathbf{P}_x -prawie wszędzie.

2. (Operacja zabijania) W tym ćwiczeniu zakładamy, że X ma ciągłe trajektorie. Niech A będzie zwartym podzbiorem S oraz

$$T_A = \inf\{t > 0 : X_t \in A\}.$$

(a) Dla każdego $t \geq 0$ i każdej funkcji $\varphi \in C_0(S)$, definiujemy

$$Q_t^* \varphi(x) = \mathbf{E}_x [\varphi(X_t) \mathbf{1}_{\{t < T_A\}}], \quad x \in S.$$

Sprawdź, że $Q_{t+s}^* \varphi = Q_t^*(Q_s^* \varphi)$, dla każdych $s,t \geq 0$.

(b) Definiujemy $\overline{S} = (S \setminus A) \cup \{\Delta\}$, gdzie Δ jest punktem dodanym do $S \setminus A$ jako punkt izolowany. Dla każdej $\varphi \in C_0(\overline{S})$ i każdego $t \geq 0$, definiujemy

$$\overline{Q}_t\varphi(x)=\mathbf{E}_x[\varphi(X_t)\,\mathbf{1}_{\{t< T_A\}}]+\mathbf{P}_x[T_A\leq t]\varphi(\Delta),\quad \text{jeśli }x\in S\setminus A$$
oraz $\overline{Q}_t\varphi(\Delta)=\varphi(\Delta).$ Pokaż, że $(\overline{Q}_t)_{t\geq 0}$ jest półgrupą.

(c) Pokaż, że pod miarą prawdopodobieństwa \mathbf{P}_x proces \overline{X} zdefiniowany jako

$$\overline{X}_t = \begin{cases} X_t & \text{jeśli } t < T_A \\ \Delta & \text{jeśli } t \ge T_A \end{cases}$$

- jest procesem Markowa z półgrupą $(\overline{Q}_t)_{t\geq 0},$ (spełnia postulaty (PF1, 2, 4) definicjia procesu Fellera.
- (d) Zakładamy, że $(\overline{Q}_t)_{t\geq 0}$ jest półgrupą Fellera i oznaczamy jej generator przez \overline{L} . Niech $f\in \mathcal{D}(L)$ będzie taka, że f oraz Lf zanikają na zbiorze otwartym zawierającym A. Oznaczmy przez \overline{f} dla obcięcia f do $E\backslash A$, i rozważamy \overline{f} jako funkcję na \overline{E} przez położenie $\overline{f}(\Delta)=0$. Pokaż, że $\overline{f}\in \mathcal{D}(\overline{L})$ oraz $\overline{Lf}=Lf$ na $E\backslash A$.