Exam 2 will cover:		
LOs 01.00 – 09.00 (Exam 1)	10.00 Cumulative Distribution Plots	12.00 Regression
	11.00 User-Defined Functions	13.00 Function Discovery

10.00 Create and interpret cumulative distribution plots

Learning Objective	Evidence
	Call the histogramRight function (with the correct input arguments) to generate the histogram properties
10.01 Compute the relative	Determine the frequencies for each bin in a right-bin inclusive histogram
fractional values given the bin intervals	Determine the total number of data points accounted for in the overall histogram
	Calculate the fractional values by dividing the frequency in each bin by the total number of data points accounted for in the overall histogram
10.02 Compute cumulative	Correct syntax for cumsum function
fractional values given the bin	Perform the cumulative sum to get vector of cumulative fractional values
intervals	Start the cumulative sum vector at 0
10.03 Create a cumulative distribution plot using the companion histogram's bin right edges	Correct syntax for the plot command: plot(x, y, 'line/marker formatting')
	Independent variable (x) is the bin edge values from a right-bin inclusive histogram
	Dependent variable (y) is the cumulative fractional values corresponding to the right-bin inclusive histogram
	Correct use of data markers and lines: data markers (for the bin edges) with an overlaid line (for the model)
	Correct syntax for title
	Correct syntax for xlabel
	Correct syntax for ylabel
10.04 Format a cumulative distribution plot for technical presentation	Descriptive title that references the problem context and x-variable data
	Clear x-axis label with units
	Clear y-axis label that is cumulative fractional value
	y-axis scale range of 0 to 1
	x-axis scales that match each other, when using subplots to compare data

Learning Objective	Evidence
	Color and marker/line style(s) that are as specified or distinctive (when multiple data sets) Proper formatting of a legend, when multiple data sets and/or models
	Gridlines
10.05 Determine the likelihood of event occurrences using a cumulative distribution plot	Determine the likelihood of an occurrence of a value: less than specified criteria greater than specified criteria between specified criteria reading the fractional value for given data point
	Clear explanation of how the likelihood is determined
10.06 Estimate and/or describe the process for determining the characteristics of the underlying data set from a cumulative distribution plot	Estimate the median of the data by reading the CDP at 0.5 cumulative fractional value (within 2% of solution answer) Estimate the range of the data by reading the CDP at 0 and 1 cumulative fractional values (within 2% of solution answer) Clear description of a process for determining the median Clear description of a process for determining the range
10.07 Determine the data distribution type from the shape of a cumulative distribution plot	Identify the shape of the distribution (uniform, unimodal, bimodal, normal, etc) Justify shape identification Identify the skew of the distribution (positive, negative, undefined, etc) Justify skew identification
10.08 Draw inferences from the analysis of data with evidence from a cumulative distribution	For a given data set and a problem context, appropriately use a cumulative distribution as described in 10.05 – 10.07 to draw conclusions.

11.00 Create and execute a user-defined function

Learning Objective	Evidence
11.01 Describe at least two reasons why MATLAB user-defined functions as opposed to scripts are used	Recognition that UDFs enable one to create an easily re-usable piece of code
	Recognition that UDFs can be shared with others without them having to know what variables were used by the author
	Recognition that UDFs enable a larger program to broken into smaller parts that can be more easily tested & debugged
	Recognition that UDFs allow team members to work on separate parts of a larger program with less coordination
	Recognition that the first line of a UDF is the function definition line; the first line of a script can be any executable line of code
11.02 Describe three ways a user- defined function is different from a	Recognition that the variables created in a UDF are not available in the Workspace; all variables created in script are available in the Workspace
script	Recognition that a UDF must be called from the command line or from within another function or script; the green run button will not work for a UDF that has input arguments
	Help lines contain input and output argument definitions, with units as appropriate
	Help lines contain concise description of the program
	Help lines show the call to the function
11.03 Create a user-defined	Complete programmer and contributor information in the header (names and emails)
function that adheres to programming standards	Complete problem details including assignment number, problem number
	Code items are in the correct section (e.g. Initialization, Calculations,)
	Computed values are assigned to variables
	Code blocks have explanatory comments
	Variables have commented definitions and units
	Minimal use of hardcoding
11.04 Construct an appropriate function definition line	Correct syntax for a function:
	<pre>function [output1,,outputN] = function_name(input1,,inputM)</pre>
	Function starts with the keyword function
	Order is output arguments, equal sign, function name, input arguments

Learning Objective	Evidence
	Functions with no inputs have no input list; use of () is optional
	Functions with no output arguments have no output list and no equal sign
	 Multiple output arguments are listed inside square brackets, separated by spaces or commas
	Multiple input arguments are listed inside parentheses and are comma-separated
	Function definition line is the first line in the function file (above help lines)
	Function file name matches the function name in the definition line
	Input arguments must meet the problem specifications (with no extraneous input arguments) or be appropriate for the purpose of the function
	Output arguments must meet the problem specifications or be appropriate for the purpose of the function
	Output arguments must be assigned within the function code
	All input arguments are used in the code
11.05 Match the variables names	All input arguments necessary to perform computations are provided in the function definition
used in the function definition line to those used in the function code	Input arguments are not overwritten (e.g. by hardcoded values) before being used in calculations
	All output arguments are appropriately assigned in the function code
	Correct syntax to call a function:
	<pre>function_name(input1,,inputM)</pre>
	Call does not contain keyword function
11.06 Execute a user-defined function	 Order is output arguments, equal sign, function name, input arguments, with output arguments and equal sign being optional for a no-output function
	Functions with no inputs have no input list; use of () is optional
	Functions with no output arguments have no output list and no equal sign
	 Multiple output arguments are listed inside square brackets, separated by spaces or commas

Learning Objective	Evidence
	Multiple input arguments are listed inside parentheses and are comma-separated
	Calls the correct function filename
	Number of input arguments matches the number required by the function
	Input argument list corresponds to the function's expected inputs
	Number of output argument(s) matches the number required by the function
	Output argument list corresponds to the function's expected outputs
11.07 Create test cases to evaluate a user-defined function	Running the UDF with a variety of reasonable values for each input argument to ensure no computation or execution errors occur
	Running the UDF with both scalar and array input arguments to ensure no errors occur
	First line of code is a function definition line
11.08 Convert a script to a user-	Replacement of script header with function header
defined function	Removal of hardcoded variable assignments for all variables in the input argument list
11.09 Track the passing of information to and from a user-defined function	Being able to take given input argument values to one UDF and manually track the value of all computed and passed output arguments and input arguments through a series of UDFs linked through function calls
11.10 Break a problem into a series of sub-functions	Being able to take a complex task and break it into a series of unique UDFs that are each purposeful and easy to test and debug
11.11 Coordinate the passing of information between functions	Call to a user-defined function occurs in the proper function or script
	Variables passed into a user-defined function are defined prior to calling the user-defined function
	User-defined functions are called in the order necessary to complete the coding task
	No use of global variables (to circumvent proper passing of information through function calls)

12.00 Perform linear regression

Learning Objective	Evidence	
13.01 Estimate log10x for any x	Sketch a pair of linear and log number lines representing a range of one order of magnitude Label the tick marks on the pair of linear and log number lines Place x on the log number line Read across from the log number line to the linear line to estimate the log10x value to the nearest tens decimal place	
13.02 Identify function types from graphs of bivariate data, specifically linear, power, exponential, and logarithmic	Use intercept, behavior at or near the origin, and asymptotic behavior to identify the function type • Linear: y = mx + b: has a y intercept and data falls approximately on a line • Exponential: y = b10mx: has a y intercept ofor m>0, as x increases, y increases (concave up) ofor m<0, as x increases, y decreases and asymptotically approaches y = 0 • Power: y = bxm ofor m>0, passes through the origin, as x increases, y increases (concave up for m>1, concave down for 0 <m<1) (concave="" -="" 0,="" an="" and="" approaches="" as="" asymptotically="" down)<="" has="" increases="" increases,="" infinity;="" intercept;="" is="" logarithmic:="" m<0,="" negative="" no="" ofor="" td="" there="" x="" y="" •=""></m<1)>	
13.03 Confirm function identification using a combination of linear and log transformations of the independent and dependent data variables	Identify the independent and dependent data variables that need transformation (or log scaling) to linearize the data Identify the function type that correspond to the transformations (or log scaling) needed to linearize the data	
13.04 Create plots with linear and/or log axis scales (by-hand)	Plots of data using different axis scales to show relationships useful for function discovery • Linear scale: linear scale on x-axis, linear scale on y-axis • Log-linear scale: log scale on x-axis, linear scale on y-axis • Linear-log scale: linear scale on x-axis, log scale on y-axis • Log-log scale: log scale on x-axis, log scale on y-axis	

Learning Objective	Evidence
	Data points are plotted correctly on any given graph
	Function discovery plots display original independent and dependent data (i.e., non-linearized data) whose relationship is being examined
	Each plot has x- and y-axis labels that reference the data in the plot and do not reference the type of scale used
	Plots of data using different axis scales to show relationships useful for function discovery
	Linear scale: linear scale on x-axis, linear scale on y-axis
	Log-linear scale: log scale on x-axis, linear scale on y-axis
	Linear-log scale: linear scale on x-axis, log scale on y-axis
	Log-log scale: log scale on x-axis, log scale on y-axis
13.05 Create plots with linear and/or log axis scales (Excel)	Function discovery plots display original independent and dependent data (i.e., non-linearized data) whose relationship is being examined
	Each plot has x- and y-axis labels that reference the data in the plot and do not reference the type of scale used
	Show the minor gridlines on log scaled axes
	Manage the horizontal axis crosses option so that the x-axis tick labels are at the bottom of the plot
	Manage the decimal places shown on the x and y axis tick marks
13.06 Create plots with linear and/or log axis scales (MATLAB)	Plots of data with different axis scales to show relationships useful for function discovery are generated using the correct syntax for plotting on different scales
	 Linear scale plot: plot command used for linear scale on x-axis, linear scale on y-axis
	 Log-linear scale plot: semilogx command used for log scale on x- axis, linear scale on y-axis
	 Linear-log scale plot: semilogy command used for linear scale on x-axis, log scale on y-axis
	 Log-log scale plot: loglog command used for log scale on x-axis, log scale on y-axis
	Function discovery plots display original independent and dependent data (i.e., non-linearized data) whose relationship is being examined
	Each plot has x- and y-axis labels that reference the data in the plot and do not reference the type of scale used

Learning Objective	Evidence
	Linearize the independent variable data correctly based on the diagnosed function type
	Linear: no change to data
	Logarithmic: log of independent data
	Exponential: no change to independent data
	Power: log of independent data
13.07 Linearize and plot data appropriately	Linearize the dependent variable data correctly based on the diagnosed function type
	Linear: no change to data
	Logarithmic: no change to dependent data
	Exponential: log of dependent data
	Power: log of dependent data
	Axes labels (description and units) are correct based on the plotted data
	Take the log of both sides of the general form and arrange the terms in the linear form of the equation: Y = MX + B
13.08 Linearize a power, exponential, and logarithmic	• Linear: y = mx + b - the linear and general forms are the same
functions	 Exponential: y = b10^{mx} becomes log(y) = mx + log(b)
	 Power: y = bx^m becomes log(y) = mlog(x) + log(b)
	• Logarithmic: $x = b10^{my}$ becomes $y = (1/m)log(x) - (1/m)log(b)$
	Identify slope (M) and intercept (B) coefficients for the best-fit linear model of the linearized data
	Linear: use x and y data
	Exponential: use x and log(y) transformed data
	 Power: use log(x) and log(y) transformed data
	Logarithmic: use log(x) and y transformed data
13.09 Determine the linear and	Place M and B correctly within the linear form of the equation
general forms of the equations for linear, power, exponential, and logarithmic functions	Correctly determine the general form constant m from the linear form slope M
	• Linear: M = m
	• Exponential: M = m
	• Power: M = m
	• Logarithmic: M = 1/m
	Correctly determine the general form constant b from the linear form intercept B

Learning Objective	Evidence
	• Linear: B = b
	• Exponential: B = log(b)
	• Power: B = log(b)
	Logarithmic: B = 1/m*log(b)
	Replace (m) correctly within the general form of the equation
	• Linear: y = mx +b
	• Exponential: y = b10 ^{mx}
	• Power: y = bx ^m
	• Logarithmic: x = b10 ^{my}
	Replace (b) correctly within the general form of the equation
	• Linear: y = mx +b
	• Exponential: y = b10 ^{mx}
	• Power: y = bx ^m
	• Logarithmic: x = b10 ^{my}
	Independent variable values within the range of the original data set (domain of the function model) can be used to make predictions
13.11 Use the function to make predictions only when appropriate	Independent variable values outside the range of the original data set (domain of the function model) must be acknowledged or justified when making predictions
	Predicted numerical values must be consistent with the equation used to make the prediction
	Presentation of numerical predictions with appropriate units
	Management of the decimal places of numerical predictions

ENGR 132 Spring 2017