数学实验 统计推断 实验报告

计 65 赖金霖 2016011377

实验 12

6.

(1)

身高和体重分别的频数直方图和拟合分布曲线如下图所示

从形状上看,这两个分布都接近正态分布。

根据 python 的 scipy. stats. kstest(Kolmogorov-Smirnov 测试)计算,这两个分布都符合正态分布(p值在计算精度下均为0)。

(2)

以身高为例,设其真实均值为 µ,它的观测均值 x*满足

$$\frac{x^* - \mu}{s / \sqrt{n}} \sim t(n - 1)$$

	平均值	置信区间
身高	170. 25	[169. 18, 171. 32]
体重	61. 27	[59. 91, 62. 63]

(3)

以身高为例,可进行假设检验: H_0 : 平均身高=167.5= μ_0 ; H_1 : 平均身高 \neq 167.5。而

$$\frac{x^* - \mu_0}{s/\sqrt{n}} \sim t(n-1)$$

因为 10 年前的平均身高不在(2) 中的置信区间内, 所以学生平均身高明显上升了; 而体重同理, 10 年前的平均体重 60.2 在(2) 中的置信区间内, 所以学生的平均体重没有明显变化。

10. 各类学生平均身高随年龄的变化曲线如下所示:

从肉眼上看,中日两国男生的身高在年龄小时有差别,女生的身高也有细微差别,中国女生在12岁以后要略高于日本女生。

设中国样本数量 n_1 =8333,均值为 μ_1 ,标准差为 d_1 ; 日本样本数量 n_2 =28983,均值为 μ_2 ,标准差为 d_2 ,则

$$z = \frac{\mu_1 - \mu_2}{\sqrt{\frac{s^2}{n_1} + \frac{s^2}{n_2}}} \sim t(n_1 + n_2 - 2)$$

$$where \quad s^2 = \frac{(n_1 - 1)d_1^2 + (n_2 - 1)d_2^2}{n_1 + n_2 - 2}$$

可以对 μ_1 是否等于 μ_2 进行假设检验。在 α =0.05 时,上述设置下各年龄是否有显著差别如下:

	7	8	9	10	11	12	13	14	15	16	17	18
男	有	有	有	有	有	有	有	无	有	无	有	有
女	有	有	有	有	无	有	有	有	有	有	有	有

可以看出,统计方法比肉眼更加敏感。而男性小年龄和女性大年龄时的差别都体现出来了。

补充习题

3.

(1)

理想情况下取值小于T的样本数占总样本数的比例为

$$1 - e^{-\lambda T}$$

设观测值为 K,则 $1/\lambda$ 的估计为

$$\frac{1}{\lambda} \approx -\frac{T}{\ln(1-K)}$$

理想情况下,取值小于 T 的样本的均值为

$$\frac{-Te^{-\lambda T} - \frac{1}{\lambda}e^{-\lambda T} + \frac{1}{\lambda}}{1 - e^{-\lambda T}}$$

若观测值为 Κ,则解上式=Κ,可以得到 λ 的估计。

(3)

理想情况下,样本的平均值为(包括没有失效的元件)

$$-\frac{1}{\lambda}e^{-\lambda T}+\frac{1}{\lambda}$$

若观测值为 K,则解上式=K,也可以得到 λ 的估计。

分别取 T=500,800,1000,1200,1500,对上述三种策略下的 $1/\lambda$ 进行一次估计(置信区间 α 取 0.05):

设置	Т	平均值	置信区间
(1)	500	1020. 789	[1009.942 , 1031.637]
(1)	800	1013. 771	[1004.696 , 1022.847]
(1)	1000	1009. 272	[1000.949 , 1017.594]
(1)	1200	1000. 51	[992. 579 , 1008. 441]
(1)	1500	1012. 351	[1004.508 , 1020.195]
(2)	500	695. 791	[267. 928 , 1123. 654]
(2)	800	3342. 624	[-80.89 , 6766.137]
(2)	1000	11974. 961	[-10451.74 , 34401.662]

(2)	1200	734. 085	[-93. 193 , 1561. 364]
(2)	1500	1123. 774	[1087.99 , 1159.557]
(3)	500	1039. 926	[1027.918 , 1051.933]
(3)	800	1013. 093	[1003.552 , 1022.633]
(3)	1000	1005. 515	[996. 965 , 1014. 066]
(3)	1200	1013. 945	[1005.684 , 1022.206]
(3)	1500	1009. 915	[1002.445 , 1017.385]

从数据中可以看出:

- ▶ (2)中的估计特别不稳定,只有当 T 较大时才能获得可观的置信 区间。
- ▶ 从整体上看,随着 T 增大,置信区间缩短,估计变得更准确。
- ▶ (1)的方法和(3)的方法的估计准确度差不多,而(1)的计算成本更小,所以(1)会是一个更好的估计。

代码可在

 $\verb|https://github.com/1116924/math_exp/blob/master/exp8|$

下找到