1. Seja o sistema linear:

$$Ax = b$$

onde,

$$\mathbf{A} = A_{i,j} = \frac{1}{i+j+1}$$
 e $\mathbf{b} = b_i = \frac{1}{i+n+1}$.

Supondo a matriz $\mathbf{A}_{n\times n}$, com diferentes dimensões n (ex. n=10,100,500,1000), obtem-se os seguintes resultados:

- Gauss sem pivoteamento:

Algorithm 1 Gauss sem pivoteamento

```
1: for i = 0, ..., n do
       if A[i][i] = 0 then
 2:
            Divisão por zero detectada
 3:
            Sair do programa
 4:
       end if
 5:
        for j = 0, ..., n + 1 do
 6:
           razao \leftarrow A[j][i]/A[i][i]
 7:
            for k = 0, ..., n + 1 do
 8:
               A[j][k] \leftarrow A[j][k] - razao * A[i][k]
 9:
            end for
10:
       end for
11:
12: end for
13: solucao[n-1] = A[n-1][n]/A[n-1][n-1]
14: for i = n - 2, \dots, -1 do
        solucao[i] \leftarrow A[i][n]
15:
        for j = i + 1, ..., n do
16:
            solucao[i] \leftarrow solucao[i] - A[i][j] * solucao[j]
17:
18:
        solucao[i] \leftarrow solucao[i]/A[i][i]
19:
20: end for
21: return solucao
```

- Gauss (pivoteamento):

Algorithm 2 Gauss (pivoteamento)

```
1: for k = 0, ..., n do
        i_m ax \leftarrow k
 2:
        pivo_m ax = A[i_m ax][k]
 3:
        for i = k + 1, ..., n do
 4:
            if |A[i][k]| > pivo_m ax then
 5:
                pivo_max \leftarrow A[i][k]
 6:
                i_m ax \leftarrow i
 7:
            end if
 8:
        end for
 9:
        if A[k][i_max] = 0 then
10:
            Divis\~a oporzero detectada
11:
12:
            Sair doprograma
        end if
13:
        if i_m ax! = k then
14:
            troca_linha(A, k, i_max, n)
15:
        end if
16:
        for i = k+1, \ldots, n do
17:
            f \leftarrow A[i][k]/A[k][k]
18:
            for j=k+1,\ldots,n+1 do
19:
                 \overset{\circ}{A}[i][j] \leftarrow A[i][j] - f * A[k][j] 
20:
            end for
21:
            A[i][k] = 0
22:
        end for
23:
24: end for
25: for i = n - 1, \dots, -1 do
        solucao[i] = A[i][n]
        for j = i + 1, ..., n do
27:
            solucao[i] \leftarrow solucao[i] - A[i][j] * solucao[j]
28:
29:
        end for
        solucao[i] \leftarrow solucao[i]/A[i][i]
31: end for
32: return solucao
```

- Decomposição LU:

Algorithm 3 Decomposição LU

```
1: L, U \leftarrow decompoeLU(matriz)
 2: //ResolucaoL * y = b
 3: y[0] \leftarrow B[0]/L[0][0]
 4: for i = 1, ..., n do
        soma \leftarrow 0
 5:
 6:
        for j = 0, \dots, i do
            soma \leftarrow soma + L[i][j] * y[j]
 7:
        end for
 8:
        y[i] \leftarrow (B[i] - soma)/L[i][i]
 9:
10: end for
11: //ResolucaoU * x = y
12: x[n-1] \leftarrow y[n-1]/U[n-1][n-1]
13: for i = n - 1, \dots, -1 do
        soma \leftarrow y[i]
14:
        for j = i + 1, ..., n do
15:
            soma \leftarrow soma - U[i][j] * x[j]
16:
        end for
17:
        x[i] \leftarrow soma/U[i][i]
18:
19: end for
20: return x
```

- Cholesky:

Algorithm 4 Cholesky

```
1: for i = 0, ..., n do
        for j = 0, ..., i + 1 do
 2:
            S \leftarrow Soma \ de \ L[i][k] * L[j][k] \ para \ todo \ k = i, \dots, j
 3:
            if i == j then
 4:
                L[i][j] \leftarrow RaizQuadrada(A[i][i] - s)
 5:
            end if
 6:
            if i! = j then
 7:
                1.0/L[j][j] * (A[i][j] - s
 8:
            end if
 9:
        end for
10:
        Lt \leftarrow transposta(L)
11:
        Y \leftarrow substituicaoRegressiva(L, B)
12:
        X \leftarrow substituicaoRegressiva(Lt, Y)
14: return X
```

Tabela 1: Tempo de execução (em segundos) de cada método para uma matriz de ordem n

n	Gauss Pivoteado	Gauss sem Pivoteamento	Decomposição LU	Cholesky
10	0.002158880233765	0.004033088684082	0.001725912094116	0.000510692596436
100	0.820391654968262	0.766083955764771	0.243905067443848	-
500	64.0267498493195	85.0565690994263	27.3007416725159	-
1000	494.948547840118	756.900232791901	217.466570138931	-

- Na tabela acima, observa-se que o método de eliminação de Gauss com pivoteamento é mais rápido que o mesmo método sem o pivoteamento da matriz. O pivoteamento acelera o processo de convergência do método de Gauss porque garante que o elemento pivô seja o mais próximo possível de zero em cada iteração. Isso significa que o número de iterações necessárias para resolver o sistema é menor, o que leva a uma solução mais rápida.
- Além disso, observa-se que o método de Cholesky pôde ser aplicado apenas para n=10. A eliminação de Cholesky só pode ser aplicada em matrizes positivas definidas, e de acordo com o critério de Sylvester, uma matriz $A \in R$ n×n e positiva definida, se e somente se: det(Ak) i, 0, k = 1, 2, . . . , n

$$det(A_k) > 0, \quad \forall k = 1, 2, \dots, n$$

onde Ak e a matriz menor principal de ordem k (a matriz k × k formada pelas k primeiras linhas e pelas k primeiras colunas). Na matriz do problema estudado, é possível observar que a condição não se satisfaz a partir de n=14, onde a determinante da matriz assume valor negativo $det(A_{14})=-8.16944e-107$

- O método mais rápido para a resolução da matriz em estudo é a decomposição LU, devido a característica de simetria da matriz estudada que a mais fácil de ser decomposta em matrizes triangulares superiores e inferiores. Dessa forma, a decomposição LU faz menos operações que as demais e performa melhor nessa matriz.
- Determinando o erro cometido, por cada um dos métodos utilizados, através do resíduo calculado na norma do máximo, dado por:

$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\infty} = \max_{1 \le i \le n} |A_{i,j}x_i - b_i|, \quad \forall j \in [1, n]$$

onde x_i é o vetor solução:

Tabela 2: Erro cometido pelos métodos na matriz de ordem n

n	Gauss Pivoteado	Gauss sem Pivoteamento	Decomposição LU	Cholesky
10	1.08E-19	8.13E-20	1.36E-19	2.35E-17
100	1.02E-19	1.08E-19	3.66E-19	-
500	9.95E-21	8.68E-21	2.99E-20	-
1000	1.37E-20	1.61E-20	3.39E-20	-

2. A equação diferencial bidimensional

$$-\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = 10 \quad \text{em} \quad [0, 1]^2,$$

u = 0 sobre o contorno do domínio,

quando resolvida pelo método de Diferenças Finitas dá origem a um sistema $\mathbf{A}\mathbf{u}=\mathbf{b},$ conforme representado na matriz abaixo:

com b = 1 e A a matriz heptadiagonal

$$\mathbf{A} = -(\sqrt{n} - 1)^2 \begin{bmatrix} T & I & & & & \\ I & T & I & & & \\ & I & T & I & & \\ & & \ddots & \ddots & \ddots & \\ & & & I & T & I \\ & & & & I & T \end{bmatrix}, \quad \text{com} \quad T = \begin{bmatrix} -4 & 1 & & & & \\ 1 & -4 & 1 & & & \\ & 1 & -4 & 1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & 1 & -4 & 1 \\ & & & & 1 & -4 \end{bmatrix}$$

Tomando n=81,289,1089,4225,16641 podemos montar uma tabela comparando o tempo de execução dos métodos diretos, implementados no item anterior, com os métodos iterativos de Jacobi e Gauss-Seidel adotando diferentes valores da tolerância ε .

Tabela 3: Tempo de execução (em segundos) com $\epsilon = 10^{-16}$ de todos os métodos estudados

n	Gauss (pivoteamento)	Gauss	Decomposição LU	Cholesky	Gauss-Seidel	Jacobi
81	0.228669	0.336494	0.102443	0.0403025	0.896717	0.940109
289	10.816022	15.390144	3.345512	0.801468	40.745250	42.643204
1089	64.026750	616.698538	209.756098	45.185066	1070.693471*	1052.132564*
4225	318.123947	6122.712390	1049.772314	221.945216	986.812487*	976.732689*

Tabela 4: Tempo de execução (em segundos) com $\epsilon = 10^{-8}$ para os métodos iterativos

n	Gauss-Seidel	Jacobi
81	0.506811	0.508443
289	19.862020	19.841964
1089	1069.492442	1047.515233
4225	955.597634*	945.961754*

O cálculo de erro adotado como critério de parada dos métodos iterativos foi erro absoluto com a norma do máximo dado por:

$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\infty} = \max_{1 \le i \le n} |A_{i,j}x_i - b_i|, \quad \forall j \in [1, n]$$

O método de eliminação de Cholesky foi o mais rápido dentre os métodos testados, porém, o erro cometido pela solução obtida ao aplicar esse método é muito maior que os demais, fazendo com que a sua aproximação não compense a velocidade de seu cálculo.

Já com n=1089, o Cholesky apresentou erro 9.66 enquanto o Gauss com pivoteamento obteve $9.95*10^{-21}$, sendo Cholesky 41% mais rápido.

A escolha do valor de ε como $\varepsilon=10^{-16}$ tem por objetivo aproximar a resposta dos métodos iterativos com os métodos diretos, que possuem erros nessa grandeza. Essa aproximação, por sua vez, torna possível a comparação dos tempos de execução entre um método direto e um iterativo. Já a escolha de $\varepsilon=10^{-8}$ busca uma solução com menos iterações.

O número de iterações feitas para alcançar o critério de parada ε pelos métodos iterativos para cada ordem de matriz n e cada valor de erro obtido podem ser observados nas tabelas abaixo:

Tabela 5: Número de iterações dos métodos Gauss Seidel e Jacobi e os tempos de execução para cada n ${\rm com}=10{-}16$

n	N° Iterações (Gauss)	Tempo (Gauss)	N° Iterações (Jacobi)	Tempo(Jacobi)
81	395	0.896717	372	0.940109
289	1220	40.745250	1220	42.643204
1089	2212*	1070.693471*	2212*	1052.132564*
4225	100*	986.812487*	100*	976.732689*

Tabela 6: Número de iterações dos métodos Gauss Seidel e Jacobi e tempos de execução para cada ncom=10-8

n	N° Iterações (Gauss)	Tempo(Gauss)	N° Iterações (Jacobi)	Tempo(Jacobi)
81	189	0.506811	189	0.508443
289	618	19.862020	618	19.841964
1089	2211	1069.492442	2212	1047.515233
4225	100*	955.597634*	100*	945.961754*

* Número de iterações máximas atingidas. O número de iterações máximas foi escolhido de modo a impedir a execução dos métodos iterativos por um tempo muito extenso, tendo em vista o custo computacional e o erro obitdo.

Nota-se que a razão (tempo de execução/quantidade de iteração) aumenta bastante de acordo com o aumento da ordem da matriz. Isso faz com que o tempo de execução de 100 iterações para uma matriz de ordem 4225 se aproxime do tempo de execução de 2212 iterações para uma matriz de ordem 1089.