꼼꼼한 딥러닝 논문 리뷰와 코드 실습

Deep Learning Paper Review and Code Practice

나동빈(dongbinna@postech.ac.kr)

Pohang University of Science and Technology

오늘 리뷰할 논문은?

ICLR 2019

Query-Efficient Hard-label Black-box Attack: An Optimization-based Approach

Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, Cho-Jui Hsieh

University of California, JD AI Research, IBM Research

(배경 지식) Adversarial Examples

- An adversarial example can fool a deep neural network.
- An adversarial example is almost identical to original samples in human perception.
 - i.e., a norm-constrained perturbation is constrained below a specific constant ϵ .

(배경 지식) Definition of Adversarial Example

• Given an original example x_0 and a K-way multi-class classification model

$$f: \mathbb{R}^d \to \{1, \dots, K\}$$

• The attacker's goal is to generate an adversarial example x such that

Untargeted attack

$$x$$
 is close to x_0 and $\underset{i}{arg \max} f_i(x) \neq \underset{i}{arg \max} f_i(x_0)$

i.e., x has a different prediction with x_0 by model f.

(배경 지식) Threat Model: White-box Setting

- Model information including network structure and weights is revealed to the attacker.
 - The gradient of input can be computed by back-propagation.
 - Attacker minimizes the loss function by gradient descent.

(배경 지식) Threat Model: Hard-label Black-box Setting

- The model is not known to the attacker.
 - The attacker can make a query and observe a hard-label multi-class output.
 - The attacker is not able to compute the gradient of input x by back-propagation.

본 논문의 핵심 아이디어: A Boundary-based Reformulation

- Reformulating the hard-label black-box attack as another optimization problem.
- $g(\theta)$ is the distance from x_0 to the nearest adversarial example along the direction θ .

$$\theta^* = arg\min_{\theta} g(\theta)$$
 Untargeted attack where $g(\theta) = arg\min_{\lambda>0} \left(f\left(x_0 + \lambda \frac{\theta}{\|\theta\|}\right) \neq y_0 \right)$
$$x^*(optimal\ adversarial\ example)$$

$$g(\theta^*)$$

$$x_0$$

$$g(\theta_1)$$

$$g(\theta_2)$$

$$g(\theta_1)$$

본 논문의 핵심 아이디어: A Boundary-based Reformulation (cont'd)

• $g(\theta)$ is continuous and hence can be easily optimized.

Untargeted attack

$$L(Z(x)) = \max\{[Z(x)]_{y_0} - \max_{i \neq y_0} [Z(x)]_i, -k\}$$

본 논문의 핵심 아이디어: A Boundary-based Reformulation (cont'd)

- Even if the classifier function is not continuous, $g(\theta)$ is still continuous.
 - This makes it easy to apply the zeroth-order method to solve $\min_{\theta} g(\theta)$.

How to compute $g(\theta)$

18: **return** v_{right}

Algorithm 1 Compute $g(\theta)$ locally

```
1: Input: Hard-label model f, original image x_0, query direction \theta, previous value v, increase/decrease ratio
      \alpha = 0.01, stopping tolerance \epsilon (maximum tolerance of computed error)
 2: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} / \|\boldsymbol{\theta}\|
 3: if f(x_0 + v\theta) = y_0 then
       v_{left} \leftarrow v, v_{right} \leftarrow (1+\alpha)v
        while f(\boldsymbol{x}_0 + v_{right}\boldsymbol{\theta}) = y_0 \ \mathbf{do}
              v_{right} \leftarrow (1+\alpha)v_{right}
 6:
 7: else
           v_{right} \leftarrow v, v_{left} \leftarrow (1 - \alpha)v
 8:
                                                                                                                             \theta
           while f(\boldsymbol{x}_0 + v_{left}\boldsymbol{\theta}) \neq y_0 do
                v_{left} \leftarrow (1 - \alpha)v_{left}
10:
11: ## Binary Search within [v_{left}, v_{right}]
                                                                                                               X_0
12: while v_{right} - v_{left} > \epsilon do
         v_{mid} \leftarrow (v_{right} + v_{left})/2
          if f(\boldsymbol{x}_0 + v_{mid}\boldsymbol{\theta}) = y_0 then
14:
15:
                 v_{left} \leftarrow v_{mid}
           else
16:
17:
                 v_{right} \leftarrow v_{mid}
```

Zeroth Order Optimization

- To solve the optimization problem, the authors use Random Gradient-Free (RGF) method.
- In each iteration, the gradient is estimated by

$$\hat{\boldsymbol{g}} = \frac{g(\boldsymbol{\theta} + \beta \boldsymbol{u}) - g(\boldsymbol{\theta})}{\beta} \cdot \boldsymbol{u}$$

Algorithm 2 RGF for hard-label black-box attack

1: **Input:** Hard-label model f, original image x_0 , initial θ_0 .

2: **for**
$$t = 0, 1, 2, \dots, T$$
 do

Randomly choose u_t from a zero-mean Gaussian distribution 3:

Evaluate $g(\boldsymbol{\theta}_t)$ and $g(\boldsymbol{\theta}_t + \beta \boldsymbol{u})$ using Algorithm 1

5: Compute
$$\hat{\boldsymbol{g}} = \frac{g(\boldsymbol{\theta}_t + \beta \boldsymbol{u}) - g(\boldsymbol{\theta}_t)}{\beta} \cdot \boldsymbol{u}$$
6: Update $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta_t \hat{\boldsymbol{g}}$

6: Update
$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta_t \hat{\boldsymbol{g}}$$

7: **return**
$$\boldsymbol{x}_0 + g(\boldsymbol{\theta}_T)\boldsymbol{\theta}_T$$

Sampling count q = 20

실험 결과: Results of Untargeted Attack

- The proposed Opt-attack achieves a smaller distortion than Decision-attack (BA).
- Compared with C&W attack, Opt-attack attains slightly worse distortion on MNIST and CIFAR.

	MNIST		CIFAR10		Imagenet (ResNet-50)	
	Avg L_2	# queries	Avg L_2	# queries	Avg L_2	# queries
Decision-attack (black-box)	1.1222	60,293	0.1575	123,879	5.9791	123,407
	1.1087	143,357	0.1501	220,144	3.7725	260,797
Opt-attack (black-box)	1.188	22,940	0.2050	40,941	6.9796	71,100
Opt-attack (black-box)	1.049	51,683	0.1625	77,327	4.7100	127,086
	1.011	126,486	0.1451	133,662	3.1120	237,342
C&W (white-box)	0.9921	-	0.1012	-	1.9365	-

실험 결과: Results of Targeted Attack

- The proposed Opt-attack is better than Decision-attack (BA) on MNIST.
- Opt-attack has similar efficiency with Decision-attack at the first 60,000 queries on CIFAR.

	MNIST		CIF	AR10
	Avg L_2	# queries	Avg L_2	# queries
	2.3158	30,103	0.2850	55,552
Decision-attack (black-box	2.0052	58,508	0.2213	140,572
	1.8668	192,018	0.2122	316,791
	1.8522	46,248	0.2758	61,869
Opt-attack (black-box)	1.7744	57,741	0.2369	141,437
	1.7114	73,293	0.2300	186,753
C&W (white-box)	1.4178	-	0.1901	-

실험 결과: Results of Targeted Attack (cont'd)

(a) Examples of targeted Opt-attack.

(b) Examples of targeted Decision-attack (BA).

(참고 자료) Recent Hard-label Black-box Attacks

실험 결과: Attack Gradient Boosting Decision Tree (GBDT)

- The authors conduct the untargeted attack on gradient boosting decision tree (GBDT).
 - The GBDT is one of the discrete decision functions.
- The authors first uncover the vulnerability of GBDT models.

	HIGGS		MNIST		
	Avg L_2	# queries	Avg L_2	# queries	
	0.3458	4,229	0.6113	5,125	
Ours	0.2179	11,139	0.5576	11,858	
	0.1704	29,598	0.5505	32,230	

Conclusion

- The authors propose a generic and optimization-based hard-label black-box attack algorithm.
- The Opt-attack can be applied to <u>discrete and non-continuous models</u> besides neural networks.
 - The GBDT models are vulnerable under their Opt-attack.
- **Opt-attack** achieves smaller or similar distortion using 3-4 times fewer queries compared with the state-of-the-art algorithm (BA).