1. Системы счисления (8 баллов)

- 1. Перевести числа из одной системы счисления в другую с указанием промежуточных результатов действий. $A_{10-8-2-16-10}$. $A_{10} = 102$.
- 2. Перевести числа из одной системы счисления в другую с указанием промежуточных результатов действий. $A_{10-8-2-16-10}$. $A_{10} = 103$.
- 3. Перевести числа из одной системы счисления в другую с указанием промежуточных результатов действий. $A_{10-8-2-16-10}$. $A_{10} = 104$.
- 4. Перевести числа из одной системы счисления в другую с указанием промежуточных результатов действий. $A_{10-8-2-16-10.}$ A_{10} =105.
- 5. Перевести числа из одной системы счисления в другую с указанием промежуточных результатов действий. $A_{10-8-2-16-10}$. $A_{10} = 106$.
- 6. Перевести числа из одной системы счисления в другую с указанием промежуточных результатов действий. $A_{10-8-2-16-10}$. $A_{10} = 107$.
- 7. Перевести числа из одной системы счисления в другую с указанием промежуточных результатов действий. $A_{10-8-2-16-10}$. $A_{10} = 108$.
- 8. Перевести числа из одной системы счисления в другую с указанием промежуточных результатов действий. $A_{10-8-2-16-10}$. $A_{10} = 109$.
- 9. Перевести числа из одной системы счисления в другую с указанием промежуточных результатов действий. $A_{10-8-2-16-10}$. $A_{10} = 110$.
- 10. Перевести числа из одной системы счисления в другую с указанием промежуточных результатов действий. $A_{10-8-2-16-10}$. $A_{10} = 111$.
- 11. Перевести числа из одной системы счисления в другую с указанием промежуточных результатов действий. $A_{10-8-2-16-10}$. $A_{10} = 112$.
- 12. Перевести числа из одной системы счисления в другую с указанием промежуточных результатов действий. $A_{10-8-2-16-10.}$ A_{10} =113.
- 13. Перевести числа из одной системы счисления в другую с указанием промежуточных результатов действий. $A_{10-8-2-16-10}$. $A_{10} = 114$.
 - 14. Перевести числа из одной системы счисления в другую с указанием промежуточных результатов действий. $A_{10-8-2-16-10}$. $A_{10} = 115$.

2. Алгебра логики (8 баллов)

- 1. При каких значениях булевых переменных a, b, c и d составное высказывание булевых будет истинно, а при каких ложно? Решение представить в виде таблицы истинности
- 3. При каких значениях булевых переменных a, b, c и d составное высказывание будет истинно, а при каких – ложно? Решение представить в виде таблицы истинности.
- 4. При каких значениях булевых переменных a, b, c и d составное высказывание а—Б/Судет истинно, а при каких – ложно? Решение представить в виде таблицы истинности.
- 5. При каких значениях булевых переменных a, b, c и d составное высказывание аль будет истинно, а при каких ложно? Решение представить в виде таблицы истинности.
- 6. При каких значениях булевых переменных a, b, c и d составное высказывание $a \sim \sqrt{c} - e^{i}$ будет истинно, а при каких – ложно? Решение представить в виде таблицы истинности.
- 7. При каких значениях булевых переменных a, b, c и d составное высказывание булевых переменных а, b, с и d составное высказывание булет истинно, а при каких ложно? Решение представить в виде таблицы истинности.
- 8. При каких значениях булевых переменных a, b, c и d составное высказывание а будет истинно, а при каких ложно? Решение представить в виде таблицы истинности.
- 9. При каких значениях булевых переменных a, b, c и d составное высказывание а ты будет истинно, а при каких – ложно? Решение представить в виде таблицы истинности.

- 10. При каких значениях булевых переменных a, b, c и d составное высказывание а (будет истинно, а при каких – ложно? Решение представить в виде таблицы истинности.
- 11. При каких значениях булевых переменных a, b, c и d составное высказывание а будет истинно, а при каких ложно? Решение представить в виде таблицы истинности.
- 13. При каких значениях булевых переменных a, b, c и d составное высказывание а х будет истинно, а при каких – ложно? Решение представить в виде таблицы истинности.
- 14. При каких значениях булевых переменных a, b, c и d составное высказывание а во будет истинно, а при каких – ложно? Решение представить в виде таблицы истинности.

3. Базы данных (8 баллов)

Вопрос 1:

Задана следующая схема базы данных:

CUSTOMER(<u>ID</u>, CompanyName, LastName, FirstName, Address, City, Phone, Fax);

ORDERS(<u>ID</u>, IDcustomer, OrdersDate, ShipDate, PaidDate, Status);

ITEM(ID, IDorders, IDstock, Quantity, Total);

STOCK(ID, UnitPrice, OnHand, Reoder, Description).

{ ПОКУПАТЕЛЬ(<u>IDпокупателя</u>, НаименованиеКомпании, ФамилияПокупателя, ИмяПокупателя, АдресПокупателя, Город, Телефон, Факс);

3AKA3(<u>IDзаказа</u>, IDпокупателя, ДатаЗаказа, ДатаДоставкиЗакакза, КрайняяДатаДоставкиЗаказа, СтатусОплатаНаличнымиИлиВкредит); ПУНКТЗАКАЗА(<u>IDпунктаЗаказа</u>, IDзаказа, IDтовара, Количество,

СуммаПоПункту); ЗАПАСТОВАРОВ(<u>IDтовара</u>, ЦенаЕдиницыТовара, НаличиеЕстьНет,

ВозможнаяЗамена, Описание) ј.
Из таблицы **ORDERS** выбрать заказы со сроком даты заказа (OrdersDate)

Вопрос 2:

Задана следующая схема базы данных:

CUSTOMER(<u>ID</u>, CompanyName, LastName, FirstName, Address, City, Phone, Fax);

более ранней, чем 31 мая 2014 года. Список отсортировать по номеру заказа.

ORDERS(<u>ID</u>, IDcustomer, OrdersDate, ShipDate, PaidDate, Status);

ITEM(<u>ID</u>, IDorders, IDstock, Quantity, Total);

STOCK(<u>ID</u>, UnitPrice, OnHand, Reoder, Description).

{ ПОКУПАТЕЛЬ(<u>IDnoкупателя</u>, НаименованиеКомпании, ФамилияПокупателя, ИмяПокупателя, АдресПокупателя, Город, Телефон,

3AKA3(<u>IDзаказа</u>, IDпокупателя, ДатаЗаказа, ДатаДоставкиЗакакза, КрайняяДатаДоставкиЗаказа, СтатусОплатаНаличнымиИлиВкредит); IIУНКТЗАКАЗА(<u>IDпунктаЗаказа</u>, IDзаказа, IDтовара, Количество, СуммаПоПункту);

ЗАПАСТОВАРОВ(<u>IDтовара</u>, ЦенаЕдиницыТовара, НаличиеЕстьНет, ВозможнаяЗамена, Описание) }.

Получить список тех заказов, оплата которых выполнена наличными деньгами. Список отсортировать по номеру заказа.

Вопрос 3:

Задана следующая схема базы данных:

CUSTOMER(<u>ID</u>, CompanyName, LastName, FirstName, Address, City, Phone, Fax);

ORDERS(ID, IDcustomer, OrdersDate, ShipDate, PaidDate, Status);

 $\pmb{ITEM}(\underline{ID}, IDorders, IDstock, Quantity, Total);\\$

 $\textbf{STOCK}(\underline{\text{ID}}, \text{UnitPrice}, \text{OnHand}, \text{Reoder}, \text{Description}).$

{ ПОКУПАТЕЛЬ(<u>IDnoкупателя</u>, НаименованиеКомпании, ФамилияПокупателя, ИмяПокупателя, АдресПокупателя, Город, Телефон, Факс):

ЗАКАЗ(<u>IDзаказа</u>, IDпокупателя, ДатаЗаказа, ДатаДоставкиЗакакза, КрайняяДатаДоставкиЗаказа, СтатусОплатаНаличнымиИлиВкредит); ПУНКТЗАКАЗА(<u>IDпунктаЗаказа</u>, IDзаказа, IDтовара, Количество, СуммаПоПункту);

ЗАПАСТОВАРОВ(<u>IDтовара</u>, ЦенаЕдиницыТовара, НаличиеЕстьНет, ВозможнаяЗамена, Описание) }.

Получить список заказов, доставка которых должна быть выполнена 15 мая 2015 года. Список отсортировать по номеру заказа.

Вопрос 4:

Задана следующая схема базы данных:

CUSTOMER(<u>ID</u>, CompanyName, LastName, FirstName, Address, City, Phone, Fax);

ORDERS(<u>ID</u>, IDcustomer, OrdersDate, ShipDate, PaidDate, Status);

ITEM(<u>ID</u>, IDorders, IDstock, Quantity, Total);

STOCK(<u>ID</u>, UnitPrice, OnHand, Reoder, Description).

{ ПОКУПАТЕЛЬ(<u>IDnoкупателя</u>, НаименованиеКомпании, ФамилияПокупателя, ИмяПокупателя, АдресПокупателя, Город, Телефон, Факс);

3AKA3(<u>IDзаказа</u>, IDпокупателя, ДатаЗаказа, ДатаДоставкиЗакакза, КрайняяДатаДоставкиЗаказа, СтатусОплатаНаличнымиИлиВкредит); **ПУНКТЗАКАЗА**(<u>IDпунктаЗаказа</u>, IDзаказа, IDтовара, Количество, СуммаПоПункту):

СуммаПоПункту); **3АПАСТОВАРОВ**(<u>IDтовара</u>, ЦенаЕдиницыТовара, НаличиеЕстьНет, ВозможнаяЗамена, Описание) }.

Создать представление **CUSTOMER_GOLUTVIN** со схемой **CUSTOMER_GOLUTVIN**(<u>ID</u>, CompanyName, LastName, FirstName, Phone Fax), в котором находится описание зарегистрированных покупателей, проживающих в городе 'Голутвин'.

Вопрос 5:

Задана следующая схема базы данных:

CUSTOMER(<u>ID</u>, CompanyName, LastName, FirstName, Address, City, Phone, Fax);

ORDERS(<u>ID</u>, IDcustomer, OrdersDate, ShipDate, PaidDate, Status);

ITEM(ID, IDorders, IDstock, Quantity, Total);

STOCK(ID, UnitPrice, OnHand, Reoder, Description).

{ ПОКУПАТЕЛЬ(<u>IDпокупателя</u>, НаименованиеКомпании, ФамилияПокупателя, ИмяПокупателя, АдресПокупателя, Город, Телефон, Факс);

3AKA3(<u>IDзаказа</u>, IDпокупателя, ДатаЗаказа, ДатаДоставкиЗакакза, КрайняяДатаДоставкиЗаказа, СтатусОплатаНаличнымиИлиВкредит); **ПУНКТЗАКАЗА**(<u>IDпунктаЗаказа</u>, IDзаказа, IDтовара, Количество, СуммаПоПункту);

ЗАПАСТОВАРОВ(<u>IDтовара</u>, ЦенаЕдиницыТовара, НаличиеЕстьНет, ВозможнаяЗамена, Описание) }.

Создать представление **CUSTOMER_ ORDERS** со схемой **CUSTOMER_ ORDERS**(<u>ID</u>, IDcustomer, Status), в котором находятся заказы, оплата которых выполнена 'в кредит'.

Вопрос 6:

Задана следующая схема базы данных:

CUSTOMER(<u>ID</u>, CompanyName, LastName, FirstName, Address, City, Phone, Fax);

ORDERS(<u>ID</u>, IDcustomer, OrdersDate, ShipDate, PaidDate, Status);

ITEM(<u>ID</u>, IDorders, IDstock, Quantity, Total);

STOCK(ID, UnitPrice, OnHand, Reoder, Description).

{ ПОКУПАТЕЛЬ(<u>IDnoкупателя</u>, НаименованиеКомпании, ФамилияПокупателя, ИмяПокупателя, АдресПокупателя, Город, Телефон, Факс);

3AKA3(<u>IDзаказа</u>, IDпокупателя, ДатаЗаказа, ДатаДоставкиЗакакза, КрайняяДатаДоставкиЗаказа, СтатусОплатаНаличнымиИлиВкредит); **ПУНКТЗАКАЗА**(<u>IDпунктаЗаказа</u>, IDзаказа, IDтовара, Количество, СуммаПоПункту);

ЗАПАСТОВАРОВ(<u>IDтовара</u>, ЦенаЕдиницыТовара, НаличиеЕстьНет, ВозможнаяЗамена, Описание) }.

Создать представление **ORDERS_ITEM** со схемой **ORDERS_ITEM** (IDorders, ID.item), выполнив группировку по номеру заказа и сортировку по номеру пункта заказа.

Вопрос 7:

Задана следующая схема базы данных:

CUSTOMER(<u>ID</u>, CompanyName, LastName, FirstName, Address, City, Phone, Fax);

ORDERS(ID, IDcustomer, OrdersDate, ShipDate, PaidDate, Status);

ITEM(ID, IDorders, IDstock, Quantity, Total);

STOCK(ID, UnitPrice, OnHand, Reoder, Description).

(ПОКУПАТЕЛЬ(<u>IDпокупателя</u>, НаименованиеКомпании, ФамилияПокупателя, ИмяПокупателя, АдресПокупателя, Город, Телефон, Факс)

3AKA3(<u>IDзаказа</u>, IDпокупателя, ДатаЗаказа, ДатаДоставкиЗакакза, КрайняяДатаДоставкиЗаказа, СтатусОплатаНаличнымиИлиВкредит); ITVHKT3AKA3A(<u>IDпунктаЗаказа</u>, IDзаказа, IDтовара, Количество, СуммаПоПункту);

ЗАПАСТОВАРОВ(<u>IDтовара</u>, ЦенаЕдиницыТовара, НаличиеЕстьНет, ВозможнаяЗамена, Описание) }.

Создать представление **CUSTOMER_COMPANY** со схемой **CUSTOMER_COMPANY**(CompanyName, LastName, FirstName, ID), в котором находится описание зарегистрированных покупателей и компаний, в которых они работают. Список отсортировать по названию компании.

Вопрос 8:

Задана следующая схема базы данных:

CUSTOMER(<u>ID</u>, CompanyName, LastName, FirstName, Address, City, Phone, Fax);

ORDERS(ID, IDcustomer, OrdersDate, ShipDate, PaidDate, Status);

ITEM(<u>ID</u>, IDorders, IDstock, Quantity, Total);

STOCK(ID, UnitPrice, OnHand, Reoder, Description).

{ ПОКУПАТЕЛЬ(<u>IDnoкynameля</u>, НаименованиеКомпании, ФамилияПокупателя, ИмяПокупателя, АдресПокупателя, Город, Телефон, Факс):

3AKÂЗ(<u>IDзаказа</u>, IDпокупателя, ДатаЗаказа, ДатаДоставкиЗакакза, КрайняяДатаДоставкиЗаказа, СтатусОплатаНаличнымиИлиВкредит); **ПУНКТЗАКАЗА**(<u>IDпунктаЗаказа</u>, IDзаказа, IDтовара, Количество, СуммаПоПункту):

ЗАПАСТОВАРОВ(<u>IDтовара</u>, ЦенаЕдиницыТовара, НаличиеЕстьНет, ВозможнаяЗамена, Описание) }.

Получить список товаров на складе, имеющихся в наличии - 'в_налии'. Список отсортировать по полю описания товаров.

Вопрос 9:

Задана следующая схема базы данных:

CUSTOMER(<u>ID</u>, CompanyName, LastName, FirstName, Address, City, Phone, Fax);

ORDERS(ID, IDcustomer, OrdersDate, ShipDate, PaidDate, Status);

ITEM(ID, IDorders, IDstock, Quantity, Total);

STOCK(<u>ID</u>, UnitPrice, OnHand, Reoder, Description).

{ ПОКУПАТЕЛЬ(<u>IDnoкупателя</u>, НаименованиеКомпании, ФамилияПокупателя, ИмяПокупателя, АдресПокупателя, Город, Телефон, Факс);

3AKA3(<u>IDзаказа</u>, IDпокупателя, ДатаЗаказа, ДатаДоставкиЗакакза, КрайняяДатаДоставкиЗаказа, СтатусОплатаНаличнымиИлиВкредит); **ПУНКТЗАКАЗА**(<u>IDпунктаЗаказа</u>, IDзаказа, IDтовара, Количество, СуммаПоПункту);

ЗАПАСТОВАРОВ(<u>IDтовара</u>, ЦенаЕдиницыТовара, НаличиеЕстьНет, ВозможнаяЗамена, Описание) }.

Получить список товаров на складе (ID, Description, OnHand, Reoder), которых нет в наличии – 'отсутствует', и указать для них возможную замену. Список отсортировать по полю описания товаров.

Вопрос 10:

Задана следующая схема базы данных:

CUSTOMER(<u>ID</u>, CompanyName, LastName, FirstName, Address, City, Phone, Fax);

ORDERS(<u>ID</u>, IDcustomer, OrdersDate, ShipDate, PaidDate, Status);

ITEM(<u>ID</u>, IDorders, IDstock, Quantity, Total);

STOCK(<u>ID</u>, UnitPrice, OnHand, Reoder, Description).

{ ПОКУПАТЕЛЬ(<u>IDnокупателя</u>, НаименованиеКомпании, ФамилияПокупателя, ИмяПокупателя, АдресПокупателя, Город, Телефон, Факс):

3AKA3(<u>IDзаказа</u>, IDпокупателя, ДатаЗаказа, ДатаДоставкиЗакакза, КрайняяДатаДоставкиЗаказа, СтатусОплатаНаличнымиИлиВкредит); **ПУНКТЗАКАЗА**(<u>IDпунктаЗаказа</u>, IDзаказа, IDтовара, Количество, СуммаПоПункту):

СуммаПоПункту); **3АПАСТОВАРОВ**(<u>IDтовара</u>, ЦенаЕдиницыТовара, НаличиеЕстьНет, ВозможнаяЗамена, Описание) }.

Создать представление **STOCK_REODER** со схемой **STOCK_REODER** (ID, Description, OnHand, Reoder), в котором отразить товары, которые на складе отсутствуют. Список отсортировать по полю Description.

Вопрос 11:

Задана следующая схема базы данных:

CUSTOMER(<u>ID</u>, CompanyName, LastName, FirstName, Address, City, Phone, Fax);

ORDERS(<u>ID</u>, IDcustomer, OrdersDate, ShipDate, PaidDate, Status);

ITEM(ID, IDorders, IDstock, Quantity, Total);

STOCK(<u>ID</u>, UnitPrice, OnHand, Reoder, Description).

{ ПОКУПАТЕЛЬ(<u>IDпокупателя</u>, НаименованиеКомпании, ФамилияПокупателя, ЙмяПокупателя, АдресПокупателя, Город, Телефон, Факс);

3AKA3(<u>IDзаказа</u>, IDпокупателя, ДатаЗаказа, ДатаДоставкиЗакакза, КрайняяДатаДоставкиЗаказа, СтатусОплатаНаличнымиИлиВкредит); **ПУНКТЗАКАЗА**(<u>IDпунктаЗаказа</u>, IDзаказа, IDтовара, Количество, СуммаПоПункту);

ЗАПАСТОВАРОВ(<u>IDтовара</u>, ЦенаЕдиницыТовара, НаличиеЕстьНет, ВозможнаяЗамена, Описание) }.

Получить список тех товаров (идентификатор, описание, цена единицы товара), которые имеются на складе — 'в_наличии' и цена единицы которых менее 10000 рублей. Список отсортировать по описанию товара.

Вопрос 12:

Задана следующая схема базы данных:

CUSTOMER(<u>ID</u>, CompanyName, LastName, FirstName, Address, City, Phone, Fax);

ORDERS(<u>ID</u>, IDcustomer, OrdersDate, ShipDate, PaidDate, Status);

ITEM(<u>ID</u>, IDorders, IDstock, Quantity, Total);

STOCK(<u>ID</u>, UnitPrice, OnHand, Reoder, Description).

{ ПОКУПАТЕЛЬ(<u>IDnокупателя</u>, НаименованиеКомпании, ФамилияПокупателя, ИмяПокупателя, АдресПокупателя, Город, Телефон, Факс):

3AKA3(<u>IDзаказа</u>, IDпокупателя, ДатаЗаказа, ДатаДоставкиЗакакза, КрайняяДатаДоставкиЗаказа, СтатусОплатаНаличнымиИлиВкредит); **ПУНКТЗАКАЗА**(<u>IDпунктаЗаказа</u>, IDзаказа, IDтовара, Количество, СуммаПоПункту):

СуммаПоПункту); **3АПАСТОВАРОВ**(<u>IDтовара</u>, ЦенаЕдиницыТовара, НаличиеЕстьНет, ВозможнаяЗамена, Описание) }.

Получить список тех товаров (идентификатор, описание, цена единицы товара), которые имеются на складе — 'в_наличии' и цена единицы которых более 30000 рублей. Список отсортировать по описанию товара.

Вопрос 13:

Задана следующая схема базы данных:

CUSTOMER(<u>ID</u>, CompanyName, LastName, FirstName, Address, City, Phone, Fax);

ORDERS(<u>ID</u>, IDcustomer, OrdersDate, ShipDate, PaidDate, Status);

ITEM(ID, IDorders, IDstock, Quantity, Total);

STOCK(<u>ID</u>, UnitPrice, OnHand, Reoder, Description).

{ ПОКУПАТЕЛЬ(<u>IDnoкупателя</u>, НаименованиеКомпании, ФамилияПокупателя, ИмяПокупателя, АдресПокупателя, Город, Телефон, Факс);

3AKA3(<u>IDзаказа</u>, IDпокупателя, ДатаЗаказа, ДатаДоставкиЗакакза, КрайняяДатаДоставкиЗаказа, СтатусОплатаНаличнымиИлиВкредит); **ПУНКТЗАКАЗА**(<u>IDпунктаЗаказа</u>, IDзаказа, IDтовара, Количество, СуммаПоПункту);

ЗАПАСТОВАРОВ(<u>IDтовара</u>, ЦенаЕдиницыТовара, НаличиеЕстьНет, ВозможнаяЗамена, Описание) }.

Получить список тех товаров (идентификатор, описание, цена единицы товара), которые имеются в прайс-листе, но в настоящий момент на складе отсутствуют – 'нет_в_наличии'. Список отсортировать по описанию товара.

Вопрос 14:

Задана следующая схема базы данных:

CUSTOMER(<u>ID</u>, CompanyName, LastName, FirstName, Address, City, Phone, Fax);

ORDERS(ID, IDcustomer, OrdersDate, ShipDate, PaidDate, Status);

ITEM(<u>ID</u>, IDorders, IDstock, Quantity, Total);

STOCK(<u>ID</u>, UnitPrice, OnHand, Reoder, Description).

{ ПОКУПАТЕЛЬ(<u>IDnокупателя</u>, НаименованиеКомпании, ФамилияПокупателя, ИмяПокупателя, АдресПокупателя, Город, Телефон, Факс);

ЗАКАЗ(<u>IDзаказа</u>, IDпокупателя, ДатаЗаказа, ДатаДоставкиЗакакза, КрайняяДатаДоставкиЗаказа, СтатусОплатаНаличнымиИлиВкредит); ПУНКТЗАКАЗА(<u>IDпунктаЗаказа</u>, IDзаказа, IDтовара, Количество, СуммаПоПункту):

СуммаПоПункту); 3AПАСТОВАРОВ(<u>IDтовара</u>, ЦенаЕдиницыТовара, НаличиеЕстьНет, ВозможнаяЗамена, Описание) }.

Получить список возможной замены (идентификатор, описание, возможная замена) для товаров с Ідтовара 145 или 207. Список отсортировать по описанию товара.

4. Телекоммуникационные сети (8 баллов)

Вопрос 1.

Определить IP-адрес для широковещательной рассылки дейтаграмм в подсети с заданным IP-адресом: 192.168.1.64/26

Вопрос 2.

Провайдер выделил сети IP-адрес: 192.168.10.192/26. Требуется разбить сеть на 4 подсети. Назначить IP-адреса подсетям.

Вопрос 3.

Роутер подключен к локальным сетям LAN1, LAN2 и LAN3 портами P1, P2 и P3 соответственно. В локальных сетях находятся узлы с заданными IP-адресами : в LAN1 — 192.168.35.197/28, в LAN2 - 192.168.35.213/28, в LAN 3 — 192.168.35.230/28. Определить IP-адреса локальных сетей.

Вопрос 4.

Роутер подключен к локальным сетям LAN1, LAN2 и LAN3 портами P1, P2 и P3 соответственно. В локальных сетях находятся узлы с заданными IP-адресами : в LAN1 — 192.168.35.197/28, в LAN2- 192.168.35.213/28, в LAN 3 — 192.168.35.230/28. Назначить IP- адреса портам роутера.

Вопрос 5.

Провайдер выделил сети IP-адрес: 192.168.10.192/26. Требуется разбить сеть на 2 подсети. Назначить IP-адреса подсетям.

Вопрос 6.

Роутер подключен к локальным сетям LAN1, LAN2 и LAN3 портами P1, P2 и P3 соответственно. В локальных сетях находятся узлы с заданными IP-адресами : в LAN1 — 192.168.135.67/28, в LAN2- 192.168.135.90/28, в LAN 3 — 192.168.135.102/28. Назначить IP- адреса портам роутера.

Вопрос 7.

Определить IP-адрес для широковещательной рассылки дейтаграмм в подсети с заданным IP-адресом: 192.168.1.64/28

Вопрос 8.

Назначить IP- адреса всем узлам подсети с заданным IP-адресом: 192.168.168.252/30.

Вопрос 9.

Роутер подключен к локальным сетям LAN1, LAN2 портами P1 и P2 соответственно. В локальных сетях находятся узлы с заданными IP- адресами : в LAN1 – 192.168.135.67/28, в LAN2- 192.168.135.213/26. Определить IP-адреса локальных сетей.

Вопрос 10.

Определить IP-адрес для широковещательной рассылки дейтаграмм в подсети с заданным IP-адресом: 192.168.1.64/27

Вопрос 11.

Назначить IP- адреса всем узлам подсети с заданным IP-адресом: 192.168.168.200/29.

Вопрос 12.

Два компьютера имеют следующие IP-адреса 192.168.19.98 и 192.168.19.132. Определить, находятся ли эти компьютеры в одной подсети, если маска подсети 255.255.255.240.

Вопрос 13.

Дана сеть класса С 192.168.1.0/24. Сеть разбивается на 8 одинаковых подсетей. Сколько хостов можно разместить в каждой подсети.

Вопрос 14.

Два компьютера имеют следующие IP-адреса 192.168.19.198/26 и 192.168.19.232/26. Определить, находятся ли эти компьютеры в одной подсети.

5. Электротехника (8 баллов)

1. Найти разность потенциалов между точками A и B.

2. Найти общее сопротивление цепи.

- 3. 100-ваттная электрическая лампочка круглосуточно включена в сеть 220 В. Найти сумму оплаты электроэнергии за неделю, если её цена составляет 2,93 руб. за 1 кВт-ч.
- 4. Две электроплитки при включении в сеть 220 В развивают мощности по отдельности 1 кВт и 2 кВт. Какую мощность они будут развивать, включённые последовательно?

1 *K*

3к

3 ĸ

12 *B*

1 *K*

2 ĸ

220 B

50 Γu

Ø-

2 ĸ

2 ĸ

220 B

100 Bm

5. Полупроводниковый диод с вольт-амперной характеристикой

$$I = 1 \mathcal{M} \kappa A \left(e^{U/50 \mathcal{M} B} - 1 \right)$$

включён в схему, изображённую на рисунке. Оценить значение сопротивления *R*, при котором падение напряжения на диоде составит 0,2 *B*.

6. Найти параметры источника электроэнергии, внутренняя структура которого приведена на рисунке.

7. Два источника с параметрами (U_{XX} = 12 B, r = 1 O_M) и (U_{XX} = 12 B, r = 1 O_M) соединены параллельно. Найти параметры получившегося источника.

8. Найти номинал балластного конденсатора для подключения электрической лампочки (36 *B*, 60 *Bm*) к источнику переменного напряжения с действующим значением 220 *B* и частотой 50 *Гц*.

9. Найти действующее значение тока в цепи. (Действующее значение источника переменного напряжения – 220 *B*).

10. Трёхфазная нагрузка подключается к трёхфазной сети с действующим напряжением 220 *В* так, как это показано на рисунке. Найти действующее значение тока в нулевом проводе.

11. Найти частотную характеристику четырёхполюсника, изображённого на рисунке, его АЧХ и ФЧХ.

12. Найти параметры колебательного контура, изображённого на рисунке: резонансную частоту, добротность, частоту собственных колебаний.

13. Трансформатор в приведённой схеме имеет первичную обмотку 1000 витков, и вторичную обмотку 200 витков. Найти значение сопротивления *R*, при котором в этом сопротивлении будет выделяться максимальная мощность и величину этой мощности.

14. В схеме, изображённой на рисунке (постоянное напряжение подключено бесконечно долго) в момент времени t=0 индуктивность изменяет своё значение с L_1 на L_2 . Найти переходной процесс на выходе схемы.

6. Теория вероятности и статистика (8 баллов)

- 1. Определить функцию распределения случайной величины X, если ее плотность распределения равна $f(x) = e^{(-kx)}$ на интервале $[0, \infty]$.
- 2. Определить функцию распределения случайной величины X, равномерно распределенной на интервале [5, 15].
- 3. Найти дисперсию случайной величины X, равномерно распределенной на интервале [0, 1].
- 4. Найти функцию плотности распределения случайной величины X, функция распределения которой имеет вид F(x) = 1-exp(-k(x-a)), заданной на интервале $[a, \infty]$
- 5. Определить функцию распределения случайной величины X, если ее плотность распределения равна f(x) = 8x, заданной на интервале [0, 1/2]
- 6. Определить функцию распределения случайной величины X, если ее плотность распределения равна f(x) = 1/x, заданной на интервале [1, e]
- 7. Найти математическое ожидание случайной величины X, если ее плотность распределения равна f(x) = 1/x, заданной на интервале [1, e]
- 8. Найти математическое ожидание случайной величины X, если ее плотность распределения равна f(x) = 8x, заданной на интервале [0, 1/2]
- 9. Имеется процедура R, обращение к которой порождает случайное число, равномерно распределенное в интервале (0,1). Пользуясь этой процедурой, вывести преобразование, позволяющее получить случайную величину \mathbf{t} , распределенную по закону
 - $F(t) = (1-exp(-kt)), \;\;$ заданной на интервале $[0, \infty]$
- 10. Имеется процедура R, обращение к которой порождает случайное число, равномерно распределенное в интервале (0,1). Пользуясь этой процедурой, вывести преобразование, позволяющее получить случайную величину t, распределенную по закону
- F(t) = (t-2)*2, заданной на интервале [2, 3]
- 11. Имеется процедура R, обращение к которой порождает случайное число, равномерно распределенное в интервале (0,1). Пользуясь этой процедурой, вывести преобразование, позволяющее получить случайную величину \mathbf{t} , распределенную по закону
- F(t) = (t-4)*1/2, заданной на интервале [4, 5]

- 12. Имеется процедура R, обращение к которой порождает случайное число, равномерно распределенное в интервале (0,1). Пользуясь этой процедурой, вывести преобразование, позволяющее получить случайную величину \mathbf{t} , распределенную по закону
- F(t) = ln(t), заданной на интервале [1,e]
- 13. Найти дисперсию случайной величины X, равномерно распределенной на интервале [0, 2].
- 14. Найти дисперсию случайной величины X, равномерно распределенной на интервале [0, 3].

7. Программирование (12 баллов)

- 1. Дана матрица D(N,M), N,M<=10, с элементами вещественного типа. Написать программу на языке Паскаль или Си (консольный режим), которая вводит матрицу, для каждой строки матрицы определяет максимальный элемент и перемещает его на место последнего элемента этой строки. Вывести на экран исходную и полученную после перестановки матрицы. Максимальный элемент считать единственным.
- 2. Дана матрица A(N,M), N,M<=12, с элементами целого типа.Написать программу на языке Паскаль или Си (консольный режим), которая вводит матрицу, определяет суммы элементов строк до первого отрицательного элемента и заносит их в новый одномерный массив. Вывести на экран исходную матрицу и рядом с ней массив сумм. Если отрицательных элементов в строке нет, то занести в массив сумм ноль.
- 3. Дана матрица A(N,M), N,M<=10, с элементами целого типа. Написать программу на языке Паскаль или Си (консольный режим), которая вводит матрицу, считает количество различных квадратов со стороной k, содержащих только нулевые элементы, которые можно выделить в матрице. Вывести на экран исходную матрицу и количество квадратов или сообщение о том, что таких квадратов в матрице нет.
- 4. Дана матрица A(N,M), N,M<= 10, с элементами вещественного типа. Написать программу на языке Паскаль или Си (консольный режим), которая вводит матрицу, определяет минимальный элемент в столбце, содержащем максимальный элемент матрицы. Вывести на экран исходную матрицу, номер столбца и найденный минимальный элемент. Считать максимальный в матрице и минимальный элемент в указанном столбце единственными.
- 5. Дана матрица A (N,M), N,M<=10, с элементами целого типа. Написать программу на языке Паскаль или Си (консольный режим), которая вводит матрицу, в каждом столбце матрицы находит минимальный элемент и заносит его в новый одномерный массив C(N). Вывести на экран исходную матрицу и под ней сформированный одномерный массив. Если столбец содержит несколько одинаковых минимальных элементов, то в массив занести первый из них.
- 6 Дана квадратная матрица D(N,N), N<=10, с элементами вещественного типа. Написать программу на языке Паскаль или Си (консольный режим), которая вводит матрицу, определяет максимальный элемент в каждой строке и перемещает его на место элемента главной диагонали той же строки. Считать максимальный элемент в каждой строке единственным. Вывести на экран исходную и полученную после перестановки матрицы.

- 7. Дана матрица A(N,N), N<= 12, с элементами целого типа. Написать программу на языке Паскаль или Си (консольный режим), которая вводит матрицу, для каждого столбца этой матрицы определяет среднее арифметическое элементов, расположенных до первого нулевого элемента, и помещает полученное значение на место элемента побочной диагонали того же столбца. Вывести на экран исходную матрицу и полученную после перестановки.
- 8. Дана матрица A(N,M), N,M<=10, с элементами целого типа. Написать программу на языке Паскаль или Си (консольный режим), которая вводит матрицу, определяет среднее арифметическое максимального и минимального элементов каждого столбца и помещает полученное значение на место первого элемента столбца. Вывести на экран исходную матрицу и полученную после перестановки.
- 9. Дана матрица A(N,N), N<=10, с элементами вещественного типа. Написать программу на языке Паскаль или Си (консольный режим), которая вводит матрицу, определяет минимальный элемент выше главной диагонали и помещает его на место максимального значения ниже главной диагонали. Вывести на экран исходную матрицу и полученную после перестановки.

Считать минимальный и максимальный элементы в указанных областях единственными

- 10. Дана матрица A (N,M), N,M<=10, с элементами целого типа. Написать программу на языке Паскаль или Си (консольный режим), которая вводит матрицу, в каждом столбце матрицы удаляет минимальный элемент и заносит его в новый одномерный массив C(N). Вывести на экран исходную матрицу, полученную матрицу A(N-1,M) и под ней сформированный одномерный массив. Если столбец содержит несколько одинаковых минимальных элементов, то удалить из столбца и занести в массив первый из них.
- 11. Дана матрица D(N,N), N<=10, с элементами вещественного типа. Написать программу на языке Паскаль или Си (консольный режим), которая вводит матрицу, находит средние арифметические элементов четырех частей матрицы, на которые делят ее главная и побочная диагонали (без диагональных элементов). Полученные значения поместить в одномерный массив в любом порядке. Вывести на экран исходную матрицу и одномерный массив.
- 12. Дана матрица D(N,N), N<=10, с элементами целого типа. Написать программу на языке Паскаль или Си (консольный режим), которая вводит матрицу, находит суммы элементов четырех частей матрицы, на которые делят ее главная и побочная диагонали (без диагональных элементов). Полученные значения поместить в одномерный массив в любом порядке. Вывести на экран исходную матрицу и одномерный массив.

- 13. Дана матрица D(N,M), N,M<=10, с элементами целого типа. Написать программу на языке Паскаль или Си (консольный режим), которая вводит матрицу и два числа k,l<=10. Определить суммы элементов четырех частей матрицы, на которые делят ее строка k и столбец l (элементы строки k и столбца l не учитывать). Полученные значения поместить в одномерный массив в любом порядке. Вывести на экран исходную матрицу и одномерный массив.
- 14. Дана матрица D(N,N), N<=10, с элементами целого типа. Написать программу на языке Паскаль или Си (консольный режим), которая вводит матрицу и два числа k,l<=10. Определить суммы элементов матрицы, находящихся выше и ниже диагонали, которая проведена через элемент с индексами k и l параллельно главной диагонали. (Элементы диагонали в суммы не входят.) Вывести на экран исходную матрицу и полученные суммы.

8. Интернет – технологии (12 баллов)

Вопрос 1.

На приведенной схеме корректно расположите указанные технологии (программные продукты) в пунктирных блоках. Поясните назначение каждой технологии.

Схема:

Трехуровневая архитектура веб-приложения

Список технологий (программных продуктов):

- 1. MVC-фреймворк
- 2. Реляционная СУБД
- 3. HTTP
- 4. ORM
- 5. HTML
- 6. SQL

Вопрос 2.

Дан фрагмент HTML-документа со встроенной таблицей стилей CSS. <head>

Какой цвет будет использован для отображения текста «ПРИМЕР ТЕКСТА»? Поясните работу алгоритма каскадирования для данного случая.

Вопрос 3.

Дан фрагмент HTML-документа со встроенной таблицей стилей CSS.

Какой цвет будет использован для отображения текста «ПРИМЕР ТЕКСТА»? Поясните работу алгоритма каскадирования для данного случая.

Вопрос 4.

Дан фрагмент HTML-документа со встроенной таблицей стилей CSS.

Какой цвет будет использован для отображения текста «ПРИМЕР ТЕКСТА»? Поясните работу алгоритма каскадирования для данного случая.

Вопрос 5.

Дан фрагмент HTML-документа со встроенной таблицей стилей CSS. <head>

Какие цвета текста и фона будут использованы для отображения текста «ПРИМЕР ТЕКСТА»?

Вопрос 6.

Дан фрагмент HTML-документа со встроенной таблицей стилей CSS. <head>

Какие цвета текста и фона будут использованы для отображения текста «ПРИМЕР ТЕКСТА»?

Поясните работу алгоритма каскадирования для данного случая.

Вопрос 7.

Дан фрагмент HTML-документа со встроенной таблицей стилей CSS. <head>

Какие цвета текста и фона будут использованы для отображения текста «ПРИМЕР ТЕКСТА»?

Вопрос 8.

Дан фрагмент HTML-документа со встроенной таблицей стилей CSS.

Какие цвета текста и фона будут использованы для отображения текста «ПРИМЕР ТЕКСТА»?

Поясните работу алгоритма каскадирования для данного случая.

Вопрос 9.

Дан фрагмент HTML-документа со встроенной таблицей стилей CSS. <head>

Какие цвета текста и фона будут использованы для отображения текста «ПРИМЕР ТЕКСТА»?

Вопрос 10.

Дан фрагмент HTML-документа со встроенной таблицей стилей CSS.

Каким образом будет выравнен текст «ПРИМЕР ТЕКСТА»:

- по левому краю;
- по центру;
- по правому краю?

Поясните работу алгоритма каскадирования для данного случая.

Вопрос 11.

Дан фрагмент HTML-документа со встроенной таблицей стилей CSS. <head>

Каким образом будет выравнен текст «ПРИМЕР ТЕКСТА»:

- по левому краю;
- по центру;
- по правому краю?

Вопрос 12.

Дан фрагмент HTML-документа со встроенной таблицей стилей CSS.

Какой цвет текста будет использован для отображения текста «ПРИМЕР ТЕКСТА»?

Каким образом будет выравнен текст «ПРИМЕР ТЕКСТА»:

- по левому краю;
- по центру;
- по правому краю?

Поясните работу алгоритма каскадирования для данного случая.

Вопрос 13.

Дан фрагмент HTML-документа со встроенной таблицей стилей CSS. <head>

Какой цвет текста будет использован для отображения текста «ПРИМЕР ТЕКСТА»?

Каким образом будет выравнен текст «ПРИМЕР ТЕКСТА»:

- по левому краю;
- по центру;
- по правому краю?

Вопрос 14.

Дан фрагмент HTML-документа со встроенной таблицей стилей CSS. <head>

Какой цвет текста будет использован для отображения текста «ПРИМЕР ТЕКСТА»?

Каким образом будет выравнен текст «ПРИМЕР ТЕКСТА»:

- по левому краю;
- по центру;
- по правому краю?

9. Имитационное моделирование (12 баллов)

Вопрос 1.

На канал поступает для передачи поток пакетов с равномерным распределением промежутка времени между пакетами в интервале (10, 20).. Канал пропускает пакеты по одному по очереди: очередной пакет поступает в канал после того, как завершится передача предыдущего. Время передачи пакета в канале распределено по экспоненциальному закону с параметром L. Составить программу имитационной модели на языке GPSS.

Вопрос 2.

Вычислительная система состоит из двух ЭВМ. На систему поступает пуассоновский поток задач с параметром L. Задача захватывает для решения свободную ЭВМ, в случае занятости системы ожидает освобождения любой ЭВМ. Задачи в ЭВМ решаются по одной. Время решения задачи в первой ЭВМ распределено по равномерному закону в интервале (3, 9). Время решения задачи во второй ЭВМ распределено по равномерному закону в интервале (12, 18). Составить программу имитационной модели на языке GPSS.

Вопрос 3

Информационная система включает один терминал и одну ЭВМ. С терминала поступает запрос в ЭВМ. ЭВМ обрабатывает этот запрос и отсылает ответ в терминал. После получения ответа в течение времени Т на терминале готовится новый запрос, в котором указывается его сложность в виде параметра, имеющего равномерное распределение в (1, 10), и отсылается на ЭВМ и т.д. Время обработки запроса в ЭВМ равно значению параметра в задаче. Временами передачи запроса на ЭВМ и ответа на терминал можно пренебречь. Составить программу имитационной модели на языке GPSS

Вопрос 4.

Информационная система включает 5 терминалов и одну ЭВМ. С каждого терминала поступает запрос в ЭВМ. ЭВМ обрабатывает этот запрос и отсылает ответ в терминал. После получения ответа на терминале готовится новый запрос и отсылается на ЭВМ и т.д. Время обработки запроса в ЭВМ распределено по равномерному закону в интервале (5,15), время подготовки нового запроса на терминале после получения предыдущего ответа равно Т единиц времени. Временами передачи запроса на ЭВМ и ответа на терминалы можно пренебречь. Составить программу имитационной модели на языке GPSS.

Вопрос 5.

Вычислительная система состоит из двух ЭВМ. На систему поступает пуассоновский поток задач с параметром L. Задачи с вероятностью 0,3 захватывают для решения первую ЭВМ, в случае ее занятости задача ожидает освобождения этой ЭВМ. Задачи с вероятностью 0,7 захватывают для решения вторую ЭВМ, в случае ее занятости задача ожидает освобождения этой ЭВМ. В ЭВМ задачи решаются по одной, время решения задачи в гЭВМ распределено по равномерному закону в интервале (5, 15). Составить программу имитационной модели на каждой языке GPSS.

Вопрос 6.

Справочная служба включает телефонную сеть, замкнутую на группу из 15 сотрудников. Объединенный поток запросов по телефонной сети пуассоновский с параметром L. Запросы поступают на любого свободного сотрудника. Время обработки запроса сотрудником распределено по равномерному закону в интервале (3,5). Запрос, не принятый на обработку в силу занятости всех сотрудников, покидает систему. Составить программу имитационной модели на языке GPSS.

Вопрос 7

На два канала передачи информации поступает пуассоновский поток пакетов с параметром L. Пакет захватывает для передачи любой свободный канал, в случае занятости всех каналов - ожидает освобождения любого из них. Каждый канал пропускает пакеты по одному по очереди: очередной пакет поступает в канал после того, как завершится передача предыдущего. Время передачи пакета в каждом канале распределено по равномерному закону в интервале (20, 40). Составить программу имитационной модели на языке GPSS.

Вопрос 8.

Справочная служба включает телефонную сеть, замкнутую на группу из 10 сотрудников. Объединенный поток запросов по телефонной сети пуассоновский с параметром L. Запросы поступают на любого свободного сотрудника. Время обработки запроса сотрудником распределено по равномерному закону в интервале (3,5). Не принятые пакеты стоят в общей очереди. Составить программу имитационной модели на языке GPSS.

Вопрос 9.

На канал поступает для передачи пуассоновский поток пакетов с параметром L. Канал пропускает пакеты по одному по очереди: очередной пакет поступает в канал после того, как завершится передача предыдущего. Время передачи пакета в канале распределено по равномерному закону в интервале (10, 20). Время работоспособности канала равно Т единицам времени. После этого необходимо производить ремонт канала, который длится N единиц времени. В течение этого времени пакеты стоят в очереди. Затем канал продолжает работать вплоть до следующей поломки. Составить программу имитационной модели на языке GPSS.

Вопрос 10.

На два канала передачи информации поступает пуассоновский поток пакетов с параметром L. Пакет в первую очередь обращается на передачу к первому каналу, и в случае его занятости, встает в очередь на передачу ко второму каналу. Каждый канал пропускает пакеты по одному: очередной пакет поступает в канал после того, как завершится передача предыдущего. Время передачи пакета в первом канале распределено по равномерному закону в интервале (10, 20). Время передачи пакета во втором канале распределено по равномерному закону в интервале (100, 200). Составить программу имитационной модели на языке GPSS.

Вопрос 11.

На два канала передачи информации поступает пуассоновский поток пакетов с параметром L. Пакет захватывает для передачи любой свободный канал, в случае занятости всех каналов - ожидает освобождения любого из них. Каждый канал пропускает пакеты по одному по очереди: очередной пакет поступает в канал после того, как завершится передача предыдущего. Время передачи пакета в каждом канале распределено по равномерному закону в интервале (30, 50). Однако один из каналов периодически выходит из строя. Время его работоспособности равно Т единицам времени. После этого необходимо производить ремонт канала, который длится N единиц времени. Затем канал продолжает работать вплоть до следующей поломки. Второй канал не подвержен поломке. Составить программу имитационной модели на языке GPSS.

Вопрос 12.

На одну ЭВМ поступает на решение пуассоновский поток задач с параметром L. Задачи решаются по одной - очередная задача поступает в ЭВМ после того, как завершится решение предыдущей. Время решения задачи в ЭВМ распределено по равномерному закону в интервале (40, 80). После выхода из ЭВМ задача с вероятностью 0,4 возвращается на решение, вставая в общую очередь, а с вероятностью 0,6 покидает систему. Составить программу имитационной модели на языке GPSS.

Вопрос 13.

На канал поступает для передачи два пуассоновских потока пакетов интенсивностью L1 и L2 соответственно. Приоритетность первого потока выше, чем приоритет второго. Канал пропускает пакеты по одному по очереди: очередной пакет поступает в канал после того, как завершится передача предыдущего. В первую очередь пропускаются через приоритетные пакеты. Время передачи пакета более высокого приоритета в канале распределено по равномерному закону в интервале (10, 20). Время передачи пакета более низкого приоритета в канале распределено по равномерному закону в интервале (30, 50). Составить программу имитационной модели на языке GPSS.

Вопрос 14.

На канал поступает для передачи пуассоновский поток пакетов с параметром L. Канал пропускает пакеты по одному по очереди: очередной пакет поступает в канал после того, как завершится передача предыдущего. Время передачи пакета в канале распределено по равномерному закону в интервале (10, 20). Во время передачи пакета в канале с вероятностью 0,1 возможно искажение информации. В этом случае пакет должен быть передан повторно. Составить программу имитационной модели на языке GPSS.

10. Теория массового обслуживания (16 баллов)

- 1. ПЛС. Формулы для расчета моментов распределения случайной величины с помощью ПЛС.
- 2. Производящая функция (ПФ) распределения целочисленной неотрицательной случайной величины. Свойства ПФ.
- 3. ПФ суммы случайного числа независимых одинаково распределенных целочисленных неотрицательных случайных величин. Расчет двух первых моментов.
- 4. Пуассоновский входной поток, его свойства. Вывод функции распределения интервалов между событиями пуассоновского потока.
- 5. Групповое поступление требований в систему обслуживания. Описание неординарного входного потока в случае, когда моменты поступления групп требований образуют пуассоновский поток.
- 6. Марковские модели. Уравнения Колмогорова-Чепмена. Записать уравнения Колмогорова-Чепмена для системы М/М/1.
- 7. Марковский процесс размножения-гибели. Граф переходов. Расчетные соотношения для стационарных вероятностей состояния.
- 8. Распределение Эрланга. Метод этапов в анализе полумарковских систем. Написать граф переходов для системы $M/E_3/1$.
- 9. Расчет времени реакции систем обслуживания. Вывод формулы Литтла.
- 10. Разновидности приоритетных дисциплин обслуживания.
- 11. Анализ приоритетных дисциплин обслуживания. Метод Кобхэма. Формула Поллачека-Хинчина.
- 12. Стохастические сети. Замкнутые Теорема Джексона. Разомкнутые результат Гордона и Ньюэлла.
- 13. Прямой метод расчета средних в стохастических сетях. Теорема Райзера.
- 14. Многоуровневые модели. Методы анализа.