Approximating Values

Definition

Let $x \in \mathbb{R}$:

• The greatest integer (floor) function, denoted $\lfloor x \rfloor$, yields the greatest integer that is less than or equal to x:

$$\lfloor x \rfloor \le x < \lfloor x \rfloor + 1$$

• The least integer (ceiling) function, denoted $\lceil x \rceil$, yields the least integer that is greater than or equal to x:

$$\lceil x \rceil - 1 < x < \lceil x \rceil$$

• The fractional part of x is given by:

$$\{x\} = x - \lfloor x \rfloor$$

Theorem

$$\forall x \in \mathbb{R}, 0 \le \{x\} < 1$$

Proof

$$\lfloor x \rfloor \le x < \lfloor x \rfloor + 1$$

$$0 \le x - \lfloor x \rfloor < 1$$

$$\therefore 0 \le \{x\} < 1$$

Example

$$\begin{bmatrix} \frac{3}{2} \end{bmatrix} = 1$$

$$\left\{ \frac{3}{2} \right\} = \frac{3}{2} - 1 = \frac{1}{2}$$

$$\left[-\frac{3}{2} \right] = -2$$

$$\left\{-\frac{3}{2}\right\} = -\frac{3}{2} - (-2) = \frac{1}{2}$$

A real number is always within $\frac{1}{2}$ of some integer. The following theorem provides a more general approximation for real numbers:

Theorem: Dirichlet Approximation

Let $\alpha \in \mathbb{R}$ and $n \in \mathbb{Z}^+$:

$$\exists a, b \in \mathbb{Z}, |a\alpha - b| < \frac{1}{n}$$

Given an α and n, some multiple of α is within $\frac{1}{n}$ of some other integer.

Proof

Let
$$S = \{\{k\alpha\} \mid 0 \le k \le n\}$$

S contains the fractional parts of n+1 multiples of α

$$0 \le \{k\alpha\} < 1$$

Let
$$T = \left\{ \left\lceil \frac{k}{n}, \frac{k+1}{n} \right\rceil \mid 0 \le k < n \right\}$$

Let $T = \left\{ \left[\frac{k}{n}, \frac{k+1}{n} \right) \mid 0 \le k < n \right\}$ T is a partition of [0,1) into n mutually disjoint intervals of length $\frac{1}{n}$

By the pigeonhole principle, at least one of the intervals in T must contain at least two of the fractional parts in ${\cal S}$

$$\begin{split} |\{k\alpha\} - \{j\alpha\}| &< \tfrac{1}{n}, 0 \leq j < k \leq n \\ |(k\alpha - \lfloor k\alpha \rfloor) - (j\alpha - \lfloor j\alpha \rfloor)| &< \tfrac{1}{n} \\ |(k-j)\alpha - (\lfloor k\alpha \rfloor - \lfloor j\alpha \rfloor)| &< \tfrac{1}{n} \\ \text{Let } a = (k-j) \text{ and } b = (\lfloor k\alpha \rfloor - \lfloor j\alpha \rfloor) \\ |a\alpha - b| &< \tfrac{1}{n} \\ 1 \leq a \leq n \end{split}$$

Example

$$\alpha = \sqrt[3]{3} \approx 1.44225$$
 $n = 10$
 $\frac{1}{n} = \frac{1}{10} = 0.1$

a	$a\alpha$	b	$ a\alpha - b $	
1	1.44225	1	0.44225	
2	2.88450	3	0.11550	
3	4.32675	4	0.32675	
4	5.76900	6	0.23100	
5	7.21225	7	0.21225	
6	8.65350	9	0.34650	
7	10.0957	10	0.09575 ✓	•
8	11.5380	12	0.46200	
9	12.9802	13	0.01975 ✓	•
10	14.4225	14	0.42250	

Corollary

Given $\alpha \in \mathbb{R} - \mathbb{Q}$, a rational approximation $\frac{p}{q}$ can be found within $\frac{1}{q^2}$ of α .

<u>Proof</u>

$$\begin{array}{l} \exists\, p,q\in\mathbb{Z}, |q\alpha-p|<\frac{1}{n} \text{ with } 1\leq q\leq n\\ \left|\alpha-\frac{p}{q}\right|\leq \frac{1}{nq}\leq \frac{1}{q^2} \end{array}$$

Example

$$\alpha = \sqrt{2} \approx 1.41421$$

q	$\frac{1}{q}$	$\frac{1}{q^2}$	p	$\left \alpha - \frac{p}{q} \right $		
1	1	1	1	0.414214	\checkmark	\checkmark
			2	0.585786	\checkmark	\checkmark
2	0.5000	0.2500	3	0.085786	✓	√
3	0.3333	0.1111	4	0.080880	√	√
			5	0.252453	\checkmark	
4	0.2500	0.0625	5	0.164214	\checkmark	
5	0.2000	0.0400	6	0.214214		
			7	0.014214	\checkmark	\checkmark
			8	0.185786	\checkmark	