Value Recursion in Monadic Computations

Levent Erkök

OGI School of Science and Engineering, OHSU

Advisor: John Launchbury

June 24th, 2002

Outline

- Recursion and effects
- Motivating examples
- Value recursion operators
- Properties
- The recursive do-notation
- Related work: How do we fit in?
- Summary, future work and conclusions

Recursion

- Two important uses of recursion:
 - As a control structure
 - * Recursive functions
 - As a means for creating cyclic data structures
 - * Streams, self referential data
- Semantics of recursion is well understood
 - Extensively studied since 60's
 - Modeled by least fixed-points

Effects

- Another fundamental programming technique
 - I/O is inevitable
 - Mutable variables, exceptions, non-determinism, ...
- Semantics of effects
 - Traditional semantics: Hoare logic
 - Monadic semantics: Moggi

The question

How do we model recursion in the presence of effects?

- Two different notions of recursion
 - The usual unfolding semantics
 - Value recursion

Unfolding recursion repeats effects

```
• f :: \alpha \to \alpha, f := f (f | x | f)
```

• Example:

```
 \begin{array}{l} \mathit{fact} \ 0 = \mathit{return} \ 1 \\ \mathit{fact} \ n = \mathbf{do} \ \mathit{putStrLn} \ (\text{``Now computing at:'} \ + \ \mathit{show} \ n) \\ r \leftarrow \mathit{fact} \ (n-1) \\ \mathit{return} \ (n \times r) \end{array}
```

• Sample run

```
Main> fact 3
Now computing at: 3
Now computing at: 2
Now computing at: 1
6
```

Value recursion

- An alternative notion when recursion is only over *values*
 - The result of a monadic action is recursively defined
- Effects should neither be lost nor duplicated but preserved

$$\mathbf{do} \ w \leftarrow \dots \ x \dots \dots \\ x \leftarrow \dots \ w \dots x \dots$$

- Arises most frequently in embedded domain specific languages
 - Recursion in the meta-language is not sufficient to express recursion in the object-language

Outline

- Recursion and effects
- Motivating examples
- Value recursion operators
- Properties
- The recursive do-notation
- Related work: How do we fit in?
- Summary, future work and conclusions

Monadic GUI libraries

• Order determines screen layout:

```
do f1 \leftarrow inputField (fieldSize 10)

f2 \leftarrow inputField (fieldSize 10)

submitButton (someAction f1 f2)
```

• What if submit button has to come first?

```
do submitButton (someAction f1 f2)

f1 \leftarrow inputField (fieldSize 10)

f2 \leftarrow inputField (fieldSize 10)
```

Forking threads

- $forkIO :: IO () \rightarrow IO ThreadId$
- Run two algorithms on the same input, first one to finish kills the other

```
tryBoth \ inp = \mathbf{do} \ t1 \leftarrow forkIO \ (alg1 \ inp \ t2)
t2 \leftarrow forkIO \ (alg2 \ inp \ t1)
```

 $alg1 \ inp \ t = \mathbf{do} \ .. \ compute \ with \ inp \ ...$ $killThread \ t$

Modeling circuits using monads

- Lava, Hawk
- Multiple interpretations
- From the same description, just change the monad to
 - Simulate
 - Dump a netlist description

– ...

Basic idea

- Signals and Circuits, use abstraction:
 - "Sig α " to represent signals of type α
 - Monad "C" captures the underlying circuits semantics
- Basic components:

```
and :: Sig\ Bool \rightarrow Sig\ Bool \rightarrow C\ (Sig\ Bool)

mux :: Sig\ Bool \rightarrow Sig\ \alpha \rightarrow Sig\ \alpha \rightarrow C\ (Sig\ \alpha)

delay :: \alpha \rightarrow Sig\ \alpha \rightarrow C\ (Sig\ \alpha)
```

• *or*, *xor*, etc...

Half adder

$$halfAdd :: Sig Bool \rightarrow Sig Bool \rightarrow C \ (Sig Bool, Sig Bool)$$
 $halfAdd \ a \ b = \mathbf{do} \ c \leftarrow and \ a \ b$
 $s \leftarrow xor \ a \ b$
 $return \ (c, s)$

Using the half adder

• Simulation:

```
Main> halfAdd [True, True] [False, True]
([False,True],[True,False])
```

• NetList:

```
Main> halfAdd "a" "b"
w0 = and a b
w1 = xor a b
Result: (w0, w1)
```


Feedback in circuits

counter :: $Sig Bool \rightarrow C \ (Sig Int)$ $counter reset = \mathbf{do} \ next \leftarrow delay \ 0 \ inc$ $inc \leftarrow add 1 \ out$ $out \leftarrow mux \ reset \ zero \ next$ $zero \leftarrow constant \ 0$ $return \ out$

Using the counter

• Simulation:

Main> counter [False, False, True, False, False, True, False] [0,1,0,1,2,0,1]

• NetList:

Main> counter "reset"

w0 = delay 0 w1

w1 = add1 w2

w2 = mux reset w3 w0

w3 = constant 0

Result: w2

The problem

counter :: $Sig \ Bool \rightarrow C \ (Sig \ Int)$ $counter \ reset = \mathbf{do} \ next \leftarrow delay \ 0 \ inc$ $inc \leftarrow add1 \ out$ $out \leftarrow mux \ reset \ zero \ next$ $zero \leftarrow constant \ 0$ $return \ out$

The problem

$$counter$$
 :: $Sig Bool \rightarrow C \ (Sig Int)$
 $counter \ reset = \mathbf{do} \ next \leftarrow delay \ 0 \ inc$
 $inc \leftarrow add 1 \ out$
 $out \leftarrow mux \ reset \ zero \ next$
 $zero \leftarrow constant \ 0$
 $return \ out$

How to make the **do**-notation recursive?

Recursion at object-level and meta-level

Recursion in the meta-language is not sufficient to express recursion in the object-language

- Recall: usual recursion repeats effects
- We don't want circuit elements to be recreated by the fixed-point computation!
- Recursion is only over the values

Making the do-notation recursive

• Recall how recursive let works

$$\det \ x = 1 : y$$

$$y = 2 : x$$

$$fix \ (\lambda(x, y). \ \text{let} \ x = 1 : y$$

$$y = 2 : x$$

$$in \ x$$

$$in \ (x, y))$$

- Getting rid of recursive-let with fix and non-recursive let
- What if we have effects?

What we want

```
mfix (\lambda(next, inc, out, zero).
               \mathbf{do} \ next \leftarrow delay \ 0 \ inc
                    inc \leftarrow add1 \ out
                    out \leftarrow mux \ reset \ zero \ next
                    zero \leftarrow constant 0
                    return (next, inc, out, zero)
   \gg = \lambda(next, inc, out, zero). return out
  • mfix: the value recursion operator
                         mfix :: (\alpha \rightarrow m \ \alpha) \rightarrow m \ \alpha
  • Compare: fix :: (\alpha \to \alpha) \to \alpha
```

Outline

- Recursion and effects
- Motivating examples
- Value recursion operators
- Properties
- The recursive do-notation
- Related work: How do we fit in?
- Summary, future work and conclusions

Generalizing fix

- An *mfix* for all monads?
- Recall: $fix f = f(fix f), fix :: (\alpha \to \alpha) \to \alpha$
- Possible definition for *mfix*:

$$mfix :: (\alpha \to m \ \alpha) \to m \ \alpha$$

$$mfix f = mfix f \gg f$$

$$= fix (\lambda m. \ m \gg f)$$

• $fix f = \bigsqcup \{\bot, f \bot, f (f \bot), f (f (f \bot)), \ldots\}$

$mfix f = fix (\lambda m. m \gg f)$

• That is:

$$mfix f = \bigsqcup \{\bot, \bot \gg f, \bot \gg f \gg f, \bot \gg f, \bot \gg f, \bot \gg f, ...\}$$

- Would diverge whenever ≫ is left-strict
- Computing the fixed point over both effects and values!
 - But we want to compute it only over the *values*

Example: State Monad

```
type State = ...

type ST \alpha = State \rightarrow (\alpha, State)

mfix :: (\alpha \rightarrow ST \alpha) \rightarrow ST \alpha

:: (\alpha \rightarrow State \rightarrow (\alpha, State)) \rightarrow State \rightarrow (\alpha, State)

mfix f = \lambda s. \ \mathbf{let} \ (a, s') = f \ a \ s

\mathbf{in} \ (a, s')
```

Example: State Monad

```
type State = ...

type ST \alpha = State \rightarrow (\alpha, State)

mfix :: (\alpha \rightarrow ST \alpha) \rightarrow ST \alpha

:: (\alpha \rightarrow State \rightarrow (\alpha, State)) \rightarrow State \rightarrow (\alpha, State)

mfix f = \lambda s. \ \mathbf{let} \ (a, s') = f \ a \ s

\mathbf{in} \ (a, s')
```

- State monad clearly separates values & effects
- Other monads are not that nice!
 - Maybe: $(\alpha \rightarrow Maybe \ \alpha) \rightarrow Maybe \ \alpha$
 - List: $(\alpha \rightarrow [\alpha]) \rightarrow [\alpha]$

Our Approach

- No generic solution, find individual instances
- Hypothesize expected properties of value recursion operators
- Study instances to verify properties
- Make a classification
 - identify important cases
 - identify cases when a recursive do-notation is feasible
- Relate these properties to those of fix

Outline

- Recursion and effects
- Motivating examples
- Value recursion operators
- Properties
- The recursive do-notation
- Related work: How do we fit in?
- Summary, future work and conclusions

Basic Properties

- Strict functions
 - If f is a strict function, mfix f should be \perp
- Converse strictness
 - mfix f should be \perp only when f is strict
- Purity
 - If there are no effects, mfix should behave just like fix

Purity

$$h :: \alpha \to \alpha$$

$$mfix (return \cdot h) = return (fix h)$$

"Pure computations" have "pure fixed-points" (If there are no effects, *mfix* is just *fix*)

Tightening properties

- Left tightening
 - A preceeding non-interfering computation can be pulled out of a recursive loop
- Right tightening
 - A succeeding non-interfering computation can be pulled out of a recursive loop

Left tightening

$$mfix (\lambda x. \ a \gg \lambda y. \ f \ x \ y) = a \gg \lambda y. \ mfix (\lambda x. \ f \ x \ y)$$

Pulling a non-interfering computation out of the recursive loop: Tighten the loop from left

Yet others...

- Nesting property
 - Simultaneous and pointwise fixed points coincide
- Parametricity properties, if s is strict:
 - $-g \cdot s = map \ s \cdot f \rightarrow map \ s \ (mfix \ f) = mfix \ g$
 - Similar to: $g \cdot s = s \cdot f \rightarrow s \ (fix \ f) = fix \ g$
- Sliding:
 - $-mfix (map \ h \cdot f) = map \ h \ (mfix \ (f \cdot h))$
 - Similar to: $fix (h \cdot f) = h (fix (f \cdot h))$
- etc...

		Strict	Pure	Left	Nest	Slide	Right
Identity		V	✓	•	V	✓	✓
Maybe		>	✓	✓	V	X	X
Lists		>	>	✓	V	X	X
State	$mfix_0$	>	>	✓	V	X	X
	$mfix_i$	>	✓	✓	X	X	X
	$mfix_{\omega}$	/	✓	'	V	V	✓
Output		>	✓	✓	/	✓	✓
Environment		\	V	✓	V	V	✓
Continuations		?					

Outline

- Recursion and effects
- Motivating examples
- Value recursion operators
- Properties
- The recursive do-notation
- Related work: How do we fit in?
- Summary, future work and conclusions

mdo-notation

• Compare:

```
mfix \ (\lambda(next,\ inc,\ out,\ zero).
\mathbf{do}\ next \leftarrow delay\ 0\ inc
inc \leftarrow add1\ out
out \leftarrow mux\ reset\ zero\ next
zero \leftarrow constant\ 0
return\ (next,\ inc,\ out,\ zero)
\Rightarrow \lambda(next,\ inc,\ out,\ zero).\ return\ out
```

mdo-notation (cont.)

• To:

The MonadRec class

class Monad
$$m \Rightarrow MonadRec \ m$$
 where $mfix :: (\alpha \rightarrow m \ \alpha) \rightarrow m \ \alpha$

• mdo to be available for all instances of MonadRec

Importance of Left Tightening

- $x, y \notin FV(e_1)$
- If there is no recursion, mfix has no effect!
 - mdo is the same as do in that case
 - Backward compatibility

Outline

- Recursion and effects
- Motivating examples
- Value recursion operators
- Properties
- The recursive do-notation
- Related work: How do we fit in?
- Summary, future work and conclusions

Effects

Fixed-points

Value Recursion

Outline

- Recursion and effects
- Motivating examples
- Value recursion operators
- Properties
- The recursive do-notation
- Related work: How do we fit in?
- Summary, future work and conclusions

Summary

- Search for a generic *mfix*
- Properties, both expected and derived
- Study of monads
 - Identity, exceptions (maybe), non-determinism (list), state, environment, output, trees, fudgets, I/O ...
- Embeddings
 - Preservation of properties through embeddings of monads

- Transformers
 - Obtaining a new *mfix* by transforming an old one
- The mdo-notation
 - Typing
 - Pragmatics
 - * Repeated variables
 - * Let-generators (monomorphic)
 - Translation algorithm
 - Implementation in February 2001 release of Hugs

- The IO monad and fixIO
 - Two level semantics
 - * Top layer handles "functional" core
 - * Bottom layer handles I/O
 - * Clear interaction via reduction rules
 - Operational meaning of fixIO clarified

- Relation to other axiomatizations
 - arrowFix
 - "traced premonoidal categories"
 - They are cleaner, but limited applicability
 - * **OK:** State (lazy), environment, output
 - * **But not:** Exceptions, lists, strict state, IO, tree, fudgets, ...

- Examples, case studies
 - Circuit simulation
 - Bird's replaceMin problem
 - Sorting networks, GUI layout problem
 - Interpreters
 - Doubly-linked circular lists with stateful nodes
 - Logical variables

Future work

• Practical:

- Support for **mdo** in all Haskell systems
- Opportunities in other paradigms
- More monads...

• Theoretical:

- Semantics of fixIO needs more work (parametricity)
- A more precise "categorical" account via traces
- A precise analysis for the continuation monad

Conclusions

- Theory: value recursion operators form an interesting class
 - Making the interaction between effects and recursion clear is important
- Practice: Work on **mdo** provides necessary syntactic support in Haskell
 - Lava and Hawk can really use it
 - More in the spirit of Haskell:

let is recursive, why not **do**?

Conclusions (cont.)

- Future of functional programming
 - Lazy imperative programming
 - Semantics and implementation of embedded domain specific languages
 - Multiple interpretations

All heavily rely on monads, and recursion is inevitable