

## **Face Detection**



## Importance of Face Detection

- The first step for any automatic face recognition system
- First step in many Human Computer Interaction systems
  - □ Expression Recognition
  - □ Cognitive State/Emotional State Recognition
- First step in many surveillance systems
- Tracking: Face is a highly non rigid object
- A step towards Automatic Target Recognition(ATR) or generic object detection/recognition
- Video coding.....
- Facebook, google photos,...

# What is Face Detection?

Given an image, tell whether there is any human face, if there is, where is it(or where they are).







# Face Detection should

- Identify and locate human faces in an image regardless of their
  - □ position
  - □ scale
  - □ in-plane rotation
  - □ orientation
  - □ pose (out-of-plane rotation)
  - □ and illumination





### Face Detection: current state

- State-of-the-art :
  - □ Front-view face detection can be done at >15 frames per second on 320x240 black-and-white images on a 700MHz PC with ~95% accuracy.
  - □ Detection of faces is faster than detection of edges!
- Side view face detection remains to be difficult.



## Why Is Face Detection Difficult?

- Pose (Out-of-Plane Rotation): frontal, 45 degree, profile, upside down
- Presence or absence of structural components: beards, mustaches, and glasses
- Facial expression: face appearance is directly affected by a person's facial expression
- Occlusion: faces may be partially occluded by other objects
- Orientation (In-Plane Rotation): face appearance directly vary for different rotations about the camera's optical axis
- Imaging conditions: lighting (spectra, source distribution and intensity) and camera characteristics (sensor response, gain control, lenses), resolution















### Related Problems

- Face localization:
  - ☐ Aim to determine the image position of a single face
  - ☐ A simplified detection problem with the assumption that an input image contains only one face
- Facial feature extraction:
  - ☐ To detect the presence and location of features such as eyes, nose, nostrils, eyebrow, mouth, lips, ears, etc
  - □ Usually assume that there is only one face in an image
- Face recognition (identification)
- Facial expression recognition
- Human pose estimation and tracking



#### Research Issues

- Representation: How to describe a typical face?
- Scale: How to deal with face of different size?
- Search strategy: How to spot these faces?
- Speed: How to speed up the process?
- Precision: How to locate the faces precisely?
- Post processing: How to combine detection results?



## Different Approaches

- Knowledge-based methods:
  - ☐ Encode what constitutes a typical face, e.g., the relationship between facial features
- Feature invariant approaches:
  - □ Aim to find structure features of a face that exist even when pose, viewpoint or lighting conditions vary
- Template matching:
  - Several standard patterns stored to describe the face as a whole or the facial features separately
- Appearance-based methods:
  - ☐ The models are learned from a set of training images that capture the representative variability of faces.
- Color/Skin Detection methods



## Knowledge-Based Methods

- Top Top-down approach: Represent a face using a set of human-coded rules Example:
  - ☐ The center part of face has uniform intensity values
  - ☐ The difference between the average intensity values of the center part and the upper part is significant
  - A face often appears with two eyes that are symmetric to each other, a nose and a mouth
- Use these rules to guide the search process



### Knowledge-Based Method: [Yang and Huang 94]

- Multi-resolution focus-ofattention approach
- Level 1 (lowest resolution): apply the rule "the center part of the face has 4 cells with a basically uniform intensity" to search for candidates
- Level 2: local histogram equalization followed by edge detection
- Level 3: search for eye and mouth features for validation









# Knowledge-based Methods: Summary

- Pros:
  - □ Easy to come up with simple rules
  - ☐ Based on the coded rules, facial features in an input image are extracted first, and face candidates are identified
  - □ Work well for face localization in uncluttered background
- Cons:
  - Difficult to translate human knowledge into rules precisely: detailed rules fail to detect faces and general rules may find many false positives
  - □ Difficult to extend this approach to detect faces in different poses: implausible to enumerate all the possible cases



### Feature-Based Methods

- Bottom-up approach: Detect facial features (eyes, nose, mouth, etc) first
- Facial features: edge, intensity, shape, texture, color, etc
- Aim to detect invariant features
- Group features into candidates and verify them



# Feature-Based Methods: Summary

- Pros: Features are invariant to pose and orientation change
- Cons:
  - □ Difficult to locate facial features due to several corruption (illumination, noise, occlusion)
  - ☐ Difficult to detect features in complex background



## **Template Matching Methods**

- Store a template
  - □ Predefined: based on edges or regions
- Deformable: based on facial contours (e.g., Snakes)
- Templates are handcoded (not learned)
- Use correlation to locate faces





# Template-Based Methods: Summary

- Pros:
  - □ Simple
- Cons:
  - ☐ Templates needs to be initialized near the face images
  - ☐ Difficult to enumerate templates for different poses (similar to knowledge-based methods)



# Appearance-Based Methods: Classifiers

- Neural network
  - Multilayer Perceptrons
- Princiapl Component Analysis (PCA), Factor Analysis
- Support vector machine (SVM)
- Mixture of PCA, Mixture of factor analyzers
- Distribution Distribution-based method
- Naïve Bayes classifier
- Hidden Markov model
- Sparse network of winnows (SNoW)
- Kullback relative information
- Inductive learning: C4.5
- Adaboost □□



### Color-Based Face Detector

- Distribution of skin color across different ethnic groups
  - ☐ Under controlled illumination conditions: compact
  - ☐ Arbitrary conditions: less compact
- Color space
  - ☐ RGB, normalized RGB, HSV, HIS, YCrCb, YIQ, UES, CIE XYZ, CIE LIV, ...
- Statistical analysis
  - ☐ Histogram, look-up table, Gaussian model, mixture model, ...

## Experimental Results [Jones and Rehg 02]



- Does a decent job
- May have lots of false positives in the raw results
- Need further processing to eliminate false negatives and group color pixels for face detection
- See also [Hsu et al 02]

#### ч

## Color-Based Face Detector: Summary

- Pros:
  - □ Easy to implement
  - ☐ Effective and efficient in constrained environment
  - ☐ Insensitive to pose, expression, rotation variation
- Cons:
  - ☐ Sensitive to environment and lighting change
  - □ Noisy detection results (body parts, skin-tone line regions)

# Robust Real-time Face Detection

by Paul Viola and Michael Jones, 2002

# Face Detect: Sliding Windows



#### 1. Basic idea:

slide a window across image and evaluate a face model at every location. Try all possible rectangle locations, sizes

#### 2. test:

classify if rectangle contains a face (and only the face)

Note: 1000's more false windows then true ones.

### ٠

# Challenges of face detection

- Sliding window detector must evaluate tens of thousands of location/scale combinations
- Faces are rare: 0–10 per image
  - ☐ For computational efficiency, we should try to spend as little time as possible on the non-face windows
  - □ A megapixel image has ~10<sup>6</sup> pixels and a comparable number of candidate face locations



# The Viola/Jones Face Detector: Overview

- Robust very high Detection Rate (True-Positive Rate) & very low False-Positive Rate... always.
- Real Time For practical applications at least 2 frames per second must be processed.
- Face **Detection** not recognition. The goal is to distinguish faces from non-faces (face **detection** is the first step in the **identification** process)



## Three goals

- 1. Feature Computation: what features? And how can they be computed as quickly as possible
- Feature Selection: select the most discriminating features
- 3. Real-timeliness: must focus on potentially positive areas (that contain faces)

How did Viola & Jones deal with these challenges?



### Three solutions

- Feature Computation
   The "Integral" image representation
- Real-timeliness
   A cascade of classifiers

## Features

- Can a simple feature (i.e. a value) indicate the existence of a face?
- All faces share some similar properties
  - ☐ The eyes region is darker than the upper-cheeks.
  - ☐ The nose bridge region is brighter than the eyes.
  - ☐ That is useful domain knowledge
- Need for encoding of Domain Knowledge:
  - □ Location Size: eyes & nose bridge region
  - □ Value: darker / brighter







Forehead, eye features can be captured

# Rectangle features Rectangle features: □ Value = ∑ (pixels in black area) - ∑ (pixels in white area)

- ∑ (pixels in white area)
   □ Three types: two-, three-, four-
- rectangles, Viola&Jones used two-rectangle features

  For example: the difference in
- □ For example: the difference in brightness between the white &black rectangles over a specific area
- Each feature is related to a special location in the sub-window
- Each feature may have any <u>size</u>
- Why not pixels instead of features?
  - □ Features encode domain knowledge
  - □ Feature based systems operate faster



## Integral Image Representation

- Given a detection resolution of 24x24 (smallest sub-window), the set of different rectangle features is ~160,000!
- Need for speed
- Introducing Integral Image Representation
  - □ Definition: The integral image at location (x,y), is the sum of the pixels above and to the left of (x,y), inclusive
- The Integral image can be computed in a single pass and only once for each subwindow!



formal definition:

$$ii(x, y) = \sum_{x' \le x, y' \le y} i(x', y')$$

Recursive definition:

$$s(x, y) = s(x, y-1) + i(x, y)$$

$$ii(x, y) = ii(x-1, y) + s(x, y)$$

# Example

## IMAGE

| 0 | 1 | 1 | 1 |
|---|---|---|---|
| 1 | 2 | 2 | 3 |
| 1 | 2 | 1 | 1 |
| 1 | 3 | 1 | 0 |



#### INTEGRAL IMAGE

| 0 | 1  | 2  | 3  |
|---|----|----|----|
| 1 | 4  | 7  | 11 |
| 2 | 7  | 11 | 16 |
| 3 | 11 | 16 | 21 |



- Back to feature evaluation . . .
- Using the integral image representation we can compute the value of any rectangular sum (part of features) in constant time
  - □ For example the integral sum inside rectangle D can be computed as:
     ii(d) + ii(a) ii(b) ii(c)
- two-, three-, and fourrectangular features can be computed with 6, 8 and 9 array references respectively.
- As a result: feature computation takes less time





ii(a) = A ii(b) = A+B ii(c) = A+C ii(d) = A+B+C+D D = ii(d)+ii(a)-ii(b)-ii(c)

Overview | Integral Image | AdaBoost | Cascade

## Three goals

1. Feature Computation: features must be computed as quickly as possible



- Feature Selection: select the most discriminating features
- Real-timeliness: must focus on potentially positive image areas (that contain faces)

How did Viola & Jones deal with these challenges?



## AdaBoost Algorithm

- Stands for "Adaptive" boost
- Constructs a "strong" classifier as a linear combination of weighted simple "weak" classifiers



### AdaBoost - Characteristics

- Features as weak classifiers
  - ☐ Each single rectangle feature may be regarded as a simple weak classifier
- An iterative algorithm
  - □ AdaBoost performs a series of trials, each time selecting a new weak classifier
- Weights are being applied over the set of the example images
  - □ During each iteration, each example/image receives a weight determining its importance

















### AdaBoost

- Given: example images labeled +/-
  - □ Initially, all weights set equally
- Repeat T times
  - ☐ Step 1: choose the most efficient weak classifier
  - Step 2: Update the weights to emphasize the examples which were incorrectly classified
    - This makes the next weak classifier focus on "harder" examples



□ Weighted according to their accuracy

$$h_{\text{strong}}(\mathbf{x}) = \begin{cases} 1 & \alpha_1 h_1(\mathbf{x}) + \ldots + \alpha_n h_n(\mathbf{x}) \ge \frac{1}{2} (\alpha_1 + \ldots + \alpha_n) \\ 0 & \text{otherwise} \end{cases}$$



For each round of boosting:

- Evaluate each rectangle filter on each example
- · Sort examples by filter values
- Select best threshold for each filter (min error)
  - Use sorting to quickly scan for optimal threshold
- · Select best filter/threshold combination
- · Weight is a simple function of error rate
- · Reweight examples
  - (There are many tricks to make this more efficient.)

44

## Image Features









$$F(x) =$$

$$F(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x) + ...$$

$$f_i(x) = \begin{vmatrix} 1 & \text{if } g_i(x) > \theta_i \\ -1 & \text{otherwise} \end{vmatrix}$$

Need to: (1) Select Features i=1..n,

- (2) Learn thresholds  $\theta_i$ ,
- (3) Learn weights  $\alpha_i$

## Example: the selected/learned features





#### Boosting for face detection

First two features selected by boosting:



This feature combination can yield 100% detection rate and 50% false positive rate

#### Now we have a good face detector We can build a 200-feature classifier! Experiments showed that a 200feature classifier achieves: □ 95% detection rate ☐ FP rate (1 in 14084) □ Scans all sub-windows of a 384x288 pixel image in 0.7 seconds ■ The more the better (?) ☐ Gain in classifier performance □ Lose in CPU time Verdict: good & fast, but not enough □ Competitors achieve close to 1 in a 1.000.000 FP rate! □ 0.7 sec / frame **IS NOT** real-time.



#### Overview | Integral Image | AdaBoost | Cascade

## Three goals

 Feature Computation: features must be computed as quickly as possible



Feature Selection: select the most discriminating features



 Real-timeliness: must focus on potentially positive image areas (that contain faces)

How did Viola & Jones deal with these challenges?

#### Attentional cascade

- We start with simple classifiers which reject many of the negative sub-windows while detecting almost all positive sub-windows
- Positive response from the first classifier triggers the evaluation of a second (more complex) classifier, and so on
- A negative outcome at any point leads to the immediate rejection of the sub-window



## Cascading detectors

Instead of applying all 200 filters at every location in the image, train several simpler classifiers to quickly eliminate easy negatives.





#### Attentional cascade

- The detection rate and the false positive rate of the cascade are found by multiplying the respective rates of the individual stages
- A detection rate of 0.9 and a false positive rate on the order of 10<sup>-6</sup> can be achieved by a 10-stage cascade if each stage has a detection rate of 0.99 (0.99<sup>10</sup> ≈ 0.9) and a false positive rate of about 0.30 (0.3<sup>10</sup> ≈ 6×10<sup>-6</sup>)





#### Training the cascade

- Set target detection and false positive rates for each stage
- Keep adding features to the current stage until its target rates have been met
  - Need to lower AdaBoost threshold to maximize detection (as opposed to minimizing total classification error)
  - · Test on a validation set
- If the overall false positive rate is not low enough, then add another stage
- Use false positives from current stage as the negative training examples for the next stage

#### The implemented system

- Training Data
  - 5000 faces
    - All frontal, rescaled to 24x24 pixels
  - · 300 million non-faces
    - 9500 non-face images
  - · Faces are normalized
    - Scale, translation
- Many variations
  - · Across individuals
  - Illumination
  - Pose



#### Structure of the Detector Cascade

Combining successively more complex classifiers in cascade

- · 32 stages
- · included a total of 4297 features





#### System performance

- Training time: "weeks" on 466 MHz Sun workstation
- · 32 layers, total of 4297 features
- Average of 10 features evaluated per window on test set
- "On a 700 Mhz Pentium III processor, the face detector can process a 384 by 288 pixel image in about .067 seconds"
  - 15 Hz
  - 15 times faster than previous detector of comparable accuracy (Rowley et al., 1998)

#### Output of Face Detector on Test Images











## Other detection tasks



Facial Feature Localization



Profile Detection





## **Profile Detection**







#### **Profile Features**





#### ٠,

#### pros ...

- Extremely fast feature computation
- Efficient feature selection
- Scale and location invariant detector
  - $\hfill\Box$  Instead of scaling the image itself (e.g. pyramid-filters), we scale the features.
- Such a generic detection scheme can be trained for detection of other types of objects (e.g. cars, hands)

#### ... and cons

- Detector is most effective only on frontal images of faces
  - □ can hardly cope with 45° face rotation
- Sensitive to lighting conditions
- We might get multiple detections of the same face, due to overlapping sub-windows.



### Face Detection: A Solved

#### Problem?

- Not quite yet...
- Factors:
  - □ Shadows
  - □ Occlusions
  - □ Robustness
  - □ Resolution
- Lots of potential applications
- Can be applied to other domains







## OpenCV

- CascadeClassifier cascade;
- cascade.load("haarcascade\_frontalface\_de fault.xml"));
- vector<cv::Rect> faces;
- cascade.detectMultiScale(gray, faces, 1.2, 3);