

Binair Rekenen

Hoofdstuk 2

Inleiding

Binair

Hexadecimaal

Inleiding

- In het dagelijkse leven gebruiken we het 10-delig talstelsel
- Omputers werken echter met bits die dan bytes vormen
- Deze worden weergegeven in ofwel binair ofwel hexadecimaal
- Interessante apps:

Bitcalculator

Base Converter

Binary Grid

- Getallen opgebouwd uit nullen en enen
- We gebruiken steeds een reeks van 8 (bits)
- Reeks apart plaatsen ⇒ De begin-nullen voor de eerste 1 kunnen weggelaten worden

- Elke plaats heeft een vaste waarde
 - = 2 tot de macht *
 - * = positie van de bit

BIT#:				4				
1	0	0	0	0	0	0	0	0
VALUE 256	27	26	25	24	23	2 ²	21	20
256	128	64	32	16	8	4	2	1

- \bigcirc 00000001 = 1 (= 2°)
- \bigcirc 00000010 = 2 (= 2¹)
- \bigcirc 00000100 = 4 (= 2²)
- \bigcirc 00001000 = 8 (= 2³)
- \bigcirc 00010000 = 16 (= 2⁴)
- \bigcirc 00100000 = 32 (= 2⁵)
- \bigcirc 01000000 = 64 (= 2⁶)
- \rightarrow 10000000 = 128 (= 2⁷)

Binair naar Decimaal

- Er staat een "0" op een positie
 - → Deze waarde wordt NIET toegepast
- Tr staat een "1" op een positie
 - → Deze waarde wordt WEL toegepast

There are 10 types of people in the world - those who understand binary and those who don't.

De maximale waarde van een octet is dus 1111111 = 255

be be

Binair

V O O R B E L

$$00000101 = 2^2 + 2^0 = 4 + 1 = 5$$

$$00110011 = 2^5 + 2^4 + 2^1 + 2^0 = 32 + 16 + 2 + 1 = 51$$

1010 0101

128 + 32 + 4 +1

= 165

PEOPLE-CENTRIC

Decimaal naar Binair

- Methode 1:
 - Decimaal getal delen door 2
 - ✓ Rest ⇒ Binair getal "1" noteren"
 - ✓ Geen rest ⇒ Binair getal "0" noteren"

- Methode 2:
 - Werken met tabel

FUTURE-PROOF
PEOPLE-CENTRIC

V O O R B E L

1000 / 2 0 500 rest 1000 500 / 2 250 rest 0 250 / 2 0 125 rest 125 / 2 62 1 rest 62 / 2 31 0 rest 31/2 15 1 rest 15 / 2 1 rest 7/2 1 rest 3/2 1 rest 1/2 rest 1

zo van links naar rechts schrijven

⇒ binaire getal is 11 1110 1000

FUTURE-PROOF

V O O R B E L 228

128	64	32	16	8	4	2	1
1	1	1	0	0	1	0	0

$$100 - 64 = 36$$

$$36 - 32 = 4$$

$$4 - 4 = 0$$

Binair rekenen

- Bij IP-adressen (IPv4) gebruiken we steeds 4 octets
- Elk octet wordt gescheiden door "."

 Bvb. 192.168.10.1
- Belangrijke getallen bij IP:

```
10 = 0000 1010

168 = 1010 1000

172 = 1010 1100

192 = 1100 0000
```


"It was bound to happen—they're beginning to think like binary computers."

Binair rekenen

Belangrijke getallen bij SubNetMask:

0	=	0000 0000	240	=	1111 0000
128	=	1000 0000	248	=	1111 1000
192	=	1100 0000	252	=	1111 1100
224	=	1110 0000	254	=	1111 1110
			255	=	1111 1111

Lab – Belangrijke binaire getallen

Lab - Binair rekenen 01

Hexadecimaal

- Gebaseerd op basis van 16
- Elk hexadecimaal cijfer representeert 4 binaire cijfers, ook beter gekend als een nibble
- Nibble = halve byte

Hexadecimaal

0000 0000 = 00

1111 1111 = FF

Billary	TICK	
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	Α	10
1011	В	11
1100	С	12
1101	D	13
1110	Е	14
1111	F	15

Hexadecimaal

V O O R B

1100 1010 = CA

1110 0001 = E1

0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	Α	10
1011	В	11
1100	С	12
1101	D	13
1110	E	14
1111	F	15

Dec

Binary

