# Employee Performance Analysis

# IABAC™ Project Submission

Following insights are expected from this project:

- Department wise performances.
- Top 3 Important Factors effecting employee performance.
- A trained model which can predict the employee performance based on factors as inputs.
- Recommendations to improve the employee performance based on insights from analysis.

```
#import important libraries
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
import matplotlib.pyplot as plt
import seaborn as sns
```

```
path =r"/content/drive/MyDrive/INX_Future_Inc_Employee_Performance_CDS_Project6.x
df=pd.read_excel(path) # read the data
```

# 1. Domain Analysis:

df.head()

|   | EmpNumber | Age | Gender | EducationBackground | MaritalStatus | EmpDepartment      |
|---|-----------|-----|--------|---------------------|---------------|--------------------|
| 0 | E1001000  | 32  | Male   | Marketing           | Single        | Sales              |
| 1 | E1001006  | 47  | Male   | Marketing           | Single        | Sales              |
| 2 | E1001007  | 40  | Male   | Life Sciences       | Married       | Sales              |
| 3 | E1001009  | 41  | Male   | Human Resources     | Divorced      | Human<br>Resources |

```
#size/shaepof this dataset
df.shape
#1200row and 28 columns
```

(1200, 28)

#### df.columns

## Double-click (or enter) to edit

### df.info() #no missing values

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1200 entries, 0 to 1199
Data columns (total 28 columns):

| #  | Column                      | Non-Null Count | Dtype  |
|----|-----------------------------|----------------|--------|
|    |                             |                |        |
| 0  | EmpNumber                   | 1200 non-null  | object |
| 1  | Age                         | 1200 non-null  | int64  |
| 2  | Gender                      | 1200 non-null  | object |
| 3  | EducationBackground         | 1200 non-null  | object |
| 4  | MaritalStatus               | 1200 non-null  | object |
| 5  | EmpDepartment               | 1200 non-null  | object |
| 6  | EmpJobRole                  | 1200 non-null  | object |
| 7  | BusinessTravelFrequency     | 1200 non-null  | object |
| 8  | DistanceFromHome            | 1200 non-null  | int64  |
| 9  | EmpEducationLevel           | 1200 non-null  | int64  |
| 10 | EmpEnvironmentSatisfaction  | 1200 non-null  | int64  |
| 11 | EmpHourlyRate               | 1200 non-null  | int64  |
| 12 | EmpJobInvolvement           | 1200 non-null  | int64  |
| 13 | EmpJobLevel                 | 1200 non-null  | int64  |
| 14 | EmpJobSatisfaction          | 1200 non-null  | int64  |
| 15 | NumCompaniesWorked          | 1200 non-null  | int64  |
| 16 | OverTime                    | 1200 non-null  | object |
| 17 | EmpLastSalaryHikePercent    | 1200 non-null  | int64  |
| 18 | EmpRelationshipSatisfaction | 1200 non-null  | int64  |
| 19 | TotalWorkExperienceInYears  | 1200 non-null  | int64  |
|    |                             |                |        |

| 20 | TrainingTimesLastYear        | 1200 non-null | int64  |
|----|------------------------------|---------------|--------|
| 21 | EmpWorkLifeBalance           | 1200 non-null | int64  |
| 22 | ExperienceYearsAtThisCompany | 1200 non-null | int64  |
| 23 | ExperienceYearsInCurrentRole | 1200 non-null | int64  |
| 24 | YearsSinceLastPromotion      | 1200 non-null | int64  |
| 25 | YearsWithCurrManager         | 1200 non-null | int64  |
| 26 | Attrition                    | 1200 non-null | object |
| 27 | PerformanceRating            | 1200 non-null | int64  |

dtypes: int64(19), object(9)
memory usage: 262.6+ KB

# stastics about numeric columns :
df.describe().T

|                              | count  | mean      | std       | min  | 25%  | 50%  | 7        |
|------------------------------|--------|-----------|-----------|------|------|------|----------|
| Age                          | 1200.0 | 36.918333 | 9.087289  | 18.0 | 30.0 | 36.0 | 43       |
| DistanceFromHome             | 1200.0 | 9.165833  | 8.176636  | 1.0  | 2.0  | 7.0  | 14       |
| EmpEducationLevel            | 1200.0 | 2.892500  | 1.044120  | 1.0  | 2.0  | 3.0  | ۷        |
| EmpEnvironmentSatisfaction   | 1200.0 | 2.715833  | 1.090599  | 1.0  | 2.0  | 3.0  | ۷        |
| EmpHourlyRate                | 1200.0 | 65.981667 | 20.211302 | 30.0 | 48.0 | 66.0 | 83       |
| EmpJobInvolvement            | 1200.0 | 2.731667  | 0.707164  | 1.0  | 2.0  | 3.0  | 3        |
| EmpJobLevel                  | 1200.0 | 2.067500  | 1.107836  | 1.0  | 1.0  | 2.0  | 3        |
| EmpJobSatisfaction           | 1200.0 | 2.732500  | 1.100888  | 1.0  | 2.0  | 3.0  | ۷        |
| NumCompaniesWorked           | 1200.0 | 2.665000  | 2.469384  | 0.0  | 1.0  | 2.0  | ۷        |
| EmpLastSalaryHikePercent     | 1200.0 | 15.222500 | 3.625918  | 11.0 | 12.0 | 14.0 | 18       |
| EmpRelationshipSatisfaction  | 1200.0 | 2.725000  | 1.075642  | 1.0  | 2.0  | 3.0  | ۷        |
| TotalWorkExperienceInYears   | 1200.0 | 11.330000 | 7.797228  | 0.0  | 6.0  | 10.0 | 15       |
| TrainingTimesLastYear        | 1200.0 | 2.785833  | 1.263446  | 0.0  | 2.0  | 3.0  | 3        |
| EmpWorkLifeBalance           | 1200.0 | 2.744167  | 0.699374  | 1.0  | 2.0  | 3.0  | 3        |
| ExperienceYearsAtThisCompany | 1200.0 | 7.077500  | 6.236899  | 0.0  | 3.0  | 5.0  | 1(       |
| ExperienceYearsInCurrentRole | 1200.0 | 4.291667  | 3.613744  | 0.0  | 2.0  | 3.0  | 7        |
| YearsSinceLastPromotion      | 1200.0 | 2.194167  | 3.221560  | 0.0  | 0.0  | 1.0  | 3        |
| YearsWithCurrManager         | 1200.0 | 4.105000  | 3.541576  | 0.0  | 2.0  | 3.0  | 7        |
| PerformanceRating •          | 1200.0 | 2.948333  | 0.518866  | 2.0  | 3.0  | 3.0  | <b>₹</b> |

df.describe(include='0') #CATEGORICAL FEATURES STATISTICS
# 9 categoricalfeatures

|        | EmpNumber | Gender | EducationBackground | MaritalStatus | EmpDepartment |
|--------|-----------|--------|---------------------|---------------|---------------|
| count  | 1200      | 1200   | 1200                | 1200          | 1200          |
| unique | 1200      | 2      | 6                   | 3             | 6             |
| top    | E100998   | Male   | Life Sciences       | Married       | Sales         |
| 4      |           |        |                     |               | •             |

# 2.DATA PREPROCESSING

#CHECK MISSIING VALUES

df.isnull().sum() #NO MISSING VALUES

| EmpNumber                    | 0 |
|------------------------------|---|
| Age                          | 0 |
| Gender                       | 0 |
| EducationBackground          | 0 |
| MaritalStatus                | 0 |
| EmpDepartment                | 0 |
| EmpJobRole                   | 0 |
| BusinessTravelFrequency      | 0 |
| DistanceFromHome             | 0 |
| EmpEducationLevel            | 0 |
| EmpEnvironmentSatisfaction   | 0 |
| EmpHourlyRate                | 0 |
| EmpJobInvolvement            | 0 |
| EmpJobLevel                  | 0 |
| EmpJobSatisfaction           | 0 |
| NumCompaniesWorked           | 0 |
| OverTime                     | 0 |
| EmpLastSalaryHikePercent     | 0 |
| EmpRelationshipSatisfaction  | 0 |
| TotalWorkExperienceInYears   | 0 |
| TrainingTimesLastYear        | 0 |
| EmpWorkLifeBalance           | 0 |
| ExperienceYearsAtThisCompany | 0 |
| ExperienceYearsInCurrentRole | 0 |
| YearsSinceLastPromotion      | 0 |
| YearsWithCurrManager         | 0 |
| Attrition                    | 0 |
| PerformanceRating            | 0 |
| dtype: int64                 |   |

df.isna().values.any()

False

## There is no NaN or Null values present in the Data Set

```
# check duplicates
df.duplicated().any()
```

False

# 3.EDA:

DATA ANALYSIS WITH VISUALIZATION

#### **DEPARTEMENT WISE PERFOMANCEANLYSIS**

```
dept = df.iloc[:,[5,27]].copy()
dept_per = dept.copy()

dept_per.groupby(by='EmpDepartment')['PerformanceRating'].mean()
```

EmpDepartment
Data Science 3.050000
Development 3.085873
Finance 2.775510
Human Resources 2.925926
Research & Development 2.921283
Sales 2.860590

Name: PerformanceRating, dtype: float64

''' using this analysis datascience, developement, HR departemnt gives more perfoma

' using this analysis datascience, developement, HR departemnt gives more perf

```
import matplotlib.pyplot as plt
plt.figure(figsize=(10,4.5))
sns.barplot(data=dept_per, x='EmpDepartment', y='PerformanceRating',palette='viri
plt.xlabel('Employee Department')
plt.ylabel('Performance Rating')
plt.title('Performance Rating by Department')
plt.show()
```



# Analyze each department separately
dept\_per.groupby(by='EmpDepartment')['PerformanceRating'].value\_counts()

| EmpDepartment          | PerformanceRating |     |
|------------------------|-------------------|-----|
| Data Science           | 3                 | 17  |
|                        | 4                 | 2   |
|                        | 2                 | 1   |
| Development            | 3                 | 304 |
|                        | 4                 | 44  |
|                        | 2                 | 13  |
| Finance                | 3                 | 30  |
|                        | 2                 | 15  |
|                        | 4                 | 4   |
| Human Resources        | 3                 | 38  |
|                        | 2                 | 10  |
|                        | 4                 | 6   |
| Research & Development | 3                 | 234 |
|                        | 2                 | 68  |
|                        | 4                 | 41  |
| Sales                  | 3                 | 251 |
|                        | 2                 | 87  |
|                        | 4                 | 35  |

Name: PerformanceRating, dtype: int64

# Creating a new dataframe to analyze each department separatel
department = pd.get\_dummies(dept\_per['EmpDepartment'])

nanformanca - nd DataEnama/dant nan['DanformancaPating']

department.head()

|   | Data<br>Science | Development | Finance | Human<br>Resources | Research & Development | Sales |
|---|-----------------|-------------|---------|--------------------|------------------------|-------|
| 0 | 0               | 0           | 0       | 0                  | 0                      | 1     |
| 1 | 0               | 0           | 0       | 0                  | 0                      | 1     |
| 2 | 0               | 0           | 0       | 0                  | 0                      | 1     |
| 3 | 0               | 0           | 0       | 1                  | 0                      | 0     |
| 4 | 0               | 0           | 0       | 0                  | 0                      | 1     |

dept\_rating.head()

|   | Data<br>Science | Development | Finance | Human<br>Resources | Research & Development | Sales | PerformanceR; |
|---|-----------------|-------------|---------|--------------------|------------------------|-------|---------------|
| 0 | 0               | 0           | 0       | 0                  | 0                      | 1     |               |
| 1 | 0               | 0           | 0       | 0                  | 0                      | 1     |               |
| 2 | 0               | 0           | 0       | 0                  | 0                      | 1     |               |
| 3 | 0               | 0           | 0       | 1                  | 0                      | 0     |               |
|   |                 |             |         |                    |                        |       |               |

Next steps:

Generate code with dept\_rating



```
# Plotting a separate bar graph for performance of each department using seaborn
plt.figure(figsize=(15, 10))

plt.subplot(2, 3, 1)
sns.barplot(x='PerformanceRating', y='Sales', data=dept_rating,palette='viridis'

plt.subplot(2, 3, 2)
sns.barplot(x='PerformanceRating', y='Development', data=dept_rating,palette='vi

plt.subplot(2, 3, 3)
sns.barplot(x='PerformanceRating', y='Research & Development', data=dept_rating,

plt.subplot(2, 3, 4)
sns.barplot(x='PerformanceRating', y='Human Resources', data=dept_rating,palette

plt.subplot(2, 3, 5)
sns.barplot(x='PerformanceRating', y='Finance', data=dept_rating,palette='Set2')
```

```
plt.subplot(2, 3, 6)
sns.barplot(x='PerformanceRating', y='Data Science', data=dept_rating,palette='S
plt.tight_layout()
nlt_show()
```



plt.xticks(rotation=45)

plt.show()

# factors affecting the employee perforance:

```
corr_matrix = df.corr()
correlation_with_target=corr_matrix['PerformanceRating'].abs().sort_values(ascend
correlation_with_target=correlation_with_target.drop('PerformanceRating')
top_3_features = correlation_with_target.head(3)
print(top_3_features)
     EmpEnvironmentSatisfaction
                                   0.395561
     EmpLastSalaryHikePercent
                                   0.333722
     YearsSinceLastPromotion
                                   0.167629
     Name: PerformanceRating, dtype: float64
import matplotlib.pyplot as plt
# Plotting the top 3 features affecting performance
plt.figure(figsize=(8, 6))
top_3_features.plot(kind='bar', color='skyblue')
plt.xlabel('Features')
plt.ylabel('Absolute Correlation with Performance Rating')
plt.title('Top 3 Features Affecting Performance')
```



```
# Plotting the top 3 features affecting performance using a pie chart
plt.figure(figsize=(6, 4))
plt.pie(top_3_features, labels=top_3_features.index, autopct='%1.1f%%', startangle=
plt.title('Top 3 Features Affecting Performance')
plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle
plt.show()
```



''' Accoding to above visualization in piechart most affecting factorsare EMPLOYE

' Accoding to above visualization in piechart most affecting factorsare EMPL

```
top_5_features = correlation_with_target.head(5)
top_5_features
```

| EmpEnvironmentSatistaction      | 0.395561 |
|---------------------------------|----------|
| EmpLastSalaryHikePercent        | 0.333722 |
| YearsSinceLastPromotion         | 0.167629 |
| ExperienceYearsInCurrentRole    | 0.147638 |
| EmpWorkLifeBalance              | 0.124429 |
| Name: PerformanceRating, dtype: | float64  |

# *Y* **FEATURE ENCODING**

Label encoding is a process of converting categorical variables into numerical format. It assigns a unique numerical label to each category in the categorical variable

```
categorical_columns = df.select_dtypes(include=['object']).columns
categorical_columns

Index(['EmpNumber', 'Gender', 'EducationBackground', 'MaritalStatus',
```

```
# Dropping the first columns as it is of no use for analysis.
df.drop(['EmpNumber'],inplace=True,axis=1)
```

#### df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1200 entries, 0 to 1199
Data columns (total 27 columns):
```

| Duca  | cordinis (cocar 2) cordinis). |                |        |
|-------|-------------------------------|----------------|--------|
| #     | Column                        | Non-Null Count | Dtype  |
|       |                               |                |        |
| 0     | Age                           | 1200 non-null  | int64  |
| 1     | Gender                        | 1200 non-null  | object |
| 2     | EducationBackground           | 1200 non-null  | object |
| 3     | MaritalStatus                 | 1200 non-null  | object |
| 4     | EmpDepartment                 | 1200 non-null  | object |
| 5     | EmpJobRole                    | 1200 non-null  | object |
| 6     | BusinessTravelFrequency       | 1200 non-null  | object |
| 7     | DistanceFromHome              | 1200 non-null  | int64  |
| 8     | EmpEducationLevel             | 1200 non-null  | int64  |
| 9     | EmpEnvironmentSatisfaction    | 1200 non-null  | int64  |
| 10    | EmpHourlyRate                 | 1200 non-null  | int64  |
| 11    | EmpJobInvolvement             | 1200 non-null  | int64  |
| 12    | EmpJobLevel                   | 1200 non-null  | int64  |
| 13    | EmpJobSatisfaction            | 1200 non-null  | int64  |
| 14    | NumCompaniesWorked            | 1200 non-null  | int64  |
| 15    | OverTime                      | 1200 non-null  | object |
| 16    | EmpLastSalaryHikePercent      | 1200 non-null  | int64  |
| 17    | EmpRelationshipSatisfaction   | 1200 non-null  | int64  |
| 18    | TotalWorkExperienceInYears    | 1200 non-null  | int64  |
| 19    | TrainingTimesLastYear         | 1200 non-null  | int64  |
| 20    | EmpWorkLifeBalance            | 1200 non-null  | int64  |
| 21    | ExperienceYearsAtThisCompany  | 1200 non-null  | int64  |
| 22    | ExperienceYearsInCurrentRole  | 1200 non-null  | int64  |
| 23    | YearsSinceLastPromotion       | 1200 non-null  | int64  |
| 24    | YearsWithCurrManager          | 1200 non-null  | int64  |
| 25    | Attrition                     | 1200 non-null  | object |
| 26    | PerformanceRating             | 1200 non-null  | int64  |
| dtvpe | es: int64(19), object(8)      |                |        |

dtypes: int64(19), object(8)
memory usage: 253.2+ KB

```
from sklearn.preprocessing import LabelEncoder
enc = LabelEncoder() # labelencoder
for i in (1,2,3,4,5,6,15,25):
    df.iloc[:,i] = enc.fit_transform(df.iloc[:,i])
df.head()
```

|   | Age | Gender | EducationBackground | MaritalStatus | EmpDepartment | EmpJobRole |
|---|-----|--------|---------------------|---------------|---------------|------------|
| 0 | 32  | 1      | 2                   | 2             | 5             | 13         |
| 1 | 47  | 1      | 2                   | 2             | 5             | 13         |
| 2 | 40  | 1      | 1                   | 1             | 5             | 13         |
| 3 | 41  | 1      | 0                   | 0             | 3             | 8          |
| 4 | 60  | 1      | 2                   | 2             | 5             | 13         |
|   |     |        |                     |               |               |            |

5 rows × 27 columns



corr=df.corr()
corr

| Age       | Gender    | EducationBackground | MaritalStatus | EmpDepartment | EmpJobR |
|-----------|-----------|---------------------|---------------|---------------|---------|
| 1.000000  | -0.040107 | -0.055905           | -0.098368     | -0.000104     | -0.037  |
| -0.040107 | 1.000000  | 0.009922            | -0.042169     | -0.010925     | 0.011   |
| -0.055905 | 0.009922  | 1.000000            | -0.001097     | -0.026874     | -0.012  |
| -0.098368 | -0.042169 | -0.001097           | 1.000000      | 0.067272      | 0.038   |
| -0.000104 | -0.010925 | -0.026874           | 0.067272      | 1.000000      | 0.568   |
| -0.037665 | 0.011332  | -0.012325           | 0.038023      | 0.568973      | 1.000   |
| 0.040579  | -0.043608 | 0.012382            | 0.028520      | -0.045233     | -0.086  |
| 0.020937  | -0.001507 | -0.013919           | -0.019148     | 0.007707      | 0.022   |
| 0.207313  | -0.022960 | -0.047978           | 0.026737      | 0.019175      | -0.016  |
| 0.013814  | 0.000033  | 0.045028            | -0.032467     | -0.019237     | 0.044   |
| 0.062867  | 0.002218  | -0.030234           | -0.013540     | 0.003957      | -0.016  |
| 0.027216  | 0.010949  | -0.025505           | -0.043355     | -0.076988     | -0.008  |
| 0.509139  | -0.050685 | -0.056338           | -0.087359     | 0.100526      | 0.004   |
| -0.002436 | 0.024680  | -0.030977           | 0.044593      | 0.007150      | 0.032   |
| 0.284408  | -0.036675 | -0.032879           | -0.030095     | -0.033950     | -0.009  |
| 0.051910  | -0.038410 | 0.007046            | -0.022833     | -0.026841     | 0.015   |
| -0.006105 | -0.005319 | -0.009788           | 0.010128      | -0.012661     | 0.005   |
| 0.049749  | 0.030707  | 0.005652            | 0.026410      | -0.050286     | -0.043  |
| 0.680886  | -0.061055 | -0.027929           | -0.093537     | 0.016065      | -0.049  |
| -0.016053 | -0.057654 | 0.051596            | 0.026045      | 0.016438      | 0.004   |
| -0.019563 | 0.015793  | 0.022890            | 0.014154      | 0.068875      | -0.007  |
| 0.318852  | -0.030392 | -0.009887           | -0.075728     | 0.047677      | -0.009  |
| 0.217163  | -0.031823 | -0.003215           | -0.076663     | 0.069602      | 0.019   |
| 0.228199  | -0.021575 | 0.014277            | -0.052951     | 0.052315      | 0.012   |
| 0.205098  | -0.036643 | 0.002767            | -0.061908     | 0.033850      | -0.004  |
| -0.189317 | 0.035758  | 0.027161            | 0.162969      | 0.048006      | 0.037   |
| -0.040164 | -0.001780 | 0.005607            | 0.024172      | -0.162615     | -0.096  |
|           |           |                     |               |               |         |

```
plt.figure(figsize=(12, 10))
sns.heatmap(corr[['PerformanceRating']].sort_values(by='PerformanceRating', ascendi
plt.title('Correlation of Features with Performance Rating')
plt.show()
```



# Taking only variables with correlation coeffecient greater than 0.1
corr\_matrix = df.corr()

```
# Extract the correlation of each feature with the target column ('PerformanceRatin
correlation_with_target = corr_matrix['PerformanceRating'].drop('PerformanceRating'
# Select features with correlation coefficient greater than 0.1
selected_features = correlation_with_target[correlation_with_target.abs() > 0.1]
# Display the selected features
print("Selected features with correlation coefficient > 0.1 with PerformanceRating:
print(selected_features)
```

```
Selected features with correlation coefficient > 0.1 with PerformanceRating:
EmpDepartment
                               -0.162615
EmpEnvironmentSatisfaction
                                0.395561
EmpLastSalaryHikePercent
                                0.333722
EmpWorkLifeBalance
                                0.124429
ExperienceYearsAtThisCompany
                              -0.111645
ExperienceYearsInCurrentRole
                               -0.147638
YearsSinceLastPromotion
                               -0.167629
YearsWithCurrManager
                               -0.122313
Name: PerformanceRating, dtype: float64
```

```
selected_feature_indices = selected_features.index.tolist()
```

```
X = df[selected_feature_indices]
X.head()
```

|   | EmpDepartment | EmpEnvironmentSatisfaction | EmpLastSalaryHikePercent | EmpWc |
|---|---------------|----------------------------|--------------------------|-------|
| 0 | 5             | 4                          | 12                       |       |
| 1 | 5             | 4                          | 12                       |       |
| 2 | 5             | 4                          | 21                       |       |
| 3 | 3             | 2                          | 15                       |       |
| 4 | 5             | 1                          | 14                       |       |
|   |               |                            |                          |       |

Next steps: Generate code with X View recommended plots

y = df['PerformanceRating']

#### Splitting into train and test

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3,random_sta
```

```
#The `random_state` parameter in `train_test_split` ensures reproducibility by s
```

#### **SCALING: STANDARD SCALER:**

 StandardScaler from scikit-learn is applied to scale the features in the training and testing sets, ensuring that they have a mean of 0 and a standard deviation of 1, which aids in model convergence and performance.

```
from sklearn.preprocessing import StandardScaler

sc = StandardScaler()  # Initialize StandardScaler

X_train_scaled = sc.fit_transform(X_train)  # Scale training set

X_test_scaled = sc.transform(X_test)  # Scale test set

#scaling appliedonly for input features

X_train.shape

    (840, 8)

X_test.shape

    (360, 8)
```

# **▼ 5.MODEL TRAINING:**

#### MODEL1. LOGISTICREGRESSION

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix

model1 = LogisticRegression()
model1.fit(X_train, y_train) #train the LR model
```

```
LogisticRegression
LogisticRegression()
```

```
#make the prediction ontesting set
y_predict1 = model1.predict(X_test)
```

```
accuracy_model1 = accuracy_score(y_test, y_predict1)
print("Accuracy:", accuracy_model1)
```

Accuracy: 0.8361111111111111

```
print("Classification Report:")
print(classification_report(y_test, y_predict1))
```

### Classification Report:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 2            | 0.70      | 0.51   | 0.59     | 63      |
| 3            | 0.87      | 0.94   | 0.90     | 264     |
| 4            | 0.74      | 0.61   | 0.67     | 33      |
| accuracy     |           |        | 0.84     | 360     |
| macro avg    | 0.77      | 0.69   | 0.72     | 360     |
| weighted avg | 0.83      | 0.84   | 0.83     | 360     |

```
#confusion matrix
print(confusion_matrix(y_test, y_predict1))
```

```
[[ 32 29 2]
[ 10 249 5]
[ 4 9 20]]
```

```
# Calculate the confusion matrix
cm = confusion_matrix(y_test, y_predict1)

plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False)
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.title('Confusion Matrix')
plt.show()
```





### **MODEL2 SVM:**

```
from sklearn.svm import SVC

model2=SVC(kernel='rbf', C=100, random_state=10)

model2.fit(X_train, y_train)

y_predict_model2 = model2.predict(X_test)

accuracy_model2 = accuracy_score(y_test, y_predict_model2)
print("Accuracy:", accuracy_model2)
```

Accuracy: 0.8777777777778

```
# Print classification report
print("Classification Report:")
print(classification_report(y_test, y_predict_model2))

# Print confusion matrix
print("Confusion Matrix:")
print(confusion_matrix(y_test, y_predict_model2))
```

## Classification Report:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 2            | 0.00      | 0.71   | 0.76     | 63      |
| 2            | 0.82      | 0.71   | 0.76     | 63      |
| 3            | 0.90      | 0.95   | 0.92     | 264     |
| 4            | 0.78      | 0.64   | 0.70     | 33      |
|              |           |        |          |         |
| accuracy     |           |        | 0.88     | 360     |
| macro avg    | 0.83      | 0.77   | 0.80     | 360     |
| weighted avg | 0.87      | 0.88   | 0.87     | 360     |

#### Confusion Matrix:

```
[[ 45 16 2]
[ 10 250 4]
[ 0 12 21]]
```

```
cm = confusion_matrix(y_test, y_predict_model2)

plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False)
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.title('Confusion Matrix')
plt.show()
```



## **MODEL3 Decision Tree with GridSearchCV:**

- Decision Tree with GridSearchCV involves training a Decision Tree model while tuning its hyperparameters using a grid search technique called GridSearchCV.
   This method systematically explores different combinations of hyperparameters to find the best ones for the model.
- By doing so, it helps improve the model's performance.

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV

# Define the parameter grid
param_grid = {
    'max_depth': [3, 5, 7],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4]
}
```

```
# the Decision Tree classifier
model3 = DecisionTreeClassifier(random_state=10)

# Instantiate GridSearchCV
grid_search = GridSearchCV(estimator=model3, param_grid=param_grid, cv=5)

# Fit GridSearchCV to the training data
grid_search.fit(X_train, y_train)

# Get the best parameters and best estimator
best_params = grid_search.best_params_
best_model = grid_search.best_estimator_

# Make predictions
y_pred_model3 = best_model.predict(X_test)
```

```
best_params
```

```
{'max_depth': 5, 'min_samples_leaf': 1, 'min_samples_split': 2}
```

```
#prediction model3
y_pred_model3 = best_model.predict(X_test)
```

```
accuracy_model3 = accuracy_score(y_test, y_pred_model3)
print("Accuracy:", accuracy_model3)
```

```
print(classification_report(y_test, y_pred_model3))
print("Confusion Matrix:")
cm_model3 = confusion_matrix(y_test, y_pred_model3)
print(cm_model3)
```

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
|              |           |        |          |         |
| 2            | 0.87      | 0.87   | 0.87     | 63      |
| 3            | 0.95      | 0.97   | 0.96     | 264     |
| 4            | 0.92      | 0.73   | 0.81     | 33      |
|              |           |        |          |         |
| accuracy     |           |        | 0.93     | 360     |
| macro avg    | 0.91      | 0.86   | 0.88     | 360     |
| weighted avg | 0.93      | 0.93   | 0.93     | 360     |

Confusion Matrix:

```
[[ 55 7 1]
[ 6 257 1]
[ 2 7 24]]
```

```
plt.figure(figsize=(8, 6))
sns.heatmap(cm_model3, annot=True, fmt='d', cmap='Blues', cbar=False)
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.title('Confusion Matrix (Decision Tree)')
plt.show()
```



# MODEL 4:Randomforest girdsearch cv !?

```
from sklearn.ensemble import RandomForestClassifier
param_grid = {
    'n_estimators': [100, 200, 300],
    'max_depth': [None, 10, 20],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4]
}
model4 = RandomForestClassifier(random_state=10)
grid_search = GridSearchCV(estimator=model4, param_grid=param_grid, cv=5)
```

```
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
best_model = grid_search.best_estimator_
```

### best\_params

```
{'max_depth': None,
  'min_samples_leaf': 1,
  'min_samples_split': 10,
  'n_estimators': 100}
```

```
y_pred_model4 = best_model.predict(X_test)
```

```
accuracy_model4 = accuracy_score(y_test, y_pred_model4)
print("Accuracy:", accuracy_model4)
```