Bevezetés Alapfogalmak C Bevezetés Alapfogalmak C

Bevezetés – Alapfogalmak A programozás alapjai I.

Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

2020. szeptember 7.

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés – Alapfogalmak

2020. szeptember 7.

1 / 51

Bevezetés Alapfogalmak C Bemutatkozás Miről lesz szó Követelmények

1. fejezet

Bevezetés

Tartalom

- 1 Bevezetés
 - Bemutatkozás
 - Miről lesz szó
 - Követelmények
- 2 Alapfogalmak
 - Az imperatív programozási paradigma
 - Az algoritmus

- Az adat konstansok és változók
- Kifejezések
- Programnyelvek
- 3 C nyelvi alapok
 - Történet
 - Az első program
 - Változók
 - Beolvasás

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés – Alapfogalmak

2020. szeptember 7.

2 / 51

Bevezetés Alapfogalmak C

Bemutatkozás Miről lesz szó Követelmények

Bemutatkozás

- BME Villamosmérnöki és Informatikai Kar
 - Hálózati Rendszerek és Szolgáltatások Tanszék
- Fiala Péter tárgyfelelős, előadó
 - email: fiala@hit.bme.hu
 - szoba: IE433
 - Tel: 06 1 463 2543
- Vitéz András előadó email: vitez@hit.bme.hu
- A tárgy honlapja: https://edu.vik.bme.hu

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés – Alapfogalmak

2020. szeptember 7.

3 / 51

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés – Alapfogalmak

2020. szeptember 7.

Tárgyunk a BSc képzésben

Informatika II

Informatika I

Digitális technika II

A programozás alapjai II

Digitális technika I

A programozás alapjai I

A Számítástudomány alapjai

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés – Alapfogalmak

2020. szeptember 7.

5 / 51

Bevezetés Alapfogalmak C

Bemutatkozás Miről lesz szó Követelmények

Mit tanulunk meg?

A C programozási nyelvet

```
/* Helloworld.c -- Az első program */
#include <stdio.h> /* printf-hez */
/* A főprogram */
int main()
  printf("Szia, világ!\n"); /* Kiírás */
  return 0;
```

Mit tanulunk meg?

■ Az algoritmikus gondolkodás és strukturált programszervezés alapjait

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés – Alapfogalmak

2020. szeptember 7.

6 / 51

Bevezetés Alapfogalmak C

Bemutatkozás Miről lesz szó Követelmények

Mit tanulunk meg?

- Vektoralgoritmusokat
 - Eldöntés
 - Keresés
 - Kiválasztás
 - Rendezés

Mit tanulunk meg?

A fájlkezelést

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés – Alapfogalmak

Bevezetés Alapfogalmak C

2020. szeptember 7.

9 / 51

Bemutatkozás Miről lesz szó Követelmények

Mit tanulunk meg?

Mit tanulunk meg?

fig/rekurzio.png

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés – Alapfogalmak

2020. szeptember 7.

10 / 51

Bevezetés Alapfogalmak C

Bemutatkozás Miről lesz szó Követelmények

Mit tanulunk meg?

Az állapotgépeket és az eseményvezérelt programozást

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés – Alapfogalmak

2020. szeptember 7.

11 / 51

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés – Alapfogalmak

2020. szeptember 7.

12 / 51

Mit tanulunk meg?

A moduláris programozást

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés - Alapfogalmak

2020. szeptember 7.

13 / 51

Bevezetés Alapfogalmak C

Bemutatkozás Miről lesz szó Követelmények

Követelmények

■ Kis 7H-k

- (3 · 2) kis ZH a tantermi gyakorlatokon, előre meghirdetett időpontokban $(1\ 2)\ (3\ 4)\ (5\ 6)$
- mindegyiken 10 pont szerezhető, páronként csak a jobb számít
- követelmény: páronként min. 4 pont
- Nagy ZH-k
 - 2 nagy ZH előre meghirdetett időpontokban
 - papíron
 - mindegyiken 40 pont szerezhető
 - követelmény: összesen min. 40 pont
 - pótlás: egyetlen pótZH-val

Követelmények

Jelenlét

- Előadáson
- Tantermi gyakorlaton (70%) mi ellenőrizzük
- Laborgyakorlaton (70%) mi ellenőrizzük

Már az első héten is megtartjuk mindhárom foglalkozást!

- Számonkérések
 - hat (3 · 2) kis ZH a tantermi gyakorlatokon
 - két nagy ZH
 - beugrók a laborgyakorlatokon
- 3 Házi feladat

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés – Alapfogalmak

2020. szeptember 7.

14 / 51

Bevezetés Alapfogalmak C

Bemutatkozás Miről lesz szó Követelmények

Követelmények

■ Házi feladat

- Az ismeretek készségszintű megértését és alkalmazását elősegítő házi feladat, amely átfogja az adatszerkezet-tervezést, az algoritmizálást, az implementálást, a tesztelést és a dokumentálást.
- Beadás:
 - 1 feladat pontosítása (7. hét)
 - 2 adatszerkezet és algoritmusok (11. hét)
 - 3 program és dokumentáció (13. hét)
- Értékelés részletei a tantárgyi adatlapon
- Az elfogadott házi feladat előfeltétele a félévi jegy megszerzésének

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

2020. szeptember 7.

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés – Alapfogalmak

2020. szeptember 7.

Szorgalmasaknak

- Szorgalmi feladatokból kétféle van
 - 1 Laborvezetők által kiadott feladatok
 - Az labor órai anyaghoz kapcsolódó további feladatok
 - Beadás a Moodle rendszerben
 - A laborvezető értékeli és jelez vissza
 - A laborvezető összesen 3 pontot adhat, ami beleszámít a jegybe
 - 2 IMSc-szorgalmi feladatok
 - Beadás egy erre kijelölt felületen (később pontosítjuk)
 - Összesen 4 feladat, mindegyikért 5 IMSc pont kapható
- IMSc pontok szerezhetők a nagyzárthelyiken (6+6 pont)
- IMSc pontok szerezhetők a nagy házi feladat részletesebb és időben történő kidolgozásával (3 pont)

Bevezetés – Alapfogalmak

2. fejezet

Alapfogalmak

2020. szeptember 7.

18 / 51

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés – Alapfogalmak

2020. szeptember 7.

17 / 51

Bevezetés Alapfogalmak C

Imperatív Algoritmus Adat Kifejezések Programnyelvek

Programozás

Forró olajban piríts meg kevés szalonnát Üss bele három tojást

Hogy pirítsak meg forró olajban kevés szalonnát?

Végy egy serpenyőt Tedd a tűzhelyre Önts bele kevés olajat Forrald fel Tégy bele kevés szalonnát Várj, míg megpirul

Hogy forralom fel az olajat?

Gyújts alá Várj kicsit Forró az olaj? Ha nem, ugorj vissza a 2. sorra © Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetes – Alaptogalm

Bevezetés **Alapfogalmak** C

Imperatív Algoritmus Adat Kifejezések Programnyelvek

Az imperatív programozási paradigma

Programozás

Megmondjuk a gépnek, hogy mit csináljon

Programozási paradigmák

Azok az elvek, amik alapján a programot elkészítjük

- Imperatív programozás ← Ezt tanuljuk mi
- Funkcionális programozás
- Objektum-orientált programozás
- stb...

Imperatív programozás

Lépésről lépésre előírjuk, hogy a gép mit csináljon

egy algoritmus megfogalmazásával

A programozás folyamata

A programozás folyamata

Ugyanaz kicsit bővebben:

6 Kódoljuk az algoritmust 7 Teszteljük a programot

Megfogalmazunk egy feladatot

2 Megadjuk a pontos specifikációt

4 A megoldáshoz kitalálunk egy algoritmust

Mi idén kizárólag C-ben programozunk

A félév folyamán mindig ezt fogjuk csinálni:

- Megfogalmazunk egy feladatot
- 2 A megoldáshoz kitalálunk egy algoritmust
- 3 Elkészítjük a programot kódoljuk az algoritmust

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés - Alapfogalmak

2020. szeptember 7.

21 / 51

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés – Alapfogalmak

3 Adatszerkezetet választunk a probléma modellezéséhez

2020. szeptember 7.

22 / 51

Bevezetés Alapfogalmak C

Imperatív Algoritmus Adat Kifejezések Programnyelvek

Algoritmus

Algoritmus (módszer)

Gépiesen végrehajtható lépések véges sorozata, amely elvezet a megoldáshoz

- Kódolás előtt meggyőződünk róla, hogy
 - helyes tényleg azt oldja meg, amit szeretnénk
 - teljes minden lehetséges esetben megoldja
 - véges véges sok lépésben befejeződik
- Nem elég kipróbálni, bizonyítani is kell!

Bevezetés Alapfogalmak C

Imperatív Algoritmus Adat Kifejezések Programnyelvek

Algoritmusok – példák

- Feladat: Határozzuk meg az *n* szám köbgyökét!
- Megoldás: Osszuk el *n*-et néggyel!
- Tesztek:

1
$$n = 8$$
, $n/4 = 2$, $2 \cdot 2 \cdot 2 = 8$

2
$$n = -8$$
, $n/4 = -2$, $(-2) \cdot (-2) \cdot (-2) = -8$

3
$$n = 64$$
, $n/4 = 16$, $16 \cdot 16 \cdot 16 = 4092 \neq 64$

Az algoritmus nem helyes

Algoritmusok

BME

- Feladat: Meneküljünk ki a sötét labirintusból
- Megoldás: Bal vállunkat a falnak nyomva haladjunk, míg ki nem érünk.

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés – Alapfogalmak

2020. szeptember 7.

25 / 51

Bevezetés Alapfogalmak C

Imperatív Algoritmus Adat Kifejezések Programnyelvek

Algoritmusok – példák

- Attól, mert az algoritmus helyes, teljes és véges, még nem biztos, hogy kezelhető
- Fontos, hogy gyakorlatilag is véges legyen, vagyis
 - kivárható idő alatt lefusson
 - ésszerű mennyiségű adattal dolgozzon

Algoritmusok

- Feladat: Meneküljünk ki a sötét labirintusból
- Megoldás: Bal vállunkat a falnak nyomva haladjunk, míg ki nem érünk.

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés - Alapfogalmak

2020. szeptember 7

26 / 51

Bevezetés Alapfogalmak C

Imperatív Algoritmus Adat Kifejezések Programnyelvel

Algoritmusok – példák

Isten algoritmusa Adjuk meg azt a legkisebb lépésszámot, melyre igaz, hogy legfeljebb annyi forgatással a Rubik-kocka tetszőleges kezdőállapotból kirakható.

- 21 626 001 637 244 900 000 feldolgozandó állapot
- Ha másodpercenként 1 000 000-t dolgozunk fel, 685 756 évig tart.
- Az emberiség eddigi története < 10 000 év

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Algoritmusok leírása

- BME
- Algoritmusok nyelvfüggetlen leírási módja a pszeudokód (álkód)
- természetes nyelven, de precízen megfogalmazott utasítássorozat

Végy egy serpenyőt
Tedd a tűzhelyre
Önts bele kevés olajat
Gyújts alá
Várj kicsit
Forró az olaj?
Ha nem, ugorj vissza az 5. sorra
Tégy bele kevés szalonnát
Várj, míg megpirul
Üss bele három tojást

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés - Alapfogalmak

2020. szeptember 7.

29 / 51

Bevezetés Alapfogalmak C

Imperatív Algoritmus Adat Kifejezések Programnyelvek

Folyamatábra – példa

31 / 51

Adjuk meg a forralás algoritmusának folyamatábráját

Algoritmusok leírása

- Algoritmusok grafikus ábrázolásának eszköze a folyamatábra
- Egybemenetű és egykimenetű program folyamatábrája START és STOP elemek között helyezkedik el

A folyamatábra az alábbi elemekből épül fel

© Farkas B., Fiala P., Vitéz A., Zsóka Z

Bevezetés – Alapfogalmak

2020. szeptember 7.

30 / 51

Bevezetés Alapfogalmak C

Imperatív Algoritmus Adat Kifejezések Programnyelvek

Folyamatábra – példa

Hogyan dobunk be három tojást?

Folyamatábra – példa

- Hogyan dobunk be 12 tojást?
- Jelölje t a már bedobott tojások számát!

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés – Alapfogalmak

2020. szeptember 7.

Imperatív Algoritmus Adat Kifejezések Programnyelvek

33 / 51

Bevezetés Alapfogalmak C

Imperatív Algoritmus Adat Kifejezések Programnyelvek

Típusok – példák

típus	értékek	műveletek
szám	$0, -1, e, \pi, \dots$	összeadás, kivonás,, összehasonlítás, rendezés
betű	a, A, b, γ ,	összehasonlítás, rendezés
logikai	{igaz, hamis}	tagadás, konjunkció (ÉS), diszjunkció (VAGY)
szín	piros, kék,	összehasonlítás
hőmérséklet	hideg, meleg, forró,	összehasonlítás, rendezés

Az adat fogalma

Az algoritmus adatokon, adatokkal dolgozik

Adat

Az adat minden, amit a külvilágból számítógépünkben leképezve tárolunk

- Az adatnak van
 - típusa (szám, betű, szín, ...)
 - értéke
- A típus meghatározza
 - az adat értékkészletét
 - és az adaton végezhető műveleteket

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés – Alapfogalmak

2020. szeptember 7.

34 / 51

Imperatív Algoritmus Adat Kifejezések Programnyelvel

Állandók és változók

Az algoritmusban betöltött szerepe szerint az adat lehet

- állandó (konstans)
 - értéke nem változik az algoritmus futása során pl. a fenti példában 12 (a bedobandó tojások száma)
- változó
 - azonosítóval jelöljük (pl. t)
 - értéke műveletekben felhasználható (olvasás), pl t < 12?
 - értéke frissíthető (értékadás, írás), pl. $t \leftarrow 0$
- Az állandó típusa a megjelenési formából kiderül
- A változó típusát mindig külön meg kell adni (deklaráció). pl. "Jelölje t a bedobott tojások számát"

Kifejezések

Kifejezés

Állandókból és változókból a megfelelő műveletek (operációk) alkalmazásával kifejezések képezhetőek

- A kifejezés kiértékelhető, típusa és értéke van.
- A műveleteket operátorok határozzák meg, melyek az operandusokon dolgoznak
- Kifejezés példák

kifejezés	típus	érték	megjegyzés
2+3	szám	5	
<i>−a</i>	szám	-3	ha $a = 3$
2*(a-2)	szám	2	ha $a = 3$
igaz ÉS hamis	logikai	hamis	

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés - Alapfogalmak

2020. szeptember 7.

37 / 51

Bevezetés Alapfogalmak C

Imperatív Algoritmus Adat Kifejezések Programnyelvek

Programnyelvek

Programozási nyelv

Számítógéppel értelmezhető matematikai formalizmus

- Hasonlít a beszélt nyelvekhez, hogy könnyen érthető legyen, és egyszerűen tudjunk fogalmazni
- Szűk szókincs, szigorú nyelvtan (szintaxis)

Kifejezések

Kifejezések típusa nem feltétlenül egyezik meg az operandusok (összetevők) típusával. Vegyes kifejezések:

kifejezés	típus	érték	megjegyzés
2 < 3	logikai	igaz	
$(a-2) \neq 8$	logikai	igaz	ha $a = 3$

■ A kifejezések képzésének szigorú szabályai (szintaxis) vannak. Hibás (értelmezhetetlen) kifejezések:

kifejezés	hiba	
3/	diadikus (bináris) operátor (/) egy operandussal	
piros < 2	szín < szám	
3 ⋅ hideg	szám · hőmérséklet	
(2 < 3) + 5	logikai + szám	

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés – Alapfogalmak

2020. szeptember 7.

38 / 51

Bevezetés Alapfogalmak C

Imperatív Algoritmus Adat Kifejezések Programnyelvek

Szintaktika és szemantika

- Szintaktikai (nyelvtani) hiba (syntax error)
 - helytelenül használjuk a programnyelv szabályait, a program értelmezhetetlen, végrehajthatatlan
 - A szintaktikai hiba hamar kiderül
 - általában egyszerűen, gyorsan javítható.
- Szemantikai (értelmezési) hiba (semantic error)
 - A program végrehajtható, lefut, de nem azt csinálja, amit specifikáltunk
 - A szemantikai hiba sokszor nehezen érhető tetten, nehezen reprodukálható, nehéz javítani.
 - A programtesztelés szakma.

A C nyelv rövid története

- 1972: Fejlesztés kezdete az AT&T Bell Labsban UNIX kernel nagy része C-ben készült
- 1978: K&R C Brian Kernigham, Dennis Ritchie: The C Programming Language

Bevezetés – Alapfogalmak

- 1989: Szabványosítás: ANSI X3.159-1989
- 1999: C99-szabvány: új adattípusok (komplex) nemzetközi karakterkódolás változó méretű tömbök
- 2007-: C1X szabvány, 2011-ben C11 C++ kompatibilitás többszálú programok

Bevezetés Alapfogalmak C

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés - Alapfogalmak 41 / 51 2020. szeptember 7.

Történet helloworld Változók Beolvasás

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

3. fejezet

C nyelvi alapok

Bevezetés Alapfogalmak C

Történet helloworld Változók Beolvasás

A C főbb tulajdonságai

fordított nyelv

- "kis nyelv": kevés (10) utasítás, rengeteg (>50) operátor
- tömör szintaktika
 - nehezen olvasható (ha nem figyelünk oda)
 - könnyű hibát véteni
 - nehéz megtalálni
- iól optimalizálható, gyors kódot eredményez
- jól hordozható

Történet helloworld Változók Beolvasás

2020. szeptember 7.

Az első C program

A minimálprogram forráskódja

```
/* first.c -- Az első program */
  int main()
    return 0;
6 }
```

- A program elindul, majd befejezi a futást
- /* és */ között komment, a programozónak szól
- int main() Így kezdődik minden C-program
 - int Main() Nem így. A C "case sensitive"
- { } blokk, a programtörzset zárja közre
- return 0; A program végét jelzi

42 / 51

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés - Alapfogalmak

2020. szeptember 7.

43 / 51

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés - Alapfogalmak

2020. szeptember 7.

Az első C program

ami már csinál is valamit.

```
1 /* Helloworld.c -- Az első program */
  #include <stdio.h> /* printf-hez */
  /* A főprogram */
5 int main()
    printf("Szia, világ!\n"); /* Kiírás */
    return 0;
```

■ Fordítás és futtatás után a kimenet:

```
Szia, világ!
```

- #include más C programrészek beillesztése
- printf kiírás, \n soremelés

© Farkas B., Fiala P., Vitéz A., Zsóka Z Bevezetés – Alapfogalmak 2020. szeptember 7.

45 / 51

Bevezetés Alapfogalmak C Történet helloworld Változók Beolvasás

Változó értékének kiírása

47 / 51

```
#include <stdio.h>
   int main()
     int num:
                     /* num nevű egész változó dekl. */
                     /* num <- 2 értékadás */
     printf("A szám értéke: %d\n", num); /* kiírás */
     num = -5;
                     /* num <- -5 értékadás */
     printf("A szám értéke: %d\n", num); /* kiírás */
     return 0;
10 }
```

A szám értéke: 2 A szám értéke: -5

■ int num – változódeklaráció.

értékét

- int (integer, egész) a típus, num az azonosító ■ num = 2 – értékadás, num változó felveszi a "2" kifejezés
- printf(<formátum>, <mit>) -<mit> kifejezés értékének kiírása <formátum> formában © Farkas B., Fiala P., Vitéz A., Zsóka Z P., Vitéz A., Zsóka Z Bevezetés – Alapfogalmak
 ■ /₀₵ — ɑecɪmaiis (tizes szamrenɑszer)

Eggyel bonyolultabb

■ Egymás után kiadott utasítások

```
1 /* football.c -- szurkolóprogram */
  #include <stdio.h>
  int main()
    printf("Szódásüveget"); /* nincs újsor */
    printf(" a birónak,\n"); /* itt van */
    printf("hajrá, Fradi!");
    return 0;
   Szódásüveget a bírónak,
   hajrá, Fradi!
```

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Bevezetés – Alapfogalmak

2020. szeptember 7

46 / 51

Bevezetés Alapfogalmak C

Történet helloworld Változók Beolvasás

Blokk és deklaráció

Blokk szerkezete

```
<deklarációk>
<utasítások>
/* deklarációk */
int num;
/* utasítások */
num = 2:
printf("%d\n", num);
```

Bevezetés Alapfogalmak C Történet helloworld Változók Beolvasás

Blokk és deklaráció

Deklaráció szerkezete

- n értéke kezdetben memóriaszemét
- number_of_dogs értéke kezdetben 2

© Farkas B., Fiala P., Vitéz A., Zsóka Z. Bevezetés – Alapfogalmak 2020. szeptember 7.

Bevezetés Alapfogalmak C Történet helloworld Változók Beolvasás

Adat heolyasása

49 / 51

■ Így is lehet, az eredmény ugyanaz.

Persze gondoljunk az utókorra is!

© Farkas B., Fiala P., Vitéz A., Zsóka Z. Bevezetés – Alapfogalmak 2020. szeptember 7. 51 / 51

Bevezetés Alapfogalmak C Történet helloworld Változók Beolvasás

Adat beolvasása

scanf(<formátum>, &<hova>) <formátum> formátumú adat beolvasása a <hova> változóba

© Farkas B., Fiala P., Vitéz A., Zsóka Z. Bevezetés – Alapfogalmak 2020. szeptember 7. 50 / 51