STRATEGIC NETWORK FORMATION WITH MANY AGENTS

KONRAD MENZEL

April 1, 2021

- Introduction
- Model Description
- Asymptotic Representation of Network
- Convergence to the Limiting Distribution

Background

Network Formation Model

Introduction

This author derives a tractable approximation to the distribution of network links using many-player asymptotics. And he demonstrates convergence of the link frequency distribution from finite pairwise stable networks to the (many-player) limiting distribution.

- Introduction
- Model Description
- Asymptotic Representation of Network
- Convergence to the Limiting Distribution

• $\mathcal{N} = \{1, \dots, n\}$ is the set of n agents or nodes.

- $\mathcal{N} = \{1, \dots, n\}$ is the set of n agents or nodes.
- Each agent is associated with a vector of exogenous attributes (types) $x_i \in \mathcal{X}$.

- $\mathcal{N} = \{1, \dots, n\}$ is the set of n agents or nodes.
- Each agent is associated with a vector of exogenous attributes (types) $x_i \in \mathcal{X}$.
- ullet L is the adjacency matrix, where the element

$$L_{ij} = \begin{cases} 1 & if there is a direct link from node i to node j \\ 0 & otherwise \end{cases}$$
 (1)

- $\mathcal{N} = \{1, \dots, n\}$ is the set of n agents or nodes.
- Each agent is associated with a vector of exogenous attributes (types) $x_i \in \mathcal{X}$.
- ullet L is the adjacency matrix, where the element

$$L_{ij} = \begin{cases} 1 & \text{if there is a direct link from node i to node j} \\ 0 & \text{otherwise} \end{cases}$$
 (1)

• Player i's payoffs are of the form

$$\Pi_i(\mathbf{L}) = B_i(\mathbf{L}) - C_i(\mathbf{L}) \tag{2}$$

• the incremental benefit of adding a link ij

$$U_{ij}(\mathbf{L}) := B_i(\mathbf{L} + \{ij\}) - B_i(\mathbf{L} - \{ij\})$$
(3)

• the cost increment of adding that link

$$MC_{ij}(\mathbf{L}) := C_i(\mathbf{L} + \{ij\}) - C_i(\mathbf{L} - \{ij\})$$
 (4)

• the incremental benefit of adding a link ij

$$U_{ij}(\mathbf{L}) := B_i(\mathbf{L} + \{ij\}) - B_i(\mathbf{L} - \{ij\})$$
(3)

• the cost increment of adding that link

$$MC_{ij}(\mathbf{L}) := C_i(\mathbf{L} + \{ij\}) - C_i(\mathbf{L} - \{ij\})$$
(4)

• this paper specifies the marginal benefit function as

$$U_{ij}(\mathbf{L}) = U_{ij}^*(\mathbf{L}) + \sigma \eta_{ij} \tag{5}$$

and marginal costs as

$$MC_{ij}(\mathbf{L}) := \max_{k=1,\dots,J} \sigma \eta_{i0,k} \tag{6}$$

Node-specific network statistics

$$S_1(\boldsymbol{L}, \boldsymbol{X}; i) := \sum_{j \neq i} L_{ij} \tag{7}$$

•

$$S_2(\boldsymbol{L}, \boldsymbol{X}; i) := \frac{\sum_{j \neq i} L_{ij} \mathbf{1} \left\{ x_{jk} = \bar{x}_k \right\}}{\sum_{j \neq i} L_{ij}}$$
(8)

Node-specific network statistics

$$S_1(\boldsymbol{L}, \boldsymbol{X}; i) := \sum_{j \neq i} L_{ij} \tag{7}$$

•

$$S_2(\boldsymbol{L}, \boldsymbol{X}; i) := \frac{\sum_{j \neq i} L_{ij} \mathbf{1} \left\{ x_{jk} = \bar{x}_k \right\}}{\sum_{j \neq i} L_{ij}}$$
(8)

Edge-specific network statistics

$$T_1(\mathbf{L}, \mathbf{X}; i, j) = \sum_{k \neq i, j} L_{ik} L_{jk}$$
(9)

•

$$T_2(\mathbf{L}, \mathbf{X}; i, j) = \max\{L_{ik}L_{jk} : k \neq i, j\}$$
 (10)

The marginal benefit function can be defined as

$$U_{ij}^*(\mathbf{L}) \equiv U^*(x_i, x_j; S_i, S_j, T_{ij}) \tag{11}$$

Pairwise Stable Network

Definition 1 (Pairwise Stable Network) The undirected graph L is a pairwise stable network (PSN) if for any link ij with $L_{ij} = 1$,

$$\Pi_i(\mathbf{L}) \ge \Pi_i(\mathbf{L} - \{ij\}), and \ \Pi_j(\mathbf{L}) \ge \Pi_j(\mathbf{L} - \{ij\})$$

and any link ij with $L_{ij} = 0$,

$$\Pi_i(\boldsymbol{L} + \{ij\}) < \Pi_i(\boldsymbol{L}), or \ \Pi_j(\boldsymbol{L} + \{ij\}) < \Pi_j(\boldsymbol{L})$$

- Introduction
- Model Description
- Asymptotic Representation of Network
- Convergence to the Limiting Distribution

Link Frequency Distribution

$$F_n(x_1, x_2; s_1, s_2, t_{12}) := \frac{1}{n} \sum_{i=1}^n \sum_{j \neq i} P(L_{ij} = 1, x_i \le x_1, x_j \le x_2, s_i \le s_1, s_j \le s_2, t_{ij} \le t_{12})$$
(12)

The limiting model \mathcal{F}_0^* can be described in terms of pairwise stable subnetworks on finite network neighborhoods \mathcal{N}_{ij} around a pair of nodes i, j.

The model \mathcal{F}_0^* describes the distribution generating the network neighborhoods \mathcal{N}_{ij} in the many-player limit as well as the distribution of network outcomes on these neighborhoods.

The distribution can be described in terms of three components:

- the **reference distribution** M^* which is a cross-sectional p.d.f. of potential outcomes for the endogenous node characteristics s_l and t_l given exogenous attributes in the relevant subnetwork.
- the *inclusive value function* $H^*(x,s)$ which gives a sufficient statistic for the link opportunity set $W_i(\mathbf{L}^*)$ of a node with characteristics $x_i = x$ and $s_i = s$ with respect to her link formation decisions.
- the $edge-level\ response$ $Q^*(l_{12},s_1,s_2,t_{12}|x_1,x_2):=Q^*(l_{12},s_1,s_2,t_{12}|x_1,x_2;H^*,M^*)$ which corresponds to a conditional probability of a link ij forming together with the resulting values of the endogenous network variables s_1,s_2,t_{12} .

The resulting limiting link frequency distribution has p.d.f.

$$f_0^*(x_1, x_2; s_1, s_2) = \frac{s_{11}s_{12} \exp\{U^*(x_1, x_2; s_1, s_2) + U^*(x_2, x_1; s_2, s_1)\}}{(1 + H^*(x_1, s_1))(1 + H^*(x_2, s_2))} \times M^*(s_1|x_1, x_2)M^*(s_2|x_2, x_1)w(x_1)w(x_2)$$
(13)

The inclusive value function $H^*(x_1, s_1)$ is a nonnegative function satisfying the fixed-point condition

$$H^*(x;s) = \Psi_0[H^*, M^*](x;s)$$
(14)

where the fixed-point operator Ψ_0

$$\Psi_0[H, M](x; s) := \int \frac{s_{12} \exp\{U^*(x, x_2; s, s_2) + U^*(x_2, x; s_2, s)\}}{1 + H(x_2; s_2)} \times M^*(s_2 | x_2, x_1) w(x_2) ds_2 dx_2$$
(15)

The reference distribution

$$M^*(s_1|x_1, x_2) = \Omega_0[H^*, M^*](x_1, x_2; s_1)$$
(16)

where the operator Ω_0 maps H, M to the conditional distribution for the network statistic s_i given x_i resulting from the edge-level response in the cross section.

In the case of no endogenous interaction effects,

$$\Omega_0[H, M](x_1, x_2; s_{11}) := \frac{H(x_1)^{s_{11}}}{(1 + H^*(x_1))^{s_{11} + 1}}$$
(17)

- Introduction
- Model Description
- Asymptotic Representation of Network
- Convergence to the Limiting Distribution

Assumption 1 (Systematic Part of Payoffs)(i) The systematic parts of payoffs are uniformly bounded in absolute value for some value of $t=t_0, |U^*(x,x',s,s',t_0)| \leq \bar{U} < \infty$. Furthermore, (ii) at all values of s,s', the function $U^*(x,x',s,s',t_0)$ is $p\geq 1$ times differentiable in x with uniformly bounded partial derivatives. (iii) The supports of the payoff-relevant network statistics, $\mathcal S$ and $\mathcal T$, and the type space $\mathcal X$ are compact sets.

Assumption 2 (Idiosyncratic Part of Payoffs) η_{ij} and $\eta_{i0,k}$ are i.i.d. draws from the distribution G(s), and are independent of x_i, x_j , where (i) the c.d.f. G(s) is absolutely continuous with density g(s), and (ii) the upper tail of the distribution G(s) is of type I with auxiliary function $a(s) := \frac{1-G(s)}{g(s)}$.

Assumption 3 (Network Size)(i) The number n of agents in the network grows to infinity, and (ii) the random draws for marginal costs MC_i are governed by the sequence $J=[n^{1/2}]$, where [x] denotes the value of x rounded to the closest integer. (iii) The scale parameter for the taste shifters $\sigma \equiv \sigma_n = \frac{1}{a(b_n)}$, where $b_n = G^{-1}(1 - \frac{1}{\sqrt{n}})$, and a(s) is the auxiliary function specified in Assumption 2 (ii). Furthermore, (iv) for any values $t_1 \neq t_2 \in \mathcal{T}, |U(x, x', s, s', t_1) - U(x, x', s, s', t_2)|$ may increase with n, and there exists a constant $B_T < \infty$ such that for any sequence of pairwise stable networks $(L_n^*)_{n \geq 2}$, $\sup_{x,x',s,s'} \left(\mathbb{E}[\exp\left\{2|U(x,x',s,s',T(\boldsymbol{L}_{n}^{*},x,x',i,j)) - U(x,x',s,s',t_{0})|\right\}]\right)^{(1)}$

 $\exp\{B_T\}$ for n sufficiently large.

Assumption 4 (Pairwise Stability) Let $\mathcal{N}_s \subset \{1,\ldots,n\}$ be the subset of nodes for which the network L^* satisfies the payoff conditions for pairwise stability in Definition 1. Then for any $\epsilon > 0$, $|\mathcal{N}_s|/n > 1 - \epsilon$ with probability approaching 1 as n increases.

Assumption 5 (i) The mapping Ω_0 is compact and upper hemi-continuous in H, M for all $x \in \mathcal{X}$ and $S \subset \mathcal{R}$, and (ii) the core of $\Omega_0[H, M]$ is nonempty, where the boundary of the core of $\Omega_0[H, M]$ is in some compact subset $\mathcal{U} \subset \Delta(\mathcal{X} \times \mathcal{R})$ for all values of H, M. (iii) $\sup_{x,Z\subset\mathcal{R}} |\hat{\Omega}_n[H,M](Z) - \Omega_0[H,M](Z)| \to 0$ uniformly in $H \in \mathcal{G}$ and distributions $M \in \mathcal{U}$.

Theorem 1 (Fixed Point Existence) Suppose that Assumptions 1 and 5 (i)-(ii) hold. Then the mapping $(H, M) \to (\Psi_0, \Omega_0)$ has a fixed point.

Theorem 2 (Convergence) Suppose that Assumptions 1-5 hold, and let \mathcal{F}_0^* be the set of distributions characterized by (13) (14) and (16). Then for any pairwise or cyclically stable network there exists a distribution $F_0^*(x_1, x_2; s_1, s_2) \in \mathcal{F}_0^*$ such that the link frequency distribution

$$\sup_{x_1, x_2, s_1, s_2, t_{12}} |\hat{F}_n(x_1, x_2; s_1, s_2, t_{12}) - F_0^*(x_1, x_2; s_1, s_2, t_{12})| = o_p(1)$$

Furthermore, convergence is uniform with respect to selection among pairwise stable networks.