Einführung in die Wahrscheinlichkeitstheorie und Statistik

Prof. Dr. Jan Johannes Sergio Brenner Miguel Wintersemester 2020/21

11. Übungsblatt

Aufgabe 40 (Anwendung des SGGZ, 4 = 1 + 1 + 2 Punkte).

Ein Spieler startet mit dem Anfangskapital $K_0 = 1$. Bei jeder Runde setzt er sein gesamtes Kapital ein. Es wird eine faire Münze geworfen, bei Kopf erhält er den anderthalbfachen Einsatz zurück, bei Zahl nur den halben.

- (a) Stellen Sie das Kapital nach der n-ten Runde als $K_n = \prod_{i=1}^n R_i$ mit geeigneten unabhängigen Zufallsvariablen R_i dar.
- (b) Weisen Sie nach, dass das Spiel fair ist in dem Sinne, dass $\mathbb{E}(K_n) = 1$ für alle $n \in \mathbb{N}$ gilt.
- (c) Zeigen Sie, dass trotzdem $\lim_{n\to\infty} K_n = 0$ fast sicher gilt. **Hinweis**: Betrachten Sie $\log(K_n)$.

Aufgabe 41 (Konvergenz in Verteilung, 4 = 1 + 1 + 2 Punkte).

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und sei $(X_n)_{n \in \mathbb{N}}$ eine Folge von Zufallsvariablen.

- (a) Zeigen Sie: Das schwache Gesetz der großen Zahlen folgt aus dem Zentralen Grenzwertsatz!
- (b) Für $n \in \mathbb{N}$ besitze X_n die Wahrscheinlichkeitsdichte $\mathbb{f}_n(x) = \frac{n+1}{2}|x|^n\mathbb{1}_{(-1,1)}(x), x \in \mathbb{R}$. Existiert eine Zufallsvariable Z mit $X_n \stackrel{D}{\to} Z$?
- (c) Entscheiden Sie jeweils, ob eine Zufallsvariable Z existiert mit $X_n \stackrel{D}{\to} Z$, indem Sie die Verteilungsfunktionen berechnen und deren Grenzwerte bestimmen:
 - $ightharpoonup X_n \sim U_{[0,1+\frac{1}{n}]},$
 - $ightharpoonup X_n \sim \operatorname{Exp}_n,$
 - $ightharpoonup X_n \sim \operatorname{Exp}_{1/n}.$

Aufgabe 42 (Charakteristische Funktionen, 4 = 1 + 2 + 1 Punkte).

- (a) Berechnen Sie die charakteristische Funktion φ_X einer auf dem Intervall $[a,b],\ a< b,$ gleichverteilten Zufallsvariable $X\sim \mathrm{U}_{[a,b]}.$
- (b) Zeigen Sie, dass für die charakteristischen Funktionen $\varphi_Y, \, \varphi_Z$ zweier unabhängiger Zufallsvariablen Y, Z

$$\varphi_{Y+Z}(t) = \varphi_Y(t) \cdot \varphi_Z(t) \quad \forall t \in \mathbb{R} \quad \text{und} \quad \varphi_{-Y}(t) = \overline{\varphi_Y(t)} \quad \forall t \in \mathbb{R}$$

gilt und folgern Sie:

Die Differenz zweier unabhängiger und identisch verteilter Zufallsvariablen kann **nicht** $U_{[-1,1]}$ -verteilt sein.

1

Hinweis: Es gilt $\sin(t) = \frac{1}{2i} (\exp(it) - \exp(-it)).$

(c) Seien X_1, X_2 unabhängige und identisch verteilte Zufallsvariablen. Es gelte: $X_1 + X_2$ hat dieselbe Verteilung wie X_1 . Zeigen Sie, dass dann schon $X_1 = 0 = X_2$ fast sicher gilt.

Aufgabe 43 (ZGWS und empirische Vtlgsfunktion, 4 = 2 + 1 + 1 Punkte).

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum, $n \in \mathbb{N}$ und $X_1, ..., X_n : \Omega \longrightarrow \mathbb{R}$ unabhängig und identisch verteilte Zufallsvariablen mit $\mathbb{E}(X_1) = \mu$, $\mathbb{V}ar(X_1) = \sigma^2$ und Verteilungsfunktion \mathbb{F} . Seien für $x \in \mathbb{R}$

$$\hat{\mathbb{F}}_n(x) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{X_i \le x\}}$$

die empirische Verteilungsfunktion.

- (a) Bestimmen Sie die Verteilung von $n \cdot \hat{\mathbb{F}}_n(x)$ und geben Sie dann $\mathbb{E}(\hat{\mathbb{F}}_n(x))$ und \mathbb{V} ar $(\hat{\mathbb{F}}_n(x))$ in Termen von n und $\mathbb{F}(x)$ an.
- (b) Zeigen Sie, dass $\hat{\mathbb{F}}_n(x) \xrightarrow{\mathbb{P}-\text{f.s.}} \mathbb{F}(x)$ gilt.
- (c) Zeigen Sie, dass $\sqrt{n} \left(\hat{\mathbb{F}}_n(x) \mathbb{F}(x) \right) \stackrel{D}{\to} N_{(0,\mathbb{F}(x)(1-\mathbb{F}(x)))}$ gilt.

Aufgabe 44 (Asymptotische Konfidenzintervalle und Tests, $4 = 4 \times 1$ Punkte).

Sie haben eine Maschine, die bei Betätigung eines Knopfes eine (reelle) Zufallszahl X_i zwischen 0 und b ausgibt. Die Generierung der Zufallszahlen ist unabhängig voneinander und jede Zahl zwischen 0 und b ist gleichwahrscheinlich, d.h. $X_i \sim U[0, b]$. Sie beobachten n Ergebnisse der Maschine, X_1, \ldots, X_n .

(a) Weisen Sie nach, dass $\hat{b}_n := 2\overline{X}_n$ für $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ ein erwartungstreuer Schätzer für den Parameter b ist. Zeigen Sie, dass \hat{b}_n folgendes erfüllt:

$$\sqrt{n}(\hat{b}_n - b) \stackrel{d}{\to} N_{(0,b^2/3)}$$

- (b) Leiten Sie ein asymptotisches (1α) -Konfidenzintervall $C_n^{(b)}$ für b für die richtigen Parameter $\mathcal{R}_b = [b, \infty)$ her.
- (c) Sie wollen testen:

$$H_0: b = b_0$$
 vs. $H_1: b > b_0$

Zeigen Sie, dass ein Test zum asymptotischen Niveau α durch

$$\phi_n^{(b)}(X_1, \dots, X_n) = \begin{cases} 1, & \hat{b}_n - \frac{\hat{b}_n}{\sqrt{3n}} q_{1-\alpha} > b_0 \\ 0, & \text{sonst} \end{cases}$$

gegeben ist.

(d) Sie haben nun konkret n = 10 Realisierungen der Maschine in folgender Tabelle gegeben:

Beobachtung	1	2	3	4	5	6	7	8	9	10
Wert	42.09	64.91	24.61	42.38	42.08	46.67	31.92	54.96	59.16	99.98

Sie vermuten, dass $b_0 = 100$, sind sich aber nicht sicher, ob nicht $b > b_0$ ist. Berechnen Sie das Intervall aus (b) und das Testergebnis aus (c). Wie lautet schließlich Ihre Testentscheidung basierend auf den angegebenen Daten?

 $\it Hinweis: Das~95\%$ -Quantil der Standardnormalverteilung ist gegeben durch $q_{0.95}=1.64.$

Abgabe:

In Zweiergruppen, bis spätestens Montag, den 15. Februar 2021, 09:00 Uhr.

Homepage der Vorlesung:

https://sip.math.uni-heidelberg.de/vl/ews-ws20/