Artificial Intelligence

Propositional logic

Propositional Logic: Syntax

- Syntax of propositional logic defines <u>allowable</u> sentences
- Atomic sentences consists of a single proposition symbol
 - Each symbol stands for proposition that can be True or False
- Symbols of propositional logic
 - Propositional symbols: P, Q, ...
 - Logical constants: *True*, *False*
- Making complex sentences
 - Logical connectives of symbols: \land , \lor , \Leftrightarrow , \Rightarrow ,
 - Also have parentheses to enclose each sentence: (…)
- Sentences will be used for inference/problemsolving

Propositional Logic: Syntax

- True, False, S_1, S_2, \dots are sentences
- If S is a sentence, $\neg S$ is a sentence
- Not (negation)
- $S_1 \wedge S_2$ is a sentence, also $(S_1 \wedge S_2)$
- And (conjunction)
- $S_1 \vee S_2$ is a sentence
- Or (disjunction)
- $S_1 \Rightarrow S_2$ is a sentence
- Implies (conditional)
- $S_1 \Leftrightarrow S_2$ is a sentence
- Equivalence (biconditional)

Propositional Logic: Semantics

- Semantics defines the rules for determining the truth of a sentence (wrt a particular model)
- $\neg S$ is true iff S is false
- $S_1 \wedge S_2$ is true iff S_1 is true and S_2 is true
- $S_1 \vee S_2$ is true iff S_1 is true or S_2 is true
- $S_1 \Rightarrow S_2$ is true iff S_1 is false or S_2 is true (is false iff S_1 is true and S_2 is false) (if S_1 is true, then claiming that S_2 is true, otherwise make no claim)
- $S_1 \Leftrightarrow S_2$ is true iff $S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true $(S_1 \text{ same as } S_2)$

Semantics in Truth Table Form

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \!\Rightarrow\! Q$	$P \Leftrightarrow Q$
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

Propositional Inference: Enumeration Method

- Truth tables can test for <u>valid</u> sentences
 - True under all possible interpretations in all possible worlds
- For a given sentence, make a truth table
 - Columns as the combinations of propositions in the sentence
 - Rows with all possible truth values for proposition symbols
- If sentence true in every row, then valid

Propositional Inference: Enumeration Method

• Test $((P \lor H) \land \neg H) \Rightarrow P$

P	Н	$P \lor H$	~ H	$(P \vee H) \wedge \stackrel{\sim}{\sim} H$	$((P \lor H) \land \stackrel{\frown}{\frown} H)$ $\Rightarrow P$
False	False	False	True	False	True
False	True	True	False	False	True
True	False	True	True	True	True
True	True	True	False	False	True

Practice

• Test $(P \land H) \Rightarrow (P \lor \neg H)$

Simple Wumpus Knowledge Base

- For simplicity, only deal with the pits
- Choose vocabulary
 - Let $P_{i,j}$ be True if there is a pit in [i,j]
 - Let $B_{i,j}$ be True if there is a breeze in [i,j]
- KB sentences
 - FACT: "There is no pit in [1,1]"

$$R_1$$
: $\stackrel{\bullet}{\sim} P_{1,1}$

- RULE: "There is breeze in adjacent neighbor of pit"

$$R_2$$
: $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$ Need rule for

$$R_3$$
: $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$ each square!

Wumpus Environment

- Given knowledge base
- Include percepts <u>as move through</u> environment (online)
- Need to "deduce what to do"
- Derive chains of conclusions that lead to the desired goal
 - Use inference rules

$$\frac{\alpha}{\beta}$$
 Inference rule: "\alpha derives \beta" Knowing \alpha is true, then \beta must also be true

Modus Ponens

From implication and premise of implication, can infer conclusion

$$\frac{\alpha \Rightarrow \beta, \ \alpha}{\beta}$$

And-Elimination

- From conjunction, can infer any of the conjuncts

$$\frac{\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n}{\alpha_i}$$

• And-Introduction

- From list of sentences, can infer their conjunction

$$\frac{\alpha_1, \alpha_2, \dots, \alpha_n}{\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n}$$

• Or-Introduction

 From sentence, can infer its disjunction with anything else

$$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee \cdots \vee \alpha_n}$$

Double-Negation Elimination

From doubly negated sentence, can infer a positive sentence

$$\frac{\neg\neg\alpha}{\alpha}$$

Unit Resolution

From disjunction, if one of the disjuncts is false,
 can infer the other is true

$$\frac{\alpha \vee \beta, \ \neg \beta}{\alpha}$$

• Resolution

- Most difficult because β cannot be both true and false
- One of the other disjuncts must be true in one of the premises (implication is transitive)

$$\frac{\alpha \vee \beta, \ \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

Either:
$$\neg \beta \text{ OR } \beta \leftarrow \text{Valid!}$$

$$\frac{\alpha \vee \beta, \neg \beta}{\alpha} \text{ OR } \frac{\neg \beta \vee \gamma, \beta}{\gamma}$$

$$\alpha \text{ OR } \gamma$$

Monotonicity

• A logic is monotonic if when add new sentences to KB, all sentences entailed by original KB are still entailed by the new larger KB

TASK: Find the Wumpus

Can we infer that the Wumpus is in cell (1,3), given our percepts and environment rules?

A = agent					
$\mathbf{B} = \text{breeze}$	4				
OK = safe square		W!			
S = stench	3				
V = visited					
W = wumpus	2	OK S A	ОК		
	1	OK V	OK B V	PIT	
		1	2	3	Δ

Wumpus Knowledge Base

Percept sentences (facts) "at this point"

$$R_1: \mathcal{T}S_{1,1} \Rightarrow \mathcal{T}W_{1,1} \wedge \mathcal{T}W_{1,2} \wedge \mathcal{T}W_{2,1}$$

$$R_2: \mathcal{T} S_{2,1} \Rightarrow \mathcal{T} W_{1,1} \wedge \mathcal{T} W_{2,1} \wedge \mathcal{T} W_{2,2} \wedge \mathcal{T} W_{3,1}$$

$$R_3: \ ^{\sim}S_{1,2} \Rightarrow \ ^{\sim}W_{1,1} \wedge \ ^{\sim}W_{1,2} \wedge \ ^{\sim}W_{2,2} \wedge \ ^{\sim}W_{1,3}$$

$$R_4: S_{1,2} \Rightarrow W_{1,3} \vee W_{1,2} \vee W_{2,2} \vee W_{1,1}$$

Conclude $W_{1,3}$?

- Does the Wumpus reside in square (1,3)?
- In other words, can we infer $W_{1,3}$ from our knowledge base?

$$KB \vdash_i W_{1,3}$$

Conclude $W_{1,3}$ (Step #1)

• Modus Ponens $\frac{\alpha \Rightarrow \beta, \ \alpha}{\beta}$

$$R_1: \mathcal{T} S_{1,1} \Rightarrow \mathcal{T} W_{1,1} \wedge \mathcal{T} W_{1,2} \wedge \mathcal{T} W_{2,1}$$

Percept: $S_{1,1}$

$$\mathcal{T}W_{1,1} \wedge \mathcal{T}W_{1,2} \wedge \mathcal{T}W_{2,1}$$

Conclude $W_{1,3}$ (Step #2)

• And-Elimination $\frac{\alpha_1 \wedge \alpha_2 \wedge ... \wedge \alpha_n}{\alpha_i}$

$$\frac{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}{\alpha_i}$$

$$\mathcal{T}W_{1,1} \wedge \mathcal{T}W_{1,2} \wedge \mathcal{T}W_{2,1}$$

$$W_{1,1} = W_{1,2} = W_{2,1}$$

Conclude $W_{1,3}$ (Step #3)

• Modus Ponens
$$\frac{\alpha \Rightarrow \beta, \ \alpha}{\beta}$$

$$R_2$$
: $S_{2,1} \Rightarrow W_{1,1} \land W_{2,1} \land W_{2,2} \land W_{3,1}$
Percept: $S_{2,1}$

$$\mathcal{W}_{1,1} \wedge \mathcal{W}_{2,1} \wedge \mathcal{W}_{2,2} \wedge \mathcal{W}_{3,1}$$

And-Elimination
$$\frac{\alpha_1 \wedge \alpha_2 \wedge ... \wedge \alpha_n}{\alpha_i}$$

$$W_{1,1} \longrightarrow W_{2,1} \longrightarrow W_{2,2} \longrightarrow W_{3,1}$$

Conclude $W_{1,3}$ (Step #4)

• Modus Ponens $\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$

$$R_4$$
: $S_{1,2} \Rightarrow W_{1,3} \vee W_{1,2} \vee W_{2,2} \vee W_{1,1}$

Percept: $S_{1.2}$

$$W_{1,3} \vee W_{1,2} \vee W_{2,2} \vee W_{1,1}$$

Conclude $W_{1,3}$ (Step #5)

• Unit Resolution $\frac{\alpha \vee \beta, \ \neg \beta}{\alpha}$

$$W_{1,3} \vee W_{1,2} \vee W_{2,2} \vee W_{1,1}$$
 from Step #4

 $W_{1,1}$ from Step #2

$$W_{1,3} \vee W_{1,2} \vee W_{2,2}$$

Conclude $W_{1,3}$ (Step #6)

• Unit Resolution $\frac{\alpha \vee \beta, \ \neg \beta}{\alpha}$

$$W_{1,3} \vee W_{1,2} \vee W_{2,2}$$
 from Step #5

$$W_{2,2}$$
 from Step #3

$$W_{1,3} \vee W_{1,2}$$

Conclude $W_{1,3}$ (Step #7)

• Unit Resolution $\frac{\alpha \vee \beta, \ \neg \beta}{\alpha}$

$$W_{1,3} \vee W_{1,2}$$
 from Step #6

 $W_{1,2}$ from Step #2

Infer

 $W_{1,3} \rightarrow$ The wumpus is in cell 1,3!!!

Wumpus in $W_{1,3}$

Summary

- Propositional logic commits to existence of facts about the world being represented
 - Simple syntax and semantics
- Proof methods
 - Truth table
 - Inference rules
 - Modus Ponens
 - And-Elimination
 - And/Or-Introduction
 - Double-Negation Elimination
 - Unit Resolution
 - Resolution
- Propositional logic quickly becomes impractical