

Why observe eye-movements?

We fixate on things we are mentally paying attention to

- > Information on cognitive processes involved in language processing (Rayner 1998)
- > Prediction and integration of **semantic information** during **structure-building**, e.g.:
 - word sense disambiguation
 - plausibility
 - dependency processing
- > Online measures ⇒ temporal order of processes

About the data

- > Several chapters from a Tagalog translation of The Little Prince
- > Parallel corpora in other languages (currently Mandarin and Cantonese; Li et al. 2023)

- > Text presented in short snippets, with occasional comprehension questions
- > Gathered from Tagalog-speaking participants living in Hong Kong with an **Eyelink 1000 Plus**

The corpora

In progress

Previous studies

	Tagalog	Mandarin	Cantonese
# tokens	4534	4357	5074
# types	1011	1016	1036
mean # tokens / sentence (sd)	9.51 (6.38)	12.17 (7.66)	15.10 (8.68)
range # tokens / sentence	1-49	1-42	1-46
mean token length (sd)	4.95 (2.80)	1.41 (0.63)	1.34 (0.61)
range of token length	2-23	1-8	1-6
N =	9 (5f; 30.55y)	15 (11f; 25.8y)	15 (10f; 25.27y)

Eye movements on text

Patterns of eye movement during text reading can be influenced by the readability and by the task (e.g., Rayner et al. 2006, Hollenstein et al. 2018)

- > predictable words = plikely skipped, plikely fixation time
- > Language-specific reading patterns and effects may exist

Initial features

Word omission

- > How often did participants skip a word?
- > 18 types skipped ≥ 50% ... of which 6 are N=1: *Mars*, *Venus*, hayop 'animal', iglap '(an) instant' mundo 'world', deretso 'straight'

An eye-tracking corpus of adult Tagalog

speakers' natural text reading comprehension

- > Mean skipping rates:
 - > Tagalog: 0.2607
 - > Mandarin: 0.4746
 - Cantonese: 0.5520

word	gloss	rate
e	PART	0.8333
0	or; PART	0.6042
at	and	0.5981
ay	TOP	0.5903
dito	here	0.5556
ng	GEN	0.5322
ito	this	0.5167
iba	different	0.5079
sa	OBL	0.5062
ko	1sg.GEN	0.5
iyo	2sg.OBL	0.5
gamit	use, thing	0.5

Initial features

Fixation duration

- > How long did participants look at a word?
- > Potential effects of:
 - > Frequency
 - > Morphological complexity
 - > Part of Speech

> Metadata annotation in progress....

Features to be added

Lexical Features

- > Frequency
- > Part of Speech
- > Morphological Parse?
- > Lemmatization?

How to handle Tagalog morphology/orthography?

naka-pag-do~drowing 'is able to draw'

drowing 'a drawing'

Opening Minds • Shaping the Future • 啟迪思維 • 成就未來

libro='y 'book + TOP' contraction

n'ya=ng '3sg.GEN contraction + linker' vs niya=ng vs n'ya vs niya

Features to be added

Text/Syntactic Complexity

- > Lexical/Orthographic neighborhood number? ≈ Predictability
- > Syntactic dependency information

≈ Cognitive load

- > Linear distance to head / root
- > Dependency depth from root

Example from Mandarin

- Thanks to Junlin Li, Wenxi Fei, and Yimei Shao at the Hong Kong Polytechnic University Chinese and Bilingual Studies department for their help with data processing and technical support!
- Hollenstein, N., Rotsztejn, J., Troendle, M. et al. (2018). ZuCo, a simultaneous EEG and eye-tracking resource for natural sentence reading. Sci Data 5, 180291. https://doi.org/10.1038/sdata.2018.291
- Hollenstein, N., Chersoni, E., Jacobs, C., Oseki, Y., Prévot, L., Santus, E. (2022). <u>CMCL 2022 Shared Task on</u>
 <u>Multilingual and Crosslingual Prediction of Human Reading Behavior</u>. In *Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics*, 121–129, Dublin, Ireland. Association for Computational Linguistics.
- Li, J., Peng, B., Hsu, Y.-Y., Chersoni, E. (2023). Comparing and Predicting Eye-tracking Data in Mandarin and Cantonese. In *Tenth Workshop on NLP for Similar Languages, Varieties and Dialects* (VarDial 2023), 121–132. Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.vardial-1.12
- Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin 124, 372–422.
- Rayner, K., Reichle, E. D., Stroud, M. J., Williams, C. C., Pollatsek, A. (2006). The effect of word frequency, word predictability, and font difficulty on the eye movements of young and older readers. *Psychology and Aging*, 21(3), 448–465. https://doi.org/10.1037/0882-7974.21.3.448

