Overview
Probabilistic Transition Systems
Logics for probabilistic systems
Algorithmics
Practical information
conclusion

Probabilistic Model Checking

Jarkko Savela

University of Helsinki

November 20, 2019

Overview
Probabilistic Transition Systems
Logics for probabilistic systems
Algorithmation
Practical information
conclusion

Contents

- Overview
- Probabilistic Transition Systems
- 3 Logics for probabilistic systems
 - PCTL
 - LTL
- 4 Algorithmics
 - PCTL
 - LTL
- Practical information
 - Applications
 - Tool Support
- 6 conclusion

Overview

- Ingredients necessary for model checking
 - representation of systems of interest
 - language to describe properties of these systems
 - a way to automatically check whether the system has the specified property
- From regular MC to probabilistic MC:

Let's take a peek at the ingredients one at a time

Overview
Probabilistic Transition Systems
Logics for probabilistic systems
Algorithms
Practical information
conclusion

Probabilistic Transition Systems

- Transitions labeled with probabilities.
- Sum of probabilities of outgoing arrows equals one.
- Can be either deterministic OR nondeterministic.
- Both discrete- and continuous-time variants exist.
- May be labeled with costs and/or rewards.

TODO: PICTURE OF DTMC and MDP

Overview
Probabilistic Transition Systems
Logics for probabilistic systems
Algorithmics
Practical information
conclusion

Running example will be DTMC (Knuth-Yao algorithm)

Logics for probabilistic systems

 The regular interpretation of CTL and LTL asks questions of the form:

Do all possible traces satisfy φ ?

Does some trace satisfy φ ?

The probabilistic variants of CTL and LTL ask:

What is the "fraction" of all possible traces satisfying φ ?

- PROBLEMS...
 - How to compute the fraction of an infinite set???
 - All traces are not equally likely...

- Instead the space of traces is augmented with a probability measure.
- Given a property of traces one may then ask:

What is the probability of choosing a trace satisfying the property?

- The probability measure should reflect the probability of the system choosing a specific trace.
- The probability measure is generated by "cylinder sets".

Probabilistic Computation Tree Logic

- Probabilistic CTL is a variant of CTL where:
 - Path quantifiers A and E are replaced with probability operators $\mathbb{P}_{<\rho}(\varphi)$ and $\mathbb{P}_{<\rho}(\varphi)$.
 - Expectation operators $\mathbb{E}_{< c}(\Diamond \Phi)$ and $\mathbb{E}_{\le c}(\Diamond \Phi)$ may also be defined.
- Semantics:
 - $\mathbb{P}_{\leq p}(\varphi)$ "Is the probability of choosing a path satisfying φ at most p?"
 - $\mathbb{E}_{\leq c}(\Diamond \Phi)$ "Is the expected cost of reaching a state satisfying Φ at most c?"
- Apart from these new operators PCTL is like CTL.

Linear Temporal Logic

- LTL describes properties of linear traces.
- Instead of checking whether all(some) linear traces of a system satisfy an LTL formula...
- The probability for choosing a trace satisfying an LTL formula is computed.

Overview
Probabilistic Transition Systems
Logics for probabilistic systems
Algorithmics
Practical information

PCTL LTL

TODO: examples of interesting properties PCTL/LTL can express...

Checking PCTL properties of DTMCs

TODO: describe PCTL checking of DTMCs

Overview
Probabilistic Transition Systems
Logics for probabilistic systems
Algorithmics
Practical information
conclusion

Checking LTL properties of DTMCs

TODO: Describe idea of LTL checking algorithm

Applications

- Analysis of randomized algorithms
- Analysis of randomized protocols
 - communication
 - security
 - consensus
- systems biology
- reliability engineering

Tool Support

- PRISM
- Probmela
- ...

Overview
Probabilistic Transition Systems
Logics for probabilistic systems
Algorithms
Practical information
conclusion

Conclusion

- active research area:
 - parameter synthesis!!
- qualitative VS quantitative
- absolute VS relative guarantees
- relevance
- usefulness