『ストリング図で学ぶ圏論の基礎』勉強会

§1.3 自然変換

山田鈴太

電気通信大学大学院情報理工学研究科 博士前期課程 1 年

 C, \mathcal{D} は圏, $F, G: \mathcal{C} \to \mathcal{D}$ は関手

定義 1.66 (自然変換)

 α が F から G への自然変換 (natural transformation) $\stackrel{\mathsf{def}}{\Longleftrightarrow}$ 以下の条件を満たす

- (1) α は各 $a\in\mathcal{C}$ で添字付けられた射の集まり $\left\{Fa\stackrel{\alpha_a}{\longrightarrow}Ga\right\}_{a\in\mathcal{C}}$
- (2) 任意の $a,b \in \mathcal{C}$ と $f: a \to b$ に対して $Gf \circ \alpha_a = \alpha_b \circ Ff$ (自然性, naturality)
 - ightharpoonup α が F から G への自然変換であることを α : $F \Rightarrow G$ と書く

 C, \mathcal{D} は圏, $F, G: \mathcal{C} \to \mathcal{D}$ は関手

定義 1.66 (自然変換)

(1) lpha は各 $a\in\mathcal{C}$ で添字付けられた射の集まり $\left\{Fa\stackrel{lpha_a}{\longrightarrow}Ga
ight\}_{a\in\mathcal{C}}$

$$\begin{array}{c|c}
C & G & C \\
\hline
\alpha & \\
F & \\
\end{array} := \left\{ \begin{array}{c|c}
D & G & C \\
\hline
\alpha & \\
F & \\
\end{array} \right.$$

(1.67)

 $ightharpoonup \alpha$ を構成する各射 α_a を α の成分 (component) と呼ぶ

- ▶ 一番右の図は少しわかりづらい気がする……
- ▶ 我々は既に関手の適用をストリング図として導入したのだった

▶ ならばこうしてしまってもよいのでは?

 C, \mathcal{D} は圏, $F, G: \mathcal{C} \to \mathcal{D}$ は関手

定義 1.66 (自然変換)

(2) 任意の $a,b \in \mathcal{C}$ と $f:a \to b$ に対して $Gf \circ \alpha_a = \alpha_b \circ Ff$ (自然性, naturality)

$$Gf \circ \alpha_a = \alpha_b \circ Ff \quad \rightleftarrows \qquad \boxed{\begin{bmatrix} G & f \\ \hline f & \\ \hline \alpha & a \end{bmatrix}} \qquad = \boxed{\begin{bmatrix} \alpha & b \\ \hline F & \hline f \\ \hline a \end{bmatrix}} \tag{1.68}$$

 \mathcal{C},\mathcal{D} は圏, $F,G:\mathcal{C}\to\mathcal{D}$ は関手, $\alpha:F\Rightarrow G$ は自然変換

▶ 自然性 $Gf \circ \alpha_a = \alpha_b \circ Ff$ は次のようにも表せる

- ightharpoonup f が α を素通りして縦方向に動ける
 - ▶ スライディング則

 C, \mathcal{D} は圏, $F: \mathcal{C} \to \mathcal{D}$ は関手

- lackbox 各 $a\in\mathcal{C}$ に対して Fa の恒等射 1_{Fa} を集めると, $1_F:=\left\{Fa\overset{1_{Fa}}{\longrightarrow}Fa
 ight\}_{a\in\mathcal{C}}$ は F の恒等自然変換
 - ightharpoonup 実際,以下の通り各 $a\in\mathcal{C}$ について自然性の条件を満たす

1.3.2 自然変換の対象への作用と射への作用

 C, \mathcal{D} は圏, $F, G: \mathcal{C} \to \mathcal{D}$ は関手, $\alpha: F \Rightarrow G$ は自然変換

 $oldsymbol{lpha} lpha = \{lpha_a\}_{a \in \mathcal{C}}$ を, \mathcal{C} の対象と射への作用と見なせる

対象への作用: C の対象を対応する α の成分に写す

$$\begin{array}{ccc}
\operatorname{ob} \mathcal{C} & \to & \mathcal{D}(Fa, Ga) & \subseteq \operatorname{mor} \mathcal{D} \\
a & \mapsto & \alpha_a
\end{array}$$

射への作用: α と射 f を「横に並べる」

$$\operatorname{mor} \mathcal{C} \supseteq \quad \mathcal{C}(a,b) \quad \to \quad \mathcal{D}(Fa,Gb) \quad \subseteq \operatorname{mor} \mathcal{D}$$

$$f \qquad \mapsto \qquad \alpha \bullet f$$

1.3.2 自然変換の対象への作用と射への作用

 \mathcal{C},\mathcal{D} は圏, $F,G:\mathcal{C}\to\mathcal{D}$ は関手, $\alpha\colon F\Rightarrow G$ は自然変換

射への作用: α と射 f を「横に並べる」

$$\operatorname{mor} \mathcal{C} \supseteq \begin{array}{ccc} \mathcal{C}(a,b) & \to & \mathcal{D}(Fa,Gb) & \subseteq \operatorname{mor} \mathcal{D} \\ f & \mapsto & \alpha \bullet f \end{array}$$

$\alpha \bullet f$ の定義

▶ 右の等号は単に自然性の条件

1.3.2 自然変換の対象への作用と射への作用

 C, \mathcal{D} は圏, $F, G: \mathcal{C} \to \mathcal{D}$ は関手, $\alpha: F \Rightarrow G$ は自然変換

対象への作用: $a \mapsto \alpha_a$

射への作用:
$$f \mapsto \alpha \bullet f := Gf \circ \alpha_a = \alpha_b \circ Ff$$

- lackbox 自然変換 lpha は各 $a\in\mathcal{C}$ に対する要素の集まり $\{lpha_a\}_{a\in\mathcal{C}}$
 - ▶ 対象への作用が定まれば、そこから自然変換を一意に得られる
- ▶ よって射への作用は冗長な情報とも言える
- ▶ 自然変換の射への作用は、関手のそれと対応するものと考えてもよい

入力	F の出力	lpha の出力
$a \in \mathcal{C}$	$Fa \in \mathcal{D}$	$Fa \xrightarrow{\alpha_a} Ga$
$a \xrightarrow{f} b$	$Fa \xrightarrow{Ff} Fb$	$Fa \xrightarrow{\alpha \bullet f} Gb$

1.3.3 自然変換の例

例 1.49 | 任意の対象は関手とみなせる:各 $a\in\mathcal{D}$ に対して $\Delta_1a\colon\mathbf{1}\to\mathcal{D};*\mapsto a$

|例 1.72| 任意の射は自然変換とみなせる

 $a,b \in \mathcal{D}$ をともに関手 $\mathbf{1} \to \mathcal{D}$ とみる.

任意の射 $f \in \mathcal{D}(a,b)$ に対して、 $\{f\}_{*\in \mathbf{1}}$ は自然変換 $a \Rightarrow b$ である.

$$\begin{array}{c|c}
\mathcal{D} & b & 1 \\
\hline
f & & \\
a & & \\
\end{array} := \left\{ \begin{array}{c|c}
\mathcal{D} & b & 1 \\
\hline
f & * \\
a & & \\
\end{array} \right\}_{*\in I}$$

以下のことに注意

- ▶ 対象 a と b は,関手 $\Delta_1 a$, $\Delta_1 b$: $1 \rightarrow \mathcal{D}$ と同一視されている
- ▶ 厳密には f でなく集合 {f} が自然変換である
 - lacktriangle とはいえ $\{f\}$ はただ 1 つの元 f しか持たないので,こちらも同一視できる

1.3.3 自然変換の例

C は離散圏,D は一般の圏

|例 1.73 | 任意の射の集まりは自然変換とみなせる

各 $c\in\mathcal{C}$ に対して \mathcal{D} の対象 $a_c,b_c\in\mathcal{D}$ を任意に選び、射の集まり $\alpha:=\left\{a_c\stackrel{\alpha_c}{\longrightarrow}b_c\right\}$ も任意に選ぶ、このとき関手 $F,G\colon\mathcal{C}\to\mathcal{D}$ が

$$Fc := a_c, \quad Gc := b_c$$

で一意に定まり、 α は自然変換 $F \Rightarrow G$ となる.

自然性の確認:

- 1. C の射は各 $c \in C$ の恒等射 1_c のみ
- 2. 各 1_c に対して, $G1_c \circ \alpha_c = \alpha_c \circ F1_c$ が成立

$$G1_c \circ \alpha_c = 1_{Gc} \circ \alpha_c = \alpha_c = \alpha_c \circ 1_{Fc} = \alpha_c \circ F1_c$$

1.3.3 自然変換の例

$$ig|$$
例 1.65 双関手 $F\colon \mathcal{C} imes\mathcal{D} o\mathcal{E}$ と対象 $c\in\mathcal{C}$ に対し, $F(c,-)\colon \mathcal{D} o\mathcal{E}$ を

$$\begin{array}{cccc} \operatorname{ob} \mathcal{D} \ni & d & \mapsto & F(c,d) & \in \operatorname{ob} \mathcal{E}, \\ \operatorname{mor} \mathcal{D} \ni & g & \mapsto & F(1_c,g) & \in \operatorname{mor} \mathcal{E} \end{array}$$

と定めれば F(c,-) は関手

例 1.75

 \mathcal{C} の任意の射 $c \stackrel{f}{\longrightarrow} c'$ に対して,射の集まり $F(f,-) := \{F(f,1_d)\}_{d \in \mathcal{D}}$ は自然変換 $F(c,-) \Rightarrow F(c',-)$ である.