Supporting information

EnzymeML - a data exchange format for biocatalysis and enzymology

Jan Range¹, Colin Halupczok¹, Jens Lohmann¹, Neil Swainston², Carsten Kettner³, Frank T. Bergmann⁴, Andreas Weidemann⁵, Ulrike Wittig⁵, Santiago Schnell⁶, Jürgen Pleiss^{1*}

¹ Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany

² Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom

³ Beilstein-Institut, Trakehner Str. 7 – 9, 60487 Frankfurt am Main, Germany

⁴ BioQUANT/COS, Heidelberg University, INF 267, Heidelberg, Germany

⁵ Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany

⁶ Department of Molecular & Integrative Physiology, and Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA

Jürgen Pleiss

Institute of Biochemistry and Technical Biochemistry

University of Stuttgart

Allmandring 31

70569 Stuttgart, Germany

E-mail: Juergen.Pleiss@itb.uni-stuttgart.de

ORCID: 0000-0003-1045-8202

^{*} Corresponding author:

1. Structure of EnzymeML documents

1.1 Content of the SBML file

1.1.1 model tag

In SBML, the model tag forms the container of all defined lists. The name of the experiment is saved in the name attribute. The metadata of the experiment file is saved as annotation in Dublin Core RDF format and contains information about the author of the file, the creation date, and the modification dates of the file. The information about the COMBINE Archive¹ and files included therein is saved as MIRIAM annotation. Information on the methods used in the different experiments is stored in the reaction tag.

1.1.2 Units

A strict definition of units is crucial to correctly describe the result of experiments and to ensure comparability and reproducibility. SBML defines SI units by the listOfUnitDefinitions tag, from which the experimentalist can choose. A new unit is defined by base units that can have a scale, a multiplier, and an exponent. Throughout the document, this unit is referred to by its id.

1.1.3 Compartments

The reactions take place in different environments, which are described in SBML with the compartment tag in the listOfCompartments and are annotated by MIRIAM. The compartment tag has attributes which describe whether it is constant, as well as its size and units. In EnzymeML, a compartment is a test tube, and each compartment describes a different experimental condition, such as initial substrate concentrations used in the reaction. Throughout the document, the compartment is referred to by its id, and its name describes the compartment in a human-readable form.

1.1.4 Species

In SBML, the species element defines an entity that is considered indistinguishable from each other, may participate in reactions, and is located in a specific compartment. The species element also defines attributes such as the sboTerm attribute (**Table S2**) which specifies the role of the species in the reaction, the compartment where the species is located, and the initial concentration or amount of the species. The latter can be described using the distribution package

of

SBML

(http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/distrib) to store value

distributions and ranges. The species name is stored in the name attribute, while further information about the species is stored in the respective annotations. The compartment description also includes other species such as buffer or additives, resulting in a comprehensive documentation of the reaction conditions.

1.1.5 Reaction

The reactions of the experiment are represented by the reaction element in the listOfReactions tag. They include the listOfReactants, the listOfProducts, and the listOfModifiers tags to represent the chemical equation of the experiment and their respective stoichiometry. Cascade reactions can be represented by different reaction elements in the same reaction vessel (defined via compartment) connected by the same species ids. Each reaction element is described by an id, name, and the information whether the reaction is reversible. The listOfModifiers tag gives information about the catalyst of the reaction and other species that interact with the reaction. The kineticLaw tag of SBML is used to describe a kinetic model fitted to the experimental data, including the mathematical model as well as parameters such as k_{cat}. The EnzymeML annotation enzymeml:data of the listOfReactions tag and the reaction tag specify the data stored in the CSV formatted experimental data file and links them to the respective ids of the species. The annotation enzymeml:data consists of three lists, beginning with listOfFormats, where columns for each CSV file found in the second list listOfFiles are described. Entries in listOfMeasurements denote which file belongs to a measurement which further links experiment metadata found in the EnzymeML document to the data.

1.1.6 Kinetic models

The kineticLaw tag describes the kinetic modelling process, where the estimated parameters are stored as localParameters and the model in MathML format, resulting in a comprehensive, reproducible description of the modelling procedure. The MIRIAM annotation provides further information about the model and the modelling method. Additional information can be stored as plain text. The EnzymeML annotation also provides information about the data used for the parameter estimation.

1.2 Experimental data file

The experimental data on substrate or product concentration as a function of time is stored in the tabular CSV format. Each column is separated by a comma, and each row is separated by a new line. This simple file format allows the user to easily write and read the file with a spreadsheet program such as Excel or a text editor. Because it is machine readable, it can also be generated and analyzed by a program.

The format of the experimental data file is described by the EnzymeML annotation in the experiment file and defines the content of the columns (time or concentration). Each concentration column refers to a species and a unit. Each experimental data file can contain multiple experiments, each experiment multiple replica and the measurement id and the replica attribute, respectively, are used to identify the begin and end row of a measurement or a replica.

1.3 Annotations

1.3.1 EnzymeML

EnzymeML annotations contain additional information that is not part of SBML or MIRIAM, such as pH value, temperature, and pressure (Figure S1). The annotations of a species element depend on its type. Small molecules are described by their IUPAC name,² their SMILES (simplified molecular-input line-entry system) code, ³ or their InChI (International Chemical Identifier) code,⁴ proteins are described by their amino acid sequence. EnzymeML annotations in the listOfReactions (Figure S2) and reaction tags control the automated use of the data stored in the experimental data files, such as format, arrangement of data, and replica. This leads to a list of measurements, which can be later used for kinetic modelling. Furthermore, all datasets are assigned to their corresponding experiments, thus enabling reuse of data. A complete specification **XML** Schema available GitHub at (https://github.com/EnzymeML/PyEnzyme/blob/main/xsd/EnzymeML.xsd).

1.3.2 MIRIAM

The MIRIAM annotations⁵ are stored in the RDF format (http://www.w3.org/TR/rdf-schema/) and structured in a subject-predicate-object format. The subject is usually the metaid attribute of the annotated element, while the predicate is defined using one of the BioModels Qualifiers (**Figure S3**). The object is an RDF Bag container with a list of elements, that include as a resource attribute a link to http://identifiers.org that links to the ontology resource. The output

format of the link can be requested as an RDF document, which is machine-readable and can be used by a program to retrieve further information about the annotated elements.

The RDF format is used to describe metadata. In the subject, which is represented by the Description element, the metaid is linked to the attribute about and the '#' sign followed by the metaid. The predicate determines how the object is represented by the subject. The subject in EnzymeML is any SBML element defined with metaid. The predicates are listed in the MIRIAM annotation or in other namespaces.

2. API and thin API layer

2.1 API

An application programming interface (API) which consists of two libraries, the Python library PyEnzyme (https://github.com/EnzymeML/PyEnzyme/tree/main, referred to below as <GitHub>) and the Java library JEnzyme (https://github.com/EnzymeML/JEnzyme), which support reading, writing, editing, merging, and visualization of EnzymeML documents. The Python library PyEnzyme can also be obtained via Python Packaging Index PyPI (https://pypi.org/project/PyEnzyme). The API uses the SBML syntax and naming conventions which are familiar to enzymologists to be implemented into EnzymeML. The basic concept of the two libraries is the usage of multiple dictionaries, in which proteins, reactants, units, and reactions are stored. They are indexed by internal IDs to prevent duplicates and ensure that they can always be traced back from reactions and vice versa. This allows an application to load multiple EnzymeML documents and filter them by user-defined properties, such as all reactions in which a certain reactant participates. EnzymeML objects, such as a protein, can be easily created and added to the respective dictionary by calling an add-function of an EnzymeMLDocument object. Similarly, an object can be retrieved by calling a get-function and its respective ID or name. All functions were optimised to require no further knowledge of either Java or Python, such that users only have to adapt to the EnzymeML syntax.

Since EnzymeML is a standardised data model, type checking and validation such as the range of allowed pH values is done consistently to maintain data quality. Prior to the creation of a reaction, all participating compounds have to be defined, otherwise an error message will indicate a possible inconsistency. Thus, data completeness is guaranteed and sparse EnzymeML documents are prevented.

The API also offers an export function of EnzymeML to any user-defined data format. Thus, large amounts of data included in multiple EnzymeML documents can be extracted and analyzed by machine learning methods purposes.

2.2 Application-specific thin API layer

In order to make EnzymeML accessible to a specific application, a thin API layer maps between the object layers of the API and of the application. An application-specific thin API layer can either be used to import or export EnzymeML documents. To create a thin API layer, two templates are provided which can be customised to read or write relevant attributes. The first template "TL_ImportTemplate.ipynb" (< GitHub>/templates) contains all code needed to extract information contained in an EnzymeML document. The user will decide which code is needed for the specific application and will do the mapping. The second template "TL_ExportTemplate.ipynb" (<GitHub>/templates) provides all code needed to create an EnzymeML document. The easy-to-use syntax allows fast and easy access to all information of an EnzymeML document as well as its creation. For instance, to extract a specific protein, the EnzymeMLDocument object inherits a get-function which either takes the internal ID or a given name as argument to return the respective object. The latter can then be used to extract and process all of its attributes. The export is done similarly: pre-defined objects are added via the EnzymeMLDocument objects add-function. It should be noted that the function also takes care of assigning internal IDs as well as parsing the unit string. Hence, users have to not to take care of technical aspects such as unit definitions and cryptical identifiers.

Three application-specific thin layers have been created to demonstrate the usage of the API for the integration of applications: TL_COPASI, TL_STRENDA, TL_BioCatNet (<GitHub>/pyenzyme/Examples/ThinLayers).

3. Applications

3.1 Creating EnzymeML documents from spreadsheets

Spreadsheets such as Excel files are widely used and serve as an easy way of storing data. Hence, we provide a thin API layer to generate an EnzymeML document from a spreadsheet provided by BioCatNet as a template. The data that was used describes the lyase-catalyzed self-ligation of 3,5-dimethoxybenzaldehyde⁶

(<GitHub>/pyenzyme/Resources/Examples/ThinLayers/BioCatNet/DMBA_selfligation.xlsx).

The thin API layer maps each object in the spreadsheet to an EnzymeML object such as

Protein, Reactant, or Reaction and adds it to the EnzymeMLDocument object by a simple add-function. The backend takes care of validating data types and provides programming language primitives to append information to the respective dictionary. After successful mapping and validation, the API object layer is then written to an EnzymeML document by calling the EnzymeMLWriter function (<GitHub>/pyenzyme/Resources/Examples/ThinLayers/BioCatNet).

3.2 Creating EnzymeML documents from STRENDA DB entries

The export from STRENDA DB follows the same concept as the conversion of a spreadsheet. The elements of the XML data model of STRENDA DB are mapped to EnzymeML objects using the a PyEnzyme object layer. Then, an EnzymeML document is created via the EnzymeMLWriter function.

The STRENDA DB entry 3IZNOK contains information on kinetic studies of the tryptophan biosynthesis TrpB2o from **Arabidopsis** using the enzyme thaliana (<GitHub>/pyenzyme/Resources/Examples/ThinLayers/STRENDA/Generated/3IZNOK_TEST /3IZNOK_TEST.omex) and was converted to EnzymeML document (<GitHub>/pyenzyme/Resources/Examples/ThinLayers/STRENDA/3IZNOK_TEST.xml)

3.3 Upload of EnzymeML data to SABIO-RK

Because EnzymeML is a SBML based dialect, open-source API's like libSBML⁷ and JSBML⁸ were used to read, write, and edit SBML documents. In SABIO-RK, the upload and storage of data from SBML files has been already implemented as part of the data input interface to allow the upload of data from SBML models in SABIO-RK. The input interface is used to store the information provided in publications and SBML files in a structured form and to allow database curators to check and finally insert the database entries in the public SABIO-RK database. Because the existing data input interface of SABIO-RK had been written in the programming languages Groovy and Java, JSBML was used as API.

For the extraction of the data from EnzymeML, the existing parser code for uploading SBML files was extended by extracting the EnzymeML-specific annotations required for a complete SABIO-RK database entry: pH, temperature, organism name, enzyme EC-number, UniProtID, and literature reference. Before the data are transferred to the public SABIO-RK, they are manually checked, completed, and verified for possible errors and inconsistencies. Finally, the data can be retrieved from the public SABIO-RK search interface and are linked to the original reference given in the EnzymeML file (**Figure S4**).

3.4 Editing of EnzymeML: simulation of time course data from kinetic parameters

The STRENDA DB entry 3IZNOKwas used to simulate the time course of substrate at different initial concentrations in the range of 0 to 0.5 mM as noted in the STRENDA DB entry. Different initial concentrations were indicated by the enzymeml:InitConcs annotation for each SpeciesReference in the EnzymeML document. At the API level these were given as a list of float values to the addEduct function inherited by the EnzymeReaction object. The data was then simulated by applying the Michaelis-Menten model equation and the kinetic parameters ($k_{cat} = 0.015 \text{ s}^{-1}$, $K_M = 0.01 \text{ mM}$) over a time interval of 200 seconds. The time course data was added to the reaction object by calling the EnzymeReaction object method addReplicate, which automatically deploys the data to the respective reactant tuple, found in the list of substrates. In addition, both products L-tryptophan and HPO₄²- were added via the addProduct function inherited by the EnzymeReaction function. Finally, the EnzymeML document exported via writer function was the (<GitHub>/pyenzyme/Resources/Examples/ThinLayers/COPASI/3IZNOK_TEST/3IZNOK_TE ST.omex).

3.5 Kinetic modelling of EnzymeML data by COPASI

COPASI is a modelling platform to derive kinetic parameters from time course data. In the course of this application, the generated time course data from STRENDA DB entry 3IZNOKwas imported to COPASI. First, the time course data of each replicate was exported via the exportReplicates-function, inherited by every reaction object, to a Pandas Dataframe. Next, the dataframe was saved to a tab-separated file and columns defined via the COPASI

(<GitHub>/pyenzyme/Resources/Examples/ThinLayers/COPASI/3IZNOK_TEST/COPASI). In this way, COPASI is able to map every dataset to their respective reactants. The EnzymeML document was then written to a string and parsed together with the TSV file by the COPASI API for modelling. As a result, both estimated Michaelis-Menten kinetic parameters $v_{max} =$ $0.149~\mu M$ and $K_M=0.0099~mM$ as well as the equation were instantiated by the KineticModel class and written to the EnzymeML document via the reactions setModel method. Finally. **EnzymeML** document file the was written to (<GitHub>/pyenzyme/Resources/Examples/ThinLayers/COPASI/3IZNOK_TEST/COPASI/3IZ NOK_TEST). It should be noted, that alongside the programmatic parameter estimation, a .cps

file was created to be used within the COPASI GUI. Hence, a broad spectrum of models can be used to describe the kinetics.

References

- 1. Bergmann, F. T. *et al.* COMBINE archive and OMEX format: one file to share all information to reproduce a modeling project. *BMC Bioinformatics* **15**, 369 (2014).
- 2. Favre, H. A. & Powell, W. H. *Nomenclature of Organic Chemistry*. *Nomenclature of Organic Chemistry* (Royal Society of Chemistry, 2013). doi:10.1039/9781849733069.
- 3. Weininger, D. SMILES, a Chemical Language and Information System: 1: Introduction to Methodology and Encoding Rules. *J. Chem. Inf. Comput. Sci.* **28**, 31–36 (1988).
- 4. Heller, S. R., McNaught, A., Pletnev, I., Stein, S. & Tchekhovskoi, D. InChI, the IUPAC International Chemical Identifier. *J. Cheminform.* **7**, 23 (2015).
- 5. Novère, N. Le *et al.* Minimum information requested in the annotation of biochemical models (MIRIAM). *Nat. Biotechnol.* **23**, 1509–1515 (2005).
- 6. Buchholz, P. C. F., Ohs, R., Spiess, A. C. & Pleiss, J. Progress curve analysis within BioCatNet: Comparing kinetic models for enzyme-catalyzed self-ligation. *Biotechnol. J.* **14**, 1–8 (2019).
- 7. Bornstein, B. J., Keating, S. M., Jouraku, A. & Hucka, M. LibSBML: An API library for SBML. *Bioinformatics* **24**, 880–881 (2008).
- 8. Dräger, A. *et al.* JSBML: A flexible java library for working with SBML. *Bioinformatics* **27**, 2167–2168 (2011).
- 9. Hoops, S. *et al.* COPASI--a COmplex PAthway SImulator. *Bioinformatics* **22**, 3067–3074 (2006).

Tables

Table S1: List of attributes derived from the STRENDA recommendations

STRENDA Guidelines	EnzymeML						
List Level 1A							
Identity of the enzyme							
Name of reaction catalyst	SBML Species:Name						
EC number	EnzymeML Protein:ECNumber						
Sequence accession number	EnzymeML Protein:seqAcc						
Organism/species & strain	EnzymeML Protein:organism						
Additional information on the enzyme							
Isoenzyme (variant)	not included						
Tissue	not included						
Organelle	not included						
Localization	not included						
Post-translational modification	not included						
Preparation							
Description	not included						
Artificial modification	not included						
enzyme or protein purity	not included						
Metalloenzyme	not included						
Storage Conditions							
Storage temperature	not included						
Atmosphere if not air	not included						
рН	not included						
At which temperature was the pH measured?	not included						
Buffer & concentrations (including counter-ion)	not included						
Metal salt(s) & concentrations	not included						
Other components	not included						
Enzyme/protein concentration	not included						
Assay Conditions							
Substrate purity	not included						
Measured reaction	SBML Reaction:name						

A coox tompositive	EngymoMI Conditionatemporature					
Assay temperature	EnzymeML Conditions:temperature					
Assay pressure	not included					
Atmosphere if not air	not included					
Assay pH	EnzymeML Conditions:pH					
Buffer & concentrations	SBML Species:name/initialConcentration					
Metal salt(s) & concentrations	SBML Species:name/initialConcentration					
Other assay components	SBML Species:name/initialConcentration					
Coupled assay components	not included					
Substrate & concentration ranges	SBML Species:name/initialConcentration EnzymeML InitiConcs:initConc					
Enzyme/ protein concentration	SBML Species:name/initialConcentration					
Varied components	not included					
Total assay mixture ionic strength not included						
Activity						
Initial rates of the reaction measured	SBML KineticLaw:localParameter					
Enzyme activity	SBML KineticLaw:localParameter					
Methodology						
Assay method	not included					
Type of assay	not included					
Reaction stopping	not included					
Direction of the assay	not included					
Reactant determined	not included					
Additional material desirable						
Free metal cation	SBML:Species Modifer					
Reaction equilibrium constant	SBML KineticLaw:localParameter					
List Level 1B						
Required data for all enzyme functional da	ta					
Number of independent experiments	EnzymeML:listOfMeasurements					
Precision of measurement	not included					
Referring to subunit or oligomeric form	not included					
Data necessary for reporting kinetic parameters						
k _{cat}	SBML KineticLaw:localParameter					
V _{max}	SBML KineticLaw:localParameter					
k _{cat} /K _m	SBML KineticLaw:localParameter					
K _m	SBML KineticLaw:localParameter					
L						

S0.5	SBML KineticLaw:localParameter					
Coefficients of cooperativity	SBML KineticLaw:localParameter					
How was the given parameter obtained	SBML KineticLaw:localParameter					
Model used to determine the parameters	SBML KineticLaw:localParameter					
Substrate inhibition (Ki value)	SBML KineticLaw:localParameter					
Data required for reporting inhibition and a	ctivation data					
Time-dependence and reversibility	SBML KineticLaw:localParameter					
Inhibition types (reversible, irreversible)	SBML KineticLaw:localParameter					
Additional data in EnzymeML beyond STRI	ENDA Guidelines					
Product(s)	SBML Species:Name					
Time course data of substrate and product	CSV					
CSV column definition	EnzymeML:format					
Replicate definition	EnzymeML:replica					
Amino acid sequence	EnzymeML Protein:sequence					
General kinetic model	SBML KineticLaw:localParameter					
InChI identifier for substrates and products	EnzymeML:inchi					
SMILES identifier for substrates and products	EnzymeML:smiles					
Literature reference: PubMed ID	EnzymeML:pmid					
Literature reference: DOI	EnzymeML:doi					
Literature reference: URL	EnzymeML:url					

Table S2: SBO-terms in EnzymeML

SBO-Term	Role in the reaction	Notes			
SBO:0000015	Substrate				
SBO:0000014	Enzyme				
SBO:0000011	Product				
SBO:0000020	Inhibitor				
SBO:0000021	Activator				
SBO:0000019	Modifier				
SBO:0000594	Neutral participant	Additives (like buffer)			
SBO:0000336	Interactor	Additives			
SBO:0000299	Metabolite				

Figures

Figure S1: Example EnzymeML conditions annotation

Figure S2: Example EnzymeML annotation as described by the *ListOfReactions* tag

Data structure of EnzymeML to handle the CSV files. In the list of formats all different CSV formats are described with the order of the listed columns. In the list of files the files are connected with a format, in which the file is saved. The list of measurements lists all measurement replica in the file, which are ordered in the file vertically.

Figure S3: Example MIRIAM RDF format of an annotated unit definition.

RDF is in subject, predicate and object order, while the about reference the subject is, the 'bq:biol' is the predicate and the bag with the identifiers is the object.

Pathw	vay	pathway		0					
React	ion	0 Transport: Reverse reaction							
Compo	Compounds								
Stooch	Stoech. Name	Abbr/Syn. Name Ro	me Role	Cell. Loc.	Loc. ID	Complex Protein		Comment	Comp. ID
Sibecii.		Abbrioyn. Name			LOC. ID	Prot. Identifier	Prot. Name	Comment	Comp. ID
- 1	Enzyme		Modifier-Catalyst		0				0
1	Indole		Substrate		0				0
1	O-phospho-L-serine		Substrate		0				0
- 1	L-Tryptophan		Product		0				85
1	HPO4(2-)		Product		0				0

A

Kinetic law											
Туре		steady-state kinetics with TrpB2o from Arabidopsis thallana PConc: 10.00 uM					0				
Formula		kcat_s1*p0*s1/(km_s1+s1)					reversible				
Variables											
Name	Term		Do not replace variable in formul	mula			Comment				
Parameter	Parameter										
Name	Role	Туре	Species	Value start	Value end	Deviat.	Unit	Unit ID	Unit def.	Comment	
p0	Variable 😊	concentration	Enzyme	10.0			μМ	3	% 0		
s1	Variable 😊	concentration	O-phospho-L-serine	0	5		mM	29	% 0		
s0	Variable 😊	concentration	indole	100			μМ	3	% 0		
kcat_s1	Constant 0	kcat	0	0.015			1/s	24	% 0		
km_s1	Constant	Km 😊	O-phospho-L-serine	0.01			mM	29	% 0		
	unknown	unknown						null	% 0		

B

Figure S4: Upload of the EnzymeML document 3IZNOK_TEST via the SABIO-RK data input interface, with data describing the compounds and the reaction (A) and the kinetic parameters (B). This interface is used to validate inserted data and to align it to SABIO-RK data standards and controlled vocabulary. Subsequently, the data is transferred to the public database for search and data retrieval.