## CH3 FUNCTIONAL METHODS

## 3.1 Generation for connected green's fet

This caresponds to sunning Feynman diagrams without vacuou parts.

DEF We unite green's functions with external source 
$$J$$
 as
$$\left(\frac{3^{A_1}}{5^{A_k}}\right)^{J} = \frac{1}{Z[J]} \left(\frac{h}{i}\right)^k \frac{S^k}{5J_{A_1} \cdots 5J_{A_k}} Z[J]$$

The anone that this relation can be wented to give 
$$J_A$$
 as a function of  $\phi^A$ :

 $V\phi^A$ ,  $\exists! J_A^{\phi} / \phi^A = \frac{\delta W}{\delta J^A} \Big|_{J=J^{\phi}}$ 

## 3.2 Effective action

## 3.21 Legendre transform:

DEF The effective action [[0] is defined as the Legendre transform of W[J] with respect to J:  $\Phi^A = \frac{SW}{SJ_A} \Leftrightarrow J_A = J_A^{A}, \quad \Gamma[\phi] = (W[J] - J_A \Phi^A) \Big|_{J^{\phi}}$ 

Li Nere, o is not a " QFT field", it's an external source called clanical field.

→ Performing a Taylor expansion,  $\mu$  get  $\frac{dW}{dT_A} = 0 + \frac{dW}{dT_A} + \frac{dW}{dT_A} = 0$ .  $\frac{dW}{dT_A} = 0$ .  $\frac{dW}{dT_A} = 0$ .  $\frac{dW}{dT_A} = 0$ .

1-pt corr. Jet is propagator → westible
So that JA = 0 \ \$\phi^A = 0 , so \ \( \Gamma[0] = \frac{\pi}{\chi} \text{ in 1 = 0}

 $\frac{\int \phi^{A}}{\int \phi^{A}} = \frac{\int \chi_{B}}{\int \chi_{B}} \frac{1}{\int \phi^{A}} \frac{1}{\int \phi^{A}}$ 

Li The name effective action & the EOM of the classical action with sources S[\$] + Tapa are the same. Notice that the Taylor expansion of M[\$] start at O(2)

PROP 
$$\left(\frac{S^{L}\Gamma}{\delta\phi^{A}\delta\phi^{B}}\right)^{-1} = \frac{-i}{\hbar} \left(\frac{\partial^{A}\delta^{B}}{\partial\phi^{B}}\right)^{-1}$$

DEMO) -> 5 | 70 = 502 | 4 . 5413 and 503 | 4 . 540 = 540

Now, \$ = SW so that ( STB STE) ( - ST SGA) = SAC

3.2.3 Complete propagator and proper vertex of order 2:

prop For a concerted diagram, we have , using  $\Sigma_i N_i = V$ , that  $E-2 = \sum_i N_i (N_i - 2) - 2L$ 

- In our theory, there is no 1PI with ni=1 sice (\$^> =0. Instead, we can consider the run air corrected tree diagrams (L=0) with 2 external legs (E=2). Then, 0=E-2= Zi Ni (ni-2) => Ni=2 ~ only contains proper rutex of order 2

Not Denoting the 2-function (\$^A\$B &= th SW[J] by -

→ Explicitly, < \$ 1\$ \$ = \frac{1}{2} (D-1)^AB + \frac{1}{2} (D-1)^DB

PROP We have TAB = - DAB + to ZAB

E (connected diagrams ) = E (connected tree diagrams) with (propagator replaced by complete propagators) and (vertices of order n >3 replaced by proper unless of order n >3) 3. 2. 4 Semi-classical expansion of the effective action:

We now use the path integral representation for Green's function and we expand around classical solution in the presence of a source

-> expli WET]?= W-1 SDO expli SEO] +T, pl?
with W = SDO explic SCO]?

DEF We denote to the unique chamical solution in the product of a source:  $\frac{dS_A}{dS_A} + J_A = 0$ 

-> Consider the 3/3! φ³ theory:

S[φ]=-1 φ⁴D<sub>AB</sub> φ<sup>B</sup> - V[φ]=-1 fd<sup>N</sup> x d<sup>N</sup> x' D(x, x') φ(x) φ(x)-2 fd<sup>N</sup> x V[φ]

[17. 1 2 42 1 2 43 2 10 (x')=(3.25 24 10 2) 5<sup>N</sup>(x x')

= - 1 Sdnx d Jud 2nd + m2 d2 + g d3 } D(x,x)=(Judx + m2) 5n(x,x)

Recall that Sn(x,x') = Samo eip. (x-x') and D(p) = p2+m2+iE

J(x)= Sdny (D(x,y) d(y) + 3/2. Ф (x) }

Lo Without interaction (for g=0), one has

φ(x) € ∫d"y D"(x,y) J(y) Lo Turning the interaction on, we have:

φ(x)= ∫dny D'(x,y) J(z) - ∫dny D'(x,y) & d²(y) | φ=(⊗+interaction)

 $= \int d^{n}y \, \mathcal{D}^{-1}(x,y) \, \mathcal{J}(y) - \int d^{n}y \, \mathcal{D}^{1}(x,y) \, \frac{g}{2} \left( \int d^{n}y \, \mathcal{D}^{1}(y,3) \, \mathcal{J}(g) \right) \\ - \int d^{n}y \, \mathcal{D}^{-1}(y,3) \, \frac{g}{2} \, \varphi^{2}(5) \, \Big)^{2} = \dots = \varphi_{0}^{J}$ 

-> The solution  $\phi_{\mathcal{J}}^{\mathcal{J}}(x)$  is a unique as a series in  $\mathcal{J}$ .

> Each term of of is inentible => of is perforbationly invitible.

-> Let's perform a perturbation expansion around the classical solution  $\phi^A = \phi^{AS} + \phi^A$  (where  $SS/S \phi^{AT} + J_A = 0$ ) enolities [ ]} = N-, cholities = 1 2 424) [ Dd cholis = 2 2 4248 42 Indeed, real that the term livear in 9th vanisher on account of the definition of \$3: (SS/SO + JA) | par. 9=0 -> Consider for instance 5= 5d"x (== 3, \$ 36, - = m2 \$ 6, - V[0]/ The new quadratic part is :  $S^{(2)} = \int d^{3}x \left( -\frac{1}{2} \partial_{\alpha} \varphi^{A} \partial^{\alpha} \varphi_{A} - \frac{1}{2} m^{2} \varphi^{A} \varphi_{A} - \frac{\partial^{2}V}{\partial \phi^{A} \partial \phi^{B}} |_{\phi, \sigma} \varphi^{A} \varphi^{B} \right)$  $\Rightarrow \frac{5.2}{5.5} = -D_{AB} - \frac{1}{2}$ > Let qA +> 1th qA so that =  $N^{n-1}$  exp $\left\{\frac{i}{h}\left(S[\phi^{T}] + J_{A}\phi^{AT}\right)\right\} \frac{1}{\left(Det[-i, \frac{5^{2}S}{5^{4}\sigma^{5}\phi^{6}|\phi^{T}|}\right)} + O(t)$ where N" is set such that exp{\frac{1}{2}} W[0]\frac{1}{2} = 1 (=> W[0] = 0 (=> \phi\_0^0 = 0) \\
Lower set N" = Det[-i \frac{5^2}{5\phi\_0^45\phi\_0^8} | \phi\_0^0 = 0]^{-1/2} = Det[-i \D\_{AB}[0]]^{-1/2} Since (Det A / Det B) -1/2 = Det (B-1 A), we find exp{\( \frac{1}{h}} \times \Beta \frac{1}{h} \Beta \ (Det[ 5 c + (D-1) AD V &c [ 0,5]])-1/2 Using Det A = etr[In A], me get W[]=S[0]+ JA 6AJ - # Tr In ( 54 + (D-1) No No ( 65) 1 +0(#) sFor Jervious, we have -t/2i +> +th/i - For complex boson: -ti/2i > - ti/i

-> We now have our expansion around the classical action. To get (
the effective action, one needs to perform a Legenden transform.

The clanical field is defined as

\$\frac{\partial^{7A}}{6\tau^{7B}} = \frac{\partial^{7B}}{6\tau^{7B}} + \frac{\partial^{

3.2.5 Effective action as generating functional for proper vertex:

PROP @ Comected Green's functions may be computed using.

S[\$] \( \tau \) \( \Gamma \) [\$\forall i \( \text{orden to derive the Fynnon rules and by suming only are connected tree diagrams

D The generating functional for proper vertex of order bigger than 3, is in \( \Gamma \) [\$\forall 1\$. We have in \( \Gamma\_1 \cdots A\_1 \cdots A\_k \), k \( \gamma \) 3

Let's compute the generalize functional for councided green's function Who[J;g] computed with [[4] (not S[4]) and to the gth:

explicit Who[J;g]? = Not [Do explicit [[4] + J, 4]?

-) As before, uniting of such that IT[of] + In =0, we have

Where  $[J;g] = \Gamma[\phi_{r}^{J}] + J_{A}\phi_{r}^{A} + O(g)$ We can exact the Legentre transform. Writing  $\Gamma[\phi] = (W[J] - J\phi)|_{J\phi}$ , we get  $W[J] = (\Gamma[\phi] + J_{A}\phi^{A})|_{\phi=\phi^{J}}$  with  $-J_{A} = \frac{\int \Gamma[\phi]}{|\phi^{J}|_{\phi^{J}}}$ 

There save relations are satisfied by Wr[T;0] which implies that W[J]=Wr[J;0]

2

The green's function are:

(\$\frac{\partial}{\partial} \frac{\partial}{\partial} \frac{\partial}

Li Bejone: order da diagram = thE-1+L Li Now order is a = gh-1+L where ke extremal propagator

-> this mean that

g1-k (34... 3Ak) GT = E g ( canceled diagrams with L loops comprised)
with T[6]

$$= \left(\frac{h}{i}\right)^{k} \frac{\int_{a}^{h} (i/h) W_{n}[\tau;g]}{\int_{a}^{h} \int_{a}^{h} \int_{a}^$$

Li Selling g=0, me proved @

> We had that \( \( \langle \cdot \rangle \) = \( \langle \) (cauched tree, with propt \( \cong \) cauplife \( \rangle \) prop \( \text{cauched tree} \) \( \text{proper unities} \)
On the other hand, \( \subseteq \langle \langle \cdot \) = \( \subseteq \langle \) (councided tree \( \in \Gamma \subseteq \).

Sice prop. are obtainined by (TAB)-1= (52/7) -1, but we have shown that 5°W = \$\frac{1}{5}\phi^3\beta^8\rangle\_c, \frac{1}{5}\phi^3\phi^8\rangle\_c, \fracgar{1}{5}\phi^3\phi^8\rangle\_c, \frac{1}{5}\phi^3\phi^8\rangle\_c, \frac{1}{5}\phi^3\phi^8\rangle\_c, \frac{1}{5}\phi^3\phi^8\rangle\_c, \frac{1}{5}\phi^3\phi^8\rangle\_c, \frac{1}{5}\phi^3\phi^8\r

Li Sina unties are determined by in FI[0], we thus have shown D