# **MAGNETISMO**

# • Carga nun campo magnético

- 1. Un protón cunha enerxía cinética de 4,0·10<sup>-15</sup> J penetra perpendicularmente nun campo magnético uniforme de 40 mT. Calcula:
  - a) O módulo da forza á que está sometido o protón dentro do campo.
  - b) O tipo de movemento realizado polo protón, a traxectoria que describe e o raio desta.

Datos:  $q_p = 1.6 \cdot 10^{-19} \text{ C}; m_p = 1.67 \cdot 10^{-27} \text{ kg}.$ 

(A.B.A.U. extr. 22)

R

2

**Rta.:** a)  $F_B = 1.4 \cdot 10^{-14} \text{ N}$ ; b) R = 0.57 m.

| Datos                                                        | Cifras significativas: 2               |
|--------------------------------------------------------------|----------------------------------------|
| Enerxía cinética do protón                                   | $E_{\rm c} = 4.0 \cdot 10^{-15} \rm J$ |
| Valor da intensidade do campo magnético                      | B = 40  mT = 0.040  T                  |
| Ángulo entre a velocidade do protón e o campo                | $\varphi = 90^{\circ}$                 |
| Carga do protón                                              | $q = 1.6 \cdot 10^{-19} \text{ C}$     |
| Masa do protón                                               | $m = 1,67 \cdot 10^{-27} \text{ kg}$   |
| Incógnitas                                                   |                                        |
| Módulo da forza á que está sometido o protón dentro do campo | $F_B$                                  |

# Ecuacións

Radio da traxectoria

Lei de Lorentz: forza magnética sobre unha carga, q, que se despraza polo inte- $\overline{F}_B = q(\overline{v} \times \overline{B})$  rior dun campo magnético,  $\overline{B}$ , cunha velocidade,  $\overline{v}$ 

Aceleración normal (nun movemento circular de raio R)  $a_{\rm N} = \frac{v^2}{R}$ 2.ª lei de Newton da Dinámica  $\Sigma \overline{F} = m \cdot \overline{a}$ Velocidade nun movemento circular uniforme de raio R  $v = \frac{2\pi \cdot R}{T}$ 

# Solución:

a) A velocidade do protón calcúlase a partir da enerxía cinética:

$$E_{c} = \frac{1}{2} m \cdot v^{2} \Longrightarrow 4.0 \cdot 10^{-15} [J] = (1,67 \cdot 10^{-27} [kg] / 2) \cdot v^{2}$$
$$v = \sqrt{\frac{2 \cdot 4.0 \cdot 10^{-15} [J]}{1,67 \cdot 10^{-27} [kg]}} = 2,2 \cdot 10^{6} \text{ m/s}$$

A forza magnética calcúlase pola lei de Lorentz:

$$\overline{F}_B = q (\overline{v} \times \overline{B})$$

En módulos:

$$F_B = |\overline{F}_B| = q \cdot |\overline{v}| \cdot |\overline{B}| \cdot \text{sen } 90^\circ = 1,6 \cdot 10^{-19} \text{ [C]} \cdot 2,2 \cdot 10^6 \text{ [m/s]} \cdot 0,040 \text{ [T]} = 1,4 \cdot 10^{-14} \text{ N}$$

b) Como só actúa a forza magnética, que é perpendicular á velocidade, o protón describe unha traxectoria circular con velocidade de valor constante, polo que a aceleración só ten compoñente normal  $a_{\rm N}$ .



$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$

Usando a expresión da lei de Lorentz (en módulos) para a forza magnética:

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Despexando o raio, R:

$$R = \frac{m \cdot v}{|q| \cdot B \cdot \text{sen } \varphi} = \frac{1,67 \cdot 10^{-27} \,[\text{kg}] \cdot 2,2 \cdot 10^6 \,[\text{m/s}]}{1,6 \cdot 10^{-19} \,[\text{C}] \cdot 0,040 \,[\text{T}] \cdot \text{sen } 90^\circ} = 0,57 \,\text{m}$$

Análise: Se o protón entra nun campo magnético, ao describir media circunferencia sairá del, polo que en realidade só daría media volta e sairía a unha distancia de 2 R = 1,0 m do punto de entrada, na mesma dirección coa que entrou, pero en sentido oposto.

A respostas poden calcularse coa folla de cálculo Fisica (gal).

Cando se execute a folla de cálculo, prema sobre o botón Activar macros.

Para ir á folla para resolver un problema dunha partícula cargada movéndose nun campo magnético uniforme pode elixir unha destas opcións:

- Prema sobre a icona ➤ do grupo | ◀ ◀ ➤ ► | situado na parte inferior esquerda ata que vexa a pestana
   Lorentz. Logo prema sobre esa pestana.
- Ou, no índice, pulse a tecla Ctrl mentres preme sobre a cela Partícula cargada movéndose nun campo magnético uniforme do capítulo Electromagnetismo.

Para borrar tódolos datos pode elixir unha destas opcións:

- Prema sobre o botón Borrar datos e despois sobre o botón Aceptar.
- Ou prema no menú: Editar → Seleccionar → Seleccionar celas desprotexidas, e pulse despois a tecla Supr.

Faga clic na cela situada debaixo de "Partícula" e escolla «Protón», para non ter que teclear os valores da masa e carga do protón.

Partícula Carga 
$$q = 1,60218 \cdot 10^{-19}$$
 C  
Protón Masa  $m = 1,67262 \cdot 10^{-27}$  kg

Faga clic na cela de color salmón situada baixo «kg» e elixa «J».

Faga clic na cela de color branca e bordo azul situada a súa esquerda e escriba 4E-15, (o, si o prefire, 4,0  $\uparrow$ 3 10^- ^1 ^5 e borre os espacios).

Faga clic na cela de color branca e bordo azul situada á dereita de «B =» e teclee 0,04. Deberá ver:

| Partícula | Carga $q = 1,60218 \cdot 10^{-19}$ C      |
|-----------|-------------------------------------------|
| Protón    | Masa $m = 1,67262 \cdot 10^{-27}$ kg      |
|           | Enerxía cinética $E = 4E-15$              |
|           | Ángulo entre v e B $\varphi = 90^{\circ}$ |
|           | Radio da circunferencia R =               |
|           | Campo magnético $B = 0.04 \text{ T}$      |

Para ver o resultado da «Forza magnética», debe facer clic na cela de color salmón baix «Radio da traxectoria circular» e elixir esa opción.

|                               | Cifras sig | gnificativas:        | 3   |
|-------------------------------|------------|----------------------|-----|
| Velocidade dea partícula      | <i>v</i> = | $2,19 \cdot 10^6$    | m/s |
| Radio da traxectoria circular | R =        | 0,571                |     |
|                               |            | •                    |     |
| Forza magnética               | F =        | $1,40\cdot 10^{-14}$ | N   |

- 2. Unha partícula de masa 8 ng e carga eléctrica  $-2 \mu C$  entra nunha rexión do espazo na que hai un campo magnético  $\overline{B} = 3 \overline{j}$  T, cunha velocidade,  $\overline{v} = 6 \overline{i}$  km·s<sup>-1</sup>. Calcula:
  - a) A velocidade angular con que se move.
  - b) A intensidade de campo eléctrico (vector) que se debe aplicar para que a partícula siga unha traxectoria rectilínea.

(A.B.A.U. ord. 22)

**Rta.:** a) 
$$\omega = 7.5 \cdot 10^5 \text{ rad/s}$$
; b)  $\overline{E} = -1.8 \cdot 10^4 \overline{k} \text{ N/C}$ .

| Datos                          | Cifras significativas: 3                                                     |
|--------------------------------|------------------------------------------------------------------------------|
|                                | 3 3 3                                                                        |
| Masa da partícula              | $m = 8,00 \text{ ng} = 8,00 \cdot 10^{-12} \text{ kg}$                       |
| Carga da partícula             | $q = -2,00 \ \mu \ \text{C} = -2,00 \cdot 10^{-6} \ \text{C}$                |
| Intensidade do campo magnético | $\mathbf{\bar{B}} = 3,00 \mathbf{\bar{j}} \mathrm{T}$                        |
| Velocidade da partícula        | $\overline{\mathbf{v}} = 6.00 \cdot 10^3  \overline{\mathbf{i}}  \text{m/s}$ |
| Radio da traxectoria circular  | $R = 1,00 \cdot 10^{-7} \text{ m}$                                           |
| Incógnitas                     |                                                                              |

 $\overline{E}$ 

# Incógnitas

Velocidade angular

Vector campo eléctrico para que a partícula siga unha traxectoria rectilínea Outros símbolos

Radio da traxectoria circular R Valor da forza magnética sobre a partícula  $F_B$ Vector forza eléctrica sobre a partícula

#### **Ecuacións**

Lei de Lorentz: forza magnética sobre unha carga, q, que se despraza polo inte- $\overline{F}_B = q(\overline{v} \times \overline{B})$ rior dun campo magnético,  $\overline{B}$ , cunha velocidade,  $\overline{v}$ 

 $a_{\rm N} = \frac{v^2}{R}$ Aceleración normal (nun movemento circular de raio R)

 $\Sigma \overline{F} = m \cdot \overline{a}$ 2.ª lei de Newton da Dinámica

Velocidade nun movemento circular uniforme de raio R

Forza,  $\overline{F}_E$ , exercida por un campo electrostático,  $\overline{E}$ , sobre unha carga, qRelación entre a velocidade lineal v e a velocidade angular  $\omega$  nun movemento  $v = \omega \cdot R$ circular de raio R.

#### Solución:

a) Como só actúa a forza magnética, que é perpendicular á velocidade, a partícula describe unha traxectoria circular con velocidade de valor constante, polo que a aceleración só ten compoñente normal  $a_N$ .

$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$



$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Se a partícula entra perpendicularmente ao campo magnético, sen  $\varphi = 1$ . Despexando o raio, *R*:

$$R = \frac{m \cdot v}{|q| \cdot B} = \frac{8,00 \cdot 10^{-12} [\text{kg}] \cdot 6,00 \cdot 10^{3} [\text{m/s}]}{2,00 \cdot 10^{-6} [\text{C}] \cdot 3,00 [\text{T}]} = 8,00 \cdot 10^{-3} \text{ m} = 8,00 \text{ mm}$$

Pódese calcular a velocidade angular a partir da velocidade lineal:

$$v = \omega \cdot R \Rightarrow \omega = \frac{v}{R} = \frac{6,00 \cdot 10^3 \text{ [m/s]}}{8,00 \cdot 10^{-3} \text{ [m]}} = 7,50 \cdot 10^5 \text{ rad/s}$$

b) Se a forza eléctrica anula a magnética:

$$\overline{\boldsymbol{F}}_{B} + \overline{\boldsymbol{F}}_{E} = q (\overline{\boldsymbol{v}} \times \overline{\boldsymbol{B}}) + q \cdot \overline{\boldsymbol{E}} = \overline{\boldsymbol{0}}$$

$$\overline{\boldsymbol{E}} = -(\overline{\boldsymbol{v}} \times \overline{\boldsymbol{B}}) = -(6,00 \cdot 10^{3} \overline{\mathbf{i}} [\text{m/s}] \times 3,00 \overline{\mathbf{j}} [\text{T}]) = -1,80 \cdot 10^{4} \overline{\mathbf{k}} \text{ N/C}$$



A maior parte das respostas pode calcularse coa folla de cálculo Fisica (gal) Cando estea no índice, manteña pulsada a tecla «↑» (maiúsculas) mentres fai clic na cela Partícula cargada movéndose nun campo magnético uniforme del capítulo

Faga clic nas celas de cor salmón e elixa as opcións como se amosa. Escriba os datos nas celdas de cor branca e bordo azul.



A folla non realiza o cálculo vectorial, só calcula os módulos dos vectores.

Para ver o resultado de «Velocidade angular», debe facer clic na cela de color salmón baixo «Radio da traxectoria circular» e elixir esa opción.

Velocidade angular  $\omega = 7,50 \cdot 10^5 \text{ rad/s}$ 

Para ver o resultado de «Intensidade de campo eléctrico», debe facer clic na cela de color salmón e elixir «Intensidade de campo eléctrico» en vez de «Velocidad angular».

| Intensidade de campo eléctrico | E = | e1,80·10 <sup>4</sup> N/C |
|--------------------------------|-----|---------------------------|
| que anula a desviación         |     |                           |

\*\*\*

- 3. Un protón acelerado por unha diferenza de potencial de 5000 V penetra perpendicularmente nun campo magnético uniforme de 0,32 T. Calcula:
  - a) A velocidade do protón.
  - b) O raio da órbita que describe.
  - c) O número de voltas que dá en 1 segundo.
  - d) Que campo eléctrico  $\vec{E}$  hai que aplicar para que a carga non sufra ningunha desviación?

Datos:  $m_p = 1,67 \cdot 10^{-27} \text{ kg}, q_p = 1,60 \cdot 10^{-19} \text{ C}$  (Fai un debuxo do problema)

Problema modelo basado en P.A.U. Xuño 05

**Rta.:** a)  $v = 9.8 \cdot 10^5$  m/s; b) R = 3.2 cm; c)  $N = 4.9 \cdot 10^6$  voltas/s; d)  $\overline{E} = 3.1 \cdot 10^5$  N/C perpendicular a  $\overline{B}$  e  $\overline{v}$ 

| Datos Potencial de aceleración Valor da intensidade do campo magnético Carga do protón Ángulo entre a velocidade do protón e o campo magnético Masa do protón Torres para calcular a reference da valtas | Cifras significativas: 3<br>$V = 5000 \text{ V} = 5,00 \cdot 10^3 \text{ V}$<br>B = 0,320  T<br>$q = 1,60 \cdot 10^{-19} \text{ C}$<br>$\varphi = 90^\circ$<br>$m = 1,67 \cdot 10^{-27} \text{ kg}$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tempo para calcular o número de voltas                                                                                                                                                                   | t = 1,00  s                                                                                                                                                                                         |
| Incógnitas                                                                                                                                                                                               |                                                                                                                                                                                                     |
| Velocidade do protón                                                                                                                                                                                     | ν                                                                                                                                                                                                   |
| Radio da traxectoria circular                                                                                                                                                                            | R                                                                                                                                                                                                   |
| Número de voltas que dá en 1 s                                                                                                                                                                           | N                                                                                                                                                                                                   |
| Campo eléctrico para que a carga non sufra ningunha desviación                                                                                                                                           | E                                                                                                                                                                                                   |
| Outros símbolos                                                                                                                                                                                          |                                                                                                                                                                                                     |
| Valor da forza magnética sobre o protón                                                                                                                                                                  | $F_{B}$                                                                                                                                                                                             |
| Período do movemento circular                                                                                                                                                                            | T                                                                                                                                                                                                   |
| Enerxía (cinética) do protón                                                                                                                                                                             | $E_{ m c}$                                                                                                                                                                                          |
| Traballo do campo eléctrico                                                                                                                                                                              | $W(\text{eléctrico}) = q \cdot \Delta V$                                                                                                                                                            |
| Traballo da forza resultante                                                                                                                                                                             | $W = \Delta E_{\rm c}$                                                                                                                                                                              |
| Enerxía cinética                                                                                                                                                                                         | $E_{\rm c} = \frac{1}{2} m \cdot v^2$                                                                                                                                                               |
| Forza $\overline{F}_{E}$ exercida por un campo electrostático $\overline{E}$ sobre unha carga $q$                                                                                                        | $\vec{F}_E = q \cdot \vec{E}$                                                                                                                                                                       |

## Solución:

a) Para calcular a velocidade temos que ter en conta que ao acelerar o protón cunha diferenza de potencial (supomos que desde o repouso), este adquire unha enerxía cinética:

$$W(\text{eléctrico}) = q \cdot \Delta V = \Delta E_{\text{c}} = \frac{1}{2} m_{\text{p}} v^2 - \frac{1}{2} m_{\text{p}} v_0^2$$

Se parte do repouso,  $v_0 = 0$ . A velocidade final é:

$$v = \sqrt{\frac{2q \cdot \Delta V}{m_{\rm p}}} = \sqrt{\frac{2 \cdot 1,60 \cdot 10^{-19} [{\rm C}] \cdot 5,00 \cdot 10^{3} [{\rm V}]}{1,67 \cdot 10^{-27} [{\rm kg}]}} = 9,79 \cdot 10^{5} {\rm m/s}$$

b) Como só actúa a forza magnética:

$$\Sigma \overline{\boldsymbol{F}} = \overline{\boldsymbol{F}}_{B}$$

O protón describe unha traxectoria circular con velocidade de valor constante, polo que a aceleración só ten compoñente normal aN,

$$F_{B} = m \cdot a = m \cdot a_{N} = m \frac{v^{2}}{R}$$

Usando a expresión da lei de Lorentz (en módulos) para a forza magnética

$$|q| \cdot B \cdot v \cdot \text{sen } \varphi = m \frac{v^2}{R}$$

Despexando o raio R

$$R = \frac{m \cdot v}{|q| \cdot B \cdot \text{sen } \varphi} = \frac{1,67 \cdot 10^{-27} \, [\text{kg}] \cdot 9,79 \cdot 10^5 \, [\text{m/s}]}{1,60 \cdot 10^{-19} \, [\text{C}] \cdot 0,320 \, [\text{T}] \cdot \text{sen } 90^{\circ}} = 3,19 \cdot 10^{-2} \, \text{m} = 3,19 \, \text{cm}$$

Análise: o raio ten un valor aceptable, uns centímetros.

c) Despexando o período

$$T = \frac{2\pi \cdot R}{v} = \frac{2 \cdot 3,14 \cdot 3,19 \cdot 10^{-2} [m]}{9,79 \cdot 10^{5} [m/s]} = 2,05 \cdot 10^{-7} s$$

O número de voltas en 1 s será:

$$N = 1,00 \text{ [s]} \cdot \frac{1 \text{ volta}}{2,05 \cdot 10^{-7} \text{ [s]}} = 4,88 \cdot 10^6 \text{ voltas}$$



Análise: Se o protón entra nun campo magnético, ao describir media circunferencia sairá del, polo que en realidade só daría media volta nun tempo de  $T/2 = 1,03 \cdot 10^{-7}$  s e sairía a unha distancia de 2 R = 6,4 cm do punto de entrada.

d) Tomando o sistema de referencia como o de figura da dereita, cando só actúa a forza magnética a traxectoria do protón é unha circunferencia. Na figura anterior debuxouse o protón movéndose inicialmente no sentido positivo do eixe X e o campo magnético dirixido no sentido negativo do eixe Z.



Cando actúa unha forza eléctrica que anula a magnética,

$$\overline{F}_B + \overline{F}_E = q(\overline{v} \times \overline{B}) + q \cdot \overline{E} = \overline{0}$$

O campo eléctrico debe valer:

$$\overline{E} = -(\overline{v} \times \overline{B}) = -(9.79 \cdot 10^5 \,\overline{i} \,[\text{m/s}] \times 0.320 \,(-\overline{k}) \,[\text{T}]) = -3.13 \cdot 10^5 \,\overline{j} \,\text{N/C}$$

O campo eléctrico está dirixido no sentido negativo do eixe Y.

En calquera sistema de referencia, a dirección do campo eléctrico debe ser perpendicular tanto á dirección do campo magnético como á dirección da velocidade. O sentido do campo eléctrico ten que ser igual que o da forza eléctrica, porque a carga do protón é positiva, e oposto ao da forza magnética.



A maior parte das respostas pode calcularse coa folla de cálculo <u>Fisica (gal)</u> Cando estea no índice, manteña pulsada a tecla «↑» (maiúsculas) mentres fai clic na cela

Partícula cargada movéndose nun campo magnético uniforme

del capítulo

Electromagnetismo Lorentz

Partícula cargada movéndose nun campo magnético uniforme

Faga clic nas celas de cor salmón e elixa as opcións como se amosa. Escriba os datos nas celdas de cor branca e bordo azul.



Os resultados son:



Facendo clic en «Número de voltas» e elixindo «Intensidade de campo eléctrico» vese o resultado do último apartado:

d) Intensidade de campo eléctrico  $E = 3,13 \cdot 10^5 \text{ N/C}$  que anula a desviación

### Forza entre condutores

- 1. Dous fíos condutores rectos moi longos e paralelos (A e B) con correntes  $I_A = 5$  A e  $I_B = 3$  A no mesmo sentido están separados 0,2 m. Calcula:
  - a) O campo magnético no punto medio entre os dous condutores (D)
  - b) A forza exercida sobre un terceiro condutor C paralelo os anteriores, de 0,5 m e con  $I_C$  = 2 A e que pasa por D.

Dato:  $\mu_0 = 4 \pi \cdot 10^{-7} \text{ S.I.}$  (P.A.U. Set. 06)

**Rta.:** a)  $\overline{B} = 4.0 \cdot 10^{-6}$  T perpendicular aos fíos; b)  $\overline{F} = 4.0 \cdot 10^{-6}$  N cara a A.

Datos

Intensidade de corrente polo condutor A Intensidade de corrente polo condutor B

Distancia entre os condutores

Permeabilidade magnética do baleiro

Intensidade de corrente polo condutor C

Lonxitude do condutor C

Incógnitas

Campo magnético no punto D medio entre os dous condutores

Forza exercida sobre un terceiro condutor C que pasa por D

**Ecuacións** 

Lei de Biot e Savart: campo magnético  $\overline{\boldsymbol{B}}$  creado a unha distancia r por un condutor recto polo que circula unha intensidade de corrente I

Principio de superposición:

Lei de Laplace: forza magnética que exerce un campo magnético  $\overline{B}$  sobre un

tramo l de condutor recto polo que circula unha intensidade de corrente I

Cifras significativas: 3

 $I_{\rm A} = 5,00 {\rm A}$  $I_{\rm B} = 3,00 {\rm A}$ 

d = 0,200 m

 $\mu_0 = 4 \pi \cdot 10^{-7} \text{ T} \cdot \text{m} \cdot \text{A}^{-1}$ 

 $I_{\rm C} = 2,00 {\rm A}$ 

l = 0.500 m

 $\overline{\boldsymbol{B}}_{\!\scriptscriptstyle \mathrm{D}}$ 

 $\overline{F}_{R} = I(\overline{l} \times \overline{B})$ 

#### Solución:

a) O campo magnético creado por un condutor rectilíneo é circular e o seu sentido vén dado pola regra da man dereita: o sentido do campo magnético é o de peche da man dereita cando o polgar apunta no sentido da corrente.

No diagrama debúxanse os campos magnéticos  $\overline{B}_{A}$  e  $\overline{B}_{B}$  creados por ambos os condutores no punto medio D.

O campo magnético creado polo condutor A no punto D equidistante de ambos os condutores é:

$$\vec{B}_{A \to D} = \frac{\mu_0 \cdot I_A}{2\pi \cdot r} (-\vec{k}) = \frac{4\pi \cdot 10^{-7} [T \cdot m \cdot A^{-1}] \cdot 5,00 [A]}{2\pi \cdot 0,100 [m]} (-\vec{k}) = -1,00 \cdot 10^{-5} \vec{k} T$$

O campo magnético creado polo condutor B no punto D equidistante de ambos os condutores é:

$$\vec{B}_{\text{B} \to \text{D}} = \frac{\mu_0 \cdot I_{\text{B}}}{2\pi \cdot r} \vec{\mathbf{k}} = \frac{4\pi \cdot 10^{-7} \left[ \text{T} \cdot \text{m} \cdot \text{A}^{-1} \right] \cdot 3,00 \left[ \text{A} \right]}{2\pi \cdot 0,100 \left[ \text{m} \right]} \vec{\mathbf{k}} = 6,00 \cdot 10^{-6} \vec{\mathbf{k}} \text{ T}$$

O campo magnético resultante é a suma vectorial de ambos:

b) A forza que se exerce sobre un condutor C situado en D é:

$$\overline{F}_B = I(\overline{l} \times \overline{B}) = 2,00 \text{ [A] } (0,500 \overline{\mathbf{j}} \text{ [m]} \times (-4,0.10^{-6} \overline{\mathbf{k}} \text{ [T]})) = -4,0.10^{-6} \overline{\mathbf{i}} \text{ N}$$

Está dirixida cara ao condutor A se o sentido da corrente é o mesmo que o dos outros condutores. Análise: Os condutores que transportan a corrente no mesmo sentido atráense e en sentido oposto repélense. Aínda que se ve atraído por ambos os condutores, o será con maior forza polo que circula maior intensidade, ou sexa o A.



do capítulo.

Electromagnetismo Condutores

Campo e forza magnética entre condutores paralelos

Faga clic nas celas de cor salmón e elixa as opcións como se amosa. Escriba os datos nas celdas de cor branca e bordo azul.

| Intensidade no condutor 1           | $I_1 =$ | 5   | A  | +         |
|-------------------------------------|---------|-----|----|-----------|
| Intensidade no condutor 2           | $I_2 =$ | 3   | A  | Sentido + |
| Separación entre condutores         | s =     | 0,2 | m  |           |
| Distancia del punto P ao condutor 1 | $d_1 =$ | 0,1 | m  |           |
| Distancia del punto P ao condutor 2 | $d_2 =$ | 0,1 | m  |           |
| Intensidade no condutor 3           | $I_3 =$ | 2   | A  |           |
| Lonxitude do condutor 3             | $L_3 =$ | 50  | cm |           |

Os resultados son:

|    | Campo magnético no punto P       |            | Cifras significativas: 3  |
|----|----------------------------------|------------|---------------------------|
|    | debido ao condutor 1             | $B_1 =$    | 1,00⋅10 <sup>-5</sup> T   |
|    | debido ao condutor 2             | $B_2 =$    | −6,00·10 <sup>-6</sup> T  |
| a) | resultante                       | $B_p =$    | 4,00·10 <sup>-6</sup> T   |
|    | Forza entre los condutores 1 e 2 | $F_{12} =$ | 1,50·10 <sup>-5</sup> N/m |
| b) | Forza sobre o cond. 3 no punto P | F =        | 4,00·10 <sup>-6</sup> N   |

- 2. Indica cal é o módulo, dirección e sentido do campo magnético creado por un fío condutor recto percorrido por unha corrente e realiza un esquema que ilustre as características de devandito campo. Considérese agora que dous fíos condutores rectos e paralelos de gran lonxitude transportan a súa respectiva corrente eléctrica.
  - a) Sabendo que a intensidade dunha das correntes é o dobre que a da outra corrente e que, estando separados 10 cm, atráense cunha forza por unidade de lonxitude de 4,8·10<sup>-5</sup> N·m<sup>-1</sup>, calcula as intensidades que circulan polos fíos.
  - b) Canto vale o campo magnético nun punto situado entre os dous fíos, a 3 cm do que transporta menos corrente?

Dato:  $\mu_0 = 4 \pi \cdot 10^{-7} \text{ N} \cdot \text{A}^{-2}$  (P.A.U. Xuño 15) **Rta.:** b)  $I_1 = 3,46 \text{ A}$ ;  $I_2 = 6,93 \text{ A}$ ; c)  $B = 3,3 \mu\text{T}$ 

DatosCifras significativas: 3Intensidade de corrente polo segundo condutor $I_2 = 2 I_1$ Distancia entre os dous condutoresd = 10,0 cm = 0,100 mForza de atracción por unidade de lonxitude $F/l = 4,8 \cdot 10^{-5} \text{ N} \cdot \text{m}^{-1}$ Permeabilidade magnética do baleiro $\mu_0 = 4 \pi \cdot 10^{-7} \text{ N} \cdot \text{A}^{-2}$ Intensidades que circulan polos fíos $I_1, I_2$ Campo magnético a 3 cm do fío con menos corrente $\overline{B}$ 

Ecuacións

Lei de Biot e Savart: campo magnético  $\overline{\boldsymbol{B}}$  creado a unha distancia r por un condutor recto polo que circula unha intensidade de corrente I  $\overline{\boldsymbol{B}} = \frac{\mu_0 \cdot I}{2\pi \cdot r}$  Principio e superposición:  $\overline{\boldsymbol{B}} = \Sigma \overline{\boldsymbol{B}}_i$  Lei de Laplace: Forza que exerce un campo magnético  $\overline{\boldsymbol{B}}$  sobre un tramo l de condutor que transporta unha corrente I  $\overline{\boldsymbol{F}} = I(\overline{\boldsymbol{l}} \times \overline{\boldsymbol{B}})$ 

#### Solución:

a) O campo magnético creado por un condutor rectilíneo é circular e o seu sentido vén dado pola regra da man dereita: o sentido do campo magnético é o de peche da man dereita cando o polgar apunta no sentido da corrente.

O valor do campo magnético  $\overline{B}$  creado a unha distancia r por un condutor recto polo que circula unha intensidade de corrente I vén dado pola expresión:



$$B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$

b) A forza entre dous condutores rectilíneos paralelos obtense substituíndo na ecuación de Lorentz a expresión da lei de Biot e Savart.

$$F_{1\rightarrow 2}=I_1\cdot l\cdot B_2=I_1\cdot l\cdot \frac{\mu_0\cdot I_2}{2\pi\cdot r}=\frac{\mu_0\cdot I_1\cdot I_2}{2\pi\cdot r}\cdot l$$

Substituíndo os datos, tendo en conta que a forza é por unidade de lonxitude ( $l=1~\mathrm{m}$ )

$$4.8 \cdot 10^{-5} \left[ \mathbf{N} \cdot \mathbf{m}^{-1} \right] = \frac{4 \,\pi \cdot 10^{-7} \left[ \mathbf{N} \cdot \mathbf{A}^{-2} \right] \cdot I_1 \cdot 2 \,I_1}{2 \,\pi \cdot 0.100 \left[ \mathbf{m} \right]}$$

$$I_{1} = \sqrt{\frac{4,8 \cdot 10^{-5} \left[ \text{N} \cdot \text{m}^{-1} \right] \cdot 2\pi \cdot 0,100 \left[ \text{m} \right]}{2 \cdot 4\pi \cdot 10^{-7} \left[ \text{N} \cdot \text{A}^{-2} \right]}} = 3,46 \text{ A}$$

$$I_{2} = 2 I_{1} = 6,93 \text{ A}$$

c) No diagrama debúxanse os campos magnéticos  $\overline{\boldsymbol{B}}_1$  e  $\overline{\boldsymbol{B}}_2$  creados por ambos os condutores no punto 3 a 3 cm de I <sub>1</sub>.

O campo magnético creado polo condutor 1 a 3 cm de distancia é:

$$B_{1} = \frac{\mu_{0} \cdot I_{1}}{2\pi \cdot r_{1}} = \frac{4\pi \cdot 10^{-7} \left[ \text{N} \cdot \text{A}^{-2} \right] \cdot 3,46 \left[ \text{A} \right]}{2\pi \cdot 0,030 \text{ Q/m}} = 2,31 \cdot 10^{-5} \text{ T}$$

O campo magnético creado polo condutor 2 a 7 cm de distancia é:

$$B_2 = \frac{\mu_0 \cdot I_1}{2\pi \cdot r_2} = \frac{4\pi \cdot 10^{-7} \left[ \text{N} \cdot \text{A}^{-2} \right] \cdot 6,93 \left[ \text{A} \right]}{2\pi \cdot 0,070 \text{ Q[m]}} = 1,98 \cdot 10^{-5} \text{ T}$$

Como os campos son de sentidos opostos, o campo magnético resultante no punto que dista 3 cm é

$$B_3 = B_1 - B_2 = 2.31 \cdot 10^{-5} [T] - 1.98 \cdot 10^{-5} [T] = 3.3 \cdot 10^{-6} T$$

A dirección do campo magnético resultante é perpendicular ao plano formado polos dous condutores e o sentido é o do campo magnético do fío máis próximo, (no debuxo, cara ao bordo superior do papel)



Actualizado: 21/02/24

# **Sumario**

|               | •          | $\sim$ | ъ. |                        | TO: |               | $\sim$ |
|---------------|------------|--------|----|------------------------|-----|---------------|--------|
| $\Lambda / I$ | <b>A</b> ( | ÷      | V  | $\mathbf{F}\mathbf{T}$ | 1   | $\Lambda / 1$ | ( )    |

| Carg  | a nun campo magnético1                                                                                                                                                                                                                                                                                                              |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | Un protón acelerado por unha diferenza de potencial de 5000 V penetra perpendicularmente nun campo magnético uniforme de 0,32 T. Calcula:                                                                                                                                                                                           |
|       | a) A velocidade do protón                                                                                                                                                                                                                                                                                                           |
|       | b) O raio da órbita que describe                                                                                                                                                                                                                                                                                                    |
|       | c) O número de voltas que dá en 1 segundo                                                                                                                                                                                                                                                                                           |
|       | d) Que campo eléctrico E hai que aplicar para que a carga non sufra ningunha desviación?                                                                                                                                                                                                                                            |
| Forza | a entre condutores                                                                                                                                                                                                                                                                                                                  |
|       | Dous fíos condutores rectos moi longos e paralelos (A e B) con correntes IA = 5 A e IB = 3 A no mesmo sentido están separados 0,2 m. Calcula:                                                                                                                                                                                       |
|       | a) O campo magnético no punto medio entre os dous condutores (D)                                                                                                                                                                                                                                                                    |
|       | b) A forza exercida sobre un terceiro condutor C paralelo os anteriores, de 0,5 m e con IC = 2 A e que pasa por D                                                                                                                                                                                                                   |
| 2.    | Indica cal é o módulo, dirección e sentido do campo magnético creado por un fío condutor recto percorrido por unha corrente e realiza un esquema que ilustre as características de devandito campo. Considérese agora que dous fíos condutores rectos e paralelos de gran lonxitude transportan a súa respectiva corrente eléctrica |
|       | a) Sabendo que a intensidade dunha das correntes é o dobre que a da outra corrente e que, estando separados 10 cm, atráense cunha forza por unidade de lonxitude de 4,8·10 <sup>-5</sup> N·m <sup>-1</sup> , calcula as intensidades que circulan polos fíos                                                                        |
|       | b) Canto vale o campo magnético nun punto situado entre os dous fíos, a 3 cm do que transporta menos corrente?                                                                                                                                                                                                                      |

Método e recomendacións