Theorem 1.5.9.

If E_1 is a normed space and E_2 is a Banach space, then $\mathcal{B}(E_1, E_2)$ is a Banach space.

Proof: We only need to show that $\mathcal{B}(E_1, E_2)$ is complete. Let (L_n) be a Cauchy sequence in $\mathcal{B}(E_1, E_2)$ and let x be an arbitrary element of E_1 . Then

$$||L_m x - L_n x|| \le ||L_m - L_n|| \, ||x|| \to 0$$
 as $m, n \to \infty$

which shows that $(L_n x)$ is a Cauchy sequence in E_2 . By completeness of E_2 , there is a unique element $y \in E_2$ such that $L_n x \to y$. Since x is an arbitrary element of E_1 , this defines a mapping L from E_1 into E_2 :

$$Lx = \lim_{n \to \infty} L_n x$$

We will show that $L \in \mathcal{B}(E_1, E_2)$ and $||L_n - L|| \to 0$.

Clearly, L is a linear mapping. Since Cauchy sequences are bounded, there exists a constant α such that $||L_n|| \le \alpha$ for all $n \in \mathbb{N}$. Consequently,

$$||Lx|| = \left| \lim_{n \to \infty} L_n x \right| = \lim_{n \to \infty} ||L_n x|| \le \alpha ||x||$$

Therefore L is bounded and thus $L \in \mathcal{B}(E_1, E_2)$. It remains to prove that $||L_n - L|| \to 0$. Let $\varepsilon > 0$, and let k be such that $||L_m - L_n|| < \varepsilon$ for every $m, n \ge k$. If ||x|| = 1 and $m, n \ge k$, then

$$||L_m x - L_n x|| \le ||L_m - L_n|| < \varepsilon$$

By letting $n \to \infty$, (m remains fixed), we obtain $||L_m x - Lx|| \le \varepsilon$ for every $m \ge k$ and every $x \in E_1$ with ||x|| = 1. This means that $||L_m - L|| \le \varepsilon$ for all m > k, which completes the proof.

■メモ E_1 をノルム空間, E_2 をバナッハ空間とすると, $\mathcal{B}(E_1,E_2)$ もバナッハ空間となる.

 $(T_n)_{n\in\mathbb{N}}\subset\mathcal{B}(E_1,E_2)$ を $\|\cdot\|$ における Cauchy 列とする. つまり (1) 式が成り立つ.

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n, m \ge N : ||T_n - T_m|| < \varepsilon$$
 (1)

目標: 適当な $T \in \mathcal{B}(E_1, E_2)$ が存在して、 $\lim_{n \to \infty} ||T_n - T|| = 0$ になることを示せれば良い.

(1) 式より、任意の $x \in E_1$ に対して、

$$||T_n x - T_m x|| (< ||T_m - T_n|| \, ||x||) < \varepsilon ||x||$$
 (2)

(2) 式はより, (T_nx) が E_2 における Cauchy 点列であることが示された.定義より E_2 はバナッハ空間であり,完備なので,各 $x \in E_1$ に対して (T_nx) は収束する.

$$Tx = \lim_{n \to \infty} T_n x \tag{3}$$

(3) 式のように作用素を定義すると、T は E_1 から E_2 への線形作用素で、

$$||Tx|| = \lim_{n \to \infty} ||T_n x|| \le (\lim_{n \to \infty} ||T_n||) ||x||$$
 (4)

(4) 式は有界線形作用素であるので、 $T \in \mathcal{B}(E_1, E_2)$ である. (2) 式において $m \to \infty$ とすれば、 $n \ge N$ のとき、

$$||T_n x - Tx|| < \varepsilon ||x|| \quad (x \in E_1)$$

となり、しっかり整理すると、(5) 式のようになる.

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \ge N : ||T_n - T|| < \varepsilon$$
 (5)

(5) 式は
$$||T_n - T|| \to 0 \ (n \to \infty)$$
 を意味しており、目標が示せた.

Theorem 1.5.10.

If L is a continuous linear mapping from a subspace of a normed space E_1 into a Banach space E_2 , then L has a unique extension to a continuous linear mapping defined on the closure of the domain $\mathcal{D}(L)$. In particular, if $\mathcal{D}(L)$ is dense in E_1 , then L has a unique extension to a continuous linear mapping defined on the whole space E_1 .

Proof: If $x \in \text{cl}\mathcal{D}(L)$, then there exists a sequence (x_n) in $\mathcal{D}(L)$ convergent to x. Since (x_n) is a Cauchy sequence,

$$||Lx_m - Lx_n|| = ||L(x_m - x_n)|| \le ||L|| ||x_m - x_n|| \to 0$$
, as $m, n \to \infty$

Thus, (Lx_n) is a Cauchy sequence in E_2 . Since E_2 is complete, there is a $z \in E_2$ such that $Lx_n \to z$. We want to define the value of the extension \tilde{L} at x as $\tilde{L}x = z$, that is,

$$\tilde{L}x = \lim_{n \to \infty} Lx_n, \quad x_n \in \mathcal{D}(L) \text{ and } x_n \to x.$$

This definition will be correct only if we can show that the limit z is the same for all sequences in $\mathcal{D}(L)$ convergent to x. Indeed, if $y_n \in \mathcal{D}(L)$ and $y_n \to x$, then

$$Ly_n = Ly_n - Lx_n + Lx_n = L(y_n - x_n) + Lx_n \rightarrow z$$

because $y_n - x_n \to 0$, and hence also $L(y_n - x_n) \to 0$. Clearly, \tilde{L} is a linear mapping and $\tilde{L}x = Lx$ whenever $x \in \mathcal{D}(L)$. It remains to show that \tilde{L} is continuous. Let $x \in \text{cl}\mathcal{D}(L)$, ||x|| = 1. There exist $x_1, x_2, \ldots \in \mathcal{D}(L)$ such that $x_n \to x$. Then $||x_n|| \to ||x|| = 1$ and

$$\|\tilde{L}x\| = \lim_{n \to \infty} \|Lx_n\| \le \|L\|.$$

Thus, \tilde{L} is bounded, hence continuous, and $\|\tilde{L}\| = \|L\|$.

■メモ とりあえず上にテキストをそのまま示したが、定理がややこしいと感じた. 元の定理 1.5.10. をもう少し簡単に変形できないか考えてみる.

"L is a continuous linear mapping"とあるが,これは Theorem 1.5.7.(線形作用素が連続であることと有界であることは同値) より,L は有界線形作用素と言い換えられる.また $X_0=\mathrm{cl}\mathcal{D}(L)\subset E_1$ となるような部分空間を X_0 とれば, X_0 はノルム空間 E_1 の稠密な線形部分空間となる.

" X_0 をノルム空間 E_1 の稠密な線形部分空間とし,L を X_0 から Banach 空間 E_2 への有界線形作用素とすれば, $\|\overline{T}\|=\|T\|\ (=\sup_{\|x\|\leq 1} \|Tx\|)$ を満たすような線形作用素 \overline{T} が唯一つ存在する"

と言い換えられる?

つまり,

関数解析 (ちくま学芸文庫) P51 から引用

定理 3.3. X_0 をノルム空間 X の稠密な線形部分空間 とし、T を X_0 から Banach 空間 Y への有界線形作用素 とする。このとき、次の条件を満たす X から Y への有界

線形作用素 \overline{T} がただ1つ存在する.

$$\overline{T}x = Tx \ (x \in X_0), \ \|\overline{T}\| = \|T\| \ (= \sup_{\|x\| \leq 1 \atop x \in X_0} \|Tx\|)$$

証明 $x \in X$ に対して $x_n \to x$ $(n \to \infty)$ となる点列 $\{x_n\}$, $x_n \in X_0$ が存在する. $\|Tx_n - Tx_m\| \le \|T\| \|x_n - x_m\| \to 0$ $(n, m \to \infty)$, 即 ち $\{Tx_n\}$ は Y に お け る Cauchy 点列である. Y は Banach 空間のゆえ, $\{Tx_n\}$ は収束する;そしてその極限は $x_n \to x$ $(n \to \infty)$ となる点列 $\{x_n\}$, $x_n \in X_0$ の選び方に依存しないことに注意する. いま

$$\overline{T}x = \lim_{n \to \infty} Tx_n$$

とおくと、明らかに \overline{T} はXからYへの線形作用素で、 $\overline{T}x = Tx$ $(x \in X_0)$ となる。 $\|Tx_n\| \le \|T\| \|x_n\|$ から $\|\overline{T}x\| = \lim_{\substack{n \to \infty \\ n \to \infty}} \|Tx_n\| \le \|T\| \|x\|$,即ち $\|\overline{T}x\| \le \|T\| \|x\|$ $(x \in X)$ となり \overline{T} は有界線形作用素である,かつ $\|\overline{T}\| \le \|T\|$. 一方, $\|Tx\| = \|\overline{T}x\| \le \|\overline{T}\| \|x\|$ $(x \in X_0)$ から $\|T\| \le \|\overline{T}\|$. ゆえに $\|\overline{T}\| = \|T\|$. 最後に, $\widetilde{T}x = Tx$ $(=\overline{T}x)$ $(x \in X_0)$ で, \widetilde{T} がX からYへの有界線形作用素 ならば

$$\widetilde{T}x = \overline{T}x \ (x \in X)$$

となり, \overline{T} の一意性が示された.

(証終)

図1 関数解析 (ちくま学芸文庫) P51

Theorem 1.5.12.

If L is a continuous linear mapping from a subspace of a normed space E_1 into a Banach space E_2 , then L has a unique extension to a continuous linear mapping defined on the closure of the domain $\mathcal{D}(L)$. In particular, if $\mathcal{D}(L)$ is dense in E_1 , then L has a unique extension to a continuous linear mapping defined on the whole space E_1 .