Electronic Circuits

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

Dr. Gökhan Bilgin

gokhanb@ce.yildiz.edu.tr

Series Diode Configurations

- Silicon Diode: $V_D = 0.7 \text{ V}$ Germanium Diode: $V_D = 0.3 \text{ V}$

Analysis (for silicon)

- $V_D = 0.7 \text{ V (or } V_D = E \text{ if } E < 0.7 \text{ V)}$ $V_R = E V_D$
- $I_D = I_R = I_T = V_R / R$

Series Diode Configurations

Reverse Bias Diodes ideally behave as open circuits

Analysis

- $V_D = E$
- $V_R = 0 \text{ V}$ • $I_D = 0$ A

Parallel Configurations

Half-Wave Rectification

conducts when it is forward biased, therefore only half of the AC cycle passes through the diode to the

The DC output voltage is $0.318V_m$, where V_m = the peak AC voltage.

Rectifier	Ideal $V_{ m DC}$	Realistic V_{DC}
Half Wave Rectifier	$V_{\mathrm{DC}} = 0.318 V_{m}$	$V_{\rm DC} = 0.318 V_{m} - 0.7$
Bridge Rectifier	$V_{\rm DC}=0.636V_m$	$V_{DC} = 0.636V_m - 2(0.7 \text{ V})$
Center-Tapped Transformer Rectifier	$\mathbf{V_{DC}} = 0.636 V_m$	$V_{DC} = 0.636V_m - 0.7 \text{ V}$
In the center tapped transfo	eak of the AC volta ormer rectifier circu er secondary voltag	iit, the peak AC voltage

Summary of Clamper Circuits Compare Nationals The state of the state

The maximum value of resistance is: $I_{L_{min}} = I_R - I_{ZK}$ The maximum value of resistance is: $R_{L_{max}} = \frac{V_Z}{I_{L_{min}}}$ If R is too small, the Zener current exceeds the maximum current rating, I_{ZM} . The maximum current exceeds the maximum current rating, I_{ZM} . The maximum current for the circuit is given by: $I_{L_{max}} = \frac{V_L}{R_L} = \frac{V_Z}{R_{L_{min}}}$ The minimum value of resistance is: $R_{L_{min}} = \frac{RV_Z}{V_L - V_Z}$

Practical Applications Rectifier Circuits Conversions of AC to DC for DC operated circuits Battery Charging Circuits Simple Diode Circuits Protective Circuits against Overcurrent Polarity Reversal Currents caused by an inductive kick in a relay circuit Zener Circuits Overvoltage Protection Setting Reference Voltages