MATHEMATICS METHODS

8 AWAM Semester 2 (Units 3 and 4) Examination 2016

Calculator-free

Marking Key

0 MAWA, 2016

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
 They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date

stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

· the end of week 1 of term 4, 2016

Page 1

CALCULATOR-FREE MARKING KEY

MATHEMATICS METHODS SEMESTER 2 (UNITS 3 AND 4) EXAMINATION

Section One: Calculator-free

(54 Marks)

Question 1(a)

Solution	
$ \ln m = \frac{3}{2} \Longrightarrow m = e^{\frac{3}{2}} $	
Marking key/mathematical behaviours	Marks
identifies correct base	1
determines correct power	1

Question 1(b)

Solution

$$\log[(m+3)m] = 1$$

$$(m+3)m=10^1$$

$$m^2 + 3m - 10 = 0$$
$$(m+5)(m-2) = 0$$

m = -5 or 2 but since m has to be greater than zero, m = 2 is the only solution.

111	
Marking key/mathematical behaviours	Marks
applies logarithmic rule for a product correctly	1
recognises base 10	1
creates equation with correct trinomial	1
 solves equation correctly giving the correct value of m 	1

Question 2(a)(i)

Question 2(a) (i)		
Solution		
$\frac{dy}{dx} = \frac{(6x^4 - x^3 + e)(4e^x) - (4e^x)(24x^3 - 3x^2)}{(4e^x)^2 + (4e^x)^2}$		
$\left(6x^4 - x^3 + e\right)^2$		
Marking key/mathematical behaviours	Marks	
differentiates the 1st term on numerator correctly	1	
differentiates the 2nd term on numerator correctly	1	
squares factor on denominator	1	

Question 10(b)

Area
$$2 = \frac{1}{2} \times 2 \times 9$$

= 9 square units

Area
$$3 = 50 - 22\frac{1}{2} - 9$$

= $18\frac{1}{2}$ square unit

$$\int_{7}^{6} f(x)dx = -\text{Area } 3$$
$$= -18\frac{1}{2}$$

Marking key/mathematical behaviours	Marks
calculates area 2	1
calculates area 3	1
determines integral	1

Question 10(a)

L

Solution Question 2(b)

$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} \qquad \text{bns} \qquad (x) \sin x + x = \frac{\partial}{\partial x} \iff (x) \cos x - 2x = u \text{ follow}$

differentiates correctly 2nd term

differentiates correctly 1st term

Marking key/mathematical behaviours

 $[(x)\text{mis})\text{ml}\frac{b}{xb} - [(\xi + \varepsilon x\xi)\text{ml}]\frac{b}{xb} =$

SEMESTER 2 (UNITS 3 AND 4) EXAMINATION

 $[(x)\text{nis})\text{nl} - \left(\xi + \varepsilon x \xi\right)\text{nl} \frac{b}{xb} = \frac{xb}{xb}$

 $= \frac{15x^2}{15x^3 + 3} - \frac{\cos(x)}{\sin(x)} = \frac{\cos(x)}{\sin(x)}$

MATHEMATICS METHODS

Solution

Question 2(a)(ii)

Marking key/mathematical behaviours

$$((x)\operatorname{nis} + x2)\frac{1}{(x)\operatorname{nos}^{-2}x^{9}} = ((x)\operatorname{nis} + x2) \times \frac{1}{x^{9}} = \frac{xb}{xb} \times \frac{\sqrt{b}}{xb} = \frac{\sqrt{b}}{xb}$$

applies correctly logarithmic rule for quotients

$$((x) \operatorname{uis} + xz) - \frac{z}{z} = ((x) \operatorname{uis} + xz) \times \frac{z}{z} = \frac{xp}{xp} \times \frac{yz}{yz} = \frac{xp}{xz}$$

7	~	vn	nn	vn	

differentiates correctly to determine 2nd factor in chain rule	•	
differentiates correctly to determine 1st factor in chain rule	•	

L

L

Marks

L

L

Marks

WARKING KEY

CALCULATOR-FREE

$$x$$
 for smith of $\frac{\sqrt{b}}{x}$ sessential $\frac{\sqrt{b}}{x}$ sessential $\frac{\sqrt{b}}{x}$

910S AWAM ② Page 3

determines integral.

identifies integral as area of correct triangle

a nawa 2016

MATHEMATICS METHODS SEMESTER 2 (UNITS 3 AND 4) EXAMINATION

CALCULATOR-FREE MARKING KEY

Question 3(a)

Solution	
Discrete random variable	
Marking key/mathematical behaviours	Marks
determines correct category	1

Question 3(b)

4400.00.00	
Solution	
Non-random variable	
Marking key/mathematical behaviours	Marks
determines correct category	1

Question 3(c)

Solution	
Continuous random variable	
Marking key/mathematical behaviours	Marks
determines correct category	1

MATHEMATICS METHODS SEMESTER 2 (UNITS 3 AND 4) EXAMINATION

CALCULATOR-FREE MARKING KEY

Question 9(c)(i)

Solution

n_2 is larger than n_1	
To increase confidence a larger interval is required for a stable sample size. Increasing the standard error and thus the interval can remain the same.	g n reduces
Marking key/mathematical behaviours	Marks
 states n₂ is larger with reason 	1

Question 9(c)(ii)

Solution

$$E_1 = 1 \times \sqrt{\frac{m(1-m)}{n_1}}$$

$$E_2 = 1.5 \times \sqrt{\frac{m(1-m)}{n_2}}$$

Same interval so $E_1 = E_2$

states correct reason

$$\sqrt{\frac{m(1-m)}{n_1}} = 1.5 \times \sqrt{\frac{m(1-m)}{n_2}}$$

$$\frac{m(1-m)}{n_1} = (1.5)^2 \frac{m(1-m)}{n_2}$$

$$\frac{n_2}{n_1} = 2.25$$

$$n_2 = 2.25n_1$$

Marking key/mathematical behaviours	Marks
equates E ₁ and E ₂	1
squares both sides	1
states relationship	1

Marks

Marks

Question 9(a)(ii)

Question 5

Solution 4 noiteauD

Marking key/mathematical behaviour
$f = q \text{ no } \frac{1}{\mu} = q \iff 0 = (\xi - q \hbar)(1 - q \hbar)$
$0 = \xi + q \partial \mathbf{I} - ^{2} q \partial \mathbf{I}$
$\frac{91}{\xi} = \left(\frac{\xi}{\xi}\right) = (d-1)d$
Polition

• calculates the value of k evaluates integral correctly integrates correctly

 $\lambda = \frac{12}{5} = \lambda \iff 1 = \left[\frac{1}{5} - \frac{1}{5}\right]$

 sets up integral and equates to one Marking key/mathematical behaviours

$$16p^{-} - 16p + 3 = 0$$

$$(4p - 1)(4p - 3) = 0 \Rightarrow p = \frac{1}{4} \text{ or } p = \frac{3}{4}$$
Marking key/mathematical behaviours

derives quadratic equation	•	
sets up equation using variance of a Bernoulli distribution	•	

- factorises trinomial
- solves correctly for p

₽age **5**

2016	AWAM	0
------	------	---

SEMESTER 2 (UNITS 3 AND 4) EXAMINATION MATHEMATICS METHODS

estates interval	i
• simplifies €	ı
• simplifies square root	ı
 substitutes values for z, n and p 	l
Marking key/mathematical behaviours	Магкѕ
95% CI is (0.12,0.28)	
80.0 =	
$\frac{2}{2} \times 2 = \frac{2}{3}$	
$\frac{1}{\sqrt{2800}} \sqrt{\times 2} = \frac{1}{\sqrt{2800}}$	
$\mathbb{E} = \mathbb{Z} \times \sqrt{\frac{\frac{1}{5}(1-\frac{1}{5})}{100}}$	
olution	

Question 9(b)

l	 states confidence interval.
l	∃ sənimıətəb •
Marks	Marking key/mathematical behaviours
	$(\overline{\frac{(m-1)m}{n}} + m, \overline{\frac{(m-1)m}{n}} - m) \text{ si ID } \%89$
	$\underbrace{\frac{(m-1)m}{n}}_{l} \bigvee \times I = \mathcal{I}$
	Solution

MATHEMATICS METHODS SEMESTER 2 (UNITS 3 AND 4) EXAMINATION

CALCULATOR-FREE MARKING KEY

MATHEMATICS METHODS SEMESTER 2 (UNITS 3 AND 4) EXAMINATION

Question 6(a)

aucstion o(u)		
Solution		
Function is valid for $x \ge -3$		
Marking key/mathematical behaviours	Marks	
correctly states the values of x for which the function is valid	1	

Question 6(b)

Solution	
$\frac{dy}{dx} = \frac{2}{2x+6} = 4 \Rightarrow \frac{2x+6}{2} = \frac{1}{4} \Rightarrow x+3 = \frac{1}{4} \Rightarrow x = -2.75$	
Marking key/mathematical behaviours	
differentiates correctly	1
solves equation correctly	1

Question 7(a)

Question r(a)						
Solution						
у	0	1	2	3	4	
P(Y = y)	0	k	4 <i>k</i>	9k	16k	
Marking key/mathematical behaviours					Marks	
correctly completes two values				1		
correctly completes 4 values					1	

Question 7(b)

Solution
$$k+4k+9k+16k=1$$

$$30k=1 \implies k=\frac{1}{30}$$
Marking key/mathematical behaviours

• sums probabilities equal to one
• correctly solves equation for k

1

Question 8

Solution
$f(x) = \int f'(x) dx$
$= \int 2xe^{3x^2-1} dx$
$= \frac{1}{3}e^{3x^2 - 1} + c$
since $f(0) = 0$:
$0 = \frac{1}{3}e^{-1} + c$
$c = -\frac{1}{3e}$
1_{3x^2-1} 1

Marking key/mathematical behaviours	
determines indefinite integral	1
 substitutes initial conditions to calculate the constant c 	1
• states f(x)	1

Question 9 (a)(i)

Page 7

Solution	
$\hat{p} = \frac{20}{100} = \frac{1}{5}$	
Marking key/mathematical behaviours	Marks
determines the proportion	1