

**COMPARE NUCLEOTIDE SEQUENCES OF TARGET
NUCLEIC ACID AND PLURALITY OF NUCLEIC
ACIDS FROM DIFFERENT TAXONOMIC SPECIES**

10

**IDENTIFY REGION WHICH IS CONSERVED
AMONG TARGET NUCLEIC ACID AND PLURALITY
OF NUCLEIC ACIDS**

20

**DETERMINE WHETHER CONSERVED
REGION HAS SECONDARY STRUCTURE**

30

**IDENTIFY SECONDARY STRUCTURE
IN CONSERVED REGIONS**

40

FIGURE 1

FIGURE 2

FIGURE 3

Q-Compare

FIGURE 4

CompareOverWins Algorithm Flow Chart

FIGURE 5A

CompareOverWins Algorithm Flow Chart

FIGURE 5B

CompareOverWins

Algorithm Flow Chart

Basic Compare

Input:
Sequence A length a
Sequence B length b
Window Size

Output:
Array of size a by b of unsigned chars (0-255)
Each point represents the number of matches in the window at that alignment and position

FIGURE 5C

Ferritin

FIGURE 6

Self Complementation Analysis - Single Sequence

FIGURE 7

Self Complementarity Comparisons

13 ortholog overlay

Ferritin IRE Region

FIGURE 8

Typical Descriptor

This is an example of a descriptor used to identify iron response elements. To search the database using RNAMOT, the stem-loop model is converted to a text string as shown below:

IRE
Stem-Loop
Model

H1 S1 H2 S2 H2 H1

H1 3:3 NNN:NNN
S1 1 C
H2 5:5 NNNNN:NNNNN
S2 6 CAGNGN

W2
M0

IRE String descriptor

This descriptor allows for a wobble (W) of 2 (allows G-U pairing) and no mismatches. N can be any nucleotide
H refers to the stem region while S refers to the single stranded region.

FIGURE 9

E_Val

FIGURE 10

FIGURE 11

FIGURE 12

FIGURE 13

Compound CI

Molecular formula	F _i	F _{ii}	F _{iii}
	H ₂ NO	C ₅ H ₉ NO	C ₇ H ₇ O ₃ S

FIGURE 14

Addition of fragments to yield compounds

Table

Fragment Identifier	Structure	Name	Molecular formula	Other
F _i		Hydroxylamine	H ₂ NO	...
F _{ii}		Amino acid	C ₅ H ₉ NO	...
F _{iii}		Sulfonyl	C ₇ H ₇ O ₃ S	...

FIGURE 15

Reagents	Identifier	Name	Properties
H—O—NH ₂ or —O—NH ₂	R _i	Hydroxylamine	...
	R _{ii}	FMOC blocked amino acid	...
	R _{iii}	Sulfonylchloride	...

 = Solid support

FIGURE 16

Transformation

FIGURE 17

Common Fragment / Different Reagents and Transformations

FIGURE 18

Common Fragment / Different Reagents and Transformations

FIGURE 19A

Common Reagent

FIGURE 19B

Symbolic addition of fragments to yield compound

Symbolic Structure Symbolic Identifier Molecular formula

Fragment

F_i'

$C_uH_vN_w \dots$

F_{ii}'

$C_uH_vN_w \dots$

F_{iii}'

$C_uH_vN_w \dots$

Compound

CI'

$C_uH_vN_w \dots$

$$\begin{aligned} & \text{Molecular formula } F_i' \\ & + \\ & \text{Molecular formula } F_{ii}' \\ & + \\ & \text{Molecular formula } F_{iii}' \\ = & \quad \text{Molecular formula } CI' \end{aligned}$$

FIGURE 20

Symbolic Reagent Table

<u>Identifier</u>	<u>Name</u>	<u>Structure</u>	<u>Molecular formula</u>
R1	xxx		xxx
R2
R3
R4
R5
R6
R7
R8
R9
R10

FIGURE 21

Symbolic Fragment Table

<u>Identifier</u>	<u>Symbolic Structure</u>	<u>Molecular formula</u>	<u>Molecular Weight</u>
F1		xxx	xxx
F2	
F3	
F4	
F5	
F6	
F7	
F8	

FIGURE 22

Symbolic Transformation Table

<u>Identifier</u>		<u>Symbolic Reactions</u>		<u>Reagent</u>
T1	F1	$\xleftarrow{R1}$		conditions α
T2	F2	$\xleftarrow{R2}$		conditions β
T3	F3	$\xleftarrow{R3}$		conditions α
T4	F3	$\xleftarrow{R4}$		conditions α
T5	F4	$\xleftarrow{R5}$		conditions α
T6	F5	$\xleftarrow{R6}$		conditions ε
T7	F5	$\xleftarrow{R7}$		conditions α
T8	F6	$\xleftarrow{R8}$		conditions α
T9	F7	$\xleftarrow{R9}$		conditions γ
T10	F8	$\xleftarrow{R10}$		conditions γ

FIGURE 23

Single Compounds and Mixtures

P = synthetic path **CF** = complex fragment
F = fragment **M** = mixture
C = compound

FIGURE 24

Mixture 2

FIGURE 25

Mixture 3

FIGURE 26

Mixture 4
2 Starting Fragments

2 Complex Fragments

4 Complex Fragments

8 Complex Fragments

FIGURE 27A

Mixture 4 (continued)

16 compounds

FIGURE 27B

Tracking Table for Compound C1

(a) By Fragments:

<u>n</u>	<u>n+1</u>	<u>n+2</u>
F7		
	F2	
	F1	
	F5	
		F3

(b) By Transformations:

Synthesis Path 1

<u>n</u>	<u>n+1</u>	<u>n+2</u>
T9		
	T2	
	T1	
	T6	
		T3

Synthesis Path 2

<u>n</u>	<u>n+1</u>	<u>n+2</u>
T9		
	T2	
	T1	
	T7	
		T3

Synthesis Path 3

<u>n</u>	<u>n+1</u>	<u>n+2</u>
T9		
	T2	
	T1	
	T6	
		T4

Synthesis Path 4

<u>n</u>	<u>n+1</u>	<u>n+2</u>
T9		
	T2	
	T1	
	T7	
		T4

FIGURE 28

Tracking Table

Tracking M1

Step 1		
T9		

Step 2		
T9	T2	

Step 3		
T9	T2 T1	

Step 4		
T9	T2 T1 T7	

Step 5		
T9	T2 T1 T7	T5 ¹

C2

Step 5		
T9	T2 T1 T7	T5 ²

C3

FIGURE 29

Tracking Table

Tracking M2

Step 1		
n	n+1	n+2
T9		

Step 1		
n	n+1	n+2
T10		

Step 2		
n	n+1	n+2
T9	T2	

Step 2		
n	n+1	n+2
T10	T2	

Step 3		
n	n+1	n+2
T9	T2 T1	

Step 3		
n	n+1	n+2
T10	T2 T1	

Step 4		
n	n+1	n+2
T9	T2 T1 T7	

Step 4		
n	n+1	n+2
T10	T2 T1 T7	

Step 5		
n	n+1	n+2
T9	T2 T1 T7	T4

Step 5		
n	n+1	n+2
T10	T2 T1 T7	T4

C1

C5

FIGURE 30

Tracking Table

Tracking M3

Step 1

T9	
----	--

Step 2

T9	T2
----	----

Step 3

T9	T2	T1
----	----	----

Step 3

T9	T2	T3
----	----	----

Step 4

T9	T2	T1	T7
----	----	----	----

Step 4

T9	T2	T3	T7
----	----	----	----

Step 5

T9	T2	T1	T7	T5 ¹
----	----	----	----	-----------------

C2

Step 5

T9	T2	T1	T7	T5 ²
----	----	----	----	-----------------

C3

Step 5

T9	T2	T3	T7	T5 ¹
----	----	----	----	-----------------

C7

Step 5

T9	T2	T3	T7	T5 ²
----	----	----	----	-----------------

C8

FIGURE 31

FIGURE 32

Top View

FIGURE 33

Synthesis of hydroxamic acids from alcohol resin

FIGURE 34

Synthesis of hydroxamic acids from hydroxylamine resin

FIGURE 35

FIGURE 36

Biological Activity and Binding Energy for Structures Docked to TAR with Solvation/Desolvation Energy

ACD Code	Structure	Calc. ΔG of binding (kcal/mole)	IC ₅₀ (μM)
00001199		-5.1	<2
00192509		-8.5	<2
00003934		-5.1	<50

FIGURE 37

FIGURE 38A

FIGURE 38B

Inhibition of translation by DeepBlue-3 in WGL

FIGURE 39

5' - GCGGUCA CACC U
 CCGGUGA GU GG C
 A G

16S A Site rRNA

5' - GCGGUCA CACC U
 CCGCAG UGUGG C
 A G

Control RNA

FIGURE 40 Sequence and structure of 27mer RNA target

FIGURE 41

FIGURE 43 MS-MS analysis of member bound to RN Λ /DN Λ chimera

FIGURE 44 ESI-MS of RNA/DNA chimera bound to paromomycin and library

FIGURE 45 MS/MS of RNA/DNA chimera + compound with mass 665.1 not bound
at the A-site

FIGURE 46

MS-MS analysis of member bound to RNA/DNA chimera at the A-Site

FIGURE 47 MS Fragmentation of DNA:DNA duplexes

FIGURE 48 MS Fragmentation of DNA:RNA duplexes

MASS Analysis of Binding Location
non-A site binder

FIGURE 49

MASS Analysis of Binding Location
non-A site binder

FIGURE 50

**MASS analysis of 16S A site RNA plus
216 member library**
(performed on quadrupole ion trap)

High Precision ESI-FTICR Mass Measurement of 16S A site RNA/Paromomycin Complex

FIGURE 52
Use of unbound RNA as internal mass standard provides low ppm mass measurement errors

