§5.3 平稳过程的各态历经性

- 一、问题背景
 - 1) 在何种条件下,可以依据平稳过程的
- 一条现实建立有效描述过程的数学模型?
 - 2) 实际问题中常需确定随机过程的数学 期望和方差、相关函数;

如飞机在高空飞行,受湍流影响产生机翼 震动,需考虑机翼振幅大小的均值与方差.

电路中电子不规则运动引起的热噪声(电位的脉动).考虑脉动范围,噪声功率等归结为求过程的方差,相关系数.

- 2) 对实际动态数据进行零均值化,如何从数据得到均值函数?
 - 3) 困难在于需知道过程的一、二维分布.
 - 4) 设想用试验法解决.

设想

研究平稳过程 $\{X(t), t \in T\}$,

进行足够多次的试验,得到样本函数族

$$\{(x(t,\omega_1),x(t,\omega_2),\cdots,x(t,\omega_n)),t\in T\}$$

根据大数定律,对固定 $t_1 \in T$,可令

$$\hat{m}_{X}(t_{1}) \approx \frac{1}{n} \sum_{k=1}^{n} x_{k}(t_{1}),$$

$$\hat{R}_{X}(\tau) \approx \frac{1}{n} \sum_{k=1}^{n} x_{k}(t_{1}) \overline{x_{k}(t_{1} + \tau)},$$
统计平均

- 缺点 1) 需要很大 n,实际工程中难以实现.
 - 2) 过程具有不可重复性.

Ex.1 下面的数据是某城市1991~1996 年中每个季度的民用煤消耗量(单位:吨)

年	1 季度	2 季度	3 季度	1 季度	年平均
1991	6878.4	5343.7	4847.9	6421.9	5873.0
1992	6815.4	5532.6	4745.6	6406.2	5875.0
1993	6634.4	5658.5	4674.8	6445.5	5853.3
1994	7130.2	5532.6	4989.6	6642.3	6073.7
1995	7413.5	5863.1	4997.4	6776.1	6262.6
1996	7476.5	5965.5	5202.1	6894.1	6384.5
季平均	7058.1	5649.3	4909.6	6597.7	

民用煤消耗量数据散布图

能否用一条样本函数去估计随机过

程的数字特征?

即能否用时间轴上的均值

$$\frac{1}{2T} \int_{-T}^{T} x(t)dt \qquad \frac{1}{2T} \int_{-T}^{T} x(t)x(t+\tau)dt$$

近似估计 $E\{X(t)\}$ 、 $R(\tau)$?

过程满足一定条件时可行.

二、平稳过程的各态历经性

定义5.3.1 设 $\{X(t), t \in (-\infty, +\infty)\}$ 是平稳过

程, 若均方极限

$$\langle X(t) \rangle \triangleq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(t) dt$$

二次均方极限

存在,称为X(t)在 $(-\infty,+\infty)$ 上的时间平均.

对于固定的τ,均方极限

$$\left\langle X(t)\overline{X(t+\tau)}\right\rangle \triangleq \lim_{T\to\infty} \frac{1}{2T} \int_{-T}^{T} X(t) \overline{X(t+\tau)} dt$$

存在, 称为X(t)在 $(-\infty,+\infty)$ 上的时间相关函数.

注1 应保证 $\{X(t), t \in R\}$ 在任意有限区间上均方可积.(均方连续是充分条件).

注2 时间平均 $\langle X(t) \rangle$ 是随机变量,

时间相关函数 $\langle X(t)\overline{X(t+\tau)}\rangle$ 是随机过程.

参数为τ

平稳随机过程的均值函数是常数,相关函数 $R(\tau)$ 是普通函数.

Ex.1 设X(t)=Y, $t\in (-\infty, +\infty)$, 且 $D(Y)\neq 0$, $D(Y)<+\infty$.计算X(t) 的时间平均和时间相关函数

 \mathbf{M} X(t) 是平稳过程.

$$\langle X(t) \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(t) dt = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} Y dt = Y$$

$$\langle X(t)X(t+\tau)\rangle = \lim_{T\to\infty} \frac{1}{2T} \int_{-T}^{T} X(t) \overline{X(t+\tau)} dt$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} Y \overline{Y} dt = |Y|^{2}$$

Ex.2 设 $X(t) = a \cos(\omega_0 t + \Theta), t \in (-\infty, +\infty)$ a, ω_0 是实常数, $\Theta \sim U(0, 2\pi)$, 计算X(t) 的时间平均和时间相关函数.

解 因
$$m_X = 0$$
, $R_X(\tau) = \frac{a^2}{2} \cos \omega_0 \tau$,

 ${X(t),t\in(-\infty,+\infty)}$ 是平稳过程.

$$\langle X(t) \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} a \cos(\omega_0 t + \Theta) dt$$

$$= \lim_{T \to \infty} \frac{a}{2T} \int_{-T}^{T} (\cos \omega_0 t \cos \Theta - \sin \omega_0 t \sin \Theta) dt$$

$$\begin{aligned} &= \lim_{T \to \infty} \frac{a}{2T} [\cos \Theta \int_{-T}^{T} \cos \omega_{0} t dt - \sin \Theta \int_{-T}^{T} \sin \omega_{0} t dt] \\ &= \lim_{T \to \infty} \frac{a \cos \Theta \sin \omega_{0} T}{\omega_{0} T} = 0, \end{aligned}$$

$$\langle X(t)X(t+\tau)\rangle$$

$$= \lim_{T\to\infty} \frac{a^2}{2T} \int_{-T}^{T} \cos(\omega_0 t + \Theta) \cos[\omega_0 (t+\tau) + \Theta] dt$$

$$= \lim_{T\to\infty} \frac{a^2}{4T} \int_{-T}^{T} [\cos(2\omega_0 t + \omega_0 \tau + 2\Theta) + \cos\omega_0 \tau] dt$$

$$= \frac{1}{2} a^2 \cos\omega_0 \tau$$

定义5.3.2 设 $\{X(t),t\in(-\infty,+\infty)\}$ 是平稳过程

1) 若
$$P\{\langle X(t)\rangle = m_X\} = 1$$
,

称X(t)的均值具有各态历经性(均方遍历性).

2) 若任意
$$\tau$$
, $P\{\langle X(t)\overline{X(t+\tau)}\rangle = R_X(\tau)\} = 1$

称X(t)的相关函数具有各态历经性.

均值和相关函数都具有各态历经性的平稳过程称为各态历经过程.

注 各态历经过程一定是平稳过程, 逆不真

一个随机过程具备各态历经性,可以通过研究其一条 样本函数来获取过程的全部信息.

思想方法: 用时间平均代替统计平均.

续Ex.1 设 $X(t)=Y, t\in (-\infty, +\infty)$,且 $D(Y)\neq 0$, $D(Y)<+\infty$, $\{X(t)$ 是平稳过程.

若Y非单点分布时, $\langle X(t) \rangle = Y \neq 常数$,

$$P\{\langle X(t)\rangle = E[X(t)]\} \neq 1$$

X(t)的均值不具有各态历经性.

又因

$$R_{X}(\tau) = E[X(t)\overline{X(t+\tau)}] = E(|Y|^{2}) \neq |Y|^{2}$$

X(t)的自相关函数也不具有各态历经性.

续Ex.2 设 $X(t) = a \cos(\omega_0 t + \Theta), t \in (-\infty, +\infty)$ a, ω_0 是实常数, $\Theta \sim U(0, 2\pi)$,讨论过程的遍历

性.

$$\begin{split} E[X(t)X(t+\tau)] \\ &= \int_0^{2\pi} \frac{1}{2\pi} a^2 \cos(\omega_0 t + \theta) \cos[\omega_0 (t+\tau) + \theta] d\theta \\ &= \frac{1}{2} a^2 \cos\omega_0 \tau = \langle X(t)X(t+\tau) \rangle \end{split}$$

X(t)的均值和相关函数都具有各态历经性.

多数情况不必根据定义验证过程的均方遍历性,以下给出判断遍历性的遍历性定理.

三、均值各态历经性定理

定理5.3.1 设 $\{X(t), t \in R\}$ 是平稳过程,则其均值

各态历经的充要条件是

$$\lim_{T\to\infty}\frac{1}{2T}\int_{-2T}^{2T}\left(1-\frac{|\tau|}{2T}\right)C_X(\tau)d\tau=0$$

或
$$\lim_{T\to\infty} \frac{1}{2T} \int_{-2T}^{2T} \left(1 - \frac{|\tau|}{2T}\right) (R_X(\tau) - |m_X|^2) d\tau = 0$$

引理 若
$$\lim_{n\to\infty} E[X_n] = \mu$$
 且 $\lim_{n\to\infty} D(X_n) = 0$,

则
$$\lim_{n\to\infty}\mathbf{X}_n=\mu$$
.

if
$$||X_n - \mu||^2 \le 2||X_n - E[X_n]||^2 + 2||E[X_n]| - \mu|^2$$
.

证(定理3.5.1)

均值各态历经
$$\longleftrightarrow$$
 $P\{\langle X(t)\rangle = m_X\} = 1$

必要性 若
$$\langle \mathbf{X}(t) \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(t) dt = m_X$$

$$D(\langle X(t) \rangle) = 0$$

$$E\{|\langle X(t)\rangle|^{2}\} = E\{\lim_{T\to\infty} \frac{1}{2T} \int_{-T}^{T} X(t)dt \lim_{T\to\infty} \frac{1}{2T} \int_{-T}^{T} X(t)dt\}$$

$$= \lim_{T\to\infty} \frac{1}{4T^{2}} E\{\left|\int_{-T}^{T} X(t)dt\right|^{2}\} \qquad P136 \stackrel{\square}{\rightleftharpoons} \stackrel{\square}{\rightleftharpoons} \frac{1}{4T^{2}} \int_{-2T}^{2T} (2T - |\tau|) R_{X}(\tau)d\tau$$

$$D(\langle X(t)\rangle) = E\{\left|\langle X(t)\rangle\right|^{2}\} - \left|E\{\langle X(t)\rangle\}\right|^{2}$$

$$= \lim_{T \to \infty} \frac{1}{4T^{2}} \int_{-2T}^{2T} (2T - \left|\tau\right|) R_{X}(\tau) d\tau - \left|m_{X}\right|^{2}$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-2T}^{2T} (1 - \frac{\left|\tau\right|}{2T}) [R_{X}(\tau) - \left|m_{X}\right|^{2}] d\tau = 0.$$

电子科技大学

充分性
$$\Rightarrow Y(T) = \frac{1}{2T} \int_{-T}^{T} X(t) dt, T > 0$$

易知 $E[Y(T)] \equiv m_X$

由引理即可得
$$l.i.m_{T\to\infty} Y(T) = m_X$$

推论1 实随机过程 $\{X(t), t \in R\}$ 是平稳过程,

则其均值各态历经的充要条件为

$$\lim_{T\to\infty}\frac{1}{T}\int_0^{2T}\left(1-\frac{\tau}{2T}\right)C_X(\tau)d\tau=0$$

推论2 若 $\int_{-\infty}^{+\infty} |C_X(\tau)| d\tau < \infty$, 则平稳过程

X(t)的均值各态历经

因当 $T \to \infty$ 时

$$\left| \frac{1}{2T} \int_{-2T}^{2T} \left(1 - \frac{|\tau|}{2T} \right) C_X(\tau) d\tau \right| < \frac{1}{2T} \int_{-2T}^{2T} |C_X(\tau)| d\tau \to 0$$

推论3 若平稳过程 $\{X(t), t \in R\}$ 的相关函数满

足

$$\lim_{|\tau|\to\infty} R_X(\tau) = \left| m_X \right|^2, \quad \left(\lim_{|\tau|\to\infty} C_X(\tau) = 0 \right)$$

则X(t)是均值各态历经的.

证 有
$$\lim_{|\tau|\to\infty} C_X(\tau) = \lim_{|\tau|\to\infty} [R_X(\tau) - |m_X|^2] = 0$$
,

即 对
$$\forall \varepsilon > 0$$
, $\exists T_1$, 当 $|\tau| > T_1$ 时,

$$|C_X(\tau)| < \varepsilon$$
,

$$-2T \qquad -T_1 \qquad T_1 \qquad 2T$$

$$\left| \frac{1}{2T} \int_{-2T}^{2T} (1 - \frac{|\tau|}{2T}) C_X(\tau) d\tau \right| \le \frac{1}{2T} \int_{-2T}^{2T} |C_X(\tau)| d\tau$$

$$-2T \qquad -T_1 \qquad T_1 \qquad 2T$$

$$= \frac{1}{2T} \int_{-T_1}^{T_1} |C_X(\tau)| d\tau$$

$$+\frac{1}{2T}\int_{\{T_1\leq |\tau|\leq 2T\}} |C_X(\tau)|d\tau$$

$$\leq \frac{T_1}{T}C_X(0) + \frac{1}{T}(2T - T_1)\varepsilon$$

$$\leq \frac{T_1}{T}C_X(0) + 2\varepsilon < 3\varepsilon, \quad (\stackrel{\text{def}}{=} T > \frac{T_1C_X(0)}{\varepsilon}),$$

$$\lim_{T\to\infty}\frac{1}{2T}\int_{-2T}^{2T}\left(1-\frac{|\tau|}{2T}\right)C_X(\tau)d\tau=0.$$

续Ex.2 设 $X(t) = a \cos(\omega_0 t + \Theta)$, $t \in R$ a, ω_0 是实常数, $\Theta \sim U(0, 2\pi)$, 讨论过程的遍历性.

解 已按定义验证了X(t)的均值各态历经,

$$E[X(t)] = 0,$$

$$R_X(\tau) = \frac{a^2}{2} \cos \omega_0 \tau = C_X(\tau),$$

$$\lim_{T \to \infty} \frac{1}{T} \int_0^{2T} \left(1 - \frac{\tau}{2T} \right) C_X(\tau) d\tau$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_0^{2T} \left(1 - \frac{\tau}{2T} \right) \frac{a^2}{2} \cos \omega_0 \tau d\tau$$

$$= \lim_{T \to \infty} \frac{a^2}{4\omega_0^2 T^2} (1 - \cos \omega_0 T) = 0.$$

故X(t) 的均值有各态历经性.

Ex.3 设随机过程 $X(t) = A\cos(\omega t + \Theta)$,其中 A, ω, Θ 是相互独立的随机变量, $\Theta \sim U[-\pi, \pi]$, $\omega \sim U[-5, 5]$,E(A) = 0,D(A) = 4,讨论

- 1) X(t)是否平稳过程;
- 2) X(t)的均值是否各态历经.

解 $E[X(t)]=E[A\cos(\omega t+\Theta)]=0$;

$$R_X(t,t+\tau) = E\{X(t)X(t+\tau)\}$$

$$=E\{A^2\cos(\omega t+\Theta)\cos(\omega(t+\tau)+\Theta)\}$$

$$= 4 \times \frac{1}{10} \times \frac{1}{2\pi} \int_{-5}^{5} \int_{-\pi}^{\pi} [\cos(ut + \varphi)\cos(u(t + \tau) + \varphi)] du d\varphi$$

$$=\frac{4}{5\tau}\sin 5\tau=R_X(\tau),$$

X(t)是平稳过程,又因

$$\lim_{\tau \to \infty} R_X(\tau) = \lim_{\tau \to \infty} \frac{4}{5\tau} \sin 5\tau = 0 = m_X^2$$

X(t)关于均值各态历经.

四、相关函数各态历经性定理

定理5.3.2 $\{X(t),t\in R\}$ 是均方连续的平稳过程,且对固定的 τ , $\{X(t),X(t+\tau),t\in R\}$ 也是均方连续的平稳过程,则 $\{X(t),t\in R\}$ 的相关函数各态历经的充要条件是

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-2T}^{2T} \left(1 - \frac{|u|}{2T} \right) (B(u) - |R_X(\tau)|^2) du = 0$$

其中 $B(u) = E\{X(t)X(t+\tau)X(t+u)X(t+\tau+u)\}.$

证
$$\diamondsuit$$
 $Z(t) = X(t)\overline{X(t+\tau)}$,
则 $R_X(\tau) = E[Z(t)] = m_Z$,

根据定理5.3.1,对固定的 τ , Z(t)均值各态历经的充要条件为

$$\lim_{T\to\infty}\frac{1}{2T}\int_{-2T}^{2T}\left(1-\frac{|u|}{2T}\right)C_Z(u)du$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-2T}^{2T} \left(1 - \frac{|u|}{2T} \right) [R_Z(u) - |m_Z|^2] du$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-2T}^{2T} \left(1 - \frac{|u|}{2T} \right) [R_Z(u) - |R_X(\tau)|^2] du = 0,$$

其中
$$R_Z(u) = E\{Z(t)\overline{Z(t+u)}\}$$

$$= E\{X(t)\overline{X(t+\tau)}X(t+u)\overline{X(t+\tau+u)}\}$$

$$= E\{X(t)\overline{X(t+\tau)}\overline{X(t+u)}X(t+\tau+u)\} = B(u).$$

推论1 又若定理5.3.1 中的 $\{X(t), t \in R\}$ 是实随机过程,则相关函数均方遍历的充要条件为

 $\lim_{T \to \infty} \frac{1}{T} \int_0^{2T} \left(1 - \frac{u}{2T} \right) [R_Z(u) - R_X^2(\tau)] du = 0$

注 讲义中P122定理3 需假定 $\{X(t)\overline{X(t+\tau)},\ t\in R\}$ 是均方连续的平稳过程.

对于相关函数的各态历经性一般比较难以判别,要求过程四阶矩存在的条件往往难以满足.

Ex.4 设随机过程 $\{X(t), t \in R\}$ 是零均值的实平稳的正态过程,若 $\lim_{\tau \to \infty} R_X(\tau) = 0$,

证明过程 $\{X(t),t\in R\}$ 的相关函数各态历经.

引理 若 (X_1, X_2, X_3, X_4) 服从零均值4维正态分布,则

$$E(X_1X_2X_3X_4) = E(X_1X_2)E(X_3X_4)$$

$$+ E(X_1X_3)E(X_2X_4) + E(X_1X_4)E(X_2X_3)$$

证明 \diamondsuit $Z(t) = X(t)X(t+\tau)$,则

$$m_Z(t) = E[X(t)X(t+\tau)] = R_X(\tau),$$

由正态随机变量性质

$$R_{Z}(t,t+u) = E[Z(t)Z(t+u)]$$

$$= E[X(t)X(t+\tau)X(t+u)X(t+u+\tau)]$$

$$= E[X(t)X(t+\tau)]E[X(t+u)X(t+u+\tau)]$$

$$+ E[X(t)X(t+u)]E[X(t+\tau)X(t+u+\tau)]$$

$$+ E[X(t)X(t+u+\tau)]E[X(t+t)X(t+u+\tau)]$$

$$= R_X^2(\tau) + R_X^2(u) + R_X(u + \tau)R_X(u - \tau)$$

与t 无关,故Z(t)是平稳过程,且

$$\lim_{u \to \infty} R_{Z}(u) = \lim_{u \to \infty} R_{Z}(t, t + u) = R_{X}^{2}(\tau) = m_{Z}^{2},$$

根据定理5.3.1的推论3知,

Z(t)的均值各态历经

即X(t)的相关函数各态历经

五、各态历经性的应用

对于具有各态历经性的平稳过程,可以通过一条样本函数来推断过程的统计特征.

 $\mathbf{M}\{X(t), t \in [0, +\infty)\}$ 的均值各态历经,则有

$$m_X = \lim_{T \to \infty} \frac{1}{T} \int_0^T X(t) dt$$
 (a.e.)

因均方积分 $\int_0^T X(t)dt$ 存在,可将区间[0,T]等分,

$$t_{1} \quad t_{2} \qquad t_{N-1}$$

$$t_{0}=0 \qquad \qquad t_{N}=T$$

有
$$\int_0^T X(t)dt = \lim_{N \to \infty} \sum_{k=1}^N X(t_k) \Delta t_k$$

其中
$$\Delta t_k = t_k - t_{k-1} = \frac{T}{N}, \quad t_k = k\Delta t_k = \frac{kT}{N},$$

$$m_X = \lim_{T \to \infty} \frac{1}{T} \lim_{N \to \infty} \frac{T}{N} \sum_{K=1}^{N} X(\frac{kT}{N}) \qquad (a.e.)$$

=
$$\lim_{T \to \infty} \lim_{N \to \infty} \frac{1}{N} \sum_{K=1}^{N} X \left(\frac{kT}{N} \right)$$

因均方收敛必依概率收敛, 故对∀ε>0, 有

$$\lim_{T\to\infty}\lim_{N\to\infty}P\left\{\left|\frac{1}{N}\sum_{K=1}^{N}X(\frac{kT}{N})-m_{X}\right|<\varepsilon\right\}=1,$$

即统计量

$$\frac{1}{N}\sum_{K=1}^{N}X(\frac{kT}{N})$$

是均值mx的相合估计量

对一次抽样得到的样本函数 $x(t), t \in [0, +\infty]$,

取足够大的T 及N,使 T_N 很小,有

$$m_X \approx \frac{1}{N} \sum_{K=1}^N x(\frac{kT}{N}),$$

可令估计值为
$$\hat{m}_X = \frac{1}{N} \sum_{K=1}^N x(\frac{kT}{N})$$

$$= \frac{1}{N} \sum_{K=1}^N x(k\Delta), \ (\Delta = \frac{T}{N}).$$

类似地,可得 $R_{X}(\tau)$ 的近似估计量为

$$\hat{R}_X(r\Delta) = \frac{1}{N-r} \sum_{k=1}^{N-r} X(k\Delta) X\left((k+r)\Delta\right), \ (\Delta = \frac{T}{N})$$

工程实际中有许多随机过程满足各态历经性,数学验证往往很困难.

可以根据工程背景来确定.

或先假定它的各态历经性, 对数据进行统计分析, 检验否合乎实际, 否则修改假定,另做分析.

思考题:

1) 时间平均、时间相关函数与统计平均、 统计相关函数概念有什么本质区别? 又有 什么联系?

2)均值的遍历性与自相关函数的遍历性 是否有必然的联系?

3) 列举平稳过程遍历性的判断方法.

平稳过程 $\{X(t),t\in R\}$ 的均值具有均方遍历性 的判别准则:

1.按定义求出时间平均;如续Ex.2.

2.(充要条件)
$$\lim_{T\to\infty} \frac{1}{2T} \int_{-2T}^{2T} \left(1 - \frac{|\tau|}{2T}\right) C_X(\tau) d\tau = 0$$
 如Ex.2.

3.(充分条件) (1)
$$\int_{-\infty}^{+\infty} |C_X(\tau)| d\tau < \infty$$

$$\mathbf{DEx.3.} \quad (2) \quad \lim_{|\tau| \to \infty} R_X(\tau) = \left| m_X \right|^2, \quad \left(\lim_{|\tau| \to \infty} C_X(\tau) = 0 \right)$$

平稳过程 $\{X(t),t\in R\}$ 的自相关函数具有均方遍历性的判别准则:

- 1.按定义求出时间自相关函数;如Ex.2.
- 2.(充要条件) 定理5.3.2.
- 3.(充分条件) $\{X(t),t\in R\}$ 为零均值实平稳的 正态过程,且 $\lim_{\tau\to\infty}R_X(\tau)=0$, 如Ex.4.

