2.7

SURFACE AREA AND VOLUME BY USING DOUBLE INTEGRALS

COMPUTING THE AREA OF A SURFACE

Let it be required to compute the area of a surface bounded by a curve Γ (given in the figure below); the surface is defined by the equation z = f(x,y), where the function f(x,y) is continuous and has continuous partial derivatives. Denote the projection of Γ on the XY – plane by L. Denote by D the domain on the XY – plane bounded by the curve L.

In arbitrary fashion, divide D into n elementary subdomains $\Delta s_1, \Delta s_2, \ldots, \Delta s_n$. In each subdomain Δs_i take a point $P_i(\xi_i, \eta_i)$. To the point P_i there will correspond, on the surface, a point

$$M_i[\xi_i, \eta_i, f(\xi_i, \eta_i)]$$

Through M_i draw a tangent plane to the surface. Its equation is of the form

$$z - z_{i} = f'_{x}(\xi_{i}, \eta_{i})(x - \xi_{i}) + f'_{y}(\xi_{i}, \eta_{i})(y - \eta_{i})$$
(1)

In this plane, pick out a subdomain $\Delta \sigma_i$ which is projected onto the XY – plane in the form of a subdomain Δs_i . Consider the sum of the sub domains $\Delta \sigma_i$:

$$\sum_{i=1}^n \Delta \sigma_i$$

We shall call the limit σ of this sum, when the greatest of the diameters of the subdomains $\Delta \sigma_i$ approaches zero, the area of the surface; that is, by definition we set

$$\sigma = \lim_{diam \ \Delta\sigma_i \to 0} \sum_{i=1}^n \Delta\sigma_i \tag{2}$$

Now let us calculate the area of the surface. Denote by γ_i the angle between the tangent plane and the XY – plane. Using a familiar formula of analytic geometry we can write

$$\Delta s_i = \Delta \sigma_i \cos \gamma_i$$

or

$$\Delta \sigma_i = \frac{\Delta s_i}{\cos \gamma_i} \tag{3}$$

The angle γ_i is at the same time the angle between the Z – axis and the perpendicular to the plane (1). Therefore, by equation (1) and the formula of analytic geometry we have

$$cos\gamma_{i} = \frac{1}{\sqrt{1 + f_{x}^{2}(\xi_{i}, \eta_{i}) + f_{y}^{2}(\xi_{i}, \eta_{i})}}$$

Hence,

$$\Delta \sigma_i = \sqrt{1 + f^2_{x}(\xi_i, \eta_i) + f^2_{y}(\xi_i, \eta_i)} \Delta s_i$$

Putting this expression into formula (2), we get

$$\sigma = \lim_{\text{diam } \Delta s_i \to 0} \sum_{i=1}^n \sqrt{1 + f^2_{x}(\xi_i, \eta_i) + f^2_{y}(\xi_i, \eta_i)} \Delta s_i$$

Since the limit of the integral sum on the right side of the last equation is, by definition, the double integral

$$\iint_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dxdy \text{ we finally get}$$

$$\sigma = \iint \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \, dx \, dy \tag{4}$$

This is the formula use to compute the area of the surface z = f(x, y).

If the equation of the surface is given in the form

$$x = \mu(y, z)$$
 or in the form $y = \chi(x, z)$

then the corresponding formulas for calculating the surface area are of the form

$$\sigma = \iint_{D_z} \sqrt{1 + \left(\frac{\partial x}{\partial y}\right)^2 + \left(\frac{\partial x}{\partial z}\right)^2} \, dy dz \tag{4'}$$

$$\sigma = \iint_{D_{x}^{y}} \sqrt{1 + \left(\frac{\partial y}{\partial x}\right)^{2} + \left(\frac{\partial y}{\partial z}\right)^{2}} dxdz \tag{4'}$$

where D' and D'' are the domains in the YZ-plane and the XZ-plane in which the given surface is projected.

Example: Compute the surface area σ of the sphere $x^2 + y^2 + z^2 = R^2$

Solution: Compute the surface are of the upper half of the sphere $z = \sqrt{R^2 - x^2 - y^2}$

In this case

$$\frac{\partial z}{\partial x} = -\frac{x}{\sqrt{R^2 - x^2 - y^2}}$$

$$\frac{\partial z}{\partial y} = -\frac{y}{\sqrt{R^2 - x^2 - y^2}}$$

Hence,

$$\sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} = \sqrt{\frac{R^2}{R^2 - x^2 - y^2}} = \frac{R}{\sqrt{R^2 - x^2 - y^2}}$$

The domain of integration is defined by the condition

Thus, by formula (4) we will have

$$\frac{1}{2}\sigma = \int_{-R}^{R} \left(\int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} \frac{R}{\sqrt{R^2 - x^2 - y^2}} dy \right) dx$$

To compute the double integral obtain let us make the transformation to polar coordinates. In polar coordinates the boundary of the domain of integration is determined by the equation $\rho = R$. Hence,

$$\sigma = 2 \int_{0}^{2\pi} \left(\int_{0}^{R} \frac{R}{\sqrt{R^2 - \rho^2}} \rho d\rho \right) d\theta = 2R \int_{0}^{2\pi} \left[-\sqrt{R^2 - \rho^2} \right]_{0}^{R} d\theta$$
$$= 2R \int_{0}^{2\pi} R d\theta = 4\pi R^2.$$

Computing the Volume of a Solid

Recall that

1. If f(x,y) = 1, then $\iint_{R} dxdy$ gives the area A of the region R.

2. If z = f(x, y) is a surface, then

$$\iint\limits_R z dx dy \text{ or } \iint\limits_R f(x, y) dx dy$$

gives the volume of the region beneath the surface z = f(x, y) and above the XY- plane.

Example: Evaluate the volume of the sphere

$$x^2 + y^2 + z^2 = a^2.$$

Solution: The given sphere is $z = \sqrt{a^2 - x^2 - y^2}$

The volume of the upper half of the sphere is

$$\iint_{x^2+y^2 \le a^2} \sqrt{a^2 - x^2 - y^2} dx \, dy$$

By changing to polar coordinates.

i.e substitute $x = r \cos \theta$, $y = r \sin \theta$, $dx dy = r dr d\theta$

$$\iint_{x^{2}+y^{2} \le a^{2}} \sqrt{a^{2}-x^{2}-y^{2}} dx dy = \int_{0}^{2\pi} \int_{0}^{a} \sqrt{a^{2}-r^{2}} r dr d\theta$$

$$= \int_{0}^{2\pi} \left[\left(-\frac{1}{2} \right) \int_{0}^{a} \sqrt{a^{2}-r^{2}} . d(-r)^{2} \right] d\theta$$

$$= \int_{0}^{2\pi} \frac{1}{3} a^{3} d\theta = \frac{2}{3} \pi a^{3}.$$

Therefore the volume of the sphere is $2\left(\left(\frac{2}{3}\pi a^3\right)\right) = \frac{4}{3}\pi a^3$.

Problem 1: Compute the area of that part of the surface of the cone $x^2 + y^2 = z^2$ which is cut out by the cylinder $x^2 + y^2 = 2ax$.

Solution: The equation of the surface of the upper half of the cone is $z = \sqrt{x^2 + y^2}$

$$\therefore \frac{\partial z}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}}, \qquad \therefore \frac{\partial z}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}}$$

.. The domain of integration is defined by

$$x^2 + y^2 \le 2ax \Longrightarrow (x-a)^2 + y^2 \le a^2$$

: Surface area of upper half cone

$$= \iint_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dy dx$$
Total surface area
$$= 2 \int_{0}^{2a} \int_{-\sqrt{a^2 - (x - a)^2}}^{\sqrt{a^2 - (x - a)^2}} \sqrt{1 + \frac{x^2}{x^2 + y^2} + \frac{y^2}{x^2 + y^2}} dy dx$$

$$= 2 \int_{0}^{2a} \int_{-\sqrt{a^2 - (x - a)^2}}^{\sqrt{a^2 - (x - a)^2}} \sqrt{\frac{2(x^2 + y^2)}{x^2 + y^2}} dy dx$$

$$= 4 \int_{0}^{2a} \int_{0}^{\sqrt{a^2 - (x - a)^2}} \sqrt{2} dy dx$$

$$= 4\sqrt{2} \int_{0}^{2a} \left[y \right]_{0}^{\sqrt{a^{2} - (x - a)^{2}}} dx$$

$$= 4\sqrt{2} \int_{0}^{2a} \sqrt{a^{2} - (x - a)^{2}} dx$$

$$= 4\sqrt{2} \left[\frac{x - a}{2} \sqrt{a^{2} - (x - a)^{2}} + \frac{a^{2}}{2} \sin^{-1} \left(\frac{x - a}{a} \right) \right]_{0}^{2a}$$

$$= 4\sqrt{2} \left[\frac{a^{2}}{2} \sin^{-1} 1 - \frac{a^{2}}{2} \sin^{-1} (-1) \right]$$

$$= 4\sqrt{2} \frac{a^{2}}{2} \left[\frac{\pi}{2} + \frac{\pi}{2} \right]$$

$$= 2\sqrt{2}\pi a^{2}$$

Problem 2: Find the surface area of 2x + 3y - z = 1 in the region $[0,1] \times [0,1]$.

Solution:

The equation of the surface has the form

$$z = 1 + 2x + 3y$$

$$\therefore \frac{\partial z}{\partial x} = 2, \qquad \qquad \therefore \frac{\partial z}{\partial y} = 3$$

The region $D = [0,1] \times [0,1]$

$$\therefore \text{ Surface area} = \iint_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \, dy dx$$

$$= \iint_{0}^{1} \sqrt{1 + 4 + 9} \, dy dx$$

$$= \iint_{0}^{1} \sqrt{14} \, dy dx$$

$$= \sqrt{14}.$$

Problem 3: Find the surface area of the portion of the unit sphere above $z = \frac{4}{5}$

Solution:

Unit sphere is $x^2 + y^2 + z^2 = 1$ $\Rightarrow z = \sqrt{1 - x^2 - y^2}$

$$\frac{\partial z}{\partial x} = -\frac{x}{\sqrt{1 - x^2 - y^2}}, \frac{\partial z}{\partial y} = -\frac{y}{\sqrt{1 - x^2 - y^2}}$$
$$\frac{4}{5} = \sqrt{1 - x^2 - y^2} \Rightarrow \frac{16}{25} = 1 - x^2 - y^2 \Rightarrow x^2 + y^2 = \frac{9}{25}$$

Circle of radius is $\frac{3}{5}$

We have to find surface area of $z = \sqrt{1 - x^2 - y^2}$ over $x^2 + y^2 = \frac{9}{25}$

Domain of the radius is $\frac{3}{5}$

$$\therefore \text{ Surface area} = \iint_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \, dy dx$$

$$= \iint_D \sqrt{\frac{1}{1 - x^2 - y^2}} \, dy dx$$

Transformation to polar co coordinates. In polar coordinates the boundary of the domain of integration is determined by the equation

$$r = \frac{3}{5}$$

Let
$$x = rcos\theta$$
, $y = rsin\theta$

∴ Surface area =
$$\int_0^{2\pi} \int_0^{\frac{3}{5}} \frac{1}{\sqrt{1-r^2}} r dr d\theta$$

= $\int_0^{2\pi} \left[-\sqrt{1-r^2} \right]_0^{\frac{3}{5}} d\theta$
= $\int_0^{2\pi} \left(-\sqrt{1-\frac{9}{25}} + 1 \right) d\theta$
= $\int_0^{2\pi} \left(-\frac{4}{5} + 1 \right) d\theta$
= $\int_0^{2\pi} \frac{1}{5} d\theta$
= $\frac{1}{5} [\theta]_0^{2\pi}$
= $\frac{2\pi}{5}$.

Problem 4: Find the volume of the tetrahedron bounded by the coordinate surfaces x = 0, y = 0 and z = 0 and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$

Solution:

The volume of the tetrahedron $(V) = \iint_{R} z dx dy$

$$V = \int_{0}^{a} \int_{0}^{b-\frac{bx}{a}} c \left(1 - \frac{y}{b} - \frac{x}{a}\right) dy dx$$

$$= c \int_{0}^{a} \left[y - \frac{y^{2}}{2b} - \frac{xy}{a} \right]_{0}^{b-\frac{bx}{a}} dx$$

$$= c \int_{0}^{a} \left(\frac{bx^{2}}{2a^{2}} - \frac{bx}{a} + \frac{b}{2} \right) dx$$

$$= c \left[\frac{bx^{3}}{6a^{2}} - \frac{bx^{2}}{2a} + \frac{b}{2}x \right]_{0}^{a} = \frac{abc}{6}.$$

Problem 5: A circular hole of a radius b is made centrally through a sphere of radius a. Find the volume of the remaining of the sphere.

Solution:

Let the centre of the sphere be at the origin and let the axis of the hole be along the z-axis. The volume V of the sphere is $\frac{4}{3}\pi a^3$ and that of the circular hole is obtained as follows.

Volume of the upper-half of the hole =
$$\iint_{R} f(x, y) dx dy$$

$$= \iint\limits_R z dx dy$$

where z is obtained from the equation $x^2 + y^2 + z^2 = a^2$ and R is the circle in the XY – plane.

i.e
$$x^2 + y^2 = b^2$$

∴The volume V_1 of the circular hole is

$$V_1 = 2 \iint\limits_R \sqrt{a^2 - x^2 - y^2} dx dy$$

where *R* is $x^2 + y^2 = b^2$ changing into polar coordinates

$$\therefore V_{1} = 2 \int_{0}^{2\pi} \int_{0}^{b} \sqrt{a^{2} - r^{2}} r dr d\theta = \int_{0}^{2\pi} \left[\frac{(a^{2} - r^{2})^{\frac{3}{2}}}{\frac{3}{2}} \right]_{0}^{b} d\theta$$

$$= \frac{-2}{3} \int_{0}^{2\pi} \left[(a^{2} - b^{2})^{\frac{3}{2}} - a^{3} \right] d\theta$$

$$= \frac{2}{3} \int_{0}^{2\pi} \left[a^{3} - (a^{2} - b^{2})^{\frac{3}{2}} \right] d\theta$$

$$= \frac{2}{3} \left[a^{3} - (a^{2} - b^{2})^{\frac{3}{2}} \right] \left[\theta \right]_{0}^{2\pi}$$

$$= \frac{4\pi}{3} \left[a^{3} - (a^{2} - b^{2})^{\frac{3}{2}} \right]$$

Volume of the remaining portion = $V - V_1$

$$= \frac{4}{3}\pi a^3 - \frac{4\pi}{3} \left[a^3 - (a^2 - b^2)^{\frac{3}{2}} \right]$$
$$= \frac{4\pi}{3} (a^2 - b^2)^{\frac{3}{2}}.$$

Problem 6: Find the volume bounded by the cylinder $x^2 + y^2 = 4$, y + z = 4 and z = 0.

Solution:

The volume V of the plane y + z = 4 and z = 0 is

$$V = \iint_{R} z dx dy$$
$$= \iint_{R} (4 - y) dx dy$$

where R is bounded by the $x^2 + y^2 = 4$

$$V = \int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} (4-y) dx dy$$
$$= \int_{-2}^{2} (4-y) [x]_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} dy$$

$$= \int_{-2}^{2} (4 - y) \cdot 2\sqrt{4 - y^2} dy$$

$$= 2 \int_{-2}^{2} 4\sqrt{4 - y^2} dy - 2 \int_{-2}^{2} y\sqrt{4 - y^2} dy$$

$$= 16 \int_{0}^{2} \sqrt{4 - y^2} dy - 0 \quad (\because y\sqrt{4 - y^2} \text{ is odd})$$

function)

$$=16\left[\frac{y}{2}\sqrt{4-y^2}+2\sin^{-1}\frac{y}{2}\right]_0^2$$
$$=16\left[2\sin^{-1}1\right]=32\cdot\frac{\pi}{2}=16\pi.$$

Exercise

- 1. Compute the area of that part of the plane x + y + z =2a. Which lies in the first octant and is bounded by the cylinder $x^2 + y^2 = a^2$.
- 2. Compute the area of that part of the square of the cone $x^2 + y^2 = z^2$ which is cut by the cylinder $x^2 + y^2 = 2ax$.
- 3. Find the surface area of a solid that is the common part of two cylinders $x^2 + y^2 = a^2$, $y^2 + z^2 = a^2$.
- 4. Compute the volumes of solids bounded by the coordinate planes, the plane 2x + 3y - 12 = 0 and the cylinder $z = \frac{1}{2}y^2$.
- 5. Compute the volumes of solids bounded by the following surfaces:

a)
$$z = 0, x^2 + y^2 = 1, x + y + z = 3.$$

b)
$$x^2 + y^2 - 2ax = 0$$
, $z = 0$, $x^2 + y^2 = z^2$.

- 6. The base of a solid is the region in XY plane. That is bounded by the circle $x^2 + y^2 = a^2$. While the top of the solid is bounded by the paraboloid $az = x^2 + y^2$. Find the volume.
- 7. Find the volume common to the cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$.

Answers

1.
$$\frac{\sqrt{3}}{4}\pi a^2$$
2. $2\sqrt{2}\pi a^2$

2.
$$2\sqrt{2}\pi a^2$$

$$3.8a^2$$

a)
$$3\pi$$

a)
$$3\pi$$
 b) $\frac{32}{9}a^3$

6.
$$\frac{1}{2}\pi a^3$$
7. $\frac{16a^3}{3}$

$$7.\frac{16a^3}{3}$$