Лабораторная работа N1

Разработать имитационную модель функционирования СМО.

СМО представляет собой одноканальную разомкнутую систему (два генератора заявок и один обслуживающий аппарат). Буфер имеет бесконечную емкость.

Закон поступления (генерации заявок) и закон распределения времени обслуживания заявок задается в таблице и выбирается в соответствии с номером в списке группы.

Типы заявок отличаются только параметрами законов распределения (поступления и обслуживания, сами законы для обоих типов заявок одинаковые).

Обслуживание заявок может происходить в соответствии с одной из следующих дисциплин: 1) бесприоритетная, 2) с относительными приоритетами, 3) с абсолютными приоритетами. Приоритет задается в соответствии с правилом сформулированным при выдаче задания.

В качестве исходных данных пользователь задает интенсивность поступления заявок и интенсивность обслуживания заявок. Программа должна выводить расчетную загрузку системы и фактическую, полученную по результатам моделирования. Пользователь должен иметь возможность задавать окончание процесса моделирования.

Если параметры законов распределения отличны от интенсивности, то предусмотреть ввод интенсивностей с дальнейшим пересчетом в программе этих величин в параметры закона. В случае двухпараметрических законов пользователь задает интенсивность и ее разброс (среднеквадратическое отклонение).

Построить график зависимости выходного параметра (ср. время ожидания (пребывания) в зависимости от загрузки системы). Построить графики зависимостей выходного параметра от каждого из факторов.

Подготовить при необходимости отчет по лабораторной работе.

Первый закон – закон распределения интервалов времени между приходом сообщений (заявок)

Второй закон – закон распределения времени обслуживания заявок			
N вари	панта Первый закон	Второй закон	
1	Экспоненциальный	Экспоненциальный	
2	Экспоненциальный	Вейбулла с параметром 2	
3	Равномерный	Равномерный	
4	Равномерный	Вейбулла с параметром 2	
5	Нормальный	Нормальный	
6	Нормальный	Вейбулла с параметром 2	
7	Экспоненциальный	Равномерный	
8	Экспоненциальный	Нормальный	
9	Равномерный	Нормальный	
10	Равномерный	Экспоненциальный	
11	Нормальный	Экспоненциальный	
12	Нормальный	Равномерный	
13	Рэлея	Равномерный	
14	Рэлея	Экспоненциальный	
15	Рэлея	Нормальный	
16	Рэлея	Рэлея	
17	Рэлея	Вейбулла с параметром 2	
18	Экспоненциальный	Рэлея	
19	Равномерный	Рэлея	
20	Нормальный	Рэлея	
21	Вейбулла с параметром 2	Экспоненциальный	
22	Вейбулла с параметром 2	Равномерный	

23	Вейбулла с параметром 2	Рэлея
24	Вейбулла с параметром 2	Вейбулла с параметром 2
25	Вейбулла с параметром 2	Нормальный

Учесть, что рассматриваемые случайные величины принимают положительные значения (интервалы между приходом требований и времена обслуживания).