Intelligence artificielle, Théorie & Algorithmes Examen de rattrapage

février-2023

+ Calculatrice autorisée

Duréee : 2 heures. Documents autorisés : 2 feuilles recto-verso.

1 Jeux

On considère le problème du 8-puzzle dans lequel nous avons une grille 3 × 3 dont une case est vide et les 8 autres occupées par les entiers 1 à 8. Le but est de réarranger les cases de la grille de manière à passer d'une configuration initiale (par exemple celle de la figure 1 (a)) à la configuration finale (celle de la figure 1 (b)). Les seuls mouvements autorisés sont ceux qui consistent à échanger la position de la case vide avec celle de l'une de ses voisines verticales ou horizontales.

- Donnez une modélisation du problème. On précisera au passage le nombre total d'états.
- Pour chaque case de la grille, quel est le nombre d'états pour lesquels cette case est blanche.
- Rappelez la définition du facteur du branchement (moyen) et son utilité. Calculez sa valeur dans ce problème.

On considère l'heuristique h définie comme suit :

h(e) = nombre de cases pleines qui ne sont pas situées sur la 'bonne' colonne + nombre de cases pleines qui ne sont pas situées sur la 'bonne' ligne.

On entend par 'bonne' ligne ou colonne celle de la case dans l'état final.

- Montrez que h est coincidente, monotone et minorante (on dit aussi admissible).
- Expliquez brièvement (3 phrases au maximum) pourquoi on qualifie la recherche effectuée par l'algorithme A* de recherche guidée.

Figure 1 – (8-puzzle).

- Lorsque l'algorithme A* a le choix entre plusieurs états, quel critère utilise-t-il pour choisir l'état qu'il va considérer (c'est-à-dire la branche de l'arbre qu'il va suivre).
- Montrez les 3 premiers niveaux (en comptant la racine) de l'arbre construit par A*.

2 Data mining I : réseaux de neurones

On considère un réseau de neurones dont le rôle est de classer des images représentant des chiffres décimaux (0 ... 10) manuscrits. On suppose que ce réseau a une seule couche cachée et que cette dernière se compose de 5 neurones. On suppose que les images considérées sont des images à niveau de gris de taille 8 × 8.

 Quel nombre de neurones la couche de sortie doit-elle avoir? Quelle fonction d'activation doit-elle utiliser? (vous devez, bien entendu, justifier vos réponses).

- Quels sont les hyperparamètres de ce réseau?
- Quels sont les paramètres de ce réseau? Donnez la formule générale permettant de calculer leur nombre et appliquez-la à cet exemple.
- Expliquez brièvement (3 − 4 phrases) la manière dont le réseau apprendra ses paramètres.

3 Data mining II : Arbre de décision

On considère l'ensemble de données suivant que nous souhaiterions utiliser comme ensemble d'apprentissage pour un arbre de décision permettant de prédire la valeur de la variable 'Embauché'.

Diplôme	Âge	Embauché?	
Ingénieur	Jeune	Non	
Ingénieur	Senior	Non	
Ingénieur	Jeune	Oui	
Management	Jeune	Oui	
Littérature	Jeune	Oui	
Littérature	Senior	Non	
Littérature	Senior	Oui	
Management	Jeune	Non	
Littérature	Jeune	Oui	
Management	Jeune	Oui	

- En appliquant l'algorithme vu en cours, déterminez la racine de l'arbre de décision (vous détaillerez et justifierez vos calculs).
- Expliquez brièvement (3 phrases) comment cet algorithme construit le reste de l'arbre.
- Une fois cet arbre construit, expliquez comment le tester, puis comment l'appliquer à un nouveau candidat.
 - N.B. Il n'est pas demandé de construire l'arbre

4 Data mining III : Classifieur bayésien

- 1. Rappelez en expliquant chacun de ses éléments la formule mathématique utilisée par les classeurs bayésiens (Naive Bayes). Précisez sur quelle(s) hypothèse(s) cela repose.
- 2. Appliquez la formule pour prédire la réponse au 1^{er} candidat à l'embauche du tableau ci-dessus. Explicitez vos calculs.

5 Optimisation : Algorithme de Little

Soit la matrice suivante représentant un TSP asymétrique :

l[i	1	2	3	4
1	∞	4	9	5
2	6	∞	4	8
3	9	4	∞	9
4	5	8	9	∞

- Appliquer l'algorithme de Little pour trouver la solution à ce TSP. Vous devez justifier toutes les branches que vous coupez.
- 2. Combien de noeuds avez-vous évités de parcourir par rapport à l'algorithme naïf qui teste tous les chemins hamiltoniens?