Name: Bauckhage, Christian	Signature:
MatNr: 123456789	() student at B-IT / RWTH Aachen(X) student at University of Bonn

University of Bonn, B-IT

Game Al

Instructor: Prof. Dr.-Ing. Christian Bauckhage

"test" exam

Note: This is just a text exam ... in the real exam on Jul 16th, you will find administrative guidelines at this point. The following table is just a place holder.

for instructor's use

problem	points	score		problem	points	score
1	10			5	10	
2	12		-	6	8	
3	8			7	10	
4	10		_	8	12	
			_			

total score

Problem 1: stochastic processes

a) [2 points] What is a stochastic process over a discrete, finite state space $S = \{s_1, s_2, \dots, s_m\}$?

A set of random variables $\left\{X_t \mid t \in \mathbb{N}\right\}$ where $X_t \in \mathcal{S}$.

b) [2 points] What is a discrete time Markov chain (DTMC) ?

A stochastic process such that for all $t \in \mathbb{N}$

$$p(X_t \mid X_{t-1}, \dots, X_0) = p(X_t \mid X_{t-1})$$

Problem 2: Monte Carlo integration

a) [4 points] Plot the gamma function

$$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx$$

for $z \in \{1, 2, 3, 4, 5\}$.

b) [4 points] Fill in the following table.

z	(z-1)!	$\Gamma(z)$
2	1	1
3	2	2
4	6	6
5	24	24
6	120	120

b) [4 points] Show your python code for computing the entries of the above table.

```
import scipy as sp

for z in [2,3,4,5,6]:
   fact = sp.special.factorial(z-1)
   gamm = sp.special.gamma(z)
   print (fact, gamm)
```