Oneindige Reekse / Infinite Series §11.2

Definition 2

Consider the (infinite) series

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$$

Let

$$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n$$

be the nth parsiële som / partial sum of the series. If the sequence $\{s_n\}$ converges, say $\lim_{n\to\infty} s_n = s \in \mathbb{R}$,

then we say that the series $\sum_{n=1}^{\infty} a_n$ is convergent and write

$$\sum_{n=1}^{\infty} a_n = s \quad \text{or} \quad a_1 + a_2 + \dots = s.$$

The number s is called the som / sum of the series. If $\{s_n\}$ diverges, then we say that the series is divergent.

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \sum_{i=1}^{n} a_i.$$

Stelling 4

Die meetkundige reeks / The geometric series

$$\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + \cdots$$

converges if |r| < 1, with sum

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}.$$

If $|r| \ge 1$, then the geometric series is divergent.

Homework

Ex. 11.2 nr. 1, 2, 16, 17, 25, 53, 61, 67

Theorem 8

If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent series, and c is

a constant, then the series $\sum_{n=1}^{\infty} ca_n$, $\sum_{n=1}^{\infty} (a_n + b_n)$

and $\sum_{n=1}^{\infty} (a_n - b_n)$ are convergent, and

$$\bullet \sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$

•
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

•
$$\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$$

Homework

Ex. 11.2 nr. 29, 31, 39, 43, 45, 81, 82, 85, 87, 89(a)