Plagiarism Scan Report

Report Title	plag_report
Generated Date	02-Apr-2022
Total Words	101
Total Characters	1126
Report Generated By	Plagiarism Checker
Excluded URL	None
4	>

Plagiarised	Unique	Total Words Ratio
0%	100%	97.16%

Content Checked For Plagiarism

from google.colab import drive drive.mount('/content/drive') import matplotlib.pyplot as plt import seaborn as sns import numpy as np from sklearn import datasets, linear_model, preprocessing, model_selection, linear_model, metrics import joblib import pandas as pd df = pd.read_csv('/content/drive/My Drive/car_data.csv') df.head() numerical_feature = [feature for feature in df.columns if df[feature].dtypes!="O"] numerical feature for feature in numerical feature:

sns.scatterplot(x = df[feature], y = df['Selling_Price']) plt.show() df = df.drop(['Car_Name', 'Fuel_Type', 'Seller_Type', 'Transmission'], axis=1) df scaler = preprocessing.MinMaxScaler() scaler.fit(df) dataset=pd.DataFrame(scaler.transform(df),columns=df.columns) dataset.head() X = df.drop(['Selling_Price'], axis=1) y = df['Selling_Price'] X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.1, random_state=42) X_test lr = linear_model.LinearRegression() lr.fit(X_train,y_train) y_predLR = lr.predict(X_test) metrics.r2 score(y test, y predLR) joblib.dump(lr, '/content/drive/My Drive/car price lr.pkl')