1 Fluid models

Given a CTMC X(t) with states s_i for i = 1, ..., n and infinitesimal generator matrix Q, we want to predict some event using a Fluid Model with fluid level L(t) with initial distribution $F_L(q)$ and density $f_L(q)$, we want to find the rates $r_i \leq 0$ for each state s_i .

Let X_k denote the k-th state that the CTMC visits, let T_k denote the time the CTMC spends in this state and let F_k denote the occurrence of the event while the CTMC is in its k-th state. We assume that the event occurs when the fluid level reaches zero.

We then have

$$\mathbb{P}(F_k|X_k = s_i) = \int_{0}^{\infty} \mathbb{P}(T_k > \frac{l}{-r_i}) f_{L_i}(l) dl = \int_{0}^{\infty} e^{-q_{ii}/r_i}) f_{L_i}(l) dl$$

Where f_{L_i} denotes the density of the fluid level when the CTMC arrives in s_i . Given some density function f_{L_i} , we can use this to make a maximum likelihood estimator for r_i . Also another relation holds between the fluid levels of different states[1]:

$$\frac{\partial}{\partial t}p_i(t,l) + \frac{\partial}{\partial l}r_ip_i(t,l) = \sum_{k=1}^n q_{ki}p_k(t,l)$$

References

[1] Marco Gribaudo and Miklós Telek. Fluid models in performance analysis. In *International School on Formal Methods for the Design of Computer, Communication and Software Systems*, pages 271–317. Springer, 2007.