山岸高旺*: 二三の沖繩産管状藻類について

Takaaki Yamagishi*: Observations on some siphonaceous algae collected from Okinawa

東京教育大学下田臨海実験所干原光雄氏 (現在国立科学博物館) から、氏が 1961 年 4 月に沖縄の各地から採集された数個の管状藻類標本を頂き、それらの標本について研究することができたので、ここに報告する。標本の中、二つは Dichotomosiphon tuberosa Ernst と Pseudodichotomosiphon constricta (Yamada) Yamada で、他の標本中からは Vaucheria vipera Blum が同定された。

1. **Dichotomosiphon tuberosa** Ernst in Beih. Bot. Gentralbl. **13**: 115. pls. 1-5 (1902); Gollins in Tafts Goll. Stud. **2**: 430 (1909); Okada in Journ. Jap. Bot. **12**: 273, figs. 1-4 (1936). (チョウチンミドロ 岡田, l.c.). (figs. 1, 5; 2, 8-10).

糸状体細胞は径 $50-110~\mu$, 長さ $20-35~\mathrm{mm}$ 。地上部は $2~\mathrm{又}$ 分枝(稀には $3-5~\mathrm{Z}$ に分枝)をし、分枝の基部には著しいくびれがある。くびれの部分の細胞 膜は肥厚し、ふつうは淡褐色を呈する。生卵器と造精器は、それぞれ細長く彎曲した柄をもち、糸状体の先端に繖房状に生ずる。生卵器は球形,径 $290-320~\mu$,膜は極めて薄い。卵胞子は球形,生卵器よりやや小さい。成熟した卵胞子は暗緑色を呈する。造精器は細長い円筒状,又は棍棒状で内側に彎曲し、先端は円孔で開口する。径 $30-50~\mu$,長さ $120-170~\mu$ 。採集地:沖繩一首里(水田内,IV,1961)

この種は沖縄の他に、インド、ビルマ、フランス、ドイツ、スイス、北アメリカ合衆 国の各地に産することが知られている。

2. **Pseudodichotomosiphon constricta** (Yamada) Yamada in Journ. Fac. Sci. Hokkaido Imp. Univ. Ser. V, **3**:83, figs. 53–55 (1934). (クビレミドロ, 山田, l.c.). Syn. *Vaucheria constricta* Yamada in l.c. **1**:110, fig. 1 (1932). (figs. 1, 1–4, 11–12; 2, 1–7.).

糸状体は直立し、まばらに分枝する。径 240 $-300\,\mu$, 長さ 10 $-20\,\mathrm{mm}$ 。糸状体のと ころどころに明瞭なくびれがある。雌雄の生殖器官は同株,又は異株に生ずる。生卵器 は糸状体に直生し、無 柄,ほぼ球形~広精 円形で先端に明瞭な嘴状突起をもつ。200 $-250\times240-270\,\mu$ 。成熟した卵胞子はほぼ球形,径 220 $-240\,\mu$,胞子膜は透明~淡黄色であるが,内部に充満している物質のために卵胞子全体が黄褐~赤褐色に見える。造精器は糸状体に直生し,無柄,細長い卵形,先端は円孔で開口,70 $-100\times170-190\,\mu$ 。採集地:沖縄一糸満(海産,潮間帯上部の泥質地,IV,1961)

^{*} 東京教育大学理学部植物学教室. Botanical Institute, Faculty of Science, Tokyo Kyoiku University (Tokyo University of Education), Otsuka, Tokyo.

この種は沖繩が唯一の産地 1)で、山田先生による前記(1932, 1934)以外に、この種についての観察は報告されていない。

筆者の観察した材料では、雌雄同株のものと異株のものが混っていた。生卵器や造精器は、それぞれ糸状体の一部分に集中的に着く傾向がみられる。雌雄同株のものでは、山田先生(1934)の原記載図(fig. 54)に示されているように、生卵器と造精器とが別々の枝についているものも数株見られたが、生卵器群(1-3 個)が藻体の上方、それから離れて基部に近い部分に造精器群が位置しているのがふつうである。また、Vaucheriathuretii や V. nicholsii などのように、また、Tseng(1963)の <math>Pseudodichotomosiphon constricta var. minore)の原記載図(fig. 34、C)に示されているように、雌雄両性の生殖器官が接近した位置に着いているものは、全く見られなかった。

山田先生は本種を、はじめ、 $Vaucheria\ constricta\ b$ したが、後に本種のために $Pseudodichotomosiphon\ b$ いう新属を設けた。その理由は、本種が、 ① 薬体は、およそ 2 又分枝をなす直立した部分と、基質中に伸びた仮根状部とから成る。② 分枝の基部とか、糸状体のところどころに、くびれ (constriction)がある。③ 卵胞子は黄褐色であるなどの点では $Dichotomosiphon\ tuberosa\ c$ よく似ており、しかも、④ 生卵器は常に糸状体に側生し、決して糸状体の末端に生ずることはない。⑤ 糸状体のくびれている部分の中で、ところどころでは膜が肥厚しているが、大部分のくびれでは膜が肥厚していないなどの点では $D.\ tuberosa\ b$ と異なるということによる。

筆者は今回, *D. tuberosa*, *P. constricta* の両種を観察した結果と, *Vaucheria* 属中の数種 (Woronina 節の中の *V. thuretii*, *V. nicholsii*, *V. japonica* 及び *V. vipera*) について行なった観察をもとにして, 上記の諸点に生卵器, 造精器などの形質をも加えて比較検討した。

藻 体: P. constricta では個々の薬体が互にもつれることなく、ほとんど直立し、枝分れしないか、又は極めてまばらに枝分れをしている。この点は確かに特筆すべき形質である。しかし、この様に直立した薬体をもつものは、Vaucheria 属中には全く見られない訳ではなく、V. dichotoma (Taylor & Bernatowicz, 1952) や V. mayyanadensis (Erady 1952)、V. japonica (Yamagishi 1963) などでは P. constricta と同じ様に(藻体は、はるかに短小であるが)藻体は短かくて直立し、枝分れしないか、又は、1—2回まばらに枝分れをなし、仮根状部分を伸ばして基質に固着している。また、V. geminata

^{1, 2).} Pseudodichotomosiphon 属に入る種としては、Tseng (1936) によって、海南島から P. constricta var. minor Tseng が記載されている。しかしながら、原記載に記された種々の形質や大きさ、及び原図から判断すると、この種は P. constricta Yamada の変種とするよりは、むしろ、Vaucheria thuretii Woronin そのものに当てるのが適当であろうと考えられる。Venkataraman (1961)は、この種の産地として日本とアメリカ合衆国を挙げているが、これは Prescott (1938)に拠ったものと思われる。しかし、Prescott の報告は原記載の再録であって、氏による新しい観察記録ではない。

--- 20 ---

や V. nicholsii などの国内各地にごくふつうにみられる種でも、密生しないときには藻体が、ほとんど直立しているが、よく生育したものでは糸状体が密生して、互にもつれ合い、マット状になっている。

一般的に Vaucheria 属については、種の標徴として、生卵器や造精器の形質が重視されているために、今迄に知られている種の薬体については、多くはその直径が記載されているだけで、現地に生育するものの分枝法、その他の形質については触れていないものが多い。したがって、精査すれば、前記各種の他にもの道立した薬体をもつものが少なからずあるだろうと思われる。

つぎに、 $Dichotomosiphon\ tuberosa$ の選体については、従来の多くの記載では、直立 (erect) していて仮根状部分をもつとしてあり、 $Ernst\ (1902)$ と $Sharma\ \&\ Moghe\ (1957)$ は数回分枝した単一の薬体を図示している。筆者も、前記材料から単一の薬体をときほぐすことを相当数試みた。しかし、径 $50-110\ \mu$ 、長き数 cm に及ぶ薬体が数回分枝して、互にからみ合っているために無傷で分離することは極めて困難で、僅かに数本のものを分離するのに成功したに過ぎなかった。そして、このD.tuberosa の薬体が、P.constricta の薬体と同じく "直立している" といえるかどうかは甚だ疑問で、むしろふつうの Vaucheria 属のものと同じく、互にからみ合っているという方がよさそうであると思った。

次に、D. tuberosa の藻体の分枝法は、すべて 2 又分枝であるとは限らず、しばしば 3 又、または、それ以上に分枝するものがみられる。この分枝については、分枝の数より、むしろ分枝する時の主軸先端の分化と、つぎに述べるような分枝の基部に(稀には基部以外にも (fig. 2, 10))著しい膜の肥厚を伴うくびれのあることに大さな特徴が認められる。即ち、枝分れする時、主軸先端の円頭状部分の両側に(3 又になる時には中央部にも)明瞭な突起ができて、それが伸びて枝になるので、これは Ernst (1902, 1.c.)も図示している。これに反し、P. constrictaでは、枝が主軸先端で同時に分化するのではなくて、真直に伸びる主軸の先端からやや下った部分に側枝的に伸び出るものが多い (fig. 2, 5-7)。

藻体のくびれ: *D. tuberosa* では、くびれの部分の膜が明らかに肥厚し (fig. 2, 9—10), しかも、多くはその部分が淡褐色を呈している。

 $P.\ constricta$ では、くびれはその直立している藻体のいろいろの部分にみられた (fig. 1, 11-13; 2, 3-7)。しかし、膜の肥厚はみられず、しかも、そのくびれの形には

^{3).} 筆者が兵庫県,岡山県下の塩田内から採集した V. submarina Berk と思われる種(未発表)でも,藻体は全く直立し,1-2回,まばらに分枝しているだけである。

Fig. 1. 1-4, 11-13. Pseudodichotomosiphon constricta. 1. Oogonium. 2-4. Antheridia. 11-12. Dioecious plants. 13. Monoecious plant. 5. Dichotomosiphon tuberosa. 6-10. Vaucheria vipera. 6-8. Oogonia and antheridia. 9-10. Zoosporangia.

D. tuberosa のものと大きな差異がみられる。即ち,D. tuberosa の分枝基部でではなく糸状の途中のくびれの部分をみると,それはいわゆる"くびれ"で,そのくびれの上下で糸状体の太さにそれ程の差異が認められない (fig. 2, 10)。これに対して P. constricta のものは"くびれ"というより,むしろ,その部分で糸状体が細くなっているといった方がよさそうな形状を示している (fig. 2, 1-7)。

これについて筆者は、D. tuberosa の膜の肥厚を伴うくびれは、Gollins (1909) も述べているように Gollins (Fritsch, 1935) の藻類、例えば Gollins (1909) も述れるものと相同であるが、Gollins (Fritsch, 1935) の藻類、例えば Gollins (1909) も述れるものと相同であるが、Gollins (P. constricta のものは栄養などの関係から糸状体の生 長の度合が一様でないために生じたものであると考えたい。殊に、Gollins (P. constricta が潮の干満の影響をとうむりやすい場所に生育していることは、この考え方の裏付ともなろう。

卵 胞 子: $P.\ constricta$ の卵胞子膜は充分に成熟したものでも透明~淡黄色であるが、内部に充満している物質のために卵胞子全体は黄褐~赤褐色に見える。Vaucheria属の大部分の種では卵胞子は成熟後に内容物が灰白色になが、緑色のままのものや、 $P.\ constricta$ と同じく、内容物が黄褐色~赤褐色を呈しているものも数種知られている。これに反して、 $D.\ tuberosa$ の卵胞子は成熟しても濃緑色である。

また、P. constricta は原記載によると、 卵胞子内に油 様 物質を含むとしてある。 Vaucheria 属では卵胞子内に油 様 物質を含んでいることは広く知られているが、D. tuberosa では油様物質は形成せず、卵胞子内にはでん粉が含まれているとされている。

生卵器の着く位置: Vaucheria 属では、生卵器が、糸状体に直接、又は短かい生卵器柄をもって、側生するものと、糸状体の先端、又は特別の子実技の先端に生ずるものとの 2 型があるが、P. constricta では前者の型で、D. tuberosa では後者の型である。

生 卵 器: Vaucheria 属の大部分の種では、生卵器に何らかの形の嘴状突起(beak) をもち、その先端で開口するが、V. arrhyncha、V. litorea などの数種類では生卵器に嘴状突起をもたず、先端は円くなっている。D. tuberosa の生卵器は嘴状突起を欠き (fig. 1, 5; 2, 8),P. constricta のものは大部分の Vaucheria 属と同じく、明瞭な嘴状突起をもっている (fig. 1, 1; 2, 1—2)。

造精器: D. tuberosa の造精器は鈎型に曲った円筒形で、先端は円孔で開口し (fig. 1,5), Vaucheria 属中にみられるような corniculatae 型であるのに対し、P. constricta の造精器は Vaucheria 属の Woronina 節の各種と同じく、無柄、細長い卵形で、しかもその長軸は薬体とほぼ平行し、先端は円孔で開口する (fig. 1,2—4;2,3—4)。

以上の筆者の観察した形態的な諸形質からみると、P. constricta のように薬体にくびれをもつ種は、従来知られている Vaucheria 属の中にはみられず、P. constricta の薬体のくびれは全く特異な形質ではあるが、D. tuberosa のくびれとは本質的に異なるし、また、薬体の分枝法も D. tuberosa のそれとは一致しない。また、生卵器、卵胞子、治精器などの生殖器官の諸種の形質からみると、P. constricta は D. tuberosa に近い

Fig. 2. 1.7. Pseudodichotomosiphon constricta. 1.2. Oogonia. ×50. 3.4. Antheridia. ×50. 5.7. Branching and constrictions of frond. ×25. 8.10. Dichotomosiphon tuberosa. 8. Immature oogonium and antheridia. ×50. 9.10. Branching and constrictions of frond. ×100. 11-15. Vaucheria vipera. 11. Zoosporangium. ×50. 12. Sporeling. ×50. 13-15. Oogonium and antheridium. ×50.

というよりも、むしろ Vaucheria 属の Woronina 節の種により近縁のものと考えられる。

3. Vaucheria vipera Blum in Trans. Amer. Micros. Soc. **79**: 300. f. 1-10 (1960). (figs. 1, 6-10; 2, 11-15).

藻体は径 40—75 (-85) μ で不規則に分枝し互に錯綜している。生卵器と造精器はふつうは糸状体から側方に伸びた長さ (50-) 125—185 μ) の子実枝上に生ずるが,糸状体に直生することもある。生卵器には生卵器柄は無くて子実枝に直生し,洋梨形~卵形,115—150 (-180) × 185—220 μ 。小さな嘴状突起をもち,その先端は円孔で開口する。卵胞子は球形,径 120—180 μ ,生卵器より小さく,その中に一杯にはならない。成熟した卵胞子の膜は 3 層からなり,外層と内層は薄くて透明,中層は厚くて淡黄色であるが,内部に蓄積されている物質のために卵胞子は赤褐色を呈する。造精器は多少彎曲した造精器柄上に生じ,卵胞子の方に曲っている。ほぼ円錐状,長さ 90—110 μ ,基部で径 350 550 650 先端は円く膨らみ棍棒状を呈する。長さ 2050 650

この種は Blum (1960, l.c.) によってニュー・イングランドから記載された海産種で,以来,他からの報告はなくて,今回沖繩が新産地として追加された訳である。

上記の諸形質の中で、成熟した卵胞子、游走子嚢、游走子、および、その発芽体 (sporeling) については、Blum は記載していない。

この種の生卵器と造精器とは糸状体から側方に伸びた子実枝上に着くのがふつうであるが、その着き方には変異が認められる。筆者の材料についてしらべた結果をまとめると次の三型になる。

- ① 生卵器と柄をもつ造精器とが子実枝上に生ずる型 (fig. 1,6-7; 2,13,15)。
- ② 生卵器は糸状体に直生し、造精器は糸状体から伸びた造精器柄上に着く型 (fig. 1,8;2,14)。
 - ③ 生卵器,造精器ともに糸状体に直生する型。

以上の中、③は極めて稀であるが、②は比較的に多い。Blum の原記載では①がこの種の典型的なものであるとされているが、氏の原図 fig. 3, 4, 7 には②の型をよく示している。そして、これらについて Blum は造精器柄の分芽 (proliferation) を考え、

⁴⁾ Blum の原記載では子実枝の長さは $265-570\,\mu$ となっている。しかし,原図には倍率も縮尺も記していないので正確なことはわからないが,径 $97-126\,\mu$ としてある 卵胞子の大きさから図に示してある子実枝の長さを推定すると,氏の原図 fig. 2, 5, 6に 示されたものは $100\,\mu$ よりも短かいと判定される。このことから考えると,Blum の標本中にも記載文に記されたよりも短かい子実枝があったものと思われる。

"① の型の造精器柄が、造精器の直ぐ下の部分から分芽し枝を伸したために両性の生殖器官が糸状体に直生(造精器には短かい柄があるが)しているようにみえる"のだと説明している。③ の型の様に造精器柄が極めて短かくなっているものでは Vaucheria thuretii とほとんど区別がついない程で、造精器の形状に差異が認められるだけである。事実、Blum の原図 fig. 7, 10 にもこの ③ 型のものが示されているが、fig. 10 について氏は材料中に混っていた V. thuretii だろうと述べている。

この報告を記すに当って、海藻研究のために沖繩滞在中、貴重な時間をさいて前記の材料採集に当られ、さらにそれらについての研究の機会を与えられた千原光雄氏に対して深く感謝する。また、P. constricta の文献について色々と御教示を頂き、さらに別刷を頂いた北海道大学山田幸男教授に対し、また、日頃から色々と御指導を頂いている東京教育大学印東弘玄、伊藤洋両教授に対し深く感謝する。

Résumé

- 1. Some observations were made on three siphonaceous algae, Dichotomosiphon tuberosa Ernst, Pseudodichotomosiphon constricta (Yamada) Yamada and
 Vaucheria vipera Blum collected at Okinawa by Dr. M. Chihara, and notes on
 their taxonomical characteristics were given.
- 2. P. constricta was compared with D. tuberosa and some species of Vaucheria, viz. V. thuretii, V. nicholsii, V. japonica and V. vipera in regard to the structures of frond and reproductive organs. As the result of the comparative study of those species, it seemed that P. constricta has surely peculiar constrictions on the frond, but it is more closely related to some species of Section Woronina in Vaucheria than D. tuberosa in respects as follows:
- a) The frond of *P. constricta* is composed of the erect filament and the rhizoidal part as characterized in original description. However, the caespitose thalli composed of the erect and rhizoidal part are also found in some species of *Vaucheria*, such as *V. dichotoma*, *V. mayyanadensis* and *V. japonica*.
- b) Although the frond of *P. constricta* is simple or sparsely branched once or twice, there is a clear difference between this species and *D. tuberosa* in the mode of branching, especially of the specialization of branch initiation on filament apex at the beginning of a dichotomy.
- c) The oogonia and antheridia bear laterally and are quite sessile on a main filament, but never terminally at the end of fruiting branch or the end of special branchlet as found in *D. tuberosa*.
 - d) The oogonium of P. constricta has a peculiar oogonial beak which opens

by a terminal round pore. The antheridium is cylindrical ovate in shape and the end opens by a round pore.

3. The original description of Vaucheria vipera Blum was supplemented in the following respects. The mature oospore is globose, when fertilized, it is filled with oily substances and reddish brown in colour, and has three layered wall: the outer and inner walls are thin, smooth and hyaline; the median wall is thick, smooth and light yellow in colour. The zygosporangium is clavate and formed terminally on leading filament or at the end of lateral branches. The zoospore is ovate, about $145 \, \mu$ in diameter and $180-240 \, \mu$ in length, and the sporeling has one or two filaments from its end.

引用文献

Gollins, F.G. (1909). Tufts Goll. Stud. 2: 430. Erady, N. A. (1952). Phytomorphology 4: 329. Fritsch, F.E. (1935). The structure and reproduction of the algae. Cambridge. Prescott, G.W. (1938). Trans. Amer. Micros. Soc. 57: 1. Sharma, R.R. & S.S. Moghe (1957). Gurrent Sci. 26: 254. Taylor, R. W. & A.J. Bernatowiz (1952). Bull. Mar. Sci. Gulf & Garibbean 2: 405. Tseng, G.K. (1936). Ghin. Mar. Biol. Bull. 1: 125. Venkataraman, G.S. (1961). Vaucheriaceae. New Delhi. Yamagishi, T. (1963). Journ. Jap. Bot. 34: 73.

□ Atlas Lekarstbenni Rastenii SSSR (ロシヤ薬用植物図譜) 30×23 cm. 色刷図版 288, 1962. ナウカ書店での売価約 ¥ 10,000 この書は従来の Koehler's Medizinal-Pflanzen に類似の本で、編集の形式もよく似ている。しかし、新しい本だけにその化学 的内容などには時代の進歩に伴なら相違のあることはもちろんである。所載 植物には共通のものもあるが、また在来の欧州書には見られないものもある。その中から若干のものを拾って見ると菌類では Actinomyces, Aspergillus, Bacillus, Penicillium, Inonotis obliquos,藻類ではイタ=グサの原種、顕花植物ではドクゼリ、=ンジン、イソツツジ,サザンカ、常山、小児 麻痺にその 成分 がきくガランタミンを含むという Galanthus woronowii, エキノプシンの原料植物である $Echinops\ rito\ ($ ルリタマアザミ), またよく生花に用いている $Gomphocarpus\ fruticosus$, タウコギなどがある。とにかく薬用植物の参考書としては Koehler の書と並用すれば便利である。 (久内清孝)