Impulse - Irain Sampling

$$\chi(t) \longrightarrow \times \longrightarrow \chi_{p}(t)$$

$$P(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

$$P(t) = + \sum_{k=-\infty}^{\infty} e^{jk \omega_s t}$$

where
$$w_s = \frac{2\pi}{T}$$

$$X_{\rho}(t) = \chi(t) \rho(t) = \frac{1}{t} \sum_{k=-\infty}^{\infty} \chi(t) \mathcal{Q}^{jk} w_s t$$

$$X(j\omega) = \frac{\partial}{\partial x(t)} = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

$$X_{\rho}(\omega) = \Im\{X_{\rho}(t)\} = \int_{-\infty}^{\infty} \chi(t) \rho(t) \lambda^{-j\omega t} dt$$

Xp (jw) is a periodic function of frequency consisting of a sum of shifted replicas of X(sw), scaled by $\frac{1}{T}$ of $\omega_{M} < (\omega_{S} - \omega_{M})$ or equivalently $W_S > 2 W_M$ there is no overlap between the shifted replicas of X(5w) and X(t) can be recovered exactly from $\chi_p(t)$ by means of an ideal low- pass filter with goin T and a cut-off frequency greater than WM and less than Ws - WM. If $W_S < 2W_M$ the shifted replicas of X_BW overlap and it is therefore not possible to recover the original signal. This overlapping of spectra is referred to as <u>aliesing</u>.

Exact recovery of a continuous-time signal from the sampled signal $\chi_{\rho}(t)$ using an ideal low-pass filter

Sampling Theorem

If a signal $\chi(t)$ has a bondlimited Fourier transform $\chi(j\omega)$, that is $\chi(j\omega)=0$ for $|\omega|>2\Pi f_{M}$. Then $\chi(t)$ can be uniquely reconstructed without error from equally spaced samples $\chi(nT)$, $-\infty < n < \infty$, if $f_{S}>2f_{M}$ where $f_{S}=\frac{1}{T}$ is the sampling frequency.