

TP EDO: Problèmes raides

GERGAUD Joseph

1 Introduction aux problème raides

1.1 Exemples

On considère l'exemple

$$(IVP)_1 \left\{ \begin{array}{l} \dot{y}(t) = -50y(t) \\ y(0) = 10 \end{array} \right.$$

avec $[t_0 \ t_f] = [0 \ 1.5]$ et l'exemple de Curtiss & Hirschfelder

$$(IVP)_2 \begin{cases} \dot{y}(t) = -50(y(t) - \cos(t)) \\ y(0) = 0 \end{cases}$$

avec $[t_0 \ t_f] = [0 \ 1.5].$

2 Travail demandé

Réaliser les graphiques des figures 1 et 2 qui correspondent respectivement aux problèmes $(IVP)_1$ et $(IVP)_2$. Ces figures sont accessibles en couleur sous http://gergaud.perso.enseeiht.fr/teaching/, edo, projet 1.

2.1 Rendu

Le travail en TP est individuel. Un test sera effectué lors de la dernière séance de TP. Le rendu définitif à rendre le soir du dernier TP contiendra :

- les graphiques obtenus au format pdf;
- les sources des programmes, ils seront mis dans un répertoire <noms>. le fichier contenant l'archive (<noms>.tar), sera envoyé à votre enseignant en TP. Dans le courriel vous mentionnerez le nom du fichier MATLAB permettant d'obtenir les courbes résultats.

EDO TP EDO raides

Figure 1 – Solution calculée pour N=30,40,80 et 100 pour le problème $(IVP)_1$, pour Gauß on prendra $\mathit{fp_iter_max}=40$ et $\mathit{fp_eps=1e-6}$.

EDO TP EDO raides

FIGURE 2 – Solution calculée pour $N=E(50t_f/1.974), E(50t_f/1.875), 50$ et 100 pour le problème (IVP)2, pour Gauß on prendra fp_iter_max = 40 et $fp_eps=1e-6$.