Lecture 2

Normal equation

Provides a way to minimize the cost function $J(\theta)$ by choosing θ analytically.

Remember that...

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 = \frac{1}{2m} \sum_{i=1}^{m} (y_i - h_{\theta}(x_i))^2 = \frac{1}{2m} (y - \theta^T x)^2 = \frac{1}{2m} (y - \theta^T x)'$$

So,

$$\min_{\theta} J(\theta) = \min_{\theta} \frac{1}{2m} (y - \theta^T x)' (y - \theta^T x) = \min_{\theta} (y - \theta^T x)' (y - \theta^T x)$$
 (2)

(in the last step, the constant doesn't make difference as we're minimizing in relation to θ).

Note: $\theta^T x = x\theta$

Problem:

$$\min_{\theta} J(\theta) = \min_{\theta} (y - x\theta)' (y - x\theta) = \min_{\theta} ||y - x\theta||^2 = \min_{\theta} ||y - h_{\theta}(x)||^2$$
 (3)

Distributing the product in the second equality of (3), we get:

$$J(\theta) = (y - x\theta)'(y - x\theta) = y'y - y'x\theta - \theta'x'y + \theta'x'x\theta$$
(4)

Derivating in relation to θ ...

$$\frac{\partial}{\partial \theta} J(\theta) = -y'x - x'y + 2x'x\theta = 0 \quad \Rightarrow \quad 2x'y = 2x'x\theta \quad \Rightarrow \quad \theta = (x'x)^{-1}x'y \tag{5}$$

So, the normal equation formula is: $\theta = (x'x)^{-1}x'y$

Examples: m = 4.

J	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000))
 x_0	x_1	x_2	x_3	x_4	y	_
1	2104	5	1	45	460	٦
1	1416	3	2	40	232	- 1
1	1534	3	2	30	315	
1	852	2	_1	36	178	7
	$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$2104 5 1$ $4416 3 2$ $1534 3 2$ $852 2 1$ $M \times (n+1)$ $(n+1)^{-1}X^Ty$	2 30 36	$\underline{y} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$	460 232 315 178	leder

p.s.: There is no need to do feature scaling with the normal equation.

The following is a comparison of gradient descent and the normal equation:

Gradient Descent	Normal Equation		
Need to choose alpha	No need to choose alpha		
Needs many iterations	No need to iterate		
$O(kn^2)$	$O(n^3)$, need to calculate inverse of $X^T X$		
Works well when n is large	Slow if n is very large		

What if (X'X) is noninvertible?

Note: When implementing the normal equation in octave we want to use the 'pinv' function rather than 'inv.'

If X^TX is noninvertible, the common causes might be having :

- Redundant features, where two features are very closely related (i.e. they are linearly dependent)
- Too many features (e.g. $m \le n$). In this case, delete some features or use "regularization" (to be explained in a later lesson).

Solutions to the above problems include deleting a feature that is linearly dependent with another or deleting one or more features when there are too many features.

References

[1] Machine Learning - Stanford University (https://www.coursera.org/learn/machine-learning)