Introduction to Machine Learning SQL and Analytics

Andres Mendez-Vazquez

January 9, 2023

Outline

- Introduction
 - What Is Data Analysis?
 - Why SQL?
- Relational Algebra
 - Introduction
 - Relation Schema, Database Schema, and Instances
 - Indexing in a Database
 - Foreign Key Constraints and Referential Integrity
- Query Languages
 - Introduction
 - Operations Select
 - Operation Project
 - Operation Cartesian
 - Difference Operator

Outline

- Introduction
 - What Is Data Analysis?
 - Why SQL?
- Relational Algebra
 - Introduction
 - Relation Schema, Database Schema, and Instances
 - Indexing in a Database
 - Foreign Key Constraints and Referential Integrity
- Quant Language
 - Introduction
 - Operations Select
 - Operation Project
 - Operation Cartesian
 - Difference Operator

Introduction [1]

Observation

• Collecting and storing data for analysis is a very human activity.

For this we have Data A

 Many different names are used to describe the discipline of data analysis.

Introduction [1]

Observation

• Collecting and storing data for analysis is a very human activity.

For this we have Data Analysis

 Many different names are used to describe the discipline of data analysis.

Definition

A somewhat Definition

• Data analysis is part data discovery, part data interpretation, and part data communication.

- t Purpo
 - To improve decision making
 - Ry humans
 - Ry machines through automation
- Propert
 - It requires not only sound methodology, but also curiosity the Why?

Definition

A somewhat Definition

• Data analysis is part data discovery, part data interpretation, and part data communication.

It Purpose

- To improve decision making
 - By humans
 - By machines through automation

Definition

A somewhat Definition

 Data analysis is part data discovery, part data interpretation, and part data communication.

It Purpose

- To improve decision making
 - By humans
 - ▶ By machines through automation

Properties

• It requires not only sound methodology, but also curiosity - the Why?

Be Careful About Data Analysis

It is basically an attempt to bring Statistics into CS

 Actually Statistics became part of Machine Learning as Data Science became widely accepted.

 Data Analysis is the application of Statistics in a Computer Science Framework

 As you can imagine they used SQL for extracting the samples for the experiments

Be Careful About Data Analysis

It is basically an attempt to bring Statistics into CS

 Actually Statistics became part of Machine Learning as Data Science became widely accepted.

Definition

 Data Analysis is the application of Statistics in a Computer Science Framework

 As you can imagine they used SQL for extracting the samples for thee experiments

Be Careful About Data Analysis

It is basically an attempt to bring Statistics into CS

 Actually Statistics became part of Machine Learning as Data Science became widely accepted.

Definition

 Data Analysis is the application of Statistics in a Computer Science Framework

Basically

 As you can imagine they used SQL for extracting the samples for the experiments

Cautionary Tale

Observation

• Data analysis is by definition done on historical data.

Tha D

It does not predict the future

Actual

- Criticisms are leveled against data analysis for being backward looking.
 - ▶ But many organizations are gaining knowledge of their process using i

Cautionary Tale

Observation

• Data analysis is by definition done on historical data.

The Present

• It does not predict the future.

- Criticisms are leveled against data analysis for being backward looking.
 - ▶ But many organizations are gaining knowledge of their process using

Cautionary Tale

Observation

Data analysis is by definition done on historical data.

The Present

It does not predict the future.

Actually

- Criticisms are leveled against data analysis for being backward looking.
 - ▶ But many organizations are gaining knowledge of their process using it

Outline

- Introduction
 - What Is Data Analysis?
 - Why SQL?
- Relational Algebra
 - Introduction
 - Relation Schema, Database Schema, and Instances
 - Indexing in a Database
 - Foreign Key Constraints and Referential Integrity
- Quant Language
 - Introduction
 - Operations Select
 - Operation Project
 - Operation Cartesian
 - Difference Operator

SQL and Analytic

Actually [2]

• SQL is the language used to communicate with databases.

• It is not a general purpose language in the way that C or Python are

But it is powerful enough

SQL can help you get the job of data analysis done.

SQL and Analytic

Actually [2]

• SQL is the language used to communicate with databases.

It is a general purpose language?

 \bullet It is not a general purpose language in the way that C or Python are.

But it is no

• SQL can help you get the job of data analysis done.

SQL and Analytic

Actually [2]

• SQL is the language used to communicate with databases.

It is a general purpose language?

• It is not a general purpose language in the way that C or Python are.

But it is powerful enough

• SQL can help you get the job of data analysis done.

A Little History

IBM was the first to develop SQL databases

- From the relational model invented by Edgar Codd in 1969
 - ► A DARPA project

- From the beginning, there has been tension between computer theory and commercial reality.
- But we need to look a little
 - Yes Relational Algebra

A Little History

IBM was the first to develop SQL databases

- From the relational model invented by Edgar Codd in 1969
 - A DARPA project

Something Notable

• From the beginning, there has been tension between computer theory and commercial reality.

Yes Relational Algebra

A Little History

IBM was the first to develop SQL databases

- From the relational model invented by Edgar Codd in 1969
 - A DARPA project

Something Notable

• From the beginning, there has been tension between computer theory and commercial reality.

But we need to look a little bit to the Algebra pushing for SQL

• Yes Relational Algebra

Outline

- Introduction
 - What Is Data Analysis?
 - Why SQL?
- Relational Algebra
 - Introduction
 - Relation Schema, Database Schema, and Instances
 - Indexing in a Database
 - Foreign Key Constraints and Referential Integrity
- Ouery Languages
 - Introduction
 - Operations Select
 - Operation Project
 - Operation Cartesian
 - Difference Operator

Here, Relational Algebra

The Relational Model

- Simple and uniform data structures relations and solid theoretical foundation
 - ▶ Which is important for query processing and optimization

- Relational Model is basis for most Database Management System (DBMS):
 - Oracle, Microsoft SQL Server, IBM DB2, Sybase, PostgreSQL, MvSQL. Mariadb.

 Either directly (creating tables using SQL DDL) or derived from a given Entity-Relationship schema

Here, Relational Algebra

The Relational Model

- Simple and uniform data structures relations and solid theoretical foundation
 - ▶ Which is important for query processing and optimization

Something Notable

- Relational Model is basis for most Database Management System (DBMS):
 - Oracle, Microsoft SQL Server, IBM DB2, Sybase, PostgreSQL, MySQL, Mariadb.

• Either directly (creating tables using SQL DDL) or derived from a given Entity-Relationship schema

Here, Relational Algebra

The Relational Model

- Simple and uniform data structures relations and solid theoretical foundation
 - ▶ Which is important for query processing and optimization

Something Notable

- Relational Model is basis for most Database Management System (DBMS):
 - Oracle, Microsoft SQL Server, IBM DB2, Sybase, PostgreSQL, MySQL, Mariadb.

Typically used in conceptual design

• Either directly (creating tables using SQL DDL) or derived from a given **Entity-Relationship schema**.

Definition of a Relation

Definition

A relation r over collection of sets (domain values)

$$D_1, D_2, ..., D_n \subseteq D_1 \times D_2 \times \cdots \times D_n$$

A relation thus is a set of n-tuples $(d_1, d_2, ..., d_n)$ where $d_i \in D_i$.

Given the sets

StudentId =
$$\{412, 307, 540\}$$

StudentName $\{Smith, Jones\}$

then $r = \{(412, Smith, CS), (307, Jones, CSE)\} \subseteq$ Studentld × StudentName × Major

Definition of a Relation

Definition

A relation r over collection of sets (domain values)

$$D_1, D_2, ..., D_n \subseteq D_1 \times D_2 \times \cdots \times D_n$$

A relation thus is a set of *n*-tuples $(d_1, d_2, ..., d_n)$ where $d_i \in D_i$.

For example

Given the sets

then
$$r = \{(412, Smith, CS), (307, Jones, CSE)\} \subseteq$$
Studentld \times StudentName \times Major

Outline

- Introduction
 - What Is Data Analysis?
 - Why SQL?
- Relational Algebra
 - Introduction
 - Relation Schema, Database Schema, and Instances
 - Indexing in a Database
 - Foreign Key Constraints and Referential Integrity
- Query Language
 - Operations Select
 - Operation Project
 - Operation Cartesian
 - Difference Operator

Relation Schema

Definition

• Let $A_1, A_2, ..., A_n$ be attribute names with associated domains $D_1, D_2, ..., D_n$ then

$$R(A_1:D_1,A_2:D_2,...,A_n:D_n)$$

is a relation schema. For example,

 $Student \, ({\sf StudentId:} integer, {\sf StudName:} string, {\sf Major:} string)$

- A relation schema specifies the name and the structure of the relation
- A collection of relation schemas is called a relational database

Relation Schema

Definition

• Let $A_1, A_2, ..., A_n$ be attribute names with associated domains $D_1, D_2, ..., D_n$ then

$$R(A_1:D_1,A_2:D_2,...,A_n:D_n)$$

is a relation schema. For example,

Student (Studentld:integer, StudName:string, Major:string)

Properties

- A relation schema specifies the name and the structure of the relation.
- A collection of relation schemas is called a relational database schema.

Relation Instance

Definition

- ullet A relation instance r(R) of a relation schema can be thought of as a table with n columns and a number of rows.
 - ▶ Instead of relation instance we often just say relation.

ullet An element $t \in r(R)$ is called a tuple (or row).

- I he order of rows is irrelevant
- I here are no duplicate rows in a relation

Relation Instance

Definition

- ullet A relation instance r(R) of a relation schema can be thought of as a table with n columns and a number of rows.
 - ▶ Instead of relation instance we often just say relation.

Elements

• An element $t \in r(R)$ is called a tuple (or row).

	Student	StudentId	StudentName	Major	\leftarrow Relation Schema
-		412	Smith	CS	
		307	Jones	CSE	\leftarrow Tuple
		412	Smith	CSE	

The order of rows is irrelevant There are no duplicate rows in a

Relation Instance

Definition

- ullet A relation instance r(R) of a relation schema can be thought of as a table with n columns and a number of rows.
 - ▶ Instead of relation instance we often just say relation.

Elements

• An element $t \in r(R)$ is called a tuple (or row).

	Student	StudentId	StudentName	Major	\leftarrow Relation Schema
-		412	Smith	CS	
		307	Jones	CSE	\leftarrow Tuple
		412	Smith	CSE	

Properties

- The order of rows is irrelevant
- There are no duplicate rows in a relation

Integrity Constraints in the Relational Model

Integrity Constraints (IC)

• It must be true for any instance of a relation schema (admissible instances)

Integrity Constraints in the Relational Model

Integrity Constraints (IC)

It must be true for any instance of a relation schema (admissible instances)

Properties

- ICs are specified when the schema is defined.
- ICs are checked by the DBMS when relations (instances) are modified
- If DBMS checks ICs, then the data managed by the DBMS more closely correspond to the real-world scenario that is being modelecome.

Integrity Constraints in the Relational Model

Integrity Constraints (IC)

It must be true for any instance of a relation schema (admissible instances)

Properties

- ICs are specified when the schema is defined.
- ICs are checked by the DBMS when relations (instances) are modified

Important

 If DBMS checks ICs, then the data managed by the DBMS more closely correspond to the real-world scenario that is being modeled!

Primary Key Constraints

A set of attributes is a **key** for a relation if

- No two distinct tuples have the same values for all key attributes.
 - ▶ This is not true for any subset of that key.

- We have a set of candidate keys then one is chosen (Data Base Administrator) to be the primary key.
 - Student(StudId: number, StudName: string, Major: string)
- For candidate keys not chosen as primary key, uniqueness constraints can be specified.
 - Note that it is often useful to introduce an artificial primary key.
 Actually at the Indexing

Primary Key Constraints

A set of attributes is a key for a relation if

- No two distinct tuples have the same values for all key attributes.
 - ▶ This is not true for any subset of that key.

If there is more than one key for a relation

- We have a set of candidate keys then one is chosen (Data Base Administrator) to be the primary key.
 - Student(StudId : number, StudName : string, Major : string)
- For candidate keys not chosen as primary key, uniqueness constraints can be specified.
 - Note that it is often useful to introduce an artificial primary key -Actually at the Indexing

Outline

- Introduction
 - What Is Data Analysis?
 - Why SQL?
- Relational Algebra
 - Introduction
 - Relation Schema, Database Schema, and Instances
 - Indexing in a Database
 - Foreign Key Constraints and Referential Integrity
- Query Languages
 - Introduction
 - Operations Select
 - Operation Project
 - Operation Cartesian
 - Difference Operator

Indexing

Something Notable

 A database index is a data structure that improves the speed of data retrieval operations on a database table.

Indexing

Something Notable

 A database index is a data structure that improves the speed of data retrieval operations on a database table.

This has costs

• At the cost of additional writes and storage space to maintain the index data structure.

We can use B-Trees for indexing

Indexing

Something Notable

 A database index is a data structure that improves the speed of data retrieval operations on a database table.

This has costs

• At the cost of additional writes and storage space to maintain the index data structure.

For Example

• We can use B-Trees for indexing

B-Trees

We have the following complexities

Complexity

Type	Insertion	Deletion	Search	
Unsorted Array	O(1)	$O\left(n\right)$	$O\left(n\right)$	
Sorted Array	$O\left(n\right)$	$O\left(n\right)$	$O(\log n)$	
B-Tree	$O(\log n)$	$O(\log n)$	$O(\log n)$	

Even the use of table clustering

We have the following complexities

Complexity

Type	Insertion	Deletion	Search	
Unsorted Array	O(1)	$O\left(n\right)$	$O\left(n\right)$	
Sorted Array	$O\left(n\right)$	$O\left(n\right)$	$O(\log n)$	
B-Tree	$O(\log n)$	$O(\log n)$	$O(\log n)$	

There are many other techniques

• Even the use of table clustering

Outline

- - What Is Data Analysis?
 - Why SQL?
- Relational Algebra
 - Introduction
 - Relation Schema, Database Schema, and Instances
 - Indexing in a Database Foreign Key Constraints and Referential Integrity
- - Introduction
 - Operations Select
 - Operation Project
 - Operation Cartesian
 - Difference Operator

As always constraints

We have the following

- Set of attributes in one relation (child relation) that is used to "refer" to a tuple in another relation (parent relation).
- Foreign key must refer to the primary key of the referenced relation.

- Foreign key attributes are required in relation schemas that have been derived from relationship types.
 - ightharpoonup offers $(Prodname)
 ightarrow ext{PRODUCTS}, (SName)
 ightarrow ext{SUPPLIERS}$
 - Primary Key Primary Key
 - $ightharpoonup \operatorname{orders}(\underbrace{(FName, LName)}) o \operatorname{CUSTOMERS}, \underbrace{(SName)}) o$
 - $\mathsf{SUPPLIERS}, \underbrace{(\boldsymbol{Prodname})} \to \mathsf{PRODUCTS}, \, \mathsf{Quantity})$
 - Foreign Key
 - Foreign/primary key attributes must have matching domains

As always constraints

We have the following

- Set of attributes in one relation (child relation) that is used to "refer" to a tuple in another relation (parent relation).
- Foreign key must refer to the primary key of the referenced relation.

Something Notable

 Foreign key attributes are required in relation schemas that have been derived from relationship types.

$$\begin{array}{c} \bullet \hspace{0.1cm} \mathsf{offers}(\underbrace{(Prodname)}_{Primary} \to \mathsf{PRODUCTS}, \underbrace{(SName)}_{Primary} \to \mathsf{SUPPLIERS}, \\ \mathsf{Price}) \\ \bullet \hspace{0.1cm} \mathsf{orders}(\underbrace{(FName, LName)}_{Primary} \to \mathsf{CUSTOMERS}, \underbrace{(SName)}_{Foreign} \to \\ \\ & \underbrace{Foreign}_{Foreign} Key \\ \end{array}$$

$$\mathsf{SUPPLIERS}, \underbrace{(\boldsymbol{Prodname})} \to \mathsf{PRODUCTS}, \, \mathsf{Quantity})$$

Foreign Key

Foreign/primary key attributes must have matching domains.

Furthermore

A foreign key constraint is satisfied for a tuple if either

- Some values of the foreign key attributes are null (meaning a reference is not known)
- The values of the foreign key attributes occur as the values of the primary key (of some tuple) in the parent relation.

● The combination of foreign key attributes in a relation schema typically builds the primary key of the relation,

• offers $(Prodname) \rightarrow PRODUCTS, (SName) \rightarrow SUPPLIERS, Primary Key$ Price

 If all foreign key constraints are enforced for a relation, referential integrity is achieved, i.e., there are no dangling references.

Furthermore

A foreign key constraint is satisfied for a tuple if either

- Some values of the foreign key attributes are null (meaning a reference is not known)
- The values of the foreign key attributes occur as the values of the primary key (of some tuple) in the parent relation.

Something Notable

 The combination of foreign key attributes in a relation schema typically builds the primary key of the relation,

$$\begin{array}{c} \bullet \ \ \text{offers}\underbrace{(Prodname)}_{Primary \ Key} \rightarrow \mathsf{PRODUCTS}, \underbrace{(SName)}_{Primary \ Key} \rightarrow \mathsf{SUPPLIERS}, \\ \mathsf{Price}) \end{array}$$

Furthermore

A foreign key constraint is satisfied for a tuple if either

- Some values of the foreign key attributes are null (meaning a reference is not known)
- The values of the foreign key attributes occur as the values of the primary key (of some tuple) in the parent relation.

Something Notable

 The combination of foreign key attributes in a relation schema typically builds the primary key of the relation,

$$\begin{array}{c} \bullet \ \ \text{offers}(\underbrace{(Prodname)}_{Primary \ Key} \rightarrow \mathsf{PRODUCTS}, \ \underbrace{(SName)}_{Primary \ Key} \rightarrow \mathsf{SUPPLIERS}, \\ \mathsf{Price}) \end{array}$$

Properties

• If all foreign key constraints are enforced for a relation, referential integrity is achieved, i.e., there are no dangling references.

Outline

- Introduction
 - What Is Data Analysis?
 - Why SQL?
- Relational Algebra
 - Introduction
 - Relation Schema, Database Schema, and Instances
 - Indexing in a Database
 - Foreign Key Constraints and Referential Integrity
- 3 Query Languages
 - Introduction
 - Operations Select
 - Operation Project
 - Operation Cartesian
 - Difference Operator

Query Language

Database Manipulation

- A Query Language (QL) is a language that allows users to manipulate and retrieve data from a database.
- The relational model supports simple, powerful QLs.

• SQL is not expected to be Turing Complete

- Relational Algebra: procedural, very useful for representing query execution plans, and query optimization techniques.
- Relational Calculus: declarative, logic based language

Query Language

Database Manipulation

- A Query Language (QL) is a language that allows users to manipulate and retrieve data from a database.
- The relational model supports simple, powerful QLs.

Query Language != Programming Language

SQL is not expected to be Turing Complete

- Relational Algebra: procedural, very useful for representing query execution plans, and query optimization techniques.
- Relational Calculus: declarative, logic based language

Query Language

Database Manipulation

- A Query Language (QL) is a language that allows users to manipulate and retrieve data from a database.
- The relational model supports simple, powerful QLs.

Query Language != Programming Language

• SQL is not expected to be Turing Complete

Two (mathematical) Query Languages are the basis of modern SQL

- Relational Algebra: procedural, very useful for representing query execution plans, and query optimization techniques.
- Relational Calculus: declarative, logic based language

Relational Algebra

Six basic operators in relational algebra

Operation	Symbol	Description	
Select	σ	selects a subset of tuples	
Project	π	deletes unwanted columns	
Cartesian Product	×	allows to combine two relations	
Set Difference	_	tuples in first relation but not	
		from the second	
Union	U	Union of two relations	
Rename	ρ	renames attribute(s) and relation	

Outline

- Introduction
 - What Is Data Analysis?
 - Why SQL?
- Relational Algebra
 - Introduction
 - Relation Schema, Database Schema, and Instances
 - Indexing in a Database
 - Foreign Key Constraints and Referential Integrity
- 3 Query Languages
 - Introduction
 - Operations Select
 - Operation Project
 - Operation Cartesian
 - Difference Operator

Select Operation

Notation, $\sigma_{P}(r)$

$$\sigma_{P}\left(r\right)=\left\{ t|t\in t\text{ and }P\left(t\right)\right\}$$

 P is a formula in propositional calculus, composed of conditions of the form

Select Operation

Notation, $\sigma_P(r)$

$$\sigma_{P}\left(r\right) = \left\{t | t \in t \text{ and } P\left(t\right)\right\}$$

Something Notable

 \bullet P is a formula in propositional calculus, composed of conditions of the form

Example

Given the relation r

Α	В	С	D	
α	α	1	7	
α	β	5	7	
β	β	12	3	
β	β	23	10	

Then a

Example

Given the relation \boldsymbol{r}

Α	В	С	D	
α	α	1	7	
α	β	5	7	
β	β	12	3	
β	β	23	10	

Then $\sigma_{(A=B)\wedge D>5}$

Α	В	С	D
α	α	1	7
β	β	23	10

Outline

- Introduction
 - What Is Data Analysis?
 - Why SQL?
- Relational Algebra
 - Introduction
 - Relation Schema, Database Schema, and Instances
 - Indexing in a Database
 - Foreign Key Constraints and Referential Integrity
- Query Languages
 - Introduction
 - Operations Select
 - Operation Project
 - Operation Cartesian
 - Difference Operator

Project Operation

Notation

$$\pi_{A_1,A_2,...,A_k}$$

• Where $A_1, A_2, ..., A_k$ are attributes names and r is a relation.

- The result of the projection operation is defined as the relation that
 has k columns obtained by erasing all columns from r that are not
 listed.
- Duplicate rows are removed from result because relations are sets

Project Operation

Notation

$$\pi_{A_1,A_2,...,A_k}$$

• Where $A_1, A_2, ..., A_k$ are attributes names and r is a relation.

Something Notable

- The result of the projection operation is defined as the relation that has k columns obtained by erasing all columns from r that are not listed.
- Duplicate rows are removed from result because relations are sets.

Example

Outline

- Introduction
 - What Is Data Analysis?
 - Why SQL?
- Relational Algebra
 - Introduction
 - Relation Schema, Database Schema, and Instances
 - Indexing in a Database
 - Foreign Key Constraints and Referential Integrity
 - Query Languages
 - Introduction
 - Operations Select
 - Operation Project
 - Operation Cartesian
 - Difference Operator

Cartesian Product

Notation

$$r \times s = \{tq | t \in r \text{ and } q \in s\}$$

- \bullet Assume that attributes of r(R) and s(S) are disjoint, $R\cap S=\emptyset$.
- If not renaming needs to be applied

Cartesian Product

Notation

$$r\times s=\{tq|t\in r \text{ and } q\in s\}$$

- ullet Assume that attributes of r(R) and s(S) are disjoint, $R\cap S=\emptyset$.
- If not renaming needs to be applied

We have that

Outline

- Introduction
 - What Is Data Analysis?
 - Why SQL?
- _Relational Algebra
 - Introduction
 - Relation Schema, Database Schema, and Instances
 - Indexing in a Database
 - Foreign Key Constraints and Referential Integrity
- Query Languages
 - Introduction
 - Operations Select
 - Operation Project
 - Operation Cartesian
 - Difference Operator

Set Difference Operator

Notation: r-s where both r and s are relations

$$r - s = \{t | t \in r \text{ and } t \notin s\}$$

- For r-s to be a
 - r and s must have the same arity
 - Attribute domains must be compatible

Set Difference Operator

Notation: r-s where both r and s are relations

$$r - s = \{t | t \in r \text{ and } t \notin s\}$$

For r-s to be applicable

- r and s must have the same arity
- Attribute domains must be compatible

Example

Please

Take a look to the other operators

• They are used in SQL

- R. L. Ott and M. T. Longnecker, An introduction to statistical methods and data analysis. Cengage Learning, 2015.
- R. Elmasri, S. B. Navathe, R. Elmasri, and S. Navathe, Fundamentals of Database Systems</Title.