Міністерство освіти і науки України Інститут інноваційних технологій і змісту освіти

LIII Всеукраїнська учнівська олімпіада з математики IV етап

Розв'язання та відповіді Перший день

8.1. Для невід'ємних чисел x і y має місце рівність $\left| \sqrt{y} - \sqrt{x} \right| = \sqrt{2xy + \frac{1}{2}}$. Яких значень може набувати вираз $\sqrt{x + y} - \sqrt{2xy}$?

Розв'язання. Для
$$x \ge 0$$
, $y \ge 0$ $\left| \sqrt{y} - \sqrt{x} \right| = \sqrt{2xy + \frac{1}{2}} \iff x + y = 2xy + 2\sqrt{xy} + \frac{1}{2}$

$$\Leftrightarrow x + y = 2\left(\sqrt{xy} + \frac{1}{2}\right)^2 \Leftrightarrow \sqrt{x + y} = \sqrt{2xy} + \frac{1}{\sqrt{2}}.$$

Відповідь: $\frac{1}{\sqrt{2}}$.

3ауваження. Невід'ємні числа x і y, що задовольняють умову, насправді існують.

8.2. Чи можливо виписати в рядок усі натуральні числа від 1 до 24 так, щоб можна було вибрати щонайбільше чотири числа (не обов'язково розташованих поспіль), які стоять у цьому рядку в порядку зростання, та щонайбільше шість чисел (також не обов'язково розташованих поспіль), які стоять у цьому рядку в порядку спадання?

Розв'язання. Покажемо, що це можливо:

$$6,\, 5,\, 4,\, 3,\, 2,\, 1,\, 12,\, 11,\, 10,\, 9,\, 8,\, 7,\, 18,\, 17,\, 16,\, 15,\, 14,\, 13,\, 24,\, 23,\, 22,\, 21,\, 20,\, 19\, .$$

Відповідь: так, можна.

8.3. Відомо, що для натуральних k, m, n і q виконується рівність $2(k^2+km)+m^2+n^2=2013^q$, причому числа k і m — взаємно прості. Доведіть, що числа n і k^2+km не є взаємно простими.

Розв'язання. Маємо рівність $k^2 + (k+m)^2 + n^2 = 2013^q$. Оскільки $(k;m) = 1^1$, то (k;k+m) = 1. Припустимо, що n і $k^2 + km$ — взаємно прості числа. Тоді (n;k) = 1 і (n;k+m) = 1. Отже, серед чисел k, k+m і n не більше за одне парне. І тому $k^2 + (k+m)^2 + n^2 \equiv 2 \pmod{4}$ чи $k^2 + (k+m)^2 + n^2 \equiv 3 \pmod{4}$. Але ж $2013^q \equiv 1 \pmod{4}$, і одержуємо суперечність.

Зауваження. Для k = 10, m = 33, n = 8 маємо: $10^2 + (10 + 33)^2 + 8^2 = 2013$.

8.4. Нехай M — середина бічної сторони AB трапеції ABCD, O — точка перетину її діагоналей, причому AO = BO. На півпрямій OM позначили таку точку P, що $\angle PAC = 90^{\circ}$. Доведіть, що $\angle AMD = \angle APC$.

AM — висота, проведена до гіпотенузи прямокутного трикутника APO, то маємо: $OC \cdot OD = OA \cdot OB = OA^2 = OM \cdot OP$. Отже, $\frac{OC}{OM} = \frac{OP}{OD}$. Півпряма OM — бісектриса кута AOB, і $\angle MOD = \angle COP$. Звідси випливає подібність трикутників OCP і OMD. Відтак, $\angle OCP = \angle OMD$, $90^\circ - \angle OCP = 90^\circ - \angle OMD$, тобто $\angle APC = \angle AMD$.

9.1. Для кожного дійсного невід'ємного значення параметра a визначте кількість дійсних розв'язків рівняння $\sqrt{ax} - x = \sqrt{a} - 1$.

Розв'язання. Для a=0 єдиним розв'язком є x=1. Нехай тепер a>0. Тоді слід розглядати тільки $x\geq 0$. Зауважимо, що x=1 є розв'язком для кожного a>0. Нехай $x\neq 1$. Маємо:

$$\begin{cases} \sqrt{ax} - x = \sqrt{a} - 1, & \Leftrightarrow \begin{cases} \sqrt{a}\sqrt{x} - x = \sqrt{a} - 1, \\ x \neq 1; \end{cases} \Leftrightarrow \begin{cases} \sqrt{a}\left(\sqrt{x} - 1\right) = x - 1, \\ x \neq 1; \end{cases} \Leftrightarrow \begin{cases} \sqrt{a} = \sqrt{x} + 1, \\ x \neq 1. \end{cases}$$

¹ Символом (a;b) позначено найбільший спільний дільник натуральних чисел a і b.

Відповідь: якщо $a \in [0; 1) \cup \{4\}$, то рівняння має єдиний розв'язок x = 1; якщо $a \in [1; 4) \cup (4; +\infty)$, то рівняння має два розв'язки $x = (\sqrt{a} - 1)^2$ і x = 1.

9.2. Знайдіть усі такі пари натуральних чисел m і n, для яких $\frac{\left(m+3n\right)^2}{m^2+n^2}$ є квадратом натурального числа.

Розв'язання. Нехай m і n такі натуральні числа, що $\frac{\left(m+3n\right)^2}{m^2+n^2}=k^2$, де $k\in \mathbb{N}$,

k>1 (ми врахували, що $\left(m+3n\right)^2>m^2+n^2$). Тоді $\left(k^2-1\right)m^2-6nm+\left(k^2-9\right)n^2=0\,.$

Розглядаючи цю рівність як квадратне рівняння відносно m, для його дискримінанта одержуємо, що $4n^2\left(9-\left(k^2-1\right)\left(k^2-9\right)\right)$ є квадратом цілого числа. Для $k \geq 4$ $\left(k^2-1\right)\left(k^2-9\right)>9$. Для k=2 число $4n^2\left(9-\left(k^2-1\right)\left(k^2-9\right)\right)=96n^2$ не є точним квадратом. Залишається розглянути випадок k=3. Маємо, як неважко бачити, рівність 4m=3n. Звідки m=3l, n=4l, де $l\in \mathbb{N}$. Відповідь: m=3l, n=4l, де $l\in \mathbb{N}$ — довільне.

9.3. Нехай M — середина сторони BC гострокутного трикутника ABC, в якому $AB \neq AC$, O — центр його описаного кола. Проведемо з точки M перпендикуляри MP і MQ до сторін AB і AC відповідно. Доведіть, що пряма, яка проходить через середину відрізка PQ і точку M, ϵ паралельною прямій AO.

Розв'язання. Без обмеження загальності вва-

жаємо, що AB < AC. Нехай F — така точка відрізка PQ, що $FM \parallel AO$. Покажемо, що F — середина відрізка PQ. Проведемо з точок P і Q перпендикуляри PK і QE до прямої MF. Доведемо рівність PK = QE, з якої і випливатиме потрібний факт.

Позначимо через L і T точки перетину прямої MF з прямими AB і AC відповідно. Тоді

$$\angle BLM = \angle BAO = 90^{\circ} - \angle C$$
, $\angle CTM = \angle CAO = 90^{\circ} - \angle B$.

3 відповідних прямокутних трикутників маємо:

$$PM = \frac{1}{2}BC\sin \angle B,$$

 $PK = PM \sin \angle PML = PM \cos \angle BLM = PM \sin \angle C = \frac{1}{2}BC \sin \angle B \sin \angle C$. Аналогічно,

$$QM = \frac{1}{2}BC\sin\angle C,$$

 $QE = QM \sin \angle QMT = QM \cos \angle CTM = QM \sin \angle B = \frac{1}{2}BC \sin \angle C \sin \angle B$.

Отже, PK = QE, що й треба було довести.

9.4. Нехай $m \ge 35$ — задане натуральне число. Відомо, що в суді племені Мумбо-Юмбо працює m суддів. Для прискореного розгляду справ Верховний шаман племені вирішив утворити суддівські трійки так, щоб кожні дві трійки мали хоча б одного спільного суддю. Яку найбільшу кількість суддівських трійок може утворити Верховний шаман?

Розв'язання. Візьмемо одного із суддів. Якщо утворити всі можливі трійки з m суддів так, щоб до складу кожної з них входив цей суддя, то всі утворені суддівські трійки задовольнятимуть умову задачі, причому їх буде рівно $C_{m-1}^2 = \frac{(m-1)(m-2)}{2}$.

Доведемо, що більшої кількості суддівських трійок отримати неможливо. Припустимо, що з дотриманням умови задачі утворилося N суддівських трійок, причому $N \geq C_{m-1}^2+1$. Нехай одна з таких трійок — назвемо її *основною* — складається із суддів A_0 , A_1 і A_2 . Через $M\left(A_0\right)$, $M\left(A_1\right)$, $M\left(A_2\right)$ позначимо множини всіх суддівських трійок (за винятком основної), до складу яких входять судді A_0 , A_1 , A_2 відповідно (дані множини можуть мати й спільні трійки). За припущенням, будь-яка з N-1 неосновних суддівських трійок повинна належати одній з цих множин. Тоді, за принципом Діріхле, хоча б одна з множин $M\left(A_0\right)$, $M\left(A_1\right)$, $M\left(A_2\right)$ містить не менше за $\frac{N-1}{3}$ суддівських трійок, причому $\frac{N-1}{3} \geq \frac{(m-1)(m-2)}{6}$. Нехай, для визначеності, це буде множина $M\left(A_0\right)$. У ній знайдеться менше, ніж $2\left(m-2\right)$ суддівських трійок, до складу яких одночасно із суддею A_0 входять або суддя A_1 , або суддя A_2 . Оскільки $2\left(m-2\right) < \frac{(m-1)(m-2)}{6}$, то в множині $M\left(A_0\right)$ знайдеться така суддівська трійка $A_0A_3A_4$, що $A_3 \not\in \{A_1,A_2\}$ і $A_4 \not\in \{A_1,A_2\}$. Аналогічно, у множині $M\left(A_0\right)$ існує менше, ніж $4\left(m-2\right)$ трійок, до складу яких одночасно із суддею

принаймні один із суддів A_i , $1 \le i \le 4$. Оскільки $4(m-2)<\frac{(m-1)(m-2)}{6}$, то в множині $M\left(A_0\right)$ знайдеться така суддівська трійка $A_0A_5A_6$, що $A_5 \not\in \{A_i \mid 1 \le i \le 4\}$ і $A_6 \not\in \{A_i \mid 1 \le i \le 4\}$. Урешті-решт покажемо, що в множині $M(A_0)$ знайдеться суддівська трійка $A_0A_7A_8$, у якій $A_7 \not\in \{A_i \mid 1 \le i \le 6\}$, $A_8 \not\in \{A_i \mid 1 \le i \le 6\}$. Для цього нам знадобиться більш точна оцінка кількості неосновних трійок, до складу яких одночасно із суддею A_0 входить хоча б один із суддів A_i , $1 \le i \le 6$. У добутку 6(m-2) кожна із C_6^2 суддівських трійок вигляду $A_0A_iA_j$, $1 \le i \ne j \le 6$, враховується двічі, до того ж, основну трійку $A_0A_1A_2$ слід узагалі виключити з розгляду. Отже, у множині $M(A_0)$ існує не більше, ніж $6(m-2)-C_6^2-1=6m-28$ потрібних нам трійок.

Оскільки $6m-28<\frac{(m-1)(m-2)}{4}$ для $m\geq 35$, то й маємо потрібний результат.

Далі, за умовою задачі будь-яка із N утворених суддівських трійок має хоча б одного спільного суддю з кожною з чотирьох суддівських трійок $A_0A_1A_2$, $A_0A_3A_4$, $A_0A_5A_6$ і $A_0A_7A_8$. Зрозуміло, що одним із спільних членів таких трійок мусить бути суддя A_0 , бо якщо він не входить до деякої суддівської трійки, то до її складу повинні входити хоча б по одному судді з кожної з множин $\{A_1, A_2\}$, $\{A_3, A_4\}$, $\{A_5, A_6\}$, $\{A_7, A_8\}$, що неможливо. Отже, усі утворені суддівські трійки мають спільного суддю A_0 , а це означає, що $N \leq C_{m-1}^2$. Дістали суперечність.

Відповідь: $C_{m-1}^2 = \frac{(m-1)(m-2)}{2}$.

10.1. Для дійсних чисел x, y, z і t виконуються рівності

$${x+y+z} = {y+z+t} = {z+t+x} = {t+x+y} = \frac{1}{4}.$$

Знайдіть усі можливі значення виразу $\{x+y+z+t\}$. (Тут $\{a\}=a-\lceil a\rceil$, а $\lceil a\rceil$ ціла частина числа a, тобто найбільше ціле число, яке не перевищує a.)

Розв'язання. Із умови задачі випливає, що

$$x + y + z = [x + y + z] + \frac{1}{4}, y + z + t = [y + z + t] + \frac{1}{4},$$

 $z + t + x = [z + t + x] + \frac{1}{4}, t + x + y = [t + x + y] + \frac{1}{4}.$

Отже, 3(x+y+z+t)=[x+y+z]+[y+z+t]+[z+t+x]+[t+x+y]+1. Це означає, що 3(x+y+z+t) — ціле число, тобто дробова частина числа x+y+z+t дорівнює $0,\frac{1}{3}$ або $\frac{2}{3}$.

Усі ці значення досягаються. Для того, щоб у цьому переконатись, розглянемо випадки $x=y=z=t=\frac{3}{4}$, $x=y=z=t=\frac{1}{12}$, $x=y=z=t=\frac{5}{12}$.

Відповідь: $0; \frac{1}{3}; \frac{2}{3}$.

10.2. Нехай M — середина сторони BC трикутника ABC. На його сторонах AB і AC позначили відмінні від вершин довільні точки E і F відповідно. Нехай K — точка перетину прямих BF і CE, L — така точка, що $CL \parallel AB$ і $BL \parallel CE$, а N — точка перетину прямих AM і CL. Доведіть, що $KN \parallel FL$.

і тому AE = NL. Нехай P — точка перетину прямих BF і CN. Оскільки $FC \parallel BN$, то трикутники PBN і PFC подібні. Звідки $\frac{PF}{PB} = \frac{PC}{PN}$, тобто $PF = \frac{PB \cdot PC}{PN}$. Оскільки $PC \parallel BE$, то подібними будуть трикутники PCK і BEK. Маємо: $\frac{PK}{BK} = \frac{PC}{BE}$, $PK = \frac{BK \cdot PC}{BE}$. Отже, $\frac{PF}{PK} = \frac{PB \cdot BE}{BK \cdot PN}$. Оскільки трикутники BLP і KEB подібні, то $\frac{PL}{PB} = \frac{BE}{BK}$, і $\frac{PL}{PN} = \frac{PB \cdot BE}{BK \cdot PN}$. Тепер ми маємо пропорцію $\frac{PF}{PK} = \frac{PL}{PN}$, з якої, у свою чергу, випливає подібність трикутників PFL і PKN. Відтак, $\angle PFL = \angle PKN$, і тому $KN \parallel FL$, що й треба було довести.

10.3. Відомо, що для натуральних чисел a, b, c, d і n виконуються нерівності a+c < n і $\frac{a}{b} + \frac{c}{d} < 1$. Доведіть, що $\frac{a}{b} + \frac{c}{d} < 1 - \frac{1}{n^3}$.

Розв'язання. Оскільки $n > a + c \ge 2$, то $n \ge 3$. До того ж, a < b і c < d, адже $\frac{a}{b} + \frac{c}{d} < 1$.

Розглянемо такі випадки.

$$a$$
) Нехай $b \ge n$ і $d \ge n$, тоді $\frac{a}{b} + \frac{c}{d} \le \frac{a}{n} + \frac{c}{n} = \frac{a+c}{n} \le \frac{n-1}{n} = 1 - \frac{1}{n} < 1 - \frac{1}{n^3}$.

- δ) Нехай $b \le n$ і $d \le n$, тоді з нерівності $\frac{a}{b} + \frac{c}{d} < 1$ випливає, що ad + bc < bd, тобто $ad + bc + 1 \le bd$. Звідси $\frac{a}{b} + \frac{c}{d} \le 1 \frac{1}{bd} \le 1 \frac{1}{n^2} < 1 \frac{1}{n^3}$.
- e) Нехай b < n < d . Якщо $d \le n^2$, то $bd < n^3$, і тоді $\frac{a}{b} + \frac{c}{d} \le 1 \frac{1}{bd} < 1 \frac{1}{n^3}$. Якщо

 $d > n^2$, то $\frac{c}{d} \le \frac{n-2}{n^2} = \frac{1}{n} - \frac{2}{n^2}$, оскільки $c < n-a \le n-1$, тобто $c \le n-2$. Припус-

тимо, що $\frac{a}{b} + \frac{c}{d} \ge 1 - \frac{1}{n^3}$. Тоді $1 - \frac{a}{b} \le \frac{c}{d} + \frac{1}{n^3} \le \frac{1}{n} - \frac{2}{n^2} + \frac{1}{n^3} < \frac{1}{n}$. Звідси випливає,

що $b > n(b-a) \ge n$ (тут ми врахували, що a < b), що суперечить нерівності b < n < d.

- e^{-2}) Нехай d < n < b. Якщо $b \le n^2$, то $bd < n^3$, і тоді $\frac{a}{b} + \frac{c}{d} \le 1 \frac{1}{bd} < 1 \frac{1}{n^3}$. Якщо
- $b > n^2$, то $\frac{a}{b} \le \frac{n-2}{n^2} = \frac{1}{n} \frac{2}{n^2}$, оскільки $a < n-c \le n-1$, тобто $a \le n-2$. Припус-

тимо, що $\frac{a}{b} + \frac{c}{d} \ge 1 - \frac{1}{n^3}$. Тоді $1 - \frac{c}{d} \le \frac{a}{b} + \frac{1}{n^3} \le \frac{1}{n} - \frac{2}{n^2} + \frac{1}{n^3} < \frac{1}{n}$. Позаяк c < d,

маємо: $d > n(d-c) \ge n$. Одержали суперечність з нерівністю d < n < b.

Отже, нерівність $\frac{a}{b} + \frac{c}{d} < 1 - \frac{1}{n^3}$ виконується в усіх випадках, що й треба було довести.

10.4. На столі лежать 100 карток, які пронумеровані натуральними числами від 1 до 100. Андрійко й Миколка вибрали собі однакову кількість карток так, що якщо картка з номером $n \in B$ Андрійка, то в Миколки є картка з номером 2n+2. Яка максимальна кількість карток могла бути в обох хлопчиків?

Розв'язання. Спочатку доведемо, що кількість карток у обох хлопчиків не перевищує 66, тобто кількість карток у кожного не перевищує 33.

Оскільки $2n+2\leq 100$, то $2n\leq 98$, тобто $n\leq 49$. Це означає, що номери карток Андрійка належать множині $\{1,2,3,\ldots,49\}$. Розіб'ємо цю множину на такі

групи підмножин: $\{1,4\}$, $\{3,8\}$, $\{5,12\}$, ..., $\{23,48\}$ (12 підмножин); $\{2,6\}$, $\{10,22\}$, $\{14,30\}$, $\{18,38\}$ (4 підмножини); $\{25\}$, $\{27\}$, $\{29\}$, ..., $\{49\}$ (13 підмножин); $\{26\}$, $\{34\}$, $\{42\}$, $\{46\}$ (4 підмножини). Усього 12+4+13+4=33 підмножини. Будь-які дві з цих підмножин не мають спільних елементів. Якщо в Андрійка буде щонайменше 34 картки, то за принципом Діріхле номери якихось двох з них будуть елементами однієї із вказаних вище двоелементних підмножин. Але оскільки кожна така двоелементна підмножина має вигляд $\{n,2n+2\}$, то одержуємо суперечність з умовою задачі.

Приклад для множини A номерів 33 карток Андрійка може бути таким:

$$A = \{1, 3, 5, \dots, 23, 2, 10, 14, 18, 25, 27, 29, \dots, 49, 26, 34, 42, 46\}.$$

Тоді номери карток Миколки утворюватимуть множину $M = \{2n + 2 \mid n \in A\}$.

Відповідь: 66 карток.

11.1. Для кожного дійсного значення параметра a визначте кількість дійсних розв'язків рівняння $\sqrt{ax+\sqrt[3]{x}}=x^{2013}$.

Розв'язання. Зрозуміло, що $x \ge 0$. Для будь-якого $a \in \mathbf{R}$ x = 0 ϵ розв'язком даного рівняння. Будемо далі розглядати x > 0 і запишемо наше рівняння в рівносильному вигляді $a = x^{4025} - \frac{1}{\sqrt[3]{x^2}}$.

На проміжку $(0; +\infty)$ функція $f(x) = x^{4025} - \frac{1}{\sqrt[3]{x^2}}$ є неперервною та строго зростаючою. До того ж, $\lim_{x \to +0} f(x) = -\infty$ і $\lim_{x \to +\infty} f(x) = +\infty$. Отже, функція f на проміжку $(0; +\infty)$ набуває кожного дійсного значення, причому — рівно один раз.

Відповідь: рівняння має два розв'язки для будь-якого дійсного значення a.

- 11.2. Див. задачу 10.2.
- **11.3**. Знайдіть усі функції $f: \mathbf{Z} \to \mathbf{Z}$, які задовольняють такі дві умови:
- a) $f(x) \neq f(y)$ для будь-яких цілих x і y таких, що $x \neq y$;
- б) f(f(x)y+x)=f(x)f(y)+f(x) для всіх $x \in \mathbb{Z}$ і $y \in \mathbb{Z}$.

Розв'язання. Візьмемо x = y = 0. Знаходимо, що f(0) = 0. Нехай $x_0 \neq 0$ і позначимо $a = f(x_0)$, $a \neq 0$. Підставимо до вихідного співвідношення $x = x_0$. Тоді

для всіх $y \in \mathbb{Z}$ маємо $f(ay + x_0) = af(y) + a$. Тепер підставимо до вихідного співвідношення замість x вираз $ax + x_0$. Одержуємо:

$$f(f(ax + x_0)y + ax + x_0) = f(ax + x_0)f(y) + f(ax + x_0),$$

$$f((af(x) + a)y + ax + x_0) = (af(x) + a)f(y) + af(x) + a,$$

$$f(af(x)y + ay + ax + x_0) = af(x)f(y) + af(y) + af(x) + a.$$

Оскільки до правої частини x і y входять симетрично, то $f\left(af\left(x\right)y+ay+ax+x_0\right)=f\left(af\left(y\right)x+ax+ay+x_0\right)$ для всіх $x\in\mathbf{Z}$ і $y\in\mathbf{Z}$. З урахуванням умови задачі, $af\left(x\right)y+ay+ax+x_0=af\left(y\right)x+ax+ay+x_0$, тобто для всіх $x\in\mathbf{Z}$ і $y\in\mathbf{Z}$ $f\left(x\right)y=f\left(y\right)x$. Зафіксуємо довільне $y=y_0,\ y_0\neq 0$, і позначимо $k=\frac{f\left(y_0\right)}{y_0},\ k\neq 0$. Тоді $f\left(x\right)=kx,\ k\in\mathbf{Q}\setminus\{0\}$. Оскільки $f\left(x\right)$ є цілим числом для кожного цілого x, то легко встановити, що $k\in\mathbf{Z}\setminus\{0\}$. Залишається перевірити, що всі функції вигляду $f\left(x\right)=kx,\ k\in\mathbf{Z}\setminus\{0\}$, задовольняють умову задачі.

Відповідь: f(x) = kx, $x \in \mathbb{Z}$, де $k \neq 0$ — довільне ціле число.

11.4. Нехай задано натуральне число $n \ge 2$ і додатні дійсні числа l_1, l_2, \ldots, l_n . Труби з довжинами l_1, l_2, \ldots, l_n лежать у вказаному порядку в ряд. Зварювальник може зварити разом будь-які дві сусідні труби довжинами x та y, утворивши трубу довжиною x+y, і за це він бере плату $(x+y)^3$. (Наприклад, якщо зварити другу й третю труби, а потім — отриману трубу з першою, то плати за ці зварювання дорівнюватимуть $(l_2+l_3)^3$ та $(l_1+l_2+l_3)^3$ відповідно.) Порядок, у якому лежать труби, змінювати не можна. Доведіть, що якими б не були початкові довжини труб, існує така послідовність зварювань, що всі труби будуть зварені разом і сумарна плата за це буде меншою, ніж $2(l_1+l_2+\cdots+l_n)^3$.

Розв'язання. Оберемо наступну стратегію. На кожному кроці проситимемо зварювальника зварити дві сусідні труби, сумарна довжина яких найменша серед усіх пар сусідніх труб. Якщо є декілька таких пар, можна обрати будь-яку з них. Доведемо індукцією за n, що сумарна плата S при зварюванні за такою стратегією менша, ніж $2l^3$, де $l=l_1+l_2+...+l_n$.

База індукції очевидна: для n=2 плата $\left(l_1+l_2\right)^3$ менша за $2\left(l_1+l_2\right)^3$.

Нехай n>2. Розглянемо шматки A і B, які були зварені на останньому кроці. Нехай їхні довжини дорівнюють a і b відповідно, l=a+b. Без обмеження загальності вважаємо, що A лежить ліворуч від B, $a \le b$. Розглянемо процеси зварювання цих шматків окремо один від одного. Оскільки на кожному кроці сумарна довжина зварюваних труб найменша серед усіх пар сусідніх труб, то вона є найменшою й серед сусідніх пар труб, що входять до цього шматка. Тобто шматки A і B теж утворюються за вказаною вище стратегією, отже, сумарні плати за їхнє створення менші за $2a^3$ та $2b^3$ відповідно.

Розглянемо два випадки.

Перший випадок: $a \ge \frac{l}{4}$. Сумарна плата S менша, ніж сума плат за утворення A і B та плати за зварення їх разом, тобто $S < 2a^3 + 2b^3 + (a+b)^3$. Доведемо нерівність $2a^3 + 2b^3 + (a+b)^3 < 2l^3 = 2(a+b)^3$, тобто $t^3 + (1-t)^3 < \frac{1}{2}$, $6t^2 - 6t + 1 < 0$, де $t = \frac{a}{a+b}$, $t \in \left[\frac{1}{4}; \frac{1}{2}\right]$. Неважко переконатися, що на вказаному відрізку остання нерівність виконується.

Другий випадок: $a < \frac{l}{4}$. Якщо шматок B не ϵ звареним з менших шматків, то

сумарна плата менша за $2a^3+l^3<2\left(\frac{l}{4}\right)^3+l^3<2l^3$. В іншому випадку розгля-

немо крок, на якому було отримано шматок B. Нехай його було отримано зварюванням шматків C і D довжинами c і d відповідно, причому C лежав ліворуч від D. Тоді $d \le a$ (якщо d > a, то c + d > a + c, і ми не могли б зварювати C і D — у тому числі, зрозуміло, і в ситуації, коли шматок A ще не утворився). Доведемо, що шматок C не може бути звареним з менших шматків. Припустимо супротивне: нехай C був утворений на деякому кроці зі шматків E і F довжинами e і f відповідно, причому E лежав ліворуч від F. Тоді $e + f \le f + d$ і $e + f \le a + e$, тому $c = e + f \le d + a \le 2a < \frac{l}{2}$ (якщо, скажімо,

шматок D ще не утворився, то беремо найлівішу на цей момент з утворених його частин D' довжиною d' і одержуємо, що $e+f \le f+d' < f+d$; аналогічно міркуємо і якщо шматок A ще не утворився). Звідси $l=a+b=a+c+d<2a+\frac{l}{2}< l$, і дістаємо суперечність. Отже, шматок C існу-

вав із самого початку, і його отримання не потребує плати. Маємо:

$$S < 2a^3 + 2d^3 + (c+d)^3 + l^3 \le 2a^3 + 2a^3 + (l-a)^3 + l^3 = l^3(3t^3 + 3t^2 - 3t + 2),$$

де
$$t = \frac{a}{l} \in \left(0; \frac{1}{4}\right)$$
. Оскільки $3t^3 + 3t^2 - 3t + 2 < \frac{3t}{16} + \frac{3t}{4} - 3t + 2 < 2 - t < 2$, і тому $S < 2l^3$.

Задачі запропонували:

8.1	В. О. Швець	10.1	В. А. Ясінський
8.2	О. Б. Панасенко	10.2	В. А. Ясінський
8.3	I. M. Мітельман	10.3	В. А. Ясінський
8.4	В. А. Ясінський	10.4	В. А. Ясінський
9.1	I. M. Мітельман	11.1	I. M. Мітельман
9.2	В. А. Ясінський	11.2	Див. задачу 10.2
9.3	В. А. Ясінський	11.3	I. M. Мітельман
9.4	I. М. Мітельман. Д. С. Скороходов. В. А. Ясінський	11.4	О. В. Рибак