NETWORKS

System architecture

Comparison Star and Bus Network

Three Basic Network Topologies

Multipoint

Network

Fiber Optic Networks

WAN – Wide Area Network – connects users across a country -Hubs/Nodes at major cities with (typically) electronic connection Long link-length "Long haul" (1550nm with dispersion management), DWDM - stars and rings used

- MAN Metropolitan Area Network within a city -Typically rings connected to nodes on WAN Intermediate link length (1550/1300nm)
- LAN Local Area Network buildings, campus
- -Star, Bus, Ring
- Short Link Length (<10km) absorption/dispersion less important
- bus topology matters (1300nm, 850nm)

Topologies for Fiber Optic Networks

Passive Coupler

Connecting Loss L_c

Tap Loss (coupling) L_{tap} per tap, $L_{thru} = 1 - 1/L_{tap}$ (linear)

Intrinsic Transmission Loss Li

Passive Coupler

Connecting Loss
Tap Loss
Transmission Loss

L_c L_{tap} per tap L_i

Passive coupler

Coupler actually made up of two directional couplers – 4 ports (one in each direction) but we only show two of the ports on previous slide – other pair unused.

 C_{T} is the fraction of power removed from the bus and delivered to the detector port – power extracted from bus is called the tap loss and

$$L_{tap} = -10 \log C_T$$

Now power passes over 2 tap points per coupler. Hence the throughput power loss is $L_{thru} = -10 \log (1-C_T)^2 = -20 \log (1-C_T)$

e.g. (10 dB coupler) $C_T = 0.1$, $L_{tap} = 10$ dB = 10, $L_{thru} = 0.9$ dB

Bus - Nearest Neighbour Power Budget

Loss Between Nearest Neighbours

$$= \alpha L + 2L_{tap} + 4L_{c} + 2L_{i} \quad (equn A)$$

Bus - Nearest Neighbour Power Budget

Loss Between Nearest Neighbours

=
$$\alpha L + 2L_{tap} + 4L_{c} + 2L_{i}$$
 (α L=fibre loss/m)

Bus – Longest Distance Power Budget

Loss Between station 1 and N

- 2 Connectors per station intrinsic loss at each station
- @ transmitting and detector ends- one tap loss
- @ intermediate stations one L_{thru} loss
- Total Loss = $(N-1)\alpha L + 2NL_c + 2L_{tap} + (N-2)L_{thru} + NL_i$ (equn B)

Losses Linear with number of stations (p464 Keiser)

Bus – Dynamic Range

Detector used in Bus system will detect a larger power at station 1 than at station N

The Detector must have a dynamic range equal to that of the Bus system = ratio of power levels received at station 1 and station N

In dB = difference between nearest neighbour and longest length power budget (equn B – equn A)

Dynamic Range = $(N-2)(\alpha L + 2L_c + L_{thru} + L_i)$

Fused-Biconical coupler OR Directional coupler

- P3, P4 extremely low (-70 dB below Po)
- Coupling / Splitting Ratio = P2/(P1+P2)
- If $P_1 = P_2 \rightarrow$ It is called 3-dB coupler

Fused Biconical Tapered Coupler

- Fabricated by twisting together, melting and pulling together two single mode fibers
- They get fused together over length W; tapered section of length L; total draw length = L+W
- Significant decrease in V-number in the coupling region; energy in the core leak out and gradually couples into the second fibre

Definitions

Splitting (Coupling) Ratio = $P_2/(P_1 + P_2)$

Excess Loss = $10 \operatorname{Log}[P_0/(P_1 + P_2)]$

Insertion Loss = $10 \text{ Log}[P_{in}/P_{out}]$

 $Crosstalk = 10 Log(P_3/P_0)$

Coupler Characteristics

- power ratio between both output can be changed by adjusting the draw length of a simple fused fiber coupler
- It can be made a WDM de-multiplexer:
 - Example, 1300 nm will appear output 2 (p2) and 1550 nm will appear at output 1 (P1)
 - However, suitable only for few wavelengths that are far apart, not good for DWDM

Star Network – Losses and Power Budget

Star Coupler - Splitting Loss $L_{split} = 10logN$

In doing so there is an excess loss L_{excess}

Connector at Transmitter and Receiver

All stations L km from Coupler

Total Loss = $2\alpha L + 2L_c + 10LogN + L_{excess}$

Broadcast and select network

Making A Star Coupler

Star and Linear Bus Losses

<u>Summary – Network Architecture</u>

So far only a link has been discussed (A to B).

In real applications networks of many links are formed.

Bus, Star, and Ring Networks are common

A comparison of passive bus and star networks shows a linear loss with node/station number for a bus but a logarithmic function for star networks.

Example – dynamic range

Determine the dynamic range of a network for N = 5 and 10 workstations if the stations are 1000m apart, the fibre loss = 0.3 dB/km, and the couplers have the following parameters:

Tap loss $L_{tap} = 10 \text{ dB}$ Connector loss $L_c = 1 \text{ dB}$ Intrinsic transmission loss $L_i = 0.4 \text{ dB}$

Solution

Dynamic Range =
$$(N-2)(\alpha L + 2L_c + L_{thru} + L_i)$$

Now Tap loss
$$L_{tap} = 10 \text{ dB} = 10$$
, hence $C_T = 0.1$ and $L_{thru} = -10 \log (1-C_T)^2 = -20 \log (1-C_T) \text{ dB} = 0.9 \text{ dB}$

Connector loss $L_c = 1 \text{ dB}$ Intrinsic transmission loss $L_i = 0.4 \text{ dB}$

For 5 workstations

Dynamic range = $(5-2) \times (0.3x1 + 2x1 + 0.9 + 0.4) = 3 \times 3.6 = 10.8 \text{ dB}$

For 10 workstations

Dynamic range = $(10-2) \times (0.3x1 + 2x1 + 0.9 + 0.4) = 8 \times 3.6 = 28.8 \text{ dB}$