

Today's Learning Journey

Why LLMs need different monitoring

Key differences and challenges

Tools and Technologies Popular LLM monitoring solutions

Prompt Logging and Tracking

Capture and analyze LLM interactions

Hands-on Lab Build complete LLM monitoring system

♦ What is LLM Observability?

LLM Observability = The ability to understand, monitor, and debug Large Language Model behavior in production through comprehensive tracking of inputs, outputs, and system performance.

> Why LLMs Need Special Observability

Non-deterministic Outputs Same input can produce different responses

Complex Reasoning Chains Hard to trace decision paths

Prompt Sensitivity Small input changes cause big output differences

High Computational Costs Token usage impacts expenses

Quality is Subjective No simple accuracy metric

Transparency

See what the model is actually doing

Traceability

Track from prompt to response

Performance

Monitor speed, cost, and quality

Debugging

Identify and fix issues quickly

Traditional ML vs LLM Monitoring

Aspect	Trditional ML	LLMs
Input Data	Structured festures(numbers)	Unstructured text (prompts)
Output	Predictions (classes/numbers)	Generated text (variable length)
Evaluation	Clear metrics (accuracy, F1)	Subjective quality assessment
Determinism	Same input → Same output	Same input → Different outputs
Cost Model	Fixed inference cost	Token-based variable cost
Failure Modes	Wrong predictions	Hallucinations, bias, toxicity
Debugging	Feature importance	Prompt engineering, reasoning traces

New Challenges with LLMs

Cost Control

LLM inference can be 10-100x more expensive than traditional ML Quality Assurance

Poor responses damage user experience and brand

03 Compliance

Need to track and audit AI-generated content

O4
Performance Optimization

Identify bottlenecks and improve efficiency

Technical Necessity

Debug Complex Failures

Understand why model gave wrong answer

Optimize Prompts

Data-driven prompt engineering decisions

Detect Drift

Monitor when model behavior changes over time

Resource Planning

Predict and manage computational costs

Safety Monitoring	Security	Reliability	Regulatory Compliance
Detect harmful or inappropriate outputs	Identify prompt injection and adversarial attacks	Ensure consistent performance under load	Meet AI governance requirements

How well response answers the question

SS Coherence Score

Logical consistency of generated text

Accuracy of information provided

Identify harmful content

Frequency of false information generation

> Performance Metrics

Latency

Time to first token, total response time

Throughput

Requests per second, tokens per second

Token Usage

Input tokens, output tokens, total cost

Error Rates

Failed requests, timeout rates

Availability

System uptime and responsiveness

Usage Metrics

Prompt Patterns Common user inputs and intents

(

Response Length Distribution

> Typical output characteristics

User Satisfaction

Feedback scores and engagement metrics

Conversation Flow

Multi-turn interaction analysis

Commercial Solutions

Tool	Strengths	Best For
LangSmith	Prompt optimization, tracing	LangChain applications
Weights & Biases	Expert tracking, visualization	Research and Development
Arize Al	Model monitoring, drift detection	Production monitoring
Humanloop	Prompt management, A/B testing	Prompt engineering teams

Open Source Options

Tool	Features	Use Case
MLflow	Experiment tracking, model registry	General ML operations
Phoenix	LLM tracing, evaluation	Debugging and analysis
Langfuse	Prompt tracking, analytics	Cost optimization
TrueLens	Response evaluation, feedback	Quality assessment

Cloud Platform Tools

Azure AI Studio

Integrated monitoring for Azure OpenAI

AWS Bedrock

Observatory for AWS models

Google Vertex AI

Monitoring for PaLM and other models

Complete capture and storage of LLM interactions including:

- Input prompts (user queries, system instructions)
- Model responses (generated text)
- Metadata (timestamps, model version, parameters)
- Context (conversation history, user session)

03

05

♦ Why Track Prompts and Responses?

01 **Quality Analysis**

Identify patterns in good/bad responses

Prompt Engineering

Data-driven improvement of prompts

Debugging

Reproduce and fix specific issues

Cost Optimization 02

Understand token usage patterns

Compliance 04

Audit trail for AI-generated content

♦ What to Log


```
"timestamp": "2025-07-29T10:30:00Z",
"session_id": "user_123_session_456",
"prompt": "Explain photosynthesis in simple terms",
"response": "Photosynthesis is how plants make food...",
"model": "gpt-4",
"parameters": {"temperature": 0.7, "max_tokens": 150},
"metrics": {"latency_ms": 1200, "input_tokens": 8, "output_tokens": 45},
"user_feedback": {"rating": 4, "helpful": true}
```



```
User Input → Prompt Processing → LLM API → Response Processing → Storage

↓ ↓ ↓ ↓

Logging Prompt Enhancement Metrics Quality Check Analytics
```

Logging Layers

Key Design Principles

Comprehensive Capture all relevant information

Scalable

Handle high-volume production traffic

Conversation Threading

```
# Track multi-turn conversations
conversation thread = {
    "conversation id": "conv 789",
    "turns": [
        {"role": "user", "content": "What is AI?", "timestamp": "..."},
        {"role": "assistant", "content": "AI is...", "timestamp": "..."},
        {"role": "user", "content": "How does it work?", "timestamp": "...
        {"role": "assistant", "content": "AI works by...", "timestamp": ".
```


Prompt Template Tracking

```
# Track which templates produce best results
template performance = {
    "template id": "customer support v2",
    "template": "You are a helpful customer service agent. {context}",
    "usage count": 1500,
    "avg satisfaction": 4.2,
    "success rate": 0.87
```


Response Quality Correlation

Response Quality Correlation

Input Characteristics vs Output Quality

Prompt length vs response relevance

Question type vs answer accuracy

Context amount vs coherence score

Temperature setting vs creativity rating

→ Hallucination Detection Methods

Quality Monitoring Techniques

```
# Automated quality checks
quality metrics = {
   "relevance_score": 0.85, # How well it answers the question
   "coherence score": 0.92, # Logical consistency
   "toxicity_score": 0.02,  # Harmful content (lower is better)
   "factual_accuracy": 0.78, # Verified facts percentage
   "response completeness": 0.88 # Addresses all parts of question
```

♦ Alert Thresholds

High Toxicity

> 0.1 → Immediate human review

Low Relevance

 $< 0.6 \rightarrow Flag for prompt improvement$

Potential Hallucination

Confidence < 0.5 → Add disclaimers

Response Too Long

> 500 tokens → Check for rambling

> Token Usage Tracking

```
# Track costs in real-time
cost_metrics = {
    "input_tokens": 1200,
    "output_tokens": 800,
    "total_tokens": 2000,
    "cost_per_token": 0.00002, # $0.02 per 1K tokens
    "total_cost_usd": 0.04,
    "cost_per_user": 0.04,
    "daily_budget_used": 0.12 # 12% of daily budget
}
```


Time to First Token
How quickly response starts

01

Prompt CompressionReduce input token count

02

Response Length Limits
Control output costs

03

Model Selection
Use cheaper models when appropriate

04

CachingStore common responses

05

Batch ProcessingGroup similar requests

Quality KPIs

Response Relevance: > 85% of responses rated as relevant

Factual Accuracy: > 90% for factual questions

Toxicity Rate: < 1% of responses flagged as harmful

User Satisfaction: Average rating > 4.0/5.0

Performance KPIs

Throughput: Handle **Availability:** > 99.5% uptime target requests per second **Average Latency:** < 3 Error Rate: < 2% of seconds for 95% of requests fail requests

01

Cost per Conversation:
Stay within budget
targets

02

Token Efficiency:Minimize unnecessary token usage

03

Model ROI: Demonstrate business value vs cost

)4

Budget Adherence: Stay within monthly limits

Implementation Best Practices

Start Simple: Begin with basic logging, add complexity gradually

Focus on Business Impact: Monitor metrics that matter to users

Automate Everything: Reduce manual monitoring overhead

Plan for Scale: Design for production volume from day one

Secure by Design: Protect sensitive conversation data

Monitoring Strategy

Real-time Alerts: Critical issues need immediate attention

Batch Analysis: Daily/weekly deep dives into patterns

Continuous Improvement: Use data to optimize prompts and performance

User Feedback Integration: Combine automated metrics with human input

Over- logging
Don't capture
everything, focus on
actionable metrics

Ignoring Context
Monitor conversations,
not just individual
responses

Cost Blindness
Always track and
optimize token usage

Quality AssumptionsMeasure, don't assume response quality

Scenario 1: Customer Support Chatbot

Scenario 2: Content Generation Platform

Content quality and originality

Toxicity and compliance issues

Monitoring Focus

Brand voice consistency

Generation speed and costs

Scenario 3: Code Assistant

Beyond Basic Monitoring

Prompt Injection DetectionSecurity monitoring

Bias and Fairness Tracking Ethical AI monitoring

Multi- modal Monitoring Images, audio, video inputs

Chain-of-Thought TracingReasoning step analysis

A/B Testing Framework
Systematic prompt optimization

