6.3.wf

Welche der folgenden Aussagen sind (für alle affinen Räume $\mathbf{A} = \mathbf{r} + \mathbf{X}$ mit Richtungsvektorraum X (über dem Körper K), für alle $a \in A$, alle $v \in X$, alle $f : A \to A, \ldots$) wahr? Wenn die Aussage falsch ist, geben Sie ein konkretes Gegenbeispiel an. (Also zum Beispiel den Vektorraum $X = \mathbb{Q}^{3\times 1}$, den Vektor $v := (1, 2, 4)^T$, etc.)

- 1. f ist Schiebung (Translation) $\Leftrightarrow \forall a \in A : f(a) = a + u$.
- 2. f ist Schiebung $\Leftrightarrow f = \tau_u$.
- 3. f ist Schiebung $\Leftrightarrow \forall u \in X : f = \tau_u$.
- 4. f ist Schiebung $\Leftrightarrow \exists u \in X : f = \tau_u$.
- 5. f ist Schiebung $\Leftrightarrow \exists u \in X \ \forall a \in A : f(a) = a + u$.
- 6. f ist Schiebung $\Leftrightarrow \forall a \in A \ \exists u \in U : f(a) = a + u$.
- 7. f ist Streckung $\Leftrightarrow \exists z \in A \ \exists \lambda \in K^{\times} \ \forall a \in A : f(a) = z + \lambda(a z)$.
- 8. f ist Streckung $\Leftrightarrow \exists \lambda \in K^{\times} \exists z \in A \ \forall a \in A : f(a) = (1 \lambda)z + \lambda a$.
- 9. f ist Streckung $\Leftrightarrow \exists z \in A \, \exists \lambda \in K^{\times} \, \forall v \in X : f(z+v) = z + \lambda v$.
- 10. f ist Streckung $\Leftrightarrow \exists \lambda \in K^{\times} \ \forall v \in X : f(r+v) = r + \lambda v.$