Linear and Generalized Linear Models (4433LGLM6Y)

Simple and Multiple Linear Regression Meeting 1

Dr. Jos Hageman

Simple regression

Example: prediction of the lean meat percentage

In slaughterhouses the percentage lean meat of a pig carcass must be determined for payment to the farmer.

To determine the lean meat percentage the carcass has to be dissected in meat, fat and bone.

This is costly and destructive.

So, we predict the lean meat percentage, in order to keep the carcass intact.

Lean meat percentage data

у	X
59.7451	9.1
60.8473	10.2
57.5190	12.3
58.7997	14.1
57.1727	15.3
55.6435	17.0
51.3749	18.5
52.3963	19.3
50.0982	22.8
49.1171	24.1

y = percentage lean meat of a pig carcass x = fat depth measurement sample of 10 carcasses

Prediction of the lean meat percentage

Population = population of slaughter pigs Experimental units = slaughter pigs

? response variable
$$y \leftarrow$$
 explanatory variable x

Can we construct a prediction formula, i.e. an expression in terms of x (measured on the carcass) that gives a prediction for y (not measured)?

Refresher of simple regression a statistical model for the data

$$y = \beta_0 + \beta_1 x$$

$$\uparrow$$

population mean for % lean of all carcasses with fat depth \boldsymbol{x}

+ \in \uparrow departure from the mean for individual carcass

biological variation in % lean between carcasses with same fat depth x

Drawing a "good" line

We showed a line passing through these points:

$$\hat{y} = 68.3 - 0.80 * x$$

Estimates are:

$$\hat{\beta}_0 = 68.3 \, \text{and} \, \, \hat{\beta}_1 = 0.80$$

But how were these estimates obtained?

Draw a line.

Look at distances of the points to the line.

Minimize these distances to find the 'best' line.

Least squares estimation

- remove minus signs of distances
- take sum of absolute values of distances?
- that is mathematically awkward to handle
- long ago decided, by Gauss among others, to take the sum of squared distances

Minimize sum of squares (SS) of distances

=

Least Squares Estimation

Carl Friedrich Gauss

Least squares estimates in R

```
\hat{\beta}_0 = 68.34463 and \hat{\beta}_1 = -0.80352
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                        1.43305 47.692 4.13e-11 ***
(Intercept) 68.34463
      -0.80352 0.08451 -9.508 1.24e-05 ***
X
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \
' 1
Residual standard error: 1.277 on 8 degrees of freedom
Multiple R-squared: 0.9187, Adjusted R-squared: 0.9085
F-statistic: 90.4 on 1 and 8 DF, p-value: 1.236e-05
```

Predicted or fitted values and residuals

Predicted value \hat{y}_i : point on the line

(also fitted value) estimate of population mean of all units with $x = x_i$

Residual e_i : difference between observation y_i and prediction \hat{y}_i estimate of the error ϵ_i

Estimation of error variance σ_{ϵ}^2

If ϵ 's were known, for the carcass data, an estimate for the variance σ_{ϵ}^2 would be:

$$\hat{\sigma}_{\epsilon}^2 = (\epsilon_1^2 + ... + \epsilon_{10}^2) / 10$$

We do not know error terms ϵ and use residuals ϵ instead.

Because β_0 and β_1 are estimated from the data, there is the risk of underestimating σ_{ϵ}^2 .

Therefore, because β_0 and β_1 are estimated, we have to subtract 2 and divide by 8:

$$\hat{\sigma}_{\epsilon}^2 = (e_1^2 + \dots + e_{10}^2) / 8$$

Estimation of error variance σ_{ϵ}^2 in general

$$\hat{\sigma}_{\epsilon}^2 = (e_1^2 + ... + e_{10}^2) / 8$$
This is the number of observations n reduced by 2 : $(n-2)$

This is the SS that we minimized, called the sum of squares for error (or residual sum of squares), denoted by SSE.

Hence:
$$\hat{\sigma}_{\epsilon}^2 = (e_1^2 + ... + e_n^2)/(n-2) = SSE/(n-2)$$

SSE / (n - 2) is called the mean square for error: MSE

The output from R again

Estimate $\hat{\sigma}_{\epsilon}$ for σ_{ϵ} , the standard deviation of the ϵ 's.

So:
$$\hat{\sigma}_{\epsilon}^2 = 1.277^2 = 1.63$$
.

ANOVA table

The ANOVA table is about three sums of squares

error (or residual) sum of squares SSE

ANOVA table for the lean meat data

ANOVA table lean meat data

Source	df	SS	MS	F	P-value
$\begin{array}{c} SSR \longrightarrow \text{Regression} \\ SSE \longrightarrow \text{Residual} \\ SST \longrightarrow \text{Total} \end{array}$	1 8 9	147.40 13.04 160.44	147.400 1.631 17.827	90.40	< 0.001

Total sum of squares SST

SST quantifies variation in y, ignoring x.

This is measured around the sample mean \bar{y} :

$$SST = (y_1 - \bar{y})^2 + (y_2 - \bar{y})^2 + \dots + (y_{10} - \bar{y})^2$$

For the lean meat data: SST = 160.445

SST, degrees of freedom, and MST

Leeway (elbow room) to quantify variation in y, ignoring x:

10 differences $(y_1-\bar{y}), \quad (y_2-\bar{y}), \quad ... (y_{10}-\bar{y})$ that add up to 0 basically 9 differences to quantify variation in $y\to so$, 9 degrees of freedom

Estimated variance of y, ignoring x, is:

$$\widehat{\sigma}_{y}^{2} = \frac{SST}{n-1} = MST = \text{Mean Square for Total} =$$

$$\frac{1}{n-1} \left\{ (y_{1} - \overline{y})^{2} + (y_{2} - \overline{y})^{2} + \dots + (y_{n} - \overline{y})^{2} \right\} =$$

$$160.445 / 9 = 17.83$$

Splitting SST into SSR and SSE

In the ANOVA table (from R) *SST* is split into two parts.

```
Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 147.401 147.401 90.4 1.236e-05

Residuals 8 13.044 1.631
```

$$SST = 160.445 = 147.401 + 13.044$$

SSR = 147.401 corresponds to systematic part of the model

SSE = 13.044 corresponds to random part of the model

Sum of squares for error SSE

- Minimum sum of squared distances
- Sum of squared distances to the line fitted by LS
- (n-2) degrees of freedom
- $MSE = \frac{SSE}{n-2}$ is estimate for error variance σ_{ϵ}^2
- For the lean meat data: $\hat{\sigma}_{\epsilon}^2$ = 13.044 / 8 = 1.63

Sum of squares for regression SSR

- SSR = SST SSE = 160.445 13.044 = 147.401
- SSR reflects the part of SST that is "explained by x"
- 1 degree of freedom, because leeway for variation explained by x is through single parameter β_1 .
- MSR = SSR / 1 = 147.401 / 1 = 147.40

Multiple Linear Regression

Example: Weight loss of a compound

RQ: What is the effect of exposure to air over time and the humidity during expore, on weight loss of a compound?

y = weight loss of a chemical compound (pounds), this is the response

 x_1 = exposure time to air (hours), values are chosen

 x_2 = relative humidity during exposure, values are observed (differ from O&L)

$$y \leftarrow ?$$
 $x_1 \text{ and } x_2$

response / dependent variable / y-variable / regressand

explanatory variables / independent variables / x-variables / regressors

Example: Weight loss of a compound

The data

	У	<i>X</i> ₁	X ₂
1	4.3	4	0.15
2	5.5	5	0.46
3	6.8	6	0.20
4	8.0	7	0.21
5	4.0	4	0.20
6	5.2	5	0.37
7	6.6	6	0.37
8	7.5	7	0.34
9	2.0	4	0.49
10	4.0	5	0.54
11	5.7	6	0.42
12	6.5	7	0.37

```
y = weight loss of a chemical compound (pounds), this is the response
```

```
x_1 = exposure time to air (hours), values are chosen
```

```
x_2 = relative humidity during exposure,
values are observed
(differ from O&L)
```

The multiple regression model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

response variable

$$= \uparrow \qquad \uparrow \qquad e$$

charged weight systematic part:

observed weight loss of an individual experimental unit

systematic part: population mean of weight loss for exposure time x_1 and relative humidity x_2 random part:
error term is
departure of observed
weight loss from
the mean,
represents variation
around the mean

Multiple versus simple regression

In simple regression:

 β_1 is expected change in y for unit change in x_1 .

In multiple regression:

 β_1 is expected change in y for unit change in x_1 , while keeping all other x-variables constant.

Here:

 β_1 is expected change in weight loss for one extra hour of exposure, while keeping relative humidity constant.

What is the interpretation of intercept β_0 ?

Least squares estimation

Find values $\hat{\beta}_0$, $\hat{\beta}_1$ and $\hat{\beta}_2$ for β_0 , β_1 and β_2 that minimize the sum of squared errors:

$$SS = \sum_{i=1}^{12} (y_i - (\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i}))^2$$

Same terminology as before:

$$e_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i}) = (y_i - \hat{y}_i)$$
 is a residual

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta} x_{2i}$$
 is a fitted / predicted value

$$\sum_{i=1}^{12} \left(y_i - \left(\hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i} \right) \right)^2 = \sum_{i=1}^{12} e_i^2 = SSE \text{ is error SS}$$

Estimation of error variance σ_{ϵ}^2 in general

$$\hat{\sigma}_{\epsilon}^2 = (e_1^2 + ... + e_n^2) / (n - (k+1))$$

Minimized sum of squares

- = sum of squares for error
- = residual sum of squares
- = SSE.

degrees of freedom = number of observations n minus number of β parameters (k slopes + 1 intercept)

Hence:
$$\hat{\sigma}_{\epsilon}^2 = SSE / (n - (k + 1))$$

SSE / (n - (k + 1)) is the mean square for error (or residual): MSE

Some output (from R)

```
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
               -0.1916
                              1.0481 - 0.183
(Intercept)
                 1.2952
                            0.1596 8.117 1.97e-05
x1
                            1.4670 -2.823 0.020
x2
Residual standard error: (0.6173) on 9 degrees of freedom
Multiple R-squared: 0.8944, Adjusted R-squared:
0.8709
F-statistic: 38.11 on 2 and 9 DF, p-value: 4.043e-05
least squares estimates:
                                        estimate \hat{\sigma}_{\epsilon} = 0.6173 for \sigma_{\epsilon},
 \beta_0= -0.19 for \beta_0
                                        so: \hat{\sigma}_{\epsilon}^2 = 0.617^2 = 0.381.
```

Prediction equation : $\hat{y}_i = -0.19 + 1.30 x_{1i} - 4.14 x_{2i}$

 $\hat{\beta}_1 = 1.30$ for β_1

 $\hat{\beta}_2 = -4.14$ for β_2

ANOVA table

Recall from simple regression:

ANOVA table is about three sums of squares (SS)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon_R$$
total sum of squares *SST*

regression sum of squares *SSR*

error (or residual) sum of squares SSE

ANOVA table - SST

SST = sum of squares of observations y minus sample mean \bar{y} , degrees of freedom are: n - 1

$$MST = SST / (n - 1)$$

$$\hat{\sigma}_{y}^{2} = MST = \text{estimated variance of } y \text{ ignoring } x \text{-variables}$$

The same as in simple regression.

Source	df	SS	MS	F	P-value
Regression					
Error					
Total	11	32.47	2.95		

ANOVA table - SSE

SSE = minimized sum SS of squared distances,
= sum of squared residuals
$$e_1^2 + ... + e_n^2$$

error (or residual) degrees of freedom are: $n - (k + 1)$
 $MSE = SSE / (n - (k + 1))$
 $\hat{\sigma}_{\epsilon}^2 = MSE$ = estimator of σ_{ϵ}^2 variation accounting for x -variables

Source	df	SS	MS	F	P-value	
Regression						
Error	9	3.43	0.38		$-\hat{\sigma}_{\epsilon}^{2}=$ MSE =	0.38
Total	11	32.47	2.95			

MST & MSE two variance estimates

$$\hat{\sigma}_y^2 = MST =$$

estimated variance of y around sample mean \bar{y} ignoring x_1, x_2 .

$$\hat{\sigma}_{\epsilon}^2 = MSE =$$

estimated variance of y around fitted plane accounting for x_1, x_2

ANOVA table - SSR

$$SSR = SST - SSE$$

$$= part of SST "explained by" x-variables$$

$$degrees of freedom are number of slopes k$$

$$MSR = SSR / k$$

Source	df	SS	MS	F	P-value
Regression	2	29.04	14.52		
Error	9	3.43	0.38		
Total	11	32.47	2.95		

ANOVA table – F-test

F-test for $H_0: \beta_1 = \beta_2 = 0$ "model has no predictive value"

test statistic is:
$$F = \frac{MSR}{MSE}$$

reject H_0 for large values of F

Source	df	SS	MS	F	P-value
Regression	2	29.04	14.52	38.1	
Error	9	3.43	0.38		
Total	11	32.47	2.95		

F-test for predictive value - P-value

how large should $F = \frac{MSR}{MSE}$ be to reject H_0 : $\beta_1 = \beta_2 = 0$? under H_0 , F follows an F-distribution with df1 = k, df2 = n - (k+1)

df1 = 2 = df of
$$SSR$$
 = number of β 's involved in H_0
df2 = 9 = df of SSE = $n - (k + 1)$ (--> leeway for estimation of σ_{ϵ}^2)

Source	df	SS	MS	F	P-value
Regression	2	29.04	14.52	38.1	0.00004
Error	9	3.43	0.38		
Total	11	32.47	2.95		

F-test - P-value, continued

P-value = area to the right of outcome 38.1 = 0.0000.

This is smaller than 0.05.

Outcome 38.1 is too large to believe that H_0 is true: H_0 is rejected.

We conclude that either x_1 , or x_2 , or both x_1 and x_2 have predictive value for y, i.e. part of the variation in y is explained by x_1 and/or x_2 .

t-tests & confidence intervals & prediction

t-test for single regression coefficient

e.g. H_0 : $\beta_2 = 0$ (no humidity effect) vs. H_a : $\beta_2 \neq 0$

$$t = \frac{estimate - value\ from\ H_0}{standard\ error} = \frac{-4.1410 - 0}{1.4670} = -2.823$$

Compare with t-distribution with df = 9.

Again, df = 9 from *SSE* express leeway for estimation of σ_{ϵ}^2 .

t-test, P-value

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.1916 1.0481 -0.183 0.859 x1 1.2952 0.1596 8.117 0.0000197 x2 -4.1410 1.4670 -2.823 0.020

Two-sided P-value is 2 * 0.0099 = 0.020 below 0.05, so reject H_0

Shown that humidity has a (negative) effect upon (expected) weight loss (in combination with exposure time).

Confidence interval for a slope, e.g. 0.95 CI for β_2

0.95 CI for β_2 is (-7.5, -0.82), all "likely" values according to the data.

Confidence interval for a population mean μ

Estimate expected weight loss μ for $x_1 = 5.5$ and $x_2 = 0.50$:

$$\hat{\mu} = \hat{\beta}_0 + \hat{\beta}_1 * 5.5 + \hat{\beta}_2 * 0.50 =$$

$$-0.191 + 1.2952 * 5.5 - 4.1410 * 0.50 = 4.862$$

```
> pred.at <- data.frame (x1=5.5, x2=0.5)

> predict(m1, pred.at, se.fit=T,interval="confidence")

$fit

fit lwr upr

1 4.862 4.205 5.518

$se.fit [1] 0.2903 R-output

estimate \hat{\mu} lower& upper bound 0.95 Cl for \mu:

(4.862 \pm 2.262 * 0.2903) = (4.205, 5.518)
```

Prediction of a single observation y

Prediction \hat{y} for single y with $x_1 = 5.5$, $x_2 = 0.50$ is:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 * 5.5 + \hat{\beta}_2 * 0.50 + \hat{\epsilon}$$

$$=\hat{\mu}+\hat{\epsilon}=\hat{\mu}+0=4.862+0=4.862$$
,

since the best guess $\hat{\epsilon}$ for error term ϵ is 0.

So, (again) $\hat{\mu}$ and \hat{y} are the same.

goodness of fit: R² & R²_{adj}

$$R^2$$

 R^2 = proportion of variation in y explained by x_1 and x_2 .

Source	df	SS	MS	F	P-value
Regression	2	29.040	14.520	38.109	0.00004
Error	9	3.429	0.381		
Total	11	32.469	2.952		

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} = \frac{29.040}{32.469} = 1 - \frac{3.429}{32.469} = 0.894$$

89.4 % of variation in y is explained by x_1 and x_2 .

 \mathbb{R}^2 (or R squared) is also called the coefficient of determination.

R^2 , continued

 \mathbb{R}^2 is a measure for goodness of fit of the model.

 \mathbb{R}^2 is between 0 and 1; the closer to 1, the better the fit of the model.

 R^2 depends upon how data were collected.

The wider the ranges of values for the explanatory variables, the larger \mathbb{R}^2 will tend to be.

Only compare \mathbb{R}^2 values of different models for the same data set.

R^2 and adjusted R^2

 \mathbb{R}^2 increases when a new x-variable is added to the model, regardless whether the extra variable has predictive value or not.

Therefore, an adjusted R^2 has been proposed:

$$R_{adj}^2 = 1 - \frac{SSE/(n-(k+1))}{SST/(n-1)} = 1 - \frac{MSE}{MST}$$

R_{adj}^2 , continued

$$R_{adj}^2 = 1 - \frac{MSE}{MST}$$

MSE is the estimator for σ_{ϵ}^2 (variance y accounting for x_1 and x_2). *MST* is the estimator for σ_y^2 (variance y ignoring x_1 and x_2).

So, R_{adj}^2 is truly a proportion of explained variance.

When an x-variable is added to the model, R^2_{adj} only increases when $\hat{\sigma}^2_{\epsilon}=MSE$ decreases.