Conjecture 1

Jiaxin Hu

March 19, 2022

Conjecture 1 (Tail bounds for empirical process). Consider the correlated pairs of normal variables (X_i, Y_i) for $i \in [n]$, where $X_i, Y_i \sim N(0, 1)$ and $cov(X_i, Y_i) = \rho$. Let $\rho = \sqrt{1 - \sigma^2}$, and F_n, G_n denote the empirical CDF of $\{X_i\}$ and $\{Y_i\}$. Then, the L_p norm between F_n and G_n satisfies:

1. if $\rho > 0$,

$$\mathbb{P}(\|F_n - G_n\|_p \ge \sqrt{\frac{\sigma}{n}}) \le C_1 \exp\left(-\frac{1}{\sigma}\right); \tag{1}$$

2. if $\rho = 0$,

$$\mathbb{P}(\|F_n - G_n\|_p \le \sqrt{\frac{\sigma}{n}}) \le C_2 \exp\left(-\frac{1}{\sigma}\right),\tag{2}$$

for $p \in [1, \infty)$ with universal positive constants C_1 and C_2 .

Proof Sketches: We prove the inequalities (1) and (2) separately.

For inequality (1), by Ding et al. (2021) (Need to figure out the specific derivation), we have

$$||F_n - G_n||_p \le C\sqrt{\frac{\sigma}{n}},$$

for some positive constant C and general $p \ge 1$ when n is large enough. Therefore, for a fixed $q \ge 1$ and fixed $\lambda > 0$, we have

$$\mathbb{E}[\exp(\lambda \|F_n - G_n\|_q)] = \mathbb{E}\left[1 + \sum_{k=1}^{\infty} \frac{\lambda^k \|F_n - G_n\|_q^k}{k!}\right]$$

$$= 1 + \sum_{k=1}^{\infty} \frac{\lambda^k \mathbb{E}[\|F_n - G_n\|_q^k]}{k!}$$

$$\leq 1 + \sum_{k=1}^{\infty} \frac{\lambda^k C^k (\sqrt{\sigma/n})^k}{k!}$$

$$= \exp(\lambda C \sqrt{\sigma/n}), \tag{3}$$

where the first and last equation follows by power series. The inequality (3) indicates that $||F_n - G_n||_q$ is a sub-Gaussian with sub-Gaussianity $\xi^2 \lesssim \sigma^2/n$; i.e.,

$$\mathbb{E}[\exp(\lambda ||F_n - G_n||_q)] \lesssim \exp(\lambda C \sqrt{\sigma/n} + \lambda^2 \xi^2/2).$$

Hence, by Chernoff bound, we have

$$\mathbb{P}(\|F_n - G_n\|_q \ge C\sqrt{\frac{\sigma}{n}} + t) \le \mathbb{P}(\|F_n - G_n\|_q \ge \mathbb{E}[\|F_n - G_n\|_q] + t)$$

$$\le \exp\left(-\frac{t^2}{2\xi^2}\right)$$

$$\lesssim \exp\left(-\frac{nt^2}{\sigma^2}\right).$$

Take $t \simeq \sqrt{\frac{\overline{\sigma}}{n}}$. We have

$$\mathbb{P}(\|F_n - G_n\|_q \ge C' \sqrt{\frac{\sigma}{n}}) \le C_1 \exp\left(-\frac{1}{\sigma}\right).$$

For inequality (2), we follow the inequality (14) in Ding et al. (2021) (Also need to figure out the specific derivation).

Therefore, when n is large enough, we have Conjecture 1.

References

Ding, J., Ma, Z., Wu, Y., and Xu, J. (2021). Efficient random graph matching via degree profiles. *Probability Theory and Related Fields*, 179(1):29–115.