数学考题 Zeven

题目名称	array	ring	math	trip	cure	game
输入文件名称	array.in	ring.in	math.in	trip.in	cure.in	game.in
输出文件名称	array.out	ring.out	math.out	trip.out	cure.out	game.out
时间限制	2s	1s	1s	1s	1s	1s
空间限制	512MB	512MB	512MB	512MB	512MB	512MB
是否开启O2	是	是	是	是	是	是

开启c++11, 开启无限栈

为避免大家AK太快,在考场上无聊,补充两道热身题。

T0 array

题意

给长度为n的数列ai,每个ai<=M。给定K。

对1到M的每个数d,求有多少个本质不同的b序列满足gcd(b1,b2...bn)=d;同时,恰好有K个bi和ai不同。

对1e9+7取模。

输入格式

第一行包含3个整数,N,M,K。

第二行包含N个整数: a[1], a[2], ..., a[N]。

输出格式

输出M个整数到一行,第i个整数为当d=i时满足条件的不同数列{b[n]}的数目mod 1,000,000,007的值。

数据范围

对于20%的数据, n,m<=100

对于40%的数据, n,m<=1000

另有20%的数据, n=k且ai=m。

对于100%的数据, 1<=N,M<=300000, 1<=K<=N, 1<=a[i]<=M。

样例

输入

```
1 | 3 3 3
2 | 3 3 3
```

1 7 1 0

解释:

当d=1, {b[n]}可以为: (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1)。

当d=2, {b[n]}可以为: (2, 2, 2)。

当d=3,因为{b[n]}必须要有k个数与{a[n]}不同,所以{b[n]}不能为(3,3,3),满足条件的一个都没有。

T0.5 ring

题意

一开始有n个序列,每一个序列有一个元素{i}。

每一轮,可以选择两个序列进行合并,合并结果可能是{X}->{Y}或者是{Y}->{X}。

举个例子,假设现在有两个序列1->2->3、4->5->6,合并完之后可能是1->2->3->4->5->6或者4->5->6->1->2->3。这对应两种不同状态

另外,序列合并完长度不能超过k。

求最后只有m个序列时的不同状态数。

多次查询,对998244353取模

输入

第一行一个整数T,表示查询组数

接下来T行,每一行三个数n,m,k。

输出

T行T个整数表示答案

数据范围

对于20%的数据, n,m,k<=15, T<=10.

对于30%的数据, n,m,k<=1000.

另有20%的数据, k=n.

对于100%的数据, T<=200, 1<=m,k<=n<=1e6

样例

输入:

输出:

```
      1
      1

      2
      6

      3
      6

      4
      360

      5
      1080

      6
      1800

      7
      920789612
```

解释:

3,2,3: {1->2,3},{2->1,3},{1->3,2},{3->1,2},{2->3,1},{3->2,1}

T1 math

题意

多组数据,求

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \left[gcd(2^{i} - 1, 2^{j} - 1) \right]^{k}$$
 (1)

mod 998244353的结果

T (≤12) 组测试数据, n≤1e9, k≤10。

数据范围

对于30%的数据, n<=1000。

另有30%的数据, k=1。

对于100%的数据, T (≤12)组测试数据, n≤1e9, k≤10。

输入格式

第一行一个数表示T。

接下来T行每行两个数表示n和k。

输出格式

T行,表示最后的答案。

样例

输入

1 3 2 2 2 3 10 10

4 998 6

输出:

1 | 12

2 787705213

3 626476785

T2 trip

有n个点的有向完全图,i到j的边每天出现的概率为pi,j,其中pi,i=1

每天可以选择一条边走过去或者待在原地不动

求最优策略下从1到n的期望天数。

假设你的答案为a,std的答案为b,如果 $rac{|a-b|}{max(1,b)} \leq 1e-6$ 即算正确。

数据范围

对于20%的数据, n<=10。

另有20%的数据, n<=100。

另有20%的数据,满足i只和i+1间p>0.

对于100%的数据,有n<=1000。

输入格式

第一行一个数字表示n。

接下来一个矩阵表示pi,j,每个元素为一个整数,表示pi,j转化成百分数的整数部分。

输出格式

一个浮点数,表示期望天数。

样例

输入:

```
1 3
2 100 50 50
3 0 100 80
4 0 0 100
```

输出:

```
1 1.7500000000000000
```

解释:

第一天有50%的概率到达3,有25%的概率到达2,有25%的概率留在原地。

到达2之后有80%的概率到达3,20%的概率留在原地。

即从2到3的期望时间为1.25天。

从1到3的期望时间为: f1 = 1 + f1 * 1/4 + f2 * 1/4 即为7/4 = 1.75.

T3 cure

n名病人来到了医院,他们急需得到治疗。

现在有一种特效药,病人使用后会有P的概率康复。

Zeven每天会给所有病人都使用特效药,而康复的病人会出院。Zeven会照顾病人直到所有病人都康复。

假设当前给x个病人使用特效药,将会消耗a[x]的代价。

现在Zeven想知道治愈所有病人需要的代价的期望。

对998244353取模。

注意, **不**保证 $\forall i < j, a[i] \leq a[j]$.

数据范围:

子任务	分值	特殊性质
1	30	n <= 1000.
2	30	n <= 100000
3	10	orall ai=1.
4	30	n <= 500000 .

对于所有数据,保证0 < u < v < 998244353,0 < ai < 998244353.

输入格式

第一行三个数n, u, v, 其中u, v分别为p的分子和分母。也就是说: $p = \frac{u}{v}$

接下来n个数分别表示a[i]。

输出格式:

一行一个数表示答案。

样例:

- 1 输入:
- 2 1 1 2
- 3 1
- 4 输出:
- 5 2

样例解释:

当只有一个病人时:

他有 $\frac{1}{2}$ 的概率在第一次治疗后康复,有 $\frac{1}{4}$ 的概率在第二次治疗后康复,…根据概率论知识,期望次数为2,故期望代价为2。

T4 game

题意

Zeven喜欢研究博弈问题。

Zeven幻想一名对手YDykjjj与自己对局,进行若干轮对抗。

每轮对抗Zeven有P的概率获得胜利, (1-P)的概率失败,不会有平局。每个人初始为零分,胜利的人加一分,失败的人扣一分;分不会被扣到<0。(但此时赢者依然加分)

Zeven想知道对于轮数(N+M),自己胜利N轮最后得分的期望是多少,答案对1e9+7取模。

输入格式

输入的第一行包含两个正整数T,P',其中T表示数据组数,P'/1000为Zeven获胜的概率,即Zeven在每轮游戏胜利的概率。

接下来T行,每行两个非负整数N,M,表示一组数据。

输出格式

输出T行,每行一个整数,表示对应数据的答案。

样例

输入:

```
1 | 3 500
2 | 1 1
3 | 2 3
4 | 4 4
```

输出:

```
1 | 500000004
2 | 200000002
3 | 728571435
```

样例解释:

每一轮游戏 Zeven 均有 $\frac{1}{2}$ 的概率胜利。

对于第一组数据,Zeven 的胜利可能在第一轮或第二轮,并且概率相等。若他在第一轮胜利,则最终得分为 0,否则她的得分为1 。故期望为 $\frac{1}{2}$,

验证发现 $2 \times 500000004 \equiv 1 \pmod{10^9 + 7}$ 。

对于第二组数据,所求期望为 $\frac{3}{5}$ 。

对于第三组数据,所求期望为 <u>93</u>。 70

数据范围

对于10%的数据, N,M,T≤50。

对于另外20%的数据, N,M,T ≤ 2000。 对于另外20%的数据, N,M ≤ 100000. 对于另外20%的数据, N+M,T ≤ 50000 对于100%的数据, N+M,T ≤ 250000, 0<P'<1000

提示

此题可能有一点卡常