

A Wild Bootstrap for Degenerate Kernel Tests

Kacper Chwialkowski², Dino Sejdinovic,¹, Arthur Gretton,¹

¹Gatsby Unit, CSML, UCL, UK; and ²CS, UCL, UK;

Is P the same distribution as Q?

Where one can use Maximum Mean Discrepancy?

- Markov chains diagnostics
- Change point detection

Other tests

- Hilbert Schmidt Independence Criterion - Dependency structure in financial mar-
 - Brain region activation
- Three Variables Interaction

Background

Similarity

Quantifying Similarity

The V-statistics quantifies the concept of similarity.

$$V_n = \overline{K_{P,P}} + \overline{K_{Q,Q}} - 2\overline{K_{P,Q}}.$$

Explicitly

$$V_n = \frac{1}{n^2} \sum_{1 \le i, j \le n} k(X_i, X_j) + k(Y_i, Y_j) - k(X_i, Y_j) - k(X_j, Y_i).$$

The degeneracy: if P = Q, then for $i \neq j$

 $\mathcal{E}\left[k(X_i, X_j) + k(Y_i, Y_j) - k(X_i, Y_j) - k(X_j, Y_i)\right] = 0.$

Estimation of V_n via Permutation

Permutation Tests for Random Processes

Memory of the Processes

$$Q_t = \mathbf{0.14} Q_{t-1} + 0.98 \epsilon_t$$

Processes with different memory

Estimation of V_n via Permutation Fails

The Reason why Permutation Test Fails

$\begin{bmatrix} K_{P,P} & K_{P,Q} \\ K_{Q,P} & K_{Q,Q} \end{bmatrix} \circ [W^\top W] = [?]$

Wild Bootstrap for Random Processes

Estimation of V_n via Wild Bootstrap

$$V_{n,w} = \overline{\begin{bmatrix} K_{P,P} & K_{P,Q} \\ K_{Q,P} & K_{Q,Q} \end{bmatrix}} \odot \begin{bmatrix} W^{\top}W & -W^{\top}W \\ -W^{\top}W & W^{\top}W \end{bmatrix}$$

Estimation of V_n via Permutation

Experiments

MCMC M.D.

Indie Pop Group Predicts the Volume of the Dow Jones!

Test - MMD	Samples are different
Permutation	68 %
Wild Bootstrap	6 %

Comparison of Shift-HSIC [2] and tests based on the wild bootstrap. The left panel shows the performance under the null hypothesis, where a larger AR coefficient implies a stronger temporal dependence. The right panel show the performance under the alternative hypothesis, where a larger extinction rate implies a greater dependence between processes.

The Kernel Cross-Spectral Density [1] test is, to our knowledge, the only test procedure to reject the null hypothesis if there exist t,t' such that X_t and $Y_{t'}$ are dependent. In the experiments, we compare lag-HSIC with KCSD on two kinds of processes: one inspired by econometrics and one from [1]. In both panels Type II error is plotted.

References

[1] M. Besserve, N.K. Logothetis, and B. Schlkopf. Statistical analysis of coupled time series with kernel cross-spectral density operators. In NIPS, pages 2535–2543. 2013.

[2] K. Chwialkowski and A. Gretton. A kernel independence test for random processes. In *ICML*, 2014.