#_ important Scikit-learn Operations [+100]

General Operations:

- sklearn.datasets.load_iris(): Load the iris dataset.
- sklearn.datasets.load_digits(): Load the hand-written digits dataset.
- sklearn.model_selection.train_test_split(): Split datasets into training and testing subsets.

Preprocessing:

- sklearn.preprocessing.StandardScaler(): Standardize features by removing the mean and scaling to unit variance.
- sklearn.preprocessing.MinMaxScaler(): Transform features by scaling them to a given range.
- sklearn.preprocessing.LabelEncoder(): Encode lαbels with vαlue between 0 and n_classes-1.
- sklearn.preprocessing.OneHotEncoder(): Convert categorical variable(s) into dummy/indicator variables.

Supervised Learning Algorithms:

Linear Models:

- sklearn.linear_model.LinearRegression(): Ordinary least squares linear regression.
- sklearn.linear_model.LogisticRegression(): Logistic regression (classification).
- sklearn.linear_model.Ridge(): Linear least squares with 12 regularization.

Support Vector Machines (SVM):

- sklearn.svm.SVC(): C-Support Vector Classification.
- sklearn.svm.SVR(): Epsilon-Support Vector Regression.

Nearest Neighbors:

- sklearn.neighbors.KNeighborsClassifier(): Clαssifier implementing the k-nearest neighbors vote.
- sklearn.neighbors.KNeighborsRegressor(): Regression based on k-nearest neighbors.

Gaussian Processes:

- sklearn.gaussian_process.GaussianProcessRegressor(): Gaussian process regression (GPR).
- sklearn.gaussian_process.GaussianProcessClassifier(): Gaussian process classification (GPC).

Decision Trees:

- sklearn.tree.DecisionTreeClassifier(): Decision tree classifier.
- sklearn.tree.DecisionTreeRegressor(): Decision tree regressor.

Ensemble Methods:

- sklearn.ensemble.RandomForestClassifier(): Random forest classifier.
- sklearn.ensemble.RandomForestRegressor(): Random forest regressor.
- sklearn.ensemble.GradientBoostingClassifier(): Gradient boosting classifier.
- sklearn.ensemble.GradientBoostingRegressor(): Gradient boosting regressor.

Neural Network Models:

- sklearn.neural_network.MLPClassifier(): Multi-layer perceptron classifier.
- sklearn.neural_network.MLPRegressor(): Multi-layer perceptron regressor.

Unsupervised Learning Algorithms:

Clustering:

sklearn.cluster.KMeans(): K-Means clustering.

- sklearn.cluster.DBSCAN(): Density-based spatial clustering of applications with noise.
- sklearn.cluster.AgglomerativeClustering(): Agglomerative clustering.

Dimensionality Reduction:

- sklearn.decomposition.PCA(): Principal component analysis.
- sklearn.decomposition.NMF(): Non-negative matrix factorization.
- sklearn.manifold.TSNE(): t-distributed Stochastic Neighbor Embedding.

Model Selection and Evaluation:

- sklearn.model_selection.cross_val_score(): Evaluate a score by cross-validation.
- sklearn.model_selection.GridSearchCV(): Exhaustive search over specified parameter values for an estimator.
- sklearn.model_selection.RandomizedSearchCV(): Randomized search on hyperparameters.
- sklearn.metrics.accuracy_score(): Accuracy classification score.
- sklearn.metrics.mean_squared_error(): Mean squared error regression loss.
- sklearn.metrics.confusion_matrix(): Compute confusion matrix to evaluate the accuracy of a classification.
- sklearn.metrics.roc_curve(): Compute Receiver operating characteristic (ROC).
- sklearn.metrics.auc(): Compute Area Under the Curve (AUC) from prediction scores.

Pipeline:

- sklearn.pipeline.Pipeline(): Pipeline of transforms and a final estimator.
- ullet sklearn.pipeline.make_pipeline(): Construct α Pipeline from the qiven estimators.

Feature Extraction:

- sklearn.feature_extraction.text.CountVectorizer(): Convert α collection of text documents to a matrix of token counts.
- sklearn.feature_extraction.text.TfidfVectorizer(): Convert α collection of raw documents to a matrix of TF-IDF features.

Feature Selection:

- sklearn.feature_selection.SelectKBest(): Select features according to the k highest scores.
- sklearn.feature_selection.RFE(): Feature ranking with recursive feature elimination.

Imbalanced Datasets:

 sklearn.utils.class_weight.compute_class_weight(): Estimate class weights for unbalanced datasets.

Decomposition:

- sklearn.decomposition.TruncatedSVD(): Dimensionality reduction using truncated SVD (aka LSA).
- sklearn.decomposition.FastICA(): Fast algorithm for Independent Component Analysis.

Manifold Learning:

- sklearn.manifold.Isomap(): Isomap embedding.
- sklearn.manifold.MDS(): Multi-dimensional scaling.

Dataset Transformations:

- sklearn.preprocessing.PolynomialFeatures(): Generate polynomial and interaction features.
- sklearn.preprocessing.Binarizer(): Binarize data (set feature values to 0 or 1) according to a threshold.

Validation:

- sklearn.model_selection.StratifiedKFold(): Strαtified K-Folds cross-validator.
- sklearn.model_selection.LeaveOneOut(): Leave-One-Out cross-validator.

Calibration:

sklearn.calibration.CalibratedClassifierCV(): Probαbility calibration with isotonic regression or logistic regression.

Semi-Supervised Learning:

- sklearn.semi_supervised.LabelPropagation(): Label Propagation classifier.
- sklearn.semi_supervised.LabelSpreading(): Label Spreading classifier.

Kernel Ridge Regression:

sklearn.kernel_ridge.KernelRidge(): Kernel ridge regression.

Pairwise Metrics:

• sklearn.metrics.pairwise.cosine_similarity(): Compute cosine similarity between samples in X and Y.

Discriminant Analysis:

- sklearn.discriminant_analysis.LinearDiscriminantAnalysis(): Lineαr Discriminant Analysis.
- sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis(): Quadratic Discriminant Analysis.

Isolation Forest:

• sklearn.ensemble.IsolationForest(): Isolation Forest Algorithm.

Naive Bayes:

- sklearn.naive_bayes.GaussianNB(): Gaussian Naive Bayes.
- sklearn.naive_bayes.MultinomialNB(): Multinomial Naive Bayes.

Cross Decomposition:

• sklearn.cross_decomposition.PLSRegression(): PLS regression.

Nearest Centroid Classifier:

• sklearn.neighbors.NearestCentroid(): Nearest centroid classifier.

Neural network utilities:

 sklearn.neural_network.BernoulliRBM(): Bernoulli Restricted Boltzmann Machine.

Stochastic Gradient Descent:

- sklearn.linear_model.SGDClassifier(): Linear classifiers with SGD training.
- sklearn.linear_model.SGDRegressor(): Linear model fitted by minimizing a regularized empirical loss with SGD.

Multi-class and multi-label algorithms:

 sklearn.multiclass.OneVsRestClassifier(): One-vs-the-rest (OvR) multiclass/multilabel strategy.

Multioutput regression:

sklearn.multioutput.MultiOutputRegressor(): Multioutput regression.

Multiclass-multioutput algorithms:

• sklearn.multioutput.ClassifierChain(): Classifier Chain.

Sparse coding:

sklearn.decomposition.SparseCoder(): Sparse coding.

Covariance estimators:

• sklearn.covariance.EmpiricalCovariance(): Maximum likelihood covariance estimator.

Gaussian Mixture Models:

• sklearn.mixture.GaussianMixture(): Gaussian Mixture.

Model Evaluation & Selection:

 sklearn.model_selection.permutation_test_score(): Permutation test for score.

Cluster Biclustering:

 sklearn.cluster.bicluster.SpectralBiclustering(): Spectrαl Biclustering.

Sparse PCA:

• sklearn.decomposition.SparsePCA(): Sparse Principal Components Analysis (SparsePCA).

Voting regressor:

sklearn.ensemble.VotingRegressor(): Voting regressor.

Bagging regressor:

• sklearn.ensemble.BaggingRegressor(): Bagging regressor.

Impute:

• sklearn.impute.SimpleImputer(): Basic imputation transformer.

Checking:

• sklearn.utils.check_X_y(): Ensure X and y have compatible shapes.

Checking Estimators:

• sklearn.utils.estimator_checks.check_estimator(): Check if estimator adheres to scikit-learn conventions.

Multilabel Binarizer:

• sklearn.preprocessing.MultiLabelBinarizer(): Transform between iterable of iterables and a multilabel format.

Cross Decomposition:

sklearn.cross_decomposition.CCA(): Canonical Correlation Analysis.

Loading datasets:

- sklearn.datasets.load_breast_cancer(): Load breast cancer dataset.
- sklearn.datasets.load_diabetes(): Loαd diabetes dataset.
- sklearn.datasets.load_linnerud(): Load Linnerud dataset.

Binarize labels:

• sklearn.preprocessing.label_binarize(): Binarize labels in a one-vs-all fashion.

Metrics:

- sklearn.metrics.log_loss(): Logarithmic loss.
- sklearn.metrics.mean_absolute_error(): Mean absolute error regression loss.
- sklearn.metrics.mean_squared_log_error(): Mean squared logarithmic error regression loss.

Partial dependence plots:

• sklearn.inspection.plot_partial_dependence(): Partial dependence plots.

Unsupervised Neural Network:

• sklearn.neural_network.BernoulliRBM(): Bernoulli Restricted Boltzmann Machine.

Load sample images:

 sklearn.datasets.load_sample_images(): Load sample images for image manipulation.

Metrics:

- sklearn.metrics.precision_recall_curve(): Compute precision-recαll pairs for different probability thresholds.
- sklearn.metrics.average_precision_score(): Compute average precision (AP) from prediction scores.

Checking:

• sklearn.utils.check_random_state(): Turn random state into a numpu random number generator.

Output Code:

 sklearn.utils.murmurhash3_32(): Hash α Python object into α 32-bit integer.

Metrics:

- sklearn.metrics.classification_report(): Build α text report showing the main classification metrics.
- sklearn.metrics.cohen_kappa_score(): Cohen's kappa: a statistic that measures inter-annotator agreement.

- sklearn.metrics.confusion_matrix(): Compute confusion matrix to evaluate the accuracy of a classification.
- sklearn.metrics.hinge_loss(): Compute (average) hinge loss.
- sklearn.metrics.matthews_corrcoef(): Compute the Matthews correlation coefficient (MCC) for binary classes.