Gene Function Prediction Using SVM

>> Multi-label Classification Based on Label Ranking and Delicate Boundary SVM

sampling and Hierarchy Constraint

古月研究室 Furuzuki Lab. Benhui CHEN

Gene Function Prediction

Gene Function Prediction

- The completion of several genome projects in the past decade has generated the full genome sequence of many organisms.
 Assigning biological functions to the sequences has become a key challenge in modern biology.
- Machine learning techniques are often used to predict gene functions from a predefined set of possible functions.
 Afterwards, the predictions with highest confidence can be tested in the lab.

古月研究室 Furuzuki Lab. Benhui CHEN

Multi-label Classification Based on Label Ranking

Experiments

- Two benchmark problems.
- Yeast functional genomics.
- > Genbase motif-based protein classification.

Table 3.1: Characteristics of the experimental benchmark datasets

Dataset	Total labels	Total features	Avg. labels	Training/Testing set
Yeast	14	103 (Numeric)	4.25	1500/917
Genbase	27	1186 (Discrete)	1.35	463/199

古月研究室 Furuzuki Lab. Benhui CHEN

11

Multi-label Classification Based on Label Ranking

Experiments

• Evaluation metrics.

 $HammingLoss(C,D) = \frac{1}{\mid D \mid} \sum_{i=1}^{\mid D \mid} \frac{1}{k} \mid y_i \Delta z_i \uparrow$

 $Accuracy(C,D) = \frac{1}{\mid D\mid} \sum_{i=1}^{\mid D\mid} \frac{\left|y_i \cap z_i\right|}{\left|y_i \cup z_i\right|}$

Actual label set of test instance

Prediction result

 $Precision(C, D) = \frac{1}{|D|} \sum_{i=1}^{|D|} \frac{|y_i \cap z_i|}{|z_i|}$

 $Recall(C, D) = \frac{1}{|D|} \sum_{i=1}^{|D|} \frac{|y_i \cap z_i|}{|y_i|}$

古月研究室 Furuzuki Lab. Benhui CHEN

Part 2: Gene Function Prediction

Multi-label Classification Based on Label Ranking and Delicate Boundary SVM

>> Hierarchical Multi-label Classification Based on Over-sampling and Hierarchy Constraint

古月研究室 Furuzuki Lab. Benhui CHEN

17

Hierarchical Multi-label Classification (HMC)

Introduction

• Hierarchical multi-label classification (HMC): an example that belongs to one class automatically belongs to all its superclasses (this is called the hierarchy constraint).

古月研究室 Furuzuki Lab. Benhui CHEN

Hierarchical Multi-label Classification (HMC)

Experiments

• Benchmark FunCat yeast Datasets.

Downloaded from: http://dtai.cs.kuleuven.be/clus/hmcdatasets/

_						
PΡ	\cap PEPT	TES OF	RYPER	IMENT	DATA	SETS

Dateset	Attribute	Training	Testing
Sequence (seq)	478	2580	1339
Spellman et al. (cellcycle)	77	2476	1281
Gasch et al. (gasch1)	173	2480	1284
All microarray (expr)	551	2488	1291

古月研究室 Furuzuki Lab. Benhui CHEN

27

Hierarchical Multi-label Classification (HMC)

Experiments

- Specific Experiments on Subtree Dataset
- > To observe the detailed performance of the proposed hierarchical SMOTE and the improved TPR ensemble, we also implement a specific experiment based on the dataset of Sequence (seq) and the subtree of "protein fate" FunCat class (FunCat ID = 14).
- The subtree is composed by 20 nodes. In the dataset of Sequence (seq), there are 625 training examples and 337 testing instances relating with the class subtree of ID = 14.

古月研究室 Furuzuki Lab. Benhui CHEN

Hierarchical Multi-label Classification (HMC)

Experiments

• Evaluation metrics

Per-class:

$$P \, re \, c = \frac{TP}{TP + FP}, R \, e \, c = \frac{TP}{TP + FN}$$

$$F \, - s \, c \, o \, re = \frac{2 * P \, re \, c * R \, e \, c}{P \, re \, c + R \, e \, c}$$

Multi-label:

$$MPrec = \frac{1}{\mid D\mid} \sum_{i=1}^{\mid D\mid} \frac{\left|y_{i} \cap z_{i}\right|}{\left|z_{i}\right|}, MRec = \frac{1}{\mid D\mid} \sum_{i=1}^{\mid D\mid} \frac{\left|y_{i} \cap z_{i}\right|}{\left|y_{i}\right|}$$

$$MF - score = \frac{2 * MPrec * MRec}{MPrec + MRec}$$

古月研究室 Furuzuki Lab. Benhui CHEN

20

Hierarchical Multi-label Classification (HMC)

Experiments

• Experiment results of different over-sampling strategies.

Table 4.2: Experiment results of different over-sampling strategies based on the FunCat subtree of "Protein fate" (ID=14).

FunCat ID	Positive	Negative	Flat	Flat	SMOTE	SMOTE	H-SMOTE	H-SMOTE
			Prec	Rec	Prec	Rec	Prec	Rec
14.01	61	564	0.1667	0.3333	0.1721	0.3784	0.2407	0.4415
14.04	158	467	0.3131	0.3690	0.3371	0.3814	0.3558	0.4405
14.07	306	319	0.6460	0.5474	0.6460	0.5474	0.6460	0.5474
14.07.01	14	292	0.1020	0.4167	0.2141	0.4072	0.2111	0.4833
14.07.02	41	265	0.0822	0.2500	0.0978	0.2571	0.1486	0.4583
14.07.02.01	11	30	0.0714	0.7500	0.1521	0.4860	0.0882	0.7500
14.07.02.02	27	14	0.0606	0.8571	0.0606	0.8571	0.0606	0.8571
14.07.03	91	215	0.2619	0.6226	0.2987	0.6233	0.2736	0.6604
14.07.04	32	274	0.1019	0.5500	0.0925	0.3672	0.1400	0.7000
14.07.05	44	262	0.0532	0.2174	0.0872	0.2556	0.0860	0.3478
14.07.07	11	295	0.0121	0.1453	0.0195	0.1670	0.0263	0.3333
14.07.09	б	300	0.0153	0.1475	0.0205	0.1892	0.0385	0.2500
14.07.11	49	257	0.0690	0.2857	0.0944	0.3034	0.0909	0.5000
14.07.11.01	13	36	0.0244	0.2500	0.0215	0.1931	0.0357	0.3750
14.10	118	507	0.2474	0.4068	0.2850	0.4768	0.2700	0.4576
14.13	150	475	0.3048	0.4507	0.2715	0.5272	0.3380	0.5070
14.13.01	112	38	0.1688	0.7407	0.1275	0.4248	0.1688	0.7407
14.13.01.01	75	37	0.1147	0.7143	0.1147	0.7143	0.1147	0.7143
14.13.04	16	134	0.0333	0.1429	0.0314	0.1762	0.0556	0.2857
14.13.04.02	б	16	0.0127	0.2542	0.0127	0.2542	0.0127	0.2542

古月研究室 Furuzuki Lab. Benhui CHEN

Hierarchical Multi-label Classification (HMC) Experiments • Experiment results of different ensemble strategies. Table 4.3: Experiment results of different ensemble strategies based on the FunCat subtree of "Protein fate" (ID=14). Improved TPR Improved TPR Prec Rec Prec Rec 0.2016 0.3792 14.04 14.07 0.3228 0.3929 0.5490 0.8263 0.4568 14.07.01 14.07.02 0.2000 0.41*6*7 0.0923 0.2500 0.2176 0.5116 0.4835 14.07.02.01 0.1667 0.5000 14.07.02.02 0.0794 0.3571 0.2483 0.5758 14.07.03 14.07.04 0.2857 0.6038 0.0824 0.3500 0.2837 0.6487 0.6982 0.0685 0.2174 14.07.07 0.0121 0.1453 14.07.09 0.0153 0.1475 14.07.11 0.0749 0.2786 14.07.11.01 0.0169 0.1436 0.0303 0.1267 0.546 0.0465 14.10 0.2474 0.4068 0.2516 0.5634 0.4792 14.13 14.13 0.2516 0.5634 14.13.01 0.1825 0.4630 14.13.01.01 0.1221 0.7429 14.13.04 0.0378 0.1865 14.13.04.02 0.0127 0.2542 0.1864 0.1237 0.6932 0.7265 0.0567 0.2487

0.0476

古月研究室 Furuzuki Lab. Benhui CHEN

0.5000

Conclusions

- 1) A multi-label classification based on label ranking and delicate decision boundary SVM can be used for solving multi-label gene function classification.
- A hierarchical multi-label classification (HMC) method based on over-sampling and hierarchy constraint can be used for solving the FunCat gene function prediction problem.

古月研究室 Furuzuki Lab. Benhui CHEN

3

Thank you for your attention!

- End -

古月研究室 Furuzuki Lab. Benhui CHEN