CSE 331 Fall 2018

Homework 1: Q3

Name: Waiwai Kim, waiwaiki

1 Part (a) Proof Idea

According to the recitation notes, we have found a specific family input shown in Table 1 and 2 that produces n number of stable matchings. We have been asked to prove that in the given family of input, when a group is matched with their preferences in a specific column i, the other group is matched with their preferences in column n - i + 1.

Table 1: Men's preferences										
m_1	1	2	3		n-1	n				
m_2	2	3	4		n	1				
m_n	n	1	2		n-2	n-1				

Let's look at m_1 first. In m_1 , w_i is in the i column. Now, look at every w_i in Table 2. m_1 exists in (n-i+1) column.

Similarly, we look at m_2 . We notice that w_i is in $((i-1) \mod n)$ column in m_2 . Now, look at every w_i row in Table 2. m_2 exists in $((n-i+2) \mod n)$ column.

Table 2: Women's Preferences									
\mathbf{w}_1	2	3	4		n	1			
W ₂	3	4	5		1	2			
\mathbf{w}_n	1	2	3		n-1	n			

Based on the pattern, we can say the following.

For men index = i and women index = j,

$$m_i$$
 is in $(n-j+i) \mod n$ column in women's preference. (1)

$$w_i$$
 is in $(j-i+1) \mod n$ column in men's preference. (2)

Since we have generalized m_i and w_j , let's bring back the lemma 1 that we are trying to prove.

Lemma 1. If you match one group with their preferences in a specific column k, then the other group is matched with their preferences in column n - k + 1.

Look at k column as the lemma says. Consider a man m_i and. Let w_j be the woman such that w_j is in the k column in mens preference. We can also say that w_j is in the (j-i+1) column. Thus k=(j-i+1). Substitute K in lemma. We have

$$n-k+1 = n-(i-i+1)+1 = n-i+i$$

We also know that m_i is in (n-j+i)n column in womens preference based on 2. Thus, Lemma 1 is true.

CSE 331 Fall 2018

2 Part (b) Proof Idea

We have seen such an instance when n=3 in recitation. We will extend the instance to every multiple of 3 by appending another case of n=3 to the existing n=3 matrix in a way to preserve stable matching combination within respective n=3 block is preserved. For example, we know case 1 in Table 3 has 3 stable matchings. Likewise, we know case 2 in Table 4 has 3 stable matchings. Case 1 and Case 2 are practically the same matrix, while case 2 has the number incremented by 3.

Table 5 is an example of n = 6 that produces 9 stable matchings. The preference list of men 4-6 was simply appended to that of men 1-3. Similarly, the preference list of men 1-3 was appended to that of men 4-6. The exact same method was applied to extend womens preference list from n = 3 to n = 6. In plain English, men 1-3 always prefer women 1-3 to women 4-5, and women 1-3 always prefer men 1-3 to men 4-5. Because such method to expand prevents "inter-matrix breeding", the number of stable matchings is a simple combination of $3 \times 3 = 9$. Similarly, an example of the preference list when n = 9 is shown in Table 6.

To generalize even further, it does not matter what comes after column 3, as long as the preference list in column 1-3 is preserved. The generalized men's and women's preference lists are shown in Table 7 and 8.

Table 3: case 1 - Preference list that produces 3 stable matchings when n = 3

m1:	w1	w2	w3	w1:	m2	m3	m1
m2:	w2	w3	w1	w2:	m3	m1	m2
m3:	w3	w1	w2	w3:	m1	m2	m3

Table 4: case2 - Preference list that produces 3 stable matchings when n = 3

				_				
m4:	w4	w5	w6		w4:	m5	m6	m4
m5:	w5	w6	w4		w5:	m6	m4	m5
m6:	w6	w4	w5		w6:	m4	m5	m6

Table 5: Preference list that produces 9 stable matchings when n = 6

m1:	w1	w2	w3	w4	w5	w6	w1:	m2	m3	m1	m5	m6	m4
m2:	w2	w3	w1	w5	w6	w4	w2:	m3	m1	m2	m6	m4	m5
m3:	w3	w1	w2	w6	w4	w5	w3:	m1	m2	m3	m4	m5	m6
m4:	w4	w5	w6	w1	w2	w3	w4:	m5	m6	m4	m2	m3	m1
m5:	w5	w6	w4	w2	w3	w1	w5:	m6	m4	m5	m3	m1	m2
m6:	w6	w4	w5	w3	w1	w2	w6:	m4	m5	m6	m1	m2	m3

3 Part (b) Proof Details

When the matrix n = 3k, we know that the matrix is broken down to k different 3×3 matrices, each of which has unique 3 stable matchings. Thus, in this case, the total number of stable matchings is 3^k .

CSE 331 Fall 2018

Table 6:	Preference	list that	produces 27	7 stable	matchings	when $n =$	9

m1:	w1	w2	w3	w4	w5	w6	w7	w8	w9	w1:	m2	m3	m1	m5	m6	m4	m8	m9	m7
m2:	w2	w3	w1	w5	w6	w4	w8	w9	w7	w2:	m3	m1	m2	m6	m4	m5	m9	m7	m8
m3:	w3	w1	w2	w6	w4	w5	w9	w7	w8	w3:	m1	m2	m3	m4	m5	m6	m7	m8	m9
m4:	w4	w5	w6	w1	w2	w3	w7	w8	w9	w4:	m5	m6	m4	m2	m3	m1	m8	m9	m7
m5:	w5	w6	w4	w2	w3	w1	w8	w9	w7	w5:	m6	m4	m5	m3	m1	m2	m9	m7	m8
m6:	w6	w4	w5	w3	w1	w2	w9	w7	w8	w6:	m4	m5	m6	m1	m2	m3	m7	m8	m9
m7:	w7	w8	w9	w1	w2	w3	w4	w5	w6	w7:	m8	m9	m7	m2	m3	m1	m5	m6	m4
m8:	w8	w9	w7	w2	w3	w1	w5	w6	w4	w8:	m9	m7	m8	m3	m1	m2	m6	m4	m5
m9:	w9	w7	w8	w3	w1	w2	w6	w4	w5	w9:	m7	m8	m9	m1	m2	m3	m4	m5	m6

Table 7: Generalized Men's Preference List

		Tabic	7. Ochcranzeu	IVICII S I ICI	CICILCE LIST		
\mathbf{m}_1 :	1	2	3		$1 + 3 \times (n-3)$	2 + 3 x(n-3)	$3 + 3 \times (n-3)$
\mathbf{m}_2 :	2	3	1		1 + 3 x(n-2)	2 + 3 x(n-2)	$3 + 3 \times (n-2)$
\mathbf{m}_3 :	3	1	2		2 + 3 x(n-1)	$3 + 3 \times (n-1)$	1+3 x(n-1)
•••							
\mathbf{m}_{n-2} :	$1 + 3 \times (n-3)$	2 + 3 x(n-3)	$3 + 3 \times (n-3)$				
\mathbf{m}_{n-1} :	1 + 3 x(n-2)	2 + 3 x(n-2)	$3 + 3 \times (n-2)$				
\mathbf{m}_n :	2 + 3 x(n-1)	$3 + 3 \times (n-1)$	1+3 x(n-1)				

Table 8: Generalized Women's Preference List 2 3 1 .. $1 + 3 \times (n-3)$ $2 + 3 \times (n-3)$ $3 + 3 \times (n-3)$ \mathbf{w}_1 : 3 1 2 1 + 3 x(n-2) $2 + 3 \times (n-2)$ $3 + 3 \times (n-2)$ \mathbf{w}_2 : 1 2 3 $2 + 3 \times (n-1)$ $3 + 3 \times (n-1)$ 1+3 x(n-1) \mathbf{w}_3 : • • • $2 + 3 \times (n-3)$ $3 + 3 \times (n-3)$ $1 + 3 \times (n-3)$ \mathbf{w}_{n-2} : $3 + 3 \times (n-2)$ 1 + 3 x(n-2) 2 + 3 x(n-2) \mathbf{w}_{n-1} :

 \mathbf{w}_n : 1 + 3 x(n-1) 2 + 3 x(n-1) 3+ 3 x(n-1)