Lista 4 de Exercícios:

- 1. Para cada uma das curvas no R², faça um esboço e calcule uma parametrização da reta tangente e da reta normal nos pontos dados:
 - a. $\sigma(t) = (t, t^2), t \in R \ em \ t = 2.$
 - b. $\sigma(t) = (\cos t, \sin t), t \in [0, 2\pi) \text{ em } t = \pi.$
 - c. $\sigma(t) = (cost, 2sent), t \in [0, 2\pi) \ em \ t = \pi/2$.
 - d. $\sigma(t) = (t^3, t), t \in R \ em \ t = 1$.
 - e. $x^2 + y^2 = 9 em (3.0)$.
 - f. $(x-3)^2 + (y+1)^2 = 1 em (3,-2)$.
 - g. $(x+1)^2 + (y+2)^2 = 1 em (-1,-1)$.
 - h. $x = y^2 em (1, -1)$.
 - i. $\frac{x^2}{4} + \frac{y^2}{9} = 1 \ em \ (0,3)$.
 - j. $\frac{(x-1)^2}{1} + \frac{y^2}{9} = 1 \ em \ (1, -3).$
 - k. $\sigma(t) = (2\cos t, 1 + 2\sin t), t \in [0, 2\pi) em(\sqrt{3}, 2).$
- 2. Se $\sigma'(t) = (t^2 + 1, t), t \in R \ e \ \sigma(0) = (1,3), \ encontre \ \sigma(t)$.
- 3. A astróide $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 2^{\frac{2}{3}}$ tem equações paramétricas x = $2\cos^3 t$ e y = $2\sin^3 t$, $t \in [0,2\pi)$. Escreva a equação da reta tangente à astróide no ponto correspondente a $t = \frac{\pi}{4}$.
- 4. Seja C a curva parametrizada por $\sigma(t) = (cost, sent, 1 2sent), t \in [0, 2\pi)$.
- a. Determine $\sigma'(t)$.
- b. Determine uma parametrização da reta tangente em (-1,0,1).
- 5. Faça um esboço das curvas no R³ definidas pelas seguintes parametrizações:
 - a. $\sigma(t) = (1,2,t), t \in R$.
 - b. $\sigma(t) = (t, t, t), t \in R$.
 - c. $\sigma(t) = (2\cos t, 3\sin t, 4), t \in R$.
 - d. $\sigma(t) = (2\cos t, 4, 3\sin t), t \in R$.
 - e. $\sigma(t) = (t + 1, t, t 1), t \in R$.
 - f. $\sigma(t) = (1 + t, 2 t, t 5t), t \in R$.
 - g. $\sigma(t) = (1 + 2\cos t, 2 + 4\sin t, 9), t \in R$.
 - h. $\sigma(t) = (cost, 3 + sent, 1), t \in R$.
 - i. $\sigma(t) = (1, cost, sent), t \in R$.
 - j. $\sigma(t) = (cost, -1, sent), t \in R$.
 - k. $\sigma(t) = (4,2\cos t, sent), t \in R$.
 - I. $\sigma(t) = (1,2,t+1), t \in R$.
 - m. $\sigma(t) = (1,2t,t), t \in R$.
 - n. $\sigma(t) = (1 + 3\cos t, 2 + 8\sin t, 5), t \in \mathbb{R}$.
 - o. $\sigma(t) = (t, 2, t), t \in R$.
 - p. $\sigma(t) = (3\cos t, 4, 3\sin t), t \in R$.
 - q. $\sigma(t) = (t, 2t 1, t + 2), t \in R$.
 - r. $\sigma(t) = (1 t, 2 t, t 1), t \in R$.

- 6. Esboce o gráfico dos planos abaixo, e dê um vetor normal de cada um.
 - a. x = 2.
 - b. y = 3.
 - c. x = 4.
 - d. z = -4.
 - e. x + 2y 6 = 0.
 - f. 3x 2z 12 = 0.
 - g. 2x + y + 5z = 0.
 - h. x + y + z = 1.
 - i. x + y = 7.
 - j. x + z = 2.
 - k. y + z = 3.
 - I. x + 2y + 2z = 2.
 - m. y = 2.
 - n. x = 2 z + y.
 - o. x = 2 6y.
- 7. Esboce o gráfico de cada um dos cilindros abaixo:
- a. $x^2 + (y-2)^2 = 4$.
- b. $y^2 + z^2 = 16$.
- c. $(x+1)^2 + (y-6)^2 = 4$.
- d. $x^2 = 9z$.
- e. y = |z|.
- f. $x^2 4y = 0$.
- g. $x^2 + y^2 = 1$.
- h. $x^2 + z^2 = 9$.
- i. $x^2 = y^2$.
- j. $x^2 = (y-1)^2$.
- k. $x^3 = y$
- I. y = senx.
- m. $y = x^2$.