SBML Model Report

Model name: "Nakakuki2010-CellFateDecision Mechanistic"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by Lukas Endler¹ at April 30th 2010 at 11:41 a. m. and last time modified at February 28th 2014 at four o' clock in the afternoon. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	3
species types	0	species	49
events	0	constraints	0
reactions	78	function definitions	56
global parameters	141	unit definitions	2
rules	0	initial assignments	0

Model Notes

This mechanistic model describes the activation of immediate early genes such as cFos after EGF or heregulin (HRG) stimulation of the MAPK pathway. Phosphorylated cFos is a key transcription factor triggering downstream cascades of cell fate determination. The model can explain how the switch-like response of p-cFos emerges from the spatiotemporal dynamics. This mechanistic model comprises the explicit reaction kinetics of the signal transduction pathway,

¹EMBL-EBI, lukas@ebi.ac.uk

the transcriptional and the posttranslational feedback and feedforward loops. In the below article, two different mechanistic models have been studied, the first one based on previously known interactions but failing to account for the experimental data and the second one including additional interactions which were discovered and confirmed by new experiments. The mechanistic model encoded here is the second one, the extended and at the time of creation most complete model of cell fate decision making in response to different doses of EGF or HRG stimulation. The encoded parameter set corresponds to 10mM HRG stimulation as shown in Fig.1 of the article. The Supplementary Methods of the article provide further parameter sets that allow simulations for different ligands and different doses. A corresponding core model is available from http://www.ebi.ac.uk/biomodels/ as MODEL1003170000.

Ligand-specific c-Fos expression emerges from the spatiotemporal control of ErbB network dynamics.

Takashi Nakakuki(1), Marc R. Birtwistle(2,3,4), Yuko Saeki(1,5), Noriko Yumoto(1,5), Kaori Ide(1), Takeshi Nagashima(1,5), Lutz Brusch(6), Babatunde A. Ogunnaike(3), Mariko Hatakeyama(1,5), and Boris N. Kholodenko(2,4); Cell In Press, online 20 May 2010, doi: 10.1016/j.cell.2010.03.054

- (1) RIKEN Advanced Science Institute, Computational Systems Biology Research Group, Advanced Computational Sciences Department, 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- (2) Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- (3) University of Delaware, Department of Chemical Engineering, 150 Academy St., Newark, DE 19716, USA
- (4) Thomas Jefferson University, Department of Pathology, Anatomy, and Cell Biology, 1020 Locust Street, Philadelphia, PA 19107, USA
- (5) RIKEN Research Center for Allergy and Immunology, Laboratory for Cellular Systems Modeling, 1-7-22 Tsurumi-ku, Yokohama, 230-0045, Japan
- (6) Dresden University of Technology, Center for Information Services and High Performance Computing, 01062 Dresden, Germany

2 Unit Definitions

This is an overview of five unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit volume

Definition pl

2.2 Unit substance

Definition nmol

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains three compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
default	default	0000290	3	1	litre		
${\tt cytoplasm}$	cytoplasm	0000290	3	940	pl	$\overline{\mathbf{Z}}$	
nucleus	nucleus	0000290	3	220	pl		

3.1 Compartment default

This is a three dimensional compartment with a constant size of one pl.

Name default

SBO:0000290 physical compartment

3.2 Compartment cytoplasm

This is a three dimensional compartment with a constant size of 940 pl.

Name cytoplasm

SBO:0000290 physical compartment

3.3 Compartment nucleus

This is a three dimensional compartment with a constant size of 220 pl.

Name nucleus

SBO:0000290 physical compartment

4 Species

This model contains 49 species. The boundary condition of two of these species is set to true so that these species' amount cannot be changed by any reaction. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
EGF	EGF	default	$\operatorname{nmol} \cdot \operatorname{pl}^{-1}$		
HRG	HRG	default	$nmol \cdot pl^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
A1	A1	cytoplasm	$n \text{mol} \cdot p l^{-1}$		
$A1_2$	A1_2	cytoplasm	$n \text{mol} \cdot \text{pl}^{-1}$		
A2	A2	cytoplasm	$n \text{mol} \cdot \text{pl}^{-1}$		
$A2_2$	A2_2	cytoplasm	$n \text{mol} \cdot \text{pl}^{-1}$		
A3	A3	cytoplasm	$nmol \cdot pl^{-1}$		
A3_2	A3_2	cytoplasm	$nmol \cdot pl^{-1}$		
DUSPmRNA	DUSPmRNA	cytoplasm	$nmol \cdot pl^{-1}$		
ERK_c	ERK_c	cytoplasm	$nmol \cdot pl^{-1}$		
pERK_c	pERK_c	cytoplasm	$nmol \cdot pl^{-1}$	\Box	
ppERK_c	ppERK_c	cytoplasm	$nmol \cdot pl^{-1}$	\Box	
F	F	cytoplasm	$\operatorname{nmol} \cdot \operatorname{pl}^{-1}$	\Box	
c_FOS_c	c_FOS_c	cytoplasm	$\operatorname{nmol} \cdot \operatorname{pl}^{-1}$		
pc_FOS_c	pc_FOS_c	cytoplasm	$\operatorname{nmol} \cdot \operatorname{pl}^{-1}$	\Box	
$\texttt{c}_\texttt{FOSmRNA}$	c_FOSmRNA	cytoplasm	$nmol \cdot pl^{-1}$	\Box	
FmRNA	FmRNA	cytoplasm	$nmol \cdot pl^{-1}$	\Box	
Kin	Kin	cytoplasm	$nmol \cdot pl^{-1}$	\Box	
Kin_2	Kin_2	cytoplasm	$nmol \cdot pl^{-1}$	\Box	\Box
pMEK	pMEK	cytoplasm	$nmol \cdot pl^{-1}$		
MEK	MEK	cytoplasm	$nmol \cdot pl^{-1}$	\Box	\Box

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
DUSP_c	DUSP_c	cytoplasm	$nmol \cdot pl^{-1}$		\Box
pDUSP_c	pDUSP_c	cytoplasm	$n \text{mol} \cdot \text{pl}^{-1}$		
RSK_c	RSK_c	cytoplasm	$n \text{mol} \cdot p l^{-1}$		
pRSK_c	pRSK_c	cytoplasm	$n \text{mol} \cdot p l^{-1}$		
RsD	RsD	cytoplasm	$n \text{mol} \cdot p l^{-1}$		
RsT	RsT	cytoplasm	$n \text{mol} \cdot \text{pl}^{-1}$		
CREB_n	CREB_n	nucleus	$n \text{mol} \cdot \text{pl}^{-1}$		
pCREB_n	pCREB_n	nucleus	$n \text{mol} \cdot \text{pl}^{-1}$		
ERK_n	ERK_n	nucleus	$nmol \cdot pl^{-1}$		
pERK_n	pERK_n	nucleus	$\mathrm{nmol}\cdot\mathrm{pl}^{-1}$		
ppERK_n	ppERK_n	nucleus	$nmol \cdot pl^{-1}$		
Elk1_n	Elk1_n	nucleus	$nmol \cdot pl^{-1}$		
pElk1_n	pElk1_n	nucleus	$nmol \cdot pl^{-1}$		
FOSn	FOSn	nucleus	$\operatorname{nmol} \cdot \operatorname{pl}^{-1}$		
FOSn_2	FOSn_2	nucleus	$nmol \cdot pl^{-1}$		
Fn	Fn	nucleus	$\operatorname{nmol} \cdot \operatorname{pl}^{-1}$		
DUSP_n	DUSP_n	nucleus	$\mathrm{nmol}\cdot\mathrm{pl}^{-1}$		
pDUSP_n	pDUSP_n	nucleus	$\mathrm{nmol}\cdot\mathrm{pl}^{-1}$		
pDUSP_n_ERK_n	pDUSP_n_ERK_n	nucleus	$\mathrm{nmol}\cdot\mathrm{pl}^{-1}$		
$pDUSP_n_pERK_n$	pDUSP_n_pERK_n	nucleus	$\operatorname{nmol} \cdot \operatorname{pl}^{-1}$		
pDUSP_n_ppERK_n	pDUSP_n_ppERK_n	nucleus	$\operatorname{nmol} \cdot \operatorname{pl}^{-1}$		
DUSP_n_ERK_n	DUSP_n_ERK_n	nucleus	$\operatorname{nmol} \cdot \operatorname{pl}^{-1}$		
DUSP_n_pERK_n	DUSP_n_pERK_n	nucleus	$\mathrm{nmol}\cdot\mathrm{pl}^{-1}$		
DUSP_n_ppERK_n	DUSP_n_ppERK_n	nucleus	$nmol \cdot pl^{-1}$		
PreDUSPmRNA	PreDUSPmRNA	nucleus	$\mathrm{nmol}\cdot\mathrm{pl}^{-1}$		
PreFOSmRNA	PreFOSmRNA	nucleus	$nmol \cdot pl^{-1}$		
PreFmRNA	PreFmRNA	nucleus	$nmol \cdot pl^{-1}$		

	TIOUUCCU	Crodinge
	C	7
٩	4	-
	_	`
(2	2
ļ	١	٥
	5	D
	÷	=
- 1	Į	J
	ì	×

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
$pRSK_n$	pRSK_n	nucleus	$nmol \cdot pl^{-1}$		

5 Parameters

This model contains 141 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
V2	V2		0.220		
V3	V3		0.720		$\overline{\mathbf{Z}}$
КЗ	K3		160.000		$\overline{\mathbf{Z}}$
V4	V4		0.648		$\overline{\mathbf{Z}}$
K4	K4		60.000		$ \overline{\mathbf{Z}} $
V5	V5		19.499		$ \overline{\checkmark} $
K5	K5		29.941		
V6	V6		19.499		$ \overline{\mathbf{Z}} $
К6	K6		29.941		$ \overline{\mathbf{Z}} $
KimERK	KimERK		0.012		
KexERK	KexERK		0.018		
KimERKP	KimERKP		0.012		
KexERKP	KexERKP		0.018		
KimERKPP	KimERKPP		0.011		
KexERKPP	KexERKPP		0.013		
V10	V10		29.241		
K10	K10		169.047		
n10	n10		3.971		
p11	p11		1.26129 · 1	0^{-4}	
p12	p12		0.008		
p13	p13		0.001		
V14	V14		5.637		
K14	K14		34180.480		
V15	V15		2.992		
K15	K15		0.001		
p16	p16		$2.57 \cdot 1$		
p17	p17		4.81 · 1	0^{-5}	
KimDUSP	KimDUSP		0.024		
KexDUSP	KexDUSP		0.070		
KimDUSPP	KimDUSPP		0.024		
KexDUSPP	KexDUSPP		0.070		
V20	V20		0.158		
K20	K20		735598.697		
V21	V21		0.006		
K21	K21		387.838		
p22	p22		$2.57 \cdot 1$		
p23	p23		4.81 · 1	0^{-5}	

Id	Name	SBO	Value	Unit	Constant
V24	V24		0.550		Ø
K24	K24		29516.066		$\overline{\mathbf{Z}}$
V1	V1		0.343		$\overline{\mathbf{Z}}$
K1	K1		307.042		$\overline{\mathbf{Z}}$
V25	V25		10.091		$\overline{\mathbf{Z}}$
K25	K25		0.914		$\overline{\mathbf{Z}}$
KimRSKP	KimRSKP		0.026		$\overline{\mathbf{Z}}$
KexRSKP	KexRSKP		0.130		$\overline{\mathbf{Z}}$
V27	V27		19.231		$\overline{\mathbf{Z}}$
K27	K27		441.583		$\overline{\mathbf{Z}}$
V28	V28		6.575		$\overline{\mathbf{Z}}$
K28	K28		14.992		$\overline{\mathbf{Z}}$
V29	V29		0.519		$\overline{\mathbf{Z}}$
K29	K29		21312.691		$\overline{\mathbf{Z}}$
V30	V30		13.795		$\overline{\mathbf{Z}}$
K30	K30		15.044		$\overline{\mathbf{Z}}$
V31	V31		0.655		$\overline{\mathbf{Z}}$
K31	K31		185.976		$\overline{\mathbf{Z}}$
n31	n31		1.988		$\overline{\mathbf{Z}}$
p32	p32		0.003		$\overline{\mathbf{Z}}$
p33	p33	6.0	01234209304622 · 1	0^{-4}	$\overline{\mathbf{Z}}$
p34	p34	7.6	64816282169636 · 1	0^{-5}	$\overline{\mathbf{Z}}$
V35	V35		8.908		$\overline{\mathbf{Z}}$
K35	K35		8562.744		$\overline{\mathbf{Z}}$
V36	V36		5.97315 · 1	0^{-4}	$\overline{\mathbf{Z}}$
K36	K36		528.552		$\overline{\mathbf{Z}}$
V37	V37		1.746		$\overline{\mathbf{Z}}$
K37	K37		0.070		$\overline{\mathbf{Z}}$
p38	p38		2.57 · 1	0^{-4}	$\overline{\mathbf{Z}}$
p39	p39		4.81 · 1	10^{-5}	$\overline{\mathbf{Z}}$
KimFOS	KimFOS		0.545		$\overline{\mathbf{Z}}$
KexFOS	KexFOS		0.133		$\overline{\mathbf{Z}}$
KimFOSP	KimFOSP		0.545		$\overline{\mathbf{Z}}$
KexFOSP	KexFOSP		0.133		$\overline{\mathbf{Z}}$
V42	V42		0.910		$\overline{\mathbf{Z}}$
K42	K42		3992.061		$\overline{\mathbf{Z}}$
V43	V43		0.077		$\overline{\mathbf{Z}}$
K43	K43		1157.116		$\overline{\mathbf{Z}}$
V44	V44		0.078		$ \mathbf{Z} $
K44	K44		0.051		$ \mathbf{Z} $
p45	p45		2.57 · 1	-0^{-4}	$ \mathbf{Z} $
p46	p46		4.81 · 1		\mathbf{Z}

Id	Name	SBO	Value	Unit	Constant
p47	p47		0.002		Ø
m47	m47		15.808		$\overline{\checkmark}$
p48	p48		0.686		$\overline{\mathbf{Z}}$
p49	p49		0.314		$\overline{\mathbf{Z}}$
m49	m49		2.335		$\overline{\mathbf{Z}}$
p50	p50		26.595		$\overline{\mathbf{Z}}$
p51	p51		0.016		$\overline{\mathbf{Z}}$
m51	m51		9.544		$\overline{\mathbf{Z}}$
Fct	Fct		0.749		$\overline{\mathbf{Z}}$
p52	p52		0.002		$\overline{\mathbf{Z}}$
m52	m52		15.808		$\overline{\mathbf{Z}}$
p53	p53		0.686		$\overline{\mathbf{Z}}$
p54	p54		0.314		$\overline{\mathbf{Z}}$
m54	m54		2.335		$\overline{\mathbf{Z}}$
p55	p55		26.595		$\overline{\mathbf{Z}}$
p56	p56		0.016		$\overline{\mathscr{A}}$
m56	m56		9.544		$\overline{\mathbf{Z}}$
V57	V57		1.027		$\overline{\mathbf{Z}}$
K57	K57		0.637		$\overline{\mathbf{Z}}$
n57	n57		3.584		$\overline{\mathbf{Z}}$
p58	p58		$2.70488 \cdot 1$	0^{-4}	$\overline{\checkmark}$
p59	p59		0.001		$\overline{\mathbf{Z}}$
p60	p60		0.002		$\overline{\mathscr{A}}$
p61	p61	3.49	9860901414122 · 1	0^{-5}	$\overline{\mathbf{Z}}$
KimF	KimF		0.020		$\overline{\mathbf{Z}}$
KexF	KexF		0.397		$\overline{\checkmark}$
p63	p63	4.13	3466150826031 · 1	10^{-5}	
KF31	KF31		0.014		
nF31	nF31		2.800		$\overline{\mathbf{Z}}$
K2	K2		350.000		$\overline{\mathbf{Z}}$
Vn	Vn		220.000		$\overline{\mathbf{Z}}$
Vc	Vc		940.000		$\overline{\mathbf{Z}}$
V101	V101		0.018		$\overline{\mathbf{Z}}$
K101	K101		3475.168		$\overline{\mathbf{Z}}$
V102	V102		0.099		$\overline{\mathbf{Z}}$
K102	K102		237.200		$\overline{\mathbf{Z}}$
V103	V103		0.357		$\overline{\mathbf{Z}}$
K103	K103		1334.132		$\overline{\mathbf{Z}}$
V104	V104		4.636		$\overline{\mathbf{Z}}$
K104	K104		4046.710		$\overline{\mathbf{Z}}$
V105	V105		0.054		$\overline{\mathbf{Z}}$
K105	K105		1.028		\mathbf{Z}

Id	Name	SBO	Value	Unit	Constant
V106	V106		0.109		\overline{Z}
K106	K106		606.871		$ \overline{\mathbf{Z}} $
V107	V107		5.291		
K107	K107		424.688		$ \overline{\mathbf{Z}} $
V108	V108		0.034		$ \overline{\mathbf{Z}} $
K108	K108		11.505		
V109	V109		0.137		
K109	K109		7424.816		$ \overline{\mathbf{Z}} $
V110	V110		0.083		$ \overline{\mathbf{Z}} $
K110	K110		425.527		$ \overline{\checkmark} $
V111	V111		0.025		$ \overline{\mathbf{Z}} $
K111	K111		858.342		$ \overline{\mathbf{Z}} $
V112	V112		0.885		$ \overline{\checkmark} $
K112	K112		4665.217		
V113	V113		0.054		$ \overline{\checkmark} $
K113	K113		20.508		
V114	V114		0.040		$ \overline{\mathbf{Z}} $
K114	K114		7.774		\overline{Z}
V115	V115		13.742		\overline{Z}
K115	K115		2122.045		$\overline{\checkmark}$

6 Function definitions

This is an overview of 56 function definitions.

6.1 Function definition function_4_v003

Name function_4_v003

Arguments $K3, K4, V3, [pERK_c], [ppERK_c]$

Mathematical Expression

$$\frac{\text{V3} \cdot [\text{pERK_c}]}{\text{K3} \cdot \left(1 + \frac{[\text{ppERK_c}]}{\text{K4}}\right) + [\text{pERK_c}]} \tag{1}$$

6.2 Function definition function_4_v004

Name $function_4v004$

Arguments K3, K4, V4, [pERK_c], [ppERK_c]

Mathematical Expression

$$\frac{V4 \cdot [ppERK_c]}{K4 \cdot \left(1 + \frac{[pERK_c]}{K3}\right) + [ppERK_c]}$$
 (2)

6.3 Function definition function_4_v005

Name function_4_v005

Arguments K5, K6, V5, [pERK_n], [ppERK_n]

Mathematical Expression

$$\frac{\text{V5} \cdot [\text{pERK_n}]}{\text{K5} \cdot \left(1 + \frac{[\text{ppERK_n}]}{\text{K6}}\right) + [\text{pERK_n}]}$$
(3)

6.4 Function definition function_4_v006

Name function_4_v006

Arguments K5, K6, V6, $[pERK_n]$, $[ppERK_n]$

Mathematical Expression

$$\frac{V6 \cdot [ppERK_n]}{K6 \cdot \left(1 + \frac{[pERK_n]}{K5}\right) + [ppERK_n]}$$
(4)

6.5 Function definition function_4_v007

Name function_4_v007

Arguments KexERK, KimERK, Vc, Vn, [ERK_c], [ERK_n]

Mathematical Expression

$$KimERK \cdot Vc \cdot [ERK_c] - KexERK \cdot Vn \cdot [ERK_n]$$
 (5)

6.6 Function definition function_4_v008

Name function_4_v008

Arguments KexERKP, KimERKP, Vc, Vn, [pERK_c], [pERK_n]

$$KimERKP \cdot Vc \cdot [pERK_c] - KexERKP \cdot Vn \cdot [pERK_n]$$
 (6)

6.7 Function definition function_4_v015

Name function_4_v015

Arguments K15, V15, [pDUSP_c]

Mathematical Expression

$$\frac{\text{V15} \cdot [\text{pDUSP_c}]}{\text{K15} + [\text{pDUSP_c}]} \tag{7}$$

6.8 Function definition function_4_v018

Name function_4_v018

Arguments KexDUSP, KimDUSP, Vc, Vn, [DUSP_n], [DUSP_c]

Mathematical Expression

$$KimDUSP \cdot Vc \cdot [DUSP_c] - KexDUSP \cdot Vn \cdot [DUSP_n]$$
 (8)

6.9 Function definition function_4_v019

Name function_4_v019

Arguments KexDUSPP, KimDUSPP, Vc, Vn, [pDUSP_c], [pDUSP_n]

Mathematical Expression

$$KimDUSPP \cdot Vc \cdot [pDUSP_c] - KexDUSPP \cdot Vn \cdot [pDUSP_n]$$
 (9)

6.10 Function definition function_4_v020

Name function_4_v020

Arguments K20, V20, [ppERK_n], [DUSP_n]

Mathematical Expression

$$\frac{V20 \cdot [ppERK_n] \cdot [DUSP_n]}{K20 + [DUSP_n]}$$
(10)

6.11 Function definition function_4_v021

Name function_4_v021

Arguments K21, V21, [pDUSP_n]

$$\frac{\text{V21} \cdot [\text{pDUSP_n}]}{\text{K21} + [\text{pDUSP_n}]} \tag{11}$$

6.12 Function definition function_4_v024

Name function_4_v024

Arguments K24, V24, [ppERK_c], [RSK_c]

Mathematical Expression

$$\frac{\text{V24} \cdot [\text{ppERK_c}] \cdot [\text{RSK_c}]}{\text{K24} + [\text{RSK_c}]}$$
 (12)

6.13 Function definition function_4_v001

Name function_4_v001

Arguments Fct, K1, K2, V1, [ERK_c], [pERK_c], MEKc

Mathematical Expression

$$\frac{V1 \cdot Fct \cdot MEKc \cdot [ERK_c]}{K1 \cdot \left(1 + \frac{[pERK_c]}{K2}\right) + [ERK_c]}$$
 (13)

6.14 Function definition function_4_v009

Name function_4_v009

Arguments KexERKPP, KimERKPP, Vc, Vn, [ppERK_c], [ppERK_n]

Mathematical Expression

$$KimERKPP \cdot Vc \cdot [ppERK_c] - KexERKPP \cdot Vn \cdot [ppERK_n]$$
 (14)

6.15 Function definition function_4_v010

Name function_4_v010

Arguments K10, V10, n10, [ppERK_n]

Mathematical Expression

$$\frac{V10 \cdot [ppERK_n]^{n10}}{K10^{n10} + [ppERK_n]^{n10}}$$
 (15)

6.16 Function definition function_4_v011

Name function_4_v011

Arguments Vn, p11, [PreDUSPmRNA]

$$p11 \cdot Vn \cdot [PreDUSPmRNA] \tag{16}$$

6.17 Function definition function_4_v013

Name function_4_v013

Arguments p13, [DUSPmRNA]

Mathematical Expression

$$p13 \cdot [DUSPmRNA] \tag{17}$$

6.18 Function definition function_4_v014

Name function_4_v014

Arguments K14, V14, [ppERK_c], [DUSP_c]

Mathematical Expression

$$\frac{\text{V14} \cdot [\text{ppERK_c}] \cdot [\text{DUSP_c}]}{\text{K14} + [\text{DUSP_c}]}$$
(18)

6.19 Function definition function_4_v002

Name function_4_v002

Arguments Fct, K1, K2, V2, [ERK_c], [pERK_c], MEKc

Mathematical Expression

$$\frac{\text{V2} \cdot \text{Fct} \cdot \text{MEKc} \cdot [\text{pERK_c}]}{\text{K2} \cdot \left(1 + \frac{[\text{ERK_c}]}{\text{K1}}\right) + [\text{pERK_c}]}$$
(19)

6.20 Function definition function_4_v029

Name function_4_v029

Arguments K29, V29, [ppERK_n], [Elk1_n]

Mathematical Expression

$$\frac{V29 \cdot [ppERK_n] \cdot [Elk1_n]}{K29 + [Elk1_n]} \tag{20}$$

6.21 Function definition function_4_v025

Name function_4_v025

Arguments K25, V25, [pRSK_c]

$$\frac{\text{V25} \cdot [\text{pRSK_c}]}{\text{K25} + [\text{pRSK_c}]} \tag{21}$$

6.22 Function definition function_4_v026

Name function_4_v026

 $\textbf{Arguments} \;\; KexRSKP, KimRSKP, Vc, Vn, [pRSK_n], [pRSK_c]$

Mathematical Expression

$$KimRSKP \cdot Vc \cdot [pRSK_c] - KexRSKP \cdot Vn \cdot [pRSK_n]$$
 (22)

6.23 Function definition function_4_v032

Name function_4_v032

Arguments Vn, p32, [PreFOSmRNA]

Mathematical Expression

$$p32 \cdot Vn \cdot [PreFOSmRNA]$$
 (23)

6.24 Function definition function_4_v034

Name function_4_v034

Arguments p34, [c_FOSmRNA]

Mathematical Expression

$$p34 \cdot [c_FOSmRNA] \tag{24}$$

6.25 Function definition function_4_v035

Name function_4_v035

Arguments K35, V35, [c_FOS_c], [ppERK_c]

Mathematical Expression

$$\frac{\text{V35} \cdot [\text{ppERK_c}] \cdot [\text{c_FOS_c}]}{\text{K35} + [\text{c_FOS_c}]}$$
(25)

6.26 Function definition function_4_v036

Name function_4_v036

Arguments K36, V36, [c_FOS_c], [pRSK_c]

$$\frac{\text{V36} \cdot [\text{pRSK_c}] \cdot [\text{c_FOS_c}]}{\text{K36} + [\text{c_FOS_c}]}$$
(26)

6.27 Function definition function_4_v037

Name function_4_v037

Arguments K37, V37, [pc_FOS_c]

Mathematical Expression

$$\frac{\text{V37} \cdot [\text{pc_FOS_c}]}{\text{K37} + [\text{pc_FOS_c}]} \tag{27}$$

6.28 Function definition function_4_v027

Name function_4_v027

Arguments K27, V27, [CREB_n], [pRSK_n]

Mathematical Expression

$$\frac{\text{V27} \cdot [\text{pRSK_n}] \cdot [\text{CREB_n}]}{\text{K27} + [\text{CREB_n}]}$$
 (28)

6.29 Function definition function_4_v028

Name function_4_v028

Arguments K28, V28, [pCREB_n]

Mathematical Expression

$$\frac{\text{V28} \cdot [\text{pCREB_n}]}{\text{K28} + [\text{pCREB_n}]} \tag{29}$$

6.30 Function definition function_4_v030

Name function_4_v030

Arguments K30, V30, [pElk1_n]

$$\frac{\text{V30} \cdot [\text{pElk1_n}]}{\text{K30} + [\text{pElk1_n}]} \tag{30}$$

6.31 Function definition function_4_v031

Name function_4_v031

Arguments K31, KF31, V31, n31, nF31, [Fn], [pCREB_n], [pElk1_n]

Mathematical Expression

$$\frac{\text{V31} \cdot \left(\left[\text{pCREB_n} \right] \cdot \left[\text{pElk1_n} \right] \right)^{n31}}{\text{K31}^{n31} + \left(\left[\text{pCREB_n} \right] \cdot \left[\text{pElk1_n} \right] \right)^{n31} + \left(\frac{\left[\text{Fn} \right]}{\text{KF31}} \right)^{nF31}} \tag{31}$$

6.32 Function definition function_4_v040

Name function_4_v040

Arguments KexFOS, KimFOS, Vc, Vn, [c_FOS_c], [FOSn]

Mathematical Expression

$$KimFOS \cdot Vc \cdot [c_FOS_c] - KexFOS \cdot Vn \cdot [FOSn]$$
 (32)

6.33 Function definition function_4_v041

Name function_4_v041

Arguments KexFOSP, KimFOSP, Vc, Vn, [pc_FOS_c], [FOSn_2]

Mathematical Expression

$$KimFOSP \cdot Vc \cdot [pc.FOS_c] - KexFOSP \cdot Vn \cdot [FOSn_2]$$
 (33)

6.34 Function definition function_4_v042

Name function_4_v042

Arguments K42, V42, [ppERK_n], [FOSn]

Mathematical Expression

$$\frac{\text{V42} \cdot [\text{ppERK_n}] \cdot [\text{FOSn}]}{\text{K42} + [\text{FOSn}]}$$
(34)

6.35 Function definition function_4_v043

Name function $_4$ v043

Arguments K43, V43, [FOSn], [pRSK_n]

$$\frac{\text{V43} \cdot [\text{pRSK_n}] \cdot [\text{FOSn}]}{\text{K43} + [\text{FOSn}]}$$
(35)

6.36 Function definition function_4_v044

Name function_4_v044

Arguments K44, V44, [FOSn_2]

Mathematical Expression

$$\frac{\text{V44} \cdot [\text{FOSn.2}]}{\text{K44} + [\text{FOSn.2}]} \tag{36}$$

6.37 Function definition function_4_v057

Name function_4_v057

Arguments K57, V57, n57, [FOSn_2]

Mathematical Expression

$$\frac{\text{V57} \cdot [\text{FOSn_2}]^{\text{n57}}}{\text{K57}^{\text{n57}} + [\text{FOSn_2}]^{\text{n57}}} \tag{37}$$

6.38 Function definition function_4_v058

Name function $_4$ v058

Arguments Vn, p58, [PreFmRNA]

Mathematical Expression

$$p58 \cdot Vn \cdot [PreFmRNA] \tag{38}$$

6.39 Function definition function_4_v060

Name function_4_v060

Arguments p60, [FmRNA]

Mathematical Expression

$$p60 \cdot [FmRNA] \tag{39}$$

6.40 Function definition function_4_v062

Name function_4_v062

Arguments KexF, KimF, Vc, Vn, [F], [Fn]

$$KimF \cdot Vc \cdot [F] - KexF \cdot Vn \cdot [Fn] \tag{40}$$

6.41 Function definition function_4_v063

Name function_4_v063

Arguments vol (cytoplasm), vol (nucleus), p63, [Fn]

Mathematical Expression

$$\frac{\text{vol}\left(\text{cytoplasm}\right) \cdot \text{p63} \cdot [\text{Fn}]}{\text{vol}\left(\text{nucleus}\right)} \tag{41}$$

6.42 Function definition function_4_v101

Name function_4_v101

Arguments K101, V101, [A1], [EGF]

Mathematical Expression

$$\frac{V101 \cdot [EGF] \cdot [A1]}{K101 + [A1]} \tag{42}$$

6.43 Function definition function_4_v102

Name function_4_v102

Arguments K102, V102, [A1_2]

Mathematical Expression

$$\frac{\text{V102} \cdot [\text{A1.2}]}{\text{K102} + [\text{A1.2}]} \tag{43}$$

6.44 Function definition function_4_v103

Name function_4_v103

Arguments K103, V103, [A2], [HRG]

Mathematical Expression

$$\frac{\text{V103} \cdot [\text{HRG}] \cdot [\text{A2}]}{\text{K103} + [\text{A2}]} \tag{44}$$

6.45 Function definition function_4_v104

Name function_4_v104

Arguments K104, V104, [A2_2]

$$\frac{V104 \cdot [A2.2]}{K104 + [A2.2]} \tag{45}$$

6.46 Function definition function_4_v105

Name function_4_v105

Arguments K105, V105, [EGF], [RsD]

Mathematical Expression

$$\frac{\text{V105} \cdot [\text{EGF}] \cdot [\text{RsD}]}{\text{K105} + [\text{RsD}]} \tag{46}$$

6.47 Function definition function_4_v106

Name function_4_v106

Arguments K106, V106, [HRG], [RsD]

Mathematical Expression

$$\frac{\text{V106} \cdot [\text{HRG}] \cdot [\text{RsD}]}{\text{K106} + [\text{RsD}]} \tag{47}$$

6.48 Function definition function_4_v107

Name function_4_v107

Arguments K107, V107, [A1_2], [RsT]

Mathematical Expression

$$\frac{V107 \cdot [A1_2] \cdot [RsT]}{K107 + [RsT]}$$
 (48)

6.49 Function definition function_4_v108

Name function_4_v108

Arguments K108, V108, [A2_2], [RsT]

Mathematical Expression

$$\frac{V108 \cdot [A2_2] \cdot [RsT]}{K108 + [RsT]} \tag{49}$$

6.50 Function definition function_4_v109

Name function_4_v109

Arguments K109, V109, [HRG], [A3]

$$\frac{V109 \cdot [HRG] \cdot [A3]}{K109 + [A3]}$$
 (50)

6.51 Function definition function_4_v110

Name function_4_v110

Arguments K110, V110, [A3_2]

Mathematical Expression

$$\frac{V110 \cdot [A3.2]}{K110 + [A3.2]} \tag{51}$$

6.52 Function definition function_4_v111

Name function_4_v111

Arguments K111, V111, [HRG], [Kin]

Mathematical Expression

$$\frac{\text{V111} \cdot [\text{HRG}] \cdot [\text{Kin}]}{\text{K111} + [\text{Kin}]} \tag{52}$$

6.53 Function definition function_4_v112

Name function_4_v112

Arguments K112, V112, [A3_2], [Kin_2]

Mathematical Expression

$$\frac{\text{V112} \cdot [\text{A3}_2] \cdot [\text{Kin}_2]}{\text{K112} + [\text{Kin}_2]}$$
 (53)

6.54 Function definition function_4_v113

Name function_4_v113

Arguments K113, V113, [RsT], pMEK_c

Mathematical Expression

$$\frac{\text{V113} \cdot [\text{RsT}] \cdot \text{pMEK_c}}{\text{K113} + \text{pMEK_c}}$$
 (54)

6.55 Function definition function_4_v114

Name function_4_v114

Arguments K114, V114, [Kin_2], pMEK_c

$$\frac{\text{V114} \cdot [\text{Kin}_2] \cdot \text{pMEK}_c}{\text{K114} + \text{pMEK}_c}$$
 (55)

6.56 Function definition function_4_v115

Name function_4_v115

Arguments K115, V115, MEKc

$$\frac{\text{V115} \cdot \text{MEKc}}{\text{K115} + \text{MEKc}} \tag{56}$$

7 Reactions

This model contains 78 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

$N_{\bar{0}}$	Id	Name	Reaction Equation SI	ВО
1	reaction_32	v001	$ERK_c \xrightarrow{pMEK, pERK_c} pERK_c$	
2	${\tt reaction_6}$	v002	$pERK_c \xrightarrow{pMEK, ERK_c} ppERK_c$	
3	re85	v003	$pERK_c \xrightarrow{ppERK_c} ERK_c$	
4	re86	v004	$ppERK_c \xrightarrow{pERK_c} pERK_c$	
5	re87	v005	$pERK_n \xrightarrow{ppERK_n} ERK_n$	
6	re88	v006	$ppERK_n \xrightarrow{pERK_n} pERK_n$	
7	re106	v007	$ERK_{-}c \Longrightarrow ERK_{-}n$	
8	re107	v008	$pERK_c \rightleftharpoons pERK_n$	
9	re108	v009	ppERK_c ⇒ ppERK_n	
10	re109	v010	$\emptyset \xrightarrow{\text{ppERK_n}} \text{PreDUSPmRNA}$	
11	re110	v011	$PreDUSPmRNA \longrightarrow DUSPmRNA$	
12	reaction_17	v012	$DUSPmRNA \longrightarrow \emptyset$	
13	re89	v013	$\emptyset \xrightarrow{DUSPmRNA} DUSP_c$	
14	reaction_33	v014	$DUSP_c \xrightarrow{ppERK_c} pDUSP_c$	
15	$reaction_34$	v015	$pDUSP_c \longrightarrow DUSP_c$	
16	reaction_35	v016	$DUSP_c \longrightarrow \emptyset$	
17	reaction_36	v017	$pDUSP_c \longrightarrow \emptyset$	
18	re111	v018	$DUSP_c \rightleftharpoons DUSP_n$	
19	re112	v019	$pDUSP_c \Longrightarrow pDUSP_n$	

24 reaction.41 v024 25 reaction.42 v025 26 re113 v026 27 reaction.45 v027 28 reaction.46 v028 29 reaction.57 v029 30 reaction.58 v030 31 reaction.57 v031 32 re115 v032 33 reaction.50 v033 34 re90 v034 35 reaction.59 v035 36 reaction.59 v035 37 reaction.59 v036 38 reaction.60 v037 39 reaction.61 v038 30 reaction.61 v038 31 reaction.62 v039 32 re2FOS.c → €FOS.c 33 reaction.62 v039 34 re116 v040 45 re116 v040 46 re116 v044 47 reaction.52 v042 27 reaction.52 v042 28 RSK.c → RSK.c 29 pRSK.n 20 pRSK.n 20 pCREB.n 20 pCREB.n 20 pCREB.n 20 pERK.n 21 pElkl.n 21 pPERC.n 21 pElkl.n 22 pFOS.c → FOS.c 23 pERK.c 24 pC.FOS.c 25 pERK.c 25 pC.FOS.c 26 pC.FOS.c 27 pC.FOS.c 28 pC.FOS.c 28 pC.FOS.c 29 pERK.c 29 pC.FOS.c 20	N₀	Id	Name	Reaction Equation SBO
21 reaction.13 v021 pDUSP.n → DUSP.n DUSP.n → 0 22 reaction.14 v022 pDUSP.n → 0 23 reaction.15 v023 pDUSP.n → 0 24 reaction.41 v024 RSK.c pPERK.c 25 reaction.42 v025 pRSK.c → RSK.c 26 re113 v026 pRSK.c → RSK.n 27 reaction.45 v027 CREB.n → CREB.n 28 reaction.46 v028 pCREB.n → CREB.n 29 reaction.57 v029 EIkl.n → EIkl.n 30 reaction.58 v030 pEIkl.n → EIkl.n 31 reaction.47 v031 0 pCREB.n, pEIkl.n, Fn PreFOSmRNA 32 re115 v032 PreFOSmRNA → c.FOSmRNA → c.FOSmRNA → 0 33 reaction.50 v033 c.FOSmRNA → 0 34 re90 v034 0 c.FOS.c 35 reaction.59 v035 c.FOS.c 36 reaction.67 v036 c.FOS.c 37 reaction.60 v037 pc.FOS.c 38 reaction.60 v037 pc.FOS.c 39 pc.FOS.c → 0 30 pc.FOS.c → 0 31 reaction.61 v038 pc.FOS.c 40 re116 v040 pc.FOS.c ← FOSn.2 41 re117 v041 pc.FOS.c ← FOSn.2 42 reaction.52 v042	20	reaction 12	v020	DUSP n $\stackrel{ppERK_n}{\longrightarrow}$ pDUSP n
22 reaction.14 v022 DUSP.n $\rightarrow \emptyset$ 23 reaction.15 v023 pDUSP.n $\rightarrow \emptyset$ 24 reaction.41 v024 RSK.c \rightarrow pRSK.c 25 reaction.42 v025 pRSK.c \rightarrow RSK.c 26 re113 v026 pRSK.c \rightarrow pRSK.n 27 reaction.45 v027 CREB.n PRSK.n 28 reaction.46 v028 pCREB.n \rightarrow CREB.n 29 reaction.57 v029 Elk1.n \rightarrow pERK.n 30 reaction.58 v030 pElk1.n \rightarrow pElk1.n 31 reaction.47 v031 \emptyset pCREB.n, pElk1.n, Fn preFOSmRNA 32 re115 v032 PRFOSmRNA \rightarrow c.FOSmRNA 33 reaction.50 v033 c.FOSmRNA \rightarrow c.FOS.c 34 re90 v034 \emptyset c.FOS.c \rightarrow pc.FOS.c 35 reaction.59 v035 c.FOS.c \rightarrow pc.FOS.c 36 reaction.67 v036 c.FOS.c \rightarrow pc.FOS.c 37 reaction.60 v037 pc.FOS.c \rightarrow pc.FOS.c 39				
23 reaction.15				*
25 reaction.42 v025 26 re113 v026 27 reaction.45 v027 28 reaction.45 v028 29 reaction.57 v029 30 reaction.58 v030 31 reaction.47 v031 32 re115 v032 33 reaction.50 v033 34 re90 v034 35 reaction.59 v035 36 reaction.59 v035 37 reaction.60 v037 38 reaction.60 v037 39 reaction.61 v038 39 reaction.62 v039 40 re116 v040 41 re117 v041 pRSK.c → RSK.c pRSK.n pRSK.n pRSK.n pRSK.n pRSK.c → RSK.c pRSK.n pRSK.c → RSK.c pRSK.n pRSK.c → RSK.c pRSK.n pRSK.c → PRSK.n pCREB.n pCREB.n pCREB.n pCREB.n pPERK.n pElkl.n pPERS.n preFOSmRNA c_FOSmRNA c_FOSmRNA c_FOSmRNA c_FOSmRNA c_FOS_c pPERK.c c_FOS_c pRSK.c c_FOS_c pRSK.c c_FOS_c pRSK.c c_FOS_c pRSK.c c_FOS_c pRSK.c c_FOS_c pRSK.c c_FOS_c pCFOS_c pFOS_n pCFOS_c pFOS_n pCFOS_c pFOS_n pCFOS_c pFOS_n pCFOS_c pFOS_n pCFOS_c pFOS_n pFOS_c pFOS_n pFOS_c pFOS_n pFOS_c pFOS_n pFOS_c pFOS_n pFOS_c pFOS_n pF	23			$pDUSP_n \longrightarrow \emptyset$
25 reaction.42 v025 26 re113 v026 27 reaction.45 v027 28 reaction.45 v028 29 reaction.57 v029 30 reaction.58 v030 31 reaction.47 v031 32 re115 v032 33 reaction.50 v033 34 re90 v034 35 reaction.59 v035 36 reaction.59 v035 37 reaction.60 v037 38 reaction.60 v037 39 reaction.61 v038 39 reaction.62 v039 40 re116 v040 41 re117 v041 pRSK.c → RSK.c pRSK.n pRSK.n pRSK.n pRSK.n pRSK.c → RSK.c pRSK.n pRSK.c → RSK.c pRSK.n pRSK.c → RSK.c pRSK.n pRSK.c → PRSK.n pCREB.n pCREB.n pCREB.n pCREB.n pPERK.n pElkl.n pPERS.n preFOSmRNA c_FOSmRNA c_FOSmRNA c_FOSmRNA c_FOSmRNA c_FOS_c pPERK.c c_FOS_c pRSK.c c_FOS_c pRSK.c c_FOS_c pRSK.c c_FOS_c pRSK.c c_FOS_c pRSK.c c_FOS_c pRSK.c c_FOS_c pCFOS_c pFOS_n pCFOS_c pFOS_n pCFOS_c pFOS_n pCFOS_c pFOS_n pCFOS_c pFOS_n pCFOS_c pFOS_n pFOS_c pFOS_n pFOS_c pFOS_n pFOS_c pFOS_n pFOS_c pFOS_n pFOS_c pFOS_n pF	24	reaction_41	v024	$RSK_{-}c \xrightarrow{ppERK_{-}c} pRSK_{-}c$
27 reaction.45 v027 28 reaction.46 v028 29 reaction.57 v029 30 reaction.58 v030 31 reaction.47 v031 32 re115 v032 33 reaction.50 v033 34 re90 v034 35 reaction.59 v035 36 reaction.59 v035 37 reaction.60 v037 38 reaction.61 v038 39 reaction.62 v039 40 re116 v040 41 re117 v041 CREB.n PRSK.n pCREB.n pCREB.n → CREB.n pPERK.n pPERK.n pPERK.n PreFOSmRNA pElkl.n, Fn PreFOSmRNA c.FOSmRNA c.FOSmRNA c.FOSmRNA c.FOS.c pRSK.c c.FOS.c pRSK.c c.FOS.c pRSK.c c.FOS.c pRSK.c c.FOS.c pRSK.c c.FOS.c pRSK.c c.FOS.c pC.FOS.c pC.FOS.c pC.FOS.c pC.FOS.c pC.FOS.c FOSn FOSn PC.FOS.c FOSn FOSn PC.FOS.c FOSn FOSn PC.FOS.c FOSn	25	$reaction_42$	v025	
28 reaction.46 v028 pCREB.n \rightarrow CREB.n 29 reaction.57 v029 Elk1.n \rightarrow pERK.n pElk1.n 30 reaction.58 v030 pElk1.n \rightarrow Elk1.n 31 reaction.47 v031 \emptyset PCREB.n, pElk1.n, Fn PreFOSmRNA 32 re115 v032 PreFOSmRNA \rightarrow c.FOSmRNA 33 reaction.50 v033 c.FOSmRNA \rightarrow 0 34 re90 v034 \emptyset CFOSmRNA \rightarrow c.FOS.c 35 reaction.59 v035 c.FOS.c \rightarrow ppERK.c 36 reaction.67 v036 c.FOS.c \rightarrow pc.FOS.c 37 reaction.60 v037 pc.FOS.c \rightarrow c.FOS.c 38 reaction.61 v038 c.FOS.c \rightarrow 0 39 reaction.62 v039 pc.FOS.c \rightarrow 0 40 re116 v040 c.FOS.c \rightarrow FOSn 41 re117 v041 pc.FOS.c \rightarrow FOSn.2 42 reaction.52 v042 FOSn PPERK.n	26	re113	v026	* *
29 reaction_57	27	reaction_45	v027	$CREB_n \xrightarrow{pRSK_n} pCREB_n$
30 reaction_58 v030 31 reaction_47 v031 32 re115 v032 33 reaction_50 v033 34 re90 v034 35 reaction_59 v035 36 reaction_67 v036 37 reaction_60 v037 38 reaction_61 v038 39 reaction_62 v039 40 re116 v040 41 re117 v041 20 pCREB_n, pElkl_n, Fn PreFOSmRNA 20 pCFOSmRNA 21 preFOSmRNA 22 preFOSmRNA 23 preFOSmRNA 24 preFOSmRNA 25 preFOSmRNA 26 preFOS_c 27 preFOS_c 27 preAction_60 v037 28 preAction_61 v038 39 preAction_62 v039 40 pc_FOS_c → ∅ 40 pc_FOS_c → ∅ 41 re117 v041 42 reaction_52 v042 43 ppERK_n 44 possible 1 preFOS_n 45 poss_c 46 poss_c 47 poss_c 48 poss_c 49 poss_c 40 poss_c	28	${\tt reaction_46}$	v028	
30 reaction_58 v030 31 reaction_47 v031 32 re115 v032 33 reaction_50 v033 34 re90 v034 35 reaction_59 v035 36 reaction_67 v036 37 reaction_60 v037 38 reaction_61 v038 39 reaction_62 v039 40 re116 v040 41 re117 v041 20 pCREB_n, pElkl_n, Fn PreFOSmRNA 20 pCFOSmRNA 21 preFOSmRNA 22 preFOSmRNA 23 preFOSmRNA 24 preFOSmRNA 25 preFOSmRNA 26 preFOS_c 27 preFOS_c 27 preAction_60 v037 28 preAction_61 v038 39 preAction_62 v039 40 pc_FOS_c → ∅ 40 pc_FOS_c → ∅ 41 re117 v041 42 reaction_52 v042 43 ppERK_n 44 possible 1 preFOS_n 45 poss_c 46 poss_c 47 poss_c 48 poss_c 49 poss_c 40 poss_c	29	reaction_57	v029	$Elk1_n \xrightarrow{ppERK_n} pElk1_n$
32re115v032PreFOSmRNA \longrightarrow c_FOSmRNA33reaction_50v033c_FOSmRNA \longrightarrow 034re90v0340c_FOSmRNA c_FOS_c35reaction_59v035c_FOS_c $\xrightarrow{pRSK_c}$ pc_FOS_c36reaction_67v036c_FOS_c $\xrightarrow{pRSK_c}$ pc_FOS_c37reaction_60v037pc_FOS_c \longrightarrow c_FOS_c38reaction_61v038c_FOS_c \longrightarrow 039reaction_62v039pc_FOS_c \longrightarrow 040re116v040c_FOS_c \Longrightarrow FOSn_241re117v041pc_FOS_c \Longrightarrow FOSn_242reaction_52v042FOSn $\xrightarrow{ppERK_n}$ FOSn_2	30	reaction_58	v030	$pElk1_n \longrightarrow Elk1_n$
32re115v032PreFOSmRNA \longrightarrow c_FOSmRNA33reaction_50v033c_FOSmRNA \longrightarrow 034re90v0340c_FOSmRNA c_FOS_c35reaction_59v035c_FOS_c $\xrightarrow{pRSK_c}$ pc_FOS_c36reaction_67v036c_FOS_c $\xrightarrow{pRSK_c}$ pc_FOS_c37reaction_60v037pc_FOS_c \longrightarrow c_FOS_c38reaction_61v038c_FOS_c \longrightarrow 039reaction_62v039pc_FOS_c \longrightarrow 040re116v040c_FOS_c \Longrightarrow FOSn_241re117v041pc_FOS_c \Longrightarrow FOSn_242reaction_52v042FOSn $\xrightarrow{ppERK_n}$ FOSn_2	31	reaction_47	v031	$\emptyset \xrightarrow{\text{pCREB_n, pElk1_n, Fn}} \text{PreFOSmRNA}$
33 reaction_50 v033 34 re90 v034 $0 \xrightarrow{c.FOSmRNA} \longrightarrow 0$ $0 \xrightarrow{c.FOSmRNA} \longrightarrow c.FOS_c$ 35 reaction_59 v035 $0 \xrightarrow{c.FOS_c} \xrightarrow{pRSK_c} pc.FOS_c$ 36 reaction_67 v036 $0 \xrightarrow{c.FOS_c} \xrightarrow{pRSK_c} pc.FOS_c$ 37 reaction_60 v037 38 reaction_61 v038 39 reaction_62 v039 40 re116 v040 41 re117 v041 42 reaction_52 v042 $0 \xrightarrow{c.FOS_c} \xrightarrow{pRSK_c} pc.FOS_c$ $0 \xrightarrow{c.FOS_c} \longrightarrow 0$ $0 \xrightarrow{c.FOS_c} $	32			
35reaction_59v035c_FOS_c $\xrightarrow{pRSK_c}$ pc_FOS_c36reaction_67v036c_FOS_c $\xrightarrow{pRSK_c}$ pc_FOS_c37reaction_60v037pc_FOS_c \longrightarrow c_FOS_c38reaction_61v038c_FOS_c \longrightarrow \emptyset 39reaction_62v039pc_FOS_c \longrightarrow \emptyset 40re116v040c_FOS_c \Longrightarrow FOSn41re117v041pc_FOS_c \Longrightarrow FOSn_242reaction_52v042FOSn $\xrightarrow{ppERK_n}$ FOSn_2	33			
36reaction_67v036c_FOS_c $\xrightarrow{pRSK_c}$ pc_FOS_c37reaction_60v037pc_FOS_c \longrightarrow c_FOS_c38reaction_61v038c_FOS_c \longrightarrow \emptyset 39reaction_62v039pc_FOS_c \longrightarrow \emptyset 40re116v040c_FOS_c \rightleftharpoons FOSn41re117v041pc_FOS_c \rightleftharpoons FOSn_242reaction_52v042FOSn $\xrightarrow{ppERK_n}$ FOSn_2	34	re90	v034	$\emptyset \xrightarrow{\text{c_FOSmRNA}} \text{c_FOS_c}$
37 reaction_60 v037 pc_FOS_c \longrightarrow c_FOS_c 38 reaction_61 v038 c_FOS_c \longrightarrow 0 39 reaction_62 v039 pc_FOS_c \longrightarrow 0 40 re116 v040 c_FOS_c \Longrightarrow FOSn 41 re117 v041 pc_FOS_c \Longrightarrow FOSn_2 42 reaction_52 v042 FOSn_2	35	reaction_59	v035	$c_FOS_c \xrightarrow{ppERK_c} pc_FOS_c$
38 reaction_61 v038 c_FOS_c $\longrightarrow \emptyset$ 39 reaction_62 v039 pc_FOS_c $\longrightarrow \emptyset$ 40 re116 v040 c_FOS_c \rightleftharpoons FOSn 41 re117 v041 pc_FOS_c \rightleftharpoons FOSn_2 42 reaction_52 v042 FOSn_2	36	reaction_67	v036	$c_FOS_c \xrightarrow{pRSK_c} pc_FOS_c$
39 reaction_62 v039 pc_FOS_c $\longrightarrow \emptyset$ 40 re116 v040 c_FOS_c \rightleftharpoons FOSn 41 re117 v041 pc_FOS_c \rightleftharpoons FOSn_2 42 reaction_52 v042 FOSn $\stackrel{ppERK_n}{\longrightarrow}$ FOSn_2	37	reaction_60	v037	*
40 re116 v040 c_FOS_c \Longrightarrow FOSn 41 re117 v041 pc_FOS_c \Longrightarrow FOSn_2 42 reaction_52 v042 FOSn $\xrightarrow{ppERK_n}$ FOSn_2	38	reaction_61	v038	$c_FOS_c \longrightarrow \emptyset$
41 re117 v041 pc_FOS_c \Longrightarrow FOSn_2 42 reaction_52 v042 FOSn $\xrightarrow{ppERK_n}$ FOSn_2	39	reaction_62	v039	$pc_FOS_c \longrightarrow \emptyset$
42 reaction_52 v042 FOSn $\xrightarrow{ppERK_n}$ FOSn_2	40	re116	v040	$c_FOS_c \rightleftharpoons FOSn$
	41	re117	v041	*
43 reaction_53 v043 FOSn_ $\stackrel{pRSK_n}{\longrightarrow}$ FOSn_2	42	reaction_52	v042	$FOSn \xrightarrow{ppERK_n} FOSn_2$
	43	reaction_53	v043	$FOSn \xrightarrow{pRSK_n} FOSn_2$

N⁰	Id	Name	Reaction Equation SBO	
44	reaction_54	v044	$FOSn_2 \longrightarrow FOSn$	
45	reaction_55	v045	$FOSn \longrightarrow \emptyset$	
46	reaction_56	v046	$FOSn_2 \longrightarrow \emptyset$	
47	reaction_25	v047	$pDUSP_n + ppERK_n \Longrightarrow pDUSP_n_ppERK_n$	
48	$reaction_26$	v048	$pDUSP_n_ppERK_n \longrightarrow pDUSP_n + pERK_n$	
49	$reaction_27$	v049	$pDUSP_n + pERK_n \Longrightarrow pDUSP_n_pERK_n$	
50	$reaction_28$	v050	$pDUSP_n_pERK_n \longrightarrow pDUSP_n + ERK_n$	
51	$reaction_30$	v051	$pDUSP_n + ERK_n \rightleftharpoons pDUSP_n_ERK_n$	
52	${\tt reaction_21}$	v052	$DUSP_n + ppERK_n \Longrightarrow DUSP_n_ppERK_n$	
53	$reaction_22$	v053	$DUSP_n_ppERK_n \longrightarrow DUSP_n + pERK_n$	
54	reaction_23	v054	$DUSP_n + pERK_n \Longrightarrow DUSP_n_pERK_n$	
55	$reaction_24$	v055	$DUSP_n_pERK_n \longrightarrow DUSP_n + ERK_n$	
56	reaction_29	v056	$DUSP_n + ERK_n \Longrightarrow DUSP_n_ERK_n$	
57	re92	v057	$\emptyset \xrightarrow{\text{FOSn}_2} \text{PreFmRNA}$	
58	re118	v058	$PreFmRNA \longrightarrow FmRNA$	
59	re94	v059	$FmRNA \longrightarrow \emptyset$	
60	re95	v060	$\emptyset \xrightarrow{\text{FmRNA}} F$	
61	re96	v061	$F \longrightarrow \emptyset$	
62	re119	v062	$F \rightleftharpoons Fn$	
63	re99	v063	$Fn \longrightarrow \emptyset$	
64	reaction_31	v101	$A1 \xrightarrow{EGF} A1_2$	
65	reaction_68	v102	$A1_2 \longrightarrow A1$	
66	reaction_69	v103	$A2 \xrightarrow{HRG} A2.2$	
67	reaction_70	v104	$A2_2 \longrightarrow A2$	
68	reaction_71	v105	$RsD \xrightarrow{EGF} RsT$	
69	reaction_72	v106	$RsD \xrightarrow{HRG} RsT$	

N₀	Id	Name	Reaction Equation	SBO
70	reaction_73	v107	$RsT \xrightarrow{A1.2} RsD$	
71	reaction_74	v108	$RsT \xrightarrow{A2.2} RsD$	
72	reaction_75	v109	$A3 \xrightarrow{HRG} A3_2$	
73	reaction_76	v110	$A3_2 \longrightarrow A3$	
74	reaction_77	v111	$ \operatorname{Kin} \xrightarrow{\operatorname{HRG}} \operatorname{Kin}_{2} $	
75	reaction_78	v112	$\operatorname{Kin}_{2} \xrightarrow{\operatorname{A3}_{2}} \operatorname{Kin}$	
76	reaction_79	v113	$MEK \xrightarrow{RsT} pMEK$	
77	reaction_80	v114	$MEK \xrightarrow{Kin_2} pMEK$	
78	reaction_81	v115	$pMEK \longrightarrow MEK$	

7.1 Reaction reaction_32

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name v001

Reaction equation

$$ERK_{-}c \xrightarrow{pMEK, pERK_{-}c} pERK_{-}c$$
 (57)

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
ERK_c	ERK_c	

Modifiers

Table 7: Properties of each modifier.

Id	Name	SBO
pMEK pERK_c	pMEK pERK_c	

Product

Table 8: Properties of each product.

Id	Name	SBO
pERK_c	pERK_c	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}(\text{cytoplasm}) \cdot \text{function_4_v001}(\text{Fct}, \text{K1}, \text{K2}, \text{V1}, [\text{ERK_c}], [\text{pERK_c}], [\text{pMEK}])$$
 (58)

$$\begin{aligned} & \text{function_4_v001} \left(\text{Fct}, \text{K1}, \text{K2}, \text{V1}, [\text{ERK_c}], [\text{pERK_c}], \text{MEKc} \right) \\ &= \frac{\text{V1} \cdot \text{Fct} \cdot \text{MEKc} \cdot [\text{ERK_c}]}{\text{K1} \cdot \left(1 + \frac{[\text{pERK_c}]}{\text{K2}} \right) + [\text{ERK_c}]} \end{aligned} \tag{59}$$

$$\begin{aligned} & \text{function_4_v001} \left(\text{Fct}, \text{K1}, \text{K2}, \text{V1}, [\text{ERK_c}], [\text{pERK_c}], \text{MEKc} \right) \\ &= \frac{\text{V1} \cdot \text{Fct} \cdot \text{MEKc} \cdot [\text{ERK_c}]}{\text{K1} \cdot \left(1 + \frac{[\text{pERK_c}]}{\text{K2}} \right) + [\text{ERK_c}]} \end{aligned}$$
 (60)

7.2 Reaction reaction_6

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name v002

Reaction equation

$$pERK_{-}c \xrightarrow{pMEK, ERK_{-}c} ppERK_{-}c$$
 (61)

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
pERK_c	pERK_c	

Modifiers

Table 10: Properties of each modifier.

Id	Name	SBO
pMEK ERK_c	pMEK ERK_c	

Product

Table 11: Properties of each product.

Id	Name	SBO
ppERK_c	ppERK_c	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}(\text{cytoplasm}) \cdot \text{function_4_v002}(\text{Fct}, \text{K1}, \text{K2}, \text{V2}, [\text{ERK_c}], [\text{pERK_c}], [\text{pMEK}])$$
 (62)

$$function_4_v002 (Fct, K1, K2, V2, [ERK_c], [pERK_c], MEKc)$$

$$= \frac{V2 \cdot Fct \cdot MEKc \cdot [pERK_c]}{K2 \cdot \left(1 + \frac{[ERK_c]}{K1}\right) + [pERK_c]}$$
(63)

$$\begin{aligned} & \text{function_4_v002} \left(\text{Fct}, \text{K1}, \text{K2}, \text{V2}, [\text{ERK_c}], [\text{pERK_c}], \text{MEKc} \right) \\ & = \frac{\text{V2} \cdot \text{Fct} \cdot \text{MEKc} \cdot [\text{pERK_c}]}{\text{K2} \cdot \left(1 + \frac{[\text{ERK_c}]}{\text{K1}} \right) + [\text{pERK_c}]} \end{aligned}$$
 (64)

7.3 Reaction re85

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v003

Reaction equation

$$pERK_c \xrightarrow{ppERK_c} ERK_c$$
 (65)

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
pERK_c	pERK_c	

Modifier

Table 13: Properties of each modifier.

Id	Name	SBO
ppERK_c	ppERK_c	

Product

Table 14: Properties of each product.

Id	Name	SBO
ERK_c	ERK_c	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}(\text{cytoplasm}) \cdot \text{function_4_v003}(\text{K3}, \text{K4}, \text{V3}, [\text{pERK_c}], [\text{ppERK_c}])$$
 (66)

$$function_4_v003\left(K3,K4,V3,[pERK_c],[ppERK_c]\right) = \frac{V3\cdot[pERK_c]}{K3\cdot\left(1+\frac{[ppERK_c]}{K4}\right)+[pERK_c]} \tag{67}$$

$$function_4_v003\left(K3,K4,V3,[pERK_c],[ppERK_c]\right) = \frac{V3\cdot[pERK_c]}{K3\cdot\left(1+\frac{[ppERK_c]}{K4}\right)+[pERK_c]} \tag{68}$$

7.4 Reaction re86

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v004

Reaction equation

$$ppERK_c \xrightarrow{pERK_c} pERK_c \tag{69}$$

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
ppERK_c	ppERK_c	

Modifier

Table 16: Properties of each modifier.

Id	Name	SBO
pERK_c	pERK_c	

Product

Table 17: Properties of each product.

Id	Name	SBO
pERK_c	pERK_c	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{vol}(\text{cytoplasm}) \cdot \text{function}_4 \cdot \text{v004}(\text{K3}, \text{K4}, \text{V4}, [\text{pERK}_c], [\text{ppERK}_c])$$
 (70)

$$function_4_v004\left(K3,K4,V4,[pERK_c],[ppERK_c]\right) = \frac{V4\cdot[ppERK_c]}{K4\cdot\left(1+\frac{[pERK_c]}{K3}\right)+[ppERK_c]} \tag{71}$$

$$function_4_v004\left(K3,K4,V4,[pERK_c],[ppERK_c]\right) = \frac{V4\cdot[ppERK_c]}{K4\cdot\left(1+\frac{[pERK_c]}{K3}\right)+[ppERK_c]} \tag{72}$$

7.5 Reaction re87

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v005

Reaction equation

$$pERK_{-n} \xrightarrow{ppERK_{-n}} ERK_{-n}$$
 (73)

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
pERK_n	pERK_n	

Modifier

Table 19: Properties of each modifier.

Id	Name	SBO
ppERK_n	ppERK_n	

Product

Table 20: Properties of each product.

Id	Name	SBO
ERK_n	ERK_n	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{vol}(\text{nucleus}) \cdot \text{function}_4\text{-v}005(\text{K}5, \text{K}6, \text{V}5, [\text{pERK}_n], [\text{ppERK}_n])$$
 (74)

$$function_4_v005 (K5, K6, V5, [pERK_n], [ppERK_n]) = \frac{V5 \cdot [pERK_n]}{K5 \cdot \left(1 + \frac{[ppERK_n]}{K6}\right) + [pERK_n]}$$
(75)

$$function_4_v005 (K5, K6, V5, [pERK_n], [ppERK_n]) = \frac{V5 \cdot [pERK_n]}{K5 \cdot \left(1 + \frac{[ppERK_n]}{K6}\right) + [pERK_n]}$$
(76)

7.6 Reaction re88

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v006

Reaction equation

$$ppERK_n \xrightarrow{pERK_n} pERK_n \tag{77}$$

Reactant

Table 21: Properties of each reactant.

Id	Name	SBO
ppERK_n	ppERK_n	

Modifier

Table 22: Properties of each modifier.

Id	Name	SBO
pERK_n	pERK_n	

Product

Table 23: Properties of each product.

Id	Name	SBO
pERK_n	pERK_n	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}(\text{nucleus}) \cdot \text{function_4_v006}(K5, K6, V6, [pERK_n], [ppERK_n])$$
 (78)

$$function_4_v006 (K5, K6, V6, [pERK_n], [ppERK_n]) = \frac{V6 \cdot [ppERK_n]}{K6 \cdot \left(1 + \frac{[pERK_n]}{K5}\right) + [ppERK_n]}$$
(79)

7.7 Reaction re106

This is a reversible reaction of one reactant forming one product.

Name v007

Reaction equation

$$ERK_c \rightleftharpoons ERK_n$$
 (81)

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
ERK_c	ERK_c	

Product

Table 25: Properties of each product.

Id	Name	SBO
ERK_n	ERK_n	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{function_4_v007} (\text{KexERK}, \text{KimERK}, \text{Vc}, \text{Vn}, [\text{ERK_c}], [\text{ERK_n}])$$
 (82)

$$function_4_v007 (KexERK, KimERK, Vc, Vn, [ERK_c], [ERK_n]) = KimERK \cdot Vc \cdot [ERK_c] - KexERK \cdot Vn \cdot [ERK_n]$$
(83)

7.8 Reaction re107

This is a reversible reaction of one reactant forming one product.

Name v008

Reaction equation

$$pERK_c \rightleftharpoons pERK_n$$
 (84)

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
pERK_c	pERK_c	

Product

Table 27: Properties of each product.

Id	Name	SBO
pERK_n	pERK_n	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{function_4_v008} (\text{KexERKP}, \text{KimERKP}, \text{Vc}, \text{Vn}, [\text{pERK_c}], [\text{pERK_n}])$$
 (85)

7.9 Reaction re108

This is a reversible reaction of one reactant forming one product.

Name v009

Reaction equation

$$ppERK_c \rightleftharpoons ppERK_n$$
 (87)

Reactant

Table 28: Properties of each reactant.

Id	Name	SBO
ppERK_c	ppERK_c	

Product

Table 29: Properties of each product.

Id	Name	SBO
ppERK_n	ppERK_n	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{function_4_v009} (\text{KexERKPP}, \text{KimERKPP}, \text{Vc}, \text{Vn}, [\text{ppERK_c}], [\text{ppERK_n}])$$
 (88)

$$function_4_v009 (KexERKPP, KimERKPP, Vc, Vn, [ppERK_c], [ppERK_n]) = KimERKPP \cdot Vc \cdot [ppERK_c] - KexERKPP \cdot Vn \cdot [ppERK_n]$$
(89)

7.10 Reaction re109

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name v010

Reaction equation

$$\emptyset \xrightarrow{\text{ppERK_n}} \text{PreDUSPmRNA} \tag{90}$$

Modifier

Table 30: Properties of each modifier.

Id	Name	SBO
ppERK_n	ppERK_n	

Product

Table 31: Properties of each product.

Id	Name	SBO
PreDUSPmRNA	PreDUSPmRNA	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{vol}(\text{nucleus}) \cdot \text{function}_{-4}\text{-vol}_{0}(\text{K10}, \text{V10}, \text{n10}, [\text{ppERK}_{-n}])$$
 (91)

$$function_4_v010\,(K10,V10,n10,[ppERK_n]) = \frac{V10\cdot[ppERK_n]^{n10}}{K10^{n10}+[ppERK_n]^{n10}} \eqno(92)$$

$$function_4_v010\,(K10,V10,n10,[ppERK_n]) = \frac{V10\cdot[ppERK_n]^{n10}}{K10^{n10}+[ppERK_n]^{n10}} \tag{93}$$

7.11 Reaction re110

This is an irreversible reaction of one reactant forming one product.

Name v011

Reaction equation

$$PreDUSPmRNA \longrightarrow DUSPmRNA \tag{94}$$

Reactant

Table 32: Properties of each reactant.

Id Name		SBO
PreDUSPmRNA	PreDUSPmRNA	

Product

Table 33: Properties of each product.

Id	Name	SBO
DUSPmRNA	DUSPmRNA	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{function}_4_\text{v}011 (\text{Vn}, \text{p}11, [\text{PreDUSPmRNA}])$$
(95)

$$function_4_v011 (Vn, p11, [PreDUSPmRNA]) = p11 \cdot Vn \cdot [PreDUSPmRNA]$$
 (96)

7.12 Reaction reaction_17

This is an irreversible reaction of one reactant forming no product.

Name v012

Reaction equation

$$DUSPmRNA \longrightarrow \emptyset$$
 (97)

Reactant

Table 34: Properties of each reactant.

Tueste s 1. Troperties of euch feuctunt.		
Id	Name	SBO
DUSPmRNA	DUSPmRNA	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol}(\text{cytoplasm}) \cdot \text{p12} \cdot [\text{DUSPmRNA}]$$
 (98)

7.13 Reaction re89

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name v013

Reaction equation

$$\emptyset \xrightarrow{\text{DUSPmRNA}} \text{DUSP_c}$$
 (99)

Modifier

Table 35: Properties of each modifier.

Id	Name	SBO
DUSPmRNA	DUSPmRNA	

Product

Table 36: Properties of each product.

Id	Name	SBO
$DUSP_c$	DUSP_c	

Kinetic Law

$$v_{13} = \text{vol}(\text{cytoplasm}) \cdot \text{function_4_v013}(\text{p13}, [\text{DUSPmRNA}])$$
 (100)

7.14 Reaction reaction_33

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v014

Reaction equation

$$DUSP_c \xrightarrow{ppERK_c} pDUSP_c$$
 (103)

Reactant

Table 37: Properties of each reactant.

Id	Name	SBO
DUSP_c	DUSP_c	

Modifier

Table 38: Properties of each modifier.

Id	Name	SBO
ppERK_c	ppERK_c	

Product

Table 39: Properties of each product.

Id	Name	SBO
pDUSP_c	pDUSP_c	

Kinetic Law

$$v_{14} = \text{vol}(\text{cytoplasm}) \cdot \text{function_4_v014}(\text{K14}, \text{V14}, [\text{ppERK_c}], [\text{DUSP_c}])$$
 (104)

$$function_4_v014\left(K14,V14,[ppERK_c],[DUSP_c]\right) = \frac{V14\cdot[ppERK_c]\cdot[DUSP_c]}{K14+[DUSP_c]} \quad (105)$$

$$function_4_v014\left(K14,V14,[ppERK_c],[DUSP_c]\right) = \frac{V14\cdot[ppERK_c]\cdot[DUSP_c]}{K14+[DUSP_c]} \quad (106)$$

7.15 Reaction reaction_34

This is an irreversible reaction of one reactant forming one product.

Name v015

Reaction equation

$$pDUSP_c \longrightarrow DUSP_c \tag{107}$$

Reactant

Table 40: Properties of each reactant.

Id	Name	SBO
pDUSP_c	pDUSP_c	

Product

Table 41: Properties of each product.

Id	Name	SBO
DUSP_c	DUSP_c	

Kinetic Law

$$v_{15} = \text{vol}(\text{cytoplasm}) \cdot \text{function_4_v015}(\text{K15}, \text{V15}, [\text{pDUSP_c}])$$
 (108)

$$function_4_v015 (K15, V15, [pDUSP_c]) = \frac{V15 \cdot [pDUSP_c]}{K15 + [pDUSP_c]}$$
 (109)

$$function_4_v015 (K15, V15, [pDUSP_c]) = \frac{V15 \cdot [pDUSP_c]}{K15 + [pDUSP_c]}$$
 (110)

7.16 Reaction reaction_35

This is an irreversible reaction of one reactant forming no product.

Name v016

Reaction equation

$$DUSP_{-}c \longrightarrow \emptyset \tag{111}$$

Reactant

Table 42: Properties of each reactant.

Id	Name	SBO
DUSP_c	DUSP_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{vol}(\text{cytoplasm}) \cdot \text{p16} \cdot [\text{DUSP_c}]$$
 (112)

7.17 Reaction reaction_36

This is an irreversible reaction of one reactant forming no product.

Name v017

Reaction equation

$$pDUSP_c \longrightarrow \emptyset$$
 (113)

Reactant

Table 43: Properties of each reactant.

Id	Name	SBO
pDUSP_c	pDUSP_c	

Kinetic Law

$$v_{17} = \text{vol}(\text{cytoplasm}) \cdot \text{p17} \cdot [\text{pDUSP_c}]$$
 (114)

7.18 Reaction re111

This is a reversible reaction of one reactant forming one product.

Name v018

Reaction equation

$$DUSP_{-}c \Longrightarrow DUSP_{-}n \tag{115}$$

Reactant

Table 44: Properties of each reactant.

Id	Name	SBO
DUSP_c	DUSP_c	

Product

Table 45: Properties of each product.

Id	Name	SBO
DUSP_n	DUSP_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{function_4_v018}(\text{KexDUSP}, \text{KimDUSP}, \text{Vc}, \text{Vn}, [\text{DUSP_n}], [\text{DUSP_c}])$$
 (116)

$$function_4_v018 (KexDUSP, KimDUSP, Vc, Vn, [DUSP_n], [DUSP_c])$$

$$= KimDUSP \cdot Vc \cdot [DUSP_c] - KexDUSP \cdot Vn \cdot [DUSP_n]$$

$$(117)$$

7.19 Reaction re112

This is a reversible reaction of one reactant forming one product.

Name v019

Reaction equation

$$pDUSP_c \rightleftharpoons pDUSP_n \tag{118}$$

Reactant

Table 46: Properties of each reactant.

Id	Name	SBO
pDUSP_c	pDUSP_c	

Table 47: Properties of each product.

Id	Name	SBO
pDUSP_n	pDUSP_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \text{function_4_v019} (\text{KexDUSPP}, \text{KimDUSPP}, \text{Vc}, \text{Vn}, [\text{pDUSP_c}], [\text{pDUSP_n}])$$
 (119)

7.20 Reaction reaction_12

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v020

Reaction equation

$$DUSP_{-}n \xrightarrow{ppERK_{-}n} pDUSP_{-}n$$
 (121)

Reactant

Table 48: Properties of each reactant.

Id	Name	SBO
DUSP_n	DUSP_n	

Table 49: Properties of each modifier.

Id	Name	SBO
ppERK_n	ppERK_n	

Table 50: Properties of each product.

Id	Name	SBO
pDUSP_n	pDUSP_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \text{vol}(\text{nucleus}) \cdot \text{function_4_v020}(\text{K20}, \text{V20}, [\text{ppERK_n}], [\text{DUSP_n}])$$
 (122)

$$function_4_v020\left(K20,V20,[ppERK_n],[DUSP_n]\right) = \frac{V20\cdot[ppERK_n]\cdot[DUSP_n]}{K20+[DUSP_n]} \quad (123)$$

$$function_4_v020 \left(K20, V20, [ppERK_n], [DUSP_n] \right) = \frac{V20 \cdot [ppERK_n] \cdot [DUSP_n]}{K20 + [DUSP_n]} \quad (124)$$

7.21 Reaction reaction_13

This is an irreversible reaction of one reactant forming one product.

Name v021

Reaction equation

$$pDUSP_n \longrightarrow DUSP_n \tag{125}$$

Reactant

Table 51: Properties of each reactant.

Id	Name	SBO
pDUSP_n	pDUSP_n	

Table 52: Properties of each product.

Id	Name	SBO
DUSP_n	DUSP_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{vol}(\text{nucleus}) \cdot \text{function_4_v021}(\text{K21}, \text{V21}, [\text{pDUSP_n}])$$
 (126)

$$function_4_v021 (K21, V21, [pDUSP_n]) = \frac{V21 \cdot [pDUSP_n]}{K21 + [pDUSP_n]}$$
 (127)

$$function_4_v021 (K21, V21, [pDUSP_n]) = \frac{V21 \cdot [pDUSP_n]}{K21 + [pDUSP_n]}$$
 (128)

7.22 Reaction reaction_14

This is an irreversible reaction of one reactant forming no product.

Name v022

Reaction equation

$$DUSP_{-}n \longrightarrow \emptyset$$
 (129)

Reactant

Table 53: Properties of each reactant.

Id	Name	SBO
DUSP_n	DUSP_n	

Kinetic Law

$$v_{22} = \text{vol}(\text{nucleus}) \cdot \text{p22} \cdot [\text{DUSP_n}]$$
 (130)

7.23 Reaction reaction_15

This is an irreversible reaction of one reactant forming no product.

Name v023

Reaction equation

$$pDUSP_n \longrightarrow \emptyset$$
 (131)

Reactant

Table 54: Properties of each reactant.

Id	Name	SBO
pDUSP_n	pDUSP_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{vol}(\text{nucleus}) \cdot \text{p23} \cdot [\text{pDUSP_n}]$$
 (132)

7.24 Reaction reaction_41

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v024

Reaction equation

$$RSK_{-c} \xrightarrow{ppERK_{-c}} pRSK_{-c}$$
 (133)

Reactant

Table 55: Properties of each reactant.

Id	Name	SBO
RSK_c	RSK_c	

Table 56: Properties of each modifier.

Id	Name	SBO
ppERK_c	ppERK_c	

Table 57: Properties of each product.

Id	Name	SBO
pRSK_c	pRSK_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{vol}(\text{cytoplasm}) \cdot \text{function_4_v024}(\text{K24}, \text{V24}, [\text{ppERK_c}], [\text{RSK_c}])$$
 (134)

$$function_4_v024 \left(K24, V24, [ppERK_c], [RSK_c] \right) = \frac{V24 \cdot [ppERK_c] \cdot [RSK_c]}{K24 + [RSK_c]} \quad (135)$$

$$function_4_v024 (K24, V24, [ppERK_c], [RSK_c]) = \frac{V24 \cdot [ppERK_c] \cdot [RSK_c]}{K24 + [RSK_c]} \quad (136)$$

7.25 Reaction reaction_42

This is an irreversible reaction of one reactant forming one product.

Name v025

Reaction equation

$$pRSK_c \longrightarrow RSK_c$$
 (137)

Reactant

Table 58: Properties of each reactant.

Id	Name	SBO
pRSK_c	pRSK_c	

Table 59: Properties of each product.

Id	Name	SBO
RSK_c	RSK_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \text{vol}(\text{cytoplasm}) \cdot \text{function_4_v025}(\text{K25}, \text{V25}, [\text{pRSK_c}])$$
 (138)

function_4_v025 (K25, V25, [pRSK_c]) =
$$\frac{V25 \cdot [pRSK_c]}{K25 + [pRSK_c]}$$
 (139)

function_4_v025 (K25, V25, [pRSK_c]) =
$$\frac{V25 \cdot [pRSK_c]}{K25 + [pRSK_c]}$$
(140)

7.26 Reaction re113

This is a reversible reaction of one reactant forming one product.

Name v026

Reaction equation

$$pRSK_c \rightleftharpoons pRSK_n \tag{141}$$

Reactant

Table 60: Properties of each reactant.

Id	Name	SBO
pRSK_c	pRSK_c	

Table 61: Properties of each product.

Id	Name	SBO
pRSK_n	pRSK_n	

Id	Name	SBO

Derived unit contains undeclared units

$$v_{26} = \text{function_4_v026}(\text{KexRSKP}, \text{KimRSKP}, \text{Vc}, \text{Vn}, [\text{pRSK_n}], [\text{pRSK_c}])$$
 (142)

7.27 Reaction reaction_45

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v027

Reaction equation

$$CREB_{-}n \xrightarrow{pRSK_{-}n} pCREB_{-}n$$
 (144)

Reactant

Table 62: Properties of each reactant.

Id	Name	SBO
CREB_n	CREB_n	

Modifier

Table 63: Properties of each modifier.

Id	Name	SBO
$\mathtt{pRSK_n}$	pRSK_n	

Table 64: Properties of each product.

Id	Name	SBO
pCREB_n	pCREB_n	

Derived unit contains undeclared units

$$v_{27} = \text{vol}(\text{nucleus}) \cdot \text{function_4_v027}(\text{K27}, \text{V27}, [\text{CREB_n}], [\text{pRSK_n}])$$
 (145)

$$function_4_v027\,(K27, V27, [CREB_n], [pRSK_n]) = \frac{V27 \cdot [pRSK_n] \cdot [CREB_n]}{K27 + [CREB_n]} \quad (146)$$

$$function_4_v027\,(K27,V27,[CREB_n],[pRSK_n]) = \frac{V27\cdot[pRSK_n]\cdot[CREB_n]}{K27+[CREB_n]} \quad (147)$$

7.28 Reaction reaction_46

This is an irreversible reaction of one reactant forming one product.

Name v028

Reaction equation

$$pCREB_n \longrightarrow CREB_n$$
 (148)

Reactant

Table 65: Properties of each reactant.

Id	Name	SBO
pCREB_n	pCREB_n	

Table 66: Properties of each product.

Id	Name	SBO
CREB_n	CREB_n	

Derived unit contains undeclared units

$$v_{28} = \text{vol}(\text{nucleus}) \cdot \text{function}_4_\text{v}028(\text{K}28, \text{V}28, [\text{pCREB}_n])$$
 (149)

$$function_4_v028 (K28, V28, [pCREB_n]) = \frac{V28 \cdot [pCREB_n]}{K28 + [pCREB_n]} \tag{150}$$

function_4_v028 (K28, V28, [pCREB_n]) =
$$\frac{V28 \cdot [pCREB_n]}{K28 + [pCREB_n]}$$
 (151)

7.29 Reaction reaction_57

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v029

Reaction equation

$$Elk1_n \xrightarrow{ppERK_n} pElk1_n$$
 (152)

Reactant

Table 67: Properties of each reactant.

Id	Name	SBO
Elk1_n	Elk1_n	

Modifier

Table 68: Properties of each modifier.

Id	Name	SBO
ppERK_n	ppERK_n	

Table 69: Properties of each product.

Id	Name	SBO
pElk1_n	pElk1_n	

Derived unit contains undeclared units

$$v_{29} = \text{vol}(\text{nucleus}) \cdot \text{function}_4\text{-v}029(\text{K}29, \text{V}29, [\text{ppERK}_n], [\text{Elk1}_n])$$
 (153)

$$function_4_v029 (K29, V29, [ppERK_n], [Elk1_n]) = \frac{V29 \cdot [ppERK_n] \cdot [Elk1_n]}{K29 + [Elk1_n]} \quad (154)$$

$$function_4_v029\,(K29,V29,[ppERK_n],[Elk1_n]) = \frac{V29\cdot[ppERK_n]\cdot[Elk1_n]}{K29+[Elk1_n]}\quad (155)$$

7.30 Reaction reaction_58

This is an irreversible reaction of one reactant forming one product.

Name v030

Reaction equation

$$pElk1_n \longrightarrow Elk1_n$$
 (156)

Reactant

Table 70: Properties of each reactant.

Id	Name	SBO
pElk1_n	pElk1_n	

Table 71: Properties of each product.

Id	Name	SBO
Elk1_n	Elk1_n	

Derived unit contains undeclared units

$$v_{30} = \text{vol}(\text{nucleus}) \cdot \text{function_4_v030}(\text{K30}, \text{V30}, [\text{pElk1_n}])$$
(157)

$$function_4_v030 (K30, V30, [pElk1_n]) = \frac{V30 \cdot [pElk1_n]}{K30 + [pElk1_n]}$$
 (158)

$$function_4_v030(K30,V30,[pElk1_n]) = \frac{V30 \cdot [pElk1_n]}{K30 + [pElk1_n]}$$
(159)

7.31 Reaction reaction_47

This is an irreversible reaction of no reactant forming one product influenced by three modifiers.

Name v031

Reaction equation

$$\emptyset \xrightarrow{\text{pCREB_n, pElk1_n, Fn}} \text{PreFOSmRNA}$$
 (160)

Modifiers

Table 72: Properties of each modifier.

Id	Name	SBO
pCREB_n pElk1_n Fn	pCREB_n pElk1_n Fn	

Product

Table 73: Properties of each product.

Id	Name	SBO
PreFOSmRNA	PreFOSmRNA	

Kinetic Law

$$v_{31} = vol (nucleus) \cdot function_4_v031 (K31, KF31, V31, n31, nF31, [Fn], [pCREB_n], [pElk1_n]) \tag{161}$$

$$\begin{aligned} & \text{function_4_v031} \left(\text{K31,KF31,V31,n31,nF31,[Fn],[pCREB_n],[pElk1_n]} \right) \\ & = \frac{\text{V31} \cdot \left(\left[\text{pCREB_n} \right] \cdot \left[\text{pElk1_n} \right] \right)^{\text{n31}}}{\text{K31}^{\text{n31}} + \left(\left[\text{pCREB_n} \right] \cdot \left[\text{pElk1_n} \right] \right)^{\text{n31}} + \left(\frac{\left[\text{Fn} \right]}{\text{KF31}} \right)^{\text{nF31}}} \end{aligned}$$

$$\begin{aligned} & \text{function_4_v031} \left(\text{K31,KF31,V31,n31,nF31,[Fn],[pCREB_n],[pElk1_n]} \right) \\ & = \frac{\text{V31} \cdot \left(\left[\text{pCREB_n} \right] \cdot \left[\text{pElk1_n} \right] \right)^{n31}}{\text{K31}^{n31} + \left(\left[\text{pCREB_n} \right] \cdot \left[\text{pElk1_n} \right] \right)^{n31} + \left(\frac{\left[\text{Fn} \right]}{\text{KF31}} \right)^{nF31}} \end{aligned} \end{aligned}$$

7.32 Reaction re115

This is an irreversible reaction of one reactant forming one product.

Name v032

Reaction equation

$$PreFOSmRNA \longrightarrow c_FOSmRNA \tag{164}$$

Reactant

Table 74: Properties of each reactant.IdNameSBO

PreFOSmRNA PreFOSmRNA

Product

Table 75: Properties of each product.

	1	<u> </u>
Id	Name	SBO
c_FOSmRNA	c_FOSmRNA	L

Kinetic Law

$$v_{32} = \text{function_4_v032} (\text{Vn}, \text{p32}, [\text{PreFOSmRNA}])$$
 (165)

$$function_4_v032 (Vn, p32, [PreFOSmRNA]) = p32 \cdot Vn \cdot [PreFOSmRNA]$$
 (166)

7.33 Reaction reaction_50

This is an irreversible reaction of one reactant forming no product.

Name v033

Reaction equation

$$c_FOSmRNA \longrightarrow \emptyset$$
 (167)

Reactant

Table 76: Properties of each reactant.

Id	Name	SBO
c_FOSmRNA	c_FOSmRNA	

Kinetic Law

Derived unit contains undeclared units

$$v_{33} = \text{vol}(\text{cytoplasm}) \cdot \text{p33} \cdot [\text{c.FOSmRNA}]$$
 (168)

7.34 Reaction re90

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name v034

Reaction equation

$$\emptyset \xrightarrow{\text{c_FOSmRNA}} \text{c_FOS_c}$$
 (169)

Table 77: Properties of each modifier.

Id	Name	SBO
c_FOSmRNA	c_FOSmRNA	

Table 78: Properties of each product.

Id	Name	SBO
c_FOS_c	c_FOS_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{34} = \text{vol}(\text{cytoplasm}) \cdot \text{function}_4\text{-v}034(\text{p}34,[\text{c}_F\text{OSmRNA}])$$
 (170)

function_4_v034(p34,[c_FOSmRNA]) = p34
$$\cdot$$
 [c_FOSmRNA] (171)

7.35 Reaction reaction_59

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v035

Reaction equation

$$c_FOS_c \xrightarrow{ppERK_c} pc_FOS_c$$
 (173)

Reactant

Table 79: Properties of each reactant.

Id	Name	SBO
c_FOS_c	c_FOS_c	

Table 80: Properties of each modifier.

Id	Name	SBO
ppERK_c	ppERK_c	

Table 81: Properties of each product.

Id	Name	SBO
pc_F0S_c	pc_FOS_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = \text{vol}(\text{cytoplasm}) \cdot \text{function_4_v035}(\text{K35}, \text{V35}, [\text{c_FOS_c}], [\text{ppERK_c}])$$
 (174)

$$function_4_v035\,(K35,V35,[c_FOS_c],[ppERK_c]) = \frac{V35\cdot[ppERK_c]\cdot[c_FOS_c]}{K35+[c_FOS_c]} \quad (175)$$

$$function_4_v035 (K35, V35, [c_FOS_c], [ppERK_c]) = \frac{V35 \cdot [ppERK_c] \cdot [c_FOS_c]}{K35 + [c_FOS_c]}$$
 (176)

7.36 Reaction reaction_67

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v036

Reaction equation

$$c_FOS_c \xrightarrow{pRSK_c} pc_FOS_c$$
 (177)

Reactant

Table 82: Properties of each reactant.

Id	Name	SBO
c_FOS_c	c_FOS_c	

Table 83: Properties of each modifier.

Id	Name	SBO
pRSK_c	pRSK_c	

Table 84: Properties of each product.

Id	Name	SBO
pc_FOS_c	pc_FOS_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \text{vol}(\text{cytoplasm}) \cdot \text{function_4_v036}(\text{K36}, \text{V36}, [\text{c_FOS_c}], [\text{pRSK_c}])$$
 (178)

$$function_4_v036(K36, V36, [c_FOS_c], [pRSK_c]) = \frac{V36 \cdot [pRSK_c] \cdot [c_FOS_c]}{K36 + [c_FOS_c]} \quad (179)$$

$$function_4_v036 (K36, V36, [c_FOS_c], [pRSK_c]) = \frac{V36 \cdot [pRSK_c] \cdot [c_FOS_c]}{K36 + [c_FOS_c]} \quad (180)$$

7.37 Reaction reaction_60

This is an irreversible reaction of one reactant forming one product.

Name v037

Reaction equation

$$pc_FOS_c \longrightarrow c_FOS_c$$
 (181)

Reactant

Table 85: Properties of each reactant.

Id	Name	SBO
pc_FOS_c	pc_FOS_c	

Table 86: Properties of each product.

Id	Name	SBO
c_F0S_c	c_FOS_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{37} = \text{vol}(\text{cytoplasm}) \cdot \text{function_4_v037}(\text{K37}, \text{V37}, [\text{pc_FOS_c}])$$
 (182)

function_4_v037 (K37, V37, [pc_FOS_c]) =
$$\frac{\text{V37} \cdot [\text{pc}_FOS_c]}{\text{K37} + [\text{pc}_FOS_c]}$$
(183)

$$function_4_v037 (K37, V37, [pc_FOS_c]) = \frac{V37 \cdot [pc_FOS_c]}{K37 + [pc_FOS_c]}$$
 (184)

7.38 Reaction reaction_61

This is an irreversible reaction of one reactant forming no product.

Name v038

Reaction equation

$$c_FOS_c \longrightarrow \emptyset$$
 (185)

Reactant

Table 87: Properties of each reactant.

Id	Name	SBO
c_FOS_c	c_FOS_c	

Kinetic Law

$$v_{38} = \text{vol}(\text{cytoplasm}) \cdot \text{p38} \cdot [\text{c_FOS_c}]$$
 (186)

7.39 Reaction reaction_62

This is an irreversible reaction of one reactant forming no product.

Name v039

Reaction equation

$$pc_FOS_c \longrightarrow \emptyset$$
 (187)

Reactant

Table 88: Properties of each reactant.

Id	Name	SBO
pc_FOS_c	pc_FOS_c	_

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = \text{vol}(\text{cytoplasm}) \cdot \text{p39} \cdot [\text{pc_FOS_c}]$$
 (188)

7.40 Reaction re116

This is a reversible reaction of one reactant forming one product.

Name v040

Reaction equation

$$c_FOS_c \Longrightarrow FOSn \tag{189}$$

Reactant

Table 89: Properties of each reactant.

Id	Name	SBO
c_FOS_c	c_FOS_c	

Table 90: Properties of each product.

Id	Name	SBO
FOSn	FOSn	

Kinetic Law

Derived unit contains undeclared units

$$v_{40} = \text{function_4_v040} (\text{KexFOS}, \text{KimFOS}, \text{Vc}, \text{Vn}, [\text{c_FOS_c}], [\text{FOSn}])$$
 (190)

7.41 Reaction re117

This is a reversible reaction of one reactant forming one product.

Name v041

Reaction equation

$$pc_FOS_c \rightleftharpoons FOSn_2$$
 (192)

Reactant

Table 91: Properties of each reactant.

Id	Name	SBO
pc_FOS_c	pc_FOS_c	

Product

Table 92: Properties of each product.

Id	Name	SBO
FOSn_2	FOSn_2	

Kinetic Law

$$v_{41} = \text{function_4_v041} (\text{KexFOSP}, \text{KimFOSP}, \text{Vc}, \text{Vn}, [\text{pc_FOS_c}], [\text{FOSn_2}])$$
 (193)

7.42 Reaction reaction_52

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v042

Reaction equation

$$FOSn \xrightarrow{ppERK_n} FOSn_2$$
 (195)

Reactant

Table 93: Properties of each reactant.

Id	Name	SBO
FOSn	FOSn	

Modifier

Table 94: Properties of each modifier.

Id	Name	SBO
ppERK_n	ppERK_n	

Product

Table 95: Properties of each product.

Id	Name	SBO
FOSn_2	FOSn_2	

Kinetic Law

$$v_{42} = \text{vol}(\text{nucleus}) \cdot \text{function}_4_\text{v}042 (\text{K}42, \text{V}42, [\text{ppERK}_\text{n}], [\text{FOSn}])$$
 (196)

$$function_4_v042\left(K42,V42,[ppERK_n],[FOSn]\right) = \frac{V42\cdot[ppERK_n]\cdot[FOSn]}{K42+[FOSn]} \quad \ (197)$$

$$function_4_v042\left(K42,V42,[ppERK_n],[FOSn]\right) = \frac{V42\cdot[ppERK_n]\cdot[FOSn]}{K42+[FOSn]} \hspace{0.5cm} (198)$$

7.43 Reaction reaction_53

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v043

Reaction equation

$$FOSn \xrightarrow{pRSK_n} FOSn_2$$
 (199)

Reactant

Table 96: Properties of each reactant.

Id	Name	SBO
FOSn	FOSn	

Modifier

Table 97: Properties of each modifier.

Id	Name	SBO
pRSK_n	pRSK_n	

Product

Table 98: Properties of each product.

Id	Name	SBO
FOSn_2	FOSn_2	

Kinetic Law

$$v_{43} = \text{vol}(\text{nucleus}) \cdot \text{function}_4 \cdot \text{v043}(\text{K43}, \text{V43}, [\text{FOSn}], [\text{pRSK}_n])$$
 (200)

$$function_4_v043\left(K43,V43,[FOSn],[pRSK_n]\right) = \frac{V43\cdot[pRSK_n]\cdot[FOSn]}{K43+[FOSn]} \tag{201}$$

$$function_4_v043\left(K43,V43,[FOSn],[pRSK_n]\right) = \frac{V43\cdot[pRSK_n]\cdot[FOSn]}{K43+[FOSn]} \tag{202}$$

7.44 Reaction reaction_54

This is an irreversible reaction of one reactant forming one product.

Name v044

Reaction equation

$$FOSn_2 \longrightarrow FOSn$$
 (203)

Reactant

Table 99: Properties of each reactant.

Id	Name	SBO
FOSn_2	FOSn_2	

Product

Table 100: Properties of each product.

Id	Name	SBO
FOSn	FOSn	

Kinetic Law

$$v_{44} = \text{vol}(\text{nucleus}) \cdot \text{function}_4 \cdot \text{v044}(\text{K44}, \text{V44}, [\text{FOSn}_2])$$
 (204)

$$function_4_v044(K44, V44, [FOSn_2]) = \frac{V44 \cdot [FOSn_2]}{K44 + [FOSn_2]}$$
 (205)

function_4_v044 (K44, V44, [FOSn_2]) =
$$\frac{\text{V44} \cdot [\text{FOSn}_2]}{\text{K44} + [\text{FOSn}_2]}$$
(206)

7.45 Reaction reaction_55

This is an irreversible reaction of one reactant forming no product.

Name v045

Reaction equation

$$FOSn \longrightarrow \emptyset \tag{207}$$

Reactant

Table 101: Properties of each reactant.

Id	Name	SBO
FOSn	FOSn	

Kinetic Law

Derived unit contains undeclared units

$$v_{45} = \text{vol} \left(\text{nucleus} \right) \cdot \text{p45} \cdot \left[\text{FOSn} \right]$$
 (208)

7.46 Reaction reaction_56

This is an irreversible reaction of one reactant forming no product.

Name v046

Reaction equation

$$FOSn_2 \longrightarrow \emptyset \tag{209}$$

Reactant

Table 102: Properties of each reactant.

Id	Name	SBO
FOSn_2	FOSn_2	

Kinetic Law

$$v_{46} = \text{vol}(\text{nucleus}) \cdot \text{p46} \cdot [\text{FOSn}_2]$$
 (210)

7.47 Reaction reaction_25

This is a reversible reaction of two reactants forming one product.

Name v047

Reaction equation

$$pDUSP_n + ppERK_n \Longrightarrow pDUSP_n_ppERK_n$$
 (211)

Reactants

Table 103: Properties of each reactant.

Id	Name	SBO
pDUSP_n ppERK_n	pDUSP_n ppERK_n	

Product

Table 104: Properties of each product.

Id	Name	SBO
pDUSP_n_ppERK_n	pDUSP_n_ppERK_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{47} = \text{vol}(\text{nucleus}) \cdot (\text{p52} \cdot [\text{pDUSP_n}] \cdot [\text{ppERK_n}] - \text{m52} \cdot [\text{pDUSP_n_ppERK_n}])$$
 (212)

7.48 Reaction reaction_26

This is an irreversible reaction of one reactant forming two products.

Name v048

Reaction equation

$$pDUSP_n_ppERK_n \longrightarrow pDUSP_n + pERK_n$$
 (213)

Reactant

Table 105: Properties of each reactant.

Id	Name	SBO
pDUSP_n_ppERK_n	pDUSP_n_ppERK_n	

Table 106: Properties of each product.

Id	Name	SBO
pDUSP_n pERK_n	pDUSP_n pERK_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{48} = \text{vol}(\text{nucleus}) \cdot \text{p53} \cdot [\text{pDUSP_n_ppERK_n}]$$
 (214)

7.49 Reaction reaction_27

This is a reversible reaction of two reactants forming one product.

Name v049

Reaction equation

$$pDUSP_n + pERK_n \Longrightarrow pDUSP_n_pERK_n$$
 (215)

Reactants

Table 107: Properties of each reactant.

Id	Name	SBO
pDUSP_n	pDUSP_n	
pERK_n	$pERK_{-}n$	

Table 108: Properties of each product.

Id	Name	SBO
pDUSP_n_pERK_n	pDUSP_n_pERK_n	

Derived unit contains undeclared units

$$v_{49} = \text{vol}(\text{nucleus}) \cdot (\text{p54} \cdot [\text{pDUSP_n}] \cdot [\text{pERK_n}] - \text{m54} \cdot [\text{pDUSP_n_pERK_n}])$$
 (216)

7.50 Reaction reaction_28

This is an irreversible reaction of one reactant forming two products.

Name v050

Reaction equation

$$pDUSP_n_pERK_n \longrightarrow pDUSP_n + ERK_n$$
 (217)

Reactant

Table 109: Properties of each reactant.

Id	Name	SBO
pDUSP_n_pERK_n	pDUSP_n_pERK_n	

Products

Table 110: Properties of each product.

Id	Name	SBO
pDUSP_n ERK_n	pDUSP_n ERK_n	

Kinetic Law

$$v_{50} = \text{vol}(\text{nucleus}) \cdot \text{p55} \cdot [\text{pDUSP_n_pERK_n}]$$
 (218)

7.51 Reaction reaction_30

This is a reversible reaction of two reactants forming one product.

Name v051

Reaction equation

$$pDUSP_n + ERK_n \Longrightarrow pDUSP_n ERK_n$$
 (219)

Reactants

Table 111: Properties of each reactant.

Id	Name	SBO
pDUSP_n ERK_n	pDUSP_n ERK_n	

Product

Table 112: Properties of each product.

Id	Name	SBO
pDUSP_n_ERK_n	pDUSP_n_ERK_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{51} = \text{vol}(\text{nucleus}) \cdot (\text{p56} \cdot [\text{pDUSP_n}] \cdot [\text{ERK_n}] - \text{m56} \cdot [\text{pDUSP_n_ERK_n}])$$
 (220)

7.52 Reaction reaction_21

This is a reversible reaction of two reactants forming one product.

Name v052

Reaction equation

$$DUSP_n + ppERK_n \Longrightarrow DUSP_n ppERK_n$$
 (221)

Reactants

Table 113: Properties of each reactant.

Id	Name	SBO
DUSP_n	DUSP_n	
$\mathtt{ppERK_n}$	ppERK_n	

Table 114: Properties of each product.

Id	Name	SBO
DUSP_n_ppERK_n	DUSP_n_ppERK_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{52} = \text{vol}(\text{nucleus}) \cdot (\text{p47} \cdot [\text{DUSP_n}] \cdot [\text{ppERK_n}] - \text{m47} \cdot [\text{DUSP_n_ppERK_n}])$$
 (222)

7.53 Reaction reaction_22

This is an irreversible reaction of one reactant forming two products.

Name v053

Reaction equation

$$DUSP_n_ppERK_n \longrightarrow DUSP_n + pERK_n$$
 (223)

Reactant

Table 115: Properties of each reactant.

Id	Name	SBO
DUSP_n_ppERK_n	DUSP_n_ppERK_n	

Table 116: Properties of each product.

Id	Name	SBO
DUSP_n	DUSP_n	

Id	Name	SBO
pERK_n	pERK_n	

Derived unit contains undeclared units

$$v_{53} = \text{vol}(\text{nucleus}) \cdot \text{p48} \cdot [\text{DUSP_n_ppERK_n}]$$
 (224)

7.54 Reaction reaction_23

This is a reversible reaction of two reactants forming one product.

Name v054

Reaction equation

$$DUSP_n + pERK_n \Longrightarrow DUSP_n pERK_n$$
 (225)

Reactants

Table 117: Properties of each reactant.

Id	Name	SBO
DUSP_n	DUSP_n	
$pERK_n$	$pERK_n$	

Product

Table 118: Properties of each product.

Id	Name	SBO
DUSP_n_pERK_n	DUSP_n_pERK_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{54} = \text{vol}(\text{nucleus}) \cdot (\text{p49} \cdot [\text{DUSP_n}] \cdot [\text{pERK_n}] - \text{m49} \cdot [\text{DUSP_n_pERK_n}])$$
 (226)

7.55 Reaction reaction_24

This is an irreversible reaction of one reactant forming two products.

Name v055

Reaction equation

$$DUSP_n_pERK_n \longrightarrow DUSP_n + ERK_n$$
 (227)

Reactant

Table 119: Properties of each reactant.

Id	Name	SBO
DUSP_n_pERK_n	DUSP_n_pERK_n	

Products

Table 120: Properties of each product.

Id	Name	SBO
DUSP_n	DUSP_n	
$\mathtt{ERK}_\mathtt{n}$	ERK_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{55} = \text{vol}(\text{nucleus}) \cdot \text{p50} \cdot [\text{DUSP_n_pERK_n}]$$
 (228)

7.56 Reaction reaction_29

This is a reversible reaction of two reactants forming one product.

Name v056

Reaction equation

$$DUSP_n + ERK_n \Longrightarrow DUSP_n ERK_n$$
 (229)

Reactants

72

Table 121: Properties of each reactant.

Id	Name	SBO
DUSP_n	DUSP_n	_

Id	Name	SBO
ERK_n	ERK_n	

Product

Table 122: Properties of each product.

Id	Name	SBO
DUSP_n_ERK_n	DUSP_n_ERK_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{56} = \text{vol}(\text{nucleus}) \cdot (\text{p51} \cdot [\text{DUSP_n}] \cdot [\text{ERK_n}] - \text{m51} \cdot [\text{DUSP_n_ERK_n}])$$
 (230)

7.57 Reaction re92

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name v057

Reaction equation

$$\emptyset \xrightarrow{FOSn.2} PreFmRNA \tag{231}$$

Modifier

Table 123: Properties of each modifier.

Id	Name	SBO
FOSn_2	FOSn_2	

Table 124: Properties of each product.

Id	Name	SBO
PreFmRNA	PreFmRNA	

Derived unit contains undeclared units

$$v_{57} = \text{vol}(\text{nucleus}) \cdot \text{function}_4\text{-v057}(\text{K57}, \text{V57}, \text{n57}, [\text{FOSn}_2])$$
 (232)

function_4_v057 (K57, V57, n57, [FOSn_2]) =
$$\frac{\text{V57} \cdot [\text{FOSn}_2]^{n57}}{\text{K57}^{n57} + [\text{FOSn}_2]^{n57}}$$
(233)

$$function_4_v057 (K57, V57, n57, [FOSn_2]) = \frac{V57 \cdot [FOSn_2]^{n57}}{K57^{n57} + [FOSn_2]^{n57}} \tag{234}$$

7.58 Reaction re118

This is an irreversible reaction of one reactant forming one product.

Name v058

Reaction equation

$$PreFmRNA \longrightarrow FmRNA \tag{235}$$

Reactant

Table 125: Properties of each reactant.

Id	Name	SBO
PreFmRNA	PreFmRNA	

Product

Table 126: Properties of each product.

Id	Name	SBO
FmRNA	FmRNA	

Kinetic Law

Derived unit contains undeclared units

$$v_{58} = \text{function}_{-4}\text{-v}058 \, (\text{Vn}, \text{p}58, [\text{PreFmRNA}]) \tag{236}$$

$$function_4_v058 (Vn, p58, [PreFmRNA]) = p58 \cdot Vn \cdot [PreFmRNA]$$
 (237)

7.59 Reaction re94

This is an irreversible reaction of one reactant forming no product.

Name v059

Reaction equation

$$FmRNA \longrightarrow \emptyset \tag{238}$$

Reactant

Table 127: Properties of each reactant.

Id	Name	SBO
FmRNA	FmRNA	

Kinetic Law

Derived unit contains undeclared units

$$v_{59} = \text{vol}\left(\text{cytoplasm}\right) \cdot \text{p59} \cdot [\text{FmRNA}]$$
 (239)

7.60 Reaction re95

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name v060

Reaction equation

$$\emptyset \xrightarrow{\text{FmRNA}} F \tag{240}$$

Modifier

Table 128: Properties of each modifier.

Id	Name	SBO
FmRNA	FmRNA	

Table 129: Properties of each product.

Id	Name	SBO
F	F	

Kinetic Law

Derived unit contains undeclared units

$$v_{60} = \text{vol}(\text{cytoplasm}) \cdot \text{function}_{4}\text{-v060}(\text{p60}, [\text{FmRNA}])$$
 (241)

$$function_4_v060 (p60, [FmRNA]) = p60 \cdot [FmRNA]$$
 (242)

$$function_4_v060 (p60, [FmRNA]) = p60 \cdot [FmRNA]$$
 (243)

7.61 Reaction re96

This is an irreversible reaction of one reactant forming no product.

Name v061

Reaction equation

$$F \longrightarrow \emptyset$$
 (244)

Reactant

Table 130: Properties of each reactant.

Id	Name	SBO
F	F	

Kinetic Law

Derived unit contains undeclared units

$$v_{61} = \text{vol}\left(\text{cytoplasm}\right) \cdot \text{p61} \cdot [\text{F}]$$
 (245)

7.62 Reaction re119

This is a reversible reaction of one reactant forming one product.

Name v062

Reaction equation

$$F \rightleftharpoons Fn$$
 (246)

Reactant

Table 131: Properties of each reactant.

Id	Name	SBO
F	F	

Product

Table 132: Properties of each product.

Id	Name	SBO
Fn	Fn	

Kinetic Law

Derived unit contains undeclared units

$$v_{62} = \text{function_4_v062}(\text{KexF}, \text{KimF}, \text{Vc}, \text{Vn}, [\text{F}], [\text{Fn}])$$
(247)

$$function_4_v062\left(KexF, KimF, Vc, Vn, [F], [Fn]\right) = KimF \cdot Vc \cdot [F] - KexF \cdot Vn \cdot [Fn] \quad (248)$$

7.63 Reaction re99

This is an irreversible reaction of one reactant forming no product.

Name v063

Reaction equation

$$Fn \longrightarrow \emptyset$$
 (249)

Table 133: Properties of each reactant.

Id	Name	SBO
Fn	Fn	

Derived unit contains undeclared units

$$v_{63} = \text{vol}(\text{nucleus}) \cdot \text{function_4_v063}(\text{vol}(\text{cytoplasm}), \text{vol}(\text{nucleus}), \text{p63}, [\text{Fn}])$$
 (250)

$$function_4_v063 \\ (vol \\ (cytoplasm) \\ ,vol \\ (nucleus) \\ ,p63,[Fn]) = \frac{vol \\ (cytoplasm) \\ \cdot p63 \\ \cdot [Fn]}{vol \\ (nucleus)}$$

$$function_4_v063 \\ (vol \\ (cytoplasm) \\ ,vol \\ (nucleus) \\ ,p63,[Fn]) = \frac{vol \\ (cytoplasm) \\ \cdot \\ p63 \\ \cdot \\ [Fn]}{vol \\ (nucleus)} \\ (252)$$

7.64 Reaction reaction_31

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v101

Reaction equation

$$A1 \xrightarrow{EGF} A1_2 \tag{253}$$

Reactant

Table 134: Properties of each reactant.

Id	Name	SBO
A1	A1	

Modifier

Table 135: Properties of each modifier.

Id	Name	SBO
EGF	EGF	

Table 136: Properties of each product.

Id	Name	SBO
A1_2	A1_2	

Derived unit contains undeclared units

$$v_{64} = \text{vol}(\text{cytoplasm}) \cdot \text{function_4_v101}(\text{K101}, \text{V101}, [\text{A1}], [\text{EGF}])$$
 (254)

$$function_4_v101 \, (K101, V101, [A1], [EGF]) = \frac{V101 \cdot [EGF] \cdot [A1]}{K101 + [A1]} \tag{255}$$

$$function_4_v101 \, (K101, V101, [A1], [EGF]) = \frac{V101 \cdot [EGF] \cdot [A1]}{K101 + [A1]} \tag{256}$$

7.65 Reaction reaction_68

This is an irreversible reaction of one reactant forming one product.

Name v102

Reaction equation

$$A1_2 \longrightarrow A1$$
 (257)

Reactant

Table 137: Properties of each reactant.

Id	Name	SBO
A1_2	A1_2	

Table 138: Properties of each product.

Id	Name	SBO
A1	A1	

Derived unit contains undeclared units

$$v_{65} = \text{vol}(\text{cytoplasm}) \cdot \text{function_4_v102}(\text{K102}, \text{V102}, [\text{A1_2}])$$
 (258)

function_4_v102 (K102, V102, [A1_2]) =
$$\frac{V102 \cdot [A1_2]}{K102 + [A1_2]}$$
(259)

function_4_v102 (K102, V102, [A1_2]) =
$$\frac{V102 \cdot [A1_2]}{K102 + [A1_2]}$$
(260)

7.66 Reaction reaction_69

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v103

Reaction equation

$$A2 \xrightarrow{HRG} A2_2 \tag{261}$$

Reactant

Table 139: Properties of each reactant.

Id	Name	SBO
A2	A2	

Modifier

Table 140: Properties of each modifier.

Id	Name	SBO
HRG	HRG	

Table 141: Properties of each product.

Id	Name	SBO
A2_2	A2_2	

Derived unit contains undeclared units

$$v_{66} = \text{vol}(\text{cytoplasm}) \cdot \text{function_4_v103}(\text{K103}, \text{V103}, [\text{A2}], [\text{HRG}])$$
 (262)

$$function_4_v103 \, (K103, V103, [A2], [HRG]) = \frac{V103 \cdot [HRG] \cdot [A2]}{K103 + [A2]} \tag{263} \label{eq:263}$$

$$function_4_v103 \, (K103, V103, [A2], [HRG]) = \frac{V103 \cdot [HRG] \cdot [A2]}{K103 + [A2]} \tag{264} \label{eq:264}$$

7.67 Reaction reaction_70

This is an irreversible reaction of one reactant forming one product.

Name v104

Reaction equation

$$A2.2 \longrightarrow A2$$
 (265)

Reactant

Table 142: Properties of each reactant.

Id	Name	SBO
A2_2	A2_2	

Table 143: Properties of each product.

Id	Name	SBO
A2	A2	

Derived unit contains undeclared units

$$v_{67} = \text{vol}(\text{cytoplasm}) \cdot \text{function}_4 \cdot \text{v}_{104}(\text{K}_{104}, \text{V}_{104}, [\text{A}_{22}])$$
 (266)

function_4_v104 (K104, V104, [A2_2]) =
$$\frac{V104 \cdot [A2_2]}{K104 + [A2_2]}$$
(267)

function_4_v104 (K104, V104, [A2_2]) =
$$\frac{V104 \cdot [A2_2]}{K104 + [A2_2]}$$
 (268)

7.68 Reaction reaction_71

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v105

Reaction equation

$$RsD \xrightarrow{EGF} RsT \tag{269}$$

Reactant

Table 144: Properties of each reactant.

Id	Name	SBO
RsD	RsD	

Modifier

Table 145: Properties of each modifier.

Id	Name	SBO
EGF	EGF	

Table 146: Properties of each product.

Id	Name	SBO
RsT	RsT	

Derived unit contains undeclared units

$$v_{68} = vol(cytoplasm) \cdot function_4_v105(K105, V105, [EGF], [RsD])$$
 (270)

$$function_4_v105 \, (K105, V105, [EGF], [RsD]) = \frac{V105 \cdot [EGF] \cdot [RsD]}{K105 + [RsD]} \tag{271}$$

$$function_4_v105\,(K105,V105,[EGF],[RsD]) = \frac{V105\cdot[EGF]\cdot[RsD]}{K105+[RsD]} \tag{272}$$

7.69 Reaction reaction_72

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v106

Reaction equation

$$RsD \xrightarrow{HRG} RsT \tag{273}$$

Reactant

Table 147: Properties of each reactant.

Id	Name	SBO
RsD	RsD	

Modifier

Table 148: Properties of each modifier.

Id	Name	SBO
HRG	HRG	

Product

Table 149: Properties of each product.

Kinetic Law

Derived unit contains undeclared units

$$v_{69} = \text{vol}(\text{cytoplasm}) \cdot \text{function_4_v106}(\text{K106}, \text{V106}, [\text{HRG}], [\text{RsD}])$$
 (274)

function_4_v106 (K106, V106, [HRG], [RsD]) =
$$\frac{V106 \cdot [HRG] \cdot [RsD]}{K106 + [RsD]}$$
(275)

$$function_4_v106 (K106, V106, [HRG], [RsD]) = \frac{V106 \cdot [HRG] \cdot [RsD]}{K106 + [RsD]}$$
 (276)

7.70 Reaction reaction_73

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v107

Reaction equation

$$RsT \xrightarrow{A1.2} RsD \tag{277}$$

Reactant

Table 150: Properties of each reactant.

Id	Name	SBO
RsT	RsT	

Modifier

Table 151: Properties of each modifier.

Id	Name	SBO
A1_2	A1_2	

Product

Table 152: Properties of each product.

Id	Name	SBO
RsD	RsD	

Kinetic Law

Derived unit contains undeclared units

$$v_{70} = \text{vol}(\text{cytoplasm}) \cdot \text{function_4_v107}(\text{K107}, \text{V107}, [\text{A1_2}], [\text{RsT}])$$
 (278)

$$function_4_v107 \left(K107, V107, [A1_2], [RsT] \right) = \frac{V107 \cdot [A1_2] \cdot [RsT]}{K107 + [RsT]} \tag{279}$$

$$function_4_v107\,(K107,V107,[A1_2],[RsT]) = \frac{V107\cdot[A1_2]\cdot[RsT]}{K107+[RsT]} \tag{280}$$

7.71 Reaction reaction_74

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v108

Reaction equation

$$RsT \xrightarrow{A2.2} RsD \tag{281}$$

Table 153: Properties of each reactant.

Id	Name	SBO
RsT	RsT	

Table 154: Properties of each modifier.

Id	Name	SBO
A2_2	A2_2	

Product

Table 155: Properties of each product.

Id	Name	SBO
RsD	RsD	

Kinetic Law

Derived unit contains undeclared units

$$v_{71} = \text{vol}(\text{cytoplasm}) \cdot \text{function_4_v108}(\text{K108}, \text{V108}, [\text{A2_2}], [\text{RsT}])$$
 (282)

$$function_4_v108 \, (K108, V108, [A2_2], [RsT]) = \frac{V108 \cdot [A2_2] \cdot [RsT]}{K108 + [RsT]} \tag{283}$$

$$function_4_v108 \, (K108, V108, [A2_2], [RsT]) = \frac{V108 \cdot [A2_2] \cdot [RsT]}{K108 + [RsT]} \tag{284}$$

7.72 Reaction reaction_75

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v109

Reaction equation

$$A3 \xrightarrow{HRG} A3.2 \tag{285}$$

Table 156: Properties of each reactant.

Id	Name	SBO
АЗ	A3	

Table 157: Properties of each modifier.

Id	Name	SBO
HRG	HRG	

Product

Table 158: Properties of each product.

Id	Name	SBO
A3_2	A3_2	

Kinetic Law

Derived unit contains undeclared units

$$v_{72} = \text{vol}(\text{cytoplasm}) \cdot \text{function}_4\text{-v}109(\text{K}109, \text{V}109, [\text{HRG}], [\text{A}3])$$
 (286)

$$function_4_v109\,(K109,V109,[HRG],[A3]) = \frac{V109\cdot[HRG]\cdot[A3]}{K109+[A3]} \tag{287}$$

$$function_4_v109\,(K109,V109,[HRG],[A3]) = \frac{V109\cdot[HRG]\cdot[A3]}{K109+[A3]} \tag{288}$$

7.73 Reaction reaction_76

This is an irreversible reaction of one reactant forming one product.

Name v110

Reaction equation

$$A3_2 \longrightarrow A3$$
 (289)

Table 159: Properties of each reactant.

Id	Name	SBO
A3_2	A3_2	

Product

Table 160: Properties of each product.

Id	Name	SBO
АЗ	A3	

Kinetic Law

Derived unit contains undeclared units

$$v_{73} = \text{vol}(\text{cytoplasm}) \cdot \text{function}_4 \cdot \text{v110}(\text{K110}, \text{V110}, [\text{A3}_2])$$
 (290)

function_4_v110 (K110, V110, [A3.2]) =
$$\frac{V110 \cdot [A3.2]}{K110 + [A3.2]}$$
 (291)

function_4_v110 (K110, V110, [A3.2]) =
$$\frac{V110 \cdot [A3.2]}{K110 + [A3.2]}$$
 (292)

7.74 Reaction reaction_77

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v111

Reaction equation

$$Kin \xrightarrow{HRG} Kin_2$$
 (293)

Table 161: Properties of each reactant.

Id	Name	SBO
Kin	Kin	

Table 162: Properties of each modifier.

Id	Name	SBO
HRG	HRG	

Product

Table 163: Properties of each product.

Id	Name	SBO
Kin_2	Kin_2	

Kinetic Law

Derived unit contains undeclared units

$$v_{74} = \text{vol}(\text{cytoplasm}) \cdot \text{function_4_v111}(\text{K111}, \text{V111}, [\text{HRG}], [\text{Kin}])$$
 (294)

$$function_4_v111\left(K111,V111,[HRG],[Kin]\right) = \frac{V111\cdot[HRG]\cdot[Kin]}{K111+[Kin]} \tag{295}$$

$$function_4_v111\left(K111,V111,[HRG],[Kin]\right) = \frac{V111\cdot[HRG]\cdot[Kin]}{K111+[Kin]} \tag{296}$$

7.75 Reaction reaction_78

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v112

Reaction equation

$$\operatorname{Kin}_{2} \xrightarrow{\operatorname{A3.2}} \operatorname{Kin} \tag{297}$$

Table 164: Properties of each reactant.

Id	Name	SBO
Kin_2	Kin_2	

Table 165: Properties of each modifier.

Id	Name	SBO
A3_2	A3_2	

Product

Table 166: Properties of each product.

Id	Name	SBO
Kin	Kin	

Kinetic Law

Derived unit contains undeclared units

$$v_{75} = \text{vol}(\text{cytoplasm}) \cdot \text{function_4_v112}(\text{K112}, \text{V112}, [\text{A3_2}], [\text{Kin_2}])$$
 (298)

$$function_4_v112 (K112, V112, [A3_2], [Kin_2]) = \frac{V112 \cdot [A3_2] \cdot [Kin_2]}{K112 + [Kin_2]} \tag{299}$$

$$function_4_v112 (K112, V112, [A3_2], [Kin_2]) = \frac{V112 \cdot [A3_2] \cdot [Kin_2]}{K112 + [Kin_2]}$$
 (300)

7.76 Reaction reaction_79

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v113

Reaction equation

$$MEK \xrightarrow{RsT} pMEK \tag{301}$$

Table 167: Properties of each reactant.

Id	Name	SBO
MEK	MEK	

Table 168: Properties of each modifier.

Id	Name	SBO
RsT	RsT	

Product

Table 169: Properties of each product.

Id	Name	SBO
pMEK	pMEK	

Kinetic Law

Derived unit contains undeclared units

$$v_{76} = \text{vol}(\text{cytoplasm}) \cdot \text{function_4_v113}(\text{K113}, \text{V113}, [\text{RsT}], [\text{MEK}])$$
 (302)

$$function_4_v113 (K113, V113, [RsT], pMEK_c) = \frac{V113 \cdot [RsT] \cdot pMEK_c}{K113 + pMEK_c}$$
 (303)

$$function_4_v113 \, (K113, V113, [RsT], pMEK_c) = \frac{V113 \cdot [RsT] \cdot pMEK_c}{K113 + pMEK_c} \tag{304} \label{eq:304}$$

7.77 Reaction reaction_80

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name v114

Reaction equation

$$MEK \xrightarrow{Kin_2} pMEK \tag{305}$$

Table 170: Properties of each reactant.

Id	Name	SBO
MEK	MEK	

Table 171: Properties of each modifier.

Id	Name	SBO
Kin_2	Kin_2	

Product

Table 172: Properties of each product.

Id	Name	SBO
pMEK	pMEK	

Kinetic Law

Derived unit contains undeclared units

$$v_{77} = \text{vol}(\text{cytoplasm}) \cdot \text{function}_4\text{-v}114(\text{K}114, \text{V}114, [\text{Kin}_2], [\text{MEK}])$$
 (306)

$$function_4_v114\left(K114,V114,[Kin_2],pMEK_c\right) = \frac{V114\cdot[Kin_2]\cdot pMEK_c}{K114+pMEK_c} \hspace{0.5cm} (307)$$

$$function_4_v114 (K114, V114, [Kin_2], pMEK_c) = \frac{V114 \cdot [Kin_2] \cdot pMEK_c}{K114 + pMEK_c} \quad (308)$$

7.78 Reaction reaction_81

This is an irreversible reaction of one reactant forming one product.

Name v115

Reaction equation

$$pMEK \longrightarrow MEK$$
 (309)

Table 173: Properties of each reactant.

Id	Name	SBO
pMEK	pMEK	

Product

Table 174: Properties of each product.

Id	Name	SBO
MEK	MEK	·

Kinetic Law

Derived unit contains undeclared units

$$v_{78} = \text{vol}(\text{cytoplasm}) \cdot \text{function_4_v115}(\text{K115}, \text{V115}, [\text{pMEK}])$$
 (310)

function_4_v115 (K115, V115, MEKc) =
$$\frac{V115 \cdot MEKc}{K115 + MEKc}$$
 (311)

function_4_v115 (K115, V115, MEKc) =
$$\frac{\text{V115} \cdot \text{MEKc}}{\text{K115} + \text{MEKc}}$$
 (312)

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

8.1 Species EGF

Name EGF

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in two reactions (as a modifier in reaction_31, reaction_71), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{EGF} = 0\tag{313}$$

8.2 Species HRG

Name HRG

SBO:0000252 polypeptide chain

Initial concentration $10 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in four reactions (as a modifier in reaction_69, reaction_72, reaction_75, reaction_77), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{HRG} = 0\tag{314}$$

8.3 Species A1

Name A1

Initial concentration $182.3524 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in two reactions (as a reactant in reaction_31 and as a product in reaction_68).

$$\frac{d}{dt}A1 = v_{65} - v_{64} \tag{315}$$

8.4 Species A1_2

Name $A1_2$

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in three reactions (as a reactant in reaction_68 and as a product in reaction_31 and as a modifier in reaction_73).

$$\frac{\mathrm{d}}{\mathrm{d}t} A1.2 = |v_{64} - v_{65}| \tag{316}$$

8.5 Species A2

Name A2

Initial concentration $25.38702 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in two reactions (as a reactant in reaction_69 and as a product in reaction_70).

$$\frac{d}{dt}A2 = v_{67} - v_{66} \tag{317}$$

8.6 Species A2_2

Name $A2_2$

Initial concentration $0 \text{ nmol} \cdot pl^{-1}$

This species takes part in three reactions (as a reactant in reaction_70 and as a product in reaction_69 and as a modifier in reaction_74).

$$\frac{\mathrm{d}}{\mathrm{d}t} A2.2 = |v_{66}| - |v_{67}| \tag{318}$$

8.7 Species A3

Name A3

Initial concentration $13.09262 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in two reactions (as a reactant in reaction_75 and as a product in reaction_76).

$$\frac{d}{dt}A3 = v_{73} - v_{72} \tag{319}$$

8.8 Species A3_2

Name A3₂

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in three reactions (as a reactant in reaction_76 and as a product in reaction_75 and as a modifier in reaction_78).

$$\frac{d}{dt}A3.2 = |v_{72}| - |v_{73}| \tag{320}$$

8.9 Species DUSPmRNA

Name DUSPmRNA

SBO:0000250 ribonucleic acid

Initial concentration $0 \text{ nmol} \cdot pl^{-1}$

This species takes part in three reactions (as a reactant in reaction_17 and as a product in re110 and as a modifier in re89).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DUSPmRNA} = |v_{11}| - |v_{12}| \tag{321}$$

8.10 Species ERK_c

Name ERK_c

SBO:0000252 polypeptide chain

Initial concentration $570.4179 \text{ } \text{nmol} \cdot \text{pl}^{-1}$

This species takes part in four reactions (as a reactant in reaction_32, re106 and as a product in re85 and as a modifier in reaction_6).

$$\frac{d}{dt}ERK_{c}c = |v_{3}| - |v_{1}| - |v_{7}|$$
(322)

8.11 Species pERK_c

Name pERK_c

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in seven reactions (as a reactant in reaction_6, re85, re107 and as a product in reaction_32, re86 and as a modifier in reaction_32, re86).

$$\frac{d}{dt}pERK_c = |v_1| + |v_4| - |v_2| - |v_3| - |v_8|$$
(323)

8.12 Species ppERK_c

Name ppERK_c

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in seven reactions (as a reactant in re86, re108 and as a product in reaction_6 and as a modifier in re85, reaction_33, reaction_41, reaction_59).

$$\frac{d}{dt} ppERK_c = |v_2| - |v_4| - |v_9|$$
(324)

8.13 Species F

Name F

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in three reactions (as a reactant in re96, re119 and as a product in re95).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{F} = |v_{60}| - |v_{61}| - |v_{62}| \tag{325}$$

8.14 Species c_FOS_c

Name c_FOS_c

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in six reactions (as a reactant in reaction_59, reaction_67, reaction_61, re116 and as a product in re90, reaction_60).

$$\frac{d}{dt}c_FOS_c = |v_{34}| + |v_{37}| - |v_{35}| - |v_{36}| - |v_{38}| - |v_{40}|$$
(326)

8.15 Species pc_FOS_c

Name pc_FOS_c

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in five reactions (as a reactant in reaction_60, reaction_62, re117 and as a product in reaction_59, reaction_67).

$$\frac{d}{dt}pc_FOS_c = v_{35} + v_{36} - v_{37} - v_{39} - v_{41}$$
(327)

8.16 Species c_FOSmRNA

Name c_FOSmRNA

SBO:0000250 ribonucleic acid

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in three reactions (as a reactant in reaction_50 and as a product in re115 and as a modifier in re90).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{c} \cdot \mathrm{FOSmRNA} = |v_{32}| - |v_{33}| \tag{328}$$

8.17 Species FmRNA

Name FmRNA

SBO:0000250 ribonucleic acid

Initial concentration $0 \text{ nmol} \cdot pl^{-1}$

This species takes part in three reactions (as a reactant in re94 and as a product in re118 and as a modifier in re95).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{FmRNA} = |v_{58}| - |v_{59}| \tag{329}$$

8.18 Species Kin

Name Kin

SBO:0000252 polypeptide chain

Initial concentration $82.66574 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in two reactions (as a reactant in reaction_77 and as a product in reaction_78).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Kin} = |v_{75}| - |v_{74}| \tag{330}$$

8.19 Species Kin_2

Name Kin_2

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in three reactions (as a reactant in reaction_78 and as a product in reaction_77 and as a modifier in reaction_80).

$$\frac{d}{dt}Kin_{2} = v_{74} - v_{75} \tag{331}$$

8.20 Species pMEK

Name pMEK

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in five reactions (as a reactant in reaction_81 and as a product in reaction_79, reaction_80 and as a modifier in reaction_32, reaction_6).

$$\frac{d}{dt}pMEK = |v_{76}| + |v_{77}| - |v_{78}| \tag{332}$$

8.21 Species MEK

Name MEK

SBO:0000252 polypeptide chain

Initial concentration $637.3212 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in three reactions (as a reactant in reaction_79, reaction_80 and as a product in reaction_81).

$$\frac{d}{dt}MEK = |v_{78}| - |v_{76}| - |v_{77}| \tag{333}$$

8.22 Species DUSP_c

Name DUSP_c

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in five reactions (as a reactant in reaction_33, reaction_35, re111 and as a product in re89, reaction_34).

$$\frac{\mathrm{d}}{\mathrm{d}t} DUSP_{c} = |v_{13}| + |v_{15}| - |v_{14}| - |v_{16}| - |v_{18}|$$
(334)

8.23 Species pDUSP_c

Name pDUSP_c

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in four reactions (as a reactant in reaction_34, reaction_36, re112 and as a product in reaction_33).

$$\frac{d}{dt}pDUSP_c = |v_{14} - v_{15}| - |v_{17}| - |v_{19}|$$
(335)

8.24 Species RSK_c

Name RSK_c

SBO:0000252 polypeptide chain

Initial concentration $353 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in two reactions (as a reactant in reaction_41 and as a product in reaction_42).

$$\frac{d}{dt}RSK_{c} = |v_{25}| - |v_{24}| \tag{336}$$

8.25 Species pRSK_c

Name pRSK_c

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in four reactions (as a reactant in reaction_42, re113 and as a product in reaction_41 and as a modifier in reaction_67).

$$\frac{d}{dt} pRSK_c = |v_{24}| - |v_{25}| - |v_{26}|$$
(337)

8.26 Species RsD

Name RsD

SBO:0000252 polypeptide chain

Initial concentration $247.4035 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in four reactions (as a reactant in reaction_71, reaction_72 and as a product in reaction_73, reaction_74).

$$\frac{\mathrm{d}}{\mathrm{d}t} RsD = |v_{70}| + |v_{71}| - |v_{68}| - |v_{69}| \tag{338}$$

8.27 Species RsT

Name RsT

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in five reactions (as a reactant in reaction_73, reaction_74 and as a product in reaction_71, reaction_72 and as a modifier in reaction_79).

$$\frac{\mathrm{d}}{\mathrm{d}t} RsT = |v_{68}| + |v_{69}| - |v_{70}| - |v_{71}| \tag{339}$$

8.28 Species CREB_n

Name CREB_n

SBO:0000252 polypeptide chain

Initial concentration $1000 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in two reactions (as a reactant in reaction_45 and as a product in reaction_46).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CREB}_{.n} = |v_{28}| - |v_{27}| \tag{340}$$

8.29 Species pCREB_n

Name pCREB_n

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in three reactions (as a reactant in reaction_46 and as a product in reaction_45 and as a modifier in reaction_47).

$$\frac{\mathrm{d}}{\mathrm{d}t} p \text{CREB}_{-} n = |v_{27}| - |v_{28}| \tag{341}$$

8.30 Species ERK_n

Name ERK_n

SBO:0000252 polypeptide chain

Initial concentration 1624.9 nmol·pl⁻¹

This species takes part in six reactions (as a reactant in reaction_30, reaction_29 and as a product in re87, re106, reaction_28, reaction_24).

$$\frac{d}{dt}ERK_{n} = v_{5} + v_{7} + v_{50} + v_{55} - v_{51} - v_{56}$$
(342)

8.31 Species pERK_n

Name pERK_n

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in eight reactions (as a reactant in re87, reaction_27, reaction_23 and as a product in re88, re107, reaction_26, reaction_22 and as a modifier in re88).

$$\frac{d}{dt} pERK_n = |v_6| + |v_8| + |v_{48}| + |v_{53}| - |v_5| - |v_{49}| - |v_{54}|$$
(343)

8.32 Species ppERK_n

Name ppERK_n

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in nine reactions (as a reactant in re88, reaction_25, reaction_21 and as a product in re108 and as a modifier in re87, re109, reaction_12, reaction_57, reaction_52).

$$\frac{d}{dt}ppERK_n = |v_9| - |v_6| - |v_{47}| - |v_{52}|$$
(344)

8.33 Species Elk1_n

Name Elk1_n

SBO:0000252 polypeptide chain

Initial concentration 1510 nmol·pl⁻¹

This species takes part in two reactions (as a reactant in reaction_57 and as a product in reaction_58).

$$\frac{d}{dt}Elk1_n = |v_{30}| - |v_{29}| \tag{345}$$

8.34 Species pElk1_n

Name pElk1_n

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in three reactions (as a reactant in reaction_58 and as a product in reaction_57 and as a modifier in reaction_47).

$$\frac{d}{dt}pElk1_n = v_{29} - v_{30}$$
 (346)

8.35 Species FOSn

Name FOSn

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in five reactions (as a reactant in reaction_52, reaction_53, reaction_55 and as a product in re116, reaction_54).

$$\frac{\mathrm{d}}{\mathrm{d}t} FOSn = |v_{40}| + |v_{44}| - |v_{42}| - |v_{43}| - |v_{45}|$$
(347)

8.36 Species FOSn_2

Name FOSn_2

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in six reactions (as a reactant in reaction_54, reaction_56 and as a product in re117, reaction_52, reaction_53 and as a modifier in re92).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{FOSn.2} = |v_{41}| + |v_{42}| + |v_{43}| - |v_{44}| - |v_{46}| \tag{348}$$

8.37 Species Fn

Name Fn

Initial concentration $0 \text{ nmol} \cdot pl^{-1}$

This species takes part in three reactions (as a reactant in re99 and as a product in re119 and as a modifier in reaction_47).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Fn} = |v_{62}| - |v_{63}| \tag{349}$$

8.38 Species DUSP_n

Name DUSP_n

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in nine reactions (as a reactant in reaction_12, reaction_14, reaction_21, reaction_23, reaction_29 and as a product in re111, reaction_13, reaction_22, reaction_24).

$$\frac{d}{dt}DUSP_n = |v_{18}| + |v_{21}| + |v_{53}| + |v_{55}| - |v_{20}| - |v_{22}| - |v_{52}| - |v_{54}| - |v_{56}|$$
(350)

8.39 Species pDUSP_n

Name pDUSP_n

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in nine reactions (as a reactant in reaction_13, reaction_15, reaction_25, reaction_27, reaction_30 and as a product in re112, reaction_12, reaction_26, reaction_28).

$$\frac{d}{dt}pDUSP_n = |v_{19}| + |v_{20}| + |v_{48}| + |v_{50}| - |v_{21}| - |v_{23}| - |v_{47}| - |v_{49}| - |v_{51}|$$
(351)

8.40 Species pDUSP_n_ERK_n

Name pDUSP_n_ERK_n

SBO:0000297 protein complex

Initial concentration $0 \text{ nmol} \cdot pl^{-1}$

This species takes part in one reaction (as a product in reaction_30).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{pDUSP_n_ERK_n} = v_{51} \tag{352}$$

8.41 Species pDUSP_n_pERK_n

Name pDUSP_n_pERK_n

SBO:0000297 protein complex

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in two reactions (as a reactant in reaction_28 and as a product in reaction_27).

$$\frac{d}{dt}pDUSP_n_pERK_n = |v_{49}| - |v_{50}|$$
 (353)

8.42 Species pDUSP_n_ppERK_n

Name pDUSP_n_ppERK_n

SBO:0000297 protein complex

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in two reactions (as a reactant in reaction_26 and as a product in reaction_25).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{pDUSP_n_ppERK_n} = v_{47} - v_{48} \tag{354}$$

8.43 Species DUSP_n_ERK_n

Name DUSP_n_ERK_n

SBO:0000297 protein complex

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in one reaction (as a product in reaction_29).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DUSP_n_ERK_n} = v_{56} \tag{355}$$

8.44 Species DUSP_n_pERK_n

Name DUSP_n_pERK_n

SBO:0000297 protein complex

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in two reactions (as a reactant in reaction_24 and as a product in reaction_23).

$$\frac{d}{dt}DUSP_n_pERK_n = |v_{54}| - |v_{55}|$$
 (356)

8.45 Species DUSP_n_ppERK_n

Name DUSP_n_ppERK_n

SBO:0000297 protein complex

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in two reactions (as a reactant in reaction_22 and as a product in reaction_21).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DUSP}_{-n}\mathrm{-ppERK}_{-n} = |v_{52}| - |v_{53}| \tag{357}$$

8.46 Species PreDUSPmRNA

Name PreDUSPmRNA

SBO:0000250 ribonucleic acid

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in two reactions (as a reactant in re110 and as a product in re109).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{PreDUSPmRNA} = |v_{10}| - |v_{11}| \tag{358}$$

8.47 Species PreFOSmRNA

Name PreFOSmRNA

SBO:0000250 ribonucleic acid

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in two reactions (as a reactant in re115 and as a product in reaction—47).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{PreFOSmRNA} = |v_{31}| - |v_{32}| \tag{359}$$

8.48 Species PreFmRNA

Name PreFmRNA

SBO:0000250 ribonucleic acid

Initial concentration $0 \text{ nmol} \cdot \text{pl}^{-1}$

This species takes part in two reactions (as a reactant in re118 and as a product in re92).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{PreFmRNA} = |v_{57}| - |v_{58}| \tag{360}$$

8.49 Species pRSK_n

Name pRSK_n

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ nmol} \cdot pl^{-1}$

This species takes part in three reactions (as a product in re113 and as a modifier in reaction—45, reaction—53).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{pRSK}_{-}\mathrm{n} = v_{26} \tag{361}$$

A Glossary of Systems Biology Ontology Terms

SBO:0000250 ribonucleic acid: Macromolecule formed by a repetition of ribonucleosides linked by phosphodiester bonds. CHEBI:3369

SBO:0000252 polypeptide chain: Naturally occurring macromolecule formed by the repetition of amino-acid residues linked by peptidic bonds. A polypeptide chain is synthesized by the ribosome. CHEBI:1654

SBO:0000290 physical compartment: Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions

SBO:0000297 protein complex: Macromolecular complex containing one or more polypeptide chains possibly associated with simple chemicals. CHEBI:3608

BML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany