• **Project Overview**: Data anomalies detection

 The objective of this project is to detect anomalies in a dataset containing 150K daily trade data entries.

Scope:

 Focus on identifying and mitigating potential outliers, errors, or unusual patterns in trading data to improve data quality and decision-making.

2. Objectives

Primary Goal:

o Develop a machine learning model to accurately detect anomalies in the dataset.

Secondary Goals:

- Improve data preprocessing techniques.
- Establish robust evaluation metrics to measure the performance of anomaly detection.
- o Implement the model in a scalable and maintainable way for future use.

3. Project Milestones

1. Data Collection and Exploration:

Deliverables: Dataset collection, initial data exploration, and summary statistics.

2. Data Preprocessing:

Deliverables: Data cleaning, normalization, and feature engineering.

3. Model Selection and Training:

Deliverables: Selection of appropriate anomaly detection algorithms, model training, and initial testing.

4. Model Evaluation and Optimization:

 Deliverables: Model evaluation, parameter tuning, and performance optimization.

5. Implementation and Deployment:

o **Deliverables**: Deployment of the model in a production environment.

6. Final Review and Documentation:

o **Deliverables**: Final report, project documentation, and stakeholder review.

4. Data Exploration

Data Source:

Trading dataset with 150K daily trade entries.

• Exploratory Data Analysis (EDA):

 Summary statistics, visualizations, correlation analysis, and anomaly detection techniques.

Key Insights:

 Identified patterns, outliers, and correlations that will inform the model development phase.

5. Data Preprocessing

• Data Cleaning:

o Handle missing values, correct data entry errors, and filter out irrelevant data.

Normalization:

Normalize data to ensure uniformity across features.

• Feature Engineering:

 Create new features or transform existing ones to improve model performance if required

Tools:

o Python, Pandas, NumPy, Scikit-learn.

6. Model Selection

• Algorithms: (yet to decide)

 Considering algorithms such as Isolation Forest, One-Class SVM, or Autoencoders.

Model Training:

Split the data into training and testing sets, then train the selected models.

Evaluation Metrics:

Use metrics to evaluate model performance.

7. Model Evaluation and Optimization

Performance Metrics:

Evaluate the model on unseen data using cross-validation techniques.

• Optimization Techniques:

Hyperparameter tuning, model ensembling, and feature selection.

Tools:

Python, Scikit-learn.

8. Implementation and Deployment

• Environment Setup:

 Setup the production environment using cloud services like AWS, Docker, and Kubernetes.

Model Integration:

o Integrate the model into the existing trading platform.

Monitoring:

 Implement logging and monitoring to ensure the model performs well in production.

9. Risk Management

Potential Risks:

o Data quality issues, model overfitting, computational resource constraints.

Mitigation Strategies:

Regular data quality checks, model validation, and resource allocation planning.