1 Math	$z H_1 \sim \mathcal{N}(\frac{\mu_1 - \mu_0}{\sigma / \sqrt{n}}, 1) \bullet \text{ Rejection:}$	Formulation	Softmax derivative $\frac{\partial P(y=\ell x)}{\partial \beta_k}$: If	space same as forward pass, for	Encoder outputs are fed into	N-gram context vectors
$SR(\mathcal{A},\oplus,\otimes,0,1) \mid \bullet Commutative$:	$\overline{x} > \mu_0 + \sigma z_\alpha / \sqrt{n}$	$p(y \mathbf{x},\boldsymbol{\theta}) = \frac{\exp(\boldsymbol{\theta} \cdot f(\mathbf{x},y))}{\sum_{y'} \exp(\boldsymbol{\theta} \cdot f(\mathbf{x},y'))}$	$\ell=k\Rightarrow P(y=\ell x)(1-P(y=\ell x))x$, if	k^{th} order derivative runtime	decoder with $CA = Calculate CA$	Evoluction Paralaxity
a*b=b*a • Associative:		Optimization Objective function	$-\ell \neq k \Rightarrow -P(y=\ell x)P(y=k x)x$, can	$O(E n^{k-1})$	with $\boldsymbol{H}_{l}^{(d)}$ for \boldsymbol{Q} and $\boldsymbol{H}_{(N)}^{(e)}$ for $\boldsymbol{K}, \boldsymbol{V}$	⁷ = N/Π ^N
$(a*b)*c=a*(b*c) \bullet Monoid:$ Associative, $a*i=a$ where i is		— • Minimize log loss:	be shown via quotient rule	10 RNNs	■ Add and norm $\circ FFN(\boldsymbol{H}_{l}^{(d)})$	$-\sqrt{\prod_{i=1}^{n} p(w_i w_{i-n+1},,w_{i-1})}$
	F - 1	θ =arg min $_{\theta}$ - $\sum_{i=1}^{n} \log(p(y^{(i)}))$	8 Neural Networks	ArchitectureInput > Hidden layer resp. memory cell: Cell	• Add and norm • Linear layer	$p(w_1,,w_N)^{-\frac{1}{N}}$, if lower,
commutative monoid \bullet $(\mathcal{A}, \otimes, \overline{1})$ is	$\frac{\partial x}{\partial x}$ W Paradigms	$x^{(i)},\theta) = \sum_{i=1}^{n} \theta \cdot f(x^{(i)},y^{(i)}) -$	Formulation Architecture — Inputs: n words > Embedding	state h_t , cell output $y_t > \text{Output}$	• Softmax layer • Challenge:	likelihood higher
		$\log(\sum_{y'} \exp(\theta \cdot f(\mathbf{x}^{(i)}, y')))$	$e(w_i)$ > Concatenation:	Output of neuron in layer n :	Output y_t is conditioned on entire	e16 POS Tagging
$(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c) \bullet a \otimes 0 = 0$	200 tinetineour.		$e(x) = \frac{1}{n} \sum_{w_i} e(w_i)$ > Hidden layer:		history with runtime of $O(\Sigma ^n)$	FormulationPoint of departure
Communitive SK: $a \otimes b = b \otimes a$	$\sum_{i=1}^{n} \log(n(\mathbf{v}_{i} \mathbf{r}_{i},\boldsymbol{\theta})) \bullet \text{For binary}$	derivative:	$h^{(k)} = \sigma(w^{(k)}h^{(k-1)}) > \text{Activation:}$	OptimizationGradient:	• Solution: • <i>Greedy decoding</i>	$ \bullet p(t w) = \frac{\exp(\operatorname{score}(t,w))}{\sum_{t'} \exp(\operatorname{score}(t',w))}$
таетрогені ык. а⊕а=а	classification, $log loss = binary$	• $\frac{\partial}{\partial \theta} \log \log = -\sum_{i=1}^{n} (f(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) -$	$\exp(\boldsymbol{h}(K))$	• $\nabla_{\mathbf{W}_h} L \propto \sum_{k=1}^t \left(\prod_{i=k+1}^t \frac{\partial h_i}{\partial h_{i-1}} \right) \frac{\partial h_k}{\partial \mathbf{W}_k}$	• Beam search: Calculate local	• Challenge: Z in $O(T ^N)$
$\bullet \bigoplus_{k=0} M^{n} = (I+M)^{n} \mid Closed SK$	cross entropy	$\sum_{y'} \exp(\boldsymbol{\theta} \cdot f(\boldsymbol{x}^{(i)}, y')) \times f(\boldsymbol{x}^{(i)}, y')$	Softmax: $p(y \mathbf{x}) = \frac{\exp(\mathbf{h}_{y'})}{\sum_{y'} \exp(\mathbf{h}_{y'}^{(K)})}$	$\partial h_{i+k} = \prod_{k=1}^{k-1} \partial h_{i+k-j}$	then total probabilities, Keep	runtime • Solution: Scoring
Kleene star: $x^* = \bigoplus_{n=0}^{\infty} x^{\otimes n} =$	$=-[y \log(p) + (1-y) \log(1-p)]$	$\frac{\sum_{\mathbf{y'}} \exp(\boldsymbol{\theta} \cdot f(\mathbf{x}^{(i)}, \mathbf{y'}))}{\sum_{\mathbf{y'}} \exp(\boldsymbol{\theta} \cdot f(\mathbf{x}^{(i)}, \mathbf{y'}))} =$		• $\frac{\partial h_{i+k}}{\partial h_i} = \prod_{j=0}^{k-1} \frac{\partial h_{i+k-j}}{\partial h_{i+k-j-1}}$	<i>k</i> -highest-probability tokens at each step, requires normalization	function that is additively
$x \otimes x \otimes \dots = \overline{1} \oplus x \oplus x \otimes x \otimes x \otimes x \oplus x \otimes x \oplus x \oplus x \oplus x$	3 Estimating Distributions	$-\sum_{i=1}^{n} (f(\mathbf{x}^{(i)}, y^{(i)}) - \sum_{y'} p(y')$	Neuron (j) in layer [k]: $\mathbf{h}^{(j)[k]} = \varphi(\mathbf{h}^{(i)[k-1]} \cdot \boldsymbol{\beta}^{(j)[k]})$	11 Attention	• •	decomposable over tag bigrams:
must fulfill $= \overline{1} \oplus x \otimes x^* = \overline{1} \oplus x^* \otimes x$, e.g.	·Gaussian <i>MLE</i> — • Likelihood:	(i) -> -/ (i) +>>	$\frac{\mathbf{n}^{(f)}[\mathbf{n}] = \varphi(\mathbf{n}^{(f)}[\mathbf{n}] + \mathbf{n}^{(f)}[\mathbf{n}]}{Activation functions}$ — Sigmoid:	Approach $Q = EW^q$ resp. $q_i = e_i W^q$		$\operatorname{score}(t, w) = \sum_{n=1}^{N} \operatorname{score}(\langle t_{n-1}, t_n \rangle, w)$
	$L = \left(\frac{1}{\sigma}\right)^n \prod_{i=1}^n exp\left(-\frac{1}{2\sigma^2}\left(\mathbf{x}^{(i)} - \frac{1}{2\sigma^2}\right)\right)$	$-\sum_{i=1}^{n} f(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) +$	• Not convex • [0,1]	$(m \times d_k) \bullet q_i (1 \times d_k) \bullet Q$ $(m \times d_k) \bullet q_i (1 \times d_k) \bullet e_i (1 \times h)$	FormulationPrefix tree	• Then:
$x^* = \log(\sum_{n=0}^{\infty} e^{n \times x}) = \log(\frac{1}{1 - e^x})$ for	$(x^{(t)}-y)^2 = \frac{1}{2} e^{x} n(-\frac{1}{2} y^{(t)} - y)^2$	TC	• $\varphi(z) = \sigma(z) = \frac{1}{1 + e^{-z}} = \frac{e^z}{e^z + 1}$	TO TITLE TO (1) THE (1 1)	• Challenge: <i>Globally</i> normalized: Since Σ^* is infinite,	$n(t w) = \frac{\exp(\sum_{n=1}^{N} \operatorname{score}(\langle t_{n-1}, t_n \rangle, w))}{\operatorname{exp}(\sum_{n=1}^{N} \operatorname{score}(\langle t_{n-1}, t_n \rangle, w))}$
$x < 0$ • Inside SR: $x^* = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$	• Log likelihood:	gradient to 0, we have	• $\varphi'(z) = \frac{e^{-z}}{(1+e^{-z})^2}$ with maximum	• K $(n \times d_k)$ • k_i $(1 \times d_k)$ • e_i $(1 \times h)$	Z is infinite • Solution: Locally	$p(t w) = \frac{\exp(\sum_{n=1}^{N} \operatorname{score}(\langle t'_{n-1}, t'_{n}, w \rangle))}{\sum_{t'} \exp(\sum_{n=1}^{N} \operatorname{score}(\langle t'_{n-1}, t'_{n}, w \rangle))}$
for $x \in (0,1)$ • Boolean SR: $x^*=1$	$LL = -nlog(\sigma) - \sum_{i=1}^{n} (\frac{1}{2\sigma^2} (x^{(i)} - \mu)^2)$	expectation matching		$ V = EW^{\vee} \bullet E (n \times h) \bullet W_{\vee} (h \times d_{\vee})$ $\bullet V (n \times d_{\vee}) \bullet v_{i} (1 \times d_{\vee}) \bullet e_{i} (1 \times h)$	normalized: Assume next word	Backward resp. Viterbi algorithm
0-ciosea resp. bounaea SK.	• $\mu_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$	Second-order derivative:	at 0.25 <i>Hyperbolic tangent</i> : • Not convex • [-1,1]	• $\mathbf{v} \cdot (n \times a_v) \bullet \mathbf{v}_i \cdot (1 \times a_v) \bullet \mathbf{e}_i \cdot (1 \times h)$	in string is only conditioned on	— 1) For t_{N-1} (all tags):
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• $\sigma^2_{MLE} = \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu)^2$	• $\frac{\partial^2}{\partial \theta \partial \theta^{T}} \log loss = \frac{\partial}{\partial \theta^{T}} \nabla log loss =$		• $A = \sigma(\frac{QK^{T}}{\sqrt{d_k}})$ in $(m \times n)$ resp.	preceding context, normalize	• $\beta(w,t_{N-1})$ resp. $v(w,t_{N-1}) \leftarrow$
arctic SR Common SRs:	$Bayesianism \longrightarrow Prior p(\theta).$	$\sum_{i=1}^{n} \mathbb{E}[f(\mathbf{x}^{(i)}, \mathbf{y}')f(\mathbf{x}^{(i)}, \mathbf{y}')^{T}] -$	• $\varphi(z)$ =tanh (z) = $\frac{e^z-e^{-z}}{e^z+e^{-z}}$ = $\frac{1-e^{-2z}}{1+e^{-2z}}$	$\alpha_t = \sigma(\frac{q_t K^{T}}{\sqrt{d_k}}) \mathbf{S} \bullet \mathbf{Z} = AV \text{ in } (m \times d_v)$	over all words in vocabulary	exp(score($\langle t_{N-1}, \bar{E}OS \rangle, w$)) • $b(t_{N-1}) \leftarrow EOS$ since t_N can only
Roolean: $((0.1) \lor \land 0.1)$		$\Delta_{i=1}$ (-13 (-15))	• $\varphi'(z)=1-tanh(z)^2$ ReLU:	resp. $z = \alpha \cdot V - \Sigma \cdot \alpha \cdot v \cdot \Delta \ln C \Delta \cdot \Omega$	• Tight model: Locally	be EOS 2) For $n \in N-2,,1$:
• Inside: $(\mathbb{R} \cup \{\infty\}, +, \times, 0, 1)$	$p(\theta x) \bullet \text{Let } \sigma^2 \text{ be known},$	$\sum_{i=1}^{n} Cov(f(\mathbf{x}^{(i)}, \mathbf{y}'))$	• Piecewise convex • $\varphi(z)=max(0,z)$	resp. $z_t = \alpha_t V = \sum_i \alpha_{ti} v_i \bullet \text{In CA: } Q$ is decoder input with m, V, K are	normalized model, sums to 1,	For $t_n \in T$ (all tags): $\bullet \beta(w, t_n)$
• Log-sum-exp:		6 Logistic	• $\varphi'(z)=1$ if $z>0;0$ otherwise		and has mine length paths,	resp. $v(w,t_n) \leftarrow$
(220 (), 010g, .,, 0) ,, 11010	Likelihood $p(x \mu,\sigma^2) \times$	Formulation• Sigmoid:	Optimization• Forward pass to	Q,V,K are all either encoder or	enforced by $p(EOS \cdots) > \delta > 0$	$\bigoplus_{t_{n+1}} [\exp(\operatorname{score}(\langle t_n, t_{n+1} \rangle, w)) \otimes$
$a \oplus_{\log} b = \log(e^{\vec{a}} + e^{\vec{b}}) \bullet Viterbi$:	Prior $p(\mu \mu_0, \sigma_0^2)$ • We get (based	$\sigma(z) = \frac{1}{1+e^{-z}} \bullet P(y=1 x) = \frac{1}{1+e^{-\beta \cdot x}} =$	calculate loss • Backpropagation	decoder inputs with n or $m \cdot \text{In}$	15 N Grams	$v(w,t_{n+1})] \bullet h(t_n) \leftarrow$
$([0,1],\max,\times,0,1) \bullet Arctic:$	on the form of the Gaussian)	$\mathcal{B} \cdot \mathbf{x}$	to calculate gradient:	MHA: MHAZ =	No Noively: n(w) = n(w) \ \n (w)	$argmax_{t_{n+1}} [exp(score(\langle t_n, t_{n+1} \rangle, w))]$
$(\mathbb{R} \cup \{-\infty\}, \max, +, -\infty, 0)$ Distributions $Gaussian$ —	$-\mu_P = \frac{n\overline{x}\sigma_0^2 + \mu_0\sigma^2}{n\sigma_0^2 + \sigma^2} \text{ and } \sigma_P^2 = \frac{\sigma^2\sigma_0^2}{n\sigma_0^2 + \sigma^2}$	$\frac{e^{\beta \cdot x}}{1 + e^{\beta \cdot x}}, P(y=0 x) = \frac{1}{1 + e^{\beta \cdot x}} = \frac{1}{1 + e^{\beta \cdot x}} = \frac{1}{1 + e^{\beta \cdot x}}$	$\frac{\partial L}{\partial \mathbf{B}^{[k]}} = \frac{\partial L}{\partial \mathbf{H}^{[l]}} \frac{\partial \mathbf{H}^{[l]}}{\partial \mathbf{B}^{[k]}} = C \circ \text{When}$	$Concat(Z_{head_1},,Z_{head_h})W_O + b_O$	$N \bullet \text{Naively: } p(\mathbf{w}) = p(w_1) \times p(w_2 $ $w_1) \times p(w_3 w_1, w_2) \times \cdots \times p(w_N $	$v(w,t_{n+1})$ 3) Finally: • $\beta(w,t_0)$ resp. $v(w,t_0) \leftarrow$
V $\Lambda(x, -2)$ $= 1$ $= -x \cdot (-(x-\mu)^2)$	$n\sigma_0^2 + \sigma^2$ $n\sigma_0^2 + \sigma^2$	$\frac{e^{-\boldsymbol{\beta} \cdot \boldsymbol{x}}}{1+e^{-\boldsymbol{\beta} \cdot \boldsymbol{x}}} \bullet Odds: \frac{P(y=1 \boldsymbol{x})}{P(y=0 \boldsymbol{x})} = e^{\boldsymbol{\beta} \cdot \boldsymbol{x}},$	l>k+1, i.e. when going several	where o Concat() in	$w_{< N}$)× p (EOS w) • Markov: Only	$\{\bigoplus_{t_1} [\exp(\operatorname{score}(\langle t_0, t_1 \rangle, w)) \otimes v(w, t_1)] \}$
$X \sim \mathcal{N}(\mu, \sigma^2) \mid \frac{1}{\sigma\sqrt{2\pi}} exp(\frac{-(x-\mu)^2}{2\sigma^2}) =$	• $p(\mu x,\mu_0,\sigma_0^2) \sim N(\mu_p,\sigma_p^2)$	Log odds: $ln(\frac{P(y=1 x)}{P(y=0 x)}) = \beta \cdot x$	layers back: $\frac{\partial L}{\partial \mathbf{B}^{[k]}} =$	$(m \times (n \times n_{heads})) \circ W_O \text{ in }$ $\underline{((n_{heads} \times n) \times d_v)} \circ b_O \text{ in } 1 \times d_v)$	the last $n-1$ words are considered	$h(t_0) \leftarrow$
$\frac{1}{(2\pi)^{2\pi}} exp(-x^{2})$	Conjugate priorLinear Regression	• $z = \beta \cdot x$ is a linear hyperplane:	$\partial L \partial \boldsymbol{H}^{[l]} \partial \boldsymbol{S}^{[l-1]} \partial \boldsymbol{H}^{[l-1]}$	$\frac{((n_{heads} \land n) \land u_v) \circ bo \text{ in } 1 \land u_v)}{12 \text{ RNNs}}$	-to predict next word • <i>N-gram</i> :	$argmax_{t_1} [\exp(\operatorname{score}(\langle t_0, t_1 \rangle, w)) \otimes$
	Formulation $y^{(i)} = \beta \cdot x^{(i)}$ resp.	When $z>0$, then odds >1, then	$\partial \boldsymbol{H}^{[l]} \partial \boldsymbol{S}^{[l-1]} \partial \boldsymbol{H}^{[l-1]} \partial \boldsymbol{B}^{[k]}$	Architecture Encoder:	• Vocabulary with V words has	
u))	$y=X\beta$ where $X \in n \times m$	predict y=1	• When <i>l=k+1</i> , i.e. when going one layer back:	$h_n^{(e)} = f(W_1^{(e)} h_{n-1}^{(e)} + W_2 w_n)$	$ \mathcal{V} ^n$ (distinct) N-grams • Sentence with <i>M</i> words has	Recover the best sequence
Exponential Families —	Transformation, & with marris	OptimizationObjective function		• Decoder: $h_m^{(d)} =$	3.6 1 (44:-111:)	$t_n \leftarrow b(t_{n-1})$, starting with
$p(x \theta) = \frac{1}{Z(\theta)}h(x) \exp(\theta \cdot \Phi(x))$	$\phi(x^{(i)})^{T}$	- • Likelihood: $L=$ $\prod_{i=1}^{n} \sigma(z^{(i)})^{y^{(i)}} (1-\sigma(z^{(i)}))^{1-y^{(i)}}$	$\frac{\partial L}{\partial \mathbf{B}^{[k]}} = \frac{\partial L}{\partial \mathbf{H}^{[k+1]}} \frac{\partial \mathbf{H}^{[k+1]}}{\partial \mathbf{S}^{[k]}} \frac{\partial \mathbf{S}^{[k]}}{\partial \mathbf{B}^{[k]}}$	$f(\boldsymbol{W}_{3}^{(d)}\boldsymbol{h}_{m-1}^{(d)} + \boldsymbol{W}_{2}^{(d)}\boldsymbol{w'}_{m-1} + \boldsymbol{W}_{1}^{(d)}\boldsymbol{z}_{m})$	N-grams • N-gram counts are	$t_1 = b(BOS), t_2 = b(t_1), 5)$ Return $t_{1:N}$ and $\beta(w, t_0)$ resp. $v(w, t_0)$
	- Juliani	• Log likelihood:	Gradient descent to find best weights	where $\circ z_m = \sum_{n=1}^N \alpha_{m,n} h_n^{(e)} \circ h_n^{(e)} =$	given by all distinct N-grams and	$1_{\bullet}^{1:N}$ and $\beta(w,t_0)$ resp. $v(w,t_0)$ \bullet $\beta(w,t_n)$ are backward variables
Gaussian: • $\frac{1}{Z(\sigma,\mu)} = \frac{\exp(-\frac{\mu^2}{2\sigma^2})}{\sqrt{2\pi\sigma^2}}$	— OLSE: Minimize MSE: $LO=(y-X\beta)^{T}(y-X\beta)$	• Log fixelihood. $LL = \sum_{i=1}^{n} [y^{(i)} \log \sigma(z^{(i)}) + (1 -$	weights 9 Backpropagation	$V \circ \alpha_{m,n} =$	how often they appear in the	that contain the sum of the scores
Г а 1		$\sum_{i=1}^{L} [y^{(i)} \log \sigma(z^{(i)})] = $	Farmandallan C	softmax $(\boldsymbol{h}_{m-1}^{(d)} \times [\boldsymbol{h}_1^{(e)},,\boldsymbol{h}_N^{(e)}])$ with	sentence • Then:	of all paths starting at EOS and
• $\boldsymbol{h}(x) = 1 \bullet \boldsymbol{\theta} = \begin{bmatrix} \mu/\sigma^2 \\ -1/2\sigma^2 \end{bmatrix}$	<u> </u>		G — With n input nodes and	$\mathbf{h}_{m-1}^{(d)} = Q \text{ and } [\mathbf{h}_{1}^{(e)},, \mathbf{h}_{N}^{(e)}]^{T} = K$	$p(\mathbf{w}) = (\prod_{t=n}^{N} p(\mathbf{w}_t))$	ending at tag $t_n \cdot v(w,t_n)$ are
• $\Phi(x) = \begin{bmatrix} x \\ x^2 \end{bmatrix}$ Beta:	T/= T/O T/= O O (T/= T/)=1 T/=	$\sum_{i=1}^{n} [y^{(i)}z^{(i)} - \log(1 + e^{z^{(i)}})]$ -Optimization —	E =M edges, we have $ V =M+n$	Runtime: • Encoder: $O(l_eNd^2)$	$w_{t-n+1},,w_{t-1})$ × p (EOS $w_{N-n+1},,w_N)$ • We have:	Viterbi variables that contain the
	Ridge L2Find parameters β	$-Optimization \longrightarrow \\ \partial_{-}LL = \sum_{i} n \partial_{-}[v_{i}(i)]_{0} = \sigma(\sigma(i))$	total nodes Note:	from hidden states • Decoder:	$ \mathcal{V} ^{n-1} + \mathcal{V} ^{n-2} + \dots + \mathcal{V} + 1 = $	score of t^* starting at EOS and ending with tag $t_n \cdot b(t_n)$ are
• $Z(\theta) = B(\theta_1 + 1, \theta_2 + 1) \bullet h(x) = 1$	subject to $\ \boldsymbol{\beta}\ ^2 - t \le 0$ <i>Objective</i>	• $\frac{\partial -LL}{\partial \beta} = -\sum_{i=1}^{n} \frac{\partial}{\partial \beta} [y^{(i)} \log \sigma(z^{(i)}) +$	$x^{a+b} = exp(log(x^{a+b})) =$	$O(l_d M d^2 + l_d dNM)$ from hidden states + CA	$\sum_{i=0}^{n-1} \mathcal{V} ^i$ distinct n-grams $\circ \mathcal{V} ^n$	hackpointers • Runtime: o For
[(7/]	junction — Lagrangian.	$(1-y^{(i)})\log(1-\sigma(z^{(i)}))] = \sum_{i=1}^{n} [\sigma(z^{(i)}) - y^{(i)}] \boldsymbol{x}^{(i)}$	$exp((a+b)\times log(x))$ and $\overline{b}=a\times b$	-13 Transformers	distinct conditional probabilities	backpointers: $O(N) \circ \text{For tag}$
Binomia: • Z(v)-c	(J P) (J P) (P -)	7 Multinomial Logistic	Bauer's Formula — \bullet $P(j,i)$ is	FormulationModel architecture:	$\circ \mathcal{V} $ – 1 parameters for each	N-grams: $O(N T ^n)$ • With
• $h(x) = {n \choose x}$ • $\theta = \left[\ln\left(\frac{\pi}{1-\pi}\right)\right]$	Optimization —	<u> </u>	set of all paths from node $j \rightarrow i$	• Encoder:	conditional probability	_forward and backward, we can
$\bullet \Phi(x) = [x]$	$\beta = (X^{T}X + \lambda I)^{-1}X^{T}y$ $Characteristics \bullet Strictly$	FormulationSoftmax: $P(y=k x) = \frac{e^{f_i(x)/T} - e^{\beta_k \cdot x/T}}{e^{f_i(x)/T}}$	• $\frac{z_{i}}{\partial z_{j}} = \sum_{p \in P(j,i)} \prod_{(k,l) \in p} \frac{\partial z_{l}}{\partial z_{k}}$	$\circ \boldsymbol{H}_{0}^{(e)} = \boldsymbol{X} + \boldsymbol{P} \in (N \times d_{model})$	OptimizationRelative frequency	compute: $p(t=t_n w) = \frac{\beta(t_n)\alpha(t_n)}{\sum_{t'}\beta(t')\alpha(t')}$
Hypothesis Testing• Errors: \circ <i>TP</i> : Chose $H_0 H_0 \circ FP$, <i>type I</i> :	convex with global min, unique	$\frac{e^{\mathbf{J}_{i}(\mathbf{x})/T}}{\sum_{j=1}^{k} e^{\mathbf{J}_{j}(\mathbf{x})/T}} = \frac{e^{\mathbf{J}_{k}(\mathbf{x})/T}}{\sum_{j=1}^{k} e^{\mathbf{J}_{j}(\mathbf{x})/T}}$	Challenge: Runtime	(l-1)		• Alternatively, forward
Chose $H_A H_0 \circ TN$: Chose $H_A H_A \circ TN$	sol (linearly independent cols).	$\sum_{j=1}^{L} e^{-j}$ Softmax (<i>T</i> =1) vs. argmax (<i>T</i> =0)	$O(P(j,i)) = O(2^{ E })$	• Addition and normalization:	$\bullet p(w_t) = \frac{\operatorname{count}(w_{t-n+1},,w_{t-1},w_t)}{\operatorname{count}(w_{t-n+1},,w_{t-1})}$	algorithm \circ Starting from t_1 and
\circ FN, type II: Chose $H_0 H_A$	and analytic sol (always	OptimizationFind parameters		$\mathbf{H}_{l}^{(e)} =$	• OOV: • Given a sentence with	going forward towards EOS t_N
			initialize values of input nodes	Layer Norm(MHA(Q , K , V)+ H ^(e) _(l-1))	M+1 words and vocabulary V , probability that a given bigram	• Instead of $\langle t_n, t_{n+1} \rangle$ we look at
$p(\overline{x} \ge c H_0) = p(z_n \ge z_\alpha H_0)$, inflated	σ^2 , σ (0) σ	• Likelihood:	and then evaluate function • Runtime $O(E)$ • Space $O(V)$	\circ FFN($\boldsymbol{H}_{1}^{(e)}$)=	does not appear in any of the M	$\langle t_{n-1}, t_n \rangle$ o Variables start at BOS
for K tests $1-(1-\alpha)^{K} \bullet Beta$:	Likelihood $p(\mathbf{y} \mathbf{X},\boldsymbol{\beta})\sim$	Lincoln L= $\prod_{i=1}^{n} \prod_{\ell=1}^{k} \left(\frac{e^{\beta_{\ell} \cdot \mathbf{x}^{(i)}}}{\sum_{\ell=1}^{k} e^{\beta_{j} \cdot \mathbf{x}^{(i)}}} \right) \delta\{y^{(i)} = \ell\}$	Backpropagation1) Perform	ReLU $(\boldsymbol{H}_{1}^{(e)}\boldsymbol{W}_{1}+\boldsymbol{b}_{1})\boldsymbol{W}_{2}+\boldsymbol{b}_{2}$ where	spots: $(1-\frac{1}{ V ^2})^M \circ \text{Solution}$:	and end with tag t_n
$\beta = p(FN) \bullet Critical value:$	$\mathcal{N}(X\beta, \sigma^2 I_n) \times \text{Prior } p(\beta) \sim$	$\sum_{i=1}^{k} 11\ell=1 \left(\frac{\sum_{i=1}^{k} \beta_{j} \cdot x^{(i)}}{\sum_{i=1}^{k} \beta_{j} \cdot x^{(i)}}\right)$	forward pass 2) For $i=M$: $\frac{\partial f}{\partial z_i}=1$	$\blacksquare \mathbf{W}_1 \in \mathbb{R}^{(d_V \times r)} \blacksquare \mathbf{b}_1 \in \mathbb{R}^{(1 \times r)}$		• Backpointers:
Tilleshold & Tesp. Citical value	$\mathcal{N}(0, \tau^2 \boldsymbol{I_m})$	■ Log likelihood:	3) For $i=M-1,,1$:		Smoothing: $p(w_t w_{t-n+1},,w_{t-1}) = 1$ count $(w_{t-n+1},,w_{t-1},w_t) + \lambda$	$=t_{N-1} \leftarrow b(EOS), t_{N-2} \leftarrow b(t_{N-1}), \dots$ Extension of backward algorithm
z_{α} associated with $\alpha \bullet P$ -value: $p=P(z \ge z_n H_0)$, smallest	Cubicat to 101 + 40 1	$LL = \sum_{i=1}^{n} \sum_{\ell=1}^{k} \delta\{y^{(i)} =$	$\frac{\partial f}{\partial z_i} = \sum_{j:i \in Pa(i)} \frac{\partial f}{\partial z_i} \frac{\partial z_j}{\partial z_i} 4) \text{ Return}$	and norm • Decoder: • Target	$\frac{\overline{\operatorname{count}(w_{t-n+1},,w_{t-1},n_{t})}}{\operatorname{count}(w_{t-n+1},,w_{t-1})+ \mathcal{V} \lambda}$ $\circ \textit{Back-off: Revert}$	in the expectation SR: • Instead
significance level at which we	Objective function —	$ \angle_{i=1} \angle_{\ell=1} \vee \cup -$		sequence inputs are fed into		of $\omega = \exp(\text{score}(\langle t_{n-1}, t_n \rangle, w))$, we
can reject U Confidence level:	Lagrangian: $LO=+\lambda(\beta -t)$	$\ell\}[\boldsymbol{\beta}_{\ell} \cdot \boldsymbol{x}^{(i)} - \log(\sum_{j=1}^{k} e^{\boldsymbol{\beta}_{j} \cdot \boldsymbol{x}^{(i)}})]$	$[\frac{\partial f}{\partial z_1}, \frac{\partial f}{\partial z_2},, \frac{\partial f}{\partial z_M}]$ Runtime:	detected with one time step ing.	• Interpolation: Weight	-do: $\omega = \langle \omega, -\omega \log(\omega) \rangle$
$1-\alpha \bullet Power$:		Optimization — $\partial_{i}LL_{i}$ Σ_{i}^{n} Σ_{i}^{n} Σ_{i}^{n} Σ_{i}^{n} Σ_{i}^{n} Σ_{i}^{n}	• Partial derivatives on multiple	$\blacksquare \mathbf{H}_{0}^{(d)} = \mathbf{Y} + \mathbf{P} \in (M \times d_{model})$	Neural nets — $\exp(\mathbf{v}(w_t) \cdot \mathbf{h}_t)$ where	• Backward algorithm with these
		• $\frac{\partial -LL}{\partial \boldsymbol{\beta}_k} = -\sum_{i=1}^n \delta\{y^{(i)} = k\} \boldsymbol{x}^{(i)} - P(y = x)$		Calculate masked SA based on	$p(w_t) = \frac{\exp(\mathbf{v}(w_t) \cdot \mathbf{h}_t)}{\sum_{w' \in \mathcal{V}} \exp(\mathbf{v}(w') \cdot \mathbf{h}_t)} \text{ where}$	
• Statistic: $z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$, $z H_0 \sim \mathcal{N}(0,1)$,	5 Log Linear Models	$k x^{(i)})x^{(i)}$ • For reference:	first-order derivative runtime and	$H_{(l-1)}^{(a)} \blacksquare \text{ Add and norm on } H_l^{(a)}$	$\mathbf{v}(w)$ are word vectors, \mathbf{h}_t are	computes $\langle Z, H_u \rangle$ where H_u =

	II over(soors(w))	–				
$-\sum_{t} \exp(\operatorname{score}(t, w)) \times \operatorname{score}(t, w)$ is			occurrences in the scope, which		(W)FSA Terminology $Paths: \pi$	via Kleene closure of matrix R
the unnormanized entropy	• Challenge: 7 is still notentially	• Construct <i>Laplacian matrix</i> ,	are bound to the same	rules:	• $p(\pi)=q_1$ is the beginning and	over closed SR: 1) $\mathbf{R} \in \mathbb{R}^{(Q \times Q)}$
Normanzea entropy	infinitaly large (cycles)	accounting for constraint that	abstraction, if the renamed	$\frac{[X/Y,i,j]}{[X\beta,i,k]}$ $[Y\beta,j,k]$ X/Y $Y\beta \rightarrow X\beta$	$\beta q(\pi) = q_N$ the ending state of the	with entries as ⊕-sum of the
$H_n = -\sum_t p(t) \log(p(t))$ as	• Solution: CNF. Then, $ Z $ is the	there is only one root node:	variable remains bound to the same abstraction and the	resp.	path • Yield the concatenation of	weights for $q_i \rightarrow q_k$:
$z = n_u + \log(z) \cdot n \cos as$	number of rooted binary trees,	$(\rho_{j_{i}})$ if $i=1$	remaining variables remain free	$\frac{[Y\vec{\beta},i,j] [X\backslash Y,j,k]}{[X\beta,i,k]} Y\beta X\backslash Y \rightarrow X\beta$	symbols • <i>Inner path weight</i> :	$\mathbf{R}_{ik} = \bigoplus_{\pi \in \Pi(q_i, q_k)} w_I(\pi)$ where
regularizer in 109 likeliliood.	i.e. Catalan number C_{M-1}	$L_{ij} = \begin{cases} \sum_{i'=1, i' \neq j}^{n} A_{i'j} & \text{if } i=j \\ & \text{i.e.} \end{cases}$	resp. bound • Note: Only	Polynomial time algorithm:	$w_I(\pi) = \bigotimes_{n=1}^N w_n \bullet Path weight$:	cyclical terms are denoted with *
τn	• Then: $p(t s)=$	$(-A_{ij}$ otherwise	variables are renamed, not	• Arity bounded by <i>grammar</i>	$w(\pi) = \lambda(p(\pi)) \otimes w_I(\pi) \otimes \rho(q(\pi))$	2) $Z(\mathcal{A}) = \bigoplus_{i,k=1}^{ Q } \lambda(q_i) \otimes \mathbf{R}_{ik} \otimes \rho(q_k)$
Generalized disortinin	$\prod_{N \to NN} p(i s) = \prod_{N \to NN} \exp(\operatorname{score}(N_i \to N_i N_k))$	$\begin{bmatrix} -1^{st} \text{ row of L contains root scores} \\ -\text{ diagonal of L (except } L_{1,1}) \text{ contains} \end{bmatrix}$	functions Beta reduction —	constant C_g : $ar(X) \le C_g$	• A path is accepting iff $w(\pi) \neq 0$	where SR retains only pairs (i,k)
Backward algorithm:	$\frac{1}{\sum_{t' \in T(s)} \prod_{N \to NN \in t'} \exp(\operatorname{score}(N_i \to N_j N_k))} \sum_{t' \in T(s)} \prod_{N \to NN \in t'} \exp(\operatorname{score}(N_i \to N_j N_k))$	sum within each column of A (except A	Amplication We can apply one	• Challenge: Categories with	States: • Accessible iff $q \in I$ or	where <i>i</i> is initial and <i>k</i> is final
computes 2, maide are viteror	$\prod_{N \to a} \exp(\operatorname{score}(N_I \to a))$	1- off-diagonal of L (except 1st row) cor	lainbda term to another if the free	chancinge. Categories with	path from I to q with $w(\pi) > 0$	state 3) Runtime $O(Q ^3)$
algorithm: Computes the score	$\times \frac{\prod_{N \to a} \exp(\operatorname{score}(N_l \to a))}{\prod_{N \to a \in t'} \exp(\operatorname{score}(N_l \to a))}$		variables in N remain free in	derived • Solution: Decompose	• Co-accessible iff $q \in F$ or path	Compute \mathbf{R} : 1) $\mathbf{R}^{(0)} \leftarrow \mathbf{W}$ 2) For
	$Span \stackrel{\bullet}{-} \bullet Admissible \text{ if } X \rightarrow w[i:j]$		M[x:=N]		from q to F with $w(\pi)>0$	$_i \leftarrow 1$ up to $ Q $: For $i \leftarrow 1$ up to $ Q $:
Viterbi SR • Challenge:	 For tree where nodes expand 	theorem: $ L = \det(L) = Z = \text{number}$	LIG resp. CCGLIG $\langle N, S, I, \Sigma, \mathcal{R} \rangle$	longer derivations into smaller		
	along right diagonal of tree only,		— • N: Non-terminals	pieces: Derivation contexts c	WFST $\mathcal{T} = (\Sigma, \Omega, Q, I, F, \delta, \lambda, \rho) \bullet \Sigma$ is the input alphabet, Ω is the	
 Solution: Log-sum-exp SR 		• Runtime $O(N^3)$	$-N_1, N_2, N_3, \dots \bullet I$: Indices f, g, h, \dots	• $C_g \ge \max\{\ell, a+n\}$: At least as	*	$\mathbf{R}_{ik}^{\leq j-1} \oplus \left(\mathbf{R}_{ij}^{\leq j-1} \otimes (\mathbf{R}_{jj}^{\leq j-1})^* \otimes \mathbf{R}_{jk}^{\leq j-1}\right)$
(backward) resp. arctic SR	size: $[M-\text{span size}+1,M+1)$	Optimization CLE algorithm:	Σ · Alphabet of terminals	large as maximal r (acterminea	output alphabet $ \delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times (\Omega \cup \{\varepsilon\}) \times \mathbb{K} \times Q $	where $\mathbf{R}_{ik}^{\leq j}$ does not traverse
(Viterbi), returns log	Optimization CKY Algorithm —	1) Greedy algorithm selects best	$a_1, a_2, a_3, \dots \bullet \mathcal{R}$: Rules:	by largest arity a in lexicon) and	$a \in \Sigma \cup \{\varepsilon\} / \times (\Sigma \cup \{\varepsilon\}) \times \mathbb{R} \times Q$ $a \in \Sigma \cup \{\varepsilon\} / b \in \Omega \cup \{\varepsilon\} / w$	
Scoring functions — Hidden	• Can: Compute Z (inside SR or	incoming edge for each node	$N[\sigma] \rightarrow \alpha M[\sigma]\beta$,	β (determined by the maximum	resp. $q \xrightarrow{\text{degs}(\theta):\theta \in \text{deg}(\theta)/\theta} q'$	nodes with index $> j$ 3) Return:
Markov Model: sc. $(\langle t_n, t_{n+1} \rangle, w) =$	log-sum-exp SR), find best parse	2) Contract cycles 3) Break	$N[\sigma] \rightarrow \alpha M[f\sigma]\beta$,	degree n of composition rules)	WEST Compositions ToT	$-I \bigoplus R^{(Q)}$
	and its probability (Viterbi or	cycle: For each enter edge, break	$N[f\sigma] \rightarrow \alpha M[\sigma]\beta$ • Can generate	CCG can be paired with Lambda	from $\mathcal{T}_1 = (\Sigma, \Omega, O_1, I_1, F_1, \delta_1, \lambda_1, o_1)$	Transliteration • $p(y x)$ is
	arctic SR), determine if a given	cycle by removing edges that are	languages, which cannot be	calculus	and $\mathcal{T}_2 = (\Omega, \Gamma, Q_2, I_2, F_2, \delta_2, \lambda_2, \rho_2)$:	probability of all paths in $\mathcal{T}_{x} \circ \mathcal{T}$
$\operatorname{tr.}(t_{n-1},t_n)+\operatorname{em.}(t_n,w_n)=\operatorname{transition}$	string is admissible by the	also incoming at the node where	generated by CFG, e.g.	SK-Calculus • Alternative to	$\mathcal{T} = (\Sigma, \Gamma, Q, I, F, \delta, \lambda, \rho)$ such that:	that align x to y : = $\frac{\text{pathsum of } \mathcal{T}_X \circ \mathcal{T} \circ \mathcal{T}_Y}{\text{pathsum of } \mathcal{T}_X \circ \mathcal{T}}$
+ emission except for t_N = EOS,	grammar (Boolean SR)	the enter edge is incoming	$\{a^nb^n@c^nd^n:n\geq 0\}$ With	Lambda calculus • Variables:	$\mathcal{T}(x,y) = \bigoplus_{z \in \Omega^*} \mathcal{T}_1(x,z) \otimes \mathcal{T}_2(z,y)$	• Training: For $p(y x)$ use
where emission $= 0$	• Requires grammar in CNF • For	4) Re-weight: To enter edge, add	non-terminals $\mathcal{N}=\{S,T\}$, indices	x,y,z, • Primitive functions	where $\mathcal{T}(i,j)$ is weight assigned	Lehmann's with the log-sum-exp
17 Syntax — Syntactic	Z: Chart $[i,j,X]$ is probability that	weights of remaining edges on	$I = \{f, \emptyset\}, \text{ and rules}$	resp. combinators: \circ S:	to mapping from input <i>i</i> to an	SR • Inference: For highest
Formulation Probabilistic CFGs	man tamminal W asmanatas tha	avala 5) If there are multiple	$\mathcal{R}=\{S[\sigma]\rightarrow aS[\sigma f]d,S[\sigma]\rightarrow$	$Sxyz=(xz(yz))=((xz)(yz)\circ K$:	output $j \bullet$ Naive algorithm:	scoring y of $\mathcal{T}_x \circ \mathcal{T}$ use arctic SR
$(\mathcal{N}, \mathcal{S}, \Sigma, \mathcal{R}, \mathcal{P})$ — • Non-terminals	subtree resp. substring s	edges from the root: For each	$T[\sigma@], \tilde{T}[\sigma f] \rightarrow b\tilde{T}[\sigma]c, \tilde{T}[\varepsilon] \rightarrow \varepsilon$	Constant function: $Kxy=((Kx)y)=x \circ I$: Identity		• Conditioning on x in $\mathcal{T}_x \circ \mathcal{T}$
$\mathcal{N}=\{N_1,N_2,\dots\}$ • Start	1) For $m=1,,M$: Terminal	edge, calculate cost of deleting it:	$.CCG \langle \mathcal{V}_T, \mathcal{V}_N, S, f, \mathcal{R} \rangle \longrightarrow \mathcal{V}_N$:	function: $Ix=x \circ SKK$ and I are	1) Initial state $(q_1^i, q_2^i) \in I_1 \times I_2$ and	makes WFST a WFSA
non-terminal S _• Terminals	productions: For V	Cost - Weight of root odge	Non-terminals • V_T : Terminals	equivalent:	final state $(q_1^f, q_2^f) \in F_1 \times F_2$ 2) For	Lehmann's applications
$\Delta = \{a_1, a_2, \dots\} \bullet 1$ following fulles	Chart $[m,m+1,X] \oplus = \exp(\operatorname{score}(X \to X))$	- weight of next-best incoming edge to ta	$f: \mathcal{V}_T \to \mathcal{C}(\mathcal{V}_N)$:	S(KK)x=SKKx=Kx(Kx)=x	$q_1,q_2 \in Q_1 \times Q_2$: For	Floyd-Warshall: • Aim: Find
$r: N \to \alpha$, where N is non-terminal	s_m) 2) For span =2,, M : For	6) Prelim remove edge with	Lexicon: • $C(V_N)$: Categories	• Parentheses are left-associative	$a:b/w_1$ $c:d/w_2$	shortest distances • Lehmann
and $\alpha \in (\mathcal{N} \cup \Sigma)^*$ • Probabilities \mathcal{P}	$i=1,,M$ -span+1: $k\leftarrow i$ +span-1 For	lowest cost but keep target node	Categories: • Atomic: Terminals	e.g. $(Kxyz)=(((Kx)y)z)$		over tropical SR • We can drop
	j=i+1,,k-1: Non-terminal	intact 7) Prelim repeat steps 5,6	• Complex: • Built from atomic	Lambda to SK-Calculus	$-E_{\mathcal{T}_1}(q_1) \times E_{\mathcal{T}_2}(q_2)$: If $b=c$, (q_1,q_2)	$(\mathbf{R}_{i,i}^{\leq j-1})^*$ in Lehmann
over each transition.		as needed 8) Re-run greedy	categories via operators	1) $T(x)=x$ for every variable x	and (q'_1, q'_2) are accessible and	Gauss-Jordan: • Aim: For
$\sum_{K} P(1) \wedge \alpha_{K} = 1 \text{ where}$			• Function with pattern:	2) $T[(E_1E_2)] = (T[E_1]T[E_2])$ for al	lco-accessible (reachable from	$M^{D \times D}$, find M^{-1} • Run Lehmann
iv rai,,iv rak are expansions	777) - 01 - [1 + 77] - 01 - [1 + 7]	removal, contract, then	$X Y Y \rightarrow X$, where $X Y$ is	lambda terms E_1 , E_2	(q_1^i, q_2^i) , can reach (q_1^f, q_2^f) in \mathcal{T} :	on (I-M)
of flode iv • Sumg s of length w	2) D - to Cl [1 14 1 0]	re-expand, Otherwise:	function, is operator, <i>Y</i> is	3) $T[\lambda x.E] = (KT[E])$ for every	Add new $(q_1,q_2), (q'_1,q'_2)$ and	(W)FSA applicationsN-gram
Frobability of a free.	Runtime: $O(M^3 \mathcal{R})$ (for tree		argument, and X is output, and	lambda term E where x is either		models — As WFSA:
$p(t) = \prod_{r \in t} p(r) = p(S \to S_1 S_2)^{M-1} \times p(S \to X)^M \times p(X \to \sigma)^M$	where nodes expand along right	ree expand 10) realitime o(11)	applying function to Y yields X	bound or absent within the term	(41)42)	• $\Sigma = V \cup \{\langle BOS \rangle, \langle EOS \rangle\}$
$S_1S_2)^{M-1} \times p(S \rightarrow X)^M \times p(X \rightarrow \sigma)^M$		19 Semantic Parsing	• Have <i>arity</i> which is number of	4) $I[\Lambda X.X] = (SKK) = I$	3) For $(a^i, a^i) : 1 = 1, (a^i) \otimes 1, (a^i)$	• $Q = \bigcup_{n=0}^{N} \{ \langle \langle BOS \rangle \}^{N-n} \times V^{n-1} \times (V \cup V) \}$
r robability of a suring.	i=M—span size+1 $i=i+1$ then	Lambda Calculus Basic	arguments it relates, e.g. $X/Y \setminus Z$	5) $T[\lambda x.\lambda y.E] = T[\lambda x.T[\lambda y.E]]$ for	4) For $(q_1^f, q_2^f): \rho_T = \rho_1(q_1^f) \otimes \rho_2(q_2^f)$	$\{\langle EOS \rangle \}\}$ represent $N-1$
$P(s) = \Delta t \in \mathcal{I}(s) P(t)$	$O(M \mathcal{R})$	components. • Logical constants	has arity 2 Operators:	every lambda term E where x is	5) Return \mathcal{T} • Challenge:	histories, in total $ V ^{N-1}$ +2 states,
Chomsky Normai Porm (CNP) —	40 Comton Donondonous	• variables. Undetermined	Backward and forward slash	free within the term	Runtime $O(Q_1 Q_2)$	incl. start and end _• I={⟨BOS,,BOS⟩} (N times) is a
• Production rules: $N_1 \rightarrow N_2 N_3$ are	Formulation String Snanning	logical constants, free (does not	• Note: Operators are read from	6) $T[\lambda x.(E_1E_2)] = (ST[\lambda x.E_1]T[\lambda x.E_2])$ for all		subset of Q at $n=0 \bullet F=Q$
non terminar productions, it va	tunne Manadas i I maat mada	occur in the scope of any	outside in Rules: • Function	lambda terms E_1, E_2 where x is	Pathsum and Algorithms	
are terminal productions, $s \rightarrow \varepsilon$	N 1 edges of which 1 edge is	abstraction that holds its name)	application: o Forward (>): X:	free within at least one of the two	Pathsum: $Z(\mathcal{A}) = \bigoplus_{\pi \in \Pi(\mathcal{A})} w(\pi)$	• $b = \{y - N \dots y_{-1}, y_0, p(y_0)\}$
• Frombits cyclic rules	fixed (root) • Cayley's:	vs. bound \circ Objects $x,y,z,$ in	X/Y $Y \rightarrow X \circ Backward$ (<):	terms	Backward algorithm: Computes	$y_{-N+1},,y_{-1},y_{-N+1}y_0$ for
• Transform CFG to CNF:	Undirected NN-2 vs. directed	$\lambda x. f(x) \circ \text{Relations } P, Q, R, \dots \text{ in }$	$Y X \setminus Y \rightarrow X \circ CCGs \text{ that only}$	00 14/504	finite 7(a) in equalic WECA in	(V_N±1V_1) ∈
\circ A→ ε : If CFG contains A→BC, B→ ε , change to	$N^{(N-1)}$ spanning trees • Directed	λP.P() • Kelation has army	have application rules, have	$FSA\mathcal{A} = (\Sigma, Q, I, F, \delta) \cdot Alphabet$	O($ \delta $) time: 1) For $q \in \text{Rev-Top}(\mathcal{A})$	$\bigcup_{n=0}^{\infty} \{\langle BOS \rangle\}^{N-1} \times V^{N}\}$ for for
$A \rightarrow BC$, $B \rightarrow Z$, change to $A \rightarrow BC$, $A \rightarrow C \circ A \rightarrow B$: If A also		which is number of objects it	power of CFG • Function	Σ with $a,b,c,$ • States Q , initial	(Starts with linal state): \angle) If $q \in F$	= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$
appears as first element in other	Probability of spanning tree —	refaces, e.g. $P(x,y)$ has affly 2	composition: Forward ((P :	states I, final states F	$\beta(q) = \rho(q)$ Else:	$\begin{cases} \log(p(y_n = k y_{n-1} = i, y_{n-2} = j,, y_{n-N}) \\ \text{if } y_n = k \end{cases}$
rules: If CFG contains	$= p(t w) = \exp(\operatorname{score}(t,w))$	Abstraction: • Let M, N be terms	(X/Y) $(Y/Z)\rightarrow (X/Z)$, etc.	• Transitions $\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q$	$\beta(q) = \bigoplus_{a/w} w \otimes \beta(q')$	(-∞ else
$A \rightarrow B$, $B \rightarrow b$, change to $A \rightarrow b$, $B \rightarrow b$	• $p(t w) = \frac{\exp(\text{score}(t,w))}{\sum_{t'} \exp(\text{score}(t',w))}$	and x be a variable • λx is an	• Higher-order rules: Forward	resp. $q \xrightarrow{a \in \Sigma \cup \{\varepsilon\}} q'$	$q \longrightarrow q'$	• $\lambda = \langle BOS \rangle \langle BOS \rangle \rightarrow \overline{1}$ (N times,
- If A is maraly a ranaming and		abstraction with argument x		• Sequentially reads individual	3) Return: $\bigoplus_{q^i \in I} \lambda(q^i) \otimes \beta(q^i)$	full padding)
does not appear as first element	spanning trees with one root	• $\lambda x.M$ is a function with input x ,	$(>^n)$: $X/Y Y _n Y_n _1 Y_1 \rightarrow X _n Y_n _1 Y_1$, etc.	symbols of an input string s and	Forward: Exchange <i>I</i> and <i>F</i> and	• $\lambda(q_{ij}) = \log(p(y_n = i y_{n-1} = BOS,))$
the state of the s			• Type raising: Forward $(T_>)$:	transitions from state q to state q	$a' \mapsto a' \xrightarrow{a/w} a \mid Lehmann's$	• $\rho = y_{n-N+1}y_1 \langle EOS \rangle \rightarrow \overline{1}$
$A \rightarrow BC, B \rightarrow D, D \rightarrow d$, change to	Edge factored assumption $p(t w) =$	occurrence of x in M with	$X \rightarrow T/(T \setminus X)$, etc. • $2^{ V_N }$ forward	iff $(q,a,q') \in \delta$ • If ends up in a	Computes infinite 7(A) in cyclic	$ \begin{array}{l} \rho \left(q_{ij}\right) = \log\left(p\left(y_n = \text{EOS} y_{n-1} = i, \dots\right)\right) \\ \rho \left(q_{ij}\right) = \log\left(q_{ij}\right) + \log\left(q_{ij}\right) + \log\left(q_{ij}\right) + \log\left(q_{ij}\right) \\ \rho \left(q_{ij}\right) = \log\left(q_{ij}\right) + \log\left(q_{ij}\right) + \log\left(q_{ij}\right) \\ \rho \left(q_{ij}\right) = \log\left(q_{ij}\right) + \log\left(q_{ij}\right) + \log\left(q_{ij}\right) + \log\left(q_{ij}\right) \\ \rho \left(q_{ij}\right) = \log\left(q_{ij}\right) + \log\left(q_{ij}\right) + \log\left(q_{ij}\right) \\ \rho \left(q_{ij}\right) = \log\left(q_{ij}\right) + \log\left(q_{ij}\right) + \log\left(q_{ij}\right) \\ \rho \left(q_{ij}\right) = \log\left(q_{ij}\right) + \log\left(q_{ij}\right) + \log\left(q_{ij}\right) \\ \rho \left(q_{ij}\right) = \log\left(q_{ij}\right) + \log\left(q_{ij}\right) + \log\left(q_{ij}\right) \\ \rho \left(q_{ij}\right) = \log\left(q_{ij}\right) + \log\left(q_{ij}\right) + \log\left(q_{ij}\right) \\ \rho \left(q_{ij}\right) = \log\left(q_{ij}\right) + \log\left(q_{ij}\right) + \log\left(q_{ij}\right) \\ \rho \left(q_{ij}\right) = \log\left(q_{ij}\right) + \log\left(q_{ij}\right) + \log\left(q_{ij}\right) \\ \rho \left(q_{ij}\right) = \log\left(q_{ij}\right) + \log\left(q_{ij}\right) + \log\left(q_{ij}\right) \\ \rho \left(q_{ij}\right) = \log\left(q_{ij}\right) + \log\left(q_{ij}\right) + \log\left(q_{ij}\right) \\ \rho \left(q_{ij}\right) = \log\left(q_{ij}\right) + \log\left(q_{ij}\right) + \log\left(q_{ij}\right) \\ \rho \left(q_{ij}\right) = \log\left(q_{ij}\right) + \log\left(q_{ij}\right) + \log\left(q_{ij}\right) \\ \rho \left(q_{ij}\right) = \log\left(q_{ij}\right) + \log\left(q_{ij}\right) + \log\left(q_{ij}\right) \\ \rho \left(q_{ij}\right) = \log\left(q_{ij}\right) + \log\left(q_{ij}\right) + \log\left(q_{ij}\right) \\ \rho \left(q_{ij}\right) = \log\left(q_{ij}\right) + \log\left(q_{ij}\right) + \log\left(q_{ij}\right) \\ \rho \left(q_{ij}\right) = \log\left(q_{ij}\right) + \log\left(q_$
A DC D A Caulana miles	$\prod_{(i \to j) \in t} \exp(\operatorname{score}(i, j, w)) \exp(\operatorname{score}(r, w))$		and $2^{ V_N }$ backward rules, but	state $q_f \in F$, automaton accepts	WFSA: First WFSA as a	• $p(\mathbf{y}) = \lambda(q_I) +$
المستنسبة المناسب مراما	$\sum_{t'} \prod_{(i \to j) \in t'} \exp(\operatorname{score}(i, j, w)) \exp(\operatorname{score}(r, w))$	to N and hady room soons MN	infinitely many rule instances		matrix: • Adjacency matrix for	$\sum_{n=1}^{L} \delta(q_{y_{n-N},,y_{n-1}}, y_n, q_{y_{n-N+1},})$
rules A va P insert intermediate	where $(i \rightarrow j)$ is an edge, r is the	0 4 4 6 2 26 27 26 27 1	Lexicon: Associates terminals	the string	all $\sigma \in \Sigma \cup \{\varepsilon\}$: $\mathbf{W}^{(a)} \in \mathbb{R}^{(Q \times Q)}$:	$\rho(q_F) \bullet V ^{N-2} + V ^{N-1} + 1$ start
non-terminals		• Output of $\lambda x.MN$: $M[x:=N]$	with categories • E.g. Atomic:	WFSA $\mathcal{A} = (\Sigma, Q, I, F, \delta, \lambda, \rho)$	all $\sigma \in \Delta \cup \{\mathcal{E}\}$. Which is the second states of the second s	
Weighted CFGs — • General	• Adjacency matrix: One entry		Harry:= $NP \cdot E.g.$ Complex:	• Transitions weighted with SR	From-states q_n in rows, entries a	
formulation of PCFGs, globally	for each node <i>i</i> to node <i>j</i> , if they	~ ~ ())))	walks:= $(S \setminus NP)$	• $\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times \mathbb{K} \times Q$ resp.	weights w for $q_n \xrightarrow{a/w} q_m$ if it	String edit FSA — Edit distance
normalized	were connected via an edge $i \rightarrow j$,	e.g. $(\lambda x. x \lambda y. y \lambda z. z) =$	CCG parsing: $\frac{A_1 \dots A_k}{B}$ where	$e^{a \in \Sigma \cup \{\varepsilon\}/w} q' \bullet \lambda: Q \to \mathbb{K} \text{ resp.}$	exists, else $\overline{0}$ • Can be collapsed:	$\leq d$ for string of length N has
• $p(t) = \frac{\prod_{r \in t} \exp(\operatorname{score}(r))}{\sum_{t' \in T} \prod_{r' \in t'} \exp(\operatorname{score}(r'))}$	otherwise $\bar{0}$ $A_{ij} = \exp(\operatorname{score}(i, j, w))$	((AX.XAY.Y) AZ.Z)	B is a consequence of $A_1,,A_k$	$\rho: Q \to \mathbb{K}$ are initial resp. final	$W = \bigoplus_{a \in \Sigma \cup \{\varepsilon\}} W^{(a)} \bullet \text{ Pathsum for}$	(d+1)(N+1) states
Challenge: 7 is infinitely large	• Root vector: One entry for each	Aipna conversion — Kenaming		weighting functions, $\overline{0}$ for	paths of length exactly l :	
(Σ^*) • Solution:	node ; if it were the root node	• we can rename a variable in an	• Axioms: $[X,i,i+1]$ where $w_{i+1}=X$	non-initial resp. non-final a	$_{\mathbf{W}^{l}=\mathbf{W}\otimes\mathbf{W}\otimes\ldots}$ Compute $Z(\mathcal{A})$	
∠ / • Solution.	node j , if it were the root node,	austraction together with all its	• ALLOMIS. [A,l,l+1] WHERE $w_{i+1}=X$	minut reop. non mui q	$_vv = vv \otimes vv \otimes \mid Compute Z(\mathcal{H})$	