# Finite Dimensional Inner Product Spaces

Jason Kenyon

November 2022

# Contents

| Preface |                             |                                 |    |  |  |  |  |
|---------|-----------------------------|---------------------------------|----|--|--|--|--|
| 1       | Vector Spaces               |                                 |    |  |  |  |  |
|         | 1.1                         | Spaces and Subspaces            | 1  |  |  |  |  |
|         | 1.2                         | Linear Independence             | 3  |  |  |  |  |
|         | 1.3                         | Bases                           | 4  |  |  |  |  |
|         | 1.4                         | Direct Sum and Projections      | 6  |  |  |  |  |
| 2       | Linear Functions 7          |                                 |    |  |  |  |  |
|         | 2.1                         | Linearity                       | 7  |  |  |  |  |
|         | 2.2                         | Matrices                        | 10 |  |  |  |  |
|         | 2.3                         | Abstract Spaces and Isomorphism | 10 |  |  |  |  |
|         | 2.4                         | Dual Space and Transpose        | 10 |  |  |  |  |
| 3       | Linear Systems of Equations |                                 |    |  |  |  |  |
|         | 3.1                         | Rank                            | 11 |  |  |  |  |
|         | 3.2                         | Form                            | 16 |  |  |  |  |
|         | 3.3                         | Solution                        | 18 |  |  |  |  |
| 4       | The                         | e Determinant                   | 20 |  |  |  |  |
|         | 4.1                         | Permuations                     | 20 |  |  |  |  |
|         | 4.2                         | Cofactor Expansion              | 20 |  |  |  |  |
|         | 4.3                         | Multilinear and Alternating     | 20 |  |  |  |  |
|         | 4.4                         | Properties                      | 20 |  |  |  |  |
|         | 4.5                         | Measure                         | 20 |  |  |  |  |
| 5       | Eigenspaces                 |                                 |    |  |  |  |  |
|         | 5.1                         | Characteristic Polynomial       | 21 |  |  |  |  |

| CONTENTS | ii |
|----------|----|
|----------|----|

|              | 5.2                                | Diagonalization and Similarity                  | 21 |  |  |
|--------------|------------------------------------|-------------------------------------------------|----|--|--|
|              | 5.3                                | Dimension                                       |    |  |  |
| 6            | Orthogonality                      |                                                 |    |  |  |
|              | 6.1                                | Inner Products                                  | 22 |  |  |
|              | 6.2                                | Orthogonal Projections                          | 22 |  |  |
|              | 6.3                                | Orthogonal Projection                           | 22 |  |  |
|              | 6.4                                | The Adjoint                                     | 24 |  |  |
|              | 6.5                                | Normal and Unitary Operators                    | 24 |  |  |
|              | 6.6                                | Definiteness                                    | 24 |  |  |
| 7            | Mat                                | trix Decomposition                              | 25 |  |  |
|              | 7.1                                | Schur's Theorem                                 | 25 |  |  |
|              | 7.2                                | Spectral Theorem                                | 25 |  |  |
|              | 7.3                                | Singular Value Decomposition and Pseudo-inverse | 25 |  |  |
| $\mathbf{A}$ | Set                                | Theory                                          | 26 |  |  |
| В            | The                                | Complex Field                                   | 27 |  |  |
| $\mathbf{C}$ | Block Matrices                     |                                                 |    |  |  |
| D            | Multilinearity and Sesquilinearity |                                                 |    |  |  |
| Re           | References                         |                                                 |    |  |  |

# Preface

Hello

## Vector Spaces

#### 1.1 Spaces and Subspaces

**Definition 1.1.1.** A vector space V over a field  $\mathbb{F}$  is a set, along with a binary operation  $+: V^2 \to V$  and a binary operation  $\cdot: \mathbb{F} \times V \to V$  that satisfy the following properties:

- 1.  $a \cdot v + w \in V$
- 2. v + w = w + v
- 3. v + (w + z) = (v + w) + z
- 4. 1v = v
- 5.  $(a \cdot b)x = a \cdot (bx)$
- 6.  $a \cdot (v + w) = av + aw$
- 7.  $(a+b)v = a \cdot v + b \cdot v$
- 8. There exists an element  $\mathbf{0} \in V$  such that  $v + \mathbf{0} = v$
- 9. There exists an element  $v^{-1}$  such that  $v + v^{-1} = \mathbf{0}$

for all  $a, b \in \mathbb{F}$  and  $v, w, z \in V$ .

2

The elements of V are called vectors, and the elements of  $\mathbb{F}$  are called scalars. The operations + and  $\cdot$  are called vector addition and scalar multiplication, respectively. We omit the  $\cdot$  and do not explicitly apply + for clarity. The **1** is the identity element of  $\mathbb{F}$ . -a will denote the additive inverse of  $a \in \mathbb{F}$  for the field  $\mathbb{F}$ , and  $-v = v^{-1}$  will denote the additive inverse of a vector  $v \in V$  under vector addition, while -a(v) will denote multiplication of a vector by a scalar's additive inverse in  $\mathbb{F}$ .

**Theorem 1.1.1.** Let x, y, and z be vectors in V. If x + z = y + z, then x = y. The zero element of V is unique. The additive inverse in V is unique for each vector in V.

**Theorem 1.1.2.** 1. 0(x) = 0

2. 
$$(-a)x = -(ax) = a(-x)$$

3. 
$$a(0) = 0$$

**Definition 1.1.2.** A subspace W of a vector space V is a set  $W \subseteq V$  that is itself a vector space.

**Theorem 1.1.3.** Let V be a vector space with zero element  $\mathbf{0}$ . Then a subset  $W \subseteq V$  is a subspace of V if and only if

$$\mathbf{0} \in W$$

and

$$cx + y \in W$$

for all  $x, y \in W$  and  $c \in \mathbb{F}$ .

**Theorem 1.1.4.** Let S be a subset of a vector space V. Then  $\operatorname{span}(S)$  is a subspace of V, and if any subspace of V contains S must necessarily contain  $\operatorname{span}(S)$ 

The proof follows directly from the definition of span. The span is defined precisely to generate a subspace in this way. Additionally, it should be clear that any linear combination of vectors in a subspace must be contained in that subspace as this is the defining characteristic of a vector space.

3

#### 1.2 Linear Independence

**Definition 1.2.1.** A set of vectors  $\{v_1, v_2, \dots v_n\}$  is linearly dependent if

$$a_1v_1 + a_2v_2 + \dots a_nv_n = \mathbf{0}$$

for  $a_1, a_2, \dots a_n \in \mathbb{F}$  not all zero. Similarly, a set of vectors is linearly independent if it is not linearly dependent.

**Theorem 1.2.1.** If  $S_1 \subseteq S_2 \subseteq V$  and  $S_1$  is linearly dependent, then  $S_2$  is linearly dependent as well. Similarly, if  $S_2$  is linearly dependent, then  $S_1$  is linearly dependent.

*Proof.* The proof should be clear when considering the above definition.

**Theorem 1.2.2.** Let S be a linearly independent subset of V and  $v \in V$  such that  $v \in S$ . Then  $S \cup \{v\}$  is linearly dependent if and only if  $v \in \text{span}(S)$ .

*Proof.* If  $S \cup \{v\}$  is linearly dependent then there exist scalars  $a_1, a_2, \ldots a_n, a_v \in \mathbb{F}$  not all zero such that

$$a_1s_1 + a_2s_2 + \dots + a_ns_n + a_vv = \mathbf{0}.$$

Therefore,  $a_v \neq 0$ , for otherwise we would contradict the linear independence of S. This implies that

$$v = -\frac{a_1s_1 + a_2s_2 + \cdots + a_ns_n}{a_n}.$$

and hence  $v \in \text{span}(S)$ . Conversely, if  $v \in \text{span}(S)$ , then

$$v = a_1 s_1 + a_2 s_2 + \cdots + a_n s_n$$

for some scalars  $a_1, a_2, \dots \in \mathbb{F}$  This implies that

$$1(v) - (a_1s_1 + \cdots + a_ns_n) = \mathbf{0}.$$

which is a nontrivial solution, so the set  $S \cup \{v\}$  is linearly dependent.

#### 1.3 Bases

**Definition 1.3.1.** A subset  $\beta \subseteq V$  is a basis for V if it is a linearly independent set such that  $\operatorname{span}(\beta) = V$ .

**Theorem 1.3.1.** A subset  $\beta = \{v_1, v_2, \dots v_n\}$  of V is a basis for V if and only if for any vector  $v \in V$ 

$$v = a_1 v_1 + \dots + a_n v_n$$

for unique scalars  $a_1, \ldots a_n \in \mathbb{F}$ .

*Proof.* Suppose that  $\beta = \{v_1, \dots v_n\}$  is a linearly independent generating set of V. Then  $v = a_1v_1 + \dots + a_nv_n$  for scalars  $a_1, \dots a_n \in \mathbb{F}$ . Further, suppose that there exists another collection  $b_1, \dots b_n$  of scalars such that  $v = b_1v_1 + \dots + b_nv_n$ . Subtracting, we have

$$(a_1-b_1)v_1\cdots(a_n-b_n)v_n=\mathbf{0}.$$

Since  $\beta$  is linearly independent, it follows that  $a_i - b_i = 0$ , and hence  $a_i = b_i$  for all  $1 \leq i \leq n$ . Therefore, the linear combination  $a_1v_1 + \cdots + a_nv_n$  is the unique representation of V for  $\beta$ . Similarly, if we know that  $v = a_1v_1 \cdots a_nv_n$  for unique scalars, then

$$(b_1)v_1 + \cdots + (b_n)v_n = \mathbf{0} = v - v.$$

if and only if  $b_i = a_i - a_i = 0$  for all  $1 \le i \le n$ . And certainly  $V = \operatorname{span}(\beta)$ , so  $\beta$  is a basis for V.

see this source Jech [1].

**Theorem 1.3.2.** Every vector space has a basis.

Proof. Consider the set L of all linearly independent subsets of a vector space V. Let  $T \subseteq L$  be a chain. That is, for any two sets A and B in T either  $A \subseteq B$  or  $B \subseteq A$ . Hence, any finite subset of  $\bigcup T$  is in L. In other words, taking a union over a chain yields an upper bound under  $\subseteq$  which must necessarily be in the set from whence it came. This ensures that T is linearly ordered by  $\subseteq$ , for transitivity, reflexivity, and antisymmetry are already satisfied by definition of a subset. Therefore, Zorn's lemma implies that there exists a maximal element in L. That is, there exists an element

 $l \in L$  such that for all  $A \in L$   $A \subseteq l$ . Moreover, we know that l is linearly independent by assumption.

To show that l spans V, suppose that there were an element  $v \in V$  such that  $v \notin \text{span}(l)$ . Then by theorem 1.2.2  $l \cup \{v\}$  would be a linearly independent set, in which case  $l \cup \{v\} \in L$ . But  $l \cup \{v\} \nsubseteq l$ , contradicting the fact that l is the maximal element of L.

Corollary 1.3.1. If V is generated by a finite set, then there exists a finite basis for V contained within the generating set.

Proof. Suppose that  $\operatorname{span}(S) = V$  for a finite set S. Consider an arbitrary linearly independent subset  $\beta \subseteq S$  such that  $\beta \cup \{v\}$  is linearly dependent for any  $v \in S$  such that  $v \notin \beta$ . Such a set certainly exist because any set containing a single vector is linearly independent, and so we may continue to add vectors from S into  $\beta$  until another union results in a linearly dependent set. Hence if we demonstrate that  $S \subseteq \operatorname{span}(\beta)$  we will have that  $\operatorname{span}(S) \subseteq \operatorname{span}(\beta)$ , and we already know that  $\operatorname{span}(\beta) \subseteq V$ . To show this, note that for any  $v \in S$  if  $v \in \beta$  then trivially  $v \in \operatorname{span}(\beta)$ , and if  $v \notin \beta$ , then by assumption  $\beta \cup \{v\}$  is linearly dependent, in which case  $v \in \operatorname{span}(\beta)$  by theorem 1.2.2.

**Theorem 1.3.3.** Let V be a vector space generated by a set G containing n vectors, and  $L \subseteq V$  be linearly independent containing m vectors. Then  $m \le n$  and there exists a subset  $H \subseteq G$  containing n - m vectors such that  $\operatorname{span}(L \cup H) = V$ .

Proof. We proceed by induction on m. For m=0  $L=\emptyset\subseteq V$  and  $0\leq n$  for all  $n\in\mathbb{N}$ . Taking H=G we are done. So suppose our theorem is true for any linearly independent set with m-1 vectors. Now consider an arbitrary linearly independent subset of  $V, L=\{v_1,v_2,\ldots v_m\}$ . The set  $\{v_1,v_2,\ldots v_{m-1}\}\subseteq L$  is then linearly independent, and so by our induction hypothesis,  $m-1\leq n$  and there is a subset  $\{h_1,h_2,\cdots h_{n-(m-1)}\}$  of G such that  $\mathrm{span}(\{v_1,v_2,\ldots v_{m-1}\}\cup\{h_1,h_2,\cdots h_{n-(m-1)}\})=V$ . That is

$$v_m = a_1 v_1 + \dots + a_{m-1} v_{m-1} + b_1 h_1 + \dots + b_{n-(m-1)} h_{n-(m-1)}$$

for  $a_i, b_i \in \mathbb{F}$ . And  $n - (m-1) \neq 0$ , for otherwise L would not be linearly independent by theorem 1.2.2. This means that n - (m-1) > 0, or, n > (m-1), from which it follows that  $m \leq n$ . Moreover, there exists some

 $b_i \neq 0$  as otherwise we would, once again, contradict the linear independence of L. Without loss of generality, we have

$$h_1 = \frac{v_m - (a_1v_1 + a_2v_2 + \dots + a_{m-1}v_{m-1} + b_2h_2 + \dots + b_{n-(m-1)}h_{n-(m-1)})}{b_1}.$$

It follows that  $h_1 \in \text{span}(L \cup \{h_2, \dots, h_{n-(m-1)}\})$ , in which case,

$$\{v_1, \dots v_m, h_1, \dots h_{n-(m-1)}\} \subseteq \operatorname{span}(L \cup \{h_2, \dots h_{n-(m-1)}\}).$$

But by our induction hypothesis,  $\operatorname{span}(\{v_1, \dots, v_m, h_1, \dots, h_{n-(m-1)}\}) = V$ , and hence,

$$\operatorname{span}(L \cup \{h_2, \dots h_{n-(m-1)}\}) = V.$$

since  $\{h_2, \dots h_{n-(m-1)}\}$  is a subset of G that contains n-(m-1)-1=n-m vectors, we have demonstrated the theorem for L with m vectors.

Corollary 1.3.2. If a vector space V is generated by a finite basis then any basis for V is finite and of equal cardinality.

*Proof.* Let  $\beta$  and  $\gamma$  be bases for V with m and n vectors respectively. We have that  $m \leq n$  and  $n \leq m$  by theorem 1.3.3.

Thus we may safely define the dimension of a vector space:

**Definition 1.3.2.** The dimension of a vectors space V, denoted  $\dim(V)$ , is the unique cardinality of any basis for V.

Corollary 1.3.3. Suppose that V is a vector space with dimension n. Then any linearly independent subset of V containing n vectors is a basis for V. And any generating set for V contains at least n vectors. Additionally, any linearly independent subset of V can have at most n vectors.

**Corollary 1.3.4.** Let  $W \subseteq V$  be a subspace. Then  $\dim(W) \leq \dim(V)$ , and if  $\dim(W) = \dim(V)$  then V = W.

#### 1.4 Direct Sum and Projections

### **Linear Functions**

#### 2.1 Linearity

**Definition 2.1.1.** A function  $f: V \to W$  between two vector spaces V and W is linear if

$$f(ax + y) = af(x) + f(y)$$

for all  $x, y \in V$  and  $a \in \mathbb{F}$ .

The following properties of linear functions go without saying:

- 1.  $f(\mathbf{0}) = \mathbf{0}$
- 2.  $f(\sum_{i=1}^{n} a_i x_i) = \sum_{i=1}^{n} a_i f(x_i)$

It follows that linear functions are unique up to how they map basis elements.

**Corollary 2.1.1.** Let  $f: V \to W$  and  $g: V \to W$  be linear and  $\{v_1, \ldots, v_n\}$  be a basis for V. Then f = g if and only if  $f(v_i) = g(v_i)$ .

**Definition 2.1.2.** For a linear function  $f: V \to W$  we define

$$\operatorname{im}(f) = \{y : f(x) = y \text{ for some } x \in V\}$$

and

$$\ker(f) = \{x \in V : f(x) = \mathbf{0}\}.$$

**Theorem 2.1.1.** Let  $f: V \to W$  be a linear function. Then  $\ker(f)$  and  $\operatorname{im}(f)$  are subspaces of V and W respectively.

*Proof.* We begin with  $\ker(f)$ . Surely,  $\ker(f) \subseteq V$ , so suppose that  $x, y \in \ker(f)$  and  $a \in \mathbb{F}$ . We have

$$f(x) = f(y) = \mathbf{0}$$

hence

$$af(x) + f(y) = f(ax + y) = \mathbf{0}$$

by linearity. Additionally, we know that  $f(\mathbf{0}) = \mathbf{0}$ . Thus,  $ax + y, \mathbf{0} \in \ker(f)$ , so by 1.1.3 we are done.

Now suppose that  $x, y \in \text{im}(f)$  and  $a \in \mathbb{F}$  Then for some  $x_0, y_0 \in V$ ,  $f(x_0) = x$  and  $f(y_0) = y$ . Therefore,

$$af(x_0) + f(y_0) = f(ax_0 + y_0) = ax + y \in im(f).$$

Furthermore,

$$f(\mathbf{0}) = \mathbf{0} \in \operatorname{im}(f).$$

**Theorem 2.1.2.** Let  $f: V \to W$  be linear and  $\beta = \{v_1, v_2, \dots v_n\}$  be a basis for V. Then

$$im(f) = span(f(\beta)).$$

*Proof.* Let  $x \in V$ . We have  $x = \sum_{i=1}^{n} a_i v_i$  for  $a_i \in \mathbb{F}$  and  $f(x) = \sum_{i=1}^{n} a_i f(v_i)$ . That is, for an arbitrary element  $f(x) \in \text{im}(f)$   $f(x) \in \text{span}(f(\beta))$ . The converse containment follows by the same logic.

**Theorem 2.1.3** (Dimension Theorem). Let  $f: V \to W$  be linear. Then

$$\dim(\ker(f)) + \dim(\operatorname{im}(f)) = \dim(V).$$

*Proof.* Let  $\{v_1, \ldots v_k\}$  be a basis for  $\ker(f)$ . Then we may extend this basis to a basis  $\{v_1, v_2, \ldots v_k, v_{k+1}, \ldots v_n\}$  for V. Now, by 2.1.2

$$\operatorname{im}(f) = \operatorname{span}(f(\{v_1, \dots v_n\}))$$

but since  $\{v_1, \dots v_k\} \subseteq \ker(f)$  we have

$$\operatorname{im}(f) = \operatorname{span}(f(v_{k+1}, \dots v_n)).$$

To show that this set is, indeed a basis, for im(f), suppose that

$$\sum_{i=k+1}^{n} a_i f(v_i) = \mathbf{0}.$$

The linearity of f yields

$$f(\sum_{i=k+1}^{n} a_i v_i) = \mathbf{0}$$

which is to say that

$$\sum_{i=k+1}^{n} a_i v_i \in \ker(f).$$

Thus we may represent this vector in the basis of ker(f). We have

$$\sum_{i=k+1}^{n} a_i v_i - \sum_{i=1}^{k} b_i v_i = \mathbf{0}$$

which implies that  $a_i = 0$  because we know that  $\{v_1, \dots v_n\}$  is a basis for V. Therefore  $\dim(\operatorname{im}(f)) = \dim(V) - \dim(\ker(f))$ .

**Theorem 2.1.4.** Let  $f: V \to W$  be linear. Then f is injective if and only if  $\ker(f) = \{0\}$ .

*Proof.* Suppose that f is injective and that  $f(x) = \mathbf{0}$  for some  $x \in V$ . We have that  $f(x) = f(\mathbf{0}) = \mathbf{0}$  so  $x = \mathbf{0}$ . Conversely, suppose  $\ker(f) = \{\mathbf{0}\}$ . Then if f(x) = f(y) we know that  $f(x - y) = \mathbf{0}$ , and hence  $x - y = \mathbf{0}$ .

**Theorem 2.1.5.** Let  $f: V \to W$  be linear. If  $\dim(V) = \dim(W)$  then the following statements are equivalent:

- 1. f is injective
- 2. f is surjective
- 3.  $\dim(\operatorname{im}(f)) = \dim(V)$

*Proof.* Applying, theorem 2.1.3 and theorem 2.1.4 we have f is injective if and only if  $\ker(f) = \{0\}$  if and only if  $\dim(\ker(f)) = 0$  if and only if  $\dim(\operatorname{im}(f)) = \dim(V) = \dim(W)$ . And by corollary 1.3.4  $\operatorname{im}(f) = W$ .

#### 2.2 Matrices

#### 2.3 Abstract Spaces and Isomorphism

#### 2.4 Dual Space and Transpose

**Definition 2.4.1.** Let V be a vector space over a field  $\mathbb{F}$ . Then the dual space  $V^*$  of V is defined as  $\mathcal{L}(V, \mathbb{F})$ .

**Definition 2.4.2.** Let  $\beta = \{v_1, \dots v_n\}$  be a basis for a vector space V. The map  $\alpha_i : \mathbb{F}^n \to \mathbb{F}$  is defined by

$$\alpha_j(\sum_i a_i v_i) = v_j.$$

**Theorem 2.4.1.** The functions  $\alpha_1, \ldots \alpha_n$  form basis for  $V^*$ .

**Definition 2.4.3.** Let  $A:V\to W$  be a linear function between vector spaces V and W. Then the transpose of A  $A^T:W^*\to V^*$  is the linear map between the dual spaces of W and V, respectively, defined by

$$A^T(g) = g(A)$$

for all  $g \in W^*$ .

## Linear Systems of Equations

#### 3.1 Rank

**Definition 3.1.1.** An elementary row or column operation on an  $m \times n$  matrix A is defined as one of the following:

- 1. Interchanging any two rows or columns of A
- 2. Scaling each entry in a row or or column of A
- 3. Adding a multiple of one row or column to another row or column of A

An elementary matrix is the result of applying one of the above to the  $n \times n$  identity matrix.

**Theorem 3.1.1.** Suppose that B is the result of applying an elementary row operation to A. Then there exists an elementary matrix E such that B = EA. Furthermore, E is the matrix obtained by performing the same elementary row operation to  $I_n$  as was performed to convert A into B. Similarly, if B is the result of applying an elementary column operation to A, then there exits an elementary matrix E such that B = AE, and E is the result of applying the same elementary column operation to  $I_m$  as was applied to A.

The proof is a tedious verification of cases; the elementary matrices are defined precisely for this to work.

**Definition 3.1.2.** The rank of a matrix A is defined as the rank of the linear function  $L_A = Ax$ 

**Theorem 3.1.2.** Let  $T: V \to W$  be linear and  $A = [T]^{\gamma}_{\beta}$ . Then  $\operatorname{rank}(T) = \operatorname{rank}(L_A)$ 

*Proof.* Consider the map  $\phi_{\beta}: V \to \mathbb{F}^n$ . That is, the function mapping a vector to its representation in coordinates. This is linear by definition and invertible as we know that any basis represents a vector uniquely as a linear combination of its elements. We have

$$L_A(\mathbb{F}^n) = L_A \phi_\beta(V) = \phi_\gamma(T(V)).$$

It follows that

$$\dim(\operatorname{im}(L_A)) = \dim(\operatorname{im}(T))$$

because  $\phi_{\gamma}$  is an isomorphism.

**Theorem 3.1.3.** Let A be an  $m \times n$ . Let P and Q be invertible  $m \times m$  and  $n \times n$  matrices, respectively. Then

- 1. rank(AQ) = rank(A)
- 2.  $\operatorname{rank}(PA) = \operatorname{rank}(A)$
- 3. rank(PAQ)

Proof.

$$im(L_{AQ}) = im(L_A L_Q) \tag{3.1}$$

$$= L_A L_Q(\mathbb{F}^n) \tag{3.2}$$

$$=L_A(L_Q((\mathbb{F}^n))\tag{3.3}$$

$$=L_A(\mathbb{F}^n) \tag{3.4}$$

$$= \operatorname{im}(L_A) \tag{3.5}$$

Thus,  $\operatorname{rank}(L_{AQ}) = \operatorname{rank}(L_A)$ . Similarly,  $\operatorname{im}(L_P L_A) = L_P(\operatorname{im}(L_A)) = \operatorname{im}(L_A)$  and so  $\operatorname{dim}(\operatorname{im}(L_P L_A)) = \operatorname{dim}(\operatorname{im}(L_A))$  since P is an isomorphism. It follows, by applying the previous two results that  $\operatorname{rank}(PAQ) = \operatorname{rank}(A)$ .

#### Theorem 3.1.4. Let

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{1m} & \cdots & a_{mn} \end{pmatrix}.$$

Then 
$$\operatorname{rank}(A) = \dim \left( \operatorname{span} \left\{ \begin{pmatrix} a_{11} \\ \vdots \\ a_{1m} \end{pmatrix}, \dots \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} \right\} \right)$$

Proof.

$$im(L_A) = L_A(\mathbb{F}^n) \tag{3.6}$$

$$= L_A(\operatorname{span}\{e_1, \dots e_n\}) \tag{3.7}$$

$$= \operatorname{span} \left\{ Ae_1, \dots, Ae_n \right\} \tag{3.8}$$

$$= \operatorname{span}\left\{ \begin{pmatrix} a_{11} \\ \vdots \\ a_{1m} \end{pmatrix}, \dots \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} \right\}$$
 (3.9)

Furthermore,  $\dim(\operatorname{span}(X))$  is nothing but the number of linearly independent vectors in X for any set of vectors X. Thus we have shown that the rank of a matrix is nothing but the number of linearly independent vectors in its columns.

**Theorem 3.1.5.** Let A be an  $m \times n$  matrix. Then a finite composition of elementary row and column operations applied to A results in a matrix of the form

$$\begin{pmatrix} I_{\operatorname{rank}(A)} & O_1 \\ O_2 & O_3 \end{pmatrix}$$

where  $O_1, O_2, O_3$  are zero matrices.

*Proof.* First, note that if A is a zero matrix, then by theorem  $3.1.4 \operatorname{rank}(A) = 0$ , and so  $A = I_0$ , the degenerate case of our claim. Suppose otherwise. We proceed by induction on m, the number of rows of A. In the case that m = 1, we may convert A to a matrix of the form

$$(1 \quad 0 \quad \cdots \quad 0)$$

by first making the leftmost entry 1 and adding the corresponding additive inverses of the others to the other columns. Clearly the rank of the above matrix is 1 and is of the form

$$\begin{pmatrix} I_1 & O \end{pmatrix}$$

This is another degenerate case, as it lacks zeros below the identity. Now suppose that our theorem holds when A has m-1 rows.

To demonstrate that our theorem holds when A is an  $m \times n$  matrix, notice that when n = 1, we can argue that our theorem holds as before, but using row operations instead of column operations. This is another degenerate case. For n > 0, note that there exists an entry  $A_{ij} \neq 0$  and by applying at most an elementary row and column operation, we can move  $A_{ij}$  to position 1,1. Additionally, we may transform  $A_{ij}$  to value 1, and as before, transform all of the entries in row and column 1 besides  $A_{ij}$  to 0. Thus we have a matrix of the form

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & x_{11} & \cdots & x_{1 \ n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & x_{m-1 \ 1} & \cdots & x_{m-1 \ n-1} \end{pmatrix}$$

The submatrix defined by  $x_{ij}$  is of dimension  $m-1 \times n-1$  and so must have rank rank(A)-1 as elementary operations preserve rank and deleting a row and column of a matrix reduces its rank by 1. Furthermore, by our induction hypothesis the above matrix may be converted via a finite number of elementary operations to a matrix of the form

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & I_{\operatorname{rank}(A)-1} & O_1 \\ \vdots & & & \\ 0 & O_2 & O_3 \end{pmatrix}$$

Therefore, for an  $m \times n$  matrix A, a finite number of elementary operations converts it into a matrix of the form

$$\begin{pmatrix} I_{\operatorname{rank}(A)} & O_1 \\ O_2 & O_3 \end{pmatrix}$$

.

**Theorem 3.1.6.** For any matrix A, rank $(A^T) = \text{rank}(A)$ .

*Proof.* By theorem 3.1.5, we may convert A to a matrix D = BAC where  $B = E_1 \cdots E_p$  and  $C = G_1 \cdots G_q$  where  $E_i$  and  $G_i$  are elementary row and column matrices respectively. It follows that  $D^T = C^T A^T B^T$ , whence

 $\operatorname{rank}(A^T) = \operatorname{rank}(D^T)$  by theorem (insert) because elementary matrices are invertible, and so is the transpose of the compositions thereof. Further,  $D^T$  must be of the same form as D since the only nonzero entries of D are along the diagonal from entry 1, 1 to entry  $\operatorname{rank}(A)$ ,  $\operatorname{rank}(A)$ . Hence, we have  $\operatorname{rank}(A)$  linearly independent columns in the matrix  $D^T$ .

Since the columns of  $D^T$  are the rows of D, we see that the number of linearly independent columns of A is equal to the number of linearly independent columns of  $A^T$ . In other words, the dimension of the space generated by the columns of A is equal to the dimension of the space generated by its rows.

**Theorem 3.1.7.** Let A be an invertible  $n \times n$  matrix. Then A is a product of elementary matrices.

*Proof.* By the dimension theorem, if A is invertible, then  $\operatorname{rank}(A) = n$ . So by theorem 3.1.5 A may converted into a matrix of the form  $I_n = E_1 \cdots E_p A G_1 \cdots G_q$ , whence  $A = E_1^{-1} \cdots E_p^{-1} I_n G_1^{-1} \cdots G_q^{-1}$ .

**Theorem 3.1.8.** Let  $T: V \to W$  and  $U: W \to Z$ . Then

1.  $\operatorname{rank}(TU) \leq \operatorname{rank}(U)$ 

2.  $\operatorname{rank}(TU) \leq \operatorname{rank}(T)$ 

*Proof.* We have

$$rank(TU) = dim(im(TU))$$
(3.10)

$$= \dim(\operatorname{im}(T(U(V)))) \tag{3.11}$$

$$\subseteq U(W) \tag{3.12}$$

$$= \operatorname{im}(U) \tag{3.13}$$

Therefore,  $\dim(\operatorname{im}(TU)) \leq \dim(\operatorname{im}(U))$ . Next, let  $\beta, \gamma, \phi$  be ordered bases for V, W, and Z, respectively; and let  $A = [T]_{\beta}^{\gamma}$  and  $B = [U]_{\gamma}^{\phi}$ . By theorem 3.1.6

$$\dim(\operatorname{im}(TU)) = \dim(\operatorname{im}(AB)) \tag{3.14}$$

$$= \dim(\operatorname{im}((AB)^T) \tag{3.15}$$

$$= \dim(\operatorname{im}(B^T A^T)) \tag{3.16}$$

$$\leq \dim(\operatorname{im}(A^T)) \tag{3.17}$$

$$= \dim(\operatorname{im}(A)) \tag{3.18}$$

$$= \dim(\operatorname{im}(T)) \tag{3.19}$$

#### 3.2 Form

We now apply the fruits of our investigation into vector spaces and linearity to solve systems of linear equations.

**Definition 3.2.1.** A linear system of equations is a collection of m equations of the form:

$$a_1x_1 + \dots + a_nx_n = b$$

where  $a_i, x_i, b \in \mathbb{F}$  for  $1 \leq i \leq n$ . Equivalently, we may say Ax = b for an  $m \times n$  matrix A, where  $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$  and  $b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$ . If  $b = \mathbf{0}$ , the linear system is said to be homogenous.

**Definition 3.2.2.** A solution to a linear system is a vector  $s \in \mathbb{F}^n$  such that As = b

**Theorem 3.2.1.** Let A be an  $m \times n$  matrix over  $\mathbb{F}$ . If m < n, then the homogenous system Ax = 0 has a nontrivial solution.

*Proof.* Notice that, the solution set to the system Ax = 0 is  $\ker(L_A)$ , so by the dimension theorem,  $\dim(\ker(A)) = n - \operatorname{rank}(L_A)$ . Additionally, we know that  $\operatorname{rank}(A)$  is nothing but the number of linearly independent vectors defined by its rows which certainly cannot exceed m. Therefore  $\operatorname{rank}(A) \leq m < n$ , in which case  $n - \operatorname{rank}(A) = \dim(\ker(A)) > 0$ , and so  $\ker(A) \neq \{0\}$ .

**Theorem 3.2.2.** For any solution s to the linear system Ax = b,

$$\{s+s_0: As_0=\mathbf{0}\}$$

is its solution set.

*Proof.* Suppose that As = b and As' = b. Then A(s' - s) = As' - As = b - b = 0. It follows that  $s + (s' - s) \in S$ . Conversely, if  $y \in S$ , then y = s + s', in which case Ay = A(s + s') = As + As' = b + 0 = b. That is, Ay = b.

**Theorem 3.2.3.** Let Ax = b for an  $n \times n$  matrix A. If A is invertible, then the system has a single solution  $A^{-1}b$ . If the system has a single solution, then A is invertible.

Proof. Suppose A is invertible. Then  $A(A^{-1}b) = AA^{-1}(b) = b$ . Furthermore, if As = b for some  $s \in \mathbb{F}^n$ , then  $A^{-1}(As) = A^{-1}b$  and so  $s = A^{-1}b$ . Next, suppose that the system has a unique solution s. Then by theorem 3.2.2, we know that the solution set  $S = \{s + s_0 : As_0 = 0\}$ . But this is only the case if  $\ker(A) = \{0\}$ , lest s not be unique. And so, by the dimension theorem, A is invertible.

**Theorem 3.2.4.** The linear system Ax = b has a nonempty solution set if and only if rank(A) = rank(A|b).

*Proof.* If the system has a solution, then  $b \in \text{im}(L_A)$ . Additionally,  $\text{im}(L_A) =$ 

$$L_A(F^n)$$
 and  $L_A(e_i) = Ae_i = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{ni} \end{pmatrix}$ . Therefore, since  $L_A(\mathbb{F}^n) = \operatorname{span}\{Ae_1, \dots Ae_n\}$ ,

 $\operatorname{im}(L_A) = \operatorname{span}\{A_1, \ldots A_n\}$ , where  $A_i$  is the  $i^{th}$  column of A. Certainly,  $b \in \operatorname{span}\{A_1, \ldots A_n\}$  if and only if  $\operatorname{span}\{A_1, \ldots A_n\} = \operatorname{span}\{A_1, \ldots A_n, b\}$ , which is to say  $\operatorname{dim}(\operatorname{im}(\operatorname{span}\{A_1, \ldots A_n\})) = \operatorname{dim}(\operatorname{im}(\operatorname{span}\{A_1, \ldots A_n, b\}))$ , or,  $\operatorname{rank}(A) = \operatorname{rank}(A|b)$ .

Corollary 3.2.1. Let Ax = b be a linear system of m equations in n variables. Then its solution set is either, empty, of one element, or of infinitely many elements (provided that  $\mathbb{F}$  is not a finite field).

*Proof.* By theorem 3.2.4 Ax = b has a nonempty solution set if and only if  $\operatorname{rank}(A) = \operatorname{rank}(A|b)$ . Therefore, it may be that our linear system has no solutions; however, supposing that this is not the case, by theorem 3.2.3 it has a unique solution if and only if A is invertible. Finally, assume that our linear system has neither no solution nor a single solution. This yields

$$Ax_1 = Ax_2 = b \tag{3.20}$$

for  $x_1, x_2 \in \mathbb{F}^n$ , which implies

$$Ax_1 - Ax_2 = \mathbf{0} \tag{3.21}$$

$$= A(x_1 - x_2) (3.22)$$

$$= nA(x_1 - x_2) (3.23)$$

$$= A(n(x_1 - x_2)) (3.24)$$

(3.25)

18

where  $n \in \mathbb{F}$ . Thus, by theorem 3.2.2

$$A(x_1 + n(x_1 - x_2)) = b.$$

#### 3.3 Solution

**Definition 3.3.1.** A matrix of the form

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

is said to be in reduced echelon form if

- 1.  $a_{ii} \neq 0$  implies that  $a_{ij} = 1$
- 2.  $a_{ij} \neq 1$  implies that  $a_{ij} = 0$
- 3.  $a_{ij} = 0$  for all  $1 \le j \le n$  implies that i < r for all nonzero rows  $(a_{r1} \cdots a_{rn})$

**Theorem 3.3.1.** Any matrix can be converted into reduced echelon form via a finite number of elementary row operations.

*Proof.* This is a restatement of theorem 3.1.5.

This form is of particular interest because reducing an augmented matrix is equivalent to solving a linear system of equations. We now have a procedure for solving arbitrary systems of linear equations. For example, we may now demonstrate that a set of vectors is linearly dependent by finding a nontrivial solution to a linear system of equations; similarly we may apply theorem 3.2.4 to demonstrate that a set of vectors is linearly dependent. In the following chapter, we will also see that computing the elements of an eigenspace is made possible by reducing a matrix. It follows that

Corollary 3.3.1. For any invertible  $n \times n$  matrix A.

$$A^{-1}(A|I_n) = E_1 \cdots E_p(A|I_n) = (I_n|A^{-1})$$

where  $E_1, \ldots, E_p$  are elementary matrices.

Notice that the above elementary matrices may be either row or column matrices; however, since we are left multiplying, the product will result in a row operation. Thus we now have a procedure for finding the inverse of any matrix: perform row operations to convert it into the identity matrix, while accounting for each change. Additionally,

**Corollary 3.3.2.** Let A be an  $m \times n$  matrix and C be an invertible  $n \times n$  matrix. Then the solutions sets to the linear systems

$$Ax = bandCAx = Cb$$

are equal.

This follow directly from the invertibility, and fits with our intuition: as we row reduce a linear system, its solutions do not change.

## The Determinant

#### 4.1 Permuations

define determinant show equal to cofactor expansion

#### 4.2 Cofactor Expansion

deduce enough properties to define the determinat more formally

#### 4.3 Multilinear and Alternating

demonstrate cofactor expansion is unquie multilinear alternating etc hence permutation=cofactor=unique such function

#### 4.4 Properties

deduce remaining important properties need invertible iff det nonzero

#### 4.5 Measure

# Eigenspaces

- 5.1 Characteristic Polynomial
- 5.2 Diagonalization and Similarity
- 5.3 Dimension

## Orthogonality

#### 6.1 Inner Products

Hello

#### 6.2 Orthogonal Projections

**Definition 6.2.1.** Let  $V = W_1 \oplus W_2$ . A projection of V on  $W_1$  along  $W_2$  is a linear function  $T: V \to V$  such that for any  $x \in V$  where  $x = x_1 + x_2$   $x_1 \in W_1$  and  $x_2 \in W_2$   $T(x) = x_1$ .

**Theorem 6.2.1.** A linear function  $T: V \to V$  is a projection of V on  $W_1 = \{x: T(x) = x\}$  along ker T if and only if  $T = T^2$ .

Proof. If T is a projection, then clearly  $T = T^2$  by definition. Conversely, for  $x \in V$  we know that x = Tx + (x - Tx). But by assumption  $T^2x = Tx$ , which means  $T(Tx - x) = T(x - Tx)\mathbf{0}$ . That is,  $x - Tx \in \ker(T)$ . Hence,  $V = \{x \in V : Tx = x\} \oplus \ker(T)$  as Tx = x and Tx = 0 implies  $x = 0(x \in \ker(T))$ . And so for  $x \in V$ , we have x = y + z for  $y \in \{x \in V : Tx = x\}$  and  $z \in \ker(T)$ , and so Tx = Ty + Tz = y.

#### 6.3 Orthogonal Projection

**Definition 6.3.1.** Let  $W \subseteq V$ . The orthogonal complement of W is defined as  $W^{\perp} = \{v \in V : \langle v, w \rangle = 0 \text{ for all } w \in W \}$ .

23

**Theorem 6.3.1.** The following statments are true

- 1.  $W^{\perp}$  is a subspace of V
- 2.  $\dim(W^{\perp}) = \dim(V) \dim(W)$

*Proof.* Firstly, note that  $\langle \mathbf{0}, w \rangle = \mathbf{0}$  for all  $w \in W$ , so  $\mathbf{0} \in W^{\perp}$ . Furthermore, if  $\langle w, c \rangle = 0$  for some  $w \in W$  then  $\langle aw, c \rangle = a \langle w, c \rangle = 0$  by linearity. Similarly, if  $\langle w, a \rangle = 0$  and  $\langle b, c \rangle = 0$  then  $\langle w, a \rangle + \langle b, c \rangle = \langle w + b, c \rangle = 0$ . Secondly,

**Theorem 6.3.2.** Let  $W \subseteq V$ . Then for any  $x \in V$  there exist unique vectors  $y \in W$  and  $z \in W^{\perp}$  such that x = y + z. Furthermore, for all  $w \in W$  s

$$||y - x|| \le ||w - x||$$

and we call y the orthogonal projection of z on w, denoted  $x_w$ . Similarly, z is denoted  $x_{\perp}$ .

Proof. trivial

**Theorem 6.3.3.** Let  $W \subseteq V$   $x \in V$  and  $\beta = \{v_1, \dots v_n\}$  be an orthonormal basis for W and A be the matrix whose  $j^{th}$  column is  $v_j$ . Then the orthogonal projection of x on W  $x_w = AA^*x$ .

*Proof.* We begin by demonstrating that  $W^{\perp} = \ker A^*$ . We have

$$A^*x = \begin{pmatrix} v_1^*x \\ \vdots \\ v_n^*x \end{pmatrix} = \begin{pmatrix} \langle v_1, x \rangle \\ \vdots \\ \langle v_n, x \rangle \end{pmatrix}.$$

Certainly  $Ax = \mathbf{0}$  if and only if  $\langle v_i, x \rangle = 0$  for all  $1 \leq i \leq n$ . But that is to say  $x \in W^{\perp}$ , and so

$$\ker(A^*) = W^{\perp}.$$

Note that  $Ax = \operatorname{span} \beta$  by definition. Therefore, for some  $c \in \mathbb{F}^n$   $Ac = x_w$ , which means that  $x - x_W = x - Ac \in W^{\perp}$ . It follows that  $A^*(x - Ac) = 0$  and so

$$A^*Ac = A^*x.$$

Thus, if we see that  $x_w = Ac$ . Furthermore, since  $\beta$  is orthonormal, A must be unitary, in which case

$$Ac = AA^*x = x_W.$$

**Corollary 6.3.1.**  $AA^*$  is a projection and  $\ker(AA^*) = W^{\perp}$ . Additionally,  $AA^*$  is the unique such linear function.

Proof. Surely  $AA^*$  is linear, and since we know that  $x = x_W + x_{W^{\perp}}$  for all  $x \in V$  it follows that  $(AA^*)^2x = AA^*x_W = x_w = AA^*x$ . Thus the orthogonal projection is, in fact, a projection on  $W^{\perp} = \{x \in V : AA^*x = x\}$  along  $\ker(AA^*)$ , by theorem 6.2.1  $(V = W \oplus W^{\perp})$ . Furthermore, if  $x = x_W + x_{W^{\perp}}$  with  $x_W = 0$ ,  $AA^*x = x_W = 0$ . The converse follows in the same way. Thus,  $\ker(AA^*) = W^{\perp}$  Similarly, we have  $\operatorname{im}(AA^*) = W$ . Additionally, as a projection is defined uniquely in terms of its range, it is clear that any other projection T on  $W = \{x \in V : T(x) = x\}$  must be the same as  $AA^*$ .

#### 6.4 The Adjoint

#### 6.5 Normal and Unitary Operators

self adjoint iff orthogonal projection all unitary operators are rotations

#### 6.6 Definiteness

# Matrix Decomposition

- 7.1 Schur's Theorem
- 7.2 Spectral Theorem
- 7.3 Singular Value Decomposition and Pseudoinverse

# Appendix A<br/>Set Theory

Axiom of choice

# Appendix B The Complex Field

fundamental theorem of algebra

# Appendix C Block Matrices

need to prove result for diagonalization proof

# Appendix D

# Multilinearity and Sesquilinearity

pos definite matrices generate inner products uniquely

# References

[1] Thomas Jech. Set Theory: The Third Millennium Edition, revised and expanded. Springer Berlin, Heidelberg, 2003.