

RF System Synchronization – Baseband

Daniel Jepson – SDR Group Manager, National Instruments

RF Systems: Baseband

Application for Baseband Synchronization

Ettus

Ettus

Building a Synchronized System

The Basics

Start with a single device and maybe even a single channel

Host Computer

RF Signal

"Viewing" Synchronization: the Clocks

"Viewing" Synchronization: the Data

Increasing Device Count

Increasing Device Count

Increasing Device Count

Shared Reference Clocks

Shared Reference Clocks

Shared Reference Clocks

Unrelated Clock Rates

Unrelated Clock Rates

Number of Quantization Steps = R divider value

PPS for Time Coherence

- Pulse per Second: identifies a single Reference Clock edge on all devices
- Allows multiple devices using the same Reference Clock to align themselves to a common "timebase".
- Used for PLL resets, timekeeper alignment, and acquisition start/stop.

Adding Time

Adding Time

Closing Timing

Closing Timing

Timing with the PPS

- Timing between PPS and the Reference Clock must be closed at the FPGA or ASIC used to control the device
- Published numbers may exist on the setup and hold time required for the PPS with respect to the Reference Clock at the ports of the SDR equipment
- Practical Implementation Pitfalls:
 - PPS should be driven from the same clock domain that receives it
 - Match the cable lengths of the clock and PPS to each SDR device as closely as possible
 - Use the same topology (star or daisy-chained) for all devices

Cleaning Up

Further Considerations

- Devices should be at a constant (or identical) temperature
 - Buffers and board traces have different propagation delays
 - PLLs (for the converters and LOs) tend to drift
- Close timing between PPS & Reference Clock into the device, but also close timing at your PLL for the reset pulse
- Remember to account for variations in your Reference Clock distribution and generation device, which directly contributes to your overall uncertainty

Geographically Distributed Systems

Very, Very Long Cables

- Practically only work up to a few meters long
- Changes in temperature and bend radius of the cable affect the time delay through it
- All devices must have length-matched cables

GPS

- Once locked to a satellite, the reference clocks will align world-wide
- Alignment is typically poor compared to cabled synchronization; expect 10s of nanoseconds
- Local clocks inherit the accuracy of the satellite's oscillator

White Rabbit

- Ethernet-based synchronization protocol using optical cables and specialized transceivers up to 10 km
- Extension of the IEEE 1588 PTP for time references
- Synchronous Ethernet (SyncE) is used for distributing clock references
- Typical performance is better than 1 ns!

White Rabbit System Setup

200ms alignment!

Advanced Alignment

For PLLs without an R-reset

- R-divider resets allow alignment of unrelated Reference and Converter Clock rates
- Without the reset, the Converter Clock offset must be measured and compensated for externally

Measuring Phase Offset

- Time-to-Digital Converter
 - Create pulses in the Reference Clock and Converter clock domains
 - Measure the time between the pulses using analog or digital circuitry

Compensation Techniques

- Digitally with DSP in the signal processing chain
 - FIR filters with programmable taps based on the measured delay
- Digital clock shifting within the PLL
 - Typically VCO or ½ VCO steps
- Injecting a phase compensation offset to the VCO input
 - Allows fine resolution shifting, often at the cost of requiring calibration

Summary

Share a trigger (PPS) signal based on the Reference Clock

Recognize environment, equipment, and topology variables

RF System Synchronization – Baseband

Thank you!

