NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS MA2214 COMBINATORIAL ANALYSIS

TUTORIAL 2

SEMESTER II, AY 2010/2011

- 1. Find the number of ways to choose a pair of distinct numbers $\{a,b\}$ from the set [50] such that (i) |a-b| = 5 and (ii) $|a-b| \le 5$.
- 2. In a class of 15 students, with 10 of them male, 9 students are chosen to form a committee. If there are be exactly 3 female committee members, how many different committees can be formed? If there are 9 different posts in the committee, how many different committees can be formed?
- 3. Use mathematical induction to prove the Binomial theorem.
- 4. A student works in a bookstore where he is required to work at least four and at most five days a week, at least one of which has to be a weekend day (Saturday or Sunday). How many different weekly work schedule can this student have?
- 5. The Singapore national lottery called TOTO (Tax On The Obtuse) works in the following way. To make a bet, you must pick 6 out of a possible 45 different numbers. A total of 6 numbers plus an additional number will be drawn. If your numbers match 4 or more winning numbers, you win a prize. The odds of winning according to the Singapore pools website is the following. Explain the odds.

Prize	Winning Numbers Matched	Odds
Group 1	6 numbers	1 in 8,145,060
Group 2	5 numbers plus the additional number	1 in 1,357,510
Group 3	5 numbers	1 in 35,724
Group 4	4 numbers plus the additional number	1 in 14,290
Group 5	4 numbers	1 in 772
Group 6	3 numbers plus the additional number	1 in 579
	Any prize	1 in 321

6. Give an algebraic and, if possible, a combinatorial proof of each of the following identities.

(i)
$$r \binom{n}{r} = n \binom{n-1}{r-1}$$
.
(ii) $\binom{n}{m} \binom{m}{r} = \binom{n}{r} \binom{n-r}{m-r}$.
(iii) $\sum_{k=r}^{n} \binom{n}{k} \binom{k}{r} = \binom{n}{r} 2^{n-r}$.
(iv) $\sum_{r=1}^{n} r \binom{n}{r} = n \cdot 2^{n-1}$.
(v) $\sum_{k=0}^{n} \binom{n}{k} \binom{n-k}{p-k} \binom{n-p}{q-k} = \binom{n}{p} \binom{n}{q}$.

Answers

1. 45; 235.

4. 50.

$$2. \quad \binom{10}{6} \binom{5}{3}; \ \binom{10}{6} \binom{5}{3} 9!$$