IV Curve testing process

Materials:

- PV Cell
- Pyranometer
- Fluke DVM
- Thermocouple
- Metal Surface for heat sink/source?
- Rheostat or potentiometer min power rating of P=Isc x Voc, mid range resistance R=Voc/Isc

Process:

- 1. Illuminate the cell at a measured value of sunlight (found with pyranometer) and adjust the cell temperature to the expected operating temperature.
- 2. Connect the rheostat to the cell and record the cell output voltage and current while changing variable resistance from a short circuit (Isc, V=0) to the largest value available
- 3. Open the circuit and measure Voc at I = 0.

Curve Tracer Arduino Code Calculations

int k: this is the PWM value, it will sweep from 0, to 255 to supply low pass filter with 0-5v PWM float pre_volt: this is the raw 10-bit integer to hold the value of voltage received in analog pin 0 float pre_current: this is the raw 10-bit integer to hold the value of current received in analog pin 2

const float bit_to_volt_conversion : the conversion factor to convert raw voltage input from 10bit to real voltage

 $\frac{5V}{1023} = 0.0048875855$

const float voltage_gain : the gain of the op amp leading to analog pin 0. Subject to change based on PV max voltage.

2

const float voltage_gate : the gain of the voltage divider. Leads into voltage_gain op amp. Subject to change based on PV max voltage.

1

const float current_gain: the gain of the op amp leading to analog pin 2. Subject to change based on PV max voltage.

 ~ 52

const float current_resistor : the $2.26\,\Omega$ resistor used for heat dissipation, used to calculate total current gain.

const float amp_to_mA_conversion : multiplier to convert amps to milliamps. 1000.0

float final_volt: final converted value of raw voltage input to actual real-world voltage pre_volt * bit_to_volt_conversion * (1/voltage_gain) * (1/voltage_gate) raw value—10 bit conversion—inverse of gain—inverse of voltage gate

float final_current : final converted value of raw current input to actual real-world voltage

pre_current * bit_to_volt_conversion * (1/current_gain) * (1/current_resistor) * (amp_to_mA_conversion)

raw value→10 bit conversion→inverse of gain→inverse of 2Ω resistor→multiply by 1000 A to mA