1. The empirical distribution

Definition 1. If $y_1, \ldots, y_n \in \mathbb{R}$, then the cumulative distribution function \widehat{F}_y defined by

$$\widehat{F}_y(x) := \frac{1}{n} \sum_{j=1}^n I(Y_j \le x) = \frac{\#\{j : y_j \le x\}}{n}.$$

is called the empirical distribution function associated to y_1, \ldots, y_n .

If $Y_1, \ldots, Y_n \stackrel{\text{IID}}{\sim} F$, we may unambiguously set

$$\widehat{F}_n(x) := \widehat{F}_Y(x)$$

since this random variable depends only on F, n, and x.

Theorem 2. Let $x \in \mathbb{R}$ and let $Y_1, \ldots, Y_n \stackrel{\text{IID}}{\sim} F$. Then:

(1)
$$\operatorname{E} \widehat{F}_Y(x) = F(x)$$

(1)
$$\operatorname{E} \widehat{F}_{Y}(x) = F(x)$$

(2) $\operatorname{Var} \widehat{F}_{Y}(x) = \frac{1}{n} F(x) (1 - F(x))$

Proof. (1) follows from the identities

$$\operatorname{E} I(Y_j \le x) = \operatorname{Prob}(Y_j \le x) = F(x).$$

To prove (2), we compute:

$$\operatorname{Var} \widehat{F}_{Y}(x) = \frac{1}{n^{2}} \sum_{j=1}^{n} \operatorname{Var} I(Y_{j} \leq x)$$

$$= \frac{1}{n^{2}} \sum_{j=1}^{n} \left(\operatorname{E} I(Y_{j} \leq x)^{2} - \left(\operatorname{E} I(Y_{j} \leq x))^{2} \right) \right)$$

$$= \frac{1}{n^{2}} \sum_{j=1}^{n} \left(\operatorname{E} I(Y_{j} \leq x) - \left(\operatorname{E} I(Y_{j} \leq x))^{2} \right) \right) \quad \text{(as } I^{2} = I \text{)}$$

$$= \frac{1}{n^{2}} n(F(x) - F(x)^{2})$$

$$= \frac{1}{n} F(x) (1 - F(x))$$

2. Substitution estimators

Let \mathscr{P} be the set of all distributions on \mathbb{R} . For a statistical functional $\theta: \mathscr{P} \to \mathbb{R}$, define $\widehat{\theta}: \mathscr{X} \to \mathbb{R}$ by the rule

$$\widehat{\theta}(y_1,\ldots,y_n) = \theta(\widehat{F}_y).$$

Definition 3. If $Y_1, \ldots, Y_n \stackrel{\text{IID}}{\sim} F$, then $\widehat{\theta}(Y_1, \ldots, Y_n)$ is called the substitution estimator of θ associated to Y_1, \ldots, Y_n .

Formally, we get $\widehat{\theta}(Y_1, \dots, Y_n)$ by substituting \widehat{F}_n for F in $\theta(F)$:

$$\widehat{\theta}(Y_1,\ldots,Y_n)=\theta(\widehat{F}_n).$$

Making sense of the expression $\theta(\widehat{F}_n)$ leads to Definition 3.

Let

$$\mu: \mathscr{P} \to \mathbb{R}, \quad \mu(F) = \int_{-\infty}^{\infty} x \, dF(x)$$

be the mean functional. We compute the *empirical mean*, $\widehat{\mu}(Y_1, \dots, Y_n)$, associated to $Y_1, \dots, Y_n \overset{\text{IID}}{\sim} F$:

$$\widehat{\mu}(Y_1, \dots, Y_n) = \mu(\widehat{F}_n)$$

$$= \int_{-\infty}^{\infty} x \, d\widehat{F}_n(x)$$

$$= \frac{1}{n} \int_{-\infty}^{\infty} x \, dI(Y_j \le x)$$

$$= \frac{1}{n} \sum_{j=1}^{n} Y_j$$

$$= \overline{Y}$$

Thus, the empirical mean is just the sample mean.

Let

$$\sigma^2: \mathscr{P} \to \mathbb{R}, \quad \mu(F) = \int_{-\infty}^{\infty} (x - \mu(F))^2 dF(x)$$

be the variance functional. We compute the *empirical variance*, $\widehat{\sigma}^2(Y_1, \dots, Y_n)$, associated to $Y_1, \dots, Y_n \overset{\text{IID}}{\sim} F$:

$$\widehat{\sigma^2}(Y_1, \dots, Y_n) = \sigma^2(\widehat{F}_n)$$

$$= \int_{-\infty}^{\infty} (x - \mu(\widehat{F}_n))^2 d\widehat{F}_n(x)$$

$$= \frac{1}{n} \int_{-\infty}^{\infty} (x - \overline{Y})^2 dI(Y_j \le x)$$

$$= \frac{1}{n} \sum_{j=1}^{n} (Y_j - \overline{Y})^2$$

The empirical variance $\widehat{\sigma^2}$ and the sample variance, S^2 , are different:

$$\widehat{\sigma^2} = \frac{n-1}{n} S^2$$
, where $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \overline{Y})^2$.

Consider $T_b := bS^2$ as an estimate of σ^2 .

$$MSE(T_b, \sigma^2) = Var T_b + Bias(T_b, \sigma)^2$$

Bias-Variance Decomposition 1

FIGURE 1. Plot of b vs $MSE(T_b, \sigma^2)$, $Bias(T_b, \sigma^2)^2$, and $Var T_b$ for n = 5

$$\operatorname{Var} T_b = \operatorname{Var} bS^2 = b^2 \operatorname{Var} S^2 = b^2 \frac{2\sigma^4}{n-1} = \frac{2b^2}{n-1}\sigma^4$$

Bias
$$(T_b, \sigma^2) = E[T_b] - \sigma^2 = E[bS^2] - \sigma^2 = bE[S^2] - \sigma^2 = b\sigma^2 - \sigma^2 = (b-1)\sigma^2$$

Therefore,

Bias
$$(T_b, \sigma^2)^2 = (b-1)^2 \sigma^4$$

$$MSE(T_b, \sigma^4) = \frac{2b^2}{n-1}\sigma^4 + (b-1)^2\sigma^4 = \left(\frac{2b^2}{n-1} + (b-1)^2\right)\sigma^4$$
$$= \frac{1}{n-1}\left((n+1)b^2 - 2(n-1)b + n - 1\right)\sigma^4$$

As a function of b, $MSE(T_b, \sigma^2)$ is minimized when $(n+1)b^2 - 2(n-1)b + n - 1$, i.e., at

$$b = \frac{n-1}{n+1}.$$

3. Density estimation

3.1. A point estimate. Let \mathscr{P} be the set of all probability distributions that have smooth densities. Since a smooth density characterizes a distribution uniquely (why?), we can identify \mathscr{P} with the set of all smooth probability density functions on \mathbb{R} :

$$\mathscr{P} = \left\{ f : \mathbb{R} \to [0, \infty) : f \text{ is smooth and } \int_{-\infty}^{\infty} f(x) dx = 1 \right\}.$$

Define a statistical functional θ on \mathscr{P} by rule

$$\theta(f) = f(0).$$

Let $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} f$ and let h > 0. Then

$$p_h := \operatorname{Prob}(|X_j| \le h/2)$$

$$= \int_{-h/2}^{h/2} f(x) \, dx$$

$$= \int_{-h/2}^{h/2} \left(f(0) + f'(0)x + \frac{f''(0)}{2} x^2 + \frac{f'''(0)}{6} h^3 + O(h^4) \right) dx$$

$$= f(0)h + \frac{f''(0)}{24} h^3 + O(h^5).$$

Thus, for small h,

$$\operatorname{E}\left[\frac{I(|X_j| \le h/2)}{h}\right] \approx \theta(f).$$

In particular, for small h,

This motivates considering

$$\widehat{\theta}(X_1, \dots, X_n) := \frac{1}{nh} \sum_{j=1}^n I(|X_j| \le h/2)$$

as an estimator of $\theta(f)$. Then

$$E \theta(X_1, ..., X_n) = f(0) + \frac{f''(0)}{24}h^2 + O(h^3)$$

and

Bias
$$(\widehat{\theta}, \theta)^2 = \frac{f''(0)^2}{576} h^4 + O(h^6).$$

Bias-Variance Decomposition 2

FIGURE 2. Plot of b vs $MSE(\widehat{\theta}, \theta)$, $Bias(\widehat{\theta}, \theta)^2$, and $Var \widehat{\theta}$ for n = 5

As for the variance,

$$\operatorname{Var} \widehat{\theta}(X_1, \dots, X_n) = \frac{1}{n^2 h^2} \sum_{j=1}^n \operatorname{Var} I(|X_j| \le h/2)$$

$$= \frac{1}{n^2 h^2} n p_h (1 - p_h)$$

$$= \frac{1}{n h^2} \left(f(0)h - f(0)^2 h^2 + \frac{f''(0)}{24} h^3 - \frac{f(0)f''(0)}{12} h^4 + \frac{f''(0)^2}{576} h^6 \right)$$

$$= \frac{1}{n} \left(\frac{f(0)}{h} - f(0)^2 + \frac{f''(0)}{24} h - \frac{f(0)f''(0)}{12} h^2 + O(h^4) \right)$$

3.2. The histogram estimator.

4. The method of maximum likelihood

$$E[Y|X] = aX + b$$

Suppose that

$$Y = f(X) + \varepsilon$$