Protocoles expérimentaux en Travaux Pratiques

Identification du modèle de comportement d'un système ou d'un composant

Modèle de comportement Comportement linéaire

Modèle de comportement Identification du comportement d'un système d'ordre 1

Modèle de comportement Identification du comportement d'un système d'ordre 2

Moment d'inertie Inertie équivalente

Détermination d'un moment d'inertie Inertie d'une pièce – Oscillations libres

- Idée : on fait penduler la pièce autour de son axe et on relie la période d'oscillation à l'inertie.
- Modèle issu du TMD (ou du TEC)
 - On isole la pièce
 - BAME:
 - Pesanteur $\mathcal{M}(0, \vec{P} \to 0) = L\vec{u} \wedge -Mg\vec{y} = -LMg\sin\theta \vec{z_0}$
 - Frottements dans la liaison pivot : $C_f(\omega) = C_S + k_1\omega + k_2\omega^2 + \cdots$
 - Action de la liaison pivot
 - TMD en O en projection sur : $-LMg \sin \theta + C_f(\omega) = J \frac{d\omega(t)}{dt}$.
 - On fait l'hypothèse que le frottement est nul
 - On linéarise l'équation différentielle (Pour $\theta \in [-110^\circ, -70^\circ]$) : $J\ddot{\theta}(t) + LMg\theta = 0$
 - La solution de l'équation différentielles est donnée par $\theta(t) = A \cos\left(\sqrt{\frac{LMg}{J}}t + \varphi\right)$
 - De plus $\omega = \sqrt{\frac{LMg}{J}} = \frac{2\pi}{T}$. On peut donc en déduire T.

On mesure la période de pendulation

- On mesure la période avec un chronomètre
- Codeur incrémental ou potentiomètre sur la pivot
- Vidéo + tracking d'un point
- On mesure M avec une balance
- Reste à estimer L ...

Détermination d'un moment d'inertie Inertie d'une pièce – Mise en mouvement grâce à un moteur

• Idée : faire tourner la pièce grâce à un moteur dans un plan où la pesanteur ne travaille pas

- Modélisation
 - $C_m(t) + C_f = J \frac{\mathrm{d}\omega(t)}{\mathrm{d}t}$ à accélération constante, $C_m = J\alpha$ avec α accélération constante.
- Protocole expérimental :
 - On fait tourner le moteur avec une accélération constante; donc une vitesse linéaire $\dot{\theta}(t) = \alpha t$. Pour cela on alimente la moteur avec une tension linéaire (rampe)
 - On mesure C_m grâce au courant induit dans le moteur $C_m \simeq K_c \times I$.

Détermination de l'inertie équivalente d'un ensemble de pièces

9

Détermination du frottement

Détermination du frottement sec

• Idées :

- Le frottement sec s'oppose à l'établissement d'un mouvement
- Il empêche un système de se mettre en mouvement à basse vitesse
- Il est souvent dû à des frottements dans plusieurs liaisons
 - Liaisons pivot, hélicoïdale, roue et vis sans fin etc...
- On peut ramener l'effet du frottement à un couple résistant au niveau du moteur ou à un effort résistant au niveau d'un vérin

Modèles

Détermination du frottement sec Protocoles

- En boucle ouverte, déterminer la tension du moteur à partir de laquelle le système se met en mouvement.
 - Mesurer le courant et en déduire le couple
- Sur un déplacement où la pesanteur ne travaille pas (ControlX, MaxPID à plat, BrasBeta, Mouvement horizontal du Moby Crea, BGR a plat)
 - Faire des essais à vitesse différentes
 - Mesurer le couple grâce au courant
 - Le couple à fournir par l'actionneur doit être nul ou constant.
 - Si couple nul, pas de frottement sec (ou négligeable)
 - Si couple constant, frottement sec
 - Si couple variable, frottement sec + autre frottement
- Sur un déplacement où la pesanteur travaille (Comax, Robot Delta 2D)
 - Se positionner à une vitesse constante, plutôt en phase de montée
 - Evaluer le couple à fournir pour compenser le poids
 - En déduire le couple de frottement

Détermination du frottement visqueux

• Idées:

- Frottement visqueux sur un mouvement de translation :
 - $F_v = \alpha v$; donc $[\alpha] = \left[\frac{N}{m/s}\right]$
- Frottement visqueux sur un mouvement de rotation:
 - $C_v = \alpha \omega$; donc $[\alpha] = \left[\frac{Nm}{rad/s}\right]$
- Le PFD ou le TEC peut souvent s'écrire sous la forme :
 - $C_m C_f = J \frac{\mathrm{d}\omega(t)}{\mathrm{d}t}$ ou $F_m F_f = m \frac{\mathrm{d}v(t)}{\mathrm{d}t}$.
 - A vitesse constante, on a donc : $C_m = C_f$ ou $F_m = F_f$.

Protocole expérimental

- On réalise plusieurs essais en commandant le système à vitesse constante
- Pour chaque essai on attend le régime permanent et on mesure le courant moteur et on en déduit le couple moteur (si le moteur est à CC, $C_m = Ki$).

Analyse des essais :

- On trace le couple moteur en fonction de la vitesse de rotation du moteur (ou l'effort en fonction de la vitesse)
- Si la courbe est une constante : le couple de frottement est sec uniquement
- Si la courbe est une droite qui passe par l'origine, le couple de frottement est visqueux uniquement, la pente est le coefficient de frottement visqueux.
- Si la courbe est une droite affine, l'ordonnée à l'origine est le couple frottement sec, la pente est le coefficient de frottement visqueux.
- Si la courbe a une autre tendance, il faut choisir un autre modèle...

Caractéristiques d'un moteur à courant continu

Détermination de la résistance

- Modèle utilisé :
 - Si $\omega(t) = 0$ alors E(t) = 0.
 - En régime permanent, $\frac{\mathrm{d}i(t)}{\mathrm{d}t} = 0$
 - En régime permanent, on a alors U(t) = Ri(t).
- On peut alors parler d'essai « rotor bloqué ».
- Protocole expérimental :
 - Moteur branché sur alimentation stabilisée
 - Ampèremètre en série avec le moteur
 - Voltmètre en parallèle avec le moteur
 - Le rotor est bloqué mécaniquement (pince par exemple)
- Essai:
 - On augmente progressivement la tension avec l'alimentation stabilisée.
 - On mesure *U* et *I*
 - On trace la courbe.

- $U(t) = Ri(t) + \frac{Ldi(t)}{dt} + E(t)$
- $E(t) = K\omega(t)$
- $C_m(t) = Ki(t)$
- $C_m(t) + C_f(t) = J \frac{\mathrm{d}\omega(t)}{\mathrm{d}t}$

- U(t) = Ri(t)
- $E(t) = K\omega(t) = 0$
- $C_m(t) = Ki(t)$
- $C_m(t) + C_f(t) = 0$

- Remarque :
 - Pourquoi ne pas mesurer R à l'ohm-mètre ?
 - A cause de la position des balais...
 - Mais pourquoi on n'a pas le même problème avec le rotor bloqué?
 - Question à résoudre....

Détermination de la constante électrique ou de la constante

de couple

- Modèle utilisé :
 - A vitesse constante, en régime permanent $\omega(t)=cste$ et i(t)=cte
 - R est connue grâce à la diapo précédente
 - On a donc $U_k Ri_k = K\omega_k$
- Protocole expérimental :
 - Moteur branché sur alimentation stabilisée
 - Voltmètre sur la source
 - Ampèremètre dans le circuit
 - Tachymètre pour mesurer ω_t
- Essai:
 - Pour des tensions différentes, on mesure, en RP : U_k , i_k , ω_k
 - On trace alors $U_k Ri_k$ en fonction de ω_k
 - On espère alors avoir une droite passant par l'origine et de pente ${\cal K}$

- $U(t) = Ri(t) + \frac{Ldi(t)}{dt} + E(t)$
- $E(t) = K\omega(t)$
- $C_m(t) = Ki(t)$
- $C_m(t) + C_f(t) = J \frac{\mathrm{d}\omega(t)}{\mathrm{d}t}$
- U(t) = Ri(t) + E(t)
- $E(t) = K\omega(t)$
- $C_m(t) = Ki(t)$
- $C_m(t) + C_f(t) = 0$

Détermination de l'inductance

• Modèle utilisé :

• A rotor bloqué, on a
$$U(t)=Ri(t)+\frac{L\mathrm{d}i(t)}{\mathrm{d}t}$$
 soit $U(p)=RI(p)+LpI(p)$ et $\frac{I(p)}{U(p)}=\frac{1}{R+Lp}$. On a donc, pour un échelon de tension $i(t)=\frac{U_0}{R}(1-e^{-\frac{t}{\tau}})$ avec $\tau=\frac{1}{R}$

- $U(t) = Ri(t) + \frac{Ldi(t)}{dt} + E(t)$
- $E(t) = K\omega(t)$
- $C_m(t) = Ki(t)$
- $C_m(t) + C_f(t) = J \frac{\mathrm{d}\omega(t)}{\mathrm{d}t}$

Protocole expérimental :

- Moteur branché sur Générateur Basse fréquence.
- Oscilloscope avec pince ampèremétrique pour la mesure du courant.
- Oscilloscope avec mesure de la tension source

Essai :

- Sollicitation du moteur avec des créneaux.
- Mesure de la constante de temps
- Calcul de L.
- (Plusieurs essais éventuellement, pour faire une moyenne).

Détermination de l'inertie

• Exprimons la fonction de transfert du moteur dans le domaine de Laplace :

•
$$\frac{\Omega(p)}{U(p)} = \frac{\frac{K}{K^2 + Rf}}{1 + \frac{JR + Lf}{K^2 + Rf}} p + \frac{JL}{K^2 + Rf}$$

- #455368
- #118977
- #1CAE97
- #CEE3E0
- #F6AB32

#CB4E3D

#55687C

Lorem ipsum do consectetur adipiscin

