TSA by JG

1100

Intro

Stationarity

Trends & Seasonal Components

No Seasonal Components

Trend and Seasonality

Autocovariance

Strict stationarity

spectral density

Time Series Model TSM

Estimation

Estimation of μ

Estimation of $\gamma(\cdot)$ and $\rho(\cdot)$

Prediction

inference

Prediction of Random Variables PRV

Further Prediction

Further PRV

Predition for stationary time series PSTS

wold decomposition **Partial Correlation** PA Partial Autocorrelation **ARMA Processes** ACVF and how to cal Prediction of ARMA **Spectral Analysis Spectral Distribution** Spectral Representation of a time series Predition in the frequency domain PiFD interpolation and detection The It^o intergral Estimation of the spectral density periodogram Smoothing the Periodogram SP Linear Filters **ARMA Processes** Estimation for ARMA models Yule-Walker estimation Burg's algorithm

innovation algorithm

hannan-Rissanen algorithm

Maximum Likelihood and Lead Square Estimation

Order Selection

unit roots

Multivariate Time Series MTS

Financial Time Series

Kalman Filtering

State-Space Representation

Prediction of Multivariate random variables

Appendix

A.1 Stochastic Processes

Definition (Stochastic Process) A stochastic process is a family of random variables $\{X_t, t \in T\}$ defined on a probability space (Ω, \mathcal{F}, P) as follows:

- Ω is a set
- \mathcal{F} is a σ -field i.e.
 - \circ (a) $\emptyset \in \mathcal{F}$
 - ullet (b) $A_i \in \mathcal{F} \quad orall \, i \in I$ then $igcup_i A_i \in \mathcal{F}$
 - ullet (c) $A\in\mathcal{F}$ then $A^c\in\mathcal{F}$
- P is a function $\mathcal{F} \rightarrow [0,1]$ satisfying:
 - $P(\Omega) = 1$
 - ullet $A_i\in \mathcal{F}$ $egin{array}{ccc} orall i\in I ext{ and } A_i\cap A_j=\emptyset & orall i\in I ext{ then } P(igcup_i A_i)=\sum_i P(A_i) \end{array}$

proposition $P(A) + P(A^c) = 1$

There are definitions on Cholton's Style:

(X is $random\ variable$) iff ((X is a function $\Omega \to \mathbb{R}$) and ($\{\omega \in \Omega: X(\omega) \le x\} \in \mathcal{F}$ for all $x \in \mathbb{R}$))

and we denoted $P(X \leq x) := P(X^{-1}([-\infty,x]))$ and $P(X < x) := P(X^{-1}([-\infty,x]))$

 $(\{X_t\,,\,t\in T\}$ is stochastic process) iff $(X_t$ is random variable for all $t\,\in\, T)$

and T is called index or parameter set

 $(\{X_t\,,\,t\in T\}$ is a time series) iff $(T\subset\mathbb{Z})$

Definition (sample-path) The functions $\{X_t(\omega), \omega \in \Omega\}$ on T are called realizations or *sample-path* of the process $\{X_t, t \in T\}$

 $F_X, x o P(X \le x)$ is called the distribution function of a random variable X $F_{(\cdot)}: (\Omega o \mathbb{R}) o (\mathbb{R} o [0,1])$ is called the distribution

The case in higher demension is similar.

 $X=(X_1,\,\cdots,X_n)^ op$ is a n-dim random variable, X_i is a random variable for $1\,\leq\,i\,\leq\,n$

Definition (The distribution of a stochastic process) let

$$\mathcal{T} := \{t \in T^n \,:\, t_i < t_j\}$$

The (finitie-dimensional) distribution function are the family $\{F_t(\cdot), t \in \mathcal{T}\}$,

$$F_t(x) = P(X_{t_1} \leq x_1, \cdots, X_{t_n} \leq x_n) \quad t \in T^n, x \in \mathbb{R}$$

The distribution of $\{X_t, t \in T\}$ is the family $\{F_t(\cdot), t \in T\}$

obviously ${\mathcal T}$ is a simplex

In a way, we can say:" $t \in T$ is a series of time". So the F_t is a distribution of a series of time of random variable i.e. the distribution of stochastic process. In conviencity, $F_t \sim \mathcal{T} \sim X_t \sim n$, where the symbol \sim readed as 'related to'.

Theorem (Kolmogorov's existence theorem) The family $F_t(\cdot)$, $t \in \mathcal{T}$ are the distribution functions of some stochastic process iff for any $n, t = (t_1, \dots, t_n) \in \mathcal{T}$, $x \in \mathbb{R}^n$ and $1 \le k \le n$

$$\lim_{x_k o\infty}F_t(x)=F_{t(k)}(x(k))$$

where $t(k)=(t_1,\cdots,t_{k-1},t_{k+1},\cdots,t_n)$ and $x(k)=(x_1,\cdots,x_{k-1},x_{k+1},\cdots,x_n)$ (It is to say, t(k) is t deleted the k-th variable and x(k) is x deleted the k-th variable)

$$\phi_t(u) = \int_{\mathbb{R}^n} e^{iu'x} F_t(dx_1, \cdots, dx_n)$$

be the characteristic function of F. Then KET can be restated as follow:

$$\lim_{u_i o 0}\phi_t(u)=\phi_{t(i)}(u(i))$$

where u(i) and t(i)

(a n-dim r.v. Y is normally distributed) iff ((Y=AX+b) where $A\in M_n(\mathbb{R})$, $X\sim N_n(0,1)$ and $b\in \mathbb{R}^n$) and apparently

$$\mu_Y := E(Y) := (E(Y_1), \cdots, E(Y_n))^{ op} = E(AX + b) = E(AX) + E(b) = A \cdot E(X) + b = A \cdot 0 + b = b$$

 $\$ \Sigma_{YY} := \text{Cov}(Y,Y) := E([Y - E(Y)][Y - E(Y)]^\prime) = E([AX + b - b]^\prime) = E(AXX^\prime A^\prime) = A \cdot E(XX^\prime) \cdot A^\prime = AA^\prime\$

and

$$\phi_Y(u) = E \exp(iu'Y) = E \exp(iu'(AX+b)) = E(\exp(iu'b) * \exp(iu'AX)) = \exp(iu'b) \prod_i E \exp(i(u'A)_k X_k)$$

where $(u'A)_k$ is the k-th component of the vector u'A.

and

$$Eexp(iaX_i = \int_{-\infty}^{\infty} rac{1}{\sqrt{2\pi}} \exp(iax) \exp(-x^2/2) dx = exp(-a^/2)$$

then

$$\phi_Y(u) = \exp(iu'b - rac{1}{2}u'\Sigma_{YY}u)$$

Definition (Standard Brownian Motion) A standard Brownian motion or a standard Wiener Process $\{B(t), t \geq 0\}$ is a stochastic process satisfying:

- (a) B(0) = 0
- (b) for every t and $0=t_0 < t_1 < \cdots < t_n$, $\Delta_k := B(t_k) B(t_{k-1})$ are independent
- (c) $B(t)-B(s)\sim N(0,t-s)$ for $t\leq s$

(c) is saying $B(t+1)-B(t)\sim N(0,1)$ basically

Definition (Poisson Process) A Poisson Process $\{N(t), t \leq 0\}$ with a **mean rate** λ is a stochastic process statisfying:

- (a) N(0) = 0
- (b) for every t and $0=t_0 < t_1 < \cdots < t_n$, $\Delta_k := N(t_k) N(t_{k-1})$ are independent
- (c) $N(t)-N(s)\sim \operatorname{Po}(\lambda(t-s))$ for $t\geq s$

Poisson (a) (b) is then same as SBM (a) (b) the diff is SBM(c) is standard but Pois(c) is a Poisson distribution.

A.2 Hilbert Spaces