REFORZAMIENTO

- CLASIFICACIÓN DE TRIÁNGULOS
- LINEAS NOTABLES.
- CONGRUENCIA DE TRIÁNGULOS
- APLICACIONES DE LA CONGRUENCIA.

Soporte de estantería

PRODUCCIÓN EN MASA DE AUTOS

Estructura de las aeronaves de guerra

CLASIFICACIÓN DE TRIÁNGULOS

OSBERVACIONES:

CLASIFICACIÓN DE TRIÁNGULOS

El ΔADC es isósceles:

AD=CD=a

En el ΔABC completando medidas:

m∢BAD=180º-12θ

En el ΔABD como AB=AD=a

m∢ABD=m∢BDA=6θ

m∢DBC=θ

Entonces el ABDC es isósceles:

BD=a

Por lo tanto el ΔABD es equilátero:

6θ=60⁰

∴θ=10º

CLASIFICACIÓN DE TRIÁNGULOS

Si un Δ tiene medidas angulares de la forma 2θ y 90º-θ se busca formar triángulos isósceles.

90°-0 90°-0

Del grafico. Si AB=AD=DC, calcule m∢ACB

El ΔADC es isósceles:

m∢DAC=m∢DCA=40º

Por observación el ΔABD es equilátero:

RESULOCIÓN:

Nos piden m∢ACB=X

Dato:

AB=AD=DC=a

Como DA=DB=DC=a

Por teorema:

 $x = 60^{\circ}/2$

∴x=30º

LÍNEAS NOTABLES

CEVIANA:

Segmento de recta que tiene por extremos un vértice y un punto del lado opuesto o de su prolongación de un triángulo.

MEDIATRIZ:

LINEAS NOTABLES

<u>ÁNGULO ENTRE BISECTRICES</u>

LINEAS NOTABLES

OBSERVACIONES:

Del grafico, calcule el mínimo valor entero de BC

RESOLUCION: Nos piden $\overline{BC}min = X$

Por la observación trazamos \overline{BQ} tal que m∢QBC=θ

Entonces los Δs BQC y ABQ son isósceles.

Como ABQ es isósceles, por la observación:

> 2θ es agudo **∢BQC** es obtuso

En el ABQC teorema de existencia:

Pero ΔBQC es obtusángulos

$$5^2 + 5^2 < X^2$$

$$\therefore X_{minz} = 8$$

CONGRUENCIA DE TRIÁNGULOS

1ER CASO ANGULO LADO ANGULO

2DO CASO LADO ANGULO LADO

<u>3ER CASO LADO LADO LADO</u>

CONGRUENCIA

Del grafico, ABC es equilátero, calcule X

RESOLUCIÓN:

Nos piden X

Dato:

ΔABC equilátero

AB=BC=AC

Construimos un Δ equilátero de lado BP=3

Como se repiten valores se

busca la congruencia

 $\triangle ABP \cong \triangle CBQ (LAL)$

Entonces se forma un triángulo rectángulo PQC notable de 37º y 53º

m∢CPQ=53º

 $X = 60^{\circ} + 53^{\circ}$

∴ X = 113º

OBSERVACIONES

CONGRUENCIA

Del grafico. Si HD=2BH-AH y AB=BC, calcule θ .

Por la observación, trazamos

$$\overline{CP} \perp \overline{BH}$$

 $\triangle ABC \cong \triangle PQR (ALA)$

Si PH=n

Entonces BH=CP= m+n

Por dato: HD=2BH-AH

$$HD=2(m+n)-m$$

HD=m+2n

Si $\overline{CQ} \perp \overline{AD}$ se forma HPCQ rectángulo

HQ=m+n

QD=n

El ΔCQD notable 45º

∴ θ=45º

APLICACIONES DE LA CONGRUENCIA

APLICACIONES DE LA CONGRUENCIA

TEOREMA DE LA BISECTRIZ:

ángulos: $\theta = \alpha$

TEOREMA DE LA MEDIATRIZ:

SE OBSERVA:

ΔAPB es isósceles

TEOREMA DE LA BASE MEDIA:

APLICACIONES DE LA **CONGRUENCIA**

TEOREMA DE LA MEDIANA RELATIVA DE

LA HIPOTENUSA: Si \overline{BM} es la mediana

OBSERVACIONES:

Del grafico. Si BP=PC. Calcule PQ

Por la observación prolongamos \overline{BQ} hasta S.

El ΔBAS es isósceles

$$\Rightarrow$$
 SC=8

En el ΔSBC por teorema de la base media:

$$X = \frac{8}{2}$$