Customers & Orders SQL Analysis

Real-world business questions answered with PostgreSQL

Lilla Katona 2025.05.09.

Customer Orders Analysis Introduction

This SQL project demonstrates my ability to extract meaningful business insights from customer and order data. I used realistic datasets to write and execute queries that answer practical business questions related to customer segmentation, order behaviour, product performance, and more. Each section includes the question, SQL logic, and sample results to reflect real-world data analysis tasks.

Business Questions

1. Which countries have the most registered customers?

Purpose: Understand geographic distribution of customers.

Query:

SELECT

country,

COUNT(*) AS customer_count

FROM customers

GROUP BY country

ORDER BY customer_count DESC;

2. Which cities generate the highest total order amount?

Purpose: Spot top-performing cities.

Query:

SELECT

c.city,

SUM(CAST(o.order_amount as INT)) AS total_sales

FROM customers c

JOIN orders o

ON c.customer_id = o.customer_id

GROUP BY c.city

ORDER BY total_sales DESC

LIMIT 10;

	· On J · Ccurricu	
	city character varying	total_sales bigint
1	Toronto	3683
2	Barcelona	3202
3	Los Angeles	2587
4	Boston	2545
5	Paris	2451
6	Dubai	2416
7	Berlin	2274
8	Istanbul	2244
9	Cairo	2017
10	Moscow	1902

3. What is the average order value by product category?

Purpose: Compare performance across product categories.

Query:

SELECT

product_category,

ROUND(AVG(CAST(order_amount as int)),0) AS avg_order_value

FROM orders

GROUP BY product_category

ORDER BY avg_order_value DESC;

Result:

5	rows returned	
	product_category character varying	avg_order_value numeric
1	Furniture	297
2	Clothing	266
3	Electronics	259
4	Toys	249
5	Books	231

Alternative Query: Filtering for a specific product:

SELECT

product_category,

ROUND(AVG(CAST(order_amount as int)),0) AS avg_order_value

FROM orders

WHERE product_category = 'Furniture'

GROUP BY product_category

ORDER BY avg_order_value DESC;

Result

4. How many customers registered each year?

Purpose: Analyse customer acquisition trends.

Query:

SELECT

EXTRACT(YEAR FROM registration_date) AS reg_year,

COUNT(*) AS customer_count FROM customers GROUP BY reg_year ORDER BY reg_year;

Result:

5. Which customers have spent the most overall?

Purpose: Identify top customers.

Query: SELECT

c.customer_id,

c.customer_name,

ROUND(SUM(o.order_amount),0) AS total_spent

FROM customers c

JOIN orders o

ON c.customer_id = o.customer_id

GROUP BY 1,2

ORDER BY total_spent DESC

LIMIT 10;

10	rows returne	d	
	customer_id integer	customer_name character varying	total_spent numeric
1	29	Carlos Diaz	3202
2	3	Clara Wang	2786
3	2	Bob Johnson	2587
4	17	Quincy Wright	2545
5	24	Xander Dupont	2451
6	19	Samir Khan	2416
7	5	Eva Müller	2274
8	26	Zara Ibrahim	2244
9	21	Umar Farouk	2017
10	30	Daria Petrova	1902

6. What is the order status breakdown?

Purpose: Understand fulfilment success rate.

Query:
SELECT
status,
COUNT(*) AS order_count
FROM orders
GROUP BY status;

Result:

7. What are the top 5 most ordered product categories by revenue?

Purpose: Know which categories drive income.

Query:

SELECT
product_category,

CAST(SUM(order_amount) as INT) AS total_revenue
FROM orders

GROUP BY product_category

ORDER BY total_revenue DESC

LIMIT 5;

Result:

8. How does order volume change year by year?

Purpose: Spot seasonality or trends.

Query:

SELECT

DATE_TRUNC('year', order_date) AS order_year,

COUNT(*) AS order_count

FROM orders

GROUP BY order_year

ORDER BY order_year;

9. Which country has the highest average order amount?

Purpose: Combine customer origin and order behaviour.

Query:

SELECT

c.country,

ROUND(AVG(o.order_amount),0) AS avg_order_value

FROM customers c

JOIN orders o

ON c.customer_id = o.customer_id

GROUP BY c.country

ORDER BY avg_order_value DESC;

Result:

22	rows returned	
	country character varying	avg_order_value numeric
1	Australia	409
2	Italy	339
3	Egypt	336
4	Ireland	309
5	South Korea	309
6	Mexico	294
7	Spain	287
8	Japan	285
9	Turkey	281
10	Russia	272
11	Canada	263
12	USA	260
13	Germany	253
14	UK	249
15	Portugal	247
16	France	245
17	UAE	242
18	Czech Republic	242
19	China	239
20	Sweden	223
21	India	212
22	Taiwan	148

10. How engaged are our customers based on their order activity? Specifically, how many orders has each customer placed, and how can we classify them into meaningful segments like 'One-time', 'Returning', or 'Loyal' customers?

Purpose: Segment customers based on purchasing frequency to better understand engagement levels.

Query: SELECT c.customer_id, c.customer_name, order_stats.order_count,

CASE

WHEN order_stats.order_count = 1 THEN 'One-time'

WHEN order_stats.order_count BETWEEN 2 AND 4 THEN 'Returning'

ELSE 'Loyal'

END AS customer_type

FROM customers c

JOIN (

SELECT

customer_id,

COUNT(*) AS order_count

FROM orders

GROUP BY customer_id

) AS order_stats

ON c.customer_id = order_stats.customer_id;

30 rows returned				
	customer_id integer	customer_name character varying	order_count bigint	customer_type text
1	1	Alice Smith	6	Loyal
2	2	Bob Johnson	10	Loyal
3	3	Clara Wang	9	Loyal
4	4	Daniel Kim	5	Loyal
5	5	Eva Müller	9	Loyal
6	6	Frank Lee	3	Returning
7	7	Grace Chen	7	Loyal
8	8	Henry Brown	5	Loyal
9	9	Isla Davis	7	Loyal
10	10	Jack Wilson	2	Returning
11	11	Kira Novak	3	Returning
12	12	Leo Garcia	5	Loyal
13	13	Mina Patel	8	Loyal
14	14	Noah Yamamoto	4	Returning
15	15	Olivia Zhang	2	Returning
16	16	Paul O'Neil	2	Returning
17	17	Quincy Wright	10	Loyal
18	18	Rita Svensson	8	Loyal
19	19	Samir Khan	10	Loyal
20	20	Tina Lopez	5	Loyal
21	21	Umar Farouk	6	Loyal
22	22	Valerie Costa	6	Loyal
23	23	Wang Hao	3	Returning
24	24	Xander Dupont	10	Loyal
25	25	Yuki Tanaka	4	Returning
26	26	Zara Ibrahim	8	Loyal
27	27	Aaron Green	5	Loyal
28	28	Bella Rossi	4	Returning
29	29	Carlos Diaz	10	Loyal
30	30	Daria Petrova	7	Loyal

Conclusion:

This analysis showcases my ability to turn raw data into business insights using PostgreSQL. Through techniques like joins, aggregation, subqueries, and conditional logic, I demonstrated real-world reporting skills. These are key tools I'd bring to any data-driven role to help teams make informed decisions.

Techniques Demonstrated:

- Filtering & Sorting with WHERE, ORDER BY
- Joins (INNER JOIN, LEFT JOIN) between multiple tables
- Aggregations using COUNT, AVG, SUM, GROUP BY
- Conditional logic and Data classification with CASE WHEN
- Subqueries for intermediate calculations
- Date functions