

Kommunikationstechnik KOTE / Netzwerkgrundlagen Repetition

Prüfungsformat KOTE

Themen Prüfung KOTE (Open Book):

- Grundlagen Netzwerktechnik
- IP-Netze unterteilen
- Redundante Netzwerke planen
- Grundlagen der Konfiguration

Hilfsmittel:

- Open book
- Schriftlich und digital
- Literatur, Eigene Zusammenfassung
- Die Verwendung des Internets ausserhalb der eigenen Literatur Beschaffung ist untersagt
- Notebook mit installiertem CISCO Pakettracer

Formate:

- Wissensfragen mit teils auch Multiple-Choice
- Anwendungsfragen mit Planung und Konfiguration
- Dauer: 90 Minuten

Agenda

Repetition «Protokolle für Troubleshooting»

Wichtige Protokolle für das Troubleshooting

Protokoll	Werkzeuge und Erweiterungen
ICMP (Internet Control Message Protocol) - RFC 792, IETF September 1981	PingTraceroute / Tracert
Dient dem Austausch von Informationen und Fehlermeldungen im Netzwerk.	
 SNMP (Simple Network Management Protocol) SNMP RFC 1067, 1098, 1157, 1990 SNMPv3 RFC 3410 – 3417 + 3430, 2002 	Remote Monitoring Standard: - RMON (IETF, RFC 2819) - RMON2 (IETF, RFC 2021)
Dient der Überwachung und Steuerung in Netzwerken.	

ICMP Internet Control Message Protocol (RFC 792)

ICMP wird zur Überprüfung und Überwachung der Netzwerkverbindungen genutzt. Dazu können mit dem ICMP Protokoll Informationen und Fehlermeldungen zwischen Stationen ausgetauscht werden.

ICMP-Type	Meldung
0	Echo Reply (von Ping)
3	Destination Unreachable
4	Source Quench (Warteschlange ist voll)
5	Redirect (Pfad wird umgeleitet)
8	Echo Request (bei PING)
11	Time exceeded (TTL abgelaufen oder Zeitlimit überschritten)
12	Parameter Problem

Wichtige Troubleshooting Anwendungsbeispiele

Befehl	Anwendungszweck
tracert 192.168.1.3 tracert www.meinedomain.ch	So wird die gewählte Route sichtbar. Nützliches Onlinetool www.visualroute.ch
ping 192.168.1.3 Ping www.meinedomain.ch	ICMP Abfrage um den TTL-Wert zu erhalten und zu schauen ob eine Ziel-Adresse erreichbar ist.
ping 192.168.1.3 -t	Der Pingbefehl wird permanent ausgeführt. Abbruch mit Ctrl+C
netstat -an	Aktuelle Verbindungen (Connections) anzeigen
ipconfig /all	Zeigt aktuelle IP-Konfiguration aller Adapter an.
ipconfig /release	IP-Adressen werden von den Adaptern gelöst.
ipconfig /renew	IP-Adressen und Einstellungen werden vom DHCP-Server neu bezogen
route print	Zeigt die aktuelle Routingtabelle an
arp -a	Zeigt ARP-Tabelle an (IP zu MAC-Adresse)
nslookup www.meinedomain.ch	Fragt Namensserver ab. Nützlicher Link www.dnstools.ch

Agenda

Was soll durch Quality of Service (QoS) oder deutsch «Dienstgüte» erreicht werden?

- Dienstgüte ist der Zustand, welcher vom Nutzer als akzeptabel erwartet wird. Zum Beispiel:
 - Telefonieren ohne Unterbrüche (VoIP).
 - Live Fussballübertragung ohne verzerrtes Bild.
 - Annehmbare Geschwindigkeit beim Besuchen von externen (Extranet) und internen Webseiten (Intranet).
- Dienstgüte kann durch saubere Priorisierung erreicht werden.
 - Z.B. hat VoIP Telefonie Priorität vor dem E-Mailverkehr.

Mögliche Unterteilung in Prioriätskategorien

Kategorie	Beschreibung der Priorität
Zeitkritische Kommunikation	Hohe Priorität z.B. IP-Telefonie, Videotelefonie
Zeitunkritische Kommunikation	Niedrige Priorität Mailverkehr, Websurfen, FTP-Download
Hohe organisatorische Wichtigkeit	Hohe Priorität Steuerung der Produktionsabläufe Online-Bestellsystem (Webshop)
Unerwünschte Kommunikation	Keine Priorität, kann gesperrt werden z.B. Live-Video-Streaming, Peer-to-Peer Anwendungen

Quelle: Mark A. Dye, Rick McDonald, Antoon W. Rufi, Netzwerkgrundlagen, CCNA Exploration Companion Guide, Cisco Networking Academy, Addison Wesley Verlag, S. 52ff

Die Dienstqualität als Funktionsgarant Quality of Service (QoS)

Dienstqualitätsgrössen	Beschreibung
Übertragungsrate	Übertragungsgeschwindigkeit in Mbit/sVielfach fälschlicherweise als Bandbreite* bezeichnet
Latenz (Verzögerung)	 Wie lange dauert das Senden vom Sender zum Empfänger Einfaches bidirektionales Messverfahren in Millisekunden (z.B. mit PING) Bei hoher Latenz gibt es z.B. Echos in Gesprächen
Varianz (Jitter, Verzerrung)	Die Varianz bei der Latenz wird als Jitter bezeichnetVerursacht Übertragungsunterbrüche
Paketverlustrate	- Wie viele Pakete kommen nicht an

^{*}Bandbreite = Frequenzbereich zwischen tiefster und höchster Frequenz

Gerade bei VoIP-Telefonie oder Videokonferenzen ist eine kontinuierliche Datenverbindung wichtig! Ansonsten treten Verzögerungen (Unterbrüche) auf.

Agenda

Repetition «Netzklassen und Subnetting»

CCNA1 Kapitel 11 – 14

Repetition Historische Netzklassen

Netzklasse	Präfix	Adressbereich	Verwendung	CIDR Suffix
Klasse A	0000 0000	0.0.0.0 - 127.255.255.255	Verteilung	/8
Klasse B	1000 0000	128.0.0.0 – 191.255.255.255	Verteilung	/16
Klasse C	1100 0000	192.0.0.0 – 223.255.255.255	Verteilung	/24
Klasse D	1110 0000	224.0.0.0 – 239.255.255.255	Multicast	
Klasse E	1111 0000	240.0.0.0 – 255.255.255	Reserviert	

CIDR = Classless Inter-Domain Routing – Die Präfixlänge beim Subnet ist damit frei wählbar

Repetition Klassenbezogene A-, B- und C-Netze

 $2^{H}-2$

Klasse	Netzbits (N)	Hostbits (H)	Anzahl Netze	Anzahl Hosts - 2	Subnetzmaske (DDN-Maske*)	
Α	8	24	126	16'777'214	255.0.0.0	/8
В	16	16	16'384	65'534	255.255.0.0	/16
С	24	8	2'097'152	254	255.255.255.0	/24

^{*}DDN = Dotted decimal notation

Private IP-Adressen (RFC 1918)

CDIR = Classless Inter-Domain Routing = **Subnetting**

CIDR-Adressblock	Adressbereich	Klasse (historisch)
10.0.0.0/8	10.0.0.0 bis 10.255.255.255	255.0.0.0
172.16.0.0/12	172.16.0.0 bis 172.31.255.255	255.255.0.0
192.168.0.0/16	192.168.0.0 bis 192.168.255.255	255.255.255.0

Quelle: http://de.wikipedia.org/wiki/IP-Adresse

Private IP-Adressen werden nicht ins Internet geroutet!

Es werden NAT (Network Address Translation)- resp. PAT (Port Address Translation) -Funktionen dafür benötigt.

Vergabe von IPv4-Netzwerkadressen an Hosts

Vergabe	Beschreibung	Verwendung
Statische IP	IP wird manuell konfiguriert	Server Netzwerkgeräte Drucker
Dynamische IP	IPs werden dynamisch durch DHCP zugewiesen. Dazu wird ein Adress-Pool definiert. Es gibt im Netz nur einen DHCP. Mit DHCP können auch weitere Werte verteilt werden, wie: • z.B. Standardgateway, DNS-Server,	Clients

Das Wichtigste ist es zwingend Adresskonflikte zu vermeiden! Daher ist ein sauberes IP-Konzept für die Vergabe der Adressen zu definieren. Vergebene fixe Adressen sind zu dokumentieren!

Speziell reservierte Netzwerkadressen

Adressblock	Reserviert für	RFC
0.0.0.0/8	Aktuelles Netzwerk (eigenes Netzwerk)	RFC 1122
100.64.0.0/10	Shared Transition Space	RFC 6598
127.0.0.0/8	Loopback Adresse (Lokaler Computer)	RFC 1122
169.254.0.0/16	Autokonfiguration (link local), APIPA	RFC 3927
192.0.0.0/24	IETF Protocol Assignments	RFC 5735
192.0.2.0/24	Test-Net-1	RFC 5735
192.88.99.0/24	IPv6 zu IPv4 Relay	RFC 3068
198.18.0.0/15	Benchmark-Tests im Netzwerk	RFC 2544
198.51.100.0/24	Test-Net-2	RFC 5735
203.0.113.0/24	Test-Net-3	RFC 5735
255.255.255.255/32	Limited Broadcast (werden nicht geroutet)	RFC 919 RFC 922

Repetition Grundlagen Subnettierung

- Die Subnettierung ist notwendig um Netze zu teilen, meist aus..
 - ..Ressourcen Gründen (Broadcast eindämmen)
 - ..aus Sicherheitsgründen
- Die Subnettierung erfolgt durch die Subnetz Maske:
 - z.B. 255.255.255.0 (DDN)
 - oder 11111111. 11111111. 11111111.00000000
 - oder /24 (Präfix)

Übung macht den Meister Berechne selbständig

Umrechnung Binär zu Dezimal:

Wert								
Dezimal	128	64	32	16	8	4	2	1
Binär	0	1	1	0	1	1	0	0
Wert	0	64	32	0	8	4	0	0

Berechnung = 108

Wert								
Dezimal	128	64	32	16	8	4	2	1
Binär	0	0	0	1	0	0	0	1
Wert								

Berechnung = 17

Grundlegende Subnettierung

z.B. 128er Netz 16 Bit reserviert für Netz \rightarrow für Subnetze und Hosts stehen 16 Bit zur Verfügung

z.B. B-Klasse-Netzwerk mit Maske = 255.255.240.0 Präfix = /20

B-Netzwerk Subnetze Hosts

```
Netzwerk (N) = 16 (B-Netzwerk)
```

Subnetze (S) = 4

Hosts (H) = 12

Beispiel

Beispiel: (klassenlose) IPv4-Adresse 203.0.113.195/27

Bei einer Netzmaske mit 27 gesetzten Bits ergibt sich eine Netzadresse von 203.0.113.192. Es verbleiben 5 Bits und selbst und für den Broadcast benötigt, so dass 30 Adressen für Geräte zur Verfügung stehen.

Bestimmung des Subnetzes

- Es wird dazu das Boolesche UND verwendet
 - -1 UND 1 = 1
 - -0 UND 1 = 0
 - -1 UND 0 = 0
 - -0 UND 0 = 0

 Der Hostanteil bei einem Subnet besteht aus Nullen.

Zugehöriges Subnetz ermitteln (Magic number)

2. Aufgabe Konkrete Subnettierung bestimmen

Sie bekommen als Netzwerktechniker/in folgenden konkreten Auftrag:

Erstellen Sie für den privaten IP-Range (RFC 1918) **172.16.0.0/12** eine Subnettierung in mind. 4 Netze mit je mind. 300 möglichen Host Adressen. Wie sehen die vier Netze genau aus (IP-Range und Subnetadresse)?

Zeit: 5 Minuten

2. Aufgabe Musterlösung

IP-Range	Netzwerk Adresse	Broadcast Adresse	Maske	Anzahl zuweisbarer Hosts
172.16.0.0 – 172.16.1.255	172.16.0.0	172.16.1.255	255.255.254.0 Suffix /23	510
172.16.2.0 – 172.16.3.255	172.16.2.0	172.16.3.255	255.255.254.0 Suffix /23	510
172.16.4.0 – 172.16.5.255	172.16.4.0	172.16.5.255	255.255.254.0 Suffix /23	510
172.16.6.0 – 172.16.7.255	172.16.6.0	172.16.7.255	255.255.254.0 Suffix /23	510

http://www.subnet-calculator.com/

Subnetz-Aufteilung

Das gegebene Subnetz ist 192.168.128.128/25. Wir wollen es in vier gleich grosse Subnetze unterteilen:

Schritt 1: Analyse des vorhandenen Subnetzes

Netzwerkadresse: 192.168.128.128

Subnetzmaske: /25 entspricht 255.255.255.128

Adressbereich: 192.168.128.128 (Netz-ID) bis 192.168.128.255 (Broadcast)

• Anzahl der IP-Adressen: 2⁷ = **128 Adressen** (inkl. Netz- und Broadcast-Adresse)

Schritt 2: Aufteilung in 4 gleich grosse Subnetze

Um das Netzwerk in 4 Subnetze zu unterteilen, benötigen wir eine feinere Subnetzmaske. Dazu erhöhen wir die Präfixlänge von /25 auf /27 (2 Bit höher, da 4 Subnetze benötigt werden $2^2 = 4$ Subnetze)

- Neue Subnetzmaske: /27 entspricht 255.255.255.224
- Anzahl der IP-Adressen pro Subnetz: 2⁵ = 32 Adressen (inkl. Netz- und Broadcast-Adresse)

Schritt 3: Neue Subnetze berechnen

- Die **Subnetzsprünge** werden durch die neue Blockgrösse bestimmt:
- Blockgrösse = 256–224 = 32 (Magic Number!)

Subnetz	Netzwerkadresse	Erster Host	Letzter Host	Broadcast-Adresse
1	192.168.128.128/27	192.168.128.129	192.168.128.158	192.168.128.159
2	192.168.128.160/27	192.168.128.161	192.168.128.190	192.168.128.191
3	192.168.128.192/27	192.168.128.193	192.168.128.222	192.168.128.223
4	192.168.128.224/27	192.168.128.225	192.168.128.254	192.168.128.255

Agenda

Netzwerk-Topologien

- Wir kennen folgende physischen Topologien ...
 - Sterntopologie
 - Ringtopologie
 - Bustopologie
 - Baumtopologie
 - Maschentopologie(Full oder Partial)
 - Zellen-Topologie(Funktechnologie)

verbunden

Das hierarchische Netzwerkmodell

Hierarchie	Beschreibung
Access-Layer (Zugangsschicht)	Verbindung zwischen Endgeräten (PCs, Druckern, IP-Telefonen. Umfasst Router, Switches, Access-Points.
Distribution-Layer (Verteilerschicht, Aggregation Layer)	Steuert den Fluss der Netzdaten. Realisiert Routingfunktionen zwischen den VLANs. Distribution Layer Switches sind Hochleistungsgeräte (Verfügbarkeit / Redundanz)
Core-Layer (Kernschicht)	Highspeed-Backbone des Netzwerks. Müssen Leistungsstark und hochverfügbar sein.

In kleineren Netzen ist meist die Distribution- und Core-Schicht zusammengefasst.

3-Tier Topologie / Spine-Leaf-Topologie

Spine-Leaf

Spine/Leaf Data Center Network Architecture

Traditional 3-Tier

switches

Servers

Agenda

Repetition «Übertragungsmedien»

Überblick der Übertragungsmedien

Medium	Medien-Typen	Wichtige Details
Kupferkabel (Twisted Pair, verdrillt)	UTP = Unshielded Twisted Pair STP = Shielded Twisted Pair Elektronische Signale	RJ45-Stecker 4 verdrillte Aderpaare
Lichtwellenleiter (Glasfaserkabel)	Multimode (bis ca. 500m) Monomode/Singlemode (bis zu 50 KM mit 1Gbit/s) Optische Datenübertragung	SC-Stecker ST-Stecker LC-Stecker LWL-BNC-Stecker
Funk (Wireless LAN)	Access Point IEEE 802.11g – 54Mbit/s (2.4GHz) IEEE 802.11a – 54Mbit/s (5GHz) IEEE 802.11n – 600Mbit/s (2.4GHz und 5GHz) IEEE 802.11ac – 6.77Gbit/s	WEP (unsicher), WPA und WPA2 Verschlüsselung (sicher) WiFi (Wireless Fidelity) www.wi-fi.org

Agenda

Repetition «Vermittlung und Schichtenmodelle»

Repetition Kommunikationsgrundlagen Verbindungsarten

Grundlegende Kommunikationsarten

- Unicast (Punkt zu Punkt)
 - Telefonverbindung
- Multicast (Punkt zu Gruppe)
 - Client-Server-Applikationen, Pay TV
- Broadcast (Punkt zu allen)
 - Radio, Fernsehen, ARP
- Anycast (Punkt zu einem in der Gruppe)
 - Mehrere Teilnehmende treten als Einziger auf
 - Ausfallsicherheit und Lastverteilung
 - z.B. bei einigen Root DNS-Server

Grafische Darstellung der Kommunikationsarten

Grafische Darstellung der Kommunikationsarten

Multiplexing

Zusammenfassen verschiedener Datenverbindungen:

Multiplexing bedeutet, mehrere Signale oder Informationsströme auf einer Leitung gleichzeitig in Form eines einzigen, komplexen Signals zu übertragen und dann auf der Empfangsseite wieder in separate Signale zu zerlegen.

Ein Kanal überträgt die verschiedenen Signale in unterschiedlichen Zeitschlitzen oder unterschiedlichen Lichtwellenlängen

Seriell vs. Parallel

Schnelle Verbindung über kurze Distanzen
Problem ist dabei der Bitversatz (Laufzeiten nicht genau gleich, kann Übertragungsfehler verursachen)

Vergleich OSI und TCP/IP Modelle

Figure 1-14 OSI Model Compared to the Two TCP/IP Models

NOTE The CCNA exam topics no longer mention the OSI or TCP/IP models; however, you should know both and the related terminology for everyday network engineering discussions. While today you will see the five-layer model used throughout the industry, and in this book, the figure includes the original RFC 1122 four-layer model for perspective.

Grundlagen ICT Übersicht ISO/OSI-Modell

TCP/IP

	OSI-Schicht	Einordnung	DoD-Schicht	Protokollbeispiel	Einheiten		
7	Anwendungen (Application)			HTTP FTP			
6	Darstellung (Presentation)	Anwendungs- orientiert	Anwendung	HTTPS SMTP	Daten		
5	Sitzung (Session)			LDAP NCP			
4	Transport (Transport)		Transport	TCP UDP SCTP SPX	TCP = Segmente UDP = Datagramme		
3	Vermittlung (Network)	Transport- orientiert	Vermittlung	ICMP IGMP IP IPsec IPX	Pakete		
2	Sicherungsschicht (Data Link)		Netzzugriff	Ethernet Token Ring	Rahmen (Frames)		
1	Bitübertragung (Physical)		rvetzzugilli	FDDI ARCNET	Bits		

Quelle: wikipedia.org
DoD = Department of Defense

Einordnung der Übertragung in das aktualisierte fünf Schichten TCP/IP-Modell

Grundlagen ICT OSI-Modell (visuelle Darstellung)

Die Vermittlungsarten

Leitungsvermittlung

 Ressourcen entlang der Übertragungsstrecke werden reserviert (z.B. Klassische Telefonie)

S

Ε

Paketvermittlung

Ressourcen entlang der Übertragungsstrecke werden nicht reserviert (Internet)

Verbindungslos und verbindungsorientiert Beispiel TCP und UDP

Verbindungsorientiert

z.B. TCP: Transmission Control Protocol

Paketempfang wird bestätigt (ACK)

Verbindungslos

z.B. UDP: User Datagram Protocol

Paketempfang wird nicht bestätigt

Agenda

Repetition «Protokolle und Übertragungsprozess»

Grundlagen ICT Übersicht ISO/OSI-Modell

TCP/IP

	OSI-Schicht	Einordnung	DoD-Schicht	Protokollbeispiel	Einheiten
7	Anwendungen (Application)			HTTP FTP	
6	Darstellung (Presentation)	Anwendungs- orientiert	Anwendung	HTTPS SMTP	Daten
5	Sitzung (Session)			LDAP NCP	
4	Transport (Transport)		Transport	TCP UDP SCTP SPX	TCP = Segmente UDP = Datagramme
3	Vermittlung (Network)	Transport- orientiert	Vermittlung	ICMP IGMP IP IPsec IPX	Pakete
2	Sicherungsschicht (Data Link)		Netzzugriff	Ethernet Token Ring	Rahmen (Frames)
1	Bitübertragung (Physical)			FDDI ARCNET	Bits

Quelle: wikipedia.org
DoD = Department of Defense

User Datagram Protocol UDP-Header

0-15 Bit	16-31 Bit
Source Port	Destination Port
Packet Länge	Checksumme

- Unzuverlässig (keine Kontrolle)
- Weniger Overhead als TCP
- UDP überwacht keine Sequenznummern
 - Setzt deshalb Datagramme nicht in der richtigen
 Reihenfolge zusammen. Anwendung muss dies tun.

TCP-Header

Quelle: Wikipedia.org, Appaloosa, 23:04, 6. Jul. 2007 (CEST)

http://de.wikipedia.org/w/index.php?title=Datei:TCP_Header.svg&filetimestamp=20070706210301 https://en.wikipedia.org/wiki/Transmission_Control_Protocol

Grundlagen IPv4

IPv4 Paket Header

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Bit
V	Version IHL TOS (Type of Service) Paket-Gesamtlänge inkl. Header (Mind. 576 Bytes, Max 65535 Bytes)																														
K	enn	nung	(Ide	ntifi	kati	ion)									Flag	gs		Fra	gmer	nt Of	fset										
TTL (Time to live) Protokoll						Header Checksumme																									
Q	Quell-IP-Adresse (Source Address)																														
Zi	Ziel-IP-Adresse (Destination Address)																														
0	Optionen und Füllbits (Padding)																														

Version = V4/V6 IHL= IP Header Length

Paketlänge = gesamtes Paket inkl. Kopfdaten

Flags = 0,1,2 Fragementierung Kontroll-Schalter

TTL = Lebensdauer des Pakets Anzahl Hops (Max. 255)

Header Checksumme = sichert Header

https://de.wikipedia.org/wiki/IPv4

TOS = Type of Service (Priorität)

Kennung = Fragmente erkennen

Fragmentoffset = Aufteilung

Protokoll = Folgeprotokoll (TCP/UDP)

Optionen/Füllbits = Zusatzinfos

Repetition IEEE 802.3 Beispiel Ethernet Frame

Frames (Ethernet IEEE 802.3)

Präambel / Start Frame Delimiter (aus kompatibilitätsgründen, diente der Synchronisation) (8 Byte – L1
Header)

- VLAN-Tag f
 ür die Definition von VLANs (4 Byte)
- Type Feld für die Definition des folgenden Protokolls auf höherer Schicht
- PAD Feld dient der Definition der Mindestgrösse von 64 Byte
- Trailer: CRC Prüfsumme / FCS-Feld Frame Check Sequence (4 Byte)

`	16 bits	3 bits	1 bit	12 bits			
	TPID	TCI					
	IPID	PCP	DEI	VID			

Quelle Grafik: Wikipedia.org

VID = VLAN-ID (4096 mögliche VLANs, (212))

Repetition Der Kapselungsprozess (Encapsulation)

^{*}Protocol Data Unit

^{***} Maximum Transmission Unit (Bezieht sich hier auf max. Nutzdatenteil bei Ethernet.)

^{**}Trailer / CRC-Prüfsumme

Repetition Der Übertragungsprozess

Agenda

Repetition «Ports, Sockets, TCPVerbindungen»

Verbindung Anwendung mit Transportschicht (OSI-Layer 4)

Socket = Port-Nummer + IP-Adresse für eindeutige Zuordnung zu einem Prozess

In Anlehnung an Quelle:

Kurpse J. F., Keith W. R., S.193, Computernetzwerke. 5. akt. Auflage. Pearson Deutschland GmbH mit diesen Inhalten ist ausgeschlossen!

Port-Nummern

Ein Port wird benötigt um den Datenstrom einem Prozess/Programm zuzuordnen

Port-Arten	Port-Nummern
Well-Known-Ports (Sind für Dienste und Anwendungen reserviert)	0 - 1023
Registrierte Ports (Werden Benutzerprozessen oder Benutzeranwendungen zugeordnet)	1024 - 49151
Dynamische oder private Ports (Werden dynamisch Clientanwendungen zugewiesen)	49152 - 65535

Socket = Port-Nummer + IP-Adresse für eindeutige Zuordnung zu einem Prozess

Die wichtigsten Anwendungen und deren Ports 1. Teil

Dienstbezeichnung	Protokoll	Ports
Dateifreigabe (Serverdienste)	SMB 2.1 (Win 7 / Win Server 2008 R2) SMB 3.0 (Win 8 / Win Server 2012) SMB 3.1.1 (Win 10 / Win Server 2016)	TCP 445
WWW-Webdienste	HTTP HTTPS (SSL/TLS)	TCP 80 TCP 443
E-Mail-Dienste	SMTP (Mailversand) SMTPS (SSL/TLS) POP3 (Mailempfang) POP3S (SSL/TLS) IMAP (Mailempfang) IMAPS (SSL/TLS)	TCP 25 TCP 465 TCP 110 TCP 995 TCP 143 TCP 993
Namensauflösung	DNS (Domain-Namen in IP-Adressen)	UDP 53
Automatische IP-Vergabe	DHCP (Server oder Relay-Agent) DHCP (Client Anfragen)	UDP 67 UDP 68

Die wichtigsten Anwendungen und deren Ports 2. Teil

Dienstbezeichnung	Protokoll	Ports
Datenübermittlung	FTP (Datenübertragung) FTP (Kontrollport)	TCP 21 TCP 20
Zeitsynchronisierung	NTP (Network Time Protocol)	UDP 123
Verzeichnisdienste	LDAP LDAPS (SSL/TLS)	TCP/UDP 389 TCP/UDP 636
IP-Telefonie VoiP	SIP (SSL/TLS)	UDP 5060 (TCP) TCP 5061
Netzwerkverwaltung	SNMPv3 SNMPv3 (Trap)	UDP 161 UDP 162
VPN Site-to-Site	IPSEC, IKE	UDP 500
Konsolenverbindung (Fernwartung)	SSH (Secure Shell)	TCP 22

TCP-Header

Quelle: Wikipedia.org, Appaloosa, 23:04, 6. Jul. 2007 (CEST)

http://de.wikipedia.org/w/index.php?title=Datei:TCP_Header.svg&filetimestamp=20070706210301

Three-Way-Handshake SYN-Aufzeichnung mit Wireshark

TCP Verbindung aufbauen und gewährleisten (three-way-handshake)

TCP Verbindung abbauen TCP teardown process (ordentlich)

TCP Verbindung abbrechen Reset / RST-Flag

CTL Werte (Flags)

CTL-Wert	Beschreibung
URG	Urgent, dringend (selten gebraucht)
ACK	Acknoledgement (Bestätigung des TCP-Segment Empfangs)
PSH	Push (kleinere Segemente werden gesandt, vorher und nachher gepuffert)
RST	Reset (Abbruch der Verbindung, Probleme oder Abweisung)
SYN	Synchronize (Synchronisation von Sequenznummern)
FIN	Finish (Schlussflag, keine Daten kommen mehr)

Nützliches zu TCP ist auf Wikipedia.org zu finden.

http://de.wikipedia.org/wiki/Transmission Control Protocol

Datenflusssteuerung TCP Receive Window-Size (Empfangsfenster)

- Mit der Window-Size ist TCP in der Lage mehrere Pakete zu senden ohne bei jedem versandten Paket die Bestätigung ACK abwarten zu müssen.
- Dazu wird eine Window-Size, also ein Empfangsfenster bestimmt.
- Dies ist dann auch das Maximum, welches ohne Empfangsbestätigung ACK gesandt werden kann.
- So ist sichergestellt, dass der Empfangsspeicher (Puffer) nicht überläuft.

Agenda

Repetition «DNS, Routing, ARP»

Wichtiges zu DNS

Bezeichnung	Kurzbeschreibung
FQDN – Fully Qualified Domain Name z.B. www.google.ch	Absolute eindeutige Adresse
Resolver (Programm auf lokalem Gerät, zur Anfrage an DNS Server)	 Es braucht dazu mindestens einen DNS-Server-Eintrag Iterativ (immer weitergeleitet von Server zu Server, z.B. DNS-Server) Rekursiv direkte Antwort der IP-Adresse oder Name nächster DNS Server
Ressource Records (RR) DNS- Objekte (Beinhalten die Antwort vom DNS Server) (siehe auch nächstes Slide)	 Z.B. mit einem Resource Record «A» wird einem DNS-Namen eine IPv4-Adresse zugeordnet Diese werden in einer Zonendatei gespeichert (z.B. Hosts)

Funktion DNS-Abfrage

Beispiel einfacher Routingprozess

Wichtig:

Siehe Seite 108 für ein Beispiel mit der korrekten Cisco Notation.

Unterteilung und Implementierung der Sicherungsschicht

Layer 5-7
Anwendungsschicht

Layer 4
Transportschicht

Layer 3
Vermittlungsschicht

Sicherungsschicht

Layer 2 (Logical Link Control, LLC), in Treiber

Layer 2 (Media Access Control, MAC)

Bitübertragungsschicht

In Software implementiert

Treiber der Netzkarte

In Hardware (Network Interface Controller NIC) implementiert

Unterteilung der Sicherungsschicht in die Teilschichten MAC und LLC (Ethernet)

Bezeichnung	Details Teilschichten der Sicherungsschicht bei Ethernet	Layer 2 (Logical Link Control)				
		Layer 2 (Media Access Control)				
LLC	Logical Link Control (IEEE 802.2, LLC) LLC stellt die Verbindung zwischen der unteren L2 MAC-Teilschicht und der jeweiligen L3-Schicht (meist IP) der Netzwerksoftware her. Die MAC-Schicht kann sich je nach Medienzugriffsverfahren ändert, die LLC bleibt dabei gleich. Wird mit einem Treiber auf dem Computer implementiert, ist also ein Softwareprozess.					
MAC	Media Access Control (IEEE 802.3, CSMA/CD) Kapselt die L3-PDU in einen Frame und sorgt für den Medie Netzwerk. Das Datenformat (PDU) nennt sich Ethernet-Framohne und mit VLAN-Tag 1522 Byte gross. Ein Frame beginnt Frame Delimeter = 10101011 und endet mit dem FCS-Feld (Sequence). Durch die MAC Schicht wird ebenfalls die Daten Fehlererkennung übernommen. Die übermittelten Daten wentsprechend der Signalanforderungen des physischen Medist die MAC-Teilschicht direkt in der Netzwerkkarte (NIC) an integriert.	me und ist 1518 Byte c dabei mit dem Start (Frame Check flusssteuerung und erden dabei diums getrennt. Daher				

Agenda

Repetition «VLAN»

VLAN Grundlagen 802.1Q (tagged)

 Ein Computer in einem VLAN 1 kann nicht mit einem Computer in einem VLAN 2 kommunizieren. Über den Router können die VLANs verbunden werden.

• **802.1Q = IEEE-Standard** für «tagged» VLAN-Technik

VLAN Security 802.1Q (tagged)

 Alle Computer sind in einem eigenen VLAN von allen anderen Computern getrennt.

VLAN Grundlagen Natives/Default VLAN (Cisco VLAN 1)

 Nativ werden alle Port in das VLAN1 genommen (Natives VLAN oder Default VLAN). VLAN1 erstellt kein VLAN-Tag und ermöglicht damit Kompatibilität zu nicht VLAN fähigen Netzgeräten. Das native (default) VLAN kann konfiguriert werden sollte aber auf allen Netzgeräten (Switch, Router, Access Point,..) das selbe sein!

VLAN Grundlagen Portbasierte VLAN (Access Interfaces)

 Ein Computer in einem VLAN 10 kann nicht mit einem Computer in einem VLAN 20 kommunizieren. Bei portbasierten VLANs kann ein Interface nur einem VLAN angehören.

VLAN Grundlagen 802.1Q (tagged)

 Ein Computer in einem VLAN 10 kann nicht mit einem Computer in einem VLAN 20 kommunizieren.

Über den Router werden die betreffenden VLANs über ein Interface im **Trunk** Modus verbunden. Dazu werden **VLAN Tags** verwendet.

VLAN Grundlagen VLANs werden über Layer3 mit Routing verbunden.

 VLANs können nur über Routing miteinander verbunden werden. Es benötigt daher einen Router oder einen Layer 3 fähigen Switch (Multilayer Switch). Daher müssen sich alle VLANs in einem anderen IP-Netze befinden!

Inter-VLAN Routing (optional) Router on a Stick «RoaS»

Router on a Stick ermöglicht die Anbindung mehrerer Subnetze an einen Anschluss mittels VLAN tagging und Subinterfaces

Zur besseren Übersicht werden bei den Subinterfaces die VLAN-IDs für die Nummerierung verwendet.

Cisco Konfigurationsbeispiel (optional) "RoaS Inter-VLAN Routing"

VLAN 10:

```
R1(config)# interface gigabitethernet 0/0.10
R1(config-subif)# encapsulation dot1Q 10
R1(config-subif)# ip address 10.1.1.254 255.255.255.0
```

VLAN 20:

```
R1(config)# interface gigabitethernet 0/0.20
R1(config-subif)# encapsulation dot1Q 20
R1(config-subif)# ip address 10.2.1.254 255.255.255.0
.....
```

Vorsicht! Alle VLANs werden nun untereinander geroutet! Um dies zu verhindern müssen ACLs genutzt werden.

Agenda

«Repetition Redundantes Design Im Layer 2»

Netzwerk-Design mit Redundanzen

Wir brauchen ein Protokoll welches Redundanzen im Design erlaubt. Dazu verwenden wir das Spanning-Tree Protocol.

Spanning-Tree (STP) Grundlagen

DP = Designated Port (aller Verkehr geht über diesen Port)

RP = Root Port

Block = Port empfängt keine Frames, er wartet auf Anweisungen

Spanning Tree (STP)

- Durch das Spannig Tree Protocol können Redundanzen zwischen den Switchen erstellt werden (Loops). IEEE 802.1d
- Es wird eine Rootbridge «Chef» unter den Switches gewählt um Rundsendungen durch Schleifen zu verhindern
- Weitere Informationen http://de.wikipedia.org/wiki/ Spanning_Tree_Protocol

EtherChannel / Link Aggregation Grundlagen

Zusammengefasste Links zu einem EtherChannel

Der EtherChannel kann manuell oder mit Protokollen erfolgen. Cisco unterstützt das proprietäre Port Aggregation Protocol (PAgP) und das nach IEEE 802.3ad definierte Link Aggregation Control Protocol (LACP). Mit EtherChannel können je nach Switchmodell bis zu 8 Ports im Loadbalancing zusammengefasst werden. Durch EtherChannel besteht kein Loop zwischen den Switches.

EtherChannel / Link Aggregation Bezeichnungen

Hauptvorteile von NIC Teaming:

- **1.Erhöhte Zuverlässigkeit und Redundanz**: Wenn eine der gebündelten Netzwerkkarten ausfällt, kann der Verkehr automatisch auf die anderen aktiven Karten umgeleitet werden, wodurch die Netzwerkverbindung des Servers aufrechterhalten bleibt.
- **2.Erhöhte Bandbreite**: Durch das Kombinieren der Netzwerkbandbreite mehrerer physischer Netzwerkkarten kann die Gesamtbandbreite, die für Anwendungen zur Verfügung steht, erheblich erhöht werden.
- **3.Lastenausgleich**: Die Netzwerklast kann über die verschiedenen NICs verteilt werden, was eine effizientere Nutzung der Netzwerkressourcen ermöglicht.

Vorteile des EtherChannels

- **1.Erhöhte Bandbreite**: Durch das Zusammenführen mehrerer Netzwerkverbindungen in einen EtherChannel kann die Bandbreite erheblich erhöht werden. Zum Beispiel würde die Bündelung von vier 1-Gigabit-Ethernet-Links theoretisch eine Bandbreite von 4 Gbps bieten.
- **2.Lastverteilung**: Der Verkehr über den EtherChannel wird über die verschiedenen physischen Links verteilt, was zu einer effizienteren Nutzung der Netzwerkkapazitäten führt.
- **3.Redundanz**: Wenn einer der Links in einem EtherChannel ausfällt, wird der Verkehr automatisch auf die verbleibenden aktiven Links umgeleitet, was die Netzwerkverfügbarkeit erhöht.
- **4.Kostenersparnis**: EtherChannel kann teurere Upgrades von Netzwerklinks vermeiden, indem vorhandene Verbindungen effizienter genutzt werden.

EtherChannel / Link Aggregation

im Stack

Mit Multi-Chassis Switches oder Stacking-Ca Mit VSS - Virtual Switching System Mit vPC – Virtual Port Channel (Nexus)

Vorteile eines Multi-Chassis-Switches sind:

Hochverfügbarkeit und Redundanz Durch die Verwendung von Multi-Chassis-Link-Aggregation (MLAG) oder ähnlichen Technologien können Verbindungen über mehrere physische Switches hinweg aggregiert werden. Dies bedeutet, dass bei Ausfall eines Switches die Netzwerkgeräte weiterhin Zugang zum Netzwerk haben, da die anderen Switches im Chassis weiterhin aktiv bleiben. Dies erhöht die Netzwerkverfügbarkeit und reduziert Ausfallzeiten.

2. Erhöhte Bandbreite und Leistung
Die Verteilung des Verkehrs auf mehrere
physische Geräte ermöglicht es dem
Multi-Chassis-Switch, eine höhere
Gesamtbandbreite zu verarbeiten als ein
einzelner Switch. Dies ist besonders
nützlich in Umgebungen, in denen große
Datenmengen übertragen werden
müssen, wie zum Beispiel in
Rechenzentren.

3. Skalierbarkeit

Multi-Chassis-Switching ermöglicht es, das Netzwerk leicht zu skalieren. Weitere Switches können hinzugefügt werden, um die Kapazität und Leistung des Netzwerks zu erhöhen, ohne die Architektur grundlegend ändem zu müssen.

4. Vereinfachtes Management
Obwohl die physische Infrastruktur aus
mehreren Geräten besteht, wird sie als
ein einzelner logischer Switch verwaltet.
Dies vereinfacht das

Netzwerkmanagement erheblich, da Änderungen, Updates und Fehlerbehebungen zentral durchgeführt werden können.

Agenda

IOS Grundlagen

- Betriebssystem bei Cisco heisst Internetwork
 Operating System (IOS)
- Enthält Logik und Funktionen von Cisco Geräten
- Die Konfiguration erfolgt mit dem Command Line Interface (CLI)
 - Terminalemulation via Konsole, Telnet oder SSH

Command Line Interface Zugriff

CLI-Zugriffsmöglichkeit	Beschreibung
Konsolen Port	 Erfolgt über speziellen physischen Port (Konsolenkabel) Benötigt Terminalemulations-Programm und seriellen Port auf PC Seite Programme (Putty, Zterm Pro.,)
Telnet	 Erfolgt über das Netzwerk und benötigt IP-Adresse Achtung unverschlüsselte Verbindung VTY (Virtual Terminal Lines) Port 23
SSH (Secure Shell)	 Erfolgt über das Netzwerk und benötigt IP-Adresse Verschlüsselte Verbindung (immer verwenden) VTY (Virtual Terminal Lines) Port 22

CLI-Berechtigungskonzept

Der Konfigurationsmodus

Speicherarten in Cisco Switches

RAM

Arbeitsspeicher running config

Flash
Cisco IOS SW

ROMBootstrapper
sucht IOS SW

NVRAM startup config

CISCO Switch Konfigurationsdaten speichern

Konfigurationsdatei	Funktion	Speicher
startup config	Konfiguration welche beim Neustart verwendet wird.	NVRAM
running config	Aktuelle Konfiguration mit allen gemachten Einstellungen. Achtung geht beim Neustart verloren, wenn diese nicht in die startup config geschrieben wird (copy running-config startup-config).	RAM

Mit **show running config** oder **show startup config** kann die entsprechende Konfiguration angezeigt werden.

Konfigurationen kopieren und löschen

Ende Block 7

