习题课 2

2019年10月19日

符号说明: I 为单位矩阵(不强调阶数), $I_n = \begin{bmatrix} e_1 & \cdots & e_n \end{bmatrix}$ 为 n 阶单位矩阵, $\mathbf{0}$ 为零向量.

练习 2.1 计算:

1.
$$\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix};$$

$$2. \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix};$$

$$3. \begin{bmatrix} 17 & -6 \\ 35 & -12 \end{bmatrix}^5.$$

$$4. \begin{bmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \\ 3 & 4 & 2 \end{bmatrix} \begin{bmatrix} 1 & & & \\ & 2 & & \\ & & 1 \end{bmatrix} \begin{bmatrix} 0 & 2 & -1 \\ 1 & 1 & -1 \\ -2 & -5 & 4 \end{bmatrix};$$

$$5. \begin{bmatrix} 8 & 6 & -6 \\ 4 & 6 & -4 \\ 8 & 8 & -6 \end{bmatrix}^{6}.$$

解.
$$1.$$

$$\begin{bmatrix} 17 & -6 \\ 35 & -12 \end{bmatrix};$$

$$2. \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix};$$

$$3. \begin{bmatrix} 17 & -6 \\ 35 & -12 \end{bmatrix}^{5} = \left(\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix} \right)^{5} = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}^{5} \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix} = \begin{bmatrix} 3197 & -1266 \\ 7385 & -2922 \end{bmatrix}.$$

$$4. \begin{bmatrix} 4 & 3 & -3 \\ 2 & 3 & -2 \\ 4 & 4 & -3 \end{bmatrix};$$

5. 方法一:
$$\begin{bmatrix} 8 & 6 & -6 \\ 4 & 6 & -4 \\ 8 & 8 & -6 \end{bmatrix}^{6} = \begin{pmatrix} 2 \begin{bmatrix} 4 & 3 & -3 \\ 2 & 3 & -2 \\ 4 & 4 & -3 \end{bmatrix} \end{pmatrix}^{6} = 2^{6} \begin{pmatrix} \begin{bmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \\ 3 & 4 & 2 \end{pmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 & -1 \\ -2 & -5 & 4 \end{bmatrix} \end{pmatrix}^{6}$$
$$= 64 \begin{bmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \\ 3 & 4 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}^{6} \begin{bmatrix} 0 & 2 & -1 \\ 1 & 1 & -1 \\ -2 & -5 & 4 \end{bmatrix} = 64 \begin{bmatrix} 190 & 189 & -189 \\ 126 & 127 & -126 \\ 252 & 252 & -251 \end{bmatrix}$$
$$= \begin{bmatrix} 12160 & 12096 & -12096 \\ 8064 & 8128 & -8064 \\ 16128 & 16128 & -16064 \end{bmatrix}.$$

方法二:记
$$a = \begin{bmatrix} 3 \\ 2 \\ 4 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, 则 \begin{bmatrix} 8 & 6 & -6 \\ 4 & 6 & -4 \\ 8 & 8 & -6 \end{bmatrix} = 2(I_3 + ab^T).$$
注意到 $(I + k_i ab^T)(I + ab^T) = I + [k_i + 1 + k_i b^T a] ab^T =: I + k_{i+1} ab^T \ \overline{m} \ b^T a = 1.$ 故只需计算序列 $k_1 = 1, k_{i+1} = 2k_i + 1$ 到第六项: $k_6 = 63$. 于是 $[2(I + ab^T)]^6 = 64(I + 63ab^T)$.

练习 2.2 证明: 实数集上的任意方阵 A 可以唯一地表为 A=B+C,其中 B 是对称矩阵,C 是反对称矩阵. 1

证. 显然 $A = \frac{A+A^T}{2} + \frac{A-A^T}{2}$,而 $\frac{A+A^T}{2}$ 对称, $\frac{A-A^T}{2}$ 反对称.

下证唯一. 若 $A = B + C = B_1 + C_1$,其中 B, B_1 对称, C, C_1 反对称,则 $B - B_1 = C_1 - C =: D$. 注意到 $D = B - B_1$ 对称, $D = C_1 - C$ 反对称.于是 $D = D^T = -D$,得到 D = 0.即 $B = B_1, C = C_1$.

练习 2.3 证明:不存在 n 阶实方阵 A, B,使得 $AB - BA = I_n$ 成立.

证. 显然,如果能进行运算,则必有 A,B 是同阶方阵. 对于任意同阶方阵 A,B,考虑 AB-BA 的对角元的和: $\sum_i (\sum_k a_{ik} b_{ki} - \sum_k b_{ik} a_{ki}) = \sum_i \sum_k a_{ik} b_{ki} - \sum_i \sum_k a_{ki} b_{ik} = 0$. 而 I 的对角元的和不可能为 0. 因此 AB-BA=I 永不成立. 3

练习 2.4 证明: 对 $m \times n$ 矩阵 A 和 $n \times m$ 矩阵 B, $I_m + AB$ 可逆当且仅当 $I_n + BA$ 可逆.

证. 证法一: 考虑辅助矩阵 $H=\begin{bmatrix}I_m & A \\ -B & I_n\end{bmatrix}$. 简单计算有

$$\begin{bmatrix} I & 0 \\ B & I \end{bmatrix} H = \begin{bmatrix} I & A \\ 0 & BA + I \end{bmatrix}, \qquad \begin{bmatrix} I & -A \\ 0 & I \end{bmatrix} H = \begin{bmatrix} AB + I & 0 \\ -B & I \end{bmatrix}.$$

由此即知, I + AB 可逆, 当且仅当 H 可逆, 当且仅当 I + BA 可逆. 4

 $^{^{1}}C$ 是反对称阵的意思是 $C^{t} = -C$.

 $^{^2}$ 不同的证法: 若 A=B+C,其中 B 对称,C 反对称,则取转置得 $A^T=B^T+C^T=B-C$,两式相加相减得 $B=\frac{A+A^T}{2}$, $C=\frac{A-A^T}{2}$ 。这说明了,这样的分解若存在则必唯一,即 B 必须是 $\frac{A+A^T}{2}$,C 必须是 $\frac{A-A^T}{2}$. 进一步验证 $(\frac{A+A^T}{2})^T=\frac{(A+A^T)^T}{2}=\frac{A^T+(A^T)^T}{2}=\frac{A^T+(A^T)^T}{2}=\frac{A^T-(A^T)^T}{2}=\frac{A^T-(A^T)^T}{2}=\frac{A^T-(A^T)^T}{2}$,即前者对称,后者反对称。证毕。

 $^{^3}$ 对任意的方阵 $A=(a_{ij})\in M_n(\mathbb{R})$,定义 A 的迹为 $a_{11}+a_{22}+\ldots+a_{nn}$,记作 $\operatorname{tr}(A)$ 。矩阵的迹有以下性质: $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$, $\operatorname{tr}(cA)=\operatorname{ctr}(A)$, $\operatorname{tr}(A)=\operatorname{tr}(A^T)$, $\operatorname{tr}(AB)=\operatorname{tr}(BA)$ (这里,A,B 不一定是方阵,行数列数互反即可), $\operatorname{tr}(AA^T)=\operatorname{tr}(A^TA)=||A||^2$ (这里,A 不一定是方阵,||A|| 是第一次习题课第 5 题中的矩阵范数)。用矩阵的迹来证明此题的话,就是 $\operatorname{tr}(AB-BA)=\operatorname{tr}(AB)-\operatorname{tr}(BA)=0$,而 $\operatorname{tr}(I_n)=n\neq 0$,所以满足等式的 A,B 不存在。

⁴这里要用到作业题:分块上三角阵可逆当且仅当对角方块都可逆。

证法二: 假设 I + AB 不可逆,那么齐次线性方程组 (I + AB)x = 0 有非零解,取其中一个记为 $x_0 \neq 0$. 5 所以 $(I + BA)Bx_0 = B(I + AB)x_0 = 0$. 于是 Bx_0 是齐次线性方程组 (I + BA)x = 0 的解. 若 $Bx_0 = 0$,则 $x_0 = -ABx_0 = 0$,矛盾,于是 $Bx_0 \neq 0$,即齐次线性方程组 (I + BA)x = 0 有非零解,因此 I + BA 不可逆. 类似地,I + BA 不可逆可以推出 I + AB 不可逆,即二者等价.

练习 2.5 证明 Sherman-Morrison-Woodbury 公式: 对 n 阶可逆矩阵 A 和 $n \times p$ 矩阵 $U, V, A + UV^T$ 可逆 当且仅当 $I + V^T A^{-1}U$ 可逆,且 $A + UV^T$ 可逆时,有 $(A + UV^T)^{-1} = A^{-1} - A^{-1}U(I + V^T A^{-1}U)^{-1}V^T A^{-1}$. 特别地,当 p = 1 时, $(A + uv^T)^{-1} = A^{-1} - \frac{1}{1 + v^T A^{-1}u}A^{-1}uv^T A^{-1}$.

证. 证法一:考虑辅助矩阵 $H = \begin{bmatrix} A & U \\ -V^T & I_p \end{bmatrix}$. 简单计算有

$$\begin{bmatrix} I_n & 0 \\ V^T A^{-1} & I_p \end{bmatrix} H = \begin{bmatrix} A & U \\ 0 & I_p + V^T A^{-1} U \end{bmatrix}, \qquad \begin{bmatrix} I_n & -U \\ 0 & I_p \end{bmatrix} H = \begin{bmatrix} A + U V^T & 0 \\ -V^T & I_p \end{bmatrix}.$$

于是

$$\begin{bmatrix} A + UV^T & 0 \\ -V^T & I_p \end{bmatrix} = \begin{bmatrix} I_n & -U \\ 0 & I_p \end{bmatrix} \begin{bmatrix} I_n & 0 \\ V^T A^{-1} & I_p \end{bmatrix}^{-1} \begin{bmatrix} A & U \\ 0 & I_p + V^T A^{-1} U \end{bmatrix}.$$

利用分块矩阵性质,可知, $A + UV^T$ 可逆当且仅当 $I + V^T A^{-1}U$ 可逆. 再计算上式,有

$$\begin{bmatrix} (A+UV^{T})^{-1} & 0 \\ * & I_{p} \end{bmatrix} = \begin{bmatrix} A+UV^{T} & 0 \\ -V^{T} & I_{p} \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} A & U \\ 0 & I_{p}+V^{T}A^{-1}U \end{bmatrix}^{-1} \begin{bmatrix} I_{n} & 0 \\ V^{T}A^{-1} & I_{p} \end{bmatrix} \begin{bmatrix} I_{n} & -U \\ 0 & I_{p} \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} A^{-1} & -A^{-1}U(I+V^{T}A^{-1}U)^{-1} \\ 0 & (I+V^{T}A^{-1}U)^{-1} \end{bmatrix} \begin{bmatrix} I_{n} & 0 \\ V^{T}A^{-1} & I_{p} \end{bmatrix} \begin{bmatrix} I_{n} & U \\ 0 & I_{p} \end{bmatrix}$$

$$= \begin{bmatrix} A^{-1} - A^{-1}U(I+V^{T}A^{-1}U)^{-1}V^{T}A^{-1} & * \\ * & * \end{bmatrix}.$$

证法二: 注意 A 可逆,因此 $A+UV^T=(I+UV^TA^{-1})A$ 可逆,当且仅当 $I+UV^TA^{-1}$ 可逆,根据练习 2.4 ,这又当且仅当 $I+V^TA^{-1}U$ 可逆.简单计算,有

$$\begin{split} &[A^{-1}-A^{-1}U(I+V^TA^{-1}U)^{-1}V^TA^{-1}](A+UV^T)\\ &=I+A^{-1}UV^T-A^{-1}U(I+V^TA^{-1}U)^{-1}V^T-A^{-1}U(I+V^TA^{-1}U)^{-1}V^TA^{-1}UV^T\\ &=I+A^{-1}UV^T-A^{-1}U(I+V^TA^{-1}U)^{-1}[I+V^TA^{-1}U]V^T\\ &=I+A^{-1}UV^T-A^{-1}UV^T\\ &=I. \end{split}$$

由逆矩阵的唯一性即得结论. 6

$$(I_m + AB)^{-1} = I_m - A(I_n + BA)^{-1}B, \qquad (I_n + BA)^{-1} = I_n - B(I_m + AB)^{-1}A.$$

插句题外话:这个公式的有用之处在于,当 m 很大,而 n 很小时,我们可以把判断 m 阶矩阵 I_m+AB 是否可逆的问题转化为判断一个 n 阶矩

 $^{^{5}}$ 这里要用到定理: 方阵 M 可逆当且仅当 Mx=0 只有零解。

 $^{^6}$ 其他解法: 习题课 1 已证明如下结论: 若 $A\in M_{m\times n}(\mathbb{R}),\, B\in M_{n\times m}(\mathbb{R}),\, 则\,\,I_m+AB$ 可逆当且仅当 I_n+BA 可逆,且它们的逆矩阵可以互相表示

练习 2.6 计算:
$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & c_1 \\ 0 & 1 & 0 & \cdots & 0 & c_2 \\ 0 & 0 & 1 & \cdots & 0 & c_3 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ b_1 & b_2 & b_3 & \cdots & b_{n-1} & a \end{bmatrix}^{-1}$$

解. 记 $c = [c_i]_{(n-1)\times 1}, b = [b_i]_{(n-1)\times 1},$ 于是问题即是求解 $\begin{bmatrix} I & c \\ b^T & a \end{bmatrix}^{-1}.$

解法一: 利用分块矩阵求逆公式, 即得

$$\begin{bmatrix} I & c \\ b^T & a \end{bmatrix}^{-1} = \begin{bmatrix} I & -c \\ 0 & 1 \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & (a-b^Tc)^{-1} \end{bmatrix} \begin{bmatrix} I & 0 \\ -b^T & 1 \end{bmatrix} = \begin{bmatrix} I + \frac{1}{a-b^Tc}cb^T & -\frac{1}{a-b^Tc}c \\ -\frac{1}{a-b^Tc}b^T & \frac{1}{a-b^Tc} \end{bmatrix}.$$

7

解法二:
$$\begin{bmatrix} I & c \\ b^T & a \end{bmatrix} = I + \begin{bmatrix} 0 & c \\ 1 & a \end{bmatrix} \begin{bmatrix} b^T & -1 \\ 0 & 1 \end{bmatrix},$$
然后利用 Sherman-Morrison-Woodbury 公式.

练习 2.7 计算:

阵 I_n+BA 是否可逆的问题(后者容易的多),并把求解这个 m 阶矩阵的逆矩阵的问题(当它可逆时)转化为求解一个低阶矩阵的逆矩阵的问题。本题中 A 可逆,故 $A+UV^T=A(I_n+A^{-1}UV^T)$ 可逆当且仅当 $I_n+A^{-1}UV^T$ 可逆;用上面的结论,后者等价于 $I_p+V^TA^{-1}U$ 可逆。当 $A+UV^T$ 或等价的 $I_n+A^{-1}UV^T$ 可逆时,上面的结论还告诉我们 $(A+UV^T)^{-1}=(A(I_n+A^{-1}UV^T))^{-1}=(I_n+A^{-1}UV^T)^{-1}A^{-1}=(I_n-A^{-1}U(I_p+V^TA^{-1}U)^{-1}V^T)A^{-1}=A^{-1}-A^{-1}U(I_p+V^TA^{-1}U)^{-1}V^TA^{-1}$.

 7 实在想推广,可以这样。设 A,B,C,D 分别是 $m\times m,m\times n,n\times m,n\times n$ 阶矩阵,其中 A 可逆,对 $M=\begin{pmatrix}A&B\\C&D\end{pmatrix}$ 作 "分块矩阵的初等变换"有

$$\left(\begin{array}{cc} I_m & 0 \\ -CA^{-1} & I_n \end{array}\right) \left(\begin{array}{cc} A & B \\ C & D \end{array}\right) = \left(\begin{array}{cc} A & B \\ 0 & D - CA^{-1}B \end{array}\right).$$

等式左边的第一个矩阵可逆,其逆矩阵是 $\begin{pmatrix} I_m & 0 \\ CA^{-1} & I_n \end{pmatrix}$,故 M 可逆当且仅当 "分块上三角阵" $\begin{pmatrix} A & B \\ 0 & D-CA^{-1}B \end{pmatrix}$ 可逆,而由作业题知,后者可逆当且仅当 $A,D-CA^{-1}B$ 都可逆,已知 A 可逆,所以综上有 M 可逆当且仅当 $D-CA^{-1}B$ 可逆。因为

$$\left(\begin{array}{cc} A & B \\ C & D \end{array}\right) = \left(\begin{array}{cc} I_m & 0 \\ CA^{-1} & I_n \end{array}\right) \left(\begin{array}{cc} A & B \\ 0 & D - CA^{-1}B \end{array}\right),$$

故当 M 可逆时, 我们有

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} A & B \\ 0 & D - CA^{-1}B \end{pmatrix}^{-1} \begin{pmatrix} I_m & 0 \\ -CA^{-1} & I_n \end{pmatrix}$$

$$= \begin{pmatrix} A^{-1} & -A^{-1}B(D - CA^{-1}B)^{-1} \\ 0 & (D - CA^{-1}B)^{-1} \end{pmatrix} \begin{pmatrix} I_m & 0 \\ -CA^{-1} & I_n \end{pmatrix}$$

$$= \begin{pmatrix} A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1} & -A^{-1}B(D - CA^{-1}B)^{-1} \\ -(D - CA^{-1}B)^{-1}CA^{-1} & (D - CA^{-1}B)^{-1}. \end{pmatrix}$$

可以说,这是2阶矩阵的求逆公式

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)^{-1} = \frac{1}{ad-bc} \left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right) \qquad (ad-bc \neq 0)$$

对分块阵的推广。以下 3 种 (2 阶的) 初等方阵

$$\left(\begin{array}{cc} 1 & 0 \\ a & 1 \end{array}\right) \quad (a \in \mathbb{R}), \quad \left(\begin{array}{cc} c & 0 \\ 0 & 1 \end{array}\right) \quad (c \neq 0), \quad \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

对应的 3 种分块初等方阵分别是

$$\left(\begin{array}{cc} I_m & 0 \\ B & I_n \end{array}\right) \quad (B \in M_{n \times m}(\mathbb{R})), \quad \left(\begin{array}{cc} P & 0 \\ 0 & I_n \end{array}\right) \quad (P \not \! E \ m \ \S \ \text{可逆阵}), \quad \left(\begin{array}{cc} 0 & I_m \\ I_n & 0 \end{array}\right).$$

这些都是可逆阵, 请试着写下它们的逆矩阵

1.
$$\begin{bmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ n & 1 & 2 & \cdots & n-2 & n-1 \\ n-1 & n & 1 & \cdots & n-3 & n-2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 2 & 3 & 4 & \cdots & n & 1 \end{bmatrix}^{-1};$$

2.
$$\begin{bmatrix} a & a+h & a+2h & \cdots & a+(n-2)h & a+(n-1)h \\ a+(n-1)h & a & a+h & \cdots & a+(n-3)h & a+(n-2)h \\ a+(n-2)h & a+(n-1)h & a & \cdots & a+(n-4)h & a+(n-3)h \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a+h & a+2h & a+3h & \cdots & a+(n-1)h & a \end{bmatrix}^{-1}.$$

解. 1. 记原矩阵为 S.

解法一: 对 $\begin{bmatrix} S & I \end{bmatrix}$ 做初等行变换. 前 n-1 行每行都减去下一行可以得到 $\begin{bmatrix} \cdots & 1 & 1-n & 1 & \cdots \end{bmatrix}$; 然后前 n-1 行相加放在第一行可以得到 $\begin{bmatrix} -1 & \cdots & -1 \end{bmatrix}$; 然后第 2 到 n-1 行与此行相加得到 $-ne_i^T$, 之后是平凡的.

解法二:记向量 $\mathbf{1}_m=[1]_{m\times 1}$ 和矩阵 $J=\begin{bmatrix}e_n&e_1&\cdots&e_{n-2}&e_{n-1}\end{bmatrix}$. 注意 S 的特殊形式,我

 $nI - \mathbf{1}_n \mathbf{1}_n^T$. 又有 $\mathbf{1}^T S = \frac{n(n+1)}{2} \mathbf{1}^T$. 于是 $I = \frac{1}{n} [(J-I)S + \mathbf{1}\mathbf{1}^T] = \frac{1}{n} [(J-I)S + \frac{2}{n(n+1)} \mathbf{1}\mathbf{1}^T S] = \frac{1}{n} [(J-I)S + \frac{2}{n(n+1)} \mathbf{1}\mathbf{1}^T] S$. 于是猜测 $S^{-1} = \frac{1}{n} [(J-I) + \frac{2}{n(n+1)} \mathbf{1}\mathbf{1}^T]$, 只需要再验证 $S \frac{1}{n} [(J-I) + \frac{2}{n(n+1)} \mathbf{1}\mathbf{1}^T] = I$, 而这是容易的.

2. 若 h=0,则原矩阵为 $a\mathbf{1}\mathbf{1}^T$,不可逆.考虑 $h\neq 0$ 的情形.若 a=h,则原矩阵为 hS,于是 $(hS)^{-1}=\frac{1}{hn}[J-I+\frac{2}{n(n+1)}\mathbf{1}\mathbf{1}^T]$.若 $a\neq h$,则原矩阵为 $hS+(a-h)\mathbf{1}\mathbf{1}^T$,利用 Sherman-Morrison-Woodbury 公式,有 $[hS+(a-h)\mathbf{1}\mathbf{1}^T]^{-1}=(hS)^{-1}-\frac{a-h}{1+(a-h)\mathbf{1}^T(hS)^{-1}\mathbf{1}}(hS)^{-1}\mathbf{1}\mathbf{1}^T(hS)^{-1}=\frac{1}{hn}[J-I+\frac{2}{n(n+1)}\mathbf{1}^T]-\frac{a-h}{1+(a-h)\frac{2}{h(n+1)}}\frac{4}{h^2n^2(n+1)^2}\mathbf{1}\mathbf{1}^T=\frac{1}{hn}(J-I)+\frac{2}{[2a+h(n-1)]n^2}\mathbf{1}\mathbf{1}^T$,其中 $(hS)^{-1}\mathbf{1}=\frac{2}{hn(n+1)}\mathbf{1}$, $\mathbf{1}^T(hS)^{-1}=\frac{2}{hn(n+1)}\mathbf{1}^T$.

综上,当 h=0 时,逆矩阵不存在;当 $h\neq 0$ 时,逆矩阵为 $\frac{1}{hn}(J-I)+\frac{2}{[2a+h(n-1)]n^2}\mathbf{1}\mathbf{1}^T$.

练习 2.8 证明:任意可逆矩阵都是初等矩阵的乘积. ⁸

证. 任意可逆矩阵 A 都可以通过初等行变换变成单位矩阵,也即存在 P_1, \cdots, P_s 初等矩阵,使得 $P_1 \cdots P_s A = I$. 所以我们知道 $A^{-1} = P_1 \cdots P_s$,再根据逆的性质可知 $A = (A^{-1})^{-1} = P_s^{-1} \cdots P_1^{-1}$. 因为初等矩阵的逆矩阵也仍是初等矩阵,所以我们得证题目结论.

练习 2.9 证明对于对换矩阵 $P_{ij}(i < j)$ 以下性质成立:

1. $\forall i < k < j$ 我们有

⁸课上证明过的定理

- $P_{ik}P_{ij} = P_{kj}P_{ik} = P_{ij}P_{kj}$;
- $P_{ij}P_{ik} = P_{kj}P_{ij} = P_{ik}P_{kj}$;
- $(P_{ik}P_{ij})^3 = I$.
- 2. 若 *i*, *j*, *k*, *l* 互不相等,则
 - $P_{kl}P_{ij} = P_{ij}P_{kl}$;
 - $(P_{kl}P_{ij})^2 = I$.

证. 对任意 i < k < j, $P_{ik}P_{ij} = P_{ik}P_{ij}I$ 所得矩阵相当于对单位矩阵做了两次行交换,注意 e_i^T 是单位矩阵的第i 行,则有

$$\begin{pmatrix} i & k & j \\ e_i & e_k & e_j \end{pmatrix} \xrightarrow{P_{ij}} \begin{pmatrix} i & k & j \\ e_j & e_k & e_i \end{pmatrix} \xrightarrow{P_{ik}} \begin{pmatrix} i & k & j \\ e_k & e_j & e_i \end{pmatrix}.$$

所以我们看到矩阵 $P_{ik}P_{ij}I$ 是将 e_k 放在第 i 行, e_i 放在第 j 行, e_j 放在第 k 行,剩下的其它行都和单位矩阵一样。同样我们可以算出题目中其它的对换矩阵乘积并得出所有等式。

练习 2.10 请找出一个矩阵 A 满足:存在矩阵 X 使得 XA = I,但不存在 Y 使得 AY = I. 看看这种矩阵的行数与列数应该满足什么条件.

解. 取
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
,则有 $A^T A = I_2$.

我们接下来证明. 若有矩阵 Y 使得 AY=I, 则 Y 必须是 2×3 阶矩阵. 记 $Y=\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$, 则

$$AY = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 0 \end{bmatrix} \neq I$$
. 可以看出 A 的行数严格大于列数. 9

练习 2.11 令
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 为一个 2 阶实方阵,证明:

- (1) $A^2 (a+d)A + (ad-bc)I_2 = \mathbf{0}$ (这即是 2 阶方阵情形下的 Hamilton-Cayley 定理);
- (2) 若 $A^2 = I_2$ 且 $A \neq \pm I_2$,则 a + d = 0 且 ad bc = -1;
- (3) 若 $A^3 = I_2$ 且 $A \neq I_2$,则 a + d = -1 且 ad bc = 1;
- (4) 若 $A^N = I_2, N \in \mathbb{N}, n \ge 1$, 则 $(ad bc)^N = 1$. 10

 $^{^9}$ 若 $A \in M_{m \times n}(\mathbb{R})$ 有 r 个主元列(这里的 r 就是 A 的秩,注意 $r \leq \min(m,n)$),则 A 有左逆当且仅当 r = n (此时必有 $m \geq n$),A 有右逆当且仅当 r = m (此时必有 $m \leq n$)。综合起来有 A 有左逆而没有右逆当且仅当 r = n < m。注意, $m \geq n$ 是有左逆的必要条件但不充分, $m \leq n$ 是有右逆的必要条件但不充分。

 $^{^{10}(3)(4)}$ 属于体验型题目,学了更高级的知识之后很容易证明,目前只能生算,如果你算个半个小时还毫无头绪的话,我建议放弃。

⁽²⁾ 的 "高级证法" 是这样的: $A^2 = I_2$ 而 $A \neq \pm I_2$ 等价于是说 $x^2 - 1$ 是 A 的化零多项式,而 x + 1, x - 1 不是。这时由特征多项式和化零多项式的一般理论可以推知 A 的特征多项式和 A 的最小多项式都是 $x^2 - 1$ 。根据定义,A 的特征多项式是 $x^2 - \text{tr}(A)x + \det(A) = x^2 - (a + d)x + ad - bc$,所以 a + d = 0,ad - bc = -1.

⁽³⁾ 的 "高级证法" 是: 从 $A^3 = I_2$ 知道 $x^3 - 1 = (x - 1)(x^2 + x + 1)$ 是 A 的化零多项式,从 $A \neq I_2$ 知道 x - 1 不是 A 的化零多项式,所以 A 的特征多项式和 A 的最小多项式都是 $x^2 + x + 1$,所以 a + d = -1,ad - bc = 1.

⁽⁴⁾ 定义函数 $\det: M_2(\mathbb{R}) \to \mathbb{R}; A \mapsto \det(A) = ad - bc.$ 先证明引理: \det 是乘性函数, i.e. $\det(AB) = \det(A) \det(B), \forall A, B \in M_2(\mathbb{R}).$

证. 如果 A 是对角矩阵,即 b=c=0,则 $A^N=\begin{bmatrix} a^N & 0 \\ 0 & d^N \end{bmatrix}$,此时结论 (1),(2),(4) 显然成立,而 $A^3=I_2\Rightarrow A=I_2$.

我们接下来假设 A 不是对角矩阵, 即 b,c 不同时为零.

直接计算得 $A^2 = \begin{bmatrix} a^2 + bc & b(a+d) \\ c(a+d) & d^2 + bc \end{bmatrix}$ 这样可以得到 (1). 因为 b, c 不能同时为零,所以当 $A^2 = I_2$

时,只能是 $a+d=0, a^2+bc=-ad+bc=1$,即得证 (2).

证明结论 (3) 我们可以用两种方法.

方法一: 直接计算得 $A^3 = \begin{bmatrix} a^3 + 2abc + bcd & b(a^2 + d^2 + ad + bc) \\ c(a^2 + d^2 + bc + ad) & d^3 + 2dbc + abc \end{bmatrix}$, 因为 b, c 不能同时为零,所以当 $A^3 = I_2$ 时,只能是

$$\begin{cases} a^2 + d^2 + bc + ad = 0 \\ a^3 + 2abc + bcd = a(a^2 + bc) + bc(a + d) = 1 \\ d^3 + 2dbc + abc = d(d^2 + bc) + bc(a + d) = 1 \end{cases}$$

约化上述方程组可得

$$\begin{cases} (a+d)^2 + (bc - ad) = 0 \\ a^3 + 2abc + bcd = a(-d^2 - ad) + bc(a+d) = (a+d)(bc - ad) = 1 \end{cases}$$

$$\Rightarrow \begin{cases} (a+d)^3 = -1 \\ bc - ad = -(a+d)^2 \end{cases} \Rightarrow \begin{cases} a+d = -1 \\ bc - ad = -(a+d)^2 = -1 \end{cases}$$

即得证 (3).

方法二:根据 (1) 的结论可知 $A^2 = (a+d)A + (bc-ad)I_2$,于是有 $A^3 = AA^2 = (a+d)A^2 + (bc-ad)A = ((a+d)^2 + (bc-ad))A + (a+d)(bc-ad)I_2$. 所以由条件 $A^3 = I_2$ 且 b,c 不全为零可知 $(a+d)^2 + (bc-ad) = 0$, (a+d)(bc-ad) = 1,即得证 (3).

证明 (4) 之前我们先令 $A^n=f_nA+g_nI_2$,则根据结论 (1) 有 $A^{n+1}=AA^n=f_nA^2+g_nA=f_n((a+d)A+(bc-ad)I_2)+g_nA=f_{n+1}A+g_{n+1}I_2$,所以有

$$\begin{cases}
f_{n+1} = (a+d)f_n + g_n \\
g_{n+1} = (bc - ad)f_n
\end{cases}$$
(2.1)

易见 $f_1 = 1, g_1 = 0$. 计算

$$(af_{n+1} + g_{n+1})(df_{n+1} + g_{n+1}) - bcf_{n+1}^{2}$$

$$= (ad - bc)f_{n+1}^{2} + (a+d)f_{n+1}g_{n+1} + g_{n+1}^{2}$$

$$\stackrel{\text{(2.1)}}{=} (ad - bc)((a+d)f_{n} + g_{n})^{2} + (a+d)(bc - ad)((a+d)f_{n} + g_{n})f_{n} + (bc - ad)^{2}f_{n}^{2}$$

$$= (ad - bc)((ad - bc)f_{n}^{2} + (a+d)f_{n}g_{n} + g_{n}^{2})$$

$$= (ad - bc)((af_{n} + g_{n})(df_{n} + g_{n}) - bcf_{n}^{2})$$

$$(2.2)$$

不妨设 $A = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}$, $B = \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix}$, 那么 $AB = \begin{pmatrix} a_1b_1 + a_2b_3 & a_1b_2 + a_2b_4 \\ a_3b_1 + a_4b_3 & a_3b_2 + a_4b_4 \end{pmatrix}$, 所以 $\det(AB) = (a_1b_1 + a_2b_3)(a_3b_2 + a_4b_4) - (a_1b_2 + a_2b_4)(a_3b_1 + a_4b_3) = \underbrace{a_1a_3b_1b_2}_{A_1a_4b_1b_4 + a_2a_3b_2b_3 + \underbrace{a_2a_4b_3b_4}_{A_2a_4b_3b_4} - \underbrace{a_1a_3b_1b_2}_{A_1a_4b_2b_3 - a_2a_3b_1b_4 - \underbrace{a_2a_4b_3b_4}_{A_1a_4b_4b_4} = (a_1a_4 - a_2a_3)(b_1b_4 - b_2b_3) = \det(A) \det(B)$. 进一步用数学归纳法可以证明 $\det(A_1 \cdots A_k) = \det(A_1) \cdots \det(A_k)$, $\forall A_1, \dots, A_k \in M_2(\mathbb{R})$. 回到原命题,因为 $A^N = I_2$,所以 $\det(A^N) = \det(I_2)$. 由行列式的乘性推知 $\det(A^N) = (\det(A))^N = (ad - bc)^N$,而 $\det(I_2)$ 显然等于 1,故命题得证。

根据等式 (2.2) 和递归我们有

$$(af_{n+1} + g_{n+1})(df_{n+1} + g_{n+1}) - bcf_{n+1}^2 = (ad - bc)^n((af_1 + g_1)(df_1 + g_1) - bcf_1^2) = (ad - bc)^{n+1}.$$

若
$$A^N = I_2$$
, 因为 b, c 不全为零,所以有
$$\begin{cases} f_N = 0 \\ g_N = 1 \end{cases} \Rightarrow 1 = (af_N + g_N)(df_N + g_N) - bcf_N^2 = (ad - bc)^N,$$
得证结论 (4).

练习 2.12 A 为 n 阶实方阵,证明以下结论:

- 1. 若对于任意的 n 维实列向量 α , 都有 $(A\alpha) \cdot (A\alpha) = \alpha \cdot \alpha$, 则 A 必须是正交矩阵.
- 2. 若对于任意两个 n 维实列向量 α, β ,都有 $(A\alpha) \cdot \beta = \alpha \cdot (A\beta)$,则 A 必须是对称矩阵. 11
- 证. 1. 根据点积定义可知

$$e_i \cdot e_j = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$

将点积用矩阵乘法表示则有

$$e_i^T \cdot e_j = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$

而另一方面令 $Ae_i = \varepsilon_i$,则有 $A = [\varepsilon_1, \cdots, \varepsilon_n]$. 由题设条件可知

$$\varepsilon_i^T \cdot \varepsilon_j = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$

而
$$A^T A = \begin{bmatrix} \varepsilon_1^T \\ \vdots \\ \varepsilon_n^T \end{bmatrix} [\varepsilon_1, \cdots, \varepsilon_n] = \begin{bmatrix} \varepsilon_1^T \varepsilon_1 & \varepsilon_1^T \varepsilon_2 & \cdots & \varepsilon_1^T \varepsilon_n \\ \varepsilon_2^T \varepsilon_1 & \varepsilon_2^T \varepsilon_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \varepsilon_{n-1}^T \varepsilon_n \\ \varepsilon_n^T \varepsilon_1 & \cdots & \varepsilon_n^T \varepsilon_{n-1} & \varepsilon_n^T \varepsilon_n \end{bmatrix} = I_n.$$
 故 A 为正交矩阵.

2. 记
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$
,则通过直接计算可得 $a_{ij} = e_i \cdot (Ae_j) = e_j \cdot (Ae_i) = a_{ji}$,所以 A 是对称 矩阵.

 $^{^{11}}$ 此题已经在作业中进行了扩展讨论,两个列向量 α, β 的内积 $\alpha \cdot \beta$ 用矩阵运算表示的话就是 $\alpha^T \beta = \beta^T \alpha$.