

Evaluation of Containment Boxes as a Fire Mitigation Method in Elevated Oxygen Conditions

Alfredo Juarez

Susana Tapia Harper and Horacio Perez

Background and Scope

- Flight avionics boxes are applied throughout the International Space Station (ISS)
- Avionics boxes are an efficient means of containing required materials within an enclosure.
 - Potential strategy for isolating flammable materials
 - Use of wider variety of materials
 - Protecting temperature sensitive equipment (such as Li-Ion battery containing items)
- Assessment of a fire breach and propagation
 - Perform realistic scenario
 - Perform conservative/worst case scenario
 - Evaluate general containment
 - Assess propagation potential (external maximum temperatures)

Approach

- Simulated avionics box
 - Worst case/thinnest cross section (case material)
 - No forced ventilation
 - Simulated enclosure vents (non-direct vent path)
- Worst case environment
 - 40% Oxygen concentration
 - 101.3 kPa (14.7 psia) cabin pressure
 - Procedure:
 - Vacuum chamber
 - Backfill with premixed gas
 - Stabilize for 15 min. before test
- Propagation potential
 - Witness plates located above feed-throughs (buoyancy)
 - Measure external surface temperatures

Simulated Avionics Box

- Physical Dimensions:
 - 15.14L (923.4 in³)
 - 23.9 x 23.9 x 29 cm (9 x 9 x11.4 in.)
 - Actual thinnest wall thickness- 0.38 cm (0.150 in.) wall thickness
 - Wall Thickness – 0.25cm (0.1 in.) < 0.38 cm (0.150 in.) (actual)
- Key Features
 - Simplified analogous vents – tortuous path
 - PCB feed-throughs
 - Upward flame prop. orientation (analogous to NASA STD Test 1)
 - Not hermetically sealed, gas can readily flow in/out
- All tests performed using the same simulated avionics box

NASA

WHITE SANDS TEST FACILITY

Assembled Test Article

Realistic Scenario

1. Igniter Location 1
2. Igniter Location 2
3. Ribbon cable connector
4. Ribbon cable
5. Polyurethane foam
6. PCB Board
7. PCB Feed-through

FLAME PROPAGATION

Realistic Scenario: Posttest

Severe Scenario

1. Vary Packing Density –
neglecting foam density
 - 60% Free Volume
 - 80% Free Volume
2. Oxygen consumption
concern → Hotwire ign.
3. Constant length and
thickness → vary width
4. 6 rows of two Samples
5. 6 hot wire igniters

Severe Scenario: Posttest

Results

- Self-extinguishment occurred in all cases
 - No observed breach flames
 - No propagation to witness plates
- Smoke observed exiting through feed-throughs
- Maximum Sustained Peak temperatures ~ 150F
 - Low risk as potential overheat source
 - Conservative scenario, buoyancy

Results

	Pretest			Posttest			Posttest Deltas		
	O ₂ (% vol.)	Mass g	CO ₂ (% vol.)	O ₂ (% vol.)	Mass g	CO ₂ (% vol.)	O ₂ (% vol.)	Mass g	CO ₂ (% vol.)
Realistic Scenario 1	40.10	246.66	0.00	39.90	240.89	0.08	-0.20	-5.77	0.08
Realistic Scenario 2	40.15	240.89	0.00	40.02	234.04	0.08	-0.13	-6.85	0.08
60 Percent Free Volume	40.30	189.63	0.00	40.10	185.92	0.08	-0.20	-3.71	0.08
80 Percent Free Volume	40.30	96.89	0.00	40.10	92.03	0.08	-0.20	-4.86	0.08

- Simplified Model - Assumptions

- % O₂ within enclosure = MOC_{Polyurethane} @ 14.7 psia(19%)
- % O₂ outside enclosure remains constant
- Posttest atmosphere fully mixed

- Calculated estimate ~ **40.08 %** O₂ for tests using foam

$$V_{\text{free volume}} = V_{\text{chamber}} - V_{\text{enclosure}}$$

$$V_{O_2,\text{free volume}} = \%_{O_2} * V_{\text{free volume}}$$

$$V_{O_2,\text{enclosure}} = \%_{O_2}^{f,\text{enclosure}} * V_{\text{enclosure}}$$

$$\%_{O_2}^f = \frac{(V_{O_2,\text{enclosure}} + V_{O_2,\text{free volume}})}{V_{\text{chamber}}}$$

$$P_{\text{internal}} > P_{\text{external}}$$

$$T_{\text{internal}} > T_{\text{external}}$$

$$\%O_2_{\text{external}} \approx \text{constant}$$

Conclusions

- Enclosure prevented:
 - Propagation to adjacent material (PMMA Witness plates)
 - Flame breaching
 - Excessive surface temperatures despite being thinner than current design
- Observations
 - Smoke observed emanating from PCB feed-throughs
 - Oxygen depletion within enclosure → extinguishment
 - Positive pressure inhibit the replenishing of fresh oxygen
- Note: all tests present here were performed w/out forced ventilation. Units with forced air convective cooling may behave differently.

NASA

WHITE SANDS TEST FACILITY

Back-up Slides

Results

