ANÁLISIS DE FUNCIONES DE VARIABLE COMPLEJA CURSO 2020-2021

HOJA 9

- 1. Determina el número de raíces de las ecuaciones siguientes en los recintos indicados:
 - a) $z^6 + 9z^4 + z^3 + 2z + 4 = 0$; en el disco |z| < 1.
 - b) $z^5 + z^2 + 1 = 0$; en el disco |z| < 2.

 - c) $2z = 8 + e^{-z}$; en Re z > Im z > 0. d) $z^7 5z^4 + z^2 2 = 0$; en el anillo 1 < |z| < 2.
- **2.** Demuestra que el polinomio $2z^5 + 6z 1$ tiene una raíz en el intervalo (0,1). Halla cuántas raíces tiene en el anillo $\{z : 1 < |z| < 2\}$.
- **3.** Demuestra que para todos $m, n \in \mathbb{N}$, el polinomio

$$P(z) = 1 + z + \frac{z^2}{2!} + \dots + \frac{z^m}{m!} + 3z^n$$

tiene exactamente n raíces en el disco unidad abierto.

- **4.** Sea f una función holomorfa en un entorno del disco $\overline{D}(0;1)$ tal que |f(z)| < 1 si |z| = 1. ¿Cuantos puntos fijos puede tener f en D(0;1)?
- **5.** Sea Ω un abierto conexo de \mathbb{C} y sea $(f_n)_n$ una sucesión de funciones holomorfas en Ω que converge uniformemente a f en cada subconjunto compacto de Ω . Demuestra que:
- a) Si f no es idénticamente nula y $a \in \Omega$, entonces f(a) = 0 si, y solo si, existe una sucesión $(z_n)_n \subset \Omega$ tal que $z_n \to a$ y $f_n(z_n) = 0$ para todo n a partir de un cierto n_0 .
 - b) Si f no es constante y cada f_n es inyectiva, entonces f es inyectiva.
- **6.** En cada uno de los siguientes casos, halla el máximo de |f| en el conjunto A que se indica y los puntos de A donde se alcanzan:

 - a) $f(z) = e^z$, $A = \overline{D}(1;1)$; b) $f(z) = z^2 + 1$, $A = \overline{D}(i;1)$; c) $f(z) = z^2 + iz 1$, $A = \overline{D}(0;1)$.
- 7. Sea Ω un subconjunto abierto conexo y acotado de $\mathbb C$ y sea f una función holomorfa en Ω y continua en $\overline{\Omega}$, tal que |f(z)|=c para todo $z\in\partial\Omega$. Demuestra que o f es constante o f tiene un cero en Ω .
- **8.** ¿Existe una función holomorfa del disco D = D(0;1) en él mismo con f(1/2) = 3/4 y f'(1/2) =2/3?
- **9.** Supongamos que f es holomorfa en un entorno del disco $\overline{D}(0;1)$ y |f(z)|=1 si |z|=1 y supongamos que f tiene un cero simple en $z=\frac{1}{4}(1+i)$ y un cero doble en $z=\frac{1}{2}$. ¿Puede ser $f(0) = \frac{1}{2}$?
- **10.** Sea f una función holomorfa en $\Omega = \{z \in \mathbb{C} : \operatorname{Re} z > 0\}$ con $\operatorname{Re} f(z) > 0$ para todo $z \in \Omega$. Supongamos que existe un a tal que f(a) = a, demuestra que $|f'(a)| \leq 1$.
- **11.** Sea $\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Re} z > 0\}$ el semiplano derecho abierto y sea $f: D(0;1) \to \mathbb{H}$ una función holomorfa tal que f(0) = 1. Demuestra que

$$\frac{1 - |z|}{1 + |z|} \le |f(z)| \le \frac{1 + |z|}{1 - |z|}$$

para todo $z \in D(0;1)$.

- **12.** Si f es una función holomorfa que no se anula en un abierto Ω , demuestra que la función $u = \log |f|$ es armónica en Ω .
- 13. Sea u una función armónica en Ω . Sean $a \in \Omega$ y R > 0 tales que $\overline{D}(a;R) \subset \Omega$. Demuestra que

$$u(a) = \frac{1}{\pi R^2} \iint_{\overline{D}(a;R)} u(x,y) dx dy$$

14. Sea $f:\{z\in\mathbb{C}:\operatorname{Re}z=0\}\longrightarrow\mathbb{R}$ una función continua y acotada. Se define u por

$$u(x+iy) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{xf(it)}{x^2 + (y-t)^2} dt$$
 $(x > 0).$

Demuestra que u es una función armónica acotada en $\{z \in \mathbb{C} : \operatorname{Re} z > 0\}$ tal que para todo $c \in \mathbb{R}$, $f(ic) = \lim_{z \to ic} u(z)$.

- **15.** Sea Ω un abierto simplemente conexo acotado de \mathbb{C} y sea $\varphi_0 : \Omega \to D(0;1)$ una aplicación holomorfa y biyectiva. Supongamos que existe un homeomorfismo φ de $\overline{\Omega}$ sobre $\overline{D}(0;1)$ que extiende φ_0 . Demuestra que:
 - a) $\varphi(\Omega) = D(0;1)$ y $\varphi(\partial\Omega) = C(0;1)$.
- b) Si $f: \partial\Omega \longrightarrow \mathbb{R}$ es una función continua, existe una función $u: \overline{\Omega} \longrightarrow \mathbb{R}$ continua tal que u(z) = f(z) para todo $z \in \partial\Omega$ y u es armónica en Ω .
- **16.** Sea Ω un subconjunto abierto de $\mathbb C$ simétrico con respecto al eje real. Si $v:\{z\in\Omega:\operatorname{Im} z\geqslant 0\}\to\mathbb R$ es una función continua, armónica en $\{z\in\Omega:\operatorname{Im} z>0\}$ y que se anula en $\{z\in\operatorname{Im} z=0\}$, entonces la función $V:\Omega\to\mathbb R$ definida:

$$V(z) = \begin{cases} v(z) & \text{si Im } z \ge 0 \\ -v(\bar{z}) & \text{si Im } z < 0 \end{cases}$$

es armónica.

- 17. (Teorema de Harnack). Sea $(u_n)_{n\in\mathbb{N}}$ una sucesión de funciones armónicas en un abierto conexo Ω de \mathbb{C} . Demuestra que:
- a) Si (u_n) converge a una función u, uniformemente sobre los subconjuntos compactos de Ω , entonces u es armónica en Ω .
- b) Si $u_1 \leq u_2 \leq \ldots$ entonces o (u_n) converge uniformemente sobre los subconjuntos compactos de Ω o $u_n(z) \to \infty$ para todo $z \in \Omega$.

