Using SEMs to model occupancy and species interactions

Two exercises today...

1. Townsend's warbler occupancy

2. Felid occupancy and competition

Townsend's warbler example

Step 1: simulate variation in forest maturity

Step 2: simulate variation in canopy height (c)

$$\boldsymbol{c} \sim \operatorname{lognormal}(\alpha_1 + \beta_1 \boldsymbol{m}, \sigma_c = 0.05)$$

Step 3: simulate variation in sub-canopy height (s)

$$s \sim \text{lognormal}(\alpha_2 + \beta_2 m, \sigma_s = 0.05)$$

The hypothesis: older forests will have greater canopy heights and greater sub-canopy heights

The most important caveat: if things aren't collinear, then you can't assign them to a latent variable

Step 4: simulate variation in warbler occupancy (z)

$$z \sim \text{Bernoulli}(\text{logit}^{-1}(\alpha_3 + \beta_3 m))$$

$$\alpha_3 = 0$$

$$\alpha_3 = 0$$
 $\beta_3 = 2$

Step 4: simulate variation in warbler occupancy (z)

 $z \sim \text{Bernoulli}(\text{logit}^{-1}(\alpha_3 + \beta_3 m))$

Step 5: simulate detection* data (y)

$$y \sim \text{binomial}(\mathbf{z} \times v, p)$$

$$p = 0.35$$

$$v = 5$$

So... if warblers aren't there (z = 0), we won't see them

$$y \sim \text{binomial}(\mathbf{0} \times v, p)$$

$$v = 5$$

$$p = 0.35$$

If they are there (z = 1), we'll see them 0 to 5 times

$$y \sim \text{binomial}(\mathbf{1} \times v, p)$$

$$v = 5$$

$$p = 0.35$$

$$y_1 = [1, 0, 0, 0, 0, 0, 0, 1, 0, 0]$$
 $z_1 = 1$
 $y_2 = [0]$ $z_2 = ?$

$$y_1 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]$$
 $z_1 = 1$ $z_2 = [0]$ $z_2 = [0]$

$$y_1 = [1, 0, 0, 0, 0, 0, 0, 1, 0, 0]$$

 $y_2 = [0]$

$$z_1 = 1$$
 $z_2 = ?$

$$y_1 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]$$

 $y_2 = [0]$

$$z_1 = 1$$
 $z_2 = ?$

Ecological process

$$z \sim \text{Bernoulli}(\text{logit}^{-1}(\alpha_3 + \beta_3 m))$$

Is this species even present?

Observation process

$$y \sim \text{binomial}(z \times v, p)$$

Did we detect it?

Let's go to the code, but first cats!

Occupancy of competing felids (bobcat [Lynx rufus] and lynx [Lynx lynx])

Peers, Thornton, and Murray (2013) Proceedings B

Occupancy of competing felids (bobcat [Lynx rufus] and lynx [Lynx lynx])

Peers, Thornton, and Murray (2013) Proceedings B

Mechanisms: Prey availability (snowshoe hare; Lepus americanus)

Peers, Thornton, and Murray (2013) Proceedings B

Mechanisms: Boreal (and montane) forest

Mechanisms: Snow depth

SWE (mm)

Canada lynx (Lynx canadensis)

Bobcat

Hypothesis 1: Forests are good for lynx

Hypothesis 2: Bobcats compete with lynx

Evidence for large-scale effects of competition: niche displacement in Canada lynx and bobcat

Michael J. L. Peers¹, Daniel H. Thornton^{1,2,3} and Dennis L. Murray¹

ORIGINAL RESEARCH

Fine-scale habitat selection by sympatric Canada lynx and bobcat

Samantha J. Morin¹ | Jeff Bowman^{1,2} | Robby R. Marrotte¹ | Marie-Josée Fortin³

¹Department of Biology, Trent University, Peterborough, Ontario, Canada

²School of Environment, Washington State University, Pullman, WA, USA

³Panthera, 8 West 40th Street, New York, NY, USA

Hypothesis 3: Deep snow is bad for bobcats, but not for lynx

Criticize this model! (in small groups)

