

NPTEL ONLINE CERTIFICATION COURSE

RBD

Dr. A. Ramesh

DEPARTMENT OF MANAGEMENT

Learning Objectives

- Estimate variance components in an experiment involving random factors
- Understand the blocking principle and how it is used to isolate the effect of nuisance factors
- Design and conduct experiments involving the randomized complete block design

Randomized Block Design

- A completely randomized design (CRD) is useful when the experimental units are homogeneous
- If the experimental units are heterogeneous, blocking is often used to form homogeneous groups

Why RBD?

- A problem can arise whenever differences due to extraneous factors (ones not considered in the experiment) cause the MSE term in this ratio to become large.
- In such cases, the F value in equation can become small, signaling no difference among treatment means when in fact such a difference exists.

$$F = \frac{\text{MSTR}}{\text{MSE}}$$

Randomized block design

- Experimental studies in business often involve experimental units that are highly heterogeneous; as a result, randomized block designs are often employed.
- Blocking in experimental design is similar to stratification in sampling.

Randomized block design

- Its purpose is to control some of the extraneous sources of variation by removing such variation from the MSE term.
- This design tends to provide a better estimate of the true error variance and leads to a more powerful hypothesis test in terms of the ability to detect differences among treatment means.

Air Traffic Controller Stress Test

- A study measuring the fatigue and stress of air traffic controllers resulted in proposals for modification and redesign of the controller's work station
- After consideration of several designs for the work station, three specific alternatives are selected as having the best potential for reducing controller stress
- The key question is: To what extent do the three alternatives differ in terms of their effect on controller stress?

Air Traffic Controller Stress Test

- In a completely randomized design, a random sample of controllers would be assigned to each work station alternative.
- However, controllers are believed to differ substantially in their ability to handle stressful situations.
- What is high stress to one controller might be only moderate or even low stress to another.
- Hence, when considering the within-group source of variation (MSE), we must realize that this variation includes both random error and error due to individual controller differences.
- In fact, managers expected controller variability to be a major contributor to the MSE term.

A randomized block design for the air traffic controller stress test

Treatments

	System A	System B	System C
Controller 1	15	15	18
Controller 2	14	14	14
Controller 3	10	11	15
Controller 4	13	12	17
Controller 5	16	13	16
Controller 6	13	13	13

Blocks

Solving this example using ANOVA in python

```
In [1]:
        import pandas as pd
         import numpy as np
         import scipy
         import statsmodels.api as sm
        from statsmodels.formula.api import ols
In [4]: df = pd.read excel('RBD.xlsx')
        df
Out[4]:
            System A System B System C
                 15
                          15
                                   18
                 14
                          14
                                   14
         2
                          11
                 10
                                   15
         3
                 13
                          12
                                   17
                 16
                          13
                                   16
                 13
                          13
                                   13
```


Solving this example using ANOVA in python

ANOVA

```
In [20]:
         data = pd.melt(df.reset_index(), id_vars=['index'], value_vars=['System A','System B','System C'])
          data.columns = ['index', 'treatments', 'value']
         model = ols('value ~ C(treatments)', data=data).fit()
In [21]:
          anova table = sm.stats.anova lm(model, typ=1)
          anova table
Out[21]:
                        df sum_sq mean_sq
                                                      PR(>F)
          C(treatments)
                       2.0
                              21.0 10.500000 3.214286 0.068903
              Residual 15.0
                              49.0
                                    3.266667
                                                NaN
                                                        NaN
         # accept the null hypothesis
 In [9]:
```


Summary of stress data for the air traffic controller stress test

Treatments ⇒ Blocks ↓	System A	System B	System C	Block total	Block means
Controller 1	15	15	18	48	$\frac{-}{x_{1.}}$ =16
Controller 2	14	14	14	42	$\overline{x_{2.}}$ =14
Controller 3	10	11	15	36	$\overline{x_{3.}}$ =12
Controller 4	13	12	17	42	$\overline{x_{4.}}$ =14
Controller 5	16	13	16	45	$\overline{x_{5.}}$ =15
Controller 6	13	13	13	39	$\frac{1}{x_{6.}}$ =13
Column Total	81	78	93	252	$\frac{3}{x}$ 252/18 = 14

Summary of stress data for the air traffic controller stress test

Treatment means

$$\frac{\overline{x}_{.1}}{x_{.2}} = 81/6 = 13.5$$
 $\frac{\overline{x}_{.2}}{x_{.3}} = 78/6 = 13$
 $\frac{\overline{x}_{.3}}{x_{.3}} = 93/6 = 15.5$

ANOVA TABLE FOR THE RANDOMIZED BLOCK DESIGN WITH *k*TREATMENTS AND *b* BLOCKS

Sources of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F	P- value
Treatments	SS Treatments	k-1	MS Treatments = SSTR/k-1	MS Treatmen	
Blocks	SS block	(b-1)	MSBL = SSBL/b-1	ts / MSE	
Error	SSE	(k-1)(b-1)	MSE= SSE/(k- 1)(b-1)		
Total	SST	пт-1			

RBD Problem

```
x_{ij} = value of the observation corresponding to treatment j in block i
```

 \bar{x}_{i} = sample mean of the *j*th treatment

 \bar{x}_{i} . = sample mean for the *i*th block

 $\bar{\bar{x}} = \text{overall sample mean}$

RBD Problem

Step 1. Compute the total sum of squares (SST).

$$SST = \sum_{i=1}^{b} \sum_{j=1}^{k} (x_{ij} - \bar{x})^{2}$$

Step 1. SST =
$$(15 - 14)^2 + (15 - 14)^2 + (18 - 14)^2 + \dots + (13 - 14)^2 = 70$$

Step 2. Compute the sum of squares due to treatments (SSTR).

SSTR =
$$b \sum_{j=1}^{k} (\bar{x}_{.j} - \bar{\bar{x}})^2$$

Step 2. SSTR =
$$6[(13.5 - 14)^2 + (13.0 - 14)^2 + (15.5 - 14)^2] = 21$$

RBD Problem

Step 3. Compute the sum of squares due to blocks (SSBL).

SSBL =
$$k \sum_{i=1}^{b} (\bar{x}_{i} - \bar{x})^{2}$$

Step 3. SSBL =
$$3[(16 - 14)^2 + (14 - 14)^2 + (12 - 14)^2 + (14 - 14)^2 + (15 - 14)^2 + (13 - 14)^2] = 30$$

Step 4. Compute the sum of squares due to error (SSE).

$$SSE = SST - SSTR - SSBL$$

Step 4. SSE =
$$70 - 21 - 30 = 19$$

ANOVA table for the air traffic controller stress test

Sources of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F	P- value
Treatments	21	2	10.5	10.5/1.9	0.024
Blocks	30	5	6.0	=5.53	
Error	19	10	1.9		
Total	70	17			

$$F_{.025} = 5.46$$
 and $F_{.01} = 7.56$.

Reject the null hypothesis

Solving RBD example using python

```
In [1]:
        import pandas as pd
         import numpy as np
         import scipy
         import statsmodels.api as sm
         from statsmodels.formula.api import ols
        df = pd.read_excel('RBD.xlsx')
Out[4]:
            System A System B System C
                 15
                          15
                                    18
                 14
                          14
                                    14
                 10
                          11
                                   15
                 13
                          12
                                   17
                 16
                          13
                                    16
                 13
                          13
                                    13
```


Solving RBD example using python

```
In [20]: data = pd.melt(df.reset_index(), id_vars=['index'], value_vars=['System A','System B','System C'])
         data.columns = ['blocks', 'treatments', 'value']
In [22]:
         model = ols('value ~ C(block)+ C(treatments)', data=data).fit()
          anova table = sm.stats.anova lm(model, typ=1)
          anova table
Out[22]:
                           sum sq mean sq
                                                      PR(>F)
              C(block)
                       5.0
                              30.0
                                        6.0 3.157895 0.057399
          C(treatments)
                              21.0
                                       10.5 5.526316 0.024181
              Residual 10.0
                              19.0
                                        1.9
                                               NaN
                                                        NaN
In [23]: # reject the null hypothesis
```


Conclusion

- Finally, note that the ANOVA table shown in Table provides an F value to test for treatment effects but not for blocks.
- The reason is that the experiment was designed to test a single factor—work station design.
- The blocking based on individual stress differences was conducted to remove such variation from the MSE term.
- However, the study was not designed to test specifically for individual differences in stress.

- An experiment was performed to determine the effect of four different chemicals on the strength of a fabric.
- These chemicals are used as part of the permanent press finishing process.
- Five fabric samples were selected, and a randomized complete block design was run by testing each chemical type once in random order on each fabric sample.
- The data are shown in Table.
- We will test for differences in means using an ANOVA with alpha = 0.01.

• Table: Fabric Strength Data—Randomized Complete Block Design

		Fabric Sample				Treatment Totals	Treatment Averages
Chemical Type	1	2	3	4	5	${oldsymbol{\mathcal{Y}}}_i.$	$\overline{\mathcal{Y}}_{i}.$
1	1.3	1.6	0.5	1.2	1.1	5.7	1.14
2	2.2	2.4	0.4	2.0	1.8	8.8	1.76
3	1.8	1.7	0.6	1.5	1.3	6.9	1.38
4	3.9	4.4	2.0	4.1	3.4	17.8	3.56
Block totals $y_{\cdot,j}$	9.2	10.1	3.5	8.8	7.6	39.2(y)	
Block averages $\overline{y}_{\cdot j}$	2.30	2.53	0.88	2.20	1.90		$1.96(\bar{y})$

Anova using jupyter

```
In [3]: df = pd.read excel('rbd2.xlsx')
Out[3]:
            chem1 chem2 chem3 chem4
                     2.2
               1.3
                            1.8
                                   3.9
               1.6
                     2.4
                            1.7
                                   4.4
              0.5
                     0.4
                            0.6
                                   2.0
              1.2
         3
                     2.0
                           1.5
                                   4.1
              1.1
                     1.8
                           1.3
                                   3.4
In [4]: data = pd.melt(df.reset index(), id vars=['index'], value vars=['chem1','chem2','chem3','chem4'])
        data.columns = ['index', 'treatments', 'value']
        model = ols('value ~ C(treatments)', data=data).fit()
        aov table = sm.stats.anova lm(model, typ=1)
        aov table
Out[6]:
                       df sum_sq mean_sq
                                                     PR(>F)
         C(treatments)
                           18.044 6.014667 12.589569 0.000176
             Residual 16.0
                            7.644 0.477750
                                               NaN
                                                       NaN
```


The sums of squares for the analysis of variance are computed as follows:

$$SS_{T} = \sum_{i=1}^{4} \sum_{j=1}^{5} y_{ij}^{2} - \frac{y_{..}^{2}}{ab}$$

$$= (1.3)^{2} + (1.6)^{2} + \dots + (3.4)^{2} - \frac{(39.2)^{2}}{20} = 25.69$$

$$SS_{\text{Treatments}} = \sum_{i=1}^{4} \frac{y_{i}^{2}}{b} - \frac{y_{..}^{2}}{ab}$$

$$= \frac{(5.7)^{2} + (8.8)^{2} + (6.9)^{2} + (17.8)^{2}}{5} - \frac{(39.2)^{2}}{20} = 18.04$$

$$SS_{\text{Blocks}} = \sum_{j=1}^{5} \frac{y_{\cdot j}^{2}}{a} - \frac{y_{\cdot i}^{2}}{ab}$$

$$= \frac{(9.2)^{2} + (10.1)^{2} + (3.5)^{2} + (8.8)^{2} + (7.6)^{2}}{4} - \frac{(39.2)^{2}}{20} = 6.69$$

$$SS_{E} = SS_{T} - SS_{\text{Blocks}} - SS_{\text{Treatments}}$$

$$= 25.69 - 6.69 - 18.04 = 0.96$$

Analysis of Variance for the Randomized Complete Block Experiment

Sources of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F	P- value
Chemical types (Treatments)	18.04	3	6.01	75.13	4.79 E-8
Fabric samples (Blocks)	6.69	4	1.67		
Error	0.96	12	0.08		
Total	25.69	19			

Conclusion

- The ANOVA is summarized in the previous table
- Since $f_0 = 75.13 > f_{0.01,3,12} = 5.95$ (the *P*-value is 4.79 x E-8), we conclude that there is a significant difference in the chemical types so far as their effect on strength is concerned.

Python code for problem 2

```
In [2]:
        import pandas as pd
         import statsmodels.api as sm
         from statsmodels.formula.api import ols
         from statsmodels.stats.anova import anova_lm
In [3]: df = pd.read_excel('RBD2.xlsx')
In [4]:
Out[4]:
            chem1 chem2 chem3 chem4
         0
               1.3
                      2.2
                             1.8
                                    3.9
               1.6
                      2.4
                             1.7
                                    4.4
               0.5
                             0.6
                                    2.0
         2
                      0.4
          3
               1.2
                      2.0
                             1.5
                                    4.1
               1.1
                      1.8
                             1.3
                                    3.4
         4
```


Python code for problem 2

	Fabric samples	Chemical types	value
0	0	chem1	1.3
1	1	chem1	1.6
2	2	chem1	0.5
3	3	chem1	1.2
4	4	chem1	1.1
5	0	chem2	2.2
6	1	chem2	2.4
7	2	chem2	0.4
8	3	chem2	2.0
9	4	chem2	1.8
10	0	chem3	1.8
11	1	chem3	1.7
12	2	chem3	0.6
13	3	chem3	1.5
14	4	chem3	1.3
15	0	chem4	3.9
16	1	chem4	4.4
17	2	chem4	2.0
18	3	chem4	4.1
40	A	aham4	0 4

Python code for problem 2

```
In [11]: model = ols('value ~ C(Fabric) + C(Chemical)', data=data).fit()
anova_table = sm.stats.anova_lm(model, typ=1)
anova_table
```

Out[11]:

	df	sum_sq	mean_sq	F	PR(>F)
C(Fabric)	4.0	6.693	1.673250	21.113565	2.318913e-05
C(Chemical)	3.0	18.044	6.014667	75.894848	4.518310e-08
Residual	12.0	0.951	0.079250	NaN	NaN

