

POORIJIVA

DETAILED LECTURE NOTES

PAGE NO.

KARNAUGH MAP (k-map)

The simplification of the scoitching functions become using boolean hows and thronam become complex with the Inneasity no of variable. Inneasity no of variable to make technique provides systematic method to simplifying and neducity the variable.

The k-map can be designed for 2,3 and 4 variables.

~ A!	3	01	11	10
0	0	2	6	4
	0	3	7	5
1		3	1-	

Two Variable

Three Variable

AB	~ D	01	() (g)	,10	,
CD	00	4	12	8	
00		5	13	9	
0		7	15	11	
1 (1	3	1	-	1.0	1
10	2	$\int 6^{\circ}$	14	10	

Four Variable

Dissipate following expressing Using the Kingp for the 4 variable A, B, c and D Y= m1 + m3 + m5 + m7 + m8 + m9 + m12 + m13

Solution

Tonstaurt kings and enten 1 in the 1865 corresponding to the minterm faceant in the expression and o in the other cells.

2 Plot the logical expression ABCD + ABCD + ABCD + ABCD AB on a 4 Variable K-map, obtain simplified expression for K-map

ABCD + ABCD + ABC+ AB

- = ABCD+ ABCD + ABC (DID) + AB (C+E) (DID)
- = ABCD+ ABCD+ ABCD + ABCD+ (ABC+ ABC)(0+5)
- = ABCD+ ABCD + ABCD+ ABC
 - ABCD+ ABCD + ABCD + ABCD + ABCD + ABCD+ ABCD
- M15 + M8+ M11 + M10 + M14+ M13+M12

LOORINIVA COLLEGE OF ENGINEERING

DETAILED LECTURE NOTES

Y = AB+AC+AD

0

01

11

10

O.

O

Oz Simplify the expression Y=TT (0,1,4,5,6,8,9,12,13,14)
using the k-map method
white it can also be written in the POS form

 $Y = (A+B+(+D)(A+B+(+\overline{D})(A+\overline{B}+(+\overline{D})(A+\overline{B}+(+\overline{D})(A+\overline{B}+(+\overline{D}))(A+\overline{B}+(+\overline{D})(A+\overline{B}+(+\overline{D}))(A+\overline{B}+(+\overline{D})(A+\overline{B}+(+\overline{D}))(A+\overline{B}+(+\overline{D})(A+\overline{B}+(+\overline{D}))(A+\overline{B}+(+\overline{D})(A+\overline{B}+(+\overline{D}))(A+\overline{B}+(+\overline{D})(A+\overline{B}+(+\overline{D}))(A+\overline{B}+(+\overline{D}))(A+\overline{B}+(+\overline{D})(A+\overline{B}+(+\overline{D}))(A+\overline{B}+(+\overline{D}))(A+\overline{B}+(+\overline{D})(A+\overline{B}+(+\overline{D}))(A+\overline{B}+(+\overline{D}))(A+\overline{B}+(+\overline{D})(A+\overline{B}+(+\overline{D}))(A+\overline{B}+(+\overline{D}))(A+\overline{B}+(+\overline{D})(A+\overline{B}+(+\overline{D}))(A+\overline{D}+(+\overline{D}))(A+\overline{D}+(+\overline{D}))(A+\overline{D}+(+\overline{D}))(A+\overline{D}+(+\overline{D}))(A+\overline{D}+(+\overline{D}))(A+\overline{D}+(+\overline{D}))(A+\overline{D}+(+\overline{D}))(A+\overline{D}+(+\overline{D}))(A+\overline{D}+(+\overline{D}))(A+\overline{D}+(+\overline{D}))(A+\overline{D}+(+\overline{D}))(A+\overline{D}+(+\overline{D}))(A+\overline{D}+(+\overline{D}))(A+\overline{D}+(+\overline{D}$

CP OO	+B+	C + D O	0	0	C	Y=c (13+
1)		(1.	1	B+D	

Don't Case Condition

some input combination heren occur during the normal input conditions. Such ilp one considered as don't care condition. It can be used for further simplification of the circuit.

Simplify the Boolean equation
$$F(A_1B_1, C_1D) = E_m(1,3,7,11,15) + E_d(0,2,5)$$

g 4 ones

COLLEGE OF ENGINEERING

	-CA	3 150	C. C. PURE SOUN	734 7 900			
Gray no	Minterm		Bir	iony R	Reposition	stah' D	
47	₩°		0	0	0	0	~
· 25	m,, m8	-	0	0	0	. }	<u></u>
.4			1	O	0	0	
2	m3	e ni	O	0	(· ') .	V.
*	ma		1	0	. 0	.)	
3	m-1		0	1	1	t	
1.	m ₁ ,	}	1	0	1.	ì	
4	J W 12		1	. [1	1	

Group	mathed	B	\			
0	Mo-m,	0	<u>B</u>	<u></u>	<u> </u>	+
	mo-m8.	_	0	0	0	
1	m_1-m_3	0	0		1	
,	m1-m9		0	0	Ŋ	
	m8-ma	1	0	0		
2	m3-m7	O	_	l		
	$m_3 - m_n$		0	1	1	
	ma -m11	1	.O	-		
3	m7-m12		1	. 1	•	
	m11 - m12	5 1	_	1	1	

In second step the n group is companed with (nariable if only one variable is in difference

LOORNIVA COLLEGE OF ENGINEERING

DETAILED LECTURE NOTES

table 2. Compone the not ten to payons term of the

NG

3E NO.

			-		
quodp	mathed pain	Biner	y Rep	[D	
0	mo-m1-m8-ma		0 0	-	\\ \Bc
1	m1-m3-md-m11	_ (2 -	1	3.50
	m1 -md-m2 -m11	- (o –	1	41 -
2	m3-m1-m12	-	_ 1	1	cp cp
1.	m3-m11 =m12-m12	_ , -			

Step y Draw the prime implicant table

P. I.	minten	0	1	3	7	8	9		
		(x)	X			(\times)	×		
BC	0, 1, 8, 9		•				×	X	(D
BD	1, 3, 9, 11 B		×	X			ŕ		
b -	- 11.15			X				× ×	
CD	3, 7, 11,15								

- cincle the moss which one single in a column of cincle the mime implicant for the cincle.

