

Singularities of frontal surfaces

C. Muñoz-Cabello

June 2022

Overview

- 1. Introduction
- 2. Frontal equivalence
- 3. Stabilizing frontal maps
- 4. Exploring frontal surfaces

What is a frontal hypersurface?

(Image by Heiner Otterstedt, 2006)

Light cardioids

What is a frontal hypersurface?

(Image by Heiner Otterstedt, 2006)

- ► Light cardioids
- ► Control systems (degrees of freedom)

What is a frontal hypersurface?

(Image by Patrick Dirden, 2010)

- ► Light cardioids
- ► Control systems (degrees of freedom)
- Sound barrier

What is a frontal hypersurface?

(Image by Patrick Dirden, 2010)

- ► Light cardioids
- ► Control systems (degrees of freedom)
- Sound barrier
- ► Differential geometry (geodesic flows)

Ishikawa's theory of infinitesimal Legendre equivalence

► Corank 1 stable frontals come from a certain family of maps, called *open Whitney umbrellas*

6

Ishikawa's theory of infinitesimal Legendre equivalence

- Corank 1 stable frontals come from a certain family of maps, called open Whitney umbrellas
- ► Stability is codified in terms of a certain C-algebra Q

6

Ishikawa's theory of infinitesimal Legendre equivalence

- Corank 1 stable frontals come from a certain family of maps, called open Whitney umbrellas
- ► Stability is codified in terms of a certain C-algebra Q
- Legendrian codimension measures how far a frontal is from being stable

•

All we need to know is downstairs

We say
$$f: (\mathbb{C}^n, S) \to (\mathbb{C}^{n+1}, 0)$$
 is **frontal** if there exists a $\nu: (\mathbb{C}^{n+1}, 0) \to T^*\mathbb{C}^{n+1}$ such that $0 \notin \nu[f(S)]$ and

$$\nu(df \circ \xi) = 0 \quad \forall \xi \in \theta_n$$

We say $f: (\mathbb{C}^n, S) \to (\mathbb{C}^{n+1}, 0)$ is **frontal** if there exists a $\nu: (\mathbb{C}^{n+1}, 0) \to T^*\mathbb{C}^{n+1}$ such that $0 \notin \nu[f(S)]$ and

$$\nu(df \circ \xi) = 0 \quad \forall \xi \in \theta_n$$

Proposition

Let $f, g: (\mathbb{C}^n, S) \to (\mathbb{C}^{n+1}, 0)$ be \mathscr{A} -equivalent germs. If f is frontal, g is frontal.

Frontal stability

An unfolding F of f is **frontal** if it has a frontal representative. The map f is \mathscr{F} -stable if every frontal unfolding is trivial.

Frontal stability

- An unfolding F of f is **frontal** if it has a frontal representative. The map f is \mathscr{F} -stable if every frontal unfolding is trivial.
- ► Given a frontal *f* ,

$$T\mathscr{A}_{e}f\subseteq\mathscr{F}(f)=\left\{\left.\frac{df_{t}}{dt}\right|_{t=0}:(f_{t},t)\text{ frontal },f_{0}=f\right\}$$

Frontal stability

- An unfolding F of f is **frontal** if it has a frontal representative. The map f is \mathscr{F} -stable if every frontal unfolding is trivial.
- ► Given a frontal f,

$$T\mathscr{A}_{\mathbf{e}}f\subseteq\mathscr{F}(f)=\left\{\left.\frac{df_t}{dt}\right|_{t=0}:(f_t,t)\text{ frontal },f_0=f
ight\}$$

ightharpoonup We say f is \mathscr{F} -finite if

$$\operatorname{\mathsf{codim}}_{\mathscr{F}} f = \dim_{\mathbb{C}} \frac{\mathscr{F}(f)}{T\mathscr{A}_{e}f} < \infty;$$

Frontal equivalence Characterising frontal stability

Theorem

A corank 1 frontal is stable as a frontal if and only if it has frontal codimension 0.

Frontal equivalence Characterising frontal stability

Theorem

A corank 1 frontal is stable as a frontal if and only if it has frontal codimension 0.

Theorem (Mather-Gaffney criterion for frontals)

A corank 1 frontal $f: (\mathbb{C}^n, S) \to (\mathbb{C}^{n+1}, 0)$ with codim $V(p_y, \mu_y) > 1$ is \mathscr{F} -finite if and only if there is a finite representative $f: X \to Y$ such that $f: X \setminus f^{-1}(0) \to Y \setminus \{0\}$ is locally \mathscr{F} -stable.

Relation to Legendrian stability

Lemma

Given a corank 1 frontal f with Nash lift \tilde{f} , an unfolding $F = (f_u, u)$ of f is frontal if and only if \tilde{f}_u is an integral deformation of \tilde{f} .

Relation to Legendrian stability

Lemma

Given a corank 1 frontal f with Nash lift \tilde{f} , an unfolding $F = (f_u, u)$ of f is frontal if and only if $\tilde{f_u}$ is an integral deformation of \tilde{f} .

Theorem

The frontal codimension of f coincides with the Legendrian codimension of (π, \tilde{f}) (incl. ∞).

A faithful reflection of the situation above

Lemma

Two frontal germs f, g are \mathscr{A} -equivalent if and only if their Nash lifts are Legendrian equivalent.

A faithful reflection of the situation above

Lemma

Two frontal germs f, g are \mathscr{A} -equivalent if and only if their Nash lifts are Legendrian equivalent.

Theorem

A frontal unfolding $F = (f_u, u)$ of f is stable (resp. versal) if and only if $\widetilde{f_u}$ is stable (resp. versal).

Mond's classification of simple fold surfaces in \mathbb{C}^3

A parametrized surface germ $f:(\mathbb{C}^2,S)\to(\mathbb{C}^3,0)$ is a fold if its Thom-Boardman symbol is $\Sigma^{1,0}$.

Mond's classification of simple fold surfaces in \mathbb{C}^3

A parametrized surface germ $f:(\mathbb{C}^2,S)\to(\mathbb{C}^3,0)$ is a fold if its Thom-Boardman symbol is $\Sigma^{1,0}$.

Mond, 1983

Parametrized surface germs admit a representative in the form $f(x,y)=(x,y^2,yp(x,y^2))$ with $p\in\mathbb{C}\{x,y\}$.

Mond's classification of simple fold surfaces in \mathbb{C}^3

Mond's classification	Codimension	Notes
$S_k y^3 + x^{k+1}y$	k	
$B_k x^2y + y^{2k+1}$	k	$k \ge 2$
$C_k xy^3 + x^ky$	k	$k \ge 3$
$F_4 y^5 + x^3y$	4	

Mond's classification of simple fold surfaces in \mathbb{C}^3

Mond's classification	Frontalised surface	Codimension	Notes
$S_k y^3 + x^{k+1}y$	$\check{S}_k y^5 + x^{k+1}y^3$	k	
$B_k x^2y + y^{2k+1}$	$\check{B}_k x^2y^3 + y^{2k+3}$	k	$k \ge 2$
$C_k xy^3 + x^k y$	$\check{C}_k xy^5 + x^ky^3$	k	$k \ge 3$
$F_4 y^5 + x^3y$	$\check{F}_4 y^7 + x^3y^3$	4	

Frontal equivalence Mond's fold surfaces and their frontalisations

Frontal equivalence Properties of frontal surfaces

► Topological invariants:

•

- ► Topological invariants:
 - ► The only frontal fold surface that is a wave front is the cuspidal edge.

E

- ► Topological invariants:
 - ► The only frontal fold surface that is a wave front is the cuspidal edge.
 - ▶ The \mathscr{A} -codimension of f is equal to the \mathscr{F} -codimension of \check{f} (incl. ∞).

- ► Topological invariants:
 - ► The only frontal fold surface that is a wave front is the cuspidal edge.
 - ▶ The \mathscr{A} -codimension of f is equal to the \mathscr{F} -codimension of \check{f} (incl. ∞).
- ► Double point space:

•

- ► Topological invariants:
 - ▶ The only frontal fold surface that is a wave front is the cuspidal edge.
 - ▶ The \mathscr{A} -codimension of f is equal to the \mathscr{F} -codimension of \check{f} (incl. ∞).
- ► Double point space:
 - Frontalising a fold surface introduces cuspidal edges.

- ► Topological invariants:
 - ▶ The only frontal fold surface that is a wave front is the cuspidal edge.
 - ▶ The \mathscr{A} -codimension of f is equal to the \mathscr{F} -codimension of \check{f} (incl. ∞).
- ► Double point space:
 - Frontalising a fold surface introduces cuspidal edges.
 - ► Transverse double points are preserved.

•

- ► Topological invariants:
 - ▶ The only frontal fold surface that is a wave front is the cuspidal edge.
 - ▶ The \mathscr{A} -codimension of f is equal to the \mathscr{F} -codimension of \check{f} (incl. ∞).
- ► Double point space:
 - Frontalising a fold surface introduces cuspidal edges.
 - Transverse double points are preserved.
- ▶ The frontalised surfaces above are *peak-like* (Saji, Umehara, Yamada):

- ► Topological invariants:
 - ▶ The only frontal fold surface that is a wave front is the cuspidal edge.
 - ▶ The \mathscr{A} -codimension of f is equal to the \mathscr{F} -codimension of \check{f} (incl. ∞).
- ► Double point space:
 - Frontalising a fold surface introduces cuspidal edges.
 - Transverse double points are preserved.
- ► The frontalised surfaces above are *peak-like* (Saji, Umehara, Yamada):
 - no singular points other than cuspidal edges near the origin;

•

- ► Topological invariants:
 - ▶ The only frontal fold surface that is a wave front is the cuspidal edge.
 - ▶ The \mathscr{A} -codimension of f is equal to the \mathscr{F} -codimension of \check{f} (incl. ∞).
- ► Double point space:
 - Frontalising a fold surface introduces cuspidal edges.
 - ► Transverse double points are preserved.
- ► The frontalised surfaces above are *peak-like* (Saji, Umehara, Yamada):
 - ▶ no singular points other than cuspidal edges near the origin;
 - the singular set has finitely many irreducible components.

Theorem

Frontal reduction

Given an analytic plane curve γ with miniversal unfolding Γ , there is an immersion h such that

$$\Gamma_{\mathscr{F}}(u,t) := (h^*\Gamma)(u,t) = (\gamma_{h(u)}(t),u)$$

is a frontal miniversal unfolding of γ . We call this pull-back the **frontal reduction** of Γ .

Frontal reduction

Theorem

Given an analytic plane curve γ with miniversal unfolding $\Gamma,$ there is an immersion h such that

$$\Gamma_{\mathscr{F}}(u,t) := (h^*\Gamma)(u,t) = (\gamma_{h(u)}(t),u)$$

is a frontal miniversal unfolding of γ . We call this pull-back the **frontal reduction** of Γ .

Corollary

If γ has isolated instability,

$$\operatorname{\mathsf{codim}}_{\mathscr{F}_{\mathsf{e}}}\gamma = \operatorname{\mathsf{codim}}_{\mathscr{A}_{\mathsf{e}}}\gamma - \operatorname{\mathsf{mult}}\gamma + 1$$

Every corank 1 frontal admits a stable unfolding

Corollary

Let f be a corank 1 frontal with generic slice γ , and Γ be a versal unfolding of γ . There is a frontal stable unfolding F of f.

Setting
$$\gamma(t)=(p(t),q(t))$$
 with $\mu=q'/p'$ and
$$f(u,y)=(u,P(u,y),Q(u,y)); \qquad \qquad M=Q_y/P_y;$$

$$\Gamma_{\mathscr{F}}(v,y)=(v,P'(v,y),Q'(v,y)); \qquad \qquad M'=Q'_v/P'_v,$$

we obtain a stable unfolding of f by taking

Setting
$$\gamma(t)=(p(t),q(t))$$
 with $\mu=q'/p'$ and
$$f(u,y)=(u,P(u,y),Q(u,y)); \qquad \qquad M=Q_y/P_y;$$

$$\Gamma_{\mathscr{F}}(v,y)=(v,P'(v,y),Q'(v,y)); \qquad \qquad M'=Q'_v/P'_v,$$

we obtain a stable unfolding of f by taking

$$F(u,v,y) = (u,v,P''(u,v,y),Q''(u,v,y));$$

$$P''(u,v,y) = P(u,y) + P'(v,y) - p(y);$$

$$Q''(u,v,y) = \int_0^y P_s''(u,v,s)(M(u,s) + M'(v,s) - \mu(s)) ds$$

Double points split into two branches

If
$$f(x,y) = (x, p(x,y), q(x,y))$$
, the **double point space** of f is given by

$$D^{2}(f) = \left\{ (x, y, y') \in \mathbb{C}^{3} : \frac{p(x, y) - p(x, y')}{y - y'} = \frac{q(x, y) - q(x, y')}{y - y'} = 0 \right\}$$

Exploring frontal surfaces Double points split into two branches

If f(x,y) = (x, p(x,y), q(x,y)), the **double point space** of f is given by

$$D^{2}(f) = \left\{ (x, y, y') \in \mathbb{C}^{3} : \frac{p(x, y) - p(x, y')}{y - y'} = \frac{q(x, y) - q(x, y')}{y - y'} = 0 \right\}$$

If $\pi(x, y, y') = (x, y)$, we set the complex space $D(f) = \pi(D^2(f))$ with the complex space structure induced by π .

The six \mathscr{F} -stable frontal surfaces

Theorem

If $p_y|q_y$, the generating function for D(f) has the form $\lambda(x,y)=p_y^2(x,y)\tau(x,y)$.

The six \mathscr{F} -stable frontal surfaces

Theorem

If $p_y|q_y$, the generating function for D(f) has the form $\lambda(x,y)=p_y^2(x,y)\tau(x,y)$.

Corollary

Let $\lambda \in \mathscr{O}_2$ be the generating function for D(f), and $\mu = q_y/p_y$:

- 1. if λ/p_y is regular, f is either a cuspidal edge or a curve of transverse double points;
- 2. if $V(p_y, \mu_y) = \{0\}$, f is \mathscr{F} -finite if and only if λ/p_y has an isolated singularity at 0.

Frontal disentanglement

A smooth family (f_t) is an \mathscr{F} -stabilisation of a frontal $f: (\mathbb{C}^2, S) \to (\mathbb{C}^3, 0)$ if the 1-parameter unfolding $F = (f_t, t)$ is frontal and f_t is frontal stable for $t \neq 0$.

Frontal disentanglement

A smooth family (f_t) is an \mathscr{F} -stabilisation of a frontal $f: (\mathbb{C}^2, S) \to (\mathbb{C}^3, 0)$ if the 1-parameter unfolding $F = (f_t, t)$ is frontal and f_t is frontal stable for $t \neq 0$.

Lemma-Definition

If f has an isolated instability, then it admits an \mathscr{F} -stabilisation (f_t) and we call $\Delta_{\mathscr{F}}(f) = \operatorname{Im} f_t \ (t \neq 0)$ the **frontal disentanglement** of f.

Frontal disentanglement

A smooth family (f_t) is an \mathscr{F} -stabilisation of a frontal $f: (\mathbb{C}^2, S) \to (\mathbb{C}^3, 0)$ if the 1-parameter unfolding $F = (f_t, t)$ is frontal and f_t is frontal stable for $t \neq 0$.

Lemma-Definition

If f has an isolated instability, then it admits an \mathscr{F} -stabilisation (f_t) and we call $\Delta_{\mathscr{F}}(f) = \operatorname{Im} f_t \ (t \neq 0)$ the **frontal disentanglement** of f.

Lê, 1987

If f has an isolated instability, $\Delta_{\mathscr{F}}(f)$ has the homotopy type of a wedge of spheres.

Frontal Marar-Mond formulas

Theorem (frontal Marar-Mond formulas)

Given a corank 1 frontal $f:(\mathbb{C}^2,0)\to(\mathbb{C}^3,0)$ with isolated instability,

$$\mu(f(C),0) = 2S + \mu(C,0); \ 2\mu(f(D_+),0) = 2K + 2T + \mu(D_+,0) - W - S + 1$$

Frontal Marar-Mond formulas

Theorem (frontal Marar-Mond formulas)

Given a corank 1 frontal $f:(\mathbb{C}^2,0)\to(\mathbb{C}^3,0)$ with isolated instability,

$$\mu(f(C),0) = 2S + \mu(C,0);$$
 $2\mu(f(D_+),0) = 2K + 2T + \mu(D_+,0) - W - S + 1$

- C: Cuspidal edge curve
- ► S: Swallowtails
- ► K: Cuspidal double points

- $ightharpoonup D_+$: Transverse double point curve
- T: Triple points
- ► W: Folded Whitney umbrellas

Counting the invariants

Given a corank 1 frontal $f: (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$ with isolated instability,

$$\begin{split} \dim_{\mathbb{C}} \frac{\mathscr{O}_2}{(p_y, p_{yy})} &= S; & \dim_{\mathbb{C}} \frac{\mathscr{O}_2}{(p_y, \tau)} &= 2S + K + W; \\ \dim_{\mathbb{C}} \frac{\mathscr{O}_3}{(p_y, \alpha, \alpha')} &= 2S + K; & \dim_{\mathbb{C}} \frac{\mathscr{O}_3}{\mathscr{F}_2(f)} &= T + S + K. \end{split}$$

These identities have been compiled into a Singular library, frontals.lib, which can be found at cuspidalcoffee.github.io.

Proposition

Frontal Milnor number

Given an analytic plane curve $\gamma \colon (\mathbb{C},0) \to (\mathbb{C}^2,0)$ with $\kappa = |\Sigma(\gamma)| < \infty$,

$$\mu_{\mathscr{F}}(\gamma) = \mu_{\mathsf{I}}(\gamma) - \kappa$$

Frontal Milnor number

Proposition

Given an analytic plane curve $\gamma \colon (\mathbb{C},0) \to (\mathbb{C}^2,0)$ with $\kappa = |\Sigma(\gamma)| < \infty$,

$$\mu_{\mathscr{F}}(\gamma) = \mu_{\mathsf{I}}(\gamma) - \kappa$$

Theorem

Given a corank 1 frontal $f:(\mathbb{C}^2,0)\to(\mathbb{C}^3,0)$ with isolated instability,

$$\mu_{\mathscr{F}}(f) = \mu(f(D_+), 0) - S - W + T + 1$$

Mond's conjecture

Recall that Mond defines the **image Milnor number** μ_l of $f: (\mathbb{C}^2, S) \to (\mathbb{C}^3, 0)$ as the number of spheres in a disentanglement.

Mond's conjecture

If f is \mathscr{A} -finite, $\mu_l(f) \geq \operatorname{codim}_{\mathscr{A}_e}(f)$, with equality if and only if f is quasihomogeneous.

Mond's conjecture

Recall that Mond defines the **image Milnor number** μ_I of $f: (\mathbb{C}^2, S) \to (\mathbb{C}^3, 0)$ as the number of spheres in a disentanglement.

Mond's conjecture

If f is \mathscr{A} -finite, $\mu_l(f) \geq \operatorname{codim}_{\mathscr{A}_e}(f)$, with equality if and only if f is quasihomogeneous.

Proposed frontal conjecture

Let $f: (\mathbb{C}^2, S) \to (\mathbb{C}^3, 0)$ be an \mathscr{F} -finite frontal map. Then $\mu_{\mathscr{F}}(f) \geq \operatorname{codim}_{\mathscr{F}_e}(f)$, with equality if and only if f is quasihomogeneous.