Quantitative Research Methods in Climate Change and Sustainability Science

Nguyen Bich Ngoc

VNU School of Interdisciplinary Studies

Practical Information

- Theoretical session: Sunday 23/04 & Sunday 07/05/2023 morning
- Practical session: Sunday 07/05/2023 afternoon
 - R
 - Laptop with R & RStudio installed
- Exam:
 - Exercises: 07/05/2023
 - Oral exam: 10 minutes on 20-23/05/2023 (MS Teams/Zoom)

Expected outcomes

- Focus on applied statistics
- Basic concepts/theory
- Identify problems and corresponding solutions (names)

Recommended readings

- Applied statistics with R David Dalpiaz (https://book.stat420.org/)
- Cẩm nang nghiên cứu khoa học: từ ý tưởng đến công bố Nguyễn Văn Tuấn (2nd edition, 2020)
- Từng bước nhập môn nghiên cứu khoa học xã hội Phạm Hiệp & cộng sự (2022)
- Research design: qualitative, quantitative, and mixed methods approaches John W. Creswell & J. David Creswell (5th edition, 2018)
- Fundamentals of data visualization Claus O. Wilke (https://clauswilke.com/dataviz/index.html)
- Introduction to quantitative research methods: an investigative approach Mark Balnaves and Peter Caputi (2001)

Content

- Research: why, what, & how?
- What is data and how to collect?
- Data plotting and cleaning
- Descriptive statistics
- Inferential statistics
- Advanced topics in quantitative methods

Research: Why, what, & how?

Why?

What?

What?


```
re·search (ri-ˈsərch ◄) (ˈrē-ˌsərch ◄)
```

Synonyms of *research* >

(Merriam-Webster Dictionary)

1 : studious inquiry or examination

especially: investigation or experimentation aimed at the discovery and interpretation of facts, revision of accepted theories or laws in the light of new facts, or practical application of such new or revised theories or laws

Quantitative research is an approach for testing objective theories by examining the relationship among variables. These variables, in turn, can be measured, typically on instruments, so that numbered data can be analyzed using statistical procedures.

(John W. Creswel)

How?

How?

How?

What is data and how to collect?

- Data, Variables, Distributions
- Sample and Sampling methods
- Survey design
- Experimental design

Data

^	Gender	Age.Range	Year	Nationality	Q1	÷	Q2	÷	Q3	÷	Q4	7
1	Female	20 - 21 years old	Year 4	Thai		7		5		7		7
2	Female	20 - 21 years old	Year 4	Thai		6		5		7		5
3	Female	20 - 21 years old	Year 4	Thai		7		7		7		
4	Female	20 - 21 years old	Year 4	Thai		7		2		7		
5	Female	22 - 23 years old	Year 4	Thai		6		6		7		
6	Male	20 - 21 years old	Year 3	Thai		5		4		4		
7	Male	20 - 21 years old	Year 3	Thai		6		4		5		
8	Female	20 - 21 years old	Year 3	Thai		7		4		7		
9	Female	20 - 21 years old	Year 3	Thai		7		5		7		
10	Male	20 - 21 years old	Year 3	Thai		5		5		5		
11	Female	20 - 21 years old	Year 3	Thai		7		5		7		

avg_ice_duration

Q5

27	1880	160.5	-4.501104972
28	1881	77.5	1.270718232
29	1882	125.5	-2.928729282
30	1883	119.5	-4.179120879
31	1884	122.5	-6.309944751
32	1885	129.5	-2.974033149
33	1886	131.0	-4.986740331
34	1887	125.0	-4.989560440
35	1888	87.5	-1.082320442
36	1889	74.5	-0.719337017
37	1890	112.0	-1.234806630

ı

Observations/Units

avg_air_temp_adjusted

Variables

Levels of measurement

Nominal, Ordinal, Interval, Ratio

Possible received values

Categorical, Discrete, Continuous

Relationships

Independent/Explanatory, Dependent/Outcome, Controlled

• Normal distribution $N(\mu, \sigma^2)$ Standard normal distribution N(0,1)

- Normal distribution $N(\mu, \sigma^2)$ Standard normal distribution N(0,1)
- Binomial distribution B(n, p)

- Normal distribution $N(\mu, \sigma^2)$ Standard normal distribution N(0,1)
- Binomial distribution B(n, p)
- Multinomial distribution

- Normal distribution $N(\mu, \sigma^2)$ Standard normal distribution N(0,1)
- Binomial distribution B(n, p)
- Multinomial distribution
- Poisson distribution $Pois(\lambda)$

Data sources

Primary

Experiment

Survey/questionnaire

Observation/Measurement

Secondary

Open-source database

Government publications

Internal reports

Sample and sampling methods

- Sub-population
- Representative?
- Sample size
 - Too small?
 - Too large?

Sample and sampling methods

- Sampling methods
 - Probability sampling
 - Simple random sampling
 - Systematic sampling
 - Stratified sampling
 - Cluster sampling
 - Non-probability sampling
 - Convenience sampling
 - Quota sampling
 - Judgement (or purposive) sampling
 - Snowball sampling

Survey design

- Constructs of interest
 - What?
 - How to measure?
- Questionnaires design
 - Wording
 - Use of single question
 - Cognitive processes in answering questions
 - PRETEST survey questions

Data plotting and cleaning

- Common plots
- Plotting as tool for data cleaning

Yanai, I., Lercher, M. A hypothesis is a liability. *Genome Biol* **21**, 231 (2020). https://doi.org/10.1186/s13059-020-02133-w

Yanai, I., Lercher, M. A hypothesis is a liability. *Genome Biol* **21**, 231 (2020). https://doi.org/10.1186/s13059-020-02133-w

C

	Gorilla <u>not</u> discovered	Gorilla discovered
Hypothesis-focused	14	5
Hypothesis-free	5	9

Yanai, I., Lercher, M. A hypothesis is a liability. *Genome Biol* **21**, 231 (2020). https://doi.org/10.1186/s13059-020-02133-w

- Telephone data
- Calls (in millions) from Belgium in the years 1950-1973.

Data plotting/visualization

Clarity

Precision

https://www.ted.com/talks/hans_rosling_the_best_stats_you_ve_ever_seen_

Efficiency

• Maximize ideas, minimize ink

Wilke (2018)

Wilke (2018)

Household income

Descriptive statistics

- Univariable
- Bivariable

Quantitative Methods (VNU-SIS)

Mean, median, mode

This Photo by Unknown Author is licensed under CC BY-SA

Dispersion

Associations

Quantitative Methods (VNU-SIS) 40

Associations

Quantitative Methods (VNU-SIS) 41

Correlation vs Causality

Global Average Temperature vs. Number of Pirates

Inferential statistics

- Simple linear regression
- General linear regression

Quantitative Methods (VNU-SIS)

$$Y_i = \alpha + \beta X_i + \epsilon_i$$

$$\epsilon_i \sim N(0, \sigma^2)$$

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 85.186 1.363 62.50 <2e-16 ***

avg_air_temp_adjusted -8.903 0.552 -16.13 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 11.43 on 150 degrees of freedom

(14 observations deleted due to missingness)

Multiple R-squared: 0.6343, Adjusted R-squared: 0.6319

F-statistic: 260.2 on 1 and 150 DF, p-value: < 2.2e-16
```


Which one?

sum of the squared residuals (SSR)

Goodness of fit

$$R^2 = \frac{TSS - SSR}{TSS} = 1 - \frac{SSR}{TSS}$$

• TSS: Total sum of squares

• SSR: Sum squared residuals

Assumptions

Assumptions

General Linear Regression

$$Y_i = \alpha + \beta_1 X_{i1} + \beta_1 X_{i1}^2 + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + \epsilon_i$$
$$\epsilon_i \sim N(0, \sigma^2)$$

Example:

Gasoline consumption/Distance ~ Car Make + Car Age + Driver Age + Driver Gender + # of breaks per minute +

The more the better?

Multicollinearity

Variance Inflation Factor

Overfitting vs underfitting

High bias (underfit)

"Just right"

- High variance (overfit)
- Adjusted R²
- AIC
- BIC
- Predictive power

This Photo by Unknown Author is licensed under CC BY-SA

Categorical predictors

Gasoline consumption/Distance ~ Car Make + Car Age + Driver Age + Driver Gender + # of breaks per minute +

Dummy variables

$$X_i = \begin{cases} 1 & if Female \\ 0 & if male \end{cases}$$

Male: $Y_i = \alpha + \epsilon_i$

Female: $Y_i = \alpha + \beta_1 + \epsilon_i$

Categorical predictors

Gasoline consumption/Distance ~ Car Make + Car Age + Driver Age + Driver Gender + # of breaks per minute +

Dummy variables (Toyota, VinFast, Mercedes)

$$X_{i1} = \begin{cases} 1 \text{ if VinFast} \\ 0 \text{ if other} \end{cases} \qquad X_{i2} = \begin{cases} 1 \text{ if Mercedes} \\ 0 \text{ if other} \end{cases}$$
$$Y_{i} = \alpha + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \epsilon_{i}$$

Toyota: $Y_i = \alpha + \epsilon_i$ VinFast: $Y_i = \alpha + \beta_1 + \epsilon_i$ Mercedes: $Y_i = \alpha + \beta_2 + \epsilon_i$

Advanced topics in quantitative methods

Quantitative Methods (VNU-SIS) 56

Generalized linear model

- General linear regression
 - Y: continuous/quantitative
- When Y is qualitative/discrete?
 - Binary (Yes/No): Logistic regression
 - Nominal: Multinominal logistic regression
 - Count data: Poisson regression

Multilevel model/Mixed effect model

Multilevel model/Mixed effect model

PCA

- Multidimensional reduction method
- No dependent/independent variables
- Exploratory method
- PCA linear regression

Factor Analysis

Latent constructs

Questionnaires

Exploratory/Confirmatory

SEM

- Latent vs manifest
- Endogenous vs exogenous
- Measurement model vs structural model
- Direct vs indirect effects

SEM

- Latent vs manifest
- Endogenous vs exogenous
- Measurement model vs structural model
- Direct vs indirect effects

Meta Analysis

