Arp Spoofing com Man-in-the-middle

Trabalho 1 - Laboratório de Redes

Nicolas Pereira do Nascimento Estudante de Engenharia de Computação Pontificia Universidade Católica do Rio Grande do Sul Porto Alegre, Brasil nicolas.nascimento@acad.pucrs.br

Abstract— This paper presents the implementation of an algorithm that exploits the ARP Protocol and its lack of security in a local network(LAN) to perform an attack of type Arp Spoofing with Man-in-the-middle.

Keywords—Network Programming; LAN; ARP Protocol, Security;

I. INTRODUÇÃO

Redes locais são extremamente comuns e, de diversos modos, facilitam comunicações para redes de pequeno porte. A comunicação entre máquinas pode ser drasticamente acelerada ao evitar a necessidade de uso da internet para a entrega de pacotes. Um dos tipos de rede mais comuns possui a configuração onde N máquinas são conectadas a um Switch. Uma destas máquinas deve ser o roteador. Isto possibilita a comunicação local entre as máquinas desta rede. Nestas redes a comunicação pode ser feita diretamente sobre quadro Ethernet.

II. FUNCIONAMENTO

A. ARP

O protocolo ARP (Address Resolution Protocol) é um protocolo utilizado em redes locais quando uma máquina A deseja comunicar-se com outra máquina B, sobre a qual a máquina A so conhece o endereço IP. O protocolo ARP possibilita com que se faça uma pergunta do tipo "Qual o endereço Mac da máquina que tem este IP?".

Contudo, a primeira transmissão dessa pergunta deve ser feita para toda a rede (*Broadcast*), isso pode sobrecarregar a rede e aumentar a latência desta. A fim de evitar isto, cada computador possuir uma Tabela ARP, a qual mapeia um endereço MAC para um endereço IP.

B. ARP Spoofing com Man-in-the-middle

ARP Spoofing consiste em alterar a tabela ARP de uma máquina A (*atacada*) para que esta pense que uma máquina B (*atacante*) é o verdadeiro roteador.

Man-in-the-middle consiste em, depois de realizado o ARP Spoofing, fazer com que o roteador da rede pense que a máquina B (*atacante*) é verdadeira máquina A (*atacada*).

Ao aliarmos isto com com comando que habilitam o IP Forwarding do Linux, temos basicamente, toda a comunicação

da máquina A passando sempre pela máquina B.

III. IMPLEMENTAÇÃO

O trabalho foi desenvolvido em ambiente Linux e implementado em linguagem C, utilizando Raw Sockets.

O programa consiste em criar um socket do tipo Raw e realizar o envio de mensagens do tipo ARP pela rede Local para atacar uma máquina alvo.

O programa recebe por parâmetro o nome da interface local e o endereço IP que será atacado.

A primeira etapa realiza a obtenção dos endereços MAC do roteador e da máquina alvo. A figura abaixo demonstra a porção de código que realiza isto.

FIGURA I

A segunda etapa realiza a alteração da tabela ARP do roteador e da máquina alvo. A figura abaixo demonstra a porção de código que realiza isto.

FIGURA II

Além disso, deve-se mandar de forma continua pacotes ARP maliciosas.

IV. EXECUÇÃO

Todos os testes da aplicação foram executados no LabRedes (Laboratório de Ensido de Redes de Computadores) da PUCRS. Este laboratório caracteriza-se por ser uma rede LAN onde todos os computadores estão conectados à um Switch e este conecta-se ao roteador.

V. Testes

O teste foi realizado utilizando o IP 10.32.143.239 (uma das máquinas do LabRedes). Além disso, para o IP do roteador foi assumido que este era 10.32.143.1 (Padrão).

VI. RESULTADOS

A figura abaixo, obtida através do Wireshark, ilustra o processo inteiro, desde o descobrimento do MAC até o envio dos ARP maliciosos para a máquina alvo e o roteador.

lo.	Time	Source	Destination	Protocol	Length Info
	47 28.001347119	BrocadeC_d6:10:e2	Spanning-tree-(for		60 RST. Root = 32768/143/00:12:f2:d6:10:c5 (
	48 28.909662890	CiscoInc_f0:64:09	PVST+		64 Conf. Root = 32768/0/00:1b:ed:92:29:40 Co
		BrocadeC_d6:10:e2	Spanning-tree-(for		60 RST. Root = 32768/143/00:12:f2:d6:10:c5 (
	50 30.909542036	C1scoInc_f0:64:09	PVST+		64 Conf. Root = 32768/0/00:1b:ed:92:29:40 Co
		BrocadeC_d6:10:e2	Spanning-tree-(for		60 RST. Root = 32768/143/00:12:f2:d6:10:c5 (
	52 32.679575798	Dell_f5:90:a1	Broadcast	ARP	42 Who has 10.32.143.239? Tell 10.32.143.198
	53 32.679731077	Dell_f5:90:b7	Dell_f5:90:a1	ARP	60 10.32.143.239 is at a4:1f:72:f5:90:b7
	54 32.679768002	Dell_f5:90:a1	Broadcast	ARP	42 Who has 10.32.143.1? Tell 10.32.143.198
	55 32.679931283	3comCorp_23:ea:a6	Dell_f5:90:a1	ARP	60 10.32.143.1 is at 00:01:02:23:ea:a6
	56 32.680048700	Dell_f5:90:a1	Dell_f5:90:b7	ARP	42 10.32.143.1 is at a4:1f:72:f5:90:a1
	57 32.680091386	Dell_f5:90:a1	3comCorp_23:ea:a6	ARP	42 10.32.143.239 is at a4:1f:72:f5:90:a1
		CiscoInc_f0:64:09			64 Conf. Root = 32768/0/00:1b:ed:92:29:40 Co
	59 33.680247532	Dell_f5:90:a1	Dell_f5:90:b7	ARP	42 10.32.143.1 is at a4:1f:72:f5:90:a1
	60 33.680309725	Dell_f5:90:a1	3comCorp_23:ea:a6	ARP	42 10.32.143.239 is at a4:1f:72:f5:90:a1
	61 34.001628430	BrocadeC_d6:10:e2	Spanning-tree-(for		60 RST. Root = 32768/143/00:12:f2:d6:10:c5 (
	62 34.680443581	Dell_f5:90:a1	Del1_f5:90:b7	ARP	42 10.32.143.1 is at a4:1f:72:f5:90:a1
	63 34.680503526	Dell_f5:90:a1	3comCorp_23:ea:a6	ARP	42 10.32.143.239 is at a4:1f:72:f5:90:a1
	64 34.909680433	CiscoInc_f0:64:09			64 Conf. Root = 32768/0/00:1b:ed:92:29:40 Co
	65 35.689633629	Dell_f5:90:a1	Del1_f5:90:b7	ARP	42 10.32.143.1 is at a4:1f:72:f5:90:a1
	66 35.689671734	Dell_f5:90:a1	3comCorp_23:ea:a6	ARP	42 10.32.143.239 is at a4:1f:72:f5:90:a1
			Spanning-tree-(for		

VII. CONCLUSÕES

Após uma breve análise dos resultados obtidos, algumas pontos relevantes aparecem. Os principais são:

- O problema de segurança para redes locais que utilizam Ethernet e IPV4 existe e explicita a necessidade da criação de métodos de segurança que evitem ataques.
- Uma solução possível para este problema de segurança seria, por exemplo, o uso do Protocolo IPV6 (que não tem possui ARP) para a comunicação local.
- Redes locais aceleram a comunicação entre máquinas ao evitar o uso da internet. Contudo, cuidados de segurança devem ser tomados até mesmo neste tipo de rede.