

UNCLASSIFIED

ALL INFORMATION CONTAINED
HEREIN IS UNCLASSIFIED

DEFENSE DOCUMENTATION CENTER

DDC

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEXANDRIA VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

SEARCHED BY DDC
INDEXED
ADA No. 408964

408964

FINAL REPORT, CONTRACT FAA ARDS-437

DEVELOPMENT OF MODEL 3500 ARRESTING GEAR
AND CONTINUED DEVELOPMENT OF SPRING HOOK
FOR COMMERCIAL AIRCRAFT

M-788
PART II
January 1963

Prepared for

FEDERAL AVIATION AGENCY
SYSTEMS RESEARCH AND DEVELOPMENT SERVICE

By

ALL AMERICAN ENGINEERING COMPANY
WILMINGTON, DELAWARE

FINAL REPORT, CONTRACT FAA ARDS-437

DEVELOPMENT OF MODEL 3500 ARRESTING GEAR
AND CONTINUED DEVELOPMENT OF SPRING HOOK
FOR COMMERCIAL AIRCRAFT

M-788
January 1963

PART II

This report has been prepared by All American Engineering Company for the Systems Research and Development Service, Federal Aviation Agency, under Contract No. FAA ARDS-437. The contents of this report reflect the views of the contractor, who is responsible for the facts and the accuracy of the data presented herein, and do not necessarily reflect the official views or policy of the FAA.

ALL AMERICAN ENGINEERING COMPANY
WILMINGTON 99, DELAWARE

Prepared by: A. Russo, Jr.
A. Russo, Jr.

Checked by: M. C. Wardle
M. C. Wardle

Approved by: B. J. Salvadori
B. J. Salvadori

TABLE OF CONTENTS

	<u>Page No.</u>
Introduction	1
Discussion and Description	2
Summary	4
Figure 1 - Location of Subject Material.....	11
Strain Gage Data	12
Figure 2 - Strain Gage Locations.....	14
Tabulated Load Data	15
Keel Beam Stresses	17
Nose Gear Load	26
Cross-Wind Stresses	39
Plot of Hook Load Vs Stress - Strain Gage 7	42
References	43a

Appendix

C. Boeing 720 and 707 hooks tested at Swathmore College, Pennsylvania	45
D. Strain gage data reduced during the NAFEC test	59

INTRODUCTION

Part II of this report is the presentation of the results and interpretation of strain data accumulated on the hook equipped Boeing 720-027, N-113 during the Model 3500 Arresting Gear tests at NAFEC, Atlantic City, New Jersey.

The instrumentation used to gather the data used herein is described in Part I of this report.

Calculations on the applied nose landing gear loads and cross-wind fuselage stresses are included.

Nose landing gear deflections were recorded but not tabularized or utilized in the calculations of loads.

DISCUSSION AND DESCRIPTION

The FAA Boeing 720 Dynamic arresting gear test was conducted from October 19, 1962 to October 30, 1962 at the National Aviation Facility Experimental Center test site at Atlantic City, New Jersey.

Stress instrumentation used during the test were strain gages to obtain fuselage bending and cap stresses along with the tail hook shank stresses. Strain gage location and significance is described on pages 12 and 13 . Figure 2 on page 14 shows the gage locations.

A metallurgical study was made of the hook shank which was yielded during the arrestment tests. Specimens were obtained from the yielded area and from a similar area of low stress. The stress-strain curves drawn for these specimens showed that strain-hardening took place. The increase in the yield strength is due to high loads which are a combination of bending, tension, and hook dynamic behavior. By raising the elastic limits, the fatigue strength of the deformed section increases for a given number of load cycles, but ultimately reduces its fatigue life.

The engaging velocities experienced were 78.4 to 135.6 knots and gross weights of 135,000, 175,000, and 220,000 pounds were used. Off center shots were 40 ft. at the lower gross weight and 20, 40, and 60 ft. for the maximum gross weight. One test run for the 175,000 pound gross weight with an engaging velocity of 96.4 knots and 10 ft. off center was conducted. Engaging velocities, aircraft runout, distance from centerline, hook loads, hook angles, and aircraft configuration for the actual gross weights can be found on page 15 .

Total combined effect of keel beam stresses obtained during arrestment and deadload stresses for the 135,000, 175,000, and 220,000 pound gross weight conditions are tabulated on pages 23 to 25 . The deadload stresses are calculated on page 25 .

An analysis for the nose gear load and an example calculation using run 25 for the Boeing 720 airplane during arrestment are on pages 26 to 35 . Also a free body diagram of the forces acting on the aircraft for this condition is on page 36 . Justification for using run 25 as an example is explained on page 37 .

The cross wind stresses in the fuselage at balance station 887 due to cantilever action are small, reference page 39 .

Two curves were plotted on pages 42 and 43 of hook load vs stress for strain gage 7, the steel hook attachment fitting, forward of production station 960. It is to be noted that for high hook loads, the stresses are starting to exceed the limits from static test load condition III (Reference: b.). Since the material is steel, these stresses are well below the limit design stress.

All the other gages on the fuselage which were read and summarized on Page 2 have low stresses. The stresses (Gage S17 and S18) on the hook shank have no general trend of hook load vs stress because of the dynamic effect during arrestment. These stresses are well under the design limit stress.

The appendix consists of two parts:

- (1) Appendix C, Interpretation of the data obtained from the Boeing 720 and 707 hooks tested at Swarthmore College, Pennsylvania.
- (2) Appendix D, Strain gage data reduced during the NAFEC tests.

SUMMARY

The fuselage stresses, fuselage accelerations and engine accelerations obtained on the FAA Boeing 727-027, N-113 during arrestments into the Model 3500 Arresting Gear at speeds through 135.6 knots and gross weights through 220,000 pounds were within safe working levels.

A summary of stresses as obtained by strain measurement are shown on pages 5 through 9.

PREPARED BY

ALL-AMERICAN ENGINEERING CO.

CHAPTER IV

DU PONT AIRPORT - WILMINGTON, DELAWARE

PAGE 5

MODEL NO. _____

Windows 10

DATA Summary of Gage Stresses

Project Run No.	Engaging Velocity	Gross Wt.	Distance From E	S7	S8	S9	S10	S11	S12
	knots	lbs	ft	psi	psi	psi	psi	psi	psi
1	80.3	135000	on E	12600	0	0	-3900	5400	3260
2	120.8	"	"	29900	16750	0	12600	8550	--
3	106.5	"	"	22500	6020	0	-8560	7210	6180
4	119.2	"	"	28900	—	—	-8750	9080	4860
5	128.2	"	"	31100	5030	-3680	-13700	11420	7900
6	135.6	"	"	36200	3700	0	-14020	11030	9300
7	78.4	"	40	9150	1900	0	-3640	3620	2970
8	100.1	"	"	19320	3310	0	-8030	6660	4610
9	116.2	"	"	26800	4130	0	-10400	8860	6900
10	130.2	"	"	33500	5550	711	-10700	7750	8100
10a	Braking	175000		-4350	1640	2860	2350	-8380	-7120
11	85.5	220000	on E	21700	1970	0	-8200	6780	5510
12	101.1	"	"	28800	2950	0	-10900	8500	6320
13	114.7	"	"	39200	2950	0	-15100	10900	9150
14	123.0	"	"	42000	4050	0	-16000	12500	10400
15	129.8	"	"	48800	4100	0	-19600	13200	12500
16	78.5	"	20	13900	2620	0	-7100	6620	5100
17	104.2	"	"	31652	3320	0	-12100	9200	8220
18	121.0	"	"	57700	3500	0	-15000	10500	9150
19	79.5	"	40	17202	1670	0	-6100	6620	7300
20	102.4	"	"	29400	2970	0	-11950	9260	7670
21	127.4	"	"	44200	358?	0	-16100	12000	6820
22	94.0	"	60	25000	2560	0	-9450	7030	5360
23	106.8	"	"	32220	3070	0	-8320	9600	7520
24	115.4	"	"	36100	3070	0	-6380	10150	8950
25	126.0	"	"	45600	+1700	+2360	2740	-9150	3940
26	116.0	"	40	33800	1710	0	2790	-5920	9300
27	123.2	"	20	42800	2560	0	1330	-6460	9300
28	964	175000	10	6430	0	0	4030	-3700	3740

PREPARED BY _____

ALL-AMERICAN ENGINEERING CO.

CHANGED BY

DU PONT AIRPORT - WILMINGTON, DELAWARE

24

Summary of Gage Stresses

PAGE 6

MODEL NO. _____

REPORT NO. _____

Project Run No.	S13	S14	S15	S16	S17	S18	S19	S21	S22
	PSI	PSI	PSI	PSI	PSI	PSI	PSI	PSI	PSI
1	—	2460	5600	—	-100000	—	NR	NR	NR
2	—	5250	—	—	-106000	-61000	3160	1650	0
3	—	4240	5480	0	-103000	—	1280	1650	—
4	—	5160	6690	—	-124000	—	-1170	1650	0
5	—	5550	7390	—	-132000	NR	1451	1385	0
6	11920	6620	9500	—	-140000	N.R.	2030	2090	1780
7	4132	1750	3370	—	-103000	N.R.	0	0	0
8	8220	3990	17300	—	-102800	NR	NR	NR	NR
9	10280	5200	7000	—	-113500	N.R.	1415	-2510	0
10	12500	6100	8050	—	-155000	N.R.	2450	1750	0
10a	-12000	-4050	-6700	—	0	N.R.	-206	1135	1840
ii	8820	9270	7707	—	-105000	-53000	0	0	0
12	10100	5250	7350	—	-87500	-46100	1690	0	0
13	8850	7200	8020	—	-83500	-59500	1670	4620	0
14	14800	8250	11400	—	-80300	-53800	2500	0	9550
15	16000	8520	10600	—	-89500	-72000	2290	4950	0
16	8000	3600	6450	—	-90000	-60600	1055	0	0
17	10100	6000	9200	—	-85200	-78000	2580	1680	0
18	13500	7200	9500	—	-95000	-58300	1710	1190	0
19	7820	3700	6330	—	-96400	-60700	1070	0	0
20	11200	5720	5810	—	-104000	-81200	1055	0	0
21	6400	3040	12000	—	-91400	-56000	2120	0	0
22	8530	3930	6520	—	N.G.	-60500	1057	1150	0
23	11930	5730	1260	—	N.G.	-60500	3160	-1192	0
24	12400	6630	9950	—	N.G.	-57800	2110	1192	0
25	11750	7180	10300	—	N.G.	-62400	2110	473	0
26	12400	6630	9950	—	-87700	-47700	1660	0	0
27	4700	4880	6630	—	-156000	-68800	3110	1328	0
28	4600	2270	3315	—	-119000	-75300	1040	442	0

PREPARED BY _____
CHECKED BY _____
DATE _____

ALL-AMERICAN ENGINEERING CO.

PAGE 7
MODEL NO.
REPORT NO.

Project Run No.	S23	S26	S27	S28	S29	S30	S31	S32	S33
	PSI	PSI	PSI						
1	N.R	N.R	N.R						
2	2660	5830	±5520	6860	4470	0	-10000	-2430	0
3	2330	3520	4940	5680	4870	—	-6700	±2420	2400
4	0	3640	6720	6100	5510	0	4170	-1160	3140
5	2540	4180	6350	8480	7080	4570	4950	-2320	2590
6	4340	5760	3350	3420	6840	7750	-11300	-2190	3370
7	0	0	-1960	2200	1960	0	0	0	0
8	NR	NR	NR						
9	1420	4300	6850	7200	6500	6550	-9550	-2850	4450
10	2500	4650	7850	9500	7450	12000	-1650	-2560	4050
10A	7310	-1595	-7480	-8170	-7480	-2390	-10700	-6810	-6430
11	0	1840	-2960	2570	2250	0	0	-3430	2400
12	0	2870	7680	7010	6350	0	-1240	-3320	2220
13	0	5450	8830	8900	8680	3470	-14050	-8600	3550
14	11350	6470	9930	11650	9690	6530	-13700	-2650	4280
15	0	6250	10900	11650	10150	4120	-16800	-1492	3900
16	2000	2120	3240	5350	0	975	-12700	-3540	2880
17	0	5300	7400	8500	8950	3410	-11900	-3700	—
18	0	3580	5280	9600	6660	3320	-17000	-4870	3820
19	1900	2500	3860	5550	0	985	-5080	-3430	3050
20	-760	7280	-950	2840	4720	12500	-9170	-2610	2270
21	0	4160	4750	6630	10650	3940	-18200	-6580	5300
22	0	3760	5350	5900	8860	2630	-8640	-4700	2280
23	0	5620	7440	8970	1520	3650	-6980	-6080	2850
24	0	6250	6100	8820	8890	3980	-11620	-5420	4020
25	0	6670	9530	10450	11850	3320	-3330	-3380	4020
26	1870	6650	8580	9900	8890	3900	-9320	-5420	4020
27	0	6250	8580	8250	7700	3900	-5930	-5420	2870
28	0	0	1910	2360	0	0	0	-2540	1910

PREPARED BY _____
CHECKED BY _____
DATE _____

ALL-AMERICAN ENGINEERING CO.

DU PONT AIRPORT - WILMINGTON, DELAWARE

PAGE 8
MODEL NO. _____
REPORT NO. _____

Project Run No	S34	S35				
	Pc	Pc				
1	NR	NR				
2	NR	NR				
3	NR	NR				
4	NR	NR				
5	NR	NR				
6	NR	NR				
7	NR	NR				
8	NR	NR				
9	NR	NR				
10	3300	0				
11	-585	3380				
12	0	0				
13	1290	-496				
14	990	2				
15	3850	2320				
16	1940	660				
17	2400	-1440				
18	990	1800				
19	-3980	2150				
20	0	1750				
21	3450	1780				
22	-2470	-3560				
23	2470	-2850				
24	-3140	-2500				
25	2460	1800				
26	938	0				
27	—	—				
28	—	—				

PREPARED BY R.

ALL-AMERICAN ENGINEERING CO.

PAGE 9

CHECKED BY _____

DU PONT AIRPORT - WILMINGTON, DELAWARE

MODEL NO. _____

DATE

Summary of Accelerations (g's)

REPORT NO. _____

# Project Run No.	A_x	A_{x1}	A_{z2}	A_{ex}	A_{ey}	Engaging Velocity knots	Gross Wt lbs	Distance From E ft
1	.31	small	—	—	—	80.8	135000	on E
2	1.08	small	—	—	—	120.8	"	"
3	.82	small	—	—	—	106.5	"	"
4	.91	.12	—	—	—	119.2	"	"
5	N.R.	N.R.	—	—	—	128.2	"	"
6	1.07	small	—	—	—	135.6	"	"
7	.37	.26	—	—	—	78.4	"	40
8	.62	small	—	—	—	100.1	"	"
9	.81	.44	—	—	—	116.2	"	"
10	1.03	.41	—	—	—	130.2	"	"
*	11	.46	small	—	.46	.36	85.5	220000 on E
12	.64	.14	—	.91	.12	101.1	"	"
13	.77	.23	—	.56	.30	114.7	"	"
14	.88	.22	—	.70	.30	123.0	"	"
15	.91	.15	—	.65	.58	129.8	"	"
16	.36	.15	—	.47	.37	78.5	"	20
17	.60	.23	—	.58	.30	104.2	"	"
18	.77	.19	—	.64	.22	121.0	"	"
19	.45	.15	—	.46	.22	79.5	"	40
20	.51	.15	—	.47	.30	102.4	"	"
21	.87	.37	—	.93	.44	127.4	"	"
22	.51	.11	—	.65	.22	94	"	60
23	.60	.37	—	.93	.37	106.8	"	"
24	.70	—	.34	1.03	.37	115.4	"	"
25	.85	—	.40	1.12	.44	126.0	"	"
26	.84	—	.46	.84	.29	116.0	"	40
27	.88	—	.40	.93	.45	123.2	"	20
28	.86	—	.47	1.21	.87	96.4	175000	10
*	10a.5	1.2	.40	—	1.30	.60	Braking	Hard Braking
*	10a.6	.7	.40	—	.90	.60	Braking	Normal Landing

Bal Sta

= 610

 A_x = Fwd. Acceleration on Fuselage (

Bal Sta

= 1306

 A_{x1} = Lateral Acceleration on Fuselage

Bal Sta

= 1306

 A_{z2} = Vertical Acceleration on Fuselage

Latent Sta

= 552

 A_{ex} = Fwd. Acceleration on Outboard Engine

Latent Sta

= 552

 A_{ey} = Lateral Acceleration on Outboard Engine

11

Location of Subject Material

Fig. 1

220000 Gross Weight
135000 Gross Weight

of Hook Attachment to Fuselage

Balance Station Cr.	Production Station (Cr.)
70	130
279	339
8356	895.6
843.8	903.8
887	947
900	960
156.1	162.1

* Production Station = Balance Station + 60

Strain Gage Data

Gage	Gage Location	Limit Stress Design Cond.	Significance
S-7(s)	Stl. fitting, bottom of body	142,000 psi Cond IIIA	Max. bending + axial stress body of stl. fitting
S-8	Existing stiffener Sta. 960	26,400 psi Cond. IIIA	Distribution of vertical loads from blkd. 960 to tank walls
S-9	Existing stiffener sta 960	< 26,400 psi cond. IIIA	Same as above
S-10	Top of alum. beam fwd of end vert. hole	43,300 psi cond. IIIA	Max. bend. in alum. beam
S-11	Keel, at sta. 920	16,100 psi cond. IIIA	Monitor keel load build-up; should be half of max. load
S-12	Tension strap	42,900 psi cond IIIA	Avg. tensile stress in strap
S-13	t. tee flange at sta 865	0 All cond's	Indicate load remaining in floor at sta 865.
S-14	Skin in floor aft of load transfer section sta 865	0 All cond's	Indicate load remaining in floor at sta 865.
S-15	Keel at sta 865	32,200 psi Cond IIIA	Should have large % of aft loading
S-16 ^(s) S-17 ^(s)	Upper hook shank 4 1/2" from hole.	64,000 psi 99,000 psi	S16+S17 = Axial stress (hook load) S16-S17 = Bend stress

* Ref. b.

Strain Gage Data - Cont'd

S-18(3)	Hook pt. above weld - one side only	163 000 psi	Max. surface (Upper side) stress
S-19	Tension strap, sta 930 33" up	—	Distribution of load into tank walls from 930 blk'd.
S-21	Stringer, aft face of sta 960; E at W.L. 185	7700 psi cond IIIA	Comp. stress in stringer. Distributed load to shear panels & then to tank walls
S-22	Peripheral angle, Bottom of sta 960, 45° from vert.	—	Side load distributed into sta 960 blk'd.
S-23	Forged side member blk'd. sta 960, 85° from vert.	—	Same as above
S-26	On vert. web of T-T	—	Determine stress distribution fwd of hook attach. fitting (sta 960)
S-27	On vert. web of T-T	—	Same as above
S-28	On vert. web of keel beam	—	Same as above
S-29	On vert. web of keel beam	—	Same as above
S-30	On vert. web of keel beam	—	Determine stress distribution between sta 930 & 960
S-31	Near E of airplane on extreme fiber of hat section Tip	—	Determine stress distribution aft of hook attach. fitting (sta 960)
S-32	On vert. web of keel beam	—	Same as above
S-33	On vert. web of keel beam	—	Determine stress distribution between sta 930 & 960
S-34	Upper flange + floor beam sta 1020	—	Indicate stress due to hook shank hitting bottom of fuselage.
S-35	Lower flange floor beam sta 1020	—	Same as above

Figure 2
Strain Gage Locations
MODEL 3500 A/C TESTS AT NAFEC, AVIANIC CITY, NEW JERSEY

Tabulated Load Data

Project Date	Peak Run Dynamic Load	Max. Angle of Attack	Max. Engaging Angle	Aircraft Distance Run Out From the Runway	Aircraft Configuration
1 46,000	66,200	1.4	6.1	41,000 80.8 (lbs)	30° flap, C.G. 22% MAC, stabilizer trim 2 units nose up
2 N.R.	N.R.	3.5	N.R.	120.8 134,400 (lbs)	0
3 72,000	95,300	4.3	5.0	56,200 106.5 (lbs)	135,55 (lbs)
4 84,500	118,000	4	6.2	68,500 119.2 (lbs)	140.5 (lbs)
5 N.R.	N.R.	5	N.R.	128.2 136,045 (lbs)	145.0 (lbs)
6 117,000	135,000	4.1	7.1	120.0 135.6 (lbs)	143.5 (lbs)
7 13,000	51,500	1.4	12.5	16,300 78.2 (lbs)	144.5 (lbs)
8 68,600	75,900	4.0	10.3	50,600 100.1 (lbs)	135,687 (lbs)
9 83,000	102,700	1.8	13.0	56,600 116.2 (lbs)	140.0 (lbs)
10 102,900	132,000	.5	13.4	40,200 130.2 (lbs)	145.5 (lbs)
* 10a Break mg				136,200 (lbs)	146.5 (lbs)
11 52,400	83,900	.5	3.0	29,800 85.5 (lbs)	154.5 (lbs)
12 70,300	113,900	1.0	4.5	62,900 101.1 (lbs)	219,865 (lbs)
13 91,000	150,900	.5	5.9	75,700 114.7 (lbs)	156.0 (lbs)
14 102,500	162,000	.5	4.6	92,500 123.0 (lbs)	159.0 (lbs)
15 107,800	186,000	.9	4.1	91,400 129.8 (lbs)	162.5 (lbs)
16 43,100	68,400	1.4	9.5	19,100 78.5 (lbs)	164.0 (lbs)
17 73,400	122,800	0	8.6	21,500 104.2 (lbs)	162.0 (lbs)
18 101,000	152,900	1.2	8.6	73,000 121.0 (lbs)	163.0 (lbs)
19 259,400	165,900	1.8	13.0	10,300 79.5 (lbs)	170.5 (lbs)
20 75,200	102,800	3.6	14.6	41,400 102.4 (lbs)	164.0 (lbs)
				219,300 (lbs)	167.5 (lbs)

5

* Purpose of run was to measure engine accelerations by use of max. brake & reverse thrust.

Tabulated loaded Data - Cont'd

Project Run No.	Peak Dynamic Hook Load (lbs)	Peak Aer. Angle of attack	Max. Hook load angle	Hook load angle at Max. angle	Velocity at Max. angle	Aircraft Weight (lbs)	Aircraft Distance Runout from the hook (ft.)	Aircraft Configuration
21	102,800	167,900	2.0	12.4	67,600	127.4	220,850	1720
22	81,100	111,100	.9	19.7	14,300	94.0	220,100	40
23	82,600	138,500	.5	13.6	12,700	106.8	220,000	30° (top) C.G. 19.8%, stabilizer 2 units nose up
24	93,400	149,300	0	13.6	85,400	115.4	219,590	660
25	112,000	183,800	0	17.6	14,500	126.0	220,400	1655
26	95,500	165,800	0	13.0	67,000	116.0	219,600	60
27	114,300	189,500	1.7	9.6	67,000	123.2	220,000	1675
*28	47,700		1.6	7.7	31,800	96.4	174,000	1690
							670	20
								10

* At approx. 100 ft from pendant, full brake & reverse thrust applied

KEEL BEAM STRESSES

Oscillograph Data

PREPARED BY ALL-AMERICAN ENGINEERING CO. PAGE 10
CHECKED BY DU PONT AIRPORT - WILMINGTON, DELAWARE MODEL NO.
DATE NOV 2 1962 135K to 175K LOAD * REPORT NO.

G	K	Rc	$F_2 = K/R_c$	ΔD	$E_{\cdot 10^{-6}} = F_2 \times \Delta D$	$E \cdot 10^{-6}$	$S = EE$
1	S-7	2910	1.59	1830	- .01	29	-531
2	S-8	2869	1.85	1550	- .04	10.5	-652
3	S-9	2869	.43	6670	- .02	10.5	-1400
4	S-10	2869	1.65	1238	0	10.3	0
5	S-11	2869	1.65	1238	- .01	↑	-179
6	S-12	2869	1.81	1585	- .1		-1630
7	S-13	2896	1.46	1982	- .11		-2245
8	S-14	2896	1.72	1682	- .07	↑	-1215
9	S-15	2869	.88	3260	- .02	10.3	-672
10	—	—	—	—	—	—	—
11	S-17	2057	.62	3315	—	28.5	—
12	S-18	—	MR.	—	—	—	—
13	S-19	2869	1.44	1992	- .04	10.3	-822
14	S-21	2896	1.34	2160	+ .01	10.7	231
15	S-22	2869	.34	8945	- .01	10.3	-869
16	S-23	—	.82	3500	+ .01	↑	361
17	S-26	—	1.55	1850	- .03		-574
18	S-27	—	1.50	1912	- .09		-1792
19	S-34	—	.48	5980	- .07		-4320
20	S-28	—	1.32	2125	- .07		-1569
21	S-29	2869	1.50	1912	- .10		19,20.
22	S-30	2896	.28	10340	- .01		-1065
23	S-31	2896	.35	8225	- .08		-6820
24	S-32	2896	1.78	1627	- .07		-1172
25	S-33	2869	1.58	1815	- .09	↓	-1682
26	S-35	2869	.57	5045	+ .03	10.3	1558

Seismograph Data
ALL-AMERICAN ENGINEERING CO.

PREPARED BY J. W.

CHECKED BY

Miss Vicki 1962

DATE Aug 7, 1961

DU PONT AIRPORT -- WILMINGTON, DELAWARE

DU FORT AIRPORT " WILMINGTON, DELAWARE
135-1 330 1-1 *

PAGE

MODEL NO..

REPORT NO.

SEARCHED BY _____

ALL-AMERICAN ENGINEERING CO.

PAGE 20

MODEL NO. 100

WILMINGTON, DELAWARE

Item	Length	Size of Items	Size of Objects	Area in m ²	Number
Walls	3200	m ²	m ²	12	1
Interior wall	2100	m ²	m ²	90	1
Body & Position	4000	m ²	m ²	1600	1
Doors	1000	m ²	m ²	100	1
Windows	1000	m ²	m ²	100	1
Roof	3200	m ²	m ²	3200	1
Ground	3200	m ²	m ²	3200	1
Total	18000	m ²	m ²	10000	1
Estimated	18000	m ²	m ²	10000	1

Dead Load Stresses in Keel Beams.

Section Modulus [Ref. C.]

Product. - - - - - -	Bridge - - - - - -	I. m. - - - - - -	Co. stress. to keel beams..	E _y Calculated
434	874	5230.2 in ⁴	98.2 in	1610 in ³
960	993	116700	104.3	1130
112	918	30000	77.9	1330

Gross weight = 135,022*

$J_1 = 225,727^{\#}$ [Lif p. 20]

In Eq. use 132,000 cu. in. as initial section modulus.

A bending stress; = $\frac{132,000 \times 12}{113} = -10,500 \text{ psi}$

To be conservative, add this stress to all the strain gauge readings obtained for the keel beams with sign of residual stress to be of same sign as the stresses resulting from the oscillating impins during arrestment; see pages 23 to 25.

Gross weight = 223,411*

Add algebraically the strain gauge readings from pages 18 & 19. To be conservative add this increase in stress for the gages under consideration to the 10,500 psi stress regardless of sign. This now

gives the dead load stresses for 220,000[#] gross weight.
Next add these stresses to stresses obtained during
arrestment as explained above for 135,000[#] gross weight,
See pages 23 to 25.

PREPARED BY _____

ALL-AMERICAN ENGINEERING CO.

PAGE 23

CHECKED BY _____

DU PONT AIRPORT - WILMINGTON, DELAWARE

MODEL NO. _____

DATE _____

Stresses @ Keel Beam

REPORT NO. _____

Project Run No.	Engaging Velocity knots	Distance from ft.	Gross Weight lbs	S-2B # Sta 852	Dead Load Stress psi	Total * Stress psi	S-32 # Sta 978	Dead Load Stress psi	Total * Stress psi
1	80.8	on &	135000	N.R.	+10500	—	N.R.	-10500	—
2	120.3	"	6660	↑	17360	-2430	↑	-12930	
3	106.5	"	5650		16130	-2420		-12920	
4	119.2	"	6100		16600	-1160		-11660	
5	128.2	"	8480		15180	-2320		-12820	
6	135.6	"	3420		13920	-2190		-12690	
7	78.4	40	2200		12750	0		-11550	
8	100.1	"	N.R.		—	N.R.		—	
9	116.2	"	7200	↑	17700	-2850	↑	-13350	
10	130.2	"	135000	7510	+10500	LLCIG	-2560	-10500	13060
11	95.5	on &	220000	2570	+11370	13940	-3430	-11672	-15102
12	101.1	"	7010	↑	18330	-3320	↑	-14992	
13	114.7	"	8900		20270	-8600		-20272	
14	123.0	"	11650		-3020	-2650		-14322	
15	129.8	"	11650		23020	-1492		-13164	
16	78.5	20	5350		16720	-3540		-15212	
17	104.2	"	8500		19870	-3700		-15372	
18	121.0	"	9600		20970	-4870		-16542	
19	79.5	40	5550		16920	-3480		-15152	
20	102.4	"	2940		14210	-2610		-14282	
21	127.4	"	6630		18000	-6580		-18252	
22	94.0	60	5900		17270	-4720		-16372	
23	106.5	"	5170		20340	-6080		-17152	
24	115.4	"	8830		20190	-5420		-17092	
25	126.0	"	10450		21820	3380		-15052	
26	116.0	40	9900	↑	21270	-5420		-17092	
27	123.2	20	220000	8250	+11370	19620	-5420	↓	-17092
28	76.4	10	175000	2360	+12060	14420	-2540	-11672	-14212

* Conservative see p. 21 & 22

† Ref. Pg. 59

PREPARED BY _____
CHECKED BY _____

ALL-AMERICAN ENGINEERING CO.

PAGE 24

MODEL NO. _____

REPORT NO. _____

Stresses @ Keel Beam

PREPARED BY _____

ALL-AMERICAN ENGINEERING CO.

PAGE 25
MODEL NO. _____

DÄT

Stresses @ Keel Beam

MODEL NO.

卷之三

Stresses @ Keel Beam

Project Rur. No.	Engaging Velocity	Distance From E	Gross Weight	S-15 # Sta. 865	Dead Load Stress	Total Stress *	S-29 # Sta. 870	Dead Load Stress	Total Stress *
	knots	ft.	lbs.	psf	psi	psf	psi	psf	psi
1	80.8	20 ft	135000	5620	+10500	6100	N.R.	+10500	-
2	120.8	"					4470		14170
3	106.5	"		5480		15980	4870		15370
4	119.2	"		6690		17190	5510		16010
5	129.2			7370		17890	7080		17580
6	135.6			9500		210000	6240		17340
7	78.4	40		3370		13870	1960		12460
8	100.1			7300		17800	N.R.		-
9	116.2	"		7000	↓	17500	6500	↓	17000
10	130.2		135000	8080	+10500	19550	7450	+10500	17950
11	85.5	in E	-23000	17700	+21172	38872	2250	+11832	14132
12	101.1	"		1350	↑	28522	6350	↑	18232
13	114.7			8020		29192	8680		20562
14	123.0			11400		32572	9690		21572
15	129.8	"		10600		31772	10150		22032
16	78.5	20		6450		27622	0		11882
17	104.2	"		9200		30372	8950		20832
18	121.0	"		9500		30672	6660		18542
19	79.5	40		6330		27502	0		11882
20	102.4			8810		29982	2840		14722
21	127.4			12000		33172	10650		22532
22	94.0	67		6520		27692	8860		20742
23	105.3			9260		30432	6520		18402
24	115.4			9950		31122	8890		20772
25	126.0	"		10300		31472	11850		23732
26	116.0	40		9950		31122	8890	↓	20772
27	123.2	20	220000	6630	↓	27802	7700	+11882	19582
28	96.4	(1)	175000	3315	+21172	24487	0	+12470	12470

NOSE GEAR LOAD

W = Gross Weight

m = Mass of Airplane

I = Mass Moment of Inertia about airplane C.G.

α_z = Pitching Angular Acceleration

ω_z = Pitching Angular Velocity

m_1 & m_2 = Unit vectors fixed at airplane C.G.

a_x = Acceleration along m_1 direction

a_z = Acceleration along m_2 direction.

F_A & F_F = Frictional Forces of aft wheels & nose wheels respectively

N_A & N_F = Aft wheels normal load & nose gear load

P_H = Hook Load

P_V = Vertical load on horizontal tail. *

Assumptions

1. Assume rigid body

* Ref. a.

$$\phi^A = \phi^{A/\theta} + \phi^\varepsilon$$

ϕ is small angle

$$\begin{aligned} a_{zx} m_1 + a_{zz} m_2 &= (\Gamma_{OA} w_2^2 \cos \phi + \Gamma_{OA} x_2 \sin \phi) m_1 \\ &\quad + (\Gamma_{OA} w_2^2 \sin \phi - \Gamma_{OA} x_2 \cos \phi) m_2 + a_m \\ a_m \cos \phi &\equiv 1 \quad \& \quad \sin \phi \equiv \phi \end{aligned}$$

$$(a_{zx} - \Gamma_{OA} w_2^2 - \Gamma_{OA} x_2 \phi - a) m_1 + (a_{zz} - \Gamma_{OA} w_2^2 \phi + \Gamma_{OA} x_2) m_2 = 0$$

Eqn 1

$$\begin{aligned} \Gamma_{OA} w_2^2 \phi + \Gamma_{OA} x_2 \phi^2 - a_{zx} \phi + a \phi &= 0 \\ -\Gamma_{OA} w_2^2 \phi + \Gamma_{OA} x_2 + a_{zz} &= 0 \\ \Gamma_{OA} (\phi^2 + 1) x_2 + \phi (a - a_{zx}) + a_{zz} &= 0 \end{aligned}$$

$$x_2 = -\frac{1}{\Gamma_{OA}} \left[\phi \frac{(a - a_{zx}) + a_{zz}}{(1 + \phi^2)} \right]$$

$$\phi^2 \approx 0$$

$$x_2 = -\frac{1}{\Gamma_{OA}} \left[\phi (a - a_{zx}) + a_{zz} \right]$$

Let's find a

$$\alpha^G = \alpha^{G/x} + \alpha^{\phi}$$

$w_t^z \approx 0$ small

$$\alpha_x = -\Gamma_{0G} \alpha_z \cos \theta - a$$

$$a = -(\Gamma_{0G} \alpha_z \cos \theta + \alpha_x)$$

Place a into α_z in above eq

$$\alpha_z = -\frac{1}{\Gamma_{0A}} [\phi (-\Gamma_{0G} \alpha_z \cos \theta - \alpha_x - \alpha_{zx}) + \alpha_{zz}]$$

$$\alpha_z (\Gamma_{0A} - \Gamma_{0G} \phi \cos \theta) = -[-\phi (\alpha_x + \alpha_{zx}) + \alpha_{zz}]$$

$\Gamma_{0G} \cdot \phi \cdot \cos \theta \approx 0$ small therefore $a = -\alpha_x$

$$\alpha_z = -\frac{1}{\Gamma_{0A}} [-\phi (\alpha_x + \alpha_{zx}) + \alpha_{zz}]$$

----- ①

$w_t^z \approx 0$ small

$$\alpha_z = \Gamma_{0G} \cdot \alpha_z \cdot \cos \theta$$

----- ①a

$$\phi_l^E = \phi_l^{E/0} + \phi_l^0$$

$$a_{Ex} m_1 + a_{Ey} m_3 = \Gamma_E w_y^2 m_3 + \Gamma_E \alpha_y m_1 - a_x m_1 + a_n m_3$$

$$(a_{ex} - \Gamma_{oe} x_y + a_x) m_1 + (a_{ey} - \Gamma_{oe} w_y^2 - a_n) m_3 = 0 \quad \dots \dots \dots$$

$$\dot{\phi}^A = \dot{\phi}^{A/0} + \dot{\phi}^0$$

$$\alpha_{zx} m_1 - \alpha_{zy} m_3 = \Gamma_{0A} w_y^2 m_1 - \Gamma_{0A} \alpha_y m_3 + \alpha_n m_3 - \alpha_x m_1$$

$$(\alpha_{zx} - \Gamma_{0A} w_y^2 + \alpha_x) m_1 + (\alpha_{zy} + \Gamma_{0A} \alpha_y - \alpha_n) m_3 = 0 \quad \dots \quad \textcircled{3}$$

From eq (2) & (3)

$$\alpha_y = \frac{\alpha_{Ex} + \alpha_x}{\Gamma_{0E}}$$

$$\alpha_n = \Gamma_{0A} \alpha_y - \alpha_{zy}$$

$$\text{Then } \alpha_n = \frac{\Gamma_{0A}}{\Gamma_{0E}} (\alpha_{Ex} + \alpha_x) - \alpha_{zy} \quad \dots \quad \textcircled{4}$$

Also from eq (2) & (3)

$$w_y^2 \Gamma_{0E} = \alpha_{Ey} - \alpha_n$$

$$\& \quad w_y^2 \Gamma_{0A} = \alpha_{zx} + \alpha_x$$

Eliminate w_y^2

$$\frac{\Gamma_{0E}}{\Gamma_{0A}} (\alpha_{zx} + \alpha_x) = \alpha_{Ey} - \alpha_n$$

$$\alpha_{zx} = \frac{\Gamma_{0A}}{\Gamma_{0E}} (\alpha_{Ey} - \alpha_n) - \alpha_x \quad \dots \quad \textcircled{5}$$

$$\sum F_{in_1} = 0 \quad [\text{See fig. on pg. 27}]$$

$$F_A + F_F = P_H - m a_x$$

$$\sum F_{in_2} = 0$$

$$N_F + N_A = W + P_V - m a_z$$

$$\sum M_{cg} = 0$$

$$I\alpha_z - N_F \cdot d + N_A b - (F_A + F_F) h + P_H \cdot c - P_V \cdot e = 0$$

Place $N_A + (F_A + F_F)$ into this eq.

$$I\alpha_z - N_F \cdot d + (W + P_V - m a_z - N_F) b - (P_H - m a_x) h + P_H c - P_V e = 0$$

$$N_F (b+d) = I\alpha_z + Wb + P_V b - m a_z b - P_H h + m a_x h + P_H c - P_V e$$

$$l = b+d$$

$$N_F = \frac{1}{l} [I\alpha_z + P_H(c-h) + m a_x h + Wb + P_V(b-e) - m a_z b]$$

$$\text{with } (c-h) = -s$$

$$N_F = \frac{1}{l} [I\alpha_z - P_H s + m a_x h + Wb - P_V(e-b) - m a_z b]$$

where $e > b$
 $a_z = l \alpha_z \cos \theta$ [see pg 29]

EXPANDED BY —

ALL-AMERICAN ENGINEERING CO.

PAGE 33

CINCINNATI, OHIO.

DU PONT AIRPORT - WILMINGTON, DELAWARE

MODEL NO. _____

BATH

Class Moments of Irritative Doubt -

REPORT NO.

* Obtained from aircraft log.

± Ref e

Example Calculation.

Run 25 Engaging Velocity = 126.0 knots 60 ft off centerline

$$a_{zz} = .40 \cdot 32.2 = -12.9 \text{ ft/sec}^2$$

$$a_{Ex} = 1.12 \cdot 32.2 = -36 \text{ ft/sec}^2$$

$$a_{Ey} = .44 \cdot 32.2 = 14.1 \text{ ft/sec}^2$$

$$a_x = .85 \cdot 32.2 = 27.4 \text{ ft/sec}^2$$

$$P_h = 183,800^*$$

$$W = 220,000^*$$

$$m = \frac{220,000}{32.2} = 6,850 \text{ slugs}$$

$$I = 316,800 \text{ slugs-ft}^2 \quad [\text{Ref. Pg. 33}]$$

$$S = 3.5 \text{ ft}$$

$$h = 9.58 \text{ ft}$$

$$e = 60.39 \text{ ft}$$

$$l = 50.67 \text{ ft}$$

$$b = 4.29 \text{ ft}$$

$$r_{OA} = (35^2 + 9.58)^{1/2} = 36.5 \text{ ft}$$

$$r_{OB} = 46.0 \text{ ft.}$$

$$\phi = \arctan \frac{9.58}{35} = \arctan .274 \quad \theta = \arccot \frac{4.29}{9.58} = \arccot .447 = 66.8^\circ$$

a_{zy} was not measured for this run.

Use $a_{zy} = .37 \cdot 32.2 = -11.9 \text{ ft/sec}^2$ which is a_{zy} measured for

Run 21 ($V_e = 127.4 \text{ knots}, 40' \text{ off centerline}$). Run 21 being similar to

Run 25.

From eq(4)

$$a_n = \frac{36.5}{46.0} (-36 + 28.2) + 11.9 = +5.7 \text{ ft/sec}^2$$

From eq(5)

$$a_{zx} = \frac{36.5}{46.0} (14.1 - 5.7) - 28.2 = -21.5 \text{ ft/sec}^2$$

From eq.①

$$\alpha_z = \frac{1}{36.5} [-.274(28.2 - 21.5) - 12.9]$$

$$\alpha_z = \frac{1}{36.5} (-1.85 - 12.9) = +.403 \text{ rad/sec}^2$$

$$\alpha_z = r_{06} \alpha_z \times \cos \theta \quad [\text{Ref. eq. 1a}]$$

$$\alpha_z = 10.5 \cdot .403 \cdot \cos 66.8^\circ = 1.67 \text{ ft/sec}^2$$

From Eq. ⑥

$$N_F = \frac{1}{50.67} [316,800(.403) - 183800 \cdot 35 + 6850 \cdot 27.4 \cdot 9.58 \\ + 220000 \cdot 4.29 + 7750(60.39 - 4.47) - 6850 \cdot 1.67 \cdot 4.29]$$

$$N_F = \frac{1}{50.67} \cdot [128,000 - 641000 + 1800,000 + 940000 \\ - 435000 - 49000]$$

$$N_F = \frac{1}{50.67} \times 1743,000 = \underline{\underline{34,300^*}}$$

See free body diagram of forces acting on airplane, page

Russo

36

Free body diagram of forces acting on airplane during arrestment for run 25.

$$\mu \text{ (Coef. of friction)} = \frac{m a_x - P_H}{(N_A + N_F)} = \frac{182000 - 183800}{216350} = .0195$$

$$F_A = .0195 \cdot 182050 = 3530^* \text{ or } 382^* \text{ / tire}$$

$$F_F = .0195 \cdot 34300 = 670^*$$

The justification for using run 25 as an example calculation is as follows.

If neglecting the friction forces which are small in magnitude in comparison to P_H & m_{max} , we then obtain $P_H = m_{\text{max}}$ from summing horizontal forces.

Replacing $e \neq b$ we get

$$N_F = \frac{1}{e} [Ix_2 - P_h S + P_H h + Wb - P_v(e-b) - ma_{zb}b]$$

$$N_F = \frac{1}{e} [Ix_2 + Wb + P_H C - P_v(e-b) - ma_{zb}b]$$

where $e > b$

N_F depends largely on W , P_H & P_v . At higher speeds P_h is maximum & at larger gross weights P_v is smallest in magnitude.

Therefore the nose gear load, N_F , is maximum at higher speeds & maximum gross weights.

It is to be noted that P_v (vertical load on horizontal tail) is known for the 220,000# gross weight [see ref.a] with a velocity of 130 knots and would be difficult

to obtain for other speeds and gross weights.

The pitch acceleration at pt. A (see p. 27) was measured only for some of the 220,000 lb. gross weight runs.

CROSS WIND STRESSES

Cross Wind Stress in Fuselage @ Balance Sta 887

$$D = C_D A \frac{\rho V^2}{2}$$

D = Drag force
 C_D = Coefficient of drag
 A = Projected area
 ρ = Density air mass/volume
 V = Wind Velocity

Assume $V = 20$ mi/hr and acting 90° to aircraft.

$$V = \frac{20 \times 5280}{3600} = 29.4 \text{ ft/sec}$$

$$\rho = \frac{Y}{g} = \frac{0.763}{32.2} = .00237 \text{ slugs/ft}^3 \quad \text{where } Y = \text{specific weight}$$

Vertical Tail

$$\text{with } \frac{b}{h} = \frac{15}{24.5} < 1 \quad C_D = 1.17 \quad [\text{Ref. d}]$$

$$A = 15 \times 24.5 = 368 \text{ ft}^2$$

$$(\text{Drag})_{VT} = 1.17 \times 368 \times \frac{.00237 \times 29.4^2}{2} = 443^*$$

Fuselage

$$\text{with } \frac{b}{h} = \frac{62.5}{14.25/2} = 8.9 \quad C_D = .75 \quad [\text{Ref. d}]$$

$$A = 62.5 \times 7.1 = 444 \text{ ft}^2$$

$$(\text{Drag})_F = .75 \times 444 \times \frac{.00237 \times 29.4^2}{2} = 342^*$$

Moment at Bal. Sta 887

$$M = 443.55 + 342 \cdot \frac{62.5}{3} = \underline{\underline{31,550 \text{ ft-lbs}}}$$

Z_y (about lateral axis) = 1130 in³ at Balance Sta 900 [Ref. Pg. 21]

If we assume $\frac{1}{10}$ of 1130 in³ for Z_z (about vertical axis) the stress value would be $\frac{31,550}{113} = 279$ psi which is low.

43a

REF E R E N C E S

- a. Phone call from M. C. Wardle (All American Engineering Co.) to Richard Sliff (FAA test pilot) at Boeing Aircraft Co., Seattle, Washington.
- b. "Prototype Arresting Hook Installation Design for FAA-Boeing 720 Aircraft," All American Engineering Report M-635B
- c. Telegram from Boeing Aircraft Co., Seattle, Washington to John Clarkson (All American Engineering Co.), Reference No. 6-7776-226.
- d. Aero Dynamic Drag, Book by Sighard F. Hoerner
- e. Verbal conversation between John Clarkson (All American Engineering Company) and Dean Grimm (FAA weights engineer).

APPENDIX

Appendix C

Boeing 720 and 707 hooks tested at

Swarthmore College, Pennsylvania

The purpose of this part of the report is to interpret
the findings of the Boeing 720 and 707 hooks tested
at Swarthmore College, Pennsylvania on July 24, 1962.

Erroneous strain gauge readings were obtained from the
Boeing 707 hook because the strain gauges slipped.
Readings were obtained for the Boeing 720 hook and
are presented on page 47.

Both hooks were pulled to destruction and recorded
on page 56.

LOADS CRITERIAARRESTING HOOK ASSEMBLIES, BOEING 707 AND 720 AIRCRAFT
S.O. 1734, Task 440

1. GENERAL

1.1 Scope - This criteria defines the load and load parameters which will govern the design and analysis of the arresting hook assemblies to be used on the Boeing 707 and 720 aircraft.

1.2 Description of Assemblies - Each arresting hook assembly will be of the Sheaffer spring hook type consisting of a flat plate shank welded to a hook point. A replaceable light metal shoe will be bolted to the hook point to complete the assembly.

One hook assembly shall be designed to meet the arresting load requirements of the Boeing 707 aircraft, and the other hook assembly shall be designed to meet the arresting load requirements of the Boeing 720 aircraft.

The Boeing 707 hook assembly shall be readily adaptable to installation on the Boeing 720 aircraft. However, a weak link shall be incorporated as part of the installation in order to preclude the possibility of inadvertently applying to the 720 aircraft an arresting load exceeding the structural capability of the reinforced hard point. This will be accomplished by removing material from the 707 hook shank and the process will thus be an irreversible one.

The Boeing 720 hook assembly shall not be capable of installation on the Boeing 707 aircraft.

1.3 Requirements - References 5.1, 5.2, and 5.3 define all specifications for the assemblies. Structural requirements resulting from these are stated in the following sections.

2. LOADS

2.1 Limit Loads - Limit loads are defined as the maximum arresting loads to which the assemblies will normally be subjected. The limit loads will be different for the two assemblies, as noted below:

Boeing 707 A/C
350,000#

Boeing 720 A/C
225,000#

2.2 Yield Loads - Defined as the loads at which yielding of the assemblies can be expected to occur. Obtained by multiplying limit loads by a yield load factor (paragraph 3).

3. LOAD FACTOR AND LOAD CYCLES

The factor listed below will be used to obtain the yield load as noted in paragraph 2.2.

3.1 Yield Load Factor, YLF = 1.15.

3.2 Number of Load Cycles - Each hook assembly shall have the structural capability of being cycled from zero load to limit load and back to zero load for a total of one hundred (100) cycles.

4. MARGIN OF SAFETY

Margins of safety shall be computed for critically loaded sections as follows:

$$\text{M. S. yield} = \left[\frac{F_{t_y}}{(\text{YLF})(\text{Limit Load Stress})} \right] - 1$$

5. REFERENCES

5.1 AAE Sales Order 1485, dated 18 June 1962.

5.2 Addendum A to Sales Order Nos. 1470 thru 1485 dated 18 June 1962.

5.3 Initial Plan - Mod. 3500 Follow-On Work, Inter-Office reference (Program Planning) EPP-1, J. N. Eustis, dated 19 June 1962.

6. APPROVAL

B. R. Sheaffer
B. R. Sheaffer

J. Clarkson
J. Clarkson

W. Schlegel
W. Schlegel

F. M. Highley, Jr.
F. M. Highley, Jr.

M. C. Wardle
M. C. Wardle

B. J. Salvadori
B. J. Salvadori

25 June 1962

Strain Gage LocationsPozzi 120 HookHook Shank

PREPARED BY A. V.

ALL-AMERICAN ENGINEERING CO.

CHECKED BY _____ DU PONT AIRPORT :: WILMINGTON, DELAWARE

DATE

Instrumentation Data

PAGE 49

MODEL NO.

REPORT NO. _____

	Pull #1	Ch. 22 Strain $\times 10^3$	Pull #2	Ch. 22 Strain $\times 10^3$	Pull #3	Ch. 22 Strain $\times 10^3$	
1. CAD	Strain $\times 10^3$		Strain $\times 10^3$		Strain $\times 10^3$		
KIPS	in/in	%/in	in/in	%/in	in/in	%/in	
0							
25	250	-30	-30	-30	-30	-30	
50	1640	-10	-15	-25	-15	-45	
75	1490	-20	-45	-55	-65	-75	
100	3320	-20	-55	-60	-70	-80	
125	4175	-15	-50	-55	-65	-75	#1
150	4370	-15	-45	-55	-65	-75	
175	3150	-15	-45	-60	-70	-80	
200	612	-10	-340	-300	-350	-400	
225	1152	-10	-300	-75	-675	-750	
0							
25	470	-	567	-	372	-	
50	372	500	1100	542	312	522	
75	320	540	1640	522	1650	540	Strain
100	2072	640	2160	522	2180	530	
125	2602	532	2700	540	2710	530	
150	3135	535	3230	522	3220	516	#1
175	3632	545	3740	510	3730	522	#2
200	4220	542	4265	525	4260	522	4250
225	4762	540	4770	505	4732	515	4770
0							
25	4252	-	480	-	517	-	
50	362	442	100	422	315	422	
75	232	420	1310	410	1300	405	1310
100	172	410	1102	410	1105	410	
125	3211	400	2210	390	2010	310	
150	246	310	2430	400	2470	320	
175	1930	400	2360	310	2370	300	#2
200	3250	310	3240	362	3240	360	
225	382	360	360	360	360	360	

OPT
9.1.62

(1734-440)

Boeing 720 Tail Hose
(DAG 7253)

50

Theoretical Geometric Properties & Stress Relations

$$I = \frac{7.25}{6.85} = 1.06 = C_1, \quad C_2 = 2.48 - 1.06 = 1.42$$

$$I_x = 2.922 + 8.735 - (C_1)(C_2) = 3.997 \text{ in}^4$$

$$C = 75 + 1.06 = 1.81$$

1st STRESS according to STRAIGHT BEAM THEORY --

$$f_c = \frac{P}{A} + \frac{PcC_1}{I} = \frac{P}{6.85} + \frac{P \times 1.81 \times 1.06}{3.997} = P(1.146 + .48) = .625 P$$

$$f_c = \frac{P}{A} - \frac{PcC_2}{I} = \frac{P}{6.85} - \frac{P \times 1.81 \times 1.42}{3.997} = P(1.146 - .733) = -.875 P$$

2nd STRESS according to INSTRUMENTATION --

$$\epsilon = \frac{\text{STRESS}}{\text{STRAIN}} = 29 \times 10^6 \text{ psi (for 4.340 in.)}$$

$$f_c = f_c = 29 \times 10^6 \times (\text{STRAIN})$$

STRESSES AT SECTION A-A
(REF PG 50 (a) & (b))

APPLIED LOAD K.P.S P I	INSTRUMENT. CALC.						STR. BEAM THEORY CALC.		
	GAGE #1		GAGE #2		GAGE #3		fc KSI (5)	fc KSI (7)	
	STRAIN μ in/in (2)	fe KSI (3)	STRAIN μ in/in (4)	fe KSI (5)	STRAIN μ in/in (6)	fe KSI (7)			
0	0	0	0	0	0	0	0	0	
25	.270	7.8	.540	15.7	.457	-13.7	15.7	-14.7	
50	.1108	32.1	.1067	31.0	.885	-25.7	31.3	-29.4	
75	.1950	56.5	.1607	46.6	.1297	-37.6	47.0	-44.0	
100	.2775	80.4	.2137	61.9	.1670	-47.0	62.6	-58.7	
125	.3600	104.2	.2670	77.5	.2083	-50.5	78.3	-73.5	
150	.4325	126.2	.3195	92.7	.2473	-71.7	94.0	-88.0	
175	.5220	151.5	.3717	107.7	.2863	-83.1	109.8	-103.0	
200	.6028	175.0	.4230	123.2	.3273	-93.4	125.0	-117.5	
225	.6795	197.0	.4770	138.5	.3612	-103.7	141.0	-132.0	

NOTES:

(2), (4), & (6) - AVERAGE TOTAL STRAINS IN TEST DATA SHEET, PAGE 49.

(3), (5), & (7) - CALCULATED STRESS ACCORDING TO EQUATION AND $E = 29 \times 10^6$ KSI (SEE PG. 50, ITEM (4)).

(8) & (9) - CALCULATED STRESS ACCORDING TO STRAIN AND BEAM THEORY BASED ON VARIOUS GEOMETRIC PROPERTIES OF SECTION (SEE PG. 50, ITEM (a)).
(8) IS COMPUTED IN (5), & (9) IS COMPUTED IN (7).

$K_1 = \frac{P}{F}$ VARIES FROM 1 AT 25 KIPS INCREASING TO .981 AT 225 KIPS.
THIS APPROXIMATES THE "STRAIGHT" BEAM THEORY.

$K_2 = \frac{P}{F}$ VARIES FROM .705 AT 25 KIPS TO .787 AT 225 KIPS.
THIS MORE CLOSELY APPROXIMATES THE "CURVED" BEAM THEORY.

NOTICE THAT PT. "T" IS ON THE "STRAIGHT" PORTION OF THE BEAM & PT. "C" IS ON THE "CURVED" PORTION.

Z2Q HOOK

Line 65 Stress
Sec A-B

200KST MTR. 140. @. 2%

INC-5 100 KST

NOTE: (PLAN # 51)
This Plot or Sec ⑤ (GAGE #2)
is plotted directly
as Sec. ② (THEORETICAL)

Piece # 1

GAGE SET OF
PIECES #2 & #3

PIECE #2

PIECE #3

PIECE #2

PIECE #3

PIECE #2

PIECE #3

Sec. 2 shows excess for piece
#2% across areas plotted
from 200 to 51.

Rock #1 - Granite and Bottled
Feldspar Interpenetrated Diorite
(Sec 2) 53% too high

52

Granite

Diorite

Bottled

Feldspar

Granite

Diorite

INTERPRETATION OF CURVES ON PG 52

- (1) ALL TEST PULLS (EXCEPT PULL #1 ON GAGE #1) WERE MADE WITHIN THE PROPORTIONAL LIMIT OF THE MATERIAL.
- (2) PULL #1 ON GAGE #1 INDICATES THAT THE PROPORTIONAL LIMIT WAS EXCEEDED. SUCCEEDING PULLS ON THE SAME GAGE, HOWEVER, SHOW A LINEAR RELATIONSHIP INDICATING THAT THESE SUCCEEDING PULLS WERE MADE WITHIN THE PROPORTIONAL LIMIT OF THE MATERIAL, WHICH WAS PROBABLY WORK-HARDENED BY THE FIRST PULL.
- (3) THE CURVE OF PULL #1 ON GAGE #1 AT 165 KSI IS FICTITIOUS SINCE THE PROPORTIONAL LIMIT HAS BEEN EXCEEDED.

(4) THE OFFSET $\frac{\Delta \epsilon}{\epsilon} = .057\%$ CALCULATED AS FOLLOWS:

a) FROM CURVE ON PG 52; $\frac{\Delta \epsilon}{\epsilon} = 17.5$ KIPS

b) FROM DATA SHEET PAGE 49 FOR GAGE #1, PULLS #2 - #5; THE AVERAGE STRAIN INCREMENT FOR EACH 25 KIPS LOADING INCREMENT IS $8/16$ μ IN./IN.
THEREFORE $\frac{8/16}{25} = \frac{X}{17.5}$; $X = 570$ μ IN./IN.
 570 μ IN./IN. = $.057$ μ IN./IN. = $.057\%$ IN./IN.

- (5) THE EXTRAPOLATED PORTION OF THE CURVE FOR PULL #1 HAS ARRIVED AT AS FOLLOWS:
- a) BY KNOWING THE M.L. Y.O. = 176 KSI @ .2% OFFSET FOR 200 KSI ULT H.T. ALLOY STEEL (REF ANC-5), DETERMINE THE EQUIVALENT LOAD FOR ONE PARTICULAR GAGE #1 READINGS. FROM DATA SHEET, PAGE 49, IT IS FOUND THAT AN APPROX. 75 KIPS LOAD PRODUCES A 2000 μ IN./IN. STRAIN ($= .2\%$).
- b) DRAW A LINE THRU THIS POINT (AT 75 KIPS) PARALLEL TO THE STRAIGHT PORTION OF THE CURVE FOR PULL #1. WHERE THIS LINE INTERSECTS 176 KSI, DETERMINES THE .2% OFFSET Y.O. POINT ON THE CURVE.
- c) REFERRING TO A TYPICAL "STRESS VS STRAIN" CURVE, FARE BETWEEN THE UPPER EXTREMITY OF THE

STRAIGHT PORTION OF THE CURVE IN PHASE #1 /
IS YO GR LOCATED IN STEP 6). REED IN WHICH
IS THE YO GR IS THE HIGHEST POINT OF
THE EXTRUDED CURVE.

* * * * * LEARN THEORY IS CURVED LEARN THEORY

REED AND I IN THE MATH IN 1951 THE
HARDWARE IN THE DESIGN IN THE LEARNED LEARN
THEORY IS A LEARNED THING TO SAY AND
SOMETHING WHICH IS NOT A LEARNED THING ACCORDING
TO THE LEARNED LEARN FORM 24.

$$\frac{P}{P_0} = \frac{1}{1 + e^{-\frac{P}{P_0}}}$$

LEARNED NOT LEARN FORM 24. P IS RELATED
TO THE LEARNED STRESS (σ_{LS}) AS P IS A TYPICAL
LEARN PESS.

* * * * * INCREASING CONCENTRATION

IN THE STEEL BARS AT THE HIGH POINTS OF
THE LEARN PESS (LOCATION OF PHASE #1) A
LEARN CONCENTRATION IS MADE AND RELATED BY
THE LEARN DIFFERENCE BETWEEN THE LEARN PESS
PHASE #1 & PHASE #2. THE LEARN = THE INCREASE
PROPORTION OF THE LEARN IN PHASE #1 IN PHASE #2 IN

$$C_2 = \tan^{-1} \frac{\sigma_2}{\sigma_1} - \tan^{-1} \frac{\sigma_1}{\sigma_2} \quad \text{SOME HS LEARN THEORY}$$

* THE LEARN AT HS = 1.0, THE LEARN #2 = 0

$$C_2 = \tan^{-1} \frac{\sigma_2}{\sigma_1} - \tan^{-1} \frac{\sigma_1}{\sigma_2}$$

* THE LEARN CONCENTRATION FORM HS = 1.0 AS
THE RATIO OF HS LOCATION OF

$$K_2 = \frac{\sigma_2}{\sigma_1} = 1.58$$

* SEE NOTE ON LEARN EFFECT ON Pg 57

* METHOD OF LOADING EFFECT

DUE TO A "FANNING OUT" EFFECT OF LOAD WHICH IS APPLIED TO THE BOSS, PERHAPS ALL THE LOAD DOES NOT GO THRU THE LOCATION AT GAGE #2. IF THIS IS TRUE, IT MAY ONLY BE COINCIDENTAL THAT THE TEST RESULTS (See § of Pg. 51) AGREE WITH THE THEORETICAL CALCULATION (See § of Pg. 51). COINCIDENTAL TO THE DEGREE THAT PERHAPS A TOTAL STRESS INCREASE DUE TO A CURVED BEAM FIBER MIGHT BE DIVIDED BY A STRESS DECREASE AT THIS POINT. OR EQUALLY LIKELY IF REDUCED AMOUNT OF THE TOTAL LOAD TRAVERS THRU THIS POINT (SEECTING IN THE INDICATED OVERHANG FIBER) WHICH MIGHT BE AS HIGH AS 10% LESS THAN THE TOTAL LOAD.

- ON THE BASIS OF WHAT HAS BEEN SAID ABOVE IS TRUE IN GENERAL, IT IS FEEL THAT THIS "FANNING EFFECT" IS NEGIGIBLE IN THE SPECIFIC CASE OF THE 720 & 707 HICK DESIGNS, BECAUSE:
- (1) THE BOSS DIAMETER IS LARGE IN COMPARISON WITH THE HICK SIZES.
 - (2) THE BEARING AREA OF THE HICK DESIGN BEARING THE LOAD ALLOWS DIVERTING A PART OF THE DISTRIBUTED LOAD APPLIED LONG P. LINEARLY TO GAGE #2.

THIS COMMENT ON "METHOD OF LOADING EFFECT" IS MENTIONED SO THE RESULTS DERIVED FROM THIS TEST ARE NOT INDISCRIMINATELY USED FOR OTHER DESIGNS.

* SEE Pg. 54

(TEST HOOKS)

THEORETICAL CHARACTERISTICS OF BEARING HOOKS

161 707 HOOKS

(SEE PG 50 FOR SECT. DATA)

$$\frac{120 \text{ Min}}{(2250)} = 134.3 \text{ in} \quad F_{y} = 205 \text{ ksi} @ .02\% \quad F_{y} = 176 \text{ ksi} @ .07\% \\ P = 225 \text{ kip} \quad f = 176 \text{ ksi}$$

$$f_c = R_s \left(\frac{\rho}{A} + \frac{P_{ECI}}{I} \right) = 1.50 \left(\frac{0.50}{6.67} + \frac{225 \times 1.81 \times 52}{3.977} \right)$$

$$= 1.50 (0.076 + 10.0) = 15.9 \text{ ksi} @ .02\%$$

SAFETY FACTOR

Note: ACTIVE TEST SECTION H = 1.5 in.
 $F_{cy} = 185 \text{ ksi} @ .02\% \quad f = 176 \text{ ksi} @ .07\%$
 - SEE MR. WALTER'S (REF. 1) TESTING DATA

$$\frac{161 \text{ H.}}{160 \text{ min}} = 1.005 \text{ in} \quad \text{TEST SECTION AT } F_{y} = 205 \text{ ksi} \\ F_{y} = 227 @ .02\% \quad f = 207 @ .07\% \quad \text{in. dimension}$$

$$P = 350 \text{ kip} \quad f = 176 \text{ ksi} \quad \text{in. dimension}$$

$$f_c = \frac{15.9}{2.1} \times 2.0 = 15.7 \text{ ksi} @ .02\%$$

Note: Test results of f_c in 2 in. hook

161 700 - REACHED 10 CYCLES @ 350 kip
 AFTER 100 CYCLES @ 225 kip

$$\text{ULS Factor} = \frac{2.58}{2.1} = 1.27$$

161 707 - REACHED 10 CYCLES @ 407 kip
 AFTER 100 CYCLES @ 350 kip

$$\text{ULS Factor} = \frac{4.84}{3.50} = 1.38$$

Conclusions to tests conducted on
Panel 720 of 707 aircraft

It is believed that the failure of the 707 aircraft panel 720 was due to the low load factor of 1.05. The test was conducted at a load factor of 1.05 which is below the许用载荷 of 1.15. The failure of the panel is attributed to the low load factor. The aircraft was flying at a low altitude and the load factor was low. The aircraft was flying at a low altitude and the load factor was low.

The aircraft was flying at a low altitude and the load factor was low. The aircraft was flying at a low altitude and the load factor was low. The aircraft was flying at a low altitude and the load factor was low. The aircraft was flying at a low altitude and the load factor was low.

$$720 = \text{fe} \cdot \frac{P}{L^2} = 205 \text{ psi}$$

(where $\text{fe} = 202 \text{ psi}$, $L = 20'$)

$$707 = \text{fe} \cdot \frac{P}{L^2} = 277 \text{ psi}$$

(where $\text{fe} = 275 \text{ psi}$, $L = 20'$)

The test was conducted at a load factor of 1.05. The aircraft was flying at a low altitude and the load factor was low.

A load factor of 1.05 is considered to be low because the bending moment about the longitudinal axis of the aircraft is not symmetrical about the bending axis of the aircraft. The aircraft is not considered to be symmetrical about the bending axis of the aircraft.

UFP
7/18/62

5B

DEVELOPMENTAL CALCULATIONS LEADING TO THE DESIGN OF THE TEST HOOKS WERE DONE IN ROUGH FORM & ARE NOT IN A METHODICAL ORDER OWING TO NUMEROUS DESIGN & MATERIAL CHANGES. ALTHOUGH THESE CALCULATIONS ARE NOT IN REPORT FORM, THEY ARE ON FILE IN THE A.R.E. STRESS DEPT. THESE CALCULATIONS WERE PROVED TO BE TRUE BY THE SUCCEEDING TESTS.

THE FINAL DESIGN ANALYSIS IS IN GOOD FORM IN A.R.E. STRESS FILE. KNOWLEDGE GAINED FROM THE TEST RESULTS WILL BE USED IN ANALYZING THE FINAL DESIGN.

PERTINENT DRAWING LIST

	ASSEM. DWG.	SHANK DWG.	HORN FITTING DWG.
Fig. TEST:			
720 Hook	→ 7251-1	7252	7253
707 Hook	→ 7275-1	7277	7276
Final DESIGN:			
720 Hook	→ 7251-2	7252	7260
707 Hook	→ 7275-2	7277	7262

Note:

(a) DIFFERENCES BETWEEN 720 & 707 DESIGN:

1. MATERIAL -

6061-T6

720 - 4540 psi Tensile & 5100 psi of Tug = 5100 psi

707 - MILD. HAVING S.S. Tens - 2950 psi & Tug = 690 psi

2. SHANK WIDTH AT A/C ATTACHMENT -

720 - 11" wide

707 - 10" wide

(b) DIFFERENCE BETWEEN TEST HORN & FINAL DESIGN:

1. HORN FITTING THROAT LENGTH -

FINAL DESIGN IS $\frac{1}{4}$ " LONGER THAN
TEST HORN (INSIGNIFICANT STRESS WISE)

Appendix D

Strain gage data reduced during the NAFEC test. Total stress in the aircraft members monitored does not include dual load stress but rather arrested landing stress

PREPARED BY _____

ALL-AMERICAN ENGINEERING CO.

CHECKED BY _____

DU PONT AIRPORT - WILMINGTON, DELAWARE

10-19-62

PAGE 60

MODEL NO. _____

REPORT NO. _____

REPORT NO.

* Estimated from Run #2 - Re's for Run #1 Missing

PREPARED BY

ALL-AMERICAN ENGINEERING CO.

CREATED BY

DU PONT AIRPORT - WILMINGTON, DELAWARE

DATE 10-19-62

Run #2 (130.8 kts) 135 000 G.W.

PAGE 61

MODEL NO.

REPORT NO.

— 1 —

Gage No.	$K \times 10^{-6}$ in^2/in	D_F $= R_E$	$F_2 = K/F_D$	ΔD $= D_F - D_1$	$E = F_2(\Delta D) \times 10^{-6}$	S_{psi} $= E \times G$	
S7	2910	1.55	1875	.55	1030	29	29900
S8	2869	.18	15950	.10	1595	10.5	16750
S9	"	.08	35900	0	0	10.5	0
S10	"	1.52	1885	.65	1225	10.3	12600
S11	"	1.65	1740	.5	870	"	8550
S12	"	—	—	.42	—	"	—
S13	2896	—	—	.67	—	"	—
S14	"	1.7	1700	.3	510	"	5250
S5	2869	.53	5420	small	—	—	—
S16	2057	—	—	small	—	285	—
S17	2057	.10	20600	-.18	3710	"	-106000
S18	1029	.45	2290	-.93	2130	"	-61000
S19	2869	.4	2040	.15	-307	10.3	3160
S21	2896	.13	2200	-.07	154	10.7	-1650
S22	2869	.33	8680	0	6	10.3	0
S23	"	.88	3240	.08	259	"	2660
S26	"	1.52	1890	.30	568	"	5830
S27	"	.49	1920	.25	538	"	±5520
S28	"	.29	2220	.30	665	"	6860
S29	"	1.45	1970	.22	433	"	4470
S30	2896	.26	11100	0	0	"	0
S31	"	.36	8050	.12	765	"	-10000
S32	"	.37	7850	-.03	235	"	-2430
S33	2869	.37	7720	0	0	"	0

PREPARED BY JC

ALL-AMERICAN ENGINEERING CO.

CHECKED BY

DU PONT AIRPORT - WILMINGTON, DELAWARE

DATE OCT 20 1962

RUN #3 (106.5 Lbs)

PAGE 62

MODEL NO.

REPORT NO.

GAGE #	K N/mm/mm	Rc = DR	Fz = K/DR	AD DYN HYD	$E = \times 10^6$	$\times 10^9$	S = E EPSI
1 S7	2910	1.57	1850	.31 .42	777	29.0	22500
2 S8	2869	.15	19120	0 .03	573	10.5	6020
3 S9	2869	.08	35900	0 0	0	10.5	0
4 S10	2869	1.62	1170	.35 .41	832	10.3	8560
5 S11	2869	1.64	1150	.35 .4	700	10.3	7210
6 S12	2869	1.82	1578	.3 .38	600	10.3	6180
7 S13	2896	—	—	.5 .58	—	10.3	—
8 S14	2896	1.75	1650	.22 .25	412	10.3	4240
9 S15	2869	.54	5320	.10 .10	532	10.3	5480
10 S16	2051	—	—	— 0	0	28.5	0
11 S17	2051	1.41	1460	-2.60	3790	28.5	10800*
12 S18	1029	N.R.	—	—	—	28.5	—

AD

S19	2869	1.4	2040	.16	—	—	—
S21	2896	1.3	2200	.07	27	1.50	—
S22	2894	.33	8680	—	10.3	—	—
S23	—	.88	3240	.07	—	—	—
S26	—	.52	1870	.18	—	3520	—
S27	—	1.49	1920	.25	—	4140	—
S28	—	1.29	2220	.25	—	5682	—
S29	—	1.45	1970	.24	—	4870	—
S30	2896	.26	11100	—	—	—	—
S31	—	.36	3050	— .18	—	670	—
S32	—	.37	7850	— .03	—	12420	—
S33	2869	.37	7720	.13	—	2000	+

* The max. Stress was estimated because at this instant the trace ran off oscillograph paper.

PREPARED BY JC

ALL-AMERICAN ENGINEERING CO.

PAGE 63

CHECKED BY

MODEL NO.

DATE Oct 20 1962

REPORT NO.

DU PONT AIRPORT - WILMINGTON, DELAWARE

Run #4 (119.2 knts)

GAGE NO	K	Rc	Fz K/DR	ΔD	ΔD	$E \times 10^6$	$E \times 10^6$	S	EE
			DYN	HYD	Fz(AD)	psi			
1 S7	2910	1.57	1850		.52	962	29.0	28900	
2 S8	2869	.15	19120		—	—	10.5	—	
3 S9		.08	35900	X	—	—	10.5	—	
4 S10		1.63	1770	X	.48	850	10.3	8750	
5 S11		1.64	1750	X	.51	882	10.3	9080	
6 S12		1.82	1578	X	.30	412	10.3	4860	
7 S13	2896	—	—	X	.10	—	10.3	—	
8 S14	2896	1.73	1670	X	.30	501	10.3	5160	
9 S15	2869	.53	5420		.12	650	10.3	6690	
10 S16	2057	—	—		—	—	28.5	—	
11 S17	2057	1.42	1455		-3.0	4365	28.5	-124000	*
12 S18	1029	N.R.	—		—	—	28.5	—	

				ΔD					
519	2869	1.4	2040	-.05			10.3	-1170	
S21	2816	1.3	2200	.07			10.7	1650	
S22	2869	.33	8680	0			10.3	0	
S23	"	.81	3530	0			"	0	
S26	"	1.55	1850	.19				3640	
S27	"	1.49	1920	.34			"	6720	
S28	"	1.32	2170	.27			"	6100	
S29	"	1.50	1910	.28			"	5510	
S30	2896	.26	11100	0			"	0	
S31	"	.36	8050	.05				4170	
S32	"	1.80	.610	-.07			"	-1160	
S33	2869	1.60	790	.17			"	3140	

* The max. stress was estimated because at this instant the trace ran off oscillograph paper.

PREPARED BY JCLARKSON ALL-AMERICAN ENGINEERING CO.
 CHECKED BY DU PONT AIRPORT - WILMINGTON, DELAWARE
 DATE OCT. 20 1962 RUN # 5 (128.2 KNOTS)
 PAGE 64
 MODEL NO.
 REPORT NO.

GAGE NO	K	RC	F ₂ K/DR	ΔD	E ⁽¹⁾ F ₂ (ΔD)	E ⁽²⁾ PSI	S	SE
1 S7	2910	1.58	1850	.58	1072	29	31100	
2 S8	2869	.12	23900	.02	478	10.5	5030	
3 S9	2869	1.08	17500	-.02	-350	10.5	3680	
4 S10	2869	1.64	1770	-.75	-1330	10.3	-13700	
5 S11	2869	1.65	1850	.60	1110	10.3	11420	
6 S12	2869	1.80	1595	.48	766	10.3	7900	
7 S13	2896	NO RC	—	.81	—	10.3	—	
8 S14	2896	1.72	1685	.32	538	10.3	5550	
9 S15	2869	.53	5420	.14	755	10.3	7390	
10 S16	DELETED	† A	1100	READING	SUBSTITUTED			
11 S17	2057	1.42	1445	-.320	4640	28.5	-132000	
12 S18	1029	NO RC	—	—	—	28.5	NR.	
13 S19	2869	1.43	2010	.07	141	10.3	+451	
14 S21	2896	1.34	2160	.06	129.5	10.7	+1385	
15 S22	2869	.33	8680	0	0	10.3	0	
16 S23	"	.81	3530	.07	247	—	+12540	
17 S26	"	1.54	1850	.22	406	—	+4180	
18 S27	"	1.49	1920	.32	616	—	+6350	
19 S28	"	1.32	2170	.38	823	—	+8480	
20 S29	"	1.50	1910	.36	688	—	+7080	
21 S30	2896	.76	11100	.04	444	—	+4570	
22 S31	"	.36	8050	.06	483	—	+4980	
23 S32	"	1.80	1610	-.14	225	—	+2320	
24 S33	2869	1.60	1790	.14	251	10.3	+2590	

* The max. stress was estimated because at this instant the trace ran off oscillograph paper.

PREPARED BY J.C.

ALL-AMERICAN ENGINEERING CO.

CHECKED BY

DU PONT AIRPORT .. WILMINGTON, DELAWARE

DATE OCT 20 1962

RUN # 6 (135.6 KNOTS)

PAGE 65

GH NO	K	$D_e = R_c$	$F_2 = K/D_e$	ΔD	$E \times 10^6$ $F_2(D_e)$	$E \times 10^6$	S	
1	S7	2910	1.58	1850	.67	1240	29.0	36000
2	S8	2869	1.82	1575	.35	352	10.5	3700
3	S9	2869	1.42	6680	0	0	10.5	0
4	S10	2869	1.64	1770	-0.77	1362	10.3	14020
5	S11	2869	1.65	1850	.58	1072		11030
6	S12	2869	1.8	1595	.55	876		9300
7	S13	2896	1.45	1995	.58	1158		11920
8	S14	2876	1.72	1685	.38	641		6620
9	S15	2869	1.53	5420	.17	920	10.3	9500
10	S16	DELETE				--	28.5	—
11	S17	2051	1.4	1445	-3.4	4920	28.5	14000*
12	S18	1029	NORC		NR.	—	28.5	—
13	S19	2869	1.42	2020	.10	202	10.3	2080
14	S21	2896	1.32	2170	.09	195	10.7	2090
15	S22	2869	1.33	8700	.02	173	10.7	1780
16	S23	↑	1.82	3510	.12	422		4340
17	S26	1.54	1862	.3	560			5760
18	S27	1.5	1915	.17	325			3350
19	S28	↓	1.3	2210	.15	332		3420
20	S29	2869	1.47	1951	.34	664		6840
21	S30	2896	1.27	10720	.07	752		7750
22	S31	↓	1.37	7840	-0.14	-1095		-11300
23	S32	2896	1.77	1635	-0.13	213		-2190
24	S33	2869	1.58	1815	.18	327	10.3	3370

* The max. Stress was estimated because at this instant the trace ran off oscillograph paper.

PREPARED BY JC

ALL-AMERICAN ENGINEERING CO.

CHECKED

DU PONT AIRPORT - WILMINGTON, DELAWARE

DATE OCT 21 1962

RUN #7 (78.4 KNOTS)

PAGE 66

MODEL NO.

REMOVED

PREPARED BY JC

ALL-AMERICAN ENGINEERING CO.

CHECKED BY DU PONT AIRPORT -- WILMINGTON, DELAWARE
DATE OCT 21 1962 RUN # 8 (100.1 KNOTS)

PAGE 67

MODEL NO.

REPORT NO.

G	K	$D_R = R_C$	$F_2 = K/D_R$	AD	$E \times 10^6$ F_2/AD	$E \times 10^{-6}$	S	
1	S7	2910	1.6	1850	.36	6660	29	19320
2	S8	2869	1.87	1575	.2	3150	10.5	3310
3	S9	2869	.43	6680	0	0	10.5	0
4	S10	2861	1.69	1770	- .44	-778	10.3	-8030
5	S11	2869	1.68	1850	.35	647	↑	6680
6	S12	2869	1.82	1595	.28	446		1610
7	S13	2896	1.48	1995	.4	797		8220
8	S14	2896	1.75	1685	.23	387	↓	3990
9	S15	2861	.54	5420	.31	1080	10.3	17300
10	S16	HOOK		1.116				*
11	S17	2057	1.42	1445	-2.5	28.5	-11.5	
12	S18	N.R.						
13	S19	2869						
14	S21	2896						
15	S22	2869						
16	S23	↑	NO RECORD					
17	S24							
18	S27	↓						
19	S28							
20	S29	2869						
21	S30	2896						
22	S31	2896						
23	S32	2896						
24	S33	2869						

* The max. stress was estimated because at this instant the trace ran off oscillograph paper.

PREPARED BY _____

ALL-AMERICAN ENGINEERING CO.

PAGE 68

CHECKED BY _____

DU PONT AIRPORT -- WILMINGTON, DELAWARE

MODEL NO. _____

DATE 10-21-62

Run #9 (116.2 L+5)

REPORT NO. _____

G	K	$D_2 = R_2 = \frac{F_2}{F_1 D_1}$	ΔD	$E \times 10^6 = F_2(\Delta D)$	$E \times 10^6 \text{ psi}$	S	
S7	2910	1.6	1850	.5	924	29	26300
S8	2869	1.86	1575	.25	394	10.5	4130
S9	"	.45	6390	0	0	10.5	0
S10	"	1.65	1770	-.57	1010	10.3	-10400
S11	"	1.65	1850	.46	852	"	8260
S12	"	1.82	1595	.42	670	"	6700
S13	2896	1.45	1995	.5	995	"	10230
S14	"	1.75	1685	.3	505	"	5200
S15	2869	.85	3390	.2	678	"	7000
S16	2057	Hock	—	—	—	—	—
S17	"	1.4	1445	-2.75	3880	Z3.5	-113500*
S18	1029	N.R.	—	—	—	—	—
S19	2869	1.45	1980	.07	139	10.3	1415
S21	2896	1.34	2140	-.11	-235	10.7	-2510
S22	2869	.34	3450	0	0	10.3	0
S23	"	.83	3450	.04	138	"	1420
S26	"	1.57	1815	.23	417	"	4300
S27	"	1.51	1900	.35	665	"	6850
S28	"	1.31	2190	.32	700	"	7200
S29	"	1.52	1890	.32	632	"	6500
S30	2896	.27	10600	.06	635	"	6550
S31	"	.37	7850	-.12	-930	"	-9550
S32	"	1.78	1615	-.17	-276	"	-2850
S33	2869	1.60	1795	.24	430	"	4450

* The max. stress was estimated because the trace ran off oscillograph.

PREPARED BY _____

ALL-AMERICAN ENGINEERING CO.

CHECKED

DATE OCT 22 1962 BY FORT AIRPORT - WILMINGTON, DELAWARE

DATE Sep 26 1988

~~DO TONY AIRPORT - WILMINGTON, DELAWARE
20 MILES (180 KNOTS)~~

RUN #13 (750.2 KWHRS)

PAGE 69

અનુભૂતિ

www.ijerpi.org

REPORT NO. _____

G	K	$D_R = RC$	$F_2 = K/D_R$	ΔD	$E \times 10^6$ $F_2(\Delta D)$	$E \times 10^6$	S	
1	S7	2910	1.56	1870	.62	1160	29	33,500
2	S8	2869	1.63	156	.34	530	10.5	5550
3	S9	A	.42	~800	.01	68	10.5	711
4	S10		1.63	1760	-.59	1040	10.3	10,700
5	S11	†	1.60	1792	.42	752	†	7750
6	S12	2807	1.78	1610	.49	790		8100
7	S13	2876	1.42	2040	.60	1220		12,500
8	S14	2876	1.71	1700	.35	594	†	6100
9	S15	2869	.88	3250	.24	780	10.3	8050
10	-							
11	S17	2051	.62	3340	-1.62	-5410	28.5	-155000
12	S18	1029	N.R.					
13	S19	2857	1.45	1980	.12	238	10.3	2450
14	S21	2876	1.35	2130	.08	171	10.7	1750
15	S22	2864	.32	8950	0	0	10.3	0
16	S23	A	.95	3010	.08	242	†	2500
17	S26		1.98	1810	.25	492	†	4650
18	S27		1.50	1910	.40	762		7850
19	S34	i	1.45	6410	.05	20		3300
20	S28	†	1.30	2200	.12	922		9510
21	S29	2864	1.50	1910	.38	725		7450
22	S30	2876	.25	11600	-.11	116.1		12000
23	S31	2876	.36	8010	-.02	16.1	†	1650
24	S32	2876	1.75	1660	-.15	249	10.3	2560
25	S33	2801	1.60	1790	.22	394	10.3	9050
26	S35	2869	.59	4800	0		10.3	0

PREPARED BY: _____

ALL-AMERICAN ENGINEERING CO.

CHECKED BY _____ DU PONT AIRPORT - WILMINGTON, DELAWARE

DATE _____

Eur. #10a (Braking) 175,000# G.W.

PAGE 70

MODEL NO. _____

REPORT NO.

G	K ⁻⁶	R _c	F ₂	ΔD	E	E ⁻⁶	S _{PSI}	
S7	2910	1.58		- .05		29	-4350	
S8	2869	1.83		.10		12.5	1640	
S9	.	.42		.04		10.3	3860	
S10	.	1.63		.13		.	2350	
S11	.	1.66		- .47			-3280	
S12	.	1.80		- .43			-7120	
S13	2896	1.45		- .52			-12000	
S14	2896	1.72		- .23			-4050	
S15	2869	.83		- .20		10.3	-6700	
S17	2057	.63		0		28.5	0	
S15	Not hooked up							
S19	2869	1.40	2050	- .01		10.3	-205	
S21	2896	1.35	2130	.02		10.7	135	
S22	2869	.32	9150	.92		10.3	1840	
S23	"	.80	3580	.02		"	7210	
S26	"	1.45	1970	- .16			-1595	
S27	"	1.50	1910	- .39			-7490	
S34	"	.50	5720	- .01		"	-593	
S28	"	1.30	2200	- .36		"	-3170	
S29	2869	1.48	1910	- .33		"	-7480	
S30	2896	.23	11600	- .62		"	-1070	
S31	"	.35	8010	- .13		"	-1070	
S32	"	1.90	1610	- .41		"	-6310	
S33	2869	1.60	1790	- .35		"	-6430	
S35	2869	.53	5470	+ .06		10.3	3380	

PREPARED BY _____
CHECKED BY _____
DATE _____

ALL-AMERICAN ENGINEERING CO.

PAGE 71
MODEL NO.
REPORT NO.

G	K ₄₆	R _C	F _z	AD	E	E ₁₅	S _{ex}
S7	2717	.56	1870	.4		29	21700
S8	2371	1.82	1560	.12		10	1970
S9	"	.42	6300	0		11	0
S10	"	1.62	1750	-45		113	-8200
S11	"	1.65	1730	.35			1780
S12	"	1.77	1520	.33			5510
S13	2371	1.43	2040	.42			3820
S14	"	1.70	1700	.55			1270
S15	2371	.87	3250	.63		103	17100
S16	2057	.63	3340	-1.1		235	-10500
S17	1529	.62	1600	-1.12		285	-1370
S18	2869	1.4		0			0
S21	2896	1.32		0			0
S22	2371	.33		?			0
S23	"	.89		0			0
S26	"	1.45		.09			1540
S27	"	1.58		-15			-2960
S34	"	.54		0			0
S28	"	1.26		+11			2570
S29	2371	1.45		+11			2250
S30	2896	.25		0			0
S31	"	.35		0			0
S32	"	1.72		-20			-3430
S22	2869	1.58		.13			2400
S25	2869	.58		0			0

PREPARED BY *J.C.*

ALL-AMERICAN ENGINEERING CO.

CREATED BY -

DU PONT AIRPORT - WILMINGTON, DELAWARE

DATE DEC 24 86

(101.1 KNOTS) RUN #12

PAGE 72

Model N

REPORT 1

G	K	Rc	F2	AD	$\times 10^6$ E	$\times 10^6$ E	S
1 S7		1.57	1870	.53	992	29	28,800
2 S8		1.82	1560	.18	281	10.5	2950
3 S9		.42	6800	0		10.15	0
4 S10		1.63	1760	-.60	-1055	10.3	-10900
5 S11	2869	1.64	1750	.47	823	↑	8500
6 S12		1.77	1610	.38	612		6320
7 S13		1.44	2040	.48	980		10100
8 S14		1.70	1700	.30	510		5250
9 S15		.87	3250	.27	715	↓	7350
10						10.3	
11 S17		.62	3340	-.92	-3070	28.5	+87500
12 S18	1029	.47	2200	-.75	-1650	28.5	-46100
13 S19	2867	1.40	2040	+.05	163	10.3	1690
14 S21	2869	1.35	2130	0	0	10.7	0
15 S22	2869	.35	8950	0	0	10.3	0
16 S23	2869	.5	5740	0	0	↑	0
17 S26	2869	1.52	1890	+.12	278		2870
18 S27	2869	1.58	1910	+.39	745		7680
19 S34	2869	.5	5740	+.13	115		1290
20 S28	2869	1.25	2270	-.3	680		7010
21 S29	2869	1.45	1930	-.31	613		6350
22 S30	2896	.39	7450	0	0		0
23 S31	2896	.32	3010	-.15	-120		-1240
24 S32	2896	1.75	1660	-.12	-332		-3320
25 S33	2869	1.58	1790	+.12	-215	↑	+2220
26 S35	2869	.58	4800	-.01	-48	10.3	-496

PREPARED BY: _____

ALL-AMERICAN ENGINEERING CO.

PAGE 73

CHAPTER IV

DU PONT AIRPORT ~ WILMINGTON, DELAWARE

Model No.

DATE Oct 23, 1962

Run #13 (114.7 knots)

REPORT 104

卷之三

ELEM-13 (114, knots)								
G	K-10 ⁶	$\frac{F_2}{R_c} = \frac{F_2}{F_2(D_F)}$	ΔD	$E \times 10^6 = F_2(\Delta D)$	$E \times 10^6$	S		
1	S7	1.55	1870	.72		39200		
2	S8	1.82	1560	.18		2950		
3	S9	.42	6800	0		0		
4	S10	1.62	1760	-.83		-15100		
5	S11	1.63	1750	.60		10900		
6	S12	1.79	1610	.55		9150		
7	S13	1.42	2040	.42		6850		
8	S14	1.68	1700	.41		7200		
9	S15	.87	3250	.24		8020		
10	—							
11	S17	.62	3340	-.88	-2930	28.5	-83500	
12	S18	.47	2200	-.95	-2090	28.5	-51500	
13	S19	2867	12020	.08	162	10.3	1670	
14	S21	2896	1.3	2310	.02	462	10.7	4620
15	S22	2869	.48	5980	0	0	10.3	0
16	S23	2869	.58	1950	0	0	↑	0
17	S26	2869	1.51	1890	.28	528		5450
18	S27	↑	1.58	1910	.45	860		8880
19	S34	↓	1.60	4180	.02	95.8		990
20	S28	↓	1.25	2270	.38	863		8900
21	S29	2869	1.50	1910	.39	745		8680
22	S30	2896	.80	3730	.09	337		3470
23	S31	2896	.70	4260	-.32	1362		-14050
24	S32	2896	.74	4040	-.19	835		-8600
25	S33	2869	1.58	1815	+.19	345	↓	3550
26	S35	2869	.8	3590	0	0	10.3	0

PREPARED BY _____
CHECKED BY _____
DATE Oct 24, 196

ALL-AMERICAN ENGINEERING CO.

DU PONT AIRPORT - WILMINGTON, DELAWARE

DATE Oct 24, 1962

Run #14 (123.0 KTS)

PAGE 74
MODEL NO. _____
REPORT NO. _____

PREPARED BY _____

ALL-AMERICAN ENGINEERING CO.

CHECKED BY

DU PONT AIRPORT - WILMINGTON, DELAWARE

DATE Oct. 25, 1962 RUN #15 ($V = 129.8 \text{ KTS}$)

PAGE 75
MODEL NO. _____
REPORT NO. _____

G	K	R _G	F _Z	ΔD	E	E	S
1	S7	2910	1.56	.90		29	48800
2	S8	2869	1.80	1600	.24	385	10.7
3	S9	↑	.65		0		0
4	S10		1.60		-1.06		10.3
5	S11		1.62		.72		13200
6	S12	↓	1.66		.60		12500
7	S13	2896	1.42		.76		16000
8	S14	2896	1.68		.48		8520
9	S15	2869	.87		.31		10600
10						↓	
11	S17	2057	.62	- .94		28.5	-89500
12	S18	1029	.47	-1.16		28.5	-72000
	S19	2869	1.4		.11		2290
	S21	2896	1.3		-.02		4950
	S22	2869	.62		0		0
	S23	"	.79		0	"	0
	S26	"	1.4		.3	"	6250
	S27	"	1.55		.57	"	10900
	S34	"	.62		.04	"	1940
	S28	"	1.22		.48	"	11650
	S29	"	1.52		.51	"	10150
	S30	2896	.92		.12	"	4120
	S31	"	.89		-.49	"	-16800
	S32	"	1.75		-.27	"	-1492
	S33	2869	1.58		.2	"	3900
	S35	2869	.90		.02	"	660

PREPARED BY _____
CHECKED BY _____
DATE Oct 26, 1961

ALL-AMERICAN ENGINEERING CO.

PAGE 76
MODEL NO. _____
REPORT NO. _____

G	K	R _c	F ₂	ΔD	E	E	S
57	291	1.52	1920	.25	480	29	13900
SE	-	1.76		.15		10.7	2620
S1		.65		0		10.3	0
S10		1.58		-.38		"	-710n
211		1.62		.36			6620
S12		1.62		.28			510?
S13	231.	1.33		.37			8000
S14		1.63		.20			365?
S15	237	.67		.19		10.3	+6450
	2457	.62	3330	-.95	3161	23.5	-1437
	21	1029	.46	2240	-.95	2130	23.5 -6000
S16	231	1.40		.05		10.3	1055
S21	231	1.30		0		10.7	0
S22	2367	.62		0		10.3	0
S23		.74		.05			2000
S24		1.40		.10			2120
S25		1.55		.17			3240
S31		.62	4630	.05	32	?"	-100
S26		1.22		.22		"	+5350
S27				0		"	+ 0
S3C	2395	.92		.03			+975
S31	"	.89		-.32	1230	14.7	-1270?
S32	"	1.70		-.20			-3540
S33	2367	1.55		.15			+2880
S35	"	.82	3490	-.04	140	10.3	-1442

PREPARED BY _____
CHECKED BY _____
DATE Oct. 21, 1963

ALL-AMERICAN ENGINEERING CO.

DU PONT AIRPORT - WILMINGTON, DELAWARE

DATE Oct. 21, 1968

Run #17 (104.2 Hz) 2.4.2011

PAGE 71
MODEL NO.
REPORT NO.

G	K	R _C	F ₂	ΔD	E	E	S
S7	2911	1	-	.57	29	31600	
S8	291	1.76		.19	27	3320	
S9	"	1.4		C	10.7	0	
S10	"	1.05		-.65	11.3	12100	
S11	"	1.65		.50	11	9200	
S12	"	1.62		.45	"	8220	
S13	289	1.32		.50	"	10900	
S14	"	1.64		.23	"	6000	
S15	291	.87		.27	"	9500	
S16	2051	.52		-.90	26.5	-45200	
S17	1121	46		.22	28.5	-76000	
S18	2561	1.38		J2	13.3	2580	
S19	281	1.35		.07	13.7	1650	
S20	2561	.60		C	15.7	0	
S21	"	.77		C	0		
S22	"	1.40		.25		5300	
S23	"	1.52		.38		7400	
S24	2561	.67		.1	10.3	990	
S25	"	1.22		.35		9500	
S26	"	.57		.15		-150	
S27	2561	.95		.10		+340	
S28	2816	.32		-.35		-11900	
S29	2561	1.70		-.21		-3700	
S30	2816	..		.18		+ —	
S31	2561	.52		.05	10.3	1800	

PREPARED BY _____
CHECKED BY _____
DATE Oct. 26, 1962

ALL-AMERICAN ENGINEERING CO.

PAGE 78
MODEL NO. _____
REPORT NO. _____

DATE Oct. 26, 1962

DU PONT AIRPORT - WILMINGTON, DELAWARE

Run #18 C 121.0~~00~~ 20' off center

G	K	R _C	F	ΔD	E	E	S
S7	2111	1.52		.28	29	31700	
S8	2161	1.76		.20	11.7	3500	
S9		.65		0	12.7	0	
S10		1.26		-.80	16.3	-15000	
S11		1.63		15.7		16500	
S12		1.62		15.6		1150	
S13	2211	1.39		.63		13500	
S14		1.66		.40		7200	
S15		1.35		.27		9500	
S16	2051	.62		-1.5	23.1	-15000	
S17	1029	.46		-.92	28.1	-5000	
S18	2261	1.31		.06	1.1	1710	
S21	2291	1.30		.05		170	
S22	2321	.62		0		0	
S23	"	.77		0		0	
S26	"	1.43		.17		3580	
S27		1.53		.27		2240	
S28		.60		-.68		-3180	
S29		1.33		+.40		+9600	
S25		.47		+.11		+2000	
S30	2241	.90		+.10		+3320	
S31		.38		-.50		-17000	
S32		1.72		-.28		-4870	
S33	2061	1.55		+.20		+3820	
S35		.89		.06		2150	

PREPARED BY _____

ALL-AMERICAN ENGINEERING CO.

PAGE 19

CONTINUED

DU PONT AIRPORT - WILMINGTON, DELAWARE

卷之三

DATE Oct 27 19-2

DE PONT AIRPORT - WILMINGTON, DELAWARE

Volume 100

DATE 10/1/11

100-17156 40 ft. 30' 7"

ANSWER

G	K	E	F	ΔD	Σ	E	S
S7	SII	1.52		.31	29	17200	
S7	SII	1.72		.15	10.7	1670	
S7	"	.65		2	15.7	0	
		1.65		-.35	1	-6900	
SII		1.65		.36	1	6620	
SII		1.62		.31	1	1200	
SII	2871	1.31		.37		7320	
SII		1.67		.21		3700	
SII		.85		.15		6330	
SII	2057	.61		-1.0	-3	-16400	
SII	1025	.45		-.45	28	-6700	
-1	2861	.40		.15	1.3	1070	
-1	2871	.25		1	11.7	0	
-1	2961	.25		1	16.3	0	
S22		.78		.05		1700	
S22		1.12		.12		2500	
S22				.20		2560	
S24		.60		0		0	
S25		1.25		+.23		+5550	
S25		5.5		0		0	
S25	2916	.9		.03		985	
S25		.25		-.15		-250	
S25		1.72		-.20		-3480	
S25	2871	1.55		+.16		+3050	
S25		.83		.05		1750	

PREPARED BY _____
ALL-AMERICAN ENGINEERING CO.
 CHECKED BY _____
 DU PONT AIRPORT - WILMINGTON, DELAWARE
 DATE 2-27-68 F⁺ 102.4 L15 + REPORT NO. _____

PAGE 80

MODEL NO. _____

G	K	R ₁	F ₂	ΔE	E	E	S	
11	116				29		-1400	
12	120	172		.17	1.1		-170	
13	13			0	16.7		C	
14				-.12	16.7		-1950	
S11		5		0			9260	
S12				.42			7600	
S13		150		.52			11200	
S14		120		0			5700	
S15				0			-1410	
S16	200	11		-.02	1.1		-16400	
S17	100	4		-.11	1.9		-1110	
S18								
S19	-1	3		-.17	1.1		1055	
S20	241				0.1		C	
S21	341				0.1		C	
S22				0				
S23		12		-.12			-140	
S24		1		0			57	
S25				0			-140	
S26		1		.07			3400	
S27		20		0.1			2840	
S28				0.1			4720	
S29				0.1			4720	
S30				+.17			4720	
S31		16		-.23			-1170	
S32		12		-.11			-2310	
S33	26	16		-.12			4720	
S34		12		0.1			1750	
S35				0.1				
S36				0.1				
S37				0.1				
S38				0.1				
S39				0.1				
S40				0.1				
S41				0.1				
S42				0.1				
S43				0.1				
S44				0.1				
S45				0.1				
S46				0.1				
S47				0.1				
S48				0.1				
S49				0.1				
S50				0.1				
S51				0.1				
S52				0.1				
S53				0.1				
S54				0.1				
S55				0.1				
S56				0.1				
S57				0.1				
S58				0.1				
S59				0.1				
S60				0.1				
S61				0.1				
S62				0.1				
S63				0.1				
S64				0.1				
S65				0.1				
S66				0.1				
S67				0.1				
S68				0.1				
S69				0.1				
S70				0.1				
S71				0.1				
S72				0.1				
S73				0.1				
S74				0.1				
S75				0.1				
S76				0.1				
S77				0.1				
S78				0.1				
S79				0.1				
S80				0.1				
S81				0.1				
S82				0.1				
S83				0.1				
S84				0.1				
S85				0.1				
S86				0.1				
S87				0.1				
S88				0.1				
S89				0.1				
S90				0.1				
S91				0.1				
S92				0.1				
S93				0.1				
S94				0.1				
S95				0.1				
S96				0.1				
S97				0.1				
S98				0.1				
S99				0.1				
S100				0.1				
S101				0.1				
S102				0.1				
S103				0.1				
S104				0.1				
S105				0.1				
S106				0.1				
S107				0.1				
S108				0.1				
S109				0.1				
S110				0.1				
S111				0.1				
S112				0.1				
S113				0.1				
S114				0.1				
S115				0.1				
S116				0.1				
S117				0.1				
S118				0.1				
S119				0.1				
S120				0.1				
S121				0.1				
S122				0.1				
S123				0.1				
S124				0.1				
S125				0.1				
S126				0.1				
S127				0.1				
S128				0.1				
S129				0.1				
S130				0.1				
S131				0.1				
S132				0.1				
S133				0.1				
S134				0.1				
S135				0.1				
S136				0.1				
S137				0.1				
S138				0.1				
S139				0.1				
S140				0.1				
S141				0.1				
S142				0.1				
S143				0.1				
S144				0.1				
S145				0.1				
S146				0.1				
S147				0.1				
S148				0.1				
S149				0.1				
S150				0.1				
S151				0.1				
S152				0.1				
S153				0.1				
S154				0.1				
S155				0.1				
S156				0.1				
S157				0.1				
S158				0.1				
S159				0.1				
S160				0.1				
S161				0.1				
S162				0.1				
S163				0.1				
S164				0.1				
S165				0.1				
S166				0.1				
S167				0.1				
S168				0.1				
S169				0.1				
S170				0.1				
S171				0.1				
S172				0.1				
S173				0.1				
S174				0.1				
S175				0.1				
S176				0.1				
S177				0.1				
S178				0.1				
S179				0.1				
S180				0.1				
S181				0.1				
S182				0.1				
S183				0.1				
S184				0.1				
S185				0.1				
S186				0.1				
S187				0.1				
S188				0.1				
S189				0.1				
S190				0.1				
S191				0.1				
S192				0.1				
S193				0.1				
S194				0.1				
S195				0.1				
S196				0.1				
S197				0.1				
S198				0.1				
S199				0.1				
S200				0.1				
S201				0.1				
S202				0.1				
S203				0.1				
S204				0.1				
S205				0.1				
S206				0.1				
S207				0.1				
S208				0.1				
S209				0.1				
S210				0.1				
S211				0.1				
S212				0.1				
S213				0.1				
S214				0.1				
S215				0.1				
S216				0.1				
S217				0.1				
S218				0.1				
S219				0.1				
S220				0.1				
S221				0.1				
S222				0.1				
S223				0.1				
S224				0.1				
S225				0.1				
S226				0.1				
S227				0.1				
S228				0.1				
S229				0.1				
S230				0.1				
S231				0.1				
S232				0.1				
S233				0.1				
S234				0.1				
S235				0.1				
S236				0.1				

PREPARED BY _____
CHECKED BY _____
DATE 1/12/74

ALL-AMERICAN ENGINEERING CO.
DU PONT AIRPORT - WILMINGTON, DELAWARE

PAGE 31
MODEL NO. _____
REPORT NO. _____

S	T	L	R	AD	E	Z	S	
S1	-11	1		.01	-1	412		
S2	11	1		.21	1.7	3540		
S3		1		0	16.7	0		
S4				-1.2	16.2	-13100		
S5				1.7		13000		
S6				1.7		-120		
S7	21	1		.38		400		
S8		1				2		
S9		1				-2000		
S10		1		-1.1		-1400		
S11		1		-1.63		-600		
S12	21	1		.15		120		
S13	21	1						
S14	11	1						
S15		1						
S16		1						
S17		1						
S18	21	1						
S19	21	1						
S20	11	1						
S21		1						
S22		1						
S23		1						
S24		1						
S25		1						
S26		1						
S27		1						
S28		1						
S29		1						
S30		1						
S31		1						
S32		1						
S33		1						
S34		1						
S35		1						
S36		1						
S37		1						
S38		1						
S39		1						
S40		1						
S41		1						
S42		1						
S43		1						
S44		1						
S45		1						
S46		1						
S47		1						
S48		1						
S49		1						
S50		1						
S51		1						
S52		1						
S53		1						
S54		1						
S55		1						
S56		1						
S57		1						
S58		1						
S59		1						
S60		1						
S61		1						
S62		1						
S63		1						
S64		1						
S65		1						
S66		1						
S67		1						
S68		1						
S69		1						
S70		1						
S71		1						
S72		1						
S73		1						
S74		1						
S75		1						
S76		1						
S77		1						
S78		1						
S79		1						
S80		1						
S81		1						
S82		1						
S83		1						
S84		1						
S85		1						
S86		1						
S87		1						
S88		1						
S89		1						
S90		1						
S91		1						
S92		1						
S93		1						
S94		1						
S95		1						
S96		1						
S97		1						
S98		1						
S99		1						
S100		1						
S101		1						
S102		1						
S103		1						
S104		1						
S105		1						
S106		1						
S107		1						
S108		1						
S109		1						
S110		1						
S111		1						
S112		1						
S113		1						
S114		1						
S115		1						
S116		1						
S117		1						
S118		1						
S119		1						
S120		1						
S121		1						
S122		1						
S123		1						
S124		1						
S125		1						
S126		1						
S127		1						
S128		1						
S129		1						
S130		1						
S131		1						
S132		1						
S133		1						
S134		1						
S135		1						
S136		1						
S137		1						
S138		1						
S139		1						
S140		1						
S141		1						
S142		1						
S143		1						
S144		1						
S145		1						
S146		1						
S147		1						
S148		1						
S149		1						
S150		1						
S151		1						
S152		1						
S153		1						
S154		1						
S155		1						
S156		1						
S157		1						
S158		1						
S159		1						
S160		1						
S161		1						
S162		1						
S163		1						
S164		1						
S165		1						
S166		1						
S167		1						
S168		1						
S169		1						
S170		1						
S171		1						
S172		1						
S173		1						
S174		1						
S175		1						
S176		1						
S177		1						
S178		1						
S179		1						
S180		1						
S181		1						
S182		1						
S183		1						
S184		1						
S185		1						
S186		1						
S187		1						
S188		1						
S189		1						
S190		1						
S191		1						
S192		1						
S193		1						
S194		1						
S195		1						
S196		1						
S197		1						
S198		1						
S199		1						
S200		1						
S201		1						
S202		1						
S203		1						
S204		1						
S205		1						
S206		1						
S207		1						
S208		1						
S209		1						
S210		1						
S211		1						
S212		1						
S213		1						
S214		1						
S215		1						
S216		1						
S217		1						
S218		1						
S219		1						
S220		1						
S221		1						
S222		1						
S223		1						
S224		1						
S225		1						
S226		1						
S227		1						
S228		1						
S229		1						
S230		1						
S231		1						
S232		1						
S233		1						
S234		1						
S235		1						
S236		1						
S237		1						
S238		1						
S239		1						
S240		1						
S241		1						
S242		1						

PREPARED BY

ALL-AMERICAN ENGINEERING CO.

CHAP. 3.

DU PONT AIRPORT - WILMINGTON, DELAWARE

DATE Oct. 22 196

DATE Oct. 2nd, 1962 REC'D BY (94.0.5) 61-1111

PAGE 82
MODEL NO.
REPORT NO.

G	K	F _c	F _z	ΔD	E	E	S
S1	2910	1.2		.45	2.9	25000	
S1	2869	1.5		.15	10.7	2560	
				0	10.7	0	
S11				- .43	10.3	- 9450	
S11		1.65		.32		7030	
S11	"	1.65		.35		5360	
S13	2896	1.3		.41		8530	
S14		1.67		.22		3930	
S1		1.37		.11		6520	
	2057	N.G.	D2		28.5	---	
S18	1:29	.23		- .62	24.5	- 150	
	2869	1.1		.05	10.3	1057	
	2896	2.2		.05	10.7	1150	
S2	2869	.82			10.3	0	
S2	"	.78		0		0	
S2	"	1.42		.18		3760	
S2	"	1.55		.28		5350	
S3A	"	.60		.25		2470	
S2F	"	.25		.35		5900	
S2F	"	.55		.15		8860	
S3C	2896	.91		.08		2630	
S2	"	.90		- .26		- 8640	
S3	"	1.72		- .27		- 4700	
S2	2869	1.56		+ .12		+ 2280	
S2	"	.83		- .05		- 2850	

PREPARED BY _____

ALL-AMERICAN ENGINEERING CO.

CREATED BY

DU PONT AIRPORT - WILMINGTON, DELAWARE

PAGE 33

WORKS

BATTY

(106.3475) 63' off c.t.b. REPORT NO.

	R _C	ΔD	z	v	Δv
2115	1.52	.58	29	32250	
2267	1.5	.18	10.7	3070	
	1.5	0	10.7	0	
	1.45	- .45	15.8	- 3320	
	1.6	.11		1620	
	1.6	.42		7520	
2271	1.47	.56		1950	
	1.67	.32		5730	
	.87	.27		9260	
	2057 N.G.				
	1027	.33	- .62	24.7	- 650
	2261	1.40	.17	10.3	3162
	2271	1.30	- .11	10.7	- 112
	2261	.62	0	10.7	0
		.78	0		0
		.42	.27		5620
		1.35	.39		7440
		.60	- .07		- 3440
		1.25	.38		8970
		.50	.11		3520
	2271	.90	.11		3650
		.90	- .21		- 3447
		1.72	- .35		- 6080
	2261	1.56	.15		2830
	"	.83	- .07		- 2500

PREPARED BY _____

ALL-AMERICAN ENGINEERING CO.

ANSWER

DU PONT AIRPORT - WILMINGTON, DELAWARE

DATE Oct. 22, 1962

2 Run #24 (W.E.A.Lite) 62' off center

PAGE 84

MODEL NO. _____

REPORT NO. _____

—
—

G	K	R _e	F _r	ΔD	C	E	S
S7	2910	1.62		.65		27	36100
S9	2869	1.67		.18		10.7	3070
S9		1.65		0		10.7	0
S10		1.62	1770	- .35	6200	10.3	- 6380
S11		1.63	1792	.55			10150
S12	2869	1.67	1740	.50			8950
S13	2896	1.40	2060	.58			12400
S14		1.68	1720	.37			6630
S15	2896	.87	3320	.29			9950
S16		N.G.		N.G.		25.5	116
S18	1029	.33		- .65		25.5	- 5420
S19	2869	1.40		.10		10.3	2110
S21	2896	1.30		.65		10.7	1192
S22	2869	.62		0		10.7	0
S23	2869	.78		0			0
S26		1.42		.30			6250
S27		.55		.32			6100
S34		.60		.51			24100
S28		1.27		.38			8820
S29	2869	.50		.15			8840
S30	2896	.91		.12			3980
S31		.91		- .35			- 11620
S32	2896	1.75	1652	- .32	532		- 5420
S33	2869	.55	1855	.21	3980		4020
S34	2869	.87		.05			1270

PREPARED BY

ALL-AMERICAN ENGINEERING CO.

PAGE 85

CHIEF 10 W

DU PONT AIRPORT - WILMINGTON, DELAWARE

WAGNER 101

RECEIVED OCT 28 1962

RECEIVED JULY 12 1964

100-3-463-107

$$V = 26.0 \text{ kJ/s}$$

	K	C	F ₂	AD	C	F	S
1	57	7		+ .82			45600
2	58			+ .1		+ 1700	
3	59		4420	+ .05	- 221	10.7	+ 2360
4	SI			+ .15			2740
5	SI			+ .05		+ 9150	
6	SI			+ .22			3940
7	SI			+ .55			11750
8	SI			+ .4			7180
9	SI			+ .3			10300
10				—			
11	S-	DELETED		—			
12	.	10.7	.33	- .7			+ 62400
13	SI			+ .1			2110
14	SI			+ .02		+ 478	
15	SI			0			0
16	S2			0			0
17	SI			.52			6670
18	SI			.5			9530
19	S2			.02			938
20	S2			.45			10450
21	S2			.2			11850
22	SI			.1			3320
23	S3			- .1			+ 3330
24	S3			- .2			+ 3380
25	S3			.2			4020
26	S3		.33	0			0

PREPARED BY *J.C.*

ALL-AMERICAN ENGINEERING CO.

CHIESED BY

DU PONT AIRPORT - WILMINGTON, DELAWARE

PAGE 2-7

RUN #26 ($\gamma = 16.0$) RNS 3 / NEW
DATE: 10-11-11

1 11 8 5 12 6 5 6

PAGE 86

MODEL

1100

卷之三

G	K	Rc	F ₂	ΔD	ε	E	S	PUH WAY (40°0'0" C)
1	S7	2910	1.54	.63	-		33	33
2	S8	2869	1.80	+.1			+ 110	
3	S9	↑	.65	0			0	
4	S10		1.60	+.15			2740	
5	S11	↓	1.60	-.32			- 5920	
6	S12	2869	1.63	+.51			4300	
7	S13	2816	1.40	+.58			12400	
8	S14	↓	1.69	+.38			6630	
* 9	S15	2896	.87	+.30			9950	
10	S16	1100K	NO RY				—	
#23	S17	2910*	1.42	6830	-.45		- 87700	
24	S18	1029	.32		-.52		- 47700	
13	S19	2869	1.47	+.08			1660	
14	S21	2896	1.31	0			0	
15	S22	2869	.63	0			0	
16	S23	2861	.79	-.05			1870	
17	S26	↑	1.43	+.32			2650	
18	S27		.57	+.45			8580	
* 19	S24		.62	0			0	
20	S28	↓	1.25	+.42			9900	
21	S29	2869	.50	+.15			8870	
22	S30	2896	.91	+.1			3900	
23	S31	↑	.91	-.28			- 9320	
24	S32	2896	1.75	-.32			- 5420	
25	S33	2869	1.58	+.21			4020	
** 26	S35	2869	.81	0			0	

PREPARED BY JC

ALL-AMERICAN ENGINEERING CO.

CORRECTED

CHECKED BY DU PONT AIRPORT WILMINGTON, DELAWARE
DATE 6/17/29192 RUN #27 (V=123.8 ft) 20' 0"

DATA C.C.

DATE OCT 29 1962 RUN #27 ($V = 123.2 \text{ Vdc}$) 20' O.C.

PAGE 31

MODEL NO.

卷之三

REPORT NO.

G	K	RC	FZ	AD	E	E	S
1	S1	2910		+·8			42800
2	S8	2869		-·15			-2560
3	S1			0			0
4	S13			.1			1830
5	S11			-·35			-6460
6	S12	2869		+·15			9300
7	S13	2896		+·22			-4700
8	S14			+·28			-4880
9	S15	2896		.20			6630
10	S6	HOK	NO R.				
11	S7	2910		-·80			-156000
12	S18	1029		-·75			68800
13	S19	2869	1.42	+·15			3110
14	S21	2896	1.31	2210	+·06		+1328
15	S22		.63		0		0
16	S23	2869	.79		0		0
17	S26		1.43	+·3			6250
18	S27		1.57	.45			8580
19	S34		.62		0		0
20	S28		1.25	.35			8250
21	S29	2869	.50	5750	.13	748	-700
22	S30	2896	.91		.1		3900
23	S31		.91		-·12		-5930
24	S32		1.75		-·32		-5420
25	S33	2869	1.58	+·15			2870
26	S35	2869	.81		0		0

PREPARED BY J.C.

ALL-AMERICAN ENGINEERING CO.

PAGE 33

SEARCHED BY

CHECKED BY _____ DU PONT AIRPORT - WILMINGTON, DELAWARE

MONTE

DATE OCT 30 1962 RUN #28 (16.4 kgs)

BRUNDTAB

	G	K	RC	F2	AD	E	S
1	S7				.12		6430
2	S8				0		0
3	S9				0		6
4	S10				+ .22		+ 4030
5	S11				- .2		- 3700
6	S12				.2		3740
7	S13				.2		4600
8	S14				.13		2270
9	S15				.1		3315
10	S16				0	NO R.C.	.
11	S17	2910	70.	4170	- 1.0	= x 5 -	119000
12	S18				- .82	-	75300
13	S19				.05		1040
14	S21				.02		442
15	S22				0		0
16	S23				0		0
17	S24				0		0
18	S27				+ .1		+ 1910
19	S34				0		0
20	S28				= .1		360
21	S29				^		0
22	S30				- .02		0
23	S31				-		0
24	S32				- .15		- 3540
25	S33				+ .1		+ 1910
26	S35				0		0