Cross-Modal Video Anomaly Detection: Visual-Audio Alignment via Optical Flow and Fourier Analysis

Matt Wang, Lily Ru, Anna Dai

Johns Hopkins University

May 14, 2025

Overview

- 1. Problem Introduction
- 2. Mathematical Preliminary
- 3. Feature Representations
- 4. Dataset & Data Preprocessing
- 5. Thresholding
- 6. Neural Network: Multi-Layer Perceptron
- 7. Model Comparison
- 8. Conclusion

Video Anomaly Detection: The Cross-Modal Challenge

Problem Statement:

- Traditional video anomaly detection focuses primarily on visual content
- Our focus: Detecting misalignment between audio and visual streams
- Applications: Deepfake detection, media authentication, quality assurance

Types of Audio-Visual Anomalies:

- **Temporal misalignment:** Audio delay/advance
- Audio corruption: Muting, noise, distortion
- Semantic Mismatch: Incongruent audio and visual content

Our Approach to Audio-Visual Synchronization Detection

Key Challenges:

- Different sampling rates of modalities
- Feature representation discrepancy
- Limited labeled data for anomalies

Project Goals:

- Build feature extraction pipelines for both audio and video
- Generate audio-visual misalignment for training and testing
- Evaluate detection methods:
 - Thresholding
 - MLP classifier

Feature Representations

Audio Features (Mel-Frequency Cepstral Coefficients - MFCC):

- Uses Short-Time Fourier Transform (STFT) for time-frequency analysis
- Applies perceptually motivated Mel-scale filter banks
- Output: Vector for compact spectral representation per time window

Visual Features (Optical Flow):

- Computes motion between consecutive frames
- Captures magnitude of movement
- Output: Concatenated and flattened flow vectors

Dataset: Audio-Visual Event (AVE)

AVE Dataset Overview:

- 4,143 videos covering 28 audio-visual event categories
- Annotations for usable clips are saved in TXT file with complex delimiters:
 - "Category & Video ID & Quality & Start Time & End Time"

Data Preprocessing: Annotation Conversion

- Original format in txt: "Category&VideoID&Quality&StartTime&EndTime"
- Conversion to CSV:
 - Parsed annotations into structured format
 - Added derived fields (e.g., Duration)
 - Improved accessibility for downstream processing
- Result: ave_annotations_preprocessed.csv

Data Preprocessing: Synthetic Anomaly Generation

Challenge: Limited anomalous examples in original dataset \Rightarrow generate synthetic misalignments by randomizing segment goodness.

Types of Synthetic Anomalies:

- Time shift: Audio delay relative to video
- Noise: White noise replacing audio
- Mute: Complete audio removal
- Distort: Sinusoidal temporal warp to the video playback speed

Result Summary:

- Total segments: 12,114
- Aligned: 6,049 (49.9%)
- Misaligned: 6,065 (50.1%)

Misalignment Breakdown:

- Noise: 1,669 (27.5%)
- Mute: 2,061 (34.0%)
- Distort: 1,613 (26.6%)
- Time Shift: 722 (11.9%)

Data Preprocessing: Synthetic Data Statistics

Duration Distribution:

Most segments are short (1-2s), where long-tail durations add diversity.

Misalignment Distribution:

Synthetic misalignments are almost evenly distributed across types, ensuring balanced training examples.

Feature Extraction Pipeline

Visual Features:

- Grayscale frame extraction at 5 FPS
- Resize to 96×96 pixels
- Compute optical flow between frames
- Concatenate and flatten to feature vector

Audio Features:

- MFCC extraction (13 coefficients)
- 16kHz sampling rate
- Transpose to align with visual frames

Feature Processing & Storage

• Temporal Alignment:

- Truncate audio and visual features to match in length
- Ensures synchronized input for model

Label Extraction:

• Labels parsed from filename patterns (e.g., "misaligned", "aligned")

• Storage Format:

- Store processed features and labels in .npz format
- Enables fast loading and compact storage

Method 1: Thresholding

Key Idea: After extracting features, we detect misalignment according to the audio and visual features generated, by applying an "optimal" threshold to classify normal/anomaly.

Steps:

1. Data Preparation

- Load visual and audio arrays
- Split data into training (0.7) and testing (0.3) sets

2. Compute Alignment Scores

 The alignment score is computed as the normalized Euclidean distance between audio (a) and visual (v) feature vectors:

$$score = \frac{\|a - v\|_2}{\sqrt{\min_len}}$$

• Low scores mean more aligned, while high scores mean less aligned (anomaly)

Method 1: Thresholding

Steps (Continued):

3. Determine Optimal Threshold (via ROC Analysis):

- Sweep over a range of threshold values to classify alignment scores as normal or anomalous.
- Select the threshold that maximizes Youden's J statistic (i.e., TPR FPR), achieving the best trade-off between true positive and false positive rates.

4. Evaluate on Test Set:

- Apply the selected threshold to alignment scores computed on the test set.
- Label a sample as anomalous if its score exceeds the threshold.
- Compute evaluation metrics such as precision, recall, F1-score, etc.

Model Performance Evaluation (Thresholding)

Metric	Score
Accuracy	0.6271
Precision	0.6440
Recall	0.9361
F1 Score	0.7631

- Moderate Accuracy of 0.6271
- High recall indicates good sensitivity
- F1 (Harmonic mean of precision and recall) shows reasonable balance

Figure: ROC curve showing threshold performance

Neural Network Method: Model Architecture

Model Type: Enhanced Multi-Layer Perceptron (MLP)

Architecture:

- **Input Layer:** Linear projection to 512-dim with BatchNorm, Swish activation, and Dropout (0.3).
- Intermediate Layers:
 - Residual blocks with linear transforms, BatchNorm, and Swish activation.
 - Layer dimensions: [512, 256, 64]
- Output Layer: Linear(64, 1) without activation (logits for BCEWithLogitsLoss).

Neural Network Method: Training and Evaluation

Training Setup:

- Loss Function: Binary Cross Entropy with Logits
- **Optimizer:** Adam (LR = 1e-6, No Weight Decay)
- Epochs: 50, Batch Size: 128

Evaluation Metrics:

• Accuracy, F1-score

Concluding Remarks

- **Practical Impact**: The model demonstrates real-world applicability with strong recall, particularly valuable for audio-visual misalignment detection. We also produce a valuable dataset for future research.
- **Result Analysis**: MLP performs slightly better, but thresholding requires a lot less computational resources and complexity.
- Promising Directions for Future Improvement:
 - Feature engineering to boost precision
 - Optimization via alternative architectures and Hyperparameter Tuning
 - Exploration of alternative thresholding selection and neural network methods

Thank You!