CS 375 – Analysis of Algorithms

Professor Eric Aaron

<u>Lecture</u> – M W 1:00pm

Lecture Meeting Location: Davis 117

Business

- Smaller Assignment 0 due already
 - Graded work will be returned to you in your SubmittedWork folder
 - I'll email the entire class when it's been returned
- Smaller Assignment 1 out, due Sept. 19
- Problem Set 0 out, due Sept. 21

For the semester, please assume all PS and SA deadlines are 1pm on deadline day, whether or not it's explicitly stated in lecture

Business, pt. 2

- Project 1 out today
 - Please read the full project assignment! Instructions are given there
 - Please note project-specific lateness policy on assignment sheet
- Some key points about Proj1
 - Deadline: End of day (11:59pm) on September 28
 - Part of it: Asymptotic complexity analysis on methods in a Java class—you're given the source code
 - Part of it: Analyzing and conjecturing about asymptotic complexity when you're given data from runtime performance, not source code
- Project 1 is to be done in teams of 2 or 3
 - IMPORTANT: By end of day Saturday, Sept. 17, one person from each team should email me and everyone on the team to let me know they're teaming up
 - If you'd like my help finding a team for you, please let me know!

Time Complexity of See CLRS, Ch 2.2, pg. 26-27 **Insertion Sort** • What's the time complexity of Insertion Sort? - Our default is to look at the worst-case complexity of the algo, on an input of size n $T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{i=1}^{n} t_i + c_6$ **Time complexity** from adding [cost times]: $+ c_7 \sum_{j=1}^{n} (t_j - 1) + c_8(n - 1)$. • So, what's the Plug in $t_i = j ...$ worst case (Note: summation is same for c_6 , c_7) complexity? In worst case, $t_i = j$ each time, $T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$ so T(n) is order of n² $+ c_6 \left(\frac{n(n-1)}{2} \right) + c_7 \left(\frac{n(n-1)}{2} \right) + c_8(n-1)$ We'd say Insertion Sort $= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right)n$ $- (c_2 + c_4 + c_5 + c_8).$ is an n² algorithm

Time Complexity of Insertion Sort

- What's the time complexity of Insertion Sort?
 - Our default is to look at the worst-case complexity of the algo, on an input of size n

Add up the [cost * times] for each row... what do we get?

Time complexity from adding [cost * times]:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

• So, what's the *best* case complexity?

In best case, $t_j = 1$ each time, so...

- This means Insertion Sort is linear in the best case!
- But we don't consider it a linear algo, because that's not its worst case time complexity

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$.

Space Complexity of Insertion Sort

- While we're at it, what's the *space complexity* of Insertion Sort?
 - That is, how much space is used beyond the storage for the input?

```
INSERTION-SORT (A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1..j-1].

4 i = j - 1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i - 1

8 A[i+1] = key
```

Space Complexity of Insertion Sort

- While we're at it, what's the *space complexity* of Insertion Sort?
 - That is, how much space is used beyond the storage for the input?
- Other than input *A*, there are a few variables for storage
 - *j, key, i*
 - So, constant space complexity...
 and this is true in best case, worst
 case, and average case

Space complexity: constant

```
INSERTION-SORT (A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1 ... j - 1].

4 i = j - 1

5 while i > 0 and A[i] > key

6 A[i + 1] = A[i]

7 i = i - 1

8 A[i + 1] = key
```

Back to Time Complexity

- So... that counted...
 - We just counted numbers of operations for best case and worst case of Insertion Sort
 Well, we kinda did... those c,

Well, we kinda did... those c_i constants weren't super precise....

- How does that help us talk about which algorithms are faster than others?
- Big idea: Consider time complexity on large input sizes n
 - Lots of algorithms are usable on small inputs
 - The algorithms that are faster on large inputs are the ones we're going to consider fastest
 - ... but how do we define that, for rigorous algorithm analysis?

Introduction to Time Complexity Analysis of Algorithms

Let's take the big-picture view. How, in principle, could we measure the time efficiency of an *algorithm?*

- Could use a timer or stopwatch (or clock... or calendar...) to measure how fast a program is *on a given size of input...*
 - (called *empirical analysis*...)
 - But that doesn't really measure the *algorithm* speed
 - How much clock time passes is dependent on things other than just the algorithm (processor speed, memory access speed, etc.)!
- Better idea: Count how many operations an algorithm does *on* a given size of input as a measure of how long it takes!
 - Assume some unit of time for each operation
 - This gives a measure of time usage (i.e., speed) that is dependent upon the algorithm as written, not external factors!

Introduction to Time Complexity Analysis of Algorithms, cont.

- But even that kind of counting depends on how an algorithm is implemented
 - If the insertion sort idea is implemented with even minor differences...
 - Operation count could change... but the algorithm is the essentially the same, independent of minor coding details!
 - We don't want to say the *algorithm* has different speeds just because of many slightly different implementations.
- We want to discuss algorithm time complexity at a level a little bit more abstract than just a literal count of operations
 - If somehow we could capture the essential character of how many operations insertion sort takes ...
 - on input of a given size (e.g., an array of size *n*)
 - ...without getting caught up in small details...

Asymptotic Analysis / **Big-O Notation**

- With insertion sort, if we gloss over minor details, we can see the number of operations (worst case) is on the order of n^2

 - i.e., it is $c*n^2 + (lower order terms)$ $\left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + c_4 + c_4 + c_4 + c_4 + c_5 + c_5 + c_5 + c_5 + c_7 + c$ $-(c_2+c_4+c_5+c_8)$
 - ... for some constant c
 - \dots where n is the size of the input
- Definition: An algorithm runs in time O(f(n)) (read: "order of f(n)") means:
 - There exist c > 0, $n_0 > 0$ s.t. ...
 - ... for all $n \ge n_0$, the running time of the algorithm is less than c*f(n)
 - (Basically, that means that for every input "big enough," the running time is less than a constant times f(n)
- This running time measure captures some essential characteristic of an algorithm
 - $O(n^2)$ algorithms differ from $O(n^3)$, from $O(n \log n)$, etc.

Asymptotic Examples

- In what *Big-O classes* are the following?
 - n + 7
 - $n^2 + 3n$

For the next one, we use the shorthand that an algorithm is in f(n) + O(g(n)) if the running time is f(n) + t(n) for some t(n) in O(g(n)). Similarly for O(f(n)) * O(g(n)), or other arithmetic combinations.

- $(n \lg n + O(n) + O(1)) * O(n^2)$
- Formal definition describes what we intuitively mean by not worrying about lower-order terms

Common complexity measures and how they relate to input sizes

- Algorithms are sometimes described by their time complexity. There are
 - Logarithmic algorithms
 - Quadratic algorithms
 - Exponential algorithms
 - Factorial algorithms
 - etc.
- To see which kind is fastest, see how these functions grow with increases in the input size:

n	log ₁₀ n	n ²	2 ⁿ	n!
1	0	1	2	1
10	1	100	1024	3628800
50	1.70	2500	1.13e15	3.04e64
100	2	10000	1.27e30	9.44e157

Conventional Wisdom about Big-O Classes

- If two algorithms are in different big-O classes, then there seems to be something substantially different about their speeds
 - Even though, for some small values of n, an $O(2^n)$ algorithm could be faster than an $O(n^2)$ algorithm...
 - It is nonetheless true that 2^n grows faster than n^2 ...
 - Thus, an O(2ⁿ) algorithm is, in a relevant sense, inherently slower than an O(n²) algorithm

Important Vocab (see CLRS, pg. 28): These functions of n have very different orders of growth—i.e., how fast they grow as n gets larger

- For an O(n) algorithm (called "linear")
 - Doubling the input size does what to the running time?
 - Increasing input size by factor of 100 does what to running time?
- For an O(n²) algorithm ("quadratic")
 - Doubling the input size does what to the running time?
 - Increasing input size by factor of 100 does what to running time?
- For an O(2ⁿ) algorithm ("exponential")
 - Doubling the input size does what to the running time?