

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190805002

FCC REPORT

Applicant: Wocao Technology (Shenzhen) Co., Ltd.

Room 510, Building A, Huafeng Bao'an Zhigu Technology

Address of Applicant: Innovation Park, Yintian Road, Xixiang Street, Bao'an District,

Shenzhen, Guangdong, P.R.China, 518102

Equipment Under Test (EUT)

Product Name: SwitchBot Smart Humidifier

Model No.: W0801800, W0801801, W0801802, W0801803, W0801804,

W0801805

Trade mark: SwitchBot

FCC ID: 2AKXB-W0801800

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 16 Aug., 2019

Date of Test: 17 Aug., to 23 Sep., 2019

Date of report issued: 24 Sep., 2019

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	24 Sep., 2019	Original

Tested by: Date: 24 Sep., 2019

Test Engineer

Reviewed by: 24 Sep., 2019

Proiect Engineer

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	_
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	55
Ω	FUT	CONSTRUCTIONAL DETAILS	56

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

All measurement data were performed in accordance with ANSI C63.10: 2013 and KDB 558074 D01 15.247 Meas Guidance v05r02 of test method.

Remark

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	Wocao Technology (Shenzhen) Co., Ltd.	
Address:	Room 510, Building A, Huafeng Bao'an Zhigu Technology Innovation P Yintian Road, Xixiang Street, Bao'an District, Shenzhen, Guangdong, P.R.China, 518102	
Manufacturer/ Factory:	Wocao Technology (Shenzhen) Co., Ltd.	
Address:	Room 510, Building A, Huafeng Bao'an Zhigu Technology Innovation Park, Yintian Road, Xixiang Street, Bao'an District, Shenzhen, Guangdong, P.R.China, 518102	

5.2 General Description of E.U.T.

Product Name:	SwitchBot Smart Humidifier
Model No.:	W0801800, W0801801, W0801802, W0801803, W0801804, W0801805
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20)) 2422MHz~2452MHz (802.11n(HT40))
Channel numbers:	11 for 802.11b/802.11g/802.11(HT20) 7 for 802.11n(HT40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	PCB Antenna
Antenna gain:	1.0 dBi
AC adapter:	Model No.: FJ-SW126G2401000U Input: AC100-240V, 50/60Hz 0.6A Output: DC 24.0V, 1.0A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
Remark:	The Model No.: W0801800, W0801801, W0801802, W0801803, W0801804, W0801805 are identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

Operation Frequency each of channel for 802.11b/g/n(HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

- 1. For 802.11n-HT40 mode, the channel number is from 3 to 9;
- 2. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest Channel.

5.3 Test environment and test mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			

Transmitting mode Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode	Data rate			
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(HT20)	6.5Mbps			
802.11n(HT40)	13.5Mbps			

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE190805002

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

■ ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2021
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	Version: 6.110919b		

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an PCB antenna which cannot replace by end-user, the best case gain of the antenna is 1.0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz		
Limit:	Frequency range	Limit (d	dBuV)	
	(MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5 56 46			
	5-30	60	50	
	* Decreases with the log			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 			
Test setup:	Reference Plane			
	AUX Equipment Test table/Insulat Remark E.U.T. Equipment Under 1 LISN: Line Impedence Sta	E.U.T EMI Receiver	Iter — AC power	
Test Instruments:	Test table height=0.8m Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Product name:	SwitchBot Smart Humidifier	Product model:	W0801800
Test by:	Yaro	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>dB</u>	<u>d</u> B	dBu₹	—dBu₹	<u>ab</u>	
1	0.247	39.89	-0.40	10.75	50.24	61.86	-11.62	QP
2	0.273	30.18	-0.39	10.74	40.53	51.03	-10.50	Average
3	0.358	28.94	-0.38	10.73	39.29	48.78	-9.49	Average
4	0.424	39.97	-0.38	10.73	50.32	57.37	-7.05	QP
1 2 3 4 5 6 7 8 9	0.424	27.46	-0.38	10.73	37.81	47.37	-9.56	Average
6	0.507	40.57	-0.39	10.76	50.94	56.00	-5.06	QP
7	0.708	41.04	-0.38	10.77	51.43	56.00	-4.57	QP
8	0.708	28.00	-0.38	10.77	38.39	46.00	-7.61	Average
9	0.953	41.63	-0.38	10.86	52.11	56.00	-3.89	QP
10	1.511	27.42	-0.40	10.92	37.94	46.00	-8.06	Average
11	2.554	43.00	-0.43	10.94	53.51	56.00	-2.49	
12	25.321	28.55	-1.06	10.87	38.36	50.00	-11.64	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	SwitchBot Smart Humidifier	Product model:	W0801800
Test by:	Yaro	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∇	<u>dB</u>	₫B	dBu₹	dBu∜	<u>ab</u>	
1	0.154	46.26	-0.68	10.78	56.36	65.78	-9.42	QP
2	0.262	32.95	-0.65	10.75	43.05	51.38	-8.33	Average
3	0.282	42.33	-0.64	10.74	52.43	60.76	-8.33	QP
4	0.417	43.08	-0.64	10.73	53.17	57.51	-4.34	QP
2 3 4 5 6 7	0.426	30.38	-0.64	10.73	40.47	47.33	-6.86	Average
6	0.731	28.68	-0.64	10.78	38.82	46.00	-7.18	Average
7	1.111	42.98	-0.64	10.88	53.22	56.00	-2.78	QP
8	1.772	29.77	-0.66	10.94	40.05	46.00	-5.95	Average
9	2.309	43.93	-0.67	10.95	54.21	56.00	-1.79	QP
10	3.528	28.30	-0.69	10.90	38.51	46.00	-7.49	Average
11	4.622	44.58	-0.71	10.86	54.73	56.00	-1.27	QP
12	22.896	28.52	-1.43	10.89	37.98	50.00	-12.02	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Measurement Data:

Test CH	Max	Limit(dBm)	Result			
Test Cn	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(abm)	Result
Lowest	13.47	12.19	12.24	12.13		
Middle	13.33	11.82	11.83	11.63	30.00	Pass
Highest	13.01	11.86	11.76	11.66		

Test plot as follows:

6.4 Occupy Bandwidth

Measurement Data:

Test CH		6dB Emission	Bandwidth (MHz)		l imit/k∐z\	Result	
Test CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(kHz)		
Lowest	10.24	16.56	17.76	36.64			
Middle	10.24	16.48	17.76	36.80	>500	Pass	
Highest	10.24	16.48	17.76	36.64			
Test CH		99% Occupy I	Bandwidth (MHz)		Limit/kU=)	Result	
Test CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(kHz)	Result	
Lowest	13.20	17.60	18.56	38.88			
Middle	13.20	17.68	18.56	38.88	N/A	N/A	
Highest	13.20	17.68	18.48	38.72			

Test plot as follows:

6.5 Power Spectral Density

Measurement Data:

Toot CU		Power Spectra	al Density (dBm)	Limit(dDm)	Result	
Test CH	802.11b	802.11g	802.11n(HT20)	Limit(dBm)	Result	
Lowest	4.18	1.01	0.46	-2.48		
Middle	3.80	0.87	0.13	-3.02	8.00	Pass
Highest	3.83	0.82	0.04	-2.91		

Test plot as follows:

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

6.6.2 Radiated Emission Method

	a Emission W							-
Test Requi	irement:	FCC Part 15 C Section 15.209 and 15.205						
Test Frequ	ency Range:	2.3GHz to 2.5	GHz					
Test Distar	nce:	3m						
Receiver s	etup:	Frequency	Detec			VBW		Remark
		Above 1GHz	ove 1GHz		1MHz		ИHz	Peak Value
1.2 20		Fraguer	RM		1MHz nit (dBuV/m @		ИHz	Average Value Remark
Limit:		Frequer		LIII	54.00	3111)	Δ	verage Value
		Above 10	GHz		74.00			Peak Value
Test Proce		 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 						
Test setup			AE (Turntat	- W	Ho 3m Ground Reference Plane	Pre-mpifer Co	Antenna To	wer
Test Instru	ments:	Refer to section	on 5.8 for	details				
Test mode		Refer to section						
Test result	s:	Passed						

802.11b mode:

Product Name:	SwitchBot Smart Humidifier	Product Model:	W0801800
Test By:	Yaro	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Freq		Antenna Factor						
MHz	dBu∜		<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>ab</u>	
2390.000 2390.000								

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	SwitchBot Smart Humidifier	Product Model:	W0801800
Test By:	Yaro	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu₹	dB/m	<u>d</u> B	<u>d</u> B	dBuV/m	$\overline{dBuV/m}$	<u>ab</u>	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	roduct Name: SwitchBot Smart Humidifier Product Model:				
Test By:	Yaro	Test mode:	802.11b Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

Freq		Antenna Factor						
MHz	₫₿u₹	─dB/m	₫B	dB	dBuV/m	dBuV/m	<u>dB</u>	
2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	SwitchBot Smart Humidifier	W0801800			
Test By:	Yaro	Test mode:	802.11b Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor						
	MHz	dBu₹	dB/m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

Product Name:	W0801800				
Test By:	Yaro	Test mode:	802.11g Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor					
	MHz	dBu∜	dB/π	 dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000							

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	roduct Name: SwitchBot Smart Humidifier Product Model:				
Test By:	Yaro	Test mode:	802.11g Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

Freq		Antenna Factor						
MHz	dBu₹	dB/m	d <u>B</u>	<u>dB</u>	dBu∀/m	dBuV/m	<u>dB</u>	
2390.000 2390.000					58.27 46.70			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	duct Name: SwitchBot Smart Humidifier Product Model:				
Test By:	Yaro	Test mode:	802.11g Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

Freq		Antenna Factor					
MHz	dBu∜	<u>dB</u> /m	 <u>d</u> B	dBuV/m	$\overline{dB} \overline{uV/m}$	<u>d</u> B	
2483.500 2483.500							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Product Name: SwitchBot Smart Humidifier Product Model:				
Test By:	Yaro	Test mode:	802.11g Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor						
	MHz	dBu∜	<u>dB</u> /m	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

Product Name:	SwitchBot Smart Humidifier	Product Model:	W0801800		
Test By:	Yaro	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

	Freq		Antenna Factor					
	MHz	dBu∜	-dB/m	<u>d</u> B	 $\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000							

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	SwitchBot Smart Humidifier	Product Model:	W0801800
Test By:	Yaro	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq MHz		Antenna Factor					
		MHz dBuV dB/	dB/m	<u>d</u> B	 $\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	SwitchBot Smart Humidifier	Product Model:	W0801800
Test By:	Yaro	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu∇	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.500	24.51	27.36	4.81	0.00	58.38	74.00	-15.62	Peak
2	2483.500	13.44	27.36	4.81	0.00	47.31	54.00	-6.69	Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	SwitchBot Smart Humidifier	Product Model:	W0801800		
Test By:	Yaro	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

Freq		Antenna Factor						
MHz	dBu∜	dB/m	<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	BuV/m dBuV/m	<u>ab</u>	
2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40):

Product Name:	SwitchBot Smart Humidifier	Product Model:	W0801800
Test By:	Yaro	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor						
	MHz	MHz dBuV dB/m	<u>d</u> B	<u>db</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		
1 2	2390.000 2390.000								

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	SwitchBot Smart Humidifier	Product Model:	W0801800		
Test By:	Yaro	Test mode:	802.11n(HT40) Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

	Freq		Antenna Factor						
	MHz	MHz -	−dBuV	dB/m	dB	<u>d</u> B	dBuV/m dBuV/m dI	<u>d</u> B	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	SwitchBot Smart Humidifier	Product Model:	W0801800
Test By:	Yaro	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor						
	MHz	—dBu∜		<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	SwitchBot Smart Humidifier	Product Model:	W0801800		
Test By:	Yaro	Test mode:	802.11n(HT40) Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor						Remark
3	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

6.7.1 Conducted Ellission	Wethod
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
Test setup:	
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

6.7.2 Radiated Emission Method

6.7.2 Radiated Emission Me	etnoa					
Test Requirement:	FCC Part 15 C S	ection 15.2	09 and 15.205			
Test Frequency Range:	9kHz to 25GHz					
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	VE	3W	Remark
	30MHz-1GHz	Quasi-pea	k 120KHz	300	KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3M	1Hz	Peak Value
	Above 10112	RMS	1MHz	3M	1Hz	Average Value
Limit:	Frequency		imit (dBuV/m @3	m)		Remark
	30MHz-88MH		40.0			uasi-peak Value
	88MHz-216MH		43.5			uasi-peak Value
	216MHz-960M		46.0			uasi-peak Value
	960MHz-1GH	Z	54.0			uasi-peak Value
	Above 1GHz	: -	54.0 74.0		/	Average Value Peak Value
Test Procedure:	1GHz)/1.5m The table wa highest radia 2. The EUT wa antenna, wh tower. 3. The antenna the ground the Both horizon make the me 4. For each suscase and the meters and to find the m 5. The test-reconspecified Ba 6. If the emission the limit specified by have 10dB m.	(above 1Ghas rotated 3 ation. Is set 3 met ich was more the ich was more the anterest of the rota tab aximum reactiver system and width with on level of the rotal be reparation would be reparagin would	aried from one rethe maximum vitical polarization to ission, the EUT inna was turned from the EUT in was set to Peath Maximum Hole the EUT in peak testing could be ported. Otherwis	ne interpretation of a value of a	at a 3 ine the erferent variable to four of the fine ante errange that from the front degree extrements from the error of the error of the fine and error of the	meter chamber. e position of the ce-receiving e-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees enction and OdB lower than d the peak values ions that did not sing peak, quasi-
Test setup:	Below 1GHz Turn Table Ground F Above 1GHz		lm A			

Measurement Data (worst case):

Below 1GHz:

Product Name:	SwitchBot Smart Humidifier	Product Model:	W0801800
Test By:	Yaro	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
3	MHz	dBu∀	dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	38.616	48.25	12.06	1.18	29.91	31.58	40.00	-8.42	QP
2	52.391	52.27	11.85	1.29	29.81	35.60	40.00	-4.40	QP
2 3 4 5 6	106.013	48.90	11.98	2.01	29.48	33.41	43.50	-10.09	QP
4	222.950	52.41	11.63	2.84	28.69	38.19	46.00	-7.81	QP
5	271.325	50.96	13.10	2.86	28.50	38.42	46.00	-7.58	QP
6	323.320	49.79	14.09	3.02	28.50	38.40	46.00	-7.60	QP

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	SwitchBot Smart Humidifier	Product Model:	W0801800
Test By:	Yaro	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu₹	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
1	185.138	55.42	10.13	2.77	28.93	39.39	43.50	-4.11	QP
2	223.733	59.16	11.63	2.84	28.69	44.94	46.00	-1.06	QP
23456	323.320	55.33	14.09	3.02	28.50	43.94	46.00	-2.06	QP
4	350.477	55.83	14.60	3.10	28.56	44.97	46.00	-1.03	QP
5	385.281	56.32	15.10	3.09	28.72	45.79	46.00	-0.21	QP
6	848.056	37.30		4.20		36.09		-9.91	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Above 1GHz										
				802.11b						
	Test channel: Lowest channel									
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	48.52	30.94	6.81	41.82	44.45	74.00	-29.55	Vertical		
4824.00	49.33	30.94	6.81	41.82	45.26	74.00	-28.74	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	39.60	30.94	6.81	41.82	35.53	54.00	-18.47	Vertical		
4824.00	40.17	30.94	6.81	41.82	36.10	54.00	-17.90	Horizontal		
				nannel: Mido						
		_		tector: Peal	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	50.11	31.20	6.85	41.84	46.32	74.00	-27.68	Vertical		
4874.00	49.62	31.20	6.85	41.84	45.83	74.00	-28.17	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	39.64	31.20	6.85	41.84	35.85	54.00	-18.15	Vertical		
4874.00	40.17	31.20	6.85	41.84	36.38	54.00	-17.62	Horizontal		
				annel: High						
		_		tector: Peal	Value		1			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	49.85	31.46	6.89	41.86	46.34	74.00	-27.66	Vertical		
4924.00	48.13	31.46	6.89	41.86	44.62	74.00	-29.38	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	39.78	31.46	6.89	41.86	36.27	54.00	-17.73	Vertical		
4924.00	38.59	31.46	6.89	41.86	35.08	54.00	-18.92	Horizontal		

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g									
Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz) Read Level Factor (dB/m) (dB) Preamp Factor (dBuV/m) Limit Line (dBuV/m) Polariz	ation								
4824.00 49.87 30.94 6.81 41.82 45.80 74.00 -28.20 Vert	ical								
4824.00 48.13 30.94 6.81 41.82 44.06 74.00 -29.94 Horizo	ontal								
Detector: Average Value									
Frequency (MHz) Read Level Factor (dBuV) (dB/m) (dB) Preamp Factor (dBuV/m) Level (dBuV/m) Cover (dBuV/m) Cover (dBuV/m) Cover (dBuV/m) Cover (dBuV/m) Polarize	ation								
4824.00 39.64 30.94 6.81 41.82 35.57 54.00 -18.43 Vert	cal								
4824.00 40.15 30.94 6.81 41.82 36.08 54.00 -17.92 Horizo	ontal								
Test channel: Middle channel									
Detector: Peak Value									
Frequency (MHz) Read Level Factor (dBuV) (dB/m) (dB) (dB) Level (dBuV/m) Cable Factor (dBuV/m) (dBuV/m) Cable Factor (dBuV/m) Cable	ation								
4874.00 49.31 31.20 6.85 41.84 45.52 74.00 -28.48 Vert	ical								
4874.00 48.75 31.20 6.85 41.84 44.96 74.00 -29.04 Horizo									
Detector: Average Value									
Frequency (MHz) Read Level (dBuV) (dB/m) (dB) Preamp Factor (dBuV/m) Level (dBuV/m) Cable Factor (dBuV/m) Level (dBuV/m) Cable Factor (dBuV/m) Polariz	ation								
4874.00 39.64 31.20 6.85 41.84 35.85 54.00 -18.15 Vert	cal								
4874.00 40.47 31.20 6.85 41.84 36.68 54.00 -17.32 Horizo	ontal								
-									
Test channel: Highest channel									
Detector: Peak Value									
Frequency (MHz) Read Antenna Cable Preamp Level (dBuV) (dB/m) (dB) Factor (dB) Level (dBuV/m) Limit Line (dBuV/m) Polariz	ation								
4924.00 49.85 31.46 6.89 41.86 46.34 74.00 -27.66 Vert	cal								
4924.00 48.72 31.46 6.89 41.86 45.21 74.00 -28.79 Horizo	ontal								
Detector: Average Value									
Dood Antonno Coble Drooms	ration								
Frequency (MHz) Read Antenna Cable Preamp Level (dBuV) (dB/m) (dB) Factor (dB) Level (dBuV/m) Limit Line (dBuV/m) Polariz									
Frequency Level Factor Loss Factor Level Limit Line Over Polariz									
(MHz) Level Factor (dBuV) (dB/m) (dB) Factor (dBuV/m) (dBuV/m) Cover (dBuV/m) Cov	cal								

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n(HT20)									
	Test channel: Lowest channel									
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	49.85	30.94	6.81	41.82	45.78	74.00	-28.22	Vertical		
4824.00	48.72	30.94	6.81	41.82	44.65	74.00	-29.35	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	39.64	30.94	6.81	41.82	35.57	54.00	-18.43	Vertical		
4824.00	40.47	30.94	6.81	41.82	36.40	54.00	-17.60	Horizontal		
				nannel: Midd						
				tector: Peak	value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	49.61	31.20	6.85	41.84	45.82	74.00	-28.18	Vertical		
4874.00	48.13	31.20	6.85	41.84	44.34	74.00	-29.66	Horizontal		
			Dete	ctor: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	39.64	31.20	6.85	41.84	35.85	54.00	-18.15	Vertical		
4874.00	40.77	31.20	6.85	41.84	36.98	54.00	-17.02	Horizontal		
			Test ch	annel: High	est channel					
				tector: Peak						
	Read	Antenna	Cable	Preamp	Value					
Frequency (MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	49.15	31.46	6.89	41.86	45.64	74.00	-28.36	Vertical		
4924.00	48.36	31.46	6.89	41.86	44.85	74.00	-29.15	Horizontal		
			Dete	ctor: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	39.64	31.46	6.89	41.86	36.13	54.00	-17.87	Vertical		
4924.00	40.78	31.46	6.89	41.86	37.27	54.00	-16.73	Horizontal		
Remark:					•					
1 Finalla	ol – Possivo	r Pood loval	Antonno Ec	otor . Cobla	Loon Droom	nlifior Footor				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n(HT40)										
Test channel: Lowest channel											
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4844.00	49.31	30.96	6.81	41.83	45.25	74.00	-28.75	Vertical			
4844.00	48.51	30.96	6.81	41.83	44.45	74.00	-29.55	Horizontal			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4844.00	39.64	30.96	6.81	41.83	35.58	54.00	-18.42	Vertical			
4844.00	40.72	30.96	6.81	41.83	36.66	54.00	-17.34	Horizontal			
			Test ch	nannel: Mido	dle channel						
				tector: Peak							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	49.63	31.20	6.85	41.84	45.84	74.00	-28.16	Vertical			
4874.00	48.18	31.20	6.85	41.84	44.39	74.00	-29.61	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	39.67	31.20	6.85	41.84	35.88	54.00	-18.12	Vertical			
4874.00	40.15	31.20	6.85	41.84	36.36	54.00	-17.64	Horizontal			
			Test ch	annel: High	est channel						
		T		tector: Peal	v Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4904.00	49.61	31.45	6.89	41.85	46.10	74.00	-27.90	Vertical			
4904.00	48.72	31.45	6.89	41.85	45.21	74.00	-28.79	Horizontal			
		,	Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4904.00	39.78	31.45	6.89	41.85	36.27	54.00	-17.73	Vertical			
4904.00	40.72	31.45	6.89	41.85	37.21	54.00	-16.79	Horizontal			
Remark:	val Danairus	r Dood lovel	Antonno Fo	otor . Coblo	l oss – Pream	anlifiar Footor					

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.