場の理論 I レポート問題 第一回

担当:山口哲

2010年5月6日出題

問題 1

実スカラー場 $\phi(x)$ と作用

$$S[\phi] = \int d^4x \mathcal{L}(\phi, \partial \phi), \tag{1}$$

$$\mathcal{L}(\phi, \partial \phi) = \frac{1}{2} \eta^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi), \tag{2}$$

を考える。ここで $V(\phi)$ は ϕ の関数である。座標変換 $x^{\mu} \to x'^{\mu} = x^{\mu} - \epsilon a^{\mu}$ (a^{μ} は定数ベクトル、 ϵ は無限小のパラメータ)を考える。

- 1. 場は、 $\phi'(x')=\phi(x)$ というように変換する。場の無限小変換 $\delta_\epsilon\phi(x)=\phi'(x)-\phi(x)$ の形を書き下せ。
- 2. その変換に対して、 $\delta_{\epsilon}\mathcal{L}=\epsilon\partial_{\mu}Y^{\mu}$ の形に書き表せ。
- 3. この変換に対する Noether カレント j^{μ} を求めよ。実際 $\partial_{\mu}j^{\mu}=0$ となることを確かめよ。
- 4. Noether カレントを $j^{\mu} = a_{\nu}T^{\mu\nu}$ と表したとき、 $T^{\mu\nu}$ は $\mu\nu$ について対称か?もし対称でなければ $\partial_{\rho}f^{\rho\mu\nu}$ ($f^{\rho\mu\nu}$ は $\rho\mu$ について反対称) のような項をつけたして対称化せよ。

問題 2

次のような模型 (非線形シグマ模型) を考える。場は N 個のスカラー場 $\phi^i(x),\ i=1,\dots,N,$ 作用は

$$S[\phi] = \int d^4x \mathcal{L}(\phi, \partial \phi), \tag{3}$$

$$\mathcal{L}(\phi, \partial \phi) = \frac{1}{2} g_{ij}(\phi) \eta^{\mu\nu} \partial_{\mu} \phi^{i} \partial_{\nu} \phi^{j}. \tag{4}$$

ただし、 $g_{ij}(\phi)$, $i,j=1,\ldots,N$ は、 ϕ^k , $k=1,\ldots,N$ の関数で $g_{ij}(\phi)=g_{ji}(\phi)$ 、 さらに $g_{ij}(\phi)$ を ij 成分とする行列は正定値とする。この行列の逆行列の成分を $g^{ij}(\phi)$ と書くこと にする。

1. 運動方程式を求めよ。

- 2. $\xi^i(\phi), i=1,\ldots,N$ を $\phi^j, j=1,\ldots,N$ の関数とする。変換 $\delta_{\epsilon\xi}\phi^i=\epsilon\xi^i(\phi)$ が模型の 対称性となるための ξ^i に対する条件を求めよ。
- 3. この対称性に対する Noether カレント j_{ξ}^{μ} , Noether 電荷 Q_{ξ} を求めよ。
- 4. 正準運動量 $\Pi_i(x)$ は

$$\Pi_i(\vec{x}) = \frac{\partial \mathcal{L}}{\partial(\partial_0 \phi^i(\vec{x}))},\tag{5}$$

で定義され、これを使って Poisson 括弧は

$$\{A, B\}_{PB} = \int d^3\vec{x} \left(\frac{\delta A}{\delta \Pi_i(\vec{x})} \frac{\delta B}{\delta \phi^i(\vec{x})} - \frac{\delta A}{\delta \phi^i(\vec{x})} \frac{\delta B}{\delta \Pi_i(\vec{x})} \right), \tag{6}$$

で定義される。上で考えた $\xi^i(\phi)$ を使った変換が Noether 電荷 Q_ξ を使って次のように表せることを示せ。

$$\delta_{\epsilon\xi}\phi^i = \{\epsilon Q_{\xi}, \phi^i\}_{PB}.\tag{7}$$

5. $\xi_1^i(\phi), \xi_2^i$ に対して、上で考えた変換 $\delta_{\epsilon_1\xi_1}, \delta_{\epsilon_2\xi_2}$ がともに対称性であるとする。これらの対称性の Noether 電荷の間の Poisson 括弧が、ある $\zeta^i(\phi)$ を用いて

$$\{Q_{\mathcal{E}_1}, Q_{\mathcal{E}_2}\}_{PB} = Q_{\mathcal{E}},\tag{8}$$

と書けることを示せ。 $\zeta^i(\phi)$ の具体的な形を求めよ。変換 $\delta_{\epsilon\zeta}$ がまた系の対称性となっていることを示せ。

参考

問題等は以下のページにも置いておく。

http://www-het.phys.sci.osaka-u.ac.jp/~yamaguch/j/class.html