# Department of Computer Science and Engineering (CSE) BRAC University

#### Practice Problem Set 2.2

#### CSE251 - Electronic Devices and Circuits

#### CLOSE LOOP CONFIGURATIONS OF OP-AMP

Inv and Non-inv Amplifiers, Inv Adder, Integrator and Differentiator, Function Implementation, and VTC

For every problem, assume the op-amps to be ideal having infinite open loop gain, zero input currents, and zero output resistance.

Course Description, COs, and Policies



Midterm and Final Questions

Design circuits using op-amps to implement the following operational functions. x, y, yand z are the inputs and f is the output.

$$I. \quad f = -4x + 5y$$

$$II. \quad f = -7x + \frac{d}{dt}y$$

III. 
$$f = \frac{3}{4}x + 7y - \frac{d}{dt}z$$

IV. 
$$f = -7 \int x \, dt + \frac{4}{3} y - 3 \frac{d}{dt} z$$

$$V. \quad f = \int (6x - y) dt + 3 \frac{d^2}{dt^2} z$$

*VI.* 
$$f = \int (6x - 3\frac{d^2y}{dt^2}) dt - 3\frac{dz}{dt}$$

VII. 
$$f = \frac{d}{dt} \left( 3x - \frac{3}{2} \int y \, dt \right) + \int 4z \, dt$$

VIII. \*\* 
$$f = -\frac{1}{3} \int x \, dt + 2 \ln y + 4z$$

DEPT. OF CSE, BRACU

IX. \*\* 
$$f = -3\frac{d}{dt}x + 2e^y + 4z$$

$$X. \quad ^{**} f = xy/z$$



Note: Problems marked with an asterisk (\*\*) are a bit more advanced for this course. However, attempting them can help you develop a stronger grasp of the topic.

I. Using not more than two op-amps, design a circuit to implement the following expression.  $v_1, v_2$ , and  $v_3$  are the inputs and  $v_o$  is the output.

$$-v_o = \frac{v_3 - v_1}{5} + \frac{v_1 - v_2}{2}$$

II. Design a circuit that will average three voltages.



• Prove that the following circuit is a subtractor which produces an output equal to the difference between  $v_2$  and  $v_1$ .





• Determine  $v_o$  and  $i_o$  for the circuits shown below.





Ans: (a)  $v_0 = -1 V$ ,  $i_0 = -0.5 mA$ ; (b)  $v_0 = 2 V$ 



• For the circuits shown below, determine  $v_o$ .





Ans: (a) 4 mV; (b) 2 V



• Determine the value of  $v_2$  in order to make  $v_0 = -16.5 \ V$ .



Ans:  $v_2 = 10.6 V$ 



Determine  $v_o$  from the circuit shown.







• Determine  $v_o$  from the circuit shown below.



Ans:  $v_0 = -6 V$ 



• Determine  $v_o$  from the circuit shown below.





• Determine  $V_o$  for the circuit shown below.





• Determine  $R_1$  for the circuit shown below.



Ans:  $R_1 = 1 k\Omega$ 



#### Problem 12\*\*

• Determine  $v_o$  for the circuits shown below. [Hint: avoid KCL at  $V_o$  as op-amp's output current is not known]



CSE251 - ELECTRONIC DEVICES AND CIRCUITS

Ans: (a)  $v_0 = 3.09 V$ 





• Determine  $V_o$  and  $I_o$  for the circuit shown below.

[Hint: avoid KCL at  $V_o$  as the op-amp's output current is not known]



Ans:  $V_0 = 4.36 V$ 



#### Problem 14\*\*

• Determine  $V_o$  and  $I_o$  for the circuit shown below.

[Hint: avoid KCL at  $V_o$  as the op-amp's output current is not known]



Ans:  $V_0 = 10.4 V$ 



<u>Note</u>: Problems marked with an asterisk (\*\*) are a bit more advanced for this course. However, attempting them can help you develop a stronger grasp of the topic.

# Problem 15\*\*

• Determine the gain  $\binom{v_0}{v_i}$  from the circuit shown below.



Ans:  $v_0/v_i = 3.36$ 



#### Problem 16\*\*

- I. Determine  $v_1$ .
- II. Determine  $v_2$  and  $v_o$ .

[Hint: avoid KCL at  $v_o$  and  $v_2$  as the op-amps' output currents are not known]



Ans: 
$$v_1 = \frac{5}{3} V$$
,  $v_2 = 2 V$ ,  $v_0 = -5V$ 





• Determine  $V_o$ .



Ans:  $V_0 = -3.75 V$ 



# Problem 18\*\*

• Determine  $v_o$ .



Ans:  $v_0 = 5 V$ 



Note: Problems marked with an asterisk (\*\*) are a bit more advanced for this course. However, attempting them can help you develop a stronger grasp of the topic.

 $100\,\mu F$ Sketch  $v_o$  vs.t, if  $v_i$  is as shown in the following plot.  $10\,\mathrm{V}$  $5\,\mathrm{k}\Omega$  $v_i(V)$ 1V $-10\,\mathrm{V}$  $\rightarrow t (ms)$ 0.52.51.5-1V



• Sketch  $v_o$  vs.t, if  $v_i$  is as shown in the following plot. If the bias voltages are +6 V and -6 V, what will the graph look like.





 $0.1\,\mu\mathrm{F}$ 

 $10\,\mathrm{V}$ 

-12

 $8\,\mathrm{k}\Omega$ Sketch  $v_o$  vs.t, if  $v_i$  is as shown in the following plot.  $10\,\mathrm{V}$  $250\,\mu F$  $v_i(V)$ 1V $-10\,\mathrm{V}$  $\rightarrow t (ms)$ 0.52.51.5-1V



22

10



 $\rightarrow t (ms)$ 





-6

 $25\,\mathrm{k}\Omega$ 

12 13

• Sketch  $i_o$  vs.t, if  $v_i$  is as shown in the following plot.



• Sketch  $V_o$  vs.t and  $V_o$   $vs.E_i$ .





• Sketch  $V_o vs. t$  and  $V_o vs. E_{ac}$ , if  $E_{dc} = -5 V$ .







• Design a circuit with a <u>single</u> ideal op-amp for each of the VTC plots shown below.  $V_{output}$  and  $V_{input}$  are the output voltage and the input voltage respectively.







• Design a circuit with a <u>single</u> ideal op-amp for the VTC plots shown below.  $V_{output}$  and  $V_{input}$  are the output voltage and the input voltage respectively.





# Acknowledgement and References

Some of the problems in this set are taken or adapted from the following sources:

- 1. Sedra, A. S., & Smith, K. C., Microelectronic Circuits, Oxford University Press
- 2. Coughlin, R. F., & Driscoll, F. F., Operational Amplifiers and Linear Integrated Circuits, Pearson
- 3. Neamen, D. A., Microelectronics: Circuit Analysis and Design, McGraw-Hill

