The Calculational Design of a Generic Abstract Interpreter

Corrigendum, April 12, 2004

Patrick COUSOT

LIENS, Département de Mathématiques et Informatique École Normale Supérieure, 45 rue d'Ulm, 75230 Paris cedex 05, France

Section 8.7, page 447	
ne backward ternary substraction operation − sis de-ned as	
$-^{\triangleleft}(q_1, q_2, p) \stackrel{\triangle}{=} \operatorname{let}(r_1, r_2) = -^{\triangleleft}(q_1, -^{\triangleright}(q_2), p) \text{ in } (r_1, -^{\triangleright}(r_2)).$	
should be:	
e backward ternary substraction operation — sis de–ned as	
$- (q_1, q_2, p) \stackrel{\triangle}{=} \operatorname{let}(r_1, r_2) = + (q_1, - (q_2), p) \text{ in}$ $(r_1, - (r_2)).$	
Section 9.2, page 449	
equations (46),	
$b_1 \underline{ beta} b_2 \ \stackrel{ riangle}{=} \ b_1 { beta} i_2 \; .$	
should be:	
$b_1\underline{\mathtt{b}}b_2\ \stackrel{\scriptscriptstyle\Delta}{=}\ b_1\mathtt{b} {\color{red}b_2}\ .$	
Section 10.3, page 454	

The calculational design of the abstract equality operation $\stackrel{.}{=}$ does not depend upon the speci–c choice of L

```
\alpha^{2}(\{\langle i_{1}, i_{2}\rangle \mid i_{1} \in \gamma(p_{1}) \cap \mathbb{I} \land i_{2} \in \gamma(p_{2}) \cap \mathbb{I} \land i_{1} \equiv i_{2} = \operatorname{tt}\})
\langle \operatorname{def.}(45) \operatorname{of} \equiv \rangle
\alpha^{2}(\{\langle i, i\rangle \mid i \in \gamma(p_{1}) \cap \gamma(p_{2}) \cap \mathbb{I}\})
\sqsubseteq^{2} \quad \langle \gamma \circ \alpha \text{ is extensive (6) and } \alpha^{2} \text{ is monotone} \rangle
\alpha^{2}(\{\langle i, i\rangle \mid i \in \gamma(p_{1}) \cap \gamma(p_{2}) \cap \gamma(\alpha(\mathbb{I}))\})
\langle \gamma \text{ preserves meets} \rangle
\alpha^{2}(\{\langle i, i\rangle \mid i \in \gamma(p_{1} \sqcap p_{2} \sqcap \alpha(\mathbb{I}))\})
\langle \operatorname{def.}(12) \operatorname{of} \gamma^{2} \rangle
\alpha^{2}(\gamma^{2}(\langle p_{1} \sqcap p_{2} \sqcap \alpha(\mathbb{I}), p_{1} \sqcap p_{2} \sqcap \alpha(\mathbb{I})\rangle))
\sqsubseteq^{2}
\langle \alpha^{2} \circ \gamma^{2} \text{ is reductive and let notation} \rangle
|\operatorname{def.}(36) \operatorname{of} ?^{\triangleright} \rangle
```

____should be:

The calculational design of the abstract equality operation $\stackrel{.}{=}$ does not depend upon the speci–c choice of L

```
\alpha^{2}(\{\langle i_{1}, i_{2}\rangle \mid i_{1} \in \gamma(p_{1}) \cap \mathbb{I} \land i_{2} \in \gamma(p_{2}) \cap \mathbb{I} \land i_{1} \equiv i_{2} = tt\})
= \langle \operatorname{def.} (45) \operatorname{of} \equiv \rangle
\alpha^{2}(\{\langle i, i\rangle \mid i \in \gamma(p_{1}) \cap \gamma(p_{2}) \cap \mathbb{I}\})
\sqsubseteq^{2} \quad \langle \gamma \circ \alpha \text{ is extensive (6) and } \alpha^{2} \text{ is monotone} \rangle
\alpha^{2}(\{\langle i, i\rangle \mid i \in \gamma(p_{1}) \cap \gamma(p_{2}) \cap \gamma(\alpha(\mathbb{I}))\})
= \langle \gamma \text{ preserves meets} \rangle
\alpha^{2}(\{\langle i, i\rangle \mid i \in \gamma(p_{1} \cap p_{2} \cap \alpha(\mathbb{I}))\})
= \langle \operatorname{def.} (12) \operatorname{of} \gamma^{2} \rangle
\alpha^{2}(\gamma^{2}(\langle p_{1} \cap p_{2} \cap \alpha(\mathbb{I}), p_{1} \cap p_{2} \cap \alpha(\mathbb{I})\rangle))
\sqsubseteq^{2} \quad \langle \alpha^{2} \circ \gamma^{2} \text{ is reductive and let notation} \rangle
\operatorname{let} p = p_{1} \cap p_{2} \cap \alpha(\mathbb{I}) \operatorname{in} \langle p, p \rangle
\sqsubseteq^{2} \quad \langle \operatorname{def.} (36) \operatorname{of} ?^{\flat} \rangle
\operatorname{let} p = p_{1} \cap p_{2} \cap ?^{\flat} \operatorname{in} \langle p, p \rangle
= \langle \operatorname{by de-ning} \stackrel{\triangle}{=} \operatorname{let} p = p_{1} \cap p_{2} \cap ?^{\flat} \operatorname{in} \langle p, p \rangle \rangle
\stackrel{\triangle}{=} \cdot
```

____ Section Theorem 1, page 456

If $\langle M, \leq \rangle$ is poset, $f \in M \mapsto M$ is monotone and reductive, ...

____ should be:

If $\langle M, \leq \rangle$ is poset, $f \in M \mapsto M$ is monotone and idempotent, ...

_____ Section Proof of Theorem 1, page 456 _____

____ should be:

$$= \begin{cases} \alpha \circ f \circ \gamma(x) \\ \text{idempotent} \end{cases}$$
$$\alpha \circ f \circ f \circ \gamma(x)$$

_____ Section 12.5, –gure 12, page 462 _____

Equation (75):

Program P = S;

$$\frac{\langle \ell, \rho \rangle \longmapsto S \longmapsto \rho}{\langle \ell', \rho' \rangle \longmapsto S ; ; \longmapsto \langle \ell', \rho' \rangle} . \tag{1}$$

____should be:

Program P = S ; ;

$$\frac{\langle \ell, \rho \rangle \models S \Rightarrow \rho'}{\langle \ell, \rho \rangle \models S ; \Rightarrow \langle \ell', \rho' \rangle}.$$
 (2)

_____ Section 12.8, page 470 _____

$$\begin{split} \tau^{\star} \llbracket C \rrbracket &= \tau \llbracket S \rrbracket^{0} \cup (\tau^{B} \circ \tau \llbracket S \rrbracket^{\star} \circ \tau^{R})^{+} \cup (\tau^{B} \circ \tau \llbracket S \rrbracket^{\star} \circ \tau^{R})^{\star} \circ \tau^{B} \circ \tau \llbracket S \rrbracket^{\star} \\ & \cup (\tau^{B} \circ \tau \llbracket S \rrbracket^{\star} \circ \tau^{R})^{\star} \circ \tau^{\bar{B}} \cup \tau \llbracket S \rrbracket^{\star} \circ \tau^{R} \circ (\tau^{B} \circ \tau \llbracket S \rrbracket^{\star} \circ \tau^{R})^{\star} \\ & \cup \tau \llbracket S \rrbracket^{\star} \circ \tau^{R} \circ (\tau^{B} \circ \tau \llbracket S \rrbracket^{\star} \circ \tau^{R})^{\star} \circ \tau^{B} \circ \tau \llbracket S \rrbracket^{\star} \\ & \cup \tau \llbracket S \rrbracket^{\star} \circ \tau^{R} \circ (\tau^{B} \circ \tau \llbracket S \rrbracket^{\star} \circ \tau^{R})^{\star} \circ \tau^{\bar{B}} \\ & = (1_{\Sigma \llbracket P \rrbracket} \cup \tau \llbracket S \rrbracket^{\star} \circ \tau^{R}) \circ (\tau^{B} \circ \tau \llbracket S \rrbracket^{\star} \circ \tau^{R})^{\star} \circ (1_{\Sigma \llbracket P \rrbracket} \cup \tau^{B} \circ \tau \llbracket S \rrbracket^{\star} \cup \tau^{\bar{B}}) \; . \end{split}$$

____should be:

$$\begin{split} \tau^{\star} \llbracket C \rrbracket &= \tau \llbracket S \rrbracket^{0} \cup (\tau^{B} \circ \tau \llbracket S \rrbracket^{\star} \circ \tau^{R})^{+} \cup (\tau^{B} \circ \tau \llbracket S \rrbracket^{\star} \circ \tau^{R})^{\star} \circ \tau^{B} \circ \tau \llbracket S \rrbracket^{\star} \\ & \cup (\tau^{B} \circ \tau \llbracket S \rrbracket^{\star} \circ \tau^{R})^{\star} \circ \tau^{\bar{B}} \cup \tau \llbracket S \rrbracket^{\star} \circ \tau^{R} \circ (\tau^{B} \circ \tau \llbracket S \rrbracket^{\star} \circ \tau^{R})^{\star} \\ & \cup \tau \llbracket S \rrbracket^{\star} \circ \tau^{R} \circ (\tau^{B} \circ \tau \llbracket S \rrbracket^{\star} \circ \tau^{R})^{\star} \circ \tau^{B} \circ \tau \llbracket S \rrbracket^{\star} \\ & \cup \tau \llbracket S \rrbracket^{\star} \circ \tau^{R} \circ (\tau^{B} \circ \tau \llbracket S \rrbracket^{\star} \circ \tau^{R})^{\star} \circ \tau^{\bar{B}} \\ & \cup \tau \llbracket S \rrbracket^{\star} \end{split}$$

$$= ((1_{\Sigma \llbracket P \rrbracket} \cup \tau \llbracket S \rrbracket^{\star} \circ \tau^{R}) \circ (\tau^{B} \circ \tau \llbracket S \rrbracket^{\star} \circ \tau^{R})^{\star} \circ (1_{\Sigma \llbracket P \rrbracket} \cup \tau^{B} \circ \tau \llbracket S \rrbracket^{\star} \cup \tau^{\bar{B}})) \cup \tau \llbracket S \rrbracket^{\star} \ . \end{split}$$

