NATIONAL INSTITUTE OF TECHNOLOGY ANDHRA PRADESH

 $TADEPALLIGUDEM-534102, WEST GODAVARI \ DIST., ANDHRA \ PRADESH, INDIA.$

DEPARTMENT OF MECHANICAL ENGINEERING LECTURE PLAN (Odd Semester 2022-23)

Subject Name : Alternatie Source of Energy (Open Elective)			Code: ME390	PCC	3-0-0	3 Credits
	Name of the Faculty	: Dr.Katam Ganesh Babu	Scheme of Evaluation			
	Designation	: Adhoc Faculty	Minor Test - I			10
	Department	: Mechanical Engineering	Minor Test -II			10
	Year / Semester	: III/II	Mid Semester E	xamina	tion	30
	Branch	: Mechanical	End Semester E	xamina	tion	50

		End Semester Examination 30			
Lecture No.	Module	Topics to be covered			
1-2	Introduction to the course	Overview of the course; Examination and Evaluation patterns; Global warming, acid rains, Depletion of ozone layer; Global and Indian Scenario of renewable energy sources			
3–4	Energy Storage	Introduction; Necessity of Energy Storage; Energy Storage Methods: Thermal Energy; Mechanical Energy; Electrical; chemical; Electromagnetic			
5-8	Solar Energy	Fundamentals; Solar Radiation; Estimation of solar radiation on horizontal and inclined surfaces; Measurement of solar radiation			
9 – 15	Solar Thermal systems	Introduction; Basics of thermodynamics and heat transfer; Flat plate collector; Evacuated Tubular Collector; Solar air collector; Solar concentrator; Solar distillation; Solar cooker; Solar refrigeration and air conditioning; Solar pond; Thermal energy storage systems			
16 – 19	Solar Photovoltaic Systems	Introduction; Solar cell Fundamentals; Characteristics and classification; Solar cell: Module, panel and Array construction; Photovoltaic thermal systems			
20-25	Wind Energy	Introduction; Origin and nature of winds; Wind turbine siting; Basics of fluid mechanics; Wind turbine aerodynamics; wind turbine types and their construction; Wind energy conversion systems			
26-27	Fuel cells	Overview; Classification of fuel cells; Operating principles; Fuel cell thermodynamics			
28-31	Other forms of Energy	Ocean Thermal Energy; Geothermal energy; Magneto hydrodynamic Power Generation applications; Origin and their types; Working principles			
32-35	Seminars:	Presentations by students			
	Recent Research Papers				

Reading:

- 1. Sukhatme S.P. and J.K.Nayak, Solar Energy Principles of Thermal Collection and Storage, Tata McGraw Hill, New Delhi, 2008.
- 2. Khan B.H., Non-Conventional Energy Resources, Tata McGraw Hill, New Delhi, 2006.
- 3. A. Duffie and W.A. Beckman, Solar Energy Thermal Processes, John Wiley, 2001