# A Content-Driven Micro-Video Recommendation Dataset at Scale



## CONTENTS

- O1 Motivation
- **02** MicroLens
- 03 Findings
- 04 Code & Data



## Motivation

## Where to Go Next for Recommender Systems? ID- vs. Modality-based Recommender Models Revisited

Zheng Yuan<sup>1</sup>, Fajie Yuan<sup>1</sup>, Yu Song<sup>1</sup>, Youhua Li<sup>1</sup>, Junchen Fu<sup>1</sup>, Fei Yang<sup>2</sup>, Yunzhu Pan<sup>1</sup>, Yongxin Ni<sup>1</sup>

<sup>1</sup>Westlake University; <sup>2</sup>Zhejiang Lab

**Code & datasets:** https://github.com/westlake-repl/IDvs.MoRec







Nowadays, with the help of current textual/visual encoders, MoRec can be comparable to or even better than IDRec







(2) Transfer



(3) Benefit from CV/NLP/MM

#### Motivation (Future Direction)

- Modality-based Recommendation
- Micro-video Recommendation
- Foundation Models for Recommender Systems
- "one4all" Paradigm

#### Motivation (Lack of Datasets)

- Domain
- Raw Content
- Scale
- Modality Diversity

Table 4: Dataset comparison. "p-Image" refers to pre-extracted visual features from pre-trained visual encoders (such as ResNet), while "r-Image" refers to images with raw image pixels. "Audio and Video" means the original full-length audio and video content.

| Dataset      |          |          | Modality |             |   | Scale   |            |         | Domain        | Language |  |
|--------------|----------|----------|----------|-------------|---|---------|------------|---------|---------------|----------|--|
| Dutuset      | Text     | p-Image  | r-Image  | Audio Video |   | #user   | #item      | #inter. | 20114111      | 88       |  |
| Tenrec       | ×        | ×        | ×        | ×           | × | 6.41M   | 4.11M      | 190.48M | News & Videos | ×        |  |
| UserBehavior | ×        | ×        | ×        | ×           | × | 988K    | 4.16M      | 100.15M | E-commerce    | ×        |  |
| Alibaba CTR  | ×        | ×        | ×        | ×           | × | 7.96M   | 66K        | 15M     | E-commerce    | ×        |  |
| Amazon       | <b>~</b> | _        | <b>~</b> | ×           | × | 20.98M  | 9.35M      | 82.83M  | E-commerce    | en       |  |
| POG          | •        | _        | <b>~</b> | ×           | × | 3.57M   | 1.01M      | 0.28B   | E-commerce    | zh       |  |
| MIND         | •        | ×        | ×        | ×           | × | 1.00M   | 161K       | 24.16M  | News          | en       |  |
| H&M          | •        | _        | ✓        | ×           | × | 1.37M   | 106K       | 31.79M  | E-commerce    | en       |  |
| BeerAdvocate | •        | ×        | ×        | ×           | × | 33K     | 66K        | 1.59M   | E-commerce    | en       |  |
| RateBeer     | •        | ×        | ×        | ×           | × | 40K     | 110K       | 2.92M   | E-commerce    | en       |  |
| Google Local | •        | ×        | ×        | ×           | × | 113.64M | 4.96M      | 666.32M | E-commerce    | en       |  |
| Flickr       | ×        | <b>~</b> | ×        | ×           | × | 8K      | 105K       | 5.90M   | Social Media  | en       |  |
| Pinterest    | ×        | _        | <b>~</b> | ×           | × | 46K     | 880K       | 2.56M   | Social Media  | ×        |  |
| WikiMedia    | ×        | _        | <b>~</b> | ×           | × | 1K      | 10K        | 1.77M   | Social Media  | ×        |  |
| Yelp         | ×        | _        | <b>~</b> | ×           | × | 150K    | 200K       | 6.99M   | E-commerce    | ×        |  |
| GEST         | •        | _        | <b>~</b> | ×           | × | 1.01M   | 4.43M      | 1.77M   | E-commerce    | en       |  |
| Behance      | ×        | <b>~</b> | ×        | ×           | × | 63K     | 179K       | 1.00M   | Social Media  | ×        |  |
| KuaiRand     | ×        | ×        | ×        | ×           | × | 27K     | 32.03M     | 322.28M | Micro-video   | ×        |  |
| KuaiRec      | ×        | <b>✓</b> | ×        | ×           | × | 7K      | 11K        | 12.53M  | Micro-video   | ×        |  |
| ML25M        | •        | _        | <b>✓</b> | ×           | × | 162K    | 62K        | 25.00M  | Movie-only    | en       |  |
| Reasoner     | •        | _        | <b>✓</b> | ×           | × | 3K      | 5K         | 58K     | Micro-video   | en       |  |
| MicroLens    | •        | _        | <b>~</b> | •           | • | 30M     | 1 <b>M</b> | 1B      | Micro-video   | zh/en    |  |

MicroLens

#### MicroLens (Dataset)



Figure 2: Item examples in MicroLens.

#### MicroLens (Dataset)



(a) Item popularity.



(b) User session length.



(c) Video duration (in seconds)

Figure 3: Statistics of MicroLens-100K.

Table 1: Data statistics of MicroLens. VAIT represents the video, audio, image and text data.

| Dataset        | #User      | #Item     | #Interaction  | Sparsity | #Tags   | Duration | VAIT     |
|----------------|------------|-----------|---------------|----------|---------|----------|----------|
| MicroLens-100K | 100,000    | 19,738    | 719,405       | 99.96%   | 15,580  | 161s     | •        |
| MicroLens-1M   | 1,000,000  | 91,402    | 9,095,620     | 99.99%   | 28,383  | 162s     | <b>✓</b> |
| MicroLens      | 34,492,051 | 1,142,528 | 1,006,528,709 | 99.997%  | 258,367 | 138s     | <b>~</b> |

#### MicroLens (Experiments)

- VideoRec
  - End-to-end manner
  - Train recommender model and video encoder simultaneously
- Investigate how RS benefits from Video Understanding
- 3 recommender models
  - CNN-based (NextItNet)
  - RNN-based (GRU4Rec)
  - Transformer-based (SASRec)
- 15 video encoders
  - R3D-r18, X3D-xs, C2D-r50, I3D- r50, X3D-s, Slow-r50, X3D-m, R3D-r50, SlowFast-r50, CSN-r101, X3D-1, SlowFast-r101, MViT-B-16x4, MViT-B-32x3, and VideoMAE

# 3

## Findings

#### Findings (Benchmark Results)

| Class            | Model                                    | HR@10  | NDCG@10 | HR@20  | NDCG@20 |
|------------------|------------------------------------------|--------|---------|--------|---------|
|                  | DSSM [29]                                | 0.0394 | 0.0193  | 0.0654 | 0.0258  |
| IDDag (CE)       | LightGCN [26]                            | 0.0372 | 0.0177  | 0.0618 | 0.0239  |
| IDRec (CF)       | NFM [25]                                 | 0.0313 | 0.0159  | 0.0480 | 0.0201  |
|                  | DeepFM [17]                              | 0.0350 | 0.0170  | 0.0571 | 0.0225  |
|                  | NexItNet [62]                            | 0.0805 | 0.0442  | 0.1175 | 0.0535  |
| IDRec (SR)       | GRU4Rec [27]                             | 0.0782 | 0.0423  | 0.1147 | 0.0515  |
|                  | SASRec [31]                              | 0.0909 | 0.0517  | 0.1278 | 0.0610  |
|                  | $YouTube_{ID}$                           | 0.0461 | 0.0229  | 0.0747 | 0.0301  |
|                  | YouTube <sub>ID+V</sub> [7]              | 0.0392 | 0.0188  | 0.0648 | 0.0252  |
|                  | $\mathrm{MMGCN}_{\mathrm{ID}}$           | 0.0141 | 0.0065  | 0.0247 | 0.0092  |
| VIDRec           | $MMGCN_{ID+V}$ [54]                      | 0.0214 | 0.0103  | 0.0374 | 0.0143  |
| (Frozen Encoder) | $GRCN_{\mathrm{ID}}$                     | 0.0282 | 0.0131  | 0.0497 | 0.0185  |
|                  | $GRCN_{ID+V}$ [53]                       | 0.0306 | 0.0144  | 0.0547 | 0.0204  |
|                  | $\mathrm{DSSM}_{\mathrm{ID}+\mathrm{V}}$ | 0.0279 | 0.0137  | 0.0461 | 0.0183  |
|                  | $SASRec_{ID+V}$                          | 0.0799 | 0.0415  | 0.1217 | 0.0520  |
| VideoRec         | NexItNet <sub>V</sub> [62]               | 0.0862 | 0.0466  | 0.1246 | 0.0562  |
| (E2E Learning)   | $GRU4Rec_V$ [27]                         | 0.0954 | 0.0517  | 0.1377 | 0.0623  |
| (L2L Learning)   | SASRec <sub>V</sub> [31]                 | 0.0948 | 0.0515  | 0.1364 | 0.0619  |

#### Findings (Benchmark Results)

- Methods: IDRec, VIDRec and VideoRec
  - We do not search parameters exhaustively for VideoRec
  - Only 5 frames of each video were used
- Findings: raw video content > pre-extracted frozen features



Figure 4: Video recommendation accuracy (bar charts) vs. video classification accuracy (purple line). Frozen means that the video encoder is fixed without parameter update, topT means that only the top few layers of the video encoder are fine-tuned, and FT means full parameters are fine-tuned.

Table 6: Performance of VideoRec with 15 video encoders. "Pretrain Settings" are the adopted frame length and sample rate from the pre-trained checkpoint. ACC@5 is the accuracy in the video classification task.

| Model              | Architecture    | Depth | Pretrain<br>Settings | ACC@5 | HR@10<br>(frozen) | NDCG@10<br>(frozen) | HR@10<br>(topT) | NDCG@10<br>(topT) | HR@10<br>(FT) | NDCG@10<br>(FT) |
|--------------------|-----------------|-------|----------------------|-------|-------------------|---------------------|-----------------|-------------------|---------------|-----------------|
| R3D-r18 [47]       | ResNet          | R18   | 16x4                 | 75.45 | 4.58              | 2.56                | 8.50            | 4.48              | 7.50          | 3.48            |
| X3D-xs [10]        | Xception        | XS    | 4x12                 | 88.63 | 0.62              | 0.33                | 7.04            | 3.57              | 6.04          | 2.57            |
| C2D-r50 [52]       | ResNet          | R50   | 8x8                  | 89.68 | 4.11              | 2.27                | 9.22            | 4.88              | 8.22          | 3.88            |
| I3D-r50 [4]        | ResNet          | R50   | 8x8                  | 90.70 | 4.19              | 2.36                | 9.25            | 5.01              | 8.25          | 4.01            |
| X3D-s [10]         | Xception        | S     | 13x6                 | 91.27 | 0.47              | 0.24                | 6.43            | 3.25              | 5.43          | 2.25            |
| Slow-r50 [8]       | ResNet          | R50   | 8x8                  | 91.63 | 4.42              | 2.42                | 9.32            | 4.99              | 8.33          | 3.99            |
| X3D-m [10]         | Xception        | M     | 16x5                 | 92.72 | 0.38              | 0.20                | 6.11            | 3.13              | 5.11          | 2.13            |
| R3D-r50 [47]       | ResNet          | R50   | 16x4                 | 92.23 | 0.28              | 0.14                | 8.33            | 4.34              | 7.33          | 3.34            |
| SlowFast-r50 [11]  | ResNet          | R50   | 8x8                  | 92.69 | 4.14              | 2.35                | 9.48            | 5.15              | 8.48          | 4.15            |
| CSN-r101 [46]      | ResNet          | R101  | 32x2                 | 92.90 | 4.48              | 2.52                | 8.74            | 4.71              | 7.74          | 3.71            |
| X3D-1 [10]         | <b>Xception</b> | L     | 16x5                 | 93.31 | 0.64              | 0.34                | 6.37            | 3.32              | 5.37          | 2.32            |
| SlowFast-r101 [11] | ResNet          | R101  | 16x8                 | 93.61 | 4.25              | 2.36                | 9.76            | 5.3               | 8.76          | 4.31            |
| MViT-B-16x4 [9]    | VIT             | В     | 16x4                 | 93.85 | 2.30              | 1.33                | 8.96            | 4.79              | 7.96          | 3.79            |
| MViT-B-32x3 [9]    | VIT             | В     | 32x3                 | 94.69 | 1.95              | 1.11                | 9.57            | 5.11              | 8.57          | 4.11            |
| VideoMAE [45]      | Transformer     | VIT-B | 16x4                 | 95.10 | 4.96              | 2.76                | 8.91            | 4.77              | 7.91          | 3.77            |

- Better CV performance ≠ Higher recommendation accuracy
  - E.g., the worst video classification model R3D-r18
- In RS, finetuning top layers > full finetuning
  - full finetuning the video encoders is not necessary in recommender systems

- Knowledge learned from video understanding helps video recommendation
- Video semantic representations learned from CV task are not universal
  - a linear layer is not enough produce the same results as finetuning



Figure 5: Ablation study of video encoders. (d) "WT" refers to the video encoders in SASRec<sub>V</sub> have pre-trained weights from the video classification task, while "OT" denotes that they are randomly initialized. (b) (c) (d) are performance change by adding DNN layers on top of three frozen encoders.

 Our study is the first to show that raw video features can potentially replace ID features in both warm and cold item recommendation settings

Table 8: Comparison of VideoRec and IDRec in regular and warm settings using SASRec as the backbone. "Warm-20" denotes that items with less than 20 interactions were removed from the original MicroLens-100K.

|               | Reg    | ular   | Warı   | m-20   | War    | m-50   | Warm-200 |        |
|---------------|--------|--------|--------|--------|--------|--------|----------|--------|
| Model         | H@10   | N@10   | H@10   | N@10   | H@10   | N@10   | H@10     | N@10   |
| IDRec         | 0.0909 | 0.0517 | 0.1068 | 0.0615 | 0.6546 | 0.4103 | 0.7537   | 0.4412 |
| SlowFast-r101 | 0.0976 | 0.0531 | 0.1130 | 0.0606 | 0.7458 | 0.4463 | 0.8482   | 0.4743 |
| MViT-B-32x3   | 0.0957 | 0.0511 | 0.1178 | 0.0639 | 0.7464 | 0.4530 | 0.9194   | 0.4901 |
| SlowFast-r50  | 0.0948 | 0.0515 | 0.1169 | 0.0642 | 0.7580 | 0.4614 | 0.8141   | 0.4870 |

 Our study is the first to show that raw video features can potentially replace ID features in both warm and cold item recommendation settings



Figure 6: Results in different cold-start scenarios, with the y-axis representing the relative improvement of HR@10, calculated as the ratio of VideoRec to IDRec. The x-axis represents item groups divided by popularity level, the larger number indicates that items in the group are more popular.

- Summary: This work has taken a key step towards the goal of a universal "one-for-all" recommender paradigm
  - Dataset Support
  - VideoRec Paradigm Exploration

#### - Other Works

MoRec: Where to go next for recommender systems? id-vs. modality-based recommender models revisited

PixelRec: An Image Dataset for Benchmarking Recommender Systems with Raw Pixels

NineRec: A Benchmark Dataset Suite for Evaluating Transferable Recommendation

## Code & Data

#### Code & Data

#### Find our GitHub:





## THANKS

Yongxin Ni