

Математическая статистика (ФБМФ, ФЭФМ) Семинар 1

01.02.2024

План занятия

- ▶ Организационные моменты
 - Регистрация на курс и доступ к материалам
 - Варианты прохождения курса
 - Домашние задания
- Введение в предмет
 - Применения

Регистрация на курс и доступ к материалам

 $https://t.me/miptstats_st_bot, \ https://miptstats.github.io/courses/mathstat_bmhf.html$

Ô

Варианты прохождения курса

- Данный курс
 - Простой уровень
 - Основной уровень
- ► Kypc Phystech@DataScience
 - Профиль физика
 - Профиль биология

Домашние задания

- Внимательно читайте правила, указанные в начале ноутбука;
- ДЗ отправлять только в исходных ноутбуках. Порядок задач в ноутбуке менять запрещено;
- Запрещено удалять существующие ячейки в ноутбуке, но можно добавлять новые, если иное не сказано явно;
- Внимательно читайте условия и названия переменных;
- Задания отправляются только боту. Для заданий частей А и Б есть соответствующие кнопки в боте. Часть А: сдаете 1 ноутбук, часть
 Б: сдаете 1 ноутбук;
- После отправки файла дождитесь ответа бота, что файл успешно загружен;
- В части Б подразумеваются комментарии к доказательствам (указание на независимость, линейность и т.п., обоснование

Применения

- Клинические исследования
- ► GWAS
- Физика
- Маркетинг
- *Машинное обучение

Применение, знакомое каждому:

При ограниченном числе измерений n отклонение результата отдельного измерения от наивероятнейшего значения x_0 оценивается выборочным (т. е. n — конечно) среднеквадратичным отклонением $\sigma_{\text{отд}}$:

$$\sigma_{\text{отд}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - x_0)^2}.$$
 (17)

Эту формулу использовать на практике невозможно, т. к. истинное значение измеряемой величины x_0 неизвестно. Однако оценить значение $\sigma_{\rm отд}$ возможно, если заменить x_0 в формуле (17) средним арифметическим значением $x_{\rm cp}$:

$$\sigma_{\text{отд}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - x_{\text{cp}})^2}.$$
 (18)

Если n — невелико, то $x_{\rm cp}$ может заметно отличаться от x_0 и формула (18) дает довольно грубую оценку $\sigma_{\rm отд}$. Согласно математической статистике рекомендуется использовать формулу

$$\sigma_{\text{отд}} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - x_{\text{cp}})^2}.$$
(19)

