

Dynamic Causal Modelling

SPM for MRI Course, May 2018

Peter Zeidman
Wellcome Trust Centre for Neuroimaging,
University College London

Dynamic Causal Modelling

is a framework

for inferring neural responses / effective connectivity

in the brain

The system of interest

Connectivity

Structural Connectivity
 Physical connections of the brain

Functional Connectivity
 Dependencies between BOLD observations

• Effectivity Connectivity

Causal relationships between brain regions

"Connectome" by jgmarcelino. CC 2.0 via Wikimedia Commons Figure 1, Hong et al. 2013 PLOS ONE. KE Stefan, SPM Course 2011

Where DCM sits in the pipeline

Functional MRI acquisition and image reconstruction

Image preprocessing (realignment, coregistration, normalisation, smoothing)

Statistical Parameter Mapping (SPM) / General Linear Model

Dynamic Causal Modelling (DCM)

Timeseries extraction from Regions of Interest (ROIs)

Recipe

- 1. Specify a DCM for each subject
- 2. Estimate the DCMs
- 3. Specify a group level model (PEB)
- 4. Test hypotheses at the group level
- 5. (Optional: Perform cross-validation)

FIRST LEVEL ANALYSIS

MODEL SPECIFICATION

DCM Framework

How brain activity **z** changes over time

$$z = f(z,u,\theta^n)$$

What we would see in the scanner, y, given the neural model?

$$y = g(z, \theta^h)$$

Stimulus from Buchel and Friston, 1997 Figure 3 from Friston et al., Neuroimage, 2003 Brain by Dierk Schaefer, Flickr, CC 2.0

The brain activity in each of n regions:

$$z = \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix}$$

The "response" of these regions is their change over time:

$$\dot{z} = \begin{bmatrix} \dot{z_1} \\ \vdots \\ \dot{z_n} \end{bmatrix} = f(z, u, \theta)$$
Neural response function

Parameters (e.g. connection strengths)

Experimental input

$$\dot{z} = \begin{bmatrix} \dot{z_1} \\ \vdots \\ \dot{z_n} \end{bmatrix} = f(z, u, \theta)$$

Deterministic DCM for fMRI

Task

$$\dot{z} = (A + \sum_{j=1}^{m} u_j B^j)z + Cu$$

DCM for CSD

Resting State

$$\dot{z} = Az + v$$

Canonical Microcircuit Multi-modal data

$$\dot{z} = (A + \sum_{j=1}^{m} u_j B^j)z + Cu$$

Where does this come from?

$$\dot{z} = f(z, u)$$

$$= f(z_0, u) + \frac{\delta f}{\delta z} z + \frac{\delta f}{\delta u} u + \frac{\delta^2 f}{\delta z \delta u} uz + \cdots$$

$$\approx \left(A + \sum_j B^j u_j \right) + Cu$$

Taylor series

"How does brain activity, z, change over time?"

- Subjects viewed moving dots during fMRI
- On some trials, subjects were instructed to pay attention to the speed of the dots' motion
- Question: How does attention to motion change the strength of the connections between V1, V5 and Superior Parietal Cortex?

"How does brain activity, z, change over time?"

$$z_1$$
 v_1 a c Driving input u_1

$$\dot{z}_1 = az + cu_1$$

Inhibitory self-connection (Hz). Rate constant: controls rate of decay in region 1. More negative = faster decay.

"How does brain activity, z, change over time?"

Change of activity in V1:

$$\dot{z}_1 = a_{11}z_1 + c_{11}u_1$$

Change of activity in V5:

$$\dot{z}_2 = a_{22}z_2 + a_{21}z_1$$

$$\uparrow \qquad \uparrow$$
Self decay V1 input

"How does brain activity, z, change over time?"

$$\begin{bmatrix} \dot{z_1} \\ \dot{z_2} \end{bmatrix} = \begin{bmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} c_{11} \\ 0 \end{bmatrix} u_1$$

Columns are outgoing connections
Rows are incoming connections

$$\dot{z} = Az + Cu_1$$

"How does brain activity, z, change over time?"

$$\dot{z} = Az + Cu_1$$

"How does brain activity, z, change over time?"

Could model be used to model a main effect and interaction

"How does brain activity, z, change over time?"

$$\dot{z_1} = a_{11}z_1 + c_{11}u_1$$

Change of activity in V5:

$$\dot{z_2} = a_{22}z_2 + a_{21}z_1 + (b_{21}u_2)z_1$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
Self decay V1 input Modulatory input

"How does brain activity, z, change over time?"

Driving input u₁

For m inputs:

$$\dot{z} = (A + \sum_{j=1}^{m} u_j B^j)z + Cu$$

Columns: outgoing connections Rows: incoming connections

DCM Framework

How brain activity **z** changes over time

$$\dot{z} = f(z,u,\theta^n)$$

What we would see in the scanner, y, given the neural model?

$$y = g(z, \theta^h)$$

Stimulus from Buchel and Friston, 1997 Figure 3 from Friston et al., Neuroimage, 2003 Brain by Dierk Schaefer, Flickr, CC 2.0

The Haemodynamic Model

Recipe

- 1. Specify a DCM for each subject
- 2. Estimate the DCMs
- 3. Specify a group level model (PEB)
- 4. Test hypotheses at the group level
- 5. (Optional: Perform cross-validation)

FIRST LEVEL ANALYSIS

MODEL ESTIMATION

Model estimation

Inverting or estimating the model gives:

1. Posterior probability distribution for each parameter $p(\theta|y,m)$

2. Estimation of the model evidence p(y|m)

$$F \cong \log p(y|m) = \operatorname{accuracy} - \operatorname{complexity}$$

Recipe

- 1. Specify a DCM for each subject
- 2. Estimate the DCMs
- 3. Specify a group level model (PEB)
- 4. Test hypotheses at the group level
- 5. (Optional: Perform cross-validation)

SECOND LEVEL ANALYSIS

SPECIFY A PEB MODEL

Hierarchical model of parameters

Parametric Empirical Bayes

$$\theta^{(2)} = \eta + \varepsilon^{(3)}$$

Priors on second level parameters

Second level

$$\theta^{(1)} = X\theta^{(2)} + \overbrace{\epsilon^{(2)}}_{\text{Between-subject error}}$$
 Second level general linear model

First level

$$y = \Gamma_i^{(1)}(\theta^{(1)}) + \varepsilon^{(1)}$$
Measurement noise
DCM for subject i

Second level model (Bayesian GLM)

$$\theta^{(1)} = X\theta^{(2)} + \epsilon^{(2)}$$

We estimate $\theta^{(2)}$ which contains the commonalities and differences across subjects

PEB results

Recipe

- 1. Specify a DCM for each subject
- 2. Estimate the DCMs
- 3. Specify a group level model (PEB)
- 4. Test hypotheses at the group level
- 5. (Optional: Perform cross-validation)

SECOND LEVEL ANALYSIS

TEST HYPOTHESES

'Full' GLM

Group level GLM parameters $\theta^{(2)}$

Get the evidence (free energy) F_1

'Reduced' GLM

Group level GLM parameters $\theta^{(2)}$

Get the evidence (free energy) F_2

Compare models using Log Bayes Factor: $LBF = F_1 - F_2$

Hypothesis testing using PEB

'Bayesian model reduction' enables alternative models to be assessed in milliseconds.

Applications:

- Compare GLMs with / without particular connections (spm_dcm_peb_bmc.m)
- Compare GLMs with / without particular covariates (spm_dcm_bmc_peb.m)
- Automatically search over reduced models to find the best combination of parameters (spm_dcm_peb_bmc.m)

Summary

First level analysis

1. **Specify** a DCM to model effective connectivity

$$\dot{z} = (A + \sum_{j=1}^{m} u_j B^j)z + Cu$$

- 2. **Estimate** the DCM for each subject to get:
- Connectivity parameters $\theta^{(1)} = (A, B, C)$
- Evidence (free energy) $F \approx \ln p(y|m)$

Second level analysis

3. Estimate a grouplevel **Bayesian GLM**

$$\theta^{(1)} = X\theta^{(2)} + \epsilon^{(2)}$$

- 4. **Test hypotheses** by switching on and off combinations of parameters $\theta^{(2)}$ to see how that changes the evidence
- 5. Optionally, perform cross-validation to see if effect sizes are large enough to be useful.

Further Reading

The original DCM paper	Friston et al. 2003, Neurolmage
The original PEB paper	Friston et al. 2016, Neurolmage
Descriptive / tutorial DCM papers	
Role of General Systems Theory	Stephan 2004, J Anatomy
DCM: Ten simple rules for the clinician	Kahan et al. 2013, Neurolmage
Ten Simple Rules for DCM	Stephan et al. 2010, Neurolmage
Extensions to DCM for fMRI	
Two-state DCM	Marreiros et al. 2008, Neurolmage
Non-linear DCM	Stephan et al. 2008, Neurolmage
Stochastic DCM	Li et al. 2011, <i>Neurolmage</i> Friston et al. 2011, <i>Neurolmage</i> Daunizeau et al. 2012, <i>Front Comput Neurosci</i>
A DCM for Resting State fMRI	Friston et al., 2014, Neurolmage
Multi-modal canonical microcircuit	Friston et al., 2017, Neurolmage

EXAMPLE

Neuropsychologia 50 (2012) 3621-3635

Contents lists available at SciVerse ScienceDirect

Neuropsychologia

journal homepage: www.elsevier.com/locate/neuropsychologia

Research Report

Reading without the left ventral occipito-temporal cortex

Mohamed L. Seghier ^{a,*}, Nicholas H. Neufeld ^{a,b}, Peter Zeidman ^a, Alex P. Leff ^a, Andrea Mechelli ^c, Arjuna Nagendran ^a, Jane M. Riddoch ^d, Glyn W. Humphreys ^{d,e}, Cathy J. Price ^a

^a Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, London WC1N 3BG, UK

^b University of Toronto, Toronto, ON, Canada M5S 1A8

^c Institute of Psychiatry, King's College London, London SE5 8AF, UK

^d School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

^e Department of Experimental Psychology, Oxford University, Oxford OX3 9DU, UK

Reading > fixation (29 controls)
Lesion (Patient AH)

- 1. Extracted regions of interest. Spheres placed at the peak SPM coordinates from two contrasts:
- A. Reading in patient > controls
- B. Reading in controls

2. Asked which region should receive the driving input

Bayesian Model Averaging

Key: Controls Patient

Learning Objectives

By the end of today, you should be able to:

- 1. Place DCM in the fMRI analysis pipeline
- State the difference between structural, functional and effective connectivity
- 3. Explain how a generative model helps to separate the BOLD signal into neuronal activity (effective connectivity), haemodynamics and noise.
- Explain the interpretation of the parameters in the neuronal formula in DCM for fMRI
- 5. Explain how parameter estimates and the log model evidence are used to test hypotheses

Further Reading

The original DCM paper	Friston et al. 2003, Neurolmage
Descriptive / tutorial papers	
Role of General Systems Theory	Stephan 2004, J Anatomy
DCM: Ten simple rules for the clinician	Kahan et al. 2013, Neurolmage
Ten Simple Rules for DCM	Stephan et al. 2010, Neurolmage
DCM Extensions	
Two-state DCM	Marreiros et al. 2008, Neurolmage
Non-linear DCM	Stephan et al. 2008, Neurolmage
Stochastic DCM	Li et al. 2011, Neurolmage Friston et al. 2011, Neurolmage Daunizeau et al. 2012, Front Comput Neurosci
Post-hoc DCM	Friston and Penny, 2011, Neurolmage Rosa and Friston, 2012, J Neuro Methods
A DCM for Resting State fMRI	Friston et al., 2014, Neurolmage