7. Egenværdier og egenvektorer

- Definitioner
 - o Egenrum
 - o Karakteristisk polynomium
- Sætning 6.1.1
- Def. på diagonalisering
- Sætning 6.3.2

Definition: $A \in Mat_{n,n}(\mathbb{F}), \lambda \in \mathbb{F}$ er en egenværdi for A, hvis der findes en ikke-nul-vektor x således, at: $Ax = \lambda x$ gælder. x kaldes så for egenvektoren tilhørende egenværdien x.

En egenværdi kan have flere egenvektorer, men en egenvektor har kun én egenværdi.

For at finde egenværdierne for en matrix *A*, skal vi finde det karakteristiske polynomium. Men først finder vi **egenrummet:**

Definition: Vi tager den første definition, og skriver den om:

$$(A - \lambda I)x = 0$$

Så er løsningsrummet $N(A-\lambda I)$ også kaldet egenrummet. Egenrummet består af alle egenvektorer til λ .

Dvs. vi har kun en ikke-triviel ($x \neq 0$) løsning, hvis $A - \lambda I$ er ikke-invertibel, hvilket igen vil sige, at $\det(A - \lambda I) = 0$. Det leder os frem til det **karakteristiske polynomium:**

Definition: Egenværdierne for en matrix A kan beregnes fra det karakteristiske polynomium (eller ligning):

$$p(\lambda) = \det(A - \lambda I) = 0$$

Rødderne er så egenværdierne. Typisk siger vi, at en $n \times n$ matrix har n egenværdier (talt med multiplicitet).

En lille smule om similaritet.

Definition: En matrix B er similær til A, hvis der findes en invertibel matrix S således, at:

$$B = S^{-1}AS$$

Sætning 6.1.1: For to similære matricer *A* og *B* gælder det, at deres karakteristiske polynomium er ens:

$$p_A(\lambda) = p_B(\lambda)$$

Dermed har de to matricer også samme egenværdier.

Bevis:

$$p_B(\lambda) = \det(B - \lambda I) = \det(S^{-1}AS - \lambda I) = \det(S^{-1}(A - \lambda I)S)$$
$$= \det(S^{-1})\det(A - \lambda I)\det(S) = p_A(\lambda)$$

Vi kan bruge egenværdier og egenvektorere til at diagonalisere en matrix:

Definition: En $n \times n$ matrix er diagonaliserbar, hvis det findes en invertibel matrix X og en diagonal matrix D, så:

$$D = X^{-1}AX$$

Vi siger så, at X diagonaliserer A.

Følgende sætning fortæller os, hvad der skal gælde om egenvektorerne for en matrix A:

Sætning 6.3.2: En $n \times n$ -matrix A er diagonaliserbar $\Leftrightarrow n$ lineært uafhængige egenvektorere for A.

Bevis: \Leftarrow : Vi antager A har de lineært uafhængige egenvektorer $x_1, ..., x_n$, og lader λ_i være egenværdien tilhørende x_i . X er en matrix med x_j som j'te søjlevektor. Vi ved så: $Ax_j = \lambda_j x_j$ er den j'te søjlevektor for AX. Så:

$$AX = (Ax_1, \dots Ax_n) = (\lambda_1 x_1, \dots, \lambda_n x_n)$$
$$= (x_1, \dots, x_n) \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix} = XD$$

Da *X* består af *n* lineært uafhængige vektorere, er *X* invertibel, og vi har:

$$D = X^{-1}XD = X^{-1}AX$$

 \Rightarrow : Hvis A er diagonaliserbar så har vi: $A = XDX^{-1} \Rightarrow AX = XD \text{ med}$

$$D = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$$

Hvis vi igen siger, at x_1, \dots, x_n er søjlevektorerne for X, så har vi igen:

$$Ax_j = \lambda_j x_j \quad (d_{jj} = \lambda_j)$$

Dvs., at x_j er egenvektorer tilhørende λ_j (til A). Da X var invertibel, består den af n lineært uafhængige søjlevektorer – dvs. A har n lineært uafhængige egenvektorer.