Cryptologie symétrique 2/2

Damien Vergnaud

Sorbonne Université

CRYPTO 1

Contents

- AES
 - Origins and Structure
 - Description
- 2 Hash Functions
 - Definitions and Generic Attacks
 - Merkle-Damgaard
 - MD5 and SHA-?
- Message Authentication Codes (MAC)
 - Definitions
 - CBC-MAC
 - HMAC

AES Origins

- a replacement for DES was needed
 - theoretical attacks that can break it
 - exhaustive key search attacks
- can use Triple-DES but slow, has small blocks
- US NIST issued call for ciphers in 1997
 - Block size: 128 bits (possibly 64, 256, ...)
 - **Key size:** 128, 192, 256 bits
- 15 candidates accepted in June 98
- 5 were shortlisted in August 99
- Rijndael was selected as the AES in October 2000
- issued as FIPS PUB 197 standard in November 2001

AES Origins

- a replacement for DES was needed
 - theoretical attacks that can break it
 - exhaustive key search attacks
- can use Triple-DES but slow, has small blocks
- US NIST issued call for ciphers in 1997
 - Block size: 128 bits (possibly 64, 256, ...)
 - Key size: 128, 192, 256 bits
- 15 candidates accepted in June 98
- 5 were shortlisted in August 99
- Rijndael was selected as the AES in October 2000
- issued as FIPS PUB 197 standard in November 2001

AES Origins

- a replacement for DES was needed
 - theoretical attacks that can break it
 - exhaustive key search attacks
- can use Triple-DES but slow, has small blocks
- US NIST issued call for ciphers in 1997
 - Block size: 128 bits (possibly 64, 256, ...)
 - Key size: 128, 192, 256 bits
- 15 candidates accepted in June 98
- 5 were shortlisted in August 99
- Rijndael was selected as the AES in October 2000
- issued as FIPS PUB 197 standard in November 2001

AES - Rijndael

- designed by Rijmen-Daemen in Belgium
- has 128/192/256 bit keys, 128 bit data (for AES)
- a substitution-permutation network (SPN) (rather than Feistel cipher)
 - processes data as block of 4 columns of 4 bytes
 - operates on entire data block in every round
- designed to have:
 - resistance against known attacks
 - speed and code compactness on many CPUs
 - design simplicity

Substitution-Permutation Network

- Substitution: S-boxes substitute a small block of input bits
 - invertible, non-linear
 - changing one input bit → change about half of the output bits
- **Permutation:** P-boxes permute bits
 - output bits of an S-box distributed to as many S-box inputs as possible.

Substitution-Permutation Network

- Key: in each round using group operation
- one S-box/P-box produces a *limited* amount of confusion/diffusion
- enough rounds → every input bit is diffused across every output bit

Substitution-Permutation Network

- AES with 128-bit key (see refs. for 192-bit and 256-bit keys)
- Data block: 128 bits → 16 bytes in a 4 × 4 matrix

1	2	3	4		
5	6	7	8		
9	10	11	12		
13	14	15	16		

• A byte $b_7b_6b_5b_4b_3b_2b_1b_0$ is represented by a polynomial

$$b_7x^7 + b_6x^6 + b_5x^5 + b_4x^4 + b_3x^3 + b_2x^2 + b_1x^1 + b_0$$

with
$$b_i \in \{0,1\} = \mathbb{F}_2$$
.

• **Example:** 5A = 01011010

$$vightarrow x^6 + x^4 + x^3 + x^1$$

• Bytes are identified with elements of the finite field $\mathbb{F}_{256} = \mathbb{F}_2[x]/(m(x))$ with

$$m(x) = x^8 + x^4 + x^3 + x + 1$$

- AES with 128-bit key (see refs. for 192-bit and 256-bit keys)
- Data block: 128 bits → 16 bytes in a 4 × 4 matrix

• A byte $b_7b_6b_5b_4b_3b_2b_1b_0$ is represented by a polynomial

$$b_7x^7 + b_6x^6 + b_5x^5 + b_4x^4 + b_3x^3 + b_2x^2 + b_1x^1 + b_0$$

with $b_i \in \{0,1\} = \mathbb{F}_2$.

• **Example:** 5A = 01011010

$$varphi x^6 + x^4 + x^3 + x^1$$

• Bytes are identified with elements of the finite field $\mathbb{F}_{256} = \mathbb{F}_2[x]/(m(x))$ with

$$m(x) = x^8 + x^4 + x^3 + x + 1$$

AES Structure

no MixColumns in the last round

AddRoundKey

SubBytes

SubBytes

- S-box defined algebraically over \mathbb{F}_{256}
- First invert the byte (interpreted as an alement of \mathbb{F}_{256} :

$$a \longmapsto \left\{ \begin{array}{ll} a^{-1} & \text{if } a \neq 0 \\ 0 & \text{otherwise} \end{array} \right.$$

Then apply affine transformation:

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

SubBytes

	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F
0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	CO
2	В7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
3	04	C7	23	СЗ	18	96	05	9A	07	12	80	E2	EB	27	B2	75
4	09	83	2C	1A	1B	6E	5A	AO	52	3B	D6	ВЗ	29	E3	2F	84
5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
6	DO	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
7	51	АЗ	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
9	60	81	4F	DC	22	2A	90	88	46	EE	В8	14	DE	5E	OB	DB
Α	EO	32	ЗА	OA	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
C	BA	78	25	2E	1C	A6	В4	C6	E8	DD	74	1F	4B	BD	8B	88
D	70	3E	B5	66	48	03	F6	0E	61	35	57	В9	86	C1	1D	9E
E	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
F	8C	A1	89	OD	BF	E6	42	68	41	99	2D	OF	B0	54	BB	16

- the column is determined by the least significant nibble,
- the row is determined by the most significant nibble.
- **Example:** S(9A) = B8

ShiftRows

- in the ring $A = \mathbb{F}_{256}[X]/(X^4 + 1)$.
- using a(X) in A:

$$a(X) = \{03\}X^3 + \{01\}X^2 + \{01\}X + \{02\}$$
$$= (x+1)X^3 + X^2 + X + x$$

• given a column of four bytes (b_0, b_1, b_2, b_3) , consider the polynomial

$$b_0 + b_1 X + b_2 X^2 + b_3 X^3 \in A$$

• the new column is

$$a(X) \cdot b(X) \in A$$

$$a(X) = \{03\}X^3 + \{01\}X^2 + \{01\}X + \{02\}$$
$$= (x+1)X^3 + X^2 + X + X$$
$$b(X) = b_0 + b_1X + b_2X^2 + b_3X^3$$

Step 1: Polynomial multiplication

$$a(x) \cdot b(x) = c(x) = (a_3 X^3 + a_2 X^2 + a_1 X + a_0) \cdot (b_3 X^3 + b_2 X^2 + b_1 X + b_0)$$

= $c_6 X^6 + c_5 X^5 + c_4 X^4 + c_3 X^3 + c_2 X^2 + c_1 X + c_0$

where:

Step 2: Modular reduction

$$\left\{ \begin{array}{l} X^6 \operatorname{mod}(X^4+1) = -X^2 = X^2 \text{ over } \operatorname{GF}(2^8) \\ X^5 \operatorname{mod}(X^4+1) = -X = X \text{ over } \operatorname{GF}(2^8) \\ X^4 \operatorname{mod}(X^4+1) = -1 = 1 \text{ over } \operatorname{GF}(2^8) \end{array} \right.$$

$$a(X) \cdot b(X) = c(X) \operatorname{mod}(X^{4} + 1)$$

$$= (c_{6}X^{6} + c_{5}X^{5} + c_{4}X^{4} + c_{3}X^{3} + c_{2}X^{2} + c_{1}X + c_{0}) \operatorname{mod}(X^{4} + 1)$$

$$= c_{6}X^{2} + c_{5}X + c_{4} + c_{3}X^{3} + c_{2}X^{2} + c_{1}X + c_{0}$$

$$= c_{3}X^{3} + (c_{2} \oplus c_{6})X^{2} + (c_{1} \oplus c_{5})X + c_{0} \oplus c_{4}$$

$$= d_{3}X^{3} + d_{2}X^{2} + d_{1}X + d_{0}$$

where

$$d_0 = c_0 \oplus c_4$$
, $d_1 = c_1 \oplus c_5$, $d_2 = c_2 \oplus c_6$, $d_3 = c_3$

Step 3: Matrix representation

$$d_0 = a_0 \cdot b_0 \oplus a_3 \cdot b_1 \oplus a_2 \cdot b_2 \oplus a_1 \cdot b_3$$

$$d_1 = a_1 \cdot b_0 \oplus a_0 \cdot b_1 \oplus a_3 \cdot b_2 \oplus a_2 \cdot b_3$$

$$d_2 = a_2 \cdot b_0 \oplus a_1 \cdot b_1 \oplus a_0 \cdot b_2 \oplus a_3 \cdot b_3$$

$$d_3 = a_3 \cdot b_0 \oplus a_2 \cdot b_1 \oplus a_1 \cdot b_2 \oplus a_0 \cdot b_3$$

$$\begin{bmatrix} d_0 \\ d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} \{02\} & \{03\} & \{01\} & \{01\} \\ \{01\} & \{02\} & \{03\} & \{01\} \\ \{01\} & \{01\} & \{02\} & \{03\} \\ \{03\} & \{01\} & \{01\} & \{02\} \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

- addition is an XOR operation
- multiplication is a (complicated) multiplication in \mathbb{F}_{256}

Step 3: Matrix representation

$$d_0 = a_0 \cdot b_0 \oplus a_3 \cdot b_1 \oplus a_2 \cdot b_2 \oplus a_1 \cdot b_3$$

$$d_1 = a_1 \cdot b_0 \oplus a_0 \cdot b_1 \oplus a_3 \cdot b_2 \oplus a_2 \cdot b_3$$

$$d_2 = a_2 \cdot b_0 \oplus a_1 \cdot b_1 \oplus a_0 \cdot b_2 \oplus a_3 \cdot b_3$$

$$d_3 = a_3 \cdot b_0 \oplus a_2 \cdot b_1 \oplus a_1 \cdot b_2 \oplus a_0 \cdot b_3$$

$$\begin{bmatrix} d_0 \\ d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} x & (x+1) & 1 & 1 \\ 1 & x & (x+1) & 1 \\ 1 & 1 & x & (x+1) \\ (x+1) & 1 & 1 & x \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

- addition is an XOR operation
- ullet multiplication is a (complicated) multiplication in \mathbb{F}_{256}

Outline

- AES
 - Origins and Structure
 - Description
- 2 Hash Functions
 - Definitions and Generic Attacks
 - Merkle-Damgaard
 - MD5 and SHA-?
- Message Authentication Codes (MAC)
 - Definitions
 - CBC-MAC
 - HMAC

Does encryption guarantee message integrity?

• Idea:

- Alice encrypts m and sends c = Enc(K, m) to Bob.
- Bob computes Dec(K, m), and if it "makes sense" accepts it.
- **Intuition:** only Alice knows *K*, so nobody else can produce a valid ciphertext.

It does not work!

Example

one-time pad.

Ensure that data arrives at destination in its original form

Does encryption guarantee message integrity?

- Idea:
 - Alice encrypts m and sends c = Enc(K, m) to Bob.
 - Bob computes Dec(K, m), and if it "makes sense" accepts it.
- **Intuition:** only Alice knows *K*, so nobody else can produce a valid ciphertext.

It does not work!

Example

one-time pad.

Ensure that data arrives at destination in its original form

Hash Functions

Hash Functions

- map a message of an arbitrary length to a fixed length output
- output: fingerprint or message digest
- What is an example of hash functions?
 - **Question:** Give a hash function that maps Strings to integers in $[0, 2^{32} 1]$
- additional security requirements \(\sim \) cryptographic hash functions

Security Requirements for Cryptographic Hash Functions

Given a function $\mathcal{H}: X \longrightarrow Y$, then we say that h is:

- pre-image resistant (one-way): if given $y \in Y$ it is computationally infeasible to find a value $x \in X$ s.t. $\mathcal{H}(x) = y$
- second pre-image resistant (weak collision resistant): if given $x \in X$ it is computationally infeasible to find a value $x' \in X$, s.t. $x' \neq x$ and $\mathcal{H}(x') = \mathcal{H}(x)$
- collision resistant (strong collision resistant): if it is computationally infeasible to find two distinct values $x', x \in X$, s.t. $x' \neq x$ and $\mathcal{H}(x') = \mathcal{H}(x)$

Security Requirements for Cryptographic Hash Functions

Given a function $\mathcal{H}: X \longrightarrow Y$, then we say that h is:

- pre-image resistant (one-way): if given $y \in Y$ it is computationally infeasible to find a value $x \in X$ s.t. $\mathcal{H}(x) = y$
- second pre-image resistant (weak collision resistant): if given $x \in X$ it is computationally infeasible to find a value $x' \in X$, s.t. $x' \neq x$ and $\mathcal{H}(x') = \mathcal{H}(x)$
- collision resistant (strong collision resistant): if it is computationally infeasible to find two distinct values $x', x \in X$, s.t. $x' \neq x$ and $\mathcal{H}(x') = \mathcal{H}(x)$

Security Requirements for Cryptographic Hash Functions

Given a function $\mathcal{H}: X \longrightarrow Y$, then we say that h is:

- pre-image resistant (one-way): if given $y \in Y$ it is computationally infeasible to find a value $x \in X$ s.t. $\mathcal{H}(x) = y$
- second pre-image resistant (weak collision resistant): if given $x \in X$ it is computationally infeasible to find a value $x' \in X$, s.t. $x' \neq x$ and $\mathcal{H}(x') = \mathcal{H}(x)$
- collision resistant (strong collision resistant): if it is computationally infeasible to find two distinct values $x', x \in X$, s.t. $x' \neq x$ and $\mathcal{H}(x') = \mathcal{H}(x)$

Generic Attack against Pre-image resistance

```
Input: y \in \{0,1\}^n, m \in \mathbb{N} with m > n

Output: x \in \{0,1\}^m s.t. y = \mathcal{H}(x)

while True do

x \overset{R}{\leftarrow} \{0,1\}^m

if \mathcal{H}(x) = y then

return x

end if

end while
```

- Time Complexity: $O(2^n)$ (random \mathcal{H})
- Space Complexity: O(1)

Generic Attack against Pre-image resistance

```
Input: y \in \{0,1\}^n, m \in \mathbb{N} with m > n

Output: x \in \{0,1\}^m s.t. y = \mathcal{H}(x)

while True do

x \overset{R}{\leftarrow} \{0,1\}^m

if \mathcal{H}(x) = y then

return x

end if

end while
```

- Time Complexity: $O(2^n)$ (random \mathcal{H})
- Space Complexity: O(1)

Generic Attack against Second Pre-image resistance

```
Input: x \in \{0,1\}^m

Output: x' \in \{0,1\}^m s.t. \mathcal{H}(x') = \mathcal{H}(x)

y \leftarrow \mathcal{H}(x)

while True do

x' \xleftarrow{R} \{0,1\}^m

if \mathcal{H}(x') = y then

return x'

end if

end while
```

```
• Time Complexity: O(2^n) (random \mathcal{H})
• Space Complexity: O(1)
```

• Space Complexity: O(1)

Generic Attack against Second Pre-image resistance

```
Input: x \in \{0,1\}^m

Output: x' \in \{0,1\}^m s.t. \mathcal{H}(x') = \mathcal{H}(x)

y \leftarrow \mathcal{H}(x)

while True do

x' \xleftarrow{R} \{0,1\}^m

if \mathcal{H}(x') = y then

return x'

end if

end while
```

- Time Complexity: $O(2^n)$ (random \mathcal{H})
- Space Complexity: O(1)

Generic Attack against Collision resistance

```
Input: m \in \mathbb{N} with m > n
Output: x, x' \in \{0, 1\}^m s.t. \mathcal{H}(x) = \mathcal{H}(x') and x \neq x'
   \Upsilon \leftarrow \emptyset
                                                                                               > hash table
   while TRUE do
       x_i \stackrel{R}{\leftarrow} \{0,1\}^m
      y_i \leftarrow \mathcal{H}(x_i)
      j \leftarrow \text{LookUp}(y_i, \Upsilon)
       if j \neq -1 then
          return (x_i, x_i)
                                                                                        \triangleright \mathcal{H}(x_i) = \mathcal{H}(x_i)
       end if
       ADDELEMENT(\Upsilon, (x_i, y_i))
                                                         > sorted using the second coordinate
   end while
```

Birthday Paradox

(see **TD** 1)

- Time Complexity: $O(2^{n/2})$ (random \mathcal{H})
- Space Complexity: $O(2^{n/2})$

Generic Attack against Collision resistance

```
Input: m \in \mathbb{N} with m > n
Output: x, x' \in \{0, 1\}^m s.t. \mathcal{H}(x) = \mathcal{H}(x') and x \neq x'
   \Upsilon \leftarrow \emptyset
                                                                                               > hash table
   while TRUE do
      x_i \stackrel{R}{\leftarrow} \{0,1\}^m
       v_i \leftarrow \mathcal{H}(x_i)
      j \leftarrow \text{LookUp}(y_i, \Upsilon)
      if i \neq -1 then
          return (x_i, x_i)
                                                                                        \triangleright \mathcal{H}(x_i) = \mathcal{H}(x_i)
       end if
       AddElement(\Upsilon, (x_i, y_i))
                                                         > sorted using the second coordinate
   end while
```

Birthday Paradox:

(see TD 1)

- Time Complexity: $O(2^{n/2})$ (random \mathcal{H})
- Space Complexity: $O(2^{n/2})$

Hash functions in Security

- Digital signatures
- Random number generation
- Key updates and derivations
- One way functions
- MAC
- Detect malware in code
- User authentication (storing passwords)
- ...

Merkle-Damgaard

- compression function $f: \{0,1\}^{n+\ell} \longrightarrow \{0,1\}^n$
- How to hash $m = (m_0, \ldots, m_k) \in (\{0, 1\}^{\ell})^{(k+1)}$?

- h₀ initial value (intialization vector)
- **Theorem:** f collision-resistant $\Rightarrow \mathcal{H}$ collision resistant (with appropriate padding)

(see TD 2)

Merkle-Damgaard

- compression function $f: \{0,1\}^{n+\ell} \longrightarrow \{0,1\}^n$
- How to hash $m = (m_0, \ldots, m_k) \in (\{0, 1\}^{\ell})^{(k+1)}$?

- h₀ initial value (intialization vector)
- Theorem: f collision-resistant ⇒ H collision resistant (with appropriate padding)

(see **TD 2**)

MD₅

- 128-bit hashes
- designed by Ronald Rivest in 1991
- "MD" stands for "Message Digest"
 - MD5("The quick brown fox jumps over the lazy dog") = 9e107d9d372bb6826bd81d3542a419d6
 - MD5("The quick brown fox jumps over the lazy dog.") = e4d909c290d0fb1ca068ffaddf22cbd0
- cryptographically broken (since 2004!)

- input message broken up into chunks of 512-bit blocks
- (message padded → length is a multiple of 512)

MD5 (for reference only)

```
Input: m \in \{0,1\}^*, |m| < 2^{64} - 1
Output: h \in \{0,1\}^{128}, h = \text{MD5}(m)
   r[0..15] \leftarrow \{7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22\} > initialisation
   r[16..31] \leftarrow \{5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20\}
   r[32..47] \leftarrow \{4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23\}
   r[48..63] \leftarrow \{6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21\}
   for i de 0 à 63 do
      k[i] \leftarrow |(|sin(i+1)| \cdot 2^{32})|
   end for
   h^0 \leftarrow 67452301: h^1 \leftarrow \text{EFCDAB89}: h^2 \leftarrow 98BADCFE: h^3 \leftarrow 10325476
   i = |m| \mod \ell
   (m_0, \ldots, m_k) \leftarrow \mathcal{R}(m) = m \|10^{\ell-i-65}\|\tau_m
                                                                                       \triangleright with |m_i| = 512
   . . .
```

MD5 (for reference only)

```
> main loop
for j from 1 to k do
   (w_0,\ldots,w_{15})\leftarrow m_k
                                                                \triangleright with |w_0| = 32, \ldots, |w_{15}| = 32
   a \leftarrow h^0: b \leftarrow h^1: c \leftarrow h^2: d \leftarrow h^3
   for i from 0 to 63 do
       if 0 < i < 15 then
           f \leftarrow (b \land c) \lor ((\neg b) \land d); g \leftarrow i
       else if 16 < i < 31 then
           f \leftarrow (d \land b) \lor ((\neg d) \land c); g \leftarrow (5i+1) \mod 16
       else if 32 < i < 47 then
           f \leftarrow b \oplus c \oplus d; g \leftarrow (3i + 5) \mod 16
       else if 48 < i < 63 then
           f \leftarrow c \oplus (b \vee (\neg d); g \leftarrow (7i) \mod 16
       end if
       (a, b, c, d) \leftarrow (d, ((a+f+k[i]+w[g]) \ll r[i]) + b, b, c)
   end for
   h^0 \leftarrow h^0 + a: h^1 \leftarrow h^1 + b: h^2 \leftarrow h^2 + c: h^3 \leftarrow h^3 + d
end for
return (h^0||h^1||h^2||h^3)
```

Collisions in MD5

- Birthday attack complexity: 2⁶⁴
 - small enough to brute force collision search
- 1996, collisions on the compression function
- 2004, collisions
- 2007, chosen-prefix collisions
- 2008, rogue SSL certificates generated
- 2012, MD5 collisions used in cyberwarfare
 - Flame malware uses an MD5 prefix collision to fake a Microsoft digital code signature

- SHA-0: (1993). 160 bit digest
 - unpublished weaknesses in this algorithm
 - 1998, collision attack with complexity 2⁶¹
- SHA-1: (1995). 160 bit digest
 - 2005, collision attack with claimed complexity of 2⁶⁹
 - 2010, SHA1 was no longer supported
 - 2017, first collisions found
- **SHA-2**: (2001). digest of length 224, 256, 384, 512 (+2 truncated versions)
 - No collision attacks on SHA-2 as yet
- SHA-3: (2015). Also known as Keccak
 - (Bertoni, Daemen, Peeters and Van Assche)

- **SHA-0**: (1993). 160 bit digest
 - unpublished weaknesses in this algorithm
 - 1998, collision attack with complexity 2⁶¹
- SHA-1: (1995). 160 bit digest
 - 2005, collision attack with claimed complexity of 2⁶⁹
 - 2010, SHA1 was no longer supported
 - 2017, first collisions found
- **SHA-2**: (2001). digest of length 224, 256, 384, 512 (+2 truncated versions)
 - No collision attacks on SHA-2 as yet
- SHA-3: (2015). Also known as Keccak
 - (Bertoni, Daemen, Peeters and Van Assche)

- **SHA-0**: (1993). 160 bit digest
 - unpublished weaknesses in this algorithm
 - 1998, collision attack with complexity 2⁶¹
- SHA-1: (1995). 160 bit digest
 - 2005, collision attack with claimed complexity of 2⁶⁹
 - 2010, SHA1 was no longer supported
 - 2017, first collisions found
- **SHA-2**: (2001). digest of length 224, 256, 384, 512 (+2 truncated versions)
 - No collision attacks on SHA-2 as yet
- SHA-3: (2015). Also known as Keccak
 - (Bertoni, Daemen, Peeters and Van Assche)

- **SHA-0**: (1993). 160 bit digest
 - unpublished weaknesses in this algorithm
 - 1998, collision attack with complexity 2⁶¹
- SHA-1: (1995). 160 bit digest
 - 2005, collision attack with claimed complexity of 2⁶⁹
 - 2010, SHA1 was no longer supported
 - 2017, first collisions found
- **SHA-2**: (2001). digest of length 224, 256, 384, 512 (+2 truncated versions)
 - No collision attacks on SHA-2 as yet
- SHA-3: (2015). Also known as Keccak
 - (Bertoni, Daemen, Peeters and Van Assche)

MD5 vs SHA-1

SHA-3

Outline

- AES
 - Origins and Structure
 - Description
- 2 Hash Functions
 - Definitions and Generic Attacks
 - Merkle-Damgaard
 - MD5 and SHA-?
- Message Authentication Codes (MAC)
 - Definitions
 - CBC-MAC
 - HMAC

Security Requirement for MAC

- resist the Existential Forgery under Chosen Plaintext Attack
 - challenger chooses a random key K
 - adversary chooses a number of messages m_1, m_2, \ldots, m_ℓ and obtains $\tau_i = \mathrm{MAC}(K, m_i)$ for $1 \leq i \leq \ell$
 - adversary outputs m^\star and τ^\star
 - adversary wins if $\forall im^{\star} \neq m_i$ and $\tau^{\star} = \mathrm{MAC}(K, m^{\star})$
- Adversary cannot create the MAC for a message for which it has not seen a MAC

CBC-MAC

- E a block cipher (DES, AES, ...) on n-bit blocks
- produces a *n*-bit MAC

Forgery on CBC-MAC

- Message $m=(m_1,\ldots,m_\ell)$ with MAC au
- ullet Message $m'=(m'_1,\ldots,m'_k)$ with MAC au'
- Message

$$m'' = (m_1, \ldots, m_\ell, m'_1 \oplus \tau, \ldots, m'_k)$$

has MAC au'!

Forgery on CBC-MAC

- Message $m=(m_1,\ldots,m_\ell)$ with MAC au
- Message $m'=(m'_1,\ldots,m'_k)$ with MAC au'
- Message

$$m'' = (m_1, \ldots, m_\ell, m'_1 \oplus \tau, \ldots, m'_k)$$

has MAC τ' !

Fixing CBC-MAC

- Length prepending
- Encrypt-last-block
 - Encrypt-last-block CBC-MAC (ECBC-MAC)
 - $E(k_2, CBC MAC(k_1, m))$

Other flaws

- Using the same key for encryption and authentication
- Allowing the initialization vector to vary in value
- Using predictable initialization vector

Fixing CBC-MAC

- Length prepending
- Encrypt-last-block
 - Encrypt-last-block CBC-MAC (ECBC-MAC)
 - $E(k_2, CBC MAC(k_1, m))$

Other flaws:

- Using the same key for encryption and authentication
- Allowing the initialization vector to vary in value
- Using predictable initialization vector

HMAC

- \mathcal{H} a hash function (SHA-2, SHA-3, ...) with *n*-bit digests
- produces a *n*-bit MAC (Krawczyk, Bellare and Cannetti 1996)

HMAC

$$\mathsf{HMAC}(K,m) = \mathcal{H}\Big((K' \oplus \mathit{opad})\|\mathcal{H}\big((K' \oplus \mathit{ipad})\|m\big)\Big)$$

- K' = K padded with zeroes (to the right)
- opad = 0x5c5c5c...5c5c (one-block-long hexadecimal constant)

