Q7. Minesweeping Field (40 marks):

The rule of Minesweeper game is very simple. To win the game, you must click to open all the cells that do not contain a mine in an $M \times N$ minesweeping field, where M is the number of rows and N is the number of columns, as shown in Fig. 1.

Fig. 1: An $M \times N$ minesweeping field

Each cell in the field contains either a mine, or a number that indicate how many mines are adjacent to that cell. Note that each cell can have at most eight adjacent/neighbour cells, as shown in Fig. 2.

Neighbour	Neighbour	Neighbour
Neighbour	Cell	Neighbour
Neighbour	Neighbour	Neighbour

Fig. 2: The maximum number of neighbours of a cell is 8

The minesweeping field can actually be represented by M lines of N characters, as shown in Fig. 3. This example shows a 4×5 minesweeping field, where each cell with a mine is represented by '*', and each cell without a mine contains a number that indicates the number of mines adjacent to it.

1011 2211 1*111 11100

Fig. 3: A 4×5 minesweeping field

Let Cell (m, n) denote the n-th character of the m-th line in the above representation, where $0 \le m \le M-1$, and $0 \le n \le N-1$.

For the above example, Cell(0, 0) = Cell(1, 4) = Cell(2, 1) = * indicate that there is a mine in each of these cells. On the other hand, Cell(1, 0) = 2 means that there are two mines in its neighbourhood.

Write a programme to

Input, in sequence,

• Three positive integers M, N and Z, where M and N represent the numbers of rows and columns in the minesweeper field, respectively; and Z represents the number of mines in the field. The above inputs satisfy the following conditions: $1 \le M, N \le 30$ $1 \le Z \le 50$

• Subsequent inputs are Z lines of number pairs, and each pair contains two non-negative integers that represent the coordinate of a mine in the field.

Output, in sequence, M lines of N characters. The n-th character of the m-th line indicates the element of Cell (m, n), whereby it is either a * or a number as defined above.

Note: There must not be any space in between two adjacent characters in a line.

试题 7. 扫雷场 (40 分):

扫雷游戏的规则非常简单。要赢得游戏,您必须点击打开一个大小为 $M \times N$ 的扫雷场中所有不包含地雷的格子,其中 M 为行数,N 为列数,如图 1 所示。

图 1: 一个 M×N 的扫雷场

扫雷场中的每个格子可能包含一个地雷;若无地雷则是一个数字,用以表示与该格子相邻的地雷数量。请注意,每个格子最多能有八个相邻的其他格子,如图 2 所示。

邻居	邻居	邻居
邻居	格子	邻居
邻居	邻居	邻居

图 2: 一个格子最多可有 8 个相邻格子

这样的扫雷场实际上可以用 M 行、每一行包含 N 个字符的序列来显示。请参照图 3,本例显示了一个 4×5 的扫雷场,其中每个有地雷的格子用'*'表示,没有地雷的格子则包含一个数字,表示与其相邻的地雷数量。

1011 2211 1*111 11100

图 3: 一个 4×5 的扫雷场

令 Cell (m, n) 表示以上描述中的第 m 行的第 n 个字符, 其中 $0 \le m \le M-1$, 以及 $0 \le n \le N-1$.

参考上面的例子,Cell(0,0) = Cell(1,4) = Cell(2,1) = * 表示这些格子中都有一个地雷。另一方面,Cell(1,0) = 2 表示其附近有两个地雷。

试写一程式以

依序输入,

• 三个正整数 $M \cdot N$ 和 $Z \cdot$ 其中 M 和 N 分别代表扫雷场中的行数和列数; Z 则代表该场地雷的数量。已知以上输入满足以下条件:

 $1 \le M, N \le 30$ $1 \le Z \le 50$

• 随后的输入,是 Z 行的数字对·每一组数字对包含两个非 0 整数,用以表示一个地雷的坐标。

依序输出, M 行、每一行 N 个字符的序列。其中第 m 行的第 n 个字符表示在 Cell (m,n) 里的元素。也就是说这可能是 * 的符号,或一个上述定义的数字。

注意:一行中两个相邻字符之间不能有任何空格。

Example (例子)

Input (输入)	Output (输出)
637	01*
0 2	243
20 21	*** *5*
21 22	232
30	1*1
3 2	
5 1	
5 5 15	****
0 0	46664
01	****
0 2	46664 *****
03	The state of the
20	
21	
22	
23	
2 4	
4 0	
41	
42	
4 3 4 4	
44	
797	*21000000
0 0	2*2100000
11	12*210000
2 2 3 3	012*21000 0012*2100
44	00012*2100
5 5	000012*10
6 6	
11 13 15	0000012**2100
07	001111*33*210
0 8	002*211112*21
16	002*20000112*
19	0011111100011
2 3	000001*100000

2 10 3 3 3 12 5 6 7 7 7 3 8 6 9 5 10 8 10 10	0011112210000 001*112*10000 001122*210000 00001*2212110 00001111*2*10
30 30 20 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 22 16 13 18 19 19 22 17 20 20 15 15 16 15 20 18 28 29 27 29	$\begin{array}{c} 1110000000000000000000000000000000000$