Data Analytics Method HW#5

學號: R10546001 姓名: 許世佑

Q1 (a)

Refer to the previous homework, we can see the result below.

```
from PIL import Image
   import numpy as np
   from numpy import array
   from tkinter import _flatten
   from sklearn.linear_model import Lasso
   from sklearn.linear_model import Ridge
   import math
   import matplotlib.pyplot as plt

✓ 0.0s

X = np.zeros((400, 2576))
   for j in range(0, 40):
        image = Image.open(r"/Users/4yo/Desktop/NTU_Class/Data_Analyze_Method/ORL_Faces/%s_%s.png" %(j+1, i+1))
        image_array = array(image)
        X[±1;*10] = image_array.flatten()
        y = [10*(0], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*(1], 10*
```


Q1 (b)

The Figure 1 is presented the chosen pixels from stepwise regression from HW#2, and the Figure 2 is presented the chosen pixels from lasso regression. We can easily observe that the chosen points in figure 2 is more scatter than figure 1 which is a simply line.

Q2 (a)

Estimates under the unconstrained model:

beta1 = 0.48739662520549115

beta2 = 0.45689725685502514

Q2 (b)

```
# Define the objective function with the Cobb-Douglas constraint

def objective_cd(beta, data):

K = data['Capital']

L = data['Labor']

V = data['Nalue_Added']

epsilon = np.exp(np.random.normal(size=len(data)))

log_V_hat = np.log(beta[0]) + beta[1]*np.log(K) + (1-beta[1])*np.log(L) + np.log(epsilon)

return np.sum((np.log(V) - log_V_hat)**2)

# Minimize the objective function with the Cobb-Douglas constraint to estimate beta

beta0 = np.array([18000, 0.5])

bounds = ((None, None), (0, 1))

result = minimize(objective_cd, beta0, args=(data,), method='L-BFGS-B', bounds=bounds)

# Print the estimated parameters under the Cobb-Douglas constraint

print('Estimates under the Cobb-Douglas constraint:')

print('beta1 =', result.x[1])

v 0.2s

Python

Estimates under the Cobb-Douglas constraint:

beta1 = 0.5000000000000004

beta2 = 0.499999999999956

//Users/4yo/Library/Python/3.6/lib/python/site-packages/ipykernel_launcher.py;7: RuntimeWarning: invalid value encountered in log import sys
```

Estimates under the Cobb-Douglas constraint:

beta1 = 0.5000000000000004

beta2 = 0.499999999999956

Q3 (a)

```
import numpy as np

def pca(K, isCorrtXx=False):
    """
    Performs PCA on the input data matrix X.

Parameters:
    X: array-lke, shape (n_samples, n_features)
    The input data matrix, where n_samples is the number of samples and n_features is the number of features.

isCorrtXx: bool, default False
    If True, use the correlation matrix to perform PCA. Otherwise, use the covariance matrix.

Returns:
loadings: array-lke, shape (n_features, n_components)
    The loading matrix, where n_components is the number of principal components.

eigenvalues: array-like, shape (n_components,)
    The eigenvalue vector of the principal components.

scores: array-like, shape (n_samples, n_components)
    The score matrix, i.e. the matrix of principal components.

cum_var: array-like, shape (n_components,)
    The cumulative variance explained by each principal component.

# center the data
    X_centered = X - np.mean(X, axis=0)

# compute the covariance/correlation matrix
if isCorrtXx:
    cov_matrix = np.corrcoef(X_centered, rowvar=False)
else:
    cov_matrix = np.corv(X_centered, rowvar=False)

# perform eigendecomposition
eigenvalues, eigenvectors = np.linalg.eig(cov_matrix)
```

```
import pandas as pd

# load AutoMPG dataset
auto_mpg = pd.read_csv("DA_Demo.csv")

# extract features and labels
X = auto_mpg.iloc[:, :-1].values

# perform PCA with covariance matrix
loadings_cov, eigenvalues_cov, scores_cov, cum_var_cov = pca(X, isCorrMX=False)

# perform PCA with correlation matrix
loadings_corr, eigenvalues_corr, scores_corr, cum_var_corr = pca(X, isCorrMX=True)

V 1.4s
Python
```



```
print("\nisCorrMX=False: \n")
print("Loading matrix with covariance matrix:\n", loadings_cov)
           print("Eigenvalues with covariance matrix:\n", eigenvalues_cov)
print("Score matrix with covariance matrix:\n", scores_cov)
print("Cumulative variance explained with covariance matrix:\n", cum_var_cov)
Output exceeds the size limit. Open the full output data in a text editor
isCorrMX=False:
[ 1.14338202e-01 9.45572572e-01 -3.03873075e-01 9.22239231e-03 -3.41321063e-03 -1.06909276e-02 9.19061696e-04 -1.63889805e-02]
  [ 3.8966894e-02 2.98328518e-01 9.47540130e-01 6.34424404e-03 
-5.73169239e-03 -8.63249865e-02 -8.51000586e-03 8.19890724e-03] 
[ 9.92644743e-01 -1.20867105e-01 -2.65874637e-03 3.53993832e-03
  3.93041220e-03 3.52931159e-03 -1.85727735e-04 -1.31438408e-04]
[-1.35281211e-03 -3.48299933e-02 -7.68839939e-02 -2.08463123e-02
  1.25527681e-01 -9.88134411e-01 9.09879495e-03 1.37739900e-02
[-1.33689886e-03 -2.39497354e-02 -4.41269251e-02 5.51778482e-01
  -8.24191632e-01 -1.12006207e-01 3.03888666e-02 -1.60382361e-02]

[-5.51527155e-04 -3.24675463e-03 1.23716014e-02 2.00685150e-02
     5.30801776e-02 8.77898223e-03 9.25502182e-01 -3.74145010e-01]]
 Eigenvalues with covariance matrix:
[7.32193919e+05 1.51443435e+03 2.61673181e+02 2.32569592e+01
 5.54405192e+00 2.85720860e+00 3.60437639e-01 2.58474909e-01]
 Score matrix with covariance matrix:
  [[ 5.36470833e+02 5.08481249e+01 -1.06818979e+01 ... 2.34743018e+00
     -9.98056150e-01 7.82258105e-02]]
 Cumulative variance explained with covariance matrix:
  [0.99753627 0.99959952 0.99995603 0.99998771 0.999999526 0.999999916
         print("loading matrix with correlation matrix:\n", loadings_corr)
print("Eigenvalues with correlation matrix:\n", eigenvalues_corr)
print("Score matrix with correlation matrix:\n", scores_corr)
print("Cumulative variance explained with correlation matrix:\n", cum_var_corr)
  Output exceeds the size limit. Open the full output data in a text editor
Loading matrix with correlation matrix:
[[-0.38586239 0.07663269 0.29228579 0.09998251 -0.74036644 -0.38735165
0.19586516 0.1151321 1
[0.402386 0.1384278 0.07223935 -0.21603551 -0.48261485 0.53092548
-0.27373265 0.41774679]
[0.41644435 0.12632499 0.07423622 -0.133581398 -0.30331627 0.00699705
0.084222855 -0.82916553]
[0.40183594 -0.11148087 0.23605571 -0.11971643 0.08426839 -0.6667096
-0.35364996 0.13477548]
[0.40157579 0.21102  -0.00089399 -0.32246785 0.13127292 -0.23585961
[0.7226073 0.30991180]
[-0.2647389 0.41690296 -0.63943514 -0.49280794 -0.09773197 -0.20293343
-0.2289132 -0.03518820  -0.5150664
[-0.27286075 -0.595102]
[-0.27386075 -0.959162]
[-0.27386075 -0.959162]
[-0.2738673 0.94366362 0.38732382 -0.74328281 0.04739508 0.12086663
0.8354565 -0.9672884 0.31674555 0.48615594 0.18282657 0.1143213
0.8354652 0.033196594]
Score matrix with correlation matrix:
[[5.3758723 0.94366326 0.81164355 0.48615594 0.18282657 0.1143213
0.85354652 0.033196594]
Score matrix with correlation matrix:
[[7.746367818492 1.170747655492 1.108112356401 ... -1.369511936492 ...
    ...
-1.80076486e+02 -2.04894437e+01]]
umulative variance explained with correlation matrix:
[0.67198404 0.78994195 0.8913974 0.95216689 0.97502021 0.98931046
0.99609301 ]
```

Q3 (b)

In this case, PCA is not scale-invariant. It is affected by the scale of the variables in the dataset. When the variables are measured on different scales, the variables with larger scales tend to dominate the principal components.

Q4 (a)

```
import numpy as np
import matplotlib.pyplot as plt
        from PIL import Image
from numpy import array
from tkinter import _flatten
    ✓ 0.1s
                                                                                                                                                                                                                                                                     Python
       A = hp.tel03(qe(0, 2270))
for j in range(0, 40):
    for i in range(0, 10):
        image = image.open(r"/Users/4yo/Desktop/NTU_Class/Data_Analyze_Method/ORL_Faces/%s_%s.png" %(j+1, i+1))
        image_array = array(image)
        X[i+j*10] = image_array.flatten()
    √ 0.2s
                                                                                                                                                                                                                                                                     Python
        def pca(dataMat, use_cov, topNfeat=20, ):
              meanVals = np.mean(dataMat, axis=0)
meanRemoved = dataMat - meanVals
               if use_cov == True:
                      covMat = np.cov(meanRemoved, rowvar=0)
               covMat = np.corrcoef(meanRemoved, rowvar=0)
eigVal, eigVect = np.linalg.eig(np.mat(covMat))
               \label{eq:meanRemoved_score_matrix} \begin{tabular}{ll} meanRemoved * eigVect \\ original_matrix = (meanRemoved\_score_matrix * eigVect.T) + meanVals \\ \end{tabular}
               return meanRemoved_score_matrix, original_matrix, eigVal, eigVect
       def analyse_data(dataMat):
              meanVals = np.mean(dataMat. axis=0)
              meanRemoved = dataMat-meanVals
              covMat = np.cov(meanRemoved, rowvar=0)
eigvals, eigVects = np.linalg.eig(np.mat(covMat))
eigValInd = np.argsort(eigvals)
              topNfeat = 2576
              eigValInd = eigValInd[:-(topNfeat+1):-1]
cov_all_score = complex(sum(eigvals)).real
              sum_cov_score = 0
for i in range(0, len(eigValInd)):
                     line_cov_score = complex(eigvals[eigvalInd[i]]).real
sum_cov_score += line_cov_score
if 60 > (sum_cov_score/cov_all_score*100).real > 50 and Printed == 0:
    print('Principal components[ks, Variance percentage[kskk, Cumulated percentage[kskk' % (format(i+1, '2.0f'), format(line_cov_score)).
                            print('Principal comp
Printed = 1
                     elif 70 > (sum_cov_score/cov_all_score*100).real > 60 and Printed == 1:

print('Principal components: %s, Variance percentage: %s%, Cumulated percentage: %s%' % (format(i+1, '2.0f'), format(line_cov_score
                     Printed = 2

elif 80 > (sum_cov_score/cov_all_score*100).real > 70 and Printed == 2:

print('Principal components:%s, Variance percentage:%s%, Cumulated percentage:%s%' % (format(i+1, '2.0f'), format(line_cov_score

Printed = 3
                     elif 90 > (sum_cov_score/cov_all_score*100).real > 80 and Printed == 3:

print('Principal components: s, Variance percentage s, Cumulated percentage s, (format(i+1, '2.0f'), format(line_cov_score
                      Printed = 4

elif (sum_cov_score/cov_all_score*100).real > 90 and Printed == 4:

print('Principal components:%s, Variance percentage:%s%, Cumulated percentage:%s%' % (format(i+1, '2.0f'), format(line_cov_score

Printed = 5
       #let X^T be a 2576×400 data matrix (X^T=2576x400)
meanRemoved_score_matrix, original_matrix, eigVals, eigVects = pca(X.T, True)
Principal components: 2, Variance percentage: 10.55%, Cumulated percentage: 57.0%
Principal components: 3, Variance percentage: 4.57%, Cumulated percentage: 61.5%
Principal components: 6, Variance percentage: 2.07%, Cumulated percentage: 70.5%
Principal components: 15, Variance percentage: 0.66%, Cumulated percentage: 80.2%
Principal components: 47, Variance percentage: 0.17%, Cumulated percentage: 90.1%
```

Q4 (b)

```
first_PC=X.T@eigVects
first_PC=first_PC.T[a]
first_PC_array=first_PC.rreshape(56,46).real

min_first_PC_array = np.min(first_PC_array)
range_first_PC_array = np.max(first_PC_array) - np.min(first_PC_array)
for i, j in enumerate(first_PC_array):
    irst_PC_array[i] = 255 * ((j - min_first_PC_array) / range_first_PC_array)

impglot = plt.imshow(first_PC_array, cmap='gray', vmin=0, vmax=255)
plt.show()

10

20

30

40

50

10

20

30

40

40
```