Μάθηση με παραδείγματα – Δέντρα Απόφασης

Μορφές μάθησης

- Επιβλεπόμενη μάθηση (Ταξινόμηση Πρόβλεψη)
 - Παραδείγματα: {(x_i, t_i)}
 - t κατηγορία →ταξινόμηση
 - t αριθμός → πρόβλεψη
- Μη-επιβλεπόμενη μάθηση (Ομαδοποίηση Μείωση Διάστασης)
 - Παραδείγματα: {x_i}
- Ενισχυτική μάθηση
 - Παραδείγματα: {(x_i, r_i)}
- Επαγωγική Μάθηση (Αναπαράσταση):
 - Μαθηματικά Μοντέλα
 - Συστήματα Κανόνων (ερμηνευσιμότητα)

Επιβλεπόμενη μάθηση

- Υπόθεση (μοντέλο μάθησης): h (ορισμός χώρου υποθέσεων)
- 'Συνεπείς' (με τα παραδείγματα) υποθέσεις
- Occam's razor: προτιμούμε την απλούστερη 'συνεπή' υπόθεση

Δένδρα αποφάσεων για ταξινόμηση

Decision Trees for Classification

Το πρόβλημα του εστιατορίου

- Χαρακτηριστικά (attributes) του προβλήματος:
 - Εναλλακτικό: Ναι, Όχι.
 - Μπαρ: Ναι, Όχι.
 - Π/Σ : Ναι, Όχι.
 - Πεινασμένος: Ναι, Όχι.
 - Πελάτες: Κανένας, Μερικοί, και Πλήρες.
 - Τιμή: \$, \$\$, \$\$\$.
 - Βρέχει: Ναι, Όχι.
 - Κράτηση: Ναι, Όχι.
 - Τύπος: Γαλλικό, Ιταλικό, Ταϋλανδέζικο, ή ταχυφαγείο.
 - ΕκτίμησηΑναμονής: 0'-10', 10'-30', 30'-60', >60'.
- Απόφαση για το αν ο πελάτης θα περιμένει: ΝΑΙ ή ΟΧΙ

Παράδειγμα

Δέντρα απόφασης

- Εσωτερικοί κόμβοι: έλεγχος και απόφαση με βάση την τιμή κάποιου χαρακτηριστικού (attribute test)
- Φύλλα: απόφαση ταξινόμησης σε κάποια κατηγορία

Σύνολο εκπαίδευσης

#	Εναλ	Μπαρ	Π/Σ	Πεινασμ	Πελατες	Τιμή	Βρέχει	Κράτηση	Τύπος	Ектіµ	ΘαΠεριμένει
X ₁	Ναι	Όχι	Όχι	Ναι	Μερικοί	\$\$\$	Όχι	Ναι	Γαλλικό	0-10	Ναι
X ₂	Ναι	Оχι	Όχι	Ναι	Πλήρες	\$	Όχι	Όχι	Ταϋλ	30-60	Όχι
X ₃	Όχι	Ναι	Όχι	Όχι	Μερικοί	\$	Όχι	Όχι	Ταχυφ.	0-10	Ναι
X ₄	Ναι	Όχι	Ναι	Ναι	Πλήρες	\$	Ναι	Όχι	Ταϋλ	10-30	Ναι
X ₅	Ναι	Оχι	Ναι	Όχι	Πλήρες	\$\$\$	Όχι	Ναι	Γαλλικό	>60	Όχι
X ₆	ΊχΟ	Ναι	Όχι	Ναι	Μερικοί	\$\$	Ναι	Ναι	Ιταλικό	0-10	Ναι
X ₇	Όχι	Ναι	Όχι	Όχι	Κανένας	\$	Ναι	Όχι	Ταχυφ.	0-10	Όχι
X ₈	ΊχΟ	Όχι	Όχι	Ναι	Μερικοί	\$\$	Ναι	Ναι	Ταϋλ	0-10	Ναι
X ₉	Όχι	Ναι	Ναι	Όχι	Πλήρες	\$	Ναι	Όχι	Ταχυφ.	>60	Όχι
X ₁₀	Ναι	Ναι	Ναι	Ναι	Πλήρες	\$\$\$	Όχι	Ναι	Ιταλικό	10-30	Όχι
X ₁₁	Όχι	Όχι	Όχι	Όχι	Κανένας	\$	Όχι	Όχι	Ταϋλ	0-10	Όχι
X ₁₂	Ναι	Ναι	Ναι	Ναι	Πλήρες	\$	Όχι	Όχι	Ταχυφ.	30-60	Ναι

Κατασκευή δένδρων αποφάσεων (1/2)

Κατασκευή δένδρων αποφάσεων (2/2)

Ο αλγόριθμος

- function Decision-Tree-Learning(παραδείγματα,χαρακτηριστικά,προεπιλογή) returns δέντρο αποφάσεων
 - inputs: παραδείγματα, ένα σύνολο παραδειγμάτων χαρακτηριστικά, ένα σύνολο χαρακτηριστικών προεπιλογή, προεπιλεγμένη κατηγορία
 - if παραδείγματα είναι κενό then return προεπιλογή
 - else if όλα στο παραδείγματα έχουν την ίδια κατηγορία then return την κατηγορία
 - else if χαρακτηριστικά είναι κενό then return Majority-Class (παραδείγματα)
 - else
 - best ← Choose-Attribute(χαρακτηριστικά, παραδείγματα)
 - tree ← νέο δέντρο αποφάσεων με έλεγχο ρίζας το χαρακτηριστικό best
 - m ← Majority-Value(παραδείγματα)
 - for each τιμή υ_i του best do
 - παραδείγματα $_i$ \leftarrow {στοιχεία από τα παραδείγματα με $best = u_i$ }
 - subtree← Decision-Tree-Learning(παραδείγματα, χαρακτηριστικά-best, m)
 - προσθήκη διακλάδωσης στο tree με ετικέτα υ; και υποδέντρο=subtree
 - return tree

Εντροπία

- Εντροπία Πληροφορίας (Shannon & Weaver, 1949)
 (μέτρο της αβεβαιότητας ή ανομοιογένειας των δεδομένων)
- Μεταβλητή με η σύμβολα:

$$I(P(v_1),...,P(v_n)) = \sum_{i=1}^{n} -P(v_i)\log_2 P(v_i)$$

π.χ. για δύο ισοπίθανα ενδεχόμενα:

$$I(\frac{1}{2}, \frac{1}{2}) = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1$$
 δυαδικό ψηφίο

- Για μη ισοπίθανα ενδεχόμενα, π.χ.
 - /(1/100, 99/100) = 0,08 δυαδικά ψηφία, /(1,0)=/(0,1)=0 δυαδικά ψηφία
- Θέλουμε η διάσπαση του συνόλου παραδειγμάτων με βάση κάποιο χαρακτηριστικό να οδηγεί σε όσο το δυνατό μεγαλύτερη μείωση της εντροπίας.

Επιλογή χαρακτηριστικών

Εντροπία συνόλου παραδειγμάτων πριν τη διάσπαση
 (p: C₁, n:C₂):

$$I\left(\frac{p}{p+n},\frac{n}{p+n}\right) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

 Μέση εντροπία μετά τη διάσπαση με βάση το χαρακτηριστικό Α με υ δυνατές τιμές (διακλαδώσεις):

$$Y\pi\acute{o}\lambda oi\pi\acute{o}(A) = \sum_{i=1}^{\upsilon} \frac{p_i + n_i}{p + n} I\left(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i}\right)$$

Κέρδος πληροφορίας (Information Gain):

$$\textit{K\'ερδος}(A) = \textit{I}\left(\frac{p}{p+n}, \frac{n}{p+n}\right) - \textit{Υπόλοιπό}(A)$$

Παράδειγμα

$$K$$
έρδος (Πελάτες) = $1 - \left[\frac{2}{12}I(0,1) + \frac{4}{12}I(1,0) + \frac{6}{12}I\left(\frac{2}{6},\frac{4}{6}\right)\right] \approx 0,541$

$$K\acute{\epsilon}\rho\delta o\varsigma(T\acute{v}\pi o\varsigma) = 1 - \left[\frac{2}{12}I\left(\frac{1}{2},\frac{1}{2}\right) + \frac{2}{12}I\left(\frac{1}{2},\frac{1}{2}\right) + \frac{4}{12}I\left(\frac{2}{4},\frac{2}{4}\right) + \frac{4}{12}I\left(\frac{2}{4},\frac{2}{4}\right)\right] = 0$$

Αποτίμηση συστήματος μάθησης

- Σύνολο ελέγχου
 - Αξιολόγηση σε παραδείγματα που δεν έχουν χρησιμοποιηθεί κατά την εκπαίδευση → ικανότητα γενίκευσης
- Υπερεκπαίδευση: το σύστημα είναι πιο ευέλικτο απότι χρειάζεται (μαθαίνει και το θόρυβο που συνήθως υπάρχει στα παραδείγματα)
- Υποεκπαίδευση: το σύστημα δεν είναι επαρκώς ευέλικτο
- Υπάρχει ένα βέλτιστο μοντέλο: το μικρότερο 'συνεπές' σύστημα (occam's razor).
- Για τα δέντρα απόφασης μπορούμε να κάνουμε κλάδεμα ενός μεγάλου δέντρου που κατασκευάζουμε αρχικά.