Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский химико-технологический университет имени Д.И. Менделеева»

ОТЧЕТ ПО ДОМАШНЕЙ РАБОТЕ №13 3 ВАРИАНТ

Выполнил студент группы КС-36: Золотухин Андрей Александрович

Ссылка на репозиторий: https://github.com/

CorgiPuppy/

num-methods-eq-math-phys-chem-labs

Приняла: Кольцова Элеонора Моисеевна

Дата сдачи: 19.05.2025

Москва 2025

Оглавление

Описание задачи
Выполнение задачи
Задание 1
Задание 2
Задание 3
Задание 4
Задание 5
Задание 6
Задание 7
Задание 8
Задание 9
Задание 10
Задание 11
Задание 12
Задание 13
Задание 14
Задание 15
Задание 16
Задание 17
Задание 18
Задание 19
Задание 20
Задание 21
Задание 22

Описание задачи

Уравнение	Интервалы переменных	Начальные и граничные условия
$\frac{\partial u}{\partial t} + 7\frac{\partial u}{\partial x} - 8\frac{\partial u}{\partial y} = 0, 2\frac{\partial^2 u}{\partial x^2} + 0, 3\frac{\partial^2 u}{\partial y^2} + t\sin xy$	$x \in [0, 1]$ $y \in [0, 1]$ $t \in [0, 1]$	$u(t = 0, x, y) = ye^{x}$ $\begin{cases} \frac{\partial u}{\partial x}(t, x = 0, y) = t \\ \frac{\partial u}{\partial x}(t, x = 1, y) = 2t \end{cases}$ $\begin{cases} \frac{\partial u}{\partial y}(t, x, y = 0) = t \\ \frac{\partial u}{\partial y}(t, x, y = 1) = 2t \end{cases}$

Для заданного уравнения:

- 1. записать неявную разностную схему;
- 2. записать схему расщепления;
- 3. привести схемы к виду, удобному для использования метода прогонки;
- 4. проверить сходимость прогонки;
- 5. записать рекуррентное прогоночное соотношение;
- 6. составить алгоритм (блок-схему) расчёта.

Уравнение	Интервалы	Начальные и граничные условия
<i>э</i> равнение	переменных	
		u(t=0,x,y)=0
$\frac{\partial u}{\partial t} = 0, 2\frac{\partial u}{\partial x} - 0, 1\frac{\partial u}{\partial y} + \sin x + \sin y$	$x \in [0, 1]$	$\int u(t, x = 0, y) = \sin y$
	$y \in [0, 1]$ $t \in [0, 1]$	$\int u(t, x = 1, y) = \cos y$
		$\begin{cases} u(t, x, y = 0) = \sin x \\ u(t, x, y = 1) = \cos x \end{cases}$
		$u(t, x, y = 1) = \cos x$

Для заданного уравнения:

- 7. записать явную разностную схему;
- 8. записать условие устойчивости на шаг;
- 9. записать рекуррентное соотношение;
- 10. составить алгоритм (блок-схему) расчёта.

Уравнение	Интервалы переменных	Начальные и граничные условия
$2\frac{\partial^2 u}{\partial x^2} + 8\frac{\partial^2 u}{\partial y^2} = 20$	$x \in [0, 1]$ $y \in [0, 1]$	$\begin{cases} u(x = 0, y) = y^2 \\ u(x = 1, y) = y^2 + 1 \\ u(x, y = 0) = x^2 \\ u(x, y = 1) = x^2 + 1 \end{cases}$

Для заданного уравнения:

- 11. представить задачу в нестационарном виде;
- 12. записать схему переменных направлений;
- 13. привести схемы к виду, удобному для использования метода прогонки;
- 14. проверить сходимость прогонки;
- 15. записать итерационное прогоночное соотношение;
- 16. записать условие для окончания итерационного процесса;
- 17. записать начальное приближение;
- 18. составить алгоритм (блок-схему) расчёта;

Уравнение	Интервалы переменных	Начальные и граничные условия
$\frac{\partial u}{\partial t} + 5(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}) = 7\frac{\partial}{\partial x}$	$ \begin{array}{c c} x \in [0, 1] \\ y \in [0, 1] \\ t \in [0, 1] \end{array} $	$u(t = 0, x, y) = 0$ $\begin{cases} u(t, x = 0, y) = 0 \\ u(t, x = 1, y) = y \\ u(t, x, y = 0) = x \end{cases}$

Для заданного уравнения:

- 19. записать схему предиктор-корректор;
- 20. записать рекуррентное прогоночное соотношение для предиктора;
- 21. записать рекуррентное прогоночное соотношение для корректора;
- 22. указать порядок аппроксимации разностной схемы;

Выполнение задачи

Задание 1

Задание 2

Задание 3

Задание 4

Задание 5

Задание 6

Задание 7

Записать явную разностную схему:

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} - 0, 2\frac{u_{i+1,j}^n - u_{i,j}^n}{h_x} + 0, 1\frac{u_{i,j}^n - u_{i,j-1}^n}{h_y} = \sin((i-1)h_x) + \sin((j-1)h_y).$$
 (1)

Задание 8

Записать условие устойчивости на шаг: $\Delta t \leq \frac{1}{\frac{[-0,2]}{h_x} + \frac{[0,1]}{h_y}}$.

Задание 9

Вывести рекуррентное соотношение для схемы (1): Выражаю $u_{i,j}^{n+1}$ из разностной схемы (1):

$$u_{i,j}^{n+1} = u_{i,j}^{n} + 0, 2\frac{\Delta t}{h_x}(u_{i+1,j}^{n} - u_{i,j}^{n}) - 0, 1\frac{\Delta t}{h_y}(u_{i,j}^{n} - u_{i,j-1}^{n}) + \Delta t(\sin((i-1)h_x) + \sin((j-1)h_y)).$$

Задание 10

Составить алгоритм (блок-схему) расчёта схемы (1):

Задание 11

Представить задачу в нестационарном виде:

Для численного решения дифференциальных уравнений эллиптического типа используют **метод установления**, заключающийся в преобразовании стационарной задачи в нестационарную. С этой целью в уравнение, описывающее стационарную задачу, следует добавить фиктивную производную по времени:

$$2\frac{\partial^2 u}{\partial x^2} + 8\frac{\partial^2 u}{\partial y^2} = 20 \to \frac{\partial \tilde{u}}{\partial \tau} = 2\frac{\partial^2 u}{\partial x^2} + 8\frac{\partial^2 u}{\partial y^2} - 20. \tag{2}$$

При этом искомая функция станет уже функцией трёх переменных:

$$u(x,y) \to \tilde{u}(x,y,\tau).$$

Задание 12

Записать схему переменных направлений для уравнения (2):

$$\frac{u_{i,j}^{n+\frac{1}{2}} - u_{i,j}^{n}}{\Delta t} = \frac{2}{2} \frac{u_{i+1,j}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i-1,j}^{n+\frac{1}{2}}}{h_{x}^{2}} + \frac{8}{2} \frac{u_{i,j+1}^{n} - 2u_{i,j}^{n} + u_{i,j-1}^{n}}{h_{y}^{2}},
\frac{u_{i,j}^{n+1} - u_{i,j}^{n+\frac{1}{2}}}{\Delta t} = \frac{2}{2} \frac{u_{i+1,j}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i-1,j}^{n+\frac{1}{2}}}{h_{x}^{2}} + \frac{8}{2} \frac{u_{i,j+1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1}}{h_{y}^{2}} - 20.$$
(3)

Первая подсхема в схеме переменных направлений (3) аппроксимирует производную по времени на первом полушаге интервала Δt и является неявной по координате x и явной по координате y. Вторая подсхема аппроксимирует производную по времени на втором полушаге интервала Δt и является неявной по координате y и явной по координате x.

Задание 13

Записать итерационное прогоночное соотношение для схем (3):

Первая подсхема

Приведу первую подсхему (3) к виду, удобному для использования метода прогонки:

$$-\frac{2}{2}\frac{\Delta t}{h_x^2}u_{i+1,j}^{n+\frac{1}{2}}+(1+2\frac{\Delta t}{h_x^2})u_{i,j}^{n+\frac{1}{2}}-\frac{2}{2}\frac{\Delta t}{h_x^2}u_{i-1,j}^{n+\frac{1}{2}}=u_{i,j}^n+\frac{8}{2}\Delta t\frac{u_{i,j+1}^n-2u_{i,j}^n+u_{i,j-1}^n}{h_y^2}.$$

Вторая подсхема

Приведу вторую подсхему (3) к виду, удобному для использования метода прогонки:

$$-\frac{8}{2}\frac{\Delta t}{h_{u}^{2}}u_{i,j+1}^{n+1}+(1+8\frac{\Delta t}{h_{u}^{2}})u_{i,j}^{n+1}-\frac{8}{2}\frac{\Delta t}{h_{u}^{2}}u_{i,j-1}^{n+1}=u_{i,j}^{n+\frac{1}{2}}+\frac{2}{2}\frac{u_{i+1,j}^{n+\frac{1}{2}}-2u_{i,j}^{n+\frac{1}{2}}+u_{i-1,j}^{n+\frac{1}{2}}}{h_{x}^{2}}-20.$$

Задание 14

Проверить сходимость прогонки для схем (3):

Первая подсхема

Коэффициенты, соответствующие уравнению первой подсхемы (3), имеют вид:

$$a_i = -\frac{2}{2} \frac{\Delta t}{h_x^2}, \quad b_i = 1 + 2 \frac{\Delta t}{h_x^2}, \quad c_i = -\frac{2}{2} \frac{\Delta t}{h_x^2}, \quad \xi_{i,j}^n = u_{i,j}^n + \frac{8}{2} \Delta t \frac{u_{i,j+1}^n - 2u_{i,j}^n + u_{i,j-1}^n}{h_y^2}.$$

Легко видеть, что для первой подсхемы (3) схемы расщепления достаточное условие сходимости прогонки выполняется:

$$|a_i| + |c_i| = 2\frac{\Delta t}{h_x^2} < 1 + 2\frac{\Delta t}{h_x^2} = |b_i|.$$

Вторая подсхема

Коэффициенты, соответствующие уравнению второй подсхемы (3), имеют вид:

$$\tilde{a}_j = -\frac{8}{2} \frac{\Delta t}{h_y^2}, \quad \tilde{b}_j = 1 + 8 \frac{\Delta t}{h_y^2}, \quad \tilde{c}_j = -\frac{8}{2} \frac{\Delta t}{h_y^2}, \quad \tilde{\xi}_{i,j}^{n+\frac{1}{2}} = u_{i,j}^{n+\frac{1}{2}} + \frac{2}{2} \frac{u_{i+1,j}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i-1,j}^{n+\frac{1}{2}}}{h_x^2} - 20.$$

Легко видеть, что для второй подсхемы (3) схемы расщепления достаточное условие сходимости прогонки выполняется:

$$|\tilde{a}_j| + |\tilde{c}_j| = 8\frac{\Delta t}{h_y^2} < 1 + 8\frac{\Delta t}{h_y^2} = |\tilde{b}_j|.$$

Задание 15

Записать рекуррентное прогоночное соотношение для схем (3):

Первая подсхема

Рекуррентное прогоночное соотношение для первой подсхемы (3) имеет вид:

$$u_{i,j}^{n+\frac{1}{2}} = \alpha_i u_{i+1,j}^{n+\frac{1}{2}} + \beta_i.$$

Прогоночные коэффициенты:

$$\alpha_i = -\frac{a_i}{b_i + c_i \alpha_{i-1}}, \ \beta_i = \frac{\xi_{i,j}^n - c_i \beta_{i-1}}{b_i + c_i \alpha_{i-1}}.$$

Вторая подсхема

Рекуррентное прогоночное соотношение для второй подсхемы (3) имеет вид:

$$u_{i,j}^{n+1} = \tilde{\alpha}_j u_{i,j+1}^{n+1} + \tilde{\beta}_i.$$

Прогоночные коэффициенты:

$$\tilde{\alpha}_j = -\frac{\tilde{a}_j}{\tilde{b}_j + \tilde{c}_j \tilde{\alpha}_{j-1}}, \ \tilde{\beta}_j = \frac{\tilde{\xi}_{i,j}^{n+\frac{1}{2}} - \tilde{c}_j \tilde{\beta}_{j-1}}{\tilde{b}_j + \tilde{c}_j \tilde{\alpha}_{j-1}}.$$

Задание 16

Записать условие для окончания итерационного процесса:

Расчёт итераций следует продолжать до тех пор, пока итерационный процесс не сойдётся, т.е. пока не будет выполняться условие, в разностном представлении соответствующее неравенству:

$$||u^{n+1} - u^n|| = \sqrt{h_x h_y \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} (u_{i,j}^{n+1} - u_{i,j}^n)^2} \le \epsilon,$$

где ϵ - некоторая наперёд заданная положительная величина, характеризующая точность вычислений.

Задание 17

Записать начальное приближение:

В качестве нулевой итерации (начального условия, необходимого для решения в связи с введением фиктивной производной по времени) обычно задают свободный член исходного дифференциального уравнения:

$$u_{i,j}^0 = -20.$$

Задание 18

Составить алгоритм (блок-схему) расчёта для схемы (3):

Задание 19

Записать схему предиктор-корректор:

Данная схема требует особого способа расщепления интервала Δt : интервал Δt между точками t^n и t^{n+1} на разностной сетке делится пополам; интервал $\Delta t/2$ между точками t^n и $t^{n+\frac{1}{2}}$ снова делится пополам.

На первом полушаге интервала $\Delta t/2$ записывается неявная разностная схема, в которой учитывается только производная второго порядка по координате x:

$$\frac{u_{i,j}^{n+\frac{1}{4}} - u_{i,j}^{n}}{\Delta t/2} + 5 \frac{u_{i,j}^{n+\frac{1}{4}} - u_{i-1,j}^{n+\frac{1}{4}}}{h_x} = 7 \frac{u_{i+1,j}^{n+\frac{1}{4}} - 2u_{i,j}^{n+\frac{1}{4}} + u_{i-1,j}^{n+\frac{1}{4}}}{h_x^2} - u_{i,j}^{n+\frac{1}{4}}.$$
 (4)

На втором полушаге интервала $\Delta t/2$ записывается неявная разностная схема, в которой учитывается только производная второго порядка по координате y:

$$\frac{u_{i,j}^{n+\frac{1}{2}} - u_{i,j}^{n+\frac{1}{4}}}{\Delta t/2} + 5 \frac{u_{i,j}^{n+\frac{1}{2}} - u_{i,j-1}^{n+\frac{1}{2}}}{h_y} = 0.$$
 (5)

Результатом последовательного решения подсхем (4), (5), называемых в совокупности **предиктором**, являются значения функции u(t, x, y) на шаге по времени $(n+\frac{1}{2})$. Для завершения расчётов на всём интервале Δt используется поправочное разностное соотношение, называемое **корректором**:

$$\frac{u_{i,j}^{n+1} - u_{i,j}^{n}}{\Delta t} + 5 \frac{u_{i,j}^{n+\frac{1}{2}} - u_{i-1,j}^{n+\frac{1}{2}}}{h_x} + 5 \frac{u_{i,j}^{n+\frac{1}{2}} - u_{i,j-1}^{n+\frac{1}{2}}}{h_y} = 7 \frac{u_{i+1,j}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i-1,j}^{n+\frac{1}{2}}}{h_x^2} - u_{i,j}^{n+\frac{1}{2}}.$$
 (6)

Таким образом, схема предиктор-корректор в случае двумерных задач состоит из трёх подсхем.

Задание 20

Записать рекуррентное прогоночное соотношение для предиктора:

Первая подсхема

Рекуррентное прогоночное соотношение для первой подсхемы предиктора (4) имеет вид:

$$u_{i,j}^{n+\frac{1}{4}} = \alpha_i u_{i+1,j}^{n+\frac{1}{4}} + \beta_i.$$

Прогоночные коэффициенты:

$$\alpha_i = -\frac{a_i}{b_i + c_i \alpha_{i-1}}, \ \beta_i = \frac{\xi_{i,j}^n - c_i \beta_{i-1}}{b_i + c_i \alpha_{i-1}}.$$

Вторая подсхема

Рекуррентное прогоночное соотношение для второй подсхемы предиктора (5) имеет вид:

$$u_{i,j}^{n+\frac{1}{2}} = \tilde{\alpha}_j u_{i,j+1}^{n+\frac{1}{2}} + \tilde{\beta}_i.$$

Прогоночные коэффициенты:

$$\tilde{\alpha}_j = -\frac{\tilde{a}_j}{\tilde{b}_j + \tilde{c}_j \tilde{\alpha}_{j-1}}, \ \tilde{\beta}_j = \frac{\tilde{\xi}_{i,j}^{n+\frac{1}{4}} - \tilde{c}_j \tilde{\beta}_{j-1}}{\tilde{b}_j + \tilde{c}_j \tilde{\alpha}_{j-1}}.$$

Задание 21

Записать рекуррентное прогоночное соотношение для корректора (6):

$$u_{i,j}^{n+1} = u_{i,j}^n + \Delta t (-5 \frac{u_{i,j}^{n+\frac{1}{2}} - u_{i-1,j}^{n+\frac{1}{2}}}{h_x} - 5 \frac{u_{i,j}^{n+\frac{1}{2}} - u_{i,j-1}^{n+\frac{1}{2}}}{h_y} + 7 \frac{u_{i+1,j}^{n+\frac{1}{2}} - 2 u_{i,j}^{n+\frac{1}{2}} + u_{i-1,j}^{n+\frac{1}{2}}}{h_x^2} - u_{i,j}^{n+\frac{1}{2}}).$$

Задание 22

Указать порядок аппроксимации разностной схемы: $O(\Delta t^2, h_x, h_y)$.