

Fully automatic extraction of mitral valve annulus motion parameters on long axis CINE CMR using deep learning

Maria Monzon¹, Seung Su Yoon ^{1,2}, Carola Fischer², Andreas Maier¹, Jens Wetzl² and Daniel Giese²

¹ Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

² Magnetic Resonance, Siemens Healthcare GmbH, Erlangen, Germany

Speaker Name: María Monzón

Declaration of Financial Interests or Relationships

Speaker Name: Maria Monzon

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Problem Description

Heart Failure with preserved Ejection Fraction (HFpEF)

- Filling of left ventricle malfunctions
 - Related to Diastolic Dysfunction
 - 1.1–5.5 % general population
- Dynamic motion parameters
 - Diagnosis of dysfunction
 - CINE Cardiac Magnetic Resonance (CMR)
 - Analysis of the mitral valve annulus (MVA)
 - Atrioventicular plane displacement
 - Early diastolic velocities (e'-waves)

MVA plane motion

Proposed System

Fully Automated Convolutional Neural Network (CNN) Algorithm

- CINE CMR series dataset
 - 2-chamber (2CHV) and/or 4-chamber (4CHV)
- Tracks MVA insertion points over complete cardiac cycle
- Automatic compute diastolic parameters

Neural Networks

Motion Parameter Extraction

MVAPD: MVA Plane Displacement

- Perpendicular distance to first cardiac phase MVA plane
- Peak Displacement (MVAPD-PD): maximum translation

MVAPV: MVA Plane Velocity

- Time-resolved discrete derivate fo MVAPD curve
- Early annular diastolic velocity (MVAPV-e'): central peak

SMVAV | LMVAV: Septal or Lateral MVA velocity

- Temporal derivative of each landmark displacement
- Annular diastolic velocities (MVAL-e'): central maximum

Mitral Valve Diameter

- Euclidean distance between both MVA through cardiac cycle
- Total displacement sum over cardiac cycle in mm (VAD)
- Maximum diameter (MAMD) and maximum difference (MADC)

Predicted landmarks and motion parameter representation

Results

Quantitative Performance

- Accuracy w.r.t test set (N=13)
- Root mean square errors
 - 2CHV: 1.75 ± 0.64 mm.
 - 4CHV: 1.74 ± 0.72 mm.
- Extracted narameters' agreement

Bland-Altman Analysis		
Parameter	Value \pm std	unit
MVAPD-PD	0.53 ± 2.44	mm
MVAPV-e'	0.08 ± 3.48	$\mathrm{cm/s}$
VAD	15.39 ± 54.62	mm
MAVL-e'	0.12 ± 3.73	cm/s
MAMD	0.31 ± 3.66	mm
MADC	0.28 ± 3.12	mm

Qualitative Assessment on Unlabeled Data

- System performance based on outlier's detection (N=1468)
 - Localization CNN: < 0.5% to locate the ROI
 - Landmarks CNN: 16, 53% at least one time-frame not smoothly

Septal Landmark Velocity

Time-resolved motion curves and extracted parameters

Conclusion

Conclusion

- ✓ Successfully track MVA landmarks
 - Mean error in the range of the data's resolution
 - Heatmap regression avoids imagecoordinate domain transfer
 - Small annotated dataset size (N=83)
- ✓ Bland-Altman analysis
 - Good agreement ground truth and extracted parameters

Outlook

 Further analysis of motion parameters of categorized patient

- On-line integration at MRI scanner
- Prospective slice-tracking acquisition

