Probability distribution
Pmt Pdt
* Uniform distribution refers to a type of probability
* Uniform distribution refers to a type of probability distribution in which outcomes are likely.
Uniform dist
' / \
Discrete Continuers Uniform
Uniform distribution
dist
(pm/)
* A Continuous uniform forobability distribution is
a distribution that has infinite no ex values
* A Continuous uniform forobability distribution is a distribution that has infinite no ef values defined in a Specified range bound.
-> vandom variable is continuous.
> rectangular distribution.
Example > A perfect random no generative.
eg, OTP.
eq. OTP. > Probability of guessing exact time at any moments > waiting time at a bus stop > Bus arrived is continuous
at any moments
- waiting time at a bus stop
Bus arrived is continuous
and cousi tent
-> Temo variation Bus is coming every 30
in a day
Tempo variation Bus is coming energy 20 in a day mine at a stop. (if a temp is fluctuating between minimum
fluctuating between minimum
salve)

for a continuous roundom variable with food density. $E(x) = {}^{\infty}(x) \frac{1}{2}(x) \frac{1}{2}(x)$ - D part of Expendation formulae $E(x) = \int x \int (x) dx$ $= \int x \int (x) dx$ $= \int -a \int a dx$ Mea = f(n).dn $= \int_{a}^{b} \chi \cdot \frac{1}{b-a} dx$ $a \int_{-\infty}^{\infty} \frac{1+1}{2}$ $= \frac{1}{2} \left(\frac{1}{2} \right)^{2} a$ $= \frac{1}{2} \left(\frac{1}{2} \right)^{2} a$ $= \int_{b-a}^{b} \chi dx$ $=\frac{1}{b-a}\left(\frac{\chi^2}{2}\right)^b=\frac{1}{2(b-a)}\left(\frac{b^2-a^2}{b^2-a^2}\right)$ $=\frac{1}{2(b-a)}\left(\frac{b^2-a^2}{b^2-a^2}\right)$ $=\frac{1}{2(b-a)}$ $\frac{1}{2(b-\alpha)} (b+\alpha) = \frac{1}{2} (b^2 - \alpha^2)$ $\frac{b+\alpha}{2} \quad \text{if } x \sim U(a,b)$ $\frac{b^2 - \alpha^2 = (b-\alpha)}{(b+\alpha)}$ $E[x^2] - [E[x]]^2$ b3-a3=(b-a)(b2+ab+a2) $=\int_{a}^{b} \chi^{2} f(x) dx = \int_{b-a}^{b} \chi^{2} dx = \int_{b-a}^{a} \left[\frac{\chi^{3}}{3}\right]_{a}^{b}$ $=\int_{a}^{b} \chi^{2} f(x) dx = \int_{b-a}^{a} \left[\frac{\chi^{3}}{3}\right]_{a}^{b}$ $=\int_{a}^{b} \chi^{2} f(x) dx = \int_{b-a}^{a} \left[\frac{\chi^{3}}{3}\right]_{a}^{b}$ $=\int_{a}^{b} \chi^{2} f(x) dx = \int_{b-a}^{a} \left[\frac{\chi^{3}}{3}\right]_{a}^{b}$ $= \frac{1}{3(6-a)} \left(b^3 - a^3 \right)$ $=\frac{1}{3(b-\alpha)}(b^2+ab+a^2)$

$$Var(x) = \frac{b^{2} + ab + a^{2}}{3} - \left(\frac{a+b}{2}\right)^{2}$$

$$= \frac{b^{2} + ab + a^{2}}{3} - \frac{a^{2} + b^{2} + 2ab}{4}$$

$$= \frac{4b^{2} + 4ab + 4a^{2} - 3a^{2} - 6ab - 3b^{2}}{12}$$

$$= \frac{b^{2} - 2ab + a^{2}}{12} = \frac{(b - a)^{2}}{12}$$

$$= \frac{b^{2} - 2ab + a^{2}}{12} = \frac{(b - a)^{2}}{12}$$

$$= \frac{b^{2} - 2ab + a^{2}}{12} = \frac{(b - a)^{2}}{12}$$