Technological Institute of the Philippines	Quezon City - Computer Engineering
Course Code:	CPE 019
Code Title:	Emerging Technologies in CpE 2
2nd Semester	AY 2023-2024
Hands-on Activity 6.2	**Training Neural Networks**
Name	Guevarra, Hans Angelo C.
Section	CPE32S3
Date Performed:	4-1-24
Date Submitted:	4-1-24
Instructor:	Engr. Roman M. Richard

Activity 1.2: Training Neural Networks

Objective(s):

This activity aims to demonstrate how to train neural networks using keras

Intended Learning Outcomes (ILOs):

- Demonstrate how to build and train neural networks
- . Demonstrate how to evaluate and plot the model using training and validation loss

Resources:

Jupyter Notebook

CI Pima Diabetes Dataset

• pima-indians-diabetes.csv

Procedures

Load the necessary libraries

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import confusion_matrix, precision_recall_curve, roc_auc_score, roc_curve, accuracy_score
from sklearn.ensemble import RandomForestClassifier

import seaborn as sns
```

```
%matplotlib inline
```

In [2]:

```
## Import Keras objects for Deep Learning
from keras.models import Sequential
from keras.layers import Input, Dense, Flatten, Dropout, BatchNormalization
from keras.optimizers import Adam, SGD, RMSprop
```

Load the dataset

In [3]:

Check the top 5 samples of the data

In [4]:

```
print(diabetes_df.shape)
diabetes_df.sample(5)
```

(768, 9)

Out[4]:

	times_pregnant	glucose_tolerance_test	blood_pressure	skin_thickness	insulin	bmi	pedigree_function	age	has_diabet
589	0	73	0	0	0	21.1	0.342	25	
362	5	103	108	37	0	39.2	0.305	65	
488	4	99	72	17	0	25.6	0.294	28	
475	0	137	84	27	0	27.3	0.231	59	
465	0	124	56	13	105	21.8	0.452	21	

In [5]:

diabetes_df.dtypes

Out[5]:

```
int64
times_pregnant
glucose_tolerance_test
                           int64
blood pressure
                           int64
skin thickness
                           int64
insulin
                           int64
                         float64
bmi
pedigree_function
                         float64
                           int64
age
has diabetes
                           int64
dtype: object
```

In [6]:

```
X = diabetes_df.iloc[:, :-1].values
y = diabetes_df["has_diabetes"].values
```

Split the data to Train, and Test (75%, 25%)

In [7]:

Y train Y test v train v test = train test split(Y v test size=0.25 random state=1

```
In [8]:

np.mean(y), np.mean(1-y)

Out[8]:

(0.348958333333333, 0.65104166666666)
```

Build a single hidden layer neural network using 12 nodes. Use the sequential model with single layer network and input shape to 8.

Normalize the data

```
In [9]:
```

```
normalizer = StandardScaler()
X_train_norm = normalizer.fit_transform(X_train)
X_test_norm = normalizer.transform(X_test)
```

Define the model:

- Input size is 8-dimensional
- 1 hidden layer, 12 hidden nodes, sigmoid activation
- Final layer with one node and sigmoid activation (standard for binary classification)

```
In [10]:
```

```
model = Sequential([
    Dense(12, input_shape=(8,), activation="relu"),
    Dense(1, activation="sigmoid")
])
```

View the model summary

In [11]:

```
model.summary()
```

Model: "sequential"

Layer (type)	Output S	Shape	Param #
dense (Dense)	(None, 1	12)	108
dense_1 (Dense)	(None, 1	1)	13
Total params: 121 (484.00 By Trainable params: 121 (484.0 Non-trainable params: 0 (0.0	00 Byte)		

Train the model

- Compile the model with optimizer, loss function and metrics
- Use the fit function to return the run history.

In []:

```
model.compile(SGD(lr = .003), "binary_crossentropy", metrics=["accuracy"])
run_hist_1 = model.fit(X_train_norm, y_train, validation_data=(X_test_norm, y_test), epo
chs=200)
```

```
Tn [211:
```

```
## Like we did for the Random Forest, we generate two kinds of predictions
# One is a hard decision, the other is a probabilitistic score.
y pred prob nn 1 = model.predict(X test norm)
# Convert probabilities to classes based on a threshold (e.g., 0.5)
y_pred_class_nn_1 = (y_pred_prob_nn_1 > 0.5).astype(int)
6/6 [======] - Os 4ms/step
In [22]:
# Let's check out the outputs to get a feel for how keras apis work.
y pred class nn 1[:10]
Out[22]:
array([[1],
      [1],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0]])
In [23]:
y_pred_prob_nn_1[:10]
Out[23]:
array([[0.5580696],
       [0.6834491],
       [0.23982008],
       [0.23846155],
       [0.09017289],
       [0.52163357],
       [0.02463016],
       [0.23529987],
       [0.9169272],
       [0.22186932]], dtype=float32)
Create the plot_roc function
In [24]:
def plot_roc(y_test, y_pred, model_name):
    fpr, tpr, thr = roc_curve(y_test, y_pred)
    fig, ax = plt.subplots(figsize=(8, 8))
    ax.plot(fpr, tpr, 'k-')
    ax.plot([0, 1], [0, 1], 'k--', linewidth=.5) # roc curve for random model
    ax.grid(True)
    ax.set(title='ROC Curve for {} on PIMA diabetes problem'.format(model name),
           xlim=[-0.01, 1.01], ylim=[-0.01, 1.01])
Evaluate the model performance and plot the ROC CURVE
In [25]:
print('accuracy is {:.3f}'.format(accuracy score(y test,y pred class nn 1)))
print('roc-auc is {:.3f}'.format(roc_auc_score(y_test,y_pred_prob_nn_1)))
```

ROC Curve for NN on PIMA diabetes problem

plot_roc(y_test, y_pred_prob_nn_1, 'NN')

accuracy is 0.760 roc-auc is 0.811

Plot the training loss and the validation loss over the different epochs and see how it looks

```
In [26]:
```

```
run_hist_1.history.keys()
Out[26]:
dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])
In [27]:

fig, ax = plt.subplots()
    ax.plot(run_hist_1.history["loss"],'r', marker='.', label="Train Loss")
    ax.plot(run_hist_1.history["val_loss"],'b', marker='.', label="Validation Loss")
    ax.legend()
```

Out[27]:

<matplotlib.legend.Legend at 0x7b0b1fec14b0>

What is your interpretation about the result of the train and validation loss?

I think the result is balanced because the train loss and validation loss in close to each other.

Supplementary Activity

- Build a model with two hidden layers, each with 6 nodes
- Use the "relu" activation function for the hidden layers, and "sigmoid" for the final layer
- Use a learning rate of .003 and train for 1500 epochs
- Graph the trajectory of the loss functions, accuracy on both train and test set
- Plot the roc curve for the predictions
- Use different learning rates, numbers of epochs, and network structures.
- Plot the results of training and validation loss using different learning rates, number of epocgs and network structures
- Interpret your result

In [41]:

```
# Build a model with two hidden layers, each with 6 nodes
# Use the "relu" activation function for the hidden layers, and "sigmoid" for the final l
ayer

model = Sequential([
    Dense(6, input_shape=(8,), activation="relu"),
    Dense(6, activation="relu"),
    Dense(1, activation="sigmoid")
])
```

In []:

```
# Use a learning rate of .003 and train for 1500 epochs

model.compile(SGD(lr = .003), "binary_crossentropy", metrics=["accuracy"])
run_hist_1 = model.fit(X_train_norm, y_train, validation_data=(X_test_norm, y_test), epochs=1500)
```

In [45]:

In [46]:

```
print('accuracy is {:.3f}'.format(accuracy_score(y_test,y_pred_class_nn_1)))
print('roc-auc is {:.3f}'.format(roc_auc_score(y_test,y_pred_prob_nn_1)))
```

```
plot_roc(y_test, y_pred_prob_nn_1, 'NN')
```

accuracy is 0.760 roc-auc is 0.831

In [43]:

```
run_hist_1.history.keys()
```

Out[43]:

```
dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])
```

In [44]:

```
fig, ax = plt.subplots()
ax.plot(run_hist_1.history["loss"],'r', marker='.', label="Train Loss")
ax.plot(run_hist_1.history["val_loss"],'b', marker='.', label="Validation Loss")
ax.legend()
```

Out[44]:

<matplotlib.legend.Legend at 0x7b0b1d7e5de0>

OBSERVATION: Based on the plot above, the validation loss is significantly higher than the train loss which means that it is overfitting due to the high number of epochs.

Conclusion

After doing this activity, I was able to perform training neural networks and evaluate them by showing the training and validation loss based on the number of epochs. I was also able to learn the relationship between the train loss, validation loss, and the number of epochs wherein a large number of epochs would result to overfitting which means there would be a significant difference between the train loss and validation loss.