Problem set 5

This problem set covers the content from week 6-7: RNA sequencing demo and single-cell transcriptomics.

Tips and rules:

- You can answer in English or in Thai.
- There can be more than one correct answer. What I am looking for from you is not just the correct answer but the rationale for your answer.
- Please provide evidence of how you think and what sources of information you used.
- AI such as ChatGPT may be used. You can also work together with friends. But you must write the answer in your own words.
- Any incidence of plagiarism and copying of another student's work will be reported to the Graduate Affairs.

Differential expression analysis using sleuth

For this problem set, we identify genes that are affected by MOV10 overexpression (https://www.genecards.org/cgi-bin/carddisp.pl?gene=MOV10).

The processed transcriptomics data from *salmon* can be downloaded from https://figshare.com/articles/dataset/Processed overexpression RNA-seq salmon /24182664.

There are 6 samples: 3 control and 3 MOV10 overexpression.

Q1: Create a metadata table describing sample names, conditions, and path to the data. Show your metadata table here.

Q2: Edit run_sleuth.R from the in-class demo to analyze this dataset. Explain how you modify the script here.

Now, perform differential expression analysis and use the outputs from sleuth to answer Q3-Q6.

Q3: How many transcripts are differentially expressed at q-value cutoff of 0.05? How many transcripts are differentially expressed at q-value cutoff of 0.01?

Q4: What are the top 3 most significantly up-regulated transcripts? What are the top 3 most significantly down-regulated transcripts?

Q5: Identify the gene symbols for the transcripts in **Q5** and **Q6**. Discuss whether the differential expression analysis result makes sense given the experimental conditions.

Q6: Visualize the boxplots for the TPMs of the most significantly up-regulated transcript (one transcript) and the most significantly down-regulated transcript (1 transcript).

Single-cell transcriptomics

Here is a diagram of a single-cell sequencing adapter. Use this diagram to answer Q7-Q9.

Q7: Explain what barcode and UMI are.

Let's assume that a new biotechnology startup invented a new single-cell preparation protocol with new barcode and UMI designs as shown above. This company then hires you to develop a bioinformatics pipeline for read data produced by their platform.

Q8: What do you need to know about the characteristics of the barcode and the UMI from this company in order to extract them from each read?

Q9: Propose a **conceptual** bioinformatics pipeline for quantifying the expression level of each gene from this data. The output should be a table of expression data like *kallisto*'s output.

Hint: What should be done after you extracted barcode and UMI from each read? Adapt what you learned about the processing of sequencing data.

Q10: Study this single-cell paper: https://www.nature.com/articles/s41588-022-01100-4. What kind of filters were used to select high-quality cells and samples? For each filter, explain what it removes from the data.

Hint: There are several filters. The details may span across multiple paragraphs.

Q11: Although single-cell technique provides much more information than bulk RNA-seq, it also consumes much more resources. Propose a scenario where you think bulk RNA-seq should be performed over single-cell sequencing. Provide your reasoning.