Problem 1

A polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ contains a line, if there exists a nonzero $v \in \mathbb{R}^n$ and an $x^* \in \mathbb{R}^n$ such that for all $\lambda \in \mathbb{R}$, the point $x^* + \lambda \cdot v \in P$. Show that a nonempty polyhedron P contains a line if and only if A does not have full column-rank.

Problem 2 (2.7 in [BT])

Suppose you are given two representations of the same non-empty polyhedron

$$P = \{x \in \mathbb{R}^n | a_i^{\mathrm{T}} x \le b_i, i = 1, \dots, m\} = \{x \in \mathbb{R}^n | g_j^{\mathrm{T}} x \le h_j, j = 1, \dots, k\}.$$

Show that if the vectors a_1, \ldots, a_m span \mathbb{R}^n then so do g_1, \ldots, g_k .