Билеты по курсу «Нелинейная оптика»

Авторы заметок: Егоров Митя

Волкова Саша Федотова Катя Хоружий Кирилл

От: 22 декабря 2021 г.

Содержание

Билет	$N_{2}1$.																 									
Билет	№3 .						 										 									
Билет	№ 4.1						 										 									4
Билет	№4.2						 										 									Ę
Билет	№ 5 .																 									(
Билет	№ 6.																 									(
Билет	№7 .																 									(
Билет																										
Билет	№ 9 .						 										 									7
Билет	№ 10						 										 									7
Билет	№ 11																									8
Билет	№ 12						 										 									8

Оптические нелинейности

- 1. Что нелинейно в нелинейной оптике? Принцип суперпозиции для поляризации среды. Материальные уравнения и их связь с уравнениями Максвелла. Механизмы нелинейного взаимодействия излучения со средами: классификация, особенности.
- 2. Электронные нерезонансные нелинейности. Общий вид материального уравнения. Квадратичные нелинейные явления. Простейший осциллятор как модель нелинейности: два сопутствующих процесса.

Квадратичная нелинейность

- 3. Генерация второй оптической гармоники. Понятие фазового синхронизма. Способ выполнения условия фазового синхронизма. Расчет угла фазового синхронизма при ГВГ.
- 4.1. Переход от волнового уравнения к уравнениям для медленных амплитуд; разделение уравнений для волн. Решение уравнений генерации второй оптической гармоники в случае точного синхронизма.
- 4.2. Генерация второй гармоники в случае слабого преобразования; роль расстройки. Факторы, ограничивающие эффективность преобразования, связь с расстройкой. Роль длины среды.
- 5. Генерация суммарной и разностной частот. Типы синхронизмов. Вторая гармоника как генерация суммарной частоты. Типы синхронизмов. Периодически поляризованные кристаллы.
- 6. Оптическое детектирование. Генерация терагерцового излучения; Терагерцовое излучение как процесс генерации разностных частот.
- 7. Параметрическая генерация света. Основные свойства спонтанного параметрического излучения. Уравнения генерации параметрического излучения. Особенности бигармонического поля.

Кубическая нелинейность

- 8. Нерезонансные электронные нелинейности: явления третьего порядка. Простейший осциллятор как модель нелинейности: два сопутствующих процесса.
- 9. Генерация третьей оптической гармоники. Условие фазового синхронизма. Способ выполнения условия фазового синхронизма. Расчет угла фазового синхронизма при генерации третьей гармоники.
- 10. Решение уравнений генерации третьей оптической гармоники в случае точного синхронизма. Факторы, ограничивающие эффективность преобразования.
- 11. Нелинейный показатель преломления среды; связь с кубичной нелинейностью среды. Роль стрикционного и ориентационного механизмов нелинейности.
- 12. Самофокусировка излучения. Самофокусировка простейшего гауссова пучка света. Критическая мощность при самофокусировке излучения. Фокусировка импульсного излучения.

Другое

- 13. Фазовая самомодуляция излучения. Основной результат взаимодействия. Практические применения: сокращение длительности световых импульсов, генерация гребенки частот.
- 14. Поляризационные эффекты нелинейного показателя преломления. Нелинейность показателя преломления для линейно поляризованного и кругополяризованного света. Слабая волна в среде под действием сильного излучения.
- 14. Группы кубичных нелинейных явлений. Двухпучковые нелинейные явления. Самодифракция излучения. Самодифракция излучения при различных поляризациях падающих пучков света.
 - 15. Четырех-волновые смешения в нелинейной оптике: Обращение волны и обращение волнового фронта.
- 16. Электронные нелинейности, резонансное взаимодействие. Полуклассическая модель. Балансные уравнения. Понятие об интенсивности просветления среды. Задача о просветлении среды и изменении показателя преломления.
 - 17. Методы измерения констант нелинейного взаимодействия: метод z-сканирования.
 - 18. «Ядерные» нелинейности. Роль стрикционного и ориентационного механизмов нелинейности.
- 19. Вынужденное комбинационное рассеяние (ВКР). Роль спонтанного рассеяния. Основные характеристики излучения ВКР. Особенности энергообмена между волнами при ВКР.
- 20. Вынужденное рассеяние Мандельштама-Бриллюена (ВРМБ). Роль спонтанного рассеяния. Основные характеристики излучения ВРМБ. Особенности энергообмена между волнами при ВРМБ.

Билет №1

Что нелинейно в нелинейной оптике? Принцип суперпозиции для поляризации среды. Материальные уравнения и их связь с уравнениями Максвелла. Механизмы нелинейного взаимодействия излучения со средами: классификация, особенности.

Вектор поляризованности \boldsymbol{P} в линейной оптике

$$P_i = \sum_{k=1}^3 \alpha_{ik} E_k,$$
 при $\alpha_{ik} = \alpha \mathbb{1}$ $\mathbf{P} = \alpha \mathbf{E},$

при том же векторе для эдектрической индукции D:

$$D = E + 4\pi P$$
.

В случае квадратичной нелинейности переходим к зависимости, вида

$$P_{i} = \sum_{k=1}^{3} \alpha_{ik}[E]E_{k}, \quad \alpha_{ik}[E] = \alpha_{ik} + \sum_{j=1}^{3} \chi_{ikj}E_{j} + \sum_{j=1}^{3} \sum_{m=1}^{3} \theta_{ikjm}E_{j}E_{m} + \dots,$$

где α_{ik} – линейная восприимчивость, χ_{ikj} – квадратичная нелинейная восприимчивость, θ_{ikjm} – кубическая нелинейная восприимчивость.

Итого, получаем материальное уравнение, вида

$$P_i = \underbrace{\alpha_{ik} E_k}_{P_i^{\text{\tiny IMH}}} + \underbrace{\chi_{ikj} E_k E_j}_{P_i^{\text{\tiny KB}}} + \underbrace{\theta_{ikjm} E_k E_j E_m}_{P_i^{\text{\tiny KY}6}} + \dots$$

Билет №3

Генерация второй оптической гармоники. Понятие фазового синхронизма. Способ выполнения условия фазового синхронизма. Расчет угла фазового синхронизма при ГВГ.

Генерация второй гармоники. Пусть в квадратично-нелинейный диэлектрик входит световая волна на частоте ω . Тогда

$$\boldsymbol{P}^{\text{\tiny KB}} = \frac{1}{4}\chi[\boldsymbol{e},\boldsymbol{e}](Ae^{i(\omega t - \boldsymbol{k}\boldsymbol{r})} + \text{c.c.})^2 = \frac{1}{4}\chi[\boldsymbol{e},\boldsymbol{e}]\left(A^2e^{i(2\omega t - 2\boldsymbol{k}\boldsymbol{r})} + \bar{A}^2e^{i(2\boldsymbol{k}\boldsymbol{r} - 2\omega t)} + 2A\bar{A}\right).$$

Intro. Представим исходную волну и волну второй гармоники в виде

$$E_{\omega} = A_{\omega} \cos(\omega t - kz),$$

$$E_{2\omega} = A_{2\omega} \cos(2\omega t - Kz).$$

Считая $n[\omega]=\sqrt{\varepsilon[\omega]}$ и $n[2\omega]=\sqrt{\varepsilon[2\omega]}$, находим

$$v_{\omega} = \frac{c}{n[\omega]} = \frac{\omega}{k_{\omega}}, \quad v_{2\omega} = \frac{c}{n[2\omega]} = \frac{2\omega}{k_{2\omega}}, \quad \Rightarrow \quad [k_{2\omega} - 2k_{\omega} = \Delta k],$$

где Δk – волновая расстройка.

Интерференция. Исходная волна вызовет волну квадратичной поляризованности

$$P_{2\omega} = \frac{1}{2}\chi[\boldsymbol{e}, \boldsymbol{e}]A_{\omega}^{2}\cos(2\omega t - 2kz).$$

Рассмотрим две точки: z и z', пусть фаза волны в z':

$$\Phi(z') = 2\omega t - 2k_{\omega}z'.$$

Тогда в точке z фаза переизлученной световой волны будет

$$\varphi(z') = \Phi(z) - k_{2\omega}(z - z') = 2\omega t - k_{2\omega}z + \Delta kz'.$$

Результирующая волна второй гармони есть результат интерференции волн, переизлученных в различных точках z' на промежутку от z' = 0 дл z' = z:

$$E_{2\omega} = A \int_0^z \cos(\varphi[z']) dz' = A \int_0^z \cos(2\omega t - Kz + \Delta kz') dz'.$$

Откуда находим, что

$$E_{2\omega} = \frac{A}{\Delta k} \left(\sin(2\omega t - k_{2\omega}z + \Delta kz) - \sin(2\omega t - k_{2\omega}z) \right) = \frac{2A}{\Delta k} \sin\left(\frac{\Delta kz}{2}\right) \cos\left(2\omega t - k_{2\omega}z + \frac{\Delta kz}{2}\right),$$

а значит амплитуда второй гармоники в точке z:

$$A_{2\omega}(z) = \frac{2A}{\Delta k} \sin \frac{\Delta k z}{2}, \quad \Rightarrow \quad A_{2\omega}^{\max} \Leftrightarrow \boxed{k_{2\omega} = 2k_{\omega}},$$

так и приходим к условию фазового синхронизма.

Достижение фазового синхронизма. Для отрицательного одноосного кристалла

$$\frac{n_z^2}{n_o^2} + \frac{n_x^2}{n_e^2} = 1, \quad \Rightarrow \quad n_e[\theta] = \frac{n_o n_e}{\sqrt{n_o^2 - (n_o^2 - n_e^2)\cos^2\theta}},$$

так что можем добиться $n_o[\omega] = n_e[2\omega]$, для некоторого θ :

$$\frac{1}{n_e^2[2\omega, \theta]} = \frac{\cos^2(\theta)}{n_o^2[2\omega]} + \frac{\sin^2(\theta)}{n_e^2[2\omega]} = \frac{1}{n_0^2[\omega]},$$

что прекрасно видно на графике.

Рис. 1: Достижение фазового синхронизма

Билет №4.1

Переход от волнового уравнения к уравнениям для медленных амплитуд; разделение уравнений для волн. Решение уравнений генерации второй оптической гармоники в случае точного синхронизма.

лекция 2, слайды 13-23.

Def 4.1. Бездифракционное приближение – приближение, в котором принебрегается поперечным направлению распространения расплыванием светового пучка, что влечет обнуление вторых производных по двум координатам, нормальным к координате распространения в лапласиане волнового уравнения 1.

Def 4.2. Медленная амплитуда – случай, когда волна представима произведением множителей, один из которых отвечает за быстро осциллирующую фазу, а второй за медленно изменяющуюся амплитуду.

Запищем волновое уравнение

$$\left(\partial_x^{\mathbf{Z}} + \partial_y^{\mathbf{Z}} + \partial_z^2\right) \mathbf{E} - \frac{1}{c^2} \partial_t^2 \mathbf{E} = \frac{4\pi}{c^2} \partial_t^2 \mathbf{P}.$$

Подставляя $m{E}[t,z] = m{A}[t,z] e^{-i\omega t + ikz}$ и $m{P} = m{P}_{\text{лин}} + m{P}_{\text{кв}}$, находим 2 уравнение для медленных амплитуд: $2ik \bigg(\partial_z m{A} + \frac{1}{v_{\text{gr}}} \partial_t m{A} \bigg) e^{-i\omega t + ikz} = \frac{4\pi}{c^2} \partial_t^2 m{P}_{\text{кв}}.$

$$2ik\left(\partial_z \boldsymbol{A} + \frac{1}{v_{\rm gr}}\partial_t \boldsymbol{A}\right)e^{-i\omega t + ikz} = \frac{4\pi}{c^2}\partial_t^2 \boldsymbol{P}_{\rm \tiny KB}$$

Использование бездифракционного приближения для медленных амплитуд позволяется убрать в волновом уравнении вторые производных по двум координатам, а оставшиеся вторых производные по координате распространения и времени свести к первым, что переводит волновое уравнение в уравнение для медленных амплитуд.

Разделение уравнений для воли: удобно в уравнении для медленных амплитуд представить поле в видел суммы полей двух гармоник:

$$A = \frac{1}{2}(A_{\omega}e^{-i\omega t + ik_{\omega}x} + A_{\omega}^*e^{2i\omega t - ik_{\omega}x}) + \frac{1}{2}(A_{2\omega}e^{-i\omega t + ik_{2\omega}x} + A_{2\omega}^*e^{2i\omega t - ik_{2\omega}x}),$$

после чего разделить уравнение на 2 для каждой из гармоник³. В некотором приближении находим, что

$$\partial_z A \gg \frac{1}{v_{\rm gr}} \partial_t A, \quad \Rightarrow \quad \begin{cases} \partial_z A_\omega = \frac{2\pi i \omega}{c n_\omega} \chi_2 A_{2\omega} A_\omega^* e^{i\Delta kz} \\ \partial_z A_{2\omega} = \frac{2\pi i \omega}{c n_{2\omega}} \chi_2 A_\omega^2 e^{-i\Delta kz} \end{cases}$$

¹Обусловленно мили/сантиметровочными длинами рабочих нелинейных сред, а на таких длинах дифракционные эффекты мизерны

 $^{^{2}}$ см. лекция 2, 14 слайд

 $^{^{3}}$ Можно в виду тонкости спектров гармоник, которые друг друга не перекрывают, если импульсы достаточно не коротки (нано-/пикосекндные лазеры)) (слагаемые с групповой скоростью можно тоже аккуратно вычеркнуть, так как для, например, наносекундныъ лазеров их расстройка << длительности импульсов

При точном синхронизме ($\Delta k = 0$) решение уравнения для медленных амплитуд:

$$G = \frac{2\pi\omega}{cn}\chi_2, \qquad \begin{cases} A_{2\omega}(z) = iA_{\omega}[0] \operatorname{th}\left(GA_{\omega}[0]z\right) \\ A_{\omega}(z) = \frac{A_{\omega}[0]}{\operatorname{ch}(GA_{\omega}[0]z)}, \end{cases}$$

таким образом на некотором расстоянии полностью переходим к д

Рис. 2: Генерация второй гармоники при точном синхронизме

Билет №4.2

Генерация второй гармоники в случае слабого преобразования; роль расстройки. Факторы, ограничивающие эффективность преобразования, связь с расстройкой. Роль длины среды.

лекция 2, слайды 13-23.

Def 4.3. "Заданное поле накачки" - случай, когда, хоть и расстройка ненулевая (вообще говоря, любая), но амплитуда второй гармоники мала и не особо ослабляет амплитуду накачки (аппроксимируемо постоянной).

При заданном поле накачки решение ур-я для медленных амплитуд:

при завинном поле накачки решение ур-я для медленных амплитуд:
$$\begin{cases} A_{2\omega}(z)/A_{\omega} = iGA_{\omega}zsinc(\Delta kz/2)e^{-i\Delta kz/2} \\ A_{\omega}(z) = const \end{cases}, \text{ где } G = \frac{2\pi\omega}{cn}\chi_2, \text{ где наблюдается периодические изменение интен-$$

сивности второй гармоники по длине среды (из-за sink) между нулем и тем большим значением, чем меньше расстройка. При фиксированной длине среды интереснее подобрать меньшую расстройку. Половина интенсивности теряется уже при $\Delta kL \simeq 2.8 \; (L$ - длина среды).

Среди причин ограничения эффективности:

- 1) пространственная неоднорожность пучка: пучок накачки в лучем случае гауссовый, так что на его крыльях $A_{\omega}(0)$ падает, из-за чего падает и th, что влечет на выходе наложении $\simeq 100\%$ эфф-ти от центра пучка и плохой эфф-ти от крыльев, что понижает общую эфф-ть;
- 2) временная неоднородность пучка: проблема аналогична п. 1;
- 3) нарушение частотного синхронизма: нулевая расстройка для частоты накачки влечет ненулевую расстройку для спектральных крыльев накачки, что понижает эфф-ть: $\Delta k \simeq [k_{2\omega}(2\omega_0) + 2\frac{dk_{2\omega}}{d\omega}(\omega - \omega_0)] + [2k_{\omega}(\omega_0) + 2\frac{dk_{\omega}}{d\omega}(\omega - \omega_0)] = 2(\omega - \omega_0) \left(v_{gh}^{-1}(2\omega) - v_{gr}^{-1}(\omega)\right)$, так что решение - ограничение спектра накачки: $\Delta \omega < \frac{2,8}{\tau(2\omega)-\tau(\omega)}$, где τ - групповое время запаздывания \Longrightarrow время импульса лазера $\tau > \tau(2\omega) - \tau(\omega)$;
- 4) нарушение углового синхронизма: например, в одноосном кристалле дифракционное уширение пучка влечет уширение пучка второй гармоники, которая является в одноосном кристалле необыкновенной волной, а значит ее пок-тель преломл. зависит от угла, и это все приводит к нарушению фазового синхронизма: $\Delta k = \frac{2\omega n_2 \omega}{c} \alpha(\theta - \theta_0)$, где $\alpha = \frac{1}{n} n_\theta'$ - угол сноса, в стандартных лазерах на стандартных кристаллах равный единицам градусов (не мало). Короче, условие на ширину пучка: $D \leq 2L\alpha \ (l$ - длина среды).

Решение проблем ограничения эфф-ти:

- 1) 90-тиградусный синхронизм: угол сноса в таком случае нулевой;
- 2) периодически поляризованный кристалл: кристалл состоит чередующихся доменов с двумя разными направлениями нелинейной полярной оси, что компенсирует расстройку фазового синхронизма;
- **2)** резонатор: накачку вносят в резонатор Фабри-Перо, который на порядка 2-3 увеличивает ее, как и вторую гармонику.

Билет №5

Генерация суммарной и разностной частот. Типы синхронизмов. Вторая гармоника как генерация суммарной частоты. Типы синхронизмов. Периодически поляризованные кристаллы.

Def 4.4. Генерация суммарной//разностной частоты - явление, при котором при просвете среды двумя частотами на выходе появляются частота, равная сумме // разности исходных.

Появляются частоты как слагаемые, получаемые при возведении в квадрат суммарной амплитуды $A=\frac{1}{2}(A_1e^{-i\omega_1t+ik_1x}+A*_1e^{i\omega t-ik_\omega x})+\frac{1}{2}(A_2e^{-i\omega_2t+ik_2x}+A*_2e^{2i\omega_2t-ik_2x}).$

Условие фазового синхронизма: вдали от среды видно $E_{\omega_1+\omega_2} \propto \delta(\mathbf{k}_1+\mathbf{k}_2-\mathbf{k}_3)$, что дает условие "существенности" суммарной гармоники: $\mathbf{k}_1+\mathbf{k}_2=\mathbf{k}_3$, что уже допусакает неколлинеарность этих векторов, хоть выгоднее и коллинеарность (большая область пересечения). В последнем случае условие влечет $\frac{n_1}{\lambda_1}+\frac{n_2}{\lambda_2}=\frac{n_3}{\lambda_3}$.

Среди типов синзронизмов:

- 1) 1-ый: исходные волны обыкновенные, суммарная необыкновенная;
- 2) 2-ой: исходные волны обыкновенная и необыкновенная, суммарная необыкновенная

Генерация второй гармоники как суммарной: при неколлинеарной ГСЧ от равных частот получился вторая гармоника, но только лишь в области пересечения импульсов двух неколлинеарных волн, которая геометрически пропорциональна длительности импульса. Так с помощью неколлинеарной ГВГ можно судить о длительности импульсов лазера.

Билет №6

Оптическое детектирование. Генерация терагерцового излучения; Терагерцовое излучение как процесс генерации разностных частот.

Оптическое детектирование:

- 1) свет детектируется при прохождении через просветленную (то есть без поглощения) квадратично нелинейную среду, по "бокам" которой приложены электроды, которые фиксируют напряжение при постоянной поляризации из-за оптического выпрямления;
- 2) фиксируется положение зеркала (например, с помощью пружинки за ним), на которое падает свет, оказывающий на него давление;

все это очень вкусно, но сигналы с электродов или деформация пружины столь слабы, что тонут в тепловых шумах электроники, потому не так распространено.

Терагерцовое излучение: в качестве источника терагерцового излучения можно использовать квадратично нелинейную среду, на которую светят лазером, генерирующим постоянную поляризацию, пропорциональную интенсивности импульса, которая тем скорее меняется, чем короче импульс. Излучение диполей среды (поляризация) ∝ второй производной интенсивности, что и дает терагерцовый диапазон от фемптосекундных импульсов. Это востребовано для исследования молекулярного состава различных веществ, так как их линии переходов часто лежат в терагерцовой области. Также исходный импульс лазера можно рассматривать как спектр, для каждой пары частот из которого будет генерироваться своя разностная частота, что дает широкий спектр.

Терагерцовое излучение как генерация разностных частот: также исходный импульс лазера можно рассматривать как спектр, для каждой пары частот из которого будет генерироваться своя разностная частота, что дает широкий спектр.

Билет №7

Параметрическая генерация света. Основные свойства спонтанного параметрического излучения. Уравнения генерации параметрического излучения. Особенности бигармонического поля.

Отсутствует запись, но есть презентация (30.09.2021).

Билет №8

Нерезонансные электронные нелинейности: явления третьего порядка. Простейший осциллятор как модель нелинейности: два сопутствующих процесса.

Среди кубических:

- 1) генерация третьей гармоники;
- 2) нелинейность показателя преломления:
- 2.1) самофокусировка;
- 2.2) фазовая амомодуляция;
- 2.3) самовращение эллипса поляризации;
- 2.4) образование солитонов;
- **2.5)** другие;
 - 3) четырехволновое смещение:
- 3.1) ссамодифракция излучения;
- 3.2) обращение волнового фронта;
- **3.3)** другие;
 - 4) генерация параметрических волн;
 - **5)** другие.

2 сопутствующих процесса: электрон в атоме рассматривается как осциллятор с пот. эн. $U(x) = \alpha x^2 + \gamma x^4$, что в уравнении $\ddot{x} + \omega_0^2 x + \frac{4\gamma e}{m} x^3 = Acos(\omega t)$ дает нелинейное смещение $x_{LN} = \frac{3\gamma e}{2m} \left(\frac{eA}{m(\omega^2 - \omega_0^2)}\right)^2 \left(\frac{cos(\omega t)}{\omega^2 - omega_0^2} + \frac{cos(3\omega t)}{9\omega^2 - \omega_0^2}\right)$, где слагаемое $-\frac{cos(\omega t)}{\omega^2 - omega_0^2}$ дает первую гармонику (изменение пок-теля преломл. среды = самовоздействие), а $\frac{cos(2\omega t)}{4\omega^2 - \omega_0^2}$ дает излучение третьей гармоники: $P \propto (acos(\omega t) + bcos(3\omega t))$.

Билет №9

Генерация третьей оптической гармоники. Условие фазового синхронизма. Способ выполнения условия фазового синхронизма. Расчет угла фазового синхронизма при генерации третьей гармоники.

Условие фазового синхронизма: вдали от среды видно $E_{2\omega} \propto \delta(\mathbf{k}_{3\omega} - 3\mathbf{k}_{\omega})$, что дает условие "существенности" третьей гармоники: $\mathbf{k}_{3\omega} = 3\mathbf{k}_{\omega}$, что влечет $n_{3\omega} = n_{\omega}$, что едва ли выполняется в кубически нелинейных средах, однако этого можно достигнуть, например, в отрицательном одноосном криталле, в котором пок-тель преломл. для накачки можно настроить равным пок-телю преломл. для третьей гармоники, если последний лежит меж обыкновенным и необыкновенными пок-телями для накачки.

Выбор угла для выполнения условия синхронизма: условие на угол в отрицательном одноосном кристалле: $\frac{\cos(\theta)^2}{n_0^2(3\omega)} + \frac{\sin^2(\theta)}{n_e^2(3\omega)} = \frac{1}{n_0^2(\omega)}.$

Билет №10

Решение уравнений генерации третьей оптической гармоники в случае точного синхронизма. Факторы, ограничивающие эффективность преобразования.

Разделение уравнений для волн: удобно в уравнении для медленных амплитуд представить поле в видел суммы полей двух гармоник: $A = \frac{1}{2}(A_{\omega}e^{-2i\omega t + ik_{\omega}x} + A *_{\omega}e^{i\omega t - ik_{\omega}x}) + \frac{1}{2}(A_{3\omega}e^{-i\omega t + ik_{3\omega}x} + A *_{3\omega}e^{3i\omega t - ik_{3\omega}x})$, после чего разделить уравнение на 2 для каждой из гармоник (можно в виду

тонкости спектров гармоник, которые друг друга не перекрывают, если импульсы достаточно не коротки (нано-/пикосекндные лазеры)) (слагаемые с групповой скоростью можно тоже аккуратно вычеркнуть, так как для,

например, наносекундныъ лазеров их расстройка « длительности импульсов):
$$\begin{cases} (A_{\omega})'_z = \frac{3\pi i \omega}{2cn_{\omega}} \chi_3 A_{3\omega} A *_{\omega}^2 e^{i\Delta kz} \\ (A_{2\omega})'_z = \frac{3\pi i \omega}{2cn_{3\omega}} \chi_3 A_{\omega}^3 e^{-i\Delta kz} \end{cases}$$

При точном синхронизме
$$(\Delta k=0)$$
 решение ур-я для медленных амплитуд:
$$\begin{cases} A_{3\omega}(z)=iA_{\omega}(0)\frac{GA_{\omega}^{2}(0)z}{\sqrt{1+(GA_{\omega}^{2}(0)z)^{2}}}\\ A_{\omega}(z)=\frac{A(0)}{\sqrt{1+(GA_{\omega}^{2}(0)z)^{2}}} \end{cases}$$
, где $G=\frac{3\pi\omega}{2cn}\chi_{3}$, где интересно, отношение амплитуд (и, ввиду $n_{\omega}=n_{3\omega}$,

интенсивностей) третьей гармоники к накачке имеет скорую единичную ассимптотику (из-за корня).

Среди причин ограничения эффективности:

- 1) пространственная неоднорожность пучка: пучок накачки в лучем случае гауссовый, так что на его крыльях $A_{\omega}(0)$ падает, из-за чего падает и th, что влечет на выходе наложении $\simeq 100\%$ эфф-ти от центра пучка и плохой эфф-ти от крыльев, что понижает общую эфф-ть;
- 2) временная неоднородность пучка: проблема аналогична п. 1;
- 3) нарушение частотного синхронизма: нулевая расстройка для частоты накачки влечет ненулевую расстройку для спектральных крыльев накачки, что понижает эфф-ть: $\Delta k \simeq [k_{3\omega}(3\omega_0) + 3\frac{dk_{3\omega}}{d\omega}(\omega - \omega_0)] + [3k_{\omega}(\omega_0) + 3\frac{dk_{\omega}}{d\omega}(\omega - \omega_0)] = 3(\omega - \omega_0)\left(v_{gh}^{-1}(3\omega) - v_{gr}^{-1}(\omega)\right),$ так что решение - ограничение спектра накачки: $\Delta \omega < \frac{2.8}{\tau(3\omega) - \tau(\omega)},$ где τ - групповое время запаздывания \Longrightarrow время импульса лазера $\tau > \tau(3\omega) - \tau(\omega)$;
- 4) нарушение углового синхронизма: например, в одноосном кристалле дифракционное уширение пучка влечет уширение пучка второй гармоники, которая является в одноосном кристалле необыкновенной волной, а значит ее пок-тель преломл. зависит от угла, и это все приводит к нарушению фазового синхронизма: $\Delta k = \frac{3\omega n_{3\omega}}{c}\alpha(\theta-\theta_0)$, где $\alpha = \frac{1}{n}n'_{\theta}$ - угол сноса, в стандартных лазерах на стандартных кристаллах равный единицам градусов (не мало). Короче, условие на ширину пучка: $D \leq 3L\alpha$ (l - длина среды).

Билет №11

Нелинейный показатель преломления среды; связь с кубичной нелинейностью среды. Роль стрикционного и ориентационного механизмов нелинейности.

Среди явлений изменения пок-теля преломл.:

- 1) стрикционная нелинейность: втягивание вещества в область повышенной интенсивности излучения (что влечет изменение пок-теля преломл.); свойственно любому веществу;
- 2) ориентационная нелинейность: свойственна анизотропным средам (в основном, жидкостям); следстие вытянусти молекул: один из их электронов становится свободным, так что световое поле легко возбудит его движение вдоль остова молекул, но с трудом поперек, что приведет к моменту силы, и остовы повернутся по полу излучения - среда станет двулучепреломляющей;
 - 3) тепловая нелинейность: не комметируется;
 - 4) плазменная нелинейность: не комментируется.

Билет №12

Самофокусировка излучения. Самофокусировка простейшего гауссова пучка света. Критическая мощность при самофокусировке излучения. Фокусировка импульсного излучения.