Gymnázium Brno, třída Kapitána Jaroše 14 Školní rok 2008/2009 třída 4.A

ZÁVĚREČNÁ MATURITNÍ PRÁCE

Rovnice a nerovnice

Autor: Ondřej Hrabec

Vedoucí práce: RNDr. Pavel Boucník

<u>Prohlášení</u>

Prohlašuji, že jsem předloženou závěrečnou maturitní práci zp jsem použil pouze materiál uvedený v seznamu literatury.	racoval samostatn ě a že
Dne 19. ledna 2009	
	Ondřej Hrabec

Obsah:

§1. Lineární rovnice a nerovnice	4
§2. Rovnice a nerovnice v součinovém tvaru	5
§3. Absolutní hodnota	8
§4. Úpravy kvadratických výrazů	12
§5. Kvadratické rovnice	14
§6. Vztahy mezi kořeny a koeficienty kvadratické rovnice	15
§7. Kvadratické nerovnice	17
§8. Důsledkové úpravy rovnic	19
§9. Rovnice a nerovnice s parametrem	21
§10. Slovní úlohy	24
§11. Kartézský součin	25
§12. Binární relace a jejich grafy	25
§13. Systém lineárních rovnic	27
§14. Matice	28
§15. Gaussova eliminační metoda	30
§16. Determinanty, Cramerovo pravidlo	33
§17. Soustavy rovnic s parametrem	37
§18. Lineární diofantovské rovnice	39
§19. Algebraické rovnice	41
§20. Reciproké rovnice	44

IV. Rovnice a nerovnice

§1. Lineární rovnice a nerovnice

Def.: Rovnicí s neznámou $x \in \mathbf{R}$ rozumíme každou výrokovou formu tvaru: L(x) = P(x), kde L(x), P(x) jsou výrazy s proměnnou $x \in \mathbf{R}$.

<u>Kořenem</u> nebo-li <u>řešením rovnice</u> nazýváme taková $c \in \mathbf{R}$, pro která platí L(c) = P(c). <u>Řešit rovnici</u> znamená stanovit množinu P jejich kořenů (zpravidla výčtem prvků, případně rozhodnout, že P je prázdná).

Oborem pravdivosti rovnice nazýváme množinu P.

Def.: <u>Lineární rovnicí</u> s neznámou $x \in \mathbf{R}$ nazýváme každou rovnici, kterou lze úpravami převést do tvar ax + b = 0; $a,b \in \mathbf{R}$.

Pozn.: Při úpravě lineární rovnice na konečný tvar užíváme zpravidla úprav založených na platnosti těchto vět *R*:

$$\forall a, b, c \in \mathbf{R}$$
: a) $a = b \Leftrightarrow a + c = b + c$

b)
$$a = b \land c \neq 0 \Leftrightarrow ac = bc$$

Lze tedy (aniž se změní obor pravdivosti *P*) provádět tyto úpravy:

- a) přičítat k oběma stranám rovnice stejné číslo (stejný výraz);
- b) násobit obě strany rovnice týmž nenulovým číslem (rovnice nenásobíme výrazem s proměnnou (může se změnit obor pravdivosti) a NIKDY nedělíme proměnnou.
- V.1.1.: Nechť ax + b = 0; $a,b \in \mathbb{R}$; $x \in \mathbb{R}$. Pak platí:

1)
$$a \neq 0 \Rightarrow x = -\frac{b}{a} \Rightarrow P = \{-\frac{b}{a}\}$$

2)
$$a = 0 \land b = 0 \Rightarrow 0x = 0 \Rightarrow P = \mathbf{R}$$

3)
$$a = 0 \land b \neq 0 \Rightarrow 0 x \neq 0 \Rightarrow P = \phi$$

Def.: Nerovnicí s neznámou $x \in \mathbf{R}$ rozumíme každou výrokovou formu tvaru L(x) < P(x), $L(x) \le P(x), L(x) > P(x), L(x) \ge P(x)$, kde L(x) a P(x) jsou výrazy s proměnnou $x \in \mathbf{R}$. Nešením nerovnice nazýváme každé $c \in \mathbf{R}$, pro něž po dosazení za neznámou přejde nerovnice v pravdivý výrok.

Všechna řešení zpravidla zapisujeme pomocí intervalů, eventuálně množinových operací s nimi.

Def.: Lineární nerovnicí s neznámou $x \in \mathbf{R}$ nazýváme každou nerovnici, kterou lze úpravami převést do některého z tvarů:

$$ax + b < 0, ax + b > 0, ax + b \le 0, ax + b \ge 0$$
; $a, b \in \mathbb{R}$.

Pozn.: Při úpravách nerovnice na hledaný tvar využíváme následujících vět v R:

$$\forall a, b, c \in \mathbb{R}$$
: a) $a < b \Leftrightarrow a + c < b + c$

b)
$$a < b \land c > 0 \Rightarrow ac < bc$$

c)
$$a < b \land c < 0 \Rightarrow ac > bc$$

Analogické věty platí pro $>, \leq, \geq$.

V.1.2.: Necht' ax + b < 0; $a,b \in \mathbb{R}$ pak platí:

1)
$$a > 0 \Rightarrow x < -\frac{b}{a} \Rightarrow P = \left(-\infty; -\frac{b}{a}\right)$$

2)
$$a < 0 \Rightarrow x > -\frac{b}{a} \Rightarrow P = \left(-\frac{b}{a}; \infty\right)$$

3)
$$a = 0 \land b > 0 \Rightarrow 0x < -b \Rightarrow P = \{\}$$

4)
$$a = 0 \land b < 0 \Rightarrow 0x < -b \Rightarrow P = \mathbf{R}$$

5)
$$a = 0 \land b = 0 \Rightarrow 0x < 0 \Rightarrow P = \{\}$$

Analogicky se řeší další typy nerovnic.

Př.: Řešte nerovnice:

a)
$$4x-1 \le 3(2-x) + 7(x-1)$$

 $4x-1 \le 6-3x+7x-7$
 $4x-1 \le 4x-1$
 $0 \le 0$
 $x \in \mathbf{R}$

b)
$$\frac{2x-4}{5} - \frac{x-1}{4} \ge x+3$$

$$8x-16-5x+5 \ge 20x+60$$

$$3x-11 \ge 20x+60$$

$$-17x \ge 71$$

$$17x \le -71$$

$$x \le -\frac{71}{17}$$

$$x \in \left(-\infty; -\frac{71}{17}\right)$$

Druhý příklad řešte také v **Z.**

$$P_z = \{...; -6; -5\}$$

§2. Rovnice a nerovnice v součinovém tvaru

Def.: Rovnicí v součinovém tvaru s neznámou $x \in \mathbf{R}$ nazveme každou výrokovou formu tvaru $a(x) \cdot b(x) = 0$, kde a(x), b(x) jsou výrazy s proměnou $x \in \mathbf{R}$.

Pozn.: Řešení rovnice v součinovém tvaru se opírá o větu:

 $\forall x, y \in \mathbf{R} : xy = 0 \Leftrightarrow x = 0 \lor y = 0.$

V.2.1.: Nechť P_1 je množina kořenů rovnice a(x) = 0 a P_2 je množina kořenů rovnice b(x) = 0. Označme P množinu kořenů rovnice $a(x) \cdot b(x) = 0$. Pak $P = P_1 \cup P_2$.

[Dk.: a)
$$\underline{P \subseteq P_1 \cup P_2}$$
: Necht' $c \in P \Rightarrow a(c) \cdot b(c) = 0 \Rightarrow a(c) = 0 \lor b(c) = 0 \Rightarrow c \in P_1 \lor c \in P_2 \Rightarrow c \in P_1 \cup P_2$

b)
$$P_1 \cup P_2 \subseteq P$$
: Necht' $c \in P_1 \cup P_2 \Rightarrow c \in P_1 \lor c \in P_2 \Rightarrow a(c) = 0 \lor b(c) = 0 \Rightarrow a(c) \cdot b(c) = 0 \Rightarrow c \in P$

Př.: Řešte v **R**:

a)
$$(x-2)(x+5) = 0$$

 $x_1 = 2; x_2 = -5; P = \{2; -5\}$
b) $x^3 = 4x$
 $x^3 - 4x = 0$
 $x(x^2 - 4) = 0$
 $x(x+2)(x-2) = 0$
 $x(x+2)(x-2) = 0$

Def.: Nerovnicí v součinovém tvaru s neznámou $x \in R$ nazýváme každou výrokovou formu tvaru $a(x) \cdot b(x) < 0, a(x) \cdot b(x) > 0, a(x) \cdot b(x) \le 0, a(x) \cdot b(x) \ge 0$, kde a(x), b(x) jsou výrazy s proměnnou $x \in R$.

Pozn.: Řešení nerovnice v součinovém tvaru se opírá o platnost těchto vět:

Pro
$$\forall x, y \in \mathbf{R}$$
: a) $xy > 0 \Leftrightarrow (x > 0, y > 0) \lor (x < 0, y < 0)$
b) $xy \ge 0 \Leftrightarrow (x \ge 0, y \ge 0) \lor (x \le 0, y \le 0)$
c) $xy < 0 \Leftrightarrow (x > 0, y < 0) \lor (x < 0, y > 0)$
d) $xy \le 0 \Leftrightarrow (x \ge 0, y \le 0) \lor (x \le 0, y \ge 0)$

V.2.2.: Nechť P_1 je množina řešení nerovnice a(x) > 0, P_2 nerovnice b(x) > 0, P_3 nerovnice a(x) < 0, P_4 nerovnice b(x) < 0. Nechť P je množina všech řešení nerovnice $a(x) \cdot b(x) > 0$. Pak platí: $P = (P_1 \cap P_2) \cup (P_3 \cap P_4)$.

[Dk.: a)
$$P \subseteq (P_1 \cap P_2) \cup (P_3 \cap P_4)$$
: Necht' $c \in P \Rightarrow a(c) \cdot b(c) > 0 \Rightarrow$
 $\Rightarrow [a(c) > 0 \land b(c) > 0] \lor [a(c) < 0 \land b(c) < 0] \Rightarrow (c \in P_1 \land c \in P_2) \lor$
 $\lor (c \in P_3 \land c \in P_4) \Rightarrow c \in (P_1 \cap P_2) \cup (P_3 \cap P_4)$
b) $(P_1 \cap P_2) \cup (P_3 \cap P_4) \subseteq P$: analogicky

Př.: Řešte v **R**:

a)
$$(4-x)(x+1) < 0 \Leftrightarrow (4-x>0 \land x+1<0) \lor (4-x<0 \land x+1>0) \Leftrightarrow \\ \Leftrightarrow (x<4 \land x<-1) \lor (x>4 \land x>-1) \\ \Downarrow \qquad \qquad \downarrow \\ P_1 = (-\infty,-1) \qquad P_2 = (4,\infty) \\ P = P_1 \cup P_2 = (-\infty,-1) \cup (4,\infty)$$
 b)
$$\frac{2x-3}{7-3x} > 0 \Leftrightarrow (2x-3>0 \land 7-3x>0) \lor (2x-3<0 \land 7-3x<0) \Leftrightarrow$$

$$\Leftrightarrow (x > \frac{3}{2} \land x < \frac{7}{3}) \lor (x < \frac{3}{2} \land x > \frac{7}{3})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$P_1 = (\frac{3}{2}, \frac{7}{3}) \qquad \qquad P_2 = \phi$$

$$P = (\frac{3}{2}, \frac{7}{3})$$

Def.: Výraz V(x) = ax + b; $a, b \in \mathbb{R}$, $a \ne 0$ se nazývá <u>lineární dvojčlen</u>.

V.2.3.: Lineární dvojčlen V(x) = ax + b; $a, b \in \mathbb{R}$, $a \neq 0$ nabývá všech reálných hodnot, každé právě jednou.

[Dk.:
$$y = ax + b, a \ne 0; y \in \mathbb{R} \Rightarrow ax = y - b \Rightarrow x = \frac{y - b}{a}$$
]

Pozn.: Představu o průběhu hodnot lineárního dvojčlenu poskytuje graf lineární funkce:

a<0:

$$y = 0: 0 = ax_0 + b \Rightarrow x_0 = -\frac{b}{a}$$

V.2.4.: Nechť $ax + b, a \neq 0$ je lineární dvojčlen, $x_0 = -\frac{b}{a}$. Pak pro $\forall x \in \mathbf{R}$ platí:

a)
$$a > 0$$
: $(x < x_0 \Rightarrow ax + b < 0) \land (x > x_0 \Rightarrow ax + b > 0)$

b)
$$a < 0$$
: $(x < x_0 \Rightarrow ax + b > 0) \land (x > x_0 \Rightarrow ax + b < 0)$

[Dk.: a)
$$a > 0$$
: $x < x_0 \Rightarrow ax < ax_0 \Rightarrow ax + b < ax_0 + b = 0 \Rightarrow ax + b < 0$

$$x > x_0 \Rightarrow ax > ax_0 \Rightarrow ax + b > ax_0 + b = 0 \Rightarrow ax + b > 0$$
b) analogicky]

Pozn.: Předchozí větu lze stručně zformovat takto:

- a) Je-li a>0, pak v bodě $x_0=-\frac{b}{a}$ přechází funkce y=ax+b ze záporných hodnot do kladných.
- b) Je-li a<0, pak v bodě $x_0=-\frac{b}{a}$ přechází funkce y=ax+b z kladných hodnot do záporných.

c)

Pozn.: Pomocí věty V.2.4. lze efektně řešit nerovnice v součinovém a podílovém tvaru (především v případě, že se v nich vyskytuje větší počet lineárních dvojčlenů).

Př.: Řešte v **R** nerovnice:

a)
$$(x-3)(x+2)(1-x)<0$$

 $\Rightarrow P = (-2,1) \cup (3,\infty)$

b)
$$\frac{(4-x)(6+x)x}{2-x} \le 0$$

c)
$$\frac{(x+1)(x-2)^2}{(3-x)^3(4+x)^4} \le 0$$

Funkce mění znaménko jen v těch bodech, u nichž je lichý exponent.

§3. Absolutní hodnota

Def.: Absolutní hodnotou nazýváme číslo $a \in \mathbb{R}$, zapisujeme |a|, pro které platí:

1.
$$a > 0 \Rightarrow |a| = a$$

2. $a = 0 \Rightarrow |a| = 0$
3. $a < 0 \Rightarrow |a| = -a$
1) $a \ge 0 \Rightarrow |a| = a$
2) $a \le 0 \Rightarrow |a| = -a$

Pozn.: Nechť $a \in R$ je číslo, pak platí:

- 1. $|a| \ge 0$
- 2. $|a| = 0 \Leftrightarrow a = 0$
- 3. $\sqrt{a^2} = |a|$

V.3.1.: Nechť $a,b \in R$, pak |a-b| je vzdálenost obrazů čísel a,b na číselné ose.

V.3.2.: Nechť a je nezáporné reálné číslo a $x \in R$. Pak platí:

- 1. $|x| < a \Leftrightarrow x \in (-a; a)$
- 2. $|x| \le a \Leftrightarrow x \in \langle -a; a \rangle$
- 3. $|x| > a \Leftrightarrow x \in (-\infty; -a) \cup (a; \infty)$
- 4. $|x| \ge a \Leftrightarrow x \in (-\infty; -a > \cup < a; \infty)$

[Dk.: 1.
$$|x| < a$$
 a) ,, \Rightarrow ": α) $x \ge 0 \Rightarrow |x| = x \Rightarrow x < a \Rightarrow x \in \langle 0; a \rangle$
 β) $x \le 0 \Rightarrow |x| = -x \Rightarrow -x < a \Rightarrow x \in (-a; 0)$
 $\Rightarrow x \in (-a; a)$
b) ,, \Leftarrow ": $x \in (-a; a) \Rightarrow |x - 0| < a \Rightarrow |x| < a$
ostatní analogicky

ostatní analogicky]

A) Zjednodušování výrazů s absolutní hodnotou

Př.: Zjednodušte v R:

a)
$$A(x) = \frac{x^3 + x^2 - x - 1}{\sqrt{x^2 + 1}} = \frac{x^3 + x^2 - x - 1}{|x| + 1} = \frac{x(x^2 - 1) + (x^2 - 1)}{|x| + 1} = \frac{(x + 1)(x^2 - 1)}{|x| + 1} = \frac{(x + 1)(x - 1)}{|x| + 1} = \frac{(x + 1)^2(x - 1)}{|x| + 1}$$

1) $\underline{x \ge 0} \Rightarrow \underline{\underline{A(x)}} = \frac{(x + 1)^2(x - 1)}{x + 1} = \underline{\underline{x^2 - 1}}$

2) $\underline{x \le 0} \Rightarrow \underline{\underline{A(x)}} = \frac{(x + 1)^2(x - 1)}{1 - x} = \frac{-(x + 1)^2(1 - x)}{1 - x} = \underline{-(x + 1)^2}$

b) $B(x) = (x - |x|)(x + |x|) = x^2 - |x|^2 = x^2 - x^2 = 0$

V.3.3.: Necht' a, b ∈ R; a < b.

Nechť (a,b); $\langle a,b \rangle$ je omezený otevřený (uzavřený) interval.

IV. Rovnice a nerovnice §3. Absolutní hodnota

Označme
$$s = \frac{a+b}{2}, k = \frac{b-a}{2}$$
.

Pak platí: 1) $x \in (a,b) \Leftrightarrow |x-s| < k$

2) $x \in \langle a,b \rangle \Leftrightarrow |x-s| \le k$

[Dk.: $s = \frac{a+b}{2} \Rightarrow 2s = a+b$
 $k = \frac{b-a}{2} \Rightarrow 2k = b-a$
 $2s + 2k = 2b$
 $b = s+k$
 $2s - 2k = 2a$
 $a = s-k$

1) $x \in (a,b) \Leftrightarrow x \in (s-k,s+k) \Leftrightarrow s-k < x < s+k \Leftrightarrow k < x < s < k \Leftrightarrow |x-s| < k$

2) analogicky

Pozn.: a) Číslo <u>s</u> z V.3.3. se nazývá <u>střed intervalu</u> (a,b); $\langle a,b \rangle$. Číslo <u>2k</u> se nazývá <u>délka</u> intervalu.

- b) Intervaly (a,b); $\langle a,b \rangle$ mají společný střed a stejnou délku.
- c) Uvedeným způsobem lze charakterizovat pouze oboustranně otevřený nebo oboustranně uzavřený interval.
- d) Logickým důsledkem V.3.3. je:1) $x \in (-\infty; a) \cup (b; \infty) \Leftrightarrow |x-s| > k$ 2) $x \in (-\infty; a) \cup \langle b; \infty) \Leftrightarrow |x-s| \ge k$

Př.: Charakterizujte dané intervaly pomocí vzdálenosti jejich prvků od středu.

a)
$$(5;9)$$
 $x \in (5;9) \Leftrightarrow |x-7| < 2$

b)
$$\langle -4;2 \rangle$$
 $x \in \langle -4;2 \rangle \Leftrightarrow |x-(-1)| \le 3 \Leftrightarrow |x+1| \le 3$

B) Rovnice a nerovnice s absolutní hodnotou

Př.: a)
$$|3x-5| = 2x+10$$

1) $3x-5 \ge 0$
 $x \ge \frac{5}{3} \Rightarrow 3x-5 = 2x+10$
 $x = 15$
2) $x \le \frac{5}{3} \Rightarrow -3x+5 = 2x+10$
 $5x = -5$
 $x = -1$
P = $\{15;-1\}$
b) $2 \cdot |4+3x| = 6x+11$

IV. Rovnice a nerovnice §3. Absolutní hodnota

1)
$$x \ge -\frac{4}{3} \Rightarrow 8 + 6x = 6x + 11$$

$$0x = 3 \Rightarrow P_1 = \emptyset$$
2) $x \le -\frac{4}{3} \Rightarrow -8 - 6x = 6x + 11$

$$-19 = 12x$$

$$x = -\frac{19}{12}$$

$$P = \left\{-\frac{19}{12}\right\}$$

$$(x + 2) + |x - 2| = 2x + 2$$

c)
$$|x+2| + |x-2| = 2x + 2$$

 $|x+2| + |x-2| = 2(x+1)$
1) $x \ge 2 \Rightarrow x + 2 + x - 2 = 2(x+1)$
 $2x = 2x + 2$

$$0x = 2 \Rightarrow P_1 = \emptyset$$
2)
$$-2 \le x \le 2 \Rightarrow x + 2 - x + 2 = 2(x+1)$$

$$4 = 2x + 2$$

$$2x = 2$$

$$x = 1 \Rightarrow P_2 = \{1\}$$
3) $x \le -2 \Rightarrow -x - 2 - x + 2 = 2(x + 1)$

$$-2x = 2x + 2$$

$$-4x = 2$$

$$x = -\frac{1}{2} \Longrightarrow P_3 = \phi$$

1 < 3 + 2x2x > -2

$$P = \{1\}$$

Př.:
$$|3x-2| < 5 + |x+1|$$

 $1) x \le -1 \Rightarrow -(3x-2) < 5 - (x+1)$
 $-3x+2 < 5-x-1$
 $-3x+2 < 4-x$
 $2 < 2x+4$
 $2x > -2$
 $x > -1 \Rightarrow P_1 = \emptyset$
2) $-1 < x < \frac{2}{3} \Rightarrow -(3x-2) < 5 + (x+1)$
 $-3x+2 < 6+x$
 $2 < 6+4x$

	(-∞;-2⟩	⟨− 2;2⟩	⟨2;∞)
x+2	-x-2	<i>x</i> + 2	<i>x</i> + 2
x-2	2-x	2-x	x-2

	(-∞;-1⟩	$\left\langle -1; \frac{2}{3} \right\rangle$	$\left\langle \frac{2}{3};\infty \right\rangle$
3x-2	2-3x	2-3x	3x-2
x+1	-x-1	<i>x</i> + 1	<i>x</i> + 1

$$x > -1 \Rightarrow P_2 = \left(-1; \frac{2}{3}\right)$$

3)
$$x \ge \frac{2}{3} \Rightarrow 3x - 2 < 5 + x + 1$$

 $3x - 2 < 6 + x$
 $2x < 8$
 $x < 4 \Rightarrow P_3 = \left(\frac{2}{3}; 4\right)$

$$P = (-1;4)$$

Př.:
$$3|x-1| + 2|x-2| \le x + 10$$

1) $x \le 1 \Rightarrow -3(x-1) - 2(x-2) \le x + 10$
 $-3x + 3 - 2x + 4 \le x + 10$
 $-5x + 7 \le x + 10$
 $7 \le 6x + 10$
 $6x \ge -3$

2)
$$1 \le x \le 2 \Rightarrow 3(x-1) - 2(x-2) \le x + 10$$

$$3x - 3 - 2x + 4 \le x + 10$$

$$x + 1 \le x + 10$$

$$1 \le 10 \Rightarrow P_2 = \langle 1; 2 \rangle$$
3) $x \ge 2 \Rightarrow 3(x-1) + 2(x-2) \le x + 10$

$$3x - 3 + 2x - 4 \le x + 10$$

$$5x - 7 \le x + 10$$

$$4x \le 17$$

$$x \le \frac{17}{4} \Rightarrow P_3 = \langle 2; \frac{17}{4} \rangle$$

$$P = \langle -\frac{1}{2}; \frac{17}{4} \rangle$$

 $x \ge -\frac{1}{2} \Longrightarrow P_1 = \left\langle -\frac{1}{2}; 1 \right\rangle$

§4. Úpravy kvadratických výrazů

Def.: Každý výraz $V(x) = ax^2 + bx + c$; $a, b, c \in R$, $a \ne 0$; $x \in R$ nazýváme <u>kvadratickým trojčlenem</u>.

Výraz ax^2 se nazývá kvadratický, bx lineární a c absolutní člen výrazu V(x). Je-li a=1 nazýváme daný <u>kvadratický trojčlen normovaný</u>.

Pozn.: Je-li některý z koeficientů *b*, *c* roven nule, hovoříme o tzv. neúplném kvadratickém trojčlenu, případně o kvadratickém výrazu bez lineárního (absolutního) členu.

Pozn.: Upravme
$$(rx + s)(tx + u)$$
; $r, s, t, u \in R$; $r \neq 0$; $t \neq 0 \Rightarrow$

$$(rx + s)(tx + u) = \underbrace{rt}_{a} x^{2} + \underbrace{(st + ru)}_{b} x + \underbrace{su}_{c} = ax^{2} + bx + c$$

Součinem dvou lineárních dvojčlenů dostaneme kvadratický trojčlen a naopak kvadratický trojčlen lze rozložit na součin dvou lineárních dvojčlenů (ne vždy v \mathbf{R}).

A) Rozklad neúplných kvadratických trojčlenů

a) bez absolutního členu: c = 0: $ax^2 + bx = x(ax + b)$

b) bez lineárního členu:
$$b=0$$
: $ax^2+c=a(x^2+\frac{c}{a})=a\cdot\left(x^2-\sqrt{\left(-\frac{c}{a}\right)^2}\right)=$
$$=a\left(x-\sqrt{-\frac{c}{a}}\right)\left(x+\sqrt{-\frac{c}{a}}\right) \text{ trojčlen bez lineárního členu lze rozložit v } \textbf{\textit{R}} \text{ jen tehdy,}$$
 když $ac<0$.

B) Rozklad úplných kvadratických trojčlenů

Provádí se metodou "doplnění na úplný čtverec".

Př.: a)
$$x^2 - 5x + 6 = \left(x - \frac{5}{2}\right)^2 - \left(\frac{5}{2}\right)^2 + 6 = \left(x - \frac{5}{2}\right)^2 - \frac{25}{4} + \frac{24}{4} = \left(x - \frac{5}{2}\right)^2 - \frac{1}{4} =$$

$$= \left(x - \frac{5}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = \left(x - \frac{5}{2} + \frac{1}{2}\right) \cdot \left(x - \frac{5}{2} - \frac{1}{2}\right) = (x - 2)(x - 3)$$
b) $x^2 + 4x - 21 = (x + 2)^2 - 2^2 - 21 = (x + 2)^2 - 25 = (x + 2)^2 - 5^2 =$

$$= (x + 2 - 5)(x + 2 + 5) = (x - 3)(x + 7)$$
c) $2x^2 + 9x - 5 = 2\left(x^2 + \frac{9}{2} - \frac{5}{2}\right) = 2\left[\left(x + \frac{9}{4}\right)^2 - \left(\frac{9}{4}\right)^2 - \frac{5}{2}\right] = 2\left[\left(x + \frac{9}{4}\right)^2 - \frac{121}{16}\right] =$

$$= 2\left[\left(x + \frac{9}{4}\right)^2 - \left(\frac{11}{4}\right)^2\right] = 2\left[\left(x + \frac{9}{4} - \frac{11}{4}\right)\left(x + \frac{9}{4} + \frac{11}{4}\right)\right] = 2\left[\left(x - \frac{1}{2}\right)(x + 5)\right] =$$

$$= 2\left(x - \frac{1}{2}\right)(x + 5)$$

Pozn.: Úpravy trojčlenů užíváme v těchto případech:

- a) při úpravě výrazů
- b) při řešení kvadratických rovnic a nerovnic
- c) při hledání nejmenší a největší hodnoty výrazu

Př.: Nalezněte nejmenší hodnotu výrazu
$$V(x) = x^2 + 16x - 17$$

Pomocí doplnění na čtverec: $V(x) = x^2 + 16x - 17 = (x+8)^2 - 8^2 - 17 = (x+8)^2 - 81$
minimum nastane pro $x_{min} = -8$ je pro nulovou hodnotu výrazu $(x+8)^2$

$$V(-8) = -81$$
, nebot' $V(-8) = (-8)^2 + 16 \cdot (-8) - 17 = -81$

§5. Kvadratické rovnice

Def.: <u>Kvadratickou rovnicí</u> s neznámou $x \in \mathbf{R}$ nazýváme každou rovnici tvaru $ax^2 + bx + c = 0$; $a,b,c \in \mathbf{R}$, $a \ne 0$. Čísla a,b,c jsou koeficienty kvadratické rovnice.

Pozn.: Při řešení rovnice $y^2 = k$; $k, y \in \mathbf{R}$ s neznámou y rozlišíme tyto případy:

a)
$$k < 0 \Rightarrow P = \phi$$

b)
$$k = 0 \Rightarrow P = \{0\}$$

c)
$$k > 0 \Rightarrow P = \left\{ -\sqrt{k}; \sqrt{k} \right\}$$

Při řešení kvadratické rovnice lze postupovat shodně, hledáme vhodný dvojčlen s proměnnou x, který označíme y a získáme rovnici $y^2 = k$.

Obecné odvození $ax^2 + bx + c = 0$:

$$ax^2 + bx + c = 0, a \neq 0$$

$$a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right) = 0$$

$$a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a}\right] = 0$$

$$a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2}\right] = 0$$

$$a\left[\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{b^2 - 4ac}}{2a}\right)^2\right] = 0$$

$$a\left(x + \frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a}\right)\left(x + \frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{2a}\right) = 0$$

$$a\left(x + \frac{b + \sqrt{b^2 - 4ac}}{\underbrace{2a}_{-x_1}}\right)\left(x + \underbrace{\frac{b - \sqrt{b^2 - 4ac}}{2a}}_{-x_2}\right) = 0$$

$$a(x-x_1)(x-x_2)=0$$

$$x_{1} = \frac{-b - \sqrt{b^{2} - 4ac}}{2a}$$

$$x_{2} = \frac{-b + \sqrt{b^{2} - 4ac}}{2a}$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

Vztah pro kořeny kvadratické rovnice.

Def.: Nechť $ax^2 + bx + c = 0$; $a \ne 0$ je kvadratická rovnice. Pak $b^2 - 4ac = D$ se nazývá diskriminant kvadratické rovnice.

V.5.1.: Nechť $ax^2 + bx + c = 0$; $a \ne 0$ je kvadratická rovnice, $b^2 - 4ac$ její diskriminant, pak

platí: a)
$$D > 0 \Rightarrow P = \left\{ \frac{-b + \sqrt{D}}{2a}; \frac{-b - \sqrt{D}}{2a} \right\}$$

- b) $D = 0 \Rightarrow P = \left\{ \frac{-b}{2a} \right\}$
- c) $D < 0 \Rightarrow$ nemá řešení v R

Pozn.: Při zápisu kořenů kvadratické rovnice dodržujeme následující pravidla:

- a) Racionální kořeny krátíme (zapíšeme v základním tvaru).
- b) Iracionální kořeny zapisujeme ve tvaru $p + q\sqrt{n}$; $p, q \in Q$; $n \in N$. Pokud lze z odmocniny něco vytknout, uděláme to $(\sqrt{8} = 2 \cdot \sqrt{2})$.

§6. Vztahy mezi kořeny a koeficienty kvadratické rovnice

Pozn.: Z předchozích úvah plyne, že každá kvadratická rovnice $ax^2 + bx + c = 0; a \neq 0$ (\Diamond) má v R nejvýše 2 kořeny.

Obměna: Jestliže má (\Diamond) alespoň 3 kořeny, pak a=0.

Hledejme podmínky pro koeficienty b,c v rovnici bx+c=0, tak aby měla alespoň 3 různé kořeny v \mathbf{R} . Jde o lineární rovnici, jestliže platí $b=0 \land c=0 \Rightarrow P=\mathbf{R}$, platí tedy následující věta:

- V.6.1.: Pro každou kvadratickou rovnici $ax^2 + bx + c = 0$; $a \ne 0$ platí: $P = \mathbf{R} \Leftrightarrow a = b = c = 0$
- V.6.2: Pro každé 2 kvadratické trojčleny $a_1x^2 + b_1x + c_1 = 0; a_2x^2 + b_2x + c_2 = 0$ platí: $\forall x \in R: a_1x^2 + b_1x + c_1 = a_2x^2 + b_2x + c_2 \Leftrightarrow a_1 = a_2 \land b_1 = b_2 \land c_1 = c_2$

[Dk.: "←": zřejmé

$$\begin{array}{ll}
\text{"."} \Rightarrow \text{":} & a_1 x^2 + b_1 x + c_1 = a_2 x^2 + b_2 x + c_2 \Rightarrow (a_1 - a_2) x^2 + (b_1 - b_2) x + \\
& + (c_1 - c_2) = 0 \Rightarrow a_1 - a_2 = 0 \land b_1 - b_2 = 0 \land c_1 - c_2 = 0 \Rightarrow \\
& a_1 = a_2 \land b_1 = b_2 \land c_1 = c_2
\end{array}$$

Def.: Je-li x_1 kořenem kvadratické rovnice $ax^2 + bx + c = 0; a \neq 0$, nazýváme dvojčlen $x - x_1$ kořenovým činitelem.

Zápis $a(x-x_1)(x-x_2)$ nazýváme <u>rozkladem</u> trojčlenu ax^2+bx+c <u>na součin</u> kořenových činitelů.

Pozn.: Je-li $x_1 = x_2$, pak platí $ax^2 + bx + c = a(x - x_1)^2$ a mluvíme o tzv. <u>dvojnásobném kořenu</u> (pokud D=0).

- V.6.3: Rovnice $ax^2 + bx + c = 0$; $a \ne 0$ má v \mathbf{R} dva reálné kořeny právě tehdy, když kvadratický trojčlen $ax^2 + bx + c$ lze rozložit na součin kořenových činitelů $a(x x_1)(x x_2)$.
- V.6.4: <u>Vztahy mezi kořeny a koeficienty kvadratické rovnice</u> neboli <u>Viètovy vztahy</u> (Newton-Viètovy vztahy): Nechť x_1, x_2 jsou kořeny kvadratické rovnice

$$ax^2 + bx + c = 0; a \neq 0$$
. Pak platí: $x_1 + x_2 = -\frac{b}{a}$

$$x_1 \cdot x_2 = \frac{c}{a}$$

[Dk.: Necht' x_1, x_2 jsou kořeny: $ax^2 + bx + c = a(x - x_1)(x - x_2) =$ = $a(x^2 - xx_1 - xx_2 + x_1x_2) = ax^2 - ax(x_1 + x_2) + ax_1x_2 \Rightarrow$

$$x^{1}$$
: $b = -a(x_{1} + x_{2}) \Rightarrow x_{1} + x_{2} = -\frac{b}{a}$

$$x^0: c = ax_1x_2 \Rightarrow x_1 \cdot x_2 = \frac{c}{a}$$

Př.: Určete druhý kořen rovnice $8x^2 - 2x - 3 = 0$, jestliže $x_1 = \frac{3}{4}$

$$x_1 + x_2 = -\frac{b}{a}$$
 $\frac{3}{4} + x_2 = \frac{2}{8} \Rightarrow x_2 = -\frac{1}{2}$

- Př.: Aniž byste kvadratickou rovnici řešili, napište takovou rovnici, jejíž kořeny jsou:
 - a) opačná čísla
 - b) převrácená čísla, než kořeny rovnice $4x^2 11x + 5 = 0$
 - a) $4x^2 11x + 5 = 0$ původní rovnice

$$4 \cdot (x - x_1)(x - x_2) = 0$$

$$x_1 \cdot x_2 = \frac{c}{a} \qquad x_1 \cdot x_2 = \frac{5}{4}$$

$$x + x_2 = -\frac{b}{a}$$
 $x_1 + x_2 = \frac{11}{4}$

nová rovnice:

$$4 \cdot (x + x_1)(x + x_2) = 0$$

$$4 \cdot (x^2 + (x_1 + x_2)x + x_1x_2 = 0$$

$$4 \cdot \left(x^2 + \frac{11}{4}x + \frac{5}{4}\right) = 0$$

$$4x^2 + 11x + 5 = 0$$

b) $4x^2 - 11x + 5 = 0$ - původní rovnice nová rovnice:

$$4 \cdot \left(x - \frac{1}{x_1}\right) \left(x - \frac{1}{x_2}\right) = 0$$

$$4 \cdot \left(x^{2} - \frac{x}{x_{1}} - \frac{x}{x_{2}} + \frac{1}{x_{1}x_{2}}\right) = 0$$

$$4 \cdot \left(x^{2} - \left(\frac{1}{x_{1}} + \frac{1}{x_{2}}\right)x + \frac{1}{x_{1}x_{2}}\right) = 0$$

$$4 \cdot \left(x^{2} - \frac{x_{1} + x_{2}}{x_{1}x_{2}} \cdot x + \frac{1}{x_{1}x_{2}}\right) = 0$$

$$4 \cdot \left(x^{2} - \frac{\frac{11}{4}}{\frac{5}{4}} \cdot x + \frac{1}{\frac{5}{4}}\right) = 0$$

$$4 \cdot \left(x^{2} - \frac{11}{5}x + \frac{4}{5}\right) = 0$$

$$x^{2} - \frac{11}{5}x + \frac{4}{5} = 0$$

$$5x^{2} - 11x + 4 = 0$$

§7. Kvadratické nerovnice

Def.: <u>Kvadratickou nerovnicí</u> s neznámou $x \in \mathbf{R}$ nazýváme každou nerovnici, kterou lze převést do tvaru $ax^2 + bx + c < 0$ (>; \leq ; \geq); $a,b,c \in \mathbf{R}$, $a \neq 0$. Řešit kvadratickou nerovnici znamená stanovit její obor pravdivosti $P \vee \mathbf{R}$, a to

<u>Řešit kvadratickou nerovnici</u> znamená stanovit její obor pravdivosti *P* v **R**, a to výčtem prvků nebo pomocí intervalů a množinových operací s nimi.

Př.: a)
$$x^2 - 6x + 9 < 0$$

 $(x-3)^2 < 0$
 $\frac{P = \phi}{x^2}$
b) $x^2 - 6x + 9 \le 0$
 $(x-3)^2 \le 0$
 $\frac{P = \{3\}}{x^2 - 6x + 10 > 0}$
 $(x-3)^2 + 1 > 0$
 $(x-3)^2 > -1$
 $\frac{P = R}{x^2 - 6x + 8 > 0}$
 $(x-3)^2 > 1$

 $P = (-\infty; 2) \cup (4; \infty)$

Pozn.: Klasifikace řešení kvadratické nerovnice bez lineárního členu:

	k<0	k=0	k>0
$z^2 < k$	ϕ	ϕ	$\left(\!-\sqrt{k};\sqrt{k} ight)$
$z^2 \le k$	ϕ	{0}	$\left\langle -\sqrt{k};\sqrt{k} \right angle$
$z^2 > k$	R	$R - \{0\}$	$\left(-\infty;-\sqrt{k}\right)\cup\left(\sqrt{k};\infty\right)$
$z^2 \ge k$	R	R	$\left(-\infty;-\sqrt{k}\right)\cup\left\langle\sqrt{k};\infty\right)$

Pozn.: I při řešení kvadratické nerovnice s lineárním členem lze předchozí tabulky použít, kvadratický doplníme-li trojčlen na úplný čtverec:

$$ax^{2} + bx + c = a \left[\left(x + \frac{b}{2a} \right)^{2} - \frac{b^{2} - 4ac}{4a^{2}} \right]$$

Po substituci $z = x + \frac{b}{2a}$ přejdeme na výše uvedený tvar.

Řešte v **R** nerovnici : a) $x^2 - 18x + 80 \le 0$ Př.:

$$(x-10)(x-8) \le 0$$

$$\begin{array}{c|cccc}
+ & & & + \\
\hline
8 & & 10 \\
P = \langle 8;10 \rangle & & & \\
\end{array}$$

$$x^{2} - 18x + 80 \le 0$$

$$(x - 9)^{2} - 81 + 80 \le 0$$

$$(x - 10)(x - 8) \le 0$$

$$(x - 9)^{2} - 1 \le 0$$

$$(x-9)^2 - 1 \le 0$$

$$(x-9)^2 \le 1$$

$$|x-9| \le 1$$

$$P = \langle 8;10 \rangle$$

b)
$$2x^2 + 8x + 1 > 0$$

 $x^2 + 4x + \frac{1}{2} > 0$

$$(x+2)^2 - 4 + \frac{1}{2} > 0$$

$$(x+2)^2 - \frac{7}{2} > 0$$

$$\left(x+2\right)^2 > \frac{7}{2}$$

$$|P+2| > \sqrt{\frac{7}{2}}$$
 $P = \left(-\infty; -2 - \frac{1}{2} \cdot \sqrt{\frac{1}{2}}\right)$

$$\sqrt{\frac{7}{2}} \qquad \sqrt{\frac{7}{2}}$$

$$-2 - \sqrt{\frac{7}{2}} \qquad -2 + \sqrt{\frac{7}{2}}$$

$$|x+2| > \sqrt{\frac{7}{2}}$$
 $P = \left(-\infty; -2 - \frac{1}{2} \cdot \sqrt{14}\right) \cup \left(-2 + \frac{1}{2} \cdot \sqrt{14}; \infty\right)$

§8. Důsledkové úpravy rovnic

Def.: Přechod od rovnice $L_1(x) = P_1(x)$ s oborem pravdivosti P_1 k rovnici $L_2(x) = P_2(x)$ s oborem pravdivosti P_2 a se společným definičním oborem D, založený na platnosti věty: $\forall x \in D : L_1(x) = P_1(x) \Rightarrow L_2(x) = P_2(x)$ nazýváme <u>důsledkovou úpravou rovnice</u> $L_1(x) = P_1(x)$.

Pozn.: Pro P_1 , P_2 zřejmě platí: $P_1 \subseteq P_2$, tzn. důsledkovou úpravou rovnice lze získat rovnici, jejíž obor pravdivosti je "větší" než u původní rovnice.

V.8.1.: Přehled důsledkových úprav rovnice L(x) = P(x), $x \in \mathbb{R}$:

Nechť D je definiční obor, pak $\forall x \in D$ platí:

- 1) $L(x) = P(x) \Rightarrow P(x) = L(x)$ záměna stran rovnice
- 2) $G(x) = L(x) \land G(x) = P(x) \Rightarrow L(x) = P(x)$ "jakási substituce"
- 3) $L(x) = P(x) \Rightarrow L(x) + C(x) = P(x) + C(x)$ přičtení k oběma stranám rovnice stejného výrazu definovaného v D
- 4) $L(x) = P(x) \Rightarrow L(x) \cdot C(x) = P(x) \cdot C(x)$ násobení obou stran rovnice výrazem definovaným v *D*
- 5) $L(x) = P(x) \Rightarrow L^{n}(x) = P^{n}(x), n \in \mathbb{N}$ umocnění obou stran rovnice
- 6) $L(x) = P(x) \Rightarrow \sqrt[n]{L(x)} = \sqrt[n]{P(x)}, n \in N; L(x) \ge 0; P(x) \ge 0$ odmocnění obou nezáporných stran rovnice

Def.: <u>Ekvivalentní úpravou</u> dané <u>rovnice</u> nazýváme její důsledkovou úpravou, při níž získáme rovnici s týmž oborem pravdivosti, jako měla rovnice původní. Dané dvě <u>rovnice</u> nazýváme <u>ekvivalentní</u>.

Pozn.: a) Je zřejmé, že ve V.8.1. nelze všechny implikace obrátit (proto ne všechny úpravy jsou ekvivalentní).

- b) Při řešení rovnice důsledkovými úpravami rozlišujeme dvě fáze:
 - 1. rozbor (řešení) užitím V.8.1 stanovíme $P_2: P_2 \ge P_1$
 - 2. zkouška určíme, které prvky P_2 patří do P_1

Př.: a)
$$1 + \frac{3(x-3)}{2(x-2)} + \frac{15}{x(x-2)} = \frac{6}{x-2}$$
 / $2x(x-2)$
 $2x^2 - 4x + 3x^2 - 9x + 30 = 12x$
 $5x^2 - 25x + 30 = 0$
 $x^2 - 5x + 6 = 0 \Rightarrow (x-3)(x-2) = 0 \Rightarrow x_1 = 3, x_2 = 2$
Zk.: $L(3) = 1 + 0 + 5 = 6$
 $P(3) = 6$
 $L(3) = P(3)$
 $L(2) - v$ ýraz nedefinován $\Rightarrow P = \{3\}$

b)
$$3\sqrt{x} + x + 2 = 0$$

 $3\sqrt{x} = -(x+2)$ /()²
 $9x = x^2 + 4x + 4$
 $x^2 - 5x + 4 = 0 \Rightarrow (x-1)(x-4) = 0 \Rightarrow x_1 = 1, x_2 = 4$
Zk.: $L(1) = 6$ $P(1) = 0$ $L(1) \neq P(1)$
 $L(4) = 12$ $P(4) = 0$ $L(4) \neq P(4)$
 $\Rightarrow P = \phi$

Pozn.: Množinová podstata rozboru a zkoušky:

Při řešení rovnice v \mathbf{R} důsledkovými úpravami vyjadřujeme obor pravdivosti P_1 pomocí jiné množiny P_2 :

Pro zakreslení prvků P_2 jsou k dispozici 2 pole: $P_1 \cap P_2$, $P_1 \cap P_2$. Teprve zkouškou rozhodneme, do kterého pole prvky P_2 patří.

b) Určíme-li def. obor D dané rovnice, víme, že $P_1 \subseteq D$. Z rozboru plyne, že

 P_2

 $P_1 \subseteq P_2 \Rightarrow P_1 \subseteq D \cap P_2$. Znovu zbývají 2 pole: $I - P_1 \cap P_2 \cap D$, $II - P_1 \cap P_2 \cap D$ pro zakreslení prvků $D \cap P_2$. Teprve zkouškou rozhodneme, do kterého pole který prvek patří.

Př.!: Řešte v **R** rovnici:

$$\sqrt{2(x+1)} + 1 = \sqrt{2x-5} \qquad /()^2$$

$$\text{určení D:} \qquad 2(x+1) \ge 0 \Rightarrow x \ge -1$$

$$2 - 5 \ge 0 \Rightarrow x \ge \frac{5}{2}$$

$$\Rightarrow D = \left(\frac{5}{2}, \infty\right)$$

$$2(x+1) + 2\sqrt{2(x+1)} + 1 = 2x - 5$$

$$2x + 3 + 2\sqrt{2(x+1)} = 2x - 5$$

$$2\sqrt{2(x+1)} = -8$$

$$\sqrt{2(x+1)} = -4 \qquad /()^{2}$$

$$2(x+1) = 16$$

$$x+1 = 8$$

$$x = 7$$

$$P \subseteq \{7\}$$

$$Zk.: L = \sqrt{16} + 1 = 5$$

$$P = \sqrt{9} = 3$$

$$L \neq P$$

$$P = \phi$$

Pozn.: Důsledkové úpravy rovnic lze užít i při řešení rovnic s absolutní hodnotou.

Př.:
$$2|x-5| = x \Rightarrow 4(x^2 - 10x + 25) = x^2 \Rightarrow 3x^2 - 40x + 100 = 0$$

$$x_{1,2} = \frac{40 \pm \sqrt{(-40)^2 - 4 \cdot 3 \cdot 100}}{6} = \frac{40 \pm \sqrt{1600 - 1200}}{6} = \frac{40 \pm 20}{6} \Rightarrow x_1 = 10, x_2 = \frac{10}{3}$$
Zk.: $L(10) = 10$ $P(10) = 10$

$$L(\frac{10}{3}) = \frac{10}{3}$$
 $P(\frac{10}{3}) = \frac{10}{3}$ $\Rightarrow P = \left\{\frac{10}{3}, 10\right\}$

§9. Rovnice a nerovnice s parametrem

Def.: Rovnici (nerovnici) se dvěma proměnnými $x, p \in \mathbb{R}$ nazýváme <u>parametrickou rovnicí</u> (<u>nerovnicí</u>) s neznámou x a s parametrem p, považujeme-li ji jako zápis všech rovnic (nerovnic), které získáme dosazováním konstanty za parametr p.

<u>Řešit rovnici (nerovnici) s parametrem</u> znamená určit množinu všech řešení v závislosti na parametru, přičemž zpravidla řešíme tuto rovnici (nerovnici) pro všechny přípustné hodnoty parametru.

Pozn.: Analogicky definujeme rovnici (nerovnici) s více parametry.

A) Lineární rovnice s parametrem

Př.: Řešte v \mathbf{R} rovnici s parametrem $p \in \mathbf{R}$:

a)
$$p^{2}(x-1) = 2(px-2)$$

 $p^{2}x - p^{2} = 2px - 4$
 $p^{2}x - 2px = p^{2} - 4$

$$xp(p-2) = (p-2)(p+2)$$

$$p = 2$$

$$0x = 0$$

$$P_2 = R$$

$$p = 0$$

$$0x = 2$$

$$P_0 = \phi$$

$$p \neq 0$$

$$x = \frac{p+2}{p}$$

$$p \neq 0$$

b)
$$\frac{p}{x} - \frac{1}{px} = 1 - \frac{1}{p}$$

$$\frac{p \neq 0}{p^2 - 1} = \frac{p - 1}{p}$$

$$p^2 - 1 = x(p - 1)$$

$$\frac{p \neq 0}{p}$$
/· x -důsledková úprava (neekvivalentní)

$$(p-1)(p+1) = (p-1)x$$

$$p = 1$$

$$0x = 0$$

$$P_1 \subseteq R$$

$$p \neq 1$$

р	P
0	nemá smysl
1	$R - \{0\}$
-1	ϕ
R -{-1,0,1}	$\{p+1\}$

zk.:
$$\underline{p=1} : \frac{1}{x} - \frac{1}{x} = 1 - 1$$

 $0x = 0 \text{ pro } \forall x \in R - \{0\} \Rightarrow \underline{P_1 = R - \{0\}}$

$$\underline{p \neq 1}, x = p + 1 \colon L(p + 1) = \frac{p}{p + 1} - \frac{1}{p(p + 1)} = \frac{p^2 - 1}{p(p + 1)} = \underbrace{\frac{(p + 1)(p - 1)}{p(p + 1)}}_{p(p + 1)}$$

$$\underline{\frac{p = -1}{P_{-1}}} = \phi \qquad \underline{\frac{p \neq -1}{L(p + 1)}}_{p}$$

$$\underline{P(p + 1)} = 1 - \frac{1}{p} = \underbrace{\frac{p - 1}{p}}_{p}$$

$$L(p + 1) = P(p + 1) \text{ pro } \forall p \in R - \{0, 1, -1\} \Rightarrow \underline{P_p} = \{p + 1\}$$

B) Kvadratické rovnice s parametrem

Př.: Řešte v \mathbf{R} rovnici s parametrem $p \in \mathbf{R}$:

$$px^2 + (2p+1)x + p - 4 = 0$$

1.
$$\underline{p=0}$$
 :rovnice lineární: $x-4=0 \Rightarrow x=4 \Rightarrow \underline{P_0}=\{4\}$

2. $p \neq 0$: rovnice kvadratická:

$$D = (2p+1)^2 - 4p(p-4) = 4p^2 + 4p + 1 - 4p^2 + 16p = 20p + 1$$

a)
$$D > 0: 20p + 1 > 0 \Rightarrow \underbrace{p > -\frac{1}{20}}: P_p = \{\frac{-2p - 1 \pm \sqrt{20p + 1}}{2p}\}$$

b)
$$D = 0: 20p + 1 = 0 \Rightarrow p = -\frac{1}{20}: x = \frac{\frac{1}{10} - 1}{-\frac{1}{10}} = 9 \Rightarrow P_{\frac{-\frac{1}{20}}{20}} = \{9\}$$

c)
$$D < 0: 20p + 1 < 0 \Rightarrow p < -\frac{1}{20}: \frac{P_{p'}}{100} = \phi$$

ρ	Р
0	{ 4 }
$(-\frac{1}{20},0)\cup(0,\infty)$	$\left\{\frac{-2p-1+\sqrt{20p+1}}{2p}, \frac{-2p-1-\sqrt{20p+1}}{2p}\right\}$
$-\frac{1}{20}$	{9}
$\left(-\infty, -\frac{1}{20}\right)$	ϕ

C) Nerovnice s parametrem

Př.: Řešte v \mathbf{R} nerovnici s parametrem $p \in \mathbf{R}$:

IV. Rovnice a nerovnice 10. Slovní úlohy

§10. Slovní úlohy

Pozn.: Schéma řešení slovní úlohy:

slovní úloha — matematický model slovní úlohy

vyřešená úloha ← int erpretace vyřešený model slovní úlohy

Př.: V dílně se má vyrobit 200 výrobků, zlepšenou organizací práce se má denně vyrobit o 5 výrobků více než určuje plán, a skončit tak práci o 2 dny dříve. Za jakou dobu se vyrobí plánovaných 200 výrobků?

v....počet výrobků za 1 den po reorganizaci d....počet dní výroby po reorganizaci denní výkon po reorganizaci: vd = 200 výrobků v-5.... počet výrobků za 1 den dle plánu d+2....počet dní výroby dle plánu denní výkon dle plánu: (v-5)(d+2) = 200 výrobků $v = \frac{200}{d}$ $\left(\frac{200}{d} - 5\right)(d+2) = 200$ $\left(\frac{200-5d}{d}(d+2) = 200d\right)$ $\left(\frac{200-5d}{d}(d+2) = 200d\right)$

Význam má nezáporné řešení: Plánovaných 200 výrobků se vyrobí se za 8 dnů.

Př.: Petr si koupí za 180 korun stejné knihy, kdyby bylo za stejné peníze o 3 knihy více, byla by každá kniha o 3 koruny levnější. Kolik stojí každá kniha?

c....cena knihy
$$k$$
...počet knih $ck = 180$ $(c-3)(k+3) = 180$ $(\frac{180}{k}-3)(k+3) = 180$ $(180-3k)(k+3) = 180k$ $(180k-3k^2+540-9k-180k=0)$ $k^2+3k-180=0$

$$(k+15)(k-12) = 0$$

 $k_1 = -15; k_2 = 12 \Rightarrow c_1 = -12; c_2 = 15$

Každá kniha stojí 15 korun.

§11. Kartézský součin

Pozn.: <u>Uspořádanou dvojicí prvků</u> [x,y] rozumíme dvojice prvků, u nichž záleží na pořadí. Platí: [a,b] = [c,d] \Leftrightarrow a = $c \land b$ = d.

Def.: <u>Kartézským součinem množin</u> A, B nazýváme množinu $A \times B$ všech uspořádaných dvojic [a,b] takových, že $a \in A$, $b \in B$. $A \times B = \{[a,b]: a \in A \land b \in B\}$

- Pozn.: a) Kartézský součin $A \times A$ zapisujeme A^2 a nazýváme druhou kartézskou mocninou množiny A nebo <u>kartézským čtvercem množiny</u> A.
 - b) Jsou-li množiny A,B konečné, je počet prvků množiny $A \times B$ (označíme jej $m(A \times B)$) také konečný a platí: $m(A \times B) = m(A) \cdot m(B)$, kde m(A), (m(B)) je počet prvků množiny A(B).
 - c) Kartézský součin obecně není komutativní: $A \times B \neq B \times A$.
 - d) $A \times B = B \times A \Leftrightarrow A = B \vee A = \phi \vee B = \phi$

Př.: Necht' $A = \{a, b, c\}; B = \{*, 0\}$. Určete $A \times B$. $A \times B = \{[a, *]; [b, *]; [c, *]; [a, 0]; [b, 0]; [c, 0]\}$

Pozn.: Kartézský součin $A \times B$ lze znázorňovat graficky v pravoúhlé soustavě souřadnic – mluvíme o <u>kartézském grafu</u>: prvky množiny A nanášíme na osu \underline{x} , prvky množiny B na osu \underline{y} . Kartézským grafem z minulého příkladu je množina bodů.

§12. Binární relace a jejich grafy

Pozn.: Výroková forma V(x,y) se dvěma neznámými x∈ A, y∈ B je zápis, který se po dosazení konstant na místa proměnných x, y stává výrokem.
Protože dosazujeme uspořádané dvojice [x, y]∈ A×B, platí, že definiční obor i obor pravdivosti výrokové formy V(x,y) jsou množiny uspořádaných dvojic.

Def.: Nechť A, B jsou 2 množiny. Pak každou podmnožinou M ⊆ A×B nazýváme binární relací mezi množinami A, B (v tomto pořadí).
Je-li speciálně A=B, pak relace M ⊆ A² se nazývá (binární) relací v množině A.

Pozn.: Relace, která neobsahuje žádnou uspořádanou dvojici prvků, se nazývá <u>prázdná relace</u> a označuje se ϕ . Platí: $\forall A, B: \phi \subseteq A \times B$.

Relace $U = A \times B$ se nazývá <u>univerzální relace</u>.

Pozn.: Binární relace budeme někdy nazývat jen relace.

Pozn.: Způsoby zadání binární relace:

a) výčtem prvků (pouze konečné relace)

např. $A = \{1,2,3\}; B = \{a,b\}; M = \{[1,a],[1,b]\}$

b) jako obor pravdivosti výrokové formy V(x,y) s definičním oborem D

např. $A = B = R; M_1 = \{ [x, y] \in R^2 : y \le x \}$

 $A = B = E_2$ (E_2 ...množina všech bodů v rovině);

 $M_2 = \{[x, y] \in E_2^2 : |xy| = 1\}$

 $A\!=\! \check{Z}$ (množina žáků), $B\!=\! U$ (množina učebnic); $M_3 =\! \{[\check{z},u]\!\in \check{Z}\!xU: \check{z}\!\!\!\text{ák}\;\check{z}$

je majitelem učebnice *u*}

Obecný zápis: $M = \{[x, y] \in AxB : V(x, y)\}$

Pozn.: Protože relace jsou definovány jako jisté množiny, má smysl s nimi provádět množinové operace (průnik, sjednocení, doplněk,...).

Pozn.: Grafickým vyjádřením binární relace je u konečných množin množina bodů.

Def.: Výrokovou formu tvaru ax+by+c=0, kde $x,y \in R$ jsou neznámé a $a,b,c \in R$; $[a,b] \neq [0,0]$ jsou koeficienty, nazýváme <u>lineární rovnicí se dvěma</u> neznámými x,y.

<u>Řešením</u> rovnice se 2 neznámými je množina všech uspořádaných dvojic $[x_0, y_0] \in \mathbb{R}^2$, které po dosazení za neznámé (v příslušném pořadí) převádí výrokovou formu V(x,y) v pravdivý výrok.

Pozn.: Je-li $[a,b] \neq [0,0]$, pak grafickým znázorněním množiny (grafem) $L = \{[x,y] \in R^2 : ax + by + c = 0\}$ je přímka.

Je-li [a,b] = [0,0], pak zřejmě platí: a) $c = 0 \Rightarrow L = R^2 = E_2$ (množina všech bodů v rovině)

b)
$$c \neq 0 \Rightarrow L = \phi$$

Pozn.: V zájmu stručného vyjadřování budeme v dalším množinu *L* ztotožňovat s jejím grafickým obrazem.

Def.: Výrokovou formu tvaru ax + by + c > 0 $(ax + by + c \ge 0; ax + by + c < 0; ax + by + c \le 0)$ nazýváme <u>lineární nerovnicí se 2</u> neznámými $x, y \in R$ a s koeficienty $a, b, c \in R$; $[a, b] \ne [0, 0]$.

Pozn.: Je-li $[a,b] \neq [0,0]$, je grafem lineární nerovnice s 2 neznámými $L = \{[x,y] \in R^2 : ax + by + c > 0\}$ polorovina s hraniční přímkou ax + by + c = 0.

§13. Systém lineárních rovnic

Pozn.: V tomto paragrafu se budeme zabývat lineárními rovnicemi s n neznámými $x_1, x_2, ..., x_n \in R$. Je tedy nutno rozšířit pojem <u>kartézského součinu</u> na součin n množin: $A_1 \times A_2 \times ... \times A_n$, jehož prvky jsou uspořádané n-tice:

 $A_1 \times A_2 \times ... \times A_n = \{ [x_1, x_2, ..., x_n] : x_i \in A_i \text{ pro } \forall i \in \{1, 2, ..., n\} \}.$

Zpravidla budeme pracovat se součinem $R \times R \times ... \times R = R^n = \{[x_1, x_2, ..., x_n] : x_i \in R$ pro $\forall i \in \{1, 2, ..., n\}\}$.

n-ární relace je pak každá podmnožina tohoto kartézského součinu.

Def.: Nechť $a_1,a_2,...,a_n,b\in R$. Výrokovou formu tvaru $a_1x_1+a_2x_2+...+a_nx_n=b$ s neznámými $x_1,x_2,...,x_n$ a koeficienty $a_1,a_2,...,a_n$ nazýváme <u>lineární rovnicí s n neznámými</u>. Číslo $b\in R$ nazýváme <u>absolutním členem této rovnice</u>. <u>Řešením</u> rovnice $a_1x_1+a_2x_2+...+a_nx_n=b$ nazýváme každou uspořádanou n-tici $[p_1,p_2,...,p_n]\in R^n$, jestliže výrok $a_1p_1+a_2p_2+...+a_np_n=b$ je pravdivý.

- Př.: a) Rovnice 2x 3y = 4 je lineární rovnice se 2 neznámými $x, y \in R$. Řešením je například uspořádaná dvojice [2,0].
 - b) Rovnice $x_1 + x_2 + x_3 + x_4 = 0$ je lineární rovnice se 4 neznámými $x_1, x_2, x_3, x_4 \in R$. Řešením je například [0,0,0,0];[1,-1,1,-1].

Def.: Systém rovnic
$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + \dots + a_{3n}x_n = b_3$$

$$(*)$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

kde $m,n \in N; a_{ij} \in R, b_i \in R; i \in \{1,2,...,m\}; j \in \{1,2,...,n\}$ nazýváme <u>systémem</u> (soustavou) \underline{m} lineárních rovnic o \underline{n} neznámých.

Číslo a_{ij} nazýváme <u>koeficientem</u> v *i*-té rovnici u *j*-té neznámé, b_i <u>absolutním členem</u> *i*-té rovnice.

<u>Řešením systému</u> (*) nazýváme každou uspořádanou n-tici $[p_1, p_2, ..., p_n] \in \mathbb{R}^n$ takovou, že po dosazení p_i za x_i přecházejí všechny rovnice (*) v pravdivé výroky.

Def.: <u>Systém</u> (*) se nazývá <u>řešitelný</u> (resp. <u>neřešitelný</u>), jestliže existuje (resp. neexistuje) alespoň jedno jeho řešení.

Dva <u>systémy</u> lineárních rovnic o n neznámých se nazývají <u>ekvivalentní</u>, jestliže množiny jejich řešení jsou si rovny.

Jakoukoli úpravu daného systému, po níž vznikne systém ekvivalentní původnímu, nazýváme ekvivalentní úpravou systému.

Pozn.: Úlohou dalších paragrafů bude nalezení a vyšetřování všech řešení daného systému lineárních rovnic (budeme zkracovat SLR).

Přitom mohou nastat tyto 3 případy:

- a) (*) nemá žádné řešení je neřešitelný
- b) (*) má právě jedno řešení
- c) (*) má více než jedno řešení, pak v množině Rⁿ jich má nekonečně mnoho. V tomto případě se snažíme nalézt jednoduchý předpis, pomocí něhož lze vypsat libovolné řešení tohoto systému.

§14. Matice

Def.: Nechť $m,n \in N$. (Reálnou) maticí typu m/n nazýváme obdélníkové schéma

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, \text{ kde } a_{ij} \in R, i \in \{1, 2, \dots, m\}, j \in \{1, 2, \dots, n\}.$$

Označení: $A = (a_{ii})$ typu m/n.

Čísla a_{ii} nazýváme prvky matice.

Uspořádanou n-tici čísel $[a_{i1} \ a_{i2} \ \dots \ a_{in}]$ nazýváme i-tým <u>řádkem matice</u> A, uspořádanou m-tici čísel $[a_{1j} \ a_{2j} \ \dots \ a_{mj}]$ nazýváme j-tým <u>sloupcem matice</u> A. Je-li m=n, pak hovoříme o <u>čtvercové matici</u> řádu n.

Př.: a) Matice $A_1 = \begin{pmatrix} 1 & -2 & 1 \\ 0 & \sqrt{14} & 17 \end{pmatrix}$ je typu 2/3.

b) Matice $A_2 = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 6 & 5 \\ 3 & 0 & 2 \end{pmatrix}$ je čtvercová matice řádu 3.

Def.: Dvě <u>matice</u> $A = (a_{ij})$, $B = (b_{ij})$ <u>se rovnají</u>, jestliže jsou téhož typu a platí: $a_{ij} = b_{ij}$ pro $\forall i \in \{1,2,...,m\}; \forall j \in \{1,2,...,n\}$.

 $\underline{\text{Matice}} \ 0_{mn}$ se nazývá
 $\underline{\text{nulová}},$ jestliže všechny její prvky jsou rovny 0.

Def.: Nechť $A = (a_{ij})$ je nenulová matice typu m/n. Řekneme, že <u>matice</u> A je <u>ve schodovitém tvaru</u>, jestliže každý její následující řádek začíná větším počtem nul než předchozí.

IV. Rovnice a nerovnice §14. Matice

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & a_{1_{j1}} & \dots & \dots & \dots & a_{1n} \\ 0 & 0 & \dots & \dots & 0 & a_{2_{j2}} & \dots & \dots & \dots & a_{2n} \\ 0 & 0 & \dots & \dots & \dots & \dots & 0 & a_{m_{jn}} & \dots & a_{mn} \end{pmatrix}$$

Pozn.: První řádek matice ve schodovitém tvaru může, ale nemusí začínat nulami.

Př.: a) $A = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 3 \\ 0 & 0 & -1 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$ typu 3/6 – je ve schodovitém tvaru

b)
$$B = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 4 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 řádu 4 – není ve schodovitém tvaru

Def.: Počet nenulových řádků matice A ve schodovitém tvaru se nazývá hodnost matice A a označuje se h(A).

Pozn.: Každou nenulovou matici lze převést pomocí tzv. <u>řádkových elementárních</u> <u>transformací</u> na schodovitý tvar.

Mezi řádkové elementární transformace řadíme následující úpravy:

- 1. záměna 2 řádků
- 2. vynásobení řádku nenulovým číslem
- 3. k danému řádku přičtení jiného řádku, vynásobeného libovolným nenulovým číslem

<u>Matice</u> B vzniklá z matice A řádkovými elementárními transformacemi se nazývá <u>ekvivalentní</u> s maticí A. Zapisujeme $A \sim B$.

Provedení těchto transformací nemění hodnost matice: h(A)=h(B).

Př.: Danou matici převeďte na schodovitý tvar a určete její hodnost:

a)
$$A = \begin{pmatrix} 1 & 2 & -3 \\ -3 & 1 & -2 \\ 2 & 3 & 2 \end{pmatrix} 3.(1) + (2) \sim \begin{pmatrix} 1 & 2 & -3 \\ 0 & 7 & -11 \\ 0 & 1 & -8 \end{pmatrix} (2) - 7.(3) \sim \begin{pmatrix} 1 & 2 & -3 \\ 0 & 7 & -11 \\ 0 & 0 & 45 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -3 \\ 0 & 7 & -11 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow h(A) = 3$$
b) $B = \begin{pmatrix} 1 & 2 & 0 & -1 & -2 \\ 0 & 1 & 1 & 1 & 1 \\ -1 & 1 & 3 & 0 & -4 \\ 2 & 1 & -3 & -1 & 2 \end{pmatrix} (1) + (3) \sim \begin{pmatrix} 1 & 2 & 0 & -1 & -2 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 3 & 3 & -1 & -6 \\ 0 & 3 & 3 & -1 & -6 \end{pmatrix} 3.(2) - (3) \sim \begin{pmatrix} 1 & 2 & 0 & -1 & -2 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 3 & 3 & -1 & -6 \\ 0 & 3 & 3 & -1 & -6 \end{pmatrix}$

$$\sim \begin{pmatrix}
 1 & 2 & 0 & -1 & -2 \\
 0 & 1 & 1 & 1 & 1 \\
 0 & 0 & 0 & 4 & 9 \\
 0 & 0 & 0 & 0 & 0
 \end{pmatrix} \Rightarrow h(B) = 3$$

Pozn.: Nulové řádky při výpočtu můžeme vynechat.

§15. Gaussova eliminační metoda

Pak matice $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n} & a_{n} & a_{n} & \dots & a_{n} \end{pmatrix}$, resp. $\overline{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_{1} \\ a_{21} & a_{22} & \dots & a_{2n} & b_{2} \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ a_{n} & a_{n} & a_{n} & a_{n} & b_{n} \end{pmatrix}$

nazýváme maticí systému (*), resp. rozšířenou maticí systému (*)

- V.15.1.: Nechť (*) je systém lineárních rovnic. Pak následující úpravy jsou ekvivalentními úpravami tohoto systému:
 - 1. záměna 2 rovnic
 - 2. vynásobení celé rovnice nenulovým reálným číslem
 - 3. přičtení libovolného násobku (s výjimkou 0) jedné rovnice k jiné rovnici

Pozn.: Je vidět, že uvedené úpravy odpovídají řádkovým elementárním transformacím rozšířené matice systému (*) \overline{A} .

Pozn.: Gaussova eliminace je metoda, při níž užitím řádkových elementárních transformací převádíme \overline{A} na schodovitý tvar, přičemž zřejmě platí:

Nechť matice B je ekvivalentní s maticí \overline{A} ve schodovitém tvaru. Nechť v posledním řádku matice B je prvních n nul a v n+1-ím sloupci je nenulové číslo. Pak systém (*) nemá řešení. V opačném případě pak systém (*) má alespoň jedno řešení.

V.15.2.: Kronecker-Capelliho věta (Frobeniova věta):

Nechť (*) je systém m lineárních rovnic o n neznámých. Nechť A (resp. \overline{A}) je matice (resp. rozšířená matice) systému (*). Pak platí:

systém (*) je řešitelný
$$\Leftrightarrow h(A) = h(\overline{A})$$

[Dk. – náznak:

1. " \Rightarrow ": sporem: Nechť (*) je řešitelný a $h(A) \neq h(\overline{A})$. Nechť tedy $h(A) < h(\overline{A})$. Pak ve schodovitém tvaru matice \overline{A} je poslední nenulový řádek tvaru $\begin{pmatrix} 0 & 0 & \dots & 0 | a \end{pmatrix}, a \in R, a \neq 0 \Rightarrow$ (*) nemá řešení – spor.

2. " \Leftarrow ": sporem: Nechť $h(A) = h(\overline{A})$ a (*) nemá řešení. Pak poslední řádek matice \overline{A} ve schodovitém tvaru je tvaru $\begin{pmatrix} 0 & 0 & \dots & 0 | a \end{pmatrix}$, $a \in R - \{0\} \Rightarrow h(A) < h(\overline{A})$ – spor.]

Pozn.: Z V.15.2 plyne jednoduché kritérium toho, zda (*) má nebo nemá řešení. Tato věta však nic neříká o tom, jak v případě, že (*) je řešitelný, stanovit počet řešení a jak řešení nalézt. K tomu užíváme Gaussovy eliminace – viz následující příklady:

Př.: Řešte v R^3 :

a)
$$2x_1 + 5x_2 - 8x_3 = 8$$

 $4x_1 + 3x_2 - 9x_3 = 9$
 $2x_1 + 3x_2 - 5x_3 = 7$
 $x_1 + 8x_2 - 7x_3 = 12$

$$\frac{1}{A} = \begin{pmatrix} 1 & 8 & -7 & 12 \\ 2 & 5 & -8 & 8 \\ 4 & 3 & -9 & 9 \\ 2 & 3 & -5 & 7 \end{pmatrix} \sim \begin{pmatrix} 1 & 8 & -7 & 12 \\ 0 & -11 & 6 & -16 \\ 0 & -29 & 19 & -39 \\ 0 & -13 & 9 & -17 \end{pmatrix} \sim \begin{pmatrix} 1 & 8 & -7 & 12 \\ 0 & -11 & 6 & -16 \\ 0 & 0 & 35 & 35 \\ 0 & 0 & 21 & 21 \end{pmatrix} \sim \begin{pmatrix} 1 & 8 & -7 & 12 \\ 0 & 11 & -6 & 16 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 8 & -7 & 12 \\ 0 & -13 & 9 & -17 \end{pmatrix} \sim \begin{pmatrix} 1 & 8 & -7 & 12 \\ 0 & -11 & 6 & -16 \\ 0 & 0 & 35 & 35 \\ 0 & 0 & 21 & 21 \end{pmatrix} \sim \begin{pmatrix} 1 & 8 & -7 & 12 \\ 0 & 11 & -6 & 16 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

b)
$$9x - 6y - 4z = 12$$

 $3x - 2y + 2z = 5$
 $9x - 6y + 6z = 11$

$$\overline{B} = \begin{pmatrix} 9 & -6 & -4 & | & 12 \\ 3 & -2 & 2 & | & 5 \\ 9 & -6 & 6 & | & 11 \end{pmatrix} \sim \begin{pmatrix} 9 & -6 & -4 & | & 12 \\ 0 & 0 & -10 & -3 \\ 0 & 0 & 2 & | & 23 \end{pmatrix} \sim \begin{pmatrix} 9 & -6 & -4 & | & 12 \\ 0 & 0 & 10 & | & 3 \\ 0 & 0 & 0 & | & 1 \end{pmatrix} \Rightarrow h(B) = 2 < h(\overline{B}) = 3 \Rightarrow$$

$$\Rightarrow \underline{P} = \phi$$

V.15.3.: Nechť (*) je řešitelný systém *m* rovnic o *n* neznámých. Pak platí:

- 1. systém (*) má právě jedno řešení $\Leftrightarrow h(A) = n$ ((A je regulární))
- 2. systém (*) má nekonečně mnoho řešení $\Leftrightarrow h(A) < n$ ((A je singulární))

Pozn.: Jestliže má systém (*) nekonečně mnoho řešení, pak můžeme libovolně volit některé neznámé – tzv. <u>volné neznámé</u>. Ostatní neznámé pak vyjádříme pomocí nich.

Př.: Řešte v R^3 :

a)
$$x_1 + x_2 + x_3 = 1$$

 $x_1 - x_3 = 0$
 $\overline{A} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & -1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 \end{pmatrix} \Rightarrow \frac{x_3 = r}{x_2 = 1 - 2r} \Rightarrow \underline{x_1 = 1} - r - (1 - 2r) = \underline{r}$
 $\underline{P} = \{ [r; 1 - 2r; r]; r \in R \}$

b)
$$\overline{x_1 + x_2 + x_3} = 0$$
 $\underline{x_3 = r}, \underline{x_2 = s}, \underline{x_1 = -r - s}$ $\underline{P = \{[-r - s; s; r]; r, s \in R\}}$

Pozn.: Jestliže má systém (*) právě jedno řešení, je často vhodné převést matici systému \overline{A} do tzv. diagonálního tvaru – mluvíme pak o diagonální matici řádu n:

$$\begin{pmatrix} a_{11} & 0 & 0 & \dots & 0 & | b_1 \\ 0 & a_{22} & 0 & \dots & 0 & | b_2 \\ 0 & 0 & a_{33} & \dots & 0 & | b_3 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} & b_n \end{pmatrix}$$

Jestliže prvky matice $a_{11} = a_{22} = ... = a_{nn} = 1$, mluvíme o tzv. jednotkové matici řádu n:

$$\begin{pmatrix} 1 & 0 & 0 & \dots & 0 | b_1 \\ 0 & 1 & 0 & \dots & 0 | b_2 \\ 0 & 0 & 1 & \dots & 0 | b_3 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 | b_n \end{pmatrix}$$

Zde prvky $b_1, b_2, ..., b_n$ jsou přímo kořeny systému (*) $x_1, x_2, ..., x_n$.

Diagonální, resp. jednotkovou matici získáme Gaussovou eliminací.

Např. řešení příkladu a) před V.15.3. – pokračování:

$$\begin{pmatrix} 1 & 8 & -7 & | & 12 \\ 0 & 11 & -6 & | & 16 \\ 0 & 0 & 1 & | & 1 \end{pmatrix} (1) + 7.(3) \\ \begin{pmatrix} 1 & 8 & 0 & | & 19 \\ 0 & 11 & 0 & | & 22 \\ 0 & 0 & 1 & | & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 8 & 0 & | & 19 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 1 \end{pmatrix} (1) - 8.(2) \\ \sim \begin{pmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 1 \end{pmatrix} \Rightarrow$$

$$\Rightarrow \underline{P = \{[3;2;1]\}}$$

Def.: Systém rovnic
$$\begin{vmatrix} a_{11}x_1 + a_{12}x_2 + & \dots + a_{1n}x_n &= 0 \\ a_{21}x_1 + a_{22}x_2 + & \dots + a_{2n}x_n &= 0 \\ \vdots & & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + & \dots + a_{mn}x_n &= 0 \end{vmatrix}$$

nazýváme homogenním systémem *m* lineárních rovnic o *n* neznámých.

V.15.4.: 1. Systém (Δ) má vždy alespoň jedno řešení $x_1 = x_2 = ... = x_n = 0$, tzv. nulové řešení.

- 2. Toto nulové řešení je jediné $\Leftrightarrow h(A) = n$.
- 3. Systém (Δ) má nekonečně mnoho řešení $\Leftrightarrow h(A) < n$.

Př.: Řešte v
$$R^3$$
:
$$2x_1 - x_2 + 3x_3 = 0$$

$$3x_1 - 5x_2 + 4x_3 = 0$$

$$x_1 + 3x_2 + 2x_3 = 0$$

$$x_1 + 17x_2 + 4x_3 = 0$$

$$-\frac{1}{A} = \begin{pmatrix} 1 & 3 & 2 & 0 \\ 2 & -1 & 3 & 0 \\ 3 & -5 & 4 & 0 \\ 1 & 17 & 4 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 2 & 0 \\ 0 & 14 & 2 & 0 \\ 0 & -7 & -1 & 0 \\ 0 & -14 & -2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 2 & 0 \\ 0 & 7 & 1 & 0 \end{pmatrix}$$

$$x_3 = r$$

$$7x_2 + r = 0 \Rightarrow x_2 = -\frac{1}{7}r$$

$$x_1 + 3x_2 + 2x_3 = 0 \Rightarrow x_1 = \frac{3}{7}r - 2r = -\frac{11}{7}r$$

$$P = \left\{ \left[-\frac{11}{7}r; -\frac{1}{7}r; r \right]; r \in R \right\}$$

§16. Determinanty, Cramerovo pravidlo

Pozn.: Je dán systém $a_{11}x_1 + a_{12}x_2 = b_1$ $a_{21}x_1 + a_{22}x_2 = b_2.$ $\overline{A} = \begin{pmatrix} a_{11} & a_{12} | b_1 \\ a_{21} & a_{22} | b_2 \end{pmatrix} / \cdot (-a_{21}) \sim \begin{pmatrix} a_{11} & a_{12} & b_1 \\ 0 & a_{11}a_{22} - a_{12}a_{21} | b_2a_{11} - b_1a_{21} \end{pmatrix}$ $\operatorname{Necht}' a_{11}a_{22} - a_{12}a_{21} \neq 0 \Rightarrow x_2 = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{12}a_{21}}$ $a_{11} \cdot x_1 = b_1 - a_{12} \cdot \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{12}a_{21}} = \frac{b_1a_{11}a_{22} - b_1a_{21}a_{12} - b_2a_{12}a_{11} + b_1a_{21}a_{12}}{a_{11}a_{22} - a_{12}a_{21}} = \frac{a_{11}(b_1a_{22} - b_2a_{12})}{a_{11}a_{22} - a_{12}a_{21}}$ $= \frac{a_{11}(b_1a_{22} - b_2a_{12})}{a_{11}a_{22} - a_{12}a_{21}}$

Def.: Necht' $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ je čtvercová matice <u>řádu 2</u>.

<u>Determinantem matice</u> A nazýváme reálné číslo $|A| = \det A = a_{11}a_{22} - a_{12}a_{21}$.

Označení:
$$|A| = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

Pozn.: Platí:
$$b_1 a_{22} - b_2 a_{12} = \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix} = |A_1|, \quad b_2 a_{11} - b_1 a_{21} = \begin{vmatrix} b_2 & a_{21} \\ b_1 & a_{11} \end{vmatrix} = \begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix} = |A_2|$$

$$|A| \neq 0 \Rightarrow x_1 = \frac{|A_1|}{|A|}$$

$$x_2 = \frac{|A_2|}{|A|}$$

Def.: a) Necht' $A = (a_{11})$ je matice <u>řádu 1</u>.

Determinantem matice A nazýváme reálné číslo $|A| = a_{11}$.

b) Nechť
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 je čtvercová matice řádu 3.

 $\frac{\text{Determinantem matice}}{\left|A\right| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{23}a_{32}a_{11} - a_{33}a_{12}a_{21}}.$

Pozn.: Pro výpočet determinantu matice řádu 3 používáme tzv. Sarrusovo pravidlo:

$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{vmatrix}$$

Pozn.: Analogicky bychom mohli zavést pojem <u>determinant matic vyšších řádů</u>.

Př.: Vypočtěte determinanty:

a)
$$\begin{vmatrix} 2 & -1 \\ 0 & -1 \end{vmatrix} = -2 - 0 = -2$$

b) $\begin{vmatrix} 1 & -1 & 0 \\ 2 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix} = 1 + (-1) + 0 - 0 - (-1) - (-2) = 3$
c) $\begin{vmatrix} 1 & -3 & 2 \\ 0 & 2 & 1 \\ 2 & -6 & 4 \end{vmatrix} = 8 - 6 - 8 + 6 = 0$

V.16.1.: Vlastnosti determinantů, věty o počítání s determinanty:

Necht' |A| je determinant čtvercové matice řádu n. Pak plati:

- a) Necht' 1 řádek matice A je nulový. Pak |A| = 0.
- b) Nechť matice B vznikne z matice A záměnou 2 řádků. Pak |B| = -|A|.
- c) Nechť matice B vznikne z matice A vynásobením 1 řádku číslem $r \in R$. Pak $|B| = r \cdot |A|$.
- d) Nechť v matici A jsou 2 řádky shodné. Pak |A| = 0.
- e) Nechť matice B vznikne z matice A tak, že k 1 řádku matice A přičteme libovolný násobek jiného řádku. Pak |B| = |A|.

[Dk.: pro n = 2:

a)
$$|A| = \begin{vmatrix} a_{11} & a_{12} \\ 0 & 0 \end{vmatrix} = a_{11} \cdot 0 - a_{12} \cdot 0 = 0$$

b)
$$|A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$|B| = \begin{vmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \end{vmatrix} = a_{21}a_{12} - a_{22}a_{11} = -(a_{11}a_{22} - a_{12}a_{21}) = -|A|$$

c)
$$|A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$|B| = \begin{vmatrix} ra_{11} & ra_{12} \\ a_{21} & a_{22} \end{vmatrix} = ra_{11}a_{22} - ra_{12}a_{21} = r(a_{11}a_{22} - a_{12}a_{21}) = r \cdot |A|$$

d) Zaměníme-li v matici 2 řádky, které jsou shodné, pak podle b) platí $|A|=-|A|\Longrightarrow 2\cdot |A|=0\Longrightarrow |A|=0$

e)
$$|A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$|B| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} + ra_{11} & a_{22} + ra_{12} \end{vmatrix} = a_{11}a_{22} + ra_{11}a_{12} - a_{12}a_{21} - ra_{11}a_{12} = a_{11}a_{22} - a_{12}a_{21}$$

Pozn.: V.16.1. v lze analogicky formulovat pro změny sloupců.

Pozn.: Nyní si ukážeme jednoduchý způsob výpočtu determinantů vyšších řádů:

Nechť
$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix}$$
 je determinant řádu n.

Gaussovou eliminací a využitím V.16.1. e) dostaneme na místech prvků $a_{21}, a_{31}, ..., a_{n1}$ samé nuly.

Nyní platí:
$$|A| = a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} & \dots & a_{2n} \\ a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & & \vdots \\ a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix}$$
 - tento determinant je řádu n -1.

Postup takto opakujeme, až získáme determinant řádu 3, resp. 2, který už umíme jednoduše řešit.

Uvedená metoda je jednoduchým případem Laplaceovy věty o rozvoji determinantů (říkáme, že jsme provedli rozvoj podle 1. sloupce).

Př.: Vypočtěte determinanty:

V.16.2.: Cramerovo pravidlo:

Nechť je dán systém n lineárních rovnic o n neznámých. Nechť A je matice tohoto systému a $|A| \neq 0$. Pak platí:

Systém má právě 1 řešení $x_i = \frac{|A_i|}{|A|}$, kde A_i je matice, která vznikne z matice A

nahrazením koeficientů u *i*-té neznámé sloupcem absolutních členů.

[Dk.: pro *n*=1 zřejmý

pro *n*=2 v úvodní poznámce paragrafu]

Pozn.: Cramerovo pravidlo lze užít jen tehdy, když platí:

1. počet rovnic = počet neznámých

2. $|A| \neq 0$

V opačném případě musíme použít Gaussovy eliminace.

Př.: Řešte v R^3 soustavu rovnic:

$$x_1 + x_2 + x_3 = 1$$

 $x_1 + x_2 = 0$
 $x_1 + x_3 = -1$

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = 1 - 2 = -1$$

$$|A_1| = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix} = 1 + 1 = 2$$

$$|A_2| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{vmatrix} = -1 - 1 = -2$$

$$|A_3| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{vmatrix} = -1 - 1 + 1 = -1$$

$$x_1 = \frac{|A_1|}{|A|} = -2$$

$$x_2 = \frac{|A_2|}{|A|} = 2$$

$$|A_3| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{vmatrix} = -1 - 1 + 1 = -1$$

$$x_3 = \frac{|A_3|}{|A|} = 1$$

$$P = \{[-2;2;1]\}$$

§17. Soustavy rovnic s parametrem

Př.: Řešte v R^3 soustavu s parametrem $a \in R$: a) Gaussovou eliminací x - y = 2b) Cramerovým pravidlem ax + y = 4

a)
$$\overline{A} = \begin{pmatrix} 1 & -1 & 2 \\ a & 1 & 4 \end{pmatrix} / (-a) \sim \begin{pmatrix} 1 & -1 & 2 \\ 0 & a+1 & -2a+4 \end{pmatrix}$$

- ullet k danému řádku mohu přičíst libovolný a-násobek jiného řádku (nemusím tedy uvažovat případ a=0)
- ale nemohu násobit řádek a pak bych musel uvažovat případ a = 0 (a+1)y = -2a + 4

$$(a+1)y = 2(2-a)$$

$$\frac{a = -1}{0y = 6} \quad y = \frac{\frac{a \neq -1}{2(2-a)}}{a+1}, \underline{x} = 2 + y = 2 + \frac{2(2-a)}{a+1} = \frac{2a+2+4-2a}{a+1} = \frac{6}{a+1}$$

$$P_{a} = \left\{ \left[\frac{6}{a+1}; \frac{2(2-a)}{a+1} \right] \right\}$$

а	Р
-1	Φ
$R - \{-1\}$	$\left\{ \left[\frac{6}{a+1}; \frac{2(2-a)}{a+1} \right] \right\}$

b)
$$|A| = \begin{vmatrix} 1 & -1 \\ a & 1 \end{vmatrix} = 1 + a$$

 $|A_1| = \begin{vmatrix} 2 & -1 \\ 4 & 1 \end{vmatrix} = 2 \cdot \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} = 2 \cdot 3 = 6$

$$|A_{2}| = \begin{vmatrix} 1 & 2 \\ a & 4 \end{vmatrix} = 2 \cdot \begin{vmatrix} 1 & 1 \\ a & 2 \end{vmatrix} = 2(2 - a)$$

$$1. |A| = 0 \Rightarrow \underline{a = -1} : \overline{A_{-1}} = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 1 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 2 \\ 0 & 0 & 6 \end{pmatrix} \Rightarrow \underline{P_{1}} = \underline{\Phi}$$

$$2. |A| \neq 0 \Rightarrow \underline{a \neq -1} : x = \frac{|A_{1}|}{|A|} = \frac{6}{1+a}$$

$$y = \frac{|A_{2}|}{|A|} = \frac{2(2-a)}{1+a}$$

$$P_{a} = \left\{ \begin{bmatrix} \frac{6}{1+a} ; \frac{2(2-a)}{1+a} \end{bmatrix} \right\}$$

Řešte v R^3 soustavu $ax_1 + ax_2 = 0$ s parametrem $a \in R$: a) Gaussovou eliminací Př.: $-a^2x_2 + x_3 = a$ b) Cramerovým pravidlem

a)
$$\overline{A} = \begin{pmatrix} a & a & 0 & 0 \\ 0 & -a^2 & 1 & a \\ a & 0 & 1 & a^2 \end{pmatrix} \sim \begin{pmatrix} a & a & 0 & 0 \\ 0 & -a^2 & 1 & a \\ 0 & -a & 1 & a^2 \end{pmatrix} \sim \begin{pmatrix} a & a & 0 & 0 \\ 0 & +a & -1 & -a^2 \\ 0 & 0 & -a+1 & -a^3+a \end{pmatrix}$$

$$(1-a)x_3 = a(1-a)(1+a)$$
nemohu násobit daný řádek a , proto

vyměním řádky a budu k danému řádku přičítat a-násobek jiného řádku

$$\frac{a=1}{0x_{3}=0} \qquad \frac{a \neq 1}{x_{3}=a(1+a)} \\
= \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow x_{3}=t \qquad ax_{2}=a(1+a)-a^{2}=a \\
\Rightarrow x_{2}=t-1 \\
x_{1}=1-t \qquad a=0 \qquad a\neq 0 \\
P_{1}=\{[1-t;t-1;t];t\in R\} \qquad 0x_{2}=0 \qquad x_{2}=1\Rightarrow \\
\hline
A_{0}=\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix} \sim \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \Rightarrow x_{1}=0 \Rightarrow x_{2}=0$$

 $\Rightarrow x_3 = 0; x_2 = r; x_1 = s$ $P_0 = \{[s; r; 0]; s, r \in R\}$

 $\overline{A_0} = \begin{pmatrix} 0 & 0 & 0 & | & 0 \\ 0 & 0 & -1 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 0 & 0 & 1 & | & 0 \end{pmatrix} \Rightarrow$ $\Rightarrow ax_1 + a = 0 \Rightarrow x_1 = -1 \Rightarrow$ $P = \{ [-1:1:a(a+1)] \}$ $\underline{P_a = \{ [-1;1; a(a+1)] \}}$

а	P
1	$\left\{ \left[1-t;t-1;t\right];t\in R\right\}$
0	$\{[s;r;0];s,r\in R\}$
$R - \{0;1\}$	$\{[-1;1;a(a+1)]\}$

b)
$$|A| = \begin{vmatrix} a & a & 0 \\ 0 & -a^2 & 1 \\ a & 0 & 1 \end{vmatrix} = a \cdot a \cdot \begin{vmatrix} 1 & 1 & 0 \\ 0 & -a & 1 \\ 1 & 0 & 1 \end{vmatrix} = a^2 (-a+1) = a^2 (1-a)$$

$$|A_{1}| = \begin{vmatrix} 0 & a & 0 \\ a & -a^{2} & 1 \\ a^{2} & 0 & 1 \end{vmatrix} = a^{2} \begin{vmatrix} 0 & 1 & 0 \\ 1 & -a & 1 \\ a & 0 & 1 \end{vmatrix} = a^{2} (a-1)$$

$$|A_{2}| = \begin{vmatrix} a & 0 & 0 \\ 0 & a & 1 \\ a & a^{2} & 1 \end{vmatrix} = a^{2} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & a & 1 \end{vmatrix} = a^{2} (1-a)$$

$$|A_{3}| = \begin{vmatrix} a & a & 0 \\ 0 & -a^{2} & a \\ a & 0 & a^{2} \end{vmatrix} = a^{3} \begin{vmatrix} 1 & 1 & 0 \\ 0 & -a & 1 \\ 1 & 0 & a \end{vmatrix} = a^{3} (-a^{2}+1) = a^{3} (1-a^{2})$$

$$1. |A| = 0$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{3} = 0; x_{2} = r; x_{1} = s$$

$$\Rightarrow x_{1} = [1 + 1; 1 + 1; 1]$$

$$\Rightarrow x_{2} = [1 + 1; 1; 1]$$

$$\Rightarrow x_{3} = [1 + 1; 1]$$

$$\Rightarrow x_{1} = [1 + 1; 1]$$

$$\Rightarrow x_{2} = [1 + 1; 1; 1]$$

$$\Rightarrow x_{3} = [1 + 1; 1]$$

$$\Rightarrow x_{1} = [1 + 1; 1]$$

$$\Rightarrow x_{2} = [1 + 1; 1; 1]$$

$$\Rightarrow x_{3} = [1 +$$

§18. Lineární diofantovské rovnice

Def.: Lineární diofantovskou rovnicí s dvěma neznámými nazýváme každou rovnici tvaru ax + by + c = 0 (•), kde $a, b, c \in Z; a \neq 0; b \neq 0$ jsou koeficienty; $x, y \in Z$ neznámé. Řešením rovnice (•) nazýváme každou uspořádanou dvojici $[x_0; y_0]$, pro kterou platí $ax_0 + by_0 + c = 0$.

Např. 4x + 2y = 1 je diofantovská rovnice (nemá řešení, protože levá strana je vždy sudá).

V.18.1.: Nechť $a,b,c \in Z; a \neq 0; b \neq 0$. Nechť d = (a,b). Pak $\exists t_1, t_2 \in Z : d = at_1 + bt_2$

- Bezoutova rovnost.

V.18.2.: Věta o řešitelnosti lineární diofantovské rovnice:

Rovnice (•) má v Z^2 řešení $\Leftrightarrow D(a,b)/c$.

[Dk.: ,, \Rightarrow ": Nechť $[x_0; y_0] \in Z^2$ je řešení $(\bullet) \Rightarrow ax_0 + by_0 = c$. Označme $d = D(a,b) \Rightarrow d/a \wedge d/b \Rightarrow d/(ax_0 + by_0) = c \Rightarrow D(a,b)/c$.

$$\text{": Necht'} \begin{array}{l}
D(a,b) = d/c \Rightarrow \exists k \in Z : c = k \cdot d \\
D(a,b) = d \Rightarrow \exists t_1, t_2 \in Z : d = at_1 + bt_2
\end{array}
\Rightarrow c = a(\underbrace{kt_1}_{x_0}) + b(\underbrace{kt_2}_{y_0}) \Rightarrow \\
\Rightarrow [x_0; y_0] = [kt_1; kt_2] \text{ je řešením } (\bullet).$$

V.18.3.: Má-li rovnice (•) alespoň 1 řešení v Z², pak jich má nekonečně mnoho.

[Dk.: Nechť $[x_0; y_0]$ je řešení (\bullet) $\Rightarrow ax_0 + by_0 + c = 0$.

Nechť [x; y] je jiné řešení $(\bullet) \Rightarrow ax + by + c = 0$.

$$a(x-x_0) + b(y-y_0) = 0$$

Označme $d = D(a,b) \Rightarrow \exists q_1, q_2 \in Z : a = dq_1; b = dq_2; D(q_1,q_2) = 1.$

Dosazení: $dq_1(x-x_0) + dq_2(y-y_0) = 0 \Rightarrow q_1(x-x_0) + q_2(y-y_0) = 0 \Rightarrow$

$$\Rightarrow q_1(x-x_0) = -q_2(y-y_0) \Rightarrow q_1/q_2(y-y_0) \land q_1 \dagger q_2 \Rightarrow q_1/(y-y_0) \Rightarrow$$

 $\Rightarrow \exists r \in Z : y - y_0 = rq_1 \Rightarrow y = y_0 + q_1 r \text{ dosazen} i \Rightarrow q_1(x - x_0) = q_1(x - x_0)$

$$= -q_2(y_0 + q_1r - y_0) \Rightarrow q_1(x - x_0) = -q_1q_2r \Rightarrow x = x_0 - q_2r, \text{ kde } q_1 = \frac{a}{d};$$

 $q_2 = \frac{b}{d} \Rightarrow$ rovnice (•) má nekonečně mnoho kořenů tvaru

$$\left[x_0 - \frac{br}{d}; y_0 + \frac{ar}{d}\right], \text{ kde } r \in Z.]$$

Pozn.: V.18.3. neplatí pro řešitelnost rovnice (\bullet) v N^2 .

Pozn.: Je-li $[x_0; y_0]$ jedno řešení (\bullet) , dostaneme každé další její řešení [x; y] ve tvaru $x = x_0 - \frac{b}{d}r; y = y_0 + \frac{a}{d}r$, kde $r \in Z$. Lze tedy danou rovnici řešit tak, že jedno její řešení uhádneme a další získáme aplikací výše uvedených vzorců.

Př.: a) Řešte v
$$Z^2$$
: $2x + 5y = 97$
Položme $\underline{x_0 = 1} \Rightarrow \underline{y_0 = 19}$

$$D(2;5) = 1/97$$

$$x = 1 - \frac{5}{1}t = 1 - 5t$$

$$y = 19 + \frac{2}{1}t = 19 + 2t$$

$$P = \{[1-5r;19+2r]; r \in Z\}$$

mohlo by být i opačně $P = \{[1 + 5r; 19 - 2r]; r \in Z\}$

b) Určete, jakými způsoby lze vyplatit 97 korun ve 2 a 5-korunových mincích.

Hledáme řešení předchozí rovnice v N_0^2 :

$$x = 1 - 5r \ge 0 \Rightarrow r \le \frac{1}{5}$$

$$y = 19 + 2r \ge 0 \Rightarrow r \ge -\frac{19}{2}$$

$$x : 46 \quad 41 \quad 36 \quad \dots \quad 6 \quad 1 \quad \dots \quad 2 \text{ korunov\'e mince}$$

$$z : 1 \quad 3 \quad 5 \quad \dots \quad 17 \quad 19 \quad \dots \quad 5 \text{ korunov\'e mince}$$

Př.: Řešte v Z^2 : 5x - 13y = 2

Obecný postup: modifikace Euklidova algoritmu: Z rovnice osamostatníme tu neznámou, jejíž koeficient je v absolutní hodnotě menší.

$$\underline{x} = \frac{13y + 2}{5} = 2y + \frac{3y + 2}{5}$$

$$\exists u \in Z : \frac{3y + 2}{5} = u \Rightarrow 3y = 5u - 2 \Rightarrow \underline{y} = \frac{5u - 2}{3} = u + \frac{2u - 2}{3} = \underline{u} + \frac{2}{3}(u - 1)$$

$$\exists v \in Z : \frac{2}{3}(u - 1) = v \Rightarrow 2u - 2 = 3v \Rightarrow \underline{u} = \frac{3v + 2}{2} = v + \frac{v + 2}{2} = \underline{v + 1 + \frac{v}{2}}$$

$$\exists w \in Z : \frac{v}{2} = w \Rightarrow \underline{v} = 2\underline{w}$$

Nyní zpětně dosazujeme:
$$\underline{u} = \frac{3 \cdot 2w + 2}{2} = \underline{3w + 1}$$

$$\underline{y} = \frac{5(3w + 1) - 2}{3} = \frac{15w + 3}{3} = 5w + 1$$

$$\underline{x} = \frac{13(5w + 1) + 2}{5} = \frac{13 \cdot 5w + 15}{5} = \underline{13w + 3}$$

$$P = \{[3 + 13w; 1 + 5w]; w \in Z\}$$

§19. Algebraické rovnice

Def.: Algebraickou rovnicí n-tého stupně s jednou neznámou $x \in R$ nazýváme každou rovnici tvaru $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0$ (\circ), kde $n \in N; a_0, a_1, \ldots, a_n \in R$ jsou koeficienty rovnice, $a_n \neq 0$.

Řešit rovnici (\circ) znamená určit všechna čísla $x_0 \in R$ taková, pro něž platí $a_n x_0^n + a_{n-1} x_0^{n-1} + \ldots + a_1 x_0 + a_0 = 0$.

Pozn.: a) Levou stranu algebraické rovnice *n*-tého stupně tvoří polynom *n*-tého stupně.

b) Lineární, resp. kvadratická rovnice je zvláštním případem rovnice (\circ) pro n=1, resp. n=2.

c) V tomto paragrafu si ukážeme pouze některé speciální případy řešení rovnic (°).

Pozn.: Hornerovo schéma:

Pomocí tohoto schématu můžeme uhádnout nějaký kořen c rovnice (°). Pro něj je hodnota polynomu a(c) = 0. Není-li \underline{c} kořenem (\circ) , pak platí $a(c) \neq 0$. Rozložíme polynom a(x): $a(x) = (x - c) \cdot b(x) + a(c)$, kde b(x) je polynom stupně n-1.

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = (x-c) \cdot (b_{n-1} x^{n-1} + b_{n-2} x^{n-2} + \ldots + b_1 x + b_0) + a(c)$$

$$x^n$$
: $a_n = b_{n-1}$ \Rightarrow $b_{n-1} = a_n$

$$x^{n-1}: a_{n-1} = b_{n-2} - cb_{n-1} \implies b_{n-2} = a_{n-1} + cb_{n-1}$$

$$x^{n-2}$$
: $a_{n-2} = b_{n-3} - c \cdot b_{n-2} \implies b_{n-3} = a_{n-2} + c \cdot b_{n-2}$
: :

$$x^1$$
: $a_1 = b_0 - c \cdot b_1$ \Rightarrow $b_0 = a_1 + c \cdot b_1$

$$x^1$$
: $a_1 = b_0 - c \cdot b_1$ \Rightarrow $b_0 = a_1 + c \cdot b_1$
 x^0 : $a_0 = a(c) - c \cdot b_0$ \Rightarrow $a(c) = a_0 + c \cdot b_0$

	a_n	a_{n-1}	a_{n-2}		a_1	a_0
c	b_{n-1}	b_{n-2}	b_{n-3}	•••	b_0	a(c)

Podle a(c) tedy určíme, zda c je kořenem rovnice (\circ).

Zjistěte, zda rovnice $x^4 - 6x^3 + 5x^2 + 4x - 4 = 0$ á kořeny 1.-1. Př.:

	1	-6	5	4	-4	$\Rightarrow a(1) = 0 \Rightarrow 1$ is keyen
1	1	-5	0	4	0	$\Rightarrow a(1) = 0 \Rightarrow 1 \text{ je kořen}$
-1	1	-7	12	-8	4	$\Rightarrow a(-1) = 4 \Rightarrow -1$ není kořen

Tedy rovnici můžeme rozložit: $(x-1)(x^3-5x^2+4)=0$

Pozn.: a) Podobně jako kvadratická rovnice mohla mít 1 kořen dvojnásobný, algebraická rovnice *n*-tého stupně může mít také vícenásobné kořeny – nejvýše 1 *n*-násobný kořen.

b) Algebraická rovnice *n*-tého stupně může mít nejvýše *n* kořenů.

Určete násobnost kořene $x_0 = 1$ algebraické rce $x^6 - 15x^4 + 8x^3 + 51x^2 - 72x + 27 = 0$. Př.: Zapište tuto rovnici jako součin $(x-1)^k b(x) = 0$, kde k je násobnost kořene 1.

	1	0	-15	8	51	-72	27
1	1	1	-14	-6	45	-27	0
1	1	2	-12	-18	27	0	
1	1	3	-9	-27	0		
1	1	4	-5	-32			

$$\Rightarrow$$
1 je trojnásobný kořen

$$\Rightarrow (x-1)^3 \cdot (x^3 + 3x^2 - 9x - 27) = 0$$

Hledání racionálních kořenů algebraické rovnice *n*-tého stupně s racionálními koeficienty:

(také 2.ročník, VII. kapitola, § 3.)

V.19.1.: Nechť je dána algebraická rovnice $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = 0; a_n \neq 0$ s celočíselnými koeficienty. Nechť $\frac{r}{s}; r \in Z; s \in N; D(r,s) = 1$ je kořenem této rovnice.

Pak platí: $r/a_0 \wedge s/a_n$.

[Dk.: 1. r=0 (kořen je 0, s=1): $a_0 = 0 \Rightarrow 0/0$;1/ a_n

$$2. r \neq 0 : \text{kořen } x_0 = \frac{r}{s}:$$

$$\frac{a_n \frac{r^n}{s^n} + a_{n-1} \frac{r^{n-1}}{s^{n-1}} + a_{n-2} \frac{r^{n-2}}{s^{n-2}} + \dots + a_1 \frac{r}{s} + a_0 = 0}{a_n \frac{r^n}{s} + a_{n-1} r^{n-1} + a_{n-2} r^{n-2} s + \dots + a_1 r s^{n-2} + a_0 s^{n-1} = 0}$$

$$\underbrace{a_{n-1} r^{n-1} + a_{n-2} r^{n-2} s + \dots + a_1 r s^{n-2} + a_0 s^{n-1}}_{\in Z \Rightarrow s \text{ nedilí } r \Rightarrow s \text{ nedilí } r^n \Rightarrow \underline{s/a^n}}_{n-1} = -a_n \frac{r^n}{s}$$

$$\underbrace{a_n r^{n-1} + a_{n-1} r^{n-2} s + a_{n-2} r^{n-3} s^2 + \dots + a_1 s^{n-1} + a_0 s^{n-1}}_{\in Z \Rightarrow r \text{ nedili } s \Rightarrow r \text{ nedili } s^n \Rightarrow \underline{r/a_0}} = \underbrace{-a_0 \frac{s^n}{r}}_{\in Z}$$

V.19.2.: Nechť $\frac{r}{s}$ je racionální kořen algebraické rovnice (\circ) s celočíselnými koeficienty. Nechť \underline{m} je pevné celé číslo. Pak platí: (r - ms)/a(m), kde a(m) je hodnota polynomu a(x) pro x = m.

[Dk.:
$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = (x - m) \cdot (b_{n-1} x^{n-1} + b_{n-2} x^{n-2} + \dots + b_1 x + b_0) + a(m) = 0$$

kořen $x_0 = \frac{r}{s} : \left(\frac{r}{s} - m\right) \left(b_{n-1} \frac{r^{n-1}}{s^{n-1}} + b_{n-2} \frac{r^{n-2}}{s^{n-2}} + \dots + b_1 \frac{r}{s} + b_0\right) + a(m) = 0$

$$\frac{r - ms}{s} \left(b_{n-1} \frac{r^{n-1}}{s^{n-1}} + b_{n-2} \frac{r^{n-2}}{s^{n-2}} + \dots + b_1 \frac{r}{s} + b_0\right) = -a(m) \quad /\cdot \frac{s^n}{r - ms}$$

1. $r = ms : a(m) = 0 \Rightarrow$ věta platí

2.
$$r \neq ms$$
: $\underbrace{b_{n-1}r^{n-1} + b_{n-2}r^{n-2} \cdot s + \ldots + b_1rs^{n-2} + b_0s^{n-1}}_{\in Z \Rightarrow (r-ms) \text{ nedilf } s \Rightarrow (r-ms) \text{ nedilf } s^n \Rightarrow \underline{(r-ms)/a(m)}}_{\in Z} = \underbrace{-a(m) \cdot \frac{s^n}{r - ms}}_{\in Z}$

Pozn.: Věta se užívá pro $m = \pm 1$: (r-s)/a(1)(r+s)/a(-1)

Př.: Najděte racionální kořeny algebraické rovnice $x^3 + \frac{1}{6}x^2 - \frac{5}{6}x - \frac{1}{3} = 0$.

$$6x^{3} + x^{2} - 5x - 2 = 0 r/(-2) \Rightarrow r \in \{1; -1; 2; -2\}$$

$$s/6 \Rightarrow s \in \{1; 2; 3; 6\}$$

$$\frac{r}{s} \in \{1; -1; 2; -2; \frac{1}{2}; -\frac{1}{2}; \frac{1}{3}; -\frac{1}{3}; \frac{2}{3}; -\frac{2}{3}; \frac{1}{6}; -\frac{1}{6}\}$$

						_
(r-s)/a(1)		6	1	-5	-2] , 1 , 2 , 1
, , , , , ,	1	6	7	2	0	⇒kořen 1
(r+s)/a(-1)	-1	6	-5	0	-2	$\Rightarrow (r+s)/-2 \Rightarrow$
		•				vyškrtáme v tabulce
						ta čísla, která nemohou
						být kořeny

ostatní vyzkoušíme Hornerovým schématem:

	6	7	2
-2	6	-5	12
_ 1			
$\overline{2}$	6	-4	0
1			
3	6	2	
2			
$-\frac{1}{3}$	6	0	

$$P = \left\{1; -\frac{1}{2}; -\frac{2}{3}\right\}$$

§20. Reciproké rovnice

Def.: Reciprokou rovnicí n-tého stupně prvního, resp. druhého druhu nazýváme algebraickou rovnici $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0; a_n \neq 0$; pro jejíž koeficienty $a_k (k=0;1;\ldots;n)$ platí: $a_k = a_{n-k}$, resp. $a_k = -a_{n-k}$.

Pozn.: a) U reciproké rovnice sudého stupně $n=2m; m\in N$ I.druhu může být koeficient a_m libovolný, II.druhu musí být $a_m=0$.

- b) Reciproké rovnice mají všechny kořeny různé od nuly.
- c) Má-li reciproká rovnice kořen $x = x_0$, má také kořen $x = \frac{1}{x_0}$.

Pozn.: a) Postup řešení reciproké rovnice I.druhu:

- α) $n = 2m; m \in N : 1$. dělíme rovnici x^m
 - 2. z dvojic koeficientů a^k, a_{n-k} vytkneme jejich společný koeficient
 - 3. zavedeme substituci $z = x + \frac{1}{x} \Rightarrow x^2 + \frac{1}{x^2} = y^2 2;$ $x^3 + \frac{1}{x^3} = y^3 - 3y; x^4 + \frac{1}{x^4} = y^4 - 4y^2 + 2; \dots$

I.druh stupně lichého

- β) $n=2m+1; m \in N$: Reciproká rovnice I.druhu stupně lichého má vždy kořen x=-1. Tedy po dělení výrazem x+1 dostaneme reciprokou rovnici I.druhu stupně sudého.
- b) Postup řešení reciproké rovnice II.druhu:
 Reciproká rovnice II.druhu má vždy kořen x=1. Tedy po dělení výrazem x−1 dostaneme reciprokou rovnici I.druhu.
- Př.: a) Řešte v \mathbf{R} rovnici $2x^4 + 3x^3 16x^2 + 3x + 2 = 0$ reciproká rovnice I.druhu, stupně sudého

1.
$$2x^2 + 3x - 16 + \frac{3}{x} + \frac{2}{x^2} = 0$$

2.
$$2\left(x^2 + \frac{1}{x^2}\right) + 3\left(x + \frac{1}{x}\right) - 16 = 0$$

3.
$$x + \frac{1}{x} = y \Rightarrow x^2 + \frac{1}{x^2} = y^2 - 2$$

$$2(y^2-2)+3y-16=0$$

$$2y^2 + 3y - 16 = 0$$

$$y_{1,2} = \frac{-3 \pm \sqrt{9 + 160}}{4} = \frac{-3 \pm 13}{4} = 4$$

I.
$$\frac{x + \frac{1}{x} = \frac{10}{4}}{4x^2 - 10x + 4 = 0}$$

$$x_{1,2} = \frac{10 \pm \sqrt{100 - 64}}{8} = \frac{10 \pm 6}{8} = \sqrt{\frac{2}{\frac{1}{2}}}$$

II.
$$x + \frac{1}{x} = -4$$

$$x^{2} + 4x + 1 = 0$$

$$x_{3,4} = \frac{-4 \pm \sqrt{16 - 4}}{2} = \frac{-4 \pm 2\sqrt{3}}{2} = -2 \pm \sqrt{3}$$

$$P = \left\{ 2; \frac{1}{2}; -2 + \sqrt{3}; -2 - \sqrt{3} \right\}$$

b) Řešte v \mathbf{R} rovnici $12x^4 - 25x^3 + 25x - 12 = 0$ - reciproká rovnice II.druhu

1.		12	-25	0	25	-12
$\underline{x_1=1}$:	1	12	-13	-13	12	0
$x_2 = -1$:	-1	12	-25	12	0	

 $\frac{12x^2 - 25x + 12 = 0}{1 \cdot \text{druh stupně sudého}}$

$$x_{3,4} = \frac{25 \pm \sqrt{625 - 576}}{24} = \frac{25 \pm 7}{24} = \sqrt{\frac{\frac{32}{24}}{\frac{24}{3}}} = \frac{\frac{4}{3}}{\frac{18}{24}} = \frac{3}{\frac{4}{3}}$$

$$P = \left\{1; -1; \frac{4}{3}; \frac{3}{4}\right\}$$

Seznam použité literatury:

A. Literatura

- *Petr Liebl*: ROVNICE A NEROVNICE pro I. ročník tříd gymnázií se zaměřením na matematiku, Praha, SPN 1989
- František Vejsada/František Talafous : SBÍRKA ÚLOH Z MATEMATIKY pro SVVŠ, Praha, SNP 1969

B. Přednášky

• Boucník Pavel – Přednášky v matematické třídě pro I. ročník gymnázií

<u>Resumé</u>

Úkolem mé závěrečné maturitní práce bylo obsáhnout a systematizovat učivo 1. ročníku z matematiky a to části rovnice a nerovnice.

Převedl jsem do elektronické podoby přednášky z vlastních hodin matematiky a doplnil je o příklady ze cvičení a dalších učebnic.

Tato práce bude užitečná pro zefektivnění a usnadnění další výuky.

	_	
		Ondřej Hrabec