Tutorial – Week3

Q1. Let $A = \{3, 7, \{5, 7\}\}$

- i. Find the power set P(A).
- ii. What is the cardinality of P(A).
- iii. $B = \{x | 2x^2 11x = 21\}$, use Venn diagram to show the relationship of $A \cap B$.
- iv. $C = \{y | y^2 2y = 3\}$, determine $A \cap B \cup C$.

Answer:

i.
$$\{\{3\}, \{7\}, \{5,7\}, \{3,7\}, \{3,\{5,7\}\}, \{7,\{5,7\}\}, \{3,7,\{5,7\}\}, \emptyset\}$$

ii.
$$|P(A)| = 8$$

iii.
$$2x^2 - 11x = 21 \Rightarrow (2x + 3)(x - 7) = 0$$

 $B = \{-1.5, 7\}$

iv.
$$y^2 - 2y = 3 \Rightarrow (y+1)(y-3) = 0$$

 $C = \{-1, 3\}$
 $A \cap B \cup C = \{7, -1, 3\}$

Q2. Consider three sets A, B and C that satisfy the following 2 conditions:

 $C \subseteq A$ and $B \cap C = \emptyset$. There are several possibilities regarding the relationship between these 3 sets. Draw the Venn diagram for each of these cases.

Answer:

Q3. Use IEEE 754 32-bit format. Find

- 1) (256.875)₁₀.
- 2) Find the second largest number in the 32-bit format.

Answer:

1) Step 1: observe the sign. $(256.875)_{10} \ \text{is positive, which means the first bit will be } 0.$

Step 2: convert decimal to binary.

	Use 2 ⁸		Use 2^{-1}			Use 2^{-2}			Use 2^{-3}		
	256.875			0.875			0.375			0.125	
_	256		_	0.5		-	0.25		_	0.125	
	0.875			0.375			0.125			0.0	

In a sum form: $2^8 + 2^{-1} + 2^{-2} + 2^{-3}$

In a binary form: 1 0000 0000.111

Step 3: move the radix point just behind the leading bit, count how many shifts and that is the exponent. Get the significant from a scientific representation.

Move to left 8 times, E = 8.

Scientific representation: $1.0000\ 0000\ 111\times 2^8$

If your significant is shorter than 23 bits add trailing zeros.

Significant = $0000\ 0000\ 1110\ 0000\ 0000\ 000$

Step 4: calculate exponent in binary.

The exponent is represented by 8 bits and is shifted by 127.

In our case, E=8. So, we need to express 135 (from 8+127) in binary.

In a sum form: $2^7 + 2^2 + 2^1 + 2^0 = 135$

In a binary form: $(1000\ 0111)_2$

2) Largest Positive Number:

0 1111 1110 1111 1111 1111 1111 1111 111

Significand: 23 bits 1, $1 + (1 - 2^{-23}) = 2 - 2^{-23}$

Exponent: (254 - 127) = 127

Largest Number = $(2 - 2^{-23}) \times 2^{127} \cong 3.40282346 \times 10^{38}$

The second largest number:

0 1111 1110 1111 1111 1111 1111 1111 110

$$(2-2^{-22}) \times 2^{127} \cong 3.40282326 \times 10^{38}$$

Q4. Writing Set-Builder Notation

$$A = \{-7, -5, -3, -1, 1, 3\}$$

Answer:

$$A = \{2x + 1 | x \in Z, -4 \le x \le 1\}$$

 \boldsymbol{Z} is the set of integers.