

AKADEMIA GÓRNICZO-HUTNICZA

Dokumentacja do projektu

Biblioteka C++ do symulacji różnych efektów świetlnych na pasku LED

z przedmiotu

Języki Programowania Obiektowego

Elektronika i telekomunikacja, III rok

Aleksander Markowicz

Grupa 4, piątek 11:30

prowadzący: mgr inż. Jakub Zimnol

09.01.2025

1. Wstęp

Projekt polega na stworzeniu wielofunkcyjnego systemu sterowania panelem LED przy użyciu mikrokontrolera Arduino. Głównym celem jest implementacja różnych efektów świetlnych oraz umożliwienie użytkownikowi ich wyboru za pomocą enkodera obrotowego i wyświetlacza OLED. Projekt został napisany w języku C++ zgodnie z zasadami programowania obiektowego.

2. Opis projektu:

3.1. Cel projektu

Głównym celem projektu jest zaprezentowanie możliwości programowania mikrokontrolerów w C++ poprzez stworzenie systemu sterowania diodami LED z różnorodnymi efektami świetlnymi.

3.2. Główne funkcjonalności

- Wyświetlanie interfejsu użytkownika na wyświetlaczu OLED (nazwa trybu i wartość).
- Sterowanie za pomocą enkodera obrotowego (zmiana trybu lub parametrów).
- Implementacja różnych trybów:
 - o Temperatura barwowa (Kelvin): Zmiana barwy światła.
 - Kolor (Hue): Regulacja koloru w przestrzeni HSL.
 - o **Jasność:** Sterowanie mocą LED.
 - Efekty świetlne: Symulacja efektów takich jak:
 - Radiowóz (Police),
 - Telewizor (TV),
 - Lampy błyskowe (Paparazzi),
 - Ogień (Fire),
 - Disco,
 - Fajerwerki (Firework).

4. Struktura projektu

Projekt został napisany zgodnie z zasadami programowania obiektowego i składa się z następujących plików:

4.1. Główne pliki projektu

- Panel_ledowy.ino: Plik główny obsługujący interfejs użytkownika i inicjalizujący system.
- Mode.h i Mode.cpp: Klasa bazowa dla trybów pracy (np. Temperatura, Hue, Power).
- Effect.h i Effect.cpp: Klasa bazowa dla efektów świetlnych i ich implementacje.
- EffectMode.h i EffectMode.cpp: Klasa umożliwiająca wybór i uruchamianie efektów.

4.2. Struktura folderów

- src/: Folder zawierający wszystkie pliki źródłowe.
- include/: Folder (opcjonalny) z plikami nagłówkowymi.

5. Instrukcja uruchomienia

5.1. Wymagania sprzętowe

- Mikrokontroler Arduino (np. Arduino Uno).
- Pasek LED kompatybilny z biblioteką Adafruit NeoPixel.
- Wyświetlacz OLED z interfejsem I2C.
- Enkoder obrotowy z przyciskiem.

5.2. Wymagania programowe

- Arduino IDE z zainstalowanymi bibliotekami:
 - o Adafruit GFX,
 - o Adafruit SSD1306,
 - Adafruit NeoPixel.

5.3. Kroki uruchomienia

- 1. Otwórz projekt w Arduino IDE.
- 2. Skonfiguruj odpowiednie porty i piny w sekcji konfiguracji.
- 3. Wgraj kod na mikrokontroler Arduino.
- 4. Podłącz wyświetlacz OLED, pasek LED oraz enkoder do odpowiednich pinów.
- 5. Uruchom system i steruj efektami za pomocą enkodera.

6. Opis działania

6.1. Interfejs użytkownika

- Wyświetlacz OLED prezentuje aktualny tryb pracy i jego wartość.
- Przyciski enkodera służą do zmiany trybu lub regulacji wartości.

6.2. Opis trybów

- Temperatura: Użytkownik reguluje barwę światła w zakresie 2900K–5600K.
- Hue: Regulacja koloru w przestrzeni HUE (0–360).
- **Power:** Regulacja jasności w procentach (0–100%).
- Efekty: Symulacja zaawansowanych efektów świetlnych.

7. Przykłady zastosowań

Projekt może być użyty jako:

- Dekoracja świetlna.
- Narzędzie dydaktyczne do nauki programowania mikrokontrolerów.
- System oświetlenia w miniaturach i projektach DIY.

8. Podsumowanie

Projekt spełnia wszystkie wymagania:

- Zastosowano programowanie obiektowe (C++).
- Użyto dziedziczenia, aby obsługiwać różne tryby i efekty.
- Kod został zoptymalizowany i skomentowany w stylu Doxygen.
- Zapewnia elastyczność i możliwość rozbudowy.