Санкт-Петербургский *Национальный Исследовательский Университет ИТМО*Факультет программной инженерии и компьютерной техники

Основы профессиональной деятельности Лабораторная работа №3 Вариант 3104

Выполнил: студент группы Р3231 Нестеров Иван Алексеевич

Преподаватель: Блохина Елена Николаевна

Задание:

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

52F:	0548	1	53D:	F407	1	54B:	6530
530:	A000	Ĺ	53E:	0480	Ĺ		
531:	E000	Ĺ	53F:	F405	Ĺ		
532:	E000	Ĺ	540:	0400	Ĺ		
533: +	AF40	Ĺ	541:	0400	Ĺ		
534:	0680	Ĺ	542:	7EEF	İ		
535:	0500	1	543:	F801	ı		
536:	EEFB	Ĺ	544:	EEED	ĺ		
537:	AF04	Ĺ	545:	8531	İ		
538:	EEF8	Ī	546:	CEF4	Ī		
539:	4EF5	1	547:	0100	1		
53A:	EEF5	Ĺ	548:	0000	ĺ		
53B:	ABF4	Ī	549:	0580	İ		
53C:	0480	1	54A:	B540	1		

Текст исходной программы:

Адре	Код команды	Мнемоника	Комментарий					
c								
533	AF40	LD #40	Прямая загрузка $40_{16} ightarrow AC$					
534	0680	SWAB	Обмен значений старшего и младшего байтов					
535	0500	ASL	Сдвиг AC влево: $AC15 \rightarrow C, 0 \rightarrow AC0$					
536	EEFB	ST 0x532	Прямая относительная (IP-5) адресация. $AC \rightarrow 532$					
537	AF04	LD #4	Прямая загрузка $4_{16} ightarrow AC$					
538	EEF8	ST 0x531	Прямая относительная (IP-8) адресация. $AC \rightarrow 531$					
539	4EF5	ADD 0x52F	Прямая относительная (IP-11) адресация. $52F_{16} + AC \rightarrow AC$					
53A	EEF5	ST 0x530	Прямая относительная (IP-11) адресация. $AC \rightarrow 530$					
53B	ABF4	LD 0x52F	Косвенная относительная автодекрементная (IP-13) адресация. $52F_{16} \rightarrow AC$					
53C	0480	ROR	Сдвиг AC и C вправо. AC0 \rightarrow C, C \rightarrow AC15					
53D	F407	BCS (BHIS) 0x545	Переход в IP+7, если C == 1					
53E	0480	ROR	Сдвиг AC и C вправо. $AC0 \rightarrow C, C \rightarrow AC15$					
53F	F405	BCS (BHIS) 0x545	Переход в IP+5, если C == 1					
540	0400	ROL	Сдвиг АС и С влево. $AC15 \rightarrow C, C \rightarrow AC0$					
541	0400	ROL	Сдвиг АС и С влево. $AC15 \rightarrow C, C \rightarrow AC0$					
542	7EEF	CMP 0x532	Прямая относительная (IP-17) адресация. Установить флаги по результату АС - 532					
543	F801	BLT 0x545	Переход на IP+1, если N != V					
544	EEED	ST 0x532	Прямая относительная (IP-19) адресация. $AC \rightarrow 532$					
545	8531	LOOP 0x531	$531 - 1_{16} \rightarrow 531$. Если $531 \le 0$, то $IP + 1 \rightarrow IP$					
546	CEF4	JUMP 0x53B	$\text{IP} - \mathcal{C}_{16} \rightarrow \text{IP}$					
547	0100	HLT	Отключение ТГ, переход в пультовый режим					

Описание программы:

Программа предназначена для определения в одномерном массиве из 4 элемента максимального числа кратного 4. В том случае, если такой элемент не определен, то результатом работы программы является минимальное число, которое можно записать в сетку БЭВМ.

Область представления:

А[0]-А[3] (элементы массива) – знаковые 16-ти разрядные числа

х, у (адреса) – 11-ти разрядные беззнаковые числа

і (кол-во элементов массива) – 4 (величина постоянная).

R — результат работы программы. Изначально равен 1000000000000000_2 . Позже (возможно) будет обновлен максимальным делящимся на 4 элементом анализируемого массива.

Область допустимых значений:

Переменные A[0] - A[3]: $[-2^{15}; 2^{15} - 1]$

Переменная х (адрес первого элемента массива): $[0; 0x4FB_{16}]$ $U[0x50E_{16}; 0xFFD_{16}]$

Переменная у (указатель ячейки массива): $[0; 0x4FD_{16}] \cup [0x50E_{16}; 0xFFF_{16}]$

Const i: {4}

Переменная R: число из диапазона $[-2^{15}; 2^{15} - 1]$.

Кол-во элементов массива, с которым может работать программа: {4}

Расположение в памяти ЭВМ программы, исходных данных и результатов:

Расположение программы: 533-547.

Исходные данные:

Ячейка для хранения адреса первого элемента массива: 52F

Ячейка для хранения адреса текущего элемента массива: 530

Ячейка для хранения количества элементов массива: 531

Ячейка для хранения числа для сравнения (соответственно, промежуточного или же конечного результата): 532

Расположение элементов массива: 548-54В

Адрес первой выполняемой команды: 533

Адрес последней выполняемой команды: 547

Таблица трассировки:

Выполняемая команда		Содержание регистров процессора после выполнения команды								Ячейка, содержимое которой изменилось после выполнения программы	
Адре с	Значен ие	IP	CR	AR	DR	SP	BR	AC	NZV C	Адрес	Значение
533	AF40	534	AF40	533	0040	000	0040	0040	0000		
534	0680	535	0680	534	0680	000	0534	4000	0000		
535	0500	536	0500	535	4000	000	0535	8000	1010		
536	EEFB	537	EEFB	532	8000	000	FFFB	8000	1010	532	8000
537	AF04	538	AF04	537	0004	000	0004	0004	0000		
538	EEF8	539	EEF8	531	0004	000	FFF8	0004	0000	531	0004
539	4EF5	53A	4EF5	52F	0548	000	FFF5	054C	0000		
53A	EEF5	53B	EEF5	530	054C	000	FFF5	054C	0000	530	054C
53B	ABF4	53C	ABF4	54B	6530	000	FFF4	6530	0000	530	054B
53C	0480	53D	0480	53C	0480	000	053C	3298	0000		
53D	F407	53E	F407	53D	F407	000	053D	3298	0000		
53E	0480	53F	0480	53E	0480	000	053E	194C	0000		
53F	F405	540	F405	53F	F405	000	053F	194C	0000		
540	0400	541	0400	540	0400	000	0540	3298	0000		
541	0400	542	0400	541	0400	000	0541	6530	0000		
542	7EEF	543	7EEF	532	8000	000	FFEF	6530	1010		
543	F801	544	F801	543	F801	000	0543	6530	1010		
544	EEED	545	EEED	532	6530	000	FFED	6530	1010	532	6530
545	8531	546	8531	531	0003	000	0002	6530	1010	531	0003
546	CEF4	53B	CEF4	546	053B	000	FFF4	6530	1010		
53B	ABF4	53C	ABF4	54A	B540	000	FFF4	B540	1000	530	054A
53C	0480	53D	0480	53C	0480	000	053C	5AA0	0000		
53D	F407	53E	F407	53D	F407	000	053D	5AA0	0000		
53E	0480	53F	0480	53E	0480	000	053E	2D50	0000		
53F	F405	540	F405	53F	F405	000	053F	2D50	0000		
540	0400	541	0400	540	0400	000	0540	5AA0	0000		
541	0400	542	0400	541	0400	000	0541	B540	1010		

542	7EEF	543	7EEF	532	6530	000	FFEF	B540	0011		
543	F801	545	F801	543	F801	000	0001	B540	0011		
545	8531	546	8531	531	0002	000	0001	B540	0011	531	0002
546	CEF4	53B	CEF4	546	053B	000	FFF4	B540	0011		
53B	ABF4	53C	ABF4	549	0580	000	FFF4	0580	0001	530	0549
53C	0480	53D	0480	53C	0480	000	053C	82C0	1010		
53D	F407	53E	F407	53D	F407	000	053D	82C0	1010		
53E	0480	53F	0480	53E	0480	000	053E	4160	0000		
53F	F405	540	F405	53F	F405	000	053F	4160	0000		
540	0400	541	0400	540	0400	000	0540	82C0	1010		
541	0400	542	0400	541	0400	000	0541	0580	0011		
542	7EEF	543	7EEF	532	6530	000	FFEF	0580	1000		
543	F801	545	F801	543	F801	000	0001	0580	1000		
545	8531	546	8531	531	0001	000	0000	0580	1000	531	0001
546	CEF4	53B	CEF4	546	053B	000	FFF4	0580	1000		
53B	ABF4	53C	ABF4	548	0000	000	FFF4	0000	0100	530	0548
53C	0480	53D	0480	53C	0480	000	053C	0000	0100		
53D	F407	53E	F407	53D	F407	000	053D	0000	0100		
53E	0480	53F	0480	53E	0480	000	053E	0000	0100		
53F	F405	540	F405	53F	F405	000	053F	0000	0100		
540	0400	541	0400	540	0400	000	0540	0000	0100		
541	0400	542	0400	541	0400	000	0541	0000	0100		
542	7EEF	543	7EEF	532	6530	000	FFEF	0000	1000		
543	F801	545	F801	543	F801	000	0001	0000	1000		
545	8531	547	8531	531	0000	000	FFFF	0000	1000	531	0000
547	0100	548	0100	547	0100	000	0547	0000	1000		

Вывод: по ходу выполнения данной лабораторной работы я познакомился с различными видами адресации в БЭВМ, с командами ветвления и сравнения чисел, с организацией хранения массивов. Знания пригодятся для «низкоуровневого» понимания принципов работы ЭВМ с циклами при написании каких-то более высокоуровневых программ. Проведенная же работа с массивами дает понимание того, почему индексы массива начинаются с 0: ведь первый элемент массива это лишь сдвиг 0 в памяти, относительно адреса начала массива.