Final Presentation Master Thesis

Frederike Duembgen

July 26, 2016

Outline

```
Introduction
   Motivation
   Project Goals
   Theoretical Concepts
   Results Mapping
   Mapping
   Localization
```

Conclusion

Dense SLAM with B-Splines

Motivation

Picture of Sparse SLAM Picture of Dense SLAM

Project Goal and Methodology

Project Goals

Create framework for surface reconstruction and localization using moving stereo camera based on moving monocular camera case.

Methodology

Added functionalities

- Create spline surface reprensentation from static stereo camera.
- Localize new stereo camera position using obtained map.

- Simulation environment ROSwith rvizfor pointcloud and opencyfor image handling.
- Implementation of optimization algorithm using Eigen's sparse matrix solvers.
- Localization method using photometric errors only and generic rotation representation

B-Splines for surface representation

Theoretical Concepts

Splines: piecewise polynomial function of degree < d.

B(asis)-Splines: Specific choice of finite-support splines calculated by Cox de Boor recursion formula (support s = d + 1).

$$h(x_j) = \sum_{i=0}^M a_i h_i(x_j)$$

$$h_i(x_j)$$
, fo

Camera setup

Theoretical Concepts

Camera poses described by ${}_{M}\mathbf{r}_{MC_k}$ and \mathbf{C}_{C_kM} for k=1,2 or

$$oldsymbol{\xi}_{\mathcal{C}_k} := \left[_{M} oldsymbol{r}_{M \mathcal{C}_k}, \Phi_{ extbf{CM}}
ight]^T \ oldsymbol{\xi}_{\mathcal{S}} := \left[_{M} oldsymbol{r}_{M \mathcal{S}}, \Phi_{ extbf{SM}}
ight]^T$$

with $\Phi_{\textit{CM}},\,\Phi_{\textit{SM}}\in\mathbb{R}^3$ [?]

If stereo rotation matrices $\mathbf{R}_k := \mathbf{C}_{SC}$ and baseline $T_x := {}_S \mathbf{r}_{C_1 C_2}$ are known, one pose of $\{\boldsymbol{\xi}_{C_1}, \boldsymbol{\xi}_{C_2}, \boldsymbol{\xi}_S\}$ is sufficient for all poses to be, defined to

Photometric errors for mapping

Theoretical Concepts

Photometric error of grid point x_i, y_i :

$$r_j = I_1(\mathbf{u}_{j,1}) - I_2(\mathbf{u}_{j,2})$$
,

with l_1 , l_2 interpolated intensities at the locations $\boldsymbol{u}_{i,k}$ in camera k=1 and k=2.

$$egin{aligned} oldsymbol{u}_{j,k} &= oldsymbol{K}_k D_k (oldsymbol{T}_k (_M oldsymbol{r}_{MX_j}))) \ oldsymbol{T}_k (_M oldsymbol{r}_{MX_j}) &= \pi (oldsymbol{C}_{C_k} oldsymbol{r}_{C_k} X_j) \ &= \pi (oldsymbol{C}_{C_k} M (_M oldsymbol{r}_{MX_j} -_M oldsymbol{r}_{MC_k})) \end{aligned}$$

3D point given by spline map:

Photometric errors for mapping

Theoretical Concepts

The analytical Jacobian

$$oldsymbol{J}_r(oldsymbol{a}) = rac{\partial oldsymbol{r}(oldsymbol{a})}{\partial oldsymbol{a}} \in \mathbb{R}^{ extit{N} imes M}$$

is obtained by the chain rule:

$$oldsymbol{J}_r(oldsymbol{a}) = (oldsymbol{J}_{pixel,1}oldsymbol{J}_{camera,1}(_Moldsymbol{r}_{MX_i})) oldsymbol{J}_{splines},
onumber$$
 $-oldsymbol{J}_{pixel,2}oldsymbol{J}_{camera,2}(_Moldsymbol{r}_{MX_i}))oldsymbol{J}_{splines},$

with

$$oldsymbol{J}_{pixel,k} = rac{\partial I_k(oldsymbol{u}_k)}{\partial ilde{oldsymbol{u}}_k}, \quad oldsymbol{J}_{ ext{camera},k}(oldsymbol{N}_{ ext{Duembgen}},oldsymbol{N}_{ ext{July}}) = rac{\partial ilde{oldsymbol{u}}_k}{\partial oldsymbol{N}} rac{\partial ilde{oldsymbol{u}}_k}{\partial oldsymbol{N}} oldsymbol{N}_{ ext{M}} oldsymbol{N}_{ ext{N}} oldsymbol{N}_{ ext{July}} oldsymbol{N}_{ ext{July}} oldsymbol{N}_{ ext{M}} oldsymbol{N}_{ ext{N}} oldsymbol{N}_{ ext{N}} oldsymbol{N}_{ ext{July}} oldsymbol{N}_{ ext{M}} oldsymbol{N}_{ ext{N}} oldsymbol{N}_{ ext{July}} oldsymbol{N}_{ ext{M}} oldsymbol{N}_{ ext{N}} oldsymbol{N}_{ ext{N}} oldsymbol{N}_{ ext{N}} oldsymbol{N}_{ ext{M}} oldsymbol{N}_{ ext{M}} oldsymbol{N}_{ ext{N}} oldsymbol{N}_{ ext{M}} oldsymbol{N}_{ ext{M}} oldsymbol{N}_{ ext{M}} oldsymbol{N}_{ ext{N}} oldsymbol{N}_{ ext{M}} oldsymb$$

Optimization problem for mapping

Theoretical Concepts

$$\begin{split} \hat{\boldsymbol{a}} &= \underset{\boldsymbol{a} \in \mathbb{R}^M}{\min} \ f(\boldsymbol{a}) \\ &= \underset{\boldsymbol{a} \in \mathbb{R}^M}{\min} \ \frac{1}{2} (\sum_{j=0}^N \boldsymbol{w}_j \boldsymbol{r}_j (\boldsymbol{a})^2 + \beta \boldsymbol{a}^T \boldsymbol{B} \boldsymbol{a} + \gamma \boldsymbol{a}^T \boldsymbol{G} \boldsymbol{a}) \ , \end{split}$$

with

- bending and gradient energy regularization terms and
- weight representing the average visibility of point j.

Photometric errors for localization

Theoretical Concepts

Photometric error of grid point x_j, y_j :

$$r_{j,1} = I_1(\mathbf{u}_{j,1}) - \hat{I}(x_j, y_j)$$

 $r_{j,2} = I_2(\mathbf{u}_{j,1}) - \hat{I}(x_j, y_j)$,

with I_1 , I_2 interpolated intensities at pixels $\boldsymbol{u}_{j,k}$ in camera k=1 and k=2 and $\hat{I}(x_j,y_j)$ the estimated intensity from previous step.

Photometric errors for localization

Theoretical Concepts

The analytical Jacobian

$$J_r(\xi) = \frac{\partial r(\xi)}{\partial \xi} \in \mathbb{R}^{N \times 6}$$

is obtained by the chain rule:

$$oldsymbol{J}_r(oldsymbol{\xi}) = oldsymbol{J}_{ extit{pixel}} oldsymbol{J}_{ extit{camera}}(oldsymbol{\xi})$$

with

$$oldsymbol{J}_{ extit{pixel}} = rac{\partial I(oldsymbol{u})}{\partial ilde{oldsymbol{u}}}, \;\; oldsymbol{J}_{ extit{camera}}(oldsymbol{\xi}) = rac{\partial ilde{oldsymbol{u}}}{\partial oldsymbol{\xi}}$$

Optimization problem for localization

Theoretical Concepts

$$\hat{\xi} = rg \min_{\hat{\xi} \in \mathbb{R}^6} rac{1}{2} \sum_{j=0}^N r_j(\xi)^2$$

Datasets and parameters

Results Mapping

Dataset	Plane test	Middlebury [?]	Inhouse
Ground truth	analytical	structured light	pattern matching
Images	rectified	rectified	non rectified
Calibration	+++	++	+
Mapping	yes	yes	yes
Localization	yes	no	no
Spline resolution	20 x 20	75 × 100	
Map dimensions	0.9×1.2	1.5 × 2.0	
Map resolution	90 × 120		

Plane test case

Mapping

Middlebury dataset

Mapping

Inhouse dataset

Mapping

Parameters: $\beta = 10 \ \gamma = 100e3 \ d = 100$

Parameters:

$$\beta = 10$$

ETH zürich

Plane test case

Localization

ETH zürich

Achievements

Localization

Suggestions For Future Work

Localization

