试卷一


```
\begin{bmatrix} 3 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 6 & 0 & 0 & 8 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 7 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 5 \\ 0 & 0 & 0 & 0 & 4 & 0 \end{bmatrix}
```

2. 已知双向链表如下图,结点中指向前趋结点指针为 11ink,指向后继结点指针为 r1ink。 p 和 q 是指向此类结点的指针,请写出删除结点*p 应执行的语句序列(不要求写出完整的函数)。

3. 计算模式串 P=" aabaabac"的改进的 next()的值。

j	0	1	2	3	4	5	6	7
P	a	a	b	a	a	b	a	c
改进的			*					
next(j)			4	7	1			

4. 画出下图中的二叉树所对应的树或森林

5、对序列(15,84,25,21,47,27,68)进行简单选择排序,写出各趟排序结果,并说明平均情况下时间复杂度。

五、算法填空(每空2分,共10分)

1. 请补充完整下列将元素 x 入栈运算,设一维数组 s 保存栈中元素, top 是栈顶指针。

```
template<class T>
void SeqStack<T>::Push(const T &x)
{  assert(!IsFull());
```

2. 试将以下实现快速排序算法的C++程序补充完整。其中函数Swap的功能是交换两个实参的值。

```
template <class T>
void QSort(T A[], int left, int right)
{
    int i=left, j=right+1;
```

六、解答题(每小题5分,共30分)

- 1. 设字符集 $D=\{A, B, C, D, E\}$, 各字符使用频率 $W=\{1, 2, 5, 6, 4\}$ 。画出哈夫曼树, 求其 WPL, 并给出各字符的编码。
- 2. 向空的 AVL 树中, 依次插入关键字 5, 2, 4, 8, 6 和 7, 画出每次插入生成的 AVL 树。
- 3. 3 阶 B-树见下图。画出依次删除 14 和 13 的两个状态下的 3 阶 B-树。

4. 画出用 Kruskal 算法构造下图的最小代价生成树(包括中间过程),并求其最小代价。

5. 有长度为 13 的散列表 ht,采用双散列法解决冲突,散列函数为:

 $h_1(\text{key}) = \text{key} 13, h_2(\text{key}) = \text{key} 11 + 1,$

试用关键字值的序列: 52, 37, 24, 27, 83, 13, 62, 48 建立散列表。

- (1) 求出每个关键字的 h₂(key)值;
- (2) 画出建成的散列表。

key	52	37	24	27	83	13	62	48
h ₁ (key)	0	11	11	1	5	0	10	9
h ₂ (key)								

6. 现构造下列 8 路合并的败方树;再当第一个全局优胜者输出后,重构败方树。

七、算法设计题(10分)

设有向图采用邻接矩阵表示,公有成员函数 DFS 和私有成员函 DFS 都是 MGraph 类上声明的函数。请实现这两个对有向图进行深度优先遍历的函数:

Template (class T) Void MGraph(T)::DFS()
€□

Template<class T> Void MGraph<T>::DFS(int v, bool visited[])

提示: 邻接矩阵由 MGraph <T>类的数据成员 T** a 的指针 a 所指示的二维数组存储。n 是 MGraph 的父类 Graph 类的保护数据成员,为图中顶点数。

报名地址: 南京邮电大学仙林校区梅兰西街 梅苑 01101-1; 南京邮电大学三牌楼校区综合科研楼 19 层

试卷二

一、单项选择题(每小题2分	·,共20分)(答案填在每	小题后的括号中)
1、线性表采用链接存储时,结点 A. 必须是不连续的 E C. 必须是连续的 I		(B)
2、有两个栈共享一个向量空间的 A. 减少存取时间,降低下溢发 C. 减少存取时间,降低上溢发	生的机率 B. 节省存储空间	
3、假设上三角矩阵A _{9×9} 按列优先顺第 一 个 元 素 a _{1,1} , (A5,4) A. a _{4,8} B. a _{5,8}		
4、设有一个长度为 100 且已排好 要比较次。 A. 9 B. 8	序的表,用对半搜索进行查找 C. 7	,若搜索不成功,则至少 (D) D. 6
5、 高度为 h 的二叉树中只有度为 是多少? A. h-1 B. h+1	g 0 和度为 2 的结点,则此类□ C. 2h-1	二叉树中包含的结点数至少 (C) D. 2h+1
6、设结点 x 和结点 y 是二叉树 T 后根序列中 x 在 y 之后,则 x 和 A. x 是 y 的左兄弟 C. x是y的后裔		(D)
7、假设一个有 n 个顶点和 e 条弧 有弧的时间复杂度是 A. 0 (n*e) B. 0 (e	的有向图用邻接表表示,则删 e) C. O(n+e)	(C)
8、用Prim算法求下列连通的带权的顶点集合是V= 1,2,3 ,边的集合 当从组中选取。 组中选取。 报名地址:南京邮电大学仙林校区梅兰报名热线:025-83535877、18951	合是TE= (1,2),(2,3) ,要适 1 - 生西街 梅苑 01101-1; 南東城町	选取下一条权值最小的边, (D) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 4 5 7 8 5 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8

A. [(3,4), (3,5), (4,5), (1,4)]
B. [(4,5), (3,5)]
C. [(1, 2), (2, 3), (3, 5)]
D. [(1, 4), (3, 4), (3, 5), (2, 5)]
9、用某种排序方法对关键字序列(25,84,21,47,15,27,68,35,20)进行排序时, 各趟排序结果如下:
20, 15, 21, 25, 47, 27, 68, 35, 84
15, 20, 21, 25, 47, 27, 68, 35, 84
15, 20, 21, 25, 35, 27, 47, 68, 84
15, 20, 21, 25, 27, 35, 47, 68, 84
15, 20, 21, 25, 27, 35, 47, 68, 84
则所采用的排序方法是 A. 选择排序 B. 直接插入排序 C. 冒泡排序 D. 快速排序
10、n 个记录的文件被分成 m 个初始游程,采用 k 路合并时,总的比较次数为 (A)
A. $n(k-1) \lceil \log_k m \rceil$ B. $n(k-1) \lceil \log_2 m \rceil$
C. $(k-1) \lceil \log_k m \rceil$ D. $m(k-1) \lceil \log_k n \rceil$
二、填空题(每小题2分,共20分)
1、数据的存储结构是指数据在 <u>数据在计算机内的组织方式</u> ,是 <u>逻辑数据</u> 的 存储映像。
2、后缀表达式40 10 6 - 8 * + 32 4 / - 的值是64。
3、己知一棵完全二叉树中有768结点,则该树中共有384 个叶子结点。
4、森林 T 转化为二叉树 B,B 中某结点在森林中为叶子结点的条件是 <u>没有右兄弟</u> 。
5、在中序线索二叉树中,某结点的前驱是: 若它的 <u>左子树为空</u> ,则1chi1d
就指向它的前驱,否则它的前驱是沿着它的 <u>左</u> 孩子的rchild指针一直走到rtag为1
的结点。
报名地址: 南京邮电大学仙林校区梅兰西街 梅苑 01101-1; 南京邮电大学三牌楼校区综合科研楼 19 层报名热线: 025-83535877、18951896587、 18951896993、 18951896967 4
─

- 6、有12个结点的AVL树的最大高度为 5。
- 7、以顶点1为起点,对右边有向图进行深度优先搜索,则得到的生成树(以1为根)的最大高度是___6__。
- 8、拓扑排序不能输出全部顶点的有向图中一定存在_有向回路___。
- 9、高度为5的3阶B-树最少结点数(不包括失败结点)为___31___,元素个数至少__31__。
- 10、若 n 个元素已经有序,则用冒泡排序比直接插入排序好,因为尽管他们都只比较 n-1
- 次,但冒泡排序不用移动元素,而直接插入排序要移动元素 2*(n-1) 次

三、解答题(每小题5分,共30分)

1、计算模式串 P="aabaab"的 next()和改进的 next()的值。

j	0	1	2	3	4	5
Р	a	a	b	a	a	b
next(j)	-1	0	1	0	1	2
改进的 next(j)	-1	-1	1	-1	-1	1

2、设字符集 D={A, B, C, D, E}, 各字符使用频率 W={12, 7, 9, 5, 3}。画出哈夫曼树, 并求其 WPL。

wp1 = (7+9+12)*2+(3+5)*3=80

3、在下列二叉平衡树中顺序插入26和27,画出每次插入后的结果。

4、有长度为11的散列表 ht,采用双散列法解决冲突,散列函数为:

 $h_1(\text{key}) = \text{key} / 11, h_2(\text{key}) = \text{key} / 9 + 1,$

试用关键字值序列: 52, 37, 24, 27, 83, 13, 62, 48 建立散列表。

报名地址: 南京邮电大学仙林校区梅兰西街 梅苑 01101-1; 南京邮电大学三牌楼校区综合科研楼 19 层

- (1) 求出每个关键字值的 h2(key);
- (2) 画出建成的散列表。

key	52	37	24	27	83	13	62	48
h ₁ (key)	8	4	2	5	6	2	7	4
h ₂ (key)	8	2	7	1	3	5	9	4

0	1	2	3	4	5	6	7	8	9	10
	62	24		37	27	83	13	52	48	2

5、计算下图 AOE 网络的关键路径。填充下表,并为关键路径打上人

	V_0	V ₁	V_2	V_3	V_4	V_5
earliest(i)	0	2	10	12	12	22
latest(i)	0	7	10	12	17	22

	a_0	a_1	a_2	\mathbf{a}_3	a_4	a_5	a_6	a ₇	a ₈
early(k)	0	5	5	5	10	5	5	12	12
late(k)	0	2	7	7	10	12	15	12	17
关键路径	\ \		3//		√			√	

6、补充完整下列8路合并的败方树。当全局优胜者输出后,重构败方树。

报名地址:南京邮电大学仙林校区梅兰西街 梅苑 01101-1;南京邮电大学三牌楼校区综合科研楼 19 层

四、算法填空(每空2分,共10分)

1、假设两个队列共享一个循环向量空间(见右下图),其类Queue2定义如下:

```
Template <class T>
class Queue2
{ public:
    EnQueue(int i, T x)
    private:
    T data[MaxSize];
    int front[2], rear[2];
};
```

对于 i=0 或 1, front[i]和 rear[i]分别为第 i 个队列的头指针和尾指针。请对以下算法填空,实现第 i 个队列的入队操作。

rear[1]

n-1

front[0]

```
Template <class T>
int Queue2<T>::EnQueue (int i, T x)
{//若第i个队列不满,则元素 x 入队列,并返回1; 否则返回0
        if (i<0 || i>1) return 0;
        if (rear[i]=front[________] return 0;
        data[___________]=x;
        rear[i]=[__________];
        return 1;
}
① 1-i
② rear[i]
```

2、下列是求所有顶点之间最短路径的弗洛伊德算法。

③ (rear[i]+1) mod Maxsize

```
Template<class T>
void MGraph<T>::Floyd(T** &d, int ** &path)
{ d=new T*[n];    path=new int *[n];
    for(int i=0;i<n;i++)
    { d[i]=new T [n];    path[i]=new int[n];</pre>
```

报名地址: 南京邮电大学仙林校区梅兰西街 梅苑 01101-1; 南京邮电大学三牌楼校区综合科研楼 19 层

五、算法理解(每小题5分,共10分)

(1) 说明该算法的功能;

(2) 举例说明斜体语句的作用。

该算法是求模式串的改进的 next 数组

2、已知二叉树的存储结构为二叉链表。阅读下面算法,回答问题。

```
SingleList<T> s;
Template <class T>
Void BTree<T>::Inorder (BTNode<T> *p)
{ if (p)
  { Inorder (p->lchild);
    if((!p->1child)&&!p->rchild))
     { Node\langle T \rangle *q=new Node \langle T \rangle; q-\rangle data=p-\rangle element;}
        q->link=s.first;
                                    s. first=q;
    Inorder (p->rchild);
  }
}
  对应右图所示的二叉树,
```

- (1) 说明该算法的功能;
- (2) 画出执行上述算法后所建立的结构;

将树中所有的叶子结点存放到-执行该算法后所建立的结构为

六、编程题(10分)

设二叉树用二叉链表存储,每个结点有三个域: element, lchild, rchild。试设计一 个递归程序,拷贝一棵二叉树,同时将新二叉树中每个结点的左右子树交换,如下图。要 声明二叉树的 C++类

报名地址:南京邮电大学仙林校区梅兰西街 梅苑 01101-1;南京邮电大学三牌楼校区综合科研楼 19 层

试卷三

一、单项选择题(每户	小题2分,共12分))(答案填在每小匙	0后的括号中)
1、元素序列(A,B,C,D) 下面哪个序列不能得到	,E) 顺序进栈,每个 。	元素必须进栈一次,迫	进栈后可立即出栈,则 ()
A. C, B, A, D, E	B. A, D, E, C, B	C. B, E, D, C, A	D. B, E, C, D, A
2、8×8的整型数组A,其按列主序,A[5][6]的地:		字节,已知A[0][0]在	内存中的地址是100,
A. 192	В. 206	C. 92	D. 106
3、二叉树根结点的层次 ()	为 1。在所有含 15	个结点的二叉树中,	最小高度是。
A. 6	B. 5	C. 4	D. 3
4、用Kruskal算法求下图 {(0,5),(2,3),(0,1),(1,0			
A. (3, 4)	7//2	10 13	1) 16
B. (3, 6) C. (4, 5) D. (4, 6)		5 24 6 25 4 22	18 12
5 、 判 定 一 个 有 「 ()	句图是否存在	回路,可以用	。
A. 求关键路径的方法		B. DFS 算法	
C. 求最短路径的 Dijks	stra方法	D. BFS 算法	
6、第一趟排序结束后, ()	不能确定任何一个	元素的最终位置的抗	非序算法是。
A. 选择排序	B. 快速排序 C	. 直接插入排序	D. 冒泡排序
二、填空题(每空1分	,共10分)		
1、数据的逻辑结构是对	t		的描述,是面向
的。			

南邮通信培训中心

	即 週信节	i列甲心							
2、数组是一种态的数据结构	1,其上	未定义			运	算。			
3、KMP算法中,当到达失配点(S _i ≠P _j)	时,j应	辽 回溯到			处	. •			
4、二叉树用二叉链表作存储结构	, n(>0)	个结点	的二叉	链表中	,空指领	计域的个数			
是。									
5、对半搜索算法的使用条件是			o						
6、在一个无环有向图 G 中,若存在一	条从顶点	(i到顶)	点j的驯	(,则在	顶点的排	石扑序列中,			
顶点 i 一定在顶点 j 的					A				
7、有127个元素的4阶B-树,在搜索F	计访问磁	盘的次	数最多対	b	<u></u> 次。				
8、14个初始游程的4路最佳合并树,	8、14个初始游程的4路最佳合并树,需附加个虚初始游程。								
三、解答题(每小题6分,共48分	})								
1、下列程序段的时间复杂度。	<	17							
for(i=1; i<=n; i++)									
$if(3*i \le n)$	z^{λ}								
for(j=3*i; j<=n; j++) x=x+1;	77-	4							
X-X+1,						_			
2、计算模式串 P="xxyxxy"的改进的	next(j)的值。							
j 0	1	2	3	4	5				
Р х	X	у	X	Х	у				

3、设字符集 D={A, B, C, D, E}, 各字符使用频率 W={1, 2, 8, 16, 4}。画出哈夫曼树, 并求其 WPL。

4、3 阶 B-树见下图。画出插入15 后的状态图;再画出删除15 后的状态图。

改进的 next(j)

12,28

5、有长度为13的散列表ht,采用双散列法解决冲突,散列函数为:

 $h_1(\text{key}) = \text{key} / 13$, $h_2(\text{key}) = \text{key} / 11 + 1$,

试用关键字值的序列: 52, 37, 24, 27, 83, 13, 62, 48 建立散列表。

- (1) 求出每个关键字的 h₂(key)值;
- (2) 画出建成的散列表。

key	52	37	24	27	83	13	62	48
h ₁ (key)	0	11	11	1	5	0	10	9
h ₂ (key)								

6、画出下列有向图的邻接表,并给出所有可能的拓扑排序的序列。

7、以顶点 1 为起点,对下列有向图进行广度优先搜索,画出 BFS 生成树,并指出该生成树的(以 1 为根)的度。

8、为了减小栈的空间,快速排序时,先对元素较少的子序列进行排序。依此方法对关键字序列(54,42,74,78,18,54,08)进行快速排序,给出各趟排序结果(**注意:不按要求做不得分**); n 个元素进行此种快速排序,一般情况下栈的容量是多少? (用大 0 表示)。

报名地址:南京邮电大学仙林校区梅兰西街 梅苑 01101-1;南京邮电大学三牌楼校区综合科研楼 19 层

四、算法填空(每空2分,共10分)

1、假设两个队列共享一个循环向量空间(见右下图),其类Queue2定义如下:

```
Template <class T>
                                             front[1]
   class Queue2
                                                              rear[1]
   { public:
      EnQueue (int i, T x)
                                                               n-1
    private:
      T data[MaxSize];
                                          rear[0]
      int front[2], rear[2];
                                                               front[0]
   };
   对于 i=0 或 1, front[i]和 rear[i]分别为第 i 个队列的头指针和尾指针。请对以下算
法填空,实现第 i 个队列的入队操作。
   Template ⟨class T⟩
   int Queue2<T>::EnQueue (int i, T x)
   if (i<0 | | i>1) return 0;
        if (rear[i]=front[ ① /
                                ] return 0;
        data[ ②
        rear[i] = [
        return 1;
   (1)
   2
  下面是堆的向下调整算法。
template <class T>
void AdjustDown(T heap[], int r, int n)
{ int child;
  T temp=heap[r];
    1);
  while (child<=n)
```

报名地址: 南京邮电大学仙林校区梅兰西街 梅苑 01101-1; 南京邮电大学三牌楼校区综合科研楼 19 层

报名热线: 025-83535877、18951896587、 18951896993、 18951896967

{ if ((child<n)&& (heap[child]>heap[child+1]))

五、算法理解(8分)

1、已知二叉树的存储结构为二叉链表。阅读下面算法,对下图所示二叉树,回答问题:

```
template <class T>
Void BTree<T>::Inorder (BTNode<T> *p)
{ if (p)
    { Inorder(p->lchild);
      cout<<p->element;
      Inorder(p->rchild);
    }
}
```


- (1) 以二叉树的根指针 root 调用 Inorder 后, Inorder 递归调用几次;
- (2) 工作栈中元素最多时达到几个。

六、编程题(12分)

已知图采用邻接矩阵表示,试写出深度优先遍历的算法。要求:

- (1) 给出邻接矩阵的 C++类的声明;
- (2) 给出深度优先遍历的函数;
- (3) 给出调用该函数的语句。

报名地址: 南京邮电大学仙林校区梅兰西街 梅苑 01101-1; 南京邮电大学三牌楼校区综合科研楼 19 层

试卷四

_	、判断题(正确的	的在括号内打"√",	错误的打	"×"。	每小题	2分,	共10
	分)						
1,	数据的机内表示称为	对数据的存储结构。				()
2,	线性表的链接存储,	表中元素的逻辑顺序与	物理顺序一定	定相同。)

5,	田二人网结点(N/2)的先序序列和后序序列可以唯一地确定一	保一之	X IX
(
ł,	一棵 m 阶 B 树最少 $m/2$ 个孩子,最多 m 个孩子。	()
5,	一个无向连通图的生成树是一个极大的连通子图。	()

二、选择题(每小题2分,共10分

- 2、在建立某高校网站时,为方便浏览,建立了校-系-教研室-教学组的链接,则这种 结构属于_ (
- B. 树结构
- C. 图结构
- D. 集合结构
- 3、元素序列(A, B, C, D, E)顺序进栈,每个元素必须进栈一次,进栈后可立即出栈,则 下面哪个序列不能得到。 ()
 - A. A, B, C, D, E

- B. E, D, C, B, A C. B, E, D, C, A D. B, E, C, D, A
- 4、10×10的整型数组A, 其每个数组元素占2个字节, 己知A[0][0]在内存中的地址是 100, 按列主序, A[7][8]的地址是 C. 123

A. 274

B. 256

D. 133

5、第一趟排序结束后,不能确定任何一个元素最终位置的排序算法是____。

- A. 直接插入排序 B. 快速排序 C. 选择排序 D. 冒泡排序

三、简答题(每小题4分,共20分)

1、给出下列稀疏矩阵的列三元组表示。

5	0	0	2	0 0 0 0 0 4	0
0	0	6	0	0	8
0	0	0	0	0	0
7	0	0	0	0	0
0	0	0	1	0	5
0	0	0	0	4	0

2、计算模式串 P="aabaabac"的改进的 next()的值。

j	0	1/	2	3	4	5	6	7
Р	a	a	b	а	a	b	a	С
改进的 next (j)	140							

3、将下列森林转化为二叉树,并写出对二叉树的后序遍历序列。

画出下列有向图的邻接表。

5、对序列 (15, 84, 25, 21, 47, 27, 68) 进行冒泡排序,写出各趟排序结果,并说明最坏情况下时间复杂度。

四、解答题(每小题8分,共40分)

1、设字符集 $D=\{A, B, C, D, E\}$,各字符使用频率 $W=\{1, 2, 5, 6, 4\}$ 。画出哈夫曼树,求其 WPL,并给出各字符的编码。

2、3阶B-树见下图。画出依次删除14和13后的两个状态图。

3、有长度为13的散列表ht,采用双散列法解决冲突,散列函数为:

 $h_1(\text{key}) = \text{key} 13, h_2(\text{key}) = \text{key} 11+1,$

试用关键字值的序列: 52, 37, 24, 27, 83, 13, 62, 48 建立散列表。

- (1) 求出每个关键字的 h₂(key)值;
- (2) 画出建成的散列表。

key 52	37	24	27	83	13	62	48
--------	----	----	----	----	----	----	----

报名地址:南京邮电大学仙林校区梅兰西街 梅苑 01101-1;南京邮电大学三牌楼校区综合科研楼 19 层

h ₁ (key)	0	9	11	1	5	0	10	9
h ₂ (key)								

4、用 Kruskal 算法构造下图的最小代价生成树(包括中间过程), 求其最小代价。若生成树

以结点0为根,则该树的度是多少?

5、补充完整下列8路合并的败方树。当全局优胜者输出后,重构败方树。

五、算法填空题(每空2分,共10分)

1、下面是将单链表逆序的算法。

template <class T>

void SingleList<T>::invert()

```
{ Node<T> *p=first, *q;
 while (p)
{q=p-\hat{link};}
  first=p;
```

报名地址:南京邮电大学仙林校区梅兰西街 梅苑 01101-1;南京邮电大学三牌楼校区综合科研楼 19 层

六、算法设计题(10分)

有图用邻接矩阵表示,编程求某有向图第 i 个顶点的入度。要求:

- (1) 给出邻接矩阵 C++类的声明(成员函数只列出本题的函数即可);
- (2) 编写求第 i 个顶点入度的成员函数 int Indegree (int i)。操作成功返回入度,操作失败返回-1;
 - (3) 编写主函数调用该函数求顶点2的入度。

报名地址: 南京邮电大学仙林校区梅兰西街 梅苑 01101-1; 南京邮电大学三牌楼校区综合科研楼 19 层

试卷五

一、说	选择题
-----	-----

A. A[1], A[2], A[3], A[4] C. A[1], A[2], A[7], A[4] D. A[7], [A5], A[3], A[4] C. A[1], A[2], A[7], A[4] D. A[7], [A5], A[3], A[4] C. A[1], A[2], A[7], A[4] D. A[7], [A5], A[3], A[4] C. A[1], A[2], A[7], A[4] D. A[7], [A5], A[3], A[4] C. A[1], A[2], A[7], A[4] D. A[7], [A5], A[3], A[4] C. A[1], A[2], A[3], A[4] D. A[7], [A5], A[3], A[4] C. A[1], A[2], A[3], A[4] D. A[7], [A5], A[3], A[4] D. A[7], A[3], A[4] D. A[8], A[3], A[4] D. A[7], A[3], A[4] D. A[7], A[3], A[4] D. A[8], A[3], A[4] D. A[8], A[3], A[4] D. A[8], A[3], A[4] D. A[8], A[9], A[9] D. A[9], A[9], A[9] D. A[9], A[9], A[9] D. A[9], A[9], A[9], A[9] D. A[9], A[1. 对有14个元素的有序表A[1]-A[14]作对半查找,查找元素A[4]时的被比较元素依次为()
2. 关键路径是A0E网中 () A. 从起点到终点的最长路径	A. A[1], A[2], A[3], A[4] B. A[7], A[3], A[5], A[4]
R元素的实际位置和当前队列中元素的个数,队列第一个元素的实际位置是 () A. rear—qulen B. rear—qulen+m C. m—qulen D. 1+(rear+m—qulen)% m 4、设有一个长度为100 且己排好序的表,用对学搜索进行查找,若搜索不成功,则至少要比较	2. 关键路径是A0E网中 () A. 从起点到终点的最长路径 B. 从起点到终点的最长路径
要比较	尾元素的实际位置和当前队列中元素的个数,队列第一个元素的实际位置是 () A. rear—qulen B. rear—qulen+m
是多少? A. h-1 B. h+1 C. 2h-1 D. 2h+1 8、假设一个有n个项点和e条弧的有向图用邻接表表示,则删除与某个项点vi相关的所有弧的时间复杂度是 () A. 0(n*e) B. 0(n+e) C. 0(e) D. 0(n) 9、用某种排序方法对关键字序列(25,84,21,47,15,27,68,35,20)进行排序时,各趟排序结果如下: 20,15,21,25,47,27,68,35,84 15,20,21,25,47,27,68,35,84 15,20,21,25,35,27,47,68,84 15,20,21,25,35,47,68,84 15,20,21,25,27,35,47,68,84 15,20,21,25,27,35,47,68,84 15,20,21,25,27,35,47,68,84 则所采用的排序方法是	要比较次。
8、假设一个有 n 个项点和 e 条弧的有向图用邻接表表示,则删除与某个项点 v _i 相关的所有弧的时间复杂度是 () A. 0(n*e) B. 0(n+e) C. 0(e) D. 0(n) 9、用某种排序方法对关键字序列 (25, 84, 21, 47, 15, 27, 68, 35, 20) 进行排序时,各趟排序结果如下:	是多少?
有弧的时间复杂度是	A. h-1 B. h+1 C. 2h-1 D. 2h+1
9、用某种排序方法对关键字序列(25,84,21,47,15,27,68,35,20)进行排序时,各趟排序结果如下:	有弧的时间复杂度是 ()
各趟排序结果如下:	A. $O(n*e)$ B. $O(n+e)$ C. $O(e)$ D. $O(n)$
15, 20, 21, 25, 47, 27, 68, 35, 84 15, 20, 21, 25, 35, 27, 47, 68, 84 15, 20, 21, 25, 27, 35, 47, 68, 84 15, 20, 21, 25, 27, 35, 47, 68, 84 则所采用的排序方法是。 () A. 选择排序 B. 直接插入排序 C. 冒泡排序 D. 快速排序 报名地址: 南京邮电大学仙林校区梅兰西街 梅苑 01101-1; 南京邮电大学三牌楼校区综合科研楼 19 层	
15, 20, 21, 25, 27, 35, 47, 68, 84 15, 20, 21, 25, 27, 35, 47, 68, 84 则所采用的排序方法是。 () A. 选择排序 B. 直接插入排序 C. 冒泡排序 D. 快速排序 报名地址: 南京邮电大学仙林校区梅兰西街 梅苑 01101-1; 南京邮电大学三牌楼校区综合科研楼 19 层	15, 20, 21, 25, 47, 27, 68, 35, 84
则所采用的排序方法是。	
A. 选择排序 B. 直接插入排序 C. 冒泡排序 D. 快速排序 报名地址: 南京邮电大学仙林校区梅兰西街 梅苑 01101-1; 南京邮电大学三牌楼校区综合科研楼 19 层	
报名地址: 南京邮电大学仙林校区梅兰西街 梅苑 01101-1; 南京邮电大学三牌楼校区综合科研楼 19 层	

二、填空题

1.	数据结构研究的三	个方面是逻辑结构、	和	o
2.	数据的逻辑结构是指	<u> </u>	,有	结构、线性结构、
结	构和图结构四类。			
3.	10×10的整型数组A	,其每个数组元素占	72个字节,已知A[0]	[0]在内存中的地址是
100	0,接行主序,A[7][8]的地址是	0	
5.	散列表中,将key ₁	\neq key ₂ , $\overrightarrow{\text{m}}$ H (key ₁) =	=H(key2)的现象称为	为冲突,key ₁ 和key ₂ 称
为_				
6.	拓扑排序不能输出至	全部顶点的有向图中-	一定存在	0
7.	一个表长为n的线性	表,其排序时间最快	为	_ •
			5//	
三	、解答题	- 7 /		

1、给出下列程序段的时间复杂度

- 2、A、B、C、D、E 依次进栈,问下面哪些序列可以得到,哪些不能得到?注意:每个元素必须进一次栈,但进栈后可立即出栈。
 - (1) C, A, B, D, E
- (2) A, B, C, D, E
- (3) B, A, C, D, E
- (4) D, C, E, A, B
- 3、已知对一棵二叉树的先序遍历和中序遍历的结点次序分别为: A, F, E, G, C, B, D 和 E, F, G, C, A, D, B。
 - (1)画出该二叉树。
 - (2)对该二叉树执行后序遍历。
- 4、设字符集 D={U, V, W, X, Y}, 各字符的使用频率为 W={5, 1, 6, 4, 2}。画出哈夫曼树。
- 5、3阶B-树见下图。画出依次删除15、12后的状态图。

6、有向图见下图。给出其邻接矩阵和强连通分量。

- 7. 从顶点 0 出发,用 Prim 算法构造下图的最小代价生成树(包括中间过程)。
- 8. 已知关键字序列(75, 3, 15, 87, 46, 96, 25)。试给出冒泡排序各趟排序的结果,并指出它的稳定性情况。

四、算法填空

1. 下面是在非空单链表 $(n \land f = h)$ 中第 $k \land f = h$ 个结点之后插入一个元素值为 $k \land f = h$ 的算法。(如果 $k \land f = h$ 外,则在第 $k \land f = h$ 个结点之前插入 $k \land f = h$ 的算法。(如果 $k \land f = h$ 个结点之前插入 $k \land f = h$

template<class T>

bool SingleList<T>::Insert(int k, const T&x)

报名地址:南京邮电大学仙林校区梅兰西街 梅苑 01101-1;南京邮电大学三牌楼校区综合科研楼 19 层

2. 下面是二叉搜索树的搜索算法。

```
template <class E, class K>
bool BSTree < E, K > :: Search (const K & k, E& e) const
{ BTNode<E> *p=root;
 while (p)
  { if ( ) p=p->lchild;
    else if(k > p - element) _____;
        else{ e=p->element; return true; }
 return false;
五、算法理解
1. 有如下算法:
   template <class T>
   void BTree<T>::A(BTNode<T</pre>
    { BTNode\langle T \rangle *q;
       if (p)
        { A(p->1child);
                                    A(p→rchild);
                                                       q=p->lchild;
           p->lchild=p->rchild;
                                    p->rchild=q;
```

- (1) 该程序的作用。
- (2) 对上图执行该算法, 画出结果。

六、编程题

在不带表头结点的单链表中删除一个关键字值为 ${\bf x}$ 的元素,将其元素由 ${\bf e}$ 返回。要给出单链表的声明。

报名地址: 南京邮电大学仙林校区梅兰西街 梅苑 01101-1; 南京邮电大学三牌楼校区综合科研楼 19 层

报名地址: 南京邮电大学仙林校区梅兰西街 梅苑 01101-1; 南京邮电大学三牌楼校区综合科研楼 19 层