CURSO JAVA Curso em vídeo (Gustavo Guanabara)

https://www.youtube.com/playlist?list=PLHz_AreHm4dkl2ZdjTwZA4mPMxWTfNSpR

Resumo do curso feito por Roberto Pinheiro

Primeiro Programa - Olá Mundo!

```
package olamundo;
public class OlaMundo {
  public static void main(String[] args) {
    System.out.println("Olá Mundo!");
  }
}
```

<u>Dica:</u> Usando o NetBeans:

- 1) digite psym e pressione a tecla TAB, você terá: public static void main(String[] args) {};
- 2) digite <u>sout</u> e pressione a tecla TAB, você terá: System.out.println("");

O Java é case sensitive.

Nomes em Java


```
Pacote

Classe

package primeiroprograma;
public class PrimeiroPrograma {
    public static void main(String[] args) {
        System.out.print("Olá, Mundo!");
    }
}

Método

Classe
```

INTRODUÇÃO AO SWING E AO JAVAFX

Pacotes e Bibliotecas Java

Por ser uma linguagem multiplataforma, o Java tem que utilizar pacotes adicionais para que os seus arquivos não sejam sobrecarregados sem necessidade.

Para isso, é necessário utilizar a instrução "import" para carregar bibliotecas de pacotes adicionais.

Por padrão, apenas o pacote <u>java.lang</u> é carregado automaticamente. Porém, caso você precise carregar bibliotecas adicionais, utilize a importação desses pacotes.

Alguns pacotes Java

- java.applet
- java.util
- java.math
- java.net
- javax.sound
- javax.media
- javax.swing
- javafx.fxml

Biblioteca Swing

O Swing é uma evolução do antigo AWT (Abstract Windows Toolkit) que permite criar interfaces gráficas atraentes para qualquer sistema operacional baseado em janelas.

Plataforma JavaFX

Com o objetivo de substituir o Swing, o JavaFX cria interfaces para qualquer tipos de dispositivos, como ambientes de Janela, celulares e navegadores. Para a próxima versão, já está previsto o suporte para videogames, blu-rays e smart TVs.

1. Nome do Projeto: OlaMundoSwing

2. Desmarcar caixa: Criar Classe Principal

1. Criar Novo Arquivo

2. Forms GUI Swing --> Form JFrame

3. Nome da Classe: OlaMundoJava

4. Pacote: cursoemvideo.olamundo

```
package cursoemvideo.olamundo;
public class TelaSwing extends javax.swing.JFrame {
   private javax.swing.JButton btnClick;
   private javax.swing.JLabel lblMensagem;
   private void btnClickActionPerformed(java.awt.event.ActionEvent evt) {
        lblMensagem.setText("Olá, Mundo!");
   }
```

```
public class TelaSwing extends javax.swing.JFrame {
   private javax.swing.JButton btnClick;
   private javax.swing.JLabel lblMensagem;
   private void btnClickActionPerformed(...) {
        lblMensagem.setText("Olá, Mundo!"); Evento
    }
}
```

```
public class TelaSwing extends javax.swing.JFrame {
    private javax.swing.JButton btnClick;
    private javax.swing.JLabel lblMensagem;

    private void btnClickActionPerformed(...) {
        lblMensagem.setText("Olá, Mundo!");
    }

import javafx.fxml.FXML;
public class FXMLDocumentController
    implements Initializable {
        @FXML
        private Button btnClick;
        private Label lblMensagem;
        @FXML
        private void clicouBotao(...) {
              lblMensagem.setText("Olá, Mundo!");
        }
}
```

COMENTÁRIOS EM JAVA

}

```
// Este é um comentário de uma linha
/*
 * Nos comentários de muitas linhas,
 * podemos escrever o quanto quiser
 * até indicarmos o final do comentário
 */
```

TIPOS PRIMITIVOS DO JAVA

O Java tem os tipos primitivos:

• Lógico: boolean

Literal: char

Inteiro: byte, short, int, long

• Real: float, double

Além disso existem as classes Wrapper para os tipos: Boolean, Character, String, Byte, Short, Integer, Long, Float e Double.

Família	Tipo Primitivo	Classe Invólucro	Tamanho	Exemplo
Lógico	boolean	Boolean	1 bit	true
Literais	char	Character	1 byte	'A'
		String	1 byte/cada	"JAVA"
	byte	Byte	1 byte	127
	short	Short	2 bytes	32 767
Inteiros	int	Integer	4 bytes	2 147 483
	long	Long	8 bytes	263
Reais	float	Float	4 bytes	3.4e ⁺³⁸
	double	Double	8 bytes	1.8e ⁺³⁰⁸

SAÍDA DE DADOS

```
package tiposprimitivos;
public class TiposPrimitivos {
   public static void main(String[] args) {
      String nome = "Roberto";
      float nota = 8.5f;
      System.out.println("A nota é " + nota );
      System.out.printf("A nota de %s é %.2f \n", nome, nota );
      System.out.format("A nota de %s é %.2f \n", nome, nota );
   }
}
```

ENTRADA DE DADOS

```
import java.util.Scanner;

Scanner teclado = new Scanner(System.in);

int idade = teclado.nextInt();
 float salario = teclado.nextFloat();
 String nome = teclado.nextLine();
```

```
package tiposprimitivos;
import java.util.Scanner;
public class TiposPrimitivos {
    public static void main(String[] args) {
        Scanner teclado = new Scanner (System.in);
        System.out.print("Digite o nome do aluno: ");
        String nome = teclado.nextLine();
        System.out.print("Digite a nota do aluno: ");
        float nota = teclado.nextFloat();
        System.out.format("A nota de %s é %.2f \n", nome, nota );
    }
}
```

INCOMPATIBILIDADE ENTRE NÚMEROS E STRING

Inteiro para String

```
package testetipos;
public class TesteTipos {
  public static void main(String[] args) {
    int idade = 30;
    String valor = Integer.toString(idade);
    System.out.println(valor);
  }
}
```

String para inteiro

```
package testetipos;
public class TesteTipos {
  public static void main(String[] args) {
    String valor = "30";
    int idade = Integer.parseInt(valor);
    System.out.println(idade);
  }
}
```

String para float

```
package testetipos;
public class TesteTipos {
  public static void main(String[] args) {
    String valor = "30.5";
    float idade = Float.parseFloat(valor);
    System.out.printf("%.3f", idade); }
}
```

INTERFACE GRÁFICA COM O SWING


```
package com.cursoemvideo.soma;
public class TelaSoma extends javax.swing.JFrame {
    private void btnSomaActionPerformed(java.awt.event.ActionEvent evt) {
        int n1 = Integer.parseInt(txtN1.getText());
        int n2 = Integer.parseInt(txtN2.getText());;
        int s = n1 + n2;
        lblSoma.setText(Integer.toString(s));
    }
}
```

OPERADORES ARITMÉTICOS

Operadores básicos

+	Adição	5 + 2	7
-	Subtração	5 – 2	3
*	Multiplicação	5 * 2	10
1	Divisão	5 / 2	2.5
%	Resto	5 % 2	1

```
package operadoresaritmeticos;
public class OperadoresAritmeticos {
  public static void main(String[] args) {
    int n1 = 3;
    int n2 = 5;
    float m = (n1 + n2)/2;
    System.out.println("A média é igual a " + m);
  }
}
```

OPERADORES UNÁRIOS

Pós incremento

```
package operadoresaritmeticos;
public class OperadoresAritmeticos {
  public static void main(String[] args) {
    int numero = 5;
    int valor = 5 + numero++;
    System.out.println(valor);
  }
}
CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
Pré incremento
package operadoresaritmeticos;
public class OperadoresAritmeticos {
  public static void main(String[] args) {
    int numero = 5;
    int valor = 5 + ++numero;
    System.out.println(valor);
  }
}
run:
```

CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)

Pós decremento

```
package operadoresaritmeticos;

public class OperadoresAritmeticos {
   public static void main(String[] args) {
     int numero = 5;
     int valor = 5 + numero--;
     System.out.println(valor);
   }
}

run:
10
CONSTRUÍDO COM SUCESSO (tempo total: 3 segundos)
```

Pré decremento

```
package operadoresaritmeticos;

public class OperadoresAritmeticos {
   public static void main(String[] args) {
     int numero = 5;
     int valor = 5 + --numero;
     System.out.println(valor);
   }
}

run:
9
CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
```

OPERADORES DE ATRIBUIÇÃO

```
+= Somar e atribuir a += b a = a + b

-= Subrair e atribuir a -= b a = a - b

*= Multiplicar e atribuir a *= b a = a * b

/= Dividir e atribuir a /= b a = a / b

Resto e atribuir a %= b a = a % b
```

```
package operadoresaritmeticos;

public class OperadoresAritmeticos {
   public static void main(String[] args) {
     int x = 4;
     x += 2; // x = x + 2
     System.out.println(x);
   }
}

run:
6
CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
```

Classe Math no Java

O Java não vem com todas as operações matemáticas automaticamente disponíveis. Por isso, é preciso carregar a biblioteca java. Math para realizar outras operações como exponenciação, raiz quadrada, etc.

PI	Constante π	Math.PI	3.1415
pow	Exponenciação	Math.pow(5,2)	25
sqrt	Raiz Quadrada	Math.sqrt(25)	5
cbrt	Raiz Cúbica	Math.cbrt(27)	3

Arredondamentos

abs	Valor Absoluto	Math.abs(-10)	10
floor	Arredonda para Baixo	Math.floor(3.9)	3
ceil	Arredonda para Cima	Math.ceil(4.2)	5
round	Arredonda Aritmeticamente	Math.round(5.6)	6

```
package operadoresaritmeticos;

public class OperadoresAritmeticos {
   public static void main(String[] args) {
     float v = 8.9f;
     int ar = (int) Math.floor(v);
     System.out.println(ar);
   }
}

run:
8
CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
```

```
package operadoresaritmeticos;
public class OperadoresAritmeticos {
  public static void main(String[] args) {
    float v = 8.9f;
    int ar = (int) Math.ceil(v);
    System.out.println(ar);
  }
}
run:
CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
package operadoresaritmeticos;
public class OperadoresAritmeticos {
  public static void main(String[] args) {
    float v = 8.4f;
    int ar = (int) Math.round(v);
    System.out.println(ar);
  }
}
run:
CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
```

Gerador de números (números aleatórios)

```
package operadoresaritmeticos;

public class OperadoresAritmeticos {
   public static void main(String[] args) {
      double ale = Math.random();
      System.out.println(ale);
   }
}

run:
   0.4207426532594323
   CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
```

número inteiro aleatório de 15 a 50

```
package operadoresaritmeticos;

public class OperadoresAritmeticos {
   public static void main(String[] args) {
      double ale = Math.random();
      int n = (int) (15 + ale * (50 - 15));
      System.out.println(n);
   }
}

run:
46
CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
```

OPERADOR TERNÁRIO

```
package operadorternario;

public class OperadorTernario {
   public static void main(String[] args) {
     int n1, n2, r;
     n1 = 4;
     n2 = 8;
     r = (n1 > n2) ? n1 : n2;
     System.out.println(r);
   }
}

run:
8
CONSTRUÍDO COM SUCESSO (tempo total: 2 segundos)
```

OPERADORES RELACIONAIS

>	Maior que	5 > 2	true
<	Menor que	4 < 1	false
>=	Maior ou igual a	8 >= 3	true
<=	Menor ou igual a	6 <= 6	true
==	Igual a	9 == 8	false
!=	Diferente de	4 != 5	true

```
package comparacaostring;
public class ComparacaoString {
  public static void main(String[] args) {
    String nome1 = "Gustavo";
    String nome2 = "Gustavo";
    String nome3 = new String("Gustavo");
    String res;
    res = (nome1==nome2)?"Igual":"Diferente";
    System.out.println(res);
  }
 run:
CONSTRUÍDO COM SUCESSO (tempo total: 2 segundos)
package comparacaostring;
public class ComparacaoString {
  public static void main(String[] args) {
    String nome1 = "Gustavo";
    String nome2 = "Gustavo";
    String nome3 = new String("Gustavo");
    String res;
    res = (nome1==nome3)?"Igual":"Diferente";
    System.out.println(res);
  }
}
run:
Diferente
CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
```

```
package comparacaostring;
public class ComparacaoString {
   public static void main(String[] args) {
      String nome1 = "Gustavo";
      String nome2 = "Gustavo";
      String nome3 = new String("Gustavo");
      String res;
      res = (nome1.equals (nome3))?"Igual":"Differente";
      System.out.println(res);
   }
}
run:
Igual
CONSTRUÍDO COM SUCESSO (tempo total: 0 segundos)
```

OPERADORES LÓGICOS


```
package operadoreslogicos;
public class OperadoresLogicos {
  public static void main(String[] args) {
    int x, y, z;
    x = 4;
    y = 7;
    z = 12;
    boolean r;
    r = ((x<y) && (y<z))?true:false;
    System.out.println(r);
}</pre>
```

```
run:
 true
 CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
package operadoreslogicos;
public class OperadoresLogicos {
 public static void main(String[] args) {
   int x, y, z;
   x = 4;
   y = 7;
   z = 12;
    boolean r;
   // r = ((x < y) && (y < z))?true:false;
   r = ((x < y) | | (y == z))?true:false;
   System.out.println(r);
 }
}
 run:
 CONSTRUÍDO COM SUCESSO (tempo total: 3 segundos)
package operadoreslogicos;
public class OperadoresLogicos {
 public static void main(String[] args) {
   int x, y, z;
   x = 4;
   y = 7;
   z = 12;
    boolean r;
   // r = ((x < y) && (y < z))?true:false;
```

```
// r = ((x < y) | | (y == z))?true:false;
    r = ((x < y) \land (y < z))?true:false;
    System.out.println(r);
 }
}
 run:
 false
 CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
  private void btnCalcActionPerformed(java.awt.event.ActionEvent evt) {
    int ano = Integer.parseInt(txtAno.getText());
    int idade = 2015 - ano;
    lblIdade.setText(Integer.toString(idade));
    String sit = (idade >= 18) ? "Maior" : "Menor";
    lblSituacao.setText(sit);
  }
                                 \Sigma S
                          <u>$</u>
  Ano de Nascimento
                          1961
           Calcular Idade
  Idade
                              54
```

Maior

Situação

EXPRESSÕES LÓGICAS COMPOSTAS


```
private void btnCalcActionPerformed(java.awt.event.ActionEvent evt) {
    // TODO add your handling code here:
    int ano = Integer.parseInt(txtAno.getText());
    int idade = 2015 - ano;
    IbIldade.setText(Integer.toString(idade));
    String sit = ((idade >= 16 && idade < 18) || (idade > 70)) ? "É opcional" : "Não é opcional";
    IbISituacao.setText(sit);
}
```


ESTRUTURAS CONDICIONAIS

Estrutura de controle condicional simples

```
package programamedia;
import java.util.Scanner;
public class ProgramaMedia {
  public static void main(String[] args) {
    Scanner teclado = new Scanner (System.in);
    System.out.print("Primeira nota: ");
    float n1 = teclado.nextFloat();
    System.out.print("Segunda nota: ");
    float n2 = teclado.nextFloat();
    float m = (n1 + n2)/2;
    System.out.println("Sua média é " + m);
    if (m > 9){
      System.out.println("Parabéns, pequeno gafanhoto!");
    }
  }
}
```

Estrutura de controle condicional composta

```
package programaidade;
import java.util.Scanner;
public class Programaldade {
  public static void main(String[] args) {
    Scanner t = new Scanner (System.in);
    System.out.print("Em que ano você nasceu? ");
    int nasc = t.nextInt();
    int i = 2015 - nasc;
    System.out.println("Sua idade é " + i);
    if (i >= 18){
      System.out.println("Maior de idade");
    } else {
      System.out.println("Menor de idade");
    }
  }
}
```

```
if
  private void btnVotoActionPerformed(java.awt.event.ActionEvent evt) {
    panResultado.setVisible(true);
    int a = Integer.parseInt(txtAno.getText());
    int i = 2015 - a;
     lblIdade.setText(String.format("%d", i) + " anos");
    if (i < 16){
      lblR.setText("Não pode votar!");
    } else {
      if ((i >= 16 \&\& i < 18) | | (i > 70)){
         lblR.setText("Voto Opcional");
      } else {
         lblR.setText("Voto Obrigatório");
      }
    }
  }
else if
  private void btnVotoActionPerformed(java.awt.event.ActionEvent evt) {
    panResultado.setVisible(true);
    int a = Integer.parseInt(txtAno.getText());
    int i = 2015 - a;
    lblIdade.setText(String.format("%d", i) + " anos");
```

```
if (i < 16){
```

```
IbIR.setText("Não pode votar!");
} else if ((i >= 16 && i < 18) || (i > 70)){
    IbIR.setText("Voto Opcional");
} else {
    IbIR.setText("Voto Obrigatório");
}
```

CONDIÇÃO DE MÚLTIPLA ESCOLHA

swing

```
int pernas = teclado.nextInt();
String tipo;
switch (pernas) {
  case 1:
      tipo = "Saci";
      break;
   case 2:
      tipo = "Bípede";
      break;
   case 4:
      tipo = "Quadrúpede";
      break;
   case 6,8:
      tipo = "Aranha";
      break;
   default:
      tipo = "ET";
System.out.print(tipo);
```

REPETIÇÃO COM TESTE LÓGICO NO INÍCIO

Comando while

```
package contador01;

public class Contador01 {
   public static void main(String[] args) {
     int cc = 1;
     while (cc <= 4) {
        System.out.println("Cambalhota " + cc);
        cc++;
     }
   }
}</pre>
```

```
run:
Cambalhota 1
Cambalhota 2
Cambalhota 3
Cambalhota 4
CONSTRUÍDO COM SUCESSO (tempo total: 0 segundos)
```

Comando continue

```
package contador01;
public class Contador01 {
  public static void main(String[] args) {
     int cc = 0;
    while (cc < 10) {
      cc++;
      if (cc==5 | | cc==7 | | cc==9){
        continue;
      }
      System.out.println("Cambalhota " + cc);
    }
  }
}
Cambalhota 1
Cambalhota 2
Cambalhota 3
Cambalhota 4
Cambalhota 6
Cambalhota 8
Cambalhota 10
CONSTRUÍDO COM SUCESSO (tempo total: 0 segundos)
```

Comando break

```
package contador01;
public class Contador01 {
  public static void main(String[] args) {
    int cc = 0;
    while (cc < 10) {
      CC++;
      if (cc==2 || cc==3 || cc==4){
        continue;
      if (cc==7){
        break;
      }
      System.out.println("Cambalhota " + cc);
    }
  }
Cambalhota 1
Cambalhota 5
Cambalhota 6
CONSTRUÍDO COM SUCESSO (tempo total: 0 segundos)
```

REPETIÇÃO COM TESTE LÓGICO NO FINAL

```
package repeticao01;
public class Repeticao01 {
  public static void main(String[] args) {
    int cc = 0;
    do {
      System.out.println("Cambalhota");
      cc++;
    } while (cc < 4);
  }
}
run:
Cambalhota
Cambalhota
Cambalhota
Cambalhota
CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
```

```
package numeros;
import java.util.Scanner;
public class Numeros {
  public static void main(String[] args) {
    int n, s = 0;
    String resp;
    Scanner teclado = new Scanner(System.in);
    do {
      System.out.print("Digite um número: ");
      n = teclado.nextInt();
      s += n;
      System.out.println("Quer continuar? (S/N): ");
      resp = teclado.next();
    } while (resp.equals("S"));
    System.out.println("A soma de todos os valores é " + s);
  }
}
```

javax.swing.JOptionPane

```
package exerciciorepita;
import javax.swing.JOptionPane;
public class ExercicioRepita {
  public static void main(String[] args) {
    JOptionPane.showMessageDialog(null, "Olá, Mundo!", "Boas
vindas!",JOptionPane.INFORMATION_MESSAGE);
  }
}
                                         \Sigma S
  Boas vindas!
           Olá, Mundo!
                      OK
package exerciciorepita;
import javax.swing.JOptionPane;
public class ExercicioRepita {
  public static void main(String[] args) {
    int n = Integer.parseInt(JOptionPane.showInputDialog(null, "Informe um número: "));
    JOptionPane.showMessageDialog(null, "Você digitou o valor " + n);
  }
}
```


Você digitou o valor 54

OK

REPETIÇÃO COM VARIÁVEL DE CONTROLE

for

```
package repeticaofor;

public class RepeticaoFor {
   public static void main(String[] args) {
      for(int cc = 0; cc <= 3; cc++){
            System.out.println("Cambalhota");
      }
   }
}

run:
Cambalhota
Cambalhota
Cambalhota
Cambalhota
Cambalhota
Construído com sucesso (tempo total: 1 segundo)</pre>
```

VETORES EM JAVA

Em Java, o vetor é um objeto.

```
int n[] = new int[4];
n[0] = 3;
n[1] = 5;
n[2] = 8;
n[3] = 2;
```

ou

```
int n[] = {3,5,8,2};
```

```
package vetor01;
public class Vetor01 {
  public static void main(String[] args) {
    // int n[] = new int[4];
    int n[] = {3,2,8,7,5,4};
   for(int c = 0; c \le 5; c++){
      System.out.print(n[c] + " ");
    }
  }
}
 3 2 8 7 5 4 CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
package vetor01;
public class Vetor01 {
  public static void main(String[] args) {
    int n[] = {3,2,8,7,5,4};
    for(int c = 0; c \le 5; c++){
      System.out.println("Na posição " + c + " temos o valor " + n[c]);
    }
  }
}
 Na posição 0 temos o valor 3
 Na posição 1 temos o valor 2
 Na posição 2 temos o valor 8
 Na posição 3 temos o valor 7
 Na posição 4 temos o valor 5
 Na posição 5 temos o valor 4
 CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
```

Tamanho de um vetor (length)

```
package vetor01;
public class Vetor01 {
  public static void main(String[] args) {
    int n[] = {3,2,8,7,5,4};
    System.out.println("Total de casas de n: " + n.length);
     }
  }
}
run:
Total de casas de n: 6
CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
package vetor01;
public class Vetor01 {
  public static void main(String[] args) {
    int n[] = {3,2,8,7,5,4};
    System.out.println("Total de casas de n: " + n.length);
     for(int c = 0; c \le n.length - 1; c++){
      System.out.println("Na posição " + c + " temos o valor " + n[c]);
    }
}
Total de casas de n: 6
Na posição O temos o valor 3
Na posição 1 temos o valor 2
Na posição 2 temos o valor 8
Na posição 3 temos o valor 7
Na posição 4 temos o valor 5
Na posição 5 temos o valor 4
CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
```

```
package vetor02;
public class Vetor02 {
  public static void main(String[] args) {
    String mes[] = {"Janeiro","Fevereiro","Março","Abril","Maio","Junho",
            "Julho", "Agosto", "Setembro", "Outubro", "Novembro", "Dezembro");
    int tot[] = \{31,28,31,30,31,30,31,30,31,30,31\};
    for (int c = 0; c < mes.length; c++){
      System.out.println("O mês de " + mes[c] + " tem " + tot[c] + " dias");
    }
  }
}
O mês de Janeiro tem 31 dias
O mês de Fevereiro tem 28 dias
O mês de Março tem 31 dias
O mês de Abril tem 30 dias
O mês de Maio tem 31 dias
O mês de Junho tem 30 dias
O mês de Julho tem 31 dias
O mês de Agosto tem 31 dias
O mês de Setembro tem 30 dias
O mês de Outubro tem 31 dias
O mês de Novembro tem 30 dias
O mês de Dezembro tem 31 dias
CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
```

Lendo vetores com foreach

```
package vetor03;
public class Vetor03 {
  public static void main(String[] args) {
    double v[] = {3.5, 2.75, 0, -4.5};
    for (double valor: v){
        System.out.print(valor + " ");
    }
  }
}
run:
3.5 2.75 0.0 -4.5 CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
```

Colocando em ordem o vetor

```
package vetor03;
import java.util.Arrays;
public class Vetor03 {
   public static void main(String[] args) {
      double v[] = {3.5, 2.75, 0, -4.5};
      Arrays.sort(v);
      for (double valor: v){
            System.out.print(valor + " ");
        }
    }
}
```

```
run:
-4.5 0.0 2.75 3.5 CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
```

Busca binária

```
package vetor04;
import java.util.Arrays;
public class Vetor04 {
  public static void main(String[] args) {
    int vet[] = {3, 7, 6, 1, 9, 4, 2};
    int busca = 1;
    for(int v:vet){
      System.out.print(v + " ");
    }
    int p = Arrays.binarySearch(vet, busca);
    if (p < 0){
      System.out.println("\nValor " + busca + " não encontrado!");
    } else {
       System.out.println("\nEncontrei o valor " + busca + " na posição " + p);
    }
  }
}
3761942
Encontrei o valor 1 na posição 3
CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
```

```
public class Vetor04 {
  public static void main(String[] args) {
    int vet[] = {3, 7, 6, 1, 9, 4, 2};
    int busca = 8;
    for(int v:vet){
      System.out.print(v + " ");
    }
    int p = Arrays.binarySearch(vet, busca);
    if (p < 0){
      System.out.println("\nValor " + busca + " não encontrado!");
    } else {
       System.out.println("\nEncontrei o valor " + busca + " na posição " + p);
    }
  }
}
3 7 6 1 9 4 2
Valor 8 não encontrado!
CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
```

Preenchendo todas as posições do vetor com um mesmo valor

MÉTODOS EM JAVA

Procedimentos

Não retornam valor.

```
package testefuncao;
public class TesteFuncao {
   static void soma(int a, int b){
      int s = a + b;
      System.out.println("A soma é " + s);
   }
   public static void main(String[] args) {
      soma(5, 19);
   }
}
run:
A soma é 24
CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
```

Funções

Retornam valor.

```
package testefuncao;
public class TesteFuncao {
    static int soma(int a, int b){
        int s = a + b;
        return s;
    }
    public static void main(String[] args) {
        System.out.println("Começou o programa");
        int sm = soma(23, 18);
        System.out.println("A soma é " + sm);
    }
}
run:
Começou o programa
A soma é 41
CONSTRUÍDO COM SUCESSO (tempo total: 0 segundos)
```

Chamada a uma função externa

```
package testefuncao02;
public class Operacoes {
  public static String contador (int i, int f){
    String s ="";
    for(int c = i; c <= f; c++){
      s += c + " ";
    }
    return s;
  }
}
package testefuncao02;
public class TesteFuncao02 {
  public static void main(String[] args) {
    System.out.println("Vai começar a contagem");
    System.out.println(Operacoes.contador(1,5));
  }
}
Vai começar a contagem
CONSTRUÍDO COM SUCESSO (tempo total: 1 segundo)
```