Formal Languages - Basic Terminology

Peter Bauer

Version 01.02.02

Outline

Alphabet

String

Concatenation

Grammar

Generating Strings

Kleene Star and Language

Alphabet

Definition

An *Alphabet* (sometimes called a *Vocabulary*) is a non-empty and finite set of elements.

Remark

Alphabets are often denoted by upper-case letters A or V and sometimes as upper-case greek letters like Σ .

Alphabet

Definition

An *Alphabet* (sometimes called a *Vocabulary*) is a non-empty and finite set of elements.

Remark

Alphabets are often denoted by upper-case letters A or V and sometimes as upper-case greek letters like Σ .

Example

- \blacktriangleright {0,1}: Binary alphabet.
- ASCII: Machine text alphabet.
- \blacktriangleright {a, b}: Small alphabet but enough for many examples.

Definition

A String is a finite sequence of symbols of an alphabet.

Definition

A String is a finite sequence of symbols of an alphabet.

Remark

- Strings are often denoted by lower greek letters like $\alpha, \beta, \varphi, \omega, \dots$
- A string over the alphabet Σ means a string all of whose symbols are in Σ .

Definition

A String is a finite sequence of symbols of an alphabet.

Remark

- Strings are often denoted by lower greek letters like $\alpha, \beta, \varphi, \omega, \dots$
- A string over the alphabet Σ means a string all of whose symbols are in Σ .

Definition

The *length* of a string ω denoted as $|\omega|$ is the number of symbols in the string.

Definition

A String is a finite sequence of symbols of an alphabet.

Remark

- Strings are often denoted by lower greek letters like $\alpha, \beta, \varphi, \omega, \dots$
- A string over the alphabet Σ means a string all of whose symbols are in Σ .

Definition

The *length* of a string ω denoted as $|\omega|$ is the number of symbols in the string.

Definition

A string ω is called *empty* if $|\omega| = 0$. It is often denoted as ε or λ .

Concatenation

Definition

Let ω_1 and ω_2 be two strings. The *concatenation* (sometimes also called *catenation*) of ω_1 and ω_2 makes a new string α containing all the symbols of ω_1 in order followed by all symbols of ω_2 in order. This is usually written as $\alpha = \omega_1 \omega_2$.

Concatenation

Definition

Let ω_1 and ω_2 be two strings. The *concatenation* (sometimes also called *catenation*) of ω_1 and ω_2 makes a new string α containing all the symbols of ω_1 in order followed by all symbols of ω_2 in order. This is usually written as $\alpha = \omega_1 \omega_2$.

Example

Given two strings $\omega_1=$ abc and $\omega_2=$ cde then the concatenation α of ω_1 and ω_2 is $\alpha=\omega_1\omega_2=$ abccde.

Concatenation

Definition

Let ω_1 and ω_2 be two strings. The *concatenation* (sometimes also called *catenation*) of ω_1 and ω_2 makes a new string α containing all the symbols of ω_1 in order followed by all symbols of ω_2 in order. This is usually written as $\alpha = \omega_1 \omega_2$.

Example

Given two strings $\omega_1=$ abc and $\omega_2=$ cde then the concatenation α of ω_1 and ω_2 is $\alpha=\omega_1\omega_2=$ abccde.

Remark

For any string ω the relation $\varepsilon\omega=\omega\varepsilon=\omega$ holds.

Production Rule

Definition

A production rule (sometimes called a re-writing rule or simply rule) is a tuple (A, α) , where A is a symbol and α is a string of symbols.

Production Rule

Definition

A production rule (sometimes called a re-writing rule or simply rule) is a tuple (A, α) , where A is a symbol and α is a string of symbols.

Remark

A rule is often denoted as $A \to \alpha$ and can be understood as "A can be re-written (or substituted) by α " or "A is defined as α ".

Example

- F →I
- I →a

Grammar

Definition

A grammar G(S) is a finite, non-empty set of production rules. S is called the start symbol and appears on at least one left side of the production rules. All symbols on the left and right sides are the Vocabulary.

Grammar

Definition

A grammar G(S) is a finite, non-empty set of production rules. S is called the start symbol and appears on at least one left side of the production rules. All symbols on the left and right sides are the Vocabulary.

Example

```
\begin{array}{cccc} F & \stackrel{\cdot}{\rightarrow} & I \\ F & \rightarrow & \neg F \\ F & \rightarrow & (F \land F) \\ F & \rightarrow & (F \lor F) \\ I & \rightarrow & a \\ I & \rightarrow & b \end{array}
```

Terminal and Non-Terminal Symbols

Definition

All symbols appearing on the left side of a grammar G(S) are called *non-terminals*. The set of all non-terminals of G(S) is denoted by V_N . All other symbols are called *terminals*. The set of these symbols is denoted by V_T . Obviously it holds $V = V_N \cup V_T$.

Denoting Grammars — Formal Languages

- ► Terminals in lower-case letters
- ► Non-terminals in upper-case letters
- ▶ Separator: →
- Alternatives: |

Denoting Grammars — Formal Languages

- ► Terminals in lower-case letters
- Non-terminals in upper-case letters
- ▶ Separator: →
- Alternatives: |

Example

The language of the propositional logic is defined as follows using the classical notation system of formal languages.

Denoting Grammars — EBNF

- Terminals under double quotes
- Non-terminals in meaningful words written in Pascal case
- ► Separator: =
- Alternatives: |
- ► Each rule ends with a period.
- ▶ Options: [A] means A or ε .
- ▶ Repetition: $\{A\}$ means ε or A or AA or AAA ...
- Parentheses for grouping.

Denoting Grammars — EBNF

- Terminals under double quotes
- Non-terminals in meaningful words written in Pascal case
- ► Separator: =
- ► Alternatives: |
- ► Each rule ends with a period.
- ▶ Options: [A] means A or ε .
- ▶ Repetition: $\{A\}$ means ε or A or AA or AAA ...
- Parentheses for grouping.

Example

Expressions in the programming language Modula 2 written in EBNF.

```
Expression = ["+" | "-"] Term \{("+" | "-") Term\}.

Term = Factor \{("*" | "/") Factor\}.

Factor = c | v | "(" Expression ")".
```

Denoting Grammars — Syntax Diagrams

- Each diagram defines a non-terminal
- ► Terminals are represented by round boxes
- Non-terminals are represented by square boxes

Syntax Diagrams – An Example

Syntax Trees or Parse Trees

```
Show by drawing the parse tree that -5 + 3 * (a - x) is an expression in the sense of the grammar Expression = ["+" |"-"] Term \{("+" |"-") Term\}. Term = Factor \{("*" |"/") Factor\}. Factor = c |v|"(" Expression ")".
```

Generating Strings

Definition

Given

- 1. a formal grammar G with a rule $A \rightarrow \varphi$
- 2. a string $\alpha = \omega_1 A \omega_2$.

Then we can obviously generate a new string $\beta = \omega_1 \varphi \omega_2$. In this case we say α generates β directly, in symbols $\alpha \Rightarrow \beta$.

Generating Strings

Definition

Given

- 1. a formal grammar G with a rule $A \rightarrow \varphi$
- 2. a string $\alpha = \omega_1 A \omega_2$.

Then we can obviously generate a new string $\beta = \omega_1 \varphi \omega_2$. In this case we say α generates β directly, in symbols $\alpha \Rightarrow \beta$.

Definition

A string α generates a string β (usually denoted by $\alpha \Rightarrow^+ \beta$ if there exists a sequence of direct generations

$$\alpha = \omega_0 \Rightarrow \omega_1 \Rightarrow \omega_2 \Rightarrow \ldots \Rightarrow \omega_n = \beta.$$
 $(n > 0)$

If $\alpha \Rightarrow^+ \beta$ or $\alpha = \beta$ we write $\alpha \Rightarrow^* \beta$ and say α generates or is equal to β .

Kleene Star

Definition

Let Σ be an alphabet. Then we define the sets Σ_i recursively as follows:

$$\Sigma_0 = \{\varepsilon\}$$

$$\Sigma_{i+1} = \{\omega v \mid \omega \in \Sigma_i \land v \in \Sigma\}$$

The *Kleene star* is defined then by $\Sigma^* = \bigcup_{i \in \mathbb{N}_0} \Sigma_i$

Kleene Star

Definition

Let Σ be an alphabet. Then we define the sets Σ_i recursively as follows:

$$\Sigma_0 = \{\varepsilon\}$$

$$\Sigma_{i+1} = \{\omega v \mid \omega \in \Sigma_i \land v \in \Sigma\}$$

The *Kleene star* is defined then by $\Sigma^* = \bigcup_{i \in \mathbb{N}_0} \Sigma_i$

Example

```
Let V=\{\text{"ab"},\text{"c"}\} be an alphabet. Then the V^*=\{\varepsilon,\text{"ab"},\text{"c"},\text{"abab"},\text{"abab"},\text{"abab"},\text{"ababc"},\dots\}
```

Kleene Star

Definition

Let Σ be an alphabet. Then we define the sets Σ_i recursively as follows:

$$\Sigma_0 = \{\varepsilon\}$$

$$\Sigma_{i+1} = \{\omega v \mid \omega \in \Sigma_i \land v \in \Sigma\}$$

The *Kleene star* is defined then by $\Sigma^* = \bigcup_{i \in \mathbb{N}_0} \Sigma_i$

Example

Let $V=\{\text{``ab''},\text{``c''}\}$ be an alphabet. Then the $V^*=\{\varepsilon,\text{``ab''},\text{``c''},\text{``abab''},\text{``abab''},\text{``ababc''},\dots\}$

Remark

Loosely interpreted we could say that the Kleene Star of an alphabet is the set of all strings that can be built out of this alphabet.

Language

Definition

Let G(S) be a grammar with a start symbol S. The set

$$L(G(S)) = \{\alpha : S \Rightarrow^* \alpha \land \alpha \in V_T^*\}$$

is then called the *language* of G(S).

Language

Definition

Let G(S) be a grammar with a start symbol S. The set

$$L(G(S)) = \{\alpha : S \Rightarrow^* \alpha \land \alpha \in V_T^*\}$$

is then called the *language* of G(S).

Example

Let G(Java) be the grammar defining the programming language Java. L(G(Java)) is then

Language

Definition

Let G(S) be a grammar with a start symbol S. The set

$$L(G(S)) = \{\alpha : S \Rightarrow^* \alpha \land \alpha \in V_T^*\}$$

is then called the *language* of G(S).

Example

Let G(Java) be the grammar defining the programming language Java. L(G(Java)) is then the set of all syntactically correct Java programs.