# Lab 1

Yujin Jeon



Seoul National University
Graduate School of Data Science



# Google Colab Tutorial



# Google Colab

#### 1. Connect to <a href="https://colab.research.google.com/">https://colab.research.google.com/</a>



# Google Colab

#### 2. A new colab note has been created!



## Google Colab

#### 3. Let's try a simple program!



- Google Colab uses Google Drive as the disk drive that you can read files from or write them to.
  - The default directory for Colab codes is "/content/drive/My Drive/Colab Notebooks".
- Let's try to run the following code, to connect to your drive:

from google.colab import drive
drive.mount('/content/drive')



You will see this screen:



Then, you will see another window opening:



Then, you will see another window opening:



At the bottom, click this!

- Now, your drive is mounted to the current Colab notebook. Great!
- Let's move to the target directory by running the following code:

%cd '/content/drive/My Drive/Colab Notebooks'



You can see this directory on https://drive.google.com.

To demonstrate file reading, let's upload a simple text file on this directory.



Let's open this file on Colab now.

```
file = open('textfile.txt', 'r')
contents = file.read()
file.close()
print(contents)
```

```
file = open('textfile.txt', 'r')
contents = file.read()
file.close()
print(contents)
Test text file
This is the second line!
```

Once executed, we can see that the contents of the text file is printed.

# NumPy / Pandas

## NumPy / Pandas

#### **NumPy**

A Python library that provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays efficiently

#### **Pandas**

A Python library used for data manipulation and analysis, mainly for structured tabular data such as CSV files

## NumPy

#### Generating NumPy Arrays

- np.array()
- np.arange()
- np.zeros()
- np.ones()
- np.eye()

#### **Array Manipulation**

- Concatenating
- Indexing and Slicing
- reshaping
- transposing





6





### NumPy

#### **Array Operations**

- +,-,\*,/
- add(), substract(), multiply(), divide()
- dot(), sum(), prod(), inv()
- broadcasting

### **Pandas**

#### Pandas DataFrames

```
# csv file -> dataframe
df = pd.read_csv("/content/drive/MyDrive/2-1_MLDL/Carseats.csv")
df.head()
```

|   | Sales | CompPrice | Income | Advertising | Population | Price | ShelveLoc | Age | Education | Urban | US  |
|---|-------|-----------|--------|-------------|------------|-------|-----------|-----|-----------|-------|-----|
| 0 | 9.50  | 138       | 73     | 11          | 276        | 120   | Bad       | 42  | 17        | Yes   | Yes |
| 1 | 11.22 | 111       | 48     | 16          | 260        | 83    | Good      | 65  | 10        | Yes   | Yes |
| 2 | 10.06 | 113       | 35     | 10          | 269        | 80    | Medium    | 59  | 12        | Yes   | Yes |
| 3 | 7.40  | 117       | 100    | 4           | 466        | 97    | Medium    | 55  | 14        | Yes   | Yes |
| 4 | 4.15  | 141       | 64     | 3           | 340        | 128   | Bad       | 38  | 13        | Yes   | No  |

df.describe()

| print   | df.info(    | )   | ) |
|---------|-------------|-----|---|
| DI TILC | GI I TIII O | , , | , |

<class 'pandas.core.frame.DataFrame'> RangeIndex: 400 entries, 0 to 399 Data columns (total 11 columns):

| #    | Column                                  | Non-Null Count | Dtype   |  |  |  |
|------|-----------------------------------------|----------------|---------|--|--|--|
|      |                                         |                |         |  |  |  |
| 0    | Sales                                   | 400 non-null   | float64 |  |  |  |
| 1    | CompPrice                               | 400 non-null   | int64   |  |  |  |
| 2    | Income                                  | 400 non-null   | int64   |  |  |  |
| 3    | Advertising                             | 400 non-null   | int64   |  |  |  |
| 4    | Population                              | 400 non-null   | int64   |  |  |  |
| 5    | Price                                   | 400 non-null   | int64   |  |  |  |
| 6    | ShelveLoc                               | 400 non-null   | object  |  |  |  |
| 7    | Age                                     | 400 non-null   | int64   |  |  |  |
| 8    | Education                               | 400 non-null   | int64   |  |  |  |
| 9    | Urban                                   | 400 non-null   | object  |  |  |  |
| 10   | US                                      | 400 non-null   | object  |  |  |  |
| dtyp | dtypes: float64(1), int64(7), object(3) |                |         |  |  |  |

memory usage: 34.5+ KB

None

|       | Sales      | CompPrice  | Income     | Advertising | Population | Price      | Age        | Education  |  |
|-------|------------|------------|------------|-------------|------------|------------|------------|------------|--|
| count | 400.000000 | 400.000000 | 400.000000 | 400.000000  | 400.000000 | 400.000000 | 400.000000 | 400.000000 |  |
| mean  | 7.496325   | 124.975000 | 68.657500  | 6.635000    | 264.840000 | 115.795000 | 53.322500  | 13.900000  |  |
| std   | 2.824115   | 15.334512  | 27.986037  | 6.650364    | 147.376436 | 23.676664  | 16.200297  | 2.620528   |  |
| min   | 0.000000   | 77.000000  | 21.000000  | 0.000000    | 10.000000  | 24.000000  | 25.000000  | 10.000000  |  |
| 25%   | 5.390000   | 115.000000 | 42.750000  | 0.000000    | 139.000000 | 100.000000 | 39.750000  | 12.000000  |  |
| 50%   | 7.490000   | 125.000000 | 69.000000  | 5.000000    | 272.000000 | 117.000000 | 54.500000  | 14.000000  |  |
| 75%   | 9.320000   | 135.000000 | 91.000000  | 12.000000   | 398.500000 | 131.000000 | 66.000000  | 16.000000  |  |
| max   | 16.270000  | 175.000000 | 120.000000 | 29.000000   | 509.000000 | 191.000000 | 80.000000  | 18.000000  |  |

# Machine Learning with Python

# Machine Learning with Python

- **Linear Regression**
- **Feature Selection**
- **Logistic Regression**
- Discriminant Analysis

Let's try them out!:)

# Homework 1

### Homework 1

- Due: 2024/4/11 Thr, 18:00
- No late submissions allowed!
- Skeleton codes: hwl gd.ipynb, hwl nb.ipynb
- Allowed to use numpy library
  - Do NOT use any scikit learn packages or other equivalent ones that directly implement the question.

- Q1, 2 (MLE, Linear Regression): contents from lecture 3, 4
- Q3 (Gradient Descent): contents from lecture 5
- Q4 (Naive Bayes Classifier): contents from lecture 6
- First ask questions to ETL, then to TA Chanwoo Kim (chanwoo.kim@snu.ac.kr)

### Question 1, 2

- Q1: MLE for Poisson Distribution, Exponential Distribution
- Q2: MLE for Linear Regression with Heteroskedasticity (Non-constant variation)





Q3: Gradient Descent - MLE for Beta Distribution



- Q4: Multinomial Naive Bayes Classifier
  - Task: Log Classification (Text to Class)

```
2015-10-17 15:45:11,258 INFO [main] org.apache.hadoop.metrics2.impl.MetricsConfig: loaded properties from hadoop-metrics2.properties
2015 40-17 15:45:11,399 INFO [main] org.apache.hadoop.metrics2.impl.MetricsSystemImpl: Scheduled snapshot period at 10 second(s).
2015-10 17 15:45:11,399 INFO [main] org.apache.hadoop.metrics2.impl.MetricsSystemImpl: MapTask metrics system started
2015-10-17-15:45:11,430 INFO [main] org.apache.hadoop.mapred.YarnChild: Executing with tokens:
2015-10-17 13:45:11,430 INFO [main] org.apache.hadoop.mapred.YarnChild: Kind: mapreduce.job, Service: job_1445062781478_0015, Ident: (org.apache$
2015-10-17 15:45:11,602 INFO [main] org.apache.hadoop.mapred.YarnChild: Sleeping for 0ms before retrying again. Got null now.
2015-10-17 15:45:10, 196 INFO [main] org.apache.hadoop.mapred.YarnChild: mapreduce.cluster.local.dir for child: /tmp/hadoop-msrabi/nm-local-dir/u$
2015-10-17 15:45:12, 11 INFO [main] org.apache.hadoop.conf.Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session$
```



Level  $0 \sim 3$ 

- Q4: Multinomial Naive Bayes Classifier
  - Preprocessing: Bag of Words (BoW)

|                                       | the | red | dog | cat | eats | food |
|---------------------------------------|-----|-----|-----|-----|------|------|
| <ol> <li>the red dog —&gt;</li> </ol> | 1   | 1   | 1   | 0   | 0    | 0    |
| <ol> <li>cat eats dog →</li> </ol>    | 0   | 0   | 1   | 1   | 1    | 0    |
| <ol><li>dog eats food</li></ol>       | 0   | 0   | 1   | 0   | 1    | 1    |
| <ol> <li>red cat eats →</li> </ol>    | 0   | 1   | 0   | 1   | 1    | 0    |

- Q4: Multinomial Naive Bayes Classifier
  - Preprocessing: Bag of Words (BoW) (Already Done for You!)



https://scikit-learn.org/stable/modules/generated/sklearn.feature\_extraction.text.CountVectorizer.html

- Q4: Multinomial Naive Bayes Classifier
  - Model: Multinomial Naive Bayes

#### **Multinomial Distribution**

Parameters 
$$n>0$$
 number of trials (integer)  $k>0$  number of mutually exclusive events (integer)  $p_1,\dots,p_k$  event probabilities, where  $p_1+\dots+p_k=1$ 



e.g., 
$$\mathbf{p}$$
 of a Dice = (0.05, 0.03, 0.02, 0.7, 0.2, 0.1),  $n = 10$ 

$$x_1 = (3, 2, 4, 0, 1, 0)$$
 vs.  $x_2 = (0, 0, 0, 5, 3, 2)$ 

- Q4: Multinomial Naive Bayes Classifier
  - Model: Multinomial Naive Bayes

$$\mathbf{p}$$
 of Cat story= (0.04, 0.05, 0, 0.8, 0.01, 0.1)

|                                       | the | red | dog | cat | eats | food |
|---------------------------------------|-----|-----|-----|-----|------|------|
| <ol> <li>the red dog —&gt;</li> </ol> | 1   | 1   | 1   | 0   | 0    | 0    |
| <ol> <li>cat eats dog →</li> </ol>    | 0   | 0   | 1   | 1   | 1    | 0    |
| <ol> <li>dog eats food→</li> </ol>    | 0   | 0   | 1   | 0   | 1    | 1    |
| <ol> <li>red cat eats →</li> </ol>    | 0   | 1   | 0   | 1   | 1    | 0    |