- 1. Extend the argument discussed in the class to prove that the Gauss-Seidel method converges for strictly row diagonally dominant matrices.
- 2. Let $A, B \in \mathbb{R}^{n \times n}$ such that A and $A B B^T$ are symmetric positive definite. Prove that the spectral radius of $(A B)^{-1} B$ is strictly less than 1.
- 3. Use the above to prove that if A is symmetric positive definite, then the Gauss-Seidel method converges.
- 4. For a matrix A, let \tilde{A} be defined as follows:

$$\tilde{A}_{ij} = \begin{cases} A_{ij} & \text{if } i = j \\ -A_{ij} & \text{if } i \neq j \end{cases}$$

Prove that if A and \tilde{A} are symmetric positive definite, then the Jacobi method converges.

5. Consider the tridiagonal linear system

$$Ax=b$$
 where $A\in\mathbb{R}^{n\times n},\,A_{kk}=2,\,A_{k,k+1}=A_{k+1,k}=-1$ and $b_k=\frac{k}{n^3}.$

- Implement Jacobi, Gauss-Seidel, Steepest Descent and Conjugate Gradient for solving this linear system. Try with $n \in \{10, 20, 50, 100, 200, 500, 1000, 2000, 5000\}$ and for different tolerance $10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}, 10^{-6}$. The tolerance is used to bound the relative error in the residual, i.e., $\frac{\|b Ax\|}{\|b\|}$.
- \bullet Plot the number of steps for each method as a function of n for different tolerances.
- Arrive at a rough scaling of the number of steps for each method in terms of n and tolerance.