МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМ. ТАРАСА ГРИГОРОВИЧА ШЕВЧЕНКА

Київ

Основи електротехніки

Звіт до лабораторної роботи \mathbb{N}^5

Роботу виконала: Є.С. Кулинич Група: 5-А Викладачі: Р. Єрмоленко Ю. Мягченко

Київ 2021 БКК 73Ц I-72

Укладач: Є.С. Кулинич

І-72 Звіт. Операційні підсилювачі з негативним зворотним зв'язком/ укл. Є.С.

Кулинич.

-К: КНУ ім. Т. Шевченка, 2021. - 9 с. (Укр. мов.)

Наведено загальний звіт виконання роботи з моделювання електронних схем у програмі Ni Multisim $^{\mathsf{TM}}$.

Зміст

1.	Вступна частина	4
	1.1. Об'єкт дослідження	4
	1.2. Meta	
	1.3. Методи дослідження	
2.	Теоретична частина	5
	2.1. Термінологія	
3.	Практична частина	6
	3.0.1. Покази приладів	Ö
	3.1. Висновки	
4.	Використані джереда	10

1. Вступна частина

1.1. Об'єкт дослідження

ОП, їхні ВАХ.

1.2. Мета

Ознайомитися з властивостями операційних підсилювачів, опанувати способи підсилення електричних сигналів схемами з ОП, охопленим негативним зворотним зв`язком та способи виконання математичних операцій за допомогою схем з ОП.

1.3. Методи дослідження

Метод співставлення: одночасне спостереження вхідного та вихідного сигналів на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів.

Змодельовано інвертувальний та неінвертувальний підсилювачі, інтегратор на базі інтегрувального підсилювача. Використано математичне моделювання. Оброблено отримані результати.

2. Теоретична частина

2.1. Термінологія

Операційний підсилювач — це диференціальний підсилювач постійного струму, який в ідеалі має нескінченний коефіцієнт підсилення за напругою і нульову вихідну напругу за відсутності сигналу на вході, великий вхідний опір і малий вихідний, а також необмежену смугу частот підсилюваних сигналів. Раніше такі високоякісні підсилювачі використовувалися виключно в аналогових обчислювальних пристроях для виконання математичних операцій, наприклад, складання та інтегрування. Звідси і походить їх назва — операційні підсилювачі (ОП).

Створення зворотного зв'язку полягає в тому, що частина вихідного сигналу підсилювача повертається через ланку зворотного зв'язку (33) на його вхід. Якщо сигнал зворотного зв'язку подається на вхід у протифазі до вхідного сигналу (різниця фаз π), то зворотний зв'язок називають негативним (H33). Якщо ж він подається на вхід у фазі до вхідного сигналу (0), то такий зворотний зв'язок називають позитивним (П33).

3. Практична частина

3.0.1. Покази приладів

3.1. Висновки

За допомогою даної лабораторної роботи вдалось дослідити ВАХ операційних підсилювачів. При дослідження використовувались три типи ОП: інтвертувальний, неінвертувальний підсилювач та інтегратор на базі інвертувального підсилювача. Для дослідження перших двох типів використовувався гармонічний сигнал, для інтегратора імпульсний. Перевірили зміну фаз на вході та виході з кожного ОП.

4. Використані джерела

Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету / Упоряд. О.В.Слободянюк, Ю.О.Мягченко, В.М.Кравченко.- К.: Поліграфічний центр «Принт лайн», 2007.- 120 с.

Ю.О. Мягченко , Ю. М . Дулич , А.В.Хачатрян "Вивчення радіоелектронних схем методом комп'ютерного моделювання" : Методичне видання. – К.: 2006.- с.