Binary trees

- Binary tree
 - Binary tree:
 - Binary tree = a tree where each node has at most 2 children nodes

Example:

- Left and right child
 - Because **each node** has **at most 2** children nodes, we can **label** the children **distinctly** as **left** and **right**:

Note:

- Some nodes (e.g. *h*) have *only* a *left* child node
- Some nodes (e.g. b) have only a right child node

• Perfect binary tree

- Perfect binary tree
 - Perfect binary tree = a binary tree where each level contains the maximum number of nodes

I.e., every level is completely *full* of nodes

Example:

- Some properties of the *perfect* binary tree
 - Property 1:
 - The number of nodes at depth d in a perfect binary tree = 2^{d}

Proof:

• There is *only* 1 node (= the root node) at depth θ :

In a perfect binary tree, every node has 2 children nodes

• Property 2:

A perfect binary tree of height h has:

2h+1 - 1 nodes

Proof:

■ Previously, we have shown that:

■ # nodes at depth d = 2^d

See:

• So the **total number** of **nodes** in a **perfect binary tree** of **height** *h*:

nodes =
$$2^0 + 2^1 + \dots 2^h = 2^{h+1} - 1$$

Proof:

$$S = 1 + 2 + 2^{2} + 2^{3} + \dots + 2^{h}$$

$$2xS = 2 + 2^{2} + 2^{3} + \dots + 2^{h} + 2^{h+1} - (subtract)$$

$$2xS - S = 2^{h+1} - 1$$

$$\langle == \rangle \qquad S = 2^{h+1} - 1$$

• Property 3:

• Number of *leaf* nodes in a perfect binary tree of height $h = 2^h$

Proof:

- # nodes at depth d in a perfect binary tree = 2^d
- All the *leaf* nodes in a perfect binary tree of height h has a depth equal to h:

• # nodes at depth h in a perfect binary tree = 2^h

Therefore:

• Number of *leaf* nodes in a perfect binary tree of height $h = 2^h$

• Property 4:

■ Number of *internal* nodes in a perfect binary tree of height $h = 2^h - 1$

Proof:

- # nodes in a perfect binary tree of height $h = 2^{h+1} 1$ (see Property 2)
- # leaf nodes in a perfect binary tree of height $h = 2^h$ (see Property 3)
- The other nodes are *internal* nodes (i.e., with at least 1 child node).

So:

internal nodes in a perfect binary tree of height $h = (2^{h+1} - 1) - 2^h = 2^h - 1$

- Minimum and maximum number of nodes in a binary tree of height h
 - Fact:
- The *minimum* number of nodes in a binary tree of *height* h = h + 1

Proof:

■ The binary tree of *height* h with the *minimum* number of nodes is a tree where each node has *one* child:

- Because the height = h, the are h edges
- h edges connects h+1 nodes
 - Therefore, the *minimum* number of nodes in a binary tree of *height* h = h + 1

• Fact:

• The *maximum* number of nodes in a binary tree of *height* $h = 2^{h+1} - 1$

Proof:

- The perfect binary tree has the maximum number of nodes
- We have already shown that:
 - # nodes in a *perfect* binary tree = 2^{h+1} –