MCEN 3030

6 Feb 2024

HW & Quiz #2 Due Sunday

Last week: Root finding

- open and bracketing methods

Today: Another open method

ast week: Newton's Method - an "open" method for root finding

Algorithm:

- 1) Start with a gness (the "seed") for the root, x.
- a) Update our gness: $x_{i+1} = x_i \frac{f(x_i)}{f'(x_i)}$
- 3) Iterate until we are happy with the convergence/it diverges (e.g. could set a max number of iterations).
 - · This algorithm converges quickly
 - However, it may not converge at all or for certain seed values.

Fixed-Point Iteration Method * We will program this one in class

Idea: Suppose we are interested in where
$$f(x) = 0$$
.
Find a way * to rearrange to $x = g(x)$
a quick example: $g(x) = x + f(x) \rightarrow \text{seeking } x = g(x)$
If we find where $x = g(x) \implies f(x) = 0$.
Other examples below *

Algorithm:

2) Iterative procedure:
$$X_{i+1} = g(X_i)$$

• error
$$\equiv \left| \frac{X_{i+1} - X_i}{X_{i+1}} \right|$$

· reach a defined number of iterations

* Ex:
$$f(x) = x^2 - x + 1$$

Suppose
$$f(x) = x^2 - x + 1 = 0$$

$$\Rightarrow x^2 + 1 = x$$

$$g(x)$$

So: When
$$g(x) = x^2 + 1 = x$$

 $f(x) = (x^2 + 1) - x = 0$

(More examples below)

What happens graphically

However! g(x) original function will have a root here

Does not converge!

A condition for convergence: |g'(x)| < 1 in the neighborhood of the root of f(x)

With the limitation g'(x) < 1, there may be some options for g(x) that work, others that don't

$$f(x) = xe^{0.5x} + 1.2x - 5 \stackrel{?}{=} 0$$
 Solution:
 $x \approx 1.50$

$$x = g(x)$$

one option:
$$x = \frac{5-1.2x}{e^{0.5x}}$$
Regrangements to

another:
$$x = \frac{5-xe}{12}$$

$$g'(1) = -1.88$$

 $g'(2) = -0.92$

$$g'(1) = -2.06$$

 $g'(2) = -4.53$

another:
$$x = \frac{5}{e^{0.5x} + 1.2}$$

$$g'(1) = -0.50$$

 $g'(2) = -0.44$

another:
$$x = xe^{0.5x} + 2.2x - 5$$
 $g'(1) = 4.67$ $g'(2) = 7.63$

Let's check the algebra with, e.g.

$$x = \frac{5 - xe^{0.5x}}{1.2} \equiv g(x)$$

$$x = \frac{5 - xe^{0.5x}}{1.2} = g(x)$$

$$x = \frac{5 - xe^{0.5x}}{1.2} = \frac{5 - xe^{0.5x}}{1.2}$$

$$x = \frac{5 - xe^{0.5x}}{1.2} = 0$$

$$x = \frac{5 - xe^{0.5x}}{1.2} = 0$$

$$x = \frac{5 - xe^{0.5x}}{1.2} = -1.2x$$

$$x = \frac{5 - xe^{0.5x}}{1.2} = -1.2x$$

$$x = -1.2x + 1.2x = 0$$

Yep!