Randomised Benchmarking of universal qutrit gates

Explicit Randomised Benchmarking qutrit schemes are limited to Clifford gates. We introduce a scheme to characterise a qutrit T gate.

Our scheme is a **feasible** extension to qutrits of the Dihedral Benchmarking scheme 10/brjj. Our scheme is the synthesis of the **Fourier method** 10/jrwr applied to non-Clifford gates. Our scheme is important for experimental groups with qutrit implementations 10/gj8dt4, theorists working on Randomised Benchmarking methods, and in general theorists interested in the application of Representation Theory in Physics.

<u>David Amaro-Alcala</u>, Barry C. Sanders, Hubert de Guise. DAA is supported by the Government of Alberta and NSERC.

Background

Randomized Benchmarking estimates quantum gate quality by comparing the behaviour of ideal and noisy gates, via the average gate fidelity F 10/tfz.

RB is used to characterize Clifford gates, T gates require an extension of the RB scheme for their characterization.

A **qutrit** is a three-level quantum system that offers advantages over qubits and is widely available in different quantum information implementations 10/ghptsj.

Results

RB assumes gates correspond to a physical group; we introduce the HyperDihedral group to characterise a T gate. The HyperDihedral group is generated by X, T, and D.

The name HyperDihedral is given because it is a generalisation of the Dihedral group. We obtained the expression for the average gate fidelity for the HyperDihedral group; it has two parameters, accessible by using two different initial states. Our expression

$$F = \frac{3}{4}(1 + 2r_0 + 6r_0) + \frac{1}{4}.$$

is valid for state imperfections and gatedependent errors.