## **IDEATION REPORT**

## Classification Of Arrhythmia By Using Deep Learning With 2-D ECG Spectral Image Representation

Prasanna Kumar S, Nithiyanantham L, Prabakaran V, Sudhamshu Pakala

## **Abstract**

The electrocardiogram (ECG) is one of the most extensively employed signals used in the diagnosis and prediction of cardiovascular diseases (CVDs). The ECG signals can capture the heart's rhythmic irregularities, commonly known as arrhythmias. A careful study of ECG signals is crucial for precise diagnoses of patients' acute and chronic heart conditions. In this study, we propose a two-dimensional (2-D) convolutional neural network (CNN) model for the classification of ECG signals into eight classes; namely, normal beat, premature ventricular contraction beat, paced beat, right bundle branch block beat, left bundle branch block beat, atrial premature contraction beat, ventricular flutter wave beat, and ventricular escape beat. The one-dimensional ECG time series signals are transformed into 2-D spectrograms through a short-time Fourier transform. The 2-D CNN model consisting of four convolutional layers and four pooling layers is designed for extracting robust features from the input spectrograms. Our proposed methodology is evaluated on a publicly available MIT-BIH arrhythmia dataset. We achieved a state-of-the-art average classification accuracy of 99.11%, which is better than those of recently reported results in classifying similar types of arrhythmias. The performance is significant in other indices as well, including sensitivity and specificity, which indicates the success of the proposed method.

## Introduction

Cardiovascular diseases (CVDs) are the leading cause of human death, with over 17 million people known to lose their lives annually due to CVDs. According to the World Heart Federation, three-fourths of the total CVD deaths are among the middle and low-income segments of the society. A classification model to identify CVDs at their early stage could effectively reduce the mortality rate by providing a timely treatment. One of the common sources of CVDs is cardiac arrhythmia, where heartbeats are known to deviate from their regular beating pattern. A normal heartbeat varies with age, body size, activity, and emotions. In cases where the heartbeat feels too fast or slow, the condition is known as palpitations. An arrhythmia does not necessarily mean that the heart is beating too fast or slow, it indicates that the heart is following an irregular beating pattern. It could mean that the heart is beating too fast—tachycardia (more than 100 beats per minute (bpm)), or slow—bradycardia (less than 60 bpm), skipping a beat, or in extreme cases, cardiac arrest. Some other common types of abnormal heart rhythms include atrial fibrillation, atrial flutter, and ventricular fibrillation. These deviations could be classified into various subclasses and represent different types of cardiac arrhythmia. An accurate classification of these types could help in diagnosing and treatment of heart disease patients. Arrhythmia could either mean a slow or fast beating of heart, or patterns that are not attributed to a normal heartbeat. An automated detection of such patterns is of great significance in clinical practice. There are certain known characteristics of cardiac arrhythmia, where the detection requires expert clinical knowledge.