Fourier Transform

Sinusoid Curve

Period, Frequency and Amplitude

Phase Tho. shift

Observation

別な=り.

$$f(t) = \cos(2\pi t) + 0.5\cos(2\pi 4t) + \dots$$

$$f(t) = \sum_{v=-\infty}^{\infty} A(v) \cos(2\pi vt)$$

Phase shift

eig = cost + is into
eig = cos

$$f(t) = \int_{v=-\infty}^{\infty} F(v)e^{(2\pi i v t)} dv$$

$$f(t) = \int_{v=-\infty}^{\infty} F(v)e^{(2\pi i v t)} dv$$

Example

Odd function

$$-f(x) = f(-x)$$

 $\sin(x)$

Inverse Fourier Transform

$$f(t) = \sum_{v = -\infty}^{\infty} F(v) e^{2\pi i vt}$$

$$f(t) = \int_{v = -\infty}^{\infty} F(v) e^{2\pi i vt} dv$$

Forward Fourier Transform

$$F(v) = \sum_{t=-\infty}^{\infty} f(t) e^{\frac{2\pi i v t}{t}}$$

$$F(v) = \int_{t=-\infty}^{\infty} f(t) e^{-2\pi i v t} dt$$
Hint
$$\frac{f(t)}{e^{2\pi i v t}} \Rightarrow F(v)$$