Automi e Linguaggi Formali - Esame del 15 Settembre 2023

Problema 1 (9 punti)

Considera il linguaggio L = {0^m 1ⁿ | 3m ≤ 2n}. Dimostra che L non è regolare.

Dimostrazione per contraddizione usando il Pumping Lemma

Assunzione: Supponiamo per contraddizione che L sia regolare.

Applicazione del Pumping Lemma: Allora esiste una costante p > 0 (pumping length) tale che ogni stringa $w \in L$ con $|w| \ge p$ può essere decomposta come w = xyz con:

- 1. $|xy| \le p$
- 2. |y| > 0
- 3. xy^i z ∈ L per ogni i ≥ 0

Scelta della stringa di test: Consideriamo $w = 0^p 1^([3p/2]) \in L$.

Verifichiamo che $w \in L$: dobbiamo avere $3m \le 2n$, cioè $3p \le 2\lceil 3p/2 \rceil$.

Poiché $\lceil 3p/2 \rceil \ge 3p/2$, abbiamo $2\lceil 3p/2 \rceil \ge 3p$, quindi $w \in L$.

Inoltre, $|w| = p + \lceil 3p/2 \rceil \ge p$, quindi il pumping lemma si applica.

Analisi della decomposizione: Poiché $|xy| \le p$ e w inizia con p occorrenze di 0, la substring xy deve essere contenuta interamente nella parte degli '0'. Quindi:

- $x = 0^a$ per qualche $a \ge 0$
- $y = 0^b per qualche b > 0 (da |y| > 0)$
- $z = 0^(p-a-b) 1^([3p/2])$

Derivazione della contraddizione: Consideriamo $xy^0z = xz = 0^(p-b) 1^([3p/2])$.

Per essere in L, questa stringa deve soddisfare:

$$3(p-b) \le 2[3p/2]$$

Ma sappiamo che $2[3p/2] \ge 3p$ (come verificato sopra), quindi:

$$3(p-b) \le 3p$$

$$3p - 3b \le 3p$$

 $-3b \le 0$

b ≥ 0

Questo è sempre vero dato che b > 0. Dobbiamo considerare il caso i = 2.

Consideriamo $xy^2z = 0^(p+b) 1^([3p/2]).$

Per essere in L: $3(p+b) \le 2[3p/2] \le 3p + 1$ (usando il bound superiore del ceiling).

Quindi: $3p + 3b \le 3p + 1$, che implica $3b \le 1$, cioè $b \le 1/3$.

Ma b è un intero positivo, quindi b \geq 1, che contraddice b \leq 1/3.

Problema 2 (9 punti)

Dimostra che se L è context-free, allora delete#(L) = $\{xy \mid x\#y \in L\}$ è context-free.

Dimostrazione costruttiva

Dato: L è un linguaggio context-free con CFG G = $(V, \Sigma \cup \{\#\}, R, S)$.

Obiettivo: Costruire una CFG G' per delete#(L).

Costruzione di G': $G' = (V \cup \{S'\}, \Sigma, R', S')$ dove:

- 1. **Nuovo simbolo iniziale:** S' è un nuovo simbolo non in V
- 2. Nuove produzioni iniziali: $S' \rightarrow S$
- 3. **Regole di trasformazione:** R' è ottenuta da R come segue:

Per ogni produzione A $\rightarrow \alpha$ in R:

- Se α non contiene #, aggiungi A $\rightarrow \alpha$ a R'
- Se $\alpha = \beta \# \gamma$ (una sola occorrenza di #), aggiungi A $\rightarrow \beta \gamma$ a R'
- Se α contiene multiple occorrenze di #, sostituisci ogni # con ϵ

Formalizzazione della trasformazione: Definiamo la funzione remove_hash: $(\Sigma \cup \{\#\})^* \to \Sigma^*$ tale che:

- remove_hash(ϵ) = ϵ
- remove_hash(a) = a per $a \in \Sigma$

- remove_hash(#) = ε
- remove_hash($\alpha\beta$) = remove_hash(α) · remove_hash(β)

Allora R' = $\{A \rightarrow remove_hash(\alpha) \mid A \rightarrow \alpha \in R\}$

Correttezza:

Lemma: Per ogni $A \in V$ e $w \in \Sigma^*$, abbiamo $A \Rightarrow_{\{G'\}} w$ se e solo se esiste $u \in (\Sigma \cup \{\#\})$ tale che $A \Rightarrow_{\{G'\}} w$ se e remove_hash(u) = w.

Dimostrazione del Lemma: Per induzione sulla lunghezza della derivazione.

Teorema principale: L(G') = delete#(L)

 \subseteq : Se w \in L(G'), allora S' \Rightarrow _{G'} w. Per costruzione, S' \rightarrow S, quindi S \Rightarrow _{G'} w. Dal lemma, esiste u tale che S \Rightarrow *_G u e remove_hash(u) = w. Quindi u \in L e w = remove_hash(u), che significa w \in delete#(L).

 \supseteq : Se w \in delete#(L), allora w = xy dove x#y \in L. Quindi S \Rightarrow _G x#y. Dal lemma, S \Rightarrow {G'} remove_hash(x#y) = xy = w. Per costruzione, S' \rightarrow S, quindi S' \Rightarrow *{G'} w, cioè w \in L(G').

Pertanto delete#(L) è context-free. □

Problema 3 (9 punti)

Dimostra che ogni linguaggio Turing-riconoscibile sull'alfabeto {0,1,2} può essere riconosciuto da una TM con alfabeto ternario.

Dimostrazione

Definizione: Una TM con alfabeto ternario ha $\Sigma = \{0,1,2\}$ e $\Gamma = \{0,1,2,\sqcup\}$.

Teorema: Ogni linguaggio $L \subseteq \{0,1,2\}^*$ che è Turing-riconoscibile può essere riconosciuto da una TM con alfabeto ternario.

Dimostrazione: Sia L un linguaggio Turing-riconoscibile su $\{0,1,2\}$. Allora esiste una TM standard M = $(Q, \{0,1,2\}, \Gamma', \delta, q_0, q_acc, q_rej)$ che riconosce L, dove Γ' può contenere simboli arbitrari.

Costruiamo una TM con alfabeto ternario M' = (Q', $\{0,1,2\}$, $\{0,1,2,\sqcup\}$, δ' , q_0' , q_acc' , q_rej') equivalente a M.

Strategia: Simulare M usando solo i simboli {0,1,2,⊔}.

Codifica dei simboli: Per ogni simbolo $s \in \Gamma'$, definiamo una codifica encode(s) $\in \{0,1,2\}^+$ tale che:

- I simboli distinti hanno codifiche distinte
- Le codifiche hanno tutte la stessa lunghezza $k = \lceil \log_3 |\Gamma'| \rceil$

Esempio di codifica: Se $\Gamma' = \{0,1,2,\sqcup,a,b,c\}$, allora k = 2 e possiamo usare:

- $0 \to 00, 1 \to 01, 2 \to 02, \sqcup \to 10$
- $a \to 11, b \to 12, c \to 20$

Costruzione di M':

- 1. Stati: Q' include stati per:
 - Simulazione diretta di Q
 - Stati ausiliari per navigazione e codifica/decodifica
- 2. Inizializzazione: M' codifica l'input sostituendo ogni simbolo con la sua codifica
- 3. Simulazione di una transizione $\delta(q,s) = (q',s',D)$:
 - Localizza la posizione corrente della testina simulata
 - Decodifica il simbolo attuale s
 - Applica la transizione originale
 - Codifica il nuovo simbolo s'
 - Sposta la testina simulata nella direzione D

4. Gestione della testina:

- La posizione della testina originale è tracciata usando stati
- Movimento richiede navigazione attraverso k celle per simbolo

Algoritmo dettagliato per simulare una transizione:

Correttezza:

- Ogni configurazione di M corrisponde a una configurazione di M'
- Ogni transizione di M è fedelmente simulata da una sequenza di transizioni in M'
- M' accetta se e solo se M accetta

Conclusione: M' riconosce L usando solo l'alfabeto ternario {0,1,2,⊔}. □

Problema 4 (9 punti)

Parte (a): Formulazione come linguaggio SUM_TM

Definizione del problema: Una TM M "somma correttamente" se per ogni input della forma x#y dove x,y sono rappresentazioni binarie di numeri naturali, M termina con output che è la rappresentazione binaria di x+y.

Linguaggio SUM_TM:

```
SUM_TM = { (M) | M è una TM che somma correttamente }
```

Formalmente:

```
SUM\_TM = \{ \langle M \rangle \mid \forall x,y \in \{0,1\}^*, M(x\#y) = bin(val(x) + val(y)) \}
```

dove:

- val(x) è il valore numerico della stringa binaria x
- bin(n) è la rappresentazione binaria del numero n

• M(w) denota l'output di M sull'input w (assumendo che M termini)

Parte (b): SUM_TM è indecidibile

Teorema: SUM_TM è indecidibile.

Dimostrazione per riduzione da HALT_TM:

Useremo HALT_TM = $\{(M,w) \mid M \text{ si ferma su input } w\}$, che è indecidibile.

Riduzione: HALT_TM ≤ SUM_TM

Dato: Un'istanza (M,w) di HALT_TM

Costruzione: Costruiamo una TM M' tale che $\langle M' \rangle \in SUM_TM \iff \langle M,w \rangle \in HALT_TM$

Costruzione di M':

M'(input):

- 1. Analizza se input ha la forma x#y con x,y binari
- 2. Se no, rifiuta
- 3. Se sì:
 - a. Simula M su w per |x| + |y| passi
 - b. Se M si ferma entro questi passi:
 - Calcola e output bin(val(x) + val(y))
 - c. Se M non si ferma entro questi passi:
 - Output "errore" (non la somma corretta)

Correttezza della riduzione:

 \Rightarrow : Se $\langle M, w \rangle \in HALT_TM$, allora M si ferma su w in k passi per qualche k.

Per ogni input x#y con $|x| + |y| \ge k$, M' eseguirà almeno k passi di simulazione, quindi M si fermerà e M' produrrà la somma corretta.

Per input x#y con |x| + |y| < k, M' potrebbe non simulare abbastanza a lungo, ma possiamo modificare la costruzione per simulare sempre almeno un numero fisso di passi sufficienti per gli input "piccoli".

Versione corretta di M':

M'(input):

- 1. Analizza se input ha la forma x#y con x,y binari
- 2. Se no, rifiuta
- 3. Se sì:
 - a. Simula M su w per max(|x| + |y|, 1000) passi
 - b. Se M si ferma: output bin(val(x) + val(y))
 - c. Se M non si ferma: output "0" (scorretto per somme > 0)

Allora M' somma correttamente solo se M si ferma su w (in tempo ragionevole).

 \Leftarrow : Se $\langle M' \rangle \in$ SUM_TM, allora M' somma correttamente tutti gli input. In particolare, considera x = "1", y = "1". Allora M' deve output "10" (binario per 2). Questo significa che M deve fermarsi nella simulazione, quindi M si ferma su w.

Computabilità: M' può essere costruita algoritmicamente da M e w.

Poiché HALT_TM è indecidibile e HALT_TM ≤ SUM_TM, concludiamo che SUM_TM è indecidibile.