1 Introduction

Modbus est un protocole réseau de SCADA notamment implémenté par des industriels tels que Schneider Electrics. L'apprentissage et les tests sur le protocole Modbus est impensable sur un environnement réel, aussi, l'utilisation d'un banc de tests est une évidence.

Des bancs de tests réels existent mais sont relativement coûteux et peux flexibles. Ce document décrit la réalisation d'un banc de tests à base de briques Lego programmables (Lego Mindstorms EV3).

2 Description générale

L'objectif du banc de test est de mettre à disposition des éléments indépendants Management Terminal Unit (MTU) , Remote Terminal Unit (RTU) qui communiquent entres eux à travers le protocole Modbus/TCP.

Le protocole utilisé par les RTU avec les capteurs ou les moteurs est I2C. Celui-ci est imposé par la brique Lego utilisée, et ne rentrera pas en considération.

La maquette choisie est celle d'un pont levant précédé par un ou plusieurs péages. Ces éléments (RTU) ne communiquent pas entre eux. Seul le centre de contrôle (ou MTU) lit l'état des RTU et modifie leurs registres. L'IHM¹ affiche l'état des valeurs récupérées et permet de modifier les registres.

La technologie utilisée est le framework Lejos². Ce produit libre met à disposition un framework en Java pour l'IDE Eclipse permettant de développer simplement des applications pour Lego Mindstorms). Lejos met également à disposition une distribution Linux permettant d'éxécuter les applications développées. Les communications Modbus sont gérées grâce à la librairie Jamod³. Cette librairie a été modifiée afin d'implémenter les fonctions de diagnostique de Modbus (code fonction 43).

Au niveau physique, les éléments sont reliés entre eux par USB, Bluetooth (PAN) ou WIFI.

¹IHM : Interface Homme-Machine

²http://www.lejos.org

 $^{^3 \}rm http://jamod.sourceforge.net$

3 RTU

Chaque RTU hérite d'une classe Device décrivant les fonctions essentielles de chaque RTU (). Un péage ou un pont étend la classe Device⁴ permettant facilement de définir un nouveau type de composant.

3.1 Péage

Le système de péage présente l'intérêt d'être simple et reproductible sur le banc de test (en réel ou simulé). Une version simulée (entièrement sur PC) est développée.

Les registres entretenus par le péage sont :

 $^{^4\}mathrm{La}$ documentation complète est disponible au format javadoc

Type	Ref	Nom	Description
Input register	0	PIECE_COLOR	Valeur du capteur de couleur de pièce
Input register	1	CAR_TOUCH	Valeur du capteur de passage de voiture
Input register	2	KEY_PRESS	Valeur du bouton pressé sur la brique EV3
Register	0	NAME_ID	Identifiant de la barrière de péage
Register	1	NB_CARS	Nombre de véhicule ayant transités
Register	2	NB_COINS	Nombre de pièces valides avalées
Coil	0	ACTIVE	Péage actif/non actif
Coil	1	FREE	Péage gratuit/paiement activé
Discrete Input	0	BARRIER	Position de la barrière (true = ouverte)

L'automate du péage décrit les états suivants : TODO : Ajoute les états

3.2 Pont levant

Le pont levant permet de présenter un élément dont la sûreté de fonctionnement joue un rôle important, et donc les conséquences sont visibles immédiatement.

Les registres entretenus par le pont sont :

Les registres entretents par le pont sont.					
Type	Ref	Nom	Description		
Input register	0	CAR_PASSAGE	Valeur du capteur de passage de véhicule		
Input register	1	KEY_PRESS	Valeur du bouton de l'EV3 pressé		
Input register	2	BRIDGE_ANGLE	Valeur du capteur gyroscopique sur le tablier du pont		
Input register	3	BOAT_PASSAGE	Valeur du capteur de présence de bateau		
Register	0	NAME_ID	Identifiant du pont		
Register	1	NB_CARS	Nombre de véhicule ayant transités		
Coil	0	ACTIVE	Péage actif/non actif		
Coil	1	BRIDGE_MOVE	Mouvement du péage demandé		
Coil	2	BRIDGE_RAISE	Mouvement vers le haut ou vers le bas		
Coil	3	BARRIER_OPENED	Position de la barrière		
Discrete Input	0	BARRIER	Position de la barrière (true = ouverte)		
Discrete Input	1	WAITING_BOAT	Un bateau est-il en attente		
Discrete Input	2	BRIDGE_UP	Le pont est-il levé		

TODO: Ajoute les états

4 centre de contrôle

Le centre de contrôle désigne à la fois le MTU et l'IHM. Il assure le rôle de master dans les communications Modbus afin d'entretenir les états des registres des RTU et de les présenter à l'opérateur.

TODO : Ajouter un screenshot

5 Appréciation du banc de test

Ce banc de test implémente Modbus et permet d'effectuer des tests sur la sécurité du protocole.

La robustesse de l'implémentation est à améliorer, mais ne fait l'objet de l'étude.