TD nº 4 - Codes cycliques

Solutions

Exercice 1 – Traité en TD.

Exercice 2 – C code cyclique dans $\mathbb{K} = \mathbb{F}_5[X]/(X^{10}-1)$ engendré par le polynôme g.

1. En effectuant la division euclidienne de $X^{10}-1$ par g dans $\mathbb{F}_5[X]$ on obtient :

$$X^{10} - 1 = g(X)(X^6 + 3X^4 + 2X^2 + 4).$$

- 2. Le code C a dimension $k = n \deg(g) = 10 4 = 6$ et $M = |\mathbb{F}_5|^k = 5^6$ mots.
- 3. La premiere colonne de G correspond aux coefficients du polynôme $g:g_0=1,g_1=0,g_2=3,g_3=0,g^4=1$ suivis des zéros. Les colonnes suivantes sont obtenues en applicant un décalage sur la colonne précédente.

$$G = \left(\begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 3 & 0 & 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 0 & 3 & 0 & 1 \\ 0 & 0 & 1 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right)$$

4. Le polynôme de contôle h de C est tel que $h(X)g(X) = X^{10} - 1$. On l'a calculé lors de la première question $h(X) = X^6 + 3X^4 + 2X^2 + 4$.

La matrice de contôle H a sur la premiere ligne les coefficients du polynôme h: $h_6 = 1, h_5 = 0, h_4 = 3, h_3 = 0, h_2 = 2, h_1 = 0, h_0 = 4$, suivis des zéros. Ensuite on décale ces valeurs sur les lignes suivantes :

$$H = \begin{pmatrix} 1 & 0 & 3 & 0 & 2 & 0 & 4 & 0 & 0 & 0 \\ 0 & 1 & 0 & 3 & 0 & 2 & 0 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 & 3 & 0 & 2 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 & 0 & 3 & 0 & 2 & 0 & 4 \end{pmatrix}$$

5. Toute colonne de H est non-nulle, donc d > 1. Deux colonnes de H qui comportent une seule valeur non-nulle sont distinctes et celles qui ont deux valeurs non-nulles sur les mêmes positions ne sont pas proportionnelles, donc d > 2. On trouve la dépéndence : $2C_1 - C_5 - C_7 = 0$, donc d = 3 et la capacité de correction est t = 1.

6. a) On calcule le syndrome
$$S(\gamma) = H \cdot \gamma = \begin{pmatrix} 4 \\ 0 \\ 1 \\ 0 \end{pmatrix} = 2 \cdot C_5.$$

On a que $S(\gamma) = S(2\varepsilon_5)$ où $\varepsilon_5 = (0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0)^{\top}$.

La capacité de correction etant t=1, $S(\gamma)=S(2\varepsilon_5)$ et $wt(2\varepsilon_5)\leq 1$, alors $c=\gamma-2\varepsilon_5$ est l'unique élément de C à distance ≤ 1 de γ .

$$c = (1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1)^{\top}.$$

b) On sait que c(X) = m(X)g(X), donc m(X) est le quotient de la division de c(X) par g(X) où :

$$c(X) = X^9 + X^8 + X^7 + X^6 + X^5 + X^4 + X^3 + X^2 + X^2 + X + 1.$$

Exercice 3-C code linéaire sur \mathbb{F}_7 de matrice génératrice $G=\begin{pmatrix}1&0\\5&1\\5&5\\2&5\\1&2\\0&1\end{pmatrix}$.

- 1. Le code C a longueur n=6, dimension k=2 et $M=|\mathbb{F}_7|^k=7^2$ mots.
- 2. La matrice G nous permet de déduire le polynôme unitaire $g(X) \in \mathbb{F}_7[X]/(X^6-1)$ de degré n-k=4 tel que tout $c(x) \in C_x$ peut s'écrire c(x)=g(x)m(x) dans $\mathbb{K}[x]=\mathbb{F}_7[X]/(X^6-1)$.

On pourra écrire une formule pour c(x) = g(x)m(x) en utilisant les notations matricielles.

(Voir Lemme 4.1.3 du cours pour la multiplication des polynômes dans l'anneau quotient $\mathbb{K}[x]$ en tenant compte que $x^n = 1$.)

- Le polynôme générateur $g(X) = X^4 + 2X^3 + 5X^2 + 5X + 1$.
- Le polynôme de contôle $h(X) = (X^6 1)/g(X) = X^2 + 5X + 6$.

3.

$$H = \begin{pmatrix} 1 & 5 & 6 & 0 & 0 & 0 \\ 0 & 1 & 5 & 6 & 0 & 0 \\ 0 & 0 & 1 & 5 & 6 & 0 \\ 0 & 0 & 0 & 1 & 5 & 6 \end{pmatrix}$$

4. On cherche les éléments α de \mathbb{F}_7 pour lesquels $\mathbb{F}_7 = \{1, \alpha, \alpha^2 \dots \alpha^5\}$.

On trouve $\alpha \in \{3, 5\}$.

On vérifie que g(X) a comme racines 1, $\alpha = 3$, $\alpha^2 = 2$, $\alpha^3 = -1$.

Cela nous donne une décomposition en facteurs pour g :

α	α^2	α^3	α^4	α^5	α^6
2	4	1	2	4	1
3	2	6	4	5	1
4	2	1	4	2	1
5	4	6	2	3	1
6	1	6	1	6	1

$$g(X) = (X - 1)(X - \alpha)(X - \alpha^2)(X - \alpha^3).$$

Le code C est donc un code **Reed-Solomon** RS(7,2) de longueur q-1=7-1=6, de dimension k=2 et de polynôme générateur g de degré deg(g)=q-1-k=4.

Des résultats du cours nous donnent les paramètres du code RS(7,2):

- La distance minimum d = q k = 5.
- La capacité de correction t=2.
- 5. a) On calcule le syndrome $S(\gamma) = H \times \gamma$.

Exercice 4-

- 1. D'après la table on remarque que -1=1, donc on cherche les racines de X^7+1 parmi les éléments de \mathbb{K} qui satisfont $X^7=-1=1$. Dans le groupe multiplicatif \mathbb{K}^* d'ordre 8-1=7, d'après le théorème de Lagrange on a $\forall a \in \mathbb{K}^*$ $a^7=1$. Donc les 7 racines de X^7+1 sont les éléments de \mathbb{K}^* .
- 2. $g = X^2 + (1+2)X + 1 \times 2 = X^2 + 3X + 2$. h = (X+3)(X+4)(X+5)(X+6)(X+7) $= (X^2 + (3+4)X + 3 \times 4)(X^2 + (5+6)X + 5 \times 6)(X+7)$ $= (X^2 + 7X + 7)(X^2 + 3X + 3)(X+7)$ $= (X^4 + (3+7)X^3 + (3+7+3 \times 7)X^2 + (3 \times 7 + 3 \times 7)X + 3 \times 7)(X+7)$ $= (X^4 + 4X^3 + 6X^2 + 2)(X+7)$ $= X^5 + (4+7)X^4 + (6+4 \times 7)X^3 + 6 \times 7X^2 + 2X + 2 \times 7$ $= X^5 + 3X^4 + 7X^3 + 4X^2 + 2X + 5$
- 3. Le code C est donc un code Reed- $Solomon\ RS(8,4)$ de paramètres :
 - La longueur $n = q 1 = |\mathbb{K}| 1 = 7$,
 - La dimension $k = n \deg(q) = 5$,
 - La distance minimum d = q k = 3,
 - La capacité de correction t=1.

La matrice génératrice associée au polynôme générateur g:

$$G = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 3 & 2 & 0 & 0 & 0 \\ 1 & 3 & 2 & 0 & 0 \\ 0 & 1 & 3 & 2 & 0 \\ 0 & 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

La matrice de contôle associée au polynôme de contôle h:

$$H = \begin{pmatrix} 1 & 3 & 7 & 4 & 2 & 5 & 0 \\ 0 & 1 & 3 & 7 & 4 & 2 & 5 \end{pmatrix}$$

4. $c = G \times m$.