FUNDAMENTALS OF MACHINE LEARNING

SUPERVISED LEARNING

Objectives

- Be familiar about notations of ML
- How many sample points we need to guarantee high accuracy?
- Underfitting and overfitting (VC dimension)

Learning a Class from Examples

- Class C of a "family car"
- We can apply this learning in two ways
 - lacktriangle Prediction: when a new point x comes in, is x a family car?
 - Knowledge extraction: What do people expect from a family car?
- Output:

Positive (+) and negative (-) examples

Input representation:

```
x_1: price
```

 x_2 : engine power

r: label data (+ or -, 1 or 0)

Training set χ

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 $r = \begin{cases} 1 & \text{if } \mathbf{x} \text{ is a positive example} \\ 0 & \text{if } \mathbf{x} \text{ is a negative example} \end{cases}$

Training set

$$X = \{x^t, r^t\}_{t=1}^N$$

John C.S. Lui, CUHK, CSCI3320

Fundamental Questions

- How many samples do we need to learn things accurately?
 - Probably approximately correct (PAC)
 - VC Dimension (relate learner complexity to errors)

Class C (or target hypothesis)

Hypothesis class ${\mathcal H}$

S, G, and the Version Space

Possibilities of *h*: or the "*generalization power*"

Margin

Choose h with largest margin, which is the distance between the boundary and the instances closest to it

Probably Approximately Correct (PAC) Learning

- How many training examples N should we have, such that with probability at least $1-\delta$, h has error at most ϵ ? (Blumer et al., 1989) What is the physical meaning? $P\{C\Delta h \leq \epsilon\} \geq 1-\delta$ $C\Delta h$ is the region of difference between C and $C\Delta h$.
- If all N learning sample points are in h, but the truth is C, then we have learning errors since there are some **unsampled points** in $C\Delta h$
- □ The above inequality means $P\{C\Delta h > \epsilon\} \leq \delta$
- $P\{C\Delta h > \epsilon\} \le \sum_{i=1}^{4} P\{\text{error in strip}_i > \epsilon/4\}$
- □ Pr{one sample misses strip 1} = $1 \epsilon/4$
- □ $Pr\{N \text{ samples miss strip } 1\} = (1 \epsilon/4)^N$

$$P\{C\Delta h > \epsilon\} \le \sum_{i=1}^{4} (1 - \epsilon/4)^N = 4(1 - \epsilon/4)^N$$

$$P\{C\Delta h > \epsilon\} \le \delta \Rightarrow 4 (1 - \epsilon/4)^N \le \delta$$

Using the identity of $(1-x) \le e^{-x}$, we have:

$$4 e^{-\epsilon N/4} \le \delta \iff N^* \ge \frac{4}{\epsilon} \log \frac{4}{\delta}$$

^{*} We need at least *N** points to learn *C* with a high guarantee !!!

^{*} How about for higher dimension or non-regular shape *C*?

Vapnik-Chervonenkis (VC) Dimension

- \square N points can be labeled in 2^N configurations as $\pm/-$
- \square If for any of these configurations, a hypothesis $h \in \mathcal{H}$ separates positives from negatives, then \mathcal{H} shatters N points
- $\hfill\square$ Maximum number of points that can be shattered is VC of ${\mathcal H}$
- □ \mathcal{H} shatters N if there exists $h \in \mathcal{H}$ consistent for any of these: $VC(\mathcal{H}) = N$

FUNDAMENTALS OF MACHINE LEARNING

VAPNIK-CHERVONENKIS (VC) DIMENSION

- VC dimension is an important concept in statistical learning theory and machine learning
- Provides performance of learning machine in terms of "capacity"
- Motivation: classification problem

Classification Problem

- Improve training error, not necessary improves test error
- Increase learning capacity may increase test error

John C.S. Lui, CUHK, CSCI3320

Points to Remember

- Always look for test errors along with training error
- Improving on training error not always improve test error
- Increase in machine capacity may result in poor test performance
- \square The 2^{nd} and 3^{rd} point are related.
 - As we increase machine capacity, test error will first reduce, then it will increase. This is known as over-fitting (good for training data but bad for testing data)

The BIG Question

- Is there any equation that relates "training error" with "test error"?
- \blacksquare **Equation:** gives upper bound of test error with probability $1-\eta$

test error
$$\leq$$
 training error $+\sqrt{\frac{C(\log(\frac{2N}{C})+1)-\log(\frac{\eta}{4})}{N}}$

N = number of training samples

C = machine capacity, or VC dimension

test error \leq training error + penalty(complexity)

- \square As machine capacity C (or VC) increases, penalty (and the upper bound) increases
- \square As we fix N and the training error, C (or VC) positively affects the training error

Pictorial View (for fixed N)

How to determine VC Dimension for a given classifier or hypothesis?

- VC Dimension for a non-linear classifier is still an open research problem
- We focus on VC Dimension for linear classifier
- We need to learn two important concepts
 - Points in General Position
 - Shattering

Concept 1: Points in General Position

□ **Statement**: In a *n*-dimensional feature space, a set of *m* points (m > n) is in "general position" if and only if no subset of (n + 1) points lie on (n - 1) dimensional hyperplane

No 3 points lie on a straight line

Concept 2: Shattering

Statement: A hypothesis (H) shatters m points in n-dimensional space if all possible combinations of m points in n-dimensional space are correctly

classified by H

a	b	C
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

21

A straight line shatters 3 points in 2 dimensions provided they are in general position We can add the 4th point, now we have 16 combinations, and we can't find a straight line to separate them all. 4 points in 2 dimension space cannot be shattered by a straight line. John C.S. Lui, CUHK, CSCI3320

- VC Dimension is the cardinality of the largest set of points that the hypothesis can shatter
- VC Dimension of the linear classifier: (n+1) (points should be in general position)
 - □ For 2 dimensions, VC dimension of a line is 3
- VC Dimension of nonlinear classifier: very difficult to compute

Points to Remember

- VC Dimension is directly related to machine/hypothesis capacity
- For a given training set size and training error, VC
 dimension gives probabilistic upper bound of test error
- VC Dimension is a cardinality of the largest set of points that the machine/hypothesis can shatter
- For a good generalization (less test error), VC dimension of a machine/hypothesis should be finite. High value of VC dimension gives good generalization for asymptotical solutions.

Learners & Complexity

- We have seen the tradeoffs of underfitting/overfitting
 - Complexity of the learner
 - Representation Power
- Different learners have different power

Learners & Complexity

- We have seen the tradeoffs of underfit/overfit
 - Complexity of the learner
 - Representation Power
- Different learners have different power

Learners & Complexity

- We have seen the tradeoffs of underfit/overfit
 - Complexity of the learner
 - Representation Power
- Different learners have different power

- Trade-off:
 - More power: represent more complex system, may overfit
 - Less power: won't overfit, but may not find "best" solution
- We use VC dimension to quantify representation power

The BIG Question

- Relates "training error" with "test error"?
- $lue{}$ **Equation:** gives upper bound of test error with probability $1-\eta$

```
test error \leq training error +\sqrt{\frac{C(\log(\frac{2N}{C})+1)-\log(\frac{\eta}{4})}{N}}
```

N = number of training samples

C = machine capacity, or VC dimension

test error \leq training error + penalty(complexity)

- $\ \square$ As machine capacity C (or VC) increases, penalty (and the upper bound) increases
- \square As we fix N and the training error, C (or VC) positively affects the training error

Shattering

- We say a classifier f(x) can shatter points $x^{(1)}$... $x^{(n)}$ iff for **ALL** $y^{(1)}$... $y^{(n)}$, f(x) can achieve **ZERO** error on the training data $(x^{(1)},y^{(1)})$, $(x^{(2)},y^{(2)})$, ..., $(x^{(n)},y^{(n)})$.
- lacktriangle In other words, there exits some heta that gets zero error
- Can we shatter these points using:

$$c(x) = sign(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Shattering

Can we shatter these points using:

$$c(x) = sign(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Shattering

lacksquare Can we shatter these points using: $c(x) = \operatorname{sign}(\boldsymbol{x}^T\boldsymbol{x} - \theta)$

- □ The VC dimension C is defined as the maximum number of points h that can be arranged so that f(x) can shatter them
- Think of it as a GAME:
 - \square Choose the definition of $f(x;\theta)$
 - Player 1: choose positions for $x^{(1)}$... $x^{(n)}$
 - □ Player 2: choose target labels y⁽¹⁾... y⁽ⁿ⁾
 - \blacksquare If $f(x;\theta)$ can reproduce the target labels, P1 wins

$$(x^{(1)}, \dots, x^{(h)})$$
 s.t. $\forall (y^{(1)}, \dots, y^{(h)}) \ni \theta$ s.t. $\forall i f(x^{(i)}; \theta) = y^{(i)}$

- The VC dimension C is defined as the maximum number of points h that an be arranged so that f(x) can shatter them
- **Example:** What is the VC dimension of the (zerocentered) circle, $f(x;\theta) = sign(x'x \theta)$?
- □ VC Dimension = 1
 - We can shatter one point, but not two points

Example: What is the VC dimension of the twodimensional line:

- □ VC Dimension = 3 ?
 - Yes
- VC Dimension = 4?
 - No
 - Any line pass through these points must split one pair (by crossing one of the lines)

A linear classifier in d dimension with constant Term: VC Dimension = d+1

- VC dimension measures the "power" (or capacity) of the learner
- In general, it does NOT necessary equal to the # of parameters !!!!
- Number of parameters (or features) does not necessary equal to complexity
 - Give an example of a classifier with lots of parameters but not much power
 - Give an example of a classifier with one parameter but lots of power
- Still on going work to determine the VC dimension of different learners.....

Using VC Dimension

 Used validation / testing (cross-validation) to select complexity

Using VC Dimension

- Used validation / testing (cross-validation) to select complexity
- Use VC dimension based bound on test error

Conclusion

- VC dimension explains the "power" of the learner
- Higher the value, more powerful is the learning in reducing training error
- \square The testing error is more important (assume we fixed N)
 - Reduces when we increase the power of a learner
 - Then it will increase (overfit)
- Slowly increase the power of your learner so to "minimize" (or reduce) the testing error

Noise and Model Complexity

Noise: "mis-labeled" data

Latent variable: hidden or unobservable attributes (example)

Use the simpler model because

- Simpler to use(lower computational complexity)
- Easier to train (lower space complexity)
- Easier to explain(more interpretable)
- Generalizes better (lower
 variance Occam's razor) or KISS

Multiple Classes, C_i i=1,...,K

Regression

$$\mathcal{X} = \{x^t, r^t\}_{t=1}^N \quad \text{Find } g0 \text{ via polynomial interpolation}$$

$$r^t \in \mathfrak{R}$$

$$r^t = g(x^t) + \epsilon \qquad g(x) = w_1 x + w_0$$

$$g(x) = w_2 x^2 + w_1 x + w_0$$

$$E(g|\mathcal{X}) = \frac{1}{N} \sum_{t=1}^N [r^{t^*} - g(x^t)]^2$$

$$E(w_1, w_0 | \mathcal{X}) = \frac{1}{N} \sum_{t=1}^N [r^t - (w_1 x^t + w_0)]^2$$

Regression

- Assume we consider a "linear function" f
- \square We consider: $g(x) = w_1x + w_0$
- \square Our empirical error on the training set χ :

$$E(w_1, w_0 | \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} [r^t - (w_1 x^t + w_0)]^2$$

 Determine the two parameters via partial derivative and equate them to zero

$$w_1 = \frac{\sum_t x^t r^t - \overline{x} \overline{r} N}{\sum_t (x^t)^2 - N \overline{x}^2}$$

$$w_0 = \overline{r} - w_1 \overline{x}$$

where
$$\overline{x} = \sum_t x^t/N$$
 and $\overline{r} = \sum_t r^t/N$.

Model Selection & Generalization

- Learning is an "ill-posed problem"; where data is not sufficient to find a unique solution
- lacktriangle The need for inductive bias, assumptions about ${\mathcal H}$
- The assumption of "rectangle" in family car classification is an inductive bias. Previous example of "linear function g()" is another inductive bias.
- Generalization: How well a model performs on new data?
- $lacktriang{\square}$ Overfitting: ${\mathcal H}$ more complex than C or f
- lacksquare Underfitting: ${\mathcal H}$ less complex than C or f

Triple Trade-Off

- There is a trade-off between three factors (Dietterich, 2003):
 - 1. Complexity of \mathcal{H} , c (\mathcal{H}),
 - 2. Training set size, N
 - 3. Generalization error, E, on new data
- \Box As N, $E \downarrow$
- \square As c (\mathcal{H}) \uparrow , first $E \downarrow$ and then $E \uparrow$

Cross-Validation

- To estimate generalization error, we need data unseen during training. We split the data as
 - □ Training set (50%)
 - □ Validation set (25%)
 - Test (publication) set (25%)
 - □ Give example to illustrate "training, validation and test".
- Resampling when there is few data

Dimensions of a Supervised Learner

1. Model: $g(\mathbf{X} | \theta)$ input: $\mathcal{X} = \{x^t, r^t\}_{t=1}^N$

where $g(\cdot)$ is the model, x is the input, and θ are the parameters.

Loss function:
$$E(\theta|X) = \sum_{t} L(r^{t}, g(x^{t}|\theta))$$

In class learning where outputs are 0/1, $L(\cdot)$ checks for equality or not; in regression, because the output is a numeric value, we have ordering information for distance and one possibility is to use the square of the difference.

Optimization procedure: $\theta^* = \arg\min_{\theta} E(\theta|X)$

Various optimization algorithms (e.g., convex optimization, linear programming, gradient-based method, simulated annealing,..etc) are used.