

Numerical solution of PDEs using the Finite Element Method

Luca Heltai (luca.heltai@sissa.it)

16 March - 20 March 2020

Course schedule

Time	Duration	Content	Content
		MONDAY 16.03.2020	TUESDAY 17.03.2020
09:30	1.25 hours	Introduction First steps	Local refinement Hanging nodes - Part 1
		COFFEE / TEA	
11:15	1.25 hours	Introduction to FEM	Exercises, Q&A
		LUNCH	
14:00	1.25 hours	Solving Poisson's equation	Local refinement Hanging nodes - Part 2
		COFFEE / TEA	
15:45	1.25 hours	Exercises, Q&A	Exercises, Q&A
		WEDNESDAY 18.03.2020	THURSDAY 19.03.2020
09:30	1.25 hours	Shared memory parallelisation: Part 1	MPI parallelisation: Part 1
		COFFEE / TEA	
11:15	1.25 hours	Exercises, Q&A	Exercises, Q&A
		LUNCH	
14:00	1 hour	Shared memory parallelisation: Part 2	MPI parallelisation: Part 2
		COFFEE / TEA	
15:45	1.25 hours		Exercises, Q&A
FRIDAY 20.03.2020			Project

Course goals

- Learn the fundamentals of deal.II
 - Commonly used data structures, their interface
 - Structure of finite element problems
 - Good implementation practices
 - Navigate the documentation
- Implement PDE solver (prototypical problem)
 - On complex Geometries
 - Using local refinement
 - Running in parallel (on both shared and distributed memory systems)

How the course will be run

- Each module will have a lecture
 - Present salient information
 - Put what we'll learn into context
- Then we'll walk through aspects of the tutorials/examples together
 - Discuss important functionality
 - What it does
 - How it works
 - Caveats and tips
- Remainder of the lecture will be spent doing some exercises/assignments
 - Suggestion: Work in groups of two/three
 - Continued at in the last session of the day

Resources

- deal.ll user manual
 - https://www.dealii.org/current/doxygen/deal.ll/index.html
 - https://www.dealii.org/current/doxygen/deal.II/modules.html
 - https://www.dealii.org/current/doxygen/deal.II/DEALGlossary.html
- deal.II tutorials and code gallery
 - https://www.dealii.org/current/doxygen/deal.II/Tutorial.html
 - https://www.dealii.org/current/doxygen/deal.II/CodeGallery.html
- Me :-)
 - Don't hesitate to ask questions

Lecture 1: Introduction to deal.II (tools configuration)

Luca Heltai (luca.heltai@sissa.it)

Why use deal.II (or any other PDE toolbox)?

- Applies to:
 - Users
 - Developers
- "The secret to good scientific software is (re)using existing libraries"

Why deal.II? Differential Equation Analysis Library

- Flexible open-source finite element toolkit
 - All the support functionality required to describe and solve a FE problem (PDEs)
 - Optimized for speed
 - Heavily tested
 - Many error checks (debug mode)
 - +10,000 regression tests run continuously
 - Part of SPEC CPU 2017 benchmark
- Templated C++ library (Object Orientated)
 - Dimension independent programming
- Portable
 - OS, architecture, compiler
- Origins
 - Study mesh adaptivity and error estimation
 - Now used in many other applications, frameworks

Why deal.II?

- Heavily documented
 - Over 10000 pages of interface documentation
 - Numerous tutorials
 - Illustrate functionality
 - Present methods to solve problems
- · Quite widely used, and growing
- Active community
 - Approachable developers
 - Helpful online forum

Publications per year

Classes of problems solved using deal.II

- Geomechanics
- Fluid and gas dynamics
- Porous media
- Fluid-structure interaction
- · Boundary element method
- Topology optimization
- Medical image reconstruction
- Structural mechanics
- Biomechanics
- Crystal growth
- · Gradient and crystal plasticity
- Generalized continua
- Contact mechanics
- Atomistic-to-Continuum coupling
- · Quantum mechanics
- Magneto- and electro-elasticity
- Thermo-plasticity

What deal.II is not

- A black box
 - You can't throw a problem at it, and hope it will solve it (like, say, comsol)
 - Won't do anything more than you ask it to
- deal.II knows little about
 - Numerical methods
 - Problem-specific details, i.e.
 - Preconditioners
 - Constitutive equations

How deal. II will help you

- Unified and well thought out data structure
 - Problem implementation
- Many tutorials
 - Baseline from which to build on
 - Demonstrate how to use features
- Comprehensive debugging support
 - Error messages everywhere!
- Some built in numerical tools
- Integration with advanced frameworks
 - Nonlinear solvers
 - Time integrators
 - Parallel sparse and dense linear algebra

Fundamental capabilities and frameworks

- Mesh adaptivity
- Dense and sparse linear algebra
 - Built in tensor, dense matrix/vector classes
 - BLAS and LAPACK integration; GSL
 - Built in linear solvers and preconditioners
 - Eigenvalue solvers
- Parallelization
 - MPI
 - Linear algebra libraries (PETSc, Trilinos)
 - Distributed meshes → Billion DoFs
 - Threading (Intel TBB)
 - Vectorized numbers (AVX extensions)
- Pre/post-processing

Advanced capabilities and frameworks

- hp-finite element support
- Meshworker
 - Assembly assistance
 - Functions to perform assembly for specific problem classes
- · Geometric multi-grid
 - Using coarse grid as preconditioner to solution for finer grid
- Matrix-free
 - No explicit storing of matrix elements
 - Exchange memory transfer for computations
- · Charts and manifolds
 - Accurate description of topologically complex objects

How deal. II is developed

- Open repository on GitHub
 - https://github.com/dealii/dealii
- Anyone can contribute!
 - We encourage all to participate
- On average: 3/4 pull requests/day

Configuration and Setup

- Course repository: https://github.com/sissa/p2.3_seed
- Docker image: https://hub.docker.com/r/dealii/dealii
- .dmg file (for mac users): https://github.com/dealii/dealii/releases
- Manual installation with spack: spack install dealii
- Other means of installation: https://dealii.org/download.html
- Notice: build from scratch, with all dependencies ~ 6hours...
- We'll use an IDE (**Qt Creator** for me, but you can choose the one you prefer)
- We'll use a VTK viewer (**Paraview** for me, but **Visit** is also possible)