

🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No:CCISE160307101

FCC REPORT

(Bluetooth)

Applicant: Sound Quest, LLC.

Address of Applicant: 3385 Roy Orr Blvd Grand Prairie, TX 75050, United States

Equipment Under Test (EUT)

Product Name: TV/Audio Adapter with BT

Model No.: BT TV Adapter

FCC ID: 2AC2W-SQC9B00

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 29 Mar, 2016

Date of Test: 29 Mar., to 08Apr., 2016

Date of report issued: 11 Apr., 2016

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCISproduct certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	11 Apr., 2016	Original

Steven Ciu Test Engineer Tested by: Date: 11 Apr., 2016

Reviewed by: Date: 11 Apr., 2016

Project Engineer

3 Contents

		Ī	Page
1	С	OVER PAGE	1
2	٧	/ERSION	2
3	C	CONTENTS	3
	_	EST SUMMARY	
4	I	EST SUMMARY	4
5	G	SENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST MODE	7
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	7
	5.6	TEST INSTRUMENTS LIST	8
	5.7	Measurement Uncertainty	8
6	Т	EST RESULTS AND MEASUREMENT DATA	9
	6.1	Antenna requirement	9
	6.2	CONDUCTED EMISSIONS	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	20dB Occupy Bandwidth	17
	6.5	CARRIER FREQUENCIES SEPARATION	
	6.6	HOPPING CHANNEL NUMBER	
	6.7	DWELL TIME	
	6.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9	BAND EDGE	
		.9.1 Conducted Emission Method	
	_	.9.2 Radiated Emission Method	
	6.10		
	•	.10.1 Conducted Emission Method	
		.10.2 Radiated Emission Method	
7	Т	EST SETUP PHOTO	62
8	Е	UT CONSTRUCTIONAL DETAILS	64

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Project No.:CCISE1603071

5 General Information

5.1 Client Information

Applicant:	Sound Quest, LLC.
Address of Applicant:	3385 Roy Orr Blvd Grand Prairie, TX 75050, United States
Manufacturer/Factory:	HUNG WAI ELECTRONICS (HUIZHOU) LTD
Address of Manufacturer/ Factory:	3rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China

5.2 General Description of E.U.T.

Product Name:	TV/Audio Adapter with BT	
Model No.:	BT TV Adapter	
Operation Frequency:	2402MHz~2480MHz	
Transfer rate:	1/2/3 Mbits/s	
Number of channel:	79	
Modulation type:	GFSK, π/4-DQPSK, 8DPSK	
Modulation technology:	FHSS	
Antenna Type:	Internal Antenna	
Antenna gain:	2.0dBi	
Power supply:	Rechargeable Li-ion Battery DC3.7V-240mAh	
AC adapter:	Model: PS06C050K0500UU	
	Input:100-240V AC,50/60Hz 0.25A	
	Output:5V DC MAX 0.5A	

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Report No: CCISE160307101

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.
Remark	GFSK (1 Mbps) is the worst case mode.

The sample was placed 0.8m above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered andfully described a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

●IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Project No.: CCISE1603071

Report No: CCISE160307101

5.6 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Manufacturer Model No.		Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-24-2017		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-24-2017		
4	Pre-amplifier	LID	0.4.47D	CCICOGG	04-01-2015	03-31-2016		
4	(10kHz-1.3GHz)	HP	8447D	CCIS0003	03-25-2016	03-24-2017		
5	Pre-amplifier	Compliance Direction	DAD 4040	00100044	04-01-2015	03-31-2016		
5	(1GHz-18GHz)	Systems Inc.	PAP-1G18	CCIS0011	03-25-2016	03-24-2017		
6	Pre-amplifier	Dahda & Cahwara	AFS33-18002	GTS218	04-01-2015	03-31-2016		
6	(18-26GHz)	Rohde & Schwarz	650-30-8P-44	G15216	03-25-2016	03-24-2017		
7	Llara Antanna	ETC LINDODEN	2400	OT0047	04-01-2015	03-31-2016		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	03-25-2016	03-24-2017		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-30-2016	03-29-2017		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-24-2016	03-23-2017		
40	Loop outcom-	Landa as in strums	DECCO	FMC0704	04-01-2015	03-31-2016		
10	Loop antenna	Laplace instrument	RF300	EMC0701	03-25-2016	03-24-2017		

Cond	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-23-2017				
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-25-2017				
	0	0010	NI/A	00100000	04-01-2015	03-31-2016				
4	Coaxial Cable	CCIS	N/A	CCIS0086	03-25-2016	03-24-2017				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

5.7 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetoothantenna is anintegral antenna which permanently attached, and the best case gain of the antenna is2.0dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207						
· ·							
Test Method:	ANSI C63.4:2009						
Test Frequency Range:	150kHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz, Sw	eep time=auto					
Limit:	Frequency range (MHz)	Limit (c	dBuV)				
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm	n of the frequency.					
Test setup:	Reference Plane		_				
	AUX Equipment Test table/Insulation plane Remark E.U.T EMI Receiver Receiver Receiver LISN Filter AC power EMI Receiver						
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Bluetooth (Continuous transmitting) mode						
Test results:	Pass						

Measurement Data

Line:

Trace: 5

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : TV/Audio Adapter with BT : BT TV Adapter Site Condition EUT

Model Test Mode : BT mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: steven Remark :

Freq	THE RESERVE OF THE PERSON OF T			Level	Limit Line	Over Limit	Remark
MHz	dBu∜	₫B	₫₿	dBu∀	dBu√	<u>dB</u>	
0.158	36.10	0.14	10.78	47.02	65.56	-18.54	QP
0.358	32.13	0.21	10.73	43.07	58.78	-15.71	QP
0.358	23.27	0.21	10.73	34.21	48.78	-14.57	Average
0.377	22.84	0.22	10.72	33.78	48.34	-14.56	Average
0.415	35.53	0.24	10.73	46.50	57.55	-11.05	QP
0.415	30.15	0.24	10.73	41.12	47.55	-6.43	Average
0.518	28.45	0.25	10.76	39.46	56.00	-16.54	QP
0.521	22.36	0.25	10.76	33.37	46.00	-12.63	Average
1.289	21.62	0.28	10.90	32.80	46.00	-13.20	Average
1.388	21.20	0.29	10.91	32.40	46.00	-13.60	Average
1.396	26.16	0.29	10.91	37.36	56.00	-18.64	QP
2.371	24.68	0.32	10.94	35.94	56.00	-20.06	QP
	MHz 0. 158 0. 358 0. 358 0. 377 0. 415 0. 415 0. 518 0. 521 1. 289 1. 388 1. 396	Freq Level MHz dBuV 0.158 36.10 0.358 32.13 0.358 23.27 0.377 22.84 0.415 35.53 0.415 30.15 0.518 28.45 0.521 22.36 1.289 21.62 1.388 21.20 1.396 26.16	MHz dBuV dB 0.158 36.10 0.14 0.358 32.13 0.21 0.358 23.27 0.21 0.377 22.84 0.22 0.415 35.53 0.24 0.415 30.15 0.24 0.518 28.45 0.25 0.521 22.36 0.25 1.289 21.62 0.28 1.388 21.20 0.29 1.396 26.16 0.29	Freq Level Factor Loss MHz dBuV dB dB dB 0.158 36.10 0.14 10.78 0.358 32.13 0.21 10.73 0.358 23.27 0.21 10.73 0.377 22.84 0.22 10.72 0.415 35.53 0.24 10.73 0.415 30.15 0.24 10.73 0.518 28.45 0.25 10.76 0.521 22.36 0.25 10.76 1.289 21.62 0.28 10.90 1.388 21.20 0.29 10.91 1.396 26.16 0.29 10.91	MHz dBuV dB dB dBuV 0.158 36.10 0.14 10.78 47.02 0.358 32.13 0.21 10.73 43.07 0.358 23.27 0.21 10.73 34.21 0.377 22.84 0.22 10.72 33.78 0.415 35.53 0.24 10.73 46.50 0.415 30.15 0.24 10.73 41.12 0.518 28.45 0.25 10.76 39.46 0.521 22.36 0.25 10.76 33.37 1.289 21.62 0.28 10.90 32.80 1.388 21.20 0.29 10.91 32.40 1.396 26.16 0.29 10.91 37.36	MHz dBuV dB dB dBuV dBuV 0.158 36.10 0.14 10.78 47.02 65.56 0.358 32.13 0.21 10.73 43.07 58.78 0.358 23.27 0.21 10.73 34.21 48.78 0.377 22.84 0.22 10.72 33.78 48.34 0.415 35.53 0.24 10.73 46.50 57.55 0.415 30.15 0.24 10.73 41.12 47.55 0.518 28.45 0.25 10.76 39.46 56.00 0.521 22.36 0.25 10.76 33.37 46.00 1.289 21.62 0.28 10.90 32.80 46.00 1.388 21.20 0.29 10.91 37.36 56.00 1.396 26.16 0.29 10.91 37.36 56.00	MHz dBuV dB dB dBuV dBuV dB 0.158 36.10 0.14 10.78 47.02 65.56 -18.54 0.358 32.13 0.21 10.73 43.07 58.78 -15.71 0.358 23.27 0.21 10.73 34.21 48.78 -14.57 0.377 22.84 0.22 10.72 33.78 48.34 -14.56 0.415 35.53 0.24 10.73 46.50 57.55 -11.05 0.415 30.15 0.24 10.73 41.12 47.55 -6.43 0.518 28.45 0.25 10.76 39.46 56.00 -16.54 0.521 22.36 0.25 10.76 33.37 46.00 -12.63 1.289 21.62 0.28 10.90 32.80 46.00 -13.20 1.388 21.20 0.29 10.91 37.36 56.00 -18.64

Neutral:

Trace: 7

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Site Condition EUT : TV/Audio Adapter with BT

: BT TV Adapter Model

Test Mode : BT mode Power Rating : AC 120/60Hz Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: steven

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	₫₿u₹	d₿	₫B	dBu₹	dBu∜	<u>dB</u>	
1	0.166	33.48	0.13	10.77	44.38	65.16	-20.78	QP
2 3	0.343	28.43	0.21	10.73	39.37	59.13	-19.76	QP
3	0.377	30.06	0.22	10.72	41.00	58.34	-17.34	QP
4	0.385	20.14	0.22	10.72	31.08	48.17	-17.09	Average
4 5 6 7 8 9	0.417	33.32	0.23	10.73	44.28	57.51	-13.23	QP
6	0.417	25.35	0.23	10.73	36.31	47.51	-11.20	Average
7	0.486	16.44	0.24	10.76	27.44	46.23	-18.79	Average
8	0.494	27.43	0.24	10.76	38.43	56.10	-17.67	QP
9	0.549	16.23	0.27	10.77	27.27	46.00	-18.73	Average
10	0.871	24.46	0.29	10.83	35.58	56.00	-20.42	QP
11	1.289	14.67	0.26	10.90	25.83	46.00	-20.17	Average
12	2.540	12.38	0.29	10.94	23.61	46.00	-22.39	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2009 and DA00-705		
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)		
Limit:	125 mW(21 dBm)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data

	GFSK mode					
Test channel	Test channel Peak Output Power (dBm)		Result			
Lowest	1.43	21.00	Pass			
Middle	1.17	21.00	Pass			
Highest	0.82	21.00	Pass			
	π/4-DQPSK ι	mode				
Test channel	Test channel Peak Output Power (dBm)		Result			
Lowest	Lowest 1.58		Pass			
Middle	Middle 1.45		Pass			
Highest 1.12		21.00	Pass			
	8DPSK mode					
Test channel	Test channel Peak Output Power (dBm)		Result			
Lowest	Lowest 1.58		Pass			
Middle	Middle 1.48		Pass			
Highest 1.12		21.00	Pass			

Test plot as follows:

Modulation mode:GFSK

Date: 5.APR.2016 19:23:27

Lowest channel

Date: 5.APR.2016 19:23:58

Middle channel

Date: 5.APR.2016 19:24:26

Highest channel

Modulation mode:π/4-DQPSK

Date: 5.APR.2016 19:27:22

Lowest channel

Date: 5.APR.2016 19:28:20

Middle channel

Date: 5.APR.2016 19:29:10

Highest channel

Modulation mode:8DPSK

Date: 5.APR.2016 19:30:19

Lowest channel

Date: 5.APR.2016 19:30:45

Middle channel

Date: 5.APR.2016 19:31:16

Highest channel

6.420dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2009 and DA00-705		
Receiver setup:	RBW=30kHz, VBW=100kHz, detector=Peak		
Limit:	NA		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data

Toot shown al	20dB Occupy Bandwidth (kHz)			
Test channel	GFSK	π/4-DQPSK	8DPSK	
Lowest	840	1232	1220	
Middle	844	1224	1216	
Highest	836	1232	1224	

Test plot as follows:

Modulation mode:GFSK

Date: 5.APR.2016 20:01:30

Lowest channel

Date: 5.APR.2016 20:03:24

Middle channel

Date: 5.APR.2016 20:05:03

Highest channel

Modulation mode:π/4-DQPSK

Date: 9.APR.2016 00:40:58

Lowest channel

Date: 9.APR.2016 00:41:55

Middle channel

Date: 9.APR.2016 00:43:54

Highest channel

Modulation mode:8DPSK

Date: 9.APR.2016 00:46:58

Lowest channel

Date: 9.APR.2016 00:48:16

Middle channel

Date: 9.APR.2016 00:50:07

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2009 and DA00-705		
Receiver setup:	RBW=100kHz, VBW=300kHz, detector=Peak		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

GFSK mode					
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Lowest	1004	562.67	Pass		
Middle	1004	562.67	Pass		
Highest	1004	562.67	Pass		
	π/4-DQPSK mo	de			
Test channel	Test channel Carrier Frequencies Separation (kHz)		Result		
Lowest	1004	812.33	Pass		
Middle	1004	812.33	Pass		
Highest	1004	812.33	Pass		
	8DPSK mode				
Test channel Carrier Frequencies Separation (kHz)		Limit (kHz)	Result		
Lowest	1004	816.00	Pass		
Middle	1004	816.00	Pass		
Highest 1004		816.00	Pass		

Note: According to section 6.4

Mode	20dB bandwidth (kHz)	Limit (kHz)	
Wode	(worse case)	(Carrier Frequencies Separation)	
GFSK	844	562.67	
π/4-DQPSK	1232	821.33	
8DPSK	1224	816.00	

Test plot as follows:

Modulation mode: GFSK

Date: 5.APR.2016 23:20:22

Lowest channel

Date: 5.APR.2016 23:21:22

Middle channel

Date: 5.APR.2016 23:22:18

Highest channel

Modulation mode:π/4-DQPSK

Date: 9.APR.2016 00:30:21

Lowest channel

Date: 9.APR.2016 00:31:52

Middle channel

Date: 9.APR.2016 00:33:11

Highest channel

Modulation mode:8DPSK

Date: 9.APR.2016 00:37:08

Lowest channel

Date: 9.APR.2016 00:36:00

Middle channel

Date: 9.APR.2016 00:34:48

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2009 and DA00-705		
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
1			
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	s: Pass		

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

GFSK

Date: 7.APR.2016 19:45:0

π/4-DQPSK

Date: 7.APR.2016 19:49:56

8DPSK

Date: 7.APR.2016 19:53:59

6.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2009 and KDB DA00-705		
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data (Worse case)

Mode	Packet	Dwell time (second)	Limit (second)	Result	
	DH1	0.17024			
GFSK	DH3	0.28896	0.4	Pass	
	DH5	0.32597			
	2-DH1	0.17344			
π/4-DQPSK	2-DH3	0.28896	0.4	Pass	
	2-DH5	0.32853			
	3-DH1	0.17344			
8DPSK	3-DH3	0.29280	0.4	Pass	
	3-DH5	0.32939			

For GFSK, $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.532*(1600/ (2*79))*31.6=170.24ms DH3 time slot=1.806*(1600/ (4*79))*31.6=288.96ms DH5 time slot=3.056*(1600/ (6*79))*31.6=325.97ms

2-DH1 time slot=0.542*(1600/ (2*79))*31.6=173.44ms

2-DH3 time slot=1.806*(1600/ (4*79))*31.6=288.96ms

2-DH5 time slot=3.080*(1600/ (6*79))*31.6=328.53ms

3-DH1 time slot=0.542*(1600/ (2*79))*31.6=173.44ms

3-DH3 time slot=1.830*(1600/ (4*79))*31.6=292.80ms

3-DH5 time slot=3.088*(1600/ (6*79))*31.6=329.39ms

Test plot as follows:

Modulation mode:GFSK

Date: 5.APR.2016 23:51:23

DH1

Date: 5.APR.2016 23:52:57

DH3

Date: 5.APR.2016 23:54:05

DH5

Modulation mode:π/4-DQPSK

Date: 5.APR.2016 23:56:33

2-DH1

Date: 5.APR.2016 23:57:34

2-DH3

Date: 5.APR.2016 23:59:14

2-DH5

Modulation mode:8DPSK

Date: 6.APR.2016 00:00:44

3-DH1

Date: 6.APR.2016 00:01:32

3-DH3

Date: 6.APR.2016 00:02:48 3-DH5

Report No: CCISE160307101

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2009 and DA00-705
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass

Test plot as follows:

GFSK

Lowest Channel

Date: 7.APR.2016 20:02:55

No-hopping mode

Date: 7.APR.2016 20:00:18

Hopping mode

Highest Channel

Date: 7.APR.2016 20:02:16

No-hopping mode

Date: 7.APR.2016 20:01:04

Hopping mode

$\pi/4$ -DQPSK

Lowest Channel

Date: 7.APR.2016 20:03:32

No-hopping mode

Hopping mode

Highest Channel

Date: 7.APR.2016 19:59:09

Date: 7.APR.2016 19:58:02

Date: 7.APR.2016 20:04:03

No-hopping mode

Hopping mode

8DPSK

Lowest Channel

Date: 8.APR.2016 22:56:01

No-hopping mode

Hopping mode

Highest Channel

Date: 7.APR.2016 19:55:35

Date: 7.APR.2016 19:56:38

Date: 7.APR.2016 20:04:53

No-hopping mode

Hopping mode

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15 209	9 and 15 205		
Test Method:	ANSI C63.10: 2				
Test Frequency Range:	2.3GHz to 2.5G				
Test site:	Measurement D				
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
Receiver Setup.		Peak	1MHz	3MHz	Peak Value
	Above 1GHz	RMS	1MHz	3MHz	Average Value
Limit:	Freque	ency	Limit (dBuV		Remark
	Above 1	GHz	54.0 74.0		Average Value Peak Value
Test setup:	AE EUT	Ground Reference Plane Test Receiver	forn Anlenna Tower		r can value
Test Procedure:	groundat a 3 todetermine 2. The EUT was antenna, whis tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and thenthe the rotatable maximum reasing 5. The test-rece SpecifiedBar 6. If the emissic limit specified EUT would be 10dB margin.	meter cambe the position of s set 3 meters chwas mount height is varie termine the m d vertical pola it. spected emiss antenna was ta was turned fro ading. eiver system v indwidth with M on level of the d, then testing ie reported. O	er. The table we feld the highest rest away from the ed on the top ed from one maximum value arizations of the tuned to height om 0 degrees was set to Pea Maximum Hold EUT in peak a could be stop therwise the ed tested one by	vas rotated adiation. The interference of a variable meter to four eartenna was arrangents from 1 m to 360 degrated Mode. The mode was apped and the emissions the one using processing processing and the mode using processing proces	nce-receiving e-height antenna r meters above the d strength. Both are set to make the ed to its worst case neter to 4 meters and rees to find the unction and 10dB lower than the he peak values of the nat did not have beak, quasi-peak or
Test Instruments:	Refer to section	5.7 for details	S		
Test mode:	Non-hopping m	ode			
Test results:	Passed				
	•				

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

GFSK mode

Test channel: Lowest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : TV/Audio Adapter with BT : BT TV Adapter : DH1-L Mode Condition

EUT

Model Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Test Engineer: steven REMARK:

Huni:55%

	Freq		Antenna Factor							
-	MHz	dBu₹	dB/m	<u>dB</u>	dB	dBuV/m	dBu√/m	<u>dB</u>		
	2390.000									
2	2390.000	7.19	23.68	6.63	0.00	37.50	54.00	-16.50	Average	

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : TV/Audio Adapter with BT Condition EUT

Model : BT TV Adapter Test mode : DH1-L Mode Power Rating : AC120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: steven REMARK :

	Freq		Antenna Factor						
	MHz	dBu∜	$\overline{-dB/m}$	dB	<u>dB</u>	$\overline{\mathtt{dBuV/m}}$	dBu√/m	dB	 -
1 2	2390.000 2390.000								

Test channel:Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : TV/Audio Adapter with BT Condition

EUT

Model : BT TV Adapter : DH1-H Mode Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: steven REMARK :

			Antenna						D 1	
	Freq	rever	Factor	Loss	ractor	Level	Line	Limit	Kemark	
-	MHz	dBu∜	$\overline{dB/m}$	<u>dB</u>	dB	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		
	2483.500 2483.500					50.82 38.32				

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : TV/Audio Adapter with BT Site Condition

EUT

Model : BT TV Adapter
Test mode : DH1-H Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: steven REMARK :

		Antenna Factor					
MHz	dBu₹	$\overline{-dB/m}$	 <u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
2483.500 2483.500				51.26 38.31			

π/4-DQPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : TV/Audio Adapter with BT

Model : BT TV Adapter Test mode : 2DH1-L Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: steven REMARK :

JILLI		Read	Antenna	Cable	Preamn		Limit	Over		
	Freq		Factor							
-	MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		-
1	2390.000	17.85	23.68	6.63	0.00	48.16	74.00	-25.84	Peak	
2	2390.000	7.16	23.68	6.63	0.00	37.47	54.00	-16.53	Average	

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : TV/Audio Adapter with BT Condition

EUT

Model : BT TV Adapter Test mode : 2DH1-L Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: steven

REMARK

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu∜	$-\overline{dB}/\overline{m}$	dB	<u>dB</u>	dBuV/m	dBu√/m	dB	
1	2390.000	18.19	23.68	6.63	0.00	48.50	74.00	-25.50	Peak
2	2390.000	7.20	23.68	6.63	0.00	37.51	54.00	-16.49	Average

Test channel:Highest

Horizontal:

Site : 3m chamber
Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL
EUT : TV/Audio Adapter with BT
Model : BT TV Adapter
Test mode : 2DH1-H Mode
Power Rating : AC120V/60Hz
Environment : Temp. 25 5°C Humi 55%

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: steven REMARK :

1 2

u,	uı .								
	22.0		Ant enna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
	2483.500					51.75			
	2483.500	7.77	23.70	6.85	0.00	38.32	54.00	-15.68	Average

Site : 3m chamber
Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL
EUT : TV/Audio Adapter with BT
Model : BT TV Adapter
Test mode : 2DH1-H Mode
Power Rating : AC120V/60Hz
Environment : Test Fungineer: steven

Test Engineer: steven REMARK :

	Freq		Antenna Factor						
-	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500 2483.500								

8DPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : TV/Audio Adapter with BT

Model : BT TV Adapter Test mode : 3DH1-L Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: steven REMARK :

יוונידר		Road	Ant enna	Cabla	Droomp		Limit	Over	
	Freq		Factor						
ं	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBu√/m	dB	
1	2390.000								
2	2390.000	7.17	23.68	6.63	0.00	37.48	54.00	-16.52	Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : TV/Audio Adapter with BT
Model : BT TV Adapter
Test mode : 3DH1-L Mode
Power Rating : AC120V/60Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: steven

TUTOT!									
	-		Antenna					Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Kemark
	MHz	dBu∜	dB/m	₫B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000	19.38	23.68	6.63	0.00	49.69	74.00	-24.31	Peak
2	2390.000	7.14	23.68	6.63	0.00	37.45	54.00	-16.55	Average

Test channel:Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : TV/Audio Adapter with BT Condition

EUT

Model : BT TV Adapter Test mode : 3DH1-H Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C H

Huni: 55%

Test Engineer: steven REMARK :

	Freq		Antenna Factor						Remark	
_	MHz	dBu∜	$-\overline{dB}/\overline{m}$	<u>dB</u>	dB	dBuV/m	dBu√/m	<u>dB</u>		_
	2483.500 2483.500									

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : TV/Audio Adapter with BT

EUT

Model : BT TV Adapter Test mode : 3DH1-H Mode Power Rating : AC120V/60Hz Environment : Temp: 25.5°C H

Huni: 55%

Test Engineer: steven REMARK

MAR	v :	Read	Antenna	Cable	Preamo		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.500	19.99	23.70	6.85	0.00	50.54	74.00	-23.46	Peak
2	2483, 500	7.76	23, 70	6, 85	0.00	38, 31	54,00	-15.69	Average

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2009 and DA00-705							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Non-hopping mode							
Test results:	Pass							

GFSK

Lowest channel

Date: 8.APR.2016 19:44:47

30MHz~25GHz

Middle channel

Date: 8.APR.2016 19:46:46

Highest channel

Date: 8.APR.2016 19:47:36

π/4-DQPSK

Lowest channel

Date: 8.APR.2016 19:52:29

30MHz~25GHz Middle channel

Date: 8.APR.2016 19:50:25

Highest channel

Date: 8.APR.2016 19:49:25

8DPSK

Lowest channel

Date: 8.APR.2016 19:54:40

30MHz~25GHz

Date: 8.APR.2016 19:56:42

Highest channel

Date: 8.APR.2016 19:58:19

6.10.2 Radiated Emission Method

10.2 Radiated Emission Method									
Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10: 2009								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	710070 10112	RMS	1MHz	3MHz	Average Value				
Limit:	Frequen	су	Limit (dBuV/	m @3m)	Remark				
	30MHz-88I	MHz	40.0)	Quasi-peak Value				
	88MHz-216	MHz	43.5	5	Quasi-peak Value				
	216MHz-960	OMHz	46.0)	Quasi-peak Value				
	960MHz-1	GHz	54.0)	Quasi-peak Value				
	Above 1G	iHz	54.0		Average Value				
	7.007010		74.0		Peak Value				
Test setup:	Turn Table 0.8 Ground Plane — Above 1GHz	EUT 3m	erence Plane	Antenna Sear Anter RF Test Receiver					

Test Procedure:

1. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter chamber. The table was rotated 360 degrees todetermine the position of the highest radiation.

2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.

3. The antenna height is varied from one meter to four meters above the

- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

	avorage meaned as openined and mean reported in a data sheet.
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode
Test results:	Pass

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement data:

Below 1GHz

Vertical:

Site

Condition

EUT

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : TV/Audio Adapter with BT : BT TV Adapter : BT Mode Model Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5 C Huni:55%

Test Engineer: steven

	Freq		Antenna Factor						
-	MHz	dBu∜	$-\overline{dB}/\overline{m}$	₫B	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
1	47.492	39.65	16.34	1.27	29.84	27.42	40.00	-12.58	QP
2	143.830	49.29	11.34	2.44	29.25	33.82	43.50	-9.68	QP
2	370.702	42.29	14.91	3.09	28.65	31.64	46.00	-14.36	QP
4	468.876	45.94	16.43	3.36	28.90	36.83	46.00	-9.17	QP
5	490.745	46.34	16.70	3.54	28.94	37.64	46.00	-8.36	QP
4 5 6	528.246	44.83	17.54	3.77	29.04	37.10	46.00	-8.90	QP

Horizontal:

Site Condition EUT : 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL

: TV/Audio Adapter with BT

Model : BT TV Adapter with
Model : BT TV Adapter
Test mode : BT Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: steven

REMARK

шина	•	Read	Antenna	Cable	Preamo		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	46.666	37.59	16.83	1.28	29.85	25.85	40.00	-14.15	QP
2	143.830	48.10	11.34	2.44	29.25	32.63	43.50	-10.87	QP
2	204.238	45.63	10.43	2.87	28.80	30.13	43.50	-13.37	QP
4	400.432	43.52	15.91	3.08	28.78	33.73	46.00	-12.27	QP
4	468.876	45.32	16.43	3.36	28.90	36.21	46.00	-9.79	QP
6	533.832	45.38	17.67	3.80	29.05	37.80	46.00	-8.20	QP

Above 1GHz:

Te	st channel:		Lowest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	45.29	35.99	10.57	40.24	51.61	74.00	-22.39	Vertical	
4804.00	45.58	35.99	10.57	40.24	51.90	74.00	-22.10	Horizontal	
Te	st channel:		Low	vest	Le	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	36.59	35.99	10.57	40.24	42.91	54.00	-11.09	Vertical	
4804.00	36.54	35.99	10.57	40.24	42.86	54.00	-11.14	Horizontal	

Te	st channel:		Middle		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	44.36	36.38	10.66	40.15	51.25	74.00	-22.75	Vertical
4882.00	43.95	36.38	10.66	40.15	50.84	74.00	-23.16	Horizontal
Te	st channel:		Middle		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	36.14	36.38	10.66	40.15	43.03	54.00	-10.97	Vertical
4882.00	35.12	36.38	10.66	40.15	42.01	54.00	-11.99	Horizontal

Te	st channel:		Highest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	43.96	36.71	10.73	40.03	51.37	74.00	-22.63	Vertical
4960.00	44.46	36.71	10.73	40.03	51.87	74.00	-22.13	Horizontal
Te	st channel:	•	Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	35.14	36.71	10.73	40.03	42.55	54.00	-11.45	Vertical
4960.00	35.67	36.71	10.73	40.03	43.08	54.00	-10.92	Horizontal

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.