

Computational Geometry [csci 3250]

Laura Toma

Bowdoin College

Convexity

A polygon P is **convex** if for any p, q in P, the segment pq lies entirely in P.

Given a set P of points in 2D, their convex hull is the smallest convex polygon that contains all points of P

Given a set P of points in 2D, their convex hull is the smallest convex polygon that contains all points of P

The problem: Given a set P of points in 2D, describe an algorithm to compute their convex hull

Input: array P of points (in 2D)

Output: array/list of points on the CH (in boundary order)

- One of the first problems studied in CG
- Many solutions
 - simple, elegant, intuitive, expose techniques
- Lots of applications
 - robotics
 - path planning
 - partitioning problems
 - shape recognition
 - separation problems

• Path planning: find (shortest) collision-free path from start to end

Path planning: find (shortest) collision-free path from start to end

• It can be shown that the path follows CH(obstacle) and shortest path s to t is the shorter of the upper path and lower path

- Shape analysis, matching, recognition
 - approximate objects by their CH

- Partitioning problems
 - does there exist a line separating two objects?

- Partitioning problems
 - does there exist a line separating two objects?

Find the two points in P that are farthest away

Find the two points in P that are farthest away

Outline

- Properties of CH
- Algorithms for computing the CH (P)
 - Brute-force
 - Gift wrapping (or: Jarviz march)
 - Quickhull
 - Graham scan
 - Andrew's monotone chain
 - Incremental
 - Divide-and-conquer
- Can we do better?
 - Lower bound

Convexity: algebraic view

• Segment pq = set of all points of the form c_1p+c_2q , with c_1,c_2 in [0,1], $c_1+c_2=1$

- A convex combination of points p_1 , p_2 , ..., p_k is a point of the form $c_1p_1+c_2p_2+...c_kp_k, \text{ with } c_i \text{ in } [0,1], c_1+c_2+...+c_k=1$
- Example: a triangle consists of all convex combinations of its 3 vertices
- With this notation, the convex hull CH(P) = all convex combinations of points in P

Convex Hull Properties

 A point p is extreme if there exists a line I through p, such that all the other points of P are on the same side of I (or on I)

• A point p is extreme if there exists a line I through p, such that all the other points of P are on the same side of I (and not on I)

 A point p is extreme if there exists a line I through p, such that all the other points of P are on the same side of I (and not on I)

 A point p is extreme if there exists a line I through p, such that all the other points of P are on the same side of I (and not on I)

 A point p is extreme if there exists a line I through p, such that all the other points of P are on the same side of I (and not on I)

• Claim: If a point is on the CH if and only if (iff) it is extreme.

• Claim: If a point is on the CH if and only if (iff) it is extreme.

CH Variants

- Several types of convex hull output are conceivable
 - all points on the convex hull in arbitrary order
 - all points on the convex hull in boundary order
 - only non-collinear points in arbitrary order
 - only non-collinear points in boundary order

<--- exclude collinear points
</pre>

- It may seem that computing in boundary order is harder
 - we'll see that identifying the extreme points is Omega(n lg n)
 - so sorting is not dominant

Interior points

 A point p is **not** on the CH if and only if p is contained in the interior of a triangle formed by three other points of P (or in interior of a segment formed by two points).

• An edge (p_i, p_j) is extreme if all the other points of P are on one side of it (or on)

An edge (p_i, p_j) is extreme if all the other points of P are on one side of it (or on)

- An edge (p_i, p_j) is extreme if all the other points of P are on one side of it (or on)
- Claim: A pair of points (p_i, p_j) form an edge on the CH iff edge (p_i, p_j) is extreme.

- An edge (p_i, p_j) is extreme if all the other points of P are on one side of it (or on)
- Claim: A pair of points (p_i, p_j) form an edge on the CH iff edge (p_i, p_j) is extreme.

- An edge (p_i, p_j) is extreme if all the other points of P are on one side of it (or on)
- Claim: A pair of points (p_i, p_j) form an edge on the CH iff edge (p_i, p_j) is extreme.

- An edge (p_i, p_j) is extreme if all the other points of P are on one side of it (or on)
- Claim: A pair of points (p_i, p_j) form an edge on the CH iff edge (p_i, p_j) is extreme.

- An edge (p_i, p_j) is extreme if all the other points of P are on one side of it (or on)
- Claim: A pair of points (p_i, p_j) form an edge on the CH iff edge (p_i, p_j) is extreme.

- An edge (p_i, p_j) is extreme if all the other points of P are on one side of it (or on)
- Claim: A pair of points (p_i, p_j) form an edge on the CH iff edge (p_i, p_j) is extreme.

CH by finding extreme edges

Brute force

Algorithm (input P)

- for all distinct pairs (p_i, p_j)
 - check if edge (p_i,p_j) is extreme

Analysis?

Gift wrapping (1970)

Observations

- CH consists of extreme edges
- each edge shares a vertex with next edge
- Idea: use an edge to find the next one

- How to find an extreme edge to start from?
- Given an extreme edge, how to find the next one?

Can you think of some points that are guaranteed to be in CH?

Claim

- point with minimum x-coordinate is extreme
- point with maximum x-coordinate is extreme
- point with minimum y-coordinate is extreme
- point with maximum y-coordinate is extreme
- Proof

- Start from bottom-most point
 - if more then one, pick right most

- Start from bottom-most point
 - if more then one, pick right most

//find first edge. HOW ?

- Start from bottom-most point
 - if more then one, pick right most

//find first edge. HOW?

- Start from bottom-most point
 - if more then one, pick right most

//find first edge. HOW?

- Start from bottom-most point
 - if more then one, pick right most

```
/***** find first edge ******/
```

- for each point q (q!= p)
 - compute slope of q wrt p
- let p' = point with smallest slope
 //claim: pp' is extreme edge
- output (p, p') as first edge

```
/********what next ? ******/
```


- Start from bottom-most point
 - if more then one, pick right most

```
/***** find first edge ******/
```

- for each point q (q!= p)
 - compute slope of q wrt p
- let p' = point with smallest slope
 //claim: pp' is extreme edge
- output (p, p') as first edge
- repeat from p'

- p_0 = point with smallest y-coordinate (if more then one, pick right most)
- $p = p_0$
- repeat
 - for each point q (q!= p)
 - compute ccw-angle of q wrt p
 - let p' = point with smallest angle
 - output (p, p') as CH edge
 - p = p'
- until $p = p_0$ //until it discovers first point again

- p_0 = point with smallest y-coordinate (if more then one, pick right most)
- $p = p_0$
- repeat
 - for each point q (q!= p)
 - compute ccw-angle of q wrt p
 - let p' = point with smallest angle
 - output (p, p') as CH edge
 - p = p'
- until p = p₀ //until it discovers first point again

- p_0 = point with smallest y-coordinate (if more then one, pick right most)
- $p = p_0$
- repeat
 - for each point q (q!= p)
 - compute ccw-angle of q wrt p
 - let p' = point with smallest angle
 - output (p, p') as CH edge
 - p = p'
- until $p = p_0$ //until it discovers first point again

- p_0 = point with smallest y-coordinate (if more then one, pick right most)
- $p = p_0$
- repeat
 - for each point q (q!= p)
 - compute ccw-angle of q wrt p
 - let p' = point with smallest angle
 - output (p, p') as CH edge
 - p = p'
- until $p = p_0$ //until it discovers first point again

Gift wrapping: Classwork

- Simulate GiftWrapping on a set of points and think how it works in degenerate cases
- Analysis: Running time? Express function of n and k, where k is the output size (number of points on the convex hull)
 - How small/large can k be for a set of n points?
 - Show examples that trigger best/worst cases
- Discuss when gift-wrapping is a good choice

Summary

Gift wrapping

- Runs in O(kn) time, where k is the size of the CH(P)
- Efficient if k is small
- For k = O(n), gift wrapping takes $O(n^2)$
- Faster algorithms are known
- Gift wrapping extends easily to 3D and for many years was the primary algorithm for 3D

• Similar to Quicksort (in some way)

• Idea: start with 2 extreme points

• CH = upper hull (CH of P_1) + lower hull (CH of P_2)

• CH = upper hull (CH of P_1) + lower hull (CH of P_2)

• CH = upper hull (CH of P_1) + lower hull (CH of P_2)

• We'll find the CH(P₁₎ and CH(P₂₎ separately

• First let's focus on P1

For all points p in P1: compute dist(p, ab)

let's ignore collinear points for now

let's ignore collinear points for now

• Find the point c with largest distance (i.e. furthest away from ab)

let's ignore collinear points for now

• Find the point c with largest distance (i.e. furthest away from ab)

- Claim: c must be an extreme point (and thus on the CH of P1)
- Proof:

• Discard all points inside triangle abc

• Discard all points inside triangle abc

let's ignore collinear points for now

let's ignore collinear points for now

• Recurse on the points left of ac and right of bc

• Recurse on the points left of ac and right of bc

• Compute CH of P₂ similarly

Quickhull (P)

- find a, b
- partition P into P1, P2
- return a + Quickhull(a,b, P1) + b + Quickhull(b,a,P2)

· Quickhull(a,b,P)

//invariant: P is a set of points all on the left of ab

- if P empty => return emptyset
- for each point p in P: compute its distance to ab
- let c = point with max distance
- let P1 = points to the left of ac
- let P2 = points to the left of cb
- return Quickhull(a,c,P1) + c + Quickhull(c,b,P2)

Quickhull: Classwork

- Simulate Quickhull on a set of points and think how it works in degenerate cases
- Analysis:
 - Write a recurrence relation for its running time
 - What/when is the worst case running time?
 - What/when is the best case running time?
- Argue that Quickhull's average complexity is O(n) on points that are uniformly distributed.

Graham scan

- In late 60s an application at Bell Labs required the hull of 10,000 points, for which a quadratic algorithm was too slow
- Graham developed an algorithm which runs in O(n lg n)
 - It runs in one sort plus a linear pass!!
 - Simple, intuitive, elegant and practical
 - You'll love it

Convex polygons: Properties

Walk ccw along the boundary of a convex polygon

Convex polygons: Properties

Walk ccw along the boundary of a convex polygon

Convex polygons: Properties

Walk ccw along the boundary of a convex polygon

For any point p inside, the points on the boundary are in radial order around p

• Idea: start from a point p interior to the hull < ----- we'll think about how to get it later

Idea: start from a point p interior to the hull <—— we'll think about how to get it later order all points by their ccw angle wrt p

 Idea: start from a point p interior to the hull order all points by their ccw angle wrt p

 Idea: start from a point p interior to the hull order all points by their ccw angle wrt p

• Idea: traverse the points in this order a, b, c, d, e, f, g,...

- Idea: traverse the points in this order a, b, c, d, e, f, g,...
 - initially we put a, b in S

Now we read point c: what do we do with it?

Now we read point c: what do we do with it?

Now we read point c: what do we do with it?

Graham scan

is c left of ab

Now we read point c: if (c+S) stays convex: add c to S

Now we read point d:

Now we read point d: is d left of bc? NO

Now we read point d: is d left of bc? NO

//can't add d, because (d,c,b,a) not convex

Now we read point d: is d left of bc? NO

Now we read point d: is d left of bc? NO

pop c; is d left of ab?

Invariant:

we maintain S
as the CH of
the points traversed
so far

$$S = (b, a)$$

Now we read point d: is d left of bc? NO

pop c; is d left of ab?

Invariant:

we maintain S
as the CH of
the points traversed
so far

$$S = (b, a)$$

Now we read point d: is d left of bc? NO

pop c; is d left of ab? YES ==> insert d in S

Invariant:

we maintain S
as the CH of
the points traversed
so far

$$S = (d, b, a)$$

In general, we read next point q:

- let b = head(S), a = next(b)
- if q is left of ab: add q to S

$$S = (b, a,)$$

$$S = (q, b, a,)$$

In general, we read next point q:

- let b = head(S), a = next(b)
- if q is right of ab: pop b; repeat until q is left of ab, then add q to S

Cascading pops

- Find interior point p₀
- Sort all other points ccw around p₀, and call them p₁, p₂, p₃, ...p_{n-1} in this order
- Initialize stack $S = (p_2, p_1)$
- for i=3 to n-1 do
 - if p_i is left of (second(S),first(S)):
 - push p_i on S
 - else
 - do
 - pop S
 - while p_i is right of (second(S), first(S))
 - push p_i on S

- Choose a set of "interesting" points and go through the algorithm
- Does the algorithm handle degenerate cases? If not, how do you fix it?
- How to find an interior point?
- Analysis: How long does it take?

- Find interior point p₀
- Sort all other points ccw around p_{0.....}
- Initialize stack $S = (p_2, p_1)$
- for i=3 to n-1 do
 - if p_i is left of (second(S),first(S)):
 - push p_i on S
 - else
 - do
 - pop S
 - while p_i is right of (second(S), first(S))
 - push p_i on S

- Find interior point p₀
- Sort all other points ccw around p₀.....
- Initialize stack $S = (p_2, p_1)$
- for i=3 to n-1 do
 - if p_i is left of (second(S),first(S)):
 - push pi on S
 - else
 - do
 - pop S
 - while p_i is right of (second(S), first(S))
 - push p_i on S

O(n) (we'll think of it later)

- Find interior point p₀
- Sort all other points ccw around p₀.....
- Initialize stack $S = (p_2, p_1)$
- for i=3 to n-1 do
 - if p_i is left of (second(S),first(S)):
 - push pi on S
 - else
 - do
 - pop S
 - while p_i is right of (second(S), first(S))
 - push p_i on S

O(n) (we'll think of it later)O(n lg n)

- Find interior point p₀
- Sort all other points ccw around p₀.....
- Initialize stack $S = (p_2, p_1)$
- for i=3 to n-1 do
 - if p_i is left of (second(S),first(S)):
 - push p_i on S
 - else
 - do
 - pop S
 - while p_i is right of (second(S), first(S))
 - push p_i on S

O(n) (we'll think of it later) $O(n \lg n)$ How long does this take?

- Find interior point p₀
- Sort all other points ccw around p₀.....
- Initialize stack $S = (p_2, p_1)$
- for i=3 to n-1 do
 - if p_i is left of (second(S),first(S)):
 - push p_i on S
 - else
 - do
 - pop S
 - while p_i is right of (second(S), first(S))
 - push p_i on S

O(n) (we'll think of it later)
O(n lg n)

How long does this take?

O(n)

every point is pushed once and popped at most once

• How to find an interior point?

- How to find an interior point?
- A simplification is to pick p₀ as the lowest point

- How to find an interior point?
- A simplification is to pick p₀ as the lowest point
 - initialize stack S = (p1, p0)

//both are on CH and S will always contain at least 2 points

Handling collinear-ities

What happens when you run on this input?

• • • •

•

•

.

How can you fix it?

