Hierarchical Cluster

Enrique J. De La Hoz D.

UTB - Data Science

The closest observation to a Pair

The Closest Observation to a Pair

	1	2	3
2	11.7		
3	16.8	18.0	
4	10.0	20.6	15.8

- Is 2 is closest to group 1,4?
- Is 3 is closest to group 1,4?

Figure 1:

Linkage Criteria: Complete

	1	2	3
2	11.7		
3	16.8	18.0	
4	10.0	20.6	15.8

Figure 2:

- Is 2 is closest to group 1,4?
 - \rightarrow max(D(2,1), D(2,4)) = 20.6
- Is 3 is closest to group 1,4?
 - \rightarrow max(D(3,1), D(3,4)) = 16.8

Hierarchical Clustering

• Complete Linkage: maximum distance between two sets

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Figure 11:

Figure 12:

Linkage Criteria

- Complete Linkage: maximum distance between two sets
- Single Linkage: minimum distance between two sets
- Average Linkage: average distance between two sets

Figure 13:

Figure 14:

Figure 15:

Figure 16:

Figure 17:

Figure 18:

Figure 19:

Figure 20:

Hierarchical Clustering in R

```
dist_players <- dist(players, method = "euclidean")
hc_players <- hclust(dist_players, method = 'complete')</pre>
```

Extracting K Clusters

```
cluster_assignments <- cutree(hc_players, k = 2)
print(cluster_assignments)
## [1] 1 1 1 2 2</pre>
```

```
## X Y cluster
## 1 -1 1 1
## 2 2 -3 1
## 3 8 6 1
## 4 7 -8 1
## 5 -12 8 2
## 6 -15 0 2
```

Visualizing K-Clusters (ggplot)

Cluster Dendrogram

Height 0 5 10 15 20

Figure 21:

Cluster Dendrogram

25

Figure 22:

Figure 23:

Figure 24:

Figure 25:

Figure 26:

Figure 27:

Figure 28:

Plotting the Dendogram

dist_players hclust (*, "complete")

A better looking Dendogram

```
library(dendextend)
dend_players <- as.dendrogram(hc_players)
dend_colored <- color_branches(dend_players, h = 15)
plot(dend_colored)</pre>
```


A better looking Dendogram (cut = 10)

```
library(dendextend)
dend_players <- as.dendrogram(hc_players)
dend_colored <- color_branches(dend_players, h = 10)
plot(dend_colored)</pre>
```


A better looking Dendogram (k = 2)

```
library(dendextend)
dend_players <- as.dendrogram(hc_players)
dend_colored <- color_branches(dend_players, k=2)
plot(dend_colored)</pre>
```


cutree using height

```
cluster_assignments <- cutree(hc_players, h = 15)
print(cluster_assignments)</pre>
```

```
## [1] 1 1 1 1 2 2
```