Московский государственный технический университет

им. Н.Э. Баумана

УТВЕРЖДАЮ:		
Гапанюк Ю.Е.	""_	2019 r.
урсовая работа по курсу «Технологии маш	инного обу	чения»
, peobal paoora no ny pey «remionorim main		iciiiiiii
<u>Пояснительная записка</u> (вид документа)		
<u>писчая бумага</u> (вид носителя)		
20 (количество листов)		
исполнители:		
студент группы ИУ5-61 Водка И.Э.		
	···	2019 г

Содержание

1. Задание:	3
1.1. Общее задание	3
1.2. Задание данной курсовой работы	
2. Введение	
3. Основная часть	
3.1. Подготовка датасета	
3.2. Jupyter Notebook	
Сбор данных из датасета	
Описание модели глубокого обучения на Keras	
Обучение модели	
Графики	
Результат	
Заключение	19
Список использованных источников	20

1. Задание:

1.1. Общее задание

Схема типового исследования, проводимого студентом в рамках курсовой работы, содержит выполнение следующих шагов:

- Поиск и выбор набора данных для построения моделей машинного обучения. На основе выбранного набора данных студент должен построить модели машинного обучения для решения или задачи классификации, или задачи регрессии.
- Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных.
- Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.
- Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения. В зависимости от набора данных, порядок выполнения пунктов 2, 3, 4 может быть изменен.
- Выбор метрик для последующей оценки качества моделей. Необходимо выбрать не менее трех метрик и обосновать выбор.
- Выбор наиболее подходящих моделей для решения задачи классификации или регрессии. Необходимо использовать не менее пяти моделей, две из которых должны быть ансамблевыми.
- Формирование обучающей и тестовой выборок на основе исходного набора данных.
- Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.
- Подбор гиперпараметров для выбранных моделей. Рекомендуется использовать методы кросс-валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.
- Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей с качеством baseline-моделей.
- Формирование выводов о качестве построенных моделей на основе выбранных метрик. Результаты сравнения качества рекомендуется отобразить в виде графиков и сделать выводы в форме текстового описания. Рекомендуется постройение графиков обучения и валидации, влияния значений гиперпарметров на качество моделей и т.д.

Приведенная схема исследования является рекомендуемой. Возможно выполнение курсовой работы на нестандартную тему, которая должна быть предварительно согласована с ответственным за прием курсовой работы.

1.2. Задание данной курсовой работы

Для своей курсовой работы я выбрал нестандартную тему. Причины такого поступка:

- Требования, изложенные выше, характерны как для данной курсовой работы, так и для лабораторных работ, выполненных ранее.
- Тем не менее, многие интересные аспекты работы с технологиями машинного обучения не были рассмотрены в практических работах в данном семестре.
- Значит, нет проблемы в том, чтобы использовать собственный вариант выполнения курсовой работы, т.к. третий раз закреплять одно и то же хорошо, но рассмотреть что-то новое тоже неплохо.

Соответственно, задание курсовой работы было придумано самостоятельно и выглядит следующим образом:

Необходимо разработать систему, предварительно обученную на обучающей выборке и определяющую по фотографии, сделана ли фотография в городе России или Великобритании. Т.е., классификатор.

Используемые технологии:

- Node.JS для получения выборки фотографий из Google Street View;
- Python (Anaconda) + Jupyter Notebook;
- Keras (сверточная нейронная сеть)
- прочие инструменты (Matplotlib, Pandas, Numpy, Sklearn...)

2. Введение

Задача обработки изображений — весьма сложная, но с ней неплохо справляются свёрточные нейронные сети.

Цитата из Википедии:

Свёрточная нейронная сеть (англ. convolutional neural network, CNN) специальная архитектура искусственных нейронных сетей, предложенная Яном Лекуном в 1988 году и нацеленная эффективное на распознавание образов, входит в технологий глубокого обучения (англ. deep learning). Использует некоторые

особенности зрительной коры, в которой были открыты так называемые простые клетки, реагирующие на прямые линии под разными углами, и сложные клетки, реакция которых связана с активацией определённого набора простых клеток. Таким образом, идея свёрточных нейронных сетей заключается в чередовании свёрточных слоёв (англ. convolution layers) и субдискретизирующих слоёв (англ. subsampling layers или англ. pooling layers, слоёв подвыборки). Структура сети — однонаправленная (без обратных связей), принципиально многослойная. Для обучения используются стандартные методы, чаще всего метод обратного распространения ошибки. Функция активации нейронов (передаточная функция) — любая, по выбору исследователя.

Название архитектура сети получила из-за наличия операции свёртки, суть которой в том, что каждый фрагмент изображения умножается на матрицу (ядро) свёртки поэлементно, а результат суммируется и записывается в аналогичную позицию выходного изображения.

Работу в этой курсовой работе я выполнял на "инженерном" уровне, не сильно вдаваясь в математические подробности, однако основы архитектуры я рассмотрел.

Подробнее о выполнении работы – в основной части данного документа.

Ещё один важный этап выполнения – **подготовить хороший датасет**. Вместо использования готового датасета я написал небольшой скрипт на Node.JS, загружающий изображения с Google Street View. Далее эти данные следовало обработать (описывается в первой части основного раздела).

Наконец, после завершения работы нейронной сети были сделаны **выводы с графиками** и небольшими расчётами.

3. Основная часть

3.1. Подготовка датасета

```
const request = require('request-promise');
const { execSync } = require('child_process');
const fs = require('fs');
const mkdirp = require('mkdirp-promise');
const sharp = require('sharp');
const IMAGE_SIZE = 400:
const ATTEMPTS = 10;
const ROUND RATIO = 100000;
const GENERATE_TEST = true;
// Генерирует случайные координаты в прямоугольнике
const randomCoordsInSquare = ({lat1, lng1, lat2, lng2}) => {
 const minLat = Math.min(lat1, lat2);
const maxLat = Math.max(lat1, lat2);
const minLng = Math.min(lng1, lng2);
  const maxLng = Math.max(lng1, lng2);
  const lat = minLat + Math.random() * (maxLat - minLat);
  const lng = minLng + Math.random() * (maxLng - minLng);
  return { lat: Math.round(lat * ROUND_RATIO) / ROUND_RATIO, lng: Math.round(lng
* ROUND_RATIO) / ROUND_RATIO };
};
// Находит картинку в "прямоугольнике" координат
const findPictureForSquare = async (square, country) => {
  const makeUri = (lat, lng) => {
    return [
'https://maps.googleapis.com/maps/api/js/GeoPhotoService.SingleImageSearch',
         ?pb=!1m5!1sapiv3!5sUS!11m2!1m1!1b0!2m4!1m2!3d${lat}!4d${lnq}!2d100!
3m18!2m2!1sru!2sRU!`,
         '9m1!1e2!11m12!1m3!1e2!2b1!3e2!1m3!1e3!2b1!3e2!1m3!1e10!2b1!3e2!4m6!1e1!
1e2!1e3!1e4!1e8!1e6',
         '&callback=respond'
      ].join('');
  };
  let downloaded = false, attemptsRemaining = ATTEMPTS, city, panoId;
  while(!downloaded && attemptsRemaining > 0) {
    const coords = randomCoordsInSquare(square);
    const uri = makeUri(coords.lat, coords.lng);
    const result = await request.get(uri);
    const respond = async (results) => {
      if (results.length === 1 || !Array.isArray(results[1][3][2])) {
        console.error('Attempt #' + (ATTEMPTS - attemptsRemaining + 1)
          + ' failed! ' + JSON.stringify(coords));
        downloaded = false;
        attemptsRemaining--;
        await execSync('sleep 0.05');
      } else {
        console.log('Success!');
```

```
city = results[1][3][2][0][0];
        panoId = results[1][1][1];
        downloaded = true;
   };
   eval(result);
 if (!downloaded) {
   console.error('Failed!');
   return;
 const rawDir = `${__dirname}/raw/${panoId}`;
 await mkdirp(rawDir);
 execSync(`google_streetview --pano=${panoId} -size=${IMAGE_SIZE}x${IMAGE_SIZE}
--save_downloads=${rawDir}`);
 const newPath = `${__dirname}/` + GENERATE_TEST ? 'images_test' :
'images_train';
  await mkdirp(newPath);
  sharp(`${rawDir}/gsv_0.jpg`)
    .resize({ height: Math.round(IMAGE_SIZE * 0.75), width: IMAGE_SIZE })
    .grayscale()
    .toFile(`${newPath}/${panoId}.jpg`);
 const line = [panoId, country].join(',');
 fs.appendFileSync(GENERATE_TEST ? 'dataset_test.csv' : 'dataset_train.csv',
line + "\n");
 console.log(line);
// В этом словаре – список мест, из которых берутся фотографии
const places = {
 moscow: {
   count: 10
   coords: {lat1: 55.894966, lng1: 37.382917, lat2: 55.610124, lng2:
37.819175},
   country: 'ru',
 },
  spb: {
   count: 5,
   coords: {lat1: 60.039628, lng1: 30.145742, lat2: 59.881093, lng2:
30.537374},
   country: 'ru',
  },
 ekb: {
   count: 3,
   coords: {lat1: 56.862860, lng1: 60.538415, lat2: 56.822548, lng2:
60.688518},
   country: 'ru',
 nino: {
   count: 3,
   coords: {lat1: 56.333229, lng1: 43.898472, lat2: 56.277297, lng2:
44.087820},
   country: 'ru',
  },
  kazan: {
   count: 3,
    coords: {lat1: 55.880916, lng1: 49.043136, lat2: 55.744434, lng2:
49.238918},
```

```
country: 'ru',
  },
  krasnodar: {
    count: 3,
    coords: {lat1: 45.067626, lng1: 38.936263, lat2: 45.014970, lng2:
39.047241},
    country: 'ru',
  },
  london: {
    count: 10,
    coords: {lat1: 51.548547, lng1: -0.207508, lat2: 51.439893, lng2: 0.029800},
    country: 'uk'
  },
  birmingham: {
    count: 5,
    coords: {lat1: 52.538597, lng1: -1.991987, lat2: 52.424620, lng2: -
1.782344},
    country: 'uk',
  liverpool: {
    count: 3,
    coords: {lat1: 53.449859, lng1: -2.999910, lat2: 53.359085, lng2: -
2.822562},
    country: 'uk',
  },
  manchester: {
    count: 3,
    coords: {lat1: 53.499370, lng1: -2.287626, lat2: 53.455022, lng2: -
2.191537},
    country: 'uk',
  southampton: {
    count: 3,
    coords: {lat1: 50.953016, lng1: -1.479036, lat2: 50.898672, lng2: -
1.317257},
    country: 'uk',
  },
  bristol: {
    count: 3,
    coords: {lat1: 51.469197, lng1: -2.620845, lat2: 51.448589, lng2: -
2.554304},
    country: 'uk',
 },
};
(async () \Rightarrow {
  Object.entries(places)
    .forEach(async ([placeName, placeData]) => {
      console.log('Handling: ' + placeName);
      for (let i = 0; i < placeData.count; i++) {</pre>
        await findPictureForSquare(placeData.coords, placeData.country);
      }
  });
})();
```

После запуска и некоторого ожидания получаем папку с фотографиями:

Также получаем файл "dataset_train.csv" следующего вида:

file, country _kdYaGTQTUV1eqQZmfTDvw,ru e94B91epyBFaUHMCKsXR7g,uk BoDz-ngJQjhS_PszrCEvJA, ru VhdZx6hrKM-VJWSjDQk2mw,uk HT_VTtPVt7RONFBnRe-rvg,uk P1dkmyQnUJYxBbf8mfCQ6Q,uk Pc_R4Bzn6Q5aXG5Yf-t19A,ru sKKRClFHoDzPAE82YGGm3g, ru _JZ0Dh1crToE8JPyRySiuA,uk CUhnn0Bw6h3FYgQzuaSBnQ, uk Wg_vkIBuZo8rxqsPpN8K_g,ru O OBMBXJMmO65GeNJvWggw,ru vKlOvyLmghgBffE3g94DzA,uk ZEdc0xugROGBQkNM8CJM0A, uk 3JfkU18SVcAw_qAYa3KS-A, uk tn4_Cw5Un16LnJDpU5JM9w,uk Wt7Tgh-aIq69lkYlt2lFQg,ru

Аналогично поступаем с тестовым датасетом. Наконец, все файлы готовы, и мы можем приступать непосредственно к разработке классификатора.

3.2. Jupyter Notebook

model.add(MaxPooling2D(pool_size=(2,2)))

model.add(BatchNormalization())

```
In [2]:
from PIL import Image
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
Убедимся, что используются GPU. Так скорость обучения увеличивается в разы.
In [4]:
from keras import backend as K
K.tensorflow_backend._get_available_gpus()
Out[4]:
['/job:localhost/replica:0/task:0/device:GPU:0']
Сбор данных из датасета
In [5]:
def load_image(dirname, file):
    arr = np.array(Image.open('./' + dirname + '/' + file +
'.jpg').convert('L'))
    return arr.reshape(400, 300, 1)
In [6]:
dataset = pd.read_csv('./dataset.csv')
dataset['image'] = dataset.apply(lambda x: load_image('images', x.file), axis=1)
dataset['label'] = dataset.apply(lambda x: np.array([x.country == 'ru',
x.country == [uk'], axis=1)
dataset.iloc[0].image.shape
Out[6]:
(400, 300, 1)
Описание модели глубокого обучения на Keras
In [7]:
from keras.models import Sequential
from keras.layers import Dense, Activation, Conv2D, MaxPooling2D,
BatchNormalization, Dropout, Flatten
N_{IMAGES} = len(dataset)
IMG_W = 400
IMG_H = 300
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), use_bias=False, input_shape=(IMG_W,
IMG_H, 1)))
```

```
model.add(Activation('relu'))
model.add(Conv2D(64, kernel_size=(3,3), use_bias=False))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(64, kernel_size=(3,3), use_bias=False))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(128, kernel_size=(3,3), use_bias=False))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(64, kernel_size=(3,3), use_bias=False))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(32, kernel_size=(3,3), use_bias=False))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dense(2, use_bias=False))
model.add(BatchNormalization())
model.add(Activation('softmax'))
In [8]:
dataset['image'].iloc[0].shape
Out[8]:
(400, 300, 1)
Обучение модели
Компилируем модель, указывая лосс и используемый оптимизатор (стандартные значения, в
общем):
In [9]:
from keras import optimizers
from keras import losses
model.compile(loss=losses.mean_squared_error, optimizer='sqd')
In [10]:
```

x = np.array(dataset['image'].tolist())

```
y = np.array(dataset['label'].tolist())
print 'x shape is', x.shape
print 'y shape is', y.shape
x shape is (4672, 400, 300, 1)
y shape is (4672, 2)
Запускаем непосредственно обучение, применяя k-fold cross validation:
In [11]:
from sklearn.model_selection import train_test_split
from keras.callbacks import EarlyStopping, ModelCheckpoint
# set early stopping criteria
patience = 2 # this is the number of epochs with no improvement after which the
training will stop
early stopping = EarlyStopping(monitor='val loss', patience=patience, verbose=1)
#define the model checkpoint callback -> this will keep on saving the model as a
physical file
model_checkpoint = ModelCheckpoint('./checkpoint.h5', verbose=1,
save_best_only=True)
n folds = 7
epochs = 5
batch_size = 10
model_history = []
def fit_and_evaluate(t_x, val_x, t_y, val_y, used_epochs, used_batch_size):
   results = model.fit(t_x, t_y, epochs=used_epochs,
batch_size=used_batch_size, callbacks=[early_stopping, model_checkpoint],
            verbose=1, validation_split=0.1)
   print "Validation Score: ", model.evaluate(val_x, val_y)
   return results
for i in range(n_folds):
   print "Training on fold: ", i+1
   t_x, val_x, t_y, val_y = train_test_split(x, y, test_size=0.1, random_state)
= np.random.randint(1,1000, 1)[0])
   model_history.append(fit_and_evaluate(t_x, val_x, t_y, val_y, epochs,
batch size))
   print "======" * 12 + "\n\n\n"
('Training on fold: ', 1)
Train on 3783 samples, validate on 421 samples
Epoch 00001: val_loss improved from inf to 0.20808, saving model to ./checkpoint.h5
Epoch 00002: val_loss improved from 0.20808 to 0.20075, saving model to ./checkpoint.h5
Epoch 00003: val_loss improved from 0.20075 to 0.19018, saving model to ./checkpoint.h5
Epoch 00004: val_loss did not improve from 0.19018
Epoch 5/5
Epoch 00005: val_loss did not improve from 0.19018
Epoch 00005: early stopping
468/468 [============ ] - 4s 8ms/step
```

```
('Training on fold: ', 2)
Train on 3783 samples, validate on 421 samples
Epoch 1/5
Epoch 00001: val_loss improved from 0.19018 to 0.17217, saving model to ./checkpoint.h5
Epoch 00002: val_loss did not improve from 0.17217
Epoch 00003: val_loss did not improve from 0.17217
Epoch 00003: early stopping
('Validation Score: ', 0.19958432540934309)
_____
('Training on fold: ', 3)
Train on 3783 samples, validate on 421 samples
Epoch 1/5
3783/3783 [================ - 57s 15ms/step - loss: 0.1732 - val_loss: 0.2177
Epoch 00001: val_loss did not improve from 0.17217
Epoch 00002: val_loss did not improve from 0.17217
Epoch 3/5
Epoch 00003: val_loss did not improve from 0.17217
Epoch 4/5
Epoch 00004: val_loss did not improve from 0.17217 Epoch 00004: early stopping
468/468 [=========== ] - 2s 4ms/step
('Validation Score: ', 0.21811382275106561)
______
('Training on fold: ', 4)
Train on 3783 samples, validate on 421 samples
Epoch 1/5
Epoch 00001: val_loss improved from 0.17217 to 0.15843, saving model to ./checkpoint.h5
Fnoch 2/5
Epoch 00002: val_loss improved from 0.15843 to 0.15779, saving model to ./checkpoint.h5
Epoch 3/5
Epoch 00003: val_loss did not improve from 0.15779
Epoch 4/5
Epoch 00004: val_loss improved from 0.15779 to 0.14469, saving model to ./checkpoint.h5
Epoch 5/5
Epoch 00005: val_loss did not improve from 0.14469
('Validation Score: ', 0.16414279917366484)
```

('Validation Score: ', 0.1868088143503564)

('Training on fold: ', 5)

```
Train on 3783 samples, validate on 421 samples
Epoch 1/5
3783/3783 [================== ] - 57s 15ms/step - loss: 0.1423 - val_loss: 0.1678
Epoch 00001: val_loss did not improve from 0.14469
3783/3783 [=============== - 57s 15ms/step - loss: 0.1349 - val_loss: 0.1755
Epoch 00002: val_loss did not improve from 0.14469
Epoch 3/5
Epoch 00003: val_loss did not improve from 0.14469
Epoch 00003: early stopping
468/468 [========
             ('Validation Score: ', 0.16832360905459803)
                       ('Training on fold: ', 6)
Train on 3783 samples, validate on 421 samples
Epoch 1/5
Epoch 00001: val_loss improved from 0.14469 to 0.10448, saving model to ./checkpoint.h5
Epoch 2/5
Epoch 00002: val_loss did not improve from 0.10448
Epoch 3/5
Epoch 00003: val_loss did not improve from 0.10448
Epoch 00003: early stopping
('Validation Score: ', 0.11283582665471949)
('Training on fold: ', 7)
Train on 3783 samples, validate on 421 samples
Epoch 1/5
Epoch 00001: val_loss improved from 0.10448 to 0.10243, saving model to ./checkpoint.h5
Epoch 2/5
Epoch 00002: val_loss improved from 0.10243 to 0.09300, saving model to ./checkpoint.h5
Epoch 3/5
Epoch 00003: val_loss did not improve from 0.09300
Epoch 00004: val_loss did not improve from 0.09300
Epoch 00004: early stopping
468/468 [=========== ] - 2s 4ms/step
('Validation Score: ', 0.11498103360844474)
______
```

Графики

По горизонтальной оси - номер эпохи, а по вертикальной - показатель loss (средний квадрат ошибки). Здесь видим, что с каждым фолдом loss уменьшается.

```
In [13]:
plt.title('Losses vs Epochs')
```

```
for i in range(0, n_folds):
    plt.plot(model_history[i].history['loss'], label='Fold ' + str(i) + ' loss')
plt.legend()
plt.show()
```


Ещё один график - здесь обычными линиями обозначены изменения функции loss, а пунктирными - изменение loss при валидации. Важно, чтобы ошибка при валидации не росла: таким образом мы уменьшаем переобучение.

```
In [15]:
```

```
# Validation loss must not rise!
plt.title('Train loss vs Validation loss')

colors = ['blue', 'red', 'green', 'gray', 'orange', 'cyan', 'brown', 'magenta',
'black', 'purple']

for i in range(0, n_folds):
    plt.plot(model_history[i].history['loss'], label='Fold ' + str(i) + ' loss',
color=colors[i])
    plt.plot(model_history[i].history['val_loss'], label='Fold ' + str(i) + '
val loss', color=colors[i], linestyle = "dashdot")

# plt.legend()
plt.show()
```


Результат

In [65]:

```
from matplotlib.font_manager import FontProperties
test_images = pd.read_csv('./dataset_test.csv')
```

```
predictions = []
quesses = 0
font = FontProperties()
font.set_size('large')
for index, row in test_images.iterrows():
   image = row['file']
   real_country = row['country']
   test_image = load_image('images_test', image)
   prediction = model.predict(test_image.reshape(1, 400, 300, 1))
   if prediction[0][0] > 0.50:
       guessed_country = 'ru'
       confidence = prediction[0][0]
   elif prediction[0][1] > 0.50:
       guessed_country = 'uk'
       confidence = prediction[0][1]
   if guessed_country == real_country:
       guesses += 1
       verdict = 'SUCCESS'
       color = 'b'
   else:
       verdict = 'FAILURE'
       color = 'r'
   plt.imshow(Image.open('./images_test/' + image + '.jpg'), cmap="inferno")
   plt.text(
       Θ,
       -10.
       + ",\nconfidence = " + str(confidence * 100) + "%",
       fontproperties=font,
       color=color
   plt.axis('off')
   plt.show()
```

SUCCESS TkYmbfuxFWHXT_sxdmvnYA.jpg real country = uk, guessed country = uk, confidence = 0.575528

SUCCESS 3jqtlzQcznOzExfQSh16Hw.jpg real country = uk, guessed country = uk, confidence = 0.961929

SUCCESS QyMUVdLL2rvc9paP9NqFQg.jpg real country = ru, guessed country = ru, confidence = 0.879323

SUCCESS
-_NCIRAiN9dhOy2f-ki2jg.jpg
real country = ru,
guessed country = ru,
confidence = 0.562479

SUCCESS psnR35sNniFhNQxqVmYHyw.jpg real country = ru, guessed country = ru, confidence = 0.567515

SUCCESS W2HBrww7uZGvzU7_4Vm7ug.jpg real country = uk, guessed country = uk, confidence = 0.988308

FAILURE H0fw7ZfPePi7O5mb2AaTnA.jpg real country = uk, guessed country = ru, confidence = 0.915967

FAILURE pM0amffa8fkmn6bld9U59Q.jpg real country = uk, guessed country = ru, confidence = 0.98214

FAILURE 4PO-FDhrXycYfhKrMh4FMg.jpg real country = ru, guessed country = uk, confidence = 0.981155

SUCCESS 9lCn-1B8gNEy6j0vNlESJw.jpg real country = ru, guessed country = ru, confidence = 0.696675

FAILURE O_YxltbAnKqKxZw2v7388A.jpg real country = ru, guessed country = uk, confidence = 0.681674

SUCCESS NCIVN2Tv5Wr8S2D_6C5j4w.jpg real country = ru, guessed country = ru, confidence = 0.600631

[...и так далее...]

In [27]:

print 'Угадано:', guesses print 'Ошибок:', total - guesses print 'Всего:', total

print 'Точность:', guesses / float(total) * 100, '%'

Угадано: 83 Ошибок: 25 Всего: 108

Точность: 76.8518518519 %

Заключение

Машинное обучение – очень перспективная технология, которая привлекает множество специалистов, инвестиций и пользователей в последнее время. Не обошло оно стороной и нашу кафедру, и всех нас.

Поэтому я не смог обойти его стороной и просто сделать шаблонную курсовую работу. Мне было интересно ощутить, насколько сильны алгоритмы машинного обучения на практике.

Мне действительно понравилось выполнять курсовую работу, и на мой взгляд она неплохо справилась со своей задачей, но её также можно улучшить:

- увеличить обучающую выборку;
- доработать модель глубокого обучения;
- подобрать гиперпараметры, увеличить число эпох и folds;
- закрашивать небо одним цветом, чтобы уменьшить его влияние на оценку;
- и т.д. и т.п.

Список использованных источников

- 1. Лекции по курсу ТМО (Гапанюк Ю.Е., 2019)
 2. Google Street View https://www.google.com/streetview/
 3. Документация Keras https://keras.io/