Enrollment No.....

- Q.5 i. Obtain the transform current I(s) in the circuit shown in Fig.11 below 4 assuming initial conditions to be zero.
 - ii. The switch K is at 1 for long time and is moved from 1 to 2 at t =0.
 6 Determine i_L for t > 0 in Fig.12.

OR iii. In the network shown in Fig.13 below the initial voltage on C_1 is 2 volt 6 and on C_2 is 1 Volt. At t=0, the switch is closed. Determine i(t), v_1 (t) and v_2 (t) for t>0 using Laplace Transformation.

Q.6 Attempt any two:

. Calculate h-parameters for the circuit shown above in Fig.14.

ii. Find the first Cauer form of R-C network for impedance function

$$Z(s) = \frac{(s^2 + 7s + 10)}{s^2 + 4s + 3}$$

iii. Find ABCD parameters in terms of Z and Y parameter?

5

5

Faculty of Engineering

End Sem (Odd) Examination Dec-2018

EE3CO07/EX3CO07 Circuit Analysis and Synthesis

Knowledge is Power Programme: B.Tech. Branch/Specialisation: EE/EX

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

1 CQs) shou	ıld be written i	n full instead o	f only a, b, c or	d.	
Q.1	i.	resistors in the	e circuit. How	much power do	att there are five equal value es each resistor dissipate	1
		(a) 10W	(b) 5W	(c) 2W	(d) 1W	1
	ii.	When the superposition theorem is applied to any circuit, the dependent				
		voltage source in that circuit is always				
		(a) Active			(d) None of these	
	iii.	The tie-set schedule gives the relation between				1
		(a) Branch current and link currents				
		(b) Branch voltage and link voltage				
		(c) Branch cu	rrent and link v	oltage		
		(d) None of the	ne above			
	iv.	The reciprocity theorem is applicable to				
		(a) Linear net	work only	(b) Bilateral r	networks only	
		(c) Linear bila	ateral networks	(d) Neither of	the two	
	v.	For a two port network to be reciprocal				
		(a) $Z_{11}=Z_{22}$	(b) $Y_{21}=Y_{22}$	(c) $h_{21} = -h_{12}$	(d) AD-BC=0	
	vi.	For a two po	ort bilateral net	twork, the thre	e transmission parameter are	1
		given by $A=6/5$; $B=17/5$; and $C=1/5$. What is the value of D?				
		(a) 1	(b) 1/5	(c) 7/5	(d) 5	
	vii.	The transient	response occur	'S		1
		(a) Only in re	sistive circuits	(b) Only in I	nductive circuits	
		(c) Only in ca	pacitive circuit	s (d) Both (b) &	& (c)	
	viii.	The transient	current in a lo	oss-free LC circ	cuit when excited from an ac	1
		source is an _				
		(a) Undamped	d	(b) Overdamp	ped	
		(c) Underdam	ped	(d) Critically	damped	

- ix. In the first Foster form, the presence of last element inductor L_{∞} indicates. 1
 - (a) Pole at $\omega = 0$
- (b) Pole at $\omega = \infty$
- (c) Zero at $\omega=0$
- (d) Zero at $\omega = \infty$

1

5

- x. The final value theorem is used to find the
 - (a) Steady state value of the system output
 - (b) Initial value of the system output
 - (c) Transient behaviour of the system output
 - (d) None of these
- Q.2 i. Write the tie set matrix and determine the KVL equation and also calculate the loop currents for the network shown in Fig.1 below.
 - ii. Draw the graph for the network shown in Fig.2 below and determine the number of possible trees.

- iii. Find the current passing through 6Ω resistors in Fig.3.
- OR iv. Find the power loss in 2Ω resistor by Maxwell loop method in Fig.4.

- Q.3 i. State and prove Norton's theorem?
 - ii. If we change the load 5+2j connected across terminals AB by 1+j Ω then find the change in current drawn from the supply by compensation theorem in Fig.5?

iii. Find the thevenin's equivalent circuit and then find the power loss in 50hm resistor for the circuit shown in Fig.6 below

OR iv Find the voltage drop across the capacitor by superposition theorem in Fig. 7?

- Q.4 i. In the circuit find $i(\infty)$ and $v(\infty)$ i.e., the steady state values of the network shown in Fig.8 above.
 - ii. In the network Fig.9 below switch K is closed at t=0. Determine i_c , i_L , $\frac{dv_c}{dt}$, $\frac{dv_2}{dt}$ at t=0⁺.
- OR iii. Find the expression for current i(t) for t > 0 if switch is closed at t=0 in Fig.10.

P.T.O.

Marking Scheme EE3CO07/EX3CO07 Circuit Analysis and Synthesis

Q.1	i.	The total power in a series circuit is 10 watt there are five equal value resistors in the circuit. How much power does each resistor dissipate (c) 2W				
	ii.					
	iii.	The tie-set schedule gives the relation between				
		(a) Branch current and link currents				
	iv.	The reciprocity theorem is applicable to				
		(c) Linear & bilateral networks				
	v.	v. For a two port network to be reciprocal				
		(c) $h_{21} = -h_{12}$				
	vi.	For a two port bilateral network, the three transmission parameter are given by A= $6/5$; B= $17/5$; and C= $1/5$. What is the value of D?				
	••	(c) 7/5		1		
	VII.	1				
	:::	(d) Both (b) & (c) The transient extreme in a less free LC singuit when excite	d from on oo	1		
	VIII	The transient current in a loss-free LC circuit when excited from an ac source is an sine wave				
		(a) Undamped				
	iv	•				
	14.	L_{∞}	1			
	v	(b) pole at ω=∞The final value theorem is used to find the		1		
	х.	(a) Steady state value of the system output		T		
		(a) Steady state value of the system output				
Q.2	i.	Tie Set Matrix & KVL Equation	2 marks	3		
	1.	Loop Currents	1 mark			
	ii.	Draw the graph	1 mark	3		
		Determine the number of possible trees.	2 marks			
	iii.	For Equations	3 marks	4		
		Current Passing through 6 ohm resistor= 5 Amp	1 mark			
OR	iv.	For Equations	3 marks	4		
		power lost in 2Ω resistor= 0.9934	1 mark			
		1				

Q.3	i.	Statement 1 r	nark	2
		Proof 1 r	nark	
	ii.	Change in Current, $I = 1.444 \angle 21.52^{\circ}$ 1.5	5 marks	3
		Compensation Voltage, Vc= 2.043∠23047° 1.5	marks	
OR	iii.	Thevenins Equivalent 3 r	narks	5
		(Vth= 5V, Isc= 0.55 Amp, Rth= 9Ω)		
		Power Loss in 5 ohm resistor= 637mW 2 r	narks	
OR	iv	Current Passing through the capacitor,		5
		$I_C = 1.4092.674j \text{ Amp}$ 2.5	marks	
		Voltage across capacitor,		
		Vc = 5.348 + 2.818j Volt 2.5	5 marks	
Q.4	i.	$i(\infty) = 1 \text{ Amp}$	nark	2
		$v(\infty) = 8 \text{ Volt} $	nark	
	ii.	Ic $(0+)=V/R1$ 2 r	narks	8
		$I_L(0+)=0$ 2 r	narks	
		$dv_c/dt (0+)=I_C/C $ 2 r	narks	
		$dv^2/dt^2 (0+) = 0$ 2 r	narks	
OR	iii.	At $t > 0$ i(t) = $k1e^{-0.5t} + k2e^{-2t}$	narks	8
		At $t = 0$, $i(t) = 3.33e^{-0.5t} - 3.33e^{-2t}$	narks	
Q.5	i.	$Z(s) = \frac{(s^2 + 4s + 6)}{s^2 + 2s + 2}$	narks	4
		5 1 L5 1 L		
		$I(s) = \frac{1}{s^2 + 4s + 6}$ 2 r	narks	
	ii.	$i(t) = 0.5 - 0.5e^{-\left(\frac{105}{3}\right)t} + e^{-\left(\frac{105}{3}\right)t} $	narks	6
		$I(t) = 0.5 - 0.5e^{-(3)} + e^{-(3)}$	naiks	
OR	iii.	$i(t) = \frac{1}{R} e^{-\left(\frac{C_1 + C_2}{C_{12R}}\right)t}$ 2 r	narks	6
		Tt.	naiks	
		$v_1(t) = 2 \frac{c}{c_1} [1 - e^{-\frac{t}{RC}}]$ 2 r	narks	
		$V_2(t) = 1 \frac{c_1}{c_1 + c_2} e^{-\left(\frac{c_1}{c_1 + c_2}\right)t} + \frac{c_1}{(c_1 + c_2)}$	narks	
		$C1+C2 \qquad \qquad (C1+C2)$		
0.6		Attornat any two		
Q.6	į	Attempt any two: ABCD Parameters in terms of Z 2.5	Cmarks	5
	i.		marks	5
		ABCD Parameters in terms of Y 2.5	marks	

ii.

iii. $h_{11}=1\Omega$

 $h_{12} = 1/2$

 $h_{21} = 3$

h₂₂=1/2 mho

1.25 marks **5**

1.25 marks

1.25 marks

1.25 marks
