(A) More on induction

(1) Consider the following argument using mathematical induction. Is it correct?

Theorem. In any group of finitely many people, any two people have the same eye color.

Proof. We prove this by induction, showing that for any $n \geq 1$, in any group of n people, everyone has the same eye color. The base case n=1 is clearly true. Suppose then that the statement is true for any group of n people. We must show it is true for any group of n+1 people. For convenience, let us label the members of our group of (n+1) people as $A_1, A_2, \ldots, A_{n+1}$. Consider the groups of n people $\{A_1, A_2, \ldots, A_n\}$ and $\{A_2, A_3, \ldots, A_{n+1}\}$. By the induction assumption (that the statement is true for groups of n people), persons A_1, A_2, \ldots, A_n all have the same eye color; and similarly persons $A_2, A_3, \ldots, A_{n+1}$ all have the same eye color. Since there is a person (e.g. A_2) belonging to both groups, in fact everyone in both groups must have the same eye color.

- (2) Let f_n denote the *n*-th Fibonacci number. Show that $f_n \leq 2^n$ for every *n*. You may need to use strong induction.
- (3) Our next goal is to prove the fundamental theorem of arithmetic, given below.

Theorem 4. Every integer a > 1 can be represented as a product of primes $a = p_1^{e_1} p_2^{e_2} \cdots p_s^{e_s}$, where $p_1 < p_2 < \cdots < p_s$, and this representation is unique.

- (i) Start by showing that, if p is a prime number and a, b are integers such that p|ab, then p|a or p|b. [Hint: translate this to a statement about \mathbb{Z}/p , and use that \mathbb{Z}/p is a field.]
- (ii) Now prove the fundamental theorem of arithmetic by using strong induction.
- (B) The primitive root theorem: Our goal here is to understand and prove the following result, which we conjectured last week.

Theorem 5. Let p be a prime number. Then there is a unit u in \mathbb{Z}/p with order p-1.

Recall that everything in \mathbb{Z}/p is a unit except 0.

(1) For a nonzero element $u \in \mathbb{Z}/p$, show that u has order p-1 if and only if $(\mathbb{Z}/p)^{\times} = H_u$, using the notation of part (B). This means that every element of $(\mathbb{Z}/p)^{\times}$ can be written as a power of u. Groups with this property are called *cyclic groups*, and hence Theorem 5 can be rephrased as "The group $(\mathbb{Z}/p)^{\times}$ is cyclic".

For the next problem, we will assume the following lemma¹, which we will prove later:

Lemma. Let A be a finite abelian group. Suppose $a \in A$ has order m and $b \in A$ has order k. Then there is an element of A that has order lcm(m, k).

- (2) Since $(\mathbb{Z}/p)^{\times}$ is a finite group, amongst all the orders of all its elements there must be a maximal one. Call this maximal order m, and choose $u \in (\mathbb{Z}/p)^{\times}$ with order m (note: there may be more than one u with this property!). Show that the order of every $v \in (\mathbb{Z}/p)^{\times}$ must divide m. [Hint: argue by contradiction: suppose $v \in (\mathbb{Z}/p)^{\times}$ has order k, where k does not divide m. Then use the lemma.]
- (3) Show that every element of $(\mathbb{Z}/p)^{\times}$ is a root of the polynomial $x^m 1$, and use this to argue that $m \geq p 1$.
- (4) Finish the proof of Theorem 5.

 $^{^{1}\}mathrm{A}$ lemma is a fact that, although perhaps not very interesting by itself, can be used to prove a deeper result

- (C) Proof of the Lemma: The following chain of exercises proves the lemma. We will take A to be an abelian group, which we will write additively (this means that the operation in our group is "+" instead of "·", and our identity element is written as "0"). Given an integer n > 0 and an element $a \in A$, we will write na for $na = a + a + \cdots + a$ (n times), and when n < 0 the element na will mean $na = (-a) + (-a) + \cdots + (-a)$ (n times). Note that the order of a is the smallest integer n > 0 for which na = 0.
 - (1) We will first assume that m and k are relatively prime, so that lcm(m, k) = mk. In this case, we will show that the element u + v has order mk. We begin by letting t be the order of u + v. Show that km(u + v) = 0, and thus t divides km.
 - (2) Use the fact that t(u+v)=0 to show that the order of tu is equal to the order of tv.
 - (3) On the other hand, show that the order of tu is lcm(m,t)/t and that the order of tv is lcm(k,t)/t.
 - (4) Show that, for any two positive integers r and s, we have $\operatorname{lcm}(r,s) = rs/\gcd(r,s)$. Use this to conclude that, in the context of our problem, we have

$$m \gcd(k, t) = k \gcd(m, t).$$

- (5) Finish the proof of the lemma in the case that gcd(m, k) = 1. [Hint: if gcd(m, k) = 1, and m divides ks, then m must divide s.]
- (6) Proof the general result. [Hint: let $u' = \gcd(m, k)u$. Show that the order of u' is $m/\gcd(m, k)$, and hence u' and v have coprime orders, so we can apply the lemma to the pair (u', v). Part (4) might also be useful.]