UNIVERZITET U BANJOJ LUCI ELEKTROTEHNIČKI FAKULTET

MATEMATIKA 1 Auditorne vježbe V sedmica

Algebarske strukture

1. Na skupu $\mathbb{R}\setminus\{0\}$ definisana je operacija * sa

$$x * y = xyk, \quad x, y \in \mathbb{R} \setminus \{0\},$$

gdje je $k \in \mathbb{R} \setminus \{0\}$ data konstanta. Ispitati algebarsku strukturu $(\mathbb{R} \setminus \{0\}, *)$.

2. U skupu racionalnih brojeva definisana je operacija * sa

$$a * b = ma + nb,$$

gdje su m i n dati cijeli brojevi. Ispitati algebarsku strukturu $(\mathbb{Q}, *)$.

3. Ispitati algebarsku strukturu ($\mathbb{Z} \times \mathbb{Z}, *$) ako je operacija * definisana sa

$$(x,y)*(a,b) = (x,y \cdot b \cdot (a^2 - 3)).$$

Polinomi

- 1. Napisati polinom $P(x) = x^2 + 5x + 6$ po stepenima od (x-1).
- 2. Odrediti količnik i ostatak pri dijeljenju polinoma

(a)
$$P(x) = (x+1)(x-2)(x+3)$$
 sa $Q(x) = x^2 + 2$

(b)
$$P(x) + x^5 - 5x^4 - x + 5$$
 sa $Q(x) = x + 1$.

- 3. Napisati polinom $P(x) = x^5 + x^3 + 2x^2 12x + 8$ po stepenima od x + 1,
- 4. Naći nule polinoma $P(x) = x^5 7x^4 + 17x^3 19x^2 + 16x 12$.
- 5. Faktorisati polinom $P(x) = 3x^4 + 5x^3 + x^2 + 5x 2$.
- 6. Za koje vrijednosti realnih parametara a i b je polinom $P(x) = x^5 2x^4 ax + b$ djeljiv polinomom $Q(x) = x^2 3x + 2$. Za tako određene a i b naći nule polinoma P(x).
- 7. Ostatak pri dijeljenju polinoma P(x) polinomom x-1 je 3, a polinomom x+2 je -3. Naći ostatak pri dijeljenju polinoma P polinomom $Q(x) = x^2 + x 2$.
- 8. Odrediti realan normiran (moničan) polinom najmanjeg stepena tako da broj -1 bude dvostruki, a 2 i 1-i jednostruki korijeni tog polinoma.
- 9. Neka je $P(x)=2x^3-x^2+2x-5$. Izračunati $\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}$, gdje su x_1,x_2,x_3 korijeni polinoma P.
- 10. Odrediti p tako da jedan korijen jednačine $x^3-7x+p=0$ bude jednak dvostrukom korijenu te jednačine.
- 11. Odrediti vrijednost realnog parametra m tako da zbir dva korijena polinoma

$$P(x) = x^4 - 6x^3 + mx^2 - 12x + 16$$

bude jednak zbiru druga dva korijena

12. Dokazati da je za bilo koji prirodan brojni realan broj $\alpha(\sin\alpha\neq0)$ polinom

$$P_n(x) = x^n \sin \alpha - x \sin n\alpha + \sin(n-1)\alpha$$

djeljiv polinomom $Q(x) = x^2 - 2x \cos \alpha + 1$.

13. Ako je $a=\varepsilon+\varepsilon^4,\,b=\varepsilon^2+\varepsilon^3,\,\varepsilon=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5},$ dokazati da je:

$$a + b = -1, ab = -1$$

i na osnovu toga izračunati $\cos\frac{2\pi}{5}.$

14. Naći sve uređene parove $(p,q) \in \mathbb{R} \times \mathbb{R}$ takve da je polinom $x^4 + px^2 + q$ djeljiv sa polinomom $x^2 + px + q$.