• npn CM With Better β Insensitivity:

- $ightharpoonup I_{REF} = (V_{CC} 2V_{BE})/R$
- \triangleright Neglecting I_{B3} :

$$I_{C1} = I_{REF}$$

> If Q_1 and Q_2 are matched:

$$I_0 = I_{C2} = I_{C1} = I_{REF}$$

 \Rightarrow *Simple CM*

> The actual advantage of the circuit lies elsewhere!

 \triangleright First, assume R_B is absent

$$\Rightarrow I_{E3} = I_{B1} + I_{B2} = I_{C1}/\beta_1 + I_{C2}/\beta_2 = 2I_0/\beta_1$$
(assuming $\beta_1 = \beta_2$)

$$\Rightarrow I_{B3} = \frac{I_{E3}}{\beta_3 + 1} = \frac{2I_0}{\beta_1(\beta_3 + 1)}$$

$$I_{REF} = I_{C1} + I_{B3} = I_0 \left[1 + \frac{2}{\beta_1 (\beta_3 + 1)} \right]$$

$$\Rightarrow I_0 = \frac{I_{REF}}{1 + \frac{2}{\beta_1(\beta_3 + 1)}}$$

- Now, if $\beta_1 = \beta_3 = \beta$, and $\beta >> 1$: $I_0 \approx I_{REF}(1 - 2/\beta^2)$
- > Compare with that of simple CM:

$$I_0 \approx I_{REF}(1 - 2/\beta)$$

- > The advantage is obvious!
- > Further Insights:
 - $Arr I_{E3} (= I_{B1} + I_{B2}) \sim few \ 10s \ of \ \mu A$
 - * At such a low current, β drops significantly from its nominal value
 - Thus, full advantage of the circuit can't be exploited

\triangleright Here comes the role of R_B :

- It drains a constant current (= V_{BE}/R_B), which gets added to ($I_{B1} + I_{B2}$), and boosts I_{E3} (and, thus, I_{C3})
- Thus, β_3 gets pulled up to its nominal value
- This resistor has a special name: Keep Alive, since it keeps Q_3 alive!
- > However, it creates some issues as well:
 - Additional power drain due to the additional current flowing through R_B
 - If I_{E3} 7, so would I_{B3} $\Rightarrow I_{C1} \text{ may depart from } I_{REF}$
 - Design optimization needed

- > *Now, for R*₀:
 - Looking at C_2
 - E_2 grounded
 - No connection between C_2 and B_2 (no feedback)
 - **Therefore, by inspection:**

$$R_0 = r_{02} = V_{A2}/I_0$$

> Also, by inspection:

$$V_{0,min} = V_{CE2}(SS) = 0.2 \text{ V}$$

There is no MOS counterpart for this circuit for obvious reasons!