

Важно обратить внимание

- Если есть «биохимический диагноз», то в первую очередь провести тщательный анализ узкого круга соответствующих генов
- 2. Если болеют только мальчики, проверить X-сцепленное наследование
- 3. Если близкородственный брак, искать преимущественно варианты в гомозиготном состоянии

Случай I — почти идеальный

Пациентка Г., 22 г.

Неалкогольный гепатоз. Направлена на «печёночную» панель.

Предположительный диагноз - болезнь Вильсона.

Случай I — ответ

Пациентка Г., 22 г.

- 2. **ATP7B**:NM_000053:exon4:c.GI555A:**p.V5I9M** гетеро, не описана (rsI92957846, ExAC 0,0008, предсказательная патогенность высокая)

→ Непокрытые участки?

Пациентка К., 12 л.

Направлена на «митохондриальную» панель.

Корково-подкорковый энцефалит неуточненной этиологии, тяжелая форма. Симптоматическая эпилепсия, парциальные припадки с вторичной генерализацией. Левосторонний гемипарез. Яркая манифестация в Плет.

Случай 2 - ответ

<u>Пациентка К., 12 л.</u>

POLG:NM_002693:exon21:c.T3294A:**p.N1098K** — гетеро, не описана. **Но** описан другой вариант c.T3294G (p.N>K) с доминантным наследованием.

- У детей с такой клин. картиной AP-наследование в гене POLG.
 Спорадический случай у родителей вариант не выявлен.
- ∮ Вариант AARS2:с.2607delG:р.К869fs ошибка секвенирования.

Пациент П., 9 мес.

Направлен на «метаболическую» панель.

Д-з: дегенеративное заболевание нервной системы, тетрапарез. Симптоматическая эпилепсия. ЗПМР. Манифестация в 4.5 мес.

- 3.1 пробанд
- 3.2 его отец

Случай 3 - ответ

Пациент П., 9 мес.

KCNQ2:NM_172107:exon3:c.A400T:**p.1134F** — гетеро, не описана. Однако частота по gnomAD 0, патогенная по предикторам.

△-3: **EIEE7**

∮ Пример АД-наследования. У здорового (?) отца выявлен мозаицизм по мутации в гене КСNQ2 (12%).

Пациент С., 8 мес., от близкородственного брака Направлен на «метаболическую» панель с д-зом синдром Цельвегера. По результатам б/х анализа подтверждена пероксисомная патология.

Случай 4 - ответ

Пациент С., 8 мес.,

PEX I: chr7 g.92 | 48403T>C (**IVS2-II T>C**) -

Гомозиготный вариант в интроне, не описан. Однако частота по gnomAD 0, патогенная по Human Splicing Finder —

Alteration of the WT acceptor site, most probably affecting splicing.

✓ Пример АР-наследования в близкородственном браке. Родители− гетерозиготные носители.

Пациентка З., 1.5 г.,

Направлена для расширенного анализа митохондриальных генов.

Д-з: Дегенеративное заболевание ЦНС. Подострая некротическая энцефалопатия. Спастический тетрапарез, гиперкинетический синдром.

На MPT симметричные изменения в ядрах бледного шара, не выявлено б/х отклонений (органические к-ты мочи, аминокислоты и ацилкарнитины в крови).

Синдром Ли?

Случай 5- ответ

Пациентка З., 1.5 г.,

GCDH:NM_000159:exon12:c.G1261A:p.A421T/

GCDH:NM_000159:exon11:c.C1204T:p.R402W

Оба варианта описаны в HGMD. Глутаровая ацидурия.

∮ Пример пациента из редкой группы низких экскреторов. Б/х
данные не согласуются с молекулярными, однако по клинике
подходит.

Случай 5- ответ

HUMAN MUTATION 12:141-144 (1998)

MUTATION UPDATE

Glutaryl-CoA Dehydrogenase Mutations in Glutaric Acidemia (Type I): Review and Report of Thirty Novel Mutations

Stephen I. Goodman, ^{1*} Donna E. Stein, ¹ Sudha Schlesinger, ¹ Ernst Christensen, ² Marianne Schwartz, ² Cheryl R. Greenberg, ³ and Orly N. Elpeleg ⁴

¹Department of Pediatrics, University of Colorado Health Sciences Center, Denver, Colorado 80262; Fax: (303)-315-8080

²Department of Clinical Genetics, Rigshospitalet, 2100 Copenhagen, Denmark

³Departments of Human Genetics and Pediatrics and Child Health, University of Manitoba, Winnipeg R3E 0W2, Canada

⁴Metabolic Disease Unit, Shaare-Zedek Medical Center, Jerusalem 91031, Israel

Communicated by R.G.H. Cotton

Glutaric acidemia type I (GA1) is caused by mutations in the dehydrogenase (GCD). Sixty-three pathogenic mutations sented, 30 of them for the first time, together with data or ship to the clinical and biochemical phenotype. In brief, ma common. There is little if any relationship between genoty tions, even when heterozygous, seem especially common elevated urine glutaric acid. Hum Mutat 12:141–144, 199

The presence and/or severity of organic aciduria does, however, correlate with specific mutations. The association of the R227P allele with no, or very low, free glutaric acid excretion has been documented (Christensen et al., 1997), and there may be a similar association with A293T, G178R, and R88C. The

Пример пациента из редкой группы низких экскреторов (б/х данные не согласуются с молекулярными)

Пациентка К.

По результатам б/х анализа повышена оротовая кислота — предположена **орнитин-транскарбамилазная недостаточность** (ген **ОТС**), что согласуется с клинической картиной.

Случай 6- ответ

Пациентка К.

OTC deficiency

В гене *ОТС* нет явных отклонений, однако нужно обратить внимание, что нет полиморфизмов в гетерозиготном состоянии — можно заподозрить крупную делецию в гене, причем они описаны в литературе.

Делеция всего гена подтверждена методом MLPA-анализа.

сцепленного

заболевания у девочки

Heterozygous Females

Rowe et al. (1986) reviewed 13 symptomatic female heterozygotes. They presented as early as the first week of life or as late as the sixth year. Symptoms before diagnosis were nonspecific: episodic extreme irritability (100%), episodic vomiting and lethargy (100%), protein avoidance (92%), ataxia (77%), stage II coma (46%), delayed growth (38%), developmental delay (38%), and seizures (23%). Onset at the time of weaning from breast milk was frequent. Including the proband, 42% of females in the 13 families had symptoms. •

Пациент Г.

По результатам анализа ТМС в пятнах крови выявлено резкое повышение лейцина, изолейцина, валина — предположен **лейциноз** (болезны кленового сиропа, гены генах **ВСКДНА, ВСКДНВ, ДВТ**), что согласуется с клинической картиной.

Случай 7- ответ

Пациент Г.

Лейциноз. Делеция 7-9 экзонов в гене **ВСКDНА** в гомозиготном состоянии.

В генах *ВСКDНА*, *ВСКDНВ*, *DВТ* нет явных отклонений, однако нужно обратить внимание, что в гене *ВСКDНА* не покрыты 7-9 экзоны, а в других образцах хорошее покрытие этих участков — можно предположить крупную делецию в гене, причем они описаны в литературе.

Пример везения исследователя

Делеция 7-9 экзонов в гомозиготе подтверждена методом ПЦР с фланкирующими праймерами.

Путь к успешной диагностике

- → Полное представление о клинической картине пациента
- ★Качественная биохимическая и генетическая диагностика
- Тщательный анализ литературы
- У NGS-анализ может и не выявить причину заболевания

СПАСИБО ЗА ВНИМАНИЕ

Что делать в других случаях?

Найдены «вероятно патогенные» варианты, но это не согласуется с б/х данными

- Повторить б/х анализ на <u>свежем биоматериале</u> (исключить недостоверные данные первого измерения, перепутанный б/м)
- Изучить литературу встречаются «низкие экскреторы»
- Выявленные варианты случайные находки