INFO4 PS: Examen 11/01/2024.

Jonatha ANSELMI et Louis-Sébastien REBUFFI

Exercice 1. Lire chaque affirmation et répondre "vrai" ou "faux".

- 1. Une variable aléatoire avec la loi de Bernoulli ne prend que deux valeurs.
- 2. La somme de deux variables aléatoires indépendantes suivant la loi de Bernoulli est une variable aléatoire ayant une loi binomiale.
- 3. $\{\emptyset, \{1, 2\}\}$ est une tribu de $\{1, 2\}$
- 4. Si X et Y sont des variables aléatoires indépendantes et $a \in \mathbb{R}_+$, alors E(aX + Y) = aE(X) + E(Y)
- 5. Si X et Y sont des variables aléatoires indépendantes et $a \in \mathbb{R}_+$, alors Var(aX + Y) = aVar(X) + Var(Y)

Exercice 2. Soit U une variable aléatoire suivant la loi uniforme sur [0,1]. Trouver la loi de la variable aléatoire $\ln(U)$.

Exercice 3. Soit X une variable aléatoire avec densité $p(x) = 2/x^3$ si x > 1 et p(x) = 0 sinon.

- 1. Montrer que p(x) est effectivement une densité de probabilité.
- 2. Calculer E[X] et Var(X).

Exercice 4. Dans un plan cartésien, on considère la zone A délimitée par un cercle de rayon unitaire centré sur le point (0,0).

- 1. Proposer une méthode permettant de générer des points (X, Y) uniformément sur A. Le pseudo-code sera donné en R.
- 2. Indiquer le coût en nombre d'appels à la fonction runif.
- 3. Comment utiliser la méthode du rejet pour obtenir une approximation de π ?

Exercice 5. Soient X et Y deux variables aléatoires indépendantes avec une loi exponentielle de paramètre $\lambda > 0$, donc $f_X(t) = f_Y(t) = \lambda e^{-\lambda t}$ for all $t \geq 0$. Montrer que $\min(X, Y)$ suit une loi exponentielle de paramètre 2λ et que $P(\min(X, Y) = X) = 0.5$.