Exercice 7. Soit (U_n) est une suite de v.a. indépendantes et de même loi, de carré intégrable, telles que $E(U_1) = 0$, $E(U_1^2) = \sigma^2$.

1) Montrer que $(S_n^2)_n$ est une sMG.

2) Montrer que $(S_n^2 - n\sigma^2)$ est une martingale, où $S_0 = 0$ et $S_n = \sum_{i=1}^n U_n$

3) Donner la décomposition de Doob de la sMG $(S_n^2)_n$.

Exercice 8. 1) Soit M une v.a. de carré intégrable et (\mathcal{F}_n) une suite croissante de sous-tribus. Montrer que la suite de v.a. $M_n = E(M|\mathcal{F}_n)$ est une martingale convergente p.s. et dans $L^2\Omega$ vers une limite qu'on déterminera.

Exercice 9. (La ruine du joueur). Soit (Y_n) une suite iid de v.a. valant +1 ou -1 avec probabilités respectives p et q = 1 - p. Soit $S_n = \sum_{i=1}^n Y_i$ pour $n \ge 1$, $S_0 = 0$.

Un joueur possède une fortune initiale a>0 et on considère que Y_n est son gain ou perte à l'instant n. Soit b>a la somme que le joueur souhaite gagner. Notons enfin r la probabilité que le joueur se ruine avant d'obtenir la somme b et $T_{-a,b}$ l'instant (aléatoire) où le joueur se ruine ou obtienne la somme désirée b.

Partie A.

- 1. Modéliser la fortune du joueur à chanque instant n.
- 2. On pose $W_n = S_n (2p-1)n$. Montrer que (W_n) est une martingale.
- 3. Montrer que $W_{T_{-a,b}\wedge n}$ est une martingale et en déduire que $\mathbb{E}(S_{T_{-a,b}\wedge n})=(2p-1)\mathbb{E}(T_{-a,b}\wedge n)$.
- 4. Noter que $r = \mathbb{P}(S_{T_{-a,b}} = -a)$ puis en déduire que $r = \frac{b \mathbb{E}(S_{T_{-a,b}})}{a+b}$.

PartieB. On suppose que $p = \frac{1}{2}$.

- 1. Montrer que $M_n = S_n^2 n$ est une martingale.
- 2. En déduire que $\mathbb{E}(S^2_{T_{-a,b}\wedge n}) = \mathbb{E}(T_{-a,b}\wedge n)$
- 3. En déduire par passage à la limite que $T_{-a,b}$ est p.s. fini et intégrable et que

$$\mathbb{E}(T_{-a,b}) = a^2r + b^2(1-r).$$

- 4. En utilisant A-3) montrer que $\mathbb{E}(S_{T_{-a,b}})=0$ puis que $r=\frac{a}{a+b}$
- 5. En déduire que $\mathbb{E}(T_{-a,b}) = ab$.
- 6. Que se passe t-il si $b \to +\infty$?

Partie C. On suppose que $p \neq \frac{1}{2}$.

1. Montrer en utilisant A-3) que $T_{-a,b}$ est p.s. fini et intégrable et que

$$\mathbb{E}(T_{-a,b}) = \frac{-ar + b(1-r)}{2p-1}.$$

- 2. Montrer que $Z_n = (\frac{q}{p})^{S_n}$ définit une martingale.
- 3. En déduire que $\mathbb{E}(Z_{T_{-a,b}})=1$
- 4. Montrer que

$$r = \frac{1 - (\frac{q}{p})^b}{(\frac{p}{q})^a - (\frac{q}{p})^b}.$$

5. Que se passe t-il quand $b \to +\infty$?