Continuity

Remark – Naive Characterisation of Continuity. Let X, Y be topological spaces, $f: X \to Y$ a map of sets. Then the following are equivalent:

- 1. *f* continuous.
- 2. For all $x \in X$ and $\alpha : \mathbb{N} \to X$, α converges to $x \Rightarrow f \circ \alpha$ converges to f(x).

Definition – Image Filter, Preimage Filter

Let $f: X \to Y$ be a map of sets, $F \in Fil(X)$, $G \in Fil(Y)$.

$$fF := \{ V \subseteq Y \mid \exists U \in F, fU \subseteq V \}$$
$$f^{-1}G := \{ f^{-1}U \subseteq X \mid U \in G \}$$

Theorem - Adjunction of Image and Preimage Filters

- Let $f: X \to Y$ be a map of sets. Then

 1. For all $F_1, F_2 \in \operatorname{Fil}(X), F_1 \subseteq F_2 \Rightarrow fF_1 \subseteq fF_2$.

 2. For all $G_1, G_2 \in \operatorname{Fil}(Y), G_1 \subseteq G_2 \Rightarrow f^{-1}G_1 \subseteq f^{-1}G_2$.

 3. For $F \in \operatorname{Fil}(X)$ and $G \in \operatorname{Fil}(Y), f^{-1}G \subseteq F \Leftrightarrow G \subseteq fF$.

Proof. (3)(\Rightarrow) Let $f^{-1}G \subseteq F$. Let $U \in G$. Then $ff^{-1}U \subseteq U$, where $f^{-1}U \in f^{-1}G \subseteq F$.

 $(3)(\Leftarrow)$ Let $G\subseteq fF$. Let $U\in G$. Then there exists $V\in F$, $fV\subseteq U$. So $V\subseteq f^{-1}fV\subseteq f^{-1}U$ implies $f^{-1}U \in F$.

Theorem – Characterisation of Continuity

Let X,Y be topological spaces, $f:X\to Y$ a map of sets. Then the following are equivalent:

1. f continuous.

2. For all $x\in X$ and $F\in Fil(X)$, F converges to $x\Rightarrow fF$ converges to f(x).

3. For all $x\in X$, fN(x) converges to f(x).

Proof. $(1 \Rightarrow 2)$ Let $x \in X$, $F \in Fil(x)$, F converges to x. Let $V \in N(f(x))$. Then $f^{-1}V \in N(x) \subseteq F$ by continuity of f, and $ff^{-1}V \subseteq V$. So $N(f(x)) \subseteq fF$.

 $(2 \Rightarrow 3)$ Clear.

 $(2 \Rightarrow 1)$ Let $U \in Open(Y)$. Then for all $x \in f^{-1}U$, fN(x) converges to f(x) implies $U \in fN(x)$. So there exists $U_x \in N(x)$, $fU_x \subseteq U$. It follows that $f^{-1}U = \bigcup_{x \in f^{-1}U} U_x$, which is open.