Simulation de covariables dépendantes du temps via une distribution de Weibull

AARAB Ayoub BURGAT PAUL LAABSI Zakaria

Faculté des Sciences Université de Montpellier

Présentation du projet

Modèle de Cox standard

Modèle de Cox Hypothèses du modèle Génération d'une durée de survie invariante au temps

Extension du modèle de Cox

Présentation du projet

Modèle de Cox standard

Modèle de Cox Hypothèses du modèle Génération d'une durée de survie invariante au temps

Extension du modèle de Cox

L'Analyse de la survie

FIGURE – Courbes de survie : $\forall t \geq 0$, $S(t) = \mathbb{P}(X > t)$

Présentation du projet

Modèle de Cox standard

Modèle de Cox Hypothèses du modèle Génération d'une durée de survie invariante au temps

Extension du modèle de Cox

Modèle de Cox

Le modèle de Cox donne l'expression suivante pour la fonction de risque instantané de décès.

$$h(t \mid \mathbf{Z}) = h_0(t) \exp\left(\sum_{k=1}^n \beta_k Z_k\right) = h_0(t) \exp\left(\mathbf{Z}'\beta\right)$$
(1)

avec:

$$\mathbf{Z} = (Z_1, ..., Z_p)'$$
 le vecteur des covariables

$$\beta = (\beta_1, ..., \beta_p)'$$
 le vecteur des constantes

 β_k est le paramètre pour la k-ème covariable Z_k . La fonction h caractérise la loi de la durée de survie :

$$S(t) = \exp\left(-\int_0^t h(u) \, du\right), \ t \geqslant 0$$

Hypothèses du modèle

Hypothèse des risques proportionnels : Le rapport des risques relatifs RR entre deux individus i et j est indépendant du temps t.

$$\frac{h\left(t\mid\mathbf{Z}^{(i)}\right)}{h\left(t\mid\mathbf{Z}^{(j)}\right)} = \frac{h_0(t)\exp\left(\mathbf{Z}^{(i)'}\beta\right)}{h_0(t)\exp\left(\mathbf{Z}^{(j)'}\beta\right)} = \exp\left(\left(\mathbf{Z}^{(i)} - \mathbf{Z}^{(j)}\right)'\beta\right)$$

Hypothèse de log-linéarité : Le modèle de Cox standard est un modèle log-linéaire :

$$\log(h(t \mid \mathbf{Z})) = \log(h_0(t)) + \mathbf{Z}'\beta$$
 est une fonction linéaire des Z_i

Distribution de Weibull

Densité de probabilité de la loi de Weibull, pour x > 0:

$$f(x; k, \lambda) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} \exp\left(-\left(\frac{x}{\lambda}\right)\right)^k$$

- ightharpoonup k > 0: paramètre de forme
- $ightharpoonup \lambda > 0$: paramètre d'échelle de la distribution

Fonction de répartition:

$$F(x; k, \lambda) = 1 - \exp\left(-\left(\frac{x}{\lambda}\right)^k\right)$$

FIGURE – Densité de probabilité et fonction de répartition

Génération de données vérifiant les hypothèses du modèle de Cox :

	Transformée inverse	Modèle log-linéaire	
Durée de survie <i>T</i>	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$ T = \exp(\mu + \gamma \mathbf{Z} + \sigma W) $ où $\mu, \gamma, \sigma \in \mathbf{R}$ et $W \sim F_W$ suit la loi des extrêmes.	
Distribution de probabilité	Weibull $(\lambda(\mathbf{Z}), \alpha)$ avec $\lambda(\mathbf{Z}) = \lambda \exp(\mathbf{Z}'\beta)$	Weibull $\left(\exp\left(\mu + \gamma Z\right), \frac{1}{\sigma}\right)$	

TABLE – Deux méthodes de génération de durée de survie avec indépendance du temps

Validation des hypothèses sur un jeu de données simulées

Soient $Z \sim Unif(15, 80), \ \mu = 10, \ \gamma = 1 \ \text{et} \ \sigma = 0.5$.

Hypothèse nulle : la covariable Z est indépendante du temps.

	chisq	df	p-value
Z	1.07	1	0.3
GLOBAL	1.07	1	0.3

TABLE – Test d'hypothèse de la dépendance au temps d'une covariable

FIGURE – Test des résidus de Schoenfeld Droite de régression $r_{ii} = at + \epsilon_i$

Présentation du projet

Modèle de Cox standard

Modèle de Cox Hypothèses du modèle

Génération d'une durée de survie invariante au temps

Extension du modèle de Cox

Nouvelle approche lorsque les covariables varient avec le temps

(inspirée de Julius S.Ngwa et al, 2019)

Echantillon d'individus de taille n avec covariables indépendantes et dépendantes du temps :

$$\left\{ \left(T_i, \ \mathbf{Y}_i(t), \ \mathbf{Z}_i, \ \Delta_i
ight) \mid \ 0 \leq t \leq T_i \quad \forall \ i=1,2,..,n
ight\}$$

- $ightharpoonup T_i$: le temps d'évènement pour l'individu i
- \triangleright Δ_i : l'indicatrice d'évènement de l'individu i
- $ightharpoonup Z_i$: le vecteur des covariables indépendantes du temps de l'individu i
- $ightharpoonup Y_i(t)$: le vecteur des covariables dépendantes du temps de l'individu i avec m_i mesures au cours du temps

Nouvelle écriture avec covariables dépendantes du temps

Nouvelle fonction de risque instantané de décès :

$$h(t \mid \mathbf{Z}_i, \mathbf{Y}_i(t)) = h_0(t) \exp(\mathbf{Z}_i'\beta + \gamma \mathbf{1} \cdot \mathbf{Y}_i(t))$$
$$= h_0(t) \exp\left(\mathbf{Z}_i'\beta + \gamma \sum_{j=1}^{m_i} Y_{ij}(t)\right)$$

- $ightharpoonup h_0(t)$: la fonction de risque de base
- \triangleright β : le vecteur des coefficients pour des covariables invariantes dans le temps.
- $ho \in \mathbf{R}$: Le paramètre (scalaire) qui relie les covariables dépendantes du temps au risque.

Modèle linéaire mixte

TABLE – Comparaison des deux modèles linéaires

- ▶ Y_{ij} est la réponse de l'individu i au temps d'évènement j avec $i \in \{1, ..., n\}$ et $j \in \{1, ..., m_i\}$
- $ightharpoonup X_{ij}$ est la variable variant dans le temps de l'individu i.
- \triangleright β_0 et β_1 les coefficients identiques pour tous les individus (effets fixes)
- \triangleright $\beta_{i,0}$ et $\beta_{i,1}$ les coefficients propres à l'individu i
- ▶ $b_i = (\beta_i \beta)$ les effets aléatoires : les déviations par rapport aux coefficients β du groupe d'individus

FIGURE – Trajectoires longitudinales pour deux individus. D'après Belle & al.

FIGURE – R Mesures longitudinales générées via une simulation pour les 8 premiers individus

Expression de la durée de survie

Génération de la durée de survie *T* via la transformée inverse et la fonction de Lambert *W* :

$$T = \frac{1}{\gamma \cdot \left(\beta_{i,1} \times \frac{1}{\alpha}\right)} \times W\left(\gamma \cdot \left(\beta_{i,1} \times \frac{1}{\alpha}\right) \times \left(\frac{-\log(Q)}{\lambda \exp(Z'\beta + \gamma(\beta_{i,0}))}\right)^{\frac{1}{\alpha}}\right)$$

Fonction W de Lambert : fonction réciproque de $f(w) = we^w$ telle que

$$z = f(w) = we^w \iff w = W(z) \text{ avec } z, w \in \mathbf{C}$$

Extrait commenté code R

- 1. RMVN=rmvnorm(N, mean=beta, sigma=S,
 method = "chol")
- 2. RMVNb=rmvnorm(N, mean= matrix(0,1,2),
 sigma=S, method = "chol")
- 3. Z=matrix(0,M,length(dim(S)))
 Z[,1] <- 1
 Z[,2] <- c(time)
 Y <- matrix(0,N,M)
 R <- diag(rnorm(M,1.000,0.00001), M)
 V=Z%*%S%*%t(Z) + R</pre>

1. Génération des effets aléatoires mixtes β_i :

$$\beta_{i} = \begin{pmatrix} \beta_{i,0} \\ \beta_{i,1} \end{pmatrix} \sim N(\beta, \Sigma)$$

2. Et effets aléatoires b_i

$$b_{i} = \begin{pmatrix} \beta_{i,1} - \beta_{1} \\ \beta_{i,2} - \beta_{2} \end{pmatrix} \sim N(0_{p}, \Sigma)$$

3. Création des $Y_{ij}(t_{ij})$ et de la variance V_i avec :

$$V_i = Z_i \Sigma Z_i' + R_i$$

Estimation des coefficients

	Paramètres fixes	Matrice de variance-covariance des effets aléatoires
Observés	$\beta = \left(\begin{array}{c} 16.7010\\ 0.6601 \end{array}\right)$	$\Sigma = \left(egin{array}{ccc} 5.4149 & -0.3214 \ -0.3214 & 0.0513 \end{array} ight)$
Estimés	$\widehat{\beta} = \left(\begin{array}{c} 15.6085\\ 0.6759 \end{array}\right)$	$\widehat{\Sigma} = \left(egin{array}{ccc} 4.6235 & -0.2911 \ -0.2911 & 0.0584 \end{array} ight)$

TABLE – Paramètres statistiques observés et leurs estimations via les packages R nlme et lme4

Bilan

FIGURE – Organigramme du projet

Merci de votre attention!

