Уилкинсон Дж.X., Райнш С. Справочник алгоритмов на языке Алгол. Линейная алгебра

М.: Машиностроение, 1976. — 390 с.

В книге приведены алгоритмы решения всех основных задач линейной алгебры, реализованные в виде процедур на языке Алгол-

60. Для специалистов по теории управления представляют интерес алгоритмы решения проблемы собственных значений для произвольных матриц

page 37, (53)

$$A53_o := \begin{pmatrix} 360360 & 180180 & 120120 & 90090 & 72072 & 60060 & 51480 \\ 180180 & 120120 & 90090 & 72072 & 60060 & 51480 & 45045 \\ 120120 & 90090 & 72072 & 60060 & 51480 & 45045 & 40040 \\ 90090 & 72072 & 60060 & 51480 & 45045 & 40040 & 36036 \\ 72072 & 60060 & 51480 & 45045 & 40040 & 36036 & 32760 \\ 60060 & 51480 & 45045 & 40040 & 36036 & 32760 & 30030 \\ 51480 & 45045 & 40040 & 36036 & 32760 & 30030 & 27720 \end{pmatrix}$$
 Gilbert7 := A53_o

$$det_A53_o := 381614277072600 \qquad det_A53_o2 := 8.47353913 \cdot 10^{-2} \cdot 2^{52}$$

$$det_A53_o2 - det_A53_o = -3.888 \times 10^{5}$$

$$det_A53 := |A53_o| \qquad \delta_A53 := \frac{|det_A53 - det_A53_o|}{det_A53_o} \qquad \delta_A53 = 5.289 \times 10^{-10}$$

$$invA53_t := \left(A53_o^{-1}\right)$$

$$invA53_t = \begin{pmatrix} 1.36 \times 10^{-4} & -3.263 \times 10^{-3} & 0.024 & -0.082 & 0.135 & -0.108 & 0.033 \\ -3.263 \times 10^{-3} & 0.104 & -0.881 & 3.133 & -5.385 & 4.431 & -1.4 \\ 0.024 & -0.881 & 7.93 & -29.371 & 51.923 & -43.615 & 14 \\ -0.082 & 3.133 & -29.371 & 111.888 & -201.923 & 172.308 & -56 \\ 0.135 & -5.385 & 51.923 & -201.923 & 370.192 & -319.846 & 105 \\ -0.108 & 4.431 & -43.615 & 172.308 & -319.846 & 279.138 & -92.4 \\ 0.033 & -1.4 & 14 & -56 & 105 & -92.4 & 30.8 \end{pmatrix}$$

$$\text{matVariation(invA53_t, invA53_o)} = \begin{cases} 2.811 \times 10^{-5} & 4.662 \times 10^{-5} & 5.983 \times 10^{-5} & 6.975 \times 10^{-5} & 7.749 \times 10^{-5} & 8.093 \times 10^{-5} & 6.613 \times 10^{-5} & 7.227 \times 10^{-5} & 7.707 \times 10^{-5} & 8.093 \times 10^{-5} & 7.417 \times 10^{-5} & 7.689 \times 10^{-5} & 7.681 \times 10^{-5} & 7.681$$

 $minmax(matVariation(invA53_t, invA53_o)) = \left(2.811 \times 10^{-5} \quad 8.879 \times 10^{-5}\right)$

$$\begin{aligned} \text{mkVec_e(size,index)} \coloneqq & & R_{size-1} \leftarrow 0 \\ & & R_{index} \leftarrow 1 \\ & & \text{return } R \end{aligned}$$

раде56???LU-разложение LU decomposition https://en.wikipedia.org/wiki/LU decomposition

Substituting these values into the LU decomposition above yields

$$\begin{bmatrix} 4 & 3 \\ 6 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1.5 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 0 & -1.5 \end{bmatrix}.$$

page 61 Choleckij

$$sdDiag_A61 := \begin{bmatrix} size \leftarrow 40 - 2 \\ R \leftarrow mkVecByDig(1, size) \end{bmatrix} sdDiag_A61^T = \begin{bmatrix} & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$
 return R

$$fForGenDiag(i) := \begin{pmatrix} i & i+1 \\ i+1 & i \end{pmatrix}$$

fillMatr(Vec, Func

$$fForSdDiag(i) := \begin{pmatrix} i & i+2 \\ i+2 & i \end{pmatrix} \qquad fForTrdDiag(i) := \begin{pmatrix} i & i+3 \\ i+3 & i \end{pmatrix}$$

$$\begin{aligned} \text{mk3DiagMatr}(\text{genDiag}, \text{ftDiag}, \text{sdDiag}) &:= & & n \leftarrow \text{rows}(\text{genDiag}) - 1 \\ & & R_{n,n} \leftarrow 0 \\ & & R \leftarrow \text{fillMatr}(\text{genDiag}, \text{fForGenDiag}, R) \\ & & R \leftarrow \text{fillMatr}(\text{ftDiag}, \text{fForFtDiag}, R) \\ & & R \leftarrow \text{fillMatr}(\text{sdDiag}, \text{fForSdDiag}, R) \\ & & \text{return} & R \end{aligned}$$

$$A_p61_o := mk3DiagMatr(genGdiag_A61, ftDiag_A61, sdDiag_A61)$$

$$det_A_p61_o := 4.10400390\cdot10^{-1}\cdot2^{12} \qquad det_A_p61_o = 1.681\times10^{3}$$

$$det_A_p61_t := |A_p61_o| \qquad det_A_p61_t = 1.681\times10^{3}$$

$$d_A_p61 := \frac{|det_A_p61_t - det_A_p61_o|}{det_A_p61_o} \qquad d_A_p61 = 1.524\times10^{-9}$$

$$b_p62 := mkVec_e(40,0)$$

$$A_p61 := \frac{0}{0}$$

$$A_p61_o = \frac{0}{1}$$

$$A_p61_$$

$x_p62_t := lsc$	olve(A p61 o,b	p62)		$\left(1.3170731707 \cdot 10^{1}\right)$		1.0
	`		,		2.5365853659·10		1.0
		0			3.6609756098·10 ¹		9.9
	0	13.171					
	1	25.366			4.6926829268·10 ¹		9.6
	3	36.61 46.927			5.6341463415·10 ¹		9.2
	4	56.341			6.4878048780·10 ¹		8.8
	5	64.878					
	6	72.561			7.2560975610·10 ¹		8.4
x_p62_t =	7	79.415			7.9414634146·10 ¹		7.9
	8	85.463			8.5463414634·10 ¹		7.4
	9	90.732			9.0731707317·10		6.9
	10	95.244		x_p62_part1_o :=		x_p62_part2_o :=	0.9
	11	99.024			9.5243902439·10		6.4
	12 13	102.098			9.9024390244·10 ¹		5.85.
	14	104.488 106.22			1.0209756098·10 ²		5.2
	15				_		3.2
	13				1.0448780488·10 ²		4.6
					1.0621951220·10 ²		4.0
					$1.0731707317 \cdot 10^2$		3.3
					1.07804878049·10 ²		2.7
					1.0770731707·10 ²		2.0
					1.0704878049·10 ²		1.3
					$\left(1.0585365854\cdot10^{2}\right)$		6.8

$$x_p62_o := stack(x_p62_part1_o, x_p62_part2_o)$$

minmax(matVariation(x_p62_o,x_p62_t)) = $(2.158 \times 10^{-13} \ 4.647 \times 10^{-11})$

$$\begin{aligned} \text{genGdiag_A_p88} \coloneqq & \begin{vmatrix} R \leftarrow \text{mkVecByDig}(6, \text{size_p88}) \\ R_0 \leftarrow 5 \\ R_{\text{size_p88-1}} \leftarrow 5 \\ \text{return } R \end{aligned}$$

 $ftDiag_A_p88 := mkVecByDig(-4, size_p88 - 1)$

 $sdDiag_A_p88 := mkVecByDig(1,size_p88 - 2)$

 $A_p88_o := mk3DiagMatr(genGdiag_A_p88, ftDiag_A_p88, sdDiag_A_p88)$

$$A_p88_o = \begin{pmatrix} 5 & -4 & 1 & 0 & 0 & 0 & 0 \\ -4 & 6 & -4 & 1 & 0 & 0 & 0 \\ 1 & -4 & 6 & -4 & 1 & 0 & 0 \\ 0 & 1 & -4 & 6 & -4 & 1 & 0 \\ 0 & 0 & 1 & -4 & 6 & -4 & 1 \\ 0 & 0 & 0 & 1 & -4 & 6 & -4 \\ 0 & 0 & 0 & 0 & 1 & -4 & 5 \end{pmatrix}$$

$$b_p88 := mkVec_e(size_p88, 4 - 1) \qquad b_p88 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$x_p88_t := lsolve(A_p88_o, b_p88)$$

$$x_p88_t := lsolve(A_p88_o, b_p88)$$

$$x_p88_t := \begin{pmatrix} 4 \\ 7.5 \\ 10 \\ 11 \\ 10 \\ 7.5 \\ 4 \end{pmatrix}$$

$$x_p88_o := \begin{pmatrix} 4.0 \\ 7.5 \\ 10.0 \\ 11.0 \\ 10.0 \\ 7.5 \\ 4.0 \end{pmatrix}$$

 $minmax(matVariation(x_p88_t, x_p88_o)) = \begin{pmatrix} 0 & 1.998 \times 10^{-15} \end{pmatrix}$

page104

$$b_{p105} := mkVec_{e}(size_{p88,5} - 1) \cdot 360360$$

$$b_{p105} = 0$$

$$3.604 \times 0$$

 $x_p105_t := lsolve(Gilbert7, b_p105)$

minmax(matVariation(x_p105_t, x_p105_o)) = $\left(6.501 \times 10^{-7} \quad 7.014 \times 10^{-7}\right)$

complMul p105 :=
$$(1 + i \ 1 - i \ 1 + 2i \ 1 - 2i \ 1 + 3i \ 1 - 3i \ 1 + 4i)^T$$

 $det_p105_cmplx_o - det_p105_cmplx_t = -4.719 \times 10^7 - 1.125i \times 10^9$

$$3.816 \times 10^{16} + 1.526i \times 10^{17}$$

$$lsolve(G7complex_p105, mkVec_e(size_p88, 0)) = \begin{pmatrix} 6.799 \times 10^{-5} - 6.799i \times 10^{-5} \\ -1.632 \times 10^{-3} - 1.632i \times 10^{-3} \\ 4.895 \times 10^{-3} - 9.79i \times 10^{-3} \\ -0.016 - 0.033i \\ 0.013 - 0.04i \\ -0.011 - 0.032i \\ 1.961 \times 10^{-3} - 7.843i \times 10^{-3} \end{pmatrix}$$
????????

sdDiag B p188 := mkVecByDig(1, size p188 - 2)

 $B_p188_o := mk4DiagMatr(genGdiag_B_p188, ftDiag_B_p188, sdDiag_B_p188, trdDiag_B_p188)$

		0	1	2	3	4	5	6	7	8	9
	0	5	2	1	1	0	0	0	0	0	0
	1	2	6	3	1	1	0	0	0	0	0
	2	1	3	6	3	1	1	0	0	0	0
	3	1	1	3	6	3	1	1	0	0	0
	4	0	1	1	3	6	3	1	1	0	0
	5	0	0	1	1	3	6	3	1	1	0
	6	0	0	0	1	1	3	6	3	1	1
$B_p188_o =$	7	0	0	0	0	1	1	3	6	3	1
	8	0	0	0	0	0	1	1	3	6	3
	9	0	0	0	0	0	0	1	1	3	6
	10	0	0	0	0	0	0	0	1	1	3
	11	0	0	0	0	0	0	0	0	1	1
	12	0	0	0	0	0	0	0	0	0	1
	13	0	0	0	0	0	0	0	0	0	0
	14	0	0	0	0	0	0	0	0	0	0
	15	0	0	0	0	0	0	0	0	0	

eigenval_B_p188_t := sort(eigenvals(B_p188_o))

		U	
	0	0.039	
	1	0.154	
	2	0.34	
	3	0.59	
	4	0.894	
	5	1.239	
	6	1.612	
eigenval_B_p188_t =	7	1.998	eigenvec_for6 := eigenvec(B_p188_o, eigenval_B_p188_t ₁₄)
	8	2.382	,
	9	2.751	0
	10	3 003	

ےرں،ر		0	-0.183
3.394		1	0.183
3.649		2	0
3.852		3	-0.183
4		4	0.183
		5	0
		6	-0.183
	eigenvec_for6 =	7	0.183
		8	0
		9	-0.183
		10	0.183
		11	0
		12	-0.183
		13	0.183
		14	0
		1 [

page 200

$$A_p200 := \begin{pmatrix} 10 & 1 & 2 & 3 & 4 \\ 1 & 9 & -1 & 2 & -3 \\ 2 & -1 & 7 & 3 & -5 \\ 3 & 2 & 3 & 12 & -1 \\ 4 & -3 & -5 & -1 & 15 \end{pmatrix} \qquad B_p200 := \begin{pmatrix} 5 & 1 & -2 & 0 & -2 & 5 \\ 1 & 6 & -3 & 2 & 0 & 6 \\ -2 & -3 & 8 & -5 & -6 & 0 \\ 0 & 2 & -5 & 5 & 1 & -2 \\ -2 & 0 & -6 & 1 & 6 & -3 \\ 5 & 6 & 0 & -2 & -3 & 8 \end{pmatrix}$$

eigenvals Ap200 t1 := eigenvals(A p200)

eigenvals_Ap200_t1 := eigenvals(A_p200)

eigenvals_Ap200_t1 =
$$\begin{pmatrix}
1.655 \\
6.995 \\
9.366 \\
15.809 \\
19.175
\end{pmatrix}

vals_A_p200_o :=
$$\begin{pmatrix}
1.65526620792 \cdot 10^0 \\
6.99483783061 \cdot 10^0 \\
9.36555492014 \cdot 10^0 \\
1.58089207644 \cdot 10^1 \\
1.91754202773 \cdot 10^1
\end{pmatrix}$$$$

minmax(matVariation(eigenvals_Ap200_t1, vals_A_p200_o)) = $\left(6.014 \times 10^{-13} \quad 1.165 \times 10^{-10}\right)$

eigenvals Bp200 t1 := eigenvals(B p200)

$$eigenvals_Bp200_t1 = \begin{pmatrix} -1.599 \\ -1.599 \\ 4.456 \\ 4.456 \\ 16.143 \\ 16.143 \end{pmatrix} \quad vals_B_p200_o := \begin{pmatrix} -1.59873429360 \cdot 10^0 \\ -1.59873429360 \cdot 10^0 \\ 4.45598963849 \cdot 10^0 \\ 4.45598963849 \cdot 10^0 \\ 1.61427446551 \cdot 10^1 \\ 1.61427446551 \cdot 10^1 \end{pmatrix}$$

 $minmax(matVariation(eigenvals_Bp200_t1, vals_B_p200_o)) = \left(1.362 \times 10^{-12} - 1.166 \times 10^{-11}\right)$

eigenVecss Ap200 t1 := eigenvecs(A p200)

$$eigenVecss_Ap200_t1 = \begin{pmatrix} -0.387 & -0.654 & 0.052 & 0.624 & 0.175 \\ 0.366 & -0.2 & -0.86 & 0.159 & -0.247 \\ 0.704 & -0.257 & 0.506 & 0.227 & -0.362 \\ -0.119 & 0.66 & 2.012 \times 10^{-4} & 0.693 & -0.264 \\ 0.453 & 0.174 & -0.046 & 0.233 & 0.841 \end{pmatrix}$$

$$\operatorname{vecs}_{A} = \operatorname{p200_o}^{\langle 0 \rangle} := \begin{pmatrix} 3.87296874886 \cdot 10^{-1} \\ -3.66221021131 \cdot 10^{-1} \\ -7.04377266220 \cdot 10^{-1} \\ 1.18926222076 \cdot 10^{-1} \\ -4.53423108037 \cdot 10^{-1} \end{pmatrix} \qquad \operatorname{vecs}_{A} = \operatorname{p200_o}^{\langle 1 \rangle} := \begin{pmatrix} 6.54082984085 \cdot 10^{-1} \\ 1.99681268959 \cdot 10^{-1} \\ 2.56510456336 \cdot 10^{-1} \\ -6.60402722389 \cdot 10^{-1} \\ -1.74279863500 \cdot 10^{-1} \end{pmatrix}$$

$$\text{vecs_A_p200_o}^{\langle 2 \rangle} := \begin{pmatrix} 5.21511178463 \cdot 10^{-2} \\ -8.59963866689 \cdot 10^{-1} \\ 5.05575072575 \cdot 10^{-1} \\ 2.01166650650 \cdot 10^{-4} \\ -4.62191996239 \cdot 10^{-2} \end{pmatrix} \qquad \text{vecs_A_p200_o}^{\langle 3 \rangle} := \begin{pmatrix} -6.23702499852 \cdot 10^{-1} \\ -1.59101120870 \cdot 10^{-1} \\ -2.27297494237 \cdot 10^{-1} \\ -6.92684385756 \cdot 10^{-1} \\ -2.32822283880 \cdot 10^{-1} \end{pmatrix}$$

$$vecs_A_p200_o^{\langle 4 \rangle} := \begin{pmatrix} 1.74505109459 \cdot 10^{-1} \\ -2.47302518851 \cdot 10^{-1} \\ -3.61641739446 \cdot 10^{-1} \\ -2.64410853099 \cdot 10^{-1} \\ 8.41244069212 \cdot 10^{-1} \end{pmatrix}$$

$$vecs_A_p200_o = \begin{pmatrix} 0.387 & 0.654 & 0.052 & -0.624 & 0.175 \\ -0.366 & 0.2 & -0.86 & -0.159 & -0.247 \\ -0.704 & 0.257 & 0.506 & -0.227 & -0.362 \\ 0.119 & -0.66 & 2.012 \times 10^{-4} & -0.693 & -0.264 \\ -0.453 & -0.174 & -0.046 & -0.233 & 0.841 \end{pmatrix}$$

$$VariationEigenVecs(A, B) := \begin{cases} n \leftarrow rows(A) - 1 \\ \text{for } i \in 0... n \\ \\ mult \leftarrow \frac{A_{0,i}}{B_{0,i}} \\ \\ R^{\langle i \rangle} \leftarrow A^{\langle i \rangle} - mult \cdot B^{\langle i \rangle} \end{cases}$$

$$return \ R$$

$$normVec(v) := return \ \sum |\overrightarrow{v}|$$

$$normVec(v) := return \ \sum |\overrightarrow{v}|$$

$$normVec(v) := return \ \sum |\overrightarrow{v}|$$

deltaEigenVecs_A_p200 := VariationEigenVecs(vecs_A_p200_o,eigenVecss_Ap200_t1)

$$\text{deltaEigenVecs_A_p200} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1.439 \times 10^{-12} & -1.56 \times 10^{-11} & -1.035 \times 10^{-10} & -6.502 \times 10^{-12} & 5.741 \times 10^{-12} \\ 2.327 \times 10^{-12} & 1.027 \times 10^{-11} & 5.396 \times 10^{-11} & 3.32 \times 10^{-12} & 1.243 \times 10^{-11} \\ 5.545 \times 10^{-12} & -1.222 \times 10^{-11} & 1.722 \times 10^{-11} & 1.104 \times 10^{-11} & 1.164 \times 10^{-11} \\ -2.715 \times 10^{-12} & -4.011 \times 10^{-12} & -2.551 \times 10^{-12} & 6.824 \times 10^{-12} & -1.913 \times 10^{-11} \end{pmatrix}$$

minmax(deltaEigenVecs_A_p200) = $\left(-1.035 \times 10^{-10} \quad 5.396 \times 10^{-11}\right)$

$$eigenVecss_Bp200_t1 = \begin{pmatrix} 0.44 & 0.259 & -0.557 & 0.499 & -0.075 & 0.419 \\ 0.265 & 0.499 & 0.509 & -0.352 & -0.304 & 0.453 \\ 0.621 & -0.185 & 0.224 & -0.092 & 0.722 & 0 \\ 0.259 & -0.44 & 0.499 & 0.557 & -0.419 & -0.075 \\ 0.499 & -0.265 & -0.352 & -0.509 & -0.453 & -0.304 \\ -0.185 & -0.621 & -0.092 & -0.224 & 0 & 0.722 \end{pmatrix}$$

$$vecs_B_p200_o^{\langle 0 \rangle} := \begin{pmatrix} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \end{pmatrix} eigenvals_Bp200_t1 = \begin{pmatrix} -1.599 \\ -1.599 \\ 4.456 \\ 4.456 \\ 16.143 \\ 16.143 \end{pmatrix}$$
????????

eigenvec(B_p200, eigenvals_Bp200_t1₁) =
$$\begin{pmatrix} 0.259 \\ -0.011 \\ 0.633 \\ 0.44 \\ 0.565 \\ 0.14 \end{pmatrix}$$

page 227

genGdiag_A_p227 :=
$$\begin{vmatrix} size \leftarrow 30 \\ for i \in 0.. size - 1 \end{vmatrix}$$

 $R_i \leftarrow (i + 1)^4$
return R

$$\begin{aligned} \text{ftDiag_A_p227} &\coloneqq & \text{size} \leftarrow 30 - 1 \\ &\text{for } i \in 0.. \, \text{size} - 1 \\ &R_i \leftarrow (i+1) - 1 \\ &\text{return } R \end{aligned}$$

$$\begin{split} \text{mkDiagMatr}(\text{genDiag}, \text{ftDiag}) \coloneqq & & \quad n \leftarrow \text{rows}(\text{genDiag}) - 1 \\ & & \quad R_{\text{n, n}} \leftarrow 0 \\ & & \quad R \leftarrow \text{fillMatr}(\text{genDiag}, \text{fForGenDiag}, R) \\ & & \quad R \leftarrow \text{fillMatr}(\text{ftDiag}, \text{fForFtDiag}, R) \\ & & \quad \text{return } R \end{split}$$

A p227 := mkDiagMatr(genGdiag A p227, ftDiag A p227)

vals A p227 t := eigenvals(A p227) vals A p227 approx o := genGdiag A p227

		0
	0	1
	1	15.985
	2	80.993
	3	255.998
	4	625.001
	5	1.296·10 ³
	6	2.401·10 ³
vals_A_p227_t =	7	4.096·10 ³
	8	6.561·10 ³
	9	1·10 ⁴
	10	1.464·10 ⁴

11	2.074·10 ⁴
12	2.856·10 ⁴
13	3.842·10 ⁴
14	5.063·10 ⁴
15	

chole

 $minmax(matVariation(vals_A_p227_t, vals_A_p227_approx_o)) = \begin{pmatrix} 0 & 9.616 \times & 10^{-4} \end{pmatrix}$

page_343

$$reA_p343 := \begin{pmatrix} 1 & -1 & 2 \\ 0 & 0 & 2 \\ 0 & -1 & 3 \end{pmatrix} \qquad imA_p343 := \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$A_p343 := reA_p343 + i \cdot imA_p343$$

$$A_p343 := \begin{pmatrix} 1 + i & -1 - i & 2 + 2i \\ 0 & i & 2 \\ 0 & -1 & 3 + i \end{pmatrix}$$

eigenvals(A_p343) =
$$\begin{pmatrix} 1 + i \\ 1 + i \\ 2 + i \end{pmatrix}$$

$$eigenvecs(A_p343) = \begin{pmatrix} 1 & -0.236 - 0.236i & 0.707 \\ 0 & 0.843 & 0.354 - 0.354i \\ 0 & 0.422 & 0.354 - 0.354i \end{pmatrix} \raisetangleday \raisetangleday$$

page 362

$$\begin{split} \text{matVariation}(A,B) &\coloneqq & | n \leftarrow \text{rows}(A) - 1 \\ & | m \leftarrow \text{cols}(A) - 1 \\ & | R_{n,\,m} \leftarrow 0 \\ & | \text{for } i \in 0 ... n \\ & | \text{for } j \in 0 ... m \\ & | R_{i,\,j} \leftarrow \frac{\left| A_{i,\,j} - B_{i,\,j} \right|}{\left| B_{i,\,j} \right|} \\ & | \text{return } R \end{split}$$

$$\label{eq:minmax} \mbox{minmax}(M) \coloneqq \left| \begin{array}{l} R \leftarrow (\, \mbox{min}(M) \ \, \mbox{max}(M) \,) \\ \\ \mbox{return} \ \, R \end{array} \right|$$

$$3.37 \times 10^{-5}$$
 8.879×10^{-5}
 $.093 \times 10^{-5}$ 8.41×10^{-5}
 $.909 \times 10^{-5}$ 8.09×10^{-5}
 $.777 \times 10^{-5}$ 7.857×10^{-5}
 $.678 \times 10^{-5}$ 7.679×10^{-5}
 $.601 \times 10^{-5}$ 7.539×10^{-5}
 $.539 \times 10^{-5}$ 7.425×10^{-5}

$$\begin{array}{l} (\text{dig,size}) := & \quad n \leftarrow \text{size} - 1 \\ R_n \leftarrow 0 \\ \text{for } i \in 0..n \\ R_i \leftarrow \text{dig} \\ \text{return } R \end{array}$$

5	7	8	9
6	6	6	

	7	8	9
4	-4	-4	

	7	8	9
1	1	1	

$$\begin{array}{ll} \text{ft, Matr)} \coloneqq & n \leftarrow rows(Vec) - 1 \\ & \text{for } i \in 0 ... \, n \\ & & \text{indx} \leftarrow Funct(i) \\ & \text{for } j \in 0 ... \, rows(indx) - 1 \\ & & r \leftarrow indx \\ & j, 0 \\ & c \leftarrow indx \\ & j, 1 \\ & \text{Matr}_{r, \, c} \leftarrow Vec_i \\ & \text{return Matr} \end{array}$$

1	2	3	4	5	6	7	8	9
-4	1	0	0	0	0	0	0	0
6	-4	1	0	0	0	0	0	0
-4	6	-4	1	0	0	0	0	0
1	-4	6	-4	1	0	0	0	0
0	1	-4	6	-4	1	0	0	0
0	0	1	-4	6	-4	1	0	0
0	0	0	1	-4	6	-4	1	0
0	0	0	0	1	-4	6	-4	1
0	0	0	0	0	1	-4	6	-4
0	0	0	0	0	0	1	-4	6
0	0	0	0	0	0	0	1	-4
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	

-)414634146·10²
-)195121951·10²
- 1292682927-10
- 5195121951·10¹
- !682926829·10¹
- 3780487805·10¹
- 1512195122·10¹
- 902439024-10
- 1975609756·10
-)756097561·10¹
- 1268292683.10
- 36585365854·10¹
- 2585365854·10¹
- 5439024390·10¹
-)121951220·10¹
- 1658536585·10¹
- '073170732·10¹
- 1390243902·10
- 634146341.10
- 3292682927·10

10⁵

 $12 \times 10^{5} - 1.802i \times 10^{5} \quad 1.201 \times 10^{5} + 2.402i \times 10^{5} \quad 9.009 \times 10^{4} - 1.802i \times 10^{5} \quad 7.207 \times 10^{4} + 2.162i \times 10^{5} \quad 6.006 \times 10^{4} + 1.802i \times 10^{5} \quad 7.207 \times 10^{4} - 1.441i \times 10^{5} \quad 6.006 \times 10^{4} + 1.802i \times 10^{5} \quad 5.148 \times 10^{4} + 1.802i \times 10^{5} \quad 7.207 \times 10^{4} - 1.441i \times 10^{5} \quad 6.006 \times 10^{4} + 1.802i \times 10^{5} \quad 5.148 \times 10^{5} \times 10^{5}$

$$10^{4} - 1.802i \times 10^{5} \quad 5.148 \times 10^{4} + 2.059i \times 10^{5}$$

$$10^{4} - 1.544i \times 10^{5} \quad 4.505 \times 10^{4} + 1.802i \times 10^{5}$$

$$10^{4} - 1.351i \times 10^{5} \quad 4.004 \times 10^{4} + 1.602i \times 10^{5}$$

$$10^{4} - 1.201i \times 10^{5} \quad 3.604 \times 10^{4} + 1.441i \times 10^{5}$$

$$10^{4} - 1.081i \times 10^{5} \quad 3.276 \times 10^{4} + 1.31i \times 10^{5}$$

$$10^{4} - 9.828i \times 10^{4} \quad 3.003 \times 10^{4} + 1.201i \times 10^{5}$$

$$10^{4} - 9.009i \times 10^{4} \quad 2.772 \times 10^{4} + 1.109i \times 10^{5}$$