RETALLEM

PERCOUSTRUIR

SUBESPAIS

Natalia Castellara

Comencem out un conjunt X i ACX un subconjunt. Si (X, d) et un exau' métric, podem considerar la funció distància

 $J: \times \times \times \longrightarrow \mathbb{R}$

restripida a ACX, $d_A:A\times A \longrightarrow A$, in a olir, $g:a_1,a_2\in A$, $d_A:a_1=d(a_1,a_2)$. I en equest purt, firs i tot ens poducem oblider de X i (A,d_A) et un equi metric per ri sol. (conprover que d_A compleix de requisits res ser metrice en A cal fer gran coa?)

I per tent tenim ma noció d'obert a A i ma d'obert a X. Les dues nocions depenen de les boles oi? Conperem les boles en A i en X. Squi a E A C X,

 $B_{d(a,R)} = \{ x \in X \mid d(a,x) < R \} \subset X$ $B_{d(a,R)} = \{ b \in A \mid d(a,b) < R \} \subset A$

Fixeu-vos que de la définició tenim

$$\Theta$$
 $B_{d_{A}}(\mathbf{e}, \mathbf{R}) = \mathbf{g}(\mathbf{e}, \mathbf{R}) \cap \mathbf{A}$

Abshores, com son els oberts que defineixen la backgia métrica en A comparatrant els de X?

Po exemple, SICR?

Pensem:

Signi $M \subset A$ un obert, alshores per bt $a \in U$ existeric g>0 tool pre $B_{d_1}(a,g) \subset U$. Tenim que $U = \bigcup_{a \in U} B_{d_1}(a,g) \subset A$

Si considerem les mateixes boles en X tennin un obert $U := U B_1(a_1 b_a) \subset X$

(por qui? et unio antontaine d'oberts!) tal que W=UNX (recorden @) passina anterior

I al rever? Siqui UCX in about, et cert que UNACA et about en A? conprovem-ho. Figui xE UNA, un que xEU existerió 5270 tal que BCX, 5x) CU. Heshores

By (x, &x) = By (x, &x) nA cunA.

Lixer UnA es dont a l'espai mèluc (A, dIAI.

Hem vist que

UCA obest sii expleix UCX obest tol que U= OnA.

Fent intersections d'oberts d'X out A determine una topdepria en A. ÉS CERT EN GENERAL? Signi (X,Z) um espai topdòpic i ACX, volem dotar ACX out una topologia. Aquesta topologia ha de ser compostible aut pre tenin a X,Z, no una prodeciol. En quin sentit?

Si i: A \ X es l'aplicació inclusto i'a)=a \ X. Es desitjable que signi continue ai? Per a que signi continue, i'(u) he de ser obert si U es obert. Fixen -vos que

i'(u) = &acA | i(a)eu b = &acA | acub i'(u) = UnA

DEFINICIÓ Signi (X,Z) un espai topològic i ACX.

Diem que UCA et obert si existeix

un obert WCX, WEZ, too que U=UNA.

Signi Z_A = { UCA | existin WeZ tool que }, WTO A = U abedros Z_A et us topologie en A, anomenado topologia subespai en ACX.

Anem a comprevor que TA defineix una topologia en ACX.

(1) $\phi, A \in Z_A$ ja que $\phi, X \in Z_i$: $\phi \cap A = \emptyset$ i $X \cap A = A$. (2) Siqui [VijiEI, ViCA, una familia.

abritania d'obserts en A. Per definició

existerien swijieI, WiCX obserts a X, tals

que WinA = vi per tot i EI. Alshores

UNi = U (WinA) = (UWi) nA EZA

i EI i EI

i eI (UVi) nA EZA

ja que UW; EZ.

(3) Signi $\{V_i\}_{i=1,...,n}$ une familie finite on V_i CA son donts en A. Per definició existeiren $\{W_i\}_{i=1,...,n}$ on $W_i \in \mathbb{Z}$, $W_i \cap A = V_i$ per tot i=1,...,n. Aleshores

 $\tilde{\bigcap}_{i=1}^{n} \tilde{V}_{i} = \tilde{\bigcap}_{i=1}^{n} (W_{i} \cap A) = (\tilde{\bigcap}_{i=1}^{n} W_{i}) \cap A \in Z_{A}$ ja que $\tilde{\bigcap}_{i=1}^{n} W_{i} \in Z$,

FET / (A, ZA) et un espai topològic

A mes, i: A -> X es contino po que «i Mez, i'(u) = UnA e ZA.

EXEMPLES

(0) & (X,d) et un espai mèluic, i Z et la topologia induide per la mètrica, deshores (A,ZA) et la topologia, induide per la mèluica d|. A×A⇔X×X→R.

(1) & ACX, Xg count out la topologia grellere, alethous les topologia de Enbespais en A toubse es la grellere (2) Si ACXI, XI crijent out la topologia disveta, abstrores la topologia de subespai en A tombé es la disveta $\begin{array}{c|c} X_g & A \\ \hline \phi & \phi \cap A = \phi \\ X & X \cap A = A \end{array}$ XJ A PA) -nA

(3) Signi A = [0,1] C X= IR, alchaes ternin que [0,1/2) C A & short en A

ja que [0,1/2) = [0,1] (-1/2,1/2) A n doet a IR (4) Signi A = [0,1] U jzy C IR alshows

524 CR & short ja que A0 (3/2,5/2) en A 124 et obert? 51.

 $A - \{2\} = [A I] = A \cap (-1/2, 3/2)$ $\{2\} \in A \in \text{obsolitance} a la topologia subespai.$

PROPIETATS (X,Z) espai bpolòpic, (A,Z4) subespai bpolòpic, Acx.

(1) TCA tancat ein T= KNA on KCX en A estancaten X.

- · Si TCA tencat aleshores A T en oberd. Es a dir, excheix WCX obert tal que AT = WNA AN(XT) = WNA Alesbres T = (XVW) NA, K:= XVW tencal
- · Si T= KNA on KCX toncat a X, udem veure que et tancat en A. Hem de veure AT et obert.

 $A \cdot T = A \cdot K \cap A = A \cap (X \cdot K \cap A) =$ $= A \cap (X \cdot K) \quad \text{doest } a \cdot A$

Per tent, T=KnA a tencal en A.

- (2) · Si ACX et obert en X aleshores

 UCA dout en A sii UCX dout en X
 - · G: ACX et tancat en X alabores KCA tancat en A sii KCX tancat en X

Fixer-vos que si ACX obert, i U obert en X alchones UNA obert en X. El morteix per tancats.

(3) La inclusió i: A >> X es continua i
Za és la topología menys fina tal pu
i es continua

i: A > X et continue ja que si UCX drech en X aleshare i'(U) = Un A et obert en A per definició. A men, aquesto son impres condibles per que i a pui continue, aixt que Za et la menys fivo ant aquesta propietat.

(4) & f: X -> Y contino, alshors f(A: AC>X-> Y tarlet per ser corposition d'aplicacions contines

(5) Què possa si (x, z) te me base B?

Aleshores B= {BNA | BEB} et un base per la topologia subespai en ACX.

Vegem-ho: Signi DCA un doort en A $c \times c \times S$. Alshous exister un doort UEZ tal que $W = A \times U$.

BEB tal que XEBCU, i per tont,

X & BNA c MNA=W

PROPIETAT MODOLT STILL I IMPORTANT

Equin X, Y especia topològica, ACX subespai topològic, i f: Y-> A oplica vis.

f contina sie iof: Y→A C> X es contina.

Demostració:

Si f et continue, i 1: A C> X continue tombé alabores la composició et continue

Suposem ief: Y -> A -> X & continue, uden provor que f: Y -> A ho es. Siqui UCA un obert, alabores per definició existeix UCX dest tal que U= W OA. Calculen l'antiimatique

gue \vec{s} obert \vec{p} pre \vec{i} \vec{j} $(\vec{w}) = (\vec{i})(\vec{w})$,

que \vec{s} obert \vec{p} pre \vec{i} \vec{o} \vec{j} \vec{v} onthus.

#

Com a corol·lari tenim el sepirent:

si $f: X \rightarrow Y$ es une glicalis contina deshous $f: X \rightarrow f(X)$ table es contino ja que $f: X \rightarrow f(X) \rightarrow Y$ no es.

EXEMPLES

- (1) signi $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$, alshows $f|_{(-1,2)}: (-1,2) \to \mathbb{R}$ es untitue i a mes $f|: (-1,2) \to [0,4)$ es continue.
- (2) Signi $f: [0, 2\pi) \longrightarrow \mathbb{R}^2$ $0 \longmapsto (\cos \theta, \sin \theta)$,

 alsolves $f: [0, 2\pi) \longrightarrow 5^1$ es continue

 (toube es bijectiva).
- (3) $S^{n-1} \subset \mathbb{R}^n$ on $S^{n-1} = \{ (x_1, ..., x_n) \in \mathbb{R}^n \mid \sum_{i=1}^n x_i^2 = 1 \}$
- (4) $5^n \in \mathbb{N}^n \subset \mathbb{R}^{n+1}$ on N = (0, ..., 0, 1)
- la projecció estereogràfica es ua aplicació

 S^- {N} FR = IR^1

 P= (x,..., xmi) + put d'intersecció de la rede NP out el pla Xny = 0
- És continue je que ho et en \mathbb{R}^{n+1} [N] $\longrightarrow \mathbb{R}^{n+1}$

A men en bijectiva and invene contlue.

$$f: \mathbb{R}^{n} \longrightarrow S^{n-1}NY$$
 $P=(x_{1},...,x_{n}) \longmapsto purt intersection de la recta PN autr S^{n}.$

Fem $n=2$
 $f(x_{1},y_{1},z_{1}) = \frac{1}{1-2}(x_{1},y_{1})$
 $f(a,b) = \frac{1}{1+a^{2}+b^{2}}(2a_{1},2b_{1},a^{2}+b^{2}-1)$

Es el subespai de R2 donat pels punts ant equació

$$T = \int (x_1 y_1 z_1) \in \mathbb{R}^3 \left| \left(\sqrt{x_1^2 y_1^2} - 2 \right)^2 + z_1^2 = 1 \right|$$

Fem girar (x-2)2+ 22=1 al without de l'eix 02.

I ara, acabem veient un actre resultat molt util per construir aplicacions continues quan estan definides "a trossor"

PROPOSICIO Equin X, Y espain topològics autorio X= AUB. Consideren una eplicació f: X -> Y tal que ff: A-> X -> Y i ff: B-> X -> Y som continues.

Aleshores

(a) Fi A, BCX son doeds alshows for Contina (b) Fi A, BCX son tancets alshows for

Demostració En general, si UCY terring $f'(u) = (f'(u) \cap A) \cup (f'(u) \cap B) = (f_A)'(u) \cup (f_R) (u)$

(a) Si NCY dead, abstras f(u) nA i f(u) nB son douts en A i B respectivament ja que fla i fla son contines. Però si A i B son deuto en X toule ho son f(u) nA i f(u) nB en X i la sua unio toulet, aixi f'(u) is dout per cer unio d'oberts.

(b) Feu el mateix carviant obset per faucat a totamen.

#

Fixeu-we que en general la conclusió no es certa: $f: \mathbb{R} \longrightarrow \mathbb{R}$ $f(x) = \begin{cases} 1 & \text{si } \times > 0 & \text{x} \in [0, +\infty) \\ 0 & \text{si } \times < 0 & \text{x} \in (-\infty, 0) \end{cases}$

 $A = (0, +\infty)$, $B = (-\infty, 0)$, f_{1} contine, f_{1} contine però $f'(1/2, 3/2) = f'(1/1) = (0, +\infty)$ no es obert.

I n' canvier X = AUB per ma unió cubultaria? X = UA; quel en cert de la proposició anterior? PREGUNTES

- (1) Si X te la topologie cofinita, à ACX té la topologia subsessori, es tombé la cofinita en A? (penseu en com sott els tancats...)
- (2) Si X te la proprehad Hausdoff i ACX et un subsequi, te tanbé la propretat Hausdoff?
- (2) Equi ACX un subespai d'X espai topològic.

Prenem ZCA un subconjurt. Quina relació hi ha entre

- (a) $Q_A(Z)$ i Q(Z) on $Q_A(Z)$ et la clausura en A i Q(Z) en X
- (b) Into (2) i Int(2) on Into (2) or l'interior en A i Int(2) en X.

RESPOSTES?

SPOILER:

- (1) sī oi? els tancats a la topdusca subespai toube son exactament els Subconjunts futs o XNA=A.
- (2) Sí oi? siguin x + y EACX. Com pue X er Houndary existence U, VCX churts al xey, yev, unv=0. Alehous UNA, ONA son douts de la tepologia subespai and Xe UnA, Me VAA, i (UnA) n (UnA) = Un Un Ă = Ø.
- (3) Signi ACX i ZCA.

An Int(Z) is un obert a A i An Ind, (E) CZ, per tent An In/x(2) C In/A (2).

Però no tenen perquè ser i quals:

A = [0,1], X=R : Z = [0,1).

Tenim que A 1 Indx (2) = [01] 1 (0,1) = (0,1) i Z 5 dont a A ja pre Z=An(-1,1),

Inf (3)= A.

I les clausures? ACX ¿ ZCA. Veuren que (l.(Z) nA = (2/2).

Métade 1 (2008 puris out la déprisié) $Q_A^2 = \bigcap_{n = 1}^{\infty} K = \bigcap_{n = 1}^{\infty} C_n A =$ ZCK ZCCAA Kfancot on A ctoncol on X $= (\bigcap C) \cap A = (\bigcap C) \cap A = (\bigvee_{x} (2) \cap A)$ ZCCAACC ZCC Ctoncot enx Ctoncol ax Mètode 2 (sense puris out la proprietat de dausina) Com que ZCQX(Z) nA, i Qx(Z) nA es toucut on A, terum U_A(8) C U_X(8) nA. Arem a veux l'alla inclusió. Com pre Cla(2) or ferred on A, existing CCX terred on X tal que (l_A(2)=Anc. Abshires terrim que Z cup(2)CC i Ux(Z)CC. I si fem intersecut out A, $Q_{\chi}(\xi) \cap A \subset C \cap A = Q_{\Lambda}(\xi)$. Alou (1x/2) nA = Qx(2).

Mètade 3 (aut punts adherents)

Signi a E A adherend a ZCA out la topologia Entrespoi. Ancè vol dir pur pur tot entrem a ENCA, NNZ ZØ. Es equivalent a dir que per tot obert a E UCA en A, UNZ ZØ. Que a la vegada és equivalent a dir que pur tot obert UCX out a EN, UNANZ ZØ. Com que ZCA, NNANZ = NNZ. Per tout, es equivalent a dir que pur tot UCX obert i a EV, UNANZ ZØ. Abet, a E AN Cla(Z).