Expand A = [(x+1) - y][(x+1) + y].

Verify that 3! + 2! < (3 + 2)! and 3! - 2! > (3 - 2)!.

The fraction 5/10 is of ratio 1:2.

If $f(x) = x^2$ then show that f'(x) = 2x and f''(x) = 2

16 is divisible by 2 so we write 2|16.

The sum of the inner angles of a triangle is 180 degree.

If the α, β and γ are the inner angles then

$$\alpha + \beta + \gamma = \pi$$

The set of positive integer is denoted by \mathbb{N} .

The set of integer is denoted by \mathbb{Z} .

The set of rational, real and complex numbers are denoted by \mathbb{Q}, \mathbb{R} and \mathbb{C} respectively.

The numbers of permutation of k elements taken from distinct n elements is given by $P(n,k) = \frac{n!}{(n-k)!}$. The number of combination of k elements taken from distinct n elements is

The number of combination of k elements taken from distinct n elements is given by $C(n,k) = \frac{n!}{k!(n-k)!}$

The relation between combination and permutation is

$$C(n,k) = \frac{P(n,k)}{k!} \tag{1}$$

1. Find the formula for computing

$$S_n = 1^2 + 2^2 + 3^2 + \dots + n^n \tag{2}$$

$$S_n = \frac{n(n+1)}{2} \tag{3}$$

2. The formula is derived from the equality $(n+1)^3 - n^3 = 3n^2 + 3n + 1$

$$S_n = 1^2 + 2^2 + 3^2 + \dots + n^2 \tag{4}$$

$$S_n = \frac{n(n+1)(2n+1)}{6} (5)$$

3. To solve quadratic equation $ax^2 + bx + c = 0$ where $a \neq 0$ we calculate the discriminant

$$\Delta = b^2 - 4ac$$

or
$$\Delta = b^2 - 4ac$$

• Roots of the equation is given by the formula

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

$$(6)$$

$$(7)$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} \tag{7}$$

or precisely,

$$x = \frac{-b \pm \sqrt{\Delta}}{2a} \tag{8}$$

Solve $\sqrt{3}x^2 + \sqrt[3]{5}x + \sqrt[4]{7} + \sqrt[5]{5x} = 0$.