Experiment No: - 4

Experiment Name: - STUDY & DESIGN OF FLIP-FLOPS

Name: - Shrikrushna C Gundre

Roll No: - DCSE 12

PRN No: - 2122010191

1. S-R Flip-Flop

Construction

• Truth Table

S	R	Q	Q'
0	0	Latch	Latch
0	1	0	1
1	0	1	0
1	1	Invalid	Invalid

Applications

- 1. These circuits are known for storing the information in the form of bits. These are known as memory elements.
- 2. The usage of pulse latches follows the same behavior of flip-flops but good enough to generate a quick response.
- 3. It is widely used to store the data and the codes for computations.

• Significance

- 1. It is used to keep a record of different values of variable state like intermediate, input or output.
- 2. It is mainly used to store data or information.
- 3. Wherever operations, storage and sequencing are required these signal circuits are used.
- 4. They are also used for excising control over the way the circuit has to function, like for changing the operation of a circuit to a different state.

• Limitation

1. The main problem associated with these circuits is that they work on simple 1bit memory, so if set input is first taken as 0 then taken back to logic, and then the further change does not have any effect on logic 0 pulses of set input (S).

2. Clocked S-R Flip-Flop

Construction

Truth Table

Inputs			Outputs	
CLK	S	R	Qn+1	Qn'+1
1	0	0	Qn	Qn'
†	0	1	0	1
1	1	0	1	0
1	1	1	X	X

Applications

- 1. These circuits are known for storing the information in the form of bits. These are known as memory elements.
- 2. The usage of pulse latches follows the same behaviour of flip-flops but good enough to generate a quick response.
- 3. It is widely used to store the data and the codes for computations.

Significance

- 1. It contains a additional input called Clock which is used to control the circuit.
- 2. It is used to design the counters.

Limitations

- 1. It contains the state which is called the INVALID.
- 2. The INVALID conditions occurs when the S=1 & R=1.
- 3. Because of that the output is not generated in SR Flipflop.

3. J-K Flip-Flop

Construction

Truth Table

Inputs			Outputs	
CLK	S	R	Qn+1	Qn'+1
†	0	0	Qn	Qn'
†	0	1	0	1
1	1	0	1	0
1	1	1	Toggle	Toggle

Applications

- 1. Registers.
- 2. Counters.
- 3. Event Detectors.
- 4. Data Synchronizers.
- 5. Frequency Dividers.

• Significance

- 1. In J-K flipflop the INVALID condition is not occurs.
- 2. In J-K flipflop TOGGLE condition occurs.
- 3. When J=1 & K=1 J-K flipflop toggles continuously.

Limitations

- 1. When J=1 & K=1 J-K flipflop toggles continuously.
- 2. There is no Controlled toggling happens in J-K flipflop.

4. Master-Slave J-K Flip-Flop

Construction

Truth Table

	Inputs	Inputs Outputs		Remark	
CLK	J	K	Qn+1	Qn'+1	
X	0	0	Qn	Qn'	No Change
1	0	0	Qn	Qn'	No Change
<u> </u>	0	1	0	1	Reset
Î	1	0	1	0	Set
	1	1	Qn'	Qn	Toggle

Applications

1. JK flip flop master slave overcome the limitation of SR flip flop, in SR flip flop when S = R = 1 condition arrives the output becomes uncertain. Still, in the JK master slave, when J = K = 1, then the output toggles, the output of this state keeps changing with the clock pulse.

Significance

- 1. A sequential circuit with an edge-controlled flip flop is straightforward to design rather than a level-triggered flip flop.
- 2. By using the Master-Slave configuration, we can also eliminate the race around condition.

5. D Flip-Flop

Construction

Truth Table

Clock	D	Q	Q'
•	0	0	1
†	0	0	1
—	1	0	1
1	1	1	0

Applications

- 1. Data Synchronizers.
- 2. Frequency Dividers.
- 3. To create delay-lines.

Significance

1. The advantage of D flip-flops is their simplicity and the fact that the output and input are essentially identical, except displaced in time by one clock period.

Limitations

1. A D flip flop in a circuit increases the circuit's size, often to about twice the normal. Additionally, they also make the circuits more complex.

6. T Flip-Flop

Construction

Truth Table

Т	Q	Q'
0	0	0
0	1	1
1	0	1
1	1	1

Applications

- 1. It is used in counter designs.
- 2. These flip flops are used for constructing binary counters.
- 3. They are used in frequency dividers.
- 4. This type of sequential circuits is also present in binary addition devices.
- 5. It is also used in 2-bit parallel load registers.
- 6. It is also used in shift registers.

Significance

1. These Flip-Flops has a toggle input and a clock. When a clock is triggered, it inverts the value of Flip-Flops. They are good for counters.

Limitations

1. The main disadvantage of T flip – flop is that the state of the flip – flop at an applied trigger pulse is known only when the previous state is known.