Статистичний простір. Вибірка, оцінки та їх властивості

1 Теоретичні відомості

Розглянемо статистичний простір $(\Omega, \mathcal{F}, \{\mathbf{P}_{\theta}, \theta \in \Theta\})$, де Ω є простором елементарних подій, \mathcal{F} – сигма-алгебра, пов'язана з $\Omega, \{\mathbf{P}_{\theta}, \theta \in \Theta\}$ – набір ймовірнісних мір, залежних від параметра $\theta \in \Theta$, Θ – параметричний простір. Форму залежності \mathbf{P}_{θ} від θ вважаємо відомою. Невідомим для дослідника є параметр θ .

Вибіркою будемо називати вимірну функцію $X: \Omega \to S$, задану на просторі $(\Omega, \mathcal{F}, \mathbf{P}_{\theta})$, зі значеннями у просторі (S, Σ, λ) . Простір (S, Σ, λ) будемо називати вибірковим простором.

Якщо вибірковий простір можна подати у вигляді прямого добутку просторів (R, \mathcal{B}, ν) , тобто

$$S = \underbrace{R \times \ldots \times R}_{n},$$

$$\Sigma = \sigma[B_{1} \times \ldots \times B_{n}, B_{k} \in \mathcal{B}], \ \lambda(B_{1} \times \ldots \times B_{n}) = \nu(B_{1}) \times \ldots \times \nu(B_{n}), \ B_{k} \in \mathcal{B}.$$

Простір вище (S, Σ, λ) називають n-кратним добутком простору (R, \mathcal{B}, ν) . Кратною вибіркою будемо називати випадковий вектор на $(\Omega, \mathcal{F}, \mathbf{P}_{\theta})$, координати якого є незалежними в сукупності та однаково розподіленими.

Задача статистичного оцінювання така: маючи реалізацію вектора $X(\omega) = x \in S$, дослідник має оцінити невідомий параметр $\theta \in \Theta$ розподілу \mathbf{P}_{θ} .

Вимірну функцію $T(X(\omega)): \Omega \to C$ від статистичної вибірки називають статистикою. Також статистикою називають функцію від значень які може приймати вибірка: $T(x): S \to C$.

Якщо $T(x) \in \Theta$ для всіх $x \in S$, тоді статистику T(X) називають оцінкою.

Декілька базових властивостей, які можуть мати оцінки:

- 1. Незміщеність: $\mathbf{E}_{\theta} \left[\hat{\theta}_n \right] = \theta$ для всіх $\theta \in \Theta$.
- 2. Асимптотична незміщеність: $\mathbf{E}_{\theta} \left[\hat{\theta}_n \right] \to \theta$ при $n \to \infty$ для всіх $\theta \in \Theta$.
- 3. Конзистентність: $\hat{\theta}_n \to^{P_{\theta}} \theta$ для всіх $\theta \in \Theta$ (збіжність за ймовірністю).
- 4. Строга конзистентність: $\hat{\theta}_n \to^{P_{\theta} 1} \theta$ для всіх $\theta \in \Theta$ (збіжність майже напевно).
- 5. Асимптотична нормальність: існує така послідовність $\{c_n(\theta)\}_{n\geq 1}$, що для всіх $\theta\in\Theta$ (слабка збіжність / збіжність в основному)

$$c_n(\theta)(\hat{\theta}_n - \theta) \to^{W_\theta} \xi \sim N(0, 1), \ n \to +\infty.$$

Пригадайте перелічені види збіжностей та відповідні граничні теореми!

Зауваження. Коли ми займаємося оцінюванням вектора невідомих параметрів θ , як у нормальному розподілі скажімо, то ми можемо будувати окремі оцінки для кожного з параметрів (необов'язково для всіх). У такому разі ми це можемо розглядати як оцінювання функції від векторного параметра $\tau(\theta)$.

Приклад: $X=(X_1,\dots,X_n)$ – кратна вибірка, $X_1\sim N(\mu,\sigma^2),\ \theta=(\mu,\sigma^2)\in\Theta=\mathbb{R}\times(0,+\infty).$ Вибіркове середнє $\overline{X}_n=\sum_{j=1}^n X_j/n$ – незміщена консистентна оцінка $\tau(\theta)=\mu.$

Доведемо незміщеність:

$$\mathbf{E}_{\theta}\left[\overline{X}_{n}\right] = \frac{1}{n} \sum_{j=1}^{n} \mathbf{E}_{\theta}\left[X_{j}\right] = \frac{1}{n} n \mu = \mu, \ \theta \in \Theta.$$

Оцінка є строго консистентною (і, як наслідок, консистентною) оцінкою μ . Дійсно, оскільки $\mathbf{E}_{\theta}[X_1] < \infty$, то за критерієм Колмогорова про ПЗВЧ маємо

$$\overline{X}_n \to^{P_{\theta} 1} \mu, \ n \to \infty, \ \theta \in \Theta.$$

Доведемо асимптотичну нормальність. Зауважимо, що X_j задовольняють класичній ЦГТ (внаслідок інтегровності перших двох теоретичних моментів), а тому

$$\frac{\sum_{j=1}^{n} X_j - n\mu}{\sqrt{n\sigma^2}} \to^{W_\theta} \xi \sim N(0,1), \ n \to +\infty$$

З іншого боку,

$$\frac{\sum_{j=1}^{n} X_j - n\mu}{\sqrt{n\sigma^2}} = \frac{n \cdot (\overline{X}_n - \mu)}{\sqrt{n\sigma^2}} = \sqrt{\frac{n}{\sigma^2}} \cdot (\overline{X}_n - \mu)$$

Тобто нормуюча послідовність c_n справді існує і має вигляд $c_n = K\sqrt{n}$. Якщо K = 1, тоді

$$\sqrt{n}(\overline{X}_n - \mu) \to^{W_\theta} N(0, V(\theta)), \ n \to +\infty,$$

де $V(\theta) = \sigma^2$ – асимптотична дисперсія оцінки \overline{X}_n .

Нормуюча послідовність c_n намагається вхопити швидкість збіжності оцінки до невідомого параметра. Якщо c_n буде занадто 'швидкою', тоді нормована оцінка прямуватиме до нескінченності. Інакше, якщо обрати занадто 'повільну' послідовність, то нормована послідовність буде прямувати до нуля. У прикладі вище дослідимо дисперсію нормованої оцінки, якщо вважати що $c_n > 0$:

$$\begin{split} \mathbf{D}_{\theta}\left[c_{n}(\overline{X}_{n}-\mu)\right] &= c_{n}^{2}\frac{1}{n^{2}}\mathbf{D}_{\theta}\left[\sum_{j=1}^{n}X_{j}\right] = |\mathbf{yomy?}| = c_{n}^{2}\frac{1}{n^{2}}\sum_{j=1}^{n}\mathbf{D}_{\theta}\left[X_{j}\right] = \\ &= c_{n}^{2}\frac{1}{n}\mathbf{D}_{\theta}\left[X_{1}\right] = \left(\frac{c_{n}}{\sqrt{n}}\right)^{2}\sigma^{2} \rightarrow \begin{cases} 0, & c_{n}/\sqrt{n} \rightarrow 0, \\ \sigma^{2}, & c_{n}/\sqrt{n} \rightarrow K \in (0, \infty), \\ \infty, & c_{n}/\sqrt{n} \rightarrow \infty. \end{cases} \end{split}$$

2 Задачі

2.1 Задача 1

Статистик має асиметричну монету зі сторонами А та Б. Для цієї монети він хоче оцінити характер асиметрії виходячи з ймовірностей результатів підкидання. Для цього бідний статистик підкидає 1000 разів монету, кожне з підкидань є незалежним, після чого чого має набір з результатів підкидання монети.

Описати статистичний простір, вибірку. У рамках заданої моделі, запропонувати потрібну оцінку.

Розв'язання

Якщо вибірка містить всю інформацію про експеримент, то для спрощення ототожнюють простори, тобто $(\Omega, \mathcal{F}) = (S, \Sigma)$.

Результат підкидання монети в 1000 незалежних випробувань можна змоделювати як випадковий вектор з 1000 незалежних в сукупності координат з однаковим розподілом (оскільки процедуру експерименту можна вважати незмінною для всіх випробувань).

Тобто, $X=(X_1,\ldots,X_{1000})$, де X_j відповідатиме за результат підкидання в j-му експерименті. Нехай $\mathbf{P}_{\theta}\left(X_1=1\right)=\theta$, де $X_1=1$ якщо монета впала стороною A, та $\mathbf{P}_{\theta}\left(X_1=0\right)=1-\theta$ (надайте інтерпретацію для $X_1=0$). Тут можна розглянути $\Theta=[0,1]$. Статистичний простір можна визначити так: $(\Omega,\mathcal{F},\mathbb{P}_{\theta})$, де

- $\Omega = \{0, 1\}^{1000}$, (чому?)
- $\bullet \ \Sigma = 2^{\Omega},$
- $\mathbf{P}_{\theta}(\{\omega\}) = \theta^{k(\omega)}(1-\theta)^{n-k(\omega)}$, де $k(\omega) = \sum_{j=1}^{n} \mathbf{1}\{\omega_j = 1\}$. (чому? подумати!)

Ясно, що в такій постановці $X(\omega) = \omega$ (чому?). В якості оцінки невідомої ймовірності успіху можна розглянути таку статистику:

$$\hat{\theta} = \frac{1}{n} \sum_{j=1}^{n} X_j,$$

що є вибірковим середнім.

2.2 Задача 2

Розглядається кратна вибірка $X=(X_1,\ldots,X_n)$, розподіл спостережень якої є рівномірним на відрізку [a,b], тобто $X_1 \sim U[a,b],\ a < b$. Значення кінців відрізка, a та b, вважаються невідомими. Перевірити, для яких параметрів наступні оцінки

$$\hat{\theta}_n^{(1)} = \max_{1 \le j \le n} X_j, \ \hat{\theta}_n^{(2)} = \frac{1}{n} \sum_{j=1}^n X_j$$

будуть (асимптотично) незміщеними, консистентними. Чи будуть задані оцінки асимптотично нормальними для відповідних параметрів?

Розв'язання

 $\theta = (a, b)$. Позначимо

$$F(t) = \mathbf{P}_{\theta} (X_1 < t) = \begin{cases} 0, & t < a, \\ \frac{t-a}{b-a}, & a \le t < b, \\ 1, & b \le t \end{cases}$$
$$f(t) = F'(t) = \mathbf{1}_{[a,b]}(t) \cdot \frac{1}{b-a}$$

Перевіримо властивості для $\hat{\theta}_n^{(1)}$. Спочатку знайдемо у явному вигляді розподіл цієї оцінки:

$$G(t) = \mathbf{P}_{\theta} \left(\hat{\theta}_n^{(1)} < t \right) = \mathbf{P}_{\theta} \left(\bigcap_{j=1}^n \{ X_j < t \} \right) = \prod_{j=1}^n \mathbf{P}_{\theta} \left(X_j < t \right) = (F(t))^n,$$

звідси знаходимо щільність розподілу:

$$g(t) = G'(t) = n(F(t))^{n-1}f(t).$$

Знайдемо математичне сподівання оцінки:

$$\mathbf{E}_{\theta} \left[\hat{\theta}_{n}^{(1)} \right] = \int_{-\infty}^{+\infty} t g(t) dt = \int_{-\infty}^{+\infty} t n(F(t))^{n-1} f(t) dt = \int_{a}^{b} t n((t-a)/(b-a))^{n-1} 1/(b-a) dt =$$

$$= \frac{n}{(b-a)^{n}} \int_{a}^{b} t (t-a)^{n-1} dt = \left| u = t-a \right| = \frac{n}{(b-a)^{n}} \int_{0}^{b-a} (u+a) u^{n-1} du =$$

$$= \frac{n}{(b-a)^{n}} \left(\int_{0}^{b-a} u^{n} du + \int_{0}^{b-a} a u^{n-1} du \right) = \frac{n}{(b-a)^{n}} \left(\frac{(b-a)^{n+1}}{n+1} + \frac{a(b-a)^{n}}{n} \right) =$$

$$= \frac{n}{n+1} (b-a) + a \to b, \ n \to +\infty.$$

для всіх θ . Отже, $\hat{\theta}_n^{(1)}$ – асимптотично незміщена оцінка параметра b.

Працюємо далі $\hat{\theta}_n^{(1)}$ як з оцінкою b. Перевіримо консистентність оцінки, тому треба дослідити збіжність оцінки за ймовірністю для всіх можливих θ . Дійсно, якщо $\varepsilon \in (0, b-a)$, то

$$\begin{split} \mathbf{P}_{\theta} \left(|\hat{\theta}_{n}^{(1)} - b| \geq \varepsilon \right) &= \mathbf{P}_{\theta} \left(\{\hat{\theta}_{n}^{(1)} \geq b + \varepsilon\} \cup \{\hat{\theta}_{n}^{(1)} \leq b - \varepsilon\} \right) = \\ &= \left| \{\hat{\theta}_{n}^{(1)} \geq b + \varepsilon\} \text{ та } \{\hat{\theta}_{n}^{(1)} \leq b - \varepsilon\} \text{ несумісні} \right| = \\ &= \mathbf{P}_{\theta} \left(\hat{\theta}_{n}^{(1)} \geq b + \varepsilon \right) + \mathbf{P}_{\theta} \left(\hat{\theta}_{n}^{(1)} \leq b - \varepsilon \right) = \\ &= \left| \mathbf{P}_{\theta} \left(\hat{\theta}_{n}^{(1)} \geq b + \varepsilon \right) = 0 \text{ оскільки } \hat{\theta}_{n}^{(1)}(\omega) \in [a, b] \right| = \\ &= \mathbf{P}_{\theta} \left(\hat{\theta}_{n}^{(1)} \leq b - \varepsilon \right) = G(b - \varepsilon) = \left(\frac{(b - \varepsilon) - a}{b - a} \right)^{n} = \left(1 - \frac{\varepsilon}{b - a} \right)^{n} \to 0, \end{split}$$

оскільки вираз, що береться до степеня, за модулем менше одиниці. Випадок $\varepsilon \geq b-a$ очевидний, оскільки

$$\mathbf{P}_{\theta}\left(\hat{\theta}_{n}^{(1)} \leq b - \varepsilon\right) \leq \mathbf{P}_{\theta}\left(\hat{\theta}_{n}^{(1)} \leq b - (b - a)\right) = \mathbf{P}_{\theta}\left(\hat{\theta}_{n}^{(1)} \leq a\right) = 0.$$

Отже $\hat{\theta}_n^{(1)} \to^{P_\theta} b$ при $n \to +\infty$ та всіх θ , тобто оцінка є консистентною для параметра b.

Асимптотична нормальність для $\hat{\theta}_n^{(1)}$ не справджується. Дійсно, нехай $\{c_n\}_{n\geq 1}$ – довільна числова послідовність. Оскільки $\hat{\theta}_n^{(1)}$ приймає значення лише на відрізку [a,b], тому $c_n(\hat{\theta}_n^{(1)}-b)$ прийматиме значення на відрізку $[c_n(a-b),0]$. Тобто розподіл нормованої величини $c_n(\hat{\theta}_n^{(1)}-b)$ завжди буде зосереджений на одній з піввісей $(-\infty,0]$ або $[0,+\infty)$. Але нормальний розподіл зосереджений на усій дійсній прямій, тобто $\mathbb{R}=(-\infty,+\infty)$. Тому стверджувати, що гранична поведінка буде нормальною не можна.

Вибіркове середне $\hat{\theta}_n^{(2)}$ буде незміщеною, консистентною та асимптотично нормальною оцінкою математичного сподівання (функції від невідомих параметрів): $\tau(\theta) = (a+b)/2$:

- Для доведення незміщеності скористайтеся властивостями математичного сподівання та умовою задачі,
- Для доведення консистентності можна скористатися критерієм Колмогорова про ПЗВЧ. Тоді вийде строга консистентність, з якої випливає звичайна консистентність. Подивитися що це за критерій та чому зі строгої консистентності випливає звичайна.
- Для доведення асимптотичної нормальності достатньо скористатися ЦГТ у класичній формі. Подивитися що то за звір такий, ЦГТ.

2.3 Задача 3

Нехай вивчається кратна вибірка $X=(X_1,\ldots,X_n)$ з рівномірним розподілом спостережень $X_1\sim U[0,\theta]$, де $\theta>0$ вважається невідомим параметром, який потрібно оцінити. Дослідник розглядає наступні оцінки:

$$\hat{\theta}_n^{(1)} = (n+1) \min_{1 \le j \le n} X_j, \ \hat{\theta}_n^{(2)} = (1+1/n) \max_{1 \le j \le n} X_j.$$

Довести, що вищенаведені оцінки є незміщеними для параметра θ .

Розв'язання

Для $\hat{\theta}_n^{(2)}$ можна скористатися результатом попередньої задачі. Тут

$$\mathbf{E}_{ heta}\left[\max_{1\leq j\leq n}X_{j}
ight]=rac{n}{n+1}\cdot heta\Rightarrow\mathbf{E}_{ heta}\left[\hat{ heta}_{n}^{(2)}
ight]= heta$$
 (а ви бачите чому це так?)

Для $\hat{\theta}_n^{(1)}$ робимо схожі кроки. Знаходимо розподіл мінімума:

$$H(t) = \mathbf{P}_{\theta} \left(\min_{1 \le j \le n} X_j < t \right) = 1 - \mathbf{P}_{\theta} \left(\min_{1 \le j \le n} X_j \ge t \right) = 1 - \mathbf{P}_{\theta} \left(\cap_{j=1}^n \{ X_j \ge t \} \right) = 1 - (1 - \mathbf{P}_{\theta} \left(X_j < t \right))^n$$

Далі знаходимо h(t) = H'(t), обчислюємо $\mathbf{E}_{\theta} \left[\min_{1 \leq j \leq n} X_j \right] = \int_{-\infty}^{+\infty} t h(t) dt$ та використовуємо це для того, щоб показати незміщеність $\hat{\theta}_n^{(1)}$ для θ .

2.4 Задача 4

Нехай $X=(X_1,\ldots,X_n)$ – кратна вибірка з нормального розподілу, тобто $X_1\sim N(\theta,\sigma^2)$. Припустимо, що потрібно оцінити невідомий параметр $\theta\in\mathbb{R}$, знаючи $\sigma>0$. Пропонується використати таку оцінку:

$$\hat{\theta}_n = \frac{X_1 + X_n}{2}.$$

Чи буде $\hat{\theta}_n$ незміщеною? Консистентною? Асимптотично нормальною?

Чи зміниться ситуація, якщо $X_1 \sim Exp(1/\theta)$, де $\theta > 0$ потрібно оцінити?

Розв'язання

Оскільки $X_1 \sim N(\theta, \sigma^2)$, то $\mathbf{E}_{\theta}[X_1] = \theta$ (перевірте самостійно!). Тому, з властивостей математичного сподівання, маємо:

$$\mathbf{E}_{\theta} \left[\hat{\theta}_{n} \right] = \frac{1}{2} (\mathbf{E}_{\theta} \left[X_{1} \right] + \mathbf{E}_{\theta} \left[X_{n} \right]) = \theta, \ \theta \in \mathbb{R}.$$

Оцінка $\hat{\theta}_n$ не буде консистентною. Дійсно, для цього потрібно побачити, що

$$\hat{\theta}_n \sim N(\theta, \sigma^2/2)$$

як сума незалежних нормальних випадкових величин. Це доводиться напряму (через згортку розподілів, **це ви маєте пам'ятати**), або ж методом характеристичних функцій (х.ф.) **(що це таке?)**, що власне й зробимо:

$$\mathbf{E}_{\theta} \left[\exp(i\lambda \hat{\theta}_n) \right] = (\mathbf{E}_{\theta} \left[\exp(i(\lambda/2)X_1) \right])^2 = (\exp(i\theta(\lambda/2) - \sigma^2(\lambda/2)^2/2))^2 = \exp(i\theta\lambda - (\sigma^2/2)\lambda^2/2), \ \lambda \in \mathbb{R}.$$

Вище ми скористалися тим, що $\exp(i\theta(\lambda/2)-\sigma^2(\lambda/2)^2/2)$ задає х.ф. $N(\theta,\sigma^2)$, а останній вираз у ланцюжку рівностей є х.ф. $N(\theta,\sigma^2/2)$.

Тобто, для довільного $n \geq 1$, розподіл $\hat{\theta}_n$ не змінюється, тобто не залежить від n. Тому збіжності до θ при $n \to +\infty$ для $\hat{\theta}_n$ не може бути.

Далі, для асимптотичної нормальності зауважимо, що для всіх $n \geq 1$

$$\hat{\theta}_n - \theta \sim N(0, \sigma^2).$$

Отже, для асимптотичної нормальності в даному випадку достатньо покласти $c_n := 1$ для всіх $n \ge 1$.

Якщо $X_1 \sim Exp(1/\theta)$, оцінка $\hat{\theta}_n$ буде незміщеною для θ , не буде консистентною та не буде асимптотично нормальною для θ . Розберіться чому це так!