

$TI\emptyset4120$ - Operasjonsanalyse, grunnkurs

Exercise #2

Author: Sondre Pedersen

Oppgave 1

Her er alle hjørnepunktene som omfavner det beige området en lovlig løsning. (0, 0), (0, 1500), (250, 1500), (650, 1100), (1000, 400), (1000, 0).

x_1	x_2	$12x_1 + 9x_2$
0	0	0
0	1500	13500
250	1500	16500
650	1100	17700
1000	400	15600
1000	0	12000

Vi vet at dersom en optimal løsning finnes, er denne løsningen et av hjørnepunktene. Siden $x_1 = 650$ $x_2 = 1100$ er den beste løsningen blant alle lovlige hjørnepunkt, følger det at det er den beste løsningen på problemet. Målfunksjonsverdien blir da 17700. De bindende restriksjonene er $4x_1 + 2x_2 \le 4800$ (blå) og $x_1 + x_2 \le 1750$ (rød).

Målfunksjon gjennom optimal verdi

Simplex-metoden vil følge denne stien: (0,0)-(1000,0)-(1000,400)-(650,1100). Den baserer seg på hvilken retning som gir raskest økning i z per enhet. Den vil stoppe i (650,1100), ettersom ingen nabo øker målfunksjonsverdien. **d)**

$$x_1 + s_1 = 1000$$

$$x_2 + s_2 = 1500$$

$$x_1 + x_2 + s_3 = 1750$$

$$4x_1 + 2x_2 + s_4 = 4800$$

$$x_1, x_2, s_1, s_2, s_3, s_4 >= 0$$

Graf i a) der restriksjoner uttrykkes ved slakkvariablene.

 $\mathbf{e})$

x_1	x_2	s_1	s_2	s_3	s_4
0	0	1000	1500	1750	4800
0	1500	1000	0	250	1800
250	1500	750	0	0	800
650	1100	350	400	0	0
1000	400	0	1100	350	0
1000	0	0	1500	750	800

Tabellen viser basisløsningen for alle lovlige verdier.

Restriksjon (2) og (4) møtes i punkt (450, 1500). Her blir basisløsningen 450, 1500, 550, 0, -200, 0.

Vi kan se at denne løsningen ikke er gyldig siden en av slakkvariablene er negativ. Dette er det samme som å bruke for mye av en ressurs.

f)

 s_3 og s_4 er ved nedre grense i optimal løsning. x_1,x_2,s_1,s_2 er da basis.

Oppgave 2

a)

Alle hjørnepunktløsninger er markert. Tillatte er grønne, mens ikke-tillatte er røde. ${\bf b})$

x_1	x_2	$z = x_1 + 2x_2$
0	0	0
0	8/3	16/3
2	2	6
4	0	4

Vi ser at $x_1 = 2, x_2 = 2$ gir optimal løsning.

c)

Sekvensen som brukes av Simplex metoden er (0, 0) - (0, 8/3) - (2, 2). Her antar vi at iterasjonen starter i (0, 0).

d)

$$z - x_1 - 2x_2 = 0 (1)$$

$$x_1 + 3x_2 + s_1 = 8 (2)$$

$$x_1 + x_2 + s_2 = 4 (3)$$

e)

Løsning index	x_1	x_2	s_1	s_2	Basis	Ikke-basis	z
1	0	0	8	4	s_{1}, s_{2}	x_1, x_2	0
2	0	8/3	0	4/3	x_2, s_2	x_1, s_1	16/3
3	2	2	0	0	x_1, x_2	s_1, s_2	6
4	4	0	4	0	x_1, s_1	x_2, s_2	4

f)

Demonstrerer at basisløsningen oppfyller likningssystemet ved å sette inn verdiene i likning (1), (2), (3)

Løsning 1

- (1): $0 0 2 \times 0 = 0$
- (2): $0 + 3 \times 0 + 8 = 8$
- (3): 0 + 0 + 4 = 4

Løsning 2

- (1): $16/3 0 2 \times 8/3 = 0$
- (2): $0 + 3 \times 8/3 + 0 = 8$
- (3): 0 + 8/3 + 4/3 = 4

Løsning 3

- (1): $6 2 2 \times 2 = 0$
- (2): $2 + 3 \times 2 + 0 = 8$
- (3): 2 + 2 + 0 = 4

Løsning 4

- (1): $4 4 2 \times 0 = 0$
- (2): $4 + 3 \times 0 + 4 = 8$
- (3): 4 + 0 + 0 = 4

Siden alle uttrykkene er gyldige, vet vi at basis-løsningen er en løsning på likningssystemet.

 $\mathbf{g})$

Løsning index	x_1	x_2	s_1	s_2	Basis	Ikke-basis	\mathbf{z}
5	0	4	-4	0	s_1, x_2	x_1, s_2	8
6	8	0	0	-4	x_1, s_2	x_2, s_1	8

h)

Løsning 5

(1): $8 - 0 - 2 \times 4 = 0$

(2): $0 + 3 \times 4 + -4 = 8$

(3): 0 + 4 + 0 = 4

Løsning 6

(1): $8 - 8 - 2 \times 0 = 0$

(2): $8 + 3 \times 0 + 0 = 8$

(3): 8 + 0 + -4 = 4

i)

For å systematisere den algebraiske metoden har jeg gjort noen endringer fra det som ble gjennomgått i video. Jeg fører opp hele problemet (på utvidet form) i en matrise, men utfører bare Gauss-Jordan på kolonnene som er i basis (hvite). Kolonnene som ikke er i basis (grå) "henger bare med", slik at de kan brukes i neste iterasjon. Kolonnene representerer koeffisientene til z, x_1, x_2, s_1, s_2 og konstanten i likning (1), (2), (3).

Starter med x_1, x_2 som ikke-basis.

$$\left[\begin{array}{ccccccc} 1 & -1 & -2 & 0 & 0 & 0 \\ 0 & 1 & 3 & 1 & 0 & 8 \\ 0 & 1 & 1 & 0 & 1 & 4 \end{array}\right]$$

Løsningen er ikke optimal, fordi en økning i disse vil øke z. Tar x_2 inn i basis fordi koeffisienten er større for x_2 enn for x_1 . Tar x_1 ut av basis fordi $\frac{8}{3} < \frac{4}{1}$

Forklaring:

Steg 1: (ii) = (ii) / 3

Steg 2: (i) = (i) + 2(ii), (iii) = (iii) - (ii)

Løsningen er ikke optimal, fordi A_{12} er negativ. Tar dermed x_1 inn i basis. Tar s_2 ut av basis, ettersom $\frac{4/3}{2/3}<\frac{8/3}{1/3}.$

Forklaring:

Steg 1: (iii) = 3(iii) / 2, bytter plass (ii) og (iii)

Denne løsningen er optimal. Både A_{14} og A_{15} er positive. Kan lese av resultatet: z = 6, $(x_1, x_2, s_1, s_2) = (2, 2, 0, 0)$.

J)
Jeg oppdager nå at simplex-metoden i tabellform er *veldig* lik min variant av den algebraiske formen. Jeg ser derfor ikke hensikten med å gjøre oppgaven på nytt, spesielt ved tanke på at det tar fryktelig lang tid å føre inn i Latex. Jeg får heller bruke tabellformen en annen gang.