Τυπολόγιο Μαθηματικά Κατεύθυνσης

1 Διανύσματα

1.1 Η έννοια του διανύσματος

1. Διάνυσμα: Προσανατολισμένο ευθύγραμμο τμήμα:

Α: αρχή , Β: πέρας.

- 2. Ομόρροπα διανύσματα: $\vec{a} \uparrow \uparrow \vec{\beta}$.
- 3. Αντίρροπα διανύσματα: $\vec{a} \downarrow \uparrow \vec{\beta}$.
- 4. Ίσα διανύσματα: $\vec{a} = \vec{\beta}$. Έχουν ίσα μέτρα και ίδια κατεύθυνση.
- 5. Αντίθετα διανύσματα: $\vec{a} = -\vec{\beta}$. Έχουν ίσα μέτρα και αντίθετες κατευθύνσεις.
- 6. Γωνία διανυσμάτων: $(\overrightarrow{\vec{a}}, \overrightarrow{\vec{\beta}})$.

7. Μέτρο διανύσματος: $|\vec{a}|$.

1.2 Πρόσθεση διανυσμάτων

1. Διαδοχικά διανύσματα:

2. Κανόνας παραλληλογράμμου:

3. Ιδιότητες πρόσθεσης διανυσμάτων:

Ιδιότητα	Συνθήκη	Ιδιότητα	Συνθήκη
Αντιμεταθετική	$\vec{a} + \vec{\beta} = \vec{\beta} + \vec{a}$	Ουδέτερο στοιχείο	$\vec{a} + \vec{0} = \vec{a}$
Προσεταιριστική	$\vec{a} + \left(\vec{\beta} + \vec{\gamma}\right) = \left(\vec{a} + \vec{\beta}\right) + \vec{\gamma}$	Αντίθετα διανύσματα	$\vec{a} + (-\vec{a}) = \vec{0}$

- 4. Διάνυσμα θέσης:
 - ullet \overrightarrow{OA} , \overrightarrow{OB} διανυσματικές ακτίνες των A, B
 - Ο σημείο αναφοράς.

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

5. Μέτρο αθροίσματος διανυσμάτων: $\left| |\vec{a}| - |\vec{\beta}| \right| \leq \left| \vec{a} + \vec{\beta} \right| \leq |\vec{a}| + |\vec{\beta}|$

1.3 Γινόμενο αριθμού με διάνυσμα

- 1. Γινόμενο αριθμού με διάνυσμα: $\lambda \cdot \vec{a}$.
- 2. Γραμμικός συνδυασμός: $\vec{\delta} = \lambda \cdot \vec{a} + \mu \cdot \vec{\beta}$.
- 3. Ιδιότητες πολλαπλασιασμού:

Ιδιότητα	Συνθήκη		
Επιμεριστική (ως προς αριθμό)	$\lambda \left(\vec{a} \pm \vec{\beta} \right) = \lambda \cdot \vec{a} \pm \lambda \cdot \vec{\beta}$		
Επιμεριστική (ως προς διάνυσμα)	$(\lambda \pm \mu) \cdot \vec{a} = \lambda \cdot \vec{a} \pm \mu \cdot \vec{a}$		
Προσεταιριστική	$\lambda \left(\mu \vec{a}\right) = (\lambda \cdot \mu) \cdot \vec{a}$		
Μηδενικό γινόμενο	$\lambda \cdot \vec{a} = \vec{0} \Leftrightarrow \lambda = 0 \ \text{\'n} \ \vec{a} = \vec{0}$		
Πρόσημο γινομένου	$(-\lambda \cdot \vec{a}) = (-\lambda) \cdot \vec{a} = -(\lambda \cdot \vec{a})$		
Νόμος διαγραφής (ως προς διάνυσμα)	Αν λ $\cdot \vec{a} = \mu \cdot \vec{a}$ και $\vec{a} \neq 0$ τότε $\lambda = \mu$		
Νόμος διαγραφής (ως προς αριθμό)	Αν $\lambda \cdot \vec{a} = \lambda \cdot \vec{\beta}$ και $\lambda \neq 0$ τότε $\vec{a} = \vec{\beta}$		

- 4. Συνθήκη παραλληλίας διανυσμάτων: $\vec{a} \parallel \vec{\beta} \Leftrightarrow \vec{a} = \lambda \cdot \vec{\beta}$, $\lambda \in \mathbb{R}$.
- 5. Διανυσματική ακτίνα μέσου διανύσματος: $\overrightarrow{OM} = \frac{\overrightarrow{OA} + \overrightarrow{OB}}{2}$

1.4 Συντεταγμένες διανύσματος

- 1. Συντεταγμένες διανύσματος: $\vec{a}=(x,y)$. 2. Ίσα διανύσματα $\vec{a}=\vec{\beta}\Leftrightarrow x_1=x_1$ και $y_1=y_2$.
- 3. Μηδενικά διανύσματα : $\vec{a}=0 \Leftrightarrow x=0$ και y=0 , $\vec{a}\neq 0 \Leftrightarrow x\neq 0$ ή $y\neq 0$
- 4. Οριζόντια και κατακόρυφα διανύσματα : $\vec{a} \parallel x'x \Leftrightarrow y = 0$ και $\vec{a} \parallel y'y \Leftrightarrow x = 0$
- 5. Πράξεις μεταξύ διανυσμάτων:

Πράξη	Συντεταγμένες	
΄Αθροισμα	$\vec{a} + \vec{\beta} = (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$	
Πολλαπλασιασμός	$\lambda \cdot \vec{a} = \lambda(x_1, y_1) = (\lambda x_1, \lambda y_1)$	
Γραμμικός συνδυασμός	$\lambda \vec{a} + \mu \vec{\beta} = \lambda(x_1, y_1) + \mu(x_2, y_2) = (\lambda x_1 + \mu x_2, \lambda y_1 + \mu y_2)$	

- 6. Συντεταγμένες μέσου διανύσματος: $x_{\pmb{M}} = \frac{x_A + x_B}{2}$, $y_{\pmb{M}} = \frac{y_A + y_B}{2}$.
- 7. Συντεταγμένες διανύσματος με γνωστά άκρα: $\overrightarrow{AB} = (x_2 x_1, y_2 y_1)$.

8. Συντελεστής διεύθυνσης διανύσματος $\vec{a} = (x, y)$:

$$\lambda = \frac{y}{x} =$$
εφ ω όπου ω είναι η γωνία του \vec{a} με τον $x'x$

- 9. Συνθήκες παραλληλίας διανυσμάτων:
 - i. Οι συντελεστές διεύθυνσης των διανυσμάτων είναι ίσοι : $\vec{a} \parallel \vec{\beta} \Leftrightarrow \lambda_1 = \lambda_2$.
 - ii. Η ορίζουσα $\det(\vec{a}, \vec{\beta})$ των συντεταγμένων των διανυσμάτων ισούται με το 0.

$$\vec{a} \parallel \vec{\beta} \Leftrightarrow \det(\vec{a}, \vec{\beta}) = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} = 0$$

- 10. Μέτρο διανύσματος $\vec{a} = (x, y)$: $|\vec{a}| = \sqrt{x^2 + y^2}$.
- 11. Μέτρο διανύσματος με γνωστά άκρα: $\overrightarrow{AB} = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$.

1.5 Εσωτερικό γινόμενο

- 1. Εσωτερικό γινόμενο: $\vec{a} \cdot \vec{\beta} = |\vec{a}| |\vec{\beta}|$ συν φ .
- 2. Ιδιότητες εσωτερικού γινομένου:

Ιδιότητα	Συνθήκη	Ιδιότητα	Συνθήκη
Κάθετα διανύσματα	Av $\vec{a} \perp \vec{\beta} \Leftrightarrow \vec{a} \cdot \vec{\beta} = 0$	Αντιμεταθετική	$\vec{a} \cdot \vec{\beta} = \vec{\beta} \cdot \vec{a}$
Ομόρροπα	$\vec{a} \uparrow \uparrow \vec{\beta} \Leftrightarrow \vec{a} \cdot \vec{\beta} = \vec{a} \cdot \vec{\beta} $	Προσεταιριστική	$\mu(\vec{a}\cdot\vec{\beta}) = (\mu\vec{\beta})\cdot\vec{a}$
Αντίρροπα	$\vec{a} \uparrow \downarrow \vec{\beta} \Leftrightarrow \vec{a} \cdot \vec{\beta} = - \vec{a} \cdot \vec{\beta} $	Επιμεριστική	$\vec{a} \cdot \left(\vec{\beta} + \vec{\gamma} \right) = \vec{a} \cdot \vec{\beta} + \vec{a} \cdot \vec{\gamma}$
Τετράγωνο διανύσματος	$\vec{a}^2 = \vec{a} ^2$		

3

- 3. Συνθήκη καθετότητας διανυσμάτων: $\lambda_{\vec{a}} \cdot \lambda_{\vec{\beta}} = -1.$
- 4. Αναλυτική έκφραση εσωτερικού γινομένου διανυσμάτων: $\vec{a} \cdot \vec{\beta} = x_1 x_2 + y_1 y_2$.

5. Συνημίτονο γωνίας διανυσμάτων: συν
$$(\widehat{\vec{a}}, \overrightarrow{\beta}) = \frac{\vec{a} \cdot \vec{\beta}}{|\vec{a}| \cdot |\vec{\beta}|} = \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \cdot \sqrt{x_2^2 + y_2^2}}$$

2 Ευθεία

2.1 Η ευθεία $y = ax + \beta$

- 1. Απλή μορφή εξίσωσης ευθείας: $y = ax + \beta$.
- 2. Συντελεστής διεύθυνσης ευθείας:
 - $\lambda = \epsilon \varphi \omega = \frac{y}{x}$ όπου $\omega = x \hat{O} M$ με M(x, y) σημείο της ευθείας.
 - $\lambda = \frac{y_2 y_1}{x_2 x_1}$ όπου $A(x_1, y_1)$ και $B(x_2, y_2)$ είναι δύο σημεία της ευθείας.
- 3. Εξίσωση ευθείας: $y y_0 = \lambda(x x_0)$
 - Εξίσωση οριζόντιας ευθείας $y = y_0$.
 - Εξίσωση κατακόρυφης ευθείας $x = x_0$.
- 4. Συνθήκες παραλληλίας και καθετότητας ευθειών: Αν $\varepsilon_1 \parallel \overrightarrow{\delta_1}$ και $\varepsilon_2 \parallel \overrightarrow{\delta_2}$ τότε
 - $\varepsilon_1 \parallel \varepsilon_2 \Leftrightarrow \lambda_1 = \lambda_2 \text{ \'n} \det\left(\overrightarrow{\delta_1}, \overrightarrow{\delta_2}\right) = 0$
 - $\varepsilon_1 \perp \varepsilon_2 \Leftrightarrow \lambda_1 \cdot \lambda_2 = -1 \ \text{\'n} \ \overrightarrow{\delta_1} \cdot \overrightarrow{\delta_2} = 0.$

2.2 Γενική μορφή εξίσωσης ευθείας

- 1. Γενική μορφή εξίσωσης ευθείας: $Ax + By + \Gamma = 0$ με $A \neq 0$ ή $B \neq 0$.
- 2. Συντελεστής διεύθυνσης: $\lambda = -\frac{A}{B}$.
- 3. Παράλληλο διάνυσμα: $\varepsilon \parallel \overrightarrow{\delta} = (B, -A)$ ή $\overrightarrow{\delta} = (-B, A)$.
- 4. Κάθετο διάνυσμα: $\varepsilon \perp \overrightarrow{n} = (A, B)$ ή $\overrightarrow{n} = (-A, -B)$.
- 5. Γωνία φ δύο ευθειών ε_1 και ε_2 : συν $\varphi =$ συν $GwniaDianysmatwn <math>\delta_1 \delta_2 = \frac{\overrightarrow{\delta}_1 \cdot \overrightarrow{\delta}_2}{\left|\overrightarrow{\delta}_1\right| \left|\overrightarrow{\delta}_2\right|}$ όπου $\varepsilon_1 \parallel \overrightarrow{\delta}_1$ και $\varepsilon_2 \parallel \overrightarrow{\delta}_2$.

2.3 Απόσταση σημείου από ευθεία

- 1. Απόσταση σημείου από ευθεία: $d(A, \varepsilon) = \frac{|Ax_0 + By_0 + \Gamma|}{\sqrt{A^2 + B^2}}$.
- 2. Απόσταση παράλληλων ευθειών $\varepsilon_1: y = \lambda x + \beta_1$ και $\varepsilon_2: y = \lambda x + \beta_2$.

$$d(\varepsilon_1, \varepsilon_2) = \frac{|\beta_1 - \beta_2|}{\sqrt{\lambda^2 + 1}}$$

3. Εμβαδόν ενός τριγώνου $AB\Gamma$ με κορυφές $A(x_1, y_1), B(x_2, y_2)$ και $\Gamma(x_3, y_3)$:

$$(AB\Gamma) = \frac{1}{2} \left| \det \left(\overrightarrow{AB}, \overrightarrow{A\Gamma} \right) \right| = \frac{1}{2} \left| \det \left(\overrightarrow{AB}, \overrightarrow{B\Gamma} \right) \right| = \frac{1}{2} \left| \det \left(\overrightarrow{B\Gamma}, \overrightarrow{A\Gamma} \right) \right|$$

4

3 Κωνικές τομές

3.1 Κύκλος

- 1. Εξίσωση με κέντρο O(0,0): $x^2 + y^2 = \rho^2$.
- 2. Εξίσωση με κέντρο $K(x_0, y_0)$: $(x x_0)^2 + (y y_0)^2 = \rho^2$.
- 3. Εξίσωση εφαπτομένης στο $A(x_1, y_1)$ του κύκλου με κέντρο O(0, 0): $xx_1 + yy_1 = \rho^2$.
- 4. Γενική εξίσωση κύκλου: $x^2 + y^2 + Ax + By + \Gamma = 0$
 - i. Αν $A^2+B^2-4\Gamma>0$ τότε η εξίσωση παριστάνει κύκλο με κέντρο $K\left(-\frac{A}{2},-\frac{B}{2}\right)$ και ακτίνα $\rho=\frac{\sqrt{A^2+B^2-4\Gamma}}{2}.$
 - ii. Αν $A^2+B^2-4\Gamma=0$ τότε η εξίσωση παριστάνει το σημείο $K\left(-\frac{A}{2},-\frac{B}{2}\right)$.
 - iii. Αν $A^2 + B^2 4\Gamma < 0$ τότε η εξίσωση δεν αντιστοιχεί σε σχήμα.

3.2 Παραβολή

3.2.1 Εστία στον άξονα x'x

- 1. Εξίσωση: $y^2 = 2px$.
- 2. Εστία: $E(\frac{p}{2}, 0)$.
- 3. Διευθετούσα: $x = -\frac{p}{2}$.
- 4. Εξίσωση εφαπτομένης στο $A(x_1, y_1)$:

$$yy_1 = p(x + x_1)$$

3.2.2 Εστία στον άξονα ν'ν

- 1. Εξίσωση: $x^2 = 2py$.
- 2. Εστία: $E(0, \frac{p}{2})$.
- 3. Διευθετούσα: $y = -\frac{p}{2}$.
- 4. Εξίσωση εφαπτομένης στο $A(x_1, y_1)$:

$$xx_1 = p(y + y_1)$$

3.3 Έλλειψη

3.3.1 Εστίες στον άξονα x'x

- 1. Exispon: $\frac{x^2}{a^2} + \frac{y^2}{\beta^2} = 1$.
- 2. Εστίες: $E(\gamma, 0), E'(-\gamma, 0)$.
- 3. Παράμετροι $a, \beta, \gamma \ (a > \gamma)$:
 - i. Μήκος μεγάλου άξονα: AA' = 2a.
 - ii. Μήκος μικρού άξονα: $BB' = 2\beta$.
 - iii. Εστιακή απόσταση: $EE' = 2\gamma$.
 - iv. $\beta = \sqrt{a^2 \gamma^2}$
- 4. Εξίσωση εφαπτομένης στο $A(x_1, y_1)$:

$$\frac{xx_1}{a^2} + \frac{yy_1}{\beta^2} = 1$$

5. Εκκεντρότητα: $\varepsilon = \frac{\gamma}{a} < 1$.

3.3.2 Εστίες στον άξονα ν'ν

- 1. Εξίσωση: $\frac{y^2}{a^2} + \frac{x^2}{B^2} = 1$.
- 2. Εστίες: $E(0, \gamma), E'(0, -\gamma)$.
- 3. Παράμετροι $a, \beta, \gamma \ (a > \gamma)$:
 - i. Μήκος μεγάλου άξονα: AA' = 2a.
 - ii. Μήκος μικρού άξονα: $BB' = 2\beta$.
 - iii. Εστιακή απόσταση: $EE'=2\gamma$.
 - iv. $\beta = \sqrt{a^2 \gamma^2}$
- 4. Εξίσωση εφαπτομένης στο $A(x_1, y_1)$:

$$\frac{yy_1}{a^2} + \frac{xx_1}{\beta^2} = 1$$

5. Εκκεντρότητα: $\varepsilon = \frac{\gamma}{a} < 1$.

3.4 Υπερβολή

3.4.1 Εστίες στον άξονα x'x

1. Εξίσωση:
$$\frac{x^2}{a^2} - \frac{y^2}{\beta^2} = 1$$
.

2. Εστίες:
$$E(\gamma, 0), E'(-\gamma, 0)$$
.

3. Παράμετροι
$$a, \beta, \gamma$$
 $(a < \gamma)$:

i. Μήκος άξονα:
$$AA' = 2a$$
.

ii. Εστιακή απόσταση:
$$EE' = 2\gamma$$
.

iii.
$$\beta = \sqrt{\gamma^2 - a^2}$$

4. Εξίσωση εφαπτομένης στο
$$A(x_1, y_1)$$
:

$$\frac{xx_1}{a^2} - \frac{yy_1}{\beta^2} = 1$$

5. Εκκεντρότητα:
$$\varepsilon = \frac{\gamma}{a} > 1$$
.

6. Ασύμπτωτες ευθείες:
$$y = \frac{\beta}{a}x$$
, $y = -\frac{\beta}{a}x$.

3.4.2 Εστίες στον άξονα y'y

1. Exispon:
$$\frac{y^2}{a^2} - \frac{x^2}{\beta^2} = 1$$
.

2. Εστίες:
$$E(0, \gamma), E'(0, -\gamma)$$
.

3. Παράμετροι
$$a, \beta, \gamma$$
 $(a < \gamma)$:

i. Μήκος άξονα:
$$AA' = 2a$$
.

ii. Εστιακή απόσταση:
$$EE' = 2\gamma$$
.

iii.
$$\beta = \sqrt{\gamma^2 - a^2}$$

4. Εξίσωση εφαπτομένης στο $A(x_1, y_1)$:

$$\frac{yy_1}{a^2} - \frac{xx_1}{\beta^2} = 1$$

5. Εκκεντρότητα:
$$\varepsilon = \frac{\gamma}{a} > 1$$
.

6. Ασύμπτωτες ευθείες:
$$y = \frac{a}{\beta}x$$
, $y = -\frac{a}{\beta}x$.