GRAPHIC ERA HILL UNIVERSITY Department of Mathematics

TMA-316: Discrete Mathematical Structures and Combinatorics (Assignment No. 2)

Last Date of Submission: 30-Sep-2023

- 1. Let U be the set of real numbers, $A = \{x : x^2 1 = 0\}$ and $B = \{-1, 4\}$. Compute :- a) \overline{A} , b) \overline{B} , c) $\overline{A \cup B}$, d) $\overline{A \cap B}$.
- 2. Let A, B and C are finite sets with |A| = 6, |B| = 8, |C| = 6, $|A \cup B \cup C| = 11$, $|A \cap B| = 3$, $|A \cap C| = 2$ and $|B \cap C| = 5$. Find $|A \cap B \cap C|$.
- 3. Suppose that $A \oplus B = A \oplus C$. Does this guarantee that B = C? Justify your conclusion.
- 4. Let $A = \{x : x \text{ is an integer and } x^2 < 16\}$. Identify each of the following as true or false :- a) $\{0, 1, 2, 3\} \subseteq A$, b) $\{\} \subseteq A$, c) $\{-3, -2, -1\} \subseteq A$, d) $A \subseteq \{-3, -2, -1, 0, 1, 2, 3\}$.
- 5. Consider the theorem:-

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C|.$$

Verify it for the sets $A = \{a, b, c, d, e\}, B = \{a, b, e, g, h\}$ and $C = \{b, d, e, g, h, k, m, n\}$.

- 6. Draw a Venn diagram to represent the situation $A \subseteq C$ and $B \subseteq C$. Let $A = \{1, 2, 3, 4, 5, 6, 7\}$ and $R = \{(1, 2), (1, 4), (2, 3), (2, 5), (3, 6), (4, 7)\}$. Give the matrix representation and digraph of relation R.
- 7. Define the followings with suitable examples:
 - a) Relation,
- c) Reflexive Relation,
- c) Irreflexive Relation,

- d) Symmetric Relation
- e) Antisymmetric Relation
- f) Asymmetric Relation,

g) Transitive Relation.

If the cardinality of a set is n, determine - i) least number of elements, ii) most number of elements, and iii) possible numbers of relations for each case mentioned in Question-7.

- 8. Let $A = \mathbb{Z}$, the set of integers, and let $R = \{(a, b) \in A \times A \mid a < b\}$ so that R is a relation 'less than'. Is R Symmetric, Asymmetric or/and Antisymmetric?
- 9. Let $A = \mathbb{Z}^+$, the set of positive integers, and let $R = \{(a, b) \in A \times A \mid a \text{ divides } b\}$. Is R Symmetric, Asymmetric or/and Antisymmetric?
- 10. Let $A = \{1, 2, 3, 4\}$. Give a relation R on A which is:
 - a) neither symmetric nor antisymmetric,
 - b) ant-symmetric and reflexive but not transitive,
 - c) transitive and reflexive but not antisymmetric.
- 11. Let R be a binary relation defined as : $R = \{(a, b) \in R : a b \leq 3\}$. Determine whether R Reflexive, Irreflexive, Symmetric, Asymmetric, Antisymmetric and/or Transitive.
- 12. Let $A = \{1, 2, 3, 4, 5, 6, 7\}$ and $R = \{(x, y) \in R : x y \text{ is divisible by 3}\}$. Show that R is an equivalence relation.

- 13. Show that the relation ' \subseteq ' defined on the power set P(A) of a set A is a partial order relation.
- 14. Show that the relation ' \leq ' defined on the set of positive integers (I_+) is a partial order relation.
- 15. Let \mathbb{N} be the set of all natural numbers. The relation R on the set $N \times N$ of ordered pairs of natural numbers is defined as: (a,b) R(c,d) if and only if ad = bc. Prove that R is an equivalence relation.
- 16. Let R be an equivalence relation on a set A, prove that R^{-1} is also an equivalence relation.
- 17. Let R be an equivalence relation on a non-empty set A. Let a and b be arbitrary elements in A, prove that:
 - a) $a \in [a]$ i.e. [a] is non-empty, b) $b \in [a] \Leftrightarrow [b] = [a]$, c) $[a] = [b] \Leftrightarrow (a, b) \in R$,
 - d) equivalence class of a and b are either disjoint or identical, i.e. either [a] = [b] or $[a] \cup [b] = \phi$.
- 18. Define reflexive, symmetric and transitive closures of a relation with suitable example. Find these closure of the relation R, defined on set A $\{1, 2, 3, 4\}$ such that $R = \{(1,1), (1,2), (1,4), (2,4), (3,1), (3,2), (4,2), (4,3), (4,4)\}.$
- 19. Define the function and types of functions with suitable examples.
- 20. List all possible functions $X = \{a, b, c\}$ to $Y = \{0, 1\}$ and indicate in each case whether the function is one to one, is onto and is one-one onto.
- 21. Let $f: R \to R$ and $g: R \to R$, where R is the set of real numbers. Find $f \circ g$ ang $g \circ f$, where $f(x) = x^2$ and g(x) = x + 4. State whether functions are injective, surjective or bijective.
- 22. Let $A = \{x : x \in R, \text{ and } -\pi/2 \le x \le \pi/2\}$, and $B = \{y : y \in R, \text{ and } -1 \le x \le 1\}$. Show that the function $f:A\to B$ such that $f(x)=\sin x$, for all $x\in A$ is one one onto. Also find the inverse function f^{-1} .
- 23. Let $f: X \to Y$ be an everywhere defined invertible function and A and B be arbitrary nonempty subsets of Y. Show that :
 - a) $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$, b) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
- 24. Draw a Venn diagram to represent the situation $A \subseteq C$ and $B \subseteq C$.
- 25. Determine the Hasse Diagram of the relation R
 - (a) on set $A = \{1, 2, 3, 4\}$ such that $R = \{(1, 1), (1, 2), (2, 2), (2, 4), (1, 3), (3, 3), (3, 4), (1, 4), (4, 4)\}$
 - (b) on set $A = \{1, 2, 3, 4, 5\}$ such that $R = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 4), (3, 5), (2, 2), (3, 5), (2, 2), (3, 5), (2, 2), (3, 5), (2, 2), (3, 5), (2, 2), (3, 5), (2, 2), (3, 3), (3, 4), (3, 5), (2, 2), (3, 4), (3, 5), (2, 2), (3, 4), (3, 5), (2, 4), (3, 5), (3,$ (3,3),(4,4),(5,5)
- 26. Find the transitive closure R by Warshall's Algorithm $A = \{\text{Set of positive integers} \le 10\}$ and $R = \{(a, b) \mid a \text{ divide by } b\}.$
- 27. Let R be the relation on the set $A = \{5, 6, 8, 10, 28, 36, 48\}$ and $R = \{(a, b) \mid a \text{ is a divisor of } b\}$. Draw Hasse diagram. Compare with digraph. Determine, whether R is equivalence relation.
- 28. For any $a, b \in L$, show that $\wedge (a \vee b) = a$ and $a \vee (a \wedge b) = a$.

29. If n be a positive integer and S_n be a set of all divisors of n. Let D denotes the relation of 'division'. Draw the diagrams of the lattices for :

(a)
$$n = 24$$
 (b) $n = 30$ (c) $n = 6$.

- 30. Elaborate the term isomorphic poset? Let $A = \{1, 2, 3, 4\}$ and \leq (Relation) be partial order of divisibility on A.
- 31. Show that whether the relation $(x, y) \in R$, if $x \ge y$ defined on the set of positive integer is a partial order relation.
- 32. Let $A = \{1, 2, 3, 4, \dots, 11\}$, be the poset whose Hasse diagram shown in the figure. Find the LUB and GLB of $B = \{6, 7, 10\}$ if they exist.

- 33. A partition of a positive integer m is a set of positive integers whose sum is m. Draw the diagram of the partitions of m, where m = 4, 5 and 6.
- 34. Prove that the set P(S), \subseteq) for any set S is a lattice.
- 35. If (L, \leq) is a lattice, then (L, \geq) is also a lattice.
- 36. Show that dual of a lattice is a lattice.
- 37. Show that every chain is a distributed lattice.
- 38. If $L(\cap, \cup)$ is a complimented distributed lattice, then the compliment of $a \in L$ is unique.
- 39. Show that if $D_{36} = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$ denote the set of the divisors of 36 ordered of divisibility, then $(D_{36}, 'l')$ is lattice.
- 40. Let $A = \{1, 2, 3, 4, 5, 6\}$ be ordered as mentioned in the figure :
 - (a) Find all the minimal and maximal elements of A.
 - (b) Does A have a first or last element?

* * * * * * * * All the Best * * * * * *