Class 14: RNAseq mini project

Bryn Baxter A69038039

Table of contents

Background	1
Data Import Tidy and verify data	
PCA quality control	4
DESeq analysis	5
Set up DESeq input object	5
Run DESeq	
Extract results	6
Add gene annotation	8
Save results	9
Pathway analysis	9

Background

The data for for hands-on session comes from GEO entry: GSE37704, which is associated with the following publication:

Trapnell C, Hendrickson DG, Sauvageau M, Goff L et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq". Nat Biotechnol 2013 Jan;31(1):46-53. PMID: 23222703

The authors report on differential analysis of lung fibroblasts in response to loss of the developmental transcription factor HOXA1.

Data Import

Reading in the counts and metadata

```
counts <- read.csv("GSE37704_featurecounts.csv", row.names=1)
metadata <- read.csv("GSE37704_metadata.csv")</pre>
```

Tidy and verify data

Q1. How many genes are in this dataset?

```
nrow(counts)
```

[1] 19808

Q2. How many control and knockdown experiments are there?

table(metadata\$condition)

```
control_sirna hoxa1_kd 3 3
```

Q3. Does the metadata match the countdata?

head(counts)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

colnames(counts)

```
[1] "length" "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370"
```

[7] "SRR493371"

metadata\$id

[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"

```
newcounts <- counts[,-1]
head(newcounts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

colnames(newcounts)==metadata\$id

[1] TRUE TRUE TRUE TRUE TRUE TRUE

Remove zero count genes

```
to.keep <- rowSums(newcounts)!=0
countData <- newcounts[to.keep, ]
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

PCA quality control

We can use prcomp() function.

```
pc <- prcomp( t(countData), scale=T)
summary(pc)</pre>
```

Importance of components:

```
PC1 PC2 PC3 PC4 PC5 PC6 Standard deviation 87.7211 73.3196 32.89604 31.15094 29.18417 7.373e-13 Proportion of Variance 0.4817 0.3365 0.06774 0.06074 0.05332 0.000e+00 Cumulative Proportion 0.4817 0.8182 0.88594 0.94668 1.00000 1.000e+00
```

Color by "control" = blue, "knockdown"=red

metadata\$condition

```
[1] "control_sirna" "control_sirna" "control_sirna" "hoxa1_kd"
```

[5] "hoxa1_kd" "hoxa1_kd"

```
mycols <- c(rep("blue",3), rep("red",3))
mycols</pre>
```

[1] "blue" "blue" "red" "red" "red"

```
library(ggplot2)

ggplot(pc$x)+
  aes(PC1, PC2)+
  geom_point(col=mycols)
```


DESeq analysis

```
library(DESeq2)
```

Set up DESeq input object

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

Run DESeq

dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

dds

class: DESeqDataSet

dim: 15975 6

metadata(1): version

assays(4): counts mu H cooks

rownames(15975): ENSG00000279457 ENSG00000187634 ... ENSG00000276345

ENSG00000271254

rowData names(22): baseMean baseVar ... deviance maxCooks colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371

colData names(3): id condition sizeFactor

Extract results

res=results(dds)
head(res)

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna

DataFrame with 6 rows and 6 columns

```
ENSG00000187634 183.2296
                              0.4264571 0.1402658
                                                    3.040350 2.36304e-03
ENSG00000188976 1651.1881
                             -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000187961 209.6379
                              0.7297556 0.1318599 5.534326 3.12428e-08
ENSG00000187583 47.2551
                              0.0405765 0.2718928 0.149237 8.81366e-01
ENSG00000187642 11.9798
                              0.5428105 0.5215598 1.040744 2.97994e-01
                      padj
                 <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
ENSG00000187642 4.03379e-01
```

#Volcano plot A plot of log2 fold change vs -log of adjusted p-value with custom colors

```
mycols <- rep("gray", nrow(res))
mycols[res$log2FoldChange>=+2] <- "blue"
mycols[res$log2FoldChange<=-2] <- "blue"
mycols[res$padj>=0.05] <- "gray"</pre>
```

```
ggplot(res)+
  aes(log2FoldChange, -log(padj))+
  geom_point(col=mycols)+
  geom_vline(xintercept = c(-2,2), col="red")+
  geom_hline(yintercept = -log(0.05), col="red")
```

Warning: Removed 1237 rows containing missing values or values outside the scale range (`geom_point()`).

Add gene annotation

We want to add gene SYMBOL and ENTREZID values to our results object.

```
library(AnnotationDbi)
library(org.Hs.eg.db)
```

columns(org.Hs.eg.db)

```
[1] "ACCNUM"
                     "ALIAS"
                                     "ENSEMBL"
                                                    "ENSEMBLPROT"
                                                                    "ENSEMBLTRANS"
 [6] "ENTREZID"
                     "ENZYME"
                                     "EVIDENCE"
                                                    "EVIDENCEALL"
                                                                    "GENENAME"
                     "GO"
                                                    "IPI"
[11] "GENETYPE"
                                     "GOALL"
                                                                    "MAP"
                     "ONTOLOGY"
                                     "ONTOLOGYALL"
                                                    "PATH"
                                                                    "PFAM"
[16] "OMIM"
[21] "PMID"
                     "PROSITE"
                                     "REFSEQ"
                                                    "SYMBOL"
                                                                    "UCSCKG"
[26] "UNIPROT"
```

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

Save results

```
write.csv(res, file="myresults.csv")
```

Pathway analysis

```
#|message: false
library(gage)
```

```
library(gageData)
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

```
##KEEG
```

```
data(kegg.sets.hs)
head(kegg.sets.hs, 1)
```

```
$`hsa00232 Caffeine metabolism`
[1] "10"  "1544" "1548" "1549" "1553" "7498" "9"
```

Make an input vector for gage() called foldchanges that has names() attribute set to ENTREZID.

```
foldchanges <- res$log2FoldChange
names(foldchanges) <- res$entrez</pre>
```

```
keggres <- gage(foldchanges, gsets=kegg.sets.hs)</pre>
```

```
attributes(keggres)
```

\$names

[1] "greater" "less" "stats"

```
head(keggres$less, 2)
```

```
p.geomean stat.mean p.val q.val
hsa04110 Cell cycle 8.995727e-06 -4.378644 8.995727e-06 0.001889103
hsa03030 DNA replication 9.424076e-05 -3.951803 9.424076e-05 0.009841047
set.size exp1
hsa04110 Cell cycle 121 8.995727e-06
hsa03030 DNA replication 36 9.424076e-05
```

```
pathview(foldchanges, pathway.id= "hsa04110" )
```

^{&#}x27;select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/Bryn Baxter/Documents/BIO213/Class 14

Info: Writing image file hsa04110.pathview.png

Figure 1: Cell cycle is affected

pathview(foldchanges, pathway.id= "hsa03030")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/Bryn Baxter/Documents/BIO213/Class 14

Info: Writing image file hsa03030.pathview.png

Figure 2: DNA replication is also affected

head(keggres\$greater, 2)

```
p.geomean stat.mean
\verb|hsa|04060 Cytokine-cytokine| receptor interaction 9.131044e-06 - 4.358967
hsa05323 Rheumatoid arthritis
                                                 1.809824e-04 3.666793
                                                        p.val
                                                                     q.val
hsa04060 Cytokine-cytokine receptor interaction 9.131044e-06 0.001917519
hsa05323 Rheumatoid arthritis
                                                 1.809824e-04 0.019003147
                                                 set.size
                                                                   exp1
hsa04060 Cytokine-cytokine receptor interaction
                                                      177 9.131044e-06
hsa05323 Rheumatoid arthritis
                                                       72 1.809824e-04
pathview(foldchanges, pathway.id= "hsa04060")
```

^{&#}x27;select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/Bryn Baxter/Documents/BIO213/Class 14

Info: Writing image file hsa04060.pathview.png

pathview(foldchanges, pathway.id= "hsa05323")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/Bryn Baxter/Documents/BIO213/Class 14

Info: Writing image file hsa05323.pathview.png

##GO Gene On-

tology

```
data(go.sets.hs)
data(go.subs.hs)

# Focus just on GO Biological Process (BP)
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets)
```

head(gobpres\$less)

```
p.geomean stat.mean
                                                                       p.val
GO:0048285 organelle fission
                                         1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                         2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.729553e-10 -6.695966 1.729553e-10
                                                q.val set.size
GO:0048285 organelle fission
                                         5.841698e-12
                                                           376 1.536227e-15
GO:0000280 nuclear division
                                         5.841698e-12
                                                           352 4.286961e-15
GO:0007067 mitosis
                                                           352 4.286961e-15
                                         5.841698e-12
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                           362 1.169934e-14
GO:0007059 chromosome segregation
                                         1.658603e-08
                                                           142 2.028624e-11
GO:0000236 mitotic prometaphase
                                                            84 1.729553e-10
                                         1.178402e-07
```

##Reactome

We can use reactome via R or via their fancy new website interface. The web interaface wants a set of ENTREZ id values for your genes of interest. Lets generate that.

```
inds <- abs(res$log2FoldChange)>=2 &res$padj<=0.05
top.genes <- res$entrez[inds]</pre>
```

write.table(top.genes, file="top_genes.txt", row.names=FALSE, col.names=FALSE, quote=FALSE)