A Quick Guide for the QZ Package

Wei-Chen Chen

pbdR Core Team

${\bf Contents}$

Acknowledgement														
Di	isclaimer	ii												
1.	Introduction	1												
2.	Methods													
	2.1. Generalized Eigenvalues for Pair Matrices	1												
	2.2. QZ Decomposition for Pair Matrices	1												
3.	Implementation	2												
	3. R and LAPACK Functions	2												
	3. Reording	2												
	3. For matlab Users	3												
4.	Data Example	4												
Re	eferences	16												

Acknowledgement

Wei-Chen Chen was supported in part by the project "Visual Data Exploration and Analysis of Ultra-large Climate Data" funded by U.S. DOE Office of Science under Contract No. DE-AC05-00OR22725.

Wei-Chen thanks Petteri Juvonen from JYU Finland for discussing and debugging on multiple complex/real **QZ** functions, so that the results can be consistent with those produced by Matlab.

Wei-Chen also thanks Brian D. Ripley, Kurt Hornik, and other members from R Code Team for helping on multiple package release issues.

Disclaimer

The findings and conclusions in this article have not been formally disseminated by the U.S. Department of Health & Human Services, U.S. Food and Drug Administration, nor Oak Ridge Institute for Science and Education. They should not be construed to represent any determination or policy of University, Agency, Administration and National Laboratory.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of any University, Agency, Administration and National Laboratory.

Warning: This document is written to explain the main functions of **QZ** package (Chen 2013), version 0.1-3. Every effort will be made to ensure future versions are consistent with these instructions, but features in later versions may not be explained in this document.

1. Introduction

This article is to explain the **QZ** package (Chen 2013), and is organized as the following. Section 2 introduces briefly background of generalized eigenvalues problem and QZ decomposition. Section 3 lists the main functions and detail Fortran functions of LAPACK library (Anderson *et al.* 1999).

2. Methods

Some details can be found on wikipedia website at

http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

for generalized eigenvalues, and at

http://en.wikipedia.org/wiki/Schur_decomposition

about QZ decomposition or generalized Schur form. The LAPACK (Anderson *et al.* 1999) also provides functions to solve these problems.

2.1. Generalized Eigenvalues for Pair Matrices

Suppose \boldsymbol{A} and \boldsymbol{B} are two $N \times N$ non-symmetric matrices which can be both in real or in complex. The goal is to find right generalized eigen vectors \boldsymbol{v} such that $\boldsymbol{A}\boldsymbol{v} = \lambda \boldsymbol{B}\boldsymbol{v}$, or left generalized eigen vectors \boldsymbol{u} such that $\boldsymbol{u}^H\boldsymbol{A} = \lambda \boldsymbol{u}^H\boldsymbol{B}$ where \boldsymbol{u}^H is the conjugate-transpose of \boldsymbol{u} . Also, λ is called generalized eigenvalues of \boldsymbol{A} and \boldsymbol{B} which obeys $\det(\boldsymbol{A} - \lambda \boldsymbol{B}) = 0$. Note that λ , \boldsymbol{u} , and \boldsymbol{v} may be complex even \boldsymbol{A} and \boldsymbol{B} are in real.

Suppose B is an identity matrix I, then the problem reduces to traditional eigenvalue problem. i.e. This is a special case.

2.2. QZ Decomposition for Pair Matrices

Suppose A and B are two $N \times N$ non-symmetric matrices which can be both in real or in complex. The QZ decomposition factorizes both matrices as

- $\pmb{A} = \pmb{Q} \pmb{S} \pmb{Z}^{ op}$ and $\pmb{B} = \pmb{Q} \pmb{T} \pmb{Z}^{ op}$ if \pmb{A} and \pmb{B} are real, or
- $A = QSZ^H$ and $B = QTZ^H$ if A and B are complex

where Q and Z are unitary and S and T are upper triangular. The unitary means $XX^H = I$ if X is complex or $XX^T = I$ if X is real where I is the identity matrix.

The QZ decomposition is also called generalized Schur decomposition where S and T are the Schur form of A and B. The generalized eigenvalues λ that solve the generalized eigenvalue problem $Ax = \lambda Bx$ where x is an unknown nonzero vector and $\lambda_i = S_{ii}/T_{ii}$.

Suppose B is an identity matrix I, then the problem reduces to fine Q such that $A = QSQ^{-1}$ for real A or $A = QSQ^{H}$ for complex A. i.e. This is a special case.

3. Implementation

Two main functions are $\mathtt{geigen}()$ for generalized eigenvalues, and $\mathtt{qz}()$ for QZ decomposition with reordering capability. Both functions are able to deal a single matrix A or a paired matrices (A,B) in both complex and real systems. Both functions are wrapper functions for several lower level R functions $\mathtt{qz}.*()$ which are also wrapper functions via .Call() for C and Fortran functions to LAPACK library version 3.4.2.

3.1. R and LAPACK Functions

In the **QZ** package, qz() will based on the data type of the input matrix A or the paired matrices (A, B) to select accordingly the warpper functions qz.*() as the feature of S3 method in R.

In R, one may still used the qz.*() individually if needed, or convert the data type as desired. For example, one may use as.complex() on the input real/double matrix \boldsymbol{A} or matrices $(\boldsymbol{A},\boldsymbol{B})$ to call the complex version of qz() as below

Use complex system via as.complex()

LAPACK library is internally incorporated in **QZ** including complex*16 and double precision for complex and real systems, respectively. To use internal LAPACK library of the **QZ**, one may add -configure-args="-enable-iqz" to R CMD INSTALL QZ_*.tar.gz when installing the **QZ** package. **QZ** also allows some functions of LAPACK and BLAS (Blackford *et al.* 2002) independently to the R's LAPACK and BLAS libraries when some functions are not available. Table 1 provides a detail lists for the qz.*() functions.

3.2. Reording

An extral MATLAB-like function ordqz() is also available to reordering generalized eigenvalues and QZ decomposition results. The function which is the combinations of qz() and qz.ztrsen()/qz.dtrsen() for specified ordering keywords in Table 2. The keywords lhp, rhp, udi, and udo are implemented as (or similar to) the way Matlab does. Additionally, the keywords *.fo are implemented to select finite (generalized) eigen values only. Note that select argument of qz() allows users to specify any order to group and reorder the decompositions.

		1 able 1. QZ	Tunctions	
Function	Wrapper	Main Input	System	Purpose
geigen()	qz.zgeev	A	Complex	Generalized eigenvalues
gergen()	qz.dgeev	$oldsymbol{A}$	Real	Generalized eigenvalues
	qz.zgees	A	Complex	QZ decomposition
qz()	qz.dgees	$oldsymbol{A}$	Real	&Z decomposition
qz()	qz.ztrsen	$oldsymbol{T},oldsymbol{Q}$	Complex	Reordering
	qz.dtrsen	$oldsymbol{T},oldsymbol{Q}$	Real	rteordering
geigen()	qz.zggev	(A,B)	Complex	Generalized eigenvalues
gergen()	qz.dggev	$(m{A},m{B})$	Real	Generalized eigenvalues
	qz.zgges	$(\boldsymbol{A}, \boldsymbol{B})$	Complex	QZ decomposition
qz()	qz.dgges	$(\boldsymbol{A}, \boldsymbol{B})$	Real	&Z decomposition
q2()	qz.ztgsen	(S,T),Q,Z	Complex	Reordering
	qz.dtgsen	$\mid (oldsymbol{S}, oldsymbol{T}), oldsymbol{Q}, oldsymbol{Z}$	Real	recordering

Table 1: \mathbf{QZ} functions

Table 2: The ordez() keyword for reording.

keyword	Purpose
lhp	Left-half $(real(E) < 0)$
rhp	Right-half (real(E) $>= 0$)
udi	Interior of unit disk $(abs(E) < 1)$
udo	Exterior of unit disk (abs(E) $>= 1$)
ref	Real eigenvalues first (top-left conner)
cef	Complex eigenvalues first (top-left conner)
lhp.fo	Left-half (real(E) < 0) and finite only
rhp.fo	Right-half (real(E) \geq 0) and finite only
udi.fo	Interior of unit disk $(abs(E) < 1)$ and finite only
udo.fo	Exterior of unit disk (abs(E) \geq = 1) and finite only

3.3. For Matlab Users

In Matlab, one may need to specify options for complex or real systems be used for obtaining the (generalized) eigenvalues and for constructing the QZ decomposition. Some Matlab versions may assume a "complex" system as the default regardless input types.

Some Matlab versions may need additional options to turn on "double precision" for the QZ decomposition. The error of the QZ decomposition (in terms of maximum modulus of whole matrix) may be around in the range of 1e-05 to 1e-06 where the modulus is $r = Mod(z) = sqrt(x^2 + y^2)$. Note that 1e-15 to 1e-16 should be expected if double precission is used correctly.

The notations used in Matlab also may not be followed or consistent as used in

- **QZ** in R,
- its depending LAPACK functions,

- general QZ notations in some textbooks, or
- Wikipedia webpage.

In newer Matlab, the documents say that [AA, BB, Q, Z] = qz(A, B) produces upper quasitriangular matrices AA and BB, and unitary matrices Q and Z such that Q * A * Z = AA and Q * B * Z = BB. Here, the Z in the Matlab notations are the conjugated versions of the QZ decomposition where $A = Q \times S \times Z^*$ and $B = Q \times T \times Z^*$. i.e. The Z in Matlab is actually Z^* in the general QZ notations. The AA and BB in Matlab are the same S and T in the general QZ notations.

4. Data Example

There are four demos for the \mathbf{QZ} package which are listed in Table 3

demo Purpose

ex1_geigen geigen() for double/complex single/paired matrices
ex2_qz qz() for double/complex single/paired matrices
ex3_ordqz ordqz() and arbiturary reordering
ex4_fda_geigen generalized eigen analysis of fda pacakge (Ramsay et al. 2013)

Table 3: The demos of **QZ** package.

There are also several datasets for **QZ** package to verify results which are listed in Table 4.

data Source http://www.nag.com/lapack-ex/node124.html exAB1 exAB2 http://www.nag.com/lapack-ex/node119.html exAB3 http://www.nag.com/numeric/fl/nagdoc_fl23/xhtml/F08/f08yuf.xml exAB4 http://www.nag.com/numeric/fl/nagdoc_fl23/xhtml/F08/f08yuf.xml exA1 http://www.nag.com/lapack-ex/node94.html http://www.nag.com/lapack-ex/node89.html exA2 http://www.nag.com/numeric/fl/nagdoc_fl23/xhtml/F08/f08quf.xml exA3 exA4 http://www.nag.com/numeric/fl/nagdoc_fl22/xhtml/F08/f08quf.xml

Table 4: The datasets of **QZ** package.

These demos can be obtained in R by the following.

QZ demo ex1_geigen

```
> demo(ex1_geigen, 'QZ')

demo(ex1_geigen)
---- ~~~~~~
```

```
Type <Return> to start:
> library(QZ, quiet = TRUE)
> ### http://www.nag.com/lapack-ex/node122.html
> (ret <- geigen(exAB1$A, exAB1$B))</pre>
ALPHA:
[1] 19.03-57.10i 11.88-29.70i 10.96- 3.65i 21.87-27.34i
[1] 6.344+0i 5.941+0i 3.654+0i 5.468+0i
U:
                [,1]
                                [,2]
                                                 [,3]
                                                                   [,4]
[1,]
    0.0358-0.1155i 0.0725-0.3001i 0.1650-0.0068i 0.01727-0.02542i
     0.2152+0.2357i -0.2139+0.7641i 0.0999-0.8330i -0.01045-0.09180i
[2,]
[3,] -0.2425+0.4271i 0.7520-0.2317i -0.9374-0.0626i -0.17518-0.82482i
     0.5658 - 0.4342i - 0.1782 - 0.8218i - 0.0529 + 0.1385i - 0.84361 - 0.01589i
V:
                [,1]
                                    [,2]
                                                   [,3]
                   [,4]
[1,] -0.8238-0.1762i
                      0.63974+0.360259i 0.9775+0.0225i
   -0.90623+0.093766i
[2,] -0.1530+0.0707i 0.00416-0.000547i 0.1591-0.1137i
   -0.00743+0.006875i
[3,] -0.0707-0.1530i 0.04021+0.022645i 0.1209-0.1537i
   0.03021-0.003126i
[4,] 0.1530-0.0707i -0.02264+0.040212i 0.1537+0.1209i
   -0.01459-0.140970i
> ### http://www.nag.com/lapack-ex/node117.html
> (ret <- geigen(exAB2$A, exAB2$B))</pre>
ALPHA:
[1] 3.801+0.000i 3.030+4.040i 1.563-2.084i 4.000+0.000i
BETA:
[1] 1.900 1.010 0.521 1.000
U:
                            [,2]
                                             [,3]
            [,1]
                                                           [,4]
    0.53333+0i 0.2171-0.1284i 0.2171+0.1284i -7.276e-17+0i
[1,]
[2,] -0.06667+0i 0.1744-0.1851i 0.1744+0.1851i -1.000e+00+0i
[3,] -1.00000+0i -0.7928+0.2072i -0.7928-0.2072i 1.000e+00+0i
[4,] 0.60000+0i 0.3912+0.0911i 0.3912-0.0911i -3.695e-16+0i
V:
            [,1]
                            [,2]
                                             [,3]
                                                         [,4]
[1,] 1.000000+0i -0.4398-0.5602i -0.4398+0.5602i -1.00000+0i
[2,] 0.005714+0i -0.0880-0.1120i -0.0880+0.1120i -0.01111+0i
[3,] 0.062857+0i -0.1424+0.0031i -0.1424-0.0031i 0.03333+0i
[4,] 0.062857+0i -0.1424+0.0031i -0.1424-0.0031i -0.15556+0i
```

```
> ### http://www.nag.com/lapack-ex/node92.html
> (ret <- geigen(exA1$A))</pre>
W:
[1] -6.000-7.000i -5.000+2.006i 7.998-0.996i 3.002-4.000i
U:
                [,1]
                                [,2]
                                                [,3]
                                                               [,4]
    0.8357+0.0000i -0.3510+0.1013i -0.1689+0.2595i 0.1099-0.2007i
[1,]
[2,] -0.0794+0.3372i -0.4035+0.4540i 0.6762+0.0000i 0.0336+0.2312i
     0.0917+0.3097i 0.6239+0.0000i 0.3032+0.5642i 0.0944-0.3947i
[3,]
[4,]
     0.0456-0.2741i -0.0816-0.3190i 0.1328+0.1376i 0.8534+0.0000i
V:
                [,1]
                                                [,3]
                                                                 [,4]
                                [,2]
[1,] 0.8457+0.0000i -0.3865+0.1732i -0.1730+0.2669i -0.0356-0.1782i
[2,] -0.0177+0.3036i -0.3539+0.4529i 0.6924+0.0000i 0.1264+0.2666i
     0.0875+0.3115i 0.6124+0.0000i 0.3324+0.4960i
                                                     0.0129-0.2966i
[3,]
[4,] -0.0561-0.2906i -0.0859-0.3284i 0.2504-0.0147i 0.8898+0.0000i
> ### http://www.nag.com/lapack-ex/node87.html
> (ret <- geigen(exA2$A))</pre>
W:
[1] 0.7995+0.0000i -0.0994+0.4008i -0.0994-0.4008i -0.1007+0.0000i
U:
            [,1]
                            [,2]
                                            [,3]
                                                       [,4]
[1,] -0.62447+0i 0.5330+0.0000i 0.5330+0.0000i 0.6641+0i
[2,] -0.59949+0i -0.2666+0.4041i -0.2666-0.4041i -0.1068+0i
    0.49992+0i 0.3455+0.3153i 0.3455-0.3153i 0.7293+0i
[4,] -0.02709+0i -0.2541-0.4451i -0.2541+0.4451i 0.1249+0i
٧:
            [,1]
                            [,2]
                                            [,3]
                                                      [,4]
[1,] -0.65509+0i -0.1933+0.2546i -0.1933-0.2546i 0.1253+0i
[2,] -0.52363+0i 0.2519-0.5224i 0.2519+0.5224i 0.3320+0i
[3,]
    0.53622+0i 0.0972-0.3084i 0.0972+0.3084i 0.5938+0i
[4,] -0.09561+0i 0.6760+0.0000i 0.6760+0.0000i 0.7221+0i
```

$QZ demo ex2_qz$

```
> demo(ex2_qz, 'QZ')

demo(ex2_qz)
---- ~~~~~

Type <Return> to start :

> library(QZ, quiet = TRUE)

> ### http://www.nag.com/lapack-ex/node124.html
> (ret <- qz(exAB1$A, exAB1$B))
ALPHA:</pre>
```

```
[1] 19.03-57.10i 11.88-29.70i 10.96- 3.65i 21.87-27.34i
BETA:
[1] 6.344+0i 5.941+0i 3.654+0i 5.468+0i
S:
                         [,2]
                                       [,3]
            [,1]
[1,] 19.03-57.1i 53.59-89.82i -81.31-63.23i 106.66-44.79i
    0.00+ 0.0i 11.88-29.70i 3.56+27.63i -0.67-16.42i
[2,]
    0.00+ 0.0i 0.00+ 0.00i 10.96- 3.65i -25.02- 8.20i
[3,]
    0.00+ 0.0i 0.00+ 0.00i
[4,]
                              0.00+ 0.00i 21.87-27.34i
T:
                                                  [,4]
         [,1]
                      [,2]
                                    [,3]
[1,] 6.344+0i 3.399+0.712i -0.515-2.382i 6.582+2.430i
[2,] 0.000+0i 5.941+0.000i -2.448-0.343i 5.739-0.702i
[3,] 0.000+0i 0.000+0.000i 3.654+0.000i -1.410-3.933i
[4,] 0.000+0i 0.000+0.000i 0.000+0.000i 5.468+0.000i
Q:
                [,1]
                                [,2]
                                                [,3]
                                                                  [,4]
[1,] -0.3347+0.7387i 0.2872-0.4789i 0.1725+0.0093i 0.01443-0.02124i
[2,] -0.1277+0.2493i -0.0282+0.4999i 0.1541-0.8008i -0.00873-0.07670i
[3,] -0.3557+0.0396i -0.4615-0.0822i -0.3939+0.0258i -0.14637-0.68917i
[4,] -0.0126-0.3682i 0.1508-0.4417i 0.1517-0.3555i -0.70486-0.01328i
Z:
                [,1]
                                                  [,3]
                                [,2]
                                    [,4]
[1,] -0.9240-0.1977i 0.2460+0.2090i -0.00543+0.05421i
   0.000e+00+0.000e+00i
[2,] -0.1716+0.0793i -0.5943+0.0905i 0.74673-0.21271i
   -1.092e-16-3.690e-16i
[3,] -0.0793-0.1716i 0.0943-0.5082i 0.01020-0.44383i
   7.034e-01-7.277e-02i
[4,] 0.1716-0.0793i 0.5082+0.0943i 0.44383+0.01020i
   -7.277e-02-7.034e-01i
> ### http://www.nag.com/lapack-ex/node119.html
> (ret <- qz(exAB2$A, exAB2$B))
ALPHA:
[1] 3.801+0.000i 3.030+4.040i 1.563-2.084i 4.000+0.000i
BETA:
[1] 1.900 1.010 0.521 1.000
                     [,3]
                             [,4]
      [,1] \quad [,2]
[1,] 3.801 31.326 -61.485 -66.836
[2,] 0.000
           3.351
                   7.074
                            6.692
[3,] 0.000 -1.192
                    1.410
                            4.379
[4,] 0.000 0.000
                    0.000
                            4.000
T:
     [,1]
           [,2]
                    [,3]
                           [,4]
```

```
[1,]
     1.9 -1.078 -5.6252 -9.987
[2,]
      0.0
          1.176
                 0.0000
                          1.751
          0.000
                 0.4474
                         1.090
[3,]
     0.0
[4,]
     0.0 0.000 0.0000
                         1.000
Q:
       [,1]
                [,2]
                        [,3]
                                   [, 4]
[1,] 0.4642 0.81159 0.3547 -5.145e-17
[2,] 0.5002 -0.06975 -0.4950 -7.071e-01
[3,] 0.5002 -0.06975 -0.4950 7.071e-01
[4,] 0.5331 -0.57585 0.6198 -2.613e-16
Z:
                  [,2]
                           [,3]
         [,1]
                                      [, 4]
[1,] 0.996056 0.08183 -0.03428 0.000e+00
[2,] 0.005692 -0.44454 -0.89574 5.145e-17
[3,] 0.062609 -0.63075 0.31343 7.071e-01
[4,] 0.062609 -0.63075 0.31343 -7.071e-01
> ### http://www.nag.com/lapack-ex/node94.html
> (ret <- qz(exA1$A))
W:
[1] -6.000-7.000i -5.000+2.006i 7.998-0.996i 3.002-4.000i
T:
                                     [,3]
      [,1]
                      [,2]
                                                     [,4]
[1,] -6-7i 0.1618+0.4896i 0.4761-0.1946i 0.8633-0.3014i
    0+0i -5.0000+2.0060i 0.6907+0.2115i 0.2281+0.1328i
[2,]
[3,]
     0+0i 0.0000+0.0000i 7.9982-0.9964i -1.0155+0.3626i
[4,] 0+0i 0.0000+0.0000i 0.0000+0.0000i 3.0023-3.9998i
Q:
                [,1]
                                [,2]
                                                [,3]
                                                                [,4]
[1,] -0.5312-0.6581i -0.0799-0.3774i -0.0935-0.2736i 0.1869-0.1321i
[2,] 0.2474-0.1769i -0.4108-0.4021i -0.4015+0.6010i -0.0713+0.2225i
[3,] 0.1874-0.2637i -0.0937+0.6241i -0.5752-0.0389i 0.2581-0.3132i
[4,] -0.1909+0.2262i 0.3457-0.0537i -0.1537+0.1951i 0.7668+0.3747i
> ### http://www.nag.com/lapack-ex/node89.html
> (ret <- qz(exA2$A))
W:
[1] 0.7995+0.0000i -0.0994+0.4008i -0.0994-0.4008i -0.1007+0.0000i
T:
                          [,3]
       [,1]
                 [,2]
                                   [,4]
[1,] 0.7995 0.006037 -0.11445 -0.03357
[2,] 0.0000 -0.099412 -0.64834 -0.20258
[3,] 0.0000 0.247764 -0.09941 -0.34742
[4,] 0.0000 0.000000 0.00000 -0.10066
Q:
         [,1]
                 [,2]
                         [,3]
                                 [,4]
[1,] -0.65509 -0.3450 -0.1037 0.6641
```

QZ demo ex3_ordqz

```
> demo(ex3_ordqz, 'QZ')
        demo(ex3_ordqz)
Type <Return> to start :
> # Reordering eigenvalues
> library(QZ, quiet = TRUE)
> select <- c(TRUE, FALSE, FALSE, TRUE)
> (ret <- qz(exAB1$A, exAB1$B, select = select))</pre>
[1] 19.033-57.099i 17.897-22.371i 18.175-45.437i 8.757- 2.919i
BETA:
[1] 6.344+0i 4.474+0i 9.087+0i 2.919+0i
S:
            [,1]
                          [,2]
                                            [,3]
[1,] 19.03-57.1i 0.07-93.12i -128.250- 6.366i -98.392+ 9.509i
     0.00+ 0.0i 17.90-22.37i 0.581- 4.575i 6.972+17.755i 0.00+ 0.0i 0.00+ 0.00i 18.175-45.437i -19.992- 6.063i
     0.00+ 0.0i 17.90-22.37i
[2,]
[3,]
[4,] 0.00+ 0.0i 0.00+ 0.00i 0.000+ 0.000i 8.757- 2.919i
T:
                       [,2]
                                     [,3]
         [,1]
[1,] 6.344+0i 1.427-1.821i -4.137-6.323i -1.783-1.262i
[2,] 0.000+0i 4.474+0.000i -0.003-3.720i -2.992-0.076i
[3,] 0.000+0i 0.000+0.000i 9.087+0.000i -0.777-1.003i
[4,] 0.000+0i 0.000+0.000i 0.000+0.000i 2.919+0.000i
Q:
                                                                     [,4]
                 [,1]
                                 [,2]
                                                  [,3]
[1,] -0.3347+0.7387i 0.0511-0.3524i -0.2997+0.3302i 0.08899-0.09359i
[2,] -0.1277+0.2493i 0.3749+0.5365i 0.2504+0.0137i -0.39709-0.52213i
[3,] -0.3557+0.0396i -0.4717+0.2407i 0.0591+0.2199i -0.56045+0.47485i
[4,] -0.0126-0.3682i 0.4020-0.0522i 0.1201+0.8198i 0.04567+0.10657i
Z:
                 [,1]
                                 [,2]
                                                    [,3]
                    [,4]
[1,] -0.9240-0.1977i 0.2234+0.1906i -0.08922-0.09991i
   0.0338+0.04268i
[2,] -0.1716+0.0793i -0.5288+0.0772i 0.27684-0.00803i
```

```
0.3880-0.67191i
[3,] -0.0793-0.1716i -0.1722-0.6151i -0.57435-0.20679i
   -0.2753-0.32832i
[4,] 0.1716-0.0793i 0.3215+0.3418i -0.58658+0.43433i
   0.3229-0.32726i
> ### http://www.nag.com/lapack-ex/node119.html
> select <- c(TRUE, FALSE, FALSE, TRUE)
> (ret <- qz(exAB2$A, exAB2$B, select = select))</pre>
ALPHA:
[1] 3.801+0.000i 9.203+0.000i 0.857+1.143i 0.857-1.143i
BETA:
[1] 1.9005 2.3008 0.2857 0.2857
              [,2]
                      [,3]
      [,1]
                              [,4]
[1,] 3.801 -69.451 50.3135 -43.288
           9.203 -0.2001
[2,] 0.000
                           5.988
[3,] 0.000
           0.000 1.4279
                            4.445
[4,] 0.000
           0.000 0.9019
                           -1.196
T:
     [,1]
            [,2]
                    [,3]
                            [,4]
[1,]
     1.9 -10.228 0.8658 -5.2134
     0.0 2.301 0.7915 0.4262
[2,]
[3,]
     0.0 0.000 0.8101 0.0000
[4,]
     0.0
          0.000 0.0000 -0.2823
Q:
                [,2]
                         [,3]
                                [,4]
       [,1]
[1,] 0.4642 0.78862 0.29148 -0.2786
[2,] 0.5002 -0.59864 0.56379 -0.2713
[3,] 0.5002 0.01541 -0.01074 0.8657
[4,] 0.5331 -0.13952 -0.77270 -0.3151
Z:
                  [,2]
         [,1]
                           [,3]
                                     [,4]
[1,] 0.996056 -0.00140 0.08868 -0.002602
[2,] 0.005692 -0.04037 -0.09376 -0.994760
[3,] 0.062609 0.71938 -0.69084 0.036273
[4,] 0.062609 -0.69344 -0.71140 0.095554
> (ret <- ordqz(exAB2$A, exAB2$B, keyword = "ref"))</pre>
ALPHA:
[1] 3.801+0.000i 9.203+0.000i 0.857+1.143i 0.857-1.143i
[1] 1.9005 2.3008 0.2857 0.2857
S:
      [,1]
             [,2]
                      [,3]
                              [,4]
```

```
[1,] 3.801 -69.451 50.3135 -43.288
[2,] 0.000
           9.203 -0.2001
                          5.988
[3,] 0.000
            0.000 1.4279
                           4.445
[4,] 0.000 0.000 0.9019 -1.196
T:
           [,2] [,3]
     [,1]
                         [, 4]
[1,]
    1.9 -10.228 0.8658 -5.2134
    0.0
          2.301 0.7915 0.4262
[2,]
    0.0 0.000 0.8101 0.0000
[3,]
[4,] 0.0 0.000 0.0000 -0.2823
Q:
      [,1]
               [,2]
                        [,3]
                              [, 4]
[1,] 0.4642 0.78862 0.29148 -0.2786
[2,] 0.5002 -0.59864 0.56379 -0.2713
[3,] 0.5002 0.01541 -0.01074 0.8657
[4,] 0.5331 -0.13952 -0.77270 -0.3151
Z:
        [,1]
                 [,2]
                          [,3]
[1,] 0.996056 -0.00140 0.08868 -0.002602
[2,] 0.005692 -0.04037 -0.09376 -0.994760
[3,] 0.062609 0.71938 -0.69084 0.036273
[4,] 0.062609 -0.69344 -0.71140 0.095554
> (ret <- ordqz(exAB2$A, exAB2$B, keyword = "cef"))</pre>
ALPHA:
[1] 0.8571+1.143i 0.8571-1.143i 0.6172+0.000i 4.0000+0.000i
BETA:
[1] 0.2857 0.2857 0.3086 1.0000
       [,1] [,2]
                       [,3]
                              [, 4]
[1,] -38.566 41.488 37.2809 65.427
    6.827 -5.244 -12.9545 -15.482
[2,]
[3,]
      0.000 0.000
                   0.6172 3.252
      0.000 0.000
                     0.0000
[4,]
                              4.000
T:
      [,1]
            [,2]
                   [,3]
                          [,4]
[1,] -3.368 0.0000 4.9228 9.696
[2,] 0.000 0.9621 -1.1839 -2.988
[3,]
    0.000 0.0000 0.3086 1.027
[4,] 0.000 0.0000 0.0000 1.000
Q:
                      [,3]
       [,1]
                [,2]
[1,] -0.5521 -0.67876 0.4842 -5.145e-17
[2,] -0.5106 0.06994 -0.4842 -7.071e-01
[3,] -0.5106 0.06994 -0.4842 7.071e-01
[4,] -0.4169 0.72767 0.5447 -2.613e-16
```

```
Z:
                [,2]
        [,1]
                           [,3]
                                      [,4]
     0.8775 0.43756 1.961e-01 0.000e+00
[1,]
    0.1755 0.08751 -9.806e-01 5.145e-17
[2,]
[3,] -0.3155 0.63281 -2.387e-15 7.071e-01
[4,] -0.3155 0.63281 -2.498e-15 -7.071e-01
> select <- c(TRUE, FALSE, FALSE, TRUE)
> (ret <- qz(exA1$A, select = select))</pre>
W:
[1] -6.000-7.000i 3.002-4.000i -5.000+2.006i 7.998-0.996i
T:
                     [,2]
                                     [,3]
                                                      [,4]
      [,1]
[1,] -6-7i 0.3254-0.8854i 0.5349-0.0829i 0.0083+0.4285i
    0+0i 3.0023-3.9998i 0.1669+0.2948i -0.2477-1.0389i
[2,]
     0+0i 0.0000+0.0000i -5.0000+2.0060i -0.5188-0.4792i
[3,]
[4,] 0+0i 0.0000+0.0000i 0.0000+0.0000i 7.9982-0.9964i
Q:
                [,1]
                                [,2]
                                                 [,3]
                                                                 [,4]
[1,] -0.5312-0.6581i -0.0184-0.2122i -0.3775+0.0311i 0.3003+0.0754i
    0.2474-0.1769i 0.2150+0.2457i -0.4610+0.3622i -0.2198-0.6395i
[2,]
[3,]
     0.1874-0.2637i -0.0469-0.2699i 0.6166+0.1728i 0.4350-0.4701i
[4,] -0.1909+0.2262i 0.8352-0.2747i -0.0033-0.3207i 0.0869-0.1703i
> ### http://www.nag.com/lapack-ex/node89.html
> select <- c(TRUE, FALSE, FALSE, TRUE)
> (ret <- qz(exA2$A, select = select))</pre>
W:
[1] 0.7995+0.0000i -0.1007+0.0000i -0.0994+0.4008i -0.0994-0.4008i
T:
       [,1]
                 [,2]
                          [,3]
                                   [,4]
[1,] 0.7995 -0.005914 -0.07508 -0.09268
[2,] 0.0000 -0.100657 0.39367 0.35692
[3,] 0.0000 0.000000 -0.09941 -0.51282
[4,] 0.0000 0.000000 0.31324 -0.09941
Q:
         [,1]
                 [,2]
                          [,3]
                                   [, 4]
[1,] -0.65509 -0.1210 -0.50323 0.55043
[2,] -0.52363 -0.3286 0.78570 0.02287
[3,]
     0.53622 -0.5974
                      0.09038 0.58945
[4,] -0.09561 -0.7215 -0.34825 -0.59081
> (ret <- ordqz(exA2$A, keyword = "lhp"))</pre>
W:
[1] -0.0994+0.4008i -0.0994-0.4008i -0.1007+0.0000i 0.7995+0.0000i
```

```
T:
         [,1] [,2]
                       [,3]
                                   [, 4]
[1,] -0.09941 0.24919 0.3491 0.089393
[2,] -0.64462 -0.09941 0.2049 0.090443
[3,] 0.00000 0.00000 -0.1007 0.009467
[4,] 0.00000 0.00000 0.0000 0.799482
Q:
        [,1]
               [,2]
                       [,3]
                                [, 4]
[1,] -0.1733 -0.3607 -0.6707 -0.62447
[2,] 0.5173 0.6024 0.1005 -0.59949
[3,] 0.3629 0.3067 -0.7241 0.49992
[4,] -0.7554 0.6426 -0.1252 -0.02709
> (ret <- ordqz(exA2$A, keyword = "rhp"))</pre>
W:
[1] 0.7995+0.0000i -0.0994+0.4008i -0.0994-0.4008i -0.1007+0.0000i
T:
       [,1]
                 [,2]
                          [,3]
                                   [,4]
[1,] 0.7995 0.006037 -0.11445 -0.03357
[2,] 0.0000 -0.099412 -0.64834 -0.20258
[3,] 0.0000 0.247764 -0.09941 -0.34742
[4,] 0.0000 0.000000 0.00000 -0.10066
Q:
                       [,3]
         [,1]
                [,2]
                                [,4]
[1,] -0.65509 -0.3450 -0.1037 0.6641
[2,] -0.52363  0.6141  0.5807 -0.1068
[3,] 0.53622 0.2935 0.3073 0.7293
[4,] -0.09561 0.6463 -0.7467 0.1249
> (ret <- ordgz(exA2$A, keyword = "ref"))</pre>
W:
[1] 0.7995+0.0000i -0.1007+0.0000i -0.0994+0.4008i -0.0994-0.4008i
T:
                          [,3]
       [,1]
                 [,2]
                                   [,4]
[1,] 0.7995 -0.005914 -0.07508 -0.09268
[2,] 0.0000 -0.100657 0.39367 0.35692
[3,] 0.0000 0.000000 -0.09941 -0.51282
[4,] 0.0000 0.000000 0.31324 -0.09941
Q:
         [,1]
               [,2]
                          [,3]
                                   [,4]
[1,] -0.65509 -0.1210 -0.50323 0.55043
[2,] -0.52363 -0.3286 0.78570 0.02287
     0.53622 -0.5974 0.09038 0.58945
[3,]
[4,] -0.09561 -0.7215 -0.34825 -0.59081
> (ret <- ordqz(exA2$A, keyword = "cef"))</pre>
W:
[1] -0.0994+0.4008i -0.0994-0.4008i 0.7995+0.0000i -0.1007+0.0000i
```

```
T:
        [,1]
              [,2] [,3]
                                  [,4]
[1,] -0.09941 0.24919 0.09306 -0.348147
[2,] -0.64462 -0.09941 0.09259 -0.203889
    0.00000 0.00000 0.79948 0.009467
[4,]
    0.00000 0.00000 0.00000 -0.100657
Q:
       [,1]
              [,2]
                      [,3]
                              [, 4]
[1,] -0.1733 -0.3607 -0.6315 0.6641
[2,] 0.5173 0.6024 -0.5984 -0.1068
[3,] 0.3629 0.3067 0.4923 0.7293
[4,] -0.7554 0.6426 -0.0284 0.1249
```

QZ demo ex4_fda_geigen

```
> demo(ex4_fda_geigen, 'QZ')
        demo(ex4_fda_geigen)
        _____
Type <Return> to start :
> library(QZ, quiet = TRUE)
> ### Generate Data
> set.seed(123)
> X <- matrix(rnorm(500), nrow = 25)</pre>
> X <- t(X) %*% X
> A <- X[1:8, 9:20]
> B <- X[1:8, 1:8]
> C <- X[9:20, 9:20]
> ### Perform generalized eigenanalysis
> ret.qz <- fda.geigen(A, B, C)</pre>
> ret.fda <- fda::geigen(A, B, C)</pre>
> ### Verify
> round(abs(ret.qz$values - ret.fda$values))
[1] 0 0 0 0 0 0 0 0
> round(abs(ret.qz$Lmat - ret.fda$Lmat))
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
                    0 0 0 0
      0 0 0
            0
[2,]
       0
                 0
                      0
                           0
                                0
                                          0
```

	[3,]	0	0	0	0	0	0	0	0
	[4,]	0	0	0	0	0	0	0	0
	[5,]	0	0	0	0	0	0	0	0
	[6,]	0	0	0	0	0	0	0	0
	[7,]	0	0	0	0	0	0	0	0
	[8,]	0	0	0	0	0	0	0	0
> round(abs(ret.qz\$Mmat -			ret.	ret.fda\$Mmat))					
				[,3]					[,8]
	[1,]	0	0	0	0	0	0	0	0
	[2,]	0	0	0	0	0	0	0	0
	[3,]	0	0	0	0	0	0	0	0
	[4,]	0	0	0	0	0	0	0	0
	[5,]	0	0	0	0	0	0	0	0
	[6,]	0	0	0	0	0	0	0	0
	[7,]	0	0	0	0	0	0	0	0
	[8,]	0	0	0	0	0	0	0	0
	[9,]	0	0	0	0	0	0	0	0
	[10,]	0	0	0	0	0	0	0	0
	[11,]	0	0	0	0	0	0	0	0
	[12,]	0	0	0	0	0	0	0	0

References

- Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999). *LAPACK Users' Guide*. Third edition. Society for Industrial and Applied Mathematics, Philadelphia, PA. ISBN 0-89871-447-8 (paperback).
- Blackford L, Demmel J, Dongarra J, Duff I, Hammarling S, Henry G, Heroux M, Kaufman L, Lumsdaine A, Petitet A, Pozo R, Remington K, Whaley R (2002). "An Updated Set of Basic Linear Algebra Subprograms (BLAS)." *ACM Trans. Math. Soft.*, **28**, 135–151. URL http://www.netlib.org/blas/.
- Chen WC (2013). "QZ: Generalized Eigenvalues and QZ Decomposition." R Package, URL http://cran.r-project.org/package=QZ.
- Ramsay J, Wickham H, Graves S, Hooker G (2013). "fda: Functional Data Analysis." R Package, URL http://cran.r-project.org/package=fda.