Examen final "Géométrie et nombres complexes", L3 maths

Janvier 2021

Vous traiterez au choix : exo 1 + exo 2 OU exo 1 + exo 3.

Exercice 1

Soit $\mathbb C$ l'ensemble des nombres complexes, on admet que les trois sous-ensembles ci-dessous sont des groupes pour la multiplication des nombres complexes :

• \mathbb{C}^* : l'ensemble des nombres complexes non-nuls,

• \mathbb{R}^{*+} : l'ensemble des nombres réels strictement positifs,

• S^1 : l'ensemble des nombres complexes de module égal à 1.

On rappelle que si G et H sont deux groupes alors $G \times H$ est aussi un groupe pour la loi interne (g,h).(g',h')=(gg',hh').

Question 1. Montrer que l'application ci-dessous est un morphisme de groupes

.

$$mult: \begin{cases} \mathbb{R}^{*+} \times S^1 \to \mathbb{C}^* \\ (r, u) \mapsto r.u \end{cases}$$

montrer que ce morphisme est un isomorphisme. Déterminer l'image réciproque du nombre complexe 1+i par cette application.

 ${\bf Question~2.} \quad {\bf Montrer~que~l'application~ci-dessous~est~un~morphisme~de~groupes}$

:

$$m: \begin{cases} \mathbb{C}^* \to \mathbb{R}^{*+} \\ z \mapsto |z| \end{cases}$$

Quellle est l'image réciproque du nombre réel 2 par cette application, cet ensemble est-il un sous-groupe de \mathbb{C}^* ?

Quelle est l'image réciproque de \mathbb{Q}^{*+} par cette application, montrer qu'il s'agit d'un sous-groupe de \mathbb{C}^* .

Appliquer le 1er théorème d'isomorphie à m afin de trouver une relation entre $\mathbb{C}^*, \mathbb{R}^{*+}, S^1$.

Question 3. Soit θ un angle (défini modulo 2π) et z_0 un nombre complexe donner l'expression de la rotation de centre M_0 point du plan d'affixe z_0 et d'angle θ sous la forme d'une similitude directe $z\mapsto az+b$.

Question 4. A quelles conditions sur les nombres complexes a et b la similitude directe $\phi(z) = az + b$ est-elle une rotation?

Question 5. A quelles conditions sur les nombres complexes a et b la similitude directe $\phi(z) = az + b$ est-elle une homothétie?

Question 6. L'ensemble des rotations du plan (angle et centre quelconques) est-il un sous-groupe du groupe des similitudes directes?

Question 7. Montrer que le sous-ensemble

$$\mathcal{R} = \{ z \mapsto e^{i\theta} z + b \}$$

des similitudes directes forme un sous-groupe distingué. Ce sous-groupe est-il abélien?

Question 8. Montrer que l'application $\psi : \mathcal{R} \to S^1$ donnée par $\psi(z \mapsto e^{i\theta}z + b) = e^{i\theta}$ est un morphisme de groupe surjectif, vous déterminerez son noyau. Puis vous appliquerez le 1er théorème d'isomorphie à ψ .

Question 9. Montrer que les rotations et les homothéties engendrent le groupe des similitudes directes.

Exercice 2.

Question 1. Donner l'expression analytique de l'inversion par rapport au cercle C de rayon 2 et de centre A=1+i.

Question 2. Soient C_1 et C_2 deux cercles de rayons respectifs R_1 et R_2 et de même centre A=3+2i déterminer la nature de la composition de $i_1\circ i_2$ où i_1 est l'inversion par rapport à C_1 et i_2 est l'inversion par rapport à i_2 .

Question 3. Soit i l'inversion par rapport au cercle C' de centre O = 0 + i0 et de rayon 2, déterminer l'image par l'inversion i de la droite d'équation x = 0 et du cercle C" de centre A = 2 et de rayon 2.

Exercice 3.

Question 1. Montrer que si q est un quaternion imaginaire pur, c'est-à-dire si q=a.i+b.j+c.k alors q^2 est un nombre réel négatif. La réciproque de ce résultat est-elle vraie? Que peut-on dire sur q un quaternion quelconque si q^2 est un réel positif?

Question 2. On rapelle que le groupe des quaternions de norme 1 agit par conjugaison sur les quaternions imaginaires purs, on considère l'action induite par le quaternion $w=\frac{\sqrt{2}}{2}i+\frac{\sqrt{2}}{2}j$:

$$q \mapsto w.q.w^{-1}.$$

En identifiant les quaternions imaginaires purs avec \mathbb{R}^3 et en considérant la base $\{i,j,k\}$ vous déterminerez la matrice de l'application $q\mapsto wqw^{-1}$ dans cette base et donnerez la nature de cette transformation de l'espace.