MCBM022-23 Introdução aos Processos Estocásticos

Jair Donadelli (sala 546, torre 2, bloco A)

email jair.donadelli@ufabc.edu.br

Cronograma (tentativa)

Avaliação

Substitutiva e Recuperação

Atendimento

Nessa disciplina vamos estudar os conceitos fundamentais de cadeias de Markov em tempo discreto e contínuo, martingales e teoria da renovação, com foco em suas propriedades, aplicações em modelagem e demonstrações teóricas. Calcular probabilidades de transição, retorno e limites, além de resolver e modelar situações-problema envolvendo esses temas.

onde: Seg. 21-23h; Qui. 19-21h) na sala A-114-0

TPEI 4-0-0-4 RECOMENDAÇÃO: Álgebra Linear; Cálculo de Probabilidade

Atenção: todo comunicado do professor para os alunos será feito via Siga, portanto, atente-se ao seu endereço de email dessa plataforma. Não use o Siga para se comunicar com o professor, envie email para o endereço acima.

EMENTA Cadeias de Markov discretas e comportamento assintótico: passeios aleatórios, processo de ramificação. Processos de Poisson. Cadeias de Markov em tempo contínuo. Processos de renovação. Martingales. Introdução ao movimento browniano.

BIBLIOGRAFIA BÁSICA

ROSS, Sheldon M. *Introduction to probability models*. 10. ed. Burlington: Academic Press, 2010. xv, 784 p. ISBN 9780123756862.

DURRETT, Richard. *Essentials of stochastic processes*. New York: Springer, 1999. vi, 281 p. (Springer texts in statistics). ISBN 9780387988368.

HAIGH, John. *Probability models*. Falmer: Springer, 2002. viii, 256 p. (Springer undergraduate mathematics). ISBN 1852334312.

BIBLIOGRAFIA COMPLEMENTAR

GRIMMETT, Geoffrey; STIRZAKER, David. *Probability and random processes*. 3. ed. Oxford; New York: Oxford University Press, 2001. xii, 596 p. ISBN 9780198572220.

BHAT, U. Narayan; MILLER, Gregory K. *Elements of applied stochastic processes*. 3. ed. Hoboken: Wiley Publishing, 2002. xi, 461 p. (Wiley series in probability and statistics). ISBN 9780471414421.

TAYLOR, Howard M.; KARLIN, Samuel. *An introduction to stochastic modeling*. 3. ed. San Diego: Academic Press, 1998. xi, 631 p. ISBN 9780126848878.

RESNICK, Sidney I. *Adventures in stochastic processes*. Boston: Birkhäuser, 1992. xii, 626 p. ISBN 9780817635916.

MATERIAL BIBLIOGRÁFICO COMPLEMENTAR

<u>Probability, Mathematical Statistics, Stochastic Processes</u>

<u>Finite Markov Chains and Algorithmic Applications</u>

Markov Chains and Mixing Times

Brownian Motion

Cronograma (tentativa)

Semana e Tema	Objetivos	Tópicos	Referências
Semana 1	 - Apresentação da disciplina - Compreender o conceito de processo estocástico. 	 - Plano de ensino - Conceitos de Probabilidade - Espaço de estados, tempo discreto vs. contínuo. 	<u>Lista revisão de</u> <u>probabilidade</u>
Semana 2 – Introdução a Processos Estocásticos e Cadeias de Markov Discretas	- Definir formalmente cadeia de Markov em tempo discreto Representar cadeias por matrizes de transição.	- Propriedade de Markov e homogeneidade no tempo Matriz de transição P , distribuição inicial e evolução $\pi^{(n)}=\pi^{(0)}P^n$.	Ross, Cap. 4.1– 4.2. G&S (Grimmet & Stirzaker), Cap. 6.1–6.2.
Semana 3 – Classificação de Estados e Passeios Aleatórios	 Classificar estados: acessibilidade, comunicação, absorção. Estudar passeios aleatórios como exemplo central. 	 - Acessibilidade, comunicação, classes fechadas, estados absorventes. - Periodicidade e aperiocidade. - Passeio aleatório simples em Z e ciclos finitos. 	Ross, Cap. 4.3. G&S, Cap. 6.3– 6.5.
Semana 4 – Distribuições Invariantes e Convergência	 Calcular distribuições estacionárias. Entender condições para existência e unicidade. Estudar convergência em cadeias finitas. 	- Definição: $\pi P = \pi$ Cadeias irreducíveis e aperiódicas Teorema ergódico (caso finito).	Ross, Cap. 4.4. G&S, Cap. 6.6– 6.8.

Semana e Tema	Objetivos	Tópicos	Referências			
Semana 5 – Processos de Ramificação	 Definir e analisar processo de Galton- Watson. Usar funções geradoras para probabilidade de extinção. 	 Definição e árvore de descendência. Funções geradoras; regimes subcrítico, crítico e supercrítico. 	Ross, Cap. 4.7. G&S, Cap. 6.9.			
Semana 6 – Processos de Poisson	 Definir e caracterizar processo de Poisson. Relacionar chegadas com tempos exponenciais. 	 Incrementos independentes e estacionários. Distribuição de contagem (Poisson). Distribuição de tempos (exponencial). Superposição e divisão. 	Ross, Cap. 5.1– 5.3. G&S, Cap. 6.10.			
Semana 7 (feriado na 2ª)	Prova 1	Conteúdo até teorema ergódico				
Semana 8 – Cadeias de Markov em Tempo Contínuo	- Introduzir cadeias de Markov em tempo contínuo Entender matriz geradora Q e equações de Kolmogorov.	 Definição; taxas de transição. Equações de Kolmogorov (direita e esquerda). Processos de nascimento e morte. 	Ross, Cap. 6.1– 6.4. G&S, Cap. 6.11.			
Semana 9 – Martingales	 Definir martingais em tempo discreto. Estudar propriedades básicas e exemplos. 	 - Martingal, sub e supermartingal. - Propriedades básicas. - Teorema de parada opcional (forma simples). 	Ross, Cap. 13.1– 13.3. G&S, Cap. 12.			
Semana 10 - Introdução ao Movimento Browniano(feriado na 5ª)	 Definir movimento browniano e propriedades básicas. Relacionar com passeios aleatórios como limite difusivo. 	 Incrementos independentes e gaussianos. Continuidade de trajetória. Aproximação via passeio aleatório escalonado. 	Ross, Cap. 10.1– 10.3. G&S, Cap. 13.			
Semana 11– Introdução ao Movimento Browniano	idem	idem	idem			

Semana e Tema	Objetivos	Tópicos	Referências
Semana 12 –	Prova 2 e Sub		
Semana de reposição	Atendimento e Exame de recuperação	Todo conteúdo	

Avaliação

2 **provas**. As avaliações são individuais. Serão atribuídos conceitos nas atividades avaliativas e o resultado é definido como segue:

P1	A	В	$\mathbb{C}[\Gamma$	F		Α	В	CD	F		Α	В	C	D	F		Α	В	C	D	F		Α	В	C	D[F
P2	A				В					С						D						F					
Final	A	A	В	\mathbf{D}		Α	В	3 C	D		В	C	C	C	F		C	C	D	D	F		D	D	F	F [F

Substitutiva e Recuperação

A sub é aberta a qualquer aluno.

Tem direito ao exame recuperação aqueles que foram aprovado com D ou reprovado com F e obtiveram frequência mínima. O resultado do exame é um conceito que compõe com o conceito final **M** obtido na avaliação regular da disciplina como segue:

М	Recuperação	Resultado
D	A ou B	С
D	С	D
F	А	С
F	B ou C	D
F	D	F

O aluno deve manifestar interesse em fazer a recuperação de acordo com as instruções que serão enviadas por email em momento apropriado durante o curso da disciplina.

Atendimento

2ª 20hs e 5ª 21hs ou qualquer outro horário combinado previamente.

Calendário acadêmico

