

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6678/01)

June 2009 6678 Mechanics M2 Mark Scheme

Question Number	Scheme	Mark	S
Q1	$I = m\mathbf{v} - m\mathbf{u}$ $5\mathbf{i} - 3\mathbf{j} = \frac{1}{4} \mathbf{v} - \frac{1}{4} (3\mathbf{i} + 7\mathbf{j})$ $\mathbf{v} = 23\mathbf{i} - 5\mathbf{j}$ $ \mathbf{v} = \sqrt{23^2 + 5^2} = 23.5$	M1A1 A1 M1A1	[5]
Q2 (a)	$\frac{dv}{dt} = 8 - 2t$ 8 - 2t = 0 Max $v = 8 \times 4 - 4^2 = 16 \text{ (ms}^{-1})$ $\int 8t - t^2 dt = 4t^2 - \frac{1}{3}t^3 (+c)$ (t=0, displacement = 0 \Rightarrow c=0) $4T^2 - \frac{1}{3}T^3 = 0$ $T^2(4 - \frac{T}{3}) = 0 \Rightarrow T = 0,12$ $T = 12 \text{ (seconds)}$	M1 M1 M1A1 M1A1 DM1 DM1 A1	(4)
Q3 (a)	Constant v \Rightarrow driving force = resistance \Rightarrow F=120 (N) \Rightarrow P=120 x 10 = 1200W Resolving parallel to the slope, zero acceleration: $\frac{P}{v} = 120 + 300g \sin \theta (= 330)$ $\Rightarrow v = \frac{1200}{330} = 3.6 \text{ (ms}^{-1})$	M1 M1 M1A1A1 A1	(2) (4) [6]

Question Number		Scheme		Marks	
Q4	(a)	Taking moments about A: $3g \times 0.75 = \frac{T}{\sqrt{2}} \times 0.5$ $T = 3\sqrt{2}g \times \frac{7.5}{5} = \frac{9\sqrt{2}g}{2} (= 62.4N)$	M1A1A1	(4)	
	(b)	$\leftarrow \pm H = \frac{T}{\sqrt{2}} (= \frac{9g}{2} \approx 44.1N)$	B1		
		$\uparrow \pm V + \frac{T}{\sqrt{2}} = 3g (\Rightarrow V = 3g - \frac{9g}{2} = \frac{-3g}{2} \approx -14.7 \text{ N})$			
		$\Rightarrow R = \sqrt{81 + 9} \times \frac{g}{2} \approx 46.5(N)$			
		at angle $\tan^{-1} \frac{1}{3} = 18.4^{\circ}$ (0.322 radians) below the line of BA $161.6^{\circ} \text{ (2.82 radians) below the line of AB}$ $(108.4^{\circ} \text{ or } 1.89 \text{ radians to upward vertical)}$	M1A1	(7) [11]	
Q5	(a)	Ratio of areas triangle:sign:rectangle = $1:5:6$ (1800:9000:10800) Centre of mass of the triangle is 20cm down from AD (seen or implied)	B1 B1		
		$\Rightarrow 6 \times 45 - 1 \times 20 = 5 \times \overline{y}$ $\overline{y} = 50cm$	M1A1 A1	(5)	
	(b)	Distance of centre of mass from AB is 60cm	B1	(3)	
		Required angle is $\tan^{-1} \frac{60}{50}$ (their values) = 50.2° (0.876 rads)	M1A1ft A1	(4) [9]	

Question Number	Scheme		Marks	
Q6 (a)	$\Rightarrow x = u \cos \alpha t = 10$ $\uparrow y = u \sin \alpha t - \frac{1}{2} g t^2 = 2$ $\Rightarrow t = \frac{10}{u \cos \alpha}$ $2 = u \sin \alpha \times \frac{10}{u \cos \alpha} - \frac{g}{2} \times \frac{100}{u^2 \cos^2 \alpha}$ $= 10 \tan \alpha - \frac{50 g}{u^2 \cos^2 \alpha} \text{ (given answer)}$ $2 = 10 \times 1 - \frac{100 g \times 2}{2u^2 \times 1}$ $u^2 = \frac{100 g}{8}, u = \sqrt{\frac{100 g}{8}} = 11.1 \text{ (m s}^{-1})$ $\frac{1}{2} m u^2 = m \times 9.8 \times 2 + \frac{1}{2} m v^2$ $v = 9.1 m s^{-1}$	M1A1 M1A1 A1 M1A1 A1 A1	(6) (6)	
			[12]	

Question Number		Scheme		
Q7	(a)	KE at $X = \frac{1}{2}mv^2 = \frac{1}{2} \times 2 \times 14^2$	B1	
		GPE at $Y = mgd \sin \alpha \left(= 2 \times g \times d \times \frac{7}{25} \right)$	B1 B1	
		α Normal reaction $R = mg \cos \alpha$	M1	
		Friction = $\mu \times R = \frac{1}{8} \times 2g \times \frac{24}{25}$	M1A1	
	Work Energy: $\frac{1}{2}mv^2$ - $mgd\sin\alpha = \mu \times R \times d$ or equivalent			
		$196 = \frac{14gd}{25} + \frac{6gd}{25} = \frac{20gd}{25}$	A1	
		d = 25 m	(7)	
	(b) Work Energy			
	First time at <i>X</i> : $\frac{1}{2}mv^2 = \frac{1}{2}m14^2$			
		Return to X: $\frac{1}{2}mv^2 = \frac{1}{2}m14^2 - \frac{1}{8} \times 2g \times \frac{24}{25} \times 50$	M1A1	
		$v = 8.9 \text{ ms}^{-1}$ (accept 8.85 ms ⁻¹)	DM1A1 (4)	
	OR: Resolve parallel to XY to find the acceleration and use of $v^2 = u^2 + 2as$			
		$2a = 2g \sin \alpha - F_{\text{max}} = 2g \times \frac{7}{25} - \frac{6g}{25} = \frac{8g}{25}$	M1A1	
		$v^2 = (0+)2 \times a \times s = 8g \; ; v = 8.9$ (accept 8.85 ms ⁻¹)	DM1;A1	
			[11]	

	Scheme Scheme		Marks		
Q8	(a)				
		A = 4m	$B \longrightarrow C \longrightarrow M$		
		$u \longrightarrow u$	$\stackrel{\checkmark}{\longrightarrow}_{kv}$		
		Conservation of momentum: 4		M1A1	
				IVITAT	
		Impact law:	$kv = \frac{3}{4}(u+v)$	M1A1	
		Eliminate k:	$4mu - 3mv = 3m \times \frac{3}{4}(u+v)$	DM1	
			u = 3v (Answer given)	A1	
					(6)
	(b)	$kv = \frac{3}{4}(3v + v)$, $k = 3$		M1,A1	
		4		IVII,AI	(2)
	(c)	Impact law: $(kv + 2v)e = v_C - v_B$	$(5ve = v_c - v_p)$	B1	(-)
		Conservation of momentum : $3 \times kv - 1 \times 2v = 3v_B + v_c$ $(7v = 3v_B + v_c)$		B1	
		Eliminate $v_C: v_B = \frac{v}{4}(7 - 5e) > 0$ hence no further collision with A.		M1 A1	
		$\frac{1}{4} \left(\frac{3e}{3e} \right) > 0$		I WIT AT	(4)
					[12]