A Machine Learning-Enabled Study of Superconductivity

Raieev At

Introduction

AGDOOSE

Superconductivi

Data

Method

Discussio

Deference

Acknowledgement

A Machine Learning-Enabled Study of Superconductivity

Application of the XGBoost Algorithm

Rajeev Atla

John P. Stevens High School

July 24, 2020

Outline

A Machine Learning-Enabled Study of Superconductivity

Rajeev A

Introduction

XGBoost

Superconductiv

Data

MELHOC

D (

- Introduction
 - XGBoost
 - Superconductivity
- 2 Data
- Methods
- Discussion
- Conclusion
- 6 References
- Acknowledgements

Introduction XGBoost

A Machine Learning-Enabled Study of Superconductivity

Introduction

XGBoost

D. . .

Discussio

Deference

Acknowledgemen

eXtreme Gradient Boosting

XGBoost

A Machine Learning-Enabled Study of Superconductivity

Raieev Atl

Introduction

XGBoost

Superconductiv

Date

Metho

Discussio

Deference

- eXtreme Gradient Boosting
- Package for Python, C++, Java, R, Julia, and Scala

XGBoost

A Machine Learning-Enabled Study of Superconductivity

Rajeev At

XGBoost

Superconductiv

Data

vietnoc

Discussion

- eXtreme Gradient Boosting
- Package for Python, C++, Java, R, Julia, and Scala
- Was used to process data from Large Hadron Collider (LHC) [Chen 2015]

XGBoost

A Machine Learning-Enabled Study of Superconductivity

Rajeev At

XGBoost Superconductivit

Data

iviethou

Discussion

Conclusio

rtererences

- eXtreme Gradient Boosting
- Package for Python, C++, Java, R, Julia, and Scala
- Was used to process data from Large Hadron Collider (LHC) [Chen 2015]
 - Won the Higgs Boson Machine Learning Challenge

XGBoost

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atla

XGBoost
Superconductivity

Data

Discussio

- eXtreme Gradient Boosting
- Package for Python, C++, Java, R, Julia, and Scala
- Was used to process data from Large Hadron Collider (LHC) [Chen 2015]
 - Won the Higgs Boson Machine Learning Challenge
- Ensemble learning [Elements of Statistical Learning Chapter 16]

XGBoost

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atl

XGBoost
Superconductivity

Data

Discussion

- eXtreme Gradient Boosting
- Package for Python, C++, Java, R, Julia, and Scala
- Was used to process data from Large Hadron Collider (LHC) [Chen 2015]
 - Won the Higgs Boson Machine Learning Challenge
- Ensemble learning [Elements of Statistical Learning Chapter 16]
 - Combination of homogenous weak learners

XGBoost

A Machine Learning-Enabled Study of Superconductivity

Rajeev At

Introduction

XGBoost

Superconductivity

Data

Discussio

Reference

Acknowledgement

eXtreme Gradient Boosting

- Package for Python, C++, Java, R, Julia, and Scala
- Was used to process data from Large Hadron Collider (LHC) [Chen 2015]
 - Won the Higgs Boson Machine Learning Challenge
- Ensemble learning [Elements of Statistical Learning Chapter 16]
 - Combination of homogenous weak learners
 - End result is a weighted sum of weak learners

$$\theta_f = \sum_j w_j \theta_j$$

XGBoost

A Machine Learning-Enabled Study of Superconductivity

XGBoost

- eXtreme Gradient Boosting
- Package for **Python**, C++, Java, R, Julia, and Scala
- Was used to process data from Large Hadron Collider (LHC) [Chen 2015]
 - Won the Higgs Boson Machine Learning Challenge
- Ensemble learning [Elements of Statistical Learning Chapter 16
 - Combination of homogenous weak learners
 - End result is a weighted sum of weak learners

$$\theta_f = \sum_j w_j \theta_j$$

 w_i are determined by backpropogation via gradient descent

4□ → 4□ → 4 □ → 1 □ → 9 Q (~)

Ginzburg-Landau Theory

A Machine Learning-Enabled Study of Superconductivity

Delese Arte

Introduction

...

Superconductivity

D. . .

Method

D.

. . .

Doforoncor

Ginzburg-Landau Theory

A Machine Learning-Enabled Study of Superconductivity

Raieev Atla

ntroduction

Superconductivity

Metho

Discussio

Reference

Acknowledgement

 For a homogenous superconductor, the Ginzburg-Landau equation is

$$\alpha\phi + \beta|\phi|^2\phi = 0$$

Ginzburg-Landau Theory

A Machine Learning-Enabled Study of Superconductivity

Raieev Atl

Introduction

Superconductivity

Dat

Metho

Discussio

Acknowledgement

 For a homogenous superconductor, the Ginzburg-Landau equation is

$$\alpha\phi + \beta|\phi|^2\phi = 0$$

• The nontrivial solution for $T < T_c$ is

$$|\phi|^2 = -\frac{\alpha}{\beta} \left(T - T_c \right)$$

Ginzburg-Landau Theory

A Machine Learning-Enabled Study of Superconductivity

Raieev At

Introduction

Superconductivity

Dat

Method

Discussio

Acknowledgement

 For a homogenous superconductor, the Ginzburg-Landau equation is

$$\alpha\phi + \beta|\phi|^2\phi = 0$$

• The nontrivial solution for $T < T_c$ is

$$|\phi|^2 = -\frac{\alpha}{\beta} (T - T_c)$$

• The characteristic length scale ξ is called the Ginzburg-Landau coherence length

$$\xi = \sqrt{\frac{\hbar^2}{2m^*|\alpha|}}$$

Types of Superconductors

A Machine Learning-Enabled Study of Superconductivity

Raisey At

Introduction

Superconductivity

Supercon

Markey

Disamaia

Discussion

D (

Acknowledgemen:

• Two types - Type 1 and Type 2

Types of Superconductors

A Machine Learning-Enabled Study of Superconductivity

Raigey Atl

Introduction

KGBoost

Superconductivity

Date

Method

Discussio

Conclusio

References

- Two types Type 1 and Type 2
- Notation

Types of Superconductors

A Machine Learning-Enabled Study of Superconductivity

Raieev At

ntroduction

Superconductivity

Date

Metho

Discussio

Conclusio

Reference

- Two types Type 1 and Type 2
- Notation
 - $H_c(T)$ is critical field as a function of temperature

Types of Superconductors

A Machine Learning-Enabled Study of Superconductivity

Rajeev At

Introduction

Superconductivity

_ .

Metho

Discussio

Doforonco

- Two types Type 1 and Type 2
- Notation
 - $H_c(T)$ is critical field as a function of temperature
 - T_c is critical temperature

Types of Superconductors

A Machine Learning-Enabled Study of Superconductivity

Rajeev At

Introduction XGBoost

Superconductivity

Data

MELHOC

Discussion

- Two types Type 1 and Type 2
- Notation
 - $H_c(T)$ is critical field as a function of temperature
 - \bullet T_c is critical temperature

Figure: H - T phase diagram for a Type 1 superconductor [Tinkham]

Type 2 Superconductors

A Machine Learning-Enabled Study of Superconductivity

_

Introduction

Superconductivity

Superconductivi

Data

Method

Discussio

Conclusion

References

Type 2 Superconductors

A Machine Learning-Enabled Study of Superconductivity

Raieev At

Introduction

Superconductivity

. . . .

Discussio

Acknowledgeme

 \bullet Ginzburg-Landau parameter $\kappa>\frac{1}{\sqrt{2}}$

Type 2 Superconductors

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atl

ntroduction

Superconductivity

Superconductiv

Duta

Discussio

- Ginzburg-Landau parameter $\kappa > \frac{1}{\sqrt{2}}$
 - Definition: $\kappa = \frac{\lambda}{\xi} = \frac{e\hbar}{m_{\rm e}c} \sqrt{\frac{\beta}{2\pi}}$
 - Surface energy is negative

Type 2 Superconductors

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atl

Introduction

Superconductivity

Dat

ivietnoa

Discussio

Acknowledgement

• Ginzburg-Landau parameter
$$\kappa > \frac{1}{\sqrt{2}}$$

• Definition:
$$\kappa = \frac{\lambda}{\xi} = \frac{e\hbar}{m_e c} \sqrt{\frac{\beta}{2\pi}}$$

Surface energy is negative

$$\bullet \ H_{c2} = H_{c1} \kappa \sqrt{2}$$

Type 2 Superconductors

A Machine Learning-Enabled Study of Superconductivity

Rajeev At

Introduction

Superconductivity

Superconducti

Duta

Discussio

Acknowledgemen

• Ginzburg-Landau parameter
$$\kappa > \frac{1}{\sqrt{2}}$$

• Definition:
$$\kappa = \frac{\lambda}{\xi} = \frac{e\hbar}{m_e c} \sqrt{\frac{\beta}{2\pi}}$$

Surface energy is negative

$$\bullet \ H_{c2} = H_{c1} \kappa \sqrt{2}$$

• In type 1,
$$H_{c2} = H_{c1}$$

Type 2 Superconductors

A Machine Learning-Enabled Study of Superconductivity

Rajeev At

Introduction XGBoost

Superconductivity

Dat:

Method

Discussio

Conclusio

Reference:

Acknowledgement

• Ginzburg-Landau parameter
$$\kappa > \frac{1}{\sqrt{2}}$$

• Definition:
$$\kappa = \frac{\lambda}{\xi} = \frac{e\hbar}{m_e c} \sqrt{\frac{\beta}{2\pi}}$$

Surface energy is negative

•
$$H_{c2} = H_{c1}\kappa\sqrt{2}$$

• In type 1,
$$H_{c2} = H_{c1}$$

Figure: H - T phase diagram for a Type 2 superconductor [Girvin and Yang 2019]

Type 2 Superconductors: Abrikosov Lattice Vortices

A Machine Learning-Enabled Study of Superconductivity

Raieev At

ntroduction

Superconductivity

_

Metho

Discussio

Reference

Acknowledgement

• For $H_{c1} < H < H_{c2}$ in a Type 2 Superconductor, Abrikosov vortices appear in the material

Type 2 Superconductors: Abrikosov Lattice Vortices

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atl

Introduction XGBoost

Superconductivity

Data

ivietnoc

Discussio

_ .

- For $H_{c1} < H < H_{c2}$ in a Type 2 Superconductor, Abrikosov vortices appear in the material
- These are flux vortices that are quantized, with

$$\Phi = \frac{nhc}{2e}, \quad n \in \mathbb{Z}$$

Type 2 Superconductors: Abrikosov Lattice Vortices

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atl

Introduction
XGBoost

Superconductivity

Data

Method

Discussion

Acknowledgement

- For $H_{c1} < H < H_{c2}$ in a Type 2 Superconductor, Abrikosov vortices appear in the material
- These are flux vortices that are quantized, with

$$\Phi = \frac{nhc}{2e}, \quad n \in \mathbb{Z}$$

Figure: Abrikosov vortices in YBCO - created by Wells et al. 2015 using scanning SQUID microscopy

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atl

Introduction

71000000

Superconductivi

Data

Method

Discussio

Acknowledgement

Taken from UCI (University of California, Irvine)
 Machine Learning Repository

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atla

Introduction

Superconductivit

Data

Discussion

- Taken from UCI (University of California, Irvine)
 Machine Learning Repository
- 21,263 examples with 81 features

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atla

XGBoost

Superconductivi

Data

Discussio

- Taken from UCI (University of California, Irvine)
 Machine Learning Repository
- 21,263 examples with 81 features
- Model was only trained with 11 features to prevent overfitting

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atla

Introduction
XGBoost
Superconductivity

Data

Method

Discussio

Conclusio

References

Acknowledgements

- Taken from UCI (University of California, Irvine)
 Machine Learning Repository
- 21,263 examples with 81 features
- Model was only trained with 11 features to prevent overfitting

Figure: UCI Machine Learning Repository

Methods

A Machine Learning-Enabled Study of Superconductivity

Raieev Atla

Introduction

XGBoost

${\sf Methods}$

Discussion

Conclusion

Methods

A Machine Learning-Enabled Study of Superconductivity

Painou Atla

Industrial continue

iiti oddetioi

Suporconductivit

D. . .

Methods

Discussion

Reference

Acknowledgement

XGBoost library

Methods

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atla

Introduction

XGBoost

uperconductivit

Data

Methods

Discussion

Reference

- XGBoost library
 - XGBClassifier class

Discussion

A Machine Learning-Enabled Study of Superconductivity

Raieev Atla

Introduction XGBoost

perconductivity

Data

Methous

Discussion

Conclusion

Discussion

A Machine Learning-Enabled Study of Superconductivity

Dalas.. A41

ntroduction

D...

Method

Discussion

Conclusion

References

Acknowledgement

• Confusion matrix made using matplotlib library

Discussion

A Machine Learning-Enabled Study of Superconductivity

Raieev Atla

Introduction

XGBoost

Superconductiv

Data

Method

Discussion

Conclusio

Reference

Acknowledgements

Confusion matrix made using matplotlib library

Positive (1) Negative (0) Positive (1) TP FP Negative (0) FN TN

Actual Values

Figure: Example Confusion Matrix

Conclusion

A Machine Learning-Enabled Study of Superconductivity

Painou Atla

Introduction

KGBoost

perconductivity

Data

Method

Discussion

Conclusion

References

Conclusion

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atla

Introduction XGBoost Superconductivit

Data

Discussion

Conclusion

Reference

Acknowledgement

 Python training files, these slides, the dataset, etc. can be found at https://github.com/ RajeevAtla/Graphene-Research/

Conclusion

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atla

Introduction XGBoost Superconductivit

Data

Discussion

Conclusion

References

- Python training files, these slides, the dataset, etc. can be found at https://github.com/ RajeevAtla/Graphene-Research/
- Easiest way to access is using git

References

A Machine Learning-Enabled Study of Superconductivity

Raigey Atla

Introduction

(GBoost

perconductivity

Data

Methods

Discussion

Conclusion References

Acknowledgements

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atla

Introduction

XGBoost

Superconductivit

Data

Method

_ ._ ._ .

Acknowledgements

I would like to thank Leo Lo and Dr. Serena McCalla for their mentorship through the iResearch Institute.

I would also like to acknowledge my parents for their constant support.