Wyznaczanie zależności przewodnictwa od temperatury dla półprzewodników i przewodników doświadczenie 203 (sala 217A)

Sebastian Maciejewski 132275 i Jan Techner 132332

8 grudnia 2017

1 Wstęp teorytyczny

Przewodnictwo właściwe materiałów zależy od temperatury. Dla metali (przewodników) spada przy wzroście temperatury ze względu na spadek ruchliwości nośników. W przypadku półprzewodnika samoistnego zdolność przewodzenia prądu rośnie wykładniczo przy wzroście temperatury. Dzieje się tak, gdyż rośnie koncentracja nośników. Ruchliwość spada podobnie jak w metalach, zmiany te są jednak niewielkie w porównaniu ze zmianami koncentracji.

Takie właściwości półprzewodnika wynikają z tego, iż nośnikami prądu są w nim elektrony w paśmie przewodnictwa i dziury w paśmie walencyjnym. Elektrony są dostarczane do pasma przewodnictwa z pasma walencyjnego (w półprzewodnikach samoistnych) lub z poziomów domieszkowych (w półprzewodnikach domieszkowanych). Dziury natomiast powstają w paśmie walencyjnym po przejściu elektronu do pasma przewodnictwa.

Liczba elektronów przechodzących na wyższy poziom energetyczny zależy wykładniczo min. od temperatury i wyraża się (dla półprzewodników samoistnych) wzorem:

$$n = n_{0s} e^{\frac{E_g}{2kT}} \tag{1}$$

gdzie ${\cal E}_g$ to szerokość pasma zabronionego, kto stała Boltzmana a T temperatura.

Opis doświadczenia

Wykonywane przez nas doświadczenie polega na pomiarze rezystancji przewodnika i półprzewodnika umieszczonych w metalowym bloczku w miarę wzrostu temperatury. Układ podgrzewany jest do temperatury około 85 $^{\circ}C$, dzięki zwiększaniu napięcia prądu płynącego przez przewodnik i półprzewodnik, a następnie chłodzony za pomocą wentylatora do temperatury bliskiej $25^{\circ}C$. Odczyt temperatury dokonywany jest przy pomocy termometru, zaś rezystancja mierzona jest przy pomocy dwóch multimetrów.

2 Wyniki pomiarów

Dokładność pomiaru temperatury to $0,1^{\circ}C$ a dokładność pomiaru rezystancji jest różna w zależności od multimetru - dla półprzewodnika wynosi ona $0,1k\Omega$ zaś dla przewodnika $0,1\Omega$.

Dla ogrzewania i chłodzenia przewodnika i półprzewodnika otrzymaliśmy następujące odczyty oporu:

Temperatura $[K]$	Opór półprzewodnika $[k\Omega]$	Opór przewodnika $[\Omega]$
295,95	208,0	109,1
299,45	177,0	110,4
304,45	144,0	112,1
309,45	117,0	114,1
314,45	95,0	116,0
319,45	80,1	117,9
324,45	66,5	119,8
329,45	54,7	121,7
334,45	46,4	123,5
339,45	39,2	125,3
344,45	33,0	127,1
349,45	28,0	129,1
354,45	23,9	130,8
359,45	20,4	132,6

3 Opracowanie wyników

Poniższe wykresy przedstawiają zależności zmierzonych wartości oporu przewodnika i połprzewodnika od temperatury:

Rysunek 1: Zależność oporu przewodnika i półprzewodnika od temperatury

W tabeli poniżej znajdują się wartości zmierzonej temperatury (w kelwinach), jej odwrotności oraz logarytm naturalny odwrotności oporu półprzewodnika w danej temperaturze:

T(K)	1/T	ln(1/R)
295,95	0,00337895	-12,24529336
299,45	0,00333946	-12,08390501
304,45	0,00328461	-11,87756858
309,45	0,00323154	-11,66992921
314,45	0,00318016	-11,46163217
319,45	0,00313038	-11,29103113
324,45	0,00308214	-11,10495723
329,45	0,00303536	-10,90961899
334,45	0,00298998	-10,74505474
339,45	0,00294594	-10,57643203
344,45	0,00290318	-10,40426284
349,45	0,00286164	-10,23995979
354,45	0,00282127	-10,08163374
359,45	0,00278203	-9,92329018

Wartości z tabeli przedstawione na wykresie:

Rysunek 2: Zależność logarytmu naturalnego odwrotności oporu półprzewodnika od odwrotności temperatury

Dla zależności:

$$ln(1/R) = f(1/T) \tag{2}$$

wyliczymy teraz, korzystając z metody regresji liniowej, współczynnik nachylenia prostej. Przyjmujemy, że ln(1/R)=y i 1/T=x. Posługując się poniższymi wzorami:

$$a = \frac{n\Sigma x_i y_i - \Sigma x_i \Sigma y_i}{n\Sigma x_i^2 - (\Sigma x_i)^2},\tag{3}$$

$$b = \frac{1}{n} \left(\Sigma y_i - a \Sigma x_i \right) \tag{4}$$

wyznaczamy współczynnik a oraz punkt b przecięcia prostej z osią OY:

$$a = -3869, 397 \left[\frac{K}{\Omega} \right] \tag{5}$$

$$b = 0.0004225 \tag{6}$$

Błąd wyznaczenia wielkości a:

$$\Delta a = \sqrt{\frac{n(\Sigma y_i^2 - a\Sigma x_i y_i - b\Sigma y_i)}{(n-2)(n\Sigma x_i^2 - (\Sigma x_i)^2)}} = 2,60816$$

Następnie korzystając z równania:

$$a = \frac{E_A}{2k} \Rightarrow E_A = 2ak \tag{7}$$

obliczamy energię aktywacji E_A , która wynosi:

$$E_A = -1,068 * 10^- 19 \frac{J}{K} = -0,667 \frac{eV}{K}$$

Błąd wyznaczenia E_A wyznaczamy za pomocą różniczki logarytmicznej:

$$\Delta E_A = \left(\frac{\Delta a}{a}\right) E_A$$

co po podstawieniu odpowiednich wartości Δa , a i E_A daje nam:

$$\Delta E_A = 7,20 * 10^- 23 \left[\frac{J}{K} \right] = 0,0004495 \left[\frac{eV}{K} \right]$$

Zatem ostateczne wartości ai ${\cal E}_A$ wyglądają następująco:

	a	$E_A[\frac{J}{K}]$	$E_A[\frac{eV}{K}]$
pomiar	-3869, 39702854943	$-1,068*10^{-}19$	-0,667
dokładność	2,60816	$7,20*10^{-}23$	0,0004495
po zaokrągleniu	$(-3869, 4 \pm 2, 6) \left[\frac{K}{\Omega} \right]$	$(-1,0680 \pm 0,0007) \frac{J}{K}$	$(-0,66700 \pm 0,00045) \frac{eV}{K}$

Tablica 1: Współczynnik nachylenia linii a i energia aktywacji E_A wraz z dokładnościami Δa i ΔE_A

Wnioski

Wyniki uzyskane w doświadczeniu (szczególnie wykresy) stanowią potwierdzenie zależności opisanych we wstępie teoretycznym. Rysunek 1. najlepiej obrazuje relację między wzrostem temperatury a rezystancją dla półprzewodnika i przewodnika, a porównanie występujących na nim wykresów ukazuje różny sposób reakcji na wzrost temperatury tych dwóch materiałów.