Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2i}{kr_5+2k^3r_5}$	$\frac{i\sqrt{2}(3k^2r_5+2t_3)}{k(1+2k^2)^2r_5t_3}$	0	$\frac{6k^2r_5+4t_3}{(1+2k^2)^2r_5t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{k^2 r_5 + 2k^4 r_5}$	$\frac{3k^2 r_5 + 2t_3}{(k+2k^3)^2 r_5 t_3}$	0	$-\frac{i\sqrt{2}(3k^2r_5+2t_3)}{k(1+2k^2)^2r_5t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 r_5}$	$\frac{\sqrt{2}}{k^2 r_5 + 2k^4 r_5}$	0	$-\frac{2i}{kr_5+2k^3r_5}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}}{kr_5+k^3r_5}$	$\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	$\frac{3k^2r_5+2t_2}{(1+k^2)^2r_5t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{3k^2r_5+2t_2}{(k+k^3)^2r_5t_2}$	$-\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 r_5}$	$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{i\sqrt{2}}{kr_5+k^3r_5}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{lpha}$	$\tau_1^{\#2} +^{\alpha}$

Quadratic (free) Lagrangian density	$\frac{2}{3}t_3\;\omega_{,\alpha}^{\;\alpha\prime}\;\omega_{\kappa\alpha}^{\;\;\kappa}+\frac{2}{3}t_2\;\omega_{,\kappa\lambda}^{\;\;\kappa\lambda}\;\omega_{\kappa\lambda}^{\;\;\prime}+\frac{1}{3}t_2\;\omega_{\kappa\lambda}^{\;\;\prime}\;\omega_{\kappa\lambda}^{\;\;\prime}+f^{\alpha\beta}\;\tau_{\alpha\beta}+$	$\omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} - r_5 \partial_i \omega^{\kappa\lambda}_{\kappa} \partial^i \omega^{\alpha}_{\alpha} + \tfrac{2}{3} r_2 \partial^\beta \omega^{\theta\alpha}_{\alpha} \partial_\theta \omega^{\kappa}_{\beta} - \tfrac{1}{3} r_2 \partial_\theta \omega^{\kappa}_{\beta} \partial_\kappa \omega^{\alpha\beta\theta}_{\beta} -$	$\frac{2}{3} r_2 \partial_\theta \omega_{\alpha\beta}^{ $	$2r_5\partial_\theta\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta} + \frac{1}{6}t_2\partial^\alpha f_{\theta\kappa}\partial^\kappa f_\alpha^{\ \theta} - \frac{1}{6}t_2\partial^\alpha f_{\kappa\theta}\partial^\kappa f_\alpha^{\ \theta} + \frac{1}{6}t_2\partial^\alpha f^\lambda_{\ \kappa}\partial^\kappa f_{\alpha\lambda}^{\ -} -$	$\frac{2}{3}t_{3} \omega_{\kappa\alpha}^{\ \alpha} \partial^{\kappa} f'_{\ \prime} - \frac{2}{3}t_{3} \omega_{\kappa\lambda}^{\ \lambda} \partial^{\kappa} f'_{\ \prime} - \frac{4}{3}t_{3} \partial^{\alpha} f_{\kappa\alpha} \partial^{\kappa} f'_{\ \prime} + \frac{2}{3}t_{3} \partial_{\kappa} f^{\lambda}_{\ \lambda} \partial^{\kappa} f'_{\ \prime} +$	$rac{1}{3}t_2\;\omega_{, heta\kappa}\;\partial^{\kappa}f^{I heta}-rac{2}{3}t_2\;\omega_{_{IK heta}}\;\partial^{\kappa}f^{I heta}-rac{1}{3}t_2\;\omega_{_{BIK}}\;\partial^{\kappa}f^{I heta}+rac{2}{3}t_2\;\omega_{_{eta\kappa}},\;\partial^{\kappa}f^{I heta}+$	$\frac{2}{3}t_3\;\omega_{,\alpha}^{\alpha}\;\partial^\kappa f'_{\kappa} + \frac{2}{3}t_3\;\omega_{,\lambda}^{\lambda}\;\partial^\kappa f'_{\kappa} - \frac{1}{6}t_2\;\partial^\alpha f^{\lambda}_{\kappa}\;\partial^\kappa f_{\lambda\alpha} - \frac{1}{6}t_2\;\partial_\kappa f_{\theta}^{\lambda}\;\partial^\kappa f_{\theta} +$	$\frac{1}{6}t_2\partial_\kappa f^\lambda_{\theta}\partial^\kappa f_{\lambda}^{\theta} + \frac{2}{3}t_3\partial^\alpha f^\lambda_{\alpha}\partial^\kappa f_{\lambda\kappa} + \frac{1}{3}r_2\partial_\kappa\omega^{\alpha\beta\theta}\partial^\kappa\omega_{\alpha\beta\theta} + \frac{2}{3}r_2\partial_\kappa\omega^{\theta\alpha\beta}\partial^\kappa\omega_{\alpha\beta\theta} -$	$rac{2}{3}r_2\partial^{eta}\omega_{,}^{lpha\lambda}\partial_{\lambda}\omega_{lphaeta}^{\prime}+rac{2}{3}r_2\partial^{eta}\omega_{,}^{\lambdalpha}\partial_{\lambda}\omega_{lphaeta}^{\prime}+r_5\partial_{lpha}\omega_{,}^{lpha}\partial^{\lambda}\omega_{,}^{lpha}\partial^{\lambda}\omega_{,}^{lpha}+r_5\partial_{lpha}\omega_{,}^{lpha}\partial^{\lambda}\omega_{,}^{lpha}$	
-------------------------------------	--	--	--	---	--	---	--	--	--	--

$f_{1^-}^{\#2} \alpha$	0	0	0	$-\frac{2}{3}$ \vec{l} kt_3	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2} t_3}{3}$	٤ 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$k^2 r_5 + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_{1}^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#2}$	$\frac{\sqrt{2} t_2}{3}$	£ 3	$2 \left -\frac{1}{3} i k t_2 \right $	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 r_5 + \frac{2t_2}{3}$	$\frac{\sqrt{2}\ t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{\#1} + ^{lphaeta}$	$\omega_1^{\#_2^2} +^{\alpha\beta}$	$f_1^{\#_1} + ^{\alpha\beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} + \alpha$

Source constraints/gauge generators SO(3) irreps Multiplicities

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{lphaeta}$	0	0	0
$ au_2^{\#1} \dagger^{lphaeta}$	0	0	0
$\sigma_{2}^{\#1}\dagger^{lphaeta\chi}$	0	0	0
,			

$\omega_0^{\sharp 1}$	$f_{0+}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\sharp 1}$		$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
t_3	$-i \sqrt{2} kt_3$	0	0	$\omega_{2}^{\sharp 1}$ † lphaeta	0	0	0
$i\sqrt{2} kt_3$	$2k^2t_3$	0	0	$f_{2+}^{\#1} + \alpha \beta$	0	0	0
0	0	0	0	$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$		0	0
0	0	0	$k^2 r_2 + t_2$	ω_{2}	U	U	U

 $\sigma_{2}^{\#1}\alpha^{\beta} == 0$ Total constraints:

 $\tau_1^{\#1}{}^{\alpha\beta} + ik \ \sigma_1^{\#2}{}^{\alpha\beta} == 0$

 $\sigma_{2^{-}}^{\#1}\alpha\beta\chi := 0$

 $\tau_2^{\#1}\alpha\beta == 0$

 $\tau_{1}^{\#2}{}^{\alpha} + 2ik \sigma_{1}^{\#2}{}^{\alpha} == 0$

 $\tau_{0+}^{\#1} - 2\, \bar{l}\, k\, \sigma_{0+}^{\#1} == 0$

$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$
$\tau_{0}^{\#2}$	0 0		0	0
$\tau_0^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_0^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
	$\sigma_0^{\#1}$ †	$ au_0^{\#1}$ †	$\tau_0^{\#2} \uparrow$	$\sigma_{0}^{\#1}$ †

	_	_	•	
Massive	and	massl	ess	spectra
				-

	Massive partic	le
	Pole residue:	$-\frac{1}{r_2} > 0$
,	Polarisations:	1
	Square mass:	$-\frac{t_2}{r_2} > 0$
	Spin:	0
	Parity:	Odd

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$