# Predicting retweet count based on sentiment analysis of historical tweets

BY
Alex Szilagy [A20324479]
Animesh Patni [A20403240]
Chandana Ravindra Prasad [A20406271]

# INTRODUCTION

**Problem Statement**: Analyzing the possible correlation between the retweet count and the sentiment of a certain tweet.

**Proposed Solution**: Predicting the retweet count based on the sentiment values of a tweet that is classified among positive, negative and neutral.

**Aim**: To study, observe, and implement various machine learning algorithms to find the ones that fit the needs of the problem the best way.



# **DATA**

Total number of tweets collected: 38400 (3200\*12)

Number of tweets manually tagged: 1200 (100\*12)

| Name | Id | Text | Retweet count | Follower Count |
|------|----|------|---------------|----------------|
|      |    |      |               |                |

Fig : Format of the extracted data from twitter using Tweepy

Training set: 75% of the data

Testing set: 25% of the data

# SENTIMENT ANALYSIS

**Logistic Regression**: Provides best results when the target variable is categorical.

**Support Vector Machines**: Provides maximum margin classification.

**Naive Bayes**: Provides improved results as the classifier learns with every new information fed.

**Text Blob**: Used for the preliminary polarity classification.

**Vader**: Used to get the compound polarity score which acts as a single measure of polarity (combines positive, negative, and neutral polarity scores).

**Manual Tagging**: Used to obtain a baseline estimation to compare the other results against with.

### **SVM Results:**



# SENTIMENT ANALYSIS RESULTS

| Text                                                                                                                              | Manual Tag | Text<br>Blob | Vader | SVM | LR | NB |
|-----------------------------------------------------------------------------------------------------------------------------------|------------|--------------|-------|-----|----|----|
| This tweet wouldn't have happened five years ago. How have we let this <i>proudly</i> racist rats crawl out of our national wood. | -1         | 1            | 0.064 | 0   | -1 | -1 |
| People with red hair are <i>less responsive</i> to anaesthetic.                                                                   | 0          | -1           | 0.298 | -1  | 1  | 0  |
| \xf0\x9f\x8c\x9e\xe2\x9d\xa4\xef\xb8\x8f\xf0\x9f<br>\x8c\x99 https://t.co/iZv7sjjHzj                                              | 0          | 0            | 0.0   | 1   | 0  | 0  |

# PREDICTIVE ANALYSIS

## **Random Forest Regression:**

- Works well with non-contiguous data.
- Finds the best split randomly.
- More sensitive to outliers.

### **Linear Regression:**

- Works well when there is a linear relationship between target variable and explanatory variable.
- Requires more input data to provide higher accuracy results.

# PREDICTIVE ANALYSIS RESULTS

Accuracy: 0.836453854676 Actual vs Predicted using Linear Regression



Accuracy: 0.814571280092

Actual vs Predicted using Random Forest



# PREDICTIVE ANALYSIS RESULTS

Accuracy: 0.836453854676

Actual vs Predicted using Linear Regression

|      | Actual Retweets | Predicted Retweet |
|------|-----------------|-------------------|
| 133  | 10784           | 18366.770295      |
| 349  | 1522            | 2942.175261       |
| 1036 | 0               | 3146.684905       |
| 268  | 97149           | 154920.706018     |
| 899  | 3544            | 10795.812807      |
| 60   | 0               | 3145.855120       |
| 1229 | 29              | 960.095713        |
| 201  | 25595           | 15733.692154      |
| 223  | 10509           | 31527.818068      |
| 866  | 0               | 3150.833830       |
| 190  | 8661            | 15961.606409      |
| 457  | 3051            | 6045.294216       |
| 259  | 87769           | 63697.643151      |
| 480  | 64953           | 48157.708014      |
| 1186 | 16              | 941.287256        |

Accuracy: 0.814571280092

Actual vs Predicted using Random Forest

|      | Actual Retweets | Predicted Retweet |
|------|-----------------|-------------------|
| 133  | 10784           | 21201.400000      |
| 349  | 1522            | 1409.300000       |
| 1036 | 0               | 0.000000          |
| 268  | 97149           | 125618.100000     |
| 899  | 3544            | 4439.200000       |
| 60   | 0               | 9490.480912       |
| 1229 | 29              | 28.400000         |
| 201  | 25595           | 10364.300000      |
| 223  | 10509           | 18925.800000      |
| 866  | 0               | 1.000000          |
| 190  | 8661            | 9288.800000       |
| 457  | 3051            | 2779.900000       |
| 259  | 87769           | 49797.400000      |
| 480  | 64953           | 66473.500000      |
| 1186 | 16              | 32.300000         |

# **ERROR ANALYSIS - Outlier**



### **Mean values:**

Comp\_vader - .276 Retweet - 36996.328 Favorite - 150341.071

Outlier Tweet - 1.7M Retweet, 4.6M Favorite

Barack Obama ② @BarackObama · 12 Aug 2017

1.7M 0 4.6M

"No one is born hating another person because of the color of his skin or his background or his religion..."

# **ERROR ANALYSIS**

```
[('great', 1.6686141195629294),
('happy', 1.526316873470098),
 ('love', 1.4859071489577251),
 ('thank', 1.413918957577895),
 ('proud', 1.3039795020124725),
 ('tesla', 1.2964895701390131),
 ('liftoff', 1.2936327246247472),
 ('congrats', 1.195371054155586),
 ('amazing', 1.0056860545902226),
 ('very', 0.97561523527205185),
 ('excited', 0.96462858954240649),
 ('everyone', 0.92532502062175215),
 ('glad', 0.91155379471269771),
 ('side', 0.9024687323247218),
 ('thanks', 0.89435531568411708),
 ('incredible', 0.87624020482949416),
 ('gm', 0.84787172642345188),
 ('first', 0.83617845240880739),
 ('cutoff', 0.8335967334064549),
 ('gtc39ubc7z', 0.82581452039495118)]
```

SpaceX on Twitter: "Liftoff! https://t.co/gtC39uBC7z..."



Liftoff! spacex.com/webcast

# PACKAGES USED

- 1. Tweepy(Data Collection).
- 2. NLTK(Classifiers).
- 3. Sklearn(Regression Models)
- 4. CSV.
- 5. Vader Sentiment.
- 6. Pandas.
- 7. Numpy.