

Representation

Local Structure

局部结构

Overview

Tabular Representations

		g^1	g²	g ³
→	i ⁰ ,d ⁰	0.3	0.4	0.3
7	i^0,d^1	0.05	0.25	0.7
-	i^1 , d^0	0.9	0.08	0.02
-	i^1,d^1	0.5	0.3	0.2

General CPD

- CPD $P(X \mid Y_1, ..., Y_k)$ specifies distribution over X for each assignment $y_1, ..., y_k$
- Can use any function to specify a factor $\phi(X, Y_1, ..., Y_k)$ such that

$$\sum_{x} \phi(x, y_1, ..., y_k) = 1 \text{ for all } y_1, ..., y_k$$

Many Models

- Deterministic CPDs 0→0
- Tree-structured CPDs %
- Logistic CPDs & generalizations
- Noisy OR / AND
- Linear Gaussians & generalizations

成岩.

Context-Specific Independence

$$P \models (X \perp_{c} Y \mid Z, c)$$

$$P(X, Y \mid Z, c) = P(X \mid Z, c)P(y \mid Z, c)$$

$$P(X \mid Y \mid Z, c) = P(X \mid Z, c)$$

$$P(Y \mid X, Z, c) = P(Y \mid Z, c)$$