GRUNDLAGEN UND ALGEBRAISCHE STRUKTUREN (WISE 13/14)

LaS: Logik und Semantik

10.02.2014 - 16.02.2014

Tutorium 14

1.a) Sei $U := \{ x \in \mathbb{Z} : x \text{ ist ungerade } \}$ Beweise oder Widerlege: (U, +, 0) ist ein Monoid.

Methode 1: Wir widerlegen durch ein Gegenbeispiel: Wähle $x,y \in U$ als x = 1 und y = 1. Dann ist 1 + 1 = 2. Aber 2 ist gerade also $2 \notin U$.

Damit ist *U* nicht unter + abgeschlossen.

Also ist (U, +, 0) kein Monoid. ((U, +) ist noch nicht einmal eine Halbgruppe.)

Methode 2: $0 \notin U$. Damit kann (U, +, 0) kein Monoid sein.

-{\Lösung}

1.b) Sei $M := \{ x \in \mathbb{Z} : x \text{ ist gerade } \}$ Beweise oder Widerlege: (M, +, 0) ist ein kommutatives Monoid.

Lösung

• *Abgeschlossenheit*:

 $+:(M\times M)\to M$

(die Addition zweier gerader Zahlen ist wieder eine gerade Zahl)

• Assoziativität:

Zu Zeigen: $\forall x, y, z \in M$. x + (y + z) = (x + y) + zSeign $x, y, z \in M$ beliebig. Es gilt x + (y + z) = (x + y)

Seien $x, y, z \in M$ beliebig. Es gilt x + (y + z) = (x + y) + z.

Damit ist (M, +) eine Halbgruppe.

• Neutrales Element:

 $Zu \ Zeigen: \forall x \in M \ . \ x + 0 = x = 0 + x$

Sei $x \in M$ beliebig. Es gilt x + 0 = x = 0 + x.

• Kommutativität:

 $Zu\ Zeigen: \forall x,y \in M \cdot x + y = y + x$

Sei $x, y \in M$ beliebig. Es gilt x + y = y + x.

Damit ist (M, +, 0) ein kommutatives Monoid.

\Lösung

Aufgabe 2: Gruppen

2.a) Beweise oder Widerlege: Es gibt ein $e \in \mathbb{N}$ so, dass $(\mathbb{N}, *, e)$ eine Gruppe ist.

Wir widerlegen die Aussage per Widerspruch. Angenommen es handelt sich um eine Gruppe. Dann muss (\mathbb{N} , *, e) ein Monoid sein, d. h. e muss neutral bzgl. (\mathbb{N} , *) sein. Dann gilt $\forall x \in \mathbb{N}$. x*e=x=e*x. Insbesondere gilt 1*e=1, also folgt e=1. Damit (\mathbb{N} , *, e) eine Gruppe ist, muss weiterhin ein x^{-1} existieren, das invers zu x bzgl. (\mathbb{N} , *, e) ist, d. h. $\forall x \in \mathbb{N}$. $\exists x^{-1} \in M$. $x^{-1}*x=1=x*x^{-1}$. Damit muss auch gelten, dass $1=(0)^{-1}*0=0$. Da $0 \neq 1$, ist das ein Widerspruch und somit existiert kein inverses Element für jedes $x \in M$. Damit ist (\mathbb{N} , *, e) keine Gruppe.

Lösung

2.b) Sei $M := \{ x \in \mathbb{Z} : x \text{ ist gerade } \}$ Beweise oder Widerlege: (M, +, 0) ist eine Gruppe.

Aus Aufgabe 1(b) wissen wir, dass (M, +, 0) ein (kommutatives) Monoid ist. Sei $x \in M$. Wir wählen $x^{-1} := -x$.

• *Inverses Element:*

Zu Zeigen: $\forall x \in M$. -x + x = 0 = x + (-x)

Sei $x \in M$ beliebig. Es gilt -x + x = 0 = x + (-x).

Damit ist (M, +, 0) eine (kommutative) Gruppe.

\Lösung

2.c) Beweise oder Widerlege: ($\mathbb{R} \setminus \{ 0 \}$, \circ , 1) für \circ : (($\mathbb{R} \setminus \{ 0 \}$) \times ($\mathbb{R} \setminus \{ 0 \}$)) $\to \mathbb{R} \setminus \{ 0 \}$ mit (a, b) \mapsto a/b ist Gruppe. Lösung

Methode 1: ($\mathbb{R} \setminus \{0\}$, \circ , 1) ist keine Gruppe, da die Assoziativität

$$\forall a,b,c \in \mathbb{R} \setminus \{0\} \cdot \frac{a}{\left(\frac{b}{c}\right)} = \frac{\left(\frac{a}{b}\right)}{c}$$

verletzt ist. Beweis durch Gegenbeispiel: Wähle a = 2, b = 3 und c = 4.

$$\frac{2}{\left(\frac{3}{4}\right)} = \frac{2*4}{3} = \frac{8}{3} \neq \frac{1}{6} = \frac{2}{12} = \frac{2}{3*4} = \frac{\left(\frac{2}{3}\right)}{4}$$

Methode 2: ($\mathbb{R} \setminus \{ 0 \}$, \circ) ist keine Gruppe, da 1 nicht neutral bzgl. ($\mathbb{R} \setminus \{ 0 \}$, \circ) ist. Dafür müsste gelten:

$$\forall a \in \mathbb{R} \setminus \{ 0 \} . \frac{1}{a} = a = \frac{a}{1}$$

Beweis durch Gegenbeispiel: Wähle a = 2. Dann ist $\frac{1}{2} \neq 2$.

\Lösung }