

Boosting

Lecturer: Sang Hwa Lee

What is AdaBoost?

Concept of AdaBoosting

AdaBoost is an algorithm for constructing a "strong" classifier as linear combination of "simple" "weak" classifiers $h_t(x)$: $X \to \{-1, +1\}$.

$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

❖ Terminology

 $h_t(x)$... "weak" or basis classifier, hypothesis, "feature"

H(x) = sign(f(x)) ... 'strong" or final classifier/hypothesis

Given:
$$(x_1, y_1), \dots, (x_m, y_m); x_i \in X, y_i \in \{-1, +1\}$$

Given:
$$(x_1, y_1), \dots, (x_m, y_m); x_i \in X, y_i \in \{-1, +1\}$$

Initialise weights $D_1(i) = 1/m$

For t = 1, ..., T:

Given:
$$(x_1, y_1), \dots, (x_m, y_m); x_i \in X, y_i \in \{-1, +1\}$$

Initialise weights $D_1(i) = 1/m$

For t = 1, ..., T:

Given:
$$(x_1, y_1), \dots, (x_m, y_m); x_i \in X, y_i \in \{-1, +1\}$$

Initialise weights $D_1(i) = 1/m$

For
$$t = 1, ..., T$$
:

- \diamond Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) \llbracket y_i \neq h_j(x_i)
 rbracket$
- \diamond If $\epsilon_t \geq 1/2$ then stop

Given:
$$(x_1, y_1), \dots, (x_m, y_m); x_i \in X, y_i \in \{-1, +1\}$$

Initialise weights $D_1(i) = 1/m$

For t = 1, ..., T:

- \diamond Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- \diamond If $\epsilon_t \geq 1/2$ then stop
- \diamond Set $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$

Given:
$$(x_1, y_1), \dots, (x_m, y_m); x_i \in X, y_i \in \{-1, +1\}$$

Initialise weights $D_1(i) = 1/m$

For
$$t = 1, ..., T$$
:

$$\diamond$$
 Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) \llbracket y_i \neq h_j(x_i) \rrbracket$

$$\diamond$$
 Set $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$

Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-a_ty_ih_t(x_i))}{Z_t}$$

where Z_t is normalisation factor

Given: $(x_1, u_1), \ldots, (x_m, u_m); x_i \in X, u_i \in \{-1, +1\}$

Initialise weights $D_1(i) = 1/m$

For t = 1, ..., T:

$$\diamond$$
 Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$

- \diamond If $\epsilon_t \geq 1/2$ then stop
- $\diamond \quad \mathsf{Set} \ \alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-a_ty_ih_t(x_i))}{Z_t}$$

where Z_t is normalisation factor

Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Given:
$$(x_1, y_1), \dots, (x_m, y_m); x_i \in X, y_i \in \{-1, +1\}$$

Initialise weights $D_1(i) = 1/m$

For t = 1, ..., T:

$$\diamond$$
 Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) \llbracket y_i \neq h_j(x_i) \rrbracket$

- If $\epsilon_t \geq 1/2$ then stop
- \diamond Set $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-a_ty_ih_t(x_i))}{Z_t}$$

where Z_t is normalisation factor

Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Given:
$$(x_1, y_1), \dots, (x_m, y_m); x_i \in X, y_i \in \{-1, +1\}$$

Initialise weights $D_1(i) = 1/m$

For t = 1, ..., T:

$$\diamond$$
 Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) \llbracket y_i \neq h_j(x_i) \rrbracket$

- \diamond If $\epsilon_t \geq 1/2$ then stop
- $\diamond \quad \mathsf{Set} \ \alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-a_ty_ih_t(x_i))}{Z_t}$$

where Z_t is normalisation factor

Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Given: $(x_1, y_1), \dots, (x_m, y_m); x_i \in X, y_i \in \{-1, +1\}$ Initialise weights $D_1(i) = 1/m$

For
$$t = 1, ..., T$$
:

$$\diamond$$
 Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$

- \diamond If $\epsilon_t \geq 1/2$ then stop
- \diamond Set $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-a_ty_ih_t(x_i))}{Z_t}$$

where Z_t is normalisation factor Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

$$t = 6$$

Given: $(x_1, y_1), ..., (x_m, y_m); x_i \in X, y_i \in \{-1, +1\}$ Initialise weights $D_1(i) = 1/m$ For t = 1, ..., T:

$$\diamond \quad \text{Find } h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) \llbracket y_i \neq h_j(x_i) \rrbracket$$

- \diamond If $\epsilon_t \geq 1/2$ then stop
- $\diamond \quad \text{Set } \alpha_t = \frac{1}{2} \log(\frac{1 \epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-a_ty_ih_t(x_i))}{Z_t}$$

where Z_t is normalisation factor Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Reweighting

Effect on the training set

$$D_{t+1}(i) = \frac{D_t(i)exp(-a_ty_ih_t(x_i))}{Z_t}$$

$$exp(-\alpha_ty_ih_t(x_i)) \begin{cases} < 1, & y_i = h_t(x_i) \\ > 1, & y_i \neq h_t(x_i) \end{cases}$$

- → Increase (decrease) weight of wrongly (correctly) classified examples
- ⇒ The weight is the upper bound on the error of a given example
- \Rightarrow All information about previously selected "features" is captured in D_t

Upper Bound Theorem (1)

Theorem: The following upper bound holds on the training error of H

$$\frac{1}{m}|\{i: H(x_i) \neq y_i\}| \leq \prod_{t=1}^{T} Z_t$$

Proof: By unravelling the update rule

$$D_{T+1}(i) = \frac{D_t(i)exp(-a_ty_ih_t(x_i))}{Z_t}$$

$$= \frac{exp(-\sum_t \alpha_t y_i h_t(x_i))}{m\prod_t Z_t} = \frac{exp(-y_i f(x_i))}{m\prod_t Z_t}$$

If $H(x_i) \neq y_i$ then $y_i f(x_i) \leq 0$ implying that $exp(-y_i f(x_i)) > 1$, thus

Upper Bound Theorem (2)

- Instead of minimising the training error, its upper bound can be minimize
 - d. This can be done by minimising Z_t in each training round by:
 - ullet Choosing optimal h_t , and
 - Finding optimal a_t
- ❖ AdaBoost can be proved to maximise margin
- ❖ AdaBoost iteratively fits an additive logistic regression model

Choosing optimal α_t

We attempt to minimise $Z_t = \sum_i D_t(i) exp(-\alpha_t y_i h_t(x_i))$:

$$\frac{dZ}{d\alpha} = -\sum_{i=1}^{m} D(i)y_i h(x_i) e^{-y_i \alpha_i h(x_i)} = 0$$

$$-\sum_{i:y_i = h(x_i)} D(i) e^{-\alpha} + \sum_{i:y_i \neq h(x_i)} D(i) e^{\alpha} = 0$$

$$-e^{-\alpha} (1 - \epsilon) + e^{\alpha} \epsilon = 0$$

$$\alpha = \frac{1}{2} \log \frac{1 - \epsilon}{\epsilon}$$

 \Rightarrow The minimisator of the upper bound is $\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$

Variations of Boosting

- Logitboost, Gentleboost, Floatboost, Klboost,...
 - How to update the weights
 - How to combine the weak classifiers
- Example: Gentleboost
 - Update: $f_m(x) = P(y=1 | x) P(y=0 | x)$ Instead of likelihood ratio

$$f_m(x) = \frac{1}{2} \log \frac{P_w(y=1|x)}{P_w(y=-1|x)}$$

KLBoost

- Boost using Kullbeck-Leibler distance
 - Distnace between two pdf

$$D(P \parallel Q) = \sum_{x} P(x) \log \left(\frac{P(x)}{Q(x)} \right)$$

- Weak classifier
 - Vector(line) projection (inner product)
- KL Analysis
 - Weak classifier selection
 - Feature vector that maximizes KL distance between two classes

KLBoost Procedure (I)

Given learning set, and initial weights

$$\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N), \text{ where } x_i \in \mathbf{R}^d, y_i = \{+1, -1\}\}$$
 $\omega_i^{(0)} = \frac{1}{N}$

❖ Find an optimal feature (projection vector)

$$\phi_{k}^{*} = \arg\max_{\phi} KL(\phi) = \int \left[h_{k}^{+}(\phi^{T}x) - h_{k}^{-}(\phi^{T}x) \right] \log \frac{h_{k}^{+}(\phi^{T}x)}{h_{k}^{-}(\phi^{T}x)} d\phi^{T}x$$

Combine weak classifiers

$$\lambda_i(\phi_i^T x) = \alpha_i \log \left(\frac{h_i^+(\phi_i^T x)}{h_i^-(\phi_i^T x)} \right)$$

Update the weights

$$\omega_{k+1}(\chi_i) = \frac{1}{Z_k} \omega_k(\chi_i) \exp\left\{-\beta_k y_i F_k(\chi_i)\right\} \quad \beta \leftarrow \ln\left(\frac{1-\varepsilon_M}{\varepsilon_M}\right)$$

Strong classifier

$$F(x) = sign\left[\sum_{i=1}^{N} \lambda i(\phi_i^T x)\right]$$

Example of KLBoost (I)

- 2D vector classification
 - Line projection and histogram

Example of KLBoost (II)

- KL Boosting example 1
 - 2D data classification

2-class 2D data

Classified data

Example of KLBoost (III)

- KL Boosting example 2
 - 2D data classification

2-class 2D data

Classified data

Exemplary Application of Boosting

- For application of boosting process
 - Design the weak classifiers
 - Design matching schemes
- Weak classifiers
 - Easy to generate (weak classifiers bank)
 - Simple calculation
 - Intuitive idea (operation)
- Example: Car model recognition
 - What features are used?
 - How are the weak classifiers designed?

2D Haar-Like Patterns

❖ Design some 2D Haar-Like Patterns

Car models

2D Haar-like Patterns (features)

2D Haar-Like Patterns

Car models

Car models

Mean outputs

- 120
- 80
- 70
- 65

2D Harr-like Patterns (features)

Mean outputs

- 30
- 40
- 45
- 50

HOG

Histogram of Gradient orientations

- Partial distribution
- Select maximally discriminative parts

Features: HOG for subblocks (parts)

 \Box

Most discriminative parts

DFT Coefficients

Specific distribution of DFT Coefficients

Features: Distribution of DFT Coefficients

Most discriminative parts

2D Gabor Patterns

Gabor wavelet filter

- Texture analysis
- 5 scales, 8 orientations

2D Gabor Patterns

Gabor filter response

