Import necessary libraries

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import classification_report, confusion_matrix

from imblearn.over_sampling import SMOTE

from sklearn.linear_model import LogisticRegression

Load the dataset

Replace 'path_to_csv' with the actual file path

data = pd.read_csv('creditcard.csv')

print(data)

	Time	V1	V2	V 3	V4	V5	V6	V7	 V23	V24	V25	V26	V27	V28	Amount	Class
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	-0.110474	0.066928	0.128539	-0.189115	0.133558	-0.021053	149.62	0
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.101288	-0.339846	0.167170	0.125895	-0.008983	0.014724	2.69	0
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.909412	-0.689281	-0.327642	-0.139097	-0 . 055353	-0.059752	378.66	0
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	-0.190321	-1.175575	0.647376	-0.221929	0.062723	0.061458	123.50	0
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.137458	0.141267	-0.206010	0.502292	0.219422	0.215153	69.99	0
2848	02 172786.0	-11.881118	10.071785	-9 . 834783	-2.066656	-5 . 364473	-2.606837	-4.918215	1.014480	-0.509348	1.436807	0.250034	0.943651	0.823731	0.77	0
2848	03 172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.012463	-1.016226	-0.606624	-0.395255	0.068472	-0.053527	24.79	0
2848	04 172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	-0.037501	0.640134	0.265745	-0.087371	0.004455	-0.026561	67.88	0
2848	05 172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	-0.163298	0.123205	-0.569159	0.546668	0.108821	0.104533	10.00	0
2848	06 172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	0.376777	0.008797	-0.473649	-0.818267	-0.002415	0.013649	217.00	0
[284	807 rows x 31	columns]														

Check for missing values and basic dataset info

print(f"Dataset shape: {data.shape}")

[284807 rows x 31 columns]
Dataset shape: (284807, 31)

print(f"Missing values:\n{data.isnull().sum()}")

Missing	values:
Time	0
V1	0
V2	0
V 3	0
V4	0
V5	0
V6	0
V7	0
V8	0
V 9	0
V10	0
V11	0
V12	0
V13	0
V14	0
V15	0
V16	0
V17	0
V18	0
V19	0
V20	0
V21	0
V22	0
V23	0
V24	0
V25	0
V26	0
V27	0
V28	0
Amount	0
Class	0
dtype:	int64

Separate features and target

X = data.drop(columns=['Class']) # Replace 'Class' with your target column name if different print(X)

y = data['Class']

print(y)

```
0.0 -1.359807
                                                                                                                        -0.072781 2.536347 1.378155 -0.338321 0.462388 0.239599 ... 0.277838 -0.110474 0.066928 0.128539 -0.189115 0.133558 -0.021053
                                                  0.0 1.191857
                                                                                                                      0.266151 0.166480 0.448154 0.060018 -0.082361 -0.078803 ... -0.638672 0.101288 -0.339846 0.167170 0.125895 -0.008983 0.014724
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               2.69
                                                                                                                      -1.340163 1.773209 0.379780 -0.503198 1.800499 0.791461 ... 0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752
                                                  1.0 \quad -0.966272 \quad -0.185226 \quad 1.792993 \quad -0.863291 \quad -0.010309 \quad 1.247203 \quad 0.237609 \quad \dots \quad 0.005274 \quad -0.190321 \quad -1.175575 \quad 0.647376 \quad -0.221929 \quad 0.062723 \quad 0.061458 \quad -0.186274 \quad -
                                                                        -1.158233 \qquad 0.877737 \qquad 1.548718 \qquad 0.403034 \quad -0.407193 \qquad 0.095921 \qquad 0.592941 \qquad \dots \qquad 0.798278 \quad -0.137458 \qquad 0.141267 \quad -0.206010 \qquad 0.502292 \qquad 0.219422 \qquad 0.215153 \qquad 0
                                                   2.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            69.99
                          172786.0 -11.881118 10.071785 -9.834783 -2.066656 -5.364473 -2.606837 -4.918215 ... 0.111864 1.014480 -0.509348 1.436807 0.250034 0.943651 0.823731
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0.77
                          172787.0 -0.732789 -0.055080 2.035030 -0.738589 0.868229 1.058415 0.024330 ... 0.924384 0.012463 -1.016226 -0.606624 -0.395255 0.068472 -0.05527
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            24.79
                                                                                                                       -0.301254 -3.249640 -0.557828 2.630515
                                                                                                                                                                                                                                                                                                         3.031260 -0.296827 ... 0.578229 -0.037501 0.640134 0.265745 -0.087371 0.004455
                          172788.0 -0.240440 0.530483 0.702510 0.689799 -0.377961 0.623708 -0.686180 ... 0.800049 -0.163298 0.123205 -0.569159 0.546668 0.108821 0.108533
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           10.00
   34806 172792.0 -0.533413 -0.189733 0.703337 -0.506271 -0.012546 -0.649617 1.577006 ... 0.643078 0.376777 0.008797 -0.473649 -0.818267 -0.002415 0.013649 217.00
284807 rows x 30 columns]
       me: Class, Length: 284807, dtype: int64
```

Normalize the features

scaler = StandardScaler()

print(scaler)

X_scaled = scaler.fit_transform(X)

print(X_scaled)

```
-0.072781
0.266151
-1.340163
                                                     2.536347 1.378155
0.166480 0.448154
1.773209 0.379780
                                                                                                                                              -0.110474
0.101288
0.909412
                                                                                                                                                                         0.128539 -0.189115
0.167170 0.125895
                        1.191857
-1.358354
                                                                                                                                                                                                     -0.055353
                                                                                 -0.503198
                                                                                                                                 0.771679
                                                                                                                                                            -0.689281
                                                                                                                                                                          -0.327642 -0.139097
                        -0.966272
                                        -0.185226
                                                      1.792993
                                                                                                                                                                          0.647376 -0.221929
                                                                                                                                                                                                      0.062723
                                      10.071785 -9.834783 -2.066656
                                                                                                                                 0.111864 1.014480
0.924384 0.012463
0.578229 -0.037501
          172786.0 -11.881118
                                                                                 -5.364473
                                                                                              -2.606837
                                                                                                            -4.918215
                                                                                                                                                            -0.509348 1.436807 0.250034
                                                                                                                                                                                                     0.943651 0.823731
                                        -0.055080 2.035030 -0.738589
-0.301254 -3.249640 -0.557828
                                                                                0.868229
2.630515
                                                                                              1.058415
3.031260
                                                                                                            0.024330
-0.296827
                                                                                                                                                            -1.016226 -0.606624 -0.395255 0.068472
0.640134 0.265745 -0.087371 0.004455
                       -0.732789
1.919565
                                        0.623708
                                                                                                             0.686180
                                                                                                                                              -0.163298
                                                                                                                                                            0.123205
0.008797
                                                                                                                                                                          -0.569159
                                                                                                                                                                                                      0.108821
          172792.0 -0.533413
[284807 rows x 30 columns]
                Length: 284807, dtype: int64
```

Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42, stratify=y) print(X_train,)

```
StandardScaler()
[[-1.99658302 -0.69424232 -0.04407492 ... 0.33089162 -0.06378115
  0.24496426]
-0.34247454
[-1.99656197 -0.69350046 -0.81157783 ... -0.13713686 -0.18102083
  1.16068593
-0.0818393
[ 1.6419735 -0.12275539  0.32125034 ...  0.26960398  0.31668678
 -0.31324853
0.51435531]]
[[ 1.41309493  0.99390119  -0.45571564  ...  0.19235561  -0.09769602
 -0.3239634
-0.34127512
[-1.12918609 -0.50641931 0.36528224 ... 0.09426583 0.56149664
 0.3468355
[-1.25321726 0.54616878 0.04366533 ... 0.07683742 0.07539328
 -0.17163632
[-1.48249593 0.65373478 0.18202927 ... -0.14824131 -0.0178351
 -0.3496711
[-1.3891251 -0.30536718 0.46935012 ... 0.9379349
                                      0.62519565
 -0.32528277]]
```

```
# Handle class imbalance using SMOTE
smote = SMOTE(random_state=42)
print(smote)

X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)
print(X_train_resampled,y_train_resampled)
```

```
1
           0
2
           0
3
           0
           0
454897
           1
454898
           1
454899
454900
           1
454901
           1
Name: Class, Length: 454902, dtype: int64
```

```
# Choose a classification algorithm

# Use Logistic Regression for faster training

# You can switch to RandomForestClassifier if needed

classifier = LogisticRegression(max_iter=500, random_state=42)

print(classifier)
```

LogisticRegression(max_iter=500, random_state=42)

```
# Train the model

print("Training the model...")

print(classifier.fit(X_train_resampled, y_train_resampled))

Training the model...
```

```
# Make predictions on the test set
y_pred = classifier.predict(X_test)
```

LogisticRegression(max iter=500, random state=42)

```
[000...000]
```

print(y_pred)

Evaluate the model's performance

print("\nConfusion Matrix:")

print(confusion_matrix(y_test, y_pred))

Confusion Matrix: [[55399 1465] [8 90]]

print("\nClassification Report:")

print(classification_report(y_test, y_pred))

Classification Report: precision recall f1-score support							
0 1	1.00 0.06	0.97 0.92	0.99 0.11	56864 98			
accuracy macro avg weighted avg	0.53 1.00	0.95 0.97	0.97 0.55 0.99	56962 56962 56962			

Calculate precision, recall, and F1-score

from sklearn.metrics import precision_score, recall_score, f1_score

precision = precision_score(y_test, y_pred)

recall = recall_score(y_test, y_pred)

f1 = f1_score(y_test, y_pred)

print(f"\nPrecision: {precision:.2f}")

print(f"Recall: {recall:.2f}")

print(f"F1-Score: {f1:.2f}")

Precision: 0.06 Recall: 0.92 F1-Score: 0.11 import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import roc_curve, auc, precision_recall_curve

```
# Plot 1: Class Distribution5
plt.figure(figsize=(6, 4))
sns.countplot(x=y)
plt.title("Class Distribution")
plt.xlabel("Class (0: Genuine, 1: Fraudulent)")
plt.ylabel("Count")
plt.show()
```



```
# Plot 2: Correlation Heatmap
plt.figure(figsize=(12, 10))
correlation_matrix = data.corr()
sns.heatmap(correlation_matrix, cmap='coolwarm', annot=False)
plt.title("Feature Correlation Heatmap")
plt.show()
```


Plot 3: Feature Distribution (After Scaling)

```
plt.figure(figsize=(14, 8))
for i, col in enumerate(X.columns[:10], 1): # Adjust for number of features to visualize
  plt.subplot(3, 4, i)
  sns.kdeplot(X_scaled[:, i - 1], color='blue', fill=True)
  plt.title(col)
plt.tight_layout()
plt.show()
```


Plot 4: ROC Curve

y_proba = classifier.predict_proba(X_test)[:, 1] # Probability scores for the positive class
print(y_proba)
fpr, tpr, _ = roc_curve(y_test, y_proba)
print(fpr, tpr)
roc_auc = auc(fpr, tpr)
print(roc_auc)

```
1.01726630e-03 5.69133528e-02]
[0.00000000e+00 1.93444007e-04 1.93444007e-04 1.93444007e-04
2.11029826e-04 2.11029826e-04 2.28615644e-04 2.28615644e-04
2.46201463e-04 2.46201463e-04 2.81373101e-04 2.81373101e-04
3.86888014e-04 3.86888014e-04 6.85846933e-04 6.85846933e-04
1.07273495e-03 1.07273495e-03 1.09032077e-03 1.09032077e-03
1.95202589e-03 1.95202589e-03 7.08708497e-03 7.08708497e-03
8.30050647e-03 8.33567811e-03 1.36465954e-02 1.36465954e-02
1.75682330e-02 1.75682330e-02 2.87879854e-02 2.88231570e-02
3.01420934e-02 3.01772651e-02 4.34018008e-02 4.34545582e-02
5.11571469e-02 5.12274902e-02 5.44281092e-02 5.44632808e-02
7.77469049e-02 7.77820765e-02 9.38027575e-02 9.38379291e-02
1.12074423e-01 1.12109595e-01 1.15503658e-01 1.15538829e-01
1.17350169e-01 1.17385340e-01 1.17912915e-01 1.17912915e-01
1.25000000e-01 1.25000000e-01 1.30680219e-01 1.30715391e-01
1.50358751e-01 1.50358751e-01 1.56443444e-01 1.56478616e-01
1.66590461e-01 1.66625633e-01 1.70371412e-01 1.70406584e-01
2.26118458e-01 2.26153630e-01 2.35896173e-01 2.35931345e-01
2.55152645e-01 2.55187817e-01 2.60252532e-01 2.60287704e-01
2.88425014e-01 2.88460186e-01 2.88495357e-01 2.88530529e-01
2.90377040e-01 2.90377040e-01 3.36399128e-01 3.36434299e-01
3.58557259e-01 3.58557259e-01 3.84971159e-01 3.85006331e-01
3.89174170e-01 3.89226927e-01 4.15816685e-01 4.15851857e-01
4.19052476e-01 4.19087648e-01 4.20951745e-01 4.20986916e-01
4.30870146e-01 4.30870146e-01 5.36086100e-01 5.36086100e-01
5.67037141e-01 5.67072313e-01 6.10579629e-01 6.10614800e-01
6.47632949e-01 6.47668120e-01 6.51765616e-01 6.51800788e-01
```

0.98979592	0.98979592	0.98979592	1.	1.	1.
1.	1.	1.	1.	1.	1.
1.	1.	1.	1.	1.	1.
1.	1.	1.	1.	1.	1.
1.	1.	1.	1.	1.	1.
1.	1.	1.	1.	1.	1.
1.	1.	1.	1.	1.	1.
1.	1.	1.	1.	1.	1.
1.	1.	1.	1.	1.	1.
1.]				
0.970987885	165321				

```
plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC Curve (AUC = {roc_auc:.2f})')
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("Receiver Operating Characteristic (ROC) Curve")
plt.legend(loc="lower right")
plt.show()
```



```
Plot 5: Precision-Recall Curve

precision, recall, _ = precision_recall_curve(y_test, y_proba)

plt.figure(figsize=(8, 6))

plt.plot(recall, precision, color='blue', lw=2)

plt.xlabel("Recall")

plt.ylabel("Precision")

plt.title("Precision-Recall Curve")

plt.show()
```

