COMP3711: Design and Analysis of Algorithms

Tutorial 6

HKUST

Let X be a random variable that is equal to the number of heads in two flips of a fair coin. What is $E[X^2]$? What is $E^2[X]$?

Explain why the worst-case running time for bucket sort is $\Theta(n^2)$. What simple change to the algorithm preserves its linear average-case running time and makes its worst-case running time $O(n \log n)$?

Show the steps of inserting 2,1,4,5,9,3,6,7 into an initially empty AVL tree.

The AVL tree maintains its $O(\log n)$ height by balancing the heights of every two siblings. It is also possible to do so by balancing the weights. More precisely, the *weight* of a node u, denoted as w(u), is the number of nodes in the subtree below u (including u). The weight of an empty tree is 0. We use u_L and u_R to denote the weight of u's left and right child, respectively. A node u is said to be *weight-balanced* if

$$\frac{1}{2}\leq \frac{w(u_L)+1}{w(u_R)+1}\leq 2.$$

A binary tree is weight-balanced if all of its nodes are weight-balanced.

(a) The following figures show the smallest weight-balanced trees of height 0, 1, and 2, respectively. Please draw the smallest weight-balanced trees of height 3 and 4.

(b) Show that the height of a weight-balanced binary tree with n nodes is $O(\log n)$.