

过渡金属元素

大学化学

过渡金属元素在周期表中的位置

周期族	IIIB	IVB	VB	VIB	VIIB	VIII	ΙВ
第一过渡系	Sc	Ti	V	Cr	Mn	Fe Co Ni	Cu
第二过 渡系	Y	Zr	Nb	Mo	Te	Ru Rh Pd	Ag
第三过 渡系	La	Hf	Та	W	Re	Os Ir Pt	Au

过渡金属元素原子的价电子层构型

过渡元素原子结构的特点是:随着核电荷的递增,电子依次填充在次外层的d轨道上,最外层只有1~2个电子;由于过渡元素原子结构的共同特点故有许多通性。

过渡元素的通性

大学化学

- 1. 物理性质
- 1)过渡金属元素的原子半径

过渡金属元素的物理性质

大学化学

- 2)熔点、沸点和硬度
 - •熔点、沸点高 熔点最高的单质:钨(W)
 - •硬度大 硬度最大的金属:铬(Cr)
 - •密度大 密度最大的单质:锇(Os)
 - •导电性,导热性,延展性好。

过渡金属元素的物理性质

大学化学

熔点变化示意图

VIB~VIIB族元素的单质具有高熔点、高沸点和高硬度的原因,主要是它们的原子半径较小,有效核电荷较大,价电子层有较多的未成对d电子(铬有5个),这些d电子也参与成键,因而增强了金属键的强度和晶格的能量。

过渡金属元素离子的颜色

大学化学

3)水合离子的颜色

水合离子呈现多种颜色

过渡金属元素离子的颜色

过渡金属的水合离子、含氧酸根离子和配离子常是有颜色的,与此相反,主族金属的相应离子是无色的。

过渡元素的离子通常在d轨道上有未成对电子 这些电子的基态和激发态的能量比较接近,可见光 中的某些波长的光就可使电子激发,这些离子大都 具有颜色。一般地说,基态和激发态的能量差越小 电子吸收光的波长越长;反之,电子吸收光的波长 越短。

过渡元素的通性

大学化学

2. 化学性质

1)金属活泼性

第一过渡系金属的 E^{\ominus}

1	元	素	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
	$E_{M^2+}^{\ominus}$	/V /M	_	-1.63	-1.13	-0.79	-1. 185	-0.447	-0.28	-0.257	+0.342	-0.762

同一过渡系金属的活泼性自左至右逐渐减弱 (IB除外)例如,第一过渡系金属(Cu除外) 均为负值,所以这些金属都能溶于非氧化性稀酸, 并置换出氢气,但是,自左至右 逐渐升高,表 明金属的还原性有所减弱

大学化学

元素	Sc	Ti	V	Cr	Mn
$E^{\ominus} \underline{(M^{2+}/M)}$		-1.63	-1.2 (估算值)	-0.90	-1.18
可溶该 金属的 酸	各种酸	热 HCl HF	HNO3, HF 浓 H2 S O4	稀 HCl H2SO4	稀 HCl H2SO4 等
元素	Fe	Со	Ni	Cu	Zn
$E^{\ominus} \underline{(M^{2+}/M)}$	-0.409	-0.282	-0.236	+0.339	-0.762
可溶该 金属的 酸	稀 HCl H2SO4 等	缓慢溶解 在 HCl等 酸中	稀 HCl H2SO4等	HNO3,浓 热H2SO4	稀 HCl H2SO4 等

总趋势:从左至右活泼性降低。

2) d区元素的第一电离能

总趋势:同周期 左→右由小→大,幅度不大。同副族 不规律。

大学化学

3)多种氧化数

有多种氧化态,红色为常见的氧化态。

4)易形成配合物

过渡元素的原子或离子容易形成配合物,因为过渡元素的原子或离子具有能级相近的外层电子轨道(*n*-1)d,*n*s,*n*p。可以d,s,p组成的杂化轨道和配体孤对电子成键形成配合物,其中最常见的杂化轨道为sp³,dsp²及d²sp³等。