Dynamic Modelling for Human-centered Systems

Lecture 1

Syllabus: chapter 1 and 2

Agenda for today

- What is a model?
- Why modelling?
- Designing models
- Growth model in Excel

Agenda for today

- What is a model?
- Why modelling?
- Designing models
- Growth model in Excel

Model

- What is a model?
 - Describe the most important characteristics of model
 - With a neighbour, answer via menti.com: 5576 3918

Definitions:

- A representation of an object, system, or idea in some form other than that of the entity itself (R.F. Shannon)
- A simplified representation of a system or phenomenon, as in the sciences, with any hypotheses required to describe the system or explain the phenomenon, often mathematically (Random House Unabridged Dictionary)
- A schematic description of a system, theory, or phenomenon that accounts for its known or inferred properties and may be used for further study of its characteristics (The American Heritage Dictionary)

Example

- Planetarium:
 - Representation of planets and their orbit
 - Aim:
 - Show working of solar system
 - ... and Eisinga: proof that the world will not disappear
 - Type
 - physical
 - dynamic

Another example

- Statistical / machine learning models
 - Representation of correlation between input and output
 - Aim:
 - predict output based on input
 - Type
 - numerical
 - static

Yet another

- Marquette (scale model):
 - Representation of spatial properties of between objects
 - Aim:
 - study spatial aspects beforehand
 - Type
 - physical
 - static

And again...

- Software model:
 - Representation of snippets of computer programs, their functions and relations
 - Aim:
 - verify program beforehand
 - simplify or automate programming
 - Type:
 - diagrams and semi-formal descriptions
 - static (or dynamic)

... another example

- Economic model:
 - Representation of economic processes
 - Aim:
 - predict aspects of economy
 - tool for determining economic policies
 - Type:
 - mathematical formuleas
 - dynamic

Many other types exist...

Risks of using models

- Which risks do you see risks in using models?
- Important observations
 - a model is a simplification
 - during the design of the models, choices have been made
 - assumptions
 - a model is not the same as reality!

Our focus in this course

- We restrict ourselves to dynamic models
 - what is the most important property? Via menti.com
- A dynamic model:
 - describes a specific phenomenon, theory or system (i.e. a process)
 - specifies changes over time
 - i.e. can simulate the process

Elements of a dynamic model

- Concepts
 - represented as variables
 - temperature of an egg: TempEgg
- Timeline

- Rules that describe how concepts change per time step
 - $TempEgg(t + \Delta t) = \beta * TempWater(t) + (1-\beta) * TempEgg(t)$

Additional elements

- Start values
 - TempEgg(0) = 35
- Optional parameters
 - $\beta = 0.33$
- Optional stochastic variables
 - random values

Model outcome

 How to describe the outcome of a dynamic model?

- List of states of a model at subsequent time points:
 - (simulation) trace
 - simulation run
- How can we show it?

- Dependent on the representation of the model
 - graphical representation of values of model variables at subsequent time points

Visualisation - 2

 representation of truth values of model variables at subsequent time points (state trace)

Agenda for today

- What is a model?
- Why modelling?
- Designing models
- Growth model in Excel

Why modelling?

- 1. Study a process to increase understanding:
 - study the behaviour of a process over time
 - performing "what if" simulations
- 2. Basis for intelligent systems
 - models are used to understand what is happening with humans (and what to do)
 - models can make systems behave human-like

Users of models

- People:
 - researchers
 - policy makers

- Systems:
 - adaptive systems
 - human-like systems
 - ⇒ second half of the course

Use of models for scientific understanding

- How to use models to increase understanding?
- Scientific method:
 - research questions lead to hypotheses
 - formulate specific and precise hypotheses:
 - "if A occurs, then we observe B after some time"
 - validate hypotheses on simulation traces

Research questions

- Questions can be based on:
 - curiosity about the consistency of a scientific theory
 - curiosity about ultimate consequences of (aspects of) a scientific theory
 - questions about the long term effects of changes in policy

New term: model property

 An hypothesis about a model behavior (i.e. the outcome of a simulation given some input and parameter value) is called:

a model property

Model properties

- Can be statements about
 - effects that happen over time
 - combination of inputs that lead to some output
- Examples:
 - Jupiter and Pluto will not collide within two years
 - when taking a pill every 3 hours, the medication level is between 12 and 20 mg/l
- What is essential for a property?
 - it can be tested in an unambiguous way

Validation of properties

- Run (several) simulations of the model and check the properties ⇒ scenarios
 - choose conditions / input parameters intelligently
 - be precise about what you can conclude
- Alternatively:
 - use logic / mathematics to (dis)prove the properties
 - usually quite complex

Advantages of modelling

- Processes are easier to study than in reality, because that is:
 - expensive
 - time consuming
 - hard to measure
 - hard to manipulate
 - not ethical
 - ...

Use of models for intelligent applications

- Ambient Intelligence:
 - Intelligent systems support humans in their daily environment

- Requirements:
 - Systems have knowledge about human functioning
 - This course: making dynamic models about human functioning and incorporate them in systems

Agenda for today

- What is a model?
- Why modelling?
- Designing models
- Growth model in Excel

Designing models

- Quotes:
 - "Make your theory as simple as possible, but no simpler." (Albert Einstein)
 - "For every complex question there is a simple and wrong solution." (H.L. Mencken)
- Creative process!
 - requires choices and assumptions
 - not one correct solution
 - global / detailed; what to include / ignore
- Guideline provides structure to process

Modelling and Simulation Cycle

situation in the real world

1. Conceptualisation

- Several steps
- Iterative process
 - outcome task can influence other choices

A. Characterizing the process

- scope and boundaries
- type of questions to answer with the model
- expected behaviour (characteristic patterns)

B. If necessary: describe sub processes

- identify sub processes
- determine order
- result: simple diagram with processes and arrows

C. Identify important concepts

- which factors play a role in the process
 - objects, events, principles
- result: list of concepts

- D. Relations between concepts
 - which concepts affect each other
 - whether, not how
 - most relations occur within a sub process
 - result:
 - list "A affect B"
 - diagram

2. Formalisation

- Specification of the details of the conceptualization
 - concepts & relations
- Dependent on chosen representation
- Two main variant:
 - numerical representation
 - logical representation

Numerical representation

Concepts:

- variables met numerical value
 - integer, real, 0 of 1
 - example: concept "temperature" → "Temp: real"

Relations:

- calculation rules to determine value of concept at next time point based on values other concepts
 - in dynamic model values change over time
 - \(\Delta\)t (change in time) is time step between two states

Numerical representation (2)

 Suppose: model of the temperature of an egg that is boiled in a pot of water

- Example calculation rules:
 - TempEgg(t+∆t) = TempWater(t)
 - TempEgg(t+Δt) = β * TempWater(t) + (1-β) * TempEgg(t)

Logical representation

- Concepts:
 - statements (propositions) that can be true or false
 - example: medicine_taken(hiv_slowers)
- Relations:
 - Boolean rules that specify which combination of truth values is required for a concept to be true at next time point

Logical representation (2)

- Example rules:
 - $A \wedge B \rightarrow C$:
 - if A and B are true, C becomes true
 - $A \vee B \rightarrow C$:
 - If A or B or both are true, C becomes true
 - $A(X) \rightarrow B(X)$:
 - If A is true for argument value X, B becomes true for the same argument X
 - $not(A) \rightarrow B$:
 - If A is not true, B becomes true
 - $A(X) \land X > 52 \rightarrow B$:
 - If A is true for some value X larger than 52, B becomes true

3. Simulation

- Expected behaviour of correct model is specified as characteristic pattern ⇒ property
 - already during conceptualisation
- Define different scenarios that should be able to show properties
 - different start values
 - parameters that are different
 - stochastic variables (random factors)

4. Evaluation

- Simulations results are compared to characteristic patterns / properties
- Used to draw conclusions about correctness of model
 - validation

• Remarks:

- Patterns ≠ direct relations:
 - about indirect relations, and / or:
 - longer period of time
- Same process as answering research questions

Steps in brief

- 1. Conceptualisation: identification of important concepts and relations
- Formalisation: describe concepts and relations in an unambiguous way
- 3. Simulation: running experiments with models to generate simulations traces
- 4. Evaluation: verify whether the simulations are in line with expectations (properties about characteristics patterns)

Wrap up:

- What is a property of model?
- Which two use cases have we seen?

Reporting

- Structured reporting is important
 - many arbitrary choices in process
- Elements of report:
 - assumptions, choices, motivation
 - concepts, relations, expected patterns
 - scenarios used in simulation experiments
 - settings
 - input parameters
 - Verified properties, conclusions

Summary

- Dynamic models describe process in which factors change over time
- Models consists of:
 - concepts
 - rules
- Hypothesis / properties can be formulated and validated against simulation
 - for evaluating expected patterns
 - for studying the process

Agenda for today

- What is a model?
- Why modelling?
- Designing models
- Growth model in Excel

Dynamic modelling for Human-centered Systems

Modelling growth

Chapter 2

Modelling "growth"

- Basic example of model of dynamic process
- At the same time: building block for models of other process in which growth plays a role
- Aim: generic model
- Inspiration from nature

Understanding growth

- Phenomenon growth:
 - generic process
 - economy, biology
 - relations, trust
- Inspiration: biological growth
 - two causes of growth at cell level
 - volume increase
 - cell division
 - two types of growth via cell division
 - every cell divides
 - only cells at the end divide

Generic growth patterns

- Linear growth
 - division by fixed number of cells
 - equal gain per time step
- Exponential growth
 - division by every cell
 - every time step doubling

- Limited growth
 - growth decreases when some maximum is approached
 - growth is linear or exponential at start, then decreasing gain per time step

- Negative growth
 - loss is larger than the gain
 - exists in several variants
 - linear
 - exponential...

Which concepts?

- What would be useful concepts for a dynamic model of growth?
 - answer via menti.com

Conceptualisation of basic version

- Important concepts
 - amount
 - gain per time step
 - loss per time step
 - gain factor = gain as proportion of the total amount
 - loss factor = loss as proportion of the total amount

Visual representation of model

Formalisation

Amount and gain factor affect gain

Gain is calculated by multiplying the gain factor by the amount:

Gain(t) = GainFactor(t)*Amount(t)

Amount and loss factor affect loss

Loss is calculated by multiplying the loss factor by the amount:

Loss(t) = LossFactor(t)*Amount(t)

Formalisation - 2

From gain and loss to amount

Gain adds to the amount and loss subtracts from the amount, both taken over the time interval that is passing.

 $Amount(t+\Delta t) = Amount(t) + (Gain(t) - Loss(t)) * \Delta t$

Gain factor

Constant factor for exponential growth

 $GainFactor(t) = \alpha$

Limitation

- Model only allows linear and exponential growth
- Limited growth can not be represented
- Which change is needed?

Limited growth model

Adapted formalisation

- Limited gain:
 - proportional to distance to maximum capacity (C)
 - when close to C, the gain is also small
 (C Amount(t)) / C
 - thus:
 - GainFactor(t) = α * ((C Amount(t)) / C)
 - results in "logistic" growth

Modelling in Excel

How to make dynamic models in Excel?

- Excel can be used to represent dynamic models
 - concepts → columns
 - timeline → subsequent rows
 - calculation rules → formulae in columns of cells
 - parameters → some specific cells

Example

Results simulations

exponential

logistic

Assignment 1

- Understand specific model in Excel
- Make changes
- Formulate hypothesis about simulation result
- Validate hypothesis by comparing simulation outcomes

Model for assignment

- Prediction of drug level in blood
 - when taking medication, it is important to keep the drug level in the blood between certain limits
- Model
 - based on growth model
 - time steps of one hour
 - taking a pill increases medication level in blood
 - medication is slowly removed from body (decay factor)
 - decay factor depends on stochastic variable (mimics "unpredictable" physical activity)

What are good hypothesis?

- It can be tested!
 - unambiguous & precise
- What do you think?
 - sit with three neighbours
 - formulate one
 - submit some examples via menti.com
- Examples:
 - the amount is always below 600 mg/l
 - when taking medication, the gain is larger than the loss
 - for a given activity level, the drug level never goes below 200 mg/l

Instructions for assignment

- Hand in a self-contained report
 - explain & illustrate
 - sketch context, discuss consequences
- Subtraction of points if the following is not done:
 - unambiguousness in the formulation of hypotheses;
 - precise, complete and logically correct description of the interpretation of the simulation results;