МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра теоретических основ компьютерной безопасности и криптографии

Лабораторная работа №3. Решение нелинейных алгебраических уравнений

ОТЧЁТ

по дисциплине

«ПРОГРАММНЫЕ СРЕДСТВА РЕШЕНИЯ МАТЕМАТИЧЕСКИХ ЗАДАЧ»

студента 4 курса 431 группы			
специальности 10.05.01 Компьютерная безопасность			
факультета компьютерных наук и информационных технологий			
Серебрякова Алексея Владимировича			
Преподаватель			
доцент		А. С. Гераськин	
	подпись, дата		

3.2.1. Задание к лабораторной работе

1. Локализуйте корень уравнения f(x) = 0 на начальном промежутке длиной не менее 1 графическим методом.

- 2. Выбрав в качестве начального приближения один из концов начального отрезка, уточните корень методом простых итераций с точностью $\varepsilon = 0.001$.
- Найдите с точностью 10⁻⁶ корень уравнения методом Ньютона.
- 4. Найдите методом по варианту корень уравнения с точностью 10^{-6} .

Метод по вариантам:

- 1, 6, 11, 16, 21, 26, 31 разностный метод Ньютона с постоянным шагом,
 - 2, 7, 12, 27, 22, 27, 32 метод Стеффенсена,
 - 3, 8, 13, 18, 23, 28, 33 метод секущих,
 - 4, 9, 14, 19, 24, 29, 34 метод «лоцмана»,
 - 5, 10, 15, 20, 25, 30, 35 метод хорд.

13
$$f(x) = 0.2 \exp(-x^2) - \sqrt{x} + 3$$

Решение:

1. Локализуем корень уравнения f(x) = 0 графическим методом

$$f(x) = 0.2 \exp(-x^2) - \sqrt{x} + 3 = 0$$
$$\exp(-x^2) = 5\sqrt{x} - 15$$

Уравнение имеет 1 действительный корень на отрезке [8.5; 9.5].

2. Метод простых итераций с точностью 0.001

$$f'(x) = -(e^{(-x^2)} * (5 * e^{(x^2)} + 4 * x^{(3/2)}))/(10 * sqrt(x))$$

$$Q = \max|f'(x)| = |f'(8.5)| = 0.171$$
$$|k| \ge \frac{Q}{2} = > |k| \ge 0.0855 = > k = 1$$
$$\varphi(x) = x - f(x)/k = x - 0.2 \exp(-x^2) - \sqrt{x} + 3$$
$$\varphi'(x) = (e^{(-x^2)} * (4 * x^{(3/2)} - 5 * e^{(x^2)}))/(10 * sqrt(x)) + 1$$

$$q = max|\varphi'(x)| = \varphi'(9.5) = 0.838 < 1$$

Возьмем за х0 правый конец отрезка

$$x_0 = 9.5$$

Будем вычислять до выполнения

$$|x_n - x_{n-1}| \le \frac{q}{1-q} \varepsilon = \frac{0.838}{1 - 0.838} 0.001 \approx 0.052$$

$$x_1 = x_0 - 0.2 \exp(-x_0^2) - \sqrt{x_0} + 3$$

п	x_n	$\varphi(x)$	$ x_n-x_{n-1} $
0	9,5	9,41779	0,08221
1	9,41779	9,34895	0,06884
2	9,34895	9,29134	0,05761
3	<mark>9,29134</mark>	<mark>9,24317</mark>	0,04817

3. Метод Ньютона

$$f(x) = 0.2 \exp(-x^2) - \sqrt{x} + 3$$

$$f'(x) = -(e^{-x^2}) * (5 * e^{-x^2}) + 4 * x^{-x^2}) / (10 * sqrt(x))$$

$$f''(x) = (e^{-x^2}) * (5 * sqrt(x) * e^{-x^2}) + 16 * x^4 - 8 * x^2) / (20 * x^2)$$

Начальное приближение $x_0 = 9.5$

Итерационный процесс Ньютона

$$x_{n+1} = x_n - \frac{0.2 * exp(-(x^2)) - sqrt(x) + 3}{-(e^{(-x^2)}) * (5 * e^{(x^2)}) + 4 * x^{(3/2)})/(10 * sqrt(x))}$$

n	x_n	$f(x_n)$	$f'(x_n)$	$ x_n - x_{n-1} $
0	9,5	-0.082207	-0.0365468	
1	8.99324	-0.00000325	-0.0365354	0,50676
2	8.993225	0	-0.03652654	0,00001499(9)
3	8.9932246	<mark>0</mark>	<mark>-0.03651248</mark>	0,00000004

4. Метод секущих

$$f(x) = 0.2 \exp(-x^2) - \sqrt{x} + 3$$

Построим итерационный процес метода секущих

$$x_{n+1} = x_n - \frac{f(x_n) * (x_{n-1} - x_n)}{f(x_{n-1}) - f(x_n)}$$

Будем выполнять вычисления до выполнения условия $|x_n - x_{n-1}| \le \varepsilon = 10^{-6}$

n	x_n	$f(x_n)$	$ x_n - x_{n-1} $
0	8,5	0,08452405	
1	9,5	-0,0822070	0,16673105
2	8.98324653	0.012321544	0.00021564
3	8.99123244	0.000745129	0.00000784
4	8.99296587	0.000000248	<mark>0</mark>