Math 251

Quiz 09 (Group quiz: Green's theorem)

December 2, 2013; 35 minutes

This quiz is a little different from our previous ones; work together in groups to solve the problems. You'll get more practice in line integrals, solidify ideas about parametrization, and apply Green's theorem. Appoint a scribe for your group and do as much as you can **on your own Paper**.

Recall that Green's theorem applies to vector fields integrated along simple closed plane curves. A curve is simple if it doesn't intersect itself (except possibly at the endpoints) and closed if it is a continuous loop in the plane. The assertion of Green's theorem in this case is

$$\oint_{\partial \mathcal{D}} P \, dx + Q \, dy = \iiint_{\mathcal{D}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA. \tag{1}$$

Here \mathcal{D} is the region "enclosed" by the curve $\partial \mathcal{D}$ and we assume that $\partial \mathcal{D}$ is traversed so that \mathcal{D} is always to the left. Also, $P \, dx + Q \, dy$ is synonymous with $\langle P, Q \rangle \cdot d\vec{s}$.

1. Verify Green's theorem for the line integral

$$\oint_{\mathcal{C}} xy\,dx + y\,dy,$$

where \mathcal{C} is the unit circle, oriented counterclockwise. This means: compute each side of Equation 1 and check that the two values are equal.

2. Use Green's theorem to evaluate the line integrals.

- (a) $\oint_{\mathcal{C}} y^2 dx + x^2 dy$, where \mathcal{C} is the boundary of the square $0 \le x \le 1$, $0 \le y \le 1$, oriented counterclockwise.
- (b) $\oint_{\mathcal{C}} x^2 y \, dx$, where \mathcal{C} is the unit circle with standard orientation.
- 3. Let $I = \oint_{\mathcal{C}} \vec{F} \cdot d\vec{s}$, where $\vec{F} = \langle y + \sin x^2, x^2 + e^{y^2} \rangle$ and \mathcal{C} is the circle of radius 4 centered at the origin.
 - (a) Which is easier? Evaluating *I* directly via a parametrization or using Green's theorem?
 - (b) Carry out the evaluation, using the easier method.