1. General

1.1 Units and Conventions

1. Energy and temperature:

$$\frac{1}{40}$$
eV = 300K k_B . (1)

2. Natural units: energy is related to length by

$$1 \text{fm} \times 197 \text{MeV} = \hbar c = 1.$$
 (2)

3. For light, energy 1eV corresponds to wavelength $1.24 \mu m$.

4. Pauli matrices are

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
 (3)

5. Transformations of Pauli matrices

$$\mathbf{U}^{\dagger} \sigma_3 \mathbf{U} = \cos 2\theta \sigma_3 + \sin 2\theta \sigma_1 \tag{4}$$

$$\mathbf{U}^{\dagger} \sigma_1 \mathbf{U} = -\sin 2\theta \sigma_3 + \cos 2\theta \sigma_1 \tag{5}$$

$$\mathbf{U}^{\dagger} \sigma_2 \mathbf{U} = \sigma_2. \tag{6}$$

1.2 Check Results

- 1. Are the dimensions correct?
- 2. Does the limits of the result make sense?
- 3. Does the result make sense when the complexity of the system is removed?
- 4. Is it the right basis to draw a conclusion?
- 5. Have you double checked analytical expression with other people or Mathematica?
- 6. Have you checked numerical results with previously calculated simple results?
- 7. Does unitarity hold for the result? If not is the Hamiltonian Hermitian?

2. Field Theory

2.1 Equations of Motion

1. Dirac Equation

$$i\hbar\gamma^{\mu}\partial_{\mu}\psi - mc\psi = 0 \tag{7}$$

2. Klein Gordon Equation

$$\frac{1}{c^2} \frac{\partial^2}{\partial t^2} \psi - \nabla^2 \psi + \frac{m^2 c^2}{\hbar^2} \psi = 0 \tag{8}$$

3. Neutrinos

3.1 Fundamental Parameters

1. Mixing angles

$$\sin^2 2\theta_{12} = 0.857 \pm 0.024 \tag{9}$$

$$\sin^2 2\theta_{23} > 0.95 \tag{10}$$

$$\sin^2 2\theta_{13} = 0.095 \pm 0.010 \tag{11}$$

2. Masses (fig 1)

$$\Delta m_{12}^2 = \Delta m_{sol}^2 = 7.53_{-0.18}^{+0.18} \times 10^{-5} \text{eV}^2$$
 (13)

$$|\Delta m_{31}^2| = \Delta m_{atm}^2 = 2.44^{+0.06}_{-0.06} \times 10^{-3} \text{eV}^2$$
 (14)

Fractional Flavor Content varying $\sin^2 \theta_{23}$

Figure 1: Neutrino mass hierarchy. Mena, O., & Parke, S. (2004). Unified graphical summary of neutrino mixing parameters. Physical Review D, 69(11), 117301.

3.2 Nuclear Reactions

Figure 2: Feynman diagram of beta decay. The charged current weak interaction boson in this case is a W^- . Credit: Joel Holdsworth, within public domain.

Reaction	Equation	Boson
Electron emission	${}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}X + e^{-} + \bar{\nu}_{e}$	W
Positron emission	$\int_{Z} \overline{A}X \to \overline{A}^{-1}X + e^{+} + \nu_{e}$	W
Electron capture	$\overline{{}_{Z}^{A}X} + e^{-} \rightarrow {}_{Z-1}^{A}X + \nu_{e}$	W
Positron capture	$\int_{Z}^{A} X + e^{+} \rightarrow \int_{Z+1}^{A} X + \bar{\nu}_{e}$	$\mid W \mid$
Electron annihilation	$e^- + e^+ \to \nu_e + \bar{\nu}_e$	W
Electron annihilation	$e^- + e^+ \to \nu + \bar{\nu}$	Z
Neutrino capture	$ \begin{array}{c} A X + \stackrel{(-)}{\nu_e} \to A X + e^{\pm} \end{array} $	W
$e^- \nu$ scattering	$e^{-} + \stackrel{(-)}{\nu_e} \rightarrow e^{-} + \stackrel{(-)}{\nu_e}$	W
$e^- \nu$ scattering	$e^{\pm} + \stackrel{(-)}{\nu_e} \rightarrow e^{\pm} + \stackrel{(-)}{\nu_e}$	Z
Neutrino scattering	$ AZX + \stackrel{(-)}{\nu} \to AZX + \stackrel{(-)}{\nu} $	Z
Bremsstrahlung	$N+N \rightleftharpoons N+N+\nu+\bar{\nu}$	
Annihilation	$e^+e^- \rightleftharpoons \nu + \bar{\nu}$	
Neutrino annihilation	$\nu + \bar{\nu} \rightleftharpoons \nu + \bar{\nu}$	

Table 1: Neutrino related nuclear or leptonic reactions

3.3 Neutrino Mixing

Figure 3: Neutrino mixing. Blue states $(\{1,2\})$ are the VAC-UUM energy basis while the orange states ($\{a,b\}$) are the flavor basis. Blue: flavor basis; Red: propagation basis.

The two basis are related to each other through a unitary matrix U,

$$\begin{pmatrix} |\nu_e\rangle \\ |\nu_x\rangle \end{pmatrix} = \mathbf{U} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \end{pmatrix}, \tag{15}$$

where

(12)

$$\mathbf{U} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}. \tag{16}$$

One thing to notice is that the relation of the amplitude has the same transformation

$$\begin{pmatrix} \psi_e \\ \psi_x \end{pmatrix} = \mathbf{U} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}, \tag{17}$$

where the amplitude is define as the components of a state in a certain basis.

$$|\Psi\rangle = (\psi_e \ \psi_x) \begin{pmatrix} |\nu_e\rangle \\ |\nu_x\rangle \end{pmatrix} = (\psi_1 \ \psi_2) \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \end{pmatrix}.$$
 (18)

3.4 Hamiltonian and Basis

3.4.1 **Basis**

Rotation from a Hamiltonian diagonalized basis wave function Ψ_v to flavor basis wave function Ψ_f is

$$\Psi_f = R_{d2f}(\theta_x)\Psi_d, \tag{19}$$

where d can be v for vacuum eigenbasis, m for matter eigenbasis and

$$R_{d2f}(\theta_x) = \begin{pmatrix} \cos \theta_x & \sin \theta_x \\ -\sin \theta_x & \cos \theta_x \end{pmatrix}. \tag{20}$$

Matter mixing angle θ_m is determined through

$$\sin 2\theta_m = \frac{\sin 2\theta_v}{\sqrt{\left(\frac{\lambda}{\omega_v}\right)^2 + 1 - 2\frac{\lambda}{\omega_v}\cos 2\theta_v}},$$
 (21)

$$\sin 2\theta_{m} = \frac{\sin 2\theta_{v}}{\sqrt{\left(\frac{\lambda}{\omega_{v}}\right)^{2} + 1 - 2\frac{\lambda}{\omega_{v}}\cos 2\theta_{v}}}, \qquad (21)$$

$$\cos 2\theta_{m} = \frac{\cos 2\theta_{v} - \lambda/\omega_{v}}{\sqrt{\left(\frac{\lambda}{\omega_{v}}\right)^{2} + 1 - 2\frac{\lambda}{\omega_{v}}\cos 2\theta_{v}}}, \qquad (22)$$

$$\tan 2\theta_{m} = \frac{\sin 2\theta_{m}}{\cos 2\theta_{m} - \lambda/\omega_{v}}, \qquad (23)$$

$$\tan 2\theta_m = \frac{\sin 2\theta_m}{\cos 2\theta - \lambda/\omega},\tag{23}$$

where $\lambda = \sqrt{2}G_F n_e$.

3.4.2 Hamiltonian

With the appearance of matter perturbation $\lambda(x) = \lambda_0 + 1$ $\delta\lambda(x)$ to the system, we have the Hamiltonian in vacuum basis

$$\mathbf{H}_{\mathbf{v}} = -\frac{\omega_{v}}{2}\sigma_{3} + \frac{\lambda(x)}{2}\cos 2\theta_{v}\sigma_{3} + \frac{\lambda(x)}{2}\sin 2\theta_{v}\sigma_{1}.$$
 (24)

In flavor basis,

$$\mathbf{H_f} = \frac{\omega}{2} (-\cos 2\theta \sigma_3 + \sin 2\theta \sigma_1) + \frac{\lambda(x)}{2} \sigma_3. \tag{25}$$

In background matter potential λ_0 basis

$$\mathbf{H}_{\bar{\mathbf{m}}} = -\frac{\omega_m}{2}\sigma_3 + \frac{\delta\lambda(x)}{2}\cos 2\theta_m\sigma_3 - \frac{\delta\lambda}{2}\sin 2\theta_m\sigma_1, \qquad (26)$$

where
$$\omega_m = \omega_v \sqrt{\left(\frac{\lambda}{\omega_v}\right)^2 + 1 - 2\frac{\lambda}{\omega_v}\cos 2\theta_v}$$
.

The caveat is the position/time dependence of the matter potential leads to position/time dependent transformation of the wave function which will cause an term in the Hamiltonian of the form

$$-i\mathbf{U}^{\dagger}(x)\frac{\partial}{\partial x}\mathbf{U}(x).$$
 (27)

3.4.3 Physics of Neutrino Oscillation

- 1. Nature of neutrino oscillation
- 2. MSW effect
- 3. Collective oscillation
- 4. Gravitation effect on neutrino oscillations
- 5. Kinetic equation ($\nu \bar{\nu}$ pairing correlations?)

Applications of Neutrino Oscillation

- 1. Supernova shock revive
- 2. Accretion disc
- 3. Cosmology
- 4. Tomography 5. Detection of nuclear activities

3.4.5 Big Questions

- 1. Are neutrinos Majorana or Dirac?
- 2. What is the mass hierarchy?

4. Numerical

4.1 Writing Code

- 1. Reduce quantities to dimensionless;
- 2. Always calculate the corresponding value of reduced quantities in suitable units.

4.2 Limits

- . Simple cases where analytical is possible;
- 2. Verified numerical calculations had previously.

4.3 Zen of Python

import this

4.4 Check You Code (Neutrino)

Check the code step by step:

- 1. Vacuum oscillation amplitude and frequency
- 2. Constant matter potential oscillation amplitude and frequency
- 3. MSW resonance