Texture Classification and Representation using 2D Textons

Tanmay Randhavane, 110050010

Nilesh Kulkarni, 110050007

Deepali Adlakha, 11d170020

The Algorithm

Classification

Training

- Input: One texture image (m X n) per texture class, q texture classes, a filter bank having p filters.
- Output: Histogram Database
- Algorithm:
 - For an image, for each pixel, convolute filters from filter bank to get a vector of size p.
 - Apply k-means algorithm on all m X n vectors, to get k vectors each of size p. These are called textons, which are particular to an image.
 - Generate k textons in the same way for all the texture classes. Thus, we get a texton database of qk textons.
 - Now, consider an image of a texture class. We have a p-length vector for each pixel in this image. Find the closest texton to this vector in the texton database using euclidean distance. Create a histogram of this mapping with the textons in the texton library on the x-axis.
 - Thus, we get a database of q histograms which we will use for classification.

Testing

- o Input: An image, texton database, histogram database, filter bank
- Output: The texture class to which the image belongs
- Algorithm:
 - For each pixel, apply filters from filter bank to get a vector of size p.
 - Find the closest texton to this vector in the texton database using euclidean distance. Create a histogram of this mapping with the textons in the texton library on the x-axis.
 - Find a histogram closest to test histogram from histogram database using chi-square distance. The image belongs to this texture class.

Texture Reconstruction

- Input: Textons generated for a texture image, mapping of each pixel to a texton, filter bank
- Output: Reconstructed texture image
- Algorithm:
 - Pseudo-inverse of filters from filter bank is applied on each texton to get a patch associated with that texton.
 - For each pixel, get the mapped texton (Using the mapping we get from K-Means). Assign the intensity of the center pixel in the patch associated to the texton at that pixel.

Results

Visualization of the three filter banks

LM Filter Bank

Filter Visualization

Filter Correlation Matrix

RFS Filters (MR8 is derived from RFS)

RFS Filter Bank Visualization

RFS Filter Correlation Matrix

S Filter

S Filter Visualization

Correlation Matrix S Filter

Rotational Variance of LM filters

• Rotational Invariance of MR8 filters

• Confusion Matrix for three filter banks

Texture Reconstruction

References

http://www.cs.berkeley.edu/~malik/papers/LM-3dtexton.pdf

(We implemented the 2D texton classification problem from the following paper)

Datasets & Filter Banks

1) Dataset to train and test texture model: Brodatz Texture Database

(http://sipi.usc.edu/database/database.php?volume=textures)

2) Filterbank for 2D texton extraction : The Leung-Malik Filterbank

(http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html)