CENG 789 – Digital Geometry Processing

14- Main DGP Tasks in a Nutshell

Prof. Dr. Yusuf Sahillioğlu

Computer Eng. Dept, MIDDLE EAST TECHNICAL UNIVERSITY, Turkey

Shape/Mesh Processing Tasks

- ✓ Already covered some important tasks (check out previous lectures).
 - ✓ Shape descriptors, generation, reconstruction, registration.
 - ✓ Mesh deformation, parameterization, remeshing, repairing.
- ✓ Talk about some other prominent tasks today.
 - ✓ Shape segmentation.
 - ✓ Shape representation/approximation.
 - ✓ Shape correspondence.
 - ✓ Shape retrieval.
 - ✓ Groupwise alignment.
 - ✓ Human-centric shape analysis (indirect).
 - ✓ Shape interpolation/morphing.
 - ✓ Scene synthesis and labeling.
 - ✓ Slides in the sequel represent Potential Project Topics.

- ✓ User-guided shape segmentation.
 - ✓ Live-wire interaction (well-known in image processing).

✓ https://www.youtube.com/watch?v=XRj8AFlkZfY

✓ Fully-automatic shape segmentation.

- ✓ Shape representation: MDS.
- ✓ Followed by k-means clustering algorithm.

✓ Fully-automatic shape segmentation.

✓ Shape representation: MDS (bending-invariant).

✓ Fully-automatic shape segmentation.

✓ Shape representation: MDS (bending-invariant).

✓ Fully-automatic shape segmentation.

√ K-means clustering.

✓ Fully-automatic shape segmentation.

- ✓ More sophisticated data-driven segmentation methods exist.
 - ✓ Hierarchical decomposition.
 - ✓ Randomized cuts.
 - ✓ Core extraction.
 - ✓ Fitting primitives.
 - ✓ Shape diameter function (SDF).
 - ✓ Intrinsic girth function (IGF).

- ✓ Fully-automatic shape segmentation via spectral clustering.
- ✓ Spectrum (eigvals) of a matrix, the Laplacian Matrix = Degree Adj.

Labelled graph	Degree matrix		Adjacency matrix	Laplacian matrix		
^	/2 0 0	0 0 0	(0 1 0 0 1 0)	$\begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \end{pmatrix}$		
$\binom{6}{1}$	0 3 0	0 0 0	1 0 1 0 1 0	$\begin{bmatrix} -1 & 3 & -1 & 0 & -1 & 0 \end{bmatrix}$		
(4)-(3)	0 0 2	0 0 0	0 1 0 1 0 0	$0 \ -1 \ 2 \ -1 \ 0 \ 0$		
7 10	0 0 0	3 0 0	0 0 1 0 1 1	0 0 -1 3 -1 -1		
(3)-(2)	0 0 0	0 3 0	1 1 0 1 0 0	-1 -1 0 -1 3 0		
0	0 0 0	0 0 1	(0 0 0 1 0 0)	0 0 0 -1 0 1		

- ✓ Lx = 0 for all const vectors, e.g., $x=[1 \ 1 \ .. \ 1]^T$. Eigval = 0, eigvec = c.
- \checkmark 2nd smallest eigval is more useful; it comes with the Fiedler eigenvector.
- \checkmark This eigval/vec, call it x2, approximates the sparsest cut of a graph.
 - ✓ Eigvecs orthogonal: x1 is constant, so to make dot prodct 0, x2 has
 +ve and -ve components. These 2 sets of components are clusters.
- ✓ Not directly applicable to Mesh Segmentation as mesh graph is regular.

10 / 40

✓ Why segment? Once you have the parts, you can go wild, e.g., collage

✓ Collection understanding through part-level correspondences, ...

- ✓ Computing simple geometric descriptions for dense surfaces.
 - ✓ Mesh decimation (minimal elements; already covered).
 - ✓ Mesh decimation based on context. See https://youtu.be/62_1CQirnzM

- ✓ Computing simple geometric descriptions for dense surfaces.
 - ✓ Mesh decimation (minimal elements; already covered).
 - ✓ Mesh decimation based on volume.
 - ✓ At extreme simplification levels, model the volumetric extent of the original shape. See https://youtu.be/Jz09SAeBWI0

- ✓ Computing simple geometric descriptions for dense surfaces.
 - ✓ Mesh decimation (minimal elements; already covered).
 - ✓ Mesh decimation based on volume.
 - ✓ Sphere interpolation replacing classic point interpolation.

- ✓ Computing simple geometric descriptions for dense surfaces.
 - ✓ Mesh decimation (minimal elements; already covered).
 - ✓ Mesh decimation based on level.
 - ✓ Nested cages for faster collision detection and deformation.

- ✓ Computing simple geometric descriptions for dense surfaces.
 - ✓ Mesh decimation (minimal elements; already covered).
 - ✓ Mesh decimation based on level.
 - ✓ Nested cages. Shrink, re-inflate. See https://youtu.be/tTEGDPHv_AI

- ✓ Computing simple geometric descriptions for dense surfaces.
 - ✓ Mesh decimation (minimal elements; already covered).
 - ✓ Mesh decimation based on level.
 - ✓ Nested cages. Shrink, re-inflate. See https://youtu.be/tTEGDPHv_AI
 - √ Cage-based deformations. Read
 - ✓ Spatial Deformation Transfer. https://youtu.be/ayeKItDliUc
 - ✓ Embedded Deformation. https://youtu.be/BEEN7Dmo9vI

- ✓ Computing simple geometric descriptions for dense surfaces.
 - ✓ Assemble of volumetric primitives.

- ✓ Computing simple geometric descriptions for dense surfaces.
 - √ Bag-of-words (bag-of-features) shape representation.

Bag-of-words

Common People Sculpture	2	0	1	3
	0	0	0 3	0

Shape Representation

- ✓ Computing simple geometric descriptions for dense surfaces.
 - ✓ Bag-of-words (bag-of-features) shape representation.
 - ✓ Need a visual vocabulary for shape (not text) processing.

Shape Representation

- ✓ Computing simple geometric descriptions for dense surfaces.
 - ✓ Bag-of-words (bag-of-features) shape representation.

- ✓ Define a map-distortion function that quantifies how good a given map is.
- ✓ Combinatorial search on space of maps.
 - ✓ Use the map minimizing the distortion function.

- ✓ Define a map-distortion function that quantifies how good a given map is. Many variants in the literature; see
 - ✓ Coarse-to-Fine Combinatorial Matching For Dense Isometric Shape
 Correspondence (C2FCM)
 - ✓ Scale Normalization for Isometric Shape Matching
 - ✓ Non-rigid registration under isometric deformations
 - ✓ Blended intrinsic maps
 - ✓ Generalized multidimensional scaling
- ✓ Cast the problem as matching between function values, not points: Functional Maps (not covered here).
 - ✓ By the author: https://youtu.be/l9pqyo85nFE?t=884
 - ✓ A good function. Laplace-Beltrami eigenfunctions: https://youtu.be/CpdJVcXQte4?t=502

Isometric Distortion

✓ Given $\S: S \to T$, measure its isometric distortion (from C2FCM):

$$D_{iso}(\S) = \frac{1}{|\S|} \sum_{(s_i, t_j) \in \S} d_{iso}(s_i, t_j)$$
$$d_{iso}(s_i, t_j) = \frac{1}{|\S'|} \sum_{(s_l, t_m) \in \S'} |g(s_i, s_l) - g(t_j, t_m)|$$

 $\S' = \S - \{(s_i, t_j)\}$ in the most general setting. g(.,.): normalized geodesic distance b/w two vertices.

 $\checkmark O(N^2)$ for a map of size N.

Isometric Distortion Illustration

 $\S: S \longrightarrow T$ $S_i \circ S_i \circ$

$$d_{iso}(s_i,t_j) = >0 + 0 + >0 + 0$$

$$d_{iso}(s_i,t_j) = \dots$$

$$\vdots$$
average for $D_{iso}(\S)$.

- ✓ Well-studied for isolated pair of X shapes.
- ✓ X =
 - ✓ Isometric or non-rigid
 - ✓ Rigid
 - ✓ Non-isometric
- ✓ At its infancy for collection analysis.
 - ✓ Use context info to improve results.

- ✓ Well-studied for isolated pair of X shapes.
- ✓ X =
 - ✓ Isometric or non-rigid
 - ✓ Rigid
 - ✓ Non-isometric
- ✓ At its infancy for collection analysis.

- ✓ At its infancy for collection analysis.
- ✓ Replace a (bad) map w/ a composition of (better) maps.
- \checkmark = w/ a composition of maps on the shortest/best path b/w 2 shapes.

- ✓ At its infancy for collection analysis.
- ✓ Consistent (left) vs. inconsistent (right) maps.

- ✓ Read
 - ✓ An optimization approach to improving collections of shape maps
 - ✓ Multiple shape correspondence by dynamic programming

✓ Non-isometric case harder due to stretching.

- ✓ Idea: Interpolate a few predefined correspondences on landmarks
 - ✓ Weighted averages on surfaces. See https://youtu.be/tlMsB6tB02w

✓ Non-isometric case harder due to stretching.

VS.

✓ Idea: Interpolate a few predefined correspondences on landmarks

✓ Blended intrinsic maps.

✓ Non-smooth blend:

- ✓ Query-by-text.
 - √ Google search.
 - ✓ Shape adaptation: DB needs to be manually tagged ⊗
- ✓ Query-by-example.
 - ✓ Shape adaptation: User provides a 3D model; popular but hard to come up with a 3D model ⊗.
- ✓ Query-by-sketch.
 - ✓ Shape adaptation: User simply draws; easy for user but not so accurate due to view and drawing differences ⊗.
 - ✓ Articulated:

- ✓ Query-by-text.
 - √ Google search.
 - ✓ Shape adaptation: DB needs to be manually tagged ⊗
- ✓ Query-by-example.
 - ✓ Shape adaptation: User provides a 3D model; popular but hard to come up with a 3D model ⊗.
- ✓ Query-by-sketch.
 - ✓ Shape adaptation: User simply draws; easy for user but not so accurate due to view and drawing differences ⊗.
 - ✓ Non-articulated: See https://youtu.be/lVszERiVaJI

- ✓ Index database models with
 - ✓ Features.
 - ✓ Bending-invariant representations.
 - ✓ Bag-of-words.
 - **√** ...
- ✓ Convert to query model into that index.
 - ✓ Retrieve the most compatible model according to the indexing.

- ✓ Evaluation of shape retrieval performance.
- ✓ Precision-recall plots.

- ✓ Evaluation of shape retrieval performance.
- ✓ Precision-recall plots.
 - ✓ Ideally this curve should be a horizontal line at unit precision.

Human-centric Shape Analysis

- ✓ Recognize/classify/segment objects based on their interaction with human agents.
 - ✓ Human body.

Groupwise Shape Alignment

- ✓ Make every shape in collection look right.
 - ✓ See https://youtu.be/m584yqGtlCE

✓ Put every shape in collection in upright orientation.

Shape Interpolation

✓ Instead of interpolating directly from A to B, create a path of shapes in data-driven fashion: $A \rightarrow R \rightarrow S \rightarrow T \rightarrow U \rightarrow V$. Connecting more similar shapes along the path is bound to give better results.

Scene Synthesis

✓ An intuitive approach is to keep the user in the loop via sketches.

Scene Segmentation and Labeling

✓ In order to issue this command to a robot: Get me the **mug** on **table**, need segmentation & labels on scene point cloud (acquired by a depth sensor).

- ✓ User guidance might help for segmentation: https://youtu.be/z_TcWC7yjj0
- ✓ Pairwise analysis might help for labeling.

