

PHOTON IS OUR BUSINESS

Near infrared/proximity type sensor

P13567-01CT

Reflective sensor with InGaAs photodiode and infrared LED housed in a compact package

This reflective sensor houses an InGaAs PIN photodiode and 1.45 μm band LED in a compact package. The LED irradiates infrared light on the target object, and the photodiode signal generated from the reflected light is output digitally through an I^2C interface.

Features

- **■** I²C interface
- Low supply voltage: Vdd=2.25 V to 3.63 V
- **■** I²C bus voltage: 1.65 V
- **■** Low current consumption
- \blacksquare Small package (5.5 \times 1.7 \times 1.0 mm)
- **■** Supports lead-free reflow soldering
- Built-in 16-bit A/D converter
- **■** Built-in LED driver

Applications

- Moisture level detection
- NIR (near infrared) photometry

♣ Absolute maximum ratings (Ta=25 °C)

Parameter	Symbol	Condition	Value	Unit
Supply voltage	Vdd		-0.3 to +4	V
Load current	Io		±10	mA
Power dissipation	Р		100	mW
Operating temperature	Topr	No dew condensation*	-30 to +80	°C
Storage temperature	Tstg	No dew condensation*	-40 to +85	°C
Forward current	IF		80	mA
Pulse forward current	IFP	Duty ratio=1%, pulse width=10 μs	1	Α
Reverse voltage	VR		1	V
Reflow soldering conditions	Tsol	Moisture absorption and reflow conditions: JEDEC J-STD-020D LEVEL5a	Peak temperature: 260 °C max., 3 times	-

^{*} When there is a temperature difference between a product and the surrounding area in high humidity environment, dew condensation may occur on the product surface. Dew condensation on the product may cause deterioration in characteristics and reliability.

Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

Recommended operating conditions

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage	Vdd		2.25	-	3.63	V
I ² C bus pull-up voltage* ¹	Vbus	Rp=2.2 kΩ	1.65	-	Vdd + 0.5	V
High level input voltage	Vih	SDA, SCL	1.55	-	Vdd + 0.5	V
Low level input voltage	Vil	SDA, SCL	-0.5	-	0.3Vdd	V
Bus capacitance	Cbus	SDA, SCL	-	-	400	pF
Maximum incident light level	-	Light source A	-	-	100	lx

^{*1:} The pull-up resistance is determined by the Cbus capacitance and Vbus voltage. Satisfy the following condition: Vdd - Vbus < 1.2 V.

Electrical and optical characteristics

Sensor section (Ta=25 °C, Vdd=Vbus=Vanode=3.3 V, LED: λp=1.45 μm, initial setting: high gain, integration time: 100 ms, unless otherwise noted)

Paramet	er	Symbol	Condition	Min.	Тур.	Max.	Unit	
Spectral response ra	ange	λ		-	0.9 to 1.7	-	μm	
Peak sensitivity wav	elength	λр		-	1.55	-	μm	
Current	Operation mode	Iddc	E_0 / (dark state) evaluding output current	30	75	150		
consumption	Standby mode	Idds	E=0 lx (dark state), excluding output current	0.1	1.0	3.0	μΑ	
Dark count (when LED	is in standby)	Sd	Dark state, initial setting	-	-	10	counts	
Dark count (when LED	is being driven)	Sdl	Dark state LED driver: DC mode, 8 mA	0	3000	7500	counts	
Sensitivity	High gain	Sh		22500	50000	80000	counts/mW	
Sensitivity gain ratio	High/Low	-		4.8	-	7.9	times	

■ I²C section (Ta=25 °C, Vdd=Vbus=3.3 V, unless otherwise noted)

Paramet	er	Symbol	Condition	Min.	Тур.	Max.	Unit
I ² C address		ADDR	7-bit		0 × 2A		
I ² C clock frequency		fclk		1	-	400	kHz
CDA output voltage	High level	Voh	Rp=2.2 kΩ	0.8Vbus	-	-	V
SDA output voltage	Low level	Vol	Rp=2.2 kΩ	0	-	0.4	V
I/O terminal capacit		Ci		-	-	20	pF
SDA output fall time	*2	tf	Rp=2.2 kΩ, Cp=400 pF	-	-	250	ns

^{*2:} The SCL/SDA output rise time is determined by the time constant defined by Cbus \times Rp. Note: I^2 C interface (SDA, SCL) timing complies with "The I^2 C-bus specification version 2.1".

■ LED section (Ta=25 °C, Vanode=Vdd=3.3 V, unless otherwise noted)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Peak emission wavelength	λр	IF=50 mA	1.4	1.45	1.5	μm
Spectral half width	Δλ	IF=50 mA	-	120	170	nm
Radiant flux	фе	IF=50 mA	1.8	2.4	-	mW
Forward voltage	VF	IF=50 mA	-	1.0	1.5	V
Reverse voltage	lr	VR=1 V	-	-	10	μΑ
Cutoff frequency*3	fc	IF=50 mA \pm 10 mAp-p	-	15	-	MHz
Rise time	tr	20% to 80%* ⁴	-	22	1	μs
Fall time	tf	80% to 20%* ⁴	-	27	-	μs

^{*3:} Frequency at which the light output drops by 3 dB relative to the output at 100 kHz

^{*4:} When IF=8 mA in LED pulse mode

Register map

A dwa	Function				b	it							
Adrs	Function	7	6	5	4	3	2	1	0				
00	RGB sensor control	Reset	Standby function	Standby function monitor	Register reset	Gain selection	Integration mode	Integration	time setting				
01	Manual timing (high byte)	Manual timing (low byte)											
02	Manual timing (low byte)				Manual uniii	ig (low byte)							
03	Output data (high byte)	Anode channel data (16 bits)											
04	Output data (low byte)	Alloue chaillel data (10 bits)											
05	-												
06	-												
07	-												
08	-												
09	-				Not	used							
0A	-												
0B	-												
0C	-												
0D	-												
0E	LED drive control 1	LED reset	LED standby function	DC mode	1/10 mode								
0F	LED drive control 2	L	ED1 drive cu	rrent selectio	n								
10	Monitor		Standby function monitor										

Note: We recommend that the LEDs be used in DC mode.

■ Details of 00, 0E, 0F

	Adrs				b	it			
	Aurs	7	6	5	4	3	2	1	0
	Initial setting	Reset	Standby	Standby function monitor	Register reset	Gain	Integration mode	Integrat	ion time
00		1	1	-	1	0	1	0	0
00	Function	0: Operation 1: reset	0: Operation 1: Standby	Readout only	0: Reset release 1: Address 03-0A Data reset	0: High gain 1: Low gain	0: Fixed time mode 1: manual setting mode	(00) 32 µs (10) 16.4 ms	(01) 1 ms (11) 131 ms
	Initial setting	LED reset	LED standby	DC mode	1/10 mode				
0E		1	1	0	0				
OL	Function	0: Operation 1: reset	0: Operation 1: Standby	0: Pulse mode 1: DC mode	0: Normal mode 1: 1/10 mode				
	Initial setting		LED driv	e current					
0F	Trilliai Setting	0	0	0	0				
	Function	0: 0 mA 1: 64 mA	0: 0 mA 1: 32 mA	0: 0 mA 1: 16 mA	0: 0 mA 1: 8 mA				

Program example

Condition 1: Initial settings [manual setting mode, Tint=00 (32 µs), integration time=100 ms/ch (manual timing register set to 0x0C30)]

Action					Data	body				Ack	Remark
Address call (0x2A)	S	0	1	0	1	0	1	0	W	Α	7-bit address
Register call (0x00)		0	0	0	0	0	0	0	0	Α	Specifies the control byte
Register write (0x84)		1	0	0	0	0	1	0	0	Α	ADC reset, standby release
Address call (0x2A)	Sr	0	1	0	1	0	1	0	W	Α	Restart, address
Register call (0x00)		0	0	0	0	0	0	0	0	Α	Specifies the control byte
Register write (0x04)		0	0	0	0	0	1	0	0	Α	P ADC reset release, bus release
	Stands	by for	longe	r thar	the ir	ntegra	tion tii	ne (st	andby	time	> 400 ms)
Address call (0x2A)	S	0	1	0	1	0	1	0	W	Α	7-bit address
Register call (0x05)		0	0	0	0	0	1	0	1	Α	Specifies the sensor data byte
Address call (0x2A)	Sr	0	1	0	1	0	1	0	R	Α	Changes to read mode
Data read out (MSB)		Χ	Χ	Χ	Х	Х	Х	Х	Х	Α	Data output
Data read out (LSB)		Χ	Χ	Χ	X	Х	Х	Х	Χ	Ā	Р

S=Start condition, Sr=Restart condition, A=Acknowledge, A=Acknowledge by host, P=Stop condition, R=Read mode (1), W=Write mode (0), \bar{A} =not acknowledge

■ Format

The rest is the same as the above command list.

When the SCL clock is 400 kHz, the write time is 135 μs .

Standby

The readout time is 112.5 μ s.

Near infrared/proximity type sensor

P13567-01CT

Condition 2: [Fixed time mode, Tint=01 (0.5 ms), integration time=1.0 ms/ch]

Command

Action					Data	body				Ack	Remark
Address call (0x2A)	S	0	1	0	1	0	1	0	W	Α	7-bit address
Register call (0x00)		0	0	0	0	0	0	0	0	Α	Specifies the control byte
Register write (0x81)		1	0	0	0	0	0	0	1	Α	ADC reset, standby release
Address call (0x2A)	Sr	0	1	0	1	0	1	0	W	Α	Restart, bit address
Register call (0x00)		0	0	0	0	0	0	0	0	Α	Specifies the control byte
Register write (0x01)		0	0	0	0	0	0	0	1	Α	P ADC reset release, bus release
Stands by for longer than the integra	ation tim	ie. Mea	sureme	ent take	es place	e during	g stand	by (sta	ndby ti	me > 4	4 ms). Measurements are repeated continuously.
Address call (0x2A)	S	0	1	0	1	0	1	0	W	Α	7-bit address
Register call (0x05)		0	0	0	0	0	1	0	1	Α	Specifies the sensor data byte
Address call (0x2A)	Sr	0	1	0	1	0	1	0	R	Α	Changes to read mode
Data read out (infrared: MSB)		Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Α	Data output
Data read out (infrared: LSB)		Χ	X	X	X	X	Х	Χ	X	Ā	P

S=Start condition, Sr=Restart condition, A=Acknowledge, A=Acknowledge by host, P=Stop condition, R=Read mode (1), W=Write mode (0), \bar{A} =not acknowledge

■ Format

The rest is the same as the above command list.

When the SCL clock is 400 kHz, the write time is 135 $\mu s.$

Standby

Condition 3: [Manual setting mode, Tint=01 (0.5 ms), manual timing=357 (0x165), integration time=357 ms/ch, low gain]

Command

Action		1			Data	hody				Ack	Remark
					Data	Douy				ACK	
Address call (0x2A)	S	0	1	0	1	0	1	0	W	Α	7-bit address
Register call (0x00)		0	0	0	0	0	0	0	0	Α	Specifies the control byte
Register write (0x8D)		1	0	0	0	1	1	0	1	Α	ADC reset, standby release
Register write (0x01)		0	0	0	0	0	0	0	1	Α	Manual timing high byte
Register write (0x65)		0	1	1	0	0	1	0	1	Α	Manual timing low byte
Address call (0x2A)	Sr	0	1	0	1	0	1	0	W	Α	Restart, 7-bit address
Register call (0x00)		0	0	0	0	0	0	0	0	Α	Specifies the control byte
Register write (0x0D)		0	0	0	0	1	1	0	1	Α	P ADC reset release, bus release
Stands by for longer than the integra	tion time	e. Meas	uremer	nt takes	place (during	standby	(stanc	lby time	e > 142	28 ms). Measurements are repeated continuously.
Address call (0x2A)	S	0	1	0	1	0	1	0	W	Α	7-bit address
Register call (0x05)		0	0	0	0	0	1	0	1	Α	Specifies the sensor data byte
Address call (0x2A)	Sr	0	1	0	1	0	1	0	R	Α	Changes to read mode
Data read out (MSB)		Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Α	Data output
Data read out (LSB)		Χ	Х	Χ	Χ	Χ	Х	Χ	Χ	Ā	Р

S=Start condition, Sr=Restart condition, A=Acknowledge, A=Acknowledge by host, P=Stop condition, R=Read mode (1), W=Write mode (0), \bar{A} =not acknowledge

■ Format

The rest is the same as the above command list.

When the SCL clock is 400 kHz, the write time is 180 μ s.

Standby

Condition 4: (LED drive DC mode, LED drive current=48 mA)

■ Command

· When starting operation

Action					Data	body				Ack	Remark
Address call (0x2A)	S	0	1	0	1	0	1	0	W	Α	7-bit address
Register call (0x0E)		0	0	0	0	1	1	1	0	Α	Specifies the control byte
Register write (0xA0)		1	0	1	0	0	0	0	0	Α	Standby release, DC mode
Register write (0x60)		0	1	1	0	0	0	0	0	Α	Drive current
Address call (0x2A)	Sr	0	1	0	1	0	1	0	W	Α	Restart, 7-bit address
Register call (0x0E)		0	0	0	0	1	1	1	0	Α	Specifies the control byte
Register write (0x20)		0	0	1	0	0	0	0	0	Α	P LED driver reset release, bus release

· When ending operation

Action			Data body							Ack	Remark
Address call (0x2A)	S	0	1	0	1	0	1	0	W	Α	7-bit address
Register call (0x0E)		0	0	0	0	1	1	1	0	Α	Specifies the control byte
Register write (0xC0)		1	1	0	0	0	0	0	0	Α	P Standby

S=Start condition, Sr=Restart condition, A=Acknowledge, A=Acknowledge by host, P=Stop condition, R=Read mode (1), W=Write mode (0), \bar{A} =not acknowledge

■ Format

The rest is the same as the above command list.

· When starting operation

S	0x	(2A (7 bits)	W	Α		0x0E	Α		0xA1	Α		
0x60 A												
	Sr	0x2A (7 bits)		W	Α	0x0E		Α	0x20		Α	Р
· When ending operation												
	S	0x2A (7 bits)		W	Α	0x0E		Α	0xC0		Α	Р
from master to slave from slave to master												

Flowcharts

Sensor section

After power-on, the built-in power-on reset circuit operates to set all registers to their initial conditions (2.).

With the initial settings, the product is in standby mode, waiting for commands.

To set measurement conditions, enter commands via the I^2C bus. This product starts measuring when ADC reset changes from 1 to 0. Therefore, to write to registers, ADC reset must be set to 1 (3.).

After setting measurement conditions (4.), release ADC reset to start measuring (5.). There are two operation modes: fixed time mode and manual setting mode. In manual setting mode, the product automatically enters standby mode after completing a single measurement. In fixed time mode, the product repeats measurement and data storage. During this repetition, if ADC reset or standby is set to 1 with an $\rm I^2C$ command, the product stops its operation.

■ LED driver

With the initial settings, the LED drivers are also in standby mode. Therefore, first disable the standby mode (3.). Next, set the LED current, 1/10 mode, DC mode, and the like. Then, release the reset to start operating (4. 5.). LED drivers continue to operate until they are set to standby mode. To end operation, enable standby mode.

Spectral response

KPICB0215EB

Directivity

KPICB0219EA

Emission spectrum

Forward current vs. forward voltage (LED)

Light output vs. ambient temperature

- Allowable forward current vs. ambient temperature

- Current consumption vs. ambient temperature

Measurement example of moisture level

The moisture level of the copy paper is detected when the humidity is changed (40% to 80% to 20%).

■ Cross section (unit: mm)

Distance between the sensor and target object

The sensor output is maximum when the distance between the sensor and target object is about 1 mm.

Block diagram

- Connection example

Note: When the LED is emitting light, do not externally control the LED. If you are using Vdd and Vbus at different voltages, use them in the range that satisfies Vdd - Vbus<1.2 V. Set the LED's anode voltage to VF + α or higher of the LED in use.

KPICC0301EA

Timing chart

■ Sensor section (manual mode)

The photodiode data is stored temporarily in a buffer register (not the $\rm I^2C$ register). After the completion of the measurement, the entire set of data is stored in the $\rm I^2C$ register. If this product is set to manual mode, after the integration time elapses, it will automatically switch to sleep mode. $\rm I^2C$ register values are not initialized with ADC reset or in standby mode. They are initialized only during a power-on reset when the power is turned on. The integration time per cycle is the sum of the three detection times indicated in the timing chart on the left.

- · Initialization, measurement instruction
- · Standby time (>integration time)
- · Readout time

KPICC0293EA

■ Sensor section (fixed time mode)

The measurement time is the shortest under the following conditions.

<Conditions>

- · Fixed time mode, Tint=00 (32 µs)
- \cdot Integration time: 32 $\mu\text{s/ch}$
- · SCL frequency: 400 kHz
- · Initialization, measurement instruction: 135 μs
- \cdot Standby time (>integration time): 128 μs
- · Readout time: 112.5 µs

Measurement time: 375.5 µs

KPICC0294EA

■ LED driver (pulse drive)

The LED driver can set the light emission pulse width in the range of 0 μ s to 240 μ s in 16 μ s steps (16 levels total). The light emission cycle is approximately 1.6 ms. The drive current is fixed at 8 mA.

When set to low current mode, the drive current is reduced to one-tenth (0.8 mA).

We recommend that you use the LED driver in DC mode.

Dimensional outline (unit: mm)

1	Vdd	6	LED anode
2	NC	7	LED cathode
3	NC	8	GND
4	NC	9	SDA
(5)	NC	(10)	SCL

Tolerance unless otherwise noted: ±0.2

KPICA0106EA

Note: When using this product, contact us for the technical note. Please check the technical note first, and then create an appropriate device design.

- Recommended land pattern (unit: mm)

KPICC0251EA

Standard packing specifications

■ Reel

Dimensions	Hub diameter	Tape width	Material	Electrostatic characteristics		
180 mm	60 mm	12 mm	PS	Conductive		

■ Embossed tape (unit: mm, material: PS, conductive)

- Packing quantity 2000 pcs/reel
- Packing type

 Reel and desiccant in moisture-proof packaging (vacuum-sealed)

▶ Measured example of temperature profile with our hot-air reflow oven for product testing

Time (s)

KPICC0220EA

- This product supports lead-free soldering. After unpacking, store it in an environment at a temperature of 30 °C or less and a humidity of 60% or less, and perform soldering within 168 hours.
- · If it is not stored in the above environment after unpacking or more than three months has passed without unpacking, perform baking. For the baking method, see the related information "Precautions of Surface mount type products."
- The effect that the product receives during reflow soldering varies depending on the circuit board and reflow oven that are used. When you set reflow soldering conditions, check that problems do not occur in the product by testing out the conditions in advance.

Related information

www.hamamatsu.com/sp/ssd/doc_en.html

- Precautions
- Disclaimer
- · Surface mount type products

Information described in this material is current as of June 2017.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

HAMAMATSU

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81) 53-434-3311, Fax: (81) 53-434-5184
U.S.A.: Hamamatsu Corporation: 360 Foothill Road, Bridgewater, N.J. 08807, U.S.A., Telephone: (1) 908-231-0960, Fax: (1) 908-231-1218
Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49) 8152-375-0, Fax: (49) 8152-265-8
France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: 33-(1) 69 53 71 00, Fax: 33-(1) 69 53 71 10
United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire AL7 1BW, United Kingdom, Telephone: (44) 1707-294888, Fax: (44) 1707-325777
North Europe: Hamamatsu Photonics Norden AB: Torshamnsgatan 35 16440 Kista, Sweden, Telephone: (46) 8-509-031-01, Fax: (46) 8-509-031-01
Italy: Hamamatsu Photonics Italia S.r.l.: Strada della Moia, 1 int. 6, 20020 Arese (Milano), Italy, Telephone: (39) 02-93581733, Fax: (39) 02-93581741
China: Hamamatsu Photonics (China) Co., Ltd.: B1201, Jiaming Center, No.27 Dongsanhuan Beilu, Chaoyang District, Beijing 100020, China, Telephone: (86) 10-6586-6006, Fax: (86