Lab00-Proof

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2021.

* Name: Haoyi You Student ID: <u>519030910193</u> Email: yuri-you@sjtu.edu.cn

1. Prove that for any integer n > 2, there is a prime p satisfying n . (Hint: consider a prime factor <math>p of n! - 1 and prove by contradiction)

Proof. Assume there exists n satisfying that there is no integer t with n < t < n!. Obviously, integer k = n! - 1 is not a prime.Let $k = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_l^{\alpha_l}$, with $p_i (1 \le i \le l)$ are all prime number. From the assumption we know that for any $i, p_i \le n$, but it is certain that $(n! - 1, p_i) = (-1, p_i) = 1$. So the assume fails. QED.

2. Use the minimal counterexample principle to prove that for any integer $n \geq 7$, there exists integers $i_n \geq 0$ and $j_n \geq 0$, such that $n = i_n \times 2 + j_n \times 3$.

Proof. First, we know $7 = 2 \times 2 + 3 \times 1, 8 = 2 \times 4 + 3 \times 0$.

Assumption: There exist integers that do not satisfy the given condition, assume $n_1 \geq 9$ be the smallest one of them.

However, let $n_2 = n_1 - 2 \ge 7$. If n_2 satisfies the condition and there exists integers i_{n_2} and j_{n_2} , such that $n_2 = i_{n_2} \times 2 + j_{n_2} \times 3$. We can get $n_1 = (i_{n_2} + 1) \times 2 + j_{n_2} \times 3$.

As a result, n_2 does not satisfy the condition, either. But we have assumed n_1 be the smallest one and we find $n_2 \leq n_1$. From the minimal counterexample principle, the assumption fails. QED.

3. Suppose the function f be defined on the natural numbers recursively as follows: f(0) = 0, f(1) = 1, and f(n) = 5f(n-1) - 6f(n-2), for $n \ge 2$. Use the strong principle of mathematical induction to prove that for all $n \in N$, $f(n) = 3^n - 2^n$.

Proof. Assumption: $f(n) = 3^n - 2^n$.

First, when n=1 and n=2, the assumption is valid.

Then, we suppose when $n \leq k$ the assumption is valid.

So for $n \leq k+1$

$$f(k+1) = 5f(k) - 6f(k-1) = 5 * (3^{k} - 2^{k}) - 6 * (3^{k-1} - 2^{k-1})$$

= $3^{k-1} * (5 * 3 - 6) + 2^{k-1} * (6 - 5 * 2) = 9 * 3^{k-1} - 4 * 2^{k-1} = 3^{k+1} - 2^{k+1}.$ (1)

According to the principle of mathematical induction, the assumption is valid. \Box

4. An *n*-team basketball tournament consists of some set of $n \geq 2$ teams. Team p beats team q iff q does not beat p, for all teams $p \neq q$. A sequence of distinct teams $p_1, p_2, ..., p_k$, such that team p_i beats team p_{i+1} for $1 \leq i < k$ is called a ranking of these teams. If also team p_k beats team p_1 , the ranking is called a k-cycle.

Prove by mathematical induction that in every tournament, either there is a "champion" team that beats every other team, or there is a 3-cycle.

Proof. Assumption: for any $n \ge 2$ team, either there is a "champion" team that beats every other team, or there is a 3-cycle.

First, when n=2, team p beats team q, p is the "champion" team.

Then, we suppose when $n \leq k$ the assumption is valid.

So for $n \leq k+1$, there are teams $p_1, p_2, ..., p_{k+1}$. For first k of these teams, the assumption is valid.

If there is a 3-cycle, there is also a 3-cycle when we add the team p_{k+1} .

If there is a "champion" team, we let p_1 beats the other k-1 teams. If p_1 also beats p_{k+1}, p_1 is also the "champion" team.

Otherwise, consider the relations between p_{k+1} and $p_i (2 \le i \le k)$. If p_{k+1} beats all of them, p_{k+1} is the "champion" team. Otherwise there exists m that p_m beats p_{k+1} , so we know that p_1 beats p_m, p_m beats p_{k+1}, p_{k+1} beats p_1 , which is a 3-cycle.

According to the principle of mathematical induction, the assumption is valid. QED. \Box

Remark: You need to include your .pdf and .tex files in your uploaded .rar or .zip file.