Caso de estudio 1

Realizar el siguiente ejercicio de subredes.

Se desea configurar cada una de las redes de este esquema para que se cumplan las condiciones marcadas en los rectangulos grises.

RED₁

Enunciado

8 subredes con el máximo número de host por cada una de ellas

Respuesta

- IP LAN: 192.168.1.0/24 (máscara_original=24)
- bits prestados: $3(2^n = 2^3 = 8)$ (Desde la tabla de potencia documento de Ruben)
- nueva máscara = máscara original + bits prestados = 24 + 3 = 27
- bits_host = 32 27 = 5
- salto = $2^5 = 32$
- host por subred = $(2^5) 2 = 30$

RED 1 - Subred	IP LAN (dirección de red)	Host min	Host max	Broadcast	Host disponibles
RED 1.1	192.168.1.0/27	192.168.1.1	192.168.1.30	192.168.1.31	30

RED 1 - Subred	IP LAN (dirección de red)	Host min	Host max	Broadcast	Host disponibles
RED 1.2	192.168.1.32/27	192.168.1.33	192.168.1.62	192.168.1.63	30
RED 1.3	192.168.1.64/27	192.168.1.65	192.168.1.94	192.168.1.95	30
RED 1.4	192.168.1.96/27	192.168.1.97	192.168.1.126	192.168.1.127	30
RED 1.5	192.168.1.128/27	192.168.1.129	192.168.1.158	192.168.1.159	30
RED 1.6	192.168.1.160/27	192.168.1.161	192.168.1.190	192.168.1.191	30
RED 1.7	192.168.1.192/27	192.168.1.193	192.168.1.222	192.168.1.223	30
RED 1.8	192.168.1.224/27	192.168.1.225	192.168.1.254	192.168.1.255	30

RED 2

Enunciado

10 Redes y máximo números de equipos

Respuesta

```
subredes = 2^4 = 16
hosts_por_subred = 2^(bits_host) - 2
bits_prestados = nueva_máscara - máscara_original
bits_host = 32 - nueva_máscara
salto = 2^bits_host
```

- IP LAN: 192.168.22.0/24 (máscara_original=24)
- bits prestados: 4 $(2^n = 2^4 = 16)$ (Desde la tabla de potencia documento de Ruben)
- nueva_máscara = /28
- bits_host = 32 28 = 4
- salto = $2^4 = 16$
- host_por_subred = (2^4) 2 = 14

RED 2. {1- 16}	IP LAN (dirección de red)	Host min	Host max	Broadcast	Host disponibles
RED 2.1	192.168.22.0/28	192.168.22.1	192.168.22.14	192.168.22.15	14
RED 2.2	192.168.22.16/28	192.168.22.17	192.168.22.30	192.168.22.31	14
RED 2.3	192.168.22.32/28	192.168.22.33	192.168.22.46	192.168.22.47	14
RED 2.4	192.168.22.48/28	192.168.22.49	192.168.22.62	192.168.22.63	14
RED 2.5	192.168.22.64/28	192.168.22.65	192.168.22.78	192.168.22.79	14
RED 2.6	192.168.22.80/28	192.168.22.81	192.168.22.94	192.168.22.95	14
RED 2.7	192.168.22.96/28	192.168.22.97	192.168.22.110	192.168.22.111	14
RED 2.8	192.168.22.112/28	192.168.22.113	192.168.22.126	192.168.22.127	14
RED 2.9	192.168.22.128/28	192.168.22.129	192.168.22.142	192.168.22.143	14
RED 2.10	192.168.22.144/28	192.168.22.145	192.168.22.158	192.168.22.159	14

RED 3

Enunciado

Calcular el subnetting para 17 Redes y Máximo numero de Equipos

Respuesta

- IP LAN: 172.17.0.0/16 (máscara_original=/21)
- bits prestados: $5 (2^n = 2^5 = 32)$ (Desde la tabla de potencia o documento de Ruben)
- nueva_máscara = máscara original + bits prestados = 16 + 5 = 21
- bits_host = 32 21 = 11
- salto = 2^11 = 2048
- host_por_subred = (2^11) 2 = 2046

RED 3.{1- 17}	IP LAN (dirección de red)	Host min	Host max	Broadcast	Host disponibles
RED 3.1	172.17.0.0/21	172.17.0.1	172.17.7.254	172.17.7.255	2046
RED 3.2	172.17.8.0/21	172.17.8.1	172.17.15.254	172.17.15.255	2046
RED 3.3	172.17.16.0/21	172.17.16.1	172.17.23.254	172.17.23.255	2046
RED 3.4	172.17.24.0/21	172.17.24.1	172.17.31.254	172.17.31.255	2046
RED 3.	/21				2046
RED 3.32	172.17.248.0/21	172.17.248.1	172.17.256.254	172.17.256.255	2046

Nota extra

Cálculo de la subred <N>

```
red_subred_N = Red_base + (N - 1) × SALTO
```

Donde:

- N = número de la subred que quieres (1, 2, 3... 32)
- SALTO = el salto calculado previamente

🧮 MÉTODO GENERAL PARA CUALQUIER SUBRED

Ejemplo: Quiero calcular directamente la subred #17

N = 17 Incremento = $(17 - 1) \times 8 = 16 \times 8 = 128$

```
Red subred 17: 172.17.(0 + 128).0 = 172.17.128.0/21

Broadcast: 172.17.128.0 + 8 en octeto 3 - 1

= 172.17.135.255
```

LAN Router2 - Router1

Cálcular un subnetting para solo dos ip host disponible (un ip por cada router)

```
subredes = 2^(bits_prestados)
hosts_por_subred = 2^(bits_host) - 2
bits_prestados = nueva_máscara - máscara_original
bits_host = 32 - nueva_máscara
salto = 2^bits_host
```

Respuesta

- IP LAN (elegida): 192.168.21.0/24 (máscara_original=/24) (el tercer octeto seleccionado como .21. por relacion a que es la coneción entre Route2 <-> Router1).
- Considerando que solo se necesitan 2 IP para cada uno de los host (router en este caso), la mascára la deducimos que es /30

```
bits_prestados = 30 - 24 = 6
bits_host = 32 - 30 = 2
salto = 2^2 = 4
host_por_subred = (2^2) - 2 = 2
```

LAN Router2 - Router1	IP LAN (dirección de red)	Host min	Host max	Broadcast	Host disponibles
LAN R2-R1	192.168.21.0/30	192.168.21.1	192.168.21.2	192.168.21.3	2

LAN Router3 - Router1

Cálcular un subnetting para solo dos ip host disponible (un ip por cada router)

Respuesta

- IP LAN (elegida): 192.168.31.0/24 (máscara_original=/24) (el tercer octeto seleccionado como .31. por relacion a que es la coneción entre Route3 <-> Router1).
- IP LAN: 192.168.31.0/24 (máscara_original=/24)
- bits prestados: $.(2^n = 2^n = .)$ (Desde la tabla de potencia o documento de Ruben)
- nueva_máscara = máscara original + bits prestados = . + . = .
- bits host = . . = .
- salto = 2^. = .
- host_por_subred = (2^.) 2 = .

LAN Router3 - Router1	IP LAN (dirección de red)	Host min	Host max	Broadcast	Host disponibles
LAN R3-R1	192.168.31.0/30	192.168.31.1	192.168.31.2	192.168.31.3	2

LAN Router4 - Router1

Cálcular un subnetting para solo dos ip host disponible (un ip por cada router)

Respuesta

```
• IP LAN (elegida): 192.168.41.0/24 (máscara_original=/24) (el tercer octeto seleccionado como .41. por relacion a que es la coneción entre Route3 <-> Router1).
```

```
• IP LAN: 192.168.41.0/24 (máscara_original=/24)
```

- bits prestados: $.(2^n = 2^n = .)$ (Desde la tabla de potencia o documento de Ruben)
- nueva_máscara = máscara original + bits prestados = . + . = .
- bits_host = . . = .
- salto = 2^. = .
- host_por_subred = (2^.) 2 = .

LAN Router4 - Router1	IP LAN (dirección de red)	Host min	Host max	Broadcast	Host disponibles
LAN R4-R1	192.168.41.0/30	192.168.41.1	192.168.41.2	192.168.41.3	2

Anexo / referencias

Documentación consultada

• Documento PDF, profesor Rúben

Formulas útiles y/o utilizadas

```
subredes = 2^(bits_prestados)
hosts_por_subred = 2^(bits_host) - 2
bits_prestados = nueva_máscara - máscara_original
bits_host = 32 - nueva_máscara
salto = 2^bits_host
```