

Special Topics in Applications (AIL861) Artificial Intelligence for Earth Observation Lecture 20

Instructor: Sudipan Saha

Further challenge in mapping debris-covered glaciers

Mapping of debris-covered glaciers in Alpine regions is still challenging due to many factors including similarity between debris and the adjacent bedrock, shadows cast from mountains (source: Glacier Mapping Based on Random Forest Algorithm: A Case Study over the Eastern Pamir)

Potential solutions

- Capturing texture and spatial context (CNN)
- ✓ Taking other inputs like thermal input (multi-sensory learning)
- ✓ Movement velocity features (time-series analysis, e.g., using LSTM)

Further challenge in mapping debris-covered glaciers

Detecting boundary of clean ice and debris-covered glacier facies is a challenging aspect.

(source: Glacier Facies Mapping Using a Machine-Learning Algorithm: The Parlung Zangbo

Basin Case Study)

Potential solution

Edge-aware model learning.

(e.g., recall U-Net actual model proposed in 2015)

Glacier Change Detection

✓ Most glaciers keep moving slowly

✓ Even in absence of any change, the co-registration error may induce errors in change detection methods.

✔ Potential solution: recall our discussion on planetary change detection.

Weather Data for Earth Surface Forecasting

Problem

- Problem: Earth Surface Forecasting i.e. predicting future satellite imagery based on previous context frames, conditioned on a certain future weather scenario.
 - auxiliary information can also be used, e.g. elevation maps
 - can be framed as a guided video-prediction task

Motivation:

- Use seasonal forecasts for estimating the crop yield, drought risks and others
- But only knowing these forecasts may not be enough because of many local factors (e.g. soil type, slope, water vicinity etc), whereas the satellite imagery captures some of them
 - additionally, the spatial resolution of seasonal forecasts can be too coarse
- o Once we have the predicted imagery, it can be used in many downstreams applications
- Lots of data available for training since no labelling is needed

A Conv-LSTM based model

- Advantages:
 - o exploits the temporal dimension using their recurrent inductive bias
 - o by training frame by frame, the future predictions are explicitly constrained on the previous weather maps

EarthNet2021 (Requena-Mesa et al., 2021)

Target

25/05/2019 - 21/10/2019

Context

Context

Precipitation

Sea Level Pressure

Mean Temperature

Target

Minimum Temperature

Minimum Temperature

Digital Elevation Mod

Figure 1: Overview visualization of one of the over 32000 samples in EarthNet2021

Figure from (Requena-Mesa et al., 2021)

- relatively large dataset (~600Gb on disk, compressed)
- 32000 samples, each consisting of:
 - 30 frames from Sentinel-2
 - 5 days interval => a period of 150 days
 - 4 channels used: RGB + NIR
 - 150 daily frames containing meteorological variables
 - precipitation, sea level pressure, mean, minimum and maximum temperature
 - static DEM
- context (input): 10 frames, prediction: 20 frames
 - the meteorological variables are available as input for the entire 150 days period

Result

- Three baseline models:
 - a naive model predicts always the average of the context frames
 - Channel-U-Net based on UNet, by stacking all context frames and predicting all future frames at once
 - Arcon based on a video prediction model, SAVP (Stochastic Adversarial Video Prediction)

	IID				OOD					
	ENS	MAD	OLS	EMD	SSIM	ENS	MAD	OLS	EMD	SSIM
Persistance (baseline-1)	0.2625	0.2315	0.3239	0.2099	0.3265	0.2587	0.2248	0.3236	0.2123	0.3112
Channel-U-Net (baseline-2)	0.2902	0.2482	0.3381	0.2336	0.3973	0.2854	0.2402	0.3390	0.2371	0.3721
Arcon (baseline-3)	0.2803	0.2414	0.3216	0.2258	0.3863	0.2655	0.2314	0.3088	0.2177	0.3432
ConvLSTM	0.3266	0.2638	0.3513	0.2623	0.5565	0.3204	0.2541	0.3522	0.2660	0.5125

Effect of Different Inputs

Test set	Input data	ENS	MAD	OLS	EMD	SSIM
IID	RGBNIR	0.3151 ± 0.0004	0.2576 ± 0.0002	0.3424 ± 0.0004	0.2530 ± 0.0005	0.5162 ± 0.0015
	RGBNIR + DEM	0.3156 ± 0.0003	0.2579 ± 0.0001	0.3424 ± 0.0005	0.2533 ± 0.0006	0.5183 ± 0.0009
	RGBNIR + WEATHER + DEM	0.3266 ± 0.0004	0.2638 ± 0.0002	0.3513 ± 0.0001	0.2623 ± 0.0004	0.5565 ± 0.0017
OOD	RGBNIR	0.3078 ± 0.0005	0.2484 ± 0.0001	0.3426 ± 0.0008	0.2547 ± 0.0007	0.4709 ± 0.0016
	RGBNIR + DEM	0.3084 ± 0.0004	0.2482 ± 0.0003	0.3433 ± 0.0008	0.2564 ± 0.0009	0.4703 ± 0.0019
	RGBNIR + WEATHER + DEM	0.3204 ± 0.0002	0.2541 ± 0.0002	0.3522 ± 0.0006	0.2660 ± 0.0004	0.5125 ± 0.0010

Simulations

- artificially generated various rainfall scenarios by randomly perturbing the original values, within reasonable bounds
- an additional way to validate if the model learned the weather -> land surface relationship
- this also serves as an example of a practical use-case:
- we can feed multiple scenarios (e.g. based on emission scenarios) and analyze their localized impact
- also, seasonal forecasts usually come from an ensemble model => we can take the worst & best case scenarios, or we can also analyze the spread of the predictions as an uncertainty measure

AI4EO

Evaluation on Two Special Sets

- Two other evaluation sets are proposed in EarthNet2021:
 - one focused on a region in Germany with a severe drought
 - the context and prediction lengths are different: 20 and 40, resp.
 - one focused on capturing the entire seasonality: 70 context frames (1 year) and 140 future frames (2 years)
- Performance is relatively poor:

	Extreme				Seasonal					
	ENS	MAD	OLS	EMD	SSIM	ENS	MAD	OLS	EMD	SSIM
Persistance (baseline-1)	0.1939	0.2158	0.2806	0.1614	0.1605	0.2676	0.2329	0.3848	0.2034	0.3184
Channel-U-Net (baseline-2)	0.2364	0.2286	0.2973	0.2065	0.2306	0.1955	0.2169	0.3811	0.1903	0.1255
Arcon (baseline-3)	0.2215	0.2243	0.2753	0.1975	0.2084	0.1587	0.2014	0.3788	0.1787	0.0834
ConvLSTM	0.2140	0.2137	0.2906	0.1879	0.1904	0.2193	0.2146	0.3778	0.2003	0.1685