ამოცანათა კრებული მათემატიკურ ანალიზში

ზ. კუჭავა, ĿT_EX 11.2.2025

§ 2. ქვანტორები და სიმრავლეები.

0.1 ქვანტორები

ვთქვათ p(x) მათემატიკური გამონათქვამია, რომელიც შეიცავს ცვლადს x. გამონათქვამი "ყოველი x-თვის სრულდება p(x)" აღინიშნება " $(\forall x)p(x)$ " სიმბოლოთი, ხოლო გამონათქვამი "არსებობს x ისეთი, რომ სრულ-დება p(x)" აღინიშნება " $(\exists x)p(x)$ " სიმბოლოთი. სიმბოლოს " \forall " ეწო-დება **ნებისმიერობის ქვანტორი**, ხოლო სიმბოლოს " \exists " კი **არსე-ბობის ქვანტორი**.

სამართლიანია შემდეგი ძირითადი თეორემები:

- 1. თუ R თეორემაა და x არ მონაწილეობს ცხად აქსიომებში, მაშინ $(\forall x)R$ თეორემაა. ამგვარად $R \Rightarrow (\forall x)R$ როდესაც x არ არის რაიმე განსაკუთრებული ობიექტი თეორიაში არ არის კონსტანტა, ე.ი. x ცვლადია.
- 2. $(\forall x)R \Rightarrow R$ და $R \Rightarrow (\exists x)R$ თეორემებია.
- $\exists . \](\forall x)R \Leftrightarrow (\exists x)]R$ და $](\exists x)R \Leftrightarrow (\forall x)]R$ თეორემებია.

ქვანტორებთან მუშაობის დროს, აგრეთვე, გამოიყენება ე.წ. "მუნჯი ცვლადის" ექვივალენტობები: $(\forall \mathbf{x})\mathbf{p}(\mathbf{x},\mathbf{y})\Leftrightarrow (\forall \mathbf{t})\mathbf{p}(\mathbf{t},\mathbf{y})$ და $(\exists \mathbf{x})\mathbf{p}(\mathbf{x},\mathbf{y})\Leftrightarrow (\exists \mathbf{t})\mathbf{p}(\mathbf{t},\mathbf{y})$.

თუ B და R რაიმე ფორმულებია, მაშინ $(\exists_R \mathbf{x})\mathbf{B}$ სიმბოლოთი აღინიშნება ჩანაწერი $(\exists \mathbf{x})(\mathbf{B} \ \& \ \mathbf{R})$, ხოლო $(\forall_R \mathbf{x})\mathbf{B}$ სიმბოლოთი კი - $](\exists \mathbf{x})]\mathbf{B}$ ჩანაწერი, ანუ $(\forall \mathbf{x})(\mathbf{R} \Rightarrow \mathbf{B})$. ამ სიმბოლოებს ეწოდება "ტიპობრივი ქვანტორები" და ისინი გამოიყენება იმ შემთხვევაში, როდესაც გვინდა შემოვიფარგლოთ მხოლოდ ისეთი x-ებით, რომლებიც აკმაყოფილებენ პირობას R. მაგალითად ხშირად გამოიყენება ჩანაწერები, სადაც R არის $\mathbf{x} \in \mathbf{X}$ რაიმე X სიმრავლისთვის ანუ ჩანაწერები $(\forall \mathbf{x} \in \mathbf{X})\mathbf{B}$ და $(\exists \mathbf{x} \in \mathbf{X})\mathbf{B}$.

განვიზილოთ №1 მაგალითი $(R\Rightarrow S)\Rightarrow ((\forall x)R\Rightarrow (\forall x)S)$ და დავამტკიცოთ დამატებითი პიპოთეზის შემოყვანის მეთოდით. დავუშვათ $R\Rightarrow S$ ფორმულა ჭეშმარიტია და დავამტკიცოთ, რომ $(\forall x)R\Rightarrow (\forall x)S$ ფორმულაც ჭეშმარიტია. ამ უკანასკნელის დამტკიცებისთვის, თავის მხრივ, დავუშვათ (კიდევ ერთი დამატებითი პიპოთეზა), რომ

 $(\forall x)R$ ფორმულა ჭეშმარიტია. რადგან გიცით რომ ჭეშმარიტია $(\forall x)R\Rightarrow R$, ამიტიომ იმპლიკაციის მეთოდით მივიღებთ, რომ ჭეშმარიტია ფორმულა R. მაგრამ პირველი დაშვების თანახმად ჭეშმარიტია $R\Rightarrow S$, რაც მოგვცემს, იგივე იმპლიკაციის თვისებით, რომ S-იც ჭეშმარიტია. რადგან პირობიდან ვიცით, რომ x არაა კონსტანტა, ამიტომ სამართლიანია $S\Rightarrow (\forall x)S$. აქედან კი, ისევ იმპლიკაციის თვისებით, ვღებულობთ, რომ ჭეშმარიტია $(\forall x)S$. ამის გამო, მეორე, ჭეშმარიტების $(\forall x)R\Rightarrow R$, დაშვების გამოყენებით ჯერ დავასკვნით, რომ ჭეშ-მარიტია $(\forall x)R\Rightarrow (\forall x)S$ ფორმულა და მერე პირველი, $R\Rightarrow S$ ჭეშმარიტების, დაშვების გამო მივიღებთ, რომ ჭეშმარიტია მთელი მაგალითი.

0.2 სიმრავლეები

სიმრავლეთა თეორიაში გამოიყენება სპეციალური სიმბოლოები: \in , \subset და წყვილის სიმბოლო.

ჩანაწერი " $a\in A$ " იკითხება როგორც "a ეკუთვნის A-ს". a-ს ეწოდება A-ს ელემენტი, ზოლო A-ს კი სიმრავლე, რომელიც შეიცავს a ელემენტს.

როდესაც p(x) და A-ის სამართლიანია $\exists A$ და $(\forall x)(x \in A \Leftrightarrow p(x))$, მაშინ ამბობენ, რომ A სიმრავლე განისაზღვრება p(x) პირობით და ეს მიღებულია ჩაიწეროს შემდეგი სახით $A = \{x : p(x)\}$.

ჩანაწერი " $A\subset B$ " წარმოადგენს " $(\forall x)(x\in A\Rightarrow x\in B)$ " ჩანაწერის შემოკლებულ აღნიშვნას.

აქსიომადაა მიღებული შემდეგი ფორმულა $(\forall A)(\forall B)((A\subset B\&B\subset A)\Rightarrow (A=B))$ (ექსტენსიონალობის აქსიომა).

მტკიცდება, რომ არსებობს და ერთადერთია სიმრავლე X, რომ-ლისთვის სამართლიანია ფორმულა $(\forall x)(x \notin X)$. ამ სიმრავლეს ეწო-დება **ცარიელი სიმრავლე** და აღინიშნება სიმბოლოთი " \emptyset ".

როდესაც A სიმრავლე ჩაწერილია $A=\{x:p(x)\}$ და p(x) წარმოადგენს ტავტოლოგიის უარყოფას (იგივურად მცდარი წინადადება), მაშინ $A=\emptyset$.

დავუშვათ A და B სიმრავლეებია.

ჩანაწერი " $A \cup B$ " იკითხება როგორც "A სიმრავლის **გაერთიანე-ბა** B სიმრავლესთან" და განიმარტება შემდები ტოლობით

$$A \cup B = \{x : x \in A \lor x \in B\}$$

ჩანაწერი " $A \cap B$ " იკითხება როგორც "A სიმრავლის **თანაკვეთა** B სიმრავლესთან" და განიმარტება შემდები ტოლობით

$$A\cap B=\{x:x\in A\ \&\ x\in B\}$$

ჩანაწერი " $A \setminus B$ " იკითხება როგორც "A სიმრავლეს გამოკლებული B სიმრავლე" და განიმარტება შემდები ტოლობით

$$A \setminus B = \{x : x \in A \& x \notin B\}$$

სიმრავლეს $A \setminus B$ ეწოდება კიდევ A და B სიმრავლეების **სხვაობა**.

დაგუშვათ მოცემულია სიმრავლე X და $A\subset X$. ჩანაწერი " C_XA " იკითხება როგორც "A სიმრავლის **დამატება** X სიმრავლემდე" და გამინარტება ტოლობით $C_XA=X\setminus A$. როდესაც ცხადია რომელ X სიმრავლეზეა საუბარი, ჩვეულებრივ, იწერება უბრალოდ CA.

ჩანაწერი " $A \times B$ " იკითხება როგორც "A სიმრავლის **დეკარტული ნამრავლი** B სიმრავლეზე" და განიმარტება შემდეგი ტოლობით $A \times B = \{(x,y) : x \in A \ \& \ y \in B\}$.

ჩანაწერი " $A\Delta B$ " იკითხება როგორც "A და B სიმრავლეების **სიმტრიული სხვაობა** " და განიმარტება შემდეგი ტოლობით $A\Delta B=(A\setminus B)\cup(B\setminus A)$.

განვიზილოთ ქვემოთ მოყვანილი მაგალითების და ამოცანების ამოზსნის ტიპიური ხერხები:

განვიხილოთ №33 მაგალითი $A\subset B\Leftrightarrow A\cap B=A$. ექვივალენტობის განმარტებიდან გამომდინარე უნდა დავამტკიცოთ ორი წინადადება $A\subset B\Rightarrow A\cap B=A$ და $A\subset B\Leftarrow A\cap B=A$. ამგვარად, დავუშვათ (დამატებითი პიპოთეზის მეთოდი), რომ სამართლიანია $A \, \subset \, B$ და დავიწყოთ $A \cap B \, = \, A$ ტოლობის დამტკიცება. ეს, თავის მხრივ, სიმრავლეთა ექსტენსიონალობის აქსიომის საფუძველზე მოითხოვს $A\cap B\subset A$ და $A\cap B\supset A$ წინადადებების დამტკიცებას. დავიწყოთ პირველით: ქვესიმრავლის და სიმრავლეთა თანაკვეთის განმარტების საფუძველზე გადაწერილი ეს წინადადება იქნება $(\forall x)((x\in A \& x\in B)\Rightarrow x\in A)$ რაც სამართლიანია "და"-ს მოხსნის კანონიდან გამომდინარე (§ 1 №20). მეორე წინადადების დამტკიცებისთვის გამოვიყენოთ დაშვება $A\subset B$ ფორმულის ჭეშმარიტების შესახებ. განვიხილოთ $x\in A$. დაშვების და § 1 №17 გამო $x \in A \Leftrightarrow x \in A \& A \subset B$. ეს უკანასკნელი შეიძლება გადავწეროთ შემდეგი ფორმით $x\in A$ & $[x\in A$ & $(x\in A$ & $x\in B)$]. მიღებული გამოსახულებისთვის დასკვნის კანონის 1 №19 გამოყენება კი გვაძლევს $x \in A \& x \in B$.

ახლა ვაჩვენოთ, რომ $A\cap B=A\Rightarrow A\subset B$. დავუშვათ სამართლიანია ტოლობა $A\cap B=A$. მივიღებთ, რომ $x\in A=A\cap B\Leftrightarrow x\in A$ & $x\in B\Rightarrow x\in B$ სადაც ბოლო გამომდინარეობა დავწერეთ ისევ "და"-ს მოხსნის კანონიდან გამომდინარე (§1 №20).

0.3 მაგალითები და ამოცანები

დაამტკიცეთ შემდეგი გამონათქვამები:

თუ x არაა კონსტანტა, მაშინ სამართლიანია შემდეგი ოთხი მაგალითი

- 1. $(R \Rightarrow S) \Rightarrow ((\forall x)R \Rightarrow (\forall x)S)$
- 2. $(R \Leftrightarrow S) \Rightarrow ((\forall x)R \Leftrightarrow (\forall x)S)$
- 3. $(R \Rightarrow S) \Rightarrow ((\exists x)R \Rightarrow (\exists x)S)$
- **4.** $(R \Leftrightarrow S) \Rightarrow ((\exists x)R \Leftrightarrow (\exists x)S)$

დაამტკიცეთ შემდეგი გამონათქვამები

- 5. $(\forall x)p(x) \& (\forall x)q(x) \Leftrightarrow (\forall x)[p(x) \& q(x)]$
- **6.** $(\exists x)p(x) \lor (\exists x)q(x) \Leftrightarrow (\exists x)[p(x) \lor q(x)]$

დაამტკიცეთ შემდეგი გამონათქვამები და მოიყვანეთ საპირისპირო გამომდინარეობების კონტრმაგალითები

- 7. $(\forall x)p(x) \lor (\forall x)q(x) \Rightarrow (\forall x)[p(x) \lor q(x)]$
- 8. $(\exists x)[p(x) \& q(x)] \Rightarrow (\exists x)p(x) \& (\exists x)q(x)$
- 9. $(\forall x)[p(x) \lor q(x)] \Rightarrow (\forall x)p(x) \lor (\exists x)q(x)$
- 10. $(\exists x) A \& (\forall x) B \Rightarrow (\exists x) [A \& B]$

დაამტკიცეთ შემდეგი ფორმულები, სადაც იგულისხმება, რომ x ასო არ შედის p(y) წინადადებაში

- 11. $(\forall x)[p(y) \lor q(x)] \Leftrightarrow p(y) \lor (\forall x)q(x)$
- 12. $(\exists x)[p(y) \& q(x)] \Leftrightarrow p(y) \& (\exists x)q(x)$

დაამტკიცეთ შემდეგი გამონათქვამები

- 13. $(\forall x)p(x) \lor (\forall x)q(x) \Leftrightarrow (\forall x)(\forall y)\bigg(p(x) \lor q(y)\bigg)$
- **14.** $(\exists x)p(x)$ & $(\forall x)q(x) \Rightarrow (\exists x)\Big(p(x)$ & $q(x)\Big)$
- 15. $(\exists x)p(x)$ & $(\exists x)q(x) \Leftrightarrow (\exists x)(\exists y)\bigg(p(x)$ & $q(y)\bigg)$
- **16.** $(\forall x)p(x) \lor (\forall x)q(x) \Leftrightarrow (\forall x)(\forall y) \left(p(x \lor q(y))\right)$
- 17. $(\forall x) \left(p(x \Leftrightarrow q(x)) \Rightarrow \left((\forall x) p(x) \Leftrightarrow (\forall x) q(x) \right) \right)$

18.
$$(\forall x) \left(p(x \Rightarrow q(x)) \Rightarrow \left((\exists x) p(x) \Rightarrow (\exists x) q(x) \right) \right)$$

- 19. $(\forall x)(\forall y)p(x,y) \Leftrightarrow (\forall y)(\forall x)p(x,y)$
- **20.** $(\exists x)(\exists y)p(x,y) \Leftrightarrow (\exists y)(\exists x)p(x,y)$
- 21. $(\exists x)(\forall y)p(x,y)\Rightarrow (\forall y)(\exists x)p(x,y)$ მოიყვანეთ საპირისპირო გამომდინარეობის კონტრმაგალითი
- 22. $(\exists x)(p\Rightarrow q)\Leftrightarrow (p\Rightarrow (\exists x)q)$ როცა x არ შედის p-ში
- 23. $(B\Rightarrow A)\Rightarrow ((\exists x)B\Rightarrow A)$ როცა x არაა p-ში და არაა კონსტანტა
- $24. \ (\forall x)(\forall y)(p \ \& \ q) \Leftrightarrow \big((\forall x)p \ \& \ \forall y)q\big)$ როცა y არაა p-ში და x არაა q-ში
- **25.** $(\forall_A x)R \Leftrightarrow (\forall x)(A \Rightarrow R)$
- **26.** $(\exists_A x)R \Rightarrow (\exists x)R$
- 27. $(\forall x)R \Rightarrow (\forall_A x)R$
- 28. $(p \Rightarrow q) \Rightarrow [(\exists x)p \Rightarrow (\exists_q x)p]$
- **29.** $(p \Rightarrow q) \Rightarrow [(\forall x)p \Rightarrow (\forall_q x)p]$

შემდეგი სამი მაგალითი სამართლიანია როდესაც y არაა R-ში და x არაა S-ში

- **30.** $(\forall_R x)(\forall_S y)p(x,y) \Leftrightarrow (\forall_S y)(\forall_R x)p(x,y)$
- 31. $(\exists_R x)(\exists_S y)p(x,y) \Leftrightarrow (\exists_S y)(\exists_R x)p(x,y)$
- 32. $(\exists_R x)(\forall_S y)p(x,y) \Rightarrow (\forall_S y)(\exists_R x)p(x,y)$

.

დაამტკიცეთ შემდეგი წინადადებები

- 33. $A \subset B \Leftrightarrow A \cap B = A$
- **34.** $A \subset B \Leftrightarrow A \cup B = B$
- **35.** $B \subset A \Rightarrow (A \setminus B) \cup B = A$
- **36.** $A \cap B = \emptyset \Rightarrow (A \cup B) \setminus B = A$
- 37. $A \subset B \Rightarrow A \setminus C \subset B \setminus C$
- **38.** $A \subset B \Rightarrow A \cap C \subset B \cap C$
- **39.** $A \subset B \Rightarrow A \cup C \subset B \cup C$
- **40.** $C = A \setminus B \Rightarrow B \cap C = \emptyset$
- **41.** $A \cup B = \emptyset \Leftrightarrow A = \emptyset \& B = \emptyset$

42.
$$A \setminus B = \emptyset \Leftrightarrow A \cap B = A$$

43.
$$A \setminus B = A \Leftrightarrow B \setminus A = B$$

44.
$$A \cup B = A \setminus B \Leftrightarrow B = \emptyset$$

45.
$$A \setminus B = A \cap B \Leftrightarrow A = \emptyset$$

46.
$$A \cup B \subset C \Leftrightarrow A \subset C \& B \subset C$$

47.
$$C \subset A \cap B \Leftrightarrow C \subset A \& C \subset B$$

48.
$$A \subset C \cup B \Leftrightarrow A \setminus B \subset C$$

49.
$$A \cap B = A \cup B \Leftrightarrow A = B$$

50.
$$A \subset B \subset C \Leftrightarrow A \cup B = B \cap C$$

51.
$$A\Delta X = A \Leftrightarrow X = \emptyset$$

52.
$$A \subset C \& B \subset D \Rightarrow (A \times D) \cap (B \times C)$$

53.
$$A \times B = \emptyset \Leftrightarrow A = \emptyset \vee B = \emptyset$$

დაამტკიცეთ ტოლობები

54.
$$](\forall x \in X) \ p(x) = (\exists x \in X) \]p(x)$$

56.
$$B \cup (A \setminus B) = A \cup B$$

57.
$$A \setminus (A \setminus B) = A \cap B$$

58.
$$B \cap (A \setminus B) = \emptyset$$

59.
$$A \cup (B \cup C) = (A \cup B) \cup C$$

60.
$$A \cap (B \cap C) = (A \cap B) \cap C$$

61.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

62.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

63.
$$A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$$

64.
$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

65.
$$B \setminus (A \cup C) = (A \cup B) \setminus (A \cup C)$$

66.
$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$

67.
$$A \setminus (B \cup C) = (A \setminus B) \setminus C$$

68.
$$(A \cup B) \setminus B = A \setminus B$$

69.
$$(A \setminus B) \cap C = (A \cap C) \setminus (B \cap C)$$

70.
$$A \cap B \cap C = A \setminus (A \setminus (B \cap C))$$

71.
$$(A \cap C) \setminus B = (A \cap C) \setminus (B \cap C)$$

72.
$$(A \setminus B) \cup (A \setminus C) = A \setminus (B \cap C)$$

73.
$$A \cap (B \cup C) = A \setminus [(A \setminus B) \cap (A \setminus C)]$$

74.
$$(A \setminus B) \setminus C = (A \setminus C) \setminus (B \setminus C)$$

75.
$$(A \setminus B) \cup (B \setminus C) \cup (C \setminus A) \cup (A \cap B \cap C) = A \cup B \cup C$$

76.
$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

77.
$$A\Delta(B\Delta D) = (A\Delta B)\Delta D$$

78.
$$A \cap (B\Delta D) = (A \cap B)\Delta(A \cap D)$$

79.
$$A\Delta A = \emptyset$$

80.
$$A\Delta\emptyset = A$$

81.
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

82.
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

83. $(A \times B) \cap (A \times C) = (A \cap B) \times (A \cap C)$. შენარჩუნდება თუ არა ტოლობა თუ \cap შეიცვლება \cup -ით?

84.
$$(A \setminus B) \times C = (A \times C) \setminus (B \times C)$$

85. სამართლიანია თუ არა?
$$A \times B = B \times A$$

86.
$$A \times (B \times C) = (A \times B) \times C$$
 შემდეგ მაგალითებში დავუშვათ $A \subset X$ და $B \subset X$.

87.
$$A \cup C_X A = X$$

88.
$$A \cap C_X A = \emptyset$$

89.
$$C_X(C_X A) = A$$

$$90.$$
 $C_X(A\cap B)=C_XA\cup C_XB$ (დე-მორგანის კანონი)

$$\mathbf{91.} \ \ C_X(A \cup B) = C_XA \cap C_XB$$
 (დე-მორგანის განონი)

92.
$$C_X(A \setminus B) = C_X A \cup B$$

93.
$$(A \cap C_X B) \cup (C_X A \cap B) = A \cup B$$

94.
$$(A \cup C_X B) \cap (C_X A \cup B) = A \cup B$$

95.
$$C_X[C_X(C_XA \cup B) \cup (A \cup C_XB)] = B$$