Purdue CS555: Cryptography Lecture 6 Scribe Notes

Instructor: Hanshen Xiao Teaching Assistant: Justin He

Fall 2025

Recap from Previous Lecture

- Implications of One-way Functions
- Construction of PRG from One-way Permutations
- Introduction to Goldreich-Levin (GL) Theorem

Topics Covered in This Lecture

- 1. Continuing: Proof of Goldreich-Levin (GL) Theorem
- 2. Stateless Encryption
- 3. Pseudorandom Functions (PRFs)

1 Completion of Goldreich-Levin Theorem

1.1 Quick Review of GL Theorem

Theorem 1 (Goldreich-Levin, Complete Statement). Let $\{B_r : \{0,1\}^n \to \{0,1\}\}$ where

$$B_r(x) = \langle r, x \rangle = \sum_{i=1}^n r_i x_i \mod 2$$

be a collection of predicates (one for each r). Then, a random B_r is hardcore for every one-way function F. That is, for every one-way function F, every p.p.t. adversary A, there exists a negligible function μ such that:

$$\Pr[x \leftarrow \{0,1\}^n; r \leftarrow \{0,1\}^n : A(F(x),r) = B_r(x)] \le \frac{1}{2} + \mu(n)$$

1.2 Alternative Interpretation

For every one-way function/permutation F, there is a related one-way function/permutation

$$F'(x,r) = (F(x),r)$$

which has a deterministic hardcore predicate: $B(x,r) = \langle r, x \rangle \mod 2$.

This statement is sufficient to construct PRGs from any one-way permutation.

1.3 Proof Summary

The proof proceeds through several stages of refinement:

1.3.1 Stage 1: Perfect Predictor (Warmup)

Assumption: Perfect predictor P with

$$\Pr[x \leftarrow \{0,1\}^n; r \leftarrow \{0,1\}^n : P(F(x),r) = \langle r, x \rangle] = 1$$

Inverter: On input y = F(x), run P on $(y, e_1), (y, e_2), \dots, (y, e_n)$ where e_i are unit vectors. Since P is perfect, $P(y, e_i) = \langle e_i, x \rangle = x_i$.

1.3.2 Stage 2: Pretty Good Predictor

Assumption: P satisfies

$$\Pr[x \leftarrow \{0,1\}^n; r \leftarrow \{0,1\}^n : P(F(x),r) = \langle r, x \rangle] \ge \frac{3}{4} + \frac{1}{p(n)}$$

Claim 1 (Averaging Argument). For at least a $\frac{1}{2p(n)}$ fraction of x (call these "good x"):

$$\Pr[r \leftarrow \{0,1\}^n : P(F(x),r) = \langle r, x \rangle] \ge \frac{3}{4} + \frac{1}{2n(n)}$$

Key Idea - Linearity: Pick random r, query P for $\langle r, x \rangle$ and $\langle r + e_i, x \rangle$. XOR the answers:

$$\langle r + e_i, x \rangle \oplus \langle r, x \rangle = \langle e_i, x \rangle = x_i$$

Analysis:

$$\begin{aligned} \Pr[\text{compute } x_i \text{ correctly}] &\geq \Pr[P \text{ correct on both } r \text{ and } r + e_i] \\ &= 1 - \Pr[P \text{ wrong on } r \text{ or } r + e_i] \\ &\geq 1 - 2\left(\frac{1}{4} - \frac{1}{2p(n)}\right) = \frac{1}{2} + \frac{1}{p(n)} \end{aligned}$$

Inverter: Repeat $\log n \cdot p(n)$ times, take majority vote for each bit. Analysis uses Chernoff + union bound.

1.3.3 Stage 3: Weak Predictor (The Real Challenge)

Assumption: P satisfies only

$$\Pr[x \leftarrow \{0,1\}^n; r \leftarrow \{0,1\}^n : P(F(x),r) = \langle r, x \rangle] \ge \frac{1}{2} + \frac{1}{2p(n)}$$

After averaging, for $\geq \frac{1}{2p(n)}$ fraction of x:

$$\Pr[r \leftarrow \{0,1\}^n : P(F(x),r) = \langle r, x \rangle] \ge \frac{1}{2} + \frac{1}{2n(n)}$$

Problem: The union bound analysis from Stage 2 fails because we cannot guarantee both $\langle r, x \rangle$ and $\langle r + e_i, x \rangle$ are predicted correctly with high enough probability.

1.4 The Rackoff Trick

Key Insight (attributed to Charlie Rackoff): If we had an oracle that gave us $\langle r, x \rangle$ for free, then:

- Pick random r, get $\langle r, x \rangle$ from oracle
- Query P for $\langle r + e_i, x \rangle$
- XOR to get x_i

Success probability: $\Pr[\text{correct}] \ge \frac{1}{2} + \frac{1}{2p(n)}$

Solution: Since we don't have an oracle, we *guess* the values.

1.5 Parsimony in Guessing

Instead of guessing $\langle r, x \rangle$ for every r, we use a clever construction.

Parameters: Let $m = O(n \log n \cdot (p(n))^2)$.

Strategy:

- 1. Pick random seed vectors $s_1, \ldots, s_{\log(m+1)}$
- 2. Guess $c_i = \langle s_i, x \rangle$ for all $j \in \{1, \dots, \log(m+1)\}$
- 3. Probability all guesses correct: $\frac{1}{2^{\log(m+1)}} = \frac{1}{m+1}$

Key Construction: From seed vectors, generate many r_i values.

Let T_1, \ldots, T_m denote all non-empty subsets of $\{1, 2, \ldots, \log(m+1)\}$. Define:

$$r_i = \bigoplus_{j \in T_i} s_j$$
 and $b_i = \bigoplus_{j \in T_i} c_j$

Lemma 1 (Key Observation). If guesses $c_1, \ldots, c_{\log(m+1)}$ are all correct, then so are b_1, \ldots, b_m , because:

$$b_i = \bigoplus_{j \in T_i} c_j = \bigoplus_{j \in T_i} \langle s_j, x \rangle = \left\langle \bigoplus_{j \in T_i} s_j, x \right\rangle = \left\langle r_i, x \right\rangle$$

1.6 Complete Inverter Algorithm

Algorithm 1 OWF Inverter for GL Theorem

- 1: **Input:** y = F(x) for unknown x
- 2: Generate random seed vectors $s_1, \ldots, s_{\log(m+1)}$ where $m = O(n \log n \cdot (p(n))^2)$
- 3: Generate random bits $c_1, \ldots, c_{\log(m+1)}$ (guesses for $\langle s_j, x \rangle$)
- 4: Derive r_1, \ldots, r_m and b_1, \ldots, b_m : $r_i = \bigoplus_{j \in T_i} s_j, b_i = \bigoplus_{j \in T_i} c_j$
- 5: for i = 1 to n do
- 6: Repeat $100n(p(n))^2$ times:
- 7: Pick random index $\ell \in \{1, ..., m\}$
- 8: Query $P(F(x), r_{\ell} + e_i)$ to get answer a
- 9: Compute guess: $g = a \oplus b_{\ell}$
- 10: Compute majority of all guesses to determine x_i
- 11: end for
- 12: **Output:** $x = x_1 x_2 \cdots x_n$

1.7 Analysis

Condition on: Guesses $c_1, \ldots, c_{\log(m+1)}$ all correct, and x is good.

Key Issue: The r_i are *not* independent, so we cannot use Chernoff bound.

Critical Observation: The r_i are pairwise independent.

Therefore, we can apply Chebyshev's inequality.

1.7.1 Single Bit Analysis

For a fixed bit position i, let E_{ℓ} be the event that iteration ℓ gives correct x_i .

$$\Pr[E_{\ell}] \ge \frac{1}{2} + \frac{1}{2p(n)}$$

Expected number of successes:

$$\mathbb{E}[\#\text{correct}] = \left(\frac{1}{2} + \frac{1}{2p(n)}\right) \cdot 100n(p(n))^2 = 50n(p(n))^2 + 50np(n)$$

Variance (using pairwise independence):

$$Var[\#correct] \approx \frac{1}{4} \cdot 100n(p(n))^2 = 25n(p(n))^2$$

Applying Chebyshev:

$$\Pr[\text{majority decision for } x_i \text{ incorrect}] \leq \frac{25n(p(n))^2}{(50np(n))^2} = \frac{1}{100n}$$

Union bound over all n bits:

$$\Pr[\text{any } x_i \text{ incorrect}] \leq n \cdot \frac{1}{100n} = \frac{1}{100}$$

Therefore: $p := \Pr[\text{Inverter succeeds} \mid \text{all guesses correct, good } x] \ge 0.99$

1.8 Overall Success Probability

 $\Pr[\text{Inverter succeeds}] \ge \Pr[\text{succeeds} \mid \text{guesses correct}, \text{good } x] \cdot \Pr[\text{guesses correct}] \cdot \Pr[\text{good } x]$

$$= p \cdot \frac{1}{m+1} \cdot \frac{1}{2p(n)}$$

$$= p \cdot \frac{1}{2n^2 p(n)^3}$$

$$\ge \frac{0.99}{2n^2 p(n)^3}$$

This is non-negligible, contradicting one-wayness of F.

Remark 1. We can amplify success probability to $\approx \frac{1}{p(n)}$ by enumerating over all $2^{\log(m+1)} = m+1$ possible guesses. Each guess yields a candidate inverse, but we can verify which is correct by checking F(x') = y.

1.9 Coding-Theoretic View

The mapping $x \mapsto (\langle x, r \rangle)_{r \in \{0,1\}^n}$ is the **Hadamard code**, a highly redundant encoding.

- P(F(x), r) provides access to a *noisy* codeword
- Our proof = list-decoding algorithm for Hadamard code with error rate $\frac{1}{2} \frac{1}{p(n)}$
- The "pretty good predictor" case = unique decoding with error rate $\frac{1}{4} \frac{1}{p(n)}$

1.10 General Framework: List-Decodable Codes

Framework (Impagliazzo-Sudan):

Definition 1. Let $x \to C(x)$ be an encoding. A list-decoder takes a corrupted codeword (incorrect at $\frac{1}{2} - \epsilon$ fraction of locations) and outputs a list $\{x_1, \ldots, x_m\}$ of possible values for x.

Hardcore Predicate Construction: Define $B_i(x) = C(x)_i$ (the *i*-th bit of the codeword). How it works:

- 1. Hardcore-bit predictor gives access to corrupted codeword
- 2. Run list-decoder to get candidate inverses
- 3. Filter candidates by checking $F(x_i) = y$ (since F is efficiently computable)

This provides a general method for constructing hardcore predicates from any list-decodable code.

4

2 From Stateful to Stateless Encryption

2.1 Stateful Encryption Using PRGs

Setup: Alice and Bob share initial state s_0 (a random seed). **Protocol:**

- Both parties maintain synchronized state s_i
- To encrypt: compute $G(s_i) = (s_{i+1}, b_i)$, send $m \oplus b_i$
- Update state to s_{i+1}
- To decrypt: compute $G(s_i) = (s_{i+1}, b_i)$, recover $m = (m \oplus b_i) \oplus b_i$

Advantages:

- Can encrypt arbitrarily many bits
- Each bit uses fresh pseudorandom bit

Disadvantages:

- Alice and Bob must keep states in perfect synchrony
- Cannot transmit simultaneously
- If synchronization is lost, both correctness and security fail

2.2 Naive Attempt: Random Index Selection

Idea: Pre-generate a long pseudorandom string $b_1, b_2, \ldots, b_{n^{100}}$ from key $k = s_0$.

Encryption: Pick random index i, send $(i, m \oplus b_i)$.

Problem - Birthday Paradox:

$$\Pr[\text{Alice's first two indices collide}] \geq \frac{1}{n^{100}}$$

This is *not* negligible. Reusing the same one-time pad bit twice completely breaks security.

2.3 Second Attempt: Exponential-Length String

Idea: Pre-generate pseudorandom string $b_1, b_2, \ldots, b_{2^n}$ from key $k = s_0$.

Encryption: Pick random index $i \in [2^n]$, send $(i, m \oplus b_i)$.

Collision Analysis:

$$\Pr[\exists \text{ collision in } t = \operatorname{poly}(n) \text{ indices}] \leq \frac{t^2}{2^n} = \operatorname{negl}(n)$$

Problem: Alice and Bob are *not* polynomial-time. Cannot generate or store exponential-length string.

2.4 The Right Idea: Pseudorandom Functions

Key Insight: Never compute the exponentially long string explicitly. Instead, we want a function $f_k : \{0,1\}^n \to \{0,1\}^m$ such that:

- $f_k(x) = b_x$, the x-th bit of the implicit pseudorandom string
- Computable in time poly(|x|) = poly(n)
- For random (or distinct) x_1, x_2, \ldots , the values $f_k(x_1), f_k(x_2), \ldots$ are computationally indistinguishable from random bits

This is precisely a Pseudorandom Function (PRF).

3 Pseudorandom Functions (PRFs)

3.1 Definition

Definition 2 (Pseudorandom Function Family). A collection of functions

$$\mathcal{F}_{\ell} = \{f_k : \{0,1\}^{\ell} \to \{0,1\}^m\}_{k \in \{0,1\}^n}$$

consists of:

- n: key length (security parameter)
- ℓ : input length
- m: output length
- All parameters are polynomial in security parameter: $\ell, m = poly(n)$

Key Generation: $Gen(1^n)$ generates a random n-bit key k.

Evaluation: Eval(k,x) is a polynomial-time algorithm that outputs $f_k(x)$.

Size: $|\mathcal{F}_{\ell}| \leq 2^n$ (singly exponential in n)

Definition 3 (All Functions). The set of all functions:

$$ALL_{\ell} = \{f : \{0,1\}^{\ell} \to \{0,1\}^{m}\}$$

Size: $|ALL_{\ell}| = 2^{m \cdot 2^{\ell}}$ (doubly exponential in ℓ)

3.2 Pseudorandomness Property

Definition 4 (Pseudorandom Function). \mathcal{F}_{ℓ} is a pseudorandom function family if for all p.p.t. distinguishers D with oracle access, there exists a negligible function μ such that:

$$\left|\Pr[f \leftarrow \mathcal{F}_{\ell} : D^f(1^n) = 1] - \Pr[f \leftarrow ALL_{\ell} : D^f(1^n) = 1]\right| \le \mu(n)$$

Visual Representation:

Pseudorandom World	Random World
$f_k \leftarrow \mathcal{F}_\ell$	$f \leftarrow \mathrm{ALL}_{\ell}$
Distinguisher D queries x	Distinguisher D queries x
Receives $f_k(x)$	Receives $f(x)$
Outputs 0 or 1	Outputs 0 or 1

The distinguisher cannot tell which world it's in with non-negligible advantage.

3.3 Key Properties

- Efficiency: f_k is computable in polynomial time
- Compactness: Only 2^n functions in \mathcal{F}_{ℓ} vs. $2^{m \cdot 2^{\ell}}$ in ALL_{ℓ}
- Pseudorandomness: Output on any polynomial number of queries looks random
- Domain size: Must have 2^{ℓ} be super-polynomially large in n to avoid collisions

4 Application: $PRF \Rightarrow Stateless Encryption$

4.1 Construction

Let $f_k: \{0,1\}^\ell \to \{0,1\}^m$ be a PRF where 2^ℓ is super-polynomially large in n.

Key Generation: Gen(1ⁿ) generates random n-bit key k defining f_k .

Encryption: Enc(k, m) where |m| = m bits:

1. Pick random $x \leftarrow \{0,1\}^{\ell}$

2. Output ciphertext $c = (x, y = f_k(x) \oplus m)$

Decryption: Dec(k, c) where c = (x, y):

- 1. Compute $f_k(x)$
- 2. Output $m = f_k(x) \oplus y$

4.2 Correctness

$$Dec(k, Enc(k, m)) = Dec(k, (x, f_k(x) \oplus m))$$
$$= f_k(x) \oplus (f_k(x) \oplus m)$$
$$= m$$

4.3 Security Intuition

Why it's secure:

- Each encryption uses a fresh random $x \leftarrow \{0,1\}^{\ell}$
- Since 2^{ℓ} is super-polynomial, collision probability is negligible
- ullet Each message is essentially encrypted with a fresh one-time pad $f_k(x)$
- The PRF property ensures $f_k(x)$ looks random to the adversary

Advantages over stateful encryption:

- No synchronization required
- Can encrypt messages in any order
- Multiple parties can encrypt simultaneously
- No state to maintain or lose

4.4 Requirements

For security, we need:

- 1. 2^{ℓ} is super-polynomially large (to avoid collisions)
- 2. f_k is a secure PRF
- 3. Random x is chosen independently for each encryption