A Multiresolution Scheme for More Efficient Simulation on Adaptive Mesh Refinement Blocks?

Brandon Gusto

Dept. of Scientific Computing Florida State University

March 6, 2019

Introduction

The following project is concerned with the numerical solution of systems of conservation laws of the form

$$\mathbf{U}_t + \mathbf{F}(\mathbf{U})_{\times} = 0$$

where $\mathbf{U} = (\rho, \rho u, E)$ is a vector of conserved quantities and $\mathbf{F}(\mathbf{U})$ is a flux vector. Consider a standard finite-volume discretization, with midpoint rule

$$\frac{\partial \mathbf{U}_{i}}{\partial t} = -\frac{1}{h} \left(\mathbf{F}_{i+\frac{1}{2}} - \mathbf{F}_{i-\frac{1}{2}} \right)$$

where the i denotes spatial index.

Introduction

Adaptivity

The interest is in solution-adaptive methods:

 adaptive mesh refinement (AMR) based on local truncation error (or some other estimator)

- adaptive mesh refinement (AMR) based on local truncation error (or some other estimator)
- computations typically done on blocks / patches for efficiency

- adaptive mesh refinement (AMR) based on local truncation error (or some other estimator)
- computations typically done on blocks / patches for efficiency
- inherent "overresolution" in some regions of the mesh by using blocks

- adaptive mesh refinement (AMR) based on local truncation error (or some other estimator)
- computations typically done on blocks / patches for efficiency
- inherent "overresolution" in some regions of the mesh by using blocks
- can this be addressed by reducing block size? computational tradeoff?

AMR

1

¹Introduction to Block-Structured Adaptive Mesh Refinement (AMR), Ann

AMR

AMR

Filling

The filling factor is the number of cells in a block which were flagged, divided by the total.

a la Harten

Besides the AMR concepts, adaptivity was also introduced by Harten in a multiresolution framework. Although in his scheme, the grid was not refined in space. Instead, a wavelet transform was performed on the uniform grid, and the fluxes were interpolated in smooth regions.

a la Harten

- Besides the AMR concepts, adaptivity was also introduced by Harten in a multiresolution framework. Although in his scheme, the grid was not refined in space. Instead, a wavelet transform was performed on the uniform grid, and the fluxes were interpolated in smooth regions.
- "The goal of a multi-scale decomposition of a discrete set of data is a "rearrangement" of its information content in such a way that the new discrete representation, exactly equivalent to the old one, is more "manageable" in some respects." -Arandiga, Donat

a la Harten

- Besides the AMR concepts, adaptivity was also introduced by Harten in a multiresolution framework. Although in his scheme, the grid was not refined in space. Instead, a wavelet transform was performed on the uniform grid, and the fluxes were interpolated in smooth regions.
- "The goal of a multi-scale decomposition of a discrete set of data is a "rearrangement" of its information content in such a way that the new discrete representation, exactly equivalent to the old one, is more "manageable" in some respects." -Arandiga, Donat
- Multi-scale ideas behind Multigrid method, subdivision schemes for graphics / CAD

Multiresolution

Define multiple, nested grids

$$\mathbf{G}^{I} = \left\{ x_{i+\frac{1}{2}}^{I} \right\}_{i=0}^{N_{I}} = \left\{ x_{i+\frac{1}{2}}^{I+1} \right\}_{i=0,i \text{ even}}^{N^{I+1}}.$$

Coarsening of avarage data in cell done via

$$\mathbf{U}_{i}^{l} = \frac{1}{2} \left(\mathbf{U}_{2i}^{l+1} + \mathbf{U}_{2i+1}^{l+1} \right)$$

Decomposition

The prediction from coarse to fine is done by

$$\hat{\mathbf{U}}_{2i+1}^{l+1} = \sum_{j=1-s}^{s-1} \gamma_j \mathbf{U}_{i+j}^l$$

The regularity information is assessed by computing detail coefficients as

$$\mathbf{d}_{i}^{l} = \mathbf{U}_{2i+1}^{l+1} - \hat{\mathbf{U}}_{2i+1}^{l+1}.$$

A mask $\{\mathbf{m}\}_{i}^{N'}$ is created for significant cells.

Decomposition

Once the forward wavelet transform has been computed on cell-averaged solution data...

Once the forward wavelet transform has been computed on cell-averaged solution data...

utilize this regularity information to identify sufficiently smooth regions in which to interpolate the flux.

Once the forward wavelet transform has been computed on cell-averaged solution data...

- utilize this regularity information to identify sufficiently smooth regions in which to interpolate the flux.
- introduce sufficiently large buffer region (why?) around flagged cells

Once the forward wavelet transform has been computed on cell-averaged solution data...

- utilize this regularity information to identify sufficiently smooth regions in which to interpolate the flux.
- introduce sufficiently large buffer region (why?) around flagged cells
- perform inverse transform and compute or interpolate fluxes

Convergence

Outlook

weakly compressible turbulence (uniform mesh)

Outlook

- weakly compressible turbulence (uniform mesh)
- compressible turbulence (potentially adaptive)

Outlook

- weakly compressible turbulence (uniform mesh)
- compressible turbulence (potentially adaptive)
- turbulent combustion (adaptive)