Chapitre 12

Intégration sur un intervalle quelconque I. Théorie

Dans tout le chapitre, les fonctions sont continues par morceaux sur un intervalle I de \mathbb{R} et à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On note $\mathcal{CM}(I,\mathbb{K})$ l'ensemble de telles fonctions.

1. <u>Intégrale généralisée</u>

1.1. Préliminaires

<u>Définition 1</u>: Une fonction $f: I \to \mathbb{K}$ est dite continue par morceaux sur I si elle est continue par morceaux sur tout segment inclus dans I.

• Exemple : la fonction partie entière sur $\mathbb R$.

1.2. Cas où l'intervalle est semi-fermé

a) <u>Définitions</u>

<u>Définition 2</u>: intervalle du type [a,b] où $a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$.

Soit $f \in \mathcal{CM}([a,b[,\mathbb{K}) \text{ i.e. } f \text{ continue par morceaux sur } [a,b[$.

L'intégrale $\int_a^b f(t)dt$ est dite convergente si la fonction $x \to \int_a^x f(t)dt$

définie sur [a,b[a une limite finie en b.

Cette limite est alors notée $\int_a^b f(t)dt$ ou $\int_a^b f$ ou $\int_{[a,b[}^a f]$.

Dans le cas contraire, l'intégrale est dite divergente.

• De manière similaire :

 $\underline{\text{D\'efinition 2-bis}}: \text{intervalle du type } \left[a,b\right] \text{ où } a \in \mathbb{R} \cup \{-\infty\} \text{ et } b \in \mathbb{R} \,.$

Soit
$$f \in \mathcal{CM}(]a,b],\mathbb{K}).$$

L'intégrale $\int_a^b f(t)dt$ est dite convergente si la fonction $x \to \int_x^b f(t)dt$

définie sur]a,b] a une limite finie en a.

Cette limite est alors notée $\int_a^b f(t)dt$ ou $\int_a^b f$ ou $\int_{]a,b]}^a f$.

b) <u>Exemples</u>

- $x \to \frac{1}{\sqrt{x}}$ sur $[1, +\infty[$ puis sur]0,1]
- $x \rightarrow \ln(x)$ sur]0,1]
- $x \to \cos(x) \sin [0, +\infty[$
- $x \to e^x \text{ sur }]-\infty,0]$

1.3. Cas où l'intervalle est ouvert

a) <u>Définition</u>

 $\begin{array}{c} \underline{\text{D\'efinition 2}} : \text{intervalle du type }]a,b[\text{ où } a \in \mathbb{R} \cup \{-\infty\} \text{ et } b \in \mathbb{R} \cup \{+\infty\}. \\ \\ \text{Soit } f \in \mathcal{CM}(]a,b[,\mathbb{K}) \text{. Soit } c \in]a,b[\text{ .} \\ \\ \underline{\text{L'int\'egrale }} \int_a^b f(t)dt \text{ est dite convergente si les deux int\'egrales} \\ \\ \int_a^c f(t)dt \text{ et } \int_c^b f(t)dt \text{ convergent.} \\ \\ \text{On note alors } \int_a^b f(t)dt = \int_a^c f(t)dt + \int_c^b f(t)dt \end{aligned}$

- Ainsi, on traitera toujours en deux temps le problème en a et le problème en b (principe de scission).
 - Re pas inventer de règle qui ne serait pas dans ce cours!

b) <u>Exemples</u>

•
$$x \to \frac{1}{1+x^2} \text{ sur } \mathbb{R}$$

•
$$x \to \frac{x}{1+x^2} \text{ sur } \mathbb{R}$$

•
$$x \to \frac{1}{\sqrt{x}(1+x)} \operatorname{sur} \mathbb{R}_+^*$$

1.4. Propriétés

a) <u>Linéarité</u>

Proposition 1: Soient $(f,g) \in \mathcal{CM}(I,\mathbb{K})^2$ et $\alpha \in \mathbb{K}$. Si $\int_I f$ et $\int_I g$ convergent, alors $\int_I (\alpha f + g)$ converge et $\int_I (\alpha f + g) = \alpha \int_I f + \int_I g$

• Démonstration

3

b) Positivité

<u>Proposition 2</u>: Soit $f \in \mathcal{CM}(I,\mathbb{R})$ telle que $\int_I f$ converge.

Si
$$f \geqslant 0$$
, alors $\int_I f \geqslant 0$.

• Démonstration

4 .

c) <u>Croissance</u>

Proposition 3: Soient $(f,g) \in \mathcal{CM}(I,\mathbb{R})^2$.

Si
$$f \leqslant g$$
, alors $\int_a^b f(t)dt \leqslant \int_a^b g(t)dt$.

• Démonstration

d) Intégrale généralisée et dérivation

Proposition 4: Soit $f \in \overline{\mathcal{C}([a, +\infty[, \mathbb{R}).])}$

Si l'intégrale $\int_a^{+\infty} f(t)dt$ converge, alors la fonction $x \to \int_x^{+\infty} f(t)dt$ est dérivable sur $[a, +\infty[$ et sa dérivée est la fonction -f.

- Démonstration
- 6
- Plus généralement, dérivabilité et dérivée des fonctions

2. Cas de fonctions à valeurs réelles positives

2.1. <u>Caractérisation</u> $\equiv f$ est ici à valeurs dans \mathbb{R}_+

 $\underline{\text{D\'efinition}}: \text{Soit } f \in \mathcal{CM}(I, \mathbb{R}_+).$

f est dite intégrable si l'intégrale $\int_I f$ converge.

Proposition: Soit $f \in \mathcal{CM}([a,b[,\mathbb{R}_+)])$.

f est intégrable si et seulement si $x \to \int_a^x f(t)dt$ est majorée.

- Démonstration
- 7

2.2. Théorème de comparaison

Théorème : Soit $(f,g) \in \mathcal{CM}([a,b[,\mathbb{R}_+^*)^2])$

* Si $f \leqslant g$, f = o(g) ou f = O(g) alors:

[gest intégrable sur $I] \Rightarrow [f$ est intégrable sur I]

 \Re Si $f \sim_{r \to h} g$, alors:

[g est intégrable sur $I] \Leftrightarrow [f$ est intégrable sur I]

- Démonstration
- 8 .

2.3. Comparaison série intégrale

<u>Théorème</u> : Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ une fonction continue et décroissante.

La série $\sum f(n)$ converge si et seulement si l'intégrale $\int_0^{+\infty} f(t)dt$

converge (autrement dit si f est intégrable).

- Démonstration
- 9
- $\bullet\,\,$ Ce théorème n'est qu'une revisite du théorème vu au chapitre 5.
- Exemple: $\int_{1}^{+\infty} \frac{dt}{t^2} dt$ converge, $\int_{1}^{+\infty} \frac{dt}{t} dt$ diverge.

2.4. Fonctions de référence : intégrales de Riemann

a) Sur $[1,+\infty[$:

<u>Proposition 1</u>: Soit $f: x \to \frac{1}{x^{\alpha}}$ où $\alpha \in \mathbb{R}$.

f est intégrable sur $[1,+\infty[$ si et seulement $\alpha>1$.

- Démonstration
- 10
- Note : il en est de même sur tout intervalle $[a,+\infty[$ avec a>0 .
- © Remarque: penser aux séries!
- b) Sur]0,1]

<u>Proposition 2</u>: Soit $f: x \to \frac{1}{x^{\alpha}}$ où $\alpha \in \mathbb{R}$.

f est intégrable sur]0,1] si et seulement $\alpha<1$.

- Démonstration
- 11
- c) Plus généralement sur]a,b]

<u>Proposition 3</u>: Soit $f: x \to \frac{1}{(x-a)^{\alpha}}$ où $\alpha \in \mathbb{R}$.

f est intégrable sur $\left]a,b\right]$ si et seulement $\alpha<1$.

- Démonstration
- 12
- De même $f: x \to \frac{1}{(a-x)^{\alpha}}$ est intégrable sur [b,a[si et seulement $\alpha < 1$

3. Intégrabilité

- 3.1. <u>Introduction</u>
 - ♣ Analogie avec les familles sommables (et non avec les séries!)
- 3.2. Définition

<u>Définition 3</u>: Soit $f \in \mathcal{CM}(I, \mathbb{K})$.

On dit que f est intégrable sur I si $\int_I |f|$ converge.

On dira aussi que l'intégrale $\int_I f$ est absolument convergente.

- Cas particulier où I est un segment.
- 3.3. Convergence absolue et convergence

 $\underline{\text{Th\'eor\`eme}}: \text{Soit } f \in \mathcal{CM}(I,\mathbb{K}).$

Si l'intégrale $\int_{I} f$ converge absolument (autrement dit si f est

intégrable), alors $\int_I f$ converge. On a alors $\left| \int_I f \right| \leqslant \int_I |f|$

• Démonstration

3.4. Exemples et contre-exemples

14

•
$$x \to \frac{e^{ix}}{x^2}$$
 sur $[1, +\infty[$

•
$$x \to \frac{(-1)^{E(x)}}{E(x)+1}$$
 sur $[0,+\infty[$

•
$$x \to \frac{\sin(x)}{x} \operatorname{sur} [0, +\infty[$$

• dans les deux derniers exemples, les intégrales convergent, mais ne convergent absolument : les fonctions ne sont donc pas « intégrables » !

3.5. L'espace des fonctions intégrables

 $\frac{\text{Proposition}}{\text{Proposition}}: \text{Soit } \mathcal{L}^1(I,\mathbb{K}) \text{ l'ensemble des fonctions intégrables sur } I.$ Alors $(\mathcal{L}^1(I,\mathbb{K}),+,.)$ est un \mathbb{K} -espace vectoriel.

• Démonstration

15

3.6. Exemples : justification d'intégrabilité

16

• Exemple
$$1: x \to \frac{1}{1+x^3}$$
 sur \mathbb{R}_+ puis sur $]-1,0].$

• Exemple
$$3: x \to \frac{\sin(x)}{x^2}$$
 sur $[1, +\infty[$ puis sur $]0,1]$.

• Exemple
$$4: x \to \frac{1}{1+x^3}$$
 sur $]-1,+\infty[$

• Exemple
$$5: x \to \frac{\sin(x)}{x} \text{ sur } [0, \pi]$$

• Exemple 6:
$$x \to \frac{1}{\sqrt{x + 1 - x}}$$
 sur]0,1[

3.7. Exemples : justification d'intégrabilité et calcul de l'intégrale

17

• Exemple 1 :
$$\int_0^1 \frac{dt}{\sqrt{t}}$$

• Exemple 2 :
$$\int_0^1 \ln\left(\frac{1}{t}\right) dt$$

• Exemple 3:
$$\int_{0}^{1} \frac{\ln\left(\frac{1}{x}\right) dx}{\sqrt{x}}$$

3.8. Positivité améliorée

<u>Proposition</u>: Soit $f \in \mathcal{C}(I, \mathbb{R}_+)$.

Si f est intégrable sur I et si $\int_I f = 0$, alors f est identiquement nulle.

• Démonstration

4. Changement d'inconnues

4.1. Rappel de M.P.S.I.

 $\underline{\text{Th\'eor\`eme}}: \text{Soit } f \in \mathcal{C}([a,b],\mathbb{K}) \ \text{et } \varphi \in \mathcal{C}^{1}([\alpha,\beta],[a,b]) \ .$

Alors
$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(u) du = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt .$$

- Attention : f doit être continue sur [a,b] qui contient $\varphi([\alpha,\beta])$ et pas seulement sur $[\varphi(\alpha),\varphi(\beta)]$ ce que laisserait entendre la première intégrale.
- Dans la pratique, on procède mécaniquement :
 - $\qquad \qquad \bullet \quad \text{On pose}: \ u = \varphi(t) \,, \, \text{on note que} \ \varphi \in \mathcal{C}^{\ ^{1}}([\alpha,\beta],[a,b]) \,.$
 - **↓** Il vient mécaniquement $du = \varphi'(t)dt$
 - ♣ On n'oublie pas de modifier les bornes en respectant leurs positions : $u = ... \leftrightarrow t = ...$

4.2. <u>Le théorème pour un intervalle quelconque</u>

 $\underline{\text{Th\'eor\`eme}}: \text{Soient} \ \ a,\alpha \in \mathbb{R} \cup \{-\infty\} \ \text{et} \ \ b,\beta \in \mathbb{R} \cup \{+\infty\}\,.$

Soient I =]a,b[(a < b) et J un intervalle de bornes α et β .

Soient $f \in \mathcal{C}(I,\mathbb{K})$ et $\varphi \in \mathcal{C}^{1}(J,I)$, <u>bijective</u> avec $\lim_{\alpha} \varphi = a$ et $\lim_{\beta} \varphi = b$.

Alors les intégrales $\int_a^b f(u) du$ et $\int_\alpha^\beta f(\varphi(t)) \varphi'(t) dt$ sont de même nature

et égales en cas de convergence.

- \exists J est un intervalle dont les bornes sont α et β si $\beta < \alpha$, alors $J =]\beta, \alpha[: \varphi]$ est alors strictement décroissante.
- .Démonstration 19
- Ici encore, dans la pratique, on procède mécaniquement :
 - ♣ On pose : $u = \varphi(t)$; il vient $du = \varphi'(t)dt$
 - **♣** On modifie les bornes en respectant leurs positions :

$$u = a \leftrightarrow t = \alpha \; ; \; u = b \leftrightarrow t = \beta$$

• $\underline{\text{Exemples}}$:

$$\begin{array}{ccc}
& \int_{0}^{1} \frac{dt}{\sqrt{t(1-t)}}
\end{array}$$

5. Intégration par partie

<u>Théorème</u>: Soit $(f,g) \in \mathcal{C}^1(]a,b[,\mathbb{K})^2$.

L'existence de deux des trois termes apparaissant dans la formule suivante entraı̂ne l'existence du troisième et l'égalité :

$$\int_{a}^{b} f(t)g'(t) dt = [f(t)g(t)]_{a}^{b} - \int_{a}^{b} f'(t)g(t) dt$$
 où $[f(t)g(t)]_{a}^{b} = \lim_{\substack{t \to b \\ > a}} f(t)g(t) - \lim_{\substack{t \to a \\ > a}} f(t)g(t)$

• Démonstration

21

• Exemples :

22

$$\qquad \qquad \int_0^1 \sqrt{1-t^2} dt \quad .$$

6. <u>Intégration des relations de comparaison</u>

 $\underline{\text{Th\'eor\`eme 1}}: \text{Soit } f \in \mathcal{CM}([a,b[,\mathbb{K}) \text{ et } g \in \mathcal{CM}([a,b[,\mathbb{R}_+) \text{ avec } f \underset{x \to b}{=} o(g).$

* Si
$$\int_a^b g$$
 converge, alors $\int_a^b f$ converge et $\int_x^b f(t)dt = o\left(\int_x^b g(t)dt\right)$

* Si
$$\int_a^b g$$
 diverge, alors $\int_a^x f(t)dt = o\left(\int_a^x g(t)dt\right)$

On a les mêmes propriétés en remplaçant o par O.

• Démonstration

23

• Penser aux séries entières

↓ Comparaison des « restes » lorsque les séries convregent.

♣ Comparaison des sommes partielles lorsque les séries divergent.

 $\underline{\text{Th\'eor\`eme 2}}: \text{Soit } (f,g) \in \mathcal{CM}([a,b[,\mathbb{R}_{_{+}})^2 \text{ avec } f \underset{_{r \to b}}{\sim} g \,.$

*
$$\int_a^b f$$
 et $\int_a^b g$ sont de même nature.

* Si elles convergent :
$$\int_{x}^{b} f(t)dt \sim \int_{x \to b}^{b} \int_{x}^{b} g(t)dt$$

* Si elles divergent :
$$\int_a^x f(t)dt \sim \int_a^x g(t)dt$$

• Démonstration

24