Runge-Kutta Methods

(1)
$$y'(t) = f(t, y(t))$$
 over $[a, b]$ with $y(t_0) = y_0$.

Use standard Runge-Kutta method of order N = 4, which is stated as follows. Start with the initial point (t_0, y_0) and generate the sequence of approximations using

$$y_{k+1} = y_k + \frac{h(f_1 + 2f_2 + 2f_3 + f_4)}{6}$$

$$f_1 = f(t_k, y_k),$$

$$f_2 = f\left(t_k + \frac{h}{2}, y_k + \frac{h}{2}f_1\right),$$

$$f_3 = f\left(t_k + \frac{h}{2}, y_k + \frac{h}{2}f_2\right),$$

$$f_4 = f(t_k + h, y_k + hf_3).$$

To obtain the solution point (t_1, y_1) , we can use the fundamental theorem of calculus and integrate y'(t) over $[t_0, t_1]$ to get

(2)
$$\int_{t_0}^{t_1} f(t, y(t)) dt = \int_{t_0}^{t_1} y'(t) dt = y(t_1) - y(t_0),$$

where the antiderivative of y'(t) is the desired function y(t). When equation (2) is solved for $y(t_1)$, the result is

(3)
$$y(t_1) = y(t_0) + \int_{t_0}^{t_1} f(t, y(t)) dt.$$

If Simpson's rule is applied with step size h/2, the approximation to the integral in (8) is

(9)
$$\int_{t_0}^{t_1} f(t, y(t)) dt \approx \frac{h}{6} (f(t_0, y(t_0)) + 4f(t_{1/2}, y(t_{1/2})) + f(t_1, y(t_1))),$$

where $t_{1/2}$ is the midpoint of the interval. Three function values are needed; hence we make the obvious choice $f(t_0, y(t_0)) = f_1$ and $f(t_1, y(t_1)) \approx f_4$. For the value in the middle we chose the average of f_2 and f_3 :

$$f(t_{1/2}, y(t_{1/2})) \approx \frac{f_2 + f_3}{2}$$

These values are substituted into (9), which is used in equation (8) to get y_1 :

(10)
$$y_1 = y_0 + \frac{h}{6} \left(f_1 + \frac{4(f_2 + f_3)}{2} + f_4 \right).$$

Step Size versus Error

The error term for Simpson's rule with step size h/2 is

$$-y^{(4)}(c_1)\frac{h^5}{2880}.$$

If the only error at each step is that given in (11), after M steps the accumulated error for the RK4 method would be

$$-\sum_{k=1}^{M} y^{(4)}(c_k) \frac{h^5}{2880} \approx \frac{b-a}{5760} y^{(4)}(c) h^4 \approx O(h^4).$$

Theorem 9.7 (Precision of the Runge-Kutta Method). Assume that y(t) is the solution to the I.V.P. If $y(t) \in C^5[t_0, b]$ and $\{(t_k, y_k)\}_{k=0}^M$ is the sequence of approximations generated by the Runge-Kutta method of order 4, then

(13)
$$|e_k| = |y(t_k) - y_k| = O(h^4), \\ |\epsilon_{k+1}| = |y(t_{k+1}) - y_k - hT_N(t_k, y_k)| = O(h^5).$$

In particular, the F.G.E. at the end of the interval will satisfy

(14)
$$E(y(b), h) = |y(b) - y_M| = O(h^4).$$

Examples 9.10 and 9.11 illustrate Theorem 9.7. If approximations are computed using the step sizes h and h/2, we should have

(15)
$$E(y(b), h) \approx Ch^4$$

for the larger step size, and

(16)
$$E\left(y(b), \frac{h}{2}\right) \approx C \frac{h^4}{16} = \frac{1}{16} C h^4 \approx \frac{1}{16} E(y(b), h).$$

Example 9.10. Use the RK4 method to solve the I.V.P. y' = (t - y)/2 on [0, 3] with y(0) = 1. Compare solutions for $h \approx 1, \frac{1}{2}, \frac{1}{4}$, and $\frac{1}{8}$.

Table 9.8 gives the solution values at selected abscissas. For the step size h=0.25, a sample calculation is

$$f_1 = \frac{0.0 - 1.0}{2} = -0.5,$$

$$f_2 = \frac{0.125 - (1 + 0.25(0.5)(-0.5))}{2} = -0.40625,$$

$$f_3 = \frac{0.125 - (1 + 0.25(0.5)(-0.40625))}{2} = -0.4121094,$$

$$f_4 = \frac{0.25 - (1 + 0.25(-0.4121094))}{2} = -0.3234863,$$

$$y_1 = 1.0 + 0.25 \left(\frac{-0.5 + 2(-0.40625) + 2(-0.4121094) - 0.3234863}{6}\right)$$

$$= 0.8974915.$$

Table 9.8 Comparison of the RK4 Solutions with Different Step Sizes for y' = (t - y)/2 over [0, 3] with y(0) = 1

ı _k					
	h = 1	$h=\frac{1}{2}$	$h=\frac{1}{4}$	$h=\frac{1}{8}$	$y(t_k)$ Exact
n	1.0	1.0	1.0	1.0	1.0
0.125				0.9432392	0.9432392
0.25			0.8974915	0.8974908	0.8974917
0.375				0.8620874	0.8620874
0.50		0.8364258	0.8364037	0.8364024	0.8364023
⊕.75			0.8118696	0.8118679	0.8118678
1 00	0.8203125	0.8196285	0.8195940	0.8195921	0.8195920
1 50		0.9171423	0.9171021	0.9170998	0.9170997
2 00	1.1045125	1.1036826	1.1036408	1.1036385	1.1036383
2.50		1.3595575	1.3595168	1.3595145	1.3595144
3.00	1.6701860	1.6694308	1.6693928	1.6693906	1.6693905

Table 9.9 Relation between Step Size and F.G.E. for the RK4 Solutions to y' = (t - y)/2 over [0, 3] with y(0) = 1

Step size, h	Number of steps, M	Approximation to y(3), y _M	F.G.E. Error at $t = 3$, $y(3) - y_M$	$O(h^4) \approx Ch^4$ where C = -0.000614
1	3	1.6701860	-0.0007955	-0.0006140
$\frac{1}{2}$	6	1.6694308	-0.0000403	-0.0000384
$\frac{1}{4}$	12	1.6693928	-0.0000023	-0.0000024
18	24	1.6693906	-0.0000001	-0.0000001

Exercises for Runge-Kutta Methods

In Exercises 1 through 5, solve the differential equations by the Runge-Kutta method of order N = 4.

- (a) Let h = 0.2 and do two steps by hand calculation. Then let h = 0.1 and do four steps by hand calculation.
- (b) Compare the exact solution y(0.4) with the two approximations in part (a).
- (c) Does the F.G.E. in part (a) behave as expected when h is halved?

1.
$$y' = t^2 - y$$
 with $y(0) = 1$, $y(t) = -e^{-t} + t^2 - 2t + 2$

2.
$$y' = 3y + 3t$$
 with $y(0) = 1$, $y(t) - \frac{4}{3}e^{3t} - t - \frac{1}{3}$

3.
$$y' = -ty$$
 with $y(0) = 1$, $y(t) = e^{-t^2/2}$

4.
$$y' = e^{-2t} - 2y$$
 with $y(0) = \frac{1}{10}$, $y(t) = \frac{1}{10}e^{-2t} + te^{-2t}$

5.
$$y' = 2ty^2$$
 with $y(0) = 1$, $y(t) = 1/(1-t^2)$