Statistika Inferensia Lanjut Pertemuan 3

Program Studi Sains Data Universitas Teknologi Yogyakarta

Uji Hipotesis Komparatif 2 Sampel Berpasangan

Uji Mc Nemar, Uji Tanda & Uji Wilcoxon Matched Pairs

Pendahuluan

- ☐ Menguji hipotesis komparatif 2 sampel berpasangan berarti menguji ada tidaknya perbedaan yang signifikan antara nilai variable dari dua sampel yang berpasangan.
- ☐ Sampel berpasangan dapat berupa :
- 1. Satu Sampel diukur 2 kali (ex. Sebelum diberi perlakuan & sesudah diberi perlakuan)
- 2. Dua Sampel berpasangan diukur bersamaan (ex. Sampel A diberi treatment sedangkan sampel B tidak)

Uji Mc Nemar

• Fungsi :

- □Untuk menguji perbedaan atau perubahan proporsi dua buah populasi yang hanya memiliki dua kategori berdasarkan proporsi dua sampel berpasangan.
- □Uji ini banyak dipakai untuk mengetahui apakah ada perbedaan atau perubahan proporsi sebelum dan sesudah kelompok sampel tertentu yang hanya memiliki dua kategori diberi perlakuan, dimana anggota kelompok sampel tersebut merupakan kontrol terhadap dirinya sendiri.

Syarat Data:

□ Dapat digunakan untuk data berskala nominal dengan dua kategori.

Prosedur Pengujian

Buat Tabel Silang 2 x 2, seperti contoh pada Tebel 4.1 di bawah ini.
 Tanda + dan - dipakai untuk menunjukkan adanya perubahan.
 Misalnya dalam sel A dan D terjadi perubahan dari + ke - dan dari - ke +. Sementara dalam sel B dan C tidak terjadi perubahan.

	- ses	udah +
4	Α.	В
sebelum -	С	D

Lanjutan...

2. Tentukan frekuensi harapan (E) dari sel A dan sel D,

$$E = \frac{1}{2}(A + D)$$

Nilai Frekuensi harapan (E) harus ≥ 5 .

3. Jika E \geq 5, hitung harga χ^2 menggunakan rumus

$$\chi^2 = \frac{(|A-D|-1)^2}{A+D}$$

Tetapi jika E < 5, Uji χ^2 Mc. Nemar tidak boleh gunakan, dan untuk penggantinya dapat dipakai Uji Binomial.

Lanjutan...

- 4. Gunakan Tabel Chi Square untuk menentukan probabilitas (p) yang dikaitkan dengan terjadinya suatu harga sebesar χ^2 untuk harga db=1, untuk pengujian dua sisi.
- 5. Jika $p-value<\alpha$, maka H_0 ditolak.

Contoh

Suatu perusahaan ingin mengetahui pengaruh sponsor yang diberikan dalam suatu pertandingan olahraga terhadap nilai penjualan barangnya. Dalam penelitian ini digunakan sampel yang diambil secara random yang jumlah anggotanya 200 orang. Sebelum sponsor diberikan, terdapat 50 orang yang memberli barang tersebut dan 150 orang tidak membeli. Setelah sponsor diberikan dalam pertandingan olahraga, ternyata dari 200 orang tersebut terdapat 125 orang yang membeli dan 75 orang yang tidak membeli. Dari 125 orang tersebut terdiri atas 40 pembeli tetap dan yang berubah dari tidak membeli sebanyak 85 orang. Selanjutnya, dari 75 orang yang tidak membeli menjadi membeli ada 10 orang dan yang tetap tidak membeli ada 65 orang.

Penyelesaian

• Tabel Perubahan Penjualan Sebelum & Setelah Ada Sponsor :

	Sebelum ada Sponsor	Setelah Ada Sponsor
Membeli	50	125
Tidak Membeli	150	75
Jumlah	200	200

• Untuk memudahkan penghitungan maka Tabel setelah ada sponsor di atas diubah menjadi

Tabel ABCD berikut:

Perilaku Konsumen	Membeli	Tidak Membeli
Tidak Membeli	85 (A)	65 (B)
Membeli	40 (C)	10 (D)
Jumlah	125	75

Uji Hipotesis

☐ Hipotesis :

 H_0 : Tidak terdapat perbedaan jumlah penjualan sebelum dan sesudah ada sponsor

 H_1 : terdapat perbedaan jumlah penjualan sebelum dan sesudah ada sponsor

- \Box Tingkat signifikansi : $\alpha = 0.05$
- ☐ Statistik Penguji :

$$\chi^2 = \frac{(|A-D|-1)^2}{A+D} = \frac{(|85-10|-1)^2}{85+10} = \frac{74^2}{95} = 57,642$$

 \square Kriteria Penolakan : H_0 ditolak jika $\chi^2_{hitung} > \chi^2_{tabel}$ atau $p-value < \alpha$

Menggunakan table chi-square dengan $\alpha=0.05$ dan db=1 diperoleh nilai $\chi^2_{tabel}=3.481$. Karena $\chi^2=57.642>\chi^2_{tabel}=3.481$ maka H_0 ditolak.

☐ Kesimpulan :

Jadi, terdapat perbedaan yang signifikan dari penjualan setelah dan sebelum ada sponsor.

Hasil Running Rstudio

```
> sebelum1<- rep(1,150)
> sebelum2<- rep(2,50)
> sebelum<- c(sebelum1,sebelum2)</pre>
> setelah1<- c(rep(1,65),rep(2,85))
> setelah2<- c(rep(1,10),rep(2,40))
> setelah<- c(setelah1,setelah2)</pre>
> data<- data.frame(sebelum,setelah)</pre>
> table(data)
       setelah
sebelum 1 2
      1 65 85
      2 10 40
> mcnemar.test(table(data))
        McNemar's Chi-squared test with continuity correction
data: table(data)
McNemar's chi-squared = 57.642, df = 1, p-value = 3.144e-14
```

Contoh

Seorang peneliti ingin mengetahui perubahan pola tanam para petani lahan kering di wilayah dampak di daerah hulu sungai, setelah pemerintah melaksanakan proyek usaha tani. Sebelum proyek usaha tani dilaksanakan, banyak petani di daerah penelitian mengusahakan tanaman ubi kayu sepanjang tahun sehingga menyebabkan menurunnya kualitas tanah. Setelah dilakukan proyek usaha tani diharapkan para petani di sekitar lokasi percontohan akan mengubah cara tanam mereka menggunakan system tumpang sari.

Hasil penelitian:

		Setelah Proyek	
		Tumpang Sari	Tanam Ubi Kayu
Sebelum Proyek	Tanam Ubi Kayu	14 (A)	6 (B)
	Tumpang Sari	5 (C)	3 (D)
	Jumlah	19	9

Ujilah hipotesis bahwa untuk petani yang mengubah pola tanamnya, kemungkinan bahwa seorang petani akan mengubah pola tanamnya dari ubi kayu ke tumpeng sari (P_A) sama dengan kemungkinan bahwa ia akan berubah dari tumpeng sari ke tanam ubi kayu. Gunakan tingkat signifikansi $\alpha=0.05$

Uji Hipotesis

Hipotesis :

$$H_0$$
 : $P_A = P_D$

$$H_1 : P_A \neq P_D$$

- \Box Tingkat signifikansi : $\alpha = 0.05$
- ☐ Statistik Penguji:

$$\chi^2 = \frac{(|A - D| - 1)^2}{A + D} = \frac{(|14 - 3| - 1)^2}{14 + 3} = \frac{10^2}{17} = 5,8823$$

 \square Kriteria Penolakan : H_0 ditolak jika $\chi^2 > \chi^2_{tabel}$ atau $p-value < \alpha$

Menggunakan table chi-square dengan lpha=0.05 dan db=1 diperoleh nilai $\chi^2_{tabel}=3.481$.

Karena $\chi^2=5,8823>\chi^2_{tabel}=3,481$ maka H_0 ditolak.

☐ Kesimpulan :

Jadi, terdapat perbedaan yang signifikan dari kemungkinan seorang petani akan mengubah pola tanamnya dari tanam ubi kayu ke tumpeng sari dengan kemungkinan mengubah pola tanam dari tumpeng sari ke tanam ubi kayu

Hasil Running R studio

```
> sebelum1<- rep(1, 20)
> sebelum2<- rep(2,8)
> sebelum<- c(sebelum1, sebelum2)</p>
> setelah1<- c(rep(2,14), rep(1,6))
> setelah2<- c(rep(2,5),rep(1,3))
> setelah<- c(setelah1.setelah2)</p>
> data<- data.frame(sebelum, setelah)</pre>
> table(data)
       setelah
sebelum 1 2
      1 6 14
> mcnemar.test(table(data))
        McNemar's Chi-squared test with continuity correction
data: table(data)
McNemar's chi-squared = 5.8824, df = 1, p-value = 0.01529
```

Latihan

Berdasarkan survey penggunaan bumbu penyedap pada kader diamati antara sebelum memiliki TV dan setelah memiliki TV didapatkan data pada tabel di samping. Selidikilah dengan $\alpha = 5\%$, apakah ada perbedaan penggunaan bumbu penyedap makanan?

No	Sebelum masuk TV	Sesudah masuk TV
1	+	_
2	+	-
3	-	+
4	-	+
5	-	-
6	+	+
7	+	+
8	-	-
9	-	+
10	-	-
11	+	+
12	+	+
13	-	+
14	+	+
15	+	-
16	-	+
17	-	+
18	-	+
19	-	+
20	+	_
21	-	+

Penyelesaian

• Dibentuk table baru:

		Setelah N	Masuk TV	
		Respon (+)	Respon (-)	
	T			
Sebelum	Respon (-)	9(A)	3(B)	
masuk TV	Respon (+)	5(C)	4 (D)	

Uji Hipotesis

- ☐ Hipotesis:
 - H_0 : Tidak terdapat perbedaan jumlah pengguna bumbu penyedap sebelum dan
 - setelah masuk TV
 - H_1 : terdapat perbedaan jumlah **pengguna bumbu penyedap sebelum dan setelah**
 - masuk TV
- \Box Tingkat signifikansi : $\alpha = 0.05$
- ☐ Statistik Penguji :

$$\chi^2 = \frac{(|A - D| - 1)^2}{A + D} = \frac{(|9 - 4| - 1)^2}{9 + 4} = \frac{4^2}{13} = 1,2308$$

 \square Kriteria Penolakan : H_0 ditolak jika $\chi^2 > \chi^2_{tabel}$ atau $p-value < \alpha$ Menggunakan table chi-square dengan $\alpha=0.05$ dan dk=1 diperoleh nilai $\chi^2_{tabel}=3.481$. Karena $\chi^2=1.2308 < \chi^2_{tabel}=3.481$ maka H_0 tidak ditolak.

☐ Kesimpulan :

Jadi, tidak terdapat perbedaan yang signifikan dari perbedaan jumlah pengguna bumbu penyedap sebelum dan setelah masuk TV.

Hasil Running Rstudio

```
> sebelum1 <- rep(1,12)
> sebelum2 <- rep(2,9)
> sebelum <- c(sebelum1,sebelum2)</pre>
> setelah1 <- c(rep(1,3), rep(2,9))
> setelah2 <- c(rep(1,4), rep(2,5))
> setelah <- c(setelah1, setelah2)
  data<- data.frame(sebelum,setelah)</pre>
> table(data)
> mcnemar.test(table(data))
        McNemar's Chi-squared test with continuity correction
data: table(data)
McNemar's chi-squared = 1.2308, df = 1, p-value = 0.2673
```

Latihan

Seorang peneliti melakukan penelitian tentang perilaku penggunaan MSG pada masakan. Peneliti ingin mengetahui efektifitas seminar kesehatan terhadap penggunaan MSG dalam makanan. Dalam penelitian ini diambil sampel sebanyak 30 orang. Berdasarkan hasil survei diperoleh data sebagai berikut (0 menandakan responden tidak menggunakan MSG dan 1 menandakan menggunakan MSG). Selidiki apakah terdapat perbedaan penggunaan MSG dalam makanan sebelum dan sesudah mengikuti seminar kesehatan pada taraf nyata 5%.

No	Sebelum	Sesudah	No	Sebelum	Sesudah
1	0	0	16	0	0
2	1	0	17	1	0
3	0	0	18	0	0
4	1	0	19	0	0
5	0	1	20	1	0
6	1	0	21	1	1
7	1	0	22	1	1
8	1	0	23	0	0
9	1	0	24	0	0
10	0	0	25	1	0
11	1	0	26	1	1
12	1	1	27	1	1
13	1	0	28	0	0
14	1	1	29	1	0
15	1	0	30	1	0

Uji Tanda/ Sign Test

☐ Fungsi Pengujian :

Untuk menguji perbedaan/perubahan ranking (median selisih skor/ranking) dua buah populasi berdasarkan ranking (median selisih skor/ranking) dua sampel berpasangan.

□Persyaratan Data:

Data paling tidak berskala ordinal.

Prosedur Pengujian

- 1. Urutkan nilai jenjang setiap pasangan dari anggota kelompok sampel pertama dan kedua.
- 2. Untuk masing-masing pasangan berikan tanda + (plus) dan (minus) sebagai kode/tanda selisih jenjang dari setiap pasangan.
- 3. Tentukan harga N, yaitu jumlah semua pasangan yang memiliki tanda + dan -.

- 4. Tentukan pula nilai x, yaitu jumlah pasangan yang memiliki kesamaan tanda lebih sedikit.
- 5. Jika $N \le 25$, lihat Tabel Distribusi Binomial, yang menyajikan kemungkinan satu sisi/one tailed untuk kemunculan harga x dari pengamatan di bawah H_0 . Uji satu sisi digunakan apabila telah memiliki perkiraan ranking kelompok sampel tertentu akan lebih besar atau lebih kecil dari ranking kelompok sampel yang lainnya. Seandainya kita belum mempunyai perkiraan, harga p dikalikan dua (harga $p = p_{value} \times 2$).

6. Jika N > 25, gunakan rumus

$$z = \frac{(x \pm 0, 5) - \frac{1}{2} \cdot N}{\frac{1}{2} \sqrt{N}}$$
, Jika $x > \frac{1}{2}N$ maka digunakan $x - 0,5$

Jika $x < \frac{1}{2}$ maka digunakan $x + 0,5$

Sedangkan tabel yang digunakan adalah Tabel Distribusi Normal Standar, yang menyajikan kemungkinan satu sisi/one tailed untuk kemunculan harga z pengamatan di bawah H_0 . Uji satu sisi digunakan apabila telah memiliki perkiraan ranking kelompok sampel tertentu akan lebih besar atau lebih kecil dari ranking kelompok sampel yang lainnya. Jika belum memiliki perkiraan, harga p dalam Tabel dikalikan dua (harga $p = p_{value} \ x \ 2$).

7. Jika $p_{value} < \alpha$, maka tolak H_0 .

Contoh

Suatu perusahaan ingin mengetahui pengaruh adanya kenaikan uang insentif terhadap kesejahteraan karyawan. Dalam penelitian itu dipilih 20 pegawai beserta istrinya secara random. Dengan demikian terdapat 20 pasangan suami-istri. Masing-masing suami dan istri diberi angket untuk diisi dengan pertanyaan sebagai berikut:

"Berilah penilaian tingkat kesejahteraan keluarga Bapak/ibu sebelum adanya kenaikan dan sesudah kenaikan insentif dari perusahaan di mana Bapak/Ibu bekerja. Rentang nilai 1 s.d. 10. Nilai 1 berarti sangat tidak sejahtera dan nilai 10 berarti sangat sejahtera."

Hasil Penelitian

Data Istri		Data S	Suami
Seblm	Sesdh	Sblm	Ssdh
2	4	1	6
2	3	4	6
4	6	2	3
5	7	6	7
4	5	2	4
2	4	3	6
1	3	1	4
2	6	2	7
1	6	1	4
7	9	2	3

Data Istri		Data S	Suami
Seblm	Sesdh	Sblm	Ssdh
4	7	4	8
5	9	6	9
2	4	2	7
3	5	2	6
6	9	5	9
3	7	1	6
2	4	4	5
3	8	2	6
1	2	1	3
2	3	2	4

Uji Hipotesis

☐ Hipotesis:

 H_0 : tidak terdapat perbedaan pengaruh intensif yang signifikan terhadap kesejahteraan keluarga baik menurut istri maupun suami

 H_1 : terdapat perbedaan pengaruh intensif yang signifikan terhadap kesejahteraan keluarga baik menurut istri maupun suami

 \Box Tingkat Signifikansi : $\alpha = 0.05$

☐ Statistik Penguji

DATA ISTRI

Data Istri				
Seblm (X_i)	Sesdh (Y_i)	Beda $Y_i - X_i$	Peringkat	
2	4	2	4	
2	3	1	5	
4	6	2	4	
5	7	2	4	
4	5	1	5	
2	4	2	4	
1	3	2	4	
2	6	4	2	
1	6	5	1	
7	9	2	4	

	Data Istri				
Seblm (X_i)	Sesdh (Y_i)	Beda $Y_i - X_i$	Peringkat		
4	7	3	3		
5	9	4	2		
2	4	2	4		
3	5	2	4		
6	9	3	3		
3	7	4	2		
2	4	2	4		
3	8	5	1		
1	2	1	5		
2	3	1	5		

Peringkat diberikan dimulai dari nilai Beda yang tertinggi yaitu 5 diberikan peringkat 1, sedangkan untuk Beda=4 maka peringkatnya adalah 2, dst

DATA SUAMI

Data Suami				
Seblm (X_i)	Sesdh (Y_i)	Beda $Y_i - X_i$	Peringkat	
1	6	5	1	
4	6	2	4	
2	3	1	5	
6	7	1	5	
2	4	2	4	
3	6	3	3	
1	4	3	3	
2	7	5	1	
1	4	3	3	
2	3	1	5	

Data Suami							
Seblm (X_i)	Sesdh (Y_i)	Beda $Y_i - X_i$	Peringkat				
4	8	4	2				
6	9	3	3				
2	7	5	1				
2	6	4	2				
5	9	4	2				
1	6	5	1				
4	5	1	5				
2	6	4	2				
1	3	2	4				
2	2 4		4				

Dari Tabel Peringkat yang telah disusun dapat dibentuk table baru untuk melihat peringkat perubahan kesejahteraan keluarga sbb:

No	Tingkat Perubahan		Arah		Tanda	No	Tingkat Perubahan		Arah		Tanda		
	Istri	Suami						Istri	Suami				
1	4	1	4	>	1	-	11	3	2	3	>	2	-
2	5	4	5	>	4	-	12	2	3	2	<	3	+
3	4	5	4	<	5	+	13	4	1	4	>	1	-
4	4	5	4	<	5	+	14	4	2	4	>	2	-
5	5	4	5	>	4	-	15	3	2	3	>	2	-
6	4	3	4	>	3	-	16	2	1	2	>	1	-
7	4	3	4	>	3	-	17	4	5	4	<	5	+
8	2	1	2	>	1	-	18	1	2	1	<	2	+
9	1	3	1	<	3	+	19	5	4	5	>	4	-
10	4	5	4	<	5	+	20	5	4	5	>	4	-

☐ Kriteria Penolakan :

 H_0 ditolak jika $p-value < \alpha$

Dari table Nampak bahwa $n_+=7$ dan $n_-=13$. Jumlah data N=20 dan **gunakan Tabel Distribusi Binomial** dengan parameter N=20 dan $p=n_+=7$ (untuk p dipilih nilai n_+ atau n_- yang paling kecil) sehingga diperoleh nilai $p_{tabel}=0,132$.

 $p-value=0,132>0,05=\alpha$. Jadi, H_0 ditolak

☐ Kesimpulan :

Terdapat pengaruh yang positif dan signifikan terhadap kesejahteraan keluarga baik menurut istri maupun suami.

Hasil Running Rstudio

```
> istri<- c(4,5,4,4,5,4,4,2,1,4,3,2,4,4,3,2,4,1,5,5)
> suami<- c(1,4,5,5,4,3,3,1,3,5,2,3,1,2,2,1,5,2,4,4)
> data<- data.frame(istri,suami,diff=suami-istri)</pre>
> data
   istri suami diff
13
14
18
19
```

```
> library(BSDA)
> SIGN.test(x=data$diff, alternative="less", conf.level=0.95)
       One-sample Sign-Test
data: data$diff
s = 7, p-value = 0.1316
alternative hypothesis: true median is less than O
95 percent confidence interval:
 -Inf
sample estimates:
median of x
Achieved and Interpolated Confidence Intervals:
                 Conf.Level L.E.pt U.E.pt
Lower Achieved CI
                     0.9423 -Inf
Interpolated CI 0.9500 -Inf
Upper Achieved CI 0.9793 -Inf
```

Contoh

Mahasiswa semester akhir dari Jurusan Sosek Fakultas Pertanian berkeinginan melakukan penelitian mengenai "Tingkat Pengetahuan Budidaya Kopi dari Penduduk Suatu Desa yang Akan Diberi Bantuan Bibit Kopi".

Penelitian ini penting dilakukan, karena diduga akan berpengaruh terhadap sukses tidaknya proyek bantuan tersebut. Pengambilan data dilaksanakan sebanyak dua kali, dengan maksud untuk mengkaji ada tidaknya perubahan tingkat pengetahuan sebelum dan sesudah diberi penyuluhan dengan materi Budidaya Tanaman Kopi.

Kuesioner dirancang dengan cara memberikan skor untuk tiap aspek budidaya, sehingga bisa dilakukan ranking dari 1-5 berdasarkan tingkat pengetahuan kumulatifnya.

Berdasarkan berbagai literatur, peneliti menduga bahwa, dengan seringnya dilakukan penyuluhan akan terjadi perubahan tingkat pengetahuan petani.

No.	Sk	or		No.	Skor		
	Penget	tahuan			Pengetahuan		
Resp.	Sebelum	Setelah	Tand	Resp.	Sebelum	Setelah	Tand
			a				a
1	5	5	0	21	3	4	-
2	4	5	-	22	3	4	-
3	3	4	-	23	4	5	-
4	4	3	+	24	4	3	+
5	4	3	+	25	3	3	0
6	3 3 4	4	-	26	4	3	+
7	3	4	-	27	4	5	-
8		5	-	28	4	5	-
9	4	5	-	29	3	4	-
10	3	5	-	30	2	3	-
11	4	3	+	31	4	3	+
12	3	4	-	32	4 5	4	0
13	3	4	-	33		4	+
14	2 4	3	-	34	5	4	+
15		4	0	35	4	4	0
16	3	3	0	36	3	4	-
17	3 5	4	-	37	2	3	_
18		4	+	38	3	4	-
19	2	3	-	39	2	3	-
20	2	3		40	3	5	-

Penyelesaian

Uji Hipotesis

☐ Hipotesis :

$$H_0 : d_m = 0$$

$$H_1: d_m \neq 0$$

- \Box Tingkat signifikansi : $\alpha = 0.05$
- ☐ Statistik Penguji :

Dari tabel diperoleh, $n_+=9,\ n_-=25$ dan Yang tidak berubah: $n_0=6$. Selanjutnya, n_0 dihilangkan sehingga diperoleh N=40-6=34.

No.	Skor			No.	Skor		
	Pengetahuan					Pengetahuan	
Resp.	Sebelum	Setelah	Tand	Resp.	Sebelum	Setelah	Tand
			a				a
1	5	5	0	21	3	4	-
2	4	5	-	22	3	4	-
3	3	4	-	23	4	5	-
4	4	3	+	24	4	3	+
5	4	3	+	25	3	3 3 5 5	0
6	3	4	-	26	4	3	+
7	3	4	-	27	4	5	-
8	4	5	-	28	4		-
9	4	5	-	29	3	4	-
10	3	5	-	30	2	3 3	-
11	4	3	+	31	4		+
12	3	4	-	32	4	4	0
13	3	4	-	33	5	4	+
14	2	3	-	34	5	4	+
15	4	4	0	35	4	4	0
16	3	3	0	36	3	4	-
17	3 5	4	-	37	2	3	-
18		4	+	38	3	4	-
19	2	3	-	39	2	3	-
20	2	3	_	40	3	5	-

Pilih $x = n_+ = 9$. Karena $x = 9 < \frac{1}{2}N = \frac{1}{2} \cdot 34 = 17$ maka

$$z = \frac{(x+0.5) - \frac{1}{2}N}{\frac{1}{2}\sqrt{N}} = \frac{(9+0.5) - 17}{\frac{1}{2}\sqrt{34}} = \frac{-7.5}{2,9155} = -2.57$$

Menggunakan tabel normal didapat $p - value = P(Z \le -2.57) \times 2 = 0.0102$.

 \square Kriteria Penolakan H_0 :

 H_0 ditolak jika $Z_{hitung} < -Z_{rac{lpha}{2}}$ atau $Z_{hitung} > Z_{rac{lpha}{2}}$ atau jika p-value < lpha.

Karena $Z_{0,025}=1,96$ sehingga $Z_{hitung}=-2,57<-1,96$. Akibatnya H_0 ditolak.

Atau Karena $p_{value} = 0.0102 < 0.05$ sehingga H_0 ditolak.

☐Kesimpulan:

Berdasarkan pengujian di atas dapat disimpulkan bahwa ada perubahan tingkat pengetahuan budidaya kopi yang sangat nyata dari penduduk suatu desa setelah diberi penyuluhan.

Latihan

Seorang guru ingin mengetahui apakah ada perbedaan antara nilai ujian seorang siswa pada mata ajar tertentu, jika ia belajar sendirian dan jika ia belajar berkelompok. Untuk itu, diadakan dua kali uji mata ajar, pertama siswa belajar sendirisendiri dan yang kedua sebelum ujian siswa dapat dengan bebas belajar secara berkelompok.

Berikut hasil nilai keduanya (angka dalam range nilai (sampai 100)).

No	Sendiri	Kelompok
1	80	78
2	82	85
3	84	82
4	86	78
5	80	84
6	84	89
7	83	83
8	81	81
9	82	90
10	80	78
11	83	85
12	84	82
13	82	86
14	81	91
15	80	80
16	79	89
17	75	79

Uji Tanda Wilcoxon

• Fungsi Pengujian :

- Untuk menguji perbedaan median dua populasi berdasarkan median dua sampel berpasangan.
- Uji ini selain mempertimbangkan arah perbedaan, juga mempertimbangkan besar relatif perbedaannya.
- ❖Uji Tanda Wilcoxon memiliki kualitas yang lebih baik dibandingkan dengan Uji Tanda yang dibahas sebelumnya.

Persyaratan Data :

❖ Data paling tidak berskala **ordinal**.

Prosedur Pengujian

- 1. Urutkan nilai jenjang/skor setiap pasangan dari anggota kelompok sampel pertama dan kedua.
- 2. Hitung nilai beda (d_i) untuk setiap pasangan anggota kelompok sampel pertama dan kedua.
- 3. Buat ranking untuk setiap d_i tanpa memperhatikan tandanya (positif atau negatif). Rangking ke-1 diberikan terhadap harga mutlak d_i terkecil. Jika ada ranking kembar buat rata-rata rankingnya.

- 4. Pada ranking d_i , cantumkan tanda + dan -, sesuai dengan tanda + dan pada nilai beda (d_i).
- 5. Pisahkan ranking d_i yang memiliki tanda + atau paling sedikit.
- 6. Tentukan nilai T, dengan cara menjumlahkan nilai rangking d_i yang memiliki tanda + atau paling sedikit tanpa memperhatikan tandanya (nilai harga mutlak rangking d_i).
- 7. Tentukan pula nilai N, dengan cara menghitung frekuensi d_i yang memiliki tanda + dan -, sedangkan frekuensi d_i yang memiliki tanda 0 jangan dimasukkan ke dalam hitungan.

8. Jika $N \leq 25$, lihat Tabel Wilcoxon yang menyajikan kemungkinan satu sisi/one tailed dan dua sisi/two tailed untuk harga T dari pengamatan di bawah H_0 . Jika harga $T_{hitung} \leq T_{Tabel}$, maka tolak H_0 untuk tingkat signifikansi tertentu.

	alpha values						alp	ha valu	es						
n	0.001	0.005	0.01	0.025	0.05	0.10	0.20	n	0.001	0.005	0.01	0.025	0.05	0.10	0.20
5					**	0	2	28	64	82	91	105	116	130	145
6	**	***			0	2	3	29	71	90	100	114	126	140	157
7				0	2	3	5	30	78	98	109	124	137	151	169
8			0	2	3	5	8	31	86	107	118	134	147	163	181
9		0	1	3	5	8	10	32	94	116	128	144	159	175	194
10		1	3	5	8	10	14	33	102	126	138	155	170	187	207
11	0	3	5	8	10	13	17	34	111	136	148	167	182	200	221
12	1	5	7	10	13	17	21	35	120	146	159	178	195	213	235
13	2	7	9	13	17	21	26	36	130	157	171	191	208	227	250
14	4	9	12	17	21	25	31	37	140	168	182	203	221	241	265
15	6	12	15	20	25	30	36	38	150	180	194	216	235	256	281
16	8	15	19	25	29	35	42	39	161	192	207	230	249	271	297
17	11	19	23	29	34	41	48	40	172	204	220	244	264	286	313
18	14	23	27	34	40	47	55	41	183	217	233	258	279	302	330
19	18	27	32	39	46	53	62	42	195	230	247	273	294	319	348
20	21	32	37	45	52	60	69	43	207	244	261	288	310	336	365
21	25	37	42	51	58	67	77	44	220	258	276	303	327	353	384
22	30	42	48	57	65	75	86	45	233	272	291	319	343	371	402
23	35	48	54	64	73	83	94	46	246	287	307	336	361	389	422
24	40	54	61	72	81	91	104	47	260	302	322	353	378	407	441
25	45	60	68	79	89	100	113	48	274	318	339	370	396	426	462
26	51	67	75	87	98	110	124	49	289	334	355	388	415	446	482
27	57	74	83	96	107	119	134	50	304	350	373	406	434	466	503

9. Jika N > 25, gunakan rumus

$$Z = \frac{T - \mu_T}{\sigma_T}$$

Dengan
$$\mu_T=rac{N(N+1)}{4}\,\mathrm{dan}\;\sigma_T=\sqrt{rac{N(N+1)(2N+1)}{24}}$$

- Sedangkan tabel yang digunakan adalah Tabel normal yang menyajikan kemungkinan satu sisi/one tailed untuk kemunculan harga z pengamatan di bawah ${\cal H}_0$.
- Uji satu sisi digunakan apabila telah memiliki perkiraan skor kelompok sampel tertentu akan lebih besar atau lebih kecil dari skor kelompok sampel yang lainnya.
- Jika belum memiliki perkiraan, nilai p dalam Tabel normal dikalikan dua ($p-value=p_{Tabel}\times 2$). Jika $p-value<\alpha$ maka H_0 ditolak.

Contoh n < 25

Seorang mahasiswa Fakultas Pertanian dari Jurusan Sosek ingin mengetahui apakah keikutsertaan dalam pelatihan bisa mempengaruhi keberhasilan usaha perdagangan saprotan (sarana produksi pertanian).

Untuk itu dilakukan survei terhadap 10 orang pedagang saprotan, mereka dinilai keberhasilan usahanya sebelum dan setelah mengikuti pelatihan, kepada tiap responden diberi skor dengan interval 1-100. Diperkirakan akan ada perbedaan keberhasilan usaha perdagangan saprotan sebelum dan setelah diberi pelatihan.

Taraf nyata atau tingkat signifikansi (level of significance) yang digunakan adalah α = 0,05. Setelah survei selesai, data yang diperoleh dimasukan dalam Tabel, sekaligus dilakukan pengolahan lebih lanjut untuk menentukan ranking d_i .

Pas.	Pelatihan		
Resp.	Sebelum	Setelah	
1	76	80	
2	58	60	
3	62	68	
4	67	72	
5	66	79	
6	81	80	
7	85	82	
8	72	80	
9	71	81	
10	75	79	

Penyelesaian

- 1. Hipotesis
- $\succ H_0$: Tidak ada perbedaan keberhasilan antara sebelum dan sesudah pelatihan
- $\succ H_1$: Ada perbedaan keberhasilan antara sebelum dan sesudah pelatihan
- 2. Tingkat Signifikansi : $\alpha = 5\%$

No	Sebelum	Sesudah	beda	Rank	Rank +	Rank -
1	76	80	-4	4,5		4
2	58	60	-2	2		2
3	62	68	-6	7		6
4	67	72	-5	6		5
5	66	79	-13	10		13
6	81	80	1	1	1	
7	85	82	3	3	3	
8	72	80	-8	8		8
9	71	81	-10	9		9
10	75	79	-4	4,5		4,5
		4	51,5			

3. Uji Statistik:

$${\it N}=10$$
 , ${\it T}_1=4$, ${\it T}_2=51$,5 sehingga

$$T = \min\{4; 51, 5\} = 4$$

Menggunakan Tabel Wilcoxon diperoleh nilai $T_{tabel} = 25$.

4. Kriteria Penolakan H_0

 H_0 ditolak jika $T_{hitung} \leq T_{tabel}$. Oleh karena, $T_{hitung} = 4 \leq T_{tabel} = 25$ maka H_0 ditolak.

5. Kesimpulan

Jadi, ada perbedaan keberhasilan antara sebelum dan sesudah pelatihan.

```
> sebelum<- c(76, 58, 62, 67, 66, 81, 85, 72, 71, 75)
> sesudah<- c(80, 60, 68, 72, 79, 80, 82, 80, 81, 79)
> pelatihan<- data.frame(sebelum,sesudah)
> pelatihan
   sebelum sesudah
        76
                 80
> wilcox.test(sebelum, sesudah, paired=TRUE, data=pelatihan)
        Wilcoxon signed rank test with continuity correction
data: sebelum and sesudah
V = 4, p-value = 0.01898
alternative hypothesis: true location shift is not equal to 0
Warning message:
In wilcox.test.default(sebelum, sesudah, paired = TRUE, data = pelatihan) :
  cannot compute exact p-value with ties
```

Contoh n > 25

Mahasiswa semester akhir dari Jurusan Sosek Fakultas Pertanian ingin mengetahui tentang "Keberhasilan Usaha Tani yang dikelola oleh petani pria dan wanita". Untuk keperluan tersebut telah dipilih berbagai jenis usaha tani. Setiap jenis usaha tani dipasang-pasangkan berdasarkan kesamaan jenis dan skala usahanya. Kemudian untuk setiap pasangan yang sama diambil sampel berdasarkan jenis kelamin, dan didapatkan 30 pasangan usaha tani yang akan diteliti.

Keberhasilan usaha diukur dari berbagai kriteria, dan untuk tiap tingkat keberhasilan diberikan skor 1-10. Dalam kaitan penelitian ini, belum diperoleh informasi apakah variabel jenis kelamin tertentu lebih menentukan terhadap keberhasilan usaha. Taraf nyata atau tingkat signifikasi (level of yang digunakan dalam significance) pengujian, $\alpha = 0.01$.

Pas.	Jenis K	elamin
Resp.	Pria	Wanita
1	8	10
2	7	7
3	8	8
4	7	6
5	7	7
6	6	6
7	9	5
8	9	5
9	5	4
10	4	3
11	9	4
12	8	5
13	7	2
14	8	5
15	6	7
16	6	5
17	5	6
18	10	5
19	10	2
20	6	4
21	5	3
22	7	4
23	7	10
24	4	6
25	5	4
26	8	4
27	10	2
28	6	4
29	8	5
30	8	9

Penyelesaian

No	Pria	Wanita	beda	Rank	Rank +	Rank -
1	8	10	-2	11		11
2	7	7	0	Ties		
3	8	8	0	Ties		
4	7	6	1	4.5	4.5	
5	7	7	0	Ties		
6	6	6	0	Ties		
7	9	5	4	20	20	
8	9	5	4	20	20	
9	5	4	1	4.5	4.5	
10	4	3	1	4.5	4.5	
11	9	4	5	23	23	
12	8	5	3	16	16	
13	7	2	5	23	23	
14	8	5	3	16	16	
15	6	7	-1	4.5	4.5	1

30	8	9 Jumlah	-1	4.5	4.5 339	1 41
29	8	5	3	16	16	1
28	6	4	2	11	11	
27	10	2	8	25	25	
26	8	4	4	20	20	
25	5	4	1	4.5	4.5	
24	4	6	-2	11	11	11
23	7	10	-3	16	16	16
22	7	4	3	16	16	
21	5	3	2	11	11	
20	6	4	2	11	11	
19	10	2	8	25	25	
18	10	5	5	23	23	
17	5	6	-1	4.5	4.5	1
16	6	5	1	4.5	4.5	

1. Hipotesis:

$$H_0: d_m = 0$$

$$H_1:d_m\neq 0$$

- 2. Tingkat signifikansi: $\alpha = 0.01$
- 3. Uji Statistik:

$$N=26$$
, $T=\min\{41;339\}=41$ dengan demikian diperoleh

$$\mu_T = \frac{N(N+1)}{4} = \frac{26(26+1)}{4} = 175,5$$

Dan

$$\sigma_T = \sqrt{\frac{N(N+1)(2N+1)}{24}} = \sqrt{\frac{26 \cdot 27 \cdot 53}{24}} = 39,37$$

Sehingga diperoleh

$$Z = \frac{T - \mu_T}{\sigma_T} = \frac{53 - 175,5}{39,37} = -3,112$$

4. Kriteria penolakan H_0

$$H_0$$
 ditolak jika $Z_{hitung} > Z_{\frac{\alpha}{2}}$ atau $Z_{hitung} < -Z_{\frac{\alpha}{2}}$ atau $p-value < \alpha$.

Karena $Z_{\text{hitung}} = -3,112 < -Z_{0,005} = -2,575$ maka H_0 ditolak.

5. Kesimpulan:

Jadi, ada perbedaan keberhasilan kegiatan usaha tani yang dikelo oleh petani pria dan wanita.

0.070 0.075 0.005 0.040 0.045 0.050 0.055 0.060 0.065 0.000 0.010 0.015 0.020 0.025 0.030 0.035 0.0 0.500000 0.498005 0.496011 0.494016 0.492022 0.490027 0.488034 0.486040 0.484047 0.482054 0.480061 0.478069 0.476078 0.474087 0.472097 0.470107 0.1 0.460172 0.458188 0.456205 0.454223 0.452242 0.450262 0.448283 0.446306 0.444330 0.442355 0.440382 0.438411 0.436441 0.436447 0.432505 0.430540 0.2 0.420740 0.418786 0.416834 0.414884 0.412936 0.410990 0.409046 0.407104 0.405165 0.403228 0.401294 0.399362 0.397432 0.395505 0.395505 0.393580 0.391658 0.3 0.382089 0.380183 0.378280 0.376381 0.374484 0.372591 0.370700 0.368813 0.366928 0.365047 0.363169 0.361295 0.359424 0.357556 0.355691 0.353830 0.4 0.344578 0.342739 0.340903 0.339071 0.337243 0.335418 0.335598 0.331781 0.329969 0.328160 0.326355 0.324555 0.322758 0.320966 0.319178 0.317393 0.5 0.308538 0.306779 0.305026 0.303277 0.301532 0.299792 0.298056 0.296325 0.294599 0.292877 0.291160 0.289447 0.287740 0.286037 0.284339 0.282646 0.6 0.274253 0.272589 0.270931 0.269277 0.267629 0.265986 0.264347 0.262714 0.261086 0.259464 0.257846 0.256234 0.254627 0.253025 0.251429 0.249838 0.7 0.241964 0.240405 0.238852 0.237305 0.235762 0.234226 0.232695 0.231170 0.229650 0.228136 0.226627 0.225124 0.223627 0.222136 0.220650 0.219170 0.8 0.211855 0.210410 0.208970 0.207536 0.206108 0.204686 0.203269 0.201859 0.200454 0.199055 0.197663 0.196276 0.194895 0.193519 0.192150 0.190787 0.9 0.184060 0.182733 0.181411 0.180096 0.178786 0.177483 0.176186 0.174894 0.173609 0.172329 0.171056 0.169789 0.168528 0.167272 0.166023 0.164780 1.0 0.158655 0.157448 0.156248 0.155053 0.153864 0.152682 0.151505 0.150334 0.149170 0.148011 0.146859 0.145713 0.144572 0.143438 0.142310 0.141187 1.1 0.135666 0.134580 0.133500 0.132425 0.131357 0.130295 0.129238 0.128188 0.127143 0.126105 0.125072 0.124045 0.123024 0.122009 0.121000 0.119997 1.2 0.115070 0.114102 0.113139 0.112183 0.111232 0.110288 0.109349 0.108415 0.107488 0.106566 0.105650 0.104739 0.103835 0.102936 0.102042 0.101155 1.3 0.096800 0.095946 0.095098 0.094255 0.093418 0.092586 0.091759 0.090938 0.090123 0.089313 0.088508 0.087709 0.086915 0.086127 0.085343 0.084566 1.4 0.080757 0.080011 0.079270 0.078534 0.077804 0.077079 0.076359 0.075644 0.074934 0.074229 0.073529 0.072835 0.072145 0.071460 0.070781 0.070106 1.5 0.066807 0.066162 0.065522 0.064886 0.064255 0.063630 0.063008 0.062392 0.061780 0.06173 0.060571 0.059973 0.059380 0.058791 0.058208 0.057628 1.6 0.054799 0.054247 0.053699 0.053155 0.052616 0.052081 0.051551 0.051025 0.050503 0.049985 0.049471 0.048962 0.048457 0.047956 0.047460 0.04696 1.7 0.044565 0.044097 0.043633 0.043173 0.042716 0.042264 0.041815 0.041370 0.040930 0.040492 0.040059 0.039630 0.039204 0.038782 0.038364 0.037949 1.8 0.035930 0.035537 0.035148 0.034762 0.034380 0.034001 0.033625 0.033253 0.032884 0.032519 0.032157 0.031798 0.031443 0.031091 0.030742 0.030396 1.9 0.028717 0.028390 0.028067 0.027746 0.027429 0.027115 0.026803 0.026495 0.026190 0.025887 0.025588 0.025292 0.024998 0.024707 0.024419 0.024134 2.0 0.022750 0.022482 0.022216 0.021952 0.021692 0.021434 0.021178 0.020925 0.020675 0.020427 0.020182 0.019940 0.019699 0.019462 0.019226 0.018993 2.1 0.017864 0.017646 0.017429 0.017215 0.017003 0.016793 0.016586 0.016381 0.016177 0.015976 0.015778 0.015581 0.015386 0.015194 0.015003 0.014815 2.2 0.013903 0.013727 0.013553 0.013380 0.013209 0.013041 0.012874 0.012709 0.012545 0.012384 0.012224 0.012067 0.011911 0.011756 0.011604 0.011453 2.3 0.010724 0.010583 0.010444 0.010306 0.010170 0.010036 0.009903 0.009772 0.009642 0.009514 0.009387 0.009261 0.009137 0.009015 0.008894 0.008774 2.4 0.008198 0.008086 0.007976 0.007868 0.007760 0.007654 0.007549 0.007446 0.007344 0.007243 0.007143 0.007044 0.006947 0.006851 0.006756 0.006662 2.5 0.006210 0.006123 0.006037 0.005952 0.005868 0.005785 0.005703 0.005622 0.005543 0.005464 0.005386 0.005309 0.005234 0.005159 0.005085 0.005012 2.6 0.004661 0.004594 0.004527 0.004461 0.004396 0.004332 0.004269 0.004207 0.004145 0.004085 0.004025 0.003965 0.003907 0.003849 0.003793 0.003736 2.7 0.003467 0.003415 0.003364 0.003314 0.003264 0.003215 0.003167 0.003119 0.003072 0.003026 0.002980 0.002935 0.002890 0.002846 0.002803 0.002760

Latihan

Penelitian dilakukan untuk mengetahui pengaruh penyuluhan terhadap kemampuan petani dalam menggunakan teknologi usahatani yang baru. Sebelum dan sesudah penyuluhan tentang teknologi baru dilakukan pengukuran terhadap kemampuan petani. Data total skor kemampuan petani ditunjukkan pada Tabel 5.7. Lakukan pengujian hipotesis untuk membuktikan apakah terdapat perbedaan kemampuan peserta dalam menggunakan teknologi usahatani yang baru sebelum dan sesudah penyuluhan dilakukan.

Tabel 5.7. Kemampuan peserta pelatihan.						
Nomor	Total skor sebelum	Total skor sesudah				
responden	penyuluhan	penyuluhan				
1	20	18				
2	19	17				
3	23	20				
4	20	21				
5	18	16				
6	21	19				
7	20	18				
8	20	22				
9	19	17				
10	18	15				
11	23	21				
12	21	20				
13	20	20				
14	20	19				
15	23	22				

Latihan

Sebuah perusahaan Pharmasi sedang mengembangkan suplemen penambahan berat badan pada anak-anak. Perusahaan ingin mengetahui khasiat suplemen tersebut sebelum dipasarkan secara komersial. Untuk itu perusahaan mencoba obat tersebut secara kontinu terhadap 15 orang siswa sekolah dasar yang sudah diukur terlebih dahulu berat badannya. Setelah 3 bulan kemudian siswa-siswa tersebut ditimbang berat badannya lagi untuk mngetahui apakah ada peningkatan berat badannya yang nyata.

Berikut ini adalah hasil pengukuran tersebut (angka dalam kilogram)

No	Sebelum	Sesudah	No	Sebelum	Sesudah
1	25	26	9	24	26
2	27	26	10	25	26
3	20	22	11	24	25
4	21	24	12	27	28
5	18	22	13	23	25
6	19	21	14	25	27
7	20	24	15	22	25
8	22	21			

Latihan

Sebuah penelitian mengajukan hipotesis bahwa kegiatan penyuluhan pertanian berperan dalam peningkatan produksi pertanian di suatu daerah. Produksi diukur pada saat sebelum dan sesudah penyuluh petanian hadir di wilayah tersebut. Produksi pertanian diukur dengan skor dan total skor ditunjukkan pada tabel di bawah ini (Tabel 5.10). Lakukan pengujian hipotesis dengan menggunakan Wilcoxon Matched *Pairs Test* bila taraf signifikansi sebesar 0,025.

Tabel 5.10. Kemampuan peserta pelatihan.						
Nomor	Total skor sebelum	Total skor sesudah				
responden	penyuluhan pertanian.	penyuluhan pertanian.				
1	75	77				
2	50	60				
3	77	70				
4	80	81				
5	30	60				
6	68	70				
7	55	70				
8	72	75				
9	33	55				
10	70	70				
11	64	64				
12	40	50				
13	90	80				
14	35	45				
15	87	80				
16	75	67				
17	35	60				
18	60	60				
19	55	70				
20	82	80				
21	37	65				
22	66	65				
23	73	73				
24	65	60				
25	73	70				
26	45	50				
27	74	80				
28	76	75				
29	70	67				
30	60	70				