Petit DM d'Anniversaire

Par Gaétan LECLERC, Octobre 2019

Pour Louisette-chan

Le DM d'Anniversaire va probablement¹ se composer en trois parties. L'objectif du problème est d'obtenir les outils nécessaires à la définition des nombres p-adiques.

Partie 1: Complétion

On rappelle qu'un espace métrique (\hat{X}, d) est dit *complet* si toutes ses suites de CAUCHY convergent. On souhaite montrer le théorème suivant.

Théorème 1.1

Soit (X, d) un espace métrique. Alors il existe \hat{X} un espace métrique unique à isométrie près, et une isométrie $\iota: X \hookrightarrow \hat{X}$, tels que:

- \hat{X} est complet
- $\iota(X)$ est dense dans X.

On appellera *complété* de X tout espace \hat{X} satisfait à ces hypothèses. On montrera aussi qu'un tel espace vérifie la propriété universelle suivante:

Proposition 1.2

Soit $u: X \to Y$ uniformément continue, avec Y complet. Alors:

$$\exists ! \tilde{u} : \hat{X} \to \hat{Y}$$
 continue, t.q. $\tilde{u} \circ i = u$.

De plus \tilde{u} est en fait uniformément continue.

- 1) Soit $D \subseteq (X, d_X)$ une partie dense d'un espace métrique. Soit (Y, d_Y) un espace métrique complet. Soit $f: D \to Y$ uniformément continue.
 - a) Montrer que si $\tilde{f}: X \to Y$, prolongement continu de f sur X existe, alors forcément:

$$\forall a \in X, \forall (u_n) \in D^{\mathbb{N}} \text{ t.q. } u_n \to a, \ \tilde{f}(a) = \lim_{n \to \infty} f(u_n).$$

- b) Soit $a \in X$ et $(u_n) \in D^{\mathbb{N}}$ t.q. $u_n \to a$. Montrer que $(f(u_n))_n$ admet une limite.
- c) Montrer que le candidat:

$$\forall a \in X, \, \tilde{f}(a) := \lim_{n \to \infty} f(u_n) \, \text{où } u_n \to a$$

est bien défini.

- d) Montrer que $\tilde{f}: X \to Y$ est uniformément continue.
- 2) On construit ici un complété \hat{X} de tout espace métrique X, et on montre qu'il vérifie la propriété universelle annoncée (1.2).
 - a) Soit (X, d) un espace métrique. On note $C_b(X, \mathbb{R}) := \{f : X \to \mathbb{R} \text{ continue bornée}\}$. On le munit de $\|f\|_{\infty} := \sup_{x \in X} |f(x)|$. Montrer que $C_b(X, \mathbb{R})$ est complet.

¹je reprend conformément la rédaction, mais je n'ai retrouvé que deux parties.

- b) Soit $x_0 \in X$. On note, pour $x \in X$, $f_x(y) := d(x, y) d(y, x_0)$. Montrer que $f_x \in C_b(X, \mathbb{R})$.
- c) Montrer que $\iota: X \to \mathcal{C}_b(X, \mathbb{R})$ est une isométrie. $x \mapsto f_x$
- d) Montrer que $\hat{X} := \overline{\iota(X)}$ vérifie :
 - $\iota: X \to \hat{X}$ est une isométrie,
 - $\iota(X)$ est dense dans \hat{X} ,
 - \hat{X} est complet.
- 3) On vient donc de construire un complété de X. Soit donc \hat{X} un complété de X (n'importe lequel), montrer que \hat{X} vérifie la propriété universelle annoncée (1.2).
- 4) On montre à présent l'unicité à isométrie près. Soit (X, d) un espace métrique. Soient \hat{X} et \tilde{X} deux complétés de X. Soient $\iota_1: X \to \hat{X}$ et $\iota_2: X \to \tilde{X}$ les isométries. On note $f_1: \iota_1(X) \subseteq \hat{X} \to X$ et $f_2: \iota_2(X) \subseteq \tilde{X} \to X$ leur réciproques respectives.
 - a) Vérifier que $J_1 := \iota_2 \circ f_1 : \iota_1(X) \subseteq \hat{X} \to \tilde{X}$ et $J_2 := \iota_1 \circ f_2 : \iota_2(X) \subseteq \tilde{X} \to \hat{X}$ sont des isométries. Vérifier que

$$\forall x \in \iota_1(X), J_1 \circ J_2(x) = x$$
 et $\forall x \in \iota_2(X), J_2 \circ J_1(x) = x$.

b) Montrer que J_1 et J_2 se prolongent respectivement en I_1 et I_2 , isométries. Vérifier que $I_1 = I_2^{-1}$. Conclure.

Voilà ce qu'on appelle le *complété* d'un espace métrique en général.

Partie 2 : Des valeurs absolues sur Q

Définition 2.3: Valeur absolue

Soit *K* un corps. On appelle *valeur absolue* sur *K* toute application $|\cdot|: K \to \mathbb{R}_+$ t.q.

- $\forall x, |x| = 0 \iff x = 0$ $\forall x, y, |x + y| \le |x| + |y|$ $\forall x, y, |xy| = |x| |y|$.

Si de plus pour tout x, y, on a $|x + y| \le \max(|x|, |y|)$, on dit que la valeur absolue est *ultramétrique*.

1) On note, pour $x \in \mathbb{Q}$,

$$|x|_{\infty} := \left\{ \begin{array}{ll} x & \text{si } x \ge 0 \\ -x & \text{si } x \le 0 \end{array} \right.$$

Montrer que $|\cdot|_{\infty}$ est une valeur absolue sur \mathbb{Q} . Quel est le complété de $(\mathbb{Q}, |\cdot|_{\infty})$?

2) On note, pour $x \in \mathbb{Q}$,

$$|x|_{\mathsf{triv}} := \left\{ \begin{array}{ll} 1 & \mathrm{si} \ x \neq 0 \\ 0 & \mathrm{si} \ x = 0 \end{array} \right..$$

Montrer que $|\cdot|_{triv}$ est une valeur absolue. On l'appelle la valeur absolue triviale. Identifier les suites de CAUCHY sur $(\mathbb{Q}, |\cdot|_{\mathsf{triv}})$. L'espace $(\mathbb{Q}, |\cdot|_{\mathsf{triv}})$ est-il complet ?

- 3) On note \mathcal{P} l'ensemble des nombres premiers.
 - a) Montrer que:

$$\forall \alpha \in \mathbb{Q}^*, \exists ! r \geq 0, \exists ! (m_1, \cdots, m_r) \in (\mathbb{Z}^*)^r, \alpha = p_1^{m_1} \cdots p_r^{m_r}$$

où les $p_i \in \mathcal{P}$ sont deux à deux distincts.

b) Soient $\alpha \in \mathbb{Q}$ et $p \in \mathcal{P}$. On appelle *valuation p-adique* l'application suivante.

$$v_p: Q \longrightarrow \mathbb{Z} \cup \{+\infty\}$$

$$p_1^{m_1} \cdots p_r^{m_r} \longmapsto \alpha_i, \text{ où } p = p_i$$

$$0 \longmapsto +\infty.$$

Montrer que:

- $\forall x, y, v_p(xy) = v_p(x) + v_p(y),$
- $\forall x, y, v_p(x+y) \geq \min(v_p(x), v_p(y)).$
- c) On pose $|\cdot|_p: \mathbb{Q} \to \mathbb{R}^+$. Montrer que $|\cdot|_p$ est une valeur absolue sur \mathbb{Q} . $\alpha \mapsto p^{-v_p(\alpha)}$

On l'appelle la valeur absolue p-adique.

- 4) On rapelle que deux topologies sont comparées via les ouverts qu'elles engendrent, *i.e.* elles seront dites *équivalentes* (resp. distinctes) si elles engendrent les même ouverts (resp si elles engendrent des familles d'ouverts différentes).
 - a) Montrer que $\left|\frac{1}{n}\right|_{\infty} \to 0$ et que $\forall n$, $\left|\frac{1}{n}\right|_{p} \ge 1$. Montrer que $|p^{n}|_{\infty} \to 0$ et que $|p^{n}|_{p} \to 0$. En déduire que la topologie sur $(\mathbb{Q}, \, |\cdot|_{\infty})$ et $(\mathbb{Q}, \, |\cdot|_{p})$ sont distinctes.
 - b) Soient $p, q \in \mathcal{P}, p \neq q$. Montrer que les topologies sur $(\mathbb{Q}, |\cdot|_p)$ et $(\mathbb{Q}, |\cdot|_q)$ sont distinctes.
- 5) Deux valeurs absolues $|\cdot|$ et $|\cdot|'$ sont dites équivalentes lorsque elles induisent la même topologie, on note $|\cdot| \sim |\cdot|'$. On va établir le résultat suivant.

Lemme 2.4: Critère d'équivalence

Deux valeurs absolues $|\cdot|$ et $|\cdot|'$ sur \mathbb{Q} sont équivalentes ssi $\exists \alpha > 0, \ |\cdot|' = |\cdot|^{\alpha}$.

a) Un ouvert $de(\mathbb{Q}, |\cdot|)$ est une partie $\Omega \subseteq \mathbb{Q}$ t.q.

$$\forall x \in \Omega, \exists \varepsilon > 0, |x - y| < \varepsilon \implies y \in \Omega.$$

Montrer que si $|\cdot|' = |\cdot|^{\alpha}$, alors les propriétés suivantes sont équivalentes :

- Ω est un ouvert de $(\mathbb{Q}, |\cdot|)$
- Ω est un ouvert de $(\mathbb{Q}, |\cdot|')$.

On s'interesse à présent au sens réciproque.

- b) Soient $|\cdot|$ et $|\cdot|'$ deux valeurs absolues induisant des tologies équivalentes sur \mathbb{Q} . Montrer qu'une suite (x_n) vérifie $x_n \to 0$ dans $(\mathbb{Q}, |\cdot|)$ ssi elle vérifie $x_n \to 0$ dans $(\mathbb{Q}, |\cdot|')$.
- c) Soit $x \in \mathbb{Q}$. Montrer que $|x| < 1 \iff |x|' < 1$. En déduire que $|x| > 1 \iff |x|' > 1$, et que $|x| = 1 \iff |x|' = 1$.
- d) Soit $x \in \mathbb{Q}$ tel que |x| > 1. Montrer que : $\exists ! \alpha_x > 0$ t.q. $|x|' = |x|^{\alpha_x}$. On cherche maintenant à montrer : $\forall x, y, \alpha_x = \alpha_y$.
- e) Supposons **par l'absurde**² qu'il existe $y \in \mathbb{Q}$ avec |y| > 1 tel que $\alpha_y < \alpha_x$. Montrer qu'il existe a, b des entiers tels que $(|y|')^b < (|x|')^a$ et $(|y|)^b > (|x|)^a$. En déduire une absurdité.

On va montrer le théorème d'OSTROWSKI:

²Criminel.

Théorème 2.5: OSTROWSKI

Soit $\left|\cdot\right|$ une valeur absolue sur Q. Alors :

$$\begin{array}{ll} |\cdot| \sim |\cdot|_{\mathsf{triv}} \\ \text{ou} & |\cdot| \sim |\cdot|_{\infty} \\ \text{ou} & |\cdot| \sim |\cdot|_{p} \text{ pour un certain } p \in \mathcal{P}. \end{array}$$

note: je n'ai malheureusement pas retrouvé la dernière partie du DM qui devait s'attaquer à ce théorème ^.^'.