Computer Aided Archaeology

06 - Visualisation II

Martin Hinz

Institut für Archäologische Wissenschaften, Universität Bern

25/10/23

Seriation: idea and basics [1]

Types come into use, have a maximum and than disappear

- First Seriation: Sir William Flinders-Petrie 1899
- became very popular during Processual Archaeology
- First major trials with seriating methods in Germany Goldman 1979 with reciprocal averaging

Seriation: idea and basics [2]

- Represent 'types' per 'object' in a table
- Sort the table so that a sequence (diagonal) appear

Methods:

- Reciprocal Averaging
- Correspondence Analysis

Necessary:

- two 'types' per 'object'
- two 'objects' per 'type'

	LT A Fibel	Arm-/Fussring einfach, vollguss Lochverschluss/ Steckverschluss		Fussringe	Certosafibel	LT B1 Fibel	Armreif mit Korallen- auflage	Arm-/ Fussring plastisch gerippt	LT B2 Fibel	Arm-/ Fussring genoppt/plastisc	Fingerring mehrfach gewickelt/ plastisch	LT C1 Fibel	Gürtelkette
	△ △ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		(100)			2			المرك	01	01	2	
Grab Nr.		••••											
	•		••••										
	• • • •	••	•••										
	•••		***				_						
	•=		•••		-								
- 44	•	•••	•										
		***	••••	••	•	•=							
46				••••		•••	-						
48				****	:	•••							
48	5			•••	•	••••							
45	,			•••		••••							
68	3					•••••	•						
61			••			•••••		••	••••				
81	ı					••••		••••	•••	•			
84	1					••••		••••	••	•			
135	5						•	••••	•==	•			
134	1							****	•••	•			
157	7							••••	•••••		•		
161									••••	•	•	*****	
168			1		1		1		••			•	•
149									••••••				
145	,							-	•			•	-

First step

Get the data out of the database in a useful form

- query
- pivot table

Second step

Remove non informative rows

rows that have not artefact or only one

Remove non informative columns

columns that have not artefact or only one

Repeat until no further step necessary

Commands in LibreOffice Calc (and Excel)

- COUNT (ANZAHL)
- COUNTIF (ZÄHLENWENN)

Reciprocal Averaging: idea and basics

Produce a diagonal in such a way, that all objects and types are ranked relational

- Calculate rank for rows
- Sort rows according to rank
- repeat the same for columns
- repeat both until no further changes

Iterative procedure

Example Dataset

Correspondence analysis: idea and basics [1]

Similar things have similar characteristics...[2]

Visual explorative/descriptive method

- Correspondence analysis does not work with significances, therefore it does not 'proof' anything
- Visualization of contingency tables or presence/absence matrices

Idea

- Representation of items (*sites*) and properties (Variables, *species*) in a common space (coordinate system)
- Data that is related to each other is more closely related represented next to each other
- Similarities are calculated using chi-square methods

Prerequisites

A data matrix with at least nominally scaled variables, therefore especially suitable for archaeological questions

Correspondence analysis: idea and basics [1]

Similar things have similar characteristics...

General procedure

- Standardizing the data to a comparable measure
- "Projection" of the data into a multidimensional variable space
- determining the vectors which stepwise contain most of the information (variability) of the data and are oriented perpendicular to each other
- "Projection" of the data onto these vectors
- Representation of the position of the data on these vectors in a diagram

multidimentional data space

Variable 2 Variable 1 Source: http://www.aapspharmscitech.org

projection of points onto a plane

Correspondence Analysis: History

General information

- · Development in the field of biology and psychology
- Algebrarian Foundations 1940s (Hartley/Guttman)
- First explicit use by Benzéncri in the 1960s linguistic studies
- Further development in various research groups → resulted in different versions and names of the procedure
- 1984 Greenacre basic monograph on the method

In archaeology

- Wide application of the procedure for chronological sorting of the Rhineland Linear Pottery
- Continuation by institutes Cologne and Kiel (Zimmermann, Müller)

Correspondence Analysis: Procedure

Preparation: contingency table, if necessary

Presence Absence Matrix

Notes the presence or absence of a characteristic for a unit, which is the most widely used base in archaeology

	Pot	Cup	Fibula	Sum
Burial1	1	1	0	2
Burial2	0	1	1	2
Burial3	1	1	1	3
Burial4	1	0	1	2
Sum	3	3	3	9

Prerequisite: total number of filled cells per column at least 2, total per row at least 2

Preparation: contingency table, if necessary

contingency table

Notes the number of a characteristics for a unit or a group of units

	Pot	Cup	Fibula	Sum
Settlements	20	23	40	83
Hoards	23	10	6	39
Burials	10	56	4	70
Sum	53	89	50	192

Also possible: Burt-Matrix, if you want, you can ask me for details after the lecture...

Preparation: Standardising to relative frequency

Calculation: Divide each cell by the total sum

	pot	cup	fibula	Sum
burial1	1	1	0	2
burial2	0	1	1	2
burial3	1	1	1	3
burial4	1	0	1	2
Sum	3	3	3	9

	pot	cup	fibula	Sum
burial1	0.11	0.11	0.00	0.22
burial2	0.00	0.11	0.11	0.22
burial3	0.11	0.11	0.11	0.33
burial4	0.11	0.00	0.11	0.22
Sum	0.33	0.33	0.33	1.00

Margins of the table stored for calculation of expectation values and scaling the result later on

Preparation: Calculation of expected values

	pot	cup	fibula	Sum
burial1	0.11	0.11	0.00	0.22
burial2	0.00	0.11	0.11	0.22
burial3	0.11	0.11	0.11	0.33
burial4	0.11	0.00	0.11	0.22
Sum	0.33	0.33	0.33	1.00

	pot	cup	fibula	Sum
	0.07	0.07	0.07	0.22
	0.07	0.07	0.07	0.22
	0.11	0.11	0.11	0.33
	0.07	0.07	0.07	0.22
Sum	0.33	0.33	0.33	1.00

Preparation: Calculation of standardised values

$$\chi^2 = \sum_{i=1}^n rac{(O_i - E_i)^2}{E_i}$$

$$z_{ij}=rac{(O_i-E_i)}{\sqrt{E_i}}$$

	pot	cup	fibula	Sum
burial1	0.14	0.14	-0.27	0
burial2	-0.27	0.14	0.14	0
burial3	0.00	0.00	0.00	0
burial4	0.14	-0.27	0.14	0
Sum	0.00	0.00	0.00	0

Inertia

Measurement for the spread of the data in relation to the number of cases

$$I=rac{\chi^2}{n}=\sum_i\sum_j z_{ij}^2$$

Inertia here: 0.3333333

multidimentional data space

projection of points onto a plane

Extraction of dimensions

SVD

Singular value decomposition, method for dimensional reduction with minimal loss of information

$$Z = U * S * V'$$

Z: Matrix with the standardized data

U: Matrix for the row elements

V : Matrix for the column elements

S: Diagonal matrix with the singular values

Gene Golub's license plate, photographed by Professor P. M. Kroonenberg of Leiden University.

Extraction of dimensions

SVD in R

```
burial.z<-read.csv2("burial_z.csv",row.names=1)</pre>
burial.svd<-svd(burial.z)</pre>
burial.svd
## $d
## [1] 4.082483e-01 4.082483e-01 9.634284e-16
##
## $u
##
                 [,1]
                            [,2]
                                        [,3]
## [1,] 7.071068e-01 -0.4082483 -0.5773503
## [2,] 9.008927e-17 0.8164966 -0.5773503
## [3,] 0.000000e+00 0.0000000 0.0000000
## [4,] -7.071068e-01 -0.4082483 -0.5773503
##
## $v
              [,1]
                         [,2]
                                    [,3]
## [1,] 0.0000000 -0.8164966 0.5773503
## [2,] 0.7071068 0.4082483 0.5773503
## [3,] -0.7071068  0.4082483  0.5773503
```

SVD and Inertia

The singular values (eigenvalues) represent the inertia.

The eigenvalues

burial.svd\$d

[1] 4.082483e-01 4.082483e-01 9.634284e-16

The squared eigenvalues are the inertia of the individual dimensions

burial.svd\$d^2

[1] 1.666667e-01 1.666667e-01 9.281943e-31

The sum of the squared eigenvalues is equal to the total of the intertia.

sum(burial.svd\$d^2)

[1] 0.3333333

If the inertia of the individual dimensions is divided by the total inertia, the (eigenvalue) proportion of the dimensions is obtained.

burial.svd\$d^2/sum(burial.svd\$d^2)

[1] 5.000000e-01 5.000000e-01 2.784583e-30

Normalization of coordinates

Scaling of the coordinates in such a way that

The dimensions are weighted according to their proportion of the total inertia.

The rows/columns are weighted according to their proportion of the mass.

Correspondence analysis: Real World case

Münsingen Burial Site

Correspondence analysis: Real World case

Münsingen Burial Site

http://tosca.archaeological.science

Correspondence Analysis: Interpretation

Guttman effect (horseshoe, parabola)

In archaeology, this is often regarded as evidence of a temporal orientation.

The Guttman effect occurs when a process affects the data on multiple levels.

The largest influencing factor, given a longer runtime, is mostly the time, but:

This does not always have to be the case.

Check against other information necessary.

Any questions?

You might find the course material (including the presentations) at

https://berncodalab.github.io/caa

You can contact me at

martin.hinz@iaw.unibe.ch