A Lightweight Log-based Deferred Update for Linux Kernel Scalability

Joohyun Kyong

School of Computer Science Kookmin University Thesis advisor: Sung-Soo Lim

November 5, 2016

• [

▶ 2005

power

Performance Scalability

Performance Scalability

Update-heavy Data structure

Update-heavy Data structure

Approach: Log-based Concurrent Update

Approach: Log-based Concurrent Update

Approach: Log-based Concurrent Update

Advantages of eliminating time-stamp counters

Contributions

- Background of research
- Our new method and Evaluation
- Future plans and Summary

Outline

- Design
 - Approach
 - Example
- Applying the Linux kernel
- Implementation
- Evaluation

Design

Log Example

Update-side removing

Garbage log

Reusing logs

Approach

Applying the Linux kernel

anonymous reverse mapping

anonymous reverse mapping

file mapping

file mapping

Evaluation

Non-blocking algorithm - Harris linked list

Test-bed

Test-bed

AIM7

AIM7 - CPU utilization

EXIM

EXIM - CPU utilization

Lmbench

Lmbench - CPU utilization

Update ratio

Related work

Papers

Conclusion

- Background of research
- ▶ LDU method and Evaluation
- Future plans and Summary

Conclusion

- Background of research
- ► LDU method and Evaluation
- Future plans and Summary
- https://github.com/KMU-embedded/scalablelinux