CHAPITRE 8

Intégrale

Première partie

Cours

Il ne pas confondre les deux intégrales $\int_{7}^{x} f(t) dt = F(x)$ (la fonction $F: x \mapsto F(x)$ une primitive 1 de la fonction f, si f est continue) et $\int_{7}^{+\infty} g(x,t) dt = G(x)$ si l'intégrale converge (c'est une intégrale à paramètre, où le paramètre est x et la variable est t).

1 Continuité

Théorème 1:

Soient X et T deux intervalles de \mathbb{R} , et soit $f: X \times T \to \mathbb{R}$. Si

- 1. pour chaque $t \in T$, la fonction $x \mapsto f(x,t)$ est <u>continue</u> sur X;
- 2. pour chaque $x \in X$, la fonction $x \mapsto f(x,t)$ est continue par morceaux sur T;
- 3. il existe une fonction φ continue par morceaux et intégrable 2 sur T telle que

 $orall (x,t) \in X imes T, \ |f(x,t)| \leqslant arphi(t),$

alors la fonction $\int f(x,t) dt$ est continue sur X. Démonstration (Théorème de la convergence dominée & caractérisation séquentielle de la limite):

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans X quelconque tendant, quand $n\to\infty$, vers un réel $a\in X$. Soit alors la fonction

$$egin{aligned} h_n: T & \longrightarrow \mathbb{R} \ t & \longmapsto f(u_n,t). \end{aligned}$$

Soit $t \in T$, on a $h_n(t) = f(u_n, t) \longrightarrow f(a, t)$ quand $n \to \infty$, car la fonction $x \mapsto f(x, t)$ est continue sur X (1.). Donc, la suite de fonctions $(h_n)_{n \in \mathbb{N}}$ converge simplement vers une fonction h définie comme

$$egin{aligned} h: T & \longrightarrow \mathbb{R} \ t & \longmapsto f(a,t). \end{aligned}$$

On a $|h_n(t)| = |f(u_n, t)| \leq \varphi(t)$, et φ est intégrable (3.). Ainsi, d'après le théorème de la convergence dominée,

$$\lim_{n o\infty} \overbrace{\int_T h_n(t) \; \mathrm{d}t}^{g(u_n)} = \int_T \underbrace{\lim_{n o\infty} h_n(t)}_{f(a,t)} \; \mathrm{d}x = \int_T f(a,t) \; \mathrm{d}t = g(a).$$

D'où, $g(u_n) \longrightarrow a$, quand $n \to \infty$. Ceci est vrai quelle que soit la suite $(u_n)_{n \in \mathbb{N}}$ tendant vers a, donc par caractérisation de la limite, $\lim_{x \to a} g(x) = g(a)$. Ainsi, g est continue en a. Ceci étant vrai pour tout $a \in X$, on en déduit que g est continue sur X.

EXERCICE 2 (La fonction Gamma): 1. Pour quelles valeurs du paramètre réel x, les intégrales impropres

$$\Gamma_1(x) = \int_0^1 t^{x-1} imes \mathrm{e}^{-t} \; \mathrm{d}t \qquad \mathrm{e}t \qquad \Gamma_2(x) = \int_1^{+\infty} t^{x-1} imes \mathrm{e}^{-t} \; \mathrm{d}t$$

convergent-elles?

- 1. F est dérivable et sa dérivée est F'=f, autrement dit : $\forall x, F'(x)=f(x)$.
- 2. *i.e.* l'intégrale $\int_{\mathcal{T}} \varphi(t) dt$ converge.

2. Montrer que l'intégrale impropre

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} imes \mathsf{e}^{-t} \; \mathsf{d}t$$

converge si, et seulement si x > 0.

- 3. Monter que, pour tout x > 0, $\Gamma(x+1) = x \cdot \Gamma(x)$.
- 4. En déduire que $\Gamma(n+1) = n!$ pour tout $n \in \mathbb{N}$.
- 5. En étudiant les fonctions Γ_1 et Γ_2 , montrer que la fonction Γ est continue sur $]0, +\infty[$.
- 6. En déduire que, $\Gamma(x) \sim_{x \to 0^+} \frac{1}{x}$.
- 1. L'intégrale $\Gamma_1(x)$ est impropre en 0. On a

$$t^{x-1} imes \underbrace{\operatorname{e}^{-t}}_{t o 0} \overset{\sim}{t^{x-1}} = \frac{1}{t^{1-x}}$$

qui ne change pas de signe. Or, $\int_0^1 \frac{1}{t^{1-x}} dt$ converge si et seulement si 1-x < 1 d'après le critère de RIEMANN, *i.e.* x > 0.

L'intégrale $\Gamma_2(x)$ est impropre en $+\infty$. Or, $t^{x-1} \times \mathrm{e}^{-t} = (t^{x-1}\mathrm{e}^{-t/2}) \times \mathrm{e}^{-t/2} = \omega_{t \to +\infty}(\mathrm{e}^{-t/2})$, et $\mathrm{e}^{-t/2}$ ne change pas de signe. Or, l'intégrale $\int_1^{+\infty} \mathrm{e}^{-t/2} \, \mathrm{d}x$. Donc, l'intégrale $\Gamma_2(x)$ converge pour tout $x \in \mathbb{R}$.

- 2. L'intégrale $\Gamma(x)$ converge si et seulement si les deux intégrales $\Gamma_1(x)$ et $\Gamma_2(x)$ convergent, donc si et seulement si x>0.
- 3. Soit x>0. On a $\Gamma(x+1)=\int_0^{+\infty}t^x\mathrm{e}^{-t}\;\mathrm{d}t$. Ainsi, soient $y\in]0,1]$, et

$$f(y) = \int_{y}^{1} t^{x} \mathrm{e}^{-t} \; \mathrm{d}t = \left[-t^{x} \cdot \mathrm{e}^{-t}
ight]_{y}^{1} + x \int_{y}^{1} t^{x-1} \mathrm{e}^{-t} \; \mathrm{d}x$$

par intégration par parties car $t\mapsto t^x$ est \mathcal{C}^1 et $t\mapsto -\mathrm{e}^{-t}$ est \mathcal{C}^1 . Or, $y^x\cdot \mathrm{e}^{-y}$ tend vers 0 quand $y\to 0$, et $\int_y^1 t^{x-1}\mathrm{e}^{-t} \ \mathrm{d}t$ tend vers $\Gamma_1(x)$, quand $y\to 0$. Donc,

$$\Gamma_1(x+1)=-\mathrm{e}^{-1}+x\Gamma_1(x).$$

De même, $\Gamma_2(x+1)=\mathrm{e}^{-1}+x\Gamma_2(x).$ On en déduit que

$$orall x>0, \quad \Gamma(x+1)=x\Gamma(x).$$

- 4. On a $\Gamma(1)=\int_0^{+\infty}t^{1-1}\mathrm{e}^{-t}\;\mathrm{d}t=\int_0^{+\infty}\mathrm{e}^{-t}\;\mathrm{d}t=1.$ D'où, $\forall n\in\mathbb{N}^*,\quad \Gamma(n+1)=n\Gamma(n).$ Par récurrence, on en déduit que $\Gamma(n+1)=n!$, pour $n\in\mathbb{N}.$
- 5. On veut montrer que $\Gamma_1: x \mapsto \Gamma_1(x)$, et $\Gamma_2: x \mapsto \Gamma_2(x)$ sont continues. Soit a > 0. Soient T =]0, 1], $X = [a, +\infty[$, et

$$f: X imes T \longrightarrow \mathbb{R}$$
 $(x,t) \longmapsto t^{x-1} \cdot e^{-t}$

Ainsi, on a bien $\Gamma_1(x) = \int_T f(x,t) dt$.

- Pour tout $t \in T$, la fonction $x \mapsto f(x,t)$ est continue sur X. En effet, soit $t \in T$, on a $f(x,t) = t^{x-1} \cdot e^{-t} = e^{(x-1)\ln t} \cdot e^{-t}$ qui est continue par continuité de l'exponentielle.
- (--) Pour tout $x \in X$, la fonction $t \mapsto f(x,t)$ est continue par morceaux sur T.
- Pour tout $t \in T$, et pour $x \in X$, $|f(x,t)| \le t^{a-1} \cdot \mathrm{e}^{-t} = \varphi(t)$, et l'intégrale $\int_T \varphi(t) \ \mathrm{d}t$ converge. En effet, pour $x \in X$, et $t \in T$, $|f(x,t)| = t^{x-1} \cdot \mathrm{e}^{-t} \le t^{a-1} \cdot \mathrm{e}^{-t}$, et l'intégrale $\int_T t^{a-1} \cdot \mathrm{e}^{-t} \ \mathrm{d}t$ (car il s'agit de $\Gamma_1(a)$, et a > 0).

Donc, Γ_1 est continue sur $X = [a, +\infty[$. Ceci est vrai pour tout a > 0. On en déduit que Γ_1 est continue sur $]0, +\infty[$.

On procède de même pour montrer que $\Gamma_2: x \mapsto \Gamma_2(x)$ est continue. Soit b>0. Soient $T=[1,+\infty[,\ X=]0,b]$, et

$$egin{aligned} f: X imes T &\longrightarrow \mathbb{R} \ (x,t) &\longmapsto t^{x-1} \cdot \mathrm{e}^{-t} \end{aligned}$$

Ainsi, on a bien $\Gamma_2(x) = \int_T f(x,t) dt$

- Pour tout $t \in T$, la fonction $x \mapsto f(x,t)$ est continue sur X. En effet, soit $t \in T$, on a $f(x,t) = t^{x-1} \cdot e^{-t} = e^{(x-1)\ln t} \cdot e^{-t}$ qui est continue par continuité de l'exponentielle. (De même que pour Γ_1 .)
- (—) Pour tout $x \in X$, la fonction $t \mapsto f(x,t)$ est continue par morceaux sur T.
- Pour tout $t\in T$, et pour $x\in X$, $|f(x,t)|\leqslant t^{b-1}\cdot \mathrm{e}^{-t}=\psi(t)$, et l'intégrale $\int_T \psi(t) \ \mathrm{d}t$ converge (car il s'agit de $\Gamma_2(b)$ avec b>0).

Donc, Γ_2 est continue sur X=]0,b]. Ceci est vrai pour tout b>0. On en déduit que Γ_2 est continue sur $]0,+\infty[$. On en déduit que $\Gamma=\Gamma_1+\Gamma_2$ est continue sur $]0,+\infty[$, comme somme de deux fonctions continue sur $]0,+\infty[$.

6. On veut montrer que $x\Gamma(x)=\frac{\Gamma(x)}{1/x}\longrightarrow 1$ quand $x\to 0^+$. Or, $x\Gamma(x)=\Gamma(x+1)$ d'après la question 3. Et, $x+1\longrightarrow 1$ quand $x\to 0^+$. Or, d'après la question 5., la fonction Γ est continue en 1. Donc, $\Gamma(x+1)\longrightarrow \Gamma(1)$. De plus, $\Gamma(1)=0!=1$ d'après la question 4. On en déduit que

$$x\Gamma(x) \xrightarrow[x o 0^+]{} 1.$$

2 Dérivabilité

Dans le théorème suivant, on montre que, avec les hypothèses demandées,

$$rac{\mathrm{d}}{\mathrm{d}x}\int_T f(x,t) \; \mathrm{d}t = \int_T rac{\partial f}{\partial x}(x,t) \; \mathrm{d}t.$$

Théorème 3:

Soient $X \subset \mathbb{R}$ et $T \subset \mathbb{R}$ deux intervalles, et soit $f: X \times T \to \mathbb{R}$. Si,

- 1. pour $t \in T$, la fonction $x \mapsto f(x,t)$ est de classe C^1 sur X;
- 2. pour $x \in X$, la fonction $t \mapsto f(x,t)$ est continue par morceaux et intégrable ³ sur T, ET la fonction $t \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux;
- 3. il existe une fonction intégrable φ continue par morceaux telle que $\forall (x,t) \in X \times T$, $\left|\frac{\partial f}{\partial x}(x,t)\right| \leqslant \varphi(t)$,

alors, $g: x \mapsto \int_{\mathcal{T}} f(x,t) dt$ est de classe \mathcal{C}^1 , et

$$g'(x) = rac{\mathrm{d} g}{\mathrm{d} x}(x) = \int_T rac{\partial}{\partial x} f(x,t) \; \mathrm{d} t.$$

EXERCICE 4 (La fonction Gamma - suite):

- (a) Montrons que la fonction $\Gamma_1: x \mapsto \int_0^1 t^{x-1} e^{-t} dt$ est \mathcal{C}^1 ;
- (b) Montrons que la fonction $\Gamma_2: x \mapsto \int_1^{+\infty} t^{x-1} e^{-t} dt$ est C^1 ;
- (c) Donc, comme $\Gamma = \Gamma_1 + \Gamma_2$, alors Γ est de classe C^1 .
- (a) Soit a > 0. Soient T =]0,1], $X = [a, +\infty[$ et $f(x,t) = t^{x-1}e^{-t}$, pour $x \in X$ et $t \in T$.
 - 1. Pour $t\in T$, la fonction $x\mapsto f(x,t)$ est de classe \mathcal{C}^1 sur X. En effet, soit $t\in T$. Comme $f(x,t)=\mathrm{e}^{(x-1)\ln t}\cdot\mathrm{e}^t$, et exp est \mathcal{C}^∞ , d'où $x\mapsto f(x,t)$ est \mathcal{C}^1 , et

$$\frac{\partial f}{\partial x}(x,t) = \ln t \cdot \mathrm{e}^{(x-1)\ln t} \cdot \mathrm{e}^{-t} = \ln t \cdot t^{x-1} \cdot \mathrm{e}^{-t}.$$

2. Pour $x\in X$, la fonction $t\mapsto f(x,t)$ est cpm et $\int_T \left|f(x,t)\right|\,\mathrm{d}t$ converge (c.f. exercice 2). Et, la fonction $t\mapsto \frac{\partial}{\partial x}f(x,t)$ est cpm.

^{3.} i.e. l'intégrale de cette fonction converge absolument

3. $\forall t \in T, \ \forall x \in X, \ \left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant -\ln t \cdot t^{x-1} \cdot \mathrm{e}^{-t} \leqslant -\ln t \cdot t^{a-1} \cdot \mathrm{e}^{-t} = \varphi(t)$. Et, $\int_T \varphi(t) \ \mathrm{d}t$ converge. En effet,

$$(-\ln t)\cdot t^{a-1} = \underbrace{(-\ln t)\cdot t^{\varepsilon}}_{\longrightarrow 0} \cdot t^{a-\varepsilon-1} \cdot \mathrm{e}^{-t} = \underset{t \to 0^{+}}{\circ} \left(t^{a-\varepsilon-1}\right).$$

Or, l'intégrale $\int_T t^{(a-\varepsilon)-1} \mathrm{e}^{-t} \, \mathrm{d}t$ converge (car $a-\varepsilon>0$), et elle vaut $\Gamma_1(a-\varepsilon)$. On en déduit que $\int_T \varphi(t) \, \mathrm{d}t$ converge.

Alors, Γ_1 est \mathcal{C}^1 sur X. Ceci étant vrai pour tout a>0, on en On en déduit que Γ_1 est de classe \mathcal{C}^1 sur $]0,+\infty[$ et que

$$orall x>0, \; \Gamma_1'(x)=\int_T (\ln t) t^{x-1} \mathrm{e}^{-t} \; \mathrm{d}t.$$

- (b) Soit b>0. Soient $T=[1,+\infty[,\ X=]0,b]$ et $f(x,t)=t^{x-1}\mathrm{e}^{-t}$, pour $x\in X$ et $t\in T$.
 - 1. Pour $t\in T$, la fonction $x\mapsto f(x,t)$ est de classe \mathcal{C}^1 sur X. En effet, soit $t\in T$. Comme $f(x,t)=\mathrm{e}^{(x-1)\ln t}\cdot\mathrm{e}^t$, et exp est \mathcal{C}^∞ , d'où $x\mapsto f(x,t)$ est \mathcal{C}^1 , et

$$\frac{\partial f}{\partial x}(x,t) = \ln t \cdot \mathrm{e}^{(x-1)\ln t} \cdot \mathrm{e}^{-t} = \ln t \cdot t^{x-1} \cdot \mathrm{e}^{-t}.$$

- 2. Pour $x\in X$, la fonction $t\mapsto f(x,t)$ est cpm et $\int_T \left|f(x,t)\right|\,\mathrm{d}t$ converge (c.f. exercice 2). Et, la fonction $t\mapsto \frac{\partial}{\partial x}f(x,t)$ est cpm.
- 3. $\forall t \in T, \ \forall x \in X, \ \left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant -\ln t \cdot t^{x-1} \cdot \mathrm{e}^{-t} \leqslant -\ln t \cdot t^{b-1} \cdot \mathrm{e}^{-t} = \varphi(t)$. Et, $\int_T \varphi(t) \ \mathrm{d}t$ converge. En effet,

$$\ln t \cdot t^{b-1} \cdot e^{-t} = (\ln t \cdot \mathrm{e}^{-t/3}) \cdot (t^{b-1} \cdot \mathrm{e}^{-t/3}) \cdot \mathrm{e}^{-t/3}.$$

Or, l'intégrale $\int_T \mathrm{e}^{-t/3} \ \mathrm{d}t$ converge. On en déduit que $\int_T \varphi(t) \ \mathrm{d}t$ converge.

Alors, Γ_2 est \mathcal{C}^1 sur X. Ceci étant vrai pour tout b>0, on en On en déduit que Γ_2 est de classe \mathcal{C}^1 sur $]0,+\infty[$ et que

$$orall x>0,\ \Gamma_2'(x)=\int_{\mathbb{T}}(\ln t)t^{x-1}\mathrm{e}^{-t}\ \mathrm{d}t.$$

COROLLAIRE 5:

On peut appliquer le théorème plusieurs fois :

- 1. pour $t \in T$, la fonction $x \mapsto f(x,t)$ est C^k sur X;
- 2. pour $x \in X$, la fonction $t \mapsto \frac{\partial^i f}{\partial x^i}(x,t)$ est cmp et intégrable sur T pour tout $j \in [0,k-1]$, et la fonction $t \mapsto \frac{\partial^k f}{\partial x^k}(x,t)$ est cmp sur T.
- 3. il existe φ cmp et intégrable telle que $\forall x \in X, \ \forall t \in T, \ \left| \frac{\partial^k f}{\partial x^k} f(x,t) \right| \leqslant \varphi(t),$

alors la fonction $g:x\mapsto \int_{\mathcal{T}}f(x,t)\;\mathrm{d}t$ est de classe \mathcal{C}^k et

$$orall i\leqslant k, \quad g^{(i)}(x)=\int_Trac{\partial^i f}{\partial x^i}(x,t) \,\,\mathrm{d}t.$$

Rappel (théorème de Rolle):

Soit f une fonction continue sur [a,b] et dérivable sur]a,b[. On suppose que f(a)=f(b). Ainsi,

$$\exists c \in]a,b[, f'(c) = 0.$$

Exercice 6 (La fonction Γ – fin): 1.

2. La fonction Γ est continue sur [1,2], et dérivable sur]1,2[. En effet, Γ est C¹ sur [1,2]. Or, Γ(1) = 0! = 1 = 1! = Γ(2). Donc, d'après le théorème de ROLLE, il existe α ∈]1,2[tel que Γ(α) = 0. De plus, Γ" est strictement positive (c.f. raisonnent ci-après) donc Γ est strictement croissante, d'où Γ' est injective. On en déduit que α est unique. En effet, par l'absurde : si l'intégrale de la fonction est nulle et que la fonction est continue et ne change pas de signes, alors la fonction est nulle. ∮

3.

x	0	1	α	+∞
$\Gamma'(x)$		-	0	+
$\Gamma(x)$			$\Gamma(lpha)$	1

On sait que $\forall n \in \mathbb{N}$, $\Gamma(n+1) = n!$. D'où, $\Gamma(n) \longrightarrow +\infty$ quand $n \to +\infty$. De plus, Γ est monotone (car strictement croissante) sur $[2, +\infty[$, donc $\lim_{x \to +\infty} \Gamma(x)$ existe. Par unicité de la limite,

$$\lim_{x \to +\infty} \Gamma(x) = \lim_{n \to \infty} \Gamma(n) = +\infty.$$

4. D'après la formule de STIRLING,

$$n! \mathop{\sim}\limits_{n o \infty} \sqrt{2\pi n} \left(rac{n}{\mathsf{e}}
ight)^n$$
 .

Et, pour x>0, $\Gamma(\lfloor x \rfloor)/x^k\leqslant \Gamma(x)/x^k$. Or, $\Gamma(\lfloor x \rfloor)=(\lfloor x \rfloor-1)!\sim_{x\to+\infty}\sqrt{2\pi n(x)}\left(\frac{n(x)}{\mathrm{e}}\right)^{n(x)}$ où $n(x)=\lfloor x \rfloor-1$. D'où,

$$\frac{\Gamma(\lfloor x \rfloor)}{x^k} \mathop{\sim}_{x \to +\infty} \frac{\sqrt{2\pi n(x)} \left(\frac{n(x)}{\mathrm{e}}\right)^{n(x)}}{x^k} \xrightarrow[x \to +\infty]{} +\infty.$$

II T.D.

DEUXIÈME PARTIE

T.D.

EXERCICE 3

1. On a $F(0) = \int_0^1 rac{{
m e}^0}{1+t^2} \; {
m d}t = \left[\operatorname{Arctan} t
ight]_0^1 = rac{\pi}{4}$, et

$$orall x \in \mathbb{R}, \qquad 0 \leqslant F(x) \leqslant \int_0^1 \mathrm{e}^{-x^2} \; \mathrm{d}t = \mathrm{e}^{-x^2} \xrightarrow[x o +\infty]{} 0,$$

d'où, d'après le théorème des gendarmes, $\lim_{x \to +\infty} F(x) = 0$.

2. On pose $X = \mathbb{R}$, T = [0, 1] et

$$egin{aligned} f: X imes T &\longrightarrow \mathbb{R} \ & (x,t) &\longmapsto rac{\mathsf{e}^{-x^2(1+t^2)}}{1+t^2}. \end{aligned}$$

- Soit $t \in T$. La fonction $x \mapsto f(x,t)$ est de classe \mathcal{C}^1 sur X comme composée de fonctions de classe \mathcal{C}^1 .
- Soit $x \in X$. La fonction $f_x: t \mapsto f(x,t)$ est continue comme composée de fonctions continues. De plus, l'intégrale $\int_T f(x,t) dt$ n'est pas impropre, la fonction f_x est donc intégrable. Également, on calcule

$$orall t, \quad rac{\partial f}{\partial x}(x,t) = -2xrac{\mathrm{e}^{-x^2(1+t^2)}}{1+t^2} = -2x\,f(x,t).$$

La fonction $t\mapsto rac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur T.

— On pose la fonction $\varphi:t\mapsto 2\sqrt{2}\frac{\mathrm{e}^{-2(1+t^2)}}{1+t^2}$, qui est continue par morceaux sur T, et on a

$$egin{aligned} orall t, \; orall x, \; \left| rac{\partial f}{\partial x}(x,t)
ight| = 2 \; |x| \, f(x,t) \leqslant arphi(t). \end{aligned}$$

En effet, on calcule

$$orall x>0, \quad rac{\partial}{\partial x}\left|rac{\partial f}{\partial x}
ight|(x,t)=2f(x,t)-4x^2f(x,t)=-2(x^2-2)\cdot f(x,t),$$

qui s'annule seulement pour $x=\sqrt{2}$ (car on a choisit x>0), et il s'agit d'un maximum. Comme la fonction $x\mapsto \frac{\partial f}{\partial x}(x,t)$ est paire, il s'agit d'un maximum global sur $\mathbb R$. C'est pour cela que $\varphi(t)=\frac{\partial f}{\partial x}(\sqrt{2},t)$. De plus, la fonction φ est intégrable, car l'intégrale $\int_T \varphi(t) \ dt$ n'est pas impropre.

$$F'(x) = rac{ ext{d}}{ ext{d}x} \int_T f(x,t) \, dt = \int_T rac{\partial f}{\partial x}(x,t) \, dt = \int_0^1 (-2x) f(x,t) \, dt = -2x \int_0^1 f(x,t) \, dt = -2x \int_0^1 e^{-x^2 - x^2 t^2} \, dt = -2x e^{-x^2} \int_0^1 e^{-x^2 t^2} \, dt$$

II T.D.

3. La fonction G est une primitive de la fonction $xt\mapsto {\rm e}^{-t^2}$, qui est continue. On en déduit, d'après le théorème fondamentale de l'algèbre, que G est dérivable (sur $\mathbb R$). On a

$$(G^2)'(x) = -2\mathrm{e}^{-x^2}\int_0^x\mathrm{e}^{-t^2}\,\mathrm{d}t$$
 $= -2\mathrm{e}^{-x^2}\int_0^1x\mathrm{e}^{-u^2x^2}\,\mathrm{d}u$ avec le $\mathit{cdv}\ ut = x$ $= F'(x)$

4. On a G(0) = 0, et

$$orall x \in \mathbb{R}^+, \quad orall t \in [1,x], \ 0 \leqslant \mathrm{e}^{-t^2} \leqslant \mathrm{e}^{-t}.$$

Donc, par croissance de l'intégrale,

$$orall x \in \mathbb{R}^+, \ 0 \leqslant \int_1^x \mathsf{e}^{-t^2} \ \mathsf{d}t = G(x) \leqslant \int_1^x \mathsf{e}^{-t} \ \mathsf{d}t.$$

Or, l'intégrale $\int_1^{+\infty} \mathrm{e}^{-t} \, \mathrm{d}t$ converge, et l'intégrale $\int_0^1 \mathrm{e}^{-t^2} \, \mathrm{d}t$ n'est pas impropre, la fonction G est donc majorée. Et, la fonction G est croissante. On en déduit que la fonction G converge en $+\infty$.

5. En primitivant la relation de la question 3, on trouve

$$G^2(x) = -F(x) + K$$
 où $K \in \mathbb{R}$.

Ainsi, en passant à la limite, on a donc

$$G^2(x)+F(x)=K \xrightarrow[x o +\infty]{} K=\lim_{x o +\infty} G^2(x).$$

On en déduit que $\lim_{x\to +\infty}G(x)=\sqrt{K}.$ Calculons K : on a $K=G^2(0)+F(0)=\frac{\pi}{4}.$ On en déduit que

$$G(x) \xrightarrow[x
ightarrow +\infty]{} G(x) = \int_0^{+\infty} \mathrm{e}^{-t^2} \; \mathrm{d}t = rac{\sqrt{\pi}}{2}.$$

EXERCICE 4

- 1. On a, pour $t \in \mathbb{R}^*$, $0 \leqslant |h(t)| = \frac{|\sin t|}{|t|}$. Soit $t \in \mathbb{R}^*$. Si $|t| \leqslant 1$, alors $|\sin t| = \sin |t| \leqslant |t|$ et donc $|h(t)| \leqslant 1$. Si $|t| \geqslant 1$, alors $|\sin t| \leqslant 1$, et donc $|h(t)| \leqslant \frac{1}{|t|} \leqslant 1$. On en déduit que la fonction |h| est majorée par 1 sur \mathbb{R}^* .
- 2. Soit x>0. L'intégrale $I=\int_0^{+\infty}\left|\frac{\sin t}{t}\,\mathrm{e}^{-xt}\right|\,\mathrm{d}t$ est impropre en 0 et en $+\infty$. L'intégrale I converge si, et seulement si les intégrales $A=\int_0^1\left|\frac{\sin t}{t}\,\mathrm{e}^{-xt}\right|\,\mathrm{d}t$ et $B=\int_1^{+\infty}\left|\frac{\sin t}{t}\,\mathrm{e}^{-xt}\right|\,\mathrm{d}t$ convergent.
 - D'après la question précédente, $0 \leqslant \left| \frac{\sin t}{t} \mathrm{e}^{-xk} \right| \leqslant \left| \mathrm{e}^{-xt} \right| = \mathrm{e}^{-xt}$. Et l'intégrale $\int_0^1 \mathrm{e}^{-xt} \, \mathrm{d}t$ converge car x>0. On en déduit que A converge.
 - De même, $0 \le \left| \frac{\sin t}{t} e^{-xk} \right| \le \left| e^{-xt} \right| = e^{-xt}$. Et l'intégrale $\int_1^{+\infty} e^{-xt} dt$ converge car x > 0.On en déduit que B converge.

Ainsi, l'intégrale I converge. On a montré que

$$I = \int_0^{+\infty} \left| \frac{\sin t}{t} e^{-xt} \right| dt \leqslant \int_0^{+\infty} e^{-xt} dt = \frac{1}{x}.$$

On a donc bien $I \leqslant \frac{1}{x}$.

II T.D.

- 3. L'intégrale de Dirichlet converge si et seulement si les intégrales $U=\int_1^{+\infty} \frac{\sin t}{t} \; \mathrm{d}t$ et $V=\int_0^1 \frac{\sin t}{t} \; \mathrm{d}t$ convergent.
 - On a $\forall t \in [0,1], \ 0 \leqslant \frac{\sin t}{t} \leqslant 1$, et l'intégrale $\int_0^1 \mathrm{d}t$ converge. Ainsi, V converge.
 - On fait une intégration par parties :

$$egin{aligned} 0\leqslant U&=\int_1^{+\infty}rac{\sin t}{t}\;\mathrm{d}t=\left[rac{-\cos t}{t^2}
ight]_1^{+\infty}-\int_1^{+\infty}rac{-\cos t}{t^2}\;\mathrm{d}t\ &=-\cos 1-\int_1^{+\infty}rac{-\cos t}{t^2}\;\mathrm{d}t, \end{aligned}$$

et l'intégrale $\int_1^{+\infty} \frac{-\cos t}{t^2} \; \mathrm{d}t$ converge absolument. On en déduit que l'intégrale V converge.

On en déduit que l'intégrale de DIRICHLET converge.

4. On pose $X =]0, +\infty[, T =]0, +\infty[$ et

$$f: X imes T \longrightarrow \mathbb{R}$$
 $(x,t) \longmapsto rac{\sin t}{t} \mathrm{e}^{-xt}.$

- Soit $t \in T$. La fonction $x \mapsto f(x,t)$ est de classe \mathcal{C}^1 car la fonction exponentielle est de classe \mathcal{C}^1 .
- Soit $x \in X$. La fonction $t \mapsto f(x,t)$ est continue par morceaux, et elle est intégrable sur T d'après la question 2 (l'intégrale $\int_T \frac{\sin t}{t} \mathrm{e}^{-kt} \, \mathrm{d}t$ converge absolument). De plus, on calcule

$$t\mapsto rac{\partial f}{\partial x}(x,t)=-{
m sin}\,t\,{
m e}^{-xt},$$

qui est continue sur T