Package 'ecotoxicology'

October 13, 2022

Type Package
Title Methods for Ecotoxicology
Version 1.0.1
Encoding UTF-8
Description Implementation of the EPA's Ecological Exposure Research Division (EERD) tools (discontinued in 1999) for Probit and Trimmed Spearman-Karber Analysis. Probit and Spearman-Karber methods from Finney's book ``Probit analysis a statistical treatment of the sigmoid response curve" with options for most accurate results or identical results to the book. Probit and all the tables from Finney's book (codegenerated, not copied) with the generating functions included. Control correction: Abbott, Schneider-Orelli, Henderson-Tilton, Sun-Shepard. Toxicity scales: Horsfall-Barratt, Archer, Gauhl-Stover, Fullerton-Olsen, etc.
License GPL (>= 3)
Depends R (>= 2.10)
Author Jose Gama [aut, cre, trl]
Maintainer Jose Gama <rxprtgama@gmail.com></rxprtgama@gmail.com>
Repository CRAN
Repository/R-Forge/Project ecotoxicology
Repository/R-Forge/Revision 4
Repository/R-Forge/DateTimeStamp 2015-10-14 09:20:55
Date/Publication 2015-10-14 12:25:39
NeedsCompilation no
R topics documented:
AdjustAbbott AdjustHendersonTilton AdjustSchneiderOrelli AdjustSunShepard AphisRumicisDerrisMalaccensis

ArcsinToPercentage	
CalculateLC50	
CalculateLCn	9
Dunnett.t.Statistic	10
erfinv	- 11
GenTableIFinney1964	11
GenTableIIFinney1964	12
GenTableIIIFinney1964	
GenTableIVFinney1964	
GenTableIXFinney1964	
GenTableVFinney1964	
GenTableVIFinney1964	
GenTableVIIFinney1964	
GenTableVIIIFinney1964	
IsMonotonicallyDecreasing	19
IsMonotonicallyIncreasing	
MakeMonotonicallyDecreasing	21
MakeMonotonicallyIncreasing	
PercentageToArcsin	22
Percentage To Probit	23
	23
ProbitApproxStandardErrorOfDosage	23
ProbitChi	
ProbitEPA	25
ProbitFiducialLimits	25
ProbitFinney	
ProbitRegression	
ProbitStandardErrorOfDosage	28
ProbitStandardErrorRate	
ProbitToPercentage	
ProbitVALUEg	
ProbitVarianceDosage	
ProbitVarianceRate	
Probitw	
ProbitWeightingCoef	
ProbitWorkingP	
ProbitZ	
ProbitZ4dec	35
ScaleArcher	36
ScaleGauhlStover	37
ScaleHorsfallBarratt	. 38
SheepsheadMinnow40SK	38
SpearmanKarber	39
Table1Finney1964	40
Table2Finney1964	41
Table3Finney1964	41
Table4Finney1964	42
Table5Finney1964	43
Table8Finnev1964	43

AdjustAbbott 3

Index		48
	WAAPPpestCount	
	TSK	
	Table9Finney1964	
	m 44 0ml 40 64	

AdjustAbbott

Calculate corrected efficacy % with Abbott's formula

Description

Returns the corrected efficacy % with Abbott's formula

Usage

```
AdjustAbbott(smoothedObservedProportion, ps0 = smoothedObservedProportion[1], p1 = 1)
```

Arguments

smoothedObservedProportion

numeric vector, treated population

ps0 numeric vector, control

p1 numeric vector, percentage 0 to 1 or 0 to 100 (p1=1 or P1=100)

Value

the corrected efficacy %

Author(s)

Jose Gama

Source

```
ehabsoft, last accessed 2015 http://www.ehabsoft.com/ldpline/onlinecontrol.htm
```

References

Examples

```
#same result as example on Short-term Methods for Estimating the Chronic Toxicity of
#Effluents and Receiving Waters to Freshwater Organisms.TABLE J1. page 312
data(SheepsheadMinnow40SK)
IsMonotonicallyIncreasing(SheepsheadMinnow40SK[,2]/40)
mydata <- cbind(SheepsheadMinnow40SK,
    MakeMonotonicallyIncreasing(cbind(rep(40,6),SheepsheadMinnow40SK[,2])))
AdjustAbbott(mydata[,3])</pre>
```

 $\label{lem:corrected} \textit{AdjustHenderson-Tilton's formula} \\ \textit{Calculate corrected efficacy \% with Henderson-Tilton's formula} \\$

Description

Returns the corrected efficacy % with Henderson-Tilton's formula

Usage

```
AdjustHendersonTilton(smoothedObservedProportion,
   ps0 = smoothedObservedProportion[1], p1 = 1)
```

Arguments

smoothedObservedProportion

numeric vector, treated population

ps0 numeric vector, control

p1 numeric vector, percentage 0 to 1 or 0 to 100 (p1=1 or P1=100)

Value

the corrected efficacy %

Author(s)

Jose Gama

Source

ehabsoft, last accessed 2015 http://www.ehabsoft.com/ldpline/onlinecontrol.htm

References

AdjustSchneiderOrelli 5

AdjustSchneiderOrelli Calculate corrected efficacy % with Schneider-Orelli's formula

Description

Returns the corrected efficacy % with Schneider-Orelli's formula

Usage

```
AdjustSchneiderOrelli(smoothedObservedProportion,
   ps0 = smoothedObservedProportion[1], p1 = 1)
```

Arguments

```
smoothedObservedProportion
```

numeric vector, treated population

ps0 numeric vector, control

p1 numeric vector, percentage 0 to 1 or 0 to 100 (p1=1 or P1=100)

Value

the corrected efficacy %

Author(s)

Jose Gama

Source

ehabsoft, last accessed 2015 http://www.ehabsoft.com/ldpline/onlinecontrol.htm

References

6 AdjustSunShepard

AdjustSunShepard

Calculate corrected efficacy % with Sun-Shepard's formula

Description

Returns the corrected efficacy % with Sun-Shepard's formula

Usage

```
AdjustSunShepard(smoothedObservedProportion,
  ps0 = smoothedObservedProportion[1], p1 = 1)
```

Arguments

 ${\tt smoothedObservedProportion}$

numeric vector, treated population

ps0 numeric vector, control

p1 numeric vector, percentage 0 to 1 or 0 to 100 (p1=1 or P1=100)

Value

the corrected efficacy %

Author(s)

Jose Gama

Source

ehabsoft, last accessed 2015 http://www.ehabsoft.com/ldpline/onlinecontrol.htm

References

AphisRumicisDerrisMalaccensis

data on the toxicity to Aphis rumicis of an ether extract of Derris malaccensis

Description

data on the toxicity to Aphis rumicis of an ether extract of Derris malaccensis

Usage

AphisRumicisDerrisMalaccensis

Details

- concentration. concentration
- n. number of insects
- · r. number of observed affected

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. pp 238. Cambridge University Press

Martin, J. T., 1940 The problem of the evaluation of rotenone-containing plants. V. The relative toxicities of different species of derris. Ann. Appl. Biol. 27, 274-94.

ArcsinToPercentage

Convert Arcsin values to percentages

Description

Converts Arcsin values to percentages

Usage

ArcsinToPercentage(myarcsin)

Arguments

myarcsin

numeric vector

8 CalculateLC50

Value

percentages

Author(s)

Jose Gama

References

Statistical tests for significance, accessed October 2015 http://archive.bio.ed.ac.uk/jdeacon/statistics/tress4.html

Examples

```
a<-c(.1,.5,1:10,50,96,97,98,99.5,99.99,99.999,99.999)
b<-PercentageToProbit(a)
d<-ProbitToPercentage(b)
e<-PercentageToArcsin(d)
f<-ArcsinToPercentage(e)</pre>
```

CalculateLC50

Calculate LC50 from a matrix with 3 columns: concentration, number of exposed subjects and number of deaths

Description

Returns the LC50 from a matrix with 3 columns: concentration, number of exposed subjects and number of deaths

Usage

```
CalculateLC50(matrixConcExpoResp)
```

Arguments

```
matrixConcExpoResp
numeric vector
```

Value

the LC50

Author(s)

Jose Gama

CalculateLCn 9

References

Hamilton, m.a., R.c. Russo, and r.v. Thurston, 1977. Trimmed spearman-karber method for estimating median Lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 11(7): 714-719; Correction 12(4):417 (1978).

Examples

```
#Data from the example on page 5:
#Hamilton, m.a., R.c. Russo, and r.v. Thurston, 1977.
#Trimmed spearman-karber method for estimating median
#Lethal concentrations in toxicity bioassays.
#Environ. Sci. Technol. 11(7): 714-719;
#Correction 12(4):417 (1978).
concentration<-c(.5,1,2,4,8)
exposed<-c(10,10,10,10,10)
mortality<-c(0,2,4,9,10)
CalculateLC50(cbind(concentration, exposed, mortality))</pre>
```

CalculateLCn

Calculate LC for N between 0 (LC0) and 100 (LC100)

Description

Returns the LC for n between 0 and 100

Usage

```
CalculateLCn(x, n, r, N = 50)
```

Arguments

Х	numeric, log concentration
n	numeric, number of insects
r	numeric, number of observed affected
N	numeric, Lethal Concentration "N"

Value

the LC for n between 0 and 100

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

10 Dunnett.t.Statistic

Dunnett.t.Statistic Critical Values of Dunnett's t Statistic

Description

Critical Values of Dunnett's t Statistic, Two-Tailed Comparisons

Usage

Dunnett.t.Statistic

Details

Critical Values of Dunnett's t Statistic - data columns

- df. Degress of freedom.
- alpha. significance level.
- 2. k=2, Number of Treatment Means, Including Control.
- 3. k=3, Number of Treatment Means, Including Control.
- 4. k=4, Number of Treatment Means, Including Control.
- 5. k=5, Number of Treatment Means, Including Control.
- 6. k=6, Number of Treatment Means, Including Control.
- 7. k=7, Number of Treatment Means, Including Control.
- 8. k=8, Number of Treatment Means, Including Control.
- 9. k=9, Number of Treatment Means, Including Control.
- 10. k=10, Number of Treatment Means, Including Control.

Author(s)

Jose Gama

References

C. W. Dunnett, 1964. New tables for multiple comparisons with a control. Biometrics 20. 482–491.

erfinv 11

erfinv

Inverse error function

Description

Returns the inverse error function

Usage

erfinv(x)

Arguments

Х

numeric vector

Value

the inverse error function

Author(s)

Jose Gama

References

Abramowitz and Stegun 29.2.29 $\label{library/stats/html/Normal.html} $$\operatorname{Abramowitz}$ and Stegun 29.2.29 $$\operatorname{http://stat.ethz.ch/R-manual/R-devel/library/stats/html/Normal.html} $$$

Examples

```
erfinv(1:10)
```

GenTableIFinney1964

Generate table I from Finney1964 "Transformation of percentages to probits"

Description

Generates table I from Finney1964 "Transformation of percentages to probits"

Usage

```
GenTableIFinney1964()
```

Value

table I from Finney1964 "Transformation of percentages to probits"

- Percentage. Percentage.
- Col0.0. Column for 0.0
- Col0.1. Column for 0.1
- Col0.2. Column for 0.2
- Col0.3. Column for 0.3
- Col0.4. Column for 0.4
- Col0.5. Column for 0.5
- Col0.6. Column for 0.6
- Col0.7. Column for 0.7
- Col0.8. Column for 0.8
- Col0.9. Column for 0.9

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

Examples

GenTableIFinney1964()

GenTableIIFinney1964 Generate table II from Finney1964 "The weighting coefficient and Q/Z"

Description

Generates table II from Finney1964 "The weighting coefficient and $\ensuremath{Q/Z''}$

Usage

GenTableIIFinney1964()

GenTableIIIFinney1964

13

Value

table II from Finney1964 "The weighting coefficient and Q/Z"

- Y. expected probit
- Q/Z.
- C=0.0
- C=1. 1 ...
- C=89. 89
- C=90. 90

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

Examples

```
GenTableIIFinney1964()
```

GenTableIIIFinney1964 Generate table III from Finney1964 "Maximum and minimum working probits and range"

Description

Generates table III from Finney1964 "Maximum and minimum working probits and range"

Usage

```
GenTableIIIFinney1964()
```

Value

table III from Finney1964 "Maximum and minimum working probits and range"

- Ymin. Minimum working probit expected
- Y0. Minimum working probit Y0 = Y-P/Z
- Yrange. Range 1/Z
- Y100. Maximum working probit Y100 = Y+Q/Z
- Ymax. Maximum working probit expected

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

Examples

GenTableIIIFinney1964()

GenTableIVFinney1964 Generate table IV from Finney1964 "Working probits"

Description

Generates table IV from Finney1964 "Working probits"

Usage

GenTableIVFinney1964()

Value

table IV from Finney1964 "Working probits"

- Kill
- Col2 Expected probit 2.0
- Col2.1 Expected probit 2.1 ...
- Col7.8 Expected probit 7.8
- Col7.9 Expected probit 7.9

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

Examples

GenTableIVFinney1964()

GenTableIXFinney1964 Generate table IX from Finney1964 "Minimum Working Probit, Range, and Weighting Coefficient for Inverse Sampling"

Description

Generates table IX from Finney1964 "Minimum Working Probit, Range, and Weighting Coefficient for Inverse Sampling"

Usage

GenTableIXFinney1964()

Value

table IX from Finney1964 "Minimum Working Probit, Range, and Weighting Coefficient for Inverse Sampling"

- Y. Expected probit
- MinWorkProbit. Minimum working probit
- Range. Range 1/Z
- WeightingCoef. Weighting Coefficient

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

Examples

GenTableIXFinney1964()

GenTableVFinney1964 Generate table V from Finney1964 "The Probability, P, the Ordinate, Z, and Z^2 "

Description

Generates table V from Finney1964 "The Probability, P, the Ordinate, Z, and Z^2"

Usage

```
GenTableVFinney1964()
```

Value

table V from Finney1964 "The Probability, P, the Ordinate, Z, and Z^2"

- Y. Expected probit
- P. Probability P of expected probit
- Z. Ordinate to the normal distribution corresponding to the probability P
- Z^2. Z^2

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

Examples

```
GenTableVFinney1964()
```

GenTableVIFinney1964 Generate table VI from Finney1964 "Distribution of chi^2"

Description

Generates table VI from Finney1964 "Distribution of chi^2"

Usage

```
GenTableVIFinney1964()
```

Value

table VI from Finney1964 "Distribution of chi^2"

- Deg.freedom. Degrees of freedom
- 0.9. Probability 0.9
- 0.7. Probability 0.7
- 0.5. Probability 0.5
- 0.3. Probability 0.3
- 0.1. Probability 0.1
- 0.05. Probability 0.05
- 0.02. Probability 0.02
- 0.01. Probability 0.01
- 0.001. Probability 0.001

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

Examples

GenTableVIFinney1964()

GenTableVIIFinney1964 Generate table VII from Finney1964 "Distribution of t"

Description

Generates table VII from Finney1964 "Distribution of t"

Usage

GenTableVIIFinney1964()

Value

table VII from Finney1964 "Distribution of t"

- Deg.freedom. Degrees of freedom
- 0.9. Probability 0.9
- 0.7. Probability 0.7
- 0.5. Probability 0.5
- 0.3. Probability 0.3
- 0.1. Probability 0.1
- 0.05. Probability 0.05
- 0.02. Probability 0.02
- 0.01. Probability 0.01
- 0.001. Probability 0.001

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

Examples

GenTableVIIFinney1964()

GenTableVIIIFinney1964

Generate table VIII from Finney1964 "The Weighting Coefficient in Wadley's Problem"

Description

Generates table VIII from Finney1964 "The Weighting Coefficient in Wadley's Problem"

Usage

GenTableVIIIFinney1964()

Value

table VIII from Finney1964 "The Weighting Coefficient in Wadley's Problem"

- Y. Expected probit
- w. Weighting Coefficient

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

Examples

```
GenTableVIIIFinney1964()
```

IsMonotonicallyDecreasing

Determine if a series is monotonically decreasing

Description

Returns TRUE if all proportions are in a monotonically decreasing sequence

Usage

```
IsMonotonicallyDecreasing(p)
```

Arguments

р

numeric vector

Value

True is the series is monotonically decreasing

Author(s)

Jose Gama

References

Hamilton, m.a., R.c. Russo, and r.v. Thurston, 1977. Trimmed spearman-karber method for estimating median Lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 11(7): 714-719; Correction 12(4):417 (1978).

Examples

```
IsMonotonicallyDecreasing(1:10)
IsMonotonicallyDecreasing(6:2)
IsMonotonicallyDecreasing(c(1,3,2))
```

IsMonotonicallyIncreasing

Determine if a series is monotonically increasing

Description

Returns TRUE if all proportions are in a monotonically increasing sequence

Usage

IsMonotonicallyIncreasing(p)

Arguments

p numeric vector

Value

True is the series is monotonically increasing

Author(s)

Jose Gama

References

Hamilton, m.a., R.c. Russo, and r.v. Thurston, 1977. Trimmed spearman-karber method for estimating median Lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 11(7): 714-719; Correction 12(4):417 (1978).

Examples

```
#Data from the example on page 8:
#Hamilton, m.a., R.c. Russo, and r.v. Thurston, 1977.
#Trimmed spearman-karber method for estimating median
#Lethal concentrations in toxicity bioassays.
#Environ. Sci. Technol. 11(7): 714-719;
#Correction 12(4):417 (1978).
concentration<-c(1.1,2.3,4.5,8.8,17.1)
exposed<-c(10,10,9,10,10)
mortality<-c(1,5,4,2,7)
p<-mortality/exposed
x<-log(concentration)
IsMonotonicallyIncreasing(p)</pre>
```

MakeMonotonicallyDecreasing

Make monotonically decreasing sequence

Description

Returns a monotonically decreasing sequence

Usage

MakeMonotonicallyDecreasing(matrixExpoResp)

Arguments

matrixExpoResp numeric vector or matrix

Value

monotonically decreasing sequence

Author(s)

Jose Gama

References

Hamilton, m.a., R.c. Russo, and r.v. Thurston, 1977. Trimmed spearman-karber method for estimating median Lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 11(7): 714-719; Correction 12(4):417 (1978).

MakeMonotonicallyIncreasing

Smoothed Mortality Proportion (monotonically increasing sequence)

Description

Returns the Smoothed Mortality Proportion (monotonically increasing sequence)

Usage

MakeMonotonicallyIncreasing(matrixExpoResp)

Arguments

matrixExpoResp numeric vector or matrix

22 Percentage To Arcsin

Value

The Smoothed Mortality Proportion (monotonically increasing sequence)

Author(s)

Jose Gama

References

Hamilton, m.a., R.c. Russo, and r.v. Thurston, 1977. Trimmed spearman-karber method for estimating median Lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 11(7): 714-719; Correction 12(4):417 (1978).

PercentageToArcsin

Convert percentages to Arcsin values

Description

Converts percentages to Arcsin values

Usage

PercentageToArcsin(mypercentage)

Arguments

mypercentage numeric vector

Value

Arcsin values

Author(s)

Jose Gama

References

Statistical tests for significance, accessed October 2015 http://archive.bio.ed.ac.uk/jdeacon/statistics/tress4.html

Examples

```
a<-c(.1,.5,1:10,50,96,97,98,99.5,99.99,99.999,99.999)
b<-PercentageToProbit(a)
d<-ProbitToPercentage(b)
e<-PercentageToArcsin(d)</pre>
```

PercentageToProbit 23

 ${\tt PercentageToProbit}$

Convert percentages to Probit values

Description

Converts percentages to Probit values

Usage

PercentageToProbit(mypercentage)

Arguments

mypercentage numeric vector

Value

Probit values

Author(s)

Jose Gama

References

Statistical tests for significance, accessed October 2015 http://archive.bio.ed.ac.uk/jdeacon/statistics/tress4.html

Examples

```
a<-c(.1,.5,1:10,50,96,97,98,99.5,99.99,99.999,99.999)
b<-PercentageToProbit(a)
```

ProbitApproxStandardErrorOfDosage

Approximate Standard Error of dosage

Description

Approximate Standard Error of dosage

Usage

ProbitApproxStandardErrorOfDosage(b, Snw)

24 ProbitChi

Arguments

b numeric, rate of increase of probit value per unit increase in x

Snw numeric, sum of nw

Value

Approximate Standard Error of dosage

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

ProbitChi

Estimate the column for Chi calculation

Description

Estimates the column for Chi calculation

Usage

```
ProbitChi(r, n, P)
```

Arguments

r numeric vector, number of observed affected

n numeric vector, number of insects

P numeric vector, Probability P of expected probit

Value

numeric vector

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

ProbitEPA 25

ProbitEPA Probit estimation similar to the EPA's Ecological Exposure Research
Division (EERD) tool

Description

Probit estimation similar to the EPA's Ecological Exposure Research Division (EERD) tool

Usage

```
ProbitEPA(toxData, retData = FALSE, showOutput = TRUE)
```

Arguments

toxData numeric matrix, matrix with concentration, n ,r columns

retData logic, return the results in a list showOutput logic, show results in the console

Value

Probit estimation regression

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

Description

Probit Fiducial Limits

Usage

```
ProbitFiducialLimits(Vm, m, tPercent = 5, roundFinney = FALSE)
```

26 ProbitFinney

Arguments

Vm numeric, variance of the logarithm

m numeric, logLD50

tPercent numeric, probability level

roundFinney logic, round as in Finney's book

Value

Probit Fiducial Limits

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

ProbitFinney

Probit estimation regression with Finney's method

Description

Probit estimation regression with Finney's method

Usage

```
ProbitFinney(toxData, tPercent = 5, showPlot = FALSE, roundFinney = FALSE)
```

Arguments

toxData numeric matrix, matrix with concentration, n, r columns

tPercent numeric, probability level

showPlot logic, show regression line - plot roundFinney logic, round as in Finney's book

Value

Probit estimation regression

Author(s)

Jose Gama

ProbitRegression 27

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

ProbitRegression

Probit regression line

Description

Probit regression line

Usage

```
ProbitRegression(x, n, r, adjAbbot = FALSE, roundFinney = FALSE)
```

Arguments

x numeric, log concentrationn numeric, number of insects

r numeric, number of observed affected

adjAbbot logic, use Abbot adjustment roundFinney logic, round as in Finney's book

Value

Probit regression line a+bx

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

28 ProbitStandardErrorRate

ProbitStandardErrorOfDosage

Standard Error of dosage

Description

Standard Error of dosage

Usage

ProbitStandardErrorOfDosage(varianceDosage)

Arguments

varianceDosage numeric, Variance of dosage

Value

Standard Error of dosage

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

ProbitStandardErrorRate

Standard Error of rate of increase of probit value per unit increase in

Description

Standard Error of rate of increase of probit value per unit increase in x

Usage

ProbitStandardErrorRate(n, w, x, xbar)

ProbitToPercentage 29

Arguments

n numeric, number of insects
 w numeric, weighting coefficients
 x numeric, log concentration
 xbar numeric, mean dosage

Value

Standard Error of rate of increase of probit value per unit increase in x

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

ProbitToPercentage

Convert Probit values to percentages

Description

Converts Probit values to percentages

Usage

ProbitToPercentage(myprobit)

Arguments

myprobit numeric vector

Value

percentages

Author(s)

Jose Gama

References

Statistical tests for significance, accessed October 2015 http://archive.bio.ed.ac.uk/jdeacon/statistics/tress4.html

30 ProbitVALUEg

Examples

```
a<-c(.1,.5,1:10,50,96,97,98,99.5,99.99,99.999,99.999)
b<-PercentageToProbit(a)
d<-ProbitToPercentage(b)</pre>
```

ProbitVALUEg

Probit value "g"

Description

Probit value "g"

Usage

```
ProbitVALUEg(b, n, w, x, xbar, tPercent)
```

Arguments

b	numeric, rate of increase of probit value per unit increase in x
n	numeric, number of insects
W	numeric, weighting coefficients
x	numeric, log concentration
xbar	numeric, mean dosage

numeric, probability level

Value

Probit value "g"

tPercent

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

ProbitVarianceDosage 31

 ${\tt ProbitVarianceDosage} \quad \textit{Variance of dosage}$

Description

Variance of dosage

Usage

```
ProbitVarianceDosage(b, m, n, w, x, xbar)
```

Arguments

b	numeric, rate of increase of probit value per unit increase in x
m	numeric, dosage

n numeric, number of insects
w numeric, weighting coefficients
x numeric, log concentration
xbar numeric, mean dosage

Value

Variance of dosage

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

 $\label{thm:linear} \textit{ProbitVariance of rate of increase of probit value per unit increase in } x$

Description

Variance of rate of increase of probit value per unit increase in x

Usage

```
ProbitVarianceRate(n, w, x, xbar)
```

32 Probitw

Arguments

n numeric, number of insects
 w numeric, weighting coefficients
 x numeric, log concentration
 xbar numeric, mean dosage

Value

Variance of rate of increase of probit value per unit increase in x

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

Probitw

Calculate weighting coefficient from expected probit

Description

Returns the weighting coefficient from expected probit

Usage

```
Probitw(Y, C = 0)
```

Arguments

Y numeric, expected probit

C numeric, proportion of natural mortality

Value

the weighting coefficient

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press. Formula 6.3.

ProbitWeightingCoef 33

Examples

```
# Example from page 90 of Finney 1964:
# expected probit Y = 6.2, control mortality C = 59%
Y <- 6.2
C <- 0.59
# weighting coefficient = 0.141
Probitw(Y,C)</pre>
```

ProbitWeightingCoef

Calculate the weighting coefficient

Description

Returns the weighting coefficient

Usage

```
ProbitWeightingCoef(Z, Q, P, C)
```

Arguments

Z	numeric, ordinate to the normal distribution corresponding to the probability P
Q	numeric, 1-P
Р	numeric, Probability P of expected probit
С	numeric, proportion of natural mortality

Value

the weighting coefficient

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press. Formula 6.3.

Examples

```
# Example from page 90 of Finney 1964:
# expected probit Y = 6.2, control mortality C = 59%
Y <- 6.2
C <- 0.59
P <- pnorm(Y-5)
Q <- 1-P
Z <- ProbitZ(Y)</pre>
```

ProbitWorkingP

```
# weighting coefficient = 0.141
ProbitWeightingCoef(Z,Q,P,C)
```

ProbitWorkingP

Calculate working probit

Description

Returns the working probit

Usage

```
ProbitWorkingP(Y, p)
```

Arguments

Y numeric, expected probit p numeric, kill percentage

Value

the working probit

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

Examples

```
# Example from page 50 of Finney 1964:
# kill p = 72.3%, expected probit Y = 6.2
Y <- 6.2
p <- 72.3/100
# working probit = 5.366
ProbitWorkingP(Y,p)</pre>
```

ProbitZ 35

ProbitZ	Calculate the ordinate to the normal distribution corresponding to the probability P

Description

Returns the ordinate to the normal distribution corresponding to the probability P

Usage

```
ProbitZ(Y)
```

Arguments

Υ

numeric, expected probit

Value

the ordinate to the normal distribution corresponding to the probability P

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press. Formula 3.5.

Examples

```
# expected probit Y = 6.2
Y <- 6.2
ProbitZ(Y)</pre>
```

ProbitZ4dec

Calculate the ordinate to the normal distribution corresponding to the probability P, exactly like Finney's

Description

Returns the ordinate to the normal distribution corresponding to the probability P with the exact same results as Finney's

Usage

```
ProbitZ4dec(Y)
```

36 ScaleArcher

Arguments

Υ

numeric, expected probit

Value

the ordinate to the normal distribution corresponding to the probability P

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press. Formula 3.5.

Examples

```
# expected probit Y = 6.2
Y <- 6.2
ProbitZ4dec(Y)</pre>
```

ScaleArcher

Archer Scale for assessment of leaf damage

Description

Archer Scale for assessment of leaf damage

Usage

ScaleArcher(percentAffected)

Arguments

```
percentAffected
```

numeric vector

Value

Archer Scale for assessment of leaf damage

Author(s)

Jose Gama

ScaleGauhlStover 37

References

Archer, T.L., 1987 Techniques for screening maize for resistance to mites. pp.178-183. In: Mihn, J.A., Wiseman, B.R. and Davis, F.M. (Eds.). Proceedings of the International symposium on methodologies for developing host plant resistance to maize insects. CIMMYT, Mexico.

ScaleGauhlStover

Gauhl's modification of Stover's severity scoring system

Description

Gauhl's modification of Stover's severity scoring system

Usage

ScaleGauhlStover(percentShowingSymptoms)

Arguments

percentShowingSymptoms numeric, proportion of the leaf area showing symptoms

Value

Gauhl-Stover scale

Author(s)

Jose Gama

References

Gauhl F., 1994 Epidemiology and ecology of black Sigatoka (Mycosphaerella fijiensis Morlet) on plantain and banana (Musa spp.) in Costa Rica, Central America. INIBAP, Montpellier, France. 120pp).

Description

Horsfall-Barratt Scale for Measuring Plant Disease

Usage

ScaleHorsfallBarratt(percentAffected)

Arguments

percentAffected

numeric vector

Value

Horsfall-Barratt Scale for Measuring Plant Disease

Author(s)

Jose Gama

References

Horsfall, J. G.; Barratt, R. W., 1945 An Improved Grading System for Measuring Plant Disease. Phytopathology.

SheepsheadMinnow40SK

Mortality data from a fathead minnow larval survival and growth test (40 organisms per concentration)

Description

Mortality data from a fathead minnow larval survival and growth test (40 organisms per concentration)

Usage

SheepsheadMinnow40SK

Details

Mortality data from a fathead minnow larval survival and growth test - data columns

- Concentration. Concentration.
- Mortality. Mortality

SpearmanKarber 39

Author(s)

Jose Gama

References

USEPA, 2002 Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. 4th Edition, USEPA, Office of Water, October 2002, EPA 821-R-02-013 TABLE J1. pp 312

SpearmanKarber

Spearman Karber estimation

Description

Spearman Karber estimation

Usage

```
SpearmanKarber(toxData, N, retData = FALSE, showOutput = TRUE,
    showPlot = TRUE)
```

Arguments

toxData numeric matrix, matrix with concentration, n ,r columns

N numeric, number of organisms
retData logic, return the results in a list
showOutput logic, show results in the console
showPlot logic, show regression line - plot

Value

Spearman Karber estimation

Author(s)

Jose Gama

References

Table 1 Finney 1964

Table1Finney1964

Transformation of Percentages to Probits, table I of Finney, 1964

Description

Transformation of Percentages to Probits, table I of Finney, 1964

Usage

Table1Finney1964

Details

Transformation of Percentages to Probits - data columns

- Percentage. Percentage.
- Col0.0. Column for 0.0
- Col0.1. Column for 0.1
- Col0.2. Column for 0.2
- Col0.3. Column for 0.3
- Col0.4. Column for 0.4
- Col0.5. Column for 0.5
- Col0.6. Column for 0.6
- Col0.7. Column for 0.7
- Col0.8. Column for 0.8
- Col0.9. Column for 0.9

Author(s)

Jose Gama

References

Table2Finney1964 41

Table2Finney1964

The Weighting Coefficient and Q/Z, table II of Finney, 1964

Description

The Weighting Coefficient and Q/Z, table II of Finney, 1964

Usage

Table2Finney1964

Details

The Weighting Coefficient and Q/Z - data columns

- Y. expected probit
- Q/Z.
- C=0.0
- C=1. 1 ...
- C=89. 89
- C=90. 90

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

Table3Finney1964

Maximum and Minimum working probits and Range, table III of Finney, 1964

Description

Maximum and Minimum working probits and Range, table III of Finney, 1964

Usage

Table3Finney1964

42 Table4Finney1964

Details

Maximum and Minimum working probits and Range - data columns

- Ymin. Minimum working probit expected
- Y0. Minimum working probit Y0 = Y-P/Z
- Yrange. Range 1/Z
- Y100. Maximum working probit Y100 = Y+Q/Z
- Ymax. Maximum working probit expected

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

Table4Finney1964

Working probits, table IV of Finney, 1964

Description

Working probits, table IV of Finney, 1964

Usage

Table4Finney1964

Details

Working probits - data columns

- Kill
- Col2 Expected probit 2.0
- Col2.1 Expected probit 2.1 ...
- Col7.8 Expected probit 7.8
- Col7.9 Expected probit 7.9

Author(s)

Jose Gama

References

Table5Finney1964 43

Table5Finney1964

The Probability, P, the Ordinate, Z, and Z^2, table V of Finney, 1964

Description

Probability, P, the Ordinate, Z, and Z^2, table V of Finney, 1964

Usage

Table5Finney1964

Details

The Probability, P, the Ordinate, Z, and Z^2 - data columns

- Y. Expected probit
- P. Probability P of expected probit
- Z. Ordinate to the normal distribution corresponding to the probability P
- Z^2. Z^2

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

Table8Finney1964

The Weighting Coefficient in Wadley's Problem, table VIII of Finney, 1964

Description

The Weighting Coefficient in Wadley's Problem, table VIII of Finney, 1964

Usage

Table8Finney1964

Details

The Weighting Coefficient in Wadley's Problem - data columns

- Y. Expected probit
- · w. Weighting Coefficient

Table9Finney1964

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

Table9Finney1964 Minimum Working Probit, Range, and Weighting Coefficient for Inverse Sampling, table IX of Finney, 1964

Description

Minimum Working Probit, Range, and Weighting Coefficient for Inverse Sampling, table IX of Finney, 1964

Usage

Table9Finney1964

Details

Minimum Working Probit, Range, and Weighting Coefficient for Inverse Sampling - data columns

- Y. Expected probit
- MinWorkProbit. Minimum working probit
- Range. Range 1/Z
- WeightingCoef. Weighting Coefficient

Author(s)

Jose Gama

References

TestMix2poisons 45

TestMix2poisons	Generate table 26 from Finney1964 "The Function for Planning Tests of Mixtures of Two Poisons"

Description

Generates table 26 from Finney 1964 "The Function for Planning Tests of Mixtures of Two Poisons"

Usage

TestMix2poisons()

Value

table 26 from Finney1964 "The Function for Planning Tests of Mixtures of Two Poisons"

- rho. toxicity
- 0.1. distance 0.1 log rho in the left of the probit regression line ...
- 0.9. distance 0.9 log rho in the left of the probit regression line

Author(s)

Jose Gama

References

Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press

Examples

TestMix2poisons()

TSK

Trimmed Spearman-Karber method, as per Hamilton and EPA

Description

Returns the Trimmed Spearman-Karber (TSK) method, as per Hamilton and EPA

Usage

```
TSK(x, r, n, A = 0, conf = 0.95)
```

WAAPPpestCount

Arguments

Χ	numeric vector
r	numeric vector
n	numeric vector
A	numeric vector
conf	numeric vector

Value

mu=mu,gsd=gsd,left=left,right=right

Author(s)

Jose Gama

References

Hamilton, M.A., Russo, R.L., Thurston, R.V., 1977. Trimmed Spearman–Karber method for estimating median lethal concentrations. Environ. Sci. Tech. 11,714–719.

Examples

```
x<-c(15.54,20.47,27.92,35.98,55.52)
n1<-c(20,20,20,19,20)
r<-c(0,0,0,5.26,100)/100*n1
n<-c(20,20,20,19,20)
TSK(x,r,n)
```

WAAPPpestCount

WAAPP Pest Count scoring system

Description

WAAPP Pest Count scoring system

Usage

WAAPPpestCount(percentLeafDamage)

Arguments

```
percentLeafDamage
```

numeric, percentage of leaf damage

Value

WAAPP Pest Count Score

WAAPPpestCount 47

Author(s)

Jose Gama

References

Environmental Protection Agency Chemicals Control And Managemenet Centre (ACCRA), 2012 Protocols for the biological evaluation of pesticides on Selected crops grown in both the humid and sahel regions of West africa. West Africa Agriculture Productivity Programme (WAAPP).

Index

* data AphisRumicisDerrisMalaccensis, 7 Dunnett.t.Statistic, 10 SheepsheadMinnow40SK, 38 Table1Finney1964, 40 Table2Finney1964, 41 Table3Finney1964, 41 Table4Finney1964, 42 Table5Finney1964, 43 Table8Finney1964, 43 Table9Finney1964, 44	PercentageToArcsin, 22 PercentageToProbit, 23 ProbitApproxStandardErrorOfDosage, 23 ProbitChi, 24 ProbitEPA, 25 ProbitFiducialLimits, 25 ProbitFinney, 26 ProbitRegression, 27 ProbitStandardErrorOfDosage, 28 ProbitStandardErrorRate, 28 ProbitToPercentage, 29		
AdjustAbbott, 3 AdjustHendersonTilton, 4 AdjustSchneiderOrelli, 5 AdjustSunShepard, 6 AphisRumicisDerrisMalaccensis, 7 ArcsinToPercentage, 7	ProbitVALUEg, 30 ProbitVarianceDosage, 31 ProbitVarianceRate, 31 Probitw, 32 ProbitWeightingCoef, 33 ProbitWorkingP, 34 ProbitZ, 35		
CalculateLC50, 8 CalculateLCn, 9 Dunnett.t.Statistic, 10 erfinv, 11	ProbitZ4dec, 35 ScaleArcher, 36 ScaleGauhlStover, 37 ScaleHorsfallBarratt, 38 SheepsheadMinnow40SK, 38		
GenTableIFinney1964, 11 GenTableIIFinney1964, 12 GenTableIIIFinney1964, 13 GenTableIVFinney1964, 14 GenTableIXFinney1964, 15 GenTableVFinney1964, 16 GenTableVIIFinney1964, 17 GenTableVIIFinney1964, 18	SpearmanKarber, 39 Table1Finney1964, 40 Table2Finney1964, 41 Table3Finney1964, 41 Table4Finney1964, 42 Table5Finney1964, 43 Table8Finney1964, 43 Table9Finney1964, 44 TestMix2poisons, 45 TSK, 45		
IsMonotonicallyDecreasing, 19 IsMonotonicallyIncreasing, 20 MakeMonotonicallyDecreasing, 21	WAAPPpestCount, 46		
MakeMonotonicallyIncreasing, 21			