$0.1 \quad 19.09.2019$

0.1.1 Неявные функции наносят ответный удар

Пример

$$F(x,y)=ye^y+x+x^2=0$$

$$y(x)=y(0)+y'(0)x+\frac{y''(0)}{2}x^2+...+\frac{g^{(n)}(0)}{n!}x^n+\overline{o}(x^n),\ \text{при }x\to0$$

$$x_0=0\quad y(0)=?\quad ye^y=0\quad y=0$$

$$F'y=e^y+ye^y|_{(0,0)}=1\neq0$$

$$y'(0)=-\frac{F'_x}{F'_y}|_{(0,0)}=-\frac{1+2x}{1}=-1\ \text{т.o.}\ \text{неявное отображениe}$$

$$y'(x)=-\frac{F'_x}{F'_y}=-\frac{1+2x}{(y(x)+1)e^{y(x)}}$$

$$y(x)=0-x+\overline{o}(x)$$

Что теперь делать? Способ 1:

$$y''(x) = (y'(x))' = \left(-\frac{F_x'(x, y(x))}{F_y'(x, y(x))}\right)' = \left(-\frac{1 + 2x}{(y(x) + 1)e^{y(x)}}\right)'$$
$$= -\frac{2}{(y(x) + 1)e^{y(x)}} + \frac{1 + 2x}{((y(x) + 1)e^{y(x)}}(y(x) + 2)e^{y(x)}y'(x) \underset{x=0}{=} -2 - 4 = -6$$

Наш ряд Тэйлора:

$$y(x) = -x - 3x^2 + \overline{o}(x^2)$$

Способ 2 (метод неопр. коэффициентов)

$$y(x) = -x + ax^{2} + bx^{3} + \overline{o}(x^{3})$$

$$F(x, y(x)) = 0 \text{ B onp } x=0$$

$$(-x + ax^{2} + bx^{3} + \overline{o}(x^{3}))e^{-x + ax^{2} + bx^{3} + \overline{o}(x^{3})} + x + x^{2} = 0$$

$$e^{t} = 1 + t + \frac{t^{2}}{2} + \frac{t^{3}}{6} + \overline{o}(t^{3}), \quad t \to 0$$

$$t = y(x)$$

$$(-x + ax^{2} + bx^{3})\left[1 + (-x + ax^{2} + bx^{3}) + \frac{(-x + ax^{2} + bx^{3})^{2}}{2} + \frac{(-x + ax^{2} + bx^{3})^{3}}{6} + o(x^{2})\right] + x + x^{2} = 0$$

$$F(x,y)=ye^y+x+x^2=0$$

$$(-x+ax^2+bx^3+\overline{o}(x^3))(1-x+(a+\frac{1}{2})x^2+(b-a-\frac{1}{6})x^3+\overline{o}(x^3))+x+x^2=0$$

$$\overline{o}(x^3)-x+x^2(1+a)+x^3(b-a-a-\frac{1}{2})+x+x^2=0$$

$$\overline{o}(x^3)+(a+2)x^2+(b-2a-\frac{1}{2})x^3=0$$

$$\begin{cases} a+2=0\\ b-2a-\frac{1}{2}=0 \end{cases}$$
 система должна быть диагональной
$$a=-2\quad b=-\frac{7}{2}$$

Пример

$$\cos(xy) + \sin x + e^{y+x} = 2$$

Проверить условие т.о неявной ф-ии и найти разл у(x) по Тейллору до $\overline{o}(x^3)$

$$x = 0, \quad F(0, y) = 0 \rightarrow y(0)$$

1.
$$1 + e^y = 2$$
, $y = 0$, $F(0,0) = 0$, $y(0) = 0$

2.
$$F'_y = -x\sin(xy) + e^{y+x}|_{(0,0)} = 1 \neq 0$$

 $F'_x = -y\sin(xy) + \cos(x) + e^{y+x}|_{(0,0)} = 2$
 $y'(0) = -2$

Методом неявных коэффициентов

$$y(x) = -2x + ax^{2} + bx^{3} + \overline{o}(x^{3})$$
$$\cos(-2x^{2} + ax^{3} + bx^{4} + \overline{o}(x^{4})) + \sin x + e^{-x + ax^{2} + bx^{3} + \overline{o}(x^{3})} = \dots$$