CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

Agenda

Set identities

Set identities

Laws	Formula	Formula
Commutative laws	$A \cup B = B \cup A$	$A \cap B = B \cap A$
Associative laws	$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$
Distributive laws	$A \cup (B \cap C) = (A \cup B) \cap$	$A \cap (B \cup C) = (A \cap B) \cup$
	$(A \cup C)$	$(A \cap C)$
Identity laws	$A \cup \phi = A$	$A \cap U = A$
Complement laws	$A \cup A' = U$	$A \cap A' = \phi$
Double comp. law	(A')' = A	
Idempotent laws	$A \cup A = A$	$A \cap A = A$
Uni. bound laws	$A \cup U = U$	$A \cap \phi = \phi$
De Morgan's laws	$(A \cup B)' = A' \cap B'$	$(A \cap B)' = A' \cup B'$
Absorption laws	$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$
Complements	$U' = \phi$	$\phi' = U$
Set diff. laws	$A - B = A \cap B'$	

Comparison: Logical laws

Laws	Formula	Formula
Commutative laws	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$
Associative laws	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(p\vee q)\vee r\equiv p\vee (q\vee r)$
Distributive laws	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$
Identity laws	$p \wedge \mathbf{t} \equiv p$	$p \lor \mathbf{c} \equiv p$
Negation laws	$p \lor \sim p \equiv \mathbf{t}$	$p \wedge \sim p \equiv \mathbf{c}$
Double neg. law	$\sim (\sim p) \equiv p$	
Idempotent laws	$p \wedge p \equiv p$	$p\vee p\equiv p$
Uni. bound laws	$p ee \mathbf{t} \equiv \mathbf{t}$	$p \wedge \mathbf{c} \equiv \mathbf{c}$
De Morgan's laws	$\sim (p \land q) \equiv \sim p \lor \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$
Absorption laws	$p \vee (p \wedge q) \equiv p$	$p \land (p \lor q) \equiv p$
Negations	$\sim \mathbf{t} \equiv \mathbf{c}$	$\sim \mathbf{c} \equiv \mathbf{t}$

Commutative laws

Associative laws

$$(A \cup B) \cup C = A \cup (B \cup C) \quad (A \cap B) \cap C = A \cap (B \cap C)$$

Distributive laws

$$A \cup (B \cap C) = (A \cup B) \cap A \cap (B \cup C) = (A \cap B) \cup (A \cup C)$$

$$(A \cap C)$$

Identity, Idempotent & Universal Bound laws

Identity laws	$A \cup \phi = A$	$A \cap U = A$
Idempotent laws	$A \cup A = A$	$A \cap A = A$
Uni. bound laws	$A \cup U = U$	$A\cap\phi=\phi$

Complement & Double complement laws

$$A \cup A' = U$$

$$A \cap A' = \phi$$

$$(A')' = A$$

De Morgen Laws

Absorption laws

Absorption laws
$$A \cup (A \cap B) = A$$
 $A \cap (A \cup B) = A$

$$A \cap (A \cup B) = A$$

Exercises

- 1. Prove that for any sets A and B, $A \cup (A' \cap B) = A \cup B$. [Hint: Use set identities]
- 2. Prove that for any sets A, B and C, (A-B)-(B-C)=A-B. [Hint: Use set identities]
- 3. Prove that for any sets A, B, and C, $(A C) \cap (C B) = \emptyset$. [Hint: Use set identities]