Organización de Computadoras

2do Parcial — Recursantes 2024

Nombre: Ajala, Mariela

Legajo: 01959/7

Ejercicio 1	1.50			
Ejercicio 2	1.50			
Ejercicio 3	1.50			
Ejercicio 4	2.00			
Ejercicio 5	2.00			
Ejercicio 6	2.50			
Ejercicio 7	2.00			
TOTAL	13.00			
Se aprueba con ≥ 8.00				

1) Dado un byte X, indique qué operaciones lógicas junto con sus máscaras deberán aplicarse para poner en uno los bits 0 y 6, poner en cero los bits 4 y 7 e invertir los bits 2 y 5, dejando inalterados al resto de los bits.

	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
OR 🕶	0	1	0	0	0	0	0	1
	X	1	X	X	X	X	X	1
AND ~	0	1	1	0	1	1	1	1
	0	1	X	0	X	X	X	1

 $0 \quad 1 \quad \overline{X} \quad 0 \quad X \quad \overline{X} \quad X \quad 1$

Haga clic en los cuadrados resaltados para cambiarlos.

Enviar Limpiar

2) Dado un byte X, indique el resultado obtenido tras aplicar las siguientes operaciones lógicas.

	$\overline{\mathbf{x}}$	$\overline{\mathbf{x}}$	1	Х	1	Х	1	1
NAND	1	1	0	1	0	1	0	0
	X	X	X	X	X	X	x	Х
XNOR	1	1	0	0	1	0	0	1
	1	1	X	1	X	1	X	X
OR	1	1	0	1	0	1	0	0
	X	Χ	X	X	X	Χ	X	X

Haga clic en los cuadrados resaltados para cambiarlos.

3) Dado un byte Y, indique el resultado obtenido tras aplicar estas otras operaciones lógicas.

	0	1	0	0	$\overline{\mathbf{x}}$	0	Х	0
AND	1	1	0	0	1	0	1	0
	0	1	X	0	X	X	X	1
XOR	0	1	1	0	0	0	1	1
	0	0	X	0	X	X	X	0
NOR	1	1	0	1	0	0	0	1
	X	Χ	Χ	X	Χ	Χ	Χ	X

Haga clic en los cuadrados resaltados para cambiarlos.

Enviar Limpiar

4) Dado el siguiente par de ecuaciones:

$$F = \overline{(A + B) \cdot (B \cdot C)}$$

$$\mathsf{G} = (\mathsf{B} \cdot \mathsf{C}) \oplus \overline{\mathsf{A} \oplus \mathsf{C}}$$

Indique cuál de los siguientes circuitos combinacionales resulta equivalente:

5) Dado el siguiente circuito combinacional:

Indique cuál de las siguientes ecuaciones son equivalentes a dicho circuito:

 $F = \overline{A + C} \oplus (C + B)$

 \bigcirc $G = \overline{B \cdot C} \oplus A$

 $F = \overline{(A \oplus C) \cdot \overline{(A \oplus C) + (B + C)}}$

 $F = \overline{(A \cdot (A + B)) \oplus (A + B)}$

 $G = \overline{(A+B) + ((A+B) \oplus C)}$

$$F = \overline{A \oplus B} \oplus (A + C)$$

 $G = \overline{(A + C) + (B \cdot C)}$

Enviar Limpiar

6) Dado el siguiente circuito combinacional:

Complete su tabla de verdad:

A	В	С	F	G
0	0	0	1	1

0	0	1	1	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	1
1	0	1	0	1
1	1	0	1	1
1	1	1	0	1

Haga clic en los cuadrados resaltados para cambiarlos.

Enviar Limpiar

7) Dado el siguiente circuito combinacional:

Indique cuál de los siguientes circuitos (construidos usando exclusivamente compuertas de tipo NOR) es equivalente:

Enviar Limpiar