Machine Learning I

STAT 500

Spring 2018

TuTh 3:30 - 4:45

Location: CAE 204

INSTRUCTOR: Dr. Ousley

EMAIL: sousley@mercyhurst.edu

PHONE: 814-824-3116

OFFICE: Hammermill 413

OFFICE HOURS: Mo 5:00 - 6:00 PM

Tu 5:00 - 6:00 PM; We 5:00 - 6:00 PM

Fri 2:00 - 5:00 PM; and by appointment.

COLDSE DESCRIPTION. This course probability and Statistics, including university

COURSE DESCRIPTION: This course covers Probability and Statistics, including univariate and basic multivariate analysis of data.

LEARNING OUTCOMES:

This course is designed to:

- Introduce basic statistical concepts and methods.
- Introduce resampling methods.
- Emphasize descriptive and predictive methods of statistics.
- Show how to use *R* and *R Studio* for data analysis.

SPECIFIC COURSE OBJECTIVES:

By the end of the course, students are expected to:

- Be quite familiar with univariate and bivariate data analysis, linear regression, and linear discriminant function analysis.
- Be quite familiar with using *R* and *RStudio* for statistical analysis.

REQUIRED TEXTS:

- 1. *Practical Statistics for Data Scientists*, by Bruce and Bruce (2017). O'Reilly Media; ISBN-10: 1491952962; ISBN-13: 978-1491952962.
- 2. Numerous PDFs from various sources

OPTIONAL TEXTS:

- 1. Statistics: An Introduction Using R (2015) by Crawley. Good coverage of many topics with some math.
- 2. *The R Cookbook*, 2nd edition. (2013) by Crawley. Encyclopedic coverage of using R in statistics. Some theory, little math.
- 3. R for Dummies, 2^{nd} edition by de Vries and Meys (2015). Covers the use of R.
- 4. R in Action, 2nd edition by Kabacoff (2015). Many examples of using R for statistical analysis.

SOFTWARE:

We will use a software called *R*. *R* is a programming language for statistical computing and graphics. The latest version is 3.4.3 and it can be downloaded for free from http://www.r-project.org. We will use R Studio for regular classroom activities. The latest version of RStudio is 1.1.383 and is available at https://www.rstudio.com/products/rstudio/download/. R studio is an open source Integrated development Environment (IDE) for R. You should install it on your personal computer and if it is a laptop, bring it to class or use the PCs in the classroom, which will have RStudio already. We may occasionally be using Python.

COURSE POLICIES:

Course Website: The course website can be accessed through Blackboard. Course materials, announcements, and evaluations will all be posted on the Blackboard webpage. It is the student's responsibility to notify the instructor if there are any issues accessing the material. **Email will be used for the most important communications outside of class.** Although I will try to circulate all pertinent information via e-mail, you should check the course announcements prior to each class.

Readings: In this course there will be readings with machine learning concepts and algorithms. There will also be readings that are interactive involving using R and Python. The latter readings are closer to activities because you will get the most out of them if you read the code examples and immediately try them using R or Python. Ideally, you will read the concepts, then do the exercises related to the concepts, then do the homework. You can actually test ideas and ask "What if..." extensively in this class!

Homework: Homework problems will be assigned during class. For optimal learning you need to master all the homework problems. I strongly encourage you to see me for help if you are unable to solve the assigned problems. The single most important part of this course is doing your homework, because homeworks are the keys to doing well on exams. The best way to do homework well is to keep up with the readings and practice on the class examples first.

Classroom Accommodations: Any student who feels s/he may need an accommodation based on the impact of a disability should contact me privately to discuss your specific needs. Please know that it is the policy of Mercyhurst College that it is the student's responsibility to provide documentation of his/her disability to the director of the Learning Differences Program. Please call the Learning Differences office at 814-824-3017 to coordinate needed accommodations.

Collaboration versus Cheating: Students may discuss homework and assignments in pairs or small groups, but all work must be individually written and all results and figures individually

generated. You may give each other advice or help point out coding errors, but in the end each of you must do the work individually. If a student copies text or graphs sent by another student into his or her own homework, both students will be cited for academic honesty violations.

Academic Honesty: All students are expected to comply with Mercyhurst University policy on academic honesty (https://my.mercyhurst.edu/handbook/academic-affairs/ and http://www.mercyhurst.edu/academics/registrar's-office/academic-policies-procedures).

Academic dishonesty will not be tolerated. This includes, but is not limited to, copying answers or providing others with answers to homeworks or during exams, plagiarizing information, or alteration of graded assignments. Any misconduct will, at the very least, result in a zero for the assignment, and if severe enough, will result in an F for the course. Any cheating on an exam will result in an F for the course.

If you are behind on a homework it is far better to ask me for an extension and turn it in late, than to copy work from some else!

EVALUATION & GRADING:

Grades will be based on the following assessments:

Two Exams	100 points	200 points total
Homeworks	10-50 points each	400 points total
Class Participation		50 points total

Grading: An average score of at least 90 will result in an A for the class; 80 to 90 will be a B; 70 to 80 will be a C; 60 to 70 will be a D. An average score below 60 will result in an F.

COURSE SCHEDULE:

Some readings will be added or changed!

Check Blackboard and class announcements for any updates!

PSDS: *Practical Statistics for Data Scientists* Other readings are PDF files on Blackboard.

Day	Topic	Reading
Jan 16	Course Introduction	Ch1-McKillup;
	Statistics and Sampling	
18	Using R and RStudio	Ch1-Verzani-2011; Ch1-Verzani-2014;
23	Data Types	Ch2-Verzani-2014:20-50;
		Ch2-Lantz-2015;
25	Exploratory Data Analysis (EDA)	Ch2-Verzani-2014:70-80;
	Graphical Methods 1	

		Ch2-Verzani-2014:80-87;
Feb	aphical Methods 2	
	umerical Summaries of data	Ch1-PSDS;
		Ch2-Verzani-2014:50-70;
6 Int	tro to (Discrete) Probability	CH4-Moore:pgs 231-258;
		, , , , , , , , , , , , , , , , , , ,
8 Th	e Normal distribution	CH6-Verzani-2014: p211-236;
Pre	obability distributions in R	CH2-PSDS;
	mpling and continuous probabilities	CH6-Verzani-2014: p227-231;
	T and Confidence Intervals	CH5-Crawley-2015;
15 Hy	pothesis tests	Ch3-PSDS;
	est, Chi-squared test	
	AFS - no class	
22 AA	AFS - no class	
27 Biv	variate Data	PSDS:Correlation-end of Ch 1;
March Co	orrelation	Ch4-Moore;
1 Lir	near Regression I	CH6-Lantz; Ch7-Crawley 2015;
		Ch4-PSDS;
6 M i	id-Semester Break	
8 M i	id-Semester Break	
13 Lir	near Regression II	CH5-Conway;
Mi	idterm take-home Exam	Osborne-2004;
15 Lir	near Regression III	Ch6-Everitt-2010;
20 Mi	ultiple Regression	Ch4-PSDS; Ch6-Everitt-2010;
		Ch28-Moore;
22 Ou	utliers; Leverage;	
27 Po	ower	Ch12-Kabacoff-2010;
Me	onte Carlo Tests	Ch16-Moore;
29 Ea	ster Break	
April		
	esampling and the bootstrap	Ch3-Rama;
5 Re	gression and variable selection	CH34-UML; CH7-Sheather-2011;
i i	egression and resampling	
	dvising Day - no classes	

12	AAPA - no class	
17	Principal Component Analysis	Ch16-Everitt-2010; Ch14-Kabacoff-2015;
	Transformations	CH39-UML;
19	Statistical Classification: LDFA I	Albrecht PDF; Ch5-PSDS;
		CH14-Kachigan-1986;
24	LDFA II	Ousley PDFs;
	Fordisc	
26	Multivariate outliers, tests	Penny PDF;
May	Classification accuracy I	
1	Maximum Likelihood Estimation	CH7-Everitt-Hothorn
	Logistic Classification	CH13-Kabacoff-2015.pdf; Ch7-Everitt-2010;
3	Classification accuracy II	Ch7-Rama; CH210-UML;
8	FINAL take-home Exam	