Problem 1

Proofs make use of the properties/rules from Lecture 06 - slides (7, 15, 16, 17).

- $f(x, y, z) = 3x + e^{y+z} \min\{-x^2, \log(y)\}, \text{ on } D = (-100, 100) \times (1, 50) \times (10, 20) \text{ is convex.}$
 - -3x is convex by Rule 1.
 - $-e^{y+z}$ is convex by Rule 1 and 2.
 - $-x^2$ is convex (i.e. its Hessian, a 3 × 3 matrix, which is zero everywhere except $\frac{\partial^2 x^2}{\partial^2 x} = 2$ is positive-semi-definite on D, thus making $-x^2$ concave. $\log(y)$ is concave. $\min\{-x^2, \log(y)\}$ returns $-x^2$ by construction of D, making $-\min\{-x^2, \log(y)\}$ convex.

By Rule 1, the sum of these convex functions is also convex. It follows, f(x, y, z) is convex.

- $f(x,y) = yx^3 2yx^2 + y + 4$, $D = (-10,10) \times (-10,10)$ is not convex because the Hessian of x^3 , a 2 \times 2 matrix, which is zero everywhere except $\frac{\partial^2 x^3}{\partial^2 x} = 6x$ is clearly not positive-semi-definite for all $z \in D$.
- $f(x) = \log(x) + x^3$ and $D = (1, \infty)$ is not convex because $\log(x)$ is concave by definition.
- $f(x) = -\min(2\log(2x), -x^2 + 4x 32)$, $D = \mathbb{R}^+$ is convex, because $-x^2 + 4x$ -32 is a concave quadratic function which reaches its global maximum of 28 at x = 2 (e.g. use high-school math to determine maximum). On the other hand $\log(2x)$ is non-negative, meaning that $\min(\cdot, \cdot)$ always returns the quadratic function. Finally, the negative sign makes f(x) convex.

Problem 2

Let $x, y \in \mathbb{R}^d, \alpha \in [0, 1]$.

$$h(\alpha x + (1 - \alpha)y) = f_1(\alpha x + (1 - \alpha)y) + f_2(\alpha x + (1 - \alpha)y)$$
 (by def.)

$$\leq \alpha f_1(x) + (1 - \alpha)f_1(y) + \alpha f_2(x) + (1 - \alpha)f_2(y)$$
 (by convexity of f_1, f_2)

$$= \alpha f_1(x) + \alpha f_2(x) + (1 - \alpha)f_1(y) + (1 - \alpha)f_2(y)$$

$$= \alpha h(x) + (1 - \alpha)h(y)$$

Problem 3

Proof by counter example. Let $f_1(x) = x^2$ and $f_2(x) = x$. Both functions are convex (by Exercise 1). But, $g(x) = f_1(x) \cdot f_2(x) = x^3$ is not convex on \mathbb{R} because its second order derivative 6x is not non-negative over this interval.

Problem 4

Proof by contradiction. Assume $\nabla_{\theta} f(\theta^*) = 0$ and θ^* is not a global minimum. By first order convexity of f we have $\forall x, y : f(y) \ge f(x) + (y - x)^{\mathsf{T}} \nabla_x f(x)$. For $x = \theta^*$ we get $f(y) \ge f(\theta^*)$. But θ^* is not global minimum by assumption thus we get a contradiction. Thus θ^* must be the global minimum.

Problem 5

See notebook below.