STA201 Lecture-14

Joint Probability Distribution & Conditioning on Random Variables

14.1 - Joint Probability and Marginalisation

14.1.1 - Joint Probability and Marginalisation:

Joint Probability

If X and Y are two discrete random variables and $P_{X,Y}(x, y)$ is a function of X and Y, then $P_{X,Y}(x, y)$ is called the joint probability function if the following conditions are satisfied:

- 1. $P_{X,Y}(x, y) \ge 0$
- 2. $\sum_{X} \sum_{Y} P_{X,Y}(x, y) = 1$

A joint probability function is used to express the probability that X and Y simultaneously take the values x and y.

$$P_{X,Y}(x,y) = P_{X,Y}(X = x \cap Y = y)$$

Marginal Probability for Discrete Random Variables

If X and Y are two discrete random variables with joint probability function $P_{X,Y}(x, y)$, then

The marginal probability function of X is

$$P_X(x) = \sum_{Y} P_{X,Y}(x, y)$$

The marginal probability function of Y is

$$P_Y(y) = \sum_X P_{X,Y}(x, y)$$

Marginal Probability for Continuous Random Variables

If X and Y are two continuous random variables with joint probability density function $f_{X,Y}(x, y)$, then The marginal probability function of X is

In spin for the marginal probability function of
$$Y$$
 is
$$\int f_{X,Y}(x,y) dy = \int f_{X,Y}(x,y) dy = \int f_{X,Y}(x,y) dy$$
The marginal probability function of Y is

$$f_Y(y) = \int f_{X,Y}(x, y) \ dx$$

Independence of Random Variable

Jointly distributed random variables, say X and Y, are said to be independent if and only if their joint probability function is the product of their marginal probability functions. i.e.

$$P_{X,Y}(x, y) = P_X(x) \cdot P_Y(y)$$

For all $x \in X$ and $y \in Y$

Consequently, a set of k random variables $\{X_1, X_2, ..., X_k\}$ is independent if and only if

$$P(X_1, X_2, ..., X_k) = P(X_1) \cdot P(X_2) \cdot ... \cdot P(X_k)$$

14.1.2 - Examples: Joint Probability & Marginalisation

Example 1:

The joint probability distribution of two random variables X and Y is as follows:

X	0	1	2	$P_X(x)$
0	0.1	0	0.2	0.3
1	0.2	0.1	0	0.3
2	0	0.2	0.2	0.4
$P_{Y}(y)$	0.3	0.3	0.4	1

Find the Marginal Probabilities of X and Y. (Done on table in red)

X = x	0	1	2
$P_X(x)$	0.3	0.3	0.4

Y = y	0	1	2
$P_Y(y)$	0.3	0.3	0.4

b Compute the expected values of X and Y.

Sol:

$$E(X) = \sum x \cdot P_X(x) = (0 \times 0.3) + (1 \times 0.3) + (2 \times 0.4) = 1.1$$

$$E(Y) = \sum y \cdot P_Y(y) = (0 \times 0.3) + (1 \times 0.3) + (2 \times 0.4) = 1.1$$

C Determine if X and Y are independent.

Sol

X and Y are independent if and only if $P_{X,Y}(x, y) = P_X(x) \cdot P_Y(y)$ We can show that $P_{X,Y}(x, y) \neq P_X(x) \cdot P_Y(y)$ for some X and Y

Let
$$X=0$$
 and $Y=0$
$$P_{X,Y}(0,0)=0.1$$

$$P_X(0)\cdot P_Y(0)=0.3\times 0.3=0.09\neq 0.1$$

$$\therefore P_{X,Y}(x,y)\neq P_X(x)\cdot P_Y(y)$$
 Therefore, X and Y are not independent

Example 2:

The joint probability distribution of Weather (W) and Temperature (T) is as follows

T W	Hot	Cold	$P_W(w)$
Sunny	3/10	1/5	1/2
Rainy	1/30	2/15	1/6
Snowy	0	1/3	1/3
$P_T(t)$	1/3	2/3	1

a Complete the probability distribution table.

Sol: Done in red

b. Are Weather and Temperature independent of each other?
Sol:

W and T are independent if and only if $P_{W,T}(w, t) = P_W(w) \cdot P_T(t)$ We can show that $P_{W,T}(w, t) \neq P_W(w) \cdot P_T(t)$ for some W and T

Let
$$W = Sunny$$
 and $T = Hot$
 $P_{W,T}(Sunny, Hot) = \frac{3}{10}$

$$P_W(Sunny) \cdot P_T(Hot) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6} \neq \frac{3}{10}$$

$$\therefore P_{W,T}(w, t) \neq P_W(w) \cdot P_T(t)$$

Therefore, Weather and Temperature are not independent.

Inspiring Excellence

14.2 - Conditioning on Random Variables

14.2 - Extending Conditioning to Random Variables

Conditioning on Random Variables

If X and Y are two discrete random variables with joint probability function $P_{X,Y}(x, y)$ and marginal probability functions $P_X(x)$ and $P_Y(y)$, then

$$P_{X|Y}(x|y) = \frac{P_{X,Y}(x, y)}{P_{Y}(y)}$$
$$P_{Y|X}(y|x) = \frac{P_{X,Y}(x, y)}{P_{X}(x)}$$

Example:

The joint probability distribution of Weather (W) and Temperature (T) is as follows

T W	Hot	Cold	$P_W(w)$
Sunny	3/10	1/5	1/2
Rainy	1/30	2/15	1/6
Snowy	0	1/3	1/3
$P_T(t)$	1/3	2/3	1

What is the probability that it will rain given it is cold?

Solution:

$$P_{W|T}(Rainy | Cold) = \frac{P_{W,T}(Rainy \cap Cold)}{P_{T}(Cold)} = \frac{\frac{2}{15}}{\frac{2}{3}} = \frac{2}{15} \times \frac{3}{2} = \frac{1}{5}$$

Practice Problems in g Excellence

Probability & Statistics for Engineering and the Sciences (Devore)

Joint Probability Distributions

Page 203-204: 1, 3, 5, 7