

# Les Méthodes PLS

# Michel Tenenhaus tenenhaus@hec.fr



## Les méthodes PLS

## initiées par Herman et Svante Wold

- I. NIPALS (Nonlinear Iterative Partial Least Squares)
- II. Régression PLS (Partial Least Squares Regression)
- III. Analyse discriminante PLS
- IV. SIMCA (Soft Independent Modelling by Class Analogy)
- V. PLS Path Modelling (Modélisation de relations structurelles sur variables latentes)
- VI. Régression logistique PLS
- VII. Régression linéaire généralisée PLS



3/200

# Les méthodes PLS

I. NIPALS (Nonlinear Iterative Partial Least Squares)





## La méthode NIPALS

### Analyse en composantes principales

- Possibilité de données manquantes.
- Validation croisée pour choisir le nombre de composantes.
- Identification des outliers avec
  - une carte de contrôle des observations,
  - des tests sur les écarts au modèle de l'ACP.

7/200

# Utilisation de NIPALS : Exemple voitures

| Modèle           | Cylindrée | Puissance | Vitesse | Poids | Longueur | Largeur |
|------------------|-----------|-----------|---------|-------|----------|---------|
| Honda Civic      | •         | 90        | 174     | 850   | 369      | 166     |
| Renault 19       | 1721      | è         | 180     | 965   | 415      | 169     |
| Fiat Tipo        | 1580      | 83        | •       | 970   | 395      | 170     |
| :                |           |           |         |       |          |         |
| Citroën AX Sport | 1294      | 95        | 184     | 730   | 350      | •       |

Il y a une observation manquante par modèle !!!

# Le principe de NIPALS

Comment projeter un point avec données manquantes ?





# L 'algorithme NIPALS Recherche des composantes principales

#### Données:

 $X = \{x_{ij}\}$  tableau  $n \times k$ ,

 $\mathbf{x}_{j} = variable j$ 

 $x_i$  = observation i

#### Modèle de 1 'ACP:

$$X = t_1 p_1' + \ldots + t_k p_k'$$

 $avec \quad (1) \quad \ p_1, \ldots, p_k \quad orthonorm\acute{e}s$ 

et (2)  $t_1, \dots, t_k$  orthogonaux

#### L 'algorithme NIPALS

#### Recherche de la première composante principale

- Modèle :  $X = t_1 p_1' + résidu$ , avec  $p_1$  normé
- Algorithme : les équations de base
  - (1) Si  $t_1$  connu, calcul de  $p_{1j}$  par régression simple :

$$\mathbf{x}_{i} = \mathbf{p}_{1i}\mathbf{t}_{1} + r\acute{e}sidu$$

- (2) Normalisation de  $p_1 = (p_{11},...,p_{1k})$
- (3) Si p<sub>1</sub> connu, calcul de t<sub>1i</sub> par régression simple :

$$x_i = t_{1i}p_1 + résidu$$

- Algorithme: fonctionnement
  - Prendre  $t_1 = \mathbf{x}_1$ , puis itérer sur (1), (2), (3).
  - Si données manquantes, faire les calculs sur toutes les données disponibles.

13/200

### L'algorithme NIPALS

#### Recherche des autres composantes principales

• La première étape donne :

$$X = t_1 p_1^{'} + X_1$$

- On répète les opérations précédentes sur la matrice des résidus X<sub>1</sub> de la régression de X sur t<sub>1</sub>.
- On obtient :  $X_1 = t_2 p_2' + X_2$ et  $X = t_1 p_1' + t_2 p_2' + X_2$
- On obtient de même les autres composantes.

### RESS<sub>h</sub> et PRESS<sub>h</sub>

A chaque étape on étudie la reconstitution du tableau X :

$$\hat{X} = t_1 p_1 + t_2 p_2 + ... + t_h p_h$$

Residual Sum of Squares :  $RESS_h = \sum_{i,j} (x_{ij} - \hat{x}_{ij})^2$ 

Les cases de X sont partagées en G groupes, et on réalise G factorisations en enlevant à chaque fois un seul des groupes.

Predicted Residual Sum of Squares:

Ress = pouvoir explicatif

$$PRESS_h = \sum_{i,j} (x_{ij} - \hat{x}_{(-ij)})^2$$

Press = pouvoir predictif

où  $\hat{\mathbf{X}}_{(-ij)}$  est calculé dans l'analyse réalisée sans le groupe contenant la case (i,j).

15/200

### L 'algorithme NIPALS Choix du nombre de composantes

- On choisit le nombre de composantes principales par validation croisée.

$$Q^2 = 1 - \frac{PRESS_h}{RESS_{h-1}} \ge limite$$

Cette règle conduit à des composantes globalement significatives.

### Q<sup>2</sup>(cum) et R<sup>2</sup>(validation croisée)

$$[Q_{cum}^2]_h = 1 - \prod_{a=1}^h \frac{PRESS_a}{RESS_{a-1}}$$

peu différent de

$$R_{\text{validation crois\'ee}}^{2} = 1 - \frac{PRESS_{h}}{\sum_{j=1}^{p} \sum_{i=1}^{n} (x_{ji} - \overline{x}_{j})^{2}}$$

La composante h est retenue si :

$$[Q_{cum}^2]_h$$
 est nettement supérieur à  $[Q_{cum}^2]_{h-1}$ 

 $\underline{CONSEIL}$  : Modèle à h composantes acceptable si  $~[Q^2_{cum}]_h~>~0.5$ 









#### Statistiques, vecteurs propres et composantes principales N % MisVal Mean Std.dev **T1** CYLINDREE 16.6667 1887.70 459.31 20 0.43 **PUISSANCE** 20 16.6667 112.05 36.14 renault 19 -0.59 0.06 VITESSE 20 16.6667 181.95 24.84 POIDS 16.6667 1112.75 238.49 peugeot 405 renault 21 -0.26 -0 48 -0.02 -0.51 LONGUEUR 20 16.6667 421.70 42.78 citroen bx -0.13 LARGEUR 16.6667 20 168.40 7.34 bmw 530i 3.94 0.69 rover 827i renault 25 3.21 0.59 3.42 0.30 p[1] p[2] opel omega 1.48 -0.86 0.49 CYLINDREE -0.07 peugeot 405b ford sierra 0.58 0.25 PUISSANCE 0.44 0.35 -0.41 1.29 0.68 bmw 325ix VITESSE 0.37 0.62 audi 90 quattro 1.17 0.86 **POIDS** 0.39 -0.34 ford scorpio 3.15 0.07 LONGUEUR 0.39 -0.35 -0.89 renault espace LARGEUR 0.36 -0.50 nissan vanette -0.29 -1.92 vw caravelle ford fiesta 0.48 -3.56 -1.97 -0.75 0.07 fiat uno peugeot 205 -2.52 0.81 peugeot 205 rallye seat ibiza sxi -1.97 1.62 citroen ax sport 22/200

# Reconstitution des données avec deux composantes

| Obs ID (Primary)   | CYLINDREE | PUISSANCE | VITESSE | POIDS | LONGUEUR | LARGEUR |
|--------------------|-----------|-----------|---------|-------|----------|---------|
| honda civic        | 1460      | 88        | 172     | 905   | 384      | 162     |
| renault 19         | 1754      | 103       | 177     | 1053  | 411      | 167     |
| fiat tipo          | 1627      | 85        | 162     | 1041  | 409      | 167     |
| peugeot 405        | 1844      | 102       | 172     | 1127  | 424      | 169     |
| renault 21         | 1900      | 105       | 174     | 1153  | 429      | 170     |
| citroen bx         | 1774      | 102       | 175     | 1074  | 415      | 167     |
| bmw 530i           | 2744      | 183       | 228     | 1424  | 478      | 176     |
| rover 827i         | 2585      | 170       | 220     | 1365  | 467      | 175     |
| renault 25         | 2640      | 170       | 218     | 1407  | 475      | 176     |
| opel omega         | 2245      | 125       | 182     | 1321  | 459      | 175     |
| peugeot 405b       | 2010      | 124       | 191     | 1147  | 428      | 169     |
| ford sierra        | 2052      | 118       | 182     | 1210  | 439      | 172     |
| bmw 325ix          | 2221      | 155       | 217     | 1164  | 431      | 168     |
| audi 90 quattro    | 2122      | 141       | 206     | 1152  | 429      | 168     |
| ford scorpio       | 2588      | 163       | 212     | 1401  | 474      | 176     |
| renault espace     | 2098      | 114       | 176     | 1262  | 449      | 174     |
| nissan vanette     | 1885      | 83        | 150     | 1242  | 445      | 175     |
| vw caravelle       | 2057      | 95        | 156     | 1318  | 459      | 177     |
| ford fiesta        | 1117      | 46        | 138     | 842   | 373      | 162     |
| fiat uno           | 1031      | 52        | 148     | 750   | 356      | 158     |
| peugeot 205        | 1300      | 82        | 172     | 812   | 367      | 159     |
| peugeot 205 rallye | 1396      | 101       | 189     | 797   | 364      | 157     |
| seat ibiza sxi     | 1522      | 99        | 181     | 902   | 384      | 161     |
| citroen ax sport   | 1296      | 96        | 187     | 748   | 356      | 156     |



# Calcul de la limite de contrôle



#### Propriété:

$$DModX =$$

$$\sqrt{\frac{d^{2}(x_{i}, \hat{x}_{i})}{\frac{1}{n} \sum_{i=1}^{n} d^{2}(x_{i}, \hat{x}_{i})}} \approx \sqrt{F(k_{1}, k_{2})}$$

calculé si nb de données > nb de CP

Limite de contrôle au risque  $\alpha$ :

$$\sqrt{F_{1-\alpha}(k_1,k_2)}$$

25/200

# Probabilité d'appartenir au modèle

<u>Test</u>:  $H_0$ : l'observation i appartient au modèle de l'ACP

H<sub>1</sub>: l'observation i n'appartient pas au modèle

<u>Décision</u>: On rejette  $H_0$  au risque  $\alpha$  de se tromper si

$$\mathsf{DModX} \geq \sqrt{F_{1-\alpha}(k_1, k_2)}$$

Niveau de signification ou « probabilité d'appartenir au modèle » :

Plus petit  $\alpha$  conduisant au rejet de  $H_0$ 

= Prob  $(F(k_1,k_2) \ge DModX^2)$ 

L'individu i est exactement sur la limite de contrôle  $\ DCrit(\alpha_{min})$ 



## Ajouter la Ferrari au fichier des données



Caractéristiques de la Ferrari

Cylindrée: 4943 Puissance: 428 Vitesse: 310 Poids: 1517 Longueur: 449

### Les méthodes PLS

II. Régression PLS (Partial Least Squares Regression)

29/200

# La régression PLS

- Relier un bloc de variables à expliquer Y à un bloc de variables explicatives X.
- Possibilité de données manquantes.
- Il peut y avoir beaucoup plus de variables X que d'observations.
- Il peut y avoir beaucoup plus de variables Y que d'observations.
- Meilleure réponse au problème de la multicolinéarité.

# La régression PLS : vocabulaire

- Régression PLS1 : un seul Y
- <u>Régression PLS2</u>: plusieurs Y A conseiller si les Y sont corrélés entre eux
- Analyse discriminante PLS:
  - Y qualitatif transformé en variables indicatrices des modalités
  - A conseiller si Y binaire, sinon on peut peut- être faire mieux (Barker & Rayens, 2003)

31/200

# Les méthodes PLS

# II.1 Régression PLS1

### La régression PLS1 : une idée de l'algorithme

Etape 1 : Recherche de m composantes <u>orthogonales</u>  $t_h = Xa_h$  bien explicatives de leur propre groupe et bien corrélées à y.

Le nombre m est obtenu par validation croisée.

Etape 2 : Régression de Y sur les composantes PLS t<sub>h</sub>.

Etape 3: Expression de la régression en fonction de X.



La régression PLS1 : une idée de l'étape 1 lorsqu'il n'y a pas de données manquantes

Pour chaque h = 1 à m, on recherche des composantes  $t_h = Xa_h$  maximisant le critère

$$Cov(Xa_h, y)$$

sous des contraintes de norme ( $||a_h||=1$ ) et d'orthogonalité entre  $\mathbf{t}_h$  et les composantes précédentes  $\mathbf{t}_1$ ,...,  $\mathbf{t}_{h-1}$ .

35/200

## Propriétés de la régression PLS1

De 
$$Cov^2(Xa_h, y)$$
  
=  $Cor^2(Xa_h, y)^* Var(Xa_h)^* Var(y)$ 

on déduit que la régression PLS1 réalise un compromis entre la régression multiple de y sur X et l'analyse en composantes principales de X.

# Régression PLS1: Étape 1

1. Calcul de la première composante PLS t<sub>1</sub>:

$$t_1 = Xa_1 = \sum_{j} cor(y, x_j) \times x_j$$

$$cor avec y > 0$$

Les x<sub>j</sub> sont centrés-réduits. Sinon, remplacer la corrélation par la covariance.

- 2. Normalisation du vecteur  $a_1 = (a_{11}, \dots, a_{1k})$
- 3. Régression de y sur t<sub>1</sub>=Xa<sub>1</sub> exprimée en fonction des x
- 4. Calcul des résidus  $y_1$  et  $X_1$  des régressions de y et X sur  $t_1$ :

37/200

# Régression PLS1: Étape 2

1. Calcul de la deuxième composante PLS t<sub>2</sub>:

$$t_2 = X_1 b_2 = \sum_j \text{cov}(y_1, x_{1j}) \times x_{1j}$$

- 2. Normalisation du vecteur  $b_2 = (b_{21},...,b_{2k})$
- 3. Calcul de  $a_2$  tel que :  $t_2 = X_1b_2 = Xa_2$
- 4. Régression de  $y_1$  sur  $t_2 = Xa_2$  exprimée en fonction des x
- 5. Calcul des résidus  $y_2$  et  $X_2$  des régressions de y et  $X_1$  sur  $t_2$ :

# Régression PLS1: Étapes suivantes

- On procède de la même manière pour les autres composantes.
- D'où le modèle de régression PLS à m composantes :

$$y = c_1t_1 + c_2t_2 + \dots + c_mt_m + R\acute{e}sidu$$

$$= c_1Xa_1 + c_2Xa_2 + \dots + c_mXa_m + R\acute{e}sidu$$

$$= X(c_1a_1 + c_2a_2 + \dots + c_ma_m) + R\acute{e}sidu$$

$$= b_1x_1 + b_2x_2 + \dots + b_kx_k + R\acute{e}sidu$$

$$\hat{v}$$

39/200

### Calcul de RESS<sub>h</sub> et PRESS<sub>h</sub> à l'étape h

$$\begin{split} & \text{Residual Sum of Squares}: \ \ RESS_h = \sum_i (y_{(h-1),i} - \hat{y}_{(h-1),i})^2 \\ & \text{où} \quad \ \hat{y}_{(h-1),i} = c_h t_{hi} \quad \text{ est la prévision de } \ y_{(h-1),i} \end{split}$$

Les observations sont partagées en G groupes, et on réalise G fois l'étape courante de l'algorithme sur  $y_{h-1}$  et  $X_{h-1}$  en enlevant à chaque fois un groupe.

Predicted Residual Sum of Squares:

Voir option CV-groups

$$PRESS_h = \sum_{i} (y_{(h-1),i} - \hat{y}_{(h-1),-i})^2$$

où  $\hat{y}_{(h-l),-i}$  est calculé dans l'analyse réalisée sans le groupe contenant l'observation (i).

### Choix du nombre de composantes

- On choisit le nombre de composantes par validation croisée.
- La composante h est retenue si

$$\Rightarrow$$
 [PRESS<sub>h</sub>]  $\leq \gamma$  [RESS<sub>h-1</sub>]

Soit:

$$Q^2 = 1 - \frac{PRESS_h}{RESS_{h-1}} \ge 1 - \gamma$$

avec RESS<sub>0</sub> =  $\sum (y_i - \overline{y})^2$ ,  $1 - \gamma = 0.05 \text{ si } n < 100 \text{ et} = 0 \text{ si } n \ge 100$ .

## Q<sup>2</sup>(cum) et R<sup>2</sup>(validation croisée)

$$[Q_{cum}^2]_h = 1 - \prod_{a=1}^h \frac{PRESS_a}{RESS_{a-1}}$$

peu différent de

$$R_{\text{validation croisée}}^{2} = 1 - \frac{PRESS_{h}}{\sum_{i} (y_{i} - \overline{y})^{2}}$$

La composante h est retenue si :

$$[Q_{cum}^2]_h$$
 est nettement supérieur à  $[Q_{cum}^2]_{h-1}$ 

Modèle à h composantes acceptable si  $\ [Q^2_{cum}]_h \ > \ 0.5$ 

# Variable Importance in the Prediction (VIP)

- Composantes PLS :  $t_h = X_{h-1}b_h$ , avec  $||b_h|| = 1$
- Importance de la variable  $x_j$  (j=1,..., p) pour la prédiction de y dans un modèle à m composantes :

$$VIP_{mj} = \sqrt{\frac{p}{\sum_{h=1}^{m} cor^{2}(y, t_{h})} \sum_{h=1}^{m} cor^{2}(y, t_{h}) b_{hj}^{2}}$$

- Moyenne des carrés des VIP sur les variables = 1
- Variable importante pour la prédiction si VIP > 0.8

43/200

### Régression PLS1 : Exemple Voitures

Problèmes: multicolinéarité, données manquantes

#### Données complètes

| Modèle           | Prix  | Cylindrée | Puissance | Vitesse | Poids | Longueur | Largeur |
|------------------|-------|-----------|-----------|---------|-------|----------|---------|
| Honda Civic      | 83700 | 1396      | 90        | 174     | 850   | 369      | 166     |
| Renault 19       | 83800 | 1721      | 92        | 180     | 965   | 415      | 169     |
| Fiat Tipo        | 70100 | 1580      | 83        | 170     | 970   | 395      | 170     |
| :                |       |           |           |         |       |          |         |
| Citroën AX Sport | 66800 | 1294      | 95        | 184     | 730   | 350      | 160     |

#### Données incomplètes

| Modèle           | Prix  | Cylindrée | Puissance | Vitesse | Poids | Longueur | Largeur |
|------------------|-------|-----------|-----------|---------|-------|----------|---------|
| Honda Civic      | 83700 |           | 90        | 174     | 850   | 369      | 166     |
| Renault 19       | 83800 | 1721      |           | 180     | 965   | 415      | 169     |
| Fiat Tipo        | 70100 | 1580      | 83        |         | 970   | 395      | 170     |
| :                |       |           |           |         |       |          |         |
| Citroën AX Sport | 66800 | 1294      | 95        | 184     | 730   | 350      |         |

### Régression multiple sur les données complètes

 $R^2 = 0.847$ , F = 15.730 Sig. = 0.0001

#### Coefficientsa

|       |         | Unstandardized<br>Coefficients |            |       |      | 95% Confidence Interval for B |             |
|-------|---------|--------------------------------|------------|-------|------|-------------------------------|-------------|
| Model |         | В                              | Std. Error | t     | Sig. | Lower Bound                   | Upper Bound |
| 1 (Co | nstant) | 12070.406                      | 194786.6   | .062  | .951 | -398893.309                   | 423034.120  |
| CYL   | INDRE   | -1.936                         | 33.616     | 058   | .955 | -72.860                       | 68.988      |
| PUI   | SSANC   | 1315.906                       | 613.510    | 2.145 | .047 | 21.512                        | 2610.299    |
| VIT   | ESSE    | -472.507                       | 740.319    | 638   | .532 | -2034.443                     | 1089.428    |
| POI   | DS      | 45.923                         | 100.047    | .459  | .652 | -165.158                      | 257.005     |
| LON   | NGUEUR  | 209.653                        | 504.152    | .416  | .683 | -854.014                      | 1273.319    |
| LAF   | RGEUR   | -505.429                       | 1501.589   | 337   | .741 | -3673.505                     | 2662.648    |

a. Dependent Variable: PRIX

45/200

## Corrélations entre les variables

#### Correlation Matrix

|          |       |          |          | Correlation |       |          |         |
|----------|-------|----------|----------|-------------|-------|----------|---------|
|          | PRIX  | CYLINDRE | PUISSANC | VITESSE     | POIDS | LONGUEUR | LARGEUR |
| PRIX     | 1.000 | .852     | .891     | .720        | .813  | .747     | .611    |
| CYLINDRE | .852  | 1.000    | .861     | .693        | .905  | .864     | .709    |
| PUISSANC | .891  | .861     | 1.000    | .894        | .746  | .689     | .552    |
| VITESSE  | .720  | .693     | .894     | 1.000       | .491  | .532     | .363    |
| POIDS    | .813  | .905     | .746     | .491        | 1.000 | .917     | .791    |
| LONGUEUR | .747  | .864     | .689     | .532        | .917  | 1.000    | .864    |
| LARGEUR  | .611  | .709     | .552     | .363        | .791  | .864     | 1.000   |

Tolerance

 $= 1-R^2(X, autres X)$ 

VIF = 1/Tolerance)

Problème si VIF > 3, inacceptable si VIF > 10

#### Coefficients

|          | Collinearity Statistics |        |  |
|----------|-------------------------|--------|--|
|          | Tolerance               | VIF    |  |
| CYLINDRE | .094                    | 10.608 |  |
| PUISSANC | .052                    | 19.071 |  |
| VITESSE  | .085                    | 11.738 |  |
| POIDS    | .056                    | 17.880 |  |
| LONGUEUR | .068                    | 14.631 |  |
| LARGEUR  | .225                    | 4.449  |  |



#### Régression PLS sur les données incomplètes

 $R^2 = 0.761$ 

Équation sur les données centrées-réduites (CoeffCS)

$$\frac{\text{Pr}\,ix}{\sigma(\text{Pr}\,ix)} = 2.18 + 0.183 \text{Cylindr\'ee*} + 0.206 \text{Puissance*} + 0.146 \text{Vitesse*}$$

$$+ 0.165 \text{Poids*} + 0.153 \text{Longueur*} + 0.129 \text{Largur*}$$

Équation sur les données d'origine (Coeff)

Équation sur les données d'origine pour Y et centrées pour X (CoeffC)





## Résultats de la validation croisée sur les coefficients de régression PLS

|           | В      | SE     | Student T | p-value |
|-----------|--------|--------|-----------|---------|
| Cylindrée | 0.1827 | 0.0371 | 4.925     | 0.0001  |
| Puissance | 0.2060 | 0.0570 | 3.614     | 0.0005  |
| Vitesse   | 0.1465 | 0.0430 | 3.407     | 0.0002  |
| Poids     | 0.1653 | 0.0181 | 9.133     | 0.0001  |
| Longueur  | 0.1525 | 0.0175 | 8.714     | 0.0001  |
| Largeur   | 0.1286 | 0.0299 | 4.301     | 0.0001  |











Prédiction du prix de la HONDA CIVIC (WS) (Problème : certains X sont manquants)

Prix de vente: 83 700 FF

|           | Caractéristiques<br>de la Honda Civic | Caractéristiques<br>centrées-réduites |
|-----------|---------------------------------------|---------------------------------------|
| Cylindrée | ?                                     | ?                                     |
| Puissance | 90                                    | 61009                                 |
| Vitesse   | 174                                   | 32011                                 |
| Poids     | 850                                   | -1.10172                              |
| Longueur  | 369                                   | -1.23196                              |
| Largeur   | 166                                   | 32679                                 |

57/200

### Prédiction du Prix de la HONDA CIVIC (WS)

#### Régression du Prix sur t<sub>1</sub>:

$$\frac{\text{Prix} - 125512}{57503} \approx \underbrace{0.4045789}_{\mathbf{c}} \times t_{1}$$

#### $\underline{Calcul\ de\ t_1\ pour\ la\ HONDA\ CIVIC\ :}$

$$t_1(Honda\ Civic) = \frac{w_{12}Puissance_1^* + ... + w_{16}Largeur_1^*}{w_{12}^2 + ... + w_{16}^2} = -1.80941$$

|                  | Honda Civic |                  | w[1]     |
|------------------|-------------|------------------|----------|
| CYLINDREE        | ?           | CYLINDREE        | 0.450655 |
| <b>PUISSANCE</b> | -0.61009    | <b>PUISSANCE</b> | 0.508011 |
| VITESSE          | -0.32011    | VITESSE          | 0.361203 |
| POIDS            | -1.10172    | POIDS            | 0.407744 |
| LONGUEUR         | -1.23196    | LONGUEUR         | 0.376267 |
| LARGEUR          | -0.32679    | LARGEUR          | 0.317074 |

#### Prédiction du Prix:

| Prix calculé                     |
|----------------------------------|
| = 125512 + 0.4046*(-1.809)*57503 |
| = 83417 FF                       |

# Prédiction du prix de la FERRARI (PS) (Problème : certains X sont manquants)

|                  | Mean    | Std.dev | Ferrari | Ferrari (c-r) |
|------------------|---------|---------|---------|---------------|
| CYLINDREE        | 1887.7  | 459.31  | 4943    | 6.65          |
| <b>PUISSANCE</b> | 112.05  | 36.1422 | 428     | 8.74          |
| VITESSE          | 181.95  | 24.8352 | 310     | 5.16          |
| POIDS            | 1112.75 | 238.49  | 1517    | 1.70          |
| LONGUEUR         | 421.7   | 42.7774 | 449     | 0.64          |
| LARGEUR          | 168.4   | 7.34417 | ?       |               |
| PRIX             | 125513  | 57503.6 |         |               |

59/200

#### Prédiction du Prix de la Ferrari

Régression du Prix sur 
$$t_1$$
: 
$$\frac{Prix - 125513}{57503.6} \approx 0.4045789 \times t_1$$

#### Calcul de tPS<sub>1i</sub>,..., tPS<sub>mi</sub> pour une nouvelle observation $x_i$ :

- Régression de X sur  $t_1, ..., t_m$ :  $X = t_1 p_1' + ... + t_m p_m' + résidu_{WS} \implies les p_h$
- Régression de  $x_i$  sur  $p_1, ..., p_m$ :  $x_i = tPS_{1i}p_1 + ... + tPS_{mi}p_m + résidu_{PS}$  calculée sur les données disponibles; d'où le calcul des  $tPS_{hi}$
- On cherche les  $tPS_{hi}$  minimisant la distance entre  $x_i$  et le modèle.

#### Prédiction du prix de la FERRARI (m = 1)

- $tPS_1(Ferrari) = 11.376$  estimation de  $t_{1.25}$
- On utilise tPS1 à la place de  $t_1$

⇒ Prédiction du Prix = 390 172 FF

# Prédiction du Prix de la Ferrari : calcul de tPS<sub>1</sub> (Ferrari)

|           | $P_1$ |
|-----------|-------|
| Cylindrée | 0.48  |
| Puissance | 0.45  |
| Vitesse   | 0.37  |
| Poids     | 0.39  |
| Longueur  | 0.39  |
| Largeur   | 0.36  |

$$\mathbf{x}_{\text{Ferrari}} = \begin{pmatrix} 6.65 \\ 8.74 \\ 5.16 \\ 1.70 \\ 0.64 \\ ? \end{pmatrix} \approx tPS_{1}(\text{Ferrari}) \times \begin{bmatrix} 0.48 \\ 0.45 \\ 0.37 \\ 0.39 \\ 0.39 \\ 0.36 \end{bmatrix}$$

 $\Rightarrow$  tPS<sub>1</sub>(Ferrari) = 11.376

61/200

Régression PLS1 : Cas UOP Guided Wave Problème : 226 variables X et 26 observations

#### Les données :

- Y = indice d'octane
- $X_1, X_2, ..., X_{226}$ : valeurs d'absorbance à différentes longueurs d'onde
- Données de calibration :
   26 échantillons d'essence (dont 2 avec alcool)
- Données de validation :
   13 échantillons d'essence (dont 4 avec alcool)







# Régression PLS1 : les résultats

- Données de spectroscopie
   Les données sont centrées, mais non réduites
- Validation croisée :
   3 composantes PLS









#### Orthogonal Signal Correction

- Filtrage des X pour diminuer la partie des X non corrélée à Y : E=XA
- On recherche une décomposition de X de la forme

$$X = t_{osc.1}p_1' + ... + t_{osc.m}p_m' + E$$

avec:

- (1) Les composantes  $t_{osc,j} = Xw_j$  sont orthogonales.
- (2) Les composantes  $t_{osc,j}$  sont (à peu près) orthogonales aux Y.
- (3) Les  $p_m$  et le résidu E sont obtenus par régression multiple de X sur  $t_{osc.1},...,t_{osc.m}$ .
- (4)  $D = t_{osc,1}p_1' + ... + t_{osc,m}p_m'$  représente la partie des X (à peu près) non corrélée à Y
- (5)  $E = X D = X(I w_1p_1' + ... + w_mp_m')$  représente un filtrage des X.
- On effectue la régression PLS de Y sur E.

71/200

# Recherche des t<sub>h</sub> (Procédure de Wold et al.)

- (1) On réalise une ACP des X

  ==> première composante principale t<sub>osc.1.initial</sub>
- (2) On fait une régression de  $t_{osc,1, initial}$  sur Y:  $t_{osc,1, initial} = Yb + t_1^*$
- (3) On fait une régression PLS de  $t_1^*$  ( $\perp$  à Y) sur X avec toutes les composantes ==>  $t_{osc,1,\,new} = Xw_1$ .

  La composante  $t_{osc,1,new}$  est peu corrélée à Y et explique bien X.
- (4) On itère (2) et (3) jusqu'à convergence  $\implies$   $t_{osc.1}$ .
- (5) On régresse X sur  $t_{osc,1}$ :  $X = t_{osc,1}p_1' + E_1$
- (6) Pour obtenir  $t_{osc,2}$  on recommence la procédure en remplaçant X par  $E_1$ . Et ainsi de suite pour les autres composantes.

## Choix du nombre de composantes t<sub>osc,h</sub>

(1) On déduit de  $X = t_{osc,1}p_1' + E_1$  la décomposition

$$\sum_{j} Var(X_{j}) = Var(t_{osc,1}) \sum_{j} p_{1j}^{2} + \sum_{j} Var(E_{1j})$$

(2) On mesure la part de X restituée par E<sub>1</sub> par

$$\sum_{j} Var(E_{1j}) / \sum_{j} Var(X_{j})$$

- (3) On conserve t<sub>osc,1</sub> si
  - $t_{osc,1}$  suffisamment orthogonal à Y
  - $t_{osc,1}$  explique suffisamment X : (Règle de Wold)

"Eigenvalue" = 
$$Var(t_{osc,1}) \left[ \sum_{j} p_{1j}^{2} \right] / \frac{1}{Min(n,p)} \sum_{j} Var(X_{j}) > 1 \text{ ou } 2$$

Et de même pour les autres composantes.

valeur propre moyenne de l'ACP

#### Application à la prédiction de l'indice d'octane

Régression PLS sur les données de calibration non filtrées sans les deux échantillons avec alcool







## Application à la prédiction de l'indice d'octane

Valeurs de t<sub>osc,1</sub>

| Obs ID    |             |
|-----------|-------------|
| (Primary) | OSC.t[1]    |
| M01       | 0.0003697   |
| M02       | 0.00474571  |
| M05       | 0.00364934  |
| L06       | 0.00095048  |
| H11       | -0.00256955 |
| H12       | -0.00573855 |
| L13       | -0.00841451 |
| L14       | 0.00269339  |
| L15       | 0.00381814  |
| H17       | 0.00319899  |
| M18       | 0.00064989  |
| H20       | -0.00134013 |
| L21       | -0.00678636 |
| H24       | -0.0034062  |
| H27       | -0.00306896 |
| L29       | 0.00081317  |
| L31       | 0.00305239  |
| H32       | 0.0081986   |
| L35       | 0.00015011  |
| H36       | 0.00530462  |
| L37       | -0.00315448 |
| H38       | 0.00551934  |
| H39       | -0.0087859  |
| L40       | 0.00015085  |
|           |             |

#### En résumé

- On régresse X sur t<sub>1</sub>, partie de X orthogonale à Y.
- D'où le résidu E<sub>1</sub>, données filtrées par OSC.
- Puis on réalise la régression PLS de Y sur le résidu E<sub>1</sub>

77/200

# Application à la prédiction de l'indice d'octane Comparaison entre les données brutes et les données filtrées

Comparaison entre les données brutes et les données filtrées par OSC



Données brutes



Données filtrées





## Les méthodes PLS

## II.2 Régression PLS2

81/200

## La régression PLS2

- Relier un bloc de variables à expliquer Y à un bloc de variables explicatives X.
- Possibilité de données manquantes.
- Il peut y avoir beaucoup plus de variables X que d'observations.
- Il peut y avoir beaucoup plus de variables Y que d'observations.

## La régression PLS2 : une idée de l'algorithme

Etape 1 : Recherche de m composantes <u>orthogonales</u>  $t_h = Xa_h$  et m composantes  $u_h = Yb_h$ , bien corrélées entre elles et explicatives de leur propre groupe.

Le nombre m est obtenu par validation croisée.

<u>Etape 2</u>: Régression de Y sur les composantes t<sub>h</sub>.

Etape 3 : Expression de la régression en fonction de X.

83/200

# $X_{2}$ $X_{2}$ $X_{1}$ $X_{2}$ $X_{1}$ $X_{1}$ $X_{2}$ $X_{1}$ $X_{2}$ $X_{1}$ $X_{2}$ $X_{2}$ $X_{3}$ $X_{4}$ $X_{1}$ $X_{1}$ $X_{2}$ $X_{3}$ $X_{4}$ $X_{1}$ $X_{2}$ $X_{3}$ $X_{4}$ $X_{1}$ $X_{2}$ $X_{3}$ $X_{4}$ $X_{5}$

Objectif de l'étape 1 de la régression PLS2

La régression PLS2 : une idée de l'étape 1 lorsqu'il n'y a pas de données manquantes

Pour chaque h = 1 à m, on recherche des composantes  $t_h = Xa_h$  et  $u_h = Yb_h$  maximisant le critère

$$Cov(Xa_h, Yb_h)$$

sous des contraintes de norme et d'orthogonalité entre  $t_h$  et les composantes précédentes  $t_1$ ,...,  $t_{h-1}$ .

85/200

## Interprétation du critère de Tucker

De Cov<sup>2</sup>(Xa<sub>h</sub>, Yb<sub>h</sub>)

= Cor<sup>2</sup>(Xa<sub>h</sub>, Yb<sub>h</sub>)\* Var(Xa<sub>h</sub>)\*Var(Yb<sub>h</sub>)
on déduit que la régression PLS réalise un
compromis entre l'analyse canonique
de X et Y, une ACP de X, et une ACP
« oblique » de Y.

# Variable Importance in the Prediction (VIP)

- Composantes PLS :  $t_h = X_{h-1}b_h$  , avec  $||b_h|| = 1$
- Importance de la variable  $x_j$  (j=1, p) pour <u>la prédiction</u> des  $y_k$  (k=1, q) dans un modèle à m composantes :

$$VIP_{mj} = \sqrt{\frac{p}{\sum_{h=1}^{m} \sum_{k=1}^{q} R^{2}(y_{k}; t_{h})} \sum_{h=1}^{m} \left[\sum_{k=1}^{q} R^{2}(y_{k}, t_{h})\right] b_{hj}^{2}}$$
Pouvoir prédictif de X<sub>i</sub>

- Moyenne des carrés des VIP = 1
- Variable importante pour la prévision si VIP > 0.8

87/200

## Régression PLS2

Exemple : Dégustation de thé

#### Les données

| Obs | Température | Sucré | Force | Citron | Sujet 1 | <br>Sujet 6 |
|-----|-------------|-------|-------|--------|---------|-------------|
| 1   | 1           | 1     | 1     | 1      | 4       | 5           |
| 2   | 1           | 2     | 2     | 1      | 2       | 8           |
| 3   | 1           | 3     | 3     | 2      | 6       | 6           |
| :   |             |       |       |        |         |             |
| 11  | 1           | 2     | 1     | 1      | 1       | 14          |
| :   |             |       |       |        |         |             |
| 18  | 3           | 3     | 1     | 2      | 12      | 15          |

| Température | Sucré            | Force      | Citron   |
|-------------|------------------|------------|----------|
| 1 = Chaud   | 1 = Pas de sucre | 1 = Fort   | 1 = Avec |
| 2 = Tiède   | 2 = 1 sucre      | 2 = Moyen  | 2 = Sans |
| 3 = Glacé   | 3 = 2 sucres     | 3 = Faible |          |

## Cas Dégustation de thé

- Bloc X
   Les 11 variables indicatrices des modalités de Température, Sucré, Force et Citron
- Bloc Y
   Les classements des sujets sont inversés
   (Le 1 devient 18, le 18 devient 1)

89/200

## Cas Dégustation de thé

Résultats de la régression PLS

• Validation croisée :

 $3 \text{ composantes}: t_h = Xw_h^* \text{ et } u_h = Yc_h$ 

• Équation de régression de  $Y_k$  sur  $t_1, ..., t_h$ :

$$Y_k = c_{1k}t_1 + c_{2k}t_2 + c_{3k}t_3 + r\acute{e}sidu$$

 Les variables X et Y sont représentées à l'aide des vecteurs w<sub>h</sub>\* et c<sub>h</sub>.

|      | Kesui   | tats de la | régressi  | on PLS |    |
|------|---------|------------|-----------|--------|----|
|      |         | Les vect   | teurs w*c | •      |    |
|      |         | Los voci   | COID W    |        |    |
|      |         | w*c[1]     | w*c[2]    | w*c[3] | 1  |
|      | CHAUD   | 0.346      | 0.432     | -0.393 |    |
|      | TIEDE   | -0.620     | -0.342    | 0.245  |    |
|      | GLACE   | 0.273      | -0.090    | 0.148  |    |
|      | SUCRE0  | 0.404      | -0.136    | 0.538  |    |
|      | SUCRE1  | -0.006     | 0.124     | -0.031 |    |
| w* - | SUCRE2  | -0.397     | 0.012     | -0.507 |    |
|      | FORT    | -0.150     | 0.289     | 0.125  |    |
|      | MOYEN   | 0.009      | 0.225     | -0.069 |    |
|      | LEGER   | 0.140      | -0.515    | -0.056 |    |
|      | CITRON1 | 0.171      | -0.358    | -0.316 |    |
|      | CITRON0 | -0.171     | 0.358     | 0.316  |    |
|      | _       |            |           |        |    |
|      | ( Y1    | 0.629      | 0.298     | -0.298 |    |
|      | Y2      | 0.726      | 0.188     | 0.146  |    |
| C    | ) Y3    | 0.235      | 0.630     | -0.203 |    |
| •    | Y4      | 0.530      | -0.062    | 0.538  |    |
|      | Y5      | -0.359     | 0.631     | 0.216  |    |
|      | Y6      | 0.561      | -0.263    | -0.035 | 91 |



## Règle d'interprétation

Les projections des variables X sur les variables Y reflètent le signe et l'ordre de grandeur des coefficients de régression PLS des Y sur X

93/200

## Cas dégustation de thé

Visualisation de la régression PLS de  $Y_1$  sur X





Le juge 1 aime son thé chaud et rejette le thé tiède













#### Construction des courbes de niveau

- On utilise la carte des produits et des caractéristiques dans le plan des composantes PLS (t<sub>1</sub>, t<sub>2</sub>).
- On représente dans ce plan les juges Y<sub>k</sub> à l'aide des points (3c<sub>k1</sub>, 3c<sub>k2</sub>).
- Pour chaque juge k le plan (t<sub>1</sub>, t<sub>2</sub>) est partagé en deux zones : la zone des « 1 » pour Y<sub>k</sub> estimé = c<sub>k1</sub>t<sub>1</sub> + c<sub>k2</sub>t<sub>2</sub> > 0 et la zone des « 0 » pour Y<sub>k</sub> estimé ≤ 0.
- Pour chaque point du plan (t<sub>1</sub>, t<sub>2</sub>) on détermine le % de « 1 »
   = % de juges classant le produit avec les caractéristiques correspondant à ce point au dessus de la moyenne.
- On résume tous ces pourcentages par des courbes de niveau.



## Typologie des juges

- Construire une typologie des juges en utilisant la part des préférences explicables par les caractéristiques des produits.
- Le vecteur c<sub>k</sub> = (c<sub>1k</sub>,c<sub>2k</sub>,c<sub>3k</sub>) représente la part des préférences du juge k expliquée par les caractéristiques des produits.
- On construit la typologie des juges à l'aide des c<sub>k</sub>.















## Les méthodes PLS

III. Analyse discriminante PLS

111/200

## Analyse discriminante PLS

• Bloc Y

La variable qualitative Y est remplacée par l'ensemble des variables indicatrices de ses modalités.

• Bloc X

Variables numériques ou indicatrices des modalités des variables qualitatives.

• Régression PLS2 de Y sur X

## Analyse discriminante PLS : exemple

Jellum E., Bjørnson I., Nesbakken R., Johanson E., Wold S.:

Classification of human cancer cells by means of capillary gas chromatography and pattern recognition analysis.

Journal of Chromatography, 1981

113/200

#### Analyse discriminante PLS : exemple

#### Les données

- 16 biopsies de tumeurs de cerveau humain.
- Chaque tumeur est classée par un médecin anatomo-pathologiste comme bénigne ou maligne.
- Chaque biopsie est analysée par chromatographie en phase gazeuse : on obtient un profil métabolique de la biopsie formé de 156 pics.
- Quelques données manquantes





















100 permutations, 2 composantes

Modèle validé : L'ordonnée à l'origine de la droite  $Q^2 < 0$ 

123/200

## Tableau de classification

- $Y_k > .65$   $\rightarrow$  Classé dans le groupe k (vert)
- $Y_k < .35$   $\rightarrow$  Non classé dans le groupe k (blanc)
- $.35 < Y_k < .65$   $\rightarrow$  pas de décision (orange)

|          | Members | Class 1 | Class 2 | No class | Class 1 & 2 |
|----------|---------|---------|---------|----------|-------------|
| Class 1  | 6       | 6       | 0       | 0        | 0           |
| Class 2  | 10      | 0       | 10      | 0        | 0           |
| No class | 0       | 0       | 0       | 0        | 0           |

## Classification des individus

|    | 1                | 2                    | 3                        | 4                    | 5                        |
|----|------------------|----------------------|--------------------------|----------------------|--------------------------|
| 1  | Obs ID (Primary) | M2.YVarPS(\$M2.DA10) | M2.YPredPS[2](\$M2.DA10) | M2.YVarPS(\$M2.DA20) | M2.YPredPS[2](\$M2.DA20) |
| 2  | N1               | 1                    | 0.882442                 | 0                    | 0.117558                 |
| 3  | T2               | 0                    | -0.0478299               | 1                    | 1.04783                  |
| 4  | T3               | 0                    | -0.0486789               | 1                    | 1.04868                  |
| 5  | N4               | 1                    | 1.0338                   | 0                    | -0.033801                |
| 6  | N5               | 1                    | 0.956843                 | 0                    | 0.043157                 |
| 7  | T6               | 0                    | 0.00467116               | 1                    | 0.995329                 |
| 8  | 17               | 0                    | -0.0498978               | 1                    | 1.0499                   |
| 9  | T8               | 0                    | 0.0652757                | 1                    | 0.934724                 |
| 10 | T9               | 0                    | 0.0377735                | 1                    | 0.962227                 |
| 11 | T10              | 0                    | -0.0115993               | 1                    | 1.0116                   |
| 12 | T11              | 0                    | -0.0400793               | 1                    | 1.04008                  |
| 13 | T12              | 0                    | -0.0156377               | 1                    | 1.01564                  |
| 14 | N13              | 1                    | 1.11554                  | 0                    | -0.115537                |
| 15 | N14              | 1                    | 0.919642                 | 0                    | 0.0803581                |
| 16 | N15              | 1                    | 1.01013                  | 0                    | -0.0101316               |
| 17 | T16              | 0                    | 0.189296                 | 1                    | 0.810704                 |

125/200

## Les méthodes PLS

#### IV. SIMCA

Soft Independent Modelling by Class Analogy

#### **SIMCA**

(Soft Independent Modelling of Class Analogy)

On réalise une analyse en composantes principales sur chaque classe *h* via NIPALS

- ⇒ Choix automatique du nombre de composantes.
  - Possibilité de données manquantes.

127/200

#### **SIMCA**

(Soft Independent Modelling of Class Analogy)



- Calcul de la distance entre chaque individu i et le modèle ACP de la classe *h*.
- Calcul de la
   « probabilité »
   d'appartenance de
   chaque individu à la
   classe h.

## Utilisation de SIMCA sur les 16 biopsies

- L'ACP des tumeurs bénignes conduit à 3 composantes.
- L'ACP des tumeurs malignes conduit à 4 composantes.
- Le Cooman's Plot permet de visualiser les distances de chaque biopsie aux deux classes.









## Les méthodes PLS

V. PLS Path Modelling (Approche PLS)

Modélisation de relations structurelles sur variables latentes





## Modélisation de relations structurelles L'approche PLS de Herman WOLD

- Etude d'un système de relations linéaires entre variables latentes (non observables).
- Chaque variable latente est décrite par des variables manifestes (observables).
- Les données sont quantitatives ou qualitatives (pas d'hypothèse de normalité).
- Le nombre d'observations peut être limité par rapport au nombre de variables.

## Inégalité économique et instabilité politique (Données de Russett, 1964)

#### Inégalité économique

#### Inégalité agricole

**GINI :** Inégalité dans la répartition des terres

**FARM :** % fermiers possédant la moitié des terres (> 50%)

**RENT:** % fermiers locataires

#### Développement industriel

**GNPR**: PNB par habitant (\$ 1955)

**LABO :** % d 'actifs dans l'agriculture

#### Instabilité politique

**INST :** Instabilité de l'exécutif (45-61)

**ECKS :** Nb de conflits violents entre communautés (46-61)

**DEAT :** Nb de morts dans des manifestations (50-62)

**D-STAB**: Démocratie stable **D-INS**: Démocratie instable

**DICT**: Dictature

137/200

# Inégalité économique et instabilité politique (Données de Russett, 1964)

#### 47 pays

|             | Gini | Farm | Rent | Gnpr | Labo | Inst | Ecks | Deat | régime |
|-------------|------|------|------|------|------|------|------|------|--------|
| Argentine   | 86.3 | 98.2 | 32.9 | 374  | 25   | 13.6 | 57   | 217  | 2      |
| Australie   | 92.9 | 99.6 | *    | 1215 | 14   | 11.3 | 0    | 0    | 1      |
| Autriche    | 74.0 | 97.4 | 10.7 | 532  | 32   | 12.8 | 4    | 0    | 2      |
| :           |      |      |      |      |      |      |      |      |        |
| France      | 58.3 | 86.1 | 26.0 | 1046 | 26   | 16.3 | 46   | 1    | 2      |
| :           |      |      |      |      |      |      |      |      |        |
| Yougoslavie | 43.7 | 79.8 | 0.0  | 297  | 67   | 0.0  | 9    | 0    | 3      |

- 1 = Démocratie stable
- 2 = Démocratie instable
- 3 = Dictature



### Inégalité économique et instabilité politique Le modèle

Chaque variable manifeste X<sub>jh</sub> s 'écrit :

$$X_{jh} = \, \pi_{jh} \xi_h \, + \, \epsilon_{jh}$$

• Il existe une relation structurelle entre les variables latentes :

Instabilité politique ( $\xi_3$ )

= 
$$\beta_1 \times \text{Inégalité}$$
 agricole  $(\xi_1) + \beta_2 \times \text{Dév.}$  industriel  $(\xi_2)$  + résidu

# Estimation des variables latentes par la méthode PLS

(1) Estimation externe  $Y_h$  de  $\xi_h$ :

$$Y_h = X_h w_h$$

(2) Estimation interne  $Z_h$  de  $\xi_h$ :

$$\boldsymbol{Z}_{h} = \sum_{\substack{j \neq h \\ \boldsymbol{\xi}_{j} \text{ reliée à } \boldsymbol{\xi}_{h}}} [signe(cor(\boldsymbol{\xi}_{j}, \boldsymbol{\xi}_{h}))] \boldsymbol{Y}_{j}$$

(3) Calcul de  $w_h$ :

$$w_{hj} = cor(Z_h, X_{hj})$$

141/200

#### Inégalité économique et instabilité politique Estimation des variables latentes par la méthode PLS

#### (1) Estimation externe

$$\mathbf{Y}_1 = \mathbf{X}_1 \mathbf{w}_1$$

$$\mathbf{Y}_2 = \mathbf{X}_2 \mathbf{w}_2$$

$$\mathbf{Y}_3 = \mathbf{X}_3 \mathbf{w}_3$$

#### (2) Estimation interne

$$Z_1 = Y_3$$

$$Z_2 = -Y_3$$

$$Z_3 = Y_1 - Y_2$$

#### (3) Calcul des w<sub>h</sub>

$$\boldsymbol{w}_{1j} = cor(\boldsymbol{X}_{1j} \;,\, \boldsymbol{Z}_{1})$$

$$\mathbf{w}_{2j} = \mathbf{cor}(\mathbf{X}_{2j}, \mathbf{Z}_2)$$

$$w_{3j} = cor(X_{3j}, Z_3)$$

#### L'algorithme

- On part de w<sub>1</sub>, w<sub>2</sub>, w<sub>3</sub> arbitraires.
- On obtient de nouveaux w<sub>h</sub> en utilisant (1) à (3).
- On itère jusqu'à convergence.



|                                                    | Résu                                     | ltats                           |
|----------------------------------------------------|------------------------------------------|---------------------------------|
| Outer Model                                        |                                          |                                 |
| Variable                                           | Weight                                   | Loading (Corrélation)           |
| farm                                               | .4567<br>.5125                           | .9745<br>.9857<br>.5156         |
| dev_indu<br>gnpr<br>labo                           | .5113                                    |                                 |
| inst_pol inst ecks deat demostab demoinst dictatur | .1187<br>.2855<br>.2977<br>3271<br>.0370 | .3676<br>.8241<br>.7910<br>8635 |

# Résultats

Eta .. Latent variables

|                                             | =======                                               | =======                                         | =======                                                |
|---------------------------------------------|-------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|
|                                             | ineg_agr                                              | dev_indu                                        | inst_pol                                               |
| arg<br>aus<br>aut<br>bel<br>bol<br>bré      | .964<br>1.204<br>.397<br>812<br>1.115<br>.778         | .238<br>1.371<br>.253<br>1.530<br>-1.584<br>654 | .755<br>-1.617<br>480<br>846<br>1.505                  |
| •                                           |                                                       |                                                 |                                                        |
| tai<br>ru<br>eu<br>uru<br>ven<br>rfa<br>you | 009<br>.134<br>.193<br>.699<br>1.149<br>212<br>-2.189 | 898 2.059 2.016 .179 .252 1.104654              | 068<br>-1.046<br>942<br>-1.298<br>1.135<br>494<br>.125 |

145/200

### Les résultats de PLS

#### Estimation des variables latentes

|             | $\mathbf{Y}_1$ | $\mathbf{Y}_2$ | $\mathbf{Y}_3$ |
|-------------|----------------|----------------|----------------|
| Argentine   | 0.96           | 0.24           | 0.75           |
| Australie   | 1.21           | 1.37           | -1.62          |
| Autriche    | 0.40           | 0.25           | -0.48          |
| :           |                |                |                |
| France      | -0.89          | 0.80           | 0.56           |
| :           |                |                |                |
| Yougoslavie | -2.18          | -0.65          | 0.13           |

Régression multiple de  $Y_3$  sur  $Y_1$  et  $Y_2$ 

 $R^2 = 0.618$ 

Instabilité politique
= 0.217×Inégalité agricole – 0.692×Développement industriel
(2.24) (-7.22)

(t de Sudent de la régression multiple)







# Utilisation de PLS-Graph

Validation Bootstrap

|                  | Entire<br>sample<br>estimate | Mean of subsamples |        | T-Statistic |
|------------------|------------------------------|--------------------|--------|-------------|
| Inégalité agrico | ole:                         |                    |        |             |
| gini             | 0.4567                       | 0.4514             | 0.0504 | 9.0674      |
| farm             | 0.5125                       | 0.5107             | 0.0519 | 9.8810      |
| rent             | 0.1018                       | 0.0862             | 0.1989 | 0.5118      |
| Développement in | dustriel:                    |                    |        |             |
| gnpr             | 0.5113                       | 0.5136             | 0.0246 | 20.8030     |
| labo             | -0.5384                      | -0.5375            | 0.0251 | -21.4424    |
| Instabilité poli | tique:                       |                    |        |             |
| inst             | 0.1187                       | 0.0992             | 0.0715 | 1.6604      |
| ecks             | 0.2855                       | 0.2765             | 0.0288 | 9.9173      |
| demostab         | -0.3271                      | -0.3261            | 0.0367 | -8.9145     |
| demoinst         | 0.0370                       | 0.0306             | 0.0595 | 0.6223      |
| dictatur         | 0.2758                       | 0.2803             | 0.0362 | 7.6143      |
| death            | 0.2977                       | 0.2940             | 0.0319 | 9.3465      |

# Utilisation de PLS-Graph

### Validation Bootstrap

| Outer Model Lo      | oadings:                     |                       |                   |             |  |  |  |
|---------------------|------------------------------|-----------------------|-------------------|-------------|--|--|--|
|                     | Entire<br>sample<br>estimate | Mean of<br>subsamples | Standard<br>error | T-Statistic |  |  |  |
| Inégalité agricole: |                              |                       |                   |             |  |  |  |
| gini                | 0.9745                       | 0.9584                | 0.0336            | 28.9616     |  |  |  |
| farm                | 0.9857                       | 0.9689                | 0.0329            | 29.9339     |  |  |  |
| rent                | 0.5156                       | 0.4204                | 0.2462            | 2.0946      |  |  |  |
| Développement ir    | ndustriel:                   |                       |                   |             |  |  |  |
| gnpr                | 0.9501                       | 0.9489                | 0.0121            | 78.3692     |  |  |  |
| labo                | -0.9551                      | -0.9536               | 0.0107            | -89.1493    |  |  |  |
| Instabilité poli    | itique:                      |                       |                   |             |  |  |  |
| inst                | 0.3676                       | 0.3347                | 0.1756            | 2.0932      |  |  |  |
| ecks                | 0.8241                       | 0.8138                | 0.0699            | 11.7920     |  |  |  |
| demostab            | -0.8635                      | -0.8520               | 0.0667            | -12.9419    |  |  |  |
| demoinst            | 0.1037                       | 0.0955                | 0.1611            | 0.6438      |  |  |  |
| dictatur            | 0.7227                       | 0.7195                | 0.0841            | 8.5915      |  |  |  |
| death               | 0.7910                       | 0.7977                | 0.0528            | 14.9773     |  |  |  |
| ==========          |                              |                       |                   | =========   |  |  |  |

151/200

# PLS-Graph: Validation Bootstap

#### Path Coefficients Table (Entire Sample Estimate):

|              | Inég. Agric. | Dev. Indust. | Instab. P | ol. |
|--------------|--------------|--------------|-----------|-----|
| Inég. Agric. | 0.0000       | 0.0000       | 0.0000    |     |
| Dev. Indust. | 0.0000       | 0.0000       | 0.0000    |     |
| Inst. Pol.   | 0.2170       | -0.6920      | 0.0000    |     |
|              |              |              |           |     |

Path Coefficients Table (Mean of Subsamples):

|              | Inég. Agric. | Dev. Indust. | Instab. | Pol. |
|--------------|--------------|--------------|---------|------|
| Inég. Agric. | 0.0000       | 0.0000       | 0.0000  |      |
| Dev. Indust. | 0.0000       | 0.0000       | 0.0000  |      |

Inst. Pol. 0.2328 -0.6743 0.0000

#### Path Coefficients Table (Standard Error):

|              | Inég. Agric. | Dev. Indust. | Instab. | Pol. |  |  |
|--------------|--------------|--------------|---------|------|--|--|
| Inég. Agric. | 0.0000       | 0.0000       | 0.0000  |      |  |  |
| Dev. Indust. | 0.0000       | 0.0000       | 0.0000  |      |  |  |
| Instabil     | 0.1272       | 0.0900       | 0.0000  |      |  |  |
|              |              |              |         |      |  |  |

Path Coefficients Table (T-Statistic)

|              | Inég. Agric. | Dev. Indust. | Instab. | Pol. |  |  |
|--------------|--------------|--------------|---------|------|--|--|
| Inég. Agric. | 0.0000       | 0.0000       | 0.0000  |      |  |  |
| Dev. Indust. | 0.0000       | 0.0000       | 0.0000  |      |  |  |
| Inst. Pol.   | 1.7054       | -7.6855      | 0.0000  |      |  |  |

### Validation de l'uni-dimensionalité d'un bloc (Fiabilité de l'outil de mesure)

### 1. AVE (Average Variance Explained)

De 
$$X_{j} = \lambda_{j} \xi + \epsilon_{j}$$
 et 
$$\sum Var(X_{j}) = \sum \lambda_{j}^{2} Var(\xi) + \sum Var(\epsilon_{j})$$

et  $Var(\xi) = 1$ , on déduit :

$$AVE = \frac{\sum \lambda_j^2}{\sum Var(X_j)}$$

Règle : AVE > 50%

153/200

### Validation de l'uni-dimensionalité d'un bloc

### 2. Indice de concordance (Composite Reliability)

De 
$$X_{j} = \lambda_{j} \xi + \epsilon_{j}$$
 et 
$$\sum X_{j} = \sum \lambda_{j} \xi + \sum \epsilon_{j}$$
 et 
$$Var(\xi) = 1, \text{ on déduit :}$$

$$IC = \frac{\left(\sum \lambda_{j}\right)^{2}}{Var(\sum X_{j})} = \frac{\left(\sum \lambda_{j}\right)^{2}}{\left(\sum \lambda_{j}\right)^{2} + \sum Var(\varepsilon_{j})}$$

Pour interpréter cet indice il faut supposer tous les  $\lambda_j > 0$ 

Règle: IC > .70

### Validation de l'uni-dimensionalité d'un bloc

### 3. Validité convergente

La corrélation entre chaque variable manifeste et sa variable latente doit être supérieure à 0.7 en valeur absolue

155/200

# Validité discriminante

- 1) Une variable manifeste doit être plus corrélée à sa propre variable latente qu'aux autres variables latentes
- 2) Chaque variable latente doit mieux expliquer ses propres variables manifestes que chaque autre variable latente :

$$AVE(\xi_h) > Cor^2(\xi_h, \xi_k) \text{ pour } k \neq h$$

# LES CAS PARTICULIERS DE LA METHODE PLS

- Analyse en composantes principales
- Analyse factorielle multiple
- Analyse canonique
- Analyse des redondances (ACPVI)
- Régression PLS
- Analyse canonique généralisée (Horst)
- Analyse canonique généralisée (Carroll)

157/200

# Les options de l'algorithme PLS

### Estimation externe

$$Y_i = X_i w_i$$

Mode A:

$$w_{jh} = cor(X_{jh}, Z_j)$$

Mode B:

$$w_j = (X_j'X_j)^{-1}X_j'Z_j$$

Estimation interne

$$Z_{j} = \sum e_{ji} Y_{i}$$

Schéma centroïde

 $e_{ii} = signe cor(Y_i, Y_i)$ 

Schéma factoriel

 $e_{ii} = cor(Y_i, Y_i)$ 

Schéma structurel

 $\begin{aligned} e_{ji} &= \text{coeff. de régression dans la} \\ &\quad \text{régression de } Y_j \text{ sur les } Y_i \end{aligned}$ 



# Modification de méthodes d'analyse multi-bloc pour l'analyse des modèles de causalité

c<sub>ik</sub> = 1 si les blocs sont reliés, = 0 sinon

| SUMCOR (Horst, 1961)                              | $Max\sum_{j,k}c_{jk}Cor(Y_j,Y_k)$                                                                                                                                                                                                |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mathes (1993), Hanafi (2004):                     | $Max\sum_{j,k}c_{jk}Cor^{2}(Y_{j},Y_{k})$                                                                                                                                                                                        |
| Mathes (1993), Hanafi (2004)                      | $Max\sum_{j,k}c_{jk}\mid Cor(Y_{j},Y_{k})\mid$                                                                                                                                                                                   |
| MAXBET (Van de Geer,<br>1984 & Ten Berge, 1988):  | $\max_{\text{All } \left \  \boldsymbol{w}_j \right \  = 1} \left [ \sum_{j} Var(\boldsymbol{X}_j \boldsymbol{w}_j) + \sum_{j \neq k} c_{jk} Cov(\boldsymbol{X}_j \boldsymbol{w}_j, \boldsymbol{X}_k \boldsymbol{w}_k) \right ]$ |
| MAXDIFF (Van de Geer,<br>1984 & Ten Berge, 1988): | $\max_{\text{All } [w_j]=1} [\sum\nolimits_{j\neq k} C_{jk} Cov(X_j w_j, X_k w_k)]$                                                                                                                                              |

Mathes-Hanafi 1 Mode B and Schéma factoriel
Mathes-Hanafi 2 Mode B and Schéma centroïde

# Approche PLS: 2 blocs



#### Mode de calcul des $w_j$

| $Y_1 = X_1 w_1$ | $\mathbf{Y}_2 = \mathbf{X}_2 \mathbf{w}_2$ | Méthode                                              | Déflation                            |
|-----------------|--------------------------------------------|------------------------------------------------------|--------------------------------------|
| A               | A                                          | Régression PLS de X <sub>2</sub> sur X <sub>1</sub>  | Sur X <sub>1</sub> seulement         |
| В               | A                                          | Analyse des redondances de $X_2$ par rapport à $X_1$ | Sur X <sub>1</sub> seulement         |
| A               | A                                          | Analyse Factorielle Inter-Batteries<br>de Tuker      | Sur X <sub>1</sub> et X <sub>2</sub> |
| В               | В                                          | Analyse canonique                                    | Sur X <sub>1</sub> et X <sub>2</sub> |

161/200

# Approche PLS: K blocs



Mode de calcul de  $Z_j = \sum e_{ji} Y_i$ 

| Mode de<br>calcul des w <sub>i</sub> | Centroïde                | Factoriel             | Structurel                             |
|--------------------------------------|--------------------------|-----------------------|----------------------------------------|
| A                                    | ACG de Horst<br>PLS      | ACG de Carroll<br>PLS | - ACP de X<br>- AFM des X <sub>i</sub> |
| В                                    | ACG de Horst<br>(SUMCOR) | ACG de Carroll        | Nouveau                                |

### Déflation:

sur le super-bloc seulement

# **Approche PLS**

Exemple d'utilisation de l'approche PLS pour l'analyse de tableaux multiples

(Christiane Guinot et Michel Tenenhaus)

Étude des habitudes de consommation de produits cosmétiques des femmes d'Ile de France

163/200

### Les données

Les produits cosmétiques ont été divisés en quatre blocs correspondant à différentes habitudes d'utilisation de produits cosmétiques. Body soap, liquid soap, moisturising body care cream, hand creams

Face removers, tonic lotions, day creams, night creams exfoliation products

Make
-up
blushers, mascaras, eye shadows,
eye pencils, lipsticks, lip shiners
and nail polish

Sun sun protection products for face and for body after-sun products for face and for body





### Calcul du score global

Score global

-3.40

-3.40
- .11 \* soaps and toilet soaps for body care
+.20 \* liquid soaps for body care
+.38 \* moisturising body creams and milks
+.25 \* hand creams and milks
+.21 \* make-up removers

+.21 \* make-up removers +.26 \* tonic lotions +.30 \* eye make-up removers +.39 \* moisturising day creams +.30 \* moisturising night creams +.30 \* exfoliation products +.26 \* blushers +.41 \* mascaras +.26 \* eye shadows +.20 \* eye pencils +.33 \* lipsticks and lip shiners +.20 \* nail polish

+.20 \* nail polish

+.36 \* sun protection products for the face

+.30 \* sun protection products for the face +.31 \* moisturising after sun products for the body +.38 \* sun protection products for the body +.34 \* moisturising after sun products for the body







| S_facial-care | S_body-care<br>0.24001 | S_facial-care | S_make-up | S_sun-care |
|---------------|------------------------|---------------|-----------|------------|
| S_make-up     | 0.13462                | 0.35035       |           |            |
| S_sun-care    | 0.16500                | 0.19075       | 0.14273   |            |
| S_global      | 0.50263                | 0.71846       | 0.67347   | 0.62071    |

169/200

# Facteurs influençant l'utilisation de produits cosmétiques

On peut relier le score global d'utilisation de produits cosmétiques à des caractéristiques décrivant les consommatrices :

- 7 Activité professionnelle et CSP
- 7 Enfants
- 7 Habitudes d'exposition solaire
- 7 Pratiques sportives
- 7 Importance de l'apparence physique
- 7 Type de peau (visage et corps)
- 7 Age

# Score global en fonction des caractéristiques des consommatrices

```
E(Score global) = -1.02

+ .21 * professional activity
+ .07 * housewife or student
+ .00 * retired
+ .27 * CSP A (craftsmen, trades people, business managers, managerial staff, academics and professionals)
+ .09 * CSP B (farmers and intermediary professions)
+ .05 * CSP C (employees and working class people)
+ .00 * CSP D (retired and non working people)
- .21 * without child
+ .00 * with child
+ .00 * habits of deliberate exposure to sunlight
+ .09 * previous habits of deliberate exposure to sunlight
+ .00 * no habits of deliberate exposure to sunlight
- .17 * no sport practised
+ .00 * physical appearance is of extreme importance
+ .89 * physical appearance is of high importance
+ .50 * physical appearance is of little importance
+ .00 * oily facial skin
+ .16 * combination facial skin
+ .20 * normal facial skin
- .20 * normal facial skin
- .32 * oily body skin
- .57 * combination body skin
- .32 * normal body skin
- .32 * normal body skin
- .00 * dry body skin
- .00 * dry body skin
- .00 * dry body skin
- .00 * age
```

### Exemple d'un bon profil

```
E(Global score)=

-1.02

+.21 * professional activity
+.07 * housewife or student
+.00 * retired
+.27 * CSP A (craftsmen, trades people, business managers, managerial staff, academics and professionals)

+.09 * CSP B (farmers and intermediary professions)
+.05 * CSP C (employees and working class people)
+.00 * CSP D (retired and non working people)
-.21 * without child
+.00 * with child
+.00 * with child
+.09 * previous habits of deliberate exposure to sunlight
+.09 * previous habits of deliberate exposure to sunlight
-.17 * no sport practised
+.00 * sport practised
+.00 * sport practised
+.104 * physical appearance is of extreme importance
+.89 * physical appearance is of high importance
+.89 * physical appearance is of high importance
+.50 * physical appearance is of little importance
-.06 * oily facial skin
+.16 * combination facial skin
-.20 * normal facial skin
-.20 * normal facial skin
-.32 * oily body skin
-.57 * combination body skin
-.32 * normal body skin
-.33 * normal body skin
-.32 * normal body skin
-.30 * dry body skin
-.00 * dry body skin
```

### Exemple d'un profil non cible

```
E(Score global)=

-1.02
+.21 * housewife or student
+.00 * retired
+.27 * CSP A (craftsmen, trades people, business managers, managerial staff, academics and professionals)
+.09 * CSP B (farmers and intermediary professions)
+.05 * CSP C (employees and working class people)
+.00 * CSP D (retired and non working people)
-.21 * without child
+.00 * with child
+.00 * mo habits of deliberate exposure to sunlight
+.00 * previous habits of deliberate exposure to sunlight
+.00 * no habits of deliberate exposure to sunlight
+.00 * no sport practised
+.00 * sport practised
+.00 * sport practised
+.50 * physical appearance is of extreme importance
+.89 * physical appearance is of some importance
+.00 * physical appearance is of some importance
+.00 * oily facial skin
+.16 * combination facial skin
+.16 * combination facial skin
+.00 * dry facial skin
-.32 * normal facial skin
-.32 * normal body skin
-.32 * combination body skin
-.00 * dry body skin
```

### Conclusion

L'utilisation de l'approche PLS a permis d'obtenir un score de la propension à utiliser des produits cosmétiques en équilibrant les différents types de produits cosmétiques de manière plus efficace que l'analyse en composantes principales.

# Les méthodes PLS

VI. Régression logistique PLS

175/200

# Qualité des vins de Bordeaux

Variables observées sur 34 années (1924 - 1957)

- TEMPERATURE : Somme des températures moyennes journalières
- SOLEIL : Durée d'insolation
- CHALEUR : Nombre de jours de grande chaleur
- PLUIE : Hauteur des pluies
- QUALITE DU VIN : Bon, Moyen, Médiocre

## Les données

|    | Température | Soleil | Chaleur | Pluie | Qualité |
|----|-------------|--------|---------|-------|---------|
| 1  | 3064        | 1201   | 10      | 361   | 2       |
| 2  | 3000        | 1053   | 11      | 338   | 3       |
| 3  | 3155        | 1133   | 19      | 393   | 2       |
| 4  | 3085        | 970    | 4       | 467   | 3       |
| 5  | 3245        | 1258   | 36      | 294   | 1       |
| 6  | 3267        | 1386   | 35      | 225   | 1       |
| 7  | 3080        | 966    | 13      | 417   | 3       |
| 8  | 2974        | 1189   | 12      | 488   | 3       |
| 9  | 3038        | 1103   | 14      | 677   | 3       |
| 10 | 3318        | 1310   | 29      | 427   | 2       |
| 11 | 3317        | 1362   | 25      | 326   | 1       |
| 12 | 3182        | 1171   | 28      | 326   | 3       |
| 13 | 2998        | 1102   | 9       | 349   | 3       |
| 14 | 3221        | 1424   | 21      | 382   | 1       |
| 15 | 3019        | 1230   | 16      | 275   | 2       |
| 16 | 3022        | 1285   | 9       | 303   | 2       |
| 17 | 3094        | 1329   | 11      | 339   | 2       |
| 18 | 3009        | 1210   | 15      | 536   | 3       |
| 19 | 3227        | 1331   | 21      | 414   | 2       |
| 20 | 3308        | 1366   | 24      | 282   | 1       |
| 21 | 3212        | 1289   | 17      | 302   | 2       |
| 22 | 3361        | 1444   | 25      | 253   | 1       |
| 23 | 3061        | 1175   | 12      | 261   | 2       |
| 24 | 3478        | 1317   | 42      | 259   | 1       |
| 25 | 3126        | 1248   | 11      | 315   | 2       |
| 26 | 3458        | 1508   | 43      | 286   | 1       |
| 27 | 3252        | 1361   | 26      | 346   | 2       |
| 28 | 3052        | 1186   | 14      | 443   | 3       |
| 29 | 3270        | 1399   | 24      | 306   | 1       |
| 30 | 3198        | 1259   | 20      | 367   | 1       |
| 31 | 2904        | 1164   | 6       | 311   | 3       |
| 32 | 3247        | 1277   | 19      | 375   | 1       |
| 33 | 3083        | 1195   | 5       | 441   | 3       |
| 34 | 3043        | 1208   | 14      | 371   | 3       |

177/200

# Régression logistique ordinale

Y = Qualité : Bon (1), Moyen (2), Médiocre (3)

 $PROB(Y \le i) =$ 

 $e^{\alpha_i + \beta_1 Temp\'erature + \beta_2 Soleil + \beta_3 Chaleur + \beta_4 Pluie}$ 

 $\overline{1 + e^{\alpha_i + \beta_1 Temp\acute{e}rature + \beta_2 Soleil + \beta_3 Chaleur + \beta_4 Pluie}}$ 

## Régression logistique ordinale Résultats SAS

Score Test for the Proportional Odds Assumption

Chi-Square = 2.9159 with 4 DF (p=0.5720)

Analysis of Maximum Likelihood Estimates

| Variable | DF | Parameter<br>Estimate | Standard<br>Error | Wald<br>Chi-Square | Pr ><br>Chi-Square |
|----------|----|-----------------------|-------------------|--------------------|--------------------|
| INTERCP1 | 1  | -2.6638               | 0.9266            | 8.2641             | 0.0040             |
| INTERCP2 | 1  | 2.2941                | 0.9782            | 5.4998             | 0.0190             |
| TEMPERA  | 1  | 3.4268                | 1.8029            | 3.6125             | 0.0573             |
| SOLEIL   | 1  | 1.7462                | 1.0760            | 2.6335             | 0.1046             |
| CHALEUR  | 1  | -0.8891               | 1.1949            | 0.5536             | 0.4568             |
| PLUIE    | 1  | -2.3668               | 1.1292            | 4.3931             | 0.0361             |

179/200

# Régression logistique ordinale

Qualité de prévision du modèle

| QUALITE<br>OBSERVEE | PREVIS | ION |    |         |
|---------------------|--------|-----|----|---------|
| Effectif            | 1      | 2   | 3  | Total   |
| 1                   | 8      | 3   | 0  | 11      |
| 2                   | 2      | 8   | 1  | 11      |
| 3                   | 0      | 1   | 11 | 12      |
| Total               | 10     | 12  | 12 | 7<br>34 |

Résultat : 7 années mal classées

## Régression logistique ordinale Commentaires

- Le modèle à pentes égales est acceptable (p = 0.572).
- La chaleur a une influence positive sur la qualité du vin de Bordeaux, alors qu'elle apparaît comme non significative et avec un coefficient négatif dans le modèle.
- C'est un problème de multicolinéarité.
- Il y a 7 années mal classées.

181/200

# Régression logistique PLS

- Bonne solution au problème de la multicolinéarité.
- Il peut y avoir beaucoup plus de variables que d'observations.
- Il peut y avoir des données manquantes.
- Présentation de deux algorithmes.

### Algorithme 1:

# La régression logistique PLS avec sélection de variables

Etape 1 : Recherche de  $\underline{m}$  composantes orthogonales  $T_h = Xa_h$  explicatives de leur propre groupe et bien prédictives de y.

Le nombre <u>m</u> correspond au nombre de composantes significatives.

Etape 2 : Régression logistique de Y sur les composantes  $T_h$ .

<u>Etape 3</u>: Expression de la régression logistique en fonction de X.

183/200

## Régression logistique PLS Étape 1 : Construction de T<sub>1</sub>

- 1. Régression logistique de y sur chaque  $x_j$ :
  - $\Rightarrow$  les coefficients de régression  $a_{1j}$

Les coefficients de régression  $a_{\scriptscriptstyle 1j}$  non significatifs sont mis à 0. Seules les variables significatives contribuent à la construction de  $T_1$ .

- 2. Normalisation du vecteur  $a_1 = (a_{11}, ..., a_{1k})$
- 3. Calcul de  $T_1 = Xa_1$
- 4. Régression logistique de y sur T<sub>1</sub>=Xa<sub>1</sub> exprimée en fonction des X

# Application Bordeaux Étape 1 : Construction de T<sub>1</sub>

### Les quatre régressions logistiques :

|             | Coefficient | p-value |
|-------------|-------------|---------|
| Température | 3.0117      | .0002   |
| Soleil      | 3.3401      | .0002   |
| Chaleur     | 2.1445      | .0004   |
| Pluie       | -1.7906     | .0016   |

### La composante PLS T<sub>1</sub>:

$$T_{1} = \frac{3.0117 \, Temp\'{e}rature + 3.3401 \, Soleil + 2.1445 \, Chaleur - 1.7906 \, Pluie}{\sqrt{(3.0117)^{2} + (3.3401)^{2} + (2.1445)^{2} + (-1.7906)^{2}}}$$

= 0.5688 Température + 0.6309 Soleil + 0.4050 Chaleur - 0.3382 Pluie

185/200

## **Application Bordeaux**

# Étape 2 : Régression logistique sur T<sub>1</sub>

#### Analysis of Maximum Likelihood Estimates

|    |                   | Standard              | jaro                                               |                                         |  |
|----|-------------------|-----------------------|----------------------------------------------------|-----------------------------------------|--|
| DF | Estimate          | Error                 | Chi-Square                                         | Pr > ChiSq                              |  |
| 1  | -2.2650           | 0.8644                | 6.8662                                             | 0.0088                                  |  |
| 1  | 2.2991            | 0.8480                | 7.3497                                             | 0.0067                                  |  |
| 1  | 2.6900            | 0.7155                | 14.1336                                            | 0.0002                                  |  |
|    | DF<br>1<br>1<br>1 | 1 -2.2650<br>1 2.2991 | DF Estimate Error 1 -2.2650 0.8644 1 2.2991 0.8480 | DF Estimate Error Chi-Square  1 -2.2650 |  |

#### TABLEAU CROISANT QUALITÉ OBSERVÉE ET PRÉDITE

| QUAL TTÉ | PRÉDICTION |
|----------|------------|

| Effectif | 1  | 2  | 3  | Total |
|----------|----|----|----|-------|
| 1        | 9  | 2  | 0  | 11    |
| 2        | 2  | 8  | 1  | 11    |
| 3        | 0  | 1  | 11 | 12    |
| Total    | 11 | 11 | 12 | 34    |

6 mal classés

### **Application Bordeaux**

### Étape 3 : Régression logistique en fonction des X

$$Prob(Y=1) = \frac{e^{-2.265 + 1.53 \times Temp\'erature + 1.70 \times Soleil + 1.09 \times Chaleur - .91 \times Pluie}}{1 + e^{-2.5265 + 1.53 \times Temp\'erature + 1.70 \times Soleil + 1.09 \times Chaleur - .91 \times Pluie}}$$

et

$$Prob(Y \leq 2) = \frac{e^{2.2991 + 1.53 \times Temp\acute{e}rature + 1.70 \times Soleil + 1.09 \times Chaleur - .91 \times Pluie}}{1 + e^{2.2991 + 1.53 \times Temp\acute{e}rature + 1.70 \times Soleil + 1.09 \times Chaleur - .91 \times Pluie}}$$

<u>Commentaires</u>: Ce modèle est plus cohérent au niveau des coefficients de régression que le modèle de régression logistique ordinale usuelle et conduit ici à un mal classé de moins sur l'échantillon utilisé.

187/200

### **Application Bordeaux**

Validation Bootstrap du modèle à une composante (100 échantillons)



#### **Application Bordeaux**

Validation Bootstrap du modèle à une composante Intervalle de confiance à 95% des coefficients



189/200

## Régression logistique PLS Construction de T<sub>2</sub>

- 1. Régression logistique de y sur  $T_1$  et chaque variable  $x_j$ . Pour construire  $T_2$  on ne sélectionne que les variables  $x_i$  significatives.
- 2. On construit les résidus  $x_{1j}$  des régressions des  $x_j$  sélectionnés sur  $T_1$ .
- 3. On construit les régressions logistiques de y sur  $T_1$  et chaque  $x_{1j}$  retenu.
  - $\Rightarrow$  les coefficients de régression  $b_{2j}$  de  $x_{1j}$ .
- 4. Normalisation du vecteur  $b_2 = (b_{21},...,b_{2k})$
- 5. Calcul de  $a_2$  tel que :  $T_2 = X_1b_2 = Xa_2$
- 6. Régression logistique de y sur  $T_1$ =  $Xa_1$  et  $T_2$  =  $Xa_2$  exprimée en fonction des X

### Application Bordeaux Sélection des variables contribuant à la construction de T<sub>2</sub>

### Régression logistique de la qualité sur $\mathbf{T}_1$ et chaque $\mathbf{X}$

|             | Coefficient | p-value |
|-------------|-------------|---------|
| Température | 6309        | .6765   |
| Soleil      | .6459       | .6027   |
| Chaleur     | -1.9407     | .0983   |
| Pluie       | 9798        | .2544   |

<u>Commentaires</u>: En choisissant un risque de 5% on décide donc de ne conserver qu'une seule composante PLS.

191/200

# Algorithme 2 Régression logistique sur composantes PLS

- (1) Régression PLS des indicatrices de Y sur les X.
- (2) Régression logistique de Y sur les composantes PLS des X.

### Régression logistique sur les composantes PLS Résultats

- La température de 1924 est supposée inconnue.
- La régression PLS des indicatrices de Y sur X a conduit à une seule composante PLS t<sub>1</sub> (résultat de la validation croisée).
- $t_1 = 0.55 \times Temp\'{e}rature + 0.55 \times Soleil + 0.48 \times Chaleur 0.40 \times Pluie$
- Pour l'année 1924 :

 $t_1 = (0.55 \times Soleil + 0.48 \times Chaleur - 0.40 \times Pluie)/0.69$ 

193/200

# Utilisation de la régression PLS pour la prévision de la qualité du vin de Bordeaux



Minimum Root Mean PRESS = 0.830422 for 1 latent variable Smallest model with p-value > 0.1: 1 latent

| TABLE OF QUALITE BY PREV |                     |    |    |  |  |  |  |  |
|--------------------------|---------------------|----|----|--|--|--|--|--|
| QUALITE PREV             |                     |    |    |  |  |  |  |  |
| Frequency                | Frequency 1 3 Total |    |    |  |  |  |  |  |
| 1                        | 11                  | 0  | 11 |  |  |  |  |  |
| 2                        | 4                   | 7  | 11 |  |  |  |  |  |
| 3                        | 1                   | 11 | 12 |  |  |  |  |  |
| Total                    | 16                  | 18 | 34 |  |  |  |  |  |

# Choix d'une composante PLS

#### Résultat:

12 années mal classées

# Résultats de la régression logistique de Y sur la composante PLS t<sub>1</sub>

Analysis of Maximum Likelihood Estimates

|          |    | Parameter | Standard | Wald       | Pr >       |
|----------|----|-----------|----------|------------|------------|
| Variable | DF | Estimate  | Error    | Chi-Square | Chi-Square |
|          |    |           |          |            |            |
| INTERCP1 | 1  | -2.1492   | 0.8279   | 6.7391     | 0.0094     |
| INTERCP2 | 1  | 2.2845    | 0.8351   | 7.4841     | 0.0062     |
| t1       | 1  | 2.6592    | 0.7028   | 14.3182    | 0.0002     |

TABLEAU CROISANT QUALITÉ OBSERVÉE ET PRÉDITE

| 40/12112 |   | 20.1 |    |       |
|----------|---|------|----|-------|
| Effectif | 1 | 2    | 3  | Total |
| 1        | 9 | 2    | 0  | 11    |
| 2        | 2 | 8    | 1  | 11    |
| 3        | 0 | 1    | 11 | 12    |
|          |   |      |    | Γ     |

PRÉDICTION

QUALITÉ

### Résultat:

6 années mal classées

195/200

### Régression logistique sur composantes PLS Le modèle

# Prob $(Y \le i)$

$$= \frac{e^{-2.15 \times Bon + 2.28 \times Moyen + 2.66 \times t_1}}{1 + e^{-2.15 \times Bon + 2.28 \times Moyen + 2.66 \times t_1}}$$

$$=\frac{e^{-2.15\times Bon+2.28\times Moyen+1.47\times Temp.+1.46\times Soleil+1.28\times Chaleur-1.07\times Pluie}}{1+e^{-2.15\times Bon+2.28\times Moyen+1.47\times Temp.+1.46\times Soleil+1.28\times Chaleur-1.07\times Pluie}}$$

# Conclusion 1: Régression logistique PLS vs régression logistique sur composantes PLS

- Les deux algorithmes présentés devraient avoir des qualités comparables.
- L'algorithme 2 est beaucoup plus simple : <u>Deux étapes :</u>
  - (1) Régression PLS des indicatrices de Y sur X
  - (2) Régression logistique de Y sur les composantes PLS

197/200

### Conclusion 2: La régression linéaire généralisée PLS

- La régression linéaire généralisée PLS peut être construit selon les mêmes procédures.
- Approche beaucoup plus simple que la méthode de Brian Marx : « Iteratively Reweighted Partial Least Square Estimation for Generalized Linear Regression », *Technometrics*, 1996.

### Quelques références sur les méthodes PLS

### **Régression PLS**

- L. Eriksson, E. Johansson, N. Kettaneh-Wold & S. Wold: Multi- and Megavariate Data Analysis using Projection Methods (PCA & PLS), 2nd edition Umetrics, 2005.
- H. Martens & M. Martens: Multivariate Analysis of Quality, Wiley, 2000
- SIMCA-P 10.0 : PLS Software, S. WOLD, UMETRI (Sweden), distribué par SIGMA PLUS, 29 rue Lauriston, 75016 Paris
- M. Tenenhaus: La régression PLS, Editions Technip, 1998
- P. Bastien, V. Esposito Vinzi, M. Tenenhaus: PLS generalized linear regression, *Computational Statistics & Data Analysis*, 2005

#### **Approche PLS (PLS Path modeling)**

- J.-B. Lohmöller: *Latent variable path modeling with partial least squares*, Physica-Verlag, 1989
- CHIN W.W. (2003): *PLS-Graph User's Guide*, C.T. Bauer College of Business, University of Houston, Houston.
- M. Tenenhaus: L'approche PLS, R.S.A., 47 (2), 5-40, 1999
- M. Tenenhaus, V. Esposito Vinzi, Y.-M. Chatelin, C. Lauro: PLS Path modeling, Computational Statistics & Data Analysis, 2005

199/200

## Conclusion générale



The proof of the pudding is in the eating.