ML Final Project: Water Meter Recognition

LEARNING MACHINE GROUP
21052222 KAI WANG
5.31.2023

Contends

- 1.Introduction
- 2.My Solution: A Three Stage Network
 - 2.1 Rotation Regression
 - 2.2 Object Detection
 - 2.3 Digits Recognition
- 3.Performance & Model Evaluation
- 4.End Part: Code, Problems and How to improve it

Introduction

Task description

Annotations

Coordinates of bounding box

$$(x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4)$$
, "000092", "00093"

Introduction

Challenges:

A universal solution for tasks like this:

Segmentation: DB + **Recognition**: CRNN

My Solution:

3-Stage Network

I. Rotation Regression Network

3-Stage Network

II. Object Detection Network

Preparation

Faster RCNN

3-Stage Network

III. Digits Recognition Network

ConvNet

Fixed length \rightarrow convolution only works not bad.

↓ (Casually designed by myself)

Performance Evaluation

I. Rotation Regression Network Evaluation

Before processing After processing

Metrics:

Train Set: Deviation angle $\leq 5^{\circ}$ 95.5%+ Deviation angle $\leq 10^{\circ}$ 99.0%+

Valid Set: Deviation angle <= 5° 93.5%+

Deviation angle <=10° 98.5%+

Performance Evaluation

II. Object Detection Network Evaluation

00300	00143	00775	00682	00538	00278	008912	00744	00238	n 0 2 2 1
test_seg_1.jpg	test_seg_2.jpg	test_seg_3.jpg	test_seg_4.jpg	test_seg_5.jpg	test_seg_6.jpg	test_seg_7.jpg	test_seg_8.jpg	test_seg_9.jpg	test_seg_10.jpg
test_seg_11.jpg	test_seg_12.jpg	test_seg_13.jpg	test_seg_14.jpg	test_seg_15.jpg	test_seg_16.jpg	test_seg_17.jpg	test_seg_18.jpg	test_seg_19.jpg	test_seg_20.jpg
test_seg_21.jpg	test_seg_22.jpg	test_seg_23.jpg	test_seg_24.jpg	test_seg_25.jpg	test_seg_26.jpg	test_seg_27.jpg	test_seg_28.jpg	test_seg_29.jpg	test_seg_30.jpg
test_seg_31.jpg	test_seg_32.jpg	test_seg_33.jpg	test_seg_34.jpg	test_seg_35.jpg	test_seg_36.jpg	test_seg_37.jpg	test_seg_38.jpg	test_seg_39.jpg	test_seg_40.jpg
test_seg_41.jpg	test_seg_42.jpg	test_seg_43.jpg	test_seg_44.jpg	test_seg_45.jpg	test_seg_46.jpg	test_seg_47.jpg	test_seg_48.jpg	test_seg_49.jpg	test_seg_50.jpg
test_seg_51.jpg	test_seg_52.jpg	test_seg_53.jpg	test_seg_54.jpg	test_seg_55.jpg	test_seg_56.jpg	test_seg_57.jpg	test_seg_58.jpg	test_seg_59.jpg	test_seg_60.jpg
test_seg_61.jpg	test_seg_62.jpg	test_seg_63.jpg	test_seg_64.jpg	test_seg_65.jpg	test_seg_66.jpg	test_seg_67.jpg	test_seg_68.jpg	test_seg_69.jpg	test_seg_70.jpg
test_seg_71.jpg	test_seg_72.jpg	test_seg_73.jpg	test_seg_74.jpg	test_seg_75.jpg	test_seg_76.jpg	test_seg_77.jpg	test_seg_78.jpg	test_seg_79.jpg	test_seg_80.jpg

Metrics:

 $mAP = 0.85 \qquad mAP(IoU > 0.5) = 0.99 \qquad mAP(IoU > 0.75) = 0.97$

Performance Evaluation

III. Digits Recognition Network Evaluation

Bottleneck: **Digits Recognition**, overfitting problem

End Part

Code available at: https://github.com/iaoqian/water_meter_recognition

Thank you!