Visualizing Relationship Between Variables

Visualizando múltiplas informações num único gráfico

Com o objetivo de explorar a relação entre as informações, vamos novamente utilizar a base do National Center for Health Statistics sobre tendências de mortalidade nos Estados Unidos ao longo dos anos que pode ser encontrada clicando aqui.

Bibliotecas

```
library(readr)
library(dplyr)
library(ggplot2)
```

Importando o dataset

Campo Significado

Year Ano de Nascimento

Race A raça da população avaliada

Campo	Significado
	Sexo da população avaliada A expectativa de vida em anos dado o ano do nascimento
Age.adjusted.Death.Rate	Taxa de mortalidade ajustada por idade de pessoas nascidas em um determinado ano

Padronizando nome dos campos

Diferenciando por cor

Acima vimos que a base possui informações da média de anos de vida a cada ano de acordo com gênero e raça. No primeiro exercício fizemos gráficos sem distinguir essas informações, já aqui queremos compara-las.

Diferenciando por tipo de linha

Aqui utilizei o elemento cor para diferenciar a Raça, enquanto usei tipos de linhas distintos para o Gênero.

Warning: Removed 4 row(s) containing missing values (geom_path).

Dando zoom no gráfico

Ou em outras palavras, alterando os limites das extremidades. A visualização do gráfico por volta de 1920 ficou um pouco ruim, e seria legal "dar um zoom" para entender melhor. Uma alternativa é filtrar esse período no tempo e criar um gráfico a partir de um novo objeto.

No entanto uma alternativa é adicionar uma camada ao gráfico que determina os limites dos eixos.

```
base_sex_race %>%
  ggplot(aes(x=Year,y=Avg_Life_Expect, color= Race, lty=Sex)) +
  geom_line() +
  xlim(1900,1950)
```

Warning: Removed 272 row(s) containing missing values (geom_path).

Melhorando a estilização do gráfico

As cores e tipos de linhas default podem não ser a melhor escolha, por isso é possível adicionar uma camada no gráfico para atribuir o tema que achar melhor.

```
base_sex_race %>%
  ggplot(aes(x=Year,y=Avg_Life_Expect, color= Race, lty=Sex)) +
  geom_line() +
  scale_color_manual(values = c("purple", "green")) +
  scale_linetype_manual(values = c(1,5))
```

Warning: Removed 4 row(s) containing missing values (geom_path).

Temos 7 opções de linhas:

- 0. blank
- 1. solid
- 2. dashed
- 3. dotted
- 4. dotdash
- 5. longdash
- 6. twodash

E para saber as cores disponíveis basta executar a função abaixo

colors() %>% head(50)

##	[1]	"white"	"aliceblue"	"antiquewhite"	"antiquewhite1"
##	[5]	"antiquewhite2"	"antiquewhite3"	"antiquewhite4"	"aquamarine"
##	[9]	"aquamarine1"	"aquamarine2"	"aquamarine3"	"aquamarine4"
##	[13]	"azure"	"azure1"	"azure2"	"azure3"
##	[17]	"azure4"	"beige"	"bisque"	"bisque1"
##	[21]	"bisque2"	"bisque3"	"bisque4"	"black"
##	[25]	$\verb"blanchedalmond"$	"blue"	"blue1"	"blue2"
##	[29]	"blue3"	"blue4"	"blueviolet"	"brown"

```
## [33] "brown1"
                          "brown2"
                                            "brown3"
                                                              "brown4"
                          "burlywood1"
                                            "burlywood2"
                                                              "burlywood3"
## [37] "burlywood"
                                            "cadetblue1"
## [41] "burlywood4"
                          "cadetblue"
                                                              "cadetblue2"
## [45] "cadetblue3"
                          "cadetblue4"
                                            "chartreuse"
                                                              "chartreuse1"
## [49] "chartreuse2"
                          "chartreuse3"
```

Scatter Plot

Nem sempre queremos conectar os dados através linhas, muitas vezes estamos tentando descobrir se existe de fato relação entre as informações, a linha preenche um gap que nem sabemos se existe.

O scatter plot é a melhor alternativa, pois literalmente marca os pontos no gráfico respeitando as coordenadas x e y, e assim através dos pontos apenas conseguimos observar se há uma tendência, se traça uma "linha" só pelo acúmulo de pontos.

```
base_sex %>%
  ggplot(aes(x=Year,y=Avg_Life_Expect, color=Sex)) +
  geom_point()
```

