Lecture_07

Q.5. The first term of an AP is 5, the last term is 45 and the sum is 400. Find the number of terms of A.P and the common difference.

Sol: For an A.P a 5, a = 45,
$$S_n = 400$$

 $S_n = \frac{n}{2} [a + a \text{ To find n}]$

For the given value of S_n For given value of a_n. formula

find d

$$\therefore 400 = \frac{n}{2} [5 + 45]$$

$$S_{n} = \frac{1}{2} [a + a]$$

$$\therefore 400 = \frac{n}{2} [5 + 45]$$

$$\therefore 400 = \frac{n}{2} \times 50$$

$$\therefore d = \frac{40}{15} \times 3$$

$$\therefore d = \frac{8}{3}$$

$$...400 = 25$$

$$\therefore \frac{400}{25} = n$$

$$\therefore$$
 n = 16

$$a_{n} = a + (n - 1)d^{2}$$

$$\therefore 45 = 5 + (16 - 1)d$$

$$a = 5, a_n = 45 & S_n = 400$$

d =
$$\frac{40}{15} \frac{8}{3}$$

$$d = \frac{8}{3}$$

For a_n substitute, $a = 5, a_n = 45 & n = 16$

6) The first and last terms of an AP are 17 and 350 respectively. If the common difference is 9, how many terms are there and what is their sum?

For S_n substitute, n = 38, $a = 17 & a_n = 350$

Sol: For given AP:
$$a = 17$$
,

We know that,

$$a_n \rightarrow + (n-1)d$$

$$\therefore$$
 350 = 17 + (n - 1)(9)

$$\therefore 350 - 17 = (n - 1)(9)$$

$$\therefore 333 = (n - 1)(9)$$

$$\therefore \frac{333}{9} = n - 1$$

$$\therefore 37 = n - 1$$

$$\therefore$$
 n = 38

$$S_n = \frac{n}{2} [a + a_n]$$

$$\therefore S_{38} = \frac{38}{2} [17 + 350]$$

a = 17, We need We need to find their terms i. sum i.e. value of 'S_n'

Lets use the gornala

$$S_{38} = 6973$$

... There are 38 terms & their sum is 6973.

iii) Given d = 5, $S_9 = 7$ For given value of S_9 , Lets use the formula **Sol:** For given AP:

d = 5, $S_0 = 75$ We know that,

$$S_n = \frac{n}{2}[2a + (n-1)d]$$

$$S_{n} = \frac{n}{2} [2a + (n-1)d]$$

$$A_{0} = a + 8d$$

$$A_{0}$$

$$\therefore 75 = \frac{29}{9} [2a + (8)(5)]$$

$$150 = 9 [2a + 40]$$

$$\therefore 150 = 18a + 360$$

$$∴ 150 - 360 = 18a
∴ -210 = \frac{18}{18}a
∴ a = \frac{-210}{18}3^{35}$$

Now lets find a₉

For S_o substitute, d = 5, $S_9 = 75 & n = 9$

$$a_9 = a + 8d$$

$$\therefore a_9 = \frac{-35}{3} + 8(5)$$

$$= \frac{-35}{3} + 40$$

$$= \frac{-35 + 120}{3}$$

$$\therefore a_9 = \frac{85}{3}$$

$$\therefore \quad \mathbf{a} = \frac{-35}{3} , \ \mathbf{a}_9 = \frac{85}{3}$$

Take comm Take common from For given value (first two last two terms iv) Given a = 2, d = 8, $S_n = 9$

Lets use the formula

Sol: For given AP:

$$a = 2$$
, $d = 8$, $S_n = 90$

We know that,

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$\therefore 90 = \frac{n}{2} [2(2) + (n-1)(8)]$$

$$\therefore 90 \times 2 = n[1+8n-8]$$

$$\therefore 180 = n [8n - 4]$$

$$180 = 8n^2 - 4n$$

$$0 = 8n^2 - 4n - 1$$

$$\therefore 8n^2 - 4n - 180 = 0$$

Dividing throughout by 4,

$$\therefore 2n^2 - n - 45 = 0$$

Substitute,
$$10n + 9n - 45 = 0$$

 $a = 2$, $d = 82$ $(3n = 5)0 + 9 $(n - 5) = 0$$

$$(n-5)(2n+9)=0$$

$$n - 5 = 0$$
 or $2n + 9 = 0$

$$\therefore n = 5 \quad \text{or} \quad n = \frac{-9}{2}$$

Since 'n' cann

No Substitute, a = 2, d = 8 & n = 5

$$n = 5$$

$$a_n = a + (n - 1) d$$

$$= 2 + (5 - 1)(8)$$

 \therefore 0 = $8n^2 - 4n - 1$ It's a quadratic equation, lets solve it by factorisation method

$$\therefore a_n = 34$$

$$\therefore | \mathbf{n} = \mathbf{5}, \ \mathbf{a_n} = \mathbf{34}$$

 $2 \times 3 \times 3 \times 5$

v) Given a = 8, $a_n = 62$, $S_n = 210$, find n & d.

Sol: For an A.P
$$a = 8$$
 $a_n = 62$ $S_n = 210$ $S_n = \frac{n}{2} [a + a_n]$ \therefore For the of To find n of S_n n

$$S_n = \frac{n}{2} \left[a + a_n \right]$$

$$\therefore 210 = \frac{n}{2} [8 + 62]$$

$$\therefore 210 = \frac{n}{2} \times 70^{35}$$

$$\therefore 210 = n = 35$$

$$\therefore \frac{210}{35} = n$$

$$\therefore$$
 n = 6

$$a_n = a + (n - 1)d$$

$$\therefore 62 = 8 + (6 - 1)d$$

For the
$$\sigma$$
 To find n $_{
m Df}$ ${
m S_n}$

For S_n substitute, nula

$$a = 8, a_n = 62 & S_n = 210$$

$$d = \frac{54}{5}$$

$$\therefore \mathbf{n} = \mathbf{6} \text{ and } \mathbf{d} = \frac{54}{5}$$

For a substitute,

$$a = 8, a_n = 62 & n = 6$$

vi) Given d = 2, $a_n =$ For given value of a_n , 1e of S_n , **Sol:** For given AP: Lets use the formula formula $-2n^2$

$$d = 2$$
, $a_n = 4$, $a_n = -14$

We know that,

$$a_n = a + (n - 1) d$$

$$\therefore 4 = a + (n-1)(2)$$

$$\therefore$$
 4 = a + 2n - 2

$$\therefore 4 + 2 = a + 2n$$

$$\therefore$$
 6 = a + 2n

$$\therefore a = 6 - 2n.$$

$$S_n = \frac{n}{2} [a + a_n]$$

$$\therefore -14 = \frac{n}{2} [6 - 2n + 4]$$

$$\therefore -14 \times 2 = n (10 - 2n)$$

Substitute,
$$-28 = 0$$

 $d = 2 & a_n = 4$ hroughout by 2, we get

$$\therefore n^2 - 5n - 14 = 0$$

$$n^2 - 7n + 2n - 14 = 0$$

$$n(n-7) + 2(n-7) = 0$$

We don't know the
$$7(n+2) = 0$$

value of neor a Substitute,

value of n in 2 Substitute,

$$\therefore a = 6 - 2n \dots$$
Substitute, equation (i) e^{2} , $e^{$

$$\therefore$$
 n = 7

$$\therefore$$
 a = 6 - 2(7)

$$\therefore$$
 a = 6 - 14

$$\therefore$$
 a = -8

(ix) Given $a_3 = 15$, $S_{10} = 125$, find d and a_{10} . Solve $a_{10} = 15$ | Subtracting (iii) from (ii)

Sol:
$$a_3 = 15$$
, $S_{10} = 125$
 $a_3 = a + 2d$

For given value of

$$a_3 = a + 2d$$
∴ $15 = a + 2d$
F For given value o

Lets find value of a_{10}

:.
$$a + 2d = 15$$
:. $a + 2d = 15$
:. $a + 2d = 15$
:. $a + 2d = 15$

$$S_n = \frac{n}{2} [2a + (n-1) d]$$
 $51 = -5$

$$S_{10} = \frac{10}{2} \left[2a + (10) \right]$$
We will make coefficient

$$\therefore \frac{125}{5} = 2a + 9d$$

$$\therefore$$
 25 = 2a + 9d

$$\therefore$$
 2a + 9d = 25 (ii)

Multiplying (i) by 2

$$\therefore$$
 2a + 4d = 30 ...(iii)

$$\begin{array}{ccc}
a + 2 & & = 15 \\
 & & = 15
\end{array}$$
Same coefficient
and same sign
$$a = 15 + 2$$

$$a = 17$$

$$a_{10} = a + 9d$$

$$a_{10} = 17 + 9(-1)$$

$$a_{10} = 17 - 9$$

$$\therefore a_{10} = 8$$

$$d = -1, a_{10} = 8$$

Q.7. Find the sum of first 22 terms of an AP in which d = 7 and

22nd term is 149. Substitute, **Sol:** For an A.P: d = 7, $d = 7 & a_{22} = 149$ $a_{22} = a + 21d$ For given value of a₂₂ $\therefore 149 - a + 21 \times 7$ 149 = a + 147

∴
$$149 - 147 = a$$

∴ $a = 2$
 $S_n = \frac{n}{2} [a + a_n]$
Substitute,
 $n = 22$, $a = 2 & a_{22} = 149$

$$S_{22} = \frac{22}{2} [2 + 149]$$

$$= 11 (151)$$

$$S_{22} = 1661$$

Q.8. Find the sum of first 51 terms of an AP whose second and third

terms are 14 and 18 respectively.

Sol: For an A.P:
$$a_2 = 14$$
 To find S_{51}

$$d = a_3 - a_2 = 18 - 1$$

$$a_2 = a + d$$

$$= \frac{51}{2} [20 + 200]$$

$$= \frac{51}{2} \times 220$$

To find S_{51} we need to find the value of a & d

$$\therefore$$
 14 – 4 = a Lets find S

Substitute
$$n = 51 \times 110$$

 $a = 10 & d = 4$

$$S_n = \frac{n}{2} [2a + (n - 1) d]$$

$$S_{51} = \frac{51}{2} [2(10) + (51 - 1) 4]$$
$$= \frac{51}{2} [20 + (50) 4]$$

Sum of first 51 terms is 5610

Thank You