中国科学技术大学

2016—2017学年第二学期考试试卷

	考试科目 随机过程(A) 得分
	所在系 学号 姓名
	(2017年6月12日上午14:30-16:30, 半开卷)
—. (3	0分) 填空或选择题, 答案可以直接写在试卷上.
1	. 设 $\{N(t), t \geq 0\}$ 是一个强度为 1 的Poisson过程, 则
	P(N(10) = 9 N(5) = 4) =; E[N(10) N(5)] =
2	. 设 $\{N(t), t \geq 0\}$ 是一个更新过程,且 W_k 为其第 k 个更新点 $(k \geq 1)$,下列中一定正确的是(). (A) 事件 $\{N(t) < k\}$ 与 $\{W_k > t\}$ 等价 (B) 事件 $\{N(t) \leq k\}$ 与 $\{W_k \geq t\}$ 等价 (C) 事件 $\{N(t) > k\}$ 与 $\{W_k < t\}$ 等价 (D) 事件 $\{N(t) \geq k\}$ 与 $\{W_k < t\}$ 等价
3	. 关于离散时间Markov链, 下列说法正确的是(). (A) 如果某个状态是常返的,则过程至少会到达它一次 (B) 所有状态不可能都是非常返的 (C) 若有无穷个状态且不可约,则所有状态不可能都是正常返的 (D) 若两个状态不互达,则它们有可能都是常返的
4	. 设在一连续时间Markov链中, 对某个给定的时刻 $t_0 > 0$, 有 $X(t_0) = i$, 且已知过程 离开状态 i 的速率为 ν_i , 则下列说法中错误的是(). (A) 继续在 i 上停留的时间服从参数为 ν_i 的指数分布 $\mathrm{Exp}(\nu_i)$ (B) 若已知下一步会转移到状态 j , 则继续在 i 上停留的时间服从 $\mathrm{Exp}(\nu_i)$ 分布 (C) 在 t_0 前后两次状态转移的时间间隔服从 $\mathrm{Exp}(\nu_i)$ 分布 (D) 若 ν_i 越大, 则继续在 i 上停留的平均时间越短
5	. 设在一状态空间为 $\{0,1,2\}$ 的生灭过程中, 每个状态上停留的时间均服从参数为 $\lambda>0$ 的指数分布, 且转移概率
	$P_{01} = P_{21} = 1, P_{10} = P_{12} = \frac{1}{2}.$
	那么该过程的转移率矩阵 $Q=$
6	. 下列过程中一般不具有Markov性的是(). (A) Poisson过程 (B) 更新过程 (C) Yule过程 (D) Brown运动
7	 下列过程中不是Guass过程的是(). (A) 标准Brown运动 (B) 几何Brown运动 (C) Brown桥过程 (D) 带漂移的Brown运动
8	. 设 $\{B(t), t \geq 0\}$ 为标准Brown运动,且 $B(0) = 0$. 对任意 $0 < s < t < \infty$,随机向量 $(B(s), B(t))$ 服从二元正态分布 $N(\underline{\hspace{1cm}})$; $P(B(t) > 1 B(s) = 1) = \underline{\hspace{1cm}}$.

- 9. 设 $\{B_{00}(t), 0 \le t \le 1\}$ 为Brwon桥过程,则对任意 $0 \le s \le 1$, $Var[B_{00}(s)] =$ ______.
- 二. (12分) 假定某天文台观测到的流星流是一个Poisson过程, 据以往资料统计为每小时平均观测到 3 颗流星. 试求:
 - 1. 在晚上 8 点到 10 点期间, 该天文台没有观察到流星的概率.
 - 2. 凌晨 0 点后该天文台观察到第一颗流星的时间的分布函数.
- 三. (18分) 独立重复地掷一枚均匀的骰子, 以 X_n 表示前 n 次结果中的最大点数, 则 $\{X_n, n \ge 1\}$ 为一个Markov链.
 - 1. 写出该Markov链的状态空间和一步转移概率矩阵.
 - 2. 求概率 $P(X_{n+2}=4|X_n=3)$ 及 $P(X_2=X_3=X_4=3)$.
 - 3. 问当 $n \to \infty$ 时, X_n 的极限分布是否存在? 请写出并证明你的结论.
- **四.** (16分) 考虑直线上从原点出发的简单对称随机游动, 记 X_n 表示时刻 n 过程所处的位置, 且

$$Y_n = X_n^2 - n$$
, $Z_n = (-1)^n \cos(\pi X_n)$.

证明 $\{Y_n, n \ge 0\}$ 和 $\{Z_n, n \ge 0\}$ 均为关于 $\{X_n, n \ge 0\}$ 的鞅.

- 五. (8分) 设 $\{X_n, n \geq 0\}$ 为一个鞅, 对任意 $n \geq 0$, 二阶矩 $E[X_n^2]$ 存在且记 $Y_n = X_n^2$, 问 $\{Y_n, n \geq 0\}$ 是否为一个(上,下)鞅? 证明你的结论.
- 六. (16分) 设 $\{B(t), t \geq 0\}$ 为标准Brown运动, 且 B(0) = 0.
 - 1. 求 B(1) + B(2) + B(3) 的分布.
 - 2. 在 B(2) = 1 的条件下, 分别求 B(1) 和 B(3) 的分布.