Κεφάλαιο 4 - Ιδιοτιμές, Ιδιοδιανύσματα και Διαγωνοποίηση

Σ. Δημόπουλος ΜΑΣ029 1 / 21

4.1 Ιδιοτιμές κι ιδιοδιανύσματα

Ορισμός

Αν ο A είναι $n \times n$ πίνακας, ένα μη μηδενικό διάνυσμα $\mathbf{x} \in \mathbb{R}^n$ λέγεται **ιδιοδιάνυσμα** του A αν το $A\mathbf{x}$ είναι πολλαπλάσιο του \mathbf{x} , δηλαδή υπάρχει $\lambda \in \mathbb{R}$ ώστε

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

Το λ λέγεται ιδιοτιμή του A και το $\mathbf x$ ιδιοδιάνυσμα που αντιστοιχεί στην ιδιοτιμή λ .

Σ. Δημόπουλος ΜΑΣ029

2 / 21

$$A = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

 Σ . Δημόπουλος $MA \Sigma 029$ 3 / 21

Aν ο A είναι $n \times n$ πίνακας, το λ είναι ιδιοτιμή του A αν και μόνο αν

$$\det(A - \lambda I) = 0.$$

H εξίσωση $\det(A-\lambda I)=0$ λέγεται χαρακτηριστική εξίσωση του A.

Απόδειξη:

Σ. Δημόπουλος $MA\Sigma029$ 4 \neq 21

Να βρεθούν οι ιδιοτιμές του πίνακα
$$A=egin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$$
 .

Σ. Δημόπουλος ΜΑΣ029 5 / 21

Η ορίζουσα $\det(A-\lambda I)$ δίνει πάντα πολυώνυμο της μορφής

$$p(\lambda) = (-1)^n (\lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1\lambda + a_0,$$

το οποίο λέγεται χαρακτηριστικό πολυώνυμο του Α.

Παράδειγμα

Να βρεθεί το χαρακτηριστικό πολυώνυμο του $A = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$.

Σ. Δημόπουλος ΜΑΣ029 6 / 21

Να βρεθεί πόσες ιδιοτιμές μπορεί να έχει ένας $n \times n$ πίνακας A.

Σ. Δημόπουλος ΜΑΣ029 7 / 21

Να βρεθούν οι ιδιοτιμές του
$$A=egin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 7 \end{pmatrix}$$

Σ. Δημόπουλος ΜΑΣ029 8 / 21

Να βρεθούν οι ιδιοτιμές του
$$A=egin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{pmatrix}.$$

Σ. Δημόπουλος ΜΑΣ029 9 / 21

Αν ο Α είναι $n \times n$ τριγωνικός πίνακας, τότε οι ιδιοτιμές του Α είναι τα στοιχεία της κυρίας διαγωνίου του.

Παράδειγμα

Να βρεθούν οι ιδιοτιμές του
$$A = \begin{pmatrix} 1/2 & 0 & 0 \\ -1 & 2/3 & 0 \\ 5 & -8 & -1/4 \end{pmatrix}$$
.

Σ. Δημόπουλος ΜΑΣ029 10 / 21

Αν ο Α είναι η × η πίνακας, τα ακόλουθα είναι ισοδύναμα.

- 1 Το λ είναι ιδιοτιμή του Α.
- **②** To λ είναι λ ύση της χαρακτηριστικής εξίσωσης $\det(A-\lambda I)=0$.
- **3** Το ομογενές σύστημα $(A \lambda I)\mathbf{x} = \mathbb{O}$ έχει μη τετριμμένες λύσεις.
- **Φ** Υπάρχει μη μηδενικό διάνυσμα \mathbf{x} ώστε $A\mathbf{x} = \lambda \mathbf{x}$.

Αν έχουμε βρει ότι το λ είναι ιδιοτιμή του A, οι μη τετριμμένες λύσεις του ομογενούς $(A-\lambda I)\mathbf{x}=\mathbb{O}$ είναι τα ιδιοδιανύσματα που αντιστοιχούν στο λ .

Ορισμός

Αν το λ είναι ιδιοτιμή του A, ο **ιδιοχώρος** που αντιστοιχεί στο λ είναι ο χώρος $\mathrm{Nul}(A-\lambda I)$.

Σ. Δημόπουλος ΜΑΣ029 11 / 21

Να βρεθούν οι ιδιοτιμές του πίνακα $A=\begin{pmatrix} -1 & 3 \\ 2 & 0 \end{pmatrix}$ κι οι αντίστοιχοι ιδιοχώροι τους.

Σ. Δημόπουλος ΜΑΣ029 12 / 21

Να βρεθούν οι ιδιοτιμές του πίνακα $A=\begin{pmatrix} 0 & 0 & -2\\ 1 & 2 & 1\\ 1 & 0 & 3 \end{pmatrix}$ κι οι αντίστοιχοι ιδιοχώροι τους.

Σ. Δημόπουλος ΜΑΣ029 13 / 21

Ένας τετραγωνικός πίνακας A είναι αντιστρέψιμος αν και μόνο αν το $\lambda=0$ είναι ιδιοτιμή του A.

Απόδειξη:

Σ. Δημόπουλος ΜΑΣ029 14 / 21

Αν v_1, v_2, \ldots, v_r είναι ιδιοδιανύσματα πίνακα Α που αντιστοιχούν σε διακριτές ιδιοτιμές, τότε το $\{v_1, v_2, \ldots, v_r\}$ είναι γραμμικά ανεξάρτητο.

Απόδειξη:

Σ. Δημόπουλος ΜΑΣ029 15 / 21

Ορισμός

Αν το λ_0 είναι ιδιοτιμή ενός πίνακα A, η αλγεβρική πολλαπλότητα του λ_0 , $\pi(\lambda_0)$, είναι η δύναμη με την οποία εμφανίζεται ο παράγοντας $(\lambda-\lambda_0)$ στο χαρακτηριστικό πολυώνυμο του A.

Παράδειγμα

Έστω τετραγωνικός πίνακας με χαρακτηριστικό πολυώνυμο $p(\lambda)=\lambda^6-4\lambda^5-12\lambda^4$. Να βρεθούν οι ιδιοτιμές του πίνακα και οι αλγεβρικές πολλαπλότητες τους.

 Σ . Δημόπουλος MA Σ 029 16 / 21

Έστω τετραγωνικός πίνακας A με ιδιοτιμές $\lambda_1,\lambda_2,\ldots,\lambda_n$.

- $\det A = \lambda_1 \lambda_2 \cdots \lambda_n$
- $\operatorname{tr} A = \lambda_1 + \lambda_2 + \ldots + \lambda_n$

Απόδειξη:

Σ. Δημόπουλος ΜΑΣ029 17 / 21

Οι ιδιοτιμές ενός πίνακα A είναι ίδιες με του A^T .

Απόδειξη:

Σ. Δημόπουλος ΜΑΣ029 18 / 21

Αν ο $n \times n$ πίνακας Α έχει n διακριτές ιδιοτιμές, τότε τα αντίστοιχα ιδιοδιανύσματα αποτελούν βάση για τον \mathbb{R}^n .

Απόδειξη:

Σ. Δημόπουλος ΜΑΣ029 19 / 21

Να βρεθούν οι ιδιοτιμές, τα ιδιοδιανύσματα κι οι ιδιοχώροι του πίνακα

$$A = \begin{pmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{pmatrix}.$$

Σ. Δημόπουλος $MA \Sigma 029$ 20 / 21

Να βρεθούν οι ιδιοτιμές, τα ιδιοδιανύσματα κι οι ιδιοχώροι του πίνακα

$$A = \begin{pmatrix} 5 & 6 & 2 \\ 0 & -1 & 8 \\ 1 & 0 & -2 \end{pmatrix}.$$

Σ. Δημόπουλος ΜΑΣ029 21 / 21