Step-1

Given that
$$B = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

The characteristic equation is $|B - \lambda I| = 0$

$$\Rightarrow \begin{vmatrix} 3 - \lambda & 1 \\ 0 & 2 - \lambda \end{vmatrix} = 0$$
$$(3 - \lambda)(2 - \lambda) = 0$$
$$\Rightarrow \lambda_1 = 2, \lambda_2 = 3$$

Step-2

To get the eigen vector corresponding to $\lambda_1 = 2$, we solve $(B - \lambda_1 I)x = 0$

$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

So, the solution set of $x_1 + x_2 = 0$ is $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is the eigen vector required.

Similarly, we solve $(B - \lambda_2 I)x = 0$ to get $\begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

The corresponding eigen vector is $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Step-3

Using the eigen vectors, $S = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$, $\Lambda = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$, $S^{-1} = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}$ such that

$$B=S\Lambda S^{-1}$$

Multiplying the respective sides with themselves for k times, we get $B^k = S\Lambda^k S^{-1}$

$$= \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 2^{k} & 0 \\ 0 & 3^{k} \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2^{k} & 3^{k} \\ -2^{k} & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 3^{k} & 3^{k} - 2^{k} \\ 0 & 2^{k} \end{bmatrix}$$

$$= 3^{k} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + 2^{k} \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix}$$