

Lukas Prokop

Oct 2015 to Jan 2016

Contents				5.4	Binomial theorem	2
1	Propositional logic	5	6	Ari	thmetics of numbers	2
				6.1	Integers and the field of rational numbers \mathbb{Q}	2'
2	First-Order Logic	5		6.2	Ordered fields	29
	2.1 Tautologies	7		6.3	Remarks about some common fields	3
	2.2 Negation of a tautology	7		6.4	Triangle inequality	
	2.3 Quantifiers	9		6.5	Laws for absolute values	3:
	2.4 Composition of several quantifiers	9		6.6	Intervals	3
3	Sets	9		6.7	Archimedean property and Completeness axiom	3'
	3.1 Cartesian product	11	7	Sup	premum property of $\mathbb R$	43
	3.2 Power set	13		7.1	Boundedness in \mathbb{R}	43
4	Mappings and functions	13		7.2	Supremum and infimum in \mathbb{R}	43
	4.1 Bernoulli's inequality	13	8	Cor	mplex numbers	5
				8.1	Interpretation of multiplication	59
5	About sums of integers	15		8.2	Taking roots	59
	5.1 Factorials	15				
	5.2 Binomial coefficients	17	9	\mathbf{Seq}	quences of real and complex numbers	59
	5.3 Arrangement in Pascal's triangle	19		9.1	Laws for convergent complex sequences	69

MATHEMATICAL ANALYSIS I – LECTURE NOTES

9.2	Other laws for complex sequences	71
9.3	Convergence criteria	71
	9.3.1 Squeeze theorem	71
9.4	On limit points and subsequences	75
9.5	Bolzano-Weierstrass theorem	79

1 Propositional logic

This lecture took place on 1st of October 2015 with lecturer Wolfgang Ring.

- Discussion about motivation for visiting university
- Kurt Gödel: Gödel's incompleteness theorem
- propositional logic (and/or/implication/equivalence operation)
 - $-p \implies q$: "p implies q" ("notwendig"), "q requires p" ("hinreichend")
 - Indirect proof: $(\neg q \implies \neg p) \Leftrightarrow (p \implies q)$
 - Proof by contradiction: claim p, claim $\neg q$, show that $p \land \neg q$ is not possible
 - commutative law: $a \wedge b \Leftrightarrow b \wedge a$
 - associative law: $a \wedge (b \wedge c) = (a \wedge b) \wedge c$
 - distributive law: $(a \wedge b) \vee c = (a \vee c) \wedge (b \vee c)$
 - DeMorgan's law: $\neg(a \land b) \Leftrightarrow (\neg a) \lor (\neg b)$
- First-order logic
 - $\forall x \in \mathbb{N} : x \in \mathbb{R}$
 - $\forall x \in M : P(x)$
 - $-\neg [(\forall x \in M)P(x)] \Leftrightarrow \exists x \in M : \neg P(x)$
- Peano's axioms: rationale for induction proofs

The lecture on 8th of October 2015 got cancelled spontaneously.

2 First-Order Logic

This lecture took place on 12th of October 2015 with lecturer Wolfgang Ring. Literature recommendation:

• "Analysis 1 (Mathematik für das Lehramt)", Oliver Deiser

Let A and B be statements.

- Logical equivalence is given iff the truthtable of both expressions is the same.
- $\bullet \neg (\neg A) \iff A$
- $(A \lor B) \iff (B \lor A)$
- $(A \wedge B) \iff (B \wedge A)$
- $a \implies b$: implication

Boolean Laws:

$$\neg (A \implies B) \iff A \land \neg B \tag{1}$$

$$A \iff B \implies (A \implies B) \land (B \implies A)$$
 (2)

"contraposition" or "indirect proof"

$$\neg B \implies \neg A$$
 (3)

$$A \implies B \iff (\neg B \implies \neg A) \tag{4}$$

$$(A \iff B) \iff (\neg A \iff \neg B) \tag{5}$$

$$\neg (A \land B) \iff \neg A \lor \neg B \tag{6}$$

$$\neg (A \lor B) \iff \neg A \land \neg B \tag{7}$$

$$\neg (A \implies B) \iff (A \land \neg B) \tag{8}$$

$$A \wedge (B \vee C) \iff ((A \wedge B) \vee (A \wedge C)) \tag{9}$$

$$A \lor (B \land C) \iff ((A \lor B) \land (A \lor C)) \tag{10}$$

$$(A \Longrightarrow B) \iff (\neg A \lor B) \tag{11}$$

"proof by contradiction"

$$((A \Longrightarrow B) \land (A \Longrightarrow \neg B)) \Longrightarrow \neg A \tag{12}$$

"conclusion"

$$((A \Longrightarrow B) \land (B \Longrightarrow C)) \Longrightarrow (A \Longrightarrow C) \tag{13}$$

$$A \lor B \Leftrightarrow \neg(\neg A) \lor \neg(\neg B) \Leftrightarrow \neg(\neg A \land \neg B)$$
$$\neg(A \lor B) \Leftrightarrow \neg(\neg(\neg A) \lor (\neg B))$$

Distributive laws:

- $(A \lor B) \land C \Leftrightarrow (A \land C) \lor (A \land C)$
- $(A \land B) \lor C \Leftrightarrow (A \lor C) \land (B \lor C)$

2.1 Tautologies

A tautology is the composition of statements, which always yields the truth value true, independent of the truth value of its subexpressions.

Examples of tautologies:

"Law of excluded middle" $A \vee \neg A$

equivalences are always tautologies $A \leftrightarrow \neg(\neg A)$

implication of itself $A \rightarrow A$

Tautology with multiple statements:

implication with or and not $(A \rightarrow B) \leftrightarrow (\neg A \lor B)$

proof by contradiction $[(A \rightarrow B) \land (A \rightarrow \neg B)] \rightarrow \neg A$

chain inference $[(A \to B) \land (B \to C)] \to (A \to C)$

This lecture took place on 14th of Oct 2015 with lecturer Wolfgang Ring.

Proof. We prove, $[(A \to B) \land (A \to \neg B)] \to \neg A$.

$$(A \to B) \land (A \to \neg B) \iff (\neg A \lor B) \land (\neg A \lor \neg B)$$

$$\iff \underbrace{(B \land \neg B)}_{\bot} \lor \neg A$$

$$\iff \neg A$$

Special case: A = B.

$$(A \to A) \land (A \to \neg A) \to \neg A$$
$$(A \to \neg A) \to \neg A$$

2.2 Negation of a tautology

- is called *contradiction*.
- has always truth value false.

Proof.

$$(A \lor B) \to C \Leftrightarrow \neg (A \lor B) \lor C \Leftrightarrow (\neg A \land \neg B) \lor C$$
$$(\neg A \lor C) \land (\neg B \lor C) \Leftrightarrow (A \to C) \land (B \to C)$$

$$(A \lor B) \to C \Leftrightarrow (A \to C) \land (B \to C)$$
$$(A \land B) \to C \Leftrightarrow (A \to C) \lor (B \to C)$$
$$A \to (B \land C) \Leftrightarrow (A \to B) \land (A \to C)$$
$$A \to (B \lor C) \Leftrightarrow (A \to B) \lor (A \to C)$$

Example proof by contradiction: Number of prime numbers. We prove a statement by Euklid of Alexandria, 300 BC:

The number of prime numbers is infinite.

Assume the number of prime numbers is finite. Then there exists some $N \in \mathbb{N}$ such that $\mathbb{P} = \{P_1, P_2, \dots, P_n\}$ is the set of all prime numbers.

Every integer can be represented as product of prime numbers. Therefore for every integer there exists at least one prime number that divides this number (without remainder).

Let $m = p_1 \cdot p_2 \cdot \ldots \cdot p_N + 1$. Let a be a prime number that divides m.

It holds that: Every $p_i \in \mathbb{P}$ is not a divisor of m. Because when dividing $\frac{m}{p_i}$, the remainder is always one.

So $q \in \mathbb{P}$, so there exists more than N prime numbers (at least N+1). This contradicts with our assumption, that only N prime numbers exist.

Therefore always one more prime number exists. So the number of prime numbers is infinite. \Box

2.3 Quantifiers

Quantified statements are statements, in which objects of a set occur.

Example: Let P(x) = (x > 0). Its truth value cannot be determined if the set X is not defined.

Definition 1. Let M be a set, $x \in M$ and P(x) a predicate.

The composed statement: for every $x \in M$, it holds that P(x) is true, if the truth value of P(x) is always true independent of the selection of $x \in M$.

Example 1. Let
$$M = \mathbb{R}$$
 and $P(x) = (x^2 + 1 > 0)$.

This is true for all $x \in M$. We denote: $\forall x \in M : P(x)$.

Example 2. Let
$$M = \mathbb{R}$$
 and $P(x) = (x^2 - 1 > 0)$.

This is not true for all $x \in M$. We denote: $\exists x \in M : \neg P(x)$.

Definition 2. $\forall x \in M : P(x) \text{ does not hold if and only if } \exists x \in M : \neg P(x).$

 \forall is called all quantifier. \exists is called existence quantifier.

Negation works as follows:

$$\neg (\forall x \in M : P(x)) \Leftrightarrow \exists x \in M : \neg P(x)$$

$$\neg \left(\exists x \in M : P(x)\right) \Leftrightarrow \forall x \in M : \neg P(x)$$

This lecture took place on 15th of Oct 2015 with lecturer Wolfgang Ring.

$$\forall x \in M : (P(x) \land Q(x)) \iff (\forall x \in X : P(x)) \land (\forall y \in M : Q(y)))$$

$$\forall x \in M : (P(x) \vee Q(x)) \leftrightarrow (\forall x \in M : P(x)) \wedge (\forall x \in M : Q(x))$$

Counterexample:

$$M = \mathbb{R}$$
 $P(x) := (x > 0)$

A statement B is stronger than C if C

2.4 Composition of several quantifiers

- 1. The order of quantfiers matters.
- 2. For every real number x, there exists an integer $n \in \mathbb{N}$ with the property n > x:

$$\forall x \in \mathbb{R} \exists n \in \mathbb{N} : n > x$$

The statement does not hold if the order is changed.

$$\exists n \in \mathbb{N} \forall x \in \mathbb{R} : n > x$$

3 Sets

We consider objects, which we call sets. For every set M and every element x, it holds that

$$x \in M \vee \neg (x \in M)$$

Consider the set $L = \{M : M \text{ is a set and } M \notin M\}$. Does $L \notin L$ or $L \in L$ hold?

If $L \notin L$, then L satisfies the definition and therefore $L \in L$. If $L \in L$, then elements of L satisfy the property; therefore $L \notin L$.

Set operations:

- union
- intersection
- subsets

- $\forall S : \emptyset \subseteq S$
- complete induction

Theorem 1. (Pythagoreans, 450 BC)

$$\forall n \in \mathbb{N}_+ : \sum_{k=1}^n k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

Proof. Induction base n = 1

$$P(1): 1 = \frac{1(1+1)}{2} \quad \checkmark$$

Induction step $n \rightarrow n+1$

Assume P(n) is true. So $(1 + 2 + \dots + n) = \frac{n(n+1)}{2}$

$$[(1+2+\cdots+n)+(n+1)] = \frac{n(n+1)}{2} + (n+1) = (n+1)\left(\frac{n}{2}+1\right)$$
$$= (n+1)\cdot\frac{(n+2)}{2} = \frac{(n+1)(n+2)}{2} \quad \checkmark$$

So, it simply holds that:

$$s = 1 + 2 + 3 + \dots + n$$

$$2 \cdot s = \underbrace{n}_{\text{number of items}} \cdot \underbrace{(n+1)}_{\text{sum}} \Rightarrow s = \frac{n \cdot (n+1)}{2}$$

This lecture took place on 21st of October 2015 with lecturer Ring Wolfgang.

- Let X be a set. $M = \{x \in X : P(x)\}.$
- $\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$... "enumerating set representation"
- $M = \{x \in X \mid P(x)\}, N = \{x \in X \mid Q(x)\}$
- $\bullet \ M \cup N = \{x \in X \mid P(x) \lor Q(x)\}$

Figure 1: Illustration of the triangular number (illustrative proof)

- Let X be a set. $A_0 \subseteq X$, $A_1 \subseteq X$, $A_2 \subseteq X$, etc
- $\forall n \in \mathbb{N} : A_n \subseteq X$

- $A_0 \cup A_1 \cup A_2 \cup \dots = \bigcup_{n=1}^{\infty} A_n = \{x \in X \mid (x \in A_0) \lor (x \in A_1) \lor \dots \} = \{x \in X \mid \exists n \in \mathbb{N} : x \in A_n\}$
- $A_0 \cap A_1 \cap A_2 \cap \cdots = \bigcap_{n=1}^{\infty} A_n = \{x \in X \mid \forall n \in \mathbb{N} : x \in A_n\}$

3.1 Cartesian product

Definition 3. Let A and B sets. The cartesian product of A and B is given as:

$$A \times B = \{(x, y) \mid x \in A, y \in B\}$$

This operation is not commutative!

Definition 4. We denote $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$.

Example 3.

$$A = \{a, b, c, d, e, f, g, h\}$$

$$B = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$A \times B = \{(a, 1), (a, 2), (a, 3), \dots, (a, 8), (b, 1), (b, 2), \dots\}$$

Example 4.

$$\mathbb{R} \times \mathbb{R} = \{(x, y) \mid x, y \in \mathbb{R}\}\$$

e.g. $(1, \frac{9}{8}) \in \mathbb{R} \times \mathbb{R}$.

Definition 5. Let A_1, A_2, \ldots, A_n be sets.

$$A_n = A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_i \in A_i \text{ for } i = 1, 2, \dots, n\}$$
instead of $\underbrace{A \times A \times \cdots \times A}_{n \text{ times}} = A^n.$

3.2 Power set

Definition 6. Let X be a set. Then $\mathcal{P}(X)$ is the power set of x.

$$\mathcal{P}(X) = \{ A \mid A \subseteq X \}$$

4 Mappings and functions

Definition 7. Let A and B be sets. A mapping f from A to B (denoted $f: A \to B$) is an assignment, such that for every $x \in A$ one $y \in B$ is assigned. We denote the corresponding $y \in B$ for some $x \in A$ with y = f(x). A is called domain, B is called co-domain.

Definition 8 (Alternative definition of mappings). A mapping f is a subset of $A \times B$ which fulfills the following properties:

- $\forall x \in A : (\exists y \in B : (x, y) \in f)$
- $\forall x \in A \land (y_1, y_2 \in B) : [(x_1, y_1) \in f \land (x_1, y_2) \in f] \implies y_1 = y_2$

Notation:

$$(x,y) \notin f \Leftrightarrow y = f(x)$$
 $\{(x,f(x)) \in |x \in A\} \Rightarrow graph \ from \ f$

Definition 9. Let $f: A \to B$ be a mapping.

- The mapping f is called surjective, if $\forall y \in B : \exists x \in A : y = f(x)$.
- The mapping f is called injective, if

$$\forall x_1, x_2 \in A : (f(x_1) = f(x_2) \Rightarrow x_1 = x_2).$$

• Let $B' \subseteq B$. Then we denote $f^{-1}(B') = \{x \in A \mid f(x) \in B'\}$ as the preimage of f.

Attention! The preimage distinguishes itself from the domain (it is a subset) and the inverse function f^{-1} (a function must not be invertible to have a preimage)!

• Let $A' \subseteq A$. Then we call $f(A') = \{f(x) | x \in A\} \subseteq B$ the image of A' under f.

Special case: A' = A, then $f(A) \subseteq B$ is the image of A under f.

Let $f: A \to B$ be a mapping. We define $f: A \to f(A) \subseteq B$ with f(x) = f(x) for all $x \in A$. The mapping \tilde{f} is surjective $\forall y \in f(A)$ there exists one $x \in A$ such that y = f(x).

• A mapping is called bijective iff the mapping is surjective and injective.

4.1 Bernoulli's inequality

Definition 10 (Bernoulli's inequality). Let $x \in \mathbb{R}$ with x > -1 and $x \neq 0$. Let $n \in \mathbb{N}$ with n > 1. Then it holds that

$$(1+x)^n > 1 + nx$$

Proof. Proof by complete induction.

Induction base n = 2

$$(1+x)^2 = 1 + 2x + x^2 > 1 + 2x \quad \checkmark$$

because $x^2 > 0$ for $x \neq 0$.

Induction step $n \to n+1$

Assume $(1+x)^2 > 1 + n$, then x > -1 and $x \neq 0$.

$$(1+x)^{n+1} = (1+x)^n \cdot \underbrace{(1+x)}_{>0} > (1+nx) \cdot (1+x)$$

$$= (1 + nx + x + nx^{2}) = (1 + (n+1) \cdot x + \underbrace{nx^{2}}_{>0}) > 1 + (n+1) \cdot x$$

Back to sets and functions (notes missing):

- injective, surjective, bijective function
- composition of functions: Let $f: X \to Y$ and $g: Y \to Z$. $g \circ f: X \to Z$ is defined as g(f(x)) ("g after f").
- Let f and g be mappings. If f and g are injective, $f \circ g$ is injective. If f and g are surjective, $f \circ g$ is surjective. If f and g are bijective, $f \circ g$ is bijective.
- Identity function, $f \circ id = id \circ f = f$
- properties of an inverse function, $f \circ f^{-1}: X \to X, f^{-1} \circ f: X \to X$

5 About sums of integers

This lecture took place on 21st of Oct 2015 with lecturer Wolfgang Ring.

Definition 11. The summation notation is defined as,

$$\sum_{k=h}^{l} a_k$$

Iteration over all values from l to h (inclusive) and evaluation of the enclosed expression with k as iteration value. The resulting terms are added up and the sum gives the result of the summation expression.

Laws:

$$\sum_{k=l}^{h} a_k = \sum_{i=l}^{h} a_i \tag{14}$$

$$\sum_{k=l}^{h} (a_k + b_k) = \left(\sum_{k=l}^{h} a_k\right) + \left(\sum_{k=l}^{h} b_k\right)$$
 (15)

$$\sum_{k=0}^{h} a_k = a_0 + \sum_{k=1}^{h} a_k$$
 "Extraction of the initial value" (16)

$$\sum_{k=0}^{h} a_k = a_h + \sum_{k=0}^{h-1} a_k$$
 "Extraction of the final value" (17)

$$\sum_{k=u+n}^{h+n} a_k = \sum_{k=u}^{h} a_{k+n}$$
 "index shifting" (18)

$$\sum_{k=l}^{h} \lambda \cdot a_k = \lambda \cdot \sum_{k=l}^{h} a_k$$
 "extraction of a constant λ " (19)

$$\sum_{k=0}^{n} n = \frac{n(n+1)}{2}$$
 "triangular sum" (20)

We consider $S_n = \{(a_1, a_2, \dots, a_n) : a_i \in M_n \forall i = 1, \dots, n \text{ with } a_i \neq a_j\} \subseteq M_n \times M_n \times \dots \times M_n$. S_n is the set of all arrangements of the numbers $1, \dots, n$. Example: $\{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)\}$

5.1 Factorials

Theorem 2. It holds that $|S_n| = n!$ for all $n \in \mathbb{N}$

Proof. Proof by induction over n.

Induction base n = 1: $M_1 = \{1\}$, $S_1 = \{(1)\} \Rightarrow |S_1| = 1 = 1$! \checkmark Induction step $n \to n + 1$:

$$S_{n+1} = \{(a_1, a_2, \dots, a_n) : a_i \in M_{n+1} \forall i \in M_{n+1}, a_i \neq a_j \text{ for } i \neq j\}$$

For $l \in M_{n+1}$:

$$W_l = \{(a_1, \dots, a_{n+1}) \in S_{n+1} : a_l = n+1\}$$

It holds that $W_l \cap W_j = \emptyset$ for $l \neq j$ and $S_{n+1} = W_i \cup W_l \cup W_j \cup ... \cup W_{n+1}$. Then it holds that $|S_{n+1}| = |W_1| + |W_2| + ... + |W_{n+1}| = \sum_{l=1}^{n+1} |W_l|$

Theorem 3. Claim: For every $l \in M_{n+1}$ it holds that $|W_l| = |S_n| = n!$.

Proof. We build a bijective map $\phi_l: W_l \to S_n$.

$$W_{l} = \{(a_{1}, a_{2}, \dots, a_{l-1}, n+1, a_{l+1}, \dots, a_{n+1})\}$$

$$: a_{i} \in M_{n}, \forall i \neq l, a_{i} \neq a_{j} \forall i \neq j$$

$$\phi((a_{1}, a_{2}, \dots, a_{l-1}, n+1, a_{l+1}, \dots, a_{n+1}))$$

$$= (a_{1}, a_{2}, \dots, a_{l-1}, a_{l+1}, \dots, a_{n+1}) \in S_{n}$$

 S_n is surjective. Let $(b_1, \ldots, b_n) \in S_n$, then it holds that $(b_1, \ldots, b_{l-1}, n+1, b_l, \ldots, b_n) \in W_l$

$$\phi_l((b_1,\ldots,b_{l-1},n+1,b_l,\ldots,b_n))=(b_1,\ldots,b_n)$$

 S_n is injective.

$$\phi_l((a_1, \dots, a_{l-1}, n+1, a_{l+1}, \dots, a_{n+1}))$$

$$= \phi_l((a_1, \dots, a_{l-1}, n+1, a_{l+1}, \dots, a_{n+1}))$$

$$\Rightarrow (a_1, \dots, a_{l-1}, a_{l+1}, \dots, a_{n+1}) = (a_1, \dots, a_{l-1}, a_{l+1}, \dots, a_{n+1})$$

 ϕ is bijective.

Therefore $|W_l| = |S_n| = n!$. Therefore $|S_{n+1}| = \sum_{l=1}^{n+1} |S_n| = \sum_{l=1}^{n+1} n! = (n+1)n! = (n+1)!$

Remark 1. Let $f: M_n \to M_n$. f is represented as

$$(1,2,3,4,\ldots,n-1,n) \to (f(1),f(2),f(3),f(4),\ldots,f(n-1),f(n))$$

Therefore $(f(1), f(2), \ldots, f(n)) \in S_n$. Analogously every $(a_1, \ldots, a_n) \in S_n$ defined by $f(k) = a_k$ for $k = 1, \ldots, n$ is a bijective mapping $f : M_n \to M_n$. Therefore we set $S_n = \{f : M_n \to M_n : f \text{ is bijective}\}$. S_n is called symmetric group of n elements.

5.2 Binomial coefficients

Definition 12. Let $n \in \mathbb{N}$, $k \in \mathbb{N}$ with $k \leq n$. We define

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 "binomial coefficient n choose k"

It holds that

$$\binom{n}{k} = \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{(1 \cdot 2 \cdot \dots \cdot k)(1 \cdot 2 \cdot 3 \cdot \dots \cdot (n-k))}$$
$$= \frac{n(n-1) \cdot \dots \cdot (k+1)}{(1 \cdot 2 \cdot 3 \cdot \dots \cdot (n-k))}$$

Factorial laws:

$$\binom{1}{0} = \frac{n!}{0!(n-0)!} = 1 \qquad \forall n \in \mathbb{N}$$

$$\binom{n}{n} = \frac{n!}{n!(n-n)!} = \frac{n!}{n! \cdot 1} = 1$$

$$\binom{n}{n-k} = \frac{n!}{(n-k!)(n-n+k)!} = \frac{n!}{k!(n-k)!} = \binom{n}{k} \qquad \text{"symmetrical"}$$

 \square A recursive definition is given by

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \qquad n \ge 1, 1 \le k \le n-1$$

Proof.

$$\binom{n-1}{k-1} + \binom{n+1}{k} = \frac{(n-1)!}{(n-1)!(n-1-(k-1))!}$$

$$= \frac{(n-1)!}{k!(n-1-k)!}$$

$$= \frac{(n-1)!}{(k-1)!(n-k)!} + \binom{(n-1)!}{k!(n-1-k)!}$$

$$= \frac{k \cdot (n-1)! + (n-k)(n-1)!}{k!(n-k)!}$$

$$= \frac{n(n-1)!}{k!(n-1)!} = \frac{n!}{k!(n-k)!}$$

$$= \binom{n}{k}$$

$$n=0$$
 $1 k=0$ $k=1$ $1 1 k=2$ $n=2$ $1 2 1 k=3$ $n=3$ $1 3 3 1 k=4$ $n=4$ $1 4 6 4 1 k=5$ $n=5$ $1 5 10 10 5 1 k=6$ $n=6$ $1 6 15 20 15 6 1$

Figure 2: Pascal's triangle describes binomial coefficients. It's structure is given by adding up the two numbers above a number. The margins are defined by 1. For example 6 is given by $\binom{4}{2}$.

5.3 Arrangement in Pascal's triangle

Theorem 4. Let $T_n^k = \{A \subseteq M_n : |A| = k\}$. Then it holds that $|T_n^k| = \binom{n}{k}$. Example: $T_3^2 = \{\{1,2\},\{1,3\},\{2,3\}\}$. $|T_3^2| = \binom{3}{2} = \frac{3!}{2! \cdot 1!} = \frac{6}{2} = 3$

Proof. Let n be fixed. Induction for k.

Induction base k = 0

$$T_n^0 = \{\emptyset\}$$
$$\left| T_n^0 \right| = 1 = \binom{n}{0}$$

Induction step $k \to k+1$

$$T_n^k = \underbrace{\{\{a_1, \dots, a_k\} : a_1 \in M_n, (i = 1, \dots, k), a_i \neq a_j \text{ for } i \neq j\}}_{A_1}$$

$$\cup \underbrace{\{\{a_1, \dots, a_{k-1}\} \cup [n] \in M_{n-1}\}}_{A_2}$$

$$|T_N^k| = |A_1| + |A_2|$$

This lecture took place on 28th of October 2015 with lecturer Ring Wolfgang. Let A,B be sets and define

$$A \setminus B = \{x : x \in A \land x \notin B\}$$

Then the domain of $A \setminus B$ is "A without B".

Theorem 5.

$$T_n^x = \{ x \subseteq M_x : |X| = x \}$$

Let $k \in \mathbb{N}$ and $0 \le k \le 1$.

$$|T_n^x| = \begin{pmatrix} 1 \\ k \end{pmatrix}$$

There are exactly $\binom{n}{k}$ k-ary subsets of M_n .

Proof.

$$M_0 = \emptyset$$
 $T_0^0 = \{\emptyset\}$ $\left|T_n^0\right| = 1 = {0 \choose n}$

Proof by complete induction over n of the following statement:

$$\forall n \in \mathbb{N} : \forall k \in \mathbb{N} \text{ with } 0 \le k \le n : \left| T_n^k \right| = \binom{n}{k}$$

Induction base n = 0 is fine. For n = 1 there are two cases: k = 0 or k = 1.

$$M_1 = \{1\}$$

$$T_1^0 = \{\emptyset\} \qquad \mid T_1^0 \mid = 1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$T_1^1 = \{\{1\}\} \qquad |T_1^1| = 1 = \begin{pmatrix} 1\\1 \end{pmatrix}$$

Is also fine.

Induction step The hypothesis is our assumption:

$$\forall 0 \le k \le 1 : \left| T_n^k \right| = \binom{n}{k}$$

Consider M_{n+1} . Special case k=0:

$$T_{n+1}^0 = \{\emptyset\}$$
 $T_{n+1}^0 = 1 = \binom{n+1}{0}$

Special case k = n + 1:

$$T_n = \{M_{n+1}\}$$
 $|T_N n + 1^{n+1}| = 1 = \binom{n+1}{n+1}$

Let $1 \le k \le n$.

$$T_{n+1}^x TODO$$

Union is disjoint $\Rightarrow |T_{n+1}^k| = |R_{n+1}^k| + |S_{n+1}^k|$

$$R_{n+1}^k = \{ A \subseteq M_n : |A| = k \} = T_n^k$$

$$\left| R_{n+1}^k \right| = \left| T_n^k \right| = \binom{n}{k}$$

by induction hypothesis.

$$S_{n+1}^k = \{ A \subseteq M_{n+1} : A = A' \cup \{n+1\} : A' \subseteq M_n : |A'| = k-1 \}$$

We prove $|S_{n+1}^k| = |T_n^{k-1}|$.

$$f: S_{n+1}^k \to T_n^{k-1}$$

$$f(A) = f(A' \cup \{n+1\}) = A'$$

f is bijective. f is surjective: Let $A' \in T_n^k$ define $A = A' \cup \{n+1\} \in S_{n+1}^n$ and f(A) = A'. f is injective: Let f(A) = f(B) and $A = A' \cup \{n+1\} \in S_{n+1}^k$.

$$B = B' \cup \{n+1\} \in S_{n+1}^k$$
. $A', B' \in T_n^{k-1}$.

$$f(A) = f(B) \Rightarrow A' = B' \Rightarrow A' \cup \{n+1\} = B' \cup \{n+1\} \Rightarrow A = B$$

$$\left|S_{n+1}^{k}\right| = \left|T_{n}^{k-1}\right| \stackrel{\text{ind. hypo.}}{=} \binom{n}{k-1}$$

Therefore $|T_{n+1}^k| = \binom{n}{n} = \binom{n}{k-1} = \binom{n+1}{k}$. The last equation follows from the recursive definition of binomial coefficients.

5.4 Binomial theorem

Theorem 6 (Binomial theorem). Let $a, b \in \mathbb{R}$ (or $a, b \in \mathbb{C}$). Then it holds that

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Proof. 1. Proof by induction over n.

Induction step n = 0: $(a + b)^0 = 1$

$$\sum_{k=0}^{0} {0 \choose k} a^k b^{0-k} = {0 \choose 0} a^0 b^0 = 1$$

Induction step $n \to n+1$

$$(a+b)^{n+1} = (a+b)^n \cdot (a+b) = \left(\sum_{k=0}^n \binom{n}{k} a^n b^{n-k}\right) (a+b)$$

$$= \sum_{k=0}^n \binom{n}{k} a^{k+1} b^{n-k} + \sum_{k=0}^n \binom{n}{k} a^k b^{n-k+1}$$

$$= \sum_{n=0}^{n-1} \binom{n}{k} a^{k+1} b^{n-k} + \underbrace{\binom{n}{k} a^{n+1} \cdot b^0}_{a^{n-1}}$$

$$\Rightarrow j=1, h=j-1, h=n-1$$

$$\Rightarrow j=n$$

$$+ \sum_{k=1}^n \binom{n}{k} a^k b^{n+1-k} + \binom{n}{0} a^0 b^{n+1}$$

$$\sum_{j=1}^n \binom{n}{j-1} a^j b^{n-(j-1)} + \sum_{k=1}^n \binom{n}{k} a^k b^{n+1-k}$$

$$+ \binom{n+1}{n+1} a^{n+1} + \binom{n+1}{0} b^{n+1}$$

Renaming j to k:

$$= \sum_{k=1}^{n} \underbrace{\begin{bmatrix} \binom{n}{k-1} + \binom{n}{k} \end{bmatrix}}_{\binom{n+1}{k} \text{ by recursive definition}} a^{k} b^{n+1-k}$$

$$+ \binom{n+1}{n+1} a^{n+1} b^0 + \binom{n+1}{0} a^0 b^{n+1}$$

$$= \sum_{k=0}^{n+1} \binom{n+1}{k} a^k b^{n+1-k}$$

Therefore the binomial theorem holds for n+1.

This lecture took place on 29th of October 2015 with lecturer Ring Wolfgang.

$$\forall a, b \in \mathbb{R}, n \in \mathbb{N} : (a+b)^n = \sum_{k=1}^n \binom{n}{k} a^k b^{n-k}$$

Induction base n = 0, n = 1 follows immediately

Induction step

$$(a+b)^n = \underbrace{(a+b)(a+b)(a+b)(a+b)\dots(a+b)}_{n \text{ times}}$$

When multiplying the products a^nb^{n-k} are created $(0 \le k \le n)$. a^nb^{n-k} are created iff a is the factor resulting from k parenthesis groups and b originates from the remaining (n-k) groups. There are exactly $\binom{n}{k}$ possibilities to select from n groups. a^kb^{n-k} occurs $\binom{n}{k}$ times. Therefore

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

This is a rather informal proof, but suffices at this point.

6 Arithmetics of numbers

We consider two fundamental arithmetic operators and determine fundamental properties.

Definition 13. Let K be a set where two arithmetic operators are defined: Therefore $\forall a, b \in K$ let $a + b \in K$ and $a \cdot b \in K$.

We require the following properties:

A1 $\forall a, b \in K : a + b = b + a$

A2 $\forall a, b, c \in K : (a+b) + c = a + (b+c)$

 $\mathbf{A3} \ \exists 0 \in K \forall a \in K : a+0=a$

 $\mathbf{A4} \ \forall a \in K \exists \tilde{a} : a + \tilde{a} = 0$

Then (K, +) is a commutative group ("abelian group"). In general we denote \tilde{a} as -a. We define a - b = a + (-b) ("subtraction").

 $M1 \ \forall a, b \in K : a \cdot b = b \cdot a$

 $M2 \ \forall a, b, c \in K : a \cdot (b \cdot c) = (a \cdot b) \cdot c$

 $M3 \exists 1 \in K : a \cdot 1 = a \forall a \in K \ (neutral \ element)$

 $M4 \ \forall a \in K \setminus \{0\} \ \exists \hat{a} : \hat{a} \cdot a = 1$

In general we denote \hat{a} as a^{-1} .

We set $\frac{a}{b} = a \cdot b^{-1}$.

$$\frac{1}{b} = 1 \cdot b^{-1} \text{ for } b \neq 0$$

Definition 14 (Composition). Compatibility of + and \cdot :

 $D \ \forall a, b, c \in K : a \cdot (b+c) = a \cdot b + a \cdot c$

Under these conditions K is called a field.

Example 5. Examples for fields: $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.

In every field it holds that

• the inverse element of a is unique (\tilde{a} is unique). Let -a be the inverse element of a and $a+b=0 \Rightarrow b=-a$

Proof. TODO

$$(a + (-a)) + (b + 0) = a + b =$$

 \bullet $0 \cdot a = 0$

Proof.

$$0 = 0 + 0$$

follows from \mathbf{D} .

$$0 \cdot a = (0+0) \cdot a = 0 \cdot a + 0 \cdot a$$
$$0 \cdot a + (-0 \cdot a) = 0 \cdot a + [0 \cdot a + (-0 \cdot a)]$$
$$0 = 0 \cdot a$$

 \bullet $-a = (-1) \cdot a$

Proof.

$$a + (-1) \cdot a = (1 + (-1))a = 0$$

 $a + (-1) \cdot a = 0$
 $-a = (-1) \cdot a$

6.1 Integers and the field of rational numbers $\mathbb Q$

For \mathbb{N} , **A1**, **A2** and **A3**. If $n \geq m$, then also $n - m \in \mathbb{N}$. $n - m = k \in \mathbb{N}$ is defined in such a way that n = m + k.

Corollary 1. Extension:

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, \ldots\} = \mathbb{N}_+ \cup \{0\} \cup \{-n : n \leq \mathbb{N}_0\}$$

We define -0 := 0 and $\forall n \in \mathbb{N}_+$ let n + (-n) := 0.

Therefore for every $z \in \mathbb{Z}$ exists some \tilde{z} such that $z + \tilde{z} = 0$.

- $z \in \mathbb{Z}_+ \Rightarrow \tilde{z} = -z$
- $z = 0 \Rightarrow \tilde{z} = 0$
- z = -n for $n \in \mathbb{N}_+$
- $\tilde{z} = n$

$$\forall z \in \mathbb{Z} \exists \tilde{z} \in \mathbb{Z} : z + \tilde{z} = 0$$

In general we denote $\tilde{z} = (-z)$. Also -(-z) = z.

For $z, w \in \mathbb{Z}$:

$$z + w = \begin{cases} z + w & z, w \in \mathbb{N} \\ (-z) + (-w) & -z, -w \in \mathbb{N} \\ z - (-w) & z, -w \in \mathbb{N} \text{ and } z > (-w) \\ -((-w) - z) & z, -w \in \mathbb{N} \text{ and } (-w) > z \end{cases}$$

$$z \cdot w = \begin{cases} z \cdot w & z, w \in \mathbb{N} \\ (-z)(-w) & -z, -w \in \mathbb{N} \\ -((-z) \cdot w) & -z \in \mathbb{N}, w \in \mathbb{N} \end{cases}$$

In \mathbb{Z} the properties A1, A2, A3, A4, M1, M2, M3 and D hold.

Definition 15.

$$\mathbb{Q} = \left\{ \frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0 \right\}$$

where $\frac{m}{n} = \frac{m'}{n'} \Leftrightarrow m \cdot n' = n \cdot m'$. \mathbb{Q} is called the set of rational numbers.

We define

$$\frac{m}{n} + \frac{k}{l} := \frac{ml + nk}{nl}$$

$$\frac{m}{n} \cdot \frac{k}{l} = \frac{mk}{nl}$$

Show that

$$\frac{m}{n} = \frac{m'}{n'} \text{ and } \frac{k}{l} = \frac{k'}{l'}$$

$$\Rightarrow \frac{ml + nk}{nl} = \frac{m'l' + n'k'}{n'l'}$$

$$\Rightarrow (ml + nk)(n'l') = (m'l' + n'k')$$

$$\Leftrightarrow mn' \cdot ll' + nn' \cdot kl = m'n \cdot ll' + nn' \cdot k'l$$

Analogously for $\frac{m}{n} \cdot \frac{k}{l}$.

A1-A4, M1-M4 and D hold for \mathbb{Q} .

For $z \in \mathbb{Z}$ we set $z = \frac{z}{1}$. Therefore it holds that $\mathbb{Z} \subseteq \mathbb{Q}$. $0 = \frac{0}{1}$ and $\frac{m}{n} + 0 = \frac{m}{n} + \frac{0}{1} = \frac{m \cdot 1 + n \cdot 0}{n \cdot 1} = \frac{m}{n}$. 0 is neutral in regards of addition in \mathbb{Q} .

Inverse element in regards of addition:

$$\frac{m}{n} + \frac{-m}{n} = \frac{mn + (-m)n}{n^2} = \frac{(m + (-m))n}{n \cdot n} = \frac{0n}{n^2} = \frac{0}{1}$$

because $0 \cdot 1 = 0 \cdot n^2$.

 $Concerning\ multiplication:$

$$1 = \frac{1}{1} \qquad \frac{m}{n} \cdot \frac{1}{1} = \frac{m \cdot 1}{n \cdot 1} = \frac{m}{n}$$

1 is a neutral element in regards of multiplication in \mathbb{Q} .

Let $\frac{m}{n} \in \mathbb{Q} \setminus \{0\} \Rightarrow m \neq 0 \Rightarrow \frac{n}{m} \in \mathbb{Q}$ and $\frac{m}{n} \frac{n}{m} = \frac{mn}{mn} = \frac{1}{1}$. TODO: verify because $m \cdot n \cdot 1 = 1 \cdot m \cdot n$.

Corollary 2.

$$\forall \frac{m}{n} \in \mathbb{Q} : -\frac{m}{n} = \frac{-m}{n}$$

$$\forall \frac{m}{n} \in \mathbb{Q} \setminus \{0\} : \left(\frac{m}{n}\right)^{-1} = \left(\frac{n}{m}\right)$$

Therefore \mathbb{Q} is a field.

This lecture took place on 30th of October 2015 with lecturer Ring Wolfgang. Literature:

- Eblinghaus et al., "Zahlen", Springer Verlag
- E. Landau: "Grundlagen der Analysis", uses Peano axioms to build calculus

6.2 Ordered fields

Definition 16. Let K be a field. We assume that K is taken from two sets: $K = K_+ \cup \{0\} \cup K_-$ with $0 \notin K_+, 0 \notin K_-$. It holds that

- $\forall a \in K \text{ it holds that either } a \in K_+ \text{ or } a = 0 \text{ or } a \in K_+$ $a \in K_+ \Leftrightarrow -a \in K_-$
- $\forall a, b \in K_+: a+b \in K \land a \cdot b \in K$

If those properties are satisfied, such a field is called an ordered field. Instead of $a \in K_+$ we write a > 0 (namely "positive numbers") and a < 0 for $a \in K_-$ correspondingly (namely "negative numbers").

For arbitrary $a, b \in K$ we define

$$a > b \Leftrightarrow a - b > 0$$

It holds that $a > b \Leftrightarrow b < a$.

$$a \geq b \Leftrightarrow a > b \vee a = b$$

Lemma 1. Let K be an ordered field. Then it holds that

1.
$$a \in K_+ \land b \in K_- \Rightarrow a \cdot b \in K_-$$

 $a \in K_- \land b \in K_- \Rightarrow a \cdot b \in K_+$

2. $\forall a, b \in K$ one of the following relations hold:

$$a > b \lor a = b \lor a < b$$

Therefore < defines a total order on K.

- 3. $\forall a, b, c \in K : [(a < b) \land (b < c) \implies a < c]$ Therefore < is transitive.
- 4. If a > b > 0 then $\frac{1}{a} < \frac{1}{b}$ If a > 0 holds, then also $a^{-1} = \frac{1}{a} > 0$.
- 5. $\forall a, b, c \in K : a < b \implies a + c < b + c$
- 6. $\forall a, b \in K : \forall c > 0 : [a > b \implies ac > bc]$ $\forall a, b \in K : \forall c < 0 : [a > b \implies ac < bc]$
- 7. $\forall a \in K \setminus \{0\} : a^2 = a \cdot a > 0$

Proof. 1. We know from the practicals: $\forall a, b \in K : (-a)(-b) = ab$

$$(-a)b = -(ab)$$

Let $a \in K_+, b \in K_-$, therefore $a \in K_+$, $(-b) \in K_-$, then it holds that $ab = (-a)(-b) = -(a(-b)) \in K_-$. Let $a \in K_-$ and $b \in K_-$ therefore $(-0) \in K_+ \wedge (-b) \in K_+ \implies ab = (-a)(-b) \in K_+$.

2. Let $a, b \in K$. Then one of the following properties hold:

$$a-b>0 \lor a-b=0 \lor a-b<0$$

Equivalently,

$$a > b \lor a = b \lor a < b$$

3. Let a > b and b > c. Therefore a - b > 0 and b - c > 0.

$$\Rightarrow (a-b) + (b-c) > 0$$

$$a(-b+b)-c>0$$

$$a - c > 0 \Leftrightarrow a > c$$

4. Let $a>0 \Rightarrow a^{-1}\neq 0$. Assume $\frac{1}{a}=a^{-1}<0 \Rightarrow a^{-1}\cdot a=1<0$. Otherwise it holds that $1=1\cdot 1=1^2>0$

5. Let a > b > 0. Then it holds that

$$a^{-1}b^{-1}(b-a) = a^{-1}b^{-1}b - a^{-1}b^{-1}a = -a^{-1} \cdot b^{-1} = \frac{1}{a} \cdot \frac{1}{b} \Rightarrow a^{-1} < b^{-1}$$

6. a < b therefore $a - b < 0 \Rightarrow a + c - c - b < 0 \Rightarrow (a + c) - (b + c) < 0$

$$\Leftrightarrow a + c < b + c$$

- 7. Let $a > b, c > 0 \Rightarrow (a b) > 0 \Rightarrow (a b) \cdot c > 0 \Rightarrow ac bc > 0 \Rightarrow ac > bc$. For the second statement, it holds analogously: $a < b, c < 0 \Rightarrow (a b) < 0 \Rightarrow (a b) \cdot c < 0 \Rightarrow ac bc < 0 \Rightarrow ac < bc$
- 8. $a > 0 \Rightarrow a \cdot a > 0$. Let $a < 0 \Rightarrow (-a) > 0$. It holds $a \cdot a = (-a)(-a) > 0$. Therefore the square of two numbers is always positive.

6.3 Remarks about some common fields

Remark 2. \mathbb{C} is not an ordered ordered field. \mathbb{N} , \mathbb{Z} and \mathbb{Q} are ordered.

Remark 3. Let $q \in \mathbb{Q}$.

- a) Let $m, n \in \mathbb{N}_+$ such that $q = \frac{m}{n}$ then q > 0.
- b) Let $m, n \in \mathbb{N}_+$ such that $q = -\frac{m}{n}$ then q < 0.

We show that $\mathbb{Q} = \mathbb{Q}_+ \cup \{0\} \cup \mathbb{Q}_-$. Every $q \in \mathbb{Q}$ has a representation of either a) or b), but not both. $\mathbb{Q}_+ \cap \mathbb{Q}_- = \emptyset$.

$$q \neq 0 \Rightarrow q = \begin{cases} \frac{m}{n} & m, n \in \mathbb{N}_{+} \\ -\frac{m}{n} & m, n \in \mathbb{N}_{+} \\ -\frac{m}{n} & m, n \in \mathbb{N}_{+} \\ \frac{-m}{-n} & m, n \in \mathbb{N}_{+} \end{cases}$$
$$q = \frac{n}{-m} = \frac{-n}{m}$$

because nm = (-n)(-m).

$$q = \frac{-m}{-n} = \frac{m}{n}$$

because $(-m) \cdot n = m \cdot (-n)$

Remark 4. We want to show that $\mathbb{Q}_+ \cap \mathbb{Q}_- = \emptyset$. Let $q \in \mathbb{Q}_+ \cap \mathbb{Q}_-$.

$$q = \frac{m}{n} = -\frac{m'}{n'} \qquad m, n, m', n' \in \mathbb{N}_{+}$$

$$\Rightarrow n \cdot n' = (-m')n$$

$$\Rightarrow \underbrace{mn'}_{\in \mathbb{N}_{+}} + \underbrace{m'n}_{\in \mathbb{N}_{+}} = 0 \qquad \mathbf{f}$$

Furthermore $p \in \mathbb{Q}_+ \land q \in \mathbb{Q}_+$

$$\Rightarrow p + q \in \mathbb{Q}_{+} \land pq \in \mathbb{Q}_{+}$$

$$\Rightarrow p = \frac{k}{l} \qquad q = \frac{m}{n} \qquad k, l, m, n \in \mathbb{N}_{+}$$

$$p + q = \frac{\overbrace{kn + ml}^{\in \mathbb{N}_{+}}}{nm} \in \mathbb{Q}_{+}$$

$$pq = \frac{k}{l} \cdot \frac{m}{n} = \underbrace{\frac{km}{l}}^{\in \mathbb{N}_{+}} \in \mathbb{Q}_{+}$$

Definition 17. Let K be an ordered field $a \in K$. The absolute value of a is defined as

$$|a| = \begin{cases} a & \text{if } a \in K_+ \\ 0 & \text{if } a = 0 \\ -a & \text{if } a \in K_- \end{cases}$$

Remark 5. Let K be an ordered field. Then it holds that

$$\mathbb{Q} \subseteq K \subseteq \mathbb{R}$$

except for isomorphism.

Figure 3: Illustration of an irrational number

6.4 Triangle inequality

Theorem 7.

$$\forall a, b \in K : |a+b| \le |a| + |b|$$
 "Triangle inequality"

Proof. Case 1

$$a \cdot b > 0 \Rightarrow a \cdot b > 0 : |ab| = ab$$
 $|a| \cdot |b| = ab$

Case 2

$$a > 0, b < 0: a \cdot b < 0: |ab| = -ab \qquad |a| \cdot |b| = a \cdot (-b)$$
$$b < 0 \Rightarrow -b > 0 \Rightarrow b < -b \Rightarrow \underbrace{a + b}_{|a+b|} < \underbrace{a - b}_{|a|+|b|}$$

Case 3

$$a<0,b<0:a\cdot b>0:|ab|=ab$$
 $|a|=-a$ $|b|=-b$
$$|a|\cdot|b|=-a\cdot -b=ab$$

Case 4

$$a > 0, b < 0 : a + b < 0$$

$$|a| = a |b| = b |a + b| = -(a + b) = -a - b$$

$$a > 0 \Rightarrow -a < 0 -a - b < a - b$$

$$-(a + b) = |a + b|$$

This lecture took place on 4th of November 2015 with lecturer Wolfgang Ring.

6.5 Laws for absolute values

Theorem 8. Let $y \ge 0$. Then it holds that $|x| \le y \Leftrightarrow -y \le x \land x \le y$

Proof. First direction \Rightarrow :

$$|x| = \begin{cases} x & \text{for } x \ge 0\\ -x & \text{for } x < 0 \end{cases}$$

Case 1 Let $x \geq 0$. Then

$$|x| \le y \Rightarrow x \le y \Rightarrow -y \le x$$

because $-y \le 0 \land x \ge 0$ anyways.

Case 2 Let x < 0, therefore |x| = -x. Because

$$-x \le y \Rightarrow x \ge -y$$

 $x \leq y$ holds anyways because x < 0 and $y \geq 0$.

Second direction \Leftarrow :

Let
$$-y \le x \le y$$
.

Case 1 $x \ge 0$: $|x| = x \le y$ because of the second inequality.

Case 2
$$x < 0$$
: $|x| = -x$
 $-(-1) \Rightarrow -(-y) \ge -x$ or equivalently $y \ge -x = |x|$

Theorem 9.

$$|x| = 0 \Leftrightarrow x = 0$$

$$\forall a \in K : |a| = |-a|$$

$$\forall \varepsilon > 0 : |x - y| \le \varepsilon \Rightarrow x = y$$

Proof. First direction \Rightarrow Without loss of generality: $x \geq y$.

$$x \neq y \Rightarrow \exists \varepsilon > 0 : |x - y| > \varepsilon$$

Let $x \neq y$. Because $x \geq y$ holds, so does x > y. Therefore x - y > 0. We define $\varepsilon = \frac{x - y}{2} < x - y$

$$2 = 1 + 1 > 1$$
$$2^{-1} = \frac{1}{2} < 1 = 1^{-1}$$

Therefore it holds that $\varepsilon: |x-y| = x - y > \frac{1}{2}(x-y) = \varepsilon > 0$.

Second direction $\Leftarrow x = y \Rightarrow |x - y| = 0 \le \varepsilon \forall \varepsilon > 0$

Theorem 10 (Inversed triangle inequality). Let $a,b \in K$. Then it holds that

$$||a| - |b|| \le |a - b|$$

Proof. Show that $-|a-b| \le |a| - |b| \le |a-b|$.

First inequality

$$|b| = |b - a + a| \le |b - a| + |a| \Rightarrow -|a - b| \le |a| - |b|$$

Second inequality

$$|a| = |a - b + b| \le |a - b| + |b| \Rightarrow |a| - |b| \le |a - b|$$

6.6 Intervals

This lecture took place on 5th of November 2015 with lecturer Wolfgang Ring.

 \square **Definition 18** (Intervals). Let $a, b \in K$.

$$(a,b) = \{x \in K \mid (x > a) \land (x < b)\}\$$

$$[a,b) = \{x \in K \mid (x > a) \land (x < b)\}\$$

$$(a,b] = \{x \in K \mid (x > a) \land (x \le b)\}$$

$$[a, b] = \{x \in K \mid (x \ge a) \land (x \le b)\}$$

Theorem 11 (Laws for intervals).

$$(a,b) = \emptyset \text{ if } b \le a \tag{21}$$

$$[a, b] = \emptyset \text{ if } b < a \tag{22}$$

$$[a,a] = \{a\} \tag{23}$$

If I is an non-empty interval (hence $I \neq \emptyset$), then |I| = b - a is called length of the interval. Furthermore

$$(a, \infty) = \{x \in K \mid x > a\} \tag{24}$$

$$[a, \infty) = \{ x \in K \mid x \ge a \} \tag{25}$$

$$(-\infty, a) = \{x \in K \mid x < a\} \tag{26}$$

$$(-\infty, a] = \{x \in K \mid x < a\} \tag{27}$$

Theorem 12. \mathbb{Q} is arithmetically incomplete.

Proof. We define a mapping from \mathbb{N}_+ to \mathbb{N} : Let $n \in \mathbb{N}_+$ then we know that n can be represented distinctly as product of prime numbers. Let $\mathbf{Z}(n)$ be the number of twos in the prime product representation.

Examples:

$$Z(14) = Z(2 \cdot 7) = 1$$

$$Z(15) = Z(3 \cdot 5) = 0$$

$$Z(24) = Z(2 \cdot 2 \cdot 2 \cdot 3) = 3$$

MATHEMATICAL ANALYSIS I – LECTURE NOTES

It holds that $Z(2n) = Z(n) + 1 \forall n \in \mathbb{N}_+$ and $Z(n^2) = Z(n) \cdot 2 \forall n \in \mathbb{N}_+$. We claim,

$$\not\exists q: q=\frac{m}{n} \text{ with } q^2=2$$

Proof by contradiction:

- 1. Assume $\left(\frac{m}{n}\right)^2 = 2$.
- 2. Then $\frac{m^2}{n^2} = 2$.
- 3. Then $m^2 = 2 \cdot n^2$.
- 4. With $Z(m^2) = 2 \cdot Z(n)$.
- 5. With $Z(2 \cdot n^2) = Z(n^2) + 1 = 2 \cdot Z(n) + 1$.
- 6. If $m^2 = 2n^2$, then $Z(m^2)$ must be even and $Z(2 \cdot n^2)$ must be odd.
- 7. Then equality cannot be satisfied 4

6.7 Archimedean property and Completeness axiom

Theorem 13. \mathbb{Q} is geometrically incomplete.

We consider an infinite straight number line. We define \mathbb{R} as ordered field with properties:

Archimedean property $\mathbb{N} \subseteq \mathbb{R}$ with $\forall x \in \mathbb{R} : \exists n \in \mathbb{N} : x < n$

$$\mathbb{N} \subseteq \mathbb{R} \forall n \in \mathbb{N} : -n \in \mathbb{N}$$

$$\Rightarrow \forall n \in \mathbb{N}_{+} : n^{-1} \in \mathbb{R}$$

$$\Rightarrow \mathbb{Z} \subseteq \mathbb{R}$$

Therefore $\forall m \in \mathbb{N} : m \cdot \frac{1}{n} = \frac{m}{n} \in \mathbb{R} \Rightarrow \mathbb{Q} \subseteq \mathbb{R}$.

Definition 19. Let I_0, I_1, \ldots, I_z . $(I_n)_{n \in \mathbb{N}}$ is a sequence of closed intervals with

- 1. $\forall a \in \mathbb{N} : I_{n+1} \subseteq I_n$
- 2. $\forall \varepsilon > 0 \exists n \in \mathbb{N} : n \geq N \Rightarrow |I_n| < \varepsilon$

Completeness axiom Let $(I_n)_{n\in\mathbb{N}}$ be nested intervals in \mathbb{R} . Then there exists some $x\in\mathbb{R}:x\in I_n:\forall n\in\mathbb{N}_+$.

Be aware, there exists only one $x \in \mathbb{R}$ with the property: $x \in I_n \forall n \in \mathbb{N}$.

Assume $x \in I_n$ and $y \in I_n \forall n \in \mathbb{N}$ and $x \neq y$.

$$|\beta - \alpha| \le b - a = |I|$$

Proof. Without loss of generality: $\alpha \leq \beta$. Then it holds that $|\beta - \alpha| = \beta - \alpha \leq \beta + (-\alpha) \leq b + (-\alpha) = b - a = |I|$.

$$a < \alpha \Rightarrow -a > -\alpha$$

Consider arbitrary small $\varepsilon > 0$ and $N \in \mathbb{N}$ sufficiently large, such that $|I_n| < \varepsilon$. Because $x, y \in I_n \Rightarrow |x - y| < \varepsilon \Rightarrow x = y$.

Corollary 3. From the Archimedean property it follows that,

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : n \ge N \Rightarrow \frac{1}{n} < \varepsilon$$

Proof. Let $x > \frac{1}{\varepsilon} \in \mathbb{R}$. Archimedean property: $\exists N \in \mathbb{N} : N > x$.

For $n \geq \mathbb{N}$ it holds that $n > x > 0 \Rightarrow \frac{1}{n} < \frac{1}{x} = \varepsilon$.

Corollary 4. Let $p \in \mathbb{R}, p > 1 \forall x \in \mathbb{R} : n \geq N \Rightarrow p^n > x$.

Proof. p > 1 + u with u = p - 1

$$p^{n} = (1+u)^{n} \sum_{\text{Bernoulli}} 1 - nu = 1 + n(p-1)$$

Let $x \in \mathbb{R}$ arbitrary, select $N \in \mathbb{N} : \frac{x-1}{p-1} < N$.

Then it holds for $n \geq N$:

$$\underbrace{\frac{x-1}{p-1}}_{>0} \Leftrightarrow x-1 < n \cdot (p-1) \Leftrightarrow x < 1 + n(p-1) < p^n$$

MATHEMATICAL ANALYSIS I – LECTURE NOTES

Theorem 14. Let $q \in \mathbb{R}$ with |q| < 1. Then it holds that

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} : n \ge N \Rightarrow |q^n| = |q|^n < \varepsilon$$

Proof. Let $s = |q| \ge 0$. Consider q > 0. Then

$$\begin{aligned} q^n &= 0 \\ |q^n| &= 0 \\ |q|^n &< \varepsilon \forall \varepsilon > 0 \forall n \in \mathbb{N} \end{aligned}$$

Let $q \neq 0$, then 0 < s < 1. Let $p = \frac{1}{s} \Rightarrow p > 1$. Choose arbitrary $\varepsilon > 0$ and $x = \frac{1}{\varepsilon}$. Because of the Completeness axiom

$$\exists N \in \mathbb{N} : n \ge N \Rightarrow p^n > X$$

So it holds that

$$\frac{1}{p^n} = S^n < \frac{1}{x} = \varepsilon \forall n \ge N$$
$$\Rightarrow (|q|)^n = |q^n|$$

Theorem 15. Let $x \in \mathbb{R}, x > 0$ and let $k \in \mathbb{N}_+$. Then there exists a distinct $y \in \mathbb{R}$ with $y \geq 0$ such that

$$u^k = x$$

We denote $y = \sqrt[k]{x}$ and conclude there exists k-th root numbers.

Proof. Idea: Construct nested intervals.

 $(I_n)_{n\in\mathbb{N}}$ such that $y\in\bigcap_{n\in\mathbb{N}}I_n$ satisfies the property that $y^k=x$.

$$0 \le y_1 < y_2 \Rightarrow y_1^k < y_2^k$$

We define $J_0 = [a_0, b_0]$ with $a_0 = 0$ and $b_0 = 1 + x$. Then it holds that

$$a_0^k = 0^k = 0 < x$$

$$b_0^k = (1+x)^k = 1 + k_n + {k \choose 2} x^2 + \dots + x^k \ge 1 + kx > 0$$

This lecture took place on 6th of November 2015 with lecturer Wolfgang Ring.

Theorem 16. We prove:

$$0 \le y_1 < y_2 \Rightarrow y_1^k \le y_2^k$$

Proof. A short proof by a student:

$$\mathbf{k} = \mathbf{2}$$

$$y^{k+1} = y^k \cdot y < y_2^k x < y_2^k y_2 = y^{k+1}$$

$$\mathbf{k}
ightarrow \mathbf{k} + \mathbf{1}$$

$$y_1^2 < y_2^2$$

Theorem 17. Let $a, b \in K$ and $k \in \mathbb{N}$. Then it holds that

$$a^{k} - b^{k} = (a - b) \left(\sum_{j=0}^{k-1} a^{k-1-j} b^{j} \right)$$

$$a^2 - b^2 = (a - b)(a + b)$$

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Proof.

$$(a-b)\left(\sum_{j=0}^{k-1}a^{k-j-1}b^j\right) = \sum_{j=0}^{j-1}a^{k-j}b^j - \sum_{j=0}^{k-1}a^{k-j-1}b^{j+1}$$

$$= a^{k} + \sum_{j=1}^{k-1} a^{k-j}b^{j} - \underbrace{b^{k-1}}_{j=k-1} - \sum_{j=0}^{k-2} a^{k-j-1}b^{j+1}$$

$$= a^k - b^k + \sum_{j=1}^{k-1} a^{k-j} b^j - \sum_{l=1}^{k-1} a^{k-l} b^l$$

$$=a^k$$

Theorem 18. Let $y_2 > y_1$ then

$$y_2^k - y_1^k = \underbrace{(y_2 - y_1)}_{>0} \underbrace{\left(\sum_{j=0}^{k-1} y_2^{k-j-1} y_1^j\right)}_{>0}$$

$$\Rightarrow y_2^k - y_1^k > 0$$

Proof.

$$\forall x \ge 0 \in \mathbb{R} : \exists y \ge 0 \in \mathbb{R} : y^k = x \text{ with } k \in \mathbb{N}_+$$

Special case x = 0 and y = 0 is the solution.

Let x > 0: We construct y with $y \in \bigcap_{k=0}^{\infty} I_n$ where I_n are nested intervals. Specifically I_n must have the properties:

- $I_n = [a_1, b_n]$ with $a^k \le x, b_n^k \ge x \quad \forall n \in \mathbb{N}$
- $I_{n+1} \subseteq I_n : |I_n| = \frac{1}{2} |I_{n+1}| = \left(\frac{1}{2}\right)^n |I_0|$

$$n = 0 I_0 = [0, x - 1]$$

$$a_0 = b b_0 = x + 1$$

$$a_0^k = 0 < x \checkmark$$

$$b_0^k = (1 + x)^k = 1 + kx + \binom{k}{2}x^2 + \dots + x^k > 1 + kx > x \text{ for } k \ge 1$$

Let I_n be given: $I_n = [a_n, b_n]$. Define $m_n = \frac{1}{2}(a_n + b_n)$

Case 1

$$m_n^k \ge x \Rightarrow \text{ let } a_{n+1} = a_n, b_{n+1} = m$$

$$I_{n+1} = [a_n, m_n] \subseteq [a_n, b_n] = I_n$$

$$|I_{n+1}| = m_n - a_n = \frac{1}{2}a_n + \frac{1}{2}b_n - a_n$$

$$\frac{1}{2}(b_n - a_n) = \frac{1}{2}|I_n|$$

$$a_{n+1}^k = a^k \le x \quad \checkmark$$

All conditions are satisfied

Case 2 $m_n^k < x$: Let $a_{n+1} = m_1, b_{n+1} = b_n$. It holds that $a_{n+1} = m_n < x, b_{n+1} = b_n \ge x$ \checkmark . Furthermore it holds that $I_{n+1} \subseteq I$ and $|I_{n+1}| = \frac{1}{2}|I_n|$.

 I_n is set of nested intervals. Let $\varepsilon > 0$ be arbitrary. Then

$$\exists N \in \mathbb{N} : n \ge N \Rightarrow \left(\frac{1}{2}\right)^n < \frac{\varepsilon}{1+x}$$

For those n > N it holds that

$$|I_n| = \left(\frac{1}{2}\right)^n |I_0| = \left(\frac{1}{2}\right)^n (x+1) < \frac{\varepsilon}{1+x} \cdot (1+x)$$

Let $y \in I_n \forall n \in \mathbb{N}$. Further nesting of intervals:

$$(I_n)_{n\in\mathbb{N}}$$
 with $I_n=[a_n^k,b_n^k]$

It holds that

$$a_n \le a_{n+1} < b_{n+1} \le b_n$$
 because $I_{n+1} \subseteq I_n \Rightarrow a_n^b \le a_{n+1}^k < b_{n+1}^k \le b_n^k$

Length of I_n :

$$I_n = b_n^k - a_n^k = (b_n - a_n) \sum_{j=0}^{k-1} a_n^{k-1-j} b_n^j$$

Because $I_n \leq I_0 \Rightarrow a_n < b_0 \Rightarrow b_n \leq b_0$,

$$<(b_n-b_0)\sum_{j=0}^{k-1}b_0^{k-1-j}b_0^j$$

$$= (b_n - a_n)kb_0^k = (b_n - a_n)k(1+x)^k$$

Let $\varepsilon > 0$ be arbitrary. Find some $N \in \mathbb{N}$ with $n \geq N$:

$$|I_n| = (b_n - a_n) < \frac{\varepsilon}{k(1+x)^k}$$

For those n it holds that

$$|I_n| < |I_n| \cdot k(1-x)^k < \frac{\varepsilon}{k(1+x)^k} k(1+x)^k = \varepsilon$$

Therefore $(I_n)_{n\in\mathbb{N}}$ a set of nested intervals.

 $\exists z \in \mathbb{R} \text{ with } z \in \lfloor a_n^k, b_n^k \rfloor : \forall n \in \mathbb{N} \text{ and } z \text{ is unique. By construction of } I_n \text{ it holds that } a_n^k \leq x \leq b_n^k$

$$\Rightarrow x \in I_n \forall n \in \mathbb{N} \Rightarrow x = z \in \bigcap_{n \in \mathbb{N}} I_n.$$

On the opposite side it holds that $y \in I_n$ (hence $a_n \le y \le b_n \Rightarrow a_n^k \le y^k \le b_n^k$). So $y^k \in I_n \forall n \in \mathbb{N} \Rightarrow y^k = z = x$. So we have found some y^k which is x. But is $y \ge 0$ with $y^k = x$ unique?

Let $y_1 \neq y_2$ with $y_1^k = y_2^k = x$ and without loss of generality,

$$0 \le y_1 < y_2 \Rightarrow y_1^k < y_2^k$$

So, y is unique.

7 Supremum property of \mathbb{R}

7.1 Boundedness in $\mathbb R$

Definition 20. Let $A \subseteq \mathbb{R}$.

- We call A to be bounded above if there exists some $u \in \mathbb{R}$ such that $\forall a \in A : a \leq u$.
- A number u with that property is called upper bound of A.
- We call A to be bounded below if there exists some $l \in \mathbb{R}$ such that $\forall a \in A : a \geq l$.
- A number l with that property is called lower bound of A.
- A is called bounded if there exists a lower and upper bound of A.

Corollary 5. Let (a,b) be bounded. Let u be its upper bound and let $v \ge u$. Then v is also an upper bound of (a,b).

This lecture took place on 11th of November 2015 with lecturer Wolfgang Ring.

7.2 Supremum and infimum in \mathbb{R}

Definition 21. Let A be bounded above. Assume $s \in \mathbb{R}$ has the properties

- 1. s is an upper bound for A
- 2. $\forall \sigma \in \mathbb{R} : \sigma < S : \sigma \text{ is not an upper bound for } A.$

If those properties are satisfied, we call s supremum of A. A supremum s is always the smallest upper bound of A. We denote $s = \sup A$.

There exists at most one supremum for A. Let s_1 and s_2 be two suprema, then $s_1 \neq s_2$. So wlog. $\sigma_1 < \sigma_2$. This invalidates the supremum property of $s_2 \Rightarrow s_1$ is not a supremum of A 4.

Analogously an infimum of A is the greatest lower bound of A. Let A be bounded below. $t \in \mathbb{R}$ is called infimum of A if

- 1. $\forall a \in A : t \leq a \ (t \ is \ a \ lower \ bound \ of \ A)$
- 2. $\forall x > t$ so x is no lower bound of A

$$\Leftrightarrow \exists a \in A : a < x$$

We denote $t = \inf A$.

Definition 22. Let $A \subseteq \mathbb{R}$. We denote $u = \max A$ for the maximum of A if

- 1. $u \in A$ (is element of A)
- 2. $\forall a \in A : a \leq u \text{ (is an upper bound)}$

 $l \in \mathbb{R}$ denoted $l = \min A$ is called minimum of A if

- 1. $l \in A$ (is element of A)
- 2. $\forall a \in A : l \leq a \ (l \ is \ a \ lower \ bound)$

Theorem 19. Let $A \subseteq R$ and u be the maximum of A. Then it holds that $u = \sup A$. If $l = \min A \Rightarrow l = \inf A$.

Proof. We need to show, that l is an upper bound of A. This follows by definition. For x < u it holds that x not an upper bound.

Let x < u, because $u \in A$ there exists some element y in A with y > x. Therefore x is not an upper bound of A.

Example 6.

$$A = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots\right\} = \left\{\frac{1}{n} : n \in \mathbb{N}_+\right\}$$

Then it holds that $1 \in A$ and $1 \ge \frac{1}{n} \forall n \in \mathbb{N}_+$. Therefore $1 = \max A = \sup A$.

 $0 = \inf A$, because 0 is a lower bound of A $(\frac{1}{n} > 0 \forall n \in \mathbb{N}_+)$. Let $\varepsilon > 0$, then $\exists N \in \mathbb{N} : n \geq N \Rightarrow \frac{1}{n} \leq \varepsilon$. Therefore ε is not a lower bound of A.

So A does not have a minimum, because otherwise $l = \max A = \inf A = 0$.

Theorem 20. Let $A \neq \emptyset$ and $A \subseteq \mathbb{R}$ be bounded above. So some $s = \sup A \in \mathbb{R}$ exists (therefore \mathbb{R} has a supremum property).

Proof. We construct nested intervals $(I_n)n \in \mathbb{N}$ such that for $s \in \bigcap_{n \in \mathbb{N}} I_n$ gilt $s = \sup A$. We construct I_{n+1} inductively using I_n

Case n = 0

Because $A \neq 0$, we select $a_0 \in A$. Because A is bounded above, $\exists b_0 \in \mathbb{R}$ such that b_0 is an upper bound of A. We define $I_0 = [a_0, b_0]$.

Case $n \rightarrow n+1$

Let $a_0 = b_0$, then it holds that b_0 is upper bound and $b_0 \in A$. We call that terminating condition. Therefore $b_0 = \max A = \sup A$ and the supremum was found. Instead of n we use n + 1. Let $I_0 = [a_n, b_n]$ with $a_n \neq b_n$ and $a_n \in A$, b_n is an upper bound of A. Furthermore it holds that

$$|I_n| \le \left(\frac{1}{2}\right)^n |I_0|$$

Consider I_{n+1} such that the same properties are satisfied. Let $m_1 = \frac{1}{2}(a_1 + b_1)$. It holds that $a_n < m_n < b_n$.

Case m_n is an upper bound of A Then we set $a_{n+1} = a_n \in A$ and $b_{n+1} = m_n$ is an upper bound of A.

$$|I_{n+1}| = b_{n+1} + a_{n+1} = \frac{1}{2}(b_n + a_n) - a_n$$

$$= \frac{1}{2}b_1 - \frac{1}{2}a_n = \frac{1}{2}|I_n| \le \left(\frac{1}{2}\right)^n |I_0| = \left(\frac{1}{2}\right)^{n+1} |I_n| \qquad \checkmark$$

Case m_n is not an upper bound of A Therefore $\exists x \in A \text{ with } x > m_n$.

Subcase $\mathbf{x} = \mathbf{b_1}$ So b_1 is an upper bound. Therefore $x \in A$ and x is upper bound.

$$x = \max A = \sup A$$

We found the supremum.

Subcase $\mathbf{m_n} < \mathbf{x} < \mathbf{b_n}$ Let $a_{n+1} = x \in A$ and $b_{n+1} = b_n$ is an upper bound and

$$I_{n+1} = b_{n+1} - a_{n+1} - b_n - x < b_n - m_n - b_n - \frac{1}{2}(b_n + a_n) + \frac{1}{2}(b_n - a_n)$$

$$= \frac{1}{2} |I_n| \le \left(\frac{1}{2}\right)^{n+1} |I_0|$$

We have found supremum $s = \sup A$.

If in any case the terminating condition holds, then we have found the supremum.

The remaining case is $\forall n \in : a_n < b_n, a_n \in A, b_n$ is upper bound of A.

$$|I_n| = b_n - a_n \le \left(\frac{1}{2}\right)^n |I_0|$$

Consider $\varepsilon > 0$ and N such that $n \ge N \Rightarrow \left(\frac{1}{2}\right)^n < \frac{\varepsilon}{|I_n|}$. For those n it holds that

$$|I_n| \le \left(\frac{1}{2}\right)^n |I_0| < \frac{\varepsilon}{|I_0|} |I_0| = \varepsilon$$

Therefore $(I_n)_{n\in\mathbb{N}}$ are nested intervals.

What remains for completeness: $s \in \mathbb{R}, s \in I_n : \forall n \in \mathbb{N}$. We need to show that $s = \sup A$.

This lecture took place on 12th of November 2015 with lecturer Wolfgang Ring.

Theorem 21. Completeness of \mathbb{R} :

$$\exists s \in \mathbb{R} : s \in I_n \forall n \in \mathbb{N}$$

Proof cont. Every set with an upper bound has a supremum.

We construct $(I_n)_{n\in\mathbb{N}}$ with $I_n=[a_n,b_n]$ and $I_{n+1}\subseteq I_n$. $\forall n\in\mathbb{N}:a_n\in A,\ b_n$ is the upper bound of A.

$$|I_{n+1}| \le \frac{1}{2} |I_n| \le \left(\frac{1}{2}\right)^{n+1} |I_0|$$

Figure 4: Relation of a_n and b_n and J_{n+1}

Consider $I_{n+1} \subseteq I_n$ with $a_n < b_n \forall n \in \mathbb{N}$.

$$|I_n| \le \left(\frac{1}{2}\right)^n |I_0|$$

1. Claim: s is $\sup A$.

We need to show (by contradiction): S is upper bound of A. Assume $a \in A$ and a > s. Let $\varepsilon = a - s > 0$ and choose N sufficiently large such that

$$|I_n| < \varepsilon = a - s$$

Figure 5: Illustration of s between a_n and b_n

Then it holds that

$$b_N = \underbrace{b_n - a_n}_{\varepsilon} / \underbrace{a_N}_{< s} < s + \varepsilon = a$$

$$\Rightarrow b_N < a \in A$$

Because b_n is an upper bound.

2. $\forall \sigma < s$ it holds that σ is not an upper bound of A. Let $\sigma < s$ and $\varepsilon = s - \sigma > 0$ and choose $n \in N$ large enough such that $b_N - a_N < \varepsilon$. Then it holds that

$$a_N = a_N - b_N + b_N$$

$$> -\varepsilon + s$$

$$= -s + \sigma + s = \sigma$$

Therefore it holds that s is smallest upper bound of A and therefore supremum.

Theorem 22. Every set with a lower bound in \mathbb{R} has an infimum. Every set with an upper bound in \mathbb{R} has an supremum.

Theorem 23. Remember that M has the same cardinality like A if $\varphi: M \to A$. φ is bijective, M is called countably infinite if M has the same cardinality like \mathbb{N} .

Let $\varphi: \mathbb{N} \to M$ be bijective therefore $M = \{\varphi(1), \varphi(2), \varphi(3), \ldots\} = \{\varphi(n) \mid n \in \mathbb{N}\}$ and $\varphi(i) \neq \varphi(j)$ for $i \neq j$.

Notation. $\varphi(n) = m_n$.

 $M = \{m_0, m_1, m_2, \ldots\}$ with $m_i \neq m_j$ for $i \neq j$. φ is a complete enumeration of all elements of M.

Therefore every element of M has the structure: m_n with $i \in \mathbb{N}$.

Theorem 24.

$$\mathbb{Q}^+ = \left\{ \frac{m}{n}, m \in \mathbb{N}, n \in \mathbb{N}_+ \right\}$$

The set \mathbb{Q}^+ is countably infinite.

Proof. We enumerate the elements of \mathbb{Q}^+ .

$$\mathbb{Q}_{+} = \{q_0, q_1, q_2, \dots\}$$

$$\mathbb{Q}_{-} = \{-q_0, -q_1, -q_2, \dots\}$$

$$\mathbb{Q} = \{0, q_0, -q_0, q_1, -q_1, \ldots\}$$

An enumeration exists. So $\mathbb Q$ is countably infinite.

Theorem 25. There is no bijective relation $\varphi : \mathbb{N} \to \mathbb{R}$. Therefore we call \mathbb{R} uncountable.

Proof. We provide a proof by contradiction. Assume $\mathbb{R} = \{x_0, x_1, x_2, x_3, \ldots\}$ is countable.

We construct nested intervals.

Case n = 0

$$I_0 = [x_0 + 1, x_0 + 2]$$

Let $|I_0| = 1$ and $x_0 \notin I_0$.

Figure 6: A complete enumeration of \mathbb{Q}^+ (diagonalization argument). We traverse the whole matrix diagonally. The blue numbers indicate the enumeration and red lines cross out values already enumerated. On the right-hand side the general order of the enumeration is illustrated.

Figure 7: Construction of a nested interval and its I_0

Case $n \to n+1$ Assume $I_0 \dots I_n$ were already defined with $x_k \notin I_k$ for $0 \le k \le n$.

$$I_{k+1} \le I_k \text{ for } k = 0, \dots, n-1$$

Figure 8: Construction of a nested interval and its I_n

$$|I_k| = \left(\frac{1}{3}\right)^k$$

We construct I_{n+1} . Let $I_n = [a_n, b_n]$.

$$I_n^1 = \left[a_n, \frac{2}{3}a_n + \frac{1}{3}b_n \right]$$

$$I_n^2 = \left[\frac{2}{3}a_n + \frac{1}{3}b_n, \frac{1}{3}a_n + \frac{2}{3}b_n \right]$$

$$I_n^3 = \left[\frac{1}{3}a_n + \frac{2}{3}b_n, b_n \right]$$

So x_n certainly is not contained in all three intervals I_n^1 , I_n^2 and I_n^3 because $I_n^1 \cap I_N^2 \cap I_N^3 = \emptyset$. Choose I_{n+1} as one of the three intervals I_n^l with $x_{n+1} \notin I_n^l = I_{n+1}$. $I_{n+1} < I_n$.

$$|I_{n+1}| = \frac{1}{3}I_n = \left(\frac{1}{3}\right)^{n+1}$$

For $\varepsilon > 0$ it holds that there exists some $N \in \mathbb{N}$ such that $n \geq N \Rightarrow |I_1| = \left(\frac{1}{3}\right)^n < \varepsilon$. Therefore nested intervals I_n are given.

Let $x \in \mathbb{R}$ such that $\forall n \in \mathbb{N} : X \in I_n$ (because of completeness law). Then it holds that $\forall x_n : x \neq x_n$. $x \in I_n$ and $x_n \notin I_n$. Therefore $x \in \{x_0, x_1, x_2, \ldots\} = \mathbb{R}$.

This contradicts with the assumption that \mathbb{R} is countable.

8 Complex numbers \mathbb{C}

We introduce a new arithmetic unit denoted i, which extends the field \mathbb{R} . Elements of \mathbb{C} are represented as a+bi with $a,b\in\mathbb{R}$.

$$\forall a, b \in \mathbb{R} : a + bi = 0 \Leftrightarrow a = 0 \land b = 0 \tag{28}$$

$$i^2 = -1 \tag{29}$$

This lecture took place on 13th of November 2015 with lecturer Wolfgang Ring.

Definition 23. We consider an "arithmetic element" i extending \mathbb{R} ("adjungiert"). Arithmetic operations are well-defined for i. Associativity and commutativity holds. It holds that

- a + ib = 0 with $a, b \in \mathbb{R} \Leftrightarrow a = 0 \land b = 0$
- $i^2 = -1$ i.e. $i^2 + 1 = 0$.
- Arithmetic operations still hold.

By the first law,

$$a+ib=a'+ib'\Leftrightarrow (a-a')+i(b-b')=0\Leftrightarrow a-a'=0\land b-b'=0$$
 therefore $a=a'\land b=b'$

By the second law, i is the solution of the quadratic equation $i^2 + 1 = 0$.

Let z = a + ib a complex number. We call i the "imaginary unit".

$$\mathbb{C} = \{ z = a + ib : a, b \in \mathbb{R} \}$$

 $\ensuremath{\mathbb{C}}$ is the field of complex numbers with the following properties:

• For addition, it holds that

$$(a+ib) + (c+id) = (a+b) + i(b+d) \subseteq \mathbb{C}$$

and

$$(a+ib) + (-a-ib) = (a-a) + i(b-b) = 0 + i \cdot 0 = 0$$

• For multiplication, it holds that

$$(a+ib) \cdot (c+id) = (ac + \underbrace{(i)^2}_{=-1} bd) + i(bc+ad)$$
$$(ac-bd) + i(bc+ad)$$

- \bullet Laws $\mathbf{A_n}$ to $\mathbf{A_4},\,\mathbf{M_1}$ to $\mathbf{M_3}$ and \mathbf{D} hold.
- The one element exists:

$$1 = 1 + 0 \cdot i$$
$$(a+i\cdot b)(1+i\cdot 0) = (a+(i)^2\cdot 0) + i(b+0) = a+ib$$

• M4 holds: Let $z \in \mathbb{C} \setminus \{0\}$. Let z = a + ib and $\neg (a = 0 \land b = 0) \Leftrightarrow a^2 + b^2 > 0$.

We define

$$w = \frac{a}{a^2 + b^2} - i\frac{b}{a^2 + b^2}$$

$$z \cdot w = (a + ib) \left(\frac{a}{a^2 + b^2} - i\frac{b}{a^2 + b^2}\right)$$

$$= \left(\underbrace{\frac{a^2}{a^2 + b^2} - \frac{b \cdot (-b)}{a^2 + b^2}}_{=1}\right) + i \cdot \left(\underbrace{\frac{ba}{a^2 + b^2} - \frac{a \cdot b}{a^2 + b^2}}_{=0}\right)$$

$$= 1 + i \cdot 0 = 1$$

Therefore $w = z^{-1} = \frac{1}{z}$.

Therefore \mathbb{C} is a field.

We denote

$$a = \Re(z)$$

$$b = \Im(z)$$

$$\overline{z} = a - ib$$

$$|z| = \sqrt{a^2 + b^2}$$

a is called real part of z. b is called imaginary part of z. z is called complex conjugate. |z| is called absolute value of z.

Figure 9: Illustration of complex numbers

Theorem 26.

$$\overline{(\overline{z})} = z$$

Proof.

$$\overline{(\overline{z})} = \overline{(a-ib)} = (a-(-ib)) = a+ib = z$$

Theorem 27.

$$\Re(z) = \frac{1}{2}(z + \overline{z})$$

Theorem 28.

$$\frac{1}{2}(z+\overline{z}) = \frac{1}{2}(a+ib+a-ib) = \frac{1}{2}(2a) = a\checkmark$$

Theorem 29.

$$\Im(z) = \frac{1}{2i}(z - \overline{z})$$

Figure 10: Illustration of complex number addition

Proof.

$$\frac{1}{2i}(a+ib-(a-ib)) = \frac{1}{2i}(2ib) = b\checkmark$$

Theorem 30.

$$z \in \mathbb{R} \Leftrightarrow z = \overline{z}$$

Proof.

$$z = a \in \mathbb{R} \Rightarrow \overline{z} = a = z$$

On the opposite, let $z = \overline{z}$ therefore

$$a = ib = a - ib \Rightarrow 2ib = 0 \Rightarrow b = 0$$

Therefore $z = a \in \mathbb{R}$.

Figure 11: Illustration of the complex conjugate

Theorem 31.

$$z \in i\mathbb{R} = \{ib : b \in \mathbb{R}\} \Leftrightarrow z = -\overline{z}$$

Proof follows analogously.

Theorem 32. It holds that $|z| = \sqrt{z \cdot \overline{z}}$.

Proof.

$$\sqrt{z \cdot \overline{z}} = ((a+ib)(a-ib))^{\frac{1}{2}}$$

$$= (a^2 - (ib)^2)^{\frac{1}{2}} = (a^2 - i^2b^2)^{\frac{1}{2}}$$

$$= (a^2 + b^2)^{\frac{1}{2}} = |z| \quad \checkmark$$

Theorem 33. Let $z, w \in \mathbb{C}$:

$$\overline{(zw)} = \overline{z} \cdot \overline{w}$$

MATHEMATICAL ANALYSIS I – LECTURE NOTES

Proof.

$$z = a + ib \qquad w = c + id$$

$$zw = (ac - bd) + i(bc + ad)$$

$$\overline{zw} = (ac - bd) - i(bc + ad)$$

$$\overline{zw} = a - ib \qquad \overline{w} = c - id$$

$$\overline{z} \cdot \overline{w} = (ac - (-b)(-d)) + i(-bc + a(-d)) = (ac - bd) - i(bc + ad)$$

Corollary 6.

$$\overline{z+w} = \overline{z} + \overline{w}$$

Theorem 34.

$$|zw| = |z| \cdot |w|$$

Proof.

$$|z \cdot w| = (zw) \cdot (\overline{z \cdot w})^{\frac{1}{2}}$$
$$= (z \cdot \overline{z} \cdot w \cdot \overline{w})^{\frac{1}{2}} = (z \cdot \overline{z})^{\frac{1}{2}} \cdot (w \cdot \overline{w})^{\frac{1}{2}} = |z| \cdot |w|$$

Theorem 35.

$$z = 0 \Leftrightarrow |z| = 0 \in \mathbb{R}$$

Proof.

$$z = 0 = 0 + i0 \Rightarrow |z| = \sqrt{0^2 + 0^2} = 0$$

Let $|z| = \sqrt{a^2 + b^2} = 0 \Rightarrow a^2 + b^2 = 0$.

$$\Rightarrow a = 0 \land b = 0$$

Theorem 36.

$$|\Re(z)| = |a| = \sqrt{a^2} \le \sqrt{a^2 + b^2} = |z|$$

 $|\Im(z)| = |b| = \sqrt{b^2} \le \sqrt{a^2 + b^2} = |z| =$

Theorem 37. The triangle inequality holds:

$$\forall z, w \in \mathbb{C} : |z + w| \le |z| + |w|$$

Remark 6. Let $0 \le y_1 < y_2$ with $y_1, y_2 \in \mathbb{R}$. Let $k \in \mathbb{N}_+$. Then it holds that

$$\sqrt[k]{y_1} < \sqrt[k]{y_2}$$

Proof. Indirect proof: Let $\sqrt[k]{y_1} \ge \sqrt[k]{y_2} \ge 0$.

$$\Rightarrow (\sqrt[k]{y_1})^k \ge (\sqrt[k]{y_2})^k$$

therefore $y_1 \geq y_2$. This is the negation of our assumption.

Proof of the triangle inequality. We show that $|z+w|^2 \leq (|z|+|w|)^2$.

$$|z+w|^2 = (z+w)(\overline{z}+\overline{w}) = \underbrace{z\overline{z}}_{|z|^2} + w\overline{z} + z\overline{w} + \underbrace{w\overline{w}}_{|w|^2}$$

$$= 2\Re(w\overline{z})$$

$$= (w\overline{z} + \underbrace{(w \cdot \overline{z})}_{\overline{w} \cdot \overline{z} = \overline{w} \cdot z}$$

$$= |z|^2 + 2\Re(w \cdot \overline{z}) + |w|^2$$

$$\leq |z|^2 + 2|\Re(w \cdot \overline{z})| + |w|^2$$

$$\leq |z|^2 + 2 \cdot |w \cdot \overline{z}| + |w|^2$$

$$= |z|^2 + 2 \cdot |w| \cdot |\overline{z}| + |z|^2$$

$$= |z|^2 + 2 \cdot |w| \cdot |z| + |w|^2$$

$$= (|z| + |w|)^2$$

Theorem 38. In our previous proof there was a small loop hole: We need to show that

$$|z| = |\overline{z}|$$

Proof.

$$\sqrt{a^2 + b^2} = \sqrt{a^2 + (-b)^2} = \sqrt{a^2 + b^2}$$

8.1 Interpretation of multiplication

Multiplication with i. Let z = a + ib.

$$iz = i \cdot a + i^2 \cdot b = (-b) + ia$$

Figure 12: Multiplication corresponds to a rotation by 90°

Multiplication with i rotates z counter-clockwise by 90° in the plane.

Let
$$z \in \mathbb{C}$$
 and $w = c + id$.

This lecture took place on 18th of November 2015 with lecturer Wolfgang Ring.

8.2 Taking roots

$$\forall a \in \mathbb{R} : a \ge 0 \forall n \in \mathbb{N}_+ : \exists x \ge 0 \in \mathbb{R} : x^n = a$$

Taking the n-th root only works for positive integers, because $\forall x \geq 0 : x^2 \geq 0$ and no solution in \mathbb{R} exists for the equation $x^2 = -1$.

Figure 13: In regards of multiplication with w the complex number z is scaled by |w| and then rotated by an angle which is given between w and the positive real axis.

In \mathbb{C} it holds that $\forall w \in \mathbb{C} \setminus \{0\}$. $\forall n \in \mathbb{N}$ there exist exactly n different solutions of the equation $z^n = w$.

9 Sequences of real and complex numbers

Definition 24. Let a be a mapping $\mathbb{N} \to \mathbb{R}$ is called sequence of real numbers.

$$\forall n \in \mathbb{N} : a(b) \in \mathbb{R}$$

We denote $a_n := a(n)$. Instead of $a : \mathbb{N} \to \mathbb{C}$ we write $(a_n)_{n \in \mathbb{N}} = (a_0, a_1, \ldots)$. Analogously for the complex numbers \mathbb{C} and general sets X. **Example 7.** $a_n = \sqrt[n]{2} \frac{1}{n+1}$ with $(a_n)_{n \in \mathbb{N}}$. Or simply:

$$\left(\sqrt[n]{2}\frac{1}{n+1}\right)_{n\in\mathbb{N}}$$

Example 8. Let $(I_n)_{n\in\mathbb{N}}$ be nested intervals. Therefore $(I_n)_{n\in\mathbb{N}}$ is a sequence of elements in $X = \{[a,b] : a,b \in \mathbb{R}, a \leq b\}$.

Definition 25. Let $(a_n)_{n\in\mathbb{N}}$ be a real sequence. $(a_n)_{n\in\mathbb{N}}$ is called bounded above if $o \in \mathbb{R}$ exists such that $\forall n \in \mathbb{N} : a_n \leq o$. $(a_n)_{n \in \mathbb{N}}$ is called bounded below if $u \in \mathbb{R}$ exists such that $\forall n \in \mathbb{N} : a_n \geq u$.

 $(a_n)_{n\in\mathbb{N}}$ is called bounded, if $(a_n)_{n\in\mathbb{N}}$ is bounded above and below.

Example 9. $(a_n)_{n\in\mathbb{N}}$ with $a_n=\frac{n}{n+1}$ is bounded below by 0 and bounded above by 1: $n \le n+1 \Rightarrow n \frac{1}{n+1} < \frac{n+1}{n+1} = 1 \checkmark$.

Definition 26. • $(a_n)_{n\in\mathbb{N}}$ is called monotonically increasing if $\forall n\in\mathbb{N}$: $a_{n+1} \geq a_n$.

- $(a_n)_{n\in\mathbb{N}}$ is called monotonically decreasing if $\forall n\in\mathbb{N}: a_{n+1}\leq a_n$.
- $(a_n)_{n\in\mathbb{N}}$ is called monotonically strictly increasing if $\forall n\in\mathbb{N}: a_{n+1}>a_n$.
- $(a_n)_{n\in\mathbb{N}}$ is called monotonically strictly decreasing if $\forall n\in\mathbb{N}: a_{n+1}>a_n$.

In \mathbb{C} , elements are not ordered, hence no complex sequences can be given. Let $(a_n)_{n\in\mathbb{N}}$ a complex sequence. We define:

- $(a_n)_{n\in\mathbb{N}}$ is called bounded if $(|a_n|)_{n\in\mathbb{N}}$ is a bounded real sequence. Hence We know $\forall \varepsilon > 0 \exists N \in \mathbb{N} : n \geq N \to |q^n 0| < \varepsilon$. $\exists o \in \mathbb{R} : \forall n \in \mathbb{N} : |a_n| < o.$
- The lower bound is implicitly given by 0.

Example 10. $a_n := i^n$ and $(a_n)_{n \in \mathbb{N}} = (1, i, -1, -i, 1, i, -1, -i, 1, i, -1, ...)$

$$|1| = 1$$
 $|-1| = 1$ $|i| = \sqrt{0^2 + 1^2} = 1$ $|-i| = \sqrt{0^2 + (-1)^2} = 1$

So $(|a_n|)_{n\in\mathbb{N}} = (1, 1, 1, 1, 1, \dots)$. It holds that

$$|z| = |-z| = |\overline{z}|$$

Definition 27. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of \mathbb{C} and let $a\in\mathbb{C}$. We state: $(a_n)_{n\in\mathbb{N}}$ has a limit (lat. limes) a if

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} : [n \ge N \implies |a_n - a| < \varepsilon]$$

 $We\ denote$

$$\lim_{n\to\infty} a_n = a$$

The distance $|a_n - a|$ becomes arbitrary small, if n is sufficiently large.

A sequence, which has a limit, is called convergent. A sequence, which does not have a limit, is called divergent.

Remark 7. Sometimes we consider mappings $a: \mathbb{N}_+ \to \mathbb{C}$, which we also call sequences:

$$a \leftrightarrow (a_1, a_2, \ldots)$$

Example 11.

$$a_n = \frac{1}{n}$$

We know:

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} : n \ge N \to \frac{1}{n} < \varepsilon$$

Therefore

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

Let $q \in \mathbb{C}$, |q| < 1.

$$\lim_{n\to\infty} q^n = 0$$

This lecture took place on 19th of November 2015 with lecturer Wolfgang Ring.

Remark 8. Consider $\forall \varepsilon > 0 \exists N \in \mathbb{N} : [n \geq N \implies |a_n - a| < \varepsilon]$ as a circle with radius ε . So if n is sufficiently large, all new sequence numbers are located inside the circle.

Lemma 2. A sequence $(a_n)_{n\in\mathbb{N}}$ with $a_n\in\mathbb{C}$ can have at most one limit.

Proof. Assume a and b are limes of $(a_n)_{n\in\mathbb{N}}$. Then we prove:

$$\forall \varepsilon > 0 : |a - b| < \varepsilon$$

$$\Rightarrow a = b$$

Let $\varepsilon > 0$ arbitrary: Because $a = \lim_{n \to \infty} a_n$ there exists

$$N_1 \in \mathbb{N} : \left[n \ge N_1 \Rightarrow |a_n - a| < \frac{\varepsilon}{2} \right]$$

Because $b = \lim_{n \to \infty} b_n$ there exists

$$N_1 \in \mathbb{N} : \left[n \ge N_1 \Rightarrow |b_n - b| < \frac{\varepsilon}{2} \right]$$

Let $N = \max(N_1, N_2)$, hence $N \ge N_1 \land N \ge N \ge N_2$.

$$\Rightarrow |a_N - a| < \frac{\varepsilon}{2} \wedge |a_N - b| < \frac{\varepsilon}{2}$$

$$|a-b| = |a\underbrace{-a_N + a_N}_0 - b| \le \underbrace{|a-a_N|}_{<\frac{\varepsilon}{2}} + \underbrace{|a_N - b|}_{<\frac{\varepsilon}{2}} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Theorem 39 (Well-known convergent sequences.).

1. Let
$$s = \frac{p}{q} \in \mathbb{Q}_+$$
 and $n \in \mathbb{N}_+$. Consider $\left(\frac{1}{n^2}\right)_{n \in \mathbb{N}}$.

$$n^s = n^{\frac{p}{q}} := \sqrt[q]{n^q}$$

It holds that

$$\lim_{n \to \infty} \frac{1}{n^s} = 0$$

2. Let $q \in \mathbb{C}$, |q| < 1. Then it holds that

$$\lim_{n\to\infty} q^n = 0$$

3. Let $a \in \mathbb{R}, a > 0, n \in \mathbb{N}_+$. Then it holds that

$$\lim_{n \to \infty} \sqrt[n]{a} = 0$$

4. It holds that $(n \in \mathbb{N}_+)$

$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$

5. Let $z \in \mathbb{C} : |z| > 1$. Let $k \in \mathbb{N}$. Then it holds that

$$\lim_{n \to \infty} \frac{n^k}{z^n} = 0$$

Remark 9 (Remark to sequence 5). $|z^n|$ grows faster then n^k .

Proof of sequence 1. Let $0 \le x_n < x_2$.

$$\Rightarrow 0 \le x_1^p < x_2^p \Rightarrow \sqrt[q]{x_1^p} < \sqrt[q]{x_2^p}$$

Therefore $f(x) = x^s$ is strongly monotonic rising for $x \in (0, \infty)$. Let $\varepsilon > 0$ arbitrary and $N > \frac{1}{2^{\frac{1}{s}}} = \varepsilon^{\frac{1}{s}} = \varepsilon^{-\frac{q}{p}}$. Then it holds that $n \geq N$:

$$\left| \frac{1}{n^s} - 0 \right| = \frac{1}{n^s} \le \frac{1}{N^s}$$

$$\frac{1}{n^s} < \frac{1}{N^s} \implies n^s \ge N^s$$

$$\frac{1}{n^s} \le \frac{1}{N^s} < \frac{1}{\left(\frac{1}{\varepsilon^{\frac{1}{s}}}\right)^s} = \frac{1}{\frac{1}{\varepsilon}} = \varepsilon$$

Proof of sequence 2. Already done.

Proof of sequence 3. Case a > 1 Let a > 1. Consider $\varepsilon > 0$. Show that $|\sqrt[n]{a} - 1| < \varepsilon$ for sufficiently large n.

$$x_n = \sqrt[n]{a} - 1 = |\sqrt[n]{a} - 1|$$

$$a > 1 \implies \sqrt[n]{a} > \sqrt[n]{1} = 1 \implies \sqrt[n]{a} - 1 > 0$$

It holds that $x_n + 1 = \sqrt[n]{q}$, i.e. $(x_n + 1)^n = a$.

$$a = (\underbrace{x_1}_{>0} + 1)^n \underset{\text{Bernoulli}}{>} 1 + n \cdot x_n$$

MATHEMATICAL ANALYSIS I – LECTURE NOTES

$$\Rightarrow x_n < \frac{a-1}{n}$$

$$N > \frac{a-1}{\varepsilon} \xrightarrow{\text{for } x \ge N} \left| \sqrt[n]{a} - 1 \right| = x_n$$

$$< \frac{a-1}{n} \le \frac{a-1}{N} < \frac{a-1}{\frac{a-1}{2}} = \varepsilon$$

Case a = 1

$$\sqrt[n]{a} = \sqrt[n]{1} = 1$$

$$\left(\sqrt[n]{a}\right)_{n \in \mathbb{N}} = (1, 1, 1, 1, \dots)$$

has the limit 1.

Case 0 < a < 1 Let $0 < a < 1 \Rightarrow 0 < \sqrt[n]{q} < \sqrt[n]{1} = 1$.

$$x_n = 1 - \sqrt[n]{a} > 0$$

Show that $\forall \varepsilon > 0 \exists N \in \mathbb{N} : [n \ge N \Rightarrow x_n < \varepsilon].$

$$x_n = 1 - \sqrt[n]{a} = \sqrt[n]{a} \left(\frac{1}{\sqrt[n]{a}} - 1\right) = \sqrt[n]{a} \left(\sqrt[n]{\frac{1}{a}} - 1\right) < \left(\sqrt[n]{a'} - 1\right)$$

with $a' = \frac{1}{a} > 1$. From case a > 1 we already know

$$\exists N \in \mathbb{N} : \left[n \ge N \Rightarrow \left| \sqrt[n]{a'} - 1 \right| = \sqrt[n]{a'} - 1 < \varepsilon \right]$$

$$\Rightarrow x_n < \varepsilon$$

Proof of sequence 4. This proof works similar to the proof of sequence 3.

$$x_n = \sqrt[n]{n} - 1 > 0 \text{ for } n \ge 2$$

Therefore $|x_n| = x_n$. Let $\varepsilon > 0$ be arbitrary.

$$x_n + 1 = \sqrt[n]{n}$$
 i.e. $(x_n + 1)^n = n$

$$n = (1 + x_n)^n = 1 + \underbrace{nx_n}_{>0} + \underbrace{\binom{n}{2}x_n^2}_{>0} + \underbrace{\binom{n}{3}x_n^3}_{>0} + \underbrace{\cdots + x_n^n}_{>0} > 1 + \binom{n}{2}x_n^2$$

All expressions we remove are positive (but we don't remove all positive expressions).

$$x_n^2 < \frac{n-1}{\binom{n}{2}} = \frac{n-1}{\frac{n(n-1)}{2 \cdot 1}} = \frac{2}{n}$$

$$x_n < \sqrt{\frac{2}{n}}$$

Choose $N > \frac{2}{\varepsilon^2}$. Then it holds for $n \geq N$ that

$$x_n < \sqrt{\frac{2}{n}} < \sqrt{\frac{2}{N}} < \sqrt{\frac{2}{\frac{2}{\varepsilon^2}}} = \varepsilon$$

Consider $\sqrt{\frac{2}{n}} < \varepsilon$ hence $\frac{2}{n} < \varepsilon^2$ hence $n > \frac{2}{\varepsilon^2}$.

Proof of sequence 5.

$$|z| > 1$$
 thus $x = |z| - 1 > 0$ it holds that $|z| = 1 + x$

We show that for $\varepsilon > 0$ arbitrary, there exists $N \in \mathbb{N}$:

$$n \ge N \implies \left| \frac{n^k}{z^n} - 0 \right| = \left| \frac{n^k}{z^n} \right| = \frac{n^k}{|z|^n} < \varepsilon$$

 \Box Let $\varepsilon > 0$ be given,

• For n > 2k it holds that $n - k > n - \frac{n}{2} = \frac{n}{2}$.

$$|z|^n = (1+x)^n = \sum_{j=0}^n \binom{n}{j} x^j > \underbrace{\binom{n}{k+1}}_{j=k+1} x^{k+1}$$

$$n > 2k > k + 1$$

$$\underbrace{\binom{n}{k+1}}_{i=k+1} x^{k+1} = \underbrace{\frac{n}{n} \underbrace{(n-1)}_{i=k+1} \underbrace{(n-2)}_{i=k+1} \dots \underbrace{(n-k)}_{i=k+1}}_{j=k+1} x^{k+1} > \underbrace{\frac{n^{k+1}}{2^{n+1}}}_{(k+1)!} x^{n+1}$$

Therefore $|z|^n > \frac{n^{k+1}}{2^{k+1}(k+1)!}x^{k+1}$. So,

$$\frac{n^k}{|z|^n} < \frac{n^k \cdot 2^{k+1}(k+1)!}{n^{k+1} \cdot x^{k+1}} = \underbrace{\frac{2^{k+1}(k+1)!}{x^{n+1}}}_{\substack{\text{constant } \land > 0}} \cdot \frac{1}{n} = M \cdot \frac{1}{n}$$

$$\frac{n^k}{|z|^n} < M \cdot \frac{1}{n} \text{ for } n > 2k$$

Consider N such that $N > \frac{M}{\varepsilon}$ and N > 2k. Then it holds that

$$\frac{n^k}{|z|^n} < M\frac{1}{n} \le \frac{M}{N} < \frac{M}{\frac{M}{\varepsilon}} = \varepsilon$$

Lemma 3. Every convergent sequence is bounded (in \mathbb{C}).

Proof. Let $(a_n)_{n\in\mathbb{N}}$ be convergent. This means especially e.g. $\varepsilon=13$.

$$\exists N \in \mathbb{N} \text{ s.t. } [n \geq N \implies |a_n - a| < 13]$$

Consider Q > 0 such that

$$O = \max\{|a_0|, |a_1|, |a_2|, \dots, |a_{N-1}|, |a| + 13\}$$

So $O \ge |a_n|$ for $n \in \{0, ..., N\}$. Then for $0 \le n < N$ it holds that $|a_n| < O$. \checkmark For $n \ge N$ it holds that

$$|a_n| = |a_n - a + a| \le \underbrace{|a_n - a|}_{\le 13} + |a| < \underbrace{13 + |a|}_{\le O}$$

Therefore $(|a_n|)_{n\in\mathbb{N}}$ is bounded in \mathbb{R} and followingly $(|a_n|)_{n\in\mathbb{N}}$ is bounded in \mathbb{C} .

Theorem 40. Let $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$. Then the following laws hold:

- 1. $\lim_{n\to\infty} (a_n+b_n)$ is convergent with limes a+b
- 2. $\lim_{n\to\infty} (a_n \cdot b_n)$ is convergent with limes $a \cdot b$
- 3. $\lim_{n\to\infty} \frac{a_n}{b_n}$ is convergent with limes $\frac{a}{b}$ if $\forall n\in\mathbb{N}: b_n\neq 0 \land b\neq 0$.

Proof. 1. Let $\varepsilon > 0$ arbitrary. Because $(a_n)_{n \in \mathbb{N}}$ is convergent,

$$\exists N_1: \left[n \ge N_1 \Rightarrow |a_n - a| < \frac{\varepsilon}{2}\right]$$

 (b_n) is convergent hence

$$\exists N_2: \left[n \ge N_2 \Rightarrow |b_n - b| < \frac{\varepsilon}{2}\right]$$

 $N = \max\{N_1, N_2\}$, hence for $n \geq N$ both statements above hold. Let $n \geq N$, then the triangle inequality holds:

$$|(a_n+b_n)-(a+b)|=|(a_n-a)+(b_n-b)|\leq \underbrace{|a_n-a|}_{<\frac{\varepsilon}{2}}+\underbrace{|b_n-b|}_{<\frac{\varepsilon}{2}}<\varepsilon$$

2. $(a_n)_{n\in\mathbb{N}}$ is convergent and therefore also bounded. Therefore,

$$\exists m > 0 : \forall n \in \mathbb{N} : |a_n| < m$$

 $(b_n)_{n\in\mathbb{N}}$ is convergent, hence

$$\exists N_1 : n \ge N_1 :\Rightarrow |b_n - b| < \frac{\varepsilon}{2} \cdot \frac{1}{m+1}$$

 $(a_n)_{n\in\mathbb{N}}$ is convergent, hence

$$\exists N_2 \le N : n \ge N_2 \Rightarrow |a_n - a| < \frac{\varepsilon}{2} \frac{1}{|b| + 1}$$

 $N = \max\{N_1, N_2\}$. For $n \ge N$ both relations above hold. Let $n \ge N$:

$$|a_n b_n - ab| = |a_n b_n - a_n b + a_n b - ab|$$

MATHEMATICAL ANALYSIS I – LECTURE NOTES

$$\leq |a_n(b_n - b)| + |b(a_n - a)| = |a_n| |b_n - b| + |b| |a_n - a|$$

$$\leq m \frac{\varepsilon}{2} \frac{1}{m+1} + |b| \frac{\varepsilon}{2} \frac{1}{|b|+1} < \frac{\varepsilon}{2} \cdot 1 + \frac{\varepsilon}{2} \cdot 1 = \varepsilon$$

3. Left for the practicals.

9.1 Laws for convergent complex sequences

Theorem 41. Let $(a_n)_{n\in\mathbb{N}}$ be convergent with limes $a, (a_n \to a)$. Then it holds that

• $(\Re(a_n))_{n\in\mathbb{N}}$ is convergent.

$$\lim_{n \to \infty} (\Re(a_n)) = \Re(a)$$

• $(\Im(a_n))_{n\in\mathbb{N}}$ is convergent.

$$\lim_{n \to \infty} (\Im(a_n)) = \Im(a)$$

• $(|a_n|)_{n\in\mathbb{N}}$ is a convergent real sequence.

$$\lim_{n\to\infty} |a_n| = |a|$$

• $(\overline{a_n})_{n\in\mathbb{N}}$ is convergent with

$$\lim_{n\to\infty} \overline{a_n} = \overline{a}$$

On the opposite, let $(a_n)_{n\in\mathbb{N}}$ with $a_n = \alpha_n + i\beta_n$ a sequence of complex numbers. Let $(\alpha_n)_{n\in\mathbb{N}}$ and $(\beta_n)_{n\in\mathbb{N}}$ be convergent with limes α i.e. β . Then $(a_n)_{n\in\mathbb{N}}$ is a convergent complex sequence with limes $a = \alpha + \beta i$.

Proof. Let $\varepsilon > 0$. Consider N such that $n \ge N \Rightarrow |a_n - a| < \varepsilon$.

$$\underbrace{|a_n - a|}_{(\alpha_n - \alpha) + (\beta_n - \beta)i} = \sqrt{(\alpha_n - \alpha)^2 + (\beta_n - \beta)^2}$$

TODO

Therefore $(\alpha_n) = (\Re(a_n))_{n \in \mathbb{N}}$ is convergent. $(\beta_n) = (\Im(a_n))_{n \in \mathbb{N}}$ is convergent.

Let $\varepsilon > 0$. Consider N such that $n \geq N \Rightarrow |a_n - a| < \varepsilon$.

$$||a_n| - |a||$$
 \leq $|a_n - a| < \varepsilon \text{ for } n \geq N$ inverse triangular inequality

Now we need to show $\alpha_n \to \alpha$ and $\beta_n \to \beta$

$$\Rightarrow a_n \to a$$

Let $\varepsilon > 0$ be arbitrary. Because $(\alpha_n)_{n \in \mathbb{N}}$ be convergent, there exists $N_1 \in \mathbb{N}$:

$$n \ge N_1 \Rightarrow |\alpha_1 - \alpha| < \frac{\varepsilon}{\sqrt{2}}$$

 $(\beta_n)_{n\in\mathbb{N}}$ is convergent. So,

$$\exists N_2 \in \mathbb{N} : n \geq N_2$$

$$|\beta_n - \beta| < \frac{\varepsilon}{\sqrt{2}}$$

For $N = \max\{N_1, N_2\}$ and $n \ge N$ both relations hold.

Let $n \geq N$:

$$|a_n - a| = |(\alpha_n - \alpha) + i(\beta_n - \beta)|$$

$$= \sqrt{(\alpha_n - \alpha)^2 + (\beta_n - \beta)^2} < \sqrt{\frac{\varepsilon^2}{2} + \frac{\varepsilon^2}{2}} = \sqrt{\varepsilon^2} = \varepsilon$$

Let $a_n = \alpha_n + i\beta_n$ is convergent with limes $\alpha + i\beta$ which is a.

$$\Rightarrow \lim_{n \to \infty} \alpha_n = \alpha \wedge \lim_{n \to \infty} \beta_n = \beta$$

$$\Rightarrow \lim_{n \to \infty} (-\beta_n) = -\beta \qquad \text{``multiplication rule''}$$

$$\Rightarrow (\overline{a_n})_{n \in \mathbb{N}} = (\underbrace{\alpha_n}_{\text{convergent}} - \underbrace{i\beta_n}_{\text{convergent}})_{n \in \mathbb{N}}$$

$$\Rightarrow \lim_{n \to \infty} \overline{a_n} = \alpha - i\beta = \overline{a}$$

9.2 Other laws for complex sequences

Theorem 42. Let $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ be convergent in \mathbb{R} with limes a (i.e. b) and it must hold that $\forall n \in \mathbb{N} : a_n \leq b_n$. Then also $a \leq b$.

Proof. Consider $a - b = \varepsilon > 0$.

$$\exists N_1 \in \mathbb{N} : n \ge N_1 \Rightarrow |a_n - a| < \frac{\varepsilon}{2}$$

$$\exists N_2 \in \mathbb{N} : n \ge N_2 \Rightarrow |b_n - b| < \frac{\varepsilon}{2}$$

Figure 14: the sequences a_n , b_n and limes a, b and ε in relation

For $N = \max\{N_1, N_2\}$:

$$b_N = b_N - b + b \le b + |b_N - b| < b\frac{\varepsilon}{2} = b + \frac{a - b}{2} = \frac{1}{2}(a + b)$$

$$a_N = \underbrace{a_N - a}_{\geq -|a_n - a|} + a \geq a - |a_n - a| > a - \frac{\varepsilon}{2} = a - \frac{a - b}{2} = \frac{1}{2}(a + b)$$

$$b_N < \frac{1}{2}(a+b) < d_N$$

Attention:

$$a_n < b_n \not\Rightarrow a < b$$

Example: $a_n = 0$, $b_n = \frac{1}{n}$.

9.3 Convergence criteria

Are there criteria such that if they have a specific structure, they are obivously convergent?

9.3.1 Squeeze theorem

Theorem 43. Let $(A_n)_{n\in\mathbb{N}}$ and $(B_n)_{n\in\mathbb{N}}$ be convergent real sequences with $\lim_{n\to\infty} A_n = \lim_{n\to\infty} B_n = A$. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence and $M\in\mathbb{N}$ such that

$$\forall n \geq M : A_n \leq a_n \leq B_n$$

Then it holds that $(a_n)_{n\in\mathbb{N}}$ is also convergent and $\lim a_n = A$.

Proof. Let $\varepsilon > 0$ be arbitrary. Consider N such that,

- $M \ge M$
- $n \ge N \Rightarrow |A_n A| < \varepsilon$
- $n \ge N \Rightarrow |B_n A| < \varepsilon$

Then it holds that for $n \geq N$:

$$A - a_n \le A - A_n \le |A - A_n| < \varepsilon$$

$$a_n - A \le B_n - A \le |B_n - A| < \varepsilon$$

$$\Rightarrow |a_n - A| < \varepsilon$$

$$\lim_{n \to \infty} a_N = A$$

Example 12. Let $S \in \mathbb{Q}_+$. Then it holds that

$$\lim_{n \to \infty} \left(\sqrt[n]{n^s} \right) = 1$$

We apply the squeeze theorem:

$$n^2 > 1 \forall n \in \mathbb{N}$$

MATHEMATICAL ANALYSIS I – LECTURE NOTES

$$\Rightarrow \sqrt[n]{n^s} \ge 1$$

Let $k \in \mathbb{N}_+$. Then it holds that

$$\lim_{n \to \infty} \sqrt[n]{n^k} = \lim_{n \to \infty} \underbrace{\sqrt[n]{n} \sqrt[n]{n} \dots \sqrt[n]{n}}_{k \text{ times}}$$

$$= 1 \cdot 1 \cdot 1 \dots = 1$$

For the last two lines we actually need to read them from right to left. Let $s = \frac{p}{a}$.

$$\Rightarrow n^s = n^{\frac{p}{q}} \le q \cdot \left(n\frac{p}{q}\right)^q = n^p$$

$$q \ge 1 \Rightarrow \sqrt[n]{n^s} \le \underbrace{\sqrt[n]{n^p}}_{convergent\ with\ limes\ 1} \qquad p \in \mathbb{N}$$

Then it holds that $\lim_{n\to\infty} \sqrt[n]{n^s} = 1$ with the squeezing theorem.

Remark 10. Let $A \subseteq \mathbb{R}$ be bounded above. Then it holds that

$$S = \sup A \Leftrightarrow s \text{ is upper bound of } A \land \forall \varepsilon > 0 \exists a \in A : a > s - \varepsilon$$

Proof. Implication from left to right: Let $s = \sup A$. Then it holds that s is upper bound of A and $s - \varepsilon < s$ is not an upper bound. Therefore $\exists a \in A : a > s - \varepsilon$.

Implication from right to left: Consider that both statements on the RHS hold. So s is an upper bound. We need to show that any t is not an upper bound with t > s. Let $t < s, s - t = \varepsilon > 0$. Therefore $t = s - \varepsilon$. Because of the right statement $\exists a \in A : a > s - \varepsilon = t$ therefore t is not an upper bound.

Remark 11. Analogously:

$$\sigma = \inf A \Leftrightarrow \sigma \text{ is lower bound} \land \forall \varepsilon > 0 \exists a \in A : a < \sigma + \varepsilon$$

Theorem 44. Let $(a_n)_{n\in\mathbb{N}}$ be a bounded monotonic sequence. Then $(a_n)_{n\in\mathbb{N}}$ has a limes a with

• $a = \sup \{a_n : n \in \mathbb{N}\}\ if (a_n)_{n \in \mathbb{N}}\ is\ monotonically\ increasing.$

• $a = \inf \{a_n : n \in \mathbb{N}\}\ if (a_n)_{n \in \mathbb{N}}\ is\ monotonically\ decreasing.$

Proof. Let $(a_n)_{n\in\mathbb{N}}$ be monotonically increasing. Let $a=\sup\{a_n:n\in\mathbb{N}\}$. Let $\varepsilon>0$ be arbitrary. Because a is a supremum, there exists $a_N\in\{a_n:n\in\mathbb{N}\}$ such that $a_N>a-\varepsilon$.

$$\Rightarrow \underbrace{a - a_N}_{\geq 0} < \varepsilon$$

because a is an upper bound. Therefore

$$|a - a_N| < \varepsilon$$

Let $n \geq N$ then it holds that

$$|a - a_n| \underbrace{=}_{a \text{ is upper bound}} a - a_n \le a - a_N$$

because $a_N \leq a_n$ is increasing:

$$a - a_N < \varepsilon$$

Therefore $\lim_{n\to\infty} a_n = a$.

This lecture took place on 25th of November 2015 with lecturer Wolfgang Ring. Let $(a_n)_{n\in\mathbb{N}}$ be a real sequence. If $(a_n)_{n\in\mathbb{N}}$ is bounded and monotonous. Then $(a_n)_{n\in\mathbb{N}}\in\mathbb{N}$ is convergent.

Example: Wallis product John Wallis (1616–1703)

$$p_n = \frac{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)} = \prod_{k=1}^{n} \frac{2k}{2k-1}$$

Consider

$$\alpha_n = \frac{p_n}{\sqrt{n}}$$
 $\beta_n = \frac{p_n}{\sqrt{n+1}}$

We need to show that

• (α_n) is monotonously decreasing

MATHEMATICAL ANALYSIS I – LECTURE NOTES

• (β_n) is monotonously increasing

$$\forall n \in \mathbb{N} : n > 1 : \alpha_n > \beta_n$$

Both are convergent.

1. Show that,

$$\alpha_{n+1} < \alpha_n \Leftrightarrow \frac{\alpha_{n+1}}{\alpha_n} < 1 \Leftrightarrow \frac{(\alpha_{n+1})^2}{(\alpha_n)^2} < 1$$

$$\left(\frac{\alpha_{n+1}}{\alpha_n}\right)^2 = \left(\frac{\frac{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n+2)}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1) \cdot (n+1)}}{\frac{2 \cdot 4 \cdot \dots \cdot 2n}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n+1)}} \cdot \frac{\frac{1}{\sqrt{n+1}}}{\frac{1}{\sqrt{n+1}}}\right)^2$$

$$= \frac{(2n+2)^2 \cdot n}{(2n+1)^2 (n+1)} = \frac{4n^3 + 8n^2 + 4n}{(4n^2 + 4n + 1) \cdot (n+1)} = \frac{4n^3 + 8n^2 + 4n}{4n^3 + 8n^2 + 5n + 1} < 1$$

2. We show.

$$\left(\frac{\beta_{n+1}}{\beta_n}\right)^2 = \frac{(2n+2)^2 \cdot (n+1)}{(2n+1)^2 \cdot (n+2)} = \frac{(4n^2 + 8n + 4)(n+1)}{(4n^2 + 2n + 1)(n+2)}$$

 $=\frac{4n^3+12n^2+12n+4}{\frac{4n^3+12n^2+0n+2}{4n^3+12n^2+0n+2}}>1\Rightarrow \beta_{n+1}>\beta_n\Rightarrow \beta_n \text{ is monotonically increasing } Proof. \text{ Let } (a_n)_{n\in\mathbb{N}} \text{ be convergent. Let}$

Let $p = \lim_{n \to \infty} a_n$ and $p' = \lim_{n \to \infty} b_n$.

$$\beta_n = \frac{p_n}{\sqrt{n}} \cdot \frac{\sqrt{n}}{\sqrt{n+1}} = \alpha_n \cdot \sqrt{\frac{n}{n+1}}$$

$$\lim_{n \to \infty} \beta_n = \lim_{n \to \infty} \alpha_n \sqrt{\frac{n}{n+1}} = \lim_{n \to \infty} \alpha_n \cdot \underbrace{\lim_{n \to \infty} \sqrt{\frac{n}{n+1}}}_{=1}$$

$$\Rightarrow \lim_{n \to \infty} \beta_n = \lim_{n \to \infty} a_n \Rightarrow p = p'$$

It holds that $p = \lim_{n \to \infty} \frac{p_n}{\sqrt{n}} = \sqrt{n}$.

Figure 15: Illustration of a limit point in the Euclidean plane. The point is represented as circle with radius ε . Finitely many points lie outside the limit point; infinitely many inside.

On limit points and subsequences

Definition 28. Let $(a_n)_{n\in\mathbb{N}}$ be a complex sequence. The complex number a is called limit point (german "Häufungspunkt") of $(a)_{n\in\mathbb{N}}$ if $\forall \varepsilon > 0 : |a_n - a| <$ ε for infinitely many indices $n \in \mathbb{N}$. Hence infinitely many numbers of the sequence lie within a circle with center a and radius ε .

Remark 12. Let $(a_n)_{n\in\mathbb{N}}$ be convergent with limit a. Then it holds that a is the only limit point of the sequence $(a_n)_{n\in\mathbb{N}}$.

$$\varepsilon > 0 \exists N \in \mathbb{N} : n \ge N \Rightarrow |a_n - a|$$

Therefore $\forall n \in \{N, N+1, N+2, ...\}$ it holds that $|a_n - a| < \varepsilon$. Assume $a' \in \mathbb{C}$ is another limit point with $a \neq a'$. Let

$$\varepsilon = \frac{|a - a'|}{2} > 0$$

Let $N \in \mathbb{N}$ such that $\forall n \geq N : |a_n - a| < \varepsilon$.

$$\Rightarrow n \in \mathbb{N} : |a' - a_n| = |a' - a + a - a_n| = |a' - a - (a_n - a)| \ge |a' - a| - |a_n - a|$$
$$= 2\varepsilon - |a_n - a| > 2\varepsilon - \varepsilon = \varepsilon$$

At most for $n \in \{1, ..., N-1\}$ it is possible that $|a_n - a'| < \varepsilon$. **Remark 13.** $a_n = (-1)^n$ has the limit points +1 and -1.

The lecture on 26th of November 2015 got cancelled.

This lecture took place on 27th of November 2015 with lecturer Wolfgang Ring.

Definition 29. Let $a \in \mathbb{C}$ and r > 0 and

$$B(a,r) = \{ z \in \mathbb{C} \mid |z - a| < r \}$$

and we call B(a,r) an open circle with center a and radius r. So the circle itself is not part of the set, unlike the following set:

$$B'(a,r) = \{ z \in \mathbb{C} \mid |z - a| \le r \}$$

Let a be a limit point of $(a_n)_{n\in\mathbb{N}} \Leftrightarrow \forall \varepsilon > 0$. $B(a,\varepsilon)$ contains infinitely many sequence numbers.

Example 13.

$$a_n = \frac{1}{2} \left[1 + (-1)^n \left(\frac{1-n}{n} \right) \right] \qquad n \ge 1$$

$$\Rightarrow a_1 = \frac{1}{2} \quad a_2 = \frac{1}{4} \quad a_3 = \frac{5}{6}$$

$$a_4 = \frac{1}{8}$$
 $a_5 = \frac{9}{10}$ $a_6 = \frac{1}{12}$ $a_7 = \frac{13}{14}$

" $\frac{5}{6}$? Ah, passt ma eh bessa." (Wolfgang Ring)

Estimated limit points: a = 0, b = 1.

Proof. Let $\varepsilon > 0$ and a = 0. We consider sequence numbers with even index.

So for indices it holds that n = 2k.

$$|a_{2k} - 0| = \left| \frac{1}{2} \left(1 + \underbrace{(-1)^{2k}}_{+1} \left(\frac{1 - 2k}{2k} \right) \right) \right|$$

$$= \frac{1}{2} \left| 1 + \frac{1 - 2k}{2k} \right|$$

$$= \frac{1}{2} \left| \frac{2k + 1 - 2k}{2k} \right|$$

$$= \frac{1}{4k} < \varepsilon \text{ if } k > \frac{1}{4\varepsilon}$$
infinitely many ks satisfy the relation

Let $\varepsilon > 0$ and b = 1. We consider sequence numbers of structure n = 2k + 1.

$$|a_{2k+1} - 1| = \left| \frac{1}{2} \left[1 + \underbrace{(-1)^{2k+1}}_{=-1} \left[\frac{1 - (2k+1)}{2k+1} \right] \right] - 1 \right|$$

$$= \left| \frac{1}{2} \left[1 - \frac{-2k}{2k+1} \right] - 1 \right|$$

$$= \left| \frac{1}{2} \frac{2k+1+2k}{2k+1} - 1 \right|$$

$$= \left| \frac{4k+1}{4k+2} - 1 \right|$$

$$= \left| \frac{4k+1-4k-2}{4k+2} \right|$$

$$= \frac{1}{4k+2}$$

$$< \varepsilon$$

if
$$4k + 2 > \frac{1}{\varepsilon} \Rightarrow \underbrace{k}_{\text{infinitely many}} > \frac{1}{4} \left(\frac{1}{\varepsilon} - 2 \right)$$

Example 14. $(c_n)_{n\in\mathbb{N}}$ is defined with $c_n=i^n$.

$$(c_n)_{n\in\mathbb{N}} = (1, i, -1, -i, 1, i, -1, -i, 1\dots)$$

What are its limit points?

Definition 30. Let $(a_n)_{n\in\mathbb{N}}$ with $a_n\in\mathbb{C}$. For example,

$$(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \dots)$$

We remove some elements

$$(1,\frac{1}{3},\frac{1}{4},\frac{1}{6},\dots)$$

A subsequence is created. We also reenumerate the numbers:

$$(\underbrace{1}_{n_0},\underbrace{\frac{1}{3}}_{n_1},\underbrace{\frac{1}{4}}_{n_2},\underbrace{\frac{1}{6}}_{n_3},\dots)$$

Let $n: \mathbb{N} \to \mathbb{N}$ be strictly monotonically increasing. Therefore

$$\forall k \in \mathbb{N} : n(k+1) > n(k) \Rightarrow n_{k+1} > n_k$$

We call $(n_k)_{n\in\mathbb{N}}$ an index subsequence and $(a_{n_k})_{k\in\mathbb{N}}$ is called subsequence of $(a_n)_{n\in\mathbb{N}}$.

Lemma 4. Let $(a_n)_{n\in\mathbb{N}}$ be convergent with limes a and $(a_{n_k})_{k\in\mathbb{N}}$ a subsequence of $(a_n)_{n\in\mathbb{N}}$. Then also the subsequence is convergent and has the same limes a.

Proof. For every subsequence index n_k with $k \in \mathbb{N}$ it holds that $n_k \geq k$.

Proof by induction: k = 0

 $\mathbf{n_0} \in \mathbb{N}$

$$n_0 \ge 0 = k$$

 $\mathbf{n_k} \ge \mathbf{k}$ Because $\underbrace{n_{k+1}}_{\in \mathbb{N}} > n_k$ (strictly monotonic). Therefore,

$$n_{k+1} \ge n_k + 1 > k + 1$$

Proof of limes: $\lim_{k\to\infty} a_{n_k} = a$. Let $\varepsilon > 0$. Because $(a_n)_{n\in\mathbb{N}}$ is convergent, it holds that $\exists N \in \mathbb{N} : n \geq N \Rightarrow |a_n - a| < \varepsilon$. Let $k \geq N$. This holds because $n_k \geq k \geq N : |a_{n_k} - a| < \varepsilon$. Therefore $(a_{n_k})_{k\in\mathbb{N}}$ has limes a.

Lemma 5. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{C} . Then it holds that $a\in\mathbb{C}$ is limit point if and only if there exists some subsequence $(a_{n_k})_{k\in\mathbb{N}}$ with $\lim_{k\to\infty} a_{n_k} = a$.

Proof. We first prove direction \Leftarrow .

Assume $(a_{n_k})_{k\in\mathbb{N}}$ is a convergent subsequence of $(a_n)_{n\in\mathbb{N}}$ with limes a. Let $\varepsilon>0$.

$$\exists N \in \mathbb{N} : k \ge N \Rightarrow |a_{n_k} - a| < \varepsilon$$

Therefore $B(a,\varepsilon)$ has infinitely many sequence numbers of $(a_{n_k})_{k\in\mathbb{N}}$ and therefore also infinitely many sequence numbers of $(a_n)_{n\in\mathbb{N}}$.

We prove direction \Rightarrow .

We build a convergent subsequence. Consider $k \in \mathbb{N}$ with $k \geq 1$.

$$\varepsilon_k = \frac{1}{k}$$

We define $n_0 = 0$ and $a_{n_0} = a_0$. Assume $a_{n_0}, a_{n_1}, \dots, a_{n_{k-1}}$ are already defined.

Definition of a_{n_k} : In $B(a, \varepsilon_k)$ there are infinitely many sequence numbers of $(a_n)_{n\in\mathbb{N}}$. We consider $n_k > n_{k-1}$ and $a_{n_k} \in B(a, \varepsilon_k)$.

Then it holds that $\lim_{k\to\infty} a_{n_k} = a$. Let $\varepsilon > 0$ be arbitrary. Consider $K > \frac{1}{\varepsilon}$. Hence $\varepsilon > \frac{1}{K} = \varepsilon_K$ for all $k \geq K$ it holds that $n_k \geq n_K$ and $|a_{n_k} - a| < \varepsilon_k = \frac{1}{k} \leq \frac{1}{K} < \varepsilon$.

9.5 Bolzano-Weierstrass theorem

Bernard Bolzano (1781–1848), Karl Weierstrass (1815–1897)

Theorem 45. Every bounded sequence of real numbers has a limit point in \mathbb{R} .

Proof. Let $(a_n)_{n\in\mathbb{N}}$ be a bounded sequence in \mathbb{R} , hence $\exists M>0$ such that all sequence numbers a_n in $I_0=[-M,M]$ and let $F_0=\{n\in\mathbb{N}\,|\,a_n\in I_0\}=\mathbb{N}$ (index set). F_0 is infinite. We build nested intervals with the properties:

- $I_{n+1} \subseteq I_n$
- $|I_{n+1}| = \frac{1}{2} |I_n|$
- $F_n = \{k \in \mathbb{N} \mid a_k \in I_n\}$ is infinite.

This construction is inductive:

induction base I_0 \checkmark

induction step Let $I_n = [A_n, B_n]$ be given and $M_n = \frac{1}{2}(A_n + B_n)$. Let $J_n = [A_n, M_n]$ and $L_n = [M_n, B_n]$. It holds that $J_n \subseteq I_n \wedge L_n \subseteq I_n$ and $|J_n| = \frac{1}{2}|I_n| \wedge |L_n| = \frac{1}{2}|I_n|$. Because there are infinitely many sequence numbers of $(a_n)_{n \in \mathbb{N}}$ in I_n and $I_n = J_n \cup L_n$, in at least one subinterval there have to be infinitely many sequence numbers.

Therefore select $I_{n+1} = J_n$ if J_n contains infinitely many sequence numbers and consider $I_{n+1} = L_n$ if J_n contains only finitely many sequence numbers. Therefore I_{n+1} contains infinitely many sequence numbers.

$$F_{n+1} = \{ k \in \mathbb{N} \, | \, a_k \in I_{n+1} \}$$

is infinite. So $(I_n)_{n\in\mathbb{N}}$ is a nested interval.

Let $a \in \bigcap_{n \in \mathbb{N}} I_n$ (completeness of \mathbb{R}).

Claim: a is limit point of $(a_n)_{n\in\mathbb{N}}$. Let $\varepsilon > 0$ be given and n sufficiently large, such that $|I_n| = B_n - A_n < \varepsilon$. Then it holds that for every $x \in I_n$ that $|x-a| \le B_n - A_n < \varepsilon$ (with $x \in I_n$, $a \in I_n$). Because I_n contains infinitely many sequence numbers of $(a_n)_{n\in\mathbb{N}}$, it holds that infinitely many sequence numbers a_k satisfy the relation $|a_n - a| < \varepsilon$. Therefore a is limit point of $(a_n)_{n\in\mathbb{N}}$. \square

Corollary 7 (typical definition of the Bolzano-Weierstrass theorem). Every bounded sequence in \mathbb{R} has a convergent subsequence.

Theorem 46 (Bolzano-Weierstrass theorem in \mathbb{C}). Let $(a_n)_{n\in\mathbb{N}}$ be a bounded sequence in \mathbb{C} . Then $(a_n)_{n\in\mathbb{N}}$ has a convergent subsequence and therefore also at least one limit point in \mathbb{C} .

Proof. Let $(a_n)_{n\in\mathbb{N}}$ be bounded. $a_n = \alpha_n + i\beta_n$. So $(\alpha_n)_{n\in\mathbb{N}}$ is bounded in \mathbb{R} as well as $(\beta_n)_{n\in\mathbb{N}}$ is bounded in \mathbb{R} .

Consider a convergent subsequence of $(\alpha_n)_{n\in\mathbb{N}}$, $(\alpha_{n_k})_{k\in\mathbb{N}}$ with $\lim_{k\to\infty}\alpha_{n_k}=\alpha$. Now consider bounded $(\beta_{n_k})_{k\in\mathbb{N}}$. From the Bolzano-Weierstrass theorem it follows that there exists a convergent subsequence $(\beta_{n_{k_l}})_{l\in\mathbb{N}}$ with $\beta=\lim_{l\to\infty}\beta_{n_k}$.

 $\left(\alpha_{n_{k_l}}\right)_{l\in\mathbb{N}}$ is subsequence of $(\alpha_{n_k})_{k\in\mathbb{N}}$ convergent with limit point α .

Let $a_{n_{k_l}} = \alpha_{n_{k_l}} + i\beta_{n_{k_l}}$ be a subsequence of $(a_n)_{n \in \mathbb{N}}$.

Real and imaginary parts are convergent, therefore $\lim_{l\to\infty} a_{n_{k_l}} = a = \alpha + i\beta$. Therefore $(a_n)_{n\in\mathbb{N}}$ contains a convergent subsequence.

German keywords

Abbildung, 13 All-Quantor, 9 Assoziativgesetz (Logik), 5 Aussagenlogik, 5 Bernoullis Ungleichung, 13 Beweis durch Widerspruch, 5 Bijektive Funktion, 13, 15 Bildmenge, 13 DeMorgansche Gesetze, 5 Definitionsmenge, 13 Direkter Beweis, 5 Distributivgesetz (Logik), 5 Divergent, 61 Durchschnitt, 9 Einschließungsregel, 71 Exististiert Quantor, 9 Für alle Quantor, 9 Folge, 59 Gödelsches Invollständigkeitstheorem, 5 Geschlossenes Intervall, 35 Häufungspunkt, 75 Identitätsfunktion, 15 Implikation, 5 Indirekter Beweis, 5 Infimum, 43 Injektive Funktion, 13 Intervalllänge, 35 Inverse Funktion, 15 Kartesisches Produkt, 11 Kommutativgesetz (Logik), 5 Konvergent, 61 Kurt Gödel, 5 Mengenlehre, 9

Mengenoperationen, 9

Monotonie, 61 Offenes Intervall, 35 Peano-Axiome, 5 Potenzmenge, 13 Quantoren, 9 Satz vom ausgeschlossenen Dritten, 7 Satz von Bolzano-Weierstraß, 79 Schlusskette (chain inference), 7 Supremum, 43 Surjektive Funktion, 13 Tautologie, 7 Teilfolge, 79 Umgekehrte Dreiecksungleichung, 35 Untermenge, 9 Urbildmenge, 13 Vereinigungsmenge, 9 Verknüpfung von Funktionen, 15 Vollständige Induktion, 9 Widerspruch, 7 Zielmenge, 13 Äquivalenz von logischen Ausdrücken, 5 beschränkt nach oben, 43, 61 beschränkt nach unten, 43, 61 beschränkt, 43, 61

English keywords

überabzählbar, 49

All quantifier, 9 Associative law (logic), 5 Bernoulli inequality, 13 Bijective function, 13, 15 Bolzano-Weierstrass theorem, 79 bounded, 43, 61 bounded above, 43, 61 bounded below, 43, 61 Cartesian product, 11 Chain inference, 7 closed interval, 35 co-domain, 13 Commutative law (logic), 5 Complete induction, 9 Composition of functions, 15 contradiction, 7 convergent, 61 DeMorgan's Laws, 5 Direct proof, 5 Distributive law (logic), 5 divergent, 61 domain, 13 Equivalence of logical expressions, 5 Existence quantifier, 9 For all quantifier, 9 Gödel's incompleteness theorem, 5 Identity function, 15

Image, 13 implication, 5 Indirect proof, 5 infimum, 43 Injective function, 13 Intersection, 9 interval length, 35 Inverse function, 15 Inversed triangle inequality, 35

Law of excluded middle, 7 limit point, 75 lower bound, 43

mapping, 13
Monotonic function, 61

open interval, 35

Peano's axioms, 5 power set, 13 Preimage, 13 Proof by contradiction, 5 propositional logic, 5

Quantifiers, 9

Sequences, 59
Set operations, 9
Set theory, 9
Squeeze theorem, 71
Subsequence, 79
Subset, 9
supremum, 43
Surjective function, 13

Tautology, 7

uncountability, 49 Union, 9 upper bound, 43