Linear Algebra Done Right Solutions to Exercises 9.A

1 Prove $V_{\mathbf{C}}$ is a complex vector space

Problem statement

Prove 9.3.

Solution

All we need to do is use Definition 9.3 ('Complexification of $V, V_{\mathbf{C}}$ ') to show that $V_{\mathbf{C}}$ satisfies the condition of a vector space in Definition 1.19 ('vector space').

commutativity

For $u_1, v_1, u_2, v_2 \in V$, we can write

$$(u_1 + iv_1) + (u_2 + iv_2) = (u_1 + u_2) + i(v_1 + v_2)$$
$$= (u_2 + u_1) + i(v_2 + v_1) = (u_2 + iv_2) + (u_1 + iv_1)$$

where the first and third equalities come from the definition of addition on $V_{\mathbf{C}}$, and the second equality comes from **commutativity** on V.

associativity

For $u_1, v_1, u_2, v_2, u_3, v_3 \in V$, we can show additive **associativity** by writing

$$((u_1 + iv_1) + (u_2 + iv_2)) + (u_3 + iv_3) = ((u_1 + u_2) + i(v_1 + v_2)) + (u_3 + iv_3)$$

$$= ((u_1 + u_2) + u_3) + i((v_1 + v_2) + v_3)$$

$$= (u_1 + (u_2 + u_3)) + i(v_1 + (v_2 + v_3))$$

$$= (u_1 + iv_1) + ((u_2 + u_3) + i(v_2 + v_3))$$

$$= (u_1 + iv_1) + ((u_2 + iv_2) + (u_3 + iv_3))$$

where the first, second, fourth, and fifth equalities come from the definition of addition on $V_{\mathbf{C}}$, and the third equality comes from **associativity** on V.

For $a_1, b_1, a_2, b_2 \in \mathbf{R}$ and $u, v \in V$, we can show multiplicative **associativity** by writing

$$((a_1 + b_1i)(a_2 + b_2i))(u + iv) = ((a_1a_2 - b_1b_2) + (a_1b_2 + b_1a_2)i)(u + iv)$$

$$= ((a_1a_2 - b_1b_2)u - (a_1b_2 + b_1a_2)v)$$

$$+ i((a_1a_2 - b_1b_2)v + (a_1b_2 + b_1a_2)u)$$

$$= (a_1a_2u - b_1b_2u - a_1b_2v - b_1a_2v)$$

$$+ i(a_1a_2v - b_1b_2v + a_1b_2u + b_1a_2u)$$

$$= (a_1(a_2u - b_2v) - b_1(a_2v + b_2u))$$

$$+ i(a_1(a_2v + b_2u) + b_1(a_2u - b_2v))$$

$$= (a_1 + b_1i)((a_2u - b_2v) + i(a_2v + b_2u))$$

$$= (a_1 + b_1i)((a_2 + b_2i)(u + iv))$$

where the first, second, fifth, and sixth equalities come from the definition of complex scalar multiplication on $V_{\mathbf{C}}$; and the third and fourth equalities come from the **distributive properties** on V.

additive identity

The additive identity is 0 + i0, which we can verify by writing

$$(u+iv) + (0+i0) = (u+0) + i(v+0) = u+iv$$

for all $u, v \in V$.

additive inverse

For $u, v \in V$, the **additive inverse** of u + iv is simply -u - iv, which we can verify by writing

$$(u+iv) + (-u-iv) = (u-u) + i(v-v) = 0 + i0.$$

multiplicative identity

The multiplicative identity is simply 1 + 0i, which we can verify by writing

$$(1+0i)(u+iv) = (1u-0(v)) + i(1v+0(u)) = u+iv$$

for all $u, v \in V$.

distributive properties

For $u_1, v_1, u_2, v_2 \in V$ and $a, b \in \mathbf{R}$, we can write

$$(a+bi)((u_1+iv_1)+(u_2+iv_2)) = (a+bi)((u_1+u_2)+i(v_1+v_2))$$

$$= (a(u_1+u_2)-b(v_1+v_2))$$

$$+i(a(v_1+v_2)+b(u_1+u_2))$$

$$= (au_1+au_2-bv_1-bv_2))$$

$$+i(av_1+av_2+bu_1+bu_2))$$

$$= (au_1-bv_1)+i(av_1+bu_1)$$

$$+(au_2-bv_2)+i(av_2+bu_2)$$

$$= (a+bi)(u_1+iv_1)+(a+bi)(u_2+iv_2).$$

For $u, v \in V$ and $a_1, b_1, a_2, b_2 \in \mathbf{R}$, we can write

$$((a_1 + b_1i) + (a_2 + b_2i))(u + iv) = ((a_1 + a_2) + (b_1 + b_2)i)(u + iv)$$

$$= ((a_1 + a_2)u - (b_1 + b_2)v)$$

$$+ i((a_1 + a_2)v + (b_1 + b_2)u)$$

$$= (a_1u + a_2u - b_1v - b_2v)$$

$$+ i(a_1v + a_2v + b_1u + b_2u)$$

$$= (a_1u - b_1v) + i(a_1v + b_1u)$$

$$+ (a_2u - b_2v) + i(a_2v + b_2u)$$

$$= (a_1 + b_1i)(u + iv) + (a_2 + b_2i)(u + iv).$$

2 If $T \in \mathcal{L}(V)$, then $T_{\mathbf{C}} \in \mathcal{L}(V_{\mathbf{C}})$

Problem statement

Verify that if V is a real vector space and if $T \in \mathcal{L}(V)$, then $T_{\mathbf{C}} \in \mathcal{L}(V_{\mathbf{C}})$.

Solution

To verify that $T_{\mathbf{C}} \in \mathcal{L}(V_{\mathbf{C}})$, we must demonstrate the properties of **additivity** and **homogeneity**.

additivity

For $u_1, v_1, u_2, v_2 \in V$, we can write

$$\begin{split} T_{\mathbf{C}}((u_1+iv_1)+(u_2+iv_2)) &= T_{\mathbf{C}}((u_1+u_2)+i(v_1+v_2)) \\ &= T(u_1+u_2)+iT(v_1+v_2) \\ &= Tu_1+iTv_1+Tu_2+iTv_2 \\ &= T_{\mathbf{C}}(u_1+iv_1)+T_{\mathbf{C}}(u_2+iv_2) \end{split}$$

where the first and fourth equalities come from the definition of $T_{\mathbf{C}}$ (Definition 9.5).

homogeneity

For $a, b \in \mathbf{R}$ and $u, v \in V$, we can write

$$T_{\mathbf{C}}((a+bi)(u+iv)) = T_{\mathbf{C}}((au-bv) + i(av+bu))$$

$$= T(au-bv) + iT(av+bu)$$

$$= aTu - bTv + aiTv + biTu$$

$$= (a+bi)(Tu+iTv)$$

$$= (a+bi)(T_{\mathbf{C}}(u+iv))$$

where the first and fourth equality come from the definition of complex scalar multiplication on $V_{\mathbf{C}}$ (Definition 9.2), and the second and fifth equalities come from the definition of $T_{\mathbf{C}}$ (Definition 9.5).

3 Linear independence in V and $V_{\mathbf{C}}$

Problem statement

Suppose V is a real vector space and $v_1, \ldots, v_m \in V$. Prove that $v_1, \ldots, v_m \in V$ is linearly independent in $V_{\mathbf{C}}$ if and only if $v_1, \ldots, v_m \in V$ is linearly independent in V

Solution

First Direction

Suppose $v_1, \ldots, v_m \in V$ is linearly independent in $V_{\mathbf{C}}$. This implies that for $\lambda_1, \ldots, \lambda_m \in \mathbf{C}$ and

$$\lambda_1 v_1 + \dots + \lambda_m v_m = 0,$$

then $\lambda_1 = \cdots = \lambda_m = 0 + 0i$. Since any scalar $\lambda \in \mathbf{C}$ can be constructed from $a, b \in \mathbf{R}$ (Definition 1.1), it follows that for $a_1, \ldots, a_m \in \mathbf{R}$ and

$$a_1v_1 + \dots + a_mv_m = 0,$$

then $a_1 = \cdots = a_m = 0$. Hence, v_1, \ldots, v_m is linearly independent in V.

Second Direction

Suppose $v_1, \ldots, v_m \in V$ is linearly independent in V. Suppose $\lambda_1, \ldots, \lambda_m \in \mathbf{C}$ and

$$\lambda_1 v_1 + \dots + \lambda_m v_m = 0.$$

Then the equation above implies that

$$(\operatorname{Re} \lambda_1)v_1 + \dots + (\operatorname{Re} \lambda_m)v_m = 0$$
 and $(\operatorname{Im} \lambda_1)v_1 + \dots + (\operatorname{Im} \lambda_m)v_m = 0$.

Since $\operatorname{Re} \lambda_j, \operatorname{Im} \lambda_j \in \mathbf{R}$ (via Definition 4.2) and v_1, \ldots, v_m is linearly independent in V, it follows that $\operatorname{Re} \lambda_1 = \cdots = \operatorname{Re} \lambda_m = 0$ and $\operatorname{Im} \lambda_1 = \cdots = \operatorname{Im} \lambda_m = 0$. Thus we have $\lambda_1 = \cdots = \lambda_m = 0$. Hence, v_1, \ldots, v_m is linearly independent in $V_{\mathbf{C}}$.

4 Spanning list in V and $V_{\mathbf{C}}$

Problem statement

Suppose V is a real vector space and $v_1, \ldots, v_m \in V$. Prove that $v_1, \ldots, v_m \in V$ spans $V_{\mathbf{C}}$ if and only if $v_1, \ldots, v_m \in V$ spans V.

Solution

First Direction

Suppose $v_1, \ldots, v_m \in V$ spans $V_{\mathbf{C}}$. Via Theorem 2.31 ('Spanning list contains a basis'), the list v_1, \ldots, v_m can be reduced to a basis of $V_{\mathbf{C}}$. Suppose that this reduced list is of length n, implying that $\dim V_{\mathbf{C}} = n$ and, following from Theorem 9.4(b) ('Basis of V is a basis of $V_{\mathbf{C}}$ '), $\dim V = n$.

This basis of $V_{\mathbf{C}}$ is linearly independent and hence, following from Exercise 9.A(3), is linearly independent in V. Since it is a linearly independent list of length $n = \dim V$, Theorem 2.39 ('Linearly independent list of the right length is a basis') implies that this list is a basis of V.

Putting it all together, we have proven that v_1, \ldots, v_m contains a list that is a basis of V. Therefore, v_1, \ldots, v_m spans V.

Second Direction

Suppose $v_1, \ldots, v_m \in V$ spans V. Theorem 2.31 implies that v_1, \ldots, v_m can be reduced to a basis of V. Following Theorem 9.4(a), this basis of V is a basis of $V_{\mathbf{C}}$. Hence, v_1, \ldots, v_m contains a list that is a basis of $V_{\mathbf{C}}$. Therefore, v_1, \ldots, v_m spans $V_{\mathbf{C}}$.

5 Complexification is a linear map

Problem statement

Suppose that V is a real vector space and $S, T \in \mathcal{L}(V)$. Show that $(S+T)_{\mathbf{C}} = S_{\mathbf{C}} + T_{\mathbf{C}}$ and that $(\lambda T)_{\mathbf{C}} = \lambda T_{\mathbf{C}}$ for every $\lambda \in \mathbf{R}$.

Solution

additivity

To show that $(S+T)_{\mathbf{C}} = S_{\mathbf{C}} + T_{\mathbf{C}}$, we can write

$$(S+T)_{\mathbf{C}}(u+iv) = (S+T)(u) + i(S+T)(v)$$

$$= Su + iSv + Tu + iTv$$

$$= S_{\mathbf{C}}(u+iv) + T_{\mathbf{C}}(u+iv)$$

$$= (S_{\mathbf{C}} + T_{\mathbf{C}})(u+iv)$$

for $v, u \in \mathbf{R}$.

homogeneity

To show that $(\lambda T)_{\mathbf{C}} = \lambda T_{\mathbf{C}}$ for every $\lambda \in \mathbf{R}$, we can write

$$(\lambda T)_{\mathbf{C}}(u+iv) = (\lambda T)(u) + i(\lambda T)(v)$$
$$= \lambda (Tu) + \lambda (iTv)$$
$$= \lambda (Tu + iTv)$$
$$= \lambda T_{\mathbf{C}}(u+iv)$$

for $v, u \in \mathbf{R}$.

Notes

This result allows us to prove Lemma 6.0.1 ('Complexification is isomorphism from $\mathcal{L}(V)$ to $\mathcal{L}(V_{\mathbf{C}})$ ').

6 Prove $T_{\mathbf{C}}$ is invertible iff T is invertible

Problem statement

Suppose V is a real vector space and $T \in \mathcal{L}(V)$. Prove that $T_{\mathbf{C}}$ is invertible if and only if T is invertible.

Solution

6.0.1 Lemma: Complexification is isomorphism from $\mathcal{L}(V)$ to $\mathcal{L}(V_{\mathbf{C}})$

Via Theorem 9.4(b) ('Basis of V is a basis of $V_{\mathbf{C}}$ '), we know that $\dim V = \dim V_{\mathbf{C}}$. Hence, Theorem 3.61 (' $\dim \mathcal{L}(V, W) = (\dim V)(\dim W)$ ') implies

$$\dim \mathcal{L}(V) = (\dim V)(\dim V) = (\dim V_{\mathbf{C}})(\dim V_{\mathbf{C}}) = \dim \mathcal{L}(V_{\mathbf{C}}).$$

Thus, Theorem 3.59 ('Dimension shows whether vector spaces are isomorphic') tells us that $\mathcal{L}(V)$ and $\mathcal{L}(V_{\mathbf{C}})$ are isomorphic since they have the same dimension.

It is now clear to see that the **complexification** of T is an isomorphism from $\mathcal{L}(V)$ to $\mathcal{L}(V_{\mathbf{C}})$. This follows from the observation that the **complexification** of operators is injective, $T_{\mathbf{C}} = 0$ iff T = 0, and surjective, the **complexification** of a basis of operators in $\mathcal{L}(V)$ yields a linearly independent list of operators in $\mathcal{L}(V_{\mathbf{C}})$ of length dim $\mathcal{L}(V_{\mathbf{C}})^1$. Therefore, for every operator $S \in \mathcal{L}(V_{\mathbf{C}})$, there exists a unique operator $R \in \mathcal{L}(V)$ such that $R_{\mathbf{C}} = S$.

First Direction

Suppose $T_{\mathbf{C}}$ is invertible. Thus there exists a unique inverse $S \in \mathcal{L}(V_{\mathbf{C}})$ such that $ST_{\mathbf{C}} = I$ and $T_{\mathbf{C}}S = I$. From Lemma 6.0.1, there exists $R \in \mathcal{L}(V)$ such that $R_{\mathbf{C}} = S$. For $u, v \in V$, we can write

$$u + iv = I(u + iv) = ST_{\mathbf{C}}(u + iv)$$

= $R_{\mathbf{C}}(Tu + iTv) = RTu + iRTv$

implying that RT = I for all vectors in v. Since R, T are operators, Exercise 3.D(10) ('ST = I iff TS = I') allows us to state that TR = I. Hence, T has an inverse and T is invertible.

Second Direction

Suppose T is invertible. Thus there exists a unique inverse $R \in V$ such that RT = I and TR = I. We will show that $R_{\mathbf{C}}$ is the inverse of $T_{\mathbf{C}}$.

For $u, v \in V$, we can write

$$R_{\mathbf{C}}T_{\mathbf{C}}(u+iv) = R_{\mathbf{C}}(Tu+iTv) = RTu+iRTv = u+iv$$

and

$$T_{\mathbf{C}}R_{\mathbf{C}}(u+iv) = T_{\mathbf{C}}(Ru+iRv) = TRu+iTRv = u+iv.$$

Hence, $T_{\mathbf{C}}R_{\mathbf{C}} = I$ and $R_{\mathbf{C}}T_{\mathbf{C}} = I$. Therefore, $T_{\mathbf{C}}$ is invertible.

 $^{^{1}}$ This could use a more rigorous proof, but that's a labor for another time

7 Prove $N_{\mathbf{C}}$ is nilpotent iff N is nilpotent

Problem statement

Suppose V is a real vector space and $N \in \mathcal{L}(V)$. Prove that $N_{\mathbf{C}}$ is nilpotent if and only if N is nilpotent.

Solution

First Direction

Suppose $N_{\mathbf{C}}$ is nilpotent. This implies that $N_{\mathbf{C}}^{\dim V}=0$. Via Definition 9.5 ('complexification of T'), we can express $N_{\mathbf{C}}^{\dim V}$ as

$$N_{\mathbf{C}}^{\dim V}(u+iv) = N^{\dim V}u + iN^{\dim V}v$$

for all $u,v\in V.$ Since the left side of our expression above equals zero, it follows that

$$N^{\dim V}u + iN^{\dim V}v = 0 + i0$$

for all $u, v \in V$, implying that N is nilpotent.

Second Direction

Suppose N is nilpotent. This implies that $N^{\dim V}=0.$ Via Definition 9.5, we can express $N_{\bf C}^{\dim V}$ as

$$N_{\mathbf{C}}^{\dim V}(u+iv) = N^{\dim V}u + iN^{\dim V}v$$

for all $u,v\in V.$ Since the right side of our expression above equals zero, it follows that

$$N_{\mathbf{C}}^{\dim V}(u+iv) = 0 + i0$$

for all $u, v \in V$, implying that $N_{\mathbf{C}}$ is nilpotent.

8 Nonreal eigenvalues of $T_{\mathbf{C}}$

Problem statement

Suppose $T \in \mathcal{L}(\mathbf{R}^3)$ and 5, 7 are eigenvalues of T. Prove that $T_{\mathbf{C}}$ has no nonreal eigenvalues.

Solution

Theorem 9.16 states that nonreal eigenvalues of $T_{\mathbf{C}}$ come in pairs. Hence, if $T_{\mathbf{C}}$ had a nonreal eigenvalue λ , then it would also have the eigenvalue of $\bar{\lambda}$ (where $\lambda \neq \bar{\lambda}$). However, this would imply that $T_{\mathbf{C}}$ has 4 distinct eigenvalues, more than dim $\mathbf{C}^3 = 3$, which is a contradiction of Theorem 5.13 ('Number of eigenvalues'). Therefore, if $T \in \mathcal{L}(\mathbf{R}^3)$ and 5,7 are eigenvalues of T, then $T_{\mathbf{C}}$ has no nonreal eigenvalues.

9 $T \in \mathcal{L}(\mathbf{R}^7)$ such that $T^2 + T + I$ is nilpotent

Problem statement

Prove there does not exist an operator $T \in \mathcal{L}(\mathbf{R}^7)$ such that $T^2 + T + I$ is nilpotent.

Solution

Suppose there exists some operator $T \in \mathcal{L}(\mathbf{R}^7)$ such that $T^2 + T + I$ is nilpotent. Via Theorem 8.18 ('Nilpotent operator raised to dimension of domain is 0'), it follows that $(T^2 + T + I)^7 = 0$ and for the polynomial $q(z) = (z^2 + z + 1)^7$ that q(T) = 0. Via Theorem 8.46 ('q(T) = 0 implies q is a multiple of the minimal polynomial'), we can infer that q is a polynomial multiple of the minimal polynomial of T. Via Theorem 9.19 ('Operator on odd-dimensional vector space has eigenvalue'), it follows that T has a real eigenvalue, and via Theorem 8.49 ('Eigenvalues are the zeros of the minimal polynomial'), that eigenvalue is a zero of the minimal polynomial of T.

However, we can see that the polynomial $z^2 + z + 1$ has no real zeros². Thus, the polynomial $q(z) = (z^2 + z + 1)^7$ has no real zeros and cannot be a polynomial multiple of the minimal polynomial of T since the minimal polynomial of T is guaranteed to have a real zero. Therefore, we have a contradiction and it follows that no such operator $T \in \mathcal{L}(\mathbf{R}^7)$ exists such that $T^2 + T + I$ is nilpotent.

 $^{^2} This$ follows from Theorem 4.16 ('Factorization of a quadratic polynomial') and the simple observation that $1^2 \not \geq 4(1)$

10 $T \in \mathcal{L}(\mathbf{C}^7)$ such that $T^2 + T + I$ is nilpotent

Problem statement

Give an example of an operator $T \in \mathcal{L}(\mathbb{C}^7)$ such that $T^2 + T + I$ is nilpotent.

Solution

Let the operator $T \in \mathcal{L}(\mathbf{C}^7)$ be defined by

$$Tv = \frac{-1 + \sqrt{3}i}{2}v.$$

For every $v \in \mathbf{C}^7$, we can write

$$(T^{2} + T + I)v = T^{2}v + Tv + Iv$$

$$= (\frac{-1 + \sqrt{3}i}{2})^{2}v + \frac{-1 + \sqrt{3}i}{2}v + v$$

$$= \frac{-2 - 2\sqrt{3}i}{4}v + \frac{-2 + 2\sqrt{3}i}{4}v + v$$

$$= -v + v = 0$$

and hence, $T^2+T+I=0$. The 0 operator is clearly nilpotent, so it follows that T^2+T+I is nilpotent.