Namen: _____

Aufgabe	8.1	8.2	8.3	Z8.1	\sum
Punkte					

Höhere Analysis – Übungsblatt 8

Wintersemester 2020/2021, Universität Heidelberg

Prof. Dr. Hans Knüpfer Denis Brazke

denis.brazke@uni-heidelberg.de

Aufgabe 8.1

Gegeben sei die Funktion $\phi \colon \mathbb{R}^n \longrightarrow \mathbb{R}$ durch

5 Punkte

$$\phi(x) := \begin{cases} \exp(\frac{1}{|x|^2 - 1}) & \text{für } |x| < 1, \\ 0 & \text{sonst.} \end{cases}$$

$$(1.1)$$

- a) Zeigen Sie, dass $\phi \in C_c^{\infty}(\mathbb{R}^n)$.
- b) Sei $\varepsilon > 0$. Wir definieren $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ durch $\varphi \coloneqq \frac{\phi}{\|\phi\|_{L^1(\mathbb{R}^n)}}$ und definieren $\varphi_{\varepsilon}(x) \coloneqq \frac{1}{\varepsilon^n} \varphi(\frac{x}{\varepsilon})$. Sei $f \colon \mathbb{R}^n \longrightarrow \mathbb{R}$ gleichmäßig stetig. Zeigen Sie, dass $f * \varphi_{\varepsilon} \to f$ in $L^{\infty}(\mathbb{R}^n)$.

Hinweis: Zu b): Zeigen Sie zuerst

$$|(f * \varphi_{\varepsilon})(x) - f(x)| \le \frac{C}{\varepsilon^n} \int_{B_{\varepsilon}(x)} |f(x) - f(y)| \, \mathrm{d}y$$
 für alle $x \in \mathbb{R}^n$,

wobei $B_{\varepsilon}(x) := \{y \in \mathbb{R}^n : |x - y| < \varepsilon\}$ und C > 0 eine nur von φ und n abhängige Konstante bezeichnet.

Aufgabe 8.2 5 Punkte

Sei $f \in L^1(\mathbb{R}^n)$ und sei $\varepsilon > 0$. Zeigen Sie, dass $f_{\varepsilon} \in C_c^{\infty}(\mathbb{R}^n)$ existiert, so dass $||f - f_{\varepsilon}||_{L^1(\mathbb{R}^n)} < \varepsilon$. Hinweis: Verwenden Sie den Satz von der Faltungsapproximation.

Aufgabe 8.3 5 Punkte

Sei $f \in L^1(\mathbb{R}^n)$. Zu $h \in \mathbb{R}^n$ definieren wir $f_h(x) := f(x+h)$. Zeigen Sie, dass $||f - f_h||_{L^1(\mathbb{R}^n)} \xrightarrow{h \to 0} 0$. Hinweis: Nutzen Sie Aufgabe 8.2 und das Lemma von Hadamard.

Zusatzaufgabe 8.1 (Transformationssatz)

3 Punkte

Wir betrachten den Maßraum (\mathbb{R}^2 , $\mathscr{B}(\mathbb{R}^2)$, \mathscr{L}^2). Sei $\mathbb{R}_+ := (0, \infty) \subset \mathbb{R}$. Sei $T : \mathbb{R}^2_+ \longrightarrow T(\mathbb{R}^2_+)$ definiert durch

$$T(x,y) \coloneqq \left(\frac{y^2}{x}, \frac{x^2}{y}\right)$$
 für alle $x, y > 0$.

- a) Zeigen Sie, dass T ein C^1 -Diffeomorphismus ist.
- b) Seien 0 < a < b und 0 . Wir definieren

$$M := \{(x, y) \in \mathbb{R}^2_+ : ax < y^2 < bx, \ py < x^2 < qy\}.$$

Zeigen Sie, dass M eine messbare Menge ist und bestimmen Sie T(M).

c) Bestimmen Sie $\mathcal{L}^2(M)$.