The COFE Ecosystem

GaNDLF

OpenVINO

HF Hub

OpenFL

MedPerf

Generally Nuanced Deep Learning Framework Model optimization for inference on low-resource environments

Model deployment across multiple platforms & ecosystems

Federated Learning Library Governance & Orchestration

gandlf.org

openvino.ai

hf.co

openfl.io

medperf.org

ML Commons

intel.

S

OPENFL

ML Commons

S. Pati, et al.,

<u>Nature Communications</u>

<u>Engineering,</u>
2(23), 2023

A. Demidovskij, et al.; ICCV Workshop, 783-787, 2019 S.M. Jain,

<u>Introduction to</u>

<u>Transformers for NLP</u>, 5167, Berkeley, 2022

P. Foley, et al., <u>Phys Med Biol (ITCR</u> <u>Special Issue)</u>, 67(21), 214001, 2022 A. Karargyris, et al.;

Nature Machine
Intelligence
5:799-810, 2023

Introduction to Model Design using GaNDLF

Sarthak Pati

Division of Computational Pathology Department of Pathology & Laboratory Medicine Indiana university School of Medicine

Medical Accuracy Working Group MLCommons

Table of Contents

Motivation

Software Categorization/Terminology

Straddles the line between toolkit and application

Focus on the end-user, with powerful user interfaces

Abstraction to libraries and general-level functionalities

Provides access to low-level machine functionality

Related Prior Work

- NiftyNet [1]
- DLTK [2]
- ANTsPyNet [3]
- DeepNeuro [4]

TensorFlow – limited deployment capability in clinical settings

- CaPTk [5]
- 3D-Slicer [6]
- MITK [7]

Excellent
generalization but
inferior performance
compared to DL

- Specialized Algorithms
 - DeepMedic [8]
 - nnU-Net [9]
 - Many more...

Excellent performance but no generalization to new domains

Related Prior Work – PyTorch-specific

pymia^[1] InnerEye^[2] fastai^[3] MONAI^[4]

- Developed in PyTorch exhaustive deployment capabilities for the clinical
- Developer-focused tools requiring experience in DL
- Not easy for DL developers to write their architectures in a generalizable way to span across domains
- Requires experience to write training pipelines for different problem domains
- Onus of training robust models on user
- Lack a single end-to-end application programming interface (API) for training/inference that can span across various problem domains.

Steps of Research Project Lifecycle...

Conception & Design

- Use case
- Available data
- Potential Impact
- Experimental Design

The thought process

Development

- Data I/O
- Curation
- Preprocessin
- DL Algorithn

Evaluation

- Cross-validation
- Metrics

Generally Nuanced Deep Learning Framework

Reproducibility & Potential Translation

Generally Nuanced Deep Learning Framework

Current Features

Current Results: X-Al or Interpretability

"Free" benefits of G♠∩⊃L¬

- Automatic Model Optimization [1]
- Easy translation to <u>Federated Studies</u>
 - Federated Learning using OpenFL [2]
 - Federated Evaluation using MedPerf [3]
- Support for secure containerization
 - MLCube
 - Singularity
 - Docker (with incorporated rail-guards)
- Automatic Model Deployment
 - Single-command use

Zero/Low Code Principle

- For novel experimental design
 - GaNDLF allows one to obtain <u>quick baseline results</u>
 - Head into publication cycle sooner

```
# Choose the model parameters here

model:

{
    dimension: 3, # the dimension of the model and dataset: defines dimensionality of computations
    base_filters: 30, # 30 is for a GPU with 11GB VRAM - can be decreased/increased appropriately
    architecture: resunet, # options: unet, resunet, fcn, uinc
    final_layer: sigmoid, # can be either sigmoid, softmax or none (none == regression)
    class_list: '[1||2||4,1||4,4]', # Set the list of labels the model should train on and predict
    amp: True, # Set if you want to use Automatic Mixed Precision for your operations or not - options: True, False
    # n_channels: 3, # set the input channels - useful when reading RGB or images that have vectored pixel types
}
```


Results and Future Goals

Results from Main Paper

D. C. of wine	7		Ontort	Innut				
Metric Average Value	Туре	Architecture	Output Classes	Input Modalities (number):type	Dims	Application	Organ	Task
							-	ntation
								Segmentation
							-	• •
							-	
							-	
							-	
							-	Regression
								Regre
							-	
								ication
							-	Classif
							-	Classification Regre

Community-driven effort

Siddhesh P. Thakur Ibrahim Hamamci Ujjwal Baid Bhakti Baheti Megh Bhalerao Orhun Guley Sofia Mouchtaris David Lang Spiridon Thermos Karol Gotkowski Camila Gonzalez Caleb Grenko Alexander Getka **Brandon Edwards**

Micah Sheller Junwen Wu Deepthi Karkada Ravi Panchumarthy Vinayak Ahluwalia Chunrui Zou Vishnu Bashyam Yuemeng Li Babak Haghighi Rhea Chitalia Shahira Abousamra Tahsin Kurc Aimilia Gastounioti Sezgin Er

Mark Bergman Joel Saltz Yong Fan Prashant Shah Anirban Mukhopadhyay Sotirios A. Tsaftaris Bjoern Menze Christos Davatzikos Despina Kontos Alexandros Karargyris Renato Umeton Peter Mattson Spyridon Bakas * And multiple GitHub collaborators ...

Open Source is the Way Model Deployment in I Orchestration of Federated Learning Secure Al Workflows Containerization Low-resource Settings and Governance **OPENFL** MLCube™ **OpenVINO** MedPerf GaNDLF 🧖 MONAI Torch/OpenCV Numpy/Scikit ITK/TiffSlide **SOTA Medical DL SOTA Computer**

Stats, Math

Algorithms

I/O, Pre-process

Vision Algorithms

Peer-reviewed Studies Facilitated by GADLF

Journals & Magazines > IEEE Internet of Things Journal > Early Access

communications engineering

Viewpoint | Open access | Published: 21 December 2023

Editors' Choice 2023

Miranda Vinay →, Liwen Sang →, Jianhua (Joshua) Tong →, Or Perlman →, Rosamund Daw →, Carmine Galasso →, Mengying Su →, Damien Querlioz →, Liangfei Tian →, Anastasiia Vasylchenkova →, Yu-Cheng Chen → & Chaoran Huang →

Communications Engineering

2, Article number: 96 (2023) | Cite this article

Federated learning enables big data for rare cancer boundary detection

Sarthak Pati, Ujjwal Baid, Brandon Edwards, Micah Sheller, Shih-Han Wang, G. Anthony Reina, Patrick
Foley, Alexey Gruzdev, Deepthi Karkada, Christos Davatzikos, Chiharu Sako, Satyam Ghodasara, Michel
Bilello, Suyash Mohan, Philipp Vollmuth, Gianluca Brugnara, Chandrakanth J. Preetha, Felix Sahm, Klaus
Maier-Hein, Maximilian Zenk, Martin Bendszus, Wolfgang Wick, Evan Calabrese, Jeffrey Rudie, ...

Spyridon Bakas Honord

Prognostic stratification of glioblastoma patients by unsupervised clustering of morphology patterns on whole slide images furthering our disease understanding

3(1Bhakti Baheti 1 2 3, Shubham Innani 1 2 3, MacLean Nasrallah 2 3, Spyridon Bakas 1 2 3 4 5

ive Affiliations + expand

PMID: 38831756 PMCID: PMC11146603 DOI: 10.3389/fnins.2024.1304191

> Front Neurosci. 2024 May 20:18:1304191. doi: 10.3389/fnins.2024.1304191. eCollection 2024.

Future Development Goals

Address different data types:

- Genomics
- EHR
- Unstructured health data

New workloads:

- Multi-instance learning
- Semi-/Un-supervised learning
- Multi-modal learning

Technical Specifics and Conclusions

Documentation Links

- Main Starting point: gandlf.org
- Table of Contents for documentation
 - Getting Started
 - Application Setup
 - Usage
 - Customize the training and inference
 - Extending GaNDLF
 - FAQ

Gettin	Installat	Usage	Custo	Extending	FAQ
Inst	Prerec	Intro	Мо	Environr	Where do I start?
Run Coc	Option	Insta Prep	Los	Submod	Why do I get the error importlib.metadata.PackageNo
San	Install	An	Ме	Overall <i>F</i>	GANDLF?
Seg	Inst	Cle	Pat	Depende	Why is GaNDLF not working?
S(R)	Opti	Da	Dat	Adding I	Which parts of a GaNDLF configuration are
St	Inst Mar	Ofl his	Dat	Adding /	customizable? Can I run GaNDLF on a high
H Cla:	Inst	Ru be	Tra	Transfor Adding F	performance computing (HPC) cluster?
С	Docke	(ot	Dif	function	How can I track the per-epoch
Ri	Ster	Const	tructin	Adding 7	training performance?
C us	vers		ng the comn	Adding I	Why are my compute jobs failing with excess RAM usage?
Reg	Ena Doc	Usir	ng the	Adding r	How can I resume training from
R _i		con	nmanc	Update ¡	a previous checkpoint?
Ri	10	Custo	mize 1	Update ⁻	How can I update GaNDLF?
Ri us	Buil	Running n			How can I perform federated
1	Doc	(op	tional)	Run Tes	learning of my GaNDLF model?

Overall Workflow

The I/O Mechanism

subject_N

SubjectID

subject_000

Channel_0

/full/path/subject_0/0.nii.gz

Channel_1

/full/path/subject_0/1.nii.gz

Top Level Parsing

Main Function to Create Compute Objects

Training

Validation

compute.forward_pass.validate_network

GANDLF.compute 32

Inference

compute.forward_pass.validate_network

GANDLF.compute 33

The 'step' Routine

GANDLF.compute 34

The 'data' submodule

GANDLF.data 35

Community Engagements

 We now have full integration with MONAI.

 We have full integration with Hugging Face Hub.

Noteworthy Features

Privacy-enabled training.

 Full-scale synthesis as part of the GaNDLF-Synth extension!

arXiv > cs > arXiv:2410.00173

GaNDLF-Synth: A Framework to Democratize Generative AI for (Bio)Medical Imaging

Sarthak Pati, Szymon Mazurek, Spyridon Bakas

Generative Artificial Intelligence (GenAl) is a field of Al that creates new data samples from existing ones. It utilizing deep learning to overcome the scarcity and regulatory constraints of healthcare data by generating new data points that integrate seamlessly with original datasets. This paper explores the background and motivation for GenAl, and introduces the Generally Nuanced Deep Learning Framework for Synthesis (GaNDLF-Synth) to address a significant gap in the literature and move towards democratizing the implementation and assessment of image synthesis tasks in healthcare. GaNDLF-Synth describes a unified abstraction for various synthesis algorithms, including autoencoders, generative adversarial networks, and diffusion models. Leveraging the GANDLF-core framework, it supports diverse data modalities and distributed computing, ensuring scalability and reproducibility through extensive unit testing. The aim of GaNDLF-Synth is to lower the entry barrier for GenAl, and make it more accessible and extensible by the wider scientific community.

Key Takeaways

