STATS 3001 / STATS 4101 / STATS 7054 Statistical Modelling III Tutorial 5 2022

QUESTIONS:

1. Suppose y_1, y_2, \ldots, y_n are independent Poisson observations, $y_i \sim Po(\mu_i)$ and consider the **linear** regression model

$$\mu = X\beta$$

where X is an $n \times p$ matrix with linearly independent columns and $\boldsymbol{\beta} \in \mathbb{R}^p$ is the vector of unknown parameters.

(a) Write down the log-likelihood

$$\ell(oldsymbol{\mu}; oldsymbol{y})$$

- (b) Calculate $\frac{\partial \ell}{\partial \mu_i}$.
- (c) Find the matrix of partial derivatives

$$\left[\frac{\partial \mu_i}{\partial \beta_j}\right].$$

(d) Show that the score vector can be expressed as

$$\mathcal{S}(\boldsymbol{\beta}) = \left[\frac{\partial \ell}{\partial \beta_j}\right] = X^T D_{\mu}^{-1} (\boldsymbol{y} - \boldsymbol{\mu})$$

where $D_{\mu} = diag(\mu_1, \mu_2, \dots, \mu_n)$.

- (e) Evaluate the Fisher information matrix.
- (f) Describe the Fisher scoring algorithm.
 - i. State the iterative step of the algorithm to obtain $\hat{\boldsymbol{\beta}}^{(t+1)}$ from $\hat{\boldsymbol{\beta}}^{(t)}$.
 - ii. Suggest a starting value, $\hat{\boldsymbol{\beta}}^{(0)}$.