Drug Discovery, Development and Commercialization, Winter 2013

Ronald J. Christopher, Ph.D., D.A.B.T., FCP

"Compound Selection & Preclinical Studies"

Preclinical Research & Development Overview

- Pharmaceutical R&D Paradigm
- Compound Selection
- Preclinical R&D Activities
 - Pharmacology
 - Drug Metabolism & Pharmacokinetics
 - Drug Safety
- Case Example & Clinical Translation

Discovery To Market – The Economics

Time:

Discovery → IND: 1-5 years

IND → NDA/BLA: ~ 6 years

Review/Approval Time: 1.1 years avg

Expense:

The cost of developing a new drug is higher than ever — about \$1.3 billion

Success Rate of Drug Development

- > Candidates for a new drug to treat a disease might include from 5,000 to 10,000 chemical compounds.
- On average about 250 of these show promise for further development
- About 10 of these will progress to human clinical trials
- Research to Market Success rate: ~1 in 1,000 compounds

R&D Focus on Validation State of Targets

>70% of all marketed drugs result from R & D efforts on previously clinically validated targets

Compressing the Drug Discovery Process?

Average Industry R& D Timeline: >12 Years

Target Identification (1 – 3 y) Lead Generation (1 – 2 y)

Lead Optimization (1.5 – 2.5 y) Pre-clinical Development (1 y) Formal Development (4 – 8 y)

Iteration (can add years)

Desired R& D Timeline: < 7 years

Lead Gen. (0.7 y) Lead Opt. (0.9 y)

Pre-clinical Development (1 y) Formal Development (4 y)

Taking Shortcuts

- We can't afford to collect extra data in the R&D Process
- Therefore, optimal efficiency in R&D is critical

CORPORATE FINANCE

"You wanna spend WHAT?!?"

How Do We Improve?

"Frankly, I don't like the way things are going."

The new paradigm for drug R&D

- Integration of skills
- Joint ownership/responsibility

Discovery

Preclinical

Clinical

Input from Business Development, Regulatory Affairs, Project Management, Legal

Compound Selection

Target Choice

- A good target has distinctly different meaning to biology and chemistry personnel
- In a biology sense, a good target is a biological pathway that can be intercepted in some way to give a useful therapeutic outcome
- In a chemistry sense, a good target is a biological pathway that can be intercepted in a useful sense by an orally active small organic molecule
- Interplay of the disciplines leads to success

Typical Compound Criteria in Research

- Focus on First-in-Class or Best-in-Class
- Structurally unique molecule
- Solid Pharmacology
 - Potency that meets or exceeds Gold standard
 - Target selectivity >1,000 fold selective vs. closely related target
 - Efficacy in relevant animal models (durability of response important)
- Excellent Drug Metabolism & Pharmacokinetic Properties
 - No DDI liabilities
 - Suitable for Q.D dosing (if oral)
 - Limited metabolism, etc.
- Robust Efficacy in rodent autoimmune disease models
- Excellent Safety profile (in vitro, in vivo)

Lead Generation Strategy

Research Testing Cascade

First tier screens

- Receptor Binding [EC₅₀ < 10 nM]</p>
- Solubility [0.1 0.2 mg/mL aq pH7]
- > HLM / MLM / RLM T_{1/2} stability > 60'
- \rightarrow hERG binding [³H]-Astemizole > 10 μM
- > HepG2 cytotoxicity panel IC_{50} > 100 μM
- > Human 5 major P450s [microsomal]
- > Protein binding [human / rodent] < 95 %
- Mini AMES [+/- S9]

Second tier studies

- Oral efficacy & Dose Response [ED₅₀ ~ 1 mpk]
- Mouse PK / PD
- Single dose iv/po, SD rat and mouse [PK/PD)
- Cardiotox.: hERG
- CEREP panel
- Ames mutagenicity [+/- metabolic activation]

Third tier studies

- > Primary disease model : Mouse, Rat efficacy
- > in vitro metabolism, metabolite ID
- Dose escalation PK
- Single dose IV/PO dog, monkey PK/PD
- Dog CV / rodent telemetry
- Pharm. Sci. [solid state testing, preformulation]

Metrics

Typical Research Assay Flow Scheme

Chemistry

Target

Enzyme/Ligand Assays

IC₅₀ ≤ 100 nM

Ligand Selectivity

(off-targets or closely related targets)

Selectivity > 1000-fold

- Rat PK/PD (iv and po)
 - Ligand inhibition (PD)
 - · Plasma conc. timecourse

Lead Series Declaration

- Rat/Dog Plasma DPP4 Inhibition
- Human/Rat/Dog microsome stability
- CYP450 inhibition
- Solubility
- Protein binding

Safety pharmacology

- e.g., Cerep
- initial rodent toxicology
- Non-rodent PK
- hERG Channel
- Genetic toxicity

Candidate Selection

Development (IND enabling studies)

UC San Diego
SKAGGS SCHOOLOF PHARMACY
AND PHARMACEUTICAL SCIENCES

Case Example

Structural Biology in Drug Discovery

An increasing role in understanding disease and in the design of new medicines

Viracept Agenerase

Gleevec

Actos Nesina

Atomic Structure of DPP-4 Protein

Structural Biology adopts the use of X-rays in the design of new medicines...

But how can X-rays be used to take a picture of a protein target involved in a human disease and then design a drug for that target?

X-Ray Crystallography

+ Phases

DPP-4 Inhibitor Program Critical Success Factors

Absolute Criteria:

- Highly selective and very potent
- No CYP450 interactions
- Once-daily dosing
- Orally active
- Superior Efficacy and safety profiles

Relative Criteria:

- Equivalence or superiority to best known competitor DPP-4 inhibitors on all significant parameters
- Key comparator compounds: Novartis (Galvus) and Merck (Januvia)

Overall Goal: A Best-in-Class DPP-4 Inhibitor

Vildagliptin

Alogliptin

Structures of DPP-4 Inhibitors

Alogliptin

non-covalent

Figure 1. In the second of the

Galvus (Vildagliptin)

covalent (cyanopyrrolidine)

Saxagliptin

DPP-4 Related Enzymes

- Inhibitors thought to be specific for DPP-4 may inhibit other enzymes in the "DPP-4 activity and/or structural homologue" (DASH) family
- Include:
 - FAPα/Seprase
 - DPP-2
 - DPP-8
 - DPP-9
 - PREP
 - Tryptase
- Biological role of related proteases:
 - T-cell apoptosis
 - Attenuating T-cell activation
 - Inactivation of regulatory neuropeptides
 - Pathogenesis of cancer (promoting growth & metastasis)

Alogliptin: DPP-4 Potency & Selectivity Comparisons

- Alogliptin is a potent DPP-4 inhibitor with high selectivity against related serine proteases
- DPP-8 and DPP-9 activity appear to correlate with toxicities in animals and may be a key liability

IC₅₀ (nM) for each enzyme

Compound	DPP-2	DPP-8	DPP-9	FAP	PREP	Tryptase
Alogliptin	> 100,000	> 100,000	> 100,000	> 100,000	> 100,000	> 400,000
Galvus (Vildagliptin)	> 100,000	1,400	81.5	73,000	> 50,000	> 200,000
Januvia (Sitagliptin)	> 50,000	19,000	62,000	> 100,000	> 100,000	> 400,000

Diego

Plasma Concentrations and DPP-4 Inhibition in Monkeys on Alogliptin (PO Dosing)

- Dose linear pharmacokinetics
- $T_{1/2}$ (PO) = 6 hours
- %F = >80%

- Inhibition initiated at 0.25 hours post dose
- Maximum DPP-4
 inhibition at 2 to 3 hours
 post dose (90% to 91%)

UC San Diego
SKAGGS SCHOOL OF PHARMACY
AND PHARMACEUTICAL SCIENCES

Pharmacology

Alogliptin Reduces DPP-4 Activity and Increases Active GLP-1 Levels

Non-Obese/Diabetic N-STZ-1.5 Rats

Alogliptin orally administered 1.5 h before meal load. Mean and SD, N=8, #P≤0.025 UCSan Diego

Alogliptin Lowers Plasma Glucose and Increases Plasma Insulin (OGTT in N-STZ-1.5 Rats)

Effects on Fasting Plasma Glucose in Normal SD Rats

Fasting Sprague-Dawley rats (7 wks old, male) were orally administered alogliptin or nateglinide at 0 min.

Mean ± SD, N=6. **P*≤0.025

Alogliptin *In Vivo*Pharmacology (multiple doses)

Alogliptin in db/db mice

db/db (N=8) and db/+ (n=5) mice (8 week-old)

Dietary admixture: CE-2 powder diet containing 0.01%, 0.03%, 0.1% of Alogliptin for 2 days

0.01% ≅ 14 mg/kg 0.03% ≅ 42 mg/kg 0.1% ≅ 140 mg/kg

Plasma DPP-IV activity and GLP-1 levels

Alogliptin on DPP-IV and GLP-1 in db/db Mice

GLP-1 level

Alogliptin dose-dependently inhibited plasma DPP-IV activity.

*p ≤ 0.025 vs. control by one-tailed Shirley-Williams test.

Alogliptin increased plasma active GLP-1 levels.

*p ≤ 0.025 vs. control by one-tailed Williams' test.

Chronic (4 Week) Study in ob/ob (obese) mice

Study-1; Dose-dependent efficacy of Alogliptin

Study design

Control	ob/ob	n=8	Untreated	
SYR-322	ob/ob	n=8	0.002% in diet	(2.8±0.3 mg/kg/d)
SYR-322	ob/ob	n=8	0.01% in diet	(14.1± 0.8 mg/kg/d)
lean	?/+	n=4		

Four weeks treatment of Alogliptin admixture with diet.

Study-2; High dose efficacy of Alogliptin

Study design

otaay accig				
Control	ob/ob	n=7	Untreated	
SYR-322	ob/ob	n=7	0.03% in diet	(42.2± 4.0 mg/kg/d)
lean	?/+	n=4		

Four weeks treatment of Alogliptin admixture with diet.

Mice; ob/ob/Crj and lean(Charles River Laboratories Japa

Plasma DPP-IV Activity and Active GLP-1 Levels after 4-week Treatment of Alogliptin in *ob/ob* Mice

Mean and SD, n=8

*p<0.05 vs control by one-tailed Williams' test.

#p<0.05 vs control by one-tailed Shirley Williams' test.

Alogliptin Reduces DPP-4 Activity and Increases GLP-1 Levels

Alogliptin

Alogliptin

ob/ob Mice
Mean and SD, n=8

*p<0.05 vs control by one-tailed Williams' test.

#p<0.05 vs control by one-tailed Shirley Williams' test.

Alogliptin Increases Plasma Insulin and Decreases Plasma Glucagon

Plasma Glucagon

Mean and SD, n=8 *p<0.05 vs control by one-tailed Williams' test.

Pancreatic Insulin Content Restored with Drug

Control (Ob/Ob)

Alogliptin Treated (Ob/Ob)

Control

➤ Intense insulin staining was observed in islets of ob/ob mice treated with alogliptin

Insulin staining in islets of alogliptin-treated ob/ob mice was comparable to that in vehicle-treated non-diabetic ?/+ mice UCSan Diego

Drug Metabolism & Pharmacokinetics

In Vivo Pharmacokinetic/Pharmacodynamic Profiles

- Sprague-Dawley rats
- Beagle dogs
- Cynomolgus monkeys

Plasma Concentrations and DPP-IV Inhibition in Monkeys for Alogliptin (po)

Plasma concentrations

% Inhibition of DPP-IV activity

Dose linear pharmacokinetics

$$T_{1/2}$$
 (oral) = 6 hours

Inhibition Initiated at 0.25 hours post dose

Maximum DPP-IV inhibition at 2 to 3 hours post dose (90% to 91%)

Inhibition still apparent at 24 hours post dose (81% to 84%)

Drug Metabolism Profile

- CYP Isoforms involved in metabolism
 - CYP-2D6 (N-demethylated metabolite)
 - CYP-3A4 also involved in metabolism
- CYP induction/inhibition
 - Minimal induction of CYP3A4/5 (up to 5.88X)
 - Minimal inhibition of CYP2D6 (27% at 100 μmol/L)
- Low protein binding
- No drug-drug interactions (in vitro) when co-administered with other diabetic agents

Pharmacokinetic Profile

Pharmacokinetic Parameters Following a Single Oral Dose

Parameter	Rats (20 mg/kg)	Dogs (2 mg/kg)	Monkeys (10 mg/kg)	
Cmax	1,192	278	3,208	
AUC(0-∞)	2,821	699	15,859	
T1/2 (hours) (IV)	1.4	2.9	5.7	
Tmax (hours)	1.7	0.75	1.0	
F (%)	42	71	87	
Excretion Route	Urine, feces	Urine, feces		

Units: Cmax= ng/mL; AUC= ng·hr/mL

Drug Safety Evaluation

Alogliptin – Drug Safety Profile Overview

 Safety Pharmacology: No CNS, Cardiovascular or Pulmonary toxicities noted.

Genetic Toxicology: Not mutagenic or clastogenic.

Chronic Toxicology: doses up to 900 mg/kg (rat) and 200 mg/kg (dog)

Clinical Translation

Human Safety Margins

Endpoints From Oral			Exposure Multiples*	
Toxicity Studies	Dose (mg/kg/day)	AUC (ng·hr/mL)	12.5 mg	25 mg
6 Month NOAEL	Chronic Toxicity Stud		362	181
9 Month NOAEL	Chronic Toxicity Stud 200	d y in Dogs 400,140	560	280

^{*}Plasma AUC_{0-24h} values determined based on data obtained in the multiple repeat dose (14 day) study in patients with type 2 diabetes mellitus.

Single Dose in Healthy Volunteers: Pharmacokinetics

Single Dose in Healthy Volunteers: DPPIV Inhibition

Alogliptin Single Dose in Healthy Volunteers: Conclusions

- No dose-limiting adverse events
 - 25 mg to 400 mg to 800 mg
- Alogliptin was absorbed rapidly
- Total exposure (AUC) and peak exposure (C_{max}) increased with increasing dose
- Pharmacokinetics consistent with once daily dosing
- DPP-4 inhibition consistent with once daily dosing
- No significant metabolites
 - Plasma and urine concentrations of M-I (N-demethylated) and M-II (N-acetylated) metabolites were <5% of the parent drug

Thank you for your Attention

