Course Introduction

What (and how) are we going to learn?

Yordan Darakchiev

Technical Trainer iordan93@gmail.com

Table of Contents

- Course objectives
- Prerequisites
- Curriculum
- Course schedule
- Trainer
- Lecture format
- Final exam
- Some learning resources

Course Objectives

Teaching computers how to do stuff

Course Objectives

- Learn the basics of how data modelling works
- Learn what machine learning is and how it helps make decisions, automate tasks, etc.
 - Apply mathematical intuition
- Learn what the basic algorithms are and how they work
- Apply machine learning to real data to get insights
- Do at least one complete project
 - Data preparation
 - Choosing algorithms
 - Model training, improvement, and selection
 - Presenting a complete solution
 - Communicating results and ensuring reproducibility

Prerequisites

Programming Basics

- Familiarity with Python is required
- Software development experience is a plus

Math Concepts

- Know some algebra, statistics, and calculus
- Have basic logic and intuition

Intermediate English

• Understand what is written on the slides

Scientific Mindset

- Know how to work with data
- Be open to (and not afraid of) challenges

Course Format Details

Curriculum, schedule, trainer, lecture format, exam

Curriculum

- Introduction to machine learning
- Linear and logistic regression
- Model training and improvement
- Tree and ensemble models
- Support vector machines
- Clustering
- Dimensionality reduction
- Introduction to neural networks
- Time Series
- Exam preparation: end-to-end project
- ML Q&A: machine learning in the wild

Course Schedule

- Lessons
 - 10 lectures x 4 hours each
- Homework
 - Quiz: 0,25-0,5 hours
 - Questions to check your understanding
 - Paper summary: 2-10 hours
 - Learn to read, understand, and reproduce scientific information
- Extracurricular activities: 0+ hours
 - The more the better :)
- Practical exam
 - Preparation at home 10-40+ hours
 - On-site defense: 10 minutes

Time Allocation

- Course
 - 7 September 16 November 2023
- Exam
 - **Group 1:** 26 November 2023, 09:00-18:00, GMT+2
 - **Group 2:** 3 December 2023, 09:00-18:00, GMT+2
- Retake exam
 - 10 December 2023, 09:00-18:00, GMT+2

Final Exam

- Quiz (theoretical exam)
 - 10 questions for 30 minutes
- Practical project
 - Work on your own
 - No teams allowed
 - Present your results (documentation, code, models, Web services, etc.) in a limited amount of time
- Work on a given assignment
 - Perform research
 - Scientific papers, community forums, etc.
 - Analyze the data
 - Train one or more machine learning algorithms
 - Select and improve models
 - Document all your findings
 - Communicate the results
 - Optionally... do whatever you like :D

Grading Scheme

- Quizzes: up to 10%
 - Due date: at the end of the course
- Paper summary: up to 10%
 - Due date: at the end of the course
 - Submit along with the final exam
 - Don't submit anything else for the retake
- Final exam: up to 80%
 - Theoretical exam (quiz): 30% (24% of total grade)
 - Practical exam (project): 70% (56% of total grade)
 - Develop at your own pace
 - Upload deadline: Friday before the exam date; 12:00 PM GMT+2
 - Project defense
- Discord / Facebook group activity: bonus up to 10%
- Other bonuses: up to 10%

Grading and Course Certificates

- All students will be graded on a scale from 2,00 to 6,00
 - The same way the standard grading in Bulgaria works
- Everyone who scores ≥ 5,00 (total) will get a certificate from SoftUni
- Everyone who scores ≥ 3,00
 (on both theory and practice)
 can get a MoES certificate as well
 - You need to apply explicitly within a limited time

Why bother?

- Starting point for a new career or continuing education in your current field
- Career assistance
 - The SoftUni career center will help you find work
- Official and recognizable
 - Employers value certificates
- Proof of hard work :)
 - Shareable and verifiable
- We make sure that everyone who scores ≥ 5,00 knows what they're doing:)

FEATURES & TRAITS

- Programmer
 - .NET / full-stack Web developer
- Machine learning engineer
 - Multiple projects, mainly image processing
- Trainer
 - Various programming courses
 - Scientific (and popular) lectures
- Scientist / Enthusiast
 - BSc & MSc in Astrophysics
 - Currently pursuing a PhD

PROFICIENCIES & LANGUAGES

- Machine learning
- Research
- Teaching
- Software engineering
- Python
- **C#**
- JavaScript

Learning Resources

Learn more and share your knowledge

SoftUni Resources

- Al module page
- Official Web page of this course
- Facebook group
- Discord server
- Guidelines
 - Ask and answer questions
 - I will try to answer your questions as well
 - Post what you've learned
 - Links to resources, code snippets, ideas, tips and tricks
 - Share your problems (homework or not) and help solve them
 - Create and maintain a community

Online Resources

Books

- "How not to be wrong" Jordan Ellenberg
- "The Elements of Statistical Learning" Stanford (free PDF)
- Some parts of <u>Deep Learning</u> Ian Goodfellow (free PDF)
- ... and anything else you can find

Websites

- Khan Academy
- Communities: <u>Kaggle</u>, <u>Quora</u>, <u>Stack Exchange</u>
- Online courses: <u>Coursera</u>, <u>edX</u>, <u>MIT OCW</u>, <u>Stanford</u>, etc.

YouTube

 AsapSCIENCE, Veritasium, Vsauce, TedEd, Daniel Shiffman, CrashCourse, Numberphile, Computerphile, Vi Hart, 3Blue1Brown, blackpenredpen, Mathologer, and many more

Questions?