Оценка вариограммы гауссовского случайного процесса

Случайный процесс $X(s), s \in \mathbb{Z} = \{0, \pm 1, \pm 2, \dots\}$, называется внутренне стационарным, если справедливы следующие равенства:

$$E\{X(s_1) - X(s_2)\} = 0, \quad V\{X(s_1) - X(s_2)\} = 2\gamma(s_1 - s_2), \tag{1}$$

где $2\gamma(s_1-s_2)$ — вариограмма рассматриваемого процесса, $s_1,s_2\in\mathbb{Z}.$

Пусть $X(s), s \in \mathbb{Z}$ — внутренне стационарный гауссовский случайный процесс с нулевым математическим ожиданием, дисперсией σ^2 и неизвестной вариограммой.

$$2\gamma(h) = V\{X(s+h) - X(s)\}, s, h \in \mathbb{Z}.$$
(2)

В качестве оценки вариограммы рассмотрим статистику вида:

$$2\tilde{\gamma}(h) = \frac{1}{n-h} \sum_{s=1}^{n-h} (X(s+h) - X(s))^2, \quad h = \overline{0, n-1}.$$
 (3)

Вычислим математическое ожидание введённой оценки

Таким образом оценка является несмещённой.

Далее, найдём второй момент:

$$cov(2\tilde{\gamma}(h_1), 2\tilde{\gamma}(h_2)) = E((2\tilde{\gamma}(h_1) - E(2\tilde{\gamma}(h_1)))(2\tilde{\gamma}(h_2) - E(2\tilde{\gamma}(h_2)))) =$$
(4)

$$= E\left(\frac{1}{n-h_1} \sum_{s=1}^{n-h_1} ((x(s+h_1) - x(s))^2 - E((x(s+h_1) - x(s))^2)) \times \right)$$
 (5)

$$\times \frac{1}{n-h_2} \sum_{t=1}^{n-h_2} ((x(t+h_2) - x(t))^2 - E((x(t+h_2) - x(t))^2))) =$$
 (6)

$$= \frac{1}{(n-h_1)(n-h_2)} \sum_{s=1}^{n-h_1} \sum_{t=1}^{n-h_2} cov((x(s+h_1)-x(s))^2, (x(t+h_2)-x(t))^2) =$$
(7)

= [по определению
$$cov(a,b) = corr(a,b)\sqrt{V(a)V(b)}] =$$
 (8)

$$= \frac{1}{(n-h_1)(n-h_2)} \sum_{s=1}^{n-h_1} \sum_{t=1}^{n-h_2} corr((x(s+h_1)-x(s))^2, (x(t+h_2)-x(t))^2) \times$$
(9)

$$\times \sqrt{(V((x(s+h_1)-x(s))^2)V((x(t+h_2)-x(t))^2))} =$$
(10)

$$= \frac{2(2\gamma(h_1))(2\gamma(h_2))}{(n-h_1)(n-h_2)} \sum_{s=1}^{n-h_1} \sum_{t=1}^{n-h_2} corr((x(s+h_1)-x(s))^2, (x(t+h_2)-x(t))^2)$$
(11)