Single-Image HDR Reconstruction by Learning to Reverse the Camera Pipeline

Yu-Lun Liu, Wei-Sheng Lai, Yu-Sheng Chen, Yi-Lung Kao, Ming-Hsuan Yang, Yung-Yu Chuang, Jia-Bia Huang

CVPR '20

2022.05.09 윤주열

High Dynamic Range Image

Brightness of a scene is almost infinite while we can only measure a finite range.

Try to capture sufficient amount of light from all brightness.

High Dynamic Range Image

Single Image High Dynamic Range Imaging (Inverse Tone Mapping)

Can be viewed as a channel-wise outpainting.

Camera Pipeline

How exactly are we obtaining LDR images?

I : Scene brightness

M: Measured brightness

Scene brightness is first clipped according to the exposure. (Long exposure \rightarrow more clipping) The camera response function (CRF) maps the brightness with a non-linear curve. Brightness is quantized 8 bit value.

Method

Idea: Reverse the camera pipeline.

Given a HDR image, create images created within the camera pipeline.

Train each component separately and later fine-tune it.

Dequantization

Our input LDR image is an 8-bit image.

Quantized images contain noise and banding artifacts.

Use a simple Unet to reduce these artifacts.

The output of the Unet is added to the original LDR image.

Linearization

A linear image is mapped with a camera response function (CRF).

We need to inverse the CRF to obtain a linear image from a LDR image.

Represent a CRF with 1024-dimensional vector. (since CRF is a 1D function with a bounded domain)

Most existing CRF can be approximated by a weighted sum of K PCA components from the EMoR (Empirical Model of Response).

Predict the PCA weights.

Force the monotonically increasing constraint on the predicted CRF.

Hallucination

Some of the brightness of the original scene is clipped.

Predict the missing details of the overexposed region.

Details are recovered using the perceptual loss and the L2 loss.

Refinement step

pass an additional Unet same as the dequantization step to predict the final HDR image.

Results

PSNR of dequantization and linearization.

Table 2: **Comparisons on Dequantization-Net.** Our Dequantization-Net restores the missing details due to quantization and outperforms existing methods.

Method	PSNR (†)	SSIM (†)
w/o dequantization	33.86 ± 6.96	0.9946 ± 0.0109
Hou et al. [18]	33.79 ± 6.72	0.9936 ± 0.0110
Liu et al. [35]	34.83 ± 6.04	0.9954 ± 0.0073
Dequantization-Net (Ours)	35.87 ± 6.11	0.9955 ± 0.0070

Table 3: Analysis on alternatives of Linearization-Net.

Method	L2 error (↓) of inverse CRF	PSNR (†) of linear image	
Pre-defined x^2 [6] Pre-defined $x^{2.2}$ Average inverse CRF CRF-Net [19]	11.64 ± 12.47 9.06 ± 10.74 7.36 ± 7.03 4.23 ± 4.37	24.81 ± 6.47 25.82 ± 6.04 25.24 ± 4.82 30.61 ± 6.82	
CRF-Net* [19] Linearization-Net (ours)	2.71 ± 4.10 $\mathbf{1.56 \pm 2.52}$	32.84 ± 6.85 34.64 ± 6.73	

Final HDR quantitative analysis.

Table 1: **Quantitative comparison on HDR images with existing methods.** * represents that the model is re-trained on our synthetic training data and + is fine-tuned on both synthetic and real training data. **Red** text indicates the best and <u>blue</u> text indicates the best performing state-of-the-art method.

Method	Training dataset	HDR-SYNTH	HDR-REAL	RAISE [10]	HDR-EYE [42]
HDRCNN+ [14]	HDR-SYNTH + HDR-REAL	55.51 ± 6.64	51.38 ± 7.17	56.51 ± 4.33	51.08 ± 5.84
DrTMO+ [15]	HDR-SYNTH + HDR-REAL	56.41 ± 7.20	$\overline{50.77 \pm 7.78}$	57.92 ± 3.69	51.26 ± 5.94
ExpandNet [40]	Pre-trained model of [40]	53.55 ± 4.98	48.67 ± 6.46	54.62 ± 1.99	$\overline{50.43 \pm 5.49}$
Deep chain HDRI [29]	Pre-trained model of [29]	-	-	-	49.80 ± 5.97
Deep recursive HDRI [30]	Pre-trained model of [30]	-	-	-	48.85 ± 4.91
Ours*	HDR-SYNTH	60.11 ± 6.10	51.59 ± 7.42	58.80 ± 3.91	52.66 ± 5.64
Ours+	HDR-SYNTH + HDR-REAL	59.52 ± 6.02	53.16 ± 7.19	59.21 ± 3.68	53.16 ± 5.92

Results

Qualitative results

Results

Failure case

Figure 13: **Failure case.** The scene outside the window is severely over-exposed. Existing methods and our model cannot reconstruct plausible content.