Managing Complex Experiments, Automation, and Analysis using Robot Operating System

John Stowers (TU Wien) • John.stowers@gmail.com • June 26th 2013

Motivation

- Real-time closed-loop virtual reality control of Drosophila
- Experiment distributed over 4 computers
- A variety of data collected

Motivation

What Is Robot Operating System (ROS)

- A meta-operating system
- A collection of robotics related libraries
- A (bad) package management system
- An architecture for distributed inter-process inter-machine communication and configuration
- Development tools for system runtime and data analysis

The ROS core has nothing to do with robotics and has everything needed for reproducible Science

The Major Concepts of ROS

Interprocess
Communication

Configuration
Management

Data Storage
Format

- ROS Python API
 - Exposes the ROS core
 - Used to interface with the ROS network
- All strongly typed

ROS IPC

- Nodes
 - Correspond to processes (ros mainloop)
- Topics
 - Asynchronous "stream-like" communication
 - Can have one or more publishers, and one or more subscribers
- Services
 - Synchronous, "function-call-like"
 - Can have only one server, and multiple clients

Event.msg

Header header int32 reward float32 speed

int32 REWARD_RED=1
int32 REWARD GREEN=2

Command.srv

string command
--string response

ROS Process and Configuration Management

Launch files

- XML files for launching multiple nodes across multiple machines
- associate a set of parameters and nodes with a single file
- hierarchically compose collections of other launch files
- automatically re-spawn nodes if they crash

Parameter Server

Provides parameter values to nodes

Command line tools

- for interacting with nodes
- great for debugging
- rosbag for recording messages on the network

Gui tools

- simple plotting
- visualization of the ros graph
- many vision/camera related tools

The ROS API(s)

- The IPC is one API
 - Strongly typed, described by paths and msg / srv files
- Use the rospy module to
 - Communicate using this IPC
 - Get/Set parameters
 - Save data to bag files
 - Also provides timing primitives

```
import roslib; roslib.load manifest('scipy')
import rospy
from std msqs.msq import Float32
rospy.init node("answer")
pub = rospy.Publisher("info", Float32,
                       latch=True)
pub.publish(42)
rospy.spin()
import roslib; roslib.load manifest('scipy')
import rospy
from std msgs.msg import Float32
def on msq(msq):
    print "the meaning of life is", msg.data
sub = rospy.Subscriber("info", Float32,
                        on msg)
rospy.init node("question")
rospy.spin()
```

A Real Life Example

- A conditioning assay
 - In response to stimulus (light) the mouse makes a choice
 - Record the choice
 - Record experiment data
 - Video
 - Temperature
- Use ROS to implement and parallelize

Live Coding https://github.com/nzjrs/scipy2013-presentation

Best Practices for ROS Applications

- Prefer command line arguments to ROS remapping
- Use standard message types where possible
- Don't feel compelled to use ROS for everything
- Take advantage of subscriber callbacks and Latched messages

- Synchronizing Time
 - To correlation data collected on multiple machines
 - ROS does have a special notion of time, /clock
- But managing your own timebase is often better
 - PTPd maintains us synchronization between computer clocks
- Pandas indexing / interpolation = win

Interacting With External Partners

- Default data storage format is .bag files
 - Scientists should user inter-operable file formats
 - bag2hdf5 (export bag files to clean hdf5)
- ros_sql (persist bag messages an a sql database)
- ros_freeze
 - Repackage ROS nodes as standard python packages (including dependencies)
- http://www.github.com/strawlab/

Conclusion

- ROS is a healthy vibrant project with a strong future
- It's performance is sufficient for demanding real-time tasks
- Its graph/IPC model maps well to managing experiments
- The ROS core and API is pure python and easy to get to know

