1. 增加旋转轴,并设置相关系统功能参数

参数号	参数定义	
1010	如果无C轴,则系统先增加一个轴,修改为参数需要重新上电	
8130		
1020	轴名: C轴设为67	
1022	轴属性,可设为0,如C轴需要特殊的插补,则根据需要设置为XYZ的平行轴	
1023	设定伺服轴号,同相对应的主轴轴号#3717设定为一致	
1004#6 将旋转轴的最新指令增量设为10倍, (即如果系统是ISC 当量的, 此		
	C轴的当量则为0.001),参数设为1后,计算旋转轴齿轮比时的最小当量需要×10,	
	这样可提高C轴的速度。	
1006#0	将 C 轴设为旋转轴: 00: 直线轴 01: 旋转轴(A型) 11: 旋转轴(B型)	
1006#1	设为11,旋转轴A型	
1008#0	08#0 设定旋转轴的循环显示功能是否有效 0: 无效 1: 有效	
	设1,循环显示功能有效	
1008#1	设定绝对指令时轴的旋转方向 0: 距目标较近的旋转方向 1: 指令值符号指	
	定的方向	
	设0,就近旋转	
1008#2	相对坐标为 0: 不按每一转的移动量循环 1: 按每一转的移动量循环	
	设1,按每一转循环	
1260	旋转轴的一转移动量,如果系统是ISC(0.0001)则设为3600000,如果是ISB	
	(0.001)则设为360000	
1811#2	各轴脉冲输出方向选择 0: 不取反 1: 取反	
3701#7	CS轴轮廓控制有效,设为1	

2. 设置 PLC 参数

VE V		
单通道	双通道	
根据需求设置	根据需求设置	
K16.5: 第一主轴位置速度切换有效/无效	K14.0: 第1通道第一主轴位置速度切换有效/无效	
K16.6: 第二主轴位置速度切换有效/无效	K14.1: 第1通道第二主轴位置速度切换有效/无效	
K16.7: 第三主轴位置速度切换有效/无效	K14.2: 第 2 通道第一主轴位置速度切换有效/无效	
	K14.3: 第 2 通道第二主轴位置速度切换有效/无效	
	K14.6: 第1通道多主轴轮廓控制功能有效/无效	
	K14.7: 第 2 通道多主轴轮廓控制功能有效/无效	
设置合适的时间	设置合适的时间	
DT06: 主轴 CS 切换超时时间(ms)	DT06: 第1通道,CS 切换超时时间(ms)	
	DT07: 第 2 通道,CS 切换超时时间(ms)	

3. 以导程 360 度, 计算设置 CS 轴轮廓控制齿轮比。

4. 验证齿轮比是否正确

- 4.1 切换至位置方式
- 4.2 在当前机械位置做好标识
- 4.3 执行 G0H360,系统将旋转 360 度,机械刚好转一圈回到标识位置。

注意:

如果齿轮比不正确需检查各功能参数,直到正确为止。否则不正确的齿轮比将对后续位置控制功能如刚性攻丝,多边形加工,极坐标及主轴分度等产生影响。