

CS135 Introduction to Machine Learning

Lecture 10: Classifiers (Decision Tree, Random Forest)

Example Decision Tree - Retail Data

Will a customer redeem a coupon

Decision Tree - Ruleset Model

if Loyal Customer = Yes and Household income >= \$150K and Shopping mode = store then coupon redemption = Yes

Terminology

Best Binary Partitioning

Regression tree

Prediction:

3.36

SSE: 24.55

9.7

36.1

Classification tree

Prediction:

no

Gini:

.16

0

yes

Objective: Minimize disimilarity in terminal nodes

Best Binary Partitioning

• **Numeric feature**: Numeric split to minimize loss function

• **Binary feature**: Category split to minimize loss function

 Multiclass feature: Order feature classes based on mean target variable (regression) or class proportion (classification) and choose split to minimize loss function

Tree Depth = 1 (Decision Stump)


```
##
## Model formula:
## y ~ x
##
## Fitted party:
## [1] root
## | [2] x >= 3.07863: -0.665 (n = 255, err = 95.5)
## | [3] x < 3.07863: 0.640 (n = 245, err = 75.9)
##
## Number of inner nodes: 1
## Number of terminal nodes: 2</pre>
```


Tree Depth = 3


```
##
## Model formula:
## y ~ x
## Fitted party:
## [1] root
```


Tree Depth = 20 (Complex Tree)

Two Predictor Decision Boundaries

Classification problem: Iris data

Two Predictor Decision Boundaries

Classification problem: Iris data

Species setosa versicolor virginica 4.5 setosa setosa 4.0 setosa setosa 4.0 versicolor versicolor virginica 2.5 versicolor versicolor virginica 5 Sepal.Length

Classification tree

Minimize overfitting: Early stopping

Limit tree depth: Stop splitting after a certain depth

Minimum node "size": Do not split intermediate node which contains too few data points

Minimize overfitting: Pruning

- 1. Grow a very large tree
- 2. Prune it back with a cost complexity $parameter(\alpha) \times number of terminal nodes(T) to find an optimal subtree:$
 - Very similar to lasso penalty in regularized regression
 - \circ Large $\alpha =$ small tree
 - \circ Small lpha = large tree
 - \circ Find optimal lpha with cross validation

minimize: loss function $+\alpha |T|$

Deep trees overfit

Penalize depth to generalize

Decision Tree - Strengths & Weaknesses

Strengths 😇

- Small trees are easy to interpret
- Trees scale well to large N (fast!!)
- Can handle data of all types (i.e., requires little, if any, preprocessing)
- Automatic variable selection
- Can handle missing data
- Completely nonparametric

Weaknesses [©]

- Large trees can be difficult to interpret
- All splits depend on previous splits (i.e. capturing interactions : additive models !
- Trees are step functions (i.e., binary splits)
- Single trees typically have poor predictive accuracy
- Single trees have high variance (easy to overfit to training data)

The Problem with Single Decision Trees

Single pruned trees are poor predictors

Single deep trees are noisy

Bagging uses this high variance to our advantage 🛧

Bagging: Bootstrap Aggregating: wisdom of the crowd

1. Sample records w replacement (aka "bootstrap" the training data)

Sampling is selecting a subset of items from a vast

Sampling is selecting a subset of items from a vast collection of items.

<u>Bootstrap</u> = Sampling with replacement. It means a data point in a drawn sample can reappear in future drawn samples as well.

2. Fit an overgrown tree to each resampled data set

3. Average predictions

Bagging: Bootstrap Aggregating: wisdom of the crowd

As we add more trees...

our average prediction error reduces

Random Forest

- Random forest is identified as a collection of decision trees. Each tree estimates a classification, and this is called a "vote". Ideally, we consider each vote from every tree and chose the most voted classification (Majority-Voting).
- Random Forest follow the same bagging process as the decision trees but each time a split is to be performed, the search for the split variable is limited to a random subset of m of the p attributes (variables or features) aka <u>Split-</u> Attribute Randomization:
 - classification trees: m = √p
 - regression trees: m = p/3
 - m is commonly referred to as mtry
- Random Forests produce many unique trees.

Bagging vs Random Forest

- Bagging introduces randomness into the rows of the data.
- Random forest introduces randomness into the rows and columns of the data
- Combined, this provides a more diverse set of trees that almost always lowers our prediction error.

Split-Attribute Randomization: Prediction Erro

Random Forest: Out-of-Bag (OOB) Observations

- For large enough N, on average, 63.21% or the original records end up in any bootstrap sample
- Roughly 36.79% of the observations are not used in the construction of a particular tree
- These observations are considered out-of-bag (OOB) and can be used for efficient assessment of model performance (unstructured, but free, cross-validation)

Pro tip:

- When N is small, OOB is less reliable than validation
- As N increases, OOB is far more efficient than k-fold CV
- When the number of trees are about 3x the number needed for the random forest to stabilize, the OOB error estimate is equivalent to leave-one-out cross-validation error.

Random Forest: Tuning

Random forests provide good "out-of-the-" performance but there are a few parameters we can tune to increase performance.

- Number of trees
- mtry
- Node size
- Sampling scheme
- Split rule

- Typically have the largest impact on predictive accuracy.
- Tend to have marginal impact on predictive accuracy but still worth exploring. Can also increase computational efficiency.
- Generally used to increase computational efficiency

Random Forest - Strengths & Weaknesses

Strengths 😇

- Competitive performance.
- Remarkably good "out-of-the box" (very little tuning required).
- Built-in validation set (don't need to sacrifice data for extra validation).
- Typically does not overfit.
- Robust to outliers.
- Handles missing data (imputation not required).
- Provide automatic feature selection.
- Minimal preprocessing required.

Weaknesses

- Although accurate, often cannot compete with the accuracy of advanced boosting algorithms.
- Can become slow on large data sets.
- Less interpretable (although this is easily addressed with various tools such as variable importance, partial dependence plots, LIME, etc.).

