Universidade do Minho

Departamento de Matemática

Lic. em Ciências da Computação 26 de janeiro de 2024

Exame de Álgebra Linear CC Época de Recurso

duração: 2h30min

Nome do aluno:	Número:

Grupo I

Relativamente às questões deste grupo, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), assinalando a opção conveniente.

V F
1. Para quaisquer n ∈ N e A, B ∈ M_{n×n}(R), se A + B é uma matriz simétrica, então A e B são matrizes simétricas.
2. Para quaisquer A, B, C ∈ M_{2×2}(R), se A ≠ 0_{2×2} e AB = AC, então B = C.
3. Para quaisquer A, B ∈ M_{3×3}(R), se car(AB) = 3, então A e B são matrizes invertíveis.
4. O conjunto {A ∈ M_{3×3}(R) | A é triangular superior} é um subespaço vetorial de M_{3×3}(R) de dimensão 9.
5. A aplicação f: M_{3×3}(R) → M_{3×3}(R) definida por f(A) = A^T, para qualquer A ∈ M_{3×3}(R), é uma aplicação linear.
6. Para quaisquer A ∈ M_{3×3}(R) e u, v ∈ M_{3×1}(R), se u e v são vetores próprios de A, então u + v é um vetor próprio de A.

Grupo II

Resolva cada uma das questões deste grupo na folha de exame. Justifique as suas respostas.

- 1. Sejam $A=\left[\begin{array}{ccc} 3 & 3 & 3 \\ 0 & 1 & -1 \\ 2 & 4 & 2 \end{array}\right]$ e $B,\,C,D$ matrizes tais que:
 - $B \in \mathcal{M}_{3\times 4}(\mathbb{R})$ é uma matriz em escada e car(B) = 2;
 - $C, D \in \mathcal{M}_{3\times 3}(\mathbb{R})$, det C = -15 e D é uma matriz obtida de C efetuando a sequência de operações elementares a seguir indicada

$$l_1 \to l_1 + 4l_2, \quad c_3 \to 5c_3, \quad c_2 \leftrightarrow c_1, \quad l_2 \to \frac{1}{6}l_2.$$

- (a) Calcule |A|.
- (b) Justifique que a matriz A é invertível e determine a sua inversa utilizando o método de Gauss-Jordan.

(c) Classifique os sistemas:

i.
$$B\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
. ii. $B\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$. iii. $B^T\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$.

- (d) Indique o determinante de D.
- 2. Considere, no espaço vetorial real \mathbb{R}^3 , os subespaços vetoriais

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + 2y = 0\}$$
 e $G = \langle (1, -1, 1), (2, 0, 2) \rangle$.

- (a) Mostre que $G = \{(x, y, z) \in \mathbb{R}^3 | z x = 0\}.$
- (b) Diga, justificando, se $F \cup G$ é um subespaço vetorial de \mathbb{R}^3 .
- (c) Determine a dimensão de F.
- (d) Determine uma base de F+G e justifique que esta soma não é direta.
- 3. Sejam \mathcal{B} a base canónica de \mathbb{R}^3 e \mathcal{B}' a base de \mathbb{R}^3 definida por $\mathcal{B}' = ((1,0,0),(1,1,0),(1,1,1))$. Sejam f e g os endomorfismos de \mathbb{R}^3 definidos por

$$f(1,0,0) = (2,-1,-1), f(0,1,0) = (-2,1,1), f(0,0,1) = (0,0,5)$$

е

$$M(g, \mathcal{B}, \mathcal{B}) = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 2 & -1 \\ -1 & 1 & 4 \end{bmatrix}.$$

- (a) Justifique que Nuc f = <(1,1,0)>. Diga se f é injetiva e se é sobrejetiva.
- (b) Determine as matrizes $M(f; \mathcal{B}, \mathcal{B}')$ e $M(f \circ g; \mathcal{B}, \mathcal{B}')$.
- (c) Verifique que (1,1,0) e (1,0,1) são vetores próprios de g associados ao mesmo valor próprio. Indique esse valor próprio.
- (d) Justifique que 1 é um valor próprio de g e indique um vetor próprio de g associado a este valor próprio.
- (e) Justifique que g é diagonalizável.