

تمرین سری اول

درس سیگنالها و سیستمها - دکتر اخوان

ردار عنید. سپس در صفحه ی مختلط بردار $a=re^{j\theta}$ منید. سپس در صفحه ی مختلط بردار و فرض کنید. سپس در صفحه ی مختلط بردار $z=re^{j\theta}$ متناظر با هر عبارت را رسم کنید.

- (i) z^*
- (ii) z^2
- (iii) jz
- (iv) zz^*
- $(v) \quad \frac{z}{z^*}$
- (vi) $\frac{1}{z}$

2) رابطهی زیر را اثبات کنید.

$$1 - e^{j\theta} = -2j\sin\left(\frac{\theta}{2}\right)e^{j\frac{\theta}{2}}$$

(3 با فرض این که $\chi(t)$ به صورت زیر باشد، عبارات زیر را رسم کنید.

- (*b*) x(t+1)
- (c) x(2t+1)
- (d) x(1-4t)

است.
$$x(t) = \cos(\omega_x(t+\tau_x)+\theta_x)$$
 است. (4

الف) در هر یک از حالات زیر بررسی کنید آیا x(t) متناوب است؟ اگر متناوب بود، دورهی تناوب آن را بیابید.

	$\boldsymbol{\omega}_{x}$	$ au_{\chi}$	$\boldsymbol{\theta}_{x}$
(i)	$\frac{\pi}{2}$	0	2π
(ii)	3π	1	π
	2	$\overline{2}$	7
(iii)	3	1	1
	$\overline{4}$	$\overline{2}$	$\overline{7}$

ب) با فرض $y(t)=\cos(\omega_y(t+ au_y)+ heta_y)$ و $x(t)=\cos(\omega_x(t+ au_x)+ heta_x)$ در کدام یک از حالات زیر y(t) به ازای همه ی t ها با یکدیگر برابرند.

	$\boldsymbol{\omega}_{x}$	$ au_{\chi}$	$\boldsymbol{\theta}_{x}$	$\boldsymbol{\omega}_{y}$	$ au_y$	$\boldsymbol{\theta}_{\mathbf{y}}$
(i)	$\frac{\pi}{3}$	0	2π	$\frac{\pi}{3}$	1	$-\frac{\pi}{3}$
(ii)	$\frac{3\pi}{4}$	$\frac{1}{2}$	$\frac{\pi}{4}$	$\frac{11\pi}{4}$	1	$\frac{3\pi}{8}$
(iii)	$\frac{3}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{3}{4}$	1	3 8

است.
$$x[n] = cos(\omega_x(n+m_x)+ heta_x)$$
 است. (5

الف) در هر یک از حالات زیر بررسی کنید آیا x[n] متناوب است؟ اگر متناوب بود، دورهی تناوب آن را بیابید.

	$\boldsymbol{\omega}_{x}$	m_x	θ_x
(i)	$\frac{\pi}{3}$	0	2π
(ii)	$\frac{3\pi}{4}$	2	$\frac{\pi}{4}$
(iii)	$\frac{3}{4}$	1	$\frac{1}{4}$

ب) با فرض $y[n] = cos\left(\omega_y(n+m_y) + \theta_y\right)$ و $x[n] = cos\left(\omega_x(n+m_x) + \theta_x\right)$ در کدام یک از x[n] به ازای همه x[n] به ازای همه x[n] ها با یکدیگر برابرند.

	ω_{x}	m_{χ}	$\boldsymbol{\theta}_{x}$	$\boldsymbol{\omega}_{y}$	m_y	$\boldsymbol{\theta}_{y}$
(i)	$\frac{\pi}{3}$	0	2π	$\frac{8\pi}{3}$	0	0
(ii)	$\frac{3\pi}{4}$	2	$\frac{\pi}{4}$	$\frac{3\pi}{4}$	1	$-\pi$
(iii)	$\frac{3}{4}$	1	$\frac{1}{4}$	$\frac{3}{4}$	0	1

. عبارات زیر را بدست آورده و رسم کنید.
$$x(t) = \sqrt{2}(1+j)e^{j\frac{\pi}{4}}e^{(-1+j2\pi)t}$$
 با فرض با فرض (6

- (i) $\Re\{x(t)\}$
- (ii) $\Im\{x(t)\}$
- (iii) $x(t+2) + x^*(t+2)$

7) سیگنال پیوسته $x(t)=e^{j\omega_0 t}$ دارای فرکانس پایه ω_0 و دوره ی تناوب $T_0=\frac{2\pi}{\omega_0}$ است. با فرض این که از این سیگنال پیوسته $x(t)=e^{j\omega_0 t}$ را بدست بیاوریم سیگنال با فواصل مساوی x نمونه برداری کنیم و سیگنال گسسته $x[n]=x(nT)=e^{j\omega_0 nT}$ را بدست بیاوریم به سوالات زیر پاسخ دهید.

الف) نشان دهید x[n] متناوب است اگر و تنها اگر $\frac{T}{T_0}$ یک عدد گویا باشد.

ب) فرض کنید x[n] متناوب است و $\frac{p}{q}=\frac{p}{q}$ است به گونهای که p و اعدادی صحیح هستند. دوره تناوب x[n] برا بدست آورید. همچنین فرکانس پایه x[n] را بدست آورده و بر حسب x[n] بیان کنید.

ج) مجدداً فرض کنید x[n] متناوب است و $\frac{p}{q}=\frac{p}{q}$ است به گونهای که p و اعدادی صحیح هستند. مشخص کنید چند دوره کنید از سیگنال x(t) احتیاج است تا سیگنال یک دوره کی تناوب x[n] تشکیل شود.

8) قسمت زوج و فرد سیگنالهای زیر را بدست آورده و هر کدام را رسم کنید.

9) با فرض این که $x_e(t)$ و $x_e(t)$ به ترتیب قسمتهای زوج و فرد سیگنال x(t) را نشان دهند، عبارت زیر را اثبات کنید.

$$\int_{-\infty}^{\infty} x^{2}(t) dt = \int_{-\infty}^{\infty} x_{e}^{2}(t) dt + \int_{-\infty}^{\infty} x_{o}^{2}(t) dt$$

موفق باشيد.