Dato il circuito di figura trovare la corrente I_3 col principio di sovrapposizione degli effetti.

esercizio 2 soluzione

Caso 1:è in funzione solo il generatore E₁.

$$R_p = R_3 // R_2 = \frac{R_3 R_2}{R_3 + R_2} = \frac{1}{2} \Omega$$

$$I_I' = \frac{E_I}{R_I + R_p} = \frac{10}{2 + \frac{1}{2}} = \frac{20}{5} = 4A$$

$$V_{AB} = R_p I_I' = \frac{1}{2} \cdot 4 = 2V$$

La tensione V_{AB} si trova ai capi della resistenza R_3 sulla quale scorre la I'_3 .

$$I_3' = \frac{V_{AB}}{R_3} = \frac{2}{I} = 2A$$

Caso 2:è in funzione solo il generatore E2.

La tensione V_{AB} si trova ai capi della resistenza R_3 sulla quale scorre la I'_3 .

$$I_3'' = \frac{V_{AB}}{R_3} = \frac{14/5}{1} = \frac{14}{5}A$$

 $V_{AB} = R_p I_2'' = \frac{2}{3} \cdot \frac{21}{5} = \frac{14}{5} V$

Caso 3:è in funzione solo il generatore E_3 .

per cui avremo

$$I_3 = I_3' + I_3'' + I_3''' = 2 + \frac{14}{5} + \frac{21}{5} = \frac{10 + 14 + 21}{5} = \frac{45}{5} = 9 A$$