Question 1: Consider a 3-symbol source data sequence: {A, B, C, B, B, A, B, C, A, B}. Encode the source using the below codes respectively.

- (a) Shannon-Fano code
- (b) Huffman code
- (c) 3-bit Tunstall code
- (d) 3-bit Tunstall/Huffman code

For each code,

- (i) Show the code table.
- (ii) Show the encoded string and its length.
- (iii) Compute the expected redundancy and efficiency for the code.
- (iv) Compute the effective redundancy and efficiency for this source.

Symbol occurrence probabilities:
$$p(A) = 0.3$$
, $p(B) = 0.5$, $p(C) = 0.2$.
Entropy $H = -0.3\log_2(0.3)-0.5\log_2(0.5)-0.2\log_2(0.2) = 1.485475$ bits/symbol

(a) Shannon-Fano Code

Symbol	Codeword	Probability
Α	10	0.3
В	0	0.5
С	11	0.2

Code Rate r = Average length per codeword / average length per symbol =
$$(0.3x2 + 0.5x1 + 0.2x2)/1 = 1.5$$
 bits/symbol Code Redundancy R = Code Rate - Entropy = 0.014525 bits/symbol Code Efficiency = Entropy / Code Rate = 0.99032 Encoded sequence = $10 \ 0 \ 11 \ 0 \ 0 \ 10 \ 0 \ 11 \ 10 \ 0$ (length = 15 bits)

(b) Huffman Code

```
Build the Huffman tree (the tree diagram is omitted here) 
{B: 0.5, A: 0.3, C: 0.2} 
{B:0.5, (AC): 0.5} 
{(B(AC)): 1.0}
```

Symbol	Codeword	Probability
Α	10	0.3
В	0	0.5
С	11	0.2

Code Rate r = (0.3x2 + 0.5x1 + 0.2x2)/1 = 1.5 bits/symbol Code Redundancy R = Code Rate - Entropy = 0.014525 bits/symbol Code Efficiency = Entropy / Code Rate = 0.99032 Encoded sequence = $10\ 0\ 11\ 0\ 0\ 10\ 0\ 11\ 10\ 0$ (length = 15 bits)

(c) 3-bit Tunstall Code

Symbol	Probability
Α	0.3
В	0.5
С	0.2

Symbol	Probability
Α	0.3
B	0.5
С	0.2
BA	0.15
BB	0.25
BC	0.10

Symbol	Probability	Codeword
A	0.3	
₽	0.5	
С	0.2	000
BA	0.15	001
ВВ	0.25	010
BC	0.10	011
AA	0.09	100
AB	0.15	101
AC	0.06	110

Code Rate = 3/(0.2x1 + 0.15x2 + 0.25x2 + 0.10x2 + 0.09x2 + 0.15x2 + 0.06x2) = 1.66667 bits/symbol

Redundancy = 0.18119 bits/symbol

Efficiency = 0.891285

Encoded sequence: (length = 18 bits)

Α	В	С	В	В	Α	В	С	Α	В
10	1	000	01	10	10)1	000	10	1

Or assign the unused codeword '111' to symbol 'A':

	Α	В	С	В	В	Α	В	С	Α	В
_	111	0	11	01	10	111	0.	11	10)1

Note 1: effective code rate = 18 bits/10 symbols = 1.8 bits/symbol (> expected code rate since the occurrence probabilities of the combined symbols are different from expected)

Note 2: both length are 18 bits long. It is non-uniquely encodable

(d) 3-bit Tunstall/Huffman Code

{((((AA, AC), AB), (BA, BC), (BB, C)): 1.00}

Based on the result of Tunstall coding to build the Huffman tree: {BB: 0.25, C: 0.2, AB: 0.15, BA: 0.15, BC: 0.10, AA: 0.09, AC: 0.06} {BB: 0.25, C: 0.2, (AA, AC): 0.15, AB: 0.15, BA: 0.15, BC: 0.10} {(BA, BC): 0.25, BB: 0.25, C: 0.2, (AA, AC): 0.15, AB: 0.15} {(BB, C): 0.45, ((AA, AC), AB): 0.30, (BA, BC): 0.25} {(((AA, AC), AB), (BA, BC): 0.55, (BB, C): 0.45}

Symbol	<u>Probability</u>				
BB (10)	0.25	0.25	[0.25]	[0.30]	[0.45] [0.55] 1.0
C (11)	0.20	0.20	0.25	0.25	$0.30^{\prime}/0.45^{\prime}$
AB (001)	0.15	[0.15]	0.20	0.25	0.25
BA (010)	0.15	0.15 //	0.15	0.20 /	
BC (011)	0.10	0.15 //	0.15		
AA (0000	0)0.09 //	0.10			
AC (0001)0.06				

Symbol	Probability	Codeword
С	0.2	11
ВА	0.15	010
ВВ	0.25	10
BC	0.10	011
AA	0.09	0000
AB	0.15	001
AC	0.06	0001

```
Code Rate = Average length of codewords / average length of symbols = (0.2x2 + 0.15x3 + 0.25x2 + 0.1x3 + 0.09x4 + 0.15x3 + 0.06x4) / (0.2x1 + 0.15x2 + 0.25x2 + 0.10x2 + 0.09x2 + 0.15x2 + 0.06x2) = 1.5 \text{ bits/symbol} Redundancy = 0.014525 \text{ bits/symbol} Efficiency = 0.99032 Encoded sequence = 001 11 10 001 11 001 \text{ (AB, C, BB, AB, C, AB) (length = 15 bits)} Effective code rate = 15 \text{ bits} / 10 \text{ symbol} = 1.5 \text{ bits/symbol} (= expected code rate)
```

Question 2:

(a) Consider a 2-symbol source data: {A, B, B, A, B}. Encode the source using arithmetic coding. Fill your answer in the below table.

Symbol	Range of A	Range of B	Encoded Range	Encoded Interval
Α	[0, 0.4)	[0.4, 1)	[0, 0.4)	0.4
В	[0, 0.16)	[0.16, 0.4)	[0.16, 0.4)	0.24
В	[0.16, 0.256)	[0.256, 0.4)	[0.256, 0.4)	0.144
Α	[0.256, 0.3136)	[0.3136, 0.4)	[0.256, 0.3136)	0.0576
В	[0.256, 0.27904)	[0.27904, 0.3136)	[0.27904, 0.3136)	0.03456

$$P(A) = 0.4, \ P(B) = 0.6$$
 Entropy H = -(0.4)log₂(0.4)-(0.6)log₂(0.6) = 0.970951 bit/symbol [0.27904₍₁₀₎, 0.3136₍₁₀₎) = [0.0100011..₍₂₎, 0.0101000..₍₂₎) The optimal encoded number is 0.28125 = $2^{-2} + 2^{-4} + 2^{-5} = 0.01001_2$. So the encoded sequence = 01001

(b) Given a source with the same probability distribution model in (a) and length equals 5 is arithmetic coded as 101011. Decode the string by filling your answer in the below table.

Symbol	Range of A	Range of B	Decoded Symbol	Decoded Interval
1	[0, 0.4)	[0.4, 1)	В	0.6
2	[0.4, 0.64)	[0.64, 1)	В	0.36
3	[0.64, 0.784)	[0.784, 1)	Α	0.144
4	[0.64, 0.6976)	[0.6976, 0.784)	Α	0.0576
5	[0.64, 0.66304)	[0.66304, 0.6976)	В	0.03456

Encoded string = 101011. i.e. the encoded number $x = 0.101011_2 = 0.671875$

Decoded sequence = B, B, A, A, B

Code rate r = 6/5 = 1.2

Code Efficiency E = H/r = 0.809125

Code Redundancy R = r - H = 0.229049 bit/symbol

Question 3: Given the initial dictionary (code table) of a 3-bit LZW code as follows

Symbol	Codeword
а	000
b	001

If the source message is {a, b, b, a, b, b, a},

- (a) Determine the encoded sequence.
- (b) Determine the final dictionary (code table) and its size.

W	K	WK	Output
_	а	а	-
а	م	ab	000
b	b	bb	001
b	b	bb	-
bb	а	bba	011
а	b	ab	-
ab	b	abb	010
b	b	bb	-

Symbol	Codeword
а	000
b	001
ab	010
bb	011
bba	100
abb	101

bb	а	bba	-
bba	-	-	100

- (a) The encoded process is shown in the above table and the encoded sequence is 000 001 011 010 100 (Total bits required = 15 bits)
- (b) The final dictionary is shown in the above table and it has 6 entries.

Question 4: Given the initial dictionary (code table) of a 3-bit LZW code as follows:

Symbol	Codeword
а	000
b	001

If the received LZW encoded sequence is 000 001 011 010 100,

- (a) Determine the original message.
- (b) Determine the final dictionary (code table) and its size.

W	K	sym(K)	W+sym(K)[0]	Output
-	000	a	а	а
а	001	b	ab	b
b	011	\$ (pp)	bb	bb
bb	010	ab	bba	ab
ab	100	bba	abb	bba
bba				

Symbol	Codeword
а	000
b	001
ab	010
bb	011
bba	100
abb	101

- (a) The decode process is shown in the above table.
 - The original message = a b bb ab bba
- (b) The final dictionary is shown in the above table and it has 6 entries.

Comment: in general, decoding requires fewer iterations. This is an example of asymmetric encoding/decoding.