#### **ECS 171: Introduction to Machine Learning**

Lecture 5

# Introduction to Artificial Neural Networks

**Physical Address for Prof. Ilias Tagkopoulos** 

Computer Science:

Office: 3063 Kemper Hall

Phone: (530) 752-4821

Fax: (530) 752-4767

Instructor: Ilias Tagkopoulos

iliast@ucdavis.edu

Genome and Biomedical Sciences Facility:

Office: 5313 GBSF

Phone: (530) 752-7707

Fax: (530) 754-9658

(Murphy's book, sections 8.6.1, 16.5

- From last lecture: Logistic Regression
- Logistic regression is a classification method that uses the logistic function

$$g(x; w) = sigm(w^{T}x) = \frac{1}{1 + e^{-w^{T}x}}$$

to classify any new sample i (assign  $y^{(i)}$  depending whether  $g(x^{(i)}; w)$  is more or less than zero).

• To find the weights (parameters) we we once again resort to gradient decent:

$$w_j \coloneqq w_j + a \frac{\partial l(w)}{\partial w_j} = w_j + a \left( y^{(i)} - g(x^{(i)}; w) \right) x_j^{(i)}$$

- From last lecture: Logistic Regression
- w updates are based on the following rule:

$$w_j \coloneqq w_j + a \frac{\partial l(w)}{\partial w_j}$$

Or

$$w_j := w_j + a(y^{(i)} - g(x^{(i)}; w))x_j^{(i)}$$

 Btw, gradient descent is not the only method to find the parameter w. For example we can use Newton's method

$$w_{j} \coloneqq w_{j} + a \frac{\frac{\partial l(w)}{\partial w_{j}}}{\frac{\partial^{2} l(w)}{(\partial w_{j})^{2}}}$$

## Perceptron

• Actually if we use the same update rule but with hard boundaries, forcing the output to be {0,1}, we have the perceptron learning algorithm

$$w_j := w_j + a(y^{(i)} - g(x^{(i)}; w))x_j^{(i)}$$

with

$$g(z) = \begin{cases} 0 & if & z < threshold \\ 1 & if & z \ge threshold \end{cases}$$

Threshold can be any scalar (e.g. 0).

 Generally Stochastic Gradient Descent on logistic regression is faster and has a better performance.

#### Perceptron

• The Perceptron Learning Algorithm is the same as logistic regression, but it enforces  $g(x^{(i)}; w)$  to be a step function, instead of the (smooth) sigmoid function:

$$w_j := w_j + a(y^{(i)} - g(x^{(i)}; w))x_j^{(i)}$$

with

$$g(x^{(i)}; w) = \begin{cases} 0 & if \ w^T x^{(i)} < 0 \\ 1 & if \ w^T x^{(i)} \ge 0 \end{cases}$$

## Graphical comparison between perceptron and logistic unit





Can you create an 2-input AND gate with a perceptron? What about an XOR gate?

- Feed-Forward Neural Network
- The Feed-forward Neural Network (FFNN) is a network with two or more layers of neurons, usually either perceptrons or logistic regression.
  - The final layer can be another logistic regression/perceptron or a linear regression model depending whether it is a classification or regression problem.
  - Also called multi-layer perceptron (MLP)
  - Remarkably, the MLP is a "universal approximator": It can model any smooth function to any accuracy level (for specific activation functions, including sigmoidal).

 $x_{nD}$   $x_{nD}$   $y_{nC}$   $y_{nC}$   $y_{nR}$   $y_{nR}$   $y_{nR}$   $y_{nR}$   $y_{nR}$ 

HIDDEN

#### Feed-Forward Neural Network

- How many hidden layers do you need?
  - Generally 1-2 are enough
  - Too many hidden layers will increase training time, especially in cases when the "error correction" is propagated backwards.
- How many hidden nodes per layer?
  - Not easy to know
  - You need just the right amount: too many will take forever to train; too few and the model complexity will be too low to learn the underlying structure.
  - Trial-and-error...



- Example of a FFNN
- Imagine a Feed-Forward Neural Network



# And a target function:

| Input    |               | Output   |
|----------|---------------|----------|
| 10000000 | $\rightarrow$ | 10000000 |
| 01000000 | $\rightarrow$ | 01000000 |
| 00100000 | $\rightarrow$ | 00100000 |
| 00010000 | $\rightarrow$ | 00010000 |
| 00001000 | $\rightarrow$ | 00001000 |
| 00000100 | $\rightarrow$ | 00000100 |
| 00000010 | $\rightarrow$ | 00000010 |
| 00000001 | $\rightarrow$ | 00000001 |

Example from T. Michell's Book "Machine Learning"

## Example of a FFNN

# • Learned hidden layer representation

• And a target function:

| Input    |               | Hidden |     |     | Output        |          |  |  |
|----------|---------------|--------|-----|-----|---------------|----------|--|--|
| Values   |               |        |     |     |               |          |  |  |
| 10000000 | $\rightarrow$ | .89    | .04 | .08 | $\rightarrow$ | 10000000 |  |  |
| 01000000 | $\rightarrow$ | .01    | .11 | .88 | $\rightarrow$ | 01000000 |  |  |
| 00100000 | $\rightarrow$ | .01    | .97 | .27 | $\rightarrow$ | 00100000 |  |  |
| 00010000 | $\rightarrow$ | .99    | .97 | .71 | $\rightarrow$ | 00010000 |  |  |
| 00001000 | $\rightarrow$ | .03    | .05 | .02 | $\rightarrow$ | 00001000 |  |  |
| 00000100 | $\rightarrow$ | .22    | .99 | .99 | $\rightarrow$ | 00000100 |  |  |
| 00000010 | $\rightarrow$ | .80    | .01 | .98 | $\rightarrow$ | 00000010 |  |  |
| 00000001 | $\rightarrow$ | .60    | .94 | .01 | $\rightarrow$ | 00000001 |  |  |



# Encoding for input 0100000





# Weights from inputs to one hidden unit



## Don't forget overfitting



#### Words of wisdom for ANN

- Stochastic gradient descent is your best friend when trying to find the optimal parameter set.
  - Careful though, in contrast to linear regression, it can get stuck to a local minimum or converge very slowly
- How to initialize the weights?
  - Embrace zero: Network initially simple and progressively can become complex/non-linear
- What can be represented in a ANN? All continuous and Boolean functions!!
  - A NN with at least 1 hidden layer can approximate every bounded continuous function (Cybenko 1989)
  - A NN with at least 2 hidden layers can approximate any function to arbitrary accuracy (universal approximation property, Cybenko 1988)
- When to add hidden units?
  - When output error doesn't decrease
  - When a small fraction of the hidden units are activated by the input or a specific training pattern cannot be learned
- When a new hidden unit is added you can retrain the entire net or the new/weights only

#### Other Artificial Neural Networks

- Next time we will look at how to construct and train a ANN in detail.
- And it is not just FFNN..





Some notation that we will use for next time

 $\alpha_i^{(j)} = Activation of unit i in layer j$   $W^{(j)} = weight matrix from layer j to j + 1$ 



$$\alpha_1^{(3)} = g(W_{10}^{(2)}x_0 + W_{11}^{(2)}\alpha_1^{(2)} + W_{12}^{(2)}\alpha_2^{(2)})$$

$$\alpha_1^{(2)} = g(W_{10}^{(1)}x_0 + W_{11}^{(1)}x_1 + W_{12}^{(1)}x_2)$$

$$\alpha_2^{(2)} = g(W_{20}^{(1)}x_0 + W_{21}^{(1)}x_1 + W_{22}^{(1)}x_2)$$

# **End of Lecture 5**