

TrenchT2[™] HiperFET[™] Power MOSFET

IXFH400N075T2 IXFT400N075T2

 $V_{DSS} = 75V$ $I_{D25} = 400A$ $R_{DS(op)} \le 2.3m\Omega$

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions	Maximum F	Ratings
V _{DSS}	$T_{J} = 25^{\circ}C$ to $175^{\circ}C$	75	V
V _{DGR}	$T_J = 25$ °C to 175°C, $R_{GS} = 1M\Omega$	75	V
V _{GSS}	Continuous Transient	± 20 ± 30	V
I _{D25}	T _C = 25°C (Chip Capability)	400	Α
LRMS	Lead Current Limit, RMS	160	Α
I _{DM}	$T_{_{\rm C}}$ = 25°C, Pulse Width Limited by $T_{_{\rm JM}}$	1000	Α
I _A	$T_{c} = 25^{\circ}C$	200	Α
E _{as}	$T_{c} = 25^{\circ}C$	1.5	J
dv/dt	$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 175^{\circ}C$	15	V/ns
P_{D}	T _C = 25°C	1000	W
T _{,i}		-55 +175	°C
T _{JM}		175	°C
T _{stg}		-55 +175	°C
T _L	1.6mm (0.062in.) from Case for 10s Plastic Body for 10 seconds	300 260	°C
M _d	Mounting Torque (TO-247)	1.13 / 10	Nm/lb.in.
Weight	TO-247 TO-268	6 4	g

Symbol (T _J = 25°C U	Test Conditions Unless Otherwise Specified)	Charac Min.	teristic Typ.	Values Max.	
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	75			V
V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	2.0		4.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			25	μΑ
	$T_J = 150$ °C			1.5	mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 100A, Notes 1 \& 2$			2.3	mΩ

G = Gate D = DrainS = Source Tab = Drain

Features

- International Standard Packages
- 175°C Operating Temperature
- High Current Handling Capability
- Avalanche Rated
- Fast Intrinsic Diode
- Low R_{DS(on)}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- DC/DC Converters and Off-line UPS
- Primary- Side Switch
- High Current Switching Applications

Symbol (T _J = 25°C,	Test Conditions Unless Otherwise Specified)	Charac Min.	teristic Typ.	Values Max.
g _{fs}	V _{DS} = 10V, I _D = 60A, Note 1	80	130	S
C _{iss}			24	nF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		2770	pF
C _{rss}			455	pF
R_{Gi}	Gate Input Resistance		1.33	Ω
t _{d(on)}	Desire of the Control		35	ns
t,	Resistive Switching Times		20	ns
t _{d(off)}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 200A$		67	ns
$t_{\rm f}$	$R_{\rm G} = 1\Omega$ (External)		44	ns
$Q_{g(on)}$			420	nC
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		114	nC
Q_{gd}			130	nC
R _{thJC}				0.15 °C/W
R _{thCH}	TO-247		0.21	°C/W

Source-Drain Diode

Symbol	Test Conditions	Chara	cteristic	Values	
$(T_{J} = 25^{\circ}C, U)$	Unless Otherwise Specified)	Min.	Тур.	Max.	
Is	$V_{GS} = 0V$			400	Α
I _{SM}	Repetitive, Pulse Width Limited by T_{JM}			1200	A
V _{SD}	$I_F = 100A, V_{GS} = 0V, Note 1$			1.2	V
t _{rr}	$I_{\rm F} = 100 {\rm A}, V_{\rm GS} = 0 {\rm V}$		77		ns
I _{RM}	$-di/dt = 100A/\mu s$		5.4		Α
Q _{RM}	V _R = 37.5V		210		nC

Notes:

- 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.
- 2. Includes lead resistance.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-247 (IXFH) Outline

Terminals: 1 - Gate 3 - Source

2 - Drain Tab - Drain

Dim.	Mill	imeter	Inches		
	Min.	Max.	Min.	Max.	
Α	4.7	5.3	.185	.209	
A,	2.2	2.54	.087	.102	
A ₂	2.2	2.6	.059	.098	
b	1.0	1.4	.040	.055	
b,	1.65	2.13	.065	.084	
b ₂	2.87	3.12	.113	.123	
С	.4	.8	.016	.031	
D	20.80	21.46	.819	.845	
Е	15.75	16.26	.610	.640	
е	5.20	5.72	0.205	0.225	
L	19.81	20.32	.780	.800	
L1		4.50		.177	
ØP	3.55	3.65	.140	.144	
Q	5.89	6.40	0.232	0.252	
R	4.32	5.49	.170	.216	
S	6.15	BSC	242	BSC	

TO-268 (IXFT) Outline

Terminals: 1 - Gate 2 - Drain 3 - Source Tab - Drain

MYZ	INCHES		MILLIMETERS	
21M	MIN	MAX	MIN	MAX
Α	.193	.201	4.90	5.10
A1	.106	.114	2.70	2.90
A2	.001	.010	0.02	0.25
b b2	.045	.057	1.15	1.45
b2	.075	.083	1.90	2.10
С	.016	.026	0.40	0.65
C2	.057	.063	1.45	1.60
D	.543	.551	13.80	14.00
D1	.488	.500	12.40	12.70
Ε	.624	.632	15.85	16.05
E1	.524	.535	13.30	13.60
е	.215 BSC		5.45 BSC	
Η	.736	.752	18.70	19.10
L	.094	.106	2.40	2.70
L1	.047	.055	1.20	1.40
L2	.039	.045	1.00	1.15
L3	.010	BSC	0.25 BSC	
L4	.150	.161	3.80	4.10

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 150°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 200A$ Value vs. Junction Temperature

Fig. 5. R_{DS(on)} Normalized to I_D = 200A vs. Drain Current

Fig. 6. Drain Current vs. Case Temperature

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 17. Resistive Turn-off
Switching Times vs. Drain Current

Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance

Fig. 19. Maximum Transient Thermal Impedance

