e

वाञिक दे वनारी

এমসি কলেজ, সিলেট

২২ ডিসেম্বর ২০১৬

ভূমিকা

 π এর মতোই গণিতে জগতে আরেকটি চমকপ্রদ ধ্রুবক ফল e। এটি একটি অমূলদ সংখ্যা, দশমিকের পর ϵ ঘর পর্যন্ত এর মান লিখা যায় 2.71828. e সংখ্যাটিকে বিভিন্নাভাবে নির্ণয় করা যায়। যেমন $(1+\frac{1}{n})^n$ এর লিমিট হচ্ছে e যখন n অসীমের দিকে ধাবিত হয়। অথবা নিচের অসীম ধারাটির যোগফলও e

$$e = 1 + \frac{1}{2!} + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

আবার e হচ্ছে এমন সং্খ্যা যার জন্য (1,e) ব্যবধিতে $y=rac{1}{x}$ এর গ্রাফ x অক্ষের মধ্যকার অংশের ক্ষেত্রফল 1 হয়।

বহু গণিতবিদ এই ধ্রুবকের অনেক কাছাকাছি এসেও এর রহস্য উদঘাটন করতে পারেননি। ১৬২৮ সালে গণিতবিদ জন নেপিয়ার লগারিদম নিয়ে কাজ করার সময় e ভিত্তিক লগারিদমে কয়েকটি সংখ্যার মান বের করেন। তাই এটিকে নেপিয়ারের ধ্রুবকও বলা হয়। e সংখ্যাটি আবিষ্কারের কৃতিত্ব দেয়া হয় জ্যাকব বার্নোলিকে যিনি $\displaystyle \lim_{n \to \infty} (1 + \frac{1}{n})^n$ এর মান বের করার চেষ্টা করেন যেটি আসলে e এর সমান। তবে e এর পরিপূর্ণতা পায় সুইস গণিতবিদ লিওনার্দ

তেটা করেন বোল আন্টো ত এর প্রান্তির ত্র এর সার চুক্তি সার পুহ্ম সাক্তির পর ১৮ ঘর পর্যন্ত এর মান বের করতে সক্ষম হন। অয়লারের মাধ্যমে যিনি প্রথম এই ধ্রুবকটিকর সংজ্ঞা প্রদান করেন এবং দশমিকের পর ১৮ ঘর পর্যন্ত এর মান বের করতে সক্ষম হন।

ক্যালকুলাসে e

ধরি আমরা সূচকীয় ফাংশন a^x এর ডেরিভেটিভ বের করতে চাই যেখানে $a\in\mathbb{R}_+$. ডেরিভেটিভের সংজ্ঞা থেকে লিখা যায়

$$\frac{d}{dx}a^x = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$
$$= \lim_{h \to 0} a^x \frac{a^h - 1}{h}$$
$$= a^x \{ \lim_{h \to 0} \frac{a^h - 1}{h} \}$$

দেখা যাচ্ছে যে a^x এর ডেরিভেটিভ তার নিজের সাথেই সমানুপাতিক, যেখানে অনুপাতিটি হচ্ছে $\lim_{h \to 0} \frac{a^h - 1}{h}$ । ধরে নেই এর মান M(a),যা a এর একটি ফাংশন। এটি x এর উপর নির্ভরশীল নয়। সুতরাং

$$\frac{d}{dx}a^x = a^x M(a)$$
 যেখানে $M(a) = \lim_{h \to 0} \frac{a^h - 1}{h}$ (০.১)

এবং

$$\frac{d}{dx}a^x|_{x=0} = a^0M(a) = M(a)$$

অর্থাৎ যদি আমরা $y=a^x$ ফাংশনের গ্রাফ আঁকি, M(a) হবে (0,1) বিন্দুতে $y=a^x$ ফাংশনের স্পর্শকের ঢাল। চিত্র ১ এ $y=a^x$ ফাংশনের লেখ y অক্ষকে A=(0,1) বিন্দুতে ছেদ করে এবং A বিন্দুতে অঙ্কিত স্পর্শক x অক্ষের সাথে θ কোণ উপন্ন করে। সুতরাং $\tan\theta=M(a)$. আবার $y=a^x$ এর উপর যেকোন বিন্দু $B(m,a^m)$ -তে অঙ্কিত স্পর্শক x অক্ষের সাথে ϕ কোণ উৎপন্ন করে

$$\tan \phi = \frac{d}{dx} a^x |_{x=m} = M(a) \times a^m = \tan \theta \times a^x$$

এভাবে আমরা $y=a^x$ এর যেকোন বিন্দুতে ডেরিভেটিভের মান M(a) বা an heta এর মাধ্যমে বের করতে পারি।

এখন আমাদের কাজ হচ্ছে M(a) এর মান বের করা। এবার a এর কয়েকটি মানের জন্য M(a) এর কয়েকটি মান বের করা যাক। যদি a=2 হয়, h এর যথেষ্ট ছোট কয়েকটি মান বসিয়ে পাই

$$M(2) = \frac{2^{0.1} - 1}{0.1} = 0.7177346 \cdots$$
$$M(2) = \frac{2^{0.01} - 1}{0.01} = 0.6955550 \cdots$$

আবার a=3 নিয়ে পাই

$$M(3) = \frac{3^{0.1} - 1}{0.1} = 1.1612317 \cdots$$
$$M(3) = \frac{3^{0.01} - 1}{0.01} = 1.1046691 \cdots$$

বুঝাই যাচ্ছে যে M(2) এর মান 1 এর ছোট আর M(3) এর মান 1 এর থেকে বড়। তাহলে নিশ্চয়ই 2 এবং 3 এর মাঝামাঝি একটা সংখ্যা পাওয়া যাবে যার জন্য M(a) এর মান 1. মনে করি আমরা e সংখ্যাটির কথা কখনো শুনিনি এবং সেই সংখ্যাটির মান e ধরে নেই। অর্থাৎ M(e)=1 যেখানে 2< e<3.

এবার e এর কয়েকটি গুরুত্বপূর্ণ বৈশিষ্ট বের করা যাক।

উপপাদ্য ০.১: সকল $a\in\mathbb{R}_+$ এর জন্য

$$\frac{d}{dx}e^x = e^x$$
 এবং $\int e^x dx = e^x + C$

প্রমাণঃ

সমীকরণ (১) এবং e এর সংজ্ঞা থেকেই বলা যায়

$$\frac{d}{dx}e^x = e^x M(e) = e^x$$

এবং $\dfrac{d}{dx}e^x=e^x$ এর উভয় পাশে ইন্টিগ্রেট করে পাই

$$\int e^x dx = e^x + C$$

একই ভাবে $\frac{d}{dx}ce^x=ce^x$ এবং $\int ce^x dx=ce^x+C$. উল্লেখ্য ce^x ই একমাত্র ফাংশন যাকে ডিফারেনসিয়েশন বা ইন্টেগ্রেশন করলে একই মান পাওয়া যায়। চিত্র ২ এ $y=ce^x$ এর গ্রাফের উপর $A(x,ce^x)$ যেকোন বিন্দু। অর্থাৎ $OB=x,AB=ce^x$. A বিন্দুতে স্পর্শকের ঢাল বা $\tan\alpha$ এর মান ce^x । এমনকি $-\infty$ থেকে (x,0) পর্যন্ত $y=ce^x$ এবং x অক্ষের মধ্যকার ক্ষেত্রের(চিত্রে লাল অংশ দ্বারা চিহ্নিত) ক্ষেত্রফলও ce^x .

আমরা e^x এর ডেরিভেটিভ বের করলাম যেখানে e এর মানই অজানা এবং আমাদের আসল কাজ a^x এর মান বের করা বাকি রয়ে গেছে। সেজন্য আমরা e ভিত্তিক লগারিদম $\ln x$ সংজ্ঞায়িত করি। x>0 ও y এর জন্য $\ln x=y$ হবে যদি এবং কেবল যদি $x=e^y$ হয়। এই লগারিদম সাধারণ ১০ ভিত্তিক লগারিদমের সব বৈশিষ্টই মেনে চলে অর্থাৎ $\ln 1=0, \ln xy=\ln x+\ln y.$

আরেকটি ব্যাপার লক্ষ করলে দেখা যাবে e^x এবং $\ln x$ পরস্পরের বিপরীত ফাংশন। অর্থাৎ $y=e^x$ হলে $x=\ln y$.

উপপাদ্য ০.২: সকল $a\in\mathbb{R}_+$ এর জন্য

$$\frac{d}{dx}a^x = \ln a \times a^x$$
 এবং $\int a^x dx = \frac{a^x}{\ln a} + C$

প্রমাণ:

$$\frac{d}{dx}a^x = \frac{d}{dx}(e^{\ln a})^x = \frac{d}{dx}e^{x\ln a}$$

চেইন রুল ব্যবহার করে পাই

$$\frac{d}{dx}e^{x\ln a} = \frac{d}{d(x\ln a)}e^{x\ln a} \times \frac{d}{dx}x\ln a = e^{x\ln a} \times \ln a = \ln a \times a^x$$

একইভাবে এর ২ পাশে ইন্টিগ্রেট করলে $\int a^x dx = rac{a^x}{\ln a} + C$ পাওয়া যাবে।

যেমন আমরা যদি 3^x এর ডেরিভেটিভ বের করতে চাই, তার মান হবে $\ln 3 imes 3^x$ । e ভিত্তিক লগারিদমকে ন্যাচারাল লগারিদম বলার অনেকগুলো কারণের মধ্যে এটি একটি। e ভিত্তিক লগারিদম সাধারণভাবেই সকল সূচকীয় ফাংশনের ডেরিভেটিভে উপস্থিত হয়।

অনুশীলনী ১

১. নিচের ফাংশনগুলোর ডেরিভেটিভ f'(x) বের কর

(3)
$$e^{3x-1}$$

(8) $e^{\frac{1}{x}}$

$$(2) e^{4x^2}$$

(9)
$$e^{\sqrt{x}}$$

(
$$\mathfrak{E}$$
) e^{e^x}

২. নিচের ফাংশনগুলোকে ইন্টেগ্রেট কর

(
$$\boldsymbol{\zeta}$$
) $\int xe^x dx$

(8)
$$\int e^{\sqrt{x}} dx$$

$$(\mathsf{R}) \int x e^{-x} \, dx$$

$$(\mathfrak{C}) \int x^3 e^{-x^2} \, dx$$

(9)
$$\int x^2 e^x \, dx$$

৩. এমন সকল a ও b বের কর যেন $\int\limits_a^x e^t\,dt+b=e^x$

উপপাদ্য ০.৩:

$$\frac{d}{dx}\ln x = \frac{1}{x}$$
 এবং $\int \frac{1}{x}dx = \ln x + C$

প্রমাণ: যেহেতু e^x এবং $\ln x$ পরস্পর বিপরীত ফাংশন, $y=\ln x$ হলে $x=e^y$ এবং

$$\frac{d}{dx} \ln x = \frac{d}{dx} y$$

$$= \frac{1}{\frac{d}{dy} x}$$

$$= \frac{1}{\frac{d}{dy} e^y}$$

$$= \frac{1}{e^y}$$

$$= \frac{1}{x}$$

 $rac{d}{dx} \ln x = rac{1}{x}$ এর উভয়পাশে ইন্টেগ্রেট করলে $\int rac{1}{x} dx = \ln x + C$ পাওয়া যায়।

বিপরীত ফাংশনের ডেরিভেটিভ নির্ণয় করার বিষয়টিকে আমরা স্থানাংকের মাধ্যমেও ব্যাখ্যা করতে পারি। চিত্র - এ $y=e^x$ এর গ্রাফের উপর যেকোন বিন্দু $N(a,\ln a)$ নিই। যেহেতু $e^{\ln a}=a,\ M(\ln a,a)$ বিন্দুটি $y=e^x$ এর গ্রাফের উপর থাকবে। আবার M কে y=x সরলরেখার উপর রিফ্রেক্ট করলে N কে পাওয়া যায়। অর্থাৎ $y=e^x$ এবং $y=\ln x$ হচ্ছে y=x উপর পরস্পরের রিফ্রেক্শন। এ থেকে বলা যায় M বিন্দুতে $y=e^x$ এর স্পর্শক $MQ(Q\in OY)$ ও N বিন্দুতে $y=\ln x$ এর স্পর্শকও y=x সরলরেখার সাপেক্ষে সিমেট্রিক। ধরি MQ(x) অক্ষকে R বিন্দুতে ছেদ করে।

সুতরাং

$$\angle MQY = \angle NPX$$
 $\Rightarrow 90^{\circ} - \angle MRX = \angle NPX$
 $\Rightarrow \tan 90^{\circ} - \angle MRX = \tan \angle NPX$
 $\Rightarrow \frac{1}{\tan \angle MRX} = \tan \angle NPX$
 $\Rightarrow \frac{1}{M}$ বিন্দুতে $y = e^x$ এর ঢাল $= N$ বিন্দুতে $y = \ln x$ এর ঢাল $\Rightarrow \frac{1}{\frac{d}{dx}e^x|_{x=\ln a}} = \frac{d}{dx}\ln x|_{x=a}$
 $\Rightarrow \frac{1}{e^{\ln a}} = \frac{d}{dx}\ln x|_{x=a}$
 $\Rightarrow \frac{d}{dx}\ln x|_{x=a} = \frac{1}{a}$

যেহেতু এই সমীকরণটি সকল ধনাত্মক a এর জন্য সত্য, তাই $\dfrac{d}{dx} \ln x = \dfrac{1}{x}$

উপপাদ্য ৩ অনুযায়ী $\int rac{1}{x} dx = \ln x + C$. এখান থেকে আমরা $\ln x$ কে অন্যভাবে সংজ্ঞায়িত করতে পারি।

$$\int \frac{1}{x} dx = \ln x + C$$

$$\Rightarrow \int_{1}^{m} \frac{1}{x} dx = |\ln x + C|_{1}^{m}$$

$$\Rightarrow \int_{1}^{m} \frac{1}{x} dx = \ln m$$

অর্থাৎ $\ln m$ হচ্ছে [1,m] ব্যবধিতে $y=rac{1}{x}$ এর গ্রাফ ও x অক্ষের মধ্যকার ক্ষেত্রের ক্ষেত্রফল।

অনুশীলনী ২

১. নিচের ফাংশনগুলোর ডেরিভেটিভ $f^{\prime}(x)$ বের কর

(3)
$$f(x) = \ln(1 + x^2)$$

(c)
$$f(x) = \frac{1}{4} \ln \frac{x^2 - 1}{x^2 + 1}$$

$$(3) f(x) = \ln \sqrt{1 + x^2}$$

(a)
$$f(x) = x \ln(x + \sqrt{1 + x^2})$$

$$(\mathfrak{0}) \ f(x) = \ln(\ln x)$$

(9)
$$\frac{1}{2\sqrt{a}b}\ln\frac{\sqrt{a}+x\sqrt{b}}{\sqrt{a}-x\sqrt{b}}$$

$$(8) f(x) = \ln(x^2 \ln x)$$

২. নিচের ফাংশনগুলোকে ইন্টেগ্রেট কর

$$(3) \int \frac{1}{2+3x} \, dx$$

(8)
$$\int x \ln^2 x \, dx$$

$$(\mathsf{R}) \int \ln^2 x \, dx$$

(c)
$$\int_{0}^{e^3-1} \frac{1}{1+t} dt$$

(9)
$$\int x \ln x \, dx$$

(b)
$$\int x^n \ln ax \, dx$$

উপপাদ্য o.8: সকল $x\in\mathbb{R}_+$ এর জন্য

$$e^x = \lim_{n \to \infty} (1 + \frac{x}{n})^n$$

প্রমাণ: আমরা আগের উপপাদ্য থেকে পেলাম যে $\ln x$ এর ডেরিভেটিভ হচ্ছে $rac{1}{x}$. আবার $\ln x$ এর ডেরিভেটিভকে নিম্নোক্তভাবেও লিখা যায়

$$\frac{1}{x} = \frac{d}{dx} \ln x$$

$$= \lim_{h \to 0} \frac{\ln(x+h) - \ln x}{h}$$

$$= \lim_{h \to 0} \frac{\ln \frac{x+h}{x}}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \ln \left(1 + \frac{h}{x}\right)$$

$$= \lim_{h \to 0} \ln \left(1 + \frac{h}{x}\right)^{\frac{1}{h}}$$

ধরি $\frac{1}{x}=y$ এবং $\frac{1}{h}=n.$ যেহেতু $h \to 0,$ তাই $n \to \infty.$ সুতরাং

$$y = \lim_{h \to 0} \ln \left(1 + \frac{h}{x} \right)^{\frac{1}{h}}$$

$$\Rightarrow y = \lim_{n \to \infty} \ln \left(1 + \frac{y}{n} \right)^n$$

$$\Rightarrow e^y = e^{\left\{ \lim_{n \to \infty} \ln \left(1 + \frac{y}{n} \right)^n \right\}}$$

$$\Rightarrow e^y = \lim_{n \to \infty} e^{\left\{ \ln \left(1 + \frac{y}{n} \right)^n \right\}}$$

$$\Rightarrow e^y = \lim_{n \to \infty} \left(1 + \frac{y}{n} \right)^n$$

y কে x দ্বারা রূপান্তরিত করে পাই $e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$.

এবার e এর মান বের করা যাক। আগের সূত্রে x=1 বসিয়ে পাই

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$$

n এর যথেষ্ট বড কয়েকটি মান বসিয়ে পাই

$$(1 + \frac{1}{1000})^{1000} = 2.716923932235$$
$$(1 + \frac{1}{10000})^{10000} = 2.718145926825$$
$$(1 + \frac{1}{100000})^{100000} = 2.718268237174$$

অর্থাৎ e এর মান দশমিকের পর 3 ঘর পর্যন্ত 2.718 লিখা যায় **উপপাদ্য ০.৫:** যেকোন ডিফারেনশিয়েবল ফাংশন f এর জন্য

$$\frac{d}{dx}\ln f(x) = \frac{f'(x)}{f(x)}$$
 এবং $\int \frac{f'(x)}{f(x)} dx = \ln f(x) + C$

প্রমাণ: চেইন রুল ব্যবহার করে পাই

$$\frac{d}{dx}\ln f(x) = \frac{d}{df(x)}\ln f(x) \times \frac{d}{dx}f(x)$$
$$= \frac{1}{f(x)} \times f'(x)$$
$$= \frac{f'(x)}{f(x)}$$

উভয়পাশে ইন্টেগ্রেট করলে পাওয়া যায় $\int rac{f'(x)}{f(x)} \, dx = \ln f(x) + C$

উপরের উপপাদ্যটিকে এভাবেও লিখা যায়

$$f'(x) = f(x) \times \frac{d}{dx} \ln f(x)$$

অনেক ক্ষেত্রে f(x) এর ডেরিভেটিভ বের করার চেয়ে $\ln f(x)$ এর ডেরিভেটিভ বের করা অনেক সহজ হয়। সেক্ষেত্রে আমরা এই উপপাদ্যটি ব্যবহার করতে পারি। নিচের উদাহরণটিকে লক্ষ কর

উদাহরণ ১: নিচের ফাংশনটির ডেরিভেটিভ বের কর

$$f(x) = \frac{x^5}{(1 - 10x)\sqrt{x^2 + 2}}$$

প্রমাণ: f(x) ফাংশনটিতে মোট ৩টি রাশি গুণ আকারে আছে যথা $x^5, \frac{1}{1-10x}, \frac{1}{\sqrt{x^2+2}}$. এটির ডেরিভটিভ বের করতে হলে আমাদেরকে গুণ ও ভাগের সূত্র অন্তত ২ বার ব্যবহার করতে হবে যা অনেক সময়সাপেক্ষ । কিন্তু লগারিদমের মাধ্যমে অপেক্ষাকৃত সহজে করা যায়

$$\ln f(x) = \ln\left(\frac{x^5}{(1 - 10x)\sqrt{x^2 + 2}}\right)$$

$$= \ln x^5 - \ln(1 - 10x) - \ln\sqrt{x^2 + 2}$$

$$= 5\ln x - \ln(1 - 10x) - \frac{1}{2}\ln(x^2 + 2)$$

এটিকে ডিফারেনশিয়েট করলে পাই

$$\frac{d}{dx}\ln f(x) = \frac{d}{dx} \{5\ln x - \ln(1 - 10x) - \frac{1}{2}\ln(x^2 + 2)\}$$

$$= 5\frac{d}{dx}\ln x - \frac{d}{dx}\ln(1 - 10x) - \frac{1}{2}\frac{d}{dx}\ln(x^2 + 2)$$

$$= \frac{5}{x} - \frac{\frac{d}{dx}(1 - 10x)}{1 - 10x} - \frac{1}{2}\frac{\frac{d}{dx}(x^2 + 2)}{x^2 + 2}$$

$$= \frac{5}{x} + \frac{10}{1 - 10x} - \frac{x}{x^2 + 2}$$

সুতরাং

$$\frac{d}{dx}f(x) = f(x) \times \frac{d}{dx} \ln f(x)$$

$$= \frac{x^5}{(1 - 10x)\sqrt{x^2 + 2}} \left(\frac{5}{x} + \frac{10}{1 - 10x} - \frac{x}{x^2 + 2}\right)$$

খেয়াল করলে দেখবে যে \ln থাকার কারণে রাশি ৩টি গুণ থেকে যোগে রূপান্তরিত হয়েছে । এভাবে অনেকগুলো জটিল রাশির গুণফল থাকলে অথবা সূচকে কোন জটিল পদ থাকলে আমরা ওই ফাংশনের লগারিদম বের করার মাধ্যমে ডিফারেনশিয়েট করতে পারি।

উপপাদ্য o.৬: সকল $x \in \mathbb{R}$ এর জন্য

$$e^x \ge x + 1$$

প্রমাণঃ মনে করি $f(x)=e^x-x-1$. এখন আমাদের প্রমাণ করতে হবে যে সকল ধনাত্মক বাস্তব সংখ্যার জন্য $f(x)\geq 0$ । আমরা প্রথমেই f ফাংশনটির গ্রাফ

চিত্র থেকে দেখা যায় y=f(x) এর মধ্যকার সকল বিন্দু x অক্ষের উপরে অবস্থান করে, অনেকটা কনভেক্স গ্রাফ এর মত এবং এটি x অক্ষকে (0,0) বিন্দুতে স্পর্শ করে। গ্রাফটি যে কনভেক্স তা প্রমাণ করার জন্য আমাদেরকে দেখাতে হবে যে $f''(x) \geq 0 \quad \forall x \in \mathbb{R}$. এখানে

$$f(x) = e^{x} - x - 1$$
$$f'(x) = e^{x} - 1$$
$$f''(x) = e^{x}$$

যেহেতু $e^x \geq 0$, ফাংশনটি কনভেক্স। সুতরাং f এর শুধুমাত্র একটি বিন্দুতে f(x) এর মান সর্বনিম্ন হবে এবং সে বিন্দুতে ফাংশনটির ডেরিভেটিভের মান 0 হবে। যদি P=(a,f(a)) সেই বিন্দু হয় তখন

$$f'(a) = 0$$

$$\Rightarrow e^{a} - 1 = 0$$

$$\Rightarrow a = 0$$

$$\Rightarrow f(a) = 0$$

অর্থাৎ (0,0) বিন্দুতে f(x) এর মান সর্বনিম্ন মান 0 পাওয়া যায়। সুতরাং $f(x)=e^x-x-1$ বা $e^x\geq x+1$ এবং সমতা তখনই হবে যখন x=0।

উপপাদ্য o.৭: সকল $x \in \mathbb{R}$ এবং $n \in \mathbb{N}$ এর জন্য

$$e^x \ge 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$

প্রমাণ: মনে করি.

$$g_n(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$

এবং

$$\int_{0}^{y} g_{n}(x)dx = \int_{0}^{x} (1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!})dx$$

$$= \int_{0}^{y} 1 \cdot dx + \int_{0}^{y} \frac{x}{1!} dx + \int_{0}^{y} \frac{x^{2}}{2!} dx + \dots + \int_{0}^{y} \frac{x^{n}}{n!} dx$$

$$= y + \frac{y^{2}}{2!} + \frac{y^{3}}{3!} + \dots + \frac{y^{n+1}}{(n+1)!}$$

$$= g_{n+1}(y) - 1$$

অর্থাৎ $g_n(x)$ কে [0,y] ব্যবধিতে ইন্টেগ্রেট করলে $g_{n+1}(y)-1$ পাওয়া যায়। আবার পূর্ববর্তী উপপাদ্য থেকে

$$e^x \ge x+1$$
 অর্থাৎ $e^x \ge g_1(x)$

এর উভয় পাশে $\left[0,y\right]$ ব্যবধিতে বারবার ইন্টেগ্রেট করে পাই

$$\int\limits_0^y e^x dx \geq \int\limits_0^y g_1(x) dx$$
 $\Rightarrow [e^x]_0^y \geq g_2(y) - 1$
 $\Rightarrow e^y - e^0 \geq g_2(y) - 1$
 $\Rightarrow e^y \geq g_2(y)$
 $\Rightarrow e^x \geq g_2(x) \quad [y$ কে x দ্বারা রূপান্তরিত করে]
 $\Rightarrow \int\limits_0^y e^x dx \geq \int\limits_0^y g_2(x) dx$
 $\Rightarrow e^y - 1 \geq g_3(y) - 1$
 $\Rightarrow e^y \geq g_3(y)$
 $\Rightarrow e^x \geq g_n(x)$

সুতরাং $e^x \geq g_n(x)$ সকল $n \in \mathbb{N}$ এর জন্য। এর থেকে লিখা যায়

$$e^{x} \ge \lim_{n \to \infty} g_{n}(x) = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots$$

 $\Rightarrow e^{x} \ge 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots$

উপপাদ্য ০.৮: যদি $g(x)=1+rac{x}{1!}+rac{x^2}{2!}+\cdots+rac{x^n}{n!}+\cdots$ হয়, তবে g(x+y)=g(x) imes g(y) সকল $x,y\in\mathbb{R}$ এর জন্য।

Ъ

প্রমাণ:

$$g(x) \times g(y) = (1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \dots)(1 + \frac{y}{1!} + \frac{y^2}{2!} + \dots + \frac{y^n}{n!} + \dots)$$

$$= \sum_{i=0}^{\infty} \frac{x^i}{i!} \times \sum_{j=0}^{\infty} \frac{y^j}{j!}$$

$$= \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{x^i y^j}{i!j!}$$

$$= \sum_{k=0}^{\infty} \sum_{i+j=k}^{\infty} \frac{1}{(i+j)!} \binom{i+j}{i} x^i y^j$$

$$= \sum_{k=0}^{\infty} \sum_{i+j=k}^{\infty} \frac{1}{(k!} \binom{k}{i} x^i y^{k-i}$$

$$= \sum_{k=0}^{\infty} \frac{1}{(k!} \sum_{i=0}^{\infty} k \binom{k}{i} x^i y^{k-i}$$

$$= \sum_{k=0}^{\infty} \frac{1}{(k!} (x+y)^k$$

$$= \sum_{k=0}^{\infty} \frac{(x+y)^k}{(k!)^k}$$

$$= g(x+y)$$

উপপাদ্য ০.৯: সকল $x\in\mathbb{R}$ এর জন্য

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$

প্রমাণ: উপপাদ্য ৭ থেকে

$$e^x \ge 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$

বা

$$e^x \ge g(x)$$

x এর স্থানে -x লিখে পাই

$$e^{-x} \ge g(-x)$$

অসমতা ২টিকে গুণ করে পাই

$$e^x \times e^{-x} \ge g(x) \times g(-x)$$

 $\Rightarrow 1 \ge g(x + (-x))$
 $\Rightarrow 1 \ge g(0)$

কিন্তু 1=g(o). এটি সত্য হবে যদি এবং কেবল যদি $e^x=g(x)$ ও $e^{-x}=g(-x)$ হয়। সুতরাং

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$

উপপাদ্য ০.১০: সকল $x \in [-1,1]$ এর জন্য

$$\ln(1+x) = x - \frac{x^2}{2!} + \frac{x^3}{3!} - \frac{x^4}{4!} + \cdots$$

প্রমাণ: উপপাদ্য ৩ থেকে পাই

$$\ln(1+x) = \int_{1}^{x+1} \frac{1}{t} dt$$

$$= \int_{0}^{x} \frac{1}{1+t} dt$$

$$= \int_{0}^{x} \frac{1}{1-(-t)} dt$$

$$= \int_{0}^{x} (1-t+t^{2}-t^{3}+\cdots) dt$$

$$= \int_{0}^{x} 1 \cdot dt - \int_{0}^{x} t dt + \int_{0}^{x} t^{2} dt - \int_{0}^{x} t^{3} dt + \cdots$$

$$= x - \frac{x^{2}}{2!} + \frac{x^{3}}{3!} - \frac{x^{4}}{4!} + \cdots$$

অনুশীলনী ৩

১. ডেরিভেটিভ বের কর

(۵)
$$f(x) = x^x$$

(
$$>) f(x) = (1+x)(1+e^{x^2})$$

(9)
$$\frac{e^x - e^{-x}}{e^x + e^{-x}}$$

(8)
$$x^{a^a} + a^{x^a} + a^{a^x}$$

(4)
$$\ln(\ln(\ln x))$$

(b)
$$\ln(e^x + \sqrt{1 + e^{2x}})$$

(9)
$$x^{x^x}$$

 $(\mathfrak{b}) (\ln x)^x$

(a)
$$(\ln x)^{\ln x}$$

(So)
$$x^{\ln x}$$

(22)
$$\frac{x^2(3-x)^{\frac{1}{3}}}{(1-x)(3+x)^{\frac{2}{3}}}$$

(১২)
$$\sqrt{x}e^{x^2}(x^2+1)^{10}$$

$$(\mathfrak{D}) \prod_{i=1}^{n} (x - a_i)^{b_i}$$

item ইন্টেগ্রেট কর

(3)
$$\int \frac{x}{x^2+1} dx$$

$$(\mathfrak{d}) \int \frac{1}{e^x + 1} \, dx$$

$$(\mathbf{v}) \int \frac{e^{3x}}{\sqrt{1 - e^6 x}} \, dx$$

$$(8) \int \frac{e^{\frac{1}{x}}}{r^2} dx$$

(c)
$$\int \frac{1}{x \ln x} dx$$

২. সকল $c\in\mathbb{R}$ এর জন্য $I(c)=\int\limits_0^12^{-(x-c)^2}dx$. এমন c এর সকল মান বের কর যেন I(c) এর মান সর্বোচ্চ হয়।

৩. $f(x) = \ln(x-1)$ হলে $f^{(n)}(x)$ এর জন্য একটি ফর্মুলা বের কর।

8.
$$\frac{d^9}{dx^9}(x^8 \ln x)$$
 এর মান বের কর

৫. ধনাত্মক সংখ্যা a এর জন্য

$$I(a) = \int_{0}^{a} (4 - 2^{x^{2}}) dx$$

যদি
$$\frac{d}{da}I(a)=0$$
 হয়, তবে a এর মান
$$({\bf a})\frac{1+\sqrt{5}}{2} \qquad ({\bf b})\sqrt{2} \qquad ({\bf c})\frac{\sqrt{5}-1}{2} \qquad ({\bf d})1$$

- ৬. নিম্নোক্ত ফাংশনগুলোর গ্রাফের উল্লিখিত বিন্দুতে স্পর্শকের সমীকরণ লিখ $({
 m a})y=\ln xe^{x^2}$ (1,1) $({
 m b})y=\ln x^3-7$ (2,0)
- ৭. এমন সকল c বের কর যেন $\ln x = c + \int\limits_{-t}^{x} \frac{1}{t} \, dt$
- ৮. কোনটি $y = \log_{10}(x^2 2x + 2)$ এর গ্রাফ

