Base de Dados

CREATE TABLE < nome > (

r lista de elementos >

);

- · Tipos de Elementes
- · INT ou INTEGER
- " REAL ON FLOAT
- · CHAR(m) , VARCHAR(m)
- · BOOLEAN
- · Date ('yyyy-mm-dd')
- · TIME ('hh: mm: no')
- · Associoção entu classes

Fays-re a união das PK

Participa (nome Eilme , ano Eilme , nome actor)

Enalle - re

mm - mm

Escolle - re uma das duas

Agrigação : associação com o rigrificado que elejetos de um dos lados podem : aspectação de outro lado .

Elme

Pk mome

Pk ano

duracas

o care

Estudios

Pk mome

morada

0 = 0.1

Encrever-re à mesmo disciplina varias vezes.

Conversão de UMI para o modelo relacional

Filmes

PK mome: string

PK ano: INT

durucao: INT

aCores: BODLEAN

=> Elmes (mome, ano, duração, alores)

· Uma religio e como re forse uma talela com linha e calulas.

Dependências Euncionais

Elmes 1 (nome, ano, duração, or nome Est., morada Est.)

mome	amo	oayarub	1 mone Est	moradu Estudio
Sharllans	1977	124	Fox	10 Elm 51. Los Angolos
Empire Strikes Rock	1980	143	Fox	(O Elm St. Cos Angeles
Come with the wind	1939	181	Dismey	58 OAK St. La Ampales
Ritum of the Testi	1983	165	Fox	10 Elm St. los Angeles
Pocahantas	1995	115	Disney	56 OAK St. Con Amgeles

s la use o enquerna relacional tem folhas minho Mormoligação

Endlemos:

Dedundânia: a morada de um estudio repete varios lezas.

Dedundânia: a morada de um estudio repete varios lezas morada mo 1º tuplo a mois

Dede dar oligem a anamalias em "estabeja" ex: atualijar a morada mo 1º tuplo a mois

Dede dar oligem a anamalias em "estabeja" ex: atualijar a mois 2º a 5º tuplo

Dede dar oligem a morada de um estabeja ex: atualijar a morada mo 1º tuplo a mois

Dede dar oligem a anamalias em "estabeja" ex: atualijar a morada mo 1º tuplo a mois

Dede dar oligem a anamalias em "estabeja" ex: atualijar a mois 2º a 5º tuplo

Dede dar oligem a morada de um estabeja ex: atualijar a mois 2º a 5º tuplo

Dede dar oligem a morada de um estabeja ex: atualijar a mois 2º a 5º tuplo

Dede dar oligem a morada de um estabeja ex: atualijar a mois 2º a 5º tuplo

Dede dar oligem a morada de um estabeja ex: atualijar a mois 2º a 5º tuplo

Dede dar oligem a morada de um estabeja ex: atualijar a mois 2º a 5º a tuplo

Dede dar oligem a morada de um estabeja ex: atualijar a mois 2º a 5º a tuplo

Dede dar oligem a morada de um estabeja existence existenc

Pode dur origen a anomalia em "deliter" ex: re apagamos o filme "Gono in the wind

- · Normalização
- · Estudo de Mormalyaise permite-mos de comper uma relação em várias reloções de
 - · que não hojo este tipo de problemas / anomalias.
- · Mas ants, comme raber o que é uma Dependência Eincional
- · Dependencions Euncionais

X > y Nota: X,Y,Z => representar conjuntos de atributos
A,B,C >> representar atributos individuais

Se fixarmos valores para os atribitos x, os valores de y rão rimios (mon hi regulido)

- · Claves e Suprohaves
- X é uma Superchane de Relação R re:

X -> todos es stillatos de R

A of enabreyer of X et einjory atmispartur

Nota: Y é subsequente préprie de X, re: Y = X N Y = X

X é dans de R => X é ryandrans de R

Regnas rebre DF's

· Transitiridade: Se X + Y . Y - Z entiro X + Z

Augmentation: Se X → y então XZ → y

- · DF's Trinais
 - · X -> y & trivial re 4 5 X
 - · exemples:

 mome and mome

 mome mome
- · Region robre DF's
 - · X A, A2 ... Am
 - · É equivalente a :

X > A1 X > A2 } Splitting Rule

Exemplo: caron 1 = 2

Estudio

Ph morre

Ph ano

O. * a produy o...

morada

morada

acores

Filmes (mome, ano, durayor, alores, mome Est)

mome ano → durução alores mome ano → mome Estudio

- "Mão pode hover à diriplinar que funcionam em uran amerim à mariem em em amerim em em amerim em es
- · nalu dia hora > disciplina

io de um conjunto de abilitos: X+

e o conjunto de todos os stilutos que são

. X roy robanimente etnemlaraismus

Agortino para calcular X+:

(1) X+ = X

(2) Se A1, A2, ... Am - B, e todos os A's então contidor em X+, adicionar Ba X+

rancibles commingerros aim obrang animat (E) mais mades a X+

· Projeção de DF) o

Projeção = eliminar algumas columas

Exemplo:

R(ABCD) com DF's: AB > C, C+D, D > A

Decompos em R, (ABC) e R2 (AD)

Quais as DF's em R1?

AB + C, mas também C + A

Dada uma religio R com um conjunto de DF's projetar Rem R. Quais ois DF's de R.?

(1) Começar com as DF's de R e encontrar todas as DF's mão triviais que se podem dedugir a partir belos.

2.) Eicar apenas com as DF's cujos atributos fuçam parte de erquema de R1

" Algoritmo para projetar as DF's de uma relação R muma relação R,

1.) Seja T o eventual output. Inicolmente T = 0

2) Para cada rubconjunto de X de atributos R1. calcular X+ (mando as DF's de R).

3-) Inserin X -> A em T, para todo o AE (X+-X). desde que A reja atributo de R1

Example: Dado a reloções R (ABCDEF) com as reguintes DF's:

(AB) + = ? AB + C BC > A

BC + D DAE

CF > B

(AB)+ = AB = ABC NM AB >C = ABCD II M BC + D

= ABCDE NM D + E

· Simplificação

(1) Não e mecessário calular o fecho do conjunto agia, mem do conjunto de todos od

& Se X+ = todos os atribitos, más é merenario adulas o feder de subconjuntos × mahretras eup

Exemple: Sein R(ABCD) com DF's A+B,B+C,C+D

· Projetor Rem R1 (ACD) (eliminor B)

techo A+C, A+D, A+ = ABCD C+ = CD C + D D+ = D (cD)+ = CD

· Té o conjunto de DF's de R1. supray a t raniumile compand call pode non dedujida a partir dan outros 2 "DF', de R,: A + C, C + D

- · Equivalencia de conjuntos de DF's
- · 2 conjuntos de DF's S 2 T nou equinalentes, ne o conjunto de instâncios que satisfez S, for o maimo que ratisfez T.

· randre alphese al .

{A+C, A+D, C+D} e equivolente {A+C, C+D}

· BCNF

Uma relação R está em BCNF rre:

- · para todas as DF's de R mas trivisis
 - X > Y, X for reperdence de R
- Docomposição de relações para BCNF

A ideis é unas uma DF X > y que viole a condição de BCNF.

(ro rabet un abay acm) + X en-alusha).

- 2. Decompsem-re R em 2 relacéer. R1 & R2.
 - 1. R1 -> X+
 - (2) $R_2 \rightarrow \times U$ (atributo ((R) (X+)))

- Bore minima de DF's
- · Sojo S um conjunto de DF's poro uma rd. R
- · Ouolquer conjunto de DF's equivalente a S es uma bare para S
- · Uma bare mínima para uma relação ?. « uma bare B que notisfaja :
- 1 Todas as DF's em B, têns no labo direito 1 stributo
- 2) Se remover-mos uma DF's de B, jú ntemos bare
- 3. Se removermos um atributo do lado esquendos de uma das DF's de B, deixu-se de ter uma busa

lamol annot of

- · X é superchane de R ou
- 6 suarle amu et ordinam : a Y :
- · Se R ortis em BCNF =) entir em 3F