

Ph.D. Program in Information and Communications Technologies

Contribución a tecnologías habilitantes en redes programables y definidas por software

Ph.D. Dissertation **David Carrascal Acebron**

Ph.D. Program in Information and Communications Technologies

Contribución a tecnologías habilitantes en redes programables y definidas por software

Author

David Carrascal Acebron

Advisors

Dr. Elisa Rojas Sánchez Dr. Diego López Pajares

> Alcalá de Henares 2025

"No os preguntarán por mí, que en estos tiempos a nadie le da lustre haber nacido segundón en casa grande; pero si pregunta alguno, bueno será contestarle que, español, a toda vena, amé, reñí, di mi sangre, pensé poco, recé mucho, jugué bien, perdí bastante.

Y, porque esa empresa loca que nunca debió tentarme, que, perdiendo ofende a todos, que, triunfando alcanza a nadie, no quise salir del mundo sin poner mi pica en Flandes.

¡Por España!

Y el que quiera defenderla honrado muera.

Y el traidor que la abandone,
no tenga quien le perdone,
ni en Tierra Santa cobijo,
ni una cruz en sus despojos,
ni las manos de un buen hijo,
para cerrarle los ojos."

HERNANDO DE ACUÑA

Agradecimientos

Es increíble cómo pasa el tiempo, y da vértigo echar la vista atrás. Pensar en cómo he llegado hasta aquí, las conferencias a las que he tenido la suerte de asistir, los viajes que he podido realizar, y, sobre todo, en las personas que he conocido por el camino. A menudo se describe el doctorado como un proceso arduo y exigente, y no diré lo contrario, pero, también merece la pena poner en valor todo lo aprendido, lo vivido y las experiencias que me han hecho crecer tanto a nivel personal como profesional.

Escribo estas líneas desde Milán, durante mi estancia doctoral junto a Marco Savi, a quien quiero agradecer sinceramente todo el tiempo, dedicación y esfuerzo que me ha brindado. Su apoyo ha hecho que esta etapa sea verdaderamente inolvidable. Esta experiencia no habría sido la misma sin todas las personas maravillosas que he conocido en Italia, que me han hecho sentir como en casa, siempre con una sonrisa y dispuestas a ayudar.

Volviendo la mirada a casa, no puedo dejar de agradecer a mis amigos, que han estado siempre a mi lado, apoyándome en cada paso. A mi familia, por su paciencia infinita, por su ayuda constante y por soportarme en los momentos de estrés y agobio de esta "empresa loca" que es el doctorado. A mis amigos del LE-34, los que están y los que ya no están, con quienes he compartido tantos cafés, confidencias, comidas y tardes de "trabajo". Y, por supuesto, a todos mis compañeros del grupo NetIS, que tras tantos años, más que colegas se han convertido en una segunda familia. Gracias por creer en mí y por acompañarme hasta aquí.

Por último, a Elisa y Diego, mis directores de tesis. Gracias por vuestra guía, vuestro apoyo incondicional y por confiar en mí desde el primer momento. En especial a Elisa: si no fuera por aquel correo que me enviaste hace ya más de siete años, ofreciéndome una mini beca de investigación, hoy no estaría escribiendo estas líneas. Gracias por todo lo que me habéis enseñado, por lo que he aprendido con vosotros y por todo lo que aún me queda por aprender.

Sinceramente, mil gracias a todos.

Resumen

La era contemporánea en la cual vivimos se caracteriza en mayor medida por una profunda transformación tecnológica y social, impulsada por la globalización y por el desarrollo de infraestructuras digitales interconectadas que configuran lo que se conoce como el Internet of Everything (IoE). En este nuevo paradigma, emergen redes densas y altamente heterogéneas en las que convergen dispositivos, servicios y plataformas con requerimientos funcionales muy variopintos, integrando no solo redes de comunicaciones, sino también infraestructuras energéticas, industriales y logísticas. Esta complejidad creciente demanda nuevas metodologías para un control y gestión, que sea en la medida de lo posible, flexible y escalable. En este contexto, las redes softwarizadas y programables se postulan como una elemento tecnológico clave, al permitir una abstracción funcional de la infraestructura subyacente, facilitar su automatización y promover la integración de capacidades de control, así como, la adaptación dinámica de la red, a las necesidades intrinsecas de los nodos de la misma.

Esta Tesis contribuye al desarrollo de las redes softwarizadas y programables mediante la propuesta de soluciones orientadas a mejorar la gestión, la resiliencia y la cooperación entre nodos de dichas redes. En primer lugar, se diseñan y evalúan algoritmos de toma de decisiones inteligentes en entornos altamente dinámicos y heterogéneos, con aplicación en dominios como el Internet de las Cosas Industrial (IIoT), las redes eléctricas inteligentes (Smart Grids) y las redes de comunicaciones de nueva generación. Estas soluciones permiten una asignación dinámica de recursos, una adaptación proactiva a las condiciones del entorno y una reducción sustancial en la complejidad de gestión de la red. Además, se ha abordado la integración de modelos de Inteligencia Artificial (AI) con dichos algoritmos, con el fin de potenciar la detección temprana de fallos, lo que se traduce en una mejora significativa de la resiliencia, y la alta disponibilidad de los servicios. En segundo lugar, se propone una arquitectura software modular, orientada a servicios y alineada con estándares actuales, que permite la incorporación de herramientas emergentes, así como mecanimos automatizados con AI, ofreciendo capacidades de computación tanto en la nube y como en el edge. Esta arquitectura está concebida para proporcionar una infraestructura lógica robusta, interoperable y escalable, capaz de facilitar la orquestación autónoma de servicios distribuidos, orientado a contextos de elevada heterogeneidad tecnológica, como entornos IIoT u otros.

Palabras clave: Redes densas y hetereogeneas, Redes programables y softwarizadas, Algoritmos, Infraestructura Cloud, IoT industrial, Smart grids.

Abstract

The contemporary era is marked by a profound technological and social transformation, driven by globalization and the pervasive deployment of interconnected digital infrastructures that define the Internet of Everything (IoE). Within this emerging paradigm, dense and highly heterogeneous networks are formed, comprising a wide variety of devices, services, and platforms with diverse and demanding functional requirements. These systems integrate not only communication networks, but also energy, industrial, and logistics infrastructures. The increasing complexity of such environments necessitates the adoption of novel methodologies capable of ensuring the flexible and scalable control and management of distributed resources and services. In this context, softwarized and programmable networks have emerged as a pivotal technological solution, enabling functional abstraction of the underlying infrastructure, supporting automation, and fostering the integration of advanced control mechanisms, as well as the dynamic adaptation of network behavior to the intrinsic requirements of its nodes.

This Thesis contributes to the advancement of softwarized and programmable networking by proposing solutions designed to enhance the management, resilience, and cooperation between nodes within these infrastructures. Firstly, it presents and evaluates intelligent decision-making algorithms tailored for highly dynamic and heterogeneous environments, with applications in domains such as the Industrial Internet of Things (IIoT), smart grids, and next-generation communication networks. These algorithms facilitate dynamic resource allocation, proactive environmental adaptation, and a significant reduction in network management complexity. Furthermore, the integration of Artificial Intelligence (AI) models into these solutions is explored to enable early fault detection, thus improving system resilience and ensuring high service availability. Secondly, the Thesis proposes a modular, service-oriented software architecture, aligned with current standards and capable of incorporating emerging technologies and AI-driven automation mechanisms. This architecture offers computing capabilities across both cloud and edge infrastructures and is designed to deliver a robust, interoperable, and scalable logical platform that supports the autonomous orchestration of distributed services in technologically heterogeneous scenarios such as IIoT environments.

Keywords: Dense and heterogeneous networks, Programmable and softwarized networks, Algorithms, Cloud infrastructure, Industrial IoT, Smart Grids.

Índice general

Resum	nen		VII
Abstra	act		IX
Índice	general		XI
Índice	de figuras		XIII
Índice	de tablas		XV
Índice	de algoritmos	3	XVII
Lista d	de acrónimos		XIX
	Planteamiento del problema y objetivos de la tesis		1 1 2 4 6 6
	G	 	9 10 16 19 19
3.1. 3.2. 3.3.	· .		21 21 25 25 25

Índice de figuras

1.1.	Diagrama general del marco general de la Tesis	5
1.2.	Línea de tiempo de contribuciones científicas (2023–2025): publicaciones en	c
	revistas y conferencias internacionales	Č
2.1.	Paradigma en las redes SDN	10
2.2.	Arquitectura lógica de las redes SDN	11
2.3.	Arquitectura básica de switch OpenFlow	13
2.4.	Arquitectura básica de switch P4	15
2.5.	Paradigmas de control en las redes SDN	17
3.1.	Esquema de arquitectura softwarizada	25

Índice de tablas

2.1.	Evolución de versiones del protocolo Openflow y el número de campos de	
	cabecera soportados	14
2.2.	Características del control in-band y out-of-band	19
3.1.	Comparativa de arquitecturas de red	25

Índice de algoritmos

1. Se	elección d	lel nodo	con mayor	capacidad																26	
-------	------------	----------	-----------	-----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	--

Lista de acrónimos

fifth-generation mobile networks.sixth-generation mobile networks.

AI Artificial Intelligence.

API Application Programming Interface.

ARPANET Advanced Research Projects Agency Network.

CapEx Capital Expenditure.

gRPC google Remote Procedure Call.IIoT Idustrial Internet of Things.

IoT Internet of Things.ML Machine Learning.

NFV Network Functions Virtualization.

NTN Non-Terrestrial Network.
ONF Open Networking Foundation.
OpEx Operational Expenditure.

P4 Programming Protocol-Independent Packet

 ${\bf Processors.}$

QoS Quality of Service.

SDN Software-Defined Networking.

SG Smart grid.

Capítulo 1

Introducción y objetivos

En este primer capítulo, se presenta una introducción al tema principal de la tesis, además de dar un contexto y un marco general del problema que se va a abordar. Asimismo, se establecen los objetivos de la investigación, se describe la estructura general del documento y se enumeran las contribuciones principales que ha generado esta tesis doctoral.

1.1. Introducción

Esta Tesis se enmarca dentro de las redes definidas por software (Software-Defined Networking (SDN), por sus siglas en inglés), y las redes programables, las cuales permiten la creación de redes flexibles y adaptables a las necesidades cambiantes de los usuarios y las aplicaciones finales. Este tipo de redes están ganando cada vez más importancia en la sociedad actual, dado que, con la creciente digitalización de la mayoría de los sectores, así como, tejido industrial y social, se están conformando redes cada vez más densas y heterogéneas, que requieren de nuevas tecnologías o herramientas que permitan su gestión y control. La tipología final de estas redes puede ser muy variopinta, pudiendo estar presentes en las redes de comunicaciones, en redes de sensores, en redes de distribución de energía, logística, entre otras.

Es por ello, que es difícil acotar el campo de estudio y aplicación de esta Tesis, y no solo por su naturaleza multidisciplinar, sino por la complejidad de que una herramienta o tecnología, sea completamente extrapolable a otro tipo de red. Por ejemplo, se pueden encontrar similitudes entre las necesidades de los distintos tipos de redes, en las redes de comunicaciones móviles fifth-generation mobile networks (5G) y sixth-generation mobile networks (6G), donde existen múltiples dispositivos, sensores y nodos de acceso que deben coordinarse dinámicamente para ofrecer conectividad. En el ámbito energético, donde las redes eléctricas inteligentes o Smart grids (SGs) destacan por la coordinación dinámica de la integración de fuentes de energía distribuidas, almacenamiento local y consumidores activos. También se puede ver en el campo de la logística, donde se puede considerar el caso de las redes de transporte y distribución, donde los vehículos, almacenes y sistemas de seguimiento deben coordinarse para optimizar rutas, minimizar tiempos de entrega

y reducir costes operativos. En todos estos escenarios, el uso de redes programables y softwarizadas ofrecen una base sólida para la gestión flexible y dinámica, sobre la cual se pueden desarrollar herramientas o tecnologías que optimicen cada caso de uso, consiguiendo escenarios más eficientes y adaptables a las necesidades de la red. De ahí que, la idea de esta Tesis sea la de ahondar en las tecnologías habilitantes de las redes programables y definidas por software, y cómo se pueden aplicar en redes densas y con nodos y necesidades heterogéneas.

1.2. Redes programables y definidas por software

Las redes programables tienen sus raíces en la historia de las redes de comunicación [1]. Desde su inicio, con la llegada de Advanced Research Projects Agency Network (ARPA-NET) en 1969, creada en Estados Unidos en un contexto de la guerra fría para que los investigadores pudieran intercambiar información, las redes de comunicación han evolucionado desde sistemas simples y estáticos, hacia arquitecturas más complejas y dinámicas. Durante este proceso, la necesidad de controlar y adaptar el comportamiento de la red ha sido un punto recurrente. Sin embargo, durante décadas, las redes tradicionales se caracterizaron por ser muy estáticas, estrechamente ligadas al hardware y al fabricante, lo que dificultaba su evolución y adaptación dinámica a nuevos protocolos o nuevas ideas. Es por ello que, la idea del SDN comenzó a gestarse en la Universidad de Stanford en 2003, cuando el profesor asociado de ese entonces, Nick McKeown, planteó las limitaciones de las redes convencionales y la necesidad de replantear cómo operaban los backbones [2]. En 2011, se acuñó el término SDN, al mismo tiempo que se lanzó la organización Open Networking Foundation (ONF) [3], encargada de establecer estándares y promover la difusión del SDN, la cual, a finales de 2023 fue incluida en la Linux Foundation para salvaguardar y reafirmar los proyectos y propuestas open-source en materia de Networking.

El paradigma SDN [4] radica en un concepto de arquitectura de red, en la que, se separa el plano de control (mantenimiento, gestión y control de la red) del plano de datos (lógica de forwarding) de la red, para centralizar toda la lógica de control en un único ente, el cual se denomina como controlador. Esta estructura permite lograr una administración de red más centralizada y flexible [4], facilitando la programabilidad de la red y la implementación de herramientas auxiliares que operan directamente sobre la Application Programming Interface (API) que expone el controlador. Esta API de alto nivel es clave en la integración de cualquier tipo de herramienta, desde monitorización, a Quality of Service (QoS), o incluso de modelos de Artificial Intelligence (AI)/Machine Learning (ML) para predecir o reconfigurar la red de forma automática.

Este paradigma se empezó a popularizar entre las grandes operadores de telecomunicaciones, que junto a la tecnología de virtualización de funciones de red (del inglés, Network Functions Virtualization (NFV)) [5], podían desplegar, mantener y gestionar los servicios de red de forma dinámica y escalable, permitiendo al administrador de red operar desde un único de ente de control, toda la infraestructura. Grandes empresas como Google [6], NTT [7], IBM [8] o Telefónica [9] han contribuido activamente al desarrollo y adopción

de estas tecnologías. Este apoyo del sector tecnológico al despliegue de redes SDN con NFV se ve impulsado por la reutilización de hardware para el despliegue ágil de nuevos servicios y aplicaciones, lo que permite reducir significativamente el gasto en capital (del inglés, Capital Expenditure (CapEx)), así como la posibilidad de operar y gestionar la infraestructura de forma centralizada y programable, lo que se traduce en una disminución del gasto operativo (del inglés, Operational Expenditure (OpEx)).

Sin embargo, las redes softwarizadas y programables no se limitan únicamente a las redes de telecomunicaciones. En los últimos años, se ha podido ver cómo este paradigma se ha extendido a otros campos, como, por ejemplo, en las redes de sensores, donde la flexibilidad y la versatilidad son claves para optimizar el rendimiento de los equipos, que por lo general suelen tener recursos limitados. También se han visto integraciones de ecosistemas SDN en el ámbito de las redes de sensores Internet of Things (IoT) [10], donde se provee de una pila de protocolos que permite la interoperabilidad entre los equipos y controladores convencionales, pudiendo traer todos los avances de las redes de telecomunicación a entornos más agresivos, como por ejemplo el Idustrial Internet of Things (IIoT) [11].

Incluso, se ha llegado a ver el uso de las redes programables en el ámbito de la distribución/encaminamiento de energía, donde la integración de fuentes de energía renovables y la gestión de la demanda dinámica requieren una coordinación meticulosa [12]. Históricamente las redes eléctricas de todos los países se han ido conformando en un modelo de top-to-down, donde las grandes centrales eléctricas generaban la energía, y esta se distribuía a los usuarios finales. Con el creciente aumento de la población, la red eléctrica se iba expandiendo y ramificando, creando redes en modo árbol cada vez más densas desde los puntos de interconexión. Sin embargo, con la llegada de las energías renovables y el cambio normativo promovido por la Unión Europea, este modelo tradicional ha comenzado a transformarse. La Directiva 2018/2001/UE sobre energías renovables [13], establece un marco regulador que permite a los ciudadanos y empresas convertirse en productores de energía (prosumidores), facilitando no solo el autoconsumo, sino también la posibilidad de invectar el excedente energético a la red eléctrica. En España, esta directiva se materializó a través del Real Decreto 244/2019 [14], que regula el autoconsumo eléctrico y permite compensar económicamente la energía excedentaria. Por lo tanto, se ha pasado a un modelo de red eléctrica, top-to-down, a uno más distribuido y con múltiples puntos de generación, donde los usuarios finales pueden ser tanto consumidores como productores de la energía, haciendo que la red requiera de una mayor flexibilidad y adaptabilidad para gestionar este intercambio de dinamico de energía. Esta necesidad ha llevado a la creación de redes eléctricas inteligentes (SG), y a la incorporación de tecnologías de redes programables, que permitan la gestión dinámica de la energía. Estándares como el IEC 61850 [15] han sido claves en el desarrollo para facilitar la interoperabilidad y la comunicación entre diferentes subestaciones y dispositivos dentro de una SG, permitiendo integraciones con soluciones SDN [16, 17].

De forma similar, las redes de logistica y transporte también han comenzado a adoptar modelos de redes softwarizadas [18], para optimizar la gestión de flotas, mejorando la eficiencia operativa. Por lo tanto, de forma analoga y sistematica se podría ir sector por

sector, viendo como en cada campo de aplicación se van dando redes densas y heterogéneas, que requieren de un enfoque programables, dando lugar a está linea de investigación y desarrollo que se aborda en esta Tesis. A continuación, se presenta el planteamiento del problema y los objetivos de la Tesis, donde se aterriza cómo se va a abordar el estudio de las redes programables y softwarizadas, y en qué campos de aplicación se va a trabajar.

1.3. Planteamiento del problema y objetivos de la tesis

Los objetivos que se plantean en el desarrollo de la Tesis se pueden dividir en dos grandes bloques. Por un lado, se busca profundizar en el estudio de las redes programables, partiendo del escenario base de las redes SDN, y con la idea de extender este paradigma a otros campos de aplicación, como son las redes de sensores HoT y las redes de distribución de energía. En particular, se busca profundizar en los mecanismos de control empleados en este tipo de redes, los cuales suelen organizarse en torno a dos enfoques principales: el control out-of-band y el control in-band [19]. En el modelo out-of-band, cada nodo de red tiene un enlace dedicado con el controlador, permitiendo una separación clara entre el plano de control y el plano de datos. Por el contrario, el modelo in-band asume que solo algunos nodos poseen un enlace directo con el controlador, y el resto de los dispositivos reutilizan dicho canal para transmitir información de control.

La idea de empezar profundizando este concepto radica en que, después de haber estado trabajando con ello en estudios anteriores, se ha podido ver que, en función del tipo de red y de la topología, uno u otro paradigma puede ser más adecuando, además de no haber una implementación estandarizada en el modelo in-band. Esto deja espacio de mejora y optimización tanto para las redes de comunicaciones, como para las redes de sensores y distribución de energía, donde este enfoque puede tener un papel importante. En redes de sensores, por ejemplo, donde los nodos suelen tener capacidades de cómputo, memoria y conectividad limitadas, implementar un enfoque out-of-band resulta poco viable. Asimismo, en las redes de distribución eléctrica, en las que la infraestructura sigue habitualmente una topología jerárquica de tipo árbol, no todos los nodos tienen un acceso directo al núcleo de la red, lo que hace necesario explorar soluciones basadas en el control in-band. Es por ello, que en el primer bloque de objetivos de la Tesis se busca profundizar en el estudio de mecanismos de control en redes densas y heterogéneas, donde el mecanismo o algoritmo pueda ser adaptado a las necesidades de la red, no solo a encaminamiento sino también a la toma de decisiones de la reconfiguración de la red en aras del intercambio de recursos, como pueda ser capacidad de cómputo, o energía. Además, se contempla el uso de herramientas de AI/ML como elemento auxiliar en este proceso de control y optimización, con el fin de dotar a la red de capacidades de adaptación proactiva, pudiendo contemplar la predicción de eventos o fallos, y la mejora de las decisiones de reconfiguración y balanceo de carga en tiempo real.

Por otro lado, en el segundo bloque de objetivos de la Tesis, se busca analizar en la infraestructura que habilitan las redes softwarizadas, desde un punto de vista de la gestión y en control de la red, así como de la seguridad. En este sentido, se busca profundizar

en el uso de herramientas de despliegue, monitorización y gestión de red, que permitan al administrador de red tener una visión global del estado de la infraestructura, así como poder tomar decisiones automáticas sobre la reconfiguración y optimización de la red. Asimismo, se contempla el estudio de las implicaciones de rendimiento que conlleva el uso de redes programables, donde se busca identificar posibles cuellos de botella y proponer soluciones para mitigarlos. En este sentido, se contempla el uso de técnicas de AI/ML para la reconfiguración de la red, tomando métricas en la comunicación entre los nodos y el controlador. A continuación, en la Figura 1.1 se presenta un diagrama general del marco de la Tesis, donde se puede ver cómo se relacionan las distintas áreas de estudio y aplicación, así como los objetivos que se persiguen en cada una de ellas.

Figura 1.1: Diagrama general del marco general de la Tesis

1.4. Estructura de la tesis

A continuación, se presenta la estructura general de esta memoria, describiendo brevemente el contenido de cada uno de sus capítulos. El objetivo es ofrecer una visión global del desarrollo de la Tesis, que sirva como guía para el lector y facilite la comprensión del marco completo del trabajo realizado.

El primer capítulo ha contextualizado el ámbito de las redes programables y softwarizadas, destacando su relevancia como base tecnológica para la gestión flexible y dinámica de redes heterogéneas. Asimismo, se ha introducido la problemática asociada a la creciente complejidad de las redes actuales, tanto en las redes de comunicaciones, como las de sensores o las redes de distribución energética, y se han formulado los objetivos principales que guían el desarrollo de esta Tesis. Finalmente, el capítulo concluye con una recopilación de las principales contribuciones científicas generadas a lo largo del trabajo.

En el capitulo X,

Por último, el capítulo X recoge las conclusiones principales de la Tesis, así como un bloque que describe futuras líneas de investigación en las que se podrá seguir indagando.

1.5. Contribucciones

El trabajo desarrollado en esta Tesis Doctoral ha generado una contribución notable a la comunidad científica, tanto en términos de generación de conocimiento como en su difusión y transferencia. En concreto, se han publicado cuatro artículos en revistas indexadas en JCR, incluyendo una publicación en una revista de alto impacto Q1 y tres en Q2, y otra más que está en revisión (Q2). Además, se han presentado cuatro trabajos en conferencias internacionales organizadas por el IEEE, lo que demuestra la solidez y el interés internacional del trabajo. Como parte del compromiso con la divulgación científica, los avances de esta Tesis también han sido compartidos en eventos como las X Jornadas de Jóvenes Investigadores de la Universidad de Alcalá y la 5th EUGLOH Annual Student Research Conference 2024. Cabe destacar, como elemento diferenciador, el reconocimiento al potencial de transferencia tecnológica de los resultados de esta investigación, materializado en la obtención del Primer Premio en el Concurso de Ideas para la Creación de Empresas de Base Tecnológica de la UAH en 2024. Este premio pone de relieve la capacidad de esta Tesis no solo para generar conocimiento científico de calidad, sino también para transformarlo en soluciones con impacto real en la sociedad, alineadas con los principios de innovación y transferencia del sistema universitario.

Artículos de revista indexadas de alto impacto:

1. Carrascal, D., Rojas, E., Arco, J. M., Lopez-Pajares, D., Alvarez-Horcajo, J., & Carral, J. A. (2023). A comprehensive survey of in-band control in sdn: Challenges and opportunities. Electronics, 12(6), 1265. (JCR Q2)

- 2. Rojas, E., Carrascal, D., Lopez-Pajares, D., Alvarez-Horcajo, J., Carral, J. A., Arco, J. M., & Martinez-Yelmo, I. (2024). A Survey on AI-Empowered Softwarized Industrial IoT Networks. Electronics, 13(10), 1979. (JCR Q2)
- 3. Carrascal, D., Rojas, E., Carral, J. A., Martinez-Yelmo, I., & Alvarez-Horcajo, J. (2024). Topology-aware scalable resource management in multi-hop dense networks. Heliyon, 10(18). (JCR Q1)
- 4. Carrascal, D., Bartolomé, P., Rojas, E., Lopez-Pajares, D., Manso, N., & Diaz-Fuentes, J. (2024). Fault Prediction and Reconfiguration Optimization in Smart Grids: AI-Driven Approach. Future Internet, 16(11), 428. (JCR Q2)
- Carrascal, D., Santos, C., Rojas, E., Arco, J. M., Lopez-Pajares, D. & Rodriguez-Sanchez F. J. (2025). Dynamic Energy Routing Using Tree-Based Topologies with Fast Convergence applied to Meshed Microgrids. IEEE Access (under review). (JCR Q2)

Conferencias internacionales:

- Carrascal, D., Rojas, E., Lopez-Pajares, D., Manso, N., & Gutierrez, E. (2023, December). A scalable SDN in-band control protocol for IoT networks in 6G environments. In 2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet) (pp. 1-7). IEEE.
- Rojas, E., Carrascal, D., Lopez-Pajares, D., Manso, N., & Arco, J. M. (2024, February). Towards ai-enabled cloud continuum for iiot: Challenges and opportunities. In 2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA) (pp. 1-6). IEEE.
- 3. Comeron, R., Rojas, E., Carrascal, D., Alvarez-Horcajo, J., & Arco, J. M. (2024, October). Multi-hop collaborative edge computing involving constrained IoT devices at the far edge. In 2024 15th International Conference on Network of the Future (NoF) (pp. 22-24). IEEE.
- 4. Carrascal, D., Rojas, E., Lopez-Pajares, D., Manso, N., Alvarez-Horcajo, J., & Martinez-Yelmo, I. (2025, March). Softwarized Data-Driven Architecture for Edge Computing IIoT Environments: A Proof of Concept. In 2025 28th Conference on Innovation in Clouds, Internet and Networks (ICIN) (pp. 64-68). IEEE.

Actvidades de divulgación:

- 1. Ponentes a las X Jornadas de Jóvenes Investigadores de la UAH, presentando el trabajo titulado "DEN2NE: origen, presente, ¿y futuro?".
- 2. Participación en la 5th EUGLOH Annual Student Research Conference 2024, con el trabajo titulado "Advancements in Enabling Technologies for Programmable and Software-Defined Networks: Paving the Way to 6G".

Premios:

Primer Premio - Concurso de ideas para la creación de empresas de base tecnológica
 UAH (Programa propio de investigación y transferencia de la UAH 2024).

Figura 1.2: Línea de tiempo de contribuciones científicas (2023-2025): publicaciones en revistas y conferencias internacionales.

Capítulo 2

Estado del Arte

Este capítulo tiene como objetivo principal revisar los conceptos clave y el estado del arte que constituyen la base de esta tesis. Para ello, se ha estructurado el capítulo en tres grandes bloques. En primer lugar, se explorarán las redes programables y softwarizadas partiendo de las redes SDN, se seguirá con los algoritmos de red y el uso de la AI como tecnologías habilitadoras, y por último, se analizarán diversos casos de uso relevantes que ejemplifican la aplicación práctica de estas tecnologías, como son las SG y las redes de sensores IIoT.

2.1. Las redes SDN

En este primer bloque se revisan las redes SDN, que son la base de las redes programables y softwarizadas. Se explorarán sus características, ventajas y desventajas, así como sus paradigmas de modos de control, según se indicó anteriormente. Además, se analizarán los protocolos y así como los aspectos clave de las vertientes de trabajo del modo de control *in-band*, y cómo podemos explorar dicho modo para favorecer la flexibilidad y control en redes densas y heterogéneas.

Las redes definidas por software (SDN) representan un nuevo paradigma que rompe con las arquitecturas tradicionales de red. Antes de que apareciera el concepto de SDN, como se puede apreciar en la Figura 2.1, las redes tradicionales solían tener un plano de control unificado en los propios dispositivos, llamado generalmente Control plane, en el que se definía la lógica que dictaba cómo se debía llevar a cabo el forwarding de los paquetes, y un plano de datos, conocido como Data plane, que se implementaba definiendo su datapath, compuesto por varios bloques de procesamiento para reenviar los paquetes. Ambos planos estarían unificados en un sentido lógico, en un mismo dispositivo. Sin embargo, con la aparición del paradigma de las redes SDN, como se muestra en la Figura, los nodos tradicionales de la red verían cómo su plano de control sería delegado a una entidad externa llamada controlador, preserbando su capadicar para manejar los paquetes. En contratste con las arquitecturas tradicionales de la red, donde había que ir configurando equipo a equipo, y donde cada uno de ellos iba a desempeñar una función de red, en las redes SDN, el controlador permite configurar y supervisar de manera inteligente el comportamiento de

la red a través de aplicaciones software, facilitando una programación flexible y dinámica del entorno de red. Por lo que, aunque se sigan llamando "switches" o nodos SDN, estos se comportarán según las reglas que le instale el controlador, pudiendo gestionar paquetes como un switch, un router, un firewall, etc.

Figura 2.1: Paradigma en las redes SDN

La centralización de la gestión simplifica notablemente las tareas del administrador, al proporcionar una visión global del estado de la red y un punto único desde el cual definir su funcionamiento. A través del controlador, las complejas instrucciones de bajo nivel requeridas por los dispositivos de red tradicionales, como switches y routers, las cuales podían variar en función del fabricante, se abstraen mediante interfaces con sintaxis intuitiva, reduciendo la complejidad operativa. Estas capacidades dotan a la red de una gran agilidad y capacidad de adaptación ante cambios o nuevas necesidades, pudiendo conmutar entre distintos perfiles de funcionamiento de forma automática. El simple despliegue de una nueva aplicación sobre el controlador permite modificar de forma coherente el comportamiento de toda la infraestructura, disminuyendo así los costes asociados al mantenimiento, la operación y el despliegue. Además, SDN promueve activamente el uso de soluciones abiertas tanto a nivel de software como de hardware, fomentando ecosistemas interoperables, reduciendo la dependencia de tecnologías propietarias y eliminando barreras de entrada para nuevos actores en el sector.

2.1.1. Arquitectura lógica de las redes SDN

La arquitectura lógica de las redes SDN se puede dividir en dos planos, el plano de control y el plano de datos, y además, en tres capas: capa de aplicación, capa de control y capa de infraestructura. En la Figura 2.2 se muestra la arquitectura lógica de las redes SDN, así como sus interfaces principales de comunicación que más adelante se explicarán.

El plano de control, se estructura internamente en dos capas funcionales: la capa de control y la capa de aplicación. Estas se comunican mediante la interfaz norte (northbound interface), que permite a las aplicaciones definir políticas de alto nivel que serán interpretadas y gestionadas por el controlador. Estas capas a menudo se pueden encontrar corriendo en la misma máquina, donde conviven el controlador y las aplicaciones que interactúan con él. Sin embargo, también se puede tener un enfoque distribuido, donde el controlador está

en una, máquina, y las aplicaciones en otra, haciendo uso de la interfaz northbound. Por su parte, el plano de datos está conformado por la capa de infraestructura, que engloba los dispositivos físicos de red, principalmente switches SDN, responsables del reenvío de paquetes. La interacción entre el plano de control y el plano de datos se realiza a través de la interfaz sur (southbound interface), cuya función es traducir las decisiones del plano de control en instrucciones ejecutables por los dispositivos de red. En este contexto, el controlador actúa como una pieza clave del sistema, asumiendo responsabilidades esenciales como la instalación de reglas de encaminamiento, la monitorización continua del estado de la red y la recopilación de métricas operativas, las cuales serán aprovechadas por todas las aplicaciones que se ejecuten sobre el controlador.

Figura 2.2: Arquitectura lógica de las redes SDN

El plano de datos, por el contrario, no posee lógica de control propia, limitándose a ejecutar las reglas recibidas, como por ejemplo, hacer un reenvío, o descartar paquetes según las reglas establecidas, además de enviar estadísticas de tráfico al controlador. Esta separación de funciones establece una división clara entre la inteligencia de la red, localizada en el plano de control, y su ejecución, delegada como se ha explicado, al plano de datos. De esta manera, se rompe con el modelo tradicional en el que ambos planos

coexistían en un mismo dispositivo de red. Este enfoque modular no solo mejora la escalabilidad y la flexibilidad del sistema, sino que también reduce significativamente los costes de despliegue (CapEx) y operación (OpEx), al concentrar los recursos de cómputo en un nodo centralizado, y simplificar el hardware requerido en los dispositivos de reenvío.

Según se ha visto en la Figura 2.2, la arquitectura SDN se apoya en una estructura jerárquica formada por tres capas principales: aplicación, control e infraestructura. La capa de aplicación representa el nivel de mayor abstracción dentro del ecosistema SDN. Esta capa integra un conjunto de aplicaciones que, apoyándose en los servicios ofrecidos por la capa de control, permiten definir políticas de gestión, QoS, optimizar el rendimiento de la red y adaptarla dinámicamente a diferentes contextos operativos. Un ejemplo típico de uso es la utilización los servicios de descubrimiento topológico proporcionados por la capa de control, que permiten a las aplicaciones calcular rutas óptimas entre dispositivos de red. Estas aplicaciones suelen desarrollarse empleando lenguajes de alto nivel como Python, Go o C++, con el objetivo de facilitar su portabilidad entre plataformas y maximizar la reutilización del código. No obstante, en la práctica, la existencia de APIs y entornos de desarrollo específicos para cada plataforma de control, como ONOS, OpenDaylight, Ryu o el nuevo controlador del ecosistema SDN, TeraflowSDN, introduce ciertos desafíos en la interoperabilidad y portabilidad del software entre distintas implementaciones. En este sentido, uno de los principales retos actuales de SDN sigue siendo la estandarización de interfaces northbound que permitan una integración más fluida y flexible entre aplicaciones y controladores heterogéneos.

Descendiendo, la siguiente capa es la capa de control, la cual constituye el núcleo funcional del paradigma SDN, albergando la inteligencia centralizada de la red. Actúa como intermediario entre las aplicaciones de alto nivel y los dispositivos físicos de la capa de infraestructura, orquestando tareas críticas como el encaminamiento de flujos, la detección y resolución de fallos, la supervisión continua del estado de la red y la gestión de políticas de seguridad y QoS. Su papel como middleware se traduce en la capacidad de transformar políticas abstractas generadas en la capa de aplicación en instrucciones simples y concretas que pueden ser entendidas por los nodos SDN. Esta capacidad de traducir y escalar la lógica de red permite que un único controlador gobierne cientos o miles de switches de forma eficiente, garantizando escalabilidad y consistencia en entornos distribuidos. Por último, la capa de infraestructura, por su parte, está compuesta por los elementos físicos de la red, fundamentalmente nodos SDN, que ejecutan las decisiones tomadas por el plano de control. Estos dispositivos, carentes de lógica propia, cuentan con un agente SDN encargado de comunicarse con el controlador a través de la interfaz sur (southbound interface), como por ejemplo, OpenFlow o P4Runtime. Su funcionalidad se reduce al reenvío y descarte de paquetes o la recolección de estadísticas, lo que permite simplificar su diseño y reducir sus requisitos hardware.

En cuanto a las interfaces, hay dos, como se ha mencionado anteriormente, la interfaz northbound y la interfaz southbound. La interfaz northbound constituye el canal de comunicación entre la capa de control y la capa de aplicación. Su principal función es ofrecer un punto de acceso lógico al administrador de red, permitiéndole supervisar, configurar y

gestionar el comportamiento de la red sin necesidad de interactuar directamente con los mecanismos de bajo nivel que gobiernan los dispositivos físicos. A través de esta interfaz, las aplicaciones pueden programar políticas o solicitudes que serán traducidas por el controlador en instrucciones comprensibles para los elementos de la infraestructura. No obstante, a diferencia de la interfaz southbound, la interfaz northbound carece de una estandarización formal. En consecuencia, la naturaleza y funcionalidad de esta interfaz varían considerablemente en función del controlador SDN empleado, cada uno de los cuales suele ofrecer su propia API con diferentes modelos de datos, protocolos y lenguajes de interacción.

La interfaz southbound constituye el enlace entre la capa de control y la capa de infraestructura dentro de una arquitectura SDN. A diferencia de la interfaz northbound, esta sí cuenta con protocolos estandarizados ampliamente adoptados, que permiten la interoperabilidad entre los controladores y los dispositivos de red. Históricamente, el protocolo más representativo ha sido Openflow [20]. En la implementación del protocolo Openflow según se indica en la Figura 2.3, el concepto central es el de flujo (del inglés, flow), entendido como un conjunto de paquetes que cumplen determinadas condiciones definidas por el controlador. Estas condiciones se almacenan en las denominadas tablas de flujo (del inglés, flow tables), y suelen hacer referencia a valores específicos de campos en la cabecera del paquete o al puerto de entrada por el que se ha recibido.

Figura 2.3: Arquitectura básica de switch OpenFlow

Cuando un paquete llega a un switch Openflow, empieza a atravesar de forma iterativa las tablas de flujo y cuando este coincide con los criterios de una regla definida en una tabla, se produce una coincidencia (del inglés, match), lo que activa un conjunto de instrucciones asociadas a dicha regla. Estas instrucciones pueden incluir el conteo de paquetes, la aplicación de acciones concretas (como reenviar o descartar el paquete), o bien su reenvío hacia otra tabla para un procesamiento adicional. En caso de no darse una coincidencia, se encapsula y se manda al controlador para que este decida que cómo manejarlo. Así, mediante la instalación de estas reglas por parte del controlador SDN, se determina el comportamiento de reenvío del switch. La comunicación entre el controlador y los dispositivos se realiza a través de un canal estructurado y seguro, que admite mensajes del controlador al switch, mensajes asíncronos generados por los dispositivos, y mensajes simétricos intercambiables por ambas partes, permitiendo una gestión eficiente y dinámica del estado de red.

No obstante, las limitaciones de flexibilidad, extensibilidad y adaptación a nuevas arquitecturas han motivado el surgimiento de alternativas a Openflow. Un ejemplo destacado es el lenguaje Programming Protocol-Independent Packet Processors (P4) [21], diseñado específicamente para superar las restricciones de OpenFlow. Una de las mayores restricciones que tiene OpenFlow es la especificación de forma explícita de los campos de cabecera sobre los que opera. Estos campos de cabecera han pasado de 12 a 41 campos de cabeceras entre sus versiones 1.0 y 1.5 como se puede ver en la Tabla 2.1. Esta evolución ha incrementado la complejidad del protocolo sin proporcionar la flexibilidad necesaria para incorporar nuevas cabeceras o funcionalidades emergentes.

Versión	Fecha	Campos de cabecera
OF 1.0	Dic. 2009	12 campos (Ethernet, TCP/IPv4)
OF 1.1	Feb. 2011	15 campos (MPLS, metadatos entre tablas)
OF 1.2	Dic. 2011	36 campos (ARP, ICMP, IPv6, etc.)
OF 1.3	Jun. 2012	40 campos
OF 1.4	Oct. 2013	41 campos
OF 1.5	Mar. 2015	44 campos

Tabla 2.1: Evolución de versiones del protocolo Openflow y el número de campos de cabecera soportados

En respuesta a ello, P4 nació con tres objetivos principales:

- Permitir la reconfiguración del dispositivo en caliente, es decir, cambiar el comportamiento de los switches una vez desplegados.
- Ofrecer independencia de protocolo, desvinculando el procesamiento de paquetes de protocolos específicos que tengan que estar estandarizados para poder ser gestionados.
- Proporcionar independencia del hardware, permitiendo que las funcionalidades de procesamiento se definan sin depender de los detalles del dispositivo subyacente.

Si bien es cierto que la iniciativa de P4 nació con este objetivo en mente (*open-hardware*), la realidad es que, en la actualidad, se ha visto como cada fabricante ha implementado equipos que si cumplen con algunas de las arquitecturas de P4, pero que cada uno te ofrece unas primitivas de programación diferentes, haciendo que un programa P4 que corre en un dispositivo de un fabricante no sea totalmente compatible en otro [22].

En comparación con Openflow, si nos fijamos en la Figura 2.4, podemos apreciar que empleando P4 se puede definir el cómo el switch va a manejar los paquetes, como los va a procesar y parsear, manteniendo la lógica de las tablas de flujo que teníamos en Openflow, pero ganando en flexibilidad dado que se pueden definir el propio datapath del dispositivo sin depender de un conjunto estandarizado de campos de cabecera. Esto incluso permite que P4 pueda ser implementado en dispositivos de baja capacidad [23], al poder ajustar el datapath a la mínima expresión necesaria para cumplir con las necesidades de la red. Al igual que en Openflow se tenía el protocolo de comunicación para la interfaz southbound, P4 también tiene su propia interfaz de comunicación, llamada P4Runtime [24], que permite a los controladores gestionar y programar dispositivos P4 de forma dinámica.

Figura 2.4: Arquitectura básica de switch P4

A diferencia de Openflow, que define un conjunto cerrado de operaciones y estructuras, P4 y su interfaz P4Runtime introducen la posibilidad de reconfigurar dinámicamente el comportamiento del plano de datos mediante descripciones personalizadas del procesamiento de paquetes. Esto se logra mediante una arquitectura basada en google Remote

Procedure Call (gRPC), que ofrece cinco tipos de operaciones principales (Write, Read, Set/GetForwardingPipelineConfig y StreamChannel) para gestionar tanto el estado como la lógica interna de los switches programables. De esta forma, P4 se presenta como una propuesta de evolución de Openflow, orientada a lograr una programabilidad del plano de datos más flexible y escalable, haciéndolo ideal para testing y pruebas de concepto de nuevas soluciones de red.

Paralelamente, ha ido creciendo otra vía complementaria orientada a la gestión y configuración unificada de dispositivos de red llamada OpenConfig. Esta iniciativa, impulsada mayormente por un consorcio de operadores y fabricantes, propone un conjunto de modelos de datos basados en YANG que permiten describir de forma estandarizada y agnóstica el estado operativo y la configuración de dispositivos de red. A diferencia de OpenFlow o P4Runtime, que se centran en el comportamiento del plano de reenvío, OpenConfig aborda la gestión, configuración, el monitoreo y la automatización de tareas de red a través de protocolos como gNMI o NETCONF. Esto convierte a OpenConfig una herramienta clave para aquellas empresas que buscan una gestión softwarizada y programable de sus infraestructuras ya existentes, dado que permite la integración de dispositivos heterogéneos de diferentes fabricantes bajo un modelo común de gestión. Si bien es cierto que OpenConfig no permite definir explícitamente el plano de datos, a diferencia de Openflow o P4, donde se considera que todos los switches o nodos SDN equivalen a un único dispositivo lógico gestionado de forma centralizada, OpenConfig propone un enfoque diferente. Esta iniciativa busca establecer un conjunto común de modelos de datos y configuración, independientes del fabricante, para gestionar redes heterogéneas. A diferencia del enfoque SDN tradicional, en el que los dispositivos se integran como un único plano de control y datos, los dispositivos gestionados mediante OpenConfig siguen operando como entidades independientes. Ambos enfoques persiguen una mayor transparencia y facilidad de gestión de la red, pero difieren en su grado de abstracción y centralización: mientras SDN trata la red como un todo unificado, OpenConfig mantiene la identidad individual de cada dispositivo, facilitando la interoperabilidad en entornos mixtos. Sin embargo, los últimos controladores SDN como TeraflowSDN [25], han comenzado a integrar OpenConfig como una de sus interfaces southboud (además de P4), incluso llegando a no implementar Openflow, lo que sugiere una tendencia hacia un nuevo ecosistema de redes SDN que combina la flexibilidad de la programación del plano de datos con la estandarización y la gestión eficiente de dispositivos heterogéneos.

En este sentido, la evolución de la interfaz southbound no debe entenderse en términos de sustitución de unos protocolos por otros, sino como una diversificación funcional que permite combinar capacidades de reenvío programable, comunicación eficiente y gestión estandarizada según las necesidades específicas de cada red.

2.1.2. Arquitectura física de las redes SDN

Una vez que se ha revisado la arquitectura lógica de las redes SDN, es importante entender cómo se implementa físicamente esta arquitectura, es decir, cómo se conectan los diferentes componentes que se vienen explicando en la sección anterior.

En una red SDN, según se indicó en la Figura 2.2, se compone de un elemento central, el controlador, y un conjunto de swicthes o nodos SDN distribuidos en la capa de infraestructura los cuales son gestionados por el controlador. Sin embargo, también es posible la implementación de múltiples controladores en una misma red SDN, lo cual aporta funcionalidades adicionales a la red, como mecanismos de respaldo y tolerancia a fallos, que incrementan su fiabilidad, y por ende, la resilencia de la red. Por ello, se pueden clasificar las conexiones físicas en las redes SDN en dos bloques:

- Las conexiones entre los switches de la capa de infraestructura.
- Las conexiones entre el controlador y los switches de la capa de infraestructura.

Las primeras constituyen la topología física de la red, cuya estructura depende del entorno en el que se despliegue y de los objetivos funcionales de la red. Por ejemplo, en redes SDN diseñadas para centros de datos, es común adoptar una arquitectura jerárquica y regular, ya que esta facilita la escalabilidad y permite absorber incrementos en la demanda de tráfico de forma eficiente [26]. En cambio, en entornos de redes de sensores SDN, es frecuente emplear topologías en malla parcial (tendiendo hacia a una malla completa) [10], que permiten una mayor resiliencia frente a fallos y una reducción en la latencia gracias a la existencia de múltiples caminos entre nodos de la topología.

En cuanto a las conexiones entre el controlador y los switches de la capa de infraestructura, estas se pueden clasificar en principalmente en dos categorías, si bien es cierto que se puede encontrar una tercera categoría que combina ambas. Observando la Figura 2.5, se pueden distinguir dos paradigmas de control: el modo de control *in-band* y el modo de control *out-of-band*, y por último, el modo de control *hybrid-band*, el cual es una combinación de los dos anteriores.

Figura 2.5: Paradigmas de control en las redes SDN

Al desplegar el canal de control en una red SDN, es posible optar por un enfoque out-of-band o in-band, como se ilustra en la Figura 2.5. En el primer caso, denominado

out-of-band, cada nodo SDN dispone de un enlace físico dedicado que lo conecta directamente con el controlador. De este modo, la información de control se transmite a través de una red independiente, exclusiva para dicho propósito, lo cual incrementa la seguridad y el aislamiento del canal, aunque implica un mayor coste de infraestructura al requerir al menos un enlace adicional por nodo. Por el contrario, en el enfoque in-band, solo algunos nodos SDN mantienen un enlace directo con el controlador, mientras que el resto accede a él a través de la propia red de datos, reutilizando los enlaces existentes para transportar la información de control. En este caso, los mensajes de control comparten la infraestructura del plano de datos, lo que puede comprometer su seguridad e integridad, al estar más expuestos a posibles interferencias o interceptaciones.

Finalmente, el enfoque hybrid-band contempla una solución intermedia, en la que coexisten enlaces dedicados y compartidos para la comunicación con el plano de control [27], como se muestra en la Figura 2.5. Este modelo busca equilibrar los costes operativos con los requisitos de fiabilidad y seguridad.

Cada uno de estos esquemas de despliegue presenta ventajas e inconvenientes [27], y la elección entre uno u otro depende fundamentalmente del escenario de red y del caso de uso considerado [28, 29]. No existe un paradigma mejor que otro, sino, que cada enfoque ofrece características particulares que pueden resultar más o menos adecuadas según los requisitos del entorno. Por ejemplo, el modelo out-of-band requiere un enlace físico adicional dedicado a la comunicación entre el controlador y cada nodo SDN, lo que incrementa notablemente los costes de despliegue y mantenimiento. No obstante, esta separación garantiza un mayor aislamiento del canal de control, lo que mejora sustancialmente la seguridad de las comunicaciones. En contraposición, el modelo in-band reutiliza los enlaces existentes del plano de datos para transmitir la información de control, lo que reduce significativamente el coste de infraestructura. Sin embargo, esta economía viene a expensas de una menor seguridad, ya que los mensajes de control comparten canal con el tráfico de red, quedando expuestos a posibles interferencias o ataques.

Además, uno de los principales retos del enfoque in-band radica en la configuración inicial, es decir, el nodo debe conocer de antemano la ruta hacia el controlador a través de la red de datos. En contraste, el modelo out-of-band facilita esta tarea, al disponer de una interfaz exclusiva para dicho propósito. Por ello, en in-band, esta información tiene que proporcionarse mediante protocolos específicos que permiten a cada nodo identificar la interfaz adecuada para reenviar los paquetes de control. Estos protocolos son de especial de interés dado que no existe una solución estandarizada en la academia. Debido a lo cual, se quiere explorar en mayor medida qué opciones existen y qué metodologías se han empleado, dado que estas soluciones son fácilmente extrapolables a otros tipos de redes densas y heterogéneas que empleen entornos softwarizados con una tipología de control in-band. Así, por ejemplo, en entornos como el IoT, donde los dispositivos suelen disponer de una única interfaz de comunicaciones y cuentan con recursos energéticos limitados, el modelo in-band se presenta como una alternativa óptima, al evitar la necesidad de enlaces adicionales que aumentarían el consumo energético y reducirían la vida útil del sensor.

La Tabla 2.2 resume comparativamente las principales características de estos modelos. En ella se observa cómo el paradigma out-of-band destaca por su simplicidad de configuración y seguridad, mientras que el in-band sobresale en términos de escalabilidad y costes.

Propiedad	Control out-of-band	Control in-band
Configuración del dispositivo SDN	Sencilla	Compleja
Seguridad del canal de control	Segura, canal aislado	Riesgosa, canal compartido
Costes de mantenimiento y despliegue	Elevados	Reducidos
Escalabilidad	Limitada	Buena
Resiliencia	Costosa	Recuperación rápida

Tabla 2.2: Características del control in-band y out-of-band

2.1.2.1. Propuestas de despliegue con control in-band

La tendencia actual indica que el control in-band está ganando protagonismo en los despliegues de redes SDN [30], especialmente en redes de grandes y densas, donde el coste de utilizar un modelo out-of-band puede resultar prohibitivo. Además, el control in-band habilita el desarrollo de una amplia variedad de nuevas aplicaciones, sobretodo en entornos SDN híbridos o con restricciones de recursos [31, 32], donde el despliegue de enlaces dedicados de control puede ser complejo o incluso inviable. Entre los casos de uso más representativos que se benefician del control in-band se encuentran las redes 5G [33] y las Non-Terrestrial Networks (NTNs) [34], así como diversos escenarios del ámbito IoT, como redes submarinas [35], entornos orientados a la eficiencia energética [36] o sistemas con recursos limitados [37]. A pesar de sus numerosas ventajas, los esfuerzos dirigidos al diseño de protocolos comunes e integrales para el control in-band han sido escasos. Una solución efectiva debería considerar la compatibilidad con plataformas ampliamente utilizadas, tanto en los controladores como en los dispositivos SDN, a fin de garantizar una integración completa en los despliegues actuales. En este contexto, diferentes propuestas han explorado mecanismos para habilitar o mejorar el control in-band, con el objetivo de facilitar su adopción en entornos reales y responder a los retos que plantea, este paradigma. A continuación, se presentan algunos de los trabajos más representativos en esta línea.

2.2. Algoritmos de red y AI

En este segundo bloque se quieren revisar las principales tecnologías habilitantes que permiten la creeación, control y gestión de las redes programables y softwarizadas. Estas tecnologías son fundamentales para entender el marco de trabajo de la tesis, y cómo, posteriormente, se pueden llegar a aplicar a diferentes casos de uso.

2.3. Casos de uso

En este último bloque se revisan los casos de uso más relevantes que se pueden encontrar en la literatura. Estos casos de uso son ejemplos prácticos de cómo las tecnologías habilitantes y las redes programables y softwarizadas se aplican en contextos reales, como las SG y las redes de sensores IIoT.

Capítulo 3

Capítulo de prueba

Este capítulo tiene como propósito verificar la correcta configuración de los índices e instrumentos del documento.

3.1. Uso de acrónimos y referencias

En este documento se utiliza el concepto de SDN, el cual es fundamental en redes programables. Para más detalles, véase el capítulo de introducción.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus finibus, diam non blandit interdum, eros urna accumsan lectus, in aliquet libero neque in tortor. Quisque condimentum posuere ex, ac bibendum dolor posuere ac. Integer dolor metus, sollicitudin a consequat id, eleifend in magna. Pellentesque sed magna hendrerit, aliquet diam non, mollis massa. Phasellus tempus efficitur eros, quis malesuada felis pulvinar ut. Cras feugiat eget velit ut ultricies. Vivamus a tincidunt ante. Fusce neque tellus, molestie quis augue id, pulvinar maximus sapien. Sed blandit ex quis felis sodales, quis semper libero ultrices. Aenean eros lacus, bibendum at ex auctor, accumsan sagittis mauris.

Ut gravida mauris in velit maximus pellentesque. Praesent ultricies, mi eu convallis laoreet, lorem leo euismod urna, non imperdiet ligula purus vestibulum felis. Nam consequat lorem eget leo dictum, vel viverra enim commodo. Maecenas ac portitior velit, nec dignissim velit. In tellus massa, ornare id est finibus, mattis tristique velit. Sed vitae interdum lectus. Sed placerat quam sit amet lacus lacinia, nec tristique libero efficitur. Ut varius lobortis velit. Mauris euismod dictum luctus. Aliquam neque quam, vehicula quis mollis eget, sollicitudin id elit. Integer cursus risus ac purus fringilla, facilisis condimentum dui sagittis. Pellentesque gravida turpis dui, nec consequat lacus scelerisque et.

Sed mollis, purus at malesuada mattis, dui sem scelerisque lectus, ut fermentum leo urna eget diam. Duis facilisis turpis nibh, in commodo nisi pretium nec. Donec finibus elit et felis elementum finibus. Donec turpis purus, rutrum sit amet orci eu, tincidunt porta quam. Etiam velit mauris, varius in risus at, sodales consectetur metus. Ut urna turpis, ornare id lectus vitae, ultrices cursus urna. Nunc lacinia ullamcorper nunc in facilisis. Fusce rhoncus eros elit, at posuere ex vulputate vel. Phasellus ullamcorper neque eu ante porttitor, vel iaculis justo lobortis. Vestibulum ornare eros ex, eget porta felis ultrices vitae. Donec mauris arcu, vulputate vel lectus vitae, semper tempus ligula.

Maecenas eros dolor, auctor tincidunt enim in, bibendum ultricies magna. Aenean pellentesque interdum condimentum. Cras sollicitudin vel lorem vitae lacinia. Phasellus pulvinar suscipit volutpat. Sed ac vulputate erat, vel luctus ligula. Curabitur pretium mollis ornare. In sit amet nisl quis eros efficitur mollis. Quisque iaculis nisl sed tincidunt condimentum.

Suspendisse finibus, nunc a ultricies tempor, ex neque scelerisque diam, in varius ligula lectus ut nulla. Suspendisse dapibus mi vitae tellus consequat fermentum. Integer bibendum nisl quam, dignissim egestas augue efficitur vitae. Integer pellentesque felis nisl, id iaculis orci maximus sed. Sed blandit pretium leo, volutpat varius quam vestibulum sed. Curabitur sit amet volutpat eros. Nulla vitae tristique tellus. Duis efficitur nec libero placerat pharetra. Cras luctus neque a lorem mattis, eget laoreet magna pharetra. Nam ipsum ligula, hendrerit a orci vitae, ultricies auctor felis. Vestibulum at elit non tellus dapibus lobortis. Donec quis consectetur nibh, sit amet commodo massa. Sed ultrices, velit sed lacinia congue, ipsum mauris suscipit libero, vel posuere est ipsum eu justo. Aliquam ut venenatis neque, ut volutpat nunc. Suspendisse finibus ornare dolor sit amet tristique. Fusce a porta mauris.

Phasellus egestas augue id purus vestibulum, vel posuere ipsum dictum. Fusce eget bibendum dui. Maecenas tempus, sapien at vulputate pretium, elit felis dignissim velit, sit amet feugiat tellus quam vel turpis. Aenean quis viverra nulla, vel rhoncus augue. Morbi sit amet elit fermentum, finibus justo tristique, ultricies sapien. Sed sit amet lacinia nunc, ac pretium mauris. Donec dapibus velit non nunc sagittis semper. Ut ut nulla volutpat, rhoncus libero at, venenatis lorem. Maecenas iaculis dictum arcu eu accumsan. Donec non metus justo. Praesent non ipsum a nisl venenatis efficitur. Etiam lacinia, elit non tristique tincidunt, sapien erat malesuada diam, sed accumsan augue est eget ante. Maecenas at odio accumsan, luctus sem id, lacinia quam.

Sed at nisi erat. Integer scelerisque erat vitae aliquam sagittis. Duis id ipsum auctor orci dapibus porta vel quis augue. Vivamus consectetur dapibus turpis. Vivamus id facilisis nisi, quis fermentum urna. Ut fringilla auctor faucibus. Ut eu sapien nisi. Cras lorem risus, finibus sed scelerisque vel, commodo pulvinar lacus. In at luctus ante, non commodo quam. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus finibus, diam non blandit interdum, eros urna accumsan lectus, in aliquet libero neque in tortor. Quisque condimentum posuere ex, ac bibendum dolor posuere ac. Integer dolor metus, sollicitudin a consequat id, eleifend in magna. Pellentesque sed magna hendrerit, aliquet diam non, mollis massa. Phasellus tempus efficitur eros, quis malesuada felis pulvinar ut. Cras feugiat eget velit ut ultricies. Vivamus a tincidunt ante. Fusce neque tellus, molestie quis augue id, pulvinar maximus sapien. Sed blandit ex quis felis sodales, quis semper libero ultrices. Aenean eros lacus, bibendum at ex auctor, accumsan sagittis mauris.

Ut gravida mauris in velit maximus pellentesque. Praesent ultricies, mi eu convallis laoreet, lorem leo euismod urna, non imperdiet ligula purus vestibulum felis. Nam consequat lorem eget leo dictum, vel viverra enim commodo. Maecenas ac portitor velit, nec dignissim velit. In tellus massa, ornare id est finibus, mattis tristique velit. Sed vitae interdum lectus. Sed placerat quam sit amet lacus lacinia, nec tristique libero efficitur. Ut varius lobortis velit. Mauris euismod dictum luctus. Aliquam neque quam, vehicula quis mollis eget, sollicitudin id elit. Integer cursus risus ac purus fringilla, facilisis condimentum dui sagittis. Pellentesque gravida turpis dui, nec consequat lacus scelerisque et.

Sed mollis, purus at malesuada mattis, dui sem scelerisque lectus, ut fermentum leo urna eget diam. Duis facilisis turpis nibh, in commodo nisi pretium nec. Donec finibus elit et felis elementum finibus. Donec turpis purus, rutrum sit amet orci eu, tincidunt porta quam. Etiam velit mauris, varius in risus at, sodales consectetur metus. Ut urna turpis, ornare id lectus vitae, ultrices cursus urna. Nunc lacinia ullamcorper nunc in facilisis. Fusce rhoncus eros elit, at posuere ex vulputate vel. Phasellus ullamcorper neque eu ante porttitor, vel iaculis justo lobortis. Vestibulum ornare eros ex, eget porta felis ultrices vitae. Donec mauris arcu, vulputate vel lectus vitae, semper tempus ligula.

Maecenas eros dolor, auctor tincidunt enim in, bibendum ultricies magna. Aenean pellentesque interdum condimentum. Cras sollicitudin vel lorem vitae lacinia. Phasellus pulvinar suscipit volutpat. Sed ac vulputate erat, vel luctus ligula. Curabitur pretium mollis ornare. In sit amet nisl quis eros efficitur mollis. Quisque iaculis nisl sed tincidunt condimentum.

Suspendisse finibus, nunc a ultricies tempor, ex neque scelerisque diam, in varius ligula lectus ut nulla. Suspendisse dapibus mi vitae tellus consequat fermentum. Integer bibendum nisl quam, dignissim egestas augue efficitur vitae. Integer pellentesque felis nisl, id iaculis orci maximus sed. Sed blandit pretium leo, volutpat varius quam vestibulum sed. Curabitur sit amet volutpat eros. Nulla vitae tristique tellus. Duis efficitur nec libero placerat pharetra. Cras luctus neque a lorem mattis, eget laoreet magna pharetra. Nam ipsum ligula, hendrerit a orci vitae, ultricies auctor felis. Vestibulum at elit non tellus dapibus lobortis. Donec quis consectetur nibh, sit amet commodo massa. Sed ultrices, velit sed lacinia congue, ipsum mauris suscipit libero, vel posuere est ipsum eu justo. Aliquam ut venenatis neque, ut volutpat nunc. Suspendisse finibus ornare dolor sit amet tristique. Fusce a porta mauris.

Phasellus egestas augue id purus vestibulum, vel posuere ipsum dictum. Fusce eget bibendum dui. Maecenas tempus, sapien at vulputate pretium, elit felis dignissim velit, sit amet feugiat tellus quam vel turpis. Aenean quis viverra nulla, vel rhoncus augue. Morbi sit amet elit fermentum, finibus justo tristique, ultricies sapien. Sed sit amet lacinia nunc, ac pretium mauris. Donec dapibus velit non nunc sagittis semper. Ut ut nulla volutpat, rhoncus libero at, venenatis lorem. Maecenas iaculis dictum arcu eu accumsan. Donec non metus justo. Praesent non ipsum a nisl venenatis efficitur. Etiam lacinia, elit non tristique tincidunt, sapien erat malesuada diam, sed accumsan augue est eget ante. Maecenas at odio accumsan, luctus sem id, lacinia quam.

Sed at nisi erat. Integer scelerisque erat vitae aliquam sagittis. Duis id ipsum auctor orci dapibus porta vel quis augue. Vivamus consectetur dapibus turpis. Vivamus id facilisis nisi, quis fermentum urna. Ut fringilla auctor faucibus. Ut eu sapien nisi. Cras lorem risus, finibus sed scelerisque vel, commodo pulvinar lacus. In at luctus ante, non commodo quam. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus finibus, diam non blandit interdum, eros urna accumsan lectus, in aliquet libero neque in tortor. Quisque condimentum posuere ex, ac bibendum dolor posuere ac. Integer dolor metus, sollicitudin a consequat id, eleifend in magna. Pellentesque sed magna hendrerit, aliquet diam non, mollis massa. Phasellus tempus efficitur eros, quis malesuada felis pulvinar ut. Cras feugiat eget velit ut ultricies. Vivamus a tincidunt ante. Fusce neque tellus, molestie quis augue id, pulvinar maximus sapien. Sed blandit ex quis felis sodales, quis semper libero ultrices. Aenean eros lacus, bibendum at ex auctor, accumsan sagittis mauris.

Ut gravida mauris in velit maximus pellentesque. Praesent ultricies, mi eu convallis laoreet, lorem leo euismod urna, non imperdiet ligula purus vestibulum felis. Nam consequat lorem eget leo dictum, vel viverra enim commodo. Maecenas ac porttitor velit, nec dignissim velit. In tellus massa, ornare id est finibus, mattis tristique velit. Sed vitae interdum lectus. Sed placerat quam sit amet lacus lacinia, nec tristique libero efficitur. Ut varius lobortis velit. Mauris euismod dictum luctus. Aliquam neque quam, vehicula quis mollis eget, sollicitudin id elit. Integer cursus risus ac purus fringilla, facilisis condimentum dui sagittis. Pellentesque gravida turpis dui, nec consequat lacus scelerisque et.

Sed mollis, purus at malesuada mattis, dui sem scelerisque lectus, ut fermentum leo urna eget diam. Duis facilisis turpis nibh, in commodo nisi pretium nec. Donec finibus elit et felis elementum finibus. Donec turpis purus, rutrum sit amet orci eu, tincidunt porta quam. Etiam velit mauris, varius in risus at, sodales consectetur metus. Ut urna turpis, ornare id lectus vitae, ultrices cursus urna. Nunc lacinia ullamcorper nunc in facilisis. Fusce rhoncus eros elit, at posuere ex vulputate vel. Phasellus ullamcorper neque eu ante porttitor, vel iaculis justo lobortis. Vestibulum ornare eros ex, eget porta felis ultrices vitae. Donec mauris arcu, vulputate vel lectus vitae, semper tempus ligula.

Maecenas eros dolor, auctor tincidunt enim in, bibendum ultricies magna. Aenean pellentesque interdum condimentum. Cras sollicitudin vel lorem vitae lacinia. Phasellus pulvinar suscipit volutpat. Sed ac vulputate erat, vel luctus ligula. Curabitur pretium mollis ornare. In sit amet nisl quis eros efficitur mollis. Quisque iaculis nisl sed tincidunt condimentum.

Suspendisse finibus, nunc a ultricies tempor, ex neque scelerisque diam, in varius ligula lectus ut nulla. Suspendisse dapibus mi vitae tellus consequat fermentum. Integer bibendum nisl quam, dignissim egestas augue efficitur vitae. Integer pellentesque felis nisl, id iaculis orci maximus sed. Sed blandit pretium leo, volutpat varius quam vestibulum sed. Curabitur sit amet volutpat eros. Nulla vitae tristique tellus. Duis efficitur nec libero placerat pharetra. Cras luctus neque a lorem mattis, eget laoreet magna pharetra. Nam ipsum ligula, hendrerit a orci vitae, ultricies auctor felis. Vestibulum at elit non tellus dapibus lobortis. Donec quis consectetur nibh, sit amet commodo massa. Sed ultrices, velit sed lacinia congue, ipsum mauris suscipit libero, vel posuere est ipsum eu justo. Aliquam ut venenatis neque, ut volutpat nunc. Suspendisse finibus ornare dolor sit amet tristique. Fusce a porta mauris.

Phasellus egestas augue id purus vestibulum, vel posuere ipsum dictum. Fusce eget bibendum dui. Maecenas tempus, sapien at vulputate pretium, elit felis dignissim velit, sit amet feugiat tellus quam vel turpis. Aenean quis viverra nulla, vel rhoncus augue. Morbi sit amet elit fermentum, finibus justo tristique, ultricies sapien. Sed sit amet lacinia nunc, ac pretium mauris. Donec dapibus velit non nunc sagittis semper. Ut ut nulla volutpat, rhoncus libero at, venenatis lorem. Maecenas iaculis dictum arcu eu accumsan. Donec non metus justo. Praesent non ipsum a nisl venenatis efficitur. Etiam lacinia, elit non tristique tincidunt, sapien erat malesuada diam, sed accumsan augue est eget ante. Maecenas at odio accumsan, luctus sem id, lacinia quam.

Sed at nisi erat. Integer scelerisque erat vitae aliquam sagittis. Duis id ipsum auctor orci dapibus porta vel quis augue. Vivamus consectetur dapibus turpis. Vivamus id facilisis nisi, quis fermentum urna. Ut fringilla auctor faucibus. Ut eu sapien nisi. Cras lorem risus, finibus sed scelerisque vel, commodo pulvinar lacus. In at luctus ante, non commodo quam.

3.2. Figura de prueba

En la Figura 3.1, se muestra un esquema conceptual básico de una red softwarizada.

Figura 3.1: Esquema de arquitectura softwarizada.

3.3. Tabla de prueba

La Tabla 3.1 presenta una coparativa entre arquitecturas de red tradicionales y softwarizadas.

Característica	Tradicional	Softwarizada
Flexibilidad	Baja	Alta
Control Centralizado	No	Sí
Automatización	Limitada	Completa

Tabla 3.1: Comparativa de arquitecturas de red.

3.4. Algoritmo de prueba

A continuación, el Algoritmo 1 muestra un pseudocódigo de ejemplo utilizando algorithm2e.

Algoritmo 1: Selección del nodo con mayor capacidad

```
Input: Lista de nodos N
Output: Nodo con mayor capacidad

1 maxNode \leftarrow null;
2 maxCap \leftarrow 0;
3 foreach n \in N do

4 | if n.capacidad > maxCap then

5 | maxCap \leftarrow n.capacidad;
6 | maxNode \leftarrow n;
7 | end

8 end

9 return maxNode;
```

Bibliografía

- [1] T. Meuser and R. Kundel, "The History of Highly Adaptive and Programmable Networks," in From Multimedia Communications to the Future Internet: Essays Dedicated to Ralf Steinmetz on the Occasion of His Retirement. Springer, 2024, pp. 61–73.
- [2] D. Levy and N. McKeown, "Overhaul May Bring Better, Faster Internet to 100 Million Homes," *Stanford University News*, 2003, accessed: 2025-06-09. [Online]. Available: https://news.stanford.edu/news/2003/october8/network-108.html
- [3] Open Networking Foundation, "ONF Overview," https://opennetworking.org/, 2025, accessed: 2025-06-09.
- [4] T. D. Nadeau and K. Gray, SDN: Software Defined Networks: An Authoritative Review of Network Programmability Technologies. O'Reilly Media, Inc., 2013.
- [5] ETSI, "Network Functions Virtualisation: An Introduction, Benefits, Enablers, Challenges & Call for Action," European Telecommunications Standards Institute (ETSI), White Paper Introductory White Paper, 2012, accessed: 2025-06-09. [Online]. Available: https://portal.etsi.org/NFV/NFV White Paper.pdf
- [6] A. Vahdat, D. Clark, and J. Rexford, "A purpose-built global network: Google's move to SDN," *Communications of the ACM*, 2016.
- [7] F. Tomonori, "Introduction to ryu sdn framework," *Open Networking Summit*, pp. 1–14, 2013.
- [8] S. Racherla, D. Cain, S. Irwin, P. Ljungstrøm, P. Patil, A. M. Tarenzio et al., Implementing ibm software defined network for virtual environments. IBM Redbooks, 2014.
- [9] R. S. Montero, E. Rojas, A. A. Carrillo, and I. M. Llorente, "Extending the Cloud to the Network Edge." *Computer*, vol. 50, no. 4, pp. 91–95, 2017.
- [10] M. Baddeley, R. Nejabati, G. Oikonomou, M. Sooriyabandara, and D. Simeonidou, "Evolving SDN for low-power IoT networks," in 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft). IEEE, 2018, pp. 71–79.
- [11] D. Carrascal, E. Rojas, D. Lopez-Pajares, N. Manso, J. Alvarez-Horcajo, and I. Martinez-Yelmo, "Softwarized Data-Driven Architecture for Edge Computing HoT

- Environments: A Proof of Concept," in 2025 28th Conference on Innovation in Clouds, Internet and Networks (ICIN). IEEE, 2025, pp. 64–68.
- [12] S. S. Hussain, M. A. Aftab, F. Nadeem, I. Ali, and T. S. Ustun, "Optimal energy routing in microgrids with IEC 61850 based energy routers," *IEEE Transactions on Industrial Electronics*, vol. 67, no. 6, pp. 5161–5169, 2019.
- [13] European Union, "Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources," https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX: 32018L2001, 2018, accessed: 2025-06-10.
- [14] Gobierno de España, "Real Decreto 244/2019, de 5 de abril, por el que se regulan las condiciones administrativas, técnicas y económicas del autoconsumo de energía eléctrica," https://www.boe.es/eli/es/rd/2019/04/05/244, 2019, bOE-A-2019-5089, Accessed: 2025-06-10.
- [15] R. E. Mackiewicz, "Overview of IEC 61850 and Benefits," in 2006 IEEE Power Engineering Society General Meeting. IEEE, 2006, pp. 8–pp.
- [16] E. Molina, E. Jacob, J. Matias, N. Moreira, and A. Astarloa, "Using Software Defined Networking to manage and control IEC 61850-based systems," *Computers & Electrical Engineering*, vol. 43, pp. 142–154, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0045790614002626
- [17] H. Maziku and S. Shetty, "Software Defined Networking enabled resilience for IEC 61850-based substation communication systems," in 2017 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2017, pp. 690–694.
- [18] W. Hu, Y. Hou, L. Tian, and Y. Li, "Selection of logistics distribution center location for SDN enterprises," *Journal of Management Analytics*, vol. 2, no. 3, pp. 202–215, 2015.
- [19] D. Carrascal, E. Rojas, J. M. Arco, D. Lopez-Pajares, J. Alvarez-Horcajo, and J. A. Carral, "A comprehensive survey of in-band control in sdn: Challenges and opportunities," *Electronics*, vol. 12, no. 6, p. 1265, 2023.
- [20] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, "OpenFlow: enabling innovation in campus networks," ACM SIGCOMM computer communication review, vol. 38, no. 2, pp. 69–74, 2008.
- [21] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., "P4: Programming protocol-independent packet processors," ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.
- [22] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger, R. Frank, and M. Menth, "A survey on data plane programming with p4: Fundamentals, advances, and applied research," *Journal of Network and Computer Applications*, vol. 212, p. 103561, 2023.

- [23] D. Carrascal, E. Rojas, J. Alvarez-Horcajo, D. Lopez-Pajares, and I. Martínez-Yelmo, "Analysis of P4 and XDP for IoT Programmability in 6G and Beyond," *IoT*, vol. 1, no. 2, pp. 605–622, 2020.
- [24] P4 Language Consortium, "P4Runtime Specification," https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html, 2023, accessed: 2025-06-16.
- [25] R. Vilalta, R. Muñoz, R. Casellas, R. Martínez, V. López, O. G. de Dios, A. Pastor, G. P. Katsikas, F. Klaedtke, P. Monti, A. Mozo, T. Zinner, H. Øverby, S. Gonzalez-Diaz, H. Lønsethagen, J.-M. Pulido, and D. King, "TeraFlow: Secured Autonomic Traffic Management for a Tera of SDN flows," in 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), 2021, pp. 377–382.
- [26] D. López Pajares, "Nuevos conmutadores de red para redes integradas con SDN," Tesis doctoral, Universidad de Alcalá, 2021, accessed: 2025-06-16. [Online]. Available: https://ebuah.uah.es/dspace/handle/10017/51030
- [27] C. Suo, I.-C. Tsai, and C. H.-P. Wen, "ERIC: Economical & reconfigurable hybrid-band control for software-defined datacenter network," in 2016 International Conference on Information Networking (ICOIN). IEEE, 2016, pp. 214–219.
- [28] A. Jalili, H. Nazari, S. Namvarasl, and M. Keshtgari, "A comprehensive analysis on control plane deployment in SDN: In-band versus out-of-band solutions," in 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), 2017, pp. 1025–1031.
- [29] D. Kafetzis, S. Vassilaras, G. Vardoulias, and I. Koutsopoulos, "Software-Defined Networking meets Software-Defined Radio in Mobile Ad hoc Networks: State of the Art and Future Directions," *IEEE Access*, 2022.
- [30] I. I. Awan, N. Shah, M. Imran, M. Shoaib, and N. Saeed, "An improved mechanism for flow rule installation in-band SDN," *Journal of Systems Architecture*, vol. 96, pp. 1–19, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1383762118304739
- [31] S. Khorsandroo, A. G. Sánchez, A. S. Tosun, J. Arco, and R. Doriguzzi-Corin, "Hybrid SDN evolution: A comprehensive survey of the state-of-the-art," *Computer Networks*, vol. 192, p. 107981, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1389128621001109
- [32] E. Rojas, R. Amin, C. Guerrero, M. Savi, and A. Rastegarnia, "Challenges and Solutions for hybrid SDN," *Computer Networks*, vol. 195, p. 108198, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1389128621002498
- [33] M. K. MURTADHA, "SDN based device to device communication architecture for 5G mobile networks," *Journal of Engineering Science and Technology*, vol. 16, no. 4, pp. 3033–3047, 2021.

- [34] J. Guo, L. Yang, X. Liu, Q. Chen, C. Fan, and X. Li, "Performance Modelling and Evaluation of In-Band Control Mode in Software-Defined Satellite Networks Based on Queuing Theory," in 2021 2nd International Conference on Computing, Networks and Internet of Things, ser. CNIOT '21. New York, NY, USA: Association for Computing Machinery, 2021. [Online]. Available: https://doi.org/10.1145/3468691.3468697
- [35] Y. Shi, Q. Yang, X. Huang, D. Li, and X. Huang, "An SDN-Enabled Framework for a Load-Balanced and QoS-Aware Internet of Underwater Things," *IEEE Internet of Things Journal*, pp. 1–1, 2022.
- [36] I. Maity, R. Dhiman, and S. Misra, "EnPlace: Energy-Aware Network Partitioning for Controller Placement in SDN," *IEEE Transactions on Green Communications* and Networking, 2022.
- [37] S. Chattopadhyay, S. Chatterjee, S. Nandi, and S. Chakraborty, "Aloe: An elastic auto-scaled and self-stabilized orchestration framework for iot applications," in *IEEE INFOCOM 2019-IEEE Conference on Computer Communications*. IEEE, 2019, pp. 802–810.