HMMS & ANN

Ju

23 de febrero de 2017

1. Marco Teórico de las Cadenas de Markov

Secuencias

Sea un alfabeto $X=\{0,1,\cdots,m-1\}$ de símbolos, con m un natural. Si $x\in X^{\mathbb{Z}}$, entonces $x=\cdots x_{-1}x_0x_1\cdots$ secuencia infinita. Donde los índicies i<0 denotan el pasado de la secuencia, y los $i\geq 0$ el futuro, particularmente el índice i=0 es el primer símbolo desconocido de la secuencia.

En estos términos definimos una palabra $w \in X^l$ de longitud l, como una l-tupla de X. ϕ denotará la palabra vacía de longitud l. Una subsecuencia s es una estructura s = (w, (a, b)), donde l es una palabra y l este l tupla de l est una palabra y l este l tupla de l est una palabra y l est l est una palabra y l est l est una palabra y l est l est l est una palabra y l est l est

El conjunto $A_s = \{x \in X^{\mathbb{Z}} | x_i = s_i \forall i \in [a, b] \}$ es el conjunto de la secuencias de $X^{\mathbb{Z}}$ que contienen a s, si por ejemplo $s = (\phi, (a, a - 1))$, entonces $A_s = X^{\mathbb{Z}}$.

El conjunto X^* denotará el de todas las palabras.

Procesos

Un proceso es una medida de probabilidad estacionaria en un espacio de secuencias.

Una medida de probabilidad es una función que asigna probabilidades a conjuntos (el espacio medible de probabilidades), en este caso a conjuntos de secuencias. Sea χ la menor colección de subconjuntos de $X^{\mathbb{Z}}$ tq:

- 1. Para toda secuencia $s, A_s \in X^{\mathbb{Z}}$.
- 2. χ es cerrado bajo complementos y uniones contables.

El par $(X^{\mathbb{Z}}, \chi)$ es el espacio medible que asigna probabilidades a los conjuntos A_S fijados por las subsecuencias s. Definiremos entonces $P(s) = P(A_s)$, tenemos en particular:

$$P(\phi) = P(X^{\mathbb{Z}}) \ (1)$$

En nuestra definición de proceso nos referíamos también a ellos como estacionarios. Si D es la función desplazamiento $D: X^{\mathbb{Z}} \to X^{\mathbb{Z}}$, que actúa sobre todo $x \in X^{\mathbb{Z}}$ de manera que $D(x_t) = x_{t+1}$, es decir desplaza el tiempo de origen.

Decimos que P es una medida de probabilidad estacionaria si $\forall A \in X, P(D(A)) = P(A)$, como D es de hecho un automorfismo sobre $X^{\mathbb{Z}}$, entonces $P(D^{-1}(A)) = P(D^{-1}(D(A))) = P(A)$

Finalmente podemos definir de forma más formal un proceso Q Como el espacio de probabilidades estacionario $(X^{\mathbb{Z}}, \chi, P)$.

Sea w una palabra, entonces si P estacionario P(w) = P(s). Además de manera trivial podemos obtener que, si W_l es el conjunto de las palabras de longitud l > 0:

$$\sum_{z \in W_l} P(wz) = \sum_{z \in W_l} P(zw) = P(w) (2)$$

Así, cualquier función de X^* que satisfaga (1) y (2) define un proceso.