EEE-2103: Electronic Devices and Circuits

Dept. of Computer Science and Engineering University of Dhaka

Prof. Sazzad M.S. Imran, PhD
Dept. of Electrical and Electronic Engineering
sazzadmsi.webnode.com

DC Load Line and Bias Point

Promble-21:

The transistor circuit in Fig. 21(a) has the collector characteristics shown in Fig. 21(b). Determine the circuit Q-point and estimate the maximum symmetrical output voltage swing. Note that V_{CC} = 18 V, R_C = 2.2 k Ω , and I_B = 40 μ A.

$$I_C = 0 \Rightarrow$$

 $V_{CE} = V_{CC} - I_C R_C = V_{CC} - 0 = 18 \text{ V}$
Point $A = (18, 0)$

$$V_{CE} = 0 \text{ V} \rightarrow 0 = V_{CC} - I_C R_C$$

 $I_C = V_{CC} / R_C = 18/2.2 \times 10^3 \approx 8.2 \text{ mA}$
Point $B = (0, 8.2)$

Q-point is at intersection of load line and I_B = 40 μA DC bias conditions are \rightarrow

$$I_C \approx 4.1 \text{ mA} \text{ and } V_{CE} \approx 9 \text{V}$$

Max symmetrical output voltage swing, $\Delta V_{CE} \approx \pm 9 \text{ V}$

DC Load Line and Bias Point

$$\begin{aligned} \text{Effect of } R_E & \boldsymbol{\rightarrow} \\ \text{DC load} &= R_E \\ V_{CE} &= V_{CC} - I_E R_E \ [I_C \approx I_E] \end{aligned}$$

Effect of
$$R_C$$
 and $R_E \rightarrow$

$$DC \text{ load} = R_C + R_E$$

$$V_{CE} = V_{CC} - I_C(R_C + R_E)$$

For dc analysis \rightarrow

network can be isolated from ac levels replacing capacitors with open-circuit for dc, f = 0 Hz, and X_C = 1/(2 πfC) = 1/(2 π (0)C) = ∞ Ω

$$BE loop \Rightarrow \\ +V_{CC} - I_B R_B - V_{BE} = o$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B}$$

$$CE \text{ loop} \Rightarrow$$

$$I_C = \beta I_B$$

$$V_{CE} + I_C R_C - V_{CC} = 0$$

$$V_{CE} = V_{CC} - I_C R_C$$

Problem-22:

Determine the following for the fixed-bias configuration of Fig. 22.

- a) I_{BO} and I_{CO} . b) V_{CEO} .
- c) V_B and V_C . d) V_{BC} .

a)
$$I_{BQ} = \frac{V_{CC} - V_{BE}}{R_B} = \frac{12 - 0.7}{240 \times 10^3} = 47.08 \,\mu\text{A}$$

 $I_{CO} = \beta I_{BO} = (50)(47.08 \times 10^{-6}) = 2.35 \,\text{mA}$

b)
$$V_{CEQ} = V_{CC} - I_C R_C = 12 \text{ V} - (2.35 \times 10^{-3})(2.2 \times 10^3) = 6.83 \text{ V}$$

c)
$$V_B = V_{BE} = 0.7 \text{ V}$$

 $V_C = V_{CE} = 6.83 \text{ V}$

d)
$$V_{BC} = V_B - V_C = 0.7 - 6.83 = -6.13 \text{ V}$$

Transistor saturation:

saturation = levels have reached their maximum values.

transistor saturation region =

current is maximum for particular design.

characteristic curves join.

$$V_{CE} \le V_{CEsat} \approx \text{o V}$$

 $R_{CE} = V_{CE}/I_C = \text{o}/I_{Csat} = \text{o }\Omega$

Saturation conditions are normally avoided \rightarrow *BC* junction is no longer reverse-biased output amplified signal will be distorted.

Set
$$V_{CE}$$
 = 0 V.
$$I_{Csat} = V_{CC}/R_C$$
 Keep $I_C < I_{Csat}$ if we expect linear amplification.

Load line analysis:

Output equation \rightarrow

$$V_{CEQ} = V_{CC} - I_C R_C$$

$$I_C = o \text{ mA} \rightarrow V_{CE} = V_{CC} - (o)R_C = V_{CC}$$

$$V_{CE} = o V \rightarrow o = V_{CC} - I_C R_C$$

 $I_C = V_{CC}/R_C$

Load line analysis:

If I_B is changed by varying $R_B \rightarrow$

If V_{CC} is held fixed and R_C increased \rightarrow If I_B is held fixed \rightarrow

Load line analysis:

If R_C is fixed and V_{CC} decreased \rightarrow

Problem-23:

Given the load line of Fig. 23 and the defined Q-point, determine the required values of V_{CC} , R_C , and R_B for a fixed-bias configuration.

$$V_{CE}$$
 = V_{CC} = 20 V at I_C = 0 mA

$$I_C = V_{CC}/R_C$$
 at $V_{CE} = 0$ V $R_C = V_{CC}/I_C = 20/10 \times 10^{-3} = 2$ k Ω

$$I_B = (V_{CC} - V_{BE})/R_B$$

 $R_B = (V_{CC} - V_{BE})/I_B = (20 - 0.7)/25 \times 10^{-6} = 772 \text{ k}\Omega$

