COMPM012 - Coursework 3

Esben A. Sørig

November 28, 2014

1 Practical

1.1 k-means implementation

```
function [clusterings, centers] = mykmeans(X, k)
        % Randomly initialize centers of clusters
         \begin{array}{l} c = \operatorname{datasample}(X,\ k,\ 'Replace',\ false); \\ r = \operatorname{repmat}(0\,,\ \operatorname{size}(X,\ 1)\,,\ k); \end{array} 
 3
 4
        oldr = 1; % something that is not equal to r initially
 5
 6
        dist = @(x, y) norm(x-y);
9
        % Loop as long as the clustering is changing
10
        while ~isequal(r, oldr)
             oldr = r;
11
             % Assign points to clusters
13
             for i = 1: size(X,1)
14
                   cluster = 1;
15
                   for j = 1:k
16
                        if dist(X(i, :), c(j, :)) < dist(X(i, :), c(j, :))
17
        cluster, :))
                             cluster = j;
18
                        \quad \text{end} \quad
19
                   end
20
21
                   r(i, :) = [repmat(0, 1, cluster - 1) \ 1 \ repmat(0, 1, k - 1)]
22
        cluster)];
             end
23
24
             \% Update center positions
25
             for i = 1:k
27
                   npoints = 0;
                   c(i, :) = 0;
28
                   for j = 1: size(r, 1)
29
```

```
c(i, :) = c(i, :) + r(j, i) *X(j, :);
30
                     npoints = npoints + r(j, i);
31
32
                end
                c(i, :) = c(i, :) / npoints;
33
           end
34
       end
35
36
       centers = c;
37
       % Output formatting (vector with cluster index for each row
       clustering = repmat(0, size(X,1), 1);
39
       for i = 1: size(X,1)
40
          for j = 1:k
41
               if r(i, j) == 1
42
                     clustering(i) = j;
43
44
                    break;
45
               end
          end
46
       end
47
48
       clusterings = clustering;
49
50 end
```

1.2 k-means test on data generated from three gaussians

Firstly, we generate the data and run the k-means algorithm on it.

```
1 % Generate data
2 data = genData2;
4 % Put data for each cluster in a seperate list
5 \text{ cluster1} = [];
6 \text{ cluster2} = [];
7 \text{ cluster3} = [];
  [clusterings, centers] = mykmeans(data, 3);
  for i = 1: size(data, 1)
10
       if clusterings(i) == 1
11
            cluster1 = [cluster1; data(i, :)];
       end
13
       if clusterings(i) == 2
14
            cluster2 = [cluster2; data(i, :)];
15
16
       end
17
       if clusterings(i) == 3
            cluster3 = [cluster3; data(i, :)];
18
       end
19
20 end
```

We can now plot the clusters the algorithm has found

1 figure

```
hold on

scatter(centers(:, 1), centers(:, 2), 200, 'xblack');

scatter(cluster1(:, 1), cluster1(:, 2));

scatter(cluster2(:, 1), cluster2(:, 2));

scatter(cluster3(:, 1), cluster3(:, 2));

legend('Centers', 'Cluster1', 'Cluster2', 'Cluster3');

hold off
```


Comparing this to the true classifications

```
figure
hold on
scatter(data(1:50, 1), data(1:50, 2));
scatter(data(51:100, 1), data(51:100, 2));
scatter(data(101:150, 1), data(101:150, 2));
legend('True Cluster1', 'True Cluster2', 'True Cluster3');
hold off
```


We clearly get an intuition of how the k-means algorithm is performing on the data. Please see appendix 4.1 for the code that creates the animation of the convergence to a solution for this dataset.

We measure the mean error and standard deviation of the error of the clustering over a 100 runs of the algorithm.

```
1 % Error measurements
  errors = [];
  for j = 1:100
      [clusterings, centers] = mykmeans(data, 3);
      % keep track of the classifications of each true cluster
6
      firstcluster = [0,0,0];
      secondcluster = [0,0,0];
8
      thirdcluster = [0,0,0];
9
      for i = 1:50
10
           firstcluster(clusterings(i)) = 1 + firstcluster(
11
      clusterings(i));
      end
12
      for i = 51:100
13
```

```
secondcluster(clusterings(i)) = 1 + secondcluster(
14
      clusterings(i));
15
      end
      for i = 101:150
16
           thirdcluster(clusterings(i)) = 1 + thirdcluster(
17
      clusterings(i));
18
      \% We assume that the mode of the classifications of a true
19
      cluster is the class of the true cluster. Therefore, the
      error of a cluster is the frequency of other classifications
      appearing for that cluster.
      firstcluster = sort(firstcluster);
20
      secondcluster = sort(secondcluster);
21
      thirdcluster = sort(thirdcluster);
22
      misclassifications = firstcluster(1) + firstcluster(2) +
23
      secondcluster(1) + secondcluster(2) + thirdcluster(1) +
      thirdcluster (2);
      errors = [errors misclassifications/150];
25 end
26
27 meanerror = mean(errors)
28 stddeviationerror = std(errors)
```

Which returns:

```
meanerror =
0.1438
stddeviationerror =
0.0155
```

2 Questions

2.1 Dataset with local minima

We can easily construct a dataset on which our k-means algorithm has local minima. An example of such a dataset is the set $\{(0,0),(2,0),(-1,4),(3,4)\}$. This is clear if we plot the data.

```
1 X = [0, 0; 2,0; -1 4; 3 4];

2 hold on

4 axis([-2 5 -1 5]);

5 scatter(X(:, 1), X(:, 2));
```

Which gives the plot:

Running k-means on this dataset will converge in one of two local minima. We run the algorithm twice and plot the centers of the clusters: (in order to get two different results, this code may have to be run several times)

```
[ clustering1 , centers1] = mykmeans(X, 2);
[ clustering2 , centers2] = mykmeans(X, 2);
[ legend('Data');

scatter(centers1(:, 1), centers1(:, 2));
scatter(centers2(:, 1), centers2(:, 2));

legend('Data', 'Minimum 1 centers', 'Miinimum 2 centers');
hold off
```

Which produces:

Here we clearly see the two local minima of the convergence on the four data points.

2.2 Argument that the centroid is the minimizer of the sum of squared distances

We can minimize the summed squared error

$$SSE = \sum_{i=1}^{k} \sum_{\mathbf{x} \in C_i} ||\mathbf{x} - \mathbf{c}_i||^2 = \sum_{i=1}^{k} \sum_{\mathbf{x} \in C_i} (\mathbf{x} - \mathbf{c}_i)^2$$
 (1)

for the k^{th} centroid by setting the derivative with respect to the k^{th} centroid equal to zero.

$$\frac{\delta}{\delta \mathbf{c}_{k}} \sum_{i=1}^{k} \sum_{\mathbf{x} \in C_{i}} (\mathbf{x} - \mathbf{c}_{i})^{2} = \sum_{i=1}^{k} \sum_{\mathbf{x} \in C_{i}} \frac{\delta}{\delta \mathbf{c}_{k}} (\mathbf{x} - \mathbf{c}_{i})^{2}$$

$$= \sum_{\mathbf{x} \in C_{k}} 2(\mathbf{x} - \mathbf{c}_{k}) = 0$$

$$\Rightarrow \sum_{\mathbf{x} \in C_{k}} \mathbf{c}_{k} = \sum_{\mathbf{x} \in C_{k}} \mathbf{x}$$

$$\Rightarrow \mathbf{c}_{k} = \frac{1}{\sum_{\mathbf{x} \in C_{k}} 1} \sum_{\mathbf{x} \in C_{k}} \mathbf{x}$$
(2)

We see that the minimizer of \mathbf{c}_k is equivalent to the centroid of the cluster.

2.3 Proof of convergence in finite amount of steps

We know that the k-means algorithm converges but we do not know if it does so in finitely or infinitely many steps. Here we show that the k-means algorithm does indeed converge in finitely many steps.

Proof: The k-means algorithm stops once there is no longer any improvement in the clustering. It will therefore never reach the same clustering twice. Each possible k-clustering of the input consists of k subsets. The number of subsets of the input is a finite number and the number of k subsets of the input is bounded above by this. Consequently, there is a finite number of possible clusterings. Hence the k-means algorithm will terminate after a finite number of iterations.

3 Extension

- 3.1 k-means segmentation
- 3.2 (p, k)-means
- 4 Appendix
- 4.1 Movie generation code

```
1 %% Movie
2 X = data;
3 k = 3;
```

```
4 % Randomly initialize centers of clusters
5 c = datasample(X, k, 'Replace', false);
6 r = repmat(0, size(X, 1), k);
7 oldr = 1; % something that is not equal to r initially
8 \text{ movie} = [];
dist = @(x, y) norm(x-y);
11
12~\% Loop as long as the clustering is changing
  while ~isequal(r, oldr)
       oldr = r;
14
15
      % Assign points to clusters
16
       for i = 1: size(X,1)
17
           cluster = 1;
18
           for j = 1:k
19
                if \ dist(X(i, :), c(j, :)) < \ dist(X(i, :), c(cluster))
20
      , :))
                    cluster = j;
21
               end
22
           end
23
24
           r(i, :) = [repmat(0, 1, cluster - 1) \ 1 \ repmat(0, 1, k - 1)]
25
      cluster)];
      end
26
27
      %MOVIE GENERATION
28
      % Split the data into the three clusters
29
       cluster1 = [];
30
       cluster2 = [];
31
       cluster3 = [];
32
33
       for i = 1: size(X, 1)
34
           if r(i,1) == 1
35
                cluster1 = [cluster1; X(i, :)];
36
           end
37
           if r(i,2) == 1
                cluster2 = [cluster2; X(i, :)];
39
           end
40
           if r(i,3) == 1
41
                cluster3 = [cluster3; X(i, :)];
42
43
           end
      end
44
45
      % Plot the centers and the three clusters
46
47
      hold on
       scatter(c(:, 1), c(:, 2), 200, 'xblack');
48
       if size (cluster 1, 1) \tilde{}=0
49
           scatter(cluster1(:, 1), cluster1(:, 2));
50
```

```
end
51
       if size(cluster2, 1) ~= 0
52
            scatter(cluster2(:, 1), cluster2(:, 2));
53
54
       if size (cluster3, 1) = 0
55
            scatter(cluster3(:, 1), cluster3(:, 2));
56
57
       legend('Centers', 'Cluster1', 'Cluster2', 'Cluster3');
58
       hold off
59
       movie = [movie getframe];
60
61
       \% MOVIE GENERATION OVER
62
63
      \% Update center positions
64
       \quad \quad \text{for} \quad i \ = \ 1 \colon k
65
           npoints = 0;
66
           c(i, :) = 0;
67
           for j = 1: size(r, 1)
68
                c(i, :) = c(i, :) + r(j, i)*X(j, :);
69
                npoints = npoints + r(j, i);
70
           end
71
           c(i, :) = c(i, :) / npoints;
72
       end
73
74 end
movie2avi(movie, 'k-means.avi', 'fps', 1);
```