

20/05/2022 (A)

Semester: January 2022 - May 2022 **Examination: ESE Examination** Duration: 3 Hrs. Maximum Marks: 100 Semester: Class: Programme code: 01 1/H/H/IV/V/VI/VII/ FY/SY/TY/LY Programme: B. Tech Computer Engineering (SVU 2020) Name of the Constituent College: K. J. Somaiya College Name of the department: /COMP/ETRX/EXTC/IT/MECH of Engineering Course Code: 116U01C402 Name of the Course: Analysis of Algorithm Instructions: 1)Draw neat diagrams 2)Assume suitable data if necessary

Question No.		Max. Marks
Q1 (a)	Explain the significance of Big-Oh, Big-Theta and Big-Omega notations. Compute Space complexity and time complexity for the following codes. Code segment 1: factorial(int n) { if (n==0 n==1) return 1; else return (n*factorial(n-1)); }	10 M
	Code segment 2: int factorial (int n) { int fact=1; for(i=1; i <n;i++) fact="fact*i;" fact;="" return="" td="" }<=""><td></td></n;i++)>	
Q1 (b)	I. Derive Average case complexity of quick sort. II. Solve the recurrence T (n) =T (n/2) +1 using recurrence tree method.	10 M
Q2 (a)	 I. Differentiate between Greedy approach and Dynamic programming strategies. Also list and explain steps in a dynamic programming solution. II. Explain Dynamic programming approach to solve knapsack problem. Find optimal solution to knapsack instance n = 4, m = 9 (P1, P2, P3,P4) = (4,5,7,10) and (W1, W2, W3,W4) = (1,3,4,6). OR Given a chain of four matrices A1, A2, A3, A4 with P0=5, P1=7, P2= 8, P3= 4 & P4=3 . Find m [1, 4]. 	10 M
Q2 (b)	Define Minimum Spanning Tree. Compute MSTs using Kruskal's and Prim's algorithm.	10 M

Q4 (a)	Solve Traveling Salesperson problem using dynamic programming. Find a minimum cost tour starting and ending at Vertex 1. Also write the cost of the tour.	10 M
	0 10 15 20 5 0 9 10 6 13 0 12 8 8 9 0	
Q4 (b)	Solve the given problem instance of Multistage graphs with forward or backward (either of the methods)	10 M
	OR Solve 8 -puzzle problem for the given initial and goal state using branch and bound strategy.	
	1 4 7	
Q5 (a)	Define Longest Common Subsequence Problem. Give Dynamic programming Solution. Solve given example: X-MANTRALAYA Y-MALAYALAM	10 M
	OR Explain the concept of String matching with finite automata with suitable examples. State its complexity.	
Q5 (b)	Explain different complexity classes with suitable examples. Comment relationship among P, NP, NP-Hard and NP-Complete problems.	10 M