Assignment 1

Hao Lee 141070027

Nanjing University

1 Problem 1

Recall that in class we show by the probabilistic method how to deduce a $\frac{n(n-1)}{2}$ upper bound on the number of distinct min-cuts in any multigraph with vertices from the $\frac{2}{n(n-1)}$ lower bound for success probability of Karger's min-cut algorithm.

Also recall that the algorithm taught in class guarantees to return a mincut with probability at least. Does this imply a much tighter upper bound on the number of distinct min-cuts in any multigraph with vertices? Prove your improved upper bound if your answer is "yes", and give a satisfactory explanation if your answer is "no".

1.1 solution:

the problem is: how many different min-cuts in a graph G, given $\Pr[c \text{ is returned}] \geq \frac{2}{n(n-1)}$, c is a min-cut in G. figure out the upper bound. assume G has r min-cuts, c_1, c_2, \ldots, c_r . thus $\Pr[c_i \text{ is returned}] \geq \frac{2}{n(n-1)}$, given $i \in 1, 2, \ldots r$. and these event that c_i is returned is mutually exclusive. $\Pr[\bigcup_{i=1}^r c_i \text{ is returned}] \geq \sum_{i=1}^r \frac{2}{n(n-1)} = \frac{2 \times r}{n(n-1)}$. and $\Pr[\bigcup_{i=1}^r c_i \text{ is returned}] \leq 1$. thus, $r \leq \frac{n(n-1)}{2}$.

I can give a counter-example for a complete graph with n vertices, due to its symmetry, the number of distinct min-cuts in this kind of graph must be upper than n. and $O(\log n)$ is lower than n. so $O(\log n)$ cannot be the upper bound so my answer is 'no'.

2 Problem 2

Give an efficient randomized algorithm with bounded one-sided error (false positive), for testing isomorphism between rooted trees with n vertices. Analyze your algorithm.

2.1 solution:

the thought we want to solve the problem is to find an expression of the trees using invariant 0 and 1. then using the fingerprint algorithm to check the identity.

we can use the AHU algorithm to figure out the problem, the idea of the algorithm is to find a sole number only have 0 and 1 to represent a rooted tree, the figure shows that how the algorithm works, and then the problem becomes the communication complexity, and one-sided error $\leq \frac{1}{2}$

${\bf Algorithm~1~Tree~isomorphism~(AHU)~AHUSORT(v)}$

Input:

two rooted trees with n vertices.

Output:

whether the two trees are isomorphed;

- 1: if v is a leaf then
- 2: Name v '10'
- 3: **else**
- 4: **for** all child w of v **do**
- 5: AHUSORT(w);
- 6: sort the names of the children of v;
- 7: concatenate the names of all children of v to temp;
- 8: Give v the name 1temp0;

Fig. 1. the tree before and after sorted

Fig. 2. the tree named

3 Problem 3

describe a strategy of choosing an x from the sampled set $\{Y_1, Y_2, ... Y_t\}$ such such that rank(x) is approximately k. here rank(x) denotes the rank of x in the

original list $\{x_1, x_2, ... x_n\}$: The rank of the largest number among $x_1, x_2, ... x_n$ is 1; the rank of the second largest number among $x_1, x_2, ... x_n$ is 2, Choose your t as small as possible (in big-O notation) so that with probability at least $1 - \delta$. your strategy returns an x such that $(1 - \epsilon)k \leq \operatorname{rank}(x) \leq (1 + \epsilon)k$.

3.1 solution:

the problem can be simplified as randomly select a number from a set of n distinct numbers. $rank^{-1}(k)$ is the number we want. $\Pr[Y_i \geq rank^{-1}(k)] = \frac{k-1}{n}$. then repeat for t times, we want the number of the elements in the set $\{Y_1, Y_2, \dots Y_t\}$ that greater than $rank^{-1}(k)$, we call the number m, then the m-largest number in Y is the k-largest number in X, obviously m obey the Bernoulli trials, we define nonnegative Z represent the distribution of m, then:

$$Pr[Z = m] = C_t^m p^m \times (1 - p)^{t - m}$$
 (1)

in this equation, $p = \frac{k-1}{n}$ denotes the possibility that we successfully fetched. then we get the expection $\mu = t \times p$.

$$\begin{split} \mu &= t \times p \\ &= t \times \frac{k-1}{n} \\ &= \frac{t \times (k-1)}{n} \end{split}$$

so the m-th largest number in Y is x. then we define: $\operatorname{rank}_{X}(x)$ is the rank of x in X, $\operatorname{rank}_{Y}(x)$ is the rank of x in Y. thus

$$Pr[(1 - \epsilon)k \le \operatorname{rank}(x) \le (1 + \epsilon)k] = Pr[(1 - \epsilon)k \le \operatorname{rank}_{\mathbf{X}}(x) \le (1 + \epsilon)k]$$
$$= Pr[(1 - \epsilon)\mu \le \operatorname{rank}_{\mathbf{Y}}(x) \le (1 + \epsilon)\mu]assume$$
$$= Pr[(1 - \epsilon)\mu \le m \le (1 + \epsilon)\mu]$$

$$W_i = \frac{Z_i}{E(Z_i)}$$
, then $E(W) = 1$, $D(W) = \frac{D(Z)}{E^2(Z)} = \frac{1-p}{t \times p}$,
 $Pr[(1-\epsilon)\mu \le m \le (1+\epsilon)\mu] = Pr[|W - E(W)| \le \epsilon] \ge 1-\delta$

due to Chebyshev's Inequality, then

$$\begin{split} Pr[|W - E(W)| &\geq \epsilon] \leq \frac{D(W)}{\epsilon^2} \\ &= \frac{1 - p}{\epsilon^2 \times tp} \end{split}$$

assume $p \geq \frac{1}{2}$, (if $p \leq \frac{1}{2}$, we can transfer this problem to find the k smallest number then $p \geq \frac{1}{2}$ still) then $t = \frac{1}{\epsilon^2 \times \delta}$

4 Problem 4

4.1 Solution:

- 1. (1) assume $m=\frac{n}{2}$, then the maximum load is also $\Theta\left(\frac{\log n}{\log\log n}\right)$. so the the maximum load $P \geq \Theta\left(\frac{\log n}{\log\log n}\right)$ for the remaining $\frac{n}{2}$, because the power of two choices is exponentially less than one choice. so the the maximum load $P \leq \Theta\left(\frac{\log n}{\log\log n}\right)$ then the asymptotically tight bound is $\Theta\left(\frac{\log n}{\log\log n}\right)$.
- 2. (2) this situation is more easier. I can view the situation as twice throw then get the sum. so the maximum load w.h.p is $\Theta\left(\frac{\log n}{\log\log n}\right) + \Theta(\log\log n) = \Theta\left(\frac{\log n}{\log\log n}\right)$ 3. (3) i think this paradigm is also larger than throw $\frac{n}{2}$ balls into n bins. so the
- 3. (3) it think this paradigm is also larger than throw $\frac{n}{2}$ balls into n bins, so the bound is also $\Theta\left(\frac{\log n}{\log\log n}\right)$.

5 Problem 5

5.1 Solution:

1. (1)

$$\begin{split} Pr[X \geq t] &= Pr[(\mathrm{e}^{\lambda X}) \geq (\mathrm{e}^{\lambda t})], for all \lambda \geq 0 \\ &\leq \frac{E(\mathrm{e}^{\lambda X})}{\mathrm{e}^{\lambda t}}, due to generalized Markov's inequality. \\ &= \mathrm{e}^{\ln \frac{E(\mathrm{e}^{\lambda X})}{\mathrm{e}^{\lambda t}}} \\ &= \mathrm{e}^{-(\lambda t - \Psi_X(\lambda))} \end{split}$$

then for all $\lambda \geq 0$, $Pr[X \geq t] \leq e^{-(\lambda t - \Psi_X(\lambda))}$, $\operatorname{so} Pr[X \geq t] \leq \min e^{-(\lambda t - \Psi_X(\lambda))}$, then $\Psi_X^*(t) := \sup_{\lambda \geq 0} (\lambda t - \Psi_X(\lambda))$

- 2. $let f(\lambda) = \lambda t \Psi_X(\lambda)$, given a fixed t, the function get it's extreme value when $f'(\lambda)$, that is $\Psi'_X(\lambda) = t$
- 3. Normal random variables we can get $\mathbb{E}\left[e^{\lambda X}\right] = e^{\frac{2\lambda\mu \lambda^2\sigma}{2\sigma}}$, then $\Psi_X(\lambda) = \frac{2\lambda\mu \lambda^2\sigma}{2\sigma}$. the detailed proof is in the supporting materials.

6 Problem 6

A boolean code is a mapping $C: \{0,1\}^k \to \{0,1\}^n$. Each $x \in \{0,1\}^k$ is called a message and y = C(x) is called a codeword. The code rate r of a code C is $r = \frac{k}{n}$. A boolean code $C: \{0,1\}^k \to \{0,1\}^n$ is a linear code if it is a linear transformation, i.e. there is a matrix $A \in \{0,1\}^{n \times k}$ such that C(x) = Ax for any $x \in \{0,1\}^k$, where the additions and multiplications are defined over the finite field of order two, $(\{0,1\}, +_{\text{mod }2}, \times_{\text{mod }2})$, The distance between two codeword y_1, y_2 , is defined as the Hamming distance between them. Formally, $d(y_1, y_2) = \|y_1 - y_2\|_1 = \|y_1 - y_2\|_1$

 $\sum_{i=1}^n |y_1(i)-y_2(i)|$ The distance of a code C is the minimum distance between any two codewords. Formally, $d=\min_{\substack{x_1,x_2\in\{0,1\}^k\\x_1\neq x_2}} d(C(x_1),C(x_2)).$ Usually we want to make both the code rate r and the code distance d as large as possible, because a larger rate means that the amount of actual message per transmitted bit is high, and a larger distance allows for more error correction and detection. Use the probabilistic method to prove that there exists a boolean code $C:\{0,1\}^k\to\{0,1\}^n$,of code rate r and distance $\left(\frac{1}{2}-\Theta\left(\sqrt{r}\right)\right)n$ Try to optimize the constant in $\Theta(\cdot)$ Prove a similar result for linear boolean codes.

6.1 solution:

- 1. first we want to prove that: for random i,j, $d(y_i, y_j) = \|y_i y_j\|_1 = \sum_{k=1}^n |y_i(k) y_j(k)|$ which is the Hamming distance between y_i and y_j , the expectation of d is $\frac{n}{2}$ the detailed proof is in the supporting material. then we define e_{ij} is the comparation between y_i and y_j . then we can obviously find that there are $\frac{(2^k-1)\times 2^k}{2}$ edges. that is, there are $\frac{(2^k-1)\times 2^k}{2}$ comparations in the whole $\{0,1\}^n$ space. then we can define $X:X_1,X_2,...X_{\frac{(2^k-1)\times 2^k}{2}}$, represent the random event. we can use the Markov's Inequality to get a bound for a X_i . and the problem is to prove the possibility of the $\frac{(2^k-1)\times 2^k}{2}$ union sets is lower than 1, which is proved in the supporting material.
- 2. the problem is similar to question 1.