#### Metropolis

A modern beamer theme

Matthias Vogelgesang May 18, 2017

Center for modern beamer themes

#### Table of contents

- 1. Introduction
- 2. Background
- 3. Synthesis Of Timed Automata From Scenarios
- 4. Optimal Clock Allocation of Timed Automata
- 5. Case Studies
- 6. Conclusion

Introduction

Background

#### **Timed Automata**

- A timed automaton [1] is a finite state automaton extended with a finite set of real-valued clocks.
- Upon an input, the selection of next state is based not only on the input symbol but also on the time of the current symbol with respect to the formerly read symbols.

**Example:** Consider a simple timed automaton in Figure 1. This automaton accepts an input sequence 'a' followed by 'b' such that, there is 2 units of time difference between any two consecutive a's and b's.



Figure 1: Simple Timed Automaton

# Synthesis Of Timed Automata From Scenarios

#### **Synthesis Of Timed Automata From Scenarios**

- Constructing a time annotated graph from scenarios, and
- Constructing a timed automaton from time annotated graph.

- 1. Determining the required number of clocks,
- 2. Adding clock resets,
- 3. Replacing the time annotations with the clock constraints

content...

```
minitial: card-not-inserted
                                                     minitial: card-not-inserted
(insert-card, {})
( enter-pin, \{W - t_0 > 5, W - t_0 < 60\})
(incorrect-pin, {})
                                                     (insert-card, {})
( re-enter-pin, \{W - t_0 \ge 5, W - t_0 \le 60\})
                                                     ( enter-pin, \{W - t_0 \ge 5, W - t_0 \le 60\})
(correct-pin, {})
                                                     ( correct-pin, {})
( request-data-from-bank, {})
                                                     ( request-data-from-bank, {})
(display-menu, \{W - t_4 < 5\})
                                                     (display-menu, \{W - t_4 < 5\})
mfinal: menu-displayed
                                                     mfinal: menu-displayed
             TFS of Scenario 1
                                                                 TES of Scenario 2
```

Figure 2: Timed Event Sequences of the ATM



Figure 3: Mode Graph for ATM



Figure 4: Time annotated graph synthesized from two TES in Figure ??



Figure 5: Timed automaton constructed from time annotated graph

**Optimal Clock Allocation of** 

**Timed Automata** 

#### **Optimal Clock Allocation of Timed Automata**

- Liveness analysis
- Clock allocation

#### Liveness Range Analysis

- **clock\_ref**: *clock\_ref*(*r*) is the set of clocks which are referred to in the clock constraints on *r*.
- born: born(r) identifies a clock that is reset on r whose value can be used on some transition reachable from r.
- active: active(r) identifies clocks that are "alive" on r (i.e., their values may be subsequently used). Notice that  $born(r) \subseteq active(r)$ .
- **needed**: Maps transition r to  $active(r) \cup clock\_ref(r)$ .

#### **Liveness Range Analysis Example**



**Table 1:** born and active values

| Transition | Born        | Active      |
|------------|-------------|-------------|
| $r_0$      | {0}         | {0}         |
| $r_1$      | $\phi$      | $\phi$      |
| $r_2$      | {2}         | {2}         |
| $r_3$      | $\phi$      | $\phi$      |
| $r_4$      | <b>{4</b> } | <b>{4</b> } |
| $r_5$      | $\phi$      | $\phi$      |

**Figure 6:** A simple timed automaton

#### ModeGraph



Figure 7: Mode graph of the ATM

## Case Studies

Explain original scenario

```
minitial: card-not-inserted
                                                     minitial: card-not-inserted
(insert-card, {})
( enter-pin, \{W - t_0 > 5, W - t_0 < 60\})
(incorrect-pin, {})
                                                     (insert-card, {})
( re-enter-pin, \{W - t_0 \ge 5, W - t_0 \le 60\})
                                                     ( enter-pin, \{W - t_0 \ge 5, W - t_0 \le 60\})
(correct-pin, {})
                                                     (correct-pin, {})
( request-data-from-bank, {})
                                                     ( request-data-from-bank, {})
(display-menu, \{W - t_4 < 5\})
                                                     (display-menu, \{W - t_4 < 5\})
mfinal: menu-displayed
                                                     mfinal: menu-displayed
             TFS of Scenario 1
                                                                 TES of Scenario 2
```

Figure 8: Timed Event Sequences of the ATM



Figure 9: Timed automaton synthesized from Scenario 1 and Scenario 2

Explain extended scenario

```
m^{initial}: menu-displayed m^{initial}: menu-displayed m^{initial}: menu-displayed m^{initial}: m^{initial}: m^{initial}: m^{initial}: card-not-inserted m^{initial}: card-not-inserted m^{initial}: m^{initial}: m^{initial}: card-not-inserted m^{initial}: m^{initial
```

```
minitial: menu-displayed
( withdraw, {})
( enter-amount, \{W - t_6 \le 20\})
( verify-details, {})
( successful, \{W - t_{10} < 10\})
( return-card, {})
m<sup>final</sup>: card-not-inserted
        TES of Scenario 4
```

**Figure 10:** Timed Event Sequences of the ATM with withdraw and deposit option



Figure 11: The synthesized timed automaton of the ATM

#### **Light Control System**



Figure 12: Mode graph of the Light Control System

#### **Light Control System**

```
m<sup>initial</sup>: Idle
      (ON, \{\})
(OFF, \{w-t0 > 3\})
    (ON, \{\}) (OFF, \{\})
(ON, \{w-t0 \le 3\})
     (OFF, {})
     m<sup>final</sup> · Idle
      Scenario 1
```

```
minitial: Light
   (ON, \{w-t0 \le 3\})
(ON, {})
   (OFF, \{w-t0>3\})
    m<sup>final</sup>: Idle
          Scenario 2
```

```
minitial: Bright
(OFF, {})
(ON, \{w-t0 \le 3\})
(OFF, {})
m<sup>final</sup>: Idle
      Scenario 3
```

Figure 13: Timed Event Sequences of the Light Control System

#### **Light Control System**



Figure 14: Timed automaton of the Light Control System

#### **Traffic Light**



Figure 15: Timed automaton of the Traffic Light

#### **Traffic Light**



Figure 16: The optimally allocated timed automaton of the Traffic Light

#### CSMA/CD Protocol



Figure 17: The timed automaton for the sender in CSMA/CD protocol

#### **CSMA/CD Protocol**



**Figure 18:** The optimally allocated timed automaton for the sender in CSMA/CD protocol

# Conclusion

#### Conclusion

conclude here [2] [3]



#### References i



R. Alur and D. L. Dill.

A theory of timed automata.

Theor. Comput. Sci., 126(2):183-235, Apr. 1994.



N. Saeedloei.

From scenarios to timed automata.

Technical report, Department of Computer Science, University of Minnesota Duluth, Duluth, MN, jun 2016.



N. Saeedloei and F. Kluzniak.

Optimal clock allocation for a class of timed automata.

Technical report, Department of Computer Science, University of Minnesota Duluth, Duluth, MN, Sept 2016.