model_metrics.csv

```
Model, Type, Hyperparameters, MAE, RMSE, R2
Linear Regression, Regression, "-",845.6,1024.3,0.73
Random Forest, Regression, "n_estimators=200, max_depth=20, min_samples_split=2",622.4,785.9,0.87
XGBoost, Regression, "n_estimators=200, learning_rate=0.1",641.2,811.5,0.85
```

README.md

Objective:

Predict hospital billing amounts using patient demographics and admission data.

Project Structure

healthcare_modeling.ipynb - main code
 healthcare_preprocessed.csv - cleaned dataset
 model_metrics.csv - final model results
 Capstone_Final_Report.pdf - summary report

Key Insights

- Random Forest achieved the highest accuracy ($R^2 = 0.87$)
- Admission type and medical condition are top drivers of cost
- Model supports automated billing estimation for hospitals

Tech Stack

Python | pandas | scikit-learn | XGBoost | Matplotlib | Jupyter

Dataset

Kaggle Healthcare Dataset by Prasad Patil

Model	MAE	RMSE	R ²
Linear Regression	845.6	1024.3	0.73

Model	MAE	RMSE	R ²
Random Forest	622.4	785.9	0.87
XGBoost	641.2	811.5	0.85

^{© 2025} Your Name | Data Science Career Track Capstone