

Cambridge International AS & A Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATIC	cs		9709/3
Paper 3 Pure Mathematics 3			May/June 202
			1 hour 50 minute
You must answ	ver on the question paper.		
You will need:	List of formulae (MF19)		

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has **20** pages. Any blank pages are indicated.

PapaCambridge

JC21 06_9709_31/RP © UCLES 2021

[Turn over

 •••••		••••••	••••••	•••••	•••••
 •••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••
 •••••					
 •••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
 •••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••
 •••••	•••••	••••••	•••••	•••••	•••••
 •••••	•••••	••••••	•••••	•••••	•••••
 •••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
 •••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••
 •••••	•••••	••••••	••••••	•••••	•••••
 •••••					
 •••••	•••••	••••••	••••••	•••••	•••••
 •••••	••••••	••••••	••••••	••••••	•••••
 •••••	••••••	•••••	•••••	•••••	•••••

2

places.
••••••
••••••
•••••

3 ((a)	Given that $cos(x - 30^\circ) = 2 sin(x + 30^\circ)$, show that $tan x =$	$\frac{2-\sqrt{3}}{1-2\sqrt{3}}.$ [4]
((b)	Hence solve the equation	
		$\cos(x - 30^\circ) = 2\sin(x + 30^\circ),$	
		for $0^{\circ} < x < 360^{\circ}$.	[2]

4

(a)	Prove that $\frac{1-\cos 2\theta}{1+\cos 2\theta} \equiv \tan^2 \theta$.	[2]
		•••••
(b)	Hence find the exact value of $\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} \frac{1 - \cos 2\theta}{1 + \cos 2\theta} d\theta.$	[4]
		•••••
		•••••
		•••••
		•••••

	Solve the equation $z^2 - 2piz - q = 0$, where p and q are real constants.	[
		•••••
		••••••
In a	n Argand diagram with origin O , the roots of this equation are represented by the dis	tinct poi
In a 4 ar	n Argand diagram with origin O , the roots of this equation are represented by the dis B .	tinct poi
4 ar	n Argand diagram with origin O , the roots of this equation are represented by the dis and B . Given that A and B lie on the imaginary axis, find a relation between p and q .	tinct poi
4 ar	$\operatorname{ad} B$.	
4 ar	$\operatorname{ad} B$.	
4 ar	$\operatorname{ad} B$.	
4 ar	$\operatorname{ad} B$.	
4 ar	$\operatorname{ad} B$.	
4 ar	$\operatorname{ad} B$.	
4 ar	$\operatorname{ad} B$.	
4 ar	Given that A and B lie on the imaginary axis, find a relation between p and q.	
4 ar	Given that A and B lie on the imaginary axis, find a relation between p and q.	

(c)	Given instead that triangle OAB is equilateral, express q in terms of p .	[3]
		••••••••••••
		•••••••
		•••••••••••
		•••••••••••

6	The parame	tric equa	tions of	a curve	are
v	The parame	uic cqua	uons or	a cui vc	arc

$$x = \ln(2+3t),$$
 $y = \frac{t}{2+3t}.$

Show that the gradient of the curve is always positive.	[5

(b)	Find the equation of the tangent to the curve at the point where it intersects the y-axis.	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

7

The diagram shows the curve $y = \frac{\tan^{-1} x}{\sqrt{x}}$ and its maximum point M where x = a.

(a) Show that a satisfies the equation

a	$=\tan\left(\frac{2a}{1+a^2}\right).$	[4]

(b)	Verify by calculation that a lies between 1.3 and 1.5.	[2]
		.
		.
		••••
		••••
		••••
		••••
		••••
		••••
		••••
(c)	Use an iterative formula based on the equation in part (a) to determine a correct to 2 decimplaces. Give the result of each iteration to 4 decimal places.	nal [3]
		· • • • •
		· • • • •
		· • • • •
		· • • • •
		· • • • •
		· • • • •
		· • • • •
		,
		••••
		••••
		••••
		••••
		••••
		• • • •

8	Witl	n respect to the origin O , the points A and B have position vectors given by $\overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ and
		$= \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}. \text{ The line } l \text{ has equation } \mathbf{r} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}.$
	(a)	Find the acute angle between the directions of AB and l . [4]

(b)	Find the position vector of the point P on l such that $AP = BP$.	[5]

a)	Find the exact coordinates of the stationary point.	
		•••••
		•••••
		••••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

	•••••
 ••••••	•••••

10	The variables x and t satisfy the differential equation $\frac{dx}{dt} = x^2(1+2x)$, and $x = 1$ when $t = 0$.
	Using partial fractions, solve the differential equation, obtaining an expression for t in terms of x . [11]

Additional Page

must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2021 9709/31/M/J/21

