02.rainfall.ml.rev.02

August 14, 2024

```
[]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sb
     from sklearn.model selection import train test split
     from sklearn.preprocessing import StandardScaler
     from sklearn import metrics
     from sklearn.svm import SVC
     from sklearn.metrics import confusion matrix, ConfusionMatrixDisplay
     from xgboost import XGBClassifier
     from sklearn.linear_model import LogisticRegression
     from imblearn.over_sampling import RandomOverSampler
     import warnings
     warnings.filterwarnings('ignore')
[]: df = pd.read_csv('Rainfall.csv')
     df.head()
[]:
                                 temparature mintemp
                                                        dewpoint humidity
                                                                              cloud
        day pressure
                        maxtemp
     0
                1025.9
                           19.9
                                         18.3
                                                  16.8
                                                             13.1
                                                                          72
                                                                                  49
     1
          2
                1022.0
                           21.7
                                         18.9
                                                  17.2
                                                             15.6
                                                                          81
                                                                                  83
     2
          3
                1019.7
                           20.3
                                         19.3
                                                  18.0
                                                             18.4
                                                                          95
                                                                                  91
                1018.9
                           22.3
     3
          4
                                         20.6
                                                  19.1
                                                             18.8
                                                                          90
                                                                                  88
          5
                1015.9
                           21.3
                                         20.7
                                                  20.2
                                                             19.9
                                                                          95
                                                                                  81
       rainfall sunshine
                                     winddirection windspeed
                      9.3
                                              80.0
                                                         26.3
     0
            yes
                                              50.0
                                                         15.3
     1
            yes
                      0.6
     2
                      0.0
                                              40.0
                                                         14.2
            yes
     3
                      1.0
                                              50.0
                                                         16.9
            yes
     4
                      0.0
                                              40.0
                                                         13.7
            yes
[]: df.shape
[]: (366, 12)
```

[]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 366 entries, 0 to 365
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	day	366 non-null	int64
1	pressure	366 non-null	float64
2	maxtemp	366 non-null	float64
3	temparature	366 non-null	float64
4	mintemp	366 non-null	float64
5	dewpoint	366 non-null	float64
6	humidity	366 non-null	int64
7	cloud	366 non-null	int64
8	rainfall	366 non-null	object
9	sunshine	366 non-null	float64
10	winddirection	365 non-null	float64
11	windspeed	365 non-null	float64
34	47+ (4(0)+ (4(0)	-1 + (4)	

dtypes: float64(8), int64(3), object(1)

winddirection

memory usage: 34.4+ KB

[]: df.describe().T

[]:		count	mean	std	min	25%	_
	day	366.0	15.756831	8.823592	1.0	8.000	
	pressure	366.0	1013.742623	6.414776	998.5	1008.500	
	maxtemp	366.0	26.191257	5.978343	7.1	21.200	
	temparature	366.0	23.747268	5.632813	4.9	18.825	
	mintemp	366.0	21.894536	5.594153	3.1	17.125	
	dewpoint	366.0	19.989071	5.997021	-0.4	16.125	
	humidity	366.0	80.177596	10.062470	36.0	75.000	
	cloud	366.0	71.128415	21.798012	0.0	58.000	
	sunshine	366.0	4.419399	3.934398	0.0	0.500	
	winddirection	365.0	101.506849	81.723724	10.0	40.000	
	windspeed	365.0	21.536986	10.069712	4.4	13.700	
		50%		max			
	day	16.00		31.0			
	pressure	1013.00		1034.6			
	maxtemp	27.75		36.3			
	temparature	25.45		32.4			
	mintemp	23.70		30.0			
	dewpoint	21.95		26.7			
	humidity	80.50		98.0			
	cloud	80.00		100.0			
	sunshine	3.50	8.200	12.1			

70.00

350.0

190.000

```
windspeed
                               20.50
                                        27.900
                                                   59.5
[]: df.isnull().sum()
[ ]: day
                               0
    pressure
                               0
                               0
    maxtemp
                               0
     temparature
                               0
    mintemp
     dewpoint
                               0
    humidity
                               0
     cloud
                               0
    rainfall
                               0
     sunshine
                               0
             winddirection
                               1
     windspeed
                               1
     dtype: int64
[]: df.columns
[]: Index(['day', 'pressure ', 'maxtemp', 'temparature', 'mintemp', 'dewpoint',
            'humidity ', 'cloud ', 'rainfall', 'sunshine', '
                                                                      winddirection',
            'windspeed'],
           dtype='object')
[]: df.rename(str.strip,
               axis='columns',
               inplace=True)
     df.columns
[]: Index(['day', 'pressure', 'maxtemp', 'temparature', 'mintemp', 'dewpoint',
            'humidity', 'cloud', 'rainfall', 'sunshine', 'winddirection',
            'windspeed'],
           dtype='object')
[]: for col in df.columns:
       # Checking if the column contains
       # any null values
       if df[col].isnull().sum() > 0:
         val = df[col].mean()
         df[col] = df[col].fillna(val)
     df.isnull().sum().sum()
```

[]:0


```
[]: df.groupby('rainfall').mean()
[]:
                                        maxtemp temparature
                    day
                            pressure
                                                                mintemp \
    rainfall
              15.623932 1014.576923 27.070940
                                                   24.053846
                                                              21.957265
    no
                         1013.350602 25.777912
    yes
              15.819277
                                                   23.603213
                                                             21.865060
               dewpoint
                          humidity
                                        cloud sunshine winddirection windspeed
    rainfall
                         73.000000 51.256410 7.586325
              18.766667
                                                            103.076923 19.275214
    yes
              20.563454 83.550201 80.465863 2.931325
                                                            100.769104 22.599747
[]: features = list(df.select_dtypes(include = np.number).columns)
    features.remove('day')
    print(features)
    ['pressure', 'maxtemp', 'temparature', 'mintemp', 'dewpoint', 'humidity',
```

'cloud', 'sunshine', 'winddirection', 'windspeed']

```
plt.subplots(figsize=(15,8))
```

for i, col in enumerate (features): $plt.subplot(3,4, i + 1) sb.distplot(df[col]) plt.tight_layout() plt.show()$

```
[]: plt.subplots(figsize=(15,8))

for i, col in enumerate(features):
    plt.subplot(3,4, i + 1)
    sb.boxplot(df[col])
plt.tight_layout()
plt.show()
```



```
# balance it by adding repetitive rows of minority class.
    ros = RandomOverSampler(sampling_strategy='minority',
                            random_state=22)
    X, Y = ros.fit_resample(X_train, Y_train)
[]: # Normalizing the features for stable and fast training.
    scaler = StandardScaler()
    X = scaler.fit_transform(X)
    X_val = scaler.transform(X_val)
[]: models = [LogisticRegression(), XGBClassifier(), SVC(kernel='rbf',
     →probability=True)]
    for i in range(3):
      models[i].fit(X, Y)
      print(f'{models[i]} : ')
      train_preds = models[i].predict_proba(X)
      print('Training Accuracy : ', metrics.roc_auc_score(Y, train_preds[:,1]))
      val_preds = models[i].predict_proba(X_val)
      print('Validation Accuracy : ', metrics.roc_auc_score(Y_val, val_preds[:,1]))
      print()
    LogisticRegression():
    Training Accuracy: 0.8893209767430116
    Validation Accuracy : 0.89666666666667
    XGBClassifier(base_score=None, booster=None, callbacks=None,
                 colsample_bylevel=None, colsample_bynode=None,
                 colsample_bytree=None, device=None, early_stopping_rounds=None,
                 enable_categorical=False, eval_metric=None, feature_types=None,
                 gamma=None, grow_policy=None, importance_type=None,
                 interaction_constraints=None, learning_rate=None, max_bin=None,
                 max_cat_threshold=None, max_cat_to_onehot=None,
                 max_delta_step=None, max_depth=None, max_leaves=None,
                 min_child_weight=None, missing=nan, monotone_constraints=None,
                 multi_strategy=None, n_estimators=None, n_jobs=None,
                 num_parallel_tree=None, random_state=None, ...) :
    Validation Accuracy: 0.839166666666666
    SVC(probability=True) :
    Training Accuracy: 0.9026413474407211
    Validation Accuracy: 0.8858333333333333
```

[]: print(metrics.classification_report(Y_val, models[2].predict(X_val)))

support	f1-score	recall	precision	
24	0.74	0.67	0.84	0
50	0.90	0.94	0.85	1
74	0.85			accuracy
74	0.82	0.80	0.85	macro avg
74	0.85	0.85	0.85	weighted avg