Transversal: a line that passes through two lines in the same plane at two distinct points

Corresponding Angles Postulate: If two parallel lines are cut by a transversal, then the corresponding angles are conaruent.

Alternate Interior Angles theorem: If two parallel lines are cut by a transversal, then the alternate interior angles are congruent.

Alternate Exterior Angles theorem: If two parallel lines are cut by a transversal, then the alternate exterior angles are congruent.

Consecutive Interior Angles theorem: If two parallel lines are cut by a transversal, then the consecutive or same-side interior angles are supplementary.

Consecutive Exterior Angles theorem: If two parallel lines are cut by a transversal, then the consecutive or same-side exterior angles are supplementary.

## Practice Exercises 4.4.1

Complete the following proofs.

1. Given: *t* is a transversal  $\ell \parallel m$ 

Prove: ∠2 and ∠8 are

supplementary

2. Given: t is a transversal  $\ell \parallel m$ 

Prove:  $\angle 2 \cong \angle 7$ 

3. Given: t is a transversal

Prove:  $\angle 4 \cong \angle 5$ 





# Lesson 4.4.1: Proving Properties of Parallel Lines Cut by a **Transversal**

Parallel Lines: two lines that lie in the same plane and do not intersect

Transversal: a line that passes through two lines in the same plane at two distinct points

Corresponding Angles Postulate: If two parallel lines are cut by a transversal, then the corresponding angles are congruent.

Alternate Interior Angles theorem: If two parallel lines are cut by a transversal, then the alternate interior angles are congruent.

Alternate Exterior Angles theorem: If two parallel lines are cut by a transversal, then the alternate exterior angles are congruent.

Consecutive Interior Angles theorem: If two parallel lines are cut by a transversal, then the consecutive or same-side interior angles are supplementary.

Consecutive Exterior Angles theorem: If two parallel lines are cut by a transversal, then the consecutive or same-side exterior angles are supplementary.

#### Practice Exercises 4.4.1

Complete the following proofs.

1. Given: *t* is a transversal  $\ell \parallel m$ 

Prove:  $\angle 2$  and  $\angle 8$  are supplementary

2. Given: t is a transversal  $\ell \parallel m$ 

Prove:  $\angle 2 \cong \angle 7$ 

3. Given: t is a transversal  $\ell \parallel m$ 

Prove:  $\angle 4 \cong \angle 5$ 

## Activity 4.4.1

1. Given: t is a transversal

 $\ell \parallel m$ 

Prove:  $\angle 3 \cong \angle 6$ 



Proof:

| Statements                                  | Reasons |
|---------------------------------------------|---------|
| 1. $t$ is a transversal, $\ell \parallel m$ | 1.      |
| 2. ∠3 ≅ ∠7                                  | 2.      |
| 3. ∠7 ≅ ∠6                                  | 3.      |
| 4. ∠3 ≅ ∠6                                  | 4.      |

2. Given: t is a transversal  $\ell \parallel m$ 

Prove:  $\angle 1 \cong \angle 8$ 



Proof:

| Statements                                  | Reasons |
|---------------------------------------------|---------|
| 1. $t$ is a transversal, $\ell \parallel m$ | 1.      |
| 2. ∠1 ≅ ∠5                                  | 2.      |
| 3. ∠5 ≅ ∠8                                  | 3.      |
| 4. ∠1 ≅ ∠8                                  | 4.      |

3. Given: t is a transversal  $\ell \parallel m$ 

Prove:  $\angle 3$  and  $\angle 5$  are supplementary



Proof:

| Statements                                     | Reasons |
|------------------------------------------------|---------|
| 1. $t$ is a transversal, $\ell \parallel m$    | 1.      |
| 2. ∠3 ≅ ∠7                                     | 2.      |
| 3. ∠7 and ∠5 form a linear pair                | 3.      |
| 4. ∠7 and ∠5 are supplementary                 | 4.      |
| 5. $\angle 3$ and $\angle 5$ are supplementary | 5.      |

### Activity 4.4.1

1. Given: t is a transversal

 $\ell \parallel m$ 

Prove:  $\angle 3 \cong \angle 6$ 



Proof.

| Statements                                  | Reasons |
|---------------------------------------------|---------|
| 1. $t$ is a transversal, $\ell \parallel m$ | 1.      |
| 2. ∠3 ≅ ∠7                                  | 2.      |
| 3. ∠7 ≅ ∠6                                  | 3.      |
| 4. ∠3 ≅ ∠6                                  | 4.      |

2. Given: t is a transversal

 $\ell \parallel m$ 

Prove:  $\angle 1 \cong \angle 8$ 



Proof:

| Statements                                  | Reasons |
|---------------------------------------------|---------|
| 1. $t$ is a transversal, $\ell \parallel m$ | 1.      |
| 2. ∠1 ≅ ∠5                                  | 2.      |
| 3. ∠5 ≅ ∠8                                  | 3.      |
| 1 /1 ≈ /8                                   | Λ       |

3. Given: t is a transversal  $\ell \parallel m$ 

Prove:  $\angle 3$  and  $\angle 5$  are supplementary



Proof:

| Statements                                  | Reasons |
|---------------------------------------------|---------|
| 1. $t$ is a transversal, $\ell \parallel m$ | 1.      |
| 2. ∠3 ≅ ∠7                                  | 2.      |
| 3. ∠7 and ∠5 form a linear pair             | 3.      |
| 4. ∠7 and ∠5 are supplementary              | 4.      |
| 5. ∠3 and ∠5 are supplementary              | 5.      |

