Nama: Andiva Kasih Anggoro Putra

Kelas: TK44G7

NIM: 1103204031

UTS_Robot_Autonomy_Lengan Robot Kinetics Ubuntu

*Youtube Tutorial: https://youtu.be/EosEikbZhiM?si=mzig_JdrGg8sJ8_-

1. Overview Nodes*

Nodes dalam konteks robotika dapat merujuk pada beberapa konsep, yaitu:

- *Node dalam Jaringan Robot:*

Setiap robot atau perangkat dalam sistem dianggap sebagai "node" yang terhubung ke jaringan untuk berkomunikasi dan berkoordinasi satu sama lain.

- *Node dalam Struktur Kontrol Robot:*

Node dapat merujuk pada titik-titik dalam struktur kontrol di mana informasi atau perintah dikirim atau diterima, mengontrol gerakan atau tugas tertentu.

- *Node dalam Sistem Sensor atau Aktuator:*

Node bisa merujuk pada elemen-elemen dalam sistem sensor atau aktuator pada robot, menghasilkan atau mengolah informasi lingkungan atau menggerakkan bagian-bagian robot.

- *Node dalam Representasi Model Robot:*

Dalam pemodelan robot, node bisa merujuk pada representasi titik-titik atau elemen-elemen tertentu dari model robot.

- *Node dalam Robotika Bergerak:*

Dalam robotika bergerak, node dapat merujuk pada posisi atau titik-titik tertentu dalam ruang yang digunakan untuk navigasi atau pemetaan.

2. Overview ROS2

ROS2 (Robot Operating System 2) adalah platform perangkat lunak open-source untuk

pengembangan dan pengoperasian robot. Beberapa fitur utama ROS2 meliputi:

- *Multi-Platform Support:*

Mendukung berbagai platform, termasuk Linux, Windows, dan macOS.

- *Real-Time Capabilities:*

Memperkenalkan manajemen waktu yang memungkinkan aplikasi robotika real-time.

- *Security:*

Menyertakan lapisan keamanan untuk autentikasi dan enkripsi komunikasi antar node.

- *Pluggable Communication Middleware:*

Memungkinkan pemilihan middleware komunikasi yang sesuai dengan kebutuhan aplikasi.

- *Modular Architecture:*

Dirancang dengan arsitektur modular, memungkinkan pengguna untuk membangun dan menggunakan berbagai komponen atau "node" yang dapat berkomunikasi satu sama lain.

- *Tooling dan Ekosistem Pengembang:*

Dilengkapi dengan alat pengembangan dan dukungan seperti simulasi dan pemantauan kinerja.

- *Documentation dan Komunitas:*

Memiliki dokumentasi yang kuat dan mendukung komunitas pengembang yang aktif.

3. Menjalankan Nodes dengan demo_nodes_cpp

Dalam demo_nodes_cpp, contoh pembuatan dua nodes, yaitu talker dan listener:

- Untuk menjalankan talker, ketikkan: ros2 run demo_nodes_cpp talker.
- Untuk menjalankan listener, ketikkan: ros2 run demo_nodes_cpp listener.

Nodes ini berkomunikasi dan mentransmisikan data "hello world %" antara satu sama lain.

4. Menjalankan Nodes dengan turtlesim

Menggunakan modul turtlesim dengan turtle dan node talker:

- Menjalankan turtlesim node: ros2 run turtlesim turtlesim_node.
- Menjalankan turtle_teleop_key untuk menggerakkan turtle: ros2 run turtlesim turtle_teleop_key.

Data dari talker ditangkap oleh listener dan digunakan untuk menggerakkan turtle dalam simulasi turtlesim.