K-12 Gender Bias: How Teachers can be Change Makers

By: Layla Jaber, Sam Scheck, Heather Kuhn, Marian Singletary

Problem

- Decrease in the number of women in tech over the years
 - Following the trend shown to the right, there will be no women bachelor's degree graduates in computer science by 2032
- Lack of diversity in the field can lead to:
 - Underrepresentation of women in the technology field
 - Men's perspectives favored in research, development, and usage of technology
- How can we combat this gender gap?
 - K-12 educators

Degrees awarded to women: Computer sciences, 1997, 2006, 2016

Why Educators?

- Educators as change makers means:
 - Positively influencing students in their formative years
 - Providing basis for personal interactions for students to feel encouraged
 - Trainings providing concrete skills for educators
- Change in direct and actionable ways
 - Cannot control student-to-student interactions
 - Cannot control student-to-family interactions
 - Cannot control student-to-society interactions
 - **Can** control student-to-teacher interactions

Why Early Development (K-12)?

- Early established beliefs
 - Gender biases presented by family, society, and classmates (Ex: tech and computer science associated with masculinity)
- Altered perceptions
 - Stereotype threat
 - According to Claude M. Steele: "a situational threat... that, in general form, can affect the members of any group about whom a negative stereotype exists... where bad stereotypes about these groups apply, members of these groups can be reduced to that stereotype."
 - Can affect performance, confidence, willingness to pursue tech career or education

What is the gender gap attributed to?

Research by Sax, Vitores, and Gil-Juarez

What is the gender gap attributed to?

Research by Sax, Vitores, and Gil-Juarez

Media can influence women's confidence, whether through personal consumption of media or through family, teachers, and peers relaying their learned gender based biases.

Example:

Sax found that women's math self-concept (one's perception of their own abilities to success in mathematics) was much lower than men's

Stereotype Threat

- Fear that stereotypes are true creates more anxiety and affects performance
- Demonstrates disruptive effect that stereotype threat has on members of a negatively stereotyped group
- Women experience more anxieties and difficulties succeeding when attempting to "break the mold"
- **Solutions**: Optimistic teacher-student relationships (challenge students <u>and</u> affirm their abilities, stress that there is no right way to go about learning), Support for women to fall back on when their confidence is wavering

Student Perceptions

Research by Roli Varma

Why do you think so few women are pursuing a degree in computer science or computer engineering?

"Well, it's a sexist thing to say but boys are rational and girls are emotional"

"Girls are not encouraged to do well in math in [school]"

"Most women do not want to be bothered with technical stuff"

> Gendered stereotypes inform the majority of the experiences that shape students' answers

The School Environment

Research by Catherine Ashcraft

- Computing curriculum
 - Computer science lessons are taught abstractly and are detached from societal applications
 - Emphasizes society's disconnect between technology and addressing social issues
 - Focuses more on individual projects rather than collaboration
- Who can change these things?
 - Educators
 - Educational policymakers
 - School counselors
 - Researchers in gender, diversity, technology, and education

Intersectional Experiences of Girls in Tech Settings

Research by Global Partnership for Education

- Understanding the educational experiences of students from different socioeconomic groups and geographic locations is extremely important
 - Illuminates more specific learning needs and priorities
- School-related gender-based violence
 - Female dropout rates rise in conflict-affected settings
- Multisectoral approach to minimizing gender bias
 - Collaboration between different policy areas (public and private sectors)

Cultural Conceptions of Gender

Research by Pei-Ru Liao

- Gender impacts lived social relations
- Examples of gender in different contexts:
 - Australia: "[gender] can be conceptualized as a simple binary category in the girls-in-education movement"
 - Finland: "[gender equality] takes the idea of binary gender as a given, as a fact based on the male/female division"
 - Taiwan: "[gender includes a] holistic and non dualist conception of personhood and a non dichotomous view of femininity and masculinity"
- Gender is understood and performed much differently in different cultural contexts
- No clear cut method of tackling gender biases

Making Change

- Representation
 - More diverse staff in schools provide students with role models that look like themselves
- Resources, Intersectionality, and Inclusivity
 - Access to computing courses within the classroom
 - Access to technology for individual students
- Training for Educators
 - Address implicit biases that everyone holds
 - Equipping teachers to facilitate conversations around biases and address them openly with students
 - Stepping in when girls and minority students are being mistreated or are struggling with confidence
 - Allyship:
 - Understanding how similar environments are experienced in different ways by people of differing identities
 - Standing up for those who are talked over, denied opportunity, or need support in other ways

THANK YOU!

Resources

Angle, J., & Wissmann, D. A. (1981). Gender, college major, and earnings. Sociology of Education, 54(1), 25-33.

Ashcraft, C., Eger, E.K. & Friend, M. (2012). Girls in IT: The facts. Boulder, CO: National Center for Women & Information Technology (NCWIT).

Daniels, J. (2009). Rethinking cyberfeminism(s): Race, gender, and embodiment. WSQ: Women's Studies Quarterly 37(1): 101-124.

DuBow, W. M., & Ashcraft, C. (2016). Male allies: Motivations and barriers for participating in diversity initiatives in the technology workplace. *International Journal of Gender, Science, and Technology, 8*(2), 160-180. Retrieved April 26, 2021.

Global Partnership for Education (GPE), & United Nations Girls' Education Initiative (UNGEI). (2019). Gender-responsive education sector planning: A pathway to gender equality in education. *Global Partnership for Education*. Global Partnership for Education.

Humlum, M. K., Nandrup, A. B., & Smith, N. (2019). Closing or reproducing the gender gap? Parental transmission, social norms and education choice. *Journal of Population Economics*, 32(2), 455-500.

Resources

Liao, P.-R. (2020). Institutionalising gender equity on campuses: Mapping patriarchal ruling relations surrounding the Gender Equity Education Act in Taiwan. *Gender and Education*, 32(7), 926-943.

Rosser, S. (2005). Through the lenses of feminist theory: Focus on women and information technology. Frontiers: A Journal of Women Studies, 26(1), 1-23.

Sax, L. J., Lehman, K. J., Jacobs, J. A., Kanny, M. A., Lim, G., Monje-Paulson, L., & Zimmerman, H. B. (2017). Anatomy of an enduring gender gap: The evolution of women's participation in computer science. *The Journal of Higher Education*, 88(2), 258-293.

Steele, C. M. (1997). A threat in the air: How stereotypes shape intellectual identity and performance. *American Psychologist*, 52, 613-629.

Women, minorities, and persons with disabilities in science and engineering. (2019, March 8). National Science Foundation Retrieved April 26, 2021, from https://ncses.nsf.gov/pubs/nsf19304/digest

Varma, R. (2010). Why so few women enroll in computing? Gender and ethnic differences in students' perception. Computer Science Education, 20, 301-316. Vitores, A., & Gil-Juarez, A. (2016). The trouble with 'women in computing': A critical examination of the deployment of research on the gender gap in computer science. *Journal of Gender Studies*, 25(6), 666-680. Retrieved April 26, 2021, from https://www.tandfonline.com/doi/full/10.1080/09589236.2015.1087309.