Banco de Dados

Módulo Básico

MODELAGEM DE DADOS

O que é necessário para obtermos um projeto de Banco de Dados bem estruturado?

- É necessário a atividade de modelagem de dados em diversos níveis de abstração
 - Modelagem Conceitual (Projeto Conceitual)
 - Modelagem Lógica (Projeto Lógico)
 - Modelagem Física (Implementação)

- Modelagem Conceitual (Projeto Conceitual)
 - Nível de abstração mais alto
 - Objetivo: representação dos requisitos de dados de um determinado domínio
 - Independe do modelo lógico de banco de dados

Modelagem Conceitual

- Modelagem Lógica (Projeto Lógico)
 - Representação da modelagem conceitual em um modelo lógico de banco de dados
 - Depende do tipo particular de SGBD que está sendo utilizado
 - Ênfase na eficiência de "ARMAZENAMENTO"
 - <u>Evitar</u>:
 - Segmentação excessiva de tabelas (junções)
 - Tabelas sub utilizadas

Modelagem Lógica

- Modelagem Física (Implementação)
 - Esquema SQL para a modelagem lógica
 - Depende exclusivamente do SGBD
 - Usados por profissionais (ajuste do desempenho tuning)
 - Ênfase na eficiência de "ACESSO"
 - Implementação de consultas
 - Índices
 - Objetos

Modelagem Conceitual

Vantagens:

- Independente de detalhes de implementação em um SGBD
- Facilita compreensão da semântica dos dados de um domínio
- Melhor compreendido por usuários leigos
- Pode ser mapeado para qualquer modelo lógico de BD
- Facilita a manutenção do modelo lógico e a migração para outro modelo lógico
 - Processo de engenharia reversa

MER

- Modelagem ER (Entidade-Relacionamento)
 - Modelo desenvolvido por Peter Chen em 1976
 - Diversas extensões e notações foram definidas com o passar do tempo
 - Padrão para Modelagem Conceitual de BD:
 - Modelagem simples (poucos conceitos)
 - Representação gráfica (fácil compreensão)
 - Um esquema conceitual de dados é também chamado de Esquema ER ou Diagrama ER

- Entidade:
 - Abstração de um fato do mundo real para o qual se deseja manter seus dados no BD
 - Simbologia: retângulo nomeado
 - denota um conjunto de ocorrências do fato

Empregados

(representação gráfica)

(interpretação)

Relacionamento:

- Abstração entre uma associação entre (ocorrências de) entidades
- Simbologia: losango nomeado
 - denota um conjunto de ocorrências dos relacionamentos

(representação gráfica)

Interpretação:

Interpretação:

Cardinalidade:

- se houver 2 entidades envolvidas no relacionamento, ou seja, se o grau de relacionamento for binário, as entidades podem ser:
 - N:N muitos para muitos
 - 1:N *um* para *muitos*
 - 1:1 *um* para *um*

- Cardinalidade N:N (muitos para muitos)
 - uma entidade A está associada a qualquer número "n" de entidades em B
 - uma entidade B está associada a qualquer número "n" de entidades em A

- Cardinalidade 1:N (um para muitos)
 - uma única entidade A está associada a qualquer número
 "n" de entidades em B
 - uma entidade B, entretanto, pode estar associada, no máximo, a uma entidade em A

- Cardinalidade 1:1 (um para um)
 - uma única entidade A está associada, no máximo, a uma única entidade em B
 - uma entidade B, também está associada, no máximo, a uma entidade em A

- Cardinalidade em Relacionamento Ternário
 - Cardinalidade possíveis para relacionamentos ternários:
 - 1:1:1
 - 1:1:N
 - 1:N:N
 - N:N:N
 - A informação pode ser vista desprezando-se algumas das ENTIDADES do relacionamento (como se fosse um relacionamento binário)

- A definição de um relacionamento envolve:
 - Cardinalidade Máxima:
 - quantidade máxima de ocorrências de entidades que podem estar associadas a uma ocorrência de outra entidade (1 ou N)

"um empregado está lotado no máximo em 1 departamento. Um departamento tem até N empregados lotados nele"

Exemplos de cardinalidades máximas:

- A definição de um relacionamento envolve:
 - Cardinalidade Mínima:
 - indica se a participação das ocorrências de entidades no relacionamento é obrigatória ou opcional

"um empregado **obrigatoriamente está** lotado no máximo em 1 departamento.

Um departamento **pode ter** até N empregados lotados nele"

Exemplos de cardinalidades máximas:

- Auto-Relacionamento
 - Representa uma associação entre ocorrências de uma mesma ENTIDADE
 - Exige a identificação de PAPÉIS

"um empregado pode ser **supervisionado** por no máximo 1 empregado.

Um empregado pode **supervisionar** no máximo N empregados"

Auto-Relacionamento:

Auto-Relacionamento:

- Grau dos Relacionamentos
 - Refere-se ao número de entidades envolvidas no relacionamento
- Relacionamento Binário:
 - Envolve 2 (duas) entidades

- Grau dos Relacionamentos
 - Refere-se ao número de entidades envolvidas no relacionamento
- Relacionamento Ternário:
 - Envolve 3 (três) entidades

- Relacionamento "N"ário:
 - abstração de uma associação entre "N" (ocorrências de)
 ENTIDADES
 - Exemplo: relacionamento ternário

Exemplo de determinação de cardinalidade: "um produto em uma cidade pode ser entregue por no máximo 1 distribuidor"

Atributo:

 abstração de uma PROPRIEDADE de uma ENTIDADE ou de um RELACIONAMENTO

O que é um atributo atômico?

- Tipos de Atributos:
 - Atômico:
 - Básico
 - Indivisível

- <u>Não Atômico</u>:
 - Complexos
 - Divisível/fragmentado

Tipos de Atributos:

Endereço

- Recuperar informação em um string único
- Mas, afinal, do que é constituído um endereço?
 - Rua
 - Número
 - Complemento
 - Cidade
 - Estado

- Classificação dos Atributos:
 - Obrigatório x Opcional
 - Monovalorado x Multivalorado
 - Simples x Composto
 - Derivado

- Identificação de Entidades:
 - atributos identificadores distinguem ocorrências de uma ENTIDADE uma das outras
 - garantem o acesso INDIVIDUALIZADO a uma ocorrência de ENTIDADE no banco de dados

Entidade Fraca:

 a identificação de suas ocorrências depende da identificação de outra(s) entidade(s)

Entidade Fraca:

a identificação de suas ocorrências depende da identificação de outra(s) entidade(s)

- Identificação de Relacionamentos:
 - um relacionamento é identificado implicitamente pelo conjunto de identificadores das ocorrências de entidades que participam dele

...

- Identificação de Relacionamentos:
 - atributos identificadores adicionais podem ser necessários para definir a identificação de um relacionamento

Um mesmo médico, pode consultar mais de uma vez um(a) mesmo(a) paciente no mesmo dia?

- Restrições do Domínio (1)
 - o modelo ER não é capaz de expressar todas as RIs de um domínio de aplicação
 - uma documentação em anexo pode ser necessária

Restrição de Integridade (RI):

um empregado não pode ser supervisor de si próprio

Restrições do Domínio (2)

Restrições de Integridade (RIs):

- o Tipo de um aluno deve ser graduação (G) ou pós-graduação (PG)
- o Tipo de uma disciplina deve ser graduação (G) ou pós-graduação (PG)
- um aluno de G n\u00e3o pode estar cursando uma disciplina de PG
- um aluno de PG n\u00e3o pode estar cursando uma disciplina de G

Generalização/Especialização

 definição de atributos e ou relacionamentos particulares a um subconjunto de ocorrências (especializações) de uma

entidade genérica

herança de propriedade

Generalização/Especialização

- Generalização/Especialização
 - a árvore da herança deve ter uma única entidade, que define o identificador

- Generalização/Especialização
 - <u>Caso Proibido</u>:
 - Herança de múltiplos identificadores

- Tipos de Generalização/Especialização
 - Total ou Parcial

- Tipos de Generalização/Especialização
 - Total ou Parcial

- Tipos de Generalização/Especialização
 - Total ou Parcial

- Tipos de Generalização/Especialização (1)
 - Exclusiva ou Não-Exclusiva (uma ocorrência de entidade genérica pode ter mais de uma especialização)

- Tipos de Generalização/Especialização (2)
 - Exclusiva ou Não-Exclusiva (uma ocorrência de entidade genérica pode ter mais de uma especialização)

- Entidade Associativa (1)
 - deseja-se obter informações acerca dos medicamentos prescritos em uma determinada consulta

Como modelar esta ASSOCIAÇÃO se CONSULTA é um relacionamento?

- Entidade Associativa (2)
 - Solução: consulta torna-se uma entidade associativa
 - Entidade que representa (agrega) uma associação entre entidades

- Entidade Associativa (3)
 - Outra forma de representação

- Entidade Associativa (4)
 - Outra forma de representação
 - Substituindo relacionamento por entidade

Referências

ELMASRI, R.; NAVATHE, S. B. Sistemas de Banco de Dados: Fundamentos e Aplicações. Pearson, 2018.

HARRINGTON, J. L. Projeto de Bancos de Dados Relacionais - Teoria e Prática. 1.ed. Campus, 2015.

SILBERSCHATZ, A.; KORTH, H. F.; SUDARSHAN, S. Sistema de Banco de Dados. Campus, 2006.

Aula 02 | Módulo Básico