Feedback — Problem Set 1

Help Center

You submitted this homework on Sat 12 Jan 2013 11:03 AM PST. You got a score of 9.00 out of 9.00.

		4 .			-4
Qu	es'	TI.	O	n	1

Dominance

1\2	Х	У	Z
а	1 ,2	<mark>2</mark> ,2	5 ,1
b	4 ,1	<mark>3</mark> ,5	<mark>3</mark> ,3
С	5 ,2	<mark>4</mark> ,4	<mark>7</mark> ,0
d	<mark>2</mark> ,3	0,4	<mark>3</mark> ,0

6) y;

Find the strictly dominant strategy:

Your Answer
Score
Explanation

1) a;
2) b;

3) c;
√ 1.00

4) d;
5) x;

7) z

Total 1.00 / 1.00

Question Explanation

- (3) c is a strictly dominant strategy.
- Because when 2 plays x or y or z, playing c always gives 1 a strictly higher payoff than playing a, b or d.
- None of the strategies is always strictly best for player 2.

Question 2

Dominance

1\ 2	Х	У	Z
а	1 ,2	<mark>2</mark> ,2	5 ,1
b	4 ,1	<mark>3</mark> ,5	<mark>3</mark> ,3
С	5 ,2	<mark>4</mark> ,4	<mark>7</mark> ,0
d	<mark>2</mark> ,3	<mark>0</mark> ,4	<mark>3</mark> ,0

Find a very weakly dominant strategy that is not also strictly dominant.

 Your Answer
 Score
 Explanation

 ○ 7) z
 ○ 5) x;
 ○ 1) a;

 ○ 6) y;
 ✓ 1.00

4) d;

2) b;

3) c;

Total

1.00 / 1.00

Question Explanation

(6) y is a very weakly dominant strategy that is not also strictly dominant.

- Because when 1 plays a, b, c or d, playing y always gives 2 a weakly higher payoff than playing x or z.
- Note that it is only weakly higher when 1 plays a, as then playing x and y gives 2 the same payoff.

Question 3

Dominance

1\ 2	Х	У	Z
а	1 ,2	<mark>2</mark> ,2	<mark>5</mark> ,1
b	4 ,1	<mark>3</mark> ,5	<mark>3</mark> ,3
С	5 ,2	<mark>4</mark> ,4	<mark>7</mark> ,0
d	2 ,3	0,4	3,0

When player 1 plays d, what is player 2's best response:

Your Answer		Score	Explanation
a) Only x			
b) Only y	✓	1.00	

o) Only z

od) Both y and z

Total

1.00 / 1.00

Question Explanation

(b) only y is a best response for player 2. When player 1 plays d, player 2 earns 3 from playing x, 4 from playing y and 0 from playing z. Thus only y is a best response.

Question 4

Dominance

1\2	Х	У	Z
а	1 ,2	<mark>2</mark> ,2	<mark>5</mark> ,1
b	4 ,1	<mark>3</mark> ,5	<mark>3</mark> ,3
С	5 ,2	<mark>4</mark> ,4	<mark>7</mark> ,0
d	<mark>2</mark> ,3	<mark>0</mark> ,4	<mark>3</mark> ,0

Find all strategy profiles that form pure strategy Nash equilibria (there may be more than one, or none):

Your Answer		Score	Explanation
1) (a, x);	~	0.08	
2) (b, x);	~	0.08	
3) (c, x);	✓	0.08	

4) (d, x);	✓	0.08
□ 5) (a, y);	~	0.08
6) (b, y);	✓	0.08
√ 7) (c, y);	✓	0.08
8) (d, y);	✓	0.08
9) (a, z);	✓	0.08
□ 10) (b, z);	✓	0.08
☐ 11) (c, z);	✓	0.08
☐ 12) (d, z).	✓	0.08
Total		1.00 / 1.00

Question Explanation

(7) (c, y) is the only pure strategy Nash equilibria.

- Check that no one wants to deviate.
- Note that c is the strictly dominant strategy and so is the only possible strategy for player 1 in a pure strategy Nash equilibrium.
- When player 1 plays c, playing y gives player 2 the highest payoff.

Question 5

Nash Equilibrium - Bargaining

There are 2 players that have to decide how to split one dollar. The bargaining process works as follows. Players simultaneously announce the

share they would like to receive s_1 and s_2 , with $0 \le s_1, s_2 \le 1$. If $s_1 + s_2 \le 1$, then the players receive the shares they named and if $s_1 + s_2 > 1$, then both players fail to achieve an agreement and receive zero.

Which of the following is a strictly dominant strategy?

Your Answer		Score	Explanation
(a)1;			
b) 0.5;			
o c) 0;			
d) None of the above.	~	1.00	
Total		1.00 / 1.00	

Question Explanation

(d) is true.

- No player has any strictly dominant strategies. Any of the options given constitutes a best response to some strategy played by the other player, and so no strategy always strictly outperforms all other strategies.
- Strategies (a) and (c) are in the set of best responses of player i when player j's strategy is $s_i > 1$.
- Strategies (b) is the best response of player i when player j's strategy is $s_i=0.5$.

Question 6

Nash Equilibrium - Bargaining

There are 2 players that have to decide how to split one dollar. The bargaining process works as follows. Players simultaneously announce the share they would like to receive s_1 and s_2 , with $0 \le s_1, s_2 \le 1$. If $s_1 + s_2 \le 1$, then the players receive the shares they named and if $s_1 + s_2 > 1$, then both players fail to achieve an agreement and receive zero.

Which of the following strategy profiles is a pure strategy Nash equilibrium?

Your Answer		Score	Explanation
a) (0.3, 0.7);			
b) (0.5, 0.5);			
o) (1.0, 1.0);			
d) All of the above	~	1.00	
Total		1.00 / 1.00	

Question Explanation

(d) is true.

- Check that no one wants to deviate.
- Note that when player i plays $s_i < 1$, player j's best response is $s_j = 1 s_i$. This holds in a) and b). Thus, both players are best responding.
- .When player i plays $s_i=1$, player j's best response can be any number as she will get 0 no matter 1. Thus c) also forms a pure strategy NE.

Question 7

Bertrand Duopoly

- ullet Two firms produce identical goods, with a production cost of c per unit.
- Each firm sets a nonnegative price $(p_1 \text{ and } p_2)$.
- All consumers buy from the firm with the lower price, if $p_i \neq p_j$. Half of the consumers buy from each firm if $p_i = p_j$.
- D is the total demand.

• Profit of firm i is:

- \circ 0 if $p_i > p_i$ (no one buys from firm i);
- $\circ \ D(p_i-c)/2$ if $p_i=p_i$ (Half of customers buy from firm i);
- $\circ \ D(p_i-c)$ if $p_i < p_j$ (All customers buy from firm i);

Find the pure strategy Nash equilibrium:

Your Answer	Score	Explanation
lacksquare a) Both firms set $p=0$.		
lacksquare b) Firm 1 sets $p=0$, and firm 2 sets $p=c$.		
lacktriangledown c) Both firms set $p=c$.	1.00	
d) No pure strategy Nash equilibrium exists.		
Total	1.00 / 1.00	

Question Explanation

(c) is true.

- Notice than in a) and b) at least one firm i is making negative profits since $p_i < c$ and it sells a positive quantity. Thus, firm i would prefer to deviate to $p_i > p_j$ and earn a profit of 0.
- It is easy to verify that $p_1=p_2=c$ is an equilibrium by checking that no firm wants to deviate:
 - \circ When $p_1=p_2=c$, both firms are earning null profits.
 - \circ If firm 1 increases its price above c ($p_1>c$), it will still earn null profits.
 - \circ If firm 2 decreases its price below c ($p_1 < c$), it will earn strictly negative profits.
 - In both cases, either the firm is indifferent or strictly worse off. Then, it does not have incentives to deviate given the other firm's strategy.

Question 8

Voting

- Three voters vote over two candidates (A and B), and each voter has two pure strategies: vote for A and vote for B.
- When A wins, voter 1 gets a payoff of 1, and 2 and 3 get payoffs of 0; when B wins, 1 gets 0 and 2 and 3 get 1. Thus, 1 prefers A, and 2 and 3 prefer B.
- The candidate getting 2 or more votes is the winner (majority rule).

Find all very weakly **dominant** strategies (there may be more than one, or none).

Your Answer		Score	Explanation
a) Voter 1 voting for A.	~	0.25	
b) Voter 1 voting for B.	~	0.25	
c) Voter 2 (or 3) voting for A.	~	0.25	
d) Voter 2 (or 3) voting for B.	~	0.25	
Total		1.00 / 1.00	

Question Explanation

(a) and (d) are (very weakly) dominant strategies.

- Check (b): for voter 1, voting for candidate A always results in at least as high a payoff as voting for candidate B and indeed is sometimes strictly better (when the other players vote for different candidates).
 - When voters 2 and 3 vote for B, voter 1 is indifferent between A or B (since B will win anyways).
 - When either 2 or 3 (or both) vote for A, voter 1 strictly prefers to vote for A than for B.
- Check (c): for voter 2, voting for candidate B is a very weakly dominant strategy.
 - When voters 1 and 3 vote for A, voter 2 is indifferent between A or B (since A will win anyways).
 - When either 1 or 3 (or both) vote for B, voter 2 strictly prefers to vote for B than for A.

• (b) and (c) can't be very weakly dominant strategies, since they sometimes do worse than the other strategy.

Question 9

Voting

- Three voters vote over two candidates (A and B), and each voter has two pure strategies: vote for A and vote for B.
- When A wins, voter 1 gets a payoff of 1, and 2 and 3 get payoffs of 0; when B wins, 1 gets 0 and 2 and 3 get 1. Thus, 1 prefers A, and 2 and 3 prefer B.
- The candidate getting 2 or more votes is the winner (majority rule).

Find all pure strategy Nash equilibria (there may be more than one, or none)?

Your Answer		Score	Explanation
a) All voting for A.	✓	0.25	
	✓	0.25	
c) 1 voting for A, and 2 and 3 voting for B.	✓	0.25	
d) 1 and 2 voting for A, and 3 voting for B.	~	0.25	
Total		1.00 / 1.00	

Question Explanation

- (a), (b) and (c) are pure strategy Nash equilibria.
- It is easy to verify that (a), (b) and (c) are equilibria by checking that no voter wants to deviate:
 - When all voters vote for the same candidate, no single voter has any incentives to deviate because his/her individual vote can't modify the outcome of the election.
 - o In (c), voter 1 is indifferent between candidates A and B, and voters 2 and 3 are best responding to the strategies played by the

remaining voters (if voter 2 votes for A, candidate A wins; if voter 2 votes for B, candidate B wins).

• (d) is not an equilibrium, since voter 2 has incentives to deviate and vote for candidate B.