Информационные технологии. Лекция 01. КФС. Основные свойства. БТС

Студент группы 2305 Макурин Александр 07 февраля 2023

Организационные вопросы

Список лабораторных (каждая даёт 10 баллов)

- Начало работ с Gazebo
- Создание модели ТС (БПЛА, БТС)
- Автономное ТС
- Реализация протоколов связи
- Роевой интеллект на группе ТС
- Стратегическое планирование

Оценки

- 95% + (57 + баллов) = 5
- 90% + (54 + баллов) = 4
- 80% + (48 + баллов) = 3

Индустрия 4.0 - замещение людей роботами в производстве

БТС - беспилотное транспортное средство

Киберфизическая система (КФС) - система, интегрирующая способности к вычислениям, связи и хранению информации с мониторингом и/или управлением объектами физического мира и должна делать это надёжно, безопасно, эффективно и в реальном времени.

В рамках курса мы рассматриваем такие аспекты мехатроники, как управление, электроника и программное обеспечение.

АСУ ТП (автоматизированная система управления технологическим процессом) становятся всё менее распространёнными по причинам плохой расширяемости (одна система управления на множество датчиков и механизмов). На замену АСУ ТП приходят КФС, как более гибкие и надёжные.

1 История робототехники

- Движущиеся статуи (І век до нашей эры)
- Механические устройства (Леонардо да Винчи)
- Автоматоны (Пьер Жаке-Дро)
- Разностная машина (Чарльз Бэббидж)
- Boilerplate (Арчи Кемпион)

2 Промышленные роботы

- Манипуляторы
- Johns Hopkins Beast (JHB) (1960) робот, решающий главную задачу всех роботов (найти поесть) Он умел искать розетки, от которых подзаряжался, в белой комнате с чёрными розетками посредством фотоэлемента. При этом робот был полностью кибернетическим и вся логика его управления была реализована посредством множества транзисторов.

- Shakey (1970) первый робот, который был способен "думать" над своими действиями. Имел на своём борту компьютер и, в отличие от ЈНВ, был способен разбивать команды оператора на подзадачи. Например, при получении команды «столкни блок с платформы», он осматривал окружающее пространство, искал платформу с блоком и пандус, толкал пандус к платформе, забирался по нему на платформу и сталкивал блок.
- Луноход
- Марсоход

Задача грузчика — как двум роботам перенести пианино. Не решённая задача. Для решения требуется найти алгоритм нахождения баланса между двумя роботами и пианино.

Робо-рука для сбора помидоров — требует контроля силы сжатия/удержания помидора. Несмотря на кажущуюся простоту задачи, тоже до сих пор не реализована как раз таки из-за проблем с контролем силы.

3 Тенденции развития

- Разработка стандартов
- Уменьшение размеров
- Удешевление стоимости комплектующих
- Развитие систем управления:
 - ИИ
 - Стайное управление
 - Функционирование в условиях неопределённости

Три уровня планирования:

- Оперативный решение текущей задачи
- Тактический решение множества задач, для перехода к новому классу задач
- Стратегический главная цель, на которую направлены задачи всех остальных уровней

Пример разделения цели «Получать много денег»:

- Оперативный Копипаст со Stack Overflow решение текущей задачи
- Тактический Junior ightarrow Middle ightarrow Senior
- Стратегический например, увеличение прибыли

Разработка стандартов — Разработка правил, по которым можно было бы создать ИИ, который гарантированно будет выполнять поставленную ему задачу.

4 Система

$$E=E^{inf}\cup E^{phy}$$
 \uparrow \uparrow \uparrow система информационные элементы физические элементы

Примеры возможных связей между информационными и физическими элементами:

$$S_E = f(E,U)$$
 \uparrow \uparrow состояние системы система входные воздействия

Общее устройство системы

Дифференцирование состояния системы

y — выходные параметры

|y|=|U|. Или, другими словами, размерность y = размерность U

 $\frac{\delta S}{\delta t} = F(E^t, U^t)$ - состояние системы в конкретный момент времени есть функция от системы и входных воздействий в этот же момент времени.

 $S_E = y + e$, где e - погрешность системы и обычно опускается, т. к. зависит от физических параметров, таких, как качество канала связи.

При стремлении длины временного отрезка к 0, изменение системы тоже стремится к 0:

$$\Delta r \to 0 \Leftrightarrow \Delta S \to 0$$

Когда состояние системы близко к оптимальному, значения выходных параметров стремятся к нормальному распределению.

 $f:S_E^{\text{норм}} \to S_E^{\text{плохо}}$ — система постепенно деградирует, её состояние ухудшается

5 Виды архитектур интеллектуальных агентов:

5.1 Реактивные

Пример - Johns Hopkins Beast.

5.2 Делиберативные

5.3 Гибридные

Пример - автопилот Tesla (он знает, что нужно делать (априорная информация) (ехать, соблюдая ПДД) и реагирует на изменения (пешеход выбежал на дорогу))

6 Сопутствующие задачи для беспилотника:

6.1 Стабилизация

Система должна стремиться находится максимально близко к идеальному состоянию.

 $y(t) \to y_*$ или $\lim_{t\to\infty} |y_*-y(t)| \le \nu$, где ν - допустимое отклонение, а y_* - идеальное состояние. Также иногда рассматривается цель вида $\lim_{t\to\infty} M|y_*-y(t)| \le \nu$, где M - символ взятия математического ожидания. Второй способ используется когда на объект воздействуют случайные возмущения или помехи. Математическое ожидание позволяет сгладить подобные помехи.

Классическим примером устройства, решающего подобную задачу является ПИД регулятор.

6.2 Слежение

Система должна сохранять хоть какую-то работоспособность. Например - при потере управляющего сигнала дроном.

 $\lim_{t\to\infty} |U_*(t)-U(t)| = 0$ — функция состояния объекта управления (входного состояния системы (U(t))) не должна отклонятся от желаемой функции входного состояния системы $(U_*(t))$. Другими словами, состояние объекта управление в момент времени t должно соответсвовать желаемому состоянию объекта в этот момент времени. Это желаемое состояние обычно описывается эталонной моделью.

6.3 Возбуждение (разгон, раскачка) колебаний

Предполагается, что система изначально находится в состояние покоя и необходимо привести её в колебательное движение с заданными характеристиками.

Формально, данную задачу можно свести к задаче слежения.

 $\lim_{t \to \infty} |G(U(t))| = G_*$, где G(x) - некоторая скалярная целевая функция, а G_* - её идеальное значение при достижении цели управления.

6.4 Синхронизация

Система должна быть наблюдаема и повторяема. То есть если создать вторую такую же систему, то её можно будет привести в такое состояние, что $\forall t \geq 0, \ y_1(t) = y_2(t),$ где y_1 и y_2 — состояния соответствующих систем.

7 Рекомендуемая литература

- Martsenyuk V. P. et al. Software Complex in the Study of the Mathematical Model of Cyber-Physical Systems //ICTES. – 2020. – C. 87-97.
- Legatiuk D. et al. A categorical approach towards metamodeling cyber-physical systems //The 11th International Workshop on Structural Health Monitoring (IWSHM). Stanford, CA, USA. 2017. T. 12. C. 2017.
- Platzer A. Logic & proofs for cyber-physical systems //Automated Reasoning: 8th International Joint Conference, IJCAR 2016, Coimbra, Portugal, June 27–July 2, 2016, Proceedings 8. – Springer International Publishing, 2016. – C. 15-21.
- Letichevsky A. A. et al. Cyber-physical systems //Cybernetics and Systems Analysis. 2017. T. 53. –
 C. 821-834.
- Wan J. et al. From machine-to-machine communications towards cyber-physical systems //Computer
 Science and Information Systems. 2013. T. 10. №. 3. C. 1105-1128.
- Фрадков А. Л. Кибернетическая физика: принципы и примеры. 2003.