Neural Networks and Deep Learning

Lecture 1: introduction

Jan Chorowski
Instytut Informatyki
Wydział Matematyki i Informatyki Uniwersytet
Wrocławski
2019-2020

Practical Information

- Course Materials:
 - SKOS (announcements, course rules etc.): https://skos.ii.uni.wroc.pl/course/view.php?id=279
 - Github (lecture notes, assignment notebooks):
 https://github.com/janchorowski/dl uwr
 - USOS: grades
- On-line Resources:
 - https://www.deeplearningbook.org/
- Extra reading
 - http://cs229.stanford.edu/
 - https://argmax.ai/ml-course/
 - Bishop, Pattern Recognition and Machine Learning (PRML)

Machine Learning

Artificial Intelligence

7

Data Mining

Deep Learning

Artificial Intelligence

John McCarthy, 1955

All is the science and engineering of making intelligent machines.

Al Paradox

Hans Moravec 1988

It is comparatively easy to make computers exhibit adult level performance on intelligence tests or playing checkers, and difficult or impossible to give them the skills of a one-year-old when it comes to perception and mobility.

Perception ≥ Pattern Matching

Horse is as everyone can see.

[B. Chmielowski, definition of "horse" from Nowe Ateny (New Athens, 1745), the first encyclopedia written in Polish]

Revolution in Games

A classical chess program considers 80e6 positions

A human grandmaster – about 80

Revolution in Games

A classical chess program considers 80e6 positions

AlphaZero Neural net – 80e3

A human grandmaster – about 80

Revolution in perception

Source: Microsoft and Apple face detection API documentations, wykop.pl, A Krizhevsky

Revolution in perception

Revolution in language understanding

https://arxiv.org/abs/1310.4546

Revolution in language understanding

ROOT Slimonne prztowie wyrło i warło się w gulbieży

Chorowski, Zapotoczny, Rychlikowski Read, Tag, and Parse All at Once, or Fully-neural Dependency Parsing

Revolution in speech processing

Weiss, Chorowski et al. Sequence-to-Sequence Models Can Directly Transcribe Foreign Speech

Revolution in synthesis

A Style-Based Generator Architecture for Generative Adversarial Networks Tero Karras (NVIDIA), Samuli Laine (NVIDIA), Timo Aila (NVIDIA)

https://arxiv.org/abs/1812.04948

Some demos

- https://talktotransformer.com/
- https://openai.com/blog/glow/

Image manipulation

Transform sketches into images:

https://www.youtube.com/watch?v=FDELBFSeqQs
https://www.youtube.com/watch?v=9c4z6YsBGQ0

Image super-resolution

https://arxiv.org/pdf/1606.01299.pdf

Style transfer

Find image that takes content from image A and style from B

Gatys et al., "A Neural Algorithm of Artistic Style", 2015

Sample adaptation to videos:

https://www.youtube.com/watch?v=K huj4ASldmU

Ruder et al., "Artistic Style Transfer For Videos"

Change the image to see many eyes/buildings in it.

Inceptionism: Going Deeper into Neural Networks http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html

Grocery Trip: https://www.youtube.com/watch?v=DgPaCWJL7XI

NEURAL NET INTUITIONS

Human perception speed

(Thorpe et al., 1995-...)

Visual Cortex Diagram

Neurons

Basic computational units in the brain

The artificial neuron (perceptron)

- x_i are the inputs
- w_i are the weights and b the bias
- Σ denotes the summation
- σ is a (possibly nonlinear) activation function

Neural networks

- A neuron detects some patterns in its inputs – combinations that cause it to fire
- When assembled into a network, neurons deep in the network react to patterns composed of more primitive parts

Convolutional networks

Best for images!

Convnets on digits output

W5

W1 W3

input

Neural nets learn hierarchies!

Google trained a network on YouTube videos. The net developed units detecting persons and cats!

Q. Le et al. "Building high-level features using large scale unsupervised learning"

Neural nets learn hierarchies!

Hierarchical features learned from a dataset of face images

(Lee et al., "Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks")

Low-level features

What the neuron (feature-detector looks for)

What images are selected by the neuron

M. Zieler, "Visualizing and Understanding Convolutional Networks"

Mid-level features

High-level features

M. Zieler, "Visualizing and Understanding Convolutional Networks"

Depth is important

Nearest neighbors

Look-up tables

Neural nets

Deep Learning

Study of models that solve tasks in stages whose exact function emerges during training.

Deep Learning history: 1986

Learning representations by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hinton† & Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California, San Diego, La Jolla, California 92093, USA † Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for networks of neurone-like units. The procedure repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector. As a result of the weight adjustments, internal 'hidden' units which are not part of the input or output come to represent important features of the task domain, and the regularities in the task are captured by the interactions of these units. The ability to create useful new features distinguishes back-propagation from earlier, simpler methods such as the perceptron-convergence procedure.

Internal "hidden" units which are not part of the input or output come to represent important features of the task domain

Sidenote: why now!?

- DL principles were known since a long time
- "Revolution" required:
 - Lots of data
 - Lots of compute
- It is as much a scientific, as engineering effort
- Still, awesome: backprop and gradient descent works better than anyone could hope

Goals for this course

- 1. Teach basics of NN implementation
- 2. Teach ConvNets
- 3. Teach about NNs in NLP, Speech
- 4. Show how to work without labels
- 5. Exotic topics: NNs on graphs, point-clouds, RL

Outline for the course

Kiedy	Co?	W: Tematyka	W: do poczytania	Prac: deadline i tematyka		
02/27/2020	W1	Intro, LR -> 2 layer Net	. ,	P1: KickOff - better sentiment prediction		
03/05/2020	W2	PyTorch intro, backprop?				
03/12/2020	W3	Bag of tricks, regularization,	batch-norm	P2: Siec w NumPy?		
03/19/2020	W4	S1: NNets, deep double des	cent, scaling laws	P3: MNIST i trikasy w PyTorch		
03/26/2020	W5	ConvNets for image process	sing			
04/02/2020	W6	S2: ConvNet Architectures		P4: All about ConvNets		
04/09/2020	W7	RNNs				
04/16/2020	W8	S3: RNN Architectures, transformers, NNs for P5: All about NLP				
04/23/2020	W9	Speech proc with NNets, Wavenets n friends				
04/30/2020	W10	VAE, RealNVP		P6: All about unsupervised, Proj proposals		
05/07/2020	Dzień rektorski	No Lecture				
05/14/2020	W11	NNs and discrete structures		Projects		
05/21/2020	W12	Buffer for more generative s	tuffs			
05/28/2020	W13	Buffer S4??: NNets for exotic data: graphs and pointclouds, GAN, CycleGAN, ???				
06/04/2020	W14	Deep RL		Project milestone presentation		
06/11/2020	Boże Cialo	No Lecture				
06/18/2020	W15	Project Demos?				

Perceptron (1958)

Demos and questions

https://cs.stanford.edu/people/karpathy/convne
tjs/

Q1: Is the nonlinearity necessary?

Q2: Is a net with a hidden layer really that different from a net with no hidden layers?