Case Study: LoanTap: Logistic Regression

1.0 Defining the Problem Statement

1.1 About the LoanTap Organisation:

LoanTap is an online platform committed to delivering customized loan products to millennials. They innovate in an otherwise dull loan segment, to deliver instant, flexible loans on consumer friendly terms to salaried professionals and businessmen.

1.2 Problem Statement

Objective: - Develop a robust credit underwriting model for personal loans. - Accurately predict the creditworthiness of individual loan applicants. - Determine optimal repayment terms (e.g., loan amount, interest rate, tenure) for approved applications.

Scope: - This case study focuses exclusively on the underwriting process for personal loans within the LoanTap ecosystem. - The model will utilize a given set of applicant attributes to make credit decisions.

Key Deliverables: - A predictive model that accurately classifies applicants as "creditworthy" or "not creditworthy." - Business recommendations to optimize the lending process and minimize risk.

2.0 Importing the Libraries and Loading the Dataset

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

```
# !gdown https://drive.google.com/uc?id=1ZPYj7CZCfxntE8p2Lze_4Q04MyE0y6_d -0 "LoanTap_dataset.csv"
```

```
# df = pd.read_csv("/content/LoanTap_dataset.csv")
df = pd.read_csv("/content/LoanTap_logistic_regression.csv")
```

Sampling the dataset

```
# Code to display all the rows and column
pd.set_option('display.max_columns', None)
```

```
df.sample(5, random_state = 42)
```

	loan_amnt	term	int_rate	in stall ment	grade	sub_grade	emp_title	emp
362323	14000.0	60 months	14.49	329.33	С	C4	mental health tech	10+
220444	6050.0	36 months	16.29	213.57	D	D2	teller	2 ye
345899	20775.0	36 months	18.24	753.57	D	D5	Business Analyst	2 y€
93811	6000.0	36 months	13.99	205.04	\mathbf{C}	C4	Outreach and Enrollment	1 y€
182096	17450.0	36 months	13.11	588.89	В	B4	Pinellas county schools	8 ye

3.0 Exploratiry Data Analysis

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 396030 entries, 0 to 396029
Data columns (total 27 columns):

#	Column	Non-Null Count	Dtype
0	loan_amnt	396030 non-null	float64
1	term	396030 non-null	object
2	int_rate	396030 non-null	float64
3	installment	396030 non-null	float64
4	grade	396030 non-null	object
5	sub_grade	396030 non-null	object
6	emp_title	373103 non-null	object
7	emp_length	377729 non-null	object
8	home_ownership	396030 non-null	object
9	annual_inc	396030 non-null	float64
10	verification_status	396030 non-null	object
11	issue_d	396030 non-null	object
12	loan_status	396030 non-null	object
13	purpose	396030 non-null	object
14	title	394274 non-null	object

```
396030 non-null float64
 15 dti
 16
    earliest_cr_line
                          396030 non-null object
 17
    open_acc
                          396030 non-null float64
    pub_rec
                          396030 non-null float64
 18
    revol bal
 19
                          396030 non-null float64
 20
    revol_util
                          395754 non-null float64
    total acc
                          396030 non-null float64
 22
    initial_list_status
                          396030 non-null object
    application_type
                          396030 non-null object
 24
    mort_acc
                          358235 non-null float64
 25 pub_rec_bankruptcies
                          395495 non-null float64
 26 address
                          396030 non-null object
dtypes: float64(12), object(15)
```

memory usage: 81.6+ MB

```
df.shape
print(f'Total number of rows : {df.shape[0]}')
print(f'Total number of columns : {df.shape[1]}')
```

Total number of rows : 396030 Total number of columns: 27

Key Observations

- Dataset Dimensions: The dataset comprises 27 rows and 396,030 columns.
- Data Quality: Some columns contain null values.
- Feature Selection: 26 variables are identified as potential predictors for the target variable "loan_status," based on the business context.

Next Steps

• Data Quality Assessment:

- Calculate the percentage of missing values in each column.
- Determine the overall percentage of missing values within the entire dataset.
- This analysis will guide the appropriate strategies for handling null values (e.g., imputation, removal).

• Feature Engineering:

- Implement feature engineering techniques relevant to the specific business requirements.
 - * This may involve:
 - · Creating new features from existing ones.
 - · Transforming existing features (e.g., scaling, binning, encoding categorical variables).
 - Selecting the most relevant features for the predictive model.

```
# Function to display, only the columns with null values along with missing
values count.
def missing_values():
    missing_values = df.isnull().sum()
    missing_values = missing_values[missing_values > 0].rename('Missing Values')
    return missing_values

missing_values()
```

	Missing Values
emp_title	22927
emp_length	18301
title	1756
revol_util	276
mort_acc	37795
$pub_rec_bankruptcies$	535

```
# Function to calculate missing value percentages across each columns.
def missing_value_perc():
    missing_value_perc = np.round(100*(df.isnull().sum()/df.shape[0]),2)
    missing_value_perc = missing_value_perc[missing_value_perc > 0].rename('Missing Values Percentage')
    return missing_value_perc

missing_value_perc()
```

	Missing Values Percentage
emp_title	5.79
emp_length	4.62
title	0.44
revol_util	0.07
mort_acc	9.54
$pub_rec_bankruptcies$	0.14

- Missing Data: The column "mort_acc" exhibits the highest rate of missing values, approaching 10%.
- Categorical Features: The dataset includes six categorical columns, notably "emp_title" and "title."

Next Steps

• "mort_acc" Analysis:

- Given its potential significance in underwriting, a thorough investigation of the "mort acc" column is crucial.
- This may involve:
 - * Imputation strategies to handle missing values.
 - * Exploratory analysis to understand its distribution and relationship with** other variables.

• Feature Importance:

Identifying unique values

C1

C2

C3

23662

22580

21221

- Conduct a comprehensive analysis of the relationship between each independent feature and the target variable ("loan status").
- This will help identify the most influential predictors and guide feature selection for subsequent modeling.

```
for i in df.select_dtypes(include='object').columns:
 print(df[i].value_counts(dropna=False).sort_index())
 print("***"*10)
term
36 months
            302005
60 months
             94025
Name: count, dtype: int64
*********
grade
     64187
Α
В
    116018
С
    105987
D
     63524
Ε
     31488
F
     11772
G
      3054
Name: count, dtype: int64
*********
sub grade
Α1
      9729
A2
      9567
A3
     10576
A4
     15789
A5
     18526
B1
     19182
B2
     22495
ВЗ
     26655
     25601
В4
В5
     22085
```

```
C4
      20280
C5
      18244
D1
      15993
D2
      13951
D3
      12223
D4
      11657
D5
       9700
E1
      7917
E2
       7431
E3
       6207
E4
       5361
E5
       4572
F1
       3536
F2
       2766
F3
       2286
F4
       1787
F5
       1397
G1
       1058
G2
       754
G3
        552
G4
        374
G5
        316
Name: count, dtype: int64
**********
emp_title
       NSA Industries 11c
                                        1
   Fibro Source
                                        1
   Long Ilsand College Hospital
                                        1
   mortgage banker
  Credit rev specialist
                                        1
zs backroom
                                        1
zueck transportation
                                        1
zulily
                                        1
License Compliance Investigator
                                       1
                                    22927
\mathtt{NaN}
Name: count, Length: 173106, dtype: int64
*********
emp_length
1 year
              25882
             126041
10+ years
2 years
              35827
3 years
              31665
4 years
              23952
5 years
              26495
6 years
              20841
7 years
              20819
8 years
              19168
```

9 years 15314 < 1 year 31725 NaN18301 Name: count, dtype: int64 ********* home_ownership ANY MORTGAGE 198348 NONE 31 OTHER 112 OWN 37746 RENT 159790 Name: count, dtype: int64 ********* verification_status Not Verified 125082 Source Verified 131385 Verified 139563 Name: count, dtype: int64 ********* issue_d Apr-2008 122 Apr-2009 227 Apr-2010 648 Apr-2011 1231 Apr-2012 2508 . . . Sep-2012 4707 Sep-2013 9179 Sep-2014 4293 Sep-2015 5419 Sep-2016 1059 Name: count, Length: 115, dtype: int64 ********* loan status Charged Off 77673 318357 Fully Paid Name: count, dtype: int64 ********* purpose car 4697 83019 credit_card debt_consolidation 234507 257 educational 24030 home_improvement house 2201 major_purchase 8790

medical

4196

```
2854
moving
                     21185
other
                      329
renewable_energy
small_business
                      5701
vacation
                      2452
wedding
                      1812
Name: count, dtype: int64
*********
title
\tcredit_card
                            1
\tdebt_consolidation
                            3
\tother
                            4
                            2
\tsmall_business
     debt consolidation
                            1
zonball Loan
                            1
zxcvb
                            1
~Life Reorganization~
                            1
~Summer Fun~
                            1
NaN
                         1756
Name: count, Length: 48817, dtype: int64
*********
earliest_cr_line
Apr-1955
Apr-1958
            1
Apr-1960
            1
            2
Apr-1961
Apr-1962
            3
          . . .
Sep-2009
          391
Sep-2010
           346
Sep-2011
           209
           54
Sep-2012
Sep-2013
            3
Name: count, Length: 684, dtype: int64
*********
initial_list_status
    238066
    157964
W
Name: count, dtype: int64
*********
application_type
DIRECT_PAY
               286
INDIVIDUAL
            395319
               425
JOINT
Name: count, dtype: int64
*********
address
```

```
000 Adam Station Apt. 329\r\nAshleyberg, AZ 22690
                                                   1
000 Adrian Cliffs\r\nAndyton, LA 22690
                                                   1
000 Alexandria Street\r\nPort Richard, FL 22690
                                                   1
000 Amber Court\r\nLake Pamelatown, IN 00813
                                                   1
000 Amy Pines Suite 498\r\nSouth Susan, ND 22690
                                                   1
Unit 9995 Box 6277\r\nDPO AE 48052
                                                   1
Unit 9995 Box 8360\r\nDPO AP 00813
                                                   1
Unit 9996 Box 9255\r\nDPO AP 05113
                                                   1
Unit 9997 Box 3228\r\nDPO AA 11650
                                                   1
Unit 9997 Box 3834\r\nDPO AP 86630
                                                   1
Name: count, Length: 393700, dtype: int64
********
```

df.describe().T

	count	mean	std	min	25%	50%	75%	ma
loan_amnt	396030.0	14113.888089	8357.441341	500.00	8000.00	12000.00	20000.00	400
int_rate	396030.0	13.639400	4.472157	5.32	10.49	13.33	16.49	30.
installment	396030.0	431.849698	250.727790	16.08	250.33	375.43	567.30	153
annual_inc	396030.0	74203.175798	61637.621158	0.00	45000.00	64000.00	90000.00	870
dti	396030.0	17.379514	18.019092	0.00	11.28	16.91	22.98	999
open_acc	396030.0	11.311153	5.137649	0.00	8.00	10.00	14.00	90.
pub_rec	396030.0	0.178191	0.530671	0.00	0.00	0.00	0.00	86.
revol_bal	396030.0	15844.539853	20591.836109	0.00	6025.00	11181.00	19620.00	174
revol_util	395754.0	53.791749	24.452193	0.00	35.80	54.80	72.90	892
total_acc	396030.0	25.414744	11.886991	2.00	17.00	24.00	32.00	151
mort_acc	358235.0	1.813991	2.147930	0.00	0.00	1.00	3.00	34.
$pub_rec_bankruptcies$	395495.0	0.121648	0.356174	0.00	0.00	0.00	0.00	8.0

df.describe(include='object').T

	count	unique	top	freq
term	396030	2	36 months	302005
grade	396030	7	В	116018
sub_grade	396030	35	B3	26655
emp_title	373103	173105	Teacher	4389
emp_length	377729	11	10+ years	126041
$home_ownership$	396030	6	MORTGAGE	198348
verification_status	396030	3	Verified	139563
issue_d	396030	115	Oct-2014	14846
loan_status	396030	2	Fully Paid	318357
purpose	396030	14	$debt_consolidation$	234507
title	394274	48816	Debt consolidation	152472

	count	unique	top	freq
earliest_cr_line	396030	684	Oct-2000	3017
initial_list_status	396030	2	f	238066
application_type	396030	3	INDIVIDUAL	395319
address	396030	393700	USS Johnson\r\nFPO AE 48052	8

df.select_dtypes(include='number').skew()

	0
loan_amnt	0.777285
int_rate	0.420669
installment	0.983598
annual_inc	41.042725
dti	431.051225
open_acc	1.213019
pub_rec	16.576564
revol_bal	11.727515
revol_util	-0.071778
total_acc	0.864328
mort_acc	1.600132
$pub_rec_bankruptcies$	3.423440

4.0 Graphical Analysis

4.1 Analysis of Numerical Columns

```
numerical =['loan_amnt', 'int_rate', 'installment', 'annual_inc', 'dti',
'open_acc', 'revol_bal', 'revol_util', 'total_acc']

for i in numerical:
    fig, axes = plt.subplots(1,3, figsize = (20,5))
    sns.histplot(data = df, x= df[i], kde = True, ax = axes[0])
    axes[0].set_title(f"Histogram of {i}", pad = 30)
# for j in axes[0].patches:
# values = j.get_height()
# percentage = 100 * values / len(df)
# axes[0].annotate(f'{values}\n({percentage:.1f}%)', (j.get_x() +
# j.get_width()/2, j.get_height()+3), ha='center', va='bottom', fontsize=10)
    sns.boxplot(data = df, x = df[i], ax = axes[1], width = 0.5, color='teal')
    axes[1].set_title(f'Boxplot of {i}', pad = 30)
    sns.boxplot(data = df, x = df[i], ax = axes[2], width = 0.5, color='teal', hue
= 'loan_status')
```

```
axes[2].set_title(f'Boxplot of {i} across loan_status', pad = 30)
plt.show()
tab_col = pd.DataFrame(df[i].describe()).reset_index()
tab_col.columns = ['Stat', 'Value']
display(tab_col)
```

Histogram of loan_amnt

30000 - 25000 - 20000 15000 20000 25000 30000 35000 40000 loan_amnt

	Stat	Value
0	count	396030.000000
1	mean	14113.888089
2	std	8357.441341
3	\min	500.000000
4	25%	8000.000000
5	50%	12000.000000
6	75%	20000.000000
7	max	40000.000000

	Stat	Value
0	count	396030.000000
1	mean	13.639400
2	std	4.472157
3	\min	5.320000
4	25%	10.490000

	Stat	Value
5	50%	13.330000
6	75%	16.490000
7	max	30.990000

Histogram of installment

Boxplot of installment

Boxplot of installment across loan_status

	Stat	Value
0	count	396030.000000
1	mean	431.849698
2	std	250.727790
3	\min	16.080000
4	25%	250.330000
5	50%	375.430000
6	75%	567.300000
7	max	1533.810000

Histogram of annual_inc

Boxplot of annual_inc

Boxplot of annual_inc across loan_status

	Stat	Value
0	count	3.960300e+05
1	mean	7.420318e + 04
2	std	6.163762e + 04
3	\min	0.000000e+00
4	25%	4.500000e+04

	Stat	Value
5	50%	6.400000e+04
6	75%	9.0000000e+04
7	max	8.706582e + 06

Boxplot of dti

Boxplot of dti across loan_status

	Stat	Value
0	count	396030.000000
1	mean	17.379514
2	std	18.019092
3	\min	0.000000
4	25%	11.280000
5	50%	16.910000
6	75%	22.980000
7	max	9999.000000

Histogram of open_acc

Boxplot of open_acc

Boxplot of open_acc across loan_status

	Stat	Value
0	count	396030.000000
1	mean	11.311153
2	std	5.137649
3	\min	0.000000
4	25%	8.000000

	Stat	Value
5	50%	10.000000
6	75%	14.000000
7	max	90.000000

Histogram of revol_bal

Boxplot of revol_bal

Boxplot of revol_bal across loan_status

	Stat	Value
0	count	3.960300e+05
1	mean	1.584454e + 04
2	std	2.059184e+04
3	\min	0.0000000e+00
4	25%	6.025000e+03
5	50%	1.118100e+04
6	75%	1.962000e+04
7	max	1.743266e + 06

Histogram of revol_util

Boxplot of revol_util

Boxplot of revol_util across loan_status

	Stat	Value
0	count	395754.000000
1	mean	53.791749
2	std	24.452193
3	\min	0.000000
4	25%	35.800000

	Stat	Value
5	50%	54.800000
6	75%	72.900000
7	max	892.300000

	Stat	Value
0	count	396030.000000
1	mean	25.414744
2	std	11.886991
3	\min	2.000000
4	25%	17.000000
5	50%	24.000000
6	75%	32.000000
7	max	151.000000

- **Distribution:** Many of the features exhibit right-skewed distributions, indicating a concentration of values towards the lower end and a few instances with very high values (e.g., loan_amnt, int_rate, installment, annual_inc, dti, revol_bal, revol_util, open_acc, total acc).
- Outliers: Outliers are present in most of the features, particularly on the higher end of the value ranges. These outliers could potentially skew the analysis and should be carefully investigated.
- Loan Status Impact:
 - int_rate and dti show a strong association with loan status, with "Charged Off" loans generally having higher interest rates and DTI ratios.
 - revol_util also exhibits a strong association with loan status, with higher credit utilization rates being more likely to result in charge-offs.
 - Other features like loan_amnt, installment, annual_inc, open_acc, revol_bal, and to-tal_acc show some relationship with loan status, but the differences between "Charged Off" and "Fully Paid" loans are less pronounced.

Next Steps:

• Outlier Treatment:

- Investigate the causes of outliers in each feature.
- Consider appropriate outlier treatment strategies, such as:
 - * Removal (if justified and after careful analysis)
 - * Capping (setting extreme values to a reasonable limit)

4.2 Analysis of Categorical Columns

```
categorical = ['term', 'grade', 'sub_grade', 'home_ownership',
'verification_status', 'loan_status', 'application_type']
for i in categorical:
    if i != 'sub_grade':
      fig, axes = plt.subplots(1,1, figsize=(6, 4), constrained_layout = True)
      plt.title(f'Distribution of {i}', pad= 20, )
      sns.countplot(data=df, x=i)
      for i in axes.patches:
        values = i.get_height()
        percentage = 100 * values / len(df)
        axes.annotate(f'{values:.0f}\n{percentage:.1f}%', (i.get_x() +
i.get_width()/2, i.get_height() + 5), ha = 'center', va = 'bottom')
      plt.xticks(rotation = 90)
    else:
      fig, axes = plt.subplots(1,1, figsize=(6, 4), constrained_layout = True)
      plt.title(f'Distribution of {i} in %', pad= 20)
      sns.countplot(data=df, x=i, order = df[i].value_counts().index)
      for i in axes.patches:
        values = i.get_height()
        percentage = 100 * values / len(df)
        axes.annotate(f'{percentage:.1f}', (i.get_x() + i.get_width()/2,
i.get_height() + 5), ha = 'center', va = 'bottom', fontsize=10)
      plt.xticks(rotation = 90)
    plt.show()
```


Distribution of sub_grade in %

Distribution of verification_status

Distribution of loan_status

- Loan Term Preference: A 36-month loan term is significantly preferred over a 60-month term, accounting for approximately 76% of loans.
- Grade Distribution: Borrowers are predominantly concentrated in grades C and B, while grade G represents a very small proportion (0.8%).
- Subgrade Distribution: The subgrade distribution follows a similar pattern to the grade distribution, with each grade further subdivided into five groups, exhibiting a declining frequency.
- Home Ownership: "Mortgage" is the most common home ownership status, accounting for 50% of borrowers. "Rent" is the second most prevalent status.
- Verification Status: Approximately one-third of applicants have not verified their income.
- Loan Performance: 80.4% of loans have been "Fully Paid," while 19.6% have been "Charged Off."
- Application Type: The vast majority (99.8%) of applications are submitted by individuals.

Next Steps: - Investigate the Impact of Non-Verified Income: - Analyze the relationship between non-verified income status and loan performance across different customer segments. - Determine if non-verified income applicants have a higher likelihood of loan default.

4.3 Important features across the Target variable

```
plt.figure(figsize=(15,20))
```

```
plt.subplot(4,2,1)
sns.countplot(x='term',data=df,hue='loan_status')

plt.subplot(4,2,2)
sns.countplot(x='home_ownership',data=df,hue='loan_status')

plt.subplot(4,2,3)
sns.countplot(x='verification_status',data=df,hue='loan_status')

plt.subplot(4,2,4)
g=sns.countplot(x='purpose',data=df,hue='loan_status')
g.set_xticklabels(g.get_xticklabels(),rotation=90)

plt.show()
```


• **Term:** A clear preference for shorter loan terms is evident, with 36-month terms being significantly more common than 60-month terms. This preference also seems to be associated with lower default rates.

- **Home Ownership:** Borrowers with mortgages have the highest number of loans, followed by renters. Homeowners appear to have slightly lower default rates compared to renters.
- Verification Status: A substantial portion of borrowers have not verified their income. While this category has a higher number of loans, it also shows a slightly less proportion of defaults compared to "Source Verified" and "Verified" income.
- Purpose: The primary purpose for loans is "debt consolidation," followed by "credit card" and "home improvement." Loans taken for "debt consolidation" and "small business" appear to have higher default rates.

```
plt.figure(figsize=(15, 10))

plt.subplot(2, 2, 1)
grade = sorted(df.grade.unique().tolist())
sns.countplot(x='grade', data=df, hue='loan_status', order=grade)

plt.subplot(2, 2, 2)
sub_grade = sorted(df.sub_grade.unique().tolist())
g = sns.countplot(x='sub_grade', data=df, hue='loan_status', order=sub_grade)
g.set_xticklabels(g.get_xticklabels(), rotation=90)

plt.show()
```


- Grade Distribution & Default Rates:
 - Grade C has the highest number of loans, followed by grade B.
 - Grades A and G have the lowest number of loans.
 - Default rates appear to increase with decreasing grade (from A to G). Grades G and F
 have the highest default rates.
- Sub-grade Distribution & Default Rates:

- The distribution of loans across sub-grades follows a similar pattern to the grade distribution.
- Within each grade, the default rate generally increases as the sub-grade letter moves further down the alphabet (e.g., A1 to A5).
- Sub-grades G5 and F5 have the highest default rates.

```
plt.figure(figsize = (12,10))
sns.heatmap(df.select_dtypes("number").corr(), annot =True, cmap = 'coolwarm')
```


5.0 Data Preprocessing

Duplicate Value check

```
df.duplicated().sum()
```

0

5.1 Handling the Missing values

###5.1.1 Making an informed decision on handling the missing values

Can we drop the records with null values

```
missing_value_perc()
```

	Missing Values Percentage
emp_title	5.79
emp_length	4.62
title	0.44
revol_util	0.07
mort_acc	9.54
$pub_rec_bankruptcies$	0.14

Key Observations - The "mort_acc" column has the highest percentage of missing values compared to other columns in the dataset.

Next Steps - Calculate Impact of Dropping "mort_acc" Rows: - Determine the percentage of data that would be lost if rows with missing values in the "mort_acc" column are dropped. - Assess the potential impact of data loss on the analysis and model building.

5.1.2 Null records percentage across the dataset

```
# Function to calculate the missing records percentage across the dataset
def missing_records(target):
    missing_records = df[df.isnull().any(axis=1)]
    plt = sns.countplot(data = missing_records, x = missing_records[target])
    a = np.round(100 * len(missing_records)/len(df),2)
    print(f'Records with null values if dropped will constitute to {a}% of the
    overall dataset')
    if a > 5:
        print('Dropping the records is not the best strategy yet')
    else:
        print('We can go ahead and drop the records as we have enough records')
    for i in plt.patches:
        values = i.get_height()
        percentage = 100 * values/len(missing_records)
```

```
plt.annotate(f'{values}\n{percentage:.2f}%', (i.get_x() + i.get_width()/2,
i.get_height()/2), ha = 'center', va = 'center', fontsize = 10)
missing_records('loan_status')
```

Records with null values if dropped will constitute to 15.19% of the overall dataset

Dropping the records is not the best strategy yet

Key Observations - The distribution of missing records closely mirrors the overall distribution of the loan_status variable, suggesting that imputation using central tendencies could be a viable strategy. - Dropping the missing records is not feasible due to the significant percentage (15.19%) they constitute. Instead, a hybrid approach of selective imputation can be explored to reduce the overall percentage of missing data.

Next Steps 1. Prioritize Columns with High Missing Percentages - Focus on handling the top contributors to missing data, starting with emp_title, title, and mort_acc. 2. Imputation Strategies - Categorical Variables (emp_title, title): Impute missing values with "Unknown" instead of the mode since these variables will not be included in model training. - Numerical Variable (mort_acc): Impute missing values using central tendencies (mean or median), as it constitutes a significant 9.54% of the data. - Ordinal Variable (emp_length): Replace missing values with 0, as this variable will be excluded from the final model. 3. Iterative Approach - After addressing the key contributors

to missing data, reassess the overall missing record percentage. If the percentage drops below a reasonable threshold, consider removing any residual records with missing values.

###5.1.3 Data Imputation

```
df.loc[df['emp_title'].isnull(),'emp_title'] = 'Unknown'
df.loc[df['title'].isnull(),'title'] = 'Unknown'
df.loc[df['emp_length'].isnull(),'emp_length'] = 0
missing_value_perc()
```

	Missing Values Percentage
revol_util	0.07
$mort_acc$	9.54
$pub_rec_bankruptcies$	0.14

```
total_acc_avg=df.groupby(by='total_acc').mort_acc.mean()
# saving mean of mort_acc according to total_acc_avg
def fill_mort_acc(total_acc,mort_acc):
    if np.isnan(mort_acc):
        return total_acc_avg[total_acc].round()
    else:
        return mort_acc
df['mort_acc']=df.apply(lambda x:
fill_mort_acc(x['total_acc'],x['mort_acc']),axis=1)
missing_value_perc()
```

	Missing Values Percentage
revol_util	0.07
$pub_rec_bankruptcies$	0.14

##5.2 Reassesing the Missing records percentage after handling major contributors.

```
missing_records('loan_status')
```

Records with null values if dropped will constitute to 0.2% of the overall dataset $\,$

We can go ahead and drop the records as we have enough records


```
df.dropna(inplace= True)
missing_value_perc()
```

Missing Values Percentage

##5.3 Handling the Outlier values

5.3.1 Outlier Detection

```
numerical = df.select_dtypes(include = 'number').columns
categorical = ['term', 'grade', 'sub_grade', 'home_ownership',
'verification_status', 'loan_status', 'purpose', 'application_type']

def box_plot(col):
    if col in df.columns:
        plt.figure(figsize=(5, 3))
        sns.boxplot(x=df[col],color="#29B6F6")
        plt.title('Boxplot for {}'.format(col))
        plt.show()
```

```
else:
    print(f"Column '{col}' not found in the DataFrame.")

for col in numerical:
    box_plot(col)
```

Boxplot for loan_amnt

Boxplot for int_rate

Boxplot for installment

Boxplot for annual_inc

Boxplot for revol_util

Boxplot for total_acc

Boxplot for mort acc

Boxplot for pub rec bankruptcies

df.select_dtypes(include = 'number').columns

```
# Outlier treatment
new_num_cols=['loan_amnt', 'int_rate', 'installment', 'annual_inc', 'dti',
'open_acc', 'revol_bal', 'revol_util', 'total_acc']
for col in new_num_cols:
    if col in df.columns:
```

```
Q1 = df[col].quantile(0.25)
        Q3 = df[col].quantile(0.75)
        IQR = Q3 - Q1
        lower_limit = Q1 - 1.5 * IQR
        upper_limit = Q3 + 1.5 * IQR
        df = df[(df[col] >= lower_limit) & (df[col] <= upper_limit)]</pre>
def box_plot(col):
    if col in df.columns:
        plt.figure(figsize=(8, 5))
        sns.boxplot(x=df[col],color="#29B6F6")
        plt.title('Boxplot for {}'.format(col))
        plt.show()
    else:
        print(f"Column '{col}' not found in the DataFrame.")
for col in new_num_cols:
    box_plot(col)
df.shape
```

Boxplot for loan_amnt

Boxplot for int_rate

Boxplot for installment

Boxplot for annual_inc

Boxplot for revol_bal

Boxplot for total acc

###5.3.2 Feature Engineering

Imputing values for categorical variables

```
df['pub_rec'] = [1 if i > 1 else 0 for i in df['pub_rec']]
df['mort_acc'] = [1 if i > 1 else 0 for i in df['mort_acc']]
df['pub_rec_bankruptcies'] = [1 if i > 1 else 0 for i in
df['pub_rec_bankruptcies']]
```

Mapping values and Type Casting Features appropriately

```
df['term'] = df['term'].replace({' 36 months': 36, ' 60 months': 60}).astype(int)
df['loan_status'] = df['loan_status'].replace({'Fully Paid':0, 'Charged
    Off':1}).astype(int)
df['initial_list_status'] = df['initial_list_status'].replace({'f': 1, 'w':
    O}).astype(int)

years = {'10+ years':10, '4 years':4, '< 1 year':0, '6 years':6, '9 years':9,'2
    years':2, '3 years':3,'8 years':8, '7 years':7, '5 years':5, '1 year':1}
df['emp_length']=df['emp_length'].replace(years).astype(int)</pre>
```

Deriving impactful Features from present features

```
# converting the earliest_cr_line column into month and year

df['earliest_cr_line'] = pd.to_datetime(df['earliest_cr_line'])

df['earliest_cr_line_month'] = df['earliest_cr_line'].dt.month

df['earliest_cr_line_year'] = df['earliest_cr_line'].dt.year

df['issue_d'] = pd.to_datetime(df['issue_d'])

df['issue_d_month'] = df['earliest_cr_line'].dt.month

df['issue_d_year'] = df['earliest_cr_line'].dt.year

df.sample(3)
```

	loan_amnt	term	int_rate	installment	grade	sub_grade	emp_title	emp_length	hon
124376	9000.0	36	12.29	300.18	С	C1	Driver	2	RE
385087	12200.0	36	9.99	393.61	В	B4	DZI Global Inc.	5	RE
13107	10000.0	36	11.99	332.10	В	B5	Registered Nurse	10	MC

Splitting the address column

```
df.info()
df.columns
```

<class 'pandas.core.frame.DataFrame'>
Index: 334559 entries, 0 to 396029
Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype
0	loan_amnt	334559 non-null	float64
1	term	334559 non-null	int64
2	int_rate	334559 non-null	float64
3	installment	334559 non-null	float64
4	grade	334559 non-null	object
5	sub_grade	334559 non-null	object
6	emp_title	334559 non-null	object
7	emp_length	334559 non-null	int64
8	home_ownership	334559 non-null	object
9	annual_inc	334559 non-null	float64
10	verification_status	334559 non-null	object
11	issue_d	334559 non-null	datetime64[ns]
12	loan_status	334559 non-null	int64
13	purpose	334559 non-null	object

```
334559 non-null object
 14 title
 15 dti
                            334559 non-null float64
 16 earliest_cr_line
                            334559 non-null datetime64[ns]
 17 open_acc
                            334559 non-null float64
                            334559 non-null int64
 18 pub rec
 19 revol bal
                            334559 non-null float64
 20 revol util
                            334559 non-null float64
                            334559 non-null float64
 21 total acc
 22 initial_list_status
                           334559 non-null int64
 23 application_type
                            334559 non-null object
                            334559 non-null int64
 24 mort_acc
                            334559 non-null int64
 25 pub_rec_bankruptcies
                            334559 non-null object
 26
    address
 27 earliest_cr_line_month 334559 non-null int32
 28 earliest_cr_line_year
                            334559 non-null int32
 29 issue_d_month
                            334559 non-null int32
 30 issue_d_year
                            334559 non-null int32
                            334559 non-null object
 31 state
                            334559 non-null object
32 zip_code
dtypes: datetime64[ns](2), float64(9), int32(4), int64(7), object(11)
memory usage: 81.7+ MB
Index(['loan_amnt', 'term', 'int_rate', 'installment', 'grade', 'sub_grade',
      'emp_title', 'emp_length', 'home_ownership', 'annual_inc',
       'verification_status', 'issue_d', 'loan_status', 'purpose', 'title',
       'dti', 'earliest_cr_line', 'open_acc', 'pub_rec', 'revol_bal',
       'revol_util', 'total_acc', 'initial_list_status', 'application_type',
       'mort_acc', 'pub_rec_bankruptcies', 'address', 'earliest_cr_line_month',
      'earliest_cr_line_year', 'issue_d_month', 'issue_d_year', 'state',
       'zip_code'],
     dtype='object')
```

Dropping unwanted columns

```
columns = ['sub_grade', 'emp_title', 'issue_d', 'title', 'earliest_cr_line',
   'address', 'earliest_cr_line_month', 'earliest_cr_line_year', 'issue_d_month',
   'issue_d_year', 'state']
df.drop(columns=columns, inplace=True)
```

Encoding Variables

```
dummies=['grade','home_ownership', 'verification_status', 'purpose',
    'application_type', 'zip_code']

data=pd.get_dummies(df,columns=dummies,drop_first=True)
pd.set_option('display.max_columns',None)
pd.set_option('display.max_rows',None)
```

6.0 Model Building

##6.1 Train Test Split

```
from sklearn.model_selection import train_test_split

x = data.drop('loan_status',axis=1)
y = data['loan_status']

# stratify to balance the data during the split
x_train, x_test, y_train, y_test =
train_test_split(x,y,test_size=0.30,stratify=y,random_state=42)

print(f'x_train: {x_train.shape}')
print(f'x_test: {x_test.shape}')
print(f'y_train: {y_train.shape}')
print(f'y_test: {y_test.shape}')
x_train.sample(3, random_state = 42)

x_train: (234191, 52)
```

x_train: (234191, 52)
x_test: (100368, 52)
y_train: (234191,)
y_test: (100368,)

	loan_amnt	term	int_rate	installment	emp_length	annual_inc	dti	open_acc	pub_rec
262278	16000.0	60	12.99	363.97	10	57000.0	13.98	7.0	0
319937	16625.0	60	18.25	424.43	10	51500.0	33.23	9.0	0
91200	7000.0	36	9.75	225.05	0	63000.0	9.03	6.0	0

```
# Importing stats libraries

from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
from sklearn.metrics import precision_recall_curve
from sklearn.model_selection import train_test_split, KFold, cross_val_score
from sklearn.metrics import (
    accuracy_score, confusion_matrix, classification_report,
    roc_auc_score, roc_curve, auc,
    ConfusionMatrixDisplay, RocCurveDisplay
)
from statsmodels.stats.outliers_influence import variance_inflation_factor
```

x_train.columns

```
Index(['loan_amnt', 'term', 'int_rate', 'installment', 'emp_length',
       'annual_inc', 'dti', 'open_acc', 'pub_rec', 'revol_bal', 'revol_util',
       'total_acc', 'initial_list_status', 'mort_acc', 'pub_rec_bankruptcies',
       'grade_B', 'grade_C', 'grade_D', 'grade_E', 'grade_F', 'grade_G',
       'home_ownership_MORTGAGE', 'home_ownership_NONE',
       'home_ownership_OTHER', 'home_ownership_OWN', 'home_ownership_RENT',
       'verification_status_Source Verified', 'verification_status_Verified',
       'purpose_credit_card', 'purpose_debt_consolidation',
       'purpose_educational', 'purpose_home_improvement', 'purpose_house',
       'purpose_major_purchase', 'purpose_medical', 'purpose_moving',
       'purpose_other', 'purpose_renewable_energy', 'purpose_small_business',
       'purpose_vacation', 'purpose_wedding', 'application_type_INDIVIDUAL',
       'application_type_JOINT', 'zip_code_05113', 'zip_code_11650',
       'zip_code_22690', 'zip_code_29597', 'zip_code_30723', 'zip_code_48052',
       'zip_code_70466', 'zip_code_86630', 'zip_code_93700'],
      dtype='object')
```

##6.2 Standardization

```
from sklearn.preprocessing import MinMaxScaler
x_train_columns = x_train.columns
scaler = MinMaxScaler()

x_train = scaler.fit_transform(x_train)
x_test = scaler.transform(x_test)
```

##6.3 Training the Logistic Regression Model

Model 1: Training the unbalanced model after preprocessing.

```
model = LogisticRegression(max_iter=1000)
model.fit(x_train,y_train)
```

LogisticRegression(max_iter=1000)

```
y_pred = model.predict(x_test)

print('Accuracy of Logistic Regression Classifier on test set:
{:.3f}'.format(model.score(x_test, y_test)))
```

Accuracy of Logistic Regression Classifier on test set: 0.889

```
#Plot confusion Matrix
confusion_matrix = confusion_matrix(y_test,y_pred)
print(confusion_matrix)

ConfusionMatrixDisplay(confusion_matrix=confusion_matrix,
display_labels=model.classes_).plot()
```

[[80168 506] [10609 9085]]

print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
	_			
0	0.88	0.99	0.94	80674
1	0.95	0.46	0.62	19694
accuracy			0.89	100368
macro avg	0.92	0.73	0.78	100368
weighted avg	0.90	0.89	0.87	100368

ROC Curve

```
logit_roc_auc = roc_auc_score(y_test, model.predict(x_test))

fpr, tpr, thresholds = roc_curve(y_test, model.predict_proba(x_test)[:,1])

plt.figure()
plt.plot(fpr, tpr, label='Logistic Regression (area = %0.2f)' % logit_roc_auc)
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.grid()
plt.show()
```


Precision-Recall Curve

```
precisions, recalls, thresholds = precision_recall_curve(y_test,
model.predict_proba(x_test)[:, 1])
```

```
threshold_boundary = thresholds.shape[0]

# Plot precision
plt.plot(thresholds, precisions[0:threshold_boundary], linestyle='--',
label='precision')

# Plot recall
plt.plot(thresholds, recalls[0:threshold_boundary], label='recall')

start, end = plt.xlim()
plt.xticks(np.round(np.arange(start, end, 0.1), 2))

plt.xlabel('Threshold Value')
plt.ylabel('Precision and Recall Value')
plt.legend()
plt.grid()
plt.show()
```


Model Interpretability

```
model.score(x_train, y_train)
```

0.8889666981224726

```
from sklearn.metrics import f1_score
f1 = f1_score(y_test,y_pred)
f1
```

0.6204541574184737

```
len((model.coef_)[0])
```

52

```
len(x.columns)
```

52

	feature	coeff
51	zip_code_93700	12.120141
44	zip_code_11650	12.110739
50	zip_code_86630	12.014185
46	zip_code_29597	8.746250
43	zip_code_05113	8.742120
48	zip_code_48052	4.696756
49	zip_code_70466	4.665408
47	zip_code_30723	4.665069
45	zip_code_22690	4.652905
42	$application_type_JOINT$	2.655026
21	$home_ownership_MORTGAGE$	1.479970
19	$grade_F$	1.444820
41	$application_type_INDIVIDUAL$	1.410832
18	grade_E	1.382377
24	home_ownership_OWN	1.350490
25	home_ownership_RENT	1.264863
20	$grade_G$	1.236923
17	grade_D	1.185682
5	annual_inc	1.097888
16	$grade_C$	0.929183

	feature	coeff
6	dti	0.891909
40	purpose_wedding	0.686778
7	open_acc	0.634078
3	installment	0.565221
1	term	0.536095
10	revol_util	0.532728
15	$grade_B$	0.509978
11	total_acc	0.507791
38	purpose_small_business	0.478483
23	$home_ownership_OTHER$	0.423273
9	revol_bal	0.273116
26	verification_status_Source Verified	0.207754
37	purpose_renewable_energy	0.190945
2	int_rate	0.169088
4	emp_length	0.128751
8	pub_rec	0.127149
31	purpose_home_improvement	0.119284
27	verification_status_Verified	0.108641
32	purpose_house	0.105598
35	purpose_moving	0.090243
34	purpose_medical	0.078401
33	purpose_major_purchase	0.068095
13	mort_acc	0.057324
22	home_ownership_NONE	0.056405
29	purpose_debt_consolidation	0.037620
30	purpose_educational	0.035775
36	purpose_other	0.025068
12	initial_list_status	0.024673
28	purpose_credit_card	0.023779
0	loan_amnt	0.021607
14	pub_rec_bankruptcies	0.013940
39	purpose_vacation	0.001112

```
plt.figure(figsize=(10,5))
sns.barplot(x=imp.feature, y='coeff', data=imp)
plt.xlabel('Features')
plt.ylabel('Coefficient')
plt.xticks(rotation=90)
plt.show()
```



```
x.columns[np.argmax(np.abs(model.coef_))]
```

'zip_code_93700'

```
x.columns[np.argmin(np.abs(model.coef_))]
```

'purpose_vacation'

So, - year is most important feature, - while manual is the least important.

Validation

```
x=scaler.fit_transform(x)

kfold=KFold(n_splits=5)
accuracy=np.mean(cross_val_score(model,x,y,cv=kfold,scoring='accuracy',n_jobs=-1))
print("Cross Validation accuracy : {:.3f}".format(accuracy))
```

Cross Validation accuracy: 0.889

Model 2: Re-Training after oversampling the imbalanced data with SMOTE

```
from imblearn.over_sampling import SMOTE
sm = SMOTE(random_state=42)
x_sm ,y_sm = sm.fit_resample(x_train,y_train)
print('Before SMOTE')
print(y_train.value_counts())
print('\n')
print('After Oversampling')
print(y_sm.value_counts())
Before SMOTE
loan_status
     188240
     45951
Name: count, dtype: int64
After Oversampling
loan status
     188240
    188240
Name: count, dtype: int64
lr1 = LogisticRegression(max_iter=1000)
lr1.fit(x_sm, y_sm)
LogisticRegression(max_iter=1000)
y_pred = lr1.predict(x_test)
print('Accuracy of Logistic Regression Classifier on test set:
{:.3f}'.format(lr1.score(x_test, y_test)))
Accuracy of Logistic Regression Classifier on test set: 0.798
#Plot confusion Matrix
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
cm = confusion_matrix(y_test, y_pred)
print(cm)
ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=lr1.classes_).plot()
```

[[64156 16518] [3773 15921]]

print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
0	0.94	0.80	0.86	80674
1	0.49	0.81	0.61	19694
accuracy			0.80	100368
macro avg	0.72	0.80	0.74	100368
weighted avg	0.86	0.80	0.81	100368

ROC Curve

```
logit_roc_auc = roc_auc_score(y_sm, lr1.predict(x_sm))

fpr, tpr, thresholds = roc_curve(y_sm, lr1.predict_proba(x_sm)[:,1])

plt.figure()
plt.plot(fpr, tpr, label='Logistic Regression (area = %0.2f)' % logit_roc_auc)
```

```
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.grid()
plt.show()
```

Receiver operating characteristic

Precision Recall Curve

```
def precision_recall_curve_plot(y_test, pred_proba_c1):
   precisions, recalls, thresholds = precision_recall_curve(y_test,
pred_proba_c1)
   threshold_boundary = thresholds.shape[0]
    # plot precision
   plt.plot(thresholds, precisions[0:threshold_boundary], linestyle='--',
label='precision')
   # plot recall
   plt.plot(thresholds, recalls[0:threshold_boundary], label='recalls')
```

```
start, end = plt.xlim()
plt.xticks(np.round(np.arange(start, end, 0.1), 2))

plt.xlabel('Threshold Value'); plt.ylabel('Precision and Recall Value')
plt.legend(); plt.grid()
plt.show()

precision_recall_curve_plot(y_test, lr1.predict_proba(x_test)[:,1])
```


Model Interpretability

```
lr1.score(x_sm, y_sm)
```

0.8050148746281343

```
from sklearn.metrics import f1_score
f1 = f1_score(y_test,y_pred)
f1
```

0.6107839564191587

```
len((lr1.coef_)[0])
```

	feature	coeff
44	zip_code_11650	13.713803
51	zip_code_93700	13.706281
50	zip_code_86630	13.515730
46	zip_code_29597	11.478334
43	zip_code_05113	11.476029
48	zip_code_48052	5.917488
47	zip_code_30723	5.888397
45	zip_code_22690	5.885856
49	zip_code_70466	5.885732
42	application_type_JOINT	2.828304
41	$application_type_INDIVIDUAL$	1.451534
19	grade_F	1.442101
5	annual_inc	1.436967
21	$home_ownership_MORTGAGE$	1.435192
18	grade_E	1.386479
24	home_ownership_OWN	1.330601
25	home_ownership_RENT	1.244838
17	$grade_D$	1.214897
20	$grade_G$	1.143486
6	dti	0.968973
16	$grade_C$	0.961118
40	purpose_wedding	0.950262
7	open_acc	0.883222
10	revol_util	0.795406
11	total_acc	0.684264
38	purpose_small_business	0.588705
23	home_ownership_OTHER	0.583070
3	installment	0.581524
15	$grade_B$	0.557513
1	term	0.556095
9	revol_bal	0.500589
32	purpose_house	0.347586
31	purpose_home_improvement	0.268180
8	pub_rec	0.212611
26	verification_status_Source Verified	0.197600

	feature	coeff
30	purpose_educational	0.191573
36	purpose_other	0.188760
29	$purpose_debt_consolidation$	0.182630
35	purpose_moving	0.137680
2	int_rate	0.131791
28	purpose_credit_card	0.116827
33	purpose_major_purchase	0.115089
4	emp_length	0.111918
0	loan_amnt	0.111221
27	verification_status_Verified	0.090435
14	pub_rec_bankruptcies	0.089045
37	purpose_renewable_energy	0.084916
39	purpose_vacation	0.081896
34	purpose_medical	0.048831
22	$home_ownership_NONE$	0.042918
13	mort_acc	0.038634
12	$initial_list_status$	0.006937

###Comparitive Model Analysis between model 1 and 2

Key Metric Comparisons

- True Positive Rate (Recall)
 - Previous Model: 46.13% New Model: 80.84%
- True Negative Rate (Specificity)
 - Previous Model: 99.37% New Model: 79.52%
- False Positive Rate (FPR)
 - Previous Model: 0.63% New Model: 20.48%
- False Negative Rate (FNR)
 - Previous Model: 53.87% New Model: 19.16%

Key Observations

- Recall (TPR):
 - The new model is far better at detecting positive cases (80.84% vs. 46.13%). If detecting risky loans is critical, this model is more suitable.
- Specificity (TNR):
 - The new model loses its ability to correctly classify negative cases, dropping from 99.37% to 79.52%. This could lead to operational inefficiencies or unnecessary restrictions for borrowers.

Model 3: Retraining the model after Regularization

```
#Try with different regularization factor lamda and choose the best to build the
model

lamb = np.arange(0.01, 10000, 10)

train_scores = []

test_scores = []

for lam in lamb:
    model = LogisticRegression(C = 1/lam)
    model.fit(x_sm, y_sm)

    tr_score = model.score(x_sm, y_sm)
    te_score = model.score(x_test, y_test)

    train_scores.append(tr_score)
    test_scores.append(te_score)
```



```
#Check the index of best test score and the check the best test score
a = np.argmax(test_scores)
print(np.argmax(test_scores))
print(test_scores[np.argmax(test_scores)])
57
0.8061135023114937
#Calculate the best lambda value based on the index of best test score
best_lamb = 0.01 + (10*a)
best_lamb
570.01
#Fit the model using best lambda
reg_model = LogisticRegression(C=1/best_lamb)
reg_model.fit(x_sm, y_sm)
LogisticRegression(C=0.0017543551867511096)
y_reg_pred = reg_model.predict(x_test)
y_reg_pred_proba = reg_model.predict_proba(x_test)
#Print model score
print(f'Logistic Regression Model Score with best lambda: ',end='')
print(round(reg_model.score(x_test, y_test)*100,2),'%')
Logistic Regression Model Score with best lambda: 80.61 \%
#Plot confusion Matrix
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
cm_reg = confusion_matrix(y_test, y_reg_pred)
print(cm_reg)
ConfusionMatrixDisplay(confusion_matrix=cm_reg,
display_labels=reg_model.classes_).plot()
```

[[65346 15328] [4132 15562]]

print(classification_report(y_test,y_reg_pred))

	precision	recall	f1-score	support
0	0.94	0.81	0.87	80674
1	0.50	0.79	0.62	19694
accuracy			0.81	100368
macro avg	0.72	0.80	0.74	100368
weighted avg	0.85	0.81	0.82	100368

ROC Curve

```
logit_roc_auc = roc_auc_score(y_sm, reg_model.predict(x_sm))

fpr, tpr, thresholds = roc_curve(y_sm, reg_model.predict_proba(x_sm)[:,1])

plt.figure()
plt.plot(fpr, tpr, label='Logistic Regression (area = %0.2f)' % logit_roc_auc)
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
```

```
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.grid()
plt.show()
```


Precision Recall Curve

```
def precision_recall_curve_plot(y_test, pred_proba_c1):
    precisions, recalls, thresholds = precision_recall_curve(y_test,
pred_proba_c1)

    threshold_boundary = thresholds.shape[0]
    # plot precision
    plt.plot(thresholds, precisions[0:threshold_boundary], linestyle='--',
label='precision')
    # plot recall
    plt.plot(thresholds, recalls[0:threshold_boundary], label='recalls')

start, end = plt.xlim()
    plt.xticks(np.round(np.arange(start, end, 0.1), 2))
```

```
plt.xlabel('Threshold Value'); plt.ylabel('Precision and Recall Value')
plt.legend(); plt.grid()
plt.show()

precision_recall_curve_plot(y_test, reg_model.predict_proba(x_test)[:,1])
```


Model Interpretability

```
reg_model.score(x_sm, y_sm)
```

0.8019151083722907

```
from sklearn.metrics import f1_score
f1 = f1_score(y_test,y_reg_pred)
f1
```

0.6152933733987032

```
len((model.coef_)[0])
```

44 zip_code_11650 3.54414: 50 zip_code_86630 3.499020 46 zip_code_29597 1.985610 43 zip_code_05113 1.985040 48 zip_code_30723 1.027820 49 zip_code_70466 1.024580 45 zip_code_22690 1.023873 5 annual_inc 0.924410 2 int_rate 0.924240 6 dti 0.808910 18 grade_E 0.576290 17 grade_D 0.536851 18 grade_E 0.576290 17 grade_D 0.536851 18 grade_E 0.478907 19 grade_F 0.449083 10 revol_util 0.478907 19 grade_F 0.449083 16 grade_C 0.420933 7 open_acc 0.378660 11 total_acc 0.38511 38 purpose_small_business 0.256383 3 installment 0.23045 40 <t< th=""><th></th><th>feature</th><th>coeff</th></t<>		feature	coeff
50 zip_code_86630 3.499020 46 zip_code_29597 1.985610 43 zip_code_05113 1.985040 48 zip_code_30723 1.027823 49 zip_code_270466 1.024583 45 zip_code_22690 1.023873 5 annual_inc 0.924410 2 int_rate 0.924240 6 dti 0.808910 18 grade_E 0.576293 17 grade_D 0.53685 1 term 0.488290 10 revol_util 0.47890* 19 grade_F 0.449083 16 grade_C 0.42093 7 open_acc 0.378660 11 total_acc 0.33851 38 purpose_small_business 0.256383 3 installment 0.23049 9 revol_bal 0.23053 40 purpose_wedding 0.22022 26 verification_status_Source Verified 0.18475 15 grade_B 0.162296	51	zip_code_93700	3.544363
46 zip_code_29597	44	zip_code_11650	3.544143
43 zip_code_05113	50	zip_code_86630	3.499020
48 zip_code_48052	46	zip_code_29597	1.985616
47 zip_code_30723 1.027823 49 zip_code_70466 1.024583 45 zip_code_22690 1.023873 5 annual_inc 0.924440 2 int_rate 0.924246 6 dti 0.808916 18 grade_E 0.576293 17 grade_D 0.53685 1 term 0.488290 10 revol_util 0.47890 19 grade_F 0.449083 16 grade_C 0.42093 7 open_acc 0.378660 11 total_acc 0.33851 38 purpose_small_business 0.256383 3 installment 0.23949 9 revol_bal 0.23005 40 purpose_wedding 0.22022 26 verification_status_Source Verified 0.18475 15 grade_B 0.16229 0 loan_amnt 0.14477 32 purpose_house 0.12596 8 pub_rec 0.12384 31 <	43	zip_code_05113	1.985040
49 zip_code_70466 1.024588 45 zip_code_22690 1.02387 5 annual_inc 0.924410 2 int_rate 0.924240 6 dti 0.808910 18 grade_E 0.57629 17 grade_D 0.53685 1 term 0.488290 10 revol_util 0.47890 19 grade_F 0.44908 16 grade_C 0.378660 11 total_acc 0.378660 11 total_acc 0.378660 11 total_acc 0.378660 11 total_acc 0.38513 3 installment 0.23949 9 revol_bal 0.23005 40 purpose_wedding 0.22022 26 verification_status_Source Verified 0.18475 15 grade_B 0.16229 0 loan_amnt 0.14477 32 purpose_house 0.12596	48	zip_code_48052	1.053550
45 zip_code_22690 1.023873 5 annual_inc 0.924410 2 int_rate 0.924240 6 dti 0.808910 18 grade_E 0.57629 17 grade_D 0.53685 1 term 0.488290 10 revol_util 0.47890 19 grade_F 0.44908 16 grade_C 0.37866 1 total_acc 0.378660 11 total_acc 0.378660 12 total_acc 0.378660 13 purpose_small_business 0.25638 3 installment 0.23949 9 revol_bal 0.23005 40 purpose_wedding 0.22022 26 verification_status_Source Verified 0.18475 15 grade_B 0.16229 0 loan_amnt 0.14477 32 purpose_house 0.12596 8 pub_rec 0.12384 31 purpose_home_improvement 0.11997 42	47	zip_code_30723	1.027828
5 annual_inc 0.924440 2 int_rate 0.924240 6 dti 0.808910 18 grade_E 0.576290 17 grade_D 0.536850 1 term 0.488290 10 revol_util 0.478900 19 grade_F 0.449080 16 grade_C 0.420930 7 open_acc 0.378660 11 total_acc 0.338510 38 purpose_small_business 0.256380 3 installment 0.230050 40 purpose_wedding 0.230050 40 purpose_wedding 0.220220 26 verification_status_Source Verified 0.18475 15 grade_B 0.162290 0 loan_amnt 0.14477 32 purpose_house 0.123842 31 purpose_home_improvement 0.119970 42 application_type_JOINT 0.118643 4 emp_length 0.105673 27 verification_status_Verified 0.1017	49	zip_code_70466	1.024588
2 int_rate 0.924244 6 dti 0.808916 18 grade_E 0.57629 17 grade_D 0.53685 1 term 0.48829 10 revol_util 0.47890 19 grade_F 0.44908 16 grade_C 0.42093 7 open_acc 0.37866 11 total_acc 0.33851 38 purpose_small_business 0.25638 3 installment 0.23005 40 purpose_wedding 0.22022 26 verification_status_Source Verified 0.18475 15 grade_B 0.16229 0 loan_amnt 0.14477 32 purpose_house 0.12596 8 pub_rec 0.12384 31 purpose_home_improvement 0.11997 42 application_type_JOINT 0.11864 21 home_ownership_MORTGAGE 0.11248 4 emp_length 0.10567 27 verification_status_Verified 0.107536 <	45	zip_code_22690	1.023873
6 dti 18 grade_E 10 .576293 17 grade_D 10 revol_util 10 revol_util 11 total_acc 11 total_acc 12 grade_B 13 purpose_small_business 14 purpose_wedding 15 grade_B 16 prade_B 17 revol_bal 18 grade_B 19 purpose_house 10 revol_otal 10 revol_util 11 total_acc 12 0.338513 13 purpose_wedding 14 purpose_wedding 15 grade_B 16 purpose_house 17 revol_bal 18 grade_B 19 revol_bal 10 0.230053 10 10 10 10 10 10 10 10 10 10 10 10 10 1	5	annual_inc	0.924410
18 grade_E 0.576298 17 grade_D 0.53685 1 term 0.488290 10 revol_util 0.47890 19 grade_F 0.449083 16 grade_C 0.42093 7 open_acc 0.378660 11 total_acc 0.338513 38 purpose_small_business 0.256389 3 installment 0.23949 9 revol_bal 0.230058 40 purpose_wedding 0.220220 26 verification_status_Source Verified 0.18475 15 grade_B 0.162290 0 loan_amnt 0.14477 32 purpose_house 0.12596 8 pub_rec 0.123842 31 purpose_home_improvement 0.119976 42 application_type_JOINT 0.118648 21 home_ownership_MORTGAGE 0.112482 4 emp_length 0.105678 27 verification_status_Verified 0.101758 29 purpose_debt_consolidat	2	int_rate	0.924240
17 grade_D 0.53685 1 term 0.488290 10 revol_util 0.478900 19 grade_F 0.449083 16 grade_C 0.420933 7 open_acc 0.378660 11 total_acc 0.338513 38 purpose_small_business 0.256383 3 installment 0.230053 40 purpose_wedding 0.230053 40 purpose_wedding 0.220220 26 verification_status_Source Verified 0.18475 15 grade_B 0.162290 0 loan_amnt 0.14477 32 purpose_house 0.125963 8 pub_rec 0.123842 31 purpose_home_improvement 0.119976 42 application_type_JOINT 0.118648 21 home_ownership_MORTGAGE 0.112482 4 emp_length 0.105678 27 verification_status_Verified 0.101758 29 purpose_debt_consolidation 0.095990 36	6	dti	0.808916
1 term 0.488290 10 revol_util 0.47890 19 grade_F 0.44908 16 grade_C 0.42093 7 open_acc 0.37866 11 total_acc 0.33851 38 purpose_small_business 0.25638 3 installment 0.23949 9 revol_bal 0.23005 40 purpose_wedding 0.22022 26 verification_status_Source Verified 0.18475 15 grade_B 0.16229 0 loan_amnt 0.14477 32 purpose_house 0.12596 8 pub_rec 0.12384 31 purpose_home_improvement 0.11997 42 application_type_JOINT 0.11864 21 home_ownership_MORTGAGE 0.102567 27 verification_status_Verified 0.10175 29 purpose_debt_consolidation 0.099994 13 mort_acc 0.095996 36 purpose_other 0.075369	18	grade_E	0.576295
10 revol_util 0.47890° 19 grade_F 0.44908° 16 grade_C 0.42093° 7 open_acc 0.37866° 11 total_acc 0.33851° 38 purpose_small_business 0.25638° 3 installment 0.23949° 9 revol_bal 0.23005° 40 purpose_wedding 0.22022° 26 verification_status_Source Verified 0.18475° 15 grade_B 0.16229° 0 loan_amnt 0.14477° 32 purpose_house 0.12596° 8 pub_rec 0.12384° 31 purpose_home_improvement 0.11997° 42 application_type_JOINT 0.11864° 4 emp_length 0.10567° 27 verification_status_Verified 0.10175° 29 purpose_debt_consolidation 0.09599° 36 purpose_other 0.07536°	17	$grade_D$	0.536851
19 grade_F 0.449088 16 grade_C 0.420938 7 open_acc 0.378666 11 total_acc 0.338513 38 purpose_small_business 0.256388 3 installment 0.23949 9 revol_bal 0.230058 40 purpose_wedding 0.220226 26 verification_status_Source Verified 0.184753 15 grade_B 0.162296 0 loan_amnt 0.144773 32 purpose_house 0.125963 8 pub_rec 0.123842 31 purpose_home_improvement 0.119976 42 application_type_JOINT 0.118643 4 emp_length 0.105673 27 verification_status_Verified 0.101753 29 purpose_debt_consolidation 0.095996 36 purpose_other 0.075369	1	term	0.488290
16 grade_C 0.420938 7 open_acc 0.378666 11 total_acc 0.338513 38 purpose_small_business 0.256388 3 installment 0.239497 9 revol_bal 0.230058 40 purpose_wedding 0.220220 26 verification_status_Source Verified 0.184753 15 grade_B 0.162290 0 loan_amnt 0.144773 32 purpose_house 0.125968 8 pub_rec 0.123842 31 purpose_home_improvement 0.119970 42 application_type_JOINT 0.118648 4 emp_length 0.105678 27 verification_status_Verified 0.101758 29 purpose_debt_consolidation 0.095996 36 purpose_other 0.075368	10	revol_util	0.478907
7 open_acc 0.378666 11 total_acc 0.338513 38 purpose_small_business 0.256383 3 installment 0.239497 9 revol_bal 0.230053 40 purpose_wedding 0.220220 26 verification_status_Source Verified 0.18475 15 grade_B 0.162290 0 loan_amnt 0.144773 32 purpose_house 0.125963 8 pub_rec 0.123843 31 purpose_home_improvement 0.119970 42 application_type_JOINT 0.118643 4 emp_length 0.105673 27 verification_status_Verified 0.101753 29 purpose_debt_consolidation 0.099943 13 mort_acc 0.095996 36 purpose_other 0.075369	19	grade_F	0.449085
11 total_acc 0.338513 38 purpose_small_business 0.256389 3 installment 0.239499 9 revol_bal 0.230058 40 purpose_wedding 0.220220 26 verification_status_Source Verified 0.18475 15 grade_B 0.162290 0 loan_amnt 0.14477 32 purpose_house 0.12596 8 pub_rec 0.12384 31 purpose_home_improvement 0.119970 42 application_type_JOINT 0.11864 4 emp_length 0.105678 27 verification_status_Verified 0.101758 29 purpose_debt_consolidation 0.095996 36 purpose_other 0.075369	16	$grade_C$	0.420935
38 purpose_small_business 0.256389 3 installment 0.239499 9 revol_bal 0.230058 40 purpose_wedding 0.220220 26 verification_status_Source Verified 0.18475 15 grade_B 0.162290 0 loan_amnt 0.14477 32 purpose_house 0.125968 8 pub_rec 0.123842 31 purpose_home_improvement 0.119970 42 application_type_JOINT 0.118648 21 home_ownership_MORTGAGE 0.112483 4 emp_length 0.105678 27 verification_status_Verified 0.101758 29 purpose_debt_consolidation 0.099942 13 mort_acc 0.095996 36 purpose_other 0.075368	7	open_acc	0.378660
3 installment 0.23949 9 revol_bal 0.230058 40 purpose_wedding 0.220220 26 verification_status_Source Verified 0.18475 15 grade_B 0.16229 0 loan_amnt 0.14477 32 purpose_house 0.12596 8 pub_rec 0.12384 31 purpose_home_improvement 0.11997 42 application_type_JOINT 0.11864 21 home_ownership_MORTGAGE 0.105678 4 emp_length 0.105678 27 verification_status_Verified 0.101758 29 purpose_debt_consolidation 0.095996 13 mort_acc 0.095996 36 purpose_other 0.075368	11	total_acc	0.338513
9 revol_bal 0.230053 40 purpose_wedding 0.220220 26 verification_status_Source Verified 0.18475 15 grade_B 0.162290 0 loan_amnt 0.14477 32 purpose_house 0.12596 8 pub_rec 0.12384 31 purpose_home_improvement 0.119970 42 application_type_JOINT 0.11864 21 home_ownership_MORTGAGE 0.11248 4 emp_length 0.10567 27 verification_status_Verified 0.10175 29 purpose_debt_consolidation 0.09994 13 mort_acc 0.095996 36 purpose_other 0.075369	38	purpose_small_business	0.256389
40 purpose_wedding 0.220220 26 verification_status_Source Verified 0.18475 15 grade_B 0.162290 0 loan_amnt 0.14477 32 purpose_house 0.12596 8 pub_rec 0.12384 31 purpose_home_improvement 0.11997 42 application_type_JOINT 0.11864 21 home_ownership_MORTGAGE 0.11248 4 emp_length 0.105678 27 verification_status_Verified 0.101758 29 purpose_debt_consolidation 0.09994 13 mort_acc 0.095996 36 purpose_other 0.075368	3	installment	0.239497
26 verification_status_Source Verified 0.18475 15 grade_B 0.16229 0 loan_amnt 0.14477 32 purpose_house 0.12596 8 pub_rec 0.12384 31 purpose_home_improvement 0.11997 42 application_type_JOINT 0.11864 21 home_ownership_MORTGAGE 0.10567 4 emp_length 0.10567 27 verification_status_Verified 0.10175 29 purpose_debt_consolidation 0.095994 13 mort_acc 0.095996 36 purpose_other 0.075369	9	revol_bal	0.230058
15 grade_B 0.162290 0 loan_amnt 0.144773 32 purpose_house 0.125963 8 pub_rec 0.123843 31 purpose_home_improvement 0.119970 42 application_type_JOINT 0.118643 21 home_ownership_MORTGAGE 0.112483 4 emp_length 0.105673 27 verification_status_Verified 0.101753 29 purpose_debt_consolidation 0.099943 13 mort_acc 0.095990 36 purpose_other 0.075369	40	purpose_wedding	0.220220
0 loan_amnt 0.144773 32 purpose_house 0.125963 8 pub_rec 0.123842 31 purpose_home_improvement 0.119970 42 application_type_JOINT 0.118643 21 home_ownership_MORTGAGE 0.112483 4 emp_length 0.105673 27 verification_status_Verified 0.101753 29 purpose_debt_consolidation 0.099943 13 mort_acc 0.095996 36 purpose_other 0.075369	26	verification_status_Source Verified	0.184751
32 purpose_house 0.125963 8 pub_rec 0.123843 31 purpose_home_improvement 0.119976 42 application_type_JOINT 0.118643 21 home_ownership_MORTGAGE 0.112483 4 emp_length 0.105673 27 verification_status_Verified 0.101753 29 purpose_debt_consolidation 0.095994 13 mort_acc 0.095996 36 purpose_other 0.075369	15	grade_B	0.162290
8 pub_rec 0.123842 31 purpose_home_improvement 0.119970 42 application_type_JOINT 0.118648 21 home_ownership_MORTGAGE 0.112483 4 emp_length 0.105673 27 verification_status_Verified 0.101753 29 purpose_debt_consolidation 0.099943 13 mort_acc 0.095990 36 purpose_other 0.075369	0	loan_amnt	0.144773
31 purpose_home_improvement 0.119976 42 application_type_JOINT 0.118648 21 home_ownership_MORTGAGE 0.112488 4 emp_length 0.105678 27 verification_status_Verified 0.101758 29 purpose_debt_consolidation 0.099942 13 mort_acc 0.095996 36 purpose_other 0.075368	32	purpose_house	0.125965
42 application_type_JOINT 0.118648 21 home_ownership_MORTGAGE 0.112483 4 emp_length 0.105673 27 verification_status_Verified 0.101753 29 purpose_debt_consolidation 0.099943 13 mort_acc 0.095996 36 purpose_other 0.075369	8	pub_rec	0.123842
21 home_ownership_MORTGAGE 0.112483 4 emp_length 0.105673 27 verification_status_Verified 0.101753 29 purpose_debt_consolidation 0.099943 13 mort_acc 0.095996 36 purpose_other 0.075369	31	purpose_home_improvement	0.119976
4 emp_length 0.105678 27 verification_status_Verified 0.101758 29 purpose_debt_consolidation 0.09994 13 mort_acc 0.095996 36 purpose_other 0.075368	42	$application_type_JOINT$	0.118645
27 verification_status_Verified 0.101759 29 purpose_debt_consolidation 0.099949 13 mort_acc 0.095990 36 purpose_other 0.075369	21	$home_ownership_MORTGAGE$	0.112482
29 purpose_debt_consolidation 0.09994 13 mort_acc 0.095990 36 purpose_other 0.075369	4	${ m emp_length}$	0.105678
13 mort_acc 0.095990 36 purpose_other 0.075369	27	$verification_status_Verified$	0.101759
36 purpose_other 0.075369	29	$purpose_debt_consolidation$	0.099941
· · —	13	$mort_acc$	0.095990
39 purpose_vacation 0.073476	36	purpose_other	0.075369
-	39	purpose_vacation	0.073476

	feature	coeff
20	grade_G	0.072818
41	$application_type_INDIVIDUAL$	0.072133
25	home_ownership_RENT	0.068184
35	purpose_moving	0.034857
28	purpose_credit_card	0.030419
23	home_ownership_OTHER	0.019537
33	purpose_major_purchase	0.015906
12	initial_list_status	0.011908
30	purpose_educational	0.011051
34	purpose_medical	0.010513
14	pub_rec_bankruptcies	0.007532
22	home_ownership_NONE	0.002707
37	purpose_renewable_energy	0.001314
24	home_ownership_OWN	0.001086

7.0 Model Comparison of 1, 2 and 3

Model	Precision (Class 1)	Recall (Class 1)	F1-score (Class 1)	Accuracy	ROC AUC
Model 1	0.95	0.46	0.62	0.89	0.73
Model 2 (SMOTE)	0.49	0.81	0.61	0.8	0.81
Model 3 (Regularization)	0.5	0.79	0.62	0.81	0.8

Figure 1: image.png

Trade-off Analysis

• Model 1:

- Strengths: High accuracy and precision for the majority class (class 0).
- Weaknesses: Low recall for the minority class (class 1), indicating a high number of false negatives. This model might be biased towards the majority class due to class imbalance.

• Model 2 (SMOTE):

- Strengths: Improved recall for the minority class (class 1) compared to Model 1. This suggests that SMOTE effectively addressed the class imbalance issue.
- Weaknesses: Lower precision for the minority class, indicating a higher number of false positives. Accuracy also decreased compared to Model 1.

• Model 3 (Regularization):

- Strengths: Similar performance to Model 2 in terms of recall for the minority class.
- Weaknesses: Slightly lower precision for the minority class compared to Model 2.

Comprehensive outlook on models - There is no significant difference in the performance metrics of model 2 and 3. So we can go ahead with Model 2. - The model 2 prioritizes minimizing

false negatives at the expense of increasing false positives. Whether this is acceptable depends on the business's tolerance for false positives.

Which Model is Better? - If recall is critical (e.g., identifying risky loans to reduce default rates), the model 2 is better. - If specificity and minimizing false positives are more important (e.g., ensuring good customer experience by not falsely flagging loans), the model 1 is preferable.

8.0 Insights:

- Class Imbalance: The dataset exhibits significant class imbalance, with the majority class (class 0) dominating predictions. This imbalance skews model performance and reduces the ability to detect minority class (class 1) instances effectively.
- **SMOTE Impact:** SMOTE addressed class imbalance by generating synthetic samples for the minority class, improving recall but increasing false positives.
- **Regularization Impact:** Regularization helped mitigate overfitting but did not significantly improve recall compared to SMOTE.
- Model Trade-off: The new model (using SMOTE or regularization) achieved better recall but at the cost of increased false positives, highlighting the inherent trade-off between recall and specificity.
- Business Implications: The choice of model should depend on whether false positives (e.g., unnecessary loan rejections) or false negatives (e.g., missed risky loans) have a greater financial or operational impact.

Recommendations:

- Explore creating or transforming features to provide the model with better predictive power.
- Incorporate feedback from end-users or collaborate with domain experts to better understand the real-world implications of false positives and false negatives.
- Regularly monitor model performance in production and retrain it with updated data to prevent performance degradation over time.
- Collect more relevant data to reduce the influence of majority classes and set up automated alerts for performance drops.
- Maintain thorough documentation of changes, updates, and performance metrics for transparency and accountability.