Kapitel 6 Miscellaneous

JG U

Lars Porth

Parametrisierte Algorithmen Seminar

16.11.2015

nhaltsverzeichnis

- 1 6.1 Dynamische Programmierung über Teilmengen
 - 6.1.1 Set Cover
 - 6.1.2 Steiner Baum

- 2 6.2 Ganzzahlige Lineare Programmierung
 - 6.2.1 Das Beispiel der Unausgewogenheit

6.1 Dynamische Programmierung über Teilmengen

6.1.1 Set Cover

Set Cover

Definition: Überdeckung

Sei \mathcal{F} eine Familie von Mengen in einem Universum \mathcal{U} . Für eine Unterfamilie $\mathcal{F}'\subseteq\mathcal{F}$ und einer Teilmenge $\mathcal{U}'\subseteq\mathcal{U}$ sagen wir, dass \mathcal{F}' \mathcal{U}' überdeckt, wenn jedes Element von \mathcal{U}' zu mindestens einer Menge von \mathcal{F}' gehört $(\mathcal{U}'\subseteq\bigcup\mathcal{F}')$.

Set Cover

Im Set Cover Problem ist eine Familie von Mengen $\mathcal F$ gegeben in einem Universum $\mathcal U$ und eine positive ganze Zahl k. Die Aufgabe ist zu überprüfen ob eine Unterfamilie, mit maximal k Elementen, $\mathcal F'\subseteq \mathcal F$ existiert, so dass $\mathcal F'$ $\mathcal U$ überdeckt.

[G|U

Theorem 6.1

Theorem 6.1

Gegeben eine Instanz des SET COVER Problems $(\mathcal{U}, \mathcal{F}, k)$, kann die minimal mögliche Größe einer Unterfamilie $\mathcal{F}' \subseteq \mathcal{F}$, die \mathcal{U} überdeckt, in Zeit $2^{|\mathcal{U}|}(|\mathcal{U}|+|\mathcal{F}|)^{\mathcal{O}(1)}$ gefunden werden.

Beweis

Theorem 6.1

- lacksquare Sei $\mathcal{F} = \{F_1, F_2, ..., F_{|\mathcal{F}|}\}$
- Wir definieren die dynamische Programmierungs Tabelle wie folgt:
- Für jede Untermenge $X \subseteq \mathcal{U}$ und jede ganze Zahl $0 \le j \le |\mathcal{F}|$, definieren wir T[X,j] als die minimale Größe einer Untermenge $\mathcal{F}' \subseteq \{F_1,F_2,...,F_j\}$, die X überdeckt.
- Falls keine solche Teilmenge \mathcal{F}' existiert setzten wir $T[X,j] = +\infty$

Theorem 6.1

- In unserem dynamischen Algorithmus Programm berechnen wir alle $2^{|\mathcal{U}|}(\mathcal{F}+1)$ Werte $\mathcal{T}[X,j]$
- Basis Fall: $T[\emptyset, 0] = 0$, $T[X, 0] = +\infty$, für $X \neq \emptyset$
- Rekusiver Fall: Für $X \subseteq \mathcal{U}$ und $0 < j \le |\mathcal{F}|$ zeigen wir, dass $T[X,j] = min(T[X,j-1],1+T[X\backslash F_j,j-1])$

- Wir wollen zeigen, dass $T[X,j] = min(T[X,j-1],1+T[X\backslash F_j,j-1])$
- Dafür zeigen wir, dass in beiden Richtungen Ungleichheit gilt

- Wir wollen zeigen, dass $T[X,j] = min(T[X,j-1], 1 + T[X \setminus F_j, j-1])$
- Dafür zeigen wir, dass in beiden Richtungen Ungleichheit gilt
- Für \geq : Sei $\mathcal{F}' \subseteq \{F_1, F_2, ..., F_j\}$ eine Familie mit minimaler Größe, die X überdeckt, wir unterscheiden zwei Fälle:

- Wir wollen zeigen, dass $T[X,j] = min(T[X,j-1], 1 + T[X \setminus F_j, j-1])$
- Dafür zeigen wir, dass in beiden Richtungen Ungleichheit gilt
- Für \geq : Sei $\mathcal{F}' \subseteq \{F_1, F_2, ..., F_j\}$ eine Familie mit minimaler Größe, die X überdeckt, wir unterscheiden zwei Fälle:
 - $F_j \notin \mathcal{F}'$, dann ist \mathcal{F}' auch ein zulässiger Kandidat für T[X,j-1]

- Wir wollen zeigen, dass $T[X,j] = min(T[X,j-1], 1 + T[X \setminus F_j, j-1])$
- Dafür zeigen wir, dass in beiden Richtungen Ungleichheit gilt
- Für \geq : Sei $\mathcal{F}' \subseteq \{F_1, F_2, ..., F_j\}$ eine Familie mit minimaler Größe, die X überdeckt, wir unterscheiden zwei Fälle:
 - $F_j \notin \mathcal{F}'$, dann ist \mathcal{F}' auch ein zulässiger Kandidat für T[X,j-1]
 - $F_j \in \mathcal{F}'$, dann ist $\mathcal{F}' \setminus F_j$ ein zulässiger Kandidat für $T[X \setminus F_i, j-1]$

- Wir wollen zeigen, dass $T[X,j] = min(T[X,j-1], 1 + T[X \setminus F_j, j-1])$
- Dafür zeigen wir, dass in beiden Richtungen Ungleichheit gilt
- Für \geq : Sei $\mathcal{F}' \subseteq \{F_1, F_2, ..., F_j\}$ eine Familie mit minimaler Größe, die X überdeckt, wir unterscheiden zwei Fälle:
 - $F_j \notin \mathcal{F}'$, dann ist \mathcal{F}' auch ein zulässiger Kandidat für T[X,j-1]
 - $F_j \in \mathcal{F}'$, dann ist $\mathcal{F}' \setminus F_j$ ein zulässiger Kandidat für $T[X \setminus F_j, j-1]$
- Für ≤:

- Wir wollen zeigen, dass $T[X,j] = min(T[X,j-1], 1 + T[X \setminus F_j, j-1])$
- Dafür zeigen wir, dass in beiden Richtungen Ungleichheit gilt
- Für \geq : Sei $\mathcal{F}' \subseteq \{F_1, F_2, ..., F_j\}$ eine Familie mit minimaler Größe, die X überdeckt, wir unterscheiden zwei Fälle:
 - $F_j \notin \mathcal{F}'$, dann ist \mathcal{F}' auch ein zulässiger Kandidat für T[X,j-1]
 - $F_j \in \mathcal{F}'$, dann ist $\mathcal{F}' \setminus F_j$ ein zulässiger Kandidat für $T[X \setminus F_i, j-1]$
- Für <:
 - jeder zulässige Kandidat \mathcal{F}' für T[X,j-1] ist auch ein zulässiger Kandidat für T[X,j]

Theorem 6.1 _{Beweis}

- Wir wollen zeigen, dass $T[X,j] = min(T[X,j-1],1+T[X\setminus F_j,j-1])$
- Dafür zeigen wir, dass in beiden Richtungen Ungleichheit gilt
- Für \geq : Sei $\mathcal{F}' \subseteq \{F_1, F_2, ..., F_j\}$ eine Familie mit minimaler Größe, die X überdeckt, wir unterscheiden zwei Fälle:
 - $F_j \notin \mathcal{F}'$, dann ist \mathcal{F}' auch ein zulässiger Kandidat für T[X, j-1]
 - $F_j \in \mathcal{F}'$, dann ist $\mathcal{F}' \setminus F_j$ ein zulässiger Kandidat für $T[X \setminus F_i, j-1]$
- Für <:
 - jeder zulässige Kandidat \mathcal{F}' für T[X,j-1] ist auch ein zulässiger Kandidat für T[X,j]
 - für jeden zulässigen Kandidaten \mathcal{F}' für $T[X \setminus F_j, j-1]$ gilt, dass $\mathcal{F}' \cup F_i$ ein zulässiger Kandidat für T[X, j] ist

- Mit diesem dynamischen Programm können wir für alle $X \subseteq U$ und $0 \le j \le |\mathcal{F}|$ den Wert T[X,j] in versprochener Zeit $2^{|\mathcal{U}|}(|\mathcal{U}|+|\mathcal{F}|)^{\mathcal{O}(1)}$ berechnen.
- Der Wert den wir suchen ist $T[\mathcal{U}, |\mathcal{F}|]$

6.1.2 Steiner Baum

Steiner Baum

Steiner Baum

Sei G ein ungerichteter Graph mit n Knoten und $K\subseteq V(G)$ eine Menge von Endpunkten (terminals) aus G. Ein Steiner Baum für K in G ist ein zusammenhängender Teilgraph H von G, der K enthält $(K\subseteq H)$

Steiner Baum Problem

Im (gewichteten) Steiner Baum Problem bekommt man einen ungerichteten Graphen G, eine Gewichtungsfunktion $w: E(G) \to \mathbb{R}_{>0}$ und eine Teilmenge von Endpunkten $K \subseteq V(G)$ gegeben. Das Ziel ist es einen Steiner Baum H für K in G zu finden, in dem $w(H) = \sum_{e \in V(H)} w(e)$ minimal ist.

Dynamischer Algorithmus

■ Das Ziel ist es einen dynamischen Algorithmus zu entwickeln, der in Zeit $3^{|K|}n^{\mathcal{O}(1)}$ (n = |V(G)|) das Steiner Baum Problem löst.

Notation: dist(v, u)

Für ein Knotenpaar $u, v \in V(G)$, notieren wir die Kosten des kürzesten Pfad von v nach u als dist(v, u).

 Erinnerung dist(v, u) kann durch Algorithmen, wie der kürzeste Pfad Algorithmus von Dijkstra, in Polynomialzeit bestimmt werden.

Vorverarbeitung

- Wir nehmen an, dass |K| > 1, weil sonst die Instanz des Problems trivial wäre
- Ohne Einschränkungen nehmen weiterhin an, dass G verbunden ist.
- Als letztes setzten wir voraus, dass jeder Endpunkt aus K in G genau Grad 1 hat und sein einziger Nachbar kein Knoten aus K ist.
 - Um diese Bedingung zu erfüllen erzeugen wir für jeden Knoten $t \in K$ einen neuen Knoten t' und eine Kannte tt'

Steiner Baum Problem Dynamischer Algorithmus

- Wir definieren nun die dynamische Tabelle: Für jede nicht leere Teilmenge $D \subset K$ und jeden Knoten $v \in V(G) \setminus K$ sei T[D, v] das minimale Gewicht von einem Steiner Baum für $D \cup \{v\}$ in G.
- Als Basisfall betrachten wir die Teilmengen $D \subset K$ für die gilt |D| = 1. Dann gilt:
 - Sei $D = \{t\}$, dann ist einem Steiner Baum mit minimalem Gewicht von $D \cup \{v\} = \{t, v\}$.
 - Somit ist der Wert für $T[\{t\}, v] = dist(t, v)$.

Lemma 6.2

Lemma 6.2

Für jedes $D \subseteq K$ von einer Größe von mindestens 2 und jedes $v \in V(G) \setminus K$ gilt folgendes:

$$T[D, v] = \min_{\substack{u \in V(G) \setminus K \\ \emptyset \neq D' \subseteq D}} \{T[D', u] + T[D \setminus D', u] + dist(u, v)\}$$

Lemma 6.2 Beweisidee

- Man zeigt wieder die Ungleichheit in beide Richtungen.
- Für <:
 - Fixiere $u \in V(G)$ und $\emptyset \neq D' \subseteq D$
 - Sei H_1 der Baum, der den Wert T[D', u] bestimmt, H_2 der Baum, der den Wert $T[D \setminus D', u]$ bestimmt, und P der kürzeste Pfad zwischen v und u.
 - $w(H_1 \cup H_2 \cup P) \le w(H_1) + w(H_2) + w(P) = T[D', u] + T[D \setminus D', u] + dist(u, v)$

Lemma 6.2

- Für ≥:
 - Sei H ein Steiner Baum für $D \cup \{v\}$ in G mit minimalem Gewicht, also w(H) = T[D, v].

Fig. 6.1: Decomposition of H

■ $T[D,v] = w(H) = T[D',u_0] + T[D \setminus D',u_0] + dist(v,u_0) \ge \min_{\substack{u \in V(G) \setminus K \\ \emptyset \neq D' \subsetneq D}} \{T[D',u] + T[D \setminus D',u] + dist(u,v)\}$

Theorem 6.3

Das Steiner Baum Problem kann in Zeit $3^{|\mathcal{K}|} n^{\mathcal{O}(1)}$ gelöst werden.

Beweis

Theorem 6.3

- Sei (G, w, K) eine Instanz vom Steiner Baum Problem nach den Vorverarbeitungsschritten.
- Um im allgemeinen Fall T[D, v] berechnen zu können benötigen wir die Werte T[D', u] und $T[D \setminus D', u]$
- Auf die Art wie in Lemma 6.2 beschrieben kann man für feste Werte D und v T[D, v] in Zeit, $2^{|D|}n^{\mathcal{O}(1)}$ berechnen.

Beweis

Als gesamt Laufzeit des Algorithmus ergibt sich:

$$\sum_{v \in V(G) \setminus K} \sum_{D \subseteq K} 2^{|D|} n^{\mathcal{O}(1)} \le n \sum_{j=2}^{|K|} {|K| \choose j} 2^{j} n^{\mathcal{O}(1)} = 3^{|K|} n^{\mathcal{O}(1)}$$

■ Wenn die Vorverarbeitungsschritte durchgeführt worden sind, enthält jeder Steiner Baum von K in V(G) mindestens einen Steiner Punkt (Punkt aus $V(G)\backslash K$) und daher entspricht $\min_{v\in V(G)\backslash K} T[K,v]$ dem Wert des minimalen Steiner Baum für K in G.

6.2 Ganzzahlige Lineare Programmierung

Ganzzahlige Lineare Programmierungs Machbarkeit

Definition: Ganzzahlige Lineare Programmierungs Machbarkeit

Beim Ganzzahligen Linearen Programmierungs Machbarkeits Problem (Integer Linear Programming Feasibility Problem) bekommt man ein p Variablen $x_1, x_2, ..., x_p$ und eine Menge an mUngleichungen in der Form:

$$a_{1,1}x_1 + a_{1,2}x_2 + ... + a_{1,p}x_p \le b_1$$

$$a_{m,1}x_1 + a_{m,2}x_2 + ... + a_{m,p}x_p \le b_m$$

Wobei $a_{i,j}$, b_i und x_i ganze Zahlen sein müssen.

Das Ziel ist es herauszufinden ob man eine Belegung für die x_i finden kann, so dass alle Ungleichungen erfüllt sind.

Theorem 6.4

Theorem 6.4

Eine Ganzzahlige Lineare Programmierungs Machbarkeits Instanz der Größe L mit p Variablen kann mit $\mathcal{O}(p^{2.5p+o(p)} \cdot L)$ arithmetischen Operationen und mit Platz polynomiell in L gelöst werden.

Definition: Ganzzahliges Lineares Programmierungs Problem

Beim Ganzzahligen Linearen Programmierungs Problem, bekommt man eine Instanz des Ganzzahlige Lineare Programmierungs Machbarkeits gegeben (z.B als Matrix $A \in \mathbb{Z}^{m \times p}$ und einem Vektor $b \in \mathbb{Z}^p$) und zusätzlich noch einen Vektor $c \in \mathbb{Z}^p$.

Das Ziel ist es einen Vektor $x \in \mathbb{Z}^p$ zu finden, der alle alle Ungleichungen in $Ax \leq b$ erfüllt und die objective function $c \cdot x$ minimiert.

Theorem 6.5

Theorem 6.5

Eine Ganzzahlige Lineare Programmierungs Instanz (Linear Integer Programming Instance) der Größe L mit p Variablen kann mit $\mathcal{O}(p^{2.5p+o(p)}\cdot (L+\log M_x)(\log(M_xM_c)))$ arithmetischen Operationen und mit Platz polynomiell in $L+\log M_x$ gelöst werden.

- Wir stellen fest, dass der Betrag des Werts der objective function maximal pM_xM_c ist, solange der maximale Betrag der Variablen M_x ist.
- Wir wenden nun Binäre Suche an um den minimalen Wert der objective function zu finden.
- Dafür fügen wir zur Instanz des Machbarkeit Problem die Ungleichung $cx \le t$ hinzu, wobei t ein fester Wert ist für den gilt $-pM_xM_c \le t \le pM_xM_c$. Und wenden darauf einen Algorithmus, der Theorem 6.4 erfüllt an.

- Die Instanz hat die Größe $\mathcal{O}(L+p\log(pM_xM_c))=\mathcal{O}(p(L+\log M_x))$ und daher Läuft der Algorithmus von Theorem 6.4 in Zeit $\mathcal{O}(p^{2.5p+o(p)}\cdot(L+\log M_x))$.
- Durch anwenden der binären Suche mit t finden wir so in versprochener Zeit $\mathcal{O}(p^{2.5p+o(p)} \cdot (L + \log M_x)(\log(M_x M_c)))$ eine optimale Lösung t_0 des Linearen Programm.

6.2.1 Das Beispiel der Unausgewogenheit

Das Beispiel der Unausgewogenheit

Definition: Ordung

Sei G ein ungerichteter Graph mit n Knoten. Eine Ordnung von V(G) ist eine bijektive Funktion $\pi:V(G)\to\{1,2,...,n\}$

Definition: Imbalance

Für $v \in V(G)$ definieren wir $L_{\pi}(v) = \{u \in N(v) : \pi(u) < \pi(v)\}$ und $R_{\pi}(v) = \{u \in N(v) : \pi(u) > \pi(v)\}$ Wir definieren die Imbalance an Knoten v als $\iota_{\pi}(v) = ||L_{\pi}(v)| - |R_{\pi}(v)||$ und die Imbalance von der Ordnung π als $\iota(\pi) = \sum_{v \in V(G)} \iota_{\pi}(v)$.

■ Beim Imbalance Problem wollen wir nun eine Ordnung π finden, so dass $\iota(\pi)$ minimal ist.

- Wir werden das Imbalance Problem durch die Größe einer Knoten Überdeckung des Graphen parametrisieren.
- Wir nehmen an wir bekommen einen Graphen G zusammen mit seiner Knotenüberdeckung X der Größe k
 - In diesem Fall wäre es nicht unbedingt notwendig die Knoten Überdeckung mit übergeben zu bekommen, da 2-Approximations Algorithmen oder FPT Algorithmen für das Knoten Überdeckungs Problem bekannt sind.

- Im Folgenden werden wir zeigen, wie man Theorem 6.5 einsetzen kann um einen FPT Algorithmus für das Imbalance Problem parametrisiert durch die Größe der gegebenen Knotenüberdeckung von G.
- Um die minimale Ordnung ι_{π} zu finden werden wir für alle möglichen Ordnungen $\pi_X: X \to \{1,2,...,k\}$ der gegebenen Knotenüberdeckung, werden wir die beste Ordnung π finden, die mit π_X übereinstimmt.
 - Wir sagen, dass π_X mit π übereinstimmt, wenn gilt $\pi_X(u) < \pi_X(v)$, genau dann wenn $\pi(u) < \pi(v)$.

- Daher können wir annehmen, dass eine optimale Ordnung π existiert, so dass für $X = \{u_1, u_2, ..., u_k\}$ gilt: $\pi(u_1) < \pi(u_2) < ... < \pi(u_k)$.
- Wir definieren $X_i = \{u_1, u_2, ..., u_i\}$ für alle $0 \le i \le k$
- Weil X eine Knoten Überdeckung von G ist, sind die Knoten $I = V(G) \setminus X$ unabhängig voneinander und wir können jeden Knoten aus I einem Typ zuweisen.

Definition: Typ

Der Typ eines Knotens $v \in I$ ist die Menge $N(v) \subseteq X$. Für einen Typ $S \subseteq X$ ist die Menge I(S) die Menge aller Knoten in I von Typ S.

- Jeder Knoten aus I ist entweder zwischen zwei Knoten aus X, links vom Knoten u_1 oder rechts vom Knoten u_k
- Wir sagen, dass ein Knoten $v \in I$ an Position 0 ist, wenn $\pi(v) < \pi(u_1)$ und dass ein Knoten an Position i ist, wenn i die größte Zahl ist, so dass $\pi(u_i) < \pi(v)$
- Wir notieren L_i für die Menge aller Knoten aus an Position i.

- Die Aufgabe eine optimale Permutation zu finden lässt sich nun in zwei Teile aufteilen:
 - Zerteilen der Menge *I* in $L_0, ..., L_k$.
 - Eine optimale innere Ordnung an allen Positionen zu finden.
- Das Ziel ist das Zerteilen von I in Mengen $L_0, ..., L_k$ als Ganzahliges Lineares Problem zu formulieren.

Formulierung des Linearen Probelems

- Für die Anzahl eines Typen S an der Position i führen wir die Variable x_S^i ein.
- Wir definieren für alle $u_i \in X$ eine Variable y_i als untere Schranke für die Imbalance von u_i .
- Außerdem definieren wir für alle u_i aus X $e_i = |N(u_i) \cap X_{i-1}| - |N(u_i) \cap (X \setminus X_{i-1})|$
- Dies führt uns zu einer Bedingung für alle u_i :

$$y_i \ge \left| e_i + \sum_{\substack{S \subseteq X \ u_i \in S}} \left(\sum_{j=0}^{i-1} x_S^j - \sum_{j=i}^k x_S^j \right) \right|$$

■ Als letztes definieren wir $z_S^i = ||S \cap X_i| - |S \cap (X \setminus X_i)||$ als Konstante für die Imbalance eines Knoten von Typ S, wenn er an Position i platziert wird.

Formulierung des Linearen Problems

$$\begin{aligned} & \min \quad & \sum_{i=1}^{k} y_i + \sum_{i=0}^{k} \sum_{S \subseteq X} z_S^i x_S^i \\ & \text{s.t.} \quad & \sum_{i=0}^{k} x_S^i = |I(S)| & \forall S \subseteq X \\ & y_i \ge e_i + \sum_{\substack{S \subseteq X \\ u_i \in S}} (\sum_{j=0}^{i-1} x_S^j - \sum_{j=i}^{k} x_S^j) & \forall 1 \le i \le k \\ & y_i \ge -e_i - \sum_{\substack{S \subseteq X \\ u_i \in S}} (\sum_{j=0}^{i-1} x_S^j - \sum_{j=i}^{k} x_S^j) & \forall 1 \le i \le k \\ & x_S^i \ge 0 & \forall 0 \le i \le k, S \subseteq X \end{aligned}$$

Formulierung des Linearen Problems

- Durch anwenden des Theorems 6.5 kann man dieses Lineare Problem parametrisiert lösen.
- Daher folgt: Das Imbalance Problem, parametrisiert durch die Größe einer Knoten Überdeckung des Graphen ist FPT.