POWER ELECTRONICS LABORATORY REPORT

Note:

Before going for connections, please read the datasheet of components used in the circuit.

Contents:			Pg.No.	
1.	Volt	age Regulating Circuit	3	
	i)	Aim		
	ii)	Circuit diagram		
	iii)	Components		
	iv)	Results		
2.		d band circuit & Gate driver circuit	5	
	i)	Aim		
	ii)	Circuit diagram		
	iii)	Formulas & Calculations		
	iv)	Components		
	v)	Results		
3.	Half	-bridge Inverter circuit	8	
	i)	Aim		
	ii)	Circuit diagram		
	iii)	Formulas & Calculations		
	iv)	Components		
	v)	Results		
4.	Full-	-bridge Inverter	10	
	i)	Aim		
	ii)	Circuit diagram		
	iii)	Formulas & Calculations		
	iv)	Components		
	v)	Results		
5.	Bucl	k-Converter	12	
	i)	Aim		
	ii)	Circuit diagram		
	iii)	Formulas & Calculations		
	iv)	Components		
	v)	Results		
6.	Boos	st-Converter	15	
	i)	Aim		
	ii)	Circuit diagram		
	iii)	Formulas & calculations		
	iv)	Components		
	v)	Results		

Voltage Regulation Circuit

- *i)* Aim: To generate regulated voltage levels of '12V' and '-5V' in order to provide as gate triggering levels for MOSFET in switching application.
- ii) Circuit diagram:

iii) Components:

S.No.	Component name	Rating	Quantity
1.	Capacitor	470μF,25V	2
2.	Capacitor	220μF,35V	2
3.	PN-junction diode	IN 4007	4
4.	Single phase transformer	(0-230)/(12-0-4)	1
5.	Positive voltage regulator	IC H7812	1
6.	Negative voltage regulator	IC L7905	1

iv) Results:

a) Voltage waveform observed between the output terminal of IC H7812 (Positive voltage regulator) and ground terminal of Single phase transformer is

b) Voltage waveform observed between the output terminal of IC 7905 (Negative voltage regulator) and ground terminal of Single phase transformer is as

Dead band circuit and Gate Driver Circuit

- *i)* Aim: To design the Dead band circuit and Gate driver circuit for MOSFET.
- ii) Circuit diagram:
 - a) Dead band circuit: To provide delay in generated pulses of gate driver circuit.

b) Gate Driver Circuit: Generates pulse to drive MOSFET

iii) Formulas & Calculations:

$$V_{th}(Logic \ gate) = V_{pulse}(High \ level) \ x \ (1\text{-}e^{(\text{-}t/RC)})$$

Let
$$t_{delay} = 2.50 \mu s$$
 (typical value) \rightarrow RC = 3.82×10^{-6}
Selected R = 390Ω and C= 10nF

iv) Components:

S.No.	Component	Rating	Quantity
1.	AND gate	IC 7408	1
2.	NOT gate	IC 7404	1
3.	Resistor	380 Ω	2
4.	Capacitor	10 nF,100 V	2
5.	PN junction diode	IN 4007	2
6.	Gate driver	TLP 350	1
7.	Pulse generator		1

v) Results:

a) Dead band circuit:

Off-time dead band observed =2.50µs (approximately)

During ON time

On-time dead band = $2.50\mu s$ (approximately)

b) Gate driver circuit

Pulse's high level = +12V

Pulse's low level = -5V

Off-time dead band for gate driving pulse = $2.50\mu s$

Pulse's high level = +12V (approx.)

Pulse's low level = -5V (approx.)

On-time dead band of gate driving pulse = $2.50\mu s$ (approx.)

Single Phase Half-Bridge Inverter

i) Aim: To design a Single phase half-bridge inverter circuit using MOSFETs as switches.

ii) Circuit diagram:

iii) Components datasheet:

S.No.	Component	Rating	Quantity
1.	MOSFET	IRF 740	2
2.	Rheostat	$(0-220)\Omega/2.8A$	1
3.	Regulated DC supply	±15 V, 3 A	1

iv) Results: $V_{DC} = 15V$ (approx.)

a) For frequency = 50 Hz

Peak- peak value of above waveform =32V (approx.)

b) For frequency = 2 kHz

Peak-peak value of above waveform = 32 V (approx.)

Single Phase Full Bridge Inverter

i) Aim: To design a Full-bridge inverter circuit using MOSFETs as switches.

ii) Circuit diagram:

iii) Components datasheet:

S.No.	Component	Rating	Quantity
1.	MOSFET	IRF740	4
2.	Rheostat	$(0-220)\Omega/2.8A$	1
3.	Inductor	2mH	1
4.	Regulated DC supply	±15 V, 3 A	1

iv) Output waveforms & Results:

a) Voltage between the pole points when there is no load

Positive peak = 30V (approx.); Negative peak = 30V (approx.) and frequency=2 kHz

b) When load is $R=220\Omega$ and L=2mH, The voltage across load and current through load

Voltage positive peak= 30V, negative peak = 30V and frequency =50Hz

Buck Converter

i) Aim: Designing of buck converter as per the specified requirements given below

Input voltage, $V_{in} = 15V$

Output voltage, Vout=6V

Ripple current, $\Delta i_L = 11\%$ of I_{Load}

Ripple voltage, $\Delta V_{out} = 6\%$ of V_{out}

ii) Circuit diagram:

iii) Formulas & Calculations:

$$L = \frac{V_{out}(1-D)}{\Delta i_L * f_s} H$$

$$C = \frac{\Delta i_L}{8*\Delta V_{out}*f_s} F$$

$$D = \frac{V_{out}}{V_{in}}$$

Calculations:

Let $R_{Load} = 13 \Omega$; switching frequency $f_s = 36 \text{ kHz}$

D=0.4

 $I_{Load} = V_{out}/R_{Load} = 0.4615A$;

 $\Delta i_L = 11\%$ of I_{Load} ;

L=2mH;

 $\Delta V_{out}=0.36 V;$

Selected L = 2mH; C= $(2.2+470)\mu F$

iv) Components:

S.No.	Component	Rating	Quantity
1.	MOSFET	IRF740	2
2.	Inductor	2mH	1
3.	Capacitor	472.2μF	1+1
4.	Rheostat	$(0-220)\Omega/2.8A$	1
5.	Regulated DC supply	±15 V, 3 A	1

v) Results:

a) Output voltage across load (rheostat)

Mean value of voltage across load = 6.97 V And ripple voltage=320mV=0.32V

b) Voltage across inductor and current through inductor waveforms

Observation: The surges in voltages waveforms during switching are due to values of Inductance and Capacitance present in the circuit.

c) Voltage across Inductor

Observation: The mean value of Voltage across Inductor over a period is observed as 40.3mV (Nearly zero) which represents the Voltage-sec balance and the deviation is due to disturbances.

Boost Converter

i) Aim: Designing of boost converter as per the specified requirements given below

Input voltage
$$V_{in} = 10 \text{ V}$$

% current ripple,
$$\Delta i_L = 5\%$$
 of I_{Load}

% voltage ripple,
$$\Delta V_{out} = 7\%$$
 of V_{out}

i) Circuit diagram:

ii) Formulas & Calculations:

Duty ratio,
$$\mathbf{D} = \mathbf{1} - \frac{V_{in}}{V_{out}}$$

$$Inductance, L = V_{in} * \frac{D}{\Delta i_L * f_s}$$

Capacitance,
$$C = I_{out}/(\Delta V_{out} * f_s)$$

Calculations:

Let
$$R_{Load}=16\Omega$$
;

$$V_{in} = 10.4V;$$

$$F_s=36 \text{ kHz};$$

Select L=2mH; C=
$$(470+2.2)\mu F$$

For selected C, $\Delta V_{out} = 0.3\%$

iii) Components:

S.No.	Component	Rating	Quantity
1.	MOSFET	IRF740	2
2.	Inductor	2mH	1
3.	Capacitor	(470+2.2)μF	1
4.	Rheostat	220Ω /2.8A	1
5.	Regulated DC supply	±15 V, 3 A	1

iv) Results:

a) For Frequency, $f_s=36kHz$:

Voltage across load:

Voltage across load is observed as 23.3V.

Current through Inductor and Voltage across inductor:

Observation: From above waveform, Mean value of voltage across inductor over a period is **859mV** (which is close to zero), implies **volt-sec** balance across inductor over a period. This difference is mainly due to switching surges.

b) For Frequency, $f_s=1$ kHz:

Voltage across load:

Observation: voltage across load=23.8V

Voltage across inductor and Current through Inductor:

Observations: We can observe the zero current through inductor for a short duration of time, representing the discontinuous mode of operation.