Early Detection of Motor Frailty in Older Adults FRAKITEST Project

Narimane Zaouache

August 2025

Presentation Roadmap

- Improvement of the digital SFDFM interface
- Analysis of the most influential variables
- Determination of classification thresholds
- Comparability analysis between patient groups
- Final summary and perspectives

From Aging to a Screening Challenge

Evolution of the Digital Interface - Overview

interface_current (consultation)

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

Most Influential Variables – Global Model

- Method: Linear regression + LOO cross-validation
- $R^2 = 0.82 (n = 65)$
- Top variables:
 - Orthopedic exam
 - Chair rise
 - Ground rise
 - Family situation
 - Unipedal stance
 - Memory issue

Fried Subgroups – Full vs Reduced Models

Fried Class	Most Influential Variables	\mathbb{R}^2	MSE
Non-frail	Orthopedic exam, Unipedal stance, Falls	0.6811	1.92
Pre-frail	Fear of falling, Falls, Memory issue	0.1668	10.71
Frail	Sex, Chronic pain, Ground rise	-19.37	1178.31

Table 3 – Most influential variables per Fried subgroup (14-variable models)

Comparison: full (14 vars) vs reduced (6 vars) models

Fried Class	Model	Variables	\mathbb{R}^2	MSE	Improvement
Non-frail	Full	14	0.6811	1.92	_
	Reduced	6	0.4343	3.41	\downarrow performance
Pre-frail	Full	14	0.1668	10.71	_
	Reduced	6	0.2711	9.36	† performance
Frail	Full	14	-19.37	1178.31	_
	Reduced	6	0.3961	34.93	† performance

Table 4 - Performance comparison by Fried subgroup - full vs reduced (6-variable) models

SFDFM Threshold Search – Method Comparison

Context: Multiple methods were tested to define optimal thresholds for classifying SFDFM scores into Fried categories.

Method	Thresholds (t1 / t2)	Accuracy	Frail Se / Sp	Notes
Grid Search	8 / 18	66.18%	0.800 / 0.959	Simple, exhaustive
Logistic Regression	7.88 / 21.55	63.97%	0.533 / 0.975	Continuous probabilities
Decision Tree	6.5 / 18.5	65.44%	0.800 / 0.959	Interpretable rules
XGBoost	8 / 18	66.18%	0.800 / 0.959	Robust, consistent with Grid Search

Selected SFDFM Thresholds

Final choice:

SFDFM $\leq 8 \Rightarrow$ Non-frail

$$8 < \mathsf{SFDFM} \le 18 \Rightarrow \mathsf{Pre-frail}$$

$$\mathsf{SFDFM} > 18 \Rightarrow \mathsf{Frail}$$

Why:

- Converged across multiple methods
- High accuracy (\approx 66%)
- Strong frail detection (Se = 0.80, Sp = 0.96)
- Simple and clinically applicable

Comparability Analysis Between Patient Groups

Score	Test	p-value
SFDFM (/32)	Mann-Whitney U	0.9123
Fried (/5)	Mann-Whitney U	0.0377

SFDFM: no difference. Fried: significant difference.

Final Summary & Perspectives

- Digital: secure, user-friendly web interface for standardized data collection
- Analytical: key variables identified, robust thresholds (8, 18)
- SFDFM: good internal validity, but lower sensitivity than Fried in some contexts
- Adaptive model: reduced version improves prediction for frail patients
- Next steps: larger cohorts, add missing clinical dimensions

Thank you for your attention!

Questions?

Application available here:

https://depistage-fragilite-motrice-1363f3377112.herokuapp.com/

Project carried out as part of the Master CSMI University of Strasbourg – 2025

References I

Delphine Blanchet, Helene Camerlynck, Carole Duchesne, and Nathalie Brouard.

Pre-frailty, frailty and multimorbidity: prevalences and associated characteristics from two french national surveys.

https://www.santepubliquefrance.fr/docs/pre-frailty-frailty-and-multimorbidity-prevalences-and-ass 2017.

Santé Publique France.

Conseil National de l'Ordre des Masseurs-Kinésithérapeutes.

Guide prévention primaire – dépistage par les kinésithérapeutes de la fragilité motrice par un score fonctionnel chez les personnes de 65 ans et plus, 2022.

Commission santé publique et démographie, en collaboration avec Pr. F. Mourey et Dr. A. Kubicki.

References II

Heroku.

Heroku: Cloud platform as a service, 2025.

Accessed: 2025-04-04.

References III

A. Le Ménez.

Analyse des niveaux de fragilité motrice chez les patients âgés, 2025. Encadré par Mme Combourieu.

Nicolas Leroy.

Abord clinimétrique de la fiabilité inter-évaluateur du score de dépistage de la fragilité motrice chez les personnes âgées de plus de 65 ans, 2024.

Sous la direction de Mme COMBOURIEU, MKDE, PhD, et sous l'expertise de M. GOMES AMARAL, MKDE.

X. Liu, Y. Wang, and M. Chen.

Application of xgboost to identify idiopathic central precocious puberty without gnrh stimulation test.

BMC Endocrine Disorders, 25(1):112-120, 2025.

References IV

R. Martinez, A. Lopez, and J. Dubois.

Xgboost-based prediction of 30-day mortality after cardiac surgery: A multicenter study.

Bioengineering, 11(4):75-84, 2024.

Pandas Development Team.

Pandas documentation.

Official documentation for the Pandas library.

Plotly.

Dash canvas documentation, 2025.

Accessed: 2025-04-04.

Plotly.

Dash: Python framework for web applications, 2025.

Accessed: 2025-04-04.

References V

M. Texier.

Étude de la validité du score fonctionnel de dépistage de la fragilité motrice (sfdfm), 2024.

Sous la direction de L. Combourieu.

H. Zhang, L. Zhao, and Q. Sun.

Risk prediction of infections in decompensated cirrhotic patients using a single-tree xgboost model.

BMC Gastroenterology, 23(2):45-53, 2023.