MA-106 Linear Algebra

H. Ananthnarayan

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 9th January 2018 D1 - Lecture 3

Recall: Matrices

A *matrix* is a collection of numbers arranged into a fixed number of rows and columns.

The (i, j)th entry is A_{ij} (or a_{ij}), the ith row is denoted A_{i*} , and jth column is A_{*j} .

Row form:
$$A = \begin{pmatrix} A_{1*} \\ A_{2*} \\ \vdots \\ A_{m*} \end{pmatrix}$$
,

Column form: $A = \begin{pmatrix} A_{*1} & A_{*2} & \cdots & A_{*n} \end{pmatrix}$,

We can add matrices only if they have the same size, and the addition is component-wise.

In particular, $(A + B)_{i*} = A_{i*} + B_{i*}$ and $(A + B)_{*j} = A_{*j} + B_{*j}$

Linear Systems: Multiplying a Matrix and a Vector

One row at a time (dot product): The system

2u + v + w = 5, 4u - 6v = -2, -2u + 7v + 2w = 9 can be rewritten using dot product as follows:

$$(2 \quad 1 \quad 1) \begin{pmatrix} u \\ v \\ w \end{pmatrix} = 5, \quad (4 \quad -6 \quad 0) \begin{pmatrix} u \\ v \\ w \end{pmatrix} = -2 \quad \text{and}$$

$$(-2 \quad 7 \quad 2) \begin{pmatrix} u \\ v \\ w \end{pmatrix} = 9.$$

Write the system in the Ax = b form:

$$\begin{pmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 2u + v + w \\ 4u - 6v \\ -2u + 7v + 2w \end{pmatrix} = \begin{pmatrix} 5 \\ -2 \\ 9 \end{pmatrix}$$

Note: No. of columns of A = length of the vector x.

3/12

Multiplication of a Matrix and a Vector

Dot Product (row method): Ax is obtained by taking dot product of each row of A with x.

If $A = \begin{pmatrix} A_{1*} \\ A_{2*} \\ A_{0} \end{pmatrix}$, then $Ax = \begin{pmatrix} A_{1*} \cdot x \\ A_{2*} \cdot x \\ A_{0} \cdot x \end{pmatrix}$

Linear Combinations (column method):

The column form of the system

$$2u + v + w = 5$$
, $4u - 6v = -2$, $-2u + 7v + 2w = 9$ is:

$$u\begin{pmatrix} 2\\4\\-2 \end{pmatrix} + v\begin{pmatrix} 1\\-6\\7 \end{pmatrix} + w\begin{pmatrix} 1\\0\\2 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1\\4 & -6 & 0\\-2 & 7 & 2 \end{pmatrix} \begin{pmatrix} u\\v\\w \end{pmatrix}$$

Thus Ax is a linear combination of columns of A, with the coordinates of x as weights, i.e., $Ax = uA_{*1} + vA_{*2} + wA_{*3}$.

4/12

An Example

Let
$$A = \begin{pmatrix} 1 & 3 & -3 & -1 \\ 1 & 2 & 0 & -2 \\ 1 & 0 & -2 & 0 \end{pmatrix}$$
, $x = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 2 \end{pmatrix}$, and $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$.
 $A_{1*} = \begin{pmatrix} 1 & 3 & -3 & -1 \end{pmatrix}$, $A_{2*} = \begin{pmatrix} 1 & 2 & 0 & -2 \end{pmatrix}$ $A_{3*} = ?$.

Then
$$A_{1*} \cdot x = ?$$
, $A_{2*} \cdot x = 0$, $A_{3*} \cdot x = 0$, hence $Ax = \begin{pmatrix} ? \\ ? \\ ? \end{pmatrix}$.

Q: What is Ae_1 ? **A:** The first column A_{*1} of A.

Exercise:

What should e_2 , e_3 , e_4 be so that $Ae_j = A_{*j}$, the *j*th column of A?

Observe: No. of rows of Ax = No. of rows of A, and No. of columns of Ax = No. of columns of x.

Question: What can you say about the solutions of Ax = 0?

5/12

Operations on Matrices: Matrix Multiplication

Two matrices A and B can be multiplied if and only if

no. of columns of
$$A = \text{no.}$$
 of rows of B .

If A is $m \times \underline{n}$ and B is $\underline{n} \times r$, then AB is $m \times r$.

Key Idea: We know how to multiply a matrix and a vector.

Column wise: Write B column-wise, i.e., let

$$B = \begin{pmatrix} B_{*1} & B_{*2} & \cdots & B_{*r} \end{pmatrix}$$
. Then

$$AB = \begin{pmatrix} AB_{*1} & AB_{*2} & \cdots & AB_{*r} \end{pmatrix}$$

6/12

Note: Each B_{*j} is a column vector of length n. Hence, AB_{*j} is a column vector of length m. So, the size of AB is $m \times r$.

Operations on Matrices: Matrix Multiplication

Row wise: Write *A* row-wise, i.e., let A_{1*}, \ldots, A_{m*} be the rows of *A*. Then

$$AB = \begin{pmatrix} A_{1*} \\ \vdots \\ A_{m*} \end{pmatrix} B = \begin{pmatrix} A_{1*}B \\ \vdots \\ A_{m*}B \end{pmatrix}$$

Note: Each A_{i*} is a row vector of size $1 \times n$. Hence, $A_{i*}B$ is a row vector of size $1 \times r$. So, the size of AB is $m \times r$.

WORKING RULE:

The entry in the *i*th row and *j*th column of AB is the dot product of the *i*th row of A with the *j*th column of B, i.e., $(AB)_{ij} = A_{i*} \cdot B_{*j}$.

Properties of Matrix Multiplication

- If *A* is $m \times n$ and *B* is $n \times r$.
- a) $(AB)_{ij} = A_{i*} \cdot B_{*j} = (i \text{th row of } A) \cdot (j \text{th column of } B)$
- b) jth column of $AB = A \cdot (j\text{th column of } B)$, i.e., $(AB)_{*j} = AB_{*j}$.
- c) ith row of $AB = (ith row of A) \cdot B$, i.e., $(AB)_{i*} = A_{i*}B$.

Properties of Matrix Multiplication:

- (associativity) (AB)C = A(BC)
- (distributivity) A(B+C) = AB + AC(B+C)D = BD + CD
- (non-commutativity) $AB \neq BA$, in general. Find examples.

Matrix Multiplication: Examples

Examples:

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix}, I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (Identity)

- *AB* = ??
- size of BA is __ × __

$$\bullet BA = \begin{pmatrix} 4 & 10 & 7 \\ 4 & 18 & 10 \end{pmatrix},$$

• and IA = A = AI.

Matrix Multiplication: Examples

Examples:

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{pmatrix}, E = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(Permutation) P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (e_2 \ e_1 \ e_3)$$

Then $AP = (Ae_2 \ Ae_1 \ Ae_3) = (A_{*2} \ A_{*1} \ A_{*3})$

Exercise: Find EA and PA.

Question: How can you obtain EA and PA directly from A?

Transpose A^T of a Matrix A

Defn. The *i*-th row of A is the *i*-th column of A^T and vice-versa. Hence if $A_{ij} = a$, then $(A^T)_{ji} = a$.

Example: If
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -2 & 1 \end{pmatrix}$$
, then $A^T = \begin{pmatrix} 1 & 0 \\ 2 & -2 \\ 3 & 1 \end{pmatrix}$.

- If A is $m \times n$, then A^T is $n \times m$.
- If A is upper triangular, then A^T is lower triangular.

•
$$(A^T)^T = A$$
, $(A+B)^T = A^T + B^T$.

$$\bullet \ \ \overline{(AB)^T = B^T A^T}.$$

Proof. Exercise.

Symmetric Matrix

Defn. If $A^T = A$, then A is called a *symmetric* matrix.

Note: A symmetric matrix is always $n \times n$.

Examples:
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ are symmetric.

• If A, B are symmetric, then AB may NOT be symmetric.

In the above case,
$$AB = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$$
.

- If A and B are symmetric, then so is A + B.
- If A is $n \times n$, $A + A^T$ is symmetric.
- For any $m \times n$ matrix B, BB^T and B^TB are symmetric.

Exercise: If $A^T = -A$, we say that A is *skew-symmetric*.

Verify if similar observations are true for skew-symmetric matrices.