

Personal Project 4

T-117-STR, Discrete Mathematics I, 2023-3 Reykjavik University - School of Computer Science, Menntavegi 1, IS-101 Reykjavík, Iceland

Friðrik F. Söebech fridriks23@ru.is

9. October 2023

1 Problem 1.

1.1 Given Matrix:

$$A = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$$

1.2 Rule:

$$A^{n} = \begin{bmatrix} n+1 & n \\ -n & 1-n \end{bmatrix} \text{ for } n \ge 1.$$

1.3 Base Step:

Lets prove that this rule holds true for the integer K=1

$$A^{1} = \begin{bmatrix} 1+1 & 1 \\ -1 & 1-1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$$

1.4 Solution:

Now let's prove that the rule also applies for K = 2

$$A^{2} = \begin{bmatrix} 2 \times 2 + 1 \times (-1) & 2 \times 1 + 1 \times 0 \\ (-1) \times 2 + 0 \times (-1) & (-1) \times 1 + 0 \times 0 \end{bmatrix}$$
$$A^{2} = \begin{bmatrix} 4 - 1 & 2 + 0 \\ -2 + 0 & -1 + 0 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ -2 & -1 \end{bmatrix}$$

Now that we can see that this rule applies to 1 and 2 we can imagine that we pick any integer k so we get

$$A^k = \begin{bmatrix} k+1 & k \\ -k & 1-k \end{bmatrix}.$$

Then for the rule to be true, k+1 should also apply.

$$A^{k+1} = \begin{bmatrix} (k+1)+1 & k+1 \\ -(k+1) & 1-(k+1) \end{bmatrix} = \begin{bmatrix} k+2 & k+1 \\ -k-1 & -k \end{bmatrix}$$

Which should be equal to $A^1 \times A^k$

$$A^{1} \times A^{k} = \begin{bmatrix} 2(k+1) - k & 2k+1-k \\ -1(k+1) + 0 \times (-k) & -1(k) + 0 \times (1-k) \end{bmatrix}$$

$$A^{1} \times A^{k} = \begin{bmatrix} 2k+2-k & k+1 \\ -k-1+0 & -k+0 \end{bmatrix}$$

$$A^{1} \times A^{k} = \begin{bmatrix} k+2 & k+1 \\ -k-1 & -k \end{bmatrix} = A^{k+1}$$

Now we have shown what we wanted to show.

2 Problem 2.

Let us solve the following using a inductive hypothesis:

The sum of the first n powers of two is
$$2^{n} - 1$$
:
 $P(n): 2^{0} + 2^{1} + 2^{2} + 2^{3} + \dots + 2^{n-1} = 2^{n} - 1$

2.1 Base Step:

Let's first see wether or not this applies to P(1):

$$P(1) = 2^0 = 1 = 2^1 - 1$$

This holds true for P(1)

2.2 Solution:

Now let's imagine ourselves at some step k:

$$P(k) = 2^0 + 2^1 + 2^2 + 2^3 \dots + 2^{k-1} = 2^k - 1$$

For the rule to apply we must prove that P(k+1) also follows this rule:

$$P(k+1) = 2^0 + 2^1 + 2^2 + 2^3 + \dots + 2^{(k+1)-1} = 2^{k+1} - 1$$

The Sequence leading the $+2^k$ is in fact equal to P(k) cause what comes before 2^k is 2^{k-1} :

$$P(k+1) = P(k) + 2^k = 2^{k+1} - 1$$

 $Now \ we \ simplify:$

$$P(k+1) = 2^{k} - 1 + 2^{k} = 2^{k+1} - 1$$

$$P(k+1) = 2 \times 2^{k} - 1 = 2^{k+1} - 1$$

$$P(k+1) = 2^{k+1} - 1 = 2^{k+1} - 1$$

We have now proved the rule true.

3 Problem 3.

Let's find the recursive definition of this function for all $n \ge 1$:

$$f(n) = 5n + 2$$

Lets first try this function with small n's:

$$f(1) = 5 \times 1 + 2 = 7$$

$$f(2) = 5 \times 2 + 2 = 12$$

$$f(3) = 5 \times 3 + 2 = 17$$

$$f(4) = 5 \times 4 + 2 = 22$$

If we look closely we see that f(n+1) - f(n) = 5.

$$5(n+1) + 2 - (5n+2)$$
$$5n+5+2-5n-2$$
$$5n-5n+5-2+2=5$$

This means that the recursive function is:

$$f(n) = f(n-1) + 5$$

4 Problem 4.

Let's find how many swedish vehicle registration numbers exist based on certain criteria

$$[C] = Character [D] = Digit$$

4.1 A):

 $No\ Criteria:$

$$[C][C][C][D][D][C/D]$$

$$[32][32][32][32][10][10][42]$$

$$32^{4} \times 10^{2} \times 42 = 4404019200$$

4.2 B):

Start with X and end with 1

$$X[C][C][D][D]1$$

[1][32][32][32][10][10][1]
 $1 \times 32^3 \times 10^2 \times 1 = 3276800$

4.3 C):

Has the string 42 in included, exclude the letter A and the digit 7.

$$[C][C][C][C]42[C/D]$$

$$[31][31][31][31][1][1][40]$$

$$31^4 \times 1^2 \times 40 = 36940840$$

$$[C][C][C][C][9]42$$

$$[31][31][31][31][9][1][1]$$

$$31^4 \times 9 = 8311689$$

$$36940840 + 8311689 = 45252529$$

5 Problem 5.

Passwords consist of 7 symbols that can be either uppercase letters, special characters or digits.

Assuming there are 32 letters, 20 special characters and 10 digits,

how many passwords exist with the following criteria.

5.1 A):

Only one type of character:

$$[C][C][C][C][C][C][C]$$

$$[32][32][32][32][32][32][32]$$

$$32^{7} = 34359738368$$

$$[S][S][S][S][S][S][S][S]$$

$$[20][20][20][20][20][20][20]$$

$$20^{7} = 1280000000$$

$$[D][D][D][D][D][D][D]$$

$$10^{7} = 10000000$$

 $34359738368 + 1280000000 + 100000000 = 35649738368 \ passwords$

5.2 B):

Passwords with symbol in last position or second to last position:

So first we have to work out how many passwords there are

where the manditory symbol is in the second - to - last position.

$$[32 + 20 + 10][32 + 20 + 10][32 + 20 + 10][32 + 20 + 10][32 + 20 + 10][20][32 + 20 + 10]$$
$$[62][62][62][62][62][62][62][62]$$
$$62^{6} \times 20$$

Now in the last position.

$$[62][62][62][62][62][62][20]$$

$$62^{6} \times 20$$

$$(62^{6} \times 20)^{2} - 62^{4}$$

 64^4 came from the letters that the two sets had in common with each other or $|LA \cap LB|$

The formula for this being

$$|LA \cup LB| = |LA| + |LB| - |LA \cap LB|$$