			- 51
4		SE sem IV CB FS IT 22/12/15	
		Jefor Theory & today Cody QP Code: 5541	
		(3 Hours) [Total Marks:	80
N.	B. :	(1) Question No. 1 is compulsory.	
		(2) Attempt any three questions from remaining five questions	
		(3) Make suitable assumption if necessary and state it clearly.	S
1.	(a)	Derive expression for entropy?	5
	(b)	What is lossless compresion?	5
	(c)	List attacks threatening security goals.	5
	(d)	Explain the role of digital signature.	5
2.	(a)	Explain LZW compression algorithm with example	10
	(b)	For DES symmetric algorithm, explain main steps involved showing block	10
		size, cipher key size and round key size.	
3.	(a)	For (7, 4) cyclic code, find out the generator matrix if $G(D) = 1 + D + D^3$	10
	(þ)	Describe Huffman decoding procedure with example.	10
4.	(a)	Explain Diffie-Hellman algorithm. Which attack is it valuerable to?	10
			10
5.	(a)	State Fermat's Little Theorem with example and its applications.	10
	(b)	Describe lossy compression methods. Where we use lossy compression methods?	10
		How do we are it?	
6.	(a)	Describe Chinese-Remainder Theorem and its applications.	10
	(b)	Define: (i) Hamming distance	10
		(iii) Hamming Weight	
		Syndrome	
		(iv) Linear properties of code	

Code rate