ИДЗ 1. По курсу «Уравнение математической физики»

Вариант 1.

1. Найти решение задачи Коши

$$u_{tt} - a^2 u_{xx} = 0$$
, $x \in (-\infty, +\infty)$, $t > 0$, $a = 2$.

$$u(x,0) = e^{-x} \cdot (1 - x^2);$$

 $u_t(x,0) = x^2.$

- 2. Проверить, что найденное решение по формуле Даламбера удовлетворяют исходному уравнению.
- 3. Построить профиль бесконечной струны, если

$$u(x,0) = \begin{cases} e^{-x} \cdot (1-x^2), & -1 \le x \le 1; \\ 0, & x \notin (-1,1); \end{cases}$$

$$u_t(x,0)=0$$

в момент времени $t = \frac{1}{4a}, \frac{1}{2a}, \frac{3}{4a}, \frac{1}{a}, \frac{2}{a}$

$$2u_{xx} - 2u_{xy} + 5u_{yy} + 4u_x - 3u_y = 0,$$

$$4u_{xx} + 16u_{xy} + 2u_{yy} - 3u_y = 0.$$

Вариант 2.

1. Найти решение задачи Коши

$$u_{tt} - a^2 u_{xx} = 0$$
, $x \in (-\infty, +\infty)$, $t > 0$, $a = 1$.

$$u(x, 0) = (1 - x^2) \cdot e^{x/3};$$

 $u_t(x, 0) = 0.5x.$

- 2. Проверить, что найденное решение по формуле Даламбера удовлетворяют исходному уравнению.
- 3. Нарисовать профиль бесконечной струны, если

$$u(x,0) = \begin{cases} (1-x^2) \cdot e^{x/3}, & -1 \le x \le 1; \\ 0, & x \notin (-1,1); \end{cases}$$

$$u_t(x,0)=0$$

в момент времени $t = \frac{1}{4a}, \frac{1}{2a}, \frac{3}{4a}, \frac{1}{a}, \frac{2}{a}$

$$-5u_{xx} + 10u_{xy} - 5u_{yy} - u_x + 5u_y - 5 = 0,$$

$$4u_{xx} - 6u_{xy} + 1.25u_{yy} - 3_x = 0.$$

Вариант 3.

1. Найти решение задачи Коши

$$u_{tt} - a^2 u_{xx} = 0$$
, $x \in (-\infty, +\infty)$, $t > 0$, $a = 3$.

$$u(x,0) = \ln(1-x^2) + 1;$$
 $u_t(x,0) = 0.1\cos^2(x).$

- 2. Проверить, что найденное решение по формуле Даламбера удовлетворяют исходному уравнению.
- 3. Нарисовать профиль бесконечной струны, если

$$u(x,0) = \begin{cases} \ln(1-x^2) + 1, & -0.75 \le x \le 0.75; \\ 0, & x \notin (-0.75, 0.75); \end{cases}$$

$$u_t(x,0)=0$$

в момент времени $t = \frac{1}{4a}$, $\frac{1}{2a}$, $\frac{3}{4a}$, $\frac{1}{a}$, $\frac{2}{a}$.

$$4u_{xx} - 12u_{xy} + 5u_{yy} - 5u_x + 2u_y = 0,$$

$$-2u_{xx} + 2u_{xy} - 0.5u_{yy} + 4u_y = 0.$$

Вариант 4.

1. Найти решение задачи Коши

$$u_{tt} - a^2 u_{xx} = 0$$
, $x \in (-\infty, +\infty)$, $t > 0$, $a = 1$.

$$u(x,0) = x \cdot \sin(2x);$$
 $u_t(x,0) = 0.4 x.$

- 2. Проверить, что найденное решение по формуле Даламбера удовлетворяют исходному уравнению.
- 3. Нарисовать профиль бесконечной струны, если

$$u(x,0) = \begin{cases} x \cdot \sin(2x), & 0 \le x \le \frac{\pi}{2}; \\ 0, & x \notin \left(0, \frac{\pi}{2}\right); \end{cases}$$

$$u_t(x,0)=0$$

в момент времени $t = \frac{1}{4a}, \frac{1}{2a}, \frac{3}{4a}, \frac{1}{a}, \frac{2}{a}$.

$$8u_{xx} + 4u_{xy} + 5u_{yy} + 2u_x + 11u_y = 0,$$

$$9u_{xx} - 6u_{xy} + u_{yy} + u_x = 0.$$

Вариант 5.

1. Найти решение задачи Коши

$$u_{tt} - a^2 u_{xx} = 0$$
, $x \in (-\infty, +\infty)$, $t > 0$, $a=5$, $u(x,0) = 2 - e^{x^2/3}$; $u_t(x,0) = 0.3x$.

- 2. Проверить, что найденное решение по формуле Даламбера удовлетворяют исходному уравнению.
- 3. Нарисовать профиль бесконечной струны, если

$$u(x,0) = \begin{cases} 2 - e^{x^2/3}, & 1 \le x \le 1; \\ 0, & x \notin (-1,1); \end{cases}$$
$$u_t(x,0) = 0$$

в момент времени $t = \frac{1}{4a}$, $\frac{1}{2a}$, $\frac{3}{4a}$, $\frac{1}{a}$, $\frac{2}{a}$.

$$7u_{xx} - 18u_{xy} + 8u_{yy} - 4u_x + u_y = 0,$$

$$u_{xx} - 8u_{xy} + 16u_{yy} + 3u_y = 0.$$

Вариант 6.

1. Найти решение задачи Коши

$$u_{tt} - a^2 u_{xx} = 0, \ x \in (-\infty, +\infty), \ t > 0, \ a = 3.$$

 $u(x, 0) = \cos(1.5 x);$
 $u_t(x, 0) = 0.1x^2.$

- 2. Проверить, что найденное решение по формуле Даламбера удовлетворяют исходному уравнению.
- 3. Нарисовать профиль бесконечной струны, если

$$u(x,0) = \begin{cases} \cos(1.5 x), & -1 \le x \le 1; \\ 0, & x \notin (-1,1); \end{cases}$$

$$u_t(x,0)=0$$

в момент времени $t = \frac{1}{4a}$, $\frac{1}{2a}$, $\frac{3}{4a}$, $\frac{1}{a}$, $\frac{2}{a}$.

$$-8u_{xx} - 24u_{xy} - 18u_{yy} - 3u_y = 0,$$

$$-4u_{xx} + 6u_{xy} + 4u_{yy} + 3u_x = 0.$$

Вариант 7.

1. Найти решение задачи Коши

$$u_{tt} - a^2 u_{xx} = 0$$
, $x \in (-\infty, +\infty)$, $t > 0$, $a=2$, $u(x, 0) = xe^{-x+1}$; $u_t(x, 0) = 2x$.

- 2. Проверить, что найденное решение по формуле Даламбера удовлетворяют исходному уравнению.
- 3. Нарисовать профиль бесконечной струны, если

$$u(x,0) = \begin{cases} xe^{-x+1}, & 0 \le x \le 3; \\ 0, & x \notin (0,3); \end{cases}$$
$$u_t(x,0) = 0$$

в момент времени
$$t = \frac{1}{4a}, \frac{1}{2a}, \frac{3}{4a}, \frac{1}{a}, \frac{2}{a}$$

$$9u_{xx} - 12u_{xy} + 5u_{yy} - 6u_x + 2u_y = 0,$$

$$-2u_{xx} + 8u_{xy} - 8u_{yy} + 3u_y = 0.$$

Вариант 8.

1. Найти решение задачи Коши

$$u_{tt} - a^2 u_{xx} = 0$$
, $x \in (-\infty, +\infty)$, $t > 0$, $a = 4$.
 $u(x, 0) = 1 - x^3$;
 $u_x(x, 0) = 0.05x^4$.

- 2. Проверить, что найденное решение по формуле Даламбера удовлетворяют исходному уравнению.
- 3. Нарисовать профиль бесконечной струны, если

$$u(x,0) = \begin{cases} 1 - x^3, & -1 \le x \le 1; \\ 0, & x \notin (-1,1); \end{cases}$$
$$u_t(x,0) = 0$$

в момент времени $t = \frac{1}{4a}, \frac{1}{2a}, \frac{3}{4a}, \frac{1}{a}, \frac{2}{a}$

$$4u_{xx} - 18u_{xy} + 8u_{yy} - 5u_x + 2u_y = 0,$$

$$25u_{xx} + 10u_{xy} + u_{yy} - 3u_y = 0.$$

Вариант 9.

1. Найти решение задачи Коши

$$u_{tt} - a^2 u_{xx} = 0, x \in (-\infty, +\infty), t > 0, a=1,$$

 $u(x, 0) = x^3 e^{-x};$
 $u_x(x, 0) = 0.3x^2.$

- 2. Проверить, что найденное решение по формуле Даламбера удовлетворяют исходному уравнению.
- 3. Нарисовать профиль бесконечной струны, если

$$u(x,0) = \begin{cases} x^3 e^{-x}, & 0 \le x \le 8; \\ 0, & x \notin (0,8); \\ u_t(x,0) = 0 \end{cases}$$

в момент времени $t = \frac{1}{4a}, \frac{1}{2a}, \frac{3}{4a}, \frac{1}{a}, \frac{2}{a}$

$$4u_{xx} - 28u_{xy} + 49u_{yy} + u_x - 3u_y = 0,$$

$$-4u_{xx} + 6u_{xy} + 2u_{yy} - 11u_y = 0.$$

Вариант 10.

1. Найти решение задачи Коши

$$u_{tt} - a^2 u_{xx} = 0$$
, $x \in (-\infty, +\infty)$, $t > 0$, $a = 3$.
 $u(x, 0) = 1 - x \cdot \sin(x)$;
 $u_t(x, 0) = 0.5x$.

- 2. Проверить, что найденное решение по формуле Даламбера удовлетворяют исходному уравнению.
- 3. Нарисовать профиль бесконечной струны, если

$$u(x,0) = \begin{cases} 1 - x \cdot \sin(x), & -1 \le x \le 1; \\ 0, & x \notin (-1,1); \end{cases}$$

$$u_t(x,0)=0$$

в момент времени $t = \frac{1}{4a}, \frac{1}{2a}, \frac{3}{4a}, \frac{1}{a}, \frac{2}{a}$

$$u_{xx} - 4u_{xy} + 4u_{yy} + 4u_x - 3u_y = 0,$$

$$8u_{xx} + 6u_{xy} - 5u_{yy} - 3u_y = 0.$$