Dynamic Urban Parking Pricing System

Capstone Project – Summer Analytics 2025, Consulting & Analytics Club IIT Guwahati

Author: Kangkan Kalita

Email: kalitakangkan.239@gmail.com

Google Colab notebook (Link)

Table of Contents

- 1. Introduction
- 2. Problem Statement & Objectives
- 3. Dataset & Pre-processing
 - o 3.1 <u>Pre-processing Steps</u>
- 4. Pricing Models
 - o 4.1 Baseline Linear Model
 - o 4.2 Demand-Based Nonlinear Model
 - o 4.3 Competitive Pricing Model (Optional)
- 5. Smoothing & Two-Stage CSV Exports
 - o 5.1 parking stream full.csv
 - o $5.2\,\mathrm{parking}$ stream final.csv
- 6. <u>Visualization & Dashboard</u>
 - o 6.1 Static Bokeh Plot
 - o 6.2 Interactive Panel Dashboard (Cell 7)
- 7. Results & Analysis
- 8. Discussion & Future Work
- 9. Reproducibility & Deployment
- 10. References

1. Introduction

Cities worldwide wrestle with two extremes in urban parking:

- Overcrowding during rush hours, leading to long queues and frustrated drivers
- Underutilization at off-peak times, leaving revenue unrealized

Static, time-invariant pricing exacerbates both problems. In contrast, a **dynamic pricing engine** adjusts rates in real time in response to demand, capacity, and contextual factors improving both utilization and fairness.

In this project, we design, implement, and validate such an engine for a network of 14 parking lots, using only Python, Pandas, NumPy, and Pathway for streaming simulation. We compare three models of increasing sophistication and deliver both static and interactive real-time dashboards.

2. Problem Statement & Objectives

Goal: Predict an optimal price for each lot at each 30-minute interval, starting from a base price of \$10, such that the lot stays neither empty nor overcrowded.

Core objectives:

- 1. **Implement three pricing strategies** from scratch:
 - Baseline Linear
 - o Demand-Based Nonlinear
 - o (Optional) Competitive
- 2. **Simulate real-time ingestion** using Pathway's replay mechanism.
- 3. Visualize historical and static pricing in Google Colab and via a Panel dashboard.
- 4. **Validate** that prices remain smooth, bounded (50%–200% of base), and correlate sensibly with occupancy and queue data.

3. Dataset and Pre-processing

We leverage a 73-day observational dataset from 14 distinct parking lots, sampled every 30 minutes between 8 AM and 4:30 PM. Each record includes:

Feature	Type	Description
Timestamp	datetime	Date & time of the observation
SystemCodeNumber	string	Unique ID for each parking lot
Capacity	int	Maximum number of vehicles
Occupancy	int	Current parked vehicles
QueueLength	int	Vehicles waiting
VehicleType	categorical	Incoming vehicle: car, bike, cycle, truck
TrafficConditionNearby	categorical	low, average, high congestion level
IsSpecialDay	binary	Holiday or event flag
Latitude, Longitude	float	Geographic coordinates (for competitive model)

3.1 Pre-processing Steps

- 1. Parse & sort Timestamp
- 2. Compute:
 - OccupancyRate = Occupancy / Capacity
 - o **TrafficLevel** ∈ $\{0.3, 0.6, 0.9\}$
 - \circ VehicleWeight ∈ {0.5...1.3}

- o **BasePrice** = \$10 constant
- 3. **Handle missing** values (none present in primary features).

Code snippet:

```
df['Timestamp'] = pd.to_datetime(df['Date'] + ' ' + df['Time'])
df.sort_values('Timestamp', inplace=True)
df['OccupancyRate'] = df.Occupancy / df.Capacity
traffic_map = {'low':0.3, 'average':0.6, 'high':0.9}
df['TrafficLevel'] = df.TrafficConditionNearby.map(traffic_map)
veh_wt = {'car':1.0, 'bike':0.7, 'cycle':0.5, 'truck':1.3}
df['VehicleWeight'] = df.VehicleType.map(veh_wt)
df['BasePrice'] = 10.0
```

4. Pricing Models

4.1 Baseline Linear Model

A per-lot, time-series update:

$$Price_{t+1} = Price_t + \alpha \cdot (Occupancy/Capacity), \alpha = 1.0$$

- Clipped to [0.5×Base, 2×Base]
- Fast, interpretable, but doesn't account for queues or events

4.2 Demand-Based Nonlinear Model

A more expressive demand function:

raw =
$$\alpha \cdot o + \beta \cdot (q/C) - \gamma \cdot t + \delta \cdot 1_{Special} + \epsilon \text{ veh_wt}$$

score = tanh(raw), Price = Base [1 + $\lambda \cdot$ score]

Coefficient	Interpretation
$\alpha = 0.6$	Occupancy weight
$\beta = 0.3$	Queue weight
$\gamma = 0.2$	Traffic penalty
$\delta = 0.4$	Special day bonus
$\lambda = 0.8$	Price sensitivity

- tanh bounds score to (-1,1), so variation $\leq \pm 80\%$ of base.
- Clipping ensures price ∈ [\$5,\$20].

4.3 Competitive Pricing Model (Optional)

Incorporates nearby lots within a 2 km radius:

- Computes Haversine distance
- Weights competitor prices $\propto 1/(1+\text{dist})$
- Adjusts up or down when your lot is over- or under-priced

5. Smoothing & Two-Stage CSV Exports

5.1 parking_stream_full.csv

- Contains raw features + timestamp (for Pathway replay)
- Columns: Timestamp, SystemCodeNumber, Capacity, Occupancy, QueueLength, TrafficConditionNearby, VehicleType, IsSpecialDay, Latitude, Longitude

5.2 parking_stream_final.csv

- Enriched with computed:
 - o OccupancyRate, BaselinePrice, DemandScore, DemandPrice, SmoothedDemandPrice
- SmoothedDemandPrice via EMA (span = 5) to reduce "zig-zag" noise

6. Visualization & Dashboard

6.1 Static Bokeh Plot

- Line chart of Baseline vs. (Smoothed) Demand prices over time
- Verified per-lot patterns and range bound
- Histograms of DemandScore distribution

6.2 Interactive Panel Dashboard (Cell 7)

- Tabs for each SystemCodeNumber
- **Time-series** plot (live-style) + **Daily-avg** bar chart
- Widget controls could be extended to dropdowns or sliders

7. Results & Analysis

- Baseline
 - o Mean price \approx \$20.0, very little variation (clipping dominates)
 - Low correlation with OccupancyRate (≈ 0.02)
- Demand Model
 - \circ Mean price \approx \$12.6, range \$9.6, \$16.3\\$9.6, \\$16.3

- o Correlation with OccupancyRate ≈ 0.63 (stronger responsiveness)
- Smoothing
 - EMA effectively removes short-term spikes while preserving trends
- Daily Slice
 - o Demonstrates smooth peak pricing midday, lower off-peak rates

8. Discussion & Future Work

- 1. Hyperparameter Tuning
 - o GridSearchCV on α , β , γ , λ using historical occupancy & revenue as objective.
- 2. Feature Extensions
 - o Weather data, event schedules, dynamic vehicle-type weighting.
- 3. True Real-Time Deployment
 - o Move from CSV replay to real Kafka ingestion via Pathway's connectors.
- 4. User Interaction
 - o Allow drivers to request rerouting suggestions when queues exceed thresholds.
- 5. Model A/B Testing
 - o Deploy variants in parallel for live evaluation.

9. Reproducibility & Deployment

- 1. Clone repo & cd into project.
- 2. pip install -r requirements.txt (pins pathway, bokeh, panel, pandas, etc.).
- 3. Open Dynamic Parking Pricing.ipynb in Google Colab or Jupyter.
- 4. Run cells **1 through 8** in order.
- 5. View interactive dashboard in-cell or via panel serve.

10. References

- 1. Pathway documentation (Link)
- 2. Pathway Github repository (Link)
- 3. Bokeh & Panel user guides (Link)
- 4. My Google Colab notebook for reference (Link)