

유형 01 그래프를 이용한 부등식의 풀이

개념 08-1

- ① 부등식 f(x) > 0의 해
 - $\bigcirc y = f(x)$ 의 그래프가 x축보다 위쪽에 있는 부분의 x의 값의 범위
- ② 부등식 f(x) > g(x)의 해
 - y = f(x)의 그래프가 y = g(x)의 그래프보다 위쪽에 있는 부분의 x의 값의 범위

1000 대표문제

두 이차함수 y=f(x), y=g(x)의 그래프가 오른쪽 그림과 같을 때, 부등식 f(x)>g(x)의 해는?

- ① x < 1 또는 x > 2
- (2) 1< x< 4
- ③ x < 2 또는 x > 3
- $\bigcirc 4$ 2< x< 3
- (5) 2< x< 4

1001 🚭

이차함수 $y=px^2+qx+r$ 의 그래 $y=px^2+qx+r$ y프와 직선 y=mx+n이 오른쪽 그림과 같을 때, x에 대한 이차부 등식 $px^2+(q-m)x+r-n\leq 0$ 의 해를 구하시오.

(단, p, q, r, m, n은 상수이다.)

1002 🗗 서술형

두 이차함수 y=f(x), y=g(x)의 그래프가 오른쪽 그림과 같을 때, 부등식 f(x)g(x)>0의 해 를 구하시오.

집중공략 @

유형 12 이차부등식의 풀이

개념 08-2

이치부등식 f(x)>0의 해는 이치방정식 f(x)=0의 판별식을 D라 할 때, 다음과 같이 구한다.

- ① D>0이면 f(x)를 인수분해하거나 근의 공식을 이용한다.
- ② $D \le 00$ 이면 f(x)를 $a(x-p)^2 + q$ 꼴로 변형한다.

1003 대표문제

이차부등식 $x^2+2x-15>0$ 의 해가 $x<\alpha$ 또는 $x>\beta$ 일 때, $\alpha - \beta$ 의 값은?

- (1) 8
- $\bigcirc 2 2$
- (3) 2

- **(4)** 8
- (5) 16

1004 @

이차부등식 $x^2 - x - 20 \le 0$ 의 해는?

- (1) $-5 \le x \le 4$
- (2) $-4 \le x \le 5$
- (3) $4 \le x \le 5$
- ④ x≤-5 또는 x≥4
- ⑤ *x*≤−4 또는 *x*≥5

1005 🕹 (서술형/)

이차부등식 (3x+4)(x-3)<16을 만족시키는 정수 x의 개수를 구하시오.

1006 @

다음 이차부등식 중 해가 존재하지 않는 것은?

- (1) $x^2 10x + 25 \le 0$
- (2) $x^2 2x + 3 \le 0$
- $3 -4x^2+4x-\frac{7}{4}<0$
- $9x^2 \le 6x 1$
- (5) $2(x^2+5)>x^2-8x-6$

1007 🚭

이차함수 y=f(x)의 그래프가 오른 쪽 그림과 같다. 부등식 $f(x)+8 \ge 0$ 의 해가 $\alpha \le x \le \beta$ 일 때, $\alpha^2 + \beta^2$ 의 값을 구하시오.

집중 공략 @

유형 🕕 해가 주어진 이차부등식

개념 08-3

- ① 해가 $\alpha < x < \beta$ 이고 x^2 의 계수가 1인 이차부등식은 $(x-\alpha)(x-\beta)<0$
- ② 해가 $x < \alpha$ 또는 $x > \beta (\alpha < \beta)$ 이고 x^2 의 계수가 1인 이차부등식은 $(x-\alpha)(x-\beta)>0$

1008 대표문제

이차부등식 $2x^2 + ax + b \le 0$ 의 해가 $-4 \le x \le 2$ 일 때, 실 수 a, b에 대하여 a-b의 값은?

- (1) 18
- **(2)** 19
- (3) 20

- **4**) 21
- **(5)** 22

1009 @

이차부등식 $x^2 + ax + 3 > 0$ 의 해가 x < 1 또는 x > b일 때, 실수 a, b에 대하여 ab의 값은? (단, b>1)

- $\widehat{(1)}$ -12
- $\bigcirc 2 -10$
- (3) -8

- (4) -6
- (5) -4

1010 @

이차부등식 $ax^2+bx+2<0$ 의 해가 $\frac{1}{3}< x<1$ 일 때, 부 등식 bx+a>0의 해를 구하시오. (단, a, b는 실수이다.)

1011 📵 (서술형/)

이차함수 f(x)에 대하여 f(1)=6이고 부등식 $f(x)\leq 0$ 의 해가 $-2 \le x \le 0$ 일 때, f(3)의 값을 구하시오.

1012 69

이차부등식 $ax^2+bx+c<0$ 의 해가 x<-3 또는 x>5일 때, 이차부등식 $cx^2+bx+a>0$ 의 해는?

(단, a, b, c는 실수이다.)

- ① $x < -\frac{1}{5}$ ② $-\frac{1}{5} < x < \frac{1}{3}$
- (3) $-\frac{1}{3} < x < \frac{1}{5}$ (4) $x < -\frac{1}{5}$ $\pm \frac{1}{5}$ $x > \frac{1}{3}$
- ⑤ $x < -\frac{1}{3}$ 또는 $x > \frac{1}{5}$

개념 08-3

이치식 $f(x)=p(x-\alpha)(x-\beta)$ 에 대하여 $f(ax+b)=p(ax+b-\alpha)(ax+b-\beta)$ 임을 이용한다.

1013 대표문제

x에 대한 이차부등식 f(x)<0의 해가 -1< x<4일 때, 부등식 f(2x)<0의 해를 구하시오.

1014 69

x에 대한 이차부등식 $f(x) \le 0$ 의 해가 $2 \le x \le 5$ 일 때, 부등식 $f(3x-1) \ge 0$ 의 해는 $x \le \alpha$ 또는 $x \ge \beta$ 이다. 이 때 $\alpha\beta$ 의 값은?

- ① 1
- ② $\frac{4}{3}$
- $3\frac{5}{3}$

- 4 2
- ⑤ $\frac{7}{3}$

1015 @

x에 대한 이차부등식 f(x)<0의 해가 x<-2 또는 x>6일 때, 부등식 f(-x)>0을 만족시키는 정수 x의 개수를 구하시오.

1016 🕑 서술형

이차함수 y=f(x)의 그래프가 오른쪽 그림과 같을 때, 부등식 $f\left(\frac{x+1}{2}\right) < 0$ 의 해는 $\alpha < x < \beta$ 이다. 이때 $\alpha + \beta$ 의 값을 구하시오.

1017 @

이차부등식 $ax^2+bx+c\geq 0$ 의 해가 $x\leq 3$ 또는 $x\geq 4$ 일 때, 부등식 $a(x-5)^2+b(x-5)+c< 0$ 의 해를 구하시 오. (단, a,b,c는 실수이다.)

ణ 🕕 절댓값 기호를 포함한 이차부등식

개념 08-2

절댓값 기호를 포함한 이차부등식은 절댓값 기호 안의 식의 값이 0이되는 x의 값을 기준으로 하여 x의 값의 범위를 나누어 푼다. 이때 |f(x)| < c, |f(x)| > c (c > 0) 꼴의 부등식은 다음을 이용한다. ① |f(x)| < c ② -c < f(x) < c ② |f(x)| > c ③ f(x) < -c 또는 f(x) > c

1018 대표문제

부등식 $x^2-|x|-2<0$ 의 해가 $\alpha< x<\beta$ 일 때, $\frac{\beta}{\alpha}$ 의 값은?

- \bigcirc 1 -2
- 2 -1
- $3 \frac{1}{2}$

- $\frac{1}{2}$
- ⑤ 2

1019 69

부등식 $x^2-5x\leq |x-5|$ 를 만족시키는 정수 x의 개수를 구하시오.

1020 💷 서술형

부등식 $|x^2-1|>3의 해를 구하시오.$

유형 🕕 이차부등식의 해가 한 개일 조건

개념 08-2

이차방정식 $ax^2+bx+c=0$ 의 판별식을 D라 할 때

① $ax^2+bx+c \ge 0$ 의 해가 한 개이다. ② a<0, D=0

② $ax^2+bx+c \le 0$ 의 해가 한 개이다. ② a>0, D=0

1021 대표문제

이차부등식 $x^2-4x+a \le 0$ 의 해가 오직 한 개 존재할 때, 실수 a의 값은?

- (1) 1
- **②** 2
- ③ 3

- **4** 4
- (5) 5

1022 🕑 서술형

이차부등식 $-x^2 + kx - 5 \ge 0$ 의 해가 오직 한 개 존재하 도록 하는 모든 실수 k의 값의 곱을 구하시오.

1023 🚭

이차부등식 $(a+1)x^2+2(a+1)x+2\leq 0$ 의 해가 오직 한 개 존재할 때, 실수 a의 값을 구하시오.

유형 07 이차부등식이 해를 가질 조건

개념 08-2, 4

이차방정식 $ax^2+bx+c=0$ 의 판별식을 D라 할 때.

- ① 이치부등식 $ax^2+bx+c>0$ 이 해를 갖는다.
 - $\bigcirc a > 0 \ \Xi = a < 0, D > 0$
- ② 이치부등식 $ax^2 + bx + c < 0$ 이 해를 갖는다.
 - a<0 또는 a>0, D>0

1024 (理문제)

이차부등식 $x^2 - x + a < 0$ 이 해를 갖도록 하는 실수 a의 값의 범위를 구하시오.

1025 69

이차부등식 $-2x^2+4x-a>0$ 이 해를 갖도록 하는 정수 a의 최댓값은?

- (1) -2
- $\bigcirc 2 -1$
- ③ 0

- **(4)** 1
- **(5)** 2

1026 B

이차부등식 $ax^2+4x+a>0$ 이 해를 갖도록 하는 실수 a의 값의 범위는?

- (1) a < -2 또는 a > 0 (2) -2 < a < 0 또는 a > 0
- $\bigcirc 3) -2 \le a < 0$
- ④ a<0 또는 0<a<2
- (5) $0 < a \le 2$

집중공략 (6) 개념 08-4

유형 🕕 이차부등식이 항상 성립할 조건

이치방정식 $ax^2+bx+c=0$ 의 판별식을 D라 할 때, 모든 실수 x에

① $ax^2+bx+c>0$ 이 성립한다. ② a>0, D<0

② $ax^2 + bx + c \ge 00$ | 성립한다. ○ a > 0, $D \le 0$

③ $ax^2+bx+c<0$ 이 성립한다. ② a<0, D<0

④ $ax^2+bx+c \le 0$ 이 성립한다. ○ a<0, $D\le 0$

1027 四里是제

이차부등식 $kx^2 + 4kx + 8 > 0$ 이 모든 실수 x에 대하여 성립하도록 하는 실수 k의 값의 범위가 $\alpha < k < \beta$ 일 때, $\alpha + \beta$ 의 값은?

- ① 1
- **2** 2
- ③ 3

- **4** 4
- (5) 5

1028 🚭

이차부등식 $x^2+(a+3)x+2a+3\ge 0$ 의 해가 모든 실수 가 되도록 하는 실수 a의 값의 범위를 구하시오.

1029 6

실수 x의 값에 관계없이 이차부등식 $(k-1)x^2+2(k-1)x-1\leq 0$

이 항상 성립하도록 하는 정수 k의 개수는?

- (1) 1
- (2) 2
- (3) 3

- **4** 4
- (5) 5

유형 🕦 이차부등식이 해를 갖지 않을 조건

개념 08-4

- 이처방정식 $ax^2+bx+c=0$ 의 판별식을 D라 할 때.
- ① 이차부등식 $ax^2+bx+c>0$ 이 해를 갖지 않는다.
 - \bigcirc 모든 실수 x에 대하여 이차부등식 $ax^2 + bx + c \le 0$ 이 성립한다.
 - $\bigcirc a < 0, D \le 0$
- ② 이차부등식 $ax^2 + bx + c < 0$ 이 해를 갖지 않는다.
 - 고 모든 실수 x에 대하여 이차부등식 $ax^2 + bx + c \ge 0$ 이 성립한다.
 - $\bigcirc a > 0$, $D \leq 0$

1030 대표문제

이차부등식 $x^2 - (k-8)x + k < 0$ 이 해를 갖지 않도록 하 는 실수 k의 최댓값과 최솟값의 합을 구하시오.

1031 🚭

이차함수 $f(x)=x^2-2ax+7a$ 에 대하여 이차부등식 $f(x) \le 0$ 을 만족시키는 해가 없도록 하는 정수 a의 개수 는?

- (1) 5
- 2) 6
- (3) 7

(3) 0

- **(4)** 8
- (5) 9

1032 🜚

이차부등식 $-x^2+4(a+2)x+a+2>0$ 의 해가 존재하 지 않도록 하는 정수 a의 값은?

- (1) -2
- (2) -1
- **4**) 1
- (5) 2

1033 🗗 서술형

이차부등식 $(k-4)x^2-2(k-4)x-1>0$ 의 해가 존재하 지 않도록 하는 실수 k의 값의 범위를 구하시오.

제한된 범위에서 항상 성립하는 이차부등식

개념 08-2

- ① $\alpha \le x \le \beta$ 에서 이치부등식 f(x) > 0이 항상 성립한다.
 - $\bigcirc \alpha \le x \le \beta$ 에서 (f(x))의 최솟값)>0이다.
- ② $\alpha \le x \le \beta$ 에서 이치부등식 f(x) < 0이 항상 성립한다.
 - $\bigcirc \alpha \le x \le \beta$ 에서 (f(x))의 최댓값)<0이다.

1034 대표문제

 $-1 \le x \le 3$ 에서 이차부등식 $x^2 - 4x + 2a^2 - a + 1 > 0$ 이 항상 성립할 때. 실수 a의 값의 범위를 구하시오.

1035 @

 $-4 \le x \le -2$ 에서 이차부등식 $x^2 + 3x - 1 \ge x - 4a^2$ 이 항상 성립하도록 하는 자연수 a의 최솟값은?

- \bigcirc 1
- **②** 2
- (3) 3

- **4 4**
- (5) 5

1036 @

 $0 \le x \le 2$ 에서 이차부등식 $2x^2 - 4x + a^2 - 3a + 2 < 0$ 이 항상 성립할 때, 실수 a의 값의 범위를 구하시오.

1037 🚭

이차부등식 $2x^2+5x-3\leq 0$ 을 만족시키는 모든 실수 x에 대하여 이차부등식 $-x^2+x \le 5x-a$ 가 성립할 때, 실수 a의 최댓값을 구하시오.

두 그래프의 위치 관계와 이차부등식 개념 08-1, 2, 3 : 만나는 경우

- ① 이 하함수 $y=ax^2+bx+c$ 의 그래프가 직선 y=mx+n보다 위쪽 에 있는 부분의 x의 값의 범위
 - 이 이 지부등식 $ax^2+bx+c>mx+n$ 의 해
- ② 이차함수 $y=ax^2+bx+c$ 의 그래프가 직선 y=mx+n보다 이래 쪽에 있는 부분의 x의 값의 범위
 - \bigcirc 이차부등식 $ax^2+bx+c < mx+n$ 의 해

1038 대표문제

이차함수 $y=x^2-x+5$ 의 그래프가 직선 y=2x+15보 다 위쪽에 있는 부분의 x의 값의 범위를 구하시오.

1039 @

이차함수 $y=3x^2+2x-8$ 의 그래프가 직선 y=-x+10보다 아래쪽에 있는 부분의 x의 값이 아닌 것은?

- (1) -3
- (2) -2
- (3) -1

- (4) 0
- (5) 1

1040 @

이차함수 $y = -x^2 + ax - b$ 의 그래프가 직선 y = -x + 5보다 위쪽에 있는 부분의 x의 값의 범위가 5 < x < 6일 때, 상수 a, b에 대하여 b-a의 값은?

- 1) 5
- **②** 10
- ③ 15

- **(4)** 20
- (5) 25

1041 📵 (서술형 🖉

이차함수 $y=2x^2-3x-3$ 의 그래프가 이차함수 $y=x^2+mx+n$ 의 그래프보다 아래쪽에 있는 부분의 x의 값의 범위가 -1 < x < 2일 때, 상수 m, n에 대하여 m+n의 값을 구하시오.

두 그래프의 위치 관계와 이차부등식 ; 만나지 않는 경우

개념 08-1, 4

이차함수 $y = ax^2 + bx + c$ 의 그래프가 직선 y = mx + n과 만나지 않

 \bigcirc 이처방정식 $ax^2+(b-m)x+c-n=0$ 의 판별식을 D라 할 때,

1042 대표문제

이차함수 $y = -2x^2 - 4x + 1$ 의 그래프가 직선 y = ax + 3보다 항상 아래쪽에 있도록 하는 실수 a의 값의 범위를 구하시오.

1043 @

이차함수 $y=x^2-3x+1$ 의 그래프가 직선 y=kx-3보 다 항상 위쪽에 있도록 하는 정수 k의 최댓값을 M, 최솟 값을 m이라 할 때, Mm의 값은?

- $\bigcirc 1 -7$
- (2) -6
- (3) 0

- (4) 6
- (5) 7

1044 📵 (서술형/)

이차함수 $y=x^2-kx$ 의 그래프가 직선 y=-3과 만나지 않도록 하는 정수 k의 개수를 구하시오.

유형 13 이차부등식의 활용

개념 08-2

- 이차부등식의 활용 문제는 다음과 같은 순서로 푼다.
- (i) 주어진 조건을 이용하여 부등식을 세운다.
- (ii) 부등식을 풀어 문제의 답을 구한다. 이때 미지수의 값의 범위에 주

1045 (理學)

어느 구두의 가격이 10만 원이면 하루에 30켤레가 판매 되고, 가격을 x만 원 인상하면 하루 판매량은 2x켤레 줄 어든다고 한다. 가격을 인상하여 하루 판매액이 308만 원 이상이 되도록 할 때, x의 최댓값을 구하시오.

1046 @

어떤 야구 선수가 방망이로 친 야구공의 t초 후의 지면으 로부터의 높이를 h m라 할 때.

 $h = -5t^2 + 8t + 0.8$

의 관계가 성립한다고 한다. 이 야구공의 높이가 3,2 m 이상인 시간은 몇 초 동안인가?

- ① $\frac{2}{5}$ ② $\frac{4}{5}$ ③ $\frac{6}{5}$ 巻

- $\frac{8}{5}$ $\frac{3}{5}$
- ⑤ 2초

1047 📴 (서술형)

오른쪽 그림과 같이 가로. 세로 의 길이가 각각 40 m, 30 m인 직사각형 모양의 땅에 폭이 일정 한 도로를 만들었다. 도로를 제 외한 땅의 넓이가 600 m² 이상

이 되도록 할 때, 도로의 최대 폭은 몇 m인지 구하시오. (단, 도로는 직사각형의 가로 또는 세로와 평행하다.)

유형 14 연립이차부등식의 풀이

연립이치부등식은 다음과 같은 순서로 푼다.

- (i) 연립부등식을 이루고 있는 각 부등식의 해를 구한다.
- (ii)(i)에서 구한 해를 수직선 위에 나타내어 공통부분을 구한다.

1048 대표문제

연립부등식 $\left\{egin{array}{l} x^2+3x-10>0 \\ x^2-x-12\leq 0 \end{array}
ight.$ 의 해가 $a\!<\!x\!\leq\!b$ 일 때, ab의 값은?

- ① 2 ② 4
- (3) 6

- **(4)** 8
- (5) 10

1049 🔞 서술형 🥢

연립부등식 $\left\{ egin{array}{ll} 2x+6<0 \ x^2+6x-7<0 \end{array}
ight.$ 만족시키는 모든 정수 x의 값의 합을 구하시오.

1050 @

연립부등식 $\begin{cases} |x-2| < 6 \\ x^2 - 10x + 9 > 0 \end{cases}$ 을 만족시키는 정수 x의 개 수는?

- \bigcirc 2
- **②** 3
- (3) 4

- **4** 5
- **(5)** 6

1051 @

부등식 $x^2 + 5x - 3 \le 3x^2 \le -x + 2$ 를 만족시키는 실수 x의 최댓값을 구하시오.

1052 @

연립부등식 $\begin{cases} x^2 + x - 2 \ge 0 \\ x^2 + 4 < 9x - x^2 \end{cases}$ 의 해가 이차부등식

 $ax^2+10x+b\geq 0$ 의 해와 같을 때, 실수 a, b에 대하여 a-b의 값은?

- $\bigcirc 1) -10$ $\bigcirc 2) -6$

- **(4)** 6
- (5) 10

집중 공략 ②

유형 15 해가 주어진 연립이차부등식

연립부동식의 해가 주어지면 각 부동식의 해의 공통부분이 주어진 해 와 일치하도록 수직선 위에 나타내어 미정계수를 결정한다.

1053 대표문제

연립부등식 $\left\{ egin{array}{ll} x^2-4x>0 \\ (x-a)(x-5)<0 \end{array}
ight.$ 의 해가 4< x< 5일 때, 실수 a의 값의 범위를 구하시오.

1054 @

연립부등식 $\left\{egin{array}{l} x^2+ax+b\geq 0 \\ x^2+cx+d\leq 0 \end{array}
ight.$ 의 해가 $1\leq x\leq 4$ 또는 x=6

- 일 때, 실수 a, b, c, d에 대하여 a+b+c+d의 값은?
- ① 11
- ② 12
- (3) 13

- **4**) 14
- **(5)** 15

1055 🐵

연립부등식 $\left\{ egin{array}{ll} x^2 + 9x + 14 \leq 0 \\ x^2 + (a+2)x + 2a < 0 \end{array}
ight.$ 의 해가 없도록 하는 실수 a의 값의 범위는?

- (1) $a \ge -2$ (2) a > -2 (3) $a \le 2$

- (4) a > 2 (5) $a \ge 2$

1056 🗗 서술형

연립부등식 $\left\{ egin{array}{ll} x^2 + 2x - 15 > 0 \\ |x-a| \leq 1 \end{array}
ight.$ 의 해가 존재하도록 하는 자연수 a의 최솟값을 구하시오.

정수인 해의 개수가 주어진 유형 16 연립이차부등식

개념 08-5

연립부등식의 정수인 해가 n개이면 각 부등식의 해의 공통부분에 n개 의 정수가 포함되도록 수직선 위에 나타내어 미정계수를 결정한다.

1057 (대표문제)

연립부등식 $\left\{ egin{array}{ll} x^2-4x-12\leq 0 \ (x-8)(x-a)\leq 0 \end{array}
ight.$ 만족시키는 정수 x의 개수가 3일 때, 실수 a의 값의 범위를 구하시오.

1058 @

연립부등식 $\begin{cases} |x-3| < k \\ x^2 - 2x - 3 \le 0 \end{cases}$ 을 만족시키는 정수 x의 개 수가 5일 때, 자연수 k의 최솟값을 구하시오.

1059 @

연립부등식 $\begin{cases} x^2 - 5x + 6 > 0 \\ x^2 - (a+4)x + 4a < 0 \end{cases}$ 을 만족시키는 정수 x의 값이 1뿐일 때, 실수 a의 값의 범위는?

- ① $0 < a \le 1$ ② $0 \le a < 1$ ③ 1 < a < 2
- (4) 5 < a < 6 (5) $5 \le a < 6$

유형 17》 연립이차부등식의 활용

개념 08-5

연립이차부등식의 활용 문제는 다음과 같은 순서로 푼다.

- (i) 문제의 의미를 파악하여 구하는 것을 미지수 x로 놓는다.
- (ii) 주어진 조건을 이용하여 연립부등식을 세운다.
- (iii) 연립부등식을 풀어 문제의 답을 구한다.

1060 四里

세 변의 길이가 각각 x-1, x, x+1인 삼각형이 둔각삼 각형이 되도록 하는 정수 x의 값은?

- \bigcirc 3
- **(2)** 4
- 3 5

- **4**) 6
- **(5)** 7

1061 🚭

오른쪽 그림과 같이 가로, 세로의 길이가 각각 20 cm, 15 cm인 직사 각형 모양의 액자의 둘레에 너비가 $x \operatorname{cm}$ 인 테두리 장식을 붙이려고 한

다. 테두리 장식의 넓이가 114 cm² 이상 200 cm² 이하 가 되도록 할 때, x의 값의 범위를 구하시오.

1062 📴 (서술형 🕡

한 모서리의 길이가 a인 정육면체의 밑면의 가로의 길이 를 5만큼 늘이고, 높이를 3만큼 줄여서 직육면체를 만들 려고 한다. 이 직육면체의 부피가 처음 정육면체의 부피 보다 작아지도록 하는 자연수 a의 개수를 구하시오.

1063 @

오른쪽 그림과 같이 AB=BC=9인 직각이등변삼각형 ABC가 있다. 빗변 AC 위의 점 P에서 변 AB와 변 BC에 내린 수선의 발을 각각 Q. R라 할 때, 직사각형 PQBR의 넓

이는 두 삼각형 AQP와 PRC의 각각의 넓이보다 크 다. $\overline{BR} = a$ 일 때, 모든 자연수 a의 값의 곱은?

- (1) 12
- **(2)** 18
- (3) 20

- **(4)** 30
- **(5)** 60

유형 18》 이차방정식의 근의 판별과 이차부등식 개념 08-2, 5

이처방정식 $ax^2+bx+c=0$ 의 판별식을 D라 할 때

- ① 서로 다른 두 실근 ② *D*>0
- ② 중근
- $\bigcirc D=0$
- ③ 서로 다른 두 허근 **○** *D*<0

1064 대표문제

다음 중 이차방정식 $x^2 + 2kx + 3k = 0$ 이 서로 다른 두 실 근을 갖도록 하는 실수 k의 값이 아닌 것은?

- $\widehat{(1)}$ -4
- (2) -2
- (3) 2

- **4** 4
- **(5)** 6

1065 @

x에 대한 이차방정식 $x^2-4kx+k^2+1=0$ 이 허근을 갖 도록 하는 실수 k의 값의 범위가 $\alpha < k < \beta$ 일 때, $\alpha \beta$ 의 값을 구하시오.

1066 🐵

이차방정식 $x^2 - 2kx + 9 = 0$ 은 허근을 갖고, 이차방정식 $x^{2}+2kx+k+2=0$ 은 실근을 갖도록 하는 정수 k의 개 수는?

(3) 3

- \bigcirc 1
- **②** 2
- **4** 4
- **(5)** 5

1067 @

x에 대한 이차방정식 $x^2+2(1-k)x-k^2-ak-1=0$ 이 실수 k의 값에 관계없이 항상 실근을 가질 때, 실수 a의 값의 범위를 구하시오.

개념 08-6

이처방정식 $ax^2+bx+c=0$ 의 판별식을 D라 할 때

- ① 두 근이 모두 양수이다. $D \ge 0, -\frac{b}{a} > 0, \frac{c}{a} > 0$
- ② 두 근이 모두 음수이다.
- $\bigcirc D \ge 0, -\frac{b}{a} < 0, \frac{c}{a} > 0$
- ③ 두 근이 서로 다른 부호이다. $\bigcirc \frac{c}{a} < 0$

1068 대표문제

이차방정식 $x^2 - 2\sqrt{2}kx + k + 1 = 0$ 의 두 근이 모두 양수 일 때, 실수 k의 값의 범위를 구하시오.

1069 69

이차방정식 $x^2-2(k+1)x+5-k=0$ 의 두 근이 모두 음수가 되도록 하는 실수 k의 최댓값은?

- (1) -6
- (2) -4
- (3) -2

- (4) 0
- **(5)** 2

1070 🗗 서술형

x에 대한 이차방정식 $x^2-(k-1)(k-2)x-k+2=0$ 의 두 근의 부호가 서로 다르고 음의 근의 절댓값이 양의 근 보다 작도록 하는 실수 k의 값의 범위를 구하시오.

- 이처방정식 $ax^2+bx+c=0$ (a>0)의 판별식을 D라 하고, $f(x)=ax^2+bx+c$ 라 할 때
- ① 두 근이 모두 p보다 크다. ② $D \ge 0$, f(p) > 0, $-\frac{b}{2a} > p$
- ② 두 근이 모두 p보다 작다. \bigcirc $D \ge 0$, f(p) > 0, $-\frac{b}{2a} < p$
- ③ 두 근 사이에 p가 있다. $\bigcirc f(p) < 0$

1071 대표문제

이차방정식 $x^2 + ax + 9 = 0$ 의 두 근이 모두 1보다 크도 록 하는 정수 a의 개수는?

- (1) 1
- ② 2
- 3 3

- **4** 4
- (5) 5

1072 🚭

x에 대한 이차방정식 $x^2+(k-1)x+k^2-10=0$ 의 두 근 사이에 3이 있도록 하는 실수 k의 값의 범위가 $\alpha < k < \beta$ 일 때, $\alpha + \beta$ 의 값은?

- (1) -5
- (2) -3
- (3) -1
- **(4)** 1 **(5)** 3

1073 🕑 서술형

이차방정식 $x^2-2kx+k+20=0$ 의 두 근이 모두 5보다 작도록 하는 실수 k의 값의 범위를 구하시오.

0998 $f(x)=x^2+6x-2k-1$ 이라 하면 이차방정식 f(x)=0의 두 근이 모두 -1보다 작으므로 이차함수 y=f(x)의 그래 프는 오른쪽 그림과 같아야 한다.

(i) 이차방정식 f(x)=0의 판별식을 D라 하면

$$\frac{D}{4} = 3^2 - 1 \cdot (-2k - 1) \ge 0$$

 $10+2k\geq 0$ $\therefore k\geq -5$

(ii) f(-1)=1-6-2k-1>0 에서 -2k>6 ∴ k<-3

(iii) 이차함수 y=f(x)의 그래프의 축의 방정식은 x=-3이고 -3<-1이다.

이상에서 공통부분을 구하면

 $-5 \le k < -3$

 $= -5 \le k < -3$

0999 $f(x)=x^2+(3-k)x+k-8$ 이라 하면 이차방정식 f(x)=0의 두 근 사이에 2가 있으므로 이차함수 y=f(x)의 그래프는 오른쪽 그림과 같아야 한다.

따라서 f(2) < 0이어야 하므로

$$4+2(3-k)+k-8<0$$
, $-k+2<0$

 $\therefore k > 2$

1000 부등식f(x) > g(x)의 해는 y = f(x)의 그래프가 y = g(x)의 그래프보다 위쪽에 있는 부분의 x의 값의 범위이므로

(3)

1001 $px^2 + (q-m)x + r - n \le 0$ 에서

 $px^2+qx+r-(mx+n)\leq 0$

 $\therefore px^2 + qx + r \le mx + n$

부등식 $px^2+qx+r \le mx+n$ 의 해는 이차함수 $y=px^2+qx+r$ 의 그래프가 직선 y=mx+n보다 아래쪽에 있거나 만나는 부분의 x의 값의 범위이므로

 $b \le x \le d$

 $\exists b \leq x \leq d$

1002 f(x)g(x) > 0에서

f(x)>0, g(x)>0 또는 f(x)<0, g(x)<0

... 0

(i) f(x) > 0, g(x) > 0을 만족시키는 x의 값의 범위는

f(x) > 0일 때, x < -1 또는 x > 2

····· (7)

g(x) > 0일 때, -3 < x < 1

····· (L)

①, ①의 공통부분을 구하면

-3 < x < -1

... 0

(ii) f(x)<0, g(x)<0을 만족시키는 x의 값의 범위는

f(x) < 0일 때, -1 < x < 2

····· (F)

g(x)<0일 때, x<-3 또는 x>1

..... (2)

ⓒ, ②의 공통부분을 구하면

 $1 \le x \le 2$

(i), (ii)에서 주어진 부등식의 해는

-3<x<-1 또는1<x<2

... a

채점 기준	비율
f(x)g(x)>0이면 $f(x)>0$, $g(x)>0$ 또는 $f(x)<0$, $g(x)<0$ 임을 알 수 있다.	10 %
② $f(x)>0$, $g(x)>0$ 일 때 x 의 값의 범위를 구할 수 있다.	40 %
③ $f(x)$ < 0 , $g(x)$ < 0 일 때 x 의 값의 범위를 구할 수 있다.	40 %
④ $f(x)g(x) > 0$ 의 해를 구할 수 있다.	10 %

1003 $x^2+2x-15>0$ 에서 (x+5)(x-3)>0

 $\therefore x < -5 \pm x > 3$

따라서 $\alpha = -5$. $\beta = 3$ 이므로

$$\alpha - \beta = -8$$

月(1)

다른물이 a, β 가 이차방정식 $x^2 + 2x - 15 = 0$ 의 두 근이므로 이 차방정식의 근과 계수의 관계에 의하여

$$\alpha+\beta=-2$$
, $\alpha\beta=-15$

$$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta = (-2)^2 - 4\cdot(-15) = 64$$

$$\therefore \alpha - \beta = \pm 8$$

이때 $\alpha < \beta$ 에서 $\alpha - \beta < 0$ 이므로

$$\alpha - \beta = -8$$

1004
$$x^2 - x - 20 \le 0$$
 에서 $(x+4)(x-5) \le 0$
∴ $-4 \le x \le 5$

1005 (3x+4)(x-3)<16에서

 $3x^2 - 5x - 12 < 16$, $3x^2 - 5x - 28 < 0$

$$(3x+7)(x-4)<0$$

$$\therefore -\frac{7}{3} < x < 4$$

--· O

따라서 정수 x는 -2, -1, 0, 1, 2, 3의 6개이다.

···· @

채점 기준	비율
₫ 이차부등식의 해를 구할 수 있다.	70 %
정수 x의 개수를 구할 수 있다.	30 %

1006 ① $x^2-10x+25=(x-5)^2\ge 0$ 따라서 $x^2-10x+25\le 0$ 의 해는 x=5이다.

② $x^2-2x+3=(x-1)^2+2\geq 2$ 따라서 $x^2-2x+3\leq 0$ 의 해는 없다.

그런데 $4x^2-4x+\frac{7}{4}=(2x-1)^2+\frac{3}{4}\geq \frac{3}{4}$ 이므로 주어진 부 등식의 해는 모든 실수이다.

④ $9x^2 \le 6x - 1$ 에서 $9x^2 - 6x + 1 \le 0$ 그런데 $9x^2 - 6x + 1 = (3x - 1)^2 \ge 0$ 이므로 주어진 부등식의 해 는 $x = \frac{1}{2}$ 이다.

⑤ 2(x²+5)>x²-8x-6에서 x²+8x+16>0
 그런데 x²+8x+16=(x+4)²≥0이므로 주어진 부등식의 해는 x≠-4인 모든 실수이다.

(2)

1007 이차함수 y = f(x)의 그래프가 x축과 두 점 (-2, 0). (1, 0)에서 만나므로

$$f(x)=a(x+2)(x-1)(a<0)$$

로 놓을 수 있다.

이때 이 그래프가 점 (0, 4)를 지나므로

$$4 = -2a$$
 : $a = -2$

$$f(x) = -2(x+2)(x-1)$$

 $f(x)+8 \ge 0$ 에서 $-2(x+2)(x-1)+8 \ge 0$

$$(x+2)(x-1)-4\leq 0$$
, $x^2+x-6\leq 0$

$$(x+3)(x-2) \le 0$$
 $\therefore -3 \le x \le 2$

따라서 $\alpha = -3$, $\beta = 2$ 이므로

$$\alpha^2 + \beta^2 = 9 + 4 = 13$$

[]] 13

이차함수 y=f(x)의 그래프가 x축과 두 점 $(\alpha, 0), (\beta, 0)$ 에 서 만나면

$$f(x)=a(x-a)(x-\beta)$$

로 놓는다. 이때 이차함수의 그래프가 아래로 볼록하면 a>0. 위로 볼록하면 a < 0이다.

1008 해가 $-4 \le x \le 2$ 이고 x^2 의 계수가 2인 이차부등식은

$$2(x+4)(x-2) \le 0$$
 : $2x^2+4x-16 \le 0$

이 부등식이 2x²+ax+b≤0과 같으므로

$$a=4, b=-16$$

$$\therefore a-b=20$$

다른물이 이차방정식 $2x^2 + ax + b = 0$ 의 두 근이 -4, 2이므로 이차방정식의 근과 계수의 관계에 의하여

$$-\frac{a}{2} = -4 + 2$$
, $\frac{b}{2} = -4 \cdot 2$ $\therefore a = 4, b = -16$

$$\therefore a-b=20$$

1009 해가 x < 1 또는 x > b이고 x^2 의 계수가 1인 이차부등식은

$$(x-1)(x-b) > 0$$
 $\therefore x^2 - (b+1)x + b > 0$

이 부등식이 $x^2 + ax + 3 > 0$ 과 같으므로

$$a = -(b+1), 3=b$$
 $\therefore a = -4, b=3$

$$\therefore ab = -12$$

다른 품이 이차방정식 $x^2 + ax + 3 = 0$ 의 두 근이 1, b이므로 이차 방정식의 근과 계수의 관계에 의하여

$$-a=1+b, 3=1\cdot b$$
 : $a=-4, b=3$

$$a = -4 \ b = 3$$

$$\therefore ab = -12$$

1010 이차부등식 $ax^2 + bx + 2 < 0$ 의 해가 $\frac{1}{3} < x < 1$ 이므로

해가 $\frac{1}{2}$ <x<1이고 x^2 의 계수가 1인 이차부등식은

$$\left(x-\frac{1}{3}\right)(x-1)<0$$
 $\therefore x^2-\frac{4}{3}x+\frac{1}{3}<0$

양변에 a를 곱하면

$$ax^2 - \frac{4}{3}ax + \frac{1}{3}a < 0 \ (\because a > 0)$$

이 부등식이 $ax^2 + bx + 2 < 0$ 과 같으므로

$$-\frac{4}{3}a = b, \frac{1}{3}a = 2$$
 : $a = 6, b = -8$

이것을 bx+a>0에 대입하면

$$-8x+6>0$$
, $-8x>-6$

$$\therefore x < \frac{3}{4}$$

 $\blacksquare x < \frac{3}{4}$

1011 부등식 $f(x) \le 0$ 의 해가 $-2 \le x \le 0$ 이므로

$$f(x) = ax(x+2)(a>0)$$

로 놓을 수 있다.

.... a

이때 f(1)=6에서 $f(1)=a\cdot 1\cdot 3=6$

.... @

따라서 f(x)=2x(x+2)이므로

$$f(3) = 2 \cdot 3 \cdot 5 = 30$$

---, @ **30**

채점 기준	비율
0 f(x)를 이차식으로 나타낼 수 있다.	50 %
❷ a의 값을 구할 수 있다.	30 %
❸ f(3)의 값을 구할 수 있다.	20 %

1012 이차부등식 $ax^2+bx+c<0$ 의 해가 x<-3 또는 x>5이므로

해가 x < -3 또는 x > 5이고 x^2 의 계수가 1인 이차부등식은

$$(x+3)(x-5)>0$$
 $\therefore x^2-2x-15>0$

양변에 a를 곱하면

$$ax^2 - 2ax - 15a < 0 \ (\because a < 0)$$

이 부등식이 $ax^2+bx+c<0$ 과 같으므로

$$b = -2a$$
, $c = -15a$

이것을 $cx^2+bx+a>0$ 에 대입하면

$$-15ax^2-2ax+a>0$$

$$15x^2+2x-1>0 \ (\because -a>0)$$

$$(3x+1)(5x-1)>0$$

$$\therefore x < -\frac{1}{2} \stackrel{\leftarrow}{} \stackrel{\leftarrow}{} \stackrel{\leftarrow}{} x > \frac{1}{5}$$

(5)

1013 f(x) < 0의 해가 -1 < x < 4이므로

$$f(x)=a(x+1)(x-4) (a>0)$$

라 하면

$$f(2x) = a(2x+1)(2x-4)$$

$$=2a(2x+1)(x-2)$$

따라서 부등식 f(2x) < 0의 해는 2a(2x+1)(x-2) < 0에서 (2x+1)(x-2)<0 (: a>0)

$$\therefore -\frac{1}{2} < x < 2$$

 $= -\frac{1}{2} < x < 2$

1014 $f(x) \le 0$ 의 해가 $2 \le x \le 5$ 이므로

$$f(x)=a(x-2)(x-5) (a>0)$$

라 하면

$$f(3x-1) = a(3x-1-2)(3x-1-5)$$

= 9a(x-1)(x-2)

즉 부등식 $f(3x-1) \ge 0$ 의 해는 $9a(x-1)(x-2) \ge 0$ 에서 $(x-1)(x-2) \ge 0$ (x=0)

.: x≤1 또는 x≥2

따라서 $\alpha=1$, $\beta=2$ 이므로

 $\alpha\beta=2$

1015 f(x) < 0의 해가 x < -2 또는 x > 6이므로

$$f(x)=a(x+2)(x-6)$$
 (a<0)

이라 하면

$$f(-x) = a(-x+2)(-x-6)$$

= $a(x-2)(x+6)$

즉 부등식 f(-x)>0의 해는 a(x-2)(x+6)>0에서 (x+6)(x-2)<0 ($\because a<0$)

 $\therefore -6 < x < 2$

1016 이차함수 y=f(x)의 그래프가 x축과 두 점 (-1, 0), (4, 0)에서 만나므로

$$f(x)=a(x+1)(x-4)(a>0)$$

로 놓으면

$$\begin{split} f\Big(\frac{x+1}{2}\Big) &= a\Big(\frac{x+1}{2}+1\Big)\Big(\frac{x+1}{2}-4\Big) \\ &= \frac{a}{4}(x+1+2)(x+1-8) \\ &= \frac{a}{4}(x+3)(x-7) \end{split}$$

즉 부등식 $f\left(\frac{x+1}{2}\right)$ < 0의 해는 $\frac{a}{4}(x+3)(x-7)$ < 0에서

$$(x+3)(x-7)<0$$
 (:: $a>0$)

따라서 $\alpha = -3$, $\beta = 7$ 이므로

$$\alpha + \beta = 4$$
 $\cdots \otimes$

채점 기준	비율
$oldsymbol{0} f\left(rac{x+1}{2} ight)$ 을 이차식으로 나타낼 수 있다.	40 %
② 부등식 $f\left(\frac{x+1}{2}\right)$ < 0의 해를 구할 수 있다.	40 %
(8) $\alpha+\beta$ 의 값을 구할 수 있다.	20 %

다른풀에 $f\left(\frac{x+1}{2}\right)$ <0에서 $\frac{x+1}{2}$ =t로 놓으면 주어진 그래프

에서 f(t) < 0을 만족시키는 t의 값의 범위는 -1 < t < 4이므로

$$-1 < \frac{x+1}{2} < 4, \qquad -2 < x+1 < 8$$

 $\therefore -3 < x < 7$

따라서 $\alpha = -3$. $\beta = 7$ 이므로 $\alpha + \beta = 4$

1017 $f(x)=ax^2+bx+c$ 라 하면 $f(x)\ge 0$ 의 해가 $x\le 3$ 또는 $x\ge 4$ 이므로

$$f(x)=a(x-3)(x-4)(a>0)$$

부등식 $a(x-5)^2+b(x-5)+c<0$, 즉 f(x-5)<0의 해는 a(x-5-3)(x-5-4)<0에서 (x-8)(x-9)<0 ($\because a>0$)

 $\therefore 8 < x < 9$

다른풀이 $f(x)=ax^2+bx+c$ 라 하면 $f(x)\geq 0$ 의 해가 $x\leq 3$ 또는 $x\geq 4$

이므로 f(x) < 0의 해는 3 < x < 4이다.

따라서 $a(x-5)^2+b(x-5)+c<0$, 즉 f(x-5)<0의 해는

3 < x - 5 < 4 : 8 < x < 9

교육 32 $f(x) = ax^2 + bx + c$ 라 하면

$$f(x) = a(x-3)(x-4)(a>0)$$

= $ax^2 - 7ax + 12a$

따라서 b=-7a, c=12a이므로 이것을

 $a(x-5)^2+b(x-5)+c<0$ 에 대입하면

$$a(x-5)^2-7a(x-5)+12a<0$$

$$x^2-17x+72<0 \ (\because a>0)$$

$$(x-8)(x-9) < 0$$
 : $8 < x < 9$

1018 $x^2 - |x| - 2 < 0$ 에서

(i) x≥0일 때,

$$x^2-x-2<0$$
, $(x+1)(x-2)<0$

$$\therefore -1 < x < 2$$

그런데 $x \ge 0$ 이므로

$$0 \le x < 2$$

(ii) x<0일 때,

$$x^2+x-2<0$$
, $(x+2)(x-1)<0$

$$\therefore -2 < x < 1$$

그런데 x<0이므로

$$-2 < x < 0$$

(i), (ii)에서 주어진 부등식의 해는

$$-2 < x < 2$$

따라서 $\alpha=-2$, $\beta=2$ 이므로

$$\frac{\beta}{\alpha} = -1$$

F (2)

다른 물이 $x^2 = |x|^2$ 이므로 주어진 부등식은

$$|x|^2 - |x| - 2 < 0,$$
 $(|x|+1)(|x|-2) < 0$

 $\therefore -1 < |x| < 2$

그런데 $|x| \ge 0$ 이므로 $0 \le |x| < 2$

$$\therefore -2 < x < 2$$

따라서 $\alpha = -2$, $\beta = 2$ 이므로 $\frac{\beta}{\alpha} = -1$

1019 $x^2 - 5x \le |x - 5|$ 에서

(i) x≥5일 때,

$$x^2 - 5x \le x - 5$$
, $x^2 - 6x + 5 \le 0$

$$(x-1)(x-5) \le 0$$
 $\therefore 1 \le x \le 5$

그런데 *x*≥5이므로

$$x=5$$

(ii) x<5일 때,

$$x^2-5x \le -(x-5), \quad x^2-4x-5 \le 0$$

이자무능스

 $(x+1)(x-5) \le 0$ $\therefore -1 \le x \le 5$

그런데 x<5이므로

 $-1 \le x < 5$

(i), (ii)에서 주어진 부등식의 해는

 $-1 \le x \le 5$

따라서 정수 x는 -1, 0, 1, \cdots , 5의 7개이다.

1020 $|x^2-1|>3에서$

$$x^2-1 < -3 \pm x^2-1 > 3$$

... 0

B 7

(i) x²-1<-3에서

$$x^2 + 2 < 0$$

그런데 $x^2+2\geq 2$ 이므로 해는 없다.

(ii) x²-1>3에서

$$x^2-4>0$$
, $(x+2)(x-2)>0$

∴ x<-2 또는 x>2

(i), (ii)에서 주어진 부등식의 해는 x<−2 또는 x>2

.... 6

... 0

■ x<-2 또는 x>2

채점 기준	비율
주어진 부등식을 변형할 수 있다.	30 %
❷ 각 부등식의 해를 구할 수 있다.	50 %
⑤ 주어진 부등식의 해를 구할 수 있다.	20 %

1021 이차부등식 $x^2-4x+a \le 0$ 의 해가 오직 한 개 존재하므로 이차방정식 $x^2-4x+a=0$ 의 판별식을 D라 하면

$$\frac{D}{4} = (-2)^2 - 1 \cdot a = 0$$

$$4 - a = 0 \quad \therefore a = 4$$

1022 이차부등식 $-x^2+kx-5\ge 0$ 의 해가 오직 한 개 존재하므로 이차방정식 $-x^2+kx-5=0$ 의 판별식을 D라 하면

$$D=k^2-4\cdot(-1)\cdot(-5)=0$$

 $k^2 - 20 = 0$

$$\therefore k = -2\sqrt{5}$$
 또는 $k = 2\sqrt{5}$

... 0

따라서 모든 실수 k의 값의 곱은

$$-2\sqrt{5} \cdot 2\sqrt{5} = -20$$

■ -20

1023 주어진 이차부등식의 해가 오직 한 개 존재하므로

$$a+1>0$$
 $\therefore a>-1$

.....

이차방정식 $(a+1)x^2+2(a+1)x+2=0$ 의 판별식을 D라 하면

$$\frac{D}{A} = (a+1)^2 - (a+1) \cdot 2 = 0$$

 $a^2-1=0$ $\therefore a=-1 \pm a=1$

······ ①

①, ①에서 a=1

1

1024 이차부등식 $x^2 - x + a < 0$ 이 해를 가지려면 이차방정식 $x^2 - x + a = 0$ 이 서로 다른 두 실근을 가져야 하므로 이 이차방 정식의 판별식을 D라 하면

$$D = (-1)^2 - 4 \cdot 1 \cdot a > 0$$

$$1-4a>0$$
 $\therefore a<\frac{1}{4}$

 $\square a < \frac{1}{4}$

1025 이차부등식 $-2x^2+4x-a>0$ 이 해를 가지려면 이차방정 식 $-2x^2+4x-a=0$ 이 서로 다른 두 실근을 가져야 하므로 이 이차방정식의 판별식을 D라 하면

$$\frac{D}{A} = 2^2 - (-2) \cdot (-a) > 0$$

4-2a > 0 : a < 2

따라서 정수 a의 최댓값은 1이다.

(4)

1026 (i) a>0일 때,

이차함수 $y=ax^2+4x+a$ 의 그래프는 아래로 볼록하므로 주어진 이차부등식은 항상 해를 갖는다.

(ii) a < 0일 때,

주어진 이차부등식이 해를 가지려면 이차방정식 $ax^2 + 4x + a = 0$ 이 서로 다른 두 실근을 가져야 하므로 이 이 차방정식의 판별식을 D라 하면

$$\frac{D}{4} = 2^2 - a \cdot a > 0$$

$$4-a^2>0$$
, $(a+2)(a-2)<0$

$$\therefore -2 < a < 2$$

그런데 a < 0이므로

$$-2 < a < 0$$

(i), (ii)에서 a의 값의 범위는

(2)

a=0이면 주어진 부등식이 이차부등식이 아니므로 $a\neq0$ 이다.

1027 모든 실수 x에 대하여 $kx^2 + 4kx + 8 > 0$ 이 성립해야 하므로 k > 0 \bigcirc

이차방정식 $kx^2 + 4kx + 8 = 0$ 의 판별식을 D라 하면

$$\frac{D}{4} = (2k)^2 - k \cdot 8 < 0$$

 $4k^2-8k<0$, k(k-2)<0

..... (L)

(2)

③, ⓒ에서 k의 값의 범위는

0 < k < 2

따라서 $\alpha=0$, $\beta=2$ 이므로

$$\alpha + \beta = 2$$

1028 모든 실수 x에 대하여 $x^2 + (a+3)x + 2a + 3 \ge 0$ 이 성립

해야 하므로 이차방정식 $x^2 + (a+3)x + 2a + 3 = 0$ 의 판별식을 D라 하면

$$D = (a+3)^2 - 4 \cdot 1 \cdot (2a+3) \le 0$$

$$a^2-2a-3\leq 0$$
, $(a+1)(a-3)\leq 0$

 $\therefore -1 \le a \le 3$

 $\blacksquare -1 \le a \le 3$

1029 실수 x의 값에 관계없이 $(k-1)x^2+2(k-1)x-1 \le 0$ 이 항상 성립해야 하므로

$$k-1 < 0$$
 : $k < 1$

이차방정식 $(k-1)x^2+2(k-1)x-1=0$ 의 판별식을 D라 하면

$$\frac{D}{4} = (k-1)^2 - (k-1) \cdot (-1) \le 0$$

$$k^2 - k \le 0$$
, $k(k-1) \le 0$

$$0 \le k \le 1$$

.....

①, ⓒ에서 k의 값의 범위는

 $0 \le k < 1$

따라서 정수 k는 0의 1개이다.

(1)

1030 주어진 부등식이 해를 갖지 않으려면 모든 실수 x에 대하여 부등식

$$x^2 - (k-8)x + k \ge 0$$

- 이 성립해야 한다.
- 이차방정식 $x^2 (k-8)x + k = 0$ 의 판별식을 D라 하면

$$D = \{-(k-8)\}^2 - 4 \cdot 1 \cdot k \le 0$$

 $k^2-20k+64\leq 0$, $(k-4)(k-16)\leq 0$

 $\therefore 4 \le k \le 16$

따라서 k의 최댓값은 16, 최솟값은 4이므로 구하는 합은

② 이차부등식이 해를 갖지 않을 조건은 이차부등식이 항상 성립할 조건으로 바꾸어 생각한다.

1031 이차부등식 $x^2 - 2ax + 7a \le 0$ 을 만족시키는 해가 없으려면 모든 실수 x에 대하여 부등식

$$x^2 - 2ax + 7a > 0$$

- 이 성립해야 한다.
- 이차방정식 $x^2 2ax + 7a = 0$ 의 판별식을 D라 하면

$$\frac{D}{4} = (-a)^2 - 7a < 0$$

$$a^2 - 7a < 0$$
, $a(a-7) < 0$

0 < a < 7

따라서 정수 a는 1, 2, 3, ..., 6의 6개이다.

1032 주어진 부등식의 해가 존재하지 않으려면 모든 실수 x에 대하여 부등식

$$-x^2+4(a+2)x+a+2 \le 0$$

- 이 성립해야 한다.
- 이차방정식 $-x^2+4(a+2)x+a+2=0$ 의 판별식을 D라 하면

$$\frac{D}{4} = \{2(a+2)\}^2 - (-1) \cdot (a+2) \le 0$$

 $4a^2+17a+18\leq 0$, $(4a+9)(a+2)\leq 0$

$$\therefore -\frac{9}{4} \le a \le -2$$

따라서 정수 a의 값은 -2이다.

(1)

1033 주어진 이차부등식의 해가 존재하지 않으려면 모든 실수 x에 대하여 부등식

$$(k-4)x^2-2(k-4)x-1\leq 0$$

이 성립해야 하므로

$$k-4 < 0$$
 : $k < 4$

..... ⊙

이차방정식 $(k-4)x^2-2(k-4)x-1=0$ 의 판별식을 D라 하면

$$\frac{D}{4} = \{-(k-4)\}^2 - (k-4) \cdot (-1) \le 0$$

$$k^2 - 7k + 12 \le 0$$
, $(k-3)(k-4) \le 0$

 $\therefore 3 \le k \le 4$

····· (L) ···· (

 \bigcirc . \bigcirc 에서 k의 값의 범위는

$$3 \le k \le 4$$

.... €

 $\blacksquare 3 \le k < 4$

채점 기준	비율
① x^2 의 계수를 이용하여 k 의 값의 범위를 구할 수 있다.	40 %
◎ 이치방정식의 판별식을 이용하여 k의 값의 범위를 구할 수 있다.	40 %
❸ k의 값의 범위를 구할 수 있다.	20 %

1034 $f(x)=x^2-4x+2a^2-a+1$ 이라 하면

$$f(x)=(x-2)^2+2a^2-a-3$$

 $-1 \le x \le 3$ 에서 f(x) > 0이어야 하므로 y = f(x)의 그래프가 오른쪽 그림과 같아야 한다.

 $-1 \le x \le 3$ 에서 f(x)는 x=2일 때 최 소이므로 f(2) > 0에서

$$2a^2-a-3>0$$

(a+1)(2a-3)>0

$$\therefore a < -1$$
 또는 $a > \frac{3}{2}$

y = f(x) y = f(x) y = f(x) y = f(x)

립 a < -1 또는 $a > \frac{3}{2}$

1035 $x^2+3x-1 \ge x-4a^2$ 에서

$$x^2 + 2x + 4a^2 - 1 \ge 0$$

 $f(x) = x^2 + 2x + 4a^2 - 1$ 이라 하면

$$f(x)=(x+1)^2+4a^2-2$$

 $-4 \le x \le -2$ 에서 $f(x) \ge 0$ 이어야 하므로 y=f(x)의 그래프가 오른쪽 그림과 같아야 한다.

 $-4 \le x \le -2$ 에서 f(x)는 x = -2일 때 최소이므로 $f(-2) \ge 0$ 에서

$$4a^2-1 \ge 0$$

$$(2a+1)(2a-1) \ge 0$$

$$\therefore a \leq -\frac{1}{2} \times a \geq \frac{1}{2}$$

따라서 자연수 a의 최솟값은 1이다.

1036 $f(x) = 2x^2 - 4x + a^2 - 3a + 2$ 라 하면

 $f(x)=2(x-1)^2+a^2-3a$ $0\le x\le 2$ 에서 f(x)<0이어야 하므로 y=f(x)의 그래프가 오른쪽 그림과 같아야 한다.

(1)

 $0 \le x \le 2$ 에서 f(x)는 x=0 또는 x=2일 때 최대이므로 f(0) < 0에서

$$a^2-3a+2<0$$
, $(a-1)(a-2)<0$
 $\therefore 1 < a < 2$ $\exists 1 < a < 2$

1037 $2x^2+5x-3\leq 0$ 에서 $(x+3)(2x-1)\leq 0$

$$\therefore -3 \le x \le \frac{1}{2}$$

$$-x^2+x \le 5x-a$$

$$\therefore x^2 + 4x - a \ge 0$$

 $f(x) = x^2 + 4x - a$ 라 하면

$$f(x)=(x+2)^2-a-4$$

 $-3 \le x \le \frac{1}{2}$ 에서 $f(x) \ge 0$ 이어야 하므로 y = f(x)의 그래프가 오른쪽 그림과 같아 야 한다.

$$-a-4 \ge 0 \qquad \therefore a \le -4$$

따라서 실수 a의 최댓값은 -4이다.

= -4

1038 $y=x^2-x+5$ 의 그래프가 직선 y=2x+15보다 위쪽에 있으면

$$x^2-x+5>2x+15$$
, $x^2-3x-10>0$
($x+2$)($x-5$)>0
∴ $x<-2$ 또는 $x>5$

1039 $y=3x^2+2x-8$ 의 그래프가 직선 y=-x+10보다 아래 쪽에 있으면

$$3x^2+2x-8 < -x+10$$
, $3x^2+3x-18 < 0$
 $x^2+x-6 < 0$, $(x+3)(x-2) < 0$

$$\therefore -3 < x < 2$$

따라서 이 범위에 속하는 x의 값이 아닌 것은 ①이다.

1040 $y=-x^2+ax-b$ 의 그래프가 직선 y=-x+5보다 위쪽에 있으면

$$-x^2+ax-b>-x+5$$

$$\therefore x^2 - (a+1)x + b + 5 < 0$$

..... (T)

해가 5 < x < 6이고 x^2 의 계수가 1인 이차부등식은

$$(x-5)(x-6)<0$$

$$x^2 - 11x + 30 < 0$$

.....

이때 ①과 ①이 같아야 하므로

$$a+1=11, b+5=30$$

따라서 a=10, b=25이므로

$$b-a=15$$

1041 $y=2x^2-3x-3$ 의 그래프가 $y=x^2+mx+n$ 의 그래프보다 아래쪽에 있으면

$$2x^2 - 3x - 3 < x^2 + mx + n$$

$$\therefore x^2 - (3+m)x - (3+n) < 0$$

해가 -1 < x < 2이고 x^2 의 계수가 1인 이차부등식은

$$(x+1)(x-2) < 0$$

$$x^2 - x - 2 < 0$$

..... (1) (2)

이때 ①과 ⓒ이 같아야 하므로

$$3+m=1, 3+n=2$$

따라서 m=-2, n=-1이므로

$$m+n=-3$$

.... 6

 $\mathbb{B} - 3$

채점 기준	비율
주 그래프의 위치 관계를 이용하여 이차부등식을 세울 수 있다.	40 %
② 해가 $-1 < x < 20$ $ 고 x^2$ 의 계수가 1 인 이차부등식을 세울 수 있다.	40 %
	20 %

1042 $y=-2x^2-4x+1$ 의 그래프가 직선 y=ax+3보다 항상 아래쪽에 있으려면 모든 실수 x에 대하여 $-2x^2-4x+1 < ax+3$, 즉 $2x^2+(4+a)x+2>0$ 이 성립해야 한다.

이차방정식 $2x^2 + (4+a)x + 2 = 0$ 의 판별식을 D라 하면

$$D = (4+a)^2 - 4 \cdot 2 \cdot 2 < 0$$

$$a^2+8a<0$$
, $a(a+8)<0$

$$-8 < a < 0$$

= -8 < a < 0

라쎈 특강

'항상 아래쪽에 있도록'이라는 말에서 '부등식이 항상 성립하도록'이라는 말을 떠올릴 수 있어야 한다. 함수 y=f(x)의 그래프가 함수 y=g(x)의 그래프보다 항상 아래쪽에 있다는 것은 모든실수 x에 대하여 부등식 f(x) < g(x)가 성립함을 뜻한다. 따라서 부등식 f(x) - g(x) < 0이 항상 성립할 조건을 이용한다.

1043 $y=x^2-3x+1$ 의 그래프가 직선 y=kx-3보다 항상 위쪽에 있으려면 모든 실수 x에 대하여 $x^2-3x+1>kx-3$, 즉 $x^2-(3+k)x+4>0$ 이 성립해야 한다.

이차방정식 $x^2 - (3+k)x + 4 = 0$ 의 판별식을 D라 하면

$$D = \{-(3+k)\}^2 - 4 \cdot 1 \cdot 4 < 0$$

$$k^2+6k-7<0$$
, $(k+7)(k-1)<0$

$$\therefore -7 < k < 1$$

따라서 정수 k의 최댓값은 0, 최솟값은 -6이므로

$$M=0, m=-6$$

$$\therefore Mm=0$$

3

$$D = (-k)^2 - 4 \cdot 1 \cdot 3 < 0$$

$$k^2-12<0$$
, $(k+2\sqrt{3})(k-2\sqrt{3})<0$

$$\therefore -2\sqrt{3} < k < 2\sqrt{3} |_{\Gamma^3 < 2\sqrt{3} < 4}$$

.... 0

따라서 정수 k는 -3, -2, -1, \cdots , 3의 7개이다.

···→ ⓒ

채점 기준	
\bigcirc $y=x^2-kx$ 의 그래프와 직선 $y=-3$ 의 위치 관계를 알 수 있다.	30 %
② k의 값의 범위를 구할 수 있다.	50 %
❸ 정수 k의 개수를 구할 수 있다.	20 %

1045 가격을 x만 원 인상한다고 하면 구두의 가격은 (10+x)만 원이고 하루 판매량은 (30-2x)켤레이므로 하루 판매액이 308만 원 이상이 되려면 (30-2x)0이어야 하므로 (5x)15

 $(10+x)(30-2x) \ge 308$

 $-2x^2+10x+300\geq 308$

 $x^2-5x+4\leq 0$, $(x-1)(x-4)\leq 0$

 $\therefore 1 \le x \le 4$

따라서 x의 최댓값은 4이다.

P 4

1046 야구공의 높이가 3.2 m 이상이려면 -5t²+8t+0.8≥3.2, 5t²-8t+2.4≤0

 $25t^2 - 40t + 12 \le 0$, $(5t - 2)(5t - 6) \le 0$

 $\therefore \frac{2}{5} \le t \le \frac{6}{5}$

따라서 야구공의 높이가 3.2 m 이상인 시간은

$$\frac{6}{5} - \frac{2}{5} = \frac{4}{5} (\hat{\mathbb{A}})$$

동안이다.

(2)

1047 도로의 폭을 x m라 하면 도로를 제외한 땅을 직사각형 모양으로 이어 붙였을 때 가로. 세로의 길이는 각각

(40-x) m, (30-x) m $\int_{0< x<30}^{40-x>0}$ $\int_{0< x<30}^{40-x>0}$

이므로 도로를 제외한 땅의 넓이가 600 m² 이상이 되려면

$$(40-x)(30-x) \ge 600$$

··· •

 $x^2-70x+600\geq 0$, $(x-10)(x-60)\geq 0$

∴ x≤10 또는 x≥60

그런데 0<x<30이어야 하므로

 $0 < x \le 10$

따라서 도로의 최대 폭은 10 m이다.

.... **ⓒ** 10 m

... @

채점 기준	비율
① 도로의 폭을 x m라 하고 x 에 대한 이치부등식을 세울 수 있다.	50 %
❷ <i>x</i> 의 값의 범위를 구할 수 있다.	30 %
⑤ 도로의 최대 폭을 구할 수 있다.	20 %

1048 $x^2+3x-10>0에서 (x+5)(x-2)>0$

∴ x<-5 또는 x>2

..... ⊙

 $x^2 - x - 12 \le 0$ 에서 $(x+3)(x-4) \le 0$

 $\therefore -3 \le x \le 4$

····· ①

⊙, ⓒ의 공통부분을 구하면

 $2 < x \le 4$

따라서 a=2, b=4이므로

ab=8

4

∴ -7<*x*<1 ©

-7 < x < -3

①. ②의 공통부분을 구하면

... 0

.... 0

따라서 정수 x는 -6, -5, -4이므로 구하는 합은

$$-6+(-5)+(-4)=-15$$

.... (G)

= -15

채점 기준	비율	
각 부등식의 해를 구할 수 있다.	50 %	
❷ 연립부등식의 해를 구할 수 있다.	30 %	
③ 모든 정수 x의 값의 합을 구할 수 있다.	20 %	

1050 |x-2| < 6에서 -6 < x-2 < 6

 $\therefore -4 < x < 8$

.....

 $x^2-10x+9>0$ 에서 (x-1)(x-9)>0

 $\therefore x < 1 \ \Xi \vdash x > 9$

..... ①

①, ⓒ의 공통부분을 구하면

-4 < x < 1

따라서 정수 x는 -3, -2, -1, 0의 4개이다.

3

1051 $x^2 + 5x - 3 \le 3x^2$ |x| $2x^2 - 5x + 3 \ge 0$ $(x-1)(2x-3) \ge 0$

 $\therefore x \le 1$ 또는 $x \ge \frac{3}{2}$

..... 🕤

 $3x^2 \le -x + 2$ 에서 $3x^2 + x - 2 \le 0$

 $(x+1)(3x-2) \le 0$

 $\therefore -1 \le x \le \frac{2}{3}$

..... D

①, ⓒ의 공통부분을 구하면

$$-1 \le x \le \frac{2}{3}$$

따라서 실수 x의 최댓값은 $\frac{2}{3}$ 이다.

 $\frac{2}{3}$

1052 $x^2+x-2 \ge 0$ 에서 $(x+2)(x-1) \ge 0$

∴ x≤-2 또는 x≥1

..... 🗇

 $x^2+4 \le 9x-x^2$ 에서 $2x^2-9x+4 \le 0$

 $(2x-1)(x-4) \le 0$

 $\therefore \frac{1}{2} \le x \le 4$

..... ©

①, ⓒ의 공통부분을 구하면

 $1 \le x \le 4$

해가 $1 \le x \le 4$ 이고 x^2 의 계수가 1인 이차부등식은

 $(x-1)(x-4) \le 0$: $x^2 - 5x + 4 \le 0$

양변에 -2를 곱하면

 $-2x^2+10x-8\geq 0$

이 부등식이 $ax^2+10x+b \ge 0$ 과 같으므로

a = -2, b = -8

 $\therefore a-b=6$

4

1053 $x^2-4x>0$ 에서 x(x-4)>0

∴ x<0 또는 x>4

부분이 4<x<5이려면 오른쪽 그림 과 같아야 하므로

 $0 \le a \le 4$

 $\blacksquare 0 \le a \le 4$

라쎈 특강 /

부등식 문제에서 어떤 범위의 경계가 되는 값의 포함 여부는 그 값을 부등식에 대입하여 주어진 조건을 만족시키는지 확인하여 정한다.

이 문제에서 a=0이면 (x-a)(x-5)<0의 해가 0< x<5이므 로 ①과의 공통부분이 4<x<5가 된다. 또 a=4이면

(x-a)(x-5)<0의 해가 4< x<5이므로 @과의 공통부분이 4 < x < 5가 된다. 즉 a = 0, a = 4는 모두 주어진 조건을 만족시 키므로 a의 값의 범위에 포함된다.

1054 연립부등식

····· (¬) $x^2 + ax + b \ge 0$

 $|x^2+cx+d\leq 0|$(1) 의 해가 $1 \le x \le 4$ 또는 x = 6이려면 오른쪽 그림과 같아야 한다.

즉 $x^2 + ax + b \ge 0$ 의 해는 $x \le 4$ 또는 $x \ge 6$ 이므로

$$(x-4)(x-6) \ge 0$$
, $x^2-10x+24 \ge 0$

$$\therefore a = -10, b = 24$$

또 $x^2+cx+d\leq 0$ 의 해는 $1\leq x\leq 6$ 이므로

$$(x-1)(x-6) \le 0$$
, $x^2-7x+6 \le 0$

$$\therefore c = -7, d = 6$$

$$\therefore a+b+c+d=13$$

(3)

[월교] $x^2+ax+b\geq 0$ 의 해는 $x\leq \alpha$ 또는 $x\geq \beta$ 꼴이고, $x^2+cx+d\leq 0$ 의 해는 $\gamma \le x \le \delta$ 꼴이다.

1055 x²+9x+14≤0에서 $(x+7)(x+2) \le 0$

 \therefore $-7 \le x \le -2$

····· (9)

 $x^2 + (a+2)x + 2a < 0$ 에서

(x+2)(x+a) < 0

.....

①. ⓒ의 공통부분이 없으려면 오른쪽 그림과 같아야 하므로

 $-a \ge -2$ $\therefore a \le 2$

1056 $x^2+2x-15>0에서$ (x+5)(x-3)>0

∴ x<-5 또는 x>3

····· (7)

 $|x-a| \le 1$ 에서 $-1 \le x-a \le 1$

 $\therefore a-1 \le x \le a+1$

..... (L) --- O

①, ⓒ의 공통부분이 존재하려면

a-1 < -5 또는 a+1 > 3

... 0

∴ a<-4 또는 a>2 따라서 자연수 a의 최솟값은 3이다.

···) (S) **3**

비율 채적 기주 각 부등식의 해를 구할 수 있다. 30 % ② a의 값의 범위를 구할 수 있다. 50 % ❸ 자연수 a의 최솟값을 구할 수 있다. 20 %

1057 x²-4x-12≤0에서 $(x+2)(x-6) \le 0$

 $\therefore -2 \le x \le 6$

 \bigcirc 과 $(x-8)(x-a) \le 0$ 을 동시에 만족시키는 정수 x의 개수가 3이 려면 오른쪽 그림과 같아야 하므로

 $3 < a \le 4$

 $= 3 < a \le 4$

1058 |x-3| < k에서 -k < x-3 < k

 $\therefore 3-k < x < 3+k$

..... (7)

 $x^2-2x-3\leq 0$ 에서 $(x+1)(x-3)\leq 0$

 $\therefore -1 \le x \le 3$

..... (L)

①, ①을 동시에 만족시키는 정수 x의 개수가 5이려면 오른쪽 그림 과 같아야 하므로

- (i) 3-k<-1에서 k>4
- (ii) 3+k>3에서 k > 0
- (i), (ii)에서 k의 값의 범위는 k > 4따라서 자연수 k의 최솟값은 5이다.

5

(x-2)(x-3)>01059 x²-5x+6>0에서

∴ x<2 또는 x>3

····· (A)

 $x^2 - (a+4)x + 4a < 0$ %

(x-a)(x-4) < 0

..... (L)

 \bigcirc . \bigcirc 을 동시에 만족시키는 정수 x의 값이 1뿐이려면 오른쪽 그림과 같 아야 하므로

 $0 \le a < 1$

(2)

a=10I면 (x-a)(x-4)<0의 해가 1< x<40I므로 ①과의 공통부 분이 1 < x < 2 또는 3 < x < 4가 된다. 즉 주어진 연립부등식을 만족시키는 정 수 x가 존재하지 않는다.

1060 x-1, x, x+1은 변의 길이이므로

x-1>0 : x>1

세 변 중 가장 긴 변의 길이는 x+1이므로 삼각형이 만들어질 조 건에 의하여

x+1<(x-1)+x $\therefore x>2$

..... (L)

둔각삼각형이 되려면

 $(x+1)^2 > (x-1)^2 + x^2$

 $x^2-4x<0$, x(x-4)<0

0 < x < 4

.....

①, ①, ⓒ의 공통부분을 구하면

2 < x < 4

라쎈 특강 /

삼각형의 변의 길이와 모양

삼각형의 세 변의 길이가 a, b, c $(a \le b \le c)$ 일 때

- ① c²< a²+b² → 예각삼각형
- ② $c^2 = a^2 + b^2$ → 빗변의 길이가 c인 직각삼각형
- ③ $c^2 > a^2 + b^2 \rightarrow E$ 각삼각형

1061 테두리 장식의 넓이는

 $(2x+20)(2x+15)-20\cdot 15=4x^2+70x$ (cm²)

테두리 장식의 넓이가 114 cm2 이상 200 cm2 이하이어야 하므로 $114 \le 4x^2 + 70x \le 200$

 $\therefore 57 \le 2x^2 + 35x \le 100$

 $57 \le 2x^2 + 35x$ 에서

$$2x^2+35x-57\geq 0$$
, $(x+19)(2x-3)\geq 0$

$$\therefore x \le -19 \, \text{ET} \, x \ge \frac{3}{2}$$

그런데 x>0이므로

$$x \ge \frac{3}{2}$$

 $2x^2 + 35x \le 100$ 에서

$$2x^2+35x-100\leq 0$$
, $(x+20)(2x-5)\leq 0$

$$\therefore -20 \le x \le \frac{5}{2}$$

그런데 x>0이므로

$$0 < x \le \frac{5}{2}$$

····· (L)

①, ©의 공통부분을 구하면

$$\frac{3}{2} \le x \le \frac{5}{2}$$

 $\frac{3}{2} \le x \le \frac{5}{2}$

1062 새로 만든 직육면체의 밑면의 가로의 길이와 세로의 길이, 높이는 각각 a+5, a, a-3이므로

$$a-3>0$$
 $\therefore a>3$

이 직육면체의 부피는 a(a+5)(a-3)이고 처음 정육면체의 부 피는 a3이므로

 $a(a+5)(a-3) < a^3$

 $2a^2-15a<0$, a(2a-15)<0

$$\therefore 0 < a < \frac{15}{2}$$

①, ⓒ의 공통부분을 구하면

$$3 < a < \frac{15}{2}$$

따라서 자연수 a는 4, 5, 6, 7의 4개이다.

... @

1 = 1			

채점 기준	비율	
$oldsymbol{0}$ 길이를 이용하여 a 의 값의 범위를 구할 수 있다.	20 %	
❷ 부피를 이용하여 a의 값의 범위를 구할 수 있다.	40 %	
❸ a의 값의 범위를 구할 수 있다.	30 %	
④ 자연수 a의 개수를 구할 수 있다.	10 %	

1063 △AQP. △PRC는 모두 직각이등변삼각형이므로

$$\overline{QP} = \overline{AQ} = a$$
, $\overline{RC} = \overline{PR} = 9 - a$

따라서 \square PQBR의 넓이는 a(9-a)

 \triangle AQP의 넓이는 $\frac{1}{2}a^2$

 \triangle PRC의 넓이는 $\frac{1}{2}(9-a)^2$

□PQBR의 넓이가 △AQP의 넓이보다 크므로

$$a(9-a) > \frac{1}{2}a^2$$
, $3a^2 - 18a < 0$

$$3a(a-6) < 0$$

0 < a < 6.....

또 □PQBR의 넓이가 △PRC의 넓이보다 크므로

$$a(9-a) > \frac{1}{2}(9-a)^2$$
, $a^2 - 12a + 27 < 0$

$$(a-3)(a-9) < 0$$

∴ 3<*a*<9

..... (L)

①, ①의 공통부분을 구하면

3 < a < 6

따라서 자연수 a는 4, 5이므로 구하는 곱은

1064 이차방정식 $x^2 + 2kx + 3k = 0$ 이 서로 다른 두 실근을 가 지므로 이 이차방정식의 판별식을 D라 하면

$$\frac{D}{4} = k^2 - 3k > 0, \quad k(k-3) > 0$$

∴ k<0 또는 k>3

따라서 실수 k의 값이 아닌 것은 ③이다.

(3)

1065 이차방정식 $x^2-4kx+k^2+1=0$ 이 허근을 가지므로 이 이차방정식의 판별식을 D라 하면

$$\frac{D}{4} = (-2k)^2 - (k^2 + 1) < 0$$

$$3k^2-1<0$$
, $(\sqrt{3}k+1)(\sqrt{3}k-1)<0$

$$\therefore -\frac{1}{\sqrt{3}} < k < \frac{1}{\sqrt{3}}$$

따라서 $\alpha = -\frac{1}{\sqrt{3}}$, $\beta = \frac{1}{\sqrt{3}}$ 이므로

$$\alpha\beta = -\frac{1}{3}$$

 $=\frac{1}{2}$

1066 이차방정식 $x^2-2kx+9=0$ 이 허근을 가지므로 이 이차 방정식의 판별식을 D_1 이라 하면

$$\frac{D_1}{4} = (-k)^2 - 9 < 0$$

$$k^2-9<0$$
, $(k+3)(k-3)<0$

$$\therefore -3 \le k \le 3$$

이차방정식 $x^2 + 2kx + k + 2 = 0$ 이 실근을 가지므로 이 이차방정 식의 판별식을 D_2 라 하면

$$\frac{D_2}{4} = k^2 - (k+2) \ge 0$$

$$k^2-k-2\geq 0$$
, $(k+1)(k-2)\geq 0$

····· (L)

이차무등식

⊙. ⓒ의 공통부분을 구하면

 $-3 < k \le -1$ 또는 $2 \le k < 3$

따라서 정수 k는 -2, -1, 2의 3개이다.

(3)

1067 이차방정식 $x^2 + 2(1-k)x - k^2 - ak - 1 = 0$ 이 실근을 가지므로 이 이차방정식의 판별식을 D_1 이라 하면

$$\frac{D_1}{4} = (1-k)^2 - (-k^2 - ak - 1) \ge 0$$

 $\therefore 2k^2 + (a-2)k + 2 \ge 0$

이 이차부등식이 k의 값에 관계없이 항상 성립해야 하므로 k에 대한 이차방정식 $2k^2 + (a-2)k + 2 = 0$ 의 판별식을 D_2 라 하면

$$\begin{split} D_2 &= (a-2)^2 - 4 \cdot 2 \cdot 2 \leq 0 \\ a^2 - 4a - 12 \leq 0, & (a+2)(a-6) \leq 0 \\ &\therefore -2 \leq a \leq 6 \end{split}$$

1068 이차방정식 $x^2 - 2\sqrt{2}kx + k + 1 = 0$ 의 판별식을 D, 두 근을 α , β 라 하면 두 근이 모두 양수이므로

(i)
$$\frac{D}{4} = (-\sqrt{2}k)^2 - (k+1) \ge 0$$
 $2k^2 - k - 1 \ge 0$, $(2k+1)(k-1) \ge 0$ $\therefore k \le -\frac{1}{2} \times k \ge 1$

(ii) $\alpha + \beta = 2\sqrt{2}k > 0$ $\therefore k > 0$

.....

(iii) $\alpha\beta = k+1>0$ $\therefore k>-1$

1 ©

이상에서 공통부분을 구하면

 $k \ge 1$

1069 이차방정식 $x^2 - 2(k+1)x + 5 - k = 0$ 의 판별식을 D, 두 근을 α , β 라 하면 두 근이 모두 음수이므로

(i)
$$\frac{D}{4} = \{-(k+1)\}^2 - (5-k) \ge 0$$

$$k^2+3k-4\geq 0$$
, $(k+4)(k-1)\geq 0$
 $\therefore k\leq -4 \ \Xi \vdash k\geq 1$

(ii) $\alpha + \beta = 2(k+1) < 0$ $\therefore k < -1$

.....

(iii) $\alpha\beta = 5 - k > 0$ $\therefore k < 5$

6

이상에서 공통부분을 구하면

$$k \le -4$$

따라서 실수 k의 최댓값은 -4이다.

(2)

1070 이차방정식 $x^2 - (k-1)(k-2)x - k + 2 = 0$ 의 두 근을 α , β 라 하면 두 근의 부호가 서로 다르므로

$$\alpha\beta = -k + 2 < 0$$
 $\therefore k > 2$

..... (1) (1)

또 음의 근의 절댓값이 양의 근보다 작으므로

$$\alpha + \beta = (k-1)(k-2) > 0$$

∴ k<1 또는 k>2

····· (L) ···> @

⊙, ⓒ의 공통부분을 구하면

k>2

.... (3)

 $\blacksquare k > 2$

채점 기준	비율
● 두 근의 부호가 다름을 이용하여 k의 값의 범위를 구할 수 있다.	30 %
❷ 음의 근의 절댓값이 양의 근보다 작음을 이용하여 k의 값의 범위를 구할 수 있다.	50 %
❷ k의 값의 범위를 구할 수 있다.	20 %

라쎈 특강 _

근의 절댓값에 대한 조건

- 이차방정식의 두 근이 서로 다른 부호일 때
- ① |양수인 근|=|음수인 근|
 - → (두근의 합)=0. (두근의곱)<0
- ② | 양수인 근 | > | 음수인 근 |
 - → (두근의 합)>0, (두근의곱)<0
- ③ | 양수인 근 | < | 음수인 근 |
 - → (두 근의 합)<0, (두 근의 곱)<0

1071 $f(x)=x^2+ax+9$ 라 하면 이차방정 식 f(x)=0의 두 근이 모두 1보다 크므로 이차함수 y=f(x)의 그래프는 오른쪽 그림 과 같아야 한다.

(i) 이차방정식 f(x)=0의 판별식을 D라 하면

$$D=a^2-4\cdot1\cdot9\geq0$$

 $a^2-36\geq0$, $(a+6)(a-6)\geq0$
∴ $a\leq-6$ $\Xi = a\geq6$

..... 🗇

(ii) f(1) = 1 + a + 9 > 0 of |A| = a > -10

_10

(iii) 이차함수 y=f(x)의 그래프의 축의 방정식이 $x=-\frac{a}{2}$ 이므로

$$\begin{array}{c} \frac{\omega}{2} > 1 & \therefore a < -2 \\ \\ \bigcirc \\ \bigcirc \\ \bigcirc \\ -10 - 6 - 2 & 6 & a \end{array}$$

이상에서 공통부분을 구하면

$$-10 < a \le -6$$

따라서 정수 a는 -9, -8, -7, -6의 4개이다.

(4)

1072 $f(x) = x^2 + (k-1)x + k^2 - 10$ 이라 하면 이차방정식 f(x) = 0의 두 근 사이에 3이 있으므로 이차함수 y = f(x)의 그래프는 오른쪽 그림과 같아야 한다.

즉 f(3) < 0이어야 하므로

$$9+3(k-1)+k^2-10<0$$

 $k^2+3k-4<0$, $(k+4)(k-1)<0$
 $\therefore -4< k<1$

따라서 $\alpha = -4$, $\beta = 1$ 이므로

$$\alpha + \beta = -3$$

(2)

1073 $f(x)=x^2-2kx+k+20$ 이라 하면 이차방정식 f(x)=0의 두 근이 모두 5보다 작으므로 이차함수 y=f(x)의 그래프는 오른쪽 그림과 같아야 한다.

(i) 이차방정식 f(x)=0의 판별식을 D라 하면

$$\frac{D}{4} = (-k)^2 - (k+20) \ge 0$$

 $k^2-k-20\geq 0$. $(k+4)(k-5)\geq 0$

 $\therefore k \le -4$ 또는 $k \ge 5$

..... (7) (1

(ii) f(5)=25-10k+k+20>0에서

$$-9k > -45$$
 : $k < 5$

(iii) 이차함수 y=f(x)의 그래프의 축의 방정식이 x=k이므로

이상에서 공통부분을 구하면

$$k \le -4$$

 $\exists k \leq -4$

채점 기준	비율
● 이치방정식의 판별식을 이용하여 k의 값의 범위를 구할 수 있다.	30 %
② 함숫값을 이용하여 k의 값의 범위를 구할 수 있다.	30 %
❸ 축의 방정식을 이용하여 k의 값의 범위를 구할 수 있다.	30 %
④ k의 값의 범위를 구할 수 있다.	10 %

1074 전 부등식 $f(x)-g(x)\leq 0$, 즉 $f(x)\leq g(x)$ 의 해는 y=f(x)의 그래프가 y=g(x)의 그래프보다 아래쪽에 있거나 만나는 부분의 x의 값의 범위임을 이용한다.

이 고, $y=ax^2+bx+c$ 의 그래프가 x축과 서로 다른 두 점에서 만나므로 이차방정식 $ax^2+bx+c=0$ 의 판별식을 D라 하면

$$D = b^2 - 4ac > 0$$

ㄴ. $\underline{f(x)}=ax^2+bx+c$ 라 하면 직선 y=px+q의 y절편 q가 양수이므로 x>0일 때, f(x)>0

$$f(q)=aq^2+bq+c>0$$

 $= ax^2 + (b-p)x + c - q \le 0$ 에서

$$ax^2+bx+c-(px+q)\leq 0$$

$$\therefore ax^2 + bx + c \le px + q$$

부등식 $ax^2+bx+c \le px+q$ 의 해는 이차함수 $y=ax^2+bx+c$ 의 그래프가 직선 y=px+q보다 아래쪽에 있거나 만나는 부분의 x의 값의 범위이므로

$$\alpha \leq x \leq \beta$$

이상에서 ㄱ. ㄴ. ㄷ 모두 옳다.

(5)

다른풀이 $c, y=ax^2+bx+c$ 의 그래프와 직선 y=px+q의 교점의 x좌표가 α , β 이므로 $ax^2+bx+c=px+q$, 즉 $ax^2+(b-p)x+c-q=0$ 의 해는 $x=\alpha$ 또는 $x=\beta$ 이다.

$$\therefore ax^2 + (b-p)x + c - q = a(x-\alpha)(x-\beta)$$

 $ax^2+(b-p)x+c-q\leq 0$ 에서

$$a(x-\alpha)(x-\beta) \leq 0$$

이때 a>0이므로 부등식의 해는

 $\alpha \leq x \leq \beta$

 $3 - 4x^2 - 4x + 1 = (2x - 1)^2 \ge 0$

따라서 $4x^2-4x+1\geq 0$ 의 해는 모든 실수이다.

$$-x^2+x+1=(x+\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$$

따라서 $x^2+x+1 \le 0$ 의 해는 없다.

 $-x^2+8x-16>0에서$

$$x^2 - 8x + 16 < 0$$

그런데 $x^2-8x+16=(x-4)^2\ge 0$ 이므로 주어진 부등식의 해 는 없다.

 $= -3x^2 + x - 1 \le 0$ 에서

$$3x^2 - x + 1 \ge 0$$

그런데 $3x^2 - x + 1 = 3\left(x - \frac{1}{6}\right)^2 + \frac{11}{12} \ge \frac{11}{12}$ 이므로 주어진 부 등식의 해는 모든 실수이다.

이상에서 해가 모든 실수인 부등식은 ㄱ, ㄹ이다. 🗏 ③

1076 전의 해가 $\alpha < x < \beta$ 이고 x^2 의 계수가 1인 이차부등식은 $(x-\alpha)(x-\beta) < 0$ 임을 이용한다.

[10] 해가 -4 < x < 3이고 x^2 의 계수가 1인 이차부등식은

$$(x+4)(x-3)<0$$
 : $x^2+x-12<0$

따라서 a=1, b=-12이므로

$$a-b=13$$

1077 전략 이차부등식 f(x) > 0의 해가 $x \neq k$ 인 모든 실수이면 $f(x) = a(x-k)^2$ (a>0)임을 이용한다.

로 (나)에서 이차부등식 f(x)>0의 해가 $x \neq 2$ 인 모든 실수이므로 이차함수 f(x)에서 x^2 의 계수는 양수이고 y=f(x)의 그래프는 오른쪽 그림과 같이 x축과 점 (2,0)에서 접한다.

즉 $f(x) = a(x-2)^2 (a>0)$ 이라 하면 조건 (케에서 f(0)=8이 므로

$$4a=8$$
 $\therefore a=2$

따라서
$$f(x)=2(x-2)^2$$
이므로

$$f(5)=2\cdot(5-2)^2=18$$

(4)

1078 이 하부등식 $ax^2 + bx + c \ge 0$ 의 해가 오직 한 개이면 a < 0임을 파악하고, a, b, c 사이의 관계식을 먼저 구한다.

에 이차부등식 $ax^2+bx+c \ge 0$ 의 해가 3뿐이므로 a<0이고 $ax^2+bx+c=a(x-3)^2$

즉 $ax^2 + bx + c = ax^2 - 6ax + 9a$ 이므로

b = -6a, c = 9a

이것을 $bx^2 + cx + 6a < 0$ 에 대입하면

 $-6ax^2+9ax+6a<0$, $-3a(2x^2-3x-2)<0$

$$2x^2-3x-2<0 \ (\because -3a>0)$$

(2x+1)(x-2)<0

$$\therefore -\frac{1}{2} < x < 2$$

 $= -\frac{1}{2} < x < 2$