McCulloch Pitts Neuron and Thresholding Logic

### **Last Lecture**

- What, Why, How?
- Brief History

# Today's Topics

- Biological Neuron
- Artificial Neuron
- McCulloch Pitts Neuron
- Thresholding Logic

# Inspiration: Animal's Computing Machinery

#### Neuron

 basic unit in the nervous system for receiving, processing, and transmitting information; e.g., messages such as...

### "hot"



https://www.clipart.email/clipart/don t-touch-hot-stove-clipart-73647.html

"loud"



https://kisselpaso.com/if-the-sun-citymusic-fest-gets-too-loud-there-is-aphone-number-you-can-call-to-complain/

"spicy"



https://www.babycenter.com/404\_when-can-my-baby-eat-spicy-foods\_1368539.bc

# Inspiration: Neuron "Firing"



- When the input signals exceed a certain threshold within a short period of time, a neuron "fires"
- Neuron "firing" (outputs signal) is an "all-or-none" process

Image Source: https://becominghuman.ai/introduction-to-neural-networks-bd042ebf2653

# Biological Neuron



dendrite: receives signals from other neurons

synapse: point of connection to other neurons

soma: processes the information

axon: transmits the output of this neuron

# Biological Analog of Artificial Neuron





An artificial neuron

- A neuron is a mathematical function modeled on the working of biological neurons
- One or more inputs are separately weighted
- Inputs are summed and passed through a nonlinear function to produce output
- Every neuron holds an internal state called activation signal
- Each connection link
   carries information about
   the input signal

# Biological Analog



# Biological vs. Artificial Neuron



| Biological Neuron   | Artificial Neuron          |
|---------------------|----------------------------|
| Cell Nucleus (Soma) | Node                       |
| Dendrites           | Input                      |
| Synapse             | Weights or interconnection |
| Axon                | Output                     |



fires if at least 2 of 3 inputs fired





A simplified illustration

This massively parallel network also ensures that there is division of work

Each neuron may perform a certain role or respond to a certain stimulus





# Layer 1: detect edges & corners



Layer 2: form feature groups



Layer 3: detect high level objects, faces, etc.

Sample illustration of hierarchical processing\*

-----

<sup>\*</sup>Idea borrowed from Hugo Larochelle's lecture slides

### McCulloch Pitts Neuron



This is called the Thresholding Logic

McCulloch (neuroscientist) and Pitts (logician)
proposed a highly simplified computational model
of the neuron (1943)

g aggregates the inputs and the function f takes a decision based on this aggregation

The inputs can be excitatory or inhibitory

y=0 if any  $x_i$  is inhibitory, else

$$g(x_1,x_2,...,x_n)=g(x)=\sum_{i=1}^n \ x_i$$
  $y=f(g(x))=1$  if  $g(x)\geq \ heta$   $=0$  if  $g(x)< \ heta$ 

heta is called the thresholding parameter

### **Characteristics of MP Neuron**

- **Binary Inputs**: The inputs to the neuron are binary, meaning they can either be 0 or 1 (representing an inactive or active state, respectively).
- **Summation**: The neuron sums the weighted inputs. The total input to the neuron is the weighted sum of all inputs.
- Threshold:
- The neuron has a fixed threshold value. If the total input (weighted sum) exceeds or equals the threshold, the neuron "fires" (produces an output of 1); otherwise, it remains inactive (outputs 0).
- **Binary Output**: The output of the M-P neuron is binary, just like the input. If the sum of the weighted inputs exceeds the threshold, the output is 1; otherwise, it is 0.
- **No Learning**: The weights and threshold are predefined, and the neuron does not adapt or change with experience.

# Implement AND Function



A McCulloch Pitts unit



# **Logical Functions**





OR function

$$y\in\ \{0,1\}$$



NOR function

$$y\in~\{0,1\}$$



NOT function

# **Logical Functions**



A McCulloch Pitts unit



AND function



OR function

$$y \in \{0,1\}$$

NOR function



NOT function

 $y \in \{0, 1\}$ 

# Geometric interpretation of a MP unit



#### OR function

$$x_1 + x_2 = \sum_{i=1}^2 x_i \ge 1$$



A single MP neuron splits the input points (4 points for 2 binary inputs) into two halves

Points lying on or above the line  $\sum_{i=1}^n x_i - \theta = 0$  and points lying below this line

In other words, all inputs which produce an output O will be on one side  $(\sum_{i=1}^n x_i < \theta)$  of the line and all inputs which produce an output 1 will lie on the other side  $(\sum_{i=1}^n x_i \geq \theta)$  of this line

# Geometric interpretation of a MP unit



AND function

$$x_1+x_2=\sum_{i=1}^2 \ x_i\geq 2$$





Tautology (always ON)



### Geometric interpretation of a MP unit





# **Example Scenario**

- Imagine wanting to predict whether to watch a football game. The inputs (boolean values) could be:
- X1: Is Premier League on? (1 if yes, 0 if no)
- X2: Is it a friendly game? (1 if yes, 0 if no)
- X3: Are you not at home? (1 if yes, 0 if no)
- X4: Is Manchester United playing? (1 if yes, 0 if no)
- Each input can be excitatory or inhibitory. For instance, X3 is inhibitory because you can't watch the game at home.

https://www.analyticsvidhya.com/blog/2024/07/mcculloch-pitts-neuron/

## **Implementation**

#### FOR AND GATE