Enginyeria de l'Automoció

Examen de Recuperació Química GEA-17UV PREGUNTES

31 de Maig de 2018

- 1. (100 Punts) Exercici de recuperació del primer parcial. El pes de cada pregunta es mostra entre parèntesi.
- 30% En un experiment per mesurar la massa molecular d'un gas, 250 cm³ del gas, quina massa era 33.5 mg, es van confinar en un recipient. La pressió a 298K va resultar ser de 152 Torr. Quina era la massa molecular del gas?
- 30% Un pneumàtic de cotxe es va inflar a una pressió de 24 lb in⁻² un dia d'hivern a -5°C. Quina pressió, calculada en atm, es va mesurar l'estiu següent (assumint que el pneumàtic no va perdre aire entre hivern i estiu) quan la temperatura era de 35°C? (1 atm = 24 lb in⁻²)
- 40% La pressió de vapor del benzè pur a 20°C és de 75 Torr, i la del metilbenzè pur és 25 Torr a la mateixa temperatura. Calcula la pressió de vapor d'una barreja equimolar de benzè i metilbenzè (líquids amb temperatures d'ebullició de 79 i 110°C, respectivament, a 1 atm) a 20°C.
- 2. (100 Punts) Exercici de recuperació del segon parcial. El pes de cada pregunta es mostra entre parèntesi.
- 30% Calcula el treball realitzat i la calor absorbida/emesa en dur 1 mol d'Ar, de forma isotèrmica i reversible a 20°C, des d'un volum de 10 dm³ fins a un volum de 30 dm³.
- 30% El triclorur de nitrogen, NCl₃, és un oli groc, inestable, que explota a 95° C desprenent N₂ i Cl₂ i 55 kcal mol⁻¹ de calor. Quanta calor s'allibera per la descomposició de 10 g de NCl₃?
- 40% La reacció $H_{2(g)} + I_{2(g)} \Longrightarrow 2 \, HI_{(g)}$ té, a 448°C, una constant d'equilibri de 50.53. Si posem 0.005 mols de gas H_2 i 0.001 mols de gas I_2 en un recipient de 5 l, quant HI hi haurà un cop el sistema químic hagi assolit l'equlibri?
- 3. (100 Punts) Exercici de recuperació de l'examen final. El pes de cada pregunta es mostra entre parèntesi.

30% Si el pH del suc de taronja és de 2.8, quina concentració d'ions OH⁻ té un got de suc?.

30% L'element imaginari Vicidi, Vi, té el següent potencial d'oxidació:

$$Vi \longrightarrow Vi^{3+} + 3e^{-}$$
 $\varepsilon^{0} = -3,00 V$

Raona si es tractaria d'un bon oxidant o un bon reductor

40% La reacció de dissolució del clorur d'amoni a 298K en els seus ions, és espontània?

$$NH_4Cl_{(s)} \longrightarrow NH_{4(aq)}^+ + Cl_{(aq)}^-$$

Dades (a 298 K):

substància	ΔH_f^0 / kcal mol ⁻¹	S_f^0 / cal mol ⁻¹ K ⁻¹
$NH_4Cl_{(s)}$	-75.38	22.6
$ NH_4Cl_{(s)} $ $ NH_{4(aq)}^+ $	-31.74	26.97
$\mathrm{Cl}_{(\mathrm{aq})}^-$	-40.02	13.2

 ${\bf x}$ Troba la constant d'equilibri de la pila de Daniell (que explota el potencial elèctric de la reacció ${\rm Cu}_{(aq)}^{2+} + {\rm Zn}_{(s)} \longrightarrow {\rm Cu}_{(s)} + {\rm Zn}_{(aq)}^{2+}), \, {\rm sabent} \,\, {\rm que}$

$$Cu_{(aq)}^{2+} + 2e^{-} \longrightarrow Cu_{(s)}$$
 $\varepsilon^{0} = +0.337 V$

$$Zn_{(aq)}^{\,2+} + 2\,e^- \longrightarrow \,Zn_{(s)} \quad \varepsilon^0 = -0.763\,V$$