Louis Meunier

Analysis 2 MATH255

Course Outline:

Based on Lectures from Winter, 2024 by Prof. Dmitry Jackobson.

Contents

1	Introduction		2	
	1.1	Metric Spaces	2	
2	Poir	nt-Set Topology	6	
	2.1	Definitions	6	
	2.2	Basis	7	
	2.3	Subspaces	8	
	2.4	Continuous Functions	9	

1 Introduction

1.1 Metric Spaces

\hookrightarrow **Definition** 1.1: Metric Space

A set X is a *metric space* with distance d if

- 1. (symmetric) $d(x, y) = d(y, x) \ge 0$
- 2. $d(x,y) = 0 \iff x = y$
- 3. (triangle inequality) $d(x,y) + d(y,z) \ge d(x,z)$

Remark 1.1. If 1., 3. are satisfied but not 2., d can be called a "pseudo-distance".

→ Definition 1.2: Normed Space

Let X be a vector space over \mathbb{R} . The norm on X, denoted $||x|| \in \mathbb{R}$, is a function that satisfies

- 1. $||x|| \ge 0$
- 2. $||x|| = 0 \iff x = 0$
- 3. $||c \cdot x|| = |c| \cdot ||x||$
- 4. $||x + y|| \le ||x|| + ||y||$

If X is a normed vector space over \mathbb{R} , we can define a distance d on X by d(x,y) = ||x-y||.

\hookrightarrow Proposition 1.1

If X is a normed vector space over \mathbb{R} , a distance d on X by d(x,y) = ||x-y|| makes (X,d) a metric space.

Proof. 1. $d(x,y) = ||x - y|| \ge 0$

- 2. $d(x,y) = 0 \iff ||x-y|| = 0 \iff x-y=0 \iff x=y$
- 3. $d(x,y) + d(y,z) = ||x-y|| + ||y-z|| \ge ||(x-y) + (y-z)|| = ||x-z|| := d(x,z)$

\circledast Example 1.1: L^p distance in \mathbb{R}^n

Let $\overline{x} \in \mathbb{R}^n$, $x = (x_1, x_2, \dots, x_n)$. The L^p norm is defined

$$||x||_p := (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}}.$$

In the case p=2, n=2, we simply have the standard Euclidean distance over \mathbb{R}^2 .

<u>Unit Balls:</u> consider when $||x||_p \leq 1$, over \mathbb{R}^2 .

- $p=1:|x_1|+|x_2|\leq 1$; this forms a "diamond ball" in the plane.
- p = 2: $\sqrt{|x_1|^2 + |x_2|^2} \le 1$; this forms a circle of radius 1. Clearly, this surrounds a larger area than in p = 2.

A natural question that follows is what happens as $p \to \infty$? Assuming $|x_1| \ge |x_2|$:

$$||x||_{p} = (|x_{1}|^{p} + |x_{2}|^{p})^{\frac{1}{p}}$$

$$= \left[|x_{1}|^{p} \left(1 + \left|\frac{x_{2}}{x_{1}}\right|^{p}\right)\right]^{\frac{1}{p}}$$

$$= |x_{1}| \left(1 + \left|\frac{x_{2}}{x_{1}}\right|^{p}\right)^{\frac{1}{p}}$$

If $|x_1| > |x_2|$, this goes to $|x_1|$. If they are instead equal, then $||x||_p = |x_1| \cdot 2^{\frac{1}{p}} \to |x_1| \cdot 1$ as well. Hence, $\lim_{p \to \infty} ||x||_p = \max\{|x_1|, |x_2|\}$. Thus, the unit ball will approach $\max\{|x_1|, |x_2|\} \le 1$, that is, the unit square.

Figure 1: Regions of \mathbb{R}^2 where $||x||_p \leq 1$ for various values of p.

\hookrightarrow Proposition 1.2

Let $x \in \mathbb{R}^n$. Then, $||x||_p \to \max\{|x_1|, \dots, |x_n|\}$ as $p \to \infty$.

Remark 1.2. This is an extension of the previous example to arbitrary real space; the proof follows nearly identically.

→ Definition 1.3: Convex Set

Let X be a normed space, and take $x, y \in X$. The line segment from x to y is the set

$$\{t \cdot x + (1-t) \cdot y : 0 \le t \le 1\}.$$

Let $A \subseteq X$. A is *convex* $\iff \forall x, y \in A$, we have that

$$(t \cdot x + (1-t) \cdot y) \in A \,\forall \, 0 \le t \le 1.$$

Figure 2: Convex (left) versus not convex (right) sets.

Remark 1.3. Think of this as saying "a set is convex iff every point on a line segment connected any two points is in the set".

\hookrightarrow **<u>Definition</u> 1.4:** ℓ_p

The space ℓ_p of sequences is defined as

$$\{x = (x_1, x_2, \dots, x_n, \dots) : \sum_{n=1}^{\infty} |x_n|^p < +\infty\} *.$$

Then, * defines the ℓ^p norm on the space of sequences; that is, $||x||_p := (\sum_{n=1}^{\infty} |x_n|^p)^{\frac{1}{p}}$.

* Example 1.2: ℓ_p , $x_n = \frac{1}{n}$

. Let $x_n = \frac{1}{n}$. For which p is $x \in \ell_p$? We have, raising the norm to the power of p for ease:

$$||x||_p^p = |x_1|^p + |x_2|^p + \dots + |x_n|^p + \dots$$

= $1^p + \left(\frac{1}{2}\right)^p + \dots < \infty \iff p > 1.$

In the case that p = 1, this becomes a harmonic sum, which diverges.

\circledast Example 1.3: L^p space of functions

Let f(x) be a continuous function. We define the norm of f over an interval [a,b]

$$||f||_p = \left[\int_a^b |f(x)|^p dx\right]^{\frac{1}{p}}.$$

Remark 1.4. Triangle inequality for $||x||_p$ or $||f||_p$ is called Minkowski inequality; $||x||_p + ||y||_p \ge ||x+y||_p$. This will be discussed further.

\circledast Example 1.4: Distances between sets in \mathbb{R}^2

Let A, B be bounded, closed, "nice" sets in \mathbb{R}^2 . We define

$$d(A, B) := Area(A \triangle B),$$

where

$$A\triangle B:(A\setminus B)\cup (B\setminus A)=(A\cup B)\setminus (A\cap B).$$

It can be shown that this is a "valid" distance.

Remark 1.5. \triangle denotes the "symmetric difference" of two sets.

\circledast Example 1.5: p-adic distance

Let p be a prime number. Let $x = \frac{a}{b} \in \mathbb{Q}$, and write $x = p^k \cdot \left(\frac{c}{d}\right)$, where c, d are not divisible by p. Then, the p-adic norm is defined $||x||_p := p^{-k}$. It can be shown that this is a norm.

Suppose $p=2, x=28=4\cdot 7=2^2\cdot 7$. Then, $||28||_2=2^{-2}=\frac{1}{4}$; similarly, $||1024||_2=||2^{10}||_2=2^{-10}$.

More generally, we have that $||2^k||_2 = 2^{-k}$; coversely, $||2^{-k}|| = 2^k$. That is, the closer to 0, the larger the distance, and vice versa, contrary to our notion of Euclidean distance.

$\hookrightarrow \underline{\text{Proposition}}$ 1.3

 $||x||_p$ as defined above is a well-defined norm over \mathbb{Q} .

Proof.

§1.1

2 Point-Set Topology

2.1 Definitions

→ **Definition** 2.1: Topological space

A set X is a topological space if we have a collection of subsets τ of X called *open sets* s.t.

- 1. $\emptyset \in \tau, X \in \tau$
- 2. Consider $\{A_{\alpha}\}_{{\alpha}\in I}$ where A_{α} an open set for any α ; then, $\bigcup_{{\alpha}\in I}A_{\alpha}\in \tau$, that is, it is also an open set.
- 3. If J is a finite set, and A_{β} open for all $\beta \in J$, then $\bigcap_{\beta \in J} A_{\beta} \in \tau$ is also open.

In other words, 2.: arbitrary unions of open sets are open, and 3.: finite intersections of open sets are open.

→ **Definition 2.2: Closed sets**

Closed sets are complements of open sets; hence, axioms for closed sets follow appropriately;

- 1.* X, \emptyset closed;
- 2.* B_{α} closed $\forall \alpha \in I \implies \bigcap_{\alpha \in I} B_{\alpha}$ closed.
- 3.* B_{β} closed $\forall \beta \in J$, J finite, then $\bigcup_{\beta \in J} B_{\beta}$ also closed.

→ **Definition** 2.3: Interior, Boundary of a Topological Set

Let X be a topological space, $A \subseteq X$ and let $x \in X$. We have the following possibilities

1. $\exists U$ -open : $x \in U \subseteq A$. In this case, we say $x \in \text{the } interior \text{ of } A$, denoted

$$x \in Int(A)$$
.

2. $\exists V$ -open : $x \in V \subseteq X \setminus A = A^C$. In this case, we write

$$x \in \operatorname{Int}(X^C)$$
.

3. $\forall U$ -open : $x \in U$, $U \cap A \neq \emptyset$ AND $U \cap A^C \neq \emptyset$. In this case, we say x is in the boundary of A, and denote

$$x \in \partial A$$
.

\hookrightarrow **Definition 2.4: Closure**

 $x \in \operatorname{Int}(A)$ or $x \in \partial A$ (that is, $x \in \operatorname{Int}(A) \cup \partial A$) \iff every open set U that contains x intersects A. Such points are called *limit points* of A. The set of all limits points of A is called the *closure* of A, denoted \overline{A} .

¹"Requires" proof.

Remark 2.1. We have that

$$\operatorname{Int}(A) \subseteq A \subseteq \overline{A} = \operatorname{Int}(A) \cup \partial A.$$

\hookrightarrow **Proposition 2.1: Properties of** Int(A)

 $\operatorname{Int}(A)$ is *open*, and it is the largest open set contained in A. It is the union of all U-open s.t. $U \subseteq A$. Moreover, we have that

$$Int(Int(A)) = Int(A).$$

\hookrightarrow **Proposition 2.2: Properties of** \overline{A}

 \overline{A} is *closed*; \overline{A} is the smallest closed set that contains A, that is, $\overline{A} = \bigcap B$ where B closed and $A \subseteq B$. We have too that

$$\overline{(\overline{A})} = \overline{A}.$$

\hookrightarrow Proposition 2.3

- 1. $A \text{ is open} \iff A = \text{Int}(A)$
- 2. A is closed $\iff A = \overline{A}$

2.2 Basis

→ Definition 2.5: Basis for a Toplogy

Let τ be a topology on X. Let $\mathcal{B} \subseteq \tau$ be a collection of open sets in X such that every open set is a union of open sets in \mathcal{B} .

*** Example 2.1: Example Basis**

 $X = \mathbb{R}$, and $\mathcal{B} = \{\text{all open intervals } (a, b) : -\infty < a < b < +\infty\}.$

\hookrightarrow Proposition 2.4

Let $\mathcal B$ be a collection of open sets in X. Then, $\mathcal B$ is a basis \iff

- 1. $\forall x \in X, \exists U$ -open $\in \mathcal{B}$ s.t. $x \in U$.
- 2. If $U_1 \in \mathcal{B}$ and $U_2 \in \mathcal{B}$, and $x \in U_1 \cap U_2$, then $\exists U_3 \in \mathcal{B}$ s.t. $x \in U_3 \subseteq U_1 \cap U_2$.

*** Example 2.2**

Consider $X=\mathbb{R}$. Requirement 1. follows from taking $U=(x-\varepsilon,x+\varepsilon)$ for any $\varepsilon>0$. For 2., suppose $x\in(a,b)\cap(c,d)=:U_1\cap U_2$. Let $U_3=(\max\{a,c\},\min\{b,d\})$; then, we have that $U_3\subseteq U_1\cap U_2$, while clearly $x\in U_3$.

\hookrightarrow Proposition 2.5

In a metric space, a basis for a topology is a collection of open balls,

$$\{B(x,r): x \in X, r > 0\} = \{\{y \in X: d(x,y) < r\}: x \in X, r > 0\}.$$

Proof. We prove via proposition 2.4. Property 1. holds clearly; $x \in B(x, \varepsilon)$ -open $\subseteq \mathcal{B}$.

For property 2., let $x \in B(y_1, r_1) \cap B(y_2, r_2)$, that is, $d(x, y_1) < r_1$ and $d(x, y_2) < r_2$. Let

$$\delta := \min\{r_1 - d(x, y_1), r_2 - d(x, y_2)\}.$$

We claim that $B(x, \delta) \subseteq U_1 \cap U_2$.

Let $z \in B(x, \delta)$. Then,

$$d(z, y_1) \stackrel{\triangle \neq}{\leq} d(z, x) + d(x, y_1) < \delta + d(x, y_1) \le r_1 - d(x, y_1) + d(x, y_1) = r_1,$$

hence, as $d(z,y_1) < r_1 \implies z \in B(y_1,r_1) = U_1$. Replacing each occurrence of y_1,r_1 with y_2,r_2 respectively gives identically that $z \in B(y_2,r_2) = U_2$. Hence, we have that $B(x,\delta) \subseteq U_1 \cap U_2$ and 2. holds.

2.3 Subspaces

\hookrightarrow **Definition 2.6**

Let X be a topological space and let $Y\subseteq X.$ We define the subspace topology on Y:

1. Open sets in $Y = \{Y \cap \text{ open sets in } X\}$

→ Proposition 2.6: Consequences of Subspace Topologies

Suppose \mathcal{B} is a basis for a topology in X. Then, $\{U \cap Y : U \in \mathcal{B}\}$ forms a basis for the subspace $Y \subseteq X$.

Suppose X a metric space. Then, Y is also a metric space, with the same distance.

\hookrightarrow **Proposition 2.7**

Let $Y \subseteq X$ - a metric space. Then, the metric space topology for (Y, d) is the same as the subspace topology.

Proof. (Sketch) A basis for the open sets in X can be written $\bigcup_{\alpha \in I} B(x_{\alpha}, r_{\alpha})$; hence

$$Y \cap (\bigcup_{\alpha \in I} B(x_{\alpha}, r_{\alpha})) = \bigcup_{\alpha \in I} (Y \cap B(x_{\alpha}, r_{\alpha}))$$

is an open set topology for Y.

\hookrightarrow Lemma 2.1

Let $A \subseteq X$ -open, $B \subseteq A$; B-open in subspace topology for $A \iff B$ -open in X.

\hookrightarrow Lemma 2.2

Let $Y \subseteq X$, $A \subseteq Y$. Then, \overline{A} in $Y = Y \cap \overline{A}$ in X. We can denote this

$$\overline{A}_Y = \overline{A}_X \cap Y.$$

2.4 Continuous Functions

→ Definition 2.7: Continuous Function

Let X,Y be topological spaces. Let $f:X\to Y$. f is continuous \iff \forall open $V\in Y$, $f^{-1}(V)$ -open in X.

\hookrightarrow Proposition 2.8

This definition is consistent with the normal ε - δ definition on the real line.

Proof. Let $f: \mathbb{R} \to \mathbb{R}$, continuous; that is, $\forall \varepsilon > 0, \forall x \in \mathbb{R} \exists \delta > 0$ s.t. $|x_1 - x| < \delta$, then $\overline{|f(x_1) - f(x)|} < \varepsilon$.

Let $V \subseteq \mathbb{R}$ open. Let $y \in V$. Then, $\exists \varepsilon : (y - \varepsilon, y + \varepsilon) \subseteq V$. Let y = f(x), hence $y \in f^{-1}(V)$. Now, if $d(x, x_1) < \delta$, we have that $d(f(x_1), f(x)) < \varepsilon$ (by continuity of f), hence $f(x_1) \in (y - \varepsilon, y + \varepsilon) \subseteq V$; moreover, $(x - \delta, x + \delta) \subseteq f - 1(V)$, thus $f^{-1}(V)$ is open as required.

The inverse of this proof follows identically.

 \hookrightarrow Tue Jan 9 09:54:34 EST 2024