Honors Mathematics III RC 8

CHEN Xiwen

UM-SJTU Joint Institute

July 24, 2018

Table of contents

Vector Fields and Line Integrals

Line Integral of a Potential Function

Vector Fields

Potential Fields

Conservative Fields

Simply Connected Sets

Differential Forms

Circulation and Flux

Circulation and Flux

Divergence and Rotation

Exercises

Vector Fields and Line Integrals

Line Integral of a Potential Function

Vector Fields

Potential Fields

Conservative Fields

Simply Connected Sets

Differential Forms

Circulation and Flux

Circulation and Flux

Divergence and Rotation

Exercises

The Line Integral of a Potential Function

Definition. Let $\Omega \subset \mathbb{R}^n$, $f:\Omega \to \mathbb{R}$ be a continuous potential function and $\mathcal{C}^* \subset \Omega$ an oriented smooth curve with parametrization $\gamma:I \to \mathcal{C}$. We then define the *line integral of the potential f along* \mathcal{C}^* by

$$\int_{\mathcal{C}^*} f ds := \int_I (f \circ \gamma)(t) \cdot |\gamma'(t)| dt,$$

which is independent of the parametrization chosen. The *scalar line element* is given by

$$\mathrm{d}s = |\gamma'(t)|\mathrm{d}t.$$

The Line Integral of a Potential Function

Example. Suppose a wire is in the shape of a circle, $C^*: x^2+y^2=1$. The density ρ at point (x,y) is $\rho(x,y)=1+xy$. Calculate its total mass.

The Line Integral of a Potential Function

Example. Suppose a wire is in the shape of a circle, $C^*: x^2+y^2=1$. The density ρ at point (x,y) is $\rho(x,y)=1+xy$. Calculate its total mass.

Solution. The circle can be parametrized by $\gamma(\theta)=(\cos\theta,\sin\theta)$. The total mass is calculated by

$$m = \int_0^{2\pi} (1 + \cos\theta \cdot \sin\theta) \cdot 1d\theta$$
$$= 2\pi$$

Vector Fields and Line Integrals

Line Integral of a Potential Function

Vector Fields

Conservative Fields

Simply Connected Sets

Differential Forms

Circulation and Flux

Circulation and Flux

Divergence and Rotation

Exercises

Vector Fields

Definition. Let $\Omega \subset \mathbb{R}^n$. Then a function $F : \Omega \to \mathbb{R}^n$,

$$F(x) = \begin{pmatrix} F_1(x) \\ \vdots \\ F_n(x) \end{pmatrix}$$

is called a **vector field** on Ω .

Example. The **gradient field of** f is given by

$$F: \mathbb{R}^n \to \mathbb{R}^n, \qquad F(x) = \nabla f(x)$$

The Line Integral of a Vector Field

Definition. Let $\Omega \subset \mathbb{R}^n$, $F \to \mathbb{R}$ be a continuous vector field and $\mathcal{C}^* \subset \Omega$ an oriented open, smooth curve in \mathbb{R}^n . Then the *line integral of the vector field* F *along* \mathcal{C}^* is given by

$$\int_{\mathcal{C}^*} F \mathrm{d} \vec{s} := \int_{\mathcal{C}^*} \langle F, T \rangle \mathrm{d} s = \int_{\mathcal{C}^*} \langle F, \mathrm{d} \vec{s} \rangle$$

Note.

- ► The line integral of a vector field does not depend on parametrization of C*.
- ► The *vectorial line element* is given by

$$\mathbf{d}\vec{s} = \gamma'(t)\mathbf{d}t$$

▶ To calculate line integral using parametrization $\gamma: I \to \mathcal{C}$

$$\int_{\mathcal{C}^*} F \mathrm{d}\vec{s} = \int_I \langle F \circ \gamma(t), \gamma'(t) \rangle \mathrm{d}t$$

Vector Fields and Line Integrals

Line Integral of a Potential Function

Potential Fields

Potential Fields

Definition. Let $\Omega \subset \mathbb{R}^n$ be an open set. A vector field $F: \Omega \to \mathbb{R}^n$ is said to be a **potential field** if there exists a differentiable potential function $U: \Omega \to \mathbb{R}$ such that

$$F(x) = \nabla U(x)$$

Integrals of potential fields. Since

$$\int_{I} \langle F \circ \gamma(t), \gamma'(t) \rangle dt = \int_{I} (U \circ \gamma)'(t) dt$$

then

$$\int_{\mathcal{C}^*} F \mathrm{d}\vec{s} = U(p_{final}) - U(p_{initial})$$

Vector Fields and Line Integrals

Line Integral of a Potential Function

Datastial Fields

Potential Fields

Conservative Fields

Simply Connected Sets

Differential Forms

Circulation and Flux

Circulation and Flux

Divergence and Rotation

Exercises

Lemma. Let $\Omega \subset \mathbb{R}^n$ be open, $F: \Omega \to \mathbb{R}^n$ a potential field and $\mathcal{C} \subset \Omega$ a closed curve. Then

$$\oint_{\mathcal{C}} F \mathrm{d}\vec{s} = 0$$

Definition. Let $\Omega \subset \mathbb{R}^n$ be open and $F : \Omega \to \mathbb{R}^n$ a vector field. If the integral along any open curve \mathcal{C} depends only on the initial and final points, or equivalently,

$$\oint_{\mathcal{C}} F \mathrm{d}\vec{s} = 0$$

for any closed curve C, then F is **conservative**. **Note.**

- Every potential field is a conservative field.
- Every continuous, conservative field on a connected open set is a potential field.

Slide 512. Proof of Theorem 3.1.17. Let $\Omega \subset \mathbb{R}^n$ be a connected open set and suppose that $F:\Omega \to \mathbb{R}^n$ is a continuous, conservative field. Then F is a potential field.

Question. In the last equation, we have

$$U(x + he_i) = U(x) + h \int_0^1 (F_i(x) + o(1)) dt$$

= $U(x) + F_i(x)h + o(h)$,

if $F_i(x + the_i) = F_i(x) + o(1)$ for fixed t. Does the integration with respect to t still o(1)?

Slide 512. Proof of Theorem 3.1.17.

$$U(x + he_i) = U(x) + h \int_0^1 (F_i(x) + o(1)) dt$$

= $U(x) + F_i(x)h + o(h)$

Yes. Note that we have

$$F_i(x + the_i) = F_i(x) + o(1)$$

for fixed t and any x as $h \to 0$. This is a function of x and th. Suppose we have f(h) = o(1) as $h \to 0$, meaning $\lim_{h \to 0} f(h) = 0$. We then want to show

$$\int_0^1 f(th) dt \le 1 \cdot \sup_{t \in [0,1]} f(t \cdot h) \to 0 \text{ as } h \to 0$$

Then we need to show that for any $\varepsilon>0$ there exists a $\delta>0$ such that for all h, if $|h|<\delta$, then

$$\left|\sup_{t\in[0,1]}f(t\cdot h)\right|<\varepsilon.$$

Since f=o(1), we can choose a $\delta>0$ such that if $|k|<\delta$, then $|f(k)|<\varepsilon/2$. Because $t\in[0,1]$, we have $|t\cdot h|<\delta$ and hence

$$|f(t \cdot h)| < \varepsilon/2$$
 for all $t \in [0, 1]$

This shows that

$$\sup_{t\in[0,1]}|f(t\cdot h)|\leq \varepsilon/2<\varepsilon.$$

Since

$$\left|\sup_{t\in[0,1]}f(t\cdot h)\right|\leq \sup_{t\in[0,1]}|f(t\cdot h)|,$$

the proof is complete.

Vector Fields and Line Integrals

Line Integral of a Potential Function

Vector Fields

Potential Fields

Conservative Fields

Simply Connected Sets

Differential Forms

Circulation and Flux

Circulation and Flux

Divergence and Rotation

Exercises

Simply Connected Sets

Definition. Let $\Omega \subset \mathbb{R}^n$ be an open set.

- ▶ A closed curve $\mathcal{C} \subset \Omega$ given as the image of a map $g: S^1 \to \mathcal{C}$ is said to be **contractible to a point** if there exist a continuous function $G: D \to \Omega$ such that $G|_{S^1} = g$.
- ▶ The set Ω is said to be *simply connected* if it is connected and every closed curve in Ω is contractible to a point.

Example.

- 1. $\mathbb{R}^2 \setminus \{0\}$ is not simply connected.
- 2. $\mathbb{R}^3 \setminus \{0\}$ is simply connected.

Simply Connected Sets

Definition. Let $\Omega \subset \mathbb{R}^n$ be an open set.

- ▶ A closed curve $\mathcal{C} \subset \Omega$ given as the image of a map $g: S^1 \to \mathcal{C}$ is said to be *contractible to a point* if there exist a continuous function $G: D \to \Omega$ such that $G|_{S^1} = g$.
- ▶ The set Ω is said to be *simply connected* if it is connected and every closed curve in Ω is contractible to a point.

Criteria for Potential Fields

3.1.18. Lemma. Let $\Omega \subset \mathbb{R}^n$ be a connected open set and suppose that $F:\Omega \to \mathbb{R}^n$ is continuously differentiable. Then F is a potential field only if for all $i,j=1,\ldots,n$

$$\frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i}$$

3.1.21. Theorem. Let $\Omega \subset \mathbb{R}^n$ be a *simply connected* open set and suppose that $F:\Omega \to \mathbb{R}^n$ is continuously differentiable. If for all $i,j=1,\ldots,n$

$$\frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i}$$

then F is a potential field.

Steps.

- 1. Check potential fields.
- 2. Integrate with respect to x_1 .
- 3. Integrate with respect to x_2 .

Example. Denote by $\mathbb{H} = \{(x,y) : y > 0\} \subset \mathbb{R}^2$ the upper half-space of \mathbb{R}^2 and consider the two vector fields $F, G : \mathbb{H} \to \mathbb{R}^2$ with $(x,y) \in \mathbb{H}$,

$$F(x,y) = (4x^2 + 4y^2, 8xy - \ln y), \quad G(x,y) = (x + xy, -xy)$$

- 1. Which of the two fields is conservative?
- 2. Calculate the potential function for the conservative field.

Solution 1. We calculate the partial derivatives:

$$\frac{\partial F_1}{\partial y} = 8y, \ \frac{\partial F_2}{\partial x} = 8y, \ \frac{\partial G_1}{\partial y} = x, \ \frac{\partial G_2}{\partial x} = -y$$

Since $\partial_x G_2 \neq \partial_y G_1$, G cannot be conservative. Since F is defined on a simply-connected set \mathbb{H} , F is conservative.

Solution 2. Integrate with respect to x and y,

$$\Phi(x,y) = \int F_1(x,y) dx = \frac{4}{3}x^3 + 4y^2x + C_1(y)$$

$$\Phi(x,y) = \int F_2(x,y) dy = 4xy^2 - y \ln y + y + C_2(x)$$

Then a potential function is given by

$$\Phi(x,y) = \frac{4}{3}x^3 + 4y^2x - y \ln y + y.$$

Vector Fields and Line Integrals

Line Integral of a Potential Function

Vector Fields

Potential Fields

Conservative Fields

Simply Connected Sets

Differential Forms

Circulation and Flux

Circulation and Flux

Divergence and Rotation

Exercises

Differential Forms

Definition. Let $F_1, \ldots, F_n : \mathbb{R}^n \to \mathbb{R}$ be scalar functions. Then

$$\alpha = F_1 \mathrm{d} x_1 + \dots + F_n \mathrm{d} x_n$$

is a differential one-form.

Vector Fields and Line Integrals

Line Integral of a Potential Function

Vector Fields

Potential Fields

Conservative Fields

Simply Connected Sets

Differential Forms

Circulation and Flux

Circulation and Flux

Divergence and Rotation

Exercises

Circulation and Flux

► *Flux*: the normal component of a vector field that flows through the boundary of the region.

$$\int_{\mathcal{C}^*} \langle F, N \rangle \mathrm{d} s$$

Circulation: the tangential component that flows around the boundary.

$$\int_{\mathcal{C}^*} \langle F, T \rangle \mathrm{d} s$$

where

- 1. ||N|| = ||T|| = 1.
- 2. $\langle N, T \rangle = 0$.
- 3. N points *outwards* from the region bounded by C.

Vector Fields and Line Integrals

Line Integral of a Potential Function

Vector Fields

Potential Fields

Conservative Fields

Simply Connected Sets

Differential Forms

Circulation and Flux

Circulation and Flux

Divergence and Rotation

Exercises

Flux Density and the Divergence

Definition. Let $\Omega \subset \mathbb{R}^n$ and $F: \Omega \to \mathbb{R}^n$ be a continuously differentiable vector field. Then

$$\operatorname{div} F := \frac{\partial F_1}{\partial x_1} + \dots + \frac{\partial F_n}{\partial x_n}$$

is the *divergence* of F. The flux density at a point x is given by the divergence of the field at x.

The Circulation Density — Rotation / Curl

Definition. Let $\Omega \subset \mathbb{R}^n$ be open and $F: \Omega \to \mathbb{R}^n$ a continuously differentiable vector field. Then the anti-symmetric, bilinear form

$$rolF|_{X}: \mathbb{R}^{n} \times \mathbb{R}^{n} \to \mathbb{R}, \qquad rolF|_{X}(u,v) := \langle DF|_{X}u,v \rangle - \langle DF|_{X}v,u \rangle$$

is the *rotation* or *curl* of the vector field F at $x \in \mathbb{R}^n$. In $\Omega \subset \mathbb{R}^2$, there exists a uniquely defined continuous potential function $\operatorname{rot} F$: $\Omega \to \mathbb{R}$ such that

$$rot F|_{x}(u,v) = rot F(x) \cdot \det(u,v)$$

Rotation in \mathbb{R}^2 and \mathbb{R}^3

▶ Rotation in \mathbb{R}^2 : a scalar function rot F:

$$\mathrm{rot}F = \frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2}$$

▶ Rotation in \mathbb{R}^3 : for a continuously differentiable vector field on an open set Ω , there exists a uniquely defined continuous vector field $\operatorname{rot} F: \Omega \to \mathbb{R}^3$ such that

$$rot F|_{x}(u, v) = \det(\operatorname{rot} F(x), u, v) = \langle \operatorname{rot} F(x), u \times v \rangle$$

with

$$\operatorname{rot} F(x) = \begin{pmatrix} \frac{\partial F_3}{\partial x_2} - \frac{\partial F_2}{\partial x_3} \\ \frac{\partial F_1}{\partial x_3} - \frac{\partial F_3}{\partial x_1} \\ \frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2} \end{pmatrix}$$

Example. Is there a vector field F such that $\operatorname{rot} F = 0$ for most of the points in \mathbb{R}^2 but for some of the points, it is not?

Example. Is there a vector field F such that rot F = 0 for most of the points in \mathbb{R}^2 but for some of the points, it is not?

$$F(x,y) = \begin{cases} (2,0) & y \le 2\\ (y^3 - 9y^2 + 24y - 18,0) & 2 < y < 4\\ (-2,0) & y \ge 4 \end{cases}$$

Example. Given an electric field $E = c(2bxy, x^2 + ay^2)$, $a, b, c \in \mathbb{R}$, determine values for a and b such that $\operatorname{div} E = 0$ and $\operatorname{rot} E = 0$. Then find a potential function V for E with these values a and b.

Example. Given an electric field $E=c(2bxy,x^2+ay^2)$, $a,b,c\in\mathbb{R}$, determine values for a and b such that $\mathrm{div}E=0$ and $\mathrm{rot}E=0$. Then find a potential function V for E with these values a and b. Solution.

$$\operatorname{div} E = 0 \quad \Rightarrow \quad b = -a$$

 $\operatorname{rot} E = 0 \quad \Rightarrow \quad b = 1, a = -1$

Then

$$E = c \binom{2xy}{x^2 - y^2}$$

with a potential

$$V = cx^2y - \frac{c}{3}y^3.$$

Note. The circulation density in the plane spanned by u and v at x is given by

$$\left\langle \mathrm{rot} F|_{x}, \frac{u \times v}{\|u \times v\|} \right\rangle$$

The circulation density of a vector field in \mathbb{R}^3 is represented by a vector field $\mathrm{rot} F$ given by

$$\operatorname{rot} F(x) = \begin{pmatrix} \frac{\partial F_3}{\partial x_2} - \frac{\partial F_2}{\partial x_3} \\ \frac{\partial F_1}{\partial x_3} - \frac{\partial F_3}{\partial x_1} \\ \frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2} \end{pmatrix}$$

Irrotational Fields

A continuously differentiable field $F:\Omega\to\mathbb{R}^n$ such that $\mathit{vot} F|_x=0$ for all $x\in\Omega$ is *irrotational*. Then

$$(DF|_{x})^{T} = DF|_{x}$$

Note. A potential field is irrotational.

Fluid Statistics

For *potential flow*,

$$F = \nabla U$$
, $\operatorname{div} F = 0$

Then

$$\operatorname{div}(\nabla U) = \operatorname{div}\begin{pmatrix} \frac{\partial U}{\partial x_1} \\ \vdots \\ \frac{\partial U}{\partial x_n} \end{pmatrix} = \frac{\partial^2 U}{\partial x_1^2} + \dots + \frac{\partial^2 U}{\partial x_n^2} = \Delta U = 0$$

Triangle Calculus

Define notation

$$\nabla := \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix}$$

then

- ▶ the gradient of a potential function $f: \nabla f$.
- the divergence of a vector field F: $\operatorname{div} F = \langle \nabla, F \rangle$.
- the rotation of a vector field F:

$$\operatorname{rot} F = \nabla \times F(x) = \det \begin{pmatrix} e_1 & e_2 & e_3 \\ \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \frac{\partial}{\partial x_3} \\ F_1 & F_2 & F_3 \end{pmatrix}$$

▶ the Laplace operator: $\Delta = \langle \nabla, \nabla \rangle = \nabla^2$.

Exercise 1. Let $g:(0,\infty)\to\mathbb{R}$ be a differentiable function and let $\|x\|=\sqrt{x_1^2+x_2^2+x_3^2}$ for $x=(x_1,x_2,x_3)\in\mathbb{R}^3$. Prove that the vector field

$$F: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^3, \quad F(x) = g(\|x\|)x$$

is conservative.

Exercise 1. Let $g:(0,\infty)\to\mathbb{R}$ be a differentiable function and let $\|x\|=\sqrt{x_1^2+x_2^2+x_3^2}$ for $x=(x_1,x_2,x_3)\in\mathbb{R}^3$. Prove that the vector field

$$F: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^3, \quad F(x) = g(\|x\|)x$$

is conservative.

Solution. The set $\mathbb{R}^3 \setminus \{0\}$ is simply connected. We evaluate

$$|(\operatorname{rot} F)_i| = \left| \frac{\partial F_j}{\partial x_k} - \frac{\partial F_k}{\partial x_j} \right| \quad \text{for } i \neq j \neq k \in \{1, 2, 3\}$$

We have

$$\frac{\partial F_j}{\partial x_k} = \frac{\partial}{\partial x_k} g(\|x\|) x_j = x_j x_k \frac{g'(\|x\|)}{\|x\|} = \frac{\partial F_k}{\partial x_j}.$$

Exercise 2. The gravitational force in \mathbb{R}^3 is

$$F_3 = -\frac{GmM}{\|x\|^2} \frac{x}{\|x\|}.$$

Consider a more generalized vector space with dimension n,

$$F = \frac{cx}{\|x\|^n},$$

where $c \in \mathbb{R}$ is constant. Prove that $\operatorname{div} F = 0$, $\operatorname{rot} F = 0$.

Exercise 2 Solution.

$$\frac{\partial F_i}{\partial x_i} = \frac{c}{\|x\|^n} - \frac{ncx_i^2}{\|x\|^{n+2}}, \qquad \frac{\partial F_i}{\partial x_j} = -\frac{ncx_ix_j}{\|x\|^{n+2}} = \frac{\partial F_j}{\partial x_i}$$

Then

$$\mathrm{div}F = 0$$

and

$$rot F|_{x}(e_{i}, e_{i}) = \langle DF|_{x}e_{i}, e_{i} \rangle - \langle DF|_{x}e_{i}, e_{i} \rangle = 0$$

Thanks for your attention!