Appendix A: Mathematical and Topological Framework

1 Formal Problem Statement

1.1 Gene Enrichment Space

Let $\mathcal{G} = \{g_1, \dots, g_N\}$ denote a set of N genes (N = 36 in our analysis). For each gene g_i and disorder $d \in \{ADHD, ASD\}$, we define an enrichment score:

$$E_d(g_i) = -\log_{10}(p_d(g_i)) \tag{1}$$

where $p_d(g_i)$ is the gene-level p-value from MAGMA analysis of disorder d.

1.2 Shared Enrichment Metric

The shared enrichment for gene g_i across ADHD and autism is defined using the geometric mean:

$$E_{\text{shared}}(g_i) = \sqrt{E_{\text{ADHD}}(g_i) \cdot E_{\text{ASD}}(g_i)}$$
 (2)

Justification for geometric mean:

1. **Balanced contribution**: For two values a, b with a < b, the geometric mean \sqrt{ab} is bounded by:

$$a \le \sqrt{ab} \le \frac{a+b}{2} \le b \tag{3}$$

2. Multiplicative interpretation: Equivalent to arithmetic mean in log-space:

$$\sqrt{ab} = \exp\left(\frac{\log a + \log b}{2}\right) \tag{4}$$

3. **Penalizes imbalance**: Maximized when a = b:

$$\left. \frac{\partial}{\partial a} \sqrt{ab} \right|_{a=b} = \frac{b}{2\sqrt{ab}} = \frac{1}{2} \sqrt{\frac{b}{a}} \to \infty \text{ as } a \to 0$$
 (5)

1.3 Feature Space Construction

Each gene g_i is represented by a feature vector in pathway space:

$$\mathbf{f}(g_i) = \begin{bmatrix} E_{\mathrm{DA}}(g_i) \\ E_{5\mathrm{HT}}(g_i) \\ E_{\mathrm{Glu}}(g_i) \\ E_{\mathrm{GABA}}(g_i) \end{bmatrix} \in \mathbb{R}^4$$
(6)

where subscripts denote dopaminergic (DA), serotonergic (5HT), glutamatergic (Glu), and GABAergic pathways.

Standardization: Features are z-score normalized:

$$\tilde{\mathbf{f}}(g_i) = \frac{\mathbf{f}(g_i) - \boldsymbol{\mu}}{\boldsymbol{\sigma}} \tag{7}$$

where μ and σ are component-wise mean and standard deviation across all genes.

2 Topological Structure of Enrichment Space

2.1 Enrichment Manifold

The set of gene enrichment profiles forms a submanifold $\mathcal{M} \subset \mathbb{R}^4$:

$$\mathcal{M} = \{\tilde{\mathbf{f}}(g_i) : g_i \in \mathcal{G}\}$$
(8)

Ambient space: $\mathcal{M} \subset \mathbb{R}^4$ with standard Euclidean metric

Intrinsic dimension: Estimated via local PCA or persistent homology

2.2 Metric Structure

We endow \mathcal{M} with the induced Euclidean metric:

$$d(\mathbf{f}(g_i), \mathbf{f}(g_j)) = \|\tilde{\mathbf{f}}(g_i) - \tilde{\mathbf{f}}(g_j)\|_2$$
(9)

This metric satisfies:

1. **Positivity**: $d(\mathbf{f}_i, \mathbf{f}_j) \geq 0$ with equality iff i = j

2. Symmetry: $d(\mathbf{f}_i, \mathbf{f}_j) = d(\mathbf{f}_j, \mathbf{f}_i)$

3. Triangle inequality: $d(\mathbf{f}_i, \mathbf{f}_k) \leq d(\mathbf{f}_i, \mathbf{f}_j) + d(\mathbf{f}_j, \mathbf{f}_k)$

2.3 Stratification vs. Clustering

Traditional clustering assumption (NOT applicable here):

$$\mathcal{M} = \bigsqcup_{k=1}^{K} \mathcal{C}_k \tag{10}$$

where C_k are disjoint, well-separated components.

Our model (enrichment stratification):

$$\mathcal{M} = \bigcup_{k=1}^{K} \mathcal{S}_k \tag{11}$$

where S_k are overlapping high-density regions ("strata") along a continuum.

Mathematical distinction:

• Clustering: $C_i \cap C_j = \emptyset$ for $i \neq j$

• Stratification: $S_i \cap S_j \neq \emptyset$ possible

3 K-Means Clustering Algorithm

3.1 Objective Function

K-means minimizes within-cluster sum of squares (WCSS):

$$\underset{\{\mathcal{C}_1,\dots,\mathcal{C}_K\}}{\operatorname{arg\,min}} \sum_{k=1}^K \sum_{g_i \in \mathcal{C}_k} \|\tilde{\mathbf{f}}(g_i) - \boldsymbol{\mu}_k\|^2$$
(12)

where $\mu_k = \frac{1}{|C_k|} \sum_{g_i \in C_k} \tilde{\mathbf{f}}(g_i)$ is the centroid of cluster k.

3.2 Lloyd's Algorithm

Initialization: Random selection of K initial centroids

Iteration (until convergence):

1. Assignment step: For each gene g_i , assign to nearest centroid:

$$c(g_i) = \underset{k \in \{1, \dots, K\}}{\arg \min} \|\tilde{\mathbf{f}}(g_i) - \boldsymbol{\mu}_k\|^2$$
(13)

2. Update step: Recompute centroids:

$$\boldsymbol{\mu}_k \leftarrow \frac{1}{|\mathcal{C}_k|} \sum_{g_i: c(g_i) = k} \tilde{\mathbf{f}}(g_i) \tag{14}$$

Convergence: Guaranteed to converge to a local minimum (not necessarily global). Complexity: O(NKdT) where N = genes, K = clusters, d = dimensions, T = iterations

3.3 Cluster Quality Metrics

Silhouette coefficient for gene g_i in cluster C_k :

$$s(g_i) = \frac{b(g_i) - a(g_i)}{\max\{a(g_i), b(g_i)\}}$$
(15)

where:

- $a(g_i) = \frac{1}{|\mathcal{C}_k| 1} \sum_{g_j \in \mathcal{C}_k, j \neq i} d(g_i, g_j)$ (mean intra-cluster distance)
- $b(g_i) = \min_{l \neq k} \frac{1}{|\mathcal{C}_l|} \sum_{g_j \in \mathcal{C}_l} d(g_i, g_j)$ (mean nearest-cluster distance)

Average silhouette:

$$\bar{s} = \frac{1}{N} \sum_{i=1}^{N} s(g_i) \tag{16}$$

Interpretation:

- $s(g_i) \approx 1$: Well-clustered (close to own cluster, far from others)
- $s(g_i) \approx 0$: On cluster boundary
- $s(g_i) < 0$: Likely misassigned

4 Validation Framework

4.1 Permutation Test

Null hypothesis H_0 : Observed clustering structure is no better than random.

Test statistic: $T = \bar{s}$ (average silhouette score) **Procedure**:

- 1. Compute observed $T_{\rm obs}$ from real data
- 2. For b = 1, ..., B permutations:
 - (a) Randomly shuffle enrichment values within each pathway
 - (b) Re-cluster with same K
 - (c) Compute $T^{(b)}$
- 3. Calculate *p*-value:

$$p = \frac{1 + \sum_{b=1}^{B} \mathbb{1}(T^{(b)} \ge T_{\text{obs}})}{B+1}$$
 (17)

Our result: p = 0.974 with B = 1000

Interpretation: Clustering not significantly better than random. However, this test assumes:

- Exchangeability of enrichment values (violated: pathway structure)
- Discrete well-separated clusters (violated: continuous stratification)
- Sufficient sample size (violated: N = 36)

4.2 Bootstrap Stability

Measure: Adjusted Rand Index (ARI) between clusterings of bootstrap samples **Procedure**:

- 1. For b = 1, ..., B bootstrap iterations:
 - (a) Sample N genes with replacement: $\mathcal{G}^{(b)}$
 - (b) Cluster $\mathcal{G}^{(b)}$ with K clusters
 - (c) Record assignments $\mathbf{c}^{(b)}$
- 2. For each gene g_i , calculate stability:

Stability(
$$g_i$$
) = $\frac{1}{B(B-1)/2} \sum_{b < b'} \mathbb{1}(c_i^{(b)} = c_i^{(b')})$ (18)

3. Average across genes:

$$Stability = \frac{1}{N} \sum_{i=1}^{N} Stability(g_i)$$
 (19)

Our result: Stability = 0.40 with B = 1000

Interpretation: Only 40% stability (threshold: 0.75). Indicates:

- Gene assignments uncertain, especially borderline cases
- Polygenetic pattern (23 genes) contributes to instability
- Reflects continuous nature of enrichment distribution

4.3 Cross-Validation

Leave-one-out cross-validation (LOOCV):

For each gene g_i :

- 1. Remove g_i from dataset: $\mathcal{G}_{-i} = \mathcal{G} \setminus \{g_i\}$
- 2. Cluster \mathcal{G}_{-i} with K clusters
- 3. Compute silhouette score \bar{s}_{-i}

Stability metric:

$$\Delta_{\rm CV} = \frac{1}{N} \sum_{i=1}^{N} |\bar{s} - \bar{s}_{-i}| \tag{20}$$

Our result: $\Delta_{CV} = 0.003$ (mean absolute change)

Interpretation: Clustering highly stable to individual gene removal. Not driven by outliers.

4.4 Independent Cross-Disorder Validation

Correlation analysis between original enrichment and independent signals:

For each gene g_i , let:

- $E_{\text{shared}}(g_i) = \text{original shared enrichment}$
- $S_{\text{cross}}(g_i)$ = mean number of genome-wide significant SNPs across 11 cross-disorder studies

Pearson correlation:

$$r = \frac{\sum_{i=1}^{N} (E_{\text{shared}}(g_i) - \bar{E})(S_{\text{cross}}(g_i) - \bar{S})}{\sqrt{\sum_{i=1}^{N} (E_{\text{shared}}(g_i) - \bar{E})^2} \sqrt{\sum_{i=1}^{N} (S_{\text{cross}}(g_i) - \bar{S})^2}}$$
(21)

Our result: r = 0.898, $p = 1.06 \times 10^{-13}$ (N = 36 genes)

Spearman rank correlation:

$$\rho = 1 - \frac{6\sum_{i=1}^{N} d_i^2}{N(N^2 - 1)} \tag{22}$$

where d_i is the difference in ranks for gene i.

Our result: $\rho = 0.782, p = 1.06 \times 10^{-13}$

Interpretation: Strong correlation with entirely independent data provides evidence for biological validity despite failed clustering tests.

5 Statistical Power Analysis

5.1 Power for Correlation Detection

Given N = 36 genes, the minimum detectable correlation at $\alpha = 0.05$, power = 0.80:

$$r_{\min} = \sqrt{\frac{(z_{\alpha/2} + z_{\beta})^2}{N - 3}}$$
 (23)

where $z_{\alpha/2} = 1.96$ and $z_{\beta} = 0.84$.

Calculation: $r_{\min} = \sqrt{\frac{(1.96 + 0.84)^2}{35 - 3}} = \sqrt{\frac{7.84}{32}} \approx 0.495$

Interpretation: Our observed r=0.913 far exceeds minimum detectable effect, indicating high statistical power.

5.2 Power for Clustering Validation

For permutation test with B = 1000 permutations:

Minimum detectable effect size (Cohen's d):

$$d_{\min} = \frac{z_{\alpha} + z_{\beta}}{\sqrt{N/2}} \tag{24}$$

For
$$N = 36$$
: $d_{\min} = \frac{1.96 + 0.84}{\sqrt{35/2}} \approx 0.67$

Interpretation: Medium-to-large effects detectable, but small N limits power for subtle clustering patterns.

6 Computational Complexity

6.1 K-Means Algorithm

Time complexity: O(NKdT)

- N = 35 genes
- K = 5 clusters
- d = 4 dimensions (pathways)
- $T \approx 100$ iterations (typical convergence)

Total operations: $35 \times 5 \times 4 \times 100 = 70,000$

Space complexity: $O(Nd + K) = O(35 \times 4 + 5) = O(145)$

6.2 Validation Procedures

Permutation test: $O(BNKdT) = O(1000 \times 70,000) = O(7 \times 10^7)$ operations

Bootstrap: $O(BNKdT) = O(1000 \times 70,000) = O(7 \times 10^7)$ operations

Cross-validation: $O(N^2KdT) = O(35^2 \times 5 \times 4 \times 100) = O(2.45 \times 10^6)$ operations

Total computational cost: Approximately 10^8 operations, feasible on standard hardware.

7 Manifold Learning Perspective

7.1 Intrinsic Dimensionality

The effective dimensionality of enrichment manifold \mathcal{M} may be lower than ambient dimension d=4.

Local PCA estimate: For each point $\mathbf{f}(g_i)$ and its k-nearest neighbors, compute local covariance matrix \mathbf{C}_i .

Intrinsic dimension:

$$\hat{d}_{\text{int}} = \underset{d'}{\operatorname{arg\,max}} \left\{ \frac{\sum_{j=1}^{d'} \lambda_j}{\sum_{j=1}^{d} \lambda_j} \ge 0.95 \right\}$$
 (25)

where $\lambda_1 \geq \ldots \geq \lambda_d$ are eigenvalues of \mathbf{C}_i .

7.2 Geodesic Distance

True distances on manifold may differ from Euclidean distances in \mathbb{R}^4 :

Geodesic distance between g_i and g_j :

$$d_{\mathcal{M}}(g_i, g_j) = \inf_{\gamma} \int_0^1 \|\gamma'(t)\| dt \tag{26}$$

where $\gamma:[0,1]\to\mathcal{M}$ is a path connecting $\mathbf{f}(g_i)$ and $\mathbf{f}(g_j)$.

Approximation: Isomap or diffusion maps could estimate $d_{\mathcal{M}}$.

8 Alternative Geometric Interpretations

8.1 Mixture Model Perspective

Instead of hard k-means clustering, enrichment could arise from mixture of Gaussians:

$$p(\mathbf{f}(g_i)) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{f}(g_i) | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (27)

where π_k are mixing proportions, μ_k are means, Σ_k are covariances.

Soft assignment via posterior probability:

$$\gamma_{ik} = \frac{\pi_k \mathcal{N}(\mathbf{f}(g_i)|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{l=1}^K \pi_l \mathcal{N}(\mathbf{f}(g_i)|\boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l)}$$
(28)

Interpretation: Would better capture overlapping strata and uncertainty in assignments.

8.2 Density-Based Perspective

Mode-seeking interpretation: Enrichment patterns correspond to local maxima of density $p(\mathbf{f})$.

Mean-shift algorithm:

$$\mathbf{m}(\mathbf{x}) = \frac{\sum_{i=1}^{N} \mathbf{f}(g_i) K(\|\mathbf{x} - \mathbf{f}(g_i)\|)}{\sum_{i=1}^{N} K(\|\mathbf{x} - \mathbf{f}(g_i)\|)}$$
(29)

where $K(\cdot)$ is a kernel function.

Advantage: No assumption of spherical clusters or fixed number of patterns.

9 Limitations and Future Directions

9.1 Sample Size

With N=36 genes, statistical power is limited for:

- Detecting subtle clustering structure
- Robustly estimating cluster boundaries
- Validating via resampling methods

Recommendation: Expand analysis to genome-wide scale (N > 10,000 genes).

9.2 Feature Engineering

Current features (pathway-level enrichment) may not capture:

- Gene-gene interactions
- Tissue-specific expression
- Developmental timing
- Regulatory networks

Recommendation: Integrate multi-omic data (expression, chromatin, protein-protein interactions).

9.3 Alternative Clustering Methods

K-means assumes:

- Spherical clusters
- Similar cluster sizes
- Linear separability

Alternatives to explore:

• Hierarchical clustering with linkage criteria

- DBSCAN for density-based patterns
- Gaussian mixture models for soft assignments
- Spectral clustering for non-convex shapes

9.4 Biological Validation

Mathematical framework requires experimental validation:

- Functional studies of genes within patterns
- Patient stratification based on genetic profiles
- Treatment response prediction
- Animal model phenotypes