线性代数

Thursday $9^{\rm th}$ October, 2025

目录

1	行列式(方阵)	4
	1.1 运算关系	4
	1.2 K 阶子式	4
	1.3 K 阶主子式	4
	1.4 K 阶顺序主子式	4
	1.5 余子式	5
	1.6 代数余子式	5
	1.7 线性	5
	1.8 初等变换	5
	1.9 范德蒙德行列式	5
2	·····································	6
4	2.1 加法	6
	2.2 内积	6
	2.2.1 柯西-施瓦茨不等式	6
	2.3 外积	7
	2.4 数幂(方阵)	7
	2.4	1
3	行(列)矩阵(向量)	7
	3.1 范数(模长)	7
	3.2 内积(点乘)	8
	3.3 外积(叉乘)	8
1	转置。	8
4	**	G
5	逆(方阵)	8
6	伴随(方阵)	9
7	分块矩阵	9
8	初等变换(等价)	9
		10
	8.2 广义初等变换(舒尔公式)	10
9	秩 1	10
10) D 向量组	11
10	・ <u> </u>	
	10.2 线性相 (无) 关组	
	10.2 线性相(九)天组	
	10.2.1 线性表示法	
	10.2.2 介认万程组法	
	- 10:0	$_{1}$

		10.3.1 求法	12
	10.4	等价向量组	12
	10.5	基	12
		10.5.1 过渡矩阵	12
	10.6	格拉姆-施密特正交化	12
	10.7	单位化	13
11	线性	方程组	13
	11.1	齐次线性方程组	13
	11.2	非齐次线性方程组	13
	11.3	增广矩阵	13
	11.4	克拉默法则	14
	11.5	增广矩阵解(非)齐次方程组	14
	11.6	秩和解的关系	14
	11.7	齐次线性方程组同解充要条件	15
	11.8	齐次线性方程组有非零公共解充要条件	15
12	正交	矩阵(方阵)	15
13	亦(方阵)	15
14		· · · · · · · · · · · · · · · · · · ·	16
		特征矩阵	
		特征多项式	
	14.3	特征值	
		14.3.1 代数重数	
	111	特征向量	
	14.4	14.4.1 特征空间	
	115	性质	
	14.5	止灰	11
15			17
	15.1	相似对角化	18
16	对称	矩阵(方阵)	18
	16.1	* 谱分解定理	19
17	合同	(方阵)	19
	17.1	西尔维斯特惯性定理	19
18	二次	型(方阵、对称矩阵)	19
	18.1	标准型(对角矩阵)	19
	18.2	二次型转标准型(合同对角化)	20
		18 9 1 正交变换注	20

	18.2.2 拉格朗日配方法	 20
	18.2.3 初等变换法	 21
18.3	3 规范型	 21
18.4	4 正定二次型	 21

1 行列式(方阵)

Definition 1.0.1.

$$\det A = \sum_{i} a_{ij} A_{ij} = \sum_{j} (-1)^{i+j} a_{ij} M_{ij}$$

$$\begin{vmatrix} a_{11} & \cdots & a_{1,j-1} & a_{1j} & a_{1,j+1} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{i-1,1} & \cdots & a_{i-1,j-1} & a_{i-1,j} & a_{i-1,j+1} & \cdots & a_{i-1,n} \\ a_{i,1} & \cdots & a_{i,j-1} & a_{ij} & a_{i,j+1} & \cdots & a_{i,n} \\ a_{i+1,1} & \cdots & a_{i+1,j-1} & a_{i+1,j} & a_{i+1,j+1} & \cdots & a_{i+1,n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n,j-1} & a_{nj} & a_{n,j+1} & \cdots & a_{nn} \end{vmatrix}$$

1.1 运算关系

$$\det A = \det A^{T}$$
$$\det kA = k^{n} \det A$$
$$\det AB = \det A \det B$$

1.2 K 阶子式

选取行列式 A 的 K 行 $R = \{r_1, r_2, \cdots, r_K\}$

选取行列式 A 的 K 列 $C = \{c_1, c_2, \cdots, c_K\}$

将处在选取行列中的元素 $\{a_{ij} (i \in R, j \in C)\}$ 组成新的行列式 B_{kk} ,称为行列式 A 的 K 阶子式

1.3 K 阶主子式

在 K 阶子式基础上,要求选取的行、列序数相同:

选取行列式 A 的 K 行/列 $L = \{l_1, l_2, \cdots, l_K\}$

将处在选取行列中的元素 $\{a_{ij} (i \in L, j \in L)\}$ 组成新的行列式 B_{kk} ,称为行列式 A 的 K 阶主子式

1.4 K 阶顺序主子式

在 K 阶子式基础上,只能选取前 K 行、列:

选取行列式 A 的前 K 行/列 $L = \{1, 2, \dots, K\}$

将处在选取行列中的元素 $\{a_{ij} (i \in L, j \in L)\}$ 组成新的行列式 B_{kk} ,称为行列式 A 的 K 阶顺序主子式

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1K} \\ a_{21} & a_{22} & \cdots & a_{2K} \\ \vdots & \vdots & \ddots & \vdots \\ a_{K1} & a_{K2} & \cdots & a_{KK} \end{vmatrix}$$

1.5 余子式

原行列式去掉第 i 行第 j 列,得到的行列式称为余子式,记作 M_{ij}

$$M_{ij} = \begin{vmatrix} a_{11} & \cdots & a_{1,j-1} & a_{1,j+1} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{i-1,1} & \cdots & a_{i-1,j-1} & a_{i-1,j+1} & \cdots & a_{i-1,n} \\ a_{i+1,1} & \cdots & a_{i+1,j-1} & a_{i+1,j+1} & \cdots & a_{i+1,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n,j-1} & a_{n,j+1} & \cdots & a_{nn} \end{vmatrix}$$

1.6 代数余子式

余子式乘以 $(-1)^{i+j}$,记作 A_{ij}

$$A_{ij} = \left(-1\right)^{i+j} M_{ij}$$

1.7 线性

可将行列式某行(列)分解为两个行列式之和

$$\begin{vmatrix} a_{11} & \cdots & a_{1j} + b_{1j} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i,1} & \cdots & a_{ij} + b_{ij} & \cdots & a_{i,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nj} + b_{nj} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nj} + b_{nj} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & \cdots & b_{1j} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i,1} & \cdots & a_{ij} & \cdots & a_{i,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & \cdots & b_{1j} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i,1} & \cdots & b_{ij} & \cdots & a_{i,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{vmatrix}$$

1.8 初等变换

对行列式进行初等变换 (8)

- 1. 第一类初等变换 $\det A \xrightarrow{r_i \leftrightarrow r_j} \det A'$
- 2. 第二类初等变换 $\det A \xrightarrow{kr_i \to r_i(k \neq 0)} k \det A'$
- 3. 第三类初等变换 $\det A \xrightarrow{r_i + kr_j \to r_i} \det A'$

1.9 范德蒙德行列式

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le j < i \le n} (x_i - x_j)$$

2 运算律

2.1 加法

幺元
$$A+O=A$$

交換律 A+B=B+A

结合律
$$(A+B)+C=A+(B+C)$$

减法
$$A-B=A+(-B)$$

数乘

$$(kl) A = k (lA) = l (kA)$$
$$(k+l) A = kA + lA$$
$$k (A+B) = kA + kB$$

2.2 内积

Definition 2.2.1.

$$A \cdot B = \sum_{i} \sum_{j} a_{ij} b_{ij}$$

无零元

无幺元

无逆元

数乘
$$(\lambda A) \cdot B = \lambda (A \cdot B)$$

交換律 $A \cdot B = B \cdot A$

分配律
$$(A+B) \cdot C = A \cdot C + B \cdot C$$

不满足结合律 $A \cdot (B \cdot C) \neq (A \cdot B) \cdot C$

不满足消去律 $A \cdot B = A \cdot C \implies B = C$

2.2.1 柯西-施瓦茨不等式

(积和方 ≤ 方和积)

$$(A \cdot B)^2 \leqslant (A \cdot A) (B \cdot B)$$

2.3 外积

Definition 2.3.1.

$$C_{m,p} = A_{m,n} B_{n,p}$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1p} \\ c_{21} & c_{22} & \cdots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mp} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{bmatrix}$$

零元 AO = OA = O

幺元 AE = EA = A

无逆元 仅满秩矩阵拥有逆矩阵

数乘 $(\lambda A) B = \lambda (AB)$

结合律 A(BC) = (AB)C

分配律 A(B+C) = AB + AC

不满足交換律 $AB \neq BA$

不满足消去律 $AB = AC \implies B = C$

2.4 数幂(方阵)

Definition 2.4.1.

$$A^k = AA^{k-1}$$

$$A^{0} = E$$

$$A^{k}A^{l} = A^{k+l}$$

$$(A^{k})^{l} = A^{kl}$$

3 行(列)矩阵(向量)

3.1 范数(模长)

$$\|oldsymbol{v}\| = \sqrt{oldsymbol{v}\cdotoldsymbol{v}}$$

7

3.2 内积(点乘)

$$egin{aligned} oldsymbol{v} \cdot oldsymbol{w} &= \sum_i v_i w_i (v_i w_i)$$
 与自己的 $oldsymbol{v} \cdot oldsymbol{w} = \| oldsymbol{v} \| oldsymbol{w} \| oldsymbol{v} \| oldsymbol{v} \cdot oldsymbol{w} \| oldsymbol{v} \cdot oldsymbol{v} \| oldsymbol{v} \cdot oldsymbol{w} \| oldsymbol{v} \cdot oldsymbol{v} \| oldsymbol{$

运算律同内积(2.2)

3.3 外积(叉乘)

$$egin{aligned} oldsymbol{v} imes oldsymbol{w} & oldsymbol{v} = egin{bmatrix} oldsymbol{v}_x & oldsymbol{w}_x \ oldsymbol{v}_y \end{bmatrix} imes egin{bmatrix} \hat{oldsymbol{v}} & v_x & w_x \ oldsymbol{w}_y \ oldsymbol{w}_z \end{bmatrix} = egin{bmatrix} \hat{oldsymbol{v}} & v_x & w_x \ \hat{oldsymbol{v}} & v_y & w_y \ \hat{oldsymbol{k}} & v_z & w_z \end{bmatrix} \ \|oldsymbol{v} imes oldsymbol{w} \| oldsymbol{v} \| oldsymbol{w} \| oldsymbol{w} \| oldsymbol{w} \| oldsymbol{v} \| oldsym$$

运算律同外积(2.3)

4 转置

Definition 4.0.1.

$$(A^{T})^{T} = A$$

$$(A + B)^{T} = A^{T} + B^{T}$$

$$(kA)^{T} = kA^{T}$$

$$(AB)^{T} = B^{T}A^{T}$$

$$(A^{k})^{T} = (A^{T})^{k}$$

5 逆(方阵)

Definition 5.0.1 (经过矩阵 A 变换,变换后的线性空间可以通过 A^{-1} 变换回原线性空间).

$$AA^{-1} = A^{-1}A = E$$

$$(A^{-1})^{-1} = A$$
$$(kA)^{-1} = \frac{1}{k}A^{-1}$$
$$(AB)^{-1} = B^{-1}A^{-1}$$
$$\exists A^{-1} \Longrightarrow \exists (A^T)^{-1}$$
$$(A^T)^{-1} = (A^{-1})^T$$
$$\det A^{-1} = \frac{1}{\det A}$$

若矩阵 A 变换压缩了维度,则无法通过逆矩阵变换回来:

$$\exists A^{-1} \iff r(A_n) = n \iff \det A \neq 0$$

6 伴随(方阵)

$$A^* = \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{bmatrix}$$

$$AA^* = A^*A = (\det A)E$$

$$(kA)^* = k^{n-1}A^*$$

$$\det A \neq 0 \implies A^* = (\det A)A^{-1}$$

$$(A^*)^{-1} = (A^{-1})^*$$

$$\det A^* = (\det A)^{n-1}$$

7 分块矩阵

运算与普通矩阵相同

8 初等变换(等价)

行: r_i , 列: c_i

- 1. 对换: 第一类初等变换 对换两行 (列): $r_i \leftrightarrow r_j$
- 2. 倍乘: 第二类初等变换 k 乘某行 (列): $kr_i \rightarrow r_i \ (k \neq 0)$
- 3. 倍加: 第三类初等变换 加某行 (列) k 倍: $r_i + kr_j \to r_i$

反身性 $A \cong A$

对称性 $A \cong B \Longrightarrow B \cong A$

传递性 $A \cong B, B \cong C \Longrightarrow A \cong C$

$$A \cong B \iff A, B$$
同型且 $r(A) = r(B)$

若对 A 初等行变换(行等价),可先对 E 作相同初等行变换,即可得到 P,再让 A 左乘 P 若对 A 初等列变换(列等价),可先对 E 作相同初等列变换,即可得到 Q,再让 A 右乘 Q 初等变换不改变秩,故 P、Q 必然满秩(可逆)

$$A \to B \iff E \to P, Q, \quad PAQ = B \iff A, B$$
同型且 $r(A) = r(B)$
 $A \xrightarrow{r} B \iff E \xrightarrow{r} Q, \qquad PA = B \iff A, B$ 同型且 $r(A) = r(B) = r\begin{bmatrix} A \\ B \end{bmatrix}$
 $A \xrightarrow{c} B \iff E \xrightarrow{c} Q, \qquad AQ = B \iff A, B$ 同型且 $r(A) = r(B) = r[A B]$

8.1 初等变换求逆矩阵

$$\begin{bmatrix} A & E \end{bmatrix} \xrightarrow{r} \begin{bmatrix} E & A^{-1} \end{bmatrix}$$
$$\begin{bmatrix} A \\ E \end{bmatrix} \xrightarrow{c} \begin{bmatrix} E \\ A^{-1} \end{bmatrix}$$

8.2 广义初等变换(舒尔公式)

广义倍加(左行右列):

- 1. 分块矩阵某行左乘一矩阵加到另一行, 秩不变
- 2. 分块矩阵某列右乘一矩阵加到另一列, 秩不变

9 秩

Definition 9.0.1 (经过矩阵 A 变换,变换后的线性空间的维度是 r(A)).

$$r\begin{bmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & | \end{bmatrix} = \dim \operatorname{span} [v_1, v_2, \cdots, v_n]$$

$$A \cong B \implies r(A) = r(B)$$

$$\max \{r(A), r(B)\} \leqslant r(A, B) \leqslant r(A) + r(B)$$

$$r(A+B) \leqslant r(A) + r(B)$$

$$r(AB) \leqslant \min \{r(A), r(B)\}$$

$$\exists P^{-1}, Q^{-1} \implies r(A) = r(PAQ)$$

$$A_{m,n}B_{n,s} = 0 \implies r(A_{m,n}) + r(B_{n,s}) \leqslant n$$

$$\begin{cases} r(A) = n & \iff r(A^*) = n \\ r(A) = n - 1 & \iff r(A^*) = 1 \\ r(A) < n - 1 & \iff r(A^*) = 0 \end{cases}$$

满秩 (方阵): $r(A_n) = n$ 奇异矩阵: 不满秩的方阵 非奇异矩阵: 满秩方阵

10 向量组

10.1 线性表示

$$oldsymbol{w} = \sum_{i=1}^n k_i oldsymbol{v}_i; k_i \in \mathbb{R}$$

10.2 线性相(无)关组

10.2.1 线性表示法

常用于线性相关组判定 向量组 $\{v_n\}$ 中,存在一个向量可由其他向量线性表示,则为线性相关组

$$\exists \boldsymbol{v}_m; 1 \leqslant m \leqslant n \rightarrow \boldsymbol{v}_m = \sum_{\substack{i=1\\i\neq m}}^n k_i \boldsymbol{v}_i; k_i \in \mathbb{R}$$

若不存在该向量则为线性无关组

10.2.2 齐次方程组法

常用于线性无关组判定

向量组 $\{v_n\}$ 中,向量组对应的齐次线性方程组只有零解,则为线性无关组

$$\sum_{i=1}^{n} k_i \mathbf{v}_i = 0; k_i \in \mathbb{R} \to k_i = 0$$

若有非零解则为相关组

10.3 极大无关组

向量组 $\{v_n\}$ 中,存在一个线性无关子集 $\{w_m\}$,能线性表示向量组内所有向量,则称为向量组的一个极大无关组(不唯一,除非 m=n)

$$\forall \boldsymbol{v}_j; 1 \leqslant j \leqslant n \rightarrow \boldsymbol{v}_j = \sum_{i=1}^m k_i \boldsymbol{w}_i; k_i \in \mathbb{R}$$

$$r\{\boldsymbol{v}_n\} = r\{\boldsymbol{w}_m\} = m$$

10.3.1 求法

将向量写为矩阵的列向量形式:

$$egin{bmatrix} |&|&&|\ oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_n\ |&|&&| \end{bmatrix}$$

通过初等行变换化为行阶梯矩阵 (无需最简):

$$\begin{bmatrix}
\alpha_1 & \times & \times & \times & \times \\
0 & 0 & \alpha_2 & \times & \times \\
0 & 0 & 0 & \alpha_3 & \times \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

台角所在列的集合即为一个极大无关组

10.4 等价向量组

列向量组等价相当于矩阵的列等价

$$\{ oldsymbol{v}_m \} \cong \{ oldsymbol{w}_n \}$$
 $\iff r \{ oldsymbol{v}_m \} = r \{ oldsymbol{w}_n \} = r (\{ oldsymbol{v}_m \} \cup \{ oldsymbol{w}_n \})$

10.5 基

设向量组 $\{v_n\}$ 为线性无关组,则称其为 \mathbb{R}^n 的一个基,它可以张成线性空间 \mathbb{R}^n

10.5.1 过渡矩阵

设有基 $\{v_n\}$ 和基 $\{w_n\}$,则称其为同一线性空间的两组基若有:

$$\begin{bmatrix} | & | & & | \\ \boldsymbol{v}_1 & \boldsymbol{v}_2 & \cdots & \boldsymbol{v}_n \\ | & | & & | \end{bmatrix} C = \begin{bmatrix} | & | & | \\ \boldsymbol{w}_1 & \boldsymbol{w}_2 & \cdots & \boldsymbol{w}_n \\ | & | & & | \end{bmatrix}$$

则称 C 为由基 $\{\boldsymbol{v}_n\}$ 到基 $\{\boldsymbol{w}_n\}$ 过渡矩阵

10.6 格拉姆-施密特正交化

有线性无关组:

 $\{\boldsymbol{v}_r\}$

则有正交向量组:

$$egin{aligned} oldsymbol{w}_1 &= oldsymbol{v}_1 \ oldsymbol{w}_2 &= oldsymbol{v}_2 - rac{oldsymbol{w}_1 \cdot oldsymbol{v}_2}{oldsymbol{w}_1 \cdot oldsymbol{w}_1} oldsymbol{w}_1 \ &dots \ oldsymbol{w}_r &= oldsymbol{v}_r - \sum_{i=1}^{r-1} rac{oldsymbol{w}_i \cdot oldsymbol{v}_r}{oldsymbol{w}_i \cdot oldsymbol{w}_i} oldsymbol{w}_i \end{aligned}$$

10.7 单位化

$$oldsymbol{e}_i = oldsymbol{w}_i^0$$

11 线性方程组

11.1 齐次线性方程组

11.2 非齐次线性方程组

导出组: 非齐次线性方程组对应的齐次线性方程组

11.3 增广矩阵

11.4 克拉默法则

$$x_{i} = \frac{\det A_{i}}{\det A} = \frac{\begin{vmatrix} | & & | & | & | & | \\ \alpha_{1} & \cdots & \alpha_{i-1} & \beta & \alpha_{i+1} & \cdots & \alpha_{n} \\ | & & | & | & | & | & | \\ & & & \det A & & \end{vmatrix}}{\det A}$$

11.5 增广矩阵解(非)齐次方程组

将方程组写为增广矩阵形式,通过初等行变换化为行最简阶梯型矩阵:

$$\begin{bmatrix} 1 & \alpha_1 & 0 & 0 & \alpha_2 & \beta_1 \\ 0 & 0 & 1 & 0 & \alpha_3 & \beta_2 \\ 0 & 0 & 0 & 1 & \alpha_4 & \beta_3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

其中台角(即值为1)所在列为主变量,其余列为自由变量

构建方程组解系,其中基础解系数量同自由变量数,特解1个

对自由变量取单位阵(每行依次将一个自由变量设为1,其他自由变量设为0),不考虑非齐次项(β_i),向量内积解出主变量;

将自由变量全取0,考虑非齐次项(β_i),向量内积得到特解:

$$\boldsymbol{\xi}_1 = [\quad -\alpha_1 \quad \mathbf{1} \quad 0 \quad 0 \quad 0 \quad]^T$$

$$\boldsymbol{\xi}_2 = [\quad -\alpha_2 \quad 0 \quad -\alpha_3 \quad -\alpha_4 \quad \mathbf{1} \quad]^T$$

$$\boldsymbol{\eta} = [\quad \beta_1 \quad 0 \quad \beta_2 \quad \beta_3 \quad 0 \quad]^T$$

$$\boldsymbol{x} = \boldsymbol{\eta} + k_1 \boldsymbol{\xi}_1 + k_2 \boldsymbol{\xi}_2; k_1, k_2 \in \mathbb{R}$$

11.6 秩和解的关系

- n 未知数数量 (即 A 的列数)
- r 系数矩阵 A 的秩 (即 r(A), 显然 $r \leq n$)
- η 线性方程组特解(齐次方程组中恒为0)
- ξ_i 线性方程组基础解系

线性方程组通解形式 (共n-r 个基础解系):

$$oldsymbol{x} = oldsymbol{\eta} + \sum_{i=1}^{n-r} k_i oldsymbol{\xi}_i; k_i \in \mathbb{R}$$

- 当 $r+1=r(\bar{A})$ 时,表示无解。否则有解情况:
- 当 r < n 时,表示有无穷解

注: 齐次方程组中, $\boldsymbol{\beta}$ 恒为 $\boldsymbol{0}$; 则显然 $r\left(\bar{A}\right)=r\left(A\right)\left(=r\right)\leqslant n$ 。故齐次方程组最少只会有零解(特解),不会无解

11.7 齐次线性方程组同解充要条件

$$A\mathbf{x} = \mathbf{0}, B\mathbf{x} = \mathbf{0}$$
同解 $\iff A, B$ 行等价 $\iff r(A) = r(B) = r\begin{bmatrix} A \\ B \end{bmatrix}$

11.8 齐次线性方程组有非零公共解充要条件

$$A = A_{m,l}, B = B_{n,l}$$

$$Ax = \mathbf{0}$$
基础解系是 $\{\xi_i\}, Bx = \mathbf{0}$ 基础解系是 $\{\eta_i\}$

$$Ax = \mathbf{0}, Bx = \mathbf{0}$$
有非零公共解
$$\iff \begin{bmatrix} A \\ B \end{bmatrix} x = \mathbf{0}$$
有非零解 $\iff r \begin{bmatrix} A \\ B \end{bmatrix} < n$

$$\iff \{\xi_i\}, \{\eta_i\}$$
 线性相关
$$\iff \{A\eta_i\}$$
 线性相关或 $\{B\xi_i\}$ 线性相关

12 正交矩阵(方阵)

Definition 12.0.1 (矩阵行(列)向量组两两正交,且都为单位向量).

$$A^{-1} = A^{T} \iff AA^{T} = A^{T}A = E$$
$$\det A = \pm 1$$
$$AA^{T} = E$$
$$BB^{T} = E$$
$$\iff (AB) (AB)^{T} = E$$

 $AA^T = E$

13 迹 (方阵)

$$trA = \sum_{i} a_{ii}$$

- 14 特征(方阵)
- 14.1 特征矩阵

$$A - \lambda E$$

14.2 特征多项式

$$f(\lambda) = \det\left(A - \lambda E\right)$$

14.3 特征值

特征多项式为 0 的根, 重根计算重数, 共 n 个

$$f(\lambda) = 0$$

一个矩阵的不同特征值对应的特征向量一定线性无关; 同一特征值的特征向量不一定线性无关

14.3.1 代数重数

特征值 λ_i 的重根重数

$$f(\lambda) = \sum_{i} (\lambda - \lambda_i)^{r_i}$$

 r_i 是特征值 λ_i 的代数重数,其中 $\sum r_i = n$

14.3.2 几何重数

特征值 λ_i 对应的线性无关特征向量数

$$r_i' = n - r \left(A - \lambda_i E \right)$$

 r_i' 是特征值 λ_i 的几何重数 几何重数 $r_i' \leq$ 代数重数 r_i

14.4 特征向量

$$(A - \lambda_i E) \, \boldsymbol{p}_i = \mathbf{0}$$

 p_i 是特征值 λ_i 的特征向量(不唯一)

14.4.1 特征空间

特征值 λ_i 对应的特征向量所张成的空间

$$r_i' = \operatorname{dim} \operatorname{span} \left[\boldsymbol{p}_1, \boldsymbol{p}_2, \cdots, \boldsymbol{p}_{r_i} \right]$$

特征空间维度等于几何重数 r;

14.5 性质

$$r(A) \geqslant A$$
的非零特征值个数
$$\operatorname{tr} A = \sum \lambda_i$$

$$\det A = \prod \lambda_i$$

$$\lambda \mathbb{B} A$$
的特征值 $\Longrightarrow g(\lambda) \mathbb{B} g(A)$ 的特征值(g 为任意函数)
$$\Longrightarrow \frac{1}{\lambda} \mathbb{B} A^{-1}$$
的特征值
$$\Longrightarrow \frac{\det A}{\lambda} \mathbb{B} A^*$$
的特征值
$$\Longrightarrow \sum_i a_i \lambda^{k_i} + b \mathbb{B} \sum_i a_i A^{k_i} + b E$$
的特征值(线性)
$$f(\lambda) = \sum_{i=0}^n (-1)^i \sum_{\mu} A^{(i)}_{\mu\mu} \lambda^{n-i}$$

$$\stackrel{n=2}{\longrightarrow} \lambda^2 - \operatorname{tr} A \cdot \lambda + \det A$$

15 相似(方阵)

Definition 15.0.1.

$$P^{-1}AP = B \iff A \sim B$$

反身性 $A \sim A$

对称性 $A \sim B \implies B \sim A$

传递性 $A \sim B$; $B \sim C \implies A \sim C$

$$A \sim B \iff (A - \lambda E) \cong (B - \lambda E)$$
 $\implies A^T \sim B^T$
 $\implies A^{-1} \sim B^{-1}($ 如果都可逆 $)$
 $\implies A \cong B \implies r(A) = r(B)$
 $\implies \det(A - \lambda_A E) = \det(B - \lambda_B E) \implies \begin{cases} \lambda_A = \lambda_B \\ \operatorname{tr} A = \operatorname{tr} B \end{cases}$
 $\implies \det A = \det B$

15.1 相似对角化

Definition 15.1.1.

$$A_n \sim \Lambda$$

 $r_i: \lambda_i$ 代数重数

 $r'_i = n - r(A - \lambda_i E) : \lambda_i$ 几何重数

$$A \sim \Lambda \iff r'_i = r_i$$

$$\iff \sum r'_i = n$$

$$\iff P^{-1}AP = \Lambda \begin{cases} \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} \\ P = \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{bmatrix}$$

对于线性无关的特征向量组 $\{p_n\}$,对其格拉姆-施密特正交化 (10.6) 并单位化,仍为特征向量 $A \sim \Lambda, B \sim \Lambda \implies A \sim B$

16 对称矩阵(方阵)

Definition 16.0.1. 对称矩阵:

$$A = A^T$$

反对称矩阵:

$$A = -A^T$$

实数范围内(即 A 为实矩阵):

实对称矩阵的不同特征值对应的特征向量一定正交

$$egin{aligned} A &= A^T \ A oldsymbol{p}_1 &= \lambda_1 oldsymbol{p}_1 \ A oldsymbol{p}_2 &= \lambda_2 oldsymbol{p}_2 \ \lambda_1 &
eq \lambda_2 \end{aligned} egin{aligned} \implies oldsymbol{p}_1 \cdot oldsymbol{p}_2 &= 0 \end{aligned}$$

实对称矩阵必可相似对角化,且若相似必定合同(反之不一定成立)

实对称矩阵 $A \Longrightarrow \exists$ 正交矩阵 $P, P^{-1}AP = P^{T}AP = \Lambda$

16.1 * 谱分解定理

A 为实对称矩阵, e_i 为 λ_i 对应单位特征向量

$$A = \sum \lambda_i \boldsymbol{e}_i \boldsymbol{e}_i^T$$

17 合同(方阵)

Definition 17.0.1.

$$B = C^T A C; \exists C^{-1} \iff A \simeq B$$

反身性 $A \simeq A$

对称性 $A \simeq B \implies B \simeq A$

传递性 $A \simeq B; B \simeq C \Longrightarrow A \simeq C$

$$A \simeq B \implies A^T \simeq B^T$$
 $\implies A^{-1} \simeq B^{-1}(\text{如果都可逆})$
 $\implies A \cong B \implies r(A) = r(B)$
 $\implies A, B$ 对称性相同(都对称或非对称)

17.1 西尔维斯特惯性定理

实对称矩阵 $A, B; A \simeq B \iff A, B$ 的特征值中,正、负、零的个数相同(正负惯性指数相同)

18 二次型(方阵、对称矩阵)

Definition 18.0.1.

$$f = \sum_{i,j=1}^{n} a_{ij} x_i x_j (a_{ij} = a_{ji}) = \boldsymbol{x}^T A \boldsymbol{x}$$

18.1 标准型(对角矩阵)

$$f = \sum_{i=1}^{n} a_{ii} x_i^2$$

18.2 二次型转标准型(合同对角化)

二次型 $f_A \simeq$ 标准型 g_Λ

$$f = \boldsymbol{x}^T A \boldsymbol{x}$$
$$g = \boldsymbol{y}^T \Lambda \boldsymbol{y}$$

求变换矩阵 C,并 $\exists C^{-1}$,使得:

$$egin{aligned} oldsymbol{x} &= C oldsymbol{y} \ &C^T A C = \Lambda \ &f = oldsymbol{x}^T A oldsymbol{x} &= oldsymbol{y}^T C^T A C oldsymbol{y} &= oldsymbol{y}^T \Lambda oldsymbol{y} &= g \end{aligned}$$

18.2.1 正交变换法

本法要求 A 必为对称矩阵; C 正交, q' 系数不一定为特征值, q 系数为特征值 (由于实对称矩阵的相似则必合同,该法同相似对角化 (15.1)) 特征向量矩阵 P 即为变换矩阵,可通过 $\boldsymbol{x} = P\boldsymbol{y}$ 将 f 化为标准型 $g' = \sum \lambda_i k_i y_i^2$ 注: 其中 k_i 为非零常系数,且 $\prod k_i = (\det P)^2$ 构造正交矩阵:

- 1. 对特征向量组 $\{p_n\}$ 使用格拉姆-施密特正交化 (10.6) 并单位化,解得正交单位特征向量组 $\{e_n\}$
- 2. 用正交单位特征向量组构建正交矩阵 $C=\begin{bmatrix} {m e}_1 & {m e}_2 & \cdots & {m e}_n \end{bmatrix}$,可通过 ${m x}=C{m y}$ 将 f 化为标准型 $g = \sum_{i} \lambda_i y_i^2$

18.2.2 拉格朗日配方法

C 可逆,q 系数不一定为特征值

1. 先配 x_1 , 再依次往后配; 配完的变量后面不能再出现

1. 先配
$$x_1$$
, 再依次往后配;配完的变量后面不能再出现
$$\begin{cases} x_1 = z_1 + z_2 \\ x_2 = z_1 - z_2 \end{cases}$$
 2. 若只有交叉项,没有平方项,则令
$$\begin{cases} x_3 = z_3 \\ x_3 = z_3 \end{cases}$$
 ,替换后按 z 配方
$$\vdots \\ x_n = z_n \end{cases}$$
 3. 配完后得: $f = k_1 \left(\sum_{i=1}^n k_{1i} x_i\right)^2 + k_2 \left(\sum_{i=2}^n k_{2i} x_i\right)^2 + \dots + k_n (k_{n1} x_n)^2$ 可替换每一个平方项为一个
$$\begin{cases} y_1 = \sum_{i=1}^n k_{1i} x_i \\ y_2 = \sum_{i=2}^n k_{2i} x_i \end{cases}$$
 (若 $y_j = 0$ 可令 $y_j = x_j$,以便 K 可逆),则原二次
$$\vdots \\ y_n = k_{n1} x_n \end{cases}$$

型已转为标准型 $g = k_1 y_1^2 + k_2 y_2^2 + \cdots$

4. 作倒代换得
$$\mathbf{x} = C\mathbf{y}$$
 : $x_j = \sum_{i=j}^n c_{ji}y_i$
$$\begin{cases} x_1 = \sum_{i=1}^n c_{1i}y_i \\ x_2 = \sum_{i=2}^n c_{2i}y_i \\ \vdots \\ x_n = c_{n1}y_n \end{cases}$$
 此处 $C = K^{-1}$ 即为 f 变为标准型 g 的变换 \vdots

矩阵

18.2.3 初等变换法

C 可逆,g 系数不一定为特征值

$$egin{bmatrix} A \\ E \end{bmatrix}$$
 对整体初等列变换 Λ 对 Λ 只作对应行变换 Λ

对应行变换

将 a 列与 b 列交换 将 a 行与 b 行交换

将 a 列乘以 k 将 a 行乘以 k

将 a 列加到 b 列 将 a 行列加到 b 行

18.3 规范型

Definition 18.3.1 (只有对角元素且元素只包含 1、-1 和 0 的二次型,称为规范型).

$$f = \sum_{i=1}^{p} y_i^2 - \sum_{i=p+1}^{r(A)} y_i^2$$

实对称矩阵
$$A \simeq \begin{bmatrix} E_p & & & \\ & -E_{r(A)-p} & & \\ & & O \end{bmatrix}$$

其中 p 为 A 正特征值个数(正惯性指数)(重根按重数展开算),即 r(A)-p 为负特征值个数(负惯性指数)

实对称矩阵 $A, B; A \simeq B \iff A, B$ 正负惯性指数相同

18.4 正定二次型

Definition 18.4.1 (只有正数特征值的二次型).

$$A \simeq E \iff A$$
为正定矩阵(正定二次型)

 A_n 正定 \iff A特征值全为正

 \iff A正惯性指数 = n

 \iff A各阶顺序主子式都 $> 0 \implies \det A > 0$

 $\iff \exists B; B^{-1} \to A = B^T B$

 $\iff \forall x \neq 0 \rightarrow f_A > 0$