Mục tiêu:

- 1. Tổ chức dữ liệu kiểu cấu trúc và danh sách đặc gồm các phần tử kiểu cấu trúc.
- 2. Thao tác trên kiểu Cấu trúc
- 3. Truyền tham biến và tham trị kiểu Cấu trúc cho chương trình con
- 4. Cài đặt một số ứng dụng trên kiểu cấu trúc.

Vấn đề 1: Nhận từ bàn phím phân số $\frac{a}{b}$ và hiển thị lên màn hình phân số tối giản.

input	output
$\frac{2}{4}$	$\frac{1}{2}$
$\frac{1}{7}$	$\frac{1}{7}$
$\frac{-3}{6}$	$\frac{-1}{2}$

Hướng dẫn:

- 1. Định nghĩa PS là kiểu phân số gồm 2 thành phần *tử số* (là một số nguyên) và *mẫu số* (là một số tự nhiên khác 0).
- 2. Cài đặt hàm void input(PS &phanso) nhận vào một phân số phanso;
- 3. Cài đặt hàm void output(PS phanso) hiển thị phân số phanso lên màn hình;
- 4. Cài đặt hàm *int ucln(int a, int b)* trả về ước số chung lớn nhất cùa 2 số nguyên không âm a và b;
- 5. Cài đặt hàm void toigian(PS &phanso) để tối giản phân số phanso;
- 6. Tham khảo chương trình bên dưới để thực hiện kiểm tra tính đúng của các hàm vừa cài đặt ở trên.

```
#include <stdio.h>
typedef struct ps
       // định nghĩa phân số
        }PS;
void input(PS &phanso);
void output(PS phanso);
int ucln(int a, int b);
void toigian(PS &phanso);
int main()
{
    PS p;
    printf("\nNhap phan so:"); input(p);
    printf("\nPhan so vua nhap:"); output(p);
    toigian(p);
    printf("\nPhan so sau khi toi gian:");
                                           output(p);
    return 0;
}
```

Vấn đề 2: Đa giác lồi n đỉnh có tọa độ các đỉnh được lưu trong mảng A. Tính và hiển thị lên màn hình diện tích của đa giác lồi đó.

Hướng dẫn:

 Định nghĩa kiểu cấu trúc mô tả một điểm (Point) có tọa độ nguyên trong hệ tọa độ đềcác Oxy. Cấu trúc *Point* được định nghĩa như sau:

2. Viết hàm trả về độ dài đoạn thẳng P_1P_2 khi biết tọa độ 2 điểm đầu mút.

float $P_1P_2(Point P_1, Point P_2)$; Ghi chú: Công thức tính độ dài đoạn thẳng AB: $\overrightarrow{AB} = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$

3. Viết hàm trả về diện tích của tam giác $P_1P_2P_3$ khi biết tọa độ các đỉnh của chúng hoặc trả về 0 khi P_1 , P_2 , P_3 thẳng hàng.

float $SP_1P_2P_3(Point P_1, Point P_2, Point P_3)$;

- 4. Tổ chức danh sách đặc (mảng) A chứa tọa độ n đỉnh của đa giác lồi. Thực hiện tính diện tích các tam giác $A_0A_1A_2$, $A_0A_2A_3$, $A_0A_3A_4$, ..., $A_{n-2}A_{n-1}A_n$, $A_{n-1}A_nA_0$. Khi đó diện tích đa giác lồi bằng tổng diện tích của n-2 tam giác đó.
 - Định nghĩa đa giác

#define max 1000 typedef Point PointArray[max];

- Viết hàm trả về diện tích đa giác

float S(PointArray A, int n);

Báo cáo:

Lập báo cáo Input và output cho 3 trường hợp n=3, 6, 10

n	A	S
3	X	
	y	
6	X	
	y	
10	X	
	y	

Mở rộng:

- 5. Thực hiện kiểm tra dữ liệu vào để đảm bảo đa giác nhận được là đa giác lồi.
- 6. Trong trường hợp đa giác không lồi. Hãy chia đa giác đã cho tập các đa giác lồi.