Chapitre 4: L'algèbre de Boole

Cours "Représentations des données Machines"

Introduction

- Les machines numériques sont constituées d'un ensemble de circuits électroniques.
- Chaque circuit fournit une fonction logique bien déterminée; opérations logiques ou arithmétiques (addition, soustraction, comparaison,....).

•

Introduction

 Pour concevoir et réaliser ce circuit on doit avoir un modèle mathématique de la fonction réalisée par ce circuit.

- Ce modèle doit prendre en considération le système binaire.
- Le modèle mathématique utilisé est celui de Boole.

Algèbre de Boole

1854 : Georges Boole propose une algèbre

Propositions vraies ou fausses
et opérateurs possibles
Algèbre de Boole

Étude des systèmes binaires : Possédant deux états s'excluant mutuellement

C'est le cas des systèmes numériques (des sous ensembles : les circuits logiques)

Algèbre binaire

On se limite : Base de l'algèbre de Boole Propriétés indispensables aux systèmes logiques

Définitions:

- États logiques : 0 et 1, Vrai et Faux, (purement symbolique)
- Variable logique: Symbole pouvant prendre comme valeur des états logiques (A,b,c, Out ...)
- Fonction logique : Expression de variables et d'opérateurs

Calcul propositionnel

Algèbre de Boole sur [0,1] = algèbre binaire Structure d'algèbre de Boole

- 2 lois de composition interne (LCI)
- 1 application unaire

2 LCI: ET, OU

Somme (OU, Réunion, Disjonction)

$$s = a + b = a \vee b$$

Produit (ET, intersection, Conjonction)

$$s = a \cdot b = ab = a \wedge b$$

Application unaire:

• Not (complémentation, inversion, négation, non) $s = \overline{a} = not(a) = \neg a$

Fonctions logiques

Fonction logique à n variables f(a,b,c,d,...,n)

$$[0,1]^n \longrightarrow [0,1]$$

- Une fonction logique ne peut prendre que deux valeurs
- Les cas possibles forment un ensemble fini (2ⁿ)
- Descriptions, preuves possibles par énumération comparer f(a,b,c,..n) et g(a,b,c,..,n)
 = comparer les tables représentant f et g

La table de fonction logique = table de vérité

Opérateurs logiques de base

OU (OR)

- Le OU est un opérateur binaire (deux variables), à pour rôle de réaliser la somme logique entre deux variables logiques.
- Le OU fait la disjonction entre deux variables.
- Le OU est défini par F(A,B)= A + B (il ne faut pas confondre avec la somme arithmétique)

А	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

ET (AND)

- Le ET est un opérateur binaire (deux variables), à pour rôle de réaliser le Produit logique entre deux variables booléennes.
- Le ET fait la conjonction entre deux variables.
- Le ET est défini par : F(A,B)= A

А	В	A . B
0	0	0
0	1	0
1	0	0
1	1	1

NON (négation)

 NON: est un opérateur unaire (une seule variable) qui à pour rôle d'inverser la valeur d'une variable.

$$F(A) = Non A = \overline{A}$$

(lire : A barre)

A	$\overline{\mathbf{A}}$
0	1
1	0

Tables de vérité de ET, OU, NON

S est vrai si a OU b est vrai.

S est vrai si a ET b sont vrais.

S est vrai si a est faux

Tables de vérité de ET, OU, NON

ah		a h	9	, , , , ,	1	_
				_ a	<u>S</u>	
0 0	0	0 0	0	0	1	
0 1	1	0 1	0	0	1	
O I	ı	O I	O	1	0	
0 0 0 1 1 0 1 1	1	1 0	0	·		
1 1	1	11	1			
	=		_			

Deux autres opérateurs : NAND, NOR

$$s = a \uparrow b = a.b$$

S est vrai si a OU b est faux.

NAND (Not-AND)

$$s = a \mid b = a+b$$

S est vrai si ni a, ni b ne sont vrais.

NOR (Not-OR

NAND et NOR ne sont pas associatifs

Encore un opérateur : XOR

S est vrai si a OU b est vrai mais pas les deux.

XOR (Ou-Exclusif) vaut 1 si a est différent de b Opérateur de différence (disjonction)

Encore un opérateur : XOR

XOR est associatif $s = a \oplus b \oplus c \dots \oplus n$ vaut 1 si le nombre de variables à 1 est impair.

$$s = a \oplus b = a \oplus b = a \oplus b = a \times NOR b$$

XNOR = XOR vaut 1 si a = b

Inverseur programmable : (le programme vaut 0 ou 1) $a \oplus 1 = \overline{a}$ $a \oplus 0 = a$

Simplification des fonctions logiques

Simplification des fonctions logiques

- L'objectif de la simplification des fonctions logiques est de :
 - réduire le nombre de termes dans une fonction
 - et de réduire le nombre de variables dans un terme
- Cela afin de réduire le nombre de portes logiques utilisées ->
 réduire le coût du circuit
- Plusieurs méthodes existent pour la simplification :
 - La Méthode algébrique
 - Les Méthodes graphiques : (ex : tableaux de karnaugh)

Propriétés de ET, OU, NON

Commutativité

$$a+b = b+a$$

 $a.b = b.a$

Associativité

$$a+(b+c) = (a+b)+c$$

 $a.(b.c) = (a.b).c$

Distributivité

$$a.(b+c) = a.b+a.c$$

 $a+(b.c) = (a+b).(a+c)$

Idempotence

Absorption

$$a+a.b = a$$

 $a.(a+b) = a$

Involution

$$\frac{=}{a} = a$$

Propriétés de ET,OU,NON

Théorème de "De Morgan"

$$a.1 = a$$

Elément absorbant

$$a+1=1$$
 $a.0=0$

$$\overline{a+b} = \overline{a} \cdot \overline{b}$$

 $\overline{a.b} = \overline{a} + \overline{b}$

$$\frac{\sum_{i} x_{i}}{\prod_{i} x_{i}} = \prod_{i} \overline{x_{i}}$$

$$\frac{1}{\prod_{i} x_{i}} = \sum_{i} \overline{x_{i}}$$

Exercice 1:

Démontrer la proposition suivante :

$$ABC + AB\overline{C} + A\overline{B}CD = AB + ACD$$

$$ABC + \overline{ABC} + A\overline{BC} + AB\overline{C} = BC + AC + AB$$

Donner la forme simplifiée de la fonction suivante :

$$F(A, B, C, D) = \overline{A}BCD + A\overline{B}CD + AB\overline{C}D + ABC\overline{D} + ABCD$$

Correction

$$A B C + \overline{A}BC + A\overline{B}C + AB\overline{C} =$$

$$ABC + \overline{A}BC + ABC + A\overline{B}C + ABC + AB\overline{C} =$$

$$BC + AC + AB$$

$$ABC + AB\overline{C} + A\overline{B}CD = AB(C + \overline{C}) + A\overline{B}CD$$

$$= AB + A\overline{B}CD$$

$$= A(B + \overline{B}(CD))$$

$$= A(B + CD)$$

$$= AB + ACD$$

Simplification par la table de Karnaugh

Description de la table de karnaugh

- •La méthode consiste a mettre en évidence par une méthode graphique (un tableaux) tous les termes qui sont adjacents (qui ne différent que par l'état d'une seule variable).
- •Un tableau de Karnaugh = table de vérité de 2ⁿ cases avec un changement unique entre 2 cases voisines d'où des codes cycliques (Gray ou binaire réfléchi).
- •La méthode peut s'appliquer aux fonctions logiques de 2,3,4,5 et 6 variables.
- •Un tableau de Karnaugh comportent 2ⁿ cases (N est le nombre de variables).

Description de la table de karnaugh

Règles de regroupement :

- groupe de 2ⁿ cases : 1,2,4 ou 8
- en ligne, colonne, rectangle, carré, mais pas diagonale
- tous les 1, mais pas les 0 au moins une fois dans les groupements

Règles de minimisation de la fonction :

- rechercher les groupements en commençant par les cases qui n'ont qu'une seule façon de se grouper
- rechercher les groupements les plus grands
- les groupements doivent contenir au moins un 1 non utilisé par les autres groupements
- L'expression logique finale est la réunion (la somme) des groupements après simplification et élimination des variables qui changent d'état.

Description de la table de karnaugh

Tableau à 2 variables

Tableaux à 3 variables

f (a,c,d, ..,n) fonction logique à N entrées

sera représentée par une table à 2^N lignes un tableau à 2^N cases

a b c	f(a,b,c)
000	0
0 0 1	1
010	0
0 1 1	0
100	1
101	0
110	0
111	1

Code Gray ou binaire réfléchi

1 seul changement entre 2 codes successifs

Exemple 1 : 3 variables

Exemple 2 : 4 variables

Exemple 3 : 4 variables

$$F(A, B, C, D) = A\overline{B} + \overline{B}\overline{D} + B\overline{C}D$$

$$F(A, B, C, D, U) = \overline{AB} + A.B.D.\overline{U} + \overline{A.C.D.U} + A.\overline{B.D.U}$$

Exercice

Trouver la forme simplifiée des fonctions à partir des deux tableaux ?

AB C	00	01	11	10
0		1	1	1
1	1		1	1

АВ				
CD	00	01	11	10
00	1		1	1
01				
11				
10	1	1	1	1

Représentation graphique : Norme française

>1

NOR

b

b

S

Représentation graphique :

Norme américaine

Schéma d'un circuit logique (Logigramme)

- C'est la traduction de la fonction logique en un schéma électronique.
- •Le principe consiste à remplacer chaque opérateur logique par la porte logique qui lui correspond.

Exemple 2:

$$F(A,B,C,D) = (A + B) \cdot (B + \overline{C} + D) \cdot A$$

Exercice 1

Donner le logigramme des fonctions suivantes :

$$F(A,B) = \overline{A}.B + A.\overline{B}$$

$$F(A,B,C) = (A+B).(\overline{A}+C).(B+\overline{C})$$

$$F(A,B,C) = (\overline{A \cdot B}) \cdot (C+B) + A \cdot \overline{B} \cdot C$$

Exercice 2 : Donner l'équation de F?

Exercice 3: Soit la fonction **F**

$$F(A,B,C,D) = (A + \overline{B} + C + D)(\overline{A} + \overline{B} + C + D)(\overline{A} + \overline{B} + C + \overline{D})(\overline{A} + \overline{B} + \overline{C} + \overline{D})$$
$$(A + \overline{B} + \overline{C} + D)(\overline{A} + \overline{B} + \overline{C} + D)(\overline{A} + \overline{B} + \overline{C} + D)$$

- 1) Simplifier la fonction F par la méthode des diagrammes de Karnaugh
- 2) Donner les schémas logiques ou logigrammes de la fonction simplifiée utilisant :
 - Logigramme 1 : avec uniquement des portes NON ET
 - Logigramme 2 : des portes ET, OU, et des inverseurs,

Exercice 3: Soit la fonction F correction

$$F(A,B,C,D) = (A + \overline{B} + C + D)(\overline{A} + \overline{B} + C + D)(\overline{A} + \overline{B} + C + \overline{D})(\overline{A} + \overline{B} + \overline{C} + \overline{D})$$
$$(A + \overline{B} + \overline{C} + D)(\overline{A} + \overline{B} + \overline{C} + D)(\overline{A} + \overline{B} + \overline{C} + D)$$

Merci pour votre attention