Relación 2 de problemas

- 1. Sean X_1, \ldots, X_n v.a.i.i.d. de una población uniforme en el intervalo $[0, \theta]$. Determina cuál es el límite en distribución de la sucesión $\sqrt{n} \log[(2\overline{X}_n)/\theta]$.
- **2**. Sean X_1, \ldots, X_6 v.a.i.i.d. de una distribución normal estándar. Se definen las variables aleatorias:

$$Y_1 = (X_1 + X_2 + X_3)^2 + (X_4 + X_5 + X_6)^2,$$

 $Y_2 = \frac{X_1 + X_2}{\sqrt{X_3^2 + X_4^2 + X_5^2}}.$

Calcula dos números c_1 y c_2 tales que

$$P{Y_1 > c_1} = P{Y_2 > c_2} = 0.1.$$

- 3. Se desea estimar el momento de orden 3, $\alpha_3 = \mathrm{E}(X^3)$, en una v.a. X con distribución exponencial de parámetro λ , es decir, $F(t) = 1 e^{-\lambda t}$, para $t \geq 0$. Define un estimador natural para α_3 y calcula su error cuadrático medio. [Indicación: Si $X \sim \exp(\lambda)$, entonces $\mathrm{E}(X^n) = n!/\lambda^n$ para todo entero positivo n.]
- 4. Supongamos que la muestra tiene tamaño n = 50 y que la distribución de las X_i es N(4, 1) (i.e., normal con media $\mu = 4$ y desviación típica $\sigma = 1$).
 - (a) Calcula, utilizando la desigualdad de Chebychev, una cota superior para la probabilidad $P\{|\bar{X}-4|>0,3\}$. Al utilizar la desigualdad de Chebychev no estamos usando el hecho de que la distribución de las observaciones es normal: la desigualdad de Chebychev es universal y proporciona una cota (no necesariamente ajustada) para $P\{|\bar{X}-4|>0,3\}$, que solo depende de n y de σ .
 - (b) Calcula exactamente la probabilidad $P\{|\bar{X}-4|>0,3\}$ utilizando el hecho de que las X_i tienen distribución N(4,1). Compara el resultado obtenido con la cota obtenida en (a).
- 5. Dada una muestra de v.a.i.i.d. de tamaño 100 de una distribución normal de media μ y desviación típica 1.5, determina aproximadamente la probabilidad de que la mediana muestral difiera de μ en menos que 0.1. ¿De qué tamaño habría que elegir la muestra para poder afirmar que con probabilidad 0.9, la mediana muestral difiere de μ en menos que 0.01? Resuelve el problema sustituyendo la mediana por la media y compara los resultados obtenidos.

- **6**. Sea \overline{X}_n la media muestral calculada con las n primeras observaciones de una sucesión de v.a.i.i.d. procedentes de una población con esperanza μ y varianza σ^2 . Determina hacia dónde convergen en distribución las siguientes sucesiones:
- (a) $\sqrt{n}(\overline{X}_n^2 \mu^2)$, (b) $n(\overline{X}_n \mu)^2$, (c) $\sqrt{n}(\overline{X}_n \mu)^2$.
- 7. Sea X_n una v.a. con distribución χ_n^2 .
 - (a) Representa en un mismo gráfico la función de densidad de X_n con n=4,8,20,30.
 - (b) Determina hacia dónde convergen en distribución las sucesiones $\sqrt{n/2}(X_n/n-1)$ y $\sqrt{2X_n}-\sqrt{2n}$.
 - (c) Sea $Y \sim \chi^2_{200}$. Calcula aproximadamente $P\{Y \leq 3\}$ usando las tablas de la N(0,1).
- 8. Utiliza R para dibujar la función de densidad y la función de distribución de una v.a. con distribución beta de parámetros $a=3,\,b=6$. A continuación dibuja, sobrepuestas en cada uno de los gráficos, las aproximaciones a F y f obtenidas respectivamente mediante la función de distribución empírica y un estimador del núcleo obtenidos a partir de una muestra de la distribución de tamaño 20. Verifica empíricamente el grado de aproximación alcanzado, en las estimaciones de F y f, mediante un experimento de simulación basado en 200 muestras de tamaño 20. Es decir, considerando, por ejemplo, la estimación de F, se trata de simular 200 muestras de tamaño 20; para cada una de ellas evaluar el error (medido en la norma del supremo) cometido al aproximar F por F_n . Por último, calcula el promedio de los 200 errores obtenidos. Análogamente para la estimación de f.
- 9. Denotemos por

$$C_n = \int_{\mathbb{R}} (F_n(t) - F(t))^2 dF(t),$$

la llamada discrepancia de Cramer-Von Mises entre F_n y F. ¿Se verifica necesariamente $C_n \to 0$, c.s.? Calcula la distribución asintótica de la sucesión $D_n = \sqrt{n}(F_n(t) - F(t))$, para un valor fijo $t \in \mathbb{R}$.

- 10. Se extrae una muestra aleatoria de tamaño n = 600 de una v.a. cuya desviación típica es $\sigma = 3$. Calcular aproximadamente la probabilidad $P\{|\bar{X} \mu| < 0.1\}$.
- 11. Sea \hat{f}_n un estimador kernel de la densidad basado en un núcleo K que es una función de densidad con media finita. Comprobar que, en general, $\hat{f}_n(t)$ es un estimador sesgado de f(t) en el sentido de que NO se tiene $E(\hat{f}_n(t)) = f(t)$, para todo t y para toda densidad f.