INT303 Final project

Yuxuan Wu 1716309

December 1, 2020

Import the libraries

library(tidyr)

library(skimr)

library(GGally)

library(viridis)

library(caret)

library(e1071)

library(rpart)

library(xgboost)

library(corrplot)

library(corrgram)

library(ggplot2)

library(ggthemes)

library(psych)

library(scales)

library(treemap)

library(repr)

library(cowplot)

library(magrittr)

library(ggpubr)

library(RColorBrewer)

library(plotrix)

library(ggrepel)

library(tidyverse)

library(gridExtra)

library(lubridate)

library(tibbletime)

library(reshape2)

Load the data and return the head of data

df <- read.csv("/Users/yuxuan/Desktop/INT301-Avocado-prediction/avocado-updated-2020.csv")
head(df)</pre>

##	date	average_price	total_volume	X4046	X4225	X4770	total_bags
## 1	2015-01-04	1.22	40873.28	2819.50	28287.42	49.90	9716.46
## 2	2015-01-04	1.79	1373.95	57.42	153.88	0.00	1162.65
## 3	2015-01-04	1.00	435021.49	364302.39	23821.16	82.15	46815.79
## 4	2015-01-04	1.76	3846.69	1500.15	938.35	0.00	1408.19
## 5	2015-01-04	1.08	788025.06	53987.31	552906.04	39995.03	141136.68
## 6	2015-01-04	1.29	19137.28	8040.64	6557.47	657.48	3881.69
##	small_bags	large_bags xla	arge_bags	type y	year	geog	graphy

```
## 1
        9186.93
                    529.53
                                      0 conventional 2015
                                                                         Albany
                                             organic 2015
## 2
        1162.65
                      0.00
                                      0
                                                                         Albany
## 3
       16707.15
                  30108.64
                                      0 conventional 2015
                                                                        Atlanta
        1071.35
## 4
                    336.84
                                      0
                                             organic 2015
                                                                        Atlanta
## 5
     137146.07
                   3990.61
                                      O conventional 2015 Baltimore/Washington
## 6
        3881.69
                      0.00
                                             organic 2015 Baltimore/Washington
```

Check whether the dataset contains the missing value

```
sum(is.na(df))
## [1] 0
```

The overall dataset do not contain any missing value

Explore the data and some clarification

Explain the features

- date The date of the observation
- average price The average price of a single
- total_volume Total number of avocados sold
- year The year
- type conventional or organic
- geography The city or region of the observation

X4046, X4225, X4770 stands for the PLU code

- Small/Medium Hass Avocado (~3-5oz avocado) | #4046
- Large Hass Avocado (~8-10oz avocado) | #4225
- Extra Large Hass Avocado (~10-15oz avocado) | #4770

Exploratory Data Analysis

```
levels(df$type)
```

Density plot of the difference between two avocadoes.

```
## [1] "conventional" "organic"
```

```
library(ggplot2)
options(repr.plot.width = 8, repr.plot.height = 4)
ggplot(df, aes(x=average_price, fill=type))+
    geom_density()+
    facet_wrap(~type)+
    theme_minimal()+
    theme(plot.title = element_text(hjust = 0.5),legend.position = "bottom")+
    labs(title = "Avocado Price by type")+
    scale_fill_brewer(palette = "Set2")
```

Avocado Price by type

Create a matrix to demonstrate the volume of conventional and organic avocados

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
vol_type <- df %>% group_by(type) %>% summarise(average_volume = round(mean(total_volume),3),average_pr
vol_type
## # A tibble: 2 x 4
##
     type
                  average_volume average_price volume_percent
```

<dbl>

96.8 3.20

As can be seen from the density plot and the table in avocados. - there are two types of avocado: organic and conventional - organic avocado share a small percent (3.2%) of volume but has a high price (1.62) - conventional avocado share a large percent (96.8) of volume but has a relative low price (1.16)

<dbl>

1.16

1.62

<dbl>

60127.

1818206.

##

<fct>

2 organic

1 conventional

Avocado price with the Date

```
library(ggplot2)
## Change the Date column from factor to the date format
df$date <- as.Date(df$date, "%Y-%m-%d")

## Sort the dates and order the datesets in date
df <- df[order(df$date),]

## Make the plot
df %>% select(date, average_price, type) %>%
ggplot(aes(x=date,y=average_price))+
geom_area(aes(color=type,fill=type),alpha=0.3,position=position_dodge(0.8))+
theme_bw()+
scale_color_manual(values = c("#ED7921","#62BE51"))+
scale_fill_manual(values = c("#FD833E","#B8FC5F")
)
```



```
ggplot(data=df, aes(x=date, y=average_price,col=type))+
  geom_line()+
  facet_wrap(~ type)+
  theme_bw()+
  theme(legend.position = "position")
```


Relationship between Prices and Total on either conventional or organic avocados

```
organic <- df %>% select(type,average_price,total_volume,date) %>% filter(type=="organic")
#head(organic)
conventional <- df %>% select(type,average_price,total_volume,date) %>% filter(type=="conventional")
#head(conventional)
library(tibbletime)
```

Filter the data into two categories, conventional or organic

```
## Warning: package 'tibbletime' was built under R version 3.6.2
##
## Attaching package: 'tibbletime'
## The following object is masked from 'package:stats':
##
## filter
organic <- as_tbl_time(organic,index = date) %>% as_period('1 month')
conventional <- as_tbl_time(conventional,index = date) %>% as_period('monthly')
```

```
library(ggplot2)
library(ggthemes)
library(cowplot)
```

Monthly avocados price in either conventional or organic avocados

```
##
## Note: As of version 1.0.0, cowplot does not change the
##
    default ggplot2 theme anymore. To recover the previous
    behavior, execute:
##
##
    theme_set(theme_cowplot())
## ******************
##
## Attaching package: 'cowplot'
## The following object is masked from 'package:ggthemes':
##
##
      theme_map
options(repr.plot.width=8, repr.plot.height=6)
## average-price with time series
conventional_monthly <- conventional %>%
   ggplot(aes(x=date,y=average_price))+
   geom_line(color="#5C374C")+
   theme economist()+
   theme(plot.title = element_text(hjust = 0.5),plot.background = element_rect(fill = "#D5D8DC"))+
   labs(title = "Conventional Avocados")+
   geom hline(yintercept = max(conventional$average price),linetype="dashed",color = "red")+
   geom_hline(yintercept = min(conventional$average_price),linetype="dashed",color = "blue")
organic_monthly <- organic %>%
   ggplot(aes(x=date,y=average price))+
   geom_line(color="#58D68D")+
   theme economist()+
   theme(plot.title = element_text(hjust = 0.5),plot.background = element_rect(fill = "#D5D8DC"))+
   labs(title = "Organic Avocados")+
   geom_hline(yintercept = max(organic$average_price),linetype="dashed",color = "red")+
   geom_hline(yintercept = min(organic$average_price),linetype="dashed",color = "blue")
## create a volume chart
conventional volume <- conventional %>%
   ggplot(aes(x=date,y=total_volume))+
   geom_bar(stat = 'identity',fill="#7FB3D5",color="black")+
   theme economist()+
   theme(plot.title = element_text(hjust = 0.5),plot.background = element_rect(fill = "#D5D8DC"))+
   geom_smooth(method = "loess",color="red")
organic_volume <- organic %>%
   ggplot(aes(x=date,y=total_volume))+
   geom_bar(stat = 'identity',fill='#58D68D',color="black")+
   theme economist()+
   theme(plot.title = element_text(hjust = 0.5), plot.background = element_rect(fill = "#D5D8DC"))+
    geom_smooth(method = "loess",color ="red")
plot_grid(conventional_monthly,organic_monthly,conventional_volume,organic_volume,nrow = 2,ncol = 2)
```


Seasonal patterns analysis

```
## Process the data into year and month format
seasonal df <- read.csv("/Users/yuxuan/Desktop/INT301-Avocado-prediction/avocado-updated-2020.csv")</pre>
seasonal_df$month_year <- format(as.Date(seasonal_df$date),"%Y-%m")</pre>
seasonal_df$month <- format(as.Date(seasonal_df$date),"%m")</pre>
## Change the month from a Date format into a numerical foramt, then convert to the three letter format
seasonal_df$monthabb <- sapply(seasonal_df$month, function (x) month.abb[as.numeric(x)])</pre>
seasonal_df$monthabb <- factor(seasonal_df$monthabb,levels=month.abb)</pre>
seasonal_df$monthabb <- factor(seasonal_df$monthabb)</pre>
ggplot(seasonal_df,aes(x=average_price,fill=as.factor(year)))+
geom_density(alpha=0.5)+
theme_economist()+
facet_wrap(~year)+
theme(plot.title = element_text(hjust = 0.5),plot.background = element_rect(fill="#D5D8DC"))+
guides(fill=FALSE)+
labs(title = "Distribution of Prices by year",x='Average Price',y='Density')+
scale_fill_manual(values = c("#DA4511", "#FFBD00", "#6A953F", "#9A6233", "#D3AE7C", "#307CA1"))
```


Seasonality patterns

```
conv_patterns <- seasonal_df %>% select(monthabb,average_price,type) %>% filter(type=="conventional") %
ggplot(aes(x=monthabb, y=avg))+
geom_point(color="#F35D5D",aes(size=avg))+
geom_line(group=0)+
theme_economist()+
theme(legend.position = "none",plot.title = element_text(hjust = 0.5),plot.background = element_rect(
    labs(title = "Conventional Avocados",x="Month",y="Average Price")

organic_patterns <- seasonal_df %>% select(monthabb,average_price,type) %>% filter(type=="organic") %>%
ggplot(aes(x=monthabb,y=avg))+
geom_point(color="#F35D5D",aes(size=avg))+
geom_line(group=0)+
theme_economist()+
theme(legend.position = "none",plot.title = element_text(hjust = 0.5),plot.background = element_rect(
    labs(title = "Organic Avocados",x="Month",y="Average Price")

plot_grid(conv_patterns,organic_patterns,nrow = 2)
```


#conv_patterns

levels(df\$geography)

##	[1]	"Albany"	"Atlanta"	"Baltimore/Washington"
##	[4]	"Boise"	"Boston"	"Buffalo/Rochester"
##	[7]	"California"	"Charlotte"	"Chicago"
##	[10]	"Cincinnati/Dayton"	"Columbus"	"Dallas/Ft. Worth"
##	[13]	"Denver"	"Detroit"	"Grand Rapids"
##	[16]	"Great Lakes"	"Harrisburg/Scranton"	"Hartford/Springfield"
##	[19]	"Houston"	"Indianapolis"	"Jacksonville"
##	[22]	"Las Vegas"	"Los Angeles"	"Louisville"
##	[25]	"Miami/Ft. Lauderdale"	"Midsouth"	"Nashville"
##	[28]	"New Orleans/Mobile"	"New York"	"Northeast"
##	[31]	"Northern New England"	"Orlando"	"Philadelphia"
##	[34]	"Phoenix/Tucson"	"Pittsburgh"	"Plains"
##	[37]	"Portland"	"Raleigh/Greensboro"	"Richmond/Norfolk"
##	[40]	"Roanoke"	"Sacramento"	"San Diego"
##	[43]	"San Francisco"	"Seattle"	"South Carolina"
##	[46]	"South Central"	"Southeast"	"Spokane"
##	[49]	"St. Louis"	"Syracuse"	"Tampa"
##	[52]	"Total U.S."	"West"	"West Tex/New Mexico"