Chapter 6

Pericyclic Reactions

周环反应

Qiong Li

June 3, 2024

Pericyclic Reactions

Content

- 1. Introduction to pericyclic reactions 概论
- 2. Electrocyclic Reactions 电环化反应
- 3. Cycloadditions 环加成反应
- 4. Sigmatropic Rearrangements σ-迁移反应
- 5. Ene Reactions 烯反应

6.1.1 Characteristics of pericyclic reactions

共价键不同的<u>断裂方式</u>,产生不同的中间体, 对应不同的反应类型。

Pericyclic Reactions

不经过中间体, 一步完成

Pericyclic Reaction

Classification of pericyclic reactions

Cycloaddition

环加成反应

Sigmatropic Rearrangement

σ-迁移反应

Electrocyclic Reactions

电环化反应

Ene Reactions

烯反应

Characteristics of pericyclic reactions-1

Cycloaddition

环加成反应

Electrocyclic Reactions

电环化反应

- 1. No active intermediate involved
- 2. Complete in a single step, reversible
- 3. Cyclic transition state, aromatic

Sigmatropic Rearrangement

σ-迁移反应

Ene Reactions

烯反应

Characteristics of pericyclic reactions-2

Stereospecific

$$H_3C$$
— CH_3

Stereospecific of electrocyclic Reactions

Woodward-Hoffmann rule

6.1.2 Frontier Molecular Orbital Theory 前线分子轨道理论

6.1.3 Principle of conservation of molecular orbital symmetry 分子轨道对称守恒原理

6.1.2 Frontier Molecular Orbital Theory 前线分子轨道理论

- · 电子由低到高依次填充 (HOMO轨道和LUMO轨道)
- 每个分子轨道中轨道系数不一样。 (与区域选择性相关)

Classification of pericyclic reactions

Cycloaddition

环加成反应

Sigmatropic Rearrangement

σ-迁移反应

Electrocyclic Reactions

电环化反应

Ene Reactions

烯反应

1.5 Molecular Orbital theory

LCAO(Linear Combination of Atomic Orbital)

- 1. Bonding is considered to arise from the overlap of atomic orbitals.
- 2. When any number of atomic orbitals overlap, they combine to form equal number of new orbitals, called molecular orbitals.
- 3. In localized bonding for single covalent bond, the number of atomic orbitals that overlap is two(each containing one electron), so that two molecular orbitals are generated. One called *bonding orbital*, has lower energy than the original atomic orbitals, and the other, called *antibonding orbital*, has higher energy.

"orbit" around the nucleus

6.1 Introduction to pericyc

MO of buta-1, 3-diene

前线分子轨道理论:反应立体专一性由HOMO轨道的对称性决定

加热条件下由π 2决定

光照条件下由π 3决定

6.1.3 Principle of conservation of molecular orbital symmetry

分子轨道对称守恒原理

Symmetry

σ (面对称性)

 C_2 (轴对称性)

轨道对称守恒原理:

反应立体专一性由原料/产物的分子轨道对称性以及对称性操作决定在原料/产物对称守恒前提下,采用能量有利的途经。

前线分子轨道理论:反应立体专一性由HOMO轨道的对称性决定

加热条件下由 π 2(4 π e)决定

光照条件下由 π 3 (4 π e)决定

轨道对称守恒原理:

反应立体专一性由原料/产物的分子轨道对称性以及对称性操作决定在原料/产物对称守恒前提下,采用能量有利的途经。

Classification of electrocyclization reactions

The number of π -electrons of substrates

6.2.1 4n π electrocyclic reaction

Electrocyclic transformations are driven by heat or light

Electrocyclic reactions are concerted and stereospecific One-step reaction, reversible

Heat conrotatory (加热顺旋), light disrotatory (光照对旋)

1.5 Molecular Orbital theory

Molecular Orbitals and Covalent Bonding

Pauling: Bonds are made by the in-phase overlap of atomic orbitals.

Frontier Molecular Orbital Theory $4n \pi$

4n π electrons, heat, conrotatory, bonding

6.1.2 Frontier Molecular Orbital Theory 前线分子轨道理论

- · 电子由低到高依次填充 (HOMO轨道和LUMO轨道)
- 两端相位由相同/不同/相同。。。。。。 依次变化 (与立体选择性相关)
- 每个分子轨道中轨道系数不一样。 (与区域选择性相关)

light

 $4n \pi$ electrons, light, disrotatory, bonding

Principle of conservation of molecular orbital symmetry 分子轨道对称守恒原理

Symmetry

σ (面对称性)

 C_2 (轴对称性)

Principle of conservation of molecular orbital symmetry 分子轨道对称守恒原理

轨道对称守恒原理:

反应立体专一性由原料/产物的分子轨道对称性以及对称性操作决定在原料/产物对称守恒前提下,采用能量有利的途经。

顺旋操作(轴对称操作)下的丁二烯和环丁烯分子轨道能级相关图

4n电子——加热——顺旋——保持轨道对称性守恒,能量有利!

对旋操作(面对称操作)下的丁二烯和环丁烯分子轨道能级相关图

4n电子——加热——对旋——保持轨道对称性守恒,能量不利!

6.2.1 4n π electrocyclic reaction

Electrocyclic transformations are driven by heat or light

Electrocyclic reactions are concerted and stereospecific One-step reaction, reversible

Heat conrotatory (加热顺旋), light disrotatory (光照对旋)

根据微观可逆性原则,正反应和你反应所经过的途径是相同的

Depends on which one is more stable

Torquoselectivity 扭转选择性

Depends on which one has less steric hindrance

6.2.2 $4n+2\pi$ electrocyclic reaction

Electrocyclic transformations are driven by heat or light

Electrocyclic reactions are concerted and stereospecific One-step reaction, reversible Heat conrotatory (加热对旋), light disrotatory (光照顺旋)

Frontier Molecular Orbital Theory $4n+2\pi$

4n+2 π electrons, heat, disrotatory, bonding 4n+2 π electrons, light, conrotatory, bonding

Woodward-Hoffman Rule (Electrocyclic reactions)

Table 14-2	Stereochemical Course of Electrocyclic Reactions (Woodward-Hoffmann Rules)		
Number of participating		Thermal process	Photochemical process
Even Odd		Conrotatory Disrotatory	Disrotatory Conrotatory

π electrons	heat	light
4n	顺旋 conrotatory	对旋 disrotatory
4n+2	对旋 disrotatory	顺旋 conrotatory

light

 $4n \pi$ electrons, light, disrotatory, bonding

例1:

自然界中的电环化反应(维他命D3的合成)

 6π disrotatory

Counterclockwise

Give the products obtained on heating the following compounds.

$$\begin{array}{c} \Delta \\ \hline \end{array}$$

The cyclic polyene **A** can be converted to either **B** or **C** by a sequence of electrocyclic ring closures, depending on whether light or heat are used. Identify the conditions necessary to effect either transformation and identify each step as either con- or disrotatory.

Heating cis-3,4-dimethylcyclobutene, A, in the presence of dienophile B gave exclusively the diastereomer C. Explain by a mechanism.

Diels-Alder cycloadditions follow the endo rule

Irradiation of ergosterol gives provitamin D2, a precursor of vitamin D2 (a deficiency of which causes softening of the bones, especiallyin children). Is the ring opening conrotatory or disrotatory?