EI 10c M

MATHEMATIK

2009-10

Begriffssalat in der Analysis

Sich korrekt ausdrücken in der mathematischen Fachsprache ist gar nicht so einfach. Daher gibt es diese Übersicht. Gleichzeitig findet ihr auch weitere Schlagwörter, die zum Begriff "passen".

Erst einmal nehmen wir uns Funktionsterme der Funktionen "Grün", "Blau", "Rot" und "Gelb" und ihre Graphen im unten stehenden Schaubild vor:

$$Gr\ddot{u}n(x) = (x+3)+1$$
, $Blau(x) = 1$, $Rot(x) = \sqrt{x}$ und $Gelb(x) = 3x+2$

Begriff	Was macht's?	GTR	QUERVERWEISE
Funktion	ordnet einer Menge eine	Y=, GRAPH,	eigentlich alles
	andere Menge zu.		
Funktionsterm	Gibt an, wie zugeordnet	Y=	Nullstelle, Punkt,
	wird.		
Schaubild, Kurve K _f ,	Visualisiert die Funktion	GRAPH,	Schnittpunkt,
Graph			Nullstelle,
			Steigung,
Monotonie	Eigenschaft einer Funktion,	-	Bsp. $f(a) < f(b)$ für
	nur zu steigen oder zu		a < b oder f'(x) > 0
	fallen.		immer
Nullstelle	Schnitt K _f mit der x-Achse	CALC und dann	allg.: $f(x)=0$. abc-
		5: intersect	Formel bei Parabeln.
Steigung	Zuwachs in einem Punkt	$nDeriv(Y_1,X)$	h-Formel, $\Delta y/\Delta x$,
	oder an einer Stelle im		Steigung für x ist
	Schaubild		einfach f'(x).
Punkt	besteht aus x- und y-Wert	-	Nullpunkt ist N(0 0).
Stelle	besteht nur aus einem x-	-	y-Wert ist f(x), wenn
	Wert		x auf K _f liegt.

Definitionsbereich/-menge	aus dieser Menge kommt das x.	-	Teilen durch Null: Nenner schränkt D _f ein!
Wertebereich/-menge	"Bildbereich", in ihm landet x, nachdem f angewendet wurde.	-	Im Schaubild meist gut ablesbar.
Tangente	Gerade, die K_f in einem Punkt berührt & Steigung d. Punktes hat.	DRAW und dann 5: Tangent(f(x),x)	t: y=mx+c mit m=f'(x) und c über Punktprobe mit P(x f(x))!
Ableitungsfunktion	Funktion, die jedem x aus D _f seine Ableitung f'(x) zuordnet. Klappt nur, wenn f'(x) auch sinnvoll ist!	$Y_1=f(x),$ $Y_2=nDeriv(Y_1,X,X)$	Steigung in $P(x f(x))$.
Berührpunkt	zwei Kurven besitzen einen gemeinsamen Punkt ohne sich zu schneiden.	CALC und dann 5: intersect	f(x)=g(x) und $f'(x)=g'(x).$

Nach dieser langen Liste einige kleine Übungen:

- 1. Bilde eine wahre Aussage, welche die Funktionen Gelb und Grün enthält sowie die Begriffe Definitionsmenge, Wertemenge, Schnittpunkt, Stelle und Monotonie. Schau dabei nur auf die Graphen und nicht auf die Tabelle! Sage die Aussage deinem Nachbarn, der kontrollieren soll, ob du die Begriffe richtig verwendet hast. Er erhält einen Punkt für jeden Fehler, den er findet.
- 2. Analysiere mit deinem Nachbarn das Schaubild der Funktion Rot auf alle Punkte aus der Liste. Ihr seid immer abwechselnd an der Reihe. Wer einen Fehler beim anderen findet, erhält einen Punkt.
- 3. Bilde eine wahre Aussage, welche die Funktionen Blau und Grün enthält sowie die Begriffe Tangente, Schnittpunkt, Berührpunkt, Steigung, Ableitung und Nullstelle. Schau dabei nur auf die Graphen und nicht auf die Tabelle! Sage die Aussage deinem Nachbarn, der kontrollieren soll, ob du die Begriffe richtig verwendet hast. Er erhält einen Punkt für jeden Fehler, den er findet.
- 4. Wieviele Punkt hast du gesammelt?