Aufgabe 5.3 Duale Simplexverfahren

Knut Krause Thomas Siwczyk Stefan Tittel

Technische Universität Dortmund Fakultät für Informatik

Algorithmen und Datenstrukturen 15. Januar 2009

- Aufgabenstellung und Motivation
- Erläuterung und Beispiel
 - Allgemeines Vorgehen
 - Tableau-Methode
 - Revidierte Simplex-Methode

- Aufgabenstellung und Motivation
- 2 Erläuterung und Beispie
 - Allgemeines Vorgehen
 - Tableau-Methode
 - Revidierte Simplex-Methode

Aufgabenstellung

Erläutern Sie das duale Simplexverfahren (Tableau-Methode und revidierte Simplex-Methode) und veranschaulichen Sie das Verfahren anhand eines Beispiels.

Motivation

 Lösung eines LPs, welches weder in kanonischer Form vorliegt, noch leicht in diese transformiert werden kann

Beispiel

$$\begin{array}{lllll} \max & \mathsf{F}(x_1,x_2) & = & 2x_1 + x_2 \\ \mathsf{s.t.} & x_1 + x_2 & \geq & 8 \\ & 3x_1 + x_2 & \geq & 12 \\ & x_1 + x_2 & \leq & 10 \\ & x_1,x_2 & \geq & 0 \end{array}$$

• Erweiterung eines LPs, zu dem eine optimale Lösung besteht, die nach der Erweiterung des LPs keine Lösung mehr ist

Allgemeines Vorgehen Tableau-Methode Revidierte Simplex-Methode

- Aufgabenstellung und Motivation
- Erläuterung und Beispiel
 - Allgemeines Vorgehen
 - Tableau-Methode
 - Revidierte Simplex-Methode

- Aufgabenstellung und Motivation
- Erläuterung und Beispiel
 - Allgemeines Vorgehen
 - Tableau-Methode
 - Revidierte Simplex-Methode

Überblick

- finde zulässige (nicht notwendigerweise optimale) Basislösung für das Problem
- übergib diese Basislösung an primalen Simplex
- falls Start mit *dual zulässiger*¹ Lösung, so ist erste primal zulässige Basislösung zugleich optimal
- Schritt 1 und 2 (Wahl von Pivotzeile und Pivotspalte) anders als beim primalen Algorithmus
- Schritt 3 (Tableautransformation/Matrizenrechnung) identisch zum primalen Algorithmus

 $^{^{1}}$ alle Eintragungen in der F-Zeile ≥ 0

Umwandlung des Ausgangsproblems

• Umformung des Ausgangsproblems in kanonische Form mit Schlupfvariablen, aber negative b_i zulässig

Beispiel – der kanonischen Form zugrundeliegendes LGS

$$F = 2x_1 + x_2$$

$$x_3 = x_1 + x_2 - 8$$

$$x_4 = 3x_1 + x_2 - 12$$

$$x_5 = -x_1 - x_2 + 10$$

Start-Tableau/-Matrix

für Tableau-Methode:

	x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	b_i
<i>X</i> 3	-1	-1	1			-8
<i>X</i> ₄	-3	-1		1		-12
<i>X</i> ₅	1	1			1	10
F	-2	-1	0	0	0	0

für revidierte Simplex-Methode:

$$\begin{pmatrix} -1 & -1 & 1 & 0 & 0 & 0 & -8 \\ -3 & -1 & 0 & 1 & 0 & 0 & -12 \\ 1 & 1 & 0 & 0 & 1 & 0 & 10 \\ -2 & -1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Wahl der Pivotzeile

Voraussetzung

Basislösung eines LPs (muss nicht zulässig sein); aktuelle Eintragungen im Simplextableau seien mit a_{ij}',b_i',c_j' bezeichnet

- **1** gibt es kein $b'_i < 0$: zulässige Basislösung liegt vor \Rightarrow Abbruch

Wahl der Pivotspalte

- **1** gibt es kein $a'_{si} < 0$ in Pivotzeile s: Problem hat keine zulässige Basislösung ⇒ Abbruch des gesamten Verfahrens
- ansonsten wähle Spalte t mit

$$\frac{c_t'}{a_{st}'} = \max\left\{\frac{c_j'}{a_{sj}'} \; \middle| \; j = 1, \dots, n \text{ mit } a_{st}' < 0\right\}$$

als Pivotspalte

Anmerkung

Beim primalen Simplex wird zuerst die Pivotspalte, dann die Pivotzeile ausgewählt, beim dualen ist es andersherum.

- Aufgabenstellung und Motivation
- Erläuterung und Beispiel
 - Allgemeines Vorgehen
 - Tableau-Methode
 - Revidierte Simplex-Methode

Beispiel – Tableau 1

	x_1	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	b _i
<i>X</i> ₃	-1	- 1	1			-8
<i>X</i> ₄	– 3	- 1		1		- 12
<i>X</i> 5	1	1			1	10
F	-2	- 1	0	0	0	0

- Test: Basis-Lösung zulässig? Nein: $x_3 = -8$ und $x_4 = -12!$
- ② $b_i = -12$ ist minimal, Zeile 2 wird Pivotzeile
- **3** $\frac{c_1'}{a_{21}'} = \frac{-2}{-3} = \frac{2}{3}$ und $\frac{c_2'}{a_{22}'} = \frac{-1}{-1} = 1 \Rightarrow$ Spalte 2 wird Pivotspalte
- a'₂₂ wird Pivotelement

Jetzt: Transformation (wie beim primalen Simplex)!

Beispiel – Tableau 2

	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	b_i
<i>X</i> ₃	2		1	-1		4
x_2	3	1		-1		12
<i>X</i> 5	-2			- 1	1	- 2
F	1	0	0	-1	0	12

- **1** Test: Basis-Lösung zulässig? Nein: $x_5 = -2!$
- ② $b_i = -2$ ist minimal, Zeile 3 wird Pivotzeile
- a_{31}' wird Pivotelement

Jetzt: Transformation (wie beim primalen Simplex)!

Beispiel – Tableau 3

	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	b_i
<i>X</i> ₃			1		1	2
<i>x</i> ₂		1		$\frac{1}{2}$	3 2	9
x_1	1			$-\frac{1}{2}$	$-\frac{1}{2}$	1
F	0	0	0	$-\frac{1}{2}$	1/2	11

Test: Basis-Lösung zulässig? Ja! Nun primaler Simplex:

	x_1	<i>x</i> ₂	<i>X</i> 3	<i>x</i> ₄	<i>X</i> ₅	b_i
<i>X</i> 3			1		1	2
<i>X</i> ₄		2		1	3	18
x_1	1	1			1	10
F	0	1	0	0	2	20

Optimal: $x_1 = 10, x_3 = 2, x_4 = 18, x_2 = x_5 = 0, F = 20$

- Aufgabenstellung und Motivation
- Erläuterung und Beispiel
 - Allgemeines Vorgehen
 - Tableau-Methode
 - Revidierte Simplex-Methode

$ilde{A_1}$

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & \mathsf{F} & b_i \\ -1 & -1 & 1 & 0 & 0 & 0 & -8 \\ -3 & -1 & 0 & 1 & 0 & 0 & -12 \\ 1 & 1 & 0 & 0 & 1 & 0 & 10 \\ -2 & -1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

B_1

$$\begin{array}{c} x_2 & x_3 & x_5 & \mathsf{F} \\ x_2 & -1 & 1 & 0 & 0 \\ x_3 & -1 & 0 & 0 & 0 \\ x_5 & 1 & 0 & 1 & 0 \\ \mathsf{F} & -1 & 0 & 0 & 1 \end{array}$$

B_{1}^{-1}

$$\begin{array}{c} x_2 & x_3 & x_5 & \mathsf{F} \\ x_2 & 0 & -1 & 0 & 0 \\ x_3 & 1 & -1 & 0 & 0 \\ x_5 & 0 & 1 & 1 & 0 \\ \mathsf{F} & 0 & -1 & 0 & 1 \end{array}$$

$$\tilde{A_1} \cdot B_1^{-1}$$

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & \mathsf{F} & b_i \\ 3 & 1 & 0 & -1 & 0 & 0 & 12 \\ 2 & 0 & 1 & -1 & 0 & 0 & 4 \\ -2 & 0 & 0 & 1 & 1 & 0 & -2 \\ 1 & 0 & 0 & -1 & 0 & 1 & 12 \end{pmatrix}$$

 B_2

 B_2^{-1}

$$\tilde{A_2}\cdot B_2^{-1}$$

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & \mathsf{F} & b_i \\ 1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} & 0 & 1 \\ 0 & 1 & 0 & \frac{1}{2} & \frac{3}{2} & 0 & 9 \\ 0 & 0 & 1 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & -\frac{1}{2} & \frac{1}{2} & 1 & 11 \end{pmatrix}$$

- Lösung ist gültige primale Basislösung
- Algorithmusstop

Literatur

Wolfgang Domschke und Andreas Drexl. *Einführung in Operations Research*. Springer, Berlin [u.a.], 2005.