SINGAPORE POLYTECHNIC

2020/2021 Semester 2 Mid-Semester Test

No.	SOLUTION			
1(a)	For symmetric matrix, $\mathbf{A}_{ii} = \mathbf{A}_{ii}$.			
	c=2			
	b=-c=-2			
	$a = \frac{b}{2} = -1$ $2\mathbf{B} - 3\mathbf{F} = 4\mathbf{I}_2$			
1(b)	$2\mathbf{B} - 3\mathbf{F} = 4\mathbf{I}_2$			
	$\mathbf{F} = \frac{1}{3} \begin{pmatrix} 2\mathbf{B} - 4\mathbf{I}_2 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} - 4 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} = \frac{1}{3} \begin{pmatrix} \begin{bmatrix} 4 & 2 \\ 8 & 4 \end{bmatrix} - \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} \end{pmatrix} = \frac{2}{3} \begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix}$			
1(c) (i)	$\mathbf{BD} = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 & 4 \\ 2 & -3 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -5 & 9 \\ 8 & -10 & 18 \end{bmatrix}$			
1(c) (ii)	$ (\mathbf{B} + \mathbf{E})^T = \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix} + \begin{pmatrix} -1 & 3 \\ -2 & 2 \end{pmatrix}^T = \begin{pmatrix} 1 & 4 \\ 2 & 4 \end{pmatrix}^T = \begin{pmatrix} 1 & 2 \\ 4 & 4 \end{pmatrix} $			
1(c)	Not possible to evaluate, because the number of columns in \mathbf{D}^T (or $\mathbf{A}\mathbf{D}^T$) is not equal to			
(iii) 1(d)	the number of rows in \mathbb{C} . $\mathbb{C}^{-1}\mathbb{C} = \mathbb{I}$			
(i)	$\begin{bmatrix} x & 12 & 5 \\ 2 & y & -1 \\ 3 & -3 & z \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 1 & 4 & 1 \\ 0 & -3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$			
	$\left(\mathbf{C}^{-1}\mathbf{C}\right)_{11} = x + 12 + 0 = 1 \Rightarrow x = -11$			
	$\left(\mathbf{C}^{-1}\mathbf{C}\right)_{22} = 6 + 4y + 3 = 1 \Rightarrow y = -2$			
	$\left(\mathbf{C}^{-1}\mathbf{C}\right)_{33} = 6 - 3 + 2z = 1 \Rightarrow z = -1$			
1(d)	Given $\mathbf{G}^T \mathbf{C} = \mathbf{C}^T$,			
(ii)	$\left(\mathbf{G}^T\mathbf{C}\right)^T = \left(\mathbf{C}^T\right)^T$			
	$\mathbf{C}^T\mathbf{G} = \mathbf{C}$			
	$\mathbf{C}^T \mathbf{G} \mathbf{G}^{-1} = \mathbf{C} \mathbf{G}^{-1}$			
	$\mathbf{C}^{-1}\mathbf{C}^T = \mathbf{C}^{-1}\mathbf{C}\mathbf{G}^{-1}$			
	$\Rightarrow \mathbf{G}^{-1} = \mathbf{C}^{-1}\mathbf{C}^{T}$			
	$\begin{bmatrix} -11 & 12 & 5 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 35 & 42 & -26 \end{bmatrix}$			
	Hence, $\mathbf{G}^{-1} = \begin{bmatrix} -11 & 12 & 5 \\ 2 & -2 & -1 \\ 3 & -3 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 3 & 4 & -3 \\ 2 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 35 & 42 & -26 \\ -6 & -7 & 4 \\ -8 & -10 & 7 \end{bmatrix}$			

SINGAPORE POLYTECHNIC 2020/2021 Semester 2 Mid-Semester Test

2(a) $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

(i) $A = \{1, 2, 3, 4, 5\}$

 $B = \{7, 8, 9, 10\}$

 $C = \{6, 9\}$

 $2(a) \quad |B \cap C| = 1$

(ii) $B-C = \{7,8,10\}$

 $A \cup \overline{B} = \{1, 2, 3, 4, 5, 6\}$

 $\overline{A} \cap B = \{7, 8, 9, 10\}$

2(b) (i)

 $\begin{bmatrix} 2(b) \\ (ii) \end{bmatrix} U - (P-Q) - (Q-P)$

SINGAPORE POLYTECHNIC 2020/2021 Semester 2 Mid-Semester Test

3(a)				
` '	Integ	ntegral part:		
	2	2570		
	2	1285	0	
	2	642	1	
	2	321	0	
	2	160	1	
	2	80	0	
	2	40	0	
	2	20	0	
	2	10	0	
	2	5	0	
	2	2	1	
	2	1	0	
		0	1	

Fractional part:			
2	0.35		
2	0.7	0	
2	0.4	1	
2	0.8	0	
2	0.6	1	
2	0.2	1	
2	0.4	0	
2	0.8	0	
2	0.6	1	
2	0.2	1	
2	0.4 (rep)	0	

$$\therefore 2570.35_{10} = 1010\ 0000\ 1010.01\ \overline{0110}_{2}$$
$$= A0A.5\overline{9}_{16}$$

3(b) Largest 6-digit hexadecimal number = FFFF.FF₁₆ $FFFF.FF_{16} = 15 \times \left(16^3 + 16^2 + 16^1 + 16^0 + 16^{-1} + 16^{-2}\right)$ $=65535.99609375_{10}$

$$\approx 65535.9961_{10}$$

$$\approx 65535.9961_{10}$$
3(c) $357_k = 3k^2 + 5k + 7 = 1855$

$$\Rightarrow 3k^2 + 5k - 1848 = 0$$

$$(k - 24)(3k + 77) = 0$$

$$k = 24 \text{ or } k = -\frac{77}{3} \text{ (rejected)}$$

Therefore, k = 24.

SINGAPORE POLYTECHNIC 2020/2021 Semester 2 Mid-Semester Test

 $0 \ 0 \ 1 \| 0 \ 0 \ 1 \| 0 \ 0 \ 1 |$

1

0

0 -3

1

SINGAPORE POLYTECHNIC 2020/2021 Semester 2 Mid-Semester Test

$$p = \frac{6-2}{2} = 2$$

Pythagoras' Theorem: $8^2 = 4^2 + q^2$

$$q = \sqrt{8^2 - 4^2} = 4\sqrt{3}$$
 (reject $q = -4\sqrt{3}$ since $q > 0$)

 $q = \sqrt{8^2 - 4^2} = 4\sqrt{3} \text{ (reject } q = -4\sqrt{3} \text{ since } q > 0\text{)}$ $4(b) \quad \mathbf{T}_a \text{: Translation 3 units to the left and 4 units downwards}$

(ii)

$$T_b$$
: Scaling relative to the origin by a factor of 2 in the x-direction and a factor of $\sqrt{3}$ in the y-direction

$$\mathbf{T}_{a} = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{bmatrix}; \ \mathbf{T}_{b} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T}_{a} = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{bmatrix}; \ \mathbf{T}_{b} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T} = \mathbf{T}_{b} \mathbf{T}_{a} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & -6 \\ 0 & \sqrt{3} & -4\sqrt{3} \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{P''} = \mathbf{TP} = \begin{bmatrix} 2 & 0 & -6 \\ 0 & \sqrt{3} & -4\sqrt{3} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 6 & 4 \\ 4 & 4 & 8 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 6 & 2 \\ 0 & 0 & 4\sqrt{3} \\ 1 & 1 & 1 \end{bmatrix}$$
 (verified)