Fallstudie

Urs Walcher 2019-07-15

Contents

Bibliotheken laden	
Daten einlesen und aufbereiten Dateien einlesen Daten bereinigen	
Erste Datenanalyse Vergleich der gelieferten Trainings- und Test-Daten	4 4 5
Korrelationen Schnellübersicht	8 8 8 9
Validation	9 13 14 15
Anhang A	17 17 19
$Bibliotheken\ laden$	
## Bliotheken laden	
<pre>library(caret) library(readr) library(dplyr) library(corrplot) library(caret) library(randomForest)</pre>	

Daten einlesen und aufbereiten

Dateien einlesen

Stuktur der Daten anzeigen

```
## 'data.frame':
                    576 obs. of 6 variables:
                                 : int 619 664 441 160 358 335 47 164 736 436 ...
## $ Months.since.Last.Donation : int 2 0 1 2 1 4 2 1 5 0 ...
## $ Number.of.Donations
                                 : int 50 13 16 20 24 4 7 12 46 3 ...
## $ Total.Volume.Donated..c.c.: int 12500 3250 4000 5000 6000 1000 1750 3000 11500 750 ...
## $ Months.since.First.Donation: int 98 28 35 45 77 4 14 35 98 4 ...
## $ Made.Donation.in.March.2007: int 1 1 1 1 0 0 1 0 1 0 ...
## [1] 576
576 Zeilen Trainingsdaten (Observations) und 6 Spalten (Variablen) eingelesen.
## 'data.frame':
                    200 obs. of 5 variables:
                                 : int 659\ 276\ 263\ 303\ 83\ 500\ 530\ 244\ 249\ 728\ \dots
## $ Months.since.Last.Donation : int 2 21 4 11 4 3 4 14 23 14 ...
## $ Number.of.Donations
                                 : int 12 7 1 11 12 21 2 1 2 4 ...
## $ Total.Volume.Donated..c.c..: int 3000 1750 250 2750 3000 5250 500 250 500 1000 ...
## $ Months.since.First.Donation: int 52 38 4 38 34 42 4 14 87 64 ...
## [1] 200
200 Zeilen Validierungssdaten (Observations) und 5 Spalten (Variablen) eingelesen.
```

Daten bereinigen

Spaltennamen anpassen

```
data_tst <- data_tst %>%
  rename(
   id = "X".
   msld = "Months.since.Last.Donation",
   nod = "Number.of.Donations",
   tvd = "Total.Volume.Donated..c.c..",
   msfd = "Months.since.First.Donation".
   mdim07 = "Made.Donation.in.March.2007"
  )
str(data_tst)
## 'data.frame':
                   576 obs. of 6 variables:
   $ id
           : int 619 664 441 160 358 335 47 164 736 436 ...
  $ msld : int 2 0 1 2 1 4 2 1 5 0 ...
            : int 50 13 16 20 24 4 7 12 46 3 ...
  $ nod
            : int 12500 3250 4000 5000 6000 1000 1750 3000 11500 750 ...
   $ tvd
  $ msfd : int 98 28 35 45 77 4 14 35 98 4 ...
   $ mdim07: int 1 1 1 1 0 0 1 0 1 0 ...
```

Alle Spaltennamen auf Kurzform angepasst (erster Wortbuchstabe verwendet).

Daten auf unvollständige Zeilen prüfen

N/A-Werte

```
# Auf fehlende "N/A" Werte prüfen
na_tst <- sapply(data_tst,function(x) sum(is.na(x)))</pre>
na_prd <- sapply(data_prd,function(x) sum(is.na(x)))</pre>
print(na tst)
##
                                   msfd mdim07
       id
            msld
                     nod
                             tvd
##
                       0
                               0
                                      0
print(na_prd)
##
                                 Months.since.Last.Donation
##
                               0
           Number.of.Donations Total.Volume.Donated..c.c..
##
##
## Months.since.First.Donation
##
```

Keine"N/A" Werte vorhanden, die korrigert werden müssen.

Leerzeichen

```
# Auf fehlende " " Werte prüfen
na_tst <- sapply(data_tst,function(x) sum(x==""))</pre>
na_prd <- sapply(data_prd,function(x) sum(x==""))</pre>
print(na_tst)
##
       id
            msld
                     nod
                             tvd
                                   msfd mdim07
##
        0
                       0
                               0
                                      0
                                              0
print(na_prd)
##
                                 Months.since.Last.Donation
##
           Number.of.Donations Total.Volume.Donated..c.c..
##
##
## Months.since.First.Donation
```

Keine Leerzeichen vorhanden, die korrigert werden müssen.

Werte korrigieren

```
#Sollte es Nullwerte haben könnte man die Imputation anwenden (Beispiel)
if(na_tst > 0){
print("NULLWERT!!!!!!")
preproc_df = preProcess(df, method = "bagImpute")
df <- predict(preproc_df, df)
}
## Warning in if (na_tst > 0) {: the condition has length > 1 and only the
## first element will be used
```

Beispiel Datenkorrektur.

Daten auf doppelte Zeilen prüfen

Nur zu Dokumentationszwecken verwendet.

$Erste\ Datenanalyse$

Vergleich der gelieferten Trainings- und Test-Daten

Scatterplots der Trainingsdaten

Scatterplots und "Summary" der Trainingsdaten.

Histogramme der Testdaten

Scatterplots und "Summary" der Validierungsdaten.

Fazit dese Vergleiches: - Trainings- und Validierungsdaten stimmen ziemlich überein. Die Daten können verwendet werden. Auch das "Summary" liefert annähernd die gleichen Werte.

Schneller, visualisierter Blick in die Daten

Daten in "train" und "validate" aufteilen

```
# Daten in Trainings- und Testdaten aufteilen

partition <- createDataPartition(data_tst[,1], times = 1, p = 0.75,list = FALSE)

train <- data_tst[partition,] # Trainings-Daten

validate <- data_tst[-partition,] # Test-Daten</pre>
```

dim(train)

[1] 432 6

dim(validate)

[1] 144 6

Daten in Trainings- und Testdaten aufgeteilt.

${\it Frequenz \ anzeigen}$

nod

Density anzeigen

20

40

60

4000 8000

msfd

Korrelationen

$Schnell\"{u}bersicht$

```
## msld nod tvd msfd

## msld 1.0000000 -0.1352728 -0.1352728 0.2164199

## nod -0.1352728 1.0000000 1.0000000 0.6115297

## tvd -0.1352728 1.0000000 1.0000000 0.6115297

## msfd 0.2164199 0.6115297 0.6115297 1.0000000
```


[1] 0.6115297

Die Werte zeigen eine Korrelation zwischen msfd (Month since first donation) und der Anzahl der Spenden (nod(numbers of donation)). Da tvd & nod in Abhängigkeit zueinander stehen, kann tvd entfernt werden.

Unnötige Variabeln entfernen

```
# Variable "tvd" entfernen

useless <- c("tvd")
train <- train[,!(names(train) %in% useless)]
validate <- validate[,!(names(validate) %in% useless)]
str(train)

## 'data.frame': 432 obs. of 5 variables:
## $ id : int 619 664 441 160 335 164 436 499 191 638 ...</pre>
```

```
## $ msld : int 2 0 1 2 4 1 0 2 2 2 ...
## $ nod : int 50 13 16 20 4 12 3 6 15 6 ...
## $ msfd : int 98 28 35 45 4 35 4 15 49 15 ...
## $ mdim07: int 1 1 1 1 0 0 0 1 1 1 ...

str(validate)

## 'data.frame': 144 obs. of 5 variables:
## $ id : int 358 47 736 460 285 356 40 8 482 298 ...
## $ msld : int 1 2 5 2 1 2 2 2 4 2 ...
## $ nod : int 24 7 46 10 13 5 14 6 8 12 ...
## $ msfd : int 77 14 98 28 47 11 48 16 21 47 ...
## $ mdim07: int 0 1 1 1 0 1 1 1 0 1 ...
Variablen "Total volume donated" entfernt (überflüssig).
```

Variable "mdim07" in Faktor umwandeln

Machine Learning

Logistische Regression

Mit Standartwerten und mit "logloss" als Metrik

```
# Standartwerte setzen

trainControl <- trainControl(method="repeatedcv", summaryFunction=mnLogLoss, number=10, repeats=3, clas

metric <- "logLoss"

# Logistische Regressionen

set.seed(101)
fit.glm <- train(mdim07~., data=train, method="glm", metric=metric, trControl=trainControl) # GLM</pre>
```

```
set.seed(101)
fit.lda <- train(mdim07~., data=train, method="lda", metric=metric, trControl=trainControl) # LDA
set.seed(101)
fit.glmnet <- train(mdim07~., data=train, method="glmnet", metric=metric,trControl=trainControl) # GLM
set.seed(101)
fit.cart <- train(mdim07~., data=train, method="rpart", metric=metric,trControl=trainControl) # CART
set.seed(101)
fit.svm <- train(mdim07~., data=train, method="svmRadial", metric=metric, trControl=trainControl) # SV
Auswertung
# Auswertung
results <- resamples(list(LG=fit.glm, LDA=fit.lda, GLMNET=fit.glmnet, CART=fit.cart, SVM=fit.svm))
summary(results)
##
## Call:
## summary.resamples(object = results)
## Models: LG, LDA, GLMNET, CART, SVM
## Number of resamples: 30
##
## logLoss
##
                      1st Qu.
                                 Median
                                                    3rd Qu.
                                                                 Max. NA's
               Min.
                                             Mean
## LG
          0.3893135 0.4463300 0.4852988 0.4961014 0.5353859 0.6055316
         0.4023105 0.4638187 0.4944361 0.4964558 0.5365428 0.5813167
## GLMNET 0.3918348 0.4488821 0.4859499 0.4956279 0.5334270 0.6020146
## CART 0.3650912 0.4492543 0.5056391 0.5327407 0.5498976 1.3358187
                                                                         0
          0.4100113 0.4913000 0.5163180 0.5204602 0.5470081 0.6197136
## SVM
                                                                         0
dotplot(results)
```


Der "log Loss" sollte möglichst tief sein. "GLMNET" bringt die beste Performance.

Optimierung mit "Box Cox" Transformation und mit "logLoss" als Metrik

```
# Standartwerte und BoxCox setzen
trainControl <- trainControl(method="repeatedcv", summaryFunction=mnLogLoss, number=10, repeats=3, clas
preProcess="BoxCox"
metric <- "logLoss"
# Logistische Regressionen
set.seed(101)
fit.glm <- train(mdim07-., data=train, method="glm", metric=metric, trControl=trainControl, preProc=pre
set.seed(101)
fit.lda <- train(mdim07-., data=train, method="lda", metric=metric, trControl=trainControl, preProc=pre
set.seed(101)
fit.glmnet <- train(mdim07-., data=train, method="glmnet", metric=metric,trControl=trainControl, preProc=pre
set.seed(101)
fit.cart <- train(mdim07-., data=train, method="rpart", metric=metric,trControl=trainControl, preProc=p
set.seed(101)</pre>
```

Auswertung

```
## glmnet
##
## 432 samples
    4 predictor
##
    2 classes: 'No', 'Yes'
##
##
## Pre-processing: Box-Cox transformation (2)
## Resampling: Cross-Validated (10 fold, repeated 3 times)
## Summary of sample sizes: 389, 389, 389, 389, 388, 390, ...
## Resampling results across tuning parameters:
##
##
     alpha lambda
                          logLoss
##
    0.10
           0.0002162577 0.4884103
##
     0.10
           0.0021625769 0.4880559
           0.0216257689 0.4902963
##
     0.10
##
     0.55
           0.0002162577   0.4884475
##
     0.55
           0.0021625769 0.4882145
##
    0.55
           0.0216257689 0.4939626
           0.0002162577 0.4884714
##
     1.00
##
     1.00
           0.0021625769 0.4883865
     1.00
           0.0216257689 0.5002614
##
##
## logLoss was used to select the optimal model using the smallest value.
## The final values used for the model were alpha = 0.1 and lambda
## = 0.002162577.
```

Zeigt die "CoxBox"-Optimierung auf und welchen Wert für "alpha" und "lambda" verwendet wurden.

Auswertung

```
##
## summary.resamples(object = results)
## Models: LG, LDA, GLMNET, CART, SVM
## Number of resamples: 30
##
## logLoss
##
               Min.
                      1st Qu.
                                  Median
                                              Mean
                                                     3rd Qu.
## LG
          0.3827768\ 0.4333300\ 0.4865001\ 0.4885447\ 0.5405587\ 0.6108196
          0.4029320\ 0.4436962\ 0.4895205\ 0.4898811\ 0.5285904\ 0.6017458
                                                                           0
## GLMNET 0.3868571 0.4347305 0.4874971 0.4880559 0.5398231 0.6043571
                                                                           0
        0.3650912 0.4492543 0.5056391 0.5327407 0.5498976 1.3358187
## CART
                                                                           0
## SVM
          0.4171097 0.4902677 0.5109632 0.5181278 0.5476196 0.6200561
                                                                           0
```


Allgemein leichte Verbesserung bei den Werten und wieder bringt "GLMNET" die beste Performance.

Random Forest, GBM & C5.0

Auswertung

```
# Resultate
ensembleResults <- resamples(list(RF=fit.rf, GBM=fit.gbm, C50=fit.c50))
summary(ensembleResults)</pre>
```

##

```
## Call:
## summary.resamples(object = ensembleResults)
##
## Models: RF, GBM, C50
## Number of resamples: 30
##
## logLoss
##
            Min.
                   1st Qu.
                               Median
                                           Mean
                                                   3rd Qu.
       0.3943354\ 0.5074131\ 0.5906025\ 0.6454962\ 0.6348257\ 2.0291498
## RF
## GBM 0.4127904 0.4547596 0.5086024 0.5052926 0.5499566 0.6155020
                                                                        0
## C50 0.3980659 0.4426518 0.4938751 0.5001474 0.5418238 0.6428691
                                                                        0
dotplot(ensembleResults)
 RF
GBM
 C50
              0.50
                           0.55
                                       0.60
                                                   0.65
                                                               0.70
                                                                           0.75
                                         logLoss
                              Confidence Level: 0.95
```

Bei diesen Methoden bringt "GBM" (Gradient Boosting Machine) die besten Werte, aber anhand der schlechteren Laufzeiten im Vergleich zu den logistischen Regressionen, werde ich nur noch "GLMNET" bevorzugen.

Validation

Validation mit dem "Validate-Set" durchführen

```
# Variable "mdim07" in Faktor umwandeln

req_labels <- validate['mdim07']

rec_labels <- recode(req_labels$mdim07,'0' = "No", '1' = "Yes")

validate$mdim07 <- rec_labels
validate$mdim07 <-as.factor(validate$mdim07)</pre>
```

```
str(validate)
## 'data.frame': 144 obs. of 5 variables:
## $ id : int 358 47 736 460 285 356 40 8 482 298 ...
## $ msld : int 1 2 5 2 1 2 2 2 4 2 ...
## $ nod : int 24 7 46 10 13 5 14 6 8 12 ...
## $ msfd : int 77 14 98 28 47 11 48 16 21 47 ...
## $ mdim07: Factor w/ 2 levels "No","Yes": 1 2 2 2 1 2 2 2 1 2 ...
## GLMNET mit dem "validate-Datenset"

set.seed(101)
test.pred <- predict(fit.glmnet, newdata=validate, type = "prob") # GLMNET</pre>
```

Auswertung

```
# logLoss kalkulieren
LogLoss <- function(actual, predicted, eps=0.00001) {
    predicted <- pmin(pmax(predicted, eps), 1-eps)
        -1/length(actual)*(sum(actual*log(predicted)*(1-actual)*log(1-predicted)))
}

# Labels wieder in "0" und "1" ändern
req_labels <- validate['mdim07']
rec_labels <- recode(req_labels$mdim07, "No" = '0', "Yes" = '1')
validate$mdim07 <- rec_labels
# LogLoss bestimmen
log.loss <- LogLoss(as.numeric(as.character(validate$mdim07)), test.pred$Yes)
print(log.loss)</pre>
```

[1] 0.4541126

Der "logLoss" sollte möglichst tief sein und ich denke 0.37 ist ein guter Wert. Wir können dies also auf unsere Produktiven-Daten anwenden und die "Submission-Datei erstellen.

Test- oder Produktive-Daten vorhersagen

Vorhersage mit dem "Test-Set" durchführen

```
# Spaltennamen anpassen

data_prd <- data_prd %>%
    rename(
    id = "X",
    msld = "Months.since.Last.Donation",
    nod = "Number.of.Donations",
    tvd = "Total.Volume.Donated.c.c..",
    msfd = "Months.since.First.Donation",
    )
```

```
## 'data.frame': 200 obs. of 5 variables:
## $ id : int 659 276 263 303 83 500 530 244 249 728 ...
## $ msld: int 2 21 4 11 4 3 4 14 23 14 ...
## $ nod : int 12 7 1 11 12 21 2 1 2 4 ...
## $ tvd : int 3000 1750 250 2750 3000 5250 500 250 500 1000 ...
## $ msfd: int 52 38 4 38 34 42 4 14 87 64 ...
## Vorhersage durchführen
set.seed(101)
predictions <- predict(fit.glmnet, newdata=data_prd, type = "prob")</pre>
```

Daten preparieren und hochladen

```
# Submissions-Datei einlesen und Daten abfüllen.
submission_format <- read.csv("daten/submission_format.csv", check.names=FALSE)
submission_format <- submission_format[,-2] # Bestehende "Did Donation" entfernen
pred.df <- as.data.frame(predictions$Yes) #Vorhersagen in DataFrame umwandeln
submission_format <- cbind(submission_format, pred.df) # Vorhersage anhängen
submission_format <- submission_format %>% # Spalten umbennenen
    rename(
    ID = "submission_format",
        'Made Donation in March 2007' = "predictions$Yes",
    )
write.csv(submission_format, file="daten/submission_final.csv", row.names=FALSE) #CSV-Datei erstellen
```

Schlussresultat anzeigen

```
# Submissions-Datei anzeigen.
head(submission_format, n = 25L)
```

```
##
       ID Made Donation in March 2007
## 1 659
                           0.52669045
## 2
     276
                           0.14424981
## 3
     263
                           0.19339374
## 4 303
                           0.36380455
## 5
      83
                           0.48627171
## 6 500
                           0.68768123
## 7
     530
                           0.39914835
## 8 244
                           0.05876478
## 9 249
                           0.01259396
## 10 728
                           0.10295145
## 11 129
                           0.16567221
## 12 534
                           0.19284135
## 13 317
                           0.28583210
## 14 401
                           0.21137663
```

```
## 15 696
                           0.35609817
## 16 192
                           0.07869380
## 17 176
                           0.26591809
## 18 571
                           0.49124479
## 19 139
                           0.09209039
## 20 423
                           0.30149118
## 21 563
                           0.49727847
## 22 56
                           0.28745266
## 23 528
                           0.46332822
## 24 101
                           0.17379710
## 25 467
                           0.21011898
```

$Anh \ddot{a}nge$

Anhang A

KNN

```
# Vorhersage-Qualitaet: log loss Funktion, d.h unser Bewertungskriterium
# Funktion definieren, die log loss berechnet
train.knn <- read.csv("daten/bloodtrain.csv", header = TRUE)
train.knn <- train.knn %>%
 rename(
   id = "X".
    msld = "Months.since.Last.Donation",
   nod = "Number.of.Donations",
   tvd = "Total.Volume.Donated..c.c..",
   msfd = "Months.since.First.Donation",
    mdim2007 = "Made.Donation.in.March.2007"
log_loss <- function(actual, predicted, eps = 1e-15){</pre>
 actual[actual == "yes"] <- 1</pre>
 actual[actual == "no"] <- 0</pre>
 actual <- as.numeric(actual)</pre>
  # Bound probabilities (0,1) for computational purposes
 predicted[predicted < eps] <- eps</pre>
 predicted[predicted > 1 - eps] <- 1 - eps</pre>
 result=-1/length(actual)*(sum((actual*log(predicted)+(1-actual)*log(1-predicted))))
 return(result)
}
train.knn$mdim2007[train.knn$mdim2007 ==1] <- "yes"</pre>
train.knn$mdim2007[train.knn$mdim2007 ==0] <- "no"</pre>
# Train KNN algorithm
```

```
# Anteil fuer Traing-Daten waehlen
split size = 0.7
# Startwert / seed waehlen --> Reproduzierbarkeit
set.seed(123)
# Initialize data frame of cross-validation log loss
# -----
knn_cv_results <- data.frame(matrix(ncol = 6, nrow = 20))</pre>
knn_cv_results[,1] \leftarrow c(1:20)
colnames(knn_cv_results) <- c("k", "iter1", "iter2", "iter3", "iter4", "iter5")</pre>
# Perform repeated cross-validation for KNN to tune K
for (i in 1:20){
 for (j in 1:5){
    # Zufälligen Index für das Auswaheln von Subsamles definieren
    cv_idx <- sample(nrow(train.knn), nrow(train.knn)*split_size, replace = FALSE)</pre>
   # Split der Daten in Training-Set und Validation-Set, ID-Spalte weglassen
   cv tr <- train.knn[cv idx,-1]
   cv_val <- train.knn[-cv_idx,-1]</pre>
    # K festsetzen
   cv_grid <- expand.grid(k = c(i))</pre>
    # kNN-Modell trainieren
   knn_cv <- train(as.factor(mdim2007) ~ msfd + msld + nod + mdim2007,
                    data = cv_tr,
                    method = "knn",
                    tuneGrid = cv_grid)
    # Vorhersage machen mit Hilfe des Validierungs-Set
   pred_cv <- predict(knn_cv, cv_val, type = "prob")</pre>
    # Resultate festhalten -- i-te Zeile, (j+1). Spalte
   knn_cv_results[i,j+1] <- log_loss(cv_val$mdim2007, pred_cv$yes)</pre>
  }
}
# Durchschnittl. log loss fuer jeden Wert von K berechnen
knn_cv_results\( avg_log_loss <- rowSums(knn_cv_results[,2:6])/5
# Ansehen
knn_cv_results$avg_log_loss
## [1] 6.8919874 3.6331202 2.7171464 2.1605216 1.7637037 1.6906097 1.5072814
## [8] 1.0832749 1.2950310 1.0893940 1.2449975 1.2141045 0.8888012 0.7488529
## [15] 0.8751910 0.6452300 0.8845376 0.7219289 0.5365571 0.5249744
# Anzeigen
str(knn_cv_results)
```

Anhang B

R Code

```
knitr::opts_chunk$set(echo = FALSE)
## Bliotheken laden
library(caret)
library(readr)
library(dplyr)
library(corrplot)
library(caret)
library(randomForest)
data_tst <- read.csv("daten/bloodtrain.csv", header = TRUE)</pre>
data_prd <- read.csv("daten/bloodtest.csv", header = TRUE)</pre>
# Struktur anzeigen
str(data_tst)
dim(data_tst)
# Tabelle Anzeigen
str(data_prd)
dim(data_prd)
data_tst <- data_tst %>%
  rename(
    id = "X",
    msld = "Months.since.Last.Donation",
   nod = "Number.of.Donations",
   tvd = "Total.Volume.Donated..c.c..",
    msfd = "Months.since.First.Donation",
    mdim07 = "Made.Donation.in.March.2007"
  )
str(data_tst)
# Auf fehlende "N/A" Werte prüfen
na_tst <- sapply(data_tst,function(x) sum(is.na(x)))</pre>
na_prd <- sapply(data_prd,function(x) sum(is.na(x)))</pre>
print(na_tst)
print(na prd)
# Auf fehlende " " Werte prüfen
na_tst <- sapply(data_tst,function(x) sum(x==""))</pre>
na_prd <- sapply(data_prd,function(x) sum(x==""))</pre>
```

```
print(na_tst)
print(na_prd)
#Sollte es Nullwerte haben könnte man die Imputation anwenden (Beispiel)
if (na tst > 0) {
print("NULLWERT!!!!!!")
preproc_df = preProcess(df, method = "bagImpute")
df <- predict(preproc_df, df)</pre>
# Daten auf doppelte Zeilen überprüfen
data_tst[duplicated(data_tst),]
data_new <- data_tst[duplicated(data_tst)==FALSE,]</pre>
#### ueberpruefen
dim(data_new)
data_new
print(sort(data_new[,1]))
## Histogram mit der Trendline der Trainingsdaten
panel.hist <- function(x, ...)</pre>
    usr <- par("usr"); on.exit(par(usr))</pre>
    par(usr = c(usr[1:2], 0, 1.5))
    h <- hist(x, plot = FALSE)</pre>
    breaks <- h$breaks; nB <- length(breaks)</pre>
    y \leftarrow h$counts; y \leftarrow y/max(y)
    rect(breaks[-nB], 0, breaks[-1], y, col = "cyan", ...)
}
pairs(data_tst[1:5], panel = panel.smooth,
      cex = 1.0, pch = 22, bg = "light blue",
      diag.panel = panel.hist, cex.labels = 2, font.labels = 2, main="Scatterplots der Trainingsdaten"
summary(data_tst)
## Histogram mit der Trendline der Testdaten
panel.hist <- function(x, ...)</pre>
    usr <- par("usr"); on.exit(par(usr))</pre>
    par(usr = c(usr[1:2], 0, 1.5))
    h <- hist(x, plot = FALSE)</pre>
    breaks <- h$breaks; nB <- length(breaks)</pre>
    y \leftarrow h$counts; y \leftarrow y/max(y)
    rect(breaks[-nB], 0, breaks[-1], y, col = "cyan", ...)
pairs(data_prd[1:5], panel = panel.smooth,
      cex = 1.0, pch = 22, bg = "light blue",
      diag.panel = panel.hist, cex.labels = 2, font.labels = 2, main="Histogramme der Testdaten")
summary(data_prd)
# Daten in Trainings- und Testdaten aufteilen
```

```
partition <- createDataPartition(data_tst[,1], times = 1, p = 0.75,list = FALSE)</pre>
train <- data_tst[partition,] # Trainings-Daten</pre>
validate <- data_tst[-partition,] # Test-Daten</pre>
dim(train)
dim(validate)
### Histogramme anzeigen
par(mfrow=c(2,2))
for(i in 2:5) {
    hist(train[,i], main=names(train)[i])
par(mfrow=c(2,2))
for(i in 2:5) {
  dta_A <- density(train[ ,i], na.rm = TRUE)</pre>
  dta_B <- density(validate[ ,i], na.rm = TRUE)</pre>
  plot(dta_A, col = "blue", main=names(train)[i])
  lines(dta_B, col = "red")
  # plot(density(train[,i]), main=names(train)[i])
jittered_x <- sapply(train[,2:5], jitter)</pre>
pairs(jittered_x, names(train[,2:5]), col=(train$mdim07)+1)
  cor(train[2:5])
  M <- cor(train)</pre>
  corrplot.mixed(M)
  cor(train$nod,train$msfd)
# Variable "tvd" entfernen
useless <- c("tvd")</pre>
train <- train[,!(names(train) %in% useless)]</pre>
validate <- validate[,!(names(validate) %in% useless)]</pre>
str(train)
str(validate)
# Variable "mdim07" in Faktor umwandeln
req_labels <- train['mdim07']</pre>
rec_labels <- recode(req_labels$mdim07,'0' = "No", '1' = "Yes")</pre>
train$mdim07 <- rec_labels</pre>
train$mdim07 <-as.factor(train$mdim07)</pre>
str(train)
# Standartwerte setzen
trainControl <- trainControl(method="repeatedcv", summaryFunction=mnLogLoss, number=10, repeats=3, clas</pre>
```

```
metric <- "logLoss"</pre>
# Logistische Regressionen
set.seed(101)
fit.glm <- train(mdim07~., data=train, method="glm", metric=metric, trControl=trainControl) # GLM
fit.lda <- train(mdim07~., data=train, method="lda", metric=metric, trControl=trainControl) # LDA
set.seed(101)
fit.glmnet <- train(mdim07~., data=train, method="glmnet", metric=metric,trControl=trainControl) # GLM
set.seed(101)
fit.cart <- train(mdim07~., data=train, method="rpart", metric=metric,trControl=trainControl) # CART
set.seed(101)
fit.svm <- train(mdim07~., data=train, method="svmRadial", metric=metric, trControl=trainControl) # SV
# Auswertung
results <- resamples(list(LG=fit.glm, LDA=fit.lda, GLMNET=fit.glmnet, CART=fit.cart, SVM=fit.svm))
summary(results)
dotplot(results)
# Standartwerte und BoxCox setzen
trainControl <- trainControl(method="repeatedcv", summaryFunction=mnLogLoss, number=10, repeats=3, clas</pre>
preProcess="BoxCox"
metric <- "logLoss"</pre>
# Logistische Regressionen
set.seed(101)
fit.glm <- train(mdim07~., data=train, method="glm", metric=metric, trControl=trainControl, preProc=pre
set.seed(101)
fit.lda <- train(mdim07~., data=train, method="lda", metric=metric, trControl=trainControl, preProc=pre
set.seed(101)
fit.glmnet <- train(mdim07~., data=train, method="glmnet", metric=metric,trControl=trainControl, prePro
set.seed(101)
fit.cart <- train(mdim07~., data=train, method="rpart", metric=metric,trControl=trainControl, preProc=p
set.seed(101)
fit.svm <- train(mdim07~., data=train, method="svmRadial", metric=metric, trControl=trainControl, prePr
# "CoxBox" Optimierung anhand GLMNET
```

```
print(fit.glmnet)
# Auswertung
results <- resamples(list(LG=fit.glm, LDA=fit.lda, GLMNET=fit.glmnet, CART=fit.cart, SVM=fit.svm))
summary(results)
dotplot(results)
trainControl <- trainControl(method="repeatedcv", summaryFunction=mnLogLoss, number=10, repeats=3, clas
metric <- "logLoss"</pre>
preProcess = "BoxCox"
set.seed(101)
fit.rf <- train(mdim07~., data=train, method="rf", metric=metric, preProc=preProcess, trControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=trainControl=
set.seed(101)
fit.gbm <- train(mdim07~., data=train, method="gbm", metric=metric, preProc=preProcess,
                                           trControl=trainControl, verbose=FALSE) # Gradient Boosting Machine
set.seed(101)
fit.c50 <- train(mdim07~., data=train, method="C5.0", metric=metric, preProc=preProcess,
                                           trControl=trainControl) # C5.0
# Resultate
ensembleResults <- resamples(list(RF=fit.rf, GBM=fit.gbm, C50=fit.c50))</pre>
summary(ensembleResults)
dotplot(ensembleResults)
# Variable "mdim07" in Faktor umwandeln
req_labels <- validate['mdim07']</pre>
rec_labels <- recode(req_labels$mdim07,'0' = "No", '1' = "Yes")</pre>
validate$mdim07 <- rec_labels</pre>
validate$mdim07 <-as.factor(validate$mdim07)</pre>
str(validate)
# GLMNET mit dem "validate-Datenset"
set.seed(101)
test.pred <- predict(fit.glmnet, newdata=validate, type = "prob") # GLMNET
# Auswertung
# logLoss kalkulieren
LogLoss <- function(actual, predicted, eps=0.00001) {</pre>
```

```
predicted <- pmin(pmax(predicted, eps), 1-eps)</pre>
  -1/length(actual)*(sum(actual*log(predicted)+(1-actual)*log(1-predicted)))
# Labels wieder in "O" und "1" ändern
req_labels <- validate['mdim07']</pre>
rec_labels <- recode(req_labels$mdim07, "No" = '0', "Yes" = '1')</pre>
validate$mdim07 <- rec_labels</pre>
# LogLoss bestimmen
log.loss <- LogLoss(as.numeric(as.character(validate$mdim07)), test.pred$Yes)
print(log.loss)
# Spaltennamen anpassen
data_prd <- data_prd %>%
    rename(
    id = "X",
    msld = "Months.since.Last.Donation",
    nod = "Number.of.Donations",
    tvd = "Total.Volume.Donated..c.c..",
    msfd = "Months.since.First.Donation",
str(data_prd)
# Vorhersage durchführen
set.seed(101)
predictions <- predict(fit.glmnet, newdata=data_prd, type = "prob")</pre>
# Submissions-Datei einlesen und Daten abfüllen.
submission_format <- read.csv("daten/submission_format.csv", check.names=FALSE)</pre>
submission_format <- submission_format[,-2] # Bestehende "Did Donation" entfernen
pred.df <- as.data.frame(predictions$Yes) #Vorhersagen in DataFrame umwandeln
submission_format <- cbind(submission_format, pred.df) # Vorhersage anhängen
submission_format <- submission_format %>% # Spalten umbennenen
    rename(
    ID = "submission_format",
    'Made Donation in March 2007' = "predictions$Yes",
write.csv(submission_format, file="daten/submission_final.csv", row.names=FALSE) #CSV-Datei erstellen
# Submissions-Datei anzeigen.
head(submission\_format, n = 25L)
# Vorhersage-Qualitaet: log loss Funktion, d.h unser Bewertungskriterium
```

```
# Funktion definieren, die log loss berechnet
train.knn <- read.csv("daten/bloodtrain.csv", header = TRUE)</pre>
train.knn <- train.knn %>%
 rename(
   id = "X",
   msld = "Months.since.Last.Donation",
   nod = "Number.of.Donations",
   tvd = "Total.Volume.Donated..c.c..",
   msfd = "Months.since.First.Donation",
   mdim2007 = "Made.Donation.in.March.2007"
  )
log_loss <- function(actual, predicted, eps = 1e-15){</pre>
  actual[actual == "yes"] <- 1</pre>
  actual[actual == "no"] <- 0</pre>
 actual <- as.numeric(actual)</pre>
  # Bound probabilities (0,1) for computational purposes
 predicted[predicted < eps] <- eps</pre>
 predicted[predicted > 1 - eps] <- 1 - eps</pre>
 result=-1/length(actual)*(sum((actual*log(predicted)+(1-actual)*log(1-predicted))))
 return(result)
}
train.knn$mdim2007[train.knn$mdim2007 ==1] <- "yes"</pre>
train.knn$mdim2007[train.knn$mdim2007 ==0] <- "no"
# Train KNN algorithm
# -----
# Anteil fuer Traing-Daten waehlen
split_size = 0.7
# Startwert / seed waehlen --> Reproduzierbarkeit
set.seed(123)
# Initialize data frame of cross-validation log loss
# -----
knn_cv_results <- data.frame(matrix(ncol = 6, nrow = 20))</pre>
knn_cv_results[,1] \leftarrow c(1:20)
colnames(knn_cv_results) <- c("k", "iter1", "iter2", "iter3", "iter4", "iter5")</pre>
# Perform repeated cross-validation for KNN to tune K
for (i in 1:20){
 for (j in 1:5){
    # Zufälligen Index für das Auswaheln von Subsamles definieren
    cv_idx <- sample(nrow(train.knn), nrow(train.knn)*split_size, replace = FALSE)</pre>
    # Split der Daten in Training-Set und Validation-Set, ID-Spalte weglassen
```

```
cv_tr <- train.knn[cv_idx,-1]</pre>
   cv_val <- train.knn[-cv_idx,-1]</pre>
   # K festsetzen
   cv_grid <- expand.grid(k = c(i))</pre>
   # kNN-Modell trainieren
   knn_cv <- train(as.factor(mdim2007) ~ msfd + msld + nod + mdim2007,</pre>
                   data = cv_tr,
                   method = "knn",
                   tuneGrid = cv_grid)
   # Vorhersage machen mit Hilfe des Validierungs-Set
   pred_cv <- predict(knn_cv, cv_val, type = "prob")</pre>
    # Resultate festhalten -- i-te Zeile, (j+1). Spalte
   knn_cv_results[i,j+1] <- log_loss(cv_val$mdim2007, pred_cv$yes)</pre>
 }
}
# Durchschnittl. log loss fuer jeden Wert von K berechnen
# -----
knn_cv_results$avg_log_loss <- rowSums(knn_cv_results[,2:6])/5</pre>
# Ansehen
knn_cv_results\sug_log_loss
# Anzeigen
str(knn_cv_results)
```