

) DE LE COLOR D

(43) International Publication Date 30 August 2001 (30.08.2001)

PCT

(10) International Publication Number WO 01/63244 A1

- (51) International Patent Classification7: G01N 9/00, 33/48
- (21) International Application Number: PCT/US01/05150
- (22) International Filing Date: 16 February 2001 (16.02.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

09/514,026

25 February 2000 (25.02.2000) U

- (71) Applicant: AMERICAN HOME PRODUCTS COR-PORATION [US/US]; Five Giralda Farms, Madison, NJ 07940-0874 (US).
- (72) Inventors: CHEN, James, M.; 7 Sgt. David Stoddard Court, Bedminster, NJ 07921 (US). MOBILIO, Dominick; 35 Sneider Road, Warren, NJ 07059 (US). MOY, Franklin, J.; 37 Burch Street, Arlington, MA 02414 (US). PARRIS, Kevin, D.; 112 Woodbine Street, Auburndale, MA 02466 (US). POWERS, Robert; 3 Magnolia Drive, Westford, MA 01866 (US). BAO XU, Zhang; 40 Fieldston Circle, Tewksbury, MA 01876 (US).

- (74) Agent: ARNOLD, Craig, J.; Amster, Rothstein & Ebenstein, 90 Park Avenue, New York, NY 10016 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: SOLUTION AND CRYSTAL STRUCTURES OF MMP-13 ACTIVE SITE AND USES THEREOF

Docket No. 2368/16

SOLUTION AND CRYSTAL STRUCTURES OF MMP-13 ACTIVE SITE AND USES THEREOF

5

Field of the Invention

The present invention relates to the three dimensional structure of human collagenase 3 (MMP-13), as well as to (i) methods of using the MMP-13 structure to rationally design or identify compounds or molecules that inhibit or activate MMP-13 activity, and (ii) compounds identified using said methods.

10

15

Background of the Invention

Human collagenase-3 (MMP-13) is a member of the matrix metalloproteinase (MMP) family which includes the collagenases, stromelysins and gelatinases. The MMPs are involved in the degradation of the extracellular matrix and are associated with normal tissue remodeling processes such as pregnancy, wound healing, and angiogenesis. MMP expression and activity is highly controlled because of the degradative nature of these enzymes, where an apparent loss in MMP regulation results in the pathological destruction of connective tissue and the ensuing disease state. Accordingly, MMPs are a highly active set of targets for the design of therapeutic agents for the disease areas of arthritis and oncology (for reviews, see Woessner, J. F., FASEB 1991; Ries, C., and Petrides, E., Biol. Chem. Hoppe-Seyler 1995; Browner, M. F., Perspect. Drug Discovery Des. 1995; Morphy, et al., Curr. Med. Chem. 1995; and Zask, et al., Curr. Pharm. Des. 1996).

25

MMP-13 was identified on the basis of differential expression in normal breast tissues and in breast carcinoma. In addition, its expression has been reported in squamous cell carcinomas of the larynx, head and neck, in HCS-2/8 human chondrosarcoma cells, during fetal ossification, and in articular cartilage of arthritic patients.

30

There have been a number of X-ray and NMR structures solved for the catalytic domain of MMPs complexed with a variety of inhibitors (see e.g., Bode, et al., EMBO J. 1994; Gooley, et al., Nat. Struct. Biol. 1994; Lovejoy, et al., Science 1994; Lovejoy, et al., Ann. N. Y. Acad. Sci. 1994; Lovejoy, et al.,

-2- ·

Biochemistry 1994; Spurlino, et al., Proteins: Struct., Funct., Genet. 1994; Stams, et al., Nat. Struct. Biol. 1994; Becker, et al., Protein Sci. 1995; Gonnella, et al., Proc. Natl. Acad. Sci. U.S.A. 1995; Van Doren, et al., Protein Sci. 1995; Botos, et al., Proc. Natl. Acad. Sci. USA 1996; Broutin, et al., Acta Crystallogr., Sect. D: Biol. Crystallogr. 1996; Gooley, et al., J. Biomol. NMR 1996; Betz, et al., Eur. J. Biochem. 1997; Gonnella, et al., Bioorg. Med. Chem. 1997; and Moy, et al., Biochemistry 1998). There is a close similarity in the overall threedimensional fold for these proteins consistent with the relatively high sequence homology (> 40%). Despite this similarity in the MMP structures, there is a distinct substrate specificity between these enzymes indicative of specific biological roles for the various MMPs and a corresponding association with unique disease processes. One example of this potential specificity is the overexpression of MMP-13 in breast carcinoma and MMP-1 in papillary carcinomas. Therefore, the current paradigm in the development of MMP inhibitors is to design specificity into the structures of the small molecule instead of developing a broad spectrum MMP inhibitor (Birkedal-Hansen, et al., Crit. Rev. Oral Biol. Med. 1993; and Rockwell, et al., J. Am. Chem. Soc. 1996). The rationale behind this approach is that an inhibitor specific for the MMP uniquely associated with a disease process may potentially minimize toxic side effects. Therefore, extensive structural information for the various MMPs is critical for a 20 structure-based approach in designing inhibitor selectivity (Birkedal-Hansen, et al., Crit. Rev. Oral Biol. Med. 1993; Rockwell, et al., J. Am. Chem. Soc. 1996; Ghose, et al., J. Am. Chem. Soc. 1995; Hajduk, et al., J. Am. Chem. Soc. 1997; and Oleiniczak, et al., J. Am. Chem. Soc. 1997).

This concept has been facilitated by the extensive structural data available for the MMPs where a significant difference in the size and shape of the S1' pocket has been observed (Moy, et al., Biochemistry 1998; Bode, et al., EMBO J. 1994; Gooley, et al., Nat. Struct. Biol. 1994; Lovejoy, et al., Ann. N.Y. Acad. Sci. 1994; Lovejoy, et al., Biochemistry 1994; Lovejoy, et al., Science 1994; Spurlino, et al., Proteins: Struct., Funct., Genet. 1994; Stams, et al., Nat. Struct. Biol. 1994; Becker, et al., Protein Sci. 1995; Gonnella, et al., Proc. Natl.

25

-3-

Acad. Sci. U.S.A. 1995; Van Doren, et al., Protein Sci. 1995; Botos, et al., Proc. Natl. Acad. Sci. U.S.A. 1996; Broutin, et al., Acta Crystallogr., Sect. D: Biol. Crystallogr. 1996; Gooley, et al., J. Biomol. NMR 1996; Betz, et al., Eur. J. Biochem. 1997; and Gonnella, et al., Bioorg. Med. Chem. 1997). This structural difference across the MMP family provides an obvious approach for designing specificity into potent MMP inhibitors by designing compounds that appropriately fill the available space in the S1' pocket while taking advantage of sequence differences. A number of examples have been previously reported using this approach where some selectivity between MMPs has been achieved by incorporating a biphenyl into the S1' pocket (see e.g., Hajduk, et al., J. Am. Chem. Soc. 1997; and Olejniczak, et al., J. Am. Chem. Soc. 1997).

The inventors have determined both the solution and crystal structures of MMP-13, and, using rational drug design methods, have designed a novel, potent inhibitor that is highly selective for MMP-13.

15

20

30

Summary of the Invention

The present invention relates to the three dimensional structure of human collagenase 3 (MMP-13), and more specifically, to the crystal and solution structures of MMP-13 complexed with the inhibitor N-Hydroxy-2-[(4-methoxy-benzenesulfonyl)-pyridin-3-ylmethyl-amino]-3-methyl-benzamide (hereinafter referred to as "Compound A"), as determined using crystallography, spectroscopy and various computer modeling techniques. Particularly, the invention is directed to an MMP-13 active site comprised of the three dimensional structures of various binding pockets located both to the right (S1', S2', S3') and left (S1, S2, S3) of the catalytic zinc of MMP-13, and most particularly is directed to the three dimensional structure of an MMP-13 active site comprising the catalytic zinc and the S1' binding pocket, which is critical to the design and selection of inhibitors with increased potency and specificity for MMP-13, or conversely, for the design and selection of inhibitors of matrix metalloproteinases that are specific against MMP-13.

-4-

Accordingly, the present invention discloses a solution comprising a biologically active catalytic fragment of human collagenase-3 (MMP-13) complexed with Compound A, as well as a crystallized catalytic fragment of MMP-13 complexed with Compound A. The three dimensional structure of the catalytic fragment of MMP-13 is provided by the relative atomic structural _coordinates of Figure 4, as obtained from spectroscopy data, and Figure 5, as obtained from crystallography data. Also provided is an active site of MMP-13. characterized by a catalytic zinc, a beta strand, a Ca²⁺ binding loop, an alpha helix and a random coil region, wherein the beta strand of said active site preferably comprises residues N14, L15, T16, Y17, R18, I19, and V20 according to Figure 1, the Ca²⁺ binding loop comprises residues F75, D76, G77, P78, and S79 according to Figure 1, the alpha helix comprises residues N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, and H123 according to Figure 1, and the random coil region comprises residues P139, I140, and Y141 according to Figure 1. Said active site is further characterized by a three dimensional structure comprising the relative structural coordinates of the catalytic zinc and amino acid residues N14, L15, T16, Y17, R18, I19, V20, F75, D76, G77, P78, S79, N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, H123, P139, I140, and Y141 according to the solution or crystal coordinates of Figures 4 or 5, respectively, in each case, ± a root mean square deviation from the catalytic zinc and conserved backbone atoms of said amino acids of not more than 1.5Å.

In an alternate embodiment of the invention, an active site of MMP-13 is characterized by a three dimensional structure comprising the relative structural coordinates of the catalytic zinc and amino acid residues L81, L82, L115, V116, H119, L136 and I140 according to the solution or crystal coordinates of Figures 4 or 5, respectively, in each case, \pm a root mean square deviation from the catalytic zinc and conserved backbone atoms of said amino acids of not more than 1.5Å.

20

25

30

The solution or crystal structural coordinates of MMP-13 or portions thereof as provided by this invention may be stored in a

-5-

machine-readable form on a machine-readable storage medium, e.g. a computer hard drive, diskette, DAT tape, etc., for display as a three-dimensional shape or for other uses involving computer-assisted manipulation of, or computation based on, the structural coordinates or the three-dimensional structures they define. By way of example, the data defining the three dimensional structure of MMP-13 or an MMP-13 complex of the present invention, or of a portion of — MMP-13 or an MMP-13 complex as disclosed herein, may be stored in a machine-readable storage medium, and may be displayed as a graphical three-dimensional representation of the relevant structural coordinates, typically using a computer capable of reading the data from said storage medium and programmed with instructions for creating the representation from such data.

10

20

Accordingly, the present invention provides a machine, such as a computer, programmed in memory with the coordinates of the MMP-13 molecule or molecular complex, or portions thereof (such as, by way of example, the coordinates of the MMP-13 catalytic zinc with adjacent S1', S2' and/or S3' binding pockets), together with a program capable of converting the coordinates into a three dimensional graphical representation of the structural coordinates on a display connected to the machine. A machine having a memory containing such data aids in the rational design or selection of inhibitors or activators of MMP-13 activity, including the evaluation of ability of a particular chemical entity to favorably associate with MMP-13 or an MMP-13 complex as disclosed herein, as well as in the modeling of compounds, proteins, complexes, etc. related by structural or sequence homology to MMP-13.

The present invention is additionally directed to a method of

determining the three dimensional structure of a molecule or molecular complex
whose structure is unknown, comprising the steps of first obtaining crystals or a
solution of the molecule or molecular complex whose structure is unknown, and
then generating X-ray diffraction data from the crystallized molecule or
molecular complex and/or generating NMR data from the solution of the

molecule or molecular complex. The generated diffraction or spectroscopy data
from the molecule or molecular complex can then be compared with the known

-6-

three dimensional structure of MMP-13 as disclosed herein, and the three dimensional structure of the unknown molecule or molecular complex conformed to the known MMP-13 structure using standard techniques such as molecular replacement analysis, 2D, 3D and 4D isotope filtering, editing and triple resonance NMR techniques, and computer homology modeling.

Alternatively, a three dimensional model of the unknown molecule may be———generated by generating a sequence alignment between MMP-13 and the unknown molecule, based on any or all of amino acid sequence identity, secondary structure elements or tertiary folds, and then generating by computer modeling a three dimensional structure for the molecule using the three dimensional structure of, and sequence alignment with, MMP-13.

10

15

20

25

30

The present invention further provides a method for identifying a potential inhibitor or activator of MMP-13, comprising the steps of using a three dimensional structure of MMP-13 as defined by the relative structural coordinates of amino acids encoding MMP-13 to design or select a potential inhibitor or activator, and synthesizing or obtaining said potential inhibitor or activator. The inhibitor or activator may be selected by screening an appropriate database, may designed *de novo* by analyzing the steric configurations and charge potentials of an empty MMP-13 active site in conjunction with the appropriate software programs, or may be designed using characteristics of known inhibitors or activators to MMP-13 or other collagenases in order to create "hybrid" activators or inhibitors. The method of the present invention is preferably used to design or select inhibitors of MMP-13 activity.

Alternatively, the present invention provides a method for identifying a potential inhibitor or activator that is selective for one or more members of the matrix metalloproteinase family except MMP-13, comprising the steps of (i) using the three dimensional structures of MMP-13 and the desired target matrix metalloproteinase(s) as defined by the relative structural coordinates of amino acids encoding MMP-13 and the target matrix metalloproteinase(s) in order to design or select such a potential inhibitor or

PCT/US01/05150

-7-

WO 01/63244

10

15

20

25

30

activator, and (ii) synthesizing or obtaining said potential inhibitor or activator. In this case, the potential inhibitor or activator is designed to incorporate chemical or steric features favorable for association with an active site of the desired matrix metalloproteinase(s) and unfavorable for association with an MMP-13 active site, preferably where said active site comprises the MMP-13 S1' pocket. The inhibitor or activator may be selected by screening an appropriate database, may designed *de novo* by analyzing the steric configurations and charge potentials of empty MMP-13/matrix metalloproteinase active sites in conjunction with the appropriate software programs, or may be designed using characteristics of known inhibitors or activators to MMP-13 or other collagenases in order to create "hybrid" activators or inhibitors.

Also provided by the present invention are the inhibitors and activators designed or selected using the methods disclosed herein.

Brief Description of the Figures

Figure 1 depicts the amino acid sequence encoding the catalytic fragment of human MMP-13.

Figure 2 depicts the sequence based alignment between (A) MMP-13 and MMP-8 and (B) MMP-13 and MMP-1 used for the MMP-13 homology model.

Figure 3 is an illustration of the sulfonamide derivative of the hydroxamic inhibitor N-Hydroxy-2-[(4-methoxy-benzenesulfonyl)-pyridin-3-ylmethyl-amino]-3-methyl-benzamide (Compound A), with the corresponding proton labels.

Figure 4 lists the atomic structure coordinates for the restrained minimized mean structure of MMP-13 complexed with Compound A as derived by NMR spectroscopy. "Atom type" refers to the atom whose coordinates are being measured. "Residue" refers to the type of residue of which each measured atom is a part - i.e., amino acid, cofactor, ligand or solvent. The "x, y and z" coordinates indicate the Cartesian coordinates of each measured atom's location

-8-

(Å). All non-protein atoms (Compound A, zinc and calcium) are listed as HETATM instead of atoms using PDB conventions.

Figure 5 lists the atomic structure coordinates for MMP-13 as derived by X-ray diffraction of a crystallized MMP-13:Compound A complex.

Figure headings are as noted above, except "Occ" indicates the occupancy factor, and "B" indicates the "B-value", which is a measure of how mobile the atom is in the atomic structure (Ų). "MOL" indicates the segment identification used to uniquely identify each molecule in the crystal.

Figure 6 is an illustration of the Compound B inhibitor, with the corresponding proton labels.

15

20

Figure 7 is a design scheme dividing 2-[Benzyl-(4-phenethyloxy-benzenesulfonyl)-amino]-N-hydroxy-3,5-dimethyl-benzamide (hereinafter referred to as "Compound C") into two components corresponding to its potency component (2-[Benzyl-(4-methoxy-benzenesulfonyl)-amino]-N-hydroxy-3,5-dimethyl-benzamide, hereinafter referred to as "Compound D") and its selectivity component, thereby providing the basis for the design of a hybrid inhibitor with Compound B.

Figure 8A is a design scheme showing the flow from Compound B and Compound C to the hybrid inhibitor benzofuran-2-carboxylic acid (2-{4-[benzyl-(2-hydroxycarbamoyl-4,6-dimethyl-phenyl)-sulfamoyl]-phenoxy}-ethyl)-amide (hereinafter referred to as "Compound E"). Figure 8B illustrates an expanded view of the NMR MMP-13:Compound B complex overlayed with the MMP-13:Compound D model, demonstrating the approach to forming the hybrid inhibitor Compound E. The MMP-13 active site is shown as a grid surface with Compound B and Compound D shown as liquorice bonds. The view is looking at the S1' pocket.

PCT/US01/05150 WO 01/63244

-9-

Detailed Description of the Invention

As used herein, the following terms and phrases shall have the meanings set forth below:

5

10

15

20

"Compound A" is N-Hydroxy-2-[(4-methoxy-benzenesulfonyl)pyridin-3-ylmethyl-amino]-3-methyl-benzamide, as shown in Figure 3. "Compound B" is the compound having the chemical structure shown in Figure 6. "Compound C" is 2-[Benzyl-(4-phenethyloxy-benzenesulfonyl)-amino]-Nhydroxy-3,5-dimethyl-benzamide, as shown in Figure 7. "Compound D" is 2-[Benzyl-(4-methoxy-benzenesulfonyl)-amino]-N-hydroxy-3,5-dimethylbenzamide, also shown in Figure 7. "Compound E" is Benzofuran-2-carboxylic acid (2-{4-[benzyl-(2-hydroxycarbamoyl-4,6-dimethyl-phenyl)-sulfamoyl]phenoxy}-ethyl)-amide, as shown in Figure 8A. "Compound F" is 2-(Benzyl-4-(3-phenyl-propoxy)-benzenesulfonyl]-amino)-N-hydroxy-3,5-dimethylbenzamide.

Unless otherwise noted, "MMP-13" includes both human collagenase 3 as encoded by the amino acid sequence of Figure 1 (including conservative substitutions thereof), as well as "MMP-13 analogues", defined herein as proteins comprising an MMP-13 like active site as defined by the present invention, including, but not limited to, an active site characterized by a three dimensional structure comprising the relative structural coordinates of the catalytic zinc and amino acid residues L81, L82, L115, V116, H119, L136 and I140 according to the solution or crystal coordinates of Figures 4 or 5, respectively, in each case, ± a root mean square deviation from the catalytic zinc and conserved backbone atoms of said amino acids of not more than 1.5Å, or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å. Alternatively, an MMP-13 analogue of the present invention is a protein which comprises an MMP-13 like active site characterized by a catalytic zinc, a beta strand, a Ca²⁺ binding loop, an alpha helix and a random coil region, or, more particularly, comprising an active site characterized by a three dimensional structure comprising the relative structural coordinates of the 30 catalytic zinc and of amino acid residues N14, L15, T16, Y17, R18, I19, V20,

F75, D76, G77, P78, S79, N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, H123, P139, I140, and Y141 according to Figures 4 or 5, or more preferably, where said three dimensional structure further comprises the relative structural coordinates of amino acid residues G80, L81, L82, A83, H84, A85, K109, G110, Y111, S124, L125, G126, L127, D128, H129, S130, K131, D132, P133, G134, A135, L136, M137, F138, T142, Y143, T144, and G145 – according to Figures 4 or 5, or most preferably, where said three dimensional structure still further comprises the relative structural coordinates of F149 and P152 according to Figures 4 or 5, in each case, \pm a root mean square deviation from the catalytic zinc and the conserved backbone atoms (N, C α , C, and O) of said amino acids of not more than 1.5Å (or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å).

10

15

20

25

30

Unless otherwise indicated, "protein" or "molecule" shall include a protein, protein domain, polypeptide or peptide.

"Structural coordinates" are the Cartesian coordinates corresponding to an atom's spatial relationship to other atoms in a molecule or molecular complex. Structural coordinates may be obtained using x-ray crystallography techniques or NMR techniques, or may be derived using molecular replacement analysis or homology modeling. Various software programs allow for the graphical representation of a set of structural coordinates to obtain a three dimensional representation of a molecule or molecular complex. The structural coordinates of the present invention may be modified from the original sets provided in Figures 4 or 5 by mathematical manipulation, such as by inversion or integer additions or subtractions. As such, it is recognized that the structural coordinates of the present invention are relative, and are in no way specifically limited by the actual x, y, z coordinates of Figures 4 and 5. Further, it is recognized that the structural coordinates taken from Figure 5 may be from either molecule of MMP-13 catalytic fragment in the MMP-13:Compound A crystal (i.e., from A-13 or B-13).

An "agent" shall include a protein, polypeptide, peptide, nucleic acid, including DNA or RNA, molecule, compound, antibiotic or drug.

-11-

"Root mean square deviation" is the square root of the arithmetic mean of the squares of the deviations from the mean, and is a way of expressing deviation or variation from the structural coordinates described herein.

It will be obvious to the skilled practitioner that the numbering of the amino acid residues in the various isoforms of MMP-13 or in MMP-13 analogues covered by the present invention may be different than that set forth herein, or may contain certain conservative amino acid substitutions that yield the same three dimensional structures as those defined by Figures 4 or 5 herein. Corresponding amino acids and conservative substitutions in other isoforms or analogues are easily identified by visual inspection of the relevant amino acid sequences or by using commercially available homology software programs. "Conservative substitutions" are those amino acid substitutions which are functionally equivalent to the substituted amino acid residue, either by way of having similar polarity, steric arrangement, or by belonging to the same class as the substituted residue (e.g., hydrophobic, acidic or basic), and includes substitutions having an inconsequential effect on the three dimensional structure of MMP-13 with respect to the use of said structure for the identification and design of MMP-13 activators or inhibitors, for molecular replacement analyses and/or for homology modeling.

10

15

20

25

30

An "active site" refers to a region of a molecule or molecular complex that, as a result of its shape and charge potential, favorably interacts or associates with another agent (including, without limitation, a protein, polypeptide, peptide, nucleic acid, including DNA or RNA, molecule, compound, antibiotic or drug). As such, the active site may include both the actual site of substrate cleavage or collagenase activity, as well as certain or all binding sites or pockets adjacent to the site of substrate cleavage that nonetheless may affect MMP-13 activity upon interaction or association with an agent, either by direct interference with the site of substrate cleavage or by indirectly affecting the steric conformation or charge potential of the MMP-13 molecule. The catalytic center of the MMP-13 molecule is characterized by a zinc atom chelated by H119, H123 and H129. MMP-13 binding sites or pockets located to the right of

the catalytic zinc include S1', S2' and S3'. Binding sites or pockets to the left of the catalytic zinc include S1, S2 and S3.

The present invention relates to the three dimensional structure of human collagenase 3 (MMP-13) or an MMP-13 analogue, and more specifically, to the crystal and solution structures of MMP-13 complexed with an inhibitor, referred to herein as "Compound A", as determined using crystallography, spectroscopy and various computer modeling techniques. The three dimensional solution and crystal structures of the MMP-13:Compound A complex (as disclosed herein at Figures 4 or 5, respectively) and the uncomplexed MMP-13 catalytic fragment (which may be computationally 10 derived from the structural coordinates of Figures 4 or 5) are useful for a number of applications, including, but not limited to, the visualization, identification and characterization of MMP-13 active sites, including the MMP-13 catalytic zinc chelated by H119, H123 and H129, as well as the various MMP-13 binding pockets adjacent to the catalytic zinc of the MMP-13 molecule. 15 The active site structures may then be used to predict the orientation and binding affinity of a designed or selected activator or inhibitor of the MMP-13 protein. Accordingly, the invention is particularly directed to the three dimensional structure of an MMP-13 active site, including but not limited to the S1', S2', S3', S1, S2 and/or S3 binding pockets, taken separately or together 20 with the catalytic zinc of the MMP-13 molecule.

The present invention provides a solution comprising a biologically active catalytic fragment of human collagenase-3 (MMP-13) complexed with Compound A. In a particular embodiment, the catalytic fragment of MMP-13 comprises the amino acid residues of Figure 1, or conservative substitutions thereof. Preferably, the solution provided for herein comprises MMP-13 complexed with Compound A in a 1:1 molar ratio, and more preferably comprises 1 mM MMP-13 in an equimolar complex with Compound A, in a buffer comprising 10mM deuterated Tris-Base, 100mM NaCl, 5mM CaCl₂, 0.1mM ZnCl₂, 2mM NaN₃, and 10 mM deuterated DTT in either 90% H₂O/10% D₂O or 100% D₂O, at a preferred pH of 6.5. The concentration of

MMP-13:Compound A in the solution should be high enough to yield a good signal-to-noise ratio in the NMR spectrum, but not so high as to result in precipitation or aggregation of the protein. Further, the MMP-13 of the solution may be either ¹⁵N enriched or ¹⁵N, ¹³C enriched. As exemplified below, NMR spectra from the solution of the present invention are preferably obtained at a temperature of 35°C.

5

10

15

1).

30

The secondary structure of the catalytic fragment used in the solution of the present invention comprises three alpha helices and a mixed parallel and anti-parallel beta sheet comprising five beta strands, configured in the order $\beta_{\rm I}$, $\alpha_{\rm A}$, $\beta_{\rm II}$, $\beta_{\rm III}$,

The protein used in the solution of the present invention includes

MMP-13, as well as MMP-13 analogues, where said protein comprises an active site characterized by the three dimensional structure comprising the relative structural coordinates of the catalytic zinc and amino acid residues L81, L82, L115, V116, H119, L136 and I140 (or conservative substitutions thereof) according to the solution coordinates of Figure 4, ± a root mean square

deviation from the catalytic zinc and the conserved backbone atoms of said amino acids of not more than 1.5Å, or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å. These residues comprise the residues most closely associated with Compound A in the MMP-13:Compound A complex, as determined from the observed NOEs between MMP-13 and Compound A (Table

-14-

Alternatively, a protein used in the solution of the present invention comprises an active site characterized by a catalytic zinc, a beta strand (comprising amino acid residues N14, L15, T16, Y17, R18, I19, and V20 or conservative substitutions thereof), a Ca2+ binding loop (comprising amino acid residues F75, D76, G77, P78, and S79 or conservative substitutions thereof), an alpha helix (comprising amino acid residues N112, L113, F114, L115, V116,-A117, A118, H119, E120, F121, G122, and H123 or conservative substitutions thereof) and a random coil region (comprising amino acid residues P139, I140, and Y141 or conservative substitutions thereof), or, more particularly, characterized by a three dimensional structure comprising the relative structural 10 coordinates of the catalytic zinc and the amino acid residues N14, L15, T16, Y17, R18, I19, V20, F75, D76, G77, P78, S79, N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, H123, P139, I140, and Y141 according to Figure 4, or more preferably, where said three dimensional structure further comprises the relative structural coordinates of amino acid residues G80, L81, 15 L82, A83, H84, A85, K109, G110, Y111, S124, L125, G126, L127, D128, H129, S130, K131, D132, P133, G134, A135, L136, M137, F138, T142, Y143, T144, and G145 according to Figure 4 (incorporating an S1' pocket in the active site), or most preferably, where said three dimensional structure still further comprises the relative structural coordinates of F149 and P152 according to 20 Figure 4 (further defining a hydrophobic area at the bottom of the S1' pocket), including, in each case, conservative substitutions of said amino acids and, in each case, ± a root mean square deviation from the catalytic zinc and the conserved backbone atoms (N, Ca, C, and O) of said amino acids of not more than 1.5Å (or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å). Finally, in the most preferred embodiment, the protein used in the solution of the present invention comprises the complete structural coordinates according to Figure 4, ± a root mean square deviation from the conserved backbone atoms of said amino acids (or conservative substitutions thereof) of not more than 1.5Å (or more preferably, not more than 1.0Å, and 30 most preferably, not more than 0.5Å).

-15-

Also provided by the present invention is a crystallized catalytic fragment of MMP-13 complexed with Compound A. The crystal of the present invention effectively diffracts X-rays for the determination of the structural coordinates of the MMP-13:Compound A complex, and is characterized as being in orthorhombic form with space group P21212, and having unit cell parameters of a=108.3Å, b=79.8Å, and c=36.1Å. Further, the crystal complex of the present invention consists of two molecules of MMP-13:Compound A complex in the asymmetric crystal unit.

In a preferred embodiment, the MMP-13 of the crystal complex of the present invention comprises the amino acid residues of Figure 1 (or conservative substitutions thereof), and is characterized by a secondary structure comprising three alpha helices and a mixed parallel and anti-parallel beta sheet comprising five beta strands, configured in the order β_I , α_A , β_{II} , β_{III} , β_{IV} , β_V , α_B , and α_C . Further, the three alpha helices preferably correspond to residues 28-44 (α_A), 112-123 (α_B) and 153-163 (α_C) of Figure 1, and the five beta strands correspond to residues 83-86 (β_I), 95-100 (β_{II}), 59-66 (β_{III}), 14-20 (β_{IV}), and 49-53 (β_V) of Figure 1, respectively.

The protein used in the crystal or crystal complex of the present invention includes MMP-13, as well as MMP-13 analogues, where said protein comprises an active site characterized by the three dimensional structure comprising the relative structural coordinates of the catalytic zinc and amino acid residues L81, L82, L115, V116, H119, L136 and I140 (or conservative substitutions thereof) according to the crystal coordinates of Figure 5, \pm a root mean square deviation from the catalytic zinc and the conserved backbone atoms of said amino acids of not more than 1.5Å, or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å.

20

25

30

Alternatively, a protein used in the crystal or crystal complex of the present invention comprises an active site characterized by a catalytic zinc, a beta strand (comprising amino acid residues N14, L15, T16, Y17, R18, I19, and V20 or conservative substitutions thereof), a Ca²⁺ binding loop (comprising amino acid residues F75, D76, G77, P78, and S79 or conservative substitutions

-16-

thereof), an alpha helix (comprising amino acid residues N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, and H123 or conservative substitutions thereof) and a random coil region (comprising amino acid residues P139, I140, and Y141 or conservative substitutions thereof), or, more particularly, characterized by a three dimensional structure comprising the relative structural coordinates of the catalytic zinc and amino acid residues N14, L15, T16, Y17, R18, I19, V20, F75, D76, G77, P78, S79, N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, H123, P139, I140, and Y141 according to Figure 5, or more preferably, where said three dimensional structure further comprises the relative structural coordinates of amino acid residues G80, L81, L82, A83, H84, A85, K109, G110, Y111, S124, L125, G126, L127, D128, H129, S130, K131, D132, P133, G134, A135, L136, M137, F138, T142, Y143, T144, and G145 according to Figure 5 (incorporating an S1' pocket in the active site), or most preferably, where said three dimensional structure still further comprises the relative structural coordinates of F149 and P152 according to Figure 5 (further defining a hydrophobic area at the bottom of the S1' pocket), in each case, including conservative substitutions of the said amino acids and, in each case, \pm a root mean square deviation from the catalytic zinc and the conserved backbone atoms of said amino acids of not more than 1.5Å (or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å).

10

15

20

25

30

Finally, in the most preferred embodiment, the protein used in the crystal of the present invention comprises the complete structural coordinates according to Figure 5, \pm a root mean square deviation from the conserved backbone atoms of said amino acids (or conservative substitutions thereof) of not more than 1.5Å (or more preferably, not more than 1.0Å, and most preferably, not more than 0.5Å).

Molecular modeling methods known in the art may be used to identify an active site or binding pocket of the MMP-13 molecule, MMP-13 molecular complex, or an MMP-13 analogue. Specifically, the structural coordinates provided by the present invention may be used to characterize a

-17-

three dimensional model of the MMP-13 molecule, molecular complex or MMP-13 analogue. From such a model, putative active sites may be computationally visualized, identified and characterized based on the surface structure of the molecule, surface charge, steric arrangement, the presence of reactive amino acids, regions of hydrophobicity or hydrophilicity, etc. Such putative active sites may be further refined using chemical shift perturbations of spectra generated-from various and distinct MMP-13 complexes, competitive and non-competitive inhibition experiments, and/or by the generation and characterization of MMP-13 mutants to identify critical residues or characteristics of the active site.

The identification of putative active sites of a molecule or molecular complex is of great importance, as most often the biological activity of a molecule or molecular complex results from the interaction between an agent and one or more active sites of the molecule or molecular complex. Accordingly, the active sites of a molecule or molecular complex are the best targets to use in the design or selection of activators or inhibitors that affect the activity of the molecule or molecular complex.

10

15

The present invention is directed to an active site of MMP-13 or an MMP-13 analogue, that, as a result of its shape, reactivity, charge potential, etc., favorably interacts or associates with another agent (including, without limitation, a protein, polypeptide, peptide, nucleic acid, including DNA or RNA, 20 molecule, compound, antibiotic or drug). As such, the active site of the present invention includes both the actual site of substrate cleavage or collagenase activity (the catalytic zinc chelated by H119, H123, and H129), as well as binding sites or pockets adjacent to the site of substrate cleavage (i.e., S1', S2', S3', S1, S2, and/or S3) that may nonetheless affect MMP-13 activity upon 25 interaction or association with an agent, either by direct interference with the site of substrate cleavage or by indirectly affecting the steric conformation or charge potential of the MMP-13 molecule. Accordingly, the present invention is directed to an active site of the MMP-13 molecule characterized by a zinc atom chelated by H119, H123 and H129, and preferably the S1' binding pocket to the 30 right of the catalytic zinc.

-18-

In an alternate embodiment, the active site of the present invention is characterized by the three dimensional structure comprising the relative structural coordinates of the catalytic zinc and amino acid residues L81, L82, L115, V116, H119, L136 and I140 (or conservative substitutions thereof) according to the solution or crystal coordinates of Figures 4 or 5, respectively, in each case, \pm a root mean square deviation from the catalytic zinc and the conserved backbone atoms of said amino acids of not more than 1.5Å, or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å.

Alternatively, the active site of the present invention is characterized by a catalytic zinc, a beta strand (comprising amino acid residues 10 N14, L15, T16, Y17, R18, I19, and V20 or conservative substitutions thereof), a Ca²⁺ binding loop (comprising amino acid residues F75, D76, G77, P78, and S79 or conservative substitutions thereof), an alpha helix (comprising amino acid residues N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, and H123 or conservative substitutions thereof) and a random coil region 15 (comprising amino acid residues P139, I140, and Y141 or conservative substitutions thereof), or, more particularly, is characterized by a three dimensional structure comprising the relative solution or crystal structural coordinates of the catalytic zinc and amino acid residues N14, L15, T16, Y17, R18, I19, V20, F75, D76, G77, P78, S79, N112, L113, F114, L115, V116, A117, 20 A118, H119, E120, F121, G122, H123, P139, I140, and Y141 according to Figures 4 or 5, respectively, or more preferably, where said three dimensional structure further comprises the relative solution or crystal structural coordinates of amino acid residues G80, L81, L82, A83, H84, A85, K109, G110, Y111, S124, L125, G126, L127, D128, H129, S130, K131, D132, P133, G134, A135, L136, 25 M137, F138, T142, Y143, T144, and G145 according to Figures 4 or 5, or most preferably, where said three dimensional structure still further comprises the relative solution or crystal structural coordinates of F149 and P152 according to Figures 4 or 5, in each case, including conservative substitutions of said amino acids, and in each case, \pm a root mean square deviation from the catalytic zinc 30 and the conserved backbone atoms of said amino acids of not more than 1.5Å

-19-

(or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å).

In order to use the structural coordinates generated for a crystal or solution structure of the present invention as set forth in Figures 4 and 5, respectively, it is often necessary to display the relevant coordinates as, or 5 convert them to, a three dimensional shape or graphical representation, or to otherwise manipulate them. For example, a three dimensional representation of the structural coordinates is often used in rational drug design, molecular replacement analysis, homology modeling, and mutation analysis. This is typically accomplished using any of a wide variety of commercially available 10 software programs capable of generating three dimensional graphical representations of molecules or portions thereof from a set of structural coordinates. Examples of said commercially available software programs include, without limitation, the following: GRID (Oxford University, Oxford, UK); MCSS (Molecular Simulations, San Diego, CA); AUTODOCK (Scripps 15 Research Institute, La Jolla, CA); DOCK (University of California, San Francisco, CA); Flo99 (Thistlesoft, Morris Township, NJ); Ludi (Molecular Simulations, San Diego, CA); QUANTA (Molecular Simulations, San Diego, CA); Insight (Molecular Simulations, San Diego, CA); SYBYL (TRIPOS, Inc., St. Louis. MO); 20 and LEAPFROG (TRIPOS, Inc., St. Louis, MO).

For storage, transfer and use with such programs, a machine, such as a computer, is provided for that produces a three dimensional representation of the MMP-13 molecule, a portion thereof (such as an active site or a binding site), a MMP-13 molecular complex, or an MMP-13 analogue. The machine of the present invention comprises a machine-readable data storage medium comprising a data storage material encoded with machine-readable data. Machine-readable storage media comprising data storage material include conventional computer hard drives, floppy disks, DAT tape, CD-ROM, and other magnetic, magneto-optical, optical, floptical and other media which may be adapted for use with a computer. The machine of the present invention also comprises a working memory for storing instructions for processing the

25

30

-20-

machine-readable data, as well as a central processing unit (CPU) coupled to the working memory and to the machine-readable data storage medium for the purpose of processing the machine-readable data into the desired three dimensional representation. Finally, the machine of the present invention further comprises a display connected to the CPU so that the three dimensional representation may be visualized by the user. Accordingly, when used with a machine programmed with instructions for using said data, *e.g.*, a computer loaded with one or more programs of the sort identified above, the machine provided for herein is capable of displaying a graphical three-dimensional representation of any of the molecules or molecular complexes, or portions of molecules of molecular complexes, described herein.

10

15

20

In one embodiment of the invention, the machine-readable data comprises the relative structural coordinates of the catalytic zinc and amino acid residues L81, L82, L115, V116, H119, L136 and I140 according to Figures 4 or 5, in each case, including conservative substitutions thereof, and in each case, \pm a root mean square deviation from the catalytic zinc and the conserved backbone atoms of said amino acids of not more than 1.5Å (or more preferably, not more than 1.0Å, and most preferably, not more than 0.5Å), wherein said structural coordinates characterize an active site of MMP-13 or an MMP-13 analogue.

In an alternate preferred embodiment, the machine-readable data comprises the structural coordinates of the catalytic zinc and amino acid residues N14, L15, T16, Y17, R18, I19, V20, F75, D76, G77, P78, S79, N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, H123, P139, I140, and Y141 according to Figures 4 or 5, in each case, including conservative substitutions thereof, and in each case, ± a root mean square deviation from the catalytic zinc and the conserved backbone atoms of said amino acids of not more than 1.5Å (or more preferably, not more than 1.0Å, and most preferably, not more than 0.5Å). In an even more preferred embodiment, the machine-readable data further comprises the relative structural coordinates of amino acid residues G80, L81, L82, A83, H84, A85, K109, G110, Y111, S124, L125, G126,

-21-

L127, D128, H129, S130, K131, D132, P133, G134, A135, L136, M137, F138, T142, Y143, T144, and G145 according to Figures 4 or 5, or most preferably, still further comprises the relative structural coordinates of F149 and P152 according to Figures 4 or 5, in each case, including conservative substitutions of said amino acids, and in each case, \pm a root mean square deviation from the catalytic zinc and the conserved backbone atoms of said amino acids of not more than 1.5Å (or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å).

Finally, it is most preferred that the machine-readable data comprise the relative structural coordinates of all residues constituting the MMP-13 catalytic fragment according to Figures 4 or 5, in each case, ± a root mean square deviation from the conserved backbone atoms of said amino acids of not more than 1.5Å. In each case, the noted embodiments comprise conservative substitutions of the noted residues resulting in same structural coordinates within the stated root mean square deviation.

10

15

20

25

30

The structural coordinates of the present invention permit the use of various molecular design and analysis techniques in order to (i) solve the three dimensional structures of related molecules, molecular complexes or MMP-13 analogues, and (ii) to design, select, and synthesize chemical agents capable of favorably associating or interacting with an active site of an MMP-13 molecule or MMP-13 analogue, wherein said chemical agents potentially act as activators or inhibitors of MMP-13 or of an MMP-13 analogue.

More specifically, the present invention provides a method for determining the molecular structure of a molecule or molecular complex whose structure is unknown, comprising the steps of obtaining crystals or a solution of the molecule or molecular complex whose structure is unknown, and then generating x-ray diffraction data from the crystallized molecule or molecular complex, and/or generating NMR data from the solution of the molecule or molecular complex. The x-ray diffraction data from the molecule or molecular complex whose structure is unknown is then compared to the x-ray diffraction data obtained from the MMP-13:Compound A crystal of the present invention.

-22-

Alternatively, the NMR data from the molecule or molecular structure whose structure is unknown is then compared with the NMR data obtained from the MMP-13:Compound A solution of the present invention. Then, molecular replacement analysis is used to conform the three dimensional structure determined from the MMP-13:Compound A crystal of solution of the present invention to the x-ray diffraction data from the unknown-molecule or molecular complex, or, alternatively, 2D, 3D and 4D isotope filtering, editing and triple resonance NMR techniques are used to conform the three dimensional structure determined from the MMP-13:Compound A solution of the present invention to the NMR data from the solution molecule or molecular complex.

10

15

20

25

30

Molecular replacement analysis uses a molecule having a known structure as a starting point to model the structure of an unknown crystalline sample. This technique is based on the principle that two molecules which have similar structures, orientations and positions will diffract x-rays similarly. A corresponding approach to molecular replacement is applicable to modeling an unknown solution structure using NMR technology. The NMR spectra and resulting analysis of the NMR data for two similar structures will be essentially identical for regions of the proteins that are structurally conserved, where the NMR analysis consists of obtaining the NMR resonance assignments and the structural constraint assignments, which may contain hydrogen bond, distance, dihedral angle, coupling constant, chemical shift and dipolar coupling constant constraints. The observed differences in the NMR spectra of the two structures will highlight the differences between the two structures and identify the corresponding differences in the structural constraints. The structure determination process for the unknown structure is then based on modifying the NMR constraints from the known structure to be consistent with the observed spectral differences between the NMR spectra.

Accordingly, in one non-limiting embodiment of the invention, the resonance assignments for the MMP-13:Compound A complex provide the starting point for resonance assignments of MMP-13 in a new MMP-13:"unsolved agent" complex. Chemical shift perturbances in two dimensional

-23-

¹⁵N/¹H spectra can be observed and compared between the MMP-13:Compound A complex and the new MMP-13:agent complex. In this way, the affected residues may be correlated with the three dimensional structure of MMP-13 as provided by the relevant residues of Figure 4. This effectively identifies the region of the MMP-13:agent complex that has incurred a structural change relative to the MMP-13:Compound A complex. The H, To N, To and CO NMR resonance assignments corresponding to both the sequential backbone and sidechain amino acid assignments of MMP-13 may then be obtained and the three dimensional structure of the new MMP-13:agent complex may be generated using standard 2D, 3D and 4D triple resonance NMR techniques and NMR assignment methodology, using the MMP-13:Compound A structure, resonance assignments and structural constraints as a reference. Various computer fitting analyses of the new agent with the three dimensional model of MMP-13 may be performed in order to generate an initial three dimensional model of the new agent complexed with MMP-13, and the resulting three dimensional model may be refined using standard experimental constraints and energy minimization techniques in order to position and orient the new agent in association with the three dimensional structure of MMP-13.

10

15

The present invention further provides that the structural coordinates of the present invention may be used with standard homology 20 modeling techniques in order to determine the unknown three-dimensional structure of a molecule or molecular complex. Homology modeling involves constructing a model of an unknown structure using structural coordinates of one or more related protein molecules, molecular complexes or parts thereof (i.e., active sites). Homology modeling may be conducted by fitting common or 25 homologous portions of the protein whose three dimensional structure is to be solved to the three dimensional structure of homologous structural elements in the known molecule, specifically using the relevant (i.e., homologous) structural coordinates provided by Figures 4 and/or 5 herein. Homology may be determined using amino acid sequence identity, homologous secondary 30 structure elements, and/or homologous tertiary folds. Homology modeling can

PCT/US01/05150 WO 01/63244

-24-

include rebuilding part or all of a three dimensional structure with replacement of amino acids (or other components) by those of the related structure to be solved.

Accordingly, a three dimensional structure for the unknown molecule or molecular complex may be generated using the three dimensional structure of the MMP-13:Compound A complex of the present invention, refined using a number of techniques well known in the art, and then used in the same fashion as the structural coordinates of the present invention, for instance, in applications involving molecular replacement analysis, homology modeling, and rational drug design.

10

15

25

Determination of the three dimensional structure of MMP-13 and its catalytic active site as disclosed herein is critical to the rational identification and/or design of therapeutic agents that may act as inhibitors or activators of MMP-13 enzymatic activity. Alternatively, using conventional drug assay techniques, the only way to identify such an agent is to screen thousands of test compounds, either in culture or by administration to suitable animal models in a laboratory setting, until an agent having the desired inhibitory or activating effect on a target compound is identified. Necessarily, such conventional screening methods are expensive, time consuming, and do not elucidate the method of action of the identified agent on the target compound. 20

However, advancing X-ray, spectroscopic and computer modeling technologies allow researchers to visualize the three dimensional structure of a targeted compound. Using such a three dimensional structure, researchers identify putative binding sites and then identify or design agents to interact with these binding sites. These agents are then screened for an activating or inhibitory effect upon the target molecule. In this manner, not only are the number of agents to be screened for the desired activity greatly reduced, but the mechanism of action on the target compound is better understood.

Accordingly, the present invention further provides a method for identifying a potential inhibitor or activator of MMP-13, comprising the steps of 30 using a three dimensional structure of MMP-13 as defined by the relative

-25-

structural coordinates of amino acids encoding MMP-13 to design or select a potential inhibitor or activator, and synthesizing or obtaining said potential inhibitor or activator. The inhibitor or activator may be selected by screening an appropriate database, may designed *de novo* by analyzing the steric configurations and charge potentials of an empty MMP-13 active site in conjunction with the appropriate software programs, or may be designed using-characteristics of known inhibitors or activators to MMP-13 or other collagenases in order to create "hybrid" activators or inhibitors. The method of the present invention is preferably used to design or select inhibitors of MMP-13 activity.

10

20

An agent that interacts or associates with an active site of MMP-13 or an MMP-13 analogue may be identified by determining an active site of MMP-13 or of the MMP-13 analogue from a three dimensional model of the MMP-13 or MMP-13 analogue, and performing computer fitting analyses to identify an agent which interacts or associates with said active site. Computer fitting analyses utilize various computer software programs that evaluate the "fit" between the putative active site and the identified agent, by (a) generating a three dimensional model of the putative active site of a molecule or molecular complex using homology modeling or the atomic structural coordinates of the active site, and (b) determining the degree of association between the putative active site and the identified agent. The degree of association may be determined computationally by any number of commercially available software programs, or may be determined experimentally using standard binding assays.

Three dimensional models of the putative active site may be
generated using any one of a number of methods known in the art, and include,
but are not limited to, homology modeling as well as computer analysis of raw
structural coordinate data generated using crystallographic or spectroscopy
techniques. Computer programs used to generate such three dimensional
models and/or perform the necessary fitting analyses include, but are not
limited to: GRID (Oxford University, Oxford, UK), MCSS (Molecular
Simulations, San Diego, CA), AUTODOCK (Scripps Research Institute, La Jolla,

CA), DOCK (University of California, San Francisco, CA), Flo99 (Thistlesoft, Morris Township, NJ), Ludi (Molecular Simulations, San Diego, CA), QUANTA (Molecular Simulations, San Diego, CA), Insight (Molecular Simulations, San Diego, CA), SYBYL (TRIPOS, Inc., St. Louis. MO) and LEAPFROG (TRIPOS, Inc., St. Louis, MO).

In a preferred method of the present invention, the identified active site of MMP-13 or the MMP-13 analogue comprises a catalytic zinc, a beta strand, a Ca²⁺ binding loop, an alpha helix and a random coil region. More preferably, the identified active site comprises a catalytic zinc, a beta strand comprising residues N14, L15, T16, Y17, R18, I19, and V20 according to Figure 1 (or conservative substitutions thereof), a Ca²⁺ binding loop comprising residues F75, D76, G77, P78, and S79 according to Figure 1 (or conservative substitutions thereof), an alpha helix comprising residues N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, and H123 according to Figure 1 (or conservative substitutions thereof), and a random coil region comprising residues P139, I140, and Y141 according to Figure 1 (or conservative substitutions thereof).

More specifically, the identified active site of the present method comprises the relative structural coordinates of the catalytic zinc and amino acid residues N14, L15, T16, Y17, R18, I19, V20, F75, D76, G77, P78, S79, N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, H123, P139, I140, and Y141 according to Figures 4 or 5, in each case, including conservative substitutions of said amino acids, and in each case, ± a root mean square deviation from the catalytic zinc and the conserved backbone atoms of said amino acids of not more than 1.5Å (or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å). In an alternate preferred embodiment, the identified active site further comprises the relative structural coordinates of amino acid residues G80, L81, L82, A83, H84, A85, K109, G110, Y111, S124, L125, G126, L127, D128, H129, S130, K131, D132, P133, G134, A135, L136, M137, F138, T142, Y143, T144, and G145 according to Figures 4 or 5, in each case, including conservative substitutions of said amino acids, and in each case,

20

25

30

± a root mean square deviation from the conserved backbone atoms of said amino acids of not more than 1.5Å (or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å). In yet a third preferred embodiment, the identified active site of the present method further comprises the relative structural coordinates of amino acid residues F149 and P152 according to Figures 4 or 5, in each case, including conservative substitutions of said amino acids, and in each case, ± a root mean square deviation from the conserved backbone atoms of said amino acids of not more than 1.5Å (or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å). Embodiments comprising conservative substitutions of the noted amino acids result in the same structural coordinates of the corresponding residues in Figures 4 or 5 within the stated root mean square deviation.

10

15

20

25

30

The effect of such an agent identified by computer fitting analyses on MMP-13 (or MMP-13 analogue) activity may be further evaluated computationally, or experimentally by contacting the identified agent with MMP-13 (or an MMP-13 analogue) and measuring the effect of the agent on the enzyme's activity. Depending upon the action of the agent on the active site of MMP-13, the agent may act either as an inhibitor or activator of MMP-13 activity. Standard enzymatic assays may be performed and the results analyzed to determine whether the agent is an inhibitor of MMP-13 activity (i.e., the agent may reduce or prevent binding affinity between MMP-13 and the relevant substrate, and thereby reduce the level or rate of MMP-13 activity compared to baseline), or an activator of MMP-13 activity (i.e., the agent may increase binding affinity between MMP-13 and the relevant substrate, and thereby increase the level or rate of MMP-13 activity compared to baseline). Further tests may be performed to evaluate the selectivity of the identified agent to MMP-13 with regard to the other metalloproteinases.

Agents designed or selected to interact with MMP-13 must be capable of both physically and structurally associating with MMP-13 via various covalent and/or non-covalent molecular interactions, and of assuming a three

-28-

dimensional configuration and orientation that complements the relevant active site of the MMP-13 molecule.

Accordingly, using these criteria, the structural coordinates of the MMP-13:Compound A complex as disclosed herein, and/or structural coordinates derived therefrom using molecular replacement analysis or homology modeling, agents may be designed to increase either or both of the potency and selectivity of known inhibitors or activators, either by modifying the structure of known inhibitors or activators or by designing new agents *de novo* via computational inspection of the three dimensional configuration and electrostatic potential of an MMP-13 active site.

10

20

25

Accordingly, in one embodiment of the invention, the structural coordinates of Figures 4 or 5 of the present invention, or structural coordinates derived therefrom using molecular replacement or homology modeling techniques as discussed above, are used to screen a database for agents that may act as potential inhibitors or activators of MMP-13 activity (or the activity of MMP-13 analogues). Specifically, the obtained structural coordinates of the present invention are read into a software package and the three dimensional structure is analyzed graphically. A number of computational software packages may be used for the analysis of structural coordinates, including, but not limited to, Sybyl (Tripos Associates), QUANTA and XPLOR (Brunger, A.T., (1993) XPLOR Version 3.1 Manual, Yale University, New Haven, CT). Additional software programs check for the correctness of the coordinates with regard to features such as bond and atom types. If necessary, the three dimensional structure is modified and then energy minimized using the appropriate software until all of the structural parameters are at their equilibrium/optimal values. The energy minimized structure is superimposed against the original structure to make sure there are no significant deviations between the original and the energy minimized coordinates.

The energy minimized coordinates of MMP-13 complexed with a "solved" inhibitor or activator are then analyzed and the interactions between the solved ligand and MMP-13 are identified. The final MMP-13 structure is

-29-

modified by graphically removing the solved inhibitor or activator so that only MMP-13 and a few residues of the solved agent are left for analysis of the binding site cavity. QSAR and SAR analysis and/or conformational analysis may be carried out to determine how other inhibitors or activators compare to the solved inhibitor or activator. The solved agent may be docked into the uncomplexed structure's binding site to be used as a template for data base – searching, using software to create excluded volume and distance restrained queries for the searches. Structures qualifying as hits are then screened for activity using standard assays and other methods known in the art.

10

15

20

25

30

as the

Further, once the specific interaction is determined between the solved inhibitor or activator, docking studies with different inhibitors or activators allow for the generation of initial models of new inhibitors or activators in complex with MMP-13. The integrity of these new models may be evaluated a number of ways, including constrained conformational analysis using molecular dynamics methods (i.e., where both MMP-13 and the complexed activator or inhibitor are allowed to sample different three dimensional conformational states until the most favorable state is reached or found to exist between the protein and the complexed agent). The final structure as proposed by the molecular dynamics analysis is analyzed visually to make sure that the model is in accord with known experimental SAR based on measured binding affinities. Once models are obtained of the original solved agent bound to MMP-13 and computer models of other molecules bound to MMP-13, strategies are determined for designing modifications into the activators or inhibitors to improve their activity and/or enhance their selectivity.

Once an MMP-13 binding agent has been optimally selected or designed, as described above, substitutions may then be made in some of its atoms or side groups in order to improve or modify its selectivity and binding properties. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge

-30-

original group. Such substituted chemical compounds may then be analyzed for efficiency of fit to MMP-13 by the same computer methods described in detail above.

Alternatively, the present invention provides a method for identifying a potential inhibitor or activator that is selective for one or more members of the matrix metalloproteinase family except MMP-13, comprising the steps of (i) using the three dimensional structures of MMP-13 and the desired target matrix metalloproteinase(s) as defined by the relative structural coordinates of amino acids encoding MMP-13 and the target matrix metalioproteinase(s) in order to design or select such a potential inhibitor or activator, and (ii) synthesizing or obtaining said potential inhibitor or activator. In this case, the potential inhibitor or activator is designed to incorporate chemical or steric features favorable for association with an active site of the desired matrix metalloproteinase(s) and unfavorable for association with an MMP-13 active site, preferably where said active site comprises the MMP-13 S1' pocket. The inhibitor or activator may be selected by screening an appropriate database, may designed de novo by analyzing the steric configurations and charge potentials of empty MMP-13/matrix metalloproteinase active sites in conjunction with the appropriate software programs, or may be designed using characteristics of known inhibitors or activators to MMP-13 or other 20 collagenases in order to create "hybrid" activators or inhibitors.

Various molecular analysis and rational drug design techniques are further disclosed in U.S. Patent Nos. 5,834,228, 5,939,528 and 5,865,116, as well as in PCT Application No. PCT/US98/16879, published as WO 99/09148, the contents of which are hereby incorporated by reference.

The present invention may be better understood by reference to the following non-limiting Examples. The following Examples are presented in order to more fully illustrate the preferred embodiments of the invention, and should in no way be construed as limiting the scope of the present invention.

25

-31-

Example 1

¹H, ¹⁵N and ¹³CO Assignments and Secondary Structure Determination of MMP-13 Complexed with Compound A

5

25

30

Methods and Results: The uniform ¹⁵N and ¹³C- labeled 165 amino-acid catalytic fragment of human collagenase-3 (MMP-13) was expressed in E. coli strain BL21(DE3) containing the plasmid pProMMP-13 according to a published method (Freije et al., J. Biol. Chem. 1994). MMP-13 was purified as previously described (Mov et al., J. Biomol. 1997) with minor modifications. N-terminal 10 amino acid sequencing was performed to confirm the protein's identity while the uniform ¹⁵N and ¹³C labeling of MMP-13 was confirmed by MALDI-TOF mass spectrometry (PerSeptive Biosystems). The sulfonamide derivative of the hydroxamic acid compound, N-Hydroxy-2-[(4-methoxy-benzenesulfonyl)pyridin-3-ylmethyl-amino]-3-methyl-benzamide, was prepared from 2-amino-3methyl-benzoic acid methyl ester and p-methoxybenzenesulfonyl chloride followed by alkylation with 3-picolyl chloride, hydrolysis (LiOH/THF) to afford the carboxylic acid and conversion to the hydroxamic acid (oxalyl chloride/DMF/NH2OH). Formation of the HCl salt yielded Compound A as shown in Figure 3. 20

The NMR samples contained 1 mM of MMP-13 determined spectrophotometrically in a equimolar complex with Compound A in a buffer containing 10 mM deuterated Tris-Base, 100 mM NaCl, 5 mM CaCl₂, 0.1 mM $\rm ZnCl_2$, 2 mM NaN₃, 10 mM deuterated DTT, in either 90% $\rm H_2O/$ 10% D₂O or 100% D₂O at pH 6.5. All NMR spectra were recorded at 35°C on a Bruker AMX-2 600 spectrometer equipped with a triple-resonance gradient probe.

Spectra were processed using the NMRPipe software package

(Delaglio *et al.*, <u>J. Biomol. NMR</u> 1995) and analyzed with PIPP (Garrett *et al.*, <u>J. Magn. Reson.</u> 1991), NMRPipe and PEAK-SORT, an in-house software package. The assignments of the ¹H, ¹⁵N, ¹³CO, and ¹³C resonances were based on the following experiments: CBCA(CO)NH, CBCANH, C(CO)NH, HC(CO)NH,

-32-

HBHA(CO)NH, HNCO, HCACO, HNHA, HNCA, HCCH-COSY and HCCH-TOCSY (for reviews, see Bax *et al.*, Methods Enzymol. 1994; and Clore & Gronenborn, Methods Enzymol. 1994). The accuracy of the MMP-13 NMR assignments was further confirmed by sequential NOEs in the ¹⁵N-edited NOESY-HSQC spectra.

5

Prior to analysis of the MMP-13 NMR structure, the structure determination of the inhibitor-free catalytic fragment of MMP-1 has been-reported (Moy et al., Biochemistry 1998; Moy et al., J. Biomol. NMR 1997) (30 simulated annealing structures deposited with Protein Data Bank, Accession No. 1AYK; restrained minimized mean structure deposited with Protein Data Bank, Accession No. 2AYK). Because the MMPs are highly autocatalytic, the NMR analysis of the inhibitor-free MMP-1 was accomplished by establishing buffer conditions where the enzyme was still active but the rate of self-cleavage of the enzyme had been diminished. This was achieved by the addition of DTT which significantly diminished self-aggregation of the enzyme and by lowering the pH of the sample to 6.5, just above the pH where the enzyme was known to be inactivated because of the loss of the catalytic zinc. Under these conditions, an MMP-1 NMR sample was typically stable for 1-2 months. Unfortunately this was not the case for MMP-13, the protein rapidly degraded within a few hours which required the use of an inhibitor to assign the MMP-13 NMR resonances.

20

25

30

The secondary structure of the MMP-13:Compound A complex is based on characteristic NOE data involving the NH, H α and H β protons from 15 N-edited NOESY-HSQC and 13 C-edited NOESY-HMQC spectra, 3 JHN α coupling constants from HNHA, slowly exchanging NH protons and 13 C α and 13 C β secondary chemical shifts (for reviews, see Wishart & Sykes, Methods Enzymol. 1994; and Wuthrich, NMR of Proteins and Nucleic Acids, John Wiley & Sons, New York 1986). It was determined that the MMP-13 NMR structure in the complex is composed of three α -helices corresponding to residues 28-44 (a $_{\alpha}$), 112-123 (a $_{\beta}$) and 153-163 (a $_{c}$) and a mixed parallel and anti-parallel β -sheet consisting of 5 strands corresponding to residues 83-86 (β_{1}), 95-100 (β_{2}), 59-66 (β_{3}), 14-20 (β_{4}) and 49-53 (β_{5}). This is essentially identical to the secondary structure observed for other MMP structures.

There were three distinct regions in the MMP-13:Compound A spectra where the resonance assignments are incomplete. These correspond to residues G70-Y73, P87-N91 and T144-H148. Residues T144-H148 correspond to part of the dynamic loop region previously seen in the MMP-1 structure (Moy et al., J. Biomol. NMR 1997). This suggests a similar dynamic profile for this region in the MMP-13 structure even in the presence of a high-affinity inhibitor-(IC₅₀ = 33 nM). Residues P87 to N91 contain a cluster of prolines which disrupt the sequential assignment process because of the missing NH. Residues G70 to Y73 correspond to a loop region in the vicinity of the structural zinc which was readily assigned in the MMP-1 structure. The backbone and side-chain 1 H, 15 N, 13 C, and 13 CO assignments are essentially complete for the remainder of the protein.

Example 2

15 High Resolution Solution Structure of the Catalytic Fragment of MMP-13 Complexed with Compound A

Materials and Methods:

Preparation of Compound A: The sulfonamide derivative of the hydroxamic acid
compound, Compound A, was prepared according to the procedure noted in
Example 1 to yield the compound of Figure 3.

Expression of recombinant ¹⁵N and ¹³C/ ¹⁵N-labeled MMP-13: A 169-residue C-terminally truncated human collagenase-3 (MMP-13) was expressed in *E. coli*.

The coding sequence of a C-terminally truncated procollagenase was amplified by PCR from the plasmid pNot3a, that contains the entire coding sequence of MMP-13 (Frieje, *et al.*, J. <u>Biol. Chem.</u> 1994). The PCR primers contained the appropriate restriction sites for ease of cloning. The construct codes for a truncated proMMP-13 with an N-terminal methionine added and a C-terminal proline at residue 169 of the native proMMP-13 sequence. The PCR amplified DNA fragment was the cloned into pET-21a (+) at the Nde I/Sal I sites,

resulting in a recombinant plasmid designated as pProMMP-13. *E. coli* bacteria, BL21(DE3), containing the plasmid pProMMP-13, were grown in LB broth supplemented with 100 μ g/ml ampicilin. An overnight culture was diluted 1:20 and grown at 37°C to an A₆₀₀ of 0.6-0.8 with vigorous shaking. Isopropyl β -D-galactoside (IPTG) was added to a final concentration of 1 mM and cultures were shaken for 3 h at 37°C. The cells were harvested by centrifugation (7000 Xg for 15 min) at 4°C, washed with PBS, and frozen at -70°C until further use.

Uniform 15 N and 13 C- labeled ProMMP-13 was obtained by growing BL21(DE3) E. coli in defined media containing 2.0 g/l [13 C6, 98%+]D-glucose and 1.0 g/l [15 N, 98%+] ammonium chloride as the sole carbon and nitrogen sources, respectively. In addition, the defined media contained M9 salts (Sambrook, *et al.*, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, NY 1989), trace elements, vitamins and 100 μ g/ml ampicilin. Conditions for induction and growth were the same as above.

15

30

Purification of recombinant ¹⁵N and ¹³C MMP-13: MMP-13 was purified according to Moy et al., <u>J. Biomol. NMR</u> 1997, with modifications as follows. Frozen cell pellets were thawed on ice. Cells were resuspended by homogenization in lysis buffer (0.1 M Tricine, pH 8.0, 10 mM EDTA, 2mM DTT, 0.5 mM PMSF). Cells were lysed by French Press (2X) followed by treatment with lysozyme (l mg/ml; final) at room temperature for 30 min. The lysate was centrifuged at 45,000 x g for 30 minutes. The pellet was washed twice with 50 mM Tricine pH 7.5, 0.2 M NaCl₂, 0.5% Triton X-100, resuspended in fresh urea buffer (20 mM Tricine, pH 7.5, 8 M urea, 0.2% NaN₃, 2 mM DTT) and incubated at room temperature for l hour. The urea solubilized protein was centrifuged at 45,000 x g for 30 min and the resultant supernatant was filtered and applied to a Hitrap-Q Sepharose (Pharmacia Biotech) anion exchange column equilibrated in 6 M urea buffer. The column was washed with urea buffer and eluted with a 0-0.25 M NaCl linear gradient. Fractions containing proMMP-13 were detected by SDS-PAGE, pooled and quickly diluted into 5-fold excess of renaturing buffer

(50 mM Tricine, pH 7.5, 0.4 M NaCl, 10 mM CaCl₂, 0.1 mM ZnOAc₂, 0.02% NaN₃). After 2 days of dialysis against 25 volumes of renaturing buffer (with three changes), refolded proMMP-13 was concentrated to about 4-10 mg/ml in a Millipore Biomax 5 concentrator. ProMMP-13 was activated to MMP-13CAT (catalytic domain) by an overnight incubation at 37 °C in the presence of l mM p-aminophenylmercuric acetate (APMA).

The activated protein is then applied onto a Superdex-75 16/60 gel filtration column equilibrated in 2.5 mM Tris-HCl, pH 7.5, 5 mM CaCl₂, 0.4 M NaCl, 2 mM DTT, 0.02% NaN₃ and 0.05 mM ZnOAc₂. The protein is eluted and fractions containing MMP-13CAT were identified by SDS-PAGE. Peak fractions were pooled and the protein was concentrated in a Millipore Biomax concentrator to about 5 mg/ml and stored at -70 °C. N-terminal amino acid sequencing was performed to confirm the protein's identity. The uniform ¹⁵N and ¹³C labeling of MMP-13-CAT was confirmed by MALDI-TOF mass spectrometry (PerSeptive Biosystems).

10

15

25

30

NMR Sample Preparation: The MMP-13:Compound A NMR sample contained 1mM ¹⁵N-or ¹⁵N/¹³C-labeled MMP-13 with Compound A in a 1:1 ratio. The sample was prepared by repeated buffer exchange using 20-30ml solution containing 10mM deuterated Tris-Base, 100mM NaCl, 5mM CaCl₂, 0.1mM ZnCl₂, 2mM NaN₃, 10mM deuterated DTT, and 0.2mM Compound A in either 90% H₂O/10 % D₂O or 100% D₂O. Buffer exchange was carried out on a Millipore Ultrafree-15 Centrifugal Filter Unit. Excess Compound A was removed by additional buffer exchanges where Compound A was removed from the buffer.

NMR Data Collection: All spectra were recorded at 35°C on a Bruker AMX-2 600 spectrometer using a gradient enhanced triple-resonance ¹H/¹³C/¹⁵N probe. For spectra recorded in H₂O, water suppression was achieved with the WATERGATE sequence and water-flip back pulses (Piotto, et al., J. <u>Biomol. NMR</u> 1992; Grzesiek and Bax, J. <u>Am. Chem. Soc.</u> 1993). Quadrature detection in the

indirectly detected dimensions were recorded with States-TPPI hypercomplex phase increment (Marion, et al., J. Magn. Reson. 1989). Spectra were collected with appropriate refocusing delays to allow for 0,0 or -90,180 phase correction.

The resonance assignments and bound conformation of Compound A in the MMP-1: Compound A complex were based on the 2D \(^{12}\text{C}/^{12}\text{C-filtered NOESY (Petros, et al., FEBS Lett. 1992; Gemmecker, et al., J. - Magn. Reson. 1992), 2D \(^{12}\text{C}/^{12}\text{C-filtered TOCSY (Petros, et al., FEBS Lett. 1992; Gemmecker, et al., J. Magn. Reson. 1992) and \(^{12}\text{C}/^{12}\text{C-filtered COSY experiments (Ikura and Bax, J. Magn. Reson. 1992).}\)

5

25

30

The MMP-13: Compound A structure is based on the following 10 series of spectra: HNHA (Vuister and Bax, J. Am. Chem. Soc. 1993), HNHB (Archer, et al., <u>J. Magn. Reson.</u> 1992), 3D long-range 13 C- 13 C correlation (Bax and Popchapsky, J. Magn. Reson. 1992), coupled CT-HCACO (Powers, et al., J. Magn. Reson. 1991; Vuister, et al., J. Am. Chem. Soc. 1992), HACAHB-COSY (Grzesiek, et al., J. Amer. Chem. Soc. 1995), 3D 15N- (Mario, et al., Biochemistry 15 1989; Zuiderweg and Fesik, Biochemistry 1989) and ¹³C-edited NOESY (Zuiderweg, et al., J. Magn. Reson. 1990; Ikura, et al., J. Magn. Reson. 1990), and 3D ¹³C-edited/¹²C-filtered NOESY (Lee, et al., FEBS Lett. 1994). experiments. The ¹⁵N-edited NOESY, ¹³C-edited NOESY and 3D ¹³C-edited/¹²Cfiltered NOESY experiments were collected with 100 msec, 120 msec and 110 20 msec mixing times, respectively. The acquisition parameters for each of the experiments used in determining the solution structure of MMP-13 complexed with Compound A were as reported previously (Moy, et al., Biochemistry, 1998).

Spectra were processed using the NMRPipe software package (Delaglio, et al., J. Biomol. NMR, 1995) and analyzed with PIPP (Garrett, et al., J. Magn. Reson., 1991) on a Sun Sparc Workstation. When appropriate, data processing included a solvent filter, zero-padding data to a power of two, linear predicting back one data point of indirectly acquired data to obtain zero phase corrections, linear prediction of additional points for the indirectly acquired dimensions to increase resolution. Linear prediction by the means of the mirror

image technique was used only for constant-time experiments (Zhu and Bax, <u>J</u>. <u>Magn</u>. <u>Reson</u>., 1992). In all cases data was processed with a skewed sine-bell apodization function and one zero-filling was used in all dimensions.

- 5 Interproton Distance Restraints: The NOEs assigned from 3D ¹³C-edited/¹²C-filtered NOESY and 3D ¹⁵N-edited NOESY experiments were classified into strong, medium, and weak corresponding to interproton distance restraints of 1.8-2.7 Å (1.8-2.9 Å for NOEs involving NH protons), 1.8-3.3 Å (1.8-3.5 Å for NOEs involving NH protons), and 1.8-5.0 Å, respectively (Williamson, et al., J. Mol. Biol., 1985; Clore, et al., EMBO J., 1986). Upper distance limits for distances involving methyl protons and non-stereospecifically assigned methylene protons were corrected appropriately for center averaging (Wuthrich, et al., J. Mol. Biol., 1983).
- Torsion Angle Restraints and Stereospecific Assignments. The β-methylene stereospecific assignments and χ₁ torsion angle restraints were obtained primarily from a qualitative estimate of the magnitude of ³J_{αβ} coupling constants from the HACAHB-COSY experiment (Grzesiek, et al., J. Am. Chem. Soc., 1992) and ³J_{Nβ} coupling constants from the HNHB experiment (Archer, et al., J. Magn.
 Reson., 1991). Further support for the assignments was obtained from approximate distance restraints for intraresidue NOEs involving NH, CαH, and CβH protons (Powers, et al., Biochemistry, 1993).

The φ and ψ torsion angle restraints were obtained from ${}^3J_{NH\alpha}$ coupling constants measured from the relative intensity of Hα crosspeaks to the NH diagonal in the HNHA experiment (Vuister and Bax, J. Am. Chem. Soc. 1993), from a qualitative estimate of the magnitude of ${}^3J_{\alpha\beta}$ coupling constants from the HACAHB-COSY experiment (Grzesiek, et al., J. Am. Chem. Soc., 1992) and from approximate distance restraints for intraresidue and sequential NOEs involving NH, CαH, and CβH protons by means of the conformational grid search program STEREOSEARCH (Nilges, et al., Biopolymers 1990), as described previously (Kraulis, et al., Biochemistry 1989). ${}^1J_{c\alpha H\alpha}$ coupling

PCT/US01/05150 WO 01/63244

constants obtained from a coupled 3D CT-HCACO spectrum were used to ascertain the presence of non-glycine residues with positive f backbone torsion angles (Vuister, et al., J. Am. Chem. Soc. 1992). The presence of a ¹J_{cαHα} coupling constant greater then 130 Hz allowed for a minimum ϕ restraint of -2° to -178°.

5

____ The Ile and Leu χ2 torsion angle restraints and the stereospecificassignments for leucine methyl groups were determined from $^3J_{\text{CaC}\delta}$ coupling constants obtained from the relative intensity of $C\alpha$ and $C\delta$ cross peaks in a 3D long-range ¹³C-¹³C NMR correlation spectrum (Bax, et al., J. Am. Chem. Soc. 1992), in conjunction with the relative intensities of intraresidue NOEs (Powers, 10 et al., Biochemistry 1993). Stereospecific assignments for valine methyl groups were determined based on the relative intensity of intraresidue NH-CYH and CαH-CγH NOEs as described by Zuiderweg et al. (1985) (Zuiderweg, et al., Biopolymers 1985). The minimum ranges employed for the ϕ , ψ , and χ torsion angle restraints were \pm 30°, \pm 50°, and \pm 20°, respectively (Kraulis, et al., 15 Biochemistry 1989).

Structure Calculations: The structures were calculated using the hybrid distance geometry-dynamical simulated annealing method of Nilges et al. (1988) (Protein Eng.) with minor modifications (Clore, et al., Biochemistry 1990) using 20 the program XPLOR (Brunger, X-Plor Version 3.1 Manual, Yale University, New Haven, CT), adapted to incorporate pseudopotentials for ³J_{NHα} coupling constants (Garrett, et al., J. Magn. Reson. Ser. B 1994), secondary ¹³Cα/¹³Cβ chemical shift restraints (Kuszewski, et al., J. Magn. Reson. Ser B 1995) and a conformational database potential (Kuszewski, et al., Protein Sci. 1996; 25 Kuszewski, et al., J. Magn. Reson. 1997). The target function that is minimized during restrained minimization and simulated annealing comprises only quadratic harmonic terms for covalent geometry, ³J_{NHα} coupling constants and secondary 13 C α / 13 C β chemical shift restraints, square-well quadratic potentials for the experimental distance and torsion angle restraints, and a quartic van der 30 Waals term for non-bonded contacts. All peptide bonds were constrained to be

-39-

planar and trans. There were no hydrogen-bonding, electrostatic, or 6-12 Lennard-Jones empirical potential energy terms in the target function.

To prevent the Zn and Ca ions from being expelled during the high-temperature simulated annealing stages of the refinement protocol, a minimal number of distance restraints between the His sidechain and Zn and between backbone atoms and Cα were included in the XPLOR distance restraint—file based on the observed coordination in the X-ray structures (Lovejoy, et al., Science 1994; Lovejoy, et al., Biochemistry 1994; Spurlino, et al., Proteins: Struct., Funct., Genet. 1994; Borkakoti, et al., Nat. Struct. Biol. 1994).

The starting MMP-13:Compound A complex structure for the simulated-annealing protocol was obtained by manually docking Compound A into a homology model for MMP-13. The initial orientation of Compound A in the MMP-13 active site was based on the previously reported MMP-1:CGS-27023A structure (Moy, *et al.*, <u>Biochemistry</u> 1999).

10

15

20

25

30

Homology modeling methods were utilized to generate a three dimensional model of MMP-13. The linear amino acid sequence corresponding to the catalytic domain of MMP-13 was aligned (SYBYL) with the catalytic domains of MMP-1, MMP-7 and MMP-8 based on the availability of their x-ray crystallographic structures (Bode, et al., EMBO J 1994; Spurlino., Proteins: Struct., Funct., Genet. 1994; Betz, et al., Eur. J. Biochem. 1997; Lovejoy, et al., Nat. Struct. Biol. 1999; Borkakoti, et al., Nat. Struct. Biol. 1994; Browner, et al., Biochemistry 1995). The alignments of MMP-13 with MMP-1 and MMP-8 demonstrated the highest homology where the computed identities are 58.9% and 61.4%, respectively (Figure 2).

The X-ray structure of MMP-8 was selected to be used as the template for homology modeling the structure of MMP-13. This decision was based mainly on the sequence alignment shown in Figure 2B where no insertions (labeled "###") are found in the critical specificity loop (Labeled Underlined and Boldface). In Figure 2A, the region labeled "##" in the specificity loop shows that there is an "insertion" of 2 additional amino acid residues compared to the sequence length of MMP-1. Based on our analysis of

-40-

the alignments, MMP-8 would allow for a more accurate modeling of the inhibitor binding pockets since no predictions have to be made within this loop region.

COMPOSER (SYBYL) was used to construct the initial homology

model of MMP-13. The only insertion was a serine (labeled "**" in Figure 2B) at
position 32 of MMP-13. The insertion of S32 occurs within a coiled region
which is at the entrance of a long alpha helix and about 17 angstroms from the
S' specificity loop. The model of MMP-13 was then energy minimized utilizing a
set of nested refinement procedures (Chen, et al., J. Biomol. Struct. Dyn. 1995),
but where the protein backbone heavy atoms were constrained as close as
possible to their original positions.

The MMP-13:Compound A model was then subjected to a 1000 steps of CHARMM minimization with the 5 intramolecular NOE restraints and the 47 distance restraints observed between MMP-13 and Compound A where the coordinates for MMP-13 were kept fixed. This approach approximated the positioning of Compound A in the active site of MMP-13 without distorting the MMP-13 structure. The final structure was exported as a PDB file and used as the starting point for XPLOR simulated annealing protocol where all the residues in the structure were free to move. Since the initial stage of the simulated annealing protocol corresponds to high-temperature dynamics (1500 K) with a relatively weak XPLOR NOE force constant (Ries and Petrides, Biol. Chem. Hoppe-Seyler 1995), the initial MMP-13:Compound A structure does not bias the structure determination process since the structure is effectively free to explore the available conformational space. Additionally, each iteration of the simulated annealing process begins with a random trajectory for the molecular dynamics. The fact that these trajectories differ by upwards of 10 Å assures a distinct exploration of conformational space for the ensemble of MMP-13:Compound A structures determined from the simulated annealing protocol.

15

20

25

WO 01/63244

-41-

PCT/US01/05150

Results and Discussion

Compound A Resonance Assignments and Bound Conformation: The primary structure of Compound A along with the proton naming convention is shown in Figure 3. The NMR assignments for Compound A in the MMP-13 complex followed established protocols using 2D 12C-filtering experiments (Petros, et al., FEBS Lett. 1992; Gemmecker, et al., J. Magn. Reson. 1992; Ikura and Bax, J. Am. Chem. Soc. 1992) since the NMR sample was composed of ¹³C/¹⁵N labeled MMP-13 and unlabeled Compound A. Thus, traditional 2D-NOESY, COSY and TOCSY spectra of Compound A in the presence of MMP-13 yielded straightforward assignments for Compound A along with assignments for free 10 Compound A (data not shown). The only notable difference in the assignments for free and bound Compound A is the observation of two distinct resonances for 2HB1/2 in the complex (4.91 ppm; 4.67 ppm). The missing resonance in the free Compound A may simply be obscured by water. Also, an observation that the protons on the p-methoxyphenyl ring are degenerate suggests rapid 15 ring flips when complexed to MMP-13. This was also seen with CGS-27023A complexed with both MMP-1 and stromelysin (Gonnella, et al., Bioorg. Med. Chem. 1997; Moy, et al., Biochemistry 1998; Moy, et al., Biochemistry 1999).

Compound A does not adopt a preferred conformation in the absence of MMP-13 as evident by the lack of structural NOEs. Only a minimal 20 number of intramolecular NOEs were observed for Compound A in the MMP-13 complex which were relevant to the bound conformation of Compound A (data not shown). The minimal number of structural NOEs is a result of the Compound A conformation, structure and chemical shift degeneracy. A number of the observed NOEs correspond to a sequential interaction which have no 25 effect on the overall conformation of the inhibitor and were not used in the refinement of Compound A or the complex. The structural intramolecular NOEs observed are primarily between 1HH* and the pyridine ring and between 2HB1/2 and both the p-methoxyphenyl and aryl ring. These NOEs are consistent with the "splayed" conformation previously observed for CGS-27023A 30 bound to both MMP-1 and stromelysin, but the bound conformation of

-42-

Compound A is predominately determined from the intermolecular NOEs between Compound A and MMP-13 (Table 1).

Structure Determination: The NMR structure determination methodology is an iterative procedure where the current state of the structure is used to analyze the ambiguous NOE data. In essence, the structure is used as a distance-filter to sort through the ambiguous NOE list where the first structure is determined from unambiguous data. For the refinement of MMP-13, the initial structure was a homology model based on the MMP-8 X-ray structure. This was justified by the overall similarity in previously reported MMP structures and from the secondary structure assignments by NMR for MMP-13. The regular secondary structure elements of MMP-13 were identified from a qualitative analysis of sequential and inter-strand NOEs, NH exchange rates, 3 JHN α coupling constants (Clore, *et al.*, Crit. Rev. Biochem. Mol. Biol. 1989) and the 13 C α and 13 C β secondary chemical shifts (Spera and Bax, J. Am. Chem. Soc. 1991). The deduced secondary structure is essentially identical to the inhibitor-free MMP-1 NMR structures previously reported.

The final 30 simulated annealing structures calculated for residues 7-164 were based on 3279 experimental NMR restraints, consisting of 2561 approximate interproton distance restraints, 51 distance restraints between MMP-13 and Compound A, 88 distance restraints for 44 backbone hydrogen bonds, 391 torsion angle restraints, $103~^3J_{NH\alpha}$ restraints 123 C α restraints and 108 C β restraints. Stereospecific assignments were obtained for 81 of the 100 residues with β -methylene protons, for the methyl groups of 5 of the 6 Val residues, and for the methyl groups of 12 of the 13 Leu residues. In addition, 12 out of the 12 Phe residues and 7 out of the 8 Tyr residues were well defined making it possible to assign NOE restraints to only one of the pair of C δ H and C ϵ H protons and to assign a χ 2 torsion angle restraint. Similarly, χ 2 torsion angle restraints were assigned for the three Trp residues. The atomic rms distribution of the 30 simulated annealing structures about the mean coordinate positions for residues 7-164 is 0.43 \pm 0.06 Å for the backbone atoms, 0.81 \pm

20

25

30

0.09 Å for all atoms, and 0.47 \pm 0.04 Å for all atoms excluding disordered surface side chains. The mean standard deviation for the φ and ψ backbone torsion angles of residues 7-164 are 6.2 \pm 11.3° and 7.1 \pm 11.8°, respectively. The high quality of the MMP-13 NMR structure is also evident by the results of PROCHECK analysis and by a calculated, large negative value for the Lennard-Jones-van der Waals energy (-695 \pm 11 kcal mol⁻¹). For the PROCHECK – statistics, an overall G-factor of 0.16 \pm 0.16, a hydrogen bond energy of 0.82 \pm 0.05 and only 7.8 \pm 1.0 bad contacts per 100 residues are consistent with a good quality structure comparable to ~1Å X-ray structure.

The high quality of the MMP-13 NMR structure is also evident by the very small deviations from idealized covalent geometry, by the absence of interproton distance and torsion angle violations greater than 0.1 Å and 1°, respectively and by the fact that most of the backbone torsion angles for non-glycine residues lie within expected regions of the Ramachandran plot (not shown). 91.5% of the residues lie within the most favored region of the Ramachandran φ , ψ plot and 7.8% in the additionally allowed regions. 1 JC α H α coupling constants from the coupled CT-HCACO experiment indicated that all non-glycine residues have negative φ torsion angles.

10

15

20

25

30

The quality of the NMR data to properly define the complex is also supported by the well-defined coordinates for Compound A and the active site residues, where the atomic rms distribution is 0.47 ± 0.08 Å and 0.18 ± 0.03 Å for the heavy atoms of Compound A and MMP-13 backbone atoms, respectively.

Description of the MMP-13:Compound A Structure: The overall fold of MMP-13 is essentially identical to previously reported MMP structures (Bode, et al., EMBO J. 1994; Gooley, et al., Nat. Struct. Biol. 1994; Lovejoy, et al., Science 1994; Lovejoy, et al., Ann. N. Y. Acad. Sci. 1994; Lovejoy, et al., Biochemistry 1994; Spurlino, et al., Proteins: Struct., Funct., Genet. 1994; Stams, et al., Nat. Struct. Biol. 1994; Becker, et al., Protein Sci. 1995; Gonnella, et al., Proc. Natl. Acad. Sci. U. S. A. 1995; Van Doren, et al., Protein Sci. 1995; Botos, et al., Proc. Natl. Acad. Sci. USA 1996; Broutin, et al., Acta Crystallogr., Sect. D: Biol. Crystallogr.

-44-

1996; Gooley, et al., J. Biomol. NMR 1996; Betz, et al., Eur. J. Biochem. 1997; Gonnella, et al., Bioorg. Med. Chem. 1997; Moy, et al., Biochemistry 1998 and Moy, et al., Biochemistry 1999). The MMP-13 NMR structure is composed of three α -helices corresponding to residues 28-44 (α_A), 112-123 (α_B) and 153-163 (α_c) and a mixed parallel and anti-parallel b-sheet consisting of 5 strands corresponding to residues 83-86 (β_1), 95-100 (β_2), 59-66 (β_3), 14-20 (β_4) and 49-53 (β_5). The active site of MMP-13 is bordered by β -strand IV, the Ca⁺² binding loop, helix B and a random coil region from residues P139-Y141. The catalytic zinc is chelated by H119, H123, and H129 while the structural zinc is chelated by H69, H84 and H97. The calcium ion is chelated in a loop region consisting of residues D75 to G79. An interesting feature of the MMP active-site structure is an apparent kink in the backbone that occurs between the Ca⁺² binding loop and β -strand IV. In the case of MMP-13, this results in the NHs of both L82 and A83 facing toward the active site of the enzyme. An important feature of substrate and inhibitor binding to the MMPs are hydrogen bonding interactions with β -strand IV which is facilitated by this unusual kink conformation (Lovejoy, et al., Science 1994; Lovejoy, et al., Biochemistry 1994; Spurlino, et al., Proteins: Struct., Funct., Genet. 1994; and Borkakoti, et al., Nat. Struct. Biol. 1994).

10

15

20

25

30

The interaction of Compound A in the active site of MMP-13 was determined by 5 intramolecular NOEs for Compound A and by a total of 47 intermolecular distance restraints between MMP-13 and Compound A. The key MMP-13 residues involved in the interaction with the inhibitor correspond to three distinct MMP-13 regions: residues L81, L82 and A83 from β -strand IV; residues L115, V116, and H119 from α -helix II; and L136, I140 and Y141 from the active site loop which comprise the S1' and S2' pockets of MMP-13. A unique feature of the MMP-13 structure is the large S1' pocket which nearly reaches the surface of the protein.

Compound A binds to the right-side of the catalytic Zn where the p-methoxyphenyl of Compound A sits in the S1' pocket of the MMP-13 active site. This positioning is evident from the observed NOEs from 3HH*, 3HE1/2

and 3HD1/2 to L115, V116, H119, L136, and Y141. The aryl group primarily interacts with the side-chain of L81 as evident by the strong NOEs between 1HH*, 1HE2 and 1HZ and the L81 spin-system. Finally, the pyridine ring is essentially solvent exposed but interacts with the side-chain of I140. These interactions position Compound A such that the hydroxamic acid moiety of Compound A chelates to the "right" of the catalytic zinc and the sulfonyl oxygens are in hydrogen-bonding distance to the backbone NH of L82.

It is interesting to note that the active site loop is highly dynamic in both the inhibitor-free and CGS-27023A structures based on S² order10 parameters (Moy, et al., J. Biomol. NMR 1997). This region in the MMP13:Compound A structure appears to be significantly less mobile by the observation that most of the residues in this loop region were easily observable in the ¹H-¹⁵N HSQC spectra and readily assigned. One possible explanation for this difference is the hydrophobic interaction between the pyridine ring of
15 Compound A and the side-chain for Ile-140. In MMP-1, I140 is replaced by a serine which essentially eliminates this beneficial interaction.

Another unique feature of the MMP-13 NMR structure is the apparent dynamic nature of residues H69 to Y73. These residues are completely disordered due to the lack of any assignment information and the resulting absence of any constraint information presumably a result of the flexible nature of these residues. Residues H69 to Y73 occur between the Ca⁺² binding loop and the structural zinc where the corresponding region in the previously solved MMP-1 NMR structures is well defined. There is no apparent explanation for this change in mobility between the two NMR structures but it may contribute to the observed difference in the physical behavior of MMP-1 and MMP-13. Under identical conditions, inhibitor-free MMP-1 is stable for upwards of two months whereas inhibitor-free MMP-13 degrades immediately.

20

25

Comparison of the MMP-13:Compound A and MMP-1:CGS-27023A Structures:

The high-resolution NMR structure for the MMP-13:Compound A complex was effectively and efficiently determined by using a homology model based on the

-46-

MMP-1 NMR structure as an initial structure to analyze ambiguous NOESY data. This result is evident of the high structural and sequence similarity between members of the MMP family and consistent with the previously observed best-fit superposition of the backbone atoms for MMP-1, stromelysin, matrilysin and neutrophil collagenase (Moy, et al., Biochemistry 1998; Moy, et al., Biochemistry 1999).

The strong similarity between the various MMP structures creates an initial difficulty in designing specific MMP inhibitors. This is exemplified by the high sequence similarity among the MMPs in the active site. Comparison of the sequence similarity between MMP-13 and MMP-1 illustrates this difficulty. There are only a few significant residue differences between the two enzymes where these modifications results in a significant change in the local environment of the active site. The R114 to V115 modification results in a conversion from a hydrophilic to a hydrophobic environment at the base of the S1' pocket between MMP-1 and MMP-13, respectively. Similarly, the N80 to L81 substitution places a bulkier hydrophobic residue in the S2' pocket for MMP-13 compared to a more hydrophilic environment for MMP-1. Similarly in the active loop region, I140 a bulky hydrophobic residue in MMP-13 replaces the smaller hydrophilic S139 residue in MMP-1. Clearly, it is feasible to incorporate substituents into a small molecule to take advantage of these spatial distinct environmental changes between MMP-1 and MMP-13. Nevertheless, when these sequence and environmental differences are averaged across the MMP family it becomes less discriminating and extremely difficult to design an inhibitor to a specific MMP subtype based strictly on the small sequence differences.

10

20

25

30

Conversely, the most distinct structural difference between the MMPs and readily amenable to incorporating specificity in drug design is the relative size and shape of the S1' pocket. This is clearly evident by comparison of the defined S1' pockets for MMP-13 and MMP-1. The large difference in size in the S1' pockets between the MMP-13 and MMP-1 NMR structures is striking. The S1' pocket for MMP-13 nearly reaches the outer surface of the protein and

-47-

is greater then twice the size of MMP-1. The additional size of the MMP-13 S1' pocket relative to MMP-1 is best illustrated by the filling capacity of the two inhibitors. In the MMP-1:CGS-27023A NMR structure, the p-methoxyphenyl effectively fills the available S1' pocket for MMP-1. Conversely, in the MMP-13:Compound A complex the p-methoxyphenyl only partially fills the available space within the MMP-13 S1' pocket. The size of the MMP-13 pocket is actually similar in size to stromelysin where the design of stromelysin inhibitors has taken advantage of this deeper S1' pocket by using a biphenyl substituent in another series instead of the p-methoxyphenyl in Compound A to bind into the S1' pocket (Hajduk, et al., J. Am. Chem. Soc. 1997; Olejniczak, et al., J. Am. Chem. Soc. 1997). Thus, the NMR structures for MMP-13 and MMP-1 suggest that a ready approach to designing specificity between these MMPs is to take advantage of the significantly different sized S1' pockets. The high mobility of the MMP-1 active site presents a potential caveat to this analysis of the static images of the MMP-1 and MMP-13 structures. It is probable that the MMP-1 active site is capable of accommodating a S1' substituent larger then implied from its current structure due to its increased mobility in both free and inhibited structures.

Examination of the binding mode of Compound A in the MMP-13: Compound A complex suggests a conformation generally similar to CGS-20 27023A in the MMP-1:CGS-27023A NMR structure previously reported (30 simulated annealing structures deposited with Protein Data Bank, Accession No. 4AYK; restrained minimized mean structure deposited with Protein Data Bank, Accession No. 3AYK). Compound A and CGS-27023A are structurally very similar with the only difference being the nature of the substituent binding in 25 the S2' pocket where an aryl group in Compound A replaces the isopropyl group in CGS-27023A. The strong resemblance between the binding mode of Compound A and CGS-27023A is apparent from the nearly identical intermolecular NOE patterns observed between the inhibitors and the proteins. The key MMP-13 residues involved in the interaction with Compound A 30 correspond to L81, L82 and A83 from β -strand IV; residues L115, V116, and

H119 from α -helix II; and L136, I140 and Y141 from the active site loop. Similarly, the MMP-1 residues involved in the interaction with CGS-27023A correspond to residues N80, L81, A82 and H83 from β -strand IV; residues R114, V115, H118 and E119 from α -helix II; and L135, P138, Y137, S139 and Y140 from the dynamic flexible loop.

As stated previously, there are three distinct residue changes _ _ between MMP-13 and MMP-1 in the active site. The R114 to L115 change between MMP-1 and MMP-13, respectively, has a significant impact on the environment at the base of the S1' pocket but since Compound A only partially fills the MMP-13 S1' pocket this change should not effect the binding 10 conformation of Compound A relative to CGS-27023A. Conversely, the N80 to L81 substitution directly interacts with the inhibitors in the S2' pocket and may result in an effective change in the binding mode of the inhibitors. To complicate the analysis, the only change in the inhibitors are the substituents that bind the S2' pocket. For the MMP-1:CGS-27023A complex, the isopropyl 15 group interacts with both the sidechains of N80 and H83 where the aryl group from Compound A only interacts with L81 in MMP-13. Additionally, CGS-27023A is in hydrogen-bonding distance to both L81 and A82, whereas Compound A appears to form a bifurcated hydrogen bond with L82. This analysis suggests that CGS-27023A binds closer to β -strand IV since the S2' 20 pocket is more accessible in MMP-1 due to the absence of the bulky L81 sidechain and the presence of the aryl group in Compound A. A direct comparison of the bound conformations suggest only a subtle difference in the relative orientation of the inhibitors. The S139 to I140 difference between MMP-1 and MMP-13, respectively, appears to be related to a mobility change as opposed to 25 a structural change. In the MMP-1:CGS-27023A structure the pyridine ring position is essentially undefined and solvent exposed this compares to the MMP-13:Compound A structure where the pyridine ring binds with the side-chain of I140. Clearly, Ile is a bulkier more hydrophobic group relative to Ser which would provide a beneficial hydrophobic interactions with the pyridine ring. The 30 more interesting observation is the apparent decrease in mobility for the active

-49-

loop in the MMP-13 structure which may be related the pyridine ring I140 interaction. This appears to be consistent with previously inhibited MMP X-ray structures (Spurlino, *et al.*, <u>Proteins: Struct.</u>, <u>Funct.</u>, <u>Genet.</u> 1994) where the inhibitor may extend the formation of a β -sheet between b-strand IV and the active loop region which results in low B-factors in the X-ray structure. This may suggest that the mobility of the active loop region is easily-removed with any positive interaction with the inhibitor.

There are apparently some interesting differences between the mode of binding for the two inhibitors in the MMP-13: Compound A and MMP-1:CGS-27023A NMR structures. The more striking observation is the overall similarity between the two structures. Despite some significant sequence differences and a large difference in the size and shape of the S1' pocket either inhibitor structure would accurately predict the other structure. This observation seems to indicate that the major contributing factors to inhibitors binding the MMPs is the fit in the S1' pocket and the binding of the hydroxamic acid to the catalytic zinc. The interaction in the S2' pocket appears to have a more subtle impact on inhibitor binding and selectivity since both Compound A and CGS-27023A are low nanomolar inhibitors of MMP-13 and MMP-1, respectively. Therefore, the high-resolution solution structure of the MMP-13:Compound A in conjunction with the previously reported MMP-1 NMR 20 structures suggest that taking advantage of the significant differences in the size and shape of the S1' pocket is a reasonable approach for developing specific MMP inhibitors.

The studies described herein present the high-resolution solution
structure of MMP-13 complexed with a sulfonamide derivative of a hydroxamic acid compound (Compound A). The overall fold of MMP-13 is similar to previously reported MMPs structures. The major difference is the large S1' pocket which nearly reaches the surface of the protein. The structure was based on a total of 3279 constraints including 47 distance restraints between MMP-13 and Compound A from X-filtered NOESY experiments. The inhibitor was found to bind to the "right" side of the catalytic Zn such that the p-methoxyphenyl ring

-50-

sits in the S1' pocket, the aryl moiety interacts with L81 of β IV, the pyridine ring interacts with I140 of the active site loop, hydrogen bond interactions exist between the sulfonamide oxygens with residue L82 and the hydroxamic acid chelates the catalytic Zn. This inhibitor binds MMP-13 similarly to the MMP-1:

Table 1. Observed NOEs Between Compound A and MMP-13

Compound A	MMP-13	NOE Class	Compound A	MME-1	NOE Class
1HH*	L81 Hy	w	3HH*	Υ141 Ηα	. M
1HH*	L81 Hδ1#	w	3HH*	Ү141 НВ1	W
1HH*	L81 H82#	М	3HH*	Υ141 Ηβ2	W
1HH*	L81 Ha	S	3HH* -	Υ141 Ηδ2	W
1HE2	L81 Hδ1#	w	3HE2	L82 Hδ1#	W
1HE2	L81 Hδ2#	M	3HE1	А83 Нβ#	W
1HZ	L81 Hδ1#	W	3HE1	Η116 Ηα	W
1HZ	L81 H82#	M	3HE1	H116 Hy1#	M
2HZ	1140 Ηγ2#	W	3HE2	Η116 Ηγ2#	W
2HE1	Ι140 Ηδ1#	W	3HE2	1140 Ηγ2#	W
3HH*	L82 Hδ1#	W	3HE2	Υ141 Ηα	W
3HH*	L115 Hβ#	W	3HE2	Υ141 Ηβ1	W
3HH*	L115 Hy	W	3HE2	Υ141 Ηβ2	W
3HH*	L115 H81#	W	3HD2	L82 Hδ1#	W
3HH*	L115 Hδ2#	w	3HD1	А83 Нβ#	W
3HH*	V116 Ha	W	3HD1	V116 Hy1#	W
3HH*	V116 Hy1#	w	3HD2	V116 Hγ2#	W
3HH*	V116 Hγ2#	M	3HD2	I140 Hα	W
3HH*	Η119 Ηα	W	3HD2	I140 Hγ2#	W
3HH*	Н119 Нδ2	w	3HD2	Υ141 Ηα	W
3HH*	H119 Hβ 1	w	3HD2	Υ141 Ηβ1	w
3HH*	Н119 Нβ2	w	3HD2	Υ141 Ηβ2	W
3HH*	L136 Hδ1#	w	3HD2	Y141 HN	w
3HH*_	L136 Hδ2#	w	·		

-52-

Example 3

Structure Based Design of a Novel, Potent, and Selective Inhibitor for MMP-13

The matrix metalloproteinases (MMPs) comprise a family of zinc containing enzymes that cleave a broad range of substrates including collagens, fibronectin and gelatins where the substrate preference various for individual MMPs. The design of MMP inhibitors has been initially based upon imitation of the binding interaction of natural protein substrates to MMPs where structural information of MMPs complexed with peptide substrates has been determined by x-ray crystallography and NMR spectroscopy. This structural information has provided a general description of the MMPs active site.

5

10

15

20

25

30

The active site for the MMPs is composed of a catalytic zinc chelated by three histidines where three substrate binding pockets are located to both the right (S1', S2', S3') and left (S1, S2, S3) of the catalytic zinc. The substrate binding pockets were identified by the interactions of side chains from the peptide substrate with the MMPs. The primary effort in MMP inhibitor design has focused on compounds that chelate the catalytic zinc while primarily binding in the S1' and S2' pockets. This has evolved from the observation that the structural characteristics of the S1' pocket (size, shape, amino acid composition) incurs the greatest variability between the individual MMPs and this provides an obvious approach in designing selective and specific MMP inhibitors. Nevertheless, there has also been success in utilizing the binding pockets to the left of the catalytic zinc in addition to or in combination with the right handed binding pockets in the design of inhibitors.

The underlying challenge in designing MMP inhibitors is the reasonably high sequence and structural homology observed between the individual members of the MMP family making it intrinsically difficult to design an inhibitor that will function against a single MMP in the absence of structural information. The problem with a non-specific MMP inhibitor as a drug is the high likelihood of serious side-effects because of the large number of enzymes in the MMP family and their corresponding diversity in targets and function.

-53-

Accordingly, the detailed structural information provided herein is a critical component of an inhibitor design program targeting a particular MMP enzyme.

Materials and Methods:

20

25

30

5 Synthesis of Compound D and Compound E: The sulfonamide derived from 2amino-3,5-dimethyl-benzoic acid methyl ester and p-methoxybenzenesulfonylchloride was N-alkylated with benzyl bromide and the ester group of the
resulting intermediate was hydrolyzed (LiOH/THF) to afford the carboxylic
acid. The corresponding hydroxamic acid was formed by preparation of the
acid chloride (oxalyl chloride/DMF) followed by reaction with hydroxylamine.
Compound E was synthesized by reaction of 2-amino-3,5-dimethyl-benzoic acid
methyl ester and p-fluorobenzenesulfonyl chloride followed by N-alkylation
with benzyl bromide. Hydrolysis of the methyl ester (LiOH/THF) followed by
displacement of fluorine with the alkoxide of benzofuran-2-carboxylic acid (2hydroxy-ethyl)-amide gave, after conversion to the hydroxamic acid and
formation of the HCl salt as described above, Compound E.

NMR Sample Preparation: Uniformly (>95%) ¹⁵N- and ¹⁵N/¹³C-labeled human recombinant MMP-13 was expressed in *E. coli* and purified as described previously. 1mM ¹³C/¹⁵N- and ¹⁵N- MMP-13 NMR samples were prepared by concentration and buffer exchange using Millipore Ultrafree -10 centrifugal filters into a buffer containing 10mM deuterated Tris-base, 100mM NaCl, 5mM CaCl₂, 0.1 mM ZnCl₂, 2 mM NaN₃, 10mM deuterated DTT in 90% H₂O/10% D₂O or 100% D2O. The 10:1 Compound B:MMP-13 samples were prepared by addition of Compound B into either a 1mM ¹³C/¹⁵N- or ¹⁵N-MMP-13 sample followed by pH readjustment. The sample to explore the potential of competitive inhibition between Compound B and Compound A was prepared by first adding 1mM of Compound A to a 1 mM ¹⁵N- MMP-13 sample followed by the addition of 10mM Compound B. The initial MMP-13:Compound A sample was made by buffer exchange of ¹⁵N- MMP-13 into the buffer containing 0.1 mM Compound A followed by additional buffer exchanges to remove excess

Compound A. Finally, 10mM of Compound B was added to the 1mM ¹⁵N- MMP-13:Compound A sample followed by pH readjustment.

NMR Data Collection: All spectra were recorded at 35°C on a Bruker AMX-2 600 spectrometer using a gradient enhanced triple-resonance ¹H/¹³C/¹⁵N probe. For spectra recorded in H₂O, water suppression was achieved with the WATERGATE sequence and water-flip back pulses (Piotto, et al., J. Biomol. NMR 1992; Grzesiek and Bax, J. Am. Chem. Soc. 1993). Quadrature detection in the indirectly detected dimensions were recorded with States-TPPI hypercomplex phase increment (Marion, et al., J. Magn. Reson. 1989). Spectra were collected with appropriate refocusing delays to allow for 0,0 or -90,180 phase correction.

10

15

20

25

The resonance assignments and bound conformation of Compound A in the MMP-1: Compound A complex were based on the 2D ¹²C/¹²C-filtered NOESY (Petros, *et al.*, <u>FEBS Lett.</u> 1992; Gemmecker, *et al.*, <u>J. Magn. Reson.</u> 1992), 2D ¹²C/¹²C-filtered TOCSY (Petros, *et al.*, <u>FEBS Lett.</u> 1992; Gemmecker, *et al.*, <u>J. Magn. Reson.</u> 1992) and ¹²C/¹²C-filtered COSY experiments (Ikura and Bax, J. Am. Chem. Soc. 1992).

The assignments of the ¹H, ¹⁵N, and ¹³C resonances of MMP-13 in the MMP-13:Compound B complex were based on the previous assignments for the MMP-13:Compound A complex in combination with a minimal set of experiments: 2D ¹H-¹⁵N HSQC, 3D ¹⁵N- edited NOESY (Marion, *et al.* Biochemistry 1989; Zuiderweg and Fesik, Biochemistry 1989), CBCA(CO)NH (Grzesiek and Bax, J. Am. Chem. Soc. 1992), C(CO)NH (Grzesiek, *et al.*, J. Magn. Reson., Ser. B 1993), HNHA (Vuister and Bax, J. Am. Chem. Soc. 1993) and HNCA (Kay, *et al.*, J. Magn. Reson. 1990). The acquisition parameters for each of the experiments used in determining the solution structure of the MMP-13:Compound B complex were as reported previously (Moy, *et al.*, Biochemistry 1996).

The MMP-13:Compound B structure is based on observed NOEs from the 3D ¹⁵N-edited NOESY (Marion, et al. <u>Biochemistry</u> 1989; Zuiderweg and Fesik, <u>Biochemistry</u> 1989) and 3D ¹³C-edited/¹²C-filtered NOESY (Vuister

-55-

and Bax, <u>J. Am. Chem. Soc.</u> 1993; Lee, *et al.*, <u>FEBS Lett.</u> 1994). The 3D ¹⁵N-edited NOESY and 3D ¹³C-edited/¹²C-filtered NOESY experiments were collected with 100 msec and 110 msec mixing times, respectively.

Molecular Analysis and Design: The minimized models of Compound B and Compound D complexed to MMP-13 were prepared as previously described - - -(Chen, et al., J. Biomol. Struct. Dyn. 1995; Chen, et al., Biochemistry (in press) 1998). Using molecular dynamics methods (Sybyl v6.4 from Tripos Inc), protein regions within 5 Å from Compound B were sampled along with the inhibitor, whereas everything else remained rigid during the simulations. Upon energy 10 convergence, the last 50 frames from the final 100 picoseconds run was averaged and this averaged structure underwent a final minimization. The final protein-Compound B model appeared to have optimized possible polar and van der waals interactions. The identical procedure was applied to the complex of MMP-13 and Compound D. Since the two complexes used identical MMP-13 15 structures, the proteins were overlapped to depict the positions of the two inhibitors within the active site. Graphics analysis of the inhibitors showed that the methylene carbon of Compound B containing the 2HB1/2 protons (Figure 6) overlapped identically with the methoxy carbon from Compound D. This analysis indicated the optimal or minimal linkage length of connecting the 20 benzofuran moiety to the methoxy region of Compound D. The final design scheme is shown in Figure 8A for the hybrid inhibitor. The homology model of MMP-9 was constructed using the COMPOSER program (Tripos INC, Sybyl v.6.4)

25

30

High-throughput Screening Analysis: Compound B was identified as an initial lead from the analysis of the MMP-13 high-throughput screen (HTS). A total of 58079 compounds were screened for their ability to inhibit MMP-13 enzymatic activity where 385 compounds were shown to have \geq 40% inhibition at 10 μ g/ml dosage. Compound B was shown to exhibit weak inhibition of MMP-13 (89% at the 10 μ g/ml), but more intriguing was the observation of a complete

-56-

lack of activity against other MMPs (MMP-1, MMP-9 and TACE). The primary structure of Compound B along with the proton naming convention is shown in Figure 6.

The resulting HTS hits were further examined by cluster analysis. The hits were clustered based on structural similarities where the properties of these compounds were compared against the properties of the set of orally — available drugs. The properties used to profile the HTS hits consists of: total number of non-hydrogen atoms, number of heteroatoms, number of hydrogen-bond donors and acceptors, calculated logP and molecular weight. This profile analysis provides an initial means to predict the likelihood that an HTS hit may have drug-like characteristics such as bioavailability and in-vivo stability. The profile of Compound B indicates that the compound has properties similar to orally available drugs suggesting that it would be an ideal candidate for optimization of its enzyme potency and selectivity.

10

30

15 A common feature of known MMP inhibitor structures is the presence of a Zn-chelator that plays a fundamental role in its activity. In most cases Zn chelation occurs from the presence of a hydroxamic acid in the structure of the small molecule. As apparent from the structure of Compound B, the compound does not contain an obvious substituent that would chelate Zn.

20 Thus, the unique structure of Compound B suggested a potential novel mechanism for inhibition of MMP-13 further strengthening the choice of Compound B as an initial lead candidate. Therefore, the identification of Compound B as a candidate to optimize its activity and selectivity was based on three unique observations: its intrinsic MMP-13 selectivity, its structural profile similar to known bioavailable drugs and finally its apparent novel structure.

NMR Structure of the MMP-13 - Compound B Complex: The NMR binding studies provided critical information pertaining to the mechanism of Compound B inhibition of MMP-13 and the method for designing increase potency. The major question presented when Compound B was identified from HTS was its unknown MMP-13 binding site and its method for inducing MMP-13 inhibition.

-57-

Previous work on the NMR structure of MMP-13 complexed with Compound A and MMP-1 complexed with CGS-27023A provided the framework and methodology to analysis Compound B bound to MMP-13 (Moy, *et al.*, Biochemistry Submitted 1999; Moy, *et al.*, Biochemistry 1999).

The Compound B MMP-13 binding site was initially identified 5 from chemical shift perturbation in the ¹H-¹⁵N HSQC spectra. The observed perturbations were mapped onto a GRASP surface (not shown). It is apparent that the major effect of Compound B on the chemical shifts of MMP-13 occurs in the proximity of the S1' pocket suggesting that Compound B sits in this pocket. From the NMR and X-ray structures of MMP-13, it was determined that the S1' 10 pocket for MMP-13 is very deep and linear in shape while nearly reaching the surface of the protein. In fact, a number of residues at the surface of MMP-13 near the base of the S1' pocket show significant chemical shift perturbation in the presence of Compound B. Since Compound B is a linear molecule, docking studies would place the inhibitor stretched throughout the linear S1' pocket of 15 MMP-13. The only question remaining was whether to place the morpholine or the benzofuran moiety of Compound B at one end of the pocket, adjacent to the catalytic zinc or the opposite end, distant from the zinc atom. Property analysis of the enzymes S1' pocket depicts that the end adjacent to the zinc is relatively polar whereas the opposite end is hydrophobic. This analysis lead us to dock 20 Compound B with the morpholine ring adjacent to the catalytic zinc atom with the benzofuran moiety siting in a hydrophobic pocket formed by L115, L136, F149 and P152 at the base of the S1' pocket. To further verify the proposed binding of Compound B in the S1' pocket of MMP-13, a simple competition experiment with Compound A was conducted. The ¹H-¹⁵N HSQC experiment for 25 the MMP-13:Compound B complex was collected in the presence of Compound A. The presence of Compound A displaced all of Compound B as evident by the distinct differences in the 1H-15N HSQC spectra which further suggests that both compounds bind in the S1' pocket.

The relative orientation and binding of Compound B with MMP-13 was further confirmed by the observation of intermolecular NOEs between

30

-58-

Compound B and MMP-13 from the 3D ¹³C-edited/¹²C-filtered NOESY experiment. The NOESY spectra was collected in the presence of a ten-fold excess of Compound B because of the weak affinity of Compound B with MMP-13. Nevertheless, a total of 16 NOEs were observed between Compound B and L81, L115, V116, Y141, T142 and Y143 which support the initial positioning of Compound B in the MMP-13 S1' pocket. An expanded 2D plane from the 3D-¹³C-edited/¹²C-filtered NOESY experiment (not shown) demonstrated examples of some key intermolecular NOEs between Compound B benzofuran group resonances and L115 δ and Compound B resonances proximal to the morpholine ring and L82 o. The complex of Compound B with MMP-13 was subjected to energy refinement using the NMR results as constraints (Moy, et al., Biochemistry 1999; Chen, et al., J. Biomol. Struct. Dyn. 1995). The modeling results depict the morpholine oxygen forming a hydrogen bond with the backbone amide group of Leu-82 and the benzofuran group packs deep in the S1' pocket with the peptide bond linker portion forming hydrogen bonds with protein backbone groups. The complex shows no apparent interactions between the inhibitor and the catalytic zinc justifying the ligands micromolar potency.

15

20 Structures of MMP-1, MMP-9 and MMP-13: The recent NMR solution structures of MMP-1 and MMP-13 were used as starting points for molecular modeling and analysis (Moy, et al., Biochemistry Submitted 1999; Moy, et al., Biochemistry 1998; Moy, et al., Biochemistry 1999). A homology model for MMP-9 was developed based on its strong homology to MMP-1 (54% identity around the catalytic domain). Based on the homology model, the catalytic site of MMP-9 is similar to the corresponding sites in MMP-1 and MMP-13. All three structures were used as starting points for analysis and synthetic design.

Comparative analysis of the MMP structures shows that residue positions 115 and 144, in addition to the length of the specificity loop,

determines the size and shape of the S1' pockets. Alignment of the NMR structures for MMP-1 and MMP-13 shows that MMP-13 contains two additional

-59-

insertions in the specificity loop. The homology model of MMP-9 indicates no additional insertions so its length is identical to MMP-1.

Residue positions 115 and 144 are important in establishing the relative length of the S1' pockets for the MMPs where the larger the side chain at these positions results in a smaller S1' pocket. Since residue 115 is spatially closer to the catalytic zinc than residue 144, a larger side chain for residue 115 will have a greater impact on defining a smaller S1' pocket compared to residue 144. MMP-1 has the largest side chain at position 115, thus its S1' pocket is the smallest. MMP-9 has an Arg at position 144 resulting in its S1' pocket being longer compared to MMP-1. Conversely, MMP-13 has short side chains at both positions 115 and 144. The short side chains combined with an increased length of its specificity loop result in MMP-13 having the largest S1' pocket. To summarize, the size of the MMP S1' pockets are as follows: MMP-13 > MMP-9 > MMP-1 where this structural feature plays a critical role in the design strategy for developing a potent and specific MMP-13 inhibitor.

Design Strategy: A strategy utilizing NMR and molecular modeling was applied towards the design and synthesis of an MMP-13 selective inhibitor lead. The basic approach behind the design strategy is to optimize the affinity of the chemical lead Compound B while maintaining its inherent MMP-13 selectivity. This can be achieved by taking advantage of the distinct structural feature of MMP-13, its deep linear S1' pocket, while combining overlapping structural features of Compound B with other potent inhibitors. Compound C is an example of a potent and selective inhibitor for MMP-9 and MMP-13 (See Table 2). Based on the NMR solution structure of MMP-13 complexed with Compound A (Figure 4), structurally similar inhibitors were positioned into the active site of MMP-13.

15

20

25

30

Figure 7 shows the critical regions of Compound C, which can be broken down into two components, Compound D which represents the zinc chelating portion of the compound that contributes to the binding potency and the toluene group (1A) which contributes to enhanced ligand selectivity against

-60-

MMP-1. The strategy was to design a new inhibitor based on replacing the toluene group (1A) with a component of Compound B critical for binding within the extended S1' pocket of MMP-13. The overlay of the NMR solution structure for Compound B with the model for Compound D is shown in Figure 8B. The close similarity between the positioning of the two structures made it readily apparent that it would be possible to generate a hybrid of the two structures_ combining the potent Compound D with the selective component of Compound B (Figure 8A). These results were then used to design the proposed hybrid inhibitor Compound E. The assay data in Table 2 clearly shows that the new inhibitor, Compound E, has better potency compared to Compound C in addition to improved selectivity towards MMP-13. Thus, the combination of NMR spectroscopy with molecular modeling techniques resulted in the design of a novel, potent and selective MMP-13 inhibitor (Compound E) which has an IC50 of 17 nM for MMP-13 and showed >5800, 56 and >500 fold selectivity against MMP-1, MMP-9 and TACE, respectively. To the best of our knowledge, this represents the first example of a potent MMP-13 inhibitor that has been shown to be selective against MMP-9.

Table 2 - IC50 and Selectivity Data

20

10

15

Compoun d	MMP-1	MMP-9	MMP-13	TACE	S-1ª	S-9ª	S-TACE ^a		
C	750nM	46nM	75nM	470nM	10.0x	0.6x	6.3x		
D	82nM	21nM	15nM	240nM	5.5x	1.4x	16x		
Е	NA	945nM	17nM	19%	>5800x	56x	>500x		
F	1025n M	71nM	301nM	664nM	3.4x	0.2x	2.2x		
^a Selectivity data presented as a ratio of the MMP or TACE IC50 with MMP-13									

25

-61-

Example 4

The X-ray crystal structure of the MMP-13:Compound A complex was determined using the following procedure:

5 Gene/expression system/production: The cDNA coding for human MMP-13 proenzyme had 85 residues of the PRO domain, followed by 165 residues of the catalytic domain (CAT). The gene was carried on a pET-21a expression plasmid, under the control of a bacteriophage T7 promoter. The expression host was Escherichia coli BL21(DE3), which had a chromosomal copy of T7 RNA polymerase under lac control. Cells were grown in nutrient broth, and synthesis of PRO-CAT was induced by isopropyl-β-thiogalactoside. The protein accumulated to 5-10% of total cellular protein, essentially all of which was aggregated into inclusion bodies.

For potential MAD experiments, the plasmid was transferred into a methionine auxotroph host. PRO-CAT with selenomethionine substitution was produced by induction in a defined medium, with methionine replaced by selenomethionine.

Purification and refolding of PRO-CAT: Frozen cells were disrupted
mechanically, and inclusion bodies were isolated by centrifugation. PRO-CAT was solubilized with urea containing dithiothreitol to disrupt any disulfide bridges. PRO-CAT was partially purified by anion-exchange chromatography, in urea, on Q Sepharose. The protein was diluted to about 400 μg/ml in a solution of sodium chloride, calcium chloride, and zinc acetate, buffered with tricine-HCI. Refolding proceeded over 3-4 days, during dialysis, with multiple buffer changes. PRO-CAT was then concentrated for activation and release of CAT.

Activation of PRO-CAT: The presently-accepted view of MMPs holds that the proenzyme form is maintained in an inactive state through the coordination of one cysteine from the PRO domain into the active-site zinc. If this cysteine is

PCT/US01/05150

displaced, the enzyme becomes active. In our protocol, aminophenyl mercuric acetate was added to the protein solution to form a mercurial adduct with the cysteine. Progress of activation was monitored by SDS polyacrylamide gel eletrophoresis. Results indicated that the CAT domain accumulated and the PRO domain was degraded to small peptides.

Purification of MMP-13 (CAT) – Size Exclusion: Following activation and PRO cleavage, MMP-13 was isolated by size-exclusion chromatography through SuperDex 75 in a solution of sodium chloride, calcium chloride, and zinc acetate, buffered with tris-HC1.

10

20

25

Purification of MMP-13 – Affinity: MMP-13 was further purified by affinity chromatography on an immobilized hydroxamate inhibitor. The affinity matrix was prepared by coupling an hydroxamate inhibitor to Sepharose through the
 amino group of the piperazine ring. MMP-13 can be absorbed to the matrix and desorbed by displacement using another inhibitor of choice.

Characterization of MMP-13: Protein preparations for crystallization trials were validated by several techniques. Routinely, SDS-PAGE showed a predominant species whose migration was consistent with a molecular weight of around 19,000. MALDITOF mass spectroscopy demonstrates a single species consistent with the expected size of 18,588 amu. (MMP-13 prepared with selenomethionine showed essentially complete replacement). N-terminal sequencing demonstrated that the protein begins with YNVF, as expected for correct cleavage between PRO and CAT. Retention volume in analytical size-exclusion chromatography was consistent with a monomeric protein: no detectable aggregation was observed. The final protein was enzymatically active on a fluorogenic peptide substrate, and degraded denatured collagen.

30 *Crystallization of MMP-13 complex with Compound A*: The MMP-13 protein solution was buffered with 10 mM tris-HCL buffer, pH 7.5, and 0.25 M NaCl.

-63-

The concentration of protein used for crystallization was 20.0 mg/ml. The inhibitor solution was added to a protein solution with a mole ratio (protein:inhibitor) of 1:2, and was mixed for more than 1 hour.

Crystallization conditions were screened by the hanging-drop vapor diffusion method (Mcpherson, A., Methods Biochem. Anal. 1976). A successful procedure for growing crystals of this complex at room temperature was identified, and crystals were obtained. Specifically, a solution was prepared from 3 µl of protein solution and 3 µl of precipitant solution, which consisted of 26% PEG4000, 0.1 M ammonium sulfate, and 0.1 M sodium chloride. A drop of this solution was suspended on a microscope coverslip glass which had been coated with silicone to prevent drop spreading. The reservoir solutions consisted of 0.6 ml precipitant solution. Equilibration was performed at room temperature by vapor diffusion. Crystals began appearing after three days. After two weeks, these crystals stopped growing. The X-ray data which have been processed show that the MMP-13 complex was crystallized in two forms. One crystal form is C-centered orthorhombic; it belonged to space group C2221, and had a cell dimension of a=36.3 Å, b=134.4 Å, and c=134.8 Å. This crystal had high mosaicity; therefore, it would be of little use when working on the structure of the complex. The second crystal form is primitive orthorhombic, from space group P21212, with a cell constant of a=108.3 Å, b=79.8 Å, and c=36.1 Å. This crystal had low mosaicity, but it was very small in most cases.

10

15

20

25

30

In order to obtain a big single crystal for X-ray data collections, the seeding technique (Thaller, C., et al., J. Mol. Biol. 1981) was applied. This was accomplished by using both the microseeding and the macroseeding methods. Small seed crystals were transferred to a 20% PEG4000 precipitant solution on a depression slide. A single washed crystal was injected into a hanging-drop solution, which was composed of 3 μ l of MMP-13 complex solution and 3 μ l of precipitant solution. The reservoir solutions consisted of 0.6 ml precipitant solution at pH 8.0. This procedure successfully produced bigger crystals with a maximum edge dimension of up to 0.35 x 0.1 x 0.1 mm³. These crystals diffracted X-ray at a resolution of 2.0 Å.

-64-

X-Ray Data Collection: X-ray diffraction data from 30.0-2.0 Å resolution for the MMP-13:Compound A complex crystal (P21212 form) was collected by using an RAXIS IIc Image Plate area detector which used graphite monochromatic CuKα radiation from a Rigaku RU200 rotating anode generator (operating at 50 kV, 100 mA) at a low temperature of 100 K. The oscillation angle for each plate was 1 degree, and exposure time was 20 minutes per 'image'. The processing of _ X-ray diffraction data was accomplished using the HKL programs (Otwinowski, Z. and Minor, W., Methods in Enzymology 276:307-26). The R-merges for full and partial reflections were 4.0% and 6.04% respectively. 18,782 unique reflections (81% complete at 2.0 Å resolutions) were collected.

10

25

30

Structure Determination and Refinement: The MMP-13 complex crystal structure has been determined by a combination of crystallographic modeling and the Molecular Replacement method using models of MMP-13 derived from the 15 MMP-1 and MMP-8 structures. The homology between MMP-13 and MMP-8 is 56% by sequence, and at least 70% by structure. Crystals of the MMP-13 complex have two molecules in the asymmetric unit, *i.e.*, the unit is a dimer. Conventional molecular replacement was not effective for determination of this dimer structure by using a monomer model. There are two reasons for this: (1) the high symmetry of the crystal structure; and (2) the conformations and the configurations of the side chain and the main chain in flexible loops of MMP-13 and MMP-8.

Firstly, the crystal structure of the MMP-13 complex is highly symmetrical. The P21212 crystal has four symmetry operations, and there are eight molecules in a unit cell. A second crystal form, belonging to space group C222, and having eight symmetry operations in a unit cell, has been identified. In this crystal, there are 16 monomers per cell in the dimer structure, and 32 monomers per cell in the tetramer structure. Therefore, the rotation search and especial translation search become more difficult. Secondly, even though the MMP family's catalytic domain structure is highly conserved, the conformations and the configurations of the side chain and the main chain in flexible loops of

-65-

MMP-13 and MMP-8 may not be the same. In particular, the similarity between the two structures may not be sufficient to permit the determination of the dimer structure using a monomer as the searching model.

Many attempts at a rotation and translation search were made by using the X-ray data and models of either a monomer of MMP-8 or a dimer of MMP-1. Some rotation solutions were obtained, but no final translation solution has been found by using the monomer model. Accordingly, to determine this structure, it was proposed that a dimer model be constructed first; the molecular replacement method was then applied to solve the structure.

5

10

15

20

The key idea of this proposal was crystal packing. To construct a dimer, the orientations of each monomer were determined on the basis of a rotation search. The positions of each monomer were located on the basis of the molecular packing in unit cell. Many dimer models have been constructed and applied as the 'model' for searching the rotation and translation using program AMORE (Collaborative Computational Project, Number 4 (CCP4) (1994), Acta Cryst. D50:760-763). One dimer model was found to be correct, and finally resulted in the MMP-13 3-D crystal structure using the molecular replacement method. The MMP-13 complex structure was confirmed by observing the most important and significant fact that the positions of the two zinc ions and the two calcium ions could be identified from the difference (Fo-Fc) maps with five-sigma cut, where Fo was observed structure factor and Fc was the calculated structure factor of the dimer model without zinc and calcium atoms.

These ions were located in the exact positions where they were
observed in other MMP family members. The molecule fits the (2Fo-Fc)
electron densities very well, both in main chain and in side chain. The molecule
fits the 2Fo-Fc electron density quite well. All of these MMP molecules are
conserved in the core structure region, especially the position of the central
helix and the catalytic zinc. The MMP-13 dimer structure was further confirmed
by applying the molecular replacement programs XPLOR (Brünger, A.T., XPLOR
Version 3.1 Manual, Yale University, New Haven CT) and MERLOT (Fitzgerald,

-66-

P., MERLOT, version 2.4 (Nov. 10, 1991). All of them worked very well, and produced results which were in agreement with the MMP-13 structure.

Structure Refinement: The structure refinement was carried out by the program XPLOR. The initial dimer model included 320 amino acid residues without zinc and calcium ions. The dimer model was refined against 2.0 Å X-ray data, collected on an RAXIS IIc area detector at a temperature of 100 K. The progress of the refinement was evaluated from the quality of the protein molecular conformations and the electron density maps, and the values of the 10 crystallographic R-factor. The initial R-factor was 52%. After rigid-body minimization, conjugated-gradient minimization, a heating stage, a slow-cooling stage in the range from 4000K to 300K, energy minimization, B-factor refinement, and positional refinement, the R-factor lowered to 0.32. Electrondensity maps with coefficients of (2Fo-Fc) and (Fo-Fc), as well as the phases, were calculated. The difference map shows four zinc ions and four calcium ions in the dimer structure with five-sigma cut. Some side chain loops and a few main loops were rebuilt on the interactive graphics system. The rebuilt dimer plus the zinc and calcium ions, as the new model, was refined. The R-factor was down to 26.6%. At this stage, a model of inhibitor Compound A was positioned in the active-site region based on the difference electron density. 20

The complex structure was refined by repeating the above steps, with the R-factor down to 20%. The water molecules were modeled as oxygen atoms. Their initial positions were located by searching the peaks in the (Fo-Fc) difference maps. These positions were then checked by calculating the distance between 'water' and the oxygen and nitrogen of the protein. Together with the protein (complex) atoms, these 'water' molecules were refined against the X-ray data. Once the temperature factor of water was higher than 50, this water was omitted. 120 water molecules near the protein were found, and five water molecules were identified in the active site of each monomer. The (2Fo-Fc) maps were used to adjust the solvent model and to aid in the placement of new solvent molecules, as well as to check and correct the whole model. The r.m.s.

30

-67-

deviations of $C\alpha$ atoms for bond angles and bond distances from ideal geometry were 1.6° and 0.012 Å. The final crystallographic R-factor was 22%, at a resolution of 2.0 Å.

All publications mentioned herein above, whether to issued

5 patents, pending applications, published articles, protein structure deposits, or

-otherwise, are hereby incorporated by reference in their entirety. While the
foregoing invention has been described in some detail for purposes of clarity
and understanding, it will be appreciated by one skilled in the art from a
reading of the disclosure that various changes in form and detail can be made

10 without departing from the true scope of the invention in the appended claims.

What is claimed is:

1. A solution comprising a biologically active catalytic fragment of human collagenase-3 (MMP-13) complexed with N-Hydroxy-2-[(4-methoxy-benzenesulfonyl)-pyridin-3-ylmethyl-amino]-3-methyl-benzamide ("Compound A").

-68-

- 2. The solution of Claim 1, wherein the catalytic fragment of MMP-13 comprises the amino acid residues of Figure 1.
- 3. The solution of Claim 2, comprising 1 mM MMP-13 complexed with Compound A in a 1:1 molar ratio, in a buffer comprising 10mM deuterated Tris-Base, 100mM NaCl, 5mM CaCl₂, 0.1mM ZnCl₂, 2mM NaN₃, and 10 mM deuterated DTT in either 90% $\rm H_2O/10\%~D_2O$ or 100% $\rm D_2O$.
- 4. The solution of Claim 3, wherein the MMP-13 is either ¹⁵N enriched or ¹⁵N, ¹³C enriched.
- 5. The solution of Claim 1, wherein the secondary structure of the catalytic fragment of MMP-13 comprises three alpha helices and a mixed parallel and anti-parallel beta sheet comprising five beta strands.
- 6. The solution of Claim 5, wherein the alpha helices and beta strands are configured in the order β_{I} , α_{A} , β_{II} , β_{III} , β_{V} , α_{B} , and α_{C} .
- 7. The solution of Claim 6, wherein the three alpha helices correspond to residues 28-44 (α_A), 112-123 (α_B) and 153-163 (α_C) of Figure 1, and the five beta strands correspond to residues 83-86 (β_I), 95-100 (β_{II}), 59-66 (β_{II}), 14-20 (β_{IV}), and 49-53 (β_V) of Figure 1.
- 8. A crystallized catalytic fragment of MMP-13 complexed with N-Hydroxy-2-[(4-methoxy-benzenesulfonyl)-pyridin-3-ylmethyl-amino]-3-

WO 01/63244

methyl-benzamide ("Compound A").

9. The crystallized complex of Claim 8, wherein the catalytic fragment of MMP-13 comprises the amino acid residues of Figure 1.

-69-

- 10. The crystallized complex of Claim 9, characterized as being in orthorhombic form with space group P21212, and having unit cell parameters of a=108.3Å, b=79.8Å, and c=36.1Å.
- The crystallized complex of Claim 10, further characterized 11. as consisting of two molecules of MMP-13:Compound A complex in the asymmetric unit.
- The crystallized complex of Claim 11, wherein the 12. secondary structure of the catalytic fragment of MMP-13 comprises three alpha helices and a mixed parallel and anti-parallel beta sheet comprising five beta strands.
- The crystallized complex of Claim 12, wherein the alpha 13. helices and beta strands are configured in the order $\beta_{\rm I}$, $\alpha_{\rm A}$, $\beta_{\rm II}$, $\beta_{\rm III}$, $\beta_{\rm IV}$, $\beta_{\rm V}$, $\alpha_{\rm B}$, and α_c .
- The crystallized complex of Claim 13, wherein the three 14. alpha helices correspond to residues 28-44 (α_A), 112-123 (α_B) and 153-163 (α_c) of Figure 1, and the five beta strands correspond to residues 83-86 (β_i) , 95-100 (β_{π}), 59-66 (β_{π}), 14-20 (β_{rv}), and 49-53 (β_{v}) of Figure 1.
- An active site of MMP-13, characterized by a catalytic zinc, 15. a beta strand, a Ca²⁺ binding loop, an alpha helix, and a random coil region.

-70-

- 16. The active site of Claim 15, wherein the beta strand comprises residues N14, L15, T16, Y17, R18, I19, and V20 according to Figure 1, the Ca²⁺ binding loop comprises residues F75, D76, G77, P78, and S79 according to Figure 1, the alpha helix comprises residues N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, and H123 according to Figure 1, and the random coil region comprises residues P139, I140, and Y141 according to Figure 1.
- 17. The active site of Claim 16, wherein said active site comprises the relative structural coordinates of the catalytic zinc and amino acid residues N14, L15, T16, Y17, R18, I19, V20, F75, D76, G77, P78, S79, N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, H123, P139, I140, and Y141 according to the solution or crystal coordinates of Figures 4 or 5, respectively, in each case, ± a root mean square deviation from the catalytic zinc and the conserved backbone atoms of said amino acids of not more than 1.5Å.
- 18. The active site of Claim 17, further comprising the relative structural coordinates of amino acid residues G80, L81, L82, A83, H84, A85, K109, G110, Y111, S124, L125, G126, L127, D128, H129, S130, K131, D132, P133, G134, A135, L136, M137, F138, T142, Y143, T144, and G145 according to the solution or crystal coordinates of Figures 4 or 5, respectively, in each case, \pm a root mean square deviation from the conserved backbone atoms of said amino acids of not more than 1.5Å.
- 19. The active site of Claim 18, further comprising the relative structural coordinates of amino acid residues F149 and P152 according to the solution or crystal coordinates of Figures 4 or 5, respectively, in each case, \pm a root mean square deviation from the conserved backbone atoms of said amino acids of not more than 1.5Å.

-71-

- 20. An active site of MMP-13 comprising the relative structural coordinates of a catalytic zinc and amino acid residues L81, L82, L115, V116, H119, L136 and I140 according to the solution or crystal coordinates of Figures 4 or 5, respectively, in each case, \pm a root mean square deviation from the catalytic zinc and the conserved backbone atoms of said amino acids of not more than 1.5\AA .
- 21. A method for identifying a potential inhibitor or activator of MMP-13, comprising the steps of:
- (a) using a three dimensional structure of MMP-13 as defined by the relative structural coordinates of amino acids encoding MMP-13 according to Figures 4 or 5, \pm a root mean square deviation from the conserved backbone atoms of said amino acids of not more than 1.5Å;
- (b) employing said three-dimensional structure to design or select a potential inhibitor or activator; and
- (c) synthesizing or obtaining said potential inhibitor or activator.
- 22. The method according to Claim 21, wherein the potential inhibitor is designed de novo.
- 23. The method according to Claim 21, wherein the potential inhibitor is designed from a known inhibitor.
- 24. The method of Claim 22, further comprising the step of contacting the potential inhibitor with MMP-13 in the presence of a substrate to determine the ability of the potential inhibitor to inhibit MMP-13.
- 25. The method of Claim 23, further comprising the step of contacting the potential inhibitor with MMP-13 in the presence of a substrate to determine the ability of the potential inhibitor to inhibit MMP-13.

-72-

- 26. The method according to Claim 21, wherein the step of employing the three dimensional structure to design or select the potential inhibitor comprises the steps of:
- (a) identifying chemical entities or fragments capable of associating with MMP-13; and
- into a single molecule to provide the structure of the potential inhibitor.
- 27. The method according to Claim 26, wherein the potential inhibitor is designed de novo.
- 28. The method according to Claim 26, wherein the potential inhibitor is designed from a known inhibitor.
- 29. The method of Claim 27, further comprising the step of contacting the potential inhibitor with MMP-13 in the presence of a substrate to determine the ability of the potential inhibitor to inhibit MMP-13.
- 30. The method of Claim 28, further comprising the step of contacting the potential inhibitor with MMP-13 in the presence of a substrate to determine the ability of the potential inhibitor to inhibit MMP-13.
- 31. An inhibitor identified or designed by the method of Claim 21.
- 32. An inhibitor identified or designed by the method of Claim 26.

YNVFP	RTLKW	SKMNL	TYRIV	NYTPD
5	10	15	20	25
MTHSE	VEKAF	KKAFK	VWSDV	TPLNF
30	35	40	45	50
TRLHD	GIADI	MIS FG	IKEHG	DFYPF
55	60	65	70	75
DGPSG	LLAHA	FPPGP	NYGGD	AHFDD
80	85	90	95	100
DETWT	SSSKG	YNLFL	VAAHE	FGHSL
105	110	115	120	125
GLDHS	KDPGA	LMFPI	YTYTG	KSHFM
130	135	140	145	150
LPDDD 155	VQGIQ 160	SLYG 164		

FIG. 1

Sequence 1: MMP-13 Sequence 2: MMP-1

Identity_score: 58.9 %

VGEYNVFPRTLKWSKMNLTYRIVNYTPDMTHSEVEKAFKKAFKVWSDVTPLNFTRLHDGIADIMISFGIKEHGDFYPFDG LTEGN PR WEQTHLTYRIENYTPDLPRADVDHAIEKAFQLWSNVTPLTFTKVSEGOADIMISFVRGDHRDNSPFDG

PSGLLAHAFPPGPNYGGDAHFDDDETWTS

SSKGYNLF

LVAAHEFGHSLGLDHSKDPGALMF

PIYTYTGKSHFMLPDDDVQ

PGGNLAHAFQPGPGIGGDAHFDEDERWTNNFREYNLHRVAAHELGHSLGLS HST DIGALMYPSYTFSGDYQ

LAODD

ши

GIQSLYGPGDEDPN GIQAIYGRSQ

FIG. 2A

Sequence 1: MMP-13 Sequence 2: MMP-8

Identity score:

61.4 %

VGEYNVFPRTLKWSKMNLTYRIVNYT PDMTH S EVEKAFKKAFKVWSDVTPLNFTRLHDGIADIMISFGIKEHGDFYPFDG NPKWER T NLTYRIRNYTP QLSEA EVERAI KDAFEL WSVASPLI FTRISQGEADINIAFYQRDHGDNSPFDG

PSGLLAHAFPPGPNYGGDAHFDDDETWTSSSKGYNLFLVAAHEFGHSLGLDHSKDPGALMF <u>PIYTYTGKSHFMLPDDD</u>VQ PNGILAHAFQPGQGIGGDAHFDAEETWTNTSANYNLFLVAA HEFGHSLGLAHSSDPGALMY<u>PNYAF RETSNYSLPODD</u> ID ###

GIQSLYGPGDEDPN GIQAIYG

FIG. 2B

FIG. 3

		Atom	Res.		x	Υ.	Z		
3.000V		Type		_					
ATOM	1	N	THR	7	-12.675	-13.911	-8.815	1.00	0.83
ATOM	2	HN	THR	7	-12.001	-14.254	-8.192	1.00	1.22
ATOM	3	CA	THR	7	-14.063	-13.649	-8.340	1.00	0.63
MOTA	4	HA	THR	7	-14.744	-14.330	-8.830	1.00	0.73
ATOM	5	CB	THR	7	-14.132	-13.858	-6.825	1.00	0.61
ATOM	5	HP	THR	?	-13.473	-13.158	-6.335	1.00	0.66
ATOM	7	OG1		7	-13.730	-15.185	-6.514	1.00	0.71
ATOM	8	HG1	THR	7	-13.721	-15.690	-7.330	1.00	1.07
MOTA	9	CG2	THR	7	-15.564	-13.628	-6.336	1.00	0.67
ATOM		HG21	THR	7	-15.712	-12.577	-6.13 9	1.00	1.14
ATOM	11	HG22	THR	7	-15.728	-14.191	-5.429	1.00	1.32
ATOM	12	HG23	THR	7	-16.261	-13.955	-7.093	1.00	1.23
MOTA	13	C	THR	7	-14.451	-12.208	-8.678	1.00	0.52
MOTA	14	0	THR	7	-15.416	-11.962	-9.374	1.00	0.65
ATOM	15	N	LEU	8	-13.704	-11.254	-8.195	1.00	0.47
ATOM	16	HN	LEU	8	-12.927	-11.473	-7.639	1.00	0.61
ATOM	17	CA	LEU	8	-14.027	-9.831	-8.495	1.00	0.42
ATOM	18	HA	LEU	8	-15.098	-9.715	-8.575	1.00	0.43
ATOM	19	CB	LEU	8	-13.495	-8.937	-7.370	1.00	0.52
ATOM	20	HB1	LEU	8	-13.721	-7.905	-7.591	1.00	0.54
ATOM	21		LEU	8	-12.424	-9.060	-7.292	1.00	0.58
ATOM	22	CG	LEU	8	-14.151	-9.331	-6.042	1.00	0.60
ATOM	23	HG	LEU	8	-13.958	-10.376	-5.844	1.00	0.60
ATOM	24		LEU	8	-13.566	-8.484	-4.910	1.00	0.74
ATOM	25	HD11		8	-13.899	-8.875	-3.960	1.00	1.22
ATOM	26	HD12		8	-13.900	-7.462	-5.016	1.00	1.26
ATOM	27	HD13		8	-12.488	-8.518	-4.956	1.00	1.31
ATOM	28	CD2	LEU	8	-15.664	-9.096	-6.117	1.00	0.61
ATOM	29			8	-15.871	-8.278	-6.791	1.00	1.13
ATOM	30	HD22	LEU	8	-16.040	-8.856	-5.134	1.00	1.18
ATOM	31	HD23	LEU	8	-16.149	-9.991	-6.478	1.00	1.26
ATOM	32	C	LEU	8	-13.374	-9.438	-9.822		0.40
ATOM	33	ŏ	LEU	8	-12.218	-9.722	-10.064	1.00	
ATOM	34	Ŋ	LYS	9	-14.109		-10.687	1.00	0.45
ATOM	35	HN		9					
ATOM	35 36	CA	LYS	9	-15.042	-8.581	-10.474	1.00	0.36
	30 37		LYS	9	-13.536	-8.393	-12.002	1.00	0.37
MOTA		HA	LYS		-12.521	-8.050	-11.862	1.00	0.39
MOTA	38	CB	LYS	9	-13.539		-12.944	1.00	0.50
ATOM	39	HBI	LYS	9	-12.851	-10.344	-12.573	1.00	0.60

FIG. 4

					, -		
ATOM	40	HB2 LYS	9	-13.233	-9.286 -13.93	32 1.00	0.48
ATOM	41	CG LYS	9		-10.193 -13.00		.0.60
ATOM	42	HG1 LYS	9	-15.632	-9.455 -13.3 9		0.66
MOTA	43	HG2 LYS	9	-15.260 -	-10.482 -12.0	14 1.00	0.78
ATOM	. 44	CD LYS	9	-14.951 -	-11.421 -13.92		0.94
			ź				
MOTA	45	HD1 LYS	9		-11.794 -14.0		1.57
MOTA	46	HD2 LYS	9	-15.344 -	-11.147 -14.88	89 1.00	1.62
ATOM	47	CE LYS	9	-15.829 -			0.57
			~				
MOTA	48	HE1 LYS	9	-16.776	-12.086 -13.0	07 1.00	1.15
MOTA	49	HE2 LYS	9	-15.333 -	-12.924 -12.4	37 1.00	1.10
ATOM	50	NZ LYS	9		-13.591 -14.3		1.61
MOTA	51	H21 LYS	9	-15.181			2.14
MOTA	52	HZ2 LYS	9	-16.358	-13.168 -15.2	07 1.00	2.13
-MOTA-	53-	HZ3-LYS	9	-16.802 -	-14.23113.9	59 -1.00-	-2.14 -
ATOM	54	C LYS	9	-14.377	-7.265 -12.6		0.32
MOTA	55	O LYS	9	-15.493	-7.021 -12.1		0.34
MOTA	56	N TRP	10	-13.850	-6.571 -13.5	77 1.00	0.31
ATOM	57	HN TRP	10	-12.947	-6.781 -13.8		0.33
MOTA	58	CA TRP	10	-14.618	-5.456 -14.2		0.30
MOTA	59	HA TRP	10	-15.030	-4.826 -13.4	27 1.00	0.29
ATOM	60	CB TRP	10	-13.684	-4.630 -15.0		0.29
MOTA	61	HB1 TRP	10	-14.264	-3.917 -15.6		0.32
ATOM	62	HB2 TRP	10	-13.157	-5.286 -15.7		0.33
MOTA	63	CG TRP	10	-12.699	-3.901 -14.2	30 1.00	0.25
MOTA	64	CD1 TRP	10	-11.516	-4.405 -13.8		0.30
MOTA	65	HD1 TRP	10	-11.137	-5.390 -14.0		0.37
MOTA	66	CD2 TRP	10	-12.786	-2.553 -13.6	83 1.00	0.21
MOTA	67	NE1 TRP	10	-10.872	-3.454 -13.0		0.30
MOTA	68	HE1 TRP	10		-3.569 -12.6		
				-9.996	-3.309 -12.0	17 1.00	0.36
MOTA	69	CE2 TRP	10	-11.614	-2.295 -12.9		0.23
MOTA	70	CE3 TRP	10	-13.758	-1.538 -13.7	63 1.00	0.24
MOTA	71	HE3 TRP	10	-14.663	-1.706 - 14.3		0.29
	72						
MOTA		CZ2 TRP	10	-11.412	-1.075 -12.2		0.22
MOTA	73	HZ2 TRP	10	-10.509	-0.903 -11.7	20 1.00	0.27
ATOM	74	CZ3 TRP	10	-13.558	-0.309 -13.1	13 1.00	0.25
ATOM	75	HZ3 TRP	10	-14.310	0.463 -13.1		0.32
ATOM	76	CH2 TRP	10	-12.387	-0.078 -12.3		0.23
ATOM	77	HH2 TRP	10	-12.238	0.870 -11.8	79 1.00	0.26
MOTA	78	C TRP	10	-15.755	-6.031 -15.0	50 1.00	0.39
ATOM	79	O TRP	10	-15.641	-7.098 -15.6		0.48
MOTA	80	n ser	11	-16.855	-5.332 -15.1		0.43
MOTA	81	HN SER	11	-16.927	-4.476 - 14.6	60 1.00	0.44
ATOM	82	CA SER	11	-18.006	-5.835 -15.9		0.52
ATOM	83	HA SER	11	-18.003	-6.915 -15.9		0.59
ATOM	84	CB SER	11	-19.313	- 5.330 - 15.3		0.64
MOTA	85	HB1 SER	11	-19.120	-4.425 -14.7	63 1.00	1.16
ATOM	86	HB2 SER	11	-19.718	-6.079 -14.6		1.20
ATOM	87	OG SER					
			11	-20.246	-5.067 -16.3		1.39
MOTA	88	HG SER	11	-19.821	-4.495 -17.0		1.92
ATOM	89	C SER	11	-17.893	-5.335 -17.3	79 1.00	0.47
MOTA	90	O SER	11	-18.785	-5.528 -18.1		0.60
MOTA	91		12				
				-16.808	-4.692 -17.7		0.42
MOTA	92	HN LYS	12	-16.101	-4.543 -17.0		0.51
MOTA	93	CA LYS	12	-16.646	-4.178 -19.1	1.00	0.41
MOTA	94	HA LYS	12	-17.243	-4.775 -19.7		0.47
ATOM	95	CB LYS	12	-17.116			
					-2.722 -19.1	1.00	0.43
MOTA	96	HB1 LYS	12	-18.168	-2.674 - 18.9		0.50
MOTA	97	HB2 LYS	12	-16.957	-2.334 -20.1	1.00	0.46
MOTA	98	CG LYS	12	-16.327	-1.882 -18.1		0.41
ATOM	99	HG1 LYS	12	-15.275	-1.922 -18.4		0.37
ATOM	100	HG2 LYS	12	-16.484	-2.272 -17.1		0.42
MOTA	101	CD LYS	12	-16.805	-0.430 -18.2	223 1.00	0.50
MOTA	102	HD1 LYS	12	-17.856	-0.386 -17.9		0.56
ATOM	103	HD2 LYS	12	-16.648			
					-0.044 -19.2		0.65
ATOM	104	CE LYS	12	-16.018	0.412 -17.2		0.61
MOTA	105	HE1 LYS	12	-15.054	0.665 -17.6	536 1.00	1.15
MOTA	106	HE2 LYS	12	-15.879	-0.151 -16.3		1.16
MOTA	107	NZ LYS	12				
				-16.773	1.661 -16.9		1.39
MOTA	108	HZ1 LYS	12	-16.498	2.018 -15.9	983 1.00	1.90
MOTA	109	HZ2 LYS	12	-17.794	1.458 -16.9	927 1.00	1.87
ATOM	110	HZ3 LYS	12	-16.556	2.379 -17.0		1.97
ATOM	111	C LYS	12				
				-15.175	-4.269 -19.	521 1.00	0.36
MOTA	112	O LYS	12	-14.284	-4.250 -18.0	695 1.00	0.34
MOTA	113	n met	13	-14.917	-4.380 -20.1	796 1.00	0.37
ATOM	114	HN MET	13	-15.652	-4.402 -21.4		0.40
ATOM	115	CA MET	13	-13.506	-4.487 -21.2		0.38
ATOM					-1.40/ -21.2	269 1.00	
ATUM	116	ha met	13	-12.910	-4.964 -20.	506 1.00	0.39

MOTA	117	СВ	MET	12	12 460	E 330 00 E43	1 00 0 10
				13	-13.469	-5.332 -22.543	1.00 0.46
MOTA	118	HB1		13	-12.523	-5.189 -23.043	1.00 0.53
MOTA	119	HB2	MET	13	-14.273	-5.031 -23.199	1.00 0.42
MOTA	120	CG	MET	13	-13.632	-6.809 - 22.178	1.00 0.64
MOTA	121	HG1	MET	13	-12.857	-7.097 -21.483	1.00 1.26
MOTA	122	HG2		13	-13.556	-7.411 -23.071	1.00 1.37
MOTA	123	SD	MET	13	-15.252	-7.067 -21.414	1.00 1.22
MOTA	124	CE	MET	13	-14.663	-7.870 -19.903	1.00 0.57
MOTA	125	HE1	MET	13	-14.020	-7.189 -19.362	1.00 1.16
ATOM	126	HE2	MET	13	-14.107	-8.758 -20.158	1.00 1.09
MOTA	127	HE3	MET	13	-15.508	-8.141 -19.286	1.00 1.20
MOTA	128	C	MET	13	-12.936	-3.095 -21.560	1.00 0.32
ATOM	129	ŏ	MET	13	-11.793	-2.957 -21.948	1.00 0.32
ATOM		N ·	ASN			-2.064 -21.371	
MOTA	131	HN	ASN	14	-14.635		
MOTA	132	CA	ASN			-2.199 -21.052	1.00 0.29
ATOM	133	HA	ASN	14	-13.217	-0.681 -21.631	1.00 0.26
MOTA				14	-12.359	-0.725 -22.286	1.00 0.29
	134	CB	ASN	14	-14.319	0.148 -22.297	1.00 0.30
MOTA	135		asn	14	-14.025	1.186 -22.318	1.00 0.31
MOTA	136		ASN	14	-15.235	0.043 -21.735	1.00 0.31
MOTA	137	CG	asn	14	-14.539	-0.346 -23.729	1.00 0.37
MOTA	138		asn	14	-13.677	-0.981 -24.304	1.00 1.16
ATOM	139	ND2	asn	14	-15.664	-0.077 -24.334	1.00 1.05
ATOM	140	HD21	ASN	14	-16.359	0.435 -23.871	1.00 1.81
ATOM	141	HD22	ASN	14	-15.812	-0.386 -25.252	1.00 1.06
ATOM	142	C	ASN	14	-12.813	-0.024 -20.309	1.00 0.22
MOTA	143	õ	ASN	14	-13.566	-0.019 -19.357	
ATOM	144	N	LEU	15	-11.630	0.533 -20.247	
MOTA	145	HN	LEU	15			1.00 0.21
MOTA	146				-11.042	0.517 -21.031	1.00 0.24
ATOM	_	CA	LEU	15	-11.171	1.194 -18.987	1.00 0.18
	147	HA	LEU	15	-12.025	1.447 -18.379	1.00 0.19
MOTA	148	CB	LEU	15	-10.250	0.243 -18.210	1.00 0.18
MOTA	149		LEU	15	-9.812	0.769 -17.375	1.00 0.19
MOTA	150		LEU	15	-9.463	-0.102 -18.865	1.00 0.21
MOTA	151	CG	LEU	15	-11.046	-0.964 -17.696	1.00 0.19
MOTA	152	HG	LEU	15	-11.547	-1.442 -18.525	1.00 0.20
ATOM	153	CD1	LEU	15	-10.086	-1.961 -17.044	1.00 0.20
ATOM	154	HD11		15	-9.726	-1.556 -16.110	1.00 0.98
MOTA	155	HD12		15	-9.251	-2.141 -17.704	1.00 1.04
MOTA	156			15	-10.604	-2.890 -16.857	
ATOM	157		LEU	15	-12.083		1.00 1.07
ATOM	158					-0.513 -16.658	1.00 0.21
ATOM	159	HD21		15	-12.114	-1.228 -15.850	1.00 1.07
MOTA			LEU	15	-13.055	-0.456 -17.122	1.00 1.00
		HD23	LEU	15	-11.814	0.457 -16.268	1.00 1.04
MOTA	161	Ċ	LEU	15	-10.397	2.471 -19.334	1.00 0.18
ATOM	162	0	LEU	15	-9.785	2.570 -20.380	1.00 0.20
ATOM .	163	N	THR	16	-10.425	3.447 -18.460	1.00 0.18
MOTA	164	HN	THR	16	-10.929	3.338 -17.627	1.00 0.18
MOTA	165	CA	THR	16	-9.699	4.729 -18.722	1.00 0.19
ATOM	166	HA	THR	16	-9.051	4.617 -19.574	1.00 0.20
ATOM	167	CB	THR	16	-10.716	5.839 -18.996	1.00 0.22
MOTA	168	HB	THR	16	-10.198	6.729 -19.315	1.00 0.24
MOTA	169		THR	16	-11.445	6.112 -17.808	
MOTA	170	HG1		16	-11.821	5.286 -17.495	
MOTA	171		THR	16	-11.680	5.393 -20.096	1.00 0.98
ATOM		HG21		16	-12.200	6.254 -20.489	1.00 0.26
ATOM		HG22		16	-12.396		1.00 1.05
ATOM		HG23	THR			4.696 -19.686	1.00 1.02
ATOM	175			16	-11.125	4.914 -20.889	1.00 1.05
ATOM		C	THR	16	-8.864	5,100 -17,495	1.00 0.17
	176	0	THR	16	-9.157	4.687 -16.391	1.00 0.16
MOTA	177	N	TYR	17	-7.826	5.878 -17.675	1.00 0.18
ATOM	178	HN	TYR	17	-7.603	6.202 -18.574	1.00 0.19
ATOM	179	CA	TYR	17	-6.981	6.268 -16.507	1.00 0.17
ATOM .	180	HA	TYR	17	-7.585	6.233 -15.615	1.00 0.17
ATOM	181	CB	TYR	17	-5.814	5.288 -16.362	1.00 0.19
MOTA	182	HB1	TYR	17	-6.194	4.278 -16.347	1.00 0.19
ATOM	183	HB2		17	-5.292	5.488 -15.438	1.00 0.20
ATOM	184	CG	TYR	Ĩ7	-4.857	5.445 -17.520	
ATOM	185		TYR	17	-5.037		1.00 0.22
ATOM	186	HD1		17		4.685 -18.682	1.00 0.26
ATOM	187				-5.867	3.998 -18.755	1.00 0.27
MOTA		CD2	TYR	17	-3.782	6.336 -17.426	1.00 0.25
	188		TYR	17	-3.643	6.923 -16.530	1.00 0.26
MOTA	189		TYR	17	-4.143	4.817 -19.751	1.00 0.31
ATOM	190	HE1		17	-4.282	4.231 -20.647	1.00 0.36
ATOM	191	CE2	TYR	17	-2.888	6.470 -18.496	1.00 0.30
ATOM	192	HE2	TYR	17	-2.059	7.158 -18.424	1.00 0.35
MOTA	193	CZ	TYR	17	-3.068	5.710 -19.658	1.00 0.32

ATOM	194	OH	TYR	17	-2.186	5.839 -20.711	1.00	0.39
MOTA	195	HH	TYR	17	-1.696	5.016 -20.790	1.00	0.85
ATOM	196	C	TYR	17	-6.448	7.692 -16.690	1.00	0.19
ATOM	197	ŏ						
			TYR	17	-6.414	8.220 -17.784	1.00	0.21
MOTA	198	N	ARG	18	-6.044	8.320 -15.616	1.00	0.19
MOTA	199	HN	ARG	18	-6.089	7.874 -14.747	1.00	0.19
MOTA	200	CA	ARG	18	-5.523	9.714 -15.712	1.00	0.22
MOTA	201	HA	ARG	18	-5.131	9.877 -16.704	1.00	0.24
MOTA	202	CB	ARG	18	-6.674	10.691 -15.447	1.00	0.27
MOTA	203	HB1		18	-6.978	10.613 -14.412	1.00	0.31
MOTA	204	HB2	ARG	18	-7.507	10.442 -16.083	1.00	0.30
ATOM	205	CG	ARG	18	-6.229	12.127 -15.733	1.00	0.35
ATOM	206	HG1		18				
					-5.504	12.137 -16.531	1.00	0.93
	_ 207		ARG_		5.790	12.549 -14.843	_1.00	0.85
MOTA	208	CD	ARG	18	-7.447	12.946 ~16.149	1.00	0.81
ATOM	209	HD1	ARG	18	-8.216	12.867 -15.378	1.00	1.29
ATOM	210	HD2	ARG	18	-7.838	12.561 -17.068	1.00	1.63
ATOM	211	NE	ARG	18	-7.030	14 362 -16 406		
						14.362 -16.406	1.00	1.52
MOTA	212	HE	ARG	18	-7.071	14.711 -17.318	1.00	2.11
MOTA	213	CZ	ARG	18	-6.561	15.119 ~15.456	1.00	2.24
ATOM	214	NH1	ARG	· 18	-6.119	16.314 ~15.736	1.00	3.18
MOTA	215	HH11		18	-6.142	16.647 -16.679	1.00	3.48
ATOM	216	HH12		18	-5.760	16.898 -15.009		
							1.00	3.84
MOTA	217		ARG	18	-6.564	14.700 -14.220	1.00	2.63
ATOM	218			18	-6.928	13.795 -14.000	1.00	2.44
MOTA	219	HH22	ARG	18	-6.205	15.285 -13.493	1.00	3.49
MOTA	220	С	ARG	18	-4.413	9.931 -14.676	1.00	0.21
MOTA	221	ō	ARG	18	-4.550	9.576 -13.522		
							1.00	0.23
MOTA	222	N	ILE	19	-3.314	10.514 -15.079	1.00	0.21
MOTA	223	HN	ILE	19	-3.223	10.794 -16.014	1.00	0.22
MOTA	224	CA	ILE	19	-2.196	10.755 -14.118	1.00	0.23
ATOM	225	HA	ILE	19	-2.200	9.985 -13.360	1.00	0.25
MOTA	226	CB	ILE	19				
					-0.864	10.721 -14:875	1.00	0.25
MOTA	227	HB	ILE	19	-0.862	11.491 -15.633	1.00	0.25
MOTA	228	CG1	ILE	19	-0.702	9.341 -15.531	1.00	0.29
MOTA	229	HG11	ILE	19	-1.607	9.092 -16.065	1.00	0.82
ATOM	230		ILE	19	-0.525	8.601 -14.765		
MOTA							1.00	0.97
	231	CG2	ILE	19	0.291	10.962 -13.893	1.00	0.29
MOTA	232	HG21	ILE	19	1.231	10.914 -14.420	1.00	1.08
ATOM	233	HG22	ILE	19	0.272	10.206 -13.123	1.00	1.09
ATOM	234	HG23	ILE	19	0.187	11.937 -13.440	1.00	1.00
ATOM	235	CD1	ILE	19	0.477	9.345 -16.512	1.00	0.93
ATOM	236	HD11	ILE	19	1.402	9.216 -15.970		
ATOM	237		ILE	19			1.00	1.59
					0.501	10.280 -17.050	1.00	1.50
ATOM	238		ILE	19	0.360	8.533 -17.214	1.00	1.55
MOTA	239	C	ILE	19	-2.381	12.126 -13.454	1.00	0.23
ATOM	240	0	ILE	19	-2.355	13.150 -14.108	1.00	0.23
MOTA	241	N	VAL	20	-2.563	12.152 -12.161	1.00	0.25
ATOM	242	HN	VAL	20	-2.578			
MOTA	243						1.00	0.27
		CA	VAL	20	-2.746	13.454 -11.454	1.00	0.27
ATOM	244	HA	VAL	20	-3.496	14.035 -11.970	1.00	0.27
ATOM	245	CB	VAL	20	-3.202	13.205 -10.015	1.00	0.31
ATOM	246	HB	VAL	20	-2.522	12.517 -9.534	1.00	0.32
ATOM	247	CG1	VAI.	20	-3.216	14.529 -9.247	1.00	0.33
ATOM		HG11	1/27.	20	-3.607	15.310 -9.883		
ATOM	240	HG12	VAL				1.00	0.97
				20	-2.211	14.782 -8.944	1.00	1.08
ATOM	250	HG13		20	-3.842	14.432 -8.372	1.00	1.10
MOTA	251	CG2	VAL	20	-4.612	12.611 -10.028	1.00	0.33
ATOM	252	HG21	VAL	20	-5.296	13.317 -10.476	1.00	1.05
MOTA	253	HG22	VAL	20	-4.924			
MOTA	254	HG23	VAL				1.00	1.03
				20	-4.612	11.697 -10.602	1.00	1.11
MOTA	255	C	VAL	20	-1.424	14.231 -11.451	1.00	0.27
MOTA	256	0	VAL	20	-1.403	15.435 -11.611	1.00	0.26
MOTA	257	N	ASN	21	-0.321	13.555 -11.259	1.00	0.28
MOTA	258	HN	ASN	21	-0.357	12.585 -11.124	1.00	0.30
ATOM	259		ASN	21				
					0.992	14.265 -11.235	1.00	0.29
MOTA	260		asn	21	0.973	15.076 -11.949	1.00	0.26
ATOM	261		asn	21	1.235	14.829 -9.834	1.00	0.33
ATOM	262	HB1	ASN	21	0.544	15.637 -9.646	1.00	0.33
ATOM	263		ASN	21	2.249	15.199 -9.766	1.00	0.35
ATOM	264		ASN	21				
ATOM	265				1.022	13.727 -8.795	1.00	0.40
ATOM			ASN	21	0.459	12.694 -9.097	1.00	1.01
MUTUM				21	1.445	13.908 -7.574	1.00	0.88
	266		ASM					
MOTA	267	HD21	asn	21	1.895	14.743 -7.330	1.00	1.50
MOTA MOTA	267 268	HD21 HD22	asn asn			14.743 -7.330	1.00	1.50
MOTA MOTA MOTA	267	HD21 HD22	asn	21 21	1.895 1.312	14.743 -7.330 13.208 -6.901	1.00 1.00	1.50 0.88
MOTA MOTA	267 268	HD21 HD22 C	asn asn	21	1.895	14.743 -7.330	1.00	1.50

MOTA	271	N	TYR	22	3.274	13 810	-11.933	1.00	0.38
ATOM	272		TYR	22	3.387		-11.932	1.00	0.38
MOTA	273		TYR	22	4.417		-12.340	1.00	0.46
ATOM	274	HA	TYR	22	4.067	11.929	-12.509	1.00	0.45
MOTA	275	CB	TYR	22	5.028	13.481	-13.630	1.00	0.49
MOTA	276		TYR	22	5.845		-13.938	1.00	0.56
MOTA	277			22					
		_	TYR		5.397		-13.457	1.00	0.53
MOTA	278		TYR	22	3.981	13.513	-14.714	1.00	0.43
MOTA	279	CD1	TYR	22	3.684	12.352	-15.436	1.00	0.38
ATOM	280		TYR	22	4.199		-15.212	1.00	0.39
	281		TYR	22					
MOTA					3.313		-15.003	1.00	0.46
MOTA	282		TYR	22	3.543		-14.445	1.00	0.51
ATOM	283	CE1	TYR	22	2.718	12.386	-16.447	1.00	0.36
- ATOM	- 284-	HE1	TYR	22	2.490_	.11.491	-17.004	_ 1.00 _	0.36 _
ATOM	285		TYR	22	2.345		-16.013	1.00	0.44
ATOM	286					15 (6)			
			TYR	22	1.828		-16.235	1.00	0.49
MOTA	287	CZ	TYR	22	2.048		-16.735	1.00	0.39
ATOM	288	OH	TYR	22	1.095	13.615	-17.733	1.00	0.43
ATOM	289	HH	TYŔ	22	1.173		-18.187	1.00	0.92
ATOM	290	C	TYR	22	5.499		-11.258	1.00	0.56
MOTA	291	0	TYR	22	6.554		-11.470	1.00	1.38
ATOM	292	N	THR	23	5.240	13.544	-10.130	1.00	0.47
MOTA	293	HN	THR	23	4.372	13.987	-10.023	1.00	1.08
ATOM	294	CA	THR	23	6.237	13.623	-9.004	1.00	0.46
MOTA	295	HA	THR	23					
					5.848	14.338	-8.304	1.00	0.48
MOTA	296	CB	THR	23	6.361	12.265	-8.273	1.00	0.62
MOTA	297	HB	THR .	23	5.383	11.969	-7.921	1.00	0.68
MOTA	298	0G1	THR	23	7.223	12.420	-7.156	1.00	0.86
MOTA	299	HG1	THR	23	7.941	11.788			
							-7.244	1.00	1.28
MOTA	300		THR	23	6.916	11.159	-9.181	1.00	0.59
MOTA	301	HG21	THR	23	7.753	11.533	-9.748	1.00	1.08
MOTA	302	HG22	THR	23	6.141	10.816	-9.850	1.00	1.16
ATOM	303	HG23	THR	23	7.245	10.332			
							-8.570	1.00	1.22
MOTA	304	Ç	THR	23	7.623	14.115	-9.523	1.00	0.40
MOTA	305	0	THR	23	8.077	13.699	-10.565	1.00	0.45
MOTA	306	N	PRQ	24	8.302	15.016	-8.823	1.00	0.42
ATOM	307	CA	PRO	24	9.625	15.520	-9.311		
ATOM	308							1.00	0.42
		HA	PRO	24	9.534	15.918	-10.307	1.00	0.46
MOTA	309	CB	PRO	24	9.924	16.655	-8.335	1.00	0.50
MOTA	310	HB1	PRO	24	9.743	17.605	-8.815	1.00	0.57
ATOM	311	HB2	PRO	24	10.955	16.598	-8.014	1.00	0.49
ATOM	312	CG							
			PRO	24	8.995	16,507	-7.129	1.00	0.66
MOTA	313	HG1		24	8.613	17.475	-6.842	1.00	0.84
MOTA	314	HG2	PRO	24	9.537	16.069	-6.303	1.00	0.76
MOTA	315	CD	PRO	24	7.832	15.598	-7.529	1.00	0.56
ATOM	316	HD2		24	7.675	14.826	-6.786		
MOTA	317	HD1						1.00	0.62
				24	6.940	16.183	-7.680	1.00	0.61
MOTA	318	C	PRO	24	10.743	14.470	-9.253	1.00	0.40
ATOM	319	0	PRO	24	11.835	14.692	-9.737	1.00	0.40
ATOM	320	N	ASP	25	10.490	13.337	-8.662	1.00	0.44
ATOM	321	HN	ASP	25	9.608	13.172	-8.270		
MOTA	322	CA						1.00	0.48
			ASP	25	11.554	12.295	-8.577	1.00	0.48
MOTA	323	HA	ASP	25	12.393	12.695	-8.025	1.00	0.51
ATOM	324	CB	ASP	25	11.016	11.062	-7.847	1.00	0.57
MOTA	325	HB1	ASP	25	11.719	10.249	-7.945	1.00	0.61
ATOM	326	HB2		25	10.068	10.773		1.00	0.56
ATOM	327	CG	ASP	25	10.827	11.394			
	328	001					-6.364	1.00	0.67
ATOM		OD1		25	10.079	10.689	-5.709	1.00	1.23
MOTA	329	OD2		25	11.437	12.348	-5.908	1.00	1.34
ATOM	330	С	ASP	25	12.025	11.916	-9.985	1.00	0.45
MOTA	331	ō	ASP	25	13.179		-10.191	1.00	0.55
ATOM	332	Й	MET		11 140				
				26	11.146		-10.955	1.00	0.40
ATOM	333	HN	MET	26	10.220		-10.767	1.00	0.41
MOTA	334	CA	MET	26	11.553	11.590	-12.348	1.00	0.42
ATOM	335	HA	MET	26	12.624		-12.447	1.00	0.49
ATOM	336	СВ	MET	26	11.144				
ATOM		HB1					-12.656	1.00	0.53
	337			26	11.282		-13.709	1.00	0.55
MOTA	338	HB2	MET	26	10.105	10.006	-12.397	1.00	0.51
ATOM	339	CG	MET	26	12.011		-11.846	1.00	0.71
ATOM	340	HG1		26 ·	11.783				
MOTA	341						-10.796	1.00	0.73
		HG2		26	13.053	9.419	-12.009	1.00	0.77
MOTA	342	SD	MET	26	11.683	7.485	-12.380	1.00	0.89
MOTA	343	CE	MET	26	10.000		-11.728	1.00	.0.59
MOTA	344	HE1	MET		9.292		-12.534	1.00	1.25
ATOM	345	HE2		26	9.825		-10.979		
ATOM	346	נשמ	MET					1.00	1.23
				26	9.877	0.352	-11.285	1.00	1.23
MOTA	347	С	MET	26	10.872	12.530	-13.344	1.00	0.34

WO 01/63244

MOTA	348	0	MET	26	9.897	13.184 -13.031	1.00 0	.32
ATOM	349	N	THR	27	11.385	12.604 -14.544		.33
ATOM	350	HN	THR	27	12.174	12.070 -14.773		.38
MOTA	351	CA	THR	27	10.775	13.504 -15.562	1.00 0	.32
MOTA	352	HA	THR	27	10.618	14.483 -15.133		.35
MOTA	353	CB	THR	27	11.711	13.616 -16.768		.39
ATOM	354	HB	THR	27	11.295	14.308 -17.484		.42
MOTA	355	OG1	THR	27	11.852	12.338 -17.371	1.00 0	.37
MOTA	356	HG1	THR	27	12,765	12.242 -17.653		.94
ATOM	357		THR			14 101 16 313		
		CG2		27	13.080	14.121 -16.313		.51
MOTA	358	HG21	THR	27	13.602	14.553 -17.154	1.00 1	.14
MOTA	359	HG22	THR	27	13.655	13.297 -15.918		.11
MOTA		HG23	THR	27	12.951	14.871 -15.546		
								.12
ATOM	-361		THR-	27	- 9.436	12.921 -16.013 -	1.00 0	.27
MOTA	362	0	THR	27	9.177	11.743 -15.864	1.00 0	.24
MOTA	363	N	HIS	28	8.580	13.740 -16.554		.32
MOTA	364	HN	HIS	28				
					8.807	14.688 -16.657		.37
MOTA	365	CA	HIS	28	7.253	13.241 -17.004	1.00 0	.34
MOTA	366	HA	HIS	28	6.715	12.833 -16.161	1.00 0	.36
MOTA	367	CB	HIS	28	6.457	14.403 -17.601		.46
						14.403 -17.001		-
MOTA	368	HB1		28	5.428	14.104 -17.736	1.00 0	.71
MOTA	369	HB2	HIS	28	6.880	14.676 -18.557	1.00 0	.88
ATOM	370	CG	HIS	28	6.516	15.583 -16.669		.73
ATOM	371	ND1		28 .	6.056	16.838 -17.036		
								.66
MOTA	372	HD1		28	5.659	17.080 -17.898	1.00 2	.30
ATOM	373	CD2	HIS	28	6.987	15.716 -15.387	1.00 1	33
ATOM	374	HD2	HTS	28	7.423	14.922 -14.798		.01
MOTA	375		HIS	28	6.258	17.664 -15.993	1.00 1	95
MOTA	376	HE1	\mathtt{HIS}	28	5.993	18.711 -15.990	1.00 2	.70
ATOM	377		HIS	28	6.823	17.031 -14.962		.71
ATOM	378							
		C	HIS	28	7.436	12.156 -18.069		.30
ATOM	379	0	HIS	28	6.737	11.164 -18.082	1.00 0	30
MOTA	380	N	SER	29	8.362	12.338 -18.970		.31
ATOM	381	HN	SER	29	8.912	13.149 -18.952		
								.34
MOTA	382	CA	SER	29	8.567	11.319 -20.039	1.00 0	3.32
ATOM	383	HA	SER	29	7.660	11.217 -20.615	1.00 0	.35
ATOM	384	CB	SER	. 29	9.699	11.775 -20.959		
								.38
ATOM	385	HB1	SER	29	9.973	10.963 -21.621	1.00 0).39
ATOM	386	HB2	SER	29	10.555	12.056 -20.368	1.00 0	.37
ATOM	387	OG	SER	29	9.265	12.896 -21.717		.45
ATOM	388	HG	SER	29				
					9.157	12.614 -22.628		96
ATOM	389	C	SER	29	8.931	9.964 -19.424	1.00 0	.26
ATOM	390	0	SER	29	8.479	8.930 -19.876		.26
MOTA	391	Ň	GLU	30	9.747			
								1.24
ATOM	392	HN	GLU	30	10.107	10.796 -18.056	1.00 0).25
ATOM	393	CA	GLU	30	10.137	8.657 -17.779	1.00 0	.22
MOTA	394	HA	GLU	30	10.484	7.978 -18.542		.25
ATOM	395	CB	GLU	30				23
					11.260	8.899 -16.769		.23
MOTA	396		GLÜ	30	11.424	8.002 -16.191	1.00 0).24
ATOM	397	HB2	GLU	30	10.980	9.707 -16.108	1.00 0	.22
ATOM	398	CG	GLU	30	12.547	9.268 -17.510		.29
ATOM	399		GLU					
				30	12.386	10.165 -18.086	1.00 0).67
ATOM	400	HGZ	GLU	30	12.826	8.460 -18.171	1.00 0	.68
MOTA	401	CD	GLU	30	13.666	9.509 -16.495	1.00 0	.84
ATOM	402	OE1	GLU	30	13.436	9.266 -15.321		
MOTA	403	OE2	GLU	30	14.731	9:936 -16:908		1.49
								1.59
MOTA	404	C	GLU	30	8.935	8.046 -17.051).17
MOTA	405	0	GLU	30	8.715	6.849 -17.082		1.19
MOTA	406	N	VAL	31	8.163	8.861 -16.387		16
ATOM	407	HN	VAL	31	8.366	9,819 -16.371		
								1.17
ATOM	408	CA	VAL	31	6.983	8.341 -15.640		1.16
MOTA	409	HA	VAL	31	7.292	7.527 -14.999	1.00 0	.17
MOTA	410	CB	VAL	31	6.402	9:464 -14.782		20
ATOM	411	НВ	VAL	31	6.261			
ATOM						10,344 -15.392		.22
	412	CGI	VAL	31	5.058	9.021 -14.208	1.00 0).23
ATOM	413	HG11	VAL	31	5.135	8.000 -13.867		.97
ATOM	414	HG12	VAT.	31	4.298	9.090 -14.973		
ATOM						0.050 -14.5/3		1.07
		HG13		31	4.793	9.659 -13.378		1.07
ATOM	416	CG2	VAL	31	7.364	9.785 -13.636	1.00 0	.24
MOTA	417	HG21	VAL.	31	7.528	8.897 -13.045		1.05
ATOM	419	HG22	VAL	31	6.936			
	410	11000	444	_		10.557 -13.013		L.03
ATOM		HG23		31	8.304	10.129 -14.040	1.00 0	0.99
MOTA	420	С	VAL	31	5.911	7.844 -16.617		0.16
MOTA	421	Ō	VAL	31	5.293	6.817 -16.406		
ATOM	422							1.17
		N	GLU	32	5.672	8.571 -17.677		3.18
MOTA	423	HN	GLU	32	6.172	9.401 -17.824	1.00 0	0.19
MOTA	424	CA	GLU	32	4.626	8.146 -18.652		21
	_			~				

	425						
ATOM		ha glu	32	, 3.673	8.092 -18.147	1.00	0.24
MOTA	426	CB GLU	32	4.533	9.170 -19.787	1.00	0.27
MOTA	427	HB1 GLU	32	3.922	8.772 -20.582	1.00	0.31
ATOM	428	HB2 GLU	32	5.524	9.379 -20.164	1.00	0.28
ATOM	429	CG GLÜ	32	3.904	10.463 -19.262		– –
ATOM	430	HG1 GLU				1.00	0.29
			32	4.456	10.812 -18.405	1.00	0.48
ATOM	431	HG2 GLU	32	2.879	10.272 -18.977	1.00	0.52
MOTA	432	CD GLU	32	3.937	11.529 -20.359	1.00	0.70
ATOM	433	OE1 GLU	32	4.969	12.161 -20.513	1.00	1.37
ATOM	434	OE2 GLU	32	2.929	11.696 -21.026	1.00	1.45
ATOM	435		32				
				4.962	6.773 -19.235	1.00	0.20
MOTA	436	O GLU	32	4.126	5.893 -19.280	1.00	0.20
MOTA	437	N LYS	33	6.168	6.575 -19.689	1.00	0.20
_ MOTA_	_438	HN_LYS.	33	6.835_	_ 7.293 <i>=</i> 19.654	_ 1.00_	0.21
MOTA	439	CA LYS	33	6.518	5.249 -20.269	1.00	0.21
ATOM	440	HA LYS	33	5.825	5.029 -21.068	1.00	0.24
MOTA	441	CB LYS	33	7.940	5.281 -20.843	1.00	0.26
ATOM	442	HB1 LYS	33	7.987			
					6.024 -21.624	1.00	0.31
ATOM	443	HB2 LYS	33	8.179	4.312 -21.257	1.00	0.31
MOTA	444	CG LYS	33	8.954	5.631 -19.748	1.00	0.26
MOTA	445	HG1 LYS	33	8.823	4.970 -18.906	1.00	0.40
MOTA	446	HG2 LYS	33	8.799	6.648 -19.430	1.00	0.42
MOTA	447	CD LYS	33	10.380	5.469 -20.291	1.00	0.48
ATOM	448	HD1 LYS	33	10.466	4.517 -20.793		
ATOM	449	HD2 LYS				1.00	0.74
			33	11.080	5.505 -19.469	1.00	1.11
MOTA	450	CE LYS	33	10.705	6.593 -21.282	1.00	0.92
MOTA	451	HE1 LYS	33	10.398	7.543 -20.868	1.00	1.52
MOTA	452	HE2 LYS	33	10.184	6.419 -22.211	1.00	1.19
ATOM	453	NZ LYS	33	12.172	6.614 -21.538	1.00	1.60
ATOM	454	HZ1 LYS	33	12.668	6.957 -20.692		
ATOM	455					1.00	1.99
		HZ2 LYS	33	12.374	7.247 -22.340	1.00	2.14
MOTA	456	HZ3 LYS	33	12.498	5.653 -21.763	1.00	2.03
MOTA	457	C LYS	33	6.399	4.158 -19.202	1.00	0.19
MOTA	458	O LYS	33	6.054	3.035 -19.495	1.00	0.20
ATOM	459	N ALA	34	6.682	4.471 -17.966	1.00	0.17
ATOM	460	HN ALA	34	6.965			
ATOM	461				5.383 -17.740	1.00	0.18
			34	6.589	3.428 -16.904	1.00	0.16
MOTA	462	HA ALA	34	7.276	2.625 -17.128	1.00	0.18
ATOM	463	CB ALA	34	6.952	4.043 -15.551	1.00	0.16
ATOM	464	HB1 ALA	34	6.483	3.476 -14.761	1.00	1.02
ATOM	465	HB2 ALA	34	6.604	5.065 -15.516	1.00	0.98
ATOM	466	HB3 ALA	34	8.024	4.022 -15.423		
ATOM	467	C ALA			2.022 -15.423	1.00	1.02
			34	5.164	2.875 -16.844	1.00	0.16
ATOM	468	O ALA	34	4.954	1.677 -16.847	1.00	0.17
ATOM	469	N PHE	35	4.182	3.729 -16.792	1.00	0.16
MOTA	470	HN PHE	35	4.364	4.694 -16.792	1.00	0.16
ATOM	471	CA PHE	35	2.781	3.230 -16.736	1.00	0.17
MOTA	472	HA PHE	35	2.690	2.525 -15.924	1.00	0.17
ATOM	473	CB PHE	35	1.815	4.396 -16.508		
ATOM	474	HB1 PHE	35			1.00	0.18
ATOM	475			0.802	4.060 -16.672	1.00	0.19
			35	2.045	5.192 -17.200	1.00	0.19
ATOM	476	CG PHE	35	1.953	4.902 -15.089	1.00	0.18
MOTA	477	CD1 PHE	35	1.616	4.071 -14.011	1.00	0.19
ATOM	478	HD1 PHE	35	1.258	3.069 ~14.191	1.00	0.19
MOTA	479	CD2 PHE	35	2.415	6.203 -14.849	1.00	0.20
MOTA	480	HD2 PHE	35	2.674	6.847 -15.677	1.00	0.21
ATOM	481	CE1 PHE	35	1.743	4.539 -12.699		
ATOM	482	HE1 PHE	35			1.00	0.21
MOTA	483			1.484	3.897 -11.870	1.00	0.23
		CE2 PHE	35	2.540	6.670 -13.535	1.00	0.22
ATOM	484	HE2 PHE	35	2.893	7.672 -13.349	1.00	0.24
MOTA	485	CZ PHE	35	2.205	5.838 -12.460	1.00	0.22
ATOM	486	HZ PHE	35	2.303	6.198 -11.447	1.00	0.24
ATOM	487	C PHE	35	2.432	2.524 -18.048	1.00	0.18
ATOM	488	O PHE	35	1.770	1.507 -18.055		
ATOM	489	N LYS	36		7.JU/ TE.USS	1.00	0.19
ATOM	490			2.864	3.053 -19.162	1.00	0.19
		HN LYS	36	3.394	3.878 -19.144	1.00	0.19
ATOM	491	CA LYS	36	2.535	2.399 -20.460	1.00	0.22
ATOM	492	ha Lys	36	1.462	2.358 -20.574	1.00	0.23
MOTA	493	CB LYS	36	3.135	3.205 -21.614	1.00	0.24
MOTA	494	HB1 LYS	36	3.045	2.641 -22.530	1.00	0.27
ATOM	495	HB2 LYS	36	4.178			
ATOM	496	CG LYS			3.400 -21.412	1.00	0.24
MOTA			36	2.384	4.530 -21.758	1.00	0.27
	497	HG1 LYS	36	2.471	5.097 -20.844	1.00	0.69
ATOM	498	HG2 LYS	36	1.341	4.332 -21.963	1.00	0.68
MOTA	499	CD LYS	36	2.988	5.332 -22.913	1.00	0.75
MOTA	500	HD1 LYS	36	2.898	4.766 -23.828	1.00	1.39
MOTA	501	HD2 LYS	36	4.032	5.525 -22.710	1.00	
				4.032	J.J2J -26./1U	1.00	1.34

ATOM	502	CE	LYS	36	2.243	6.659 -23.065	1 00	1 16
ATOM	503	HE1	LYS	36	2.728	7.415 -22.464	1.00	1.15 1.64
MOTA	504	HE2		36	1.221	6.540 -22.736	1.00	1.61
ATOM ATOM	505 506	NZ	LYS	36	2.260	7.076 -24.496	1.00	1.99
ATOM	507	HZ1 HZ2		36 36	2.628	6.298 -25.079	1.00	2.51
ATOM	508	HZ3		36	2.871 1.295	7.911 -24.605		2.40
MOTA	509	C	LYS	36	3.098	7.309 -24.801 0.976 -20.481		2.38
MOTA	510	Ō	LYS	36	2.446	0.053 -20.927		0.21 0.23
MOTA	511	N	LYS	37	4.295	0.778 -19.995		0.21
MOTA	512	HN	LYS	37	4.810	1.527 -19.629		0.20
MOTA MOTA	513 514	CA	LYS	37	4.864	-0.600 -19.988	1.00	0.22
	515·	HA CB-	LYS	37	4.926	-0.974 -21.000		0.24
ATOM	516		LYS	37 37	6.257 6.589	-0.581 -19.358 -1.596 -19.195		0.22
ATOM	517		LYS	37	6.216	-1.596 -19.195 -0.061 -18.412	1.00	0.24
ATOM	518	CG	LYS	37	7.244	0.130 -20.285	1.00	0.21 0.26
MOTA	519		LYS	37	6.921	1.140 -20.459		0.25
MOTA	520		LYS	37	7.296	-0.398 -21.227	1.00	0.28
MOTA MOTA	521 522	CD	LYS LYS	37	8.625	0.139 -19.628		0.30
ATOM	523		LYS	37 37	8.994 8.549	-0.873 -19.551		0.77
ATOM	524	CE	LYS	37	9.594	0.570 -18.640 0.968 -20.473		0.84
MOTA	525		LYS	37	10.530	1.076 -19.943		0.90 1.47
ATOM	526		LYS	37	9.169	1.945 -20.652		1.59
MOTA	527	NZ	LYS	37	9.836	0.286 -21.774	1.00	1.77
ATOM ATOM	528	HZ1	LYS	37	9.798	0.984 -22.543	1.00	2.22
MOTA	529 530	HZ2	LYS LYS	37 37	9.106	-0.439 -21.926	1.00	2.28
ATOM	531	C	LYS	37 37	10.774	-0.161 -21.762	1.00	2.33
ATOM	532	ŏ	LYS	37	3.955 3.689	-1.506 -19.158 -2.636 -19.516	1.00	0.20
MOTA	533	N	ALA	38	3.479	-1.013 -18.046	1.00 1.00	0.21
ATOM	534	HN	ALA	38	3.711	-0.098 -17.777	1.00	0.19 0.19
ATOM	535	CA	ALA	38	2.589	-1.838 -17.182	1.00	0.18
ATOM	536	HA	ALA	38	3.116	-2.727 -16.870	1.00	0.19
MOTA MOTA	537 538	CB	ALA	38	2.183	-1.030 -15.949	1.00	0.19
ATOM	539	HB2	ALA ALA	38 38	2.831	-0.172 -15.851	1.00	1.05
ATOM	540	HB3		38	2.270 1.161	-1.649 -15.068	1.00	1.00
ATOM	541	C	ALA	38	1.338	-0.698 -16.057 -2.238 -17.965	1.00	1.06
ATOM	542	0	ALA	38	0.967	-3.392 -18.012	1.00	0.18 0.19
ATOM	543	N	PHE	39	0:688	-1.295 -18.589	1.00	0.18
MOTA	544	HN	PHE	39	1.005	-0.368 -18.547	1.00	0.18
ATOM ATOM	545 546	CA HA	PHE	39	-0.535	-1.632 - 19.367	1.00	0.19
ATOM	547	CB	PHE	39 39	-1.248	-2.122 -18.720	1.00	0.19
ATOM	548	HB1	PHE	39	-1.156 -1.883	-0.354 -19.937	1.00	0.21
MOTA	549	HB2	PHE	39	-0.381	-0.614 -20.692 0.256 -20.378	1.00	0.24
MOTA	550	CG	PHE	39	-1.836	0.416 -18.829	1.00	0.21 0.20
ATOM	551	CD1	PHE	39	-3.010	-0.080 -18.250	1.00	0.25
ATOM	552	HD1	PHE	39	-3.429	-1.014 -18.595	1.00	0.30
ATOM ATOM	553 554	CD2 HD2	PHE	39	-1.294	1.627 -18.380	1.00	0.17
ATOM	555		PHE	39 30	-0.389	2.012 -18.827	1.00	0.18
ATOM	556		PHE	39 39	-3.642 -4.548	0.633 -17.224 0.250 -16.779	1.00	0.28
MOTA	557	CE2	PHE	39	-1.926	2.341 -17.354	1.00 1.00	0.34
ATOM	558	HE2	PHE	39	-1.507	3.275 -17.007	1.00	0.18 0.17
ATOM	559	CZ	PHE	39	-3.099	1.843 -16.776	1.00	0.23
ATOM ATOM	560 561	HZ	PHE	39	-3.587	2.394 -15.985	1.00	0.26
ATOM	562	C	PHE	39 39	-0.154	-2.571 -20.508	1.00	0.18
ATOM	563	N	LYS	40	-0.862 0.963	-3.509 -20.817	1.00	0.18
ATOM	564	HN	LYS	40	1.522	-2.330 -21.136 -1.570 -20.870	1.00	0.19
ATOM	565	CA	LYS	40	1.388	-1.570 -20.870 -3.214 -22.254	1.00 1.00	0.19
ATOM	566	HA	LYS	40 -	0.642	-3.186 -23.031	1.00	0.19 0.20
MOTA	567 569	CB	LYS	40	2.730	-2.707 -22.804	1.00	0.21
ATOM ATOM	568 569	HB1		40	3.466	-2.723 -22.014	1.00	0.21
ATOM	570	HB2 CG	LYS	40 40	2.610	-1.692 -23.155	1.00	0.25
ATOM	571	HG1		40	3.218	-3.588 -23.966	1.00	0.25
ATOM	572	HG2		40	3.337 4.171	-4.604 -23.621 -3.218 -24.314	1.00	0.46
ATOM	573	CD	LYS	40	2.213	-3.560 -25.121	1.00 1.00	0.46
ATOM	574	HD1	LYS	40	1.840	-2.555 -25.253	1.00	0.38 0.54
MOTA MOTA	575 576	HD2		40	1.392	-4.227 -24.905	1.00	0.56
ATOM	576 577	CE	LYS	40	2.903	-4.019 -26.407	1.00	0.40
ATOM	578	HE1 HE2		40 40	3.776 3 100	-4.604 -26.158	1.00	1.07
	J . •				, , , , ,	-3 167 _7E nos	1 ^^	

ATOM	579	NZ	LYS	40	1.958	-4 852	-27.203	1.00	1.40
ATOM	580	HZ1	LYS	40	1.571		-26.602		
ATOM	581		LYS	40				1.00	1.95
					2.464	-5.274		1.00	1.92
MOTA	582	HZ3	LYS	40	1.181	-4.258	-27.552	1.00	2.02
MOTA	583	С	LYS	40	1.553	-4.648	-21.740	1.00	0.17
ATOM	584	0	LYS	40	1.034	-5.583		1.00	0.17
ATOM	585	N	VAL	41	2.271				
ATOM	586						-20.663	1.00	0.17
	_	HN	VAL	41	2.681	-4.060	-20.214	1.00	0.18
MOTA	587	CA	VAL	41	2.468	-6.204	-20.116	1.00	0.16
MOTA	588	HA	VAL	41	2.953		-20.862	1.00	0.17
ATOM	589	CB	VAL	41	3.350	-6 143	-18.868		
MOTA	590	HB	VAL			-0.143	-10.008	1.00	0.18
				41	2.966	-5.393	-18.192	1.00	0.41
MOTA	591	CG1		41	3.343	-7.508		1.00	0.44
ATOM-	592	HG11	VAL	41	2.420	-7.631	-17.629	1.00	1.16
MOTA	593	HG12	VAL	41	4.176	-7 571	-17.490	1.00	
ATOM			VAL	41	3.429	-7.571	10.016		1.18
MOTA	595	CG2				-0.289	-18.916	1.00	1.11
		CGZ	VAL	41	4.781		-19.277	1.00	0.43
MOTA	296	HG21	VAL	41	5.132	-6.492	-20.013	1.00	1.12
MOTA	597	HG22	VAL	41	5.423	-5.820	-18.411	1.00	1.11
ATOM	598		VAL	41	4.797	-4 790	-19.697		
ATOM	599	C	VAL	41				1.00	1.19
	600				1.122		-19.751	1.00	0.16
ATOM		0	VAL	41	0.887	-7.999	-19.996	1.00	0.17
atom	601	N	TRP	42	0.240	-6.080	-19.152	1.00	0.16
ATOM	602	HN	TRP	42	0.448	-5.143	-18.950	1.00	0.17
MOTA	603	CA	TRP	42	-1.079		-18.761		
ATOM	604	HA	TRP	42				1.00	0.17
MOTA					-0.927	-7.642		1.00	0.17
	605	CB	TRP	42	-1.739	-5.767	-17.699	1.00	0.18
ATOM	606	HB1	TRP	42	-2.787	-6.018	-17.621	1.00	0.19
MOTA	607	HB2	TRP	42	-1.638	-4 730	-17.983		
MOTA	608	CG	TRP	42		-4.730	-17.303	1.00	0.20
MOTA					-1.073	-5.990	-16.377	1.00	0.18
	609	CD1		42	~0.311	-5.082	-15.724	1.00	0.22
ATOM	610	HD1	TRP	42	-0.092	-4.084	-16.066	1.00	0.28
MOTA	611	CD2	TRP	42	-1.095	-7.182	-15.539	1.00	0.19
ATOM	612	NE1	TRP	42	0.140		-14.543		
ATOM	613		TRP			-5.043	-14.545	1.00	0.22
				42	0.714	-5.194	-13.887	1.00	0.25
ATOM	614	CE2	TRP	42	-0.315	-6.935	-14.384	1.00	0.20
MOTA	615	CE3	TRP	42	-1.707	-8.441	-15.669	1.00	0.25
MOTA	616	HE3	TRP.	42	-2.309	-8 658	-16.539		
ATOM	617	_	TRP	42				1.00	0.27
ATOM					-0.149	-7.903	-13.393	1.00	0.24
	618		TRP	42	0.454	-7.691	-12.521	1.00	0.25
MOTA	619	CZ3	TRP	42	-1.543	-9.418	-14.673	1.00	0.31
MOTA	620	HZ3	TRP	42	-2.018	-10 381	-14.782	1.00	
MOTA	621		TRP	42	-0.764	0.140	-14./02		0.39
ATOM	622					-9.149	-13.538	1.00	0.30
		•	TRP	42	-0.642	-9.904	-12.775	1.00	0.35
ATOM	623	C	TRP	42	-1.991	-6.754	-19.985	1.00	0.17
MOTA	624	0	TRP	42	-2.726	-7.706	-20.138	1.00	0.18
MOTA	625	N	SER	43	-1.952	-5 792	-20.855	1.00	
ATOM	626	HN	SER	43	-1.352				0.17
ATOM	627	CA	SER			-5.021	-20.713	1.00	0.17
ATOM				43	-2.831	-5.825	-22.062	1.00	0.18
	628	HA	SER	43	-3.846	-6.028	-21.759	1.00	0.19
MOTA	629	CB	SER	43	-2.779	-4.474	-22.775	1.00	0.20
MOTA	630	HB1	SER	43	-2.965	-3.683	-22.059	1.00	0.21
MOTA	631	HB2		43	-3.533		-23.543		
ATOM	632	OG	SER	43	-1.499	4.442	-23.543	1.00	0.23
MOTA	633					-4.304	-23.368	1.00	0.21
			SER	43	-1.031	-5.140	-23.309	1.00	0.97
MOTA	634	C	SER	43	-2.358	-6.922	-23.019	1.00	0.18
MOTA	635	0	SER	43	-3.085	-7.350	-23.893	1.00	0.21
ATOM	636		ASP	44	-1.148		-22.866		
ATOM	637		ASP	44	-0.575			1.00	0.17
MOTA	638					-7.019	-22.156	1.00	0.18
			ASP	44	-0.632	-8.445	-23.770	1.00	0.18
MOTA	639		ASP	44	-0.650	-8.086	-24.788	1.00	0.19
MOTA	640	CB	ASP	44	0.809		-23.386	1.00	0.20
MOTA	641	HB1		.44	1.117	_0 602	-23.915		
ATOM	642	HB2		44		-3.003	~43.713	1.00	0.21
ATOM	643				0.864	-8.969	-22.322	1.00	0.22
			ASP	44	1.734	-7.635	-23.760	1.00	0.24
MOTA	644	OD1	ASP	44	1.340	-6.833	-24.591	1.00	0.85
ATOM	645	OD2	ASP	44	2.820	-7 569	-23.209	1.00	
ATOM	646		ASP	44	-1.499	_0 705	-23 665		0.84
ATOM	647		ASP		-1.477	-7./05	-23.665	1.00	0.19
ATOM				44	-1./53	-10.366	-24.653	1.00	0.21
	648		VAL	45	-1.927	-10.058	-22.475	1.00	0.21
MOTA	649		VAL	45	-1.689	-9.519	-21.693	1.00	0.21
MOTA	650	CA	VAL	45		-11.299	-22 302		
ATOM	651		VAL	45	-2 033	-11.811	-22.302	1.00	0.26
ATOM	652		VAL		-2,033	-TT-011	-23.247	1.00	0.28
ATOM	653			45	~2,045	-12.222	-21.303	1.00	0.30
MOTA			VAL	45	-2.645	-13.107	-21.146	1.00	0.37
	654	CG1	VAL	45	-0.678	-12.626	-21.866	1.00	0.36
MOTA	655	HG11	VAL	45	-0.210	-11 766	-33 333	1 00	1 07

MOTA	656	HG12	1727	45	0.010	-13.400	-22.607	1.00	1.02
MOTA		HG13		45					. –
						-12.995		1.00	1.13
MOTA	658	CG2		45		-11.486		1.00	0.32
ATOM		HG21		45		-11.303		1.00	0.96
ATOM			VAL	45		-10.545		1.00	1.09
MOTA	661	HG23	VAL	45	-1.258	-12.091	-19.305	1.00	1.11
MOTA	662	C	VAL	45	-4.160	-10.966	-21.790	1.00	0.29
MOTA	663	0	VAL	45	-4.837	-11.819	-21 249	1.00	0.64
MOTA	664	N	THR	46	-4.619		-21.963	1.00	0.36
ATOM	665	HN	THR	46				-	
					-4.062		-22.409	1.00	0.65
ATOM	666	CA	THR	46	-5.998		-21.491	1.00	0.38
MOTA	667	HA	THR	46		-10.277		1.00	0.44
ATOM	668	CB	THR	46	-5.912	-8.577	-20.186	1.00	0.39
MOTA	669	- HB	THR	46	-6.889	-8.193	-19.943	1.00	0.46
ATOM	670	0G1	THR	46	-5.018	-7.491	-20.358	1.00	0.36
MOTA	671	HG1	THR	46	-5.532		-20.608	1.00	0.94
ATOM	672	CG2	THR	46	-5.430		-19.036	1.00	
ATOM		HG21	THR			-10.327	10.430		0.43
				46				1.00	1.08
MOTA		HG22	THR	46	-6.277		-18.445	1.00	1.15
MOTA	675	HG23	THR	46	-4.746		-18.415	1.00	1.05
MOTA	676	C	THR	46	-6.668	-8.482	-22.553	1.00	0.32
ATOM	677	0	THR	46	-6.124	-7.450	-22.892	1.00	0.32
atom	676	ìvi	PRO	47	-7.833		-23.084	1.00	0.30
MOTA	679	CA	PRO	47	-8.479		-24.100	1.00	0.30
ATOM	680	HA	PRO	47	-7.820		-24.936	1.00	0.33
MOTA	681	CB	PRO	47	-9.687				
MOTA							-24.546	1.00	0.35
	682	_	PRO	47	-9.541		-25.561	1.00	0.40
MOTA	_{.×.} 683		PRO	47	-10.579		-24.489	1.00	0.37
MOTA	684	CG	PRO	47	-9.825	-9.986	-23.621	1.00	0.35
ATOM	685	HG1	PRO	47	-9.916	-10.885	-24.212	1.00	0.42
ATOM	686	HG2	PRO	47	-10.703		-23.001	1.00	0.34
ATOM	687	CD	PRO	47	-8 576	-10.077	~22 730	1.00	0.33
ATOM	688			47					
ATOM					-8.853	-10.091		1.00	0.31
	689		PRO	47	-7.993			1.00	0.39
ATOM	690	Ç	PRO	47	-8.933		-23.506	1.00	0.25
ATOM	691	0	PRO	47	-9.744	-5.914	-24.080	1.00	0.26
MOTA	692	N	LEU	48	-8.418	-6.252	-22.362	1.00	0.26
ATOM	693	HN	LEU	48	-7.766		-21.912	1.00	0.29
MOTA	694	CA	LEU	48	-8.827		-21.742	1.00	0.25
ATOM	695	HA	LEU	48	-9.904				
ATOM	696	CB					-21.696	1.00	0.27
			LEU	48	-8.241		-20.329	1.00	0.31
ATOM	697		LEU	48	-8.476		-19.909	1.00	0.34
MOTA	698		LEU	48 .	-7.167		-20.385	1.00	0.33
MOTA	699	CG	LEU	48	-8.816	-5.964	-19.434	1.00	0.34
ATOM	700	HG	LEU	48	-8.808	-6.900	-19.972	1.00	0.32
MOTA	701	CD1	LEU	48	-7.952		-18.177	1.00	0.41
ATOM		HD11		48	-8.002		-17.613	1.00	1.11
MOTA	703	HD12		48	-6.928		-18.462		
ATOM	_ : : :		LEU	48				1.00	1.05
MOTA	705				-8.315		-17.570	1.00	1.15
			LEU	48	-10.255		-19.016	1.00	0.36
ATOM		HD21		48	-10.569		-19.478	1.00	1.10
ATOM		HD22		48	-10.299	-5.524	-17.942	1.00	1.09
ATOM	708	HD23	LEU	48	-10.912		-19.325	1.00	1.04
MOTA	709	С	LEU	48	-8.289	•	-22.589	1.00	0.25
MOTA	710	0	LEU	48	-7.174		-23.071	1.00	0.26
MOTA	711	N	ASN	49	-9.073		-22.762	1.00	0.25
ATOM	712	HN	ASN	49	-9.964	-2.772	-22.762		
ATOM	713	CA	ASN	49				1.00	0.26
MOTA	714				-8.622		-23.568	1.00	0.25
		HA	ASN	49	-7.703		-24.082	1.00	0.27
ATOM	715	CB	ASN	49	-9.700		-24.593	1.00	0.28
ATOM	716	HB1	asn	49	-9.390	-0.375	-25.153	1.00	0.30
MOTA	717	HB2	asn	49	-10.628	-1.033	-24.081	1.00	0.28
MOTA	718	CG	ASN	49	-9.902		-25.553	1.00	0.32
MOTA	719		ASN	49	-9.798		-25.161	1.00	1.10
ATOM	720		ASN	49	-10.186		-26.804		
ATOM		HD21	A CAT	49	-10.168			1.00	1.14
ATOM	722		9 674				-27.121	1.00	1.94
				49	-10.317	-2.927	-27.427	1.00	1.14
MOTA	723	Ç	ASN	49	-8.391		-22.633	1.00	0.24
MOTA	724	0	asn	49	-9.290	0.016	-21.939	1.00	0.23
MOTA	725	N	PHE	50	-7.192		-22.606	1.00	0.24
ATOM	726	HN	PHE	50	-6.485		-23.173	1.00	0.26
ATOM	727	CA	PHE	50	-6.896		-21.710	1.00	0.23
ATOM	728	HA	PHE	50	-7.688		-20.985		
MOTA	729	CB	PHE	50				1.00	0.21
ATOM	730		PHE		-5.574		-20.981	1.00	0.24
MOTA				50	-5.357		-20.334	1.00	0.25
	731		PHE	50 . 50	-4.780 -5 676		-21.705 -20 154	1.00	0.27
MOTA	732	CG	PHE						

	727 074						
MOTA	733 CD1	PHE	50	-6.266	-0.201 -18.886	1.00 0.	25
MOTA	734 HD1	PHE	50	-6.652	0.731 -18.500	1.00 0.	28
ATOM	735 CD2	PHE	50	-5.176	-1.451 -20.654		22
ATOM	736 HD2		50				
				-4.720	-1.483 - 21.633	1.00 0.	
ATOM	737 CE1	PHE	50	-6.358	-1.368 -18.117	1.00 0.	25
MOTA	738 HE1	PHE	50	-6.813	-1.336 -17.139	1.00 0.	28
ATOM	739 CE2	PHE	50	-5.267	-2.618 -19.886		
							23
ATOM		PHE	50	-4.881	-3.550 -20.272	1.00 0.	25
MOTA	741 CZ	PHE	50	-5.858	-2.576 -18.618	1.00 0.	24
ATOM	742 HZ	PHE	50	-5.928	-3.476 -18.025		25
ATOM	743 C	PHE	50				
				-6.777	2.538 -22.545	1.00 0.	26
MOTA	744 O	PHE	50	-6.028	2.596 -23.501	1.00 0.	31
MOTA	745 N	THR	51	-7.517	3.555 -22.184		24
- ATOM-	- 746- HN			8.109	3.468 -21.413		
				0.202	3.408 -21.413		22
ATOM	747 CA	THR	51	-7.470	4.842 -22.940	1.00 0.	27
MOTA	748 HA	THR	51	-6.775	4.762 -23.762	1.00 0.	31
MOTA	749 CB	THR	51	-8.868	5.153 -23.483		30
ATOM	750 HB	THR	51		5.133 -23,463		
				-9.562	5.248 -22.663	1.00 0.	29
MOTA	751 OG1		51	-9.283	4.100 -24.341	1.00 0.	35
ATOM	752 HG1	THR	51	-9.638	4.491 -25.142		84
ATOM	753 CG2	THR	51	-8.835	6.464 -24.273		
ATOM	754 HG21						34
			51	-9.805	6.640 -24.716	1.00 1.	02
ATOM	755 HG22	THE	51	-8.092	6.394 -25.053	1.00 1.	07
MOTA	756 HG23	THR	51	-8.588	7.280 -23.611		13
MOTA	757 C	THR	51		F 000 23.011		
				-7.024	5.969 -22.001	1.00 0.	25
ATOM	758 O	THR	51	-7.553	6.139 -20.920	1.00 0.	22
MOTA	759 พ	ARG	52	-6.054	6.740 -22.411		29
ATOM	760 HN	ARG	52	-5.645	6.583 -23.287		
							32
MOTA	761 CA	ARG	52	-5.566	7.861 -21.556	1.00 0.	29
MOTA	762 HA	ARG	52	-5.591	7.563 ~20.518	1.00 0.	27
MOTA	763 CB	ARG	52	-4.128	8.201 -21.955		
ATOM					0.201 -21.935		35
		ARG	52	-4.125	8.654 -22.935	1.00 0.	39
MOTA	765 HB2	ARG	52	-3.539	7.295 -21.977	1.00 0.	38
MOTA	766 CG	ARG	52	-3.521	9.177 -20.945	1.00 0.	
ATOM		ARG	52				
				-3.645	8.787 -19.946	1.00 0.	
MOTA		ARG	52	-4.017	10.134 -21.025	1.00 0.	57
ATOM	769 CD	ARG	52	-2.030	9.345 -21.244		79
ATOM	770 HD1	ARG	52	-1.825	9.001 -22.248		
ATOM					3.001 -22.248		45
		ARG	52	-1.453	8.763 -20.543	1.00 1.	39
ATOM	772 NE	ARG	52	-1.656	10.782 -21.120	1.00 1.	47
ATOM	773 HE	ARG	52	-2.354	11.468 -21.073	1.00 2.	
ATOM	774 C2	ARG	52				
			-	-0.398	11.127 -21.071	1.00 2.	09
MOTA		ARG	52	-0.070	12.385 -20.960	1.00 3.	05
MOTA	776 HH11	ARG	52	-0.782	13.084 -20.911		45
MOTA	777 HH12	ARG	52	0.894			
ATOM					12.649 -20.923		60
		ARG	52	0.532	10.213 -21.138	1.00 2.	31
ATOM	779 HH21		52	0.281	9.249 -21.226	1.00 2.	16
MOTA	780 HH22	ARG	52	1.496	10.477 -21.102	1.00 3.	
ATOM	781 C	ARG	52		0.000 21 750		
				-6.460	9.090 -21.758	1.00 0.	
ATOM	782 O	ARG	52	-6.719	9.495 -22.875	1.00 0.	33
ATOM	783 พ	LEU	53	-6.928	9.689 -20.689		26
ATOM	784 HN	LEU	53	-6.702	9.345 -19.798		
ATOM	785 CA	LEU					
			53	-7.803	10.896 -20.822	1.00 0.	
MOTA	786 HA	LEU	53	-8.167	10.972 -21.835	1.00 0.	32
MOTA	787 CB	LEU	53	-8.992	10.784 -19.862	1.00 0.	
MOTA	788 HB1	LEU	53	-9.579	11.688 -19.908		
MOTA		LEU	53			1.00 0.	
ATOM				-8.624	10.648 -18.855	1.00 0.	
	790 CG	LEU	53	-9.866	9.587 -20.249	1.00 0.	28
MOTA	791 HG	LEU	53	-9.264	8.690 -20.246	1.00 0.	
ATOM	792 CD1	LEU	53	-10.999	9.440 -19.232		
ATOM	793 HD11	T.FTT			J. 110 -13.232	1.00 0.	
	122 UDIT	720	53	-11.606	8.585 -19.487	1.00 0.	95
MOTA	794 HD12	LEU	53	-11.610	10.331 -19.243	1.00 1.	05
MOTA	795 HD13	LEU	53	-10.581	9.303 -18.247	1.00 1.	
ATOM		LEU	53	-10.463			
ATOM		الاندسة			9.799 -21.646	1.00 0.	30
_	707 12501	T. FREY		-10.523	10 DEE _71 DEA	1 00 1	
ATOM	797 HD21	LEU	53		10.856 -21.860	1.00 1.	01
	797 HD21 798 HD22	LEU LEU	53 53	-11.453			01
ATOM	797 HD21 798 HD22	LEU LEU	53	-11.453	9.370 -21.685	1.00 1.	01 09
	797 HD21 798 HD22 799 HD23	LEU LEU	53 53	-11.453 -9.835	9.370 -21.685 9.319 -22.382	1.00 1. 1.00 1.	01 09 14
MOTA	797 HD21 798 HD22 799 HD23 800 C	LEU LEU LEU	53 53 53	-11.453 -9.835 -7.000	9.370 -21.685 9.319 -22.382 12.154 -20.483	1.00 1. 1.00 1. 1.00 0.	01 09 14 33
MOTA MOTA	797 HD21 798 HD22 799 HD23 800 C 801 O	LEU LEU	53 53	-11.453 -9.835	9.370 -21.685 9.319 -22.382 12.154 -20.483	1.00 1. 1.00 1. 1.00 0.	01 09 14 33
MOTA	797 HD21 798 HD22 799 HD23 800 C	LEU LEU LEU LEU	53 53 53 53	-11.453 -9.835 -7.000 -6.315	9.370 -21.685 9.319 -22.382 12.154 -20.483 12.218 -19.482	1.00 1. 1.00 1. 1.00 0. 1.00 0.	01 09 14 33 34
MOTA MOTA MOTA	797 HD21 798 HD22 799 HD23 800 C 801 O 802 N	LEU LEU LEU LEU HIS	53 53 53 53 54	-11.453 -9.835 -7.000 -6.315 -7.080	9.370 -21.685 9.319 -22.382 12.154 -20.483 12.218 -19.482 13.154 -21.319	1.00 1. 1.00 1. 1.00 0. 1.00 0. 1.00 0.	01 09 14 33 34 41
MOTA MOTA MOTA MOTA	797 HD21 798 HD22 799 HD23 800 C 801 O 802 N 803 HN	LEU LEU LEU LEU HIS HIS	53 53 53 53 54 54	-11.453 -9.835 -7.000 -6.315 -7.080 -7.637	9.370 -21.685 9.319 -22.382 12.154 -20.483 12.218 -19.482 13.154 -21.319 13.075 -22.121	1.00 1. 1.00 1. 1.00 0. 1.00 0. 1.00 0.	01 09 14 33 34 41 45
MOTA MOTA MOTA MOTA	797 HD21 798 HD22 799 HD23 800 C 801 O 802 N 803 HN 804 CA	LEU LEU LEU LEU HIS HIS	53 53 53 53 54	-11.453 -9.835 -7.000 -6.315 -7.080	9.370 -21.685 9.319 -22.382 12.154 -20.483 12.218 -19.482 13.154 -21.319 13.075 -22.121 14.413 -21.062	1.00 1. 1.00 1. 1.00 0. 1.00 0. 1.00 0.	01 09 14 33 34 41 45
MOTA MOTA MOTA MOTA	797 HD21 798 HD22 799 HD23 800 C 801 O 802 N 803 HN	LEU LEU LEU LEU HIS HIS	53 53 53 53 54 54 54	-11.453 -9.835 -7.000 -6.315 -7.080 -7.637 -6.324	9.370 -21.685 9.319 -22.382 12.154 -20.483 12.218 -19.482 13.154 -21.319 13.075 -22.121 14.413 -21.062	1.00 1. 1.00 1. 1.00 0. 1.00 0. 1.00 0. 1.00 0.	01 09 14 33 34 41 45
MOTA MOTA MOTA MOTA MOTA MOTA	797 HD21 798 HD22 799 HD23 800 C 801 O 802 N 803 HN 804 CA 805 HA	LEU LEU LEU LEU HIS HIS HIS	53 53 53 53 54 54 54 54	-11.453 -9.835 -7.000 -6.315 -7.080 -7.637 -6.324 -5.292	9.370 -21.685 9.319 -22.382 12.154 -20.483 12.218 -19.482 13.154 -21.319 13.075 -22.121 14.413 -21.062 14.183 -20.851	1.00 1. 1.00 0. 1.00 0. 1.00 0. 1.00 0. 1.00 0. 1.00 0.	01 09 14 33 34 41 45 47
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	797 HD21 798 HD22 799 HD23 800 C 801 O 802 N 803 HN 804 CA 805 HA 806 CB	LEU LEU LEU LEU HIS HIS HIS HIS	53 53 53 53 54 54 54 54 54	-11.453 -9.835 -7.000 -6.315 -7.080 -7.637 -6.324 -5.292 -6.407	9.370 -21.685 9.319 -22.382 12.154 -20.483 12.218 -19.482 13.154 -21.319 13.075 -22.121 14.413 -21.062 14.183 -20.851 15.314 -22.297	1.00 1. 1.00 0. 1.00 0. 1.00 0. 1.00 0. 1.00 0. 1.00 0. 1.00 0.	01 09 14 33 34 41 45 47 54
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	797 HD21 798 HD22 799 HD23 800 C 801 O 802 N 803 HN 804 CA 805 HA 806 CB 807 HB1	LEU LEU LEU HIS HIS HIS HIS HIS	53 53 53 54 54 54 54 54 54	-11.453 -9.835 -7.000 -6.315 -7.080 -7.637 -6.324 -5.292 -6.407 -6.018	9.370 -21.685 9.319 -22.382 12.154 -20.483 12.218 -19.482 13.154 -21.319 13.075 -22.121 14.413 -21.062 14.183 -20.851	1.00 1. 1.00 0. 1.00 0. 1.00 0. 1.00 0. 1.00 0. 1.00 0.	01 09 14 33 34 41 45 47 54
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	797 HD21 798 HD22 799 HD23 800 C 802 N 803 HN 804 CA 805 HA 806 CB 807 HB1 808 HB2	LEU LEU LEU LEU HIS HIS HIS HIS	53 53 53 53 54 54 54 54 54	-11.453 -9.835 -7.000 -6.315 -7.080 -7.637 -6.324 -5.292 -6.407	9.370 -21.685 9.319 -22.382 12.154 -20.483 12.218 -19.482 13.154 -21.319 13.075 -22.121 14.413 -21.062 14.183 -20.851 15.314 -22.297 16.291 -22.052	1.00 1. 1.00 0. 1.00 0. 1.00 0. 1.00 0. 1.00 0. 1.00 0. 1.00 0. 1.00 0.	01 09 14 33 34 41 45 47 54 60
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	797 HD21 798 HD22 799 HD23 800 C 801 O 802 N 803 HN 804 CA 805 HA 806 CB 807 HB1	LEU LEU LEU HIS HIS HIS HIS HIS	53 53 53 54 54 54 54 54 54	-11.453 -9.835 -7.000 -6.315 -7.080 -7.637 -6.324 -5.292 -6.407 -6.018	9.370 -21.685 9.319 -22.382 12.154 -20.483 12.218 -19.482 13.154 -21.319 13.075 -22.121 14.413 -21.062 14.183 -20.851 15.314 -22.297	1.00 1. 1.00 0. 1.00 0. 1.00 0. 1.00 0. 1.00 0. 1.00 0. 1.00 0.	01 09 14 33 34 41 45 47 54 60 64

ATOM	810	NTD3	HIS	54	ECAE	15 054 04 707		
					-5.645	15.254 -24.707		1.35
Mota	811	HD1	HIS	54	-6.172	16.028 -24.996	1.00	1.86
ATOM	812	CD2	HIS	54	-4.740	13.656 -23.493		0.86
ATOM	813		HIS					
				54	-4.480	13.010 -22.668	1.00	1.34
ATOM	814	CE1	HIS	54	-4.834	14.512 -25.481	1.00	1.33
MOTA	815	HE1	HIS	54	-4.670	14.692 -26.533		1.83
ATOM	816		HIS					
				54	-4.257	13.525 -24.792	1.00	0.92
ATOM	817	С	HIS	54	-6.933	15.154 -19.867	1.00	0.43
ATOM	818	0	HIS	54	-6.230			_
						15.714 -19.051		0.49
MOTA	819	N	ASP	55	-8.236	15.172 -19.767	1.00	0.42
ATOM	820	HN	ASP	55	-8.784	14.719 -20.442		0.45
ATOM.	821	CA	ASP	55	-8.892			
					-0.032			0.49
MOTA	_ 822	_ HA	ASP	,55	8217	15.938 17.796	-1.00	0.54
ATOM	823	CB	ASP	55	-9.251	17.314 -19.073		0.65
MOTA	824		ASP	55	-9.876			
								0.75
MOTA	825		ASP	55	-9.783	17.277 -20.013	1.00	0.68
MOTA	826	CG	ASP	55	-7.974	18.140 -19.244		0.71
MOTA	827	OD1	ASP	55	-7.978	19.037 -20.071		
								1.19
MOTA	828	OD2	ASP	55	-7.018	17.870 -18.536	1.00	1.28
ATOM	829	С	ASP	55	-10.167	15.156 -18.223		0.45
MOTA	830	ō	ASP	55	-10.638			
								0.44
MOTA	831	N	GLY	56	-10.728	15.518 -17.100	1.00	0.46
ATOM	832	HN	GLY	56	-10.328	16.233 -16.563	1.00	0.50
ATOM	833	CA	GLY	56	-11.975	14.848 -16.632		
								0.44
MOTA	834		GLY	56	-12.482	14.399 -17.472	1.00	0.44
MOTA	835	HA2	GLY	56	-12.622	15.579 -16.169		0.48
ATOM	836	C	GLY	56	-11.624			
						13.760 -15.614		0.40
MOTA	837	0	GLY	56	-10.473	13.543 -15.294	1.00	0.42
MOTA	838	N	ILE	57	-12.613	13.078 -15.105		0.37
ATOM	839	HN	ILE	57				
					-13.533	13.275 -15.380	1.00	0.39
ATOM	840	CA	ILE	57	-12.352	12.002 -14.106	1.00	0.35
ATOM	841	HA	ILE	57	-11.406	12.184 -13.616		
ATOM	842							0.38
			ILE	57	-13.473	12.000 -13.064	1.00	0.41
ATOM	843	HB	ILE	57	-14.415	11.820 -13.561	1.00	0.42
ATOM	844	CG1	ILE	57	-13.508	13.363 -12.360	77 7 7 7	
ATOM		HG11				13.303 -12.300		0.48
				57	-13.512	14.148 -13.101	1.00	0.48
ATOM	846	HG12	ILE	57	-12.631	13.465 -11.737	1.00	0.51
ATOM	847	CG2	ILE	57	-13.216	10.896 -12.037		
ATOM						10.030 -12.037		0.44
		HG21	ILE	57	-13.315	9.932 -12.513	1.00	1.19
ATOM	849	HG22	ILE	57	-13.934	10.977 -11.235	1.00	1.09
ATOM	850	HG23	ILE	57	-12.218	11.000 -11.639		
ATOM	851		ILE		-12.210			1.04
				57	-14.765	13.484 -11.488	1.00	0.56
ATOM	852	HD11	ILE	57	-15.459	12.693 -11.728	1.00	1.08
ATOM	853	HD12	ILE	57	-15.235	14.439 -11.668		1.24
ATOM	854							
			ILE	• •	-14.487	13.413 -10.447	1.00	1.14
ATOM	855	С	ILE	57	-12.307	10.647 -14.817	1.00	0.30
ATOM	856	0	ILE	57	-13.139	10.353 -15.653		0.31
MOTA	857	N	ALA	58				
					-11.337	9.828 -14.493		0.26
MOTA	858	HN	ALA	58	-10.679	10.096 -13.817	1.00	0.27
ATOM	859	CA	ALA	58	-11.221	8.489 -15.148		0.23
ATOM	860	HA	ALA	58	-11.957	0.200 15.220		
						8.398 -15.932		0.25
ATOM	861	CB	ALA	58	-9.824	8.339 -15.749	1.00	0.23
ATOM	862	HB1	ALA	58	-9.843	7.585 -16.522	1.00	0.97
ATOM	863	HB2	ALA	58	-9.129	8.044 -14.976		1.11
ATOM	864							
			ALA	58	-9.513	9.280 -16.172	1.00	1.03
ATOM	865	C	ALA	58	-11.443	7.387 -14.114	1.00	0.23
MOTA	866	0	ALA	58	-11.389	7.617 -12.922	1.00	0.27
ATOM	867		ASP	59	-11.701	6 100 14 554		
						6.189 -14.564		0.25
ATOM	868		ASP	59	-11.744	6.028 -15.530	1.00	0.28
ATOM	869	ÇA	ASP	59	-11.934	5.069 -13.613		0.27
MOTA	870		ASP	59	-12.788			
MOTA				23				0.34
	871	CB	ASP	59	-12.207	3.785 -14.400	1.00	0.33
ATOM	872	 HB1 	ASP	59	-12.203	2.942 -13.725		0.34
ATOM	873		ASP	59	-11.438			
ATOM					-11.430	3.651 -15.147		0.32
	874	CG	ASP	59	-13.572	3.880 -15.084	1.00	0.44
ATOM	875	OD1	ASP	59	-13.791	3.139 -16.028		1.20
ATOM	876		ASP	59	-14.374			
ATOM								1.14
	877	C	ASP	59	-10.700	4.863 -12.731	1.00	0.22
ATOM	878	0	ASP	59	-10.806	4.767 -11.524		0.27
ATOM	879	N	ILE	60	-9.534			
MOTA	880						1.00	0.18
			ILE	60	-9.478	4.850 -14.302	1.00	0.20
ATOM	881	CA	ILE	60	-8.291	4.561 -12.523		0.22
ATOM	882	HA	ILE	60	-8.554	4 303 -11 510		
ATOM	883					4.303 -11.512		0.28
		CB	ILE	60	- 7.502	3.404 -13.155	1.00	0.27
ATOM	884	HB	ILE	60	-7.255	3.655 -14.175		0.28
ATOM	885		ILE	60	-8.377			
		701			-0.377	2.146 -13.136	1.00	0.30

ATOM	887	HG12	ILE	60	-8.541	1.839 -12.113	1.00 0.36	
MOTA	888	CG2	ILE	60	-6.210	3.127 -12.369	1.00 0.39	
ATOM	889	HG21	ILE	60	-6.456	2.704 -11.409	1.00 1.05	
MOTA		HG22	ILE	60	-5.658	4.043 -12.228	1.00 1.10)
ATOM		HG23	ILE	60	-5.600	2.428 -12.921	1.00 1.12	
ATOM	892	CD1	ILE	60	-7.688	1.015 -13.904	1.00 0.38	
ATOM		HD11	ILE	60	-7.209	1.413 -14.786	1.00 1.07	
MOTA		HD12	ILE	60	-8.424	0.280 -14.196	1.00 1.14	
ATOM	895	HD13	ILE	60	-6.948	0.549 -13.270	1.00 1.04	
MOTA MOTA	896 897	C	ILE	60 60	-7.438	5.834 -12.518	1.00 0.20	
ATOM	898	O N	ILE MET	61	-6.731 -7.473	6.115 -13.464 6.585 -11.448	1.00 0.25	
MOTA	899	HN	MET	61	-8.033	6.326 -10.687	1.00 0.25	
	- 900	CA	MET	- 61 -	-6.641	7.82211.373	-1-00 - 0-20	
ATOM	901	HA	MET	61	-6.327	8.102 -12.366	1.00 0.19	
MOTA	902	CB	MET	61	-7.464	8.963 -10.773	1.00 0.24	
MOTA	903	HB1	MET	61	-8.331	9.137 -11.392	1.00 0.35	
MOTA	904	HB2	MET	61	-6.860	9.856 -10.743	1.00 0.33	j
ATOM	905	CG	MET	61	-7.918	8.604 -9.358	1.00 0.31	
MOTA	906	HG1		61	-7.146	8.870 -8.653	1.00 0.66	í
MOTA	907		MET	61	-8.112	7.544 -9.300	1.00 0.67	
MOTA	908	SD	MET	61	-9.433	9.519 -8.967	1.00 0.54	
ATOM	909	CE.	MET	61	-8.878	11.154 -9.516	1.00 0.40	
MOTA	910		MET	61	-9.492	11.914 -9.056		
MOTA MOTA	911 912	HE2 HE3	MET	61	-8.968	11.227 -10.589	1.00 1.16	
ATOM	913	C	MET	61 61	-7.846 -5.396	11.298 -9.232	1.00 1.12	
ATOM	914	Ö	MET	61	-5.478	7.540 -10.524 6.951 -9.463	1.00 0.20	
ATOM	915	N	ILE	62	-4.241	6.951 -9.463 7.937 -11.001	1.00 0.22	
ATOM	916	HN	ILE	62	-4.207	8.393 -11.868	1.00 0.20	
MOTA	917	CA	ILE	62	-2.971	7.678 -10.252	1.00 0.21	
MOTA	918	HA	ILE	62	-3.156	6.982 -9.448		
ATOM	919	CB	ILE	62	-1.938	7.080 -11.211	1.00 0.24	
MOTA	920	HB	ILE	62	-1.753	7.781 -12.012	1.00 0.26	
MOTA	921	CG1	ILE	62	-2.480	5.762 -11.785	1.00 0.23	
MOTA	922	HG11	ILE	62	-3.479	5.922 -12.162	1.00 0.20	
MOTA	923	HG12	ILE	62	-2.508	5.018 -11.003		
MOTA	924	CG2	ILE	62	-0.635	6.812 -10.455	1.00 0.30)
MOTA		HG21	ILE	62	-0.863	6.443 -9.466		3
MOTA		HG22	ILE	62	-0.070	7.729 -10.375		
MOTA	927		ILE	62	-0.052	6.076 -10.988		
MOTA	928		ILE	62	-1.584	5.262 -12.927	1.00 0.29	
ATOM			ILE	62	-0.979	6.073 -13.305		
MOTA MOTA	931	HD12 HD13	ILE	62 62	-2.201	4.876 -13.724	1.00 1.09	
ATOM	932	C	ILE	62	-0.941 -2.423	4.476 -12.559 8.988 -9.677		
MOTA	933	ŏ	ILE	62	-2.393	10.004 -10.343	1.00 0.22 1.00 0.27	
ATOM	934	N	SER	63	-1.993	8.976 -8.441		
MOTA	935	HN	SER	63	-2.028	8.147 -7.916		
MOTA	936	CA	SER	63	-1.452	10.226 -7.829		
MOTA	937	HA	SER	63	-0.998	10.836 -8.597		
MOTA	938	CB	SER	63	-2.597	11.000 -7.176		
MOTA	939		SER	63	-3.448	11.012 -7.845		
MOTA	940		SER	63	-2.286	12.012 -6.978		•
MOTA	941	OG	SER	63	-2.951	10.369 -5.952		
MOTA	942	HG	SER	63	-3.682	9.772 -6.127		
MOTA	943	C	SER	63	-0.404	9.879 -6.764		
MOTA	944	0	SER	63	-0.364	8.775 -6.259		
MOTA MOTA	945 946	N	PHE	64	0.440	10.823 -6.419		
MOTA	947	HN CA	PHE	64 64	0.380	11.705 -6.841		
MOTA	948	HA	PHE	64	1.490 1.560	10.569 -5.382 9.511 -5.179		
ATOM	949	CB	PHE	64	2.840	9.511 -5.179 11.084 -5.895		
ATOM	950		PHE	64	3.564	11.047 -5.097		
MOTA	951		PHE	64	2.730	12.103 -6.235		
MOTA	952	CG	PHE	64	3.316	10.220 -7.040		
MOTA	953		PHE	- 64	4.112	9.096 -6.788	1.00 0.30	
MOTA	954	HD1	PHE	64	4.385	8.844 -5.774		
MOTA	955		PHE	64	2.963	10.545 -8.355		
MOTA	956	HD2	PHE	64	2.350	11.412 -8.550		
MOTA	957		PHE	64	4.553	8.297 -7.850		
MOTA	958		PHE	64	5.166	7.430 -7.656	1.00 0.40)
MOTA	959			64	3.403	9.747 -9.417	1.00 0.40	
MOTA	960		PHE	64	3.130	9.998 -10.431		
MOTA	961	CZ	PHE	64	4.198	8.623 -9.165		
MOTA MOTA	962	HZ	PHE	64	4.538	8.007 -9.984		
AIOM	963	С	PHE	64	1.115	11.318 -4.097	1.00 0.25	,

MOTA	964	0	מעם	64	0.004	10 510	4 100		0 0 0
ATOM	965	И	PHE		0.924	12.518	-4.108	1.00	0.36
			GLY	65 65	0.996	10.617	-2.996	1.00	0.30
MOTA	966	HN	GLY	65 65	1.146	9.649	-3.017	1.00	0.33
MOTA	967	CA	GLY	65	0.615	11.282	-1.709	1.00	0.38
ATOM	968		GLY	65	-0.152	10.697	-1.224	1.00	0.46
MOTA	969		GLY	65	0.230	12.270	-1.913	1.00	0.45
ATOM	970	С	GLY	65	1.823	11.397	-0.770	1.00	0.32
ATOM	971	0	GLY	65	2.926	11.007	-1.098	1.00	0.40
MOTA	972	N	ILE	66	1.598	11.926	0.408	1.00	0.30
ATOM	973	HN	ILE	66	0.691	12.220	0.635	1.00	0.36
ATOM	974	CA	ILE	66	2.691	12.081	1.417	1.00	0.36
MOTA	975	HA	ILE	66	3.564	11.534	1.093	1.00	0.40
MOTA	976	CB	ILE	66	3.040	13.564	1.571	1.00	
MOTA	977-		ILE	- 66 - —	2.127-				0.41
	978					141-34-	050	2.00	0.64
MOTA	_	CG1	ILE	66	3.829	14.026	0.337	1.00	0.68
ATOM		HG11	ILE	66	3.301	13.729	-0.557	1.00	0.95
MOTA		HG12	ILE	66	4.804	13.561	0.346	1.00	1.01
MOTA	981	CG2	ILE	66	3.886	13.764	2.831	1.00	0.93
MOTA		HG21	ILE	66	4.372	14.727	2.790	1.00	1.50
MOTA	983	HG22	ILE	66	4.632	12.986	2.891	1.00	1.41
ATOM	984	HG23	ILE	66	3.249	13.720	3.702	1.00	1.54
ATOM	985	CD1	ILE	66	3.997	15.551	0.343	1.00	0.70
ATOM	986	HD11	ILE	66	4.944	15.806	0.797	1.00	1.22
ATOM		HD12	ILE	66	3.196	16.009	0.902	1.00	1.28
MOTA	988	HD13	ILE	66	3.979	15.917	-0.673	1.00	1.23
MOTA	989	C	ILE	66	2.207	11.519	2.760	1.00	0.46
MOTA	990	ŏ	ILE	66	1.021	11.363			
MOTA	991	Ŋ	LYS				2.958	1.00	0.54
	992			67 67	3.129	11.205	3.659	1.00	0.59
MOTA		HN	LYS	67	4.073	11.343	3.434	1.00	0.64
MOTA	993	CA	LYS	67	2.780	10.630	5.014	1.00	0.74
MOTA	994	HA	LYS	67	3.072	9.594	5.038	1.00	0.83
MOTA	995	CB	LYS	67	3.550	11.404	6.102	1.00	0.90
MOTA	996	HB1	LYS	67	3.237	12.438	6.089	1.00	0.89
MOTA	997	HB2	LYS	67	4.608	11.352	5.891	1.00	0.96
ATOM	998	CG	LYS	67	3.287	10.815	7.504	1.00	1.08
ATOM	999		LYS	67	2.254	10.524	7.598	1.00	
ATOM	1000	HG2		67	3.510	11.565	8.249		1.31
ATOM	1001	CD	LYS					1.00	1.33
ATOM	1002				4.179	9.590	7.746	1.00	0.98
			LYS	67	5.216	9.885	7.694	1.00	1.07
ATOM	1003		LYS	67	3.979	8.839	6.999	1.00	1.07
MOTA	1004	CE	LYS	67	3.885	9.016	9.135	1.00	1.17
ATOM	1005		LYS	67	4.331	8.036	9.220	1.00	1.64
ATOM	1006	HE2	LYS	67	2.817	8.938	9.272	1.00	1.50
ATOM	1007	NZ	LYS	67	4.453	9.913	10.180	1.00	1.93
ATOM	1008	HZ1	LYS	67	4.569	10.870	9.792	1.00	2.38
ATOM	1009	HZ2	LYS	67	5.378	9.547	10.485	1.00	2.43
ATOM	1010	HZ3	LYS	67	3.808	9.948	10.995	1.00	2.40
ATOM	1011	C	LYS	67	1.274	10.732	5.280	1.00	0.72
ATOM	1012	ō	LYS	67	0.530				
ATOM	1013	Ň	GLU	68		9.804	5.035	1.00	0.79
ATOM	1014				0.815	11.855	5.760	1.00	0.77
		HN	GLU	68	1.425	12.601	5.939	1.00	0.84
ATOM	1015	CA	GLU	68	-0.645	12.004	6.011	1.00	0.84
ATOM	1016	HA	GLU	68	-1.014	11.130	6.530	1.00	0.99
ATOM	1017	CB	GLU	68	-0.895	13.254	6.860	1.00	1.05
MOTA	1018		GLU	68	-0.393	13.149	7.810	1.00	1.23
MOTA	1019	HB2	GLU	68	-1.956	13.370	7.024	1.00	1.10
MOTA	1020	CG	GLU	68	-0.353	14.487	6.134	1.00	1.15
MOTA	1021	HG1	GLU	68	-1.000	14.730	5.304	1.00	1.32
ATOM	1022	HG2	GLU	68	0.642	14.281	5.768	1.00	1.28
MOTA	1023	CD	GLU	68	-0.308	15.669	7.104	1.00	1.75
ATOM	1024		GLU	68	0.246	16.692	6.736	1.00	2.45
MOTA	1025		GLU	68	-0.823				
ATOM	1026	C	GLU	68		15.530	8.202	1.00	2.16
MOTA	1027				-1.346	12.132	4.660	1.00	0.76
		0	GLU	68	-0.899	12.859	3.795	1.00	1.11
MOTA	1028	N	HIS	69	-2.420	11.414	4.454	1.00	0.94
MOTA	1029	HN	HIS	69	-2.755	10.815	5.155	1.00	1.32
ATOM	1030	CA	HIS	69	-3.114	11.487	3.136	1.00	1.04
MOTA	1031	HA	HIS	69	-2.877	12.437	2.679	1.00	1.25
MOTA	1032	CB	HIS	69	-2.545	10.358	2.243	1.00	1.49
ATOM	1033	HB1	HIS	69	-1.750	9.862	2.783	1.00	2.12
MOTA	1034		HIS	69	-2.131	10.798	1.351	1.00	2.27
MOTA	1035	CG	HIS	69	-3.570	9.333	1.837		0.95
ATOM	1036		HIS	69	-3.818			1.00	
ATOM	1037		HIS	69		8.195	2.588	1.00	1.43
ATOM	1038		HIS		-3.415	7.972	3.453	1.00	1.83
ATOM	1039			69 60	-4.355	9.223	0.717	1.00	1.04
MOTA			HIS	69	-4.403	9.946	-0.082	1.00	1.41
AIUM	1040	CEI	HIS	69	-4.715	7.452	1.912	1.00	1.81

				•				
	1041			E 005				
MOTA	1041	HE1 HIS	69	-5.097	6.502	2.257	1.00	2.54
MOTA	1042	NE2 HIS	69	-5.075	8.032	0.765	1.00	1.53
MOTA	1043	C HIS	69	-4.643	11.435	3.341	1.00	1.14
ATOM	1044	O HIS	69	-5.392	10.889	2.556	1.00	1.76
ATOM	1045	N GLY	70	-5.108	12.065	4.393	1.00	1.49
MOTA	1046	HN GLY	70	-4.487	12.532	4.990	1.00	1.98
MOTA	1047	CA GLY	70	-6.576	12.123	4.665	1.00	1.86
MOTA	1048	HA1 GLY	70	-7.071	12.633	3.852	1.00	2.28
ATOM	1049	HA2 GLY	70	-6.746	12.667	5.583	1.00	2.09
MOTA	1050	C GLY	70	-7.155	10.716	4.801	1.00	1.81
ATOM	1051	O GLY	70	-8.182	10.404	4.232	1.00	2.53
MOTA	1052	N ASP	71	-6.513	9.863	5.545	1.00	1.55
ATOM	1053	HN ASP	71	-5.686	10.127		1.00	1.66
- ATOM -		-CA - ASP-		7.047 -	8.484-		-1-00	191
MOTA	1055	HA ASP	71	-8.126	8.513	5.684	1.00	2.42
MOTA	1056	CB ASP	71	-6.546	7.620	4.546	1.00	2.67
ATOM	1057	HB1 ASP	71	-6.623	6.578	4.813	1.00	3.03
MOTA	1058	HB2 ASP	71	-5.514	7.865	4.341	1.00	2.88
MOTA	1059	CG ASP	71	-7.397	7.892	3.303	1.00	3.56
MOTA	1060	OD1 ASP	71	-8.476	7.330	3.215	1.00	4.08
ATOM	1061	OD2 ASP	71	-6.960	8.664	2.465	1.00	4.16
ATOM	1062	C ASP	71	-6.577	7.889	7.028	1.00	1.46
MOTA	1063	O ASP	71	-5.600	8.323	7.605	1.00	1.78
ATOM	1064	N PHE	72	-7.260	6.886	7.507	1.00	1.36
MOTA	1065	HN PHE	72	-8.038	6.546	7.018	1.00	1.67
ATOM	1066	CA PHE	72	-6.849	6.248	8.786	1.00	1.48
ATOM	1067	HA PHE	72	-6.504	7.007	9.473	1.00	1.75
	1068		72					
ATOM		CB PHE		-8.037	5.503	9.399	1.00	2.01
MOTA	1069	HB1 PHE	72	-8.374	6.028	10.281	1.00	2.58
MOTA	1070	HB2 PHE	72	-7.733	4.503	9.669	1.00	2.43
MOTA	1071	CG PHE	72	-9.161	5.434	8.395	1.00	2.30
ATOM	1072	CD1 PHE	72	-9.414	4.243	7.704	1.00	2.86
ATOM	1073	HD1 PHE	72	-8.802	3.372	7.887	1.00	3.09
MOTA	1074	CD2 PHE	72	-9.954	6.563	8.158	1.00	2.97
ATOM	1075	HD2 PHE	72	-9.758	7.482	8.691	1.00	3.28
ATOM	1076	CE1 PHE	72	-10.459	4.182	6.775	1.00	3.73
ATOM	1077	HE1 PHE	72					
				-10.655	3.264	6.242	1.00	4.46
MOTA	1078	CE2 PHE	72	-10.999	6.502	7.229	1.00	3.80
MOTA	1079	HE2 PHE	72	-11.610	7.374	7.045	1.00	4.54
MOTA	1080	CZ PHE	72	-11.252	5.312	6.537	1.00	4.08
MOTA	1081	HZ PHE	72	-12.058	5.264	5.821	1.00	4.92
MOTA	1082	C PHE	72	-5.716	5.266	8.500	1.00	1.41
MOTA	1083	O PHE	72	-5.384	4.430	9.318	1.00	2.20
MOTA	1084	N TYR	73	-5.120	5.371	7.338	1.00	1.12
MOTA	1085	HN TYR	73	-5.412	6.059	6.703	1.00	1.48
ATOM	1086	CA TYR	73	-3.999	4.457	6.972	1.00	1.25
MOTA	1087	HA TYR	73	-3.774	3.793	7.790	1.00	1.46
MOTA	1088	CB TYR	73	-4.391	3.635	5.742	1.00	1.86
ATOM	1089	HB1 TYR	73	-3.531	3.082	5.395	1.00	2.35
MOTA	1090	HB2 TYR	73	-4.726	4.300	4.961	1.00	2.46
MOTA	1091	CG TYR	73	-5.498	2.670	6.089	1.00	2.08
ATOM	1092	CD1 TYR	73	-5.241				
					1.585	6.934	1.00	2.58
MOTA	1093	HD1 TYR	73	-4.252	1.444	7.347	1.00	2.82
MOTA	1094	CD2 TYR	73	-6.779	2.853	5.553	1.00	2.85
MOTA	1095	HD2 TYR	73	-6.978	3.691	4.901	1.00	3.24
MOTA	1096	CE1 TYR	73	-6.264	0.683	7.244	1.00	3.48
MOTA	1097	HE1 TYR	73	-6.066	-0.155	7.896	1.00	4.19
ATOM	1098							
		CE2 TYR	73	-7.802	1.952	5.865	1.00	3.68
MOTA	1099	HE2 TYR	73	-8.789	2.093	5.452	1.00	4.49
ATOM	1100	CZ TYR	73	-7.545	0.866	6.710	1.00	3.90
MOTA	1101	OH TYR	73	-8.554	-0.024	7.013	1.00	5.00
ATOM	1102	HH TYR	73	-8.689	-0.590	6.249	1.00	5.22
		C W.D						
MOTA	1103	C TYR	73	-2.755	5.273	6.609	1.00	0.95
MOTA	1104	O TYR	73	-2.219	5.127	5.529	1.00	1.21
MOTA	. 1105	n pro	74	-2.273	6.106	7.495	1.00	0.74
MOTA	1106	CA PRO	74	-1.054	6.895	7.197	1.00	0.82
ATOM	1107	HA PRO	74	-1.254	7.648	6.453	1.00	1.05
MOTA	1108	CB PRO	74	-0.746				
				-0./46	7.558	8.543	1.00	1.18
ATOM	1109	HB1 PRO	74	-0.786	8.631	8.438	1.00	1.46
MOTA	1110	HB2 PRO	74	0.239	7.261	8.876	1.00	1.28
ATOM	1111	CG PRO	74	-1.795	7.105	9.566	1.00	1.35
MOTA	1112	HG1 PRO	74	-2,229	7.967	10.049	1.00	1.70
MOTA	1113							
		HG2 PRO	74	-1.330	6.468	10.305	1.00	1.61
ATOM	1114	CD PRO	74	-2.889	6.328	8.828	1.00	1.04
MOTA	1115	HD2 PRO	74	-3.098	5.393	9.328	1.00	1.24
MOTA	1116	HD1 PRO	74	-3.778	6.929	8.733	1.00	1.14
MOTA	1117	C PRO	74	0.097	5.988	6.765	1.00	0.65
AIOM								

MOTA	1118	0	PRO	74	0.136	4.822	7.106	1.00	0.66
MOTA MOTA	1119 1120		PHE PHE	75 75	1.038	6.503 7.447	6.032 5.770	1.00	0.56 0.61
MOTA	1121	CA	PHE	75	2.179	5.651	5.605	1.00	0.45
ATOM ATOM	1122 1123	HA CB	PHE PHE	. 75 75	1.816 2.859	4.659 6.266	5.360 4.379	1.00	0.48
ATOM	1124		PHE	75	3.761	5.718	4.153	1.00	0.44
MOTA	1125		PHE	75 75	3.104	7.298	4.582	1.00	0.45
MOTA MOTA	1126 1127	CG CD1	PHE PHE	75 75	1.915 1.764	6.190 4.986	3.200 2.501	1.00	0.48 0.41
MOTA	1128	HD1	PHE	75	2.329	4.115	2.797	1.00	0.45
ATOM ATOM	1129 1130	CD2 HD2	PHE	75 75	1.184 1.300	7.320 8.249	2.812 3.349	1.00	0.74 0.90
-MOTA-	-1:13:1-	-CE1-	PHE -	75	- 0·.882 -	-4 <i>-</i> 911 –	-1.415-	100-	-0.50
ATOM ATOM	1132 1133	HE1 CE2	PHE PHE	75 75	0.767 0.304	3.982 7.245	0.877 1.724	1.00	0.53 0.85
MOTA	1134	HE2	PHE	75	-0.258	8.117	1.423	1.00	1.09
MOTA	1135 1136	CZ	PHE	75 75	0.154 -0.526	6.041 5.983	1.026 0.188	1.00	0.69
MOTA · MOTA	1137	HZ C	PHE	75 75	3.159	5.561	6.776	1.00	0.80 0.43
MOTA	1138	0	PHE	75	3.111	6.360	7.690	1.00	0.50
ATOM ATOM	1139 1140	n HN	ASP ASP	76 76	4.020 4.028	4.582 3.929	6.782 6.050	1.00	0.37 0.32
MOTA	1141	CA	ASP	76	4.967	4.432	7.927	1.00	0.43
MOTA MOTA	1142 1143	HA CB	ASP ASP	76 76	4.551 5.180	4.906 2.946	8.804 8.215	1.00	0.50 0.46
ATOM	1144	HB1		76	4.224	2.467	8.365	1.00	0.49
MOTA	1145		ASP	76 76	5.784	2.834	9.104	1.00	0.54
ATOM ATOM	1146 1147	CG OD1	ASP ASP	76 76	5.892 6.468	2.295 1.236	7.028 7.218	1.00	0.38 0.45
MOTA	1148	QD2	ASP	76	5.846	2.864	5.950	1.00	0.30
MOTA MOTA	1149 1150	C	ASP ASP	76 76	6.314 7.314	5.074 4.770	7.596 8.216	1.00	0.42 0.54
MOTA	1151	N	GLY	77	6.347	5.958	6.632	1.00	0.35
MOTA	1152 1153	HN	GLY	77	5.525	6.187	6.151	1.00	0.36
ATOM ATOM	1153	CA HA1	GLY GLY	77 77	7.634 8.378	6.625 6.388	6.267 7.004	1.00	0.38 0.45
MOTA	1155	HA2	GLY	77	7.484	7.696	6.238	1.00	0.44
MOTA MOTA	1156 1157	C O	GLY GLY	77 77	8.084 7.262	6.131 5.767	4.884 4.068	1.00	0.31 0.37
MOTA	1158	N	PRO	78	9.370	6.117	4.603	1.00	0.33
MOTA MOTA	1159 1160	CA HA	PRO PRO	78 78	9.856 9.435	5.651 6.254	3.274 2.488	1.00	0.36 0.42
ATOM	1161	CB	PRO	78	11.364	5.903	3.359	1.00	0.46
ATOM ATOM	1162 1163	HB1 HB2	PRO PRO	78 78	11.671	6.542	2.545	1.00	0.56
ATOM	1164	CG	PRO	78 78	11.892 11.675	4:962 6.592	3.303 4.694	1.00	0.48 0.64
MOTA	1165		PRO	78	11.965	7.616	4.516	1.00	0.87
MOTA MOTA	1166 1167	CD	PRO PRO	78 78	12.478 10.418	6.068 6.562	5.194 5.563	1.00	0.83 0.45
MOTA	1168	HD2	PRO	78	10.535	5.848	6.369	1.00	0.48
MOTA MOTA	1169 1170	HD1	PRO PRO	78 78	10.187 9.564	7.544 4.165	5.944 3.027	1.00	0.49 0.30
MOTA	1171	0	PRO	78	8.860	3.808	2.105	1.00	0.28
MOTA MOTA	1172 1173	N HN	SER SER	79 79	10.102 10.670	3.297 3.604	3.840 4.577	1.00	0.31 0.35
MOTA	1174	CA	SER	79	9.855	1.837	3.647	1.00	0.30
MOTA MOTA	1175 1176	HA CB	SER	79 79	9.916	1,599 1.037	2.595	1.00	0.30
MOTA	1177		SER SER	79 79	10.911 11.888	1.465	4.410 4.225	1.00	0.37 0.42
MOTA	1178	HB2	SER	79	10.901	0.013	4.076	1.00	0.39
MOTA MOTA	1179 1180	OG HG	SER SER	79 79	10.617 11.173	1.080 1,752	5.800 6.201	1.00	0.38 0.98
MOTA	1181	С	SER	79	8.463	1,470	4.173	1.00	0.27
ATOM ATOM	1182 1183	O N	SER GLY	79 80	7.888 7.927	2.183 0.356	4.971 3.734	1.00	0.25 0.31
ATOM	1184	HN	GLY	80	8.420	-0.200	3.095	1.00	0.37
ATOM ATOM	1185	CA	GLY	80	6.576	-0.081	4.207	1.00	0.30
ATOM	1186 1187	HA2	GLY	80 80	6.224 6.646	0.586 -1.083	4.977 4.607	1.00	0.31 0.36
MOTA	1188	C	GLY	80	5.584	-0.070	3.042	1.00	0.25
MOTA MOTA	1189 1190	O N	GLY LEU	80 81	5.850 4.440	-0.601 0.531	1.981	1.00	0.25 0.23
MOTA	1191	HN	LEU	81	4.246	0.951	4.096	1.00	0.25
MOTA MOTA	1192 1193	CA HA	LEU	81 81	3.428 3.259	0.577 -0.417	2.138 1.761	1.00	0.21
MOTA	1194	CB	LEU	81	2.123	1.164	2.692	1.00	0.22 0.24

ATOM	1195	HB1	LEU	81	1.587	1.658	1.896	1.00	0.25
MCTA	1196	HB2	LEU	81	2.356	1.881	3.465	1.00	0.29
ATOM	1197	CG	LEU	81	1.240	0.058	3.283	1.00	0.28
MOTA	1198	HG	LEU	81	1.856	-0.678	3.779	1.00	0.31
MOTA	1199	ÇD1	LEU	81	0.265	0.680	4.285	1.00	0.33
MOTA	1200	HD11	LEU	81	0.071	1.706	4.009	1.00	1.05
ATOM	1201		LEU	81	0.696	0.649	5.274	1.00	1.10
MOTA	-	HD13		81	-0.662	0.125	4.278	1.00	1.06
MOTA	1203	CD2	LEU	81	0.426	-0.606	2.168	1.00	0.31
MOTA	1204	HD21	LEU	81	1.087	-0.997	1.412	1.00	1.02
ATOM		HD22		81	-0.233	0.126	1.724	1.00	1.09
MOTA	1206		LEU	81	-0.161	-1.411	2.584	1.00	1.06
MOTA	1207	С	LEU	81	3.953	1.475	1.017	1.00	0.20
MOTA	_1208_	0	LEU.	81	- 3.988	- 2.679-	-1.141-	1.00-	0.22-
MOTA	1209	N	LEU	82	4.366	0.899	-0.078	1.00	0.18
MOTA	1210	HN	LEU	82	4.334	-0.077	-0.162	1.00	
									0.18
ATOM	1211	CA	LEU	82	4.901	1.728	-1.195	1.00	0.18
MOTA	1212	HA	LEU	82	5.519	2.520	-0.799	1.00	0.19
MOTA	1213	CB	LEU	82	5.728	0.840	-2.128	1.00	0.18
MOTA	1214	HB1		82	6.235	1.457	-2.854	1.00	0.20
MOTA	1215	HB2		82		0.151			
					5.071		-2.640	1.00	0.20
MOTA	1216	CG	LEU	82	6.763	0.050	-1.323	1.00	0.18
MOTA	1217	HG	LEU	82	6.262	-0.523	-0.556	1.00	0.22
MOTA	1218	CD1	LEU	82	7.513	-0.898	-2.259	1.00	0.17
MOTA		HD11		82	8.102	-0.321	-2.957	1.00	0.97
		HD12							
ATOM				82	6.802	-1.503	-2.802	1.00	0.95
MOTA		HD13		82	8.163	-1.537	-1.681	1.00	0.98
MOTA	1222	CD2	LEU	, 82	7.764	1.010	-0.675	1.00	0.23
MOTA	1223	HD21	LEU	82	8.019	1.790	-1.375	1.00	1.03
ATOM	1224		LEU	82					
				-	8.657	0.466	-0.403	1.00	1.07
MOTA		HD23		82	7.326	1.447	0.209	1.00	1.02
MOTA	1226	С	LEU	82	3.740	2.329	-1.986	1.00	0.19
ATOM	1227	0	LEU	82	3,882	3.341	-2.646	1.00	0.21
ATOM	1228	N	ALA	83	2.594	1.711	-1.919	1.00	0.21
MOTA	1229	HN	ALA	83	2.512	0.899	-1.376	1.00	0.24
MOTA	1230	CA	ALA	83	1.410	2.225	-2.662	1.00	0.22
ATOM	1231	HA	ALA	83	1.217	3.251	-2.381	1.00	0.22
MOTA	1232	CB	ALA	83	1,668	2.140	-4.171	1.00	0.23
ATOM	1233								
			ALA	83	2,522	2.746	-4.429	1.00	0.98
MOTA	1234	HB2	ALA	83	0.801	2.497	-4.705	1.00	1.00
ATOM	1235	HB3	ALA	83	1.860	1.113	-4.445	1.00	1.05
ATOM	1236	С	ALA	83	0.204	1.350	-2.317	1.00	0.27
ATOM	1237	ō	ALA	83	0.342				
						0.301	-1.720	1.00	0.36
ATOM	1238	N	HIS	84	-0.976	1.762	-2.686	1.00	0.24
MOTA	1239	HN	HIS	84	-1.075	2.609	-3.170	1.00	0.20
ATOM	1240	CA	HIS	84	-2.173	0.933	-2.370	1.00	0.30
ATOM	1241	HA	HIS	84	-1.940	-0.108	-2.542	1.00	0.36
ATOM	1242	CB	HIS	84	-2.562	1.127			
							-0.903	1.00	0.40
ATOM	1243		HIS	84	-1.695	0.965	-0.278	1.00	0.48
MOTA	1244	HB2	HIS	84	-3.332	0.419	-0.638	1.00	0.45
ATOM	1245	CG	HIS	84	-3.074	2.525	-0.692	1.00	0.44
MOTA	1246	ND1	HIS	84	-4.384	2.781	-0.321	1.00	1.32
ATOM	1247		HIS	84	-5.084		0.321		
						2.112	-0.169	1.00	2.02
ATOM	1248		HIS	84	-2.465	3.752	-0.788	1.00	0.74
MOTA	1249		HIS	84	-1.432	3.915	-1.060	1.00	1.58
ATOM	1250	CE1	HIS	84	-4.521	4.114	-0.208	1.00	1.21
MOTA	1251	HE1	HIS	84	-5.441	4.606	0.071	1.00	1.87
ATOM	1252		HIS	84	-3.381	4.754	-0.482	1.00	0.53
ATOM	1253	C	HIS	84	-3.337				
						1.343	-3.274	1.00	0.25
MOTA	1254	0	HIS	84	-3.347	2.417	-3.843	1.00	0.23
MOTA	1255	N	ALA	85	-4.313	0.489	-3.417	1.00	0.27
MOTA	1256	HN	ALA	85	~4.279	-0.374	-2.954	1.00	0.34
MOTA	1257	CA	ALA	85	-5.474	0.817	-4.291	1.00	0.24
MOTA	1258	HA	ALA	85	-5.582				
ATOM						1.890	-4.364	1.00	0.22
	1259	CB	ALA	85	-5.236	0.231	-5.685	1.00	0.25
ATOM	1260		ALA	85	-5.079	-0.835	-5.605	1.00	1.05
MOTA	1261	HB2	ALA	85	-4.364	0.690	-6.126	1.00	1.05
ATOM	1262	HB3	ALA	85	-6.097	0.420	-6.308	1.00	1.06
ATOM	1263	c	ALA	85	-6.748	0.210			
							-3.698	1.00	0.26
MOTA	1264	0	ALA	85	-6.694	-0.611	-2.804	1.00	0.33
ATOM	1265	N	PHE	86	-7.892	0.605	-4.198	1.00	0.28
ATOM	1266	HN	PHE	86	-7.905	1.264	-4.922	1.00	0.31
MOTA	1267	CA	PHE	86	-9.179	0.053	-3.677	1.00	0.34
MOTA	1268	HA	PHE	86	-9.000	-0.443			
MOTA	1269						-2.737	1.00	0.39
		CB	PHE	86	-10.170	1.205	-3.471	1.00	0.36
MOTA	1270		PHE	86	-11,177	0.821	-3.459	1.00	0.42
MOTA	1271	HB2	PHE	86	-10.068	1.913	-4.279	1.00	0.33

ATOM	1272	CG	DUE	06	0 077	1 006	2 150	1 00	0.30
ATOM	1273		PHE	86	-9.877 -8.784	1.896	-2.159	1.00	0.39
ATOM	1274		PHE	86		2.764	-2.050	1.00	0.46
	1275		PHE	86	-8.146	2.939	-2.903	1.00	0.67
ATOM		CD2		86	-10.703	1.670	-1.051	1.00	0.67
MOTA	1276 1277		PHE	86 86	-11.546	1.001	-1.133	1.00	0.91
MOTA MOTA	1278	CE1 HE1	PHE	86	-8.516 -7.673	3.406	-0.835	1.00	0.50 0.69
	1279		PHE	86		4.075	-0.751 0.165	1.00	
MOTA MOTA	1280		PHE	86	-10.435 -11.071	2.311		1.00	0.74
	1281		PHE	86	-9.342	2.136	1.020 0.273	1.00	1.02
MOTA MOTA	1282	HZ	PHE	86	-9.135	3.179 3.674	1.211	1.00	0.54 0.62
MOTA	1283	ë	PHE	86	-9.746	-0.940	-4.710	1.00	0.36
MOTA	1284		PHE	86	-9.480	-0.812	-5.889	1.00	0.34
- MOTA					10.516 -			- 1 - 00	- 0 - 43 —
ATOM	1286	CA	PRO	87	-11.082	-2.914	-5.257	1.00	0.46
MOTA	1287	HA	PRO	87	-10.296	-3.524	-5.665	1.00	0.53
ATOM .	1288	СВ	PRO	87	-11.990	-3.770	-4.370	1.00	0.60
MOTA	1289		PRO	87	-11.644	-4.792	-4.377	1.00	0.69
MOTA	1290		PRO	87	-13.004	-3.727	-4.742	1.00	0.73
ATOM	1291	CG	PRO	87	-11.943	-3,225	-2.937	1.00	0.58
MOTA	1292		PRO	87	-11.694	-4.022	-2.253	1.00	0.61
ATOM	1293		PRO	87	-12.905	-2.808	-2.676	1.00	0.66
ATOM	1294	CD	PRO	87	-10.872	-2.135	-2.861	1.00	0.50
ATOM	1295		PRO	87	-11.277	-1.235	-2.421	1.00	0.50
ATOM	1296	HD1	PRO	87	-10.014	-2.484	-2.309	1.00	0.52
ATOM	1297	C	PRO	87	-11.895	-2.246	-6.379	1.00	0.40
ATOM	1298	0	PRO	87	-12.221	-1.078	-6.299	1.00	0.42
MOTA	1299	N	PRO	88	-12.221	-2.981	-7.419	1.00	0.44
MOTA	1300	CA	PRO	88	-13.007	-2.416	-8.554	1.00	0.48
MOTA	1301	HA	PRO	88	-12.443	-1.645	-9.053	1.00	0.52
MOTA	1302	CB	PRO	88	-13.163	-3.622	-9.488	1.00	0.61
ATOM	1303	HB1	PRO	88	-12.604	-3.449	-10.395	1.00	0.83
MOTA	1304	HB2	PRO	88	-14.204	-3.772	-9.728	1.00	0.74
MOTA	1305	CG	PRO	88	-12.609	-4.863	-8.781	1.00	0.57
MOTA	1306	HG1	PRO	88	-11.945	-5.395	-9.446	1.00	0.71
MOTA	1307	HG2	PRO	88	-13.425	-5.508	-8.488	1.00	0.64
ATOM	1308	CD	PRO	88	-11.835	-4.413	-7.540	1.00	0.56
MOTA	1309	HD2	PRO	88	-12.146	-4.977	-6.671	1.00	0.62
MOTA	1310	HD1	PRO	88	-10.773	-4.503	-7.702	1.00	0.65
ATOM	1311	C	PRO	88	-14.372	-1.873	-8.109	1.00	0.47
MOTA	1312	0	PRO	88	-15.380	-2.551	-8.172	1.00	0.88
MOTA	1313	N	GLY	89	-14.400	-0.647	-7.661	1.00	0.63
ATOM	1314	HN	GLY	89	-13.571	-0.129	-7.626	1.00	1.01
MOTA	1315	CA	GLY	89	-15.681	-0.026	- 7.209	1.00	0.65
MOTA	1316		GLY	89	-15.536	0.422	~6.239	1.00	0.62
ATOM	1317	HA2	GLY	89	-16.455	-0.778	-7.148	1.00	0.78
ATOM	1318	Ç	GLY	89	-16.092	1.057	-8.210	1.00	0.74
MOTA	1319	0	GLY	89	-15.541	1.151	-9.289	1.00	0.84
ATOM	1320	N	PRO	90	-17.044	1.878	-7.852	1.00	0.95
MOTA	1321	CA	PRO	90	-17.499	2.973	-8.750	1.00	1.19
MOTA	1322	HA	PRO	90	-17.819	2.565	-9.697	1.00	1.37
MOTA	1323	CB	PRO	90	-18.720	3.532	-7.990	1.00	1.55
ATOM	1324 1325		PRO	90	-19.602 -18.572	3.432	-8.605	1.00	1.85
MOTA MOTA	1325		PRO	90	-18.913	4.567 2.724	-7.740	1.00	1.74 1.46
MOTA	1327	CG	PRO	90 90			-6.702	1.00	
ATOM	1328		PRO	90	-19.828 -18.959	2.155 3.396	-6.763 -5.857	1.00	1.60
ATOM	1329	CD	PRO	90	-17.729	1.769	-6.539	1.00	1.57 1.17
ATOM	1330		PRO	90	-17.083	2.099	-5.736	1.00	1.17
ATOM	1331		PRO	90	-18.067	0.759	-6.375	1.00	1.28
ATOM	1332	C	PRO	90	-16.375	4.011	-8.972	1.00	1.14
ATOM	1333	ō	PRO	90	-15.269	3.649	-9.320	1.00	1.53
ATOM	1334	N	ASN	91	-16.624	5,282	-8.790	1.00	1.17
MOTA	1335	HN	ASN	91	-17.514	5.578	-8.517	1.00	1.40
ATOM	1336	CA	ASN	91	-15.541	6.286	-9.008	1.00	1.38
ATOM	1337	HA	ASN	91	-15.147		-10.005	1.00	1.58
ATOM	1338	CB	ASN	91	-16.116	7.700	-8.857	1.00	1.87
ATOM	1339		ASN	91	-15.336	8.372	-8.532	1.00	2.33
MOTA	1340		ASN	91	~16.908	7.686	-8.122	1.00	1.96
ATOM	1341	CG	ASN	91	-16.678		-10.197	1.00	2,69
MOTA	1342		ASN	91	-16,132		-11.242	1.00	3.20
ATOM	1343		ASN	91	-17.748		-10.212	1.00	3.47
ATOM		HD21		91	-18.186	9.176	-9.370	1.00	3.59
ATOM	1345			91	-18.112		-11.064	1.00	4.20
ATOM	1346	C	ASN	91	-14.404	6.098	-7.992	1.00	1.15
ATOM	1347	ŏ	ASN	91	-13,242	6.135	-8.344	1.00	1.26
MOTA	1348	N	TYR	92	-14 719	5 924	-6 735	1 00	1 01

• 22/75

MOTA	1349	HN	TYR	92	-15.660	5.916	-6.462	1.00	1.08
ATOM	1350	CA	TYR	92	-13.639	5.768	-5.711	1.00	0.97
MOTA	1351	HA	TYR	92	-12.994	6.632	-5.739	1.00	1.14
ATOM	1352	CB	TYR	92	-14.262	5.652	-4.319	1.00	1.09
ATOM	1353	HB1	TYR	92	-13.543	5.214	-3.643	1.00	1.62
ATOM	1354	HB2	TYR	92	-15.135	5.020	-4.369	1.00	1.45
ATOM	1355	CG	TYR	92	-14.656			1.00	
ATOM	1356	CD1		92		7.018	-3.810		1.52
					-13.672	7.979	-3.549	1.00	2.14
ATOM	1357	HD1	TYR	92	-12.631	7.747	-3.719	1.00	2.46
MOTA	1358	CD2	TYR	92	-16.006	7.320	-3.588	1.00	2.44
ATOM	1359	HD2	TYR	92	-16.766	6.580	-3.789	1.00	2.86
MOTA	1360	CEl	TYR	92	-14.037	9.241	-3.066	1.00	3.06
MOTA	1361	HE1	TYR	92	-13.278	9,982	-2.865	1.00	3.78
_ MOTA_	_1362.	_CE2	TYR	9.2	16.370_	8582	3107	_1.00_	_ 333 _
ATOM	1363	HE2	TYR	92	-17.411	8.815	-2.936	1.00	4.19
ATOM	1364	CZ	TYR	92	-15.386	9.542	-2.846	1.00	3.50
MOTA	1365	OH	TYR	92	-15.746	10.786	-2.368	1.00	4.57
ATOM	1366	HH	TYR	92	-15.602	10.791	-1.419	1.00	4.91
ATOM	1367	C	TYR	92	-12.808	4.508	-5.966	1.00	0.78
ATOM	1368	ŏ	TYR	92	-11.605	4.506	-5.798	1.00	0.81
MOTA	1369	N	GLY	93	-13.436	3.430	-6.337	1.00	
MOTA	1370	HN	GLY	93	-14.410	3.441			0.64
MOTA	1371	CA	GLY	93			-6.445	1.00	0.70
ATOM	1372	HA1			-12.674	2.170	-6.560	1.00	0.51
		_	GLY	93	-13.366	1.366	-6.740	1.00	0.51
ATOM	1373	HA2	GLY	93	-12.090	1.947	-5.678	1.00	0.51
MOTA	1374	C	GLY	93	-11.739	2.310	-7.761	1.00	0.49
MOTA	1375	0	GLY	93	-11.832	3.242	-8.534	1.00	0.61
MOTA	1376	N	GLY	94	-10.844	1.373	-7.923	1.00	0.45
MOTA	1377	HN	GLY	94	-10.799	0.627	-7.288	1.00	0.44
MOTA	1378	CA	GLY	94	-9.902	1.420	-9.075	1.00	0.55
ATOM	1379	HA1	GLY	94	-10.459	1.569	-9.988	1.00	0.63
MOTA	1380	HA2	GLY	94	-9.363	0.485	-9.133	1.00	0.58
MOTA	1381	C	GLY	94	-8.905	2.569	-8.901	1.00	0.60
MOTA	1382	ō	GLY	94	-8.109	2.838	-9.772	1.00	1.14
ATOM	1383	N	ASP	95	-8.933	3.252			
ATOM	1384	HN	ASP	95	-9.581		-7.790	1.00	0.24
ATOM	1385	CA	ASP			3.028	-7.089	1.00	0.52
MOTA				95	-7.976	4.382	-7.597	1.00	0.24
	1386	HA	ASP	95	-7.888	4.939	-8.518	1.00	0.28
MOTA	1387	CB	ASP	95	-8.493	5.303	-6.491	1.00	0.26
MOTA	1388	HB1	-	95	-9.500	5.617	-6.724	1.00	0.28
ATOM	1389		ASP	95	-7.853	6.170	-6.415	1.00	0.30
MOTA	1390	CG	ASP	95	-8.494	4.549	-5.162	1.00	0.28
MOTA	1391	OD1	ASP	95	-8.543	5.200	-4.132	1.00	1.08
MOTA	1392	OD2	ASP	95	-8.440	3.331	-5.198	1.00	1.14
MOTA	1393	C	ASP	95	-6.605	3.827	-7.202	1.00	0.23
MOTA	1394	0	ASP	95	-6.479	2.683	-6.815	1.00	0.24
MOTA	1395	N	ALA	96	-5.573	4.626	-7.297	1.00	0.23
MOTA	1396	HN	ALA	96	-5.692	5.546	-7.614	1.00	0.23
MOTA	1397	CA	ALA	96	-4.215	4.131	-6.926	1.00	0.25
ATOM	1398	HA	ALA	96	-4.307	3.360	-6.175	1.00	0.25
MOTA	1399	CB	ALA	96	-3.527	3.553			
ATOM	1400		ALA	96			-8.164	1.00	0.30
MOTA	1401		ALA		-2.528	3.236	-7.905	1.00	1.08
				96 96	-3.476	4.309	-8.934	1.00	1.08
ATOM	1402	HB3	ALA	96 06	-4.090	2.706	-8.528	1.00	1.03
MOTA	1403	Ç	ALA	96 06	-3.375	5.284	-6.372	1.00	0.25
ATOM	1404	0	ALA	96	-3.222	6.313	-7.005	1.00	0.29
ATOM	1405	N	HXS	97	-2.831	5.113	-5.192	1.00	0.25
MOTA	1406	HN	HXS	97	-2.976	4,271	-4.710	1.00	0.28
ATOM	1407	CA	HXS	97	-1.996	6.187	-4.574	1.00	0.27
MOTA	1408	HA	HXS	97	-2.010	7.068	-5.198	1.00	0.28
MOTA	1409	CB	HXS	97	-2.564	6.537	-3.197	1.00	0.33
ATOM	1410	HB1	HXS	97	-1.969	7.319	-2.750	1.00	0.44
ATOM	1411	HB2	HXS	97	-2.540	5.661	-2.566	1.00	0.39
MOTA	1412	CG	HXS	97	-3.983	7.009	-3.349	1.00	0.37
MOTA	1413		HXS	97	-4.697	7.052	-2.163		
MOTA	1414		HXS	97	-4.783	7.420		1.00	0.80
ATOM	1415		HXS	97 97	-4.703 -4.517		-4.384	1.00	0.55
ATOM	1416		HXS			7.497	-5.428	1.00	0.94
ATOM	1417		HXS	97	-5.918	7.487	-2.498	1.00	0.86
ATOM				97	-6.724	7.632	-1.795	1.00	1.24
	1418		HXS	97	-6.018	7.722	-3.819	1.00	0.59
MOTA	1419	HE2	HXS	97	-6.812	8.044	-4.294	1.00	0.72
MOTA	1420	Ç	HXS	97	-0.552	5.700	-4.420	1.00	0.26
MOTA	1421	0	HXS	97	-0.299	4.525	-4.237	1.00	0.39
MOTA	1422	N	PHE	98	0.391	6.604	-4.496	1.00	0.18
MOTA	1423	HN	PHE	98	0.147	7.540	-4.648	1.00	0.23
ATOM	1424	CA	PHE	98	1.832	6.230	-4.360	1.00	0.17
MOTA	1425	HA	PHE	98	1.921	5.190	-4.085	1.00	0.18
					· -				

ATOM	1426	CB	PHE	98	2.543	6.472	-5.691	1.00	0.18
ATOM	1427	HB1	PHE	98	3.611	6.464	-5.536	1.00	0.21
ATOM	1428	нв2		98					
					2.243	7.431	-6.085	1.00	0.20
ATOM	1429	CG	PHE	98	2.169	5.391	-6.674	1.00	0.19
MOTA	1430	CD1	PHE	98	3.114	4.428	-7.048	1.00	0.22
ATOM	1431	HD1	PHE	98	4.110	4.456	-6.631	1.00	0.25
ATOM	1432	CD2		98	0.880	5.355	-7.214		
ATOM	1433							1.00	0.22
		HD2		98	0.151	6.098	-6.924	1.00	0.24
ATOM	1434	CEl		98	2.768	3.429	-7.963	1.00	0.25
ATOM	1435	HE1	PHE	98	3.496	2.685	-8.252	1.00	0.29
MOTA	1436	CE2	PHE	98	0.533	4.355	-8.127	1.00	0.26
MOTA	1437		PHE	98					
					-0.462	4.327	-8.542	1.00	0.31
ATOM	1438	CZ	PHE	98	1.478	3.392	-8.503	1.00	0.26
-ATOM -	-1439-	HZ	PHE.	98· 	- 1.214 -	2.622	-9.211	1.00	0.30
MOTA	1440	С	PHE	98	2.487	7.104	-3.286	1.00	0.17
MOTA	1441	0	PHE	98	2.081	8.226	-3.058	1.00	0.19
ATOM	1442	N	ASP	99	3.498				
						6.604	-2.625	1.00	0.19
MOTA	1443	HN	ASP	99	3.813	5.693	-2.820	1.00	0.22
MOTA	1444	CA	ASP	99	4.167	7.424	-1.570	1.00	0.20
ATOM	1445	HA	ASP	99	3.421	7.956	-0.998	1.00	0.20
ATOM	1446	СB	ASP	99	4.973	6.516	-0.638	1.00	0.25
ATOM	1447		ASP	99					
					5.567	7.122	0.029	1.00	0.28
ATOM	1448	HB2		99	5.624	5.884	-1.226	1.00	0.30
MOTA	1449	CG	ASP	99	4.023	5.646	0.180	1.00	0.41
MOTA	1450	OD1	ASP	99	2.838	5.680	-0.100	1.00	0.89
ATOM	1451		ASP	99	4.497	4.968			
ATOM	1452	c	ASP	99			1.079	1.00	0.27
					5.123	8.426	-2.224	1.00	0.21
MOTA	1453	0	ASP	99	6.020	8.054	-2.954	1.00	0.25
MOTA	1454	N	ASP	100	4.946	9.694	-1.962	1.00	0.23
MOTA	1455	HN	ASP	100	4.222	9.976	-1.365	1.00	0.23
MOTA	1456	CA	ASP	100	5.857	10.710	-2.565	1.00	0.29
ATOM	1457	HA	ASP	100					
					6.169	10.379	-3.545	1.00	0.31
ATOM	1458	CB	ASP	100	5.127	12.049	-2.684	1.00	0.34
MOTA	1459		ASP	100	5.130	12.544	-1.727	1.00	0.34
MOTA	1460	HB2	ASP	100	4.109	11.879	-2.999	1.00	0.34
ATOM	1461	CG	ASP	100	5.844	12.929	-3.710	1.00	
ATOM	1462	OD1	ASP	100					0.43
					5.240	13.887	-4.164	1.00	1.21
MOTA	1463		ASP	100	6.984	12.630	-4.025	1.00	1.12
MOTA	1464	C	ASP	100	7.085	10.885	-1.667	1.00	0.30
ATOM	1465	0	ASP	100	8.032	11.559	-2.018	1.00	0.32
ATOM	1466	N	ASP	101	7.074	10.280	-0.510	1.00	0.31
ATOM	1467	HN	ASP	101	6.298	9.741	-0.249	1.00	0.32
ATOM	1468	CA	ASP	101	8.236	10.407	0.415		
ATOM	1469	HA	ASP	101		10.407		1.00	0.33
ATOM	1470	CB			8.647	11.403	0.345	1.00	0.36
			ASP	101	7.778	10.142	1.851	1.00	0.39
MOTA	1471		ASP	101	8.641	10.060	2.495	1.00	0.41
MOTA	1472	HB2	ASP	101	7.216	9.220	1.884	1.00	0.39
ATOM	1473	CG	ASP	101	6.896	11.296	2.330	1.00	0.45
MOTA	1474	OD1	ASP	101	7.027	12.380			
ATOM	1475	OD2	ASP	101			1.786	1.00	1.25
MOTA					6.104	11.076	3.231	1.00	1.09
	1476	Ç	ASP	101	9.304	9.385	0.028	1.00	0.30
MOTA	1477	0	ASP	101	10.411	9.405	0.529	1.00	0.29
MOTA	1478	N	GLU	102	8.971	8.484	-0.849	1.00	0.30
MOTA	1479	HN	GLU	102	8.068	8.484	-1.230	1.00	0.31
MOTA	1480	CA	GLU	102	9.950	7.444			
ATOM	1481						-1.266	1.00	0.29
		HA	GLU	102	10.649	7.263	-0.463	1.00	0.30
ATOM	1482	CB	GLU	102	9.195	6.155	-1.585	1.00	0.35
MOTA	1483		GLU	102	9.873	5.437	-2.020	1.00	0.36
ATOM	1484			102	8.397	6.368	-2.282	1.00	0.40
MOTA	1485	CG	GLU	102	8.611	5.584			
MOTA	1486		GLU	102			-0.293	1.00	0.46
					8.020	6.342	0.200	1.00	1.18
ATOM	1487			102	9.415	5.276	0.356	1.00	1.03
MOTA	1488	CD	GLU	102	7.724	4.381	-0.616	1.00	0.83
ATOM	1489	OE1	GLU	102	7.601	4.060	-1.786	1.00	1.63
ATOM	1490	OE2	GLU	102	7.184	3.801			
MOTA	1491	c	GLU	102			0.314	1.00	0.87
ATOM					10.707	7.917	-2.508	1.00	0.25
	1492	0	GLU	102	10.359	8.910	-3.115	1.00	0.25
MOTA	1493	N	THR	103	11.741	7.213	-2.886	1.00	0.25
MOTA	1494	HN	THR	103	12.003	6.416	-2.379	1.00	0.28
ATOM	1495	CA	THR	103	12.525	7.620	-4.088	1.00	0.23
MOTA	1496	HA	THR	103	12.356				
ATOM	1497	CB	THR	103		8.665	-4.301	1.00	0.23
MOTA	1498	НВ			14.016	7.383	-3.824	1.00	0.27
			THR	103	14.169	6.359	-3.521	1.00	0.30
MOTA	1499	OG1	THR	103	14.455	8.252	-2.789	1.00	0.29
MOTA	1500	HG1	THR	103	15.334	8.564	-3.016	1.00	0.86
MOTA	1501	CG2	THR	103	14.820	7.656	-5.098	1.00	0.29
MOTA	1502	HG21	THR	103	. 15.864	7 777	_A 9A6	1 00	1 00
		_		-	=				· · · -

MOTA MOTA	1503 1504	HG22 HG23		103 103	14.457 14.710	8.557 6.824		1.00	1.08
MOTA	1505	C	THR	103	12.083	6.777		1.00	0.22
ATOM ATOM	1506 1507	O N	THR TRP	103 104	12.417	5.614	-5.394	1.00	0.23
ATOM	1508	HN	TRP	104	11.332 11.076	7.358 8.297	-6.175 -6.063	1.00	0.21
ATOM	1509	CA	TRP	104	10.867	6.598	-7.364	1.00	0.23 0.21
ATOM	1510	HA	TRP	104	10.750	5.556	-7.104	1.00	0.20
ATOM	1511	CB	TRP	104	9.525	7.165	-7.831	1.00	0.23
ATOM ATOM	1512 1513	HB1 HB2		104 104	9.188	6.623	-8.702	1.00	0.24
ATOM	1514	CG	TRP	104	9.641 8.520	8.210 7.018	-8.078 -6.731	1.00	0.25 0.24
MOTA	1515		TRP	104	8.098	8.019	-5.924	_1.00	
- ATOM	1516		TRP	104	8.427	9.045		1.00	0.36
ATOM ATOM	1517 1518	CD2	TRP	104	7.811	5.821		1.00	0.21
ATOM	1519	HE1		104 104	7.176 6.718	7.512 8.030	-5.026 -4.331	1.00	0.31
MOTA	1520	CE2		104	6.963	6.162	-5.220	1.00	0.36 0.24
ATOM	1521	CE3		104	7.819	4.486	-6.739	1.00	0.18
MOTA MOTA	1522 1523	HE3		104	8.458	4.198	-7.559	1.00	0.19
ATOM	1524	CZ2 HZ2		104 104	6.153 5.515	5.213	-4.596	1.00	0.23
ATOM	1525	CZ3		104	7.005	5.499 3.527	-3.774 -6.114	1.00	0.27 0.20
MOTA	1526	HZ3		104	7.019	2.504	-6.460	1.00	0.23
ATOM ATOM	1527 1528	CH2		104	6.173	3.891	-5.045	1.00	0.21
MOTA	1529	HH2 C	TRP	104 104	5.548 11.911	3.150	-4.568	1.00	0.23
ATOM	1530	ŏ	TRP	104	12.276	6.732 7.824	-8.474 -8.864	1.00	0.21
MOTA	1531	N	THR	105	12.403	5.630	-8.973	1.00	0.24 0.20
ATOM	1532	HN	THR	105	12.098	4.763	-8.633	1.00	0.19
MOTA MOTA	1533 1534	CA	THR	105	13.437		-10.048	1.00	0.21
ATOM	1535	HA CB	THR THR	105 105	13.415 14.817			1.00	0.24
ATOM	1536	НВ	THR	105	15.018	5.459 6.233	-9.428 -8.704	1.00	0.21
ATOM	1537	OG1		105	15.806		-10.447	1.00	0.21 0.24
MOTA	1538	HG1		105	15.882	6.404	-10.752	1.00	0.86
ATOM ATOM	1539 1540	CG2			14.846	4.101	-8.729	1.00	0.21
ATOM	1541			105 105	15.178 15.524	4.233	-7.711	1.00	1.04
MOTA	1542			105	13.854	3.442 3.674	-9.249 -8.731	1.00	1.07 0.99
MOTA	1543	C	THR	105	13.166		-11.087	1.00	0.23
ATOM ATOM	1544 1545	0	THR	105	12.521	3.606	-10.808	1.00	0.23
ATOM	1546	N HN	SER SER	106 106	13.668 14.194	4.769	-12.282	1.00	0.26
ATOM	1547	CA	SER	106	13.454	3.739	-12.480 -13.337	1.00	0.29 0.29
ATOM	1548	HA	SER	106	12.570	3.163	-13.111	1.00	0.30
ATOM ATOM	1549	CB	SER	106	13.290	4.423	-14.695	1.00	0.35
MOTA	1550 1551	HB1 HB2	-	106 106	14.249		-15.193	1.00	1.09
MOTA	1552	OG	SER	106	12.916 12.365		-14.554 -15.483	1.00	0.96
ATOM	1553	HG	SER	106	11.671		-15.766	1.00	1.44 1.97
ATOM	1554	Ç	SER	106	14.674	2.817	-13.372	1.00	0.28
ATOM ATOM	1555 1556	O N	SER	106	14.669	1.781	-14.006	1.00	0.31
MOTA	1557	HN	SER SER	107 107	15.715 15.687	4.023	-12.677 -12.166	1.00	0.26
ATOM	1558	CA	SER	107	16.940	2.340	-12.641	1.00	0.25 0.27
ATOM ATOM	1559	HA	SER	107	17.018	1.778	-13.560	1.00	0.29
ATOM	1560 1561	CB HB1	SER SER	107 107	18.175		-12.474	1.00	0.28
ATOM	1562	HB2	SER	107	18.292 19.049	3.847	-13.353 -12.355	1.00	1.12
MOTA	1563	OG	SER	107	18.017	4.040	-11.320	1.00	1.04
MOTA	1564	HG	SER	107	18.556	4.827	-11.436	1.00	1.82
MOTA MOTA	1565 1566	CO	SER SER	107	16.836	1.376	-11.460	1.00	0.26
MOTA	1567	N	SER	107 108	15.829 17.859	1.324	-10.781	1.00	0.26
MOTA	1568	HN	SER	108	18.666	0.658	-11.203 -11.757	1.00	0.28
MOTA	1569	CA	SER	108	17.788		-10.061	1.00	0.31
ATOM ATOM	1570	HA	SER	108	16.775	-0.706	-9.967	1.00	0.30
ATOM	1571 1572	CB HB1	SER SER	108	18.728		-10.330	1.00	0.36
ATOM	1573	HB2		108 108	19.561 19.103	-1.505 -1.468	~9.642	1.00	1.09
MOTA	1574	OG	SER	108	18.005		-11.338 -10.176	1.00	0.95 1.47
MOTA	1575	HG	SER	108	18.550	-3.456	-10.513	1.00	2.00
MOTA MOTA	1576 1577	0	SER SER	108	18.181	0.390	-8.767	1.00	0.28
MOTA	1578	N	LYS	108 109	19.279 17.272	0.265 1.157	-8.261 -8.224	1.00	0.33
MOTA	1579	HN	LYS	109	16 302	1 241	-8.224	1.00	0.24

ATOM	1580	CA	LYS	109	17.561	1.897	-6.960	1.00	0.23
ATOM	1581	HA	LYS	109	18.275	1.341	-6.370	1.00	0.25
MOTA	1582	CB	LYS	109	18.123	3.293	-7.268		
ATOM	1583		LYS					1.00	0.24
				109	18.172	3.868	-6.355	1.00	0.27
MOTA	1584	HB2		109	17.472	3.793	-7.970	1.00	0.25
ATOM	1585	CG	LYS	109	19.525	3.177	-7.868	1.00	0.30
MOTA	1586	HG1	LYS	109	19.476	2.615	-8.785	1.00	0.54
ATOM	1587		LYS						
				109	20.177	2.675	-7.170	1.00	0.70
MOTA	1588	CD	LYS	109	20.072	4.574	-8.169	1.00	0.75
ATOM	1589	HD1	LYS	109	20,124	5.144	-7.254	1.00	1.27
MOTA	1590		LYS	109	19.420	5.074	-8.870		
ATOM	1591	CE						1.00	1.27
			LYS	109	21.475	4.453	-8.770	1.00	1.13
MOTA	1592		LYS	109	21.396	4.264	-9.830	1.00	1.68
-ATOM	- 1593	HE2	LYS	109-	22.000	3.636	-8.297	1.00	1.68
ATOM	1594	NZ	LYS	109	22,224	5.721	-8.545	1.00	1.79
ATOM	1595		LYS	109	21.689				
						6.516	-8.948	1.00	2.22
ATOM	1596		LYS	109	23.155	5.660	-9.006	1.00	2.17
MOTA	1597	HZ3	LYS	109	22.351	5.873	-7.525	1.00	2.34
ATOM	1598	С	LYS	109	16.259	2.052	-6.175	1.00	0.21
ATOM	1599	0	LYS	109	15.190	2.110	-6.747		
ATOM	1600	Ŋ						1.00	0.20
			GLY	110	16.338	2.124	-4.873	1.00	0.23
MOTA	1601	HN	GLY	110	17.212	2.079	-4.432	1.00	0.26
atom	1602	CA	GLY	110	15.099	2.283	-4.056	1.00	0.22
ATOM	1603	HA1	GLY	110	14.751	3.302	-4.124	1.00	0.23
MOTA	1604	HA2	GLY	110					
					15.316	2.044	-3.024	1.00	0.25
ATOM	1605	С	GLY	110	14.013	1.342	-4.581	1.00	0.19
MOTA	1606	0	GLY	110	14.281	0.216	-4.949	1.00	0.20
MOTA	1607	N	TYR	111	12.789	1.801	-4.626	1.00	
ATOM	1608	HN							0.17
			TYR	111	12.599	2.716	-4.330	1.00	0.18
ATOM	1609	CA	TYR	111	11.683	0.941	-5.136	1.00	0.15
MOTA	1610	HA	TYR	111	11.975	-0.098	-5.088	1.00	0.16
MOTA	1611	ÇВ	TYR	111	10.437	1.162	-4.277	1.00	0.15
MOTA	1612	HB1	TYR	111					
					9633	0.540	-4.641	1.00	0.15
ATOM	1613	HB2	TYR	111	10.143	2.200	-4.330	1.00	0.16
ATOM	1614	CG	TYR	111	10.745	0.798	-2.844	1.00	0.17
ATOM	1615	CD1	TYR	111	10.648	-0.533	-2.422	1.00	0.17
ATOM	1616	HD1	TYR	111					
					10.354	-1.301	-3.121	1.00	0.17
MOTA	1617	CD2	TYR	111.	11.127	1.794	-1.936	1.00	0.20
MOTA	1618	HD2	TYR	111	11.201	2.821	-2.261	1.00	0.23
MOTA	1619	CE1	TYR	111	10.933	-0.868	-1.093	1.00	0.19
MOTA	1620	HE1	TYR	111	10.858				
ATOM	1621					-1.895	-0.767	1.00	0.20
		CE2	TYR	111	11.412	1.459	-0.607	1.00	0.22
MOTA	1622	HE2	TYR	111	11.706	2.227	0.093	1.00	0.26
ATOM	1623	CZ	TYR	111	11.315	0.127	-0.185	1.00	0.21
MOTA	1624	OH	TYR	111	11.595				
ATOM	1625	нн	TYR			-0.204	1.125	1.00	0.23
				111	12.543	-0.121	1.255	1.00	0.95
ATOM	1626	C	TYR	111	11.374	1.321	-6.588	1.00	0.14
ATOM	1627	0	TYR	111	10.949	2.424	-6.871	1.00	0.15
ATOM	1628	N	ASN	112	11.581	0.421	-7.511	1.00	0.15
MOTA	1629	HN	ASN	112	11.924				
ATOM						-0.464	-7.264	1.00	0.17
	1630	CA	ASN	112	11.295	0.739	-8.939	1.00	0.16
MOTA	1631	HA	asn	112	11.870	1.605	-9.235	1.00	0.16
ATOM	1632	CB	ASN	112	11.677	-0.450	-9.822	1.00	0.19
MOTA	1633	HB1	ASN	112	11.025	-1.276	-9.607	1.00	0.22
MOTA	1634		ASN	112					
MOTA	1635				12.698	-0.739	-9.622	1.00	0.19
		CG	ASN	112	11.531	-0.060	-11.295	1.00	0.24
MOTA	1636		ASN	112	10.446	0.248	-11.748	1.00	0.96
ATOM	1637	ND2	ASN	112	12.583		-12.067	1.00	1.06
ATOM	1638	HD21	ASN	112	13.458		-11.704	1.00	
ATOM	1639	HD22	ACM	112					1.80
ATOM					12.497		-13.012	1.00	1.08
	1640	C	ASN	112	9.803	1.040	-9.108	1.00	0.15
MOTA	1641	0	ASN	112	8.953	0.310	-8.637	1.00	0.14
MOTA	1642	N	LEU	113	9.482	2.112	-9.777	1.00	0.15
MOTA	1643	HN	LEU	113					
ATOM	1644				10.187		-10.145	1.00	0.16
		CA	LEU	113	8.049	2.475	-9.984	1.00	0.15
ATOM	1645	HA	LEU	113	7.582	2.620	-9.025	1.00	0.14
MOTA	1646	CB	LEU	113	7.981	3.781	-10.791	1.00	0.16
ATOM	1647	HB1		113	8.513				
MOTA	1648		LEU	113		3.040	-11.721	1.00	0.17
					8.452	4.571	-10.226	1.00	0.16
MOTA	1649	CG	LEU	113	6.523	4.177	-11.095	1.00	0.17
ATOM	1650	HG	LEU	113	6.041	3.387	-11.652	1.00	0.18
MOTA	1651	CD1	LEU	113	5.748	4.421	-9.793	1.00	0.18
MOTA	1652	HD11	1,717	113	4.841		-9.733		
ATOM	1652	HD12	TPIT				-10.007	1.00	0.99
	1000	UDIT 2	TEO.	113	6.359	4.991	-9.110	1.00	1.00
MOTA		HD13		113	5.490	3.474	-9.343	1.00	0.97
MOTA	1655		LEU	113	6.526		-11.943	1.00	0.20
MOTA	1656	HD21	गास. १	113	6 115	6 277	11 274	1.00	1 75

	4.655									
ATOM		HD22		113		5.930		-12.830	1.00	1.03
MOTA	1658			113		7.539		-12.231	1.00	1.00
MOTA MOTA	1659 1660	C	LEU	113		7.320		-10.743	1.00	0.15
ATOM	1661	N	LEU PHE	113 114		6.203	1.014	-10.419	1.00	0.15
MOTA	1662	HN	PHE	114		7.928		-11.762	1.00	0.16
ATOM	1663	CA	PHE	114		8.822 7.245	1.123	-12.020	1.00	0.17
MOTA	1664	HA	PHE	114		6.338	0.151	-12.555	1.00	0.17
ATOM	1665	СВ	PHE	114		8.159	-0.720	-12.980 -13.685	1.00	0.18
ATOM	1666	HB1		114		9.077	-1.108	-13.005	1.00	0.21
ATOM	1667	HB2		114		8.380	0.111	-14.340	1.00	0.22 0.22
ATOM	1668	CG	PHE	114		7.457	-1.807	-14.464	1.00	0.24
ATOM	1669		PHE	114		7.545	-3.135	-14.031	1.00	0.35
ATOM	1670		PHE	- 114-		8.105	-3.376	-13.147	1.00	0.43
MOTA	1671	CD2		114		6.724	-1.494	-15.613	1.00	0.24
ATOM	1672	HD2	PHE	114		6.655	-0.470		1.00	0.28
ATOM	1673	CE1		114		6.902	-4.149	-14.741	1.00	0.39
ATOM	1674	HEL		114		6.975	-5.171	-14.402	1.00	0.50
ATOM	1675	CE2		114		6.078	-2.512	-16.327	1.00	0.26
MOTA	1676	HE2		114		5.511	-2.273	-17.214	1.00	0.30
ATOM	1677	CZ	PHE	114		6.168		-15.890	1.00	0.32
ATOM	1678	HZ	PHE	114		5.670	-4.623	-16.438	1.00	0.35
atom atom	1679 1680	C	PHE	114		6.900	-1.452	-11.676	1.00	0.17
ATOM	1681	O N	PHE	114		5.842	-2.034	-11.806	1.00	0.17
ATOM	1682	HN	LEU	115 115		7.774	-1.846	-10.797	1.00	0.18
ATOM	1683	CA	LEU	115		8.631	-1.380	-10.706	1.00	0.18
ATOM	1684	HA	LEU	115		7.463 7.297	-3.028 -3.882	-9.946	1.00	0.20
MOTA	1685	CB	LEU	115		8.634	-3.304	-10.579	1.00	0.21
ATOM	1686		LEU	115		8.237	-3.650	-8.984 -8.041	1.00	0.23
MOTA	1687	HB2		115		9.172	-2.387	-8.821	1.00	0.26 0.22
ATOM	1688	CG	LEU	115		9.612	-4.369	-9.539	1.00	0.28
ATOM	1689	HG	LEU	115		0.397	-4.525	-8.812	1.00	0.28
MOTA	1690		LEU	115		8.886	-5.702	-9.749	1.00	0.36
MOTA	1691	HD11	LEU	115		9.551	-6.514	-9.498	1.00	0.99
MOTA	1692			115		8.578	-5.795	-10.779	1.00	1.11
MOTA	1693			115		8.017	-5.740	-9.109	1.00	1.13
MOTA	1694		LEU	115		0.249	-3.903	-10.859	1.00	0.30
ATOM	1695	HD21		115	1	0.497	-4.761	-11.466	1.00	1.10
ATOM	1696			115		1.149	-3.351	-10.645	1.00	1.06
MOTA	1697			115		9.567	-3.272	-11.395	1.00	1.01
MOTA MOTA	1698	c	LEU	115		6.194	-2.748	-9.136	1.00	0.19
ATOM	1699 1700	O N	LEU	115		5.280	-3.548	-9.106	1.00	0.20
ATOM	1701	HN	VAL VAL	116 116		6.130	-1.624	-8.475	1.00	0.18
ATOM	1702	CA	VAL	116		6.879 4.919	-0.993	-8.508	1.00	0.18
ATOM	1703	HA	VAL	116		4.686	-1.305 -2.146	-7.664 -7.028	1.00	0.19
ATOM	1704	CB	VAL	116		5.203	-0.078	-6.794	1.00	0.21
ATOM	1705	HB	VAL	116		5.581	0.722	-7.414	1.00	0.20 0.19
ATOM	1706	CG1	VAL	116		3.914	0.381	-6.103	1.00	0.22
ATOM	1707	HG11		116		3.253	0.832	-6.828	1.00	1.05
MOTA	1708	HG12	VAL	116		4.155	1.105	-5.339	1.00	1.05
ATOM		HG13		116		3.426	-0.470	~5.650	1.00	1.03
MOTA	1710	CG2	VAL	116		6.246	-0.443	-5.737	1.00	0.21
MOTA		HG21	VAL	116		7.188	-0.654	-6.221	1.00	1.02
ATOM ATOM	1712	HG22		116		5.917	-1.317	-5.194	1.00	0.98
ATOM	1713 1714	HG23 C	VAL VAL	116		6.370	0.382	-5.052	1.00	1.03
ATOM	1715	ŏ	VAL	116 116		3.724	-1.020	-8.582	1.00	0.18
ATOM	1716	N	ALA	117		2.615	-1.433	-8.312	1.00	0.19
MOTA	1717	HN	ALA	117		3.934 4.833	-0.307	-9.659	1.00	0.17
ATOM	1718	CA	ALA	117		2.796	0.028	-9.859 -10.572	1.00	0.16
MOTA	1719	HA	ALA	117		2.064	0.007 0.598	-10.572	1.00	0.17
ATOM	1720	CB	ALA	117		3.306	0.795	-11.780	1.00	0.19
MOTA	1721		ALA	117		4.378		-11.840	1.00	0.18 1.05
MOTA	1722		ALA	117		3.033	1.834	-11.674	1.00	1.01
MOTA	1723	нв3		117		2.863	0.397	-12.682	1.00	0.98
ATOM	1724	C	ALA	117		2.150	-1.291	-11.058	1.00	0.17
ATOM	1725	0	ALA	117		0.956	-1.480	-10.951	1.00	0.19
ATOM	1726	N	ALA	118		2.931		-11.588	1.00	0.16
MOTA	1727	HN	ALA	118		3.893	-2.015	-11.663	1.00	0.16
MOTA	1728	CA	ALA	118		2.366		-12.083	1.00	0.17
MOTA	1729	HA	ALA	118		1.643	-3.273	-12.859	1.00	0.19
MOTA MOTA	1730 1731	CB	ALA	118		3.491		-12.653	1.00	0.17
MOTA	1731		ALA ALA	118		3.125	-5.338	-12.812	1.00	1.05
ATOM	1733		ALA	118 118		4.316 3 824	-4.358	-11.956	1.00	1.02
		فاللهدد		110					1 00	- 07

MOTA	1734	C A	LA 1:	18	1.687	-4 220	-10.935	1.00	0.17
MOTA	1735			18	0.699		-11.124	1.00	0.18
MOTA	1736			19	2.225	-4.123	-9.751	1.00	0.16
MOTA	1737			19	3.035	-3.585	-9.623	1.00	0.16
MOTA	1738			19	1.627	-4.855	-8.599	1.00	0.17
MOTA	1739			19	1.576	-5.907	-8.833	1.00	0.18
MOTA	1740	CB H	IS 1:	19	2.513	-4.655	-7.368	1.00	0.19
MOTA	1741	HB1 H	IS 1	19	2.547	-3.605	-7.116	1.00	0.19
MOTA	1742	нв2 н	IS 1:	19	3.512	-5.005	-7.584	1.00	0.20
MOTA	1743			19	1.950	-5.431	-6.210	1.00	0.21
ATOM	1744	ND1 H	IS 1	19	2.228	-6.775	-6.020	1.00	0.26
ATOM	1745	HD1 H	IS 1	19	2.791	-7.336	-6.593	1.00	0.30
ATOM	1746	CD2 H	IIS 1	19	1.128	-5.067	-5.172	1.00	0.20
_ATOM	1747	HD2 H	IIS 1	19	0.719	-4.079	-5.019	1.00	0.21
MOTA	1748	CE1 H		19	1.585	-7.168	-4.906	1.00	0.27
ATOM	1749	HE1 H		19	1.622	-8.171	-4.509	1.00	0.33
MOTA	1750	NE2 H		19	0.899	-6.166	-4.350	1.00	0.23
ATOM	1751			19	0.215	-4.333	-8.299	1.00	0.17
MOTA	1752			19	-0.721	-5.101	-8.185	1.00	0.18
ATOM	1753			20	0.043	-3.044	-8.160	1.00	0.18
MOTA	1754			20	0.801	-2.430	-8.248	1.00	0.18
MOTA	1755			20	-1.322	-2.520	-7.860	1.00	0.20
atom	1756			20	-1.666	-2.977	-6.943	1.00	0.21
MOTA	1757			20	-1.294	-0.999	-7.668	1.00	0.22
ATOM	1758	HB1 G		20	-0.719	-0.763	-6.785	1.00	0.37
MOTA	1759			20	-2.302	-0.635	-7.542	1.00	0.33
ATOM	1760			20	-0.663	-0.314	-8.875	1.00	0.41
MOTA	1761	HG1 G		20	-1.125	-0.668	-9.781	1.00	0.63
ATOM	1762	HG2 G		20	0.393	-0.531	-8.895	1.00	0.87
MOTA	1763			20	-0.875	1.194	-8.757	1.00	0.94
MOTA	1764	OE1 G		20	-0.757	1.703	-7.654	1.00	1.67
MOTA	1765	OE2 G		20	-1.151	1.816	-9.769	1.00	1.56
MOTA	1766			20	-2.291	-2.903	-8.984	1.00	0.20
MOTA MOTA	1767			20	-3.432	-3.238	-8.737	1.00	0.21
	1768			21	-1.853		-10.217	1.00	0.19
MOTA MOTA	1769			21	-0.928		-10.405	1.00	0.19
	1770			21	-2.767	-3.251	-11.331	1.00	0.21
MOTA	1771			21	-3.628		-11.317	1.00	0.23
MOTA MOTA	1772			21	-2.053		-12.685	1.00	0.22
MOTA	1773	HB1 F		21	-2.576		-13.419	1.00	0.24
ATOM	1774 1775	HB2 F		21	-1.041		-12.587	1.00	0.21
ATOM	1776			21	-2.026		-13.141	1.00	0.25
ATOM	1777	CD1 F		21 21	-0.804		-13.308	1.00	0.27
ATOM	1778	CD2 P		21	0.121		-13.113	1.00	0.40
ATOM	1779	HD2 F		21 21	-3.227		-13.403	1.00	0.45
ATOM	1780	CE1 F		21	-4.173 -0.781		-13.281	1.00	0.60
ATOM	1781	HE1 F		21	0.163		-13.733 -13.862	1.00	0.29
ATOM	1782			21	-3.202		-13.828	1.00	0.39 0.49
ATOM	1783			21	-4.127		-14.029	1.00	0.68
ATOM	1784			21	-1.979		-13.993	1.00	0.34
ATOM	1785			21	-1.961		-14.321	1.00	0.38
MOTA	1786			21	-3.228		-11.120	1.00	0.20
ATOM	1787			21	-4.374		-11.344	1.00	0.21
ATOM	1788			22	-2.344		-10.690	1.00	0.18
MOTA	1789			22	-1.424	-5.262	-10.514	1.00	0.17
MOTA	1790			22	-2.737		-10.464	1.00	0.20
MOTA	1791	HA1 G	LY 1	22	-1.890		-10.092	1.00	0.21
MOTA	1792			22	-3.072	-7.404	-11.394	1.00	0.21
MOTA	1793	C G		22	-3.867	-7.022	-9.435	1.00	0.20
MOTA	1794	O G	LY 1	22	-4.823	-7.756	-9.589	1.00	0.22
MOTA	1795	N H	HIS 1	23	-3.778	-6.240	-8.392	1.00	0.20
MOTA	1796			23	-3.005	-5.644	-8.287	1.00	0.20
MOTA	1797	CA H	iis 1	23	-4.864	-6.243	-7.371	1.00	0.22
ATOM	1798			23	-5.047	-7.255	-7.042	1.00	0.23
ATOM	1799			23	-4.456	-5.382	-6.174	1.00	0.25
MOTA	1800	HB1 H		23	-5.324	-5.180	-5.564	1.00	0.30
MOTA	1801	HB2 H		23	-4.041	-4.449	-6.527	1.00	0.25
MOTA	1802			23	-3.427	-6.108	-5.354	1.00	0.27
MOTA	1803	ND1 H		23	-3.736	-7.247	-4.628	1.00	0.37
MOTA	1804	HD1 H		23	-4.611	-7.685	-4.581	1.00	0.45
MOTA	1805	CD2 H		23	-2.096	-5.866	-5.125	1.00	0.25
MOTA	1806	HD2 H		23	-1.532	-5.046	-5.545	1.00	0.27
MOTA	1807	CE1 H		23	-2.614	-7.644	-4.001	1.00	0.38
MOTA	1808	HE1 H		23	-2.553	-8.514	-3.367	1.00	0.47
MOTA MOTA	1809 1810	NE2 H		23	-1.584	-6,837	-4.269	1.00	0.29
011	TOTU	C H	ris 1	23	-6 137	_E 671	-7 007	1 00	ບຸລາ

MOTA	1811	0	HIS	123	-7.229	-6.148	-7.755	1.00	0.25
ATOM	1812	N	SER	124	-6.002	-4.646	-8.788	1.00	0.23
ATOM	1813	HN	SER	124	-5.110	-4.278	-8.962	1.00	0.22
MOTA	1814	CA	SER	124	-7.196	-4.030	-9.429	1.00	0.25
MOTA	1815	HA	SER	124	-7.928	-3.790	-8.672	1.00	0.27
ATOM	1816	CB	SER	124	-6.778		-10.156	1.00	0.27
ATOM	1817	HB1	SER	124	-6.219	-2.119	-9.478	1.00	0.29
ATOM	1818	HB2	SER	124	-7.654		-10.494		
ATOM	1819	OG	SER	124	-5.975			1.00	0.29
ATOM	1820	HG	SER	124	-6.545		-11.279	1.00	0.25
ATOM	1821		SER	124			-12.050	1.00	0.88
		Ç.		124	-7.805		-10.437	1.00	0.24
MOTA	1822	0	SER	125	-8.975		-10.755	1.00	0.26
MOTA	1823	N	LEU	- 125	-7.022		-10.952	1.00	0.22
- MOTA-	1824			125	6.078				-0-21 -
MOTA	1825	CA	LEU		-7.562		-11.949	1.00	0.23
MOTA	1826	HA	LEU	125	-8.285		-12.568	1.00	0.24
ATOM	1827	CB	LEU	125	-6.420		-12.827	1.00	0.22
MOTA	1828		LEU	125	-6.759		-13.398	1.00	0.24
MOTA	1829		LEU	125	-5.594	-7.698	-12.197	1.00	0.22
ATOM	1830	CG	LEU	125	-5.956		-13.779	1.00	0.22
ATOM	1831	HG	LEU	125	-5.928		-13.241	1.00	0.24
ATOM	1832		LEU	125	-4.556		-14.302	1.00	0.25
MOTA		HD11		125	-4.588		-14.874	1.00	0.99
MOTA		HD12		125	-3.879		-13.471	1.00	1.00
MOTA		HD13		125	-4.215		-14.933	1.00	1.05
ATOM	1836		LEU	125	-6.913		-14.976	1.00	0.24
MOTA		HD21		125	-7.793		-14.682	1.00	1.05
MOTA		HD22		125	-7.201		-15.324	1.00	1.00
MOTA		HD23		125	-6.415	-5.627	-15.775	1.00	1.03
MOTA	1840	С	LEU	125	-8.256		-11.234	1.00	0.24
MOTA	1841	0	LEU	125	-8.790	-8.935	-11.864	1.00	0.33
ATOM	1842	N	GLY	126	-8.277	-8.035	-9.927	1.00	0.24
MOTA	1843	HN	GLY	126	-7.858	-7.298	-9.435	1.00	0.29
MOTA	1844	CA	GLY	126	-8.968	-9.132	-9.185	1.00	0.27
MOTA	1845	HA1	GLY	126	-9.748	-9.545	-9.807	1.00	0.29
MOTA	1846		GLY	126	-9.408	-8.727		1.00	0.29
ATOM	1847	C	GLY	126		-10.245		1.00	0.26
MOTA	1848	ŏ	GLY	126		-11,268	-8.283	1.00	0.30
ATOM	1849	N	LEU	127	-6.719	-10.068	-9.063	1.00	0.23
ATOM	1850	HN	LEU	127	-6.410	-9.239		1.00	0.22
MOTA	1851	CA	LEU	127		-11.138	-8.700	1.00	0.25
MOTA	1852	HA	LEU	127	-6.212	-12.099	-8.815	1.00	0.28
ATOM	1853	CB	LEU	127		-11.052	-9.602	1.00	0.23
MOTA	1854	HB1	LEU	127		-11.696	-9.211	1.00	0.25
MOTA	1855	HB2	LEU	127		-10.033	-9.602	1.00	0.22
ATOM	1856	CG	LEU	127	-4.844	-11.471	-11.045	1.00	0.24
ATOM	1857	HG	LEU	127	-5.707	-10.915	-11.384	1.00	0.23
MOTA	1858	CD1	LEU	127	-3.646	-11.159	-11.962	1.00	0.24
MOTA	1859	HD11	LEU	127	-4.001	-10.692	-12.868	1.00	1.00
ATOM	1860	HD12	LEU	127	-3.126	-12.073	-12.208	1.00	1.02
MOTA	1861	HD13	LEU	. 127	-2.962	-10.491	-11.460	1.00	1.03
MOTA	1862		LEU	127			-11.109	1.00	0.30
MOTA	1863	HD21		127		-13.334		1.00	1.04
ATOM	1864	HD22	LEU	127	-6.169	-13.159	-10.805	1.00	
MOTA	1865	HD23	LEU	127	-4.478	-13.515	-10.454	1.00	1.03
MOTA	1866	C	LEU	127		-10.969	-7.241	1.00	0.28
MOTA	1867	Ō	LEU	127	-5.245	-9.872	-6.723	1.00	0.32
MOTA	1868	N	ASP	128	-5.027	-12.059	-6.581	1.00	0.32
MOTA	1869	HN	ASP	128		-12.928	-7.029	1.00	0.34
MOTA	1870	CA	ASP	128		-11.997	-5.154	1.00	0.39
ATOM	1871	HA	ASP	128		-11.046	-4.728	1.00	0.40
MOTA	1872	CB	ASP	128		-13.130	-4.375	1.00	0.48
MOTA	1873		ASP	128		-14.064	-4.600	1.00	0.48
MOTA	1874		ASP	128		-13.193	-4.661		
ATOM	1875	CG	ASP	128		-12.854		1.00	0.50
MOTA	1876		ASP	128		-12.980	-2.873 -2.339		0.55
MOTA	1877		ASP	128	-6 10E	-12.521		1.00	1.23
MOTA	1878	C	ASP	128			-2.283	1.00	1.22
ATOM	1879	Ö	ASP	128		-12.159	-5.082	1.00	0.37
MOTA	1880	N	HIS	129		-12.387	-6.080	1.00	0.59
ATOM	1881	HN	HIS	129		-12.042	-3.914	1.00	0.23
MOTA	1882		HIS	129		-11.856	-3.118	1.00	0.32
ATOM	1883	CA			-1.029	-12.189	-3.797	1.00	0.22
ATOM	1884	HA CB	HIS	129		-11.439	-4.401	1.00	0.21
ATOM	1885		HIS	129 129		-12.019	-2.335	1.00	0.23
MOTA	1886		HIS	129		-12.302 -12.653	-2.227	1.00	0.24
MOTA	1887	CG	HIS	129		-12.653	-1.710	1.00	0.25
₩44	2007	CG	****	143	-0.779	-10.303	-1.912	1.00	0.22

ATOM 1889 RD HIS 129 -2.602 -10.720 -0.841 1.00 0.34 ATOM 1891 HDZ HIS 129 0.918 -9.447 -2.673 1.00 0.54 ATOM 1891 HDZ HIS 129 0.918 -9.447 -2.673 1.00 0.54 ATOM 1893 RD CAD HIS 129 0.918 -9.447 -2.673 1.00 0.54 ATOM 1893 HDZ HIS 129 -2.406 -8.239 -0.370 1.00 0.44 ATOM 1894 NEZ HIS 129 -2.406 -8.239 -0.370 1.00 0.24 ATOM 1895 C HIS 129 -0.614 -13.584 -4.277 1.00 0.24 ATOM 1895 C HIS 129 -0.614 -13.584 -4.277 1.00 0.24 ATOM 1897 N SER 130 0.474 -13.671 -4.999 1.00 0.28 ATOM 1898 RN SER 130 0.474 -13.671 -4.999 1.00 0.24 ATOM 1898 RN SER 130 0.984 -12.862 -5.210 1.00 0.23 ATOM 1898 RN SER 130 0.984 -12.862 -5.210 1.00 0.35 ATOM 1899 C SER 130 0.984 -12.875 -4.486 1.00 0.35 ATOM 1899 C SER 130 0.984 -12.875 -4.486 1.00 0.35 ATOM 1899 C SER 130 0.984 -12.875 -4.486 1.00 0.35 ATOM 1909 C SER 130 1.201 -14.022 -6.982 1.00 0.35 ATOM 1909 RD SER 130 1.201 -14.022 -6.982 1.00 0.35 ATOM 1905 C SER 130 1.201 -14.022 -6.982 1.00 0.35 ATOM 1905 RG SER 130 1.221 -14.022 -6.982 1.00 0.35 ATOM 1906 RD SER 130 1.224 -14.022 -6.982 1.00 0.35 ATOM 1907 C SER 130 2.996 -15.484 -4.609 1.00 0.97 ATOM 1909 RN LYS 131 2.287 -16.775 -4.514 1.00 0.02 ATOM 1909 RN LYS 131 2.287 -16.775 -4.514 1.00 0.32 ATOM 1909 RN LYS 131 1.705 -17.339 -5.003 1.00 0.32 ATOM 1909 RN LYS 131 3.386 -17.310 -3.656 1.00 0.32 ATOM 1911 RA LYS 131 3.386 -17.310 -3.656 1.00 0.32 ATOM 1911 RA LYS 131 3.386 -17.310 -3.656 1.00 0.32 ATOM 1911 RA LYS 131 3.386 -17.310 -3.656 1.00 0.32 ATOM 1912 CB LYS 131 2.903 -18.572 -2.936 1.00 0.34 ATOM 1913 HBL LYS 131 3.065 -16.572 -2.935 1.00 0.42 ATOM 1914 RB2 LYS 131 3.066 -16.677 -2.937 1.00 0.34 ATOM 1915 RD LYS 131 0.906 -19.109 0.008 RD LYS 131 0.006 -19.109 0.009 RD LYS 131 0.006 -19.109 0.008 RD LYS 131 0.006 -19	MOTA	1888	ND1 HIS	129	-1.862 -10.161 -1.156 1.00 0.35	
ATOM 1891 HD2 HTS 129			HD1 HIS			
ATOM 1892 CEI HIS 129 -1,711 -8,842 -0,936 1.00 0.34 ATOM 1894 NEZ HIS 129 -0.597 -8,369 -1.501 1.00 0.44 ATOM 1895 NE HIS 129 -0.614 -13.584 -4.277 1.00 0.24 ATOM 1895 C HIS 129 -0.614 -13.584 -4.277 1.00 0.24 ATOM 1896 O HIS 129 -1.267 -14.566 -3.991 1.00 0.24 ATOM 1897 N SER 130 0.474 -13.671 -4.999 1.00 0.24 ATOM 1898 HN SER 130 0.949 -14.96 -5.210 1.00 0.23 ATOM 1899 CA SER 130 0.949 -14.96 -5.468 1.00 0.23 ATOM 1900 HA SER 130 0.949 -14.96 -5.464 1.00 0.33 ATOM 1901 CB SER 130 0.139 -15.710 -5.464 1.00 0.33 ATOM 1902 HB SER 130 0.139 -15.710 -5.464 1.00 0.32 ATOM 1902 HB SER 130 0.139 -15.710 -5.464 1.00 0.32 ATOM 1904 NG SER 130 0.618 -14.852 -6.938 1.00 0.32 ATOM 1905 HG SER 130 1.254 -14.852 -6.938 1.00 0.35 ATOM 1905 HG SER 130 1.254 -16.002 -7.378 1.00 0.40 ATOM 1905 HG SER 130 1.254 -16.002 -7.378 1.00 0.40 ATOM 1908 N LYS 131 1.254 -16.714 -7.469 1.00 0.97 ATOM 1908 N LYS 131 2.287 -16.775 -4.514 1.00 0.30 ATOM 1908 N LYS 131 2.287 -16.775 -4.514 1.00 0.32 ATOM 1908 N LYS 131 1.705 -17.393 -5.003 1.00 0.22 ATOM 1910 HB SER 130 3.365 -17.310 -3.655 1.00 0.32 ATOM 1912 HB LYS 131 3.365 -16.567 -2.933 1.00 0.32 ATOM 1912 HB LYS 131 3.365 -16.567 -2.933 1.00 0.32 ATOM 1915 HG SER 130 1.986 -1.989 0.00 0.32 ATOM 1916 HG LYS 131 2.707 -1.393 -5.003 1.00 0.32 ATOM 1917 HG SER 130 3.365 -17.310 -3.655 1.00 0.32 ATOM 1918 HD LYS 131 1.705 -17.393 -5.003 1.00 0.32 ATOM 1918 HD LYS 131 2.287 -16.775 -4.514 1.00 0.30 ATOM 1918 HD LYS 131 2.707 -1.389 -3.003 1.00 0.32 ATOM 1918 HB LYS 131 2.709 -17.393 -5.003 1.00 0.32 ATOM 1918 HB LYS 131 0.006 -19.006 -19.006 -10.006 -1					171.1	
ATOM 1889 HEL HIS 129						
ATOM 1894 NEZ HIS 129						
ATOM 1896 O HIS 129 -1.267 -14.568 -3.991 1.00 0.24 ATOM 1897 N SER 130 0.474 -13.671 -4.999 1.00 0.24 ATOM 1898 HN SER 130 0.494 -12.862 -5.210 1.00 0.23 ATOM 1900 HA SER 130 0.949 -14.996 -5.498 1.00 0.33 ATOM 1901 CB SER 130 0.439 -15.710 -5.464 1.00 0.33 ATOM 1902 HBI SER 130 0.618 -14.852 -6.938 1.00 0.31 ATOM 1902 HBI SER 130 2.201 -14.082 -6.938 1.00 0.31 ATOM 1904 OG SER 130 1.980 -16.092 -7.378 1.00 0.40 ATOM 1905 HG SER 130 1.980 -16.092 -7.378 1.00 0.40 ATOM 1906 C SER 130 1.980 -16.092 -7.378 1.00 0.40 ATOM 1907 O SER 130 2.906 -15.484 -4.609 1.00 0.97 ATOM 1908 N LVS 131 2.287 -16.775 -4.514 1.00 0.35 ATOM 1908 N LVS 131 2.287 -16.775 -4.514 1.00 0.30 ATOM 1908 N LVS 131 1.705 -17.393 -5.003 1.00 0.32 ATOM 1910 CB SER 130 3.366 -17.310 -3.656 1.00 0.32 ATOM 1911 HA LVS 131 3.366 -17.310 -3.656 1.00 0.32 ATOM 1912 CB LVS 131 2.903 -18.572 -2.936 1.00 0.34 ATOM 1912 CB LVS 131 2.903 -18.572 -2.936 1.00 0.34 ATOM 1914 HB2 LVS 131 2.907 -18.988 -2.355 1.00 0.40 ATOM 1916 HG1 LVS 131 1.705 -19.99 -3.664 1.00 0.40 ATOM 1916 HG1 LVS 131 1.705 -19.99 -3.664 1.00 0.40 ATOM 1916 HG1 LVS 131 2.907 -17.488 1.276 1.00 0.34 ATOM 1917 HG2 LVS 131 2.907 -17.488 1.276 1.00 0.34 ATOM 1918 CD LVS 131 1.743 -18.214 -2.003 1.00 0.45 ATOM 1918 CD LVS 131 1.092 -17.798 -2.581 1.00 0.45 ATOM 1918 CD LVS 131 1.092 -17.798 -2.581 1.00 1.079 ATOM 1918 CD LVS 131 1.092 -17.798 -2.581 1.00 1.06 ATOM 1920 HD2 LVS 131 0.932 -17.798 -2.581 1.00 1.06 ATOM 1920 HD2 LVS 131 0.932 -17.798 -2.581 1.00 1.05 ATOM 1920 HD2 LVS 131 0.932 -17.798 -2.581 1.00 1.05 ATOM 1920 HD2 LVS 131 0.932 -17.798 -2.581 1.00 1.05 ATOM 1920 HD2 LVS 131 0.932 -17.798 -2.581 1.00 1.05 ATOM 1920 HD2 LVS 131 0.932 -17.798 -2.581 1.00 1.05 ATOM 1930 N ASP 132 0.05 1.00 1.92 ATOM 1930 N ASP 133 0.056 -20.272 1.00 1.03 1.00 1.52 ATOM 1930 HB2 HB2 LVS 131 0.935 -19.479 -19.00 1.00 1.52 ATOM 1930 HB2 HB2 LVS 131 0.935 -19.479 -19.588 1.00 1.00 1.58 ATOM 1930 HB2 HB2 LVS 131 0.935 -19.479 -19.588 1.00 0.334 ATOM 1930 HB2 HB2 HB2 HB3 132 0.056 -10.00 0.30 ATOM 1930	ATOM		NE2 HIS	129	-0.597 -8.369 -1.501 1.00 0.28	
ATOM 1897 N SER 130						
ATOM 1898 HN SER 130						
ATOM 1990 CA SER 130						
ATOM 1900 HA SER 130						
ATOM 1903 HB2 SER 130					0.139 -15.710 -5.464 1.00 0.33	
ATOM 1904 OG SER 130						
ATOM 1905 HG SER 130						
AROM 1906 C SER 130 2.096 -15.484 -4.609 1.00 0.28 AROM 1907 0 SER 130 2.801 -14.696 -4.009 1.00 0.29 AROM 1908 N LYS 131 2.287 -16.775 -4.514 1.00 0.30 AROM 1908 N LYS 131 2.287 -16.775 -4.514 1.00 0.30 AROM 1908 N LYS 131 3.386 -17.310 -3.656 1.00 0.32 AROM 1912 CA LYS 131 3.665 -16.567 -2.933 1.00 0.32 AROM 1912 CB LYS 131 3.665 -16.567 -2.933 1.00 0.34 AROM 1912 CB LYS 131 3.665 -16.567 -2.933 1.00 0.34 AROM 1913 HB1 LYS 131 3.665 -16.567 -2.935 1.00 0.34 AROM 1913 HB1 LYS 131 3.714 -18.988 -2.355 1.00 0.42 AROM 1914 HB2 LYS 131 2.572 -19.298 -3.664 1.00 0.40 AROM 1915 CG LYS 131 1.743 -18.214 AROM 1915 CG LYS 131 0.932 -17.798 -2.581 1.00 0.45 AROM 1915 CG LYS 131 0.932 -17.798 -2.581 1.00 0.45 AROM 1917 HG2 LYS 131 0.932 -17.798 -2.581 1.00 0.79 AROM 1917 HG2 LYS 131 1.257 -19.4724 -1.280 1.00 1.18 AROM 1919 HD1 LYS 131 2.007 -17.488 -1.276 1.00 1.01 AROM 1919 HD1 LYS 131 0.992 -10.999 -2.006 1.00 1.66 AROM 1920 HD2 LYS 131 0.096 -19.108 -0.349 1.00 1.86 AROM 1921 CE LYS 131 0.096 -19.108 -0.349 1.00 1.52 AROM 1922 HE1 LYS 131 0.096 -19.108 -0.349 1.00 1.52 AROM 1923 HE2 LYS 131 0.0565 -10.108 -0.349 1.00 1.52 AROM 1923 HE2 LYS 131 0.0555 -10.22 0.22 1.00 1.93 AROM 1924 NZ LYS 131 -0.174 -20.242 0.581 1.00 2.23 AROM 1925 HZ2 LYS 131 0.355 -18.229 0.222 1.00 1.93 AROM 1927 HZ3 LYS 131 -0.174 -20.242 0.581 1.00 2.23 AROM 1927 HZ3 LYS 131 -0.174 -20.242 0.581 1.00 2.23 AROM 1928 C LYS 131 -0.174 -20.242 0.581 1.00 0.31 AROM 1927 CA ARDM 1930 N ASP 132 4.532 -17.41 -5.804 1.00 0.32 AROM 1930 N ASP 132 4.532 -17.41 -5.804 1.00 0.32 AROM 1931 HN ASP 132 AROM 1930 N ASP 132 4.532 -17.41 -5.804 1.00 0.32 AROM 1931 HN ASP 132 AROM 1930 N ASP						
AROM 1908 N LYS 131					1.254 -16.714 -7.469 1.00 0.97	
AROM 1908 N LYS 131						
ATOM 1909 HN LYS 131					2.801 -14.696 -4.009 1.00 0.29	
ATOM 1911 HA LYS 131					1.705 -17.393 -5.003 1.00 0.32	
ATOM 1912 CB LYS 131	ATOM					
ATOM 1914 HB1 LYS 131						
ARCM 1915 CG LYS 131						
ATCM 1915 CG LYS 131			HB2 LYS		2.572 -19.298, -3.664 1.00 0.40	
ATOM 1917 HG2 LYS 131 2.077 -17.488 -1.276 1.00 1.01 ATOM 1918 CD LYS 131 1.255 -19.472 -1.280 1.00 1.01 ATOM 1919 HD1 LYS 131 1.255 -19.472 -1.280 1.00 1.08 ATOM 1920 HD2 LYS 131 0.921 -20.199 -2.006 1.00 1.86 ATOM 1921 CE LYS 131 0.921 -20.199 -2.006 1.00 1.66 ATOM 1922 HE1 LYS 131 0.921 -20.199 -2.006 1.00 1.52 ATOM 1923 HE2 LYS 131 -0.788 -18.299 0.222 1.00 1.93 ATOM 1923 HE2 LYS 131 0.355 -18.229 0.222 1.00 1.93 ATOM 1923 HE2 LYS 131 -0.174 -20.420 0.581 1.00 2.23 ATOM 1925 HZ1 LYS 131 -1.103 -20.109 1.030 1.00 2.72 ATOM 1926 HZ2 LYS 131 -0.174 -21.135 0.050 1.00 2.72 ATOM 1927 HZ3 LYS 131 -0.174 -21.135 0.050 1.00 2.72 ATOM 1928 C LYS 131 4.604 -17.649 -4.521 1.00 0.31 ATOM 1929 O LYS 131 5.612 -18.116 -4.027 1.00 0.34 ATOM 1930 N ASP 132 4.532 -17.411 -5.804 1.00 0.28 ATOM 1931 HN ASP 132 3.717 -17.028 -6.190 1.00 0.28 ATOM 1933 HA ASP 132 6.187 -18.601 -6.302 1.00 0.32 ATOM 1934 CB ASP 132 5.703 -17.719 -6.674 1.00 0.30 ATOM 1935 HB1 ASP 132 6.187 -18.601 -6.302 1.00 0.32 ATOM 1934 CB ASP 132 6.487 -18.601 -6.302 1.00 0.32 ATOM 1935 HB1 ASP 132 4.727 -17.090 -8.483 1.00 0.31 ATOM 1936 HB2 ASP 132 6.487 -18.601 -6.502 1.00 0.32 ATOM 1937 CG ASP 132 6.457 -19.371 -9.558 1.00 1.31 ATOM 1938 ODI ASP 132 6.457 -19.371 -9.558 1.00 1.35 ATOM 1934 CB ASP 132 6.457 -19.371 -9.558 1.00 0.35 ATOM 1934 CB ASP 132 6.457 -19.371 -9.558 1.00 0.35 ATOM 1940 C ASP 132 6.457 -19.371 -9.558 1.00 0.35 ATOM 1940 C ASP 132 6.656 -16.501 -6.659 1.00 0.38 ATOM 1940 C ASP 132 6.457 -19.371 -9.558 1.00 0.36 ATOM 1940 C ASP 132 6.457 -19.371 -9.558 1.00 0.35 ATOM 1940 C ASP 132 6.457 -19.371 -9.558 1.00 0.35 ATOM 1940 C ASP 132 6.457 -19.371 -9.558 1.00 0.35 ATOM 1940 C ASP 132 6.457 -19.371 -9.558 1.00 0.35 ATOM 1940 C ASP 133 10.041 -15.694 -4.867 1.00 0.35 ATOM 1940 C ASP 133 10.041 -15.694 -4.867 1.00 0.35 ATOM 1940 C ASP 133 10.041 -15.694 -4.867 1.00 0.35 ATOM 1940 C ASP 133 10.041 -15.694 -4.867 1.00 0.35 ATOM 1940 C ASP 133 10.041 -15.694 -4.867 1.00 0.35 ATOM 1940 C ASP 133 10.041 -15.694 -4.867 1.00 0.36 ATOM 1940 C ASP					1.743 -18.214 -2.003 1.00 0.45	
ATOM 1919 DL LYS 131					0.932 -17.798 -2.581 1.00 0.79	
ATOM 1919 HD1 LYS 131						
ATOM 1920 HD2 LYS 131					211 22 22 21 21 2 2 2 2 2 2 2 2 2 2 2 2	
ATOM 1921 CE LYS 131						
ATOM 1923 HEZ LYS 131				131	0.096 -19.108 -0.349 1.00 1.52	
ATOM 1924 NZ LYS 131 -0.174 -20.242 0.581 1.00 2.23 ATOM 1925 HZ1 LYS 131 -1.103 -20.109 1.030 1.00 2.72 ATOM 1926 HZ2 LYS 131 0.565 -20.272 1.313 1.00 2.53 ATOM 1927 HZ3 LYS 131 -0.174 -21.135 0.050 1.00 2.72 ATOM 1928 C LYS 131 4.604 -17.649 -4.521 1.00 0.31 ATOM 1929 O LYS 131 5.612 -18.116 -4.027 1.00 0.34 ATOM 1930 N ASP 132 4.532 -17.411 -5.804 1.00 0.29 ATOM 1931 HN ASP 132 3.717 -17.028 -6.190 1.00 0.28 ATOM 1932 CA ASP 132 3.717 -17.028 -6.190 1.00 0.28 ATOM 1933 HA ASP 132 6.187 -18.601 -6.302 1.00 0.30 ATOM 1934 CB ASP 132 5.252 -17.970 -8.108 1.00 0.32 ATOM 1935 HB1 ASP 132 4.727 -17.090 -8.483 1.00 0.31 ATOM 1936 HB2 ASP 132 4.727 -17.090 -8.483 1.00 0.31 ATOM 1937 CG ASP 132 4.539 -18.804 -8.118 1.00 0.34 ATOM 1938 OD1 ASP 132 6.457 -19.371 -9.558 1.00 1.10 ATOM 1938 OD1 ASP 132 6.457 -19.371 -9.558 1.00 1.10 ATOM 1940 C ASP 132 7.306 -17.446 -9.097 1.00 1.15 ATOM 1940 C ASP 132 6.266 -16.501 -6.659 1.00 0.28 ATOM 1941 O ASP 132 6.266 -16.501 -6.659 1.00 0.28 ATOM 1944 HA PRO 133 7.930 -16.658 -6.328 1.00 0.31 ATOM 1944 HA PRO 133 7.930 -16.658 -6.328 1.00 0.31 ATOM 1945 CB PRO 133 10.441 -15.694 -4.867 1.00 0.34 ATOM 1946 HB1 PRO 133 10.441 -15.694 -4.867 1.00 0.36 ATOM 1948 CG PRO 133 10.949 -15.869 -6.549 1.00 0.31 ATOM 1949 HG1 PRO 133 10.049 -15.869 -6.549 1.00 0.36 ATOM 1949 HG1 PRO 133 10.049 -15.869 -6.549 1.00 0.31 ATOM 1949 HG1 PRO 133 10.049 -15.869 -6.549 1.00 0.31 ATOM 1949 HG1 PRO 133 10.049 -15.869 -6.549 1.00 0.34 ATOM 1949 HG1 PRO 133 10.049 -15.869 -6.549 1.00 0.34 ATOM 1955 HD2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1955 HD2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1950 HG2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1951 CD PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1955 O RO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1950 HG2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1955 O RO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1955 O RO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1955 O RO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1955 O RO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1956					-0.788 -18.908 -0.937 1.00 1.92	
ATOM 1925 HZ1 LYS 131 -1.103 -20.109 1.030 1.00 2.72 ATOM 1926 HZ2 LYS 131 0.565 -20.272 1.313 1.00 2.53 ATOM 1927 HZ3 LYS 131 -0.174 -21.135 0.050 1.00 2.72 ATOM 1928 C LYS 131 4.604 -17.649 -4.521 1.00 0.31 ATOM 1929 O LYS 131 5.612 -18.116 -4.027 1.00 0.34 ATOM 1930 N ASP 132 4.532 -17.411 -5.804 1.00 0.29 ATOM 1931 HN ASP 132 3.717 -17.028 -6.190 1.00 0.28 ATOM 1931 HN ASP 132 5.703 -17.119 -6.674 1.00 0.32 ATOM 1933 HA ASP 132 5.703 -17.119 -6.674 1.00 0.32 ATOM 1934 CB ASP 132 5.225 -17.970 -8.108 1.00 0.32 ATOM 1935 HB1 ASP 132 5.225 -17.970 -8.108 1.00 0.32 ATOM 1936 HB2 ASP 132 4.727 -17.090 -8.483 1.00 0.31 ATOM 1937 CG ASP 132 4.539 -18.804 -8.118 1.00 0.34 ATOM 1938 OD1 ASP 132 6.430 -18.289 -8.996 1.00 0.35 ATOM 1939 OD2 ASP 132 6.457 -19.371 -9.558 1.00 1.15 ATOM 1940 C ASP 132 6.656 -16.501 -6.659 1.00 0.28 ATOM 1941 O ASP 132 6.656 -16.501 -6.659 1.00 0.28 ATOM 1942 N PRO 133 7.930 -16.658 -6.328 1.00 0.30 ATOM 1943 CA PRO 133 8.852 -15.484 -6.966 1.00 0.32 ATOM 1944 HA PRO 133 8.852 -15.484 -6.966 1.00 0.31 ATOM 1945 CB PRO 133 10.441 -15.694 -4.867 1.00 0.36 ATOM 1946 HB1 PRO 133 10.441 -15.694 -4.867 1.00 0.36 ATOM 1947 HB2 PRO 133 10.073 -16.658 -6.556 1.00 0.32 ATOM 1948 CG PRO 133 10.073 -16.659 -6.542 1.00 0.36 ATOM 1949 HG1 PRO 133 8.517 -14.766 -5.566 1.00 0.31 ATOM 1949 HG1 PRO 133 10.094 -15.869 -6.559 1.00 0.36 ATOM 1949 HG1 PRO 133 8.517 -14.766 -5.566 1.00 0.31 ATOM 1949 HG1 PRO 133 10.093 -17.940 -4.732 1.00 0.551 ATOM 1950 HG2 PRO 133 10.093 -17.940 -4.732 1.00 0.551 ATOM 1950 HG2 PRO 133 8.091 -18.362 -5.069 1.00 0.35 ATOM 1955 O PRO 133 8.091 -18.362 -5.069 1.00 0.35 ATOM 1955 N GLY 134 8.664 -17.972 -5.969 1.00 0.35 ATOM 1958 CA GLY 134 8.660 -14.856 -10.074 1.00 0.36 ATOM 1959 HA1 GLY 134 8.860 -14.856 -10.074 1.00 0.36 ATOM 1950 HA2 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1950 HA2 GLY 134 9.048 -15.630 -10.047 1.00 0.36 ATOM 1950 HA2 GLY 134 9.048 -15.630 -10.047 1.00 0.36 ATOM 1950 HA2 GLY 134 9.048 -15.630 -10.047 1.00 0.36					0.355 -18.229 0.222 1.00 1.93	
ATOM 1926 HZ2 LYS 131					-0.1/4 -20.242 0.581 1.00 2.23	
ATOM 1927 HZ3 LYS 131						
ATOM 1929 O LYS 131				131	-0.174 -21.135 0.050 1.00 2.72	
ATOM 1930 N ASP 132 4.532 -17.411 -5.804 1.00 0.29 ATOM 1931 HN ASP 132 3.717 -17.028 -6.190 1.00 0.28 ATOM 1932 CA ASP 132 5.703 -17.719 -6.674 1.00 0.30 ATOM 1933 HA ASP 132 6.187 -18.601 -6.302 1.00 0.32 ATOM 1934 CB ASP 132 5.225 -17.970 -8.108 1.00 0.32 ATOM 1935 HB1 ASP 132 4.727 -17.090 -8.483 1.00 0.31 ATOM 1936 HB2 ASP 132 4.539 -18.804 -8.118 1.00 0.34 ATOM 1937 CG ASP 132 6.430 -18.289 -8.996 1.00 0.35 ATOM 1938 OD1 ASP 132 6.457 -19.371 -9.558 1.00 1.10 ATOM 1939 OD2 ASP 132 7.306 -17.446 -9.097 1.00 1.15 ATOM 1940 C ASP 132 6.656 -16.501 -6.659 1.00 0.28 ATOM 1941 O ASP 132 6.226 -15.399 -6.939 1.00 0.28 ATOM 1942 N PRO 133 7.930 -16.658 -6.328 1.00 0.30 ATOM 1943 CA PRO 133 8.852 -15.484 -6.296 1.00 0.31 ATOM 1944 HA PRO 133 8.852 -15.484 -6.296 1.00 0.31 ATOM 1946 HB1 PRO 133 10.173 -16.097 -5.832 1.00 0.36 ATOM 1946 HB1 PRO 133 10.441 -15.694 -4.867 1.00 0.36 ATOM 1947 HB2 PRO 133 10.949 -15.869 -6.549 1.00 0.41 ATOM 1949 HG1 PRO 133 10.949 -15.869 -6.549 1.00 0.41 ATOM 1949 HG1 PRO 133 10.097 -17.615 -5.721 1.00 0.42 ATOM 1950 HG2 PRO 133 10.097 -17.615 -5.721 1.00 0.51 ATOM 1950 HG2 PRO 133 10.293 -17.940 -4.732 1.00 0.51 ATOM 1950 HG2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1950 HG2 PRO 133 8.540 -17.972 -5.969 1.00 0.34 ATOM 1950 HG2 PRO 133 8.540 -17.972 -5.969 1.00 0.34 ATOM 1955 HD2 PRO 133 8.540 -17.972 -5.969 1.00 0.35 ATOM 1954 C PRO 133 8.540 -17.972 -5.969 1.00 0.34 ATOM 1955 HD2 PRO 133 8.6540 -17.972 -5.969 1.00 0.35 ATOM 1954 C PRO 133 8.646 -18.679 -6.785 1.00 0.35 ATOM 1955 N GLY 134 8.684 -15.477 -8.729 1.00 0.35 ATOM 1955 N GLY 134 8.684 -15.477 -8.729 1.00 0.35 ATOM 1956 N GLY 134 8.684 -15.477 -8.729 1.00 0.35 ATOM 1956 N GLY 134 8.686 -14.687 -10.047 1.00 0.36 ATOM 1950 HG2 C GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1956 N GLY 134 8.686 -14.687 -10.471 1.00 0.34 ATOM 1956 N GLY 134 8.686 -14.687 -9.683 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.29						
ATOM 1931 HN ASP 132 3.717 -17.028 -6.190 1.00 0.28 ATOM 1932 CA ASP 132 5.703 -17.719 -6.674 1.00 0.30 ATOM 1933 HA ASP 132 6.187 -18.601 -6.302 1.00 0.32 ATOM 1934 CB ASP 132 5.225 -17.970 -8.108 1.00 0.32 ATOM 1935 HB1 ASP 132 4.727 -17.090 -8.483 1.00 0.31 ATOM 1936 HB2 ASP 132 4.539 -18.804 -8.118 1.00 0.34 ATOM 1937 CG ASP 132 6.457 -19.371 -9.558 1.00 1.10 ATOM 1938 OD1 ASP 132 6.457 -19.371 -9.558 1.00 1.10 ATOM 1939 OD2 ASP 132 7.306 -17.446 -9.097 1.00 1.15 ATOM 1940 C ASP 132 6.656 -16.501 -6.659 1.00 0.28 ATOM 1941 O ASP 132 6.626 -15.399 -6.939 1.00 0.28 ATOM 1942 N PRO 133 7.930 -16.658 -6.328 1.00 0.30 ATOM 1944 HA PRO 133 8.852 -15.484 -6.296 1.00 0.31 ATOM 1945 CB PRO 133 10.173 -16.097 -5.832 1.00 0.32 ATOM 1946 HB1 PRO 133 10.173 -16.097 -5.832 1.00 0.36 ATOM 1946 HB1 PRO 133 10.441 -15.694 -4.867 1.00 0.36 ATOM 1949 HG1 PRO 133 10.007 -17.615 -5.721 1.00 0.41 ATOM 1949 HG1 PRO 133 10.007 -17.615 -5.721 1.00 0.42 ATOM 1950 HG2 PRO 133 10.007 -17.615 -5.721 1.00 0.42 ATOM 1950 HG2 PRO 133 8.540 -17.972 -5.969 1.00 0.31 ATOM 1950 HG2 PRO 133 8.540 -17.972 -5.969 1.00 0.35 ATOM 1955 HD2 PRO 133 8.456 -18.679 -6.785 1.00 0.35 ATOM 1955 HG2 PRO 133 8.456 -18.679 -6.785 1.00 0.35 ATOM 1955 HG2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1955 HG2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1955 HG2 PRO 133 8.456 -18.679 -6.785 1.00 0.35 ATOM 1955 HG2 PRO 133 9.032 -14.810 -7.662 1.00 0.34 ATOM 1955 HG2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1955 HG2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1955 HG2 PRO 133 8.456 -18.679 -6.785 1.00 0.35 ATOM 1956 N GLY 134 8.684 -15.477 -8.729 1.00 0.35 ATOM 1956 N GLY 134 8.860 -14.856 -10.074 1.00 0.34 ATOM 1956 N GLY 134 8.860 -14.856 -10.074 1.00 0.34 ATOM 1956 N GLY 134 8.860 -14.856 -10.074 1.00 0.34 ATOM 1956 N GLY 134 8.860 -14.856 -10.074 1.00 0.34 ATOM 1956 N GLY 134 8.860 -14.856 -10.074 1.00 0.35 ATOM 1960 HA2 GLY 134 9.048 -15.630 -10.471 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.27					5.612 -18.116 -4.027 1.00 0.34	
ATOM 1932 CA ASP 132 5.703 -17.719 -6.674 1.00 0.30 ATOM 1933 HA ASP 132 6.187 -18.601 -6.302 1.00 0.32 ATOM 1935 HB1 ASP 132 5.225 -17.970 -8.108 1.00 0.31 ATOM 1936 HB2 ASP 132 4.727 -17.090 -8.483 1.00 0.31 ATOM 1936 HB2 ASP 132 4.539 -18.804 -8.118 1.00 0.34 ATOM 1937 CG ASP 132 6.430 -18.289 -8.996 1.00 0.35 ATOM 1938 OD1 ASP 132 6.457 -19.371 -9.558 1.00 1.10 ATOM 1939 OD2 ASP 132 7.306 -17.446 -9.097 1.00 1.15 ATOM 1940 C ASP 132 6.656 -16.501 -6.659 1.00 0.28 ATOM 1941 O ASP 132 6.656 -16.501 -6.659 1.00 0.28 ATOM 1942 N PRO 133 7.930 -16.658 -6.328 1.00 0.30 ATOM 1943 CA PRO 133 8.852 -15.484 -6.296 1.00 0.31 ATOM 1944 HA PRO 133 8.8517 -14.766 -5.566 1.00 0.32 ATOM 1945 CB PRO 133 10.173 -16.097 -5.832 1.00 0.36 ATOM 1946 HB1 PRO 133 10.173 -16.097 -5.832 1.00 0.36 ATOM 1947 HB2 PRO 133 10.949 -15.869 -6.549 1.00 0.41 ATOM 1949 HG1 PRO 133 10.949 -15.869 -6.549 1.00 0.41 ATOM 1950 HG2 PRO 133 10.097 -17.615 -5.721 1.00 0.42 ATOM 1950 HG2 PRO 133 10.630 -18.103 -6.457 1.00 0.51 ATOM 1951 CD PRO 133 8.540 -17.972 -5.969 1.00 0.35 ATOM 1952 HD2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1953 HD1 PRO 133 8.540 -17.972 -5.969 1.00 0.34 ATOM 1954 C PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1955 HD2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1957 HN GLY 134 8.664 -15.477 -8.729 1.00 0.34 ATOM 1958 CA GLY 134 8.660 -14.856 -10.074 1.00 0.35 ATOM 1958 CA GLY 134 8.660 -14.856 -10.074 1.00 0.37 ATOM 1959 HA1 GLY 134 8.680 -14.856 -10.074 1.00 0.37 ATOM 1950 HA2 GLY 134 8.660 -14.856 -10.074 1.00 0.37 ATOM 1950 C GLY 134 8.660 -14.856 -10.074 1.00 0.37 ATOM 1950 C GLY 134 8.660 -14.856 -10.074 1.00 0.37 ATOM 1950 C GLY 134 7.598 -14.087 -10.471 1.00 0.29 ATOM 1960 C GLY 134 7.598 -14.087 -10.471 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.688 1.00 0.27					3.717 -17.028 -6.190 1.00 0.29	
ATOM 1934 CB ASP 132			CA ASP	132 .	5.703 -17.719 -6.674 1.00 0.30	
ATOM 1935 HB1 ASP 132						
ATOM 1936 HB2 ASP 132					5.225 -17.970 -8.108 1.00 0.32	
ATOM 1937 CG ASP 132 6.430 -18.289 -8.996 1.00 0.35 ATOM 1938 OD1 ASP 132 6.457 -19.371 -9.558 1.00 1.10 ATOM 1939 OD2 ASP 132 7.306 -17.446 -9.097 1.00 1.15 ATOM 1940 C ASP 132 6.656 -16.501 -6.659 1.00 0.28 ATOM 1941 O ASP 132 6.226 -15.399 -6.939 1.00 0.28 ATOM 1942 N PRO 133 7.930 -16.658 -6.328 1.00 0.30 ATOM 1943 CA PRO 133 8.552 -15.484 -6.296 1.00 0.31 ATOM 1944 HA PRO 133 8.552 -15.484 -6.296 1.00 0.32 ATOM 1945 CB PRO 133 10.173 -16.097 -5.832 1.00 0.36 ATOM 1946 HB1 PRO 133 10.441 -15.694 -4.867 1.00 0.36 ATOM 1946 CG PRO 133 10.949 -15.869 -6.549 1.00 0.41 ATOM 1948 CG PRO 133 10.007 -17.615 -5.721 1.00 0.42 ATOM 1949 HG1 PRO 133 10.029 -17.940 -4.732 1.00 0.51 ATOM 1950 HG2 PRO 133 10.630 -18.103 -6.457 1.00 0.51 ATOM 1951 CD PRO 133 8.540 -17.972 -5.969 1.00 0.34 ATOM 1952 HD2 PRO 133 8.540 -17.972 -5.969 1.00 0.34 ATOM 1954 C PRO 133 8.91 -18.362 -5.069 1.00 0.34 ATOM 1955 HD2 PRO 133 8.91 -18.362 -5.069 1.00 0.34 ATOM 1955 O PRO 133 9.032 -14.810 -7.662 1.00 0.34 ATOM 1955 N GLY 134 8.684 -15.477 -8.729 1.00 0.34 ATOM 1955 CA GLY 134 8.860 -14.856 -10.074 1.00 0.35 ATOM 1959 HA1 GLY 134 8.320 -16.382 8.647 1.00 0.35 ATOM 1959 HA1 GLY 134 8.320 -16.382 8.647 1.00 0.35 ATOM 1950 CA GLY 134 8.320 -16.382 8.647 1.00 0.35 ATOM 1950 CA GLY 134 8.360 -14.856 -10.074 1.00 0.34 ATOM 1950 CA GLY 134 8.320 -16.382 8.647 1.00 0.35 ATOM 1950 CA GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1950 CA GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1950 CA GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1960 CA GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1960 CA GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1960 CA GLY 134 9.048 -15.630 -10.803 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.29						
ATOM 1939 OD2 ASP 132	MOTA	1937				
ATOM 1940 C ASP 132 6.656 -16.501 -6.659 1.00 0.28 ATOM 1941 O ASP 132 6.226 -15.399 -6.939 1.00 0.28 ATOM 1942 N PRO 133 7.930 -16.658 -6.328 1.00 0.30 ATOM 1943 CA PRO 133 8.852 -15.484 -6.296 1.00 0.31 ATOM 1944 HA PRO 133 8.517 -14.766 -5.566 1.00 0.32 ATOM 1945 CB PRO 133 10.173 -16.097 -5.832 1.00 0.36 ATOM 1946 HB1 PRO 133 10.441 -15.694 -4.867 1.00 0.36 ATOM 1947 HB2 PRO 133 10.949 -15.869 -6.549 1.00 0.41 ATOM 1948 CG PRO 133 10.007 -17.615 -5.721 1.00 0.42 ATOM 1949 HG1 PRO 133 10.293 -17.940 -4.732 1.00 0.51 ATOM 1950 HG2 PRO 133 8.540 -17.972 -5.969 1.00 0.51 ATOM 1951 CD PRO 133 8.540 -17.972 -5.969 1.00 0.35 ATOM 1952 HD2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1953 HD1 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1955 O PRO 133 9.032 -14.810 -7.662 1.00 0.31 ATOM 1955 N GLY 134 8.684 -15.630 -10.803 1.00 0.32 ATOM 1958 CA GLY 134 8.684 -15.630 -10.803 1.00 0.37 ATOM 1959 HA1 GLY 134 8.860 -14.856 -10.074 1.00 0.34 ATOM 1959 HA1 GLY 134 8.860 -14.856 -10.074 1.00 0.35 ATOM 1959 HA1 GLY 134 8.860 -14.856 -10.074 1.00 0.37 ATOM 1950 N GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1961 C GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1962 O GLY 134 7.598 -14.087 -10.471 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.27						
ATOM 1941 O ASP 132 6.226 -15.399 -6.339 1.00 0.28 ATOM 1942 N PRO 133 7.930 -16.658 -6.328 1.00 0.30 ATOM 1943 CA PRO 133 8.852 -15.484 -6.296 1.00 0.31 ATOM 1944 HA PRO 133 8.517 -14.766 -5.566 1.00 0.32 ATOM 1945 CB PRO 133 10.173 -16.097 -5.832 1.00 0.36 ATOM 1946 HB1 PRO 133 10.441 -15.694 -4.867 1.00 0.36 ATOM 1947 HB2 PRO 133 10.949 -15.869 -6.549 1.00 0.41 ATOM 1948 CG PRO 133 10.007 -17.615 -5.721 1.00 0.42 ATOM 1949 HG1 PRO 133 10.007 -17.615 -5.721 1.00 0.42 ATOM 1949 HG2 PRO 133 10.630 -18.103 -6.457 1.00 0.51 ATOM 1950 HG2 PRO 133 8.540 -17.940 -4.732 1.00 0.51 ATOM 1951 CD PRO 133 8.540 -17.972 -5.969 1.00 0.35 ATOM 1952 HD2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1953 HD1 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1955 O PRO 133 9.032 -14.810 -7.662 1.00 0.31 ATOM 1955 N GLY 134 8.684 -15.477 -8.729 1.00 0.32 ATOM 1957 HN GLY 134 8.320 -16.382 -8.647 1.00 0.32 ATOM 1958 CA GLY 134 8.860 -14.856 -10.074 1.00 0.34 ATOM 1959 HA1 GLY 134 8.860 -14.856 -10.074 1.00 0.35 ATOM 1950 HA2 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1961 C GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1962 O GLY 134 7.598 -14.087 -10.471 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.27						
ATOM 1942 N PRO 133 7.930 -16.658 -6.328 1.00 0.30 ATOM 1943 CA PRO 133 8.852 -15.484 -6.296 1.00 0.31 ATOM 1944 HA PRO 133 8.517 -14.766 -5.566 1.00 0.32 ATOM 1945 CB PRO 133 10.173 -16.097 -5.832 1.00 0.36 ATOM 1946 HB1 PRO 133 10.441 -15.694 -4.867 1.00 0.36 ATOM 1947 HB2 PRO 133 10.949 -15.869 -6.549 1.00 0.41 ATOM 1948 CG PRO 133 10.007 -17.615 -5.721 1.00 0.42 ATOM 1949 HG1 PRO 133 10.293 -17.940 -4.732 1.00 0.51 ATOM 1950 HG2 PRO 133 10.630 -18.103 -6.457 1.00 0.51 ATOM 1951 CD PRO 133 8.540 -17.972 -5.969 1.00 0.35 ATOM 1952 HD2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1953 HD1 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1955 O PRO 133 9.032 -14.810 -7.662 1.00 0.31 ATOM 1955 N GLY 134 8.684 -15.477 -8.729 1.00 0.34 ATOM 1955 N GLY 134 8.684 -15.477 -8.729 1.00 0.32 ATOM 1958 CA GLY 134 8.860 -14.856 -10.074 1.00 0.34 ATOM 1959 HA1 GLY 134 8.860 -14.856 -10.074 1.00 0.35 ATOM 1959 HA1 GLY 134 8.860 -14.856 -10.074 1.00 0.35 ATOM 1950 HA2 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1960 HA2 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1961 C GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1961 C GLY 134 7.598 -14.087 -10.471 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.27					6.226 -15.399 -6.939 1.00 0.28	
ATOM 1944 HA PRO 133 8.517 -14.766 -5.566 1.00 0.32 ATOM 1945 CB PRO 133 10.173 -16.097 -5.832 1.00 0.36 ATOM 1946 HB1 PRO 133 10.441 -15.694 -4.867 1.00 0.36 ATOM 1947 HB2 PRO 133 10.949 -15.869 -6.549 1.00 0.41 ATOM 1948 CG PRO 133 10.007 -17.615 -5.721 1.00 0.42 ATOM 1949 HG1 PRO 133 10.293 -17.940 -4.732 1.00 0.51 ATOM 1950 HG2 PRO 133 10.630 -18.103 -6.457 1.00 0.51 ATOM 1951 CD PRO 133 8.540 -17.972 -5.969 1.00 0.35 ATOM 1952 HD2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1953 HD1 PRO 133 8.991 -18.362 -5.069 1.00 0.38 ATOM 1954 C PRO 133 9.032 -14.810 -7.662 1.00 0.31 ATOM 1955 O PRO 133 9.496 -13.691 -7.749 1.00 0.34 ATOM 1956 N GLY 134 8.684 -15.477 -8.729 1.00 0.32 ATOM 1957 HN GLY 134 8.320 -16.382 -8.647 1.00 0.34 ATOM 1958 CA GLY 134 8.860 -14.856 -10.074 1.00 0.34 ATOM 1959 HA1 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1960 HA2 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1961 C GLY 134 7.598 -14.087 -10.471 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.27			N PRO	133	7.930 -16.658 -6.328 1.00 0.30	
ATOM 1945 CB PRO 133 10.173 -16.097 -5.832 1.00 0.36 ATOM 1946 HB1 PRO 133 10.441 -15.694 -4.867 1.00 0.36 ATOM 1947 HB2 PRO 133 10.949 -15.869 -6.549 1.00 0.41 ATOM 1948 CG PRO 133 10.007 -17.615 -5.721 1.00 0.42 ATOM 1949 HG1 PRO 133 10.293 -17.940 -4.732 1.00 0.51 ATOM 1950 HG2 PRO 133 10.630 -18.103 -6.457 1.00 0.51 ATOM 1951 CD PRO 133 8.540 -17.972 -5.969 1.00 0.35 ATOM 1952 HD2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1953 HD1 PRO 133 8.091 -18.362 -5.069 1.00 0.38 ATOM 1954 C PRO 133 9.032 -14.810 -7.662 1.00 0.31 ATOM 1955 O PRO 133 9.496 -13.691 -7.749 1.00 0.34 ATOM 1956 N GLY 134 8.684 -15.477 -8.729 1.00 0.32 ATOM 1957 HN GLY 134 8.320 -16.382 -8.647 1.00 0.32 ATOM 1958 CA GLY 134 8.860 -14.856 -10.074 1.00 0.34 ATOM 1959 HA1 GLY 134 8.860 -14.856 -10.074 1.00 0.37 ATOM 1960 HA2 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1961 C GLY 134 7.598 -14.087 -10.471 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.27						
ATOM 1946 HB1 PRO 133 10.441 -15.694 -4.867 1.00 0.36 ATOM 1947 HB2 PRO 133 10.949 -15.869 -6.549 1.00 0.41 ATOM 1948 CG PRO 133 10.007 -17.615 -5.721 1.00 0.42 ATOM 1949 HG1 PRO 133 10.293 -17.940 -4.732 1.00 0.51 ATOM 1950 HG2 PRO 133 10.630 -18.103 -6.457 1.00 0.51 ATOM 1951 CD PRO 133 8.540 -17.972 -5.969 1.00 0.35 ATOM 1952 HD2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1953 HD1 PRO 133 8.456 -18.679 -6.785 1.00 0.38 ATOM 1954 C PRO 133 8.091 -18.362 -5.069 1.00 0.38 ATOM 1955 O PRO 133 9.032 -14.810 -7.662 1.00 0.31 ATOM 1955 N GLY 134 8.684 -15.477 -8.729 1.00 0.34 ATOM 1956 N GLY 134 8.684 -15.477 -8.729 1.00 0.32 ATOM 1957 HN GLY 134 8.320 -16.382 -8.647 1.00 0.35 ATOM 1958 CA GLY 134 8.860 -14.856 -10.074 1.00 0.34 ATOM 1959 HA1 GLY 134 8.860 -14.856 -10.074 1.00 0.35 ATOM 1959 HA1 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1960 HA2 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1961 C GLY 134 7.598 -14.087 -10.471 1.00 0.29 ATOM 1962 O GLY 134 7.563 -13.420 -11.486 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.27					8.517 -14.766 -5.566 1.00 0.32	
ATOM 1947 HB2 PRO 133 10.949 -15.869 -6.549 1.00 0.41 ATOM 1948 CG PRO 133 10.007 -17.615 -5.721 1.00 0.42 ATOM 1949 HG1 PRO 133 10.293 -17.940 -4.732 1.00 0.51 ATOM 1950 HG2 PRO 133 10.630 -18.103 -6.457 1.00 0.51 ATOM 1951 CD PRO 133 8.540 -17.972 -5.969 1.00 0.35 ATOM 1952 HD2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1953 HD1 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1954 C PRO 133 8.091 -18.362 -5.069 1.00 0.38 ATOM 1955 O PRO 133 9.032 -14.810 -7.662 1.00 0.31 ATOM 1955 N GLY 134 8.684 -13.691 -7.749 1.00 0.34 ATOM 1956 N GLY 134 8.684 -15.477 -8.729 1.00 0.32 ATOM 1957 HN GLY 134 8.320 -16.382 -8.647 1.00 0.35 ATOM 1958 CA GLY 134 8.860 -14.856 -10.074 1.00 0.35 ATOM 1959 HA1 GLY 134 8.860 -14.856 -10.074 1.00 0.35 ATOM 1959 HA1 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1961 C GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1961 C GLY 134 9.701 -14.177 -10.047 1.00 0.36 ATOM 1961 C GLY 134 7.598 -14.087 -10.471 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.27					10.441 -15.694 -4.867 1.00 0.36	
ATOM 1949 HG1 PRO 133 10.293 -17.940 -4.732 1.00 0.51 ATOM 1950 HG2 PRO 133 10.630 -18.103 -6.457 1.00 0.51 ATOM 1951 CD PRO 133 8.540 -17.972 -5.969 1.00 0.35 ATOM 1952 HD2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1953 HD1 PRO 133 8.091 -18.362 -5.069 1.00 0.38 ATOM 1954 C PRO 133 9.032 -14.810 -7.662 1.00 0.31 ATOM 1955 O PRO 133 9.032 -14.810 -7.662 1.00 0.31 ATOM 1956 N GLY 134 8.684 -15.630 -7.749 1.00 0.34 ATOM 1957 HN GLY 134 8.320 -16.382 -8.647 1.00 0.32 ATOM 1958 CA GLY 134 8.320 -16.382 -8.647 1.00 0.35 ATOM 1959 HA1 GLY 134 8.860 -14.856 -10.074 1.00 0.34 ATOM 1959 HA1 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1950 HA2 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1960 HA2 GLY 134 9.701 -14.177 -10.047 1.00 0.36 ATOM 1961 C GLY 134 7.598 -14.087 -10.471 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.27			HB2 PRO	133	10.949 -15.869 -6.549 1.00 0.41	
ATOM 1950 HG2 PRO 133 10.630 -18.103 -6.457 1.00 0.51 ATOM 1951 CD PRO 133 8.540 -17.972 -5.969 1.00 0.35 ATOM 1952 HD2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1953 HD1 PRO 133 8.091 -18.362 -5.069 1.00 0.38 ATOM 1954 C PRO 133 9.032 -14.810 -7.662 1.00 0.31 ATOM 1955 O PRO 133 9.496 -13.691 -7.749 1.00 0.34 ATOM 1956 N GLY 134 8.684 -15.630 -10.7749 1.00 0.32 ATOM 1957 HN GLY 134 8.320 -16.382 -8.647 1.00 0.35 ATOM 1958 CA GLY 134 8.860 -14.856 -10.074 1.00 0.35 ATOM 1959 HA1 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1959 HA2 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1960 HA2 GLY 134 9.701 -14.177 -10.047 1.00 0.36 ATOM 1961 C GLY 134 7.598 -14.087 -10.471 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.27						
ATOM 1951 CD PRO 133 8.540 -17.972 -5.969 1.00 0.35 ATOM 1952 HD2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1953 HD1 PRO 133 8.091 -18.362 -5.069 1.00 0.38 ATOM 1954 C PRO 133 9.032 -14.810 -7.662 1.00 0.31 ATOM 1955 O PRO 133 9.496 -13.691 -7.749 1.00 0.34 ATOM 1956 N GLY 134 8.684 -15.630 -7.749 1.00 0.32 ATOM 1957 HN GLY 134 8.320 -16.382 -8.647 1.00 0.35 ATOM 1958 CA GLY 134 8.860 -14.856 -10.074 1.00 0.35 ATOM 1959 HA1 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1960 HA2 GLY 134 9.701 -14.177 -10.047 1.00 0.36 ATOM 1961 C GLY 134 7.598 -14.087 -10.471 1.00 0.29 ATOM 1962 O GLY 134 7.563 -13.420 -11.486 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.27						
ATOM 1952 HD2 PRO 133 8.456 -18.679 -6.785 1.00 0.34 ATOM 1953 HD1 PRO 133 8.091 -18.362 -5.069 1.00 0.38 ATOM 1954 C PRO 133 9.032 -14.810 -7.662 1.00 0.31 ATOM 1955 O PRO 133 9.496 -13.691 -7.749 1.00 0.34 ATOM 1956 N GLY 134 8.684 -15.477 -8.729 1.00 0.32 ATOM 1957 HN GLY 134 8.320 -16.382 -8.647 1.00 0.35 ATOM 1958 CA GLY 134 8.860 -14.856 -10.074 1.00 0.35 ATOM 1959 HA1 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1959 HA2 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1961 C GLY 134 9.701 -14.177 -10.047 1.00 0.36 ATOM 1961 C GLY 134 7.598 -14.087 -10.471 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.27						
ATOM 1953 HD1 PRO 133 8.091 -18.362 -5.069 1.00 0.38 ATOM 1954 C PRO 133 9.032 -14.810 -7.662 1.00 0.31 ATOM 1955 O PRO 133 9.496 -13.691 -7.749 1.00 0.34 ATOM 1956 N GLY 134 8.684 -15.477 -8.729 1.00 0.32 ATOM 1957 HN GLY 134 8.320 -16.382 -8.647 1.00 0.35 ATOM 1958 CA GLY 134 8.860 -14.856 -10.074 1.00 0.34 ATOM 1959 HA1 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1960 HA2 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1961 C GLY 134 9.701 -14.177 -10.047 1.00 0.36 ATOM 1961 C GLY 134 7.598 -14.087 -10.471 1.00 0.29 ATOM 1962 O GLY 134 7.563 -13.420 -11.486 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.27	ATOM		HD2 PRO	133	8.456 -18.679 -6.785 1.00 0.34	
ATOM 1955 O PRO 133 9.496 -13.691 -7.749 1.00 0.34 ATOM 1956 N GLY 134 8.684 -15.477 -8.729 1.00 0.32 ATOM 1957 HN GLY 134 8.320 -16.382 -8.647 1.00 0.35 ATOM 1958 CA GLY 134 8.860 -14.856 -10.074 1.00 0.34 ATOM 1959 HA1 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1960 HA2 GLY 134 9.701 -14.177 -10.047 1.00 0.36 ATOM 1961 C GLY 134 7.598 -14.087 -10.471 1.00 0.29 ATOM 1962 O GLY 134 7.563 -13.420 -11.486 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.27			HD1 PRO	133	8.091 -18.362 -5.069 1.00 0.38	
ATOM 1956 N GLY 134 8.684 -15.477 -8.729 1.00 0.32 ATOM 1957 HN GLY 134 8.320 -16.382 -8.647 1.00 0.35 ATOM 1958 CA GLY 134 8.860 -14.856 -10.074 1.00 0.34 ATOM 1959 HA1 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1960 HA2 GLY 134 9.701 -14.177 -10.047 1.00 0.36 ATOM 1961 C GLY 134 7.598 -14.087 -10.471 1.00 0.29 ATOM 1962 O GLY 134 7.563 -13.420 -11.486 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.27					9.032 -14.810 -7.662 1.00 0.31	
ATOM 1957 HN GLY 134 8.320 -16.382 -8.647 1.00 0.35 ATOM 1958 CA GLY 134 8.860 -14.856 -10.074 1.00 0.34 ATOM 1959 HA1 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1960 HA2 GLY 134 9.701 -14.177 -10.047 1.00 0.36 ATOM 1961 C GLY 134 7.598 -14.087 -10.471 1.00 0.29 ATOM 1962 O GLY 134 7.563 -13.420 -11.486 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.27					9.496 -13.691 -7.749 1.00 0.34	
ATOM 1958 CA GLY 134 8.860 -14.856 -10.074 1.00 0.34 ATOM 1959 HA1 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1960 HA2 GLY 134 9.701 -14.177 -10.047 1.00 0.36 ATOM 1961 C GLY 134 7.598 -14.087 -10.471 1.00 0.29 ATOM 1962 O GLY 134 7.563 -13.420 -11.486 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.27					8.320 -16.382 -8 647 1 00 0 35	
ATOM 1959 HA1 GLY 134 9.048 -15.630 -10.803 1.00 0.37 ATOM 1960 HA2 GLY 134 9.701 -14.177 -10.047 1.00 0.36 ATOM 1961 C GLY 134 7.598 -14.087 -10.471 1.00 0.29 ATOM 1962 O GLY 134 7.563 -13.420 -11.486 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.27	ATOM	1958		134	8.860 -14.856 -10.074 1.00 0.34	
ATOM 1961 C GLY 134 7.598 -14.087 -10.471 1.00 0.29 ATOM 1962 O GLY 134 7.563 -13.420 -11.486 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.27				134	9.048 -15.630 -10.803 1.00 0.37	
ATOM 1962 O GLY 134 7.563 -13.420 -11.486 1.00 0.29 ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.27					9.701 -14.177 -10.047 1.00 0.36	
ATOM 1963 N ALA 135 6.563 -14.168 -9.683 1.00 0.27					7 563 -13 420 -11 486 1 00 0.29	
	MOTA					
	MOTA	1964				

MOTA	1965	CA	ALA	135	E 212	-13.434	10 000		
ATOM	1966	HA		135	5.312	-13.434	-10.026	1.00	0.24
			ALA		5.199	-13.401		1.00	0.25
MOTA	1967	CB	ALA	135	4.109	-14.151	-9.410	1.00	0.25
MOTA	1968	HB1		135	3.633	-14.765		1.00	1.07
MOTA	1969	HB2	ALA	135	3.405	-13.421	-9.041	1.00	1.01
MOTA	1970	нвз	ALA	135	4.442	-14.774	-8.593	1.00	1.04
ATOM	1971	С	ALA	135	5.388	-12.007	-9.479	1.00	0.21
MOTA	1972	0	ALA	135		-11.760	-8.440	1.00	0.23
ATOM	1973	N	LEU	136	4.799	-11.067	-10.164	1.00	0.22
ATOM	1974	HN	LEU	136	4 330	-11.286	-10 996	1.00	0.24
MOTA	1975	CA	LEU	136	4.830	-9.660	-9.676		
MOTA	1976	HA	LEU	136	5.842			1.00	0.23
MOTA	1977	CB		136	7.042	-9.382	-9.427	1.00	0.25
ATOM	1978		LEU		4.279	70.724	-10.761	_1.00	_0.25 _
		HB1		136	4.193	-7.724	-10.365	1.00	0.27
MOTA	1979	HB2		136	3.302		-11.064	1.00	0.26
MOTA	1980	CG	LEU	136	5.213		-11.980	1.00	0.26
ATOM	1981	HG	LEU	136	5.312	-9.713	-12.368	1.00	0.29
MOTA	1982		LEU	136	4.624		-13.063	1.00	0.29
ATOM		HD11		136	3.546	-7.848	-13.030	1.00	1.06
ATOM	1984	HD12	LEU	136	4.967	-8.126	-14.033	1.00	1.05
MOTA	1985	HD13	LEU	136	4.944		-12.893	1.00	1.06
ATOM	1986	CD2	LEU	136	6.592		-11.578	1.00	0.32
ATOM	1987	HD21	LEU	136	6.485		-10.762	1.00	1.05
ATOM		HD22	LEU	136	7.046		-12.422	1.00	1.09
ATOM		HD23		136	7.220		-11.269	1.00	0.97
MOTA	1990	C	LEU	136	3.954	-9.556	-8.427		
ATOM	1991	ŏ	LEU	136				1.00	0.25
ATOM	1992				4.201	-8.761	-7.542	1.00	0.30
		N	MET	137		-10.353	-8.357	1.00	0.28
MOTA	1993	HN	MET	137		-10.981	-9.087	1.00	0.31
ATOM	1994	CA	MET	137		-10.309	-7.177	1.00	0.33
ATOM	1995	HA	MET	137	1.768	-9.283	-6.959	1.00	0.38
ATOM	1996	CB	MET	137	0.734	-11.087	-7.494	1.00	0.42
MOTA	1997	HB1	MET	137	0.118	-11.136	-6.615	1.00	0.57
MOTA	1998	HB2	MET	137		-12.089	-7.803	1.00	0.50
ATOM	1999	CG	MET	137		~10.391	-8.625	1.00	0.58
ATOM	2000		MET	137	-0.909	-10.975	-8.875	1.00	1.13
MOTA	2001		MET	137		-10.311	-9.494		
ATOM	2002	SD	MET	137	-0.551			1.00	1.22
ATOM	2003	CE	MET	137	-2.048	-8.729	-8.108	1.00	0.83
ATOM	2004		MET			-9.184	-7.194	1.00	0.39
				137	-2.231	-8.450	-6.426	1.00	1.14
ATOM	2005	HE2	MET	137		-10.151	-6.741	1.00	1.07
ATOM	2006	HE3	MET	137	-2.885	-9.212	-7.872	1.00	1.06
ATOM	2007	Ç	MET	137		-10.925	-5.951	1.00	0.27
ATOM	2008	0	MET	137	2.050	-11.287	-4.990	1.00	0.28
MOTA	2009	N	PHE	138	4.000	-11.042	-5.964	1.00	0.25
MOTA	2010	HN	PHE	138	4.514	-10.741	-6.743	1.00	0.28
MOTA	2011	CA	PHE	138	4.699	-11.628	-4.785	1.00	0.23
ATOM	2012	HA	PHE	138	4.225	-12.557	-4.534	1.00	0.26
MOTA	2013	CB	PHE	138		-11.877	-5.152	1.00	0.25
ATOM	2014	HB1		138		-10.945	-5.104	1.00	0.24
ATOM	2015		PHE	138		-12.270	-6.156	1.00	0.27
ATOM	2016	CG	PHE	138	6 700	-12.873			
MOTA	2017		PHE	138		-14.184	-4.194	1.00	0.28
ATOM	2018		PHE	138	6.255	-14.104	-4.113	1.00	0.32
ATOM	2019		PHE	138			-4.731	1.00	0.33
ATOM						-12.486	-3.392	1.00	0.30
	2020		PHE	138		-11.481	-3.455	1.00	0.30
ATOM	2021		PHE	138		-15.100	-3.230	1.00	0.38
ATOM	2022		PHE	138		-16.109	-3.168	1.00	0.42
ATOM	2023		PHE	138	8.455	-13.404	-2.511	1.00	0.36
ATOM	2024	HE2	PHE	138		-13.104	-1.894	1.00	0.39
MOTA	2025	CZ	PHE	138	7.960	-14.710	-2.430	1.00	0.39
ATOM	2026	HZ	PHE	138	8.411	-15.417	-1.749	1.00	0.44
ATOM	2027	C	PHE	138	4.601	-10.615	-3.615	1.00	0.20
ATOM	2028	Õ	PHE	138	4.874	-9.447	-3.808	1.00	0.22
ATOM	2029	N	PRO	139		-11.019	-2.421		
MOTA	2030	CA	PRO	139	4 044	-10.048		1.00	0.22
ATOM	2031	HA	PRO	139			-1.291	1.00	0.25
MOTA	2032				3.262	-9.340	-1.509	1.00	0.27
MOTA	2032	CB	PRO	139	3.600	-10.936	-0.127	1.00	0.31
		HB1		139	2.615	-10.638	0.199	1.00	0.38
MOTA	2034		PRO	139	4.299	-10.835	0.691	1.00	0.42
MOTA	2035	CG	PRO	139	3.562	-12.392	-0.597	1.00	0.33
MOTA	2036		PRO	139	2.588	-12.812	-0.396	1.00	0.41
ATOM	2037	HG2		139	4.317	-12.961	-0.074	1.00	0.42
ATOM	2038	CD	PRO	139		-12.435	-2.102	1.00	0.27
MOTA	2039	HD2	PRO	139		-13.100	-2.318	1.00	0.28
MOTA	2040	HD1		139		-12.732	-2.637		
MOTA	2041	C	חמם	130	E 337	"D 3VE	0 006	1.00	0.30

MOTA	2042	0	PRO	139	5.302	-8.351	-0.173	1.00	0.44
ATOM	2043	N	ILE	140	6.467	-9.726	-1.437	1.00	0.24
MOTA	2044	HN	ILE	140		-10.500	-2.038	1.00	0.37
MOTA	2045	CA	ILE	140	7.749	-9.031	-1.094	1.00	0.23
ATOM	2046	HA	ILE	140	7.572	-8.308	-0.312	1.00	0.24
MOTA	2047	CB	ILE	140		-10.054	-0.600	1.00	0.25
MOTA	2048	HB	ILE	140	8.978	-10.770	-1.379	1.00	0.25
MOTA	2049	CG1	ILE	140	8.207	-10.768	0.632	1.00	0.29
MOTA	2050	HG11	ILE	140	7.246	-11.196	0.384	1.00	0.32
MOTA	2051	HG12	ILE	140	8.084	-10.055	1.434	1.00	0.33
MOTA	2052	CG2	ILE	140	10.070	-9.332	-0.214	1.00	0.26
MOTA		HG21	ILE	140	9.850	-8.567	0.517	1.00	1.04
	2054		ILE_	140	10.505	-8.876	_ <u>-</u> 1.090_	1.00	_1.06_
MOTA	2055	HG23	ILE	140		-10.040	0.207	1.00	1.04
MOTA	2056	CD1	ILE	140		-11.883	1.082	1.00	0.30
MOTA		HD11	ILE	140	9.716	-12.250	0.236	1.00	1.08
MOTA		HD12	ILE	140	8.582	-12.691	1.511	1.00	0.98
ATOM		HD13	ILE	140		-11.495	1.824	1.00	1.08
MOTA	2060	Ċ	ILE	140	8.284	-8.301	-2.329	1.00	0.22
ATOM	2061	0	ILE	140	8.265	-8.817	-3.429	1.00	0.22
MOTA	2062	N	TYR	141	8.745	-7.092	2.150	1.00	0.21
MOTA	2063	HN	TYR	141	8.736	-6.696	-1.254	1.00	0.22
MOTA MOTA	2064	CA	TYR	141	9.265	-6.303	-3.304	1.00	0.21
ATOM	2065 2066	HA CB	TYR	141	8.560	-6.348	-4.120	1.00	0.20
MOTA	2067	HB1	TYR	141	9.444	-4.847	-2.865	1.00	0.21
ATOM	2068	HB2	TYR TYR	141 141	10.050	-4.810	-1.972	1.00	0.22
MOTA	2069	CG	TYR	141	8.476	-4.413	-2.661	1.00	0.22
ATOM	2070		TYR	141	10.122	-4.066	-3.962	1.00	0.23
MOTA	2071	HD1		141	11.515 12.104	-4.104	-4.089	1.00	0.25
ATOM	2072	CD2		141	9.359	-4.697 -3.298	-3.404	1.00	0.26
ATOM	2073	HD2		141	8.284	-3.268	-4.848 -4.750	1.00	0.24
ATOM	2074	CEI	TYR	141	12.146	-3.376	-5.103	1.00	0.25
ATOM	2075	HE1		141	13.221	-3.405	-5.201	1.00	0.32
MOTA	2076	CE2	TYR	141	9.989	-2.569	-5.862	1.00	0.32
ATOM	2077	HE2	TYR	141	9.401	-1.975	-6.544	1.00	0.30
ATOM	2078	cz	TYR	141	11.383	-2.608	-5.990	1.00	0.29
ATOM	2079	ОН	TYR	141	12.005	-1.892	-6.991	1.00	0.33
MOTA	2080	нн	TYR	141	12.781	-2.385	-7.269	1.00	0.90
ATOM	2081	C	TYR	141	10.615	-6.864	-3.761	1.00	0.22
MOTA	2082	ŏ	TYR	141	11.522	-7.050	-2.973	1.00	0.23
ATOM	2083	N	THR	142	10.750	-7.130	-5.035	1.00	0.22
ATOM	2084	HN	THR	142	10.002	-6.968	-5.648	1.00	0.22
MOTA	2085	CA	THR	142	12.035	-7.675	-5.563	1.00	0.24
ATOM	2086	HA	THR	142	12.835	-7.447	-4.874	1.00	0.25
ATOM	2087	CB	THR	142	11.917	-9.193	-5.723	1.00	0.25
MOTA	2088	HB	THR	142	11.645	-9.635	-4.777	1.00	0.26
ATOM	2089	OG1		142	13.165	-9.720	-6.152	1.00	0.29
ATOM	2090	HG1	THR	142	13.274	-9.505	-7.081	1.00	0.97
MOTA	2091	CG2		142	10.840	-9.517	-6.760	1.00	0.25
MOTA		HG21		142	10.577		-6.691	1.00	1.04
MOTA		HG22		142	11.217	-9.304	-7.749	1.00	1.05
MOTA		HG23		142	9.965	-8.913	-6.570	1.00	1.06
ATOM	2095	C	THR	142	12.339	-7.040	-6.924	1.00	0.23
MOTA MOTA	2096 2097	0	THR	142	11.454	-6.810	-7.724	1.00	0.23
MOTA		N	TYR	143	13.586	-6.758	-7.195	1.00	0.25
MOTA	2098 2099	HN CA	TYR TYR	143 143	14.285	-6.955	-6.538	1.00	0.27
MOTA	2100	HA	TYR	143	13.948	-6.144	-8.506	1.00	0.26
ATOM	2101	CB	TYR	143	13.174 15.277	-5.452 -5.395	-8.804	1.00	0.25
ATOM	2102	HB1		143	16.072		-8.370	1.00	0.29
ATOM	2103		TYR	143	15.217	-6.104	-8.190	1.00	0.33
ATOM	2104	CG	TYR	143	15.563	-4.704	-7.542	1.00	0.30
ATOM	2105		TYR	143	14.931	-4.633 -3.406	~9.642	1.00	0.27
ATOM	2106		TYR	143	14.234	-3.406	-9.880 -9.156	1.00	0.25
ATOM	2107		TYR	143	16.466		-9.156 -10.581	1.00	0.26 0.31
MOTA	2108		TYR	143	16.954	-6 00A	-10.398	1.00	0.31
ATOM	2109		TYR	143	15.201	-2 606	-10.398	1.00	0.35
ATOM	2110	HE1		143	14.713	-1.749	-11.238	1.00	0.28
ATOM	2111	CE2	TYR	143	16.735	-4.436	-11.756	1.00	0.31
MOTA	2112	HE2	TYR	143	17.432	-4.833	-12.480	1.00	0.36
MOTA	2113	CZ	TYR	143	16.103	-3.210	-11.994	1.00	0.28
MOTA	2114	OH	TYR	143	16.369		-13.152	1.00	0.30
MOTA	2115	HH	TYR	143	17.068		-13.624	1.00	0.95
ATOM	2116	C	TYR	143	14.080	-7.244	-9.563	1.00	0.27
ATOM	2117	0	TYR	143	14.552	-8.328	-9.283	1.00	0.31
MOTA	2118	N	THR	144	13 660	_ 6 076	10 770	1 00	0.00

MOM	2119		607.770	4 4 4	12 022	4 444 40 000	
MOTA		HN	THR	144	13.277	-6.096 -10.972	1.00 0.32
Mogra	2120	CA	THR	144	13.753	-8.008 -11.847	1.00 0.32
MOTA	2121	HA	THR	144	14.479	-8.758 -11.573	1.00 0.35
MOTA	2122	СВ	THR	144	12.385	-8.666 -12.031	1.00 0.37
MOTA	2123	нв	THR	144	11.922	-8.814 -11.067	
							1.00 0.84
MOTA	2124	OG1		144	12.549	-9.918 -12.683	1.00 1.00
MOTA	2125	HG1	THR	144	13.280	-9.836 -13.301	1.00 1.42
MOTA	2126	CG2	THR	144	11.499	-7.757 -12.882	1.00 0.82
ATOM	2127			144	10.461	-7.991 -12.699	1.00 1.51
ATOM		HG22	THR	144	11.724	-7.911 -13.927	
						-7.911 -13.927	1.00 1.24
MOTA		HG23	THR	144	11.687	-6.726 -12.622	1.00 1.49
MOTA	2130	С	THR	144	14.169	-7.351 -13.165	1.00 0.34
MOTA	2131	0	THR	144	13.922	-6.183 -13.392	1.00 0.32
ATOM	2132	Ň.	GLY	145	14.789	-8.094 -14.043	1.00 0.43
	2133						
MOTA		HN	GLY	145	14.971	-9.037 -13.846	1.00 0.49
MOTA	2134	CA	GLY	145	15.205	-7.510 -15.350	1.00 0.49
MOTA	2135	HA1	GLY	145	15.842	-8.207 -15.872	1.00 0.57
MOTA	2136	HA2	GLY	145	15.742	-6.587 -15.178	1.00 0.50
ATOM	2137	C	GLY	145	13.957	-7.233 -16.191	
							1.00 0.47
MOTA	2138	0	GLY	145	13.331	-8.138 -16.706	1.00 0.53
MOTA	2139	N	LYS	146	13.583	-5.990 -16.322	1.00 0.46
MOTA	2140	HN	LYS	146	14.097	-5.277 -15.889	1.00 0.48
ATOM	2141	CA	LYS	146	12.367	-5.653 -17.116	1.00 0.49
ATOM	2142	HA	LYS	146	11.578	-6.350 -16.876	
ATOM	2143						
		СВ	LYS	146	11.911	-4.235 -16.764	1.00 0.52
MOTA	2144		LYS	146	10.973	-4.032 -17.254	1.00 0.58
MOTA	2145	HB2	LYS	146	12.657	-3.533 -17.103	1.00 0.57
MOTA	2146	CG	LYS	146	11.744	-4.128 -15.238	1.00 0.55
MOTA	2147		LYS	146	12.690		
						-3.853 -14.798	1.00 0.83
ATOM	2148		LYS	146	11.442	-5.089 -14.849	1.00 1.14
ATOM	2149	CD	LYS	146	10.684	-3.077 -14.854	1.00 1.23
ATOM	2150	HD1	LYS	146	10.308	-3.309 -13.871	
ATOM	2151		LYS	146	9.865	-3.098 -15.556	
ATOM	2152			146			
		CE	LYS		11.298	-1.671 -14.828	
MOTA	2153		LYS	146	11.615	-1.439 -13.822	1.00 2.47
ATOM	2154	HE2	LYS	146	10.556	-0.952 -15.143	1.00 2.39
ATOM	2155	NZ	LYS	146	12.468	-1.601 -15.745	1.00 2.91
MOTA	2156		LYS	146	12.847	-0.633 -15.750	
ATOM	2157						
			LYS	146	12.170	-1.861 -16.707	1.00 3.28
MOTA	2158	HZ3	LYS	146	13.205	-2.257 -15.420	1.00 3.27
MOTA	2159	С	LYS	146	12.677	-5.732 -18.613	1.00 0.59
MOTA	2160	0	LYS	146	11.845	-5.426 -19.444	
MOTA	2161	N	SER	147	13.868	-6.131 -18.967	
MOTA	2162	HN	SER	147	14.530		
MOTA						-6.366 -18.283	
	2163	CA	SER	147	14.226	-6.214 -20.413	
MOTA	2164	HA	SER	147	14.141	-5.234 -20.859	1.00 1.03
ATOM	2165	CB	SER	147	15.667	-6.709 -20.554	1.00 0.95
ATOM	2166	HB1	SER	147	15.798	-7.158 -21.530	
ATOM	2167	HB2	SER	147	15.871	-7.445 -19.794	
ATOM	2168	OG	SER	147		-7.443 -13.734	1.00 1.34
					16.561	-5.616 -20.395	
MOTA	2169	HG	SER	147	17.097	-5.555 -21.190	
MOTA	2170	С	SER	147	13.288	-7.185 -21.138	1.00 0.79
ATOM	2171	0	SER	147	12.747	-6.865 -22.178	1.00 1.40
ATOM	2172	N	HIS	148	13.098	-8.366 -20.605	
ATOM	2173	HN	HIS	148	13.551	-8.602 -19.768	1.00 0.66
ATOM	2174						
		CA	HIS	148	12.199	-9.360 -21.272	
MOTA	2175	HA	HIS	148	11.629	-8.874 -22.048	1.00 0.74
MOTA	2176	CB	HIS	148	13.041	-10.479 -21.887	1.00 0.79
ATOM	2177	HB1	HIS	148		-11.312 -22.138	
ATOM	2178		HIS	148	13 706	-10.801 -21.174	1 00 1 10
MOTA	2179			148	13.700		
		CG	HIS		13.723	-9.980 -23.130	
MOTA	2180		HIS	148	13.104	-9.116 -24.019	1.00 2.52
MOTA	2181	HD1	HIS	148	12.200	-8.747 -23.934	1.00 2.81
MOTA	2182	CD2	HIS	148		-10.226 -23.652	1.00 2.62
ATOM	2183		HIS	148	15 716	-10.867 -23.206	1.00 3.00
ATOM	2184		HIS	148	12 070	20.00/ -23.206	1.00 3.00
	2105				13.970	-8.875 -25.020	1.00 3.46
MOTA	2185		HIS	148	13.759	-8.233 -25.863	1.00 4.33
MOTA	2186		HIS	148	15.123	-9.528 -24.846	1.00 3.55
MOTA	2187	С	HIS	148	11.238	-9.971 -20.249	
MOTA	2188	Ō	HIS	148	10 743	-11.064 -20.435	1 00 0 50
ATOM	2189	й	PHE	149	10.730	_0 203 -0 -1-	
ATOM					10.978	-9.293 -19.167	1.00 0.57
	2190	HN	PHE	149	11.392	-8.417 -19.021	1.00 0.73
ATOM	2191	CA	PHE	149	10.060	-9.871 -18.145	1.00 0.48
MOTA	2192	HA	PHE	149	10.416	-10.849 -17.857	1.00 0.51
MOTA	2193	CB	PHE	149	10.022	-8.967 -16.911	1.00 0.44
MOTA	2194		PHE	149	9.603	-8.008 -17.177	
ATOM	2195		PHE	149	11.023	-8.831 -16 53A	
				443	11.023	-0.011 *18 5(0)	1 1111 11 114

ATOM	2196	CG	PHE	149	9.161	-9.615 -15.851	1.00	0.40
ATOM	2197	_	PHE	149	7.766	-9.507 -15.919	1.00	0.36
MOTA	2198	HD1	PHE	149	7.305	-8.956 -16.726	1.00	0.38
MOTA	2199		PHE	149		-10.328 -14.804	1.00	0.42
MOTA	2200 2201	HD2 CE1	PHE	149 149		-10.412 -14.750	1.00	0.48
MOTA MOTA	2202		PHE	149		-10.112 -14.941 -10.031 -14.996	1.00	0.35 0.37
MOTA	2203		PHE	149		-10.932 -13.825	1.00	0.40
MOTA	2204		PHE	149		-11.482 -13.016	1.00	0.45
MOTA	2205	CZ	PHE	149	7.564	-10.825 -13.894	1.00	0.37
ATOM	2206	HZ	PHE	149		-11.291 -13.140	1.00	0.38
MOTA	2207	C	PHE	149	8.641	-9.993 -18.706 -9.044 -19.217	1.00	0.43
MOTA	2208 2209	- <u>N</u>	PHE MET	<u>149</u>	<u>8.080</u>	9.044 -19.217 -11.153 -18.575	$\frac{1.00}{1.00}$	0.45
MOTA	2210	HN	MET	150	8.523	-11.888 -18.133	1.00	0.50
ATOM	2211	CA	MET	150		-11.357 -19.051	1.00	0.39
MOTA	2212	HA	MET	150		-10.400 -19.245	1.00	0.38
MOTA	2213	CB	MET	150		-12.207 -20.328	1.00	0.44
ATOM ATOM	221 <u>4</u> 2215	HB1 HB2	MET	150 150		-12.374 -20.632 -13.157 -20.134	1.00	0.45 0.47
MOTA	2216	CG	MET	150		-11.477 -21.446	1.00	0.50
ATOM	2217	HG1		150	8.401	-11.831 -21.485	1.00	0.98
ATOM	2218	HG2		150	7.376	-10.415 -21.253	1.00	0.86
ATOM	2219	SD	MET	150	6.571	-11.806 -23.033	1.00	1.32
MOTA MOTA	2220 2221	CE HE1	MET	150 150		-13.384 -23.393 -14.022 -22.521	1.00	2.23
MOTA	2222	HE2		150		-13.211 -23.647	1.00	2.66 2.74
MOTA	2223		MET	150		-13.861 -24.225	1.00	2.74
MOTA	2224	С	MET	150	5.877	-12.071 -17.943	1.00	0.32
MOTA	2225	0	MET	150	6.435	-12.837 -17.183	1.00	0.32
MOTA	2226	N	LEU	151		-11.819 -17.827	1.00	0.28
ATOM ATOM	2227 2228	HN CA	LEU	151 151		-11.188 -18.437 -12.478 -16.746	1.00	0.30
ATOM	2229	HA	LEU	151		-12.064 -15.803	1.00	0.24 0.24
MOTA	2230	CB	LEU	151		-12.212 -16.966	1.00	0.24
MOTA	2231	HB1	LEU	151		-12.626 -16.145	1.00	0.25
MOTA	2232		LEU	151		-12.680 -17.887	1.00	0.28
MOTA	2233 2234	CG	LEU	151	2.061	-10.703 -17.047	1.00	0.28
MOTA MOTA	2235	HG CD1	LEU	151 151		-10.208 -17.512 -10.457 -17.881	1.00 1.00	0.52 0.35
MOTA		HD11		151	0.506		1.00	1.07
MOTA	2237	HD12	LEU	151		-11.095 -17.526	1.00	1.02
MOTA		HD13		151		-10.682 -18.917	1.00	1.17
MOTA	2239		LEU	151		-10.140 -15.638	1.00	0.46
ATOM ATOM		HD21 HD22	LEU	151 151	2.078	-9.084 -15.635 -10.650 -14.941	1.00	1.14 1.16
ATOM		HD23	LEU	151	0.820	-10.030 -14.941	1.00	1.11
ATOM	2243	С	LEU	151		-14.004 -16.794	1.00	0.24
MOTA	2244	0	LEU	151	3.879	-14.613 -17.826	1.00	0.28
MOTA	2245	N	PRO	152		-14.641 -15.711	1.00	0.22
MOTA MOTA	2246 2247	CA HA	PRO PRO	152 152		-16.112 -15.751 -16.354 -16.503	1.00	0.23
MOTA	2248	СВ	PRO	152	5.323	-16.404 -14.364	1.00 1.00	0.24 0.24
MOTA	2249		PRO	152		-16.686 -14.453	1.00	0.29
MOTA	2250		PRO	152		-17.208 -13.903	1.00	0.26
MOTA	2251	CG	PRO	152		-15.141 -13.507	1.00	0.32
MOTA MOTA	2252 2253		PRO PRO	152 152		-14.917 -13.061 -15.295 -12.730	1.00	0.44 0.41
MOTA	2254	CD	PRO	152		-13.976 -14.402	1.00	0.25
MOTA	2255	HD2	PRO	152	3.886	-13.507 -14.008	1.00	0.25
MOTA	2256		PRO	152	5.581	-13.263 -14.503	1.00	0.27
MOTA	2257 2258	Č	PRO	152	3.462	-16.915 -15.974	1.00	0.21
ATOM ATOM	2259	N O	PRO ASP	152 153		-16.371 -16.038	1.00	0.20
ATOM	2260	HN	ASP	153	3.362 4.469	-18.209 -16.090 -18.622 -16.031	1.00	0.23 0.25
ATOM	2261	CA	ASP	153	2.380	-19.063 -16.304	1.00	0.23
MOTA	2262	HA	ASP	153	1.890	-18.772 -17.221	1.00	0.23
MOTA	2263	CB	ASP	153	2.813	-20.526 -16.401	1.00	0.25
MOTA MOTA	2264 2265		ASP ASP	153	1.943	-21.163 -16.363	1.00	0.26
ATOM	2266	CG	ASP	153 153	3.4/U 3.550	-20.762 -15.576 -20.752 -17.722	1.00	0.26 0.27
ATOM	2267	OD1	ASP	153	4.768	-20.687 -17.717	1.00	1.08
MOTA	2268	OD2	ASP	153	2.884	-20.994 -18.715	1.00	1.14
MOTA	2269	C	ASP	153	1.409	-18.899 -15.133	1.00	0.21
MOTA MOTA	2270 2271	O N	ASP ASP		0.208	-18.858 -15.310 -18.820 -13.935	1.00	0.21
ATOM	2272		ASP		2.919		1.00	0.21

MOTA	2273 CA	100	154	1 000	40 670			
MOTA	2274 HA	ASP	154	1.025	-18.678	-12./52	1.00	0.21
	2275 CB	ASP	154		-19.572		1.00	0.22
MOTA		ASP				-11.496	1.00	0.23
ATOM		ASP	154			-11.602	1.00	0.22
ATOM		ASP	154	2.541	-19.319	-11.370	1.00	0.25
ATOM	2278 CG	ASP	154		-18.347		1.00	0.25
ATOM		ASP	154		-18.982	-9.269	1.00	1.13
ATOM		ASP	154	0.004	-17.613	-10.340	1.00	1.07
MOTA	2281 C	ASP	154	0.102	-17.473	-12.943	1.00	0.19
MOTA	2282 O	ASP	154	-1.095	-17.564	-12.759	1.00	0.19
ATOM	2283 N	ASP	155	0.645	-16.345	-13.303	1.00	0.19
ATOM	2284 HN	ASP	155	1.613	-16.288	-13.443	1.00	0.21
MOTA	2285 CA	ASP	155	-0.210	-15.140	-13.496	1.00	0.19
- ATOM-	2286 HA	-ASP -	155	-0.843	-15.011	-12.631	1.00	0.20
MOTA	2287 CB	ASP	155	0.683	-13.909	-13.653	1.00	0.21
ATOM	2288 HB1	ASP	155	0.087	-13.067	-13.969	1.00	0.22
MOTA		ASP	155	1.443	-14.113	-14.393	1.00	0.22
ATOM	2290 CG	ASP	155		-13.588		1.00	0.24
ATOM		ASP	155		-12.896		1.00	1.07
MOTA		ASP	155		-14.038		1.00	1.14
ATOM	2293 C	ASP	155	-1.087	-15.300	-14 744	1.00	0.19
ATOM	2294 O	ASP	155	-2.240	-14.918	-14 750	1.00	0.19
ATOM	2295 N	VAL	156	_0.555	-15.850	-15 900	1.00	0.19
ATOM	2296 HN	VAL	156		-16.147		1.00	0.19
ATOM	2297 CA	VAL	156	-1 372	-16.013	-17.041	1.00	
ATOM	2298 HA	VAL	156	-1 726	-15.044	-17.041	1.00	0.21
ATOM	2299 CB	VAL	156	-1.720 -0.510	-16.630	-17.302		0.22
ATOM	2300 HB	VAL	156	-0.519	17 531	-18.146	1.00	0.23
ATOM		VAL.		-0.034	-17.521	-17.776	1.00	0.23
			156	-1.416	-16.995	-19.333	1.00	0.27
MOTA	2302 HG11		156	-2.273	-16.338	-19.348	1.00	1.00
ATOM	2303 HG12		156		-18.018		1.00	1.05
MOTA	2304 HG13		156		-16.882	-20.253	1.00	1.05
ATOM		VAL	156		-15.618		1.00	0.26
MOTA	2306 HG21		156		-15.162		1.00	1.07
ATOM	2307 HG22		156		-14.856		1.00	1.05
ATOM	2308 HG23		156	1.293	-16.123	-19.180	1.00	1.00
MOTA	2309 C	VAL	156	-2.574	-16.919	-16.754	1.00	0.20
MOTA	2310 O	VAL	156	-3.694	-16.615	-17.107	1.00	0.21
MOTA	2311 N	GLN	157	-2.356	-18.035	-16.124	1.00	0.20
ATOM	2312 HN	GLN	157	-1.447	-18.277	-15.847	1.00	0.20
MOTA	2313 CA	GLN	157		-18.941		1.00	0.22
ATOM	2314 HA	GLN	157		-19.214		1.00	0.24
ATOM	2315 CB	GLN	157		-20:204		1.00	0.24
ATOM	2316 HB1	GLN	157	-3.838	-20.774	-14.756	1.00	0.26
ATOM	2317 HB2	GLN	157		-19.922		1.00	0.23
ATOM	2318 CG	GLN	157	-2.184	-21.064	-16.095	1.00	0.25
ATOM	2319 HG1	GLN	157	-1.174	-20.686	-16.152	1.00	
ATOM		GLN	157	-2.636		-17.074	1.00	0.87
ATOM	2321 CD	GLN	157		-22.510		1.00	1.19
ATOM		GLN	157		-22.799		1.00	1.89
ATOM		GLN	157		-23.437		1.00	1.96
ATOM	2324 HE21		157	_1 201	-23.203	-17 247	1.00	2.18
ATOM	2325 HE22		157	-1 624	-24.368	-16 050		2.65
ATOM	2326 C	GLN	157		-18.214		1.00	
ATOM	2327 O	GLN	157	-5 702	-18.356	-15 077	1.00	0.22 0.24
ATOM	2328 N	GLY	158		-17.456			
ATOM	2329 HN	GLY	158		-17.370		1.00	0.21 0.20
ATOM	2330 CA	GLY	158		-16.741			
ATOM		GLY	158	-4.300	-16.319	12 222	1.00	0.22
ATOM		GLY	158	-4.360 -E 667	17 446	12.232	1.00	0.22
ATOM	2333 C	GLY	158	-5.00/	-17.446	-12.646	1.00	0.25
MOTA	2334 0	GLY	158		-15.615		1.00	0.20
ATOM	2335 N			-0.918	-15.552	-13.730	1.00	0.21
		ILE	159	-5.007	-14.713	-14.405	1.00	0.18
ATOM	2336 HN	ILE	159	-4.028	-14.763	~14.418	1.00	0.18
ATOM	2337 CA	ILE	159	-5.713	-13.593	-15.097	1.00	0.19
MOTA	2338 на	ILE	159	-6.301	-13.054	-14.375	1.00	0.20
MOTA	2339 CB	ILE	159	-4.679	-12.648	-15.735	1.00	0.19
ATOM	2340 HB	ILE	159	-3.950	-12.367	-14.988	1.00	0.20
ATOM	2341 CG1		159	-5.355	-11.384	-16.284	1.00	0.24
ATOM	2342 HG11	ILE	159	-6.308	-11.645	-16.717	1.00	0.26
ATOM	2343 HG12		159	-4.725	-10.952	-17.045	1.00	0.28
ATOM		ILE	159	-3.968	-13.361	-16.880	1.00	0.21
MOTA	2345 HG21	ILE	159	-2.998	-12.914	-17.036	1.00	1.01
ATOM	2346 HG22		159	-4.556	-13.274	-17.781	1.00	1.01
ATOM	2347 HG23		159	-3.848	-14.398	-16.628	1.00	1.04
MOTA		ILE	159		-10.356		1.00	0.27
ATOM	2349 HD11	·ILE	159	-6.322	-9.644	-15 476	1 00	1 05

ATOM	2350 HD12 ILE	159	-4.644 -9.838 -14.978 1.00 1.06
ATOM	2351 HD13 ILE	159	-5.893 -10.848 -14.265 1.00 1.02
ATOM	2352 C ILE	159	-6.644 -14.162 -16.173 1.00 0.21
ATOM	2353 O ILE	159	-7.754 -13.700 -16.347 1.00 0.23
ATOM	2354 N GLN	160	-6.215 -15.168 -16.885 1.00 0.22
ATOM	2355 HN GLN	160	-5.322 -15.538 -16.726 1.00 0.21
ATOM	2356 CA GLN	160	-7.097 -15.763 -17.930 1.00 0.27
MOTA	2357 HA GLN	160	-7.457 -14.979 -18.580 1.00 0.29
MOTA	2358 CB GLN	160	-6.317 -16.786 -18.756 1.00 0.31
ATOM	2359 HB1 GLN	160	-6.999 -17.334 -19.389 1.00 0.35
ATOM	2360 HB2 GLN	160	-5.809 -17.472 -18.093 1.00 0.30
ATOM	2361 CG GLN	160	-5.289 -16.062 -19.626 1.00 0.34
MOTA	2362 HG1 GLN	160	-4.606 -15.512 -18.997 1.00 0.92 <u></u>
MOTA	2363 HG2 GLN	160	-5.799 -15.378 -20.290 1.00 0.91
MOTA	2364 CD GLN	160	-4.508 -17.087 -20.451 1.00 1.11
MOTA	2365 OE1 GLN	160	-4.451 -18.248 -20.100 1.00 1.88
ATOM	2366 NE2 GLN	160	-3.901 -16.704 -21.540 1.00 1.83
ATOM	2367 HE21 GLN	160	-3.947 -15.767 -21.824 1.00 2.13
MOTA	2368 HE22 GLN	160	-3.398 -17.353 -22.075 1.00 2.46
MOTA	2369 C GLN	160	-8.290 -16.447 -17.261 1.00 0.28
MOTA	2370 O GLN	160	-9.386 -16.449 -17.779 1.00 0.31
MOTA MOTA	2371 N SER 2372 HN SER	161 161	-8.086 -17.035 -16.117 1.00 0.27 -7.193 -17.030 -15.714 1.00 0.25
ATOM	2372 AN SER 2373 CA SER	161	-7.193 -17.030 -15.714 1.00 0.25 -9.213 -17.718 -15.424 1.00 0.30
ATOM	2374 HA SER	161	-9.658 -18.444 -16.089 1.00 0.34
ATOM	2375 CB SER	161	-8.690 -18.427 -14.174 1.00 0.33
ATOM	2376 HB1 SER	161	-7.861 -19.06714.444 1.00 0.35
MOTA	2377 HB2 SER	161	-9.476 -19.024 -13.741 1.00 0.36
MOTA	2378 OG SER	161	-8.267 -17.455 -13.227 1.00 0.33
ATOM	2379 HG SER	161	-9.045 -16.986 -12.915 1.00 0.94
ATOM	2380 C SER	161	-10.267 -16.684 -15.019 1.00 0.30
ATOM	2381 O SER	161	-11.433 -16.997 -14.882 1.00 0.35
MOTA	2382 N LEU	162	-9.867 -15.457 -14.815 _. 1.00 0.27
ATOM	2383 HN LEU	162	-8.920 -15.225 -14.921 1.00 0.26
ATOM	2384 CA LEU	162	-10.852 -14.413 -14.405 1.00 0.29
ATOM	2385 HA LEU	162	-11.637 -14.869 -13.821 1.00 0.33
MOTA	2386 CB LEU	162	-10.141 -13.350 -13.563 1.00 0.28
ATOM	2387 HB1 LEU	162	-10.802 -12.509 -13.411 1.00 0.29
ATOM	2388 HB2 LEU	162	-9.256 -13.017 -14.086 1.00 0.27
MOTA MOTA	2389 CG LEU 2390 HG LEU	162 162	-9.736 -13.937 -12.206 1.00 0.30
ATOM	2390 RG LEU 2391 CD1 LEU	162	-9.157 -14.836 -12.367 1.00 0.30 -8.883 -12.918 -11.450 1.00 0.33
ATOM	2392 HD11 LEU	162	-8.496 -13.370 -10.549 1.00 1.03
ATOM	2393 HD12 LEU	162	-9.490 -12.063 -11.191 1.00 1.01
ATOM	2394 HD13 LEU	162	-8.062 -12.601 -12.075 1.00 1.12
MOTA	2395 CD2 LEU	162	-10.980 -14.272 -11.374 1.00 0.33
MOTA	2396 HD21 LEU	162	-11.227 -15.315 -11.502 1.00 1.05
MOTA	2397 HD22 LEU	162	-11.812 -13.664 -11.697 1.00 1.09
MOTA	2398 HD23 LEU	162	-10.776 -14.078 -10.332 1.00 1.01
MOTA	2399 C LEU	162	-11.461 -13.742 -15.643 1.00 0.30
MOTA	2400 O LEU	162	-12.664 -13.615 -15.757 1.00 0.36
MOTA	2401 N TYR	163	-10.645 -13.300 -16.564 1.00 0.27
MOTA MOTA	2402 HN TYR 2403 CA TYR	163 163	-9.677 -13.404 -16.452 1.00 0.26
ATOM	2404 HA TYR	163	-11.188 -12.626 -17.783 1.00 0.31 -12.144 -12.182 -17.549 1.00 0.33
ATOM	2405 CB TYR	163	-10.219 -11.531 -18.236 1.00 0.29
MOTA	2406 HB1 TYR	163	-10.562 -11.112 -19.170 1.00 0.32
ATOM	2407 HB2 TYR	163	-9.234 -11.952 -18.371 1.00 0.29
ATOM	2408 CG TYR	163	-10.162 -10.444 -17.190 1.00 0.25
ATOM	2409 CD1 TYR	163	-9.223 -10.520 -16.155 1.00 0.23
MOTA	2410 HD1 TYR	163	-8.545 -11.359 -16.103 1.00 0.23
ATOM	2411 CD2 TYR	163	-11.042 -9.357 -17.258 1.00 0.27
MOTA	2412 HD2 TYR	163	-11.767 -9.298 -18.056 1.00 0.30
MOTA	2413 CEL TYR	163	-9.164 -9.511 -15.187 1.00 0.24
ATOM	2414 HE1 TYR	163	-8.439 -9.571 -14.388 1.00 0.25
MOTA	2415 CE2 TYR	163	-10.984 -8.348 -16.289 1.00 0.27
MOTA	2416 HE2 TYR	163	-11.663 -7.510 -16.340 1.00 0.30
ATOM	2417 CZ TYR	163	-10.044 -8.425 -15.253 1.00 0.27
MOTA MOTA	2418 OH TYR 2419 HH TYR	163	-9.985 -7.430 -14.299 1.00 0.31
ATOM	2419 HH TYR 2420 C TYR	163	-10.344 -7.782 -13.481 1.00 0.99
ATOM	2421 O TYR	163 163	-11.367 -13.647 -18.909 1.00 0.37 -11.953 -13.357 -19.933 1.00 0.43
ATOM	2422 N GLY	164	-11.953 -13.357 -19.933 1.00 0.43 -10.865 -14.836 -18.729 1.00 0.38
ATOM	2423 HN GLY	164	-10.394 -15.046 -17.896 1.00 0.35
MOTA	2424 CA GLY	164	-11.001 -15.877 -19.789 1.00 0.47
MOTA	2425 HA1 GLY	164	-11.851 -15.651 -20.413 1.00 0.53
₽ UV	מזא כגט ארב	764	11 110 17 011 10 007 1 00 0 71

PCT/US01/05150

3001	2427	_	~								
MOTA	2427	C	GLY	164				-15.902		1.00	0.55
ATOM	2428	0	GLY	164		-9.7	61	-15.580	-21.819	1.00	1.01
TER	2429		GLY	164							
HETATM		ZN _		166	-			- - 6.515-		1.00	-0.24
HETATM		ZN	ZN	167		-3.5		6.833	-0.714	1.00	0.97
HETATM		CA	CA	168		6.0		3.350	3.030	1.00	0.23
HETATM		C1	WAY	169		2.1		-4.315	1.627	0.00	0.30
HETATM		C2	WAY	169		0.8		-4.629	1.215	0.00	0.33
HETATM		1CE1		169		-0.1		-4.517	2.143	0.00	0.38
HETATM			WAY	169		0.0	74	-4.157	3.457	0.00	0.40
HETATM		1CE2		169		1.3	355	-3.807	3.841	0.00	0.38
HETATM		C6	WAY	169		2.3	95	-3.805	2.922	0.00	0.33
HETATM		1HE1	WAY	169		-1.1	.90	-4.713	1.839	0.00	0.42
HETATM	2440	1HZ	WAY	169		-0.7	734	-4.151	4.173	0.00	0.45
HETATM		1HE2		169		1.5	35	-3.534	4.872	0.00	0.42
HETATM			WAY	169		0.4	44	-5.080	-0.136	0.00	0.36
HETATM	2443	011	WAY	169		0.4	167	-6.264	-0.463	0.00	0.58
HETATM	2444	N12	WAY	169		-0.0	19	-4.195	-1.032	0.00	0.61
HETATM	2445	013	WAY	169		-0.0	145	-4.608	-2.371	0.00	0.68
HETATM	2446	H14	WAY	169		-0.3	357	-3.297	-0.743	0.00	0.88
HETATM	2447	H15	WAY	169		-0.9	953	-4.727	-2.645	0.00	1.13
HETATM	2448	1CH1	WAY	169		3.7		-3.247	3.360	0.00	0.37
HETATM	2449	1HH1	WAY	169		3.7	702	-2.162	3.422	0.00	1.07
HETATM	2450	1HH2	WAY	169		4.5		-3.516	2.664	0.00	1.06
HETATM	2451		WAY	169		4.0		-3.623	4.339	0.00	1.11
HETATM			WAY	169		3.2		-4.485	0.819	0.00	0.29
HETATM	2453		WAY	169		3.8		-3.175	0.021	0.00	0.25
HETATM			WAY	169		3.8		-5.812	0.684	0.00	0.32
HETATM		2CE1		169		7.3		-6.241	2.178	0.00	1.09
HETATM			WAY	169		6.9		-6.520	3.488	0.00	0.53
HETATM			WAY	169		5.6		-6.659	3.876	0.00	1.47
HETATM		2CD2		169		4.7		-6.451	2.954	0.00	1.37
HETATM			WAY	169		5.0		-6.084	1.640	0.00	0.36
HETATM		2CD1		169		6.3		-5.982	1.250	0.00	
HETATM		2HE1		169		8.3		-6.224	1.881	0.00	1.14
HETATM			WAY	169		7.7		-6.630			1.94
HETATM		2HD2		169		3.7		-6.570	4.227	0.00	0.61
HETATM		2HD1		169		6.5			3.227	0.00	2.23
HETATM		2HB1		169		4.2		-5.706	0.239	0.00	2.05
HETATM		2HB2		169				-5.905	-0.339	0.00	0.31
HETATM			WAY	169		3.0		-6.552	0.832	0.00	0.34
HETATM		3CD1		169		4.1		-3.617	-1.665	0.00	0.23
HETATM		3CE1		169		3.3		-3.216	-2.661	0.00	0.25
HETATM		C38	WAY	169		3.6		-3.465	-3.992	0.00	0:27
HETATM				169		4.7		-4.183	-4.326	0.00	0.24
HETATM						5.6		-4.644	-3.308	0.00	0.23
		3CD2		169		5.3		-4.359	-1.979	0.00	0.23
HETATM		3HD1		169		2.3		-2.714	-2.389	0.00	0.29
HETATM		3HE1		169		2.9		-3.091	-4.758	0.00	0.31
HETATM		3HE2	WAY	169		6.4		-5.228	-3.535	0.00	0.26
HETATM		3HD2	WAY	169		5.5		-4.707	-1.184	0.00	0.27
HETATM			WAY	169		5.0		-4.439	-5.664	0.00	0.27
HETATM			WAY	169		6.2		-5.202	-5.904	0.00	0.28
HETATM		3HH1		169		6.		-5.372	-6.973	0.00	0.31
HETATM		3HH2		169			178	-6.172	-5.407	0.00	0.28
HETATM		3HH3	WAY	169			127	-4.683	-5.526	0.00	0.29
HETATM			WAY	169			123	-2.847	0.614	0.00	0.27
HETATM	2483	051	WAY	169		2.1	B34	-2.186	0.004	0.00	0.25
END											

	Ato		Res.		х	Y	z	0 7	
ATOM	Ту <u>г</u> 1 сі		HR	7	73.468	27.410	6.079	Occ. B	MOL.
ATOM			HR	'n	72.149	27.911	6.358	1.00 42.70 1.00 37.82	A_13 A_13
MOTA	4 C		HR	7	73.843	26.297	7.068	1.00 25.79	A_13
MOTA	5 C		HR	7 7	75.936	28.076	6.227	1.00 28.29	A_13
MOTA MOTA	6 O 9 N		HR HR	ŕ	76.497 74.360	28.090 29.396	7.332 4.862	1.00 22.94 1.00 20.25	A_13 A_13
ATOM	11 C		HR	7	74.501	28.593	6.099	1.00 21.49	A_13
ATOM	12 N		EU.	8	76.547	27.691	5.099	1.00 32.90	A_13
ATOM ATOM	14 C		.eu .eu	8 8	77.915	27.150	5.105	1.00 31.85	A_13
ATOM	15 C		EU	- 8	77.952 78.016	25.759 25.576	4.438	1.00 21.38	A_13
ATOM		D1 I		8	79.463	25.509	2.425	1.00 16.78	A_13
ATOM		D2 I		8	77.334	24.292	2.527	1.00 23.37	A_13
ATOM ATOM	19 C 20 O		LEU LEU	8 8	78.956 78.835	28.070 28.415	4.465 3.293	1.00 24.01 1.00 26.18	A_13 A_13
ATOM	21 N		YS	9	79.980	28.424	5.251	1.00 36.26	A_13
MOTA	23 C		YS	9	81.106	29.298	4.867	1.00 23.24	A_13
MOTA MOTA	24 C 25 C		LYS LYS	9 9	82.438 82.767	28.521 27.570	4.977 3.815	1.00 25.52	A_13
ATOM	26 C		LYS	9	83.661	28.243	2.753	1.00 19.05 1.00 31.69	A_13 A_13
MOTA	27 C	E I	YS.	9	83.451	27.688	1.323	1.00 25.30	A_13
MOTA MOTA	28 N		LYS	9 9	82.056	27.938	0.797	1.00 20.65	A_13
ATOM	32 C		LYS	9	81.042 80.764	30.073 29.505	3.526 2.466	1.00 31.41 1.00 22.31	A_13 A_13
MOTA	34 N	7	TRP	10	81.327	31.372	3.573	1.00 15.84	A_13
ATOM			TRP	10	81.312	32.172	2.361	1.00 10.58	A_13
MOTA MOTA	37 C		rrp rrp	10 10	81.636 80.529	33.620 34.337	2.680 3.343	1.00 21.39 1.00 22.84	A_13 A_13
ATOM			TRP	10	79.479	35.074	2.697	1.00 22.04	A_13
MOTA			TRP	10	78.676	35.631	3.718	1.00 24.50	A_13
ATOM ATOM			rrp rrp	10 10	79.142 80.327	35.320	1.357	1.00 13.29	A_13
ATOM			TRP	10	79.220	34.469 35.253	4.682 4.919	1.00 13.40 1.00 18.40	A_13 A_13
ATOM	45 C	Z2 1	TRP	10	77.550	36.418	3.442	1.00 12.63	A_13
MOTA			TRP	10	78.021	36.105	1.083	1.00 19.89	A_13
ATOM ATOM	47 C		TRP TRP	10 10	77.242 82.377	36.641 31.594	2.120 1.455	1.00 13.62 1.00 22.95	A_13 A_13
ATOM	49 0		TRP	10	83.450	31.221	1.920	1.00 16.28	A_13
MOTA	50 N		SER	11	82.087	31.533	0.167	1.00 14.81	A_13
MOTA MOTA			SER SER	11 11	83.017 82.282	30.975 30.596	-0.801 -2.086	1.00 19.50 1.00 24.36	A_13 A_13
MOTA			SER	ii	81.605	29.353	-1.958	1.00 40.49	A_13
MOTA	56 C		SER	11	84.190	31.867	-1.134	1.00 16.53	A_13
MOTA MOTA	57 C		ser Lys	11 12	85.132 84.153	31.423 33.113	-1.779 -0.686	1.00 23.48 1.00 12.50	A_13 A_13
MOTA			LYS	12	85.232	34.057	-0.961	1.00 17.05	A_13
MOTA			LYS	12	84.741	35.168	-1.891	1.00 17.32	A_13
MOTA MOTA			Lys Lys	12 12	83.526	35.898	-1.350	1.00 18.49	A_13
ATOM			LYS	12	82.788 81.534	36.644 37.282	-2.446 -1.888	1.00 18.29 1.00 18.44	A_13 A_13
ATOM	65 N	IZ :	LYS	12	80.805	38.094	-2.895	1.00 16.65	A_13
MOTA MOTA	69 C		LYS	12	85.687	34.662	0.344	1.00 11.16	A_13
ATOM	70 C		lys Met	12 13	84.946 85.915	34.637 35.185	1.319 0.355	1.00 12.63 1.00 15.52	A_13 A_13
ATOM	73 C	:A 1	MET	13	87.516	35.801	1.537	1.00 11.04	A_13
MOTA MOTA			met Met	13 13	89.028	35.547	1.565	1.00 16.57	A_13
MOTA			MET	13	89.431 88.905	34.082 33.235	1.707 3.227	1.00 20.92 1.00 20.10	A_13 A_13
ATOM	77 (E :	MET	13	87.486	32.313	2.604	1.00 16.29	A_13
MOTA	78 0		MET	13	87.258	37.296	1.572	1.00 13.23	A_13
ATOM ATOM			met Asn	13 14	87.247 87.111	37.916 37.875	2.634 0.389	1.00 22.80 1.00 15.02	A_13 A_13
ATOM			ASN	14	86.853	39.294	0.241	1.00 33.02	A_13
ATOM			ASN	14	87.445	39.801	-1.082	1.00 19.42	A_13 A_13
MOTA MOTA		:G :D1	ASN ASN	14 14	88.925 89.343	39.482 38.341	-1.217 -1.031	1.00 30.32 1.00 30.12	A_13 A_13
ATOM		ND2		14	89.723	40.489	-1.549	1.00 30.12	A_13
MOTA	89 (2	asn	14	85.337	39.482	0.277	1.00 27.58	A_13
ATOM			ASN	14	84.606	38.935	-0.568	1.00 28.01	A_13
MOTA MOTA			Leu Leu	15 15	84.868 83.444	40.212 40.450	1.287 1.459	1.00 19.06 1.00 20.03	A_13 A_13
MOTA	94 (CB	LEU	15	82.930	39.690	2.691	1.00 19.55	A_13
ATOM			LEU	15	83.027	38.166	2.593	1.00 19.02	A_13
MOTA MOTA		CD1 CD2		15 15	83.216 81.799	37.555 37.604	3.962 1.903	1.00 17.48 1.00 23.43	A_13 A_13
ATOM			LEU	15	83.161	41.928	1.609	1.00 19.52	A_13
MOTA			LEU	15	83.980	42.676	2.130	1.00 15.98	A_13

FIG. 5

MOTA	100	N	THR	16	01 000	40 - 40			
ATOM	102	CA	THR	16	81.983	42.343	1.162	1.00 21.22	A_13
ATOM	103	CB			81.578	43.736	1.252	1.00 10.00	A_13
			THR	16	81.194	44.257	-0.109	1.00 10.00	A_13
MOTA	104		THR	16	80.225	43.370	-0.681	1.00 22.43	A_13
ATOM	106		THR	16	82.427	44.383	-1.009	1.00 15.42	A_13
ATOM	107	С	THR	16	80.368	43.869	2.184	1.00 14.48	A_13
MOTA	108	0	THR	16	79.647	42.897	2.445	1.00 15.74	A_13
MOTA	109	N	TYR	17	80.176	45.065	2.716	1.00 15.89	A_13
ATOM	111	CA	TYR	17	79.064	45.340	3.604	1.00 13.19	A_13
ATOM	112	CB	TYR	17	79.480	45.195	5.067	1.00 21.42	A_13
MOTA	113	CG	TYR	17	80.448	46.236	5.580	1.00 26.23	
ATOM	114		TYR	17	81.824	46.081	5.412		A_13
ATOM	_115_							1.00 16.37	A_13
ATOM	116					46981.	- 5.988	1.00 12.90	
		CD2	TYR	. 17	79.990	47.329	6.331	1.00 17.15	A_13
MOTA	117		TYR	17	80.880	48.235	6.912	1.00 24.15	A_13
MOTA	118	CZ	TYR	17	82.244	48.057	6.743	1.00 23.38	A_13
MOTA	119	OH	TYR	17	83.121	48.942	7.343	1.00 19.47	A_13
MOTA	121	С	TYR	17	78.573	46.740	3.343	1.00 10.00	A_13
MOTA	122	0	TYR	17	79.298	47.559	2.782	1.00 19.27	A_13
ATOM	123	N	ARG	18	77.349	47.019	3.762	1.00 18.52	A_13
MOTA	125	CA	ARG	18	76.762	48.332	3.577	1.00 10.00	A_13
MOTA	126	CB	ARG	18	75.970	48.363	2.274	1.00 10.00	A_13
ATOM	127	CĞ	ARG	18	75.134	49.619	2.094	1.00 14.01	
ATOM	128	CD	ARG	18	74.266	49.524	0.846		A_13
ATOM	129	NE	ARG	18	73.298			1.00 13.91	A_13
ATOM	131	CZ	ARG	18		50.615	0.782	1.00 13.55	A_13
ATOM	132				72.165	50.571	0.092	1.00 10.00	A_13
			ARG	18	71.855	49.488	-0.602	1.00 14.30	A_13
MOTA	135		ARG	18	71.331	51.604	0.125	1.00 28.79	A_13
ATOM	138	Ç	ARG	18	75.842	48.640	4.741	1.00 10.65	A_13
MOTA	139	Ο.	ARG	18	75.037	47.796	5.141	1.00 12.86	A_13
MOTA	140	N	ILE	19	76.014	49.814	5.332	1.00 25.54	A_13
ATOM	142	CA	ILE	19	75.169	50.265	6.436	1.00 24.52	A_13
MOTA	143	CB	ILE	19	75.944	51.236	7.350	1.00 18.37	A_13
ATOM	144	CG2	ILE	19	75.034	51.765	8.485	1.00 13.87	A_13
MOTA	145	CG1	ILE	19	77.204	50.545	7.888	1.00 27.67	
ATOM	146		ILE	19	78.203	51.501			A_13
ATOM	147	C	ILE	19			8.557	1.00 22.81	A_13
MOTA	148				74.062	51.027	5.698	1.00 21.11	A_13
		0	ILE	19	74.261	52.179	5.300	1.00 10.00	A_13
MOTA	149	N	VAL	20	72.916	50.378	5.487	1.00 19.76	A_13
ATOM	151	CA	VAL	20	71.829	51.014	4.735	1.00 18.20	A_13
ATOM	152	CB	VAL	20	70.774	49.983	4.193	1.00 15.42	A_13
MOTA	153		VAL	20	71.384	48.570	4.088	1.00 10.00	A_13
ATOM	154	CG2	VAL	20	69.496	50.030	4.992	1.00 18.62	A_13
ATOM	155	С	VAL	20	71.175	52.206	5.443	1.00 11.67	A_13
ATOM	156	0	VAL	20	70.652	53.110	4.798	1.00 18.36	A_13
ATOM	157	N	ASN	21	71.153	52.187	6.773	1.00 10.94	A_13
ATOM	159	CA	ASN	21	70.609	53.316	7.544	1.00 11.99	A_13
ATOM	160	CB	ASN	21	69.078	53.307	7.675	1.00 10.00	
ATOM	161	CG	ASN	21	68.533	51.978			A_13
ATOM	162		ASN	21	67.627	51.449	8.107	1.00 14.93	A_13
ATOM	163		ASN	21			7.486	1.00 21.54	A_13
ATOM	166		ASN		69.105	51.408	9.148	1.00 10.00	A_13
ATOM		C		21	71.291	53.382	8.897	1.00 18.90	A_13
	167	0	ASN	21	72.006	52.447	9.283	1.00 12.49	A_13
MOTA	168	N	TYR	22	71.053	54.471	9.618	1.00 17.47	A_13
ATOM	170	CA	TYR	22	71.681		10.910	1.00 24.85	A_13
ATOM	171	CB	TYR	22	72.556	55.954	10.818	1.00 13.52	A_13
ATOM	172	CG	TYR	22	73.791	55.748	9.991	1.00 10.00	A_13
MOTA	173		TYR	22	75.033	55.600	10.598	1.00 14.05	A_13
ATOM	174		TYR	22	76.180	55.370	9.841	1.00 13.69	A_13
ATOM	175	CD2	TYR	22	73.717	55.663	8.608	1.00 10.00	A_13
ATOM	176	CE2	TYR	22	74.848	55.432	7.847	1.00 17.10	A_13
ATOM	177	CZ	TYR	22	76.077	55.288	8.476	1.00 14.43	A_13
ATOM	178	OH	TYR	22	77.204	55.072			A_13
ATOM	180	Ċ	TYR	22	70.726	54.862	7.737	1.00 10.00	A_13
MOTA	181	ŏ	TYR				12.076	1.00 25.95	A_13
ATOM				22	69.593	55.311	11.916	1.00.10.00	A_13
ATOM	182	N	THR	23	71.187	54.483	13.259	1.00 20.30	A_13
	184	CA	THR	23	70.367	54.606	14.450	1.00 29.11	A_13
ATOM	185	CB	THR	23	70.821	53.635	15.584	1.00 10.90	A 13
ATOM	186		THR	23	70.136	53.968	16.792	1.00 10.00	A_13
ATOM	188		THR	23	72.328	53.752	15.852	1.00 16.51	A_13
MOTA	189	С	THR	23	70.459	56.038	14.959	1.00 18.14	A_13
ATOM	190	0	THR	23	71.360	56.785	14.575	1.00 10.00	A_13
ATOM	191	N	PRO	24	69.433	56.487	15.691	1.00 12.76	A_13
MOTA	192	CD	PRO	24	68.061	55.950	15.716	1.00 15.26	V 13
ATOM	193	CA	PRO	24	69.453	57.844	16.232	1.00 13.26	A_13
ATOM	194	CB	PRO	24	67.985	58.086	16.232		A_13
ATOM	195	CG	PRO					1.00 28.52	A_13
	-23		4 1/0	24	67.448	56.706	16.841	1.00 15.78	A_13

ATOM	196	С	PRO	24	70.346	F7 045		1 00 04 50	
MOTA	197					57.945	17.475	1.00 24.52	A_13
		0	PRO	24	70.790	59.040	17.831	1.00 10.00	A_13
ATOM	198	N	ASP	25	70.614	56.797	18.105	1.00 11.82	A_13
ATOM	200	CA.	ASP	25	71.416	56.721	19.336	1.00 12.31	A_13
MOTA	201	СВ	ASP	25	71.339	55.317	19.917	1.00 25.26	A_13
ATOM	202	CG	ASP	25	69.927	54.782	19.977	1.00 10.00	A_13
ATOM	203	OD1	ASP	25	69.783	53.567	20.159	1.00 20.90	A_13
ATOM	204	OD2	ASP	25	68.960	55.558	19.841	1.00 18.45	A_13
ATOM	205	С	ASP	25	72.891	57.113	19.286	1.00 14.34	A_13
MOTA	206	0	ASP	25	73.449	57.511	20.301	1.00 11.77	A_13
ATOM	207	N	MET	26	73.546	56.873	18.157	1.00 20.78	A_13
MOTA	209	CA.	MET	26	74.960	57.208	18.010		
-ATOM -		-		— - 26				1.00 20.03	A_13
							-17.916-	-1-00 13.86-	
ATOM	211	CG	MET	26	75.966	55.181	19.231	1.00 19.00	A_13
ATOM	212	SD	MET	26	76.043	53.404	18.941	1.00 14.67	A_13
ATOM	213	CE	MET	26	77.737	53.223	18.385	1.00 19.74	A_13
ATOM	214	С	MET	26	75.157	58.047	16.754	1.00 13.32	A_13
ATOM	215	0	MET	26	74.274	58.086	15.900	1.00 16.81	A_13
ATOM	216	N	THR	27	76.285	58.749	16.656	1.00 10.29	A_13
MOTA	218	CA	THR	27	76.568	59.564	15.470	1.00 17.00	A_13
ATOM	219	CB	THR	27	77.710	60.596	15.700	1.00 11.79	A_13
ATOM	220	OG1	THR	27	78.969	59.921	15.729	1.00 23.77	A_13
ATOM	222		THR	27	77.519	61.342	17.020	1.00 21.98	A_13
ATOM	223	C	THR	27	76.996	58.634	14.347	1.00 13.37	Ä_13
ATOM	224	ŏ	THR	27	77.411	57.500	14.608	1.00 11.05	
ATOM	225	N	HIS	28	76.972	59.124			A_13
ATOM	227	CA		28	77.362		13.113	1.00 10.00	A_13
			HIS			58.300	11.980	1.00 10.96	A_13
ATOM	228	CB	HIS	28	77.240	59.071	10.657	1.00 16.07	A_13
MOTA	229	CG	HIS	28	75.829	59.382	10.264	1.00 15.53	A_13
ATOM	230		HIS	28	74.707	59.531	11.016	1.00 21.47	A_13
MOTA	231		HIS	28	75.440	59.597	8.959	1.00 30.32	A_13
ATOM	233		HIS	28	74.149	59.868	8.920	1.00 19.38	A_13
MOTA	234	NE2	HIS	28	73.680	59.833	10.160	1.00 29.43	A_13
ATOM	236	С	HIS	28	78.769	57.735	12.151	1.00 14.80	A_13
ATOM	237	0	HIS	28	79.005	56.568	11.851	1.00 28.24	A_13
ATOM	238	N	SER	29	79.703	58.548	12.634	1.00 14.00	A_13
ATOM	240	CA	SER	29	81.068	58.070	12.854		
ATOM	241	CB	SER	29				1.00 19.57	A_13
					82.001	59.219	13.242	1.00 17.84	A_13
ATOM	242	OG	SER	29	82.383	59.936	12.084	1.00 28.25	A_13
ATOM	244	C	SER	29	81.134	56.983	13.917	1.00 15.23	A_13
ATOM	245	0	SER	29	81.818	55.973	13.733	1.00 13.73	A_13
ATOM	246	N	GLU	30	80.428	57.182	15.027	1.00 27.71	A_13
ATOM	248	CA	GLU	30	80.430	56.186	16.100	1.00 23.60	A_13
MOTA	249	CB	GLU	30	79.571	56.635	17.289	1.00 21.72	A_13
ATOM	250	CG	GLU	30	80.048	57.913	17.973	1.00 24.07	A_13
ATOM	251	CD	GLU	30	79.205	58.279	19.185	1.00 21.06	A_13
MOTA	252	OE1	GLU	30	79.784	58.660	20.218	1.00 46.95	A_13
ATOM	253	OE2		30	77.963	58.185	19.119	1.00 18.27	A_13
MOTA	254	c	GLU	30	79.895	54.877	15.553	1.00 18.75	
MOTA	255	ŏ	GLU	30	80.456	53.809	15.815		A_13 A_13
ATOM	256	Ň	VAL	31	78.839	54.970		1.00 13.06	
ATOM	258	CA	VAL	31			14.746	1.00 16.23	A_13
MOTA	259				78.225	53.781	14.146	1.00 22.33	A_13
		CB	VAL	31	76.899	54.135	13.390	1.00 23.53	A_13
ATOM	260	CGI	VAL	31	76.384	52.920	12.628	1.00 14.39	A_13
MOTA	261		VAL	31	75.829	54.587	14.377	1.00 10.00	A_13
MOTA	262	C	VAL	31	79.208	53.040	13.216	1.00 20.29	A_13
MOTA	263	0	VAL	31	79.330	51.814	13.282	1.00 14.02	A_13
MOTA	264	N	GLU	32	79.913	53.790	12.370	1.00 23.94	A_13
MOTA	266	CA	GLU	32	80.887	53.219	11.446	1.00 10.18	A_13
MOTA	267	CB	GLU	32	81.406	54.285	10.502	1.00 16.50	A 13
MOTA	268	CG	GLU	32	80.424	54.605	9.427	1.00 20.84	A_13 A_13
ATOM	269	CD	GLU	32	80.330	56.080	9.155	1.00 22.31	7 13
ATOM	270		GLU	32	79.285	56.509			A_13
MOTA	271	OE2		22			8.639	1.00 29.39	A_13
ATOM				32	81.294	56.812	9.458	1.00 22.01	A_13
	272	C	GLU	32	82.056	52.565	12.137	1.00 18.93	A_13
ATOM	273	0	GLU	32	82.474	51.470	11.753	1.00 24.42	A_13
ATOM	274	N	LYS	33	82.610	53.241	13.139	1.00 19.78	A 13
ATOM	276	CA	LYS	33	83.726	52.661	13.873	1.00 28.68	A_13
MOTA	277	CB	LYS	33	84.340	53.681	14.837	1.00 18.54	A_13 A_13
MOTA	278	CG	LYS	33	85.016	54.855	14.135	1.00 31.19	A_13
MOTA	279	CD	LYS	33	86.135	54.425	13.148	1.00 40.31	A_13
MOTA	280	CE	LYS	33	85.600	53.972	11.785	1.00 21.99	A_13
ATOM	281	NZ	LYS	33	86.646	53.779	10.773	1.00 33.20	A_13
ATOM	285	C	LYS	33	83.242	51.407	14.594	1.00 12.66	A_13
ATOM	286	ŏ	LYS	33	83.892	50.361	14.552		M_13
ATOM	287	N	ALA	34	82.036	51.481		1.00 15.54	A_13
MOTA	289	CA	ALA		02.030		15.148	1.00 20.70	A_13
2.2011	203	~~	The	34	81.453	50.344	15.843	1.00 10.00	A_13

ATOM	290	CB	ALA	34	80.040	50.651	16.279	1.00 18.59	A_13
ATOM	291	С	ALA	34	81.468	49.119	14.940	1.00 13.45	A_13
ATOM	292	ō	ALA	34	82.067				
ATOM	293					48.095	15.284	1.00 15.90	A_13
		N	PHE	35	80.857	49.234	13.766	1.00 19.57	A_13
MOTA	295	CA	PHE	35	80.802	48.112	12.812	1.00 26.77	A_13
MOTA	296	CB	PHE	35	79.837	48.423	11.660	1.00 17.34	A 13
ATOM	297	CG	PHE	35	78.390	48.477	12.077	1.00 30.55	A_13
ATOM	298		PHE						
				35	77.838	47.464	12.863	1.00 26.58	A_13
ATOM	299		PHE	35	77.570	49.512	11.653	1.00 10.00	A_13
ATOM	300	CE1	PHE	35	76.494	47.485	13.212	1.00 12.45	A_13
ATOM	301	CE2	PHE	35	76.224	49.538	12.002	1.00 17.92	A_13
ATOM	302	CZ	PHE	35	75.684	48.525	12.777		
								1.00 13.29	A_13
ATOM	_303_	. C .	PHE		82.170			-1.00 11.31	A <u>-</u> 13
MOTA	304	0	PHE	35	82.493	46.573	12.034	1.00 11.37	A_13
ATOM	305	N	LYS	36	82.962	48.778	11.945	1.00 17.06	A_13
MOTA	307	CA	LYS	36	84.293	48.573	11.400	1.00 17.41	A_13
ATOM	308	CB	LYS	36	84.991	49.922	11.208		
ATOM	309							1.00 11.20	A_13
		CG	LYS	36	86.282	49.792	10.439	1.00 28.84	A_13
ATOM	310	CD	LYS	36	87.246	50.917	10.738	1.00 24.52	A_13
ATOM	311	СE	LYS	36	88.542	50.703	9.978	1.00 12.87	A_13
ATOM	312	NZ	LYS	36	88.264	50.536	8.514	1.00 23.69	A_13
ATOM	316	C	LYS	36	85.122				A_13
ATOM						47.685	12.345	1.00 16.09	A_13
	317	Û	LYS	36	85.701	46.686	11.938	1.00 21.50	A_13
MOTA	318	N	LYS	37	85.173	48.057	13.613	1.00 12.42	À_13
ATOM	320	CA	LYS	37	85.926	47.303	14.591	1.00 12.36	A_13
ATOM	321	CB	LYS	37	85.953	48.066	15.917	1.00 13.65	A_13
ATOM	322	CG	LYS	37	86.744	47.374			
MOTA	323	CD	LYS				17.028	1.00 13.38	A_13
				37	88.192	47.125	16.616	1.00 38.32	A_13
MOTA	324	CE	LYS	37	88.750	45.825	17.205	1.00 34.46	A_13
ATOM	325	NZ	LYS	37	88.234	44.576	16.557	1.00 12.49	A 13
ATOM	329	С	LYS	37	85.372	45.887	14.786	1.00 17.04	A_13
ATOM	330	Ō	LYS	37					
ATOM	331				86.131	44.958	15.053	1.00 18.14	A_13
		N	ALA	38	84.061	45.711	14.649	1.00 24.47	A_13
ATOM	333	CA	ALA	38	83.452	44.392	14.822	1.00 11.03	A_13
ATOM	334	CB	ALÀ	38	81.941	44.504	14.890	1.00 14.71	A_13
ATOM	335	С	ALA	38	83.900	43.451	13.697	1.00 20.27	A_13
ATOM	336	Ō	ALA	38					
ATOM	337				84.143	42.266	13.936	1.00 18.80	A_13
		N	PHE	39	84.021	43.971	12.477	1.00 22.58	A_13
MOTA	339	CA	PHE	39	84.492	43.158	11.355	1.00 18.87	A_13
MOTA	340	CB	PHE	39	84.350	43.899	10.027	1.00 19.91	A_13
ATOM	341	CG	PHE	39	82.993	43.783	9.414	1.00 10.00	A_13
MOTA	342	CD1	PHE	39	82.266	44.915	9.097	1.00 17.54	A_13
MOTA	343	CD2	PHE	39	82.438	42.533	9.143		
ATOM	344		PHE	39	81.008			1.00 15.92	A_13
ATOM	345		PHE			44.808	8.520	1.00 20.75	A_13
				39	81.186	42.418	8.569	1.00 10.00	A_13
ATOM	346	CZ	PHE	39	80.467	43.555	8.252	1.00 10.00	A_13
ATOM	347	C	PHE	39	85.955	42.827	11.589	1.00 16.52	A_13
MOTA	348	0	PHE	39	86.382	41.689	11.387	1.00 19.70	A_13
ATOM	349	N	LYS	40	86.699	43.822	12.072	1.00 21.31	
MOTA	351	CA	LYS	40	88.117	43.673			A_13
ATOM	352	CB					12.369	1.00 20.07	A_13
			LYS	40	88.703	44.967	12.927	1.00 13.77	A_13
ATOM	353	CG	LYS	40	90.192	44.885	13.171	1.00 11.54	A_13
ATOM	354	CD	LYS	40	90.757	46.242	13.507	1.00 10.34	A_13
MOTA	355	CE	LYS	40	92.236	46.142	13.838	1.00 11.24	A_13
ATOM	356	NZ	LYS	40	92.468	45.518	15.179	1.00 27.33	A_13
ATOM	360	С	LYS	40	88.352	42.534			
ATOM	361	ŏ	LYS			42.554	13.337	1.00 12.06	A_13
ATOM				40	89.252	41.719	13.124	1.00 25.09	A_13
	362	N	VAL	41	87.495	42.418	14.349	1.00 12.26	A_13
MOTA	364	CA	VAL	41	87.630	41.331	15.325	1.00 17.89	A_13
MOTA	365	CB	VAL	41	86.351	41.205	16.216	1.00 10.00	A_13
ATOM	366	CG1	VAL	41	86.298	39.865	16.894	1.00 23.82	2 13
ATOM	367		VAL	41	86.329				A_13
ATOM	368					42.274	17.259	1.00 17.65	A_13
		C	VAL	41	87.822	40.009	14.560	1.00 23.06	A_13
ATOM	369	0	VAL	41	88.664	39.168	14.912	1.00 11.82	A 13
ATOM	370	N	TRP	42	87.069	39.871	13.471	1.00 21.42	A_13
ATOM	372	CA	TRP	42	87.085	38.666	12.661	1.00 21.32	A_13
ATOM	373	CB	TRP	42	85.713	38.476	12.009	1.00 18.84	
ATOM	374	CG	TRP	42					A_13
ATOM	375				84.605	38.387	13.025	1.00 25.92	A_13
			TRP	42	84.437	37.369	14.024	1.00 16.65	A_13
ATOM	376		TRP	42	83.260	37.680	14.737	1.00 17.58	A_13
MOTA	377		TRP	42	85.165	36.223	14.380	1.00 11.14	A_13
MOTA	378	CD1	TRP	42	83.563	39.249	13.179	1.00 10.00	A_13
MOTA	379	NE1	TRP	42	82.755	38.832	14.200	1.00 10.91	A_13
ATOM	381		TRP	42	82.785	36:879	15.793		V-13
ATOM	382		TRP	42	84.691	35.425		1.00 14.81	A_13
ATOM	383		TRP				15.436	1.00 23.68	A_13
ATOM	384			42	83.513	35.759	16.125	1.00 12.75	A_13
	204	С	TRP	42	88.190	38.600	11.623	1.00 27.45	A_13

ATOM	385	0	TRP	42	88.834	37.556	11.472	1.00 11.84	A_13
MOTA	386	N	SER	43	88.413	39.702	10.909	1.00 25.46	A_13
MOTA MOTA	388 389	CA CB	SER SER	43 43	89.449 89.342	39.740 40.993	9.881 8.991	1.00 19.61 1.00 16.16	A_13
ATOM	390	OG	SER	43	89.495	40.333	9.709	1.00 26.34	A_13 A_13
ATOM	392	c	SER	43	90.837	39.615	10.491	1.00 11.53	A_13
MOTA	393	0	SER	43	91.758	39.119	9.834	1.00 17.99	A_13
MOTA	394	N	ASP	44	90.949 92.206	39.973 39.908	11.771	1.00 10.00	A_13
ATOM ATOM	396 397	CA CB	ASP ASP	44 44	92.057	40.588	12.505 13.857	1.00 16.90 1.00 17.79	A_13 A_13
ATOM	398	CG	ASP	44	92.544	42.013	13.839	1.00 15.93	A_13
MOTA	399	OD1		44	92.605	42.618	14.920	1.00 17.21	A_13
	-400		ASP -		-92874	42.533-		1.00 19.50-	- A_13 -
ATOM ATOM	401 402	C O	ASP ASP	44 44	92.781 93.996	38.523 38.362	12.729 12.897	1.00 26.12 1.00 21.21	A_13 A_13
ATOM	403	И.	VAL	45	91.911	37.523	12.745	1.00 20.89	A_13
ATOM	405	CA	VAL	45	92.353	36:161	12.996	1.00 27.53	A_13
MOTA MOTA	406 407	CB CG1	VAL	45 45	91.853 92.557	35.678 36.472	14.381 15.504	1.00 16.30	A_13
ATOM	408	CG2		45	90.348	35.857	14.495	1.00 10.00 1.00 10.86	A_13 A_13
ATOM	409	C	VAL	45	91.928	35.187	11.911	1.00 24.33	A_13
ATOM	410	0	VAL	45	91.864	33.978	12.157	1.00 18.84	A_13
ATOM ATOM	411 413	N CA	THR	46 46	91.750 91.293	35.705 34.893	10.694 9.574	1.00 16.30	A_13
ATOM	414	CB	THR	46	89.750	34.796	9.662	1.00 14.48 1.00 22.05	A_13 A_13
ATOM	415		THR	46	89.279	33.609	9.028	1.00 31.53	A_13
ATOM	417	CG2	THR	46	89.112	36.014	9.040	1.00 10.99	A_13
MOTA MOTA	418 419	C O	THR	46 46	91.716 92.022	35.575 36.764	8.257 8.256	1.00 25.10 1.00 17.64	A_13 A_13
MOTA	420	N	PRO	47	91.688	34.845	7.114	1.00 17.04	A_13 A_13
MOTA	421	CD	PRO	47	91.459	33.398	6.985	1.00 17.94	A_13
MOTA	422	CA	PRO	47	92.069	35.416	5.815	1.00 21.50	A_13
MOTA MOTA	423 424	CB CG	PRO PRO	47 47	92.199 92.369	34.182	4.911	1.00 17.57	A_13
ATOM	425	C	PRO	47	90.991	33.041 36.348	5.848 5.256	1.00 27.45 1.00 21.44	A_13 A_13
ATOM	426	ō	PRO	47	91.095	36.788	4.116	1.00 11.08	A_13
MOTA	427	N	LEU	48	89.918	36.567	6.018	1.00 10.00	A_13
ATOM ATOM	429 430	CA CB	LEU	48	88.826	37.434	5.581	1.00 22.09	A_13
ATOM	431	CG	LEU LEU	48 48	87.575 86.848	37.212 35.867	6.432 6.435	1.00 15.92 1.00 13.58	A_13 A_13
ATOM	432		LEU	48	85.931	35.811	7.654	1.00 25.90	A_13
MOTA	433		LEU	48	86.073	35.666	5.157	1.00 16.47	A_13
MOTA MOTA	434 435	C O	LEU	48 48	89.156 89.936	38.916 39.366	5.641 6.480	1.00 21.20 1.00 17.28	A_13 A_13
ATOM	436	N	ASN	49	88.569	39.670	4.723	1.00 17.28	A_13 A_13
MOTA	438	CA	ASN	49	88.738	41.112	4.717	1.00 26.84	A_13
ATOM	439	CB	ASN	49	89.936	41.569	3.885	1.00 18.29	A_13
ATOM ATOM	440 441	CG	ASN ASN	49 49	90.010 90.928	40.912 40.131	2.568 2.305	1.00 22.55 1.00 24.41	A_13 A_13
ATOM	442		ASN	49	89.068	41.235	1.693	1.00 24.41	A_13
ATOM	445	C	ASN	49	87.416	41.705	4.259	1.00 12.18	A_13
ATOM	446	0	ASN	49	86.732	41.128	3.400	1.00 20.77	A_13
ATOM ATOM	447 449	N CA	PHE	50 50	87.025 85.738	42.802 43.439	4.900 4.642	1.00 21.39 1.00 10.00	A_13 A_13
MOTA	450	CB	PHE	50	84.914	43.440	5.932	1.00 11.45	A_13
ATOM	451	CG	PHE	50	84.863	42.098	6.629	1.00 10.63	A_13
MOTA MOTA	452 453		PHE	50 50	85.886 83.809	41.705	7.490	1.00 10.00	A_13
ATOM	454		PHE	50	85.858	41.216 40.457	6.395 8.097	1.00 14.63 1.00 26.88	A_13 A_13
ATOM	455		PHE	50	83.773	39.963	7.000	1.00 21.13	A_13
ATOM	456	CZ	PHE	50	84.801	39.581	7.852	1.00 10.30	A_13
ATOM ATOM	457 458	C	PHE	50 50	85.867 86.638	44.842	4.093	1.00 22.56	A_13
ATOM	459	N	THR	51	85.099	45.644 45.129	4.612 3.044	1.00 19.33 1.00 21.47	A_13 A_13
ATOM	461	CA	THR	51	85.125	46.433	2.371	1.00 24.21	A_13
MOTA	462	СВ	THR	51	85.602	46.306	0.895	1.00 15.39	A_13 A_13
MOTA MOTA	463 465		THR	51 51	86.950	45.811	0.853	1.00 24.33	A_13
MOTA	466	CGZ	THR	51 51	85.551 83.735	47.654 47.048	0.192 2.359	1.00 25.47 1.00 22.17	A_13 A_13
ATOM	467	ŏ	THR	51	82.766	46.421	1.912	1.00 20.53	A_13
ATOM	468	N	ARG	52	83.653	48.294	2.797	1.00 16.53	A_13
ATOM ATOM	470 471	CA CB	ARG ARG	52 52	82.393 82.490	49.004 50.085	2.871	1.00 10.00	A_13
ATOM	472	CG	ARG	52 52	81.201	50.085	3.939 4.259	1.00 10.00 1.00 12.47	A_13 A_13
ATOM	473	CD	ARG	52	81.462	51.879	5.278	1.00 19.61	A_13
ATOM	474	NE	ARG	52 53	80.371	52.836	5.333	1.00 30.55	A_13
ATOM	476	CZ	ARG	52	80.489	54.074	5.795	1.00 24.06	A_13

WO 01/63244

ATOM ATOM ATOM ATOM	477 480 483 484		ARG ARG ARG ARG	52 52 52 52	81.661 79.421 81.980 82.782	54.508 54.862 49.620 50.269	6.257 5.829 1.540 0.859	1.00 21.24 1.00 27.78 1.00 30.22 1.00 16.27	A_13 A_13 A_13 A_13
MOTA	485	N	LEU	53	80.730	49.372	1.161	1.00 21.07	A_13
ATOM ATOM	487 488	CA CB	LEU LEU	53 53	80.159 79.435	49.914 48.831	-0.062 -0.868	1.00 15.73 1.00 11.53	A_13 A_13
ATOM	489	CG	LEU	53	80.304	47.770	-1.530	1.00 10.00	A_13
ATOM ATOM	490 491		LEU	53 53	79:429 81.280	46.790 48.443	-2.296 -2.448	1.00 13.21 1.00 12.78	A_13 A_13
MOTA	492	С	LEU	53	79.149	50.932	0.421	1.00 10.00	A_13
ATOM	493 _494_	O N	LEU HIS_	53 54	78.463 79.043	50.713 52041	1.411	1.00 13.62 _1.00 15.73	A_13 A_13_
MOTA	496	CA	HIS .	54	78.102	53.065	0.126	1.00 12.47	A_13
MOTA MOTA	497 498	CB CG	HIS HIS	54 54	78.765 79.967	54.435 54.589	0.011 0.884	1.00 15.18 1.00 21.27	A_13 A_13
ATOM	499	CD2	HIS	54	81.207	54.056	0.798	1.00 25.30	A_13
MOTA MOTA	500 502		HIS HIS	54 54	79.951 81.127	55.338 55.255	2.043 2.633	1.00 16.48 1.00 21.62	A_13 A_13
ATOM	503	NE2	HIS	54	81.910	54.482	1.899	1.00 29.91	A_13
MOTA MOTA	505 506	0	HIS HIS	54 54	76.796 75.914	53.044 53.849	-0.664 -0.403	1.00 15.50 1.00 21.80	A_13 A_13
MOTA	507	N	ASP	55	76.707	52.178	-1.671	1.00 21.00	A_13 A_13
ATOM ATOM	509 510	CA CB	ASP ASP	55 55	75.509 75.645	52.077 52.928	-2.502 -3.773	1.00 17.23	A_13
MOTA	511	CG	ASP	55	75.864	54.393	-3.495	1.00 19.94 1.00 26.81	A_13 A_13
ATOM	512 513		ASP ASP	55 55	75.059	54.991	-2.741 -4.058	1.00 35.97	A_13
MOTA MOTA	514	C	ASP	55 55	76.839 75.343	54.948 50.645	-2.970	1.00 25.09 1.00 21.50	A_13 A_13
MOTA	515	0	ASP	55	76.286	49.862	-2.929	1.00 17.45	A_13
MOTA MOTA	516 518	N CA	GLY GLY	56 56	74.160 73.897	50.337 49.014	-3.489 -4.014	1.00 10.31 1.00 13.67	A_13 A_13
MOTA	519	C	GLY	56	73.842	47.869	-3.030	1.00 17.61	A_13
ATOM ATOM	520 521	O N	GLY ILE	56 57	73.683 73.943	48.065 46.653	-1.825 -3.560	1.00 12.57 1.00 22.27	A_13 A_13
ATOM .	523	CA	ILE	57	73.895	45.460	-2.737	1.00 11.39	A_13
MOTA MOTA	524 525	CB CG2	ILE ILE	57 57	72.941 73.365	44.391 42.995	-3.347 -2.955	1.00 22.87 1.00 22.98	A_13 A_13
MOTA	526		ILE	. 57	71.522	44.582	-2.787	1.00 30.87	A_13 A_13
MOTA MOTA	527 528	CD1 C	ILE ILE	57 57	71.002 75.289	46.022 44.919	-2.796	1.00 28.15 1.00 22.32	A_13
MOTA	529	ŏ	ILE	57	76.140	44.849	-2.446 -3.332	1.00 22.32	A_13 A_13
MOTA	530	N	ALA	58	75.517	44.631	-1.168	1.00 25.02	A_13
ATOM ATOM	532 533	CA CB	ALA ALA	58 58	76.773 77.366	44.105 45.060	-0.669 0.358	1.00 15.45 1.00 11.62	A_13 A_13
MOTA	534	C	ALA	58	76.438	42.780	-0.006	1.00 12.08	A_13
MOTA MOTA	535 536	N O	ALA ASP	58 59	75.289 77.449	42.521 41.968	0.307 0.247	1.00 13.30 1.00 14.79	A_13 A_13
MOTA	538	CA	ASP	59	77.245	40.675	0.880	1.00 18.50	A_13
ATOM ATOM	539 540	CB CG	ASP ASP	59 59	78.608 79.425	39.974 39.858	1.093 -0.210	1.00 10.83 1.00 23.35	A_13 A_13
ATOM	541		ASP	59	80.598	40.266	-0.236	1.00 17.98	A_13
MOTA MOTA	542 543	C C	ASP ASP	59 59	78.896 76.480	39.379 40.806	-1.230 2.200	1.00 16.89 1.00 13.69	A_13 A_13
MOTA	544	0	ASP	59	75.402	40.227	2.380	1.00 15.93	A_13
ATOM ATOM	545 547	N CA	ILE ILE	60 60	77.025 76.422	41.596 41.800	3.109 4.412	1.00 13.15 1.00 12.20	A_13 A_13
MOTA	548	CB	ILE	60	77.500	41.695	5.508	1.00 12.12	A_13
MOTA MOTA	549 550		ILE	60 60	76.921 78.118	42.060 40.287	6.864 5.481	1.00 19.27 1.00 10.00	A_13 A_13
ATOM	551	CD1	ILE	60	79.330	40.120	6.360	1.00 10.00	A_13
MOTA MOTA	552 553	CO	ILE	60 60	75.743 76.410	43.164 44.193	4.456 4.478	1.00 17.78 1.00 18.65	A_13 A_13
ATOM .	554	N	MET	61	74.416	43.168	4.431	1.00 12.54	A_13
MOTA MOTA	556 557	CA CB	MET MET	61 61	73.640 72.385	44.416 44.314	4.476 3.604	1.00 12.86 1.00 18.16	A_13 A_13
MOTA	558	° CG	MET	61	72.634	43.979	2.141	1.00 10.00	A 13
MOTA MOTA	559 560	SD CE	MET MET	61 61	73.374 71.836	45.314 46.299	1.251 0.764	1.00 10.69 1.00 10.00	A_13 A_13
MOTA	561	C	MET	61	73.239	44.666	5.921	1.00 10.00	A_13
MOTA MOTA	562 563	O N	MET ILE	61 62	72.584 73.706	43.838 45.784	6.547 6.456	1.00 18.13 1.00 15.60	A_13 A_13
ATOM	565	CA	ILE	62	73.452	46.170	7.837	1.00 18.55	A_13
MOTA MOTA	566 567	CB CG2	ILE?	62 62	74.723 74.498	46.828 47.163	8.437 9.900	1.00 10.00 1.00 26.36	A_13 A_13
MOTA	568	CG1	ILE	62	75.936	45.897	8.302	1.00 11.04	A_13
MOTA	569	CD1	ILE	62	77.228	46.481	8.891	1.00 10.00	A_13

ATOM 572 N SER 63 71.255 46.895 8.755 1.00 10.06 1.31 ATOM 575 CB SER 63 69.016 47.364 7.956 1.00 12.52 2	ATOM ATOM	570 C ILE 571 O ILE	62 62	72.289 72.335	47.172 48.208	7.920 7.264	1.00 17.99 1.00 12.72	A_13 A_13
ATOM 576 OG SER 63 69.016 47.364 7.956 1.00 13.06 A.13 ATOM 578 OG SER 63 69.428 64.186 8.415 1.00 27.90 A.13 ATOM 578 O SER 63 69.425 47.854 11.00 13.14 1.00 13.14 A.13 ATOM 578 O SER 63 69.625 47.854 11.101 1.00 22.10 A.13 ATOM 580 N PHE 64 68.931 49.331 11.00 12.10 A.13 ATOM 580 C PHE 64 68.931 49.331 11.00 12.11 A.13 ATOM 581 C G PHE 64 70.189 50.448 11.092 1.00 10.00 A.13 ATOM 585 C DI PHE 64 70.189 50.448 11.092 1.00 10.00 A.13 ATOM 585 C DI PHE 64 70.189 50.448 11.092 1.00 10.00 A.13 ATOM 586 C DI PHE 64 71.229 51.016 12.357 1.00 10.90 A.13 ATOM 587 C EI PHE 64 71.777 49.885 14.825 1.00 10.00 A.13 ATOM 588 C EP PHE 64 72.540 51.025 12.846 1.00 10.00 A.13 ATOM 589 C PHE 64 72.232 50.489 11.675 1.00 12.95 A.13 ATOM 580 C PHE 64 72.242 50.489 11.00 11.00 12.55 A.13 ATOM 590 C PHE 64 66.025 49.207 11.675 1.00 12.55 A.13 ATOM 591 N PHE 64 66.025 49.207 11.675 1.00 12.55 A.13 ATOM 592 N PHE 64 66.025 49.207 11.675 1.00 12.55 A.13 ATOM 595 N LE 64 66.025 49.207 11.675 1.00 12.55 A.13 ATOM 597 N ILE 66 6.257 48.39 11.00 10.79 A.13 ATOM 599 C A LE 66 61.803 47.968 11.00 11.00 12.2 A.13 ATOM 590 C PHE 64 66.255 49.207 11.675 1.00 12.05 A.13 ATOM 591 N PHE 64 66.255 49.207 11.675 1.00 12.05 A.13 ATOM 595 N LE 66 61.03 48.485 12.453 1.00 10.00 A.13 ATOM 590 C PHE 64 66.255 49.207 11.675 1.00 12.2 A.13 ATOM 590 C DILY 66 60.31 48.485 12.453 1.00 10.69 A.13 ATOM 600 C DILY 66 60.31 48.485 12.453 1.00 10.69 A.13 ATOM 600 C DILY 66 60.31 48.485 12.453 1.00 10.69 A.13 ATOM 600 C DILY 66 60.325 50.02 10.00 10.43 A.13 ATOM 600 C DILY 66 60.31 48.485 12.453 1.00 10.69 A.13 ATOM 600 C DILY 66 60.31 48.485 12.453 1.00 10.43 A.13 ATOM 601 C C C C C C C C C C C C C C C C C C C	ATOM	572 N SER	63	71.285	46.896	8.751	1.00 10.00	A_13
ATOM 576 OG SER 63 68.448 46.146 8.415 1.00 27.90								
ATOM 579 O SER 63 69.869 46.951 11.101 1.00 22.10 A.73 ATOM 582 CA PHE 64 68.919 48.932 10.640 1.00 22.01 A.13 ATOM 583 CB PHE 64 68.177 50.468 12.574 1.00 10.98 A.13 ATOM 585 CDI PHE 64 70.189 50.448 13.092 1.00 10.00 A.13 ATOM 586 CDIZ PHE 64 71.229 51.016 12.357 1.00 10.50 A.13 ATOM 580 CEZ PHE 64 72.242 50.025 11.611 1.00 10.00 A.13 ATOM 591 O PHE 64 66.255 94.940 10.779 1.00 19.94 A.13 ATOM 594 CA GLY 65 66.9314 48.485 12.238 1.00	MOTA				46.146	8.415	1.00 27.90	A_13
ATOM 582 CA PHE 64 68.317 49.139 11.954 1.00 22.01 A.13 ATOM 584 CB PHE 64 68.777 50.468 12.574 1.00 10.98 A.13 ATOM 585 CD12 PHE 64 70.189 50.448 13.092 1.00 10.00 A.13 ATOM 586 CD2 PHE 64 71.229 51.016 12.357 1.00 16.56 A.13 ATOM 580 C2 PHE 64 71.229 51.016 12.357 1.00 10.00 A.13 ATOM 580 C2 PHE 64 76.281 50.00 10.00 A.13 ATOM 591 CA GHE 64 66.612 49.207 11.079 10.00 10.00 A.13 ATOM 594 CA GUY 65 64.933 48.491 12.238 1.00 10.70 A.13								
ATOM 583 CB PHE 64 68.777 50.468 12.574 1.00 10.98 A_13 ATOM 586 CD PHE 64 70.189 50.448 13.092 1.00 10.00 A_13 ATOM 586 CD2 PHE 64 70.473 49.885 14.322 1.00 10.00 A_13 ATOM 587 CEI PHE 64 71.277 49.885 14.322 1.00 10.00 A_13 ATOM 589 CZ PHE 64 71.277 49.885 14.325 1.00 16.56 A_13 ATOM 589 CZ PHE 64 71.277 49.885 14.325 1.00 16.56 A_13 ATOM 589 CZ PHE 64 72.540 51.025 12.846 1.00 10.00 A_13 ATOM 589 CZ PHE 64 72.540 51.025 12.846 1.00 10.00 A_13 ATOM 589 CZ PHE 64 72.540 51.025 12.846 1.00 10.00 A_13 ATOM 589 CZ PHE 64 72.540 51.025 12.846 1.00 10.00 A_13 ATOM 590 C PHE 64 66.625 49.910 10.757 1.00 12.59 A_13 ATOM 591 C PHE 64 66.625 49.910 10.776 1.00 12.59 A_13 ATOM 592 N PHE 64 66.625 49.910 10.776 1.00 12.62 ATOM 595 C GLY 65 64.593 48.91 12.233 1.00 10.70 A_13 ATOM 595 C GLY 65 64.594 48.138 13.521 1.00 12.62 ATOM 597 N ILE 66 61.227 49.228 15.503 1.00 13.69 A_13 ATOM 599 CA ILE 66 61.227 49.228 15.503 1.00 30.51 A_13 ATOM 600 C GI ILE 66 61.237 49.228 15.503 1.00 30.51 A_13 ATOM 601 CG2 ILE 66 66.2351 50.110 16.052 1.00 10.43 A_13 ATOM 602 CG1 ILE 66 60.331 50.10 16.052 1.00 10.43 A_13 ATOM 603 CD1 ILE 66 60.331 50.10 16.052 1.00 10.43 A_13 ATOM 604 C LILE 66 60.331 50.10 16.052 1.00 10.43 A_13 ATOM 605 C ILE 66 60.331 50.10 16.052 1.00 10.43 A_13 ATOM 606 N LYS 67 69.564 46.923 18.986 1.00 10.23 A_13 ATOM 607 C ILE 66 60.331 50.062 14.586 1.00 14.56 A_13 ATOM 608 C ILE 66 60.331 50.062 14.586 1.00 14.56 A_13 ATOM 608 C ILE 66 60.331 60.31 4.361 1.00 10.23 A_13 ATOM 608 C ILE 66 60.331 50.062 14.586 1.00 10.23 A_13 ATOM 608 C ILE 66 60.331 50.062 14.586 1.00 10.23 A_13 ATOM 608 C ILE 66 60.331 50.062 14.586 1.00 10.23 A_13 ATOM 608 C ILE 66 60.331 60.31 40.502 1.00 10.00 A_13 ATOM 608 C ILE 66 60.331 60.31 40.00 10.23 A_13 ATOM 608 C ILE 66 60.331 60.31 40.00 10.23 A_13 ATOM 608 C ILE 66 60.331 60.31 40.00 10.23 A_13 ATOM 608 C ILE 66 60.331 60.31 40.00 10.23 A_13 ATOM 608 C ILE 66 60.331 60.31 40.00 10.23 A_13 ATOM 608 C ILE 66 60.331 60.33 40.302 10.00 10.00 A_13 ATOM 608 C ILE 66 60.331 60.33 40.00 10.								
ATOM 585 CD PHE 64 70.243 -49.885 14.322 1.00 10.00 A.13 ATOM 586 CD PHE 64 71.272 91.016 10.257 1.00 10.00 A.13 ATOM 588 CE2 PHE 64 72.540 51.025 12.846 1.00 10.00 A.13 ATOM 589 CZ PHE 64 72.540 51.025 12.846 1.00 10.00 A.13 ATOM 590 C PHE 64 66.825 49.207 11.675 1.00 22.55 A.13 ATOM 591 O PHE 64 66.825 49.207 11.675 1.00 22.55 A.13 ATOM 591 O PHE 64 66.825 49.207 11.675 1.00 19.49 A.13 ATOM 591 O PHE 64 66.825 49.207 11.675 1.00 19.49 A.13 ATOM 591 O PHE 64 66.825 48.485 12.453 1.00 10.00 A.13 ATOM 591 O PHE 64 66.825 49.207 11.675 1.00 19.49 A.13 ATOM 591 O PHE 64 66.825 49.207 11.675 1.00 19.49 A.13 ATOM 595 C GLV 65 64.593 48.491 12.238 1.00 10.70 A.13 ATOM 595 C GLV 65 64.593 48.491 12.238 1.00 10.70 A.13 ATOM 595 C GLV 65 64.593 48.491 12.238 1.00 10.70 A.13 ATOM 597 N ILB 66 62.577 48.309 13.521 1.00 10.70 A.13 ATOM 599 CA ILB 66 61.227 49.228 15.55 1.00 13.69 A.13 ATOM 599 CA ILB 66 61.227 49.228 15.55 1.00 13.69 A.13 ATOM 601 CBZ ILB 66 61.227 49.228 15.503 1.00 30.51 A.13 ATOM 602 CDI ILB 66 61.227 49.228 15.503 1.00 30.51 A.13 ATOM 602 CDI ILB 66 60.311 40.228 10.00 10.43 A.13 ATOM 603 CDI ILB 66 60.311 46.922 13.1361 1.00 10.64 A.13 ATOM 603 CDI ILB 66 60.311 46.922 13.1361 10.00 10.43 A.13 ATOM 603 CDI ILB 66 60.311 46.922 13.138 1.00 10.00 A.13 ATOM 604 CDI ILB 66 60.311 46.922 13.138 1.00 10.00 A.13 ATOM 605 CDI ILB 66 60.311 46.922 13.138 1.00 10.00 A.13 ATOM 606 CDI ILB 66 60.311 46.922 13.388 1.00 10.00 A.13 ATOM 605 CDI ILB 66 60.311 46.922 13.388 1.00 10.00 A.13 ATOM 603 CDI ILB 66 60.311 46.922 13.388 1.00 10.00 A.13 ATOM 604 CDI ILB 66 60.311 46.922 13.388 1.00 10.00 A.13 ATOM 605 CDI ILB 66 60.311 46.922 13.388 1.00 10.00 A.13 ATOM 605 CDI ILB 66 60.311 46.922 13.388 1.00 10.00 A.13 ATOM 605 CDI ILB 66 60.311 46.922 13.388 1.00 10.00 A.13 ATOM 605 CDI ILB 66 60.311 46.922 13.388 1.00 10.00 A.13 ATOM 605 CDI ILB 66 60.311 46.922 13.388 1.00 10.00 A.13 ATOM 605 CDI ILB 66 60.311 46.922 13.388 1.00 10.00 A.13 ATOM 605 CDI ILB 66 60.311 46.922 13.388 1.00 10.00 A.13 ATOM 605 CDI ILB 66 6								
ATOM 586 CD2 PHE 64 71.279 51.016 12.357 1.00 16.56 A.13 ATOM 588 CE2 PHE 64 71.777 49.885 14.825 1.00 10.00 A.13 ATOM 588 CE2 PHE 64 72.540 51.025 12.846 1.00 10.00 A.13 ATOM 590 C PHE 64 72.812 50.459 14.081 1.00 10.00 A.13 ATOM 591 C PHE 64 66.405 49.207 11.675 1.00 22.55 A.13 ATOM 591 C PHE 64 66.405 49.940 10.779 1.00 13.69 A.13 ATOM 592 N GLY 65 66.031 48.485 12.453 1.00 13.69 A.13 ATOM 592 N GLY 65 66.031 48.485 12.453 1.00 13.69 A.13 ATOM 595 C GLY 65 63.894 48.138 13.521 1.00 12.62 A.13 ATOM 595 C GLY 65 63.894 48.138 13.521 1.00 12.62 A.13 ATOM 596 O GLY 65 63.894 48.138 13.521 1.00 12.62 A.13 ATOM 597 N ILE 66 62.577 48.309 13.565 1.00 13.69 A.13 ATOM 597 N ILE 66 62.277 49.228 15.503 1.00 30.51 A.13 ATOM 600 CB ILE 66 61.803 47.968 14.760 1.00 21.58 A.13 ATOM 601 CG2 ILE 66 62.351 50.110 16.025 1.00 10.43 A.13 ATOM 602 CG1 ILE 66 60.311 46.6962 13.333 1.00 16.94 A.13 ATOM 603 CD1 ILE 66 60.311 46.6962 13.333 1.00 16.94 A.13 ATOM 604 C ILE 66 60.311 46.592 13.138 1.00 10.03 A.13 ATOM 605 O ILE 66 60.311 46.592 13.138 1.00 10.00 A.13 ATOM 608 CA LYS 67 59.036 46.527 15.103 1.00 10.00 A.13 ATOM 608 CA LYS 67 57.689 46.042 15.268 1.00 10.23 A.13 ATOM 609 CB LYS 67 57.584 46.695 13.188 1.00 10.02 A.13 ATOM 601 CG2 ILS 66 60.311 46.6962 13.188 1.00 10.02 A.13 ATOM 602 CG1 ILE 66 60.311 44.60 10.02 A.13 ATOM 603 CD ILE 66 60.311 44.60 60.22 CD A.13 ATOM 603 CD LYS 67 57.584 46.097 15.103 1.00 10.02 A.13 ATOM 605 CD LYS 67 57.584 46.292 18.986 1.00 22.299 A.13 ATOM 607 CD LYS 67 57.584 46.292 18.986 1.00 10.22 A.13 ATOM 608 CA LYS 67 57.584 46.292 18.986 1.00 10.22 A.13 ATOM 610 CG LYS 67 57.584 46.292 18.986 1.00 22.299 A.13 ATOM 610 CG LYS 67 57.584 46.292 18.986 1.00 22.299 A.13 ATOM 610 CG LYS 67 57.584 46.292 18.986 1.00 10.22 A.13 ATOM 610 CG LYS 67 60.167 44.106 13.366 1.00 24.12 A.13 ATOM 610 CG LYS 67 57.584 46.292 10.00 10.29 A.13 ATOM 620 CG LYS 67 57.589 46.092 10.00 10.00 A.13 ATOM 620 CG LYS 67 59.134 41.255 1.00 10.00 A.13 ATOM 620 CG LYS 67 59.134 41.255 1.00 10.00 A.13 ATOM 620 CG LYS 67 59								
ATOM 588 CE2 PHE 64 72.540 51.025 12.846 1.00 10.00 A_13 ATOM 590 C PHE 64 66.805 49.207 11.675 1.00 12.55 A_13 ATOM 591 O PHE 64 66.405 49.940 10.779 1.00 12.55 A_13 ATOM 591 O PHE 64 66.405 49.940 10.779 1.00 13.69 A_13 ATOM 592 N GLY 65 66.031 48.485 12.453 1.00 13.69 A_13 ATOM 592 N GLY 65 66.031 48.485 12.453 1.00 13.69 A_13 ATOM 595 C GLY 65 63.894 48.138 13.521 1.00 12.62 A_13 ATOM 595 C GLY 65 63.894 48.138 13.521 1.00 12.62 A_13 ATOM 595 C GLY 65 63.894 48.138 13.521 1.00 12.62 A_13 ATOM 597 N ILE 66 62.577 48.309 13.565 1.00 13.69 A_13 ATOM 597 N ILE 66 62.577 48.309 13.565 1.00 13.69 A_13 ATOM 597 N ILE 66 62.277 49.228 15.503 1.00 30.51 A_13 ATOM 600 CB ILE 66 61.803 47.968 14.760 1.00 21.58 A_13 ATOM 601 CG ILB 66 62.351 50.10 1.10 10.025 1.00 10.43 A_13 ATOM 603 CD ILB 66 60.332 50.062 14.586 1.00 14.56 A_13 ATOM 603 CD ILB 66 60.332 50.062 14.586 1.00 14.56 A_13 ATOM 604 C ILB 66 60.631 46.922 13.133 1.00 10.63 A_13 ATOM 605 C ILB 66 60.311 46.592 13.138 1.00 10.84 A_13 ATOM 608 C ILB 66 60.311 46.592 13.138 1.00 10.84 A_13 ATOM 608 C ILB 66 60.311 46.592 13.138 1.00 10.00 A_13 ATOM 608 C ILB 66 60.311 46.592 13.188 1.00 10.00 A_13 ATOM 608 C ILB 66 60.311 46.592 13.188 1.00 10.00 A_13 ATOM 608 C ILB 66 67 55.958 57.504 46.292 18.80 10.00 10.23 A_13 ATOM 608 C ILB 66 67 55.958 57.504 46.292 18.90 10.00 10.23 A_13 ATOM 608 C ILB 66 67 55.958 64.602 17.030 14.604 10.00 A_13 ATOM 608 C ILB 66 67 55.958 64.602 17.030 14.404 10.00 10.23 A_13 ATOM 608 C ILB 66 67 55.958 64.002 15.292 A_13 ATOM 608 C ILB 66 67 55.958 64.002 15.292 A_13 ATOM 608 C ILB 66 67 55.958 64.002 15.292 A_13 ATOM 608 C ILB 66 67 55.958 64.002 15.292 A_13 ATOM 608 C ILB 66 67 55.958 64.002 15.292 A_13 ATOM 608 C ILB 67 55.958 67 55.000 10.000 A_13 ATOM 608 C ILB 67 55.958 67 55.000 10.000 A_13 ATOM 608 C ILB 67 5				71.229				A_13
ATOM 590 C PHE 64 66.825 49.207 11.675 1.00 12.85 A.13 ATOM 591 O PHE 64 66.625 49.207 11.675 1.00 12.55 A.13 ATOM 591 O PHE 64 66.625 49.207 11.675 1.00 12.55 A.13 ATOM 592 N GLY 65 66.031 48.485 12.453 1.00 10.70 A.13 ATOM 594 CA GLY 65 66.031 48.485 12.238 1.00 10.70 A.13 ATOM 595 C GLY 65 66.593 48.491 12.238 1.00 10.70 A.13 ATOM 596 O GLY 65 64.599 47.777 14.491 1.00 18.29 A.13 ATOM 597 N ILE 66 62.577 48.309 13.565 1.00 13.69 A.13 ATOM 599 CA ILE 66 61.827 49.228 15.503 1.00 30.51 A.13 ATOM 600 CB ILE 66 61.227 49.228 15.503 1.00 30.51 A.13 ATOM 601 CG2 ILE 66 60.332 50.062 14.586 1.00 10.45 A.13 ATOM 602 CG1 ILE 66 60.332 50.062 14.586 1.00 10.43 A.13 ATOM 603 CD1 ILE 66 60.662 77.30 14.361 1.00 10.81 A.13 ATOM 605 O ILE 66 60.662 77.30 14.361 1.00 10.81 A.13 ATOM 605 O ILE 66 60.662 77.30 14.361 1.00 10.81 A.13 ATOM 605 O ILE 66 60.662 77.30 14.361 1.00 10.81 A.13 ATOM 605 CG ILE 66 60.662 77.30 14.361 1.00 10.81 A.13 ATOM 605 CG ILE 66 60.342 50.062 14.586 1.00 10.81 A.13 ATOM 605 CG ILE 66 60.662 77.30 14.361 1.00 10.81 A.13 ATOM 605 CG ILE 66 60.342 50.062 14.586 1.00 10.81 A.13 ATOM 605 CG ILE 66 60.342 50.062 14.586 1.00 10.81 A.13 ATOM 605 CG ILE 66 60.342 50.062 14.586 1.00 10.81 A.13 ATOM 605 CG ILE 66 60.342 50.062 14.586 1.00 10.81 A.13 ATOM 610 CG ILS 67 57.694 46.995 10.500 10.29 A.13 ATOM 610 CG ILS 67 57.694 46.995 10.500 10.29 A.13 ATOM 610 CG ILS 67 57.694 46.995 10.500 10.29 A.13 ATOM 610 CG ILS 67 57.694 46.995 10.500 10.29 A.13 ATOM 610 CG ILS 67 57.694 46.995 10.500 10.29 A.13 ATOM 610 CG ILS 67 57.694 46.995 10.500 10.29 A.13 ATOM 610 CG ILS 67 57.694 46.995 10.500 10.29 A.13 ATOM 610 CG ILS 67 57.694 46.995 10.500 10.29 A.13 ATOM 610 CG ILS 67 57.694 46.995 10.500 10.000 A.13 ATOM 620 CB GLU 68 58.507 44.090 11.128 1.00 26.89 A.13 ATOM 610 CG ILS 67 57 5.694 46.995 10.500 10.29 A.13 ATOM 610 CG ILS 67 57 5.994 46.995 10.500 10.29 A.13 ATOM 620 CB GLU 68 58.507 44.090 11.000 10.000 A.13 ATOM 620 CB GLU 68 56.505 44.009 11.128 1.00 26.99 A.13 ATOM 620 CB GLU 68 56.505 44.009 11.128 1								A_13
ATOM 591 O PHE 64 66.405 49.940 10.779 1.00 19.49 A.13 ATOM 592 N GLY 65 66.031 48.485 12.453 1.00 10.70 A.13 ATOM 595 C GLY 65 66.058 48.91 12.238 1.00 10.70 A.13 ATOM 596 O GLY 65 63.894 48.38 13.521 1.00 12.62 ATOM 596 O GLY 65 63.894 48.38 13.521 1.00 12.62 ATOM 597 N ILE 66 62.577 48.309 13.565 1.00 13.69 A.13 ATOM 599 CA ILE 66 62.577 48.309 13.565 1.00 13.69 A.13 ATOM 600 CB ILE 66 61.803 47.968 14.760 1.00 21.58 A.13 ATOM 601 CG2 ILE 66 62.577 49.228 15.503 1.00 10.43 A.13 ATOM 601 CG2 ILE 66 62.575 50.100 16.025 1.00 10.43 A.13 ATOM 603 CD1 ILE 66 60.332 50.062 14.586 1.00 14.56 A.13 ATOM 603 CD1 ILE 66 60.632 50.062 14.586 1.00 10.43 A.13 ATOM 603 CD1 ILE 66 60.632 50.062 14.586 1.00 10.43 A.13 ATOM 605 O ILE 66 60.632 47.030 14.361 1.00 10.81 A.13 ATOM 605 O ILE 66 60.625 77 50.00 10.43 A.13 ATOM 606 N LYS 67 50.034 46.271 15.333 1.00 10.00 A.13 ATOM 608 CA LYS 67 59.036 45.327 15.103 1.00 10.02 A.13 ATOM 608 CA LYS 67 59.036 45.327 15.103 1.00 10.02 A.13 ATOM 610 CG LYS 67 57.584 46.995 15.568 1.00 10.22 A.13 ATOM 610 CG LYS 67 57.584 46.095 17.774 1.00 14.94 A.13 ATOM 611 CD LYS 67 57.584 46.095 17.774 1.00 14.94 A.13 ATOM 612 CE LYS 67 57.484 46.095 12.288 1.00 10.29 A.13 ATOM 613 NZ LYS 67 57.484 46.095 12.299 A.13 ATOM 610 CG LYS 67 57.484 46.095 12.299 A.13 ATOM 612 CE LYS 67 57.484 46.095 12.299 A.13 ATOM 613 NZ LYS 67 57.484 46.095 12.299 A.13 ATOM 610 CG LYS 67 57.484 46.095 12.299 A.13 ATOM 610 CG LYS 67 59.131 44.633 13.726 1.00 17.91 A.13 ATOM 612 CE LYS 67 57.484 64.095 12.299 A.13 ATOM 613 NZ LYS 67 59.133 44.631 13.366 1.00 12.72 A.13 ATOM 620 CB GLU 68 58.027 44.690 12.299 1.00 12.72 A.13 ATOM 621 CA GLU 68 58.027 44.690 12.299 1.00 12.72 A.13 ATOM 620 CB GLU 68 58.027 44.690 12.299 1.00 12.72 A.13 ATOM 621 CA GLU 68 58.227 44.910 11.00 1.00 4.31 ATOM 624 CD GLU 68 58.227 40.09 11.128 1.00 2.50 6.00 4.13 ATOM 626 CB GLU 68 58.587 46.093 10.00 10.00 2.27 A.13 ATOM 627 C GLU 68 58.587 46.093 10.00 10.00 2.27 A.13 ATOM 628 C GLU 68 58.587 46.093 10.00 10.00 10.00 A.13 ATOM 630 CR HIS 69	MOTA	589 CZ PHE	64	72.812	50.459	14.081	1.00 18.83	A_13
ATOM 592 N GLY 65 66.031 48.485 12.453 1.00 13.69 A.13 ATOM 595 C GLY 65 63.894 48.138 13.521 1.00 12.62 A.13 ATOM 596 O GLY 65 64.599 47.777 14.491 1.00 18.29 ATOM 597 N ILE 66 62.577 48.309 13.565 1.00 13.69 A.13 ATOM 597 N ILE 66 62.577 48.309 13.565 1.00 13.69 A.13 ATOM 599 CA ILE 66 61.803 47.968 14.760 1.00 21.58 A.13 ATOM 600 CB ILE 66 62.351 50.110 16.025 1.00 10.43 ATOM 601 CG2 ILE 66 62.351 50.110 16.025 1.00 10.43 ATOM 602 CG1 ILE 66 62.351 50.110 16.025 1.00 10.43 ATOM 602 CG1 ILE 66 66.332 50.062 14.586 1.00 14.56 A.13 ATOM 603 CD1 ILE 66 66.59.587 51.149 15.333 1.00 16.94 ATOM 604 C ILE 66 60.623 57 51.149 15.333 1.00 10.03 ATOM 606 N LYS 67 60.143 46.271 15.330 1.00 10.00 A.13 ATOM 606 C LYS 67 59.036 45.327 15.103 1.00 10.02 ATOM 609 CB LYS 67 57.689 46.042 15.268 1.00 10.29 A.13 ATOM 601 CG2 LYS 67 57.584 46.895 16.510 1.00 10.29 A.13 ATOM 610 CG2 LYS 67 57.546 46.056 17.774 1.00 14.94 A.13 ATOM 611 CD LYS 67 57.546 46.056 17.774 1.00 14.94 A.13 ATOM 612 CE LYS 67 57.362 46.923 18.986 1.00 22.99 A.13 ATOM 613 NZ LYS 67 57.400 46.174 20.258 1.00 22.99 A.13 ATOM 616 N LYS 67 57.546 46.056 17.774 1.00 14.94 A.13 ATOM 617 C LYS 67 57.400 46.174 20.258 1.00 22.99 ATOM 618 N LYS 67 57.546 46.056 17.774 1.00 14.94 A.13 ATOM 618 N LYS 67 57.549 46.993 11.288 1.00 22.99 ATOM 618 N LYS 67 57.540 46.91 11.288 1.00 22.99 ATOM 620 CG LUS 68 58.027 44.690 11.00 12.91 ATOM 621 CA GLU 68 55.566 43.291 11.537 1.00 17.91 A.13 ATOM 622 CG GLU 68 55.566 44.291 11.281 1.00 12.72 ATOM 623 CG GLU 68 55.058 44.019 11.288 1.00 22.99 ATOM 624 CD GLU 68 55.289 44.91 11.281 1.00 12.91 ATOM 625 CD EI GLU 68 55.289 44.91 11.281 1.00 12.53 ATOM 626 CD CLU 68 55.289 43.91 11.281 1.00 12.53 ATOM 627 C GLU 68 58.027 44.690 11.284 1.00 15.06 A.13 ATOM 628 CD HIS 69 61.214 44.891 7.299 1.00 18.643 ATOM 629 N HIS 69 61.214 44.899 7.299 1.00 18.543 ATOM 630 CD HIS 69 61.214 44.899 7.299 1.00 18.543 ATOM 631 CD HIS 69 61.214 44.899 7.299 1.00 18.543 ATOM 632 CD HIS 69 61.214 44.899 7.299 1.00 18.543 ATOM 630 CD HIS 69 61.214 44.899								
ATOM 595 C GLY 65 64.599 47.777 14.491 1.00 12.62 A_13 ATOM 597 N ILE 66 62.577 48.309 13.565 1.00 13.69 A_13 ATOM 597 N ILE 66 62.577 48.309 13.565 1.00 13.69 A_13 ATOM 600 CB ILE 66 61.803 47.968 14.760 1.00 21.58 ATOM 601 CG2 ILE 66 62.351 50.110 16.025 1.00 10.43 ATOM 602 CG1 ILE 66 62.351 50.110 16.025 1.00 10.43 ATOM 603 CD1 ILE 66 62.351 50.110 16.025 1.00 10.43 ATOM 603 CD1 ILE 66 63.32 50.062 14.586 1.00 14.56 A_13 ATOM 604 C ILE 66 60.332 50.062 14.586 1.00 14.56 ATOM 605 CD1 ILE 66 60.311 46.962 13.188 1.00 10.00 A_13 ATOM 606 N ILYS 67 60.314 46.962 13.188 1.00 10.00 A_13 ATOM 606 N ILYS 67 60.143 46.271 15.330 1.00 10.01 A_13 ATOM 608 CA ILYS 67 57.684 46.971 15.300 10.00 A_13 ATOM 608 CA ILYS 67 57.584 46.995 15.510 1.00 14.63 A_13 ATOM 610 CG ILYS 67 57.584 46.955 16.510 1.00 14.63 A_13 ATOM 611 CD ILYS 67 57.584 46.955 16.510 1.00 14.94 A_13 ATOM 612 CE ILYS 67 57.382 46.022 18.986 1.00 12.29 A_13 ATOM 613 NZ ILYS 67 57.484 46.995 10.510 1.00 14.94 A_13 ATOM 616 CD ILYS 67 57.484 46.955 10.510 1.00 14.94 A_13 ATOM 617 C ILYS 67 57.484 46.955 10.510 1.00 12.23 A_13 ATOM 618 O ILYS 67 57.484 46.955 10.510 1.00 12.29 A_13 ATOM 619 N GLU 68 58.027 44.690 12.949 1.00 12.272 A_13 ATOM 619 N GLU 68 58.027 44.690 12.949 1.00 12.72 A_13 ATOM 620 CB GLU 68 55.565 44.019 11.284 1.00 26.68 A_13 ATOM 621 CB GLU 68 55.565 44.019 11.284 1.00 26.68 A_13 ATOM 622 CB GLU 68 55.565 44.029 11.284 1.00 16.66 A_13 ATOM 623 CG GLU 68 55.565 44.029 11.284 1.00 26.64 A_13 ATOM 624 CD GLU 68 55.565 44.029 11.284 1.00 12.72 A_13 ATOM 625 CB GLU 68 55.565 44.029 11.284 1.00 12.72 A_13 ATOM 626 CB GLU 68 55.565 44.029 11.284 1.00 12.06 A_13 ATOM 627 C G GLU 68 55.565 44.029 11.284 1.00 12.06 A_13 ATOM 628 C GLU 68 55.565 44.029 11.284 1.00 12.06 A_13 ATOM 630 C HIS 69 60.732 45.102 1.00 20.64 A_13 ATOM 631 C A HIS 69 60.732 45.102 1.00 1.00 1.00 A_13 ATOM 630 C HIS 69 61.214 44.469 7.983 1.00 11.00 1.00 A_13 ATOM 630 C HIS 69 61.214 44.469 7.983 1.00 11.00 1.00 A_13 ATOM 630 C HIS 69 61.214 44.469 7.983 1.00 11.00 1.00 A_13	MOTA	592 N GLY	65	66.031	48.485	12.453	1.00 13.69	A_13
ATOM 596 O GLY 65 64.559 47.777 14.491 1.00 18.29 A_13 ATOM 597 N ILE 66 62.577 48.309 13.565 1.00 13.69 A_13 ATOM 600 CB ILE 66 61.227 49.228 15.503 1.00 30.51 ATOM 601 CG2 ILE 66 62.251 50.062 14.586 1.00 10.43 A_13 ATOM 601 CG2 ILE 66 62.351 50.110 16.025 1.00 10.43 A_13 ATOM 602 CG1 ILE 66 62.351 50.062 14.586 1.00 10.43 A_13 ATOM 603 CD1 ILE 66 65.9587 51.149 15.333 1.00 16.94 A_13 ATOM 603 CD1 ILE 66 60.632 47.030 14.361 1.00 10.81 ATOM 605 O ILE 66 60.362 47.030 14.361 1.00 10.81 ATOM 605 O ILE 66 60.362 47.030 14.361 1.00 10.81 ATOM 605 O ILE 66 60.362 47.030 14.361 1.00 10.81 ATOM 605 O ILE 66 60.362 47.030 1.00 10.00 A_13 ATOM 605 O ILE 66 60.362 47.030 1.00 10.02 A_13 ATOM 608 CA LYS 67 59.036 45.227 15.103 1.00 10.23 A_13 ATOM 608 CA LYS 67 57.564 46.042 15.268 1.00 10.23 A_13 ATOM 610 CG LYS 67 57.564 46.025 17.774 1.00 14.49 A_13 ATOM 611 CD LYS 67 57.664 46.056 17.774 1.00 14.94 A_13 ATOM 612 CE LYS 67 57.480 46.923 18.986 1.00 22.99 A_13 ATOM 613 NZ LYS 67 57.480 46.923 18.986 1.00 22.99 A_13 ATOM 616 C LYS 67 57.480 46.923 13.726 1.00 17.91 A_13 ATOM 618 O LYS 67 59.113 44.633 13.726 1.00 17.91 A_13 ATOM 619 N GLU 68 55.566 44.019 11.128 1.00 12.72 A_13 ATOM 620 C G GLU 68 55.566 44.019 11.128 1.00 12.73 A_13 ATOM 621 CA GLU 68 55.566 44.019 11.128 1.00 12.73 A_13 ATOM 622 CB GLU 68 55.566 44.019 11.128 1.00 12.73 A_13 ATOM 623 CG GLU 68 55.566 44.019 11.128 1.00 12.73 A_13 ATOM 626 CP CG GLU 68 55.4019 44.561 13.365 1.00 22.99 1.00 12.72 A_13 ATOM 627 C GLU 68 55.289 44.911 10.705 1.00 22.99 A_13 ATOM 628 O GLU 68 55.566 44.191 11.28 1.00 16.06 A_13 ATOM 629 N HIS 69 60.424 44.561 13.385 1.00 17.91 A_13 ATOM 620 C BLU 68 58.027 44.590 1.00 13.00 1.00 1.00 A_13 ATOM 621 CA GLU 68 55.299 43.921 11.537 1.00 17.91 A_13 ATOM 620 C BLU 68 56.055 44.019 11.128 1.00 1.00 1.2.73 A_13 ATOM 620 C BLU 68 56.056 44.019 11.128 1.00 1.00 1.2.73 A_13 ATOM 620 C BLU 68 56.056 44.019 11.128 1.00 1.00 1.2.73 A_13 ATOM 620 C BLU 68 56.056 44.019 11.128 1.00 1.00 4.61 A_13 ATOM 620 C BLU 68 56.056 44.019 11.128 1.								
ATOM 599 CA ILE 666 61.803 47.968 14.760 1.00 21.58 A.13 ATOM 601 CC2 ILE 66 66 61.2351 50.110 16.025 1.00 30.51 A.13 ATOM 601 CC2 ILE 66 66 61.323 50.052 14.596 1.00 14.04 A.13 ATOM 603 CD1 ILE 66 66 60.323 50.052 14.596 1.00 14.63 A.13 ATOM 603 CD1 ILE 66 65.95.87 51.149 15.333 1.00 16.94 A.13 ATOM 604 C ILE 66 66.662 47.030 14.361 1.00 10.81 A.13 ATOM 605 0 ILE 66 60.652 47.030 14.361 1.00 10.81 A.13 ATOM 606 N LYS 67 60.143 46.271 15.333 1.00 10.00 A.13 ATOM 608 CA LYS 67 550.36 45.327 15.103 1.00 10.03 A.13 ATOM 609 CB LYS 67 55.569 46.042 15.268 1.00 10.02 A.13 ATOM 609 CB LYS 67 55.569 46.042 15.268 1.00 10.29 A.13 ATOM 610 CG LYS 67 55.564 46.085 16.510 1.00 14.63 A.13 ATOM 611 CD LYS 67 55.564 46.056 17.774 1.00 14.94 A.13 ATOM 612 CE LYS 67 55.482 46.056 17.774 1.00 14.94 A.13 ATOM 613 NZ LYS 67 55.480 46.174 20.258 1.00 28.27 A.13 ATOM 616 N LYS 67 55.480 46.174 20.258 1.00 12.99 A.13 ATOM 617 C LYS 67 55.143 44.633 13.726 1.00 17.91 A.13 ATOM 618 O LYS 67 55.144 1.05 13.366 1.00 24.16 A.13 ATOM 619 N GLU 68 55.050 44.067 11.624 1.00 16.06 A.13 ATOM 621 CB GLU 68 55.505 44.019 11.624 1.00 16.06 A.13 ATOM 622 CB GLU 68 55.505 44.019 11.624 1.00 16.06 A.13 ATOM 623 CG GLU 68 55.505 44.019 11.624 1.00 16.06 A.13 ATOM 624 CD GLU 68 55.566 43.258 12.00 17.91 A.13 ATOM 626 OE2 GLU 68 55.566 43.258 12.00 17.00 36.97 A.13 ATOM 627 C GLU 68 55.299 43.921 11.537 1.00 17.31 A.13 ATOM 628 O GLU 68 55.566 43.258 12.00 17.00 36.97 A.13 ATOM 629 N HIS 69 60.732 45.102 11.624 1.00 16.06 A.13 ATOM 628 O GLU 68 55.505 44.019 11.624 1.00 16.06 A.13 ATOM 628 O GLU 68 55.257 46.031 10.052 1.00 16.07 A.13 ATOM 631 CA HIS 69 60.732 45.102 10.00 16.43 A.13 ATOM 632 CB HIS 69 60.732 45.102 10.00 10.00 A.13 ATOM 633 CG HIS 69 60.732 45.102 10.00 10.00 A.13 ATOM 634 CD LIS 69 60.732 45.102 10.00 10.00 A.13 ATOM 635 NDI HIS 69 60.732 45.102 10.00 10.00 A.13 ATOM 640 CD JUS B.7 66 60.732 46.73 40.74 10.00 10.00 A.13 ATOM 651 OD JUS B.7 70 60.451 40.750 70.00 10.00 A.13 ATOM 662 CB BIS 69 60.732 46.74 40.00 10.00 10.00 A.13 ATOM	ATOM	596 O GLY	65	64.559	47.777	14.491	1.00 18.29	A_13
ATOM 600 CB ILE 66 61.227 49.228 15.503 1.00 30.51 A_13 ATOM 601 CG2 ILE 66 62.331 50.110 16.025 1.00 10.43 A_13 ATOM 602 CG1 ILE 66 66.332 50.062 14.586 1.00 10.456 A_13 ATOM 603 CD1 ILE 66 65.95.57 51.149 15.333 1.00 16.925 ATOM 604 C ILE 66 60.662 47.030 14.361 1.00 10.81 A_13 ATOM 605 C ILE 66 60.311 46.962 13.188 1.00 10.00 A_13 ATOM 606 N LYS 67 60.143 46.271 15.330 1.00 10.00 A_13 ATOM 608 CA LYS 67 59.036 45.327 15.103 1.00 10.02 A_13 ATOM 609 CB LYS 67 57.589 46.042 15.288 1.00 10.23 A_13 ATOM 610 CG LYS 67 57.589 46.042 15.288 1.00 10.29 A_13 ATOM 610 CG LYS 67 57.584 46.895 16.510 1.00 14.63 A_13 ATOM 611 CD LYS 67 57.584 46.895 16.510 1.00 14.63 A_13 ATOM 612 CE LYS 67 57.382 46.923 18.986 1.00 22.99 A_13 ATOM 613 NZ LYS 67 57.382 46.923 18.986 1.00 22.99 A_13 ATOM 613 NZ LYS 67 57.382 44.633 13.726 1.00 17.91 A_13 ATOM 619 N GLU 68 55.27 44.680 12.949 1.00 22.99 A_13 ATOM 619 N GLU 68 55.27 44.680 12.949 1.00 12.72 A_13 ATOM 621 CA GLU 68 57.960 44.067 11.624 1.00 14.63 A_13 ATOM 622 CB GLU 68 55.566 44.007 11.624 1.00 16.06 A_13 ATOM 623 CG GLU 68 55.566 14.071 11.03 14.00 14.61 A_13 ATOM 624 CD GLU 68 55.274 44.680 12.949 1.00 12.72 A_13 ATOM 625 OEI GLU 68 55.566 14.079 11.128 1.00 24.16 A_13 ATOM 626 OEZ GLU 68 55.566 14.079 11.128 1.00 26.59 A_13 ATOM 627 C GLU 68 55.277 44.680 12.949 1.00 12.72 A_13 ATOM 628 O GLU 68 55.289 43.921 11.537 1.00 17.31 A_13 ATOM 629 N HIS 69 69.882 44.911 10.705 1.00 22.50 A_13 ATOM 629 C BLU 68 55.266 44.091 11.128 1.00 26.59 A_13 ATOM 629 C BLU 68 54.227 43.973 12.381 1.00 17.31 A_13 ATOM 628 O GLU 68 58.823 44.911 10.705 1.00 22.50 A_13 ATOM 629 C BLU 68 54.227 43.973 12.381 1.00 17.31 A_13 ATOM 629 C BLU 68 54.227 43.973 12.381 1.00 17.31 A_13 ATOM 620 C BLU 68 54.227 43.973 12.381 1.00 17.31 A_13 ATOM 621 C C BLU 68 54.227 43.973 12.381 1.00 17.31 A_13 ATOM 628 O GLU 68 54.227 43.988 11.00 10.00 A_13 ATOM 629 C BLU 68 54.227 43.988 11.00 10.00 A_13 ATOM 620 C BLU 68 54.227 42.888 11.00 1.00 10.00 A_13 ATOM 620 C BLU 68 54.227 42.888 11.00 1.00 10.00 A_13 ATO								
ATOM 603 CD1 ILE 66 59.587 51.149 55.331 1.00 14.56 A.13 ATOM 603 CD1 ILE 66 59.587 51.149 15.333 1.00 10.00 A.13 ATOM 604 CD ILE 66 60.311 46.962 13.188 1.00 10.00 A.13 ATOM 605 O ILE 66 60.311 46.962 13.188 1.00 10.00 A.13 ATOM 606 N LYS 67 60.143 46.271 15.330 1.00 10.00 A.13 ATOM 608 CA LYS 67 57.689 46.042 15.268 1.00 10.29 A.13 ATOM 609 CB LYS 67 57.689 46.042 15.268 1.00 10.29 A.13 ATOM 610 CG LYS 67 57.564 46.956 17.774 1.00 14.63 A.13 ATOM 611 CD LYS 67 57.564 46.956 17.774 1.00 14.94 A.13 ATOM 612 CE LYS 67 57.382 46.923 18.986 1.00 22.99 A.13 ATOM 613 NZ LYS 67 57.382 46.923 18.986 1.00 12.99 A.13 ATOM 613 NZ LYS 67 57.40 46.174 20.258 1.00 28.27 A.13 ATOM 613 NZ LYS 67 59.113 44.633 13.726 1.00 17.91 A.13 ATOM 613 NZ LYS 67 59.113 44.633 13.726 1.00 17.91 A.13 ATOM 618 O LYS 67 60.167 44.106 13.366 1.00 24.16 A.13 ATOM 619 C B LYS 67 60.167 44.106 13.366 1.00 24.16 A.13 ATOM 621 CA GLU 68 58.027 44.680 12.949 1.00 12.72 A.13 ATOM 621 CA GLU 68 55.566 44.019 11.624 1.00 16.06 A.13 ATOM 622 CB GLU 68 55.566 44.019 11.624 1.00 16.06 A.13 ATOM 623 CG GLU 68 55.566 43.258 12.087 1.00 36.97 A.13 ATOM 624 CD GLU 68 53.289 43.921 11.537 1.00 17.31 A.13 ATOM 627 C GLU 68 53.289 43.921 11.537 1.00 17.31 A.13 ATOM 628 O GLU 68 58.823 44.911 10.705 1.00 26.672 A.13 ATOM 629 N HIS 69 61.930 45.603 10.103 1.00 10.97 A.13 ATOM 630 CB HIS 69 61.930 45.603 10.103 1.00 10.97 A.13 ATOM 631 CA HIS 69 61.930 45.603 10.103 1.00 10.97 A.13 ATOM 632 CB HIS 69 61.930 45.603 10.103 1.00 10.97 A.13 ATOM 634 CD HIS 69 61.930 45.603 10.103 1.00 10.97 A.13 ATOM 637 CE HIS 69 61.930 45.603 10.103 1.00 10.99 A.13 ATOM 640 C HIS 69 61.930 45.603 10.103 1.00 10.99 A.13 ATOM 640 C HIS 69 61.930 45.603 10.103 1.00 10.99 A.13 ATOM 640 C HIS 69 61.244 44.780 7.529 1.00 18.74 A.13 ATOM 640 C HIS 69 61.344 44.780 7.529 1.00 18.74 A.13 ATOM 640 C BASP 71 61.424 40.768 7.022 1.00 10.00 A.13 ATOM 640 C BASP 71 61.424 40.768 7.022 1.00 10.00 A.13 ATOM 650 C BASP 71 61.424 40.768 7.012 1.00 10.00 A.13 ATOM 650 C BASP 71 61.424 40.768 7.012 1.0					49.228	15.503	1.00 30.51	A_13
ATOM 605 O ILE 66 60.662 47.030 4.361 1.00 10.81 A.13 ATOM 605 O ILE 66 60.311 46.962 13.188 1.00 10.00 A.13 ATOM 606 N LYS 67 60.143 46.271 15.330 1.00 10.00 A.13 ATOM 608 CA LYS 67 59.036 45.327 15.103 1.00 10.23 A.13 ATOM 609 CB LYS 67 57.689 46.042 15.268 1.00 10.29 A.13 ATOM 610 CG LYS 67 57.689 46.042 15.268 1.00 10.29 A.13 ATOM 611 CD LYS 67 57.684 46.955 17.774 1.00 14.94 A.13 ATOM 612 CE LYS 67 57.382 46.923 18.986 1.00 22.99 A.13 ATOM 613 NZ LYS 67 57.382 46.923 18.986 1.00 22.99 A.13 ATOM 613 NZ LYS 67 57.480 46.174 20.258 1.00 28.27 A.13 ATOM 613 NZ LYS 67 57.480 46.174 20.258 1.00 28.27 A.13 ATOM 613 NZ LYS 67 59.113 44.633 13.726 1.00 17.91 A.13 ATOM 618 O LYS 67 60.167 44.106 13.366 1.00 24.16 A.13 ATOM 618 O LYS 67 60.167 44.069 12.949 1.00 12.72 ATOM 621 CA GLU 68 58.027 44.069 12.949 1.00 12.72 ATOM 622 CB GLU 68 55.505 44.019 11.128 1.00 26.89 A.13 ATOM 623 CG GLU 68 55.505 44.019 11.128 1.00 26.89 A.13 ATOM 624 CD GLU 68 55.505 44.019 11.128 1.00 26.89 A.13 ATOM 625 OEI GLU 68 53.289 43.921 11.537 1.00 17.31 A.13 ATOM 626 OE2 GLU 68 53.289 43.921 11.537 1.00 17.31 A.13 ATOM 628 O GLU 68 54.277 43.973 12.381 1.00 41.61 A.13 ATOM 629 N HIS 69 65.8823 44.911 1.537 1.00 17.31 A.13 ATOM 629 N HIS 69 60.732 45.102 9.283 1.00 20.64 A.13 ATOM 631 CA HIS 69 61.930 45.603 10.103 1.00 10.97 A.13 ATOM 632 CB HIS 69 61.930 45.603 10.103 1.00 10.97 A.13 ATOM 633 CB HIS 69 61.930 45.603 10.103 1.00 10.97 A.13 ATOM 634 CD HIS 69 62.786 44.991 10.705 1.00 22.50 A.13 ATOM 637 CEI HIS 69 63.873 43.876 10.133 1.00 10.09 A.13 ATOM 640 C HIS 69 61.930 45.603 10.103 1.00 10.99 A.13 ATOM 641 N GLY 70 60.451 43.579 11.839 1.00 17.68 A.13 ATOM 642 CD ANS 71 61.422 42.988 11.020 1.00 10.00 A.13 ATOM 643 CA ANS 71 61.422 42.988 11.020 1.00 10.00 A.13 ATOM 644 C GLY 70 61.523 41.125 4.794 1.00 15.12 A.13 ATOM 645 C ANS 71 61.422 42.988 11.00 10.00 A.13 ATOM 646 CA ANS 71 61.422 42.986 6.127 1.00 10.00 A.13 ATOM 647 C GLY 70 61.523 41.93 39.81 6.862 1.00 19.99 A.13 ATOM 648 CA ANS 71 61.424 40.766 7.012 1.00 10.00 A.13 A								
ATOM 605 O ILE 66 60.311 46.962 13.188 1.00 10.00 A.13 ATOM 606 N LYS 67 60.143 46.271 15.330 1.00 10.00 A.13 ATOM 608 CA LYS 67 59.036 45.327 15.103 1.00 10.23 A.13 ATOM 609 CB LYS 67 57.689 46.042 15.268 1.00 10.23 A.13 ATOM 610 CG LYS 67 57.584 46.895 16.510 1.00 14.63 A.13 ATOM 611 CD LYS 67 57.584 46.923 18.986 1.00 22.99 A.13 ATOM 612 CE LYS 67 57.382 46.923 18.986 1.00 22.99 A.13 ATOM 613 NZ LYS 67 57.480 46.174 20.258 1.00 28.27 A.13 ATOM 613 NZ LYS 67 57.480 46.174 20.258 1.00 28.27 A.13 ATOM 613 NZ LYS 67 57.480 46.174 20.258 1.00 28.27 A.13 ATOM 618 O LYS 67 57.480 46.174 20.258 1.00 28.27 A.13 ATOM 619 N GLU 68 55.027 44.630 13.366 1.00 24.16 A.13 ATOM 621 CA GLU 68 57.960 44.067 11.624 1.00 12.72 A.13 ATOM 622 CB GLU 68 55.505 44.019 11.128 1.00 26.89 A.13 ATOM 623 CG GLU 68 55.505 44.019 11.128 1.00 26.89 A.13 ATOM 624 CD GLU 68 55.505 44.019 11.128 1.00 26.89 A.13 ATOM 625 OEI GLU 68 53.29 43.291 11.537 1.00 17.31 A.13 ATOM 626 OE2 GLU 68 53.289 43.291 11.537 1.00 17.31 A.13 ATOM 627 C GLU 68 53.289 43.291 11.537 1.00 17.31 A.13 ATOM 628 O GLU 68 53.889 44.315 10.120 1.00 26.72 A.13 ATOM 629 N HIS 69 59.888 44.315 10.120 1.00 26.72 A.13 ATOM 629 N HIS 69 61.930 45.603 10.103 1.00 10.97 A.13 ATOM 631 CA HIS 69 61.930 45.603 10.103 1.00 10.97 A.13 ATOM 632 CB HIS 69 61.930 45.603 10.103 1.00 10.97 A.13 ATOM 634 CD2 HIS 69 63.873 43.876 11.033 1.00 10.00 A.13 ATOM 637 CEI HIS 69 61.234 44.502 10.643 1.00 24.02 ATOM 638 NEZ HIS 69 61.234 44.780 7.993 1.00 13.69 A.13 ATOM 640 CD HIS 69 61.244 44.69 7.993 1.00 13.69 A.13 ATOM 640 CD HIS 69 61.244 44.69 7.993 1.00 13.69 A.13 ATOM 640 CD ANS 71 61.248 49.91 10.700 10.00 A.13 ATOM 640 CD ANS 71 61.248 49.91 10.700 10.00 A.13 ATOM 640 CD ANS 71 61.248 49.91 10.700 10.00 A.13 ATOM 640 CD ANS 71 61.248 49.91 10.700 10.00 A.13 ATOM 640 CD ANS 71 61.349 39.291 10.00 10.00 A.13 ATOM 640 CD ANS 71 61.249 41.25 4.794 1.00 10.00 A.13 ATOM 640 CD ANS 71 61.349 39.291 10.00 10.00 A.13 ATOM 650 CG ANS 71 61.39 37.197 7.632 1.00 10.00 A.13 ATOM 650 CG ANS 71 61.39 37.								
ATOM 608 CA LYS 67 59.036 45.327 15.103 1.00 10.23 A.13 ATOM 610 CG LYS 67 57.689 46.042 15.268 1.00 10.29 A.13 ATOM 611 CD LYS 67 57.584 46.895 16.510 1.00 14.63 A.13 ATOM 612 CE LYS 67 57.584 46.895 16.510 1.00 14.63 A.13 ATOM 612 CE LYS 67 57.382 46.923 18.986 1.00 22.99 A.13 ATOM 613 NZ LYS 67 57.480 46.174 20.258 1.00 22.99 A.13 ATOM 613 NZ LYS 67 57.480 46.174 20.258 1.00 22.99 A.13 ATOM 618 O LYS 67 59.113 44.633 13.726 1.00 17.91 A.13 ATOM 619 N GLU 68 57.960 44.063 13.366 1.00 24.16 A.13 ATOM 621 CA GLU 68 57.960 44.067 11.624 1.00 16.06 A.13 ATOM 622 CB GLU 68 55.505 44.019 11.128 1.00 26.89 A.13 ATOM 623 CG GLU 68 55.566 43.258 12.087 1.00 36.97 A.13 ATOM 624 CD GLU 68 53.289 43.921 11.537 1.00 41.61 A.13 ATOM 625 OE1 GLU 68 53.289 43.921 11.537 1.00 26.72 A.13 ATOM 626 OE2 GLU 68 58.823 44.911 10.705 1.00 25.72 A.13 ATOM 627 C GLU 68 58.823 44.911 10.705 1.00 26.72 A.13 ATOM 628 O GLU 68 58.823 44.911 10.705 1.00 26.72 A.13 ATOM 629 N HIS 69 59.848 44.315 10.120 1.00 16.46 A.13 ATOM 630 CH HIS 69 61.930 45.603 10.103 1.00 10.97 A.13 ATOM 631 CA HIS 69 61.930 45.603 10.103 1.00 10.97 A.13 ATOM 632 CB HIS 69 62.786 44.502 10.643 1.00 20.64 A.13 ATOM 634 CD2 HIS 69 62.786 44.502 10.643 1.00 20.64 A.13 ATOM 637 CEIL HIS 69 62.512 43.876 10.133 1.00 10.00 A.13 ATOM 639 C HIS 69 62.786 44.502 10.643 1.00 22.50 A.13 ATOM 630 CH S 69 62.786 44.502 10.643 1.00 22.50 A.13 ATOM 630 CH S 69 62.786 44.502 10.643 1.00 22.54 A.13 ATOM 630 CH S 69 62.786 44.502 10.643 1.00 22.54 A.13 ATOM 630 CH S 69 62.786 44.502 10.643 1.00 10.00 A.13 ATOM 640 C HIS 69 62.786 44.502 10.643 1.00 10.00 A.13 ATOM 640 C ANSP 71 61.422 40.768 7.012 1.00 10.51 A.13 ATOM 640 C ANSP 71 61.422 40.768 7.012 1.00 10.00 A.13 ATOM 640 C ANSP 71 61.422 40.768 7.012 1.00 10.00 A.13 ATOM 640 C ANSP 71 61.822 41.125 4.794 1.00 12.12 A.13 ATOM 640 C ANSP 71 61.824 39.381 6.862 1.00 19.99 A.13 ATOM 650 CG ASP 71 63.392 39.752 8.592 1.00 12.94 A.13 ATOM 650 CG ASP 71 61.332 39.752 8.592 1.00 12.94 A.13 ATOM 650 CG ASP 71 61.332 39.752 8.592 1.00 12.		605 O ILE	66		46.962			
ATOM 609 CB LYS 67 57.689 46.042 15.268 1.00 10.29 A.13 ATOM 610 CG LYS 67 57.584 46.895 16.510 1.00 14.63 A.13 ATOM 611 CD LYS 67 57.382 46.923 18.986 1.00 22.99 A.13 ATOM 613 NZ LYS 67 57.382 46.923 18.986 1.00 28.27 A.13 ATOM 613 NZ LYS 67 57.382 46.923 18.986 1.00 28.27 A.13 ATOM 617 C LYS 67 59.113 44.633 13.726 1.00 17.91 A.13 ATOM 618 O LYS 67 69.113 44.633 13.726 1.00 17.91 A.13 ATOM 619 N GLU 68 58.027 44.690 12.949 1.00 12.72 A.13 ATOM 621 CA GLU 68 55.566 44.067 11.624 1.00 16.06 A.13 ATOM 621 CA GLU 68 55.566 44.019 11.128 1.00 26.89 A.13 ATOM 622 CB GLU 68 55.566 43.258 12.087 1.00 36.97 A.13 ATOM 624 CD GLU 68 55.566 43.258 12.087 1.00 36.97 A.13 ATOM 625 OE1 GLU 68 53.289 43.921 11.537 1.00 17.31 A.13 ATOM 626 OE2 GLU 68 58.823 44.911 10.705 1.00 26.72 A.13 ATOM 627 C GLU 68 58.823 44.911 10.705 1.00 26.72 A.13 ATOM 628 O GLU 68 58.823 44.911 10.705 1.00 26.72 A.13 ATOM 629 N HIS 69 59.848 44.315 10.120 1.00 16.43 A.13 ATOM 631 CA HIS 69 60.732 45.102 9.283 1.00 10.97 A.13 ATOM 632 CB HIS 69 60.732 45.102 9.283 1.00 10.97 A.13 ATOM 634 CD2 HIS 69 66.2512 43.876 10.131 1.00 10.97 A.13 ATOM 637 CEI HIS 69 62.786 44.502 10.643 1.00 24.02 A.13 ATOM 638 NEZ HIS 69 66.2512 43.876 11.839 1.00 10.00 A.13 ATOM 639 C HIS 69 62.786 44.502 10.643 1.00 10.00 A.13 ATOM 640 O HIS 69 62.512 43.876 11.839 1.00 17.68 A.13 ATOM 641 N GLY 70 60.451 43.537 7.411 1.00 13.11 A.13 ATOM 643 CD GHIS 69 62.248 42.888 11.020 1.00 18.74 A.13 ATOM 640 C HIS 69 61.214 44.469 7.983 1.00 12.99 A.13 ATOM 641 N GLY 70 60.451 43.537 7.411 1.00 13.11 A.13 ATOM 642 C GLY 70 61.262 41.533 5.936 1.00 10.00 A.13 ATOM 643 C C GLY 70 61.262 41.533 5.936 1.00 10.00 A.13 ATOM 640 C G ASP 71 61.842 39.381 6.862 1.00 19.99 A.13 ATOM 651 ODI ASP 71 61.842 39.381 6.862 1.00 19.99 A.13 ATOM 650 C G ASP 71 61.842 39.381 6.862 1.00 19.99 A.13 ATOM 650 C G ASP 71 61.842 39.381 6.862 1.00 19.99 A.13 ATOM 650 C G ASP 71 61.842 39.381 6.862 1.00 19.99 A.13 ATOM 650 C G ASP 71 61.819 39.7190 7.642 1.00 10.00 A.13 ATOM 650 C G ASP 71 61.819 37.7190 7.64								
ATOM 612 CE LYS 67 57.646 46.056 17.774 1.00 14.94 A_13 ATOM 612 CE LYS 67 57.382 46.923 18.986 1.00 22.99 A_13 ATOM 613 NZ LYS 67 57.480 46.174 20.258 1.00 28.27 A_13 ATOM 617 C LYS 67 59.113 44.633 13.726 1.00 17.91 A_13 ATOM 618 O LYS 67 69.113 44.633 13.726 1.00 17.91 A_13 ATOM 618 O LYS 67 67 60.167 44.106 13.366 1.00 24.16 A_13 ATOM 619 N GLU 68 58.027 44.690 12.949 1.00 12.72 A_13 ATOM 621 CA GLU 68 57.960 44.067 11.624 1.00 16.06 A_13 ATOM 622 CB GLU 68 55.566 43.258 12.087 1.00 26.89 A_13 ATOM 623 CG GLU 68 55.566 43.258 12.087 1.00 36.97 A_13 ATOM 624 CD GLU 68 53.289 43.921 11.537 1.00 17.31 A_13 ATOM 625 OEI GLU 68 54.217 43.973 12.381 1.00 26.72 A_13 ATOM 626 OE2 GLU 68 54.074 44.561 13.485 1.00 26.72 A_13 ATOM 627 C GLU 68 54.074 44.561 13.485 1.00 26.72 A_13 ATOM 628 O GLU 68 54.074 44.561 13.485 1.00 26.72 A_13 ATOM 629 N HIS 69 59.848 44.991 10.705 1.00 26.64 A_13 ATOM 629 N HIS 69 59.848 44.551 10.20 1.00 16.43 A_13 ATOM 631 CA HIS 69 60.732 45.102 9.283 1.00 13.69 A_13 ATOM 632 CB HIS 69 61.930 45.603 10.133 1.00 10.97 A_13 ATOM 632 CB HIS 69 61.930 44.502 10.643 1.00 24.02 A_13 ATOM 633 CG HIS 69 62.786 44.502 10.643 1.00 12.53 A_13 ATOM 635 CB HIS 69 63.873 43.876 10.133 1.00 10.00 A_13 ATOM 635 ND HIS 69 62.786 44.502 10.643 1.00 17.68 A_13 ATOM 637 CEI HIS 69 63.873 43.876 10.133 1.00 10.00 A_13 ATOM 638 NE2 HIS 69 64.228 42.888 11.020 1.00 17.68 A_13 ATOM 638 NE2 HIS 69 64.228 42.888 11.000 17.68 A_13 ATOM 640 O HIS 69 64.228 42.888 11.000 1.00 A_13 ATOM 640 CB ASP 71 61.442 40.768 7.012 1.00 19.99 A_13 ATOM 640 CB ASP 71 61.424 40.768 7.012 1.00 19.99 A_13 ATOM 640 CB ASP 71 61.424 40.768 7.012 1.00 19.99 A_13 ATOM 648 CA ASP 71 61.424 40.768 7.012 1.00 19.99 A_13 ATOM 640 CB ASP 71 61.424 40.768 7.012 1.00 19.99 A_13 ATOM 648 CA ASP 71 61.424 40.768 7.012 1.00 19.99 A_13 ATOM 648 CA ASP 71 61.424 40.768 7.012 1.00 10.00 A_13 ATOM 640 CB ASP 71 61.442 40.768 7.012 1.00 19.99 A_13 ATOM 640 CB ASP 71 61.442 40.768 7.012 1.00 19.99 A_13 ATOM 640 CB ASP 71 61.442 40.768 7.012 1.00 10.00 A_1	MOTA	609 CB LYS	67	57.689	46.042	15.268	1.00 10.29	A_13
ATOM 612 CE LYS 67 57.382 46.923 18.986 1.00 22.99 A.13 ATOM 613 NZ LYS 67 57.480 46.174 20.258 1.00 28.27 A.13 ATOM 618 0 LYS 67 59.113 44.633 13.726 1.00 17.91 A.13 ATOM 619 N GLU 68 58.027 44.106 13.366 1.00 12.72 A.13 ATOM 621 CA GLU 68 57.960 44.067 11.624 1.00 16.06 A.13 ATOM 622 CB GLU 68 55.566 43.258 12.087 1.00 36.97 A.13 ATOM 623 CG GLU 68 55.566 43.258 12.087 1.00 36.97 A.13 ATOM 624 CD GLU 68 54.217 43.973 12.381 1.00 41.61 A.13 ATOM 625 OEI GLU 68 58.823 44.911 10.705 1.00 22.50 A.13 ATOM 626 OE2 GLU 68 58.823 44.911 10.705 1.00 22.50 A.13 ATOM 627 C GLU 68 58.823 44.911 10.705 1.00 22.50 A.13 ATOM 628 O GLU 68 58.823 44.315 10.120 1.00 16.43 A.13 ATOM 629 N HIS 69 60.732 45.102 9.283 1.00 13.69 A.13 ATOM 631 CA HIS 69 60.732 45.102 9.283 1.00 13.69 A.13 ATOM 632 CB HIS 69 61.930 45.603 10.103 1.00 10.97 A.13 ATOM 633 CG HIS 69 62.786 44.502 10.643 1.00 24.02 A.13 ATOM 634 CD2 HIS 69 63.873 43.876 10.133 1.00 10.00 A.13 ATOM 637 CEI HIS 69 63.873 43.876 10.133 1.00 10.00 A.13 ATOM 638 NE2 HIS 69 62.512 43.876 11.839 1.00 12.53 A.13 ATOM 639 C HIS 69 62.512 43.876 11.839 1.00 12.53 A.13 ATOM 639 C HIS 69 62.512 43.876 10.133 1.00 10.00 A.13 ATOM 639 C HIS 69 62.512 43.876 11.839 1.00 12.53 A.13 ATOM 644 CD CHS 69 62.314 44.480 7.529 1.00 12.53 A.13 ATOM 645 CB HIS 69 62.314 44.800 7.529 1.00 18.74 A.13 ATOM 640 O HIS 69 62.314 44.800 7.529 1.00 18.74 A.13 ATOM 641 N GLY 70 60.451 43.537 7.411 1.00 12.53 A.13 ATOM 643 CA GLY 70 60.832 42.968 6.127 1.00 10.00 A.13 ATOM 645 CB ASP 71 61.842 39.881 6.862 1.00 19.99 A.13 ATOM 646 N ASP 71 61.842 39.881 6.862 1.00 19.99 A.13 ATOM 647 CB ASP 71 61.842 39.881 6.862 1.00 19.99 A.13 ATOM 648 CA ASP 71 61.842 39.881 6.862 1.00 19.99 A.13 ATOM 648 CA ASP 71 61.842 39.881 6.862 1.00 19.99 A.13 ATOM 655 CA PHE 72 59.946 38.865 8.292 1.00 14.15 A.13 ATOM 658 CB PHE 72 59.946 38.865 8.292 1.00 14.15 A.13 ATOM 659 CG PHE 72 59.946 38.865 8.292 1.00 10.00 A.13 ATOM 659 CG PHE 72 59.946 38.865 8.292 1.00 10.00 A.13 ATOM 659 CG PHE 72 59.946 38.865 8.292 1.00 10.00 A.								
ATOM 617 C LYS 67 59.113 44.633 13.726 1.00 17.91 A_13 ATOM 618 0 LYS 67 60.167 44.106 13.366 1.00 24.16 A_13 ATOM 619 N GLU 68 58.027 44.690 12.949 1.00 12.72 A_13 ATOM 621 CA GLU 68 57.960 44.067 11.624 1.00 16.06 A_13 ATOM 622 CB GLU 68 55.566 43.258 12.087 1.00 36.97 A_13 ATOM 623 CG GLU 68 55.566 43.258 12.087 1.00 36.97 A_13 ATOM 624 CD GLU 68 55.566 43.258 12.087 1.00 36.97 A_13 ATOM 625 OE1 GLU 68 54.217 43.973 12.381 1.00 41.61 A_13 ATOM 626 OE2 GLU 68 54.074 44.561 13.485 1.00 26.72 A_13 ATOM 627 C GLU 68 58.823 44.911 10.705 1.00 22.50 A_13 ATOM 628 O GLU 68 58.823 44.911 10.705 1.00 22.50 A_13 ATOM 629 N HIS 69 60.732 45.102 9.283 1.00 10.643 A_13 ATOM 631 CA HIS 69 60.732 45.102 9.283 1.00 10.643 A_13 ATOM 632 CB HIS 69 61.930 45.603 10.103 1.00 10.97 A_13 ATOM 633 CG HIS 69 62.786 44.502 10.643 1.00 10.97 A_13 ATOM 634 CD2 HIS 69 62.786 44.502 10.643 1.00 10.97 A_13 ATOM 637 CEI HIS 69 62.786 44.502 10.643 1.00 10.97 A_13 ATOM 636 ND1 HIS 69 62.512 43.876 11.839 1.00 17.68 A_13 ATOM 637 CEI HIS 69 62.512 43.876 11.839 1.00 17.68 A_13 ATOM 638 NE2 HIS 69 64.228 42.888 11.020 1.00 10.00 A_13 ATOM 638 NE2 HIS 69 64.228 42.888 11.020 1.00 10.00 A_13 ATOM 640 O HIS 69 62.314 44.690 7.983 1.00 12.53 A_13 ATOM 641 N GLY 70 60.451 43.537 7.411 1.00 13.11 A_13 ATOM 643 CA GLY 70 60.451 43.537 7.411 1.00 13.11 A_13 ATOM 644 CA GLY 70 60.451 43.537 7.411 1.00 13.11 A_13 ATOM 645 CA GLY 70 60.451 43.537 7.411 1.00 15.12 A_13 ATOM 646 N ASP 71 61.842 99.88 1.00 10.00 A_13 ATOM 646 CA ASP 71 61.842 99.88 1.00 10.00 A_13 ATOM 648 CA ASP 71 61.842 99.88 1.00 10.00 A_13 ATOM 640 CA ASP 71 61.842 99.88 1.00 10.00 A_13 ATOM 645 CA ASP 71 61.842 99.88 1.00 10.00 A_13 ATOM 646 CA ASP 71 61.842 99.88 1.00 10.00 A_13 ATOM 647 CA GLY 70 61.523 41.125 4.794 1.00 15.12 A_13 ATOM 648 CA ASP 71 61.842 99.88 1.00 10.00 A_13 ATOM 649 CB ASP 71 63.672 99.752 8.592 1.00 12.94 A_13 ATOM 640 CA ASP 71 61.842 99.88 1.00 10.00 A_13 ATOM 640 CA ASP 71 61.842 99.88 1.00 10.00 A_13 ATOM 645 CA ASP 71 62.774 99.812 9.464 1.00 12.94 A_13		612 CE LYS	67					
ATOM 618 O LYS 67 60.167 44.106 13.366 1.00 24.16 A_13 ATOM 619 N GLU 68 58.027 44.690 12.949 1.00 12.72 A_13 ATOM 621 CA GLU 68 57.960 44.067 11.624 1.00 16.06 A_13 ATOM 622 CB GLU 68 56.505 44.019 11.128 1.00 26.89 A_13 ATOM 623 CG GLU 68 55.566 43.258 12.087 1.00 36.97 A_13 ATOM 624 CD GLU 68 54.217 43.973 12.381 1.00 41.61 A_13 ATOM 625 021 GLU 68 53.289 43.921 11.537 1.00 17.31 A_13 ATOM 626 022 GLU 68 58.823 44.911 10.705 1.00 26.72 A_13 ATOM 627 C GLU 68 58.823 44.911 10.705 1.00 22.50 A_13 ATOM 628 O GLU 68 58.854 44.315 10.120 1.00 16.43 A_13 ATOM 629 N HIS 69 59.848 44.315 10.120 1.00 16.43 A_13 ATOM 631 CA HIS 69 60.732 45.102 9.283 1.00 13.69 A_13 ATOM 632 CB HIS 69 61.930 45.603 10.103 1.00 10.97 A_13 ATOM 633 CG HIS 69 62.786 44.502 10.643 1.00 24.02 A_13 ATOM 634 CD2 HIS 69 63.873 43.876 10.133 1.00 10.00 A_13 ATOM 637 CEI HIS 69 63.384 42.912 12.041 1.00 12.53 A_13 ATOM 638 NE2 HIS 69 64.228 42.888 11.020 10.00 12.53 A_13 ATOM 639 C HIS 69 64.228 42.888 11.020 10.00 12.53 A_13 ATOM 630 C HIS 69 64.228 42.888 11.020 10.00 A_13 ATOM 640 O HIS 69 62.314 44.780 7.529 1.00 10.00 A_13 ATOM 641 N GLY 70 60.451 43.537 7.411 1.00 11.51 A_13 ATOM 642 C GLY 70 61.262 41.533 5.936 1.00 10.00 A_13 ATOM 643 C A SP 71 61.412 40.768 7.012 1.00 19.99 A_13 ATOM 648 C A SP 71 61.422 40.768 7.012 1.00 19.99 A_13 ATOM 649 C A SP 71 61.422 40.768 7.012 1.00 19.99 A_13 ATOM 640 C A SP 71 61.422 40.768 7.012 1.00 19.99 A_13 ATOM 650 C A SP 71 63.372 39.223 7.218 1.00 10.00 A_13 ATOM 651 C A SP 71 61.412 40.768 8.23 1.00 13.38 A_13 ATOM 652 OD2 ASP 71 61.424 40.768 7.012 1.00 19.99 A_13 ATOM 653 C B PHE 72 59.946 38.855 8.292 1.00 13.38 A_13 ATOM 655 C A SP 71 63.393 37.793 7.632 1.00 12.94 A_13 ATOM 657 CA PHE 72 59.946 38.855 8.292 1.00 10.00 A_13 ATOM 658 CB PHE 72 59.946 38.855 8.292 1.00 10.00 A_13 ATOM 659 CG PHE 72 59.946 38.855 8.292 1.00 10.00 A_13 ATOM 659 CG PHE 72 59.946 38.855 8.292 1.00 10.00 A_13 ATOM 650 CD PHE 72 59.946 38.855 8.292 1.00 10.00 A_13 ATOM 650 CD PHE 72 59.946 38.855 8.292 1.00 10.00 A_13								
ATOM 621 CA GLU 68 57.960 44.067 11.624 1.00 16.06 A_13 ATOM 622 CB GLU 68 56.505 44.019 11.128 1.00 26.89 A_13 ATOM 623 CG GLU 68 55.566 43.258 12.087 1.00 36.97 A_13 ATOM 624 CD GLU 68 55.566 43.258 12.087 1.00 36.97 A_13 ATOM 625 OE1 GLU 68 53.289 43.973 12.381 1.00 41.61 A_13 ATOM 626 OE2 GLU 68 54.074 44.561 13.485 1.00 26.72 A_13 ATOM 627 C GLU 68 54.074 44.561 13.485 1.00 26.72 A_13 ATOM 628 O GLU 68 58.823 44.911 10.705 1.00 22.50 A_13 ATOM 628 O GLU 68 58.587 46.093 10.532 1.00 20.64 A_13 ATOM 629 N HIS 69 59.848 44.315 10.120 1.00 16.43 A_13 ATOM 631 CA HIS 69 60.732 45.102 9.283 1.00 13.69 A_13 ATOM 631 CA HIS 69 60.732 45.102 9.283 1.00 13.69 A_13 ATOM 631 CA HIS 69 61.930 45.603 10.103 1.00 10.97 A_13 ATOM 633 CG HIS 69 62.786 44.502 10.643 1.00 24.02 A_13 ATOM 635 NDI HIS 69 62.512 43.876 10.133 1.00 10.09 A_13 ATOM 637 CEI HIS 69 63.873 43.876 10.133 1.00 10.00 A_13 ATOM 637 CEI HIS 69 63.384 42.912 12.041 1.00 12.53 A_13 ATOM 637 CEI HIS 69 64.228 42.888 11.020 1.00 10.00 A_13 ATOM 639 C HIS 69 64.228 42.888 11.020 1.00 10.00 A_13 ATOM 641 N GLY 70 60.451 43.537 7.411 1.00 12.128 A_13 ATOM 641 N GLY 70 60.451 43.537 7.411 1.00 13.11 A_13 ATOM 641 N GLY 70 60.451 43.537 7.411 1.00 13.11 A_13 ATOM 644 CA ASP 71 61.842 49.88 11.25 9.366 1.00 10.00 A_13 ATOM 645 CA ASP 71 61.842 49.986 6.127 1.00 10.00 A_13 ATOM 646 N ASP 71 61.842 39.381 6.862 1.00 19.99 A_13 ATOM 646 N ASP 71 61.842 39.381 6.862 1.00 19.99 A_13 ATOM 648 CA ASP 71 61.842 39.381 6.862 1.00 19.99 A_13 ATOM 649 CB ASP 71 61.842 39.381 6.862 1.00 19.99 A_13 ATOM 650 CG ASP 71 63.332 39.223 7.288 1.00 10.00 13.13 ATOM 651 OA ASP 71 61.424 0.768 7.012 1.00 19.99 A_13 ATOM 654 OA ASP 71 61.319 37.719 7.649 1.00 24.45 A_13 ATOM 655 CB ASP 71 60.998 38.377 7.632 1.00 22.07 A_13 ATOM 655 CA ASP 71 61.319 37.719 7.649 1.00 12.94 A_13 ATOM 655 CB ASP 71 60.998 38.377 7.632 1.00 10.00 A_13 ATOM 655 CB PHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 655 CB PHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 655 CB PHE 72 59.946 38.865 8.292 1.00 10.	MOTA	618 O LYS	67	60.167	44.106	13.366	1.00 24.16	A_13
ATOM 622 CB GLU 68 56.505 44.019 11.128 1.00 26.89 A_13 ATOM 623 CG GLU 68 55.566 43.258 12.087 1.00 36.97 A_13 ATOM 624 CD GLU 68 54.217 43.973 12.381 1.00 41.61 A_13 ATOM 625 OE1 GLU 68 54.217 43.973 12.381 1.00 17.31 A_13 ATOM 626 OE2 GLU 68 54.074 44.561 13.485 1.00 26.72 A_13 ATOM 626 OE2 GLU 68 54.074 44.561 13.485 1.00 26.72 A_13 ATOM 627 C GLU 68 58.823 44.911 10.705 1.00 22.50 A_13 ATOM 628 O GLU 68 58.587 46.093 10.532 1.00 20.64 A_13 ATOM 629 N HIS 69 59.848 44.315 10.120 1.00 16.43 A_13 ATOM 631 CA HIS 69 60.732 45.102 9.283 1.00 13.69 A_13 ATOM 632 CB HIS 69 61.930 45.603 10.103 1.00 10.97 A_13 ATOM 633 CG HIS 69 62.786 44.502 10.643 1.00 24.02 A_13 ATOM 634 CD2 HIS 69 63.873 43.876 10.133 1.00 10.00 A_13 ATOM 637 CEI HIS 69 62.512 43.876 11.839 1.00 17.68 A_13 ATOM 637 CEI HIS 69 64.228 42.888 11.002 1.00 17.68 A_13 ATOM 638 NE2 HIS 69 64.228 42.888 11.002 1.00 10.00 A_13 ATOM 639 C HIS 69 64.228 42.888 11.002 1.00 10.00 A_13 ATOM 639 C HIS 69 64.228 42.888 11.002 1.00 10.00 A_13 ATOM 640 O HIS 69 62.314 44.780 7.529 1.00 18.74 A_13 ATOM 641 N GLY 70 60.451 43.537 7.411 1.00 13.11 A_13 ATOM 643 CA GLY 70 60.832 42.968 6.127 1.00 10.00 A_13 ATOM 644 C GLY 70 61.262 41.533 5.936 1.00 10.00 A_13 ATOM 644 C GLY 70 61.262 41.533 5.936 1.00 10.00 A_13 ATOM 644 C GLY 70 61.262 41.533 5.936 1.00 10.00 A_13 ATOM 648 CA ASP 71 61.842 39.381 6.862 1.00 10.99 A_13 ATOM 648 CA ASP 71 61.842 39.381 6.862 1.00 10.99 A_13 ATOM 649 CB ASP 71 61.842 39.381 6.862 1.00 10.99 A_13 ATOM 649 CB ASP 71 61.842 39.381 6.862 1.00 10.99 A_13 ATOM 650 CG ASP 71 63.332 39.752 8.592 1.00 23.52 A_13 ATOM 651 OA ASP 71 61.842 39.381 6.862 1.00 10.90 A_13 ATOM 650 CG ASP 71 63.332 39.752 8.592 1.00 23.52 A_13 ATOM 650 CG ASP 71 63.332 39.752 8.592 1.00 23.52 A_13 ATOM 650 CG ASP 71 63.332 39.752 8.592 1.00 23.52 A_13 ATOM 650 CG ASP 71 63.393 37.190 7.649 1.00 12.94 A_13 ATOM 650 CG ASP 71 63.393 37.190 7.649 1.00 10.00 A_13 ATOM 650 CG ASP 71 63.393 37.190 7.649 1.00 10.00 A_13 ATOM 650 CG ASP 71 60.998 38.377 7.632 1.00 10.00 A_								
ATOM 624 CD GLU 68 54.217 43.973 12.381 1.00 41.61 A_13 ATOM 625 OE1 GLU 68 53.289 43.921 11.537 1.00 17.31 A_13 ATOM 626 OE2 GLU 68 54.074 44.561 13.485 1.00 26.72 A_13 ATOM 627 C GLU 68 58.823 44.911 10.705 1.00 22.50 A_13 ATOM 628 O GLU 68 58.587 46.093 10.532 1.00 20.64 A_13 ATOM 629 N HIS 69 59.848 44.315 10.120 1.00 16.43 A_13 ATOM 631 CA HIS 69 60.732 45.102 9.283 1.00 13.69 A_13 ATOM 632 CB HIS 69 60.732 45.102 9.283 1.00 13.69 A_13 ATOM 633 CG HIS 69 61.930 45.603 10.103 1.00 10.97 A_13 ATOM 634 CD2 HIS 69 62.586 44.502 10.643 1.00 24.02 A_13 ATOM 635 ND1 HIS 69 62.512 43.876 10.133 1.00 10.00 A_13 ATOM 637 CE1 HIS 69 63.873 43.876 10.133 1.00 10.00 A_13 ATOM 638 NE2 HIS 69 64.228 42.888 11.020 1.00 12.53 A_13 ATOM 638 NE2 HIS 69 64.228 42.888 11.020 1.00 12.53 A_13 ATOM 639 C HIS 69 64.228 42.888 11.020 1.00 12.53 A_13 ATOM 640 O HIS 69 62.314 44.780 7.529 1.00 18.74 A_13 ATOM 641 N GLY 70 60.451 43.537 7.411 1.00 13.11 A_13 ATOM 641 N GLY 70 60.451 43.537 7.411 1.00 13.11 A_13 ATOM 644 C GLY 70 60.451 43.537 7.411 1.00 15.12 A_13 ATOM 645 O GLY 70 61.523 41.125 4.794 1.00 15.12 A_13 ATOM 648 CA ASP 71 61.412 40.768 7.012 1.00 19.99 A_13 ATOM 648 CA ASP 71 61.412 40.768 7.012 1.00 19.99 A_13 ATOM 649 CB ASP 71 63.332 39.223 7.218 1.00 10.00 A_13 ATOM 650 CG ASP 71 63.332 39.223 7.218 1.00 10.00 A_13 ATOM 650 CG ASP 71 63.332 39.223 7.218 1.00 10.00 A_13 ATOM 650 CG ASP 71 63.672 39.752 8.592 1.00 23.52 A_13 ATOM 650 CG ASP 71 63.332 39.223 7.218 1.00 10.00 A_13 ATOM 650 CG ASP 71 63.372 39.752 8.592 1.00 23.52 A_13 ATOM 655 OD ASP 71 60.998 38.377 7.632 1.00 22.07 A_13 ATOM 655 OD ASP 71 60.998 38.377 7.632 1.00 22.07 A_13 ATOM 655 OD ASP 71 60.998 38.377 7.632 1.00 22.07 A_13 ATOM 655 C ASP 71 60.998 38.377 7.632 1.00 22.07 A_13 ATOM 655 OD ASP 71 60.998 38.377 7.632 1.00 22.07 A_13 ATOM 655 OD ASP 71 60.998 38.377 7.632 1.00 22.07 A_13 ATOM 655 OD ASP 71 60.998 38.377 7.632 1.00 22.07 A_13 ATOM 655 OD ASP 71 60.998 38.377 7.632 1.00 10.00 A_13 ATOM 655 CB PHE 72 59.040 38.035 9.094 1.00 10.00 A_13 A	MOTA	622 CB GLU	68	56.505	44.019	11.128	1.00 26.89	A_13
ATOM 625 OE1 GLU 68 53.289 43.921 11.537 1.00 17.31 A_13 ATOM 626 OE2 GLU 68 54.074 44.561 13.485 1.00 26.72 A_13 ATOM 627 C GLU 68 58.823 44.911 10.705 1.00 22.50 A_13 ATOM 628 O GLU 68 58.823 44.911 10.705 1.00 22.50 A_13 ATOM 629 N HIS 69 59.848 44.315 10.120 1.00 16.43 A_13 ATOM 631 CA HIS 69 60.732 45.102 9.283 1.00 13.69 A_13 ATOM 632 CB HIS 69 61.930 45.603 10.103 1.00 10.97 A_13 ATOM 633 CG HIS 69 62.786 44.502 10.643 1.00 24.02 A_13 ATOM 634 CD2 HIS 69 63.873 43.876 10.133 1.00 10.00 A_13 ATOM 635 ND1 HIS 69 62.512 43.876 11.839 1.00 17.68 A_13 ATOM 637 CEI HIS 69 64.228 42.888 11.020 17.68 A_13 ATOM 638 NE2 HIS 69 64.228 42.888 11.020 1.00 10.00 A_13 ATOM 639 C HIS 69 61.214 44.469 7.983 1.00 21.28 A_13 ATOM 640 O HIS 69 62.314 44.780 7.529 1.00 18.74 A_13 ATOM 641 N GLY 70 60.451 43.537 7.411 1.00 13.11 A_13 ATOM 643 CA GLY 70 60.451 43.537 7.411 1.00 13.11 A_13 ATOM 644 C GLY 70 60.451 43.537 7.411 1.00 13.11 A_13 ATOM 645 O GLY 70 61.262 41.533 5.936 1.00 10.00 A_13 ATOM 646 N ASP 71 61.822 99.88 7.012 1.00 19.99 A_13 ATOM 648 CA ASP 71 61.822 39.381 6.862 1.00 19.99 A_13 ATOM 649 CB ASP 71 63.332 39.223 7.218 1.00 10.00 A_13 ATOM 650 CG ASP 71 63.672 39.752 8.592 1.00 23.52 A_13 ATOM 651 CA SLY 70 60.983 38.377 7.632 1.00 12.94 A_13 ATOM 652 OD2 ASP 71 63.332 39.223 7.218 1.00 10.00 A_13 ATOM 650 CG ASP 71 63.862 39.752 8.592 1.00 23.52 A_13 ATOM 650 CG ASP 71 63.862 39.752 8.592 1.00 23.52 A_13 ATOM 651 CD ASP 71 64.846 40.110 8.803 1.00 13.38 A_13 ATOM 652 OD2 ASP 71 62.774 39.812 9.644 1.00 12.94 A_13 ATOM 655 CB PHE 72 59.946 38.865 8.292 1.00 14.15 A_13 ATOM 658 CB PHE 72 59.946 38.865 8.292 1.00 14.15 A_13 ATOM 658 CB PHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 659 CB PHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 659 CB PHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 659 CB PHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 659 CB PHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 659 CB PHE 72 59.946 38.865 8.292 1.00 10.00 A_13								A_13 A 13
ATOM 627 C GLU 68 58.823 44.911 10.705 1.00 22.50 A_13 ATOM 628 O GLU 68 58.587 46.093 10.532 1.00 20.64 A_13 ATOM 629 N HIS 69 59.848 44.315 10.120 1.00 16.43 A_13 ATOM 631 CA HIS 69 60.732 45.102 9.283 1.00 13.69 A_13 ATOM 632 CB HIS 69 61.930 45.603 10.103 1.00 10.97 A_13 ATOM 633 CG HIS 69 62.786 44.502 10.643 1.00 24.02 A_13 ATOM 634 CD2 HIS 69 63.873 43.876 10.133 1.00 10.00 A_13 ATOM 635 ND1 HIS 69 62.512 43.876 11.839 1.00 17.68 A_13 ATOM 637 CE1 HIS 69 63.384 42.912 12.041 1.00 12.53 A_13 ATOM 638 NE2 HIS 69 64.228 42.888 11.020 10.00 A_13 ATOM 639 C HIS 69 64.228 42.888 11.020 1.00 10.00 A_13 ATOM 639 C HIS 69 64.228 42.888 11.020 1.00 10.00 A_13 ATOM 640 O HIS 69 62.314 44.780 7.983 1.00 21.28 A_13 ATOM 641 N GLY 70 60.451 43.537 7.411 1.00 13.11 A_13 ATOM 643 CA GLY 70 60.832 42.968 6.127 1.00 10.00 A_13 ATOM 644 C GLY 70 60.832 42.968 6.127 1.00 10.00 A_13 ATOM 644 C GLY 70 61.262 41.533 5.936 1.00 10.00 A_13 ATOM 646 N ASP 71 61.422 40.768 7.012 1.00 19.99 A_13 ATOM 648 CA ASP 71 61.842 39.381 6.862 1.00 19.99 A_13 ATOM 648 CA ASP 71 61.842 39.381 6.862 1.00 19.99 A_13 ATOM 649 CB ASP 71 61.842 39.381 6.862 1.00 19.99 A_13 ATOM 650 CG ASP 71 63.332 39.223 7.218 1.00 10.00 A_13 ATOM 650 CG ASP 71 63.672 39.752 8.592 1.00 23.52 A_13 ATOM 651 CD ASP 71 64.846 40.110 8.803 1.00 13.38 A_13 ATOM 650 CG ASP 71 63.672 39.752 8.592 1.00 23.52 A_13 ATOM 655 CG ASP 71 63.872 39.812 9.464 1.00 12.94 A_13 ATOM 655 CG ASP 71 62.774 39.812 9.464 1.00 12.94 A_13 ATOM 655 C ASP 71 62.774 39.812 9.464 1.00 12.94 A_13 ATOM 655 C ASP 71 62.774 39.812 9.464 1.00 12.94 A_13 ATOM 655 C ASP 71 60.998 38.377 7.632 1.00 22.07 A_13 ATOM 655 C BPHE 72 59.946 38.865 8.292 1.00 24.45 A_13 ATOM 655 C BPHE 72 59.946 38.865 8.292 1.00 14.15 A_13 ATOM 657 CA PHE 72 59.946 38.865 8.292 1.00 14.15 A_13 ATOM 658 C BPHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 658 C BPHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 658 C BPHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 658 C BPHE 72 59.946 38.805 9.094 1.00 10.00 A_13 ATOM 658 C BPH				53.289	43.921	11.537	1.00 17.31	A_13
ATOM 629 N HIS 69 59.848 44.315 10.120 1.00 16.43 A_13 ATOM 631 CA HIS 69 60.732 45.102 9.283 1.00 13.69 A_13 ATOM 632 CB HIS 69 61.930 45.603 10.103 1.00 10.97 A_13 ATOM 633 CG HIS 69 62.786 44.502 10.643 1.00 24.02 A_13 ATOM 634 CD2 HIS 69 63.873 43.876 10.133 1.00 10.00 A_13 ATOM 635 ND1 HIS 69 62.512 43.876 11.839 1.00 17.68 A_13 ATOM 637 CE1 HIS 69 63.884 42.912 12.041 1.00 12.53 A_13 ATOM 638 NE2 HIS 69 64.228 42.888 11.020 1.00 10.00 A_13 ATOM 639 C HIS 69 61.214 44.469 7.983 1.00 21.28 A_13 ATOM 640 O HIS 69 62.314 44.780 7.529 1.00 18.74 A_13 ATOM 641 N GLY 70 60.451 43.537 7.411 1.00 13.11 A_13 ATOM 644 C GLY 70 60.832 42.968 6.127 1.00 10.00 A_13 ATOM 644 C GLY 70 61.262 41.533 5.936 1.00 10.00 A_13 ATOM 645 O GLY 70 61.523 41.125 4.794 1.00 15.12 A_13 ATOM 646 N ASP 71 61.812 40.768 7.012 1.00 19.99 A_13 ATOM 648 CA ASP 71 61.842 39.381 6.862 1.00 19.99 A_13 ATOM 649 CB ASP 71 63.672 39.752 8.592 1.00 23.52 A_13 ATOM 650 CG ASP 71 63.672 39.752 8.592 1.00 23.52 A_13 ATOM 651 OD1 ASP 71 64.866 40.110 8.803 1.00 13.38 A_13 ATOM 655 N PHE 72 59.940 38.865 8.292 1.00 14.15 A_13 ATOM 657 CA PHE 72 59.940 38.865 8.292 1.00 10.00 A_13 ATOM 658 CB PHE 72 59.940 38.805 9.094 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 650 CD1 PHE 72 59.946 38.805 8.292 1.00 10.00 A_13 ATOM 650 CD1 PHE 72 59.946 38.805 8.292 1.00 10.00 A_13								
ATOM 631 CA HIS 69 60.732 45.102 9.283 1.00 13.69 A_13 ATOM 632 CB HIS 69 61.930 45.603 10.103 1.00 10.97 A_13 ATOM 633 CG HIS 69 62.786 44.502 10.643 1.00 24.02 A_13 ATOM 634 CD2 HIS 69 63.873 43.876 10.133 1.00 10.00 A_13 ATOM 635 ND1 HIS 69 62.512 43.876 10.133 1.00 17.68 A_13 ATOM 637 CE1 HIS 69 62.512 43.876 11.839 1.00 17.68 A_13 ATOM 638 NE2 HIS 69 64.228 42.888 11.020 1.00 10.00 A_13 ATOM 638 NE2 HIS 69 64.228 42.888 11.020 1.00 10.00 A_13 ATOM 630 C HIS 69 61.214 44.469 7.983 1.00 21.28 A_13 ATOM 640 O HIS 69 62.314 44.780 7.529 1.00 18.74 A_13 ATOM 641 N GLY 70 60.451 43.537 7.411 1.00 13.11 A_13 ATOM 643 CA GLY 70 60.451 43.537 7.411 1.00 13.11 A_13 ATOM 644 C GLY 70 61.262 41.533 5.936 1.00 10.00 A_13 ATOM 645 O GLY 70 61.523 41.125 4.794 1.00 15.12 A_13 ATOM 646 N ASP 71 61.842 39.381 6.862 1.00 19.99 A_13 ATOM 648 CA ASP 71 61.842 39.381 6.862 1.00 19.99 A_13 ATOM 649 CB ASP 71 63.332 39.223 7.218 1.00 10.00 A_13 ATOM 650 CG ASP 71 63.332 39.223 7.218 1.00 10.00 A_13 ATOM 651 OD1 ASP 71 64.846 40.110 8.803 1.00 13.38 A_13 ATOM 652 OD2 ASP 71 63.672 39.752 8.592 1.00 23.52 A_13 ATOM 655 N PHE 72 59.946 38.865 8.292 1.00 13.38 A_13 ATOM 655 N PHE 72 59.946 38.865 8.292 1.00 14.15 A_13 ATOM 658 CB PHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 658 CB PHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13								
ATOM 633 CG HIS 69 62.786 44.502 10.643 1.00 24.02 A_13 ATOM 634 CD2 HIS 69 63.873 43.876 10.133 1.00 10.00 A_13 ATOM 635 ND1 HIS 69 62.512 43.876 11.839 1.00 17.68 A_13 ATOM 637 CE1 HIS 69 63.884 42.912 12.041 1.00 12.53 A_13 ATOM 638 NE2 HIS 69 64.228 42.888 11.020 1.00 10.00 A_13 ATOM 639 C HIS 69 61.214 44.469 7.983 1.00 21.28 A_13 ATOM 640 O HIS 69 62.314 44.780 7.529 1.00 18.74 A_13 ATOM 641 N GLY 70 60.451 43.537 7.411 1.00 13.11 A_13 ATOM 643 CA GLY 70 60.832 42.968 6.127 1.00 10.00 A_13 ATOM 644 C GLY 70 61.262 41.533 5.936 1.00 10.00 A_13 ATOM 645 O GLY 70 61.523 41.125 4.794 1.00 15.12 A_13 ATOM 646 N ASP 71 61.412 40.768 7.012 1.00 19.99 A_13 ATOM 648 CA ASP 71 61.842 39.381 6.862 1.00 19.99 A_13 ATOM 649 CB ASP 71 63.332 39.223 7.218 1.00 10.00 A_13 ATOM 649 CB ASP 71 63.672 39.752 8.592 1.00 23.52 A_13 ATOM 650 CG ASP 71 63.672 39.752 8.592 1.00 23.52 A_13 ATOM 651 OD1 ASP 71 64.846 40.110 8.803 1.00 13.38 A_13 ATOM 652 OD2 ASP 71 62.774 39.812 9.464 1.00 12.94 A_13 ATOM 655 C ASP 71 62.774 39.812 9.464 1.00 12.94 A_13 ATOM 655 C ASP 71 62.774 39.812 9.464 1.00 12.94 A_13 ATOM 655 C ASP 71 60.998 38.377 7.632 1.00 22.07 A_13 ATOM 655 C ASP 71 60.998 38.377 7.632 1.00 24.45 A_13 ATOM 655 C ASP 71 61.319 37.190 7.649 1.00 24.45 A_13 ATOM 655 C ASP 71 61.319 37.190 7.649 1.00 24.45 A_13 ATOM 655 C ASP 71 61.319 37.190 7.649 1.00 24.45 A_13 ATOM 655 C ASP 71 61.319 37.190 7.649 1.00 24.45 A_13 ATOM 655 C ASP 71 62.774 39.812 9.464 1.00 12.94 A_13 ATOM 655 C ASP 71 62.374 39.812 9.464 1.00 12.94 A_13 ATOM 655 C ASP 71 62.374 39.812 9.464 1.00 12.94 A_13 ATOM 655 C ASP 71 62.374 39.812 9.464 1.00 12.94 A_13 ATOM 655 C ASP 71 62.774 39.812 9.464 1.00 10.00 A_13 ATOM 655 C ASP 71 62.374 39.812 9.464 1.00 10.00 A_13 ATOM 655 C ASP 71 62.374 39.812 9.464 1.00 10.00 A_13 ATOM 655 C ASP 71 62.374 39.812 9.464 1.00 10.00 A_13 ATOM 655 C ASP 71 62.374 39.812 9.464 1.00 10.00 A_13 ATOM 659 C B PHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 659 C B PHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 659 C B PHE 72 5	MOTA	631 CA HIS	69			9.283	1.00 13.69	A_13
ATOM 634 CD2 HIS 69 63.873 43.876 10.133 1.00 10.00 A 13 ATOM 635 ND1 HIS 69 62.512 43.876 11.839 1.00 17.68 A 13 ATOM 637 CE1 HIS 69 63.384 42.912 12.041 1.00 12.53 A 13 ATOM 638 NE2 HIS 69 64.228 42.888 11.020 1.00 10.00 A 13 ATOM 639 C HIS 69 61.214 44.469 7.983 1.00 21.28 A 13 ATOM 640 O HIS 69 62.314 44.780 7.529 1.00 18.74 A 13 ATOM 641 N GLY 70 60.451 43.537 7.411 1.00 13.11 A 13 ATOM 643 CA GLY 70 60.451 43.537 7.411 1.00 13.11 A 13 ATOM 644 C GLY 70 60.832 42.968 6.127 1.00 10.00 A 13 ATOM 645 O GLY 70 61.262 41.533 5.936 1.00 10.00 A 13 ATOM 645 O GLY 70 61.523 41.135 4.794 1.00 15.12 A 13 ATOM 646 N ASP 71 61.412 40.768 7.012 1.00 19.99 A 13 ATOM 648 CA ASP 71 61.412 40.768 7.012 1.00 19.99 A 13 ATOM 649 CB ASP 71 63.332 39.223 7.218 1.00 10.00 A 13 ATOM 649 CB ASP 71 63.672 39.752 8.592 1.00 23.52 A 13 ATOM 650 CG ASP 71 64.846 40.110 8.803 1.00 13.38 A 13 ATOM 651 OD1 ASP 71 64.846 40.110 8.803 1.00 13.38 A 13 ATOM 652 OD2 ASP 71 62.774 39.812 9.464 1.00 12.94 A 13 ATOM 655 OD2 ASP 71 62.774 39.812 9.464 1.00 12.94 A 13 ATOM 655 OD2 ASP 71 60.998 38.377 7.632 1.00 22.07 A 13 ATOM 655 N PHE 72 59.946 38.865 8.292 1.00 14.15 A 13 ATOM 655 CB PHE 72 59.946 38.865 8.292 1.00 14.15 A 13 ATOM 658 CB PHE 72 59.946 38.865 8.292 1.00 10.00 A 13 ATOM 658 CB PHE 72 59.946 38.865 8.272 1.00 10.00 A 13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A 13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A 13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A 13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A 13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A 13								
ATOM 637 CE1 HIS 69 63.384 42.912 12.041 1.00 12.53 A_13 ATOM 638 NE2 HIS 69 64.228 42.888 11.020 1.00 10.00 A_13 ATOM 639 C HIS 69 61.214 44.469 7.983 1.00 21.28 A_13 ATOM 640 O HIS 69 62.314 44.780 7.529 1.00 18.74 A_13 ATOM 641 N GLY 70 60.451 43.537 7.411 1.00 13.11 A_13 ATOM 643 CA GLY 70 60.832 42.968 6.127 1.00 10.00 A_13 ATOM 644 C GLY 70 61.262 41.533 5.936 1.00 10.00 A_13 ATOM 645 O GLY 70 61.262 41.533 5.936 1.00 10.00 A_13 ATOM 646 N ASP 71 61.412 40.768 7.012 1.00 19.99 A_13 ATOM 648 CA ASP 71 61.412 40.768 7.012 1.00 19.99 A_13 ATOM 649 CB ASP 71 63.332 39.223 7.218 1.00 10.00 A_13 ATOM 650 CG ASP 71 63.672 39.752 8.592 1.00 23.52 A_13 ATOM 651 OD1 ASP 71 64.846 40.110 8.803 1.00 13.38 A_13 ATOM 652 OD2 ASP 71 62.774 39.812 9.464 1.00 12.94 A_13 ATOM 653 C ASP 71 60.998 38.377 7.632 1.00 22.07 A_13 ATOM 654 O ASP 71 61.319 37.190 7.649 1.00 24.45 A_13 ATOM 655 N PHE 72 59.946 38.865 8.292 1.00 12.94 A_13 ATOM 655 CB PHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 657 CA PHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 658 CB PHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 658 CB PHE 72 59.940 38.865 8.292 1.00 10.00 A_13 ATOM 658 CB PHE 72 59.940 38.865 8.292 1.00 10.00 A_13 ATOM 658 CB PHE 72 59.940 38.865 8.292 1.00 10.00 A_13 ATOM 658 CB PHE 72 59.940 38.937 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 660 CD1 PHE 72 56.115 37.773 7.815 1.00 23.01 A_13	MOTA	634 CD2 HIS	69	63.873	43.876	10.133	1.00 10.00	A_13
ATOM 638 NE2 HIS 69 64.228 42.888 11.020 1.00 10.00 A_13 ATOM 639 C HIS 69 61.214 44.469 7.983 1.00 21.28 A_13 ATOM 640 O HIS 69 62.314 44.780 7.529 1.00 18.74 A_13 ATOM 641 N GLY 70 60.451 43.537 7.411 1.00 13.11 A_13 ATOM 643 CA GLY 70 60.832 42.968 6.127 1.00 10.00 A_13 ATOM 644 C GLY 70 61.262 41.533 5.936 1.00 10.00 A_13 ATOM 645 O GLY 70 61.262 41.533 5.936 1.00 10.00 A_13 ATOM 646 N ASP 71 61.523 41.125 4.794 1.00 15.12 A_13 ATOM 646 N ASP 71 61.412 40.768 7.012 1.00 19.99 A_13 ATOM 648 CA ASP 71 61.412 40.768 7.012 1.00 19.99 A_13 ATOM 649 CB ASP 71 63.332 39.223 7.218 1.00 10.00 A_13 ATOM 650 CG ASP 71 63.672 39.752 8.592 1.00 23.52 A_13 ATOM 651 OD1 ASP 71 64.846 40.110 8.803 1.00 13.38 A_13 ATOM 652 OD2 ASP 71 62.774 39.812 9.464 1.00 12.94 A_13 ATOM 653 C ASP 71 60.998 38.377 7.632 1.00 22.07 A_13 ATOM 655 N PHE 72 59.946 38.865 8.292 1.00 24.45 A_13 ATOM 655 CA PHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 655 CB PHE 72 59.940 38.865 8.292 1.00 10.00 A_13 ATOM 658 CB PHE 72 59.940 38.865 8.292 1.00 10.00 A_13 ATOM 658 CB PHE 72 59.940 38.865 8.292 1.00 10.00 A_13 ATOM 658 CB PHE 72 59.940 38.865 8.292 1.00 10.00 A_13 ATOM 658 CB PHE 72 59.940 38.865 8.292 1.00 10.00 A_13 ATOM 659 CG PHE 72 59.040 38.035 9.094 1.00 10.00 A_13 ATOM 659 CG PHE 72 59.040 38.035 9.094 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 660 CD1 PHE 72 56.115 37.773 7.815 1.00 23.01 A_13								A_13 A 13
ATOM 640 O HIS 69 62.314 44.780 7.529 1.00 18.74 A_13 ATOM 641 N GLY 70 60.451 43.537 7.411 1.00 13.11 A_13 ATOM 643 CA GLY 70 60.832 42.968 6.127 1.00 10.00 A_13 ATOM 644 C GLY 70 61.262 41.533 5.936 1.00 10.00 A_13 ATOM 645 O GLY 70 61.262 41.533 5.936 1.00 10.00 A_13 ATOM 646 N ASP 71 61.412 40.768 7.012 1.00 19.99 A_13 ATOM 648 CA ASP 71 61.842 39.381 6.862 1.00 19.99 A_13 ATOM 649 CB ASP 71 63.332 39.223 7.218 1.00 10.00 A_13 ATOM 650 CG ASP 71 63.672 39.752 8.592 1.00 23.52 A_13 ATOM 651 OD1 ASP 71 64.846 40.110 8.803 1.00 13.38 A_13 ATOM 652 OD2 ASP 71 62.774 39.812 9.464 1.00 12.94 A_13 ATOM 653 C ASP 71 60.998 38.377 7.632 1.00 22.07 A_13 ATOM 655 N PHE 72 59.946 38.865 8.292 1.00 12.94 A_13 ATOM 655 N PHE 72 59.946 38.865 8.292 1.00 14.15 A_13 ATOM 657 CA PHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 658 CB PHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 669 CD1 PHE 72 56.115 37.773 7.815 1.00 23.01 A_13	MOTA	638 NE2 HIS	69	64.228	42.888	11.020	1.00 10.00	A_13
ATOM 641 N GLY 70 60.451 43.537 7.411 1.00 13.11 A_13 ATOM 643 CA GLY 70 60.832 42.968 6.127 1.00 10.00 A_13 ATOM 644 C GLY 70 61.262 41.533 5.936 1.00 10.00 A_13 ATOM 645 O GLY 70 61.523 41.125 4.794 1.00 15.12 A_13 ATOM 646 N ASP 71 61.412 40.768 7.012 1.00 19.99 A_13 ATOM 648 CA ASP 71 61.842 39.381 6.862 1.00 19.99 A_13 ATOM 649 CB ASP 71 63.332 39.223 7.218 1.00 10.00 A_13 ATOM 650 CG ASP 71 63.672 39.752 8.592 1.00 23.52 A_13 ATOM 651 OD1 ASP 71 64.846 40.110 8.803 1.00 13.38 A_13 ATOM 652 OD2 ASP 71 62.774 39.812 9.464 1.00 12.94 A_13 ATOM 653 C ASP 71 60.998 38.377 7.632 1.00 22.07 A_13 ATOM 655 N PHE 72 59.946 38.865 8.292 1.00 24.45 A_13 ATOM 657 CA PHE 72 59.946 38.865 8.292 1.00 14.15 A_13 ATOM 658 CB PHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 659 CG PHE 72 59.040 38.035 9.094 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 669 CD1 PHE 72 56.115 37.773 7.815 1.00 23.01 A_13								
ATOM 644 C GLY 70 61.262 41.533 5.936 1.00 10.00 A_13 ATOM 645 O GLY 70 61.523 41.125 4.794 1.00 15.12 A_13 ATOM 646 N ASP 71 61.412 40.768 7.012 1.00 19.99 A_13 ATOM 648 CA ASP 71 61.842 39.381 6.862 1.00 19.99 A_13 ATOM 649 CB ASP 71 63.332 39.223 7.218 1.00 10.00 A_13 ATOM 650 CG ASP 71 63.672 39.752 8.592 1.00 23.52 A_13 ATOM 651 OD1 ASP 71 64.846 40.110 8.803 1.00 13.38 A_13 ATOM 652 OD2 ASP 71 62.774 39.812 9.464 1.00 12.94 A_13 ATOM 653 C ASP 71 60.998 38.377 7.632 1.00 22.07 A_13 ATOM 654 O ASP 71 61.319 37.190 7.649 1.00 24.45 A_13 ATOM 655 N PHE 72 59.946 38.865 8.292 1.00 14.15 A_13 ATOM 657 CA PHE 72 59.940 38.035 9.094 1.00 10.00 A_13 ATOM 658 CB PHE 72 59.040 38.035 9.094 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 660 CD1 PHE 72 56.115 37.773 7.815 1.00 23.01 A_13	MOTA	641 N GLY	70	60.451	43.537	7.411	1.00 13.11	A_13
ATOM 645 O GLY 70 61.523 41.125 4.794 1.00 15.12 A_13 ATOM 646 N ASP 71 61.412 40.768 7.012 1.00 19.99 A_13 ATOM 648 CA ASP 71 61.842 39.381 6.862 1.00 19.99 A_13 ATOM 649 CB ASP 71 63.332 39.223 7.218 1.00 10.00 A_13 ATOM 650 CG ASP 71 63.672 39.752 8.592 1.00 23.52 A_13 ATOM 651 OD1 ASP 71 64.846 40.110 8.803 1.00 13.38 A_13 ATOM 652 OD2 ASP 71 62.774 39.812 9.464 1.00 12.94 A_13 ATOM 653 C ASP 71 60.998 38.377 7.632 1.00 22.07 A_13 ATOM 654 O ASP 71 61.319 37.190 7.649 1.00 24.45 A_13 ATOM 655 N PHE 72 59.946 38.865 8.292 1.00 14.15 A_13 ATOM 657 CA PHE 72 59.946 38.865 8.292 1.00 14.15 A_13 ATOM 658 CB PHE 72 59.040 38.035 9.094 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 660 CD1 PHE 72 56.115 37.773 7.815 1.00 23.01 A_13						6.127 5.936		A_13 A 13
ATOM 648 CA ASP 71 61.842 39.381 6.862 1.00 19.99 A_13 ATOM 649 CB ASP 71 63.332 39.223 7.218 1.00 10.00 A_13 ATOM 650 CG ASP 71 63.672 39.752 8.592 1.00 23.52 A_13 ATOM 651 OD1 ASP 71 64.846 40.110 8.803 1.00 13.38 A_13 ATOM 652 OD2 ASP 71 62.774 39.812 9.464 1.00 12.94 A_13 ATOM 653 C ASP 71 60.998 38.377 7.632 1.00 22.07 A_13 ATOM 655 N PHE 72 59.946 38.865 8.292 1.00 24.45 A_13 ATOM 655 N PHE 72 59.946 38.865 8.292 1.00 14.15 A_13 ATOM 657 CA PHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 658 CB PHE 72 59.040 38.035 9.094 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 660 CD1 PHE 72 56.115 37.773 7.815 1.00 23.01 A_13				61.523	41.125	4.794	1.00 15.12	A_13
ATOM 649 CB ASP 71 63.332 39.223 7.218 1.00 10.00 A_13 ATOM 650 CG ASP 71 63.672 39.752 8.592 1.00 23.52 A_13 ATOM 651 OD1 ASP 71 64.846 40.110 8.803 1.00 13.38 A_13 ATOM 652 OD2 ASP 71 62.774 39.812 9.464 1.00 12.94 A_13 ATOM 653 C ASP 71 60.998 38.377 7.632 1.00 22.07 A_13 ATOM 654 O ASP 71 61.319 37.190 7.649 1.00 24.45 A_13 ATOM 655 N PHE 72 59.946 38.865 8.292 1.00 14.15 A_13 ATOM 657 CA PHE 72 59.946 38.865 8.292 1.00 10.00 A_13 ATOM 658 CB PHE 72 59.040 38.035 9.094 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 660 CD1 PHE 72 56.115 37.773 7.815 1.00 23.01 A_13		648 CA ASP						A_13 A 13
ATOM 651 OD1 ASP 71 64.846 40.110 8.803 1.00 13.38 A_13 ATOM 652 OD2 ASP 71 62.774 39.812 9.464 1.00 12.94 A_13 ATOM 653 C ASP 71 60.998 38.377 7.632 1.00 22.07 A_13 ATOM 654 O ASP 71 61.319 37.190 7.649 1.00 24.45 A_13 ATOM 655 N PHE 72 59.946 38.865 8.292 1.00 14.15 A_13 ATOM 657 CA PHE 72 59.040 38.035 9.094 1.00 10.00 A_13 ATOM 658 CB PHE 72 58.410 36.905 8.272 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 650 CD1 PHE 72 56.115 37.773 7.815 1.00 23.01 A_13		649 CB ASP		63.332	39.223	7.218	1.00 10.00	A_13
ATOM 652 OD2 ASP 71 62.774 39.812 9.464 1.00 12.94 A_13 ATOM 653 C ASP 71 60.998 38.377 7.632 1.00 22.07 A_13 ATOM 654 O ASP 71 61.319 37.190 7.649 1.00 24.45 A_13 ATOM 655 N PHE 72 59.946 38.865 8.292 1.00 14.15 A_13 ATOM 657 CA PHE 72 59.040 38.865 8.292 1.00 14.15 A_13 ATOM 658 CB PHE 72 59.040 38.035 9.094 1.00 10.00 A_13 ATOM 659 CG PHE 72 58.410 36.905 8.272 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 660 CD1 PHE 72 56.115 37.773 7.815 1.00 23.01 A_13								A_13 A 13
ATOM 654 O ASP 71 61.319 37.190 7.649 1.00 24.45 A_13 ATOM 655 N PHE 72 59.946 38.865 8.292 1.00 14.15 A_13 ATOM 657 CA PHE 72 59.040 38.035 9.094 1.00 10.00 A_13 ATOM 658 CB PHE 72 58.410 36.905 8.272 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 660 CD1 PHE 72 56.115 37.773 7.815 1.00 23.01 A_13				62.774	39.812	9.464	1.00 12.94	A_13
ATOM 655 N PHE 72 59.946 38.865 8.292 1.00 14.15 A_13 ATOM 657 CA PHE 72 59.040 38.035 9.094 1.00 10.00 A_13 ATOM 658 CB PHE 72 58.410 36.905 8.272 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 660 CD1 PHE 72 56.115 37.773 7.815 1.00 23.01 A_13	MOTA	654 O ASP	71					A_13 A_13
ATOM 658 CB PHE 72 58.410 36.905 8.272 1.00 10.00 A_13 ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 660 CD1 PHE 72 56.115 37.773 7.815 1.00 23.01 A_13				59.946	38.865	8.292	1.00 14.15	A_13
ATOM 659 CG PHE 72 57.360 37.387 7.332 1.00 10.00 A_13 ATOM 660 CD1 PHE 72 56.115 37.773 7.815 1.00 23.01 A_13	MOTA	658 CB PHE	72		36.905	8.272		A_13
						7.332		A_13

		an1 nun		FF 444	20 200	C 050	1.00 18.99	A_13
ATOM	662	CE1 PHE	72	55.144	38.290	6.950	1.00 18.99	
MOTA	663	CE2 PHE	72	56.662	38.023	5.091		A_13
MOTA	664	CZ PHE	72	55.420	38.413	5.576	1.00 22.50	A_13
MOTA	665	C PHE	72	59.634	37.523	10.392	1.00 16.31	A_13
MOTA	666	O PHE	72	59.111	36.596	11.021	1.00 15.64	A_13
MOTA	667	N TYR	73	60.737	38.141	10.793	1.00 18.10	A_13
ATOM	669	CA TYR	73	61.407	37.827	12.046	1.00 14.01	A_13
ATOM	670	CB TYR	73	62.845	37.331	11.803	1.00 21.08	A_13
ATOM	671	CG TYR	73	62.915	35.965	11.138	1.00 22.48	A_13
ATOM	672	CD1 TYR	73	63.579	35.788	9.923	1.00 30.23	A_13
ATOM	.673	CE1 TYR	73	63.615	34.538	9.291	1.00 24.04	A_13
MOTA	674	CD2 TYR	73	62.288	34.856	11.710	1.00 19.23	A_13
							1.00 29.35	A_13
- MOTA -		CE2 TYR						A_13
MOTA	676	CZ TYR		62.984	33.460	9.875	1.00 12.50	A_13
ATOM	677	OH TYR		63.018	32.246	9.241	1.00 17.89	A_13
ATOM	679	C TYR		61.360	39.203	12.721	1.00 22.00	A_13
MOTA	680	O TYR		62.365	39.919	12.819	1.00 10.93	A_13
MOTA	681	N PRO	74	60.175	39.570	13.221	1.00 19.94	A_13
ATOM	682	CD PRO	74	58.969	38.723	13.278	1.00 15.69	A_13
ATOM	683	CA PRO	74	59.934	40.843	13.886	1.00 16.75	A_13
ATOM	684	CB PRO	74	58.417	40.836	14.067	1.00 17.27	A_13
ATOM	685	CG PRO		58.131	39.407	14.335	1.00 16.24	A_13
ATOM	686	C PRO		60.640	41.037	15.216	1.00 17.39	A_13
ATOM	687	O PRO		60.779	40.105	16.023	1.00 10.00	A_13
ATOM	688	N PHE		61.098	42.264	15.431	1.00 10.00	A_13
				61.743	42.618	16.675	1.00 16.45	A_13
ATOM	690	CA PHE						
ATOM	691	CB PHE		62.613	43.865	16.512	1.00 20.71	A_13
ATOM	692	CG PHE		63.931	43.590	15.841	1.00 23.32	A_13
MOTA	693	CD1 PHE		64.694	42.482	16.200	1.00 12.03	A_13
MOTA	694	CD2 PHE	75	64.405	44.420	14.842	1.00 22.30	A_13
MOTA	695	CE1 PHE	75	65.905	42.214	15.572	1.00 17.64	A_13
MOTA	696	CE2 PHE	75	65.622	44.148	14.208	1.00 15.43	A_13
MOTA	697	CZ PHE	75	66.367	43.044	14,576	1.00 10.00	A_13
ATOM	698	C PHE		60.632	42.784	17.707	1.00 25.73	A 13
MOTA	699	O PHE		59.443	42.778	17.370	1.00 18.57	A_13
ATOM	700	N ASP		61.009	43.002	18.952	1.00 20.50	A_13
	702							
MOTA				60.023	43.049	20.006	1.00 13.89	A_13
ATOM	703	CB ASP		60.241	41.805	20.873	1.00 20.69	A_13
MOTA	704	CG ASP		61.672	41.685	21.378	1.00 22.52	A_13
ATOM	705	OD1 ASP		61.947	40.771	22.174	1.00 20.06	A_13
ATOM	706	OD2 ASP		62.525	42.506	20.998	1.00 10.69	A_13
MOTA	707	C ASP		59.971	44.277	20.900	1.00 25.20	A_13
MOTA	708	O ASP	76	59.397	44.207	21.986	1.00 29.52	A_13
ATOM	709	N GLY	77	60.585	45.379	20.488	1.00 10.00	A_13
ATOM	711	CA GLY	77	60.575	46.553	21.334	1.00 10.00	A_13
ATOM	712	C GLY	77	61.769	46.514	22.266	1.00 10.00	A_13
ATOM	713	O GLY		62.735	45.797	21.987	1.00 18.49	A_13
ATOM	714	N PRO		61.785	47.344	23.322	1.00 16.07	A_13
ATOM	715	CD PRO		60.790	48.426	23.505	1.00 15.88	
ATOM	716	CA PRO						A_13
	717			62.855	47.439	24.330	1.00 16.23	A_13
ATOM				62.261	48.391	25.363	1.00 22.96	A_13
MOTA	718	CG PRO		61.470	49.349	24.501	1.00 22.37	A_13
MOTA	719	C PRO		63.150	46.090	24.969	1.00 25.32	A_13
ATOM	720	O PRO		62.227	45.356	25.272	1.00 20.04	A_13
MOTA	721	n ser		64.432	45.750	25.099	1.00 20.93	A_13
MOTA	723	CA SER		64.878	44.478	25.689	1.00 20.51	A_13
ATOM	724	CB SER	79	64.364	44.311	27.131	1.00 23.69	A_13
ATOM	725	OG SER	79	65.028	45.211	28.006	1.00 33.37	A_13
MOTA	727	C SER	79	64.557	43.248	24.863	1.00 20.39	A_13
ATOM	728	O SER	79	64.124	43.362	23.708	1.00 17.27	A_13
ATOM	729	N GLY		64.825	42.071	25.415	1.00 13.38	A_13
ATOM	731	CA GLY		64.564	40.850	24.678	1.00 10.11	A_13
ATOM	732	C GLY		65.471	40.808	23.458	1.00 13.15	
	733	O GLY		66.614				A_13
ATOM					41.251	23.538	1.00 31.80	A_13
ATOM	734	N LEU		64.939	40.393	22.310	1.00 29.05	A_13
ATOM	736	CA LEU		65.720	40.317	21.078	1.00 29.63	A_13
MOTA	737	CB LEU		64.789	40.033	19.905	1.00 19.67	A_13
MOTA	738	CG LEU		65.121	38.872	18.971	1.00 21.79	A_13
MOTA	739	CD1 LEU	81	64.215	38.980	17.773	1.00 23.87	A_13
MOTA	740	CD2 LEU	81	66.590	38.918	18.518	1.00 22.09	A_13
MOTA	741	C LEU		66.442	41.649	20.835	1.00 19.25	A_13
MOTA	742	O LEU		65.808	42.700	20.872	1.00 14.95	A_13
ATOM	743	N LEU		67.760	41.599	20.657	1.00 25.03	A_13
ATOM	745	CA LEU		68.573	42.795	20.421	1.00 27.35	A_13
ATOM	746	CB LEU		69.868	42.747	21.244		
MOTA	747	CG LEU					1.00 12.74	A_13
				69.802	42.748	22.773	1.00 16.50	A_13
MOTA	748	CD1 LEU	J 82	68.590	43.520	23.263	1.00 17.99	A_13

ATOM 750 C LEU 82 68.938 42.945 18.949 1.00 24.79	ATOM	749	CD2	LEU	82	69.744	41.343	23.279	1.00 13.28	A_13
ATOM 752 N ALA 83 69.387 41.893 18.359 1.00 21.15 A_13 ATOM 755 CB ALA 83 71.80 42.410 16.820 1.00 15.74 A_13 ATOM 755 CB ALA 83 71.80 42.410 16.820 1.00 15.74 A_13 ATOM 755 C ALA 83 69.806 40.400 16.444 1.00 19.37 A_13 ATOM 757 N ALB 83 69.806 40.400 16.444 1.00 19.37 A_13 ATOM 757 N ALB 83 69.806 43.488 19.489 15.122 1.00 10.72 A_13 ATOM 757 N ALB 84 69.806 19.400 15.404 1.00 19.37 A_13 ATOM 758 N ALB 84 69.806 19.400 15.404 1.00 19.37 A_13 ATOM 759 N ALB 84 69.806 19.400 15.400 15.100 10.12 A_13 ATOM 761 CB BIS 84 67.361 38.809 11.5122 1.00 10.72 A_13 ATOM 762 CG HIS 84 67.361 38.809 11.600 10.00 - A_13 ATOM 763 CD2 HIS 84 67.361 38.809 11.600 10.00 - A_13 ATOM 766 CEL HIS 84 66.802 38.869 14.104 1.00 13.50 A_13 ATOM 768 C HIS 84 70.418 39.088 13.130 1.00 22.78 A_13 ATOM 769 O HIS 84 70.418 39.088 13.130 1.00 22.78 A_13 ATOM 769 O HIS 84 70.418 39.088 13.130 1.00 22.78 A_13 ATOM 770 CA ALA 85 71.086 38.027 12.682 1.00 13.43 A_13 ATOM 770 CA ALA 85 71.406 38.027 12.682 1.00 13.43 A_13 ATOM 770 CA ALA 85 71.426 35.661 10.721 1.00 17.99 A_13 ATOM 775 C ALA 85 70.448 35.661 10.721 1.00 17.99 A_13 ATOM 775 C ALA 85 70.448 35.400 10.721 1.00 17.99 A_13 ATOM 776 NPE HIS 86 66.725 37.444 10.00 19.93 A_13 ATOM 777 C ALA 85 70.448 35.400 10.721 1.00 17.99 A_13 ATOM 776 NPE B 86 71.697 36.585 9.425 1.00 19.43 A_13 ATOM 777 C ALA 85 70.448 35.400 10.721 1.00 17.99 A_13 ATOM 778 C ALA 85 70.448 39.088 13.100 10.721 1.00 17.99 A_13 ATOM 778 C ALA 85 70.448 39.448 11.00 19.94 A_13 ATOM 779 C B PHE 86 71.697 36.585 9.425 1.00 19.43 A_13 ATOM 779 C B PHE 86 71.697 36.585 9.425 1.00 19.43 A_13 ATOM 779 C B PHE 86 71.697 34.838 30.09 A.158 1.00 19.96 A_13 ATOM 780 C C PHE 86 69.388 36.200 37.400 19.96 A_13 ATOM 780 C C PHE 86 72.800 38.000 A.158 1.00 19.96 A_13 ATOM 780 C C PHE 86 72.800 38.000 A.158 1.00 19.96 A_13 ATOM 780 C C PHE 86 72.800 38.000 A.158 1.00 19.96 A_13 ATOM 780 C C PHE 86 72.800 38.000 A.158 1.00 19.96 A_13 ATOM 780 C C PHE 86 72.800 38.000 A.158 1.00 19.96 A_13 ATOM 780 C C PHE 86 72.800 38.000 A.158 1.00 1										A_13
ATOM 754 CA ALA 83 69.790 41.809 16.961 1.00 15.64 A_13 ATOM 755 CB ALA 83 69.806 40.400 16.820 1.00 15.74 A_13 ATOM 757 O ALA 83 69.806 40.400 16.820 1.00 15.74 A_13 ATOM 757 O ALA 83 69.806 40.400 16.820 1.00 15.74 A_13 ATOM 758 N HIS 84 69.746 40.252 15.126 1.00 10.72 A_13 ATOM 750 CA HIS 84 69.808 38.939 14.502 1.00 20.51 A_13 ATOM 760 CA HIS 84 66.451 38.165 1.126 1.00 10.72 A_13 ATOM 761 CD HIS 84 66.451 38.165 1.126 1.00 10.72 A_13 ATOM 762 CB HIS 84 66.451 38.165 1.126 1.00 10.73 A_13 ATOM 763 CD HIS 84 67.981 39.489 11.638 1.00 10.00 A_13 ATOM 764 NDI HIS 84 67.981 39.489 11.640 1.00 11.50 A_13 ATOM 765 CE HIS 84 66.052 18.869 14.104 1.00 11.50 A_13 ATOM 767 NEZ HIS 84 66.057 19.886 12.220 1.00 15.90 A_13 ATOM 768 C HIS 84 70.338 40.162 12.532 1.00 10.00 A_13 ATOM 769 O HIS 84 70.338 40.162 12.532 1.00 10.00 A_13 ATOM 770 N ALA 85 71.766 37.983 13.130 1.00 22.78 A_13 ATOM 773 CB ALA 85 71.746 37.983 13.130 1.00 22.78 A_13 ATOM 774 C ALA 85 71.746 37.983 11.602 1.00 10.00 A_13 ATOM 775 CB ALA 85 71.746 37.983 11.602 1.00 10.00 A_13 ATOM 778 CA ALA 85 71.426 36.661 10.722 1.00 17.89 A_13 ATOM 779 CB PHE 86 71.459 35.372 8.651 1.00 13.43 A_13 ATOM 779 CB PHE 86 67.1497 35.786 11.0721 1.00 17.89 A_13 ATOM 778 CA PHE 86 67.1297 35.786 11.0721 1.00 17.89 A_13 ATOM 778 CA PHE 86 67.1297 35.786 11.0721 1.00 17.89 A_13 ATOM 778 CA PHE 86 67.1297 35.786 11.0721 1.00 17.89 A_13 ATOM 778 CA PHE 86 67.1297 35.786 11.00 10.00 A_13 ATOM 778 CA PHE 86 67.1297 35.786 11.00 10.00 A_13 ATOM 778 CA PHE 86 67.1297 37.590 8.003 1.00 10.63 A_13 ATOM 780 CG PHE 86 67.1297 37.590 9.00 10.996 A_13 ATOM 780 CG PHE 86 67.1297 37.590 9.00 10.999 A_13 ATOM 780 CG PHE 86 67.22 37.1496 33.3753 8.001 1.00 10.63 A_13 ATOM 780 CG PHE 86 67.22 37.990 7.00 10.00 A_13 ATOM 780 CG PHE 86 67.22 37.990 7.00 10.00 A_13 ATOM 780 CG PHE 86 67.22 37.990 7.00 10.00 A_13 ATOM 780 CG PHE 86 67.22 37.990 7.00 10.00 A_13 ATOM 780 CG PHE 86 67.22 37.990 7.00 10.00 A_13 ATOM 780 CG PHE 86 67.22 37.990 7.00 10.00 A_13 ATOM 780 CG PHE 86 67.22 37.990 7.00										
ATOM 756 C ALIA 83 69.806 40.400 16.444 1.00 19.37										
ATOM 757 O ALIA 83 69.864 39.458 17.227 1.00 20.42 A_13 ATOM 760 CA HIS 84 69.808 38.939 14.502 1.00 20.51 A_13 ATOM 761 CB HIS 84 69.808 38.939 14.502 1.00 20.51 A_13 ATOM 762 CG HIS 84 66.8454 38.185 14.476 1.00 12.34 A_13 ATOM 763 CD2 HIS -84 67.361 38.849 13.679 10.0 24.79 A_13 ATOM 763 CD2 HIS -84 66.7361 38.849 13.679 10.0 24.79 A_13 ATOM 764 ND1 HIS 84 66.052 38.869 14.104 1.00 13.50 A_13 ATOM 766 CEI HIS 84 66.503 39.889 12.220 1.00 14.00 A_13 ATOM 766 CEI HIS 84 66.093 39.886 13.220 1.00 14.00 A_13 ATOM 767 CC HIS 84 66.093 39.886 13.220 1.00 10.00 A_13 ATOM 769 C HIS 84 66.093 39.886 13.220 1.00 10.00 A_13 ATOM 779 C CA ALA 85 71.086 38.027 12.685 1.00 33.43 A_13 ATOM 770 C A ALA 85 71.086 38.027 12.685 1.00 33.43 A_13 ATOM 773 C A ALA 85 71.086 38.027 12.685 1.00 13.43 A_13 ATOM 774 C ALA 85 71.426 36.661 10.721 1.00 17.89 A_13 ATOM 775 O ALA 85 70.900 35.746 11.346 1.00 19.43 A_13 ATOM 775 C A PHE 86 71.459 35.572 8.651 1.00 13.49 A_13 ATOM 776 N PHE 86 71.697 36.681 1.324 1.00 19.43 A_13 ATOM 777 C B PHE 86 70.739 35.726 11.344 1.00 10.00 A_13 ATOM 778 CA PHE 86 69.348 36.244 7.529 1.00 13.49 A_13 ATOM 778 CA PHE 86 67.239 35.728 7.344 1.00 10.00 A_13 ATOM 778 CA PHE 86 69.348 36.244 7.529 1.00 13.49 A_13 ATOM 778 CA PHE 86 69.348 36.244 7.529 1.00 19.96 A_13 ATOM 780 CG PHE 86 69.348 36.244 7.529 1.00 19.96 A_13 ATOM 780 CG PHE 86 66.239 35.300 7.364 1.00 12.49 A_13 ATOM 780 CG PHE 86 66.239 35.300 7.364 1.00 12.49 A_13 ATOM 780 CG PHE 86 66.239 35.300 7.364 1.00 12.49 A_13 ATOM 780 CG PHE 86 66.329 35.300 7.364 1.00 12.49 A_13 ATOM 780 CG PHE 86 66.329 35.300 7.364 1.00 12.69 A_13 ATOM 780 CG PHE 86 67.829 30.00 8.155 1.00 12.96 A_13 ATOM 780 CG PHE 86 66.329 35.300 7.364 1.00 12.69 A_13 ATOM 780 CG PHE 86 67.829 30.00 8.155 1.00 12.96 A_13 ATOM 780 CG PHE 86 67.829 30.00 8.155 1.00 12.96 A_13 ATOM 780 CG PHE 86 67.389 37.390 30.00 8.155 1.00 12.96 A_13 ATOM 780 CG PHE 86 67.389 37.390 30.00 8.155 1.00 12.96 A_13 ATOM 780 CG PHE 86 66.694 38 36.300 8.81 1.00 10.00 A_13 ATOM 780 CG PHE 86 66.694 3										
ATOM 758 N HIS 84 69.746 40.252 15.126 1.00 10.72 A_13 ATOM 761 CB HIS 84 68.808 88.93 14.576 1.00 12.34 A_13 ATOM 762 CB HIS 84 67.361 38.849 13.679 1.00 12.479 A.13 ATOM 764 NDI HIS 84 67.361 38.849 13.679 10.00 10.00 A.13 ATOM 766 CEI HIS 84 66.052 38.869 14.10 10.37 A.13 ATOM 760 HIS 84 70.418 39.088 12.220 1.00 14.37 A.13 ATOM 770 A ALA 85 71.046 30.79 31.22 13.00 10.00 A.13 ATOM 777 C ALA 85 71.246 31.24 31.32 31.23 31.23 31.25										
ATOM 761 CB HIS 84 68.454 38.185 14.476 1.00 12.34 A_13 ATOM 762 CB HIS 84 67.361 38.849 13.679 1.00 10.00 - A_13 ATOM 764 NDI HIS 84 66.052 38.869 12.100 1.00 10.350 A_13 ATOM 766 CEI HIS 84 66.087 39.886 12.220 1.00 13.37 ATOM 769 O HIS 84 70.418 39.088 13.130 1.00 22.78 A_13 ATOM 770 N ALA 85 71.066 38.027 12.685 1.01 1.00 1.00 3.43 ATOM 777 CA ALA 85 71.746 39.586 12.22 1.00 1.00 2.43 A.13 ATOM 777 CA ALA 85 71.746 36.361 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
ATOM 762 CG HIS 84 67.361 38.849 13.679 1.00 24.79					2 1					
ATOM 763 CD2 HIS -84 67.381 39.489 12.488 1.00 10.00 - A.13 ATOM 766 CEI HIS 84 66.052 39.866 12.20 1.00 13.50 A.13 ATOM 767 NEZ HIS 84 66.057 39.897 13.210 1.00 12.37 A.13 ATOM 768 C HIS 84 70.418 39.088 13.130 1.00 22.78 A.13 ATOM 769 O HIS 84 70.418 39.088 13.130 1.00 22.78 A.13 ATOM 770 N ALA 85 71.086 38.027 12.685 1.00 13.43 A.13 ATOM 772 CA ALA 85 71.746 37.983 11.402 1.00 10.00 A.13 ATOM 773 CB ALA 85 71.746 37.983 11.402 1.00 10.00 A.13 ATOM 774 C ALA 85 71.245 36.661 10.721 1.00 10.05 A.13 ATOM 775 O ALA 85 70.900 35.746 11.346 1.00 10.17.89 A.13 ATOM 775 N PHE 86 71.697 36.585 9.425 1.00 13.43 A.13 ATOM 778 C PHE 86 71.697 35.585 9.425 1.00 13.43 A.13 ATOM 778 C PHE 86 71.697 35.585 9.425 1.00 13.44 A.13 ATOM 778 C PHE 86 69.119 37.530 8.651 1.00 12.49 A.13 ATOM 778 C PHE 86 69.119 37.530 8.651 1.00 12.49 A.13 ATOM 778 C PHE 86 69.119 37.530 8.651 1.00 12.40 A.13 ATOM 778 C PHE 86 69.119 37.530 8.651 1.00 10.00 A.13 ATOM 778 C PHE 86 69.119 37.530 8.651 1.00 10.00 A.13 ATOM 780 C PHE 86 69.46 35.900 7.364 1.00 10.00 A.13 ATOM 783 CEI PHE 86 69.46 35.900 7.364 1.00 10.00 A.13 ATOM 783 CEI PHE 86 67.829 31.00 10.00 A.13 ATOM 786 C PHE 86 72.802 31.919 7.530 8.00 PH. 158 1.00 10.00 A.13 ATOM 787 C PHE 86 72.802 31.919 7.530 8.00 PH. 158 1.00 10.00 A.13 ATOM 787 C PHE 86 72.802 31.919 7.530 8.00 PH. 158 1.00 10.00 A.13 ATOM 780 C PRO 87 77.880 33.00 PH. 158 1.00 10.00 A.13 ATOM 780 C PRO 87 77.880 33.00 PH. 158 1.00 10.00 A.13 ATOM 780 C PRO 87 77.893 31.00 PH. 158 1.00 10.00 A.13 ATOM 780 C PRO 87 77.419 32.286 7.995 1.00 10.00 A.13 ATOM 780 C PRO 87 77.419 32.286 7.995 1.00 10.00 A.13 ATOM 780 C PRO 87 77.419 32.866 7.995 1.00 10.00 A.13 ATOM 780 C PRO 87 77.419 32.866 7.995 1.00 10.00 A.13 ATOM 790 C ROO 88 77.419 32.866 1.00 10.00 A.13 ATOM 790 C ROO 88 77.419 32.866 1.00 10.00 A.13 ATOM 790 C ROO 88 77.419 32.866 1.00 10.00 A.13 ATOM 790 C ROO 88 77.419 32.866 1.00 10.00 A.13 ATOM 800 C PRO 88 76.796 31.854 1.00 10.00 A.13 ATOM 801 C PRO 88 77.600 32.297 4.756 1.00 10.00 A.13 ATOM 802 C ROO 88 77.81										
ATOM 766 NDI HIS 84 66.052 38.869 14.104 1.00 13.50 A_13 ATOM 767 NEZ HIS 84 66.087 39.497 13.210 1.00 14.37 A_13 ATOM 768 C HIS 84 70.418 39.088 13.130 1.00 22.78 A_13 ATOM 769 O HIS 84 70.418 39.088 13.130 1.00 22.78 A_13 ATOM 779 N ALA 85 71.086 39.088 13.130 1.00 22.78 A_13 ATOM 770 N ALA 85 71.086 38.027 12.685 1.00 10.00 A_13 ATOM 772 CA ALA 85 71.086 38.027 12.685 1.00 10.00 A_13 ATOM 773 CB ALA 85 71.246 37.983 11.402 1.00 10.00 A_13 ATOM 773 CB ALA 85 71.246 37.983 11.402 1.00 10.00 A_13 ATOM 773 CB ALA 85 71.246 35.6661 10.721 1.00 17.99 A_13 ATOM 775 O ALA 85 70.900 35.746 11.396 1.00 11.43 A_13 ATOM 775 CB ALA 85 71.426 38.6661 10.721 1.00 17.89 A_13 ATOM 776 N PHE 86 71.693 35.928 9.425 1.00 13.49 A_13 ATOM 778 CB ALA 85 71.426 38.6661 10.721 1.00 17.89 A_13 ATOM 778 CB ALA 85 71.426 38.6661 10.721 1.00 17.89 A_13 ATOM 778 CB ALA 85 71.426 38.6661 10.721 1.00 17.89 A_13 ATOM 778 CB ALA 85 71.426 38.6661 10.721 1.00 17.89 A_13 ATOM 778 CB ALA 85 71.426 38.6661 10.721 1.00 17.89 A_13 ATOM 778 CB PHE 86 69.39 35.746 11.00 10.40 0.40 A_13 ATOM 778 CB PHE 86 69.39 35.728 7.72 A_14 1.00 10.40 A_13 ATOM 780 CG PHE 86 69.253 35.342 7.529 1.00 19.96 A_13 ATOM 781 CDL PHE 86 69.129 37.530 8.003 1.00 10.63 A_13 ATOM 782 CDL PHE 86 69.253 38.009 8.158 1.00 10.65 A_13 ATOM 784 CEL PHE 86 66.732 38.009 8.158 1.00 10.65 A_13 ATOM 786 C PHE 86 67.289 38.009 8.158 1.00 10.65 A_13 ATOM 787 C PHE 86 67.329 38.009 8.158 1.00 10.65 A_13 ATOM 786 C PHE 86 67.329 38.009 8.158 1.00 10.06 A_13 ATOM 787 C PRE 86 77.802 34.721 8.298 1.00 11.05 A_13 ATOM 790 CA PRO 87 77.878 31.394 7.958 1.00 11.05 A_13 ATOM 790 CA PRO 87 77.878 31.394 7.958 1.00 11.05 A_13 ATOM 790 CA PRO 87 77.878 31.394 7.958 1.00 11.05 A_13 ATOM 790 CA PRO 87 77.4552 31.395 6.001 1.00 10.44 A_13 ATOM 790 CD PRO 87 77.4552 31.395 6.001 1.00 10.44 A_13 ATOM 791 CB PRO 87 77.4556 31.2959 6.001 1.00 10.44 A_13 ATOM 795 CD PRO 87 77.4558 31.2959 6.001 1.00 10.44 A_13 ATOM 808 CD PRO 80 77.4560 31.2959 1.00 10.00 A_13 ATOM 808 CD PRO 80 77.4556 31.2556 1.00 10.										
ATOM 768 C HIS 84		764	ND1	HIS		66.052		14.104	1.00 13.50	A_13
ATOM 768 C HIS 84 70.418 39.088 13.130 1.00 22.78										
ATOM 769 O HIS 84 70.338 40.162 12.532 1.00 10.00 A_13 ATOM 770 N ALA 85 71.066 38.027 12.685 1.00 13.43 A_13 ATOM 773 CB ALA 85 71.0746 37.983 11.402 1.00 10.00 A_13 ATOM 773 CB ALA 85 71.1746 37.983 11.402 1.00 10.00 A_13 ATOM 773 CB ALA 85 71.274 38.132 11.596 1.00 10.05 A_13 ATOM 775 O ALA 85 70.900 35.746 11.346 1.00 19.43 A_13 ATOM 776 N PHE 86 71.459 36.585 9.425 1.00 13.49 A_13 ATOM 778 CA PHE 86 71.459 35.372 8.651 1.00 12.49 A_13 ATOM 778 CA PHE 86 71.459 35.372 8.651 1.00 12.49 A_13 ATOM 778 CA PHE 86 70.739 35.728 7.344 1.00 10.00 A_13 ATOM 778 CA PHE 86 69.348 36.240 7.529 1.00 19.96 A_13 ATOM 781 CD1 PHE 86 69.348 36.240 7.529 1.00 19.96 A_13 ATOM 782 CD2 PHE 86 69.943 37.530 8.003 1.00 10.63 A_13 ATOM 783 CE1 PHE 86 66.946 35.900 7.364 1.00 10.65 PA_13 ATOM 783 CE1 PHE 86 66.946 35.900 7.364 1.00 10.65 PA_13 ATOM 785 C2 PHE 86 67.829 38.009 8.158 1.00 10.00 1.33 ATOM 785 C2 PHE 86 67.829 38.009 8.158 1.00 10.00 1.34 ATOM 785 C2 PHE 86 67.829 38.009 8.158 1.00 10.00 1.34 ATOM 785 C2 PHE 86 67.829 38.009 8.158 1.00 10.00 1.34 ATOM 785 C2 PHE 86 67.829 38.009 8.158 1.00 10.00 1.34 ATOM 787 O PHE 86 72.802 34.721 8.298 1.10 0.10 1.05 A_13 ATOM 787 O PHE 86 72.802 34.721 8.298 1.10 0.10 1.05 A_13 ATOM 787 O PHE 86 72.802 34.721 8.298 1.10 0.10 1.05 A_13 ATOM 789 CD PRO 87 71.876 32.383 8.717 1.00 17.25 A_13 ATOM 789 CD PRO 87 71.876 32.383 8.717 1.00 17.25 A_13 ATOM 799 CA PRO 87 74.189 32.686 7.956 1.00 12.01 ATOM 791 CB PRO 87 74.189 32.686 7.956 1.00 12.01 ATOM 791 CB PRO 87 74.529 33.375 8.304 1.10 1.00 19.41 ATOM 791 CB PRO 87 74.529 33.4758 8.304 1.10 1.00 19.41 ATOM 791 CB PRO 87 74.529 33.4758 8.304 1.10 1.00 19.41 ATOM 791 CB PRO 87 74.529 33.4758 8.304 1.10 1.00 19.43 ATOM 791 CB PRO 87 74.529 33.4758 8.304 1.10 1.00 19.43 ATOM 791 CB PRO 87 74.529 33.4758 8.304 1.10 1.00 19.44 A.13 ATOM 791 CB PRO 87 74.526 32.999 6.503 1.00 10.00 A_13 ATOM 791 CB PRO 87 74.526 32.999 6.503 1.00 10.00 A_13 ATOM 800 C PRO 88 77 3.728 33.448 8.31 ATOM 990 CA PRO 89 74.548 33.448 8.324 1.00 12.00 10.00 A_13 AT										
ATON 772 CA ALA 85 73.243 43.132 11.596 1.00 10.00 A_13 ATON 773 CB ALA 85 73.243 43.132 11.596 1.00 10.05 A_13 ATON 775 C ALA 85 773.243 438.132 11.596 1.00 11.05 A_13 ATON 775 C ALA 85 70.900 35.746 11.346 1.00 19.43 A_13 ATON 776 N PHE 86 71.459 35.372 8.651 1.00 13.49 A_13 ATON 778 CA PHE 86 71.459 35.372 8.651 1.00 12.49 A_13 ATON 778 CA PHE 86 71.459 35.372 8.651 1.00 12.49 A_13 ATON 778 CA PHE 86 71.459 35.372 8.651 1.00 12.49 A_13 ATON 778 CA PHE 86 69.348 36.240 7.529 1.00 19.96 A_13 ATON 780 CG PHE 86 69.348 36.240 7.529 1.00 19.96 A_13 ATON 781 CD1 PHE 86 69.348 36.240 7.529 1.00 19.96 A_13 ATON 782 CD2 PHE 86 69.139 37.530 8.003 1.00 10.63 A_13 ATON 783 CE1 PHE 86 66.946 35.900 7.364 1.00 16.59 A_13 ATON 783 CE1 PHE 86 66.946 35.900 7.364 1.00 10.65 A_13 ATON 785 C2 PHE 86 67.829 38.009 8.158 1.00 10.00 A_13 ATON 785 C2 PHE 86 67.829 38.009 8.158 1.00 19.06 A_13 ATON 786 C PHE 86 67.829 38.009 8.158 1.00 19.05 A_13 ATON 785 C2 PHE 86 67.829 38.009 8.158 1.00 19.05 A_13 ATON 785 C2 PHE 86 67.829 38.009 8.158 1.00 19.05 A_13 ATON 787 C PHE 86 72.802 34.721 8.298 1.00 17.05 A_13 ATON 787 C PHE 86 72.802 34.721 8.298 1.00 12.05 A_13 ATON 787 C PHE 86 72.802 34.721 8.298 1.00 17.05 A_13 ATON 789 C PRO 87 72.892 33.375 8.304 1.00 17.05 A_13 ATON 790 CA PRO 87 72.892 33.375 8.304 1.00 17.05 A_13 ATON 790 CA PRO 87 74.1876 32.383 8.717 1.00 17.25 A_13 ATON 790 CA PRO 87 74.189 32.686 7.955 1.00 18.88 A_13 ATON 791 CB PRO 87 74.189 32.686 7.955 1.00 18.88 A_13 ATON 792 CC PRO 87 74.189 32.686 7.955 1.00 18.88 A_13 ATON 795 C PRO 87 74.552 32.999 6.503 1.00 10.00 A_13 ATON 795 C PRO 87 74.552 32.999 6.503 1.00 10.00 A_13 ATON 795 C PRO 87 74.552 32.999 6.503 1.00 10.00 A_13 ATON 795 C PRO 88 77.586 32.201 4.676 1.00 18.88 A_13 ATON 795 C PRO 88 77.586 32.201 4.676 1.00 18.88 A_13 ATON 795 C PRO 88 77.596 32.201 4.676 1.00 12.43 A_13 ATON 795 C PRO 88 77.506 32.201 4.676 1.00 12.43 A_13 ATON 800 C PRO 87 73.500 33.201 2.001 1.00 10.00 A_13 ATON 800 C PRO 88 77.506 32.201 4.676 1.00 12.01 A_13 ATON 800 C PRO 88	MOTA	769	0	HIS	84	70.338	40.162	12.532		A_13
ATOM 773 CB ALA 85 73.234 38.132 11.596 1.00 10.05 A_13 ATOM 774 C ALA 85 71.426 36.661 10.721 1.00 17.89 A_13 ATOM 775 O ALA 85 71.426 36.661 10.721 1.00 17.89 A_13 ATOM 776 N PHE 86 71.697 36.585 9.425 1.00 13.49 A_13 ATOM 776 N PHE 86 71.697 36.585 9.425 1.00 13.49 A_13 ATOM 779 CB PHE 86 71.697 36.585 9.425 1.00 13.49 A_13 ATOM 779 CB PHE 86 70.739 35.728 8.551 1.00 12.49 A_13 ATOM 779 CB PHE 86 69.348 36.240 7.529 1.00 19.96 A_13 ATOM 780 CG PHE 86 68.252 35.434 7.212 1.00 21.89 A_13 ATOM 781 CDL PHE 86 68.252 35.434 7.212 1.00 21.89 A_13 ATOM 782 CDL PHE 86 66.946 35.900 7.364 1.00 10.63 A_13 ATOM 783 CEL PHE 86 66.946 35.900 7.364 1.00 10.63 A_13 ATOM 784 CEL PHE 86 66.946 35.900 7.364 1.00 10.63 A_13 ATOM 786 C PHE 86 66.7829 38.009 8.158 1.00 19.06 A_13 ATOM 786 C PHE 86 72.802 34.721 8.298 1.00 11.05 A_13 ATOM 786 C PHE 86 72.802 34.721 8.298 1.00 11.05 A_13 ATOM 786 C PHE 86 72.802 34.721 8.298 1.00 11.05 A_13 ATOM 787 C PHE 86 72.802 34.721 8.298 1.00 11.05 A_13 ATOM 787 C PHE 86 72.802 34.721 8.298 1.00 11.05 A_13 ATOM 789 CD PRO 87 72.882 33.375 8.044 1.00 19.41 A_13 ATOM 789 CD PRO 87 72.882 33.375 8.044 1.00 19.41 A_13 ATOM 799 C ARRO 87 74.189 32.686 7.956 1.00 19.41 A_13 ATOM 791 CB PRO 87 74.189 32.883 8.717 1.00 17.25 A_13 ATOM 791 CB PRO 87 74.189 32.883 8.717 1.00 17.25 A_13 ATOM 792 CG PRO 87 74.552 32.999 6.503 1.00 10.00 A_13 ATOM 795 C PRO 87 74.552 32.999 6.503 1.00 10.00 A_13 ATOM 796 CD PRO 88 74.552 32.999 6.503 1.00 10.00 A_13 ATOM 797 CA PRO 88 74.552 32.999 6.503 1.00 10.00 A_13 ATOM 797 CA PRO 88 74.552 32.999 6.503 1.00 10.00 A_13 ATOM 797 CA PRO 88 74.552 32.999 6.503 1.00 10.00 A_13 ATOM 797 CA PRO 88 74.552 32.999 6.503 1.00 10.00 A_13 ATOM 797 CA PRO 88 74.552 32.999 6.503 1.00 10.00 A_13 ATOM 797 CA PRO 88 74.552 32.999 6.503 1.00 10.00 A_13 ATOM 800 CD PRO 88 74.556 31.522 3.8544 1.00 15.92 A_13 ATOM 800 CD PRO 88 74.556 31.522 3.8544 1.00 15.92 A_13 ATOM 800 CD PRO 88 74.556 31.526 31.356 6.391 1.00 10.00 A_13 ATOM 801 CD PRO 88 74.566 31.300 32.201 1.00 10.00 A_13 ATOM										
ATOM 774 C ALA 85 71.426 36.661 10.721 1.00 17.89 A.13 ATOM 775 O ALA 85 70.900 35.746 11.346 1.00 19.43 A.13 ATOM 776 N PHE 86 71.459 35.372 8 .651 1.00 13.49 A.13 ATOM 778 CA PHE 86 71.459 35.372 8 .651 1.00 12.49 A.13 ATOM 778 C CB PHE 86 70.739 35.728 7.344 1.00 10.00 A.13 ATOM 780 CG PHE 86 69.348 36.240 7.529 1.00 19.96 A.13 ATOM 781 CD1 PHE 86 69.348 36.240 7.529 1.00 19.96 A.13 ATOM 782 CD2 PHE 86 69.349 37.530 8.003 1.00 10.63 A.13 ATOM 783 CE1 PHE 86 66.946 35.900 7.364 1.00 16.59 A.13 ATOM 783 CE1 PHE 86 66.732 37.194 7.838 1.00 24.79 A.13 ATOM 785 CZ PHE 86 66.732 37.194 7.838 1.00 24.79 A.13 ATOM 786 C PHE 86 67.829 34.721 8.298 1.00 11.05 A.13 ATOM 787 O PHE 86 72.802 34.721 8.298 1.00 11.05 A.13 ATOM 788 N PRO 87 72.892 33.375 8.304 1.00 12.556 A.13 ATOM 789 CD PRO 87 74.149 32.686 7.956 1.00 19.96 A.13 ATOM 789 CD PRO 87 74.149 32.686 7.956 1.00 19.12 A.13 ATOM 790 CA PRO 87 74.149 32.686 7.956 1.00 19.05 A.13 ATOM 791 CB PRO 87 74.149 32.686 7.956 1.00 19.12 A.13 ATOM 792 CC PRO 87 74.149 32.686 7.956 1.00 19.12 A.13 ATOM 793 C PRO 87 74.149 32.686 7.956 1.00 19.25 A.13 ATOM 794 CO PRO 87 74.149 32.686 7.956 1.00 19.25 A.13 ATOM 795 C PRO 87 74.149 32.686 7.956 1.00 19.41 A.13 ATOM 796 C PRO 88 77.4552 32.999 6.503 1.00 10.00 A.13 ATOM 797 CA PRO 88 77.581 32.40 A.10 A.10 A.13 ATOM 797 CA PRO 88 77.581 33.498 8.335 1.00 18.88 A.13 ATOM 798 C PRO 88 77.581 32.40 A.10 A.10 A.13 ATOM 799 C PRO 88 77.583 33.495 A.10 A.10 A.10 A.13 ATOM 799 C PRO 88 77.583 33.495 A.10 A.10 A.10 A.13 ATOM 799 C PRO 88 77.583 33.495 A.10 A.10 A.10 A.13 ATOM 799 C PRO 88 77.583 33.495 A.10 A.10 A.10 A.13 ATOM 799 C PRO 87 73.728 33.448 A.13 ATOM 799 C PRO 87 73.728 33.448 A.13 ATOM 799 C PRO 87 73.728 33.448 A.13 ATOM 799 C PRO 88 77.584 33.406 A.10 A.10 A.10 A.13 ATOM 799 C PRO 88 77.586 A.10 A.10 A.10 A.13 ATOM 799 C PRO 88 77.586 A.10 A.10 A.10 A.13 ATOM 799 C PRO 88 77.586 A.10 A.10 A.10 A.13 ATOM 799 C PRO 88 77.586 A.10 A.10 A.10 A.10 A.13 ATOM 800 C PRO 88 77.586 A.10 A.10 A.10 A.10 A.13 ATOM 800 C PRO 88 77.586										
ATOM 776 N PHE 86 71.697 36.585 9.425 1.00 12.49 A.13 ATOM 778 CA PHE 86 70.739 35.728 7.344 1.00 12.49 A.13 ATOM 780 CG PHE 86 70.739 35.728 7.344 1.00 10.00 A.13 ATOM 780 CG PHE 86 69.348 36.207 7.529 1.00 19.96 A.13 ATOM 781 CD1 PHE 86 69.348 36.207 7.529 1.00 19.96 A.13 ATOM 782 CD2 PHE 86 69.349 35.372 8.651 1.00 12.49 A.13 ATOM 783 CCI PHE 86 69.19 37.530 8.003 1.00 10.63 A.13 ATOM 783 CCI PHE 86 66.7829 38.000 7.364 1.00 16.59 A.13 ATOM 783 CCI PHE 86 66.7829 38.000 8.159 1.00 19.06 A.13 ATOM 786 CZ PHE 86 66.732 37.194 7.838 1.00 24.79 A.13 ATOM 786 C PHE 86 72.802 38.009 8.159 1.00 19.06 A.13 ATOM 787 O PHE 86 73.774 35.435 8.041 1.00 25.56 A.13 ATOM 788 N PRO 87 72.892 38.33 375 8.004 1.00 19.41 A.13 ATOM 789 CD PRO 87 71.876 32.383 8.717 1.00 17.25 A.13 ATOM 799 CD PRO 87 73.800 31.198 8.135 1.00 19.41 A.13 ATOM 791 CE PRO 87 73.800 31.198 8.135 1.00 18.88 A.13 ATOM 793 C PRO 87 74.149 32.686 7.995 1.00 29.29 A.13 ATOM 793 C PRO 87 74.562 32.999 6.503 1.00 10.00 A.13 ATOM 795 CD PRO 87 74.562 32.999 6.503 1.00 10.00 A.13 ATOM 797 CA PRO 88 75.314 32.701 6.120 1.00 10.00 A.13 ATOM 798 CD PRO 88 75.814 32.701 6.120 1.00 10.00 A.13 ATOM 799 CD PRO 88 75.304 32.251 1.00 18.89 A.13 ATOM 799 CD PRO 88 75.266 33.250 2.2560 1.00 10.958 A.13 ATOM 799 CD PRO 88 76.796 33.854 1.00 19.58 A.13 ATOM 800 C PRO 88 77.600 32.201 4.676 1.00 10.94 A.13 ATOM 801 O PRO 88 77.504 32.251 1.00 18.69 A.13 ATOM 802 N GLY 89 75.266 33.250 2.560 1.00 10.73 A.13 ATOM 803 C PRO 88 77.600 32.201 4.676 1.00 10.00 A.13 ATOM 804 CA GLY 89 77.436 32.251 1.00 18.48 A.13 ATOM 805 C PRO 88 77.600 32.201 4.676 1.00 10.00 A.13 ATOM 807 N PRO 90 73.390 32.201 4.676 1.00 10.00 A.13 ATOM 808 CD PRO 88 75.546 33.250 2.560 1.00 10.73 A.13 ATOM 808 CD PRO 88 76.796 33.250 2.560 1.00 10.73 A.13 ATOM 808 CD PRO 90 73.390 34.019 -0.432 1.00 16.99 A.13 ATOM 808 CD PRO 90 73.390 34.019 -0.432 1.00 16.99 A.13 ATOM 808 CD PRO 90 73.390 34.019 -0.432 1.00 16.99 A.13 ATOM 810 CD PRO 90 73.990 35.222 -1.163 1.00 26.61 A.13 ATOM 825 C PRO 90 77.766 33.266	MOTA	774		ALA			36.661			
ATOM 778 CA PHE 86 71.459 35.372 8.651 1.00 12.49 A.13 ATOM 780 CG PHE 86 70.739 35.728 7.344 1.00 10.00 A.13 ATOM 781 CDI PHE 86 69.348 36.240 7.529 1.00 21.89 A.13 ATOM 781 CDI PHE 86 68.252 35.414 7.212 1.00 21.89 A.13 ATOM 782 CD2 PHE 86 69.119 37.530 8.003 1.00 10.63 A.13 ATOM 783 CEI PHE 86 66.946 35.900 7.364 1.00 16.59 A.13 ATOM 785 CZ PHE 86 67.829 36.009 8.158 1.00 19.06 A.13 ATOM 785 CZ PHE 86 67.829 37.194 7.838 1.00 24.79 A.13 ATOM 787 O PHE 86 72.802 34.721 8.298 1.00 11.05 A.13 ATOM 787 O PHE 86 73.774 35.435 8.001 1.00 25.56 A.13 ATOM 788 N PRO 87 72.892 33.375 8.304 1.00 17.25 A.13 ATOM 789 CD PRO 87 71.876 32.383 8.717 1.00 17.25 A.13 ATOM 790 CA PRO 87 74.149 32.666 7.956 1.00 29.29 A.13 ATOM 791 CE PRO 87 77.3803 31.198 8.135 1.00 18.88 A.13 ATOM 792 CG PRO 87 72.329 31.150 7.939 1.00 20.17 A.13 ATOM 793 C PRO 87 72.329 31.150 7.939 1.00 20.17 A.13 ATOM 795 N PRO 87 73.7803 31.198 6.135 1.00 18.88 A.13 ATOM 795 N PRO 87 73.7803 31.198 6.503 1.00 10.00 A.13 ATOM 795 CD PRO 88 76.280 22.977 4.756 1.00 19.568 A.13 ATOM 796 CD PRO 88 76.280 22.977 4.756 1.00 19.58 A.13 ATOM 797 CA PRO 88 76.280 22.977 4.756 1.00 19.58 A.13 ATOM 798 CD PRO 88 76.280 22.977 4.756 1.00 19.58 A.13 ATOM 799 CG PRO 88 76.280 32.999 6.503 1.00 10.00 A.13 ATOM 799 CG PRO 88 76.280 32.997 6.503 1.00 10.00 A.13 ATOM 799 CD PRO 88 76.786 31.854 6.881 1.00 12.43 A.13 ATOM 798 CB PRO 88 76.280 32.977 4.756 1.00 19.58 A.13 ATOM 800 C PRO 88 76.280 32.977 4.756 1.00 19.58 A.13 ATOM 800 C PRO 88 76.280 32.977 4.756 1.00 19.58 A.13 ATOM 800 C PRO 88 76.280 32.977 4.756 1.00 19.58 A.13 ATOM 800 C PRO 88 76.280 32.977 4.756 1.00 10.00 A.13 ATOM 800 C PRO 88 76.280 32.977 4.756 1.00 10.00 A.13 ATOM 800 C PRO 88 76.280 32.977 4.756 1.00 10.94 A.13 ATOM 800 C PRO 88 76.280 32.977 4.756 1.00 10.94 A.13 ATOM 800 C PRO 88 76.586 31.522 1.00 10.00 10.00 A.13 ATOM 800 C PRO 88 76.960 31.522 1.00 10.00 10.00 A.13 ATOM 800 C PRO 88 76.960 31.522 1.00 10.00 10.00 A.13 ATOM 800 C PRO 88 76.960 31.522 1.00 10.00 10.00 A.13 ATOM 800 C PRO 88 77										
ATOM 779 CB PHE 86 70.739 35.728 7.344 1.00 10.00 A.13 ATOM 781 CD1 PHE 86 69.348 36.240 7.529 1.00 19.96 A.13 ATOM 782 CD2 PHE 86 69.252 35.434 7.212 1.00 21.89 A.13 ATOM 783 CC1 PHE 86 69.253 35.434 7.321 1.00 16.59 A.13 ATOM 783 CC2 PHE 86 69.253 35.434 7.321 1.00 16.59 A.13 ATOM 784 CC2 PHE 86 66.946 35.900 7.364 1.00 16.59 A.13 ATOM 785 CZ PHE 86 66.732 37.194 7.838 1.00 24.79 A.13 ATOM 786 C PHE 86 72.802 37.194 7.838 1.00 24.79 A.13 ATOM 787 O PHE 86 72.802 37.194 7.838 1.00 11.05 A.13 ATOM 788 N PRO 87 72.892 33.375 8.041 1.00 12.556 A.13 ATOM 788 N PRO 87 72.892 33.375 8.004 1.00 19.41 A.13 ATOM 789 CD PRO 87 71.876 32.383 8.717 1.00 17.25 A.13 ATOM 790 CA PRO 87 74.149 32.686 7.955 1.00 29.29 A.13 ATOM 791 CB PRO 87 73.800 31.186 7.955 1.00 19.41 A.13 ATOM 793 C PRO 87 74.562 32.999 6.503 1.00 10.00 A.13 ATOM 794 O PRO 87 74.562 32.999 6.503 1.00 10.00 A.13 ATOM 795 N PRO 88 75.344 32.701 6.120 1.00 10.00 A.13 ATOM 797 CA PRO 88 76.796 32.814 32.701 6.120 1.00 10.00 A.13 ATOM 799 CD PRO 88 75.304 32.814 32.701 6.120 1.00 10.00 A.13 ATOM 799 CB PRO 88 76.796 32.997 4.756 1.00 12.43 A.13 ATOM 799 CB PRO 88 76.796 32.814 32.701 6.120 1.00 10.00 A.13 ATOM 799 CB PRO 88 76.796 32.814 32.701 6.120 1.00 10.00 A.13 ATOM 799 CB PRO 88 76.596 32.297 4.756 1.00 12.43 A.13 ATOM 799 CB PRO 88 76.596 32.297 4.756 1.00 12.43 A.13 ATOM 800 C PRO 88 76.596 32.297 4.756 1.00 12.43 A.13 ATOM 801 C PRO 88 76.596 32.297 4.756 1.00 12.43 A.13 ATOM 802 N PRO 88 77.600 32.201 4.676 1.00 10.00 A.13 ATOM 803 C PRO 88 76.596 33.230 2.560 1.00 10.73 A.13 ATOM 804 CA GLY 89 75.266 33.230 2.560 1.00 10.73 A.13 ATOM 805 C PRO 88 74.596 33.230 2.560 1.00 10.73 A.13 ATOM 806 O GLY 89 77.308 32.163 6.098 1.00 10.94 A.13 ATOM 807 N PRO 90 73.390 34.019 -0.432 1.00 26.63 A.13 ATOM 808 CD PRO 90 77.309 32.201 4.056 1.00 10.94 A.13 ATOM 808 CD PRO 90 77.309 32.792 -1.192 1.00 18.46 A.13 ATOM 807 N PRO 90 73.390 34.019 -0.432 1.00 26.61 A.13 ATOM 819 CD ARN 91 66.863 36.932 -0.999 1.00 15.26 A.13 ATOM 825 C RRO 90 77.766 33.296 34.270 1.00										
ATOM 781 CD1 PHE 86 68.252 35.434 7.212 1.00 21.89 A_13 ATOM 782 CD2 PHE 86 66.946 35.900 7.364 1.00 10.63 A_13 ATOM 783 CE1 PHE 86 66.946 35.900 7.364 1.00 10.65 A_13 ATOM 784 CE2 PHE 86 66.946 35.900 7.364 1.00 19.06 A_13 ATOM 785 CZ PHE 86 66.732 37.194 7.838 1.00 24.79 A_13 ATOM 786 C PHE 86 72.802 34.721 8.298 1.00 11.05 A_13 ATOM 787 O PHE 86 73.774 35.435 8.041 1.00 25.56 A_13 ATOM 788 N PRO 87 72.892 33.375 8.304 1.00 19.41 A_13 ATOM 789 CD PRO 87 71.876 32.383 8.717 1.00 17.25 A_13 ATOM 799 CD PRO 87 71.876 32.383 8.717 1.00 17.25 A_13 ATOM 799 CD PRO 87 73.800 31.198 8.135 1.00 18.88 A_13 ATOM 791 CB PRO 87 72.892 31.160 7.939 1.00 20.17 A_13 ATOM 792 CG PRO 87 73.800 31.198 8.135 1.00 18.88 A_13 ATOM 793 C PRO 87 73.728 33.448 5.703 1.00 20.17 A_13 ATOM 795 C PRO 87 73.728 33.448 5.703 1.00 20.18 A_13 ATOM 795 C PRO 88 75.814 32.701 6.120 1.00 10.00 A_13 ATOM 796 CD PRO 88 75.814 32.701 6.120 1.00 10.95 A_13 ATOM 797 CA PRO 88 76.280 32.977 4.756 1.00 19.58 A_13 ATOM 798 C PRO 88 76.280 32.977 4.756 1.00 19.58 A_13 ATOM 799 C PRO 88 76.280 32.977 4.756 1.00 19.58 A_13 ATOM 799 C PRO 88 76.280 32.977 4.756 1.00 19.58 A_13 ATOM 800 C PRO 88 74.596 31.854 6.831 1.00 19.58 A_13 ATOM 801 C PRO 88 74.596 31.854 6.098 1.00 18.69 A_13 ATOM 802 N GLY 89 75.566 33.2977 4.756 1.00 12.43 A_13 ATOM 804 CA GLY 89 73.960 34.127 0.772 1.00 10.94 A_13 ATOM 805 C GLY 89 73.960 34.127 0.772 1.00 10.94 A_13 ATOM 806 C GLY 89 74.133 35.218 1.307 1.00 19.86 A_13 ATOM 807 N PRO 90 73.390 32.163 6.098 1.00 18.46 A_13 ATOM 808 CD PRO 90 73.390 34.019 -0.432 1.00 26.31 A_13 ATOM 808 CD PRO 90 77.960 35.212 -1.163 1.00 24.03 A_13 ATOM 808 CD PRO 90 77.960 35.212 -1.163 1.00 24.03 A_13 ATOM 808 CD PRO 90 77.960 35.212 -1.163 1.00 24.03 A_13 ATOM 808 CD PRO 90 77.960 35.212 -1.163 1.00 26.31 A_13 ATOM 808 CD PRO 90 77.960 35.212 -1.163 1.00 24.63 A_13 ATOM 808 CD PRO 90 77.960 35.222 -1.163 1.00 24.63 A_13 ATOM 808 CD PRO 90 77.970 34.656 35.222 -0.010 1.00 20.41 A_13 ATOM 810 CD RPO 90 71.726 35.890 0.442 1.00 17.00 A_13 ATOM 8		779	CB	PHE	86	70.739	35.728			A_13
ATOM 783 CE1 PHE 86 66.91.19 37.530 8.003 1.00 10.63 A_13 ATOM 783 CE1 PHE 86 66.92 38.009 8.158 1.00 19.06 A_13 ATOM 785 CZ PHE 86 66.7829 38.009 8.158 1.00 19.06 A_13 ATOM 786 C PHE 86 72.802 34.721 8.298 1.00 11.05 A_13 ATOM 787 O PHE 86 73.774 35.435 8.041 1.00 25.56 A_13 ATOM 788 N PRO 87 72.892 33.375 8.304 1.00 19.41 A_13 ATOM 789 CD PRO 87 71.876 32.383 8.717 1.00 17.25 A_13 ATOM 789 CD PRO 87 71.876 32.383 8.717 1.00 17.25 A_13 ATOM 790 CA PRO 87 72.892 33.375 8.304 1.00 19.41 A_13 ATOM 791 CB PRO 87 74.19 32.686 7.956 1.00 29.29 A_13 ATOM 792 CG PRO 87 74.452 32.999 6.503 1.00 10.00 A_13 ATOM 793 C PRO 87 74.52 32.999 6.503 1.00 10.00 A_13 ATOM 795 N PRO 88 75.814 32.701 6.120 1.00 10.00 A_13 ATOM 795 N PRO 88 76.796 31.854 6.831 1.00 19.58 A_13 ATOM 796 CD PRO 88 76.796 31.854 6.831 1.00 19.58 A_13 ATOM 797 CA PRO 88 76.796 31.854 6.831 1.00 19.58 A_13 ATOM 799 CG PRO 88 76.796 31.854 6.831 1.00 19.58 A_13 ATOM 799 CG PRO 88 76.796 31.854 6.831 1.00 19.58 A_13 ATOM 799 CG PRO 88 76.796 31.854 6.831 1.00 19.58 A_13 ATOM 799 CG PRO 88 76.796 31.854 6.831 1.00 19.58 A_13 ATOM 799 CG PRO 88 76.796 31.854 6.831 1.00 19.58 A_13 ATOM 799 CG PRO 88 76.796 31.854 6.831 1.00 19.58 A_13 ATOM 800 C PRO 88 76.796 31.854 6.831 1.00 19.58 A_13 ATOM 800 C PRO 88 76.796 31.854 6.831 1.00 19.58 A_13 ATOM 800 C PRO 88 76.996 31.854 6.831 1.00 19.58 A_13 ATOM 800 C PRO 88 76.996 31.352 3.854 1.00 16.92 A_13 ATOM 800 C PRO 88 76.996 31.352 3.854 1.00 16.92 A_13 ATOM 800 C PRO 88 74.356 31.522 3.854 1.00 16.92 A_13 ATOM 800 C PRO 88 74.596 31.522 3.854 1.00 16.92 A_13 ATOM 800 C PRO 88 76.996 31.522 3.854 1.00 16.92 A_13 ATOM 800 C PRO 88 76.996 31.522 3.854 1.00 16.92 A_13 ATOM 800 C PRO 88 76.996 31.526 31.522 3.854 1.00 16.92 A_13 ATOM 800 C PRO 88 76.996 31.526 31.522 3.854 1.00 16.92 A_13 ATOM 800 C PRO 88 76.996 31.300 32.997 4.756 1.00 24.39 A_13 ATOM 800 C PRO 90 71.766 31.500 32.201 4.676 1.00 10.94 A_13 ATOM 800 C PRO 90 71.766 31.500 32.201 4.676 1.00 10.94 A_13 ATOM 800 C PRO 90 71.766 31.500 32.201 4.676 1.00										
ATOM 783 CE1 PHE 86 66.946 35.900 7.364 1.00 16.59 A_13 ATOM 785 CZ PHE 86 66.732 37.194 7.838 1.00 24.79 A_13 ATOM 786 C PHE 86 66.732 37.194 7.838 1.00 24.79 A_13 ATOM 786 C PHE 86 72.802 34.721 8.298 1.00 11.05 A_13 ATOM 787 O PHE 86 73.774 35.435 8.041 1.00 25.56 A_13 ATOM 788 N PRO 87 72.892 33.375 8.304 1.00 19.41 A_13 ATOM 789 CD PRO 87 71.876 32.383 8.717 1.00 17.25 A_13 ATOM 799 CD PRO 87 71.876 32.383 8.717 1.00 17.25 A_13 ATOM 791 CB PRO 87 73.800 31.198 8.135 1.00 18.88 A_13 ATOM 791 CB PRO 87 73.800 31.198 8.135 1.00 18.88 A_13 ATOM 792 CG PRO 87 72.329 31.160 7.939 1.00 20.17 A_13 ATOM 793 C PRO 87 73.800 31.198 8.135 1.00 18.88 A_13 ATOM 793 C PRO 87 73.829 31.160 7.939 1.00 20.17 A_13 ATOM 793 C PRO 87 73.728 33.448 5.703 1.00 20.68 A_13 ATOM 795 CD PRO 87 73.728 33.448 5.703 1.00 20.68 A_13 ATOM 795 CD PRO 88 75.814 32.701 6.120 1.00 10.00 A_13 ATOM 795 CD PRO 88 75.814 32.701 6.120 1.00 10.00 A_13 ATOM 796 CD PRO 88 76.280 32.977 4.756 1.00 12.43 A_13 ATOM 798 CB PRO 88 76.280 32.977 4.756 1.00 12.43 A_13 ATOM 798 CB PRO 88 76.280 32.977 4.756 1.00 12.43 A_13 ATOM 798 CB PRO 88 76.280 32.977 4.756 1.00 12.43 A_13 ATOM 800 C PRO 88 74.596 31.522 3.854 1.00 16.92 A_13 ATOM 800 C PRO 88 74.596 31.522 3.854 1.00 16.92 A_13 ATOM 800 C PRO 88 74.596 31.522 3.854 1.00 16.92 A_13 ATOM 800 C PRO 88 74.596 31.522 3.856 1.00 10.00 A_13 ATOM 804 CA GLY 89 74.386 32.868 1.471 1.00 10.00 A_13 ATOM 805 C GLY 89 74.386 32.868 1.471 1.00 10.00 A_13 ATOM 806 C PRO 90 73.300 32.192 -1.192 1.00 18.46 A_13 ATOM 807 N PRO 90 73.300 32.922 -1.192 1.00 18.46 A_13 ATOM 808 CD PRO 90 73.300 32.922 -1.192 1.00 18.46 A_13 ATOM 808 CD PRO 90 73.300 32.922 -1.192 1.00 18.46 A_13 ATOM 807 N PRO 90 73.300 32.922 -1.192 1.00 18.46 A_13 ATOM 807 N PRO 90 73.300 32.922 -1.192 1.00 18.46 A_13 ATOM 808 CD PRO 90 73.300 32.922 -1.192 1.00 18.46 A_13 ATOM 808 CD PRO 90 73.300 32.922 -1.192 1.00 18.46 A_13 ATOM 808 CD PRO 90 71.726 35.879 0.543 1.00 14.03 A_13 ATOM 813 C PRO 90 71.726 35.879 0.543 1.00 24.63 A_13 ATOM 813 C PRO 90 7										
ATOM 786 C PHE 86 66.732 37.194 7.838 1.00 24.79 A.13 ATOM 787 O PHE 86 73.774 35.435 8.041 1.00 25.56 A.13 ATOM 788 N PRO 87 72.892 33.375 8.304 1.00 19.41 A.13 ATOM 789 CD PRO 87 71.876 32.383 8.717 1.00 17.25 A.13 ATOM 790 CA PRO 87 74.149 32.686 7.956 1.00 29.29 A.13 ATOM 791 CB PRO 87 73.800 31.198 8.135 1.00 18.88 A.13 ATOM 792 CG PRO 87 74.149 32.686 7.956 1.00 29.29 A.13 ATOM 793 C PRO 87 74.562 32.999 6.503 1.00 10.00 A.13 ATOM 794 O PRO 87 73.728 33.448 5.703 1.00 20.68 A.13 ATOM 795 N PRO 88 75.814 32.701 6.120 1.00 10.00 A.13 ATOM 796 CD PRO 88 76.280 32.977 4.756 1.00 19.58 A.13 ATOM 797 CA PRO 88 76.280 32.977 4.756 1.00 19.58 A.13 ATOM 798 CB PRO 88 76.280 32.977 4.756 1.00 19.58 A.13 ATOM 799 CG PRO 88 77.600 32.201 4.676 1.00 18.69 A.13 ATOM 798 CB PRO 88 77.500 32.2101 4.676 1.00 18.69 A.13 ATOM 800 C PRO 88 77.504 32.510 3.672 1.00 18.48 A.13 ATOM 801 O PRO 88 75.266 33.230 2.560 1.00 16.92 A.13 ATOM 802 N GLY 89 75.266 33.230 2.560 1.00 16.92 A.13 ATOM 804 CA GLY 89 73.960 34.127 0.772 1.00 10.00 A.13 ATOM 805 C GLY 89 73.960 34.127 0.772 1.00 10.90 A.13 ATOM 806 O GLY 89 73.960 34.127 0.772 1.00 10.90 A.13 ATOM 807 N PRO 90 73.390 32.792 -1.192 1.00 10.00 A.13 ATOM 808 CD PRO 90 73.390 32.792 -1.192 1.00 18.46 A.13 ATOM 809 CA PRO 90 73.390 32.792 -1.192 1.00 18.46 A.13 ATOM 807 N PRO 90 73.390 32.792 -1.192 1.00 18.46 A.13 ATOM 808 CD PRO 90 77.960 35.212 -1.653 1.00 25.07 A.13 ATOM 808 CD PRO 90 77.960 35.212 -1.653 1.00 24.63 A.13 ATOM 808 CD PRO 90 77.960 35.212 -1.163 1.00 25.07 A.13 ATOM 808 CD PRO 90 77.960 35.222 -1.192 1.00 18.43 A.13 ATOM 808 CD PRO 90 77.960 35.222 -1.192 1.00 18.43 A.13 ATOM 808 CD PRO 90 77.960 35.222 -1.192 1.00 18.43 A.13 ATOM 808 CD PRO 90 77.960 35.212 -1.163 1.00 25.07 A.13 ATOM 808 CD PRO 90 77.960 35.222 -1.192 1.00 18.43 A.13 ATOM 808 CD PRO 90 77.960 35.222 -1.192 1.00 18.43 A.13 ATOM 808 CD PRO 90 77.960 35.222 -1.192 1.00 18.43 A.13 ATOM 808 CD PRO 90 77.960 36.400 -1.125 1.00 17.43 A.13 ATOM 808 CD RRO 90 77.960 36.400 -1.125 1.00 17.43 A.13 ATOM 81	MOTA	783				66.946				A_13
ATOM 786 C PHE 86 72.802 34.721 8.298 1.00 11.05 A_13 ATOM 787 O PHE 86 73.774 35.435 8.041 1.00 25.56 A_13 ATOM 788 N PRO 87 72.892 33.375 8.304 1.00 19.41 A_13 ATOM 789 CD PRO 87 71.876 32.383 8.717 1.00 17.25 A_13 ATOM 790 CA PRO 87 74.149 32.686 7.956 1.00 29.29 A_13 ATOM 791 CB PRO 87 73.800 31.198 8.135 1.00 18.88 A_13 ATOM 792 CG PRO 87 74.562 32.999 6.503 1.00 10.00 A_13 ATOM 793 C PRO 87 74.562 32.999 6.503 1.00 10.00 A_13 ATOM 795 N PRO 88 75.344 32.701 6.120 1.00 10.00 A_13 ATOM 795 N PRO 88 75.814 32.701 6.120 1.00 10.00 A_13 ATOM 796 CD PRO 87 76.280 32.977 4.756 1.00 12.43 A_13 ATOM 797 CA PRO 88 76.786 31.854 6.831 1.00 19.58 A_13 ATOM 798 CB PRO 88 77.600 32.201 4.676 1.00 12.43 A_13 ATOM 798 CB PRO 88 75.304 32.201 4.676 1.00 12.43 A_13 ATOM 798 CB PRO 88 75.304 32.163 6.098 1.00 12.43 A_13 ATOM 798 CB PRO 88 75.304 32.510 3.672 1.00 24.39 A_13 ATOM 800 C PRO 88 75.304 32.510 3.672 1.00 24.39 A_13 ATOM 800 C PRO 88 75.304 32.510 3.672 1.00 24.39 A_13 ATOM 800 C PRO 88 75.304 32.510 3.672 1.00 10.73 A_13 ATOM 804 CA GLY 89 74.386 32.868 1.377 1.00 10.94 A_13 ATOM 805 C GLY 89 74.386 32.868 1.377 1.00 10.94 A_13 ATOM 806 O GLY 89 74.386 32.868 1.377 1.00 10.94 A_13 ATOM 807 N PRO 90 73.390 34.019 -0.432 1.00 19.86 A_13 ATOM 808 CD PRO 90 73.390 34.019 -0.432 1.00 26.31 A_13 ATOM 801 C PRO 90 73.390 34.019 -0.432 1.00 26.31 A_13 ATOM 801 C PRO 90 73.390 34.019 -0.432 1.00 26.31 A_13 ATOM 801 C PRO 90 73.390 34.019 -0.432 1.00 26.31 A_13 ATOM 801 C PRO 90 73.390 34.019 -0.432 1.00 26.31 A_13 ATOM 801 C PRO 90 73.390 37.792 -1.192 1.00 10.94 A_13 ATOM 802 N PRO 90 73.390 37.792 -1.192 1.00 10.94 A_13 ATOM 801 C PRO 90 73.390 37.792 -1.192 1.00 10.94 A_13 ATOM 802 C PRO 90 72.960 35.212 -1.163 1.00 25.07 A_13 ATOM 802 C PRO 90 72.960 35.212 -1.163 1.00 25.07 A_13 ATOM 802 C PRO 90 72.960 35.212 -1.163 1.00 25.07 A_13 ATOM 802 C PRO 90 71.726 37.986 0.849 1.00 25.56 A_13 ATOM 802 C PRO 90 71.726 37.986 0.849 1.00 25.56 A_13 ATOM 802 C RNN 91 68.860 36.400 -2.439 1.00 36.674 A_13 ATOM 802 C RNN 91 68.8										
ATOM 788 N PRO 87 72.892 33.375 8.041 1.00 25.56 A.13 ATOM 789 CD PRO 87 72.892 33.375 8.041 1.00 17.25 A.13 ATOM 790 CA PRO 87 71.876 32.383 8.717 1.00 17.25 A.13 ATOM 791 CB PRO 87 73.800 31.198 8.135 1.00 18.88 A.13 ATOM 792 CG PRO 87 73.800 31.198 8.135 1.00 18.88 A.13 ATOM 793 C PRO 87 73.800 31.198 8.135 1.00 18.01 8.88 A.13 ATOM 793 C PRO 87 73.329 31.160 7.939 1.00 20.17 A.13 ATOM 793 C PRO 87 73.728 33.448 5.703 1.00 20.68 A.13 ATOM 794 O PRO 87 73.728 33.448 5.703 1.00 20.68 A.13 ATOM 795 N PRO 88 75.814 32.701 6.120 1.00 10.00 A.13 ATOM 796 CD PRO 88 76.796 31.854 6.831 1.00 19.58 A.13 ATOM 797 CA PRO 88 76.280 32.977 4.756 1.00 19.58 A.13 ATOM 798 CB PRO 88 76.280 32.977 4.756 1.00 18.69 A.13 ATOM 799 CG PRO 88 78.073 32.163 6.098 1.00 18.69 A.13 ATOM 800 C PRO 88 74.596 31.522 3.854 1.00 16.92 A.13 ATOM 801 O PRO 88 74.596 31.522 3.854 1.00 16.92 A.13 ATOM 802 N GLY 89 73.960 34.127 0.772 1.00 10.00 A.13 ATOM 804 CA GLY 89 73.960 34.127 0.772 1.00 10.00 A.13 ATOM 805 C GLY 89 73.960 34.127 0.772 1.00 10.98 A.13 ATOM 806 O GLY 89 73.960 34.127 0.772 1.00 10.98 A.13 ATOM 807 N PRO 90 73.390 34.019 -0.432 1.00 26.31 A.13 ATOM 808 CD PRO 90 73.390 34.019 -0.432 1.00 26.31 A.13 ATOM 808 CD PRO 90 73.390 34.019 -0.432 1.00 26.31 A.13 ATOM 808 CD PRO 90 72.960 35.212 -1.163 1.00 25.07 A.13 ATOM 810 CB PRO 90 72.960 35.212 -1.163 1.00 25.07 A.13 ATOM 810 CB PRO 90 73.390 34.019 -0.432 1.00 26.31 A.13 ATOM 810 CB PRO 90 72.960 35.212 -1.163 1.00 25.07 A.13 ATOM 810 CB PRO 90 71.726 35.879 -0.553 1.00 15.46 A.13 ATOM 810 CB PRO 90 72.960 35.212 -1.163 1.00 25.07 A.13 ATOM 810 CB PRO 90 73.390 34.019 -0.432 1.00 26.63 A.13 ATOM 810 CB PRO 90 71.726 35.879 -0.553 1.00 15.46 A.13 ATOM 813 O PRO 90 71.726 35.879 -0.563 1.00 15.46 A.13 ATOM 813 O PRO 90 71.726 35.879 -0.563 1.00 15.46 A.13 ATOM 810 CB PRO 90 71.726 35.879 -0.563 1.00 17.00 A.13 ATOM 820 CD TYR 92 66.067 38.818 2.250 1.00 17.03 A.13 ATOM 820 CD TYR 92 66.067 38.818 2.250 1.00 25.90 A.13 ATOM 820 CD TYR 92 66.060 39.691 2.040 1.00 30.60 A.13 ATOM 8										
ATOM 789 CD PRO 87 71.876 32.383 8.717 1.00 17.25 A_13 ATOM 790 CA PRO 87 74.149 32.686 7.956 1.00 29.29 A_13 ATOM 791 CB PRO 87 73.800 31.198 8.135 1.00 18.88 A_13 ATOM 792 CG PRO 87 72.329 31.160 7.939 1.00 20.17 A_13 ATOM 793 C PRO 87 74.562 32.999 6.503 1.00 10.00 A_13 ATOM 794 O PRO 87 73.728 33.448 5.703 1.00 20.68 A_13 ATOM 795 N PRO 88 75.814 32.701 6.120 1.00 10.00 A_13 ATOM 796 CD PRO 88 76.786 31.854 6.831 1.00 19.58 A_13 ATOM 797 CA PRO 88 76.786 31.854 6.831 1.00 19.58 A_13 ATOM 798 CB PRO 88 77.600 32.201 4.676 1.00 12.43 A_13 ATOM 799 CG PRO 88 77.600 32.201 4.676 1.00 18.69 A_13 ATOM 799 CG PRO 88 77.304 32.510 3.672 1.00 24.39 A_13 ATOM 800 C PRO 88 75.304 32.510 3.672 1.00 24.39 A_13 ATOM 801 O PRO 88 75.266 33.230 2.560 1.00 10.73 A_13 ATOM 804 CA GLY 89 75.266 33.230 2.560 1.00 10.73 A_13 ATOM 804 CA GLY 89 74.386 32.868 1.471 1.00 10.00 A_13 ATOM 805 C GLY 89 73.960 34.127 0.772 1.00 10.94 A_13 ATOM 806 O G PRO 90 73.090 32.792 -1.192 1.00 10.94 A_13 ATOM 807 N PRO 90 73.390 34.019 -0.432 1.00 26.31 A_13 ATOM 808 CD PRO 90 72.600 34.019 1.00 15.47 A_13 ATOM 809 CA PRO 90 72.600 34.019 -0.432 1.00 26.31 A_13 ATOM 810 CB PRO 90 72.600 35.212 -1.63 1.00 25.07 A_13 ATOM 810 CB PRO 90 72.108 33.289 -2.236 1.00 24.63 A_13 ATOM 810 CB PRO 90 73.390 32.792 -1.192 1.00 10.94 A_13 ATOM 810 CB PRO 90 73.390 32.792 -1.192 1.00 18.48 A_13 ATOM 810 CB PRO 90 73.390 32.792 -1.192 1.00 18.46 A_13 ATOM 810 CB PRO 90 73.090 32.792 -1.192 1.00 18.43 A_13 ATOM 810 CB PRO 90 73.090 32.792 -1.192 1.00 18.43 A_13 ATOM 810 CB PRO 90 73.090 32.792 -1.192 1.00 18.43 A_13 ATOM 810 CB PRO 90 73.090 32.792 -1.192 1.00 18.43 A_13 ATOM 810 CB PRO 90 73.090 32.792 -1.192 1.00 18.43 A_13 ATOM 810 CB PRO 90 73.090 32.792 -1.192 1.00 18.43 A_13 ATOM 810 CB PRO 90 73.090 32.792 -1.192 1.00 18.43 A_13 ATOM 810 CB PRO 90 73.090 32.792 -1.192 1.00 18.43 A_13 ATOM 810 CB PRO 90 73.090 32.792 -1.192 1.00 18.43 A_13 ATOM 810 CB PRO 90 73.090 32.792 -1.192 1.00 10.00 20.56 A_13 ATOM 820 CD PRO 90 73.090 32.792 -1.192 1.00 10.00 30.6		787			86	73.774	35.435	8.041	1.00 25.56	A_13
ATOM 791 CB PRO 87 74.149 32.6866 7.956 1.00 29.29 A.13 ATOM 792 CG PRO 87 73.800 31.198 8.135 1.00 18.88 A.13 ATOM 793 C PRO 87 72.329 31.160 7.939 1.00 20.17 A.13 ATOM 794 O PRO 87 74.562 32.999 6.503 1.00 10.00 A.13 ATOM 795 N PRO 88 75.814 32.701 6.120 1.00 10.00 A.13 ATOM 796 CD PRO 88 76.796 31.854 6.831 1.00 12.43 A.13 ATOM 797 CA PRO 88 76.280 32.977 4.756 1.00 12.43 A.13 ATOM 797 CA PRO 88 76.280 32.977 4.756 1.00 12.43 A.13 ATOM 799 CG PRO 88 76.280 32.977 4.756 1.00 18.48 A.13 ATOM 799 CG PRO 88 75.304 32.163 6.098 1.00 18.48 A.13 ATOM 799 CG PRO 88 75.304 32.510 3.672 1.00 18.48 A.13 ATOM 800 C PRO 88 75.304 32.510 3.672 1.00 18.48 A.13 ATOM 801 O PRO 88 75.266 33.230 2.560 1.00 10.73 A.13 ATOM 802 N GLY 89 75.266 33.230 2.560 1.00 10.73 A.13 ATOM 805 C GLY 89 74.386 32.868 1.471 1.00 10.00 A.13 ATOM 806 O GLY 89 74.143 35.218 1.307 1.00 19.86 A.13 ATOM 807 N PRO 90 73.390 32.792 -1.192 1.00 18.46 A.13 ATOM 808 CD PRO 90 73.390 32.792 -1.192 1.00 18.46 A.13 ATOM 808 CD PRO 90 73.390 32.792 -1.192 1.00 18.46 A.13 ATOM 810 C PRO 90 73.390 32.792 -1.192 1.00 18.46 A.13 ATOM 810 C PRO 90 73.390 32.792 -1.192 1.00 15.47 A.13 ATOM 810 C PRO 90 73.390 32.792 -1.192 1.00 18.46 A.13 ATOM 810 C PRO 90 73.390 32.792 -1.192 1.00 18.46 A.13 ATOM 810 C PRO 90 73.390 32.792 -1.192 1.00 18.46 A.13 ATOM 810 C PRO 90 73.390 32.792 -1.192 1.00 18.46 A.13 ATOM 810 C PRO 90 71.726 35.212 -1.63 1.00 25.07 A.13 ATOM 810 C PRO 90 71.726 35.879 -0.543 1.00 26.31 A.13 ATOM 810 C PRO 90 71.726 35.879 -0.543 1.00 26.31 A.13 ATOM 810 C PRO 90 71.726 35.879 -0.543 1.00 20.41 A.13 ATOM 812 C PRO 90 71.726 35.879 -0.543 1.00 16.00 A.13 ATOM 813 C PRO 90 71.726 35.879 -0.543 1.00 20.41 A.13 ATOM 814 N ASN 91 71.333 37.000 -1.125 1.00 18.43 A.13 ATOM 815 C PRO 90 71.726 35.879 -0.543 1.00 20.41 A.13 ATOM 820 ND2 ASN 91 68.863 36.932 -0.999 1.00 15.26 A.13 ATOM 821 C PRO 90 71.726 37.886 0.849 1.00 27.03 A.13 ATOM 822 C PRO 90 71.726 37.886 0.849 1.00 27.03 A.13 ATOM 823 C ASN 91 68.866 36.30 3.888 2.250 1.00 24.55 A.13 ATOM 824 C AS										
ATOM 791 CB PRO 87 73.800 31.198 8.135 1.00 18.88 A_13 ATOM 792 CG PRO 87 72.329 31.160 7.939 1.00 20.17 A_13 ATOM 793 C PRO 87 74.552 32.999 6.503 1.00 10.00 A_13 ATOM 794 O PRO 87 73.728 33.448 5.703 1.00 20.68 A_13 ATOM 795 N PRO 88 75.814 32.701 6.120 1.00 10.00 A_13 ATOM 796 CD PRO 88 75.814 32.701 6.120 1.00 10.00 A_13 ATOM 797 CA PRO 88 75.814 32.701 6.120 1.00 19.58 A_13 ATOM 797 CA PRO 88 76.280 32.977 4.756 1.00 12.43 A_13 ATOM 798 CB PRO 88 77.600 32.201 4.676 1.00 18.69 A_13 ATOM 799 CG PRO 88 77.600 32.201 4.676 1.00 18.69 A_13 ATOM 799 CG PRO 88 77.600 32.201 4.676 1.00 18.69 A_13 ATOM 800 C PRO 88 75.304 32.510 3.672 1.00 24.39 A_13 ATOM 801 O PRO 88 74.596 31.522 3.854 1.00 16.92 A_13 ATOM 802 N GLY 89 75.266 33.230 2.560 1.00 10.73 A_13 ATOM 804 CA GLY 89 74.386 32.868 1.471 1.00 10.00 A_13 ATOM 805 C GLY 89 73.960 34.127 0.772 1.00 10.94 A_13 ATOM 806 O GLY 89 74.143 35.218 1.307 1.00 19.86 A_13 ATOM 807 N PRO 90 73.390 34.127 0.772 1.00 10.94 A_13 ATOM 808 CD PRO 90 73.090 32.792 -1.192 1.00 18.46 A_13 ATOM 809 CA PRO 90 72.670 34.651 -2.556 1.00 15.47 A_13 ATOM 810 CB PRO 90 72.670 34.651 -2.556 1.00 15.47 A_13 ATOM 811 CG PRO 90 72.108 33.289 -2.236 1.00 24.63 A_13 ATOM 812 C PRO 90 72.108 33.289 -2.236 1.00 24.63 A_13 ATOM 813 C PRO 90 71.76 35.390 0.442 1.00 17.00 A_13 ATOM 814 N ASN 91 71.303 37.000 -1.125 1.00 18.46 A_13 ATOM 815 CG ASN 91 70.127 37.721 -0.653 1.00 14.03 A_13 ATOM 816 CA ASN 91 70.127 37.721 -0.653 1.00 14.03 A_13 ATOM 817 CB ASN 91 68.863 36.430 -2.396 1.00 24.66 A_13 ATOM 818 CG ASN 91 68.863 36.430 -2.396 1.00 24.66 A_13 ATOM 820 ND2 ASN 91 68.863 36.430 -2.396 1.00 24.66 A_13 ATOM 820 CD TYR 92 66.067 88 88.88 2.250 1.00 25.90 A_13 ATOM 821 CC PRO 90 71.726 37.926 37.986 0.849 1.00 17.00 29.56 A_13 ATOM 823 CC ASN 91 70.226 37.986 0.849 1.00 17.03 A_13 ATOM 824 CA TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 825 CT TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 826 CD TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CC2 TYR 92 66.467 38.818 2.250 1.00 25.90										
ATOM 793 C PRO 87 74.562 32.999 6.503 1.00 10.00 A.13 ATOM 795 N PRO 88 75.814 32.701 6.120 1.00 10.00 A.13 ATOM 795 N PRO 88 75.814 32.701 6.120 1.00 10.00 A.13 ATOM 796 CD PRO 88 76.796 31.854 6.831 1.00 19.58 A.13 ATOM 797 CA PRO 88 76.280 32.977 4.756 1.00 12.43 A.13 ATOM 798 CB PRO 88 76.280 32.977 4.756 1.00 12.43 A.13 ATOM 799 CG PRO 88 77.600 32.201 4.676 1.00 18.69 A.13 ATOM 800 C PRO 88 75.304 32.510 3.672 1.00 24.39 A.13 ATOM 801 O PRO 88 74.596 31.522 3.854 1.00 16.92 A.13 ATOM 802 N GLY 89 75.266 33.230 2.566 1.00 10.73 A.13 ATOM 804 CA GLY 89 74.386 32.868 1.471 1.00 10.00 A.13 ATOM 805 C GLY 89 74.138 35.218 1.307 1.00 19.94 A.13 ATOM 806 O GLY 89 74.133 35.218 1.307 1.00 19.96 A.13 ATOM 807 N PRO 90 73.390 34.019 -0.432 1.00 26.31 A.13 ATOM 808 CD PRO 90 73.390 32.792 -1.192 1.00 18.46 A.13 ATOM 809 CA PRO 90 72.960 35.212 -1.163 1.00 25.07 A.13 ATOM 810 CB PRO 90 72.670 34.651 -2.556 1.00 15.47 A.13 ATOM 810 CB PRO 90 72.108 33.289 -2.236 1.00 24.63 A.13 ATOM 811 CG PRO 90 72.108 33.289 -2.236 1.00 24.63 A.13 ATOM 812 C PRO 90 71.726 35.879 -0.543 1.00 20.41 A.13 ATOM 812 C PRO 90 71.726 35.879 -0.543 1.00 20.41 A.13 ATOM 813 C PRO 90 71.176 35.390 0.442 1.00 15.47 A.13 ATOM 816 CA ASN 91 70.127 37.721 -0.653 1.00 14.03 A.13 ATOM 817 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A.13 ATOM 818 CG ASN 91 68.863 36.932 -0.999 1.00 15.26 A.13 ATOM 818 CG ASN 91 68.863 36.932 -0.999 1.00 15.26 A.13 ATOM 818 CG ASN 91 68.863 36.932 -0.999 1.00 15.26 A.13 ATOM 820 ND2 ASN 91 68.863 36.932 -0.999 1.00 15.26 A.13 ATOM 820 ND2 ASN 91 68.863 36.932 -0.999 1.00 15.26 A.13 ATOM 820 ND2 ASN 91 68.863 36.932 -0.999 1.00 15.26 A.13 ATOM 820 ND2 ASN 91 68.863 36.932 -0.999 1.00 15.26 A.13 ATOM 820 ND2 ASN 91 68.863 36.932 -0.999 1.00 15.26 A.13 ATOM 820 ND2 ASN 91 68.863 36.932 -0.999 1.00 15.26 A.13 ATOM 820 ND2 ASN 91 68.863 36.932 -0.999 1.00 15.26 A.13 ATOM 820 ND2 ASN 91 68.497 39.678 4.380 1.00 24.66 A.13 ATOM 820 ND2 ASN 91 68.497 39.678 4.380 1.00 24.66 A.13 ATOM 820 ND2 ASN 91 68.497 39.678 4.380 1.00 24.6		791			87	73.800	31.198	8.135	1.00 18.88	A_13
ATOM 794 O PRO 87 73.728 33.448 5.703 1.00 20.68 A_13 ATOM 795 N PRO 88 75.814 32.701 6.120 1.00 10.00 A_13 ATOM 796 CD PRO 88 76.796 31.854 6.831 1.00 19.58 A_13 ATOM 797 CA PRO 88 76.796 31.854 6.831 1.00 19.58 A_13 ATOM 798 CB PRO 88 76.00 32.2977 4.756 1.00 12.43 A_13 ATOM 799 CG PRO 88 77.600 32.201 4.676 1.00 18.69 A_13 ATOM 799 CG PRO 88 78.073 32.163 6.098 1.00 18.48 A_13 ATOM 800 C PRO 88 75.304 32.510 3.672 1.00 24.39 A_13 ATOM 801 O PRO 88 74.596 31.522 3.854 1.00 16.92 A_13 ATOM 802 N GLY 89 75.266 33.230 2.560 1.00 10.73 A_13 ATOM 804 CA GLY 89 74.866 32.868 1.471 1.00 10.00 A_13 ATOM 805 C GLY 89 73.960 34.127 0.772 1.00 10.94 A_13 ATOM 806 O GLY 89 74.143 35.218 1.307 1.00 19.86 A_13 ATOM 807 N PRO 90 73.390 34.019 -0.432 1.00 26.31 A_13 ATOM 808 CD PRO 90 73.390 32.792 -1.192 1.00 18.46 A_13 ATOM 808 CD PRO 90 72.960 35.212 -1.163 1.00 25.07 A_13 ATOM 810 CB PRO 90 72.960 35.212 -1.163 1.00 25.07 A_13 ATOM 810 CB PRO 90 72.960 35.212 -1.163 1.00 25.07 A_13 ATOM 810 CB PRO 90 72.108 33.289 -2.236 1.00 24.63 A_13 ATOM 810 CB PRO 90 72.108 33.289 -0.543 1.00 20.41 A_13 ATOM 811 CG PRO 90 71.726 35.879 -0.543 1.00 20.41 A_13 ATOM 812 C PRO 90 71.726 35.879 -0.543 1.00 20.41 A_13 ATOM 813 O PRO 90 71.176 35.879 -0.543 1.00 20.41 A_13 ATOM 814 N ASN 91 71.303 37.000 -1.125 1.00 18.43 A_13 ATOM 815 CG ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 816 CA ASN 91 70.127 37.721 -0.653 1.00 14.03 A_13 ATOM 816 CA ASN 91 70.127 37.721 -0.653 1.00 14.03 A_13 ATOM 819 OD1 ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 820 ND2 ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 820 ND2 ASN 91 69.265 37.286 -3.376 1.00 24.66 A_13 ATOM 820 ND2 ASN 91 69.265 37.286 -3.376 1.00 24.66 A_13 ATOM 820 ND2 ASN 91 69.265 37.286 -3.376 1.00 24.66 A_13 ATOM 820 ND2 ASN 91 69.265 37.286 -3.376 1.00 24.66 A_13 ATOM 820 ND2 ASN 91 69.265 37.286 -3.376 1.00 24.66 A_13 ATOM 820 ND2 ASN 91 69.265 37.886 0.849 1.00 24.66 A_13 ATOM 820 ND2 ASN 91 69.265 37.886 0.849 1.00 24.66 A_13 ATOM 820 ND2 ASN 91 69.265 37.886 0.849 1.00 24										
ATOM 795 N PRO 88 76.796 31.854 6.831 1.00 10.00 A_13 ATOM 796 CD PRO 88 76.796 31.854 6.831 1.00 12.43 A_13 ATOM 797 CA PRO 88 76.280 32.977 4.756 1.00 12.43 A_13 ATOM 798 CB PRO 88 76.280 32.977 4.756 1.00 12.43 A_13 ATOM 799 CG PRO 88 78.073 32.163 6.098 1.00 18.48 A_13 ATOM 800 C PRO 88 75.304 32.510 3.672 1.00 24.39 A_13 ATOM 801 O PRO 88 75.304 32.510 3.672 1.00 24.39 A_13 ATOM 801 O PRO 88 74.596 31.522 3.854 1.00 16.92 A_13 ATOM 802 N GLY 89 75.266 33.230 2.560 1.00 10.73 A_13 ATOM 804 CA GLY 89 74.886 32.868 1.471 1.00 10.00 A_13 ATOM 805 C GLY 89 73.960 34.127 0.772 1.00 10.94 A_13 ATOM 806 O GLY 89 73.960 34.127 0.772 1.00 10.94 A_13 ATOM 807 N PRO 90 73.390 34.019 -0.432 1.00 26.31 A_13 ATOM 807 N PRO 90 73.390 32.792 -1.192 1.00 18.46 A_13 ATOM 809 CA PRO 90 73.090 32.792 -1.192 1.00 18.46 A_13 ATOM 810 CB PRO 90 72.960 35.212 -1.163 1.00 25.07 A_13 ATOM 811 CG PRO 90 72.108 33.289 -2.236 1.00 24.63 A_13 ATOM 812 C PRO 90 72.108 33.289 -2.236 1.00 24.63 A_13 ATOM 812 C PRO 90 71.726 35.879 -0.543 1.00 20.41 A_13 ATOM 813 O PRO 90 71.726 35.879 -0.543 1.00 20.41 A_13 ATOM 816 CA ASN 91 71.303 37.000 -1.125 1.00 18.46 A_13 ATOM 816 CA ASN 91 70.127 37.721 -0.653 1.00 15.26 A_13 ATOM 817 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 819 ODI ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 819 CDI ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 819 CDI ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 820 ND2 ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 820 ND2 ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 820 ND2 ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 820 CD TYR 92 69.233 37.876 0.849 1.00 24.66 A_13 ATOM 820 ND2 ASN 91 68.860 36.430 -2.439 1.00 24.66 A_13 ATOM 820 ND2 ASN 91 68.860 36.430 -2.439 1.00 24.66 A_13 ATOM 820 ND2 ASN 91 68.860 36.430 -2.439 1.00 24.66 A_13 ATOM 820 ND2 ASN 91 68.860 36.430 -2.439 1.00 16.774 A_13 ATOM 820 ND2 ASN 91 68.860 37.866 38.364 3.523 1.00 24.66 A_13 ATOM 820 CD TYR 92 69.233 37.876 0.849 1.00 25.60 A_13 ATOM 820 CD TYR 92 66.6467 38.888 2.25										
ATOM 797 CA PRO 88 76.280 32.977 4.756 1.00 12.43 A_13 ATOM 798 CB PRO 88 77.600 32.201 4.676 1.00 18.69 A_13 ATOM 799 CG PRO 88 78.073 32.163 6.098 1.00 18.48 A_13 ATOM 801 C PRO 88 75.304 32.510 3.672 1.00 24.39 A_13 ATOM 801 O PRO 88 74.596 31.522 3.854 1.00 16.92 A_13 ATOM 802 N GLY 89 75.266 33.230 2.560 1.00 10.73 A_13 ATOM 804 CA GLY 89 74.386 32.868 1.471 1.00 10.00 A_13 ATOM 805 C GLY 89 73.960 34.127 0.772 1.00 10.94 A_13 ATOM 806 O GLY 89 74.143 35.218 1.307 1.00 19.86 A_13 ATOM 807 N PRO 90 73.390 34.019 -0.432 1.00 26.31 A_13 ATOM 808 CD PRO 90 73.090 32.792 -1.192 1.00 18.46 A_13 ATOM 809 CA PRO 90 72.960 35.212 -1.163 1.00 25.07 A_13 ATOM 810 CB PRO 90 72.670 34.651 -2.556 1.00 15.47 A_13 ATOM 811 CG PRO 90 72.108 33.289 -2.236 1.00 24.63 A_13 ATOM 812 C PRO 90 71.726 35.879 -0.543 1.00 20.41 A_13 ATOM 813 O PRO 90 71.176 35.390 0.442 1.00 17.00 A_13 ATOM 814 N ASN 91 71.303 37.000 -1.125 1.00 18.43 A_13 ATOM 815 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 816 CA ASN 91 70.127 37.721 -0.653 1.00 14.03 A_13 ATOM 816 CA ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 817 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 819 OD1 ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 819 OD1 ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 820 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 820 ND2 ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 820 ND2 ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 820 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 820 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 820 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 820 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 820 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 820 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 820 CB ASN 91 68.860 36.430 -2.439 1.00 29.56 A_13 ATOM 820 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 820 CB ASN 91 68.860 36.430 -2.439 1.00 29.56 A_13 ATOM 820 CB ASN 91 68.497 39.678 4.380 1.00 29.56 A_13 ATOM 820 CB ASN 91 68.497 39.678 4.380 1.00 29		795			88	75.814	32.701	6.120	1.00 10.00	A_13
ATOM 798 CB PRO 88 77.600 32.201 4.676 1.00 18.69 A_13 ATOM 799 CG PRO 88 75.073 32.163 6.098 1.00 18.48 A_13 ATOM 800 C PRO 88 75.304 32.510 3.672 1.00 24.39 A_13 ATOM 801 O PRO 88 75.266 33.230 2.560 1.00 10.73 A_13 ATOM 802 N GLY 89 75.266 33.230 2.560 1.00 10.73 A_13 ATOM 804 CA GLY 89 74.386 32.868 1.471 1.00 10.00 A_13 ATOM 805 C GLY 89 74.186 32.868 1.471 1.00 10.00 A_13 ATOM 806 O GLY 89 74.143 35.218 1.307 1.00 19.86 A_13 ATOM 807 N PRO 90 73.390 34.127 0.772 1.00 10.94 A_13 ATOM 808 CD PRO 90 73.390 32.792 -1.192 1.00 18.46 A_13 ATOM 808 CD PRO 90 72.960 35.212 -1.163 1.00 26.31 A_13 ATOM 801 CB PRO 90 72.960 35.212 -1.163 1.00 25.07 A_13 ATOM 811 CG PRO 90 72.108 33.289 -2.236 1.00 24.63 A_13 ATOM 812 C PRO 90 71.726 35.879 -0.543 1.00 24.63 A_13 ATOM 813 O PRO 90 71.726 35.879 -0.543 1.00 24.63 A_13 ATOM 814 N ASN 91 71.303 37.000 -1.125 1.00 18.43 A_13 ATOM 816 CA ASN 91 71.303 37.000 -1.125 1.00 18.43 A_13 ATOM 816 CA ASN 91 71.303 37.000 -1.125 1.00 18.43 A_13 ATOM 817 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 818 CG ASN 91 68.860 36.430 -2.439 1.00 24.663 A_13 ATOM 818 CG ASN 91 68.860 36.430 -2.439 1.00 27.03 A_13 ATOM 820 ND2 ASN 91 68.860 36.430 -2.439 1.00 27.03 A_13 ATOM 820 ND2 ASN 91 68.860 36.430 -2.439 1.00 27.03 A_13 ATOM 820 ND2 ASN 91 68.860 36.430 -2.439 1.00 27.03 A_13 ATOM 820 ND2 ASN 91 68.860 36.430 -2.439 1.00 27.03 A_13 ATOM 820 ND2 ASN 91 69.265 37.286 -3.376 1.00 27.03 A_13 ATOM 822 C ASN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 822 C ASN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 822 C TYR 92 69.198 37.632 1.622 1.00 17.69 A_13 ATOM 828 CB TYR 92 69.233 37.428 3.744 1.00 16.78 A_13 ATOM 828 CB TYR 92 69.233 37.428 3.744 1.00 16.78 A_13 ATOM 828 CD TYR 92 66.786 38.849 3.523 1.00 26.17 A_13 ATOM 823 CD TYR 92 66.786 38.849 3.523 1.00 26.17 A_13 ATOM 823 CD TYR 92 66.786 38.849 3.523 1.00 26.17 A_13 ATOM 823 CD TYR 92 66.786 38.849 3.523 1.00 26.71 A_13 ATOM 830 CD1 TYR 92 66.666 38.364 3.523 1.00 25.90 A_13 ATOM 833 CD2 TYR 92 66.4647 40.117 3.107 1.00 12.31 A_			_							A_13
ATOM 799 CG PRO 88 75.073 32.163 6.098 1.00 18.48 A_13 ATOM 800 C PRO 88 75.304 32.510 3.672 1.00 24.39 A_13 ATOM 801 O PRO 88 74.596 31.522 3.854 1.00 16.92 A_13 ATOM 802 N GLY 89 75.266 33.230 2.560 1.00 10.73 A_13 ATOM 804 CA GLY 89 74.386 32.868 1.471 1.00 10.00 A_13 ATOM 805 C GLY 89 73.960 34.127 0.772 1.00 10.94 A_13 ATOM 806 O GLY 89 73.960 34.127 0.772 1.00 10.94 A_13 ATOM 807 N PRO 90 73.390 32.792 -1.192 1.00 18.46 A_13 ATOM 808 CD PRO 90 73.090 32.792 -1.192 1.00 18.46 A_13 ATOM 809 CA PRO 90 72.960 35.212 -1.163 1.00 25.07 A_13 ATOM 810 CB PRO 90 72.670 34.651 -2.556 1.00 15.47 A_13 ATOM 811 CG PRO 90 72.108 33.289 -2.236 1.00 24.63 A_13 ATOM 812 C PRO 90 71.726 35.879 -0.543 1.00 20.41 A_13 ATOM 813 O PRO 90 71.726 35.879 -0.543 1.00 20.41 A_13 ATOM 814 N ASN 91 71.303 37.000 -1.125 1.00 18.43 A_13 ATOM 816 CA ASN 91 71.303 37.000 -1.125 1.00 18.43 A_13 ATOM 816 CA ASN 91 70.127 37.721 -0.653 1.00 14.03 A_13 ATOM 817 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 818 CG ASN 91 68.863 36.932 -0.999 1.00 36.74 A_13 ATOM 818 CG ASN 91 68.863 36.932 -0.999 1.00 36.74 A_13 ATOM 819 OD1 ASN 91 68.863 36.932 -0.999 1.00 36.74 A_13 ATOM 820 ND2 ASN 91 68.863 36.932 -0.999 1.00 36.74 A_13 ATOM 820 ND2 ASN 91 68.863 36.932 -0.999 1.00 36.74 A_13 ATOM 820 ND2 ASN 91 68.863 36.932 -0.999 1.00 36.74 A_13 ATOM 820 ND2 ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 820 CG TYR 92 69.293 37.866 -3.376 1.00 24.66 A_13 ATOM 824 CA SN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 825 CB TYR 92 69.293 37.896 3.376 1.00 24.66 A_13 ATOM 824 CD TYR 92 69.233 37.896 3.061 1.00 10.17 A_13 ATOM 828 CB TYR 92 69.293 37.428 3.744 1.00 16.78 A_13 ATOM 828 CB TYR 92 66.786 38.364 3.523 1.00 26.17 A_13 ATOM 823 CD2 TYR 92 66.015 38.803 4.581 1.00 17.79 A_13 ATOM 831 CE1 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CC2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 834 CZ TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 834 CZ TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 834 CZ TYR 92 66.467 38.818 2.250 1.00 25.90										A_13
ATOM 801 O PRO 88 74.596 31.522 3.854 1.00 16.92 A_13 ATOM 802 N GLY 89 75.266 33.230 2.560 1.00 10.73 A_13 ATOM 804 CA GLY 89 74.386 32.868 1.471 1.00 10.00 A_13 ATOM 805 C GLY 89 73.960 34.127 0.772 1.00 10.94 A_13 ATOM 806 O GLY 89 74.143 35.218 1.307 1.00 19.86 A_13 ATOM 807 N PRO 90 73.390 34.019 -0.432 1.00 26.31 A_13 ATOM 808 CD PRO 90 73.090 32.792 -1.192 1.00 18.46 A_13 ATOM 809 CA PRO 90 72.960 35.212 -1.163 1.00 25.07 A_13 ATOM 810 CB PRO 90 72.960 35.212 -1.163 1.00 25.07 A_13 ATOM 811 CG PRO 90 72.670 34.651 -2.556 1.00 15.47 A_13 ATOM 812 C PRO 90 71.726 35.879 -0.543 1.00 24.63 A_13 ATOM 813 O PRO 90 71.726 35.879 -0.543 1.00 24.63 A_13 ATOM 814 N ASN 91 71.303 37.000 -1.125 1.00 18.43 A_13 ATOM 816 CA ASN 91 70.127 37.721 -0.653 1.00 14.03 A_13 ATOM 816 CA ASN 91 70.127 37.721 -0.653 1.00 14.03 A_13 ATOM 817 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 818 CG ASN 91 68.860 36.430 -2.439 1.00 29.56 A_13 ATOM 820 ND2 ASN 91 68.860 36.430 -2.439 1.00 24.66 A_13 ATOM 820 ND2 ASN 91 68.860 36.430 -2.439 1.00 24.66 A_13 ATOM 820 ND2 ASN 91 68.860 36.430 -2.439 1.00 24.66 A_13 ATOM 824 O ASN 91 70.226 37.986 0.849 1.00 27.03 A_13 ATOM 824 O ASN 91 70.226 37.986 0.849 1.00 27.03 A_13 ATOM 824 O ASN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 825 N TYR 92 69.233 37.876 3.061 1.00 10.17 A_13 ATOM 828 CB TYR 92 69.233 37.876 3.061 1.00 10.17 A_13 ATOM 828 CB TYR 92 69.233 37.876 3.061 1.00 10.17 A_13 ATOM 829 CG TYR 92 66.786 38.803 4.581 1.00 17.79 A_13 ATOM 830 CD1 TYR 92 66.015 38.803 4.581 1.00 17.79 A_13 ATOM 831 CE1 TYR 92 66.467 38.818 2.250 1.00 25.900 A_13 ATOM 833 CC2 TYR 92 66.467 38.818 2.250 1.00 25.900 A_13 ATOM 834 CZ TYR 92 66.467 38.818 2.250 1.00 25.900 A_13 ATOM 834 CZ TYR 92 66.467 38.818 2.250 1.00 25.900 A_13 ATOM 834 CZ TYR 92 66.467 38.818 2.250 1.00 25.900 A_13 ATOM 834 CZ TYR 92 66.467 38.818 2.250 1.00 25.900 A_13 ATOM 834 CZ TYR 92 66.4667 38.818 2.250 1.00 25.900 A_13 ATOM 834 CZ TYR 92 66.4667 39.818 2.250 1.00 25.900 A_13 ATOM 834 CZ TYR 92 66.4667 39.691 2.040 1.00 30	ATOM	799	CG	PRO	88	78.073	32.163	6.098	1.00 18.48	A_13
ATOM 802 N GLY 89 75.266 33.230 2.560 1.00 10.73 A_13 ATOM 804 CA GLY 89 74.386 32.868 1.471 1.00 10.00 A_13 ATOM 805 C GLY 89 73.960 34.127 0.772 1.00 10.94 A_13 ATOM 806 O GLY 89 74.143 35.218 1.307 1.00 19.86 A_13 ATOM 807 N PRO 90 73.390 34.019 -0.432 1.00 26.31 A_13 ATOM 808 CD PRO 90 73.090 32.792 -1.192 1.00 18.46 A_13 ATOM 809 CA PRO 90 72.960 35.212 -1.163 1.00 25.07 A_13 ATOM 810 CB PRO 90 72.670 34.651 -2.556 1.00 15.47 A_13 ATOM 811 CG PRO 90 72.108 33.289 -2.236 1.00 24.63 A_13 ATOM 812 C PRO 90 71.176 35.879 -0.543 1.00 20.41 A_13 ATOM 813 O PRO 90 71.176 35.390 0.442 1.00 17.00 A_13 ATOM 814 N ASN 91 71.303 37.000 -1.125 1.00 18.43 A_13 ATOM 816 CA ASN 91 70.127 37.721 -0.653 1.00 14.03 A_13 ATOM 817 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 818 CG ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 819 OD1 ASN 91 68.863 36.430 -2.439 1.00 36.74 A_13 ATOM 820 ND2 ASN 91 69.265 37.286 -3.376 1.00 27.03 A_13 ATOM 820 ND2 ASN 91 69.265 37.286 -3.376 1.00 27.03 A_13 ATOM 820 ND2 ASN 91 69.265 37.286 -3.376 1.00 27.03 A_13 ATOM 824 O ASN 91 70.226 37.986 0.849 1.00 27.03 A_13 ATOM 825 N TYR 92 69.198 37.632 1.622 1.00 17.43 A_13 ATOM 826 CB TYR 92 69.198 37.632 1.622 1.00 17.69 A_13 ATOM 827 CA TYR 92 69.198 37.632 1.622 1.00 17.69 A_13 ATOM 830 CD1 TYR 92 66.786 38.364 3.523 1.00 29.60 A_13 ATOM 831 CE1 TYR 92 66.467 38.818 2.250 1.00 29.60 A_13 ATOM 832 CD2 TYR 92 66.467 38.818 2.250 1.00 29.60 A_13 ATOM 833 CD2 TYR 92 66.467 38.818 2.250 1.00 29.60 A_13 ATOM 834 CZ TYR 92 65.406 39.691 2.040 1.00 30.60 A_13 ATOM 834 CZ TYR 92 65.406 39.691 2.040 1.00 30.60 A_13 ATOM 834 CZ TYR 92 66.4647 40.117 3.107 1.00 12.31										
ATOM 804 CA GLY 89 74.386 32.868 1.471 1.00 10.00 A_13 ATOM 805 C GLY 89 73.960 34.127 0.772 1.00 10.94 A_13 ATOM 806 O GLY 89 74.143 35.218 1.307 1.00 19.86 A_13 ATOM 807 N PRO 90 73.390 34.019 -0.432 1.00 26.31 A_13 ATOM 808 CD PRO 90 73.090 32.792 -1.192 1.00 18.46 A_13 ATOM 809 CA PRO 90 72.960 35.212 -1.163 1.00 25.07 A_13 ATOM 810 CB PRO 90 72.670 34.651 -2.556 1.00 15.47 A_13 ATOM 811 CG PRO 90 72.108 33.289 -2.236 1.00 24.63 A_13 ATOM 812 C PRO 90 71.726 35.879 -0.543 1.00 20.41 A_13 ATOM 813 O PRO 90 71.726 35.879 -0.543 1.00 20.41 A_13 ATOM 814 N ASN 91 71.303 37.000 -1.125 1.00 18.43 A_13 ATOM 816 CA ASN 91 70.127 37.721 -0.653 1.00 14.03 A_13 ATOM 817 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 818 CG ASN 91 68.860 36.430 -2.439 1.00 36.74 A_13 ATOM 819 ODI ASN 91 68.860 36.430 -2.439 1.00 29.56 A_13 ATOM 820 ND2 ASN 91 69.265 37.286 -3.376 1.00 29.56 A_13 ATOM 824 O ASN 91 71.257 38.479 1.313 1.00 17.43 A_13 ATOM 825 N TYR 92 69.233 37.876 3.061 1.00 17.69 A_13 ATOM 826 CB TYR 92 69.233 37.876 3.061 1.00 10.17 A_13 ATOM 827 CA TYR 92 69.233 37.876 3.061 1.00 17.79 A_13 ATOM 828 CB TYR 92 66.786 38.864 3.523 1.00 26.17 A_13 ATOM 829 CG TYR 92 66.786 38.818 2.250 1.00 29.60 A_13 ATOM 831 CE1 TYR 92 66.467 38.818 2.250 1.00 29.60 A_13 ATOM 833 CE2 TYR 92 65.406 39.691 2.040 1.00 30.60 A_13 ATOM 834 CZ TYR 92 65.406 39.691 2.040 1.00 30.60 A_13 ATOM 833 CE2 TYR 92 66.467 40.117 3.107 1.00 12.31 A_13										
ATOM 806 O GLY 89 74.143 35.218 1.307 1.00 19.86 A_13 ATOM 807 N PRO 90 73.390 34.019 -0.432 1.00 26.31 A_13 ATOM 808 CD PRO 90 73.090 32.792 -1.192 1.00 18.46 A_13 ATOM 809 CA PRO 90 72.960 35.212 -1.163 1.00 25.07 A_13 ATOM 810 CB PRO 90 72.670 34.651 -2.556 1.00 15.47 A_13 ATOM 811 CG PRO 90 72.108 33.289 -2.236 1.00 24.63 A_13 ATOM 812 C PRO 90 71.726 35.879 -0.543 1.00 20.41 A_13 ATOM 813 O PRO 90 71.726 35.879 -0.543 1.00 20.41 A_13 ATOM 813 O PRO 90 71.176 35.390 0.442 1.00 17.00 A_13 ATOM 814 N ASN 91 71.303 37.000 -1.125 1.00 18.43 A_13 ATOM 816 CA ASN 91 70.127 37.721 -0.653 1.00 14.03 A_13 ATOM 817 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 818 CG ASN 91 68.863 36.932 -0.999 1.00 36.74 A_13 ATOM 819 OD1 ASN 91 68.863 36.430 -2.439 1.00 36.74 A_13 ATOM 819 OD1 ASN 91 68.497 35.282 -2.701 1.00 29.56 A_13 ATOM 820 ND2 ASN 91 69.265 37.286 -3.376 1.00 27.03 A_13 ATOM 820 ND2 ASN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 823 C ASN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 824 O ASN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 827 CA TYR 92 69.198 37.632 1.622 1.00 17.69 A_13 ATOM 827 CA TYR 92 69.198 37.632 1.622 1.00 17.69 A_13 ATOM 828 CB TYR 92 69.233 37.876 3.061 1.00 10.17 A_13 ATOM 828 CB TYR 92 66.015 38.803 4.581 1.00 29.60 A_13 ATOM 830 CD1 TYR 92 66.015 38.803 4.581 1.00 29.60 A_13 ATOM 831 CE1 TYR 92 66.015 38.803 4.581 1.00 29.60 A_13 ATOM 832 CD2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 834 CZ TYR 92 66.467 40.117 3.107 1.00 12.31 A_13	MOTA	804	CA		89	74.386	32.868	1.471	1.00 10.00	A_13
ATOM 807 N PRO 90 73.390 34.019 -0.432 1.00 26.31 A_13 ATOM 808 CD PRO 90 73.090 32.792 -1.192 1.00 18.46 A_13 ATOM 809 CA PRO 90 72.960 35.212 -1.163 1.00 25.07 A_13 ATOM 810 CB PRO 90 72.960 35.212 -1.163 1.00 25.07 A_13 ATOM 811 CG PRO 90 72.670 34.651 -2.556 1.00 15.47 A_13 ATOM 811 CG PRO 90 72.108 33.289 -2.236 1.00 24.63 A_13 ATOM 812 C PRO 90 71.726 35.879 -0.543 1.00 20.41 A_13 ATOM 813 O PRO 90 71.176 35.390 0.442 1.00 17.00 A_13 ATOM 814 N ASN 91 71.303 37.000 -1.125 1.00 18.43 A_13 ATOM 816 CA ASN 91 70.127 37.721 -0.653 1.00 14.03 A_13 ATOM 816 CA ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 818 CG ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 818 CG ASN 91 68.863 36.430 -2.439 1.00 36.74 A_13 ATOM 819 OD1 ASN 91 68.865 37.286 -3.376 1.00 27.03 A_13 ATOM 820 ND2 ASN 91 69.265 37.286 -3.376 1.00 27.03 A_13 ATOM 823 C ASN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 824 O ASN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 825 N TYR 92 69.198 37.632 1.622 1.00 17.69 A_13 ATOM 827 CA TYR 92 69.198 37.632 1.622 1.00 17.69 A_13 ATOM 827 CA TYR 92 69.233 37.876 3.061 1.00 10.17 A_13 A_13 ATOM 829 CG TYR 92 66.015 38.803 4.581 1.00 10.17 A_13 ATOM 829 CG TYR 92 66.786 38.364 3.523 1.00 26.17 A_13 ATOM 830 CD1 TYR 92 66.015 38.803 4.581 1.00 17.79 A_13 ATOM 831 CE1 TYR 92 66.015 38.803 4.581 1.00 17.79 A_13 ATOM 832 CD2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.4667 38.818 2.250 1.00 25.90 A_13 ATOM 834 CZ TYR 92 66.4667 40.117 3.107 1.00 12.31 A_13										A_13
ATOM 809 CA PRO 90 72.960 35.212 -1.163 1.00 25.07 A_13 ATOM 810 CB PRO 90 72.670 34.651 -2.556 1.00 15.47 A_13 ATOM 811 CG PRO 90 72.108 33.289 -2.236 1.00 24.63 A_13 ATOM 812 C PRO 90 71.726 35.879 -0.543 1.00 20.41 A_13 ATOM 813 O PRO 90 71.176 35.390 0.442 1.00 17.00 A_13 ATOM 814 N ASN 91 71.303 37.000 -1.125 1.00 18.43 A_13 ATOM 816 CA ASN 91 70.127 37.721 -0.653 1.00 14.03 A_13 ATOM 817 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 818 CG ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 819 OD1 ASN 91 68.860 36.430 -2.439 1.00 36.74 A_13 ATOM 819 OD1 ASN 91 68.860 36.430 -2.439 1.00 36.74 A_13 ATOM 819 OD1 ASN 91 68.860 36.430 -2.439 1.00 27.03 A_13 ATOM 820 ND2 ASN 91 69.265 37.286 -3.376 1.00 27.03 A_13 ATOM 820 ND2 ASN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 824 O ASN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 825 N TYR 92 69.198 37.632 1.622 1.00 17.43 A_13 ATOM 827 CA TYR 92 69.198 37.632 1.622 1.00 17.43 A_13 ATOM 827 CA TYR 92 69.233 37.876 3.061 1.00 10.17 A_13 ATOM 828 CB TYR 92 66.786 38.364 3.523 1.00 26.17 A_13 ATOM 829 CG TYR 92 66.786 38.364 3.523 1.00 26.17 A_13 ATOM 829 CG TYR 92 66.015 38.803 4.581 1.00 17.79 A_13 ATOM 830 CD1 TYR 92 66.015 38.803 4.581 1.00 17.79 A_13 ATOM 831 CE1 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 832 CD2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 834 CZ TYR 92 66.467 40.117 3.107 1.00 12.31 A_13										A_13
ATOM 810 CB PRO 90 72.670 34.651 -2.556 1.00 15.47 A_13 ATOM 811 CG PRO 90 72.108 33.289 -2.236 1.00 24.63 A_13 ATOM 812 C PRO 90 71.726 35.879 -0.543 1.00 20.41 A_13 ATOM 813 O PRO 90 71.176 35.879 -0.543 1.00 20.41 A_13 ATOM 813 O PRO 90 71.176 35.879 -0.543 1.00 17.00 A_13 ATOM 814 N ASN 91 71.303 37.000 -1.125 1.00 18.43 A_13 ATOM 816 CA ASN 91 70.127 37.721 -0.653 1.00 14.03 A_13 ATOM 817 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 818 CG ASN 91 68.860 36.430 -2.439 1.00 36.74 A_13 ATOM 819 OD1 ASN 91 68.497 35.282 -2.701 1.00 29.56 A_13 ATOM 820 ND2 ASN 91 69.265 37.286 -3.376 1.00 27.03 A_13 ATOM 820 ND2 ASN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 824 O ASN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 825 N TYR 92 69.198 37.632 1.622 1.00 17.43 A_13 ATOM 827 CA TYR 92 69.198 37.632 1.622 1.00 17.69 A_13 ATOM 827 CA TYR 92 69.233 37.876 3.061 1.00 10.17 A_13 ATOM 828 CB TYR 92 66.786 38.364 3.523 1.00 26.17 A_13 ATOM 829 CG TYR 92 66.786 38.364 3.523 1.00 26.17 A_13 ATOM 829 CG TYR 92 66.786 38.364 3.523 1.00 26.17 A_13 ATOM 830 CD1 TYR 92 66.015 38.803 4.581 1.00 17.79 A_13 ATOM 831 CE1 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 834 CZ TYR 92 66.467 40.117 3.107 1.00 12.31 A_13									1.00 18.46	A_13
ATOM 811 CG PRO 90 72.108 33.289 -2.236 1.00 24.63 A_13 ATOM 812 C PRO 90 71.726 35.879 -0.543 1.00 20.41 A_13 ATOM 813 O PRO 90 71.176 35.390 0.442 1.00 17.00 A_13 ATOM 814 N ASN 91 71.303 37.000 -1.125 1.00 18.43 A_13 ATOM 816 CA ASN 91 70.127 37.721 -0.653 1.00 14.03 A_13 ATOM 817 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 818 CG ASN 91 68.860 36.430 -2.439 1.00 36.74 A_13 ATOM 819 OD1 ASN 91 68.497 35.282 -2.701 1.00 29.56 A_13 ATOM 820 ND2 ASN 91 69.265 37.286 -3.376 1.00 27.03 A_13 ATOM 823 C ASN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 824 O ASN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 825 N TYR 92 69.198 37.632 1.622 1.00 17.43 A_13 ATOM 827 CA TYR 92 69.198 37.632 1.622 1.00 17.69 A_13 ATOM 828 CB TYR 92 69.233 37.876 3.061 1.00 10.17 A_13 ATOM 828 CB TYR 92 66.786 38.364 3.523 1.00 26.17 A_13 ATOM 829 CG TYR 92 66.786 38.803 4.581 1.00 17.79 A_13 ATOM 830 CD1 TYR 92 66.015 38.803 4.581 1.00 17.79 A_13 ATOM 831 CE1 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 832 CD2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 40.117 3.107 1.00 12.31 A_13										A_13 A 13
ATOM 813 O PRO 90 71.176 35.390 0.442 1.00 17.00 A_13 ATOM 814 N ASN 91 71.303 37.000 -1.125 1.00 18.43 A_13 ATOM 816 CA ASN 91 70.127 37.721 -0.653 1.00 14.03 A_13 ATOM 817 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 818 CG ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 819 OD1 ASN 91 68.497 35.282 -2.701 1.00 29.56 A_13 ATOM 820 ND2 ASN 91 69.265 37.286 -3.376 1.00 27.03 A_13 ATOM 820 ND2 ASN 91 69.265 37.286 -3.376 1.00 27.03 A_13 ATOM 824 O ASN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 825 N TYR 92 69.198 37.632 1.622 1.00 17.43 A_13 ATOM 827 CA TYR 92 69.198 37.632 1.622 1.00 17.69 A_13 ATOM 827 CA TYR 92 69.293 37.876 3.061 1.00 10.17 A_13 ATOM 828 CB TYR 92 66.786 38.364 3.523 1.00 26.17 A_13 ATOM 829 CG TYR 92 66.786 38.364 3.523 1.00 26.17 A_13 ATOM 830 CD1 TYR 92 66.015 38.803 4.581 1.00 17.79 A_13 ATOM 831 CE1 TYR 92 64.947 39.678 4.380 1.00 29.60 A_13 ATOM 832 CD2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 40.117 3.107 1.00 12.31 A_13										A_13
ATOM 814 N ASN 91 71.303 37.000 -1.125 1.00 18.43 A_13 ATOM 816 CA ASN 91 70.127 37.721 -0.653 1.00 14.03 A_13 ATOM 817 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 818 CG ASN 91 68.860 36.430 -2.439 1.00 36.74 A_13 ATOM 819 OD1 ASN 91 68.860 36.430 -2.439 1.00 36.74 A_13 ATOM 819 OD1 ASN 91 69.265 37.286 -3.376 1.00 27.03 A_13 ATOM 820 ND2 ASN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 824 O ASN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 825 N TYR 92 69.198 37.632 1.622 1.00 17.43 A_13 ATOM 827 CA TYR 92 69.198 37.632 1.622 1.00 17.69 A_13 ATOM 827 CA TYR 92 69.233 37.876 3.061 1.00 10.17 A_13 ATOM 828 CB TYR 92 67.942 37.428 3.744 1.00 16.78 A_13 ATOM 829 CG TYR 92 66.786 38.364 3.523 1.00 26.17 A_13 ATOM 829 CG TYR 92 66.786 38.364 3.523 1.00 26.17 A_13 ATOM 830 CD1 TYR 92 66.015 38.803 4.581 1.00 17.79 A_13 ATOM 831 CE1 TYR 92 64.947 39.678 4.380 1.00 29.60 A_13 ATOM 832 CD2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 40.117 3.107 1.00 12.31 A_13										
ATOM 816 CA ASN 91 70.127 37.721 -0.653 1.00 14.03 A_13 ATOM 817 CB ASN 91 68.863 36.932 -0.999 1.00 15.26 A_13 ATOM 818 CG ASN 91 68.860 36.430 -2.439 1.00 36.74 A_13 ATOM 819 OD1 ASN 91 68.497 35.282 -2.701 1.00 29.56 A_13 ATOM 820 ND2 ASN 91 69.265 37.286 -3.376 1.00 27.03 A_13 ATOM 823 C ASN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 824 O ASN 91 71.257 38.479 1.313 1.00 17.43 A_13 ATOM 825 N TYR 92 69.198 37.632 1.622 1.00 17.69 A_13 ATOM 827 CA TYR 92 69.233 37.876 3.061 1.00 10.17 A_13 ATOM 828 CB TYR 92 67.942 37.428 3.744 1.00 16.78 A_13 ATOM 829 CG TYR 92 66.786 38.364 3.523 1.00 26.17 A_13 ATOM 829 CG TYR 92 66.015 38.803 4.581 1.00 17.79 A_13 ATOM 830 CD1 TYR 92 66.015 38.803 4.581 1.00 17.79 A_13 ATOM 831 CE1 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 40.117 3.107 1.00 12.31 A_13										A_13 A 13
ATOM 818 CG ASN 91 68.860 36.430 -2.439 1.00 36.74 A_13 ATOM 819 OD1 ASN 91 68.497 35.282 -2.701 1.00 29.56 A_13 ATOM 820 ND2 ASN 91 69.265 37.286 -3.376 1.00 27.03 A_13 ATOM 823 C ASN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 824 O ASN 91 71.257 38.479 1.313 1.00 17.43 A_13 ATOM 825 N TYR 92 69.198 37.632 1.622 1.00 17.69 A_13 ATOM 827 CA TYR 92 69.233 37.876 3.061 1.00 10.17 A_13 ATOM 828 CB TYR 92 67.942 37.428 3.744 1.00 16.78 A_13 ATOM 829 CG TYR 92 66.786 38.364 3.523 1.00 26.17 A_13 ATOM 830 CD1 TYR 92 66.015 38.803 4.581 1.00 17.79 A_13 ATOM 831 CE1 TYR 92 66.467 38.818 2.250 1.00 29.60 A_13 ATOM 832 CD2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 66.467 40.117 3.107 1.00 12.31 A_13						70.127			1.00 14.03	A_13
ATOM 819 OD1 ASN 91 68.497 35.282 -2.701 1.00 29.56 A_13 ATOM 820 ND2 ASN 91 69.265 37.286 -3.376 1.00 27.03 A_13 ATOM 823 C ASN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 824 O ASN 91 71.257 38.479 1.313 1.00 17.43 A_13 ATOM 825 N TYR 92 69.198 37.632 1.622 1.00 17.69 A_13 ATOM 827 CA TYR 92 69.233 37.876 3.061 1.00 10.17 A_13 ATOM 828 CB TYR 92 67.942 37.428 3.744 1.00 16.78 A_13 ATOM 829 CG TYR 92 66.786 38.364 3.523 1.00 26.17 A_13 ATOM 830 CD1 TYR 92 66.015 38.803 4.581 1.00 17.79 A_13 ATOM 831 CE1 TYR 92 64.947 39.678 4.380 1.00 29.60 A_13 ATOM 832 CD2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 65.406 39.691 2.040 1.00 30.60 A_13 ATOM 833 CE2 TYR 92 64.647 40.117 3.107 1.00 12.31 A_13										A_13
ATOM 820 ND2 ASN 91 69.265 37.286 -3.376 1.00 27.03 A_13 ATOM 823 C ASN 91 70.226 37.986 0.849 1.00 24.66 A_13 ATOM 824 O ASN 91 71.257 38.479 1.313 1.00 17.43 A_13 ATOM 825 N TYR 92 69.198 37.632 1.622 1.00 17.69 A_13 ATOM 827 CA TYR 92 69.233 37.876 3.061 1.00 10.17 A_13 ATOM 828 CB TYR 92 67.942 37.428 3.744 1.00 16.78 A_13 ATOM 829 CG TYR 92 66.786 38.364 3.523 1.00 26.17 A_13 ATOM 830 CD1 TYR 92 66.015 38.803 4.581 1.00 17.79 A_13 ATOM 831 CE1 TYR 92 64.947 39.678 4.380 1.00 29.60 A_13 ATOM 832 CD2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 65.406 39.691 2.040 1.00 30.60 A_13 ATOM 833 CE2 TYR 92 64.647 40.117 3.107 1.00 12.31 A_13										A_13 A 13
ATOM 824 O ASN 91 71.257 38.479 1.313 1.00 17.43 A_13 ATOM 825 N TYR 92 69.198 37.632 1.622 1.00 17.69 A_13 ATOM 827 CA TYR 92 69.233 37.876 3.061 1.00 10.17 A_13 ATOM 828 CB TYR 92 67.942 37.428 3.744 1.00 16.78 A_13 ATOM 829 CG TYR 92 66.786 38.364 3.523 1.00 26.17 A_13 ATOM 830 CD1 TYR 92 66.015 38.803 4.581 1.00 17.79 A_13 ATOM 831 CE1 TYR 92 64.947 39.678 4.380 1.00 29.60 A_13 ATOM 832 CD2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 65.406 39.691 2.040 1.00 30.60 A_13 ATOM 834 CZ TYR 92 64.647 40.117 3.107 1.00 12.31 A_13					91	69.265				A_13
ATOM 825 N TYR 92 69.198 37.632 1.622 1.00 17.69 A_13 ATOM 827 CA TYR 92 69.233 37.876 3.061 1.00 10.17 A_13 ATOM 828 CB TYR 92 67.942 37.428 3.744 1.00 16.78 A_13 ATOM 829 CG TYR 92 66.786 38.364 3.523 1.00 26.17 A_13 ATOM 830 CD1 TYR 92 66.015 38.803 4.581 1.00 17.79 A_13 ATOM 831 CE1 TYR 92 64.947 39.678 4.380 1.00 29.60 A_13 ATOM 832 CD2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 65.406 39.691 2.040 1.00 30.60 A_13 ATOM 834 CZ TYR 92 64.647 40.117 3.107 1.00 12.31 A_13										A_13
ATOM 828 CB TYR 92 67.942 37.428 3.744 1.00 10.17 A_13 ATOM 828 CB TYR 92 67.942 37.428 3.744 1.00 16.78 A_13 ATOM 829 CG TYR 92 66.786 38.364 3.523 1.00 26.17 A_13 ATOM 830 CD1 TYR 92 66.015 38.803 4.581 1.00 17.79 A_13 ATOM 831 CE1 TYR 92 64.947 39.678 4.380 1.00 29.60 A_13 ATOM 832 CD2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 65.406 39.691 2.040 1.00 30.60 A_13 ATOM 834 CZ TYR 92 64.647 40.117 3.107 1.00 12.31 A_13						69.198				A_13 A 13
ATOM 828 CB TYR 92 67.942 37.428 3.744 1.00 16.78 A_13 ATOM 829 CG TYR 92 66.786 38.364 3.523 1.00 26.17 A_13 ATOM 830 CD1 TYR 92 66.015 38.803 4.581 1.00 17.79 A_13 ATOM 831 CE1 TYR 92 64.947 39.678 4.380 1.00 29.60 A_13 ATOM 832 CD2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 65.406 39.691 2.040 1.00 30.60 A_13 ATOM 834 CZ TYR 92 64.647 40.117 3.107 1.00 12.31 A_13	MOTA	827	CA	TYR	92	69.233	37.876	3.061	1.00 10.17	A_13
ATOM 830 CD1 TYR 92 66.015 38.803 4.581 1.00 17.79 A_13 ATOM 831 CE1 TYR 92 64.947 39.678 4.380 1.00 29.60 A_13 ATOM 832 CD2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 65.406 39.691 2.040 1.00 30.60 A_13 ATOM 834 CZ TYR 92 64.647 40.117 3.107 1.00 12.31 A_13										A_13
ATOM 831 CE1 TYR 92 64.947 39.678 4.380 1.00 29.60 A_13 ATOM 832 CD2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 65.406 39.691 2.040 1.00 30.60 A_13 ATOM 834 CZ TYR 92 64.647 40.117 3.107 1.00 12.31 A_13										A 13
ATOM 832 CD2 TYR 92 66.467 38.818 2.250 1.00 25.90 A_13 ATOM 833 CE2 TYR 92 65.406 39.691 2.040 1.00 30.60 A_13 ATOM 834 CZ TYR 92 64.647 40.117 3.107 1.00 12.31 A_13	MOTA	831	CE	TYR	92	64.947	39.678	4.380	1.00 29.60	A_13
ATOM 834 CZ TYR 92 64.647 40.117 3.107 1.00 12.31 A_13										A_13
ATOM 835 OH TYR 92 63.575 40.967 2.886 1.00 26.07 A_13										A_13 A_13
										A_13

ATOM	837	С	TYR	92	70.427	37.245	3.763	1.00 11.94	A_13
ATOM	838	ō	TYR	92	70.752	37.617	4.882	1.00 17.58	A_13
MOTA	839	N	GLY	93	71.095	36.311	3.097	1.00 24.67	A_13
MOTA	841	CA	GLY	93	72.250	35.666	3.691	1.00 18.05	A_13
ATOM	842	С	GLY	93	73.295	36.681	4.116	1.00 10.00	A_13
MOTA	843	0	GLY	93	73.573	37.656	3.391	1.00 10.13	A_13
MOTA	844	N	GLY	94	73.812	36.495	5.328	1.00 12.44	A_13
MOTA	846	CA	GLY	94	74.827	37.372	5.872	1.00 10.00	A_13
ATOM ATOM	847 848	0	GLY GLY	94 94	74.358 75.052	38.694 39.271	6.456 7.284	1.00 17.29	A_13
ATOM	849	N	ASP	95	73.221	39.271	5.993	1.00 14.53 1.00 10.00	A_13 A_13
MOTA	851	CA	ASP	95	72.689	40.485	6.472	1.00 16.35	A_13
ATOM			ASP		_ 71.332_	40777_			A_13
ATOM	853	CG	ASP	95	71.421	40.904	4.309	1.00 14.54	A_13
ATOM	854	OD1	ASP	95	70.406	41.256	3.673	1.00 11.86	A_13
MOTA	855		ASP	95	72.502	40.647	3.753	1.00 15.39	A_13
ATOM	856	Ç	ASP	95	72.548	40.523	7.994	1.00 22.31	A_13
ATOM ATOM	857 858	O N	ASP ALA	95 96	72.279 72.703	39.497 41.711	8.635	1.00 10.88	A_13
ATOM	860	CA	ALA	96	72.609	41.877	8.566 10.011	1.00 18.45 1.00 15.08	A_13 A_13
ATOM	861	СВ	ALA	96	73.982	42.244	10.587	1.00 19.20	A_13
MOTA	862	C.	ALA	96	71.587	42.961	10.345	1.00 14.91	A_13
ATOM	863	0	ALA	96	71.702	44.092	9.876	1.00 10.00	A_13
MOTA	864	N	HIS	97	70.635	42.646	11.215	1.00 14.01	À_13
MOTA	866	CA	HIS	97	69.599	43.620	11.581	1.00 11.35	A_13
ATOM	867	CB	HIS	97 97	68.207	43.083	11.203	1.00 20.32	A_13
MOTA MOTA	868 869	CG	HIS HIS	97 97	68.027 68.734	42.786 43.186	9.742 8.654	1.00 15.00 1.00 10.00	A_13 A_13
ATOM	870		HIS	97	67.014	41.978	9.257	1.00 10.00	A_13 A_13
ATOM	871		HIS	97	67.108	41.895	7.936	1.00 10.00	A_13
ATOM	872		HIS	97	68.142	42.618	7.552	1.00 17.10	A_13
MOTA	874	С	HIS	97	69.650	43.952	13.078	1.00 13.37	A_13
MOTA	875	0	HIS	97		.43.055	13.908	1.00 13.48	A_13
MOTA	876	N	PHE	98	69.596	45.237	13.423	1.00 21.01	A_13
MOTA	878	CA	PHE	98	69.634	45.668	14.823	1.00 11.27	A_13
ATOM ATOM	879 880	CB	PHE	98 98	70.817 72.138	46.615 46.011	15.055 14.703	1.00 10.00 1.00 20.49	A_13 A_13
MOTA	881		PHE	98	72.984	45.524	15.707	1.00 20.49	A_13 A_13
ATOM	882		PHE	98	72.506	45.853	13.365	1.00 13.51	A_13
MOTA	883		PHE	98	74.171	44.888	15.382	1.00 20.00	A_13
MOTA	884	CE2	PHE	98	73.693	45.215	13.024	1.00 10.00	A_13
ATOM	885	CZ	PHE	98	74.527	44.728	14.029	1.00 10.00	A_13
ATOM	886	Č	PHE	98	68.336	46.336	15.245	1.00 25.38	A_13
ATOM ATOM	887 888	o N	PHE ASP	98 99	67.815 67.817	47.218 45.924	14.552 16.394	1.00 10.00	A_13 A_13
MOTA	890	CA	ASP	99	66.567	46.476	16.886	1.00 21.68 1.00 10.00	A_13 A_13
ATOM	891	CB	ASP	99	66.039	45.604	18.010	1.00 10.00	A_13
MOTA	892	CG	ASP	99	64.648	45.998	18.473	1.00 14.00	A_13
MOTA	893		ASP	99	64.104	45.272	19.329	1.00 15.19	A_13
ATOM	894		ASP	99	64.089	47.011	18.001	1.00 17.01	A_13
ATOM	895	C	ASP	99	66.817	47.871	17.391	1.00 13.06	A_13
ATOM ATOM	896 897	N O	ASP ASP	99 100	67.528 66.203	48.056 48.856	18.374 16.746	1.00 10.00 1.00 15.56	A_13 A_13
ATOM	899	CA	ASP	100	66.397	50.232	17.177	1.00 18.23	A_13
ATOM	900	CB	ASP	100	66.121	51.228	16.041	1.00 15.05	A_13
MOTA	901	CG	ASP	100	67.275	52.180	15.838	1.00 11.67	A_13
MOTA	902		ASP	100	67.602	52.516	14.683	1.00 21.07	A_13
MOTA	903		ASP	100	67.879	52.569	16.860	1.00 14.72	A_13
MOTA MOTA	904	C	ASP	100	65.610	50.572	18.445	1.00 10.00	A_13
MOTA	905 906	Ŋ	ASP ASP	100 101	65.767 64.755	51.635 49.669	19.009 18.895	1.00 17.18 1.00 14.57	A_13 A_13
ATOM	908	CA	ASP	101	64.031	49.924	20.123	1.00 17.59	A_13 A_13
ATOM	909	СВ	ASP	101	62.769	49.051	20.236	1.00 12.50	A_13
MOTA	910	CG	ASP	101	61.532	49.721	19.606	1.00 17.12	A_13
MOTA	911		ASP	101	60.599	49.023	19.179	1.00 10.39	A_13
ATOM	912		ASP	101	61.480	50.962	19.536	1.00 18.09	A_13
ATOM	913	C	ASP	101	64.994	49.766	21.306	1.00 19.33	A_13
MOTA MOTA	914 915	O N	ASP GLU	101 102	64.610 66.213	49.972 49.301	22.456	1.00 10.00	A_13
MOTA	917	CA	GLU	102	67.267	49.301	21.019 22.044	1.00 16.15 1.00 13.43	A_13 A_13
ATOM	918	CB	GLU	102	68.264	48.085	21.720	1.00 13.43	A_13 A_13
ATOM	919	CG	GLU	102	67.697	46.704	21.636	1.00 10.00	A_13
ATOM	920	CD	GLU	102	66.650	46.467	22.672	1.00 11.18	A_13
ATOM	921		GLU	102	66.872	46.746	23.870	1.00 16.09	A_13
ATOM ATOM	922	OE2		102	65.572	46.033 50:495	22.271	1.00 26.76	A_13
ATOM	923 924	C	GLU GLU	102 102	68.070 68.103	51.161	22.007 20.971	1.00 11.07 1.00 13.97	A_13 A_13
	264	•	020	102	00.103	22.201	20.311	1.00 13.9/	W_T2

ATOM	925	N :	THR	103	68.774	50.823	23.091	1.00 22.82	A_13
ATOM	927		THR	103	69.606	52.034	23.102	1.00 13.45	A_13
ATOM	928		THR	103	69.571	52.793	24.459	1.00 20.78	A_13
ATOM	929	OG1 '		103	68.236	53.228	24.745	1.00 10.69	A_13
ATOM	931	CG2 '	THR	103	70.445	54.046	24.378	1.00 19.45	A_13
MOTA	932	C '	THR	103	71.030	51.571	22.822	1.00 12.42	A_13
MOTA	933	0 '	THR	103	71.639	50.896	23.642	1.00 19.81	A_13
ATOM	934		TRP	104	71.525	51.854	21.626	1.00 10.00	A_13
ATOM	936		TRP	104	72.873	51.448	21.248	1.00 13.61	A_13
MOTA	937		TRP	104	72.943	51.221	19.739	1.00 29.21	A_13
ATOM	938		TRP	104	71.970	50.174	19.313	1.00 21.39	A_13
ATOM	939	CD2		104	72.101	48.760	19.501	1.00 25.13	A_13
ATOM		CE2-			70.937			1.00 28.84-	
MOTA MOTA	941 942	CE3		104 104	73.088 70.765	47.941 50.372	20.070 18.694	1.00 13.36	A_13
MOTA	943	NE1		104	70.139	49.163	18.484	1.00 21.59 1.00 19.91	A_13 A_13
ATOM	945	CZ2		104	70.738	46.768	18.977	1.00 10.00	A_13
ATOM	946	CZ3		104	72.888	46.568	20.084	1.00 14.54	A_13
ATOM	947	CH2		104	71.720	45.995	19.539	1.00 11.93	A_13
ATOM	948	С	TRP	104	73.912	52.453	21.725	1.00 16.59	A_13
ATOM	949	0	TRP	104	73.707	53.671	21.642	1.00 12.90	A_13
ATOM	950		THR	105	75.013	51.949	22.268	1.00 20.85	A_13
MOTA	952		THR	105	76.040	52.831	22.794	1.00 12.38	A_13
MOTA	953		THR	105	75.974	52.890	24.322	1.00 14.39	A_13
ATOM .	954 956		THR THR	105 105	76.345 74.575	51.609 53.273	24.849 24.797	1.00 16.42 1.00 12.17	A_13 A_13
ATOM	957		THR	105	77.437	52.378	22.457	1.00 12.17	A_13 A_13
ATOM	958		THR	105	77.644	51.261	22.012	1.00 18.98	A_13 A_13
MOTA	959		SER	106	78.385	53.277	22.704	1.00 26.01	A_13
MOTA	961		SER	106	79.809	53.043	22.502	1.00 17.80	· A_13
ATOM	962	СВ	SER	106	80.466	54.284	21.888	1.00 20.63	A_13
ATOM	963	OG	SER	106	79.744	54.756	20.763	1.00 38.89	A_13
MOTA	965	С	SER	106	80.435	52.779	23.880	1.00 34.75	A_13
MOTA	966	0	SER	106	81.652	52.884	24.042	1.00 33.01	A_13
MOTA	967	N	SER	107	79.590	52.494	24.875	1.00 25.87	A_13
ATOM	969	CA	SER	107	80.032	52.221	26.240	1.00 19.68	A_13
ATOM	970	CB	SER	107	80.082	53.510	27.061	1.00 23.47	A_13
MOTA	971	OG	SER	107	78.819	54.158	27.096	1.00 33.70	A_13
ATOM ATOM	973 974	C O	SER SER	107 107	79.100 78.460	51.200 50.418	26.892 26.193	1.00 13.60 1.00 16.40	A_13 A_13
MOTA	975	И	SER	108	79.028	51.205	28.221	1.00 17.31	A_13 A_13
ATOM	977	CA	SER	108	78.188	50.259	28.949	1.00 20.12	A_13
ATOM	978	CB	SER	108	78.745	50.009	30.364	1.00 22.63	A_13
ATOM	979	OG	SER	108	78.444	51.061	31.271	1.00 27.69	A_13
ATOM	981	С	SER	108	76.702	50.606	29.076	1.00 19.98	A_13
ATOM	982	0	SER	108	75.921	49.785	29.562	1.00 35.96	A_13
ATOM	983	N	LYS	109	76.311	51.820	28.713	1.00 16.24	A_13
ATOM	985	CA	LYS	109	74.907	52.186	28.847	1.00 11.10	A_13
MOTA	986 987	CB	LYS	109	74.740	53.688	28.690	1.00 12.41	A_13 A_13
ATOM ATOM	988	CG CD	LYS	109 109	73.555 73.353	54.239 55.732	29.462 29.258	1.00 32.67 1.00 25.94	A_13 A_13
ATOM	989	CE	LYS	109	74.535	56.599	29.749	1.00 25.11	A_13
ATOM	990	NZ	LYS	109	74.225	58.070	29.636	1.00 22.70	A_13
ATOM	994	C	LYS	109	74.138	51.424	27.773	1.00 21.67	A_13
MOTA	995	0	LYS	109	74.667	51.210	26.694	1.00 32.76	A_13
MOTA	996	N	GLY	110	72.932	50.955	28.081	1.00 29.60	A_13
ATOM	998	CA	GLY	110	72.156	50.206	27.096	1.00 10.31	A_13
ATOM	999	C	GLY	110	72.965	49.043	26.542	1.00 20.08	A_13
MOTA	1000	0	GLY	110	73.672	48.362	27.285	1.00 11.17	A_13
ATOM	1001	N	TYR	111	72.924	48.859	25.227	1.00 12.05	A_13
ATOM ATOM	1003	CA	TYR TYR	111 111	73.665 72.713	47.791	24.583	1.00 13.45	A_13
MOTA	1005	CB CG	TYR	111	71.776	46.871 46.101	23.806 24.716	1.00 21.16 1.00 12.28	A_13 A_13
ATOM	1006		TYR	111	70.455	46.510	24.906	1.00 12.25	A_13
ATOM	1007		TYR	111	69.618	45.837	25.795	1.00 19.08	A_13
MOTA	1008		TYR	111	72.232	44.995	25.435	1.00 21.86	A_13
ATOM	1009		TYR	111	71.405	44.314	26.324	1.00 10.00	A_13
ATOM	1010	CZ	TYR	111	70.101	44.740	26.505	1.00 18.51	A_13
MOTA	1011	ОН	TYR	111	69.282	44.077	27.398	1.00 14.32	.A_13
MOTA	1013	C	TYR	111	74.779	48.335	23.695	1.00 16.73	A_13
ATOM	1014	0	TYR	111	74.540	49.105	22.764	1.00 11.98	A_13
ATOM	1015	N	ASN	112	76.008	47.930	23.999	1.00 11.80	A_13
MOTA MOTA	1017 1018	CA CB	ASN ASN	112 112	77.184	48.357	23.240	1.00 16.37	A_13
ATOM	1019	CG	ASN	112	78.453 79.701	47.867 48.460	23.927 23.324	1.00 27.52 1.00 20.16	A_13 A_13
MOTA	1020		ASN	112	80.327	47.861	22.447	1.00 20.16	A_13 A_13
ATOM	1021		ASN	112	80.082	49.640	23.801	1.00 15.12	A_13
		_				_	_		-

3 moss	1004	_			55 44-				
ATOM	1024	C	ASN	112	77.137	47.809	21.813	1.00 18.08	A_13
ATOM	1025	0	ASN	112	77.288	46.606	21.592	1.00 12.69	A_13
MOTA	1026	N	LEU	113	76.972	48.700	20.844	1.00 11.15	A_13
ATOM	1028	CA	LEU	113	76.878	48.296	19.461	1.00 10.00	A_13
ATOM	1029	CB	LEU	113	76.718	49.526	18.568	1.00 10.24	A_13
MOTA	1030	CG	LEU	113	76.325	49.262	17.106	1.00 15.67	A_13
ATOM	1031	CD1		113	75.155	48.296	17.050	1.00 26.54	A_13
MOTA	1032	CD2		113	75.967	50.555	16.415	1.00 15.60	A_13
MOTA	1033	С	LEU	113	78.037	47.403	18.986	1.00 25.17	A_13
MOTA	1034	0	LEU	113	77.799	46.380	18.336	1.00 17.24	A_13
MOTA	1035	N	PHE	114	79.274	47.759	19.327	1.00 28.89	A_13
MOTA	1037	CA	PHE	114	80.442	46.974	18.910	1.00 19.15	A_13
ATOM-	-1038 -	CB -	PHE	114 – –	-81.753-	- 47.579-	19.434	1.00 14.60	- A_13
ATOM	1039	CG	PHE	114	82.923	46.627	19.374	1.00 18.53	A 13
MOTA	1040	CD1	PHE	114	83.419	46.175	18.144	1.00 26.13	A_13
MOTA	1041	CD2	PHE	114	83.514	46.162	20.547	1.00 17.22	A_13
MOTA	1042	CE1	PHE	114	84.475	45.271	18.086	1.00 10.43	A_13
MOTA	1043	CE2	PHE	114	84.571	45.259	20.502	1.00 16.51	A_13
MOTA	1044	CZ	PHE	114	85.052	44.815	19.260	1.00 15.54	A_13
MOTA	1045	С	PHE	114	80.359	45.508	19.306	1.00 10.00	A_13
MOTA	1046	0	PHE	114	80.437	44.625	18.445	1.00 33.07	A_13
ATOM	1047	N	LEU	115	80.206	45.249	20.600	1.00 12.18	A_13
ATOM	1049	CA	LEU	115	80.113	43.877	21.103	1.00 10.59	A_13
MOTA	1050	CB	LEU	115	79.874	43.895	22.616	1.00 14.14	À_13
MOTA	1051	CG	LEU	115	81.082	43.937	23.578	1.00 34.39	A_13
MOTA	1052	CD1	LEU	115	82.337	44.354	22.863	1.00 14.93	A_13
ATOM	1053	CD2	LEU	115	80.815	44.836	24.793	1.00 13.42	A_13
MOTA	1054	С	LEU	115	79.019	43.080	20.379	1.00 12.06	A_13
MOTA	1055	0	LEU	115	79.298	42.109	19.675	1.00 13.35	A_13
MOTA	1056	N	VAL	116	77.786	43.558	20.459	1.00 13.11	A_13
MOTA	1058	CA	VAL	116	76.678	42.875	19.814	1.00 12.97	A_13
MOTA	1059	CB	VAL	116	75.343	43.569	20.129	1.00 28.07	A_13
ATOM	1060	CG1	VAL	116	74.200	42.926	19.340	1.00 17.32	A_13
MOTA	1061	CG2	VAL	116	75.074	43.491	21.617	1.00 22.14	A_13
MOTA	1062	С	VAL	116	76.862	42.724	18.313	1.00 10.00	A_13
MOTA	1063	0	VAL	116	76.473	41.716	17.755	1.00 14.68	A_13
MOTA	1064	N	ALA	117	77.481	43.706	17.667	1.00 10.80	A_13
ATOM	1066	CA	ALA	117	77.726	43.662	16.224	1.00 18.28	A_13
ATOM	1067	CB	ALA	117	78.223	45.014	15.727	1.00 14.94	A_13
MOTA	1068	С	ALA	117	78.735	42.579	15.863	1.00 25.24	A_13
ATOM	1069	0	ALA	117	78.562	41.872	14.861	1.00 18.50	A_13
MOTA	1070	N	ALA	118	79.795	42.458	16.665	1.00 24.40	A_13
MOTA	1072	CA	ALA	118	80.829	41.451	16.422	1.00 11.80	A_13
MOTA	1073	CB	ALA	118	81.945	41.590	17.447	1.00 19.28	A_13
ATOM	1074	С	ALA	118	80.178	40.056	16.496	1.00 10.00	A_13
MOTA	1075	0	ALA	118	80.426	39.183	15.660	1.00 10.00	A_13
ATOM	1076	N	HIS	119	79.309	39.875	17.487	1.00 19.01	A_13
MOTA	1078	CA	HIS	119	78.587	38.624	17.674	1.00 14.36	A_13
ATOM	1079	CB	HIS	119	77.725	38.751	18.924	1.00 10.00	A_13
ATOM	1080	CG	HIS		76.796	37.602	19.166	1.00 10.00	A_13
ATOM	1081		HIS	119	75.691	37.187	18.498	1.00 14.94	A_13
ATOM	1082		HIS	119	76.905	36.783	20.263	1.00 20.37	A_13
ATOM	1084		HIS	119	75.917	35.909	20.270	1.00 17.53	A_13
MOTA	1085	_	HIS	119	75.161	36.134	19.208	1.00 17.55	A_13
ATOM	1086	C	HIS	119	77.741	38.339	16.419	1.00 10.00	A_13
ATOM ATOM	1087 1088	0	HIS	119	77.779	37.245	15.856	1.00 10.64	A_13
ATOM	1090	N	GLÜ	120	77.004	39.343	15.968	1.00 22.95	A_13
ATOM	1091	CA	GLU	120	76.174	39.224	14.775	1.00 23.96	A_13
ATOM	1092	CB	GLU	120 120	75.429	40.545	14.502	1.00 17.19	A_13
ATOM	1092	CG	GLU		74.373	40.889	15.555	1.00 16.14	A_13
MOTA	1094	CD	GLU GLU	120	73.492	39.691	15.929	1.00 10.00	A_13
MOTA	1095			120	73.478	39.354	17.122	1.00 17.94	A_13
ATOM	1096		GLU	120	72.844	39.078	15.047	1.00 17.03	A_13
ATOM	1097	C	GLU	120	76.992	38.832	13.549	1.00 11.45	A_13
		0	GLU	120	76.594	37.946	12.772	1.00 13.34	A_13
ATOM ATOM	1098 1100	N	PHE	121	78.127	39.498	13.353	1.00 10.00	A_13
ATOM	1101	CA CB	PHE	121 121	78.959	39.187	12.216	1.00 14.70	A_13
MOTA	1101	CG	PHE	121	80.040	40.245	12.039	1.00 10.00	A_13
ATOM	1102		PHE	121	79.481	41.623	11.792	1.00 21.57	A_13
ATOM	1103		PHE	121	80.235	42.764	12.069	1.00 16.73	A_13
MOTA	1104		PHE	121	78.164	41.788	11.331	1.00 13.91	· A_13
MOTA	1105	CES	PHE	121	79.682	44.054	11.891	1.00 11.69	A_13
ATOM	1107	CZ	PHE	121	77.615 78.373	43.066	11.152	1.00 18.93	A_13
ATOM	1108	C	PHE	121	79.505	44.192	11.436 12.283	1.00 10.00	A_13
ATOM	1109	õ	PHE	121	79.505	37.756	12.283	1.00 17.14	A_13
MOTA	1110	Ŋ	GLY	122	79.738	37.104 37.245	13.490	1.00 13.04 1.00 16.60	A_13
						31.493	13.430	T-00 T0'00	A_13

					•				
MOTA	1112	CA	GLY	122	80.202	35.872	13.627	1.00 19.45	A_13
MOTA	1113	С	GLY	122	79.162	34.982	12.966	1.00 18.55	A_13
ATOM	1114	ŏ	GLY	122	79.500	33.988	12.306	1.00 10.03	
				123					A_13
ATOM	1115	N	HIS		77.892	35.361	13.140	1.00 18.22	A_13
ATOM	1117	CA	HIS	123	76.753	34.665	12.525	1.00 16.31	A_13
MOTA	1118	CB	HIS	123	75.424	35.224	13.031	1.00 11.35	A_13
ATOM	1119	CG	HIS	123	75.049	34.768	14.403	1.00 10.33	A_13
MOTA	1120	CD2	HIS	123	74.552	35.454	15.457	1.00 16.64	A_13
ATOM	1121	ND1		123	75.097	33.450	14.782	1.00 18.04	A_13
MOTA	1123	CE1		123	74.638	33.332	16.017	1.00 16.66	A_13
MOTA	1124	NE2		123	74.301	34.533	16.450	1.00 25.32	A_13
ATOM	1125	С	HIS	123	76.771	34.853	10.997	1.00 13.66	A_13
_MOTA	_1126_	_0	HIS	123	7.6565_	33.901_		_1.00_10.82	
MOTA	1127	N	SER	124	77.006	36.082	10.539	1.00 13.57	A_13
ATOM	1129	CA	SER	124	77.030	36.368	9.099	1.00 12.03	
									A_13
MOTA	1130	СВ	SER	124	77.311	37.863	8.832	1.00 10.35	A_13
MOTA	1131	OG	SER	124	76.399	38.706	9.510	1.00 14.26	A_13
ATOM	1133	С	SER	124	78.117	35.548	8.422	1.00 21.45	A_13
ATOM	1134	0	SER	124	78.079	35.333	7.210	1.00 10.00	A_13
MOTA	1135	N	LEU	125	79.091	35.108	9.216	1.00 10.00	A_13
ATOM	1137	CA	LEU	125	80.222	34.340	8.707		N_13
								1.00 19.28	A_13
ATOM	1138	CB	LEU	125	81.521	34.754	9.422	1.00 22.39	A_13
ATOM	1139	CG	PEA	125	81.849	36.258	9.340	1.00 10.00	A_13
ATOM	1140	CD1	LEU	125	83.063	36.622	10.190	1.00 10.00	A_13
ATOM	1141	CD2	LEU	125	82.029	36.651	7.873	1.00 10.00	A_13
ATOM	1142	C	LEU	125	79.986	32.851	8.843	1.00 10.00	A_13
MOTA	1143	ŏ	LEU	125	80.759	32.056	8.329	1.00 23.27	
									A_13
MOTA	1144	N	GLY	126	78.932	32.477	9.563	1.00 22.87	A_13
MOTA	1146	CA	GLY	126	78.604	31.070	9.720	1.00 17.27	A_13
ATOM	1147	С	GLY	126	78.781	30.464	11.094	1.00 11.71	A_13
ATOM	1148	0	GLY	126	78.784	29.244	11.236	1.00 24.16	A_13
MOTA	1149	N	LEU	127	78.972	31.297	12.105	1.00 18.95	A_13
ATOM	1151	CA	LEU	127	79.152	30.790	13.457		
								1.00 22.84	A_13
ATOM	1152	СВ	LEU	127	80.113	31.693	14.252	1.00 11.92	A_13
MOTA	1153	CG	LEU	127	81.244	30.969	14.983	1.00 18.83	A_13
MOTA	1154	CD1	LEU	127	82.096	30.197	13.979	1.00 16.63	A_13
ATOM	1155	CD2	LEU	127	82.104	31.970	15.760	1.00 22.15	A_13
ATOM	1156	C	LEU	127	77.802	30.699	14.163	1.00 21.02	A_13
ATOM	1157		LEU	127					
		0			76.996	31.629	14.098	1.00 14.68	A_13
ATOM	1158	N	ASP	128	77.563	29.572	14.828	1.00 18.87	A_13
MOTA	1160	CA	ASP	128	76.336	29.345	15.571	1.00 16.46	A_13
ATOM	1161	CB	ASP	128	75.996	27.855	15.540	1.00 17.60	A_13
ATOM	1162	CG	ASP	128	74.577	27.552	15.996	1.00 23.55	A_13
ATOM	1163		ASP	128					W-13
					73.796	28.488	16.258	1.00 10.00	A_13
MOTA	1164		ASP	128	74.236	26.355	16.087	1.00 32.36	A_13
ATOM	1165	С	ASP	128	76.634	29.803	16.995	1.00 10.00	A_13
ATOM	1166	0	ASP	128	77.650	30.420	17.244	1.00 29.54	A_13
ATOM	1167	N	HIS	129	75.714	29.565	17.912	1.00 10.00	A_13
ATOM	1169	CA	HIS	129	75.910	29.955	19.289	1.00 10.00	A_13
ATOM	1170	CB	HIS	129	74.582	30.033	20.029	1.00 21.30	A_13
ATOM	1171		HIS	129					
		CG			73.798	31.282	19.761	1.00 24.16	A_13
ATOM	1172		HIS	129	74.180	32.585	19.725	1.00 10.00	A_13
ATOM	1173	ND1	HIS	129	72.460	31.263	19.476	1.00 21.70	A_13
ATOM	1175	CE1	HIS	129	72.031	32.501	19.271	1.00 10.27	A_13
MOTA	1176	NE2	HIS	129	73.057	33.319	19.407	1.00 14.37	A_13
ATOM	1177	C	HIS	129	76.780	28.947	19.992	1.00 30.04	A_13
ATOM	1178	ŏ	HIS	129	76.624	27.730	19.822	1.00 30.04	A_13
ATOM	1179								
		N	SER	130	77.628	29.468	20.860	1.00 18.60	A_13
ATOM	1181	CA	SER	130	78.534	28.662	21.636	1.00 10.79	' A_13
MOTA	1182	CB	SER	130	79.849	29.435	21.816	1.00 21.31	A_13
MOTA	1183	OG	SER	130	80.782	28.731	22.616	1.00 16.34	A_13
ATOM	1185	С	SER	130	77.898	28.368	22.987	1.00 31.13	A_13
ATOM	1186	Ō	SER	130	76.962	29.060	23.440	1.00 15.87	
ATOM	1187		LYS						A_13
		N		131	78.402	27.319	23.619	1.00 13.13	A_13
ATOM	1189	CA	LYS	131	77.924	26.925	24.928	1.00 13.21	A_13
MOTA	1190	CB	LYS	131	77.656	25.414	24.990	1.00 18.85	A_13
ATOM	1191	CG	LYS	131	78.689	24.541	24.303	1.00 32.55	A_13
ATOM	1192	CD	LYS	131	78.547	24.601	22.790	1.00 41.54	A_13
ATOM	1193	CE	LYS						2-13
	1194				79.909	24.672	22.117	1.00 19.64	A_13
ATOM		NZ	LYS		80.747	25.799	22.617	1.00 13.47	A_13
ATOM	1198	C	LYS		78.922	27.379	25.982	1.00 10.00	A_13
ATOM	1199	0	LYS		78.666	27.260	27.185	1.00 13.35	A_13
ATOM	1200	N	ASP	132	80.025	27.968	25.519	1.00 13.47	A_13
ATOM	1202	CA	ASP		81.097	28.487	26.375	1.00 10.04	A_13
ATOM	1203	СВ	ASP		82.376	28.617	25.522		A_13
ATOM	1204	CG	ASP					1.00 18.14	
					83.649	28.821	26.345	1.00 16.54	A_13
ATOM	1205	ODI	ASP	132	84.645	28.132	26.028	1.00 36.08	A_13

3001	1200	000		430					
ATOM	1206		ASP	132	83.685	29.660	27.276	1.00 15.60	A_13
ATOM	1207	C	ASP	132	80.603	29.875	26.836	1.00 18.74	A_13
ATOM	1208	0	ASP	132	80.559	30.816	26.038	1.00 14.61	A_13
ATOM	1209	N	PRO	133	80.305	30.039	28.142	1.00 15.61	A_13
ATOM	1210	CD	PRO	133	80.617	29.127	29.251	1.00 21.19	A_13
MOTA	1211	CA	PRO	133	79.818	31.320	28.662	1.00 10.00	A_13
MOTA	1212	CB	PRO	133	79.542	31.007	30.135	1.00 10.00	A_13
MOTA	1213	CG	PRO	133	80.633	30.063	30.450	1.00 30.94	A_13
MOTA	1214	С	PRO	133	80.834	32.444	28.511	1.00 22.87	A_13
ATOM	1215	0	PRO	133	80.526	33.574	28.742	1.00 21.65	A_13
ATOM	1216	Ň	GLY	134	82.070	32.115	28.174	1.00 20.95	7 13
ATOM	1218	CA	GLY	134	83.055	33.167	28.028	1.00 20.33	A_13
	1219		_GLY		83.182				A_13
ATOM	1220		GLY	134				1.00-34.54-	A <u>-</u> 13-
ATOM		0			83.962	34.488	26.252	1.00 18.06	A_13
	1221	N	ALA	135	82.490	32.846	25.706	1.00 21.09	A_13
ATOM	1223	CA	ALA	135	82.547	33.110	24.263	1.00 27.50	A_13
ATOM	1224	CB	ALA	135	82.131	31.858	23.453	1.00 10.00	A_13
ATOM	1225	С	ALA	135	81.722	34.308	23.814	1.00 21.74	A_13
ATOM	1226	0	ALA	135 .	80.641	34.556	24.328	1.00 13.84	A_13
ATOM	1227	N	LEU	136	82.220	34.990	22.787	1.00 19.10	A_13
MOTA	1229	CA	LEU	136	81.540	36.140	22.203	1.00 21.65	A_13
ATOM	1230	CB	LEU	136 .	82.448	36.803	21.161	1.00 10.00	A_13
ATOM	1231	CG	LEU	136	81.964	37.898	20.201	1.00 17.22	A_13
ATOM	1232		LEU	136	81.250	37.296	19.024	1.00 24.18	A_13
ATOM	1233		LEU	136	81.113	38.896	20.905	1.00 10.00	
ATOM	1234	c	LEU	136	80.250	35.632	21.558		A_13
ATOM	1235	ŏ	LEU	136				1.00 19.32	A_13
ATOM	1236			137	79.266	36.359	21.458	1.00 26.20	A_13
		N	MET		80.297	34.409	21.029	1.00 10.00	A_13
MOTA	1238	CA	MET	137	79.123	33.791	20.423	1.00 10.02	A_13
MOTA	1239	CB	MET	137	79.507	32.691	19.428	1.00 15.14	A_13
ATOM	1240		MET	137	80.181	33.223	18.169	1.00 16.42	A_13
ATOM	1241	SD	MET	137	79.366	34.665	17.397	1.00 10.65	A_13
ATOM	1242	CE	MET	137	77.848	34.005	16.975	1.00 10.87	A_13
MOTA	1243	С	MET	137	78.122	33.256	21.447	1.00 12.70	A_13
ATOM	1244	0	MET	137	77.187	32.539	21.087	1.00 10.00	A_13
MOTA	1245	N	PHE	138	78.295	33.627	22.713	1.00 18.70	A_13
ATOM	1247	CA	PHE	138	77.370	33.196	23.759	1.00 24.08	A_13
ATOM	1248	СВ	PHE	138	77.954	33.448			
ATOM	1249	CG	PHE	138			25.159	1.00 24.15	A_13
ATOM	1250		PHE	138	77.306	32.617	26.240	1.00 29.38	A_13
ATOM					76.694	33.222	27.336	1.00 27.07	A_13
	1251		PHE	138	77.253	31.226	26.123	1.00 21.37	A_13
MOTA	1252		PHE	138	76.033	32.455	28.289	1.00 30.35	A_13
ATOM	1253	CE2		138	76.599	30.458	27.065	1.00 19.58	A_13
MOTA	1254	CZ	PHE	138	75.986	31.070	28.154	1.00 17.69	A_13
ATOM	1255	С	PHE	138	76.074	33.992	23.513	1.00 14.20	A_13
MOTA	1256	0	PHE	138	76.115	35.105	23.014	1.00 10.27	A_13
ATOM	1257	N	PRO	139	74.899	33.366	23.730	1.00 13.04	A_13
ATOM	1258	CD	PRO	139	74.664	31.975	24.131	1.00 11.17	A_13
ATOM	1259	CA	PRO	139	73.619	34.043	23.504	1.00 18.27	A_13
ATOM	1260	CB	PRO	139	72.625	32.875	23.384	1.00 14.33	` A_13
ATOM	1261	CG	PRO	139	73.474	31.634	23.305	1.00 24.22	A_13
ATOM	1262	c	PRO	139	73.162	35.018	24.584		
ATOM	1263	ō	PRO	139	72.023			1.00 16.51	A_13
ATOM	1264	N	ILE	140	74.034	35.467	24.535	1.00 24.45	A_13
ATOM	1266	CA	ILE	140		35.375	25.524	1.00 23.16	A_13
ATOM	1267		ILE		73.652	36.290	26.604	1.00 25.00	A_13
MOTA		CB		140	73.688	35.559	27.966	1.00 12.10	A_13
	1268		ILE	140	73.336	36.519	29.085	1.00 12.62	A_13
ATOM	1269		ILE	140	72.738	34.341	27.904	1.00 22.67	A_13
ATOM	1270		ILE	140	72.827	33.353	29.073	1.00 27.73	A_13
MOTA	1271	С	ILE	140	74.584	37.489	26.621	1.00 30.64	A_13
ATOM	1272	0	ILE	140	75.778	37.317	26.682	1.00 23.16	A_13
MOTA	1273	N	TYR	141	74.033	38.694	26.532	1.00 21.05	A_13
MOTA	1275	CA	TYR	141	74.851	39.901	26.528	1.00 20.10	A_13
MOTA	1276	CB	TYR	141	74.017	41.122	26.129	1.00 17.66	A_13
MOTA	1277	CG	TYR	141	74.784	42.433	26.103	1.00 22.24	A_13
ATOM	1278		TYR	141	74.711	43.318	27.171	1.00 18.07	A_13
ATOM	1279		TYR	141	75.386	44.527	27.144		A_13
ATOM	1280		TYR	141	75.563			1.00 19.84	A_13
ATOM	1281		TYR	141		42.798	24.999	1.00 18.08	A_13
ATOM	1282				76.244	44.008	24.961	1.00 10.00	A_13
		CZ	TYR	141	76.149	44.867	26.038	1.00 25.17	A_13
ATOM	1283	ОН	TYR	141	76.814	46.070	26.043	1.00 30.78	A_13
ATOM	1285	C	TYR	141	75.533	40.169	27.852	1.00 19.61	A_13
ATOM	1286	0	TYR	141	74.910	40.146	28.913	1.00 16.08	A_13
ATOM	1287	N	THR	142	76.817	40.476	27.772	1.00 26.26	A_13
MOTA	1289	CA	THR	142	77.612	40.788	28.944	1.00 24.52	A_13
MOTA	1290	CB	THR	142	78.498	39.568	29.362	1.00 10.00	A_13
MOTA	1291	OG1	THR	142	77.664	38.587	29.981	1.00 37.30	A_13
							•		

MOTA	1293	CG2	THR	142	79.543	39.961	30.390	1.00 14.88	A_13
MOTA	1294	С	THR	142	78.467	41.976	28.580	1.00 25.46	A_13
ATOM	1295	Õ	THR	142	78.980	42.058	27.464	1.00 10.00	A_13
ATOM	1296	N	TYR	143	78.575	42.947	29.476	1.00 20.23	A_13
MOTA	1298	CA	TYR	143	79.412	44.079	29.133	1.00 32.69	A_13
ATOM	1299	СВ	TYR	143	79.024	45.363	29.854	1.00 35.01	A_13
ATOM	1300	CG	TYR	143	79.834	46.531	29.347	1.00 16.01	A_13
									A_13
MOTA	1301	CD1		143	79.776	46.910	27.998	1.00 12.56	_
ATOM	1302	CE1		143	80.554	47.961	27.510	1.00 19.23	A_13
MOTA	1303	CD2	TYR	143	80.690	47.230	30.196	1.00 19.43	A_13
MOTA	1304	CE2	TYR	143	81.478	48.287	29.719	1.00 15.52	A_13
MOTA	1305	CZ	TYR	143	81.403	48.643	28.376	1.00 12.56	A_13
- MOTA-	-1306	-OH	TYR-	-143	82.193-	-49.654	27.892-	1.00-18.85-	A_13-
MOTA	1308	C	TYR	143	80.871	43.754	29.382	1.00 25.10	A_13
MOTA	1309	ō	TYR	143	81.373	43.846	30.503	1.00 28.90	A_13
ATOM	1310	N	THR	144	81.539	43.375	28.303	1.00 35.25	A_13
MOTA	1312	CA	THR	144	82.946	43.029	28.336	1.00 38.86	A_13
			THR	144	83.158	41.568	27.873	1.00 23.22	A_13
MOTA	1313	CB						1.00 25.22	A_13
ATOM	1314		THR	144	82.129	41.219	26.934		
MOTA	1316		THR	144	83.105	40.616	29.082	1.00 17.53	A_13
MOTA	1317	Ç	THR	144	83.720	44.017	27.488	1.00 21.63	A_13
MOTA	1318	0	THR	144	84.434	43.651	26.556	1.00 37.44	A_13
MOTA	1319	N	GLY	145	83.504	45.288	27.798	1.00 14.47	A_13
MOTA	1321	CA	GLY	145	84.200	46.375	27.131	1.00 24.39	À_13
MOTA	1322	С	GLY	145	84.119	46.536	25.628	1.00 41.65	A_13
ATOM	1323	0	GLY	145	84.053	45.565	24.877	1.00 42.39	A_13
ATOM	1324	N	LYS	146	84.122	47.792	25.195	1.00 33.04	A_13
ATOM	1326	CA	LYS	146	84.059	48.103	23.778	1.00 29.29	A_13
ATOM	1327	CB	LYS	146	83.260	49.392	23.539	1.00 26.47	A_13
				146	83.087	49.721	22.059	1.00 23.47	A_13
ATOM	1328	CG	LYS						A_13
MOTA	1329	CD	LYS	146	82.812	51.194	21.833	1.00 13.70	
MOTA	1330	CE	LYS	146	82.620	51.497	20.343	1.00 18.35	A_13
MOTA	1331	NZ	LYS	146	83.766	51.122	19.477	1.00 30.66	A_13
MOTA	1335	С	LYS	146	85.491	48.297	23.308	1.00 41.61	A_13
ATOM	1336	0	LYS	146	86.028	49.412	23.382	1.00 46.44	A_13
ATOM	1337	N	SER	147	86.130	47.206	22.898	1.00 34.67	A 13
ATOM	1339	CA	SER	147	87.509	47.258	22.416	1.00 30.76	A_13
ATOM	1340	CB	SER	147	87.624	48.258	21.249	1.00 24.56	A_13
ATOM	13'41	OG	SER	147	86.638	48.002	20.257	1.00 31.81	A_13
ATOM	1343		SER	147	88.464	47.626	23.567	1.00 33.60	A_13
		C							A_13
ATOM	1344	0	SER	147	88.789	48.806	23.789	1.00 39.96	W-13
ATOM	1345	N	HIS	148	88.862	46.611	24.331	1.00 36.71	A_13
MOTA	1347	CA	HIS	148	89.778	46.769	25.467	1.00 34.40	A_13
MOTA	1348	CB	HIS	148	89.307	47.862	26.438	1.00 26.40	A_13
ATOM	1349	CG	HIS	148	90.251	49.022	26.537	1.00 39.11	A_13
MOTA	1350	CD2	HIS	148	90.929	49.542	27.588	1.00 30.52	A_13
MOTA	1351	ND1	HIS	148	90.635	49.767	25.437	1.00 37.71	A_13
ATOM	1353	CE1	HIS	148	91.511	50.681	25.807	1.00 29.04	A_13
ATOM	1354		HIS	148	91.707	50.567	27.110	1.00 29.03	A_13
ATOM	1356	c	HIS	148	89.949	45.436	26.190	1.00 39.41	A_13
ATOM	1357	ŏ	HIS	148	90.134	45.373	27.411	1.00 35.01	A_13
ATOM	1358	N	PHE	149	89.840	44.386	25.383	1.00 25.35	A_13
									A_13
ATOM	1360	CA	PHE	149	89.996	42.966	25.721	1.00 30.54	
ATOM	1361	CB	PHE	149	88.788	42.423	26.495	1.00 33.34	A_13
MOTA	1362	CG	PHE	149	88.951	42.440	27.996	1.00 31.37	A_13
MOTA	1363		PHE	149	89.387	41.302	28.673	1.00 30 46	A_13
MOTA	1364		PHE	149	88.624	43.575	28.740	1.00 40.67	A_13
MOTA	1365		L PHE	149	89.492	41.293	30.075	1.00 18.92	A_13
MOTA	1366	CE	2 PHE	149	88.728	43.574	30.136	1.00 23.23	A_13
ATOM	1367	CZ	PHE	149	89.161	42.430	30.803	1.00 17.03	A_13
ATOM	1368	С	PHE	149	90.026	42.366	24.295	1.00 41.76	A_13
ATOM	1369	0	PHE	149	89.967	43.119	23.307	1.00 40.43	A_13
ATOM	1370	N	MET	150	90.132	41.050	24.142	1.00 31.30	A_13
ATOM	1372		MET	150	90.152			1.00 20.65	A_13
	1373	CA	MET	150	91.588	40.531 40.195	22.779	1.00 28.29	A_13
ATOM		CB					22.352		W-13
ATOM	1374	CG	MET	150	92.494	41.436		1.00 34.71	A_13
ATOM	1375	SD	MET	150	91.750			1.00 67.91	A_13
MOTA	1376	CE	MET	150	92.512			1.00 22.43	A_13
MOTA	1377	С	MET	150	89.201	39.370	22.497	1.00 21.51	A_13
MOTA	1378	0	MET	150	88.498			1.00 25.37	A_13
ATOM	1379	N	LEU	151	89.159			1.00 13.78	A_13
ATOM	1381		LEU	151	88.313			1.00 14.73	A_13
MOTA	1382		LEU		88.435			1.00 15.49	A_13
MOTA	1383				87.535				A_13
MOTA	1384		1 LEU		86.070			1.00 10.98	A_13
									A_13
MOTA	1385		2 LEU		87.879				
MOTA	1386	С	LEU	151	88.732	36.563	21.600	1.00 25.01	A_13

ATOM	1387	0	LEU	151	89.912	26 170	21.589	1.00 17.37	2 17
ATOM	1388	N	PRO	152	87.777	36.178 35.927	22.306	1.00 17.37	A_13 A_13
ATOM	1389	CD	PRO	152	86.425	36.450	22.575	1.00 15.35	A_13
ATOM	1390	CA	PRO	152	88.030	34.712	23.087	1.00 11.49	A_13
ATOM	1391	CB	PRO	152	86.658	34.412	23.702	1.00 15.98	A_13
ATOM	1392	CG	PRO	152	86.083	35.789	23.898	1.00 27.60	A_13
ATOM	1393	C	PRO	152	88.533	33.553	22.230	1.00 18.06	A_13
MOTA MOTA	1394 1395	N O	PRO ASP	152 153	88.160 89.350	33.430 32.696	21.063 22.836	1.00 16.21 1.00 15.86	A_13 A_13
ATOM	1397	CA	ASP	153	89.933	31.526	22.185	1.00 20.25	A_13
ATOM	1398	СВ	ASP	153	90.632	30.630	23.227	1.00 18.17	A_13
ATOM	1399	CG	ASP	153	91.843	31.301	23.908	1.00 24.01	A_13
- MOTA		OD1-			 92.517-		23.284-	1.00-14.96	
MOTA	1401	OD2		153	92.131	30.937	25.077	1.00 20.20	A_13
MOTA	1402 1403	С О	ASP	153 153	88.887 89.113	30.678	21.452	1.00 24.64	A_13
MOTA MOTA	1404	И	ASP ASP	154	87.757	30.221 30.453	20.330 22.114	1.00 13.51 1.00 24.11	A_13 A_13
ATOM	1406	CA	ASP	154	86.664	29.657	21.577	1.00 19.19	A_13
ATOM	1407	CB	ASP	154	85.527	29.632	22.587	1.00 18.27	A_13
ATOM	1408	CG	ASP	154	84.406	28.751	22.161	1.00 24.26	A_13
ATOM	1409		ASP	154	83.314	29.291	21.950	1.00 20.97	A_13
ATOM	1410		ASP	154	84.609	27.530	22.031	1.00 20.32	A_13
ATOM ATOM	1411 1412	C O	ASP ASP	154 154	86.162 86.043	30.170 29.408	20.229 19.277	1.00 18.99 1.00 22.56	A_13 A_13
MOTA	1413	N	ASP	155	85.873	31.465	20.158	1.00 22.36	A_13 A_13
ATOM	1415	CA	ASP	155	85.407	32.078	18.917	1.00 25.30	A_13
ATOM	1416	СВ	ASP	155	85.011	33.527	19.158	1.00 13.32	A_13
MOTA	1417	CG	ASP	155	83.975	33.655	20.249	1.00 11.19	A_13
MOTA	1418		ASP	155	84.347	34.136	21.332	1.00 12.26	A_13
ATOM	1419		ASP	155	82.810	33.255	20.029	1.00 10.00	A_13
MOTA MOTA	1420 1421	C	ASP ASP	155 155	86.461 86.141	31.992 31.656	17.828 16.687	1.00 13.98 1.00 14.08	A_13 A_13
MOTA	1422	N	VAL	156	87.713	32.310	18.160	1.00 16.49	A_13 A_13
ATOM	1424	CA	VAL	156	88.771	32.201	17.159	1.00 27.34	A_13
ATOM	1425	CB	VAL	156	90.145	32.826	17.625	1.00 23.59	A_13
MOTA	1426		VAL	156	90.327	32.750	19.119	1.00 13.94	A_13
MOTA	1427		VAL	156	91.312	32.153	16.919	1.00 21.70	A_13
MOTA	1428	C	VAL	156	88.874	30.738	16.657	1.00 16.95	A_13
MOTA MOTA	1429 1430	O N	VAL GLN	156 157	88.946 88.762	30.506 29.763	15.448 17.561	1.00 13.79 1.00 19.45	A_13
ATOM	1432	CA	GLN	157	88.796	28.352	17.154	1.00 19.45	A_13 A_13
ATOM	1433	CB	GLN	157	88.579	27.422	18.353	1.00 23.08	A_13
MOTA	1434	CG	GLN	157	89.633	27.521	19.452	1.00 24.83	A_13
ATOM	1435	CD	GLN	157	90.950	26.872	19.089	1.00 20.26	A_13
MOTA	1436		GLN	157	91.743	27.422	18.316	1.00 25.80	A_13
MOTA	1437		GLN	157	91.204	25.702	19.673	1.00 38.67	A_13
MOTA MOTA	1440 1441	C O	GLN GLN	157 157	87.667 87.869	28.136 27.541	16.148 15.096	1.00 14.16 1.00 14.11	A_13 A_13
ATOM	1442	N	GLY	158	86.505	28.709	16.437	1.00 19.16	A_13
MOTA	1444	CA	GLY	158	85.361	28.584	15.551	1.00 12.79	A_13
MOTA	1445	С	GLY	158	85.510	29.144	14.143	1.00 24.46	A_13
MOTA	1446	0	GLY	158	85.181	28.449	13.177	1.00 18.77	A_13
ATOM	1447 1449	N CA	ILE	159 159	85.936	30.403	13.989	1.00 22.41	A_13
MOTA MOTA	1450	CB	ILE	159	86.091 86.300	30.946 32.508	12.628 12.532	1.00 31.18 1.00 23.53	A_13 A_13
ATOM	1451		ILE	159	84.991	33.203	12.177	1.00 17.28	A_13
ATOM	1452		ILE	159	87.022	33.063	13.758	1.00 15.28	A_13
ATOM	1453	CD1	ILE	159	88.507	32.949	13.707	1.00 14.71	A_13
ATOM	1454	C	ILE	159	87.226	30.280	11.875	1.00 10.56	A_13
ATOM	1455	0	ILE	159	87.167	30.139	10.653	1.00 18.79	A_13
ATOM ATOM	1456 1458	N CA	GLN GLN	160 160	88.287 89.411	29.927 29.294	12.590 11.943	1.00 20.71 1.00 10.00	A_13
ATOM	1459	CB	GLN	160	90.640	29.274	12.855	1.00 10.00	A_13 A_13
ATOM	1460	CG	GLN	160	91.114	30.690	13.182	1.00 13.93	A_13
MOTA	1461	CD	GLN	160	92.402	30.754	13.981	1.00 25.61	A_13
MOTA	1462	0E1	GLN	160	92.814	29.786	14.629	1.00 19.40	A_13
MOTA	1463		GLN	160	93.042	31.915	13.950	1.00 24.78	A_13
MOTA	1466	Č	GLN	160	89.000	27.917	11.477	1.00 10.00	A_13
MOTA ATOM	1467 1468	N O	GLN	160 161	89.458	27.481 27.268	10.432	1.00 21.73	A_13
ATOM	1470	CA	SER SER	161	88.068 87.610	27.268	12.186 11.760	1.00 10.00 1.00 11.63	A_13 A_13
ATOM	1471	CB	SER	161	86.688	25.292	12.800	1.00 18.40	A 13
MOTA	1472	OG	SER	161	85.365	25.795	12.759	1.00 15.44	A_13
ATOM	1474	C	SER	161	86.913	26.048	10.396	1.00 26.18	A_13
MOTA	1475	0	SER	161	86.839	25.065	9.654	1.00 13.96	A_13
MOTA MOTA	1476 1478	N CA	LEU		86.428 85.749	27.247 27.493	10.070 8.808	1.00 19.36 1.00 17.21	A_13 A_13
0.1	74.0	~~		102	03.743	41.433	0.000	4.00 11.21	W_73

ATOM	1479	CB LEU	162	84.584	28.477	9.007	1.00 14.37	A_13
ATOM	1480	CG LEU	162	83.489	28.144	10.021	1.00 31.09	A_13
ATOM ATOM	1481 1482	CD1 LEU	162 162	82.596 82.672	29.351 26.949	10.217 9.548	1.00 14.96 1.00 23.87	A_13 A_13
ATOM	1483	C LEU		86.654	28.080	7.744	1.00 11.98	A_13
MOTA	1484	O LEU		86.596	27.680	6.584	1.00 15.25	A_13
MOTA MOTA	1485 1487	N TYR		87.459 88.320	29.063 29.796	8.135 7.204	1.00 26.54 1.00 18.28	A_13 A_13
ATOM	1488	CB TYR		87.977	31.289	7.277	1.00 26.89	A_13 A_13
MOTA	1489	CG TYR		86.519	31.600	7.039	1.00 18.80	A_13
ATOM	1490 1491	CD1 TYR		86.027 84.680	31.744	5.749	1.00 10.00	A_13
MOTA - MOTA -	1491			85.622-	31.936 -31672	5.515 8.099 -	1.00 12.83 1.00-16.58-	A_13 A_13 -
ATOM	1493	CE2 TYR		84.266	31.867	7.873	1.00 12.32	A_13
ATOM	1494	CZ TYR		83.807	31.991	6.576	1.00 11.77	A_13
MOTA MOTA	1495 1497	OH TYR		82.472 89.818	32.141 29.669	6.331 7.397	1.00 21.93 1.00 15.67	A_13 A_13
ATOM	1498	O TYR	163	90.590	30.089	6.526	1.00 18.92	A_13
ATOM	1499	N GLY		90.225	29.096	8.525	1.00 18.34	A_13
MOTA MOTA	1501 1502	CA GLY		91.636 92.149	28.966 30.215	8.826 9.525	1.00 10.61 1.00 15.63	A_13 A_13
ATOM	1503	O GLY		91.334	31.139	9.775	1.00 21.42	A_13
ATOM	1504	OT GLY		93.353	30.250	9.858	1.00 21.99	A_13
MOTA MOTA	3009 3010	ZN ZN ZN ZN	166 167	73.275 65.511	35.223 41.122	18.371 10.564	1.00 27.40 1.00 27.86	AION AION
ATOM	3011		168	64.285	44.152	21.635	1.00 11.76	AION
MOTA		CA CA	165	73.319	39.377	1.854	1.00 40.73	AION
MOTA MOTA	3017 3018	C5 WAY		67.400 66.626	35.999 35.606	20.267 19.161	1.00 38.86 1.00 30.96	A693 A693
ATOM	3019	CH WAY		67.199	35.400	17.901	1.00 30.30	A693
MOTA	3020	C2 WAY		68.561	35.623	17.728	1.00 36.26	A693
MOTA	3021 3022	C3 WAY		69.339 68.807	36.039	18.811	1.00 35.73	A693
MOTA MOTA	3022	C4 WAY		69.699	36.216 36.617	20.078 21.141	1.00 33.71 1.00 33.16	A693 A693
ATOM	3024	CD WAY		70.137	35.640	22.189	1.00 29.78	A693
ATOM	3025	C23 WAY		68.986	34.739	22.685	1.00 25.69	A693
MOTA MOTA	3026 3027	C28 WAY		68.187 67.141	35.088 34.238	23.798 24.205	1.00 31.72 1.00 33.61	A693 A693
MOTA	3028	CM WAY		66.921	33.061	23.490	1.00 32.16	A693
ATOM	3029	N25 WAY		67.703	32.748	22.426	1.00 42.39	A693
MOTA MOTA	3030 3031	C24 WAY		68.709 69.757	33.546 38.213	22.016 21.577	1.00 27.88 1.00 24.43	A693 A693
ATOM	3032	C16 WAY		71.513	38.570	21.438	1.00 29.69	A693
ATOM	3033	C21 WAY		72.032	39.163	20.269	1.00 19.32	A693
MOTA MOTA	3034 3035	C20 WAY		73.400 74.267	39.453 39.156	20.169 21.241	1.00 11.82	A693
MOTA	3036	C18 WAY		73.748	38.564	22.402	1.00 19.50 1.00 11.88	A693 A693
MOTA	3037	C17 WAY	169	72.382	38.272	22.507	1.00 26.57	A693
MOTA MOTA	3038 3039	033 WAY		75.623	39.445	21.141	1.00 16.99	A693
ATOM	3040	015 WAY		76.504 69.030	39.509 39.032	22.271 20.657	1.00 12.69 1.00 13.98	A693 A693
ATOM	3041	014 WAY	Y 169	69.419	38.338	22.942	1.00 22.94	A693
ATOM	3042	C7 WAS		70.780	36.256	18.621	1.00 30.48	A693
MOTA MOTA	3043 3044	N9 WAY		71.192 72.581	36.946 37.127	17.553 17.426	1.00 10.00 1.00 38.25	A693 A693
ATOM	3045	08 WA	Y 169	71.614	35.847	19.414	1.00 39.46	A693
MOTA MOTA	3046 1505	C29 WAY		66.584	36.175	21.566	1.00 46.13	A693
ATOM	1506	CB THI		40.443 39.149	57.305 56.999	5.225 5.762	1.00 21.20 1.00 25.31	B_13 B_13
ATOM	1508	CG2 TH	R 7	41.017	56.087	4.541	1.00 23.15	B_13
MOTA	1509	C TH		40.920	59.113	6.901	1.00 32.45	B_13
MOTA MOTA	1510 1513	O THE		41.453 41.386	59.582 56.786	7.908 7.488	1.00 36.97 1.00 34.12	B_13 B_13
MOTA	. 1515	CA TH		41.371	57.761	6.365	1.00 26.16	B_13
ATOM	1516	N LE		39.907	59.694	6.265	1.00 23.60	B_13
MOTA MOTA	1518 1519	CA LE		39.387 38.113	60.984 60.848	6.649 7.503	1.00 22.66 1.00 21.78	B_13 B_13
ATOM	1520	CG LE		36.860	61.484	6.863	1.00 27.13	B_13
MOTA	1521	CD1 LE	U 8	36.996	63.016	6.705	1.00 19.05	B_13
MOTA MOTA	1522 1523	CD2 LE		36.622	60.854	5.510	1.00 19.23	B_13 B_13
MOTA	1524	O LE		40.432 41.077	61.896 62.667	7.298 6.597	1.00 27.16 1.00 46.24	B_13 B_13
MOTA	1525	N LY	s 9	40.615	61.804	8.618	1.00 27.84	B_13
ATOM ATOM	1527 1528	CA LY.		41.572	62.674	9.306	1.00 15.20	B_13
MOTA	1528	CB LY		41.147 39.663	64.143 64.342	9.148 8.853	1.00 32.32 1.00 29.47	B_13 B_13
MOTA	1530	CD LY		38.788	64.243	10.084	1.00 28.34	B_13

MOTA	1531	CE	LYS	9	38.830	65.556	10.842	1.00 18.48	B_13
ATOM	1532	NZ	LYS	9	38.732	66.725	9.888	1.00 33.19	B_13
ATOM	1536	С	LYS	9	41.809	62.384	10.780	1.00 20.69	B_13
ATOM	1537	ŏ	LYS	ģ			11.334		
		-			41.268	61.428		1.00 25.62	B_13
ATOM	1538	N	TRP	10	42.654	63.208	11.390	1.00 12.09	B_13
ATOM	1540	CA	TRP	10	42.988	63.112	12.813	1.00 21.78	B_13
ATOM	1541	CB	TRP	10	44.403	63.660	13.048	1.00 23.03	B_13
ATOM	1542	CG	TRP	10	45.499	62.890	12.349	1.00 27.60	B_13
MOTA	1543	CD2	TRP	10	46.077	61.650	12.762	1.00 27.28	B_13
MOTA	1544	CE2	TRP	10	47.071	61.302	11.829	1.00 22.11	B_13
MOTA	1545	CE3	TRP	10	45.859	60.781	13.847	1.00 11.66	B_13
ATOM	1546	CD1		10	46.153	63.247	11.198	1.00 21.84	B_13
					48 004				
_ATOM _	15.47		TRP .	10		62.305		1.00 10.00 _	
MOTA	1549	CZ2	TRP	10	47.847	60.143	11.929	1.00 25.24	B_13
MOTA	1550	CZ3	TRP	10	46.632	59.622	13.951	1.00 22.71	B 13
MOTA	1551	CH2	TRP	10	47.611	59.317	12.999	1.00 15.23	B_13
ATOM	1552	C.	TRP	10	41.987	63.915	13.679	1.00 30.88	
									B_13
MOTA	1553	0	TRP	10	41.673	65.062	13.359	1.00 32.03	B_13
MOTA	1554	N	SER	11	41.495	63.316	14.765	1.00 35.64	B_13
ATOM	1556	CA	SER	11	40.548	63.981	15.665	1.00 30.37	B_13
ATOM	1557	CB	SER	11	39.498	62.995	16.176	1.00 31.03	B_13
ATOM	1558	OG	SER						
				11	38.485	62.815	15.202	1.00 41.11	B_13
ATOM	1560	С	SER	11	41.206	64.691	16.840	1.00 20.70	B_13
ATOM	1561	0	SER	11	40.558	65.002	17.838	1.00 36.52	B_13
ATOM	1562	N	LYS	12	42.504	64.910	16.731	1.00 23.56	B_13
ATOM	1564	CA	LYS	12	43.257	65.607	17.756	1.00 15.00	B_13
ATOM	1565			12					
		CB	LYS		43.991	64.631	18.688	1.00 18.58	B_13
MOTA	1566	CG	LYS	12	44.658	63.452	18.010	1.00 15.94	B_13
ATOM	1567	CD	LYS	12	45.456	62.589	.19.007	1.00 23.03	B_13
ATOM	1568	CE	LYS	12	44.593	61.715	19.933	1.00 27.10	B 13
ATOM	1569	NZ	LYS	12	44.075	62.402	21.157		
								1.00 34.75	B_13
MOTA	1573	С	LYS	12	44.200	66.453	16.914	1.00 25.03	B_13
MOTA	1574	0	LYS	12	44.567	66.039	15.808	1.00 25.20	B_13
ATOM	1575	N	MET	13	44.536	67.647	17.401	1.00 18.44	B_13
MOTA	1577	CA	MET	13	45.377	68.582	16.663	1.00 24.63	B_13
ATOM	1578	СВ	MET	13	44.864	70.015	16.880	1.00 13.15	B_13
MOTA	1579	CG	MET	13	43.421	70.253	16.419	1.00 21.56	B_13
ATOM	1580	SD	MET	13	43.167	70.131	14.616	1.00 31.39	B 13
MOTA	1581	CE	MET	13	41.433	69.678	14.474	1.00 24.70	B_13
ATOM	1582	c	MET	13					
					46.850	68.468	17.034	1.00 11.65	B_13
ATOM	1583	0	MET	13	47.728	68.815	16.247	1.00 14.33	B_13
ATOM	1584	N	ASN	14	47.103	67.985	18.242	1.00 16.99	B_13
ATOM	1586	CA	ASN	14	48.448	67.793	18.760	1.00 24.42	B_13
ATOM	1587	CB	ASN	14	48.437	68.006	20.268	1.00 17.84	B_13
ATOM	1588	CG	ASN	14					
					47.896	69.356	20.633	1.00 35.10	B_13
MOTA	1589		ASN	14	48.614	70.346	20.560	1.00 34.88	B_13
ATOM	1590	ND2	ASN	14	46.610	69.424	20.955	1.00 32.98	B_13
ATOM	1593	С	ASN	14	48.831	66.364	18.421	1.00 22.70	B_13
MOTA	1594	0	ASN	14	48.278	65.405	18.976	1.00 26.03	B_13
ATOM	1595	N.	LEU	15	49.706				
						66.228	17.432	1.00 18.07	B_13
ATOM	1597	CA	LEU	15	50.144	64.912	16.969	1.00 29.36	B_13
MOTA	1598	CB	LEU	15	49.878	64.775	15.466	1.00 24.35	B_13
MOTA	1599	CG	LEU	15	48.380	64.762	15.162	1.00 19.51	B 13
MOTA	1600	CD1	LEU	15	48.079	65.469	13.852	1.00 27.59	B_13
MOTA	1601		LEU	15	47.902	63.326	15.163	1.00 19.66	B_13
ATOM	1602	c	LEU	15		64.704			
					51.613		17.257	1.00 28.48	B_13
MOTA	1603	0	LEU	15	52.341	65.657	17.552	1.00 22.28	B_13
MOTA	1604	N	THR	16	52.044	63.453	17.198	1.00 12.77	B_13
MOTA	1606	CA	THR	16	53.433	63.158	17.446	1.00 16.59	B_13
ATOM	1607	CB	THR	16	53.607	62.243	18.682	1.00 24.73	B_13
MOTA	1608		THR	16	52.912	61.005			D_13
							18.481	1.00 12.79	B_13
MOTA	1610	CG2		16	53.059	62.933	19.924	1.00 25.34	B_13
ATOM	1611	С	THR	16	54.038	62.515	16.214	1.00 21.94	B_13
ATOM	1612	0	THR	16	53.315	62.116	15.297	1.00 19.60	B_13
MOTA	1613	N	TYR	17	55.365	62.453	16.184	1.00 18.25	B_13
ATOM	1615			17					
		CA	TYR		56.092	61.810	15.097	1.00 19.54	B_13
MOTA	1616	CB	TYR	17	56.300	62.753	13.910	1.00 16.87	B_13
ATOM	1617	CG	TYR	17	57.277	63.892	14.116	1.00 27.90	B_13
ATOM	1618		TYR	17	56.839	65.135	14.587	1.00 13.93	B_13
ATOM	1619		TYR	17	57.700	66.221	14.652	1.00 17.08	
ATOM									B_13
	1620		TYR	17	58.613	63.764	13.723	1.00 14.99	B_13
ATOM	1621	CE2		17	59.479	64.841	13.777	1.00 25.98	B_13
ATOM	1622	CZ	TYR	17	59.017	66.075	14.242	1.00 33.12	B_13
MOTA	1623	ОН	TYR	17	59.866	67.163	14.276	1.00 23.31	B_13
ATOM	1625	C	TYR	17	57.417	61.318	15.650	1.00 18.57	B_13
ATOM	1626	ŏ	TYR	17	57.895	61.827	16.668	1.00 26.60	B_13
ATOM	1627								5-73
ALUM	102/	N	ARG	18	57.973	60.286	15.030	1.00 13.01	B_13

MOTA	1629	CA	ARG	18	59.245	59.750	15.492	1.00 18.74	B_13
ATOM	1530	CB	ARG	18	59.033	58.589	16.473	1.00 11.96	B_13
ATOM	1631	CG	ARG	18	60.320	57.911	16.970	1.00 15.06	B_13
ATOM	1632	CD	ARG	18	60.012	56.596	17.690	1.00 11.72	B_13
ATOM	1633	NE	ARG	18	61.165	55.689			
							17.752	1.00 10.00	B_13
ATOM	1635	CZ	ARG	18	61.134	54.428	18.181	1.00 24.87	B_13
MOTA	1636	NH1	ARG	18	60.004	53.882	18.614	1.00 13.34	B_13
MOTA	1639	NH2	ARG	18	62.247	53.703	18.169	1.00 20.03	B_13
MOTA	1642	С	ARG	18	60.076	59.309	14.307	1.00 13.14	B_13
ATOM	1643	0	ARG	18	59.598	58.588	13.434	1.00 14.10	B_13
ATOM	1644		ILE	19					
		N			61.304	59.813	14.252	1.00 15.55	B_13
MOTA	1646	CA	ILE	19	62.238	59.476	13.193	1.00 10.41	B_13
ATOM	1647	CB-	-ILE	19	63.307	60.603_	-13.054	-1.00 -1720_	B_ <u>_</u> 13 _
ATOM	1648	CG2	ILE	19	64.273	60.307	11.903	1.00 16.57	B_13
MOTA	1649	CG1	ILE	19	62.613	61.952	12.836	1.00 15.47	B_13
MOTA	1650		ILE	19	63.543	63.110	12.783	1.00 14.99	B_13
ATOM									
	1651	C	ILE	19	62.870	58.166	13.673	1.00 10.00	B_13
MOTA	1652	0	ILE	19	63.829	58.179	14.434	1.00 10.00	B_13
ATOM	1653	N	VAL	20	62.289	57.037	13.276	1.00 17.84	B_13
ATOM	1655	CA	VAL	20	62.785	55.716	13.696	1.00 16.43	B_13
ATOM	1656	CB	VAL	20	61.911	54.570	13.138	1.00 13.17	B_13
ATOM	1657		VAL	20	62.519	53.208	13.493	1.00 10.00	
ATOM									B_13
	1658		VAL	20	60.521	54.673	13.698	1.00 10.00	B_13
MOTA	1659	С	VAL	20	64.268	55.449	13.387	1.00 16.02	B_13
MOTA	1660	0	VAL	20	65.001	54.909	14.218	1.00 21.07	B_13
ATOM	1661	N	ASN	21	64.698	55.762	12.177	1.00 10.00	B_13
ATOM	1663	CA	ASN	21	66.098	55.571	11.830	1.00 22.13	B_13
ATOM	1664	СВ	ASN	21	66.392	54.128	11.386	1.00 19.75	
ATOM									B_13
	1665	CG	ASN	21	65.549	53.673	10.212	1.00 17.63	B_13
MOTA	1666		ASN	21	65.329	52.477	10.042	1.00 31.82	B_13
MOTA	1667	ND2	ASN	21	65.109	54.602	9.375	1.00 11.42	B_13
ATOM	1670	С	ASN	21	66.504	56.645	10.821	1.00 10.14	B_13
ATOM	1671	0	ASN	21	65.639	57.377	10.340	1.00 11.74	B_13
ATOM	1672	N	TYR	22	67.787	56.759	10.498		
								1.00 12.25	B_13
ATOM	1674	CA	TYR	22	68.233	57.829	9.602	1.00 12.46	B_13
MOTA	1675	CB	TYR	22	69.136	58.800	10.383	1.00 23.15	B_13
MOTA	1676	CG	TYR	22	68.461	59.584	11.492	1.00 21.95	B_13
ATOM	1677	CD1	TYR	22	68.221	60.945	11.348	1.00 22.29	B_13
ATOM	1678		TYR	22	67.625	61.678	12.347	1.00 10.00	B_13
ATOM	1679	CD2		22					
					68.077	58.974	12.687	1.00 13.42	B_13
MOTA	1680	CE2		22	67.471	59.710	13.693	1.00 14.69	B_13
MOTA	1681	CZ	TYR	22	67.254	61.064	13.505	1.00 12.89	B_13
MOTA	1682	OH	TYR	22	66.660	61.829	14.466	1.00 16.56	B_13
MOTA	1684	С	TYR	22	68.988	57.395	8.359	1.00 11.62	B_13
ATOM	1685	0	TYR	22	69.793	56.478	8.407	1.00 16.23	B_13
MOTA	1686	N	THR	23	68.792				
ATOM						58.111	7.261	1.00 10.39	B_13
	1688	CA	THR	23	69.503	57.800	6.024	1.00 20.36	B_13
MOTA	1689	CB	THR	23	68.909	58.582	4.829	1.00 16.21	B_13
MOTA	1690	OG1	THR	23	69.801	58.512	3.706	1.00 19.72	B_13
MOTA	1692	CG2	THR	23	68.663	60.039	5.206	1.00 16.62	B_13
ATOM	1693	С	THR	23	70.990	58.153	6.163	1.00 17.35	B_13
ATOM	1694	ō	THR	23	71.377	58.958	7.024	1.00 13.88	
ATOM	1695	N							B_13
			PRO	24	71.852	57.503	5.364	1.00 15.86	B_13
MOTA	1696	CD	PRO	24	71.625	56.247	4.629	1.00 17.29	B_13
MOTA	1697	CA	PRO	24	73.287	57.796	5.436	1.00 15.96	B_13
MOTA	1698	CB	PRO	24	73.920	56.570	4.763	1.00 10.00	B_13
ATOM	1699	CG	PRO	24	72.891	55.504	4.905	1.00 15.15	B_13
ATOM	1700	c	PRO	24	73.635	59.069	4.668	1.00 27.08	B_13
ATOM	1701	ŏ	PRO	24	74.698				D 12
ATOM	1701					59.656	4.869	1.00 19.47	B_13
		N	ASP	25	72.728	59.489	3.794	1.00 16.99	B_13
ATOM	1704	CA	ASP	25	72.927	60.663	2.958	1.00 10.00	B_13
ATOM	1705	CB	ASP	25	71.792	60.758	1.953	1.00 11.53	B_13
ATOM	1706	CG	ASP	25	71.665	59.521	1.105	1.00 33.88	B_13
ATOM	1707		ASP	25	70.570	59.311	0.556		B_13
MOTA	1708		ASP	25				1.00 22.66	
					72.653	58.762	0.980	1.00 29.59	B_13
MOTA	1709	C	ASP	25	73.068	62.011	3.642	1.00 23.36	B_13
MOTA	1710	0	ASP	25	73.694	62.916	3.093	1.00 20.32	B_13
ATOM	1711	N	MET	26	72.480	62.158	4.826	1.00 18.44	B_13
MOTA	1713	CA	MET	26	72.510	63.432	5.537	1.00 13.83	B_13
MOTA	1714	СВ	MET	26	71.154	64.151	5.368	1.00 10.00	B_13
ATOM	1715	CG	MET	26	70.782	64.491			
MOTA							3.913	1.00 28.32	B_13
	1716	SD	MET	26	69.016	64.786	3.599	1.00 12.18	B_13
ATOM	1717	CE	MET	26	68.395	63.255	3.887	1.00 37.25	B_13
MOTA	1718	С	MET	26	72.827	63.238	7.024	1.00 28.80	B_13
MOTA	1719	0	MET	26	72.839	62.107	7.533	1.00 20.90	B_13
MOTA	1720	N	THR	27	73.157	64.333	7.696	1.00 11.47	B_13
ATOM	1722	CA	THR	27	73.456	64.292	9.121		
		7				04.672	9.141	1.00 13.94	B_13

ATOM	1723	СВ	THR	27	74.117	65.605	9.602	1.00 33.46	B_13
ATOM	1724		THR	27	73.209	66.702	9.415	1.00 10.00	B_13
ATOM	1726		THR	27	75.405	65.863	8.818	1.00 16.30	B_13
ATOM ATOM	1727 1728	C O	THR THR	27 27	72.135	64.113	9.861	1.00 10.67	B_13
ATOM	1729	N	HIS	28	71.072 72.193	64.343 63.691	9.281 11.124	1.00 16.26 1.00 18.13	B_13 B_13
ATOM	1731	CA	HIS	28	70.986	63.514	11.915	1.00 10.00	B_13
MOTA	1732	CB	HIS	28	71.322	63.033	13.333	1.00 10.00	B_13
ATOM	1733	CG	HIS	28	71.793	61.608	13.401	1.00 22.65	B_13
ATOM	1734		HIS	28	72.893	61.003	12.889	1.00 22.73	B_13
MOTA MOTA	1735 1737		HIS	28	71.103	60.627	14.080	1.00 19.90	B_13
ATOM _	1738		HIS_ HIS_	28 _ 28	71.755 72.843	59.481 59.681	13.985	1.00 16.52	B_13
ATOM	1740	C	HIS	28	70.281	64.870	13.268 11.957	1.00 20.38	B_13_ B_13
ATOM	1741	ō	HIS	28	69.074	64.941	11.742	1.00 29.38	B_13 B_13
ATOM	1742	N	SER	29	71.056	65.944	12.153	1.00 23.96	B_13
MOTA	1744	CA	SER	29	70.533	67.322	12.192	1.00 15.01	B_13
ATOM	1745	CB OG	SER	29	71.661	68.334	12.438	1.00 14.05	B_13
ATOM ATOM	1746 1748	C	SER SER	29 29	72.117 69.808	68.303 67.729	13.770	1.00 18.32	B_13
ATOM	1749	ŏ	SER	29	68.732	68.314	10.909 10.971	1.00 10.95 1.00 24.24	B_13 B_13
ATOM	1750	N	GLU	30	70.415	67.449	9.757	1.00 10.96	B_13
ATOM	1752	ĊA	GLU	3 Û	69.820	67.786	8.470	1.00 10.00	B_13
ATOM	1753	CB	GLU	30	70.715	67.330	7.309	1.00 10.12	B_13
ATOM ATOM	1754 1755	CG	GLU	30	71.967	68.143	7.042	1.00 22.31	B_13
ATOM	1756	CD	GLU	30 30	72.823 72.533	67.529 67.753	5.930 4.749	1.00 10.15	B_13
ATOM	1757		GLU	30	73.796	66.817	6.223	1.00 31.98 1.00 29.59	B_13 B_13
ATOM	1758	C	GLU	30	68.481	67.073	8.336	1.00 20.17	B_13
MOTA	1759	0	GLU	30	67.493	67.685	7.943	1.00 14.31	B_13
ATOM	1760	N	VAL	31	68.451	65.777	8.665	1.00 19.26	B_13
ATOM ATOM	1762	CA	VAL	31	67.228	64.989	8.536	1.00 14.22	B_13
ATOM	1763 1764	CB CG1	VAL VAL	31 31	67.472 66.144	63.487	8.716	1.00 17.05	B_13
ATOM	1765		VAL	31	68.269	62.749 62.935	8.791 7.548	1.00 28.55 1.00 10.54	B_13 B_13
ATOM	1766	c	VAL	31	66.138	65.458	9.477	1.00 10.34	B_13 B_13
MOTA	1767	0	VAL	31	64.963	65.488	9.093	1.00 12.83	B_13
MOTA	1768	N	GLU	32	66.530	65.805	10.703	1.00 20.46	B_13
MOTA	1770	CA	GLU	32	65.596	66.306	11.710	1.00 16.04	B_13
MOTA MOTA	1771 1772	CB CG	GLU	32 32	66.269	66.365	13.094	1.00 14.71	B_13
ATOM	1773	CD	GLU	32	66.512 67.724	64.985 64.930	13.741 14.700	1.00 23.30	B_13
ATOM	1774		GLU	32	68.229	63.823	15.003	1.00 21.41 1.00 15.79	B_13 B_13
MOTA	1775	OE2		32	68.183	65.985	15.157	1.00 13.71	B_13
MOTA	1776	C	GLU	32	65.125	67.697	11.257	1.00 27.19	B_13
ATOM	1777	0	GLU	32	63.951	68.042	11.383	1.00 19.82	B_13
MOTA MOTA	1778 1780	N CA	LYS LYS	33 33	66.021	68.461	10.636	1.00 12.52	B_13
ATOM	1781	CB	LYS	33	65.663 66.889	69.786 70.592	10.171 9.762	1.00 13.00 1.00 22.63	B_13
MOTA	1782	CG	LYS	33	66.581	72.054	9.560	1.00 22.63	B_13 B_13
ATOM	1783	CD	LYS	33	65.604	72.545	10.630	1.00 29.21	B_13
MOTA	1784	CE	LYS	33	66.185	72.429	12.048	1.00 41.79	B_13
ATOM ATOM	1785 1789	NZ	LYS	33	65.181	71.939	13.054	1.00 20.17	B_13
ATOM	1790	С О	LYS LYS	33 33	64.698 63.734	69.686	9.023	1.00 10.62	B_13
ATOM	1791	Ň	ALA	34	64.915	70.437 68.707	8.971	1.00 22.94	B_13 B_13
MOTA	1793	CA	ALA	34	64.050	68.475	7.000	1.00 11.94	B_13
MOTA	1794	CB	ALA	34	64.611	67.374	6.100	1.00 10.00	B_13
ATOM	1795	Č	ALA	34	62.640	68.115	7.423	1.00 10.00	B_13
MOTA MOTA	1796 1797	O N	ALA PHE	34 35	61.675	68.650	6.878	1.00 15.32	B_13
ATOM	1799	CA	PHE	35	62.510 61.187	67.208 66.789	8.387 8.852	1.00 21.32	B_13
MOTA	1800	CB	PHE	35	61.267	65.451	9.614	1.00 18.32 1.00 25.48	B_13 B_13
MOTA	1801	CG	PHE	35	61.620	64.260	8.735	1.00 14.33	B_13
ATOM	1802		PHE	35	61.149	64.171	7.427	1.00 17.91	B_13
ATOM	1803		PHE	35	62.436	63.240	9.217	1.00 18.05	B_13
MOTA MOTA	1804 1805		PHE	35 35	61.486	63.086	6.610	1.00 18.49	B_13
ATOM	1805	CZ	PHE	35 35	62.778 62.301	62.158	8.413	1.00 15.01	B_13
ATOM	1807	č	PHE	35	60.428	62.081 67.862	7.103 9.658	1.00 10.00 1.00 18.68	B_13 B_13
MOTA	1808	0	PHE	35	59.202	67.971	9.556	1.00 17.05	B_13 B_13
MOTA	1809	N	LYS	36	61.160	68.664	10.425	1.00 16.30	B_13
MOTA MOTA	1811	CA	LYS	36 36	60.579	69.749	11.229	1.00 19.34	B_13
ATOM	1812 1813	CB CG	LYS LYS	36 36	61.676 61.200	70.420	12.052	1.00 24.61	B_13
ATOM	1814	CD	LYS	36	62.408	71.293 71.795	13.191 13.962	1.00 18.38 1.00 19.34	B_13 B_13
MOTA	1815	CE	LYS	36	62.067	72.267	15.356	1.00 21.80	B_13
								= =	

ATOM	1816	NZ	LYS	36	63.299	72.615	16 110	1 00 07 76	
ATOM	1820	C	LYS	36	59.924	70.770	16.118 10.301	1.00 27.76	B_13
ATOM	1821	ŏ	LYS	36	58.788	71.183	10.528	1.00 10.19 1.00 14.95	B_13
ATOM	1822	N	LYS	37	60.630	71.134	9.233	1.00 15.89	B_13 B_13
ATOM	1824	CA	LYS	37	60.126	72.076	8.230	1.00 19.95	B_13
ATÓM	1825	CB	LYS	37	61.202	72.386	7.189	1.00 10.00	B_13
MOTA	1826	CG	LYS	37	62.209	73.439	7.569	1.00 13.18	B_13
MOTA	1827	CD	LYS	37	62.869	73.966	6.311	1.00 28.86	B_13
MOTA	1828	CE	LYS	37	61.825	74.460	5.281	1.00 31.44	B_13
MOTA	1829	NZ	LYS	37	60.878	75.512	5.772	1.00 26.23	B_13
MOTA	1833	С	LYS	37	58.939	71.482	7.472	1.00 25.64	B_13
ATOM	1834	0	LYS	37	57.968	72.177	7.161	1.00 24.39	B_13
_ATOM	1835	_ N	ALA	38	_ 59.060 _	70.205	7.128	1.00_17.12	B_13 -
MOTA	1837	CA	ALA	38	58.031	69.493	6.381	1.00 16.06	B_13
MOTA	1838	CB	ALA	38	58.459	68.038	6.154	1.00 12.19	B_13
ATOM	1839	С	ALA	38	56.692	69.557	7.094	1.00 11.12	B_13
ATOM	1840	0	ALA	38	55.648	69.736	6.458	1.00 31.10	B_13
MOTA	1841	N	PHE	39	56.732	69.393	8.417	1.00 21.01	B_13
MOTA	1843	CA	PHE	39	55.540	69.446	9.257	1.00 10.85	B_13
MOTA	1844	CB	PHE	39	55.841	68.833	10.639	1.00 14.45	B_13
ATOM	1845	:CG	PHE	39	55.851	67.325	10.659	1.00 21.88	B_13
ATOM ATOM	1846 1847		PHE	39	57.016	66.625	10.954	1.00 16.88	B_13
ATOM	1848		PHE	39 39	54.675 57.010	66.599	10.442	1.00 22.14	B_13
ATOM	1849	CE2		39		65.223	11.037	1.00 17.95	B_13
ATOM	1850	CZ	PHE	39	54.655 55.823	65.190 64.503	10.522 10.823	1.00 17.22	B_13
ATOM.	1851	C	PHE	39	55.044	70.898	9.426	1.00 13.51 1.00 19.98	B_13
ATOM	1852	ö	PHE	39	53.839	71.160	9.393	1.00 19.30	B_13
ATOM	1853	N	LYS	40	55.981	71.826	9.611	1.00 20.03	B_13 B_13
ATOM	1855	CA	LYS	40	55.681	73.245	9.795	1,00 18.64	B_13
ATOM	1856	CB	LYS	40	56.989	74.011	10.020	1.00 19.28	B_13
ATOM	1857	CG	LYS	40	57.064	75.392	9.440	1.00 26.34	B_13
MOTA	1858	CD	LYS	40	58.288	76.093	9.974	1.00 18.46	B_13
MOTA	1859	CE	LYS	40	58.021	76.673	11.339	1.00 20.86	B_13
MOTA	1860	NZ	LYS	40	57.053	77.814	11.232	1.00 27.28	B_13
ATOM	1864	С	LYS	40	54.899	73.790	8.612	1.00 20.57	B_13
MOTA	1865	0	LYS	40	54.034	74.654	8.756	1.00 22.54	B_13
ATOM	1866	N	VAL	41	55.216	73.251	7.445	1.00 17.15	B_13
MOTA	1868	CA	VAL	41	54.565	73.576	6.184	1.00 19.19	B_13
MOTA	1869	CB	VAL	41	55.095	72.566	5.086	1.00 17.28	B_13
MOTA	1870		VAL	41	53.987	72.064	4.160	1.00 10.00	B_13
ATOM	1871		VAL	41	56.224	73.191	4.293	1.00 19.38	B_13
MOTA	1872	C	VAL	41	53.026	73.472	6.354	1.00 20.38	B_13
MOTA	1873	0	VAL	41	52.268	74.280	5.810	1.00 28.57	B_13
MOTA	1874	N	TRP	42	52.587	72.511	7.163	1.00 23.10	B_13
MOTA MOTA	1876 1877	CA	TRP	42	51.166	72.265	7.403	1.00 19.29	B_13
ATOM	1878	CB CG	TRP	42 42	50.912	70.757	7.487 6.313	1.00 22.19	, B_13
ATOM	1879	CD2		42	51.437 50.836	70.007 69.909		1.00 19.32	B_13
ATOM	1880	CE2		42	51.659	69.067	5.015 4.238	1.00 31.02 1.00 22.49	B_13
ATOM	1881	CE3		42	49.677	70.448	4.434	1.00 22.49	B_13 B_13
ATOM	1882	CD1		42	52.571	69.251	6.269	1.00 13.34	B_13
MOTA	1883		TRP	42	52.710	68.681	5.027	1.00 13.55	B_13
MOTA	1885	CZ2	TRP	42		. 68.752	2.912	1.00 18.87	B_13
MOTA	1886	CZ3	TRP	42	49.383	70.132	3.116	1.00 13.33	B_13
MOTA	1887	CH2	TRP	42	50.219	69.294	2.370	1.00 20.30	B_13
ATOM	1888	C	TRP	42	50.617	72.926	8.660	1.00 24.68	B_13
MOTA	1889	0	TRP	42	49.455	73.339	8.688	1.00 20.93	B_13
ATOM	1890	N	SER	43	51.432	72.987	9.710	1.00 20.63	B_13
ATOM	1892	CA	SER	43	51.007	73.601	10.968	1.00 22.47	B_13
ATOM	1893	CB	SER	43	51.955	73.231	12.116	1.00 10.00	B_13
MOTA	1894	OG	SER	43	53.265	73.716	11.891	1.00 33.50	B_13
MOTA MOTA	1896 1897	C	SER	43	50.913	75.122	10.829	1.00 14.99	B_13
ATOM	1898	0	SER	43	50.224	75.784	11.595	1.00 11.58	B_13
ATOM	1900	N	ASP	44	51.613	75.667	9.843	1.00 26.20	B_13
ATOM	1900	CA CB	ASP ASP	44	51.595	77.100	9.617	1.00 22.11	B_13
MOTA	1902	CG	ASP	44 44	52.620	77.485	8.549	1.00 11.09	B_13
MOTA	1903		ASP	44	54.000 54.903	77.751 78.114	9.125	1.00 18.45	B_13
MOTA	1904		ASP	44	54.195	77.602	8.347 10.345	1.00 17.67	B_13 B_13
MOTA	1905	C	ASP	44	50.216	77.575	9.190	1.00 21.44 1.00 32.83	B_13 B_13
ATOM	1906	ō	ASP	44	49.795	78.677	9.549	1.00 32.83	B_13 B_13
ATOM	1907	N	VAL	45	49.508	76.735	8.439	1.00 31.40	B_13
MOTA	1909	CA	VAL	45	48.191	77.094	7.932	1.00 14.00	B_13
MOTA	1910	СВ	VAL	45	48.121	76.872	6.401	1.00 15.73	B_13
MOTA	1911		VAL	45	49.123	77.755	5.707	1.00 19.37	B_13
MOTA	1912	CG2	VAL	45	48.407	75.409	6.055	1.00 10.00	B_13

ATOM	1913	C VAL	45	47.054	76.333	8.575	1.00 18.43	B_13
ATOM	1914	O VAL	45	45.954	76.304	8.026	1.00 26.09	B_13
ATOM	1915	N THR	46	47.295	75.754	9.747	1.00 18.49	B_13
ATOM	1917	CA THR	46	46.262	74.963	10.408	1.00 21.92	B_13
ATOM	1918	CB THR	46	46.222	73.529	9.751	1.00 27.61	B_13
ATOM	1919	OG1 THR	46	44.876	73.047	9.661	1.00 28.78	5-13
ATOM	1921	CG2 THR	46					B_13
				47.054	72.550	10.522	1.00 10.65	B_13
ATOM	1922	C THR	46	46.505	74.931	11.932	1.00 18.41	B_13
MOTA	1923	O THR	46	47.554	75.363	12.411	1.00 18.63	B_13
MOTA	1924	N PRO	47	45.519	74.467	12.717	1.00 16.81	B_13
ATOM	1925	CD PRO	47	44.113	74.209	12.348	1.00 32.80	B_13
ATOM	1926	CA PRO	47	45.691	74.407	14.169	1.00 13.66	B_13
_ATOM _		CB_ PRO				14 675		
ATOM	1928	CG PRO					1.00 30.52	
			47	43.519	73.692	13.638	1.00 29.25	B_13
MOTA	1929	C PRO	47	46.346	73.105	14.622	1.00 28.40	B_13
ATOM	1930	O PRO	47	46.037	72.597	15.705	1.00 29.19	B_13
ATOM	1931	N LEU	48	47.220	72.547	13.784	1.00 27.10	B_13
ATOM	1933	CA LEU	48	47.915	71.302	14.124	1.00 21.49	B_13
MOTA	1934	CB LEU	48	48.087	70.418	12.885	1.00 16.21	B_13
ATOM	1935	CG LEU	48	46.924	69.476	12.538	1.00 15.14	
MOTA	1936	CD1 LEU	48	45.618	70.049	13.000		B_13
ATOM	1937	CD2 LEU					1.00 26.83	B_13
			48	46.894	69.206	11.035	1.00 32.93	B_13
ATOM	1938	C LEU	48	49.262	71.611	14.771	1.00 16.35	B_13
MOTA	1939	O LEU	48	49.885	72.648	14.498	1.00 26.65	B_13
Mota	1940	n asn	49	49.691	70.744	15.669	1.00 18.84	B_13
ATOM	1942	CA ASN	49	50.956	70.940	16.354	1.00 25.67	B_13
ATOM	1943	CB ASN	49	50.741	71.205	17.846	1.00 23.64	B_13
ATOM	1944	CG ASN	49	49.734	72.301	18.100	1.00 23.64	
ATOM	1945	OD1 ASN	49					B_13
	1946			48.895	72.192	18.989	1.00 33.47	B_13
MOTA		ND2 ASN	49	49.796	73.359	17.305	1.00 37.40	B_13
MOTA	1949	C ASN	49	51.695	69.643	16.195	1.00 22.08	B_13
MOTA	1950	o asn	49	51.087	68.577	16.252	1.00 23.48	B_13
MOTA	1951	N PHE	50	52.994	69.723	15.951	1.00 25.59	B_13
MOTA	1953	CA PHE	50	53.762	68.510	15.806	1.00 19.57	B_13
ATOM	1954	CB PHE	50	54.258	68.343	14.380		
ATOM	1955	CG PHE	50	53.161			1.00 12.47	B_13
ATOM	1956				68.024	13.432	1.00 14.47	B_13
		CD1 PHE	50	52.665	68.989	12.581	1.00 17.81	B_13
MOTA	1957	CD2 PHE	50	52.566	66.770	13.445	1.00 14.44	B_13
ATOM	1958	CE1 PHE	50	51.585	68.705	11.754	1.00 23.43	B_13
MOTA	1959	CE2 PHE	50	51.488	66.482	12.624	1.00 20.62	B_13
MOTA	1960	CZ PHE	50	50.999	67.447	11.781	1.00 13.34	B_13
MOTA	1961	C PHE	50	.54.858	68.419	16.826	1.00 23.56	B_13
MOTA	1962	O PHE	50	55.720	69.299	16.922	1.00 20.28	
ATOM	1963	N THR	51	54.728				B_13
ATOM	1965	CA THR			67.387	17.651	1.00 26.45	B_13
			51	55.650	67.090	18.725	1.00 29.37	B_13
ATOM	1966	CB THR	51	54.851	66.834	20.024	1.00 28.17	B_13
MOTA	1967	OG1 THR	51	53.946	65.738	19.824	1.00 40.86	B_13
MOTA	1969	CG2 THR	51	54.032	68.078	20.393	1.00 25.37	B_13
MOTA	1970	C THR	51	56.435	65.838	18.331	1.00 21.26	B_13
ATOM	1971	O THR	51	55.849	64.849	17.882	1.00 17.45	B_13
ATOM	1972	N ARG	52	57.755	65.889	18.477	1.00 15.17	B_13
ATOM	1974	CA ARG	52	58.604	64.752	18.126		
ATOM	1975	CB ARG	52		65.241		1.00 20.79	B_13
ATOM	1976	CG ARG	52	59.868		17.429	1.00 20.81	B_13
MOTA	1977			60.871	64.160	17.110	1.00 19.06	B_13
			52	62.208	64.808	16.880	1.00 22.17	B_13
ATOM	1978	NE ARG	52	63.293	63.848	16.904	1.00 18.57	B_13
MOTA	1980	CZ ARG	52	64.563	64.160	17.108	1.00 10.00	B_13
MOTA	1981	NH1 ARG	52	64.915	65.414	17.315	1.00 19.35	B_13
MOTA	1984	NH2 ARG	52	65.488	63.214	17.039	1.00 35.90	B_13
ATOM	1987	C ARG	52	58.995	63.903	19.328	1.00 22.29	B_13
ATOM	1988	O ARG	52	59.326	64.433	20.387	1.00 24.98	B_13
MOTA	1989	N LEU	53	59.013				D_13
ATOM	1991	CA LEU	53		62.586	19.140	1.00 19.90	B_13
ATOM	1992			59.378	61.660	20.203	1.00 27.02	B_13
		CB LEU	53	58.279	60.625	20.434	1.00 16.80	B_13
ATOM	1993	CG LEU	53	56.859	61.138	20.639	1.00 23.45	B_13
ATOM	1994	CD1 LEU	53	55.943	59.943	20.884	1.00 24.07	B 13
MOTA	1995	CD2 LEU	53	56.801	62.143	21.785	1.00 21.02	B_13
ATOM	1996	C LEU	53	60.657	60.944	19.813	1.00 15.08	B_13
ATOM	1997	O LEU	53	60.822	60.539	18.671	1.00 13.89	B_13
ATOM	1998	N HIS	54	61.532	60.750	20.792		P_13
ATOM	2000	CA HIS	54	62.812	60.750		1.00 19.96	B_13
ATOM	2001	CB HIS	54			20.568	1.00 28.80	B_13
ATOM	2002			63.848	60.604	21.569	1.00 19.40	B_13
ATOM		CG HIS	54	64.113	62.075	21.431	1.00 31.96	B_13
	2003	CD2 HIS	54	63.365	63.060	20.883	1.00 21.32	B_13
MOTA	2004	ND1 HIS	54	65.292	62.662	21.835	1.00 33.94	B_13
ATOM	2006	CE1 HIS	.54	65.260	63.949	21.539	1.00 18.64	B_13
MOTA	2007	NE2 HIS	54	64.103	64.218	20.960	1.00 19.56	B_13
								_

MOTA	2009	С	HIS	54	62.695	58.555	20.647	1.00 13.04	B_13
MOTA	2010	0	HIS	54	63.620	57.850	20.282	1.00 19.90	B_13
ATOM	2011	N	ASP	55	61.586	58.076	21.219	1.00 17.27	B_13
ATOM	2013	CA	ASP	55	61.303	56.648	21.366	1.00 25.79	B_13
				55	62.099	56.038			
ATOM	2014	CB	ASP				22.533	1.00 29.40	B_13
ATOM	2015	CG	ASP	55	63.443	55.428	22.076	1.00 29.64	B_13
MOTA	2016	OD1	ASP	55	63.517	54.906	20.942	1.00 33.28	B_13
MOTA	2017	OD2	ASP	55	64.437	55.469	22.831	1.00 31.99	B_13
ATOM	2018	С	ASP	55	59.807	56.460	21.567	1.00 24.99	B_13
ATOM	2019	ŏ	ASP	55	59.079	57.445	21.677	1.00 21.06	B_13
ATOM	2020	N	GLY	56	59.358	55.207	21.559	1.00 22.90	
									B_13
MOTA	2022	CA	GLY	56	57.954	54.877	21.737	1.00 21.80	B_13
- Mota	2023	-C-	GLY-		- 57155	-54.926	20.447	1.00 -14.48-	B_:13-
MOTA	2024	0	GLY	56	57.720	55.108	19.379	1.00 19.38	B_13
ATOM	2025	N	ILE	57	55.841	54.742	20.545	1.00 11.78	B_13
ATOM	2027	CA	ILE	57	54.944	54.809	19.389	1.00 16.25	B_13
ATOM	2028	СВ	ILE	57	53.737	53.804	19.510	1.00 22.94	B_13
MOTA	2029		ILE	57	52.442	54.417	18.955	1.00 24.79	B_13
				57 57					
MOTA	2030	CG1			54.025	52.505	18.744	1.00 25.63	B_13
MOTA	2031		ILE	57	53.586	52.520	17.240	1.00 17.48	B_13
MOTA	2032	С	ILE	57	54.410	56.238	19.301	1.00 18.78	B_13
ATOM	2033	0	ILE	57	53.866	56.777	20.270	1.00 11.40	B_13
ATOM	2034	N	ALA	58	54.598	56.842	18.140	1.00 14.67	B_13
MOTA	2036	CA	ALA	58	54.139	58.200	17.857	1.00 17.04	B_13
ATOM	2037	CB	ALA	58	55.270	59.015	17.245	1.00 10.00	B_13
ATOM	2038	C	ALA	58	53.048	58.009	16.825	1.00 25.41	
									B_13
MOTA	2039	0	ALA	58	52.956	56.940	16.243	1.00 22.59	B_13
MOTA	2040	N	ASP	59	52.211	59.020	16.609	1.00 13.36	B_13
MOTA	2042	CA	ASP	59	51.156	58.927	15.606	1.00 24.67	B_13
MOTA	2043	CB	ASP	59	50.348	60.237	15.545	1.00 10.00	B_13
ATOM	2044	CG	ASP	59	49.743	60.631	16.899	1.00 12.93	B_13
ATOM	2045		ASP	59	49.922	61.788	17.327	1.00 32.89	B_13
ATOM	2046		ASP	59	49.076	59.793		1.00 21.52	
							17.541		B_13
ATOM	2047	C	ASP	59	51.784	58.653	14.242	1.00 11.46	B_13
ATOM	2048	0	ASP	59 -	51.378	57.736	13.531	1.00 16.58	B_13
MOTA	2049	N	ILE	60	52.791	59.445	13.899	1.00 24.90	B_13
ATOM	2051	CA	ILE	60	53.494	59.346	12.624	1.00 12.17	B_13
ATOM	2052	CB	ILE	60	53.620	60.738	11.975	1.00 10.91	B_13
ATOM	2053	CG2		60	54.289	60.641	10.588	1.00 10.70	B_13
ATOM	2054		ILE	60	52.228				
						61.367	11.851	1.00 18.58	B_13
MOTA	2055	CD1		60	52.219	62.870	11.726	1.00 12.00	B_13
ATOM	2056	С	ILE	60	54.881	58.750	12.841	1.00 12.93	B_13
MOTA	2057	0	ILE	60 ·	55.788	59.392	13.365	1.00 16.39	B_13
MOTA	2058	N	MET	61	55.015	57.485	12.483	1.00 19.08	B13
ATOM	2060	CA	MET	61	56.275	56.784	12.617	1.00 16.97	B_13
ATOM	2061	CB	MET	61	56.011	55.328	13.035	1.00 23.79	B_13
ATOM	2062	CG	MET	61	55.313	55.172	14.422	1.00 12.37	B 13
ATOM	2063	SD	MET	61					
					56.389	55.360	15.913	1.00 31.01	B_13
MOTA	2064	CE	MET	61	57.204	53.749	15.861	1.00 14.93	B_13
ATOM	2065	C	MET	61	56.995	56.888	11.265	1.00 12.72	B_13
ATOM	2066	0	MET	61	56.438	56.538	10.216	1.00 15.31	B_13
MOTA	2067	N	ILE	62	58.170	57.518	11.294	1.00 16.64	B_13
MOTA	2069	CA	ILE	62	58.978	57.739	10.097	1.00 27.48	B_13
MOTA	2070	CB	ILE'	62	59.557	59.181	10.060	1.00 10.00	B_13
MOTA	2071	CG2	ILE	62	60.191	59.462	8.717	1.00 18.65	B_13
MOTA	2072		ILE	62	58.460	60.203	10.342	1.00 18.51	B_13
MOTA	2073		ILE	62	58.983	61.499	10.931	1.00 16.23	B_13
MOTA	2074		ILE	62	60.155				
		C				56.787	10.046	1.00 15.06	B_13
ATOM	2075	0	ILE	62	60.873	56.606	11.033	1.00 10.73	B_13
ATOM	2076	Ŋ	SER	63	60.398	56.230	8.873	1.00 19.40	B_13
ATOM	2078	CA	SER	63	61.513	55.321	8.722	1.00 13.31	B_13
ATOM	2079	CB	SER	63	61.111	53.888	9.123	1.00 17.28	B_13
ATOM	2080	OG	SER	63	59.985	53.435	8.391	1.00 13.66	B_13
ATOM	2082	c	SER	63	62.086	55.339	7.315	1.00 19.86	B_13
ATOM	2082			63					5-13
		0	SER		61.441	55.766	6.347	1.00 20.93	B_13
MOTA	2084	N	PHE	64	63.338	54.914	7.237	1.00 17.78	B_13
MOTA	2086	CA	PHE	64	64.072	54.823	5.989	1.00 18.81	B_13
ATOM	2087	CB	PHE	64	65.409	55.553	6.105	1.00 16.50	B_13
MOTA	2088	CG	PHE	64	65.278	57.054	6.171	1.00 22.54	B_13
ATOM	2089		PHE		65.321	57.817	5.013	1.00 20.48	B_13
ATOM	2090		PHE		65.155	57.708	7.395	1.00 24.76	B_13
ATOM	2091		PHE		65.246				5-73
ATOM	2091					59.207	5.071	1.00 13.94	B_13
			PHE		65.079	59.105	7.461	1.00 14.29	B_13
MOTA	2093	CZ	PHE		65.128	59.847	6.298	1.00 10.16	B_13
MOTA	2094	С	PHE		64.293	53.336	5.823	1.00 10.30	B_13
MOTA	2095	0	PHE	64	64.571	52.637	6.799	1.00 14.11	B_13
MOTA	2096	N	GLY	65	64.121	52.842	4.610	1.00 13.58	B_13
									-

ATOM	2098	CA	GLY	65	64 306	E1 406		1 00 14 00		
ATOM	2099	CA	GLY	65	64.306	51.426	4.392	1.00 14.88		B_13
ATOM		C			64.400	51.117	2.922	1.00 14.95		B_13
	2100	0	GLY	65	64.047	51.947	2.088	1.00 12.61		B_13
MOTA	2101	N	ILE	66	64.860	49.922	2.587	1.00 10.00		B_13
ATOM	2103	CA	ILE	66	64.995	49.555	1.187	1.00 19.70		B_13
MOTA	2104	СВ	ILE	66	66.483	49.344	0.791	1.00 18.92	:	B_13
MOTA	2105	CG2		66	67.301	50.628	1.073	1.00 10.00		B_13
ATOM	2106	CG1	ILE	66	67.078	48.178	1.582	1.00 14.64		B_13
MOTA	2107	CD1	ILE	66	68.381	47.662	1.004	1.00 17.53		B_13
MOTA	2108	С	ILE	66	64.195	48.296	0.900	1.00 15.98		B_13
MOTA	2109	Ó	ILE	66	63.877	47.543	1.806	1.00 20.10		B_13
MOTA	2110	N	LYS	67	63.773	48.148	-0.349	1.00 18.78		B_13
	- 2112	CA		67	63019 -		-0.787-			
ATOM	2113	CB	LYS	67				1.00 14.73		B_1-3
					63.986	45.827	-1.073	1.00 22.08		B_13
ATOM	2114	CG	LYS	67 67	65.107	46.142	-2.066	1.00 15.53		B_13
MOTA	2115	CD	LYS	67	64.591	46.325	-3.487	1.00 16.76		B_13
MOTA	2116	CE	LYS	67	65.573	45.763	-4.523	1.00 21.90		B_13
ATOM	2117	NZ	LYS	67	66.975	46.257	-4.394	1.00 28.03		B_13
ATOM	2121	С	LYS	67	61.945	46.548	0.218	1.00 16.24		B_13
ATOM	2122	0	LYS	67	61.136	47.360	0.649	1.00 10.25		B_13
MOTA	2123	N	GLU	68	61.968	45.293	0.630	1.00 10.00		B_13
ATOM	2125	CA	GLU	68	60.986	44.787	1.570	1.00 10.00		B_13
MOTA	2126	CB	GLU	68	61.004	43.257	1.505	1.00 31.44		B_13
MOTA	2127	CG	GLU	68	59.733	42.550	1.696	1.00 27.13		B_13
ATOM	2128	CD	GLU	68	58.723	42.720	0.524	1.00 12.88		B_13
ATOM	2129		GLU	68	59.106	42.180	-0.613	1.00 12.88		
ATOM	2130		GLU	68				-		B_13
ATOM	2131				57.681	43.274	0.753	1.00 38.61		B_13
		Č	GLU	68	61.402	45.292	2.954	1.00 32.89		B_13
ATOM	2132	0	GLU	68	62.541	45.099	3.390	1.00 19.77		B_13
ATOM	2133	N	HIS	69	60.467	45.918	3.659	1.00 15.43		B_13
ATOM	2135	CA	HIS	69	60.777	46.473	4.964	1.00 10.00		B_13
MOTA	2136	CB	HIS	69	61.173	47.928	4.802	1.00 15.60		B_13
ATOM	2137	CG	HIS	69	60.151	48.731	4.063	1.00 18.06		B_13
MOTA	2138	CD2	HIS	69	59.131	49.509	4.498	1.00 25.01		B_13
ATOM	2139	ND1	HIS	69	60.055	48.709	2.689	1.00 21.79		B_13
ATOM	2141		HIS	69	59.023	49.430	2.308	1.00 19.43		B_13
ATOM	2142		HIS	69	58.438	49.932	3.384	1.00 19.23		
ATOM	2143	C	HIS	69	59.655	46.396	5.978			B_13
ATOM	2144	ŏ	HIS	69				1.00 16.27		B_13
ATOM	2145	N	GLY	70	59.689	47.099	6.969	1.00 13.47		B_13
MOTA					58.610	45.629	5.719	1.00 21.21		B_13
	2147	CA	GLY	70 70	57.567	45.520	6.720	1.00 15.93		B_13
MOTA	2148	C	GLY	70	56.147	45.784	6.287	1.00 13.13		B_13
MOTA	2149	0	GLY	70	55.283	45.986	7.147	1.00 12.19		B_13
ATOM	2150	N	ASP	71	55.891	45.805	4.983	1.00 10.00		B_13
MOTA	2152	CA	ASP	71	54.540	46.030	4.480	1.00 17.84		B_13
ATOM	2153	CB	ASP	71	54.086	47.490	4.636	1.00 21.86		B_13
ATOM	2154	CG	ASP	71	54.946	48.480	3.881	1.00 13.38		B_13
ATOM	2155	OD1	ASP	71	54.896	49.644	4.291	1.00 10.00		B_13
MOTA	2156	OD2	ASP	71	55.633	48.135	2.897	1.00 10.00		B_13
ATOM	2157	С	ASP	71	54.313	45.557	3.064	1.00 27.18		B 13
ATOM	2158	Ó	ASP	71	55.221	45.068	2.416	1.00 16.61		B_13
ATOM	2159	N	PHE	72	53.103	45.759	2.564	1.00 10.00		
ATOM	2161	CA	PHE	72	52.788	45.317	1.213			B_13
ATOM	2162	CB	PHE	72	51.292	45.017		1.00 19.60		B_13
ATOM	2163	ČG	PHE	72	50.849	43.779	1.099	1.00 16.43		B_13
ATOM	2164		PHE	72		40.779	1.851	1.00 27.69		B_13
ATOM	2165				51.399	42.532	1.561	1.00 22.33		B_13
			PHE	72	49.848	43.855	2.823	1.00 27.58		B_13
ATOM	2166		PHE	72	50.955	41.383	2.225	1.00 22.03		B_13
MOTA	2167		PHE	72	49.403	42.709	3.486	1.00 21.82		B_13
ATOM	2168	CZ	PHE	72	49.957	41.473	3.184	1.00 10.00		B_13
MOTA	2169	С	PHE	72	53.225	46.313	0.130	1.00 18.56		B_13
MOTA	2170	0	PHE	72	52.840	46.190	-1.048	1.00 14.78		B_13
MOTA	2171	N	TYR	73	54.079	47.260	0.513	1.00 10.93		B_13
ATOM	2173	CA	TYR	73	54.558	48.295	-0.416	1.00 13.87		B_13
MOTA	2174	CB	TYR	73	53.943	49.649	-0.048	1.00 22.69		B_13
ATOM	2175	CG	TYR	73	52.439	49.581	0.007	1.00 22.69		
ATOM	2176		TYR	73 73	51.774	49.385	1.219			B_13
ATOM	2177		TYR	73 73				1.00 18.21		B_13
MOTA	2178		TYR	73 73	50.386	49.219	1.257	1.00 35.13		B_13
ATOM					51.683	49.618	-1.165	1.00 15.77		B_13
	2179	CE2		73	50.300	49.456	-1.133	1.00 39.16		B_13
MOTA	2180	CZ	TYR	73	49.663	49.258	0.080	1.00 28.27		B_13
MOTA	2181	OH	TYR	73	48.301	49.122	0.106	1.00 33.06		B_13
ATOM	2183	C	TYR	73	56.088	48.349	-0.425	1.00 18.05		B_13
ATOM	2184	0	TYR	73	56.721	49.339	0.003	1.00 10.00		B_13
ATOM	2185	N	PRO	74	56.702	47.287	-0.953	1.00 13.76		B_13
MOTA	2186	CD	PRO	74	56.063	46.221	-1.740	1.00 14.21		B_13
MOTA	2187	CA	PRO	74	58.158	47.183	-1.024	1.00 21.66		B_13
				•						

			_						
ATOM	2188	CB PR		74	58.353	45.768	-1.569	1.00 15.88	B_13
ATOM	2189	CG PR		74 74	57.225 58.747	45.653	-2.540 -1.959	1.00 13.95 1.00 27.68	B_13
ATOM ATOM	2190 2191	C PR		74	58.173	48.226 48.526	-3.012	1.00 27.68	B_13 B_13
MOTA	2191	N PH		75 75	59.883	48.794	-1.562	1.00 20.91	B_13 B_13
ATOM	2194	CA PH		75 75	60.554	49.773	-2.395	1.00 20.31	B_13 B_13
ATOM	2195	CB PH		75	61.498	50.637	-1.548	1.00 11.67	B_13
ATOM	2196	CG PH		75	60.765	51.589	-0.641	1.00 14.42	B_13
MOTA	2197	CD1 PH		75	59.831	52.484	-1.162	1.00 16.56	B_13
MOTA	2198	CD2 Ph		75 75	60.976	51.574	0.726	1.00 10.00	B_13
MOTA	2199	CE1 PI		75	59.119	53.345	-0.327	1.00 11.14	B_13
ATOM	2200	CE2 PH		75	60.274	52.423	1.558	1.00 10.28	B_13
ATOM -		CZ PI			59.340		1.027	1.00 10.00 _	
ATOM	2202		ΗE	75	61.236	49.068	-3.573	1.00 14.23	B_13
ATOM	2203			75	61.357	47.837	-3.582	1.00 18.64	B_13
ATOM	2204	N AS		76	61.742	49.845	-4.526	1.00 12.83	B_13
MOTA	2206	CA AS	SP	76	62.330	49.287	-5.740	1.00 20.69	B_13
MOTA	2207	CB AS	SP SP	76	61.394	49.644	-6.911	1.00 14.28	B_13
ATOM	2208	CG AS	SP	76	61.212	51.144	-7.080	1.00 14.37	B_13
ATOM	2209	OD1 A		76	61.361	51.882	-6.095	1.00 22.32	B_13
ATOM	2210	OD2 AS		76	60.941	51.597	-8.202	1.00 15.92	B_13
MOTA	2211		SP	76	63.764	49.698	-6.104	1.00 19.31	B_13
ATOM	2212		SP	76	64.056	49.864	-7.278	1.00 18.67	B_13
ATOM	2213		LY	77	64.653	49.902	-5.132	1.00 10.00	B_13
ATOM	2215		ĽΫ́	77	65.997	50.326	-5.501	1.00 10.00	B_13
ATOM	2216		ĽΥ	77	65.989	51.790	-5.970	1.00 16.22	B_13
MOTA	2217 2218		LY	77 78	64.967	52.487	-5.752 -6.589	1.00 17.04	B_13
ATOM ATOM	2219		RO RO	78	67.080 68.319	52.305 51.564	-6.856	1.00 12.53 1.00 12.24	B_13 B_13
ATOM	2220		RO	78	67.207	53.691	-7.086	1.00 12.24	B_13 B_13
ATOM	2221		RO	78	68.546	53.678	-7.816	1.00 10.00	B_13
ATOM	2222		RO	78	69.316	52.693	-7.066	1.00 12.78	B_13
ATOM	2223		RO	78	66.093	54.146	-8.027	1.00 10.00	B_13
ATOM	2224		RO	78	65.621	53.381	-8.853	1.00 27.46	B_13
MOTA	2225		ER	79	65.641	55.386	-7.852	1.00 19.14	B_13
MOTA	2227		ER	79	64.568	55.963	-8.669	1.00 10.00	B_13
ATOM	2228		ER	79	64.970		-10.148	1.00 20.11	B_13
ATOM	2229		ER	79	63.982		-10.901	1.00 23.87	B_13
ATOM	2231	C S	ER	79	63.231		-8.507	1.00 31.68	B_13
ATOM	2232	0 S	ER	79	63.074	54.356	-7.606	1.00 26.48	B_13
ATOM	2233	N G	LY	80	62.250	55.589	-9.327	1.00 10.00	B_13
MOTA	2235	CA G	LY	80	60.940	54.969	-9.260	1.00 10.07	B_13
MOTA	2236		LY	80	60.293	55.412	-7.968	1.00 30.72	B_13
MOTA	2237		ΓĀ	80	60.347	56.600	-7.643	1.00 20.65	B_13
ATOM	2238		EU	81	59.779	54.452	-7.193	1.00 23.74	B_13
ATOM	2240		EU	81	59.135	54.752	-5.917	1.00 13.14	B_13
MOTA	2241 2242		EU	81	58.661	53.481	-5.213	1.00 16.20	B_13
ATOM ATOM	2242	CG L	EU	81 81	57.393 57.554	52.775 52.277	-5.687 -7.096	1.00 17.33 1.00 28.67	B_13 B_13
MOTA	2244	CD2 L		81	57.103	51.617	-4.745	1.00 25.67	B_13 B_13
ATOM	2245		EU	81	60.122	55.466	-5.019	1.00 27.02	B_13
ATOM	2246		EU	81	61.264	55.016	-4.846	1.00 16.24	B_13
MOTA	2247		EU	82	59.692	56.590	-4.470	1.00 11.33	B_13
MOTA	2249		EU	82	60.540	57.381	-3.594	1.00 17.52	B 13
MOTA	2250	CB L	EU	82	60.442	58.861	-3.986	1.00 18.51	B_13
MOTA	2251		EU	82	61.355	59.499	-5.044	1.00 15.37	B_13
MOTA	2252	CD1 L		82	61.800	58.504	-6.104	1.00 17.05	B_13
MOTA	2253	CD2 L		82	60.639	60.744	-5.659	1.00 16.87	B_13.
ATOM	2254		EU	82	60.172	57.203	-2.127	1.00 10.00	B_13
MOTA	2255		EU	82	61.045	57.056	-1.275	1.00 19.90	B_13
MOTA	2256		LA	83	58.876	57.201	-1.840	1.00 18.16	B_13
ATOM	2258		LA	83	58.378	57.077	-0.472	1.00 13.17	B_13
MOTA	2259		LA	83	58.762	58.322	0.327	1.00 10.00	B_13
MOTA MOTA	2260 2261		LA LA	83 83	56.846 56.209	56.925	-0.500	1.00 10.00 1.00 10.73	B_13
ATOM	2262		IIS	84	56.268	57.155 56.619	-1.541 0.662	1.00 10.73	B_13 B_13
ATOM	2264		IS	84	54.811	56.472	0.810	1.00 10.00	B_13
ATOM	2265		iis	84	54.270	55.188	0.157	1.00 23.81	B_13
ATOM	2266		IS	84	54.848	53.925	0.711	1.00 17.68	B_13
ATOM	2267	CD2 H		84	54.856	53.415	1.964	1.00 10.00	B_13
ATOM	2268	ND1 H		84	55.525	53.025	-0.076	1.00 14.94	B_13
MOTA	2270	CE1 H	iis	84	55.933	52.015	0.666	1.00 29.72	B_13
MOTA	2271	NE2 H		84	55.543	52.224	1.912	1.00 13.81	B_13
MOTA	2272		IIS	84	54.363	56.547	2.258	1.00 12.82	B_13
ATOM	2273		IIS	84	55.099	56.148	3.166	1.00 20.02	B_13
ATOM	2274		LA	85	53.161	57.076	2.464	1.00 28.38	B_13
ATOM	2276	CA A	LA	85	52.584	57.230	3.796	1.00 18.64	B_13

ATOM	2277	СВ	ALA	85	52.638	58.705	4.223	1.00 13.89	B_13
ATOM	2278	С	ALA	85	51.138	56.716	3.837	1.00 10.00	B_13
ATOM	2279	0	ALA	85	50.434	56.728	2.828	1.00 10.00	B_13
ATOM	2280	N	PHE	86	50.676	56.322	5.016	1.00 14.76	B_13
ATOM	2282	CA	PHE	86	49.316	55,811	5.143	1.00 17.96	B_13
ATOM	2283	CB	PHE	86	49.286	54.592	6.084	1.00 15.86	B_13
ATOM	2284	CG	PHE	86	50.320	53.542	5.748	1.00 26.30	B_13
ATOM	2285	CD1	PHE	86	49.973	52.398	5.042	1.00 22.30	B_13
MOTA	2286	CD2	PHE	86	.51.654	53.730	6.090	1.00 27.63	B_13
ATOM	2287	CE1	PHE	86	50.938	51.472	4.681	1.00 27.85	B_13
ATOM	2288	CE2	PHE	86	52.620	52.810	5.731	1.00 13.97	B_13
. MOTA		CZ	PHE	86	52.266	51.683	5.027	1.00 23.08	B_13
MOTA	2290	С	PHE	86	48.427	56.924	5.669	1.00 13.02	B_13_
ATOM	2291	0	PHE	86	48.870	57.747	6.466	1.00 15.02	B_13_
MOTA	2292	N	PRO	87	47.174	57.006	5.186	1.00 17.55	B_13
MOTA	2293	CD	PRO	87	46.565	56.165	4.146	1.00 10.17	B_13
MOTA	2294	CA	PRO	87	46.228	58.041	5.628	1.00 32.09	B_13
ATOM	2295	CB	PRO	87	44.961	57.720	4.819	1.00 18.55	B_13
ATOM	2296	CG	PRO	87	45.115	56.277	4.481	1.00 18.86	B_13
ATOM	2297	C	PRO	87	45.995	57.955	7.139	1.00 25.18	B_13
ATOM	2298	0	PRO	87	46.284	56.919	7.752	1.00 18.18	B_13
ATOM	2299	N	PRO	88	45.462	59.032	7.760	1.00 11.49	B_13
ATOM	2300	CD	PRO	99	45.015	60.303	7.164	1.00 10.00	. B_13
ATOM	2301	CA	PRO	88	45.217	59.034	9.202	1.00 19.03	B_13
MOTA	2302	CB	PRO	88	44.399	60.302	9.402	1.00 14.16	B_13
ATOM	2303	CG	PRO	88	44.939	61.196	8.357	1.00 16.39	B_13
MOTA	2304	C	PRO	88	44.500	57.787	9.733	1.00 25.43	B_13
MOTA	2305	0	PRO	88	43.670	57.165	9.044 10.955	1.00 15.90 1.00 26.28	B_13
ATOM ATOM	2306 2308	N CA	GLY GLY	89 89	44.865 44.299	57.422 56.264	11.606	1.00 25.28	B_13 B_13
ATOM	2309	C	GLY	89	45.343	55.713	12.546	1.00 34.38	B_13 B_13
ATOM	2310	ō	GLY	89	46.485	56.164	12.340	1.00 23.28	B_13
ATOM	2311	N	PRO	90	44.977	54.774	13.437	1.00 13.87	B_13
ATOM	2312	CD	PRO	90	43.613	54.259	13.631	1.00 16.36	B_13
ATOM	2313	CA	PRO	90	45.898	54,164	14.398	1.00 10.34	B_13
ATOM	2314		PRO	90	44.963	53.360	15.300	1.00 15.93	B 13
ATOM	2315	CG	PRO	90	43.870	52.975	14.373	1.00 23.25	B_13
ATOM	2316	c	PRO	90	46.942	53.299	13.711	1.00 18.38	B_13
MOTA	2317	ŏ	PRO	90	46.875	53.064	12.505	1.00 26.81	B_13
ATOM	2318	N	ASN	91	47.903	52.831	14.502	1.00 26.63	B_13
ATOM	2320	CA	ASN	91	49.022	52.010	14.033	1.00 21.91	B_13
ATOM	2321	CB	ASN	91	48.740	50.500	14.081	1.00 18.89	B_13
MOTA	2322	CG	ASN	91	47.437	50.117	13.448	1.00 22.49	B_13
MOTA	2323	OD1	ASN	91	47.335	50.017	12.237	1.00 29.37	B_13
MOTA	2324	ND2	ASN	91	46.438	49.858	14.273	1.00 28.01	B_13
MOTA	2327	С	ASN	91	49.656	52.438	12.721	1.00 20.07	B_13
MOTA	2328	0	ASN	91	50.301	53.479	12.681	1.00 21.24	B_13
MOTA	2329	N	TYR	92	49.423	51.716	11.633	1.00 20.15	B_13
ATOM	2331	CA	TYR	92	50.052	52.081	10.367	1.00 18.70	B_13
MOTA	2332	CB	TYR	92	49.905	50.953	9.344	1.00 14.48	B_13
MOTA	2333	CG	TYR	92	50.906	49.821	9.567	1.00 24.41	B_13
MOTA	2334		TYR	92	52.266	50.003	9.287	1.00 27.39	B_13
MOTA	2335		TYR	92	53.198	48.979	9.471	1.00 18.14	B_13
ATOM ATOM	2336 2337	CE2	TYR	92 92	50.499 51.427	48.571	10.044	1.00 28.07 1.00 36.50	B_13
MOTA	2338	CZ	TYR	92	52.778	47.529 47.741	9.940		B_13
ATOM	2339	OH	TYR TYR	92	53.694	46.710	10.105	1.00 43.64 1.00 32.21	B_13 B_13
ATOM	2341	C	TYR	92	49.633	53.431	9.797	1.00 32.21	B_13
ATOM	2342	ŏ	TYR	92	50.384	54.049	9.040	1.00 12.55	B_13
ATOM	2343	N	GLY	93	48.464	53.916	10.198	1.00 15.83	B_13
ATOM	2345	CA	GLY	93	48.015	55.216	9.732	1.00 11.69	B_13
MOTA	2346	c	GLY	93	48.971	56.326	10.134	1.00 18.60	B_13
MOTA	2347	ō	GLY	93	49.561	56.300	11.227	1.00 22.00	B_13
ATOM	2348	N	GLY	94	49.205	57.258	9.216	1.00 10.27	B_13
ATOM	2350	CA	GLY	94	50.099	58.365	9.492	1.00 18.36	B_13
ATOM	2351	C	GLY	94	51.567	58.061	9.234	1.00 15.54	· B_13
ATOM	2352	ŏ	GLY	94	52.334	58.967	8.938	1.00 17.55	B_13
ATOM	2353	N	ASP	95	51.977	56.801	9.351	1.00 17.69	B_13
MOTA	2355	CA	ASP	95	53.386	56.457	9.134	1.00 19.67	B_13
ATOM	2356	CB	ASP	95	53.637	54.986	9.444	1.00 15.96	B_13
ATOM	2357	CG	ASP	95	53.346	54.634	10.900	1.00 25.37	B_13
MOTA	2358		ASP	95	53.627	53.484	11.297	1.00 16.05	B_13
MOTA	2359	OD2	ASP	95	52.835	55.488	11.656	1.00 14.66	B_13
ATOM	2360	С	ASP	95	53.896	56.808	7.733	1.00 17.15	B_13
MOTA	2361	0	ASP	95	53.162	56.711	6.746	1.00 19.09	B_13
MOTA	2362	N	ALA	96	55.166	57.198	7.662	1.00 18.71	B_13
MOTA	2364	CA	ALA	96	55.803	57.581	6.400	1.00 19.97	B_13

ATOM 2165 CB ALA 96 55.098 59.095 6.379 1.00 22.61 B_13 ATOM 2166 C ALA 96 57.988 56.784 6.204 1.00 25.63 B_13 ATOM 2167 O ALA 96 57.948 56.724 7.095 1.00 12.54 B_13 ATOM 2167 O ALA 96 57.948 56.724 7.095 1.00 12.54 B_13 ATOM 2167 O ALA 96 57.948 56.724 7.095 1.00 12.54 B_13 ATOM 2171 CB HIS 97 57.915 56.06 5.053 1.00 12.54 B_13 ATOM 2171 CB HIS 97 57.955 53.905 4.664 1.00 12.00 B_13 ATOM 2173 CD HIS 97 57.244 53.257 5.624 1.00 12.00 B_13 ATOM 2173 CD HIS 97 57.244 53.603 6.929 1.00 12.00 B_13 ATOM 2175 CE HIS 97 57.245 53.257 5.624 1.00 12.00 B_13 ATOM 2176 NEZ HIS 97 56.056 51.05 52.10 5.499 1.00 12.01 B_13 ATOM 2176 NEZ HIS 97 56.058 51.979 1.00 12.01 D.00 B_13 ATOM 2176 NEZ HIS 97 56.056 51.790 6.688 1.00 12.00 B_13 ATOM 2178 C HIS 97 56.045 52.664 7.571 1.00 10.64 B_13 ATOM 2178 C HIS 97 56.058 53.959 3.520 1.00 13.82 B_13 ATOM 2183 CB PHE 98 60.279 56.254 2.557 1.00 12.67 B_13 ATOM 2183 CB PHE 98 60.279 56.254 2.557 1.00 12.67 B_13 ATOM 2186 CD PHE 98 60.279 56.254 2.595 1.00 12.67 B_13 ATOM 2185 CD PHE 98 61.055 59.025 3.627 1.00 17.93 B_13 ATOM 2185 CD PHE 98 60.476 58.974 4.893 1.00 12.14 B_13 ATOM 2186 CD PHE 98 60.476 58.974 4.893 1.00 12.14 B_13 ATOM 2186 CD PHE 98 60.476 58.974 4.893 1.00 12.14 B_13 ATOM 2187 CE PHE 98 59.557 59.032 5.350 1.00 13.27 B_13 ATOM 2189 CD PHE 98 62.286 54.969 2.5851 1.00 13.27 B_13 ATOM 2189 CD PHE 98 62.286 54.969 2.5851 1.00 13.27 B_13 ATOM 2189 CD PHE 98 62.286 54.969 2.5851 1.00 13.27 B_13 ATOM 2189 CD PHE 98 62.286 54.969 2.5851 1.00 13.27 B_13 ATOM 2189 CD PHE 98 62.886 54.999 3.00 CD PHE 98 62.286 54.969 2.5851 1.00 13.27 B_13 ATOM 2195 CD ASP 99 63.299 54.612 0.00 CD 10.00 B_13 ATOM 2195 CD ASP 99 63.299 54.612 0.00 CD 10.00 B_13 ATOM 2195 CD ASP 99 63.299 54.612 0.00 CD 10.00 B_13 ATOM 2195 CD ASP 99 63.299 54.612 0.00 CD 10.00 B_13 ATOM 2406 CD ASP 99 63.299 54.612 0.00 CD 10.00 B_13 ATOM 2406 CD ASP 99 63.299 54.612 0.00 CD 10.00 B_13 ATOM 2407 CD ASP 99 63.299 54.612 0.00 CD 10.00 B_13 ATOM 2408 CD ASP 99 63.299 54.612 0.00 CD 10.00 B_13 ATOM 2408 CD ASP 99	3.501	2265				56 000	FO 005	6.220		
ATOM 2367 0 ALA 96 57,948 56.724 7.095 1.00 12.54 8_13 ATOM 2370 CA HIS 97 57.215 56.166 5.035 1.00 13.27 8_13 ATOM 2371 CB HIS 97 57.225 55.357 4.730 1.00 25.28 8_13 ATOM 2371 CB HIS 97 57.226 53.257 55.357 4.730 1.00 25.28 8_13 ATOM 2372 CB HIS 97 57.226 53.257 55.364 1.00 12.02 B_13 ATOM 2373 CD HIS 97 57.226 53.257 56.24 1.00 12.02 B_13 ATOM 2375 CD HIS 97 57.226 53.257 6.24 1.00 12.02 B_13 ATOM 2375 CD HIS 97 57.226 53.257 6.24 1.00 12.02 B_13 ATOM 2376 NE2 HIS 97 56.136 52.003 6.929 1.00 10.0 10 B_13 ATOM 2378 C HIS 97 56.038 51.770 6.688 1.00 10.00 B_13 ATOM 2378 C HIS 97 56.038 51.770 6.688 1.00 10.00 B_13 ATOM 2379 O-HIS -97 59.069 55.959 3.520 1.00 13.82 B_13 ATOM 2382 CA PHE 98 60.379 56.154 3.647 1.00 10.67 B_13 ATOM 2382 CA PHE 98 61.245 56.143 3.647 1.00 10.67 B_13 ATOM 2382 CA PHE 98 61.970 57.938 3.156 1.00 10.76 B_13 ATOM 2384 CD PHE 98 61.970 57.938 3.156 1.00 10.76 B_13 ATOM 2386 CD PHE 98 60.476 58.9074 2.893 1.00 13.92 B_13 ATOM 2386 CD PHE 98 60.476 58.9074 2.893 1.00 13.92 B_13 ATOM 2386 CD PHE 98 60.476 58.9074 2.893 1.00 13.92 B_13 ATOM 2387 CE PHE 98 59.574 59.962 5.315 1.00 10.00 B_13 ATOM 2395 C PHE 98 59.574 59.962 5.315 1.00 12.00 B_13 ATOM 2395 C PHE 98 59.574 59.962 5.315 1.00 12.00 B_13 ATOM 2395 C PHE 98 59.574 59.962 5.315 1.00 12.00 B_13 ATOM 2395 C PHE 98 59.574 59.962 5.315 1.00 12.00 B_13 ATOM 2396 C PHE 98 60.476 58.974 2.893 1.00 12.00 B_13 ATOM 2397 C PHE 98 60.476 58.974 2.893 1.00 12.00 B_13 ATOM 2398 C PHE 98 60.476 58.974 2.893 1.00 12.00 B_13 ATOM 2399 C ANP 99 62.331 55.577 1.00 12.02 B.13 ATOM 2390 C PHE 98 60.476 58.974 2.893 1.00 12.00 B_13 ATOM 2390 C PHE 98 60.476 58.974 2.893 1.00 12.00 B.13 ATOM 2390 C PHE 98 60.476 58.974 2.893 1.00 12.00 B.13 ATOM 2390 C PHE 98 60.476 58.974 2.893 1.00 12.00 B.13 ATOM 2391 C PHE 98 60.476 58.974 2.893 1.00 12.00 B.13 ATOM 2392 C PHE 98 69.574 2.893 1.00 12.00 B.13 ATOM 2390 C PHE 98 60.476 58.974 2.893 1.00 12.00 B.13 ATOM 2400 C PHE 98 60.476 58.974 2.895 1.00 12.244 B.13 ATOM 2410 C PHE 98 60.476 58.974 2.895 1.00 12.24										
ATOM 2370 CA HIS 97 57.211 56.166 5.035 1.00 13.27 8_13 ATOM 2371 CA HIS 97 57.955 53.905 4.730 1.00 25.28 8_13 ATOM 2372 CG HIS 97 57.955 53.905 4.730 1.00 25.28 8_13 ATOM 2373 CD HIS 97 57.955 53.905 4.730 1.00 25.28 8_13 ATOM 2373 CD HIS 97 57.244 53.257 5.624 1.00 12.00 8_13 ATOM 2373 CD HIS 97 57.245 53.257 5.624 1.00 12.00 8_13 ATOM 2376 CE HIS 97 57.246 53.257 5.624 1.00 12.00 8_13 ATOM 2376 CE HIS 97 57.246 53.257 5.624 1.00 12.00 8_13 ATOM 2376 CE HIS 97 56.166 52.104 5.499 1.00 12.01 8_13 ATOM 2376 CE HIS 97 56.045 52.764 5.499 1.00 12.01 8_13 ATOM 2376 CE HIS 97 59.069 55.995 3.520 1.00 13.02 8_13 ATOM 2380 N PHE 98 60.379 56.145 3.647 1.00 10.67 8_13 ATOM 2381 CB PHE 98 61.224 56.718 2.595 1.00 15.67 8_13 ATOM 2382 CA PHE 98 61.025 59.025 3.627 1.00 17.93 8_13 ATOM 2385 CD PHE 98 61.055 59.025 3.627 1.00 17.93 8_13 ATOM 2386 CD PHE 98 60.476 58.974 6.00 12.779 8_13 ATOM 2386 CD PHE 98 60.476 58.974 6.00 12.779 8_13 ATOM 2386 CD PHE 98 60.476 58.974 6.00 12.277 9.00 12.27 ATOM 2389 CZ PHE 98 60.476 58.974 6.00 12.01 12.02 8_13 ATOM 2389 CZ PHE 98 60.476 58.974 6.00 12.01 12.01 10.00 12.13 ATOM 2389 CZ PHE 98 59.275 61.00 12.01 10.00 12.13 ATOM 2390 C PHE 98 62.882 54.969 2.851 1.00 13.27 8_13 ATOM 2391 C PHE 98 62.882 54.969 2.851 1.00 13.27 8_13 ATOM 2392 C PHE 98 62.882 54.969 2.851 1.00 13.27 8_13 ATOM 2391 C PHE 98 62.882 54.969 2.851 1.00 13.27 8_13 ATOM 2391 C PHE 98 62.882 54.969 2.851 1.00 13.27 8_13 ATOM 2391 C PHE 98 62.882 54.969 2.851 1.00 13.27 8_13 ATOM 2391 C PHE 98 62.882 54.969 2.064 1.00 10.00 8_13 ATOM 2392 C ASP 99 63.293 54.612 0.102 1.00 10.00 8_13 ATOM 2393 C ASP 99 63.293 54.612 0.102 1.00 10.00 8_13 ATOM 2406 C ASP 99 63.293 54.612 0.102 1.00 10.00 8_13 ATOM 2407 C ASP 99 63.293 54.612 0.102 1.00 10.00 8_13 ATOM 2408 C ASP 99 63.615 53.311 -22.667 1.00 12.86 8_13 ATOM 2408 C ASP 100 66.833 54.673 1.00 12.10 10.00 0.00 8_13 ATOM 2408 C ASP 100 66.803 55.25 1.00 15.74 8_13 ATOM 2408 C ASP 100 66.803 55.25 1.00 15.74 8_13 ATOM 2408 C ASP 100 66.803 55.25 1.00 12.10 1.00 1.00 8_1										
ATOM 2370 CA HIS 97 59.8,375 55.357 4.464 1.00 10.00 B_13 ATOM 2371 CB HIS 97 57.264 53.257 6.244 1.00 12.00 B_13 ATOM 2373 CD2 HIS 97 57.264 53.257 6.244 1.00 12.00 B_13 ATOM 2373 CD2 HIS 97 57.264 53.257 6.244 1.00 12.00 B_13 ATOM 2374 CB HIS 97 57.264 53.257 6.245 1.00 12.00 B_13 ATOM 2375 CD2 HIS 97 57.264 53.257 6.245 1.00 12.00 B_13 ATOM 2376 ND2 HIS 97 56.516 52.1047 6.686 1.00 12.01 B_13 ATOM 2376 ND2 HIS 97 56.516 52.1047 6.686 1.00 12.01 B_13 ATOM 2378 ND2 HIS 97 59.069 55.959 3.500 1.00 13.02 B_13 ATOM 2379 O HIS 97 59.069 55.959 3.500 1.00 13.82 B_13 ATOM 2380 N PHE 98 60.379 56.154 3.637 6.271 1.00 12.27 B_13- ATOM 2380 CA PHE 98 61.274 56.718 2.595 1.00 15.67 B_13 ATOM 2381 CB PHE 98 61.970 57.938 3.156 1.00 10.67 B_13 ATOM 2382 CA PHE 98 61.970 57.938 3.156 1.00 10.76 B_13 ATOM 2385 CDL PHE 98 60.750 60.082 2.785 1.00 18.92 B_13 ATOM 2385 CDL PHE 98 60.750 60.082 2.785 1.00 18.92 B_13 ATOM 2386 CDL PHE 98 60.750 60.082 2.785 1.00 12.74 B_13- ATOM 2380 CC PHE 98 69.91 S.975 1.00 15.67 B_13 ATOM 2390 C PHE 98 62.218 55.669 2.064 1.00 26.64 B_13 ATOM 2391 C PHE 98 62.218 55.669 2.064 1.00 26.64 B_13 ATOM 2391 C PHE 98 62.281 55.669 2.064 1.00 26.64 B_13 ATOM 2391 C PHE 98 62.281 55.669 2.064 1.00 10.00 B_13 ATOM 2391 C PHE 98 62.281 55.669 2.064 1.00 10.00 B_13 ATOM 2391 C PHE 98 62.281 55.669 2.064 1.00 10.00 B_13 ATOM 2391 C PHE 98 62.281 55.669 2.064 1.00 10.00 B_13 ATOM 2391 C PHE 98 62.281 55.669 2.064 1.00 10.00 B_13 ATOM 2391 C PHE 98 62.281 55.669 2.064 1.00 10.00 B_13 ATOM 2391 C PHE 98 62.282 54.696 2.851 1.00 13.27 B_13 ATOM 2392 N ASP 99 62.331 55.577 0.738 1.00 12.24 B_13 ATOM 2393 C PHE 98 62.282 54.696 2.851 1.00 13.00 B_13 ATOM 2400 C ASP 99 65.121 55.570 0.738 1.00 12.24 B_13 ATOM 2401 N ASP 100 66.833 54.642 1.260 1.00 1.00 10.00 B_13 ATOM 2402 C ASP 99 64.624 52.806 -1.528 1.00 12.20 B_13 ATOM 2403 C ASP 100 66.833 54.642 1.260 1.00 1.00 10.00 B_13 ATOM 2404 C ASP 100 66.833 54.696 54.771 1.00 10.00 12.86 B_13 ATOM 2404 C ASP 100 66.833 54.697 54.690 2.255 1.00 13.66 B_13 ATOM 240		-	-							
ATOM 2371 CB HIS 97 57.955 53.905 4.464 1.00 10.00 B_13 ATOM 2373 CD HIS 97 57.264 53.257 5.264 1.00 12.02 B_13 ATOM 2373 CD HIS 97 57.264 53.257 5.264 1.00 12.02 B_13 ATOM 2375 CB HIS 97 57.264 53.257 5.264 1.00 12.02 B_13 ATOM 2375 CB HIS 97 57.264 53.257 5.264 53.257 5.264 1.00 12.91 B_13 ATOM 2375 CB HIS 97 56.018 51.770 6.688 1.00 10.00 B_13 ATOM 2375 CB HIS 97 56.018 51.770 6.688 1.00 10.00 B_13 ATOM 2379 CD HIS 97 56.018 51.770 6.688 1.00 10.00 B_13 ATOM 2379 CD HIS 97 -58.445 56.273 2.517 1.00 10.22 B_13 ATOM 2380 N PHE 98 60.379 56.018 2.595 1.00 15.67 B_13 ATOM 2381 CB PHE 98 61.224 56.718 2.595 1.00 15.67 B_13 ATOM 2382 CB PHE 98 61.224 56.718 2.595 1.00 15.67 B_13 ATOM 2383 CB PHE 98 61.970 57.938 3.156 1.00 10.76 B_13 ATOM 2385 CD1 PHE 98 60.476 58.974 4.893 1.00 14.14 B_13 ATOM 2386 CD2 PHE 98 60.476 58.974 4.893 1.00 14.14 B_13 ATOM 2387 CE2 PHE 98 60.476 58.974 4.893 1.00 14.14 B_13 ATOM 2387 CE2 PHE 98 59.833 61.00 0.82 2.786 1.00 18.92 B_13 ATOM 2387 CE2 PHE 98 59.833 61.00 0.82 2.786 1.00 18.92 B_13 ATOM 2387 CE2 PHE 98 62.882 54.969 2.851 1.00 12.42 B_13 ATOM 2389 CD2 PHE 98 62.882 54.969 2.851 1.00 12.42 B_13 ATOM 2389 CD3 PHE 98 62.882 54.969 2.851 1.00 12.42 B_13 ATOM 2389 CD3 PHE 98 62.882 54.969 2.851 1.00 12.24 B_13 ATOM 2389 CD3 PHE 98 62.882 54.969 2.851 1.00 12.24 B_13 ATOM 2389 CD3 PHE 98 62.882 54.969 2.851 1.00 12.24 B_13 ATOM 2389 CD3 PHE 98 62.882 54.969 2.851 1.00 12.24 B_13 ATOM 2389 CD3 PHE 98 62.882 54.969 2.851 1.00 12.24 B_13 ATOM 2389 CD3 PHE 98 62.882 54.969 2.851 1.00 12.24 B_13 ATOM 2389 CD3 PHE 98 62.882 54.969 2.851 1.00 12.24 B_13 ATOM 2399 CD3 PHE 98 62.882 54.969 2.851 1.00 12.24 B_13 ATOM 2399 CD3 PHE 98 62.882 54.969 2.851 1.00 12.24 B_13 ATOM 2390 CD3 PHE 98 62.882 54.969 2.851 1.00 12.24 B_13 ATOM 2400 CD3 PHE 98 62.882 54.969 2.851 1.00 12.24 B_13 ATOM 2400 CD3 PHE 98 62.882 54.969 2.851 1.00 12.24 B_13 ATOM 2400 CD3 PHE 98 62.882 54.969 2.851 1.00 12.24 B_13 ATOM 2400 CD3 PHE 98 62.882 54.882 54.969 2.8851 1.00 13.27 B_13 ATOM 2400 CD3 PHE 98 62.882 54.882										
ATOM 2372 CC HIS 97 57.244 53.257 5.624 1.00 12.02 B_13 ATOM 2374 NDI HIS 97 57.214 53.603 6.929 1.00 10.00 B_13 ATOM 2375 CEI HIS 97 56.516 52.104 5.499 1.00 10.291 B_13 ATOM 2376 NEZ HIS 97 56.516 52.104 5.499 1.00 10.00 B_13 ATOM 2376 NEZ HIS 97 56.638 51.770 6.689 1.00 12.91 B_13 ATOM 2376 NEZ HIS 97 56.638 51.770 6.689 1.00 10.00 B_13 ATOM 2378 C HIS 97 56.638 51.770 6.689 1.00 10.00 B_13 ATOM 2378 C HIS 97 56.645 52.664 7.571 1.00 10.64 B_13 ATOM 2378 C HIS 97 56.645 52.664 7.571 1.00 10.64 B_13 ATOM 2370 O HIS 97 58.619 56.259 2.250 1.00 13.22 B_13 ATOM 2380 C PHE 98 61.970 57.938 3.156 1.00 12.27 B_13 ATOM 2381 C APHE 98 61.970 57.938 3.156 1.00 10.76 B_13 ATOM 2385 CDI PHE 98 60.730 60.082 2.786 1.00 10.76 B_13 ATOM 2385 CDI PHE 98 60.730 60.082 2.786 1.00 18.92 B_13 ATOM 2385 CDI PHE 98 60.730 60.082 2.786 1.00 18.92 B_13 ATOM 2385 CDI PHE 98 60.730 60.082 2.786 1.00 18.92 B_13 ATOM 2389 CZ PHE 98 59.833 61.066 3.201 1.00 22.42 B_13 ATOM 2389 CZ PHE 98 59.833 61.066 3.201 1.00 22.42 B_13 ATOM 2389 CZ PHE 98 59.833 61.066 3.201 1.00 22.42 B_13 ATOM 2389 CZ PHE 98 62.288 55.957 61.002 4.469 1.00 10.00 B_13 ATOM 2399 C PHE 98 62.288 56.4969 2.0544 1.00 26.64 B_13 ATOM 2399 C PHE 98 62.288 56.288 2.4969 2.251 1.00 11.00 B_13 ATOM 2399 C PHE 99 62.288 56.288 2.4969 2.251 1.00 11.00 B_13 ATOM 2399 C PHE 99 62.288 56.288 2.4969 2.251 1.00 11.00 B_13 ATOM 2399 C APP 99 63.170 52.890 -3.150 1.00 10.00 B_13 ATOM 2399 C APP 99 63.170 52.890 -3.150 1.00 10.00 B_13 ATOM 2399 C APP 99 63.170 52.890 -3.150 1.00 10.00 B_13 ATOM 2399 C APP 99 63.170 52.890 -3.150 1.00 10.00 B_13 ATOM 2399 C APP 99 63.170 52.890 -3.150 1.00 11.60 B_13 ATOM 2399 C APP 99 63.170 52.890 -3.150 1.00 11.60 B_13 ATOM 2404 C APP 100 66.439 54.471 -1.385 1.00 10.00 12.00 B_13 ATOM 2404 C APP 100 66.439 54.471 -1.385 1.00 10.00 12.00 B_13 ATOM 2404 C APP 100 66.891 53.992 C APP 99 63.170 52.890 -3.150 1.00 11.60 B_13 ATOM 2404 C APP 100 66.891 53.993 C APP 99 63.170 52.890 -3.150 1.00 11.60 B_13 ATOM 2404 C APP 100 66.891 53.993 C APP 99 63.170										
ATOM 2373 CC2 HIS 97 55.214 53.603 6.929 1.00 10.00 B_13 ATOM 2375 CE1 HIS 97 56.516 52.104 5.409 1.00 12.91 B_13 ATOM 2375 CE1 HIS 97 56.536 51.770 6.688 1.00 10.00 B_13 ATOM 2376 NE2 HIS 97 56.038 51.770 6.688 1.00 10.00 B_13 ATOM 2376 NE2 HIS 97 55.038 51.770 6.688 1.00 10.00 B_13 ATOM 2378 C HIS 97 59.609 55.959 3.520 1.00 13.82 B_13 ATOM 2380 N PHE 98 60.379 56.154 3.647 1.00 11.27 B_13 ATOM 2380 N PHE 98 60.379 56.154 3.647 1.00 11.67 B_13 ATOM 2380 C A PHE 98 60.379 56.154 3.647 1.00 11.67 B_13 ATOM 2381 C A PHE 98 60.379 56.154 3.647 1.00 11.67 B_13 ATOM 2381 C PHE 98 60.476 59.918 3.627 1.00 17.93 B_13 ATOM 2385 CD PHE 98 60.476 58.998 3.620 1.00 17.93 B_13 ATOM 2386 C PHE 98 60.476 58.998 3.627 1.00 17.93 B_13 ATOM 2387 CE1 PHE 98 60.476 58.994 4.893 1.00 14.14 B_13 ATOM 2389 C PHE 98 60.476 58.996 2.5315 1.00 10.00 B_13 ATOM 2390 C PHE 98 60.248 59.952 5.3152 1.00 10.00 B_13 ATOM 2390 C PHE 98 60.282 59.257 61.002 4.649 1.00 10.00 B_13 ATOM 2391 C PHE 98 62.828 59.257 61.002 4.649 1.00 10.00 B_13 ATOM 2392 N ASP 99 62.331 55.577 0.738 1.00 12.24 B_13 ATOM 2392 C A PHE 98 62.828 54.699 2.051 1.00 12.24 B_13 ATOM 2392 N ASP 99 62.331 55.577 0.738 1.00 12.24 B_13 ATOM 2392 N ASP 99 62.331 55.577 0.738 1.00 12.24 B_13 ATOM 2392 N ASP 99 66.231 55.577 0.738 1.00 12.24 B_13 ATOM 2392 N ASP 99 66.231 55.577 0.738 1.00 12.24 B_13 ATOM 2393 C A ASP 99 66.231 55.577 0.738 1.00 12.24 B_13 ATOM 2393 C A ASP 99 66.231 55.577 0.738 1.00 12.24 B_13 ATOM 2393 C A ASP 99 66.231 55.577 0.738 1.00 12.24 B_13 ATOM 2393 C A ASP 99 66.231 55.577 0.738 1.00 12.24 B_13 ATOM 2399 C ASP 99 66.231 55.577 0.738 1.00 12.24 B_13 ATOM 2404 C ASP 99 66.248 54.677 55.646 0.0264 1.00 12.24 B_13 ATOM 2404 C ASP 99 66.231 55.647 0.00 12.00 10.00 B_13 ATOM 2404 C ASP 99 66.231 55.646 0.00 12.00 10.00 B_13 ATOM 2404 C ASP 99 66.231 56.640 50.00 12.00 10.00 B_13 ATOM 2404 C ASP 99 66.231 56.640 50.00 12.00 10.00 B_13 ATOM 2404 C ASP 90 66.806 68.90 55.407 60.00 12.00 10.00 B_13 ATOM 2404 C ASP 90 66.246 68.90 56.246 60.00 10.00 10.00 B_13										
ATOM 2374 ND1 HIS 97 56.516 52.104 5.499 1.00 12.91 8_13 ATOM 2375 CEL HIS 97 56.038 51.770 6.688 1.00 10.00 B_13 ATOM 2378 C HIS 97 56.038 51.770 6.688 1.00 10.00 B_13 ATOM 2378 C HIS 97 56.038 51.770 6.688 1.00 10.00 B_13 ATOM 2378 C HIS 97 56.038 51.770 6.688 1.00 10.00 B_13 ATOM 2380 N PHE 98 60.379 56.154 3.647 1.00 10.67 B_13 ATOM 2381 CA PHE 98 61.224 56.718 2.595 1.00 15.67 B_13 ATOM 2382 CA PHE 98 61.224 56.718 2.595 1.00 15.67 B_13 ATOM 2383 CB PHE 98 61.970 57.938 3.156 1.00 10.76 B_13 ATOM 2385 CDI PHE 98 60.730 60.730 60.72										
ATOM 2375 CEI HIS 97 56.038 51.770 6.688 1.00 10.00 B_13 ATOM 2376 NE2 HIS 97 55.045 52.664 7.571 1.00 10.64 B_13 ATOM 2378 C HIS 97 59.069 55.959 3.520 1.00 13.02 B_13 ATOM 2380 N PHE 98 60.379 56.154 3.647 1.00 10.67 B_13 ATOM 2380 C A PHE 98 60.379 56.154 3.647 1.00 10.67 B_13 ATOM 2382 CA PHE 98 60.379 56.154 3.647 1.00 10.67 B_13 ATOM 2383 C R PHE 98 60.379 56.154 3.647 1.00 10.67 B_13 ATOM 2385 CD PHE 98 60.479 57.938 3.156 1.00 10.76 B_13 ATOM 2385 CD PHE 98 60.476 58.974 4.893 1.00 14.14 B_13 ATOM 2385 CD PHE 98 60.476 58.974 4.893 1.00 14.14 B_13 ATOM 2385 CD PHE 98 60.476 58.974 4.893 1.00 14.14 B_13 ATOM 2389 CE PHE 98 59.574 59.962 5.315 1.00 10.00 B_13 ATOM 2390 C PHE 98 60.248 59.692 2.515 1.00 10.00 B_13 ATOM 2390 C PHE 98 62.218 55.669 2.064 1.00 26.64 B_13 ATOM 2391 O PHE 98 62.282 59.257 61.002 4.469 1.00 10.00 B_13 ATOM 2392 C PHE 98 62.282 59.257 61.002 4.469 1.00 10.00 B_13 ATOM 2392 C PHE 98 62.282 59.257 61.002 4.469 1.00 10.00 B_13 ATOM 2392 C PHE 98 62.282 59.257 61.002 4.469 1.00 10.00 B_13 ATOM 2392 C PHE 98 62.824 59.699 2.051 1.00 12.24 B_13 ATOM 2392 C PHE 98 62.824 59.699 2.051 1.00 12.24 B_13 ATOM 2392 C PHE 98 62.824 59.699 2.051 1.00 12.24 B_13 ATOM 2392 C PHE 98 62.824 59.699 2.051 1.00 12.24 B_13 ATOM 2395 C PHE 98 62.824 59.699 2.051 1.00 12.24 B_13 ATOM 2395 C PHE 98 62.824 59.257 61.002 4.469 1.00 10.00 B_13 ATOM 2395 C PHE 98 62.824 59.257 61.002 4.469 1.00 10.00 B_13 ATOM 2395 C PHE 98 62.824 59.257 61.00 2.66 1.00 12.26 B_13 ATOM 2395 C PHE 98 62.824 59.257 61.00 2.66 1.00 12.26 B_13 ATOM 2404 C PHE APP 99 62.311 55.577 0.738 1.00 12.24 B_13 ATOM 2404 C PHE APP 99 62.212 55.010 -0.366 1.00 12.26 B_13 ATOM 2404 C PHE APP 99 65.121 55.010 -0.366 1.00 12.26 B_13 ATOM 2404 C PHE APP 99 65.121 55.010 -0.366 1.00 12.26 B_13 ATOM 2404 C PHE APP 100 66.835 54.47 1.00 12.26 B_13 ATOM 2404 C PHE APP 100 66.835 54.47 1.00 12.26 B_13 ATOM 2404 C PHE APP 100 66.835 54.47 1.00 12.26 B_13 ATOM 2404 C PHE APP 100 66.835 54.47 1.00 12.26 B_13 ATOM 2404 C PHE APP 100 66.835 54.47 1.00 12										
ATOM 2376 NEZ HIS 97 56.445 52.664 7.571 1.00 10.64 B_13 ATOM 2379 C HIS 9758.415 56.273 - 2.517 1.00 12.27 - B_13 ATOM 2380 N PHE 98 60.379 56.154 3.647 1.00 10.67 B_13 ATOM 2382 CR PHE 98 61.224 56.718 2.595 1.00 15.67 B_13 ATOM 2382 CR PHE 98 61.224 56.718 2.595 1.00 15.67 B_13 ATOM 2383 CR PHE 98 61.224 56.718 2.595 1.00 17.79 B_13 ATOM 2385 CD1 PHE 98 60.730 60.082 2.786 1.00 17.79 B_13 ATOM 2385 CD1 PHE 98 60.730 60.082 2.786 1.00 17.93 B_13 ATOM 2385 CD2 PHE 98 60.730 60.082 2.786 1.00 17.93 B_13 ATOM 2385 CD2 PHE 98 60.730 60.780 60.082 2.786 1.00 18.92 B_13 ATOM 2385 CD2 PHE 98 60.730 60.780 60.082 2.786 1.00 18.92 B_13 ATOM 2380 CD2 PHE 98 60.730 60.780 60.082 2.786 1.00 10.00 B_13 ATOM 2380 CD2 PHE 98 60.780 60.780 60.082 2.786 1.00 10.00 B_13 ATOM 2380 CD2 PHE 98 60.476 58.576 0.00 62 2.4469 1.00 10.00 B_13 ATOM 2380 CD2 PHE 98 62.288 59.257 50.60 2.4469 1.00 10.00 B_13 ATOM 2390 C PHE 98 62.288 59.257 50.60 2.4469 1.00 10.00 B_13 ATOM 2391 C PHE 98 62.288 59.257 50.79 0.738 1.00 12.24 B_13 ATOM 2391 C PHE 98 62.288 59.257 50.70 0.738 1.00 12.24 B_13 ATOM 2395 CR ASP 99 63.229 54.612 0.102 1.00 10.00 B_13 ATOM 2395 CR ASP 99 63.229 54.612 0.102 1.00 10.00 B_13 ATOM 2395 CR ASP 99 63.229 54.612 0.102 1.00 10.00 B_13 ATOM 2395 CR ASP 99 63.613 53.311 -2.067 10.00 22.86 B_13 ATOM 2395 CR ASP 99 63.6125 50.60 0.00 61.00 B_13 ATOM 2395 CR ASP 99 64.624 52.806 -1.528 1.00 12.00 B_13 ATOM 2395 CR ASP 99 66.521 50.60 0.00 61.00 10.00 B_13 ATOM 2395 CR ASP 99 66.624 52.806 -1.528 1.00 12.00 B_13 ATOM 2395 CR ASP 99 66.624 52.806 -1.528 1.00 12.00 B_13 ATOM 2401 CR ASP 100 66.803 54.470 1.00 12.60 B_13 ATOM 2402 CR ASP 100 66.803 54.470 1.00 12.60 B_13 ATOM 2401 CR ASP 100 66.803 54.470 1.00 12.60 B_13 ATOM 2402 CR ASP 100 66.803 54.470 1.00 12.60 B_13 ATOM 2401 CR ASP 100 66.803 54.470 1.00 10.00 1.00 B_13 ATOM 2404 CR ASP 100 66.803 54.470 1.00 10.00 1.00 B_13 ATOM 2402 CR ASP 100 66.803 54.470 1.00 10.00 1.00 B_13 ATOM 2403 CR ASP 100 66.803 54.470 1.00 10.00 1.00 1.00 B_13 ATOM 2403 CR ASP 100 66.80										
ATOM 2378 C HISS										
-ATOM 2390 N PHE 98 60.379 56.154 3.1647 1.00 12.27 B.13. ATOM 2382 CA PHE 98 61.970 57.938 31.156 1.00 10.67 B.13 ATOM 2383 CB PHE 98 61.970 57.938 31.56 1.00 10.76 B.13 ATOM 2384 CG PHE 98 61.970 57.938 31.56 1.00 10.76 B.13 ATOM 2385 CD1 PHE 98 61.970 57.938 31.56 1.00 10.76 B.13 ATOM 2386 CD2 PHE 98 60.730 60.082 2.786 1.00 17.93 B.13 ATOM 2386 CD2 PHE 98 60.730 60.082 2.786 1.00 12.28 B.13 ATOM 2386 CD2 PHE 98 59.833 61.066 31.201 1.00 22.42 B.13 ATOM 2387 CEI PHE 98 59.833 61.066 31.201 1.002 22.42 B.13 ATOM 2388 CEZ PHE 98 59.833 61.066 31.201 1.002 22.42 B.13 ATOM 2389 CZ PHE 98 59.574 59.962 5.315 1.00 10.00 B.13 ATOM 2391 C PHE 98 62.218 55.669 2.064 1.00 26.64 B.13 ATOM 2392 N ASP 99 62.331 55.577 0.738 1.00 10.00 B.13 ATOM 2393 CA ASP 99 62.331 55.577 0.738 1.00 10.00 B.13 ATOM 2393 CA ASP 99 62.331 55.577 0.738 1.00 10.00 B.13 ATOM 2395 CA ASP 99 62.331 55.577 0.738 1.00 10.00 B.13 ATOM 2395 CA ASP 99 62.331 55.577 0.738 1.00 10.00 B.13 ATOM 2395 CA ASP 99 62.331 55.577 0.738 1.00 10.00 B.13 ATOM 2395 CA ASP 99 62.351 1.00 10.00 B.13 ATOM 2396 CA ASP 99 62.351 1.00 10.00 B.13 ATOM 2397 CA ASP 99 62.351 1.00 10.00 B.13 ATOM 2398 CD2 ASP 99 63.615 33.31 -0.22 1.00 10.00 B.13 ATOM 2390 CA ASP 99 63.615 33.31 -0.02 1.00 10.00 B.13 ATOM 2400 CA ASP 99 63.615 33.31 -0.02 1.00 10.00 B.13 ATOM 2400 CA ASP 99 63.615 33.31 -0.02 1.00 10.00 B.13 ATOM 2401 N ASP 100 66.833 54.642 1.260 1.00 11.00 B.13 ATOM 2402 CA ASP 100 66.833 54.642 1.260 1.00 11.00 B.13 ATOM 2403 CA ASP 100 66.833 54.642 1.260 1.00 11.00 B.13 ATOM 2404 CB ASP 100 66.833 54.642 1.260 1.00 11.00 B.13 ATOM 2408 CA ASP 100 66.833 54.642 1.260 1.00 11.70 B.13 ATOM 2408 CA ASP 100 66.833 54.642 1.260 1.00 11.70 B.13 ATOM 2408 CA ASP 100 66.833 54.642 1.260 1.00 11.70 B.13 ATOM 2401 CA ASP 100 68.901 55.437 3.358 1.00 16.15 B.13 ATOM 2402 CB ASP 100 66.833 54.642 1.260 1.00 11.00 1.574 B.13 ATOM 2403 CA ASP 100 68.005 55.477 2.266 1.00 12.76 B.13 ATOM 2404 CB ASP 100 66.833 54.642 1.260 1.00 10.00 B.13 ATOM 2405 CG ASP 100 66.833 54.642 1.260 1.0										
ATOM 2380 N PHE 98 60.379 56.154 3.647 1.00 10.67 B.13 ATOM 2382 CA PHE 98 61.224 56.718 2.595 1.00 15.67 B.13 ATOM 2383 CB PHE 98 61.055 59.025 3.1627 1.00 10.76 B.13 ATOM 2384 CG PHE 98 61.055 59.025 3.1627 1.00 10.76 B.13 ATOM 2385 CD1 PHE 98 60.730 60.082 2.786 1.00 18.92 B.13 ATOM 2385 CD2 PHE 98 60.730 60.082 2.786 1.00 18.92 B.13 ATOM 2387 CEI PHE 98 59.833 61.066 3.201 1.00 22.42 B.13 ATOM 2387 CEI PHE 98 59.874 8.99.962 5.315 1.00 10.00 B.13 ATOM 2389 CZ PHE 98 59.574 59.962 5.315 1.00 10.00 B.13 ATOM 2389 CZ PHE 98 59.574 59.962 5.315 1.00 10.00 B.13 ATOM 2390 C PHE 98 62.288 55.574 0.00 24.469 1.00 10.00 B.13 ATOM 2391 C PHE 98 62.288 55.574 0.00 24.469 1.00 10.00 B.13 ATOM 2391 C PHE 98 62.288 55.574 0.00 24.469 1.00 10.00 B.13 ATOM 2392 C PHE 98 62.288 55.575 0.00 24.469 1.00 10.00 B.13 ATOM 2391 C PHE 98 62.288 55.577 0.782 0.00 10.00 B.13 ATOM 2392 C PHE 98 62.288 55.577 0.782 0.00 10.00 B.13 ATOM 2393 CZ PHE 98 62.288 55.577 0.782 0.00 10.00 B.13 ATOM 2395 CB ASP 99 62.333 55.577 0.782 0.00 10.00 B.13 ATOM 2395 CB ASP 99 63.615 5.577 0.782 0.00 10.00 B.13 ATOM 2397 ODI ASP 99 63.615 5.577 0.782 0.00 10.00 B.13 ATOM 2398 CZ ASP 99 63.615 5.577 0.00 0.00 0.00 B.13 ATOM 2399 CD ASP 99 63.615 5.898 0.3 160 1.00 11.50 B.13 ATOM 2309 C ASP 99 64.624 53.806 1.528 0.00 10.00 B.13 ATOM 2404 CB ASP 100 66.831 56.699 0.346 1.00 12.666 B.13 ATOM 2403 CA ASP 100 66.831 56.207 0.366 1.00 11.50 B.13 ATOM 2404 CB ASP 100 66.831 56.207 0.366 1.00 11.50 B.13 ATOM 2405 CG ASP 100 67.308 56.271 2.660 1.00 17.70 B.13 ATOM 2406 ODI ASP 100 66.831 56.377 3.358 1.00 10.00 B.13 ATOM 2407 CD ASP 100 66.831 56.374 3.358 1.00 10.00 B.13 ATOM 2408 C ASP 100 67.308 56.271 2.660 1.00 17.70 B.13 ATOM 2408 C ASP 100 66.831 55.437 3.358 1.00 10.00 B.13 ATOM 2401 N ASP 100 66.831 56.354 2.605 1.00 17.70 B.13 ATOM 2402 CB ASP 100 67.793 56.174 2.660 1.00 17.70 B.13 ATOM 2403 CA ASP 100 67.793 56.174 2.660 1.00 17.79 B.13 ATOM 2404 CB ASP 100 67.793 56.174 2.660 1.00 10.00 B.13 ATOM 2405 CG ASP 100 67.793 56.174 2.660 1.00 10.00 B.										
ATOM 2383 CB PHE 98 61.970 57.938 31.56 1.00 15.67 8.13 ATOM 2384 CG PHE 98 61.970 57.938 31.56 1.00 10.76 ATOM 2385 CD1 PHE 98 61.970 57.938 31.56 1.00 10.76 ATOM 2386 CD2 PHE 98 60.730 60.082 2.786 1.00 17.93 8.13 ATOM 2386 CD2 PHE 98 60.730 60.082 2.786 1.00 17.93 8.13 ATOM 2386 CD2 PHE 98 60.730 60.082 2.786 1.00 12.92 8.13 ATOM 2387 CEI PHE 98 59.833 61.066 32.01 1.00 22.42 8.13 ATOM 2388 CE2 PHE 98 59.633 61.066 32.01 1.00 22.42 8.13 ATOM 2389 CZ PHE 98 59.574 59.962 5.315 1.00 10.00 8.13 ATOM 2391 C PHE 98 62.218 55.669 2.064 1.00 26.64 8.13 ATOM 2391 C PHE 98 62.288 25.4695 2.064 1.00 26.64 8.13 ATOM 2392 N ASP 99 62.331 55.577 0.738 1.00 10.00 8.13 ATOM 2393 CZ RASP 99 62.331 55.577 0.738 1.00 10.00 8.13 ATOM 2395 CB ASP 99 62.331 55.577 0.738 1.00 10.00 8.13 ATOM 2395 CB ASP 99 62.331 55.577 0.738 1.00 12.24 8.13 ATOM 2395 CD ASP 99 62.351 3.00 10.00 8.13 ATOM 2395 CD ASP 99 62.351 3.00 10.00 8.13 ATOM 2395 CD ASP 99 62.361 53.31 -3.10 10.00 8.13 ATOM 2395 CD ASP 99 62.361 53.31 -3.10 10.00 8.13 ATOM 2395 CD ASP 99 63.615 33.31 -3.10 10.00 10.00 8.13 ATOM 2400 C ASP 99 63.615 33.31 -3.10 10.00 10.00 8.13 ATOM 2400 C ASP 99 63.615 33.31 -3.10 10.00 10.00 8.13 ATOM 2400 C ASP 99 63.615 35.31 -3.10 10.00 10.00 8.13 ATOM 2400 C ASP 99 64.677 55.806 -1.28 1.00 10.00 8.13 ATOM 2401 N ASP 100 66.833 54.642 1.260 1.00 11.00 11.00 8.13 ATOM 2402 CB ASP 100 66.833 54.642 1.260 1.00 11.00 11.00 8.13 ATOM 2403 CA ASP 100 66.833 54.642 1.260 1.00 11.00 11.70 ATOM 2404 CB ASP 100 66.833 54.642 1.260 1.00 11.70 8.13 ATOM 2405 CG ASP 100 68.091 55.437 4.266 1.00 12.86 8.13 ATOM 2407 OZ ASP 100 68.091 55.437 4.266 1.00 10.00 15.74 B.13 ATOM 2408 C ASP 100 68.095 55.377 3.358 1.00 16.15 8.13 ATOM 2407 OZ ASP 100 68.095 55.477 4.266 1.00 10.00 8.13 ATOM 2408 C ASP 100 68.095 55.377 3.358 1.00 16.15 8.13 ATOM 2410 N ASP 101 68.005 55.477 4.266 1.00 10.00 8.13 ATOM 2411 CB ASP 101 68.005 55.477 4.266 1.00 10.00 8.13 ATOM 2412 CB GLU 102 66.833 54.642 1.260 1.00 11.66 8.13 ATOM 2413 CB ASP 100 68.005 55.377 3.358 1.00 16.1										
ATOM 2383 CB PHE 98 61.970 57.938 3.156 1.00 10.76 8_13 ATOM 2385 CD1 PHE 98 60.730 60.082 2.786 1.00 18.92 8_13 ATOM 2385 CD2 PHE 98 60.730 60.082 2.786 1.00 18.92 8_13 ATOM 2386 CD2 PHE 98 60.476 58.974 4.893 1.00 16.14 8_13 ATOM 2387 CE1 PHE 98 59.833 61.066 3.201 1.00 22.42 8_13 ATOM 2388 CE2 PHE 98 59.574 59.962 5.315 1.00 10.00 8_13 ATOM 2389 CZ PHE 98 59.574 59.962 5.315 1.00 10.00 8_13 ATOM 2399 C PHE 98 62.218 55.669 2.064 1.00 22.646 8_13 ATOM 2391 O PHE 98 62.288 55.669 2.064 1.00 26.64 8_13 ATOM 2392 N ASP 99 63.229 54.612 0.102 1.00 10.00 8_13 ATOM 2392 N ASP 99 63.231 55.577 0.738 1.00 12.24 8_13 ATOM 2395 CB ASP 99 63.231 55.577 0.738 1.00 12.24 8_13 ATOM 2395 CG ASP 99 63.264 54.471 -1.385 1.00 10.00 8_13 ATOM 2395 CG ASP 99 63.170 52.890 -3.160 1.00 10.00 8_13 ATOM 2396 CG ASP 99 63.170 52.890 -3.160 1.00 11.60 8_13 ATOM 2399 C ASP 99 64.677 55.046 0.264 1.00 22.866 8_13 ATOM 2399 C ASP 99 64.677 55.046 0.264 1.00 21.20 8_13 ATOM 2399 C ASP 99 65.125 55.040 -0.264 1.00 12.66 8_13 ATOM 2400 O ASP 99 65.125 55.040 -0.264 1.00 12.66 8_13 ATOM 2401 N ASP 100 66.833 54.642 1.260 1.00 10.165 8_13 ATOM 2403 CA ASP 100 66.833 54.622 1.066 1.00 18.37 8_13 ATOM 2404 CB ASP 100 66.833 54.627 1.266 1.00 10.156 8_13 ATOM 2405 CG ASP 100 68.091 55.447 4.094 1.00 10.157 8_13 ATOM 2407 ODZ ASP 100 68.091 55.447 4.002 1.00 10.156 8_13 ATOM 2408 C ASP 100 68.091 55.447 4.002 1.00 10.00 8_13 ATOM 2407 ODZ ASP 100 68.091 55.447 4.002 1.00 10.157 8_13 ATOM 2408 C ASP 100 68.091 55.447 4.002 1.00 10.157 8_13 ATOM 2407 ODZ ASP 100 68.091 55.437 4.002 1.00 10.157 8_13 ATOM 2408 C ASP 100 68.091 55.437 4.002 1.00 10.157 8_13 ATOM 2401 C ASP 101 68.091 55.437 4.002 1.00 10.157 8_13 ATOM 2402 CD ASP 100 68.091 55.437 4.002 1.00 10.157 8_13 ATOM 2403 C ASP 100 68.091 55.937 -2.164 1.00 10.00 8_13 ATOM 2404 CB ASP 101 68.091 55.937 -2.164 1.00 10.00 8_13 ATOM 2405 CG ASP 100 68.091 55.937 -2.164 1.00 10.00 8_13 ATOM 2407 ODZ ASP 101 68.091 55.939 -2.164 1.00 10.157 8_13 ATOM 2408 C ASP 101 68.091 55.939 -2.164 1.00 10.157										
ATOM 2184 CG PHE 98 61.055 59.025 3.627 1.00 17.93 8_13 ATOM 2185 CD1 PHE 98 60.730 60.082 2.786 1.00 18.92 8_13 ATOM 2186 CD2 PHE 98 60.476 58.974 4.893 1.00 14.14 8_13 ATOM 2187 CE1 PHE 98 59.833 61.066 3.201 1.00 22.42 8_13 ATOM 2188 CE2 PHE 98 59.833 61.066 3.201 1.00 22.42 8_13 ATOM 2189 CZ PHE 98 59.835 61.006 4.699 1.00 10.00 8_13 ATOM 2189 CZ PHE 98 59.257 61.002 4.699 1.00 10.00 8_13 ATOM 2191 C PHE 98 62.882 54.969 2.064 1.00 26.64 8_13 ATOM 2191 C PHE 98 62.882 54.969 2.064 1.00 26.64 8_13 ATOM 2192 N ASP 99 62.331 55.577 0.738 1.00 10.20 8.68 8_13 ATOM 2193 C RASP 99 63.229 54.612 0.102 1.001 10.00 8_13 ATOM 2195 CG ASP 99 63.229 54.612 0.102 1.001 10.00 8_13 ATOM 2195 CG ASP 99 63.615 53.311 -2.067 1.00 22.86 8_13 ATOM 2195 CG ASP 99 63.615 53.311 -2.067 1.00 22.86 8_13 ATOM 2198 DG ASP 99 64.624 52.806 -1.528 1.00 10.00 8_13 ATOM 2199 C ASP 99 64.624 52.806 -1.528 1.00 10.00 8_13 ATOM 2199 C ASP 99 64.624 52.806 -1.528 1.00 12.26 8_13 ATOM 2190 C ASP 99 65.121 56.010 -0.366 1.00 11.60 8_13 ATOM 2101 N ASP 100 65.439 54.289 1.046 1.00 12.66 8_13 ATOM 2103 CA ASP 100 66.831 54.271 2.660 1.00 17.70 8_13 ATOM 2103 CA ASP 100 66.831 54.621 1.260 1.00 11.46 8_13 ATOM 2105 CG ASP 100 67.308 54.271 2.660 1.00 17.70 8_13 ATOM 2105 CG ASP 100 68.005 55.437 3.358 1.00 16.15 8_13 ATOM 2106 CD ASP 100 68.005 55.437 3.358 1.00 16.15 8_13 ATOM 2107 CG ASP 100 68.961 55.437 3.358 1.00 16.15 8_13 ATOM 2108 C ASP 100 67.793 54.171 0.179 1.00 13.66 8_13 ATOM 2108 C ASP 100 67.793 55.171 0.179 1.00 13.66 8_13 ATOM 2108 C ASP 100 67.795 55.372 0.166 1.00 17.70 8_13 ATOM 2108 C ASP 100 67.795 55.373 0.293 1.00 10.00 8_13 ATOM 2108 C ASP 100 68.961 55.437 3.358 1.00 10.00 8_13 ATOM 2108 C ASP 100 67.795 55.175 0.055 -2.458 1.00 19.54 8_13 ATOM 2108 C ASP 100 67.795 55.175 0.055 -2.458 1.00 19.59 8_13 ATOM 2108 C ASP 100 67.795 55.375 0.016 1.00 15.74 8_13 ATOM 2108 C ASP 100 67.795 55.377 0.378 1.00 10.00 8_13 ATOM 2108 C ASP 100 67.795 55.377 0.378 1.00 10.00 8_13 ATOM 2108 C ASP 100 67.795 55.377 0.378 1.00 10.00 8_13										
ATOM 2386 CD1 PHE 98 60.730 60.082 2.786 1.00 18.92 B_13 ATOM 2387 CE1 PHE 98 59.833 61.066 3.201 1.00 22.42 B_13 ATOM 2388 CE2 PHE 98 59.833 61.066 3.201 1.00 22.42 B_13 ATOM 2389 CZ PHE 98 59.577 61.002 4.469 1.00 10.00 B_13 ATOM 2390 C PHE 98 62.218 55.669 2.064 1.00 26.64 B_13 ATOM 2391 O PHE 98 62.218 55.669 2.064 1.00 26.64 B_13 ATOM 2391 O PHE 98 62.218 55.669 2.064 1.00 26.64 B_13 ATOM 2392 N ASP 99 62.831 55.577 0.738 1.00 12.24 B_13 ATOM 2392 N ASP 99 62.831 55.577 0.738 1.00 12.24 B_13 ATOM 2395 CB ASP 99 62.834 54.471 -1.385 1.00 10.00 B_13 ATOM 2395 CB ASP 99 63.229 54.612 0.102 1.00 10.00 B_13 ATOM 2396 CG ASP 99 63.170 52.890 -3.160 1.00 10.00 B_13 ATOM 2397 OD1 ASP 99 63.615 53.311 -2.067 1.00 22.866 B_13 ATOM 2399 C ASP 99 64.677 55.046 0.254 1.00 11.60 B_13 ATOM 2390 C ASP 99 64.677 55.046 0.254 1.00 11.60 B_13 ATOM 2390 C ASP 99 64.677 55.046 0.254 1.00 11.60 B_13 ATOM 2400 O ASP 99 65.121 55.010 -0.366 1.00 11.60 B_13 ATOM 2401 N ASP 100 65.439 54.289 1.046 1.00 12.66 B_13 ATOM 2403 CA ASP 100 65.439 54.289 1.046 1.00 12.66 B_13 ATOM 2403 CA ASP 100 65.439 54.289 1.046 1.00 12.86 B_13 ATOM 2407 OD2 ASP 100 66.803 54.271 2.660 1.00 14.46 B_13 ATOM 2407 OD2 ASP 100 66.803 54.271 2.660 1.00 17.70 B_13 ATOM 2407 OD2 ASP 100 68.005 55.47 55.046 0.00 17.70 B_13 ATOM 2407 OD2 ASP 100 68.005 55.47 55.046 0.00 17.70 B_13 ATOM 2407 OD2 ASP 100 68.005 55.47 55.046 0.00 17.70 B_13 ATOM 2407 OD2 ASP 100 68.005 55.47 55.046 0.00 17.70 B_13 ATOM 2407 OD2 ASP 100 68.005 55.47 55.046 0.00 17.70 B_13 ATOM 2407 OD2 ASP 100 68.005 55.47 55.046 0.00 17.70 B_13 ATOM 2407 OD2 ASP 100 68.005 55.47 5.00 0.00 17.70 B_13 ATOM 2407 OD2 ASP 100 68.005 55.47 5.00 0.00 17.70 B_13 ATOM 2407 OD2 ASP 100 68.70 57.50 57.70 -0.10 17.70 B_13 ATOM 2407 OD2 ASP 100 68.70 57.50 57.70 -0.10 17.70 B_13 ATOM 2410 N ASP 101 67.255 50.50 -0.21 4.00 10.00 B_13 ATOM 2410 N ASP 101 67.255 50.50 -0.21 4.00 10.00 B_13 ATOM 2410 N ASP 101 67.255 50.50 0.00 1.00 11.00 B_13 ATOM 2410 N ASP 101 67.255 50.00 0.00 1.00 11.00 B_13 ATOM 2410 N ASP	ATOM	2384	CG	PHE	98		59.025			
ATOM 2387 CEI PHE 98 59,833 61.066 3.201 1.00 22.42 8_13 ATOM 2388 CE2 PHE 98 59,575 61.002 4.469 1.00 10.00 8_13 ATOM 2390 CZ PHE 98 59,257 61.002 4.469 1.00 10.00 8_13 ATOM 2391 O PHE 98 62.218 55.669 2.064 1.00 26.64 8_13 ATOM 2392 N ASP 99 62.831 55.577 0.738 1.00 12.24 8_13 ATOM 2392 N ASP 99 62.331 55.577 0.738 1.00 12.24 8_13 ATOM 2395 CG ASP 99 62.381 55.577 0.738 1.00 12.24 8_13 ATOM 2395 CG ASP 99 62.834 54.471 -1.385 1.00 10.20 8_13 ATOM 2396 CG ASP 99 63.155 55.311 -2.067 1.00 12.00 8_13 ATOM 2396 CG ASP 99 63.165 53.311 -2.067 1.00 12.00 8_13 ATOM 2397 OD1 ASP 99 63.175 52.890 -3.160 1.00 11.60 8_13 ATOM 2398 OD2 ASP 99 64.677 55.046 0.264 1.00 11.60 8_13 ATOM 2399 C ASP 99 64.677 55.046 0.264 1.00 12.66 8_13 ATOM 2400 O ASP 99 64.677 55.046 0.264 1.00 12.66 8_13 ATOM 2401 N ASP 100 65.439 54.289 1.046 1.00 12.66 8_13 ATOM 2403 CA ASP 100 65.439 54.289 1.046 1.00 12.66 8_13 ATOM 2404 CB ASP 100 66.833 54.462 1.260 1.00 14.46 8_13 ATOM 2405 CG ASP 100 66.833 54.421 1.260 1.00 14.770 8_13 ATOM 2405 CG ASP 100 68.005 55.437 3.158 1.00 10.770 8_13 ATOM 2407 OD2 ASP 100 68.005 55.437 4.602 1.00 17.70 8_13 ATOM 2408 C ASP 100 68.005 55.437 4.602 1.00 17.70 8_13 ATOM 2409 O ASP 100 68.703 55.471 0.00 10.00 15.74 8_13 ATOM 2408 C ASP 100 67.703 54.171 0.179 1.00 15.74 8_13 ATOM 2416 OD1 ASP 100 68.703 55.471 0.00 10.00 15.74 8_13 ATOM 2417 C ASP 101 68.005 55.437 3.058 1.00 10.00 18.13 ATOM 2418 C ASP 101 68.704 55.485 3.954 -1.010 1.00 15.76 8_13 ATOM 2419 N ASP 101 68.705 55.447 1.00 1.00 15.74 8_13 ATOM 2410 N ASP 101 68.905 55.447 1.00 1.00 15.74 8_13 ATOM 2411 C ASP 101 68.905 55.47 1.00 1.00 15.74 8_13 ATOM 2412 CA ASP 101 68.905 55.47 1.00 1.00 15.76 8_13 ATOM 2413 C C ASP 101 68.905 55.47 1.00 1.00 15.76 8_13 ATOM 2414 CG ASP 101 68.905 55.47 1.00 1.00 15.88 8_13 ATOM 2415 CD ASP 101 68.905 55.47 1.00 1.00 15.88 8_13 ATOM 2416 CD ASP 101 68.905 55.47 1.00 1.00 15.89 8_13 ATOM 2417 C ASP 101 68.905 55.40 8.905 55.40 8.905 55.40 8.905 55.40 8.905 55.40 8.905 55.40 8.905 55.40 8.905 55.40 8.905 55.40	MOTA	2385	CD1	PHE	98	60.730	60.082	2.786	1.00 18.92	B_13
ATOM 2388 CEZ PHE 98 59.574 59.962 5.315 1.00 10.00 B.13 ATOM 2390 C PHE 98 62.282 54.969 2.064 1.00 26.64 B.13 ATOM 2391 O PHE 98 62.282 54.969 2.051 1.00 13.27 B.13 ATOM 2391 O PHE 98 62.882 54.969 2.051 1.00 13.27 B.13 ATOM 2392 N ASP 99 63.223 54.612 O.102 1.00 10.00 B.13 ATOM 2395 CB ASP 99 63.223 54.612 O.102 1.00 10.00 B.13 ATOM 2395 CB ASP 99 63.263 55.577 0.738 1.00 10.24 B.13 ATOM 2396 CG ASP 99 63.263 55.3311 -2.067 1.00 22.86 B.13 ATOM 2396 CG ASP 99 63.615 53.311 -2.067 1.00 22.86 B.13 ATOM 2398 OD2 ASP 99 64.624 52.806 -1.528 1.00 10.00 B.13 ATOM 2398 OD2 ASP 99 64.624 52.806 -0.564 1.00 12.66 B.13 ATOM 2390 C ASP 99 64.624 52.806 -0.366 1.00 12.66 B.13 ATOM 2401 N ASP 100 65.439 54.289 1.046 1.00 12.86 B.13 ATOM 2401 N ASP 100 65.439 54.289 1.046 1.00 12.86 B.13 ATOM 2403 CA ASP 100 66.831 54.281 -2.660 1.00 17.70 B.13 ATOM 2404 CB ASP 100 66.833 54.281 -2.660 1.00 17.70 B.13 ATOM 2405 CG ASP 100 68.066 55.437 3.358 1.00 16.15 B.13 ATOM 2407 OD2 ASP 100 68.061 55.447 4.602 1.00 17.70 B.13 ATOM 2407 OD2 ASP 100 68.066 55.337 3.358 1.00 16.15 B.13 ATOM 2407 OD2 ASP 100 68.061 55.447 4.602 1.00 17.70 B.13 ATOM 2407 OD2 ASP 100 68.061 55.447 4.602 1.00 15.74 B.13 ATOM 2407 OD2 ASP 100 68.061 55.447 4.602 1.00 15.74 B.13 ATOM 2407 OD2 ASP 100 68.061 55.447 -1.00 1.00 15.76 B.13 ATOM 2407 OD2 ASP 100 68.061 55.447 -1.00 1.00 15.76 B.13 ATOM 2407 OD2 ASP 100 68.061 55.447 -2.660 1.00 17.70 B.13 ATOM 2407 OD2 ASP 100 68.061 55.447 -2.660 1.00 17.70 B.13 ATOM 2407 OD2 ASP 100 68.07 533 54.171 0.179 1.00 15.74 B.13 ATOM 2407 OD2 ASP 100 68.076 53.354 2.71 0.10 10.00 15.74 B.13 ATOM 2407 OD2 ASP 100 68.076 53.354 2.71 0.10 10.00 13.66 B.13 ATOM 2412 CA ASP 101 67.252 50.089 -2.164 1.00 10.00 B.13 ATOM 2412 CA ASP 101 67.252 50.089 -2.266 1.00 15.74 B.13 ATOM 2413 CB ASP 101 67.252 50.089 -2.266 1.00 12.54 B.13 ATOM 2415 OD1 ASP 101 67.252 50.089 -2.266 1.00 12.54 B.13 ATOM 2415 CD1 ASP 101 67.252 50.089 -2.266 1.00 12.56 B.13 ATOM 2416 OD2 ASP 101 68.085 50.556 50.588 1.00 19.88 1.30 ATOM 2416 CD2 ASP 101 6	ATOM	2386	CD2	PHE	98	60.476	58.974	4.893	1.00 14.14	B_13
ATOM 2389 CZ PHE 98 59,257 61.002 4.669 1.00 10.00 B_13 ATOM 2390 C PHE 98 62.218 55.669 2.064 1.00 26.64 B_13 ATOM 2391 O PHE 98 62.218 55.669 2.064 1.00 26.64 B_13 ATOM 2392 N ASP 99 62.381 55.577 0.738 1.00 12.24 B_13 ATOM 2395 CB ASP 99 62.381 55.577 0.738 1.00 12.24 B_13 ATOM 2395 CB ASP 99 62.381 55.577 0.738 1.00 12.24 B_13 ATOM 2395 CB ASP 99 62.884 54.471 -1.385 1.00 10.00 B_13 ATOM 2396 CG ASP 99 63.165 53.311 -2.067 1.00 10.00 B_13 ATOM 2396 CG ASP 99 63.170 52.890 -3.160 1.00 11.60 B_13 ATOM 2399 CD ASP 99 64.677 55.046 0.264 1.00 11.60 B_13 ATOM 2399 C ASP 99 64.677 55.046 0.264 1.00 12.66 B_13 ATOM 2400 O ASP 99 64.677 55.046 0.264 1.00 12.66 B_13 ATOM 2401 N ASP 100 65.439 54.289 1.046 1.00 12.86 B_13 ATOM 2403 CA ASP 100 65.439 54.289 1.046 1.00 12.86 B_13 ATOM 2404 CB ASP 100 65.439 54.289 1.046 1.00 12.86 B_13 ATOM 2404 CB ASP 100 67.308 54.271 2.660 1.00 14.46 B_13 ATOM 2404 CB ASP 100 67.308 54.271 2.660 1.00 14.46 B_13 ATOM 2405 CG ASP 100 68.005 55.437 3.158 1.00 16.15 B_13 ATOM 2407 OD2 ASP 100 68.005 55.437 4.602 1.00 17.70 B_13 ATOM 2407 OD2 ASP 100 68.005 55.437 4.602 1.00 15.74 B_13 ATOM 2408 C ASP 100 67.308 54.271 0.00 10.00 15.74 B_13 ATOM 2408 C ASP 100 67.703 54.171 0.779 1.00 13.66 B_13 ATOM 2408 C ASP 100 67.703 54.171 0.779 1.00 13.66 B_13 ATOM 2410 N ASP 101 67.753 54.171 0.779 1.00 13.66 B_13 ATOM 2410 N ASP 101 67.753 54.171 0.779 1.00 13.66 B_13 ATOM 2410 N ASP 101 67.753 54.171 0.779 1.00 13.66 B_13 ATOM 2414 CB ASP 101 67.753 54.171 0.779 1.00 13.66 B_13 ATOM 2416 OD2 ASP 101 67.753 54.171 0.779 1.00 13.66 B_13 ATOM 2417 C ASP 101 67.753 54.171 0.079 1.00 13.66 B_13 ATOM 2418 N ASP 101 67.753 54.171 0.079 1.00 13.66 B_13 ATOM 2418 N ASP 101 67.753 54.171 0.079 1.00 13.66 B_13 ATOM 2418 N ASP 101 67.753 54.171 0.079 1.00 13.66 B_13 ATOM 2418 N ASP 101 67.753 55.750 0.00 1.00 1.00 B_13 ATOM 2417 C ASP 101 67.753 55.750 0.00 1.00 1.00 B_13 ATOM 2412 CD ASP 101 67.753 55.750 0.00 1.00 1.00 B_13 ATOM 2413 CD ASP 101 68.60 55.60 55.60 5.00 1.00 1.00 1.00 B_13 ATOM 2414 CD ASP	ATOM	2387	CE1	PHE	98	59.833	61.066	3.201	1.00 22.42	B_13
ATOM 2390 C PHE 98 62.218 55.669 2.064 1.00 26.64 B.13 ATOM 2391 O PHE 98 62.882 54.969 2.851 1.00 13.27 B.13 ATOM 2392 N ASP 99 62.331 55.577 0.738 1.00 12.24 B.13 ATOM 2394 CA ASP 99 63.229 54.612 0.102 1.00 10.00 B.13 ATOM 2395 CB ASP 99 63.229 54.612 0.102 1.00 10.00 B.13 ATOM 2395 CB ASP 99 63.615 53.311 -2.067 1.00 22.86 B.13 ATOM 2396 CG ASP 99 63.615 53.311 -2.067 1.00 22.86 B.13 ATOM 2398 ODZ ASP 99 64.624 52.806 -1.528 1.00 21.20 B.13 ATOM 2398 ODZ ASP 99 64.677 55.046 0.264 1.00 12.66 B.13 ATOM 2401 N ASP 100 65.121 56.010 -0.366 1.00 12.66 B.13 ATOM 2401 N ASP 100 65.439 54.289 1.046 1.00 12.86 B.13 ATOM 2403 CA ASP 100 66.831 54.642 1.260 1.00 14.46 B.13 ATOM 2404 CB ASP 100 66.831 54.642 1.260 1.00 14.46 B.13 ATOM 2405 CG ASP 100 68.006 54.371 2.660 1.00 17.70 B.13 ATOM 2406 OD ASP 068.006 55.437 3.358 1.00 16.15 B.13 ATOM 2407 ODZ ASP 100 68.006 55.437 3.358 1.00 16.15 B.13 ATOM 2408 C ASP 100 66.951 55.437 3.358 1.00 16.15 B.13 ATOM 2409 O ASP 100 66.961 55.437 3.358 1.00 16.15 B.13 ATOM 2401 N ASP 100 66.961 55.437 3.358 1.00 16.15 B.13 ATOM 2401 N ASP 100 66.961 55.437 3.358 1.00 16.15 B.13 ATOM 2401 N ASP 100 66.961 55.437 3.358 1.00 16.15 B.13 ATOM 2401 N ASP 100 66.961 55.437 3.358 1.00 16.15 B.13 ATOM 2401 N ASP 100 66.961 55.437 3.358 1.00 16.15 B.13 ATOM 2410 N ASP 100 66.961 55.437 3.358 1.00 16.15 B.13 ATOM 2410 N ASP 100 66.961 55.437 3.358 1.00 16.15 B.13 ATOM 2410 N ASP 101 66.974 55.992 0.00 26.708 B.13 ATOM 2410 N ASP 101 67.735 54.171 0.179 1.00 13.66 B.13 ATOM 2410 N ASP 101 67.735 54.171 0.179 1.00 13.66 B.13 ATOM 2410 N ASP 101 67.755 5.055 1.00 27.08 B.13 ATOM 2410 N ASP 101 67.757 55.055 1.00 27.08 B.13 ATOM 2410 N ASP 101 67.757 55.055 1.00 27.08 B.13 ATOM 2410 N ASP 101 67.797 51.065 1.00 10.00 B.13 ATOM 2410 N ASP 101 67.797 51.065 1.00 10.00 10.00 B.13 ATOM 2410 N ASP 101 66.00										
ATOM 2392 N ASP 99 62.381 55.577 0.738 1.00 12.24 B_13 ATOM 2392 N ASP 99 62.381 55.577 0.738 1.00 12.24 B_13 ATOM 2395 CB ASP 99 62.286 54.612 0.102 1.00 10.00 B_13 ATOM 2395 CG ASP 99 62.286 54.612 0.102 1.00 10.00 B_13 ATOM 2395 CG ASP 99 63.615 53.311 -2.067 1.00 12.286 B_13 ATOM 2397 ODI ASP 99 63.615 53.311 -2.067 1.00 12.20 B_13 ATOM 2398 OD2 ASP 99 64.624 52.806 -1.528 1.00 12.20 B_13 ATOM 2399 C ASP 99 64.624 52.806 -1.528 1.00 12.26 B_13 ATOM 2400 O ASP 99 65.121 56.010 -0.366 1.00 11.26 B_13 ATOM 2401 N ASP 100 65.439 54.299 1.006 1.00 14.66 B_13 ATOM 2401 N ASP 100 65.439 54.299 1.006 1.00 14.46 B_13 ATOM 2404 CB ASP 100 66.833 54.621 1.266 1.00 12.86 B_13 ATOM 2404 CB ASP 100 66.805 54.271 2.666 1.00 17.70 B_13 ATOM 2405 CG ASP 100 66.006 55.437 3.358 1.00 16.15 B_13 ATOM 2407 OD2 ASP 100 66.006 55.437 3.358 1.00 16.15 B_13 ATOM 2408 C ASP 100 66.006 55.437 3.358 1.00 16.15 B_13 ATOM 2408 C ASP 100 66.006 55.437 3.358 1.00 16.15 B_13 ATOM 2408 C ASP 100 66.006 55.437 3.358 1.00 16.15 B_13 ATOM 2408 C ASP 100 66.006 55.437 3.358 1.00 16.15 B_13 ATOM 2408 C ASP 100 66.006 55.437 3.358 1.00 16.15 B_13 ATOM 2408 C ASP 100 66.006 55.437 3.358 1.00 16.15 B_13 ATOM 2408 C ASP 100 66.006 55.437 3.358 1.00 16.15 B_13 ATOM 2408 C ASP 100 66.006 55.437 3.358 1.00 16.15 B_13 ATOM 2410 N ASP 101 66.7793 54.171 0.179 1.00 13.66 B_13 ATOM 2410 N ASP 101 66.754 53.5950 -2.164 1.00 10.00 B_13 ATOM 2410 C ASP 101 66.006 55.437 3.358 1.00 16.15 B_13 ATOM 2410 C ASP 101 66.006 55.309 -2.164 1.00 10.00 B_13 ATOM 2410 C ASP 101 66.006 55.309 -2.164 1.00 10.00 B_13 ATOM 2410 C ASP 101 66.006 55.309 -2.164 1.00 10.00 B_13 ATOM 2410 C ASP 101 66.006 55.000 -2.160 1.00 10.00 B_13 ATOM 2410 C ASP 101 66.000 55.000 -2.160 1.00 10.00 B_13 ATOM 2410 C ASP 101 66.000 55.000 -2.160 1.00 10.00 B_13 ATOM 2410 C ASP 101 66.000 55.000 -2.160 1.00 10.00 B_13 ATOM 2410 C ASP 101 66.000 55.000 55.900 -2.164 1.00 10.00 B_13 ATOM 2410 C ASP 101 66.000 55.000 55.900 -2.164 1.00 10.00 B_13 ATOM 2410 C ASP 101 66.000 55.000 55.900 -2.160 1.0					-					
ATOM 2394 CA ASP 99 62.331 55.577 0.738 1.00 12.24 B.13 ATOM 2395 CB ASP 99 63.295 54.612 0.102 1.00 10.00 B.13 ATOM 2396 CG ASP 99 63.615 53.311 -2.067 1.00 12.00 B.13 ATOM 2397 ODI ASP 99 63.615 53.311 -2.067 1.00 12.00 B.13 ATOM 2398 OD2 ASP 99 64.624 52.806 -1.528 1.00 12.50 B.13 ATOM 2399 C ASP 99 64.624 52.806 -1.528 1.00 12.66 B.13 ATOM 2400 O ASP 99 65.121 56.010 -0.366 1.00 12.66 B.13 ATOM 2401 N ASP 100 65.439 54.289 1.046 1.00 12.66 B.13 ATOM 2401 N ASP 100 66.833 54.642 1.260 1.00 14.46 B.13 ATOM 2404 CB ASP 100 66.833 54.642 1.260 1.00 17.70 B.13 ATOM 2405 CG ASP 100 66.806 55.437 3.358 1.00 16.15 B.13 ATOM 2406 ODI ASP 100 66.806 55.437 3.358 1.00 16.15 B.13 ATOM 2408 C ASP 100 66.807 55.354 2.655 1.00 27.08 B.13 ATOM 2408 C ASP 100 66.870 56.354 2.655 1.00 27.08 B.13 ATOM 2408 C ASP 100 66.870 56.354 2.655 1.00 27.08 B.13 ATOM 2408 C ASP 100 66.901 55.447 1.0179 1.00 13.66 B.13 ATOM 2410 N ASP 101 67.255 53.932 0.416 1.00 12.83 B.13 ATOM 2410 N ASP 101 67.255 53.932 -1.010 1.00 12.83 B.13 ATOM 2410 N ASP 101 67.255 53.932 -1.010 1.00 12.83 B.13 ATOM 2410 N ASP 101 67.255 53.932 -1.010 1.00 12.83 B.13 ATOM 2410 N ASP 101 67.255 53.932 -1.010 1.00 12.83 B.13 ATOM 2410 N ASP 101 67.755 53.594 -1.010 1.00 12.83 B.13 ATOM 2410 N ASP 101 67.793 54.171 0.179 1.00 13.66 B.13 ATOM 2410 N ASP 101 67.975 51.065 -2.449 1.00 16.87 B.13 ATOM 2410 N ASP 101 67.975 51.065 -2.449 1.00 16.87 B.13 ATOM 2410 N ASP 101 67.975 51.065 -2.449 1.00 16.87 B.13 ATOM 2410 N ASP 101 67.975 51.065 -2.449 1.00 10.00 B.13 ATOM 2411 C ASP 101 68.004 53.590 -2.164 1.00 12.00 B.13 ATOM 2412 CA BSP 101 67.975 51.065 -2.449 1.00 10.00 B.13 ATOM 2413 CB ASP 101 67.975 51.065 -2.449 1.00 10.00 B.13 ATOM 2414 CG ASP 101 68.005 51.922 -2.488 1.00 19.89 B.13 ATOM 2412 CA GE GUU 102 66.605 57.958 -2.916 1.00 13.76 B.13 ATOM 2418 O ASP 101 66.005 51.905 -2.489 1.00 10.00 B.13 ATOM 2421 CA GUU 102 66.973 56.070 -4.791 1.00 12.96 B.13 ATOM 2422 CB GUU 102 66.973 56.070 -4.791 1.00 12.96 B.13 ATOM 2424 CD GUU 102 66.973 56.000 -2.288 1.00 19.										
ATOM 2395 CB ASP 99 63.229 54.612 0.102 1.00 10.00 B.13 ATOM 2395 CG ASP 99 63.615 53.311 -2.067 1.00 12.86 B.13 ATOM 2397 ODI ASP 99 63.615 53.311 -2.067 1.00 12.86 B.13 ATOM 2398 ODZ ASP 99 63.615 52.806 -1.528 1.00 12.00 B.13 ATOM 2398 ODZ ASP 99 64.624 52.806 -1.528 1.00 12.00 B.13 ATOM 2399 CO ASP 99 64.624 52.806 -1.528 1.00 12.20 B.13 ATOM 2400 O ASP 99 65.121 56.010 -0.366 1.00 11.60 B.13 ATOM 2401 N ASP 100 65.439 54.289 1.006 1.00 12.86 B.13 ATOM 2401 N ASP 100 65.439 54.289 1.006 1.00 14.46 B.13 ATOM 2403 CA ASP 100 66.833 54.642 1.260 1.00 14.46 B.13 ATOM 2404 CB ASP 100 66.805 55.437 3.358 1.00 16.15 B.13 ATOM 2406 ODI ASP 100 66.005 55.437 3.358 1.00 16.15 B.13 ATOM 2406 ODI ASP 100 66.005 55.447 3.358 1.00 15.74 B.13 ATOM 2407 ODZ ASP 100 66.005 55.447 4.602 1.00 13.66 B.13 ATOM 2408 C ASP 100 66.005 55.447 4.602 1.00 15.74 B.13 ATOM 2408 C ASP 100 66.005 55.447 1.001 15.74 B.13 ATOM 2408 C ASP 100 66.005 55.447 1.001 10.00 13.66 B.13 ATOM 2409 O ASP 100 66.005 55.447 1.001 10.00 12.83 B.13 ATOM 2412 CA ASP 101 66.7793 55.417 0.179 1.00 13.66 B.13 ATOM 2410 N ASP 101 66.7254 53.954 -1.010 1.00 12.83 B.13 ATOM 2412 CA ASP 101 66.074 53.5590 -2.164 1.00 10.00 B.13 ATOM 2412 CA ASP 101 66.074 53.5590 -2.164 1.00 10.00 B.13 ATOM 2414 CG ASP 101 66.7254 53.954 -1.010 1.00 12.83 B.13 ATOM 2414 CG ASP 101 66.7254 53.954 -1.010 1.00 12.83 B.13 ATOM 2414 CG ASP 101 66.7254 53.954 -1.010 1.00 12.83 B.13 ATOM 2412 CA ASP 101 66.7254 53.954 -1.010 1.00 12.83 B.13 ATOM 2412 CA ASP 101 66.7254 53.954 -1.010 1.00 12.83 B.13 ATOM 2412 CA ASP 101 66.7254 53.954 -1.010 1.00 12.83 B.13 ATOM 2412 CA ASP 101 66.7254 53.954 -1.010 1.00 12.83 B.13 ATOM 2412 CA ASP 101 66.7254 53.954 -1.010 1.00 12.83 B.13 ATOM 2412 CA GED 101 66.7254 53.954 -1.010 1.00 12.83 B.13 ATOM 2412 CA GED 101 66.7254 53.954 -1.010 1.00 12.83 B.13 ATOM 2412 CA GED 101 66.7254 53.9554 -1.00 12.7254 B.13 ATOM 2412 CA GED 101 66.7254 53.9554 -1.00 12.7254 B.13 ATOM 2414 CG CA										
ATOM 2395 CB ASP 99 62.884 54.471 -1.385 1.00 10.00 B_13 ATOM 2397 ODI ASP 99 63.615 53.311 -2.067 1.00 22.86 B_13 ATOM 2398 OD2 ASP 99 64.624 52.806 -3.160 1.00 11.60 B_13 ATOM 2399 C ASP 99 64.624 52.806 -1.528 1.00 21.20 B_13 ATOM 2399 C ASP 99 64.677 55.046 0.264 1.00 12.66 B_13 ATOM 2400 ASP 99 65.121 56.010 -0.366 1.00 18.37 B_13 ATOM 2401 N ASP 100 65.439 54.289 1.046 1.00 12.86 B_13 ATOM 2401 N ASP 100 66.833 54.642 1.260 1.00 14.46 B_13 ATOM 2404 CB ASP 100 66.833 54.642 1.260 1.00 14.46 B_13 ATOM 2404 CB ASP 100 66.806 55.437 3.358 1.00 16.15 B_13 ATOM 2405 CG ASP 100 68.006 55.437 3.358 1.00 16.15 B_13 ATOM 2406 ODI ASP 100 68.470 56.354 2.655 1.00 27.08 B_13 ATOM 2408 C ASP 100 68.470 56.354 2.655 1.00 27.08 B_13 ATOM 2408 C ASP 100 68.961 53.932 0.416 1.00 12.83 B_13 ATOM 2410 N ASP 101 67.793 54.171 0.179 1.00 13.66 B_13 ATOM 2410 N ASP 101 67.254 53.954 -1.010 1.00 12.83 B_13 ATOM 2410 R ASP 101 67.254 53.954 -1.010 1.00 12.83 B_13 ATOM 2412 CA ASP 101 67.977 51.065 -2.449 1.00 16.87 B_13 ATOM 2413 CB ASP 101 67.977 51.065 -2.449 1.00 16.87 B_13 ATOM 2416 OD2 ASP 101 67.977 51.065 -2.449 1.00 16.87 B_13 ATOM 2416 OD2 ASP 101 67.977 51.065 -2.449 1.00 18.87 B_13 ATOM 2417 C ASP 101 67.977 51.065 -2.449 1.00 18.87 B_13 ATOM 2418 O ASP 101 67.977 51.065 -2.449 1.00 18.87 B_13 ATOM 2418 O ASP 101 68.108 54.858 -3.029 1.00 26.72 B_13 ATOM 2418 O ASP 101 68.108 54.858 -3.029 1.00 26.72 B_13 ATOM 2420 CB GLU 102 66.135 57.958 -2.916 1.00 13.76 B_13 ATOM 2421 CB GLU 102 66.487 57.575 -3.381 1.00 12.54 B_13 ATOM 2422 CB GLU 102 66.487 57.575 -3.381 1.00 12.54 B_13 ATOM 2422 CB GLU 102 66.487 57.575 -3.381 1.00 12.58 B_13 ATOM 2424 CD GLU 102 66.487 57.575 -3.381 1.00 12.58 B_13 ATOM 2424 CD GLU 102 66.873 57.600 -1.371 1.00 12.90 B_13 ATOM 2424 CD GLU 102 66.873 57.500 -2.458 1.00 19.31 B_13 ATOM 2424 CD GLU 102 66.873 57.500 -2.458 1.00 19.31 B_13 ATOM 2424 CD GLU 102 66.873 57.500 -2.458 1.00 19.31 B_13 ATOM 2424 CD GLU 102 66.873 57.500 -2.458 1.00 13.93 B_13 ATOM 2424 CD GLU 102 66.873 57.500 -2.258 1										
ATOM 2396 CG ASP 99 63.615 53.311 -2.067 1.00 22.86 B_13 ATOM 2398 OD2 ASP 99 64.624 52.806 -1.528 1.00 21.20 B_13 ATOM 2399 C ASP 99 64.627 55.046 0.264 1.00 12.66 B_13 ATOM 2401 N ASP 99 65.121 55.045 0.264 1.00 12.86 B_13 ATOM 2401 N ASP 100 65.439 54.289 1.046 1.00 12.87 B_13 ATOM 2403 CA ASP 100 66.833 54.622 1.260 1.00 14.46 B_13 ATOM 2404 CB ASP 100 66.833 54.622 1.260 1.00 14.46 B_13 ATOM 2405 CG ASP 100 68.006 55.437 3.358 1.00 16.15 B_13 ATOM 2406 OD1 ASP 100 68.001 55.447 4.602 1.00 15.74 B_13 ATOM 2407 OD2 ASP 100 68.001 55.447 4.602 1.00 15.74 B_13 ATOM 2408 C ASP 100 68.091 55.447 4.602 1.00 15.74 B_13 ATOM 2408 C ASP 100 66.991 55.447 4.602 1.00 15.74 B_13 ATOM 2408 OD ASP 100 68.091 55.447 4.602 1.00 15.74 B_13 ATOM 2408 C ASP 100 66.091 55.447 4.602 1.00 15.74 B_13 ATOM 2408 C ASP 100 66.991 55.447 1.0179 1.00 13.66 B_13 ATOM 2409 O ASP 100 68.961 53.932 0.416 1.00 19.54 B_13 ATOM 2408 C ASP 101 67.254 53.932 0.416 1.00 19.54 B_13 ATOM 2410 N ASP 101 67.254 53.932 0.416 1.00 19.54 B_13 ATOM 2412 CA ASP 101 67.254 53.932 0.416 1.00 10.00 B_13 ATOM 2413 CB ASP 101 67.254 53.932 0.416 1.00 10.00 B_13 ATOM 2413 CB ASP 101 67.254 53.932 0.416 1.00 10.00 B_13 ATOM 2416 OD2 ASP 101 67.997 51.065 -2.449 1.00 16.87 B_13 ATOM 2416 OD2 ASP 101 67.254 53.995 -2.458 1.00 19.89 B_13 ATOM 2416 OD2 ASP 101 69.184 50.968 -2.066 1.00 18.51 B_13 ATOM 2417 C ASP 101 68.602 54.853 -4.172 1.00 12.11 B_13 ATOM 2418 C OD2 ASP 101 68.602 54.853 -4.172 1.00 12.11 B_13 ATOM 2421 CA GLU 102 67.462 57.217 -3.161 1.00 12.54 B_13 ATOM 2422 CB GLU 102 64.873 57.958 -2.916 1.00 13.76 B_13 ATOM 2424 CD GLU 102 64.873 57.958 -2.916 1.00 13.76 B_13 ATOM 2428 C G GLU 102 64.873 57.958 -2.916 1.00 13.76 B_13 ATOM 2428 C G GLU 102 66.839 57.760 -1.371 1.00 12.54 B_13 ATOM 2428 C G GLU 102 64.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2426 CE2 GLU 102 66.839 57.760 -1.371 1.00 12.90 B_13 ATOM 2426 CE2 GLU 102 66.837 60.808 0.870 1.00 12.78 B_13 ATOM 2426 CE2 GLU 102 66.839 57.760 -1.371 1.00 10.00 B_13 ATOM 2436 C THR 103 69.905 59.957 -										
ATOM 2398 ODJ ASP 99 63.170 52.890 -3.160 1.00 11.50 8_13 ATOM 2398 ODJ ASP 99 64.677 55.046 0.264 1.00 12.66 8_13 ATOM 2400 O ASP 99 65.121 56.010 -0.366 1.00 12.86 8_13 ATOM 2401 N ASP 100 65.439 54.289 1.046 1.00 12.86 8_13 ATOM 2403 CA ASP 100 66.833 54.642 1.260 1.00 14.46 8_13 ATOM 2404 CB ASP 100 66.833 54.642 1.260 1.00 14.46 8_13 ATOM 2405 CG ASP 100 68.006 55.437 3.358 1.00 16.15 74 8_13 ATOM 2406 ODJ ASP 100 68.006 55.437 3.358 1.00 15.574 8_13 ATOM 2406 ODJ ASP 100 68.006 55.437 3.358 1.00 15.574 8_13 ATOM 2408 C ASP 100 68.91 55.447 4.602 1.00 13.66 8_13 ATOM 2408 C ASP 100 68.951 55.917 10.079 1.00 13.66 8_13 ATOM 2408 C ASP 100 68.961 53.932 0.416 1.00 12.83 8_13 ATOM 2410 N ASP 101 66.074 53.590 -2.164 1.00 10.00 8_13 ATOM 2410 N ASP 101 67.254 53.954 -1.010 1.00 12.83 8_13 ATOM 2412 CA ASP 101 67.471 52.413 -2.933 1.00 10.00 8_13 ATOM 2413 CB ASP 101 67.471 52.413 -2.933 1.00 10.00 8_13 ATOM 2414 CG ASP 101 67.222 50.089 -2.458 1.00 15.87 8_13 ATOM 2415 ODJ ASP 101 67.222 50.089 -2.458 1.00 15.87 8_13 ATOM 2416 ODJ ASP 101 67.675 55.968 -2.066 1.00 18.51 8_13 ATOM 2417 C ASP 101 68.108 54.858 -3.029 1.00 26.72 8_13 ATOM 2418 O ASP 101 67.452 55.95 -2.166 1.00 13.66 8_13 ATOM 2419 N GLU 102 67.500 55.922 -2.495 1.00 13.76 8_13 ATOM 2419 N GLU 102 67.462 57.217 -3.161 1.00 12.54 8_13 ATOM 2421 CA GLU 102 67.462 57.217 -3.161 1.00 12.54 8_13 ATOM 2424 CD GLU 102 66.839 57.257 -3.381 1.00 15.50 8_13 ATOM 2424 CD GLU 102 66.899 57.760 -1.371 1.00 12.13 8_13 ATOM 2424 CD GLU 102 66.899 57.760 -1.371 1.00 12.90 8_13 ATOM 2424 CD GLU 102 66.899 57.760 -1.371 1.00 12.90 8_13 ATOM 2424 CD GLU 102 66.899 57.760 -1.371 1.00 12.90 8_13 ATOM 2424 CD GLU 102 66.899 57.760 -1.371 1.00 12.90 8_13 ATOM 2424 CD GLU 102 66.899 57.760 -1.371 1.00 12.90 8_13 ATOM 2424 CD GLU 102 66.899 57.760 -1.371 1.00 12.90 8_13 ATOM 2424 CD GLU 102 66.899 57.760 -1.371 1.00 12.90 8_13 ATOM 2424 CD THR 103 70.061 59.957 -2.693 1.00 16.49 8_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.66 8_13 ATOM 2438 N TRP 104 69.252 61.										
ATOM 2398 OD2 ASP 99 64.624 52.806 -1.528 1.00 21.20 B_13 ATOM 2400 O ASP 99 65.121 56.010 -0.366 1.00 18.37 B_13 ATOM 2401 N ASP 100 65.439 54.299 1.046 1.00 12.86 B_13 ATOM 2403 CA ASP 100 66.833 54.291 1.046 1.00 12.86 B_13 ATOM 2403 CA ASP 100 66.833 54.642 1.2600 1.00 14.46 B_13 ATOM 2405 CG ASP 100 66.806 55.437 3.358 1.00 16.15 B_13 ATOM 2406 OD1 ASP 100 68.091 55.447 4.602 1.00 15.74 B_13 ATOM 2407 OD2 ASP 100 68.091 55.447 4.602 1.00 15.74 B_13 ATOM 2407 OD2 ASP 100 68.091 55.447 4.602 1.00 15.74 B_13 ATOM 2408 C ASP 100 67.793 54.171 0.179 1.00 13.66 B_13 ATOM 2409 O ASP 100 68.091 55.447 1.0179 1.00 13.66 B_13 ATOM 2410 N ASP 101 67.254 53.954 -1.010 1.00 12.83 B_13 ATOM 2410 CA ASP 101 67.254 53.954 -1.010 1.00 12.83 B_13 ATOM 2412 CA ASP 101 67.254 53.954 -1.010 1.00 12.83 B_13 ATOM 2413 CB ASP 101 67.471 52.413 -2.933 1.00 10.00 B_13 ATOM 2413 CB ASP 101 67.977 51.065 -2.449 1.00 10.00 B_13 ATOM 2415 OD1 ASP 101 67.254 53.590 -2.164 1.00 10.00 B_13 ATOM 2416 OD2 ASP 101 67.977 51.065 -2.449 1.00 16.87 B_13 ATOM 2416 OD2 ASP 101 67.977 51.065 -2.449 1.00 16.89 B_13 ATOM 2416 OD2 ASP 101 67.977 51.065 -2.449 1.00 16.87 B_13 ATOM 2416 OD2 ASP 101 69.184 50.968 -2.066 1.00 18.51 B_13 ATOM 2417 C ASP 101 68.602 54.853 -4.172 1.00 12.11 B_13 ATOM 2418 O ASP 101 68.602 54.853 -4.172 1.00 12.11 B_13 ATOM 2421 CA GLU 102 67.462 57.217 -3.161 1.00 12.54 B_13 ATOM 2422 CB GLU 102 64.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2423 CG GLU 102 64.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2424 CD GLU 102 64.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2426 CB GLU 102 64.873 57.257 -3.361 1.00 12.54 B_13 ATOM 2426 CB GLU 102 66.893 57.257 -3.381 1.00 15.50 B_13 ATOM 2426 CB GLU 102 66.893 57.257 -3.381 1.00 12.54 B_13 ATOM 2426 CB GLU 102 66.893 57.257 -3.381 1.00 12.54 B_13 ATOM 2426 CB GLU 102 66.893 57.257 -3.381 1.00 12.78 B_13 ATOM 2426 CB GLU 102 66.893 57.600 -3.891 1.00 12.78 B_13 ATOM 2426 CB THR 103 70.021 59.957 -2.693 1.00 12.78 B_13 ATOM 2426 CB THR 103 69.800 59.03 59.03 3.228 1.00 19.38 B_13 ATOM 2426 CB THR 10			-							
ATOM 2399 C ASP 99 64.677 55.046 0.264 1.00 12.66										
ATOM 2401 N ASP 99 65.121 56.010 -0.366 1.00 18.37 B_13 ATOM 2401 N ASP 100 65.439 54.289 1.046 1.00 12.86 B_13 ATOM 2403 CA ASP 100 66.833 54.642 1.260 1.00 14.46 B_13 ATOM 2405 CG ASP 100 67.308 54.271 2.660 1.00 17.70 B_13 ATOM 2405 CG ASP 100 68.006 55.437 3.358 1.00 16.15 B_13 ATOM 2406 OD1 ASP 100 68.006 55.437 3.358 1.00 16.15 B_13 ATOM 2407 OD2 ASP 100 68.091 55.447 4.602 1.00 15.74 B_13 ATOM 2407 OD2 ASP 100 68.091 55.447 4.602 1.00 15.74 B_13 ATOM 2408 C ASP 100 67.793 54.171 0.179 1.00 13.66 B_13 ATOM 2409 O ASP 100 68.961 53.932 0.416 1.00 19.54 B_13 ATOM 2410 N ASP 101 67.254 53.954 -1.010 1.00 12.83 B_13 ATOM 2412 CA ASP 101 67.254 53.954 -1.010 1.00 12.83 B_13 ATOM 2413 CB ASP 101 67.254 53.954 -1.010 1.00 12.83 B_13 ATOM 2413 CB ASP 101 67.254 53.954 -1.010 1.00 12.83 B_13 ATOM 2413 CB ASP 101 67.254 53.954 -1.010 1.00 12.83 B_13 ATOM 2416 CG ASP 101 67.297 51.065 -2.449 1.00 10.00 B_13 ATOM 2415 OD1 ASP 101 67.997 51.065 -2.449 1.00 16.87 B_13 ATOM 2416 OD2 ASP 101 68.074 53.590 -2.164 1.00 10.00 B_13 ATOM 2417 C ASP 101 68.004 54.858 -3.029 1.00 26.72 B_13 ATOM 2418 O ASP 101 68.602 54.853 -4.172 1.00 12.11 B_13 ATOM 2418 O ASP 101 68.602 54.853 -4.172 1.00 12.11 B_13 ATOM 2421 CA GLU 102 67.500 55.922 -2.496 1.00 13.76 B_13 ATOM 2421 CA GLU 102 67.500 55.922 -2.496 1.00 13.76 B_13 ATOM 2422 CB GLU 102 66.873 57.257 -3.81 1.00 12.54 B_13 ATOM 2422 CB GLU 102 66.873 57.575 -3.81 1.00 12.54 B_13 ATOM 2423 CG GLU 102 66.873 57.575 -3.81 1.00 12.54 B_13 ATOM 2424 CD GLU 102 66.873 57.565 5.021 1.00 12.54 B_13 ATOM 2425 OEI GLU 102 66.893 57.60 -1.31 1.00 12.56 B_13 ATOM 2426 OE2 GLU 102 66.893 57.60 -1.31 1.00 12.36 B_13 ATOM 2427 C GLU 102 66.893 57.60 -1.31 1.00 12.36 B_13 ATOM 2428 O GLU 102 66.893 57.60 -1.31 1.00 12.36 B_13 ATOM 2428 O GLU 102 66.893 57.60 -1.32 1.00 12.36 B_13 ATOM 2428 O GLU 102 66.893 57.60 -1.31 1.00 12.36 B_13 ATOM 2428 O GLU 102 66.893 57.60 -1.32 1.00 12.36 B_13 ATOM 2428 O GLU 102 66.893 57.60 -1.32 1.00 12.36 B_13 ATOM 2424 CD THR 103 70.695 60.893 0.890 0.890 1.00 2										
ATOM 2401 N ASP 100 65.439 54.289 1.046 1.00 12.86 B_13 ATOM 2404 CB ASP 100 66.833 54.642 1.260 1.00 14.46 B_13 ATOM 2404 CB ASP 100 67.308 54.271 2.660 1.00 17.70 B_13 ATOM 2405 OD1 ASP 100 68.006 55.437 3.358 1.00 16.15 B_13 ATOM 2406 OD1 ASP 100 68.006 55.437 3.358 1.00 16.75 B_13 ATOM 2407 OD2 ASP 100 68.091 55.447 4.6602 1.00 17.70 B_13 ATOM 2408 C ASP 100 68.091 55.447 4.6602 1.00 17.74 B_13 ATOM 2408 C ASP 100 67.793 54.171 0.179 1.00 13.66 B_13 ATOM 2409 O ASP 100 68.961 53.932 0.416 1.00 12.83 B_13 ATOM 2410 N ASP 101 67.254 53.932 0.416 1.00 12.83 B_13 ATOM 2410 N ASP 101 67.254 53.954 -1.010 1.00 12.83 B_13 ATOM 2412 CA ASP 101 67.471 52.413 -2.933 1.00 10.00 B_13 ATOM 2413 CB ASP 101 67.471 52.413 -2.933 1.00 10.00 B_13 ATOM 2414 CG ASP 101 67.232 50.089 -2.458 1.00 16.87 B_13 ATOM 2416 OD2 ASP 101 67.232 50.089 -2.458 1.00 18.51 B_13 ATOM 2417 C ASP 101 68.108 54.858 -3.029 1.00 26.72 B_13 ATOM 2418 O ASP 101 68.108 54.858 -3.029 1.00 26.72 B_13 ATOM 2419 N GLU 102 67.462 57.217 -3.161 1.00 12.11 B_13 ATOM 2412 CA GLU 102 67.462 57.217 -3.161 1.00 12.54 B_13 ATOM 2421 CA GLU 102 67.462 57.217 -3.161 1.00 12.54 B_13 ATOM 2422 CB GLU 102 66.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2424 CD GLU 102 66.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2424 CD GLU 102 66.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2427 C GLU 102 66.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2427 C GLU 102 66.873 56.707 -4.791 1.00 29.02 B_13 ATOM 2428 O GLU 102 66.854 58.854 58.040 -2.505 1.00 14.96 B_13 ATOM 2429 N THR 103 70.021 59.957 -2.693 1.00 12.36 B_13 ATOM 2429 N THR 103 70.021 59.957 -2.693 1.00 10.938 B_13 ATOM 2428 O GLU 102 66.854 58.94 58.040 -2.505 1.00 14.96 B_13 ATOM 2428 O GLU 102 66.854 58.94 58.040 -2.505 1.00 12.36 B_13 ATOM 2428 O GLU 102 66.5640 57.307 -5.665 1.00 12.76 B_13 ATOM 2426 OEZ GLU 102 66.5640 57.307 -5.665 1.00 12.76 B_13 ATOM 2426 OEZ GLU 104 68.873 69.898 0.880 1.00 19.38 B_13 ATOM 2426 OEZ GLU 104 66.837 60.808 0.870 1.00 12.96 B_13 ATOM 2426 OEZ GLU 104 66.837 60.808 0.870 1.00 12.96 B_13 ATOM 2443 CDZ										
ATOM 2404 CB ASP 100 66.833 54.642 1.260 1.00 14.46 B_13 ATOM 2405 CG ASP 100 67.308 54.271 2.660 1.00 17.70 B_13 ATOM 2406 OD1 ASP 100 68.096 55.437 3.338 1.00 16.15 B_13 ATOM 2407 OD2 ASP 100 68.991 55.447 4.602 1.00 15.74 B_13 ATOM 2408 C ASP 100 67.793 54.171 0.179 1.00 13.66 B_13 ATOM 2409 O ASP 100 68.991 55.447 1.0179 1.00 13.66 B_13 ATOM 2409 O ASP 100 68.991 55.4171 0.179 1.00 13.66 B_13 ATOM 2410 N ASP 101 67.254 53.932 0.416 1.00 19.54 B_13 ATOM 2412 CA ASP 101 68.074 53.590 -2.164 1.00 10.00 19.54 ATOM 2413 CB ASP 101 67.254 53.954 -1.010 1.00 12.83 B_13 ATOM 2414 CG ASP 101 67.997 51.065 -2.449 1.00 10.00 B_13 ATOM 2415 OD1 ASP 101 67.997 51.065 -2.449 1.00 10.00 B_13 ATOM 2416 OD2 ASP 101 68.062 54.858 -3.029 1.00 26.72 B_13 ATOM 2417 C ASP 101 68.602 54.858 -3.029 1.00 26.72 B_13 ATOM 2418 O ASP 101 68.602 54.853 -4.172 1.00 12.11 B_13 ATOM 2419 N GLU 102 67.500 55.922 -2.496 1.00 13.76 B_13 ATOM 2421 CG GLU 102 66.135 57.958 -2.916 1.00 13.76 B_13 ATOM 2422 CB GLU 102 66.135 57.958 -2.916 1.00 13.01 B_13 ATOM 2423 CG GLU 102 66.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2424 CD GLU 102 66.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2425 OE1 GLU 102 66.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2426 OE2 GLU 102 66.874 58.040 -2.505 1.00 12.78 B_13 ATOM 2427 C GLU 102 66.8939 57.760 -1.371 1.00 12.91 B_13 ATOM 2428 O GLU 102 66.8939 57.760 -1.371 1.00 12.91 B_13 ATOM 2428 O GLU 102 68.544 58.040 -2.505 1.00 12.78 B_13 ATOM 2428 O THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2433 OG1 THR 103 71.661 59.384 -4.399 1.00 25.44 B_13 ATOM 2436 C THR 103 69.030 59.039 -3.228 1.00 19.38 B_13 ATOM 2441 CB TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2442 CG TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2443 CD TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2444 CE2 TRP 104 66.837 60.808 0.870 1.00 12.61 B_13 ATOM 2443 CG TRP 104 66.837 60.808 0.870 1.00 12.61 B_13 ATOM 2444 CE2 TRP 104 66.837 60.808 0.870 1.00 12.61 B_13 ATOM 2444 CE2 TRP 104 66.837 60.808 0.870 1.00 12.61 B_13 ATOM 2444 CE2 TRP 104 66.837										
ATOM 2405 CB ASP 100 67.308 54.271 2.660 1.00 17.70 \$\bar{1}\$13\$ ATOM 2406 OD1 ASP 100 68.006 55.437 3.358 1.00 16.15 \$\bar{1}\$13\$ ATOM 2407 OD2 ASP 100 68.470 56.354 2.655 1.00 27.08 \$\bar{1}\$13\$ ATOM 2408 C ASP 100 68.470 56.354 2.655 1.00 27.08 \$\bar{1}\$13\$ ATOM 2409 C ASP 100 68.961 53.932 0.416 1.00 13.66 \$\bar{1}\$13\$ ATOM 2409 C ASP 100 68.961 53.932 0.416 1.00 19.54 \$\bar{1}\$13\$ ATOM 2410 N ASP 101 67.254 53.954 -1.010 1.00 12.83 \$\bar{1}\$13\$ ATOM 2412 CA ASP 101 68.074 53.590 -2.164 1.00 10.00 \$\bar{1}\$13\$ ATOM 2413 CB ASP 101 67.471 52.413 -2.933 1.00 10.00 \$\bar{1}\$13\$ ATOM 2414 CG ASP 101 67.937 51.065 -2.449 1.00 16.87 \$\bar{1}\$13\$ ATOM 2415 OD1 ASP 101 67.234 53.954 -1.010 10.01 16.87 \$\bar{1}\$13\$ ATOM 2415 OD2 ASP 101 67.937 51.065 -2.449 1.00 16.87 \$\bar{1}\$13\$ ATOM 2416 OD2 ASP 101 67.232 50.089 -2.458 1.00 19.89 \$\bar{1}\$13\$ ATOM 2416 OD2 ASP 101 68.602 54.853 -4.172 1.00 12.11 \$\bar{1}\$13\$ ATOM 2418 O ASP 101 68.602 54.853 -4.172 1.00 12.11 \$\bar{1}\$13\$ ATOM 2419 N GLU 102 67.500 55.922 -2.496 1.00 13.76 \$\bar{1}\$13\$ ATOM 2421 CA GLU 102 67.500 55.922 -2.496 1.00 13.76 \$\bar{1}\$13\$ ATOM 2422 CB GLU 102 64.873 57.257 -3.381 1.00 15.50 \$\bar{1}\$13\$ ATOM 2424 CD GLU 102 66.355 77.958 -2.916 1.00 12.01 \$\bar{1}\$13\$ ATOM 2424 CD GLU 102 66.355 77.958 -2.916 1.00 12.01 \$\bar{1}\$13\$ ATOM 2424 CD GLU 102 66.395 57.557 -3.381 1.00 15.50 \$\bar{1}\$13\$ ATOM 2424 CD GLU 102 66.395 57.557 -3.381 1.00 15.50 \$\bar{1}\$13\$ ATOM 2424 CD GLU 102 66.395 57.557 -3.381 1.00 15.50 \$\bar{1}\$13\$ ATOM 2424 CD GLU 102 66.395 57.257 -3.381 1.00 15.50 \$\bar{1}\$13\$ ATOM 2424 CD GLU 102 66.395 57.257 -3.381 1.00 15.50 \$\bar{1}\$13\$ ATOM 2424 CD GLU 102 66.395 57.257 -3.381 1.00 15.50 \$\bar{1}\$13\$ ATOM 2424 CD GLU 102 66.395 57.257 -3.381 1.00 15.50 \$\bar{1}\$13\$ ATOM 2425 CB THR 103 70.973 60.490 -3.801 1.00 12.78 \$\bar{1}\$13\$ ATOM 2426 CCZ GLU 102 66.395 57.565 1.00 12.76 \$\bar{1}\$13\$ ATOM 2427 C GLU 102 66.395 57.565 1.00 12.76 \$\bar{1}\$13\$ ATOM 2431 CG THR 103 70.973 60.490 -3.801 1.00 12.75 \$\bar{1}\$13\$ ATOM 2443 CCZ TRP 1										
ATOM 2406 ODI ASP 100 68.006 55.437 3.358 1.00 16.15 B_13 ATOM 2407 OD2 ASP 100 68.091 55.447 4.602 1.00 15.74 B_13 ATOM 2408 C ASP 100 67.793 54.171 0.179 1.00 13.66 B_13 ATOM 2409 O ASP 100 68.961 53.932 0.416 1.00 19.54 B_13 ATOM 2410 N ASP 101 67.254 53.9354 -1.010 1.00 19.54 B_13 ATOM 2412 CA ASP 101 68.074 53.590 -2.164 1.00 10.00 B_13 ATOM 2413 CB ASP 101 67.471 52.413 -2.993 1.00 10.00 B_13 ATOM 2414 CG ASP 101 67.997 51.065 -2.494 1.00 10.00 B_13 ATOM 2415 ODI ASP 101 67.232 50.089 -2.458 1.00 10.89 B_13 ATOM 2416 OD2 ASP 101 69.184 50.968 -2.066 1.00 19.89 B_13 ATOM 2417 C ASP 101 68.108 54.858 -3.029 1.00 26.72 B_13 ATOM 2419 N GLU 102 67.500 55.922 -2.496 1.00 13.76 B_13 ATOM 2422 CB GLU 102 66.135 57.958 -2.916 1.00 12.54 B_13 ATOM 2423 CG GLU 102 66.135 57.958 -2.916 1.00 13.01 B_13 ATOM 2424 CG GLU 102 66.335 57.257 -3.381 1.00 12.54 B_13 ATOM 2424 CG GLU 102 66.395 56.57.07 -4.791 1.00 12.09 B_13 ATOM 2424 CG GLU 102 66.893 57.257 -3.381 1.00 12.54 B_13 ATOM 2424 CG GLU 102 68.993 57.665 1.00 12.78 B_13 ATOM 2424 CG GLU 102 68.993 57.665 1.00 12.36 B_13 ATOM 2424 CG GLU 102 68.993 57.665 1.00 12.36 B_13 ATOM 2425 CE GLU 102 68.993 57.760 -1.371 1.00 10.00 B_13 ATOM 2426 CE GLU 102 68.993 57.760 -1.371 1.00 10.00 B_13 ATOM 2427 C GLU 102 68.993 57.760 -1.371 1.00 10.00 B_13 ATOM 2428 O THR 103 70.091 59.995 -2.695 1.00 12.36 B_13 ATOM 2429 N THR 103 68.446 61.04 -2.505 1.00 19.38 B_13 ATOM 2426 CE GLU 102 68.993 57.760 -1.371 1.00 10.00 B_13 ATOM 2427 C GLU 104 68.993 57.760 -1.371 1.00 10.00 B_13 ATOM 2428 CB THR 103 70.091 59.995 -2.695 1.00 19.38 B_13 ATOM 2429 CB THR 103 70.091 59.995 -2.695 1.00 12.76 B_13 ATOM 2424 CD THR 103 70.091 59.995 -2.695 1.00 12.36 B_13 ATOM 2424 CD THR 103 70.091 59.995 -2.695 1.00 12.36 B_13 ATOM 2424 CB THR 103 70.091 59.995 -2.695 1.00 12.36 B_13 ATOM 2424 CB THR 103 70.091 59.995 -2.695 1.00 13.62 B_13 ATOM 2424 CB THR 103 70.091 59.995 -2.695 1.00 13.69 B_13 ATOM 2424 CB THR 103 70.091 59.995 -2.695 1.00 13.69 B_13 ATOM 2424 CB THR 104 66.895 59.695 0.995 0.9										
ATOM 2406 OD1 ASP 100 68.091 55.447 4.602 1.00 15.74 B_13 ATOM 2408 C ASP 100 67.793 54.171 0.179 1.00 13.66 B_13 ATOM 2408 C ASP 100 68.961 53.932 0.416 1.00 19.54 B_13 ATOM 2409 O ASP 101 67.254 53.954 -1.010 1.00 12.83 B_13 ATOM 2412 CA ASP 101 67.254 53.954 -1.010 1.00 12.83 B_13 ATOM 2412 CA ASP 101 67.254 53.954 -1.010 1.00 12.83 B_13 ATOM 2413 CB ASP 101 67.471 52.413 -2.933 1.00 10.00 B_13 ATOM 2414 CG ASP 101 67.977 51.065 -2.449 1.00 10.87 B_13 ATOM 2415 OD1 ASP 101 67.977 51.065 -2.449 1.00 16.87 B_13 ATOM 2416 OD2 ASP 101 67.937 51.065 -2.458 1.00 19.89 B_13 ATOM 2416 OD2 ASP 101 68.08 54.858 -3.029 1.00 26.72 B_13 ATOM 2418 O ASP 101 68.08 54.858 -3.029 1.00 26.72 B_13 ATOM 2419 N GLU 102 67.500 55.922 -2.496 1.00 13.76 B_13 ATOM 2419 N GLU 102 67.500 55.922 -2.496 1.00 13.76 B_13 ATOM 2421 CA GLU 102 67.662 57.217 -3.161 1.00 12.54 B_13 ATOM 2422 CB GLU 102 64.873 57.958 -2.916 1.00 13.01 B_13 ATOM 2424 CD GLU 102 64.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2425 OE1 GLU 102 64.893 56.077 -4.791 1.00 12.36 B_13 ATOM 2426 OE2 GLU 102 64.893 56.077 -4.791 1.00 12.36 B_13 ATOM 2427 C GLU 102 64.893 56.077 -4.791 1.00 12.36 B_13 ATOM 2428 O GLU 102 64.893 57.257 -3.381 1.00 15.50 B_13 ATOM 2429 N THR 103 69.305 59.039 -3.228 1.00 19.38 B_13 ATOM 2429 N THR 103 69.305 59.039 -3.228 1.00 19.38 B_13 ATOM 2433 CG THR 103 70.921 59.957 -2.693 1.00 12.36 B_13 ATOM 2433 CG THR 103 70.921 59.957 -2.693 1.00 16.49 B_13 ATOM 2433 CG THR 103 70.921 59.957 -2.693 1.00 16.49 B_13 ATOM 2436 C THR 103 70.921 59.957 -2.693 1.00 16.49 B_13 ATOM 2436 C THR 103 70.921 59.957 -2.693 1.00 16.49 B_13 ATOM 2436 C THR 103 70.921 59.957 -2.693 1.00 10.00 B_13 ATOM 2436 C THR 103 70.921 59.957 -2.693 1.00 10.00 B_13 ATOM 2436 C THR 103 70.921 59.957 -2.693 1.00 10.93 B_13 ATOM 2436 C THR 103 70.966 61.462 -3.212 1.00 10.75 B_13 ATOM 2436 C THR 103 70.966 61.462 -3.212 1.00 10.75 B_13 ATOM 2436 C THR 103 70.966 61.462 -3.212 1.00 10.75 B_13 ATOM 2444 CB TRP 104 66.837 60.895 0.953 0.347 1.00 22.99 B_13 ATOM 2444 CB TRP 104 66.8637										
ATOM 2408 C ASP 100 68.470 56.354 2.655 1.00 27.08 B_13 ATOM 2408 C ASP 100 67.793 54.171 0.179 1.00 13.66 B_13 ATOM 2409 O ASP 100 68.961 53.932 0.416 1.00 19.54 B_13 ATOM 2410 N ASP 101 67.254 53.954 -1.010 1.00 12.83 B_13 ATOM 2412 CA ASP 101 67.254 53.954 -1.010 1.00 12.83 B_13 ATOM 2413 CB ASP 101 67.471 52.413 -2.933 1.00 10.00 B_13 ATOM 2413 CB ASP 101 67.471 52.413 -2.933 1.00 10.00 B_13 ATOM 2415 OD1 ASP 101 67.997 51.065 -2.449 1.00 16.87 B_13 ATOM 2416 OD2 ASP 101 67.322 50.089 -2.458 1.00 19.89 B_13 ATOM 2416 OD2 ASP 101 69.184 50.968 -2.066 1.00 18.51 B_13 ATOM 2417 C ASP 101 68.602 54.853 -4.172 1.00 12.11 B_13 ATOM 2419 N GLU 102 67.500 55.922 -2.496 1.00 13.76 B_13 ATOM 2421 CG ASP 101 68.602 54.853 -4.172 1.00 12.11 B_13 ATOM 2421 CG GLU 102 67.462 57.217 -3.161 1.00 12.54 B_13 ATOM 2422 CB GLU 102 66.135 57.958 -2.916 1.00 13.76 B_13 ATOM 2422 CB GLU 102 66.4873 57.257 -3.381 1.00 15.50 B_13 ATOM 2424 CD GLU 102 64.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2424 CD GLU 102 64.873 57.257 -3.381 1.00 12.78 B_13 ATOM 2424 CD GLU 102 64.873 57.257 -3.381 1.00 12.78 B_13 ATOM 2425 OEI GLU 102 64.8973 57.507 -4.791 1.00 12.78 B_13 ATOM 2426 OEZ GLU 102 68.544 58.040 -2.505 1.00 12.78 B_13 ATOM 2427 C GLU 102 68.544 58.040 -2.505 1.00 12.78 B_13 ATOM 2428 N THR 103 69.305 59.039 -3.228 1.00 19.38 B_13 ATOM 2429 N THR 103 69.305 59.039 -3.228 1.00 19.38 B_13 ATOM 2431 CA THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2435 CG THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2436 C THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2436 C THR 103 70.973 60.490 -3.801 1.00 12.61 B_13 ATOM 2436 C THR 103 69.446 61.52 -3.212 1.00 10.75 B_13 ATOM 2436 C THR 103 69.446 61.50 -3.212 1.00 10.75 B_13 ATOM 2436 C THR 103 68.446 61.727 -2.867 1.00 13.62 B_13 ATOM 2436 C THR 103 68.446 61.727 -2.867 1.00 13.62 B_13 ATOM 2440 CA TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CB TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CB TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CB TRP 104 66.837 60.8										
ATOM 2409 C ASP 100 67.793 54.171 0.179 1.00 13.66 B_13 ATOM 2409 O ASP 100 68.961 53.932 0.416 1.00 19.54 B_13 ATOM 2410 N ASP 101 67.254 53.954 -1.010 1.00 12.83 B_13 ATOM 2412 CA ASP 101 68.074 53.590 -2.164 1.00 10.00 B_13 ATOM 2413 CB ASP 101 67.471 52.413 -2.933 1.00 10.00 B_13 ATOM 2415 OD1 ASP 101 67.997 51.065 -2.449 1.00 16.87 B_13 ATOM 2415 OD1 ASP 101 67.997 51.065 -2.449 1.00 16.87 B_13 ATOM 2416 0D2 ASP 101 69.184 50.968 -2.066 1.00 18.51 B_13 ATOM 2416 OD2 ASP 101 68.108 54.858 -3.029 1.00 26.72 B_13 ATOM 2418 O ASP 101 68.602 54.858 -3.029 1.00 26.72 B_13 ATOM 2419 N GLU 102 67.500 55.922 -2.496 1.00 13.76 B_13 ATOM 2419 N GLU 102 67.462 57.217 -3.161 1.00 12.54 B_13 ATOM 2422 CB GLU 102 66.135 7.958 -2.916 1.00 13.76 B_13 ATOM 2424 CD GLU 102 66.4873 57.257 -3.381 1.00 19.00 B_13 ATOM 2424 CD GLU 102 64.873 57.257 -3.381 1.00 19.00 B_13 ATOM 2426 OE2 GLU 102 64.873 57.257 -3.381 1.00 12.56 B_13 ATOM 2426 OE2 GLU 102 64.873 57.257 -3.381 1.00 12.68 B_13 ATOM 2426 OE2 GLU 102 68.544 58.040 -2.505 1.00 12.78 B_13 ATOM 2429 N THR 103 69.030 59.039 -3.228 1.00 19.38 B_13 ATOM 2429 N THR 103 69.030 59.039 -3.228 1.00 19.38 B_13 ATOM 2433 CG THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2436 C THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2436 C THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2436 C THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2436 C THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2436 C THR 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CB TRP 104 66.857 66.85										
ATOM 2409 O ASP 100 68.961 53.932 O.416 1.00 19.54 B_13 ATOM 2410 N ASP 101 67.254 53.954 -1.010 1.00 12.83 B_13 ATOM 2412 CA ASP 101 68.074 53.590 -2.164 1.00 10.00 B_13 ATOM 2413 CB ASP 101 67.471 52.413 -2.933 1.00 10.00 B_13 ATOM 2414 CG ASP 101 67.977 51.065 -2.449 1.00 16.87 B_13 ATOM 2415 OD1 ASP 101 67.977 51.065 -2.449 1.00 19.89 B_13 ATOM 2416 OD2 ASP 101 67.232 50.089 -2.458 1.00 19.89 B_13 ATOM 2416 OD2 ASP 101 68.108 54.858 -3.029 1.00 26.72 B_13 ATOM 2417 C ASP 101 68.108 54.858 -3.029 1.00 26.72 B_13 ATOM 2418 O ASP 101 68.602 54.853 -4.172 1.00 12.11 B_13 ATOM 2419 N GLU 102 67.500 55.922 -2.496 1.00 13.76 B_13 ATOM 2421 CA GLU 102 67.462 57.217 -3.161 1.00 12.54 B_13 ATOM 2422 CB GLU 102 66.135 57.958 -2.916 1.00 13.01 B_13 ATOM 2423 CG GLU 102 64.873 56.707 -4.791 1.00 29.02 B_13 ATOM 2424 CD GLU 102 64.973 56.707 -4.791 1.00 29.02 B_13 ATOM 2425 OE1 GLU 102 66.399 55.635 -5.021 1.00 12.36 B_13 ATOM 2426 OE2 GLU 102 68.594 58.040 -2.505 1.00 12.78 B_13 ATOM 2427 C GLU 102 68.939 57.760 -1.371 1.00 12.36 B_13 ATOM 2428 N THR 103 69.030 59.039 -3.228 1.00 19.38 B_13 ATOM 2429 N THR 103 69.030 59.039 -3.228 1.00 19.38 B_13 ATOM 2429 N THR 103 70.021 59.957 -2.693 1.00 16.49 B_13 ATOM 2433 CG THR 103 70.973 60.490 -3.801 1.00 19.38 B_13 ATOM 2436 C THR 103 70.973 60.490 -3.801 1.00 12.91 B_13 ATOM 2437 C THR 103 70.973 60.490 -3.801 1.00 19.38 B_13 ATOM 2438 C THR 103 70.973 60.490 -3.801 1.00 12.91 B_13 ATOM 2436 C THR 103 70.973 60.490 -3.801 1.00 12.91 B_13 ATOM 2437 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2438 C THR 103 70.973 60.490 -3.801 1.00 17.59 B_13 ATOM 2436 C THR 103 70.973 60.490 -3.801 1.00 17.59 B_13 ATOM 2437 C THR 104 68.497 62.388 -0.237 1.00 13.62 B_13 ATOM 2438 C THR 103 70.973 60.490 -3.801 1.00 17.89 B_13 ATOM 2440 CA TRP 104 66.897 62.388 -0.237 1.00 13.62 B_13 ATOM 2441 CB TRP 104 66.897 62.388 -0.237 1.00 13.62 B_13 ATOM 2443 CD2 TRP 104 66.897 62.388 -0.237 1.00 13.62 B_13 ATOM 2444 CC2 TRP 104 66.897 62.388 -0.237 1.00 13.62 B_13 ATOM 2445 CC3 TRP 104 66.893										
ATOM 2410 N ASP 101 67.254 53.954 -1.010 1.00 12.83 B_13 ATOM 2413 CB ASP 101 68.074 53.590 -2.164 1.00 10.00 B_13 ATOM 2414 CG ASP 101 67.471 52.413 -2.933 1.00 10.00 B_13 ATOM 2414 CG ASP 101 67.471 52.413 -2.933 1.00 10.00 B_13 ATOM 2415 OD1 ASP 101 67.997 51.065 -2.449 1.00 16.87 B_13 ATOM 2416 OD2 ASP 101 69.184 50.968 -2.066 1.00 18.51 B_13 ATOM 2417 C ASP 101 68.602 54.853 -3.029 1.00 26.72 B_13 ATOM 2418 O ASP 101 68.602 54.853 -4.172 1.00 12.11 B_13 ATOM 2419 N GLU 102 67.500 55.922 -2.496 1.00 13.76 B_13 ATOM 2419 N GLU 102 67.462 57.217 -3.161 1.00 12.51 B_13 ATOM 2421 CA GLU 102 67.462 57.217 -3.161 1.00 12.54 B_13 ATOM 2422 CB GLU 102 66.135 57.958 -2.916 1.00 13.76 B_13 ATOM 2424 CD GLU 102 64.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2424 CD GLU 102 64.873 56.707 -4.791 1.00 29.02 B_13 ATOM 2425 OE1 GLU 102 65.640 57.307 -5.665 1.00 12.78 B_13 ATOM 2426 OE2 GLU 102 64.399 55.635 -5.021 1.00 12.78 B_13 ATOM 2428 O GLU 102 64.399 55.635 -5.021 1.00 12.78 B_13 ATOM 2428 O GLU 102 68.544 58.040 -2.505 1.00 14.96 B_13 ATOM 2429 N THR 103 69.030 59.039 -3.228 1.00 19.38 B_13 ATOM 2421 CA THR 103 70.021 59.957 -2.693 1.00 14.96 B_13 ATOM 2423 CB THR 103 70.021 59.957 -2.693 1.00 19.38 B_13 ATOM 2431 CA THR 103 70.021 59.957 -2.693 1.00 19.38 B_13 ATOM 2433 CG THR 103 70.021 59.957 -2.693 1.00 16.49 B_13 ATOM 2433 CG THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2433 CG THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2435 CG2 THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2437 O THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2436 C THR 103 69.86 61.96 -3.212 1.00 10.75 B_13 ATOM 2437 CG THR 103 69.86 61.90 -3.801 1.00 25.44 B_13 ATOM 2436 C THR 103 69.86 61.90 -3.801 1.00 22.99 B_13 ATOM 2443 CD TRP 104 66.837 60.880 0.870 1.00 22.99 B_13 ATOM 2444 CD TRP 104 66.837 60.880 0.870 1.00 22.99 B_13 ATOM 2444 CD TRP 104 66.837 60.880 0.870 1.00 12.61 B_13 ATOM 2445 CC3 TRP 104 66.837 60.890 0.800 0.870 1.00 12.61 B_13 ATOM 2445 CC3 TRP 104 66.8										
ATOM 2412 CA ASP 101 68.074 53.590 -2.164 1.00 10.00 B_13 ATOM 2413 CB ASP 101 67.471 52.413 -2.933 1.00 10.00 B_13 ATOM 2415 OD1 ASP 101 67.997 51.065 -2.449 1.00 16.87 B_13 ATOM 2415 OD1 ASP 101 67.232 50.089 -2.458 1.00 19.89 B_13 ATOM 2416 OD2 ASP 101 69.184 50.968 -2.066 1.00 18.51 B_13 ATOM 2417 C ASP 101 68.108 54.858 -3.029 1.00 26.72 B_13 ATOM 2418 O ASP 101 68.602 54.853 -4.172 1.00 12.11 B_13 ATOM 2419 N GLU 102 67.500 55.922 -2.496 1.00 13.76 B_13 ATOM 2421 CA GLU 102 67.500 55.922 -2.496 1.00 13.76 B_13 ATOM 2422 CB GLU 102 66.135 57.958 -2.916 1.00 13.01 B_13 ATOM 2423 CG GLU 102 64.873 56.707 -3.361 1.00 15.50 B_13 ATOM 2424 CD GLU 102 64.873 56.707 -4.791 1.00 29.02 B_13 ATOM 2425 OE1 GLU 102 64.399 55.635 -5.021 1.00 12.78 B_13 ATOM 2426 OE2 GLU 102 68.544 58.040 -2.505 1.00 14.96 B_13 ATOM 2427 C GLU 102 68.544 58.040 -2.505 1.00 14.96 B_13 ATOM 2428 O GLU 102 68.939 57.760 -1.371 1.00 10.00 B_13 ATOM 2429 N THR 103 70.021 59.957 -2.693 1.00 16.49 B_13 ATOM 2431 CA THR 103 70.021 59.957 -2.693 1.00 16.49 B_13 ATOM 2433 CB THR 103 70.0973 60.490 3.801 1.00 19.31 B_13 ATOM 2433 CG THR 103 70.973 60.490 3.801 1.00 19.31 B_13 ATOM 2435 CG2 THR 103 70.973 60.490 3.801 1.00 12.79 B_13 ATOM 2437 C THR 103 70.973 60.490 3.801 1.00 12.91 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 12.99 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2438 N TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 12.61 B_13 ATOM 2446 CD TRP 104 66.837 60.808 0.870 1.00 12.61 B_13 ATOM 2447 CE TRP 104 66.837 60.808 0.870 1.00 12.61 B_13 ATOM 2448 CC3 TRP 104 66.837 60.808 0.870 1.00 12.61 B_13 ATOM 2449 CZ2 TRP 104 66.837 60.808 0.870 1.00 12.61 B_13 ATOM 2449 CZ2 TRP 104 66.8			N							
ATOM 2414 CG ASP 101 67.997 51.065 -2.449 1.00 16.87 B_13 ATOM 2415 OD1 ASP 101 67.232 50.089 -2.458 1.00 19.89 B_13 ATOM 2417 C ASP 101 69.184 50.968 -2.066 1.00 18.51 B_13 ATOM 2417 C ASP 101 68.108 54.858 -3.029 1.00 26.72 B_13 ATOM 2418 O ASP 101 68.602 54.853 -4.172 1.00 12.11 B_13 ATOM 2419 N GLU 102 67.500 55.922 -2.496 1.00 13.76 B_13 ATOM 2421 CA GLU 102 67.462 57.217 -3.161 1.00 12.54 B_13 ATOM 2422 CB GLU 102 66.135 57.958 -2.916 1.00 13.01 B_13 ATOM 2422 CB GLU 102 64.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2424 CD GLU 102 64.973 56.707 -4.791 1.00 29.02 B_13 ATOM 2425 OE1 GLU 102 64.973 56.707 -5.665 1.00 12.78 B_13 ATOM 2426 OE2 GLU 102 64.999 55.635 -5.021 1.00 12.36 B_13 ATOM 2427 C GLU 102 68.544 58.040 -2.505 1.00 14.96 B_13 ATOM 2428 O GLU 102 68.939 57.760 -1.371 1.00 10.00 B_13 ATOM 2429 N THR 103 69.030 59.039 -3.228 1.00 19.38 B_13 ATOM 2431 CA THR 103 70.021 59.957 -2.693 1.00 16.49 B_13 ATOM 2431 CA THR 103 70.973 60.490 -3.801 1.00 19.38 B_13 ATOM 2435 CG2 THR 103 70.973 60.490 -3.801 1.00 19.38 B_13 ATOM 2435 CG2 THR 103 70.973 60.490 -3.801 1.00 19.38 B_13 ATOM 2436 C THR 103 70.973 60.490 -2.867 1.00 19.38 B_13 ATOM 2437 C THR 103 70.973 60.490 -2.867 1.00 19.38 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 19.35 B_13 ATOM 2436 C THR 103 70.973 60.490 -2.867 1.00 13.59 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2438 N TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2443 CD2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CB TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CB TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CC2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CC2 TRP 104 65.876 58.775 0.755 1.00 14.24 B_13 ATOM 2445 CC3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CC3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CC3 TRP 104 65.876 58.775 0.755 1.00 14.24 B_13 ATOM 2445 CC3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CC3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CC3 TRP 104 66.83	ATOM	2412	CA	ASP	101			-2.164		
ATOM 2415 OD1 ASP 101 67.232 50.089 -2.458 1.00 19.89 B_13 ATOM 2416 OD2 ASP 101 69.184 50.968 -2.066 1.00 18.51 B_13 ATOM 2417 C ASP 101 68.602 54.858 -3.029 1.00 26.72 B_13 ATOM 2418 O ASP 101 68.602 54.853 -4.172 1.00 12.11 B_13 ATOM 2419 N GLU 102 67.500 55.922 -2.496 1.00 13.76 B_13 ATOM 2421 CA GLU 102 67.500 55.922 -2.496 1.00 13.76 B_13 ATOM 2422 CB GLU 102 66.135 57.958 -2.916 1.00 13.01 B_13 ATOM 2422 CG GLU 102 64.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2422 CG GLU 102 64.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2424 CD GLU 102 64.873 56.707 -4.791 1.00 29.02 B_13 ATOM 2425 OE1 GLU 102 65.640 57.307 -5.665 1.00 12.78 B_13 ATOM 2426 OE2 GLU 102 64.399 55.635 -5.021 1.00 12.36 B_13 ATOM 2427 C GLU 102 68.544 58.040 -2.505 1.00 14.96 B_13 ATOM 2428 O GLU 102 68.939 57.760 -1.371 1.09 10.00 B_13 ATOM 2429 N THR 103 69.030 59.039 -3.228 1.00 14.96 B_13 ATOM 2431 CA THR 103 70.921 59.957 -2.693 1.00 16.49 B_13 ATOM 2432 CB THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2433 CG THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2435 CG2 THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2435 CG2 THR 103 70.973 60.490 -3.801 1.00 12.91 B_13 ATOM 2437 O THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2437 O THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.660 B_13 ATOM 2443 CD TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2444 CC TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2444 CC TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2444 CC TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2444 CC TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2444 CC TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2444 CC TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2444 CC TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2444 CC TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CC TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CC TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CC TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CC TRP 104 66.837 60	MOTA	2413	CB	ASP	101	67.471	52.413	-2.933	1.00 10.00	B_13
ATOM 2416 OD2 ASP 101 69.184 50.968 -2.066 1.00 18.51 B_13 ATOM 2417 C ASP 101 68.108 54.858 -3.029 1.00 26.72 B_13 ATOM 2418 O ASP 101 68.602 54.853 -4.172 1.00 12.11 B_13 ATOM 2419 N GLU 102 67.500 55.922 -2.496 1.00 13.76 B_13 ATOM 2421 CA GLU 102 67.500 55.922 -2.496 1.00 13.76 B_13 ATOM 2421 CA GLU 102 66.135 57.958 -2.916 1.00 13.01 B_13 ATOM 2422 CB GLU 102 66.135 57.958 -2.916 1.00 13.01 B_13 ATOM 2422 CB GLU 102 64.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2422 OCI GLU 102 64.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2424 CD GLU 102 64.973 56.707 -4.791 1.00 29.02 B_13 ATOM 2425 OCI GLU 102 65.640 57.307 -5.665 1.00 12.78 B_13 ATOM 2425 OCI GLU 102 64.399 55.635 -5.021 1.00 12.36 B_13 ATOM 2425 OCI GLU 102 68.544 58.040 -2.505 1.00 14.96 B_13 ATOM 2425 O GLU 102 68.544 58.040 -2.505 1.00 14.96 B_13 ATOM 2429 N THR 103 69.030 59.039 -3.228 1.00 19.38 B_13 ATOM 2429 N THR 103 69.030 59.039 -3.228 1.00 19.38 B_13 ATOM 2432 CB THR 103 70.021 59.957 -2.693 1.00 16.49 B_13 ATOM 2433 OCI THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2433 OCI THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2435 CG2 THR 103 72.006 61.462 -3.212 1.00 10.75 B_13 ATOM 2437 O THR 103 69.180 61.462 -3.212 1.00 10.75 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2441 CB TRP 104 67.852 61.902 1.063 1.00 22.66 B_13 ATOM 2441 CB TRP 104 67.852 61.902 1.063 1.00 22.66 B_13 ATOM 2444 CCB TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CCB TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2444 CCB TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CCB TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CCB TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2444 CCB TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2444 CCB TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CCB TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2444 CCB TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CCB TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2444 CCB TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CCB TRP	MOTA		CG	ASP	101	67.997	51.065	-2.449	1.00 16.87	B_13
ATOM 2417 C ASP 101 68.108 54.858 -3.029 1.00 26.72 B_13 ATOM 2418 O ASP 101 68.602 54.853 -4.172 1.00 12.11 B_13 ATOM 2419 N GLU 102 67.500 55.922 -2.496 1.00 13.76 B_13 ATOM 2421 CA GLU 102 67.462 57.217 -3.161 1.00 12.54 B_13 ATOM 2422 CB GLU 102 66.135 57.958 -2.916 1.00 13.01 B_13 ATOM 2422 CB GLU 102 66.135 57.958 -2.916 1.00 13.01 B_13 ATOM 2423 CG GLU 102 64.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2424 CD GLU 102 64.973 56.707 -4.791 1.00 29.02 B_13 ATOM 2425 OE1 GLU 102 64.973 56.707 -5.665 1.00 12.78 B_13 ATOM 2426 OE2 GLU 102 64.973 55.035 -5.021 1.00 12.78 B_13 ATOM 2426 OE2 GLU 102 64.979 55.635 -5.021 1.00 12.36 B_13 ATOM 2427 C GLU 102 68.544 58.040 -2.505 1.00 14.96 B_13 ATOM 2429 N THR 103 69.030 59.039 -3.228 1.00 19.38 B_13 ATOM 2431 CA THR 103 70.973 60.490 -3.801 1.00 19.38 B_13 ATOM 2432 CB THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2432 CB THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2433 OG1 THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2436 C THR 103 72.066 61.462 -3.212 1.00 10.75 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2444 CB TRP 104 66.837 62.388 -0.237 1.00 13.69 B_13 ATOM 2443 CD2 TRP 104 68.497 62.388 -0.237 1.00 13.69 B_13 ATOM 2444 CB TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2444 CE2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CE2 TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2444 CE2 TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2444 CE2 TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2444 CE2 TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2444 CE2 TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2444 CE2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.21 B_13 ATOM 2445 CD3 TRP 104 66								-2.458	1.00 19.89	
ATOM 2418 O ASP 101 68.602 54.853 -4.172 1.00 12.11 B_13 ATOM 2419 N GLU 102 67.500 55.922 -2.496 1.00 13.76 B_13 ATOM 2421 CA GLU 102 67.462 57.217 -3.161 1.00 12.54 B_13 ATOM 2422 CB GLU 102 66.135 57.958 -2.916 1.00 13.01 B_13 ATOM 2423 CG GLU 102 64.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2424 CD GLU 102 64.973 56.707 -4.791 1.00 29.02 B_13 ATOM 2424 CD GLU 102 64.973 56.707 -4.791 1.00 29.02 B_13 ATOM 2425 CEI GLU 102 64.399 55.635 -5.021 1.00 12.78 B_13 ATOM 2426 OE2 GLU 102 64.399 55.635 -5.021 1.00 12.36 B_13 ATOM 2426 OE2 GLU 102 68.544 58.040 -2.505 1.00 14.96 B_13 ATOM 2428 O GLU 102 68.544 58.040 -2.505 1.00 14.96 B_13 ATOM 2428 O GLU 102 68.939 57.760 -1.371 1.00 10.00 B_13 ATOM 2428 O GLU 102 68.939 57.760 -1.371 1.00 10.00 B_13 ATOM 2428 O GLU 102 68.939 57.600 -1.371 1.00 10.00 B_13 ATOM 2428 O GLU 102 68.939 57.600 -1.371 1.00 10.00 B_13 ATOM 2428 O GLU 102 68.939 57.600 -1.371 1.00 10.00 B_13 ATOM 2428 O GLU 102 68.939 57.600 -1.371 1.00 10.00 B_13 ATOM 2431 CA THR 103 70.021 59.957 -2.693 1.00 16.49 B_13 ATOM 2432 CB THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2432 CB THR 103 71.661 59.384 -4.399 1.00 25.44 B_13 ATOM 2435 CG2 THR 103 72.006 61.462 -3.212 1.00 10.75 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2437 O THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2438 N TRP 104 68.497 62.388 -0.237 1.00 13.59 B_13 ATOM 2434 CB TRP 104 68.497 62.388 -0.237 1.00 13.62 B_13 ATOM 2444 CB TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2444 CB TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CB3 TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2445 CB3 TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2445 CB3 TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2445 CB3 TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2445 CB3 TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2445 CB3 TRP 104 66.837 60.808 0.870 1.00 22.61 B_13 ATOM 2445 CB3 TRP 104 66.837 60.808 0.870 1.00 22.21 B_13 ATOM 2445 CB3 TRP 104 66.83										
ATOM 2419 N GLU 102 67.500 55.922 -2.496 1.00 13.76 B_13 ATOM 2421 CA GLU 102 67.462 57.217 -3.161 1.00 12.54 B_13 ATOM 2422 CB GLU 102 66.135 57.958 -2.916 1.00 13.01 B_13 ATOM 2423 CG GLU 102 64.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2424 CD GLU 102 64.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2424 CD GLU 102 65.640 57.307 -5.665 1.00 12.78 B_13 ATOM 2425 OE1 GLU 102 65.640 57.307 -5.665 1.00 12.78 B_13 ATOM 2426 OE2 GLU 102 64.399 55.635 -5.021 1.00 12.36 B_13 ATOM 2427 C GLU 102 68.544 58.040 -2.505 1.00 14.96 B_13 ATOM 2428 O GLU 102 68.939 57.760 -1.371 1.00 10.00 B_13 ATOM 2428 O GLU 102 68.939 57.760 -1.371 1.00 10.00 B_13 ATOM 2428 O GLU 103 69.30 59.039 -3.228 1.00 19.38 B_13 ATOM 2431 CA THR 103 70.973 60.490 -3.801 1.00 16.49 B_13 ATOM 2432 CB THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2432 CB THR 103 71.661 59.384 -4.399 1.00 25.44 B_13 ATOM 2435 CG2 THR 103 72.006 61.462 -3.212 1.00 10.75 B_13 ATOM 2437 O THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 10.75 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2438 CG TRP 104 68.497 62.388 -0.237 1.00 13.59 B_13 ATOM 2434 CB TRP 104 66.837 60.953 0.347 1.00 22.99 B_13 ATOM 2442 CG TRP 104 66.837 60.953 0.347 1.00 27.35 B_13 ATOM 2443 CD2 TRP 104 66.837 60.953 0.347 1.00 27.35 B_13 ATOM 2444 CE3 TRP 104 66.837 60.953 0.347 1.00 27.35 B_13 ATOM 2444 CE3 TRP 104 66.837 60.953 0.347 1.00 27.35 B_13 ATOM 2444 CE3 TRP 104 66.837 60.953 0.347 1.00 27.35 B_13 ATOM 2444 CE3 TRP 104 66.837 60.953 0.347 1.00 27.35 B_13 ATOM 2444 CE3 TRP 104 66.837 60.953 0.347 1.00 27.35 B_13 ATOM 2444 CE3 TRP 104 66.837 60.953 0.347 1.00 27.35 B_13 ATOM 2444 CE3 TRP 104 66.837 60.953 0.347 1.00 27.35 B_13 ATOM 2444 CE3 TRP 104 66.837 60.953 0.347 1.00 27.35 B_13 ATOM 2444 CE3 TRP 104 66.837 60.953 0.347 1.00 27.35 B_13 ATOM 2444 CE3 TRP 104 66.837 60.953 0.347 1.00 27.35 B_13 ATOM 2444 CE3 TRP 104 66.837 60.953 0.347 1.00 22.99 B_13 ATOM 2444 CE3 TRP 104 66.837 60.953 0.347 1.00 22.35 B_13 ATOM 2445 CD3 TRP 104 66										
ATOM 2421 CA GLU 102 67.462 57.217 -3.161 1.00 12.54 B_13 ATOM 2422 CB GLU 102 66.135 57.958 -2.916 1.00 13.01 B_13 ATOM 2423 CG GLU 102 64.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2424 CD GLU 102 64.873 56.707 -4.791 1.00 29.02 B_13 ATOM 2425 0E1 GLU 102 65.640 57.307 -5.665 1.00 12.78 B_13 ATOM 2426 0E2 GLU 102 65.640 57.307 -5.665 1.00 12.78 B_13 ATOM 2427 C GLU 102 68.544 58.040 -2.505 1.00 14.96 B_13 ATOM 2428 O GLU 102 68.939 57.760 -1.371 1.00 10.00 B_13 ATOM 2429 N THR 103 69.030 59.039 -3.228 1.00 19.38 B_13 ATOM 2421 CA THR 103 70.973 60.490 -3.801 1.00 16.49 B_13 ATOM 2431 CA THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2432 CB THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2435 CG2 THR 103 77.661 59.384 -4.399 1.00 25.44 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2436 CG THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 10.75 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2443 CD2 TRP 104 66.849 62.388 -0.237 1.00 13.59 B_13 ATOM 2443 CD2 TRP 104 66.849 60.950 0.397 1.00 22.99 B_13 ATOM 2443 CD2 TRP 104 66.849 60.950 0.347 1.00 22.66 B_13 ATOM 2443 CD2 TRP 104 66.849 60.950 0.347 1.00 22.99 B_13 ATOM 2443 CD2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CC2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CC2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CC2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CC2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CC2 TRP 104 66.836 59.654 0.287 1.00 12.61 B_13 ATOM 2445 CC3 TRP 104 66.836 59.654 0.287 1.00 12.61 B_13 ATOM 2446 CD1 TRP 104 66.836 59.654 0.287 1.00 12.61 B_13 ATOM 2447 NE1 TRP 104 66.836 59.654 0.287 1.00 12.61 B_13 ATOM 2446 CD1 TRP 104 66.836 59.654 0.287 1.00 12.61 B_13 ATOM 2446 CD1 TRP 104 66.836 59.654 0.287 1.00 12.61 B_13 ATOM 2445 CC3 TRP 104 66.836 59.654 0.287 1.00 12.61 B_13 ATOM 2445 CC3 TRP 104 66.845 61.832 -0.549 1.00 22.21 B_13 ATOM 2445 CC3 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CC3 TR										
ATOM 2422 CB GLU 102 66.135 57.958 -2.916 1.00 13.01 B_13 ATOM 2423 CG GLU 102 64.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2424 CD GLU 102 64.973 56.707 -4.791 1.00 29.02 B_13 ATOM 2425 OE1 GLU 102 65.640 57.307 -5.665 1.00 12.78 B_13 ATOM 2426 OE2 GLU 102 64.399 55.635 -5.021 1.00 12.36 B_13 ATOM 2427 C GLU 102 68.544 58.040 -2.505 1.00 14.96 B_13 ATOM 2428 O GLU 102 68.544 58.040 -2.505 1.00 14.96 B_13 ATOM 2429 N THR 103 69.030 59.039 -3.228 1.00 19.38 B_13 ATOM 2431 CA THR 103 70.021 59.957 -2.693 1.00 16.49 B_13 ATOM 2432 CB THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2433 OG1 THR 103 71.661 59.384 -4.399 1.00 25.44 B_13 ATOM 2436 C THR 103 72.006 61.402 -3.212 1.00 10.75 B_13 ATOM 2437 O THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2443 CD2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2443 CD2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 17.89 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 17.89 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 66.836 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CE3 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CE3 TRP										
ATOM 2423 CG GLU 102 64.873 57.257 -3.381 1.00 15.50 B_13 ATOM 2424 CD GLU 102 66.973 56.707 -4.791 1.00 29.02 B_13 ATOM 2425 OE1 GLU 102 65.640 57.307 -5.665 1.00 12.78 B_13 ATOM 2426 OE2 GLU 102 66.399 55.635 -5.021 1.00 12.36 B_13 ATOM 2428 O GLU 102 68.544 58.040 -2.505 1.00 14.96 B_13 ATOM 2428 O GLU 102 68.544 58.040 -2.505 1.00 14.96 B_13 ATOM 2428 O GLU 102 68.939 57.760 -1.371 1.00 10.00 B_13 ATOM 2429 N THR 103 69.030 59.039 -3.228 1.00 19.38 B_13 ATOM 2431 CA THR 103 70.021 59.957 -2.693 1.00 16.49 B_13 ATOM 2433 OG1 THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2433 OG1 THR 103 71.661 59.384 -4.399 1.00 25.44 B_13 ATOM 2435 CG2 THR 103 72.006 61.462 -3.212 1.00 10.75 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2443 CD2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2443 CD2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2443 CD2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2443 CD2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CE TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2443 CD2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 11.89 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 12.91 B_13 ATOM 2445 CE3 TRP 104 66.837 60.808 0.870 1.00 22.21 B_13 ATOM 2445 CD2 TRP 104 66.837 60.808 0.870 1.00 22.22 B_13 ATOM 2445 CD2 TRP 104 66.837 60.808 0.870 1.00 22.21 B_13 ATOM 2445 CD2 TRP 104 66.837 60.808 0.870 1.00 22.21 B_13 ATOM 2445 CD2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CD3 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CD3 TRP										
ATOM 2424 CD GLU 102 64.973 56.707 -4.791 1.00 29.02 B_13 ATOM 2425 OE1 GLU 102 65.640 57.307 -5.665 1.00 12.78 B_13 ATOM 2426 OE2 GLU 102 64.399 55.635 -5.021 1.00 12.36 B_13 ATOM 2427 C GLU 102 68.544 58.040 -2.505 1.00 14.96 B_13 ATOM 2428 O GLU 102 68.939 57.760 -1.371 1.09 10.00 B_13 ATOM 2429 N THR 103 69.030 59.039 -3.228 1.00 19.38 B_13 ATOM 2431 CA THR 103 70.021 59.957 -2.693 1.00 16.49 B_13 ATOM 2432 CB THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2433 OG1 THR 103 71.661 59.384 -4.399 1.00 25.44 B_13 ATOM 2435 CG2 THR 103 72.006 61.462 -3.212 1.00 10.75 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2440 CA TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2441 CB TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CE2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CE2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CE2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CE2 TRP 104 66.875 60.953 0.347 1.00 27.35 B_13 ATOM 2444 CE2 TRP 104 66.876 59.654 0.287 1.00 12.61 B_13 ATOM 2444 CE2 TRP 104 66.876 59.654 0.287 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 66.876 59.654 0.287 1.00 12.61 B_13 ATOM 2447 NEI TRP 104 66.876 58.775 0.755 1.00 14.24 B_13 ATOM 2447 NEI TRP 104 66.876 58.775 0.755 1.00 14.24 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.598 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.598 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.598 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.598 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.598 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.598 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.598 1.00 22.21 B_13										
ATOM 2425 OE1 GLU 102 65.640 57.307 -5.665 1.00 12.78 B_13 ATOM 2426 OE2 GLU 102 64.399 55.635 -5.021 1.00 12.36 B_13 ATOM 2427 C GLU 102 68.544 58.040 -2.505 1.00 14.96 B_13 ATOM 2428 O GLU 102 68.939 57.760 -1.371 1.00 10.00 B_13 ATOM 2429 N THR 103 69.030 59.039 -3.228 1.00 19.38 B_13 ATOM 2431 CA THR 103 70.021 59.957 -2.693 1.00 16.49 B_13 ATOM 2432 CB THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2433 OG1 THR 103 71.661 59.384 -4.399 1.00 25.44 B_13 ATOM 2435 CG2 THR 103 72.006 61.462 -3.212 1.00 10.75 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2437 O THR 103 68.414 61.727 -2.867 1.00 13.59 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2440 CA TRP 104 68.497 62.388 -0.237 1.00 13.62 B_13 ATOM 2441 CB TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2443 CD2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CE2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CE2 TRP 104 66.936 59.654 0.287 1.00 12.61 B_13 ATOM 2444 CE2 TRP 104 66.936 59.654 0.287 1.00 12.61 B_13 ATOM 2444 CE2 TRP 104 64.936 59.654 0.287 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 66.936 59.654 0.287 1.00 12.61 B_13 ATOM 2446 CD1 TRP 104 66.936 59.654 0.287 1.00 12.61 B_13 ATOM 2447 NE1 TRP 104 66.837 50.755 1.00 14.24 B_13 ATOM 2449 CZ2 TRP 104 66.832 59.429 -0.186 1.00 17.89 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2451 CH2 TRP 104 66.945 61.994 60.557 -0.598 1.00 23.31 B_13										
ATOM 2426 OE2 GLU 102 64.399 55.635 -5.021 1.00 12.36 B_13 ATOM 2427 C GLU 102 68.544 58.040 -2.505 1.00 14.96 B_13 ATOM 2428 O GLU 102 68.939 57.760 -1.371 1.00 10.00 B_13 ATOM 2429 N THR 103 69.030 59.039 -3.228 1.00 19.38 B_13 ATOM 2431 CA THR 103 70.021 59.9957 -2.693 1.00 16.49 B_13 ATOM 2432 CB THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2433 OG1 THR 103 71.661 59.384 -4.399 1.00 25.44 B_13 ATOM 2435 CG2 THR 103 72.006 61.462 -3.212 1.00 10.75 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2437 O THR 103 68.414 61.727 -2.867 1.00 13.59 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2440 CA TRP 104 68.497 62.388 -0.237 1.00 13.62 B_13 ATOM 2441 CB TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2443 CD2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CE2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CE2 TRP 104 64.936 59.654 0.287 1.00 12.61 B_13 ATOM 2444 CE2 TRP 104 64.936 59.654 0.287 1.00 12.61 B_13 ATOM 2444 CE2 TRP 104 64.936 59.654 0.287 1.00 12.61 B_13 ATOM 2444 CE2 TRP 104 64.936 59.654 0.287 1.00 12.61 B_13 ATOM 2444 CE2 TRP 104 66.837 59.473 1.108 1.00 17.89 B_13 ATOM 2444 CE2 TRP 104 66.7013 59.473 1.108 1.00 17.89 B_13 ATOM 2445 CE3 TRP 104 66.7013 59.473 1.108 1.00 17.89 B_13 ATOM 2447 NEI TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.549 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.549 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2451 CH2 TRP 104 66.945 61.994 60.557 -0.598 1.00 23.31 B_13										
ATOM 2427 C GLU 102 68.544 58.040 -2.505 1.00 14.96 B_13 ATOM 2428 O GLU 102 68.939 57.760 -1.371 1.00 10.00 B_13 ATOM 2429 N THR 103 69.030 59.039 -3.228 1.00 19.38 B_13 ATOM 2431 CA THR 103 70.021 59.957 -2.693 1.00 16.49 B_13 ATOM 2432 CB THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2433 OG1 THR 103 71.661 59.384 -4.399 1.00 25.44 B_13 ATOM 2435 CG2 THR 103 72.006 61.462 -3.212 1.00 10.75 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2437 O THR 103 68.414 61.727 -2.867 1.00 13.59 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2440 CA TRP 104 68.497 62.388 -0.237 1.00 13.62 B_13 ATOM 2441 CB TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2442 CG TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2443 CD2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CE2 TRP 104 64.936 59.654 0.287 1.00 17.89 B_13 ATOM 2445 CE3 TRP 104 64.741 62.054 -0.079 1.00 11.89 B_13 ATOM 2446 CD1 TRP 104 67.013 59.473 1.108 1.00 17.89 B_13 ATOM 2447 NEI TRP 104 65.876 58.775 0.755 1.00 14.24 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.549 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.598 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.598 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.598 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.598 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13										
ATOM 2428 O GLU 102 68.939 57.760 -1.371 1.00 10.00 B_13 ATOM 2429 N THR 103 69.030 59.039 -3.228 1.00 19.38 B_13 ATOM 2431 CA THR 103 70.021 59.957 -2.693 1.00 16.49 B_13 ATOM 2432 CB THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2433 OG1 THR 103 71.661 59.384 -4.399 1.00 25.44 B_13 ATOM 2435 CG2 THR 103 72.006 61.462 -3.212 1.00 10.75 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2437 O THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2440 CA TRP 104 68.497 62.388 -0.237 1.00 13.62 B_13 ATOM 2441 CB TRP 104 66.837 60.808 0.870 1.00 22.666 B_13 ATOM 2442 CG TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CE2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CE2 TRP 104 64.936 59.654 0.287 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 64.741 62.054 -0.079 1.00 11.89 B_13 ATOM 2446 CD1 TRP 104 67.013 59.473 1.108 1.00 17.89 B_13 ATOM 2447 NEI TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2447 NEI TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.549 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.549 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.549 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.632 -0.549 1.00 22.21 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2451 CH2 TRP 104 62.904 60.527 -0.598 1.00 23.31 B_13										
ATOM 2429 N THR 103 69.030 59.039 -3.228 1.00 19.38 B_13 ATOM 2431 CA THR 103 70.021 59.957 -2.693 1.00 16.49 B_13 ATOM 2432 CB THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2433 OG1 THR 103 71.661 59.384 -4.399 1.00 25.44 B_13 ATOM 2435 CG2 THR 103 72.006 61.462 -3.212 1.00 10.75 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2437 O THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2438 N TRP 104 68.497 62.388 -0.237 1.00 13.59 B_13 ATOM 2440 CA TRP 104 68.497 62.388 -0.237 1.00 13.62 B_13 ATOM 2441 CB TRP 104 66.837 60.808 0.870 1.00 22.66 B_13 ATOM 2442 CG TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CE2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CE2 TRP 104 64.936 59.654 0.287 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 64.936 59.654 0.287 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 64.741 62.054 -0.079 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 64.741 62.054 -0.079 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 64.741 62.054 -0.079 1.00 11.89 B_13 ATOM 2445 CE3 TRP 104 65.876 58.775 0.755 1.00 14.24 B_13 ATOM 2447 NEI TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.598 1.00 23.31 B_13										B 13
ATOM 2431 CA THR 103 70.021 59.957 -2.693 1.00 16.49 B_13 ATOM 2432 CB THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2433 OG1 THR 103 71.661 59.384 -4.399 1.00 25.44 B_13 ATOM 2435 CG2 THR 103 72.006 61.462 -3.212 1.00 10.75 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2437 O THR 103 68.414 61.727 -2.867 1.00 13.59 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2440 CA TRP 104 68.497 62.388 -0.237 1.00 13.62 B_13 ATOM 2441 CB TRP 104 67.852 61.902 1.063 1.00 22.66 B_13 ATOM 2442 CG TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2443 CD2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CE2 TRP 104 65.505 60.953 0.347 1.00 27.35 B_13 ATOM 2444 CE2 TRP 104 64.936 59.654 0.287 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 64.936 59.654 0.287 1.00 12.61 B_13 ATOM 2446 CD1 TRP 104 64.741 62.054 -0.079 1.00 11.89 B_13 ATOM 2446 CD1 TRP 104 64.741 62.054 -0.079 1.00 11.89 B_13 ATOM 2447 NE1 TRP 104 65.876 58.775 0.755 1.00 14.24 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 17.89 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CZ3 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2451 CH2 TRP 104 62.904 60.527 -0.598 1.00 23.31 B_13	MOTA		N							B_13
ATOM 2432 CB THR 103 70.973 60.490 -3.801 1.00 19.31 B_13 ATOM 2433 OG1 THR 103 71.661 59.384 -4.399 1.00 25.44 B_13 ATOM 2435 CG2 THR 103 72.006 61.462 -3.212 1.00 10.75 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2437 O THR 103 68.414 61.727 -2.867 1.00 13.59 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2440 CA TRP 104 68.497 62.388 -0.237 1.00 13.62 B_13 ATOM 2441 CB TRP 104 67.852 61.902 1.063 1.00 22.66 B_13 ATOM 2442 CG TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2443 CD2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CE2 TRP 104 65.505 60.953 0.347 1.00 27.35 B_13 ATOM 2444 CE2 TRP 104 64.936 59.654 0.287 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 64.741 62.054 -0.079 1.00 11.89 B_13 ATOM 2446 CD1 TRP 104 64.741 62.054 -0.079 1.00 11.89 B_13 ATOM 2447 NE1 TRP 104 65.876 58.775 0.755 1.00 14.24 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2445 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2451 CH2 TRP 104 62.904 60.527 -0.598 1.00 23.31 B_13	ATOM	2431	CA	THR	103	70.021				
ATOM 2435 CG2 THR 103 72.006 61.462 -3.212 1.00 10.75 B_13 ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2437 O THR 103 68.414 61.727 -2.867 1.00 13.59 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2440 CA TRP 104 68.497 62.388 -0.237 1.00 13.62 B_13 ATOM 2441 CB TRP 104 67.852 61.902 1.063 1.00 22.66 B_13 ATOM 2442 CG TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2443 CD2 TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2444 CE2 TRP 104 66.837 60.955 0.347 1.00 27.35 B_13 ATOM 2444 CE2 TRP 104 64.936 59.654 0.287 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 64.936 59.654 0.287 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 64.741 62.054 -0.079 1.00 11.89 B_13 ATOM 2446 CD1 TRP 104 67.013 59.473 1.108 1.00 17.89 B_13 ATOM 2447 NE1 TRP 104 65.876 58.775 0.755 1.00 14.24 B_13 ATOM 2447 NE1 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2445 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.598 1.00 22.21 B_13 ATOM 2451 CH2 TRP 104 62.904 60.527 -0.598 1.00 23.31 B_13	ATOM	2432			103		60.490	-3.801		B_13
ATOM 2436 C THR 103 69.180 61.104 -2.141 1.00 12.91 B_13 ATOM 2437 O THR 103 68.414 61.727 -2.867 1.00 13.59 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2440 CA TRP 104 68.497 62.388 -0.237 1.00 13.62 B_13 ATOM 2441 CB TRP 104 67.852 61.902 1.063 1.00 22.66 B_13 ATOM 2442 CG TRP 104 66.837 60.880 0.870 1.00 22.99 B_13 ATOM 2443 CD2 TRP 104 65.505 60.953 0.347 1.00 27.35 B_13 ATOM 2444 CE2 TRP 104 64.936 59.654 0.287 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 64.741 62.054 -0.079 1.00 11.89 B_13 ATOM 2446 CD1 TRP 104 64.741 62.054 -0.079 1.00 11.89 B_13 ATOM 2447 NE1 TRP 104 65.876 58.775 0.755 1.00 14.24 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2451 CH2 TRP 104 62.904 60.527 -0.598 1.00 23.31 B_13						71.661	59.384		1.00 25.44	
ATOM 2437 O THR 103 68.414 61.727 -2.867 1.00 13.59 B_13 ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2440 CA TRP 104 68.497 62.388 -0.237 1.00 13.62 B_13 ATOM 2441 CB TRP 104 67.852 61.902 1.063 1.00 22.66 B_13 ATOM 2442 CG TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2443 CD2 TRP 104 65.505 60.953 0.347 1.00 22.99 B_13 ATOM 2444 CE2 TRP 104 64.936 59.654 0.287 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 64.741 62.054 -0.079 1.00 11.89 B_13 ATOM 2446 CD1 TRP 104 64.741 62.054 -0.079 1.00 11.89 B_13 ATOM 2447 NE1 TRP 104 67.013 59.473 1.108 1.00 17.89 B_13 ATOM 2447 NE1 TRP 104 65.876 58.775 0.755 1.00 14.24 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2451 CH2 TRP 104 62.904 60.527 -0.598 1.00 23.31 B_13			CG2				61.462	-3.212		B_13
ATOM 2438 N TRP 104 69.252 61.322 -0.842 1.00 20.60 B_13 ATOM 2440 CA TRP 104 68.497 62.388 -0.237 1.00 13.62 B_13 ATOM 2441 CB TRP 104 67.852 61.902 1.063 1.00 22.66 B_13 ATOM 2442 CG TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2443 CD2 TRP 104 65.505 60.953 0.347 1.00 27.35 B_13 ATOM 2444 CE2 TRP 104 64.936 59.654 0.287 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 64.741 62.054 -0.079 1.00 11.89 B_13 ATOM 2446 CD1 TRP 104 67.013 59.473 1.108 1.00 17.89 B_13 ATOM 2447 NE1 TRP 104 65.876 58.775 0.755 1.00 14.24 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2451 CH2 TRP 104 62.904 60.527 -0.598 1.00 23.31 B_13									1.00 12.91	
ATOM 2440 CA TRP 104 68.497 62.388 -0.237 1.00 13.62 B_13 ATOM 2441 CB TRP 104 67.852 61.902 1.063 1.00 22.66 B_13 ATOM 2442 CG TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2443 CD2 TRP 104 65.505 60.953 0.347 1.00 27.35 B_13 ATOM 2444 CE2 TRP 104 64.936 59.654 0.287 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 64.741 62.054 -0.079 1.00 11.89 B_13 ATOM 2446 CD1 TRP 104 67.013 59.473 1.108 1.00 17.89 B_13 ATOM 2447 NE1 TRP 104 65.876 58.775 0.755 1.00 14.24 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2451 CH2 TRP 104 62.904 60.527 -0.598 1.00 23.31 B_13										B_13
ATOM 2441 CB TRP 104 67.852 61.902 1.063 1.00 22.66 B_13 ATOM 2442 CG TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2443 CD2 TRP 104 65.505 60.953 0.347 1.00 27.35 B_13 ATOM 2444 CE2 TRP 104 64.936 59.654 0.287 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 64.741 62.054 -0.079 1.00 11.89 B_13 ATOM 2446 CD1 TRP 104 67.013 59.473 1.108 1.00 17.89 B_13 ATOM 2447 NE1 TRP 104 65.876 58.775 0.755 1.00 14.24 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2451 CH2 TRP 104 62.904 60.527 -0.598 1.00 23.31 B_13										
ATOM 2442 CG TRP 104 66.837 60.808 0.870 1.00 22.99 B_13 ATOM 2443 CD2 TRP 104 65.505 60.953 0.347 1.00 27.35 B_13 ATOM 2444 CE2 TRP 104 64.936 59.654 0.287 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 64.741 62.054 -0.079 1.00 11.89 B_13 ATOM 2446 CD1 TRP 104 67.013 59.473 1.108 1.00 17.89 B_13 ATOM 2447 NE1 TRP 104 65.876 58.775 0.755 1.00 14.24 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2451 CH2 TRP 104 62.904 60.527 -0.598 1.00 23.31 B_13										
ATOM 2443 CD2 TRP 104 65.505 60.953 0.347 1.00 27.35 B_13 ATOM 2444 CE2 TRP 104 64.936 59.654 0.287 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 64.741 62.054 -0.079 1.00 11.89 B_13 ATOM 2446 CD1 TRP 104 67.013 59.473 1.108 1.00 17.89 B_13 ATOM 2447 NE1 TRP 104 65.876 58.775 0.755 1.00 14.24 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2451 CH2 TRP 104 62.904 60.527 -0.598 1.00 23.31 B_13										
ATOM 2444 CE2 TRP 104 64.936 59.654 0.287 1.00 12.61 B_13 ATOM 2445 CE3 TRP 104 64.741 62.054 -0.079 1.00 11.89 B_13 ATOM 2446 CD1 TRP 104 67.013 59.473 1.108 1.00 17.89 B_13 ATOM 2447 NE1 TRP 104 65.876 58.775 0.755 1.00 14.24 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2451 CH2 TRP 104 62.904 60.527 -0.598 1.00 23.31 B_13										
ATOM 2445 CE3 TRP 104 64.741 62.054 -0.079 1.00 11.89 B_13 ATOM 2446 CD1 TRP 104 67.013 59.473 1.108 1.00 17.89 B_13 ATOM 2447 NE1 TRP 104 65.876 58.775 0.755 1.00 14.24 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2451 CH2 TRP 104 62.904 60.527 -0.598 1.00 23.31 B_13										B_13
ATOM 2446 CD1 TRP 104 67.013 59.473 1.108 1.00 17.89 B_13 ATOM 2447 NE1 TRP 104 65.876 58.775 0.755 1.00 14.24 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2451 CH2 TRP 104 62.904 60.527 -0.598 1.00 23.31 B_13										
ATOM 2447 NEI TRP 104 65.876 58.775 0.755 1.00 14.24 B_13 ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2451 CH2 TRP 104 62.904 60.527 -0.598 1.00 23.31 B_13										
ATOM 2449 CZ2 TRP 104 63.632 59.429 -0.186 1.00 10.00 B_13 ATOM 2450 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2451 CH2 TRP 104 62.904 60.527 -0.598 1.00 23.31 B_13										D_13
AFOM 2450 CZ3 TRP 104 63.445 61.832 -0.549 1.00 22.21 B_13 ATOM 2451 CH2 TRP 104 62.904 60.527 -0.598 1.00 23.31 B_13										
ATOM 2451 CH2 TRP 104 62.904 60.527 -0.598 1.00 23.31 B_13										
	MOTA	2452								

	2453	_			20 500	cn non	0 506		
MOTA MOTA	2453	0	TRP	104	70.520	63.380	0.526	1.00 11.13	B_13
	2454 2456	N CA	THR	105 105	68.960 69.716	64.775	-0.322 -0.097	1.00 19.48 1.00 10.40	B_13 B_13
MOTA MOTA	2457	CB	THR	105	70.153	66.015 66.749	-1.398	1.00 10.40	B_13
ATOM	2458		THR	105	69.305	66.401	-2.501	1.00 18.53	B_13
ATOM	2460		THR	105	71.596	66.484	-1.709	1.00 34.62	B 13
ATOM	2461	C	THR	105	68.904	67.062	0.641	1.00 20.82	B_13
ATOM	2462	ō	THR	105	67.686	66.952	0.768	1.00 15.93	B_13
ATOM	2463	N	SER	106	69.621	68.073	1.125	1.00 38.37	B_13
ATOM	2465	CA	SER	106	69.029	69.222	1.791	1.00 20.77	B_13
MOTA	2466	CB	SER	106	69.979	69.778	2.862	1.00 17.95	B_13
ATOM	2467	OG	SER	106	70.281	68.825	3.864	1.00 29.88	B_13
	2469	Ċ		106	68.889	_70.245		1.00 19.23	B_13
ATOM	2470	ō	SER	106	68.202	71.260	0.782	1.00 21.34	B_13
ATOM	2471	N	SER	107	69.577	69.981	-0.450	1.00 18.73	B_13
ATOM	2473	CA	SER	107	69.533	70.884	-1.592	1.00 20.92	B_13
ATOM	2474	CB	SER	107	70.945	71.380	-1.927	1.00 19.84	B_13
MOTA	2475	OG	SER	107	71.556	71.957	-0.788	1.00 27.31	B_13
MOTA	2477	С	SER	107	68.848	70.284	-2.828	1.00 18.68	B_13
MOTA	2478	0	SER	107	67.660	69.953	-2.771	1.00 21.51	B_13
MOTA	2479	N	SER	108	69.623	70.038	-3.888	1.00 18.53	B_13
MOTA	2481	CA	SER	108	69.091	69.544	-5.152	1.00 16.21	B_13
ATOM	2482	СВ	SER	108	69.285	70.632	-6.205	1.00 29.10	B_13
ATOM	2483	OG	SER	108	70.665	70.969	-6.271	1.00 21.47	B_13
ATOM	2485	C	SER	108	69.645	68.260	-5.745	1.00 17.68	B_13
MOTA	2486	0	SER	108	68.964	67.618	-6.541	1.00 19.67	B_13
ATOM	2487	N	LYS	109	70.895	67.919	-5.448	1.00 11.70	B_13
ATOM	2489	CA	LYS	109	71.468	66.721	-6.047	1.00 10.00	B_13
MOTA	2490	СВ	LYS	109	72.994	66.748	-5.989	1.00 18.86	B_13
ATOM	2491	CG	LYS	109	73.657	65.833	-7.013	1.00 16.33	B_13
MOTA	2492	CD	LYS	109	75.143	65.726	-6.740	1.00 11.58	B_13
ATOM	2493	CE	LYS	109	75.787	64.655	-7.606	1.00 27.43	B_13
ATOM	2494	NZ	LYS	109	77.218	64.492	-7.251	1.00 35.03	B_13
ATOM	2498	C	LYS	109	70.916	65.428	-5.444	1.00 29.39	B_13
ATOM	2499	0	LYS	109	71.432	64.905	-4.449	1.00 29.95	B_13
ATOM	2500	N	GLY	110	69.852	64.922	-6.055	1.00 14.77	B_13
ATOM	2502	CA	GLY	110	69.227	63.705	-5.576	1.00 24.08	B_13
MOTA	2503	C	GLY	110	67.793	64.105	-5.342	1.00 20.25	B_13
MOTA	2504	0	GLY	110 111	67.203	64.737	-6.198	1.00 16.21	B_13
MOTA MOTA	2505 2507	N CA	TYR	111	67.248 65.879	63.772 64.130	-4.182 -3.845	1.00 10.00 1.00 24.52	B_13 B_13
MOTA	2508	CB	TYR	111	65.030	62.868	-3.688	1.00 24.52	B_13
MOTA	2509	CG	TYR	111	64.676	62.244	-4.999	1.00 22.40	B_13
MOTA	2510		TYR	111	65,380	61.155	-5.483	1.00 25.38	B_13
ATOM	2511	CE1		111	65.068	60.592	-6.720	1.00 18.68	B_13
ATOM	2512	CD2		111	63.646	62.769	-5.776	1.00 16.02	B_13
ATOM	2513	CE2		111	63.328	62.223	-7.013	1.00 31.72	B_13
MOTA	2514	CZ	TYR	111	64.041	61.131	-7.473	1.00 23.68	B_13
ATOM	2515	OH	TYR	111	63.711	60.550	-8.666	1.00 20.96	B_13
MOTA	2517	С	TYR	111	65.856	64.944	-2.553	1.00 22.83	B_13
MOTA	2518	0	TYR	111	66.410	64.518	-1.538	1.00 11.66	B_13
MOTA	2519	N	ASN	112	65.278	66.140	-2.611	1.00 17.47	B_13
MOTA	2521	CA	ASN	112	65.180	67.006	-1.431	1.00 15.77	B_13
MOTA	2522	CB	ASN	112	64.658	68.401	-1.817	1.00 15.93	B_13
ATOM	2523	CG		112	64.694	69.384	-0.657	1.00 10.00	B_13
MOTA	2524		ASN	112	63.757	69.465	0.132	1.00 15.33	B_13
ATOM	2525		ASN	112	65.754	70.180	-0.586	1.00 13.70	B_13
MOTA	2528	C	ASN	112	64.214	66.329	-0.472	1.00 17.73	B_13
MOTA	2529	0	ASN	112	63.007	66.243	-0.737	1.00 12.61	B_13
MOTA	2530	N	LEU	113	64.755	65.830	0.630	1.00 16.28	B_13
ATOM	2532	CA	LEU	113	63.962	65.121	1.619	1.00 15.93	B_13
ATOM	2533	CB	LEU	113	64.841	64.703	2.804	1.00 11.93	B_13
MOTA	2534	CG	LEU	113	64.719	63.352	3.521	1.00 17.15	B_13
MOTA	2535		LEU	113	65.002	63.640	4.987	1.00 10.00	B_13
ATOM	2536		LEU	113	63.370	62.667	3.362	1.00 16.08	B_13
MOTA MOTA	2537 2538	C	LEU	113 113	62.802 61.673	65.994 65:528	2.085	1.00 14.61	B_13
ATOM	2538	O N	LEU PHE	114	63.073		2.161 2.346	1.00 17.98	B_13
ATOM	2539	CA	PHE	114	62.056	67.267 68.212	2.346	1.00 16.81	B_13 B_13
ATOM	2542	CB	PHE	114	62.638	69.630	2.791	1.00 15.65 1.00 22.16	B_13 B_13
ATOM	2543	CG	PHE	114	61.596	70.714	2.882	1.00 22.16	B_13 B_13
ATOM	2544		PHE	114	60.804	70.714	4.004	1.00 12.27	B_13 B_13
ATOM	2545		PHE		61.378	71.470	1.746	1.00 13.56	B_13
ATOM	2546		PHE	114	59.813	71.932	3.984	1.00 17.08	B_13
ATOM	2547		PHE	114	60.398	72.441	1.726	1.00 13.79	B_13
ATOM	2548	CZ	PHE		59.615	72.666	2.848	1.00 10.70	B_13
ATOM	2549	č	PHE		60.860	68.220	1.842	1.00 19.55	B_13
								,	

MOTA	2550		PHE	114	59.714	68.156	2.285	1.00 15.97	B_13
ATOM ATOM	2551 2553		LEU LEU	115 115	61.135 60.096	68.309 68.323	0.543 -0.485	1.00 13.35 1.00 17.91	B_13 B_13
MOTA	2554	CB	LEU	115	60.741	68.462	-1.868	1.00 24.65	B_13
ATOM ATOM	2555 2556	CG CD1	LEU	115 115	60.501 61.033	69.739 70.939	-2.679 -1.943	1.00 22.70 1.00 17.98	B_13 B_13
ATOM	2557	CD2	LEU	115	61.148	69.624	-4.048	1.00 28.50	B_13
MOTA MOTA	2558 2559		LEU	115 115	59.235 58.002	67.042 67.093	-0.443 -0.344	1.00 21.61 1.00 13.99	B_13 B_13
ATOM	2560	N	VAL	116	59.898	65.895	-0.511	1.00 11.14	B_13
MOTA MOTA	2562 2563		VAL VAL	116 116	59.199 60.163	64.616 63.421	-0.482 -0.772	1.00 22.27 1.00 17.40	B_13 B_13
MOTA -	2564	- CG1-		-116-	 59.437			-1.00 -23.09-	
ATOM	2565	CG2		116	60.741	63.534	-2.169	1.00 12.16	B_13
ATOM ATOM	2566 2567	C O	VAL VAL	116 116	58.502 57.368	64.414 63.950	0.864 0.911	1.00 10.00 1.00 16.18	B_13 B_13
ATOM	2568	N	ALA	117	59.153	64.803	1.954	1.00 10.00	B_13
ATOM ATOM	2570 2571	CA CB	ALA ALA	117 117	58.585 59.608	64.640 64.995	3.297 4.352	1.00 19.50 1.00 11.81	B_13 B_13
MOTA	2572	С	ALA	117	57.309	65.455	3.505	1.00 30.87	B_13
ATOM ATOM	2573 2574	Ņ O	ALA ALA	117 118	56.327 57.322	64.955 66.714	4.053 3.087	1.00 10.00 1.00 24.62	B_13 B_13
ATOM	2576	CA	ALA	118	56.140	67.553	3.222	1.00 20.76	B_13
ATOM ATOM	2577 2578	CB C	ALA	118 118	56.407 54.968	68.917 66.894	2.654 2.485	1.00 16.19 1.00 20.54	B_13 B_13
ATOM	2579	ō	ALA	118	53.843	66.889	2.981	1.00 22.12	B_13
MOTA	2580	N	HIS	119 119	55.255 54.259	66.315	1.321	1.00 10.00	B_13
ATOM ATOM	2582 2583	CA CB	HIS HIS	119	54.259	65.647 65.263	0.489 -0.860	1.00 17.27	B_13 B_13
ATOM	2584	CG	HIS	119	54.006	64.530	-1.813	1.00 26.59	, B_13
MOTA MOTA	2585 2586	CD2 ND1		119 119	53.377 53.723	63.335 64.995	-1.706 -3.085	1.00 16.63 1.00 12.44	B_13 B_13
MOTA	2588	CE1		119	52.961	64.124	~3.715	1.00 14.58	B_13
MOTA MOTA	2589 2590	NE2 C	HIS	119 119	52.734 53.722	63.101 64.419	-2.901 1.227	1.00 26.44 1.00 17.00	B_13 B_13
ATOM	2591	ŏ	HIS	119	52.510	64.218	1.331	1.00 17.01	B_13
MOTA MOTA	2592 2594	N CA	GLU	120 120	54.626 54.231	63.607 62.401	1.751 2.466	1.00 10.31 1.00 12.32	B_13 B_13
MOTA	2595	CB	GLU	120	55.463	61.627	2.961	1.00 12.32	B_13 B_13
MOTA MOTA	2596	CG CD	GLU	120 120	56.354 55.574	61.078	1.848	1.00 10.00	B_13
MOTA	2597 2598		GLU GLU	120	55.598	60.260 60.565	0.867 -0.348	1.00 18.64 1.00 18.08	B_13 B_13
ATOM ATOM	2599		GLU	120	54.920	59.308	1.320	.1.00 14.49	B_13
ATOM	2600 2601	o. C	GLU GLU	120 120	53.347 52.323	62.777 62.130	3.635 3.888	1.00 12.41 1.00 26.62	B_13 B_13
ATOM	2602	N	PHE	121	53.750	63.813	4.359	1.00 10.29	B_13
MOTA MOTA	2604 2605	CA CB	PHE	121 121	52.993 53.780	64.286 65.344	5.506 6.270	1.00 14.37 1.00 20.10	B_13 B_13
ATOM	2606	CG	PHE	121	55.057	64.827	6.852	1.00 24.55	B_13
MOTA MOTA	2607 2608		PHE	121 121	56.037 55.292	65.700 63.454	7.292 6.936	1.00 10.00 1.00 23.62	B_13 B_13
MOTA	2609	CE1	PHE	121	57.247	65.212	7.813	1.00 18.59	B_13
MOTA MOTA	2610 2611	CE2	PHE	121 121	56.488 57.472	62.954 63.834	7.448 7.888	1.00 15.21 1.00 25.40	B_13 B_13
MOTA	2612	С	PHE	121	51.607	64.791	5.110	1.00 16.63	B_13
MOTA MOTA	2613 2614	O N	PHE	121 122	50.676 51.471	64.760 65.238	5.921 3.864	1.00 26.80 1.00 11.98	B_13 B_13
ATOM	2616	CA	GLY	122	50.175	65.664	3.380	1.00 12.95	B_13
MOTA MOTA	2617 2618	C O	GLY GLY	122 122	49.284 48.113	64.427 64.483	3.381 3.753	1.00 13.71 1.00 13.74	B_13 B_13
ATOM	2619	N	HIS	123	49.859	63.284	3.733	1.00 15.74	B_13
MOTA	2621	CA	HIS	123	49.126	62.009	3.008	1.00 24.90	B_13
MOTA MOTA	2622 2623	CB CG	HIS	123 123	49.918 49.945	60.918 61.084	2.279 0.794	1.00 18.28 1.00 21.62	B_13 B_13
MOTA	2624	CD2	HIS	123	50.889	60.764	-0.119	1.00 13.04	B_13
ATOM ATOM	2625 2627		HIS	123 123	48.887 49.176	61.618 61.621	0.093 -1.195	1.00 17.18 1.00 16.02	B_13 B_13
MOTA	2628	NE2	HIS	123	50.386	61.108	-1.353	1.00 15.58	B_13
MOTA MOTA	2629 2630	C O	HIS	123 123	48.864 47.744	61.562 61.179	4.446 4.785	1.00 19.74 1.00 15.41	B_13 B_13
MOTA	2631	N	SER	124	49.904	61.627	5.284	1.00 13.32	B_13 B_13
MOTA MOTA	2633 2634	CA CB	SER		49.813	61.270	6.695	1.00 27.50	B_13
MOTA	2635	OG	SER SER		51.131 52.221	61.582 60.837	7.425 6.925	1.00 18.63 1.00 13.32	B_13 B_13
MOTA MOTA	2637 2638	C	SER	124	48.703	62.102	7.335	1.00 13.76	B_13
MOTA	2639	N N	SER LEU		48.061 48.481	61.677 63.300	8.306 6.814	1.00 20.65 1.00 13.33	B_13 B_13

ATOM	2641	Ch	T 1011	125	47 430	C4 133	2 202	1 00 24 62	
			LEU		47.439	64.133	7.387	1.00 24.62	B_13
ATOM	2642	СВ	LEU	125	47.893	65.592	7.436	1.00 20.76	B_13
ATOM	2643	CG	LEU	125	49.076	65.849	8.383	1.00 14.66	B_13
ATOM	2644	CD1		125	49.739	67.159	8.064	1.00 16.16	B_13
MOTA	2645	CD2	LEU	125	48.610	65.811	9.822	1.00 16.44	B_13
ATOM	2646	С	LEU	125	46.058	63.966	6.724	1.00 24.77	B_13
ATOM	2647	0	LEU	125	45.066	64.528	7.195	1.00 15.63	B_13
ATOM	2648	N	GLY	126	45.988	63.192	5.644	1.00 17.38	B_13
								1.00 17.30	_
ATOM	2650		GLY	126	44.700	62.968	5.001	1.00 22.41	B_13
MOTA	2651	С	GLY	126	44.453	63.487	3.603	1.00 13.20	B. 13
ATOM	2652		GLY	126	43.349			1.00 20.86	
						63.366	3.096		B_13
MOTA	2653	N	LEU	127	45.452	64.079	2.972	1.00 12.39	B_13
MOTA	2655	CA	LEU	127	45.267	64.592	1.617	1.00 11.56	B_13
MOTA	2656	CB	LEU	127	45.965	65.947	1.467	1.00 19.19	B_13
ATOM	2657	CG	LEU	127	45.300	67.206	2.039	1.00 14.42	B 13
ATOM	2658	CD1		127	44.875				
						67.030	3.496	1.00 32.31	B_13
ATOM	2659	CD2	LEU	127	46.288	68.374	1.912	1.00 25.45	B_13
ATOM	2660	С	LEU	127	45.770	63.619	0.550	1.00 26.54	B_13
MOTA	2661	0	LEU	127	46.920	63.156	0.601	1.00 18.76	B_13
ATOM	2662	N	ASP	128	44.908	63.285	-0.407	1.00 28.54	B_13
ATOM	2664	CA	ASP	128	45.292	62.376	-1.480		
								1.00 10.89	B_13
ATOM	2665	СВ	ASP	128	44.059	61.762	-2.136	1.00 15.95	B_13
ATOM	2666	CG	ASP	128	44.351	60.430	-2.794	1.00 23.44	B_13
ATOM	2667	OD1		128	43.377				
						59.735	-3.164	1.00 41.43	B_13
MOTA	2668	OD2	ASP	128	45.541	60.059	-2.918	1.00 18.12	B_13
MOTA	2669	С	ASP	128	46.060	63.203	-2.502	1.00 25.34	B_13
ATOM	2670	0	ASP	128	46.489	64.308	-2.213	1.00 16.36	B_13
ATOM	2671	N	HIS	129	46.283	62.645	-3.682	1.00 17.53	B_13
MOTA	2673	CA	HIS	129	47.001	63.366	-4.718		
								1.00 26.87	B_13
ATOM	2674	CB	HIS	129	47.495	62.398	-5.794	1.00 10.00	B_13
MOTA	2675	CG	HIS	129	48.729	61.645	-5.400	1.00 19.64	B_13
	2676								
MOTA		CD2		129	49.769	61.996	-4.609	1.00 19.96	B_13
ATOM	2677	ND1	HIS	129	49.012	60.373	-5.859	1.00 23.97	B_13
MOTA	2679	CE1	HTS	129	50.170	59.977	-5.372	1.00 17.95	B_13
ATOM	2680	NE2	HTS	129	50.658	60.944	-4.605	1.00 13.79	B_13
ATOM	2681	С	HIS	129	46.153	64.457	-5.360	1.00 39.97	B_13
ATOM	2682	ō	HIS	129	45.011				
						64.220	-5.757	1.00 25.97	B_13
ATOM	2683	N	SER	130	46.743	65.640	-5.481	1.00 21.04	B_13
ATOM	2685	CA	SER	130	46.090	66.776	-6.109	1.00 16.72	B_13
MOTA	2686	CB	SER	130	46.847	68.058	-5.757	1.00 20.97	B_13
ATOM	2687	OG	SER	130	46.358	69.154	-6.502	1.00 25.52	B_13
ATOM	2689	Ċ	SER	130	46.098				
						66.582	-7.622	1.00 24.66	B_13
MOTA	2690	0	SER	130	46.779	65.694	-8.145	1.00 29.24	B_13
MOTA	2691	N	LYS	131	45.315	67.403	-8.315	1.00 25.96	B_13
ATOM	2693	CA	LYS	131	45.253	67.358	-9.769	1.00 20.25	B_13
ATOM	2694	CB	LYS	131	43.796	67.379	-10.247	1.00 33.22	B_13
MOTA	2695	CG	LYS	131	43.159		-10.302	1.00 32.85	
									B_13
MOTA	2696	CD	LYS	131	43.335	69.436	-11.675	1.00 15.99	B_13
MOTA	2697	CE	LYS	131	43.023	70.919	-11.601	1.00 30.34	B_13
MOTA	2698	NZ	LYS	131	43.879			1.00 30.44	
							-10.600		B_13
MOTA	2702	С	LYS	131	45.998	68.602	-10.249	1.00 15.31	B_13
ATOM	2703	0	LYS	131	46.414	68.698	-11.402	1.00 30.72	B_13
MOTA	2704	N	ASP	132		69.536			
					46.191		-9.323	1.00 23.41	B_13
MOTA	2706	CA	ASP	132	46.869	70.798	-9.581	1.00 22.69	B_13
MOTA	2707	CB	ASP	132	46.641	71.726	-8.379	1.00 24.86	B_13
ATOM	2708	CG	ASP	132	46.819	73.200	-8.712		
								1.00 24.93	B_13
MOTA	2709		ASP	132	46.007	74.009	-8.208	1.00 29.71	B_13
MOTA	2710	OD2	ASP	132	47.766	73.555	-9.448	1.00 28.82	B_13
MOTA	2711	С	ASP	132					
					48.358	70.497	-9.728	1.00 14.97	B_13
ATOM	2712	0	ASP	132	49.047	70.235	-8.742	1.00 19.64	B_13
ATOM	2713	N	PRO	133	48.874		-10.964	1.00 16.94	B_13
MOTA	2714	CD	PRO	133	48.209				
							-12.199	1.00 21.42	B_13
MOTA	2715	CA	PRO	133	50.293	70.264	-11.215	1.00 19.34	B_13
MOTA	2716	CB	PRO	133	50.457		-12.690	1.00 20.48	B_13
MOTA	2717	CG	PRO	133	49.347		-12.929	1.00 21.80	B_13
ATOM	2718	С	PRO	133	51.237	71.059	-10.322	1.00 17.45	B_13
ATOM	2719	Ö	PRO	133	52.319		-10.006		5 12
								1.00 23.30	B_13
MOTA	2720	N	GLY	134	50.799	72.246	-9.904	1.00 32.46	B_13
MOTA	2722	CA	GLY	134	51.610	73.104	-9.051	1.00 19.44	B_13
MOTA	2723								
		Ċ	GLY	134	51.306	72.958	-7.569	1.00 22.33	B_13
ATOM	2724	0	GLY	134	51.556	73.877	-6.795	1.00 21.92	B_13
ATOM	2725	N	ALA	135	50.698	71.836	-7.190	1.00 34.71	B_13
ATOM									
	2727	CA	ALA	135	50.355	71.580	-5.794	1.00 18.35	B_13
ATOM	2728	CB	ALA	135	48.948	70.987	-5.690	1.00 14.30	B_13
MOTA	2729	C	ALA		51.370	70.616	-5.210		
								1.00 10.00	B_13
ATOM	2730	0	ALA		51.739	69.647	-5.858	1.00 17.52	B_13
ATOM	2731	N	LEU	136	51.727	70.842	-3.952	1.00 21.29	B_13

MOTA	2733	CA	LEU	136	52.692	70.015 -3.230	1.00 14.62	B_13
ATOM	2734		LEU	136	52.738	70.458 -1.763	1.00 18.54	
ATOM	2735							B_13
		CG	LEU	136	54.007	70.308 -0.921	1.00 34.11	B_13
MOTA	2736	CD1		136	53.587	69.907 0.485	1.00 14.76	B_13
MOTA	2737	CD2	LEU	136	54.969	69.296 -1.508	1.00 11.64	B_13
ATOM	2738	С	LEU	136	52.232	68.564 -3.287	1.00 13.50	B_13
ATOM	2739	ŏ	LEU	136	53.033	67.640 -3.238	1.00 19.04	
								B_13
MOTA	2740	N	MET	137	50.921	68.364 -3.281	1.00 17.54	B_13
ATOM	2742	CA	MET	137	50.360	67.019 -3.324	1.00 25.11	B_13
ATOM	2743	CB	MET	137	49.010	66.981 -2.599	1.00 19.80	B_13
ATOM	2744	CG	MET	137		- · ·		
					49.083		1.00 15.35	B_13
MOTA	2745	SD	MET	137	50.354	66.361 -0.262	1.00 11.22	B_13
ATOM_	_2746_	_CE _	MET_	_ 137 _	49.882 _	64.6800.764	1.00_ 13.90_	B_13 -
MOTA	2747	С	MET	137	50.254	66.387 -4.721	1.00 28.08	B_13
ATOM	2748	ō	MET	137	49.730	65.268 -4.863	1.00 12.18	
								B_13
MOTA	2749	N	PHE	138	50.771	67.070 -5.743	1.00 10.00	B_13
ATOM	2751	CA	PHE	138	50.751	66.528 -7.097	1.00 12.27	B_13
ATOM	2752	CB	PHE	138	51.327	67.523 -8.094	1.00 19.38	B_13
ATOM	2753	CG	PHE	138	51.051	67.175 -9.534	1.00 25.74	B_13
ATOM	2754	CD1						
				138	52.090	67.077 -10.448	1.00 19.74	B_13
MOTA	2755	CD2		138	49.747	67.007 -9.990	1.00 24.46	B_13
ATOM	2756	CE1	PHE	138	51.843	66.824 -11.786	1.00 19.54	B_13
ATOM	2757	CE2	PHE	138	49.495	66.750 -11.335	1.00 24.12	B_13
ATOM	2758	CZ	PHE	138	50.544	66.664 -12.230	1.00 18.15	B_13
ATOM	2759	Ç	PHE	138	51.619	65.269 -7.068	1.00 25.93	B_13
MOTA	2760	0	PHE	138	52.658	65.226 -6.414	1.00 12.50	B_13
ATOM	2761	N	PRO	139	51.166	64.194 -7.714	1.00 25.17	B_13
MOTA	2762	CD	PRO	139	49.870	64.004 -8.392	1.00 10.00	B_13
ATOM	2763	CA	PRO	139				
					51.950	62.956 -7.713	1.00 18.48	B_13
MOTA	2764	CB	PRO	139	50.981	61.946 -8.339		B_13
MOTA	2765	CG	PRO	139	50.140	62.798 -9.250	1.00 18.82	B_13
ATOM	2766	С	PRO	139	53.299	62.950 -8.430	1.00 17.22	B_13
ATOM	2767	O	PRO	139	53.849	61.876 -8.661	1.00 36.93	B_13
MOTA	2768	N	ILE	140	53.844	64.114 -8.767		B_13
MOTA	2770	CA	ILE	140	55.118	64.155 -9.477	1.00 20.03	B_13
MOTA	2771	CB	ILE	140	54.996	64.807 -10.892	1.00 18.71	B_13
MOTA	2772		ILE	140	56.334	64.709 -11.639		B_13
ATOM	2773		ILE					
				140	53.932	64.113 -11.724		B_13
ATOM	2774	CDI	ILE	140	53.861	64.669 -13.125	1.00 25.83	B_13
ATOM	2775	С	ILE	140	56.109	64.992 -8.700	1.00 27.87	B_13
MOTA	2776	0	ILE	140	55.758	66.043 -8.248		B_13
MOTA	2777	N	TYR	141	57.332	64.512 -8.535		B_13
ATOM	2779	CA	TYR	141	58.350	65.281 -7.834		B_13
MOTA	2780	CB	TYR	141	59.418	64.353 -7.266	1.00 15.16	B_13
MOTA	2781	CG	TYR	141	60.592	65.096 -6.672	1.00 15.65	B_13
ATOM	2782	CD1	TYR	141	61.755	65.306 -7.407		B_13
ATOM	2783		TYR	141	62.836	65.967 -6.859		
								B_13
ATOM	2784	CD2	TYR	141	60.546	65.576 -5.366		B_13
MOTA	2785	CE2	TYR	141	61.626	66.236 -4.814	1.00 13.45	B_13
ATOM	2786	CZ	TYR	141	62.770	66.429 -5.567	1.00 10.00	B_13
ATOM	2787	OH	TYR	141	63.841	67.109 -5.016	1.00 18.97	B_13
ATOM	2789	C	TYR	141	59.042	66.270 -8.776		B_13
ATOM	2790	ŏ	TYR	141				
			•		59.709	65.859 -9.727		B_13
ATOM	2791	N	THR	142	58.932	67.556 -8.465	1.00 23.99	B_13
MOTA	2793	CA	THR	142	59.573	68.616 -9.238	1.00 19.53	B_13
MOTA	2794	CB	THR	142	58.515	69.578 -9.807	1.00 10.00	B_13
MOTA	2795	OG1	THR	142	57.704	68.880 -10.756		B_13
ATOM	2797		THR	142	59.151	70.757 -10.457		
								B_13
ATOM	2798	C	THR		60.483	69.332 -8.235		B_13
MOTA	2799	0	THR		60.120	69.513 -7.076	1.00 25.67	B_13
MOTA	2800	N	TYR	143	61.699	69.677 -8.643	1.00 30.64	B_13
MOTA	2802	CA	TYR	143	62.609	70.344 -7.707		B_13
ATOM	2803	СВ	TYR					
					64.091	70.190 -8.108		B_13
MOTA	2804	CG	TYR		65.008	71.048 -7.244		B_13
MOTA	2805	CD1	TYR	143	65.066	70.866 -5.852	1.00 16.37	B_13
MOTA	2806	CE1	TYR	143	65.801	71.738 -5.035		B_13
ATOM	2807		TYR		65.714	72.114 -7.795		B_13
ATOM	2808	CE2						
					66.451	73.006 -6.981		B_13
ATOM	2809	CZ	TYR		66.489	72.810 -5.610		B_13
MOTA	2810	OH	TYR	143	67.184	73.665 -4.790	1.00 27.84	B_13
ATOM	2812	С	TYR		62.330	71.815 -7.456		B_13
ATOM	2813	ŏ	TYR		62.201	72.611 -8.399		B_13
ATOM								P-13
	2814	N	THR		62.292	72.160 -6.170		B_13
MOTA	2816	CA	THR		62.103	73.533 -5.727	1.00 33.68	B_13
MOTA	2817	CB	THR		60.668	73.814 -5.189	1.00 28.06	B_13
MOTA	2818	OG1	THR	144	60.277	72.812 -4.241		B_13
MOTA	2820		THR		59.681	73.857 -6.346		B_13
						0.540		

ATOM	2821	С	THR	144	63.178	73.893	-4.695	1.00 35.52	B_13
ATOM	2822	0	THR	144	64.207	74.465	-5.064	1.00 39.57	B_13
ATOM	2823	N	GLY	145	62.967		-3.422	1.00 35.95	
						73.552			B_13
ATOM	2825	CA	GLY	145	63.967	73.872	-2.407	1.00 35.01	B_13
ATOM	2826	_	GLY	145	63.509				
		С				74.025	-0.965	1.00 26.81	B_13
ATOM	2827	0	GLY	145	62.566	74.773	-0.670	1.00 40.81	B_13
ATOM	2828	N	LYS	146	64.302	73.439	-0.066	1.00 27.13	B_13
ATOM	2830	CA	LYS	146	64.071	73.423	1.389	1.00 23.89	B_13
						73.423			
ATOM	2831	CB	LYS	146	65.163	72.548	2.049	1.00 29.08	B_13
ATOM	2832	CG	LYS	146	64.992	72.209	3.524	1.00 19.99	
									B_13
ATOM	2833	CD	LYS	146	66.079	71.224	3.913	1.00 20.44	B. 13
									_
MOTA	2834	CE	LYS	146	66.181	71.010	5.402	1.00 24.16	B_13
MOTA	2835	NZ_	LYS _	146	67.250	69.987_	_ 5.727	1.00 23.37	B-13 -
MOTA	2839	С	LYS	146	63.926	74.778	2.124	1.00 18.98	B_13
ATOM	2840	0	LYS	146	63.900	74.831	3.353	1.00 28.15	B_13
ATOM	2841	N	SER	147	63.826	75.871	1.382	1.00 35.50	B_13
MOTA	2843	CA	SER	147	63.661	77.185	1.992	1.00 31.59	B_13
ATOM	2844	CB	SER	147	64.988	77.673	2.594	1.00 27.05	B_13
MOTA	2845	OG	SER	147	65.996	77.756			
							1.586	1.00 48.28	B_13
ATOM	2847	С	SER	147	63.203	78.131	0.902	1.00 27.12	B_13
	2848	0							
MOTA		U	SER	147	62.743	79.251	1.168	1.00 33.75	B_13
ATOM	2849	N	HIS	148	63.248	77.644	-0.332	1.00 25.13	B_13
MOTA	2851	ĈÃ	HTS	148	62.872	78.465	-1.463	1.00 23.42	B_13
MOTA	2852	CB	HIS	148	63.704	78.076	-2.678	1.00 17.40	B_13
ATOM	2853	CG	HIS	148	65.174	78.020	-2.398	1.00 45.97	B_13
ATOM	2854	CD3	HIS	148	66.204	77.524	-3.121	1.00 27.24	B_13
MOTA	2855	ND1	HIS	148	65.724	78.476	-1.213	1.00 43.49	B_13
ATOM	2857		HIS	148	67.024	78.253	-1.218	1.00 30.28	
								1.00 30.28	B_13
MOTA	2858	NE2	HIS	148	67.342	77.676	-2.366	1.00 45.28	B_13
MOTA	2860	С	HIS	148	61.381	78.433	-1.796	1.00 47.15	B_13
MOTA	2861	0	HIS	148	60.936	79.166	-2.704	1.00 40.97	B_13
MOTA	2862	N	PHE	149	60.601	77.636	-1.053	1.00 48.76	B_13
MOTA	2864	CA	PHE	149	59.170	77.557	-1.347	1.00 32.44	B_13
ATOM	2865	CB	PHE.	149	58.856	76.364	-2.269	1.00 27.77	B_13
	2866		PHE						
ATOM	2000	CG		149	58.415	76.781	-3.657	1.00 24.63	B_13
MOTA	2867	CD1	PHE	149	57.826	75.874	-4.520	1.00 25.66	B_13
ATOM	2868	CD2	PHE	149	58.550	78.106	-4.072	1.00 30.89	B_13
ATOM	2869	CEL	PHE	149	57.376	76.277	-5.767	1.00 17.10	B_13
MOTA	2870	CEZ	PHE	149	58.104	78.520	-5.311	1.00 18.57	B_13
ATOM	2871	CZ	PHE	149	57.513	77.608	-6.166	1.00 30.20	в_13
ATOM	2872	С	PHE	149	58.061	77.791	-0.308	1.00 27.40	B 13
ATOM	2873	0	PHE	149	58.299				
						77.971	0.892	1.00 29.69	B_13
ATOM	2874	N	MET	150	56.836	77.729	-0.822	1.00 28.66	B_13
ATOM	2876	CA	MET	150	55.621	78.027	-0.094	1.00 20.63	B_13
ATOM	287 7	CB	MET	150	55.251	79.431	-0.503	1.00 25.60	B_13
ATOM	2878	CG	MET	150	55.599	79.691	-1.989	1.00 23.95	B_13
ATOM	2879	SD	MET	150	57.336	80.086	-2.296	1.00 76.68	B_13
MOTA	2880	CE	MET	150	57.209	81.473	-3.385	1.00 21.07	B_13
ATOM	2881	С	MET	150	54.436	77.118	-0.450	1.00 30.58	B_13
ATOM	2882	0	MET	150	54.104	76.948	-1.628	1.00 16.91	B_13
ATOM	2883	N	LEU	151	53.727	76.664	0.581	1.00 36.94	B_13
		_							
MOTA	2885	CA	LEU	151	52.576	75.772	0.431	1.00 25.68	B_13
ATOM	2886	CB	LEU	151		75.474			
				151	51.968		1.807	1.00 23.46	B_13
ATOM	2887	CG	LEU	151	51.087	74.232	1.927	1.00 24.21	B_13
MOTA	2888	CD1	LEU	151					
ATOM	2888			151	51.936	72.998	1.657	1.00 21.54	B_13
ATOM	2889	CD2	LEU	151	50.487	74.150	3.314	1.00 19.89	B_13
ATOM	2890	С	LEU	151	51.498	76.322	-0.491	1.00 17.09	B_13
ATOM	2891	0	LEU	151	50.795	77.267	-0.136	1.00 35.38	B_13
MOTA	2892	N	PRO	152	51.338			1 00 16 00	P 13
						75.727	-1.686	1.00 16.90	B_13
ATOM	2893	CD	PRO	152	52.154	74.643	-2.255	1.00 25.80	B_13
ATOM	2894								Z-13
		CA	PRO	152	50.334	76.170	-2.653	1.00 29.65	B_13
ATOM	2895	CB	PRÒ	152	50.447	75.110	-3.749	1.00 24.68	B_13
						_			
ATOM	2896	CG	PRO	152	51.892	74.791	-3.722	1.00 14.34	B_13
MOTA	2897	С	PRO	152	48.910	76.261	-2.087		
								1.00 10.00	B_13
ATOM	2898	0	PRO	152	48.543	75.505	-1.184	1.00 20.25	B_13
MOTA	2899	N	ASP	153					5-13
					48.117	77.180	-2.639	1.00 19.53	B_13
ATOM	2901	CA	ASP	153	46.723	77.387	-2.226	1.00 15.90	B_13
ATOM	2902	CB	ASP	153	45.986	78.304	-3.213	1.00 22.34	B_13
MOTA	2903	CG	ASP	153	46.418	79.741	-3.115	1.00 28.86	B_13
MOTA	2904		ASP	153	47.016	80.115	-2.074	1.00 35.34	B_13
ATOM	2905	002	ASP	153	46.142	80.494	-4.084	1.00 30.09	B_13
MOTA	2906	С	ASP	153	45.953	76.084	-2.169	1.00 27.31	B_13
MOTA	2907	0	ASP	153	45.309	75.783	-1.167	1.00 23.50	B_13
ATOM	2908	N	ASP	154	46.000	75.339	-3.276	1.00 25.51	B_13
MOTA	2910	CA	ASP	154	45.316	74.063			B_13
							-3.392	1.00 20.91	P_12
MOTA	2911	CB	ASP	154	45.745	73.364	-4.682	1.00 14.23	B_13
MOTA	2912	CG	ASP	154	45.033				D 12
		-0	no.	TOA	45.033	72.062	-4.885	1.00 22.95	B_13

				45 500	71 026	4 516	1 00 17 00	D 12
ATOM	2913	OD1 ASP	154	45.590	71.026 72.076	-4.516 -5.388	1.00 17.80	B_13
MOTA	2914	OD2 ASP	154	43.904			1.00 19.14	B_13
MOTA	2915	C ASP	154	45.551	73.155	-2.173	1.00 26.95	B_13
ATOM	2916	O ASP	154	44.629	72.491	-1.696	1.00 22.92	B_13
ATOM	2917	N ASP	155	46.776	73.155	-1.654	1.00 23.56	B_13
MOTA	2919	CA ASP	155	47.110	72.338	-0.490	1.00 28.69	B_13
MOTA	2920	CB ASP	155	48.618	72.118	-0.388	1.00 12.87	B_13
MOTA	2921	CG ASP	155	49.208	71.566	-1.676	1.00 24.35	B_13
ATOM	2922	OD1 ASP	155	49.705	72.369	-2.500	1.00 27.89	B_13
ATOM	2923	OD2 ASP	155	49.152	70.335	-1.875	1.00 16.96	B_13
ATOM	2924	C ASP	155	46.582	72.976	0.781	1.00 25.41	B 13
	2925	O ASP	155	46.055	72.275	1.656	1.00 13.36	B_13
ATOM			156 – –				_1.00 16.99	B <u>-</u> 13 -
				46.222	75.021	2.053	1.00 22.26	B_13
MOTA	2928	CA VAL	156				1.00 25.69	
MOTA	2929	CB VAL	156	46.340	76.571	1.901		B_13 B 13
MOTA	2930	CG1 VAL	156	45.811	77.249	3.158	1.00 14.95	P-13
MOTA	2931	CG2 VAL	156	47.768	77.007	1.641	1.00 17.52	B_13
ATOM	2932	C VAL	156	44.727	74.705	2.129	1.00 10.00	B_13
MOTA	2933	O VAL	156	44.224	74.234	3.145	1.00 22.47	B_13
ATOM	2934	n GLN	157	44.033	74.980	1.029	1.00 16.19	B_13
ATOM	2936	CA GLN	157	42.604	74.758	0.930	1.00 17.97	B_13
ATOM	2937	CB GLN	157	42.108	75.039	-0.497	1.00 17.10	B_13
ATOM	2938	CG GLN	157	40.804	75.852	-0.547	1.00 26.00	B_13
ATOM	2939	CD GLN	157	40.949	77.284	-0.005	1.00 25.84	B_13
ATOM	2940	OE1 GLN	157	41.218	77.505	1.177	1.00 39.61	B_13
ATOM	2941	NE2 GLN	157	40.744	78.255	-0.875	1.00 32.22	B_13
ATOM	2944		157	42.347	73.324	1.309	1.00 18.69	B_13
			157	41.368	73.015	1.982	1.00 10.00	B_13
MOTA	2945					0.903	1.00 31.05	B_13
MOTA	2946	N GLY	158	43.272	72.460			
MOTA	2948	CA GLY	158	43.156	71.053	1.205	1.00 21.69	B_13
MOTA	2949	C GLY	158	43.129	70.738	2.684	1.00 13.51	B_13
MOTA	2950	O GLY	158	42.108	70.263	3.182	1.00 14.91	B_13
MOTA	2951	N ILE	159	44.224	71.006	3.398	1.00 19.34	B_13
MOTA	2953	CA ILE	159	44.268	70.686	4.827	1.00 19.14	B_13
MOTA	2954	CB ILE	159	45.669	70.880	5.503	1.00 12.57	B_13
ATOM	2955	CG2 ILE	159	46.268	69.542	5.960	1.00 19.22	B_13
ATOM	2956	CG1 ILE	159	46.603	71.702	4.633	1.00 31.62	B_13
ATOM	2957	CD1 ILE	159	46.426	73.177	4.824	1.00 25.87	B_13
ATOM	2958	C ILE	159	43.235	71.461	5.610	1.00 21.87	B_13
	2959		159	42.691	70.952	6.592	1.00 21.02	B_13
MOTA						5.186	1.00 12.08	B_13
MOTA	2960	N GLN	160	42.959	72.689		1.00 12.00	B_13
ATOM	2962	CA GLN	160	41.967	73.483	5.874		
MOTA	2963	CB GLN	160	41.949	74.916	5.346	1.00 29.25	B_13
MOTA	2964	CG GLN	160	43.158	75.737	5.827	1.00 22.01	B_13
MOTA	2965	CD GLN	160	43.098	77.199	5.416	1.00 18.77	B_13
ATOM	2966	OE1 GLN	160	42.260	77.593	4.607	1.00 36.02	B_13
MOTA	2967	NE2 GLN	160	43.997	78.004	5.965	1.00 28.49	B_13
MOTA	2970	C GLN	160	40.596	72.820	5.772	1.00 22.28	B_13
MOTA	2971	O GLN	160	39.855	72.786	6.754	1.00 14.16	B_13
ATOM	2972	N SER	161	40.304	72.183	4.634	1.00 32.89	B_13
ATOM	2974	CA SER	161	39.005	71.537	4.474	1.00 29.25	B_13
MOTA	2975	CB SER	161	38.847	70.901	3.085	1.00 19.70	B_13
MOTA	2976	OG SER	161	39.594	69.706	2.946	1.00 24.88	B_13
MOTA	2978	C SER	161	38.831	70.503	5.566	1.00 22.08	B_13
MOTA	2979	O SER	161	37.745	70.340	6.118	1.00 26.26	B_13
			162	39.931	69.852	5.919	1.00 19.14	B_13
MOTA	2980	N LEU	162	39.913	68.829	6.953	1.00 29.17	B_13
MOTA	2982	CA LEU			67.852	6.767	1.00 12.08	B_13
MOTA	2983	CB LEU	162	41.081				
ATOM	2984	CG LEU	162	40.982	66.666	5.812	1.00 20.09	B_13
MOTA	2985	CD1 LEU	162	40.661	67.184	4.478	1.00 24.51	B_13
MOTA	2986	CD2 LEU	162	42.299	65.884	5.794	1.00 27.00	B_13
ATOM	2987	C LEU	162	39.965	69.392	8.364	1.00 24.75	B_13
ATOM	2988	O LEU	162	39.047	69.191	9.162	1.00 22.04	B_13
MOTA	2989	n tyr	163	41.015	70.151	8.652	1.00 20.72	B_13
ATOM	2991	CA TYR	163	41.211	70.689	9.980	1.00 10.00	B_13
MOTA	2992	CB TYR	163	42.695	70.595			B_13
ATOM	2993	CG TYR	163	43.221	69.167			B 13
ATOM	2994	CD1 TYR	163	43.114	68.261			B_13
MOTA	2995	CE1 TYR	163	43.452	66.913			B_13
	2995	CD2 TYR	163	43.703	68.689			B_13
MOTA								B_13
MOTA	2997	CE2 TYR	163	44.048	67.342			
MOTA	2998		163	43.914	66.461			B_13
MOTA	2999		163	44.210	65.121			B_13
MOTA	3001	C TYR	163	40.634	72.085			B_13
MOTA	3002		163	39.975	72.327			B_13
MOTA	3003		164	40.819	72.975			B_13
MOTA	3005	CA GLY	164	40.291	74.324	9.340	1.00 30.64	B_13

MOTA	3006	C GLY	164	41.402	75.344	9.424	1.00 30.89	B_13
ATCM	3007	O GLY	164	41.101	76.564	9.368	1.00 26.89	B_13
MOTA	3008	OT GLY	164	42.570	74.911	9.560	1.00 27.71	B_13
MOTA	3013	ZN ZN	166	51.961	60.891	-2.865	1.00 28.31	BION
ATOM	3014	ZN ZN	167	56.468	50.981	3.458	1.00 26.20	BION
MOTA	3015	CA CA	168	63.096	53.752	-5.445	1.00 14.89	BION
MOTA		CA CA	165	50.705	55.618	13.085	1.00 15.79	BION
ATOM	3047	C5 WAY	169	54.585	56.119	-6.288	1.00 40.09	B693
ATOM	3048	CF1 WAY	169	54.019	54.934	-5.802	1.00 21.52	B693
ATOM	3049	CH WAY	169	53.271	54.923	-4.624	1.00 32.32	B693
MOTA	3050	C2 WAY	169	53.100	56.104	-3.898	1.00 21.39	B693
MOTA	3051	C3 WAY	169	53.667	57.286	-4.369	1.00 18.26	B693
MOTA	3052	C4 WAY	169	54.402	57.308	5.540	_ 100 _2063 _	B693
MOTA	3053	N20 WAY	169	54.933	58.531	-5.964	1.00 22.15	B693
ATOM	3054	CD WAY	169	54.297	59.340	-7.031	1.00 30.92	B693
MOTA	3055	C23 WAY	169	53.576	58.491	-8.087	1.00 20.75	B693
ATOM								
	3056	C28 WAY	169	54.224	58.114	-9.279	1.00 34.14	В693
MOTA	3057	C27 WAY	169	53.539		-10.228	1.00 33.99	B693
MOTA	3058	CM WAY	169	52.209	56.944	-9.968	1.00 23.49	в693
MOTA	3059	N25 WAY	169	51.602	57.318	-8.814	1.00 23.61	B693
ATOM	3060	C24 WAY	169	52.246	58.071	-7.880	1.00 20.52	B693
ATOM	3061	S21 WAY	169	56.531	58.783	-5.660	1.00 20.46	в693
MOTA	3062	C16 WAY	169	56.457	60.446	-5.010	1.00 39.00	B693
ATOM	3063	C21 WAY	169	56.700	60.669	-3.634	1.00 28.79	B693
ATOM	3064	C20 WAY	169	56.656	61.967	-3.109	1.00 12.65	B693
MOTA	3065	C19 WAY	169	56.373	63.058	-3.946	1.00 15.68	B693
MOTA	3066	C18 WAY	169	56.126	62.828	-5.319	1.00 12.08	B693
ATOM	3067	C17 WAY	169	56.169	61.538	-5.852	1.00 15.19	B693
ATOM	3068	O33 WAY	169	56.337	64.360	-3.424	1.00 16.79	B693
MOTA	3069	C36 WAY	169	56.982	65.456	-4.084	1.00 20.80	B693
ATOM	3070	O15 WAY	169	56.973	57.923	-4.580	1.00 21.90	B693
MOTA	3071	O14 WAY	169	57.259	58.799	-6.913	1.00 10.86	B693
ATOM	3072	C7 WAY	169	53.486	58.556	-3.613	1.00 10.00	B693
ATOM	3073	N9 WAY	169	53.741			1.00 10.00	
					58.606	-2.303		B693
MOTA	3074	O10 WAY	169	53.539	59.846	-1.659	1.00 23.73	B693
MOTA	3075	O8 WAY	169	53.107	59.569	-4.154	1.00 15.89	B693
MOTA	3076	C29 WAY	169	55.383	55.968	-7.606	1.00 28.30	B693
ATOM	1	OH2 WAT	301	67.399	53.332	19.612	1.00 10.00	SOLV
ATOM	2	OH2 WAT	302	61.288	46.506	17.898	1.00 10.00	SOLV
ATOM	3	OH2 WAT	303	79.538	50.433	20.115	1.00 10.00	SOLV
ATOM	4	OH2 WAT	304	80.982	25.236	19.076	1.00 26.37	SOLV
ATOM	5	OH2 WAT	305	82.461	30.767	19.346	1.00 23.37	
	6	OH2 WAT						SOLV
MOTA			306	67.759	41.912	4.887	1.00 17.30	SOLV
ATOM	7	OH2 WAT	307	60.785	41.727	10.585	1.00 20.42	SOLV
MOTA	8	OH2 WAT	308	89.638	33.523	25.640	1.00 33.45	SOLV
MOTA	9	OH2 WAT	309	77.721	51.975	4.391	1.00 13.91	SOLV
MOTA	10	OH2 WAT	310	96.022	34.702	6.692	1.00 25.50	SOLV
ATOM	11	OH2 WAT	311	71.292	38.746	26.741	1.00 13.06	SOLV
ATOM	12	OH2 WAT	312	85.939	49.781	3.498	1.00 12.04	SOLV
MOTA	13	OH2 WAT	313	58.101	41.127	10.261	1.00 40.97	SOLV
ATOM	14	OH2 WAT	314	86.373	42.692	0.747	1.00 17.24	SOLV
MOTA	15	OH2 WAT	315	78.257	39.885	24.626	1.00 18.57	SOLV
ATOM	16	OH2 WAT	316	68.341	48.572	25.558	1.00 18.33	SOLV
ATOM	17	OH2 WAT	317	79.806	29.147	18.371	1.00 10.00	
	18					00 400		SOLV
ATOM		OH2 WAT	318	87.119	44.480	23.137	1.00 46.31	SOLV
MOTA	19	OH2 WAT	319	55.885	39.688	11.459	1.00 21.26	SOLV
ATOM	20	OH2 WAT	320	73.250	41.084	0.386	1.00 18.49	SOLV
ATOM	21	OH2 WAT	321	72.079	46.488	-6.835	1.00 27.48	SOLV
MOTA	22	OH2 WAT	322	71.923	37.638	-3.750	1.00 29.19	SOLV
MOTA	23	OH2 WAT	323	74.998	28.451	2.684	1.00 34.60	SOLV
MOTA	24	OH2 WAT	324	87.769	44.123	9.214	1.00 15.60	SOLV
ATOM	25	OH2 WAT	325	86.113	24.382	16.709	1.00 25.17	SOLV
MOTA	26	OH2 WAT	326	81.205	57.603		1.00 34.27	SOLV
ATOM	27	OH2 WAT	327	75.163	62.739	12.391	1.00 16.47	
ATOM	28	OH2 WAT	328			2.830		SOLV
				65.604	44.690		1.00 26.64	SOLV
ATOM	29	OH2 WAT	329	61.899	45.512	29.269	1.00 15.82	SOLV
ATOM	30	OH2 WAT	330	58.763	41.730	8.338	1.00 27.95	SOLV
MOTA	31	OH2 WAT	331	69.823	44.729	6.258	1.00 13.37	SOLV
MOTA	32	OH2 WAT	332	79.220	61.263	12.781	1.00 28.84	SOLV
MOTA	33	OH2 WAT	333	78.105	37.095	27.911	1.00 34.48	SOLV
MOTA	34	OH2 WAT	334	75.939	25.608	12.364	1.00 35.21	SOLV
MOTA	35	OH2 WAT	335	90.256	42.668	16.539	1.00 45.05	SOLV
ATOM	36	OH2 WAT	336	86.761	51.457	13.881	1.00 25.26	SOLV
ATOM	37	OH2 WAT	337	67.479	42.004			
ATOM						-5.009	1.00 33.30	SOLV
	38	OH2 WAT	338	82.018	50.963	8.823	1.00 19.80	SOLV
ATOM	39	OH2 WAT	339	80.278	32.895	-1.126	1.00 30.16	SOLV
MOTA	40	OH2 WAT	340	71.683	50.944	31.567	1.00 29.62	SOLV ,

MOTA	41	OH2 WAT	341	61.633	49.360	10.951	1.00 15.47	SOLV
ATOM	42	OH2 WAT	342	89.589	43.811	5.959	1.00 18.08	SOLV
ATOM	43	OH2 WAT	343	70.742	35.952	14.932	1.00 34.03	SOLV
ATOM	44	OH2 WAT	344	89.836	28.590	26.657	1.00 18.11	
								SOLV
ATOM	45	OH2 WAT	345	70.822	32.764	1.461	1.00 22.35	SOLV
MOTA	46	OH2 WAT	346	63.056	34.653	0.491	1.00 29.51	SOLV
MOTA	47	OH2 WAT	347	58.054	46.282	2.363	1.00 10.00	SOLV
ATOM	48	OH2 WAT	348	67.914	58.660	-6.267	1.00 18.30	SOLV
	. 49	OH2 WAT		70.170	56.725			
MOTA			349			0.575	1.00 11.89	SOLV
MOTA	50	OH2 WAT	350	55.922	73.897	0.623	1.00 18.86	SOLV
ATOM	51	OH2 WAT	351	73.489	53.195	2.061	1.00 24.35	SOLV
MOTA	52	OH2 WAT	352	58.033	50.530	19.075	1.00 25.52	SOLV
ATOM _	_ 53_	OH2 WAT_			-57.302-		-1.00-13.88 -	
MOTA	54	OH2 WAT	354	58.442	71.334	-5.670	1.00 17.51	SOLV
MOTA	55	OH2 WAT	355	62.535	61.154	16.706	1.00 12.38	SOLV
ATOM	56	OH2 WAT	356	66.949	51.163	-10.284	1.00 17.92	SOLV
MOTA	57	OH2 WAT	357	57.588	54,191	9.850	1.00 17.88	SOLV
ATOM	58	OH2 WAT	358	64.836	48.085	4.627	1.00 17.80	SOLV
MOTA	59	OH2 WAT	359	66.445	61.785	19.640	1.00 24.12	SOLV
MOTA	60	OH2 WAT	360	55.740	42.557	0.533	1.00 27.32	SOLV
ATOM	61	OH2 WAT	361	74.075	57.146	13.179	1.00 18.01	SOLV
ATOM	62	OH2 WAT	362	46.987	69.315	-2.545	1.00 11.87	SOLV
ATOM	63	OH2 WAT	363	53.842	52.266	-2.612	1.00 25.20	SOLV
ATOM	64	OH2 WAT	364	33.425	65.313	-4.686	1.00 28.97	
								SOLV
MOTA	65	OH2 WAT	365	45.633	51.173	10.502	1.00 31.97	SOLV
MOTA	66	OH2 WAT	366	39.040	71.050	-0.722	1.00 20.81	SOLV
MOTA	67	OH2 WAT	367	54.517	67.335	-6.251	1.00 46.24	SOLV
ATOM	68	OH2 WAT	368	45.083	67.138	20.314	1.00 29.47	SOLV
ATOM	69	OH2 WAT	369	65.758	67.669	-6.655	1.00 14.69	
								SOLV
MOTA	70	OH2 WAT	370	44.943	78.174	12.948	1.00 23.88	SOLV
MOTA	71	OH2 WAT	371	37.141	57.403	1.723	1.00 23.72	SOLV
MOTA	72	OH2 WAT	372	62.407	66.806	13.368	1.00 13.36	SOLV
ATOM	73	OH2 WAT	373	50.776	47.263	5.661	1.00 38.22	SOLV
ATOM	74	OH2 WAT	374	56.697	47.264	11.752	1.00 24.75	SOLV
ATOM	75	OH2 WAT	375	42.566	60.884	15.739	1.00 16.25	
								SOLV
ATOM	76	OH2 WAT	376	59.299	74.342	13.838	1.00 31.27	SOLV
MOTA	77	OH2 WAT	377	72.976	63.691	-0.667	1.00 20.36	SOLV
MOTA	78	OH2 WAT	378	72.876	60.516	-6.752	1.00 34.24	SOLV
ATOM	79	OH2 WAT	379	63.998	68.760	16.371	1.00 19.04	SOLV
ATOM	80	OH2 WAT	380	44.947	66.728	-2.566	1.00 29.51	SOLV
ATOM	81	OH2 WAT	381	57.690	61.926	-9.414	1.00 29.01	SOLV
ATOM	82	OH2 WAT	382	44.595	80.810	5.831		
							1.00 27.43	SOLV
ATOM	83	OH2 WAT	383	78.065	36.583	24.121	1.00 14.08	SOLV
· MOTA	84	OH2 WAT	384	42.289	64.651	-0.868	1.00 25.57	SOLV
ATOM	85	OH2 WAT	385	59.851	68.458	~12.381	1.00 30.18	SOLV
ATOM	86	OH2 WAT	386	53.784	72.644	-4.782	1.00 22.35	SOLV
ATOM	- 87	OH2 WAT	387	72.793	27.922	8.925	1.00 32.13	SOLV
ATOM	88	OH2 WAT	388	57.224	68.062	-6.072	1.00 17.87	SOLV
ATOM	89	OH2 WAT	389	45.210		4.285		
					44.988		1.00 25.10	SOLV
ATOM	90	OH2 WAT	390	49.413	53.782	1.546	1.00 21.68	SOLV
MOTA	91	OH2 WAT	391	45.232	59.677	1.393	1.00 19.25	SOLV
ATOM	92	OH2 WAT	392	42.551	59.954	5.056	1.00 27.30	SOLV
MOTA	93	OH2 WAT	393	58.412	43.750	3.948	1.00 58.70	SOLV
ATOM	94	OH2 WAT	394	56.942	54.199	-2.588	1.00 31.14	SOLV
MOTA	95	OH2 WAT	395	55.216			1.00 13.25	
ATOM					51.994	9.824		SOLV
MOTA	96	OH2 WAT	396	51.642	54.651	14.874	1.00 10.00	SOLV
ATOM	97	OH2 WAT	397	48.690	56.156	13.991	1.00 28.59	SOLV
MOTA	98	OH2 WAT	398	74.412	37.913	0.396	1.00 12.55	SOLV
ATOM	99	OH2 WAT	399	81.920	53.968	18.267	1.00 14.05	SOLV
MOTA	100	OH2 WAT	400	70.413	41.780		1.00 16.68	SOLV
ATOM	101	OH2 WAT				1.170		
			401	71.098	53.544	2.407	1.00 27.63	SOLV
ATOM	102	OH2 WAT	402	94.383	32.979	9.497	1.00 27.97	SOLV
ATOM	103	OH2 WAT	403	70.765	66.069	16.389	1.00 38.09	SOLV
ATOM	104	OH2 WAT	404	78.651	34.890	29.495	1.00 48.60	SOLV
ATOM	105	OH2 WAT	405	80.289	39.811	24.727	1.00 20.74	SOLV
ATOM	106	OH2 WAT	406					
				63.627	47.414	7.301	1.00 40.21	SOLV
MOTA	107	OH2 WAT	407	74.679	30.772	11.524	1.00 37.03	SOLV
MOTA	108	OH2 WAT	408	80.240	36.041	26.681	1.00 27.42	SOLV
ATOM	109	OH2 WAT	409	84.971	25.909	18.426	1.00 24.96	SOLV
MOTA	110	OH2 WAT	410	57.832	41.294	5.792	1.00 71.90	SOLV
MOTA	111	OH2 WAT	411	55.484	68.139	-9.086	1.00 48.47	SOLV
ATOM	112	OH2 WAT	412	65.535	68.260	2.400	1.00 26.24	SOLV
ATOM	113	OH2 WAT	413			2.400		
				80.085	42.291	-3.144	1.00 26.49	SOLV
MOTA	114	OH2 WAT	414	82.088	37.456	27.733	1.00 42.54	SOLV
ATOM	115	OH2 WAT	415	61.020	53.195	21.566	1.00 38.16	SOLV
ATOM	116	OH2 WAT	416	55.968	70.365	-5.096	1.00 28.42	SOLV
MOTA	117	OH2 WAT	417	51.619	57.620	-0.487	1.00 41.81	SOLV
							· - -	

WO 01/63244 PCT/US01/05150

72 / 75

ATOM 118 OH2 WAT 418 40.651 66.108 2.086 1.00 40.11 SOLV ATOM 119 OH2 WAT 419 58.453 49.818 7.926 1.00 38.96 SOLV ATOM 120 OH2 WAT 420 53.768 51.716 13.623 1.00 43.62 SOLV ATOM 121 OH2 WAT 421 76.068 60.373 21.292 1.00 39.30 SOLV ATOM 122 OH2 WAT 422 56.186 50.034 17.422 1.00 37.47 SOLV END

FIG. 6

Compound C

FIG. 7

75/75

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No. PCT/US01/05150

A. *CLASSIFICATION OF SUBJECT MATTER			
IPC(7) :G01N 9/00, 33/48 US CL :435/183; 702/22			
According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols)			
U.S.: 435/183; 702/22			
0.3 433/163, 102/22			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched			
NONE			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)			
STN: WEST			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.
X	GOMIS-RUTH, F.X. et al. The he		8-14
	(MMP-13: 2.7, ANG > crystal structure of its C-terminal		
	haemopexin-like domain. Journal Mol. Biol. 1996, Vol. 264, No. 3, pages 556-566, see entire document.		
	5, pages 550-500, see chaire document.		
X	US 6,008,243 A (BENDER et al.) 28 December 1999(28.12.99), see 1-7, 15-20		
	entire document.		
	·		
	,	,	,
	, ,		
Purther documents are listed in the continuation of Box C. See patent family annex.			
Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand			
A* document defining the general state of the art which is not considered the principle or theory underlying the invention to be of particular relevance			invention
B earlier document published on or after the international filing date "X* document of particular relevance; the considered novel or cannot be considered			
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other		when the document is taken alone "Y" document of particular relevance; th	e claimed invention cannot be
O do	considered to involve an inventive step when the document is combined with one or more other such documents, such combination		step when the document is h documents, such combination
"P" do	eans cument published prior to the international filing date but later than e priority date claimed	being obvious to a person skilled in the art *&* document member of the same patent family	
<u> </u>		ate of mailing of the international search report	
12 JULY 2001		30 JUL 2007	
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Authorized officers Authorized officers Authorized officers Authorized officers			
Commissioner of Patents and Trademarks Box PCT		AMY J. HARTTER	TUN
Washington, D.C. 20231 Facsimile No. (703) 305-3230		Telephone No. (703) 308-0196	

INTERNATIONAL SEARCH REPORT

International application No. PCT/US01/05150

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)			
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:			
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:			
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:			
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).			
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)			
This International Searching Authority found multiple inventions in this international application, as follows:			
Please See Extra Sheet.			
1. X As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.			
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.			
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:			
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:			
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.			

INTERNATIONAL SEARCH REPORT

International application No. PCT/US01/05150

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for as inventions to searched the appropriate search fees must be paid.

Group I which consists of claims 1-7 is distinct as it addresses itself to the solution complex of the mixture of MMP-13 and the defined "Compound A." The solution is clearly distinct and different from the crystal complex, active site and methods that are claimed in succeeding groups and according claims.

Group II consists of claims 8-14. These claims pertain to the actual product of the crystal complexion its entirety. Thus it is distinct from Groups I and Groups 3-4. The group claims the whole crystal known as "Compound A" and the crystal is not in any other type of alternate environment or with any additional accountements.

Group III encompasses the claims of 15-20. These claims consist of the active site of the molecule of MMP-13. This chemical is a portion of the solution claimed in the first group and thus separate and distinct from the solution of Group I or the separate entity of "Compound A" that is claimed in Group 2. Thus these Groups are separate.

Group IV consists of claims 21-32 which claim a method of identifying an inhibitor or activator of the MMP-13 compound. The method that is embodied within this Group is clearly different from the proceeding groups. Firstly the claims within Group 4 are directed toward a method of accomplishing the task of identifying different entities and not a product itself. Secondly its actions are addressed to entities outside the compound itself and not limited to "Compound A" of the MMP-13. Based on the aforementioned reasons and the distinct nature of the claims defined in each of the groups, the instant application has a lack of unity due to each group having a different Special Technical Feature a summarized above for each group.