

Boosted Haptics Driver with Integrated DSP and Waveform Memory with Closed Loop Algorithms and LRA Protection

Always on Haptics (AoH) With Ultra Low Latency Wakeup

- · Wakeup from AoH Hibernate mode in 5 ms (typ)
- 20 µA in AoH Hibernate mode with RAM retention
- · Basic Haptics Mode from ROM at power-on

Haptics Driver Features

- 11 V maximum driver supply voltage for fast startup and braking
- Class-D architecture with adaptive output stage reduces idle power consumption and switching losses
- Compatible with LRA impedances as low as 6 Ω
- · Driver short-circuit protection

System Protection Features

- · IC thermal self-protection against overtemperature
- · Battery rail reactive brownout system protection
- Output current sensing via integrated current-monitoring sense resistor
- · LRA protection
 - Coil resistance monitoring
 - Mass excursion monitoring and over-excursion protection

Cirrus Haptic Suite

- System Level Linear Resonant Actuator (LRA) resonance frequency calibration
- Output voltage and current monitoring for software triggered haptic actuator impedance and resonance frequency reporting
- Pre-stored haptic waveforms triggerable by I²C/GPI for gaming and user interface events
- · Flexible haptic waveform generation
 - I²C/GPI-triggered haptic effects rendered at measured resonant frequency for optimum efficiency
 - Haptic effects triggered by GPI for home button or side button switch replacement
 - Compensation in click waveform playback for actuator unit-to-unit variation in resonant frequency and coil resistance

(Features continue on p. 2)

Advanced Product Information

This document contains information for a product under development. Cirrus Logic reserves the right to modify this product without notice.

Important Notice: No license to any intellectual property right is included with this component, and certain uses or product designs, including certain haptics-related uses or haptics-system designs, may require an intellectual property license from one or more third parties.

Digital Boost Converter Features

- Integrated boost and rectification FETs
- High-bandwidth digital control loop
- 2 MHz switching frequency
- Synchronous rectification in Boost Active Mode
- Programmable boost voltages of up to 11.0 V

Efficiency and Power Consumption

- 85% overall efficiency (boost + driver) at 500 mW output I2C or SPI control port
- Device reset: 2 μA VP supply current (0 μA on VA)
- AoH Hibernate: 20 µA (VA supply current with driver lowest power state, maintaining DSP RAM)

LRA Diagnostic Features

· Coil short detection

Clocking and Data Interface Features

- · Haptic data serial port
 - I²S/TDM interface format
 - 48 kHz frame rate
- - Programmable I²C slave address
 - Support for I²C Fast Mode Plus (Fm+)
 - Support for 25-MHz SPI

General Description

The CS40L25/B family devices integrate a self-contained haptic signal generator and driver optimized for high performance haptics in switch-replacement type configurations and gaming applications. Hardware and digital signal processing are resonance-aware and designed specifically for optimal drive of highly-resonant linear resonant actuators (LRAs). The CS40L25/B low-power standby and hibernate modes with fast wake upon GPI enable always-available operation.

Both devices integrate a high-performance haptic driver, Halo CoreTM DSP, and driver voltage boost converter. The integrated DSP executes all haptic algorithms. The family supports Basic Haptics Mode at power-on with default settings that may be updated by the host. Basic Haptics Mode, which runs from ROM, implements only a subset of the functionality available in the normal configuration executing firmware loaded into RAM by the host. Two device variants are available to support different platform hardware connections. The CS40L25 supports Basic Haptics Mode on hardware platforms with one GPI using the I2S interface. The CS40L25B supports Basic Haptics Mode on hardware platforms which do not use I2S and use four general purpose input pins (GPIs).

The Class D driver features an advanced closed-loop architecture providing superior power supply rejection ratio (PSRR) and a complementary output stage. The digitally controlled boost converter boosts standard-voltage lithium-ion and lithium-polymer battery voltages up to 11 V. The elevated VBST supply generated by the boost converter allows the CS40L25/B to deliver up to 5.3 W into an 6- Ω load at 1% THD+N.

The CS40L25/B family devices include self-protection and system-protection features. The boost and driver stage are protected against short circuits. IC over-temperature shutdown protection is provided in hardware. Battery voltage is continuously monitored. The boost converter and driver gain are automatically adjusted to preserve battery voltage according to programmable voltage/current load-shedding set-points. The battery protection adjustment of the driver is integrated with the IC thermal protection, ensuring seamless coordination of gain rollback if necessary.

The CS40L25/B family devices are available in a commercial-grade 0.4-mm pitch, 30-ball WLCSP chip-scale package or a 32-pin QFN package for operation from -40° to +85°C.

Part Number	Haptic DSP	On-chip ROM inc. Power-On Buzz	RAMdownload firmware	Core & Digital I/O Power Supply	Boosted Amplifier Power Supply	Boosted Amplifier with Programmable output up to 11.0 V	External Reference Clock	GPI Inputs	Streaming Haptics (I ² S)	Control Port	Package	Minimum PCB Layers
CS40L25	✓	\checkmark	✓	1.8 V	2.5 – 5.5 V	✓	32.768 kHz	1 (with I2S/TDM) 3 (w/o I2S/TDM)	✓	SPI or I ² C	WLCSP	4
CS40L25B	✓	✓	✓	1.8 V	2.5 – 5.5 V	√	32.768 kHz	4	x	SPI or I ² C	WLCSP, QFN	4 (WLCSP) 2 (QFN)

Table of Contents

1	Pin Descriptions	4
•	Pin Descriptions	4
	1.2 Pin Descriptions—32-Pin, 0.40-mm pitch QFN	7
	1.3 Termination of Unused Pins	9
•	1.4 Electrostatic Discharge (ESD) Protection Circuitry	9
3	1.3 Termination of Unused Pins 1.4 Electrostatic Discharge (ESD) Protection Circuitry Typical Connection Diagrams Characteristics and Specifications	10
٠	Table 3-1. Recommended Operating Conditions	13
	Table 3-2. Absolute Maximum Ratings Table 3-3. Class D Amplifier Load-Independent Output Characteristics	13
	Table 3-3. Class D Amplifier Load-Independent Output Characteristics	13
	Table 3-4. Class D Amplifier Load-Dependent Output Characteristics	14
	Table 3-5. Boost Converter Characteristics Table 3-6. Device Power Consumption Specifications—Low Power Modes	14 15
	Table 3-7. Device Efficiency (Standard Load)	10 15
	Table 3-8. Signal Monitoring Characteristics	16
	Table 3-9. Monitoring PSRR Characteristics	16
	Table 3-10. VP and VBST Brownout Prevention Monitoring Characteristics	17
	Table 3-11. Device Temperature Monitoring and Protection Characteristics Table 3-12. Digital Interface Specifications and Characteristics	18
	Table 3-13. DC Characteristics	۱۲
	Table 3-13. De Grandelensies Table 3-14. Switching Specifications—Power, Reset, Master Clock References	10
	Table 3-15. Switching Specifications—Auxiliary Serial Port (ASP)	20
	Table 3-16 Switching Specifications—I ² C Control Port	21
	Table 3-17. Switching Specifications—SPI Port	22
	Table 3-18. Latency Specifications Functional Description 4.1 Haptics Overview	23
4	4.1 Haptice Overview	24
	4.2 Reset	20
	4.3 Hibernation Mode	30
	4.4 Basic Haptics Mode Operation	32
	4.5 Class D Amplifier	34
	4.6 Digital Boost Converter	34
	4.7 Signal Monitoring	აგ
	4.9 Die Temperature Monitoring	46
	4.10 Device Clocking and Reference Clock Configurations	. 47
	1 11 Auxiliary Serial Port Data Interface	12
	4.12 Programmable DSP 4.13 I2C/SPI Control Port 4.14 LRA Calibration and Factory Trim	51
	4.13 I2C/SPI Control Port	53
5	Applications	50
J	5.1 Recommended External Components	59
	5.1 Recommended External Components	60
	5.3 PCB Layout Guidelines	60
6	Register Quick Reference	62
	6.1 Software Reset and Hardware ID	62
	6.3 Digital I/O Pad Control	63
	6.3 Digital I/O Pad Control	64
	6.5 Device Clocking and Sample Rate Control	64
	6.6 Digital Boost Converter 6.7 VMON and IMON Signal Monitoring	64
	6./ VMON and IMON Signal Monitoring	65
	6.8 Die Temperature Monitoring	bb
	6.10 Data Routing	
	6.11 Amplifier Volume Control	67
	6.12 VP and VBST Brownout Prevention + Temp Warning .	67
	6.13 Power Management - Class H, Wk-FET, Noise Gating.	68
	6.14 Dynamic Range Enhancement (DRE)	68
	6.15 Interrupt Status and Mask Control (IRQ1)	ნშ 71
	6.17 GPIO Control (GPIO)	74
	6.18 DSP scratch space	74
	6.19 DSP virtual 1 scratch space	75
	6.20 DSP virtual 2 scratch space	
7	6.21 Clock Presence Detect	
1	Register Descriptions	// 77
	7.1 Software Reset and Hardware ID	78
	7.3 Digital I/O Pad Control	82
	7.4 Hibernation Power Management (PWRMGT)	83
	7.5 Device Clocking and Sample Rate Control	84
	7.6 Digital Boost Converter	85
	7.7 VMON and IMON Signal Monitoring	85

7.8 Die Temperature Monitoring	. 8
7.9 ASP Data Interface	
7.10 Data Routing	. 93
7.11 Amplifier Volume Control	. 9
7.12 VP and VBST Brownout Prevention + Temp Warning	. 9
7.13 Power Management - Class H. Wk-FET. Noise Gating	10
7.14 Dynamic Range Enhancement (DRE)	103
7.15 Interrupt Status and Mask Control (IRQ1)	103
7.16 Interrupt Status and Mask Control (IRQ2)	115
7.17 GPIO Control (GPIO)	127
7.18 DSP scratch space	130
7.19 DSP virtual 1 scratch space	13
7.20 DSP virtual 2 scratch space	13
7.21 Clock Presence Detect	134
8 Package Dimensions	13
8.1 WLCSP Package Dimensions	13
8.2 QFN Package Dimensions	130
9 Thermal Characteristics	13
9.1 Typical Thermal Characteristics—JEDEC 4-Layer Board	
10 Package Marking	
11 Ordering Information	
12 References	
13 Revision History	140

1 Pin Descriptions

1.1 Pin Descriptions—30-Ball, 0.40-mm ball-pitch WLCSP (Through-Package View)

Not to scale

Figure 1-1. Top-Down (Through-Package) View—30-Ball WLCSP Package

Table 1-1. WLCSP Pin Descriptions

Pin Name	Ball #	Power Supply	I/O	Description	Internal Connection	State at Reset	
ALERT	B4	VA	0	Alert. Active-low, open-drain interrupt output.	Weak pull-down/ Open drain	Weak pull-down	
ASP_BCLK/ REFCLK	B5	VA	ļ	Serial Clock. Serial interface bit clock for the CS40L25. Reference Clock. Reference Clock input for the CS40L25B.	Weak pull-down	Weak pull-down	
ASP_DIN/ GPIO3	C4	VA	I/O Serial Data Input. Serial interface data input for the CS40L25. General Purpose Input/Output Pin. Programmable GPIO3 for the CS40L25B (and CS40L25 when using 3 GPIs instead of the serial interface). This input is wake capable in AoH Standby but not in AoH Hibernate.		Weak pull-down	Weak pull-down	
ASP_FSYNC/ GPIO4	C5	VA	I/O, I	Frame Sync. Serial interface sync input for the CS40L25. General Purpose Input/Output Pin. Programmable GPIO4 for the CS40L25B (and CS40L25 when using 3 GPIs instead of the serial interface). This input is wake capable in AoH Standby and AoH Hibernate.	Weak pull-down	Weak pull-down	
GNDA	F2	VA	I	Analog and Digital Ground. Ground reference for the analog and digital portions of the IC.		_	
GNDB	A3, A4, B3	VBST	I	Boost Converter Ground. Ground reference for the internal boost converter.	_	_	
GNDP	C3, D3	VP	I	Power Ground. Ground reference for the boost converter and Class-D amplifier's output stage.	_	_	
GPIO1	F3	VA	I	General Purpose Input/Output Pin. Programmable GPIO, wake capable in AoH Standby and AoH Hibernate. Must be grounded if not used.	_	Hi-Z	
I2C_AD0/ SPI_SS	E4	VA	I	I2C Slave Device Address Select 0. Used with I2C_AD1, connected to VA or GNDA, to select among four possible addresses. SPI Control-Port Slave Select. Active-low SPI Slave Select (SS) input.	_	_	
I2C_AD1/ SPI_SCLK	D4	VA	I	I ² C Slave Device Address Select 1. Used with I ² C_AD0, connected to VA or GNDA, to select among four possible addresses. SPI Control-Port Clock. SPI clock input.	_	_	
I2C_SCL/ SPI MISO	E5	VA	I, O	I2C Control Port Clock. Clock input for the I2C control port. SPI Control-Port Master In Slave Out. SPI data output.	_	Hi-Z	
I2C_SDA/ SPI_MOSI	E3	VA	I/O, I	I ² C Control-Port Data. Bidirectional data input/output to/from the I ² C control port. SPI Control-Port Master Out Slave In. SPI data input.	CMOS/Open drain	Hi-Z	
LDO_FILT+	D5	VA	0	Digital Core LDO Output. Decoupling point for integrated LDO providing power to the digital core circuitry.	_	_	
OUT+	D2	VAMP	0	Differential Haptic Output, Positive. Internal Class D amplifier output.	_	_	
OUT-	C2	VAMP	0	Differential Haptic Output, Negative. Internal Class D amplifier output.	_	_	
REFCLK/ GPIO2	F4	VA	I	Alternate Reference Clock. Reference Clock input for the CS40L25. General Purpose Input/Output Pin. Programmable GPIO2 for the CS40L25B. This input is wake capable in AoH Standby and AoH Hibernate. Must be grounded if not used.	_	_	
RESET	E2	VA	I	Reset. If this pin is driven low, the device enters a low-power mode, all register values are set to their default settings and DSP volatile memory (RAM) contents may be lost.	_	_	
SW	A2, B2	VP	I	Boost Switch. Input to internal boost FETs. Connect to LBST inductor.	_	_	
VA	F5	VA	I	Analog Power. Power supply for internal analog and digital sections.			

Table 1-1. WLCSP Pin Descriptions (Cont.)

Pin Name	in Name Ball Power I/O Description		Internal Connection	State at Reset		
VAMP	C1, D1	VAMP	I	Driver Power. Power supply input for the Class D amplifier's output stage. Must be connected to VBST externally.	_	_
VBST	A1, B1	VBST	0	Boosted Supply from Boost Converter. Internal boost converter output which must be connected to VAMP externally.	_	_
VP	A5	VP	I	Boost Converter Power. Power supply for the boost converter and portions of the Class D amplifier.	_	_
VSNS+	F1	VAMP	ļ	Voltage Sense Input, Positive. Sense voltage input for monitoring OUT±.	_	_
VSNS-	E1	VAMP	I	Voltage Sense Input, Negative. Sense voltage input for monitoring OUT±.	_	_

1.2 Pin Descriptions—32-Pin, 0.40-mm pitch QFN (Top Down View)

Figure 1-2. Top-Down View—32-Pin QFN Package

Table 1-2. QFN Pin Descriptions

Pin Name	in Name Pin Power I/O Description		Internal Connection	State at Reset		
ALERT	32	VA	0	Alert. Active-low, open-drain interrupt output.	Weak pull-down/ Open drain	Weak pull-down
ASP_BCLK/ REFCLK	1	VA	I	Serial Clock. Serial interface bit clock for the CS40L25. Reference Clock. Reference Clock input for the CS40L25B.	Weak pull-down	Weak pull-down
ASP_DIN/ GPIO3	2	VA	I/O	Serial Data Input. Serial interface data input for the CS40L25. General Purpose Input/Output Pin. Programmable GPIO3 for the CS40L25B (or CS40L25 when using 3 GPIs instead of the serial interface). This input is wake capable in AoH Standby but not in AoH Hibernate.	Weak pull-down	Weak pull-down
ASP_FSYNC/ GPIO4	3	VA	I/O, I	Frame Sync. Serial interface sync input for the CS40L25. General Purpose Input/Output Pin. Programmable GPIO4 for the CS40L25B (or CS40L25 when using 3 GPIs instead of the serial interface). This input is wake capable in AoH Standby and AoH Hibernate.	Weak pull-down	Weak pull-down
GNDA	13	VA	I	Analog and Digital Ground. Ground reference for the analog and digital portions of the IC.	_	_
GNDB	PAD, 28, 29	VBST	I	Boost Converter Ground. Ground reference for the internal boost converter.	_	_
GNDP	14, 17, 18, 25, 31	VP	I	Power Ground. Ground reference for the boost converter and Class-D amplifier's output stage.	_	_
GPIO1	11	VA	I	General Purpose Input/Output Pin. Programmable GPIO, wake capable in AoH Standby and AoH Hibernate. Must be grounded if not used.	_	Hi-Z
I2C_AD0/ SPI_SS	8	VA	I	I2C Slave Device Address Select 0. Used with I2C_AD1, connected to VA or GNDA, to select among four possible addresses. SPI Control-Port Slave Select. Active-low SPI Slave Select (SS) input.	_	_
I2C_AD1/ SPI_SCLK	5	VA	I	I2C Slave Device Address Select 1. Used with I2C_AD0, connected to VA or GNDA, to select among four possible addresses. SPI Control-Port Clock. SPI clock input.	_	_
I2C_SCL/ SPI_MISO	7	VA	I, O	I ² C Control Port Clock. Clock input for the I ² C control port. SPI Control-Port Master In Slave Out. SPI data output.	_	Hi-Z
I2C_SDA/ SPI_MOSI	12	VA	I/O, I	I2C Control-Port Data. Bidirectional data input/output to/from the I2C control port. SPI Control-Port Master Out Slave In. SPI data input.	CMOS/Open drain	Hi-Z
LDO_FILT+	4	VA	0	Digital Core LDO Output. Decoupling point for integrated LDO providing power to the digital core circuitry.		_
OUT+	20	VBST	0	Differential Haptic Output, Positive. Internal Class D amplifier output.	_	_
OUT-	21	VBST	0	Differential Haptic Output, Negative. Internal Class D amplifier output.	_	_
REFCLK/ GPIO2	10	VA	I	Alternate Reference Clock. Reference Clock input for the CS40L25. General Purpose Input/Output Pin. Programmable GPIO2 for the CS40L25B. This input is wake capable in AoH Standby and AoH Hibernate. Must be grounded if not used.	_	_
RESET	6	VA	I	Reset. If this pin is driven low, the device enters a low-power mode, all register values are set to their default settings and DSP volatile memory (RAM) contents may be lost.		_
SW	26, 27	VP	I	Boost Switch. Input to internal boost FETs. Connect to LBST inductor.	_	_
VA	9	VA	I	Analog Power. Power supply for internal analog and digital sections.	_	_

Table 1-2.	QFN Pin	Descriptions	(Cont.)
------------	----------------	---------------------	---------

Pin Name	Pin #	Power Supply	I/O	Description	Internal Connection	State at Reset
VBST	19, 22, 23, 24	VBST	0	Boosted Supply from Boost Converter. Internal boost converter output connected to the amplifier supply input inside the package.	_	_
VP	30	VP	1	Boost Converter Power. Power supply for the boost converter and portions of the Class D amplifier.	_	_
VSNS+	16	VBST	I	Voltage Sense Input, Positive. Sense voltage input for monitoring OUT±.	_	_
VSNS-	15	VBST	I	Voltage Sense Input, Negative. Sense voltage input for monitoring OUT±.	_	_

1.3 Termination of Unused Pins

Table 1-3 shows termination requirements for pins while not used in some applications.

Table 1-3. Termination of Unused Pins

Termination	Analog Inputs	Analog Outputs	Digital I/O
Floating	SW		ALERT, ASP_BCLK/REFCLK, ASP_DIN/GPIO3, ASP_FSYNC/GPIO4
Grounded	_	_	GPIO1, REFCLK/GPIO2

1.4 Electrostatic Discharge (ESD) Protection Circuitry

ESD-sensitive device. The CS40L25/B is manufactured on a CMOS process. Therefore, it is generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken while handling and storing this device. This device is qualified to current JEDEC ESD standards.

2 Typical Connection Diagrams

Figure 2-1. Typical Connection Diagram—SPI with GPI and I²S Support

General Notes for Typical Connection Diagrams (see Table 2-1 for specific notes cross-referenced in the figures):

- Fig. 2-1 Fig. 2-4 are intended to provide a sample of possible connection schemes and does not encompass all variations.
- The CS40L25/B requires a 32.768-kHz clock at all times. Connect the 32.768-kHz clock to the ASP_BCLK/REFCLK or REFCLK/GPIO2 inputs.
- If REFCLK/GPIO2 is used as a playback trigger source, connect the 32.768-kHz clock to the ASP_BCLK/REFCLK input. Note that driving
 the 32.768-kHz clock into the ASP_BCLK/REFCLK input precludes the use of the auxiliary serial port for I²S.
- All external passive component values listed are nominal values. See Section 5.1 for additional information on recommended external
 components and derating requirements.
- · Use low ESR, X7R/X5R capacitors for capacitors denoted with *.

Figure 2-2. Typical Connection Diagram—SPI with Four GPIs and Triggered Waveforms

Figure 2-3. Typical Connection Diagram—I²C Interface with GPI and I²S Support

Figure 2-4. Typical Connection Diagram—I²C Interface with Four GPIs and Triggered Waveforms

Table 2-1. Typical Component Values and Types

Module	Description
Boost Converter	1. L _{BST} values of 2.2 to 1.0 μH are supported for typical use operation. See Section 5.1 for more information on component requirements.
	2. The C _{BST} capacitor must not derate to a combined capacitance value of less than 3.6 μF with 11.0 VDC applied. The WLCSP package requires a common connection among all VBST and VAMP balls. On the CS40L25B QFN package, there are no external VAMP pins and the amplifier supply input is connected to the boost supply output inside the device. All VBST balls/pins must be connected together on the PCB and connected to the capacitors shown. See Section 5.1 for more information on component requirements.
Driver	3. Location of optional EMI suppressor capacitors between OUT± and GNDP (typically 470 pF) which may be used in addition to the edge-rate control of the CS40L25/B, depending on the application requirements. It is recommended that the value of these components not exceed 2 nF, as higher capacitances increase switching losses.
Miscellaneous	4. The value for R _{P1} on the ALERT pin may be calculated based on the minimum ALERT pull-down resistance specified in Table 3-12, the minimum level of the 1.8-V supply, and the maximum VIH of the host input driven by the ALERT pin.
	 5. A pull-up or pull-down on RESET is only required in systems where the RESET pin is not driven continuously from power-on. 6. An external pull-down resistor must be used on the SPI_MISO pin if this pin also connects to the SPI_MISO pin of another SPI slave device in addition to the SPI_MISO pin of the SPI master device.
I ² C	7. The CS40L25/B supports four I ² C device address options selected by connecting I ² C AD0 and I ² C AD1 to VA or GND. While configured as shown here, the device responds to an address of 0x80 for writes and 0x81 for reads. The I ² C address is latched at hardware reset or power-on reset. See Table 4-14 for details.
	8. Minimum R _{P2A/B} values may be determined from the maximum VA level, the minimum sink current strength of their respective output, and the maximum low-level output voltage (VOL). Maximum R _{P2A/B} values may be determined by how fast their associated signals must transition, taking into account load capacitance.

3 Characteristics and Specifications

Note: All features and performance specifications here are defined for RAM based operation. ROM based operation in Basic Haptics Mode provides a subset of features and specifications here do not apply unless noted otherwise.

Table 3-1. Recommended Operating Conditions

Test conditions (unless specified otherwise): Ground = GND = GNDA = GNDP = 0 V; voltages are with respect to ground; Device initialization after power-on and reset done as described in Section 4.2.4.

Paramete	rs	Symbol	Minimum	Maximum	Units
DC power supply	Analog (and digital I/O and core) ¹	VA	1.66	1.94	V
	Battery ²	VP	2.5	5.5	V
	Amplifier with fixed supply voltage 3, 4	VAMP	VP	11.0	V
	Amplifier with variable supply voltage ^{4, 5}	VAMP	VP	11.0	V
External voltage applied to analog outputs		V_{INAO}	-0.3	VAMP + 0.3	V
External voltage applied to digital inputs ⁶		V_{INDI}	-0.3	VA + 0.3	V
External voltage applied to digital outputs ⁶			-0.3	VA + 0.3	V
External voltage applied VSNS± pins		V _{IN-VMON}	-0.3	VAMP + 0.3	V
Ambient temperature		T_A	-40	+85	°C

Note: The device is fully functional and meets all parametric specifications in this section if operated within the specified conditions. Functionality and parametric performance is not guaranteed or implied outside of these limits. Operation outside of these limits may adversely affect device reliability.

- 1.A valid VP voltage must be present whenever a VA voltage is applied. See Table 3-14 for power supply sequencing requirements.
- 2.Device performance is specified with a VP down to 2.8 V. The CS40L25/B continues to operate functionally down to 2.5 V, but may not meet all parametric specifications.
- 3. This applies when VAMP is supplied by the on-chip boost converter with a fixed voltage (BST_CTL_SEL = 00).
- 4. CAUTION: To avoid potentially damaging the IC, an external VAMP supply voltage must not be applied on the WLCSP when VP is not present.
- 5. This applies when VAMP is supplied by the on-chip boost converter with a variable voltage controlled by Class H (BST_CTL_SEL = 01).
- 6. The maximum over/under voltage is limited by the input current.

Table 3-2. Absolute Maximum Ratings

Test conditions (unless specified otherwise): Ground = GND = GNDA = GNDP = 0 V; voltages are with respect to ground;

Parameters		Symbol	Minimum	Maximum	Units
DC power supply	Analog	VA	-0.3	2.1	V
	Battery	VP	-0.3	6.0	V
	Amplifier ¹	VAMP	VP-0.3	12.0	V
Input current ²		I _{in}	_	±10	mA
Ambient operating temperature (local to device, power applied)		T _A	-50	+115	°C
Junction operating temperature (power applied)		TJ	-40	+150	°C
Storage temperature		T _{STG}	-65	+150	°C

Caution: Stresses beyond "Absolute Maximum Ratings" levels may cause permanent damage to the device. These levels are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in Table 3-1 is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

- 1.CAUTION: An external VAMP supply voltage must not be applied on the WLCSP when VP is not present.
- 2. Any pin except supplies. Transient currents of up to ±100 mA on the analog input pins do not cause SCR latch up.

Table 3-3. Class D Amplifier Load-Independent Output Characteristics

Test conditions (unless specified otherwise): Fig. 2-1 – Fig. 2-4 show typical connections to, and passive components used with, the CS40L25/B; input test signal is a 24-bit full-scale 997-Hz sine wave with 1 LSB of triangular PDF dither applied; typical performance data taken with VA = 1.8 V, VP = 3.6 V, VAMP = VBST = 11.0 V; min/max performance data taken with VA = 1.80 V, VP = 3.60 V, VAMP is automatically adjusted between VP and 11.0 V by Class H based on signal level; Ground = GND = GNDA = GNDP = 0 V; voltages are with respect to ground; T_A = 25°C; AMP_VOL_PCM = 0 dB; AMP_RAMP_PCM = 000; measurement bandwidth is 20 Hz to 20 kHz; Fs = 48 kHz; L_{BST} = 1.0 μH; f_{PLL_OUT} = 196.608 MHz. Device initialization after power-on and reset done as described in Section 4.2.4.

Pa	Parameters		Minimum	Typical	Maximum	Units
Output switching frequency		f _{AMP_SW}	_	438.857	_	kHz
PFET ON resistance	$I_{OUT(A)} = 0.5 \text{ A, VBST} = 11.0 \text{ V}^{1}$	R _{DSON-AP}	_	220	_	mΩ
NFET ON resistance	$I_{OUT(A)} = 0.5 \text{ A, VBST} = 11.0 \text{ V}^1$	R _{DSON-AN}	_	130	_	mΩ
Integrated R _{SENSE} resistance ²		R _{SENSE}	70	100	130	mΩ
Amplifier Low Z to GND detection to	nreshold ³	Z _{GND PUP}	1	_	3	Ω

^{1.}VAMP = VBST = 11.0 V supplied by the on-chip boost converter with CLASSH_EN = 1 and BST_CTL_SEL = 01.

- 2. R_{SENSE} resistance can vary by up to ±30% from typical value. This is also the maximum variation from the typical value that the factory trim can properly compensate for.
- 3. This detection is in addition to the always-on comparator based amplifier output shorts protection which detects hard shorts to GND, VAMP, and between OUT±. It only occurs on power-up.

Table 3-4. Class D Amplifier Load-Dependent Output Characteristics

Test conditions (unless specified otherwise): Fig. 2-1 – Fig. 2-4 show typical connections to, and passive components used with, the CS40L25/B; input test signal is a 24-bit full-scale 997-Hz sine wave with 1 LSB of triangular PDF dither applied; typical performance data taken with VA = 1.8 V, VP = 3.6 V, VAMP = VBST = 11.0 V; min/max performance data taken with VA = 1.80 V, VP = 3.60 V, VAMP = 11.0 V; Ground = GND = GNDA = GNDP = 0 V; voltages are with respect to ground; $T_A = 25^{\circ}C$; measurement bandwidth is 20 Hz–20 kHz AES-17; Fs = 48.0 kHz; $L_{BST} = 1.0 \mu$ H; $f_{PLL}_{OUT} = 196.608$ MHz; simulated load = 8 Ω + 33 μ H. Device initialization after power-on and reset done as described in Section 4.2.4.

Param	Parameters					Maximum	Units
Power delivered to load @ 1% THD+N	VP = 3.6 V 8- Ω	load	P _{0@1%}	_	4.3	_	W
(average) ¹	6-Ω	load	Ŭ	_	4.3		W
Power delivered to load @ 1% THD+N		load	P _{0@1%}	_	5.3	_	W
(average) 1	6-Ω	load	Ü	_	5.5	_	W
Amplifier operating efficiency ² @ 10% THD+N	$VP = 3.6 \text{ V}, VAMP = 11.0 \text{ V}_{DC}$ 8- Ω	load	η_{A}	_	90	_	%
@ 10% THD+N	6-Ω	load		_	89	_	%
Total harmonic distortion + noise P _O = 1.0 W	VAMP = VBST = 11.0 V_{DC} 8- Ω	load	THD+N	_	-74	- 61	dB
	$VAMP = VBST = 8.2 V_{DC}$ 6- Ω	load		_	–71	_	dB

- 1.Powered by the internal boost converter. The amplifier's maximum output power may be limited by the boost converter's maximum load current, I_{BST}_OUT_MAX see Table 3-5. This specification assumes BST_IPK = BST_IPK_{CTL-MAX}, and VP voltage is a fixed value as listed in the spec parameters.
- 2.Amplifier efficiency specified in this table assumes the amplifier output stage is powered from an external voltage supply (on VAMP) instead of the onboard boost converter. This encompasses the power consumption of the amplifier from VAMP as well as the overhead of the IC from VA and VP. See Table 3-7 for the combined efficiency of the entire device, where the amplifier (VAMP) is supplied by the boost converter's output (VBST). Tests for this specification were performed with the generic standard load shown here:

Table 3-5. Boost Converter Characteristics

Test conditions (unless specified otherwise): Fig. 2-1 – Fig. 2-4 show connections to, and passive components used with, the CS40L25/B; typical performance data taken with VA = 1.8 V, VP = 3.6 V, VAMP = VBST = 11.0 V; min/max performance data taken with VA = 1.80 V VP = 3.60 V, VAMP = VBST = 11.0 V; Ground = GND = GNDA = GNDP = 0 V; voltages are with respect to ground; $T_A = 25^{\circ}C$; $L_{BST} = 1.0 \mu H$; $C_{BST} = 3.6 \mu F$; $t_{BST} = 1.0 \mu H$; $t_{CBST} = 1.0 \mu H$; t_{CBST}

Parameters		Symbol	Minimum	Typical	Maximum	Units
L _{BST} shorts inductance threshold	L _{BST} shorts inductance threshold			_	0.16	μΗ
Power-down time ¹				0.5	_	ms
Boost output voltage ²	VBST _{CTL-MIN}	VBST	_	VP	_	V
	VBST _{CTL-MAX}		_	11.0	_	V
	ΔVBST _{CTL}		_	50		mV
Power-up time ³	From BST_EN = $00\rightarrow 10$ (GLOBAL_EN = 1)	t _{BST PUP}	_	1	_	ms
	From GLOBAL_EN = $0 \rightarrow 1$ (BST_EN = 10)	_	_	3		ms
Operating efficiency ⁴	VBST = 11.0 V; VP = 3.6V; I _{BST OUT} = 500 mA; L _{BST} = 1.0 μH	ηΒ	_	83	_	%

CAUTION: The maximum allowable discharge depth of the batteries specified by the battery manufacturer must not be exceeded.

- 1.Power-down time t_{BST_PDN} refers to the time required for the switching on the SW net to stop once the boost converter been transitioned from its powered-up state to a powered-down state.
- 2. The VBST output level is manually configured via the control port or automatically via the Class H algorithm. However, if configured to generate a VBST output level lower than VBST_{MIN}, the VBST level is limited to VBST_{MIN}. If configured to generate a VBST voltage less than VP, the boost converter remains in Bypass Mode.
- 3.Power-up time t_{BST_PUP} refers to the time required for the switching on the SW net to start once the boost converter been transitioned from its powered-down state to its powered-up state.

4. Efficiency specified in this table assumes that the boost converter is driving an external resistive load via the VBST pin, instead of the onboard Class D amplifier. Losses from the boost-converter inductor (L_{BST}) are included in the calculation and are based on the preferred inductor shown in Note 1 in Table 2-1. R_{BST_LOAD} is selected to produce the specified value of I_{OUT(B)}.

For the combined efficiency of the entire device, where the boost converter load is provided by the internal Class D amplifier driving a standard load attached to the OUT± nets; see Table 3-7.

Table 3-6. Device Power Consumption Specifications—Low Power Modes

Test conditions (unless specified otherwise): Fig. 2-1 – Fig. 2-4 show typical connections; Ground = GND = GNDA = GNDP = 0 V; voltages are with respect to ground; VA = 1.8 V, VP = VAMP = VBST = 3.60 V; T_A = 25°C; RESET inactive; control port inactive; DSP disabled and bypassed. Device initialization after power-on and reset done as described in Section 4.2.4.

		Ту	/pical
	Ι _{VA} (μΑ)	I _{VP} + I _{SW} (µA)	
OFF (VA = 0 V)	No input pins driven externally	0	2
Reset (RESET pin = LOW) 1	ASP_BCLK, ASP_FSYNC and ASP_DIN driven low externally	0	2
	ASP_BCLK, ASP_FSYNC and ASP_DIN toggled externally	2	2
Always-On Haptic (AoH) Hibernate 32.768 kHz clock applied, DSP initialized and triggerable, no activity on SPI/I ² C interface pins, RAM contents preserved.	Wakeup with haptic playback triggerable from GPIO1, GPIO2, and/or GPIO42	20	2
Always-On Haptic (AoH) Standby 32.768 kHz clock applied, DSP initialized and	Wakeup with haptic playback triggerable only from a GPIO1 low-to-high transition or a control port command	212	8
32.768 kHz clock applied, DSP initialized and triggerable, no activity on SPI/I ² C interface pins, RAM and register contents preserved	Wakeup with haptic playback triggerable from GPIO1 high-to-low transition, any transition of GPIO2, GPIO3 or GPIO4, or a control port command	600	8

- 1.VP consumption is due to circuitry which enables an external boost voltage (VBST_{FXT}) to be supplied in any of the low power states.
- 2. During AoH Hibernate, a software-administered handshake can promote the device to AoH Standby, but this wakeup will not trigger haptic playback.

Table 3-7. Device Efficiency (Standard Load)

Test conditions (unless specified otherwise): Fig. 2-1 – Fig. 2-4 show typical connections; Ground = GND = GNDA = GNDP = 0 V; voltages are with respect to ground; VA = 1.8 V, VP = 3.6 V, VAMP sourced from and attached to VBST; T_A = 25°C; RESET inactive; f_{PLL_OUT} = 196.608 MHz; ADSP is in Slave Mode with Fs = 48 kHz; input test signal is a 24-bit 997-Hz sine wave with 1 LSB of triangular PDF dither applied. DSP disabled and bypassed. Device initialization after power-on and reset done as described in Section 4.2.4.

Use Configuration ¹			Minimum	Typical	Maximum	Units
P _{OUT} = 50 mW		Amp + Boost + Class H + VP/VBSTMON	_	52	_	%
P _{OUT} = 500 mW	VBST = Class H ²		_	85	_	%

1.Tests were performed with the simulated load (33 μ H in series with an 8- Ω resistor). Specified testing components are as follows:

L_{BST} (TDK TFM201610GHM-1R0MTAA).

2. Efficiency for when Class H is enabled is measured using a 100-Hz sine wave at the specified output power when the Class H is configured as follows: CLASSH EN = 1; all other Class H configurations are default.

Table 3-8. Signal Monitoring Characteristics

Test conditions (unless specified otherwise): Fig. 2-1 – Fig. 2-4 show typical connections; inputs to VSNS \pm are 1-kHz sine waves supplied by the CS40L25/B's Class D amplifier; Ground = GND = GNDA = GNDP = 0 V; voltages are with respect to ground; typical performance data taken with VA = 1.8 V, VP = 3.6 V, VAMP = VBST = 11.0 V, min/max performance data taken with VA = 1.80 V, VP = 3.60 V, VAMP = VBST = 11.0 V; $T_A = 25^{\circ}C$; $T_A = 100^{\circ}C$; $T_A = 100^$

	Parameters 1	Symbol	Minimum	Typical	Maximum	Units
Characteristics	Power-up time ² GLOBAL_EN = $0\rightarrow 1$	t _{PUP_ADC}	_	_	3	ms
for all ADCs	Group delay—VMON, IMON ³ Fs = 48 kHz	GD _{VMON-IMON}	_	51	_	μs
	Fs = 96 kHz		_	42	_	μs
	Fs = 192 kHz		_	24	_	μs
VPMON characteristics	Effective number of bits	VPMON _{ENOB}	_	8.5	_	Bits
Characteristics	Voltage resolution	VPMON _{STEP}	_	5.94	_	mV
	Nominal 3.6-V voltage measurement	VPMON _{MEAS}	3.54	3.60	3.66	V
	Input voltage for 0-dBFS output	VPMON _{0dBFS}	_	6.087	_	V
VBSTMON.	Effective number of bits	VBSTMON _{ENOB}		8.5	_	Bits
characteristics 4	Voltage resolution	VBSTMON _{STEP}	_	13.67	_	mV
	Nominal 11.0-V voltage measurement	VBSTMON _{MEAS}	10.8	11.00	11.2	V
	Input voltage for 0-dBFS output	VBSTMON _{0dBFS}	_	14.00	_	V
VMON	Dynamic range (unweighted), VSNS± = ±8.0 V (16 V _{PP})	VMON _{DNR}	70	74	_	dB
characteristics	Total harmonic distortion + noise 5.6 Vpk	VMON _{THDN-5p6V}	_	-70	-66	dB
	8 Vpk	VMON _{THDN-8V}	_	-68	-64	dB
	Nominal 11.0-V voltage measurement	VMON _{MEAS}	10.80	11.00	11.20	V
	Input voltage for 0-dBFS output 5	VMON _{0dBFS}	_	12.30	_	V
	Common mode rejection ratio (217 Hz @ 800 mV _{PP}) ⁶	VMON _{CMRR}	50	60	_	dB
	Single-ended input impedance ⁷	VMON _{ZIN}	_	1	_	МΩ
	DC offset error	VMON _{DC-OFF}	-10	_	10	mV
IMON	Dynamic range (unweighted), ±1.0 A (2 A _{PP})	IMON _{DNR}	64	69	_	dB
characteristics	Total harmonic distortion + noise 8 700 mApk	IMON _{THDN-700}	_	-61	-57	dB
	1 Apk	IMON _{THDN-1Apk}	_	-59	-55	dB
	Nominal 1.00-A current measurement	IMON _{MEAS}	0.98	1.00	1.02	Α
	Input current for 0-dBFS output 5	IMON _{0dBFS}	_	2.1	_	Α
	DC offset error	IMON _{DC-OFF}	-2	0	2	mA
	Voltage-to-current isolation	IMON _{V-TO-I}	56	66	_	dB
	VMON/IMON gain ratio variance ⁹	IMON _{VI-RATIO}	-0.25		0.25	%

- 1.All parameters given in terms of dB are referred to the applicable typical full-scale voltages. Applies to all THD+N and resolution values in the table.
- 2. The amount of time measured from the completion (or ACK) of the control port write (GLOBAL_EN = 1) to the time at which the first valid data word is present on the serial port output. GLOBAL_EN represents a full power-down, where VA is present, and RESET is deasserted.
- 3.xMON group delay is measured from the time a signal is presented on the respective input pins (VP, VBST, OUT+, or VSNS±) until data available.
- 4.VBST measurements conducted with an external supply, BST_EN = 00, and specified voltage range applied to the VBST/VAMP pins.
- 5. The full-scale (maximum code) signal refers to the 16-bit or 24-bit scaled xMON D_{OUT}.
- 6.CMRR test setup for VSNS±.

- 7.A continuous-time active filter exists between the VSNS± pins and the ADC.
- 8. The total harmonic distortion of IMON is measured using the CS40L25/B Class D amplifier as the signal source, which is connected to an 8 Ω + 33 μ H load, operating under the typical performance test conditions to produce an unclipped sine wave.
- 9.The VMON/IMON gain ratio variance is tested using 10 averages of a -40-dBFS input pilot tone at 40 Hz to measure impedance. A secondary tone at 2 kHz is swept from -35 dBFS to 0 dBFS.

Table 3-9. Monitoring PSRR Characteristics

Test conditions (unless specified otherwise): Fig. 2-1 – Fig. 2-4 show typical connections; Ground = GND = GNDA = GNDP = 0 V; voltages are with respect to ground; VA = 1.8 V; VP = 3.6 V, VAMP = VBST = VP; L_{BST} = 1.0 µH; f_{PLL_OUT} = 196.608 MHz; unless indicated otherwise, voltages are with respect to ground. T_A = 25°C. Device initialization after power-on and reset done as described in Section 4.2.4.

Parameters	Noise Injected Into	Noise Measured On	Noise Amplitude (mVpk)	Noise Frequency (Hz)	Minimum	Typical	Maximum	Units
VMON PSRR ¹	VA	DSP	100	217	31	45	_	dB
				1k	31	45	_	dB
				20k	31	43		dB
IMON PSRR 1	VA	DSP	100	217	50	60	_	dB
				1k	40	50	_	dB
				20k	40	50		dB

1. To isolate VMON and IMON VA PSRR from the signal path while maintaining a connected and sourced operational state, the amplifier signal source is muted.

Table 3-10. VP and VBST Brownout Prevention Monitoring Characteristics

Test conditions (unless specified otherwise): Fig. 2-1–Fig. 2-3 show connections to, and passive components used with, the CS40L25/B; typical performance data taken with VA = 1.8 V, VP = 3.6 V, VAMP = VBST = 11.0 V; min/max performance data taken with VA = 1.80 V, VP = 3.60 V, VAMP = VBST = 11.0 V; Ground = GND = GNDA = GNDB = GNDP = 0 V; voltages are with respect to ground; $T_A = 25^{\circ}C$; $T_{BST} = 1.0 \, \mu H$; $T_{BST} = 3.6 \, \mu H$; $T_{BST} = 1.0 \,$

Parameters ¹		Symbol	Minimum	Typical	Maximum	Units
Initial VP brownout response voltage threshold	VP _{BR1-MIN} VP _{BR1-MAX} ΔVP _{BR1}		_ _ _	2.497 3.874 0.048	_ _ _	V V V
Initial VP brownout threshold set point variation		$\Delta VPBR_{BR1-VAR}$	-60	_	+60	mV
Second VP brownout threshold relative to initial threshold ²	$VP_{BR_1} - VP_{BR_2}$	VP _{BR_2}	20	50	80	mV
Third VP brownout threshold relative to second threshold ²	$VP_{BR_2} - VP_{BR_3}$	_	20	50	80	mV
Initial VBST brownout response voltage threshold (VBST _{TARGET} – VBST _{MEAS})	VBST _{BR1-MIN} VBST _{BR1-MAX} ∆VBST _{BR1}	_	_ _ _	0.109 3.445 0.055	_ _ _	V V V
Initial VBST brownout threshold set point variation ²		∆VBST _{BR1-VAR}	-60	_	+60	mV
Second VBST brownout threshold relative to initial threshold ²	$VBST_{BR_1} - VBST_{BR_2}$	VBST _{BR_2}	20	50	80	mV
Third VBST brownout threshold relative to second threshold ²	VBST _{BR_2} – VBST _{BR_3}	VBST _{BR_3}	20	50	80	mV
Initial brownout response time		t _{VPBR_INIT}	_	_	10	μs
Attenuation release volume step		VOL _{VxBR_REL}	_	0.0625	_	dB
Attenuation attack volume step ³	Vx _{BR_1} triggered Vx _{BR_2} triggered Vx _{BR_3} triggered	_	0.125 0.250 0.500		1.250 2.500 5.000	dB dB dB
Maximum volume attenuation limit	VxBR _{ATT-LIM-MIN} VxBR _{ATT-LIM-MAX} ΔVxBR _{ATT-LIM}	VxBR _{ATT-LIM}	_ _ _	0 15 1	_ _ _	dB dB dB

- 1.All timings are referenced with f_{PLL_OUT} = 196.608 MHz. When using a f_{PLL_OUT} other than 196.608 MHz, all timings scale by 196.608 MHz/f_{PLL_OUT}.
- 2.t_VX_{BR_INIT} is the time required for the system to detect the initial VP or VBST brownout condition, modify the device's operational state, and allow for the initial change in attenuation propagate through the amplifier.
- 3. The attenuation volume step varies based on the current VP or VBST voltage threshold range. The specified minimum/maximum range is based on the available user configurations. For more information on the multiple VP or VBST voltage thresholds, refer to Section 4.7.2.

Figure 3-1. VPBR and VBBR Error, Volume Attenuation, Status Reporting, and Interrupts

Table 3-11. Device Temperature Monitoring and Protection Characteristics

Test conditions (unless specified otherwise): Fig. 2-1 – Fig. 2-4 show connections to, and passive components used with, the CS40L25/B; typical performance data taken with VA = 1.8 V, VP = 3.6 V, VAMP = VBST = 11.0 V; min/max performance data taken with VA = 1.8 V, VP = 3.6 V, VAMP = VBST = 11.0 V; Ground = GND = GNDA = GNDP = 0 V; voltages are with respect to ground; T_A = 25°C. Device initialization after power-on and reset done as described in Section 4.2.4.

Parameters		Minimum	Typical	Maximum	Units
Die temperature measurement	Minimum	_	0	_	°C
	Maximum		150	_	°C
	Resolution	_	1	_	°C
	Accuracy	-10	_	+10	°C
Overtemperature warning threshold	TEMP_WARN_THLD = 00		105	_	°C
_	TEMP_WARN_THLD = 01		115	_	°C
	TEMP_WARN_THLD = 10	_	125	_	°C
	TEMP_WARN_THLD = 11	_	135	_	°C
Overtemperature error threshold ¹	_	150	_	°C	
Overtemperature warning/error threshold deviation 2	-10		+10	°C	

^{1.} Because the same internal temperature-measuring circuitry is used to create both the overtemperature warning and error signals, overtemperature warning/error threshold deviation is applied equally to both thresholds, which results in the individual thresholds being inaccurate to the same degree and of the same polarity as all other values. For example, if the overtemperature warning threshold is 10°C below the TEMP_WARN_THLD setting, the overtemperature error threshold is also 10°C below its specified threshold.

Table 3-12. Digital Interface Specifications and Characteristics

Test conditions (unless specified otherwise): Fig. 2-1 – Fig. 2-4 show typical connections; VA = 1.66 to 1.94 V, VP = 2.80 to 5.50 V, VBST = VBST_{MIN} to 8.0 V; Ground = GND = GNDA = GNDP = 0 V; voltages are with respect to ground; T_A = 25°C. Device initialization after power-on and reset done as described in Section 4.2.4.

	Parameters	Symbol	Minimum	Maximum	Units
Digital I/O hysteresis		_	75	_	mV
Input capacitance (per pin)		_	_	10	pF
SDA pull-up resistance 1		R_P	500	_	Ω
Input leakage current (per pin) 2,3	ASP_BCLK, ASP_FSYNC, ASP_DIN, ALEF All other digital pi	RT I _{IN}	_	±4000 ±100	nA nA
Internal weak pull-down	ASP_BCLK, ASP_FSYNC, ASP_DIN, ALEF	₹T —	550	_	kΩ
VA logic I/Os	High-level output voltage I _{OH} = -100	JA V _{OH}	VA-0.2	_	V
	Low-level output voltage All outputs, $I_{OL} = 100 I_{OL}$ SDA, I_{OL} as per $R_{P(mir)}$		_	0.20 0.20•VA	V V
	High-level input voltage	V _{IH}	0.70•VA	_	V
	Low-level input voltage	V_{IL}	_	0.30•VA	V

^{1.}Minimum R_P values (shown in Fig. 2-1 – Fig. 2-2 and specified in Table 3-12) are determined from the maximum VA level, the minimum sink current strength of their respective output, and the maximum low-level output voltage (V_{OL}). Maximum R_P values may be determined by how fast their associated signals must transition (e.g., the lower the R_P value, the faster the I²C bus can operate for a given bus load capacitance).

Table 3-13. DC Characteristics

Test conditions (unless specified otherwise): Fig. 2-1 – Fig. 2-4 show connections to, and passive components used with, the CS40L25/B; typical performance data taken with VA = 1.8 V, VP = 3.6 V, VAMP = VBST = 11.0 V; min/max performance data taken with VA = 1.8 V, VP = 3.6 V, VAMP = VBST = 11.0 V; Ground = GND = GNDA = GNDP = 0 V; voltages are with respect to ground; T_A = 25°C. Device initialization after power-on and reset done as described in Section 4.2.4.

Parameters		Minimum	Typical	Maximum	Units
LDO_FILT+ voltage	RESET = HIGH	_	1.2	_	V
VA power-on reset (POR) threshold (V _{POR})	Up	_	1.2	_	V
	Down	_	1.05	_	V

^{2.} The overtemperature warning/error threshold deviation specifies the accuracy of the temperature-detection circuitry. This specification relates how many degrees above or below the threshold the overtemperature warning/error circuitry may trigger.

^{2.} Specification includes current through internal pull up/down resistors, where applicable (as defined in Section 2).

^{3.}Leakage current is measured with VA = 1.80 V, VP = 3.60 V, VBST = 3.60 V, and RESET asserted. Each pin is tested while being driven high and low

Table 3-14. Switching Specifications—Power, Reset, Master Clock References

Test conditions (unless specified otherwise): Fig. 2-1 – Fig. 2-4 show connections to, and passive components used with, the CS40L25/B; typical performance data taken with VA = 1.8 V, VP = 3.6 V, VAMP = VBST = 11.0 V; min/max performance data taken with VA = 1.8 V, VP = 3.6 V, VAMP = VBST = 11.0 V; Ground = GND = GNDA = GNDP = 0 V; voltages are with respect to ground; T_A = 25°C. Device initialization after power-on and reset done as described in Section 4.2.4.

	Parameters	Symbol	Minimum	Typical	Maximum	Units
Reset	RESET low (logic 0) pulse width	t _{RLPW}	1	_	_	ms
	RESET rising edge to control port active ¹	t _{IRS}	_	_	750	μs
	Delay from 32.768 kHz clock source active to RESET high	t _{CK-R}	0	_	_	μs
GPI Wake-up	GPIO1 Wake trigger to control port active	t _{IW}	_	_	750	μs
Power supplies 2	Power-supply ramp up/down	t _{PWR-RUD}	_	_	100	ms
	Delay from VP valid to VA rising	t _{R:VP-VA}	0	_	_	ms
	Delay from VA off to VP falling	t _{F:VA-VP}	0	_	_	ms
	Delay from VA valid to V _{RTC} rising ³	t _{R:VA-VRTC}	0	_	_	ms
	Delay from V _{RTC} off to VA falling ³	t _{F:VRTC-VA}	0	_	_	ms

1.Power and reset sequencing with control port availability

- 2.A valid VP voltage must be present whenever a VA voltage is applied.
- 3. The external 32.768 kHz clock source may not be enabled before VA is enabled, and it must be disabled before VA is disabled.

Table 3-15. Switching Specifications—Auxiliary Serial Port (ASP)

Test conditions (unless specified otherwise): Fig. 2-1 – Fig. 2-4 show typical connections; Ground = GND = GNDA = GNDP = 0 V; voltages are with respect to ground; VA = 1.66-1.94 V, VP = 2.80-5.50 V, VBST = VBST_{MIN} to 11.0 V, Inputs: Logic 0 = 0 V; Logic 1 = VA; output timings are measured at V_{OL} and V_{OH} thresholds for VA logic (as specified in Table 3-12); T_A = 25° C. Device initialization after power-on and reset done as described in Section 4.2.4.

Parameters 1,2,3		Symbol	Minimum	Maximum	Units
ASP_FSYNC input sample/frame rate 4		Fs	8	192	kHz
ASP_FSYNC duty cycle	I ² S	D _{FSYNC}	45	55	%
FSYNC high period ⁵	TDM	t _{HI:FSYNC}	1/f _{ASP_BCLK}	(n-1)/f _{ASP_BCLK}	S
ASP_BCLK frequency		f _{ASP_BCLK}	16•Fs	24.576	MHz
ASP_BCLK duty cycle		D _{ASP_BCLK}	45	55	%
ASP_FSYNC setup time before ASP_BCLK latching edge		t _{SU:FSYNC}	10	_	ns
ASP_FSYNC hold time after ASP_BCLK latching edge	I2S	t _{H:FSYNC}	5	_	ns
ASP_DIN setup time before ASP_BCLK latching edge		t _{SU:SDI}	10	_	ns
ASP_DIN hold time after ASP_BCLK latching		t _{H:SDI}	5	_	ns

1.ASP timing in I2S Mode (ASP FMT = 010)

2.ASP timing in TDM 1 Mode (ASP_FMT = 000). Note that ASP_ BCLK and ASP_FSYNC can be inverted if required; the figure shows the default, noninverted polarity.

3.ASP timing in TDM 1.5 Mode (ASP_FMT = 100). Note that ASP_BCLK and ASP_FSYNC can be inverted if required; the figure shows the default, noninverted polarity.

- $4. Sample \ rates \ available \ are \ based \ on \ a \ combination \ of \ the \ REFCLK \ frequency \ provided \ and \ the \ f_{PLL_OUT} \ frequency.$
- 5. "n" refers to the total number of ASP_BCLKs in a given FSYNC frame.

Table 3-16. Switching Specifications—I²C Control Port

Test conditions (unless specified otherwise): Fig. 2-1 – Fig. 2-4 show typical connections; Ground = GND = GNDA = GNDP = 0 V; voltages are with respect to ground; VA = 1.8 V; inputs: Logic 0 = GNDA = 0 V, Logic 1 = VA; $T_A = 25^{\circ}C$; SDA load capacitance equal to maximum value of $C_B = 400$ pF; minimum SDA pull-up resistance, $R_{P(min)}$. All specifications are valid for the signals at the pins of the CS40L25/B with the specified load capacitance. Device initialization after power-on and reset done as described in Section 4.2.4.

Parameter ²		Symbol ³	Minimum	Maximum	Units
SCL clock frequency		f _{SCL}	_	1000	kHz
Clock low time		t _{LOW}	500	_	ns
Clock high time		tнідн	260	_	ns
Start condition hold time (before first clock pulse)		t _{HDST}	260	1	ns
Setup time for repeated start		tsust	260	_	ns
Rise time of SCL and SDA	Standard-mode Fast-mode Fast-mode Plus	t _{RC}	_ _ _	1000 300 120	ns ns ns
Fall time of SCL and SDA	Standard-mode Fast-mode Fast-mode Plus	t _{FC}	_ _ _	300 300 120	ns ns ns
Setup time for stop condition		t _{SUSP}	260		ns
SDA setup time to SCL rising		t _{SUD}	50	_	ns
SDA input hold time from SCL falling ⁴		t _{HDDI}	0	_	ns
Output data valid (Data/Ack) ⁵	Standard-mode Fast-mode Fast-mode Plus	t _{VDDO}	_ _ _	3450 900 450	ns ns ns
Bus free time between transmissions		t _{BUF}	500	_	ns
SDA bus capacitance		C _B	_	400	pF
SCL/SDA pull-up resistance 1		R_P	500	_	Ω
Pulse width of spikes to be suppressed		t _{ps}	0	50	ns

^{1.}The minimum R_{P2A} and R_{P2B} resistor values (shown in Fig. 2-3 and Fig. 2-4) are determined by using the maximum level of VA, the minimum sink current strength of its respective output, and the maximum low-level output voltage V_{OL}. The maximum R_{P2A} and R_{P2B} resistor values may be determined by how fast the associated signal must transition (e.g., the lower the value of the resistor, the faster the I²C bus is able to operate for a given bus load capacitance). See I²C bus specification referenced in Section .

2. All timing is relative to thresholds specified in Table 3-12, V_{IL} and V_{IH} for input signals, and V_{OL} and V_{OH} for output signals.

3.I2C control-port timing.

- 4. Data must be held long enough to bridge the transition time, t_{FC}, of SCL.
- 5. Time from falling edge of SCL until data output is valid.

Table 3-17. Switching Specifications—SPI Port

Test conditions (unless specified otherwise): Ground = GND = GNDA = GNDP = 0 V; voltages are with respect to ground; VA = 1.8 V, VP = 3.6 V; $T_A = 25$ °C; Logic 0 = GNDA = GNDB = 0 V, Logic 1 = VA; input timings are measured at V_{IL} and V_{IH} thresholds; output timings are measured at V_{OL} and V_{OH} thresholds for VA logic (as specified in Table 3-12). Device initialization after power-on and reset done as described in Section 4.2.4.

Parameter	Symbol ¹	Minimum	Typical	Maximum	Units
SPI_SS falling edge to SPI_SCLK rising edge	t _{SSU}	2.6	_	_	ns
SPI_SCLK falling edge to SPI_SS rising edge	t _{SHO}	0	_	_	ns
SPI_SCLK pulse cycle time	tscy	40	_	_	ns
SPI_SCLK pulse width low	t _{SCL}	15.3	_	_	ns
SPI_SCLK pulse width high	t _{SCH}	15.3	_	_	ns
SPI_MOSI to SPI_SCLK setup time	t _{DSU}	1.5	_	_	ns
SPI_MOSI to SPI_SCLK hold time	t _{DHO}	1.7	_	_	ns
SPI_SCLK falling edge to SPI_MISO transition SPI_SCLK slew (90%–10%) = 5 nsC _{LOAD} (SPI_MISO) = 25 pF	t _{DL}	0	_	12.6	ns

1.SPI control-port timing

Control interface timing—SPI Mode (write cycle)

2. Control interface timing—SPI Mode (read

cycle)

Table 3-18. Latency Specifications

Test conditions (unless specified otherwise): Ground = GNDA = GNDP = 0 V; voltages are with respect to ground; VA = 1.8 V, VP = 3.6 V; $T_A = 25^{\circ}\text{C}$; Logic 0 = GNDA = GNDB = 0 V, Logic 1 = VA; input timings are measured at V_{IL} and V_{IH} thresholds; output timings are measured at V_{OL} and V_{OH} thresholds for VA logic (as specified in Table 3-12). Actuator type ELV0815C LRA. Device initialization after power-on and reset done as described in Section 4.2.4.

	Parameter ¹	Symbol	Minimum	Typical	Maximum	Units
Trigger-Start Latency ²	from AoH Standby mode	t _{TSL}	_	3	_	ms
,	from AoH Hibernate mode		_	5	_	

- 1. Latency specification applies for triggers received during Always-on haptic (AoH) Standby or AoH Hibernate mode entered running in normal operation (not in Basic Haptics Mode). A haptic event may be delayed or missed if a trigger is received while the host is initializing device RAM and initiating RAM-based operation.
- 2.Trigger-Start Latency is the time between the GPIO1 pin rising edge trigger event received in AoH Standby or AoH Hibernate mode and the start of the waveform drive. Measured with all DSP Core algorithms disabled except Vibegen (refer to Firmware Release Notes), BST_CTL_SEL = 01 (Class H tracking value), and CLASSH_EN = 1 (enabled).

4 Functional Description

This document describes features supported by the CS40L25/B hardware architecture including some that require additional firmware and/or device driver software to implement in a system. Please see the software release notes for details about the features which have been integrated and validated in specific releases.

The functional descriptions of the CS40L25/B blocks are listed below:

- Haptics Overview (Section 4.1)
- Reset (Section 4.2)
- Hibernation Mode (Section 4.3)
- Basic Haptics Mode Operation (Section 4.4)
- Class D Amplifier (Section 4.5)
- Digital Boost Converter (Section 4.6)
- Signal Monitoring (Section 4.7)
- VP and VBST Brownout Prevention (Section 4.8)
- Die Temperature Monitoring (Section 4.9)
- Device Clocking and Reference Clock Configurations (Section 4.10)
- Auxiliary Serial Port Data Interface (Section 4.11)
- Programmable DSP (Section 4.12)
- Programmable DSP (Section 4.12)
- I2C/SPI Control Port (Section 4.13)
 - I2C Control (Section 4.13.2)
 - SPI Control (Section 4.13.3)
- · LRA Calibration and Factory Trim (Section 4.14)

4.1 Haptics Overview

Haptic technology is an important component of the user interface and overall user experience in many mobile devices. Haptic technology provides the new dimension of tactile sensory stimulation which effectively allows the user to touch and feel the device or the virtual environment. Two common application examples of haptic technology are the replacement of physical buttons or switches in the user interface and force effects and force feedback in gaming applications. The CS40L25/B is an integrated haptic generator and driver for low power mobile devices. The CS40L25/B enables stored waveform/effects playback triggered by a control port command or hardware pin.

4.1.1 Compatible Actuators

The CS40L25/B is intended for driving Linear Resonant Actuator (LRA) devices. The CS40L25/B is compatible with multiple types of LRAs such as X-axis prismatic, Z-axis cylindrical, and Z-axis prismatic. The boost and high power amplifier are designed to drive an LRA with an impedance as low as 6 Ω and a resonant frequency in 50-561 Hz range.

4.1.2 LRA-Driven Haptics

The key component parts of an LRA are the mass, centering spring, and electromotive force transduction mechanism. Fig. 4-1 shows a schematic diagram of an LRA.

Figure 4-1. LRA Schematic Diagram

Haptic force on the portable device incorporating the LRA is generated by mass reaction due to movement of the LRA mass according to Eq. 4-1.

$$F = M_{LRA} \times a_{LRA} = M_{device} \times a_{device}$$

Equation 4-1. Haptic force on portable device generated by an LRA

Force on the LRA mass at any displacement is a combination of spring force and electromotive force.

In resonant buzz operation, the spring force dominates in a mass-spring system which resonates at a characteristic frequency. Electromotive energy is applied in-phase as needed to maintain oscillation and make up for losses. Resonant buzz operation is useful if the driver is low voltage and highest efficiency is paramount.

In non-resonant applications, the applied electromotive force from the boosted amplifier may be much greater than the spring force. The mass acceleration is primarily due to electromotive force, and affected secondarily by spring force. Drive waveforms may be arbitrary and not necessarily resonant. Non-resonant operation is useful to achieve crisp, distinct haptic effects.

4.1.3 LRA Characteristics Measurement and Unit Calibration

The CS40L25/B supports the ability to measure each individual LRA on the production line following the portable device assembly. Resonance frequency, f_0 , and coil electrical resistance, R_e , are measured and their values stored within the host nonvolatile memory. The CS40L25/B algorithm references f_0 to initialize resonant buzz operation as well as to optimize non-resonant drive and braking.

4.1.4 Energizing Versus Braking

For the mass in motion, force in the direction of motion is referred to as energizing force, and force opposite to the direction of motion is referred to as braking force. Likewise, the voltage applied at the actuator terminals may be energizing, which adds to the system energy or braking, which removes energy from the system.

4.1.5 High Performance Haptic Reaction Mass Control

Unlike resonant buzzes, short duration transient haptic effects cannot be described or generated by a single frequency. Strong, high-quality haptic effects require drive synchronization to the LRA motion while energizing and braking, and also require suppression of any after-ringing. The CS40L25/B incorporates high-precision output voltage and current monitoring, allowing the LRA mass motion state to be tracked and controlled. High precision motions are achieved by a combination of user-defined waveform design coupled with precise playback by the CS40L25/B algorithms.

4.1.6 Latency

The overall presentation latency of a crisp feeling haptic effect is the sum of:

- · Trigger-start latency, between command and waveform drive start
- Energizing latency between start of the drive and achievement of maximum acceleration
- Braking latency between maximum acceleration and the point at which acceleration is reduced to 10% of the maximum.

See Table 3-18 for latency timing specifications.

4.1.7 User-Defined Haptic Waveform Playback

The CS40L25/B may be configured to play user-defined haptic waveforms (hereafter "waveform" or "waveforms") when triggered.

Waveforms downloaded from the host processor into the CS40L25/B RAM are triggered by:

- GPI pin transition rising and falling edges trigger the pre-associated stored waveforms
- I²C/SPI trigger command triggers stored waveform specified by the command (during playback or in AoH Standby)

Envelope Waveform Commands:

Envelope command – The on-chip DSP processes a user-defined haptic effect at the specified amplitude. The
envelope waveform command may specify the frequency (which may be the resonant frequency measured during
the last LRA calibration). Waveform envelope commands include a series of (time, amplitude, and frequency)
triplets.

Waveforms may be stored in a range of supported formats, depending on fidelity requirements and waveform time duration as shown in Table 4-1.

Туре	Where Stored	Transport	Time Domain	Amplitude Domain	Frequency	Usage
PCM waveform	CS40L25/B RAM	I ² C/SPI to store into CS40L25/B memory	8 kHz	Waveform Value	Arbitrary waveform, no fixed frequency	Any Waveform is Sup- ported, Typically Short Clicks
PWLE Format	CS40L25/B RAM	I ² C/SPI to store into CS40L25/B memory	Time Steps Not Fixed	Envelope Amplitude	Resonant frequency, or frequency as specified	Alert buzzes

Table 4-1. Supported Formats for Waveforms

Waveform amplitudes are expressed in 2's complement form, representing a normalized range of \pm 1.0 FFS (fraction of full-scale).

The waveform envelope is specified as the normalized 2's complement peak value envelope of the drive voltage waveform applied as energizing force. Negative envelope numbers represent inverted-phase voltage applied as braking force.

4.1.8 PCM Waveform Storage Limits

The CS40L25/B supports multiple pre-recorded PCM waveforms. PCM Waveforms are stored with 8-bit resolution at 8000 samples/sec. Total PCM waveform storage is approximately 7000 bytes for approximately 800 ms of total waveform duration (depending upon the firmware used). Much longer playback duration are possible using piecewise linear envelope waveform encoding (PWLE), described below, instead of PCM waveforms. Each individual waveform may be arbitrary length, provided that the total duration of all waveforms fits within the storage allocation. PCM allows the highest-fidelity storage of arbitrary waveforms. Longer duration waveform storage is possible using more compact representations. Waveform storage requirements and limitations are subject to change in specific firmware releases.

4.1.9 Piecewise Linear Envelope Waveforms

Long duration waveforms may be represented in the Piece-Wise Linear Envelope (PWLE) format to minimize the storage footprint required in the CS40L25/B. When operating the device from ROM using Basic Haptics Mode, the PWLE waveform is specified by the attributes shown in Table 4-2. When running downloaded firmware, additional features and options are available using PWLE waveforms.

Table 4-2. PWLE Waveform Attributes

Item	Notes
Event	Serves as an index to a set of 16 event locations, which can all be defined individually, each having a unique set of parameters as defined here.
Repeat	For a given event, sets the number of times that the envelope (as defined by the time / amplitude / frequency triplets) repeats.
Wait Time	For a given event, once the waveform has ended (Last time / amplitude / frequency triplet reached), the synthesis engine waits for this amount of time before any repeat of the waveform (as defined by the Repeat variable).
Time / Amplitude / Frequency triplets: Time	Each triplet defines a single piecewise-linear section of the waveform. Up to 64 triplets define a waveform. The time element specifies the length of the section, which can be from 0 to 1023.75 ms.
Time / Amplitude / Frequency triplets: Amplitude	Each triplet defines a single piecewise-linear section of the waveform. Up to 32 triplets define a waveform. The amplitude element specifies amplitude of the excitation or breaking. Positive values represent energizing excitation. Negative represents reversed-phase braking excitation.
	Amplitude is specified in terms of fraction of fullscale (FFS) over the range from (-1.0 to +1.0) and the unloaded output voltage is a function of analog amplifier gain. (At 19.5 dB gain, theoretical output voltage is \sim 12.32 V_{PK} , but is practically limited below VAMP.)
Time / Amplitude / Frequency triplets: Frequency	Each triplet defines a single piecewise-linear section of the waveform. Up to 32 triplets define a waveform. The frequency element specifies the frequency of the waveform during the section. The frequency can be the current predetermined resonant frequency, or a value from 50.125 to 561.875 Hz.

Consider an example alert (for a given system) with a 250 Hz sine wave of 2 V_{RMS} amplitude, 700 ms duration, replayed 3 times with 300 ms intervals between; all at sample frequency of Fs = 8 kHz with 8-bit resolution required.

This could be stored as a PCM waveform lasting for the 3 second replay time, but would require a total of 24,000 bytes of storage. A more compact way of storing the alert would be to break it into a set of PWLE parameters.

The following parameters would be needed to be defined for the synthesizer:

- Amplitude = 0.2296 (FFS)
- Frequency = 250 Hz
- On time = 700 ms
- Wait time = 300 ms
- Repeat = 3.

Storing those few parameters needs much less memory than would be required to store the actual waveform samples, but precisely the same output can be synthesized for the alert.

Example 4-1.

The piecewise linear envelope (PWLE) parameters for the synthesizer in this example are given in Table 4-3 below. The first segment is defined by the (time, amplitude, frequency) triplet (120, 0.16234, 200). This triplet represents a waveform segment starting at time 0 at $0V_{PK}$ and extending to 120 ms at 2.0 V_{PK} . The waveform next segment starts at this time and amplitude and extends 80 ms to a final amplitude of 0.9 V_{PK} at 200 ms given by the triplet (80, 0.07305, 200). The sequence continues for the remaining triplets ending at 540 ms at 0 V_{PK} . The output remains at 0 V_{PK} for the 260 ms specified by the wait time and then replays one time.

Table 4-3. PWLE Waveform Example

Item	Value	Units	Notes
Repeat	1	Integer	Repeat once.
Wait Time	260	ms	Restart 260 ms after last point in final segment (800 ms).
Time / Amplitude / Frequency Triplets:	120	ms	0–120 ms
Time	80		120–200 ms
	300		200–500 ms
	40		500–540 ms
	0		(end of list)
Time / Amplitude / Frequency Triplets:	0.16234	Fraction of	Amplifier output voltage ~ 12.32 V x FFS = 2.0 V _{PK}
Amplitude	0.07305	Fullscale	Amplifier output voltage ~ 12.32 V x FFS = 0.9 V _{PK}
·	0.07305	(FFS)	Amplifier output voltage ~ 12.32 V x FFS = 0.9 V _{PK}
	0		Amplifier output voltage ~ 12.32 V x FFS = 2.0 V _{PK}
	0		(end of list)
Time / Amplitude / Frequency Triplets:	200	Hz	All segments use a 200 Hz frequency
Frequency	200		
	200		
	200		
	0		

The piecewise linear envelope template and the ideal synthesized output voltage waveform are shown in Fig. 4-2 below.

Figure 4-2. PWLE Example

4.1.10 GPI Trigger Inputs

Once initialized, the device enters the low power mode known as Always-on Haptic (AoH) Standby to wait for a haptic trigger event to start waveform playback. From Standby, the CS40L25 can trigger playback on rising or falling edge transitions on GPIO1 if using I2S/TDM, or on GPIO1, GPIO3 and GPIO4 if not using I2S/TDM. From Always-on Haptic (AoH) Hibernate, the CS40L25 can trigger playback on rising or falling edge transitions on GPIO1 and/or GPIO4 if not using I2S/TDM. From Standby, the CS40L25B can trigger playback on rising or falling edge transitions on GPIO1 — GPIO4, and from Hibernate on rising or falling edge transitions on GPIO1, GPIO3, and/or GPIO4. After playing the waveform, the device stays active for a configurable timeout period waiting for the GPI pin opposite edge transition which triggers playback of the other waveform selected for that transition. After playback, the device then returns to AoH Standby. If the opposite edge transition does not occur within the timeout period, the device enters a low power state to wait until the triggered GPI pin transitions inactive. In this case, no waveform playback occurs, but the device returns to AoH Standby ready to detect the next edge trigger event.

4.1.11 Haptic Waveform Priority

Haptic waveform commands may originate from different triggers, e.g GPI versus I²C, and there is the potential that a second waveform command occurs while a first waveform is still playing. Such waveform play conflicts are managed by intelligent replacement and queuing logic, according to the waveform command source and the waveform type.

4.1.12 Alerts to Host

The CS40L25/B ALERT pin provides an active low, open-drain interrupt output for the DSP to use to signal the host upon haptic trigger button events, playback end events, and other hardware related error conditions. Configuration of hardware interrupt events and host alerts using the ALERT pin are managed by DSP firmware in coordination with the host device driver.

4.2 Reset

4.2.1 Control Port Soft Reset

The device soft reset register, asserts and deasserts a device level reset to the CS40L25/B. Upon the completion of the soft reset, all register values are returned to their default state.

If using I²C, note that the device address (from the I²C_AD0/SPI_SS and I²C_AD1/SPI_SCLK pins) is not updated upon the completion of a soft reset. In order for the I²C device address to be updated, a chip reset from the RESET pin is required.

4.2.2 VA Power on Reset

The CS40L25/B contains a power-on reset (POR) circuit on the VA supply input. This POR circuit holds the device in reset while VA is not present and ensures that the device is initialized in a known state while the VA voltage is applied. All register information is lost when VA is removed and the VA POR is asserted. Refer to Table 3-1 for a valid operating range of VA and Table 3-13 for VA POR specifications.

4.2.3 Chip-Level RESET

Asserting and deasserting the RESET pin reinitializes the device, putting all registers and device configurations back to their default values and state. The control ports are not accessible while RESET is asserted.

After RESET is deasserted with the 32.768 kHz reference clock applied, the control ports are active and the device boots from the internal boot ROM into Basic Haptics Mode ready to generate haptic alerts when triggered (see Section 4.4.2).

While $\overline{\text{RESET}}$ is asserted, the amplifier weak-drive FETs to ground are enabled resulting in a typical OUT± pull-down resistance of less than 1.00 Ω . Once $\overline{\text{RESET}}$ is deasserted, the amplifier outputs actively switch driving a modulated zero level (i.e., an idle channel) until triggered in Basic Haptics Mode to generate a waveform or until the device power-up sequence is initiated by the host which disables the output.

4.2.4 Device Initialization Sequence

This device initialization sequence is not required to use Basic Haptics Mode, but must be completed as part of the initialization for normal mode following a power-on reset, the deassertion of the RESET input, or the completion of a control-port soft reset as described in Section 4.2.1, Section 4.2.2 and Section 4.2.3. In all cases, the power-up delay t_{IRS} specified in Table 3-14 must be observed before writing this initialization sequence.

Step Operation **Address** Value Write 0x0000 3008 0x000C 1837 Write 2 0x0000 3014 0x0300 8E0E 3 Write 0x0000 0040 0x0000 0055 4 Write 0x0000 0040 0x0000 00AA 5 Write 0x0000 4100 0x0000 0000 6 Write 0x0000 4170 0x002F 0065 0x0000 4360 0x0000 2B4F 7 Write 8 Write 0x0000 4310 0x0000 0000 9 Write 0x0000 0040 0x0000 00CC 0x0000 0040 0x0000 0033 10 Write 0x0000 0000 0x0000 4400 11 Write 12 Write 0x02BC 20E0 0x0000 0000 13 Write 0x02BC 2020 0x0000 0000 14 0x02B8 0080 0x0000 0001 Write 15 Write 0x02B8 0088 0x0000 0001 16 Write 0x02B8 0090 0x0000 0001 17 Write 0x02B8 0098 0x0000 0001 18 Write 0x02B8 00A0 0x0000 0001 19 Write 0x02B8 00A8 0x0000 0001 20 Write 0x02B8 00B0 0x0000 0001 0x02B8 00B8 0x0000 0001 21 Write 0x0000 0001 22 Write 0x02B8 0280 23 Write 0x02B8 0288 0x0000 0001 24 Write 0x02B8 0290 0x0000 0001 25 Write 0x02B8 0298 0x0000 0001 26 Write 0x02B8 02A0 0x0000 0001 27 Write 0x02B8 02A8 0x0000 0001 0x0000 0001 28 Write 0x02B8 02B0 29 Write 0x02B8 02B8 0x0000 0001

Table 4-4. Device Initialization Sequence

4.3 Hibernation Mode

The CS40L25/B features a low-power hibernation mode, AoH Hibernate. In this mode, all register contents are lost, but the contents of RAM are retained. During AoH Hibernate, only always-on digital functions to support wake-up from this retention mode are enabled.

Entry to this mode is achieved via the register interface (either by an external driver using the Control Port, or the programmable DSP). Exit from this mode is configurable and may be triggered by activity on GPIO and/or the SDA/MOSI control port pin. Haptic playback is triggered from GPIO1, GPIO2 or GPIO4 transitions when these wakeup events are configured and enabled. However, control port pin activity detected during AoH Hibernate only triggers the transition to AoH Stanby mode without triggering haptic playback or the decoding of the control port command that triggered the wakeup.

Note: To optimize platform battery life by maximizing the time in CS40L25/B AoH Hibernate mode, avoid sharing the control port bus with other high duty cycle sensors. Any control port activity, not just transactions addressed to the CS40L25/B, trigger it to wake from AoH Hibernate and transition to a momentarily active state where it consumes higher current until the DSP firmware determines there is no haptic processing required and triggers the return to AoH hibernate.

Before the always-on hibernation mode circuitry can be used, it must first be configured as described below.

4.3.1 Setup

Configuration of the hibernation logic is done through the register interface on the device. An internal bus is used to transfer register data written to the device into the hibernation logic. While the device is busy processing a write across this internal bus, WR_PEND_STS is set. Any additional writes made to the hibernation mode registers while WR_PEND_STS is set are blocked.

If configuring the device via the I²C Control Port, write blocking is not a concern as the I²C protocol is slower than the maximum time taken by this internal bus. SPI Control Port accesses where the SPI_CLK is faster than 14 MHz may be affected by write blocking, depending on how quickly subsequent writes can be made, so polling WR_PEND_STS is recommended.

Up to four external pins can be monitored while in AoH hibernate mode. These are selected by WKSRC_EN as shown in Table 4-5. Any combination of these four pins may be selected depending on the required use case.

WKSRC_EN	Monitored Pin
xxx1	GPIO1
xx1x	REFCLK/GPIO2
x1xx	ASP_FSYNC/GPIO4
1xxx	I2C_SDA/SPI_MOSI

Table 4-5. Hibernation Wakeup Configurations Enabled Using WKSRC_EN

By default, a rising edge on an enabled pin causes the device to exit hibernation mode. Alternatively, falling-edge sensitivity can be selected by changing WKSRC POL provided this functionality is enabled by device software.

In order to latch these register settings into the always-on hibernation logic, UPDT_WKCTL must be set. If UPDT_WKCTL is cleared, writes to WKSRC_EN and WKSRC_POL are latched into the device register map (i.e. they can be read-back via the Control Port) but are not latched into the always-on logic.

4.3.2 Memory Ready Flag

The device supports a single bit flag whose value persists while entering and exiting the hibernation state. This flag is configured by MEM_RDY. The value written to MEM_RDY is latched into the always-on hibernation logic, and can be read back using MEM_RDY_STS.

Upon exit from hibernation mode, register settings are set to default values. As a result, the MEM_RDY bit will always read-back 0 in this case. However, the MEM_RDY_STS bit will read back whatever value was programmed into MEM_RDY before hibernation mode was entered.

4.3.3 Entry into Hibernation Mode

Entry into Hibernation Mode is triggered by setting TRIG_HIBER. Entry into hibernation mode must only be triggered by control software once GLOBAL_EN is cleared and the device has fully transitioned into the power-down state (MSM_PDN_DONE_STS1 = 1). Hibernation mode is not supported while WKSRC_EN = 0, so WKSRC_EN must be configured and latched into the always-on logic as described in Section 4.3.1 before setting TRIG_HIBER.

It is recommended to make configuration changes to the PWRMGT_CTL register with TRIG_HIBER = 0 in one write, and then repeat the same write with TRIG_HIBER = 1. This ensures that the configuration of the hibernation logic is completed as expected prior to entering hibernation.

Once TRIG_HIBER is written, the device begins the transition into hibernation. During the transition into hibernation, the device is not capable of capturing pin toggles on the pins being monitored. Once the hibernation mode is reached, the pin transitions are captured.

4.3.4 Exit from Hibernation Mode

Exit from hibernation mode occurs once the first enabled wake source signal defined by WKSRC_EN transitions from low to high (or high to low if the polarity is reversed by WKSRC_POL). The chip transitions from hibernation mode into standby mode, the device registers are reset and the Control Port is available. The time taken for this transition to complete and the device being ready to use is t_{IW} in Table 3-14.

The source responsible for causing the exit from hibernation mode is reflected in the WKSRC_STS field. This field is cleared when the device is commanded to enter hibernation mode by TRIG HIBER = 1.

If an exit Hibernation event occurs concurrently with an enter Hibernation event, the CS40L25/B nonvolatile memory (RAM) may not be transferred to the control port or the DSP core. To protect against such a collision, the host must administer the following sequence upon every wake-up attempt:

- 1. Read back the firmware ID1, FW ID, from register address 0x0280 000C.
- 2. If firmware ID is the expected value, the device has exited Hibernation mode.
- 3. If firmware ID is not the expected value, the device must go through another Hibernate cycle as follows:
 - a) Write TRIG HIBER = 1 with MEM RDY = 1,
 - b) Exit from Hibernation Mode.

4.3.5 Example Configuration Sequence

The following sequence shows how to typically enable hibernation mode on the device:

- 1. Set GLOBAL EN = 0.
- 2. Wait t_{AMP PDN} (see Table 3-4) or until MSM_PDN_DONE_STS1 = 1.
- Configure WKSRC_EN and WKSRC_POL as required, and set UPDT_WKCTL to latch the values into the hibernation logic.
- 4. Set MEM RDY if RAM memory has been initialized and is ready for execution from RAM.
- 5. Set TRIG HIBER.

4.4 Basic Haptics Mode Operation

The CS40L25 and CS40L25B <u>provide</u> the ability to play haptic waveforms without initialization of the device RAM memory. This support is provided after RESET deassertion using Basic Haptics Mode. Basic Haptics Mode effects can be triggered by a control port write or GPI transition. Basic Haptics Mode requires only a minimum set of RAM parameter writes to configure haptic effect parameters, and default values for these parameters may be used to enable haptic playback triggered by power management or battery charging circuitry prior to boot-up of the host system main processor and operating system.

Basic Haptics Mode delivers only a subset of the haptic functionality available while running from RAM in Normal Mode, and does not include advanced power saving and standby states. The transition from Basic Haptics Mode to normal mode is done by control port commands. Datasheet specifications for power consumption apply in Normal Mode, not in Basic Haptics Mode.

While using Basic Haptics Mode, the external host processor may not configure any other device registers except those required to exit Basic Haptics Mode. ROM firmware is responsible for all device register configuration in Basic Haptics Mode. Although there is no hardware mechanism to block control port register write accesses by the host processor, they are not permitted in Basic Haptics Mode. Trigger-to-haptic latency specifications apply in Normal Mode, not in Basic Haptics Mode.

^{1.} Refer to firmware release notes.

4.4.1 Entering Basic Haptics Mode

The CS40L25 and CS40L25B enter Basic Haptics Mode operation upon deassertion of the RESET pin. These devices are pre-configured to accept their clock reference from a specific pin, so the device variant (CS40L25 or CS40L25B) must match the pin connection scheme used on the PCB. See the Typical Connection Diagrams in Fig. 2-1 – Fig. 2-4.

Basic Haptics Mode is available following the device initialization interval t_{IRS} (see Table 3-14). Basic Haptics Mode generates an interrupt upon completion of device initialization. The device is ready when Amp_Status (address 0x0280 018C) = 0x1. Refer to Table 4-6.

4.4.2 Using Basic Haptics Mode

Basic Haptics Mode. running from ROM, enables single frequency haptic vibration effects triggered by a GPI transition, or a control port write. Basic Haptics Mode initializes with default parameters which may be used or modified through the control port. Values are read/write accessible in the following control-port addresses shown in Table 4-6.

Name Address **Default Value** Description GPIO_trigger_edge 00280 0178 0x1 (CS40L25) Determines which edge of each available GPIO will trigger haptic playback. 0x5 (CS40L25B) • 0x0 All GPIs disabled. • 0x01 GPIO1 rising edge detection enabled. • 0x02, GPIO1 falling edge detection enabled. 0x04 GPIO2 rising edge detection enabled. · 0x08 GPIO2 falling edge detection enabled. 0x10 GPIO3 rising edge detection enabled. • 0x20 GPIO3 falling edge detection enabled. • 0x40 GPIO4 rising edge detection enabled. • 0x80 GPIO4 falling edge detection enabled. Note: The CS40L25 supports GPIO1 triggering only. Note: The CS40L25B supports GPIO1, 2, 3, and 4 triggering with bitwise OR'ed combinations of these enumerated values. Buzz Freq 0x0280 017C 160 Sets the frequency of the Haptic output. Set in 1 Hz granularity. (160 Hz) Sets the Root Mean Square (RMS) voltage level of the haptic output. Set in 0.01 V_{RMS} Buzz Level 0x280 0180 200 (2.00 V_{RMS}) aranularity. **Buzz Duration** 0x280 0184 125 Sets the duration of the Haptic effect. Set in 0.004s granularity using the value calculated (0.5 s duration) BUZZ DURATION = duration in ms / 4. 0x0280 0188 Set to 0x1 to trigger a haptic effect. This bit is cleared once the request is detected. Buzz_Trigger 0 0x0280 018C The run and error state of the amplifier. These error bits are persistent and will remain set Amp Status even after if the error conditions have cleared. · 0 No status. · 0x1 The device booted correctly. · 0x2 OTP unpacking error detected. · 0x4 Output short error detected. 0x8 Temperature increase warning detected. 0x10 Over-temperature error detected.

Table 4-6. Basic Haptics Mode Register Controls

Note: These registers are not available and may not be accessed after exiting Basic Haptics Mode.

4.4.3 Exiting Basic Haptics Mode

Basic Haptics Mode persists until the host driver configures RAM memory and switches the device to operate from RAM.

4.5 Class D Amplifier

The CS40L25/B amplifier incorporates a high-performance digital PWM generator feeding into a closed-loop Class D modulator.

Figure 4-3. Class D Amplifier Block Diagram

4.5.1 Amplifier PWM Output Edge Control

The amplifier's PWM output edge control registers allow configuration of the rise and fall times of the PWM switching on the amplifier's outputs (OUT±).

4.5.2 OUT± Shorts Detection

To determine whether the OUT+ or OUT- pins are shorted together, to GND or to VAMP, a comparison of the expected PWM output is made versus the actual OUT± output. If a large enough difference is detected, an amplifier output short error is reported and the device enters Actuator-Safe Mode to prevent damage to the device or system. For an OUT± short to GND or short to VBST condition, no output signal is required. However, for an OUT+ to OUT- shorts condition to be observed, a large enough, nonzero haptic signal must be applied to produce a measurable difference on the PWM outputs.

Upon detection of an amplifier output short, the amplifier enters Actuator-Safe Mode and optionally asserts an ALERT interrupt to the host.

4.5.3 Amplifier Outputs While in Reset

While $\overline{\text{RESET}}$ is asserted, the CS40L25/B grounds OUT±. Once $\overline{\text{RESET}}$ is released, the amplifier outputs are Hi-Z until the device power-up sequence is initiated.

4.6 Digital Boost Converter

The digital boost converter consists of three ADCs and two digital control loops. The three ADCs measure the VP voltage, VBST voltage, and inductor current through the boost converter's N-FET. This digitized voltage and current information is then provided to the digital boost converter's controller for processing.

This converter uses a digitized control loop based on a current-controlled synchronous boost converter architecture that continually monitors the L_{BST} inductor current during boosted operation. The outer control loop takes the digitized VBST voltage and the digitized current information provided by the inner loop to regulate the boosted voltage to the desired level between VBST_{MIN} and VBST_{MAX} (see Table 3-6).

Figure 4-4. Digital Boost Converter Block Diagram

4.6.1 Inductor Current Limiting

The boost FET peak-current limit governs the peak current that is allowed to flow through the inductor during each on cycle of the boost FET. The boost FET is turned off either when the ON time of the boost FET reaches the ON time required by the controller or when it hits the boost peak-current limit. This boost current is quantized and sent to the digital boost converter control block for processing.

4.6.1.1 Peak Current Limiter

If the current demands on the output net of the boost converter (VBST) force the inductor current to reach the configured limit (I_{SW} set by BST_IPK), the boost converter limits the current through the L_{BST} inductor. If the loading on VBST remains while the current is being limited, the boost converter's output voltage may droop below its configured voltage.

4.6.2 VBST Overvoltage and Undervoltage Protection and Errors

The digital boost converter contains integrated monitoring and protection for high VBST voltage conditions. This protects against damage of both the CS40L25/B and its surrounding components.

4.6.2.1 VBST Overvoltage Protection Threshold

If a change in configuration, the system environment, or loading transient causes the VBST voltage to rapidly increase, a safety response is triggered and the controller actively limits the maximum VBST voltage (VBST_{PROT} set by BST_OVP_THLD). After the VBST voltage is reduced back to its configured VBST voltage, the digital boost converter returns to normal operation.

4.6.2.2 VBST Overvoltage Protection Enable

For most operational conditions, it is recommended that the VBST overvoltage protection is enabled (by setting BST_OVP_EN) to help protect external components such as the C_{BST} capacitor.

4.6.3 L_{BST} Selection and Boost Converter Configuration

The CS40L25/B allows the flexibility of using an L_{BST} inductance of 2.2 μ H to 1.0 μ H. The selected L_{BST} inductor must not derate to a value of less than 0.7- μ H under any condition. Depending on the manufacturer, load rating, parasitics, and type of inductor, the derating characteristics of a specific inductor can vary widely. If a given L_{BST} inductor can derate to 0.7- μ H or below, it is not considered to be fully compatible with the CS40L25/B.

The digital boost converter contains controls allowing the digital boost converter's control loop to be configured for different boost converter external component configurations (L_{BST} and C_{BST}) or system-level requirements. These configurations are listed in Table 4-7.

Name	Register Cross-Reference	Field Description
Boost converter coefficient 1	BST_K1	BST_K1 and BST_K2 are used to adjust the boost converter's feedback loop to
Boost converter coefficient 2	BST_K2	compensate for the changes produced by using a different L _{BST} inductance or different system requirements. Note: Adjusting for a lower inductance reduces the loop bandwidth.
Boost converter slope compensation	BST_SLOPE	BST_SLOPE allows for adjustment of the boost converter's internal ramp-gen slope to compensate for the changes produced by a using a different L _{BST} inductance.
Boost converter target inductance value	BST_LBST_VAL	BST_LBST_VAL seeds the digital boost converter's inductor estimation block with an initial seeded reference value.
Boost converter switching frequency	BST_CCM_FREQ	BST_CCM_FREQ controls the fundamental output switching frequency of the digital boost converter's SW net.

Table 4-7. Boost Converter L_{BST} Inductor Configuration Bits

The recommended configurations for example L_{BST} inductor values are listed in Table 4-8. All configurations assume a maximum of 30% derating below the typical value under all operating conditions.

Typical L _{BST} (µH)	Derated C _{BST} (µF)	BST_K1	BST_K2	BST_SLOPE	BST_CCM_FREQ	BST_LBST_VAL
2.2	<20	0x40	0x48	0x28	0x0	0x3
	20-50	0x32	0x49			
	51–100	0x32	0x66			
	101–200	0x4F	0xA3			
	>200	0x57	0xEA			
1.5	<20	0x40	0x48	0x3B	0x0	0x2
	20-50	0x32	0x49			
	51–100	0x32	0x66			
	101–200	0x4F	0xA3			
	>200	0x57	0xEA			
1.2	<20	0x24	0x24	0x6B	0x0	0x1
	20–50	0x32	0x49			
	51–100	0x32	0x66			
	101–200	0x4F	0xA3			
	>200	0x57	0xEA			
1.0	<20	0x24	0x24	0x75	0x0	0x0
	20-50 0x32 0x49					
	51–100	0x32	0x66			
	101–200	0x4F	0xA3	7		
	>200	0x57	0xEA			

Table 4-8. Recommended Configurations for Common L_{BST} Values

4.6.3.1 Boost Converter Integrator Gain—K1 Coefficient

The boost converter integrator gain configuration is adjusted using BST_K1. This allows the user to adjust the outer loop (voltage) feedback response of the digital boost converter. It is recommended to use the configuration values listed in Table 4-8 based on the value of the selected L_{BST} inductor.

BST_K1 maintains the relationship in Eq. 4-2.

$$BST_K1 = \frac{\frac{1}{(R_{IN} \times C_{FB})}}{\frac{4096}{}}$$

Equation 4-2. BST_K1 Virtual Circuit Equation

4.6.3.2 Boost Converter Proportional Gain—K2 Coefficient

The boost converter proportional gain configuration is adjusted using BST_K2. This allows the user to adjust the outer loop (voltage) feedback response of the digital boost converter. It is recommended to use the configuration values listed in Table 4-8 based on the value of the selected L_{BST} inductor.

BST K2 maintains the relationship in Eq. 4-3.

$$BST_K2 = \frac{R_{FB}}{R_{IN}} \times 16$$

Equation 4-3. BST_K2 Virtual Circuit Equation

4.6.3.3 Boost Converter Slope Compensation

The boost converter's slope compensation is adjusted using BST_SLOPE. It is recommended to use the configuration values listed in Table 4-8 based on the value of the selected L_{BST} inductor.

4.6.3.4 Boost Converter Switching Frequency

The boost converter switching frequency is adjusted using BST_CCM_FREQ and allows the user to adjust the output switching frequency of the boost and rectification FETs.

Eq. 4-4 provides a formula for calculating the f_{BST_SW_FREQ}. The output switching frequencies will scale with an increased or decreased f_{PLL_OUT}. For most operating conditions it is recommended to leave BST_CCM_FREQ at its default configuration.

$$f_{BST_SW_FREQ} = \left(\frac{f_{PLL_OUT}}{8 \times (12 + BST_CCM_FREQ)}\right)$$

Equation 4-4. Boost Converter CCM Switching Frequency

4.7 Signal Monitoring

Signal-monitoring ADCs, shown in Fig. 4-5, allow the internal algorithm to read the amplifier output voltage and current.

Figure 4-5. Signal Monitoring Block Diagram

The signal and supply monitoring is as follows:

- VMON—Monitors the output voltage of the Class D amplifier via the VSNS± pins.
- IMON—Monitors the current that flows into the load being driven by the Class D amplifier.

An integrated ADC digitizes each of these analog signals. MON_FILT_RESP must be set only while using a sample rate greater than 48 kHz in order to optimize the VMON and IMON signal path filter response.

4.7.1 IMON to VMON Isolation

A high level of IMON-to-VMON isolation is necessary to make sure that the current monitoring circuitry does not report a load voltage signal as a load current. The IMON circuitry is measuring a small differential signal riding on top of a relatively large common mode signal. Good IMON-to-VMON isolation is important for actuator protection accuracy, algorithm robustness, and enables the user to push the performance of the actuator as close to its limits as possible.

4.8 VP and VBST Brownout Prevention

The VP and VBST brownout prevention blocks, shown in Fig. 4-6, are used to help prevent the system battery supply (typically connected to the CS40L25/B VP input) or the VBST voltage from drooping. When enabled, these features detect when the VP or VBST, respectively, fall below error thresholds. Either error triggers attenuation of the output to reduce battery current and/or boost supply current and reduce the risk of browning out the system when the battery is in a weakened condition.

The VP brownout prevention continually monitors the VP voltage through the VPMON supply monitoring block. The VBST brownout prevention continually monitors the VBST voltage through the VBSTMON supply monitoring block. The VP brownout prevention and VBST brownout prevention are independent functional blocks with independent controls (e.g., VPBR_x and VBBR_x). VPMON_EN and VBSTMON_EN do not need to be set in order for the VP and VBST brownout prevention to be functional.

The VBST brownout prevention monitors the actual VBST supply compared against the target VBST supply required for the signal to be reproduced by the amplifier without clipping. If the actual VBST voltage has dropped a user configurable amount below the target VBST voltage, a response is triggered to attenuate the output signal in order to prevent the amplifier's output stage from clipping the waveform.

There are three main states to the VP and VBST brownout prevention block: attack, wait, and release. Fig. 4-7 provides a state diagram for the VP brownout prevention. The VBST brownout prevention is similar, only that the user configurable threshold VBBR_THLD1 is compared against a voltage difference where VBST_{ACTUAL} – VBST_{TARGET} < headroom and VBST_{ACTUAL} – signal_{TARGET} < headroom instead of a raw voltage (see Section 4.8.2.2). The VBST brownout prevention state diagram is shown in Fig. 4-8.

Figure 4-6. VP Brownout Prevention Overview

Figure 4-7. VP Brownout Prevention State Diagram

Figure 4-8. VBST Brownout Prevention State Diagram

The attack state is when the measured VP or VBST voltage has violated the initial threshold voltage (VP_{BR_1} or VBST_{BR_1}). This triggers an error condition (VPBR_FLAG_EINT1, or VBBR_FLAG_EINT1), and the output volume is digitally attenuated to rapidly reduce the device power consumption due to the amplifier loading. The initial threshold voltage are set using VPBR_THLD1 and VBBR_THLD1 controlling the state of the VP and VBST brownout prevention respectively. The VP and VBST thresholds are described in more detail in Section 4.8.2.1 and Section 4.8.2.2.

If the VP or VBST supply voltage remains below Vx_{BR_1} , the digital volume is continually reduced by a volume step size of VOL_{VxBR_ATK} at a time rate of t_{VxBR_ATK} until reaching the attenuation limit, as configured by $VxBR_MAX_ATT$. If the VP or VBST voltage continues to fall below Vx_{BR_2} or Vx_{BR_3} , justifying a more aggressive response, the VOL_{VxBR_ATK} volume step size is automatically increased, as described in Section 4.8.2.3. This independently is applicable to the VBST brownout prevention, with its associated register configurations and thresholds.

A flowchart of the brownout prevention attack state and a description of its stages are shown in Fig. 4-9.

Figure 4-9. Attack State Flowchart

If the brownout prevention error condition clears, the wait state is entered. The wait state allows the supply voltage to settle and possibly recover after the reduction in amplifier loading that was produced by reducing the volume during the attack state. If the error remains cleared for a time, t_{VxBR_WAIT} , the controller exits the wait state and enters the release state. If at any time the brownout prevention error returns, the controller exits the wait state and returns to the attack state.

4.8.1 VP and VBST Brownout Prevention Enables

The VP brownout prevention block can be independently enabled using the VPBR_EN bit and the VBST brownout prevention block can be enabled using the VPBR_EN bit. The brownout blocks must be enabled for action to be taken when either of the supplies' voltage falls below the user configured threshold. The enable state of one supply monitor does not impact the enable state of the other.

If VxBR_EN is cleared to disable the functionality while attenuation is being applied, the attenuation is first completely released prior to the VPBR or VBBR functionality being disabled. When disabled, the attenuation is automatically released back to 0 dB at the configured release rate (VxBR_REL_RATE) for the respective block. The attenuation release on power-down occurs independent of the VxBR_REL_AUTO configuration (see Section 4.8.2.9).

Enabling the VP brownout prevention and VBST brownout prevention automatically enables the VPMON and VBSTMON ADCs respectively.

4.8.2 VP and VBST Brownout Prevention Voltage Thresholds

The VP and VBST brownout prevention threshold configurations are handled independently from each other and are determined by monitoring the absolute VP supply voltage and the VBST supply voltage relative to the output signal, respectively. Both brownout prevention blocks utilize a multi-threshold approach in order to minimize the over-attenuation which can often occur with a single threshold response.

The initial response thresholds VP_{BR_1} and $VBST_{BR_1}$ thresholds are configured by the user (see Section 4.8.2.1 and Section 4.8.2.2). The second and third brownout thresholds are based on deltas from the user configured VP and VBST thresholds (refer to Table 3-10). As the voltage drop from the initial threshold becomes larger, so does the attenuation step size response.

4.8.2.1 VP Brownout Prevention Initial Voltage Threshold

The VP brownout prevention initial voltage threshold, VPBR_THLD1, configures the VP supply voltage at which the VP brownout initially starts responding (VP_{BR_1}). If the VP supply voltage falls below the configurable threshold, an error condition is triggered and the VP brownout responds by entering an attacking state.

4.8.2.2 VBST Brownout Prevention Initial Voltage Threshold

The VBST brownout prevention initial voltage threshold, VBBR_THLD1, configures the threshold that determines whether the difference between the target VBST supply voltage and the measured VBST supply is large enough to trigger an error condition VBST_{TARGET} – VBST_{MEAS} = VBST_{DELTA}. If the VBST_{DELTA} is large enough to exceed the configured VBBR_THLD1 an error condition is triggered and the VBST brownout prevention responds by entering an attacking state.

The VBSTMON is used to determine the VBST_{MEAS}, which is compared against the target VBST voltage (VBST_{TARGET}).

4.8.2.3 Brownout Prevention Attack Volume/Gain

The VP and VBST brownout prevention attack volume step sizes are configurable via VPBR_ATK_VOL and VBBR_ATK_VOL. The VOLVPBR ATK and VOLVBBR ATK responses are listed for each of the voltage thresholds in the Table 4-9.

The VPBR_ATK_VOL configures the amplitude of the attenuation step for each of the three VP voltage thresholds. During an attacking phase, the reactive VP brownout's volume response per step period is controlled by the configurable VPBR_THLD1 and two other preconfigured threshold ranges. This multithreshold approach allows the attenuation response to scale with how far below that user-configurable threshold the VP voltage has dropped.

The multithreshold approach has advantages over a single threshold approach. It reduces the overcorrection that can occur with a larger fixed-amplitude response when triggered by a marginal condition, while still allowing for a more aggressive response when the voltage supply conditions dictate it to be necessary. If the VP or VBST voltage is right at the VxBR_THLD1 voltage and the brownout prevention response triggers a drop in power consumption, the supply voltage can quickly recover. This may lead to a situation where the volume transitions back and forth between an error and non-error conditions with a larger corrective step. The multithreshold approach is designed to reduce this repetitive pumping pattern of attacking and releasing which can occur with single threshold solutions.

VPBR_ATK_VOL or VBBR_ATK_VOL	VOL _{VxBR_1} Attack Attenuation (dB/step)	VOL _{VxBR_2} Attenuation (dB/step)	VOL _{VxBR_3} Attenuation (dB/step)
000	0.0625	0.125	0.250
001	0.125	0.250	0.500
010	0.250	0.500	1.000
011	0.500	1.000	2.000
100	0.750	1.500	3.000
101	1.000	2.000	4.000
110	1.250	2.500	5.000
111	1.500	3.000	6.000

Table 4-9. Volume Attack Step Size

Fig. 4-10 shows an example of the multithreshold VP brownout prevention mechanism's impact on the effective digital volume of the amplifier output path for a relatively slow-falling VP supply.

Figure 4-10. Reactive Brownout Prevention Attack — Slow VP

In this case, the VP supply spends multiple attack periods below each VP voltage threshold as the VP supply falls. Once VP falls below VP_{BR_1} (specified in Table 3-10), VOL_{ATK1} attenuation level is applied following the initial response attack time t_{VPBR_1} . Over the course of each subsequent attack time (t_{VPBR_ATK}), the VP brownout prevention mechanism evaluates the VP supply level relative to VP_{BR_1} , VP_{BR_2} , and VP_{BR_3} (specified in Table 3-10) and applies one of three VOL_{ATK} attenuation levels accordingly. As long as the brownout condition persists, attenuation is applied until the maximum allowable attenuation ($VPBR_{ATT-LIM}$, specified in Table 3-10) has been applied. See Section 4.8.2.5 for details.

Fig. 4-11 shows a relatively fast-falling VP supply that drops below the lowest VP voltage threshold (VP_{BR_3}) before the completion of one full attack period (t_{VPBR_ATK}). Following the VP supply falling below VP_{BR_1} such that VOL_{ATK1} attenuation levels is applied, the VP supply rests below VP_{BR_3} for a large enough portion of the first full attack period that the largest of the three VOL_{ATK} attenuation levels is applied. In this case, the VOL_{ATK2} attenuation level is skipped completely.

Figure 4-11. Reactive Brownout Prevention Attack — Fast VP

The digital volume may optionally be muted upon the reactive VP brownout attenuation saturating to VPBR_{ATT-LIM}; see Section 4.8.2.6 for more information.

Although these examples describe VP brownout sequences, similar behavior occurs with VBST brownout.

4.8.2.4 Brownout Prevention Attack Rates

The attack rate register fields, VPBR_ATK_RATE, and VBBR_ATK_RATE, configure the time between consecutive VP and VBST brownout prevention volume attenuation adjustments when an error condition remains present. The attack rate control does not affect the timing of the initial attacking response (t_{VPBR_I} or t_{VPBR_I}) when a VP or VBST brownout prevention error first occurs, only the time between consecutive attacking volume attenuation adjustments (t_{VXBR_ATK}).

The typical VxBR_ATK_RATE times are based on f_{PLL_OUT} = 192 MHz. The VxBR_ATK_RATE configurations can have a ±1 µs time period error per step relative to their typical configured value. When using an f_{PLL_OUT} other than 192 MHz, the step timings scale by 192 MHz/ f_{PLL_OUT} . For more information on the different f_{PLL_OUT} frequencies, refer to Section 4.10.

The VxBR_ATK_RATE, when combined with the dynamic nature of the Digital Mode's multithreshold VOL_{VxBR_ATK} response, allows the VP and VBST brownout prevention responses to be easily tuned for a variety of reactions based on the power supply characteristics of the end system.

4.8.2.5 Brownout Prevention Max Attenuation

The VP and VBST brownout prevention maximum attenuation allows the user to control the maximum attenuation that the VP or VBST brownout can apply to the signal. Even if an error condition remains present, the brownout prevention only attenuates the signal up to the limit configured by VxBR_MAX_ATT. The VPBR_MAX_ATT attenuation and VBBR_MAX_ATT attenuation limits are configurable in increments of 1 dB, from 1 dB up to 15 dB.

4.8.2.6 Brownout Prevention Mute Enable

During the attack state, if the error volume attenuation has reached VxBR_MAX_ATT with the error condition still present, the output is muted if the VPBR_MUTE_EN bit is set for a VP brownout prevention error and the VBBR_MUTE_EN bit is set for a VBST brownout prevention error. The output remains muted until the error condition has cleared and the brownout prevention enters a releasing state.

The VPBR_MUTE_EN and VBBR_MUTE_EN must not be changed after an error condition has occurred and attenuation is present or the signal is being muted.

4.8.2.7 Brownout Prevention Release Volume Steps

The digital volume attenuation produced from a reactive VP or VBST brownout prevention error condition is released at a step size of 0.0625 dB/period (VOL_{VxBR_REL}). The small steps minimize any pumping effects or transients that can occur with larger volume step sizes.

4.8.2.8 Brownout Prevention Release Rates

VPBR_REL_RATE and VBBR_REL_RATE configure the time between consecutive VP and VBST brownout prevention volume attenuation adjustments (t_{VxBR_REL}) while in the release state and when no error conditions are present for each block.

The typical VxBR_REL_RATE times are based on $f_{PLL_OUT} = 192$ MHz. The VxBR_REL_RATE configurations can have a ± 1 ms time period error per step relative to their typical configured value. When using an f_{PLL_OUT} other than 192 MHz, the step timings scale by 192 MHz/ f_{PLL_OUT} . For more information on the different f_{PLL_OUT} frequencies, refer to Section 4.10.

4.8.2.9 Brownout Prevention Automatic Release

VPBR_REL_AUTO and VBBR_REL_AUTO configure whether the VP and VBST brownout prevention enter a configurable wait state with an automatic release when no error conditions are present or require the user to manually trigger the respective block's release.

When configured for an automatic release (VxBR_REL_AUTO = 1), the VxBR_WAIT period (see Section 4.8.2.9) is used to determine the amount of time the brownout prevention remains in the wait state before releasing. Otherwise, when configured for a manual release (VxBR_REL_AUTO = 0), the brownout prevention remains in the wait state until the VPBR_REL_TRIG or VBBR_REL_TRIG is triggered (see Section 4.8.2.11) for the respective block.

If a VP brownout error or VBST brownout error condition re-occurs while in the wait state, the brownout prevention returns back to the attack state for the respective block.

4.8.2.10 Brownout Prevention Automatic Wait

VPBR_WAIT and VBBR_WAIT configure the time (t_{VxBR_WAIT}) after the brownout prevention exits the attack state and no error conditions are present, before automatically proceeding to the release state.

The typical VxBR_WAIT times are based on f_{PLL_OUT} = 192 MHz. The VxBR_WAIT configurations can have a ±1 ms time period error relative to their typical configured value. When using an f_{PLL_OUT} other than 192 MHz, the step timings scale by 192 MHz/ f_{PLL_OUT} . For more information on the different f_{PLL_OUT} frequencies, refer to Section 4.10.

4.8.2.11 Brownout Prevention Manual Release Trigger

When the VP or VBST brownout prevention is configured for a manual release (VxBR_REL_AUTO = 0), the VPBR_REL_TRIG is used to exit the wait state and enter the release state for VP brownout prevention, and the VBBR_REL_TRIG is used to exit the wait state and enter the release state for VBST brownout prevention. If the manual release is not triggered and no brownout prevention error is present, the brownout prevention will remain in the wait state as long as it is powered up.

Figure 4-12. VP or VBST Brownout Prevention Manual Release

4.8.2.12 Brownout Prevention Attenuation Status

VPBR_STATUS and VBBR_STATUS are read-only register fields that report how much (if any) attenuation is applied to the output signal by the VP brownout prevention and VBST brownout prevention control. The applied attenuation (VOLVXBR) value is rounded up to the nearest 0.0625 dB increments when reported by the VxBR_STATUS register field. It reports 0 dB attenuation when no attenuation is being applied by the brownout prevention.

4.8.2.13 Brownout Prevention Mute Status

If the VxBR_MUTE_EN option (Section 4.8.2.6) is enabled and the VP or VBST brownout prevention has muted the output, the VPBR_STATUS_MUTE or VBBR_STATUS_MUTE is set, indicating that the output has muted for the respective block.

4.8.2.14 Brownout Prevention Error Conditions and Attenuation Clear

If a VP brownout prevention error or VBST brownout prevention error occurs, the VPBR_FLAG_EINT1 or VBBR_FLAG_EINT1 flags are set. Once the error condition has cleared and any attenuation that has been applied has cleared and returned to 0 dB, the VPBR_ATT_CLR_EINT1 or VBBR_ATT_CLR_EINT1 flags are set indicating that attenuation is no longer being applied to the amplifier's output.

4.8.3 VP and VBST Brownout Prevention Fault/Error Conditions

Table 4-10 lists the available error and flag bits for the VP and VBST brownout prevention.

Table 4-10. VP and VBST Brownout Prevention Error Status and Mask Bits

Error	Cross-Reference to Description
VP brownout prevention error	VPBR_FLAG_EINT1
VP brownout prevention error mask	VPBR_FLAG_MASK1
VP brownout prevention attenuation clear	VPBR_ATT_CLR_EINT1
VP brownout prevention attenuation clear mask	VPBR_ATT_CLR_MASK1
VBST brownout prevention error	VBBR_FLAG_EINT1
VBST brownout prevention error mask	VBBR_FLAG_MASK1
VBST brownout prevention attenuation clear	VBBR_ATT_CLR_EINT1
VBST brownout prevention attenuation clear mask	VBBR_ATT_CLR_MASK1

Die Temperature Monitoring

Onboard monitoring of the die temperature is integrated to prevent the CS40L25/B from reaching a temperature that would compromise reliability or functionality. The CS40L25/B incorporates a two-threshold thermal-monitoring system. When die temperature exceeds the lower threshold, an overtemperature warning event occurs; if it exceeds the second threshold, an overtemperature error condition occurs.

Die over-temperature protection thresholds and protection behavior, including optional generation of alert interrupt, are configured by the device driver and programmable DSP. Additionally, the die temperature can be read-back via the register map.

The controls for the temperature monitoring are shown in Fig. 4-13.

Figure 4-13. Die Temperature Monitoring Block

4.9.1 Temperature Monitoring Enable

The CS40L25/B supports independently enabling or disabling the temperature monitoring via TEMPMON EN. The temperature monitoring can be enabled when operating in a low power mode. However, whenever the boost converter or amplifier are enabled and operating, the temperature monitoring is automatically enabled for purposes of thermal protection. Both overtemperature warning and error functions, their effects and associated interrupts, are active when the temperature monitoring is enabled either manually or automatically.

The boost converter and amplifier contain large FETs to various supplies and GND. If the die is operating outside of the specified operational temperature (see Table 3-2) and in a thermal error condition, the boost converter and amplifier are not allowed to become active for purposes of device and system level protection.

4.9.2 **Die Temperature Measurement Configuration**

The die temperature is first digitized by an ADC before being made available for optional averaging. The number of samples used in the moving average filter is configured by TEMP_FILT_SEL. Changes to the depth of the averaging filter will apply to all downstream blocks configured to use the filtered die temperature result.

The overtemperature warning and error blocks can use either the filtered or unfiltered die temperature result using TEMP WARN ERR SEL. Similarly, the die temperature made available to the PCM data routing and selection block using TEMP OUT SEL.

The unfiltered result can be read via the control port using TEMP_RESULT_UNFILT. The filtered result can be read via the control port using TEMP RESULT FILT.

4.9.3 Die Temperature Overtemperature Warning

An overtemperature warning event occurs when the die temperature exceeds the threshold set by TEMP_WARN_THLD. The programmable die temperature thresholds are described in Table 3-11. When the die temperature exceeds the programmed threshold, a TEMP_WARN_RISE_EINT1 event is registered in the interrupt status and, if TEMP_WARN_RISE_MASK1 = 0, ALERT is asserted.

In addition to TEMP_WARN_RISE_EINT1 being set and the interrupt pin being asserted (if the error is not masked), additional protection attempts to limit further increases in die temperature. This is done by applying a programmable attenuation to the program material being amplified. TEMP_WARN_VOL is provided to program how much attenuation is applied to the signal. The amplifier's output attenuation is applied in accordance with the AMP_RAMP_PCM.

To exit the warning condition, the die temperature must drop below the threshold set by TEMP_WARN_THLD and the release bit, TEMP_WARN_RLS, must be sequenced. This will also remove the attenuation applied during the overtemperature warning event. When the die temperature drops below the programmed threshold, a TEMP_WARN_FALL_EINT1 event is registered in the interrupt status.

4.9.4 Die Temperature Overtemperature Error

An overtemperature error event occurs when the CS40L25/B die temperature exceeds the error threshold shown in Table 3-11. If the die temperature exceeds this threshold, an TEMP_ERR_EINT1 event is registered in the interrupt status register and, if TEMP_ERR_MASK1 = 0, the interrupt pin is asserted.

On an overtemperature error event, the CS40L25/B enters Actuator-Safe Mode, described in Section 4.5.2.

To exit the error condition, the die temperature must drop below the value in Table 3-11 and the release bit, TEMP_ERR_ RLS must be toggled.

4.9.5 Die Temperature Monitoring Fault/Error Conditions

Table 4-11 provides links to error status and mask bits associated with components shown in Table 4-11.

Error	Cross-Reference to Description
Overtemperature warning rise	TEMP_WARN_RISE_EINT1
Overtemperature warning rise mask	TEMP_WARN_RISE_MASK1
Overtemperature warning release	TEMP_WARN_RLS
Overtemperature warning fall	TEMP_WARN_FALL_EINT1
Overtemperature warning fall mask	TEMP_WARN_FALL_MASK1
Overtemperature warning release	TEMP_WARN_RLS
Overtemperature error	TEMP_ERR_EINT1
Overtemperature error mask	TEMP_ERR_MASK1
Overtemperature error release	TEMP ERR RLS

Table 4-11. Die Temperature Monitoring Error Status and Mask Bits

4.10 Device Clocking and Reference Clock Configurations

The device requires a 32.768 kHz reference clock any time waveforms are being generated. The reference clock is not required in order to read/write registers via the control port. Depending upon system design requirements, this clock source may be provided on one of two input pins. When one GPIO input (to trigger haptic events) and the haptic I²S serial port is required, the clock is provided on the REFCLK/GPIO2 pin as shown in Fig. 2-1 and Fig. 2-3. When more than one GPIO input to trigger haptic events is required, the clock is provided on the ASP_BCLK/REFCLK pin as shown in Fig. 2-2 and Fig. 2-4.

The reference clock is multiplied up to a 196.6080 MHz main clock by a PLL system. Clocks for all subsystems are generated from the main clock, $MCLK_{INT}$ ($F_{MCLKINT} = F_{PLL} / 16 = 12.288$ MHz). Device software enables the PLL any time that waveforms are being generated. Device software disables the PLL for lowest current consumption during always-on-haptic standby while not generating waveforms.

4.11 Auxiliary Serial Port Data Interface

The CS40L25 provides an auxiliary serial port data interface (ASP), which operates in slave mode supporting I2S and TDM formats.

The serial port interface supports three pins:

- · ASP DIN: serial data input (receive)
- ASP BCLK: serial data bit clock, for synchronization
- ASP_FSYNC: left/right or frame synchronization alignment clock

The serial interface formats are described in Section 4.11.1. The bit order is MSB-first in each case. Refer to Table 3-18 for signal timing information.

The sample rate for streamed haptic waveforms is fixed at 48 kHz. The ASP configuration is performed by the host.

As shown in Fig. 4-14, the CS40L25's serial port accepts an externally generated clock and frame sync (ASP_BCLK and ASP_FSYNC).

Figure 4-14. ASP_BCLK and ASP_FSYNC Slave Mode

4.11.1 Auxiliary Serial Port Mode Control and Formatting

4.11.1.1 I²S Mode Formatting

For I²S format, the MSB is considered valid on the second rising edge of ASP_BCLK following an ASP_FSYNC transition. The other bits up to the LSB are then transmitted in order. Depending on word length, ASP_BCLK frequency, and sample rate, there may be unused ASP_BCLK cycles between the LSB of one sample and the MSB of the next. I²S format is shown in Fig. 4-15. While ASP_FSYNC is low, it is considered to be the left channel, and while ASP_FSYNC is high, it is considered to be the right channel in I²S Mode.

Figure 4-15. I²S Format

The even number slot locations reside on the left channel of the I²S sample period, and the odd number slot locations reside on the right channel of the I²S sample period. The slot locations are organized from lowest to highest on each channel, starting with 0 on the I²S left data channel and 1 on the I²S right data channel.

4.11.1.2 TDM Mode Formatting

The start of the TDM frame is the first rising edge of ASP_BCLK after the rising edge of the frame synchronization (ASP_FSYNC) pulse. When operating in TDM 1 Mode (ASP_FMT = 000), the MSB of the first packet for ASP_DIN is valid 1 full ASP_BCLK period after the start of the frame, as shown in Fig. 4-16. This mode is also known as DSP Mode A. When operating in TDM 1.5 Mode (ASP_FMT = 100), the MSB of the first packet for ASP_DIN is valid 1.5 ASP_BCLK periods after the start of the frame, as shown in Fig. 4-16 (with ASP_BCLK_INV set). If ASP_BCLK_INV is cleared, the ASP_BCLK must be inverted relative to Fig. 4-17 when operating in TDM 1.5 Mode.

Figure 4-17. TDM 1.5 Mode Formatting

In Master Mode, the ASP_FSYNC output resembles the frame pulse shown in Fig. 4-16 and Fig. 4-17. In Slave Mode, it is possible to use any length of frame pulse less than 1/Fs, providing the falling edge of the frame pulse occurs at least one ASP_BCLK period before the rising edge of the next frame pulse.

4.11.2 Channel Slot Locations

The CS40L25 contains two receiving data packets (ASPRX1 and ASPRX2). Fig. 4-18 shows an example of I²S format where the data received is on the left channel. If the CS40L25 needed to receive the data on the first location of the right channel instead of the left channel, ASP_RX1_SLOT must be configured to slot location 1 instead.

Figure 4-18. I²S Receive Slot Configuration

In the TDM Modes, the receive slot locations are 0 and 1. The data formatting of TDM 1 Mode and TDM 1.5 Mode is the same with the exception of the start location of the data. The start of the data frame is shifted a half of a clock cycle between the two modes. This means that slot location 0 starts one half of an ASP_BCLK period later in TDM 1.5 Mode than in TDM 1 Mode. This shift translates to the start location of slot 1.

The example in Fig. 4-19 illustrates receiving data in TDM 1 Mode from slots 0 and 1 using register configuration ASP_RX1_SLOT = 0 and ASP_RX2_SLOT = 1. The slot locations are shifted later by one-half clock cycle in TDM 1.5 Mode.

Figure 4-19. TDM 1 Mode (DSP Mode A) Receive Slot Example

4.11.3 Audio Serial Port Channel Enables

Each receive data channel has an enable and disable control (ASP_RX1_EN and ASP_RX2_EN). When the ASPRX1 and ASPRX2 input audio receive channels are disabled (ASP_RX1_EN = 0 and ASP_RX2_EN = 0), the ASP input receives zero-fill data, regardless of what data is present on the ASP_DIN pin. To put the serial port in Low Power Mode, it must be configured in Slave Mode and ASP_RX1_EN and ASP_RX2_EN must be cleared to disable both channels.

4.11.4 Serial Port ASP BCLK and ASP FSYNC Invert

The ASP_BCLK signal can be inverted in Slave Mode using the ASP_BCLK_INV bit. The ASP_FSYNC signal can be inverted using the ASP_FSYNC_INV bit. These bits do not move the location of the ASP_DIN data, but simply invert the polarity of the ASP_BCLK and ASP_FSYNC respectively.

4.11.5 ASP Configuration Sequence

With the device already disabled (GLOBAL_EN = 0), ASP configuration is done in the following sequence.

- Configure the ASP by programming ASP_BCLK_FREQ, ASP_FMT, ASP_RX_WIDTH, ASP_RX_WL, ASP_RX1_ SLOT, ASP_BCLK_INV, ASP_FSYNC_INV and clearing ASP_BCLK_MSTR and ASP_FSYNC_MSTR (to select external clock and sync).
- 2. Set ASP RX1 EN to enable the ASP receive data path.
- 3. Write the appropriate value from Table 4-12 below to address 0x0000 2D10.

ASP_BCLK_FREQ	ASP_BCLK Frequency [MHz]	0x0000 2D10 Write Value
110011	12.288	0x0002 4010
110000	9.600	0x0002 4010
101000	6.144	0x0001 8010
100001	3.072	0x0002 C01C
011011	1.536	0x0005 4034

Table 4-12. Register Value for 0x0000 2D10

4. Enable the amplifier and other enabled subsystems using the global enable, GLOBAL EN.

Note: Writing GLOBAL EN requires coordination between the host device driver and the DSP firmware.

4.12 Programmable DSP

A DSP controls core functionality of the CS40L25/B. The Cirrus Logic DSP software consists of a real-time core and a selection of library modules accomplishing the haptic functionality.

Cirrus Logic configuration tools are used to establish the device software configuration, adapting it to the customer hardware configuration and I²S setup. These choices are compiled into the DSP program binary and data files. The DSP program binary and data files are loaded by the host. The host configures hardware and software registers affecting the haptic generator operation.

Figure 4-20. DSP Processing Subsystem

4.12.1 DSP Mailbox Registers

To facilitate direct messaging between the DSP core and the host processor, a shared register space is available. Both the Control Port and the DSP can write into this register space and, optionally, an interrupt can be generated to the hardware interrupt pin and/or the DSP core after each write. This enables an event-driven prompt to the host processor or the DSP to check the contents of the registers for new information, and perform some software-defined reconfiguration as a result.

There are three register groups - DSP_MBOX, DSP_VIRTUAL1_MBOX and DSP_VIRTUAL2_MBOX. Each register group accesses the same physical location in the hardware, but are intended for different functions.

DSP MBOX registers, when written to, will not generate any interrupt and therefore provide silent updates.

DSP_VIRTUAL1_MBOX registers, when written to, generate an interrupt request that is intended to be seen by the DSP subsystem. The primary use case is to enable the Driver to write into the registers and inform the DSP that there is something for it to fetch.

<u>DSP_VIRTUAL2_MBOX</u> registers, when written to, generate an interrupt request that is intended to be output to the ALERT pin. The primary use case is to enable the DSP to write into the registers and inform the Driver that there is something for the Driver to fetch.

No interrupts are generated when any space is 'read'.

Fig. 4-21 shows the DSP Mailbox Register Groups.

Figure 4-21. DSP Mailbox Register Groups

4.13 I2C/SPI Control Port

The host interacts with the CS40L25/B via the control port. The host device is the master port and the CS40L25/B is the slave port. Host control is implemented in the device driver. Communication constructs include a command/status channel and waveform FIFOs.

Note: The control interface function can be supported with or without system clocking; there is no requirement for MCLK, or any other system clock, to be enabled while transacting I²C.

The control port interface gives the host processor the capability to:

- · read device status,
- download DSP firmware and system parameters,
- · download stored haptic waveforms,
- · start the execution of DSP firmware,
- · trigger playback of stored haptic waveforms, and
- initiate an LRA calibration sequence.

4.13.1 Control Port Selection and Address Setting

4.13.1.1 I²C or SPI Selection

Selection of I²C or SPI mode requires no configuration from the user. By default, the device exits from reset in I²C mode. The device latches I²C mode when it receives a matching chip slave address access. If the CS40L25/B control port pins are connected to an SPI source, any SPI behavior on the bus will cause the device to latch into SPI control mode. Once the control port mode is latched, the device will stay in the chosen mode until the RESET pin is asserted or the power supplies are removed.

Table 4-13 shows the signals active on the shared Control Port pins for each mode of operation. For clarity, in subsequent sections the signal function, rather than the full pin name, is used.

PIN	I ² C Function	SPI Function
I2C_SCL/SPI_MISO	I2C_SCL — clock input	SPI_MISO — data output
I2C_SDA/SPI_MOSI	I2C_SDA — data input/output	SPI_MOSI — data input
I2C_AD0/SPI_SS	I2C_AD0 — address select 0	SPI_SS — slave select
I2C_AD1/SPI_SCLK	I2C_AD1 — address select 1	SPI_SCLK — clock input

Table 4-13. Control Interface Pin Functions

4.13.1.2 I²C Address Selection

The CS40L25/B supports four I²C slave device addresses, controlled by the logic levels on the I2C_AD0 and I2C_AD1 pins. These pins must be tied directly to VA and/or GND as close to the CS40L25/B device as possible. Table 4-14 below shows these settings.

Table 4-14. I²C Address Table

I2C_AD1	I2C_AD0	I ² C Slave Dev	vice Address
IZC_ADI	IZC_AD0	Write	Read
GND	GND	0x80	0x81
GND	VA	0x82	0x83
VA	GND	0x84	0x85
VA	VA	0x86	0x87

A software reset will not change the CS40L25/B address. For this reason, dynamic addressing is not supported. The chip address configuration will not be ready until t_{IRS} after the hardware reset event. During this period, the CS40L25/B does not respond to any host-issued commands.

4.13.2 I2C Control

The I²C control port operates exclusively in Slave Mode. To allow many devices to share a single two-wire control bus, every device on the bus has a unique 8-bit chip I²C address. All I²C transactions use the four LSB of the address to specify a read or write as indicated in Table 4-14.

SCL is a clock input, while SDA is a bidirectional data pin. To allow arbitration of multiple slaves (and/or multiple masters) on the same interface, the CS40L25/B transmits logic 1 by tri-stating the SDA pin, rather than pulling it high. An external pull-up resistor is required to pull the SDA line high so that the logic 1 can be recognized by the master.

The I²C control port supports START and STOP conditions, acknowledge, and standard format. It can operate in Standard-mode (Sm) with a bit rate of up to 100 kbit/s, Fast-mode (Fm) with a bit rate of up to 400 kbit/s, and Fast-mode plus (FM+) with a bit rate of up to 1 Mbit/s.

4.13.2.1 I²C Write

In an I²C write transaction, any number of data bytes is sent to the CS40L25/B. Fig. 4-22 shows the format of an I²C write command.

Figure 4-22. I²C Write Waveform

4.13.2.2 I²C Read

In a simple read, the CS40L25/B can receive any number of data bytes from a slave device. Fig. 4-23 shows the format of an I²C read command.

Figure 4-23. I²C Read Waveform

4.13.2.3 I²C Write-Then-Read (with Repeated Start Condition)

In a write-then-read operation (e.g., register read), the Master first sends the CS40L25/B a 4-byte register address followed by a repeated start condition, and then the CS40L25/B responds returning read data. Fig. 4-24 shows how an I²C read is performed with repeated start condition after the write operation finishes.

Figure 4-24. I²C Write-Then-Read Waveform (with Repeated Start Condition)

4.13.2.4 Transaction Types

The standard transaction supports a 32-bit register address and 32-bit data width. The register address must be word aligned, i.e. the two LSBs must be 0, for 32-bit transactions.

The legend shown in Fig. 4-25 is used in the following transaction examples.

Figure 4-25. Transaction Example Legend

Fig. 4-26 shows a single 32-bit register write to a specified address.

Figure 4-26. Single 32-bit Register Write Transaction

Fig. 4-27 shows a single 32-bit register read from a specified address. After the 32-bit register address is written, reading data bytes is initiated by repeated start condition followed by the chip address directly.

S	I ² C Address	R	Α	Register Address [31:24]	Α	Register Address [23:16]	Α	Register Address [15:8]	Α	Register Address [7:0]	Α
Sr	I ² C Address	R	Α	Data Byte 3	Α	Data Byte 2	Α	Data Byte 1	Α	Data Byte 0	AP

Figure 4-27. Single 32-bit Register Read Transaction

Fig. 4-28 shows multiple 32-bit register writes to a specified address. Multiple 32-bit writes may be submitted sequentially without sending the register address again. Each is submitted to the internal control bus during the ACK after every fourth data byte. If the multiple write goes past the end of the 32-bit address space, then those writes shall be discarded.

Figure 4-28. Multiple 32-bit Register Write Transaction

Fig. 4-29 shows multiple 32-bit register read to a specified address. Multiple 32-bit registers may be fetched sequentially without sending the register address again. After the first read, each subsequent read is prefetched from the internal control bus during the MSB of the first read being shifted onto the I²C bus. If the multiple read goes past the end of the 32-bit address space, then those reads will return all 0's data.

Figure 4-29. Multiple 32-bit Register Read Transaction (with Repeated Start Condition)

4.13.3 SPI Control

In write operations (R/W = 0), the SPI_MOSI pin input is driven by the controlling device. In read operations (R/W = 1), the SPI_MOSI pin is ignored following receipt of the valid register address.

If SPI_SS is asserted (Logic 0), the SPI_MISO output is actively driven while outputting data and is high impedance at other times. If SPI_SS is not asserted, the SPI_MISO output is high impedance.

The high-impedance state of the MISO output allows the pin to be shared with other slaves. An external pull-down resistor must be used on the SPI_MISO pin when this pin also connects to the SPI_MISO pin of another SPI slave device in addition to the SPI_MISO pin of the SPI master device.

Data transfers in SPI mode consists of a single read/write bit, followed by a 31-bit register address, 16-bits of padding, then 32-bit data words.

Fig. 4-30 shows a single register read operation.

Figure 4-30. Single Register Read Operation

Fig. 4-31 shows a single register write operation.

Figure 4-31. Single Register Write Operation

Continuous read and write modes enable multiple register operations to be scheduled faster than is possible with single register operations. In these modes, the CS40L25/B automatically increments the register address at the end of each data word, for as long as SPI_SS is held low and SPI_SCLK is toggled. Successive data words can be input/output every 32 clock cycles. The 16-bit padding phase may only be placed between the initial register address and the first 32-bit data word - subsequent data words do not (and must not) contain padding.

Fig. 4-32 shows a continuous register write operation.

Figure 4-32. Continuous Register Write Operation

Fig. 4-33 shows a continuous register read operation.

Figure 4-33. Continuous Register Read Operation

4.14 LRA Calibration and Factory Trim

During final test and calibration of the system, e.g. mobile phone, which includes the CS40L25/B, internal calibration routines shall be called via the host. The CS40L25/B runs the self-calibration routine which reports the LRA winding resistance (R_e), resonant frequency (f_0), and Q-Factor (quality factor) parameters to the driver.

The system final test and calibration utility shall check that the R_e and f_0 values are within acceptable tolerances. Assuming that the LRA is found to be normal, these values are used to calibrate the CS40L25/B to the associated LRA during normal system operation.

Resonant frequency and coil resistance f₀ and R_e calibration values may be stored by the system in its own configuration space memory, and the host programs those values into the CS40L25/B at the point of boot and general initialization.

5 Applications

5.1 Recommended External Components

This section provides information on the recommended external components for use with the CS40L25/B.Typical connection diagrams in Section 2 illustrate typical haptic application use cases. Circuit connections depend on a number of system design choices or requirements including:

- I²C or SPI connection for control port
- Pin-configured I²C address selection (while using I²C)
- One GPI trigger plus I2S haptic port, or four GPI triggers without I2S
- · Haptic output power level and choice of boost inductor and capacitor

The device operates from power on running from its boot ROM in Basic Haptics Mode without host intervention. Using the full CS40L25/B feature set (running the DSP from RAM) requires host configuration of registers and loading DSP firmware and custom waveforms. The device configuration, including circuit connection options are compiled into the DSP program binary and data files loaded by the host device driver.

Fig. 5-1 and Table 5-1 show part numbers and specifications for boost converter and supply decoupling components used in several Cirrus Logic board designs. These are provided for reference only. Component tolerance and derating requirements are platform specific and must be validated in each product design.

Figure 5-1. Boost Converter and Power Supply Decoupling Components (WLCSP)

Reference Designator	Description	Manufacturer	Manufacturer Part Number
C1	CAP 0.1 µF ±10% 10V X5R NPb 0201	TAIYO YUDEN	LMK063BJ104KP-F
C2	CAP 10 µF ±20% 10V X5R NPb 0402	SAMSUNG	CL05A106MP5NUNC
C3	CAP 0.1 µF ±10% 16V X5R NPb 0201	SAMSUNG	CL03A104KO3NNNC
C4	CAP 4.7 µF ±20% 16V X5R NPb 0402	SAMSUNG	CL05A475MO5NUNC
C5, C6	CAP 10 µF ±20% 16V X5R NPb 0603	TAIYO YUDEN	EMK107BBJ106MA-T
C7	CAP 1 µF ±10% 6.3V X5R NPb 0201	AVX	02016D105KAT2A
C8	CAP 0.47 µF ±10% 6.3V NPb X5R 0201	TDK	C0603X5R0J474K030BC
L1	IND 1 μH 3.1 A ±20% 56 mΩ SHLD NPb 0806	TDK	TFM201610ALM-1R0MTAA

Table 5-1. Recommended Components

5.1.1 Boost Converter

The CS40L25/B supports L7 boost inductor values of 1.0 to 2.2 μ H. The inductor value must not derate below 0.7 μ H during device operation. The combined boost capacitance of C300—C303 (in parallel) must not derate to less than 3.6 μ F at 11 V and must not exceed 50 μ F with the default BST_K1 and BST_K2 coefficients. Refer to Table 4-8 in Section 4.6.3 for supported boost inductor and capacitor combinations with different BST_K1 and BST_K2 coefficient values.

5.1.2 Power Supply/Reference Decoupling

Decoupling capacitors are required on the CS40L25/B VA and VP power supply rails. Due to the wide tolerance of many types of ceramic capacitors, care must be taken to ensure that the selected components provide the required capacitance across the required temperature and voltage ranges of the intended application. For most applications, the use of ceramic capacitors with X5R dielectric is recommended.

5.2 Hardware Generated Haptic Alerts at Power On

The CS40L25/B boot ROM and internal power-on reset circuit enable the device to generate simple haptic alerts at power on before firmware and waveform downloads from the applications processor. The capability to boot from ROM in Basic Haptics Mode and generate an alert requires the RESET pin to be driven high (or pulled up to VA), the reference clock to run when VA is enabled, and a hardware rising edge transition on the GPIO1 pin.

Basic Haptics Mode register defaults should be acceptable for many applications, but these may also be overridden by the host through the control port to adjust the alert duration and intensity. Table 4-6 describes the Basic Haptics Mode configuration parameters. Basic Haptics Mode does not require the register initialization sequence in Section 4.2.4.

5.3 PCB Layout Guidelines

This section provides general guidelines for PCB design to ensure the best performance of the CS40L25/B and minimize the potential for EMI/EMC issues in the end product. Refer to AN444, CS40L25/B Schematic and Layout Guidelines, for more information and PCB artwork examples when using the WLCSP package. The corresponding PCB layout information for the QFN package is provided in AN472, CS40L25B QFN Schematic & Layout Guidelines.

No particular PCB stackup or PCB fabrication technology is required for the CS40L25/B, although most designs using the WLCSP package will use a 6-layer or 8-layer PCB to achieve end product size and cost requirements. Using a 6- or 8-layer PCB provides the flexibility to use large traces and copper floods on the component side routing together with power and ground planes separating signal routing layers. Track routing from the QFN package is simpler than the WLCSP package allowing the use of a 4-layer PCB. A 2-layer PCB may even be designed for the QFN package if attention is paid to the power routing, but must be fully tested to understand any performance degradation due to compromises made in the PCB layout.

5.3.1 Boost Converter Placement and Routing Requirements

Boost converter component placement and routing must adhere to the following requirements:

• The boost inductor must be placed on the component side of the PCB with the CS40L25/B.

- One side of the boost inductor must be routed on the same layer to the CS40L25/B SW pins (WLCSP balls A2 and B2, QFN pins 26 and 27).
- The other side of the inductor must be routed on the same layer to the CS40L25/B VP pin (WLCSP ball A5, QFN pin 30). This route must be connected to the battery supply routing plane directly or using multiple parallel vias capable of handling up to 4.5 A (if the battery supply is on an inner layer plane connected to the outside layer route).
- The connection between the VBST output (WLCSP balls A1 and B1, QFN pins 19, 22, 23 and 24) and the VAMP input (WLCSP balls C1 and D1) must be made on the component layer (without being connected through any vias) and capable of handling currents of 2 A.
 - Note: On the QFN package, there are no external VAMP pins and the amplifier supply input is connected to the boost supply output inside the device.
 - All VBST balls/pins must be connected together on the PCB and connected to the capacitors shown in the Typical Connection diagrams.
- The capacitors on VBST must be close to the CS40L25/B and routed on the same layer.
 - Use a copper flood for the connection between the VBST pins (WLCSP balls A1, B1, C1 and D1, or QFN pins 19, 22, 23 and 24) to the VBST capacitors to minimize the parasitic inductance. Bring the copper flood as close to WLCSP balls A1 and B1 and QFN pins 22, 23 and 24 as the manufacturing process allows.
 - The other side of the VBST capacitors must have an excellent low impedance connection to ground.

5.3.2 Power Supply Placement and Routing Requirements

Power supply decoupling placement and routing requirements:

- Place the local supply decoupling caps on the same layer as the CS40L25/B as close to the device as possible.
- To minimize inductance effects, the low-value ceramic capacitor must be closest to the supply ball.
- Extensive use of power and ground planes, ground-plane fill in unused areas, and surface-mount decoupling capacitors are recommended.
- The VA and VP ball supply routes must be designed to handle currents of 20 mA each.
- All ground traces should connect to a common ground plane which should handle a current of 4.5 A.
- To avoid unwanted coupling into the modulator, all signals, especially clocks, must be isolated from the LDO_FILT+ pin.
- The LDO FILT+ capacitor must be positioned to minimize the electrical path from the pin to GNDA.
- The QFN package includes a ground pad that must be connected to the ground plane with multiple vias. The ground pad provides thermal dissipation as well as ground connection.

5.3.3 Amplifier Output Placement and Routing Requirements

Amplifier output to LRA placement and routing requirements:

- The OUT± traces (WLCSP balls C2 and D2, QFN pins 20 and 21) must be routed differentially on a layer that is separated from the power supply circuits by a ground plane and must be > 25 mils wide and designed to handle currents of 2 A.
- EMI filtering at the amplifier output is optional, and may use a capacitor of 470 pF or less.
- VSNS± should be routed differentially away from the power circuits and connected as close to the LRA terminals as possible.
- Provide GND shielding around VSNS±.

Note: The CS40L25/B performs actuator current sensing using the integrated current-monitoring sense resistor. The measurement of ReDC relies on accurately capturing the current through the load. Additional components added in the actuator path may reduce the accuracy of the ReDC measurement.

6 Register Quick Reference

This section gives an overview of the control port registers. Refer to the following bit definition tables for bit assignment information.

- The register field default values are established upon the deassertion of the $\overline{\text{RESET}}$ pin.
- A "—" represents a reserved field/access type.
- The reserved field values must not be modified.
- All visible fields are read/write except where indicated with the following shading:

Read/write access	Read-only access	Write-only access

Table 6-1. Block Base Addresses

Base Address	Block Name	Register Quick Reference	Register Description Reference
0x0000 0000	Software Reset and Hardware ID (SW_RESET)	Section 6.1	Section 7.1
0x0000 2000	Power, Global, and Release Control (MSM)	Section 6.2	Section 7.2
0x0000 2400	Digital I/O Pad Control (PAD_INTF)	Section 6.3	Section 7.3
0x0000 2900	Hibernation Power Management (PWRMGT)	Section 6.4	Section 7.4
0x0000 2C00	Device Clocking and Sample Rate Control (CCM)	Section 6.5	Section 7.5
0x0000 3800	Digital Boost Converter (BOOST)	Section 6.6	Section 7.6
0x0000 4000	VMON and IMON Signal Monitoring (VIMON)	Section 6.7	Section 7.7
0x0000 4200	Die Temperature Monitoring (TEMPMON)	Section 6.8	Section 7.8
0x0000 4800	ASP Data Interface (DATAIF)	Section 6.9	Section 7.9
0x0000 4C00	Data Routing (MIXER)	Section 6.10	Section 7.10
0x0000 6000	Amplifier Volume Control (INTP)	Section 6.11	Section 7.11
0x0000 6400	VP and VBST Brownout Prevention + Temp Warning (ERROR_ VOLUME)	Section 6.12	Section 7.12
0x0000 6800	Power Management - Class H, Weak-FET, and Noise Gating (PWRMGMT)	Section 6.13	Section 7.13
0x0000 6C00	Dynamic Range Enhancement (DRE)	Section 6.14	Section 7.14
0x0001 0000	Interrupt Status and Mask Control (IRQ1)	Section 6.15	Section 7.15
0x0001 0800	Interrupt Status and Mask Control (IRQ2)	Section 6.16	Section 7.16
0x0001 1000	GPIO Control (GPIO)	Section 6.17	Section 7.17
0x0001 3000	DSP scratch space (DSP_MBOX)	Section 6.18	Section 7.18
0x0001 3020	DSP virtual 1 scratch space (DSP_VIRTUAL1_MBOX)	Section 6.19	Section 7.19
0x0001 3040	DSP virtual 2 scratch space (DSP_VIRTUAL2_MBOX)	Section 6.20	Section 7.20
0x0001 4000	Clock Presence Detect (CLOCK_DETECT)	Section 6.21	Section 7.21

6.1 Software Reset and Hardware ID (SW_RESET)

Address	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000 0000	DEVID				-	_							DEVID	[23:16]			
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
									DEVI	VID[15:0]							
p. 77		0	1	0	1	1	0	1	0	0	1	0	0	0	0	0	0
0x0000 0004	REVID								-	_							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					_	_					ARE	VID			MTLR	REVID	
p. 77		0	0	0	0	0	0	0	0	Х	X	X	X	Х	X	X	Χ
0x0000 000C	RELID								-	_							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					_	_							RE	LID			
p. 77		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0

Address	Dominton	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	3 12 11 10 9 8	7	6	6 5		3	2	1	0				
0x0000 0010	OTPID								_	_							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							-	_						OTPID			
p. 77		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 0020	SFT_RESET				SFT_F	RESET							-	_			
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
									-	_							
p. 78		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

6.2 Power, Global, and Release Control (MSM)

	1								1		1						1
Address	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
71441000	. tog.oto.	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000 2014	GLOBAL_								_								
	ENABLES	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
									_								GLOBAL_
																	EN
p. 78		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 2018	BLOCK_								_								
	ENABLES	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			_	IMON_EN	VMON_	_	TEMPMO	VBSTMO	VPMON_		_	BST	Γ_EN		_		AMP_EN
					EN		N_EN	N_EN	EN								
p. 78		0	0	1	1	0	0	1	1	0	0	1	0	0	0	0	1
0x0000 201C	BLOCK_				_				WKFET_		_		AMP_		-	_	
	ENABLES2								AMP_EN				DRE_EN				
		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
			_	VBBR_	VPBR_				_				CLASSH_		_	_	
				EN	EN								EN				
p. 79		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0x0000 2020	GLOBAL_			•		•			_	-			•	•			
	OVERRIDES	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							_	_						TEMPMO	-	_	BST_
														N_			GLOBAL_
														GLOBAL_			OVR
														OVR			
p. 80		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0x0000 2034	ERROR								_								
000000 2004	RELEASE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		U										TEMP			BST		
						_					TEMP_ ERR	WARN	BST_ UVP_	BST_ OVP_	SHORT	AMP_ SHORT	_
											RLS	RLS	ERR_	ERR	ERR_	ERR_	
													RLS	RLS	RLS	RLS	
p. 80		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
p. 00	l	_		-	-		-	-	-					I -	1		

6.3 Digital I/O Pad Control (PAD_INTF)

Address	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000 2418	LRCK_PAD_								-	_							
	CONTROL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							_						GP4_ CTRL		-	_	
p. 82		0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1

Address	Bogiotor	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000 2420	SDIN_PAD_								_	_							
	CONTROL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							_	_						GP3_ CTRL		_	
p. 82		0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
0x0000 242C	GPIO_PAD_			_				GP2_CTRL				_				GP1_CTRL	
	CONTROL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
									_	-							
p. 82		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

6.4 Hibernation Power Management (PWRMGT)

Adduss	Dawieten	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000 2900	PWRMGT_CTL								-	_							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
								-	_							MEM_ RDY	TRIG_ HIBER
p. 83		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 2904	WAKESRC_								-	-						•	
	CTL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					_				UPDT_ WKCTL		WKSF	RC_EN			WKSR	C_POL	
p. 83		0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0x0000 2908	PWRMGT_STS								_	_				•			
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					-	-					WKSR	C_STS		-	-	WR_ PEND_ STS	MEM_ RDY_ STS
p. 83		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

6.5 Device Clocking and Sample Rate Control (CCM)

Address	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000 2C04	REFCLK_ INPUT								_								PLL_ FORCE_ EN
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			_	_		PLL_ OPEN_ LOOP			PLL_REFO	CLK_FREQ			PLL_ REFCLK_ EN	_	PLL	_REFCLK_	SEL
p. 84		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0x0000 2C0C	GLOBAL_ SAMPLE_RATE	0	0	0	0	0	0	0	0	0	0	0	0	0	0 GLOBAL_FS	0	0
p. 85		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1

6.6 Digital Boost Converter (BOOST)

Address	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000 3800	VBST_CTL_1								-	_							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					_	_							BST.	_CTL			
p. 85		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000 3804	VBST_CTL_2					•			_	_	•	•			•		
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
								_							BST_ CTL_ LIM_EN	BST_C	TL_SEL
p. 85		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0x0000 3808	BST_IPK_CTL								_	_					I.		
		0	0	0	0	0	0	0	0	0	0	0	0	0 BST_IPK	0	0	0
p. 86		0	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0
	SOFT_RAMP								_	_	I						
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				•	•	•	-	_		•	•	•		•		T_RAMP	
p. 86 0x0000 3810	BST_LOOP_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0,0000 3810	COEFF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			•			_K2		•		•	•		BST	_		•	
p. 86 0x0000 3814	LBST_SLOPE	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	0
0.000000011	EB01_0201 E	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					BST_S	SLOPE						-	_			BST_LE	BST_VAL
p. 87		0	1	1	1	0	1	0	1	0	0	0	0	0	0	0	0
0x0000 3818	BST_SW_ FREQ				BST_DCM_	FREQ_MIN	I					_	_				DCM_ Q[9:8]
		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
			•			_FREQ[7:0]				•		_				M_FREQ	
p. 87	DOT DOM OT	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 381C	B91_DCM_C1F	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	0	0
				<u> </u>	-					BST_DC		BST_DCM					BST_ DCM_EN
p. 88		0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1
0x0000 3820	DCM_FORCE	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	0	0
		0			0	0	0		_	0	0	0	0		0	BST_	BST_
																DCM_ FRC_EN	DCM_ FRC
p. 88		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 3830	VBST_OVP								_	-							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					_				BST_ OVP_EN	-	_			BST_O\	/P_THLD		
p. 89		0	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0

6.7 VMON and IMON Signal Monitoring (VIMON)

Address	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000 4008	MONITOR_FILT								_	_							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
									_								MON_ FILT_ RESP
p. 89		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

6.8 Die Temperature Monitoring (TEMPMON)

Address	Dogiotor	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000 4220	WARN_LIMIT_								-	-							
	THRESHOLD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
								-	-							TEMP_WA	ARN_THLD
p. 89		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0x0000 4224	CONFIGURATI								_	-							
	ON	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							-	-						TEMP_ OUT_SEL	TEMP_ WARN_ ERR_SEL	TEMP_F	ILT_SEL
p. 90		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 4308	ENABLES_											TEMI	P_RESULT	FILT			
	AND_CODES_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	DIG				_							TEMP_	_RESULT_I	JNFILT			
p. 90		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

6.9 ASP Data Interface (DATAIF)

Adduss	Dawlatan	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000 4800	ASP_ ENABLES1							=	_							ASP_ RX2_EN	ASP_ RX1_EN
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
p. 91		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 4804	ASP_								-	-							
	CONTROL1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
						-	_							ASP_BC	LK_FREQ		
p. 91		0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0
0x0000 4808	ASP_				ASP_RX	_WIDTH							-	_			
	CONTROL2	0	0	0	1	1	0	0	0	0	0	0	1	1	0	0	0
				_				ASP_FMT		_	ASP_ BCLK_ INV	ASP_ BCLK_ FRC	ASP_ BCLK_ MSTR	_	ASP_ FSYNC_ INV	ASP_ FSYNC_ FRC	ASP_ FSYNC_ MSTR
p. 91		0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0x0000 4820	ASP_FRAME_								_	_							
	CONTROL5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		_	_			ASP_R	(2_SLOT			_	_			ASP_R	<1_SLOT		
p. 92		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0x0000 4840	ASP_DATA_								_	_							
	CONTROL5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
						-	_							ASP_I	RX_WL		
p. 93		0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0

6.10 Data Routing (MIXER)

Address	Register	31 8	7	6	5	4	3	2	1	0
0x0000 4C00	DACPCM1_	_	_				DACPCM1_SRC			
p. 93	INPUT	0x0000 00	0	0	0	0	1	0	0	0
0x0000 4C40	DSP1RX1_	_	_				DSP1RX1_SRC			
p. 93	INPUT	0x0000 00	0	0	0	0	1	0	0	0
0x0000 4C44	DSP1RX2_	_	_				DSP1RX2_SRC			
p. 94	INPUT	0x0000 00	0	0	0	0	1	0	0	1

Address	Register	31 8	7	6	5	4	3	2	1	0
0x0000 4C48	DSP1RX3_	_	_			•	DSP1RX3_SRC	•	•	
p. 94	INPUT	0x0000 00	0	0	0	1	1	0	0	0
0x0000 4C4C	DSP1RX4_	_	_				DSP1RX4_SRC			
p. 94	INPUT	0x0000 00	0	0	0	1	1	0	0	1
0x0000 4C50	DSP1RX5_	_	_				DSP1RX5_SRC			
p. 95	INPUT	0x0000 00	0	0	1	0	0	0	0	0
0x0000 4C54	DSP1RX6_	_	_				DSP1RX6_SRC			
p. 95	INPUT	0x0000 00	0	0	1	0	0	0	0	1
0x0000 4C58	DSP1RX7_	_	_				DSP1RX7_SRC			
p. 95	INPUT	0x0000 00	0	0	1	1	1	0	1	0
0x0000 4C5C	DSP1RX8_	_	_				DSP1RX8_SRC			
p. 96	INPUT	0x0000 00	0	0	1	1	1	0	1	1
0x0000 4C60	NGATE1_	_	_				NGATE1_SRC			
p. 96	INPUT	0x0000 00	0	0	0	0	1	0	0	0
0x0000 4C64	NGATE2_	_	_				NGATE2_SRC			
p. 96	INPUT	0x0000 00	0	0	0	0	1	0	0	1

6.11 Amplifier Volume Control (INTP)

Address	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000 6000	AMP_CTRL								_	-							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		AMP_ HPF_ PCM_EN	AMP_ INV_PCM					AM	MP_VOL_PO	CM					AM	P_RAMP_P	CM
p. 97		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

6.12 VP and VBST Brownout Prevention + Temp Warning (ERROR_VOLUME)

Address	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000 6404	VPBR_CONFIG			_			VPBR_	VPBR_	VPBR_	VPI	BR_REL_R	ATE	VPBR	_WAIT	VP	BR_ATK_R	ATE
							REL_	REL_	MUTE_								
		•			•	•	TRIG	AUTO	EN		•						•
		0	0	0	0	0	0	1	0	1	0	1	0	1	0	1	0
			VPBR_A	_			VPBR_N	_			_				/PBR_THLD		
p. 97		0	0	0	1	1	0	0	1	0	0	0	0	0	1	0	1
0x0000 6408	VBBR_CONFIG		_				VBBR_	VBBR_	VBBR_	VB	BR_REL_R	ATE	VBBR	_WAIT	VB	BR_ATK_R	ATE
							REL_ TRIG	REL_ AUTO	MUTE_ EN								
		0	0	0	0	0	0	1	0	1	0	1	0	1	0	1	0
	ŀ		VBBR_A			Ī	VBBR_M	IAX ATT				1		VBBR	THLD1	•	
p. 99		0	0	0	1	1	0	0	1	0	0	0	0	0	1	0	1
	VPBR_STATUS					1											
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	•								VPBR_				VPBR :	STATUS			
									STATUS_				_				
									MUTE								
p. 100		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 6410	VBBR_STATUS								_	-							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					_				VBBR_				VBBR_	STATUS			
									STATUS_								
		•			•	•			MUTE								
p. 100		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000 6414	OTW_CONFIG			1 .0	ı - -		1 .0						_		_		1
	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
								_							TEN	/IP_WARN	_VOL
p. 100		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0x0000 6418	AMP_ERROR_								_	_					•		
	VOL_SEL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
									_								AMP_ ERR_ VOL_SEL
p. 101		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 6450	VOL_STATUS_ TO_DSP							-	_							_	ERROR_ L[8:7]
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				FINAL.	_ERROR_V	OL[6:0]							_			•	
p. 101		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

6.13 Power Management - Class H, Weak-FET, and Noise Gating (PWRMGMT)

Address	Dominton	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000 6800	CLASSH_					_								CH_HD_RM			
	CONFIG	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
					CH_REI	_RATE						_			CH		PTH
p. 101		0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1
0x0000 6804	WKFET_AMP_								-	_							
	CONFIG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			-	_			WKFET_A	MP_THLD			_		WK	FET_AMP_I	DLY	WKFET_	WKFET_
																AMP_	AMP_
																FRC_EN	FRC
p. 102		0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1
0x0000 6808	NG_CONFIG								-	_							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		-	_			NG_E	N_SEL			_		NG_DELAY	'	_	N	G_PCM_TH	LD
p. 102		0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1

6.14 Dynamic Range Enhancement (DRE)

Address	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Audress	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000 6C04	AMP_GAIN								-	_							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				_			AMP_		AM	1P_GAIN_P	CM				_		
							GAIN_ZC										
p. 103		0	0	0	0	0	0	1	0	0	1	1	1	0	0	1	1

6.15 Interrupt Status and Mask Control (IRQ1)

Address	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0001 0000	IRQ1_CFG								-	_							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							-	_							IRQ1_D	B_TIME	
p. 103		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0001 0004	IRQ1_STATUS	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	0	0
		0	- 0	0	0	U	0	0	_	0	U	0	U	U	U	U	IRQ1_
																	STS1
p. 103		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 0010	IRQ1_EINT_1	AMP_ ERR_	VBBR_ ATT_	VBBR_ FLAG_	IMON_ CLIPPED	VMON_ CLIPPED	VBSTMO N_	VPMON_ CLIPPED	MSM_ PUP_	MSM_ PDN_	MSM_ GLOBAL_		-	_		TEMP_ ERR_	TEMP_ WARN_
		EINT1	CLR_	EINT1	_EINT1	_EINT1	CLIPPED	_EINT1	DONE_	DONE_	EN_					EINT1	FALL_
			EINT1				_EINT1		EINT1	EINT1	ASSERT_ EINT1						EINT1
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		TEMP_ WARN_	VPBR_ ATT_	_	VPBR_ FLAG_	REFCLK_ STOP_	REFCLK_ START_	BST_ IPK_	BST_ SHORT_	BST_ DCM_	BST_ OVP_	BST_ OVP_	BST_ OVP_	GPIO2_ FALL_	GPIO2_ RISE_	GPIO1_ FALL_	GPIO1_ RISE_
		RISE_	CLR_		EINT1	EINT1	EINT1	FLAG_	ERR_	UVP_	ERR_	FLAG_	FLAG_	EINT1	EINT1	EINT1	EINT1
		EINT1	EINT1					EINT1	EINT1	ERR_ EINT1	EINT1	FALL_ EINT1	RISE_ EINT1				
p. 104		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 0014	IRQ1_EINT_2	-	-	AMP_ NG_ON_	AMP_ NG_ON_			-		-		DSP_ VIRTUAL	DSP_ VIRTUAL		_		
				FALL_	RISE_							2_	1_				
				EINT1	EINT1							MBOX_ WR_	MBOX_ WR_				
												EINT1	EINT1				
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
p. 105		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 0018	IRQ1_EINT_3									_							
		0	0	0	0	0	0 ASP_	0 ASP_	0 REFCLK_	0 REFCLK_	0	0 PLL_	0 PLL_	0 PLL_	0 PLL_	0 PLL_	0 INTP_
				_			RXSLOT_	TXSLOT_	IN_	IN_		UNLOCK	UNLOCK	FREQ_	PHASE_	LOCK_	VC_
							CFG_ ERR_	CFG_ ERR_	FLAG_ FALL_	FLAG_ RISE_		_FLAG_ FALL_	_FLAG_ RISE_	LOCK_ EINT1	LOCK_ EINT1	EINT1	DONE_ EINT1
							EINT1	EINT1	EINT1	EINT1		EINT1	EINT1				
p. 106 0x0001 001C	IRQ1_EINT_4	0	0 GPIO4	0 GPIO4_	0 GPIO3_	0 GPIO3_	0	0	0	0 MEM_	0	0	0	0	0	0	0
0.00010010	INQT_LINT_4	_	FALL_	RISE_	FALL_	RISE_		_		RD_				_			
		0	EINT1 0	EINT1 0	EINT1 0	EINT1 0	0	0	0	EINT1 0	0	0	0	0	0	0	0
			Ü				U U										U
p. 106		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 0090	IRQ1_STS_1	AMP_ ERR_	VBBR_ ATT_	VBBR_ FLAG_	IMON_ CLIPPED	VMON_ CLIPPED	VBSTMO N_	VPMON_ CLIPPED	MSM_ PUP_	MSM_ PDN_	MSM_ GLOBAL_		-	_		TEMP_ ERR_	_
		STS1	CLR_	STS1	_STS1	_STS1	N_ CLIPPED	_STS1	DONE_	DONE_	EN_					STS1	
			STS1				_STS1		STS1	STS1	ASSERT_ STS1						
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		TEMP_	VPBR_	_	VPBR_	REFCLK_	REFCLK_	BST_	BST_	BST_	BST_	_	BST_	_	GPIO2_	_	GPIO1_
		WARN_ STS1	ATT_ CLR_		FLAG_ STS1	STOP_ STS1	START_ STS1	IPK_ FLAG_	SHORT_ ERR_	DCM_ UVP_	OVP_ ERR_		OVP_ FLAG_		STS1		STS1
			STS1					STS1	STS1	ERR_	STS1		STS1				
p. 107		0	0	0	0	0	0	0	0	STS1 0	0	0	0	0	0	0	0
0x0001 0094	IRQ1_STS_2		_		AMP_						_	-		•			
					NG_ON_ STS1												
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
p. 108		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		•															

Address	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0001 0098	IRQ1_STS_3	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	0	0
							ASP_ RXSLOT_ CFG_	_		REFCLK_ IN_ FLAG_	1	-	PLL_ UNLOCK _FLAG_	PLL_ FREQ_ LOCK_	PLL_ PHASE_ LOCK_	PLL_ LOCK_ STS1	INTP_ VC_ DONE_
n 100		0	0	0	0	0	ERR_ STS1 0	0	0	STS1	0	0	STS1	STS1	STS1	0	STS1
p. 108 0x0001 009C	IRQ1_STS_4	-	_	GPIO4_	-	GPIO3_	U	_	0	MEM_	0	0	U	_	U	U	U
		0	0	STS1 0	0	STS1 0	0	0	0	RD_STS1	0	0	0	0	0	0	0
p. 109		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 0110	IRQ1_MASK_1	AMP_ ERR_ MASK1	VBBR_ ATT_ CLR_ MASK1	VBBR_ FLAG_ MASK1	IMON_ CLIPPED _MASK1	VMON_ CLIPPED _MASK1	VBSTMO N_ CLIPPED _MASK1	VPMON_ CLIPPED _MASK1	MSM_ PUP_ DONE_ MASK1	MSM_ PDN_ DONE_ MASK1	MSM_ GLOBAL_ EN_ ASSERT_		_	_		TEMP_ ERR_ MASK1	TEMP_ WARN_ FALL_ MASK1
		4	4	4		4	4	4	4	4	MASK1	4	4	4	4	4	4
		1 TEMP_	1 VPBR_	1	1 VPBR_	1 REFCLK_	1 REFCLK_	1 BST_	1 BST_	1 BST_	1 BST_	BST_	1 BST_	1 GPIO2_	1 GPIO2_	1 GPIO1_	1 GPI01_
		WARN_ RISE_ MASK1	ATT_ CLR_ MASK1		FLAG_ MASK1	STOP_ MASK1	START_ MASK1	IPK_ FLAG_ MASK1	SHORT_ ERR_ MASK1	DCM_ UVP_ ERR_ MASK1	OVP_ ERR_ MASK1	OVP_ FLAG_ FALL_ MASK1	OVP_ FLAG_ RISE_ MASK1	FALL_ MASK1	RISE_ MASK1	FALL_ MASK1	RISE_ MASK1
p. 109		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0x0001 0114	IRQ1_MASK_2	-	_	AMP_ NG_ON_ FALL_ MASK1	AMP_ NG_ON_ RISE_ MASK1						-	_					
		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
p. 111		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0x0001 0118	IRQ1_MASK_3	1	1	1	1	1	1	1	1	_ 1	1	1	1	1	1	1	1
				_			ASP_ RXSLOT_ CFG_ ERR_ MASK1	ı	REFCLK_ IN_ FLAG_ FALL_ MASK1	REFCLK_ IN_ FLAG_ RISE_ MASK1	_	PLL_ UNLOCK _FLAG_ FALL_ MASK1	PLL_ UNLOCK _FLAG_ RISE_ MASK1	PLL_ FREQ_ LOCK_ MASK1	PLL_ PHASE_ LOCK_ MASK1	PLL_ LOCK_ MASK1	INTP_ VC_ DONE_ MASK1
p. 111 0x0001 011C	IDO4 MACK 4	1	0 GPIO4_	0	0 GPIO3_	0 GPIO3_	1	1	1	1 MEM_	1	1	1	1	1	1	1
0000010110	IRQ1_MASK_4	1	FALL_ MASK1	GPIO4_ RISE_ MASK1 1	FALL_ MASK1	RISE_ MASK1	1	1	0	RD_ MASK1	1	1	1	1	4	1	1
		'	ı	'	<u>'</u>	'	1	<u> </u>		<u> </u>	<u>'</u>	1	<u> </u>	<u>'</u>	1	<u>'</u>	
p. 112		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0x0001 0210	IRQ1_EDGE_1	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	0	0
		-					<u> </u>						-	GPIO2_ FALL_ EDGE1	GPIO2_ RISE_ EDGE1	GPIO1_ FALL_ EDGE1	GPIO1_ RISE_ EDGE1
p. 113		0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0x0001 021C	IRQ1_EDGE_4	_	GPIO4_ FALL_ EDGE1	GPIO4_ RISE_ EDGE1	GPIO3_ FALL_ EDGE1	GPIO3_ RISE_ EDGE1						_					
		0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0
p. 113		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Address	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0001 0290	IRQ1_POL_1								-	_							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							-	_						GPIO2_	GPIO2_	GPIO1_	GPIO1_
														FALL_ POL1	RISE_ POL1	FALL_ POL1	RISE_ POL1
p. 114		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 029C	IRQ1_POL_4	-	GPIO4_ FALL_ POL1	GPIO4_ RISE_ POL1	GPIO3_ FALL_ POL1	GPIO3_ RISE_ POL1						_		1		•	
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
p. 114		0	0	0	0	0	0	0	0	_ 0	0	0	0	0	0	0	0
0x0001 0318	IRQ1_DB_3																
0x00010316	IKQI_DB_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					_	_				REFCLK_ IN_ FLAG_ DB1				_			
p. 115		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

6.16 Interrupt Status and Mask Control (IRQ2)

Address	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0001 0800	IRQ2_CFG			,			,		-	_		•	,				
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							-	_							IRQ2_D	B_TIME	
p. 115		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 0804	IRQ2_STATUS								-	_							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
									_								IRQ2_ STS2
p. 115		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 0810	IRQ2_EINT_1	AMP_	VBBR_	VBBR_	IMON_	VMON_	VBSTMO	VPMON_	MSM_	MSM_	MSM_	1		_		TEMP_	TEMP_
		ERR_	ATT_	FLAG_	CLIPPED	CLIPPED	N_	CLIPPED	PUP_	PDN_	GLOBAL_					ERR_	WARN_
		EINT2	CLR_	EINT2	_EINT2	_EINT2	CLIPPED	_EINT2	DONE_	DONE_	EN_					EINT2	FALL_
			EINT2				_EINT2		EINT2	EINT2	ASSERT_						EINT2
		0						0	0		EINT2						
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		TEMP_ WARN	VPBR_ ATT_	_	VPBR_ FLAG	REFCLK_ STOP_	REFCLK_ START	BST_ IPK_	BST_ SHORT	BST_ DCM	BST_ OVP_	BST_ OVP_	BST_ OVP_	GPIO2_ FALL	GPIO2_ RISE_	GPIO1_ FALL	GPIO1_ RISE_
		RISE_	CLR		EINT2	EINT2	EINT2	FLAG	ERR_	UVP_	ERR	FLAG	FLAG	EINT2	EINT2	EINT2	EINT2
		EINT2	EINT2					EINT2	EINT2	ERR_	EINT2	FALL_	RISE_				
										EINT2		EINT2	EINT2				
p. 116		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 0814	IRQ2_EINT_2	-	-	AMP_	AMP_			-	-			DSP_	DSP_		-	-	
				NG_ON_	NG_ON_							VIRTUAL	VIRTUAL				
				FALL_ EINT2	RISE_ EINT2							2_ MBOX	1_ MBOX				
				CINIZ	EINIZ							WR_	WR_				
												EINT2	EINT2				
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- 447		0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	0	0
p. 117		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0

		1 -	1 - 1	_	1 -	1 -	1 -	1 -			1 -	1 -					
Address	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0,0001.0010	IRQ2_EINT_3	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0001 0818	IRQZ_EIN1_3	0	0	0	0	0	0	0	0	_ 0	0	0	0	0	0	0	0
				_			ASP_	_	REFCLK_	REFCLK_	_	PLL_	PLL_	PLL_	PLL_	PLL_	INTP_
							RXSLOT_		IN_ FLAG	IN_		UNLOCK	UNLOCK	FREQ_	PHASE_	LOCK_ EINT2	VC_
							CFG_ ERR_		FALL_	FLAG_ RISE_		_FLAG_ FALL_	_FLAG_ RISE_	LOCK_ EINT2	LOCK_ EINT2	EINIZ	DONE_ EINT2
							EINT2		EINT2	EINT2		EINT2	EINT2				
p. 118		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 081C	IRQ2_EINT_4	_	GPIO4_ FALL_	GPIO4_ RISE_	GPIO3_ FALL_	GPIO3_ RISE_		_		MEM_ RD_				_			
			EINT2	EINT2	EINT2	EINT2				EINT2							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
440			•				0		-	_	•		•		0	•	•
p. 118		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 0890	IRQ2_STS_1	AMP_ ERR_	VBBR_ ATT_	VBBR_ FLAG_	IMON_ CLIPPED	VMON_ CLIPPED	VBSTMO N_	VPMON_ CLIPPED	MSM_ PUP_	MSM_ PDN_	MSM_ GLOBAL_		-	-		TEMP_ ERR_	_
		STS2	CLR_	STS2	_STS2	_STS2	CLIPPED	_STS2	DONE_	DONE_	EN_					STS2	
			STS2				_STS2		STS2	STS2	ASSERT_						
		0	0	0	0	0	0	0	0	0	STS2 0	0	0	0	0	0	0
		TEMP_	VPBR_	_	VPBR_	REFCLK_	REFCLK_	BST_	BST_	BST_	BST_	_	BST_	_	GPIO2_	_	GPIO1_
		WARN_	ATT_		FLAG_	STOP_	START_	IPK_	SHORT_	DCM_	OVP_		OVP_		STS2		STS2
		STS2	CLR_ STS2		STS2	STS2	STS2	FLAG_ STS2	ERR_ STS2	UVP_ ERR_	ERR_ STS2		FLAG_ STS2				
										STS2							
p. 119		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 0894	IRQ2_STS_2		_		AMP_ NG_ON_						-	_					
					STS2	_									_		_
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
p. 120		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 0898	IRQ2_STS_3								-	_							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				-			ASP_ RXSLOT	ASP_ TXSLOT_	_	REFCLK_ IN_	-	_	PLL_ UNLOCK	PLL_ FREQ_	PLL_ PHASE_	PLL_ LOCK_	INTP_ VC_
							CFG_	CFG_		FLAG_			_FLAG_	LOCK_	LOCK_	STS2	DONE_
							ERR_ STS2	ERR_		STS2			STS2	STS2	STS2		STS2
p. 120		0	0	0	0	0	0	STS2 0	0	0	0	0	0	0	0	0	0
0x0001 089C	IRQ2_STS_4		_	GPIO4_	_	GPIO3_		_	ı <u>-</u>	MEM_		-		_	1		
				STS2		STS2		•		RD_STS2			•	•		•	
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
p. 121		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 0910	IRQ2_MASK_1	AMP_	VBBR_	VBBR_	IMON_	VMON_	VBSTMO	VPMON_	MSM_	MSM_	MSM_		_			TEMP_	TEMP_
		ERR_	ATT_	FLAG_	CLIPPED	CLIPPED	N_ CLIDDED	CLIPPED	PUP_	PDN_	GLOBAL_					ERR_	WARN_
		MASK2	CLR_ MASK2	MASK2	_MASK2	_MASK2	CLIPPED _MASK2	_MASK2	DONE_ MASK2	DONE_ MASK2	EN_ ASSERT_					MASK2	FALL_ MASK2
											MASK2						
		1 TEMP	1 VDDD	1	1 VDDD	1 DEECLK	1 DEECLK	1 DCT	1 DOT	1 per	1 per	1 DCT	1 DCT	1	1	1	1
		TEMP_ WARN_	VPBR_ ATT_	_	VPBR_ FLAG_	REFCLK_ STOP_	REFCLK_ START_	BST_ IPK_	BST_ SHORT_	BST_ DCM_	BST_ OVP_	BST_ OVP_	BST_ OVP_	GPIO2_ FALL_	GPIO2_ RISE_	GPIO1_ FALL_	GPIO1_ RISE_
		RISE_	CLR_		MASK2	MASK2	MASK2	FLAG_	ERR_	UVP_	ERR_	FLAG_	FLAG_	MASK2	MASK2	MASK2	MASK2
		MASK2	MASK2					MASK2	MASK2	ERR_ MASK2	MASK2	FALL_ MASK2	RISE_ MASK2				
p. 121		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
					1	·			·	1				1	1		

		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0001 0914	IRQ2_MASK_2	-	_	AMP_ NG_ON_ FALL_ MASK2	AMP_ NG_ON_ RISE_ MASK2			-	_			DSP_ VIRTUAL 2_ MBOX_ WR_ MASK2	DSP_ VIRTUAL 1_ MBOX_ WR_ MASK2		-	_	
		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
p. 123		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0x0001 0918	IRQ2_MASK_3	1	1	1	1	1	1	1	1	_ 1	1	1	1	1	1	1	1
		<u> </u>	·	<u> </u>	<u> </u>	<u> </u>	ASP_ RXSLOT_ CFG_ ERR_ MASK2	ASP_ TXSLOT_ CFG_ ERR_ MASK2	REFCLK_ IN_ FLAG_ FALL_ MASK2	REFCLK_ IN_ FLAG_ RISE_ MASK2	<u> </u>	PLL_ UNLOCK _FLAG_ FALL_ MASK2	PLL_ UNLOCK _FLAG_ RISE_ MASK2	PLL_ FREQ_ LOCK_ MASK2	PLL_ PHASE_ LOCK_ MASK2	PLL_ LOCK_ MASK2	INTP_ VC_ DONE_ MASK2
p. 123 0x0001 091C	IRQ2_MASK_4	1	0 GPIO4_	0 GPIO4_	0 GPIO3_	0 GPIO3_	1	1	1	1 MEM_	1	1	1	1	1	1	1
0x0001 091C	IRQZ_WASK_4	1	FALL_ MASK2	RISE_ MASK2	FALL_ MASK2	RISE_ MASK2	1	1	0	RD_ MASK2	1	1	1	1	1	1	1
p. 124		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0x0001 0A10	IRQ2_EDGE_1									_							
0,0001 0,110	11(QZ_EDOL_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							-	_						GPIO2_ FALL_ EDGE2	GPIO2_ RISE_ EDGE2	GPIO1_ FALL_ EDGE2	GPIO1_ RISE_ EDGE2
p. 125		0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0x0001 0A1C	IRQ2_EDGE_4	0	GPIO4_ FALL_ EDGE2	GPIO4_ RISE_ EDGE2	GPIO3_ FALL_ EDGE2 1	GPIO3_ RISE_ EDGE2	0	0	0	0	1	1	1	1	0	0	0
p. 125		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 0A90	IRQ2_POL_1									_							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							-	_						FALL_ POL2	GPIO2_ RISE_ POL2	FALL_ POL2	GPIO1_ RISE_ POL2
p. 126 0x0001 0A9C	IDO2 DOL 4	0	0 GPIO4_	0	0 GPIO3_	0	0	0	0	0	0	0	0	0	0	0	0
0x00010A9C	IRQ2_POL_4	0	FALL_ POL2	GPIO4_ RISE_ POL2 0	FALL_ POL2	GPIO3_ RISE_ POL2	0	0	0	0	0	0	0	0	0	0	0
T 406		0	0	0	0	0	0	0	0	_ 0	0	0	0	0	0	0	0
p. 126	IDO2 DD 2	J	0	-		J					J	<u> </u>	<u> </u>	J	J	J	J
0x0001 0B18	1KU2_UB_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
p. 127		0	0	0	0	0	0	0	0	REFCLK_ IN_ FLAG_ DB2 0	0	0	0	0	0	0	0

6.17 GPIO Control (GPIO)

Address	Dominton	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0001 1000	GPIO_								-	_							
	STATUS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							-	_						GP4_STS	GP3_STS	GP2_STS	GP1_STS
p. 127		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 1008	GPIO1_CTRL1	GP1_DIR						_							GP1_C	BTIME	
		1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
		GP1_LVL	_	GP1_DB	GP1_POL						-	_					
p. 127		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0x0001 100C	GPIO2_CTRL1	GP2_DIR						_							GP2_C	BTIME	
		1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
		GP2_LVL	_	GP2_DB	GP2_POL						-	_					
p. 128		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0x0001 1010	GPIO3_CTRL1	GP3_DIR						_							GP3_D	BTIME	
		1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
		GP3_LVL	_	GP3_DB	GP3_POL						_	_					
p. 129		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0x0001 1014	GPIO4_CTRL1	GP4_DIR						_							GP4_D	BTIME	
		1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
		GP4_LVL	_	GP4_DB	GP4_POL						_	_					
p. 129		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

6.18 DSP scratch space (DSP_MBOX)

		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0001 3000	DSP_MBOX_1		ı	l l		ı	l .		DSP_MBC	X_1[31:16]			l .				1
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
									DSP_MB0	OX_1[15:0]							
p. 130		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 3004	DSP_MBOX_2								DSP_MBC	X_2[31:16]							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
									DSP_MB0	OX_2[15:0]							
p. 130		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 3008	DSP_MBOX_3								DSP_MBC	X_3[31:16]							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
									DSP_MB0	OX_3[15:0]							
p. 130		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 300C	DSP_MBOX_4								DSP_MBC	X_4[31:16]							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
									DSP_MB0	OX_4[15:0]							
p. 131		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 3010	DSP_MBOX_5								DSP_MBC	X_5[31:16]							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
									_	OX_5[15:0]							
p. 131		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 3014	DSP_MBOX_6								_	X_6[31:16]							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
										OX_6[15:0]							
p. 131		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 3018	DSP_MBOX_7								_	X_7[31:16]							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
									_	OX_7[15:0]							
p. 131		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Address	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0001 301C	DSP_MBOX_8								DSP_MBO	X_8[31:16]							
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
									DSP_MBC	X_8[15:0]							
p. 131		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

6.19 DSP virtual 1 scratch space (DSP_VIRTUAL1_MBOX)

Address	Bosietos	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0001 3020	DSP_		I			I		DSP.	_VIRTUAL1	_MBOX_1[3	31:16]	I			I	ı	
	VIRTUAL1_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MBOX_1							DSF	_VIRTUAL	1_MBOX_1[15:0]						
p. 131		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 3024	DSP_							DSP.	_VIRTUAL1	_MBOX_2[3	31:16]						
	VIRTUAL1_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MBOX_2							DSF	_VIRTUAL	1_MBOX_2[15:0]						
p. 132		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 3028	DSP_							DSP.	_VIRTUAL1	_MBOX_3[3	31:16]						
	VIRTUAL1_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MBOX_3							DSF	_VIRTUAL	1_MBOX_3[15:0]						
p. 132		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 302C								DSP.	_VIRTUAL1	_MBOX_4[3	31:16]						
	VIRTUAL1_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MBOX_4							DSF	_VIRTUAL	1_MBOX_4[15:0]						
p. 132		0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0x0001 3030	DSP_							DSP.	_VIRTUAL1	_MBOX_5[3	31:16]						
	VIRTUAL1_ MBOX_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	INIBOX_3								_	1_MBOX_5[•						
p. 132		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 3034									_	_MBOX_6[3	•						
	VIRTUAL1_ MBOX 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	WIDOX_0									1_MBOX_6[-						
p. 132		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 3038										_MBOX_7[3	-						
	VIRTUAL1_ MBOX 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	WBOX_1								_	1_MBOX_7[•						
p. 132		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 303C	DSP_ VIRTUAL1									_MBOX_8[3							
	MBOX 8	0	0	0	0	0	0	0			0	0	0	0	0	0	0
	IIIDON_0									1_MBOX_8[-						
p. 133		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

6.20 DSP virtual 2 scratch space (DSP_VIRTUAL2_MBOX)

Address	Posistor	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Audress	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0001 3040	DSP_							DSP.	VIRTUAL2	_MBOX_1[3	31:16]						
	VIRTUAL2_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MBOX_1							DSP	_VIRTUAL2	2_MBOX_1[[15:0]						
p. 133		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 3044	DSP_							DSP.	_VIRTUAL2	_MBOX_2[3	31:16]						
	VIRTUAL2_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MBOX_2							DSF	_VIRTUAL2	2_MBOX_2[[15:0]						
p. 133		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

A alabas a a	Danistan	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0001 3048	DSP_		,					DSP_	_VIRTUAL2	2_MBOX_3[3	31:16]						
	VIRTUAL2_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MBOX_3							DSP	_VIRTUAL:	2_MBOX_3[15:0]						
p. 133		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 304C								DSP_	_VIRTUAL2	2_MBOX_4[3	31:16]						
	VIRTUAL2_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MBOX_4							DSP	_VIRTUAL:	2_MBOX_4[15:0]						
p. 133		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 3050	DSP_							DSP_	_VIRTUAL2	2_MBOX_5[3	31:16]						
	VIRTUAL2_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MBOX_5							DSP	_VIRTUAL:	2_MBOX_5[15:0]						
p. 133		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 3054	_							DSP_	_VIRTUAL2	2_MBOX_6[3	31:16]						
	VIRTUAL2_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MBOX_6							DSP	_VIRTUAL:	2_MBOX_6[15:0]						
p. 134		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 3058	_							DSP_	_VIRTUAL2	2_MBOX_7[3	31:16]						
	VIRTUAL2_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MBOX_7							DSP	_VIRTUAL:	2_MBOX_7[15:0]						
p. 134		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0001 305C	_							DSP.	_VIRTUAL2	2_MBOX_8[3	31:16]						
	VIRTUAL2_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MBOX_8							DSP	_VIRTUAL:	2_MBOX_8[15:0]						
p. 134		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

6.21 Clock Presence Detect (CLOCK_DETECT)

Address	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0001 4000	CLOCK_								_	_							
	DETECT_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
						=	_					CLK_DE	T_FREQ		_		CLK_ DET_EN
p. 134		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

7 Register Descriptions

This section describes each of the control port registers.

- The register field default values are established upon the deassertion of the RESET pin.
- A "—" represents a reserved field/access type.
- The reserved field values must not be modified.
- · All visible fields are read/write except where indicated with the following shading:

		_	
	Read/write access	Read-only access	Write-only access

7.1 Software Reset and Hardware ID (SW_RESET)

7.1.1 DEVID Address: 0x0000 0000

RO	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				_	-															DE,	VID											
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	1	1	0	1	0	0	1	0	0	0	0	0	0

Bits	Name	Description
31:24	_	Reserved
23:0		A value of 0x40A25A indicates a CS40L25 device. A value of 0x40A25B indicates a CS40L25B device.

7.1.2 REVID Address: 0x0000 0004

RO	318	7	6	5	4	3	2	1	0
	_		ARE	VID			MTLF	REVID	
Default	0x00 0000	X	X	Х	Х	X	X	X	Х

Bits	Name	Description
31:8	_	Reserved
7:4	AREVID	Alpha revision. Device alpha revision level. AREVID and MTLREVID from the complete device revision ID (e.g., A0, B2).
3:0	MTLREVID	Metal revision. Device metal revision level. AREVID and MTLREVID from the complete device revision ID (e.g., A0, B2).

7.1.3 RELID Address: 0x0000 000C

RO	318	7	6	5	4	3	2	1	0
	_				RE	LID			
Default	0x00 0000	0	0	0	1	0	0	0	0

Bits	Name	Description
31:8	_	Reserved
7:0		Software Device revision. (incremented if software driver compatibility or software feature support is changed)

7.1.4 OTPID Address: 0x0000 0010

RO	318	7	6	5	4	3	2	1	0
	_		-	-			ОТ	PID	
Default	0x00 0000	0	0	0	0	0	0	0	0

Bits	Name	Description
31:4	_	Reserved
3:0	-	OTP revision and additional device ID. A unique code for additional qualification of device ID and the OTP revision programmed into the device. OTPID of 0x0 is Reserved.

Address: 0x0000 2014

Address: 0x0000 2018

7.1.5 SFT_RESET

WO	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			S	FT_F	RESE	Т														-	-											
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:24	SFT_RESET	Software Reset Write Only Register.
		Writing to this register resets all registers to their default state. Reading from this register will indicate 00000000. Note: Writing 0x5A00_0000 to this register triggers a soft reset.
23:0	_	Reserved

7.2 Power, Global, and Release Control (MSM)

7.2.1 GLOBAL_ENABLES

RW	318	7	6	5	4	3	2	1	0
	_				_				GLOBAL_EN
Default	0x00 0000	0	0	0	0	0	0	0	0

Bits	Name	Description
31:1	_	Reserved
0	GLOBAL_EN	Global device enable. Enables and disables all functionality of the device. When GLOBAL_EN = 0, it is equivalent to disabling all of the sub-blocks and their associated circuitry. When GLOBAL_EN = 1, if all of the subblocks are enabled (x_EN = 1), the entire device will power up. Individual sub-blocks may be disabled using their respective enable control bits. If a functional block contains a global override (x_GLOBAL_OVR), setting the x_GLOBAL_OVR = 1 allows that block to remain enabled when GLOBAL_EN = 0. This permits various low power and fast power up modes of operation. 0 = (Default) Device is disabled and put into a power down state (unless one or more x_GLOBAL_OVR is set) 1 = Device is enabled

7.2.2 BLOCK_ENABLES

RW	3116	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_	-	_	IMON_ EN	VMON_ EN				VPMON _EN			BST	_EN		_		AMP_ EN
Default	0x0000	0	0	1	1	0	0	1	1	0	0	1	0	0	0	0	1

Bits	Name	Description
31:14	_	Reserved
13	IMON_EN	IMON actuator current monitoring enable. Configures whether the IMON actuator current monitoring is disabled or enabled. 0 = IMON monitoring disabled 1 = (Default) IMON monitoring enabled
12	VMON_EN	VMON actuator voltage monitoring enable. Configures whether the VMON actuator voltage monitoring is disabled or enabled. 0 = VMON monitoring disabled 1 = (Default) VMON monitoring enabled
11	_	Reserved
10	TEMPMON_EN	TEMPMON chip temperature monitoring enable. Configures whether the TEMPMON chip temperature monitoring is enabled. 0 = (Default) TEMPMON monitoring disabled 1 = TEMPMON monitoring enabled
9	VBSTMON_EN	VBSTMON supply voltage monitoring enable. Configures whether the VBSTMON supply monitoring is enabled. Other subblocks that require the VBSTMON (e.g. boost converter) can automatically enable the VBSTMON ADC even when VBSTMON_EN = 0. 0 = VBSTMON monitoring disabled (if no other block is requesting VBSTMON to be enabled) 1 = (Default) VBSTMON monitoring enabled

Address: 0x0000 201C

Bits	Name	Description
8	VPMON_EN	VPMON supply voltage monitoring enable. Configures whether the VPMON supply monitoring is enabled. Other subblocks that require the VPMON (e.g. boost converter) can automatically enable the VPMON ADC even when VPMON_EN = 0.
		0 = VPMON monitoring disabled (if no other block requesting VPMON to be enabled) 1 = (Default) VPMON monitoring enabled
7:6	_	Reserved
5:4	BST_EN	Digital boost converter enable/disable control. Configures the power state of the boost converter and bypass FET. When GLOBAL_EN=0 and BST_GLOBAL_OVR = 0, the boost converter's bypass FET is off.
		00 = Boost converter disabled with bypass FET off (VBST = VP – diode drop) 01 = Boost converter disabled with bypass FET on (VBST = VP) 10 = (Default) Boost converter enabled 11 = Reserved (Boost converter enabled)
3:1	_	Reserved
0	AMP_EN	Class D amplifier enable/disable control. Configures the operational power state of the Class D amplifier and most of the amplifier's signal path (channel select, diagnostic signal generator, digital gain, modulator, and output stage). 0 = Amplifier functionality disabled 1 = (Default) Amplifier functionality enabled

7.2.3 BLOCK_ENABLES2

RW	31	30	 29	9 28 27 26 25		24	23	22	21	20	19	18	17	16				
							WKFET_ AMP_EN		_		AMP_ DRE_EN		_					
Default	0	0	0 0		0 0 0		1	0 0 0		0	0 0 0			0				
RW	15	14 13 12		12	11 10		9	8	7	6	5	4	3	2	1	0		
	_		VBBR_ VPBR_ EN EN					_				CLASSH _EN			_			
Default	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0		

Bits	Name	Description
31:25	_	Reserved
24	WKFET_AMP_EN	Amplifier weak-FET automatic tracking enable. Configures whether the weak-FET signal based tracking and automatic management for the amplifier's switching outputs is enabled or disabled. 0 = Amplifier weak-FET tracking disabled 1 = (Default) Amplifier weak-FET tracking enabled
23:21	_	Reserved
20	AMP_DRE_EN	Amplifier dynamic range enhancement enable. Configures whether the dynamic range enhancement is enabled and automatically managing the analog gain of the amplifier in order to reduce the noise floor of the amplifier. 0 = (Default) DRE disabled 1 = DRE enabled
19:14	_	Reserved
13	VBBR_EN	VBST brownout prevention enable. Configures whether the VBST brownout prevention algorithm is enabled or disabled. 0 = (Default) VBST brownout prevention disabled 1 = VBST brownout prevention enabled
12	VPBR_EN	VP brownout prevention enable. Configures whether the VP brownout prevention algorithm is enabled or disabled. 0 = (Default) VP brownout prevention disabled 1 = VP brownout prevention enabled
11:5	_	Reserved
4	CLASSH_EN	Class H enable. Configures whether the Class H tracking is enabled or disabled (and the memory buffer bypassed). When the Class H is enabled, the BST_CTL_SEL must be configured to use the Class H target in order for VBST tracking to occur. 0 = Class H disabled 1 = (Default) Class H enabled
3:0	_	Reserved

Address: 0x0000 2034

7.2.4 GLOBAL_OVERRIDES

RW	318	7	6	5	4	3	2	1	0
	_		-	-		TEMPMON_ GLOBAL_OVR	-	_	BST_GLOBAL_ OVR
Default	0x00 0000	0	0	0	0	0	0	1	0

Bits	Name	Description
31:4	_	Reserved
3	TEMPMON_ GLOBAL_OVR	TEMPMON global enable override. Setting TEMPMON_GLOBAL_OVR allows the TEMPMON to continue to function and remain in an operational state while GLOBAL_EN = 0. 0 = (Default) The TEMPMON is disabled when GLOBAL_EN = 0. 1 = Assumes the configuration of TEMPMON_EN, regardless of the state of GLOBAL_EN
2:1	_	Reserved
0	BST_GLOBAL_OVR	Boost converter global enable override. Setting BST_GLOBAL_OVR allows the boost converter's enable control (BST_EN) to operate independently from the GLOBAL_EN control. This allows the boost converter to be powered up when GLOBAL_EN = 0 and the rest of the IC is disabled. 0 = (Default) The boost converter is disabled when GLOBAL_EN = 0 1 = The configuration of BST_EN is applied, regardless of the state of GLOBAL_EN

7.2.5 ERROR_RELEASE

RW	318	7	6	5	4	3	2	1	0
	_	_	TEMP_ERR_RLS	TEMP_WARN_ RLS	BST_UVP_ERR_ RLS	BST_OVP_ERR_ RLS	BST_SHORT_ ERR_RLS	AMP_SHORT_ ERR_RLS	_
Default	0x00 0000	0	0	0	0	0	0	0	0

	<u> </u>	
Bits	Name	Description
31:7	_	Reserved
6	TEMP_ERR_RLS	Overtemperature error protection release. Releases overtemperature error protection that places the device into Actuator-Safe Mode if the overtemperature error condition is no longer present. The present overtemperature error condition can be determined by reading the TEMP_ERR_STS1 bit twice.
		At the end of the protection release sequence (0 -> 1 -> 0), if the overtemperature error condition is no longer present, then the overtemperature error-caused Actuator-Safe Mode is cleared (the device may remain in Actuator-Safe Mode if another error is present).
		Note: For the protection release bits (x_RLS), if the condition that causes automatic protection becomes true again during the potential protection release sequence, then protection is not removed, the related interrupt status bit is set again and, if unmasked, a new interrupt is generated.
		0 = (Default) Release0. After 0 -> 1 -> 0 sequence, if the overtemperature error condition is present, Actuator-Safe is applied 1 = Release1
5	TEMP_WARN_RLS	Overtemperature warning release. Releases overtemperature warning if the overtemperature warning condition is no longer present. The present overtemperature warning condition can be determined by reading the TEMP_WARN_STS1 bit twice.
		At the end of the warning release sequence (0 -> 1 -> 0), if the overtemperature warning condition is no longer present, then the overtemperature warning is cleared (the device may remain in Actuator-Safe Mode if another error is present).
		Note: For the protection release bits (x_RLS), if the condition that causes automatic protection becomes true again during the potential protection release sequence, then protection is not removed, the related interrupt status bit is set again and, if unmasked, a new interrupt is generated.
		0 = (Default) Release0. After 0 -> 1 -> 0 sequence, if the overtemperature warning condition is present, the protection is not removed 1 = Release1

Bits	Name	Description
4	BST_UVP_ERR_ RLS	Boost converter undervoltage error protection release. Releases boost converter undervoltage error protection that places the device into Actuator-Safe Mode if the boost converter undervoltage error condition is no longer present. The present boost converter undervoltage error condition can be determined by reading the BST_DCM_UVP_ERR_EINT1 bit twice.
		At the end of the protection release sequence $(0 -> 1 -> 0)$, if the boost converter undervoltage error condition is no longer present, then the boost converter undervoltage error-caused Actuator-Safe Mode is cleared (the device may remain in Actuator-Safe Mode if another error is present).
		Note: For the protection release bits (x_RLS), if the condition that causes automatic protection becomes true again during the potential protection release sequence, then protection is not removed, the related interrupt status bit is set again and, if unmasked, a new interrupt is generated.
		0 = (Default) Release0. After 0 -> 1 -> 0 sequence, if the undervoltage error condition is present, Actuator-Safe Mode is applied 1 = Release1
3	BST_OVP_ERR_ RLS	Boost converter overvoltage error protection release. Releases boost converter overvoltage error protection that places the device into Actuator-Safe Mode if the boost converter overvoltage error condition is no longer present. The present boost converter overvoltage error condition can be determined by reading the BST_OVP_ERR_EINT1 bit twice.
		At the end of the protection release sequence $(0 \rightarrow 1 \rightarrow 0)$, if the boost converter overvoltage error condition is no longer present, then the boost converter overvoltage error-caused Actuator-Safe Mode is cleared (the device may remain in Actuator-Safe Mode if another error is present).
		Note: For the protection release bits (x_RLS), if the condition that causes automatic protection becomes true again during the potential protection release sequence, then protection is not removed, the related interrupt status bit is set again and, if unmasked, a new interrupt is generated.
		0 = (Default) Release0. After 0 -> 1 -> 0 sequence, if the overvoltage error condition is present, Actuator-Safe Mode is applied 1 = Release1
2	BST_SHORT_ERR_ RLS	Boost converter inductor short error protection release. Releases boost converter inductor short error protection that places the device into Actuator-Safe Mode if the boost converter inductor short error condition is no longer present. The present boost converter inductor short error condition can be determined by reading the BST_SHORT_ERR_EINT1 bit twice.
		At the end of the protection release sequence $(0 \rightarrow 1 \rightarrow 0)$, if the boost converter inductor short error condition is no longer present, then the boost converter inductor short error-caused Actuator-Safe Mode is cleared (the device may remain in Actuator-Safe Mode if another error is present).
		Note: For the protection release bits (x_RLS), if the condition that causes automatic protection becomes true again during the potential protection release sequence, then protection is not removed, the related interrupt status bit is set again and, if unmasked, a new interrupt is generated.
		0 = (Default) Release0. After 0 -> 1 -> 0 sequence, if the inductor short error condition is present, Actuator-Safe Mode is applied 1 = Release1
1	AMP_SHORT_ERR_ RLS	Amplifier short protection release. Releases amplifier short protection that places the device into Actuator-Safe Mode if the amplifier short condition is no longer present. The present amplifier short condition can be determined by reading the AMP_ERR_EINT1 bit twice.
		At the end of the protection release sequence $(0 \rightarrow 1 \rightarrow 0)$, if the amplifier short condition is no longer present, the amplifier short-caused Actuator-Safe Mode is cleared (the device may remain Actuator-Safe Mode if another error is present).
		Note: For the protection release bits (x_RLS), if the condition that causes automatic protection becomes true again during the protection potential release sequence, protection is not removed, the related interrupt status bit is set again, and, if unmasked, a new interrupt is generated.
		0 = (Default) Release0. After 0 -> 1 -> 0 sequence, if the amplifier short error condition is present, Actuator-Safe Mode is applied 1 = Release1
0	_	Reserved

Address: 0x0000 2420

Address: 0x0000 242C

7.3 Digital I/O Pad Control (PAD_INTF)

7.3.1 LRCK_PAD_CONTROL

RW	318	7	6	5	4	3	2	1	0
			_		GP4_CTRL		-	_	
Default	0x00 0000	0	0	0	0	0	1	1	1

Bits	Name	Description
31:5	_	Reserved
4	GP4_CTRL	Defines the function of the ASP_FYSNC/GPIO4 pin: 0 = (Default) Pin acts as ASP_FSYNC input/output 1 = Pin acts as a GPIO, direction controlled by the GP4_DIR register.
3:0	_	Reserved

7.3.2 SDIN_PAD_CONTROL

RW	318	7	6	5	4	3	2	1	0
	_		-	_		GP3_CTRL		_	
Default	0x00 0000	0	0	0	0	0	1	1	1

Bits	Name	Description
31:4	_	Reserved
3	GP3_CTRL	Defines the function of the ASP_DIN/GPIO3 pin: 0 = (Default) Pin acts as ASP_DIN input 1 = Pin acts as a GPIO, direction controlled by the GP3_DIR register.
2:0	_	Reserved

7.3.3 GPIO_PAD_CONTROL

RW	31	30	29	 28	27	 26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_				— GP2_CTRL —						GP	1_CT	RL								-	-										
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:27	_	Reserved
26:24	GP2_CTRL	Defines the function of the REFCLK/GPIO2 pin: 000 = (Default) High Impedance input 001 = Pin acts as a GPIO, direction controlled by the GP2_DIR register. 010 = Reserved 011 = Pin acts as REFCLK (MCLK) Input 100–111 = Reserved
23:19	_	Reserved
18:16	GP1_CTRL	Defines the function of the GPIO1 pin: 000 = (Default) High Impedance input 001 = Pin acts as a GPIO, direction controlled by the GP1_DIR register. 010–111 = Reserved
15:0	_	Reserved

Address: 0x0000 2904

Address: 0x0000 2908

7.4 Hibernation Power Management (PWRMGT)

7.4.1 PWRMGT_CTL

	318	7	6	5	4	3	2	1	0
	_			_	_			MEM_RDY	TRIG_HIBER
Access	_			_	_			RW	WO
Default	0x00 0000	0	0	0	0	0	0	0	0

Bits	Name	Description
31:2	_	Reserved
1	MEM_RDY	Setting for the memory ready bit. The status of this bit is reported into MEM_RDY_STS and persists across hibernation modes. 0 = (Default) MEM_RDY_STS cleared 1 = MEM_RDY_STS set
0	TRIG_HIBER	Triggers entry into hibernation mode. Will only take effect if WKSRC_EN has at least one pin enabled. 0 = (Default) No effect. 1 = Enter hibernation mode

7.4.2 WAKESRC_CTL

	i																
	3116	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	l				_				UPDT_ WKCTL		WKSRC_EN			WKSRC_POL			
Access	1					WO		R\	N		RW						
Default	0x0000	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0

Bits	Name	Description
31:9	_	Reserved
8	UPDT_WKCTL	Updates the always-on hibernation logic with the current values of WKSRC_EN and WKSRC_POL when set. 0 = (Default) Do not latch values 1 = Latch values
7:4	WKSRC_EN	Configures external pin sources to be monitored to trigger exit from hibernation mode. Must be set to a non-zero value before entry to hibernation mode is permitted using TRIG_HIBER. When enabled, a rising edge on the pin will trigger an exit from hibernation mode. xxx1 – GPIO1 enabled xx1x – REFCLK/GPIO2 enabled x1xx – ASP_FSYNC/GPIO4 enabled 1xxx – I2C_SDA/SPI_MOSI enabled
3:0	WKSRC_POL	Enables the polarity on wake sources to be inverted. xxx1 – GPIO1 falling edge triggered xx1x – REFCLK/GPIO2 falling edge triggered x1xx – ASP_FSYNC/GPIO4 falling edge triggered 1xxx – I2C_SDA/SPI_MOSI falling edge triggered

7.4.3 PWRMGT_STS

RO	318	7	6	5	4	3	2	1	0	
	_		WKSR	C_STS		— WR_PEND_STS MEM_RDY_STS				
Default	0x00 0000	0	0	0	0	0	0	0	0	

Bits	Name		Description
31:8	_	Reserved	
7:4	WKSRC_STS	Readback from always-on hibernation logic on the 0000 = (Default) No sources 0001 = GPIO1 triggered 0010 = REFCLK/GPIO2 triggered 0011 = Reserved	ne source that caused the exit from hibernation mode. 0100 = ASP_FSYNC/GPIO4 triggered 0101–0111 = Reserved 1000 = I2C_SDA/SPI_MOSI triggered 1001–1111 = Reserved

Bits	Name	Description
3:2	_	Reserved
1	WR_PEND_STS	Indicates a write is in-progress over the internal bus between the register space and the hibernation logic. Any new writes to the hibernation logic registers will silently fail. 0 = (Default) No write in progress 1 = Write in progress
0	MEM_RDY_STS	Readback status of value previously written to MEM_RDY prior to entry of hibernation mode. 0 = (Default) RAM is not initialised 1 = RAM is initialised

7.5 Device Clocking and Sample Rate Control (CCM)

7.5.1	REFCLK	INPUT

RW	31	30	- 29	28	27	26	25	24	23	22	21	20	19	18	17	16
								_								PLL_ FORCE_ EN
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PLL_OPEN_LOOP						PLL_REFO	CLK_FREC)		PLL_ REFCLK _EN	_	PLL_	_REFCLK	(_SEL	
Default	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0

Bits	Name	Description						
31:17	_	Reserved						
16	PLL_FORCE_EN	PLL force enable. Forces the PLL to remain on and selected as the clock source during operational states instead of using the internal oscillator. 0 = (Default) Normal operation (PLL not forced on/selected) 1 = PLL is forced as the internal clock selection source instead of the internal oscillator for low power modes.						
15:12	_	Reserved						
11	PLL_OPEN_LOOP	L closed loop operation control. Configures whether the PLL is operating in an open loop or closed loop onfiguration. The PLL must be configured to operate open loop if the REFCLK source or frequency is being configured. After the REFCLK has been reconfigured and is stable, the PLL can be set back to a closed loop onfiguration to resume normal operation. 0 = (Default) Closed loop (PLL is locked to REFCLK) 1 = Open loop (PLL unlocked)						
10:5	PLL_REFCLK_FREQ	PLL input reference clock frequency. This value must match the input frequency present at the selected REFCLK source in order to properly configure the internal clocking of the device. 000000 = (Default) 32768Hz 101000 = 6144000 Hz 000001-011010 = Reserved 101001-101111 = Reserved 011011 = 1536000 Hz 110000 = 96000000 Hz 011100-100000 = Reserved 110001-110010 = Reserved 100001 = 3072000 Hz 110011 = 12288000 Hz 100010-100111 = Reserved 110100-111111 = Reserved						
4	PLL_REFCLK_EN	Input reference clock enable. Enables the selected reference input clock for purposes of power savings when the device is on a shared bus. 0 = Reference clock input disabled 1 = (Default) Enabled (normal mode)						
3	_	Reserved						
2:0	PLL_REFCLK_SEL	Device reference clock input select. Selects the reference clock the device uses to generate an internal master clock. 000 = (Default) BCLK input 001 = FSYNC input 010–100 = Reserved						

Address: 0x0000 2C0C

Address: 0x0000 3800

7.5.2 GLOBAL_SAMPLE_RATE

RW	318	7	6	5	4	3	2	1	0			
	_		_			GLOBAL_FS						
Default	0x00 0000	0	0	0	0	0	0	1	1			

Bits	Name	Description
31:5	_	Reserved
4:0	GLOBAL_FS	Serial port sample rate frequency. Configures the global sample rate of the serial port (I2S/TDM).
		00000-00010 = Reserved 00100-11111 = Reserved 00011 = (Default) 48.0 kHz

7.6 Digital Boost Converter (BOOST)

7.6.1 VBST CTL 1

RW	318	7	6	5	4	3	2	1	0							
			BST_CTL													
Default	0x00 0000	0	0	0	0	0	0	0	0							

Bits	Name	Description												
31:8	_	eserved												
7:0	BST_CTL	Boost converter target control word. Configures the boost converter's output mode and voltage when BST_CTL_SEL is configured to use the control port value. When Class H is enabled and BST_CTL_LIM_EN = 1, configures the maximum allowable VBST voltage for when the target boost voltage is controlled by Class H. When the BST_CTL target is less than VP, the boost converter remains in bypass mode (VBST = VP). Step size is 50 mV.												
		00000000 = (Default) VBST = VP												

7.6.2 VBST CTL 2

7.6.2 VBST_CTL_2 Address: 0x0000 380													
RW	318	7	6	5	4	3	2	1	0				
				_			BST_CTL_LIM_ EN	BST_C	TL_SEL				
Default	0x00 0000	0	0	0	0	0	0	0	1				

Bits	Name	Description								
31:3	_	Reserved								
2	BST_CTL_LIM_EN	Class H boost control maximum limit. Controls whether the Class H's maximum generated boost control voltage is limited by the BST_CTL configuration.								
		0 = (Default) No user-configured limit I = Maximum Class H BST_CTL generation is limited by BST_CTL configuration								
1:0	BST_CTL_SEL	Boost converter control source selection. Selects the source of the BST_CTL target VBST voltage for the boost converter to generate. This allows the user to select how to manage the control of the target VBST voltage without enabling and disabling other functional blocks, potentially changing the signal path (i.e. Class H tracking).								
		Note: When Class H tracking is selected as the BST_CTL target source, and the Class H is disabled (CLASSH_EN = 0) the boost converter remains in bypass mode (VBST = VP).								
		00 = Control port BST_CTL register value 10–11 = Reserved 01 = (Default) Class H tracking value								

Address: 0x0000 380C

Address: 0x0000 3810

7.6.3 BST_IPK_CTL

RW	318	7	6	5	4	3	2	1	0				
	_	_		BST_IPK									
Default	0x00 0000	0	1	0	0	1	0	1	0				

Bits	Name	Description
31:7	_	Reserved
6:0	BST_IPK	Boost converter peak current limit. Configures the peak current by monitoring the current through the boost FET. If the amplifier attempts to draw enough power to where the boost FET reaches the configured IMAX(B) limit, only the set limit current is provided and, consequently, the boosted VBST voltage droops.
		Step size is 50 mA. 0000000–0001111 = Reserved 1001000 = 4.40 A 0010000 = 1.60 A 1001001 = 4.45 A 0010001 = 1.65 A 1001010 = (Default) 4.50 A 0010010 = 1.70 A 1001011–1111111 = Reserved

7.6.4 SOFT_RAMP

RW	318	7	6	5	4	3	2	1	0		
	_		_	-		BST_SFT_RAMP					
Default	0x00 0000	0	0	0	0	0	0	1	1		

Bits	Name		Description
31:4	_	Reserved	
3:0	BST_SFT_RAMP	response to a BST_CTL or target VBST voltag backpowering current associated with charging	igures how quickly the VBST voltage is allowed to change in e configuration change. This limits the amount of inrush or g or discharging the CBST capacitor. Absolute time is based on e a slower change in voltage and are intended for use cases with
		0000 = 50.0 mV/µs 0001 = 33.3 mV/µs 0010 = 25.0 mV/µs 0011 = (Default) 18.8 mV/µs 0100 = 12.5 mV/µs 0101 = 9.4 mV/µs 0110 = 4.7 mV/µs 0111 = 2.3 mV/µs	1000 = 1.2 mV/µs 1001 = 585 mV/ms 1010 = 292 mV/ms 1011 = 146 mV/ms 1100 = 73 mV/ms 1101 = 36 mV/ms 1110 = 18 mV/ms 1111 = 9 mV/ms

7.6.5 BST_LOOP_COEFF

RW	3116	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_				BST	_K2			BST_K1								
Default	0x0000	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	0

Bits	Name	Description
31:16	_	Reserved
15:8	BST_K2	Along with BST_K1, adjusts the boost converter's feedback loop to compensate for the changes produced by using a different LBST inductance or different system requirements. Note: Adjusting for a lower inductance reduces the loop bandwidth.
7:0	BST_K1	Along with BST_K2, adjusts the boost converter's feedback loop to compensate for the changes produced by using a different LBST inductance or different system requirements. Note: Adjusting for a lower inductance reduces the loop bandwidth.

Address: 0x0000 3818

7.6.6 LBST_SLOPE

RW	3116	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_	BST_SLOPE									— BST_LBST_VAL						ST_VAL
Default	0x0000	0	1	1	1	0	1	0	1	0	0	0	0	0	0	0	0

Bits	Name		Description								
31:16	_	Reserved									
15:8	BST_SLOPE	Allows for adjustment of the boost converter's inte by using a different LBST inductance.	ows for adjustment of the boost converter's internal ramp-gen slope to compensate for the changes produced using a different LBST inductance.								
7:2	_	Reserved									
1:0	BST_LBST_VAL	ductor estimation LBST reference value. Seeds the digital boost converter's inductor estimation block with the itial inductance value to reference. $00 = (Default) 1.0 \mu H$ $01 = 1.5 \mu H$ $01 = 1.2 \mu H$ $01 = 1.2 \mu H$									

7.6.7 BST_SW_FREQ

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	BST_DCM_FREQ_MIN							-	_						BST	_DCI	M_FF	REQ					-	_		BST	_CCI	/_FF	REQ			
Default	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description						
31:24	BST_DCM_FREQ_ MIN	Boost converter's minimum DCM mode switching frequency. It is switching frequency the boost converter can produce while open number of consecutive skipped periods is set by BST_DCM_I then no switching period is allowed to be skipped; if BST_DCI allowed to be skipped, etc. The minimum allowable switching MIN+1) MHz. 00000000 = DCM mode frequency skipping disabled (BST_00000001 = (Default) BST_DCM_FREQ/2 00000011 = BST_DCM_FREQ/3 00000011 = BST_DCM_FREQ/4 111111110 = BST_DCM_FREQ/255 111111111 = BST_DCM_FREQ/256	perating in DCM Mode. The maximum allowable FREQ_MIN. If the BST_DCM_FREQ_MIN = 0, M_FREQ_MIN = 1, then 1 switching period is period = BST_DCM_FREQ/(BST_DCM_FREQ_					
23:18	_	Reserved						
17:8	BST_DCM_FREQ	Boost converter's DCM mode switching frequency. Configures the base rate SW net switching frequency operating in DCM Mode. All frequencies listed with a fPLL_OUT of 192 MHz. Other fPLL_OUT frequency scale ratiometrically. Step size: fPLL_OUT/(8*(12+n)) MHz. 0x000 = 2,000.00 kHz 0x001 = 1,846.15 kHz 0x001 = 1,846.15 kHz 0x002 = 1,714.29 kHz 0x3FE = 23.21 kHz 0x3FF = 23.19 kHz						
7:4	_	Reserved						
3:0	BST_CCM_FREQ	0001 = 1.846 MHz 0010 = 1.714 MHz 0011 = 1.600 MHz 0100 = 1.500 MHz 0101 = 1.412 MHz 0110 = 1.333 MHz 100 1010 1100 1100 1110	e fundamental output switching frequency of the e. The frequency listed is based on a f _{PLL_OUT} = 0 = 1.200 MHz 1 = 1.143 MHz 0 = 1.091 MHz 1 = 1.043 MHz 0 = 1.000 MHz 1 = 0.960 MHz 0 = 0.960 MHz 0 = 0.923 MHz 1 = 0.889 MHz					

Address: 0x0000 381C

Address: 0x0000 3820

7.6.8 BST_DCM_CTL

RW	318	7	6	5	4	3	2	1	0
	_	BST_DCM	_EXIT_SEL	BST_DCM_	ENTRY_SEL		_		BST_DCM_EN
Default	0x00 0000	0	1	0	1	0	0	0	1

Bits	Name	Description
31:8	_	Reserved
7:6	BST_DCM_EXIT_ SEL	Boost converter DCM exit source selection. Selects the signal source for the automatic DCM exit to CCM Mode. 00 = Reserved 01 = (Default) Noise gating control triggers DCM Mode exit 10 = Reserved 11 = Automatic load detection disabled. User must manually force in/out of DCM Mode via BST_DCM_ FORCE registers.
5:4	BST_DCM_ENTRY_ SEL	Boost converter DCM entry source selection. Selects the signal source for the automatic DCM entry from CCM Mode. 00 = Reserved 01 = (Default) Noise gating control triggers DCM Mode entry 10 = Reserved 11 = Automatic load detection disabled. User must manually force in/out DCM Mode via BST_DCM_FORCE registers.
3:1	_	Reserved
0	BST_DCM_EN	Boost converter automatic DCM Mode enable. This enables the digital boost converter to operate in a low power (DCM) mode during low loading conditions. 0 = Boost converter automatic low power mode disabled 1 = (Default) Boost converter automatic low power mode enabled

7.6.9 DCM_FORCE

RW	318	7	6	5	4	3	2	1	0
	-				_			BST_DCM_FRC_ EN	BST_DCM_FRC
Default	0x00 0000	0	0	0	0	0	0	0	0

Bits	Name	Description
31:2	_	Reserved
1	BST_DCM_FRC_EN	Boost converter DCM force mode control enable. Setting this field enables the DCM/CCM control functionality of BST_DCM_FRC. Do not force the boost converter in to DCM Mode when there is a load greater than 8 mA on the VBST supply. Device damage may occur. 0 = (Default) BST_DCM_FORCE control disabled 1 = BST_DCM_FORCE control enabled
0	BST_DCM_FRC	Force the boost converter to operate in DCM Mode. When enabled by BST_DCM_FRC_EN, manually puts the boost converter in either DCM Mode or CCM Mode. When BST_DCM_FRC_EN = 0, this control has no functionality. [Sequence: 0 -> 1]: Force transition to DCM Mode [Sequence: 1 -> 0]: Force transition to CCM mode 0 = (Default) Remain in CCM mode when automatic control is disabled (BST_DCM_EN = 0) 1 = Remain in DCM mode if no error condition is present and automatic control disabled (BST_DCM_EN = 0).

Address: 0x0000 4008

Address: 0x0000 4220

7.6.10 VBST OVP

RW	3116	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	l
	_				_				BST_ OVP_ EN	I				BST_OV	P_THLD			
Default	0x0000	0	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	

Bits	Name	De	escription						
31:9	_	Reserved							
8	BST_OVP_EN	limit (configured by BST_OVP_THLD). This setting (BST_VBST_ERR). 0 = Overvoltage protection disabled	= = '						
		, , , , , , , , , , , , , , , , , , , ,	abled						
7:6	_	Reserved							
5:0	BST_OVP_THLD	Boost converter overvoltage protection limit. Thresh a rapid load change. Intended to allow for the protestep size: 0.0625V.	old to actively limit any VBST voltage overshoot caused by ction of external components such as CBST.						
		000000 = 9.0000 V 000001 = 9.0625 V 000010 = 9.1250 V	110000 = (Default) 12.0000 V 111110 = 12.8750 V 111111 = 12.9375 V						

7.7 VMON and IMON Signal Monitoring (VIMON)

7.7.1 MONITOR_FILT

RW	318	7	6	5	4	3	2	1	0
	-				_				MON_FILT_ RESP
Default	0x00 0000	0	0	0	0	0	0	0	0

Bits	Name	Description
31:1	_	Reserved
0	MON_FILT_RESP	Selects filter response for VMON and IMON paths.
		0 = (Default) Optimized for sample rates of 48 kHz and below 1 = Optimized for sample rates greater than 48 kHz

7.8 Die Temperature Monitoring (TEMPMON)

7.8.1 WARN_LIMIT_THRESHOLD

RW	318	7	6	5	4	3	2	1	0			
	_		_									
Default	0x00 0000	0	0	0	0	0	0	1	0			

Bits	Name	Description
31:2	_	Reserved
1:0		Amplifier overtemperature warning threshold. Configures the threshold at which the overtemperature warning condition occurs. When the threshold is met, the overtemperature warning attenuation is applied and the TEMP_WARN_RISE_EINT1 interrupt status bit is set. If TEMP_WARN_RISE_MASK1 = 0, ALERT is asserted. 00 = 105 C 01 = 115 C 10 = (Default) 125 C 11 = 135 C

Address: 0x0000 4308

7.8.2 CONFIGURATION

RW	318	7	6	5	4	3	2	1	0
	_		-	_		TEMP_OUT_SEL	TEMP_WARN_ ERR_SEL	TEMP_F	FILT_SEL
Default	0x00 0000	0	0	0	0	0	0	0	0

Bits	Name	Description
31:4	_	Reserved
3	TEMP_OUT_SEL	Selects the source of the temperature measurement passed to the PCM Data Routing block. 0 = (Default) Unfiltered 1 = Filtered
2	TEMP_WARN_ERR_ SEL	Selects the source of the temperature measurement passed to the overtemperature warning and error blocks. 0 = (Default) Unfiltered 1 = Filtered
1:0	TEMP_FILT_SEL	Selects the depth of the running average filter used on the raw temperature value. 00 = (Default) 1 sample (no filtering) 10 = 4 samples 11 = 8 samples

7.8.3 ENABLES_AND_CODES_DIG

RO	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1_	0
				_						TEI	MP_F	RESU	LT_F	ILT						_						TEMI	P_RE	SUL	T_UN	IFILT		
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	De	scription
31:25	_	Reserved	
24:16	TEMP_RESULT_ FILT	Filtered die temperature result. 2's complement, 1 L 0x000 = (Default) 0 °C 0x001 = 1 °C 0x002 = 2 °C 0x0AF = 175 °C 0x0B0 = 176 °C	SB = 1 °C. 0x0B1-0x1BF = Reserved 0x1C0 = -64 °C 0x1C1 = -63 °C 0x1FE = -2 °C 0x1FF = -1 °C
15:9	_	Reserved	
8:0	TEMP_RESULT_ UNFILT	Unfiltered die temperature result. 2's complement, 1 0x000 = (Default) 0 °C 0x001 = 1 °C 0x002 = 2 °C 0x0AF = 175 °C 0x0B0 = 176 °C	LSB = 1 °C. 0x0B1-0x1BF = Reserved 0x1C0 = -64 °C 0x1C1 = -63 °C 0x1FE = -2 °C 0x1FF = -1 °C

Address: 0x0000 4804

Address: 0x0000 4808

7.9 ASP Data Interface (DATAIF)

7.9.1 ASP_ENABLES1

		_														
RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							-	_							ASP_ RX2_EN	ASP_ RX1_EN
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								-	_							
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:18	_	Reserved
17	ASP_RX2_EN	ASP Interface RX Channel 2 Enable 0 = (Default) Disabled 1 = Enabled
16	ASP_RX1_EN	ASP Interface RX Channel 1 Enable 0 = (Default) Disabled 1 = Enabled
15:0	_	Reserved

7.9.2 ASP_CONTROL1

RW	318	7	6	5	4	3	2	1	0
	_					ASP_BC	LK_FREQ		
Default	0x00 0000	0	0	1	0	1	0	0	0

Bits	Name	De	scription
31:6	_	Reserved	
5:0	ASP_BCLK_FREQ	ASP_BCLK freq. This field must be set to match the 000000-011010 = Reserved 011011 = 1.536 MHz 011100-100000 = Reserved 100001 = 3.072 MHz 100010-100111 = Reserved 101000 = (Default) 6.144 MHz	e frequency of the ASP_BCLK clock source. 101001–101111 = Reserved 110000 = 9.600 MHz 110001–110010 = Reserved 110011 = 12.288 MHz 110100–111111 = Reserved

7.9.3 ASP_CONTROL2

		_														
RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				ASP_RX	_WIDTH							_	_			
Default	0	0	0	1	1	0	0	0	0	0	0	1	1	0	0	0
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			_				ASP_FMT		_	ASP_ BCLK_ INV	ASP_ BCLK_ FRC	ASP_ BCLK_ MSTR	_	ASP_ FSYNC_ INV	ASP_ FSYNC_ FRC	ASP_ FSYNC_ MSTR
Default	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0

Bits	Name	Descri	iption									
31:24	ASP_RX_WIDTH	ASP RX data pin (ASP_DIN) slot width and data width.	X data pin (ASP_DIN) slot width and data width.									
		Sets the total number of ASP_BCLK cycles per Rx slot. contains valid data is controlled by ASP_RX_WL.	he total number of ASP_BCLK cycles per Rx slot. The number of ASP_BCLK cycles per Rx slot that ns valid data is controlled by ASP_RX_WL.									
		Integer (LSB = 1); Valid from 12 to 128.										
		00000000–00001011 = Reserved 00001100 = 12 cycles per slot	00011000 = (Default) 24 cycles per slot 00011001 = 25 cycles per slot									
		00010000 = 16 cycles per slot 00010001 = 17 cycles per slot 00010010 = 18 cycles per slot 	01111111 = 127 cycles per slot 10000000 = 128 cycles per slot 10000001–11111111 = Reserved									
23:11	_	Reserved										

Bits	Name	Description
10:8	ASP_FMT	ASP Interface Format. This field should only be changed when all ASP channels are disabled.
		000 = TDM 1 (DSP Mode A) 011 = Reserved 001 = Reserved 100 = TDM 1.5 010 = (Default) I ² S mode 101-111 = Reserved
7	_	Reserved
6	ASP_BCLK_INV	ASP Interface ASP_BCLK Invert
		0 = (Default) ASP_BCLK not inverted 1 = ASP_BCLK inverted
5	ASP_BCLK_FRC	ASP Interface ASP_BCLK Output Control
		0 = (Default) Normal 1 = ASP_BCLK always enabled in Master mode
4	ASP_BCLK_MSTR	ASP Interface ASP_BCLK Master Select
		0 = (Default) ASP_BCLK Slave mode 1 = ASP_BCLK Master mode
3	_	Reserved
2	ASP_FSYNC_INV	ASP Interface FSYNC Invert
		0 = (Default) ASP_FSYNC not inverted 1 = ASP_FSYNC inverted
1	ASP_FSYNC_FRC	ASP Interface FSYNC Output Control
		0 = (Default) Normal 1 = ASP_FSYNC always enabled in Master mode
0	ASP_FSYNC_MSTR	ASP Interface FSYNC Master Select
		0 = (Default) ASP_FSYNC Slave mode 1 = ASP_FSYNC Master mode

7.9.4 ASP_FRAME_CONTROL5

RW	3116	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						ASP_RX	2_SLOT				_			ASP_RX	1_SLOT	•	
Default	0x0000	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

Bits	Name		Description	
31:14	_	Reserved		
13:8	ASP_RX2_SLOT	ASP RX Channel 2 Slot position Defines the RX timeslot position of the Cha	annal 2 cample	
		Integer (LSB=1); Valid from 0 to 63.	milei z sampie	
		000000 = Slot 0 000001 = (Default) Slot 1 000010 = Slot 2	111101 = Slot 61 111110 = Slot 62 111111 = Slot 63	
7:6	_	Reserved		
5:0	ASP_RX1_SLOT	ASP RX Channel 1 Slot position		
		Defines the RX timeslot position of the Cha	annel 1 sample	
		Integer (LSB=1); Valid from 0 to 63.		
		000000 = (Default) Slot 0 000001 = Slot 1 000010 = Slot 2	111101 = Slot 61 111110 = Slot 62 111111 = Slot 63	

Address: 0x0000 4C00

Address: 0x0000 4C40

7.9.5 ASP_DATA_CONTROL5

RW	318	7	6	5	4	3	2	1	0
	_		_			ASP_F	RX_WL		
Default	0x00 0000	0	0	0	1	1	0	0	0

Bits	Name		Description					
31:6	_	Reserved						
5:0	ASP_RX_WL	The total number of ASP_BCLK cycles per	ata after the active width will be cropped to 0. ata bits in slot are active.					
		001100 = 12 cycles per slot 001101 = 13 cycles per slot 001110 = 14 cycles per slot 	010110 = 22 cycles per slot 010111 = 23 cycles per slot 011000 = (Default) 24 cycles per slot 011001–111111 = Reserved					

7.10 Data Routing (MIXER)

7.10.1 DACPCM1_INPUT

RW	318	7	6	5	4	3	2	1	0
	_	_				DACPCM1_SRC			
Default	0x00 0000	0	0	0	0	1	0	0	0

Bits	Name		Description				
31:7	_	Reserved					
6:0	DACPCM1_SRC	DACPCM1 input source 0000000 = ZERO_FILL 0000001–0000111 = Reserved 0001000 = (Default) ASPRX1 0001001 = ASPRX2 0001010–0110001 = Reserved 0110010 = DSP1TX1 0110011 = DSP1TX2	0110100 = DSP1TX3 0110101 = DSP1TX4 0110110 = DSP1TX5 0110111 = DSP1TX6 0111000 = DSP1TX7 0111001 = DSP1TX8 0111010-1111111 = Reserved				

7.10.2 DSP1RX1 INPUT

RW	318	7	6	5	4	3	2	1	0
	-					DSP1RX1_SRC			
Default	0x00 0000	0	0	0	0	1	0	0	0

Bits	Name		Description
31:7	_	Reserved	
6:0	DSP1RX1_SRC	DSP1RX1 input source 0000000 = ZERO_FILL 0000001-00001111 = Reserved 0001000 = (Default) ASPRX1 0001001 = ASPRX2 0001010-0010111 = Reserved 0011000 = VMON 0011001 = IMON 0011010-0011111 = Reserved 0100000 = ERR_VOL 0100001 = CLASSH_TGT 0100010-0100111 = Reserved 0101000 = VPMON	0101001 = VBSTMON 0101010-0110001 = Reserved 0110010 = DSP1TX1 0110011 = DSP1TX2 0110100 = DSP1TX3 0110101 = DSP1TX4 0110110 = DSP1TX5 0110111 = DSP1TX6 0111000 = DSP1TX7 0111001 = DSP1TX8 0111010 = TEMP_MON 0111011-1111111 = Reserved

Address: 0x0000 4C48

Address: 0x0000 4C4C

7.10.3 DSP1RX2_INPUT

RW	318	7	6	5	4	3	2	1	0
	_	_				DSP1RX2_SRC			
Default	0x00 0000	0	0	0	0	1	0	0	1

Bits	Name		Description
31:7	_	Reserved	
6:0	DSP1RX2_SRC	DSP1RX2 input source 0000000 = ZERO_FILL 0000001-0000111 = Reserved 0001000 = ASPRX1 0001001 = (Default) ASPRX2 0001010-0010111 = Reserved 0011000 = VMON 0011001 = IMON 0011010-0011111 = Reserved 0100000 = ERR_VOL 0100001 = CLASSH_TGT 0100010-0100111 = Reserved 0101000 = VPMON	0101001 = VBSTMON 0101010-0110001 = Reserved 0110010 = DSP1TX1 0110011 = DSP1TX2 0110100 = DSP1TX3 0110101 = DSP1TX4 0110110 = DSP1TX5 0110111 = DSP1TX6 0111000 = DSP1TX7 0111001 = DSP1TX8 0111001 = DSP1TX8 0111010 = TEMP_MON 0111011-1111111 = Reserved

7.10.4 DSP1RX3 INPUT

RW	318	7	6	5	4	3	2	1	0
	_	_				DSP1RX3_SRC			
Default	0x00 0000	0	0	0	1	1	0	0	0

Bits	Name		Description
31:7	_	Reserved	
6:0	DSP1RX3_SRC	DSP1RX3 input source 0000000 = ZERO_FILL 0000001-0000111 = Reserved 0001000 = ASPRX1 0001001 = ASPRX2 0001010-0010111 = Reserved 0011000 = (Default) VMON 0011001 = IMON 0011010-0011111 = Reserved 0100000 = ERR_VOL 0100001 = CLASSH_TGT 0100010-0100111 = Reserved 0101000 = VPMON	0101001 = VBSTMON 0101010-0110001 = Reserved 0110010 = DSP1TX1 0110011 = DSP1TX2 0110100 = DSP1TX3 0110101 = DSP1TX4 0110110 = DSP1TX5 0110111 = DSP1TX6 0111010 = DSP1TX7 0111001 = DSP1TX7 0111001 = DSP1TX8 0111010 = TEMP_MON 0111011-1111111 = Reserved

7.10.5 DSP1RX4_INPUT

RW	318	7	6	5	4	3	2	1	0
	_	_				DSP1RX4_SRC			
Default	0x00 0000	0	0	0	1	1	0	0	1

Bits	Name	Description Reserved					
31:7	_						
6:0	DSP1RX4_SRC	DSP1RX4 input source 0000000 = ZERO_FILL 0000001-0000111 = Reserved 0001000 = ASPRX1 0001001 = ASPRX2 0001010-0010111 = Reserved 0011000 = VMON 0011001 = (Default) IMON 0011010-0011111 = Reserved 0100000 = ERR VOL 0100001 = CLASSH_TGT 0100010-0100111 = Reserved 0101000 = VPMON	0101001 = VBSTMON 0101010-0110001 = Reserved 0110010 = DSP1TX1 0110011 = DSP1TX2 0110100 = DSP1TX3 0110101 = DSP1TX4 0110110 = DSP1TX5 0110111 = DSP1TX5 0110111 = DSP1TX6 0111000 = DSP1TX7 0111001 = DSP1TX8 0111010 = TEMP_MON 0111011-1111111 = Reserved				

Address: 0x0000 4C54

Address: 0x0000 4C58

7.10.6 **DSP1RX5_INPUT**

RW	318	7	6	5	4	3	2	1	0
	_	_				DSP1RX5_SRC			
Default	0x00 0000	0	0	1	0	0	0	0	0

Bits	Name		Description
31:7	_	Reserved	
6:0	DSP1RX5_SRC	DSP1RX5 input source 0000000 = ZERO_FILL 0000001-0000111 = Reserved 0001000 = ASPRX1 0001001 = ASPRX2 0001010-0010111 = Reserved 0011000 = VMON 0011010-0011111 = Reserved 0100000 = (Default)	0101001 = VBSTMON 0101010-0110001 = Reserved 0110010 = DSP1TX1 0110011 = DSP1TX2 0110100 = DSP1TX3 0110101 = DSP1TX4 0110110 = DSP1TX5 0110111 = DSP1TX5 01110101 = DSP1TX7 0111001 = DSP1TX7 0111001 = DSP1TX8 0111010 = TEMP_MON 0111011-1111111 = Reserved

7.10.7 DSP1RX6 INPUT

RW	318	7	6	5	4	3	2	1	0
	_		DSP1RX6_SRC						
Default	0x00 0000	0	0	1	0	0	0	0	1

Bits	Name	Description				
31:7	_	Reserved				
6:0	DSP1RX6_SRC	DSP1RX6 input source 0000000 = ZERO_FILL 0000001-0000111 = Reserved 0001000 = ASPRX1 0001001 = ASPRX2 0001010-0010111 = Reserved 0011000 = VMON 0011001 = IMON 0011010-0011111 = Reserved 0100000 = ERR_VOL 0100001 = (Default)	0101001 = VBSTMON 0101010-0110001 = Reserved 0110010 = DSP1TX1 0110011 = DSP1TX2 0110100 = DSP1TX3 0110101 = DSP1TX4 0110110 = DSP1TX5 0110111 = DSP1TX5 0110111 = DSP1TX6 0111000 = DSP1TX7 0111001 = DSP1TX8 0111010 = TEMP_MON 0111011-1111111 = Reserved			

7.10.8 DSP1RX7 INPUT

RW	318	7	6	5	4	3	2	1	0
	_	_				DSP1RX7_SRC			
Default	0x00 0000	0	0	1	1	1	0	1	0

Bits	Name	Description					
31:7	_	Reserved					
6:0	DSP1RX7_SRC	DSP1RX7 input source 0000000 = ZERO_FILL 0000001-0000111 = Reserved 0001000 = ASPRX1 0001001 = ASPRX2 0001010-0010111 = Reserved 0011000 = VMON 0011001 = IMON 0011010-0011111 = Reserved 0100000 = ERR_VOL 0100001 = CLASSH_TGT 0100010-0100111 = Reserved 0101000 = VPMON	0101001 = VBSTMON 0101010-0110001 = Reserved 0110010 = DSP1TX1 0110011 = DSP1TX2 0110100 = DSP1TX3 0110101 = DSP1TX4 0110110 = DSP1TX5 0110111 = DSP1TX6 0110100 = DSP1TX7 0111001 = DSP1TX8 0111010 = (Default) TEMP_MON 0111011-1111111 = Reserved				

Address: 0x0000 4C5C

Address: 0x0000 4C60

Address: 0x0000 4C64

7.10.9 **DSP1RX8_INPUT**

RW	318	7	6	5	4	3	2	1	0
	_	_				DSP1RX8_SRC			
Default	0x00 0000	0	0	1	1	1	0	1	1

Bits	Name		Description
31:7	_	Reserved	
6:0	DSP1RX8_SRC	DSP1RX8 input source 0000000 = ZERO_FILL 0000001-0000111 = Reserved 0001000 = ASPRX1 0001001 = ASPRX2 0001010-0010111 = Reserved 0011000 = VMON 0011010 = IMON 0011010-0011111 = Reserved 0100000 = ERR_VOL 0100001 = CLASSH_TGT 0100010-0100111 = Reserved 0101000 = VPMON	0101001 = VBSTMON 0101010-0110001 = Reserved 0110010 = DSP1TX1 0110011 = DSP1TX2 0110100 = DSP1TX3 0110101 = DSP1TX4 0110110 = DSP1TX5 0110111 = DSP1TX6 0111010 = DSP1TX7 0111001 = DSP1TX7 0111001 = DSP1TX8 0111010 = TEMP_MON 0111011-1111111 = (Default) Reserved

7.10.10 NGATE1_INPUT

RW	318	7	6	5	4	3	2	1	0
	_		NGATE1_SRC						
Default	0x00 0000	0	0	0	0	1	0	0	0

Bits	Name		Description
31:7	_	Reserved	
6:0	NGATE1_SRC	NGATE1 input source 0000000 = ZERO_FILL 0000001–0000111 = Reserved 0001000 = (Default) ASPRX1 0001001 = ASPRX2 0001010–0010111 = Reserved 0011000 = VMON 0011001 = IMON 0011010–0110001 = Reserved	0110011 = DSP1TX2 0110100 = DSP1TX3 0110101 = DSP1TX4 0110110 = DSP1TX5 0110111 = DSP1TX6 0111000 = DSP1TX7 0111001 = DSP1TX8 0111010-1111111 = Reserved

7.10.11 NGATE2_INPUT

RW	318	7	6	5	4	3	2	1	0
	_	_				NGATE2_SRC			
Default	0x00 0000	0	0	0	0	1	0	0	1

Bits	Name		Description
31:7	_	Reserved	
6:0	NGATE2_SRC	NGATE2 input source	
		0000000 = ZERO_FILL 0000001-0000111 = Reserved 0001000 = ASPRX1 0001001 = (Default) ASPRX2 0001010-0010111 = Reserved 0011000 = VMON 0011001 = IMON 0011010-0110001 = Reserved 0110010 = DSP1TX1	0110011 = DSP1TX2 0110100 = DSP1TX3 0110101 = DSP1TX4 0110110 = DSP1TX5 0110111 = DSP1TX6 0111000 = DSP1TX7 0111001 = DSP1TX8 0111010-1111111 = Reserved

Address: 0x0000 6404

7.11 Amplifier Volume Control (INTP)

7.11.1 AMP CTRL

RW	3116	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	AMP_ HPF_ PCM_ EN	AMP_ INV_ PCM		AMP_VOL_PCM												PCM
Default	0x0000	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Des	scription							
31:16	_	Reserved								
15	AMP_HPF_PCM_EN	Amplifier PCM path high-pass filter enable. Enables The corner frequency of the HPF is 0.94 Hz. 0 = Disabled 1 = (Default) Enabled	the internal high-pass filter at the input of the PCM path.							
14	AMP_INV_PCM	Amplifier PCM inversion. Inverts the polarity of the day 0 = (Default) PCM data not inverted 1 = PCM data inverted	ata output from the Class-D amplifier.							
13:3	AMP_VOL_PCM	mplifier digital gain control. Sets the gain of the amplifier's digital PCM data path. Register configuration value eyond listed range are clamped to the corresponding min/max values. Step size: 0.125 dB. Range +12.0 do –102 dB. -102 dB.								
		0x400-0x4CF = Mute 0x4D0 = -102.0 dB 0x4D1 = -101.875 dB 0x7FE = -0.25 dB 0x7FF = -0.125 dB	0x000 = (Default) 0.0 dB 0x001 = 0.125 dB 0x05E = 11.75 dB 0x05F = 11.875 dB 0x060-0x3FF = 12.0 dB							
2:0	AMP_RAMP_PCM	******	rate for all digital gain changes. This register must not be 100 = 4 ms/6 dB 101 = 8 ms/6 dB 110 = 15 ms/6 dB 111 = 30 ms/6 dB							

7.12 VP and VBST Brownout Prevention + Temp Warning (ERROR_VOLUME)

7.12.1 VPBR_CONFIG

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			_			VPBR_ REL_ TRIG	VPBR_ REL_ AUTO	VPBR_ MUTE_ EN	VPB	R_REL_R	ATE	VPBR _.	_WAIT	VPB	R_ATK_F	ATE
Default	0	0	0	0	0	0	1	0	1	0	1	0	1	0	1	0
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		VPBR_A	TK_VOL			VPBR_M	1AX_ATT			_			VI	PBR_THLD	01	
Default	0	0	0	1	1	0	0	1	0	0	0	0	0	1	0	1

Bits	Name	Description
31:27	_	Reserved
26	VPBR_REL_TRIG	VP brownout prevention manual release trigger. When sequencing when configured in manual release mode (VPBR_REL_AUTO = 0), triggers the VP brownout prevention to enter the release state.
		Note: VPBR_REL_TRIG has no effect if VPBR_REL_AUTO = 1.
		0 -> 1 -> 0 sequence. At the end of the sequence, if the VP brownout prevention is in the manual wait state and no VPBR_FLAG condition is present, triggers it to enter the release state.
		0 = (Default) No action 1 = When in a wait state with no VPBR_FLAG, waits indefinitely for a manual trigger to occur
25	VPBR_REL_AUTO	VP brownout prevention automatic wait and release. Configures whether the automatic VPBR_WAIT timer or the manual VPBR_REL_TRIG determines when the wait state is exited and the release state is entered.
		0 = Manual mode; requires VPBR_REL_TRIG to be sequenced to enter release 1 = (Default) Automatic wait period based on VPBR_WAIT

Bits	Name	Descr	ription
24	VPBR_MUTE_EN	During the attack state, if the VPBR_MAX_ATT value is set, the signal is muted. The signal remains muted unti prevention enters a releasing state. 0 = (Default) Mute disabled 1 = Mute enabled	reached, the error condition still remains, and this bit is I the error condition has cleared and the VP brownout
23:21	VPBR_REL_RATE	Attenuation release step rate (tVPBR_REL). Configure release steps (VOLREL) when a brownout condition is attenuation release state. 000 = 5 ms 001 = 10 ms 010 = 25 ms 011 = 50 ms	
20:19	VPBR_WAIT	Configures the delay between a brownout condition no entering an attenuation release state. 00 = 10 ms 01 = (Default) 100 ms	longer being present and the VP brownout prevention 10 = 250 ms 11 = 500 ms
18:16	VPBR_ATK_RATE	Attenuation attack step rate (tVPBR_ATK). Configures attenuation steps (VOLATK) when a brownout condition attacking state. $000 = 2.5~\mu s \\ 001 = 5~\mu s \\ 010 = (Default)~10~\mu s \\ 011 = 25~\mu s$	
15:12	VPBR_ATK_VOL	VP brownout prevention attack step size. Configures the size when operating in either digital volume or analog of triggering VPBR_THLD1 / VPBR_2 / VPBR_3 per attack of the size when operating value of the size	gain modes. Attenuation values listed are relative to
11:8	VPBR_MAX_ATT	Maximum attenuation that the VP brownout prevention remains present, the VP brownout prevention only attenually attenually a tenual prevention. Note: VPBR_MAX_ATT should not be adjusted when a prevention. 0000 = 0 dB 0001 = 1 dB 0010 = 2 dB	nuates the signal up to the limit configured by VPBR_
7:5	_	Reserved	
4:0	VPBR_THLD1	Initial VPBR_1 threshold. Configures the VP brownout 00000–00001 = Reserved 00010 = 2.497 V 00011 = 2.544 V 00100 = 2.592 V	threshold voltage. 00101 = (Default) 2.639 V 11111 = 3.874 V

7.12.2 VBBR_CONFIG

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			_			VBBR_ REL_ TRIG	VBBR_ REL_ AUTO	VBBR_ MUTE_ EN	VBB	R_REL_R	ATE	VBBR	_WAIT	VBB	R_ATK_R	ATE
Default	0	0	0	0	0	0	1	0	1	0	1	0	1	0	1	0
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		VBBR_A	TK_VOL			VBBR_M	MAX_ATT			_			VBBR_	THLD1		
Default	0	0	0	1	1	0	0	1	0	0	0	0	0	1	0	1

Bits	Name	Description
31:27	_	Reserved
26	VBBR_REL_TRIG	VBST brownout prevention manual release trigger. When sequencing when configured in manual release mode (VBBR_REL_AUTO = 0), triggers the VBST brownout prevention to enter the release state. Note: VBBR_REL_TRIG has no effect if VBBR_REL_AUTO = 1. 0 -> 1 -> 0 sequence. At the end of the sequence, if the VBST brownout prevention is in the manual wait state and no VBBR_FLAG condition is present, triggers it to enter the release state. 0 = (Default) No action 1 = When in a wait state with no VBBR_FLAG, waits indefinitely for a manual trigger to occur
25	VBBR_REL_AUTO	VBST brownout prevention automatic wait and release. Configures whether the automatic VBBR_WAIT timer or the manual VBBR_REL_TRIG determines when the wait state is exited and the release state is entered. 0 = Manual mode; requires VBBR_REL_TRIG to be sequenced to enter release 1 = (Default) Automatic wait period based on VBBR_WAIT
24	VBBR_MUTE_EN	During the attack state, if the VBBR_MAX_ATT value is reached, the error condition still remains, and this bit is set, the output is muted. The output remains muted until the error condition has cleared and the VBST brownout prevention enters a releasing state. 0 = (Default) Mute disabled 1 = Mute enabled
23:21	VBBR_REL_RATE	Attenuation release step rate (tVBBR_REL). Configures the delay between consecutive volume attenuation release steps (VOLREL) when a brownout condition is no longer present and the VBST brownout prevention is in an attenuation release state. 000 = 5 ms 001 = 10 ms 101 = (Default) 250 ms 010 = 25 ms 110 = 500 ms 111 = 1000 ms
20:19	VBBR_WAIT	Configures the delay between a brownout condition no longer being present and the VBST brownout prevention entering an attenuation release state. 00 = 10 ms 01 = (Default) 100 ms 10 = 250 ms 11 = 500 ms
18:16	VBBR_ATK_RATE	Attenuation attack step rate (tVBBR_ATK). Configures the amount delay between consecutive volume attenuation steps (VOLATK) when a brownout condition is present and the VP brownout condition is in an attacking state. $000 = 2.5 \ \mu s \qquad 100 = 50 \ \mu s \\ 001 = 5 \ \mu s \qquad 101 = 100 \ \mu s \\ 010 = (Default) \ 10 \ \mu s \qquad 110 = 250 \ \mu s \\ 011 = 25 \ \mu s \qquad 111 = 500 \ \mu s$
15:12	VBBR_ATK_VOL	VBST brownout prevention attack step size. Configures the VBST brownout prevention attacking attenuation step size when operating in either digital volume or analog gain modes. Attenuation values listed are relative to triggering VBBR_THLD1 / VBST _{BR_2} / VBST _{BR_3} per attack time period (VBBR_ATK_RATE). 0000 = 0.0625 dB / 0.125 dB / 0.250 dB 0101 = 1.000 dB / 2.000 dB / 4.000 dB 0001 = (Default) 0.125 dB / 0.250 dB / 0.500 dB 0110 = 1.250 dB / 2.500 dB / 5.000 dB 0010 = 0.250 dB / 0.500 dB / 1.000 dB 0111 = 1.500 dB / 3.000 dB / 6.000 dB 0011 = 0.500 dB / 1.000 dB / 2.000 dB 1000-1111 = Reserved 0100 = 0.750 dB / 1.500 dB / 3.000 dB
11:8	VBBR_MAX_ATT	Maximum attenuation that the reactive VP brownout can apply to the signal. Even if an error condition remains present, the VBST brownout prevention only attenuates the signal up to the limit configured by VBBR_MAX_ATT. Step size: 1 dB. Note: VBBR_MAX_ATT should not be adjusted when attenuation is being applied by the VBST brownout prevention. 0000 = 0 dB

Bits	Name		Description									
7:6	_	Reserved										
5:0	_	VBST brownout prevention delta voltage thre VBST(target) – VBST(actual) <= threshold s 000000–000001 = Reserved 000010 = 0.109 V 000011 = 0.164 V 000100 = 0.219 V	eshold. Configures the VBST brownout voltage. etting 000101 = (Default) 0.273 V 111110 = 3.391 V 111111 = 3.445 V									

7.12.3 VPBR_STATUS

Address:	$N_{\Delta}NNNN$	EANC

RO	3116	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	_							VPBR_ STATUS _MUTE	VPBR_STATUS							
Default	0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description									
31:9	_	Reserved									
8	VPBR_STATUS_ MUTE	VP brownout prevention mute status. If VPBR_MUTE_EN is set and the routput, this bit is set, indicating that the output has been muted.	reactive VP brownout has muted the								
7:0	VPBR_STATUS	Reports how much (if any) attenuation is applied to the output by the VP bronly reports 0 dB attenuation when no attenuation is being applied by the Step size: 0.0625 dB	rownout prevention control. This field VP brownout prevention.								
		00000000 = (Default) 0.0 dB 11101111 = 14.9375 dB 00000001 = 0.0625 dB 11110000 = 15.0 dB 11110001-11111111 = Reserved									

7.12.4 VBBR_STATUS

Address:	0x0000	6410
----------	--------	------

RO	3116	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-				_				VBBR_ STATUS _MUTE				VBBR_S	STATUS			
Default	0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:9	_	Reserved
8	VBBR_STATUS_ MUTE	VBST brownout prevention mute status (READ ONLY). If VBBR_MUTE_EN is set and the VBST brownout prevention has muted the output, this bit is set, indicating that the output has been muted.
7:0	VBBR_STATUS	Reports how much (if any) attenuation is applied to the output by the VBST brownout prevention control. This field only reports 0 dB attenuation when no attenuation is being applied by the VP brownout prevention. Step size: 0.0625 dB 00000000 = (Default) 0.0 dB 11101111 = 14.9375 dB 00000001 = 0.0625 dB 11110000 = 15.0 dB 1110001-11111111 = Reserved

7.12.5 OTW_CONFIG

Address: 0	x0000	6414
------------	-------	------

RW	318	7	6	5	4	3	2	1	0
	_			_			-	TEMP_WARN_VOL	-
Default	0x00 0000	0	0	0	0	0	0	0	1

Bits	Name	С	Description
31:3	_	Reserved	
2:0			the digital volume attenuation of the amplifier that is applied arning condition. This attenuation is applied until TEMP_re warning condition is no longer present.
		000 = 0 dB (disabled) 001 = (Default) 3 dB 010 = 6 dB	011 = 9 dB 100–111 = Reserved

Address: 0x0000 6450

Address: 0x0000 6800

7.12.6 AMP_ERROR_VOL_SEL

RW	318	7	6	5	4	3	2	1	0
	_				_				AMP_ERR_VOL_ SEL
Default	0x00 0000	0	0	0	0	0	0	0	0

Bits	Name	Description
31:1	_	Reserved
0		ERR_VOL source select. Configures the ERR_VOL attenuation to the amplifier to be sourced locally from the VP brownout prevention, VBST brownout prevention, and thermal warning. 0 = (Default) Only local ERR_VOL applied 1 = Rserved.

7.12.7 VOL STATUS TO DSP

RO	31	30	29	- 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_													FINAL_ERROR_VOL												_						
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:18	_	Reserved
17:9	FINAL_ERROR_VOL	Final error volume.
8:0	_	Reserved

7.13 Power Management - Class H, Weak-FET, and Noise Gating (PWRMGMT)

7.13.1 CLASSH_CONFIG

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	— CH_HD_RM												СН	_REI	L_RA	TE					_			CH _.	_MEN	_						
Default	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1

Bits	Name		Description
31:23	_	Reserved	
22:16	CH_HD_RM	Class H algorithm headroom. Controls VBST heasize: 0.1 V	droom in the max detection path of the Class H algorithm. Step
		0000000 = 0.0 V 0000001 = 0.1 V 0000010 = 0.2 V	0111111 = 6.3 V 1000000 = -6.4 V 1000001 = -6.3 V
		 0001011 = (Default) 1.1 V 0111110 = 6.2 V	1111110 = -0.2 V 11111111 = -0.1 V
15:8	CH_REL_RATE	Class H release rate. Controls the amount of time supply tracking updates. 00000000–00000011 = Reserved	e required before allowing consecutive release condition VBST
		00000000-00000011 - Reserved 00000100 = (Default) 20 μs 00000101 = 25 μs	 11111110 = 1,270 μs 11111111 = 1,275 μs
7:3	_	Reserved	
2:0	CH_MEM_DEPTH		epth used in the Class H algorithm for data buffering and time and varies based on the memory update rate. 100 = 250.00 – 255.10 μs 101 = (Default) 333.33 – 335.93 μs 110–111 = Reserved

Address: 0x0000 6808

7.13.2 WKFET_AMP_CONFIG

RW	3116	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		_	_		٧	VKFET_A	MP_THLE)		_		WKF	ET_AMP_	_DLY	WKFET _AMP_ FRC_ EN	WKFET _AMP_ FRC
Default	0x0000	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1

Bits	Name	Description							
31:12	_	Reserved							
11:8	WKFET_AMP_THLD	Weak-FET amplifier drive threshold. Configures the signal threshold at which the PWM output stage enters weak-FET operation.							
		0000 = Reserved 1000 = 0.4 V 0001 = (Default) 0.05 V 1001 = 0.45 V 0010 = 0.1 V 1010 = 0.5 V							
		0011 = 0.15 V 0100 = 0.2 V 0101 = 0.25 V 1100 = 0.6 V 1101 = 0.65 V							
		0101 = 0.25 V 0110 = 0.3 V 0111 = 0.35 V 1110 = 0.7 V 1111 = Reserved							
7:5	_	Reserved							
4:2	WKFET_AMP_DLY	Veak-FET entry delay. Controls the delay (in ms) before the Class H algorithm switches to the weak-FET oltage (after the signal falls and remains below the value specified in WKFET_AMP_THLD).							
		000 = 0 ms 100 = (Default) 100 ms 001 = 5 ms 101 = 200 ms 010 = 10 ms 110 = 500 ms 011 = 50 ms 111 = 1000 ms							
1	WKFET_AMP_FRC_ EN	Weak-FET amplifier force control enable. Enables the functionality of WKFET_AMP_FRC to manually force the amplifier to be configured into Weak-FET mode.							
		0 = (Default) WKFET_AMP_FORCE functionality disabled 1 = WKFET_AMP_FORCE functionality enabled							
0	WKFET_AMP_FRC	reak-FET amplifier mode force. Manually configures the amplifier into Weak-FET or normal operation mode then WKFET_AMP_FRC_EN is set. If WKFET_AMP_FORCE_EN is cleared, this register has no functionality.							
		0 = Amplifier power FETs are not manually put into weak-FET mode 1 = (Default) Amplifier power FETs are put into weak-FET mode							

7.13.3 NG_CONFIG

RW	3116	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_	_	_			NG_E	N_SEL			_	N	IG_DELA	1	_	NG ₋	_PCM_TI	HLD
Default	0x0000	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1

,		
Bits	Name	Description
31:14	_	Reserved
13:8	NG_EN_SEL	Amplifier noise gate enable mode selection. Configures whether the amplifier noise gating is enabled for the various blocks when the signal has been below the AMP_NG_THLD for a period of time configured by AMP_NG_DELAY. If any bit is enabled, the amplifier will stop switching when the source is below the threshold for the time configured.
		000000 – All noise gating functionality disabled
		xxxxx1 – Amplifier noise gating detection enabled (OUT+/-; switching)
		xxxx1x – Boost converter DCM detection enabled
		xxx1xx – VMON low power mode detection enabled
		xx1xxx – IMON low power mode detection enabled
		x1xxxx – VP brownout prevention detection enabled
		1xxxxx – VBST brownout prevention detection enabled
7	_	Reserved
6:4	NG_DELAY	Amplifier noise gate entry delay. Time that the signal must be below the NG_THLD prior to entering a noise gated state.
		000 = 5 ms 100 = 100 ms 001 = 10 ms 101 = 250 ms 010 = 25 ms 110 = 500 ms 011 = (Default) 50 ms 111 = 1000 ms

Address: 0x0001 0000

Address: 0x0001 0004

Bits	Name		Description
3	_	Reserved	
2:0		Amplifier noise gate threshold output-referred. 000 = 0.654 mVpk 001 = 0.328 mVpk 010 = 0.164 mVpk 011 = (Default) 0.082 mVpk	Threshold at which the amplifier's noise gating activates. Levels are 100 = 0.041 mVpk 101 = 0.021 mVpk 110 = 0.010 mVpk 111 = True zero data (no LSB dither)

7.14 Dynamic Range Enhancement (DRE)

7.14.1 AMP_GAIN

RW	3116	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_			_			AMP_ GAIN_ ZC		AMF	_GAIN_F	РСМ				_		
Default	0x0000	0	0	0	0	0	0	1	0	0	1	1	1	0	0	1	1

Bits	Name	Description
31:11	_	Reserved
10	AMP_GAIN_ZC	Amplifier gain change at zero-cross. 0 = (Default) No zero cross 1 = Zero cross
9:5	AMP_GAIN_PCM	Amplifier analog gain. 00000 – 10010 Reserved 10011 19.5 dB 10100 – 11111 Reserved
4:0	_	Reserved

7.15 Interrupt Status and Mask Control (IRQ1)

7.15.1 IRQ1_CFG

RW	318	7	6	5	4	3	2	1	0
	_		-	-			IRQ1_DI	B_TIME	
Default	0x00 0000	0	0	0	0	0	0	0	0

Bits	Name		Description							
31:4	_	Reserved	erved							
3:0	IRQ1_DB_TIME	Debounce time for IRQ Debouncer								
		0000 = (Default) x 8192 0001 = Default val x 16 0010 = Default val x 32 0011 = Default val x 64 0100 = Default val x 128 0101 = Default val x 256	0110 = Default val x 512 0111 = Default val x 1024 1000 = Default val x 2048 1001 = Default val x 4096 1010 = Default val x 8192 1011–1111 = Reserved							

7.15.2 IRQ1_STATUS

RO	318	7	6	5	4	3	2	1	0
	_				_				IRQ1_STS1
Default	0x00 0000	0	0	0	0	0	0	0	0

Bits	Name	Description
31:1	_	Reserved
0	IRQ1_STS1	Status bit to indicate if the IRQ1 pin is currently asserted – useful flag to see if any other interrupts are pending.

7.15.3 IRQ1_EINT_1

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	AMP_ ERR_ EINT1	VBBR_ ATT_ CLR_ EINT1	VBBR_ FLAG_ EINT1	IMON_ CLIPPE D_EINT1	CLIPPE	CLIDDE	VPMON_ CLIPPE D_EINT1	MSM_ PUP_ DONE_ EINT1	MSM_ PDN_ DONE_ EINT1	MSM_ GLOBAL _EN_ ASSERT _EINT1		-	_		TEMP_ ERR_ EINT1	TEMP_ WARN_ FALL_ EINT1
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TEMP_ WARN_ RISE_ EINT1	VPBR_ ATT_ CLR_ EINT1		VPBR_ FLAG_ EINT1	REFCLK _STOP_ EINT1	REFCLK START_ EINT1	BST_ IPK_ FLAG_ EINT1	BST_ SHORT_ ERR_ EINT1	BST_ DCM_ UVP_ ERR_ EINT1	BST_ OVP_ ERR_ EINT1	BST_ OVP_ FLAG_ FALL_ EINT1	BST_ OVP_ FLAG_ RISE_ EINT1	GPIO2_ FALL_ EINT1	GPIO2_ RISE_ EINT1	GPIO1_ FALL_ EINT1	GPIO1_ RISE_ EINT1
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Default	0 0 0	
Bits	Name	Description
31	AMP_ERR_EINT1	Amplifier Short Error Interrupt
		Rising edge triggered. Write '1' to clear.
30	VBBR_ATT_CLR_	VBST Brownout Attenuation Cleared Interrupt
	EINT1	Rising edge triggered. Write '1' to clear.
29	VBBR_FLAG_EINT1	VBST Brownout Threshold Flag Interrupt
		Rising edge triggered. Write '1' to clear.
28	IMON_CLIPPED_	IMON Overflow Error Interrupt
	EINT1	Rising edge triggered. Write '1' to clear.
27	VMON_CLIPPED_	VMON Overflow Error Interrupt
	EINT1	Rising edge triggered. Write '1' to clear.
26	VBSTMON_	VBSTMON Overflow Error Interrupt
	CLIPPED_EINT1	Rising edge triggered. Write '1' to clear.
25	VPMON_CLIPPED_	VPMON Overflow Error Interrupt
	EINT1	Rising edge triggered. Write '1' to clear.
24	MSM_PUP_DONE_	Global Power up Done Flag Interrupt
	EINT1	Rising edge triggered. Write '1' to clear.
23	MSM_PDN_DONE_	Global Power down Done Flag Interrupt
	EINT1	Rising edge triggered. Write '1' to clear.
22	MSM_GLOBAL_EN_	Global Enable Assert Flag Interrupt
	ASSERT_EINT1	Rising edge triggered. Write '1' to clear.
21:18		Reserved
17	TEMP_ERR_EINT1	Overtemperature Error Interrupt
		Rising edge triggered. Write '1' to clear.
16	TEMP_WARN_	Overtemperature Warning Interrupt
	FALL_EINT1	Falling edge triggered. Write '1' to clear.
15	TEMP_WARN_	Overtemperature Warning Interrupt
	RISE_EINT1	Rising edge triggered. Write '1' to clear.
14	VPBR_ATT_CLR_	VP Brownout Attenuation Cleared Interrupt
	EINT1	Rising edge triggered. Write '1' to clear.
13	_	Reserved
12	VPBR_FLAG_EINT1	VP Brownout Threshold Flag Interrupt
		Rising edge triggered. Write '1' to clear.
11	REFCLK_STOP_	DPLL Reference clock absence detected Interrupt
	EINT1	Rising edge triggered. Write '1' to clear.
10	REFCLK_START_	DPLL Reference clock presence detected Interrupt
	EINT1	Rising edge triggered. Write '1' to clear.
9	BST_IPK_FLAG_	Boost Peak Current Limit Flag Interrupt
	EINT1	Rising edge triggered. Write '1' to clear.

Bits	Name	Description						
8	BST_SHORT_ERR_	Boost Inductor Short Error Interrupt						
	EINT1	Rising edge triggered. Write '1' to clear.						
7	BST_DCM_UVP_	Boost Undervoltage Error Interrupt						
	ERR_EINT1	Rising edge triggered. Write '1' to clear.						
6	BST_OVP_ERR_	Boost Overvoltage Error Interrupt						
	EINT1	Rising edge triggered. Write '1' to clear.						
5	BST_OVP_FLAG_	Boost Overvoltage Warning Interrupt						
	FALL_EINT1	Falling edge triggered. Write '1' to clear.						
4	BST_OVP_FLAG_	Boost Overvoltage Warning Interrupt						
	RISE_EINT1	Rising edge triggered. Write '1' to clear.						
3	GPIO2_FALL_EINT1	GPIO2 Pin Status Interrupt						
		Falling edge triggered. Write '1' to clear.						
2	GPIO2_RISE_EINT1	GPIO2 Pin Status Interrupt						
		Rising edge triggered. Write '1' to clear.						
1	GPIO1_FALL_EINT1	GPIO1 Pin Status Interrupt						
		Falling edge triggered. Write '1' to clear.						
0	GPIO1_RISE_EINT1	GPIO1 Pin Status Interrupt						
		Rising edge triggered. Write '1' to clear.						

7.15.4 IRQ1_EINT_2

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		_	AMP_ NG_ON_ FALL_ EINT1	AMP_ NG_ON_ RISE_ EINT1			_	_			DSP_ VIRTUAL 2_ MBOX_ WR_ EINT1	DSP_ VIRTUAL 1_ MBOX_ WR_ EINT1		_	_	
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								_	_							
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:30	_	Reserved
29	AMP_NG_ON_ FALL_EINT1	Amplifier Noise Gate Entry Interrupt Falling edge triggered. Write '1' to clear.
28	AMP_NG_ON_ RISE_EINT1	Amplifier Noise Gate Entry Interrupt Rising edge triggered. Write '1' to clear.
27:22	_	Reserved
21	DSP_VIRTUAL2_ MBOX_WR_EINT1	DSP Virtual Mailbox 2 Write Flag Interrupt Rising edge triggered. Write '1' to clear.
20	DSP_VIRTUAL1_ MBOX_WR_EINT1	DSP Virtual Mailbox 1 Write Flag Interrupt Rising edge triggered. Write '1' to clear.
19:0	_	Reserved

Address: 0x0001 001C

7.15.5 IRQ1 EINT 3	J
--------------------	---

RW	3116	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I			_			ASP_ RXSLO T_CFG_ ERR_ EINT1	ASP_ TXSLOT _CFG_ ERR_ EINT1	-	REFCLK _IN_ FLAG_ RISE_ EINT1	_	PLL_ UNLOC K_ FLAG_ FALL_ EINT1	PLL_ UNLOC K_ FLAG_ RISE_ EINT1	PLL_ FREQ_ LOCK_ EINT1	PLL_ PHASE_ LOCK_ EINT1	PLL_ LOCK_ EINT1	INTP_ VC_ DONE_ EINT1
Default	0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:11	_	Reserved
10	ASP_RXSLOT_ CFG_ERR_EINT1	ASP Rx Slot Configuration Error Interrupt Rising edge triggered. Write '1' to clear.
9	ASP_TXSLOT_CFG_ ERR_EINT1	ASP Tx Slot Configuration Error Interrupt Rising edge triggered. Write '1' to clear.
8	REFCLK_IN_FLAG_ FALL_EINT1	Input REFCLK Missing Flag Interrupt Falling edge triggered. Write '1' to clear.
7	REFCLK_IN_FLAG_ RISE_EINT1	Input REFCLK Missing Flag Interrupt Rising edge triggered. Write '1' to clear.
6	_	Reserved
5	PLL_UNLOCK_ FLAG_FALL_EINT1	PLL Unlock Flag Interrupt Falling edge triggered. Write '1' to clear.
4	PLL_UNLOCK_ FLAG_RISE_EINT1	PLL Unlock Flag Interrupt Rising edge triggered. Write '1' to clear.
3	PLL_FREQ_LOCK_ EINT1	PLL Frequency Lock Flag Interrupt Rising edge triggered. Write '1' to clear.
2	PLL_PHASE_LOCK_ EINT1	PLL Phase Lock Flag Interrupt Rising edge triggered. Write '1' to clear.
1	PLL_LOCK_EINT1	PLL Lock Flag Interrupt Rising edge triggered. Write '1' to clear.
0	INTP_VC_DONE_ EINT1	Amplifier Interpolator Volume Control Ramp Done Interrupt Rising edge triggered. Write '1' to clear.

7.15.6 IRQ1_EINT_4

		_	_													
RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	_	GPIO4_ FALL_ EINT1	GPIO4_ RISE_ EINT1	GPIO3_ FALL_ EINT1	GPIO3_ RISE_ EINT1		_		MEM_ RD_ EINT1				_			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					_			-	_							
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31	_	Reserved
30		GPIO4 Pin Status Interrupt Falling edge triggered. Write '1' to clear.
29		GPIO4 Pin Status Interrupt Rising edge triggered. Write '1' to clear.
28		GPIO3 Pin Status Interrupt Falling edge triggered. Write '1' to clear.
27		GPIO3 Pin Status Interrupt Rising edge triggered. Write '1' to clear.

Bits	Name	Description
26:24	_	Reserved
23	MEM_RD_EINT1	Memory Ready Interrupt
		Rising edge triggered. Write '1' to clear.
22:0	_	Reserved

7 15 7	IRQ1	CTC 1	
1.15.1	ועעו	313 I	

7.15	7.15.7 IRQ1_STS_1 Address: 0x0001 0090															
RO	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	AMP_ ERR_ STS1	VBBR_ ATT_ CLR_ STS1	VBBR_ FLAG_ STS1	IMON_ CLIPPE D_STS1	CLIPPE	VBSTMO N_ CLIPPE D_STS1	VPMON_ CLIPPE D_STS1		MSM_ PDN_ DONE_ STS1	MSM_ GLOBAL _EN_ ASSERT _STS1		_	-		TEMP_ ERR_ STS1	_
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RO	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TEMP_ WARN_ STS1	VPBR_ ATT_ CLR_ STS1	_	VPBR_ FLAG_ STS1	REFCLK _STOP_ STS1	REFCLK START_ STS1	BST_ IPK_ FLAG_ STS1	BST_ SHORT_ ERR_ STS1	BST_ DCM_ UVP_ ERR_ STS1	BST_ OVP_ ERR_ STS1	_	BST_ OVP_ FLAG_ STS1	_	GPIO2_ STS1	_	GPIO1_ STS1
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Default	0 0 0												
Bits	Name	Description											
31	AMP_ERR_STS1	Amplifier Short Error Status											
30	VBBR_ATT_CLR_ STS1	VBST Brownout Attenuation Cleared Status											
29	VBBR_FLAG_STS1	VBST Brownout Threshold Flag Status											
28	IMON_CLIPPED_ STS1	IMON Overflow Error Status											
27	VMON_CLIPPED_ STS1	VMON Overflow Error Status											
26	VBSTMON_ CLIPPED_STS1	VBSTMON Overflow Error Status											
25	VPMON_CLIPPED_ STS1	VPMON Overflow Error Status											
24	MSM_PUP_DONE_ STS1	Global Power up Done Flag Status											
23	MSM_PDN_DONE_ STS1	Global Power down Done Flag Status											
22	MSM_GLOBAL_EN_ ASSERT_STS1	Global Enable Assert Flag Status											
21:18	_	Reserved											
17	TEMP_ERR_STS1	Overtemperature Error Status											
16	_	Reserved											
15	TEMP_WARN_STS1	Overtemperature Warning Status											
14	VPBR_ATT_CLR_ STS1	VP Brownout Attenuation Cleared Status											
13	_	Reserved											
12	VPBR_FLAG_STS1	VP Brownout Threshold Flag Status											
11	REFCLK_STOP_ STS1	DPLL Reference clock absence detected Status											
10	REFCLK_START_ STS1	DPLL Reference clock presence detected Status											
9	BST_IPK_FLAG_ STS1	Boost Peak Current Limit Flag Status											
8	BST_SHORT_ERR_ STS1	Boost Inductor Short Error Status											

Address: 0x0001 0098

Bits	Name	Description							
7	BST_DCM_UVP_ ERR_STS1	Boost Undervoltage Error Status							
6	BST_OVP_ERR_ STS1	Boost Overvoltage Error Status							
5	_	Reserved							
4	BST_OVP_FLAG_ STS1	Boost Overvoltage Warning Status							
3	_	Reserved							
2	GPIO2_STS1	GPIO2 Pin Interrupt Status							
1	_	Reserved							
0	GPIO1_STS1	GPIO1 Pin Interrupt Status							

7.15.8 IRQ1_STS_2

		_														
RO	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		_		AMP_ NG_ON_ STS1						_	-					
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RO	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								-	-							
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:29	_	Reserved
28	AMP_NG_ON_STS1	Amplifier Noise Gate Entry Status
27:0	_	Reserved

7.15.9 IRQ1_STS_3

RO	3116	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1			_			ASP_ RXSLO T_CFG_ ERR_ STS1	-	-	REFCLK _IN_ FLAG_ STS1	_	-	PLL_ UNLOC K_ FLAG_ STS1	PLL_ FREQ_ LOCK_ STS1	PLL_ PHASE_ LOCK_ STS1	PLL_ LOCK_ STS1	INTP_ VC_ DONE_ STS1
Default	0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	•	
Bits	Name	Description
31:11	_	Reserved
10	ASP_RXSLOT_ CFG_ERR_STS1	ASP Rx Slot Configuration Error Status
9:8	_	Reserved
7	REFCLK_IN_FLAG_ STS1	Input REFCLK Missing Flag Status
6:5	_	Reserved
4	PLL_UNLOCK_ FLAG_STS1	PLL Unlock Flag Status
3	PLL_FREQ_LOCK_ STS1	PLL Frequency Lock Status
2	PLL_PHASE_LOCK_ STS1	PLL Phase Lock Status
1	PLL_LOCK_STS1	PLL Lock Status
0	INTP_VC_DONE_ STS1	Amplifier Interpolator Volume Control Ramp Done Status

Address: 0x0001 009C

Address: 0x0001 0110

7.15.10 IRQ1	STS	4
--------------	-----	---

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
-	_	GPIO4_ STS1	_	GPIO3_ STS1		_		MEM_ RD_ STS1				_			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							-	-							
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0 15	0 0 15 14	- GPIO4_STS1 0 0 0 15 14 13	- GPIO4 STS1 - 0 0 0 0 0 15 14 13 12	- GPIO4_STS1 - GPIO3_STS1 0 0 0 0 0 0 15 14 13 12 11	- GPIO4_STS1 - GPIO3_STS1 0 0 0 0 0 0 0 0 15 14 13 12 11 10	- GPIO4_STS1 - GPIO3_STS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- GPIO4_STS1 - GPIO3_STS1	- GPIO4_STS1 - GPIO3_STS1 - MEM_RD_STS1 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7	- GPIO4_STS1 - GPIO3_STS1 - MEM_RD_STS1 - GPIO3_STS1 - MEM_RD_STS1 - GPIO3_STS1 - G	- GPIO4_STS1 - GPIO3_STS1 - MEM_RD_STS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5	- GPIO4_STS1 - GPIO3_STS1 - MEM_RD_STS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- GPIO4_STS1 - GPIO3_STS1 - MEM_RD_STS1 - STS1 - ST	- GPIO4_STS1 - GPIO3_STS1 - MEM_RD_STS1 - STS1 - ST	- GPIO4_STS1 - GPIO3_STS1 - MEM_RD_STS1 - STS1 - ST

Bits	Name	Description
31:30	_	Reserved
29	GPIO4_STS1	GPIO4 Pin Interrupt Status
28	_	Reserved
27	GPIO3_STS1	GPIO3 Pin Interrupt Status
26:24	_	Reserved
23	MEM_RD_STS1	Memory Ready Status
22:0	_	Reserved

7.15.11 IRQ1_MASK_1

		_	_	-	_											
RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	AMP_ ERR_ MASK1	VBBR_ ATT_ CLR_ MASK1	VBBR_ FLAG_ MASK1	IMON_ CLIPPE D_ MASK1	VMON_ CLIPPE D_ MASK1	VBSTMO N_ CLIPPE D_ MASK1	VPMON_ CLIPPE D_ MASK1	MSM_ PUP_ DONE_ MASK1	MSM_ PDN_ DONE_ MASK1	MSM_ GLOBAL _EN_ ASSERT _MASK1		-	_		TEMP_ ERR_ MASK1	TEMP_ WARN_ FALL_ MASK1
Default	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TEMP_ WARN_ RISE_ MASK1	VPBR_ ATT_ CLR_ MASK1	_	VPBR_ FLAG_ MASK1	REFCLK _STOP_ MASK1	REFCLK START_ MASK1	BST_ IPK_ FLAG_ MASK1	BST_ SHORT_ ERR_ MASK1	BST_ DCM_ UVP_ ERR_ MASK1	BST_ OVP_ ERR_ MASK1	BST_ OVP_ FLAG_ FALL_ MASK1	BST_ OVP_ FLAG_ RISE_ MASK1	GPIO2_ FALL_ MASK1	GPIO2_ RISE_ MASK1	GPIO1_ FALL_ MASK1	GPIO1_ RISE_ MASK1
Default	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bits	Name	Description						
31	AMP_ERR_MASK1	Amplifier Short Error Interrupt Mask						
		0 = Do not mask interrupt 1 = (Default) Mask interrupt						
30	VBBR_ATT_CLR_	VBST Brownout Attenuation Cleared Interrupt Mask						
	MASK1	0 = Do not mask interrupt 1 = (Default) Mask interrupt						
29	VBBR_FLAG_	VBST Brownout Threshold Flag Interrupt Mask						
	MASK1	0 = Do not mask interrupt 1 = (Default) Mask interrupt						
28	IMON_CLIPPED_	IMON Overflow Error Interrupt Mask						
	MASK1	0 = Do not mask interrupt 1 = (Default) Mask interrupt						
27	VMON_CLIPPED_	VMON Overflow Error Interrupt Mask						
	MASK1	0 = Do not mask interrupt 1 = (Default) Mask interrupt						
26	VBSTMON_	VBSTMON Overflow Error Interrupt Mask						
	CLIPPED_MASK1	0 = Do not mask interrupt 1 = (Default) Mask interrupt						
25	VPMON_CLIPPED_	VPMON Overflow Error Interrupt Mask						
	MASK1	0 = Do not mask interrupt 1 = (Default) Mask interrupt						

Bits	Name	Description
24	MSM_PUP_DONE_	Global Power up Done Flag Interrupt Mask
	MASK1	0 = Do not mask interrupt 1 = (Default) Mask interrupt
23	MSM_PDN_DONE_	Global Power down Done Flag Interrupt Mask
	MASK1	0 = Do not mask interrupt 1 = (Default) Mask interrupt
22	MSM_GLOBAL_EN_ ASSERT MASK1	Global Enable Assert Flag Interrupt Mask
	ASSERT_WASKT	0 = Do not mask interrupt 1 = (Default) Mask interrupt
21:18		Reserved
17	TEMP_ERR_MASK1	Overtemperature Error Interrupt Mask
		0 = Do not mask interrupt 1 = (Default) Mask interrupt
16	TEMP_WARN_ FALL MASK1	Overtemperature Warning Falling Edge Interrupt Mask
	TALL_INACTO	0 = Do not mask interrupt 1 = (Default) Mask interrupt
15	TEMP_WARN_	Overtemperature Warning Rising Edge Interrupt Mask
	RISE_MASK1	0 = Do not mask interrupt 1 = (Default) Mask interrupt
14	VPBR_ATT_CLR_	VP Brownout Attenuation Cleared Interrupt Mask
	MASK1	0 = Do not mask interrupt 1 = (Default) Mask interrupt
13	<u> </u>	Reserved
12	VPBR_FLAG_ MASK1	VP Brownout Threshold Flag Interrupt Mask
		0 = Do not mask interrupt 1 = (Default) Mask interrupt
11	REFCLK_STOP_ MASK1	DPLL Reference clock absence detected Interrupt Mask
		0 = Do not mask interrupt 1 = (Default) Mask interrupt
10	REFCLK_START_ MASK1	DPLL Reference clock presence detected Interrupt Mask
		0 = Do not mask interrupt 1 = (Default) Mask interrupt
9	BST_IPK_FLAG_ MASK1	Boost Peak Current Limit Flag Interrupt Mask 0 = Do not mask interrupt
	WINCERT	1 = (Default) Mask interrupt
8	BST_SHORT_ERR_	Boost Inductor Short Error Interrupt Mask
	MASK1	0 = Do not mask interrupt 1 = (Default) Mask interrupt
7	BST_DCM_UVP_ ERR MASK1	Boost Undervoltage Error Interrupt Mask
		0 = Do not mask interrupt 1 = (Default) Mask interrupt
6	BST_OVP_ERR_ MASK1	Boost Overvoltage Error Interrupt Mask
		0 = Do not mask interrupt 1 = (Default) Mask interrupt
5	BST_OVP_FLAG_ FALL_MASK1	Boost Overvoltage Warning Falling Edge Interrupt Mask
		0 = Do not mask interrupt 1 = (Default) Mask interrupt
4	BST_OVP_FLAG_ RISE MASK1	Boost Overvoltage Warning Rising Edge Interrupt Mask
		0 = Do not mask interrupt 1 = (Default) Mask interrupt
3	GPIO2_FALL_ MASK1	GPIO2 Pin Falling Edge Interrupt Mask
	IVIAONI	0 = Do not mask interrupt 1 = (Default) Mask interrupt

Address: 0x0001 0118

Bits	Name	Description
2	GPIO2_RISE_ MASK1	GPIO2 Pin Rising Edge Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
1	GPIO1_FALL_ MASK1	GPIO1 Pin Interrupt Status Falling Edge Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
0	GPIO1_RISE_ MASK1	GPIO1 Pin Interrupt Status Rising Edge Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt

7.15.12 IRQ1_MASK_2

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		_	AMP_ NG_ON_ FALL_ MASK1	AMP_ NG_ON_ RISE_ MASK1						_	-					
Default	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								-	-							
Default	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bits	Name	Description
31:30	_	Reserved
29	AMP_NG_ON_ FALL_MASK1	Amplifier Noise Gate Entry Falling Edge Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
28	AMP_NG_ON_ RISE_MASK1	Amplifier Noise Gate Entry Rising Edge Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
27:0	_	Reserved

7.15.13 IRQ1_MASK_3

RW	3116	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_			_			ASP_ RXSLO T_CFG_ ERR_ MASK1	_	REFCLK _IN_ FLAG_ FALL_ MASK1	_IN_ FLAG_ RISE_	_	K_ FLAG_ FALL_	PLL_ UNLOC K_ FLAG_ RISE_ MASK1	PLL_ FREQ_ LOCK_ MASK1	PLL_ PHASE_ LOCK_ MASK1	PLL_ LOCK_ MASK1	INTP_ VC_ DONE_ MASK1
Default	0xFFFF	1	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1

Bits	Name	Description
31:11	_	Reserved
10	ASP_RXSLOT_ CFG_ERR_MASK1	ASP Rx Slot Configuration Error Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
9	_	Reserved
8	REFCLK_IN_FLAG_ FALL_MASK1	Input REFCLK Missing Flag Falling Edge Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
7	REFCLK_IN_FLAG_ RISE_MASK1	Input REFCLK Missing Flag Rising Edge Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
6	_	Reserved
5	PLL_UNLOCK_ FLAG_FALL_MASK1	PLL Unlock Flag Falling Edge Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt

Address: 0x0001 011C

Bits	Name	Description
4		PLL Unlock Flag Rising Edge Interrupt Mask
	FLAG_RISE_MASK1	0 = Do not mask interrupt 1 = (Default) Mask interrupt
3		PLL Frequency Lock Interrupt Mask
	MASK1	0 = Do not mask interrupt 1 = (Default) Mask interrupt
2		PLL Phase Lock Interrupt Mask
	MASK1	0 = Do not mask interrupt 1 = (Default) Mask interrupt
1	PLL_LOCK_MASK1	PLL Lock Interrupt Mask
		0 = Do not mask interrupt 1 = (Default) Mask interrupt
0		Amplifier Interpolator Volume Control Ramp Done Interrupt Mask
	MASK1	0 = Do not mask interrupt 1 = (Default) Mask interrupt

7.15.14 IRQ1_MASK_4

		· —	_	_												
RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	_	GPIO4_ FALL_ MASK1	GPIO4_ RISE_ MASK1	GPIO3_ FALL_ MASK1	GPIO3_ RISE_ MASK1		_		MEM_ RD_ MASK1				_			
Default	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					_			-	_							
Default	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bits	Name	Description
31	_	Reserved
30	GPIO4_FALL_ MASK1	GPIO4 Pin Falling Edge Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
29	GPIO4_RISE_ MASK1	GPIO4 Pin Rising Edge Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
28	GPIO3_FALL_ MASK1	GPIO3 Pin Falling Edge Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
27	GPIO3_RISE_ MASK1	GPIO3 Pin Rising Edge Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
26:24	_	Reserved
23	MEM_RD_MASK1	Memory Ready Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
22:0	_	Reserved

Address: 0x0001 021C

7.15.15 IRQ1_EDGE_1

RW	318	7	6	5	4	3	2	1	0
	_		-	_		GPIO2_FALL_ EDGE1	GPIO2_RISE_ EDGE1	GPIO1_FALL_ EDGE1	GPIO1_RISE_ EDGE1
Default	0x00 0000	0	0	0	0	1	1	1	1

Bits	Name	Description
31:4	_	Reserved
3	GPIO2_FALL_ EDGE1	GPIO2 Pin Falling Interrupt Edge/Level Select 0 = Level sensitive 1 = (Default) Edge sensitive
2	GPIO2_RISE_ EDGE1	GPIO2 Pin Rising Interrupt Edge/Level Select 0 = Level sensitive 1 = (Default) Edge sensitive
1	GPIO1_FALL_ EDGE1	GPIO1 Pin Falling Interrupt Edge/Level Select 0 = Level sensitive 1 = (Default) Edge sensitive
0	GPIO1_RISE_ EDGE1	GPIO1 Pin Rising Interrupt Edge/Level Select 0 = Level sensitive 1 = (Default) Edge sensitive

7.15.16 IRQ1_EDGE_4

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	_	GPIO4_ FALL_ EDGE1	GPIO4_ RISE_ EDGE1	GPIO3_ FALL_ EDGE1	GPIO3_ RISE_ EDGE1						_					
Default	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Default		0		0	0		0		_	0		0	0	0		0
Delault	U	0	0	0	0	0	0	0	0	U	0	0	0	0	0	0

Bits	Name	Description
31	_	Reserved
30	GPIO4_FALL_ EDGE1	GPIO4 Pin Falling Interrupt Edge/Level Select 0 = Level sensitive 1 = (Default) Edge sensitive
29	GPIO4_RISE_ EDGE1	GPIO4 Pin Rising Interrupt Edge/Level Select 0 = Level sensitive 1 = (Default) Edge sensitive
28	GPIO3_FALL_ EDGE1	GPIO3 Pin Falling Interrupt Edge/Level Select 0 = Level sensitive 1 = (Default) Edge sensitive
27	GPIO3_RISE_ EDGE1	GPIO3 Pin Rising Interrupt Edge/Level Select 0 = Level sensitive 1 = (Default) Edge sensitive
26:0	_	Reserved

Address: 0x0001 029C

7.15.17 IRQ1_POL_1

RW	318	7	6	5	4	3	2	1	0	1
	-		-	_		GPIO2_FALL_ POL1	GPIO2_RISE_ POL1	GPIO1_FALL_ POL1	GPIO1_RISE_ POL1	Ì
Default	0x00 0000	0	0	0	0	0	0	0	0	

Bits	Name	Description
31:4	_	Reserved
3	GPIO2_FALL_POL1	GPIO2 Pin Interrupt Status Fall Interrupt Polarity Select
		0 = (Default) Preserve polarity 1 = Invert polarity
2	GPIO2_RISE_POL1	GPIO2 Pin Interrupt Status Rise Interrupt Polarity Select
		0 = (Default) Preserve polarity 1 = Invert polarity
1	GPIO1_FALL_POL1	GPIO1 Pin Interrupt Status Fall Interrupt Polarity Select
		0 = (Default) Preserve polarity 1 = Invert polarity
0	GPIO1_RISE_POL1	GPIO1 Pin Interrupt Status Rise Interrupt Polarity Select
		0 = (Default) Preserve polarity 1 = Invert polarity

7.15.18 IRQ1_POL_4

1					i				1			i				1
RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	_	GPIO4_ FALL_ POL1	GPIO4_ RISE_ POL1	GPIO3_ FALL_ POL1	GPIO3_ RISE_ POL1						_					
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								-	-							
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31	_	Reserved
30	GPIO4_FALL_POL1	GPIO4 Pin Falling Interrupt Polarity Select
		0 = (Default) Preserve polarity 1 = Invert polarity
29	GPIO4_RISE_POL1	GPIO4 Pin Rising Interrupt Polarity Select
		0 = (Default) Preserve polarity 1 = Invert polarity
28	GPIO3_FALL_POL1	GPIO3 Pin Falling Interrupt Polarity Select
		0 = (Default) Preserve polarity 1 = Invert polarity
27	GPIO3_RISE_POL1	GPIO3 Pin Rising Interrupt Polarity Select
		0 = (Default) Preserve polarity 1 = Invert polarity
26:0	_	Reserved

Address: 0x0001 0800

Address: 0x0001 0804

7.15.19 IRQ1 DB 3

RW	318	7	6	5	4	3	2	1	0	l
	_	REFCLK_IN_ FLAG_DB1				_				
Default	0x00 0000	0	0	0	0	0	0	0	0	l

Bits	Name	Description
31:8	_	Reserved
7	REFCLK_IN_FLAG_ DB1	Input REFCLK Missing Flag Debounce Enable 0 = (Default) Debounce Disabled 1 = Debounce Enabled
6:0	_	Reserved

7.16 Interrupt Status and Mask Control (IRQ2)

7.16.1 IRQ2_CFG

RW	318	7	6	5	4	3	2	1	0
	_		_	_			IRQ2_D	B_TIME	
Default	0x00 0000	0	0	0	0	0	0	0	0

Bits	Name		Description
31:4	_	Reserved	
3:0	IRQ2_DB_TIME	Debounce time for IRQ Debouncer 0000 = (Default) x 8192 0001 = Default val x 16 0010 = Default val x 32 0011 = Default val x 64 0100 = Default val x 128 0101 = Default val x 256	0110 = Default val x 512 0111 = Default val x 1024 1000 = Default val x 2048 1001 = Default val x 4096 1010 = Default val x 8192 1011–1111 = Reserved

7.16.2 IRQ2_STATUS

RO	318	7	6	5	4	3	2	1	0
	_				_				IRQ2_STS2
Default	0x00 0000	0	0	0	0	0	0	0	0

Bits	Name	Description
31:1	_	Reserved
0	IRQ2_STS2	Status bit to indicate if the IRQ2 pin is currently asserted – useful flag to see if any other interrupts are pending.

7.16.3 IRQ2 EINT '

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	AMP_ ERR_ EINT2	VBBR_ ATT_ CLR_ EINT2	VBBR_ FLAG_ EINT2	IMON_ CLIPPE D_EINT2	VMON_ CLIPPE D_EINT2	VBSTMO N_ CLIPPE D_EINT2	CLIPPE	MSM_ PUP_ DONE_ EINT2	MSM_ PDN_ DONE_ EINT2	MSM_ GLOBAL _EN_ ASSERT _EINT2		_	_		TEMP_ ERR_ EINT2	TEMP_ WARN_ FALL_ EINT2
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TEMP_ WARN_ RISE_ EINT2	VPBR_ ATT_ CLR_ EINT2	I	VPBR_ FLAG_ EINT2	REFCLK _STOP_ EINT2	REFCLK START_ EINT2	BST_ IPK_ FLAG_ EINT2	BST_ SHORT_ ERR_ EINT2	BST_ DCM_ UVP_ ERR_ EINT2	BST_ OVP_ ERR_ EINT2	BST_ OVP_ FLAG_ FALL_ EINT2	BST_ OVP_ FLAG_ RISE_ EINT2	GPIO2_ FALL_ EINT2	GPIO2_ RISE_ EINT2	GPIO1_ FALL_ EINT2	GPIO1_ RISE_ EINT2
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Default	0 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits	Name						D	escriptio	n					
31	AMP_ERR_EINT2	Amplifie	r Short E	rror Inter	rupt									
		Rising e	dge trigg	ered. Wr	ite '1' to c	lear.								
30					ion Cleare		upt							
	EINT2				ite '1' to c									
29	VBBR_FLAG_EINT2				d Flag Int	•								
		_			ite '1' to c	lear.								
28	IMON_CLIPPED_ EINT2		verflow E		•									
07		_			ite '1' to c	lear.								
27	VMON_CLIPPED_ EINT2		Overflow		•	Joor								
26		_			rite '1' to c or Interrup									
26	VBSTMON_ CLIPPED_EINT2				rite '1' to c									
25	VPMON CLIPPED		l Overflov			icai.								
20	EINT2				ite '1' to c	lear.								
24	MSM_PUP_DONE_				ag Interru									
	EINT2				ite '1' to c	•								
23	MSM PDN DONE	Global F	Power dov	wn Done	Flag Inte	errupt								
	EINT2				ite '1' to c									
22	MSM_GLOBAL_EN_	Global E	Enable As	sert Flag	g Interrup	t								
	ASSERT_EINT2	Rising e	edge trigg	ered. Wr	ite '1' to c	lear.								
21:18	_	Reserve	ed											
17	TEMP_ERR_EINT2		nperature											
		_			ite '1' to c									
16	TEMP_WARN_		•	-	g Interrupt									
	FALL_EINT2	_			rite '1' to d									
15	TEMP_WARN_ RISE_EINT2		•	-	g Interrupt									
		Ü	0 00		ite '1' to c									
14	VPBR_ATT_CLR_ EINT2				Cleared I									
10	LIIVIZ			erea. vvi	ite '1' to c	iear.								
13		Reserve												
12	VPBR_FLAG_EINT2				lag Interrite '1' to c									
11	REFCLK_STOP_	DPLL R	eference	clock ab	sence de	tected Ir	nterrupt							
	EINT2	_			ite '1' to c									
10	REFCLK_START_	DPLL R	eference	clock pre	esence de	etected I	nterrupt	·						
	EINT2	•	0 00		ite '1' to c									
9	BST_IPK_FLAG_				Flag Inte									
	EINT2	Rising e	dge trigg	ered. Wr	ite '1' to c	lear.								

Bits	Name	Description
8	BST_SHORT_ERR_ EINT2	Boost Inductor Short Error Interrupt
	CIIN I Z	Rising edge triggered. Write '1' to clear.
7	BST_DCM_UVP_	Boost Undervoltage Error Interrupt
	ERR_EINT2	Rising edge triggered. Write '1' to clear.
6	BST_OVP_ERR_	Boost Overvoltage Error Interrupt
	EINT2	Rising edge triggered. Write '1' to clear.
5	BST_OVP_FLAG_	Boost Overvoltage Warning Interrupt
	FALL_EINT2	Falling edge triggered. Write '1' to clear.
4	BST_OVP_FLAG_	Boost Overvoltage Warning Interrupt
	RĪSE_EĪNT2	Rising edge triggered. Write '1' to clear.
3	GPIO2_FALL_EINT2	GPIO2 Pin Interrupt Status Interrupt
		Falling edge triggered. Write '1' to clear.
2	GPIO2_RISE_EINT2	GPIO2 Pin Interrupt Status Interrupt
		Rising edge triggered. Write '1' to clear.
1	GPIO1_FALL_EINT2	GPIO1 Pin Interrupt Status Interrupt
		Falling edge triggered. Write '1' to clear.
0	GPIO1_RISE_EINT2	GPIO1 Pin Interrupt Status Interrupt
		Rising edge triggered. Write '1' to clear.

7.16.4 IRQ2_EINT_2

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		_	AMP_ NG_ON_ FALL_ EINT2	AMP_ NG_ON_ RISE_ EINT2			_	-			DSP_ VIRTUAL 2_ MBOX_ WR_ EINT2	DSP_ VIRTUAL 1_ MBOX_ WR_ EINT2		_	-	
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:30	_	Reserved
29	AMP_NG_ON_ FALL_EINT2	Amplifier Noise Gate Entry Interrupt Falling edge triggered. Write '1' to clear.
28	AMP_NG_ON_ RISE_EINT2	Amplifier Noise Gate Entry Interrupt Rising edge triggered. Write '1' to clear.
27:22	_	Reserved
21	DSP_VIRTUAL2_ MBOX_WR_EINT2	DSP Virtual Mailbox 2 Write Flag Interrupt Rising edge triggered. Write '1' to clear.
20	DSP_VIRTUAL1_ MBOX_WR_EINT2	DSP Virtual Mailbox 1 Write Flag Interrupt Rising edge triggered. Write '1' to clear.
19:0	_	Reserved

Address: 0x0001 081C

7.16.5 IRQ2 EINT 3	7.	16.5	IRQ2	EINT	3
--------------------	----	------	------	-------------	---

RW	3116	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	1
	1			_			ASP_ RXSLO T_CFG_ ERR_ EINT2	_	REFCLK _IN_ FLAG_ FALL_ EINT2	REFCLK _IN_ FLAG_ RISE_ EINT2	_	PLL_ UNLOC K_ FLAG_ FALL_ EINT2	PLL_ UNLOC K_ FLAG_ RISE_ EINT2	PLL_ FREQ_ LOCK_ EINT2	PLL_ PHASE_ LOCK_ EINT2	PLL_ LOCK_ EINT2	INTP_ VC_ DONE_ EINT2	1
Default	0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bits	Name	Description
31:11	_	Reserved
10	ASP_RXSLOT_	ASP Rx Slot Configuration Error Interrupt
	CFG_ERR_EINT2	Rising edge triggered. Write '1' to clear.
9	_	Reserved
8	REFCLK_IN_FLAG_	Input REFCLK Missing Flag Interrupt
	FALL_EINT2	Falling edge triggered. Write '1' to clear.
7	REFCLK_IN_FLAG_	Input REFCLK Missing Flag Interrupt
	RISE_EINT2	Rising edge triggered. Write '1' to clear.
6	_	Reserved
5	PLL_UNLOCK_	PLL Unlock Flag Interrupt
	FLAG_FALL_EINT2	Falling edge triggered. Write '1' to clear.
4	PLL_UNLOCK_	PLL Unlock Flag Interrupt
	FLAG_RISE_EINT2	Rising edge triggered. Write '1' to clear.
3	PLL_FREQ_LOCK_	PLL Frequency Lock Flag Interrupt
	EINT2	Rising edge triggered. Write '1' to clear.
2	PLL_PHASE_LOCK_	PLL Phase Lock Flag Interrupt
	EINT2	Rising edge triggered. Write '1' to clear.
1	PLL_LOCK_EINT2	PLL Lock Flag Interrupt
		Rising edge triggered. Write '1' to clear.
0	INTP_VC_DONE_	Amplifier Interpolator Volume Control Ramp Done Interrupt
	EINT2	Rising edge triggered. Write '1' to clear.

7.16.6 IRQ2_EINT_4

		_	_													
RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	_	GPIO4_ FALL_ EINT2	GPIO4_ RISE_ EINT2	GPIO3_ FALL_ EINT2	GPIO3_ RISE_ EINT2		_		MEM_ RD_ EINT2				_			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	0	0	_ 0	0	0	0	0	0	0	0
Dorault	U	U	U	U	l o	U	U	U	I	U	U	U	U	U	U	U

Bits	Name	Description
31	_	Reserved
30	GPIO4_FALL_EINT2	GPIO4 Pin Falling Edge Interrupt
		Rising edge triggered. Write '1' to clear.
29	GPIO4_RISE_EINT2	GPIO4 Pin Rising Edge Interrupt
		Rising edge triggered. Write '1' to clear.
28	GPIO3_FALL_EINT2	GPIO3 Pin Falling Edge Interrupt
		Falling edge triggered. Write '1' to clear.
27	GPIO3_RISE_EINT2	GPIO3 Pin Rising Edge Interrupt
		Rising edge triggered. Write '1' to clear.

Bits	Name	Description
26:24	_	Reserved
23	MEM_RD_EINT2	Memory Ready Interrupt
		Rising edge triggered. Write '1' to clear.
22:0	_	Reserved

1.10.1 IIXQL 010 I	7.16.7	IRQ2	STS 1
--------------------	--------	------	-------

RO	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	AMP_ ERR_ STS2	VBBR_ ATT_ CLR_ STS2	VBBR_ FLAG_ STS2	IMON_ CLIPPE D_STS2	CLIPPE	CLIDDE	VPMON_ CLIPPE D_STS2	MSM_ PUP_ DONE_ STS2	MSM_ PDN_ DONE_ STS2	MSM_ GLOBAL _EN_ ASSERT _STS2		_	-		TEMP_ ERR_ STS2	_
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RO	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TEMP_ WARN_ STS2	VPBR_ ATT_ CLR_ STS2	_	VPBR_ FLAG_ STS2	REFCLK _STOP_ STS2	REFCLK START_ STS2	BST_ IPK_ FLAG_ STS2	BST_ SHORT_ ERR_ STS2	BST_ DCM_ UVP_ ERR_ STS2	BST_ OVP_ ERR_ STS2	_	BST_ OVP_ FLAG_ STS2	_	GPIO2_ STS2	_	GPIO1_ STS2
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Delault	0 0 0												
Bits	Name	Description											
31	AMP_ERR_STS2	Amplifier Short Error Status											
30	VBBR_ATT_CLR_ STS2	VBST Brownout Attenuation Cleared Status											
29	VBBR_FLAG_STS2	VBST Brownout Threshold Flag Status											
28	IMON_CLIPPED_ STS2	IMON Overflow Error Status											
27	VMON_CLIPPED_ STS2	VMON Overflow Error Status											
26	VBSTMON_ CLIPPED_STS2	VBSTMON Overflow Error Status											
25	VPMON_CLIPPED_ STS2	VPMON Overflow Error Status											
24	MSM_PUP_DONE_ STS2	Global Power up Done Flag Status											
23	MSM_PDN_DONE_ STS2	Global Power down Done Flag Status											
22	MSM_GLOBAL_EN_ ASSERT_STS2	Global Enable Assert Flag Status											
21:18	_	Reserved											
17	TEMP_ERR_STS2	Overtemperature Error Status											
16	_	Reserved											
15	TEMP_WARN_STS2	Overtemperature Warning Status											
14	VPBR_ATT_CLR_ STS2	VP Brownout Attenuation Cleared Status											
13	_	Reserved											
12	VPBR_FLAG_STS2	VP Brownout Threshold Flag Status											
11	REFCLK_STOP_ STS2	DPLL Reference clock absence detected Status											
10	REFCLK_START_ STS2	DPLL Reference clock presence detected Status											
9	BST_IPK_FLAG_ STS2	Boost Peak Current Limit Flag Status											
8	BST_SHORT_ERR_ STS2	Boost Inductor Short Error Status											

Address: 0x0001 0898

Bits	Name	Description
7	BST_DCM_UVP_ ERR_STS2	Boost Undervoltage Error Status
6	BST_OVP_ERR_ STS2	Boost Overvoltage Error Status
5	_	Reserved
4	BST_OVP_FLAG_ STS2	Boost Overvoltage Warning Status
3	_	Reserved
2	GPIO2_STS2	GPIO2 Pin Interrupt Status
1	_	Reserved
0	GPIO1_STS2	GPIO1 Pin Interrupt Status

7.16.8 IRQ2_STS_2

			_													
RO	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		_		AMP_ NG_ON_ STS2						_	_					
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RO	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								-	_							
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:29	_	Reserved
28	AMP_NG_ON_STS2	Amplifier Noise Gate Entry Status
27:0		Reserved

7.16.9 IRQ2_STS_3

		_	_															
RO	3116	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	ĺ
	1			_			ASP_ RXSLO T_CFG_ ERR_ STS2	ASP_ TXSLOT _CFG_ ERR_ STS2	_	REFCLK _IN_ FLAG_ STS2	-	_	PLL_ UNLOC K_ FLAG_ STS2	PLL_ FREQ_ LOCK_ STS2	PLL_ PHASE_ LOCK_ STS2	PLL_ LOCK_ STS2	INTP_ VC_ DONE_ STS2	
Default	0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ĺ

Bits	Name	Description
31:11	_	Reserved
10	ASP_RXSLOT_ CFG_ERR_STS2	ASP Rx Slot Configuration Error Status
9	ASP_TXSLOT_CFG_ ERR_STS2	ASP Tx Slot Configuration Error Status
8		Reserved
7	REFCLK_IN_FLAG_ STS2	Input REFCLK Missing Flag Status
6:5	_	Reserved
4	PLL_UNLOCK_ FLAG_STS2	PLL Unlock Flag Status
3	PLL_FREQ_LOCK_ STS2	PLL Frequency Lock Status
2	PLL_PHASE_LOCK_ STS2	PLL Phase Lock Status
1	PLL_LOCK_STS2	PLL Lock Status
0	INTP_VC_DONE_ STS2	Amplifier Interpolator Volume Control Ramp Done Status

Address: 0x0001 089C

Address: 0x0001 0910

7.	16	5.1	O IR	Q2	S	ΓS	4
----	----	-----	------	----	---	----	---

RO	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		_	GPIO4_ STS2	_	GPIO3_ STS2		_		MEM_ RD_ STS2				_			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RO	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								-	_							
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:30	_	Reserved
29	GPIO4_STS2	GPIO4 Pin Status
28	_	Reserved
27	GPIO3_STS2	GPIO3 Pin Status
26:24	_	Reserved
23	MEM_RD_STS2	Memory Ready Status
22:0	_	Reserved

7.16.11 IRQ2_MASK_1

_		_	_	-												
RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	AMP_ ERR_ MASK2	VBBR_ ATT_ CLR_ MASK2	VBBR_ FLAG_ MASK2	IMON_ CLIPPE D_ MASK2	VMON_ CLIPPE D_ MASK2	VBSTMO N_ CLIPPE D_ MASK2	VPMON_ CLIPPE D_ MASK2	MSM_ PUP_ DONE_ MASK2	MSM_ PDN_ DONE_ MASK2	MSM_ GLOBAL _EN_ ASSERT _MASK2		_	_		TEMP_ ERR_ MASK2	TEMP_ WARN_ FALL_ MASK2
Default	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TEMP_ WARN_ RISE_ MASK2	VPBR_ ATT_ CLR_ MASK2		VPBR_ FLAG_ MASK2	REFCLK _STOP_ MASK2	REFCLK START_ MASK2	BST_ IPK_ FLAG_ MASK2	BST_ SHORT_ ERR_ MASK2	BST_ DCM_ UVP_ ERR_ MASK2	BST_ OVP_ ERR_ MASK2	BST_ OVP_ FLAG_ FALL_ MASK2	BST_ OVP_ FLAG_ RISE_ MASK2	GPIO2_ FALL_ MASK2	GPIO2_ RISE_ MASK2	GPIO1_ FALL_ MASK2	GPIO1_ RISE_ MASK2
Default	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bits	Name	Description
31	AMP_ERR_MASK2	Amplifier Short Error Interrupt Mask
		0 = Do not mask interrupt 1 = (Default) Mask interrupt
30	VBBR_ATT_CLR_	VBST Brownout Attenuation Cleared Interrupt Mask
	MASK2	0 = Do not mask interrupt 1 = (Default) Mask interrupt
29	VBBR_FLAG_	VBST Brownout Threshold Flag Interrupt Mask
	MASK2	0 = Do not mask interrupt 1 = (Default) Mask interrupt
28	IMON_CLIPPED_	IMON Overflow Error Interrupt Mask
	MASK2	0 = Do not mask interrupt 1 = (Default) Mask interrupt
27	VMON_CLIPPED_	VMON Overflow Error Interrupt Mask
	MASK2	0 = Do not mask interrupt 1 = (Default) Mask interrupt
26	VBSTMON_	VBSTMON Overflow Error Interrupt Mask
	CLIPPED_MASK2	0 = Do not mask interrupt 1 = (Default) Mask interrupt
25	VPMON_CLIPPED_	VPMON Overflow Error Interrupt Mask
	MASK2	0 = Do not mask interrupt 1 = (Default) Mask interrupt

Bits	Name	Description						
24	MSM_PUP_DONE_	Global Power up Done Flag Interrupt Mask						
	MASK2	0 = Do not mask interrupt 1 = (Default) Mask interrupt						
23	MSM_PDN_DONE_	Global Power down Done Flag Interrupt Mask						
	MASK2	0 = Do not mask interrupt 1 = (Default) Mask interrupt						
22	MSM_GLOBAL_EN_ ASSERT_MASK2	Global Enable Assert Flag Interrupt Mask						
	ASSERT_MASK2	0 = Do not mask interrupt 1 = (Default) Mask interrupt						
21:18		Reserved						
17	TEMP_ERR_MASK2	Overtemperature Error Interrupt Mask						
		0 = Do not mask interrupt 1 = (Default) Mask interrupt						
16	TEMP_WARN_	Overtemperature Warning Falling Edge Interrupt Mask						
	FALL_MASK2	0 = Do not mask interrupt 1 = (Default) Mask interrupt						
15	TEMP_WARN_ RISE MASK2	Overtemperature Warning Rising Edge Interrupt Mask						
	RISE_IWASK2	0 = Do not mask interrupt 1 = (Default) Mask interrupt						
14	VPBR_ATT_CLR_ MASK2	VP Brownout Attenuation Cleared Interrupt Mask						
	WASKZ	0 = Do not mask interrupt 1 = (Default) Mask interrupt						
13		Reserved						
12	VPBR_FLAG_ MASK2	VP Brownout Threshold Flag Interrupt Mask						
	MAGNZ	0 = Do not mask interrupt 1 = (Default) Mask interrupt						
11	REFCLK_STOP_ MASK2	DPLL Reference clock absence detected Interrupt Mask						
		0 = Do not mask interrupt 1 = (Default) Mask interrupt						
10	REFCLK_START_ MASK2	DPLL Reference clock presence detected Interrupt Mask						
	WASKZ	0 = Do not mask interrupt 1 = (Default) Mask interrupt						
9	BST_IPK_FLAG_ MASK2	Boost Peak Current Limit Flag Interrupt Mask						
	MASKZ	0 = Do not mask interrupt 1 = (Default) Mask interrupt						
8	BST_SHORT_ERR_ MASK2	Boost Inductor Short Error Interrupt Mask						
		0 = Do not mask interrupt 1 = (Default) Mask interrupt						
7	BST_DCM_UVP_	Boost Undervoltage Error Interrupt Mask						
	ERR_MASK2	0 = Do not mask interrupt 1 = (Default) Mask interrupt						
6	BST_OVP_ERR_ MASK2	Boost Overvoltage Error Interrupt Mask						
		0 = Do not mask interrupt 1 = (Default) Mask interrupt						
5	BST_OVP_FLAG_	Boost Overvoltage Warning Falling Edge Interrupt Mask						
	FALL_MASK2 0 = Do not mask interrupt 1 = (Default) Mask interrupt							
4	BST_OVP_FLAG_	Boost Overvoltage Warning Rising Edge Interrupt Mask						
	RISE_MASK2	0 = Do not mask interrupt 1 = (Default) Mask interrupt						
3	GPIO2_FALL_	GPIO2 Pin Interrupt Status Falling Edge Interrupt Mask						
	MASK2	0 = Do not mask interrupt 1 = (Default) Mask interrupt						

Address: 0x0001 0918

Bits	Name	Description
2	GPIO2_RISE_ MASK2	GPIO2 Pin Interrupt Status Rising Edge Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
1	GPIO1_FALL_ MASK2	GPIO1 Pin Interrupt Status Falling Edge Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
0	GPIO1_RISE_ MASK2	GPIO1 Pin Interrupt Status Rising Edge Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt

7.16.12 IRQ2_MASK_2

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		_	AMP_ NG_ON_ FALL_ MASK2	AMP_ NG_ON_ RISE_ MASK2			_	-			DSP_ VIRTUAL 2_ MBOX_ WR_ MASK2	DSP_ VIRTUAL 1_ MBOX_ WR_ MASK2		_	-	
Default	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
RW	15	14	13	12	11	10	9	8 _	7	6	5	4	3	2	1	0
Default	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bits	Name	Description
31:30	_	Reserved
29	AMP_NG_ON_ FALL_MASK2	Amplifier Noise Gate Entry Falling Edge Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
28	AMP_NG_ON_ RISE_MASK2	Amplifier Noise Gate Entry Rising Edge Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
27:22	_	Reserved
21	DSP_VIRTUAL2_ MBOX_WR_MASK2	DSP Virtual Mailbox 2 Write Flag Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
20	DSP_VIRTUAL1_ MBOX_WR_MASK2	DSP Virtual Mailbox 1 Write Flag Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
19:0	_	Reserved

7.16.13 IRQ2_MASK_3

		_		_													
RW	3116	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I			_			T_CFG_ ERR_	TXSLOT _CFG_ ERR_		REFCLK _IN_ FLAG_ RISE_ MASK2	_	K_ FLAG_ FALL_	PLL_ UNLOC K_ FLAG_ RISE_ MASK2	FREQ_ LOCK	PLL_ PHASE_ LOCK_ MASK2	PLL_ LOCK_ MASK2	INTP_ VC_ DONE_ MASK2
Default	0xFFFF	1	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1

Bits	Name	Description
31:11	_	Reserved
10	ASP_RXSLOT_ CFG_ERR_MASK2	ASP Rx Slot Configuration Error Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
9	ASP_TXSLOT_CFG_ ERR_MASK2	ASP Tx Slot Configuration Error Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt

Address: 0x0001 091C

Bits	Name	Description							
8	REFCLK_IN_FLAG_	Input REFCLK Missing Flag Falling Edge Interrupt Mask							
	FALL_MASK2	0 = Do not mask interrupt 1 = (Default) Mask interrupt							
7	REFCLK_IN_FLAG_	Input REFCLK Missing Flag Rising Edge Interrupt Mask							
	RISE_MASK2	0 = Do not mask interrupt 1 = (Default) Mask interrupt							
6	_	Reserved							
5	PLL_UNLOCK_	PLL Unlock Flag Falling Edge Interrupt Mask							
	FLAG_FALL_MASK2	0 = Do not mask interrupt 1 = (Default) Mask interrupt							
4	PLL_UNLOCK_	PLL Unlock Flag Rising Edge Interrupt Mask							
	FLAG_RISE_MASK2	0 = Do not mask interrupt 1 = (Default) Mask interrupt							
3	PLL_FREQ_LOCK_	PLL Frequency Lock Interrupt Mask							
	MASK2	0 = Do not mask interrupt 1 = (Default) Mask interrupt							
2	PLL_PHASE_LOCK_	PLL Phase Lock Interrupt Mask							
	MASK2	0 = Do not mask interrupt 1 = (Default) Mask interrupt							
1	PLL_LOCK_MASK2	PLL Lock Interrupt Mask							
		0 = Do not mask interrupt 1 = (Default) Mask interrupt							
0	INTP_VC_DONE_	Amplifier Interpolator Volume Control Ramp Done Interrupt Mask							
	MASK2	0 = Do not mask interrupt 1 = (Default) Mask interrupt							

7.16.14 IRQ2_MASK_4

		_	_													
RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	_	GPIO4_ FALL_ MASK2	GPIO4_ RISE_ MASK2	GPIO3_ FALL_ MASK2	GPIO3_ RISE_ MASK2		_		MEM_ RD_ MASK2				_			
Default	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								-	_			_				
Default	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bits	Name	Description
31	_	Reserved
30	GPIO4_FALL_ MASK2	GPIO4 Pin Falling Edge Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
29	GPIO4_RISE_ MASK2	GPIO4 Pin Rising Edge Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
28	GPIO3_FALL_ MASK2	GPIO3 Pin Falling Edge Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
27	GPIO3_RISE_ MASK2	GPIO3 Pin Rising Edge Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
26:24	_	Reserved
23	MEM_RD_MASK2	Memory Ready Interrupt Mask 0 = Do not mask interrupt 1 = (Default) Mask interrupt
22:0	_	Reserved

Address: 0x0001 0A1C

7.16.15 IRQ2_EDGE_1

RW	318	7	6	5	4	3	2	1	0
	_		-	_		GPIO2_FALL_ EDGE2	GPIO2_RISE_ EDGE2	GPIO1_FALL_ EDGE2	GPIO1_RISE_ EDGE2
Default	0x00 0000	0	0	0	0	1	1	1	1

Bits	Name	Description
31:4	_	Reserved
3	GPIO2_FALL_ EDGE2	GPIO2 Pin Falling Interrupt Edge/Level Select 0 = Level sensitive 1 = (Default) Edge sensitive
2	GPIO2_RISE_ EDGE2	GPIO2 Pin Rising Interrupt Edge/Level Select 0 = Level sensitive 1 = (Default) Edge sensitive
1	GPIO1_FALL_ EDGE2	GPIO1 Pin Falling Interrupt Edge/Level Select 0 = Level sensitive 1 = (Default) Edge sensitive
0	GPIO1_RISE_ EDGE2	GPIO1 Pin Rising Interrupt Edge/Level Select 0 = Level sensitive 1 = (Default) Edge sensitive

7.16.16 IRQ2_EDGE_4

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	_	GPIO4_ FALL_ EDGE2	GPIO4_ RISE_ EDGE2	GPIO3_ FALL_ EDGE2	GPIO3_ RISE_ EDGE2						_					
Default	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								-	-							
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31	_	Reserved
30	GPIO4_FALL_ EDGE2	GPIO4 Pin Falling Interrupt Edge/Level Select 0 = Level sensitive 1 = (Default) Edge sensitive
29	GPIO4_RISE_ EDGE2	GPIO4 Pin Rising Interrupt Edge/Level Select 0 = Level sensitive 1 = (Default) Edge sensitive
28	GPIO3_FALL_ EDGE2	GPIO3 Pin Falling Interrupt Edge/Level Select 0 = Level sensitive 1 = (Default) Edge sensitive
27	GPIO3_RISE_ EDGE2	GPIO3 Pin Rising Interrupt Edge/Level Select 0 = Level sensitive 1 = (Default) Edge sensitive
26:0	_	Reserved

Address: 0x0001 0A9C

7.16.17 IRQ2_POL_1

RW	318	7	6	5	4	3	2	1	0
	_		-	_		GPIO2_FALL_ POL2	GPIO2_RISE_ POL2	GPIO1_FALL_ POL2	GPIO1_RISE_ POL2
Default	0x00 0000	0	0	0	0	0	0	0	0

Bits	Name	Description
31:4	_	Reserved
3	GPIO2_FALL_POL2	GPIO2 Pin Falling Interrupt Polarity Select
		0 = (Default) Preserve polarity 1 = Invert polarity
2	GPIO2_RISE_POL2	GPIO2 Pin Rising Interrupt Polarity Select 0 = (Default) Preserve polarity 1 = Invert polarity
		1 = Invert polarity
1	GPIO1_FALL_POL2	GPIO1 Pin Falling Interrupt Polarity Select
		0 = (Default) Preserve polarity 1 = Invert polarity
0	GPIO1_RISE_POL2	GPIO1 Pin Rising Interrupt Polarity Select
		0 = (Default) Preserve polarity 1 = Invert polarity

7.16.18 IRQ2_POL_4

		_	_													
RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	_	GPIO4_ FALL_ POL2	GPIO4_ RISE_ POL2	GPIO3_ FALL_ POL2	GPIO3_ RISE_ POL2						_					
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RW	15	14	13	12	11	10	9	8 _	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31	_	Reserved
30	GPIO4_FALL_POL2	GPIO4 Pin Falling Interrupt Polarity Select
		0 = (Default) Preserve polarity 1 = Invert polarity
29	GPIO4_RISE_POL2	GPIO4 Pin Rising Interrupt Polarity Select
		0 = (Default) Preserve polarity 1 = Invert polarity
28	GPIO3_FALL_POL2	GPIO3 Pin Falling Interrupt Polarity Select
		0 = (Default) Preserve polarity 1 = Invert polarity
27	GPIO3_RISE_POL2	GPIO3 Pin Rising Interrupt Polarity Select
		0 = (Default) Preserve polarity 1 = Invert polarity
26:0	_	Reserved

Address: 0x0001 1000

Address: 0x0001 1008

7.16.19 IRQ2_DB_3

RW	318	7	6	5	4	3	2	1	0
	_	REFCLK_IN_ FLAG_DB2				_			
Default	0x00 0000	0	0	0	0	0	0	0	0

Bits	Name	Description
31:8	_	Reserved
7	REFCLK_IN_FLAG_ DB2	Input REFCLK Missing Flag Debounce Enable 0 = (Default) Debounce Disabled 1 = Debounce Enabled
6:0	_	Reserved

7.17 GPIO Control (GPIO)

7.17.1 **GPIO_STATUS1**

RO	318	7	6	5	4	3	2	1	0
	_		_	_		GP4_STS	GP3_STS	GP2_STS	GP1_STS
Default	0x00 0000	0	0	0	0	0	0	0	0

Bits	Name	Description
31:4	_	Reserved
3	GP4_STS	GPIO4 status. Valid only when GP4_CTRL = 0x1 and GP4_DIR = 1. This reflects the status of the GPIO4 input pin when configured as an input.
2	GP3_STS	GPIO3 status. Valid only when GP3_CTRL = 0x1 and GP3_DIR = 1. This reflects the status of the GPIO3 input pin when configured as an input.
1	GP2_STS	GPIO2 status. Valid only when GP2_CTRL = 0x1 and GP2_DIR = 1. This reflects the status of the GPIO2 input pin when configured as an input.
0	GP1_STS	GPIO1 status. Valid only when GP1_CTRL = 0x1 and GP1_DIR = 1. This reflects the status of the GPIO1 input pin when configured as an input.

7.17.2 GPIO1 CTRL1

		· · · · · .	_~	•												
RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	GP1_ DIR						_							GP1_D	BTIME	
Default	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	GP1_ LVL	_	GP1_DB	GP1_ POL						-	-					
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Bits	Name		Description
31	GP1_DIR	GPIO1 pin direction. Valid only when GP1_C	TRL = 0x1.
		0 = Output 1 = (Default) Input	
30:20	_	Reserved	
19:16	GP1_DBTIME	GPIO1 input debounce time setting. Valid on debounce filtering happens only when GLOB the device enters Standby, no debounce filter	y when GP1_CTRL = 0x1, GP1_DIR = 1 and GP1_DB = 1. GPIO AL_EN = 1. Although GPIO debounce may remain enabled when ring is done in Standby mode.
		0000 = (Default) 93.75 μs 0001 = 1.5 ms 0010 = 3 ms 0011 = 6 ms 0100 = 12 ms 0101 = 24 ms	0110 = 48 ms 0111 = 96 ms 1000 = 192 ms 1001 = 384 ms 1010 = 768 ms 1011–1111 = Reserved

Address: 0x0001 100C

Bits	Name	Description
15	GP1_LVL	GPIO1 level. Valid only when GP1_CTRL = 0x1 and GP1_DIR = 0.
		Write to this bit to set a GPIO output. When GP1_POL is set, the register is the opposite logic level to the external pin.
		This register is write only.
		0 = (Default) Low 1 = High
14	_	Reserved
13	GP1_DB	GPIO1 input debounce enable. Debounce may be enabled when GP1_CTRL = 0x1, GP1_DIR = 1 and GLOBAL_EN = 1. GPIO debounce filtering happens only when GLOBAL_EN = 1. Although GPIO debounce may remain enabled when the device enters Standby, no debounce filtering is done in Standby mode. 0 = (Default) Disabled 1 = Enabled
12	GP1_POL	GPIO1 output polarity select. Valid only when GP1_CTRL = 0x1, GP1_DIR = 0.
		0 = (Default) Non-inverted (Active High) 1 = Inverted (Active Low)
11:0	_	Reserved

7.17.3 GPIO2 CTRL1

		_	-													
RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	GP2_ DIR						_							GP2_D	BTIME	
Default	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	GP2_ LVL	_	GP2_DB	GP2_ POL						_	-					
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Bits	Name	Description
31	GP2_DIR	GPIO2 pin direction. Valid only when GP2_CTRL = 0x1.
		0 = Output 1 = (Default) Input
30:20	_	Reserved
19:16	GP2_DBTIME	GPIO2 input debounce time setting. Valid only when GP2_CTRL = 0x1, GP2_DIR = 1 and GP2_DB = 1. GPIO debounce filtering happens only when GLOBAL_EN = 1. Although GPIO debounce may remain enabled when the device enters Standby, no debounce filtering is done in Standby mode. 0000 = (Default) 93.75 µs 0110 = 48 ms
		0001 = 1.5 ms 0111 = 96 ms 0010 = 3 ms 1000 = 192 ms 0011 = 6 ms 1001 = 384 ms 0100 = 12 ms 1010 = 768 ms 0101 = 24 ms 1011-1111 = Reserved
15	GP2 LVL	GPIO2 level. Valid only when GP2_CTRL = 0x1, GP2_DIR = 0.
	_	Write to this bit to set a GPIO output. When GP2_POL is set, the register is the opposite logic level to the external pin. This register is write only. 0 = (Default) Low 1 = High
14	_	Reserved
13	GP2_DB	GPIO2 input debounce enable. Valid only when GP2_CTRL = 0x1, GP2_DIR = 1 and GLOBAL_EN = 1. GPIO debounce filtering happens only when GLOBAL_EN = 1. Although GPIO debounce may remain enabled when the device enters Standby, no debounce filtering is done in Standby mode. 0 = (Default) Disabled 1 = Enabled
12	GP2_POL	GPIO2 output polarity select. Valid only when GP2_CTRL = 0x1, GP2_DIR = 0. 0 = (Default) Non-inverted (Active High) 1 = Inverted (Active Low)
11:0	_	Reserved

Address: 0x0001 1014

7.17.4 GPIO3_CTRL1

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	GP3_ DIR				•		_							GP3_D	BTIME	
Default	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	GP3_ LVL	_	GP3_DB	GP3_ POL						-	-					
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Bits	Name	Description
31	GP3_DIR	GPIO3 pin direction. Valid only when GP3_CTRL = 0x1.
		0 = Output 1 = (Default) Input
30:20		Reserved
	_	
19:16	GP3_DBTIME	GPIO3 input debounce time setting. Valid only when GP3_CTRL = 0x1, GP3_DIR = 1 and GP3_DB = 1. GPIO debounce filtering happens only when GLOBAL_EN = 1. Although GPIO debounce may remain enabled when the device enters Standby, no debounce filtering is done in Standby mode.
		0000 = (Default) 93.75 μs 0110 = 48 ms
		0001 = 1.5 ms 0111 = 96 ms
		0010 = 3 ms 0011 = 6 ms 1001 = 384 ms
		0111 - 6 ms 1001 - 364 ms 1010 = 768 ms
		0101 = 24 ms 1011–1111 = Reserved
15	GP3_LVL	GPIO3 level. Valid only when GP3_CTRL = 0x1, GP3_DIR = 0.
	_	Write to this bit to set a GPIO output. When GP3_POL is set, the register is the opposite logic level to the external pin.
		This register is write only.
		0 = (Default) Low 1 = High
14	_	Reserved
13	GP3_DB	GPIO3 input debounce enable. Debounce may be enabled when GP3_CTRL = 0x1, GP3_DIR = 1 and GLOBAL_EN = 1. GPIO debounce filtering happens only when GLOBAL_EN = 1. Although GPIO debounce may remain enabled when the device enters Standby, no debounce filtering is done in Standby mode. 0 = (Default) Disabled 1 = Enabled
12	GP3_POL	GPIO3 output polarity select. Valid only when GP3_CTRL = 0x1, GP3_DIR = 0.
		0 = (Default) Non-inverted (Active High) 1 = Inverted (Active Low)
11:0	_	Reserved

7.17.5 GPIO4_CTRL1

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	GP4_ DIR						_							GP4_D	BTIME	
Default	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	GP4_ LVL	_	GP4_DB	GP4_ POL						-	_					
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Bits	Name	Description
31	GP4_DIR	GPIO4 pin direction. Valid only when GP4_CTRL = 0x1.
		0 = Output 1 = (Default) Input
30:20	_	Reserved

Address: 0x0001 3004

Address: 0x0001 3008

Bits	Name	Description
19:16	GP4_DBTIME	GPIO4 input debounce time setting. Valid only when GP4_CTRL = 0x1, GP4_DIR = 1 and GP4_DB = 1. GPIO debounce filtering happens only when GLOBAL_EN = 1. Although GPIO debounce may remain enabled when the device enters Standby, no debounce filtering is done in Standby mode. $0000 = (\text{Default}) 93.75 \mu \text{s} \qquad 0110 = 48 \text{ms} \\ 0001 = 1.5 \text{ms} \qquad 0111 = 96 \text{ms} \\ 0010 = 3 \text{ms} \qquad 1000 = 192 \text{ms} \\ 0011 = 6 \text{ms} \qquad 1001 = 384 \text{ms} \\ 0100 = 12 \text{ms} \qquad 1010 = 768 \text{ms} \\ 0101 = 24 \text{ms} \qquad 1011-1111 = \text{Reserved}$
15	GP4_LVL	GPIO4 level. Valid only when GP4_CTRL = 0x1, GP4_DIR = 0. Write to this bit to set a GPIO output. When GP4_POL is set, the register is the opposite logic level to the external pin. This register is write only. 0 = (Default) Low 1 = High
14	_	Reserved
13	GP4_DB	GPIO4 input debounce enable. Debounce may be enabled when GP4_CTRL = 0x1, GP4_DIR = 1 and GLOBAL_EN = 1. GPIO debounce filtering happens only when GLOBAL_EN = 1. Although GPIO debounce may remain enabled when the device enters Standby, no debounce filtering is done in Standby mode. 0 = (Default) Disabled 1 = Enabled
12	GP4_POL	GPIO4 output polarity select. Valid only when GP4_CTRL = 0x1, GP4_DIR = 0.
		0 = (Default) Non-inverted (Active High) 1 = Inverted (Active Low)
11:0	_	Reserved

7.18 DSP scratch space (DSP_MBOX)

7.18.1 DSP_MBOX_1

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															DS	SP_M	BOX	_1														
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:0		DSP Mailbox Space 1. Intended, alongside the Virtual 1 and Virtual 2 mailbox fields, to provide direct messaging to and from the DSP core and the driver.

7.18.2 DSP_MBOX_2

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															DS	P_M	BOX	_2														
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:0		DSP Mailbox Space 2. Intended, alongside the Virtual 1 and Virtual 2 mailbox fields, to provide direct messaging to and from the DSP core and the driver.

7.18.3 DSP_MBOX_3

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															DS	SP_M	BOX	_3														
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:0		DSP Mailbox Space 3. Intended, alongside the Virtual 1 and Virtual 2 mailbox fields, to provide direct messaging to and from the DSP core and the driver.

Address: 0x0001 300C

30 29 28 27 26 25 24 23 22 21

7.18.4 DSP MBOX 4

Default

Bits

31:0

0 0

Name

DSP VIRTUAL1

MBOX 1

0

0

IRQ1 and IRQ2 interrupt controllers.

Default 0 0 0 0 **Bits** Name Description 31:0 DSP MBOX 4 DSP Mailbox Space 4. Intended, alongside the Virtual 1 and Virtual 2 mailbox fields, to provide direct messaging to and from the DSP core and the driver. 7.18.5 DSP MBOX 5 Address: 0x0001 3010 30 29 28 27 26 25 24 23 20 19 18 17 14 13 12 16 11 10 DSP MBOX 5 Default 0 0 0 0 0 0 0 0 0 **Bits** Name Description 31:0 DSP MBOX 5 DSP Mailbox Space 5. Intended, alongside the Virtual 1 and Virtual 2 mailbox fields, to provide direct messaging to and from the DSP core and the driver. DSP MBOX 6 Address: 0x0001 3014 7.18.6 30 29 28 27 26 25 24 19 18 17 16 14 13 12 11 10 DSP MBOX 6 Default 0 0 **Bits** Name Description 31:0 DSP MBOX 6 DSP Mailbox Space 6. Intended, alongside the Virtual 1 and Virtual 2 mailbox fields, to provide direct messaging to and from the DSP core and the driver. Address: 0x0001 3018 7.18.7 **DSP MBOX 7** 30 29 28 27 26 25 21 19 18 17 23 22 20 16 14 13 12 11 10 DSP MBOX 7 Default 0 0 **Bits** Name Description 31:0 DSP MBOX 7 DSP Mailbox Space 7. Intended, alongside the Virtual 1 and Virtual 2 mailbox fields, to provide direct messaging to and from the DSP core and the driver. Address: 0x0001 301C 7.18.8 DSP MBOX 8 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 DSP MBOX 8 Default 0 0 0 0 0 **Bits** Name Description 31:0 DSP MBOX 8 DSP Mailbox Space 8. Intended, alongside the Virtual 1 and Virtual 2 mailbox fields, to provide direct messaging to and from the DSP core and the driver. 7.19 DSP virtual 1 scratch space (DSP_VIRTUAL1_MBOX) **DSP VIRTUAL1 MBOX 1** Address: 0x0001 3020 7.19.1 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 DSP VIRTUAL1 MBOX 1

20 19 18 17 16 15

DSP MBOX 4

14 13

12

11 10

DS1213A4 131

0 0

0 0 0 0 0 0

Description

DSP Virtual 1 Mailbox Space 1. A write to this space will assert the DSP VIRTUAL1 MBOX WR signal into

0 0 0 0

Address: 0x0001 302C

Address: 0x0001 3030

Address: 0x0001 3034

Address: 0x0001 3038

7.19.2 DSP_VIRTUAL1_MBOX_2 RW 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 DSP VIRTUAL1_MBOX_2

														DS	P_VII	RTU	AL1_I	иво)	<_2													
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:0	_	DSP Virtual 1 Mailbox Space 2. A write to this space will assert the DSP_VIRTUAL1_MBOX_WR signal into IRQ1 and IRQ2 interrupt controllers.

7.19.3 DSP_VIRTUAL1_MBOX_3

RW	31	30	29	28	27	26	25	 24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														DS	P_VII	RTUA	AL1_N	ИВОХ	(_3													
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:0		DSP Virtual 1 Mailbox Space 3. A write to this space will assert the DSP_VIRTUAL1_MBOX_WR signal into IRQ1 and IRQ2 interrupt controllers.

7.19.4 DSP_VIRTUAL1_MBOX_4

RW	31	30	29	_ 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														DS	P_VI	RTUA	\L1_N	ИВОХ	_ 4													
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:0		DSP Virtual 1 Mailbox Space 4. A write to this space will assert the DSP_VIRTUAL1_MBOX_WR signal into IRQ1 and IRQ2 interrupt controllers.

7.19.5 DSP VIRTUAL1 MBOX 5

			-	_				_		_	_																					
RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														DS	P_VI	RTUA	\L1_I	ИВО)	K_ 5													
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:0	_	DSP Virtual 1 Mailbox Space 5. A write to this space will assert the DSP_VIRTUAL1_MBOX_WR signal into IRQ1 and IRQ2 interrupt controllers.

7.19.6 DSP_VIRTUAL1_MBOX_6

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														DS	P_VIF	RTUA	L1_N	/ΒΟΧ	(_6													
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:0		DSP Virtual 1 Mailbox Space 6. A write to this space will assert the DSP_VIRTUAL1_MBOX_WR signal into IRQ1 and IRQ2 interrupt controllers.

7.19.7 DSP_VIRTUAL1_MBOX_7

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														DS	P_VII	RTUA	\L1_I	ИВОΣ	K_7													
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:0		DSP Virtual 1 Mailbox Space 7. A write to this space will assert the DSP_VIRTUAL1_MBOX_WR signal into IRQ1 and IRQ2 interrupt controllers.

Address: 0x0001 303C

Address: 0x0001 3040

Address: 0x0001 3044

Address: 0x0001 3048

Address: 0x0001 304C

Address: 0x0001 3050

7.19.8 DSP_VIRTUAL1_MBOX_8

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														DS	P_VII	RTUA	L1_N	ИВОХ	(_8													
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:0	_	DSP Virtual 1 Mailbox Space 8. A write to this space will assert the DSP_VIRTUAL1_MBOX_WR signal into IRQ1 and IRQ2 interrupt controllers.

7.20 DSP virtual 2 scratch space (DSP_VIRTUAL2_MBOX)

7.20.1 DSP_VIRTUAL2_MBOX_1

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														DSI	P_VIF	RTUA	\L2_N	/ΒΟΧ	(_1													
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:0		DSP Virtual 2 Mailbox Space 1. A write to this space will assert the DSP_VIRTUAL2_MBOX_WR signal into IRQ1 and IRQ2 interrupt controllers.

7.20.2 DSP_VIRTUAL2_MBOX_2

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														DS	P_VIF	RTUA	\L2_I	ивох	(_2													
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Ī	Bits	Name	Description
	31:0		DSP Virtual 2 Mailbox Space 2. A write to this space will assert the DSP_VIRTUAL2_MBOX_WR signal into IRQ1 and IRQ2 interrupt controllers.

7.20.3 DSP VIRTUAL2 MBOX 3

			_	_						_	•																					
RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														DSI	P_VII	RTUA	\L2_N	ИВО	<_3													
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:0	DSP_VIRTUAL2_	DSP Virtual 2 Mailbox Space 3. A write to this space will assert the DSP_VIRTUAL2_MBOX_WR signal into
	MBOX_3	IRQ1 and IRQ2 interrupt controllers.

7.20.4 DSP VIRTUAL2 MBOX 4

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														DS	P_VII	RTUA	\L2_N	ИВО	_ 4													
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:0		DSP Virtual 2 Mailbox Space 4. A write to this space will assert the DSP_VIRTUAL2_MBOX_WR signal into IRQ1 and IRQ2 interrupt controllers.

7.20.5 DSP VIRTUAL2 MBOX 5

RW	31	30	29	28	27	26	25	24	23	22	- 21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1_	0
														DS	P_VII	RTUA	AL2_N	ИВО	K_ 5													
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

В	Bits	Name	Description
3	1:0		DSP Virtual 2 Mailbox Space 5. A write to this space will assert the DSP_VIRTUAL2_MBOX_WR signal into IRQ1 and IRQ2 interrupt controllers.

Address: 0x0001 3058

Address: 0x0001 305C

Address: 0x0001 4000

7.20.6 DSP_VIRTUAL2_MBOX_6

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														DS	P_VII	RTUA	L2_N	/ΒΟ	(_6													
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:0		DSP Virtual 2 Mailbox Space 6. A write to this space will assert the DSP_VIRTUAL2_MBOX_WR signal into IRQ1 and IRQ2 interrupt controllers.

7.20.7 DSP_VIRTUAL2_MBOX_7

RW	31	30	29	28	27	26	25	- 24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														DS	P_VII	RTUA	AL2_N	ИВОХ	_ 7													
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:0		DSP Virtual 2 Mailbox Space 7. A write to this space will assert the DSP_VIRTUAL2_MBOX_WR signal into IRQ1 and IRQ2 interrupt controllers.

7.20.8 DSP_VIRTUAL2_MBOX_8

RW	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														DS	P_VI	RTUA	\L2_N	ИВОХ	8_>													
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:0		DSP Virtual 2 Mailbox Space 8. A write to this space will assert the DSP_VIRTUAL2_MBOX_WR signal into IRQ1 and IRQ2 interrupt controllers.

7.21 Clock Presence Detect (CLOCK_DETECT)

7.21.1 CLOCK_DETECT_1

RW	318	7	6	5	4	3	2	1	0
	_	-	_	CLK_DE	T_FREQ		_		CLK_DET_EN
Default	0x00 0000	0	0	0	0	0	0	0	0

Bits	Name	Description
31:6	_	Reserved
5:4	CLK_DET_FREQ	Clock detection frequency threshold multiplier. Raises the minimum frequency required to start up the chip. The minimum frequency will vary depending on the oscillator frequency. By default, the exit hysteresis is enabled. Therefore, the clock frequency would need to be half of the detection frequency, in order to trigger a lost clock. 00 = (Default) Detect frequencies from 256 – 384 kHz 01 = Detect frequencies from 512 – 768 kHz 10 = Detect frequencies from 1.000 – 1.536 MHz 11 = Detect frequencies from 2.000 MHz and above
3:1	_	Reserved
0	CLK_DET_EN	Clock presence detection enable. 0 = (Default) Disabled 1 = Enabled

8 Package Dimensions

8.1 WLCSP Package Dimensions

<u>-</u> A2	< ₹ < < < < < < < < < < < < < < < < < <	<u>←</u> A3
Ť	Å	1

SIDE VIEW

\forall	 	-	<u> </u>
× -			TOP VIEW
-	Ball A1 Corner		I

	Maximum	0.52	0.205	0.29	REF	0.3	0.25764	0.25804	0.41747	0.32091	BSC	BSC	BSC	2.31338	2.49068	
Millimeters	Nominal	0.49	0.19	0.275	0.025	0.27	0.23264	0.23304	0.39247	0.29591	0.4	1.6	2	2.28838	2.46568	
	Minimum	0.46	0.175	0.26	REF	0.24	0.20764	0.20804	0.36747	0.27091	BSC	BSC	BSC	2.26338	2.44068	
- 1	Dillension	A	A1	A2	A3	q	c1	c2	d1	d2	Ð	Σ	z	×	\	7100-0-1

Notes: Controlling dimension is millimeters.

Dimensioning and tolerances per ASME Y 14.5-2009. The Ball A1 position indicator is for illustration purposes only. Dimension "b" applies to the solder sphere diameter and is measured at the maximum solder sphere diameter, parallel to primary Datum C. X/Y Tolerances can apply to an individual edge increasing or decreasing by 25um.

8.2 QFN Package Dimensions

		SYMBOL	MIN	MON	MAX
TOTAL THICKNESS		¥	0.5	0.55	9.0
STAND OFF		A1	0	0.035	0.05
MOLD THICKNESS		A2		0.4	
L/F THICKNESS		A3		0.152 REF	
LEAD WIDTH		Р	0.15	0.2	0.25
75.0	×	٥		4 BSC	
BOUT SIZE	>	ш		4 BSC	
LEAD PITCH		ø		0.4 BSC	
טיאני טיאני	×	7	2.6	2.7	2.8
	>	×	2.6	2.7	2.8
- EONL		_	0.35	0.4	0.45
LENGIA		בו	0.25	0.35	4.0
PACKAGE EDGE TOLERANCE	NCE	aaa		0.1	
MOLD FLATNESS		qqq		0.1	
COPLANARITY		202		0.08	
LEAD OFFSET		ppp		0.1	
EXPOSED PAD OFFSET		eee		0.1	

NOTES
1.0 COLANARITY APPLIES TO LEADS, CORNER LEADS AND DIE
ATTACH PAD
2.0 TOTAL THICKNESS NOT INCLUDE SAW BURR.

9 Thermal Characteristics

9.1 Typical Thermal Characteristics—JEDEC Four-Layer 2s2p Board

Table 9-1. Typical JEDEC Four-Layer, 2s2p Board Thermal Characteristics

Parameter	Symbol	WLCSP	QFN	Units
Junction-to-ambient thermal resistance	θ_{JA}	60.0	40.3	°C/W
Junction-to-board thermal resistance	θЈВ	22.4	12.5	°C/W
Junction-to-case thermal resistance	$\theta_{\sf JC}$	2.6	60.7	°C/W
Junction-to-board thermal-characterization parameter	Ψ_{JB}	11.9	11.9	°C/W
Junction-to-package-top thermal-characterization parameter	Ψ_{JT}	1.0	2.4	°C/W

Notes:

- Natural convection at the maximum recommended operating temperature T_A
- Four-layer, 2s2p PCB as specified by JESD51-9 and JESD51-11; dimensions: 101.5 x 114.5 x 1.6 mm
- Thermal parameters as defined by JESD51-12
- The CS40L25B QFN package option uses a 3x3 via array (with 0.8 mm pitch) to ground the thermal pad.

10 Package Marking

Ball A1 Location Indicator

Top Side Brand

Line 1: Part Number (8 characters max.)

Line 2: Package Mark (8 characters)

Line 3: Country of Origin (2 characters)

Line 4: Encoded Wafer/Die ID (5 characters)

Package Mark Fields

RR = Device Revision Code

LL = Lot Sequence Code

YY = Year of manufacture

WW = Work Week of manufacture

Figure 10-1. Package Marking

11 Ordering Information

Table 11-1. Ordering Information

Product	Description	Package	RoHS Compliant	Grade	Temperature Range	Container	Order Number
CS40L25	Boosted Haptics Driver with integrated DSP supporting one GPI + I ² S.	30-ball WLCSP	Yes	Commercial	–40°C to +85°C	Tape and Reel	CS40L25-CWZR
CS40L25B	Boosted Haptics Driver with integrated DSP supporting four	30-ball WLCSP	Yes	Commercial	–40°C to +85°C	Tape and Reel	CS40L25B-CWZR
	GPIs.	32-pin QFN	Yes	Commercial	–40°C to +85°C	Tape and Reel	CS40L25B-CNZ

12 References

- International Electrotechnical Commission, IEC60958-3 Digital Audio Interface—Consumer, http://www.ansi.org/
- JEDEC Solid State Technology Association, *Test Boards for Area Array Surface Mount Package Thermal Measurements*, *JEDEC Standard No. JESD51-9*, July 2000, http://www.jedec.org/
- JEDEC Solid State Technology Association, *Test Boards for Through-Hole Area Array Leaded Package Thermal Measurements*, *JEDEC Standard No. JESD51-11*, June 2001, http://www.jedec.org/
- JEDEC Solid State Technology Association, *Guidelines for Reporting and Using Electronic Package Thermal Information*, *JEDEC Standard No. JESD51-12*, May 2005, http://www.jedec.org/
- Joint Electron Device Engineering Council, *J-STD-033B.1 Handling of Moisture Sensitive Surface Mount Devices*, http://www.jedec.org/
- NXP Semiconductors, UM10204 Rev. 06, April 2014, The I²C-Bus Specification and User Manual, http://www.nxp.com

13 Revision History

Table 13-1. Revision History

Revision	Change
A1	Initial revision.
MAR 2018	
A2	Updated part numbers globally and in Ordering Information.
JUL 2018	Updated Typical Connection Diagrams.
	Added Basic Haptics Mode registers.
	Updated Package Mechanical Drawing.
A3	Updated Typical Connection Diagrams in Fig. 2-1, Fig. 2-2, and Fig. 2-3.
SEP 2018	Updated Table 2-1.
	Updated Table 3-6 to split AoH Standby current specification for CS40L25 and CS40L25B.
A4	Added QFN package and PCB layout information.
JUN 2019	Updated register descriptions.

Important:

Please check with your Cirrus Logic sales representative to confirm that you are using the latest revision of this document and to determine whether there are errata associated with this device.

Contacting Cirrus Logic Support

For all product questions and inquiries, contact a Cirrus Logic Sales Representative.

To find one nearest you, go to www.cirrus.com.

IMPORTANT NOTICE

"Advance" product information describes products that are in development and subject to substantial development changes. For the purposes of our terms and conditions of sale, "Preliminary" or "Advanced" data sheets are nonfinal data sheets that include, but are not limited to, data sheets marked as "Target," "Advance," "Product Preview," "Preliminary Technical Data," and/or "Preproduction." Products provided with any such data sheet are therefore subject to relevant terms and conditions associated with "Preliminary" or "Advanced" designations. The products and services of Cirrus Logic International (UK) Limited; Cirrus Logic, Inc.; and other companies in the Cirrus Logic group (collectively either "Cirrus Logic" or "Cirrus") are sold subject to Cirrus Logic's terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. Software is provided pursuant to applicable license terms. Cirrus Logic reserves the right to make changes to its products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest version of relevant information from Cirrus Logic to verify that the information is current and complete. Testing and other quality control techniques are utilized to the extent Cirrus Logic deems necessary. Specific testing of all parameters of each device is not necessarily performed. In order to minimize risks associated with customer applications, the customer must use adequate design and operating safeguards to minimize inherent or procedural hazards. Cirrus Logic is not liable for applications assistance or customer product design. The customer is solely responsible for its product design, including the specific manner in which it uses Cirrus Logic components, and system security. While Cirrus Logic is confident in the performance capabilities of its components, it is not possible to provide an absolute guarantee that they will deliver the outcomes or r

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS LOGIC PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, NUCLEAR SYSTEMS, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS LOGIC PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS LOGIC DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS LOGIC PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS LOGIC PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS LOGIC, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.

This document is the property of Cirrus Logic, and you may not use this document in connection with any legal analysis concerning Cirrus Logic products described herein. No license to any technology or intellectual property right of Cirrus Logic or any third party is granted herein, including but not limited to any patent right, copyright, mask work right, or other intellectual property rights. Any provision or publication of any third party's products or services does not constitute Cirrus Logic's approval, license, warranty or endorsement thereof. Cirrus Logic gives consent for copies to be made of the information contained herein only for use within your organization with respect to Cirrus Logic integrated circuits or other products of Cirrus Logic, and only if the reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices and conditions (including this notice). This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. This document and its information is provided "AS IS" without warranty of any kind (express or implied). All statutory warranties and conditions are excluded to the fullest extent possible. No responsibility is assumed by Cirrus Logic for the use of information herein, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. Cirrus Logic, Cirrus, the Cirrus Logic logo design, and SoundClear are among the trademarks of Cirrus Logic. Other brand and product names may be trademarks or service marks of their respective owners.

Copyright © 2017 - 2019 Cirrus Logic, Inc. All rights reserved.