compute f(x) for a given problem.

- -x true value of input
- f(x) true value of output.
- $-\hat{x}$ approximate input.
- \hat{f} computed value of f(x) (approximate of the function)

Total error:
$$\hat{f}(\hat{x}) - f(x)$$

$$= \hat{f}(\hat{x}) - f(\hat{x}) + f(\hat{x}) - f(x)$$
computational plata error
error

- . The algorithm that is chosen to compute f(x) has no effect on the data error.
- We can only know the computational error and never the total error unless f(x) is known.

Truncation and Rounding Errors

- truncation error: difference between true result and result produced by given algorithm using exact arithme

$$\frac{1}{1-h} = 1+h+h^2+h^3+\dots \approx 1+h+h^2+O(h^3)$$

$$\frac{1}{1-h} = 1+h+h^2+h^3+\dots \approx 1+h+h^3+h^3+\dots \approx 1+h^$$

- Rounding error: difference between result produced by algorithm using exact arithmetic and result produced by the same algorithm using limited precision arithmetic

example: |1.085679 - 1.0857 = 0.000029

- computational error = truncation error + rounding error.

$$= \underbrace{f(\hat{x}) - f(\hat{x})}_{}$$

truncation error will come from the order of occuracy that which was used to compute $f(\hat{x})$ and $\hat{f}(\hat{x})$

rounding error comes from the precision used to represent $\hat{f}(\hat{x})$ or \hat{z} .

Absolute and Relative errors

- absolute error: approximate value true value
- relative error: absolute value true value

Example: Finite Difference Approximation

$$f'(x) \approx \frac{f(x+h) - f(x)}{6}$$
 is a first order

approximation., where & is very small, & << 1 and e is a vector, e=[1,...,i] ||e||=1 tow do we derive this formula)

from Taylor's Theorem, if f is twice differentiable, then f can be expanded at paint x, such as

 $f(x+p) = f(x) + \nabla f(x)^T p + \frac{1}{2} p^T \nabla^2 f(x+tp) p$, $t \in (0,1)$ If L is a bound on the magnitude of the second derivative, $\nabla^2 f(x+tp)$, then $\|\nabla^2 f(x+tp)\| \le L$.

Thus $\int f(x+p) - f(x) - \nabla f(x)^T p \| \leq (\frac{L}{2}) \| p \|^2 \leq \frac{L}{2} \| \nabla^2 f \| \cdot \| p \|^2$ Chaose $p = \epsilon e_i$, then

 $||f(x+\epsilon\theta)|-f(x)-\nabla f(x)^T\epsilon\epsilon|| \le (\frac{\epsilon}{2})||\epsilon\epsilon||^2$ Here ϵ is a very small scalar value, $\epsilon \ll 1$ and ϵ is a vector, $\epsilon = [1, \dots, 1]$.

Then $\| f(x+\varepsilon e_i) - f(x) - \nabla f(x)^T \varepsilon e_i \| \leq (\frac{1}{2}) \varepsilon^2. |$ since $\|e\|^2 = 1$.

Next divide by E,

$$\left\| \frac{f(x+\epsilon e_i)-f(x)}{\epsilon} - \nabla f(x)^T e_i \right\| \leq (\frac{1}{2}) \epsilon$$

 $\nabla f(x)^T E_i$ is then the first derivative of f(x), or $\frac{\partial f}{\partial x_i}$.

$$\frac{\partial f}{\partial x_i} = \frac{f(x + \epsilon e_i) - f(x)}{\epsilon} + \delta e$$
, $|\delta e| \leq (\frac{1}{2}) \epsilon$.

This is simply called a farward difference formula. As $\varepsilon \to 0$, then

$$\frac{\partial f}{\partial x_i} = \frac{f(x + \epsilon e_i) - f(x)}{\epsilon} + O(\epsilon)$$
, and

$$O(\varepsilon) = |\delta \varepsilon| \le (\frac{1}{2}) \varepsilon$$
, so $O(\varepsilon) = ||\delta \varepsilon|| \longrightarrow 0$ as $\varepsilon \to 0$.
And $f(x + \varepsilon \varepsilon) - f(x)$ approximates the first derivative.

To improve the accuracy, a second order approximation can be derived. From the Taylor series expansion. If p is set to tee; and te; then

$$f(x+eei) = f(x) + e\nabla f(x)^T + \frac{1}{2}e^2\nabla^2 f(x+teei) + O(e^3)$$

 $f(x-eei) = f(x) - e\nabla f(x)^T + \frac{1}{2}e^2\nabla^2 f(x+teei) + O(e^3)$

substract the second from the first,

$$f(x+eei) - f(x-eei) = 2e\nabla f(x)^T + \frac{1}{3}e^2(\nabla^2 f(x+teei)) - \nabla^2 f(x-teei) + \mathcal{O}(e^3)$$

$$\frac{f(x+\epsilon ei)-f(x-\epsilon ei)}{2\epsilon} = \nabla f(x) + \frac{1}{4}\epsilon^{2}(\nabla^{2}f(x+t\epsilon ei) - \nabla^{2}f(x-\epsilon ei) + O(\epsilon^{2})$$

as e >o,

$$\frac{f(x+\epsilon e_i) - f(x-\epsilon e_i)}{2\epsilon} = \frac{\partial f}{\partial x_i} + \frac{1}{4} \epsilon \left(\frac{\partial^2 f}{\partial x_i^2} - \frac{\partial^2 f}{\partial x_i^2}\right) + O(\epsilon)$$

$$\frac{\partial f}{\partial x_i} = \frac{f(x+\epsilon e_i) - f(x-\epsilon e_i)}{2\epsilon} + O(\epsilon^2)$$

when using a computer whose processor is based on IEEE $\frac{\pi}{2}$ floating-point arithmetic standard, the numerical value of f(x) is bounded by u, where $u = 1.1 \times 10^{-16}$.

Thus

$$\left| f(x)_{\text{numerical}} - f(x) \right| \leq u L_f$$

$$\left| f(x + \epsilon e_i)_{\text{numerical}} - f(x + \epsilon e_i) \right| \leq u L_f$$
where L_f is a bound on $\left| f(x) \right|$.

Therefore
$$\frac{\partial f}{\partial x_i}(x) = \frac{f(x+\epsilon e_i)-f(x)}{\epsilon} + (42)\epsilon + 2\mu Lf/\epsilon$$
.

Error is bounded by
$$(\frac{L}{2})E + \frac{2uL_f}{E} = \delta e$$

So $\delta e E^2 = 4L_f u$

L

 $\delta e C = \sqrt{u}$ assuming

dee= Ju assuming It is scaled constantly.

This gives us an estimate for E.

If we want to compute y = f(x), but then obtain an approximate value \hat{y} .

- The forward error:
$$\Delta y = \hat{y} - y$$
, where $\hat{y} = f(\hat{x})$.

- The backward error :
$$\Delta x = \hat{x} - x$$

Example 1

If
$$y = \sqrt{2}$$
, then $\hat{y} = 1.4$ is an approximation.
Its absolute forward error, $|\Delta y| = |\hat{y} - y|$
 $= |1.4 - 1.414....|$

relative forward error,
$$\frac{|\Delta y|}{y} = 1\%$$

Since 1.96 = 1.4, then

the absolute backward error =
$$|\Delta x| = |\hat{x} - x|$$

= $|1.96 - 2|$

relative backward error,
$$\frac{|\Delta X|}{\chi} \approx 2\%$$

Approximate $f(x) = e^x$ with a simplar function, and evaluate its accuracy at x = 1.

We know that
$$f(x) = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

If we truncate the series as,

$$\hat{f}(x) = 1 + x + \frac{x^2}{3} + \frac{x^3}{6} + O(x^4)$$

The forward error is
$$\left| \hat{f}(x) - f(x) \right|$$

The backward error is $\left| \hat{x} = \log(\hat{f}(x)) - x \right|$
 $\left| \hat{f}(x) - f(x) \right| = \left| 2.666667 - 2.718282 \right| \approx +0.05$
617

$$|\hat{x}-x| = |0.980829 - 1| = 0.019171.$$

Sonsitivity and Conditioning

- -Problem is sensitive or ill-conditioned, if relative change in solution can be much larger than that in input data or condition number >> 1.
 - Condition number:

cond: | relative change is solution | | relative change in input data | =
$$\left| \frac{f(x) - f(x)}{f(x)} \right| \left| \frac{\hat{\chi} - x}{x} \right|$$

relative backward error

Example 1: Given a function f(x), evaluate the condition number if $\hat{x} = x + \delta x$.

$$f(\hat{x}) = f(x+\Delta x)$$

$$f(\hat{x}) - f(x) = f(x+\Delta x) - f(x) \approx \frac{f'(x) \Delta x}{f(x)}$$

$$f(x) = \frac{f'(x) \Delta x}{f(x)} \approx \frac{f'(x) \Delta x}{f(x)}$$

$$f(x) = \frac{f'(x) \Delta x}{f(x)} = \frac{f'(x) \Delta x}{f(x)}$$

$$\frac{|\Delta x|}{|\Delta x|} = \frac{|\Delta x|^2 (x)}{|\Delta x|}$$

Example 2: Evaluate the sensitivity of the tangent function, hear 1/2

$$\frac{\pi}{2} = 1.570796...$$

Condition number =
$$\left| \frac{6.124 \times 10^4 - 1.58 \times 10^5}{1.58 \times 10^5} \right| = 9.6 \times 10^5$$

-Algorithm is stable if result produced is relatively insensitive to perturbations to the input, which also means that the condition number is very small.

Accuracy

- -Difference between computed and true solution.
- Stability alone does not guarantee accurate results.

floating Point Numbers

- bibz bt is the mantissa or t = precision
- -e is the exponent, L < e < U
- b, are the base digits, $0 \le bi \le \beta 1$.
- B is the base.

example : if
$$x = 14.7$$
 $(\beta, +, L, U) = (10,3,-9,9)$
 $x = .147 \times 10^{2}$

In computers we use IREE Standards.

JEEE SP translates to 8 significant digits in the decimal system and 16 in DP.

Theorem: Suppose we are given the set of floating point numbers $F(\beta,t,L,U)$ and that $x \in \mathbb{R}$ satisfies $\beta^L < |x| < \beta^U$. It follows that

$$\frac{\left|f(x)-x\right|}{|x|} \leq \frac{1}{2}\beta^{1-t}$$

- of (a) is the floating-point approximation of a given real number x.

is the relative error in representing real number x within range of floating-point system.

→ For IEEE SP
$$\frac{1}{2}\beta^{1-t} = \frac{1}{2}2^{1-24} = 5.96e-8$$

IEEE DP $\frac{1}{2}\beta^{1-t} = \frac{1}{2}2^{1-53} = 1.11e-16$

Therefore the accuracy of the floating point system is given by $\frac{1}{2} \beta^{1-t}$ or also called machine precision.

Two Issues with Finite - precision Arithmetic

1) Rounding

- chop: round toward zero.

- round to nearest:

example: 2.442 3.4 2.4 2.5 2.5 2.6

chop round to neavest.

2) Canrellation

When two numbers that are almost identical except for the last few digits are used in subtraction, then the resulting number will have only a few digits of accuracy. If we use their new number in a calculation, then the results will only have a few digits of accuracy.

example: a = 654738.2919b = 654737.7921

If we represent a as 0.6547383×10^6 and b as 0.6547378×10^6 , then a-b=0.5. However the true number is 0.4998.