3.c. 3-G-Burger Problem

Aim:

```
A person needs to eat burgers. Each burger contains a count of calorie. After eating
the burger, the person needs to run a distance to burn out his calories.
If he has eaten i burgers with c calories each, then he has to run at least 3^i * c
kilometers to burn out the calories. For example, if he ate 3
burgers with the count of calorie in the order: [1, 3, 2], the kilometers he needs to
run are (3^{\circ} * 1) + (3^{1} * 3) + (3^{2} * 2) = 1 + 9 + 18 = 28.
But this is not the minimum, so need to try out other orders of consumption and
choose the minimum value. Determine the minimum distance
he needs to run. Note: He can eat burger in any order and use an efficient sorting
algorithm. Apply greedy approach to solve the problem.
Input Format
First Line contains the number of burgers
Second line contains calories of each burger which is n space-separate integers
Output Format
Print: Minimum number of kilometers needed to run to burn out the calories
Sample Input
5 10 7
Sample Output
Algorithm:
int main() {
  initialize n // number of elements
  read n from user
  initialize cal array of size n // array to hold integers
  // read values into the cal array
  for i from 0 to n-1 {
    read callil from user
```

```
}
  // sorting the array using bubble sort
  for i from 0 to n-2 {
     for j from 0 to n-i-2 {
        if cal[j] is greater than cal[j+1] {
          // swap cal[j] and cal[j+1]
          initialize temp as cal[j]
          cal[j] = cal[j+1]
          cal[j+1] = temp
     }
  }
  initialize mulfact // variable to hold power value initialize
  sum to 0 // variable to hold the final sum initialize h to
  n-1 // index for the last element
  // compute the weighted sum
  for i from 0 to n-1 {
     mulfact = n raised to the power of i // compute n^i
     sum = sum + (mulfact * cal[h]) // accumulate the weighted sum h
     = h - 1 // move to the next element
  }
  print sum // output the final result
Program:
#include<stdio.h>
#include<math.h>
```

}

```
int main(){
  int n;
  scanf("%d",&n);
  int cal[n];
  for(int i=0;i<n;i++){
     scanf("%d ",&cal[i]);
  }
  //sorting the array
  int i, j, temp;
  for (i = 0; i < n-1; i++) {
     for (j = 0; j < n-i-1; j++) {
        if (cal[j] > cal[j+1]) {
           temp = cal[j];
           cal[j] = cal[j+1];
           cal[j+1] = temp;
        }
     }
  }
  int mulfact;
  int sum=0;
  int h=n-1;
  for(int i=0;i<n;i++)
  {
     mulfact=pow(n,i);
     sum+=mulfact*cal[h];
     h--;
```

}

```
printf("%d",sum);
}
```

Output:

	Test	Input	Expected	Got	
~	Test Case 1	3 1 3 2	18	18	~
~	Test Case 2	4 7 4 9 6	389	389	~
~	Test Case 3	3 5 10 7	76	76	~