

FS DATASCIENCE

Energy

Analytics

Optimization

- We are a Research & Software Development firm
- We help companies find and create value with their data using mathematics and computer science techniques

Jeff Fong

Co-Founder, Data Scientist Chief Product Architect

Michael Simantov

Co-Founder, Data Scientist Chief Quantitative Researcher

Outline

- I. Why are Big Data & Analytic concepts important in Energy Markets?
- II. What is Big Data & Analytics?
- III. A "small" Big Data & Analytics example
- IV. Big Data, Analytics and Energy Markets
- V. Getting started if you haven't already

Why are Big Data & Analytic concepts important in Energy Markets?

- The Past: A competitive advantage was often obtained with an asset.
 - Railroads, pipelines, refineries

- The Past: A competitive advantage was often obtained with an asset.
 - Railroads, pipelines, refineries

- The Past: A competitive advantage was often obtained with an asset.
 - Railroads, pipelines, refineries,
 - Water utilities
 - Power generation

WATER WORKS

If player lands on water works, they pay nothing to owner.

Instead, the player pays ₩250 to the owner of the electric company to give them electricity to pump water.

ELECTRIC COMPANY

If player lands on electric company, charge them anything between \$\mathbb{H}150\$ and \$\mathbb{H}500\$.

Whenever you feel like it, randomly charge them ₦2000.

- The Past: A competitive advantage was often obtained with an asset.
 - Railroads, pipelines, refineries,
 - Water utilities
 - Power generation
 - Asset based competitive advantage
 - Monopolies

- What we see today is a trend where analytics revolutionize industries
- Lower capital intensive industries were first
- We have already seen many industries revolutionized by companies that specialize in data and analytics (Google, Amazon)
 - Advertising and Sales
 - Logistics
 - Travel and Airlines

- What we see today is a trend where analytics revolutionize industries
- Lower capital intensive industries were first
- We have already seen many industries revolutionized by companies that specialize in data and analytics (Google, Amazon)
 - Advertising and Sales
 - Logistics
 - Travel and Airlines
- Energy markets are next!
- I. The data is being stored
- II. Sufficient processing power is now available
- III. Markets are becoming integrated

- As energy markets continue to become more global, the competitive advantage from analytics will continue to grow
 - increased integration of global energy markets
 - o new pipelines, transmission, energy technologies
 - growing amounts of data
 - increased competition and demand response
 - integration with financial markets
- The future of strategic discussions will include include data analytics and algorithms as being competitive advantages

FS DATASCIENCE

Energy

Analytics

Optimization

What is Big Data & Analytics?

What is "Big Data & Analytics"

- "Big" is relative
 - data starts to become big when you can't make use of the raw data without summarizing it
- Three types of analytics
 - Descriptive
 - 2. Predictive
 - 3. Prescriptive

Analytics: Descriptive

- Most data in its raw form is not suitable for human consumption
- Data must be condensed into useful pieces of information
- The purpose of descriptive analytics is to summarize what has happened
- The focus is on learning about your data (data discovery)
- 80% of business analytics is descriptive (think about your BI reports)

Analytics: Descriptive

- Averages, variance, correlations, principle components, distributions and summary statistics are all descriptive
- They help you learn about your data, but are not in themselves, predictive or prescriptive

 Example: How do interest rates, spot prices and volatility move together?

Analytics: Predictive

- Predictive analytics do not tell you will happen; it tells you what might happen. (probabilistic)
- In other words, using data you do have; fill in data you don't have
 - predict possible future data
 - fill in possible values for missing data

Analytics: Predictive (=modeling)

- Predictive analytics do not tell you what will happen; it tells you what might happen. (probabilistic)
- In other words, using data you do have; fill in data you don't have
 - predict possible future data
 - fill in possible values for missing data
- Model building is a big part of predictive analytics
 - Statistical models, data mining, machine learning, time-series, monte-carlo simulation, forecasting, neural nets are all predictive
 - They tell you what might happen, but not what to do about it

Analytics: Predictive

- Example: 'Predict' or model the value of an OTC call option
 - We use data we have (interest rates, spot prices and volatility) to predict data we don't have (the call option value)

Analytics: Predictive

- Example: 'Predict' or model the value of an OTC call option
 - We use data we have (interest rates, spot prices and volatility) to predict data we don't have
 - Possible future interest rates, spot prices and volatility
 - And possible future option values

Analytics: Prescriptive

- Using our data, descriptive analytics and predictive models
 - We can prescribe an action that best achieves an objective
- Prescriptive analytics needs "actionable data"
 - What actions can be taken that affect outcomes?
 - What are the objectives?

Minimize risk?
Maximize reward?
Maximize Sharpe ratio?

Analytics: Prescriptive

- Example: Actions to hedge a call option
 - We have the data for interest rates, spot prices & volatility
 - We have a predictive model for an option price
 - Objective: Maximize return per unit of risk

Dynamic hedging is a prescriptive strategy

- delta / gamma hedge
- hedge greek exposures

FS DATASCIENCE

Energy

Analytics

Optimization

A "small" Big Data & Analytics example

A Portfolio Trading example

- 1. SPY S&P500 index
- 2. TLT 20+ year Treasury bonds ETF
- 3. VXX S&P500 Volatility ETF

A Portfolio Trading example

Mini universe of 9 stocks and ETFs

- 1. SPY S&P500 index
- 2. TLT 20+ year Treasury bonds ETF
- 3. VXX S&P500 Volatility ETF
- 4. JNK High yield corporate bond ETF
- UGA Gasoline futures ETF
- 6. VLO Valero Energy Corp (refinery)
- 7. USO Oil (WTI) futures ETF
- 8. JO Coffee ETF
- 9. SBUX Starbucks

A Portfolio Trading example

Mini universe of 9 stocks and ETFs

- 1. SPY S&P500 index
- 2. TLT 20+ year Treasury bonds ETF
- 3. VXX S&P500 Volatility ETF
- 4. JNK High yield corporate bond ETF
- UGA Gasoline futures ETF
- 6. VLO Valero Energy Corp (refinery)
- 7. USO Oil (WTI) futures ETF
- 8. JO Coffee ETF
- 9. SBUX Starbucks

How can we methodically construct a trading strategy?

Descriptive

Mini universe of 8 stocks and ETFs

Calculate:

- means, variances
- o correlations, autocorrelations
- principle components

Discover features about this dataset

- This "small" example isn't really that small. There are 2^8=256 possible combinations of underliers to include, each with endless possibilities of share combinations
- With some data mining (We'll make the code available for you to try yourself), we can build a (predictive) model of a cointegrated portfolio from our mini universe of stocks and ETFs

- This "small" example isn't really that small. There are 2^8=256 possible combinations of underliers to include, each with endless possibilities of share combinations
- With some data mining (We'll make the code available for you to try yourself), we can build a (predictive) model of a cointegrated portfolio from our mini universe of stocks and ETFs

 In otherwords, we can build a portfolio that mean reverts using predictive (modeling) analytics

Mini universe

- 1. long 7.0136 shares of JNK @ \$40.31 = \$282.72
- 2. short 2.0775 shares of UGA @ \$48.87 = (\$101.53)
- short 1.2010 shares of VLO @ \$48.36 = (\$58.08)
- 4. short 2.7351 shares of USO @ \$30.64 = (\$83.80)

5 year history of the net value of the model cointegrated portfolio

5 year history of the net value of the model cointegrated portfolio

Distribution of the net portfolio value over the 5 years

Let's create a simple (prescriptive) strategy with the objective being to generate trading profits!

Prescriptive

Let's create a simple (prescriptive) strategy with the objective being to generate trading profits!

Prescriptive

Let's create a simple (prescriptive) strategy with the objective being to generate trading profits!

Prescriptive

Let's create a simple (prescriptive) strategy with the objective being to generate trading profits!

Let's create a simple (prescriptive) strategy with the objective being to generate trading profits!

This is not a recommendation! Do your own due diligence!

FS DATASCIENCE

Energy

Analytics

Optimization

Big Data, Analytics and Energy Markets

- Modeling energy markets is a difficult and complex problem
 - complex distributions
 - large constrained optimization problems
 - market feedback loops
- Problems in energy markets, get very big, very fast!

- Digging into the details is like opening pandora's box
- If we look at a power plant, at its surface it seems simple

- Digging into the details is like opening pandora's box
- If we look at a power plant, at its surface it seems simple

Once we peel back the surface, it gets complicated very fast

- Digging into the details is like opening pandora's box
- If we look at a power plant, at its surface it seems simple

Once we peel back the surface, it gets complicated very fast

The "Real" World

The "Real" World

- Even the largest problems can still be broken down
 - Use an analytics based approach to simplify the problems
 - Include top down quantitative methods with bottoms up fundamental based modeling
 - Leverage "Big Data" technology once its needed
 - Hadoop (reading / writing)
 - Distributed and cloud computing (large scale computations)

Hadoop and distributed / cloud technologies can be extremely powerful in helping you solve large problems

FS DATASCIENCE

Energy

Analytics

Optimization

Getting started if you haven't already

Learn as much as you can!

- Learn to work with and analyze large data sets
 - SQL (any will do)
 - Any good programming or statistical language such as R

Learn more!

- Learn to work with and analyze large data sets
 - SQL (any will do)
 - Any good programming or statistical language such as R
- Start by solving small optimization problems to gain experience
- Free online universities and excellent courses
 - udacity, coursera, etc
- Learn more about other fields where you have interests

Learn more!

- Learn to work with and analyze large data sets
 - SQL (any will do)
 - Any good programming or statistical language such as R
- Start by solving small optimization problems to gain experience
- Free online universities and excellent courses
 - udacity, coursera, etc
- Learn more about other fields where you have interests
- Go write the ERP exam!

Gaining Adoption

- Gaining adoption can be difficult at first
- Start with small, easy to handle projects
 - Try descriptive analytics first
- Focus on solving specific problems first to show ROI
- Share results often and invite feedback
 - Incorporate feed back and use rapid prototyping
- Teach & collaborate!

Resources

- Free online courses
 - coursera.org
 - udacity.com
- Open source software options
 - www.mysql.com
 - hadoop.apache.org
 - www.r-project.org
 - http://d3js.org
 - Javascript libraries

- Commercial software options
 - www.tableausoftware.com
 - Matlab
 - MS SQL / Oracle

FS DATASCIENCE

Energy Analytics Optimization

