

Walmart Data Analysis

In [1]: # importing Libraries
 import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: # Reading the csv file and storing it in dataframe df
df = pd.read_csv('Walmart_sales_analysis.csv')

In [3]: # displaying first 5 rows
df

Out[3]:		Store_Number	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price
	0	1	2/5/ 2010	1,643,691	0	42.31	2.572
	1	1	2/12/ 2010	1,641,957	1	38.51	2.548
	2	1	2/19/ 2010	1,611,968	0	39.93	2.514
	3	1	2/26/ 2010	1,409,728	0	46.63	2.561
	4	1	3/5/ 2010	1,554,807	0	46.50	2.62
	6430	45	9/28/ 2012	713,174	0	64.88	3.997
	6431	45	10/5/ 2012	733,455	0	64.89	3.985
	6432	45	10/ 12/ 2012	734,464	0	54.47	4.000
	6433	45	10/ 19/ 2012	718,126	0	56.47	3.969
	6434	45	10/ 26/ 2012	760,281	0	58.85	3.882

6435 rows × 8 columns

If we observe, Weekly Sales column has commas. We need to remove them

```
In [4]: # displaying the shape(How many columns and how many rows are present in this
       df.shape
Out[4]: (6435, 8)
In [5]: # Displaying datatypes of each column and checking how many non null entries a
       df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 6435 entries, 0 to 6434
      Data columns (total 8 columns):
                       Non-Null Count Dtype
           Column
                        -----
          Store Number 6435 non-null int64
       0
       1
          Date
                        6435 non-null object
       2
          Weekly Sales 6435 non-null object
       3
          Holiday Flag 6435 non-null int64
       4
          Temperature
                        6435 non-null float64
       5
         Fuel Price
                        6435 non-null float64
       6
           CPI
                        6435 non-null int64
           Unemployment 6435 non-null float64
       7
      dtypes: float64(3), int64(3), object(2)
      memory usage: 402.3+ KB
```

By looking at the information we can say that there are no null values present in the dataset. Date is not in Date type, we need to convert it.

- 1. Fixing column names. Removing extra spaces in the column names
- 2. We need to remove commas in weekly sales column. And convert to numeric
- 3. We need to convert data type of Date column to date type

```
In [6]: # Removing any leading/trailing spaces in column names
    df.columns = df.columns.str.strip()

In [7]: # Removing commas and converting to float
    df['Weekly_Sales'] = df['Weekly_Sales'].str.replace(',','')

In [8]: df.head()
```

Out[8]:	Store_Numb	er	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price	C
	0	1	2/5/ 2010	1643691	0	42.31	2.572	2
	1	1	2/12/ 2010	1641957	1	38.51	2.548	2
	2	1	2/19/ 2010	1611968	0	39.93	2.514	2
	3	1	2/26/ 2010	1409728	0	46.63	2.561	2
	4	1	3/5/ 2010	1554807	0	46.50	2.625	2
In [9]:	df['Weekly_Sale	es']	= df	['Weekly_Sales'].astype(floa	t)		
In [10]:	df['Weekly_Sale	es']	.info	()				
P S N - 6 d	<pre><class 'pandas.core.series.series'=""> RangeIndex: 6435 entries, 0 to 6434 Series name: Weekly_Sales Non-Null Count Dtype</class></pre>							
In [11]:	<pre># Converting Da df['Date'] = po</pre>)			
In [12]:	df['Date'].info)()						
F S N - 6	<pre><class 'pandas.core.series.series'=""> RangeIndex: 6435 entries, 0 to 6434 Series name: Date Non-Null Count Dtype</class></pre>							
In [13]:	df.dtypes							

```
0
Out[13]:
          Store_Number
                                  int64
                   Date datetime64[ns]
           Weekly_Sales
                                float64
           Holiday_Flag
                                 int64
           Temperature
                                float64
              Fuel_Price
                                float64
                                 int64
                    CPI
         Unemployment
                                float64
        dtype: object
In [14]: df.isna().sum()
                         0
Out[14]:
          Store_Number 0
                   Date 0
           Weekly_Sales 0
           Holiday_Flag 0
           Temperature 0
              Fuel_Price 0
                    CPI 0
         Unemployment 0
        dtype: int64
        df.duplicated().sum()
In [15]:
Out[15]: np.int64(0)
```

In [16]: df.describe()

Out[16]:		Store_Number	Date	Weekly_Sales	Holiday_Flag	Temperature	Fı
	count	6435.000000	6435	6.435000e+03	6435.000000	6435.000000	643
	mean	23.000000	2011-06-17 00:00:00	1.046965e+06	0.069930	60.663782	
	min	1.000000	2010-02-05 00:00:00	2.099860e+05	0.000000	-2.060000	
	25%	12.000000	2010-10-08 00:00:00	5.533500e+05	0.000000	47.460000	
	50%	23.000000	2011-06-17 00:00:00	9.607460e+05	0.000000	62.670000	
	75%	34.000000	2012-02-24 00:00:00	1.420158e+06	0.000000	74.940000	
	max	45.000000	2012-10-26 00:00:00	3.818686e+06	1.000000	100.140000	
	std	12.988182	NaN	5.643666e+05	0.255049	18.444933	

In [17]:	df	.head()					
Out[17]:		Store_Number	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Pri
	0	1	2010-02-05	1643691.0	0	42.31	2.5
	1	1	2010-02-12	1641957.0	1	38.51	2.5
	2	1	2010-02-19	1611968.0	0	39.93	2.5
	3	1	2010-02-26	1409728.0	0	46.63	2.5
	4	1	2010-03-05	1554807.0	0	46.50	2.6

EDA

Which store has the highest average weekly sales?

```
In [18]: avg_sales_per_store = df.groupby('Store_Number')['Weekly_Sales'].apply('mean')
In [19]: # Top 5 stores
top_5_stores = avg_sales_per_store.head()
In [20]: top_5_stores
```

```
Out[20]:
            Store Number Weekly Sales
         0
                       20
                           2.107677e+06
         1
                        4 2.094713e+06
         2
                       14 2.020978e+06
         3
                       13 2.003620e+06
         4
                        2 1.925751e+06
In [21]:
         top 5 stores.columns = ['Store Number', 'Average Weekly Sales']
         top 5 stores.loc[:,'Average Weekly Sales'] = top 5 stores['Average Weekly Sale
In [22]:
In [23]: top 5 stores
            Store_Number Average_Weekly_Sales
Out[23]:
                       20
                                       2107677.0
         0
         1
                        4
                                       2094713.0
         2
                       14
                                       2020978.0
         3
                       13
                                       2003620.0
                        2
         4
                                       1925751.0
In [24]:
         plt.figure(figsize=(5,3))
         plt.bar(top 5 stores['Store Number'].astype(str),top 5 stores['Average Weekly
         plt.title('Top 5 Stores by Average Weekly Sales', fontsize=14)
```

plt.xlabel('Store Number')

plt.show()

plt.ylabel('Average Weekly Sales (\$)')

Total Weekly Sales Trend Over Time

```
total sales_over_time = df.groupby('Date')['Weekly_Sales'].sum().reset_index()
         total_sales_over_time.columns = ['Date','Total_Weekly_Sales']
In [26]:
In [27]:
         total_sales_over_time.head(2)
                 Date Total_Weekly_Sales
Out[27]:
            2010-02-05
                                49750741.0
         1 2010-02-12
                                48336676.0
         plt.figure(figsize=(14,6))
In [28]:
         plt.plot(total sales over time['Date'], total sales over time['Total Weekly Sal
         plt.title('Total Weekly Sales over time', fontsize= 14)
         plt.xlabel('Date')
         plt.ylabel('Total Weekly Sales($)')
         plt.show()
```


Do Sales Increase During Holidays?

1.122888e+06

In [30]: holiday_sales.columns = ['Holiday_Flag','Average_Weekly_Sales']
holiday_sales

In [31]: holiday_sales['Average_Weekly_Sales'] = holiday_sales['Average_Weekly_Sales'].

In [32]: holiday_sales

1

In [33]: holiday_sales['Holiday_label'] = holiday_sales['Holiday_Flag'].map({0:'Non Hol

```
In [35]: plt.figure(figsize=(6,4))
    plt.bar(holiday_sales['Holiday_label'], holiday_sales['Average_Weekly_Sales'],
    plt.title('Average Weekly Sales: Holiday vs Non-Holiday')
    plt.xlabel('Holiday Label')
    plt.ylabel('Average Weekly Sales ($)')
    plt.show()
```


Monthly or Seasonal Sales Patterns

```
# Creating new column called month
In [36]:
         df['month'] = df['Date'].dt.month
         df.head(2)
In [37]:
Out[37]:
            Store_Number
                                  Date
                                        Weekly_Sales Holiday_Flag
                                                                     Temperature
                                                                                   Fuel Pri
          0
                           2010-02-05
                                            1643691.0
                                                                  0
                                                                             42.31
                                                                                        2.5
          1
                         1 2010-02-12
                                            1641957.0
                                                                             38.51
                                                                                        2.5
```

```
In [38]: # Calculating average sales per month

monthly_sales = df.groupby('month')['Weekly_Sales'].mean().reset_index()
monthly_sales['Weekly_Sales'] = monthly_sales['Weekly_Sales'].round(2)
monthly_sales
```

Out[38]:		month	Weekly_Sales
	0	1	923884.56
	1	2	1053199.81
	2	3	1013309.21
	3	4	1026761.56
	4	5	1031714.03
	5	6	1064324.59
	6	7	1031747.59
	7	8	1048017.46
	8	9	989335.36
	9	10	999632.10
	10	11	1147265.93
	11	12	1281863.63

```
In [39]: monthly_sales.head()
```

Out[39]:		month	Weekly_Sales
	0	1	923884.56
	1	2	1053199.81
	2	3	1013309.21
	3	4	1026761.56
	4	5	1031714.03

```
In [40]: import calendar
monthly_sales['month'] = monthly_sales['month'].apply(lambda x: calendar.month
In [41]: monthly_sales
```

Out[41]:		month	Weekly_Sales
	0	Jan	923884.56
	1	Feb	1053199.81
	2	Mar	1013309.21
	3	Apr	1026761.56
	4	May	1031714.03
	5	Jun	1064324.59
	6	Jul	1031747.59
	7	Aug	1048017.46
	8	Sep	989335.36
	9	Oct	999632.10
	10	Nov	1147265.93
	11	Dec	1281863.63

```
In [42]: plt.figure(figsize=(10,6))
    plt.plot(monthly_sales['month'], monthly_sales['Weekly_Sales'],marker='s',colo
#plt.xticks(range('Jan', 'Dec'))
    plt.title('Average monthly Sales')
    plt.xlabel('Month')
    plt.ylabel('Average Monthly Sales ($)')
    plt.show()
```


Correlation Between Weekly Sales and External Factors

In [43]:	df.head(2)					
Out[43]:	Store_Number	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Pri
	0 1	2010-02-05	1643691.0	0	42.31	2.5
	1 1	2010-02-12	1641957.0	1	38.51	2.5
In [44]:	corr_df = df[['We	ekly_Sales'	,'Temperature',	'Fuel_Price',	'CPI','Unemplo	yment']]
In [45]:	correlation_matri		corr()			

Out[45]:		Weekly_Sales	Temperature	Fuel_Price	СРІ	Unemployme
	Weekly_Sales	1.000000	-0.063810	0.009464	-0.072496	-0.10617
	Temperature	-0.063810	1.000000	0.144982	0.176188	0.10115
	Fuel_Price	0.009464	0.144982	1.000000	-0.170880	-0.0346{
	СРІ	-0.072496	0.176188	-0.170880	1.000000	-0.30216
	Unemployment	-0.106176	0.101158	-0.034684	-0.302162	1.00000

In [46]: plt.figure(figsize=(10,8))
 sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
 plt.title('Correlation between Weekly Sales and External Factors')
 plt.show()

Consistency vs. Volatility of Store Sales

```
In [47]: df.head(2)
Out[47]:
            Store_Number
                                 Date Weekly_Sales Holiday_Flag Temperature Fuel_Pri
                         1 2010-02-05
                                           1643691.0
                                                                0
                                                                          42.31
                                                                                      2.5
         0
         1
                         1 2010-02-12
                                           1641957.0
                                                                          38.51
                                                                                      2.5
In [48]: store sales std = df.groupby('Store Number')['Weekly Sales'].std().reset index
         store sales std.head()
                            Weekly_Sales
Out[48]:
            Store_Number
         0
                         1 155980.759881
         1
                         2 237683.724553
         2
                         3
                           46319.621759
         3
                         4 266201.396823
                            37737.961155
         4
In [49]:
         store sales std.columns = ['Store Number', 'Sales Std Dev']
In [50]:
         store sales std.head(2)
            Store_Number Sales_Std_Dev
Out[50]:
         0
                          155980.759881
         1
                         2 237683.724553
        most consistent store = store sales std.sort values(by='Sales Std Dev', ignore
In [51]:
         print("Most Consistent Stores: ")
         print()
         print(most consistent store)
       Most Consistent Stores:
           Store Number Sales Std Dev
       0
                     37
                         21837.424358
       1
                     30
                          22809.661016
       2
                     33
                          24132.978647
       3
                          24762.838370
                     44
                     5
                          37737.961155
In [52]: most volatile stores = store sales std.sort values(by='Sales Std Dev', ascendi
         print("Most Volatile Stores: ")
```

```
print()
print(most_volatile_stores)
```

Most Volatile Stores:

	Store_Number	Sales_Std_Dev
0	14	317569.957816
1	10	302262.099050
2	20	275900.518187
3	4	266201.396823
4	13	265506.996140

Top-Selling Stores During Holidays Only

Tn [53]:	df.head(2)	
TII [JJ]:	u i i i i cuu (Z /	

Out[53]:		Store_Number	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Pri
	0	1	2010-02-05	1643691.0	0	42.31	2.5
	1	1	2010-02-12	1641957.0	1	38.51	2.5

```
In [54]: holiday_data = df.loc[df['Holiday_Flag'] == 1]
holiday_data
```

Out[54]:		Store_Number	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel
	1	1	2010-02-12	1641957.0	1	38.51	
	31	1	2010-09-10	1507461.0	1	78.69	
	42	1	2010-11-26	1955624.0	1	64.52	
	47	1	2010-12-31	1367320.0	1	48.43	
	53	1	2011-02-11	1649615.0	1	36.39	
	6375	45	2011-09-09	746130.0	1	71.48	
	6386	45	2011-11-25	1170673.0	1	48.71	
	6391	45	2011-12-30	869404.0	1	37.79	
	6397	45	2012-02-10	803657.0	1	37.00	
	6427	45	2012-09-07	766513.0	1	75.70	

450 rows \times 9 columns

```
In [55]: holiday_avg_store_sales = holiday_data.groupby('Store_Number')['Weekly_Sales']
holiday_avg_store_sales.columns = ['Store_Number', 'Holiday_Avg_Weekly_Sales']
holiday_avg_store_sales.head()
```

Out[55]:		Store_Number	Holiday_Avg_Weekly_Sales
	0	1	1665747.6
	1	2	2079267.1
	2	3	437811.0
	3	4	2243102.6
	4	5	359501.7

```
In [56]: top_holiday_stores = holiday_avg_store_sales.sort_values(by='Holiday_Avg_Week
top_holiday_stores
```

Out[56]: Store_Number Holiday_Avg_Weekly_Sales 19 20 2249035.1 3 4 2243102.6 13 14 2120583.0 9 10 2113755.9

13

12

```
In [57]: plt.figure(figsize=(6,4))
    plt.bar(top_holiday_stores['Store_Number'].astype(str), top_holiday_stores['House plt.title('Sales of Top 5 stores during Holidays')
    plt.xlabel('Store Number')
    plt.ylabel('Average Weekly Sales ($)')
    plt.show()
```

2113043.8

Stores with Lowest Average Weekly Sales

In [58]: lowest_holiday_stores = holiday_avg_store_sales.sort_values(by='Holiday_Avg_We
lowest_holiday_stores

Out[58]:		Store_Number	Holiday_Avg_Weekly_Sales		
	32	33	262594.6		
	43	44	296035.6		
	4	5	359501.7		
	35	36	367640.7		
	37	38	381509.9		

```
In [59]: plt.figure(figsize=(6,4))
  plt.bar(lowest_holiday_stores['Store_Number'].astype(str), lowest_holiday_stor
  plt.title('Sales of 5 lowest stores during Holidays')
  plt.xlabel('Store Number')
  plt.ylabel('Average Weekly Sales ($)')
  plt.show()
```


In [60]:	df.head(2)						
Out[60]:	Store_Number		Date Weekly_Sales	Holiday_Flag	Temperature	Fuel_Pri	
	0	1	2010-02-05	1643691.0	0	42.31	2.5
	1	1	2010-02-12	1641957.0	1	38.51	2.5

Sales Patterns by Weekday

dtype: int64

Dataset contains only Friday entries.

Why? Because Walmart typically reports weekly sales ending on Fridays.

We don't need to do "Sales by Day of Week" analysis — there's no variation

Weekly Sales by Quarter

```
In [65]: plt.figure(figsize=(6,4))
    plt.bar(sales_by_quarter['Quarter'].astype(str), sales_by_quarter['Weekly_Sale
    plt.title("Sales by Quarter")
    plt.xlabel('Quarter')
    plt.ylabel("Average Weekly Sales ($)")
    plt.show()
```

