过二硫酸铵与碘化钾反应 的速率方程和机理

方维海

刘海燕

(阜阳卵院) (磁木斯鄭安)

本文研究了反应 $S_2 \bigcirc {3^2} + 31 = 2S \bigcirc {2^2} + 1 = 13$ 。用计算机处理所得的实验数据,证明反应是二级 **反应。在此基础上我们拟定了可能的**反应机理,并从结构的角度分析机理的正确性。

实验和结果

实验方法见文献[1],试剂和对应的浓度、体积等附在表一中,各组实验溶液出现兰色 所用的时间列于表二。该反应的速率方程可较一般的表示为: $y=k(S_2O_0^2-)^x\cdot(I-)^y$ 取对数后有:

$$1gv = 1gk + x1g(S_2O_8^{2-}) + y1g)[1-]$$

在保持 (I^-) 不变时,用lgv对 $lg(S_2O_8^2^-)$ 作图可得一直线; 同样保持 $(S_2O_8^2^-)$ 不变时, 用lgv对lg(I-)作图也为一直线,直线的斜率分别对应于x和y的值,将表 1、表 2 中的 数据用SHARP PC-1500机处理,其结果打印如下:

time. 19870331

Ŝ	U	Н	F	M1	M2	M3	t(sec) U
	20.0			7.89 E - 02	7.69 E - 02	1.53 ± -03	30 $2.55 E - 05$
2	15.0	20.0	8.0	5.76 E - 02	7.69 E - 02	1.53E - 03	45 1.70E-05
3	10.0	20.0	8.0		7.69 E - 02		68 1.12 $E - 05$
4	5.0	20.0	8.0	1.92E - 02	7.69 E - 02	1.53E-03	140 5.46E-06
5	20.0	15.0	8.0		5.76E - 02	1.53E - 03	48 $1.59E-05$
6	20.0	10.0	8.0		3.84×-02		71 1.07 $E-05$
.7	20.0	5.0	8.0	$7.69 \mathrm{E} - 02$	1.92E-02	1.53E - 03	139 5.50E-06

所用的程序和一些字母的物理意义附后。处理结果为x=1,y=1,即该反应为二级反应,方程为。 $y=k(S_2O_8^{2-})(I^{-})$

表 1

And the second	实验编号	1	2	3	4	5	6	7
试剂及用量	0.2(NH4)2SOs 0.2M KI 0.010MNa2S203 0.2%淀粉	20.0 20.0 8.0 4.0	15.0 20.0 8.0 4.0	10.0 20.0 8.0 4.0	5.0 20.0 8.0 4.0	20.0 15.0 8.0 4.0	1	20.0 5.0 8.0 4.0
(m1)	0.10MKNOs 0.20M (NH4)2SQ4		5.0	10.0	15.0	5.0	10.0	15.0

1 -1 71	3					1 1 1 1	1 4 5 4 4 5
实验编号	1	2:	3	4	- 5	6 .	7
24 45T 200	-	_		_		1. 6	The state of the s
反应时间(秒)	30	45	68	140	48-	70	139
DCDZ HIJ [HI] (D)	3,0	40	00	140	*0.	1 3 3 3 3 3 4	7.00
						1	

反应机理的拟定:

4. . 17.6

8003

而 H_2O_2 的结构为, H-O-O-H 两者都含有过氧键-O-O-,它们的特性都与此**链**有关。 H_2O_2 与KI的反应机理 $[^3]$ 为。

$$H_2O_2 + I^- \rightarrow IO^- + H_2O$$
 (慢)
 $IO^- + I^- + 2H^+ \rightleftharpoons I_2 + H_2O$ (快)

因此S₂O₂²与KI的反应可能有类似的机理。

另外让20m10.4M的(NH₄)₂S₂O₈与20m10.4M的KI反应,从反应液中取一滴 滴在事先准备好的由饱和藏红水溶液浸湿的滤纸(放在空气中凉干)上,发现红滤纸上有紫色的斑点出现,这表明可能有IO⁻存在[⁴]。

根据以上分析和实验结果,我们拟定如下机理:

当然从以上机理可推得实验速率方程。

参考 文献

- [1] 中山大学等校编, 无机化学实验(第二版)高教出版社(1981)。
- [2] 北京师范大学等校编, 无机化学, 人民教育出版社(1981)。
- [3] 大连工学院物理化学教研室编,物理化学习题,人民教育出版社(1979)。
- (4) 董维宪编,各种离子的化学分别检出法,北京师范大学出版社(1984)。

打印结果所用符号的意义

K4-反应速率常数(K4-V/(S102-)(I-)2)

实验处理程序(SHARP PC-1500)略

The second second

THE SPEED EQUATION AND MECHANISM OF THE REACTION FOR AMMONIUM PERSULFATE AND POLASSIUM, IODIDE

Fang Weihai Liu haiyan

1.6 (1) (2)

Abstract Abstract

thi reaction of the $S_2O_8^2+3I^-=2SO_4^2^-+I_3^-$ is studied in this paper, the experimental results showed that this reaction is a second order reaction the possible reaction mechanism and its correctness are discussed

and the state of t