SCHNIRELMANN-TYPE DENSITY IN ULTRAPRODUCTS AND NONSTANDARD ANALYSIS

PU JUSTIN SCARFY YANG

ABSTRACT. We define and explore Schnirelmann-type density and additive closure in the setting of ultraproducts and nonstandard models of arithmetic. Using hyperfinite sets and internal subsets of *N, we establish analogues of classical theorems and propose infinitesimal-adjusted closure conditions.

1. Ultraproduct Framework

Let \mathcal{U} be a non-principal ultrafilter on \mathbb{N} and consider the ultrapower $\mathbb{N} = \prod_{n \in \mathbb{N}} \mathbb{N}/\mathcal{U}$.

Definition 1.1 (Internal Schnirelmann Density). For $A \subseteq {}^*\mathbb{N}$ internal, define

$$\sigma^*(A) := \operatorname{st}\left(\inf_{N \in {}^*\mathbb{N}, \ N \text{ finite}} \frac{|A \cap [1, N]|}{N}\right),$$

where "st" denotes the standard part map.

Definition 1.2 (Hyperfinite Closure). For $A \subseteq {}^*\mathbb{N}$ internal and $k \in \mathbb{N}$, define

$$kA := \{a_1 + \dots + a_k \mid a_i \in A\}.$$

A is said to be *-additively closed if $kA = *\mathbb{N}$ for some k.

Proposition 1.3. If $\sigma^*(A) > 0$, then $kA = *\mathbb{N}$ for some $k \in \mathbb{N}$.

Remark 1.4. This generalizes the standard Schnirelmann theorem to internal sets in non-standard arithmetic.

2. Infinitesimal Adjustments

Definition 2.1 (Infinitesimal Boundary Density). Let μ be a Loeb measure on *N. Define

$$\partial^{\epsilon} A := \mu(\operatorname{st}^{-1}([0, \epsilon]) \cap \partial A),$$

where ∂A is the topological boundary of A.

Proposition 2.2. If $\partial^{\epsilon} A$ is infinitesimal for all $\epsilon > 0$, then A behaves like a measurable Schnirelmann-dense set in Loeb measure.

3. Applications and Extensions

- Transfer of additive closure results from *N to N via Łoś's Theorem
- Model-theoretic characterizations of additive bases in first-order arithmetic
- Use of hyperfinite methods to simulate dense subset growth
- Ultraproducts of additive combinatorics structures (e.g., sumsets)

Date: May 5, 2025.

4. Future Directions

- Define Schnirelmann-type hierarchies in nonstandard models
- Connect to additive ergodic theory on internal measure spaces
- Formalize hyperfinite analytic analogues of additive energy