AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently amended) A computer program product method for
2	computing interval parameter bounds from fallible measurements, comprising:
3	receiving a set of measurements z_1, \ldots, z_n , wherein an observation model
4	describes each z_i as a function of a p -element vector parameter $\mathbf{x} = (x_1, \dots, x_p)$.
5	wherein receiving the set of measurements involves
6	receiving values for a set of conditions c_1, \ldots, c_n under which the
7	corresponding observations z_i were made,
8	wherein equations in the system of nonlinear equations
9	account for the conditions c_i and are of the form $z_i - h(\mathbf{x} \mid c_i) = 0$
10	(i=1,, n), and
11	wherein each condition c_i is not known precisely but is
12	contained within an interval c_i^l ;
13	storing the set of measurements z_1, \ldots, z_n in a memory in a computer
14	system;
15	forming a system of nonlinear equations $z_i - h(\mathbf{x}) = 0$ ($i=1,, n$) based on
16	the observation model; and
17	solving the system of nonlinear equations to determine interval parameter
18	bounds on x.

- 2. (Currently amended) The <u>computer program product</u>—method of claim 1,
- wherein the system of nonlinear equations is an "overdetermined system" in
- 3 which there are more equations than unknowns.
- 3. (Currently amended) The <u>computer program product-method</u> of claim 1,
- wherein each measurement z_i is actually a q-element vector of measurements $\mathbf{z}_i =$
- 3 $(z_{i1}, ..., z_{iq})^T$, and h is actually a q-element vector of functions $\mathbf{h} = (h_1, ..., h_q)^T$.
- 1 4 (Canceled).
- 5. (Currently amended) The computer program product method of claim 1
- 2 elaim 4, wherein each condition c_i is actually an r-element vector of conditions \mathbf{c}_i
- $3 = (c_{i1}, ..., c_{ir})^T$
- 1 6 (Canceled).
- 7. (Currently amended) The computer program product method of claim 1
- 2 | elaim 4, wherein equations in the system of nonlinear equations are of the form z_i
- $3 h(\mathbf{x} \mid c_i) + \varepsilon^{\mathbf{I}}(\mathbf{x}, c_i) = 0$ (i=1, ..., n), which includes an error model $\varepsilon^{\mathbf{I}}(\mathbf{x}, c_i)$ that
- 4 provides interval bounds on measurement errors for z_i .
- 8. (Currently amended) The computer program product method of claim 7,
- 2 wherein if z_i is actually a q-element vector of measurements $\mathbf{z}_i = (z_{i1}, ..., z_{iq})^T$, then
- 3 ε^{I} is actually a q-element vector $\varepsilon^{I} = (\varepsilon_{1}, ..., \varepsilon_{q})^{T}$.
- 9. (Currently amended) The computer program product-method of claim 7,
- 2 wherein if there exists no solution to the system of nonlinear equations, the
- method further comprises determining that at least one of the following is true:

4	at least one of the set of measurements z_i, \ldots, z_n is faulty,
5	the observation model $h(\mathbf{x} \mid c_i)$ is false;
6	the error model $\varepsilon^{I}(\mathbf{x}, c_i)$ is false; and
7	the computational system used to compute interval bounds on elements of
8	x is flawed.
1	10. (Currently amended) The computer program product method of claim
2	1, wherein solving the system of nonlinear equations involves:
3	linearizing the system of nonlinear equations to form a corresponding
4	system of linear equations; and
5	solving the system of linear equations.
1	11. (Currently amended) The computer program product method of claim
2	10, wherein solving the system of nonlinear equations involves using Gaussian
3	Elimination.
1	12. (Currently amended) A computer-readable storage medium storing
2	instructions that when executed by a computer cause the computer to perform a
3	method for computing interval parameter bounds from fallible measurements,
4	wherein the computer-readable storage medium includes magnetic storage
5	devices, optical storage devices, disk drives, magnetic tape, CDs (compact discs),
6	and DVDs (digital versatile discs or digital video discs), the method comprising:
7	receiving a set of measurements z_1, \ldots, z_n , wherein an observation model
8	describes each z_i as a function of a p -element vector parameter $\mathbf{x} = (x_1, \dots, x_p)$,
9	wherein receiving the set of measurements involves
10	receiving values for a set of conditions $c_1,, c_n$ under which the
11	corresponding observations z_i were made,

12	wherein equations in the system of nonlinear equations
13	account for the conditions c_i and are of the form $z_i - h(\mathbf{x} \mid c_i) = 0$
14	(i=1,, n), and
15	wherein each condition c_i is not known precisely but is
16	contained within an interval c_i^l ;
17	storing the set of measurements z_1, \ldots, z_n in a memory in a computer
18	system;
19	forming a system of nonlinear equations $z_i - h(\mathbf{x}) = 0$ ($i=1,, n$) based on
20	the observation model; and
21	solving the system of nonlinear equations to determine interval parameter
22	bounds on x.
1	13. (Original) The computer-readable storage medium of claim 12,
2	wherein the system of nonlinear equations is an "overdetermined system" in
3	which there are more equations than unknowns.
1	14. (Original) The computer-readable storage medium of claim 12,
2	wherein each measurement z_i is actually a q-element vector of measurements \mathbf{z}_i =
3	$(z_{i1},, z_{iq})^T$, and h is actually a q-element vector of functions $\mathbf{h} = (h_1,, h_q)^T$.
1	15 (Canceled).
1	16. (Currently amended) The computer-readable storage medium of claim
2	12-claim 15, wherein each condition c_i is actually an r-element vector of
3	conditions $\mathbf{c}_i = (c_{i1}, \ldots, c_{ir})^T$.
1	17 (Canceled).

- 1 18. (Currently amended) The computer-readable storage medium of claim
- 2 12 claim 15, wherein equations in the system of nonlinear equations are of the
- 3 form,
- 4 $z_i h(\mathbf{x} \mid c_i) + \varepsilon^{\mathbf{I}}(\mathbf{x}, c_i) = 0$ (i=1, ..., n), which includes an error model $\varepsilon^{\mathbf{I}}(\mathbf{x}, c_i)$ that
- 5 provides interval bounds on measurement errors for z_i .
- 1 19. (Original) The computer-readable storage medium of claim 18,
- wherein if z_i is actually a q-element vector of measurements $\mathbf{z}_i = (z_{i1}, ..., z_{iq})^T$, then
- 3 ε^{I} is actually a *q*-element vector $\varepsilon^{I} = (\varepsilon_{1}, ..., \varepsilon_{q})^{T}$.
- 1 20. (Original) The computer-readable storage medium of claim 18,
- 2 wherein if there exists no solution to the system of nonlinear equations, the
- 3 method further comprises determining that at least one of the following is true:
- 4 at least one of the set of measurements $z_i, ..., z_n$ is faulty;
- 5 the observation model $h(\mathbf{x} \mid c_i)$ is false;
- 6 the error model $\varepsilon^{I}(\mathbf{x}, c_i)$ is false; and
- 7 the computational system used to compute interval bounds on elements of
- 8 x is flawed.
- 1 21. (Original) The computer-readable storage medium of claim 12,
- 2 wherein solving the system of nonlinear equations involves:
- 3 linearizing the system of nonlinear equations to form a corresponding
- 4 system of linear equations; and
- 5 solving the system of linear equations.
- 1 22. (Original) The computer-readable storage medium of claim 21,
- 2 wherein solving the system of nonlinear equations involves using Gaussian
- 3 Elimination.

ı	23. (Currently amended) An apparatus that computes interval parameter
2	bounds from fallible measurements, comprising:
3	a receiving mechanism configured to receive a set of measurements
4	z_1, \ldots, z_n , wherein an observation model describes each z_i as a function of a
5	p -element vector parameter $\mathbf{x} = (x_1, \dots, x_p)$,
6	wherein receiving the set of measurements involves
7	receiving values for a set of conditions c_1, \ldots, c_n under which the
8	corresponding observations z_i were made,
9	wherein equations in the system of nonlinear equations
10	account for the conditions c_i and are of the form $z_i - h(\mathbf{x} \mid c_i) = 0$
11	$(i=1,\ldots,n)$, and
12	wherein each condition c_i is not known precisely but is
13	contained within an interval $c_{\underline{i}}^{l}$;
14	a memory in a computer system for storing the set of measurements
15	$z_1, \ldots, z_n;$
16	an equation forming mechanism configured to form a system of nonlinear
17	equations $z_i - h(\mathbf{x}) = 0$ ($i=1,, n$) based on the observation model; and
18	a solver configured to solve the system of nonlinear equations to determine
19	interval parameter bounds on x.
1	24. (Original) The apparatus of claim 23, wherein the system of nonlinear
2	equations is an "overdetermined system" in which there are more equations than
3	unknowns.
1	25. (Original) The apparatus of claim 23, wherein each measurement z_i is
2	actually a q-element vector of measurements $\mathbf{z}_i = (z_{i1}, \dots, z_{iq})^T$, and h is actually a

q-element vector of functions $\mathbf{h} = (h_1, ..., h_q)^T$.

- 1 26 (Canceled).
- 27. (Currently amended) The apparatus of <u>claim 23 elaim 26</u>, wherein each
- 2 condition c_i is actually an r-element vector of conditions $\mathbf{c}_i = (c_{i1}, ..., c_{ir})^T$.
- 1 28 (Canceled).
- 1 29. (Currently amended) The apparatus of claim 23 claim 26, wherein
- 2 equations in the system of nonlinear equations are of the form $z_i h(\mathbf{x} \mid c_i) + \varepsilon^{\mathbf{I}}(\mathbf{x}, \mathbf{x})$
- 3 c_i) = 0 (i=1, ..., n), which includes an error model $\varepsilon^I(\mathbf{x}, c_i)$ that provides interval
- 4 bounds on measurement errors for z_i .
- 1 30. (Original) The apparatus of claim 29, wherein if z_i is actually a q-
- 2 element vector of measurements $\mathbf{z}_i = (z_{i1}, ..., z_{iq})^T$, then ε^I is actually a q-element
- 3 vector $\mathbf{\varepsilon}^{\mathbf{I}} = (\varepsilon_1, ..., \varepsilon_q)^T$.
- 1 31. (Original) The apparatus of claim 29, wherein if there exists no
- 2 solution to the system of nonlinear equations, the solver is configured to
- 3 determine that at least one of the following is true:
- 4 at least one of the set of measurements $z_i, ..., z_n$ is faulty;
- 5 the observation model $h(\mathbf{x} \mid c_i)$ is false;
- 6 the error model $\varepsilon^{I}(\mathbf{x}, c_i)$ is false; and
- 7 the computational system used to compute interval bounds on elements of
- 8 x is flawed.
- 1 32. (Original) The apparatus of claim 23, wherein the solver is configured
- 2 to:

- 3 linearize the system of nonlinear equations to form a corresponding system
- 4 of linear equations; and to
- 5 solve the system of linear equations.
- 1 33. (Original) The apparatus of claim 32, wherein the solver is configured
- 2 to solve the system of nonlinear equations using Gaussian Elimination.