WHAT IS CLAIMED IS:

- 1. A method for the blind identification of sources within a system comprising P sources and N receivers, wherein the method comprises at least one step for the identification of the matrix of the direction vectors of the sources from the information proper to the direction vectors \mathbf{a}_p of the sources contained redundantly in the m=2q order circular statistics of the vector of the observations received by the N receivers.
- 2. A method according to claim 1, wherein m = 2q order circular statistics are expressed according to a full-rank diagonal matrix of the autocumulants of the sources and a matrix representing the juxtaposition of the direction vectors of the sources as follows:

$$\mathbf{C}_{m,x} = \mathbf{A}_q \ \zeta_{m,s} \ \mathbf{A}_q^{\mathsf{H}} \tag{11}$$

where $\zeta_{m,s} = \operatorname{diag}([C_{1,1,\dots,1,s}^{1,1,\dots,1},\dots,C_{P,P,\dots,P,s}^{P,P,\dots,P}])$ is the full-rank diagonal matrix of the m=2q order autocumulants $C_{p,p,\dots,p,s}^{P,P,\dots,p}$ des sources, sized $(P \times P)$, and where $\mathbf{A}_q = [a_1^{\otimes (q-1)} \otimes a_1^*,\dots,a_p^{\otimes (q-1)} \otimes a_p^*]$, sized $(N^q \times P)$ and assumed to be of full rank, represents the juxtaposition of the P column vectors $[a_p^{\otimes (q-1)} \otimes a_p^*]$.

- 3. A method according to one of the claims 1 and 2, comprising at least the following steps:
 - $\underline{0}$: the building, from the different observation vectors $\mathbf{x}(t)$, of an estimate $\hat{\mathbf{C}}_{m,x}$ of the matrix of statistics $\mathbf{C}_{m,x}$ of the observations,
- <u>1</u>: the singular value decomposition of the matrix $\hat{\mathbf{C}}_{m,x}$, the deducing therefrom of an estimate P, of the number of sources P and a square root $\hat{\mathbf{C}}_{m,x}^{1/2}$ of $\hat{\mathbf{C}}_{m,x}$, for example in taking $\hat{\mathbf{C}}_{m,x}^{1/2} = \mathbf{E}_s |\mathbf{L}_s|^{1/2}$ where $|\cdot|$ designates the absolute value operator, where \mathbf{L}_s and \mathbf{E}_s are respectively the diagonal

matrix of the P, greatest real eigenvalues (in terms of absolute value) of $\hat{\mathbf{C}}_{m,x}$ and the matrix of the associated orthonormal eigenvectors;

- 2: the extraction, from the matrix $\hat{\mathbf{C}}_{m,x}^{1/2} = [\Gamma_1^T, ..., \Gamma_N^T]^T$, of the N matrix blocks Γ_n : each block Γ_n sized $(N^{(q-1)} \times P)$ being constituted by the $N^{(q-1)}$ successive rows of $\hat{\mathbf{C}}_{m,x}^{1/2}$ starting from the " $N^{(q-1)}(n-1)+1$ "th row;
 - <u>3</u>: the building of the N(N-1) matrices $\Theta_{n1,n2}$ defined, for all $1 \le n_1 \ne n_2 \le N$, by $\Theta_{n1,n2} = \Gamma_{n1}^* \Gamma_{n2}$ where # designates the pseudo-inversion operator;
 - $\underline{4}$: the determining of the matrix V_{sol} , resolving the problem of the joint diagonalization of the N(N-1) matrices $\Theta_{n1,n2}$;
- 5: for each of the P columns \boldsymbol{b}_p of \boldsymbol{A} ; \boldsymbol{b}_p , the extraction of the $K = M^{(q-2)}$ vectors $\boldsymbol{b}_p(k)$ stacked beneath one another in the vector $\boldsymbol{b}_p = [\boldsymbol{b}_p(1)^T, \boldsymbol{b}_p(2)^T, ..., \boldsymbol{b}_p(K)^T]^T$;
 - <u>6</u>: the conversion of said column vectors $\mathbf{b}_p(k)$ sized $(N^2 \times 1)$ into a matrix $\mathbf{B}_p(k)$ sized $(N \times N)$;
- 15 $\underline{7}$: the joint singular value decomposition or joint diagonalization of the $K = N^{(q-2)}$ matrices $\mathbf{B}_p(k)$ in retaining therefrom, as an estimate of the column vectors of \mathbf{A} , of the eigenvector common to the K matrices $\mathbf{B}_p(k)$ associated with the highest eigenvalue (in terms of modulus);
- 8: the repetition of the steps 5 to 7 for each of the P columns of \mathbf{A} ; $^{\wedge}_{q}$ for the estimation, without any particular order and plus or minus a phase, of the P direction vectors \mathbf{a}_{p} and therefore the estimation, plus or minus a unitary trivial matrix, of the mixture matrix \mathbf{A} .
- A method according to one of the claims 1 to 3 wherein the number of
 sensors N is greater than or equal to the number of sources P and wherein
 the method comprises a step of extraction of the sources, consisting of the

application to the observations x(t) of a filter built by means of the estimate A; of A.

- 5. A method according to one of the claims 2 to 4 wherein $C_{m,x}$ is equal to the matrix of quadricovariance Qx and wherein m = 4.
 - 6. A method according to one of the claims 2 to 4 wherein $C_{m,x}$ is equal to the matrix of hexacovariance Hx and wherein m = 6.
- 7. A method according to one of the claims 1 to 6 comprising a step for the evaluation of the quality of the identification of the associated direction vector in using a criterion such that:

$$D(A, \hat{A}) = (\alpha_1, \alpha_2, \ldots, \alpha_P)$$

where

15
$$\alpha_p = \min_{1 \le i \le p} \left[d(\boldsymbol{a}_p, \, \hat{\boldsymbol{a}}_i) \right] \tag{17}$$

and where d(u,v) is the pseudo-distance between the vectors u and v, such that:

$$d(\boldsymbol{u}, \boldsymbol{v}) = 1 - \frac{\left|\boldsymbol{u}^{H}\boldsymbol{v}\right|^{2}}{\left(\boldsymbol{u}^{H}\boldsymbol{u}\right)\left(\boldsymbol{v}^{H}\boldsymbol{v}\right)}$$
(18)

- 20 8. A use of the method according to one of the claims 1 to 7 for a communications network.
 - 9. A use of the method according to one of the claims 1 to 7 for goniometry using identified direction vectors.