CSE 474 Pattern Recognition Sessional

Lab# 1: Implementation of a Bayesian Classifier

Assume following training set is given

- 3 classes
- 3 features

Assume following training set is given

- All numerical data

NO assumption for	F1	F2	F2	Class
 NO assumption for 	9.4512	7.3199	6.4664	1
conditionally independence	10.7276	9.6067	5.9398	3
conditionally independence	10.1960	9.3145	8.3873	1
	15.7777	1.5879	11.4440	2
	15.8685	2.7902	11.2532	3
	14.9448	0.7798	12.7481	2

• Given an unknown sample,

$$\mathbf{F} = [F1, F2, F3] = [10.1960 \ 9.3145 \ 8.3873]$$

Predict its class!

Naïve Bayes Classifier

• Given an unknown sample,

$$\mathbf{F} = [F1, F2, F3] = [10.1960 \ 9.3145 \ 8.3873]$$

Predict its class!

Calculate posterior probabilities for each class C_i

$$P(C_i|F1,F2,F3) \sim = P(C_i) P([F1,F2,F3]|C_i)$$

• Given an unknown sample,

$$\mathbf{F} = [F1, F2, F3] = [10.1960 \ 9.3145 \ 8.3873]$$

Predict its class!

Calculate posterior probabilities for each class C_i

$$P(C_i| [F1,F2,F3]) \sim = P(C_i) P([F1, F2, F3]|C_i)$$

Assign [F1, F2, F3] to C_i if $P(C_i | [F1,F2,F3]) > P(C_j | [F1,F2,F3])$ for all j

• To estimate $P([F1, F2, F3]|C_i)$, assume F=[F1, F2, F3] follows multivariate Gaussian distribution

$$P(\mathbf{F} \mid C_i) = \frac{1}{(2\pi)^{d/2} |\Sigma_i|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{F} - \boldsymbol{\mu}_i)^t \Sigma_i^{-1} (\mathbf{F} - \boldsymbol{\mu}_i)\right]$$

F1	F2	F2	Class
9.4512	7.3199	6.4664	1
10.7276	9.6067	5.9398	3
10.1960	9.3145	8.3873	1
15.7777	1.5879	11.4440	2
15.8685	2.7902	11.2532	3
14.9448	0.7798	12.7481	2

- Separate training data according to class
- For each class, estimate $\mu_i = [\mu_{i1}, \mu_{i2}, \mu_{i3}]$ and covariance matrix Σ_i from training samples only

F1	F2	F2	Class
9.4512	7.3199	6.4664	1
10.1960	9.3145	8.3873	1
↑	↑	↑	
μ_{11}	μ_{12}	μ_{13}	

• For covariance matrix Σ_i , you can use library function

• Priors, P(C_i), can be easily estimated by counting the no. of training samples of the corresponding classes

F1	F2	F2	Class
9.4512	7.3199	6.4664	1
10.7276	9.6067	5.9398	3
10.1960	9.3145	8.3873	1
15.7777	1.5879	11.4440	2
15.8685	2.7902	11.2532	3
14.9448	0.7798	12.7481	2

- Training File: train.txt
 - Use this file for training (estimating the Gaussian parameters and priors)
 - File format:
 - first line contains 3 integers m n p. m= no. of features, n= no. of classes, p=no. of samples
 - Each of next p lines contains m feature values followed by its class in integer

- Testing file: test.txt
 - Format is identical but the first line is removed

F1	F2	F2	Class
9.4512	7.3199	6.4664	1
10.7276	9.6067	5.9398	3
10.1960	9.3145	8.3873	1
15.7777	1.5879	11.4440	2
15.8685	2.7902	11.2532	3
14.9448	0.7798	12.7481	2

- For each vector $\mathbf{F} = [F1, F2, F3] = [9.4512 \quad 7.3199 \quad 6.4664]$, find $P(\mathbf{F}|C_i)$ using

$$P(\mathbf{F} \mid C_i) = \frac{1}{(2\pi)^{d/2} |\Sigma_i|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{F} - \boldsymbol{\mu}_i)^t \Sigma_i^{-1} (\mathbf{F} - \boldsymbol{\mu}_i)\right]$$

- Testing file: test.txt
 - Use Bayesian rule to find predicted class

Assign **F** to
$$C_i$$
 if $P(C_i | \mathbf{F}) > P(C_j | \mathbf{F})$ for all j

Compare predicted and actual class and calculate % of accuracy

• Output:

 Identify all misclassified samples and report as follows

sample no. feature values actual class estimated class

– % of accuracy