⑩ 日本 国特許庁(JP)

⑪ 特許出願公告

許 公 報(B2) ⑫ 特

昭61-51291

@Int_Cl.4

識別記号

庁内整理番号

❷❷公告 昭和61年(1986)11月8日

G 02 B 15/16 13/04 15/20 7448-2H 8106-2H 7448-2H

発明の数 1 (全10頁)

❷発明の名称

コンパクトな高変倍ズームレンズ

顋 昭56-37915 ②特

開 昭57-154205 够公

顧 昭56(1981)3月18日 22出

❷昭57(1982)9月24日

石山 砂発 明 者

唱蔵

八王子市石川町2970番地 小西六写真工業株式会社内

小西六写真工業株式会 の出願人

東京都新宿区西新宿1丁目26番2号

砂代 理 人 審査官

99参考文献

外1名 文男 弁理士 佐藤

森

正 特公 昭39-29046 (JP, B1)

特公 昭40-9104(JP, B1)

特公 昭42-5069(JP, B1)

特公 昭46-19818 (JP, B1)

1

動特許請求の範囲

1 物体側から順に、正の焦点距離を持つ第1レ ンズ成分、負の焦点距離を持つ第2レンズ成分、 正の焦点距離を持つ第3レンズ成分、負の焦点距 離をもつ第4レンズ成分、そして正の焦点距離を 5 ている。 持つ第5レンズ成分からなり、

- (1) ズーミングの全領域で第1レンズ成分と第2 レンズ成分の部分系は負の合成焦点距離を、第 3レンズ成分から第5レンズ成分までの部分系 は正の合成焦点距離を持ち、
- (2) 第1レンズ成分、第3レンズ成分、第5レン ズ成分の3レンズ成分を1体として移動し、第 2レンズ成分と第4レンズ成分のうち少なくと 61つのレンズ成分が、上記第1、第3、第5 レンズ成分の移動とは独立に移動し、
- (3) 広角端から望遠端へとズーミングするとき、 第1レンズ成分と第2レンズ成分との間隔およ び第3レンズ成分と第4レンズ成分との間隔は 増加し、第2レンズ成分と第3レンズ成分との の間隔は減少するように各レンス成分が移動す

ことを特徴とするコンパクトな高変倍ズームレン ズ。

発明の詳細な説明

この発明は広角から望遠までを含む、新しいレ

ンズ移動型式によるコンパクトなズームレンズに 関する。

従来から広角から望遠までを含むズームレンズ としては以下のような数種の型式のものが知られ

- (1) 4つのレンズ成分で構成される旧型のいわゆ る機械補正型ズームレンズ
- (2) 正・負・正・正のパワーを持つ4つの可動レ ンズ成分で構成される、上記(1)のズームレンズ の第1レンズ成分と第4レンズ成分を移動する ようにしたとみられる型式のズームレンズ
- (3) 正・負・正のパワーを持つ3つの可動レンズ 成分で構成されるズームレンズ
- (4) 負のパワーを持つレンズ成分が先行する広角 型のズームレンズ 15
 - (5) 正・負・正・負・正のパワーを持つ5つの可 動レンズ成分で構成されるズームレンズ これらの各型式は、それぞれ一長一短がある

が、この発明が目的とするような広角端では画面 間隔および第4レンズ成分と第5レンズ成分と 20 の対角線より短かい焦点距離を持ち、望遠端では 画面の対角線の2倍より長い焦点距離を持つズー ムレンズを得ようとする場合には、

> (1)の型式のズームレンズでは前玉径が大きくな り、レンズ系が全体として大きくなる。

25 (2)の型式のズームレンズは、(1)の型式のものに 比べてレンズ系をコンパクトにし易いが、レンズ 系の構成が正、負、正、正と非対称になつてお り、歪曲収差やコマ収差の補正が難かしい。

(3)の型式のズームレンズは、簡単な構成をして いるため、ズーム比を大きくするためにはレンズ 強くしなければならず、コンパクト化のためパワ - を強くすると収差補正が困難になる。

(4)の型式のズームレンズは、基本的にレトロフ オーカスタイプの構成を持ち、望遠側での球面収 差の補正が困難である。

(5)の型式のスームレンズは、レンズ系の構成が 対称であり、変倍に寄与するレンズ成分も多いの で、コンパクトなままで大きいズーム比を得るの に適している。しかし、5つのレンズ成分が独立 れることが出来なかつた。

この発明は、上記のような欠点を持たず、コン パクトで簡単な鏡枠構造を持つズーム比の大きい ズームレンズを提供しようとするものである。

ち、(5)のズームレンズがコンパクトな高変倍比の ズームレンズの構成に最も適しているので、唯一 の欠点である鏡枠構造の複雑さを、5つのレンズ 成分のなかの幾つかのレンズ成分を一体として移 動させるように改良することによつて解消したも 25 ンズ成分と第3レンズ成分との間隔は広角端で最 のである。

具体的には、物体側から順に、正の焦点距離を 持つ第1レンズ成分、負の焦点距離を持つ第2レ ンズ成分、正の焦点距離を持つ第3レンズ成分、 負の焦点距離を持つ第4レンス成分そして正の焦 30 は、この部分系の主平面が広角側で出来るだけ像 点距離を持つ第5レンズ成分からなり、①ズーミ ングの全領域で第1レンズ成分と第2レンズ成分 の部分系は合成焦点距離を持ち第3レンズ成分か ら第5レンズ成分までの部分系は正の合成焦点距 離を持ち、②第1レンズ成分、第3レンズ成分、35 とらせることで実現出来る。このためには、第3 第5レンズ成分の3レンズ成分を1体として移動 し、1体として移動し、第2レンズ成分と第4レ ンズ成分のうち、少なくとも1つのレンズ成分が 上記第1、第3、第5レンズ成分の移動とは独立 に移動し、③広角端から望遠端へとズーミングす 40 分の移動を滑らかにするために、各レンズ成分の るとき、第1レンズ成分と第2レンズ成分との間 隔および第3レンズ成分と第4レンズ成分との間 隔は増加し、第2レンズ成分と第3レンズ成分と の間隔および第4レンズ成分と第5レンズ成分と

の間隔は減少するように各レンズ成分が移動する ようにズームレンズを構成する。

上記の構成のうち、①の構成は広角端の焦点距 離を画角の対角線より短かくとることに対応する 系を大きくするか、個々のレンズ成分のパワーを 5 ものである。このような場合、広角端ではレトロ フオーカスタイプのレンズ配置となつていること が収差補正上望ましい。従つてこの発明では第1 レンズ成分と第2レンズ成分の部分系には負の合 成焦点距離を、第3レンズ成分から第5レンズ成 10 分までの部分系には正の合成焦点距離を与えて、 レトロフオーカスタイプの配置にしている。この 2つの部分系の焦点距離の符号は、ポーミングの 全領域で同符号でないとレンス成分の移動に不恵 統が発生し、ズームレンズではなくつてしまうの に移動するため、鏡枠構造が複雑になることを免 15 で、2つの部分系の合成焦点距離の符号は、望遠 側でも広角側と同じにしてある。

> ②の構成は、これによつて鏡枠の構造を簡単に していることは上述の通りである。

①の構成により、広角側ではレトロフォーカス すなわち、上記のズームレンズの諸型式のう 20 タイプの配置をとるにもかかわらず、望遠側では テレフオトタイプの配置となることが収差補正上 も望ましい。そのためには、③のように第1レン ズ成分と第2レンズ成分との間隔は、広角端で最 も小さく、望遠端で最も大きくなり、逆に第2レ も大きく、望遠端で最も小さくしなければならな

> また、第3レンズ成分から第5レンズ成分まで の部分系のズーム比への寄与を大とするために 側にあり、望遠側で出来るだけ物体側にあること が望ましい。これは、第3レンス成分から第5レ ンズ成分までの部分系に、広角側でレトロフォー カスタイプ、望遠側でテレフオトタイプの配置を レンズ成分と第4レンズ成分との間隔は広角側で 最も小さく、望遠側で最も大きくなり、逆に第4 レンズ成分と第5レンズ成分との間隔は広角端で 最も大きく、望遠端で最も小さくなる。レンズ成 間隔には連続的に増加し減少しなければならない ことは云うまでもない。

上記のように構成されたこの発明のズームレン ズは、5つのレンズ成分で構成されながら、鏡枠

構造上は3つのレンズ成分で構成されたと同様の ものを得ることが出来る。さらに、3つの移動成 分のうち1つを固定すれば、鏡枠構造は更に簡単 となり、5つの移動レンズ成分で構成されなが ら、鏡枠構造は2つのレンズ成分で構成されてい 5 望遠側で大きいアンダーな高次球面収差が発生す ることを見ることが出来る。

上記のような基本的構成を持つズームレンズ は、以下の条件を満すことが望ましい。

$0.61_{\rm w} < t_{1.2} + t_{2.3} < 1.01_{\rm w}$	•••••(1)
$0.2 f_w < t_{3.4} + t_{4.5} < 0.5 f_w$	(2)
$0.75f_{\tau} < f_{1} < 1.2f_{\tau}$	••••(3)
$0.5f_w < f_2 < 1.0f_w$	(4)
$0.6 f_w < f_3 < 1.0 f_w$	••••(5)
$0.5f_w < f_4 < 1.0f_w$	•••••(6)
0.9fw <f5<1.5fw< td=""><td>(7)</td></f5<1.5fw<>	(7)
$0.9 f_w < f_{1.2} w < 1.5 f_w$	(8)
$0.8 \sqrt{v} < f_{1.27} / f_{1.2w} < 1.2 \sqrt{v}$	••••(9)

但し

fw:全系の広角端の焦点距離

f - : 全系の望遠端の焦点距離

fi:物体側から第i番目のレンズ成分の焦点距離 flı.zw:第1、第2レンズ成分からなる部分系の 広角端での焦点距離

f 1.27: 同部分系の望遠端での焦点距離

v:ズーム比fャ/fw

ti、i+1:第iレンズ成分と第i+1レンズ成 分との間隔

上記の各条件のうち条件(1)(2)はレンズ成分間隔 を規定するものである。この発明では第1、第 ーミング中tュ。2+t₂。3とt₃。4ナt₄。5は一定のま まに保たれる。

条件(1)が下限を越えると望遠側で球面収差が補 正不足になる。これは、第3レンズ成分に入射す る軸上の周辺光束が、望遠側で高い位置を通るこ 35 とに原因する。逆に上限を越えるとレンズ系が大 型化するとともに広角側で大きなアンダーの歪曲 収差が発生する。

条件(2)が下限を越えると、第3レンズ成分から 第5レンス成分までの部分系の変倍への寄与が少 40 大型化するとともに、広角側と望遠側との歪曲収 なくなり、ズーム比を第1レンズ成分と第2レン ス成分の部分系が負担する割合が過大となり、各 焦点距離の差を補正することが困難になる。逆に 上限より大となるとレンズ系が大型化するととも

に、広角側で大きいアンダーな歪曲収差が発生す

条件(3)ないし(7)は各レンズ成分の屈折力を限定 するもので、5が条件(3)の下限値より小となると る。逆に上限値より大となれば、レンズ系が大型 化するとともに、望遠側で大きいオーバーな歪曲 収差が発生する。

条件(4)の下限値により | 12 | が小となれば、広 10 角側で大きいアンダーな歪曲収差が発生し、逆に 上限値より大となればレンズ系が大型化するとと もに、広角側の球面収差と望遠側の球面収差に大 きな差が生ずる。

条件(5)の下限値よりfaが小となれば、非対称な 15 コマ収差が大きく発生すると共に、広角側で大き いアンダーな歪曲収差が発生する。逆に上限値よ り大となると、レンズ系が大型化すると共に、広 角側で大きいオーバーな球面収差が発生する。

条件(6)(7)の下限値より | f4 | f5が小となると、 20 faが条件(5)の下限値より小となつた場合と同じ収 差補正の悪化が生じる。逆に上限値より大となれ ば、レンズ系が大型化するとともに、望遠側で大 きいオーバーな歪曲収差が発生する。

条件(8)は第1レンス成分と第2レンス成分から 25 なるレンズ系の広角端での合成焦点距離の大きさ を限定し、これが条件(8)の下限値より小となる と、ダが小になるかlセ゚lが大となる。逆に上限 値より大となるとイトが大となるか|f₂|が小とな り、条件(3)(4)で説明したと同じ不都合が生じる。 3、第5レンズ成分は一体として移動するのでズ 30 また、 | f: .zw | が条件(8)の下限値より小となれ ば、広角側でのtタ。₃が小となり、tュ。₂+ t₂。₃が 小さくなりすぎてしまう。逆に上限より大となれ ば、広角側での t 2.3が大きくなり、 t :.2 + t 2.3 が大きくなりすぎてしまう。

> 条件(9)は第1レンズ成分と第2レンズ成分から なる部分系のズーム比への寄与を制限している。 f 1.21 / f 1.2wが条件(9)の下限値より小さくなる と望遠側で大きいアンダーな高次球面収差が発生 する。逆に上限値により大となると、レンズ系が 差が大となる。

上記の条件を満すズームレンズは具体的には、 第1レンズ成分は少なくとも1個の正レンズ群か らなり、1個の正レンズ群は正の単レンズと負の

単レンズからなるダブレットであり、第2レンズ 成分は2個の負レンズ群と1個の正レンズ群とか らなり、物側の第1レンズ群は強い凹面を像側に 向けている負の単レンズであり、第3レンズ成分 は少なくとも2個の正レンズ群からなり、その1 5 値を越えると広角側で大きいアンダーな像画湾曲 個の正レンズ群は正の単レンズと負の単レンズか らなるダブレットであり、第4レンズ成分は少な くとも2個の負レンズ群からなり、1個の負レン ズ群は正の単レンズと負の単レンズからなるダブ レットであり、第5レンズ成分は少なくとも2個 10 て球面収差に対してアンダーに働く正レンズの曲 の正レンズ群からなり、少なくとも1個の正レン ズ群は正の単レンズと負の単レンズからなるダブ レツトであり、

$0.5f_w < R_{2.2} < 0.8f_w$	00	
1.7< NP2	(11)	1
1.7< Nn2	(12)	
40< v N2	(13)	
50< v P3	••••(14)	
40< v N4	••••(15)	
والقيسي والمستقطون	マ株式シムフ /ロ	2

R2.2:第2レンズ成分第1群レンズの像側の曲

Nei:第iレンズ成分の正レンズの屈折率の平均

N_{Ni}:第iレンズ成分の負レンズの屈折率の平均

νρι:第 i レンズ成分の正レンズのアツベ数の平

νм: 第iレンズ成分の負レンズのアツベ数の平 30 した例である。 均值

条件GOは望遠側の球面収差及び広角側の歪曲収 差、像画湾曲の補正に必要な条件である。下限値 を越えると広角側で大きいアンダーな歪曲収差と 大きいオーバーな像画湾曲が発生する。逆に上限 が発生し、望遠側で大きいアンダーな球面収差が 発生する。

条件(11)は望遠側での球面収差の補正に必要な条 件である。下限を越えると第2レンズ成分におい 率が強くなり、望遠側で大きいアンダーな高次の 球面収差が発生する。

条件02は全系のペツバール和を適正な値に保つ とともに、広角側での球面収差と歪曲収差を補正 5 するために必要な条件である。下限値より小とな ると、第2レンズ成分において負レンズの曲率が 強くなり、全系のペツバール和が小さくりすぎ、 広角側でのサジタル像面の湾曲が大きくなり、さ らに、大きいオーバーな高次球面収差と大きいア の条件を満すズームレンズとして構成される。但 20 ンダーな歪曲収差が発生する。

条件(13)(14)(15)は全レンズ系の色収差を補正 するために必要な条件である。第2レンズ成分、 第3レンズ成分そして第4レンズ成分はパワーが 強いので、個々のレンズ成分の色収差が補正され 25 ていないと全系の色収差を補正することは難し い。各条件とも、下限を越えるとそれぞれのレン ズ成分の色収差が補正出来なくなる。

次に、上述の条件を総て満たすことの発明の実 施例を示し、第2実施例は第4レンズ成分を固定

実施例1

 $f = 35.999 \sim 103.015$ F+ $\times \times -3.5 \sim 4.5$ 画角2w=22°22′~64°16′

面Nc.		R	D	n	ν
1	ſ	669, 108	2.00	1.80518	25.4
2		95.689	6,50	1.62299	58.2
3	第1レンズ成分	-175.099	0,20		
4		63.780	5.00	1.62299	58.2
5	[388.022	*t1.2		

	·				
面No.		R	D	n	ν
6	٢	-323.535	1.20	1,77250	49.6
7		24,415	8.37		
8		-81.370	3.00	1.80518	25.4
9	第2レンズ成分	-27.497	1.00	1.77250	49.6
- 10		516.400	0.35		
11		33, 428	3.00	1.80518	25.4
12		41,147	*t2.3		
13		95,165	5.00	1.62299	58.2
14		-19.864	1.00	1.80518	25.4
15	第3レンズ成分	-33.924	0.65		
16		24.217	3,81	1.62299	58.2
17	Į Į	55,063	*t3.4		
18	r	138.811	5.00	1.71736	29.5
19		-18.648	1.00	1.71300	53.8
20	第4レンズ成分	39.238	1.80		
21		-28.760	1.00	1.71300	53.8
22	1	∞	*t4.5		
23		-92.760	4.29	1.71300	53.8
24		-16,115	1.00	1.80518	25.4
25		-26,505	0,05		
26	第5レンズ成分	-50.715	-1.00	1.80610	40.9
27		26.238	5.99	1.58913	61.0
28		-38.981	0.05		
29		51.561	4.39	1.62299	58.2
30		-308.878		<u></u>	

焦点距離	バツクフオーカス	Fナンバー	t1.2	t2.3	t3.4	t4.5
35.999	56.089	3.5	1.500	25,500	3,440	6.860
60,008	64.675	4,0	14.270	12.730	5.050	5,250
103.015	76.267	4.5	25.540	1.460	6.570	3,730

 $t_{1.2} + t_{2.3} = 27.000$ $t_{3.4} + t_{4.5} = 10.300$

 $f_1 = 90.114$ $f_2 = -24.184$ $f_3 = 27.773$ $f_4 = -26.813$ $f_6 = 42.558$

 $f_{1.2}w = -37.038$ $f_{1.2}T = -62.622$ v = 2.862 $\sqrt{v} = 1.692$

 $f_{1.2}T/f_{1.2}w=1.691=1.001\sqrt{v}$

実施例1のレンス断面図は、第1図に、収差曲 40 線図を、第3図に示す。

11

実施例2 f=36.052~103.022 Fナンバー3.5~4.0 画角2w=22°37′~64°1′

西No.		R	D	n	ν
1		82.047	2.00	1.80518	25.4
2		48.782	7,50	1.62299	58.2
3	第1レンズ成分	425, 473	0.20		
4		76.024	4,50	1.62299	58.2
5		200,831	*t1.2		
6		211.625	1.20	1.77250	49.6
7		23. 173	6.55		
8		-89.009	2.80	1.80518	25.4
9	第2レンズ成分	-47.513	1.20	1.77250	49.6
10		146.007	0.20	'	
11		39,898	3.00	1.80518	25.4
12	Ĺ	69.463	*t2.3		
13	ا ا	72,275	3.80	1.62299	58.2
14		-35.507	1.00	1.80518	25.4
15	第3レンズ成分	-51.467	0.20		
16		30.465	3.50	1.62299	58.2
17	L	96.476	*13.4		
18	٢	125,373	3.00	1.71736	29.5
19		-30.425	1.20	1.71300	53.8
20	第4レンズ成分	55.726	1.50		-
21		-32.163	1.00	1.71300	53.8
22	<u> </u>	112.699	*t4.5		
23		-65.289	5.50	1.71300	53.8
24		15.455	1.00	1.80518	25.4
25		-25,919	0.20		
26	第5レンズ成分	-197.048	1.00	1.80610	40.9
27		27,509	7.50	1.62299	58.2
28	i	-53.385	0.20		
29		43.978	7.00	1.62299	58.2
30		98.681			

焦点距離	バツクフォーカス	Fナンバー	t _{1.2}	t2.3	t _{3.4}	t4.6
36.052	55,008	3.5	2.000	29.250	1.990	9.010
57.517	58.018	3.8	14.716	16.534	5.000	6.000
103.022	62.018	4.0	28.254	2,996	9.000	2.000

 $t_{1.2} + t_{2.3} = 31.250$ $t_{3.4} + t_{4.5} = 11.000$

14

 $f_1 = 102.995$ $f_2 = -28.086$ $f_3 = 30.249$ $f_4 = -28.378$ $f_5 = 40.260$ $f_{1.2} w = -45.690$ $f_{1.2} T = -78.049$ v = 2.858 $\sqrt{v} = 1.690$ $f_{1.2}T/f_{1.2}w=1.708=1.011\sqrt{v}$

実施例2のレンズ断面図を、第2図に、収差曲 5 1実施例、第2実施例の構成を示す断面図、第3 線図を、第4図に示す。この実施例において、バ ツクフォーカスと、 t 4.5の和が、64.018であり、 第4レンズ成分が固定されていることを示す。 図面の簡単な説明

図、第4図はそれぞれ第1実施例、第2実施例の 球面収差、非点収差、歪曲収差を示す収差曲線図 である。

第1図、第2図はこの発明のズームレンズの第 10

第1図

広角端

望速端

第2図

-0.5 0 0.5

-5% 0 5%

f = 103.015

-0.5 0

0.5

