Converting a CFG into CNF

 $S \rightarrow aSb \mid E$ (getting rid of E-prod?) $S \rightarrow aSb \mid ab$ $S \rightarrow aAb \mid A$ $A \rightarrow S \mid ab$

Give CFG G:

- Add some productions" → Ĝ
- 2) Remove unit and E-productions
- 3 Simplify to CNF -> G

step 1: P is initialized with P (productions), 86 (NVE)*, A,BEN
Repeat the following two steps

until no further updates are made:

* if $A \rightarrow B$ and $B \rightarrow x$ are K in \hat{p} , then add $A \rightarrow x$ to \hat{p} .

 \Rightarrow if $A \rightarrow aB \times and <math>B \Rightarrow E \times E$

are in \hat{p} , then add $A \rightarrow \alpha \delta$ to \hat{p} .

Step 2: Remove all unit and 2- productions

Also, remove unreachable non-terminals.

 $S \rightarrow aTb | 2 | ab |$

T -> Slab [E] aTb

step 1

step2: S -> aTb lab

T -> ablaTb

step 3: For each terminal a, create a new non terminal (say A) and update the rules.

... (tep 3.1:

2AC3_W24 Page 1

```
and upane ...
Jstep 3.1:
      S -> ATBIAB
      T -> AB | ATB
      A \rightarrow a
 Then break the long sequences
by introducing new non-terminals.
      R->b
     S \rightarrow LB \mid AB
     T -> ABILB
                         note: We could
      L \rightarrow AT
                       have merged S
      A \rightarrow \alpha
                    and I but not
       B > b
                           necessary
    S \rightarrow SS \mid [S] \mid E \mid [] \mid S
                                     Step 1
      step 2: S \rightarrow SS[[S][[]]
                  S \rightarrow SS |AR|LR
        Step3:
                       A -> LS
```

 $\longrightarrow [$

Closure properties of CFLs

* Union: if $A = L(G_1)$ and B = L (G2) for CFGs G, and G2, then AUB is CFG? Yes $S \longrightarrow S_1 \setminus S_2 \longrightarrow Start$ nontermile of G_2 . start symbol of G, \star Concatanation: And then $S_1 \rightarrow -- \star$ Concatanation: $S_2 \rightarrow -- S \rightarrow S_1 S_2$ yes!

* Intersection: the intersection of two CFLs is not necessarily CF. C={anbncn: n>,03 -> not CFG A = { a b c , nzo , k ¿ o 3 B= 3 a K b n c n; n 7,0 , K 2,0 }