ALGEBRA 2 HONORS PROBLEM SET 5

DUE DATE: FEBRUARY 8, 2024

Question 1. Find the partial fraction decomposition for

$$\frac{3x+11}{x^2-x-6}$$

Question 2. One of the zeros of a polynomial function is 1. After translating the graph of the function left 2 units, 1 is a zero of the new function. What do you know about the original function?

Question 3. A function f(x) has a zero at x = 1, a horizontal asymptote of $y = \frac{2}{3}$, and a vertical asymptotes at x = -4.

Define a few different functions:

$$p(x) = 2 \cdot f(x+5)$$

$$q(x) = -f(-x)$$

$$r(x) = \frac{2}{f(x)}$$

Find any zeros (roots), horizontal asymptotes, and vertical asymptotes of the new functions.

Question 4. Graph each of the transformed functions assuming f(x) is the graph below:

Sketch the graph of f(-x), -f(x) and f(x+2)

Question 5. Simplify $\sqrt{108}$ and $\sqrt{875}$ using prime factorization.

Question 6. Simplify the following expressions:

- (a) $(81x^4)^{-1/4}$ (b) $\left(\frac{x^{1/4}}{y^{-3/4}}\right)^{12}$ (c) $\sqrt{8} + \sqrt{18} + \sqrt{98}$

Question 7. Simplify the expression $((2a)^{1/3}(a^2b)^{1/3})^3$.

Question 8 (6 marks). Write each of the following as a power of 2, e.g. write 2 as 2^{1} .

- (a) 2×2^{-4}
- (b) $\frac{16}{2^{-3}}$
- (c) 8^5
- (d) 32
- (e) $\frac{1}{32}$
- (f) $8^x \times 4$