Análisis Estadístico de Enfermedades en el Corazón

Presenta: Pablo César Rodríguez Aguayo

Fecha: 19/Junio/2019

Materia: Fundamentos de Estadística

Parte I: Introducción

Heart Disease UCI (Enfermedades del Corazón UCI)

Esta base de datos contiene 76 atributos, pero todos los experimentos publicados se refieren al uso de un subconjunto de 14 de ellos. En particular, la base de datos de Cleveland es la única que ha sido utilizada por los investigadores de Machine Learning hasta la fecha. El campo "objetivo" se refiere a la presencia de una enfermedad cardíaca en el paciente. Es un valor entero de 0 (sin presencia) a 4. Los experimentos con la base de datos de Cleveland se han concentrado en simplemente intentar distinguir la presencia (valores 1,2,3,4) de la ausencia (valor 0). Los nombres y números de seguridad social de los pacientes se eliminaron recientemente de la base de datos y se reemplazaron con valores fícticios.

Problema Presentado

Dentro de la perspectiva social-sanitaria uno de los mayores retos que enfrentan las organizaciones de salud es la prestación de servicios los cuales permitan al paciente un costo bajo así como accesibilidad, con una calidad superior la cual garantice un diagnóstico objetivo. Un diagnóstico preciso comprende una toma de decisiones correcta la cual permita generar un diagnostico preciso para el paciente. Una decisión medica tomada de una forma no adecuada puede conducir a problemas mayores de salud donde cada vez se vuelven más costosos y difíciles de tratar, ya en última instancia pueden traer al paciente consecuencias desastrosas incluso llegando a la muerte. Habitualmente, las decisiones tomadas por el personal clínico a menudo son tomadas basándose en la intuición de los médicos y experiencia en lugar de las observaciones estadísticas de la información presentada, lo cual termina por llevar a errores de tratamiento, costos excesivos y efectos en la calidad de los servicios médicos de los pacientes.

Significado del Diagnóstico

El diagnóstico de enfermedad cardíaca se realiza mediante una combinación de signos clínicos y resultados de pruebas. Los tipos de pruebas que se realizarán se elegirán en función de lo que el médico cree que está pasando, que va desde los electrocardiogramas y las tomografías computarizadas (TC) cardiacas hasta las pruebas de sangre y las pruebas de esfuerzo con ejercicios.

Alcance del Estudio

Para propositos de esta investigación, se pretende realizar un análsis exploratorio de los factores que influyen sobre las enfermedades cardiacas. Lo cual permtirá posteriormente aplicar diversas técnicas de minería de datos para descubrir patrones dentro de los datos que nos permitan obtener mediciones y descripciones de los datos a través de la estadística descriptiva.

Análisis Exploratorio de Datos

El análisis exploratorio de datos permitirá resumir las características que rodean el fenómeno en cuestión. La importancia del análisis exploratorio permite proporcionar y definir la percepcion del conjunto de datos utilizado. Permtiendo definir los objetivos a través del análisis de los datos mediante resumenes numéricos los cuales se enfocan en el aspecto estadístico. De igual manera, permiten enfocarse en los objetivos de la investigacion a través de la delimitación de los datos no necesarios.

Recolección de Datos y Preprocesamiento

La recolección de datos y preprocesamiento estuvo a cargo de:

- 1. Hungarian Institute of Cardiology. Budapest: Andras Janosi, M.D.
- 2. University Hospital, Zurich, Switzerland: William Steinbrunn, M.D.
- 3. University Hospital, Basel, Switzerland: Matthias Pfisterer, M.D.
- 4. V.A. Medical Center, Long Beach and Cleveland Clinic Foundation: Robert Detrano, M.D., Ph.D.

Siendo donado por: David W. Aha (aha '@' ics.uci.edu) (714) 856-8779

Por lo que se desconocen los métodos de recolección y preprocesamiento empleados.

Parte II: Análisis Exploratorio

Análisis de las Características

Librerías Necesarias

In [91]:

```
library(knitr)
library(moments)
library(ggplot2)
library(GGally)
options(warn=-1)
```

Descripción

In [68]:

```
data <- read.csv(file = "../data/heart.csv", header = TRUE, sep = ",", stringsAsFactors=FALSE)
heart_data <- data.frame(data)</pre>
```

Dentro de las características del conjunto de datos, se presentan las siguientes:

- age: Edad en años.
- **sex:** Sexo como variable dicotómica (1 = masculino, 0 = femenino)
- cp: Tipo de dolor en el pecho.
- **trestbps:** Presión arterial en reposo (en mmHg al ingresar en el hospital)
- chol: Colesterol sérico en mg/dl
- **fbs:** Azúcar en la sangre en ayunas >120mg/dl (1 = verdadero, 0 = falso)
- restecg: Resultados electrocardiográficos en reposo.
- thalach: Ritmo Cardíaco Máximo Alcanzado
- exang: Angina Inducida por el Ejercicio
- oldpeak: Depresión ST inducida por el ejercicio en relación con el descanso.
- slope: La pendiente del segmento pico del ejercicio ST.
- ca: Número de vasos principales (0-3) coloreados por fluoroscopia
- **thal:** 3 = normal, 6 = defecto fijo, 7 = defecto reversible
- target: Enfermo = 1, no enfermo = 0.

Cabecera

In [3]:

head(data)

age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
57	1	0	140	192	0	1	148	0	0.4	1	0	1	1

Cola

```
In [4]
```

tail(data, 5)

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
299	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
300	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
301	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
302	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
303	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

El conjunto de datos está conformado por 14 características y 303 observaciones.

Máximos y Mínimos

Como se ha observado, el conjunto de datos tiene un número considerable de valores por lo que una de las metas es describir estas características y obtener una conclusión. El uso de máximos y mínimos permite el cálculo de otras medidas como el rango el cual se verá posteriormente. Además permite determinar los valores atípicos dentro del conjunto de datos, ya sean los valores atípicos menores o mayores.

In [5]:

```
# --- age ---
women age <- subset(heart_data, sex == 0)[c(1)]
men_age <- subset(heart_data, sex == 1)[c(1)]

# --- trestbps ---
women_trestbps <- subset(heart_data, sex == 0)[c(4)]
men_trestbps <- subset(heart_data, sex == 1)[c(4)]

# --- chol ---
women_chol <- subset(heart_data, sex == 0)[c(5)]
men_chol <- subset(heart_data, sex == 1)[c(5)]

# --- thalach ---
women thalach <- subset(heart_data, sex == 0)[c(8)]
men_thalach <- subset(heart_data, sex == 1)[c(8)]

# --- oldpeak ---
women_oldpeak <- subset(heart_data, sex == 0)[c(10)]
men_oldpeak <- subset(heart_data, sex == 1)[c(10)]</pre>
```

Máximos

A continuación se hace un análisis de los valores máximos de las variables: edad, presión arterial, colesterol, ritmo cardiaco y depresión de los pacientes. Separado por sexo, haciendo una comparación con el análisis en general.

In [6]:

```
max vals_men <- c(max(men_age$age), max(men_trestbps$trestbps), max(men_chol$chol), max(men_thalach$thalach)
, max(men_oldpeak$oldpeak))
max_vals_women <- c(max(women_age$age), max(women_trestbps$trestbps), max(women_chol$chol), max(women_thalach), max(women_oldpeak$oldpeak))
max_vals_general <- c(max(heart_data$age), max(heart_data$trestbps), max(heart_data$chol), max(heart_data$thalach), max(heart_data$oldpeak))

data_gen <- chind(max_vals_general_,max_vals_men, max_vals_women)
df.max_val <- data.frame(data_gen)
colnames(df.max_val) <- sex_ <- c('General', 'Hombre', 'Mujer')
rownames(df.max_val) <- c('Edad', 'Presión Arterial', 'Colesterol', 'Ritmo Cardíaco', 'Depresión ST')

df.max_val</pre>
```

	General	Hombre	Mujer
Edad	77.0	77.0	76.0
Presión Arterial	200.0	192.0	200.0
Colesterol	564.0	353.0	564.0
Ritmo Cardíaco	202.0	202.0	192.0
Depresión ST	6.2	5.6	6.2

Comentarios: Cabe destacar que de lo anterior visto, la *edad* máxima es perteneciente a los hombres por un año. En cuanto a *presión arterial*, se puede ver que el valor mayor corresponde a una mujer tomando el valor de 200, siendo el máximo en hombres menor por 8 unidades. Así mismo pasa con el *colesterol*, siendo el valor máximo encontrado en el subconjunto de las mujeres tomando el valor de 564 y en hombres de 353. Dada la naturaleza aún no estudiada del colesterol, hasta este punto pudiera ser que el colesterol máximo encontrado es un valor atípico. Respecto al *ritmo cardiaco*, se puede apreciar que es mayor en los hombres con un valor de 202, mientras que en mujeres es 10 unidades menor. Por último, se puede ver que en la depresión post-entrenamiento es ligeramente mayor en mujeres por 0.6, tomando las mujeres el valor máximo nuevamente. Hasta este punto, basandose en los aspectos analizados se puede ver que las mujeres tienen los valores máximos en tres de cinco características analizadas, siendo una de ellas un probable valor atípico.

Mínimos

Se define como el valor matemático menor en el conjunto de datos.

In [7]:

```
min_vals_men <- c(min(men_age$age), min(men_trestbps$trestbps), min(men_chol$chol), min(men_thalach$thalach)
, min(men_oldpeak$oldpeak))
min_vals_women <- c(min(women_age$age), min(women_trestbps$trestbps), min(women_chol$chol), min(women_thalach$thalach), min(women_oldpeak$oldpeak))
min_vals_general <- c(min(heart_data$age), min(heart_data$trestbps), min(heart_data$chol), min(heart_data$thalach), min(heart_data$oldpeak))

data_gen <- cbind(min_vals_general_,min_vals_men, min_vals_women)
df.min_val <- data.frame(data_gen)
colnames(df.min_val) <- sex_ <- c('General', 'Hombre', 'Mujer')
rownames(df.min_val) <- c('Edad', 'Presión Arterial', 'Colesterol', 'Ritmo Cardíaco', 'Depresión ST')

df.min_val</pre>
```

	General	Hombre	Mujer
Edad	29	29	34
Presión Arterial	94	94	94
Colesterol	126	126	141
Ritmo Cardíaco	71	71	96
Depresión ST	0	0	0

Comentarios: De acuerdo a los valores mínimos, respecto a la *edad* podemos decir que siendo el valor mínimo perteneciente a un hombre con 29 años y el valor máximo a un hombre igualmente, se puede decir que es más ámplio el rango de edades en los varones. Para este caso, la *presión arterial*, presentó un caso con un valor mínimo de 94 tanto para hombres como para mujeres. Para el *colesterol* se puede ver que el valor mínimo se encuentra en el subconjunto de los hombres, con un valor de 126, mientras que las mujeres poseen un valor mínimo de 141. Para el caso del *ritmo cardiaco*, la presencia en hombres es con un valor mínimo de 71, mientras que en el subconjunto de las mujeres es de 96. Por último, se puede ver que para la depresión postentrenamiento, el valor para todos es 0, lo cual puede ser un posible valor atípico encontrado dentro del conjunto de datos.

Cuartiles, Percentiles y Valores Atípicos

Cuartiles

En términos generales, los cuartiles dividen el conjunto de datos en cuatro partes iguales, con observaciones sobre el tercer cuartil que constituyen el cuarto superior de los datos del conjunto, siendo el segundo cuartil idéntico a la mediana, y el primer cuartil separado al cuarto más bajo de los tres cuartos superiores. Los valores comunmente esperados se encuentran entre el primer cuartil y el tercero, mientras que los valores atípicos se encuentran ya sea por encima del tercer cuartil o bien por debajo del primer cuartil. A continuación se hace el análisis de los cuartiles de los atributos.

Cuartiles Mujeres

In [8]:

```
q_vals_women <- data.frame(
    quantile(women_age$age),
    quantile(women_trestbps$trestbps),
    quantile(women_chol$chol),
    quantile(women_thalach$thalach),
    quantile(women_oldpeak$oldpeak)
)

colnames(q_vals_women) <- c('Edad', 'Presión Arterial', 'Colesterol', 'Ritmo Cardíaco', 'Depresión ST')
    q_vals_women</pre>
```

	Edad	Presión Arterial	Colesterol	Ritmo Cardíaco	Depresión ST
0%	34.00	94	141.00	96.00	0.0
25%	49.75	120	214.75	141.25	0.0
50%	57.00	131	253.00	157.00	0.6
75%	63.00	140	296.75	165.00	1.4
100%	76.00	200	564.00	192.00	6.2

Cuartiles Hombres

In [9]:

```
q_vals_men <- data.frame(
    quantile(men_age$age),
    quantile(men_trestbps$trestbps),
    quantile(men_chol$chol),
    quantile(men_thalach$thalach),
    quantile(men_oldpeak$oldpeak)
)

colnames(q_vals_men) <- c('Edad', 'Presión Arterial', 'Colesterol', 'Ritmo Cardíaco', 'Depresión ST')
q_vals_men</pre>
```

	Edad	Presión Arterial	Colesterol	Ritmo Cardíaco	Depresión ST
0%	29.0	94	126	71	0.0
25%	47.0	120	208	132	0.0
50%	54.0	130	235	151	0.8
75%	59.5	140	268	168	1.8
100%	77.0	192	353	202	5.6

Cuartiles de Diagnóstico en General

In [10]:

```
q_vals_general <- data.frame(
    quantile(heart_data$age),
    quantile(heart_data$trestbps),
    quantile(heart_data$chol),
    quantile(heart_data$thalach),
    quantile(heart_data$thalach),
    quantile(heart_data$oldpeak)
)

Colnames(q_vals_general) <- c('Edad', 'Presión Arterial', 'Colesterol', 'Ritmo Cardíaco', 'Depresión ST')
    q_vals_general</pre>
```

	Edad	Presión Arterial	Colesterol	Ritmo Cardíaco	Depresión ST
0%	29.0	94	126.0	71.0	0.0
25%	47.5	120	211.0	133.5	0.0
50%	55.0	130	240.0	153.0	0.8
75%	61.0	140	274.5	166.0	1.6
100%	77.0	200	564.0	202.0	6.2

Percentiles

Del mismo modo, un conjunto de datos se puede dividir aún más finamente usando percentiles; el percentil 99 separa el 1% más alto del 99% inferior, y así sucesivamente. A menos que el número de observaciones sea múltiplo de 100.

Nota: El percentil en la posición 50, el segundo cuartil, la mediana y el quinto decil son el mismo valor el cual está representado mediante la siguiente fórmula.

```
$P_{50} = \tilde{x} = Q_2 = D_5
```

A continuación analizaremos los percentiles desde la perspectiva de un deciles.

Percentiles en Mujeres

Tn [111

```
q_vals_women <- data.frame(
    quantile(women_age$age, c(.10, .20, .30, .40, .50, .60, .70, .80, .90, 1.0)),
    quantile(women_trestbps$trestbps, c(.10, .20, .30, .40, .50, .60, .70, .80, .90, 1.0)),
    quantile(women_chol$chol, c(.10, .20, .30, .40, .50, .60, .70, .80, .90, 1.0)),
    quantile(women_thalach$thalach, c(.10, .20, .30, .40, .50, .60, .70, .80, .90, 1.0)),
    quantile(women_oldpeak$oldpeak, c(.10, .20, .30, .40, .50, .60, .70, .80, .90, 1.0)))
)

Colnames(q_vals_women) <- c('Edad', 'Presión Arterial', 'Colesterol', 'Ritmo Cardíaco', 'Depresión ST')
    q_vals_women</pre>
```

	Edad	Presión Arterial	Colesterol	Ritmo Cardíaco	Depresión ST
10%	42.0	109.0	197.0	121.5	0.0
20%	46.0	120.0	209.0	133.0	0.0
30%	51.0	121.0	224.0	144.0	0.0
40%	54.0	130.0	240.0	152.0	0.2
50%	57.0	131.0	253.0	157.0	0.6
60%	59.0	136.0	268.0	160.0	0.9
70%	62.0	140.0	285.5	163.0	1.2
80%	64.0	146.0	305.0	169.0	1.5
90%	66.5	157.5	335.0	172.0	2.0
100%	76.0	200.0	564.0	192.0	6.2

Percentiles en Hombres

In [12]:

```
q_vals_men <- data.frame(
    quantile(men_age$age, c(.10, .20, .30, .40, .50, .60, .70, .80, .90, 1.0)),
    quantile(men_trestbps$trestbps, c(.10, .20, .30, .40, .50, .60, .70, .80, .90, 1.0)),
    quantile(men_chol$chol, c(.10, .20, .30, .40, .50, .60, .70, .80, .90, 1.0)),
    quantile(men_thalach$thalach, c(.10, .20, .30, .40, .50, .60, .70, .80, .90, 1.0)),
    quantile(men_oldpeak$oldpeak, c(.10, .20, .30, .40, .50, .60, .70, .80, .90, 1.0))
)

colnames(q_vals_men) <- c('Edad', 'Presión Arterial', 'Colesterol', 'Ritmo Cardíaco', 'Depresión ST')
    q_vals_men</pre>
```

	Edad	Presión Arterial	Colesterol	Ritmo Cardíaco	Depresión ST
10%	42	110	185.6	113.6	0.0
20%	45	120	203.2	127.2	0.0
30%	49	120	213.8	140.0	0.0
40%	52	125	227.4	144.0	0.4
50%	54	130	235.0	151.0	0.8
60%	57	132	247.0	158.0	1.2
70%	59	140	260.0	163.0	1.6
80%	61	142	275.8	171.0	2.0
90%	65	152	299.0	178.4	2.8
100%	77	192	353.0	202.0	5.6

Percentiles de Diagnóstico en General

Tn [13]

```
q_vals_general <- data.frame(
    quantile(heart_data$age, c(.10, .20, .30, .40, .50, .60, .70, .80, .90, 1.0)),
    quantile(heart_data$trestbps, c(.10, .20, .30, .40, .50, .60, .70, .80, .90, 1.0)),
    quantile(heart_data$chol, c(.10, .20, .30, .40, .50, .60, .70, .80, .90, 1.0)),
    quantile(heart_data$thalach, c(.10, .20, .30, .40, .50, .60, .70, .80, .90, 1.0)),
    quantile(heart_data$oldpeak, c(.10, .20, .30, .40, .50, .60, .70, .80, .90, 1.0))
)

colnames(q_vals_general) <- c('Edad', 'Presión Arterial', 'Colesterol', 'Ritmo Cardíaco', 'Depresión ST')
    q_vals_general</pre>
```

	Edad	Presión Arterial	Colesterol	Ritmo Cardíaco	Depresión ST
10%	42	110	188.0	116.0	0.00
20%	45	120	204.0	130.0	0.00
30%	50	120	217.6	140.6	0.00
40%	53	126	230.0	146.0	0.38
50%	55	130	240.0	153.0	0.80
60%	58	134	254.0	159.0	1.12
70%	59	140	268.0	163.0	1.40
80%	62	144	285.2	170.0	1.90
90%	66	152	308.8	176.6	2.80
100%	77	200	564.0	202.0	6.20

Valores Atípicos

Se definen como los valores mucho mayores o menores que los demás valores en el conjunto de datos. O bien, se puede definir como el valor que radica por fuera del conjunto de datos establecido las cuales se distinguen por su distancia a los valores normales

Regla del Pulgar

Siendo una práctica común la *regla del pulgar*, consiste en designar un valor atípico en base a la experiencia obtenida. Para esto, los valores atípicos se calcular mediante dos fórmulas. La primera permite calcular los valores atípicos mínimos, es decir los valores que están por debajo de lo esperado, para esto se emplea la siguiente fórmula:

$$$$V_{ai} = Q_1 - 1.5*IQR$$$$

Donde:

- \$V {ai}\$ son los valores atípicos inferiores.
- \$Q_1\$ es el valor del cuartil 1.
- \$IQR\$ es el valor intercuartil.

Mientras que para calcular los valores atípicos por encima de lo esperado, se emplea la siguiente fórmula:

$$$$V_{as} = Q_3 + 1.5*IQR$$$$

Donde:

- \$V_{as}\$ son los valore atípicos superiores.
- \$Q 3\$ es el valor del cuartil 3.
- \$IQR\$ es el valor intercuartil.

Si bien estas medidas no son utilizadas como la forma adecuada para calcular los valores atípicos, dentro de la industrial son ampliamente aceptadas. Sin embargo, estos métodos solo son usados si el analista de datos es considerado de grado midlevel o senior. Para este caso se utilizará el diagrama de caja para ver la distribución de los datos. Para visualizar los valores atípicos se utilizará el diagrama de caja, este permitirá ver el comportamiento dentro del atributo de los datos.

Rango

El rango permite conocer la diferencia entre el valor máximo y mínimo de la característica seleccionada. Esta medida es considerada como medida de dispersión y permite conocer el intervalo que se haya entre la distribución. Se calcula mediante la siguiente fórmula:

 $R_{var} = max(x) - min(x)$

Indicaciones Generales

A continuación se realizará un análisis para las características: edad y presión arterial. Mostrando los valores mínimos, máximo, rango segundo cuartil, obteniendo un breve análisis de los datos obtenidos.

Edad

```
boxplot(women_age$age,
    main = "Edad en Mujeres",
    xlab = "Edad",
    ylab = "Mujeres",
    col = "red",
    border = "gray",
    horizontal = TRUE,
    notch = TRUE
)
```


Comentarios: De acuerdo a la gráfica anterior se puede apreciar que el valor mínimo está en 34 mientras que su máximo es de 76, con un rango de 42. A su vez se puede apreciar que no hay valores atípicos y que su segundo cuartil es de 57.

```
boxplot(men_age$age,
    main = "tdad en Hombres",
    xlab = "Edad",
    ylab = "Hombres",
    col = "blue",
    border = "gray",
    horizontal = TRUE,
    notch = TRUE
)
```


Comentarios: Para el conjunto de los hombres se puede apreciar un valor mínimo de 29 y un máximo de 77, donde su rango es de 48. A su vez se puede apreciar que no hay valores atípicos y que su segundo cuartil es de 54, esto debido al mayor rango de los datos.

```
boxplot(heart_data$age,
    main = "Edad en Pacientes",
    xlab = "Edad",
    ylab = "General",
    col = "orange",
    border = "brown",
    horizontal = TRUE,
    notch = TRUE
)
```


Comentarios: Para el conjunto general se puede apreciar un valor mínimo de 29 y un máximo de 77, donde su rango es de 42. A su vez se puede apreciar que no hay valores atípicos y que su segundo cuartil es de 55, debido a la suma de ambos conjuntos y.

```
boxplot(women_trestbps$trestbps,
    main = "Presión Arterial en Mujeres",
    xlab = "Presión Arterial",
    ylab = "Mujeres",
    col = "red",
    border = "gray",
    horizontal = TRUE,
    notch = TRUE
)
```


Comentarios: En el subconjunto de las mujeres se puede apreciar un valor mínimo de 94 y un máximo de 200, donde su rango es de 106. Presentando valores atípicos despues del tercer quartil y con segundo cuartil de 131 indicando la mitad de los datos.

```
# --- trestbps ---
boxplot(men_trestbps$trestbps,
    main = "Presión Arterial en Hombres",
    xlab = "Presión Arterial",
    ylab = "Hombres",
    col = "blue",
    border = "gray",
    horizontal = TRUE,
    notch = TRUE
)
```


Comentarios: En el subconjunto de los hombres se puede apreciar un valor mínimo de 94 y un máximo de 192 siendo que menor el rango que el de las mujeres por 8, donde su rango es de 98. Presentando valores atípicos despues del tercer quartil y un segundo cuartil de 131 indicando la mitad de los datos.

```
# --- trestbps ---
boxplot(heart_data$trestbps,
    main = "Presión Arterial en Pacientes",
    xlab = "Presión Arterial",
    ylab = "General",
    col = "orange",
    border = "brown",
    horizontal = TRUE,
    notch = TRUE
)
```


Comentarios: Por último, en el conjunto general se puede ver un valor mínimo de 94 y un máximo de 200 con un rango de 106. Presentando valores atípicos después del tercer cuartil y un segundo cuartil de 130.

Medidas de Tendencia Central

Las medidas de tendencia central permiten obtener indicadores preeliminares que brindan una interpretación numérica de las medidas obtenidas

Media

Primer momento alrededor del cero es la media o valor esperado de la variable aleatoria y se denota por \$\mu\$. La media de una variable aleatoria se considera como una cantidad numérica alrededor de la cual los valores de la variable aleatoria tienden a agruparse. Por lo tanto, la media es una medida de tendencia central. Para el cálculo de la media se utiliza: $$$\prootening x_{=1}^n x_i$ \$

Mediana

La mediana en un conjunto de datos es el valor medio cuando los valores son ordenados de manera ascendente o descendente. Igualmente, en este punto será calculada la mediana para futuras referencias, si n es par entonces se calcula mediante: $\frac{x}{x} = x_{(n + 1)/2}$

Por otro lado si n es impar se calcula: $t=x_{(n+1)/2} + x_{n/2}$

Moda

La moda es un término estadístico que se refiere al número que aparece con mayor frecuencia en un conjunto de números. Esta se encuentra al recopilar y organizar datos para contar la frecuencia de cada resultado. Donde radica sobre su recuento más alto de ocurrencias del conjunto, igualmente se le conoce como el valor modal. \$\$\text{Varlor repetido con más frecuencia}\$\$\$

Conclusiones Generales

Para concluir las medidas de tendencia central se mostrará un histograma de frecuencias el cual contendrá un diagrama de densidad, que nos permite ver la inclinación de la curva, el promedio o media de los datos, la mediana y la desviación estándar como medida de referencia.

Colesterol

In [201:

```
Mode <- function(x) {
    ta = table(x)
    ta = max(ta)
    if (all (ta == tam))
        mod = NA
    else
        if (is_numeric(x))
    mod = As_numeric(names(ta)[ta == tam])
    else
        mod = names(ta)[ta == tam]
    else
        mod = names(ta)[ta == tam]
    feturn(mod)

# --- trestbps ---
    offic(vomen cholschol,
    col = "gray",
    border = "black",
    prob = NULE,
    xlab = "colesterol",
    main = "colesterol",
    nation = "red", lwd = 2)
    legend(x = "senian(women cholschol), col = "red", lwd = 2)
    legend(x = "senian(women_cholschol), col = "red", lwd = 2)
    legend(x = "collesterol", "red", "yellow"),
    lwd = c(2, 2, 2)

# --- Tabla ---
    table women_chol <- dita frame(
        seni(women_cholschol),
    modian(women_cholschol)

colinames(table women_chol) <- sel Median', 'Mediane')
table women_chol</pre>
```


Comentarios: Para esta gráfica se puede apreciar que se obtuvo una mediana media muy cercanas, donde la media tuvo un valor de 261.3, mientras que la mediana tuvo un valor de 253. Se puede observar que la diferencia entre ambas medidas sólo fue de 12 unidades.

Media Mediana

239.2899 235

Comentarios: Para esta gráfica se puede apreciar que se obtuvo una mediana media aún más cercanas, donde la media tuvo un valor de 239.28, por otro lado la mediana tuvo un valor de 235. Se puede observar que la diferencia entre ambas medidas sólo fue de 4.28 unidades. Cabe mencionar que esta gráfica se parece más a la distribución normal, la cual será vista posteriormente.|m

In [22]:

Media Mediana

246.264

240

Comentarios: A partir del conjunto de datos en general, se puede apreciar que de acuerdo a la media la mediana es un valor por debajo por sólo 6.26 unidades. Donde la media fue superior en los tres casos presentados.

Medidas de Dispersión

Las medidas distribución, permiten determinar que tan estirados o compactos están los datos del conjunto. Se puede ver que las medidas de dispersión estadística son la varianza y la desviación estándar son las más comunmente usadas. Estas medidas de dispersión contrastan la ubicación o tendencia central de los datos utilizados.

Varianza

El segundo momento central, alrededor de la media, recibe el nombre de varianza de la variable aleatoria. La varianza de una variable aleatoria es una medida de la dispersión de la distribución de probabilidad de esta. La varianza puede representarse mediante la siguiente fórmula:

```
$s^{2}=\frac{1}{N-1}\sum_{i=1}^N(x_i-\bar{x})^2$
```

Desviación Estándar

La desviación estándar es una medida estadística muestra la dispersión de un conjunto de datos en relación con su media y se calcula como la raíz cuadrada de la varianza. El cálculo realizado a través de la *varianza* permite determinar la variación entre cada punto de datos en relación con la media. Si los puntos de datos están más alejados de la media, hay una mayor desviación dentro del conjunto de datos; por lo tanto, cuanto más dispersos estén los datos, mayor será la desviación estándar. Su representación es la siguiente:

```
s=\sqrt{1}{N-1}\sum_{i=1}^N(x_i-\bar{x})^2
```

```
O bien: $$s=\sqrt{s^2}$$
```

A continuación se realizará un análisis del ritmo cardiáco máximo alcanzado, donde se analizarán las medidas de dispersión y de tendencia central.

In [23]:

```
# --- trestbps ---
iis:(vomen thalachsthalach, # histogram
col = "gray", # column color
border = 'black',
prob = TRUE, # show densities instead of frequencies
xlab = "Blimo Cardiaco Maximo Alcanzado",
main = "Riimo Cardiaco Maximo Alcanzado",
main = "Riimo Cardiaco Maximo Alcanzado en Mujeres")

Lines:(density(women thalach$thalach), # density plot
lwd = 2, # thickness of line
col = "orange")

abline(v = mean(women thalach$thalach), col = "royalblue", lwd = 2)
abline(v = mean(women thalach$thalach), col = "royalblue", lwd = 2)
abline(v = mean(women thalach$thalach) + sd(women_thalach$thalach), col = "cyan", lwd = 2)
abline(v = mean(women thalach$thalach) - sd(women_thalach$thalach), col = "cyan", lwd = 2)
legend(x = "topleft", # location of legend within plot area
[a' Diagrama de Densidad, "Promosio", "Mediana", "Desviación Estándar"),
col = ("orange", "royalblue", "rod", "cyan"),
lwd = c(2, 2, 2))

# --- Tabla ---
table md women thalach <- data frame(
mean(women_thalach$thalach),
sediam(women_thalach$thalach)
sediam(women_thalach$thalach)
sediam(women_thalach$thalach)
sediam(women_thalach$thalach)
sediam(women_thalach$thalach)
sediam(women_thalach$thalach)
sediam(women_thalach$thalach)
```

Media	Mediana	Desviación	Estándar
151.125	157		20.04797

Comentarios: La desviación estándar ayuda a determinar el tamaño de la dispersión de los datos en comparación con el valor medio. A medida que aumenta la variación, se producen más variaciones en los valores de los datos, y puede haber una brecha mayor entre un valor de datos y otro. Para este caso se puede ver que hay una desviación estándar de 20.04, lo cual indica una dispersión respecto a los datos amplia.

```
Tn [24]
```

```
# --- trestbps ---
Disk (men thalach thalach, # histogram
col = "gray", # column color
border = "black",
prob = TRUF, # show densities instead of frequencies
klab = "Bitmo Cardiaco Maximo Alcanzado",
main = "Ritmo Cardiaco Maximo Alcanzado en Hombres")

Linds density (men thalach thalach), # density plot
lwd = 2, # thickness of line
col = "orange")

dbline(v = mean (men thalach thalach), col = "royalblue", lwd = 2)
abline(v = mean (men thalach thalach), col = "royalblue", lwd = 2)
abline(v = mean (men thalach thalach), col = "royalblue", lwd = 2)
abline(v = mean (men thalach thalach), sd (men thalach thalach), col = "cyan", lwd = 2)
abline(v = mean (men thalach thalach) - sd (men thalach thalach), col = "cyan", lwd = 2)

Leseni(x = "topleft", # location of legend within plot area
of "blagrams do bensiedad", "Promedio", "Nediana", "Desviación Estándor"),
col = of "orange", "royalblue", "red", "cyan"),
lwd = of 2, 2, 2)

# --- Tabla ---
table men thalach thalach),
so (men thalach thalach),
so (men thalach thalach),
so (men thalach thalach)
so (men thalach thalach)

colidams (table men thalach) <-- of (Median', 'Mediana', 'Desviación Estándar')
table men thalach
```

Media	Mediana	Desviación	Estándar
148.9614	151		24.13088

Comentarios: Para este segundo caso, se puede observar que la desviación estándar es de 24.13, siendo aún más alta en hombres que en mujeres. Por otro lado, se puede observar que el diagrama de densidad está más centralizado donde incluso se puede ver que la diferencia entre la media y la mediana es muy baja, con un valor de 6 unidades.

```
In [25]
```

```
# --- trestbps ---
hist(heart_data$thalach, # histogram
col = "gray", # column color
border = "histok",
prob = TRUE, # show densities instead of frequencies
xlab = "Ritem Cardiaco Máximo Alcanzado",
main = "Ritem Cardiaco Máximo Alcanzado en Pacientes")

Lines (density(heart_data$thalach), lwd = 2, col = "orango")

abline(v = mean(heart_data$thalach), col = "royalblue", lwd = 2)
abline(v = mean(heart_data$thalach), col = "red", lwd = 2)
abline(v = mean(heart_data$thalach) + sd(heart_data$thalach), col = "cyan", lwd = 2)
deline(v = mean(heart_data$thalach) - sd(heart_data$thalach), col = "cyan", lwd = 2)

legand(x = 'topleft',
c''Diagrama de Densidad', "Promedio", "Nediana", "Desviación Estándar"),
col = c("orange", "royalblue", "red", "cyan"),

# --- Tabla ---
table men_chol <- data. frame(
mean(heart_data$thalach),
mcdian(heart_data$thalach),
sd(heart_data$thalach)

**Colinamos(table men_chol) <- c('Madian', 'Mediana', 'Desviación Estándar')
table men_chol

**Colinamos(table men_chol) <- c('Madian', 'Mediana', 'Desviación Estándar')
table men_chol
```


Comentarios: Por último, se puede observar que para los pacientes en general hay una desviación estándar de 22.9 unidades, con una mediana de 153 y una media de 149.64.

Curtosis y Sesgo

Curtosis

A continuación se analizará la curtosis de los pacientes con el *ritmmo cardiaco máximo* y sus subconjuntos de hombres y mujeres.

In [26]

```
#install.packages('moments')
library(moments)
kurt_pac_thalach <- kurtosis(heart_data$thalach)
kurt_men_thalach <- kurtosis(men_thalach$thalach)
kurt_wom_thalach <- kurtosis(women_thalach$thalach)

data_kurt <- cbind(kurt_pac_thalach, kurt_men_thalach, kurt_wom_thalach)
df.kurt_val <- data.frame(data_kurt)
colnames(df.kurt_val) <- sex_ <- c('General', 'Hombre', 'Mujer')
rownames(df.kurt_val) <- c('Curtosis')

df.kurt_val</pre>
```

```
        General
        Hombre
        Mujer

        Curtosis
        2.919311
        2.810824
        2.995223
```

Comentarios: Para este caso las tres curtosis son menores a tres, lo que representa una curtosis mesocurtica o platicurtica. Lo cual indica que tiene una distribución con menores registros de valores en los extremos, esto significa que la probabilidad de eventos extremos es mayor que lo que implica la curva normal. Es decir, la distribución mesocurtica tiene colas más claras, y su probabilidad de eventos extremos es menor que lo que implica la curva normal.

Sesgo

Esta forma de distribución permite identificar la manera como los datos tienden a reunirse de acuerdo con la frecuencia con que se hallen dentro de la distribución. Las medidas de asimetría son indicadores que permiten establecer el grado de simetría que presentan una distribución de probabilidad de una variable aleatoria sin tener que hacer su representación gráfica. $$A_s = \frac{3(\bar{x})}{s}$

In [27]:

```
skew_pac_thalach <- skewness(heart_data$thalach)
skew_men_thalach <- skewness(men_thalach$thalach)
skew_wom_thalach <- skewness(women_thalach$thalach)

data_skew <- cbind(skew_pac_thalach, skew_men_thalach, skew_wom_thalach)
df.skew_val <- data.frame(data_skew)
colnames(df.skew_val) <- sex_ <- c('General', 'Hombre', 'Mujer')
rownames(df.skew_val) <- c('Sesgo')

df.skew_val</pre>
```

```
        General
        Hombre
        Mujer

        Sesgo
        -0.5347455
        -0.44657
        -0.7496368
```

Comentarios: El analisis del sesgo para los pacientes en general indica que los datos están sesgados moderadamente, ya que su valor es menor que -0.5. Por otro lado, se puede apreciar que el sesgo para los hombres indica una distribución parcial de los datos ya que su valor es mayor a -0.5 y menor que 0.5. Por último, para el caso de las mujeres se puede apreciar que los datos están sesgados moderadamente ya que su valor es menor a -0.5, lo cual indica una distribución mayor de los datos.

Correlación

La correlación mide la forma en la que dos medidas se relacionan, para esto se puede ver que hay tanto correlación positiva como negativa o también llamada inversa. La correlación positiva describe la relación entre dos variables que cambian juntas, mientras que una correlación inversa describe la relación entre dos variables que cambian en direcciones opuestas. La correlación inversa se describe a veces como correlación negativa, que describe el mismo tipo de relación entre las variables.

```
In [29]
```

```
ormat <- round(cor(heart_data),2)
ibrary(reshape2)
oltod cormat < round(cormat)</pre>
```


Comentarios: Para este caso se puede observar tanto correlacones negativas como positivas. A continuación analizaremos la relación entre algunas de las variables:

- age-sex: En esta correlación se puede apreciar que hay una correlación neativa por lo que indica que ambas variables no camian juntas.
- thalach-cp: Estas variables indican una correlación positiva, sin embargo dado su valor se puede ver que no es una correlación fuerte.

Cabe destacar que la correlación no necesariamente implica una causa, las variables A y B pueden subir y bajar juntas, o A puede aumentar a medida que B cae, pero no siempre es cierto que el aumento de un factor influye directamente en el aumento o la caída del otro. Ambos pueden ser causados por un tercer factor subyacente, como una variable C, o la relación aparente entre las variables podría ser una coincidencia.

Principal Component Analysisi

Graph of individuals. Individuals with a similar profile are grouped together.

```
In [31]:
```

```
library(factoextra)
res.pca <- prcomp(heart_data[c(1:length(heart_data) - 1)], scale = TRUE)
fviz_eig(res.pca)</pre>
```

Welcome! Related Books: `Practical Guide To Cluster Analysis in R` at https://goo.gl/13EFCZ

Graph of variables. Positive correlated variables point to the same side of the plot. Negative correlated variables point to opposite sides of the graph.

```
In [32]:
```


Biplot of individuals and variables

In [33]:

Access to the PCA results

In [34]:

Eigenvalues
eig.val <- get_eigenvalue(res.pca)
eig.val</pre>

	eigenvalue	variance.per	cent cumula	ative.variance	e.percent							
Dim.1	2.7630269	21.254	1053		21.25405							
Dim.2	1.5366920	11.820	0708		33.07476							
Dim.3	1.2228343	9.406	5418		42.48118							
Dim.4	1.1811455	9.085	5735		51.56691							
Dim.5	1.0219665	7.861	1281		59.42819							
Dim.6	0.9700159	7.461	1661		66.88985							
Dim.7	0.8627699	6.636	5692		73.52655							
Dim.8	0.7759454	5.968	3811		79.49536							
Dim.9	0.7189255	5.530	0196		85.02555							
Dim.10	0.6215702	4.781	1309		89.80686							
Dim.11	0.5301048	4.077	7729		93.88459							
Dim.12	0.4231424	3.254	3.254941									
Dim.13	0.3718607	2.860	2.860467									
	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5	Dim.6	Dim.7	Dim.	.8			
age	-0.5222786	0.50347568	-0.10403165	0.02245535	-0.31050834	0.12635808	-0.20781270	0.2312102	29 0.321			
sex	-0.1509939	-0.46832338	0.61356239	0.27747086	0.05125827	-0.05413838	-0.15094513	0.1550273	36 0.168			
ср	0.4564623	0.36850110	0.39474876	-0.31289166	0.16496196	0.19048947	-0.20006550	0.0422380	0.297			
trestbps	-0.3057187	0.54319112	0.22542031	-0.02456292	0.19019324	0.17674887	0.30908860	0.5244162	25 -0.297			
chol	-0.1951050	0.45186391	-0.45098036	0.37321957	0.32356298	0.10314751	0.04581978	3 -0.3280216	66 0.130			
fbs	-0.1224070	0.39350103	0.53271279	0.07456062	-0.23599187	-0.24584293	0.47447559	0.3812993	34 0.150			
restecg	0.2123139	-0.27381256	-0.09862886	-0.28919402	-0.39796753	0.65674039	0.36865838	3 -0.0879475	0.032			
thalach	0.6923180	0.09653795	0.17500161	0.20010843	0.32681574	0.11915684	0.09425327	-0.1263718	33 -0.315			
exang	-0.6005116	-0.32616984	-0.13972690	0.12504368	0.03491293	-0.22721416	0.41790872	0.0991925	0.049			
oldpeak	-0.6975388	-0.06477703	0.12201921	-0.35462015	0.25331650	0.16751058	-0.10485631	-0.1694132	20 -0.198			
slope	0.6312709	0.05996623	-0.08162973	0.53780439	-0.24951895	0.06310151	0.05112224	0.2306199	0.024			
ca	-0.4542253	0.11670806	0.20299435	0.35648984	-0.44012091	0.17935655	-0.31358672	-0.2287448	31 -0.411			
thal	-0.3690558	-0.24881981	0.13823961	0.42297521	0.33557659	0.50116967	0.05124006	-0.0302570	0.240			
_												
	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5	Dim.6	Dim.7	Dim.8	Di			
age	9.8723226	16.4956780	0.8850409	0.04269101	9.4343041	1.6459901	5.0055194	6.8894280	14.36411			
sex			30.7857576	6.51825495	0.2570936	0.3021563	2.6408467	3.0973161	3.95712			
ср	7.5409275		12.7430660	8.28866463	2.6627532	3.7407879	4.6392673	0.2299196				
trestbps			4.1554538	0.05108065	3.5395941	3.2205827	11.0731446		12.27744			
chol			16.6321213	11.79303041	10.2442693	1.0968284	0.2433386		2.37083			
fbs			23.2069802	0.47066905	5.4495094		26.0935245		3.13305			
restecg	1.6314420		0.7955005	7.08068391	15.4973918		15.7526353	0.9968185	0.14672			
	17.3470677		2.5044738	3.39021587	10.4512745	1.4637237	1.0296694		13.84171			
J	13.0514172		1.5965864	1.32379306	0.1192713		20.2426733	1.2680236	0.34222			
	17.6096880			10.64690595	6.2789969	2.8927151	1.2743659	3.6988213	5.45703			
	14.4226939			24.48754714	6.0921472	0.4104882	0.3029178	6.8542924	0.08125			
ca				10.75947060	18.9542817		11.3977816		23.60098			
thal	4.9294546	4.0288685	1.5627783	15.14699276	11.0191129	25.8934981	0.3043156	0.1179839	8.07702			

		Dir	n.1	Di	m.2	D	im.3		Dim.4		Dim.5		Dim.6		Dim.7		Dim.8
-	age	0.272774	193	0.253487	765	0.01082	2583	0.00050	42429	0.0964	15431	0.0159	66365	0.0431	186116	0.0534	4581985
	sex	0.022799	915	0.219326	789	0.37645	8803	0.07699	00759	0.0026	27411	0.0029	30964	0.0227	784431	0.0240	0334808
	cn	0.20835	726	0.135793	060	0 15582	6582	0 00790	11003	0 0272	12447	0.0362	26236	0.0400	126203	0.001	7840506
tresti	bps	0.093463	391	0.295056	589	0.05081	4314	0.00060	33369	0.0361	73467	0.0312	40163	0.0955	535761	0.2750)124000
c	hol	0.038065	594	0.204180	992	0.20338	3285	0.13929	28495	0.1046	93004	0.0106	39409	0.0020)99452	0.107	5982096
	fbs	0.014983	348	0.154843	061	0.28378	2914	0.00555	92863	0.0556	92163	0.0604	38748	0.2251	127082	0.145	8891856
rest	ecg	0.04507	718	0.074973	320	0.00972	7653	0.08363	31803	0.1583	78159	0.4313	07945	0.1359	909000	0.007	7347673
thala	ach	0.479304	415	0.009319	576	0.03062	5564	0.04004	33827	0.1068	08529	0.0141	.98352	0.0088	383678	0.0159	9698406
exa	ang	0.360614	41/	0.106386	767	0.01952	3606	0.01563	359223	0.0012	18913	0.0516	26275	0.1/46	04/698	0.0098	3391/0/
oldpo	eak	0.486560	042	0.004196	064	0.01488	8687	0.12575	54518	0.0641	69247	0.0280	59796	0.0109	994845	0.028	7008331
slo	ope	0.398502	291	0.003595	949	0.00666	3413	0.28923	35642	0.0622	59706	0.0039	81800	0.0026	513483	0.053	1855648
	ca	0.206320	066	0.013620	772	0.04120	6707	0.12708	350042	0.1937	06417	0.0321	.68772	0.0983	336632	0.052	3241859
t	thal	0.136202	216	0.061911	.300	0.01911	0189	0.17890	80252	0.1126	11646	0.2511	71040	0.0026	525544	0.0009	9154908
_	_		_		_					_							
		Dim.1		Dim.2		Dim.3		Dim.4		Dim.5		Dim.6		Dim.7	I	Dim.8	D
1				1743663	2.4	7058555	-2.67	7181961	0.37	463354	-1.71	073661	-0.120	15287	-0.735	34031	0.6378
2				5576989		3771273				001191		555946					-1.2397
3				4281395						636898					0.063		-1.2910
4				9451926 0065881				0770555		520879 137015					0.177		0.1527 0.1860
5 6				8225001				9151361		566901		535335		71962	-0.606 1.132		-0.6190
7		7253341		5780795				1586330		290986							-0.3150
8				5009215		3603569		3384433		629204		436743			-0.099		0.4384
9)423692		7607951		3099630		9570094		626214		192367		.20529		65258	0.4588
10		2216820		5994488		9824820		1088660		281419		900010		13757	1.559		-0.3623
11				3039967				2338223		033416		040864		14623		65918	-0.4500
12		5545000		6498196				3241903		717540		142596		99001	-0.075		0.4027
13	1.72	2753584	-0.3	6152440	-0.08	8410139	0.28	3186822	0.15	209741	0.499	962349	0.236	64448	0.175	75168	-0.0961
14				6549625		0053034	-1.18	3694021	0.50	741068	-1.059	936860	-1.104	75251	0.207	62335	1.6495
15	1.13	3716882	3.3	0957543	0.93	2039458	-0.20	0270778	0.42	721083	-0.599	923499	0.942	47599	-0.513	21449	0.6743
16	1.15	115297	0.0	3382832	-0.5	6061795	-2.02	2975472	0.20	294816	0.59	566475	-0.126	57273	-0.730	31729	-0.1168
17	2.04	1950593	1.4	4066053	-1.7	7068091	0.15	5536136	0.13	134457	0.89	571076	0.098	41362	-0.766	24625	0.7171
18	-1.24	1454687	1.5	6304651	-0.1	7602508	-3.70	0235381	0.18	033173	1.14	031737	-0.535	01382	0.338	77693	0.7799
19	1.17	704082	-0.5	9230852	0.09	9965677	0.14	1259104	0.48	835645	0.52	555719	0.867	03638	0.715	13956	-1.3241
20	0.38	3715853	2.0	4171929	-0.1	2657064	-0.82	2666498	-1.25	111658	1.74	898825	-1.026	24091	0.235	23667	-0.1540
21	0.01	.093038	-0.7	3831219	0.0	2170127	0.14	1544671	0.29	179428	1.09	963575	0.229	62044	0.509	08974	0.3861
22	1.69	0008792	-1.0	5304011	0.3	4054164	0.13	3831149	0.41	878583	0.07	161138	1.132	28655	0.444	59406	-0.0274
23	2.03	348089	-0.9	4325625	0.0	6483101	0.49	9187919	0.06	029596	0.18	391936	0.858	79842	0.702	28429	-1.0403
24	-0.93	3401447	0.9	2008769	1.5	5729534	-0.89	9919654	-0.59	797957	-0.40	208011	2.202	86632	0.066	54351	1.3242
25	1.32	2445078	-1.3	0938351	1.4	0392102	-0.04	1132613	1.35	335214	1.20	842779	1.167	94166	0.650	77766	0.1245
26	0.13	3941429	2.5	9825876	-1.1	5935666	0.60	0930785	-1.17	828109	1.58	740410	-0.033	82630	0.775	23772	-0.8610
27	0.73	3747489	1.2	9219856	2.1	6630608	-0.55	5886184	-0.78	405326	0.29	559339	1.384	51917	0.191	97484	0.6248

28	1.46742523	-1.28692655	0.39299029	-0.95554959	-1.21139712	0.07321957	-0.70005206	0.46262110	1.2367
29	0.14447958	4.11119074	-0.54264128	1.32967133	0.21309463	-0.39694476	0.58368513	-1.75612346	0.8701
30	-0.23306081	0.68273388	2.45065079	-1.67394624	0.50448699	-1.58511352	0.22192901	-1.11483719	0.7257
	:	:	:	:	:	:	:	:	
274	0.8152840	-1.4859302	-0.38759183	1.3842905	-1.033020723	0.9244189	-0.63391258	-0.43939783	0.77657
275	-1.2836869	-1.5000630	-0.84077136	0.3718852	0.037864951	-1.8088468	-0.36650358	-0.56269256	0.21695
276	0.4362096	-1.1919897	0.48619635	1.3569622	-0.759911211	1.4243233	-0.39718889	-0.08428858	-0.88969
277	-1.8612323	-0.7865629	0.22096055	-0.5279537	-0.547590643	1.2677562	-0.27633247	0.81688008	0.20986
278	0.7253126	-0.6051624	-0.22897715	0.7534695	-0.159708122	1.1698201	-0.09266754	0.42069861	1.35454
279	0.3154472	2.8320387	-0.02247219	1.4539467	-1.025325647	-0.8876986	0.52114775	-1.43376828	-0.20656
280	-2.6272350	-1.0342010	0.49277046	-1.0289439	-0.148421748	-1.1269798	-0.50563766	1.10097955	-0.71884
281	-0.7630684	-0.9892299	-1.23041479	-1.0389562	0.139301412	-1.1195727	1.23608344	-0.16818567	-0.58323
282	0.2349479	-0.1621491	0.73282851	-1.7103604	-1.902811092	-2.7697663	2.29141192	-0.57403598	-0.64566
283	-0.1803919	0.9709500	1.83337748	-1.9595981	-1.766950877	-0.7284368	0.26507689	-1.24383774	0.38951
284	1.6755545	-1.0716031	0.47353328	1.1117505	0.822637829	1.1193309	1.23628413	0.99848808	-0.95703
285	-1.6365841	-0.8245045	0.20605508	1.2610576	0.084430167	-0.2689683	-0.02637910	1.44322804	0.00430
286	-2.2849405	-1.2270638	-0.46105694	0.8111165	0.184495549	0.9617126	0.70739429	-0.47682442	-0.44869
287	1.2418140	0.4701786	1.35427007	-0.1562651	-1.145174635	1.2692701	-1.12981275	0.46842304	-0.10608
288	0.8555346	0.8720629	0.62324887	0.9830020	0.023627330	-0.4253135	-0.59499325	1.54506513	-0.65627
289	-2.1535021	-1.3837784	-1.01909608	0.5607041	0.648207792	0.9778051	0.20541224	-1.43858925	0.54105
290	-1.4158223	-1.5462924	-1.31136931	-1.2057230	-1.150560991	2.0419095	1.61559180	-0.27184089	-0.22989
291	0.4053892	-0.3490172	0.40820887	1.1921613	-0.762009490	1.4070824	0.20529153	1.48463681	-0.21040
292	-2.1656948	-0.5305697	-0.56706155	-2.1560895	-1.545266891	1.5368666	-1.04164653	-2.61496647	-1.75699
293	-2.2380574	2.2752467	0.63775798	-0.9625993	-0.947682171	-1.9647919	1.76495377	-0.11310801	-2.35741
294	-0.4134739	0.8346719	1.12342761	-0.2286554	1.042078016	0.4347537	-0.91589480	1.59156415	1.04151
295	-0.9660627	-2.3852398	0.05778334	-2.9124522	-0.117036390	-1.4071777	0.64191280	-0.31406212	-1.16990
296	-2.5775912	-0.8577670	0.76324603	0.9119308	0.005444774	0.2362637	-0.60242087	1.00535370	-0.96668
297	-0.4136300	-0.5785253	-1.74047389	-1.0754744	-1.228178569	-0.4406689	1.04133269	0.67466405	0.40308
298	-1.8924235	1.4654424	1.84483212	-0.9186031	-2.492015276	-2.2974258	0.20035262	0.85102742	-0.76727
299	-1.1447781	-0.5186715	-1.70519914	-0.3432780	-0.180074366	0.5189217	1.54765435	0.72045638	0.59884
300	0.7074226	-1.0440248	0.54391023	-0.9221354	0.898440762	1.2182480	-0.69392414	-1.03337782	1.74228
301	-2.4549443	0.4774720	2.20456939	-0.2589481	-1.332485524	1.2105776	0.54289419	-0.70893817	-0.25169
302	-1.7598441	-2.3329569	0.45400154	-0.5359201	-1.180654313	0.3586843	0.44169649	1.17948821	0.35239
303	0.8586364	1.0667509	-0.68893461	-0.2300728	0.223745865	-0.5960070	-0.74284931	-0.16349972	-0.80045
_						•			
	Dim.1	Dim.	2 Dir	n.3 D	im.4	Dim.5	Dim.6	Dim.7	Dim.

	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5	Dim.6	Dim.7	Dim.
1	4.637243e- 02	1.1534168060	1.6473639400	1.9946570291	4.532460e-02	0.995737428	0.0055224354	0.22998683
2	2.475388e- 02	0.1961901631	0.3493453725	1.6402119569	1.664091e+00	0.210494938	0.0025332861	0.99936603
3	3.981726e- 01	0.0003936780	0.0550136515	0.0459999703	2.423966e-01	0.199782269	0.0041915945	0.00171062
4	3.505696e- 01	0.0525214806	0.0002523929	0.0035035375	1.786602e-02	0.085683951	0.0077697109	0.01335067
5	1.641793e- 02	0.0194141509	2.1712895261	0.1822888493	4.174970e-05	0.002478676	0.7640206710	0.15626442
6	5.012433e- 02	0.0313809110	0.0015862633	0.6215962821	4.165089e-01	0.170457094	0.0042753686	0.54594568
7	6.284178e- 04	0.4564268315	0.4015549705	0.1431904865	4.144875e-01	0.081418986	0.0502837322	0.00421271
8	4.324626e- 01	0.2840768342	0.0003504737	0.3282371910	1.307476e-01	0.392721068	0.0402845754	0.02785033
9	9.766450e- 02	0.2970598148	2.0129453459	0.0244320208	8.540359e-05	0.405660845	1.8199332400	0.36364983
	2.415873e-							

10	01	0.0007717467	0.4548887695	0.2318369159	2.781951e-03	0.319467129	0.0004200525	1.03382353
11	8.186660e- 02	0.0397845451	0.0079921285	0.0042536250	2.188684e-02	0.072121619	0.0549890030	0.32168024
12	3.722915e- 01	0.0949708364	0.4206362228	0.1117541925	1.973019e-02	0.115018412	0.0360504635	0.00240814
13	3.564728e- 01	0.0280702163	0.0019089568	0.0221996529	7.470752e-03	0.084930608	0.0214217587	0.01313787
14	2.726747e- 02	0.0286903865	0.0973329019	0.3936512690	8.314572e-02	0.381832357	0.4668661313	0.01833490
15	1.544622e- 01	2.3524213254	0.2286324477	0.0114813985	5.893933e-02	0.122172333	0.3397840320	0.11202734
16	1.582845e- 01	0.0002457714	0.0848249778	1.1511743010	1.330120e-02	0.120720863	0.0061283375	0.22685553
17	5.017306e- 01	0.4457525678	0.8461948342	0.0067443482	5.571151e-03	0.273579337	0.0037048685	0.24972553
18	1.850098e- 01	0.5247039626	0.0083625521	3.8300972954	1.050183e-02	0.442415172	0.1094945186	0.04881506
19	1.654837e- 01	0.0753470937	0.0026804230	0.0056811786	7.701841e-02	0.093976333	0.2875656511	0.21752432
20	1.790399e- 02	0.8952876699	0.0043237019	0.1909470903	5.054943e-01	1.040764127	0.4028663757	0.02353619
21	1.427061e- 05	0.1170713472	0.0001271042	0.0059110107	2.749630e-02	0.411411315	0.0201689587	0.11023383
22	3.411857e- 01	0.2381553619	0.0312989815	0.0053452805	5.663757e-02	0.001744788	0.4904277919	0.08407241
23	4.939153e- 01	0.1910864627	0.0011343717	0.0676037633	1.174079e-03	0.011508890	0.2821271237	0.20977422
24	1.042028e- 01	0.1818146937	0.6545332734	0.2259244431	1.154764e-01	0.055005195	1.8562593713	0.00188337
25	2.095289e- 01	0.3682173695	0.5319552667	0.0004772034	5.914831e-01	0.496843881	0.5218007193	0.18013225
26	2.321597e- 03	1.4498909510	0.3627637480	0.1037355251	4.483514e-01	0.857340875	0.0004376949	0.25562069
27	6.496310e- 02	0.3586154927	1.2665705880	0.0872695779	1.985235e-01	0.029728156	0.7332639285	0.01567526
28	2.572079e- 01	0.3556952455	0.0416824659	0.2551293548	4.739077e-01	0.001824034	0.1874662288	0.09102844
29	2.493361e- 03	3.6299930444	0.0794722324	0.4940177754	1.466445e-02	0.053609121	0.1303225690	1.31170541
30	6.487999e- 03	0.1001090749	1.6208865500	0.7829553182	8.219031e-02	0.854868422	0.0188404177	0.52862673
i	1	:	:	:	:	:	:	
274	0.079394438	0.474206374	0.0405451572	0.535437094	3.446186e-01	0.29074761	0.1537167221	0.08211869
275	0.196829628	0.483269641	0.1907855954	0.038643072	4.630155e-04	1.11322286	0.0513829234	0.13466928
276	0.022728082	0.305151509	0.0637988942	0.514504873	1.864861e-01	0.69023293	0.0603471206	0.00302178
277	0.413783716	0.132873214	0.0131770821	0.077883519	9.683508e-02	0.54682705	0.0292096409	0.28381989
278	0.062838048	0.078652846	0.0141505742	0.158630019	8.237107e-03	0.46560399	0.0032848656	0.07527805
279	0.011885724	1.722538378	0.0001362952	0.590678162	3.395036e-01	0.26810792	0.1038924781	0.87434766
280	0.824460944	0.229710293	0.0655358723	0.295826695	7.114031e-03	0.43212638	0.0978005264	0.51556654
281	0.069550334	0.210167248	0.4085948116	0.301611896	6.266596e-03	0.42646474	0.5844642431	0.01203106
282	0.006593493	0.005646764	0.1449420749	0.817389805	1.169263e+00	2.61014590	2.0084855291	0.14015366
283	0.003886927	0.202471676	0.9071801576	1.072970956	1.008253e+00	0.18053536	0.0268785662	0.65804210
284	0.335343107	0.246625779	0.0605188638	0.345357277	2.185436e-01	0.42628056	0.5846540508	0.42404504
	0.319925546		0.0114592556	0.444348566	2.302057e-03		0.0002661842	
286	0.623622898	0.323373807	0.0573718542	0.183831724	1.099240e-02	0.31467998	0.1914191870	0.09670372
	0.184198188		0.4949944372	0.006823038	4.235105e-01		0.4882871704	
288	0.087427366		0.1048365593	0.269999384	1.802810e-04		0.1354211372	
289	0.553940186		0.2802980127	0.087845871	1.356904e-01		0.0161404262	
290	0.239436158	0.513515787	0.4641301639	0.406208535	4.275038e-01	1.41857245	0.9984484577	0.03143082

291	0.019629836	0.026161594	0.0449732874	0.397122030	1.875173e-(01 0.67362403	0.0161214630	0.93749005
292	0.560230517	0.060458233	0.0867860966	1.298935309	7.711302e-0	01 0.80362024	0.4150525778	3 2.90842901
293	0.598294056	1.111802150	0.1097745237	0.258907762	2.900321e-0	01 1.31344431	1.1915960140	0.00544142
294	0.020420595	0.149624286	0.3406276866	0.014608874	3.506882e-0	01 0.06430802	0.3208880623	1 1.07739391
295	0.111476377	1.221897089	0.0009011458	2.370126727	4.423464e-0	03 0.67371533	0.157621131	7 0.04195245
296	0.793597591	0.158018974	0.1572240090	0.232368781	9.573714e-0	06 0.01899207	0.1388233080	0.42989657
297	0.020436022	0.071881180	0.8175696963	0.323187157	4.871287e-0	01 0.06606984	0.4148025083	3 0.19359822
298	0.427768632	0.461219939	0.9185513933	0.235781508	2.005497e+0	00 1.79581466	0.0153550923	3 0.30804440
299	0.156536238	0.057777038	0.7847656207	0.032926531	1.047188e-0	02 0.09161830	0.9162422532	2 0.22077078
300	0.059776452	0.234095018	0.0798443533	0.237598304	2.606751e-0	01 0.50495180	0.1841986190	0.45419723
301	0.719872455	0.048962822	1.3117084174	0.018736106	5.733842e-(01 0.49861324	0.1127438230	0.21376812
302	0.369930944	1.168917784	0.0556294057	0.080251672	4.501593e-0	01 0.04377270	0.0746294543	3 0.59171615
303	0 088062460	n 244397385	N 128N99NN82	0 014790558	1_616705e-0 	n2	0_2110881338	R 0 01136999
	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5	Dim.6	Dim.7	Dim.8
1	1.581614e- 02	0.2187906353	0.2486639281	0.2908220013	5.717765e- 03	0.1192282838	0.0005881407	0.0220287442
2	1.053331e- 02	0.0464301935	0.0657898718	0.2983594593	2.619088e- 01	0.0314453858	0.0003366012	0.1194241527
3	3.536748e- 01	0.0001944803	0.0216264736	0.0174666084	7.963625e- 02	0.0622993343	0.0011625774	0.0004267115
4	5.119396e- 01	0.0426563041	0.0001631188	0.0021871048	9.649924e- 03	0.0439276282	0.0035429032	0.0054751208
5	1.048567e- 02	0.0068960127	0.6137311578	0.0497687039	9.862406e- 06	0.0005557652	0.1523677065	0.0280274829
6	4.175036e- 02	0.0145371382	0.0005847489	0.2213290159	1.283180e- 01	0.0498448690	0.0011119752	0.1277047730
7	8.502953e- 04	0.3434742301	0.2404632863	0.0828235286	2.074361e- 01	0.0386759231	0.0212450943	0.0016007713
8	4.346590e- 01	0.1587953057	0.0001558971	0.1410282771	4.860549e- 02	0.1385728173	0.0126429610	0.0078609788
9	4.570422e- 02	0.0773152491	0.4169020373	0.0048876176	1.478248e- 05	0.0666463473	0.2659407433	0.0477913137
10	2.134957e- 01	0.0003793075	0.1779109411	0.0875821950	9.093183e- 04	0.0991139644	0.0001159120	0.2565708997
11	1.371603e- 01	0.0370712890	0.0059260666	0.0030464851	1.356301e- 02	0.0424209863	0.0287678433	0.1513533390
12	3.954678e- 01	0.0561073805	0.1977503130	0.0507469713	7.751946e- 03	0.0428932648	0.0119577302	0.0007183846
13	5.780950e- 01	0.0253174687	0.0013700973	0.0153899525	4.481142e- 03	0.0483538168	0.0108477037	0.0059833450
14	1.845837e- 02	0.0108015618	0.0291602072	0.1139143359	2.081804e- 02	0.0907433668	0.0986848966	0.0034855642
15	7.602609e- 02	0.6439576692	0.0498036140	0.0024157588	UZ	0.0211109163	0.0522219813	0.0154849774
16	1.861713e- 01	0.0001607709	0.0441550820	0.5788070589	5.786513e- 03	0.0498483167	0.0022507487	0.0749324386
17	3.512355e- 01	0.1735494940	0.2621685839	0.0020183016	1.442528e- 03	0.0672364535	0.0008098610	0.0490949437
18	7.540973e- 02		0.0015085301		03	0.0633076767		
19	1.686490e- 01	0.0427067538	0.0012089662	0.0024750562	2.903183e- 02	0.0336233174	0.0915114071	0.0622561413
20	1.108253e- 02					0.2261699827	0.0778681456	0.0040913933
21	2.058509e- 05		0.0000811433			0.2083435894	0.0090845527	0.0446551075
22	2.993863e- 01	0.1162259585	0.0121549663	0.0020050714	1.838219e- 02	0.0005374987	0.1343773317	0.0207176567
23	4.547435e- 01	0.0978465855	0.0004622234	0.0266074466	3.998184e- 04	0.0037199850	0.0811089468	0.0542390660
24	6.624011e-	0.0642794700	0.1841432560	0.0613936002	2.715104e-	0.0122754953	0.3684598198	0.0003362213

	02				02			
25	1.147864e- 01	0.1121895311	0.1289745303	0.0001117553	1.198506e- 01	0.0955564514	0.0892608262	0.0277130212
26	1.379224e- 03	0.4790545832	0.0953793417	0.0263447294	9.851855e- 02	0.1788113973	0.0000811950	0.0426471480
27	4.414558e- 02	0.1355349234	0.3809187459	0.0253513806	4.989808e- 02	0.0070922192	0.1555932153	0.0029914473
28	2.221558e- 01	0.1708650306	0.0159334313	0.0942002666	1.513975e- 01	0.0005530954	0.0505599154	0.0220798719
29	8.613110e- 04	0.6974005940	0.0121499003	0.0729517423	1.873666e- 03	0.0065014049	0.0140573779	0.1272498126
30	3.490299e- 03	0.0299520848	0.3859108657	0.1800558181	1.635400e- 02	0.1614525430	0.0031648440	0.0798632625
:	÷	:	:	:	:		:	:
274	0.071629470	0.237941811	1.618912e-02	0.206503969	1.149984e- 01	0.092089801	4.330446e-02	0.0208060542
275	0.169464222	0.231408220	7.269686e-02	0.014222551	1.474466e- 04	0.336483205	1.381390e-02	0.0325613311
276	0.024255013	0.181115642	3.013244e-02	0.234718058	7.360998e- 02	0.258599760	2.010968e-02	0.0009056252
277	0.340858021	0.060875043	4.803988e-03	0.027426095	2.950424e- 02	0.158140766	7.513395e-03	0.0656582034
278	0.094886379	0.066053730	9.456659e-03	0.102396439	4.600526e- 03	0.246826398	1.548848e-03	0.0319224050
279	0.006582537	0.530564649	3.340648e-05	0.139841763	6.954463e- 02	0.052127998	1.796643e-02	0.1359871514
280	0.478902385	0.074209428	1.684762e-02	0.073456895	1.528425e- 03	0.088121406	1.773895e-02	0.0841022616
281	0.038393131	0.064523967	9.982278e-02	0.071173949	1.279492e- 03	0.082647774	1.007447e-01	0.0018651104
282	0.002125247	0.001012267	2.067620e-02	0.112626686	1.393983e- 01	0.295360427	2.021494e-01	0.0126865718
283	0.002074537	0.060100873	2.142845e-01	0.244805428	1.990380e- 01	0.033827568	4.479513e-03	0.0986312425
284	0.229221883	0.093757686	1.830796e-02	0.100914505	5.525306e- 02	0.102295362	1.247888e-01	0.0814000589
285	0.297716859	0.075563640	4.719472e-03	0.176765124	7.923591e- 04	0.008041353	7.734758e-05	0.2315243536
286	0.423263201	0.122066085	1.723336e-02	0.053336831	2.759513e- 03	0.074981011	4.056802e-02	0.0184322221
287	0.156735752	0.022468842	1.864084e-01	0.002481869	1.332903e- 01	0.163743119	1.297382e-01	0.0223013667
288	0.114480830	0.118946932	6.075480e-02	0.151135482	8.731461e- 05	0.028292801	5.537092e-02	0.3733801358
289	0.341233177	0.140894392	7.641716e-02	0.023132790	3.091642e- 02	0.070350187	3.104654e-03	0.1522769805
290	0.118345590	0.141162019	1.015277e-01	0.085828136	7.815448e- 02	0.246154392	1.540983e-01	0.0043627887
291	0.019968819	0.014801360	2.024757e-02	0.172694284	7.055515e- 02	0.240573058	5.120944e-03	0.2678233258
292	0.129702722	0.007784657	8.892318e-03	0.128554754	6.603308e- 02	0.065317104	3.000512e-02	0.1890979559
293	0.194064830	0.200567876	1.575855e-02	0.035900088	3.479604e- 02	0.149567604	1.206899e-01	0.0004956683
294	0.018827455	0.076723259	1.389907e-01	0.005757823	1.195903e- 01	0.020815273	9.238186e-02	0.2789611928
295	0.044516284	0.271376607	1.592625e-04	0.404600037	6.533564e- 04	0.094450924	1.965443e-02	0.0047047812
296	0.383421126	0.042460651	3.361840e-02	0.047992323	1.710833e- 06	0.003221379	2.094344e-02	0.0583291597
297	0.016444946	0.032170144	2.911678e-01	0.111175343	1.449878e- 01	0.018665218	1.042287e-01	0.0437505473
298	0.130697301	0.078373181	1.242063e-01	0.030795390	2.266373e- 01	0.192625119	1.464941e-03	0.0264312104

299	0.125472171	0.025756658	2.783909e-01	0.011282278	3.104621e- 03	0.025781518	2.293257e-01	0.0496958535
300	0.044268466	0.096418025	2.616924e-02	0.075218725	7.140284e- 02	0.131282849	4.259519e-02	0.0944615066
301	0.306744273	0.011603502	2.473664e-01	0.003412861	9.036873e- 02	0.074589627	1.500112e-02	0.0255805503
302	0.229997603	0.404192575	1.530698e-02	0.021329223	1.035191e- 01	0.009554317	1.448848e-02	0.1033146985
303	0.111161863	0.171578663	7.156378e-02	0.007981194	7.548268e- 03	0.053559921	8.320295e-02	0.0040306148

In [36]:

```
# Results for Variables
#res.var <- get_pca_var(res.pca)
#res.var$coord  # Coordinates
#res.var$contrib  # Contributions to the PCs
#res.var$cos2  # Quality of representation

# Results for individuals
#res.ind <- get_pca_ind(res.pca)
#res.ind$coord  # Coordinates
#res.ind$contrib  # Contributions to the PCs</pre>
```

lead(res.ind\$cos2) # Quality of representation

	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5	Dim.6	Dim.7	Dim.8	1
1	0.01581614	0.2187906353	0.2486639281	0.290822001	5.717765e- 03	0.1192282838	0.0005881407	0.0220287442	0.0
2	0.01053331	0.0464301935	0.0657898718	0.298359459	2.619088e- 01	0.0314453858	0.0003366012	0.1194241527	0.0
3	0.35367476	0.0001944803	0.0216264736	0.017466608	7.963625e- 02	0.0622993343	0.0011625774	0.0004267115	0.1
4	0.51193963	0.0426563041	0.0001631188	0.002187105	9.649924e- 03	0.0439276282	0.0035429032	0.0054751208	0.0
5	0.01048567	0.0068960127	0.6137311578	0.049768704	9.862406e- 06	0.0005557652	0.1523677065	0.0280274829	0.0
6	0.04175036	0.0145371382	0.0005847489	0.221329016	1.283180e- 01	0.0498448690	0.0011119752	0.1277047730	0.0

In []:

Naive-Bayes

Naive Bayes es un modelo estadístico basado en el teorema de Bayes que se utiliza para resolver problemas de clasificación siguiendo un enfoque probabilístico. Se basa en la idea de que las variables predictoras en un modelo de aprendizaje automático son independientes entre sí. Lo que significa que el resultado de un modelo depende de un conjunto de variables independientes que no tienen nada que ver entre sí.

Las variables predictoras no siempre son independientes entre sí, siempre hay algunas correlaciones entre ellas. Dado que Naive Bayes considera que cada variable predictiva es independiente de cualquier otra variable en el modelo, se le llama *Naive*.

El principio detrás de Naive Bayes es el teorema de Bayes, también conocido como la Regla de Bayes. El teorema se usa para calcular la probabilidad condicional, que no es más que la probabilidad de que ocurra un evento en base a la información sobre los eventos del pasado. Estadísticamente se represeta como:

 $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

Donde:

- P(A|B): probabilidad condicional de que ocurra el evento A, dado el evento B
- P(A): Probabilidad de que ocurra el evento A
- P(B): Probabilidad de que ocurra el evento B
- P(B|A): probabilidad condicional de que ocurra el evento B, dado el evento A Formalmente, las terminologías del Teorema bayesiano son las siguientes:

A se conoce como la proposición y B es la evidencia.

- P(A) representa la probabilidad previa de la proposición
- P(B) representa la probabilidad previa de evidencia
- P(A|B) se llama la posterior
- P(B|A) es la probabilidad

Por lo tanto, el teorema de Bayes se puede resumir como:

Posterior = (Probabilidad) (Probabilidad previa de la proposición) / Probabilidad previa probatoria

También se puede considerar de la siguiente manera:

Dada una hipótesis H y evidencia E, el teorema de Bayes establece que la relación entre la probabilidad de hipótesis antes de obtener la evidencia P(H) y la probabilidad de la hipótesis después de obtener la evidencia P(H|E) es:

```
P(H|E) = \frac{P(E|H)P(H)}{P(E)}
```

Derivación del teorema de Bayes El objetivo principal del Teorema de Bayes es calcular la probabilidad condicional. La regla de Bayes se puede derivar de las siguientes dos ecuaciones:

La siguiente ecuación representa la probabilidad condicional de A, dada B:

```
P(A|B) = \frac{P(A \setminus B)}{P(B)}
```

La siguiente ecuación representa la probabilidad condicional de B, dada A:

```
P(B|A) = \frac{P(B \setminus A)}{P(A)}
```

Por lo tanto, al combinar las dos ecuaciones anteriores obtenemos el Teorema de Bayes:

```
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
```

La ecuación anterior fue para una sola variable predictiva, sin embargo, en las aplicaciones del mundo real, hay más de una variable predictiva y para un problema de clasificación, hay más de una clase de salida. Las clases se pueden representar como, C1, C2, ..., Ck y las variables predictoras se pueden representar como un vector, x1, x2, ..., xn.

El objetivo de un algoritmo Naive Bayes es medir la probabilidad condicional de un evento con un vector de características x1, x2, ..., xn perteneciente a una clase particular Ci,

```
P(C_i|x_1, ..., x_n) = \frac{P(x_1, ..., x_n)P(C_i)}{P(x_1, ..., x_n)} \le 1 < i < k
```

Implementación de Naive-Bayes

Preprocesamiento

```
In [97]:
Library(Rcpp)
Library(Amelia)
missmap(heart_data)
```


Primero verificamos que no haya valores faltantes

Selección de Características

```
In [80]:
```

```
library(caret)
heart_data$target <- factor(heart_data$target)
indxTrain <- createDataPartition(y = heart_data$target,p = 0.80,list = FALSE)
training <- data[indxTrain,]
testing <- data[-indxTrain,]</pre>
```

```
In [81]:
```

```
prop.table(table(heart_data$target)) * 100
```

```
45.54455 54.45545
```

```
0
45.67901 54.32099
45 55
Naive Bayes
243 samples
13 predictor
 2 classes: '0', '1'
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 218, 219, 219, 219, 219, 219, ...
Resampling results across tuning parameters:
  usekernel Accuracy Kappa
FALSE 0.8235000 0.6424545
              0.8363333 0.6669133
   TRUE
Tuning parameter 'fL' was held constant at a value of 0
parameter 'adjust' was held constant at a value of 1
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were fL = 0, usekernel = TRUE and adjust
= 1.
Model Evaluation
```

In [96]:

'Positive' Class : 0

```
#Plot Variable performance
X <- varImp(model)
plot(X)</pre>
```


Tn [].