fir moving

Sample Project Topics for Biomedical Signal Processing Course

1. Denoising applications for biomedical signals

iir butter cheby

wavelet sym4 db6 db4

•••

Info:

- Noise
 - Random (noise due to thermal fluctuations leading to waveforms that are not predictable)
 - Structured (pre-determined waveform 50 to 60 Hz power line)
- Interference due to the other physiological signals
 - ECG signals interfered into EMG signals (back muscles)
 - EMG signals of inter-costal muscles in the ECG signals from chest leads

wiener ve adaptive ile alakal teorik bilgi

Some Examples:

Comparisonal FIR/IIR filtering of ECG or other biomedical signals

 Considering different parameters (filter types, lengths, phase types, different window functions etc.)

Comparisonal Wavelet denoising

- Considering different wavelet types, different thresholds.
- → Wiener filtering of ECG or other biomedical signals
 - Using different values for parameters
 - Adaptive filtering of ECG or other biomedical signals
 - Using different values for parameters
 - Also you can make a project comparing all or some of the above filtering methods.
 - o Also you can apply other different types of denoising methodologies.
- 2. On a bunch of sample biomedical signals such as ECG / EEG / EMG compare the spectrums obtained via FT, STFT, Wavelet Transform, Periodogram, and Modified Periodogram (Bartlet and Welch's methods).
- 3. Machine learning applications on Bio-signals:
 - Examples: Studies on arrhythmia and abnormality detection or diagnosis of diseases in/from biomedical signals (ECG/EEG/etc.).
- 4. A specific project subject: What are all the features extracted from ECG signals in the literature (both in time or frequency domains or other domains)? How they are calculated / extracted? What are the methodologies? Explain! Give their equations! Etc.
- 5. A specific project subject: What are all the features extracted from EEG signals in the literature (both in time or frequency domains or other domains)? How they are calculated / extracted? What are the methodologies? Explain! Give their equations! Etc.
- 6. A specific project subject: Analysis of human actions (using signals (bio signals or speech or etc.)

Medical Image Processing and Analyzing

- 7. Medical Image Segmentation
 - Example: Segmentation of organs/tissues (liver, brain etc.) in MR or CT images
- 8. Medical Image Registration
 - Example: MR → CT Brain image registration
- 9. Automatic tumor detection on medical images
- 10. Automatic disease diagnoses on medical images