Explain Standardization for numerical variables

Standardization (Z-score Scaling)

1. Explanation of Standardization

 Standardization is a scaling technique that transforms numerical data to have a mean of 0 and a standard deviation of 1. It involves rescaling the values by subtracting the mean and dividing by the standard deviation.

2. How to Calculate Standardization

The formula for standardization is $x' = (x-\mu)/\sigma$

Where:

o x: Original value

μ: Mean of the variable

 \circ σ : Standard deviation of the variable

Example:

Let's say we have the following data for a variable "Age": 25, 30, 35, 40, 45

Calculate the mean (μ): (25 + 30 + 35 + 40 + 45) / 5 = 35

Calculate the standard deviation (σ): The standard deviation is approximately 7.07.

Standardize each value:

• For 25: $(25 - 35) / 7.07 \approx -1.41$

• For 30: $(30 - 35) / 7.07 \approx -0.71$

• For 35: (35 - 35) / 7.07 = 0

• For 40: $(40 - 35) / 7.07 \approx 0.71$

• For 45: $(45 - 35) / 7.07 \approx 1.41$

So, the standardized "Age" values are: -1.41, -0.71, 0, 0.71, 1.41

3. When to Use Standardization

- When your data has a Gaussian (normal) distribution, or when the algorithm you're using assumes a Gaussian distribution.
- o When you don't have specific knowledge about the distribution of your data.
- Standardization is generally preferred for algorithms that are sensitive to the scale of the data, such as:
 - Principal Component Analysis (PCA)
 - Linear Regression
 - Logistic Regression
 - Support Vector Machines (SVM)
 - Neural Networks

4. Strengths and Weaknesses of Standardization

o Strengths:

- Not sensitive to outliers.
- Transforms data to a standard scale, making it easier to compare variables.
- Can improve the performance of many machine learning algorithms.

o Weaknesses:

- Assumes data is normally distributed, which may not always be the case.
- The exact shape of the original distribution is not preserved.