Exercise 1: Let A and B be non empty sets that are bounded above. Suppose $\sup A < \sup B$. Prove that there is an element in B that is an upper bound for A.

Proof. Suppose that A and B be non empty sets that are bounded above and that $\sup A < \sup B$. Let $x = \sup A$ and $y = \sup B$. Now consider some z such that, 0 < z < y - x. Through some algebra we can see that, x < y - z and therefore the term y - z must be an upper bound for A since it is larger than its least upper bound. Also note that y - z < y and therefore y - z must be contained in B.

Exercise 2: In class we proved that \mathbb{N}^2 is countably infinite. Use this fact and a proof by induction to show that \mathbb{N}^n is countably infinite for every $n \in \mathbb{N}$.

Proof. Consider the base case where n=1, clearly \mathbb{N}^1 is countably infinite and we have proven that \mathbb{N}^2 is countably infinite. We will proceed by induction on n. Suppose there exists some $n \in \mathbb{N}$ such that \mathbb{N}^n is countably infinite. By the induction hypothesis there exists some bijection $g: \mathbb{N}^n \to \mathbb{N}$. Now consider the bijection we proved in class $f: \mathbb{N}^2 \to \mathbb{N}$. Note that the composition of these two functions gives us, $f \circ g: \mathbb{N}^{n+1} \to \mathbb{N}$ and since $f \circ g$ is a composition of bijections it must also be a bijection. Thus by induction we have shown that for all $n \in \mathbb{N}$ \mathbb{N}^n is countably infinite.

Exercise 3: Compute,

$$\lim_{n\to\infty}\frac{3^n}{n!}.$$

A fully rigorous proof will involve a proof by induction.

Proof. \Box

Exercise 4: Let (x_n) and (y_n) be given, and define (z_n) to be the "shuffled" sequence $(x_1, y_1, x_2, y_2, \ldots, x_n, y_n, \ldots)$. Prove that (z_n) is convergent if and only if (x_n) and (y_n) are both convergent with $\lim x_n = \lim y_n$.

Proof. Suppose convergent sequences (x_n) and (y_n) such that $\lim x_n = \lim y_n = l$. consider a sequence (z_n) such that $(x_1, y_1, x_2, y_2, \dots, x_n, y_n, \dots)$. Note that $(z_{2n}) = (y_n)$ and $(z_{2n-1}) = (y_n)$

 (x_n) . Let $\epsilon > 0$. Since (x_n) and (y_n) converge we know that there exists $N_x, N_y \in \mathbb{N}$ such that,

$$|x_n - l| < \epsilon$$
,

$$|y_n - l| < \epsilon$$
.

Consider an $N \in \mathbb{N}$ such that $N = \max(N_x, N_m)$. By substitution we get that for all odd and even values of (z_n) we get,

$$|z_n - l| < \epsilon$$
.

Thus (z_n) is convergent.

Proof. Suppose a sequence $(z_n) = (x_1, y_1, x_2, y_2, \dots, x_n, y_n, \dots)$ is convergent to some limit $(z_n) \to l$. By Theorem 2.5.2 we know that all subsequences of (z_n) must converge to the same limit. Consider some $a \in x_n$ such that $x_i = a$. Note that $x_i = z_{2i-1}$ and therefore $a \in z_n$. Similarly for some $b \in y_n$ such that $y_i = b$ we know that $y_i = z_{2i}$ and therefore $b \in z_n$. Thus both x_n and y_n are subsequences of z_n and therefore $\lim z_n = \lim x_n = \lim y_n$.

Exercise 5: Suppose F is a collection of open intervals such that if $I, J \in F$ and $I \neq J$, then $I \cap J = \emptyset$. Prove that F is countable.

Proof. Suppose F is a collection of open intervals such that each interval is disjoint. Note since all intervals are disjoint it must follow that the pair of $\sup J$ and $\inf J$ is unique for all $J \in F$. Consider the sequence of ordered pairs,

$$a_n = (\inf(J_1), \sup(J_1)), \dots, (\inf(J_n), \sup(J_n)).$$

Where for all $n \in \mathbb{N}$.

$$\sup J_n \leq \sup J_{n+1}$$

$$\inf J_n \leq \inf J_{n+1}$$

Now consider the function $f: F \to \mathbb{N}$ defined by $f(a_n) = n$. Clearly the function defined by this sequence is injective and therefore F is countable.

Exercise 6: Let (x_n) be a sequence converging to L. Define,

$$y_n = \frac{x_1 + \dots + x_n}{n}.$$

That is y_n is the average of the first n terms of the x_n sequence. Show that $y_n = L$ as well.

Proof. Suppose that the sequence (x_n) is convergent to L. Therefore by definition for all $\epsilon > 0$,

$$|x_n - L| < \epsilon$$
.

Now consider the expression,

$$|y_n - L| = \left| \frac{x_1 + \dots + x_n}{n} - L \right|.$$

Through some algebra we get,

$$|y_n - L| = \frac{1}{n} |(x_1 + \dots + x_n) - nL|,$$

= $\frac{1}{n} |(x_1 - L) + \dots + (x_n - L)|.$

By triangle inequality,

$$|y_n - L| \le \frac{1}{n} |(x_1 - L)| + \dots + |(x_n - L)|.$$

Since (x_n) is convergent to L we know that for all $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that for all $n \geq N$,

$$|x_n - L| < \epsilon$$
.

By substitution we know that,

$$|y_n - L| < \frac{n\epsilon}{n},$$

$$< \epsilon.$$

Thus y_n is convergent with $y_n \to L$.

Exercise 7: Use the Bolzano Weierstrass Theorem to prove the Monotone Convergence Theorem without assuming any other form of the Axiom of Completeness.

Proof. Consider (a_n) , a monotone and bounded sequence. Without loss of generality let's assume the (a_n) is monotone increasing. By Bolzano Weierstrass we know that there exists a convergent subsequence of (a_n) , $(a_{n_k}) \to L$. Therefore for all $\epsilon > 0$ there exists an $K \in \mathbb{N}$ such that for all $k \geq K$,

$$|(a_{n_k})| < \epsilon$$
.

$$|(a_{n_k}) - L| < \epsilon$$
$$-\epsilon < (a_{n_k}) - L < \epsilon$$
$$L - \epsilon < (a_{n_k}) < \epsilon + L$$

Let $N = n_K$, note that for all $n \ge N$ there exists a $k \ge K$, such that

$$a_{n_k} \le a_n \le a_{n_{k+1}}.$$

Thus we get the following inequality

$$L - \epsilon < a_{n_k} \le a_n \le a_{n_{k+1}} < \epsilon + L.$$

Therefore a_n converges to L.

Exercise 8: Suppose (x_n) is a sequence and that for all $n \ge 2$,

$$|x_{n+1}-x_n| \le \frac{1}{2}|x_n-x_{n-1}|.$$

Show that the sequence (x_n) converges.

Proof. Suppose (x_n) is a sequence and that for all $n \ge 2$,

$$|x_{n+1} - x_n| \le \frac{1}{2}|x_n - x_{n-1}|.$$