Number representation

Bit Pattern	0000	0001	I 🔺	0011	nm		0110	0111	1000 E xa		$LI_{\wedge}1$	<u></u>	1100	1101	1110	1111
Unsigned	0	1	2		4	5	Proj	91	8	9	10	11	12	13	14	15
Sign & Magnitude	+0	+1	+2	+ h	ttps	:// ⁵ p	o₩c	ode	r.ec	ρħ	-2	-3	-4	-5	-6	-7
1s Complement	+0	+1	+2	+3 A	t ⁴	$\overset{\ddagger 5}{\mathbf{W}}\mathbf{e}$	Cha	+7 t n C	-7 W C	-6 Ode	-5 T	-4	-3	-2	-1	-0
2s Complement	+0	+1	+2	+3	+4	+5	+6	+7	-8	-7	-6	-5	-4	-3	-2	-1
Excess-8	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
BCD	0	1	2	3	4	5	6	7	8	9	-	-	-	-	-	-

Number representation Excess-n

-3 in Excess-8?

- Excess-n TO Decimal number: convert to decimal, substract the n from the decimal
- Decimal number TO Excess-n: add the n to the decimal and convert result to binary

```
-3 + 8 = 5
5 in unsigned = 0101 = 5 in one-complement = 9 in two-complement = -3 in Excess 8
                           https://powcoder.com
5 in Excess-8?
5 + 8 = 13
13 in unsigned: 1101 (beyond 2s complement range but positive (shift like a circular linked list
in 2s complement!). No further plote Whe letter are owneder
-7 in excess-6?
-7 + 6 = -1 = -1 in 1s complement: 0001 -> (negative number bit inversion rule) -> 1110 =
-1 in 2s complement: 1110 + 1 = 1111 = -7 in excess-6
-8 in excess-6?
-8+6 = -2 ->
2 in unsigned: 0010 -> 1s complement = 0010 -> (negative number bit inversion rule) -> 1101
In 2s complement = 1110 = -8 in excess-6
```

Number representation

Bit Pattern	0000	0001	0010	_	ı	I -	0110 D ro	0111	1000		1010	1011	1100	1101	1110	1111
Unsigned	0	1	2	318	4	ent l	6	eçt	EX (9	10	11	12	13	14	15
Sign & Magnitude	+0	+1	+2	+ h	ttps	:// ⁵ p	o₩c	ode	r.ec	ρħ	-2	-3	-4	-5	-6	-7
1s Complement	+0	+1	+2	+3 A	đđ	$\overset{\pm 5}{\mathrm{We}}$ e	Cha	+7 1 n C	-7 W C	-6 Ode	-5 T	-4	-3	-2	-1	-0
2s Complement	+0	+1	+2	+3	+4	+5	+6	+7	-8	-7	-6	-5	-4	-3	-2	-1
Excess-8	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
BCD	0	1	2	3	4	5	6	7	8	9	-	-	-	-	-	-
Excess-6	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	-8	-7

FLOATING POINT NUMBERS

Assignment Project Exam Help

Introduction

https://powcoder.com

Add WeChat powcoder

Bernhard Kainz (with thanks to A. Gopalan, N. Dulay and E. Edwards)

b.kainz@imperial.ac.uk

Why do we need this: large, small and fractional numbers

World population >7, 200, 000, 000 people

One light year 9, 130, 000, 000, 000 km

One solar mass Assignmento Projecto Economobile p, 000, 000, 000 kg

https://po.v/20dep.copn000, 01 m Electron diameter

Electron mass

000, 000, 000, 000, 000, 000, 1 sec length of time

Pi (to 14 decimal places) 3.14159 26535 8979...

Standard rate of VAT 20%

Googol 1 followed by a 100 zeros ©

Large integers

Example: How can we represent integers up to 30 decimal digits long?

Assignment Project Exam Help

• Binary: $2^X = 10^{30} \Rightarrow X = \log_2(10^{30}) \approx 100$ bits (1 decimal digit ≈ 3.32 bits powcoder.com

Add WeChat powcoder

• **BCD**: $30 \times 4 = 120$ bits

• **ASCII**: $30 \times 8 = 240$ bits

Floating point numbers

Recall scientific notation:

$$M \times 10^E$$
Assignment Project Exam Help Binary

https://powcoder.com

This is the basis for most floating point representation schemes

Add WeChat powcoder

- *M* is the **coefficient** (aka. **significand**, **fraction** or **mantissa**)
- E is the exponent (aka. characteristic)
- 10 (or for binary, 2) is the radix (aka. base)
- No. of bits in exponent determines the range (bigness/smallness)
- No. of bits in coefficient determines the precision (exactness)

Real vs. floating point numbers

		Mathematical real	Floating point number		
Range		-∞ + ∞	Finite		
No. of values	Acciar	(Uncountably) infinite	Help Finite		
Spacing		(Uncountably) infinite iment Project Exam	Vorioo		
Errors		tps://powcoder.com	mooned results are		
Add Weenat poweoder					

Some questions (assume signed 3-digit coefficient and a signed 2-digit exponent as before):

- What are the **closest** floating point numbers to . 001×10^{-99} ? What is the **gap** between this number and them?
- What about $.001 \times 10^{-50}$?

Zones of expressibility

 Example: assume numbers are formed with a signed 3digit coefficient and a signed 2-digit exponent

Assignment Project Exam Help

 Zones of expressibility: https://powcoder.com

Normalised floating point numbers

 Depending on how you interpret the coefficient, floating point numbers can have multiple forms, e.g.:

https://powcoder280m105

- For hardware implementations it is desirable for each number to have a unique floating point representation, a normalised form
- We'll normalise coefficients in the **range** [1, ... R) where R is the base, e.g.:

```
[1, ..., 10) for decimal [1, ..., 2) for binary
```

Number	Normalised form				
23.24xs1gn4ment Pro	ject Exam Help				
https://powcoder.com					
Add WeChat powcoder					
Add wech	at powcoder				

Number	Normalised form
23.24xs1gn4ment Pro	ject Exam. Blely 10 ⁵
https://pow	coder.com
• •	
Add WeCh	at powcoder

Number	Normalised form
23.24xs1gn4ment Pro	ject Exam. Blely 10 ⁵
-4.01×10^{-3} https://powe	coder.com
	at powcoder

Number	Normalised form
23.24xs1gn4ment Pro	ject Exam. Blely 10 ⁵
-4.01×10^{-3}	$\frac{-4.01 \times 10^{-3}}{\text{coder.com}}$
	at powcoder

Number	Normalised form
23.24xs1gn4ment Pro	ject Exam. Blely 105
-4.01×10^{-3}	$\frac{-4.01 \times 10^{-3}}{1000}$
-4.01 × 10 ⁻³ https://powe 343 000 × 10 ⁰ Add WeCh	3.43×10^{5}
0.000 000 098 9 × 10	at powcoder

Number	Normalised form
23.24xs1gn4ment Pro	ject Exam. Bely 10 ⁵
-4.01×10^{-3}	$\frac{-4.01 \times 10^{-3}}{1000}$
-4.01 × 10 ⁻³ https://powe 343 000 × 10 ⁰ Add WeCha	3.43×10^{5}
0.000 000 098 9 × 10	$\begin{array}{c} \text{at powcoder} \\ 9.89 \times 10^{-8} \end{array}$

Number	Normalised form
100. Als signment Pro	ject Exam (HOO) × 2 ³
1010.11 \(\frac{2^2}{https://power	$\frac{1.01011 \times 2^5}{\text{coder.com}}$
1010.11×2^{2} 0.00101×2^{-2} 0.00101×2^{-2} 0.00101×2^{-2}	1.01×2^{-5}
1100101×2^{-2}	at powcoder 1.100101×2^4

Binary	Decimal
0.1 Assignment Pro	ject Exam Help
https://pow	coder.com
Add WeCh	at powcoder

Binary	Decimal
0.1 Assignment Pro	0.5 ject Exam Help
https://powe	coder.com
Add WeCh	at powcoder

Binary	Decimal
0.1 Assignment Pro 0.01	
https://pow	coder.com
Add WeCh	at powcoder

Binary	Decimal
0101	ject Exam Help 0.25
https://pow	coder.com
Add WeCh	at powcoder

Decimal
0.5 ject Exam Help 0.2.5
coder.com
at powcoder

Binary	Decimal
0.1	0.5
Assignment Pro 0.01	ject Exam Help 0.25
0.001https://pow	coder.com 0.125
Add WeCh	at powcoder

Binary	Decimal
0.1	0.5
Assignment Pro 0.01	ject Exam Help 0.25
0.001https://pow	coder.com 0.125
0.11 Add WeCh	at powcoder

Binary	Decimal
0.1	0.5
Assignment Pro 0.01	ject Exam Help 0.25
0.001https://powe	coder.com 0.125
0.11 Add WeCh	at powcoder 0.75

Binary	Decimal
0.1	0.5
Assignment Pro 0.01	ject Exam Help 0.25
0.001https://pow	coder.com 0.125
0.11 Add WeCh	at powcoder 0.75
0.111	

Binary	Decimal
0.1	0.5
Assignment Pro 0.01	ject Exam Help 0.25
0.001https://powe	coder.com 0.125
0.11 Add WeCh	at powcoder 0.75
0.111	0.875

Binary	Decimal
0.1	0.5
Assignment Pro 0.01	ject Exam Help 0.25
0.001https://powe	coder.com 0.125
0.11 Add WeCh	at powcoder 0.75
0.111	0.875
0.011	

Binary	Decimal
0.1	0.5
Assignment Pro 0.01	ject Exam Help 0.25
0.001https://powe	coder.com 0.125
0.11 Add WeCh	at powcoder 0.75
0.111	0.875
0.011	0.375

Binary	Decimal	
0.1	0.5	
Assignment Pro 0.01	ject Exam Help 0.25	
0.001https://powe	coder.com 0.125	
0.11 Add WeChat powcoder 0.75		
0.111	0.875	
0.011	0.375	
0.101		

Binary	Decimal	
0.1	0.5	
Assignment Pro 0.01	ject Exam Help 0.25	
0.001https://powe	coder.com 0.125	
0.11 Add WeChat powcoder 0.75		
0.111	0.875	
0.011	0.375	
0.101	0.625	

Binary fraction to decimal fraction

What is the binary value 0.01101 in decimal?

32	16 A 0	ld WeC	hat ⁴ pov	wcoder	1
	0	1	1	0	1

$$\bullet \frac{8+4+1}{2^5} = \frac{13}{32}$$

What about 0.000 110 011?

• Answer:
$$\frac{32+16+2+1}{2^9} = \frac{51}{512} = 0.099609375$$

Decimal fraction to binary fraction

What is the decimal value 0.6875 in binary?

$$0.6875 = \frac{1.375}{Assignment} = \frac{1}{Project} = \frac{0.375}{Exam_4HeIp} + \frac{1.5}{8}$$

What is the decimal value 0.1 in binary?

$$0.1 = \frac{1.6}{16} = \frac{1}{16} + \frac{0.6}{16} = \frac{1}{16} + \frac{1.2}{32} = \frac{1}{16} + \frac{1}{32} + \frac{0.2}{32} = \frac{1}{16} + \frac{1}{32} + \frac{1.6}{256}$$

Floating point multiplication

$$N_{1} \times N_{2} = \left(M_{1} \times 10^{E_{1}}\right) \times \left(M_{2} \times 10^{E_{2}}\right)$$

$$= \left(M_{1} \times M_{2}\right) \times \left(10^{E_{1}} \times 10^{E_{2}}\right)$$
Assignment Project Exam+Lelp

- That is, we multiply the coefficients and add the exponents
- Example:

Add WeChat powcoder

$$(2.6 \times 10^6) \times (5.4 \times 10^{-3}) = (2.6 \times 5.4) \times (10^3)$$

= 14.04×10^3

• We must also **normalise the result**, so final answer is 1.404×10^4

Truncation and rounding

- For many computations, the result of a floating point operation is too large to store in the coefficient
- Example (with sight deficient) am Help

$$(2.3 \times https://powcqder.com29 × 102)$$

Add WeChat powcoder

- Truncation \rightarrow 5.2 × 10² (biased error)
- Rounding \rightarrow 5.3 × 10² (unbiased error)

Floating point addition

• A floating point addition such as $4.5 \times 10^3 + 6.7 \times 10^2$ is not a simple coefficient addition, unless the exponents are the same. Otherwise, we need to align them first

Assignment Project Exam Help

$$N_1 + N_2 = (M_1 \times 10^{E_1}) + (M_2 \times 10^{E_2})$$

https://powcoder.com/
 $M_1 + M_2 \times 10^{E_2}) \times 10^{E_1}$

Add WeChat powcoder

 To align, choose the number with the smaller exponent and shift its coefficient the corresponding number of digits to the right

$$4.5 \times 10^{3} + 6.7 \times 10^{2} = 4.5 \times 10^{3} + 0.67 \times 10^{3}$$

= $5.17 \times 10^{3} = 5.2 \times 10^{3}$
(rounded)

Exponent overflow and underflow

- Exponent overflow occurs when the result is too large i.e. when the result's exponent > maximum exponent
- Example: if massignments Project Examo Help0198 (overflow)

To handle overflow set Park 69 definition raise an exception

- Exponent underflow occurs when the result's exponent < smallest exponent
- **Example:** if min exponent is -99 then $10^{-99} \times 10^{-99} = 10^{-198}$ (underflow)

To handle underflow, set value as zero or raise an exception

Comparing floating point values

- Because of the potential for producing inexact results, comparing floating point values should account for close results
- If we know the seighten magnified and prediction of results, we can adjust for closeness (epsilon). For example: https://powcoder.com

$$a = b$$
 (b-A)dd WeChat powcoder
 $a = 1$ 1 - 0.0000005 < a < 1 + 0.000005
0.9999995 < a < 1.0000005

 A more general approach is to calculate closeness of two numbers based on the relative size of the two numbers being compared