4 Project Design Phase 4.3 Solution Architecture

Date	28 June 2025
Team ID	LTVIP2025TMID35678
Project Name	Pattern Sense: Classifying Fabric Pattern using
	Deep Learning
Maximum Marks	4 Marks

Solution Architecture:

In the Pattern Sense project, the architecture bridges the gap between the challenge of manual fabric pattern identification and a scalable, automated Al solution.

Goals of the Solution Architecture:

- Identify and implement the most suitable AI model (CNN) for classifying fabric patterns.
- Structure the system into components: data processing, model training, prediction service, and UI interface.
- Define features such as real-time image classification, confidence display, and extensibility for more pattern types.
- Ensure the solution is deployable locally and scalable to cloud infrastructure for broader adoption.

Architecture Diagram:

Figure 2: Architecture of the automated fabric material identification system

- 1. Frontend (User Interface)
 - Technology: HTML, CSS, JavaScript
 - Role: Provides a user-friendly interface where users can upload fabric images.
 - Functionality:
 - o Image upload form
 - o Displays prediction results (e.g., "Polka Dotted", "Plain")
 - o Optional pages: About, Get Started, Results page
- 2. Backend (Flask Application)
 - Technology: Flask (Python)
 - Role: Acts as a bridge between the frontend, image processing logic, and the CNN model.
 - Key tasks:
 - o Receives image upload from frontend via POST request
 - o Processes the image (resizes to model input size, normalizes)
 - Loads and runs inference using the pre-trained CNN model (model_cnn.h5)
 - o Returns prediction result to frontend
- 3. CNN Model (Deep Learning Component)
 - Technology: TensorFlow / Keras
 - Model File: model_cnn.h5
 - Role: Classifies fabric pattern into categories such as:
 - Plain
 - Striped
 - o Polka-Dotted
 - o Checked
 - Training Phase:
 - o Model is trained on a labeled dataset of fabric images.
 - o Trained on Colab or VS Code with Google Drive integration
 - Inference Phase:
 - o Used within the Flask backend to predict pattern class from uploaded images
- 4. Image Preprocessing
 - Libraries: Keras load_img, img_to_array
 - Steps:

- o Resize image to model input shape (e.g., 150x150)
- o Normalize pixel values (e.g., divide by 255.0)
- o Convert image to array format suitable for model prediction

5. Data Storage

- Training Dataset: Stored locally or in Google Drive during training
- Uploaded Images: Temporarily stored in /static/uploads or similar path on the Flask server