

论坛:www.openedv.com/forum.php

启明星 ZYNQ

之编译出厂镜像 V1.0

论坛:www.openedv.com/forum.php

正点原子公司名称:广州市星翼电子科技有限公司

公司电话: 020 - 38271790

公司网址: www. alientek. com

在线教学平台: www. yuanzige.com

开源电子网: www.openedv.com/forum.php

天猫旗舰店: https://zhengdianyuanzi.tmall.com

正点原子B站: https://space.bilibili.com/394620890

扫码关注正点原子公众号,获取更多嵌入式学习资料 扫码下载原子哥 App,提供数千讲免费开源视频学习 扫码关注B站正点原子官方,所有视频均可免费在线观看 扫码关注抖音正点原子,技术与娱乐结合体验双倍快乐

原子哥在线教学: www.yuanzige.com

论坛:www.openedv.com/forum.php

目录

則 言			. 4
第一章	编译出	出厂镜像	. 5
	1. 1	安装ZYNQ-7000交叉编译工具链	. 6
	1.2	拷贝源码到Ubuntu系统	. 6
		1.2.1 拷贝u-boot源码	. 6
		1.2.2 拷贝内核源码	. 8
		1. 2. 3 拷贝xsa文件	. 9
	1.3	编译	10
	1.4	设置交叉编译工具链的工作环境	10
		1.4.1 创建Petalinux工程	12
		1.4.2 编译出厂源码u-boot、制作BOOT.BIN	12
		1.4.3 编译内核、设备树	14
	1.5	启动	16
	1.6	扩展	17
		1.6.1 如何使出厂镜像从QSPI启动?	17

原子哥在线教学: www.yuanzige.com

论坛:www.openedv.com/forum.php

前言

鉴于很多用户需要基于出厂镜像进行开发,其中难免遇到需要修改的地方,比如添加新的驱动和添加新的应用,然后重新生成启动文件。本文讲解如何从源码编译出厂镜像启动文件,如果用户修改了uboot和内核源码,可以按照文档重新编译uboot和内核,根文件系统的修改就直接将其解压到sd卡上,然后添加或删除相应文件即可。

论坛:www.openedv.com/forum.php

第一章 编译出厂镜像

本章介绍如何编译和生成开发板出厂时所烧录的镜像文件,包括 BOOT. BIN 镜像文件、uboot 镜像文件以及内核镜像文件和设备树。

论坛:www.openedv.com/forum.php

1.1 安装 ZYNQ-7000 交叉编译工具链

编译 uboot 和内核源码需要在 linux 系统(虚拟机)中安装相应的交叉编译工具链。安装 ZYNQ-7000 系列芯片的交叉编译工具链需要 sdk. sh 文件。

把开发板资料盘 B 盘:\sdk\202002\sdk. sh 拷贝到 Ubuntu 虚拟机。拷贝完成后,在虚拟机中切换到 sdk. sh 文件所在目录,为 sdk. sh 文件赋予可执行权限并安装,命令如下:

#如果之前没有安装过 build-essential、git、u-boot-tools,请先执行如下命令进行安装 sudo apt update

sudo apt -y install build-essential git u-boot-tools

#安装 SDK

chmod +x sdk.sh

./sdk.sh

默认是安装在/opt/petalinux/2020.2 目录下,如果想安装在其他目录下,可以输入相应的路径,此处笔者保持默认,按回车键继续,结果如下图所示:

```
cx@cx-ubtu1:/mnt/hgfs/share$
cx@cx-ubtu1:/mnt/hgfs/share$ l sdk.sh
sdk.sh*
cx@cx-ubtu1:/mnt/hgfs/share$ chmod +x sdk.sh
cx@cx-ubtu1:/mnt/hgfs/share$ ./sdk.sh
PetaLinux SDK installer version 2020.2
-----
Enter target directory for SDK (default: /opt/petalinux/2020.2):
You are about to install the SDK to "/opt/petalinux/2020.2". Proceed [Y/n]?
[sudo] password for cx:
                  . . . . . . . . . . . . . . . . . . done
Setting it up...done
SDK has been successfully set up and is ready to be used.
Each time you wish to use the SDK in a new shell session, you need to source the
environment setup script e.g.
 $ . /opt/petalinux/2020.2/environment-setup-aarch64-xilinx-linux
cx@cx-ubtu1:/mnt/hgfs/share$
```

图 1.1.1 安装 SDK

再次确认是否将 SDK 安装在/opt/petalinux/2020.2 目录下,默认为 "Y",也就是"是",按回车键继续往下执行,显示要输入用户密码,输入完成后回车进行安装,等待安装完成。安装 完 成 后 提 示 每 次 当 你 在 一 个 新 终 端 中 使 用 SDK , 需 要 先 执 行 "./opt/petalinux/2020.2/environment-setup-cortexa9t2hf-neon-xilinx-linux-gnueabi"以设置相应的环境变量,其中的"."和 source 具有相同含义。

1.2 拷贝源码到 Ubuntu 系统

1.2.1 拷贝 **u-boot** 源码

原子哥在线教学: www. yuanzige.com

论坛:www.openedv.com/forum.php

开发板出厂镜像使用的 u-boot 源码路径为: 开发板资料盘(A盘)\4_SourceCode\3_Embedded_Linux\资源文件\出厂镜像相关,在该目录下有一个名为atk-zup-uboot-xlnx.tar.gz的压缩包文件,如下所示:

图 1.2.1 u-boot 源码

atk-zynq-uboot-xlnx. tar. gz 是专门用于开发板出厂测试的 u-boot 源码压缩包文件。我们将 atk-zynq-uboot-xlnx. tar. gz 压缩包文件拷贝到 Ubuntu 系统中,如下所示:

图 1.2.2 将 u-boot 压缩包文件拷贝到 Ubuntu

接下来将其解压,对应的解压目录就是 U-Boot 源码目录,这个解压目录大家可以自己设置。因为解压后会自动在解压目录中创建一个名为 atk-zynq-uboot-x1nx 的文件夹,该文件夹下即是 uboot 源码。为了避免和教程中使用的 uboot 相混淆,笔者这里选择将其解压到用户家目录下的~/workspace/src 目录中。

执行如下命令将其解压到~/workspace/src/目录中:

mkdir -p ~/workspace/src/ #创建~/workspace/src/文件夹cd /mnt/hgfs/share/source_code/ #切換到 uboot 压缩包文件所在目录tar -xzf atk-zynq-uboot-xlnx.tar.gz -C ~/workspace/src/ #解压ls ~/workspace/src/
ls ~/workspace/src/atk-zynq-uboot-xlnx/


```
原子哥在线教学: www.yuanzige.com
                                            论坛:www.openedv.com/forum.php
 2023-04-17 14:59:28 • py-2.7.17 cx-ubtu in ~
o → mkdir -p ~/workspace/src/
 2023-04-17 15:00:01 / py-2.7.17 cx-ubtu in ~
o → cd /mnt/hgfs/share/source_code/
 2023-04-17 15:00:13 / py-2.7.17 cx-ubtu in /mnt/hgfs/share/source_code
o → mkdir -p ~/workspace/src/
 2023-04-17 15:00:17 / py-2.7.17 cx-ubtu in /mnt/hgfs/share/source_code
o → tar -xzf atk-zynq-uboot-xlnx.tar.gz -c ~/workspace/src/
 2023-04-17 15:00:27 / py-2.7.17 cx-ubtu in /mnt/hgfs/share/source_code
o → ls ~/workspace/src/
atk-zynq-uboot-xlnx
                         解压后得到的uboot源码根目录
 2023-04-17 15:00:35 🕖 py-2.7.17 cx-ubtu in /mnt/hgfs/share/source_code
o → ls ~/workspace/src/atk-zynq-uboot-xlnx/
                                                                    README
                                                       MAINTAINERS
atk-zup-boot.cmd.default
                                                       Makefile
                          config.mk
                                              Kbuild
atk-zynq-boot.cmd.default configs
                                              Kconfig net
 2023-04-17 15:01:09 • py-2.7.17 cx-ubtu in /mnt/hgfs/share/source_code
```

图 1.2.3 解压 U-Boot 源码包

解压完成后,atk-zynq-uboot-x1nx 文件夹存放的即是出厂镜像使用的 uboot 源码。

1.2.2 拷贝内核源码

开发板出厂镜像使用的 Linux 内核源码路径为: 开发板资料盘(A盘)\4_SourceCode\3_Embedded_Linux\资源文件\出厂镜像相关,在该目录下有一个名为atk-zynq-linux-xlnx.tar.gz的压缩包文件,如下所示:

图 1.2.4 内核源码压缩包文件

atk-zynq-linux-xlnx. tar. gz 是专门用于开发板出厂镜像的 Linux 内核源码压缩包文件。 我们将 atk-zynq-linux-xlnx. tar. gz 压缩包文件拷贝到 Ubuntu 系统中,如下所示:

图 1.2.5 将内核源码压缩包文件拷贝到 Ubuntu

论坛:www.openedv.com/forum.php

接下来将其解压,对应的解压目录就是 Linux 内核源码目录,这个解压目录大家可以自己设置。因为解压后会自动在解压目录中创建一个名为 linux-xlnx 的文件夹,该文件夹下即是 Linux 内核源码。为了避免和教程中使用的 Linux 内核源码相混淆,笔者这里选择将其解压到用户家目录下的~/workspace/src 目录中:

执行如下命令将其解压到~/workspace/src 目录中:

```
mkdir -p ~/workspace/src/
cd /mnt/hgfs/share/source_code/ #切换到 uboot 压缩包文件所在目录
tar -xzf atk-zynq-linux-xlnx.tar.gz -C ~/workspace/src/ #解压
sync
```

图 1.2.6 解压内核源码

解压完成后,得到的 atk-zynq-linux-xlnx 文件夹即是出厂镜像使用的 Linux 内核源码根目录。使用 ls 命令(ls ~/workspace/src/atk-zynq-linux-xlnx),可看到 Linux 内核源码目录结构,如下图所示:

```
2023-04-17 15:10:29 opy-2.7.17 cx-ubtu in /mnt/hgfs/share/source_code
o → ls ~/workspace/src/
atk-zynq-linux-xlnx atk
2023-04-17 15:11:00 解压得到的内核源码根目录
                                                         ource_code
o → ls ~/workspace/src/atk-zynq-linux-xlnx
       Documentation Kbuild
                                  Makefile
                                                              zynq-fit-image.its
                      Kconfig
                                  mpsoc-fit-image.its sound
COPYING include
CREDITS init
                                  README
                      MAINTAINERS samples
2023-04-17 15:11:36 • py-2.7.17 cx-ubtu in /mnt/hgfs/share/source_code
```

图 1.2.7 Linux 内核源码目录结构

1.2.3 拷贝 xsa 文件

使用 xsa 文件以创建相应的 Petalinux 工程,

在开发板资料包中,已经给大家提供了开发板出厂时所对应的 vivado 工程。

对于启明星 7020 开发板, 使用的是 Phosphor 7020 工程,

对于启明星 7010 开发板, 使用的是 Phosphor 7010 工程。

论坛:www.openedv.com/forum.php

笔者以启明星 7020 开发板为例,路径为: 开发板资料盘(A盘)\4_SourceCode\3_Embedded_Linux\vivado_prj,在这个目录下有一个压缩包文件Phosphor_7020.zip,将其在Windows系统下解压,解压后如下图所示:

名称	修改日期	类型	大小	
ip_repo	2023/5/17 10:17	文件夹		
Phosphor_7020.cache	2023/5/15 9:25	文件夹		
Phosphor_7020.gen	2023/5/15 9:08	文件夹		
Phosphor_7020.hw	2023/5/15 9:08	文件夹		
Phosphor_7020.ip_user_files	2023/5/15 9:34	文件夹		
Phosphor_7020.runs	2023/5/15 9:35	文件夹		
Phosphor_7020.sim	2023/5/15 9:09	文件夹		
Phosphor_7020.srcs	2023/5/15 9:08	文件夹		
🏊 Phosphor_7020.xpr	2023/5/15 9:45	XPR 文件	80 KB	
🔇 system_wrapper.xsa	2023/5/15 9:48	XSA 文件	942 KB	

图 1.2.8 vivado 工程目录

system_wrapper.xsa 为 Vivado 导出的 xsa 文件,这里直接将 system_wrapper.xsa 文件夹拷贝到 Ubuntu 系统某个目录下,例如/mnt/hgfs/share/xsa/7020/,如下图所示:

图 1.2.9 将 xsa 文件拷贝到 Ubuntu

1.3 编译

在上一节中我们已经将编译所需要的所有"原材料"拷贝到 Ubuntu 系统了,接下来可以进行编译了,需要注意在是,在编译之前,需要安装 Xilinx 的 petalinux 工具,以及设置交叉编译工具链的工作环境。如果还没安装 petalinux 的,可以参考【正点原子】启明星 ZYNQ之嵌入式 Linux 驱动开发指南 V1. x. pdf 的第 5 章内容 Petalinux 的安装进行安装;设置交叉编译工具链的工作环境请参考下一小节。

1.4 设置交叉编译工具链的工作环境

每打开一个新终端,都需要在终端中执行如下命令设置 SDK 的环境变量以使用交叉编译器:

. /opt/petalinux/2020.2/environment-setup-cortexa9t2hf-neon-xilinx-linux-gnueabi

如果不想每打开一个新终端就执行这个命令,可以将其放入 $^{\sim}$ /. profile 或者 /etc/profile 文件中,命令如下:

原子哥在线教学: www.yuanzige.com 论坛:www.openedv.com/forum.php echo '. /opt/petalinux/2020.2/environment-setup-cortexa9t2hf-neon-xilinx-linux-gnueabi ' | tee -a ~/.profile #注意看下图,这条命令是完整的一行tail -5 ~/.profile 结果如下图所示:

图 1.4.1 加载[~]/. profile 文件时设置 SDK 环境变量

这样,将命令". /opt/petalinux/2020.2/environment-setup-cortexa9t2hf-neon-xilinx-linux-gnueabi"写入到[~]/.profile 文件中,启动虚拟机登录当前用户后会自动执行该命令。不过当前终端不可用,需要重启才能生效。

注: 如果读者之前用相同的方式设置过 Petalinux 2020.2 版本的 SDK, 请先从 $^{\sim}/$. profile 等文件中删除相关的行,或者直接使用之前的 SDK,如果可用的话。

设置 SDK 的环境变量后,在终端输入命令 arm-xilinx-linux-gnueabi-gcc --version 来 查看当前使用的交叉编译器版本号。看到如下结果,表明环境变量已经生效。

图 1.4.2 查看 gcc 版本信息

可以看到, 我们使用的 zyng 交叉编译器版本为 9.2.0。

设置环境变量后可以使用 env 命令查看生效的环境变量, 下图为部分截图:

```
OE_QMAKE_AR=arm-xilinx-linux-gnueabi-ar
KCFLAGS=--sysroot=/opt/pkg/sdk/zynq_2020.2/sysroots/cortexa9t2hf-neon-xilinx-linux-gn
ueabi
OECORE_ACLOCAL_OPTS=-I /opt/pkg/sdk/zynq_2020.2/sysroots/x86_64-petalinux-linux/usr/s
hare/aclocal
CC=arm-xilinx-linux-gnueabi-gcc -mthumb -mfpu=neon -mfloat-abi=hard -mcpu=cortex-a9
--sysroot=/opt/pkg/sdk/zynq_2020.2/sysroots/cortexa9t2hf-neon-xilinx-linux-gnueabi
READELF=arm-xilinx-linux-gnueabi-readelf
XDG_SESSION_ID=1
OECORE_DISTRO_VERSION=2020.2
OECORE_SDK_VERSION=2020.2
USER=xy
PKG_CONFIG_SYSROOT_DIR=/opt/pkg/sdk/zynq_2020.2/sysroots/cortexa9t2hf-neon-xilinx-lin
ux-gnueabi
```

图 1.4.3 查看设置后的环境变量

论坛:www.openedv.com/forum.php

不同的环境变量有不同的作用。比如环境变量 CC, 可以看出该环境变量已经配置好 gcc 交叉编译器编译时所用的参数,比如使用 arm-xilinx-linux-gnueabi-gcc 编译器, 可直接使用环境变量\$CC, 如交叉编译某个.c 文件, 如 hello.c, 直接使用\$CC hello.c 就可以了。

1.4.1 创建 Petalinux 工程

xsa 文件

创建 Petalinux 工程的步骤在【正点原子】启明星 ZYNQ 之嵌入式 Linux 驱动开发指南 V1. x. pdf 第六章 Petalinux 设计流程实战中已讲解,本章就不细述,也可直接使用第六章 Petalinux 设计流程实战的 Petalinux 工程,重新导入 xsa 文件即可。

先在 Ubuntu 主机终端中选一个合适的路径以创建出厂镜像使用的 Petalinux 工程, 然后在终端中输入如下命令:

```
cd <相应的目录> #切换到创建 Petalinux 工程的目录
sptl #设置 petalinux 工作环境
petalinux-create -t project --template zynq -n base #创建 Petalinux 工程
cd base #进入到 petalinux 工程目录下
petalinux-config --get-hw-description /mnt/hgfs/share/xsa/7020 #导入相应的
```

以上命令执行完成之后会自动在当前目录下创建一个名为 base 的文件夹,也就是我们出厂镜像的 petalinux 工程对应的工程目录。

xsa 文件导入成功之后会自动弹出 petalinux 工程配置窗口,如下图所示:

图 1.4.4 petalinux 工程配置窗口

使用默认配置即可,保存并退出。

1.4.2 编译出厂源码 u-boot、制作 BOOT.BIN

进入到 u-boot 源码根目录下。

启明星开发板对应的配置文件为: configs/xilinx_zynq_virt_defconfig 启明星开发板对应的设备树文件为: arch/arm/dts/zynq-atk.dts 执行如下命令编译 u-boot 源码:


```
2023-04-17 15:44:04 / py-2.7.17 cx-ubtu in ~
o → cd workspace/src/atk-zynq-uboot-xlnx/
 2023-04-17 15:44:06 / py-2.7.17 cx-ubtu in ~/workspace/src/atk-zyng-uboot-xlnx
o → make distclean
2023-04-17 15:44:09 • py-2.7.17 cx-ubtu in ~/workspace/src/atk-zynq-uboot-xlnx
o → make xilinx_zynq_virt_defconfig
 HOSTCC scripts/basic/fixdep
 HOSTCC scripts/kconfig/conf.o
          scripts/kconfig/zconf.tab.c
 YACC
         scripts/kconfig/zconf.lex.c
 LEX
 HOSTCC scripts/kconfig/zconf.tab.o
 HOSTLD scripts/kconfig/conf
# configuration written to .config
 2023-04-17 15:44:14 🔮 py-2.7.17 cx-ubtu in ~/workspace/src/atk-zynq-uboot-xlnx
o → make -i
scripts/kconfig/conf --syncconfig Kconfig
          include/config.h
 UPD
          include/config.h
 CFG
          u-boot.cfg
          include/autoconf.mk.dep
 GEN
 CFG
          spl/u-boot.cfg
 GEN
          include/autoconf.mk
          spl/include/autoconf.mk
 GEN
          include/config/uboot.release
```

图 1.4.5 编译 u-boot 源码

编译成功之后, 会在 u-boot 目录下生成镜像文件, 如下所示:

```
2023-04-17 15:44:30 • py-2.7.17 cx-ubtu in ~/workspace/src/atk-zynq-uboot-xlnx
o \rightarrow 1s
                                                                        u-boot-elf.o
                                      MAINTAINERS u-boot
                                                                        u-boot.img
                                                   u-boot.bin
atk-zup-boot.cmd.default
                                      Makefile
                                                                       u-boot.lds
atk-zynq-boot.cmd.default
                                                   u-boot.cfg
                                                                       u-boot.map
                                                   u-boot.cfg.configs
                                                                      u-boot-nodtb.bin
                                      README
                                                   u-boot.dtb
                                                                        u-boot.srec
                                                   u-boot-dtb.bin
                                                                       u-boot.sym
                           Kbuild
                                                   u-boot-dtb.img
config.mk
                           Kconfig
                                      System.map
                                                   u-boot.elf
                                                   u-boot-elf.lds
 2023-04-17 15:45:22 🙋 py-2.7.17 cx-ubtu in ~/workspace/src/atk-zynq-uboot-xlnx
```

图 1.4.6 生成镜像文件

u-boot.elf 是一个elf 格式的 uboot 可执行文件, u-boot.dtb 是 uboot 的设备树文件。

论坛:www.openedv.com/forum.php

输入如下命令生成 boot. scr 启动脚本文件:

./tools/mkimage -c none -A arm -T script -d atk-zynq-boot.cmd.default boot.scr

图 1.4.7 生成 boot. scr

boot. scr 是出厂镜像中 uboot 用于从相应的存储设备加载内核镜像和设备树的脚本文件。 切换到创建的 Petalinux 工程目录,执行下面的命令制作启明星开发板所需的启动文件 BOOT. BIN:

图 1.4.8 制作 BOOT. BIN 文件

注:如果编译报设备树相关的错误,请按照第六章 Petalinux 设计流程实战那样配置设备树,我们不用 Petalinux 编译的设备树,只是解决错误。

命令执行成功之后,会在当前 Petalinux 工程的 images/linux 目录下生成 BOOT. BIN 启动文件,如下图所示:

图 1.4.9 生成 BOOT. BIN 文件

1.4.3 编译内核、设备树

论坛:www.openedv.com/forum.php

进入到 Linux 内核源码根目录下。

内核 defconfig 配置文件为: arch/arm/configs/xilinx_zynq_defconfig 启明星 7020 开发板对应的设备树文件为: arch/arm/boot/dts/atk-phosphor-7020.dts 启明星 7010 开发板对应的设备树文件为: arch/arm/boot/dts/atk-phosphor-7010.dts 执行如下命令编译内核源码:

```
make distclean # 清理工程
make xilinx_zynq_defconfig # 配置
make -j8 # 编译 zImage 和设备树
```

```
2023-04-17 15:49:46 🕗 py-2.7.17 cx-ubtu in ~/workspace/src/atk-zynq-linux-xlnx
o → make distclean
2023-04-17 15:51:37 • py-2.7.17 cx-ubtu in ~/workspace/src/atk-zynq-linux-xlnx
o → make xilinx_zynq_defconfig
 HOSTCC scripts/basic/fixdep
 HOSTCC scripts/kconfig/conf.o
 HOSTCC scripts/kconfig/confdata.o
 HOSTCC scripts/kconfig/expr.o
 LEX
        scripts/kconfig/lexer.lex.c
 YACC
        scripts/kconfig/parser.tab.[ch]
 HOSTCC scripts/kconfig/lexer.lex.o
 HOSTCC scripts/kconfig/parser.tab.o
 HOSTCC scripts/kconfig/preprocess.o
 HOSTCC scripts/kconfig/symbol.o
 HOSTLD scripts/kconfig/conf
 configuration written to .config
2023-04-17 15:51:47 • py-2.7.17 cx-ubtu in ~/workspace/src/atk-zynq-linux-xlnx
o \rightarrow make -j8
 HOSTCC scripts/dtc/dtc.o
 HOSTCC scripts/dtc/flattree.o
 HOSTCC scripts/dtc/data.o
 HOSTCC scripts/dtc/fstree.o
 HOSTCC scripts/dtc/livetree.o
 SYSHDR arch/arm/include/generated/uapi/asm/unistd-common.h
 SYSHDR arch/arm/include/generated/uapi/asm/unistd-oabi.h
         include/config/kernel.release
 UPD
 HOSTCC scripts/dtc/treesource.o
```

图 1.4.10 编译内核源码

编译得到的内核镜像文件 zImage 在 arch/arm/boot 目录下,如下图所示:

论坛:www.openedv.com/forum.php

图 1.4.11 生成的内核镜像文件

编译得到的设备树文件在 arch/arm/boot/dts/目录下,如下图所示:

图 1.4.12 设成的设备树文件

atk-phosphor-7020. dtb 对应启明星 7020 开发板的设备树文件; atk-phosphor-7010. dtb 对应启明星 7010 开发板的设备树文件。

至此,启动开发板所需所有镜像文件都已经编译完成了,包括 BOOT. BIN 文件、boot. scr、zImage、设备树 dtb 四个文件。

1.5 启动

制作一张 SD 启动卡, SD 启动卡的制作方法,可以参考【正点原子】启明星 ZYNQ 之嵌入式 Linux 驱动开发指南 V1. x. pdf 第六章 Petalinux 设计流程实战中的制作 SD 启动卡小节。这里不再赘述!

将上一节编译得到的四个镜像文件拷贝到 SD 启动卡的第一个分区,也就是 Fat32 分区, 其中

BOOT. BIN 文件位于 Petalinux 工程的 images/linux 目录下;

boot. scr 位于 uboot 源码根目录下:

zImage 文件位于 linux 内核源码根目录下的 arch/arm/boot/目录下; dtb 文件位于 linux 内核源码根目录下的 arch/arm/boot/dts/目录下。

拷贝完成后如下所示:

论坛:www.openedv.com/forum.php

图 1.5.1 SD 启动卡 Fat 分区文件

注:一般只需要拷贝开发板对应的设备树 dtb 文件就可以了,拷贝多个设备树文件也是可以的,启动过程中只用到开发板对应的设备树 dtb 文件。

接下来我们要拷贝根文件系统到 SD 启动卡第二个分区,在开发板资料包中已经给大家提供了出厂时使用的根文件系统,在开发板资料盘(A 盘)\4_SourceCode\3_Embedded_Linux\资源文件\出厂镜像相关目录下有一个名为 rootfs. tar. gz 的压缩包文件,如下所示:

名称	修改日期	类型	大小
🔝 rootfs.tar.gz	2022/6/27 17:24	GZ 压缩文件	232,352 KB
atk-zup-uboot-xlnx.tar.gz	2022/6/22 15:07	GZ 压缩文件	193,959 KB
atk-zup-linux-xlnx.tar.gz	2022/6/22 16:33	GZ 压缩文件	2,345,508

图 1.5.2 根文件系统

rootfs. tar. gz 中包含的根文件系统是使用 Petalinux 编译出来的,也是出厂镜像使用的根文件系统,由于测试需要,笔者也移植了一些软件到其中。该根文件系统比较大、内容比较多,包括 Qt5、Python、opency 等常用库文件。

将 rootfs. tar. gz 拷贝到 Ubuntu 系统中,然后使用 tar 命令将 rootfs. tar. gz 压缩包文件解压到 SD 启动卡的第二个分区,如下所示:

```
sudo tar -xzf rootfs.tar.gz -C /media/$USER/rootfs
1s /media/$USER/rootfs
sync
```

```
○ cx-ubtu in /mnt/hgfs/share/source_code

→ sudo tar -xzf rootfs.tar.gz -C /media/$USER/rootfs
○ cx-ubtu in /mnt/hgfs/share/source_code

→ ls /media/$USER/rootfs
bin dev home media modules proc sbin tmp var
boot etc lib mnt opt run sys usr
○ cx-ubtu in /mnt/hgfs/share/source_code

→ sync
○ cx-ubtu in /mnt/hgfs/share/source_code
```

图 1.5.3 解压根文件系统到 SD 卡第二分区

sync 同步完成之后,卸载 SD卡(umount 命令),拔掉 SD卡将其插入开发板 SD卡卡槽,将开发板启动方式设置为 SD卡启动,连接串口、LCD 屏和电源启动开发板。

1.6 扩展

1.6.1 如何使出厂镜像从 **QSPI** 启动?

论坛:www.openedv.com/forum.php

出厂镜像将启动文件放在 QSPI 中,根文件系统存到 eMMC 中。从 QSPI 启动,首先需要像出厂镜像那样将 zImage 文件和 dtb 文件打包成 image. ub 文件,这也是 Petalinux 默认的文件形式,打包方法如下:

首先进入到 Linux 内核源码根目录下。

对于 7020 核心板,输入如下命令即可:

sed -i 's/navigator/phosphor/g' zynq-fit-image.its

mkimage -f zynq-fit-image.its image.ub

对于 7010 核心板, 输入如下命令即可:

sed -i 's/navigator/phosphor/g' zynq-fit-image.its

sed -i 's/7020/7010/g' zynq-fit-image.its

mkimage -f zynq-fit-image.its image.ub

生成的 image. ub 文件在内核源码根目录下,输入命令 1s-1 image. ub 即可看到。

打包完成后,将 image. ub 文件和之前编译得到的 BOOT. BIN、boot. scr 文件拷贝到 SD 启动卡的第一个分区,也就是 Fat32 分区,其中

BOOT. BIN 文件位于 Petalinux 工程的 images/linux 目录下;

boot. scr 位于 uboot 源码根目录下;

image.ub 文件位于 Linux 源码根目录下。

根文件依旧如前解压到到SD启动卡第二个分区。

从 SD 卡启动后,在串口终端中输入如下命令将启动镜像固化到 QSPI 和拷贝根文件系统到 eMMC:

/opt/image/burn qspi.sh

图 1.6.1 执行固化脚本

系统固化完成之后,蜂鸣器会响,表明已经将系统镜像和根文件系统分别烧写到了 QSPI和 eMMC 存储介质中了,也意味着开发板可以从 QSPI 方式启动系统了。