Tutorial 6

SC-220 Groups and Linear algebra Autumn 2019 (Vector Spaces and subspaces)

- (1) Let V be a set of real sequences $(a_1, a_2, ..., a_n, ...)$ such that $\sum_i a_i^2$ is finite. Prove that V is a vector space over \mathbb{R} .
- (2) Show that the space $V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 + 2x_2 + 2x_3 = 0\}$ forms a vector space.
- (3) Let W_1 and W_2 be two subspaces of of a vector space V .
 - (a) Prove that $W_1 \cap W_2$ is a subspace of V .
 - (b) Prove that $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.
- (4) Let V be the vector space of all functions f from \mathbb{R} into \mathbb{R} . Which of the following sets of functions are subspaces of V?
 - (a) all f such that $f(x^2) = f(x)^2$
 - (b) all f such that f(0) = f(1)
 - (c) all f such that f(3) = 1 + f(-5)
 - (d) all f such that f(-1) = 0;
 - (e) all f which are continuous.
- (5) Let V be the vector space of all $n \times n$ matrices over \mathbb{C} . Which of the following matrices A in V are subspaces of V
 - (a) all invertible A
 - (b) all A such that AB = BA, where B is some fixed matrix
 - (c) all A such that $A^2 = A$
- (6) Let V be the vector space of all functions from \mathbb{R} to \mathbb{R} . Show that the space of even functions and the set of odd functions are subspaces of V.