Bayesian Estimation of Elastic Constants

University of California Santa Barbara

January 2018

Superalloys

Image from https://commons.wikimedia.org/wiki/File: RB199_Cosford.JPG

American B763, Chicago 2016

Pictures from http://avherald.com/h?article=49ffa115

Experimental procedure

An example of mechanical resonance

- ▶ The simplest elastic materials obey Hooke's law: F = -kd
- ▶ If we hook a bunch of little point masses together with Hookean Springs,

we can write out their equations of motion:

$$m\frac{\partial^2 d_i}{\partial t^2} = -k(d_i - d_{i-1}) + k(d_{i+1} - d_i)$$

► This is a second order linear ODE. The resonance modes are the square roots of the associated eigenvalue problem

$$-m\omega^2 \mathbf{d} = \begin{vmatrix} -k & k & 0 \\ k & -2k & k \\ 0 & k & -2k \end{vmatrix} \mathbf{d}, -m\omega^2 \mathbf{d} = \mathbf{K} \mathbf{d}$$
 (1)

Slightly fancier mechanics

- ► The inverse problem attached to this is a classic method of estimating elastic constants (see references slide at end).
- ▶ The mechanics in an actual turbine blade are similar to the example, but are parameterized with a 6x6 matrix of elastic coefficients determined by the symmetry of the crystal (instead of just one).

Г <i>с</i> 11	C ₁₂	C ₁₂	0	0	0 -
C ₁₂	c ₁₂ c ₁₁	C ₁₂	0	0	0
c ₁₂	c_{12}	c ₁₁	0	0	0
0	0	0	C ₄₄	0	0
0	0	0	0	C44	0
0	0	0	0	0	C44_

	_			_	_	^ 7
	c_{11}	c_{12}	c_{13}	0	Ü	0
	<i>c</i> ₁₂	c_{11}	c_{13}	0	0	0
-	<i>c</i> ₁₃	c_{13}	<i>c</i> ₃₃	0 0 0 <i>c</i> ₄₄	0	0
-	0	0	0	C ₄₄	0	0
	0	0	0	0	C44	0
	0	0	0	0	0	$(c_{11}-c_{12})/2$

Cubic crystal symmetry (Cu, Au, Al)

Hexagonal crystal symmetry (Co, Mg, Ti)

Crystal lattice

Crystal lattice 2

Simple model

```
 \begin{array}{c} \text{data } \{ \\ \text{int} < \text{lower } = 1 > \; N; \\ \text{real} < \text{lower } = 0.0 > \; y \, [N-1]; \\ \text{real } < \text{lower } = 0.0 > \; k; \\ \text{real} < \text{lower } = 0.0 > \; k; \\ \text{real} < \text{lower } = 0.0 > \; k; \\ \text{real} < \text{lower } = 0.0 > \; \text{sigma}; \\ \} \\  \end{array} \right\} \\ \text{model } \left\{ \\ k \sim \; \text{normal} \left( 1.0 \; , \; 1.0 \right); \\ \text{sigma} \sim \; \text{normal} \left( 0.0 \; , \; 1.0 \right); \\ \text{y} \sim \; \text{normal} \left( \text{signa} \right); \\ \end{array} \right.
```

Simple model posterior

Table of results [Goodlet et al., 2018]

Specimen name	${f c_{11}}$ (GPa) mean \pm sd	c_{44} (GPa) mean \pm sd	A (unitless) mean \pm sd
CMSX-4-A	249.0 ± 2.3	129.2 ± 0.29	2.811 ± 0.011
CMSX-4-B	248.3 ± 2.0	129.6 ± 0.28	2.817 ± 0.0097
Co-Ternary-A	257.3 ± 0.79	149.9 ± 0.13	3.219 ± 0.0045
Co-Ternary-B	256.7 ± 0.58	150.0 ± 0.10	3.217 ± 0.0035
Co-2Ta-A	258.8 ± 1.8	147.7 ± 0.26	3.134 ± 0.0085
Co-2Ta-B	259.3 ± 1.6	147.9 ± 0.23	3.141 ± 0.0077
Co-6Ti-A	248.1 ± 1.4	145.4 ± 0.24	3.188 ± 0.0086
Co-6Ti-B	250.7 ± 1.8	145.2 ± 0.23	3.211 ± 0.0086
CoNi-A1	256.7 ± 0.36	142.1 ± 0.08	2.868 ± 0.0029
CoNi-A2	256.4 ± 0.41	141.9 ± 0.09	2.873 ± 0.0032
CoNi-A+1	256.7 ± 0.86	142.2 ± 0.11	2.880 ± 0.0036
CoNi-A+2	255.9 ± 0.66	142.0 ± 0.09	2.880 ± 0.0030
CoNi-B1	257.1 ± 1.3	141.6 ± 0.21	2.864 ± 0.0068
CoNi-B2	257.5 ± 1.0	141.7 ± 0.17	2.868 ± 0.0057
CoNi-C1	256.0 ± 0.67	140.3 ± 0.13	2.828 ± 0.0044
CoNi-C2	256.1 ± 0.75	140.6 ± 0.14	2.825 ± 0.0048
CoNi-D1	256.2 ± 0.60	141.2 ± 0.09	2.853 ± 0.0029
CoNi-D2	257.8 ± 0.78	141.3 ± 0.12	2.849 ± 0.0036

Not all those who wander are lost

Folks that worked on this project that aren't here

Brent Goodlet

Leah Mills

Tresa Pollock

Linda Petzold

If you haven't had enough already

- https://github.com/bbbales2/stancon_2018 ← rus.html has more details
- ▶ [Bales et al., 2018]
- ▶ [Goodlet et al., 2018]

An incomplete list of people smarter than me

- ▶ [Bernard et al., 2015] ← This one is also Bayesian!
- ► [Migliori and Maynard, 2005]
- ► [Sarrao et al., 1994]
- ▶ [Maynard, 1992]
- ▶ [Visscher et al., 1991] ← I quite like this one
- ▶ [Ohno, 1976]
- ▶ [Demarest, 1971]
- ► [Holland, 1968]
- ▶ [Bower, 2009] ← This is a general reference on mechanics

References I

Bales, B., Petzold, L., Goodlet, B. R., Lenthe, W. C., and Pollock, T. M. (2018).

Bayesian inference of elastic properties with resonant ultrasound spectroscopy.

The Journal of the Acoustical Society of America, 143(1):71-83.

Bernard, S., Marrelec, G., Laugier, P., and Grimal, Q. (2015). Bayesian normal modes identification and estimation of elastic coefficients in resonant ultrasound spectroscopy. Inverse Problems, 31(6):065010.

Bower, A. F. (2009). Applied mechanics of solids. CRC press, Boca Raton, FL.

References II

Demarest, H. H. (1971).

Cube-resonance method to determine the elastic constants of solids.

J. Acoust. Soc. Am., 49(3B):768.

Goodlet, B., Mills, L., Bales, B., Charpagne, M.-A., Murray, S., Lenthe, W., Petzold, L., and Pollock, T. (2018). Elastic properties of novel co and coni-based superalloys determined through bayesian inference and resonant ultrasound spectroscopy (submitted).

Holland, R. (1968).

Resonant properties of piezoelectric ceramic rectangular parallelepipeds.

J. Acoust. Soc. Am., 43(5):988.

References III

Maynard, J. D. (1992).

The use of piezoelectric film and ultrasound resonance to determine the complete elastic tensor in one measurement. J. Acoust. Soc. Am., 91(3):1754-1762.

Migliori, A. and Maynard, J. D. (2005).

Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens.

Rev. Sci. Instrum., 76(2005):1-7.

Ohno, I. (1976).

Free vibration of a rectangular parallelepiped crystal and its application to determination of elastic constants of orthorhombic crystals.

J. Phys. Earth, 24:255-379.

References IV

Determination of the crystallographic orientation of a single crystal using resonant ultrasound spectroscopy.

Rev. Sci. Instrum., 65(6):2139-2140.

Visscher, W. M., Migliori, A., Bell, T. M., and Reinert, R. A. (1991).

On the normal modes of free vibration of inhomogeneous and anisotropic elastic objects.

J. Acoust. Soc. Am., 90(4):2154-2162.