MATRICES ET APPLICATIONS LINÉAIRES

RANG D'UNE FAMILLE DE VECTEURS

 $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1 Rang d'une famille de vecteurs

1.1 Définition

Définition 1 Soient E un \mathbb{K} -espace vectoriel de dimension finie n et $x_1, x_2, ..., x_n$ des vecteurs de E. On appelle **rang** de la famille $(x_1, x_2, ... x_n)$ la dimension du sous-espace vectoriel engendré par cette famille. On note

$$rg(x_1, x_2, ..., x_n) = \dim (Vect(\{x_1, x_2, ..., x_n\})).$$

1.2 Propriétés

Proposition 1 Soient E un \mathbb{K} -espace vectoriel de dimension finie n et $(x_1, x_2, ..., x_p)$ une famille de vecteurs de E.

- 1. $rg(x_1, x_2, ..., x_p) \leq p$.
- 2. $rg(x_1, x_2, ..., x_p) \leq n$.
- 3. $rg(x_1, x_2, ..., x_p) = p \Leftrightarrow (x_1, x_2, ..., x_p)$ est libre.
- 4. $rg(x_1, x_2, ..., x_p) = n \Leftrightarrow (x_1, x_2, ..., x_p)$ est génératrice de E.

2 Rang d'une matrice

2.1 Définition

Définition 2 Le rang d'une matrice est le rang de ses vecteurs colonnes.

2.2 Propriétés

Proposition 2 Le rang d'une matrice échelonnée par colonnes est égal au nombre de colonnes non nulles.

Proposition 3 Le rang d'une matrice n'est pas modifié si

- on multiplie une colonne par un scalaire.
- on ajoute à une colonne un multiple d'une autre colonne.
- on échange deux colonnes.

Proposition 4 Soit $A \in M_n(\mathbb{R})$. Alors, A est inversible si et seulement si rg(A) = n.

Proposition 5 Soit $A \in M_{n,p}(\mathbb{R})$. Alors, $rg(A) = rg(A^T)$.

1 IONISX