Лекция 5

31 сентября 2024

Теорема 1

Сумма и разность двух бесконечно малых функций — это бесконечно малая функция.

Доказательство.

Пусть f(x) и g(x) бесконечно малы при $x \to a$. Тогда

1.
$$\forall \varepsilon > 0 \ \exists \delta_1 > 0 : \forall x \in 0 < |x - a| < \delta_1 : |f(x)| < \frac{\varepsilon}{2}$$

2.
$$\forall \varepsilon > 0 \ \exists \delta_2 > 0 : \forall x \in 0 < |x - a| < \delta_2 : |g(x)| < \frac{\varepsilon}{2}$$
.

Положим $\delta = \min\{\delta_1, \ \delta_2\}$. При таком δ оба неравенства выполнены автоматиески: $\forall x \in \{0 < |x-a| < \delta\} \ |f(x)| < \frac{\varepsilon}{2}$ и $|g(x)| < \frac{\varepsilon}{2}$. Следовательно, $\forall x \in \{0 < |x-a| < \delta\} \ |f(x) \pm g(x)| \le |f(x)| \pm |g(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \implies f(x) \pm g(x) - \xi$ бесконечно малая функция.

Следствие.

Алгебраическая сумма любого конечного числа бесконечно малых функций является бесконечно малой функцией.

Теорема 2

Произведение бесконечно малой (в точке a) функции на ограниченную (в окрестности точки a) функцию — это бесконечно малая (в точке a) функция.

Доказательство.

Пусть f(x) — бесконечно малая в точке a функция. Пусть g(x) — функция, ограниченая в некоторой проколотой окрестности ω точки a ($\exists m>0: \forall x\in\omega |g(x)|\leq m$).

Зафиксируем произвольное $\varepsilon>0$. Так как g(x) бесконечно мала, $\forall \varepsilon>0 \; \exists \delta>0: \forall x\in \{0<|x-a|<\delta\} \; |f(x)|<\frac{\varepsilon}{m}$. Возьмем $\delta_1<\delta$ столь малым, чтобы проколотая δ_1 -окрестность точки a целиком принадлежала ω . Тогда $\forall \varepsilon>0 \; \exists \delta=\delta_1>0: \forall x\in \{0<|x-a|<\delta_1\} \; |f(x)g(x)|<|f(x)||g(x)|<\frac{\varepsilon}{m}\cdot m=\varepsilon$.

Следствие.

Произведение конечного числа ограниченных функций, среди которых хотя бы одна функция является бесконечно малой, является бесконечно малым.

1 Сравнение бесконечно малых и бесконечно больших

Определение 1

Пусть f(x) и g(x) — две бесконечно малые функции. Тогда предел вида $\lim_{x \to a} \frac{f(x)}{g(x)}$ называется неопределенностью типа $\frac{0}{0}$.

1

Пример. $\lim_{x\to 0} \frac{\sin(x)}{x} = \begin{bmatrix} 0\\0 \end{bmatrix}$.

Определение 2

Функция f(x) называется бесконечно малой более высокого порядка малости (имеет более высокий порядок малости), чем g(x) при $x \to a$, если $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$.

 $\underline{3}$ амечание: обозначается как f=o(g).

Пример. $x^2 = o(x)$ при $x \to 0$.

Определение 3

Бесконечно малые функции f(x) и g(x) называются бесконечно малыми одного порядка, если $\lim_{x\to a} \frac{f(x)}{g(x)} = const \neq 0$.

Замечание 1: обозначается как f = O(g) при $x \to a$.

Пример 1. $2x^2 + x^3 = O(x^2)$ при $x \to 0$.

<u>Замечание 2:</u> если предел отношения равен 1, то фунции называаются эквивалентными $(f(x) \sim g(x))$.

Пример 2. $x^2 + x^3 \sim x^2$ при $x \to 0$.

Пример 3. $\sin(x) \sim x$ при $x \to 0$.

 $\frac{3}{0}$ в случае, кода рассматриваются односторонние пределы, все определения сохраняют силу.

2 Свойства символа о

1. $o(g) \pm o(g) = o(g)$.

2. если f=o(g), то $o(f)\pm o(g)=o(g)$ (Например, $o(x^2)\pm o(x)=o(x)$).

3. если f и g бесконечно малы, то f,g=o(f) и f,g=o(g).

4. если $f\sim g$, то f-g=o(f) и f-g=o(g).

5. $o(c \cdot g) = o(g)$, если c — константа, отличная от 0.

6. o(g+o(g))=o(g) (Например, $o(x+2x^2)=o(x)$).

 $\underline{\mbox{3aмeчaниe:}}$ все равенства с o читаются в одну сторону (знак 'равно' означает символ 'принадлежит').

Пример. $x^2 = o(x)$, но $o(x) \neq x^2$.

Доказательство пункта 1.

Пусть
$$\alpha_1(x) = o(g), \ \alpha_2(x) = o(g).$$
 Тогда $\lim_{x \to a} \frac{\alpha_1(x)}{g(x)} = \lim_{x \to a} \frac{\alpha_2(x)}{g(x)} = 0 \implies \lim_{x \to a} \frac{\alpha_1(x) + \alpha_2(x)}{g(x)} = 0 + 0 = 0.$

Определение 4

Пусть f(x) и g(x) — бесконечно большие при $x \to a$ функции, тогда предел вида $\lim_{x \to a} \frac{f(x)}{g(x)}$ называется неопределенностью вида $\frac{\infty}{\infty}$.

2

Определение 5

Говорят, что f(x) имеет более высокий порядок роста чем g(x), если $\lim_{x\to a} \frac{f(x)}{g(x)} = \infty$.

Пример. Пусть $f(x) = \frac{1}{x^2}$, а $g(x) = \frac{1}{x}$. Тогда $\lim_{x \to 0} \frac{f(x)}{g(x)} = \infty$. То есть f(x) в окрестности 0 имеет более высокий порядок роста чем g(x).

Определение 6

Говорят, что бесконечно малые f и g имеют при $x \to a$ одинаковый порядок роста, если $\lim_{x \to a} \frac{f(x)}{g(x)} = const.$

Пример. $f(x) = \frac{1}{x}$ и $g(x) = \frac{1}{x+1}$ имеют одинаковый порядок роста при $x \to 0$.

Другие виды неопределенностей:

- $\infty \infty$: $\lim_{x \to \infty} (\sqrt{x^2 + x} x)$
- $0 \cdot \infty$: $\lim_{x \to 0} (x \cdot \cot(x))$
- 1^{∞} : $\lim_{x \to 0} (1+x)^{\frac{1}{x}}$
- $\bullet \ 0^0: \qquad \lim_{x \to 0^+} x^x$
- ∞^0 : $\lim_{x \to \infty} x^{\frac{1}{x}}$

3 Свойства пределов функции

Лемма 1

Если $\lim_{x\to a} f(x) = b = const$, то f(x) можно представить в виде $b + \alpha(x)$, где $\alpha(x)$ — бесконечно малая в точке a функция.

Доказательство.

Согласно определению предела $\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x \in \{0 < |x - a| < \delta\} \; |f(x) - b| < \varepsilon$. Это и означает, что функция $f(x) - b = \alpha(x)$ бесконечно малая в точке a. То есть $f(x) = b + [f(x) - b] = b + \alpha(x)$.

Лемма 2

Если функцию при $x \to a$ можно представить как $b + \alpha(x)$, где $\alpha(x)$ бесконечно малая, то $\lim_{x \to a} f(x) = b$.