

l'histoire du nombre e - number e history

1 la fonction exponentielle

1.1 unicité

définition de la fonction exponentielle

• **problème** : trouver les fonctions f définies sur $\mathbb R$ tq :

$$\left\{ \begin{array}{ll} f(0) = 1 \\ f' = f & \forall x \in \mathbb{R} \end{array} \right.$$

- $\underline{\text{existence}}$: f existe (admis peut être fait de plusieurs façons mais reste compliqué)
- $\underline{\mathbf{unicit\acute{e}}}: f$ est unique
- notation : cette fonction unique est notée $x \longrightarrow exp(x)$ ou plus simplement $x \longrightarrow e^x$

preuve de l'unicité

1.2 propriété e^x pour le calcul

 $x \longrightarrow e^x$ est solution d'1 problème précis

•
$$e^0 = 1$$

•
$$\forall x \in R : (e^x)' = e^x$$
 • $(e^x)'(0) = 1$

•
$$(e^x)'(0) = 1$$

autre propriété de e^x

•
$$e^{a+b} = e^a \times e^b$$

•
$$e^{-a} = \frac{1}{e^a}$$

•
$$e^{a-b} = \frac{e^a}{e^b}$$

• $(e^a)^b = e^{a \times b}$

$$\bullet \quad (e^a)^b = e^{a \times b}$$

HP: 1 remarque importante

- par définition, $\forall n \in \mathbb{N}, (e^x)^{(n)}(0) = 1$
- ainsi, par la formule de Taylor en $0: e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ et $e = \sum_{k=0}^{\infty} \frac{1}{k!}$

lien avec les suites géométriques

la suite $(e^{a \times n})_{n > 0}$

- rappel : $e^{an} = (e^a)^n$
- $\boxed{\implies} \forall a \in \mathbb{R} , (e^{an})_{n \geq 0} \text{ est } 1 \text{ SG de raison } e^a$
- il y a donc 1 passerelle entre exponentielle et SG

les intérêts composés

- plaçons 10 000 à 4% à la banque
 - chaque début d'année la banque verse 4 % d'intérêt
 - ces intérêts vont eux aussi rapporter des intérêts l'année suivante ...
 - d'où le nom d'intérêts composés
- on passe d'1 année à l'autre en multipliant la somme en cours par 1,04
 - $(somme)_{n>0}$ est 1 SG de raison 1.04 et de premier terme 10 000
 - remarquons que $1.04 \simeq e^0.03922$
 - on a donc : $somme = 10000 \times 1.04^n = 10000 \times e^{0.03922n}$
- la somme peut donc être modélisée par 1 fonction exponentielle

2 propriété de la fonction exponentielle

2.1 l'exponentielle est strictement positive

 $e^x > 0$

• $\forall x \in \mathbb{R} : e^x > 0$

preuve:

conséquence

• $x \longrightarrow e^x$ est strictement croissante sur \mathbb{R}

preuve:

2.2 dérivée composée

propriété

• rappel : $(f(g(x)))' = f'(g(x)) \times g'(x)$

• appliqué à l'exponentielle : $(e^{f(x)})' = f'(x) \times e^{f(x)}$

exemple

• calculer les dérivées des fonctions suivantes :

• $f(x) = e^{2x}$

• $g(x) = e^{-3x+1}$

• $h(x) = e^{\frac{1}{x}}$

• $i(x) = e^{\sqrt{2x+1}}$

2.3 un problème ouvert

tangente en 0

- trouver l'équation de la tangente à $x \longrightarrow e^x$ en 0
- m
q $x \longrightarrow e^x$ est au-dessus de sa tangente en 0

tangente et exponentielle

• mq $x \longrightarrow e^x$ est au-dessus de ses tangentes (on dit que $x \longrightarrow e^x$ est <u>convexe</u> sur \mathbb{R}) - solution

3 graphe de la fonction exponentielle

3.1 $x \longrightarrow e^x$

forme algébrique et tableau de valeurs

•
$$f: \begin{bmatrix} \mathbb{R} & \longrightarrow & \mathbb{R}^+ \\ x & \longrightarrow & e^x \end{bmatrix}$$

• HP : c'est 1 fonction convexe

•	x	-4	-3	-2	-1	0	1	2	3	4
	f(x)									

graphique

3.4 un peu de python

1 autre façon d'écrire 1 nombre : les fractions continues

- une multitude de calculatrice à votre disposition
- mettre e sous forme de fraction continue
- le programme python associé à la calculatrice est fourni; tester le!
- rechercher l'écriture de $\sqrt{2}$, de $\sqrt{3}$ et de π
- conjecturer 1 propriété générale concernant l'écriture en fraction continue d'1 nombre réel <u>algébrique</u> (par opposition à <u>transcendant</u>)?