Задание

Выбрать набор данных (датасет), содержащий категориальные признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.)

Для выбранного датасета (датасетов) на основе материалов лекции решить следующие задачи:

- обработку пропусков в данных;
- кодирование категориальных признаков;
- масштабирование данных.

Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных.

Paccмотрим датасет Global Power-Plants:\ Dataset shows list of 35K powerplants with their generation capacity\ и исследуем его.

https://www.kaggle.com/datasets/ramjasmaurya/global-powerplants

```
In [2]:
        import numpy as np
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        %matplotlib inline
        sns.set(style="ticks")
In [3]:
         # Будем использовать только обучающую выборку
        data = pd.read csv('powerplants (global) - global power plants.csv', sep=",")
In [4]:
        data.shape
        (34936, 16)
Out[4]:
In [5]:
        data.dtypes
Out[5]: country code
                                          object
                                          object
        country
        name of powerplant
                                          object
                                        float64
       capacity in MW
        latitude
                                         float64
        longitude
                                         float64
        primary fuel
                                          object
        secondary fuel
                                         object
        other fuel 1
                                         object
        other fuel 2
                                         object
        start date
                                        float64
        owner of plant
                                         object
        geolocation source
                                          object
        generation gwh 2020
                                         float64
```

```
dtype: object
In [6]:
          # проверим есть ли пропущенные значения
          data.isnull().sum()
         country code
                                                    0
Out[6]:
                                                    0
         country
                                                    0
         name of powerplant
                                                    0
         capacity in MW
         latitude
                                                    0
         longitude
                                                    0
         primary fuel
                                                    0
         secondary fuel
                                                32992
         other fuel 1
                                                34660
         other fuel 2
                                                34844
         start date
                                                17489
         owner of plant
                                                14068
         geolocation source
                                                  419
                                                25277
         generation gwh 2020
                                                23536
         generation data source
         estimated generation gwh 2020
                                                 1798
         dtype: int64
In [7]:
          # Первые 5 строк датасета
          data.head()
Out[7]:
                                                                                              other fuel other fuel
            country
                                   name of
                                            capacity
                                                                                    secondary
                                                     latitude longitude primary_fuel
                       country
              code
                                 powerplant
                                             in MW
                                                                                         fuel
                                                                                                      1
                                      Kajaki
                                Hydroelectric
         0
               AFG Afghanistan
                                                33.0
                                                      32.322
                                                               65.1190
                                                                             Hydro
                                                                                         NaN
                                                                                                    NaN
                                                                                                              NaN
                                 Power Plant
                                 Afghanistan
                                   Kandahar
         1
                                                10.0
                                                      31.670
                                                               65.7950
                                                                              Solar
                                                                                         NaN
                                                                                                   NaN
                                                                                                              NaN
               AFG
                    Afghanistan
                                      DOG
                                   Kandahar
         2
               AFG
                   Afghanistan
                                                10.0
                                                      31.623
                                                               65.7920
                                                                              Solar
                                                                                         NaN
                                                                                                   NaN
                                                                                                              NaN
                                       JOL
                                    Mahipar
                                Hydroelectric
         3
               AFG Afghanistan
                                                66.0
                                                      34.556
                                                               69.4787
                                                                             Hydro
                                                                                         NaN
                                                                                                   NaN
                                                                                                              NaN
                                 Power Plant
                                 Afghanistan
                                Naghlu Dam
                                Hydroelectric
                                               100.0
                                                      34.641
                                                               69.7170
                                                                             Hydro
                                                                                                              NaN
               AFG Afghanistan
                                                                                         NaN
                                                                                                   NaN
                                 Power Plant
                                 Afghanistan
In [8]:
          # Удаление колонок, содержащих пустые значения
          data new 1 = data.dropna(axis=1, how='any')
          (data.shape, data_new_1.shape)
         ((34936, 16), (34936, 7))
Out[8]:
In [9]:
          # Выберем числовые колонки с пропущенными значениями
          # Цикл по колонкам датасета
          num cols = []
```

object

float64

generation data source

estimated generation gwh 2020

```
for col in data.columns:
    # Количество пустых значений
    temp null count = data[data[col].isnull()].shape[0]
    dt = str(data[col].dtype)
    if temp null count>0 and (dt=='float64' or dt=='int64'):
       num cols.append(col)
        temp perc = round((temp null count / data.shape[0]) * 100.0, 2)
       print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col,
```

Колонка start date. Тип данных float64. Количество пустых значений 17489, 50.06%. Колонка generation gwh 2020. Тип данных float64. Количество пустых значений 25277, 72.35%. Колонка estimated generation gwh 2020. Тип данных float64. Количество пустых значений 179 8, 5.15%.

```
In [10]:
```

```
# Фильтр по колонкам с пропущенными значениями
data num = data[num cols]
data num
```

Out[10]:

	start date	generation_gwh_2020	estimated_generation_gwh_2020
0	NaN	NaN	119.50
1	NaN	NaN	18.29
2	NaN	NaN	18.72
3	NaN	NaN	174.91
4	NaN	NaN	350.80
•••			
34931	NaN	NaN	183.79
34932	NaN	NaN	73.51
34933	NaN	NaN	578.32
34934	NaN	NaN	2785.10
34935	NaN	NaN	3960.24

34936 rows × 3 columns

```
In [12]:
          # Гистограмма по признакам
         for col in data num:
             plt.hist(data[col], 50)
             plt.xlabel(col)
             plt.show()
```



```
In [38]:

#ВВЕДЕМ НЕОБХОДИМЫЕ ФУНКЦИИ, ЧТОБЫ ЗАПОЛНИТЬ ПРОПУСКИ В ЧИСЛОВЫХ ДАННЫХ

from sklearn.impute import SimpleImputer

from sklearn.impute import MissingIndicator

strategies=['mean', 'median', 'most_frequent']

def test_num_impute_col(dataset, column, strategy_param):

temp_data = dataset[[column]]

indicator = MissingIndicator()

mask_missing_values_only = indicator.fit_transform(temp_data)

imp_num = SimpleImputer(strategy=strategy_param)

data_num_imp = imp_num.fit_transform(temp_data)

filled data = data num imp[mask missing values only]
```

```
dataset[column] = data num imp
                return column, strategy param, filled data.size, filled data[0], filled data[filled data
In [39]:
           data['start date'] = data['start date'].fillna(0)
           data.head()
Out[39]:
             country
                                      name of
                                               capacity
                                                                                         secondary
                                                                                                    other_fuel
                                                                                                               other fuel
                         country
                                                                longitude
                                                                           primary_fuel
                                                        latitude
                code
                                   powerplant
                                                 in MW
                                                                                               fuel
                                                                                                            1
                                                                                                                       2
                                        Kajaki
                                  Hydroelectric
          0
                                                          32.322
                      Afghanistan
                                                   33.0
                                                                    65.1190
                                                                                  Hydro
                                                                                              NaN
                                                                                                         NaN
                                                                                                                    NaN
                                   Power Plant
                                   Afghanistan
                                      Kandahar
          1
                      Afghanistan
                                                   10.0
                                                          31.670
                                                                    65.7950
                                                                                   Solar
                                                                                              NaN
                                                                                                         NaN
                                                                                                                    NaN
                                         DOG
                                      Kandahar
          2
                 AFG
                                                   10.0
                                                          31.623
                                                                   65.7920
                                                                                   Solar
                                                                                              NaN
                                                                                                         NaN
                                                                                                                    NaN
                      Afghanistan
                                          JOL
                                      Mahipar
                                  Hydroelectric
          3
                                                   66.0
                                                          34.556
                                                                   69.4787
                                                                                                         NaN
                                                                                                                    NaN
                 AFG
                     Afghanistan
                                                                                  Hydro
                                                                                              NaN
                                   Power Plant
                                   Afghanistan
                                   Naghlu Dam
                                  Hydroelectric
          4
                 AFG
                      Afghanistan
                                                  100.0
                                                          34.641
                                                                    69.7170
                                                                                  Hydro
                                                                                              NaN
                                                                                                         NaN
                                                                                                                    NaN
                                   Power Plant
                                   Afghanistan
In [40]:
           test num impute col(data, 'generation gwh 2020', strategies[1])
           ('generation gwh 2020',
                                       'median', 25277, 11.53, 11.53)
Out[40]:
In [41]:
           test num impute col(data,
                                           'estimated generation gwh 2020', strategies[1])
                                                    'median', 1798, 37.59, 37.59)
           ('estimated generation gwh 2020',
Out[41]:
In [42]:
           data.head()
Out[42]:
             country
                                      name of
                                                                                         secondary
                                                                                                    other_fuel
                                                                                                               other_fuel
                                               capacity
                                                        latitude longitude primary_fuel
                         country
                code
                                   powerplant
                                                 in MW
                                                                                               fuel
                                                                                                            1
                                                                                                                       2
                                        Kajaki
                                  Hydroelectric
          0
                                                   33.0
                                                          32.322
                                                                   65.1190
                                                                                  Hydro
                                                                                                         NaN
                                                                                                                    NaN
                 AFG
                      Afghanistan
                                                                                              NaN
                                   Power Plant
```

Afghanistan

1

2

3

AFG

AFG

Afghanistan

Afghanistan

Afghanistan

Kandahar

Kandahar

Mahipar Hydroelectric

> Power Plant Afghanistan

DOG

JOL

10.0

10.0

66.0

31.670

31.623

34.556

65.7950

65.7920

69.4787

Solar

Solar

Hydro

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

	country code	country	name of powerplant	in MW	latitude	longitude	primary_fuel	secondary fuel	other_fuel 1	other_fuel 2
4	AFG	Afghanistan	Naghlu Dam Hydroelectric Power Plant Afghanistan	100.0	34.641	69.7170	Hydro	NaN	NaN	NaN

Заполнинили "start date" и "generation_gwh_2020", "estimated_generation_gwh_2020" значениями "0" и "median" соответсвенно

```
In [44]:
         # Выберем категориальные колонки с пропущенными значениями
         # Цикл по колонкам датасета
         cat cols = []
         for col in data.columns:
             # Количество пустых значений
             temp null count = data[data[col].isnull()].shape[0]
             dt = str(data[col].dtype)
             if temp null count>0 and (dt=='object'):
                 cat cols.append(col)
                 temp perc = round((temp null count / data.shape[0]) * 100.0, 2)
                 print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col,
        Колонка secondary fuel. Тип данных object. Количество пустых значений 32992, 94.44%.
        Колонка other fuel 1. Тип данных object. Количество пустых значений 34660, 99.21%.
        Колонка other fuel 2. Тип данных object. Количество пустых значений 34844, 99.74%.
        Колонка owner of plant. Тип данных object. Количество пустых значений 14068, 40.27%.
        Колонка geolocation source. Тип данных object. Количество пустых значений 419, 1.2%.
        Колонка generation data source. Тип данных object. Количество пустых значений 23536, 67.3
```

Как видим удаление колонок в данном случае можно применить к колонкам "secondary_fuel", т.к. очень маленький процент из всей выборки составляют реальные данные. Но чтобы не лишаться информации о "secondary fuel", заполним эти колонки значение "None"

```
"secondary fuel", заполним эти колонки значение "None"
In [46]:
         data['secondary fuel'].unique()
         array([nan, 'Oil', 'Solar', 'Gas', 'Other', 'Hydro', 'Coal', 'Petcoke',
Out[46]:
                'Biomass', 'Waste', 'Cogeneration', 'Storage', 'Wind'],
               dtype=object)
In [47]:
         data['other fuel 1'].unique()
         array([nan, 'Other', 'Oil', 'Biomass', 'Gas', 'Solar', 'Waste', 'Storage',
Out[47]:
                'Hydro', 'Wind', 'Coal', 'Petcoke'], dtype=object)
In [48]:
         data['other fuel 2'].unique()
         array([nan, 'Other', 'Gas', 'Solar', 'Biomass', 'Hydro', 'Oil', 'Wind',
Out[48]:
                'Storage'], dtype=object)
In [ ]:
         data['secondary fuel'].unique()
In [58]:
         imp = SimpleImputer(missing values=np.nan, strategy='constant', fill value='None')
         data[['secondary fuel']] = imp.fit transform(data[['secondary fuel']])
         data[['other fuel 1']] = imp.fit transform(data[['secondary fuel']])
```

data[['other_fuel 2']] = imp.fit_transform(data[['secondary fuel']])
data[['owner of plant']] = imp.fit transform(data[['secondary fuel']])

```
data[['geolocation source']] = imp.fit transform(data[['secondary fuel']])
data[['generation data source']] = imp.fit transform(data[['secondary fuel']])
data.head()
```

O.,	+	ГЕО	٦.
υu	L	[20] .

•	country code	country	name of powerplant	capacity in MW	latitude	longitude	primary_fuel	secondary fuel	other_fuel 1	other_fuel 2
0	AFG	Afghanistan	Kajaki Hydroelectric Power Plant Afghanistan	33.0	32.322	65.1190	Hydro	None	None	None
1	AFG	Afghanistan	Kandahar DOG	10.0	31.670	65.7950	Solar	None	None	None
2	AFG	Afghanistan	Kandahar JOL	10.0	31.623	65.7920	Solar	None	None	None
3	AFG	Afghanistan	Mahipar Hydroelectric Power Plant Afghanistan	66.0	34.556	69.4787	Hydro	None	None	None
4	AFG	Afghanistan	Naghlu Dam Hydroelectric Power Plant Afghanistan	100.0	34.641	69.7170	Hydro	None	None	None

Закодируем признаки колонки "primary_fuel" целочисленнми значениями

```
In [59]:
         from sklearn.preprocessing import LabelEncoder
         data['primary fuel'].unique()
        array(['Hydro', 'Solar', 'Gas', 'Other', 'Oil', 'Wind', 'Nuclear', 'Coal',
Out[59]:
                'Waste', 'Biomass', 'Wave and Tidal', 'Petcoke', 'Geothermal',
               'Storage', 'Cogeneration'], dtype=object)
In [60]:
         le = LabelEncoder()
         data1 = le.fit transform(data['primary fuel'])
         data1
        array([ 5, 10, 10, ..., 5, 1, 5])
Out[60]:
In [63]:
         np.unique(data1)
        array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
Out[63]:
In [66]:
         data1 = le.inverse_transform([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
         data1
        array(['Biomass', 'Coal', 'Cogeneration', 'Gas', 'Geothermal', 'Hydro',
Out[66]:
               'Nuclear', 'Oil', 'Other', 'Petcoke', 'Solar', 'Storage', 'Waste',
               'Wave and Tidal', 'Wind'], dtype=object)
In [68]:
         pd.get dummies(data['primary_fuel']).head()
Out[68]:
```

														W
	Biomass	Coal	Cogeneration	Gas	Geothermal	Hydro	Nuclear	Oil	Other	Petcoke	Solar	Storage	Waste	т
0	0	0	0	0	0	1	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	0	1	0	0	
2	0	0	0	0	0	0	0	0	0	0	1	0	0	
3	0	0	0	0	0	1	0	0	0	0	0	0	0	
4	0	0	0	0	0	1	0	0	0	0	0	0	0	

Далее применим масштабирование MINMAX и на основе Z-оценки для колонки "longitude"

```
In [79]:
    from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer
    sc1 = MinMaxScaler()
    sc1_data = sc1.fit_transform(data[['longitude']])
    plt.hist(data['longitude'], 50)
    plt.show()
    plt.hist(sc1_data, 50)
    plt.show()
```



```
3500 -

2500 -

2000 -

1500 -

1000 -

500 -

0 0.0 0.2 0.4 0.6 0.8 1.0
```

```
In [80]: sc2 = StandardScaler()
    sc2_data = sc2.fit_transform(data[['longitude']])
    plt.hist(data['longitude'], 50)
    plt.show()
    plt.hist(sc2_data, 50)
    plt.show()
```

