Введение

Учебное пособие содержит основные определения и теоремы курса по теории порождающих грамматик и формальных языков, рассчитанного на 16 теоретических занятий по два академических часа. Материал тщательно структурирован. Факультативные разделы и пункты помечены звёздочками.

В пособии приведены главным образом теоретические результаты. Развёрнутые доказательства, примеры и приложения можно найти в других книгах, ссылки на которые имеются в каждом разделе.

Многие определения и результаты пояснены простыми примерами. Из примера, приведённого сразу после леммы или теоремы, часто можно понять идею доказательства.

Изложение строго математическое, но в то же время используются только самые простые математические понятия. Пособие можно рекомендовать студентам математических, лингвистических и компьютерных специальностей.

1. Слова, языки и грамматики

1.1. Формальные языки

[Гин, с. 12–14], [АхоУль, 0.2], [Сал, 1.1], [Гла, 1.1], [ХопМотУль, 1.5], [ГорМол, с. 347–349], [СокКушБад, с. 11–12], [LewPap2, 1.7], [Рей, с. 22–23], [КукБей, с. 257–262], [АхоСетУль, 3.3]

Определение 1.1. Будем называть *натуральными числами* неотрицательные целые числа. Множество всех натуральных чисел $\{0,1,2,\ldots\}$ обозначается \mathbb{N} .

Определение 1.2. *Алфавитом* называется конечное непустое множество. Его элементы называются *символами* (*буквами*).

Определение 1.3. *Словом* (*цепочкой*, *строкой*) (string) в алфавите Σ называется конечная последовательность элементов Σ .

Пример 1.4. Рассмотрим алфавит $\Sigma = \{a, b, c\}$. Тогда baaa является словом в алфавите Σ .

Определение 1.5. Слово, не содержащее ни одного символа (то есть последовательность длины 0), называется *пустым словом* и обозначается ε .

Определение 1.6. Длина слова w, обозначаемая |w|, есть число символов в w, причём каждый символ считается столько раз, сколько раз он встречается в w.

Пример 1.7. Очевидно, |baaa| = 4 и $|\varepsilon| = 0$.

Определение 1.8. Если x и y — слова в алфавите Σ , то слово xy (результат приписывания слова y в конец слова x) называется конкатенацией (катенацией, сцеплением) слов x и y. Иногда конкатенацию слов x и y обозначают $x \cdot y$.

Определение 1.9. Если x — слово и $n \in \mathbb{N}$, то через x^n обозначается слово $\underbrace{x \cdot x \cdot \ldots \cdot x}_{n \text{ раз}}$. По определению $x^0 \rightleftharpoons \varepsilon$ (знак \rightleftharpoons

читается "равно по определению"). Всюду далее показатели над словами и символами, как правило, являются натуральными числами.

Пример 1.10. По принятым соглашениям, $ba^3 = baaa$ и $(ba)^3 = bababa$.

Определение 1.11. Множество всех слов в алфавите Σ обозначается Σ^* .

Определение 1.12. Множество всех непустых слов в алфавите Σ обозначается Σ^+ .

Пример 1.13. Если $\Sigma = \{a\}$, то $\Sigma^+ = \{a, aa, aaa, aaaa, ...\}$.

Определение 1.14. Говорят, что слово x- префикс (начало) слова y (обозначение $x \sqsubset y$), если y=xu для некоторого слова u.

Пример 1.15. Очевидно, $\varepsilon \sqsubset baa, \ b \sqsubset baa, \ ba \sqsubset baa$ и $baa \sqsubset baa.$

Определение 1.16. Говорят, что слово $x - cy\phi\phi u\kappa c$ (конец) слова y (обозначение $x \supset y$), если y = ux для некоторого слова u.

Определение 1.17. Говорят, что слово $x - no\partial c no so$ (substring) слова y, если y = uxv для некоторых слов u и v.

Определение 1.18. Через $|w|_a$ обозначается количество вхождений символа a в слово w.

Пример 1.19. Если $\Sigma=\{a,b,c\}$, то $|baaa|_a=3,\,|baaa|_b=1$ и $|baaa|_c=0.$

Определение 1.20. Если $L \subseteq \Sigma^*$, то L называется *языком* (или формальным языком) над алфавитом Σ .

Поскольку каждый язык является множеством, можно рассматривать операции объединения, пересечения и разности языков, заданных над одним и тем же алфавитом (обозначения $L_1 \cup L_2, \ L_1 \cap L_2, \ L_1 - L_2$).

Пример 1.21. Множество $\{a,abb\}$ является языком над алфавитом $\{a,b\}$.

Пример 1.22. Множество $\{a^kba^l \mid k \leqslant l\}$ является языком над алфавитом $\{a,b\}$.

Определение 1.23. Пусть $L\subseteq \Sigma^*$. Тогда язык Σ^*-L называется дополнением (complement) языка L относительно алфавита Σ . Когда из контекста ясно, о каком алфавите идёт речь, говорят просто, что язык Σ^*-L является дополнением языка L.

Определение 1.24. Пусть $L_1, L_2 \subseteq \Sigma^*$. Тогда $L_1 \cdot L_2 \rightleftharpoons \{xy \mid x \in L_1, \ y \in L_2\}$. Язык $L_1 \cdot L_2$ называется конкатенацией языков L_1 и L_2 .

Пример 1.25. Если $L_1 = \{a, abb\}$ и $L_2 = \{bbc, c\}$, то $L_1 \cdot L_2 = \{ac, abbc, abbbc\}$.

Определение 1.26. Пусть $L\subseteq \Sigma^*$. Тогда $L^0 \rightleftharpoons \{\varepsilon\}$ и $L^n \rightleftharpoons \underbrace{L \cdot \ldots \cdot L}$.

Пример 1.27. Если $L = \{a^kba^l \mid 0 < k < l\}$, то $L^2 = \{a^kba^lba^m \mid 0 < k < l-1, \ m>1\}.$

Определение 1.28. Итерацией (Kleene closure) языка L (обозначение L^*) называется язык $\bigcup_{n\in\mathbb{N}}L^n$. Эта операция называется также звёздочкой Клини (Kleene star, star operation).

Пример 1.29. Если $\Sigma = \{a,b\}$ и $L = \{aa,ab,ba,bb\}$, то $L^* = \{w \in \Sigma^* \mid |w|$ делится на $2\}$.

Определение 1.30. Обращением или зеркальным образом (reversal) слова w (обозначается $w^{\rm R}$) называется слово, составленное из символов слова w в обратном порядке.

Пример 1.31. Если w = baaca, то $w^{\text{R}} = acaab$.

Определение 1.32. Пусть $L \subseteq \Sigma^*$. Тогда $L^{\mathsf{R}} \rightleftharpoons \{w^{\mathsf{R}} \mid w \in L\}$.

1.2. Гомоморфизмы

[Сал, с. 10], [Гин, с. 57], [АхоУль, 0.2.3], [ХопМотУль, 4.2.3, 4.2.4], [Гла, 1.1], [КукБей, с. 259], [LewPap2, с. 85]

Определение 1.33. Пусть Σ_1 и Σ_2 — алфавиты. Если отображение $h \colon \Sigma_1^* \to \Sigma_2^*$ удовлетворяет условию $h(x \cdot y) = h(x) \cdot h(y)$ для всех слов $x \in \Sigma_1^*$ и $y \in \Sigma_1^*$, то отображение h называется гомоморфизмом (морфизмом).

Замечание 1.34. Можно доказать, что если h- гомоморфизм, то $h(\varepsilon)=\varepsilon.$

Пример 1.35. Пусть $\Sigma_1=\{a,b\}$ и $\Sigma_2=\{c\}$. Тогда отображение $h\colon \Sigma_1^*\to \Sigma_2^*$, заданное равенством $h(w)=c^{2|w|}$, является гомоморфизмом.

Замечание 1.36. Каждый гомоморфизм однозначно определяется своими значениями на однобуквенных словах.

Определение 1.37. Если $h\colon \Sigma_1^*\to \Sigma_2^*$ — гомоморфизм и $L\subseteq \Sigma_1^*$, то через h(L) обозначается язык $\{h(w)\mid w\in L\}$.

Пример 1.38. Пусть $\Sigma = \{a,b\}$ и гомоморфизм $h \colon \Sigma^* \to \Sigma^*$ задан равенствами h(a) = abba и $h(b) = \varepsilon$. Тогда $h(\{baa,bb\}) = \{abbaabba,\varepsilon\}$.

Определение 1.39. Если $h\colon \Sigma_1^* \to \Sigma_2^*$ — гомоморфизм и $L\subseteq \Sigma_2^*$, то через $h^{-1}(L)$ обозначается язык $\{w\in \Sigma_1^*\mid h(w)\in L\}.$

Пример 1.40. Рассмотрим алфавит $\Sigma = \{a,b\}$. Пусть гомоморфизм $h \colon \Sigma^* \to \Sigma^*$ задан равенствами h(a) = ab и h(b) = abb. Тогда $h^{-1}(\{\varepsilon,abbb,abbab,ababab\}) = \{\varepsilon,ba,aaa\}$.

1.3. Порождающие грамматики

[Гин, 1.1], [Сал, 2.1], [АхоУль, 2.1.2], [Гла, 1.2], [Лал, с. 159–161], [Бра, с. 32–36], [ГлаМел, с. 34–48], [ГорМол, с. 354–355, 367–370], [СокКушБад, с. 12–13], [ТраБар, 1.12], [LewPap2, 4.6], [Рей, с. 28–30], [КукБей, с. 264–268]

Определение 1.41. Порождающей грамматикой (грамматикой типа 0) (generative grammar, rewrite grammar) называется четвёрка $G \coloneqq \langle N, \Sigma, P, S \rangle$, где N и Σ — конечные алфавиты, $N \cap \Sigma = \varnothing$, $P \subset (N \cup \Sigma)^+ \times (N \cup \Sigma)^*$, P конечно и $S \in N$. Здесь Σ — основной алфавит (терминальный алфавит), его

элементы называются терминальными символами или терминалами (terminal), N- вспомогательный алфавит (нетерминальный алфавит), его элементы называются нетерминальными символами, нетерминалами или переменными (nonterminal, variable), S- начальный символ (аксиома) (start symbol). Пары $(\alpha,\beta)\in P$ называются правилами подстановки, просто правилами или продукциями (rewriting rule, production) и записываются в виде $\alpha\to\beta$.

Пример 1.42. Пусть даны множества $N = \{S\}$, $\Sigma = \{a,b,c\}$, $P = \{S \to acSbcS, cS \to \varepsilon\}$. Тогда $\langle N, \Sigma, P, S \rangle$ является порождающей грамматикой.

Замечание 1.43. Будем обозначать элементы множества Σ строчными буквами из начала латинского алфавита, а элементы множества N — заглавными латинскими буквами. Обычно в примерах мы будем задавать грамматику в виде списка правил, подразумевая, что алфавит N составляют все заглавные буквы, встречающиеся в правилах, а алфавит Σ — все строчные буквы, встречающиеся в правилах. При этом правила порождающей грамматики записывают в таком порядке, что левая часть первого правила есть начальный символ S.

Замечание 1.44. Для обозначения n правил с одинаковыми левыми частями $\alpha \to \beta_1, \ldots, \alpha \to \beta_n$ часто используют сокращённую запись $\alpha \to \beta_1 \mid \ldots \mid \beta_n$.

Определение 1.45. Пусть дана грамматика G. Пишем $\phi \Rightarrow \psi$, если $\phi = \eta \alpha \theta$, $\psi = \eta \beta \theta$ и $(\alpha \to \beta) \in P$ для некоторых слов α , β , η , θ в алфавите $N \cup \Sigma$.

Замечание 1.46. Когда из контекста ясно, о какой грамматике идёт речь, вместо \Rightarrow можно писать просто \Rightarrow .

Пример 1.47. Пусть

$$G\!=\!\langle\{S\},\{a,b,c\},\{S\!\rightarrow\!acSbcS,cS\!\rightarrow\!\varepsilon\},S\rangle.$$

Тогда $cSacS \underset{\scriptscriptstyle G}{\Rightarrow} cSa.$

Определение 1.48. Если $\omega_0 \underset{G}{\Rightarrow} \omega_1 \underset{G}{\Rightarrow} \dots \underset{G}{\Rightarrow} \omega_n$, где $n \geqslant 0$, то пишем $\omega_0 \underset{G}{\stackrel{*}{\Rightarrow}} \omega_n$ (другими словами, бинарное отношение $\underset{G}{\stackrel{*}{\Rightarrow}}$ является рефлексивным, транзитивным замыканием бинарного отношения $\underset{G}{\Rightarrow}$, определённого на множестве $(N \cup \Sigma)^*$). При этом

последовательность слов $\omega_0, \ \omega_1, \ \ldots, \ \omega_n$ называется выводом (derivation) слова ω_n из слова ω_0 в грамматике G. Число n называется длиной (количеством шагов) этого вывода.

Замечание 1.49. В частности, для всякого слова $\omega \in (N \cup \Sigma)^*$ имеет место $\omega \overset{*}{\underset{G}{\Rightarrow}} \omega$ (так как возможен вывод длины 0).

Пример 1.50. Пусть $G=\langle \{S\},\{a,b\},\{S\to aSa,\ S\to b\},S\rangle.$ Тогда $aSa\overset{*}{\underset{G}{=}} aaaaSaaaa.$ Длина этого вывода — 3.

Определение 1.51. Язык, порождаемый грамматикой G, — это множество $L(G) \rightleftharpoons \{\omega \in \Sigma^* \mid S \overset{*}{\underset{G}{\Rightarrow}} \omega\}$. Будем также говорить, что грамматика G порождаёт (generates) язык L(G).

Замечание 1.52. Существенно, что в определение порождающей грамматики включены два алфавита — Σ и N. Это позволило нам в определении 1.51 "отсеять" часть слов, получаемых из начального символа. А именно, отбрасывается каждое слово, содержащее хотя бы один символ, не принадлежащий алфавиту Σ .

Пример 1.53. Если $G=\langle \{S\}, \{a,b\}, \{S \to aSa, \ S \to bb\}, S \rangle$, то $L(G)=\{a^nbba^n \mid n\geqslant 0\}.$

Определение 1.54. Две грамматики *эквивалентны*, если они порождают один и тот же язык.

Пример 1.55. Грамматика $S \to abS,\ S \to a$ и грамматика $T \to aU,\ U \to baU,\ U \to \varepsilon$ эквивалентны.

1.4. Классы грамматик

[Гин, с. 23–24, 78–79], [АхоУль, 2.1.3, с. 191], [Сал, 2.1, с. 94], [Гла, 1.2, 1.3], [Бра, с. 39–45], [ГлаМел, с. 54, 63, 69–70], [ГорМол, с. 361–367], [ТраБар, 1.12], [КукБей, с. 268–271], [ЛПИИ, 5.2.1]

Определение 1.56. Контекстной грамматикой (контекстно-зависимой грамматикой, грамматикой непосредственно составляющих, HC-грамматикой, грамматикой типа 1) (context-sensitive grammar, phrase-structure grammar) называется порождающая грамматика, каждое правило которой имеет вид $\eta A\theta \to \eta \alpha \theta$, где $A \in N$, $\eta \in (N \cup \Sigma)^*$, $\theta \in (N \cup \Sigma)^*$, $\alpha \in (N \cup \Sigma)^+$.

Пример 1.57. Грамматика $S \to TS$, $S \to US$, $S \to b$, $Tb \to Ab$, $A \to a$, $TA \to AAT$, $UAb \to b$, $UAAA \to AAU$ не является контекстной (последние три правила не имеют требуемого вида).

Определение 1.58. Контекстно-свободной грамматикой (КС-грамматикой, бесконтекстной грамматикой, грамматикой типа 2) (context-free grammar) называется порождающая грамматика, каждое правило которой имеет вид $A \to \alpha$, где $A \in N, \ \alpha \in (N \cup \Sigma)^*.$

Пример 1.59. Грамматика $S \to ASTA$, $S \to AbA$, $A \to a$, $bT \to bb$, $AT \to UT$, $UT \to UV$, $UV \to TV$, $TV \to TA$ является контекстной, но не контекстно-свободной (последние пять правил не имеют требуемого вида).

Определение 1.60. Линейной грамматикой (linear grammar) называется порождающая грамматика, каждое правило которой имеет вид $A \to u$ или $A \to uBv$, где $A \in N, \ u \in \Sigma^*, \ v \in \Sigma^*, \ B \in N.$

Пример 1.61. Грамматика $S \to TT, \ T \to cTT, \ T \to bT, \ T \to a$ является контекстно-свободной, но не линейной (первые два правила не имеют требуемого вида).

Определение 1.62. Праволинейной грамматикой (рациональной грамматикой, грамматикой типа 3) (right-linear grammar) называется порождающая грамматика, каждое правило которой имеет вид $A \to u$ или $A \to uB$, где $A \in N, \ u \in \Sigma^*, B \in N$.

Пример 1.63. Грамматика $S \to aSa, S \to T, T \to bT, T \to \varepsilon$ является линейной, но не праволинейной (первое правило не имеет требуемого вида).

Пример 1.64. Грамматика $S \to T, U \to abba$ праволинейная. **Пример 1.65.** Грамматика $S \to aS, S \to bS, S \to aaaT, S \to aabaT, S \to abaaT, S \to abbaT, S \to abb$

Пример 1.66. Грамматика $S \to \varepsilon$, $S \to aaaS$, $S \to abbS$, $S \to babS$, $S \to aabT$, $T \to abaT$, $T \to baaT$, $T \to bbbT$, $T \to bbaS$ праволинейная. Обобщённый вариант языка, порождаемого этой грамматикой, используется в доказательстве разрешимости арифметики Пресбургера [Sip, c. 207–208].