Теория вероятностей. Лекция вторая Вероятность как предел

Дмитрий Валерьевич Хлопин glukanat@mail.ru

Институт математики и механики им. Н.Н.Красовского

11.09.2018

Снова про схему Бернулли. Заблуждения

Пусть вероятность успеха p, неуспеха — q = 1 – p, и для n испытаний:

$$\Omega_n = \{ \text{конечные строки из нулей и единиц длины } n \}, \qquad \mathcal{F}_n = 2^{\Omega_n}; \\
\mathbb{P}_n \{ \omega \} = p^{\text{число успехов в строке}} q^{\text{число неуспехов в строке}} \qquad \forall \omega \in \Omega_n; \\
\mathbb{P}_n (\text{число успехов ровно } k) = C_n^k p^k q^{n-k}.$$

Факт. Наиболее вероятно число успехов m в случае, если $m \in [np-q, np+p]$, то есть $m \approx np$.

Пусть n четно, p=1/2 (орел/решка); тогда наиболее вероятно число успехов, равное n/2.

Заблуждение. Если выпал орел, то следующим выпадает решка, потому что вероятность 50/50.

Столь же наивное заблуждение. Если достаточно долго подождать, то орлов и решек всегда поровну.

Снова про схему Бернулли. Факты

Пусть вероятность успеха p, неуспеха — q = 1 – p, и для n испытаний:

$$\Omega_n = \{$$
конечные строки из нулей и единиц длины $n \}, \qquad \mathcal{F}_n = 2^{\Omega_n};$

$$\mathbb{P}_n \{ \omega \} = p^{\text{число успехов в строке}} q^{\text{число неуспехов в строке}} \qquad \forall \omega \in \Omega_n;$$

$$\mathbb{P}_n (\text{число успехов ровно } k) = C_n^k p^k q^{n-k}.$$

Факт. Пусть n четно, p = 1/2, с помощью формулы Валлиса можно доказать

$$\mathbb{P}_n$$
(число успехов = $n/2$) = $C_n^{n/2} 2^{-n} \approx \sqrt{\frac{2}{\pi n}} \to 0$.

Вывод: в точности m/n=p бывает чем дальше, тем реже. Однако, при конечном числе n повторений заданных условий доля числа m случаев, когда случится успех, то есть так называемая частота m/n, как правило, близка к p.

Почему так? Насколько близка?

Схема Бернулли. Локальная теорема Муавра–Лапласа

Теорема 1. [без д-ва] Пусть k зависит от n так, что $\left|\frac{k(n)-np}{\sqrt{npq}}\right| \leq C$ для некоторого C>0. Тогда имеет место формула Муавра-Лапласа:

$$\mathbb{P}_n$$
 (число успехов = $k(n)$) $\approx \frac{1}{\sqrt{2\pi npq}} e^{-\frac{(k(n)-np)^2}{2npq}} \left(1 + O\left(\frac{1}{\sqrt{n}}\right)\right)$.

Основная идея доказательства — формула Стирлинга: $n! = \sqrt{2\pi n} \cdot n^n e^{-n} (1 + \frac{1}{12n} + \frac{1}{288n^2} + \ldots)$. Подробнее см., например wiki. Пока доказывать ее не будем. Нам все равно требуется много более общий случай.

Считается, что теорему имеет смысл использовать в качестве точной оценки при n>100, npq>20. Имеются хорошие оценки погрешности: неравенство Бернштейна, неравенство Берри-Эссеена. В принципе, всю зиму мы будем крутиться вокруг этого и схожих с ним результатов. Пока ограничимся...

Схема Бернулли. Локальная теорема Муавра-Лапласа

Теорема 1. [без д-ва] Пусть k зависит от n так, что $\left|\frac{k(n)-np}{\sqrt{npq}}\right| \leq C$ для некоторого C>0. Тогда имеет место формула Муавра-Лапласа:

$$\mathbb{P}_n$$
 (число успехов = $k(n)$) $\approx \frac{1}{\sqrt{2\pi npq}} e^{-\frac{(k(n)-np)^2}{2npq}} \left(1 + O\left(\frac{1}{\sqrt{n}}\right)\right)$.

Следствие.
$$\mathbb{P}_n\left(\left|\frac{\text{число успехов}}{n} - p\right| \le \frac{3}{\sqrt{npq}}\right) \to 0,9973\dots$$
Следствие. $\mathbb{P}_n\left(\left|\frac{\text{число успехов}}{n} - p\right| \le \frac{4}{\sqrt{npq}}\right) \to 0,999937\dots$

Следствие. В рамках схемы независимых испытаний Бернулли [а на самом деле, в гораздо более общем случае]

$$\frac{\text{число успехов}}{n} \approx p \pm O\left(\frac{1}{\sqrt{n}}\right).$$

Вероятностное пространство. Что знаем...

```
Пока вероятностное пространство — это тройка (\Omega, \mathcal{F}, \mathbb{P}), где \Omega = \Omega - \text{множество элементарных событий (исходов)}, некоторое непустое множество; \mathcal{F} = \text{множество событий, равное } 2^{\Omega} \text{ (наивные...)}; \mathbb{P} = \text{вероятность, монотонная функция } \mathbb{P}: \mathcal{F} \to [0,1], \text{ т.е.} 0 = \mathbb{P}(\varnothing) \leq \mathbb{P}(A) \leq \mathbb{P}(B) \leq \mathbb{P}(\Omega) = 1 \qquad \forall A, B \in \mathcal{F}, A \in B.
```

Математическая основа статистики / эмпирическое определение вероятности: при конечном числе n повторений заданных условий доля m/n случаев, когда случится событие A, стремится к $\mathbb{P}(A)$ при $n \to \infty$.

События как подмножества

Если дано непустое множество Ω , то под событиями можно понимать (все или какие-то, пока непринципиально) его подмножества, элементы $\mathcal{F} \subset 2^{\Omega}$. На самом деле (смотрите задачу за 1 балл) можно начинать не с Ω , а с булевой алгебры \mathcal{F} , и кто там более первороден, Ω или \mathcal{F} , еще вопрос.

Но можно начать иначе.

События как информация

Пусть событие — суждение с ответом да/нет о некотором эксперименте.

При этом точки ω из Ω можно трактовать как возможные исходы некоторого случайного эксперимента. Каждое подмножество множества Ω теперь связано с некоторым событием, при этом утверждение $\omega \in A$ можно трактовать как "при исходе эксперимента ω произошло событие A".

Если всегда, когда происходит событие A, то происходит и событие B — про такую пару событий можно писать " $A \subset B$ ".

Как и прежде, $\emptyset, \Omega \in \mathcal{F}$ — невозможное и достоверное события. Если одновременно события A,B не наступают, то они называются взаимоисключающими (или несовместными).

Операции над событиями

```
\overline{A} = \Omega \setminus A — "A не произошло";
     A \setminus B — "A произошло, а B — нет":
     A \cap B — "наступило и событие A, и событие B";
     A \cup B — "произошло хотя бы одно из событий A, B";
    \bigcap_{i=1}^{k} A_{i} — "наступило каждое из событий A_{1}, A_{2}, \dots, A_{k}";
    \bigcup_{i=1}^k A_i — "наступило хотя бы одно из событий A_1, A_2, \dots, A_k";
    \cap_{i \in \mathbb{N}} A_i — "наступило каждое из событий A_1, A_2, \dots";
    \bigcup_{i\in\mathbb{N}}A_i — "хотя бы для одного k\in\mathbb{N} наступило A_k";
   \cap_{\alpha \in A} A_{\alpha} — "события A_{\alpha} наступили для каждого \alpha \in \mathcal{A}";
   \cup_{\alpha \in A} A_{\alpha} — "хотя бы для одного \alpha \in \mathcal{A} событие A_{\alpha} наступило".
```

На вырост: пределы событий

Подумать: Для произвольной последовательности событий $(A_i)_{i\in\mathbb{N}}$ рассмотрим

$$\bigcap_{k \in \mathbb{N}} \bigcup_{i \ge k} A_i, \qquad \bigcup_{k \in \mathbb{N}} \bigcap_{i \ge k} A_i;$$

эти события называются соответственно верхним и нижним пределом последовательности $(A_i)_{i\in\mathbb{N}}$. Первое из них — "произошло бесконечное число этих событий (они никогда не кончатся)", второе — "начиная с некоторого, произошли все эти события (не произошло только конечное число событий)".

Подумать: А что тогда означает запись

$$A = \lim_{n \to \infty} A_n?$$

Что хочется в случае $\mathcal{F} \neq 2^{\Omega}$:

```
\times 0 \varnothing \in \mathcal{F}:
    \times 1 \ \Omega \in \mathcal{F}:
    \times 2 \ \forall A \in \mathcal{F} \ \Omega \setminus A = \overline{A} \in \mathcal{F}:
\times 2\pi \quad \forall A \in \mathcal{F} \ \exists k \in \mathbb{N}, \ A_1, A_2, \dots, A_k \in \mathcal{F} \ \Omega \setminus A = \bigcup_{i=1}^k A_i;
    \times 3 \ \forall A, B \in \mathcal{F} \ B \setminus A \in \mathcal{F}:
\forall A, B \in \mathcal{F} \ \exists k \in \mathbb{N}, A_1, A_2, \dots, A_k \in \mathcal{F} \ B \setminus A = \bigcup_{i=1}^k A_i;
    \times 4 \ \forall A, B \in \mathcal{F} \ A \cap B \in \mathcal{F}:
\forall k \in \mathbb{N} \ A_1, A_2, \dots, A_k \in \mathcal{F} \ \cap_{i=1}^k A_i \in \mathcal{F};
\times 4\sigma \ \forall A_1, A_2, \dots, A_k, \dots \in \mathcal{F} \cap_{i \in \mathbb{N}} A_i \in \mathcal{F}:
\times 4\alpha \ \forall (A_{\alpha})_{\alpha \in A} \in \mathcal{F}^{\mathcal{A}} \cap_{\alpha \in A} A_{\alpha} \in \mathcal{F}:
    \times 5 \ \forall A. B \in \mathcal{F} \ A \cup B \in \mathcal{F}:
\forall k \in \mathbb{N} \ A_1, A_2, \dots, A_k \in \mathcal{F} \cup_{i=1}^k A_i \in \mathcal{F};
\times 5\sigma \ \forall A_1, A_2, \dots, A_k, \dots \in \mathcal{F} \cup_{i \in \mathbb{N}} A_i \in \mathcal{F};
\times 5\alpha \ \forall (A_{\alpha})_{\alpha \in A} \in \mathcal{F}^{A} \cup_{\alpha \in A} A_{\alpha} \in \mathcal{F}.
```

В случае тривиальной алгебры $(\mathcal{F} = \{\varnothing, \Omega\})$ всё выполнено.

Совокупность подмножеств множества Ω называется

```
\sigma-алгеброй (борелевским полем, \sigma-полем), если его элементы
замкнуты относительно счетного числа теоретико-множественных
операций и \Omega \in \mathcal{F};
[достаточно потребовать x1,x2,x4\sigma; или x1,x2,x5\sigma]
алгеброй (булевой алгеброй, полем событий), если его элементы
замкнуты относительно конечного числа теоретико-множественных
операций и \Omega \in \mathcal{F}:
[достаточно потребовать x1, x2, x4; или x1, x2, x5]
кольцом (булевым кольцом), если его элементы замкнуты
относительно конечного числа теоретико-множественных операций;
[достаточно потребовать х3,х4; или х3,х5]
полукольцом (булевым полукольцом), если выполнены х3п,х4.
```

Самостоятельно дайте определения σ -кольца или полуалгебры.

Определение измеримого пространства

Множество Ω , снабженное своей σ -алгеброй \mathcal{F} , называется измеримым пространством и обозначается (Ω, \mathcal{F}) .

Подумать. Почему счетное число операций, а не произвольные объединения/пересечения?

Название "измеримое" не вполне удачно, полезнее было бы назвать информационное, но об этом в следующей лекции. Сегодняшняя цель — вероятность.

О вероятности. Хотелки

Пусть задано некоторое измеримое пространство (Ω, \mathcal{F}) . Что хочется:

$$x0 \mathbb{P}(\emptyset) = 0;$$

$$x1 \mathbb{P}(\Omega) = 1;$$

событий);

$$x2 \mathbb{P}(A) \leq \mathbb{P}(B)$$
 для любых $A, B \in \mathcal{F} \subset A \subset B$;

$$x3 \mathbb{P}(\Omega \setminus A) = 1 - \mathbb{P}(A)$$
 для любых $A \in \mathcal{F}$;

$$x4$$
 $\mathbb{P}(\cup_{i=1}^k A_i) = \sum_{i=1}^k \mathbb{P}(A_i)$ для всех $A_i \in \mathcal{F}$ со свойством $A_i \cap A_j = \varnothing$ при $i \neq j$ (для попарно несовместных

$$x4^2 \ \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$
 для всех $A, B \in \mathcal{F}$.

Теорема 2 [С-но]. Для всякой неотрицательной аддитивной функции на алгебре событий со свойством x1 выполнено x0–x4, $x4^2$.

Аддитивность

Функцию из $\mathcal F$ в $\mathbb R\cup\{+\infty\}$ называют аддитивной, если выполнено свойство x4: для всех попарно несовместных событий $A_i\in\mathcal F$

$$\mathbb{P}(\cup_{i=1}^k A_i) = \sum_{i=1}^k \mathbb{P}(A_i).$$

Теорема 2 [С-но] Для всякой неотрицательной аддитивной функции на алгебре событий со свойством x1 выполнено x0–x4, $x4^2$.

Схема Бернулли. Ответы и снова вопросы

Как и прежде,

$$\Omega_n$$
 = {конечные строки из нулей и единиц длины n }, \mathcal{F}_n = 2^{Ω_n} ; $\mathbb{P}_n\{\omega\}$ = $p^{\text{число успехов в строке}}q^{\text{число неуспехов в строке}}$ $\forall \omega \in \Omega_n$.

Теперь, благодаря теореме 2, вероятность \mathbb{P}_n может быть продолжена на всё \mathcal{F} .

[С-но] Докажите, что \mathbb{P}_n {число успехов ровно k } = $C_n^k p^k q^{n-k}$,

 $\mathbb{P}_n\{$ первый успех был на k-м испытании $\}=pq^{k-1}$ при $k=n,\ k< n.$

Подумать. Найдите вероятность того, что успех наступит хоть когда-то, хоть в каком-то испытании. А точно хватило $(\Omega_n, \mathcal{F}, \mathbb{P}_n)$? А точно хватило аддитивности вероятности?

О вероятности. Хотелки побольше

Что хотелось бы дополнительно:

$$x5$$
 $\mathbb{P}(\cup_{i\in\mathbb{N}}A_i)=\sum_{i\in\mathbb{N}}\mathbb{P}(A_i)$ для всех таких $A_i\in\mathcal{F}, i\in\mathbb{N}$, что $A_i\cap A_j=\varnothing$ при $i\neq j$ (для попарно несовместных событий);

$$x5_{\uparrow} \mathbb{P}(\cup_{i \in \mathbb{N}} B_i) = \lim_{i \to \infty} \mathbb{P}(B_i)$$
 для всех таких $B_i \in \mathcal{F}, i \in \mathbb{N}$, что $B_1 \subset B_2 \subset \ldots \subset B_k \subset \ldots$ (непрерывность снизу);

$$x5_{\downarrow} \mathbb{P}(\cap_{i \in \mathbb{N}} C_i) = \lim_{i \to \infty} \mathbb{P}(C_i)$$
 для всех таких $C_i \in \mathcal{F}, i \in \mathbb{N}$, что $C_1 \supset C_2 \supset \ldots \supset C_k \supset \ldots$ (непрерывность сверху);

$$x5_\varnothing\lim_{i o\infty}\mathbb{P}(D_i)$$
 = 0 для всех таких $D_i\in\mathcal{F}, i\in\mathbb{N}$, что $D_1\supset D_2\supset\ldots\supset D_k\supset\ldots$ и $\cap_{i\in\mathbb{N}}D_i$ = \varnothing (непрерывность в \varnothing).

Теорема 3 [С-но или [Колмогоров, Т. II.1.1],[Синай, Т. 1.36]]. Для всякой неотрицательной аддитивной функции на алгебре событий свойства x5, $x5_{\uparrow}$, $x5_{\varnothing}$ эквивалентны.

Д-во $x5_{\downarrow} \Leftrightarrow x5_{\uparrow}$. Достаточно задать C_k = $\Omega \smallsetminus D_k, D_k$ = $\Omega \smallsetminus C_k$, теперь

$$\cup_{i\in\mathbb{N}}D_i=\Omega\smallsetminus(\cap_{i\in\mathbb{N}}C_i)$$

осталось воспользоваться посылкой и свойством x2.

Д-во $x5_{\downarrow} \leftarrow x5_{\varnothing}$. Достаточно задать C = $\cap_{i \in \mathbb{N}} C_i$, D_k = $C_k \smallsetminus C$, теперь

$$\cap_{i\in\mathbb{N}}C_i = C \cup (\cap_{i\in\mathbb{N}}D_i)$$

осталось воспользоваться посылкой и свойством x4.

Д-во $x5_{\uparrow} \Leftrightarrow x5$. Достаточно задать $B_k = \cup_{i \leq k} A_i$ или $A_k = B_k \setminus B_{k-1}$ и подставить в уже известное; после $\cup_{i \in \mathbb{N}} A_i = \cup_{i \in \mathbb{N}} B_i$, $\mathbb{P}(B_k) = \sum_{i \leq k} \mathbb{P}(A_i)$ останется лишь заметить, что сумма ряда это предел его частичных сумм.

Определения. От аддитивной функции до вероятности

Функцию из \mathcal{F} в $\mathbb{R} \cup \{+\infty\}$ называют аддитивной, если выполнено свойство x4, σ -аддитивной — если выполнено свойство x5.

Вероятностью (распределением вероятности, вероятностным распределением) называют неотрицательную σ -аддитивную функцию из σ -алгебры событий $\mathcal F$ (над Ω) со свойством $\mathbb P(\Omega)$ = 1.

Вероятностным пространством называют совокупность непустого множества, некоторой его σ -алгебры и вероятности, определенной на этой σ -алгебре.

Зарядом называют произвольную σ -аддитивную функцию из σ -алгебры событий \mathcal{F} (над Ω) в $\mathbb{R} \cup \{+\infty\}$.

Мерой — произвольную неотрицательную σ -аддитивную функцию из σ -алгебры событий \mathcal{F} (над Ω).

Геометрия vs аддитивность: $\mathcal{F} \neq 2^{\Omega}$

Плохой пример 1. Геометрическая вероятность на окружности $\Omega = S^1$ должна выдерживать поворот. Если геометрическую вероятность можно продолжить на 2^{S^1} , то окружность нельзя разделить на счетное число множеств, переводящихся друг в друга движением. Но так сделать можно [пример Витали, с-но].

Подумать. Но может дело в том, что мы потребовали σ -аддитивность?

Плохой пример 2. Возьмем параллелепипед $[0,1/2] \times [0,1] \times [0,1]$. По парадоксу Банаха—Тарского можно его разделить на конечное число частей, поперемещать их и составить из них куб $[0,1] \times [0,1] \times [0,1]$. Если бы объем у таких частей был всегда, то 1/2=1. Значит хорошо продолжить объем, на все подмножества, например куба $[0,1] \times [0,1] \times [0,1]$, нельзя. В общем случае — любые два (в хотя бы трехмерном пр-ве) объекта с непустой внутренностью равносоставлены.

Вероятностное пространство. Итог

Вероятностное пространство — это тройка $(\Omega, \mathcal{F}, \mathbb{P})$, где $\Omega = \Omega - \text{множество элементарных событий (исходов)},$ некоторое непустое множество; $\mathcal{F} = \sigma\text{-алгебра событий, } \mathcal{F} \subset 2^{\Omega};$ $\mathbb{P} = \text{вероятность, счетно-аддитивная функция}$ $\mathbb{P}: \mathcal{F} \to [0,1], \text{ т.e.} \mathbb{P}(\Omega) = 1 \text{ и}$ $\mathbb{P}(A \sqcup B) = \mathbb{P}(A) + \mathbb{P}(B) \qquad \forall A, B \in \mathcal{F}, A \cap B = \varnothing.$

Смысл вероятности: при конечном числе n повторений заданных условий доля m/n случаев, когда случится событие A, стремится к $\mathbb{P}(A)$ при $n \to \infty$.

Задача теории вероятностей — рассчитать вероятность сложных событий.

Одна из задачек на эту лекцию, и вообще говоря, краеугольный камень и статистики тоже

Задача [О тривиальности горизонта; 1 балл] Пусть на одном и том же вероятностном пространстве дана последовательность событий A_n со свойством $\mathbb{P}(A_i)\mathbb{P}(A_j) = \mathbb{P}(A_i \cap A_j)$ для всех натуральных i,j $(i \neq j)$. Назовем событие A далеким от народа, если для всех $k \in \mathbb{N}$, по событиям A_n начиная с k-го, можно определить выполнено ли событие k. Докажите, что вероятность любого далекого от народа события равна или нулю, или единице.

В качестве тривиального следствия...

Задача [предел должен быть; 1 балл] Докажите, опираясь на предыдущую задачу, что в схеме Бернулли с бесконечным числом независимых испытаний

 $\mathbb{P}\Big(\frac{\text{число успехов за первые }n$ испытаний имеет предел при $n\uparrow\infty\Big)$ = 1.