Insper

Teste de Hipóteses para média populacional com variância populacional desconhecida

Objetivos desta aula!

- \checkmark Estender a metodologia de teste de hipóteses que aborda média populacional, mas agora com $σ^2$ desconhecido;
- ✓ Buscar estatística de teste adequada e usá-la para tomada de decisão via Região Crítica e via valor-p.

O número médio de pontos em um exame de inglês tem sido historicamente igual a 80.

Foram sorteados 10 estudantes que fizeram recentemente esse exame e observadas as notas:

65 7	0 76	86	59	81	75	72	81	83
------	------	----	----	----	----	----	----	----

Especialistas desconfiam que o rendimento médio dos alunos diminuiu e desejam testar essa afirmação por meio de um teste de hipóteses, com nível de significância de 5%.

Fazendo as suposições necessárias, qual seria a conclusão do teste?

Insber

Passos para Construção de um Teste de Hipóteses (via RC)

<u>1º.Passo</u>: Fixe qual a hipótese nula, H_0 , a ser testada e qual a hipótese alternativa (H_A).

2º.Passo: Defina a *estatística de teste* sob H₀. Não se esqueça de levantar as propriedades dessa estatística.

☐ Uma estatística é qualquer função da amostra que não depende de parâmetros desconhecidos.

Estatística de Teste

Caso 2

(variância populacional desconhecida)

Relembrando...

Vamos considerar a seguinte hipótese nula:

$$H_0$$
: $\mu = \mu_0$

Vimos que um estimador com boas propriedades para o parâmetro $\,\mu\,$ é $\,\overline{X}\,$.

Sob algumas suposições, temos que

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Relembrando...

Sob a hipótese nula, vem que

$$\overline{X} \sim N\left(\mu_0, \frac{\sigma^2}{n}\right)$$

Porém, a quantidade anterior não pode ser usada como estatística de teste pois σ é parâmetro desconhecido.

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0; 1)$$

também não pode ser considerada uma estatística de teste, uma vez que σ é desconhecido.

FATO

Se o desvio padrão populacional σ for desconhecido, o desvio padrão amostral, S, é usado para estimar σ .

Entretanto, a padronização da média amostral \overline{X} utilizando o desvio padrão amostral segue uma distribuição de probabilidades conhecida como distribuição t-Student, desde que uma a.a.s. tenha sido coletada de uma população em que X~Normal.

Assim, utilizando o estimador S^2 para σ^2 e supondo que a a.a.s. foi coletada de uma população cuja variável de interesse seja normalmente distribuída, temos, sob H_0 , que

$$t = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \sim t_{(n-1)}$$

pode ser considerada uma estatística de teste.

Passos para Construção de um Teste de Hipóteses (via RC)

- <u>1º.Passo</u>: Fixe qual a hipótese nula, H_0 , a ser testada e qual a hipótese alternativa (H_A).
- <u>2º.Passo</u>: Use a teoria estatística e as informações disponíveis para decidir qual *estatística de teste* será usada sob H_0 . Não se esqueça de levantar as propriedades dessa estatística.
- <u>3º.Passo</u>: Fixe a probabilidade α de cometer erro de rejeitar H₀, sob H₀ verdadeiro, e use este valor para construir a região crítica RC. Lembre que esta região é construída para a estatística definida no segundo passo, usando o valor hipotetizado em H₀.
- 4º.Passo: Use as informações fornecidas pela amostra para encontrar o valor observado da estatística de teste.
- <u>5º.Passo</u>: Se o valor observado da *estatística de teste* pertencer à região crítica, rejeite H₀; caso contrário, não rejeite.

Valor-p do Teste

Valor-p é o menor nível de

significância que leva à rejeição de

H₀ com base na amostra.

Passos para Construção de um Teste de Hipóteses (via valor-p)

- <u>1º.Passo</u>: Fixe qual as hipóteses H_0 e H_A .
- <u>2º.Passo</u>: Use a teoria estatística e as informações disponíveis para decidir qual *estatística de teste* será usada sob H₀. Não se esqueça de levantar as propriedades dessa estatística.
- <u>3º.Passo</u>: Use as informações fornecidas pela amostra para encontrar o valor observado da *estatística de teste*.
- **4º.Passo**: Use o valor observado da *estatística de teste* para encontrar o valor-p, ou seja, a probabilidade de encontrar valores tão ou mais desfavoráveis à H₀ quanto a *estatística de teste* observada pela amostra.
- <u>5º.Passo</u>: Se o valor-p for menor do que algum α fixado, rejeite H_0 ; caso contrário, não rejeite.

Teste unilateral ou unicaudal à direita

$$H_0: \mu = \mu_0$$

$$H_A: \mu > \mu_0$$

Estatística do teste observada (sob H₀):

$$t_{obs} = \frac{\bar{x}_{obs} - \mu_0}{S / \sqrt{n}}$$

Regra de rejeição, ao nível α de significância:

Rejeito
$$H_0$$
 se $t_{obs} > t_{(n-1)}^{(\alpha)} = t_c$

α=P(erro I)
estará na
cauda à
direita!

Insper

Teste unilateral ou unicaudal à esquerda

$$H_0: \mu = \mu_0$$

$$H_A: \mu < \mu_0$$

Estatística do teste observada (sob H₀):

$$t_{obs} = \frac{\bar{x}_{obs} - \mu_0}{S / \sqrt{n}}$$

Regra de rejeição, ao nível α de significância:

α=P(erro I)
estará na
cauda à
esquerda!

Rejeito
$$H_0$$
 se $t_{obs} < -t_{(n-1)}^{(\alpha)} = t_c$

Inspe

Teste bilateral ou bicaudal

$$H_0: \mu = \mu_0$$

$$H_A: \mu \neq \mu_0$$

Estatística do teste observada (sob H₀):

$$t_{obs} = \frac{\bar{x}_{obs} - \mu_0}{S / \sqrt{n}}$$

Regra de rejeição, ao nível α de significância:

Rejeito H₀ se
$$|t_{obs}| > t_{(n-1)}^{(\alpha/2)} = t_c$$

α/2 estaráem cadacauda! Asoma é α!

Insper

- As latas de certa marca de refrigerante apresentam em seu rótulo o volume de 350 ml.
- O fabricante deseja testar se o conteúdo médio das latas é igual a 350 ml, como anunciado no rótulo. Isto equivale a verificar se a máquina está regulada para colocar 350 ml, ou não, nas latas.
- Para averiguar a afirmação do fabricante, foi coletada uma amostra de 36 latas do refrigerante em pontos de comercialização e mediu-se o conteúdo destas latas.
- Os resultados obtidos na amostra foram: $\bar{x} = 347 \text{ ml e s} = 10,5 \text{ ml}$
- Será que as latas contêm 350 ml de líquido com 95% de confiança?

Com base nas hipóteses do fabricante, rejeita-se a hipótese nula para valores pequenos ou grandes. H₀: $\mu = 350 \text{ ml}$

 $U_{1} = 250 \text{ m}^{-1}$

Insper

Região crítica: se o valor da estatística t_{obs} for menor que -2,03 ou maior que 2,03, então rejeita-se a hipótese nula (o produto não está de acordo com as especificações do fabricante).

Estatística do Teste (obtida da amostra)

Padronização dos dados amostrais sob a hipótese nula (H_0), ou seja μ_0 = 350.

$$t_{obs} = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$
 amostra $t_{obs} = \frac{347 - 350}{10,5 / \sqrt{36}} = -1,71$
 $s = 10,5 \ ml$

<u>Conclusão:</u> Não rejeitamos a hipótese nula, isto é, não existem evidências estatísticas de que o conteúdo das latas esteja fora das especificações do fabricante, ao nível de significância de 5% (ou com 95% de confiança). Insper

Para calcular o valor-p para testes bicaudais devemos multiplicar por 2 o valor da probabilidade calculada com a estatística do teste, já que rejeitamos a hipótese nula tanto para pequenos como para grandes valores amostrais.

Dessa forma:
$$t_{obs} = -1,71$$

$$valor-p = 2*0,0481 = 0,0962$$

$$valor-p = 2*scipy.stats.t.cdf(-1.71,35) = 0,0962$$

Portanto, não rejeitamos a hipótese nula (pois valor-p = 0,0962 > $0.05 = \alpha$), isto é, não existem evidências estatísticas de que o conteúdo das latas esteja fora das especificações do fabricante. 21 Insper

Supondo as hipóteses a seguir, calcule e interprete o valor-p.

$$H_0: \mu = \mu_0$$

$$H_A: \mu > \mu_0$$

$$n = 30$$
; $s = 6$; $\mu_0 = 30$; $\overline{x} = 31,87$; $\alpha = 0.05$

Resp.:

valor – p =
$$P(t_{(29)} > 1,707) = 4,92\% < 5\% \Rightarrow rejeita H0!$$

Supondo as hipóteses a seguir, calcule e interprete o valor-p.

$$H_0: \mu = \mu_0$$

$$H_A: \mu < \mu_0$$

$$n = 30$$
; $s = 6$; $\mu_0 = 30$; $\overline{x} = 28,13$; $\alpha = 0.05$

Resp.:

valor – p =
$$P(t_{(29)} < -1.707) = P(t_{(29)} > 1.707) =$$

= 4.92% < 5% \Rightarrow rejeita $H_0!$

Supondo as hipóteses a seguir, calcule e interprete o valor-p.

$$H_0: \mu = \mu_0$$

$$H_A: \mu \neq \mu_0$$

$$n = 30$$
; $s = 6$; $\mu_0 = 30$; $\bar{x} = 31,87$; $\alpha = 0.05$

Resp.:

valor – p = 2 * P(
$$t_{(29)} > 1,707$$
) = 2 * 4,92% = = 9,84% > 5% \Rightarrow NÃO rejeita H_0 !

Exercícios

Exercício 1

O índice de poluição no município de Curitiba segue uma distribuição normal com média e variância desconhecidas. O departamento ambiental deseja estimar o índice médio de poluição no município. Para isso, ele medirá a poluição em uma amostra de dias escolhidos aleatoriamente.

- a) Dimensione a amostra de modo que o erro amostral de estimação seja no máximo 10% do desvio padrão, com uma confiança de 95%.
- b) Pretende-se extrair, em Curitiba, uma amostra aleatória de 16 dias. Em uma cidade com características similares, verificou-se que o índice médio de poluição é de 90 u.m.. 26

Exercício 1 (cont.)

- Construa um teste de hipóteses para verificar se Curitiba é mais poluída do que a outra cidade. Adote um nível de significância de 10%.
- c) Interprete os erros do tipo I e II relacionados ao teste acima, em termos do problema em questão.
- d) Extraída uma amostra aleatória de 16 dias verificou-se, em Curitiba, um índice médio amostral de poluição de 95 u.m., com desvio padrão amostral igual a 10 u.m.. Conclua o T.H. por meio da construção da R.C..

Exercício 1 (cont.)

- e) Através do cálculo do valor-p, conclua o teste de hipóteses. Interprete o valor-p.
- f) Descreva as suposições necessárias para as conclusões acima serem confiáveis.
- g) Um técnico resolveu medir a poluição em 16 dias consecutivos. A amostra obtida satisfaz as suposições necessárias para a realização do teste? Por quê?

Exercício 2

- O volume diário de negócios da corretora K. B. Sashata, em reais, segue uma distribuição normal. O diretor da corretora deseja fazer inferências sobre o volume médio diário negociado.
- a) Numa corretora de mesmo porte verificou-se que, em média, o volume negociado diariamente é de R\$ 116.000,00. Formule as hipóteses de um teste para verificar essas duas corretoras apresentam, diariamente, o mesmo volume de negociações.
- b) Interprete os erros tipo I e tipo II relacionados ao teste acima, em termos do problema em questão.
- c) Extraída uma amostra de 25 dias, verificou-se que o volume médio negociado diariamente na corretora K. B. Sashata é igual a R\$ 115.000,00, com desvio padrão amostral igual a R\$2.000,00. Conclua o teste descrito no item (a) com base na RC e no cálculo do valor-p.

