# Zobrazování dýmu simulovaného pomocí částicového systému

Petr Mohelník ¡xmohel01@stud.fit.vutbr.cz¿, Tomáš Růžička ¡xruzic42@stud.fit.vutbr.cz¿

29. prosince 2015

## 1 Úvod

Tato práce se zaměřuje na realistickou simulaci a zobrazení dýmu pomocí grafické karty. Využití by mělo být v aplikacích pracujících v reálném čase, např. hrách. V počítačových hrách může být dým využit u explozí, mlhy a ohně apod.

Tady by mělo být napsané o čem práce je a k čemu to je dobré. Například: Tato práce se zabývá akcelerací raytracingu na CUDA. Raytracing se používá ve fotorealistické grafice a herní grafice. CUDA umožňuje akceleraci ...

#### 2 Teorie

Přístupy pro simulaci kapalin a plynů se dají rozdělit do dvou kategorií. Jeden je Eulerův přístup, kde je prostor rozdělen na fixní 2D nebo 3D mřížku. Každá buňka v mřížce obsahuje informace o kapalině nebo plynu na dané neměnné pozici. Tyto informace mohou být tlak, hustota, teplota, viskozita aj. Oproti tomu Lagrangeův přístup využívá částice s proměnlivou pozicí jako nositele informace. Oproti Eulerovu přístupu není vázán na fixní mřížku a může se libovolně rozpínat v prostoru. Na druhou stranu může být výpočetně náročnější kvůli nutnosti vyhledávání okolních částic. Tyto přístupy se někdy kombinují.

V tomto projektu jsme zvolily Lagrangeovu metodu založenou na Smoothed Particle Hydrodynamics (SPH), která pro simulaci využívá částice. Řeší nestlačitelnost, symetrii sil, konzervaci hybnosti. SPH je interpolační metoda. Každá částice má prostorovou vzdálenost h určující, které okolní částice na

ní mají vliv. V SPH se fyzikální hodnota na pozici  $\mathbf{r}$  určí jako vážená suma fyzikálních hodnot  $\phi_j$  sousedních částic j:

$$\phi(\mathbf{r}) = \sum_{j} m_{j} \frac{\phi_{j}}{\rho_{j}} W(\mathbf{r} - \mathbf{r}_{j}, h)$$
(1)

kde  $m_i$  je hmotnost částice. Hmotnost je konstantní po celou dobu simulace a shodná pro všechny částice a  $W(\mathbf{r}, h)$  je symetrická vyhlazovací funkce. Hustota  $\rho_i$  se vypočítá:

$$\rho_i = \sum_j m_j W(\mathbf{r}_i - \mathbf{r}_j, h) \tag{2}$$

kde  $\mathbf{r}_i$  je pozice částice i. Akcelerace  $\mathbf{a}_i$  částice i se určí následovně:

$$\mathbf{a}_i = \frac{\mathbf{f}_i}{\rho_i} \tag{3}$$

kde  $\mathbf{f}_i$  se spočítá jako  $\mathbf{f}_i = \mathbf{f}_i^{viscosity} + \mathbf{f}_i^{pressure} + \mathbf{f}_i^{external}$ .

Tlaková síla  $\mathbf{f}_i^{pressure}$  je ze vztahu 1 určena:

$$\mathbf{f}_{i}^{pressure} = \sum_{j} m_{j} \frac{p_{j}}{\rho_{j}} \nabla W(\mathbf{r}_{i} - \mathbf{r}_{j}, h)$$
(4)

Bohužel tato síla není symetrická, jak může být vidět při interakci pouze dvou částic. Gradient je nula uprostřed, proto částice i využívá pouze tlak částice j pro výpočet síly a naopak. Tlak v lokacích dvou různých částic není shodný. Tlaková síla je symetrizována následovně (mohou být i jiné tvary rovnice pro symetrizaci):

$$\mathbf{f}_{i}^{pressure} = \sum_{j} m_{j} \frac{p_{i} + p_{j}}{2\rho_{j}} \nabla W(\mathbf{r}_{i} - \mathbf{r}_{j}, h)$$
 (5)

Tlak  $p_i$  se určí pomocí modifikované rovnice ideálního plynu:

$$p_i = k(\rho - \rho_0) \tag{6}$$

kde  $\rho_0$  je klidová hustota.

Síla viskozity  $\mathbf{f}_i^{viscosity}$ je z rovnice 1 určena:

$$\mathbf{f}_{i}^{viscosity} = \mu \sum_{j} m_{j} \frac{\mathbf{v}_{j}}{\rho_{j}} \nabla^{2} W(\mathbf{r}_{i} - \mathbf{r}_{j}, h)$$
 (7)

kde  $\mu$  je viskozita kapaliny nebo plynu a  $\mathbf{v}_i$  je rychlost částice i. Tato síla je také nesymetrická. Je symetrizována následovně:

$$\mathbf{f}_{i}^{viscosity} = \mu \sum_{j} m_{j} \frac{\mathbf{v}_{j} - \mathbf{v}_{i}}{\rho_{j}} \nabla^{2} W(\mathbf{r}_{i} - \mathbf{r}_{j}, h)$$
 (8)

Pro kapalinu by bylo vhodné počítat povrchové napětí. To my pro dým nepotřebujeme. Určujeme vztlakovou sílu, která je způsobena šířením teplot. My modelujeme izotermální plyn proto ji vypočítáme jako:

$$\mathbf{f}_{i}^{buoyancy} = b(\rho_{i} - \rho_{0})\mathbf{g} \tag{9}$$

kde b>0 je koeficient vztlaku. Pokud bude hustota menší než klidová, částice budou tlačeny vzhůru.

Vyhlazovací funkce  $W(\mathbf{r},h)$  velmi ovlivňují rychlost, stabilitu a přesnost SPH metod. Používáme tři různé kernely, pro dosažení co nejlepších výsledků simulace, viz 1. Jeden pro výpočet hustoty, druhý pro tlakovou sílu a třetí pro sílu viskozity. Tyto kernely jsou



**Obrázek 1:** Použité kernely. Zleva doprava použity pro výpočet hustoty, tlakovou sílu a sílu viskozity. Tlusté čáry jsou kernely, tenké gradienty a šrafované Laplaciány.

Pro integraci částic v čase používáme Eulerovo schéma. Zde se prvně aktualizuje pozice rychlost  $\mathbf{v}$ :

$$\mathbf{v}_{t+\delta t} = \mathbf{v}_t + \delta t \mathbf{a}_t \tag{10}$$

Poté se aktualizuje pozice r:

$$\mathbf{r}_{t+\delta t} = \mathbf{r}_t + \delta t \mathbf{v}_{t+\delta t} \tag{11}$$

Následně se určují kolize. Při kolizi s prostředím je částice odražena směrem od překážky.

Tady v té kapitole je napsané jak to funguje. Ideálně nějaka ta rovnice, např. 12. Potom by tady měla byt uvedena literatura, ze které bylo čerpano, například "Metody sledování paprsku jsou popsané v [CMB<sup>+</sup>08] [ZHBJ06]"

$$c = a + b \tag{12}$$

Na obrázku 2 je ukázané jak to funguje. Nějaké schémátko pipeline...



Obrázek 2: Nějaký ten diagram, třeba převzaný z [Wik04]

## 3 Popis řešení

Tady stručně popište, jakým způsobem jste prakticky projekt řešili. Uveďte zejména použité technologie a algoritmy. Zaměřte se hlavně na zajímavé a důležité části implementace a také na problémy, které jste řešili. Není nutné popisovat každou třídu.

Např. uveďte, jak jste matematický popis z předchozí kapitoly implementovali prakticky.

# 4 Vyhodnocení

Tady by mělo být napsané jak to funguje. Protože se jedná o počítačovou grafiku nebo vidění, tak by tady měl byt screenshot, ze ktereho bude poznat jak to funguje. K tomu by měla být idealně tabulka s vyhodnocením jak přesně/rychle to funguje.

#### 5 Závěr

Tady by mělo být stručně napsané jak to funguje.

# Reference

- [CMB<sup>+</sup>08] Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton Kalker. Digital Watermarking and Steganography. Morgan Kaufmann Publishers, 2nd edition, 2008.
- [Wik04] Wikipedia. Plagiarism Wikipedia, the free encyclopedia, 2004. [Online; accessed 22-July-2004].
- [ZHBJ06] Pavel Zemčík, Adam Herout, Vítězslav Beran, and JiříGranát. Hardware accelerated image analysis in fpga. In *Proceedings of SCCG*, page 4. Comenius University in Bratislava, 2006.