પ્રશ્ન 1(અ) [3 ગુણ]

સોક્ટવૅર ની વ્યાખ્યા આપો અને તેની લાક્ષણિકતા સમજાવો.

જવાબ:

સોફ્ટવૅર એ કમ્પ્યુટર પ્રોગ્રામ્સ, પ્રક્રિયાઓ અને દસ્તાવેજીકરણનો સમૂહ છે જે કમ્પ્યુટર સિસ્ટમ પર કાર્યો કરે છે.

ટેબલ: સોફ્ટવૅર લાક્ષણિકતાઓ

લાક્ષણિકતા	વર્ણન
અસ્પરર્ય	સ્પર્શ કરી શકાતું નથી, માત્ર અનુભવી શકાય છે
વિકસિત	એન્જિનિયર્ડ, મેન્યુફેક્યર્ડ નહીં
જાળવણીયોગ્ય	સુધારણા અને અપડેટ કરી શકાય છે
વિશ્વસનીય	સતત કામ કરવું જોઈએ
કાર્યક્ષમ	સાધનોનો શ્રેષ્ઠ ઉપયોગ કરે છે

- મુખ્ય મુદ્દો: સોફ્ટવૅર = પ્રોગ્રામ્સ + દસ્તાવેજીકરણ + પ્રક્રિયાઓ
- भेभरी ट्रीร: "I Don't Make Reliable Electronics"

પ્રશ્ન 1(બ) [4 ગુણ]

ક્લાસિકલ વોટરકોલ મોડેલ સમજાવો.

જવાબ:

વોટરફોલ મોડેલ એ રેખીય ક્રમિક સોફ્ટવૅર વિકાસ પદ્ધતિ છે જ્યાં દરેક તબક્કો પૂર્ણ થયા પછી જ આગળનો તબક્કો શરૂ થાય છે.

મુખ્ય લક્ષણો:

- ક્રમિક તબક્કાઓ: તબક્કાઓ વચ્ચે કોઈ ઓવરલેપ નથી
- દસ્તાવેજીકરણ આદ્યારિત: દરેક તબક્કે ભારે દસ્તાવેજીકરણ
- સરળ માળખું: સમજવા અને મેનેજ કરવા સરળ
- નિશ્ચિત આવશ્યકતાઓ: એકવાર શરૂ થયા પછી ફેરફાર મુશ્કેલ

મેમરી ટ્રીક: "Real Systems Include Testing, Deployment, Maintenance"

પ્રશ્ન 1(ક) [7 ગુણ]

સોક્ટવૅર પ્રોસેસ ક્રેમવર્ક અને અમ્બ્રેલા એક્ટિવિટી સમજાવો.

જવાબ:

સોફ્ટવૅર પ્રોસેસ ફ્રેમવર્ક મુખ્ય પ્રોસેસ વિસ્તારો ઓળખીને સંપૂર્ણ સોફ્ટવૅર એન્જિનિયરિંગ પ્રોસેસ માટે પાયો પ્રદાન કરે છે.

ટેબલ: ફ્રેમવર્ક એક્ટિવિટીઝ વિ અમ્બ્રેલા એક્ટિવિટીઝ

ફ્રેમવર્ક એક્ટિવિટીઝ	અમ્બ્રેલા એક્ટિવિટીઝ
સંવાદ	સોફ્ટવૅર પ્રોજેક્ટ ટ્રેકિંગ
આયોજન	જોખમ મેનેજમેન્ટ
મોડેલિંગ	ગુણવત્તા ખાતરી
નિર્માણ	તકનીકી સમીક્ષાઓ
જમાવટ	કન્ફિગરેશન મેનેજમેન્ટ

ફ્રેમવર્ક એક્ટિવિટીઝ:

• સંવાદ: સ્ટેકહોલ્ડર્સ પાસેથી આવશ્યકતાઓ એકત્રિત કરવી

• આયોજન: પ્રોજેક્ટ પ્લાન અને શેડ્યુલ બનાવવું

• મોડેલિંગ: ડિઝાઇન મોડેલ્સ બનાવવા

• નિર્માણ: કોડ જનરેશન અને પરીક્ષણ

• જમાવટ: સોફ્ટવૅર ડિલિવરી અને ફીડબેક

અમ્બ્રેલા એક્ટિવિટીઝ પ્રોજેક્ટ દરમિયાન યાલે છે:

• પ્રોજેક્ટ ટેકિંગ: પ્રગતિ નિરીક્ષણ

• જોખમ મેનેજમેન્ટ: જોખમો ઓળખવા અને નિયંત્રિત કરવા

• ગુણવત્તા ખાતરી: ગુણવત્તા ધોરણો સુનિશ્ચિત કરવા

• કન્ફિગરેશન મેનેજમેન્ટ: ફેરફારો નિયંત્રિત કરવા

મેમરી ટ્રીક: "Can People Make Construction Deploy"

પ્રશ્ન 1(ક) OR [7 ગુણ]

SCRUM મોડેલ પર ટૂંક નોંધ લખો.

જવાબ:

SCRUM એ પુનરાવર્તક અને વૃદ્ધિશીલ પ્રથાઓનો ઉપયોગ કરીને સોફ્ટવૅર વિકાસ પ્રોજેક્ટ્સનું મેનેજમેન્ટ કરવા માટેનું એક agile ફ્રેમવર્ક છે.

ટેબલ: SCRUM ભૂમિકાઓ અને આર્ટિફેક્ટ્સ

ยรร	વર્ણન
Product Owner	આવશ્યકતાઓ અને પ્રાથમિકતાઓ વ્યાખ્યાયિત કરે છે
Scrum Master	પ્રક્રિયાને સુવિધા આપે છે અને અવરોધો દૂર કરે છે
Development Team	સ્વ-સંગઠિત ટીમ જે પ્રોડક્ટ બનાવે છે
Product Backlog	લક્ષણોની પ્રાથમિકતા આપેલી યાદી
Sprint Backlog	વર્તમાન sprint માટે પસંદ કરેલા કાર્યો

મુખ્ય ઇવેન્ટ્સ:

• Sprint Planning: આગામી sprint માટે કામ પસંદ કરવું

• Daily Scrum: 15-મિનિટનું દૈનિક સિંક્રોનાઇઝેશન

• Sprint Review: પૂર્ણ થયેલ કામ દર્શાવવું

• Sprint Retrospective: પ્રક્રિયા પર વિચાર કરવો અને સુધારવું

ફાયદાઓ: ઝડપી ડિલિવરી, લવચીકતા, સતત સુધારણા, ગ્રાહક સહયોગ

મેમરી ટ્રીક: "People Sprint Daily Reviewing Retrospectively"

પ્રશ્ન 2(અ) [3 ગુણ]

સારા SRS ની લાક્ષણિકતા સમજાવો.

જવાબ:

SRS (સોફ્ટવૅર આવશ્ચકતા વિશિષ્ટતા) દસ્તાવેજ અસરકારક બનવા માટે વિશિષ્ટ ગુણો હોવા જોઈએ.

ટેબલ: સારા SRS લાક્ષણિકતાઓ

લાક્ષણિકતા	અર્થ
સંપૂર્ણ	બધી આવશ્યકતાઓ સમાવેશ
સુસંગત	કોઈ વિરોધાભાસી આવશ્યકતાઓ નથી
અસ્પષ્ટ નથી	સ્પષ્ટ અને એક અર્થઘટન
ચકાસણીયોગ્ય	પરીક્ષણ અને વેલિડેશન શક્ય
સુધારણાયોગ્ય	જરૂર પડે ત્યારે બદલવા સરળ

• સંપૂર્ણ: બધી functional અને non-functional આવશ્યકતાઓ સમાવે છે

• સુસંગત: વિવિધ આવશ્યકતાઓ વચ્ચે કોઈ સંઘર્ષ નથી

• અસ્પષ્ટ નથી: દરેક આવશ્યકતાનો માત્ર એક જ અર્થઘટન છે

મેમરી ટ્રીક: "Complete Computers Use Verified Modifications"

પ્રશ્ન 2(બ) [4 ગુણ]

પ્રોટોટાઇપ મોડેલના લાભ અને ગેરલાભ વર્ણવો.

જવાબ:

પ્રોટોટાઇપ મોડેલ આવશ્યકતાઓને વધુ સારી રીતે સમજવા માટે સોફ્ટવૅરનું કાર્યકારી મોડેલ બનાવે છે.

ટેબલ: પ્રોટોટાઇપ મોડેલ - ફાયદા અને ગેરફાયદા

ફાયદા	ગેરફાયદા
આવશ્યકતા સમજણ સુધારે છે	સમયનો વદ્યારે ખર્ચ
વપરાશકર્તા સામેલગીરી	ખર્ચમાં વદ્યારો
પ્રારંભિક ભૂલ શોધ	અપૂર્ણ વિશ્લેષણ
વપરાશકર્તા સંતુષ્ટિ	પ્રોટોટાઇપ મૂંઝવણ

ફાયદા:

• સ્પષ્ટ આવશ્યકતાઓ: વપરાશકર્તા કાર્યકારી મોડેલ જુએ છે

• **પ્રારંભિક ફીડબેક**: અંતિમ પ્રોડક્ટના જોખમો ઘટાડે છે

• **વપરાશકર્તાનો સમાવેશ**: વધુ સારી વપરાશકર્તા સ્વીકૃતિ

ગેરફાયદા:

• વધારાનો સમય: પ્રોટોટાઇપ બનાવવામાં સમય લાગે છે

• વધારાનો ખર્ચ: પ્રોટોટાઇપ માટે સાધનોની જરૂર

• અવકાશ વિસ્તરણ: વપરાશકર્તા પ્રોટોટાઇપના ફીચર્સની અપેક્ષા રાખી શકે છે

મેમરી ટ્રીક: "Better Users Experience" વિ "Time Costs Increase"

પ્રશ્ન 2(ક) [7 ગુણ]

સ્પાઇરલ મોડેલ ડિઝાઇન વર્ણવો અને તેના લાભ અને ગેરલાભ વિશે લખો.

જવાબ:

સ્પાઇરલ મોડેલ પુનરાવર્તક વિકાસને વ્યવસ્થિત જોખમ મેનેજમેન્ટ સાથે પુનરાવર્તિત ચક્રો દ્વારા જોડે છે.

ટેબલ: સ્પાઇરલ મોડેલ તબક્કાઓ

તબક્કો	પ્રવૃત્તિઓ
આયોજન	આવશ્યકતા એકત્રીકરણ, સાધન આયોજન
જોખમ વિશ્લેષણ	જોખમો ઓળખવા અને ઉકેલવા
એન્જિનિયરિંગ	વિકાસ અને પરીક્ષણ
ગ્રાહક મૂલ્યાંકન	ગ્રાહક સમીક્ષા અને ફીડબેક

ફાયદા:

• જોખમ મેનેજમેન્ટ: પ્રારંભિક જોખમ ઓળખ

• લવચીકતા: ફેરફારો સરળતાથી સમાવે છે

• ગ્રાહક સામેલગીરી: નિયમિત ગ્રાહક ફીડબેક

• ગુણવત્તા ફોકસ: સતત પરીક્ષણ અને વેલિડેશન

ગેરફાયદા:

• જટિલ મેનેજમેન્ટ: મેનેજ કરવું મુશ્કેલ

• ઊંચો ખર્ચ: જોખમ વિશ્લેષણને કારણે મોંઘું

• સમય લેતું: લાંબા વિકાસ ચક્રો

• જોખમ નિપુણતા જરૂરી: જોખમ મૂલ્યાંકન કૌશલ્યની જરૂર

શ્રેષ્ઠ માટે: મોટા, જટિલ, ઉચ્ચ-જોખમ પ્રોજેક્ટ્સ

મેમરી ટ્રીક: "Plan Risks Engineering Customer" તબક્કાઓ માટે

પ્રશ્ન 2(અ) OR [3 ગુણ]

ઇન્ક્રિમેન્ટલ મોડેલ સમજાવો.

જવાબ:

ઇન્ક્રિમેન્ટલ મોડેલ સોફ્ટવૅરને નાના, કાર્યાત્મક ટુકડાઓમાં જે ઇન્ક્રિમેન્ટ્સ કહેવાય છે તેમાં ડિલિવર કરે છે.

મુખ્ય લક્ષણો:

- આંશિક અમલીકરણ: દરેક ઇન્ક્રિમેન્ટ કાર્યક્ષમતા ઉમેરે છે
- પ્રારંભિક ડિલિવરી: મુખ્ય ફીચર્સ પ્રથમ ડિલિવર થાય છે
- સમાંતર વિકાસ: અનેક ઇન્ક્રિમેન્ટ્સ એકસાથે વિકસાવી શકાય છે

ટેબલ: ઇન્ક્રિમેન્ટલ મોડેલ લાક્ષણિકતાઓ

પાસું	นต์ฯ
ડિલિવરી	અનેક રિલીઝ
કાર્યક્ષમતા	દરેક ઇન્ક્રિમેન્ટ સાથે વધે છે
જોખમ	પ્રારંભિક ડિલિવરી દ્વારા ઘટે છે
ફીડબેક	સતત વપરાશકર્તા ફીડબેક

મેમરી ટ્રીક: "Deliver Functionality Reducing Feedback"

પ્રશ્ન 2(બ) OR [4 ગુણ]

રેપિડ એપ્લિકેશન ડેવલપમેન્ટ મોડેલનો ખ્યાલ આપી સમજાવો.

જવાબ:

RAD (રેપિડ એપ્લિકેશન ડેવલપમેન્ટ) વ્યાપક આયોજનને બદલે ઝડપી પ્રોટોટાઇપિંગ અને ઝડપી ફીડબેક પર ભાર મૂકે છે.

ટેબલ: RAD મોડેલ તબક્કાઓ

તબક્કો	અવધિ	પ્રવૃત્તિઓ
બિઝનેસ મોડેલિંગ	ટૂંકી	બિઝનેસ કાર્યો વ્યાખ્યાયિત કરવા
ડેટા મોડેલિંગ	ટૂંકી	ડેટા આવશ્યકતાઓ વ્યાખ્યાયિત કરવી
પ્રોસેસ મોડેલિંગ	ટૂંકી	ડેટાને બિઝનેસ માહિતીમાં રૂપાંતરિત કરવું
એપ્લિકેશન જનરેશન	ટૂંકી	સોફ્ટવૅર બનાવવા માટે ટૂલ્સનો ઉપયોગ
ટેસ્ટિંગ અને ટર્નઓવર	ટૂંકી	પરીક્ષણ અને જમાવટ

મુખ્ય ખ્યાલો:

• પુન:ઉપયોગી ઘટકો: પૂર્વ-નિર્મિત ઘટકો વિકાસ ગતિ વધારે છે

• શક્તિશાળી ટ્રલ્સ: CASE ટ્રલ્સ અને કોડ જનરેટર્સ

• **નાની ટીમો**: પ્રતિ ટીમ 2-6 લોકો

• **સમય-બોક્સ્ડ**: કડક સમય મર્યાદા (60-90 દિવસ)

RAD માટેની આવશ્યકતાઓ:

• સારી રીતે વ્યાખ્યાયિત બિઝનેસ આવશ્યકતાઓ

• વપરાશકર્તાની સામેલગીરી સમગ્ર પ્રક્રિયા દરમિયાન

• **કુશળ ડેવલપર્સ** જે RAD ટૂલ્સથી પરિચિત છે

મેમરી ટ્રીક: "Business Data Process Application Testing"

પ્રશ્ન 2(ક) OR [7 ગુણ]

SDLC ને વ્યાખ્યાયિત કરો અને દરેક તબક્કા સમજાવો.

જવાબ:

SDLC (સોફ્ટવૅર ડેવલપમેન્ટ લાઇફ સાઇકલ) સારી રીતે વ્યાખ્યાયિત તબક્કાઓ દ્વારા સોફ્ટવૅર બનાવવાની વ્યવસ્થિત પ્રક્રિયા છે.

ટેબલ: SDLC તબક્કાઓ વિગતવાર

તબક્કો	પ્રવૃત્તિઓ	ડિલિવરેબલ્સ
આયોજન	પ્રોજેક્ટ આયોજન, શક્યતા અભ્યાસ	પ્રોજેક્ટ પ્લાન
વિશ્લેષણ	આવશ્યકતા એકત્રીકરણ	SRS દસ્તાવેજ
ડિઝાઇન	સિસ્ટમ આર્કિટેક્ચર, UI ડિઝાઇન	ડિઝાઇન દસ્તાવેજ
અમલીકરણ	કોડિંગ, યુનિટ ટેસ્ટિંગ	સોર્સ કોડ
પરીક્ષણ	સિસ્ટમ ટેસ્ટિંગ, ઇન્ટિગ્રેશન	ટેસ્ટ રિપોર્ટ્સ
જમાવટ	ઇન્સ્ટોલેશન, વપરાશકર્તા તાલીમ	લાઇવ સિસ્ટમ
જાળવણી	બગ ફિક્સ, સુધારણાઓ	અપડેટેડ સિસ્ટમ

તબક્કો વર્ણન:

• આયોજન: પ્રોજેક્ટ અવકાશ અને સાધનો વ્યાખ્યાયિત કરવા

• વિશ્લેષણ: સિસ્ટમ શું કરવું જોઈએ તે સમજવું

• ડિઝાઇન: સિસ્ટમ કેવી રીતે કામ કરશે તેનું આયોજન

• અમલીકરણ: વાસ્તવિક સિસ્ટમ બનાવવું

• પરીક્ષણ: સિસ્ટમ યોગ્ય રીતે કામ કરે છે કે કેમ તે ચકાસવું

• જમાવટ: વપરાશકર્તાઓ માટે સિસ્ટમ રિલીઝ કરવું

• જાળવણી: ચાલુ સપોર્ટ અને અપડેટ્સ

મેમરી ટ્રીક: "People Always Design Implementation, Test Deployment, Maintain"

પ્રશ્ન 3(અ) [3 ગુણ]

સોક્ટવૅર પ્રોજેક્ટને મેનેજ કરવાની સ્કિલ વર્ણવો.

જવાબ:

સોફ્ટવૅર પ્રોજેક્ટ મેનેજમેન્ટ તકનીકી અને સોફ્ટ સ્કિલ્સના સંયોજનની જરૂર છે.

ટેબલ: જરૂરી પ્રોજેક્ટ મેનેજમેન્ટ સ્કિલ્સ

સ્કિલ કેટેગરી	વિશિષ્ટ સ્કિલ્સ
તકનીકી	SDLC, ટૂલ્સ, ટેક્નોલોજીઝની સમજ
નેતૃત્વ	ટીમ પ્રેરણા, નિર્ણય લેવો
સંવાદ	ટીમ અને ક્લાયન્ટ સાથે સ્પષ્ટ સંવાદ
આયોજન	સાધન ફાળવણી, શેક્યુલિંગ
સમસ્યા ઉકેલ	જોખમ મેનેજમેન્ટ, સંઘર્ષ નિવારણ

મુખ્ય સ્કિલ્સ:

• **લોકો મેનેજમેન્ટ**: ટીમ સભ્યોનું નેતૃત્વ અને પ્રેરણા

• **તકનીકી જ્ઞાન**: વિકાસ પ્રક્રિયા અને ટૂલ્સની સમજ

• સંવાદ: તકનીકી ટીમ અને સ્ટેકહોલ્ડર્સ વચ્ચેનો સેતુ

મેમરી ટ્રીક: "Technical Leaders Communicate Planning Problems"

પ્રશ્ન 3(બ) [4 ગુણ]

સોફ્ટવૅર પ્રોજેક્ટ મેનેજરની જવાબદારી ટૂંકમાં લખો.

જવાબ:

સોફ્ટવૅર પ્રોજેક્ટ મેનેજર પ્રોજેક્ટની શરૂઆતથી પૂર્ણતા સુધી સમગ્ર પ્રોજેક્ટની દેખરેખ રાખે છે.

ટેબલ: પ્રોજેક્ટ મેનેજરની જવાબદારીઓ

વિસ્તાર	જવાબદારીઓ
આયોજન	પ્રોજેક્ટ પ્લાન, શેક્યુલ, બજેટ બનાવવા
ટીમ મેનેજમેન્ટ	ટીમ સભ્યોને હાયર, ટ્રેન અને મેનેજ કરવા
સંવાદ	સ્ટેકહોલ્ડર્સને નિયમિત અપડેટ્સ
ગુણવત્તા નિયંત્રણ	ડિલિવરેબલ્સ ગુણવત્તા ધોરણો પૂરા કરે તે સુનિશ્ચિત કરવું
જોખમ મેનેજમેન્ટ	પ્રોજેક્ટના જોખમો ઓળખવા અને ઘટાડવા

પ્રાથમિક જવાબદારીઓ:

• પ્રોજેક્ટ આયોજન: અવકાશ, સમયસીમા અને સાધનો વ્યાખ્યાયિત કરવા

• ટીમ નેતૃત્વ: વિકાસ ટીમને માર્ગદર્શન અને સહાય આપવી

• સ્ટેકહોલ્ડર સંવાદ: દરેકને પ્રગતિની માહિતી આપતા રહેવું

• ગુણવત્તા ખાતરી: પ્રોજેક્ટ આવશ્યકતાઓ પૂરી કરે તે સુનિશ્ચિત કરવું

• જોખમ મેનેજમેન્ટ: પ્રોજેક્ટના જોખમો અને મુદ્દાઓને હેન્ડલ કરવા

સફળતાના પરિબળો: સમયસર ડિલિવરી, બજેટની અંદર, આવશ્યકતાઓ પૂરી કરવી

મેમરી ટ્રીક: "Plan Team Communication Quality Risk"

પ્રશ્ન 3(ક) [7 ગુણ]

SRS ની આવશ્યકતાનું વર્ગીકરણ કરો (1) ફંક્શનલ આવશ્યકતાઓ (2) નોન-ફંક્શનલ આવશ્યકતાઓ.

જવાબ:

આવશ્યકતા વર્ગીકરણ વિવિધ પ્રકારની સિસ્ટમ જરૂરિયાતોને વ્યવસ્થિત અને સમજવામાં મદદ કરે છે.

ટેબલ: ફંક્શનલ વિ નોન-ફંક્શનલ આવશ્યકતાઓ

પાસું	ફંક્શનલ આવશ્યકતાઓ	નોન-ફંક્શનલ આવશ્યકતાઓ
વ્યાખ્યા	સિસ્ટમ શું કરવું જોઈએ	સિસ્ટમ કેવા પ્રદર્શન કરવું જોઈએ
ફોકસ	સિસ્ટમ કાર્યક્ષમતા	સિસ્ટમ ગુણવત્તા લક્ષણો
ઉદાહરણો	લોગિન, સર્ચ, કેલ્ક્યુલેટ	પ્રદર્શન, સુરક્ષા, ઉપયોગિતા
પરીક્ષણ	ફંક્શનલ ટેસ્ટિંગ	પ્રદર્શન ટેસ્ટિંગ

ફંક્શનલ આવશ્યકતાઓ:

• વપરાશકર્તા ક્રિયાપ્રતિક્રિયાઓ: લોગિન, રજિસ્ટ્રેશન, ડેટા એન્ટ્રી

• બિઝનેસ નિયમો: વેલિડેશન નિયમો, ગણતરીઓ

• સિસ્ટમ ફીચર્સ: રિપોર્ટ્સ, નોટિફિકેશન્સ, વર્કફ્લો

• **ડેટા પ્રોસેસિંગ**: CRUD ઓપરેશન્સ

ઉદાહરણો:

• વપરાશકર્તા યુઝરનેમ/પાસવર્ડ સાથે લોગિન કરી શકે છે

• સિસ્ટમ આપોઆપ ટેક્સની ગણતરી કરે છે

• માસિક વેચાણ રિપોર્ટ જનરેટ કરવી

નોન-ફંક્શનલ આવશ્યકતાઓ:

ટેબલ: નોન-ફંક્શનલ આવશ્યકતા પ્રકારો

увіг	વર્ણન	ઉદાહરણ
પ્રદર્શન	ગતિ અને પ્રતિસાદ	પ્રતિસાદ સમય < 2 સેકન્ડ
સુરક્ષા	ડેટા સંરક્ષણ	એન્ક્રિપ્ટેડ ડેટા ટ્રાન્સમિશન
ઉપયોગિતા	વપરાશકર્તા અનુભવ	શીખવા માટે સરળ ઇન્ટરફેસ
વિશ્વસનીયતા	સિસ્ટમ વિશ્વસનીયતા	99.9% અપટાઇમ
સ્કેલેબિલિટી	વૃદ્ધિ હેન્કલિંગ	1000+ વપરાશકર્તાઓને સપોર્ટ

ગુણવત્તા લક્ષણો:

• પ્રદર્શન: પ્રતિસાદ સમય, શ્રુપુટ

• **સુરક્ષા**: ઓથેન્ટિકેશન, ઓથોરાઇઝેશન, એન્ક્રિપ્શન

• **ઉપયોગિતા**: વપરાશકર્તા-મૈત્રીપૂર્ણ ઇન્ટરફેસ, પહોંચતા

• વિશ્વસનીયતા: અપટાઇમ, એરર હેન્ડલિંગ

• જાળવણીયોગ્યતા: કોડ ગુણવત્તા, દસ્તાવેજીકરણ

મેમરી ટ્રીક: "Performance Security Usability Reliability Maintainability"

પ્રશ્ન 3(અ) OR [3 ગુણ]

SRS નું મહત્વ દર્શાવો.

જવાબ:

SRS (સોફ્ટવૅર આવશ્યકતા વિશિષ્ટતા) એ મહત્વપૂર્ણ દસ્તાવેજ છે જે સોફ્ટવૅર શું કરવું જોઈએ તે વ્યાખ્યાયિત કરે છે.

ટેબલ: SRS મહત્વ

પાસું	ફાયદો
સ્પષ્ટ સંવાદ	બધા સ્ટેકહોલ્કર્સ આવશ્યકતાઓ સમજે છે
પ્રોજેક્ટ આયોજન	અંદાજ અને શેક્યુલિંગ માટે આધાર
ગુણવત્તા ખાતરી	પરીક્ષણ માટે પાયો
ફેરફાર મેનેજમેન્ટ	નિયંત્રિત આવશ્યકતા ફેરફારો
કાનૂની સંરક્ષણ	કરાર સંદર્ભ દસ્તાવેજ

મુખ્ય મહત્વ:

• સંવાદ સાધન: ક્લાયન્ટ્સ અને ડેવલપર્સ વચ્ચેનો સેતુ

• **આયોજન પાયો**: સમય, ખર્ચ અને સાધનોનો અંદાજ કાઢવામાં મદદ કરે છે

• **પરીક્ષણ આધાર**: SRS આવશ્યકતાઓમાંથી ટેસ્ટ કેસ મેળવવા

મેમરી ટ્રીક: "Clear Planning Quality Change Legal"

પ્રશ્ન 3(બ) OR [4 ગુણ]

Gantt ચાર્ટ વિશે સમજાવો.

જવાબ:

Gantt **ચાર્ટ** એ દ્રશ્ય પ્રોજેક્ટ મેનેજમેન્ટ ટૂલ છે જે કાર્યો, સમયસીમા અને નિર્ભરતા દર્શાવે છે.

ટેબલ: Gantt ચાર્ટ ઘટકો

ยรร	વર્ણન
કાર્યો	પૂર્ણ કરવાના કાર્ય આઇટમ્સ
ટાઇમલાઇન	આડી સમય સ્કેલ
બાર્સ	કાર્યની અવધિ અને પ્રગતિ
નિર્ભરતા	કાર્યો વચ્ચેના સંબંધો
માઇલસ્ટોન્સ	મહત્વપૂર્ણ પ્રોજેક્ટ ઇવેન્ટ્સ

ફાયદા:

• દ્રશ્ય ટાઇમલાઇન: પ્રોજેક્ટ શેક્યુલ જોવા સરળ

• પ્રગતિ ટ્રેકિંગ: કાર્ય પૂર્ણતાનું નિરીક્ષણ

• સાધન આયોજન: સાધનોને અસરકારક રીતે ફાળવવા

• નિર્ભરતા મેનેજમેન્ટ: કાર્ય સંબંધો સમજવા

મેમરી ટ્રીક: "Tasks Timeline Bars Dependencies Milestones"

પ્રશ્ન 3(ક) OR [7 ગુણ]

રિસ્ક મેનેજમેન્ટ પર ટૂંક નોંધ લખો.

જવાબ:

રિસ્ક મેનેજમેન્ટ એ પ્રોજેક્ટના જોખમોને ઓળખવા, વિશ્લેષણ કરવા અને નિયંત્રિત કરવાની વ્યવસ્થિત પ્રક્રિયા છે.

ટેબલ: રિસ્ક મેનેજમેન્ટ પ્રક્રિયા

તબક્કો	પ્રવૃત્તિઓ	આઉટપુટ
ઓળખ	સંભવિત જોખમો શોધવા	જોખમ યાદી
વિશ્લેષણ	સંભાવના અને અસરનું મૂલ્યાંકન	જોખમ પ્રાથમિકતા
આયોજન	પ્રતિસાદ વ્યૂહરચના વિકસાવવી	જોખમ પ્રતિસાદ પ્લાન
નિરીક્ષણ	જોખમોને ટ્રેક અને નિયંત્રિત કરવા	અપડેટેડ જોખમ સ્થિતિ

જોખમ કેટેગરીઓ:

ટેબલ: સોફ્ટવૅર જોખમોના પ્રકારો

કેટેગરી	ઉદાહરણો
สราใรใ	ટેક્નોલોજી ફેરફારો, જટિલતા
પ્રોજેક્ટ	શેક્યુલ વિલંબ, સાધન અછત
બિઝનેસ	બજાર ફેરફારો, ફંડિંગ મુદ્દાઓ
બાહ્ય	વિક્રેતા સમસ્યાઓ, નિયમનકારી ફેરફારો

જોખમ પ્રતિસાદ વ્યૂહરચના:

• ટાળવું: જોખમ સ્ત્રોતને દૂર કરવું

• **ઘટાડવું**: સંભાવના અથવા અસર ઘટાડવી

• સ્થાનાંતરિત કરવું: અન્ય લોકો સાથે જોખમ વહેંચવું

• સ્વીકારવું: જોખમ સાથે જીવવું

જોખમ મૂલ્યાંકન: સંભાવના × અસર = જોખમ એક્સપોઝર

ફાયદા: પ્રો-એક્ટિવ સમસ્યા ઉકેલ, વધુ સારી પ્રોજેક્ટ સફળતા દર, સ્ટેકહોલ્ડર વિશ્વાસ

મેમરી ટ્રીક: "Identify Analyze Plan Monitor" પ્રક્રિયા માટે, "Avoid Mitigate Transfer Accept" વ્યૂહરચના માટે

પ્રશ્ન 4(અ) [3 ગુણ]

પ્રોજેક્ટની સાઇઝના અંદાજ માટેના મેટ્રિક શું છે? FP ઉદાહરણ સાથે સમજાવો.

જવાબ:

સાઇઝ અંદાજ મેટ્રિક્સ સોફ્ટવૅર પ્રોજેક્ટના સાઇઝ અને પ્રયત્નોની આગાહી કરવામાં મદદ કરે છે.

ટેબલ: સાઇઝ અંદાજ મેટ્રિક્સ

મેટ્રિક	વર્ણન
LOC	કોડની લાઇન્સ
Function Points	કાર્યક્ષમતા-આધારિત માપ
Object Points	ઑબ્જેક્ટ-ઓરિએન્ટેડ સિસ્ટમ્સ માટે
Feature Points	વિસ્તૃત Function Points

Function Points (FP) વપરાશકર્તા કાર્યક્ષમતાના આધારે સોફ્ટવૅર સાઇઝ માપે છે.

FP ઘટકો:

• External Inputs: ડેટા એન્ટ્રી સ્ક્રીન્સ

• External Outputs: રિપોર્ટ્સ, સંદેશાઓ

• External Queries: ડેટાબેસ ક્વેરીઝ

• Internal Files: ડેટા સ્ટોર્સ

• External Interfaces: સિસ્ટમ કનેક્શન્સ

FP ગણતરી ઉદાહરણ:

લાઇબ્રેરી મેનેજમેન્ટ સિસ્ટમ માટે:

• External Inputs: 5 (પુસ્તક એન્ટ્રી, સભ્ય એન્ટ્રી, વગેરે)

• External Outputs: 3 (રિપોર્ટ્સ)

• External Queries: 4 (સર્ચ ફંક્શન્સ)

• Internal Files: 2 (પુસ્તક DB, સભ્ય DB)

• External Interfaces: 1 (ઓનલાઇન કેટલોગ)

સિમ્પલ FP = 5 + 3 + 4 + 2 + 1 = 15 Function Points

મેમરી ટ્રીક: "Inputs Outputs Queries Files Interfaces"

પ્રશ્ન 4(બ) [4 ગુણ]

પ્રોજેક્ટ અંદાજની બેસિક ટેકનિક COCOMO મોડેલ સમજાવો.

જવાબ:

COCOMO (COnstructive COst MOdel) સોફ્ટવૅર ડેવલપમેન્ટ પ્રયત્ન અને શેક્યુલનો અંદાજ લગાવે છે.

ટેબલ: COCOMO મોડેલ પ્રકારો

уѕіг	વર્ણન	ચોકસાઈ
બેસિક	સરળ સાઇઝ-આધારિત અંદાજ	±75%
મધ્યવર્તી	કોસ્ટ ડ્રાઇવર્સ સમાવે છે	±25%
વિગતવાર	તબક્કા-સ્તરીય અંદાજ	±10%

બેસિક COCOMO ફોર્મુલા:

• ਸ਼ਪ਼ਕ = a × (KLOC)^b person-months

• **સમય** = c × (ਪ਼ਟਾਰ)^d months

• લોકો = પ્રયત્ન / સમય

ટેબલ: COCOMO કોન્સ્ટન્ટ્સ

પ્રોજેક્ટ પ્રકાર	a	b	С	d
Organic	2.4	1.05	2.5	0.38
Semi-detached	3.0	1.12	2.5	0.35
Embedded	3.6	1.20	2.5	0.32

ઉદાહરણ: 10 KLOC organic પ્રોજેક્ટ માટે

• ਮ਼ਪ਼ੁੁ = 2.4 × (10)^1.05 = 25.47 person-months

• લોકો = 25.47 / 8.64 = 3 લોકો

મેમરી ટ્રીક: "Organic Semi Embedded" પ્રોજેક્ટ પ્રકારો માટે

પ્રશ્ન 4(ક) [7 ગુણ]

તમારી પસંદગીની સિસ્ટમ માટે સ્પ્રિન્ટ બર્ન ડાઉન ચાર્ટ તૈયાર કરો.

જવાબ:

સ્મિન્ટ બર્ન ડાઉન ચાર્ટ ઓનલાઇન શોપિંગ સિસ્ટમ માટે સ્મિન્ટ દરમિયાન બાકી કામને ટ્રેક કરે છે.

સ્પ્રિન્ટ ગોલ: વપરાશકર્તા ઓથેન્ટિકેશન મોક્યુલ સ્પ્રિન્ટ અવધિ: 2 અઠવાડિયા કુલ સ્ટોરી પોઇન્ટ્સ: 40

સ્પ્રિન્ટ બેકલોગ:

ટેબલ: સ્પ્રિન્ટ કાર્યો

รเข้	સ્ટોરી પોઇન્ટ્સ	દિવસ સોંપાયેલ
વપરાશકર્તા રજિસ્ટ્રેશન	8	દિવસ 1-2
વપરાશકર્તા લોગિન	6	દિવસ 3-4
પાસવર્ડ રીસેટ	5	દિવસ 5-6
પ્રોફાઇલ મેનેજમેન્ટ	8	દિવસ 7-8
સેશન મેનેજમેન્ટ	6	દિવસ 9-10
ટેસ્ટિંગ અને બગ ફિક્સ	7	દિવસ 11-14

બર્ન ડાઉન ચાર્ટ ડેટા:

ટેબલ: દૈનિક પ્રગતિ

દિવસ	આદર્શ બાકી	વાસ્તવિક બાકી	પૂર્ણ થયેલ કામ
દિવસ 0	40	40	સ્પ્રિન્ટ શરૂઆત
દિવસ 2	36	38	રજિસ્ટ્રેશન વિલંબ
દિવસ 4	32	32	લોગિન પૂર્ણ
દિવસ 6	28	27	પાસવર્ડ રીસેટ જલ્દી પૂર્ણ
દિવસ 8	24	26	પ્રોફાઇલ મેનેજમેન્ટ મુદ્દાઓ
દિવસ 10	20	20	પાછા ટ્રેક પર
દિવસ 12	16	15	ટેસ્ટિંગ સારી પ્રગતિ
દિવસ 14	0	0	સ્પ્રિન્ટ પૂર્ણ

ચાર્ટ વિશ્લેષણ:

• લીલી લાઇન: આદર્શ બર્ન ડાઉન

• લાલ લાઇન: વાસ્તવિક પ્રગતિ

• વિવિધતાઓ: પડકારો અને પુનઃપ્રાપ્તિ દર્શાવે છે

• પૂર્ણતા: સ્પ્રિન્ટ સમયસર પૂર્ણ થયું

ફાયદા: દ્રશ્ય પ્રગતિ ટ્રેકિંગ, પ્રારંભિક સમસ્યા ઓળખ, ટીમ પ્રેરણા

મેમરી ટ્રીક: "Track Progress Daily, Identify Issues Early"

પ્રશ્ન 4(અ) OR [3 ગુણ]

USE CASE ડાયાગ્રામના ઘટકો સમજાવો.

જવાબ:

યુઝ કેસ ડાયાગ્રામ વપરાશકર્તાના વૃષ્ટિકોણથી સિસ્ટમ કાર્યક્ષમતા દર્શાવે છે.

ટેબલ: યુઝ કેસ ડાયાગ્રામ ઘટકો

ยรร	સિમ્બોલ	વર્ણન
એક્ટર	Stick figure	સિસ્ટમ સાથે વાતચીત કરતી બાહ્ય એન્ટિટી
યુઝ કેસ	ઓવલ	સિસ્ટમ કાર્યક્ષમતા
સિસ્ટમ બાઉન્ડરી	રેક્ટેંગલ	સિસ્ટમ અવકાશ
એસોસિએશન	લાઇન	એક્ટર-યુઝ કેસ સંબંધ
જનરલાઇઝેશન	એરો	વારસા સંબંધ

સંબંધો:

• ઇન્ક્લૂડ: એક યુઝ કેસ બીજાને સમાવે છે (ફરજિયાત)

• એક્સટેન્ડ: વૈકલ્પિક યુઝ કેસ વિસ્તરણ

• જનરલાઇઝેશન: માતા-પિતા-બાળક સંબંધ

ઉદાહરણ ઘટકો:

• પ્રાથમિક એક્ટર: ગ્રાહક, એડમિન

• યુઝ કેસ: લોગિન, પ્રોડક્ટ્સ સર્ચ કરો, ઓર્ડર આપો

• સિસ્ટમ: ઓનલાઇન શોપિંગ સિસ્ટમ

મેમરી ટ્રીક: "Actors Use Systems, Associate Generally"

પ્રશ્ન 4(બ) OR [4 ગુણ]

કોહેસન અને કપલિંગની સરખામણી કરો.

જવાબ:

કોહેસન અને કપલિંગ જાળવણીયોગ્યતાને અસર કરતા મહત્વપૂર્ણ સોફ્ટવૅર ડિઝાઇન સિદ્ધાંતો છે.

ટેબલ: કોહેસન વિ કપલિંગ સરખામણી

પાસું	કોહેસન	કપલિંગ
વ્યાખ્યા	મોક્યુલની અંદર એકતા	મોક્યુલો વચ્ચે નિર્ભરતા
ઇચ્છનીય સ્તર	ઉચ્ચ કોહેસન પસંદ	નીચું કપલિંગ પસંદ
ફોકસ	આંતરિક મોક્યુલ એકતા	આંતર-મોક્યુલ સંબંધો
અસર	મોક્યુલ વિશ્વસનીયતા	સિસ્ટમ લવચીકતા
માપ	મોક્યુલ તત્વો કેટલા સંબંધિત છે	મોક્યુલો કેટલા નિર્ભર છે

કોહેસન પ્રકારો (નીયાથી ઉચ્ચા સુધી):

• સંયોગજન્ય: રેન્ડમ ગ્રુપિંગ

• તાર્કિક: સમાન લોજિક

• ટેમ્પોરલ: સમાન સમય અમલ

• **પ્રોસેજ્યોરલ**: ક્રમિક પગલાં

• કમ્યુનિકેશનલ: સમાન ડેટા

• સિક્વેન્શિયલ: એકનું આઉટપુટ બીજાનું ઇનપુટ

• ફંક્શનલ: એક જ હેતુ

કપલિંગ પ્રકારો (ઉચ્ચાથી નીચા સુધી):

• કન્ટેન્ટ: મોક્યુલ આંતરિક બાબતોને સીધો એક્સેસ

• ક્રોમન: વહેંચાયેલ ગ્લોબલ ડેટા

• એક્સરર્નલ: વહેંચાયેલ બાહ્ય ઇન્ટરફેસ

• કન્ટ્રોલ: કન્ટ્રોલ માહિતી પાસ

• સ્ટેમ્પ: ડેટા સ્ટ્રક્ચર પાસ

• ડેટા: સરળ ડેટા પાસ

ગોલ: ઉચ્ચ કોહેસન + નીચું કપલિંગ = સારી ડિઝાઇન

મેમરી ટ્રીક: "High Cohesion, Low Coupling" સારી ડિઝાઇન માટે

પ્રશ્ન 4(ક) OR [7 ગુણ]

રિસ્ક એસેસમેન્ટને વિસ્તારથી સમજાવો.

જવાબ:

રિસ્ક એસેસમેન્ટ મેનેજમેન્ટ પ્રયત્નોને પ્રાથમિકતા આપવા માટે ઓળખાયેલા જોખમોનું મૂલ્યાંકન કરે છે.

રિસ્ક એસેસમેન્ટ ઘટકો:

ટેબલ: જોખમ એસેસમેન્ટ તત્વો

તત્વ	વર્ણન	સ્કેલ
સંભાવના	જોખમ થવાની શક્યતા	0.1 થી 1.0
અસર	જોખમ થાય તો પરિણામો	1 થી 10
જોખમ એક્સપોઝર	સંભાવના × અસર	ગણતરીયુક્ત મૂલ્ય
જોખમ સ્તર	પ્રાથમિકતા વર્ગીકરણ	ઉચ્ચ/મધ્યમ/નીચું

એસેસમેન્ટ પ્રક્રિયા:

1. સંભાવના એસેસમેન્ટ:

• ખૂબ નીચી (0.1): થવાની શક્યતા નથી

• નીચી (0.3): શક્ય પણ સંભવિત નથી

• **મધ્યમ (0.5)**: થઈ શકે કે ન પણ થાય

• ઉચ્ચ (0.7): થવાની શક્યતા છે

• **ખૂબ ઉચ્ચ (0.9)**: લગભગ નિશ્ચિત

2. અસર એસેસમેન્ટ:

• વિનાશકારી (9-10): પ્રોજેક્ટ નિષ્ફળતા

• ગંભીર (7-8): મોટા વિલંબ/કોસ્ટ ઓવરરન

• સીમાંત (4-6): શેડ્યુલ/બજેટ પર થોડી અસર

• નગણ્ય (1-3): ઓછી અસર

3. જોખમ એક્સપોઝર ગણતરી:

જોખમ એક્સપોઝર = સંભાવના × અસર

ઉદાહરણ જોખમ એસેસમેન્ટ:

ટેબલ: નમૂના જોખમ વિશ્લેષણ

જોખમ	સંભાવના	અસર	એક્સપોઝર	પ્રાથમિકતા
મુખ્ય ડેવલપર છોડી જાય	0.3	8	2.4	મધ્યમ
આવશ્યકતા ફેરફાર	0.7	6	4.2	ઉચ્ચ
ટેક્નોલોજી નિષ્ફળતા	0.2	9	1.8	નીચું
બજેટ કાપ	0.4	7	2.8	મધ્યમ

રિસ્ક મેટ્રિક્સ:

• ઉચ્ચ પ્રાથમિકતા: એક્સપોઝર > 4.0

• મધ્યમ પ્રાથમિકતા: એક્સપોઝર 2.0-4.0

• નીચી પ્રાથમિકતા: એક્સપોઝર < 2.0

એસેસમેન્ટ ફાયદા:

• **ઉદ્દેશ્ય પ્રાથમિકતા**: ડેટા-આધારિત નિર્ણયો

• સાધન ફાળવણી: ઉચ્ચ-જોખમ આઇટમ્સ પર ફોકસ

• સંવાદ સાધન: સ્પષ્ટ જોખમ સંવાદ

• આયોજન ઇનપુટ: પ્રોજેક્ટ આયોજનને પ્રભાવિત કરે છે

મેમરી ટ્રીક: "Probability Impact Exposure Priority"

પ્રશ્ન 5(અ) [3 ગુણ]

કોડ રિવ્યુની કોડ ઇન્સ્પેક્શન ટેકનિક સમજાવો.

જવાબ:

કોડ ઇન્સ્પેક્શન એ ખામીઓ શોધવા માટે કોડની ઔપચારિક, વ્યવસ્થિત તપાસ છે.

ટેબલ: કોડ ઇન્સ્પેક્શન પ્રક્રિયા

તબક્કો	સહભાગીઓ	પ્રવૃત્તિઓ
આયોજન	મોડરેટર	ઇન્સ્પેક્શન શેક્યુલ કરવું, કોડ વિતરિત કરવો
ઓવરવ્યૂ	લેખક, ટ <u>ી</u> મ	લેખક કોડ સમજાવે છે
તૈયારી	વ્યક્તિગત	દરેક રિવ્યુઅર કોડનો અભ્યાસ કરે છે
ઇન્સ્પેક્શન	બધા રિવ્યુઅર્સ	વ્યવસ્થિત રીતે ખામીઓ શોધવી
રિવર્ક	લેખક	ઓળખાયેલી ખામીઓ સુધારવી
ફોલો-અપ	મોડરેટર	સુધારાઓ ચકાસવા

મુખ્ય લક્ષણો:

• ઓપચારિક પ્રક્રિયા: વ્યાખ્યાયિત ભૂમિકાઓ સાથે માળખાગત અભિગમ

• વ્યવસ્થિત સમીક્ષા: લાઇન-બાય-લાઇન તપાસ

• **ખામી કેન્દ્રિત**: ભૂલો શોધવી, ઉકેલો નહીં

• લેખકની ટીકા નહીં: કોડ પર ફોકસ, કોડર પર નહીં

ફાયદા: પ્રારંભિક ખામી શોધ, જ્ઞાન વહેંચણી, કોડ ગુણવત્તા સુધારણા

મેમરી ટ્રીક: "Plan Overview Prepare Inspect Rework Follow-up"

પ્રશ્ન 5(બ) [4 ગુણ]

ATM ના ઓછામાં ઓછા ચાર ટેસ્ટ કેસ તૈયાર કરો.

જવાબ:

ATM ટેસ્ટ કેસ ઓટોમેટેડ ટેલર મશીનની કાર્યક્ષમતા ચકાસે છે.

ટેબલ: ATM ટેસ્ટ કેસ

ટેસ્ટ કેસ ID	ટેસ્ટ સિનેરિયો	ઇનપુટ	અપેક્ષિત આઉટપુટ	પરિણામ
TC001	માન્ય PIN એન્ટ્રી	સાથો 4-અંકનો PIN	પ્રવેશ મંજૂર, મુખ્ય મેનુ દર્શાવવું	Pass/Fail
TC002	અમાન્ય PIN એન્ટ્રી	ખોટો PIN (3 પ્રયાસ)	કાર્ડ બ્લોક, એરર સંદેશ	Pass/Fail
TC003	રોક્ડ ઉપાડ	રકમ ≤ ખાતા બેલેન્સ	રોકડ આપવી, રસીદ પ્રિન્ટ કરવી	Pass/Fail
TC004	અપૂરતો બેલેન્સ	રકમ > ખાતા બેલેન્સ	વ્યવહાર નકારવો, બેલેન્સ બતાવવો	Pass/Fail

વિગતવાર ટેસ્ટ કેસ:

ટેસ્ટ કેસ 1: માન્ય લોગિન

• **પૂર્વશરત**: ATM કાર્યરત છે, કાર્ડ દાખલ કર્યું

• **પગલાં**: સાચો PIN દાખલ કરો → Enter દબાવો

• અપેક્ષિત: વિકલ્પો સાથે મુખ્ય મેનુ દર્શાવવું

ટેસ્ટ કેસ 2: રોકડ ઉપાડ

• પૂર્વશરત: વપરાશકર્તા લોગ ઇન, પૂરતો બેલેન્સ

• **પગલાં**: ઉપાડ પસંદ કરો ightarrow રકમ દાખલ કરો ightarrow કન્ફર્મ કરો

• અપેક્ષિત: રોકડ આપવી, બેલેન્સ અપડેટ કરવો

ટેસ્ટ કેસ 3: બેલેન્સ પૂછપરછ

• પૂર્વશરત: વપરાશકર્તા લોગ ઇન

• પગલાં: બેલેન્સ પૂછપરછ પસંદ કરો

• અપેક્ષિત: વર્તમાન બેલેન્સ સ્ક્રીન પર દર્શાવવો

ટેસ્ટ કેસ 4: PIN ફેરફાર

• પૂર્વશરત: વપરાશકર્તા લોગ ઇન

• **પગલાં**: PIN ફેરફાર પસંદ કરો ightarrow જૂનો PIN દાખલ કરો ightarrow નવો PIN દાખલ કરો ightarrow કન્ફર્મ કરો

• અપેક્ષિત: PIN સફળતાપૂર્વક બદલાયો, પુષ્ટિ સંદેશ

મેમરી ટ્રીક: "Login Withdraw Inquiry Change"

પ્રશ્ન 5(ક) [7 ગુણ]

white box ટેસ્ટિંગ વર્ણવો.

જવાલ:

વ્હાઇટ બોક્સ ટેસ્ટિંગ આંતરિક કોડ માળખું અને લોજિક પાથ્સની તપાસ કરે છે.

ટેબલ: વ્હાઇટ બોક્સ ટેસ્ટિંગ લાક્ષણિકતાઓ

પાસું	વર્ણન
ફોકસ	આંતરિક કોડ માળખું
शान	કોડ અમલીકરણ વિગતો
કવરેજ	સ્ટેટમેન્ટ્સ, બ્રાન્ય, પાથ્સ
ટેકનિક્સ	બેસિસ પાથ, લુપ ટેસ્ટિંગ
ટૂલ્સ	કોડ કવરેજ એનાલાઇઝર્સ

કવરેજ માપદંડો:

ટેબલ: કવરેજ પ્રકારો

કવરેજ પ્રકાર	વર્ણન	ગોલ
સ્ટેટમેન્ટ કવરેજ	દરેક સ્ટેટમેન્ટ એક્ઝિક્યુટ કરવું	100% સ્ટેટમેન્ટ્સ
બ્રાન્ચ કવરેજ	દરેક બ્રાન્ય એક્ઝિક્યુટ કરવું	બધા if-else પાથ્સ
પાથ કવરેજ	દરેક પાથ એક્ઝિક્યુટ કરવું	બધા શક્ય પાથ્સ
કન્ડિશન કવરેજ	બધી શરતો ટેસ્ટ કરવી	દરેક કન્ડિશન માટે true/false

વ્હાઇટ બોક્સ ટેસ્ટિંગ ટેકનિક્સ:

1. બેસિસ પાથ ટેસ્ટિંગ:

- **સાયકલોમેટિક કોમ્પ્લેક્સિટી** ગણવી: V(G) = E N + 2
- E = એજ્સ, N = કન્ટ્રોલ ફ્લો ગ્રાફમાં નોડ્સ
- V(G) બરાબર સ્વતંત્ર પાથ્સ જનરેટ કરવા

2. લુપ ટેસ્ટિંગ:

- સિમ્પલ લુપ્સ: 0, 1, 2, સામાન્ય, મહત્તમ પુનરાવર્તનો ટેસ્ટ કરવા
- નેસ્ટેડ લુપ્સ: પહેલા આંતરિક લુપ, પછી બાહ્ય
- **કોન્કેટેનેટેડ લુપ્સ**: અલગ લુપ્સ તરીકે ટેસ્ટ કરવા

3. કન્ડિશન ટેસ્ટિંગ:

- બધી લોજિકલ કન્ડિશન્સ ટેસ્ટ કરવી (AND, OR, NOT)
- દરેક કન્ડિશન true અને false બંને માટે મૂલ્યાંકન સુનિશ્ચિત કરવું

ઉદાહરણ: સિમ્પલ કોડ ટેસ્ટિંગ

```
if (age >= 18 AND income > 25000)
    approve_loan();
else
    reject_loan();
```

ટેસ્ટ કેસ:

- age=20, income=30000 (ਯੰਜੇ true) → approve
- age=16, income=30000 (પહેલું false) → reject
- age=20, income=20000 (မിള് false) → reject
- age=16, income=20000 (ਯੰਜੇ false) → reject

ફાયદા:

- સંપૂર્ણ ટેસ્ટિંગ: આંતરિક લોજિક ટેસ્ટ કરે છે
- પ્રારંભિક ખામી શોધ: લોજિક એરર્સ શોધે છે
- કવરેજ માપ: મૂર્ત ટેસ્ટિંગ પ્રગતિ

ગેરફાયદા:

• **સમય લેતું**: કોડ જ્ઞાનની જરૂર

• મોંઘું: કુશળ ટેસ્ટર્સની જરૂર

• જાળવણી: કોડ સાથે ફેરફારો

ट्रस: JUnit (Java), NUnit (.NET), Coverage.py (Python)

મેમરી ટ્રીક: "Statement Branch Path Condition" કવરેજ પ્રકારો માટે

પ્રશ્ન 5(અ) OR [3 ગુણ]

કોડ રિવ્યુની કોડ વોક થ્રુ ટેકનિક સમજાવો.

જવાબ:

કોડ વોક શુ એ અનૌપચારિક કોડ રિવ્યુ ટેકનિક છે જ્યાં લેખક ટીમને કોડ રજૂ કરે છે.

ટેબલ: વોક થ્રુ પ્રક્રિયા

તબક્કો	વર્ણન	અવધિ
તૈયારી	લેખક પ્રેઝન્ટેશન તૈયાર કરે છે	30 મિનિટ
પ્રેઝન્ટેશન	લેખક કોડ લોજિક સમજાવે છે	1-2 รดเร
ચર્ચા	ટીમ પ્રશ્નો પૂછે છે, સુધારાઓ સૂચવે છે	30 મિનિટ
દસ્તાવેજીકરણ	મુદ્દાઓ અને એક્શન આઇટમ્સ રેકોર્ડ કરવા	15 મિનિટ

મુખ્ય લાક્ષણિકતાઓ:

• લેખક-આગેવાની: કોડ લેખક સેશન ચલાવે છે

• અનૌપચારિક પ્રક્રિયા: ઇન્સ્પેક્શન કરતાં ઓછું માળખાગત

• શિક્ષણાત્મક: ટીમ કોડ કાર્યક્ષમતા વિશે શીખે છે

• સહયોગી: ખુલ્લી થર્યાને પ્રોત્સાહન

સહભાગીઓ:

• **લેખક**: કોડ રજૂ કરે છે અને સમજાવે છે

• રિવ્યુઅર્સ: પ્રશ્નો પૂછે છે અને ફીડબેક આપે છે

• મોડરેટર: ચર્ચાને કેન્દ્રિત રાખે છે (વૈકલ્પિક)

ફાયદા: જ્ઞાન વહેંચણી, પ્રારંભિક સમસ્યા શોધ, ટીમ સહયોગ, શીખવાની તક

મેમરી ટ્રીક: "Prepare Present Discuss Document"

પ્રશ્ન 5(બ) OR [4 ગુણ]

સોફ્ટવૅર ડોક્યુમેન્ટેશન વિશે સમજાવો.

જવાબ:

સોફ્ટવૅર ડોક્યુમેન્ટેશન વિવિધ સ્ટેકહોલ્ડર્સ માટે સોફ્ટવૅર સિસ્ટમ વિશે માહિતી પ્રદાન કરે છે.

ટેબલ: ડોક્યુમેન્ટેશન પ્રકારો

પ્રકાર	હેતુ	પ્રેક્ષકો
વપરાશકર્તા ડોક્યુમેન્ટેશન	સોફ્ટવૅરનો ઉપયોગ કેવી રીતે કરવો	અંતિમ વપરાશકર્તાઓ
સિસ્ટમ ડોક્યુમેન્ટેશન	તકનીકી વિગતો	ડેવલપર્સ, જાળવણીકર્તાઓ
પ્રોસેસ ડોક્યુમેન્ટેશન	વિકાસ પ્રક્રિયા	પ્રોજેક્ટ ટીમ
આવશ્યકતા ડોક્યુમેન્ટેશન	સિસ્ટમ શું કરવું જોઈએ	બધા સ્ટેકહોલ્કર્સ

આંતરિક ડોક્યુમેન્ટેશન:

• કોડ કોમેન્ટ્સ: જટિલ લોજિક સમજાવવી

• **ફંક્શન હેડર્સ**: હેતુ અને પેરામીટર્સ વર્ણવવા

• વેરિએબલ નામો: સ્વ-દસ્તાવેજીકરણ ઓળખકર્તાઓ

• **README ફાઇલ્સ**: પ્રોજેક્ટ ઓવરવ્યુ અને સેટઅપ

બાહ્ય ડોક્યુમેન્ટેશન:

• વપરાશકર્તા માન્યુઅલ્સ: યરણ-દર-યરણ ઉપયોગ સૂચનાઓ

• **ઇન્સ્ટોલેશન ગાઇડ્સ**: સેટઅપ પ્રક્રિયાઓ

• API ડોક્યુમેન્ટેશન : ઇન્ટરફેસ વિશિષ્ટતાઓ

• તાલીમ સામગ્રી: શિક્ષણાત્મક સામગ્રી

ફાયદા:

• જાળવણીયોગ્યતા: કોડ અપડેટ્સ સરળ

• જ્ઞાન સ્થાનાંતરણ: નવા ટીમ સભ્યો ઝડપથી શીખે છે

• વપરાશકર્તા સપોર્ટ: સપોર્ટ વિનંતીઓ ઘટાડે છે

• ગુણવત્તા ખાતરી: આવશ્યકતાઓ અને ડિઝાઇન દસ્તાવેજીકરણ કરે છે

ડોક્યુમેન્ટેશન ધોરણો: સુસંગત ફોર્મેટ, નિયમિત અપડેટ્સ, વર્ઝન કન્ટ્રોલ, પહોંચતા

મેમરી ટ્રીક: "User System Process Requirements" પ્રકારો માટે

પ્રશ્ન 5(ક) OR [7 ગુણ]

black box ટેસ્ટિંગ પર ટૂંક નોંધ લખો.

જવાબ:

બ્લેક બોક્સ ટેસ્ટિંગ આંતરિક કોડ માળખાના જ્ઞાન વિના સોફ્ટવૅર કાર્યક્ષમતાની તપાસ કરે છે.

ટેબલ: બ્લેક બોક્સ ટેસ્ટિંગ લાક્ષણિકતાઓ

પાસું	વર્ણન
ફોકસ	બાહ્ય વર્તન
शान	આવશ્યકતાઓ અને વિશિષ્ટતાઓ
અભિગમ	ઇનપુટ-આઉટપુટ સંબંધ
કવરેજ	કાર્યાત્મક આવશ્યકતાઓ
દૃષ્ટિકો ણ	વપરાશકર્તા દૃષ્ટિકોણ

બ્લેક બોક્સ ટેસ્ટિંગ ટેકનિક્સ:

ટેબલ: ટેસ્ટિંગ ટેકનિક્સ

ટેકનિક	વર્ણન	ઉદાહરણ
ઇક્વિવેલન્સ પાર્ટિશનિંગ	ઇનપુટ્સને માન્ય/અમાન્ય વર્ગોમાં વહેંચવા	વય: 0-17, 18-65, >65
બાઉન્કરી વેલ્યુ એનાલિસિસ	સીમાઓ પર ટેસ્ટ કરવું	વય ટેસ્ટ: 17, 18, 65, 66
ડિસિઝન ટેબલ	જટિલ બિઝનેસ નિયમો	ઇન્શ્યોરન્સ પ્રીમિયમ ગણતરી
સ્ટેટ ટ્રાન્ઝિશન	સિસ્ટમ સ્ટેટ ફેરફારો	ATM સ્ટેટ્સ: idle, processing, error

1. ઇક્વિવેલન્સ પાર્ટિશનિંગ:

• માન્ય પાર્ટિશન્સ: સ્વીકૃત ઇનપુટ્સ

• અમાન્ય પાર્ટિશન્સ: નકારેલા ઇનપુટ્સ

• દરેક પાર્ટિશનમાંથી **એક વેલ્યુ ટેસ્ટ** કરવી

ઉદાહરણ: પાસવર્ડ લંબાઈ (6-12 અક્ષરો)

• માન્ય: 6-12 અક્ષરો

• અમાન્ય: <6 અક્ષરો, >12 અક્ષરો

2. બાઉન્ડરી વેલ્યુ એનાલિસિસ:

- **લઘુત્તમ, મહત્તમ, લઘુત્તમથી થોડું નીચે, મહત્તમથી થોડું ઉપર** ટેસ્ટ કરવું
- મોટાભાગની ભૂલો સીમાઓ પર થાય છે

ઉદાહરણ: રેન્જ 1-100 માટે

• ટેસ્ટ: 0, 1, 2, 99, 100, 101

3. ડિસિઝન ટેબલ ટેસ્ટિંગ:

• કન્ડિશન્સ: ઇનપુટ કન્ડિશન્સ

• એક્શન્સ: અપેક્ષિત આઉટપુટ્સ

• નિયમો: કન્ડિશન-એક્શન સંયોજનો

ફાયદા:

• વપરાશકર્તા દૃષ્ટિકોણ: વપરાશકર્તાના દૃષ્ટિકોણથી ટેસ્ટ કરે છે

• કોડ જ્ઞાનની જરૂર નથી: ટેસ્ટર્સને પ્રોગ્રામિંગ સ્કિલ્સની જરૂર નથી

• નિષ્પક્ષ: કોડ અમલીકરણથી પ્રભાવિત નથી

• પ્રારંભિક ટેસ્ટિંગ: આવશ્યકતાઓ સાથે શરૂ કરી શકાય છે

ગેરફાયદા:

• મર્યાદિત કવરેજ: કેટલાક કોડ પાથ્સ ચૂકાવી શકે છે

• રિડન્ડન્ટ ટેસ્ટિંગ: સમાન લોજિકને વધુ વખત ટેસ્ટ કરી શકે છે

• **મુશ્કેલ ટેસ્ટ કેસ ડિઝાઇન**: આંતરિક જ્ઞાન વિના મુશ્કેલ

બ્લેક બોક્સ ટેસ્ટિંગના પ્રકારો:

• **ફંક્શનલ ટેસ્ટિંગ**: મુખ્ય કાર્યક્ષમતા

• નોન-ફંક્શનલ ટેસ્ટિંગ: પ્રદર્શન, ઉપયોગિતા

• રીગ્રેશન ટેસ્ટિંગ: ફેરફારો પછી

• યુઝર એક્સેપ્ટન્સ ટેસ્ટિંગ: અંતિમ વેલિડેશન

ટ્રલ્સ: Selenium (વેબ), Appium (મોબાઇલ), TestComplete, QTP

ક્યારે ઉપયોગ કરવો:

- સિસ્ટમ ટેસ્ટિંગ તબક્કો
- યુઝર એક્સેપ્ટન્સ ટેસ્ટિંગ
- ઇન્ટિગ્રેશન ટેસ્ટિંગ
- રીગ્રેશન ટેસ્ટિંગ

મેમરી ટ્રીક: "Equivalence Boundary Decision State" ટેકનિક્સ માટે