

Calcolo Differenziale

Eugenio Montefusco

23. Funzioni di più variabili

Funzioni di più variabili

Sia P un parallelepipedo di dimensioni $b,h,\rho>0$, allora abbiamo che

Funzioni di più variabili

Sia P un parallelepipedo di dimensioni $b,h,\rho>0$, allora abbiamo che

$$S_{lot} = 2(\rho + b)h$$

$$S_{tot} = 2(\rho b + \rho h + \rho b)$$

$$V = \rho bh$$

Movimenti nel piano

Come ci si può avvicinare ad un punto nel piano?

Movimenti nel piano

Come ci si può avvicinare ad un punto nel piano?

Movimenti nel piano

Come ci si può avvicinare ad un punto nel piano?

$$x = x_0 + r\cos(\theta)$$
 $y = y_0 + r\sin(\theta)$

$$\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^2+y^2} =$$

$$\lim_{(x,y)\longrightarrow (0,0)}\frac{xy}{x^2+y^2}=$$

$$\lim_{(x,y)\to(0,0)}\frac{1}{x^2+y^2}=$$

$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2} =$$

Continuità

Teorema.

Operazioni "continue" danno luogo a funzioni continue anche in IR²!

Teorema.

Operazioni "continue" danno luogo a funzioni continue anche in IR²!

$$e^{x+y^2}$$

sin(xy)

$$\frac{x+y^2}{x^2+1}$$

$$ln(1+x^2+y^2)$$

Derivate direzionali

$$\frac{\partial f}{\partial v}(P_0) = \lim_{t \to 0} \frac{f(P_0 + tv) - f(P_0)}{t} \qquad P_0 = (x_0, y_0)$$

Derivate direzionali

$$\frac{\partial f}{\partial v}(P_0) = \lim_{t \to 0} \frac{f(P_0 + tv) - f(P_0)}{t} \qquad P_0 = (x_0, y_0)$$

direzioni "speciali" $e_1(1,0)$ e $e_2(0,1)$

$$\frac{\partial f}{\partial x}(x_0, y_0) = f_x(x_0, y_0) = \lim_{t \to 0} \frac{f(x_0 + t, y_0) - f(x_0, y_0)}{t}$$

$$\frac{\partial f}{\partial y}(x_0, y_0) = f_y(x_0, y_0) = \lim_{t \to 0} \frac{f(x_0, y_0 + t) - f(x_0, y_0)}{t}$$

Derivate parziali

$$ax + by con a, b \in \mathbb{R}$$

$$e^{-(x^2+y^2)}$$

II gradiente

Il gradiente è il vettore che ha come componenti le derivate parziali

$$\nabla f(P_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

Il gradiente è il vettore che ha come componenti le derivate parziali

$$\nabla f(P_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

vale che

$$\frac{\partial f}{\partial v}(x_0, y_0) = \nabla f(x_0, y_0) \cdot v$$

Il gradiente è il vettore che ha come componenti le derivate parziali

$$\nabla f(P_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

vale che

$$z = f(x_0, y_0) + \nabla f(x_0, y_0) \cdot (x - x_0, y - y_0)$$

$$z = f(x_0, y_0) + \nabla f(x_0, y_0) \cdot (x - x_0, y - y_0)$$

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

$$z = f(x_0, y_0) + \nabla f(x_0, y_0) \cdot (x - x_0, y - y_0)$$

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Definizione.

Una funzione $f:D\longrightarrow \mathbb{R}$ si dice differenziabile in un punto $(x_0,y_0)\in D$ se

$$f(x,y)-\left[f(x_0,y_0)+f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)\right]$$

$$=o\left(\sqrt{(x-x_0)^2+(x-x_0)^2}\right)$$

Definizione.

Una funzione $f:D\longrightarrow \mathbb{R}$ si dice differenziabile in un punto $(x_0,y_0)\in D$ se

$$f(x,y) - \left[f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0)\right]$$

$$= o\left(\sqrt{(x-x_0)^2 + (x-x_0)^2}\right)$$

Teorema.

Una funzione $f: D \longrightarrow \mathbb{R}$ che ha derivate parziali continue in un intorno di un punto $(x_0, y_0) \in D$ è differenziabile in (x_0, y_0) .

Esempi

$$x^2 + y^2$$

$$e^{x+y^2}$$

$$\frac{x+y^2}{x^2+1}$$

$$ln(1+x^2+y^2)$$

$$y \ln(x)$$