Lecture-28

Sushrut Tadwalkar; 55554711

November 19, 2023

Theorem: Heine-Borel Theorem

In \mathbb{R}^k (with the usual topology), for a subset $\mathcal{K} \subseteq \mathbb{R}^k$, the following are equivalent:

- (a) \mathcal{K} is compact.
- (b) K is closed and bounded.

Proof. (a⇒b) This is a general fact about metric spaces.

(b \Rightarrow a) We know that compactness \iff sequential compactness in a metric space, so we start with a list of sequences $x^{(n)} = (x_1^{(n)}, x_2^{(n)}, \dots, x_k^{(n)})$ in \mathcal{K} . The sequence in the first component is $(x_1^{(n)})$ is a bounded sequence in \mathbb{R} , so by Bolzano-Weierstrass theorem, there exists a convergent sub-sequence; let this sub-sequence converge to \hat{x}_1 . Similarly, the i^{th} component is also bounded, so there exists a sub-sequence converging to \hat{x}_i . After repeating this process of extracting and nesting sub-sequences k times, we get that $x^{(n_j)} \to (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_k)$ as $j \to \infty$. The list of limits of sequences is in \mathcal{K} because \mathcal{K} is closed, and hence contains all of its limit points. Thus, \mathcal{K} is sequentially compact $\iff \mathcal{K}$ is compact.

Things to be cautious about

- 1. In any HTS $(\mathcal{X}, \mathcal{T})$, set \mathcal{X} is closed. What about the HTS where $\mathcal{X} = (0,1)$ in \mathbb{R} and \mathcal{T} comes from the usual metric on \mathbb{R} . This is a metric space, so \mathcal{X} is closed *in itself*, but **not** in \mathbb{R} ; it is bounded and a subset of \mathbb{R} , yet **not compact**. We require closed in \mathbb{R}^k to make this work.
- 2. Convergence of sequences can be defined in a general HTS, but in that context compactness is not equivalent to sequential compactness.

0.1 Completeness

Definition: Cauchy sequence and Complete space

Let (\mathcal{X}, d) be a metric space.

- (a) A sequence (x_n) in \mathcal{X} is **Cauchy** iff for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all m, n > N, $d(x_m, x_n) < \varepsilon$.
- (b) The space (\mathcal{X}, d) is called *complete* exactly when every Cauchy sequence in \mathcal{X} converges in \mathcal{X} .

Example 1. $(\mathbb{R}, |\cdot|)$ is complete, but $(\mathbb{Q}, |\cdot|)$ is not complete.

Some facts about Cauchy sequences:

- (i) Every convergent sequence is Cauchy.
- (ii) Every Cauchy sequence is bounded.

(iii) If a Cauchy sequence has a subsequence that converges, then the full original sequence converges to the same limit.

Note. We have already done all this before in \mathbb{R} ; the proofs for these is very similar in general metric spaces.

Theorem: Rudin 3.11 (b)

Every compact metric space is complete.

Proof sketch. Compact \iff sequentially compact; we start with a Cauchy sequence, get a convergent subsequence (since the space is compact), we use property (iii) to conclude the proof.

Example 2. Consider the sequence space

$$\ell^{\infty} = \left\{ x = (x_1, x_2, x_3, \dots) : \sup_{j} |x_j| < +\infty \right\}$$

Let $d(x,y) = \sup_{j} |x_j - y_j|$, which we have shown is a metric in Homework 5 problem 8. This (ℓ^{∞}, d) is complete.

Proof. Let $(x^{(n)})_{n\in\mathbb{N}}$ be a Cauchy sequence in ℓ^{∞} . We must show it converges. Convergence in ℓ^{∞} is:

For all
$$\varepsilon > 0$$
, there exists $N \in \mathbb{N}$ such that for all $m, n > N$, $\sup_{j} \left| x_{j}^{(m)} - x_{j}^{(n)} \right| < \varepsilon$.

For each particular $j \in \mathbb{N}$, this implies the Cauchy property for the real-values sequence in slot j, i.e., $(x_j^{(n)})_{n \in \mathbb{N}}$. Hence, by completeness of \mathbb{R} , $x_j = \lim_{n \to \infty} x_j^{(n)}$ exists in \mathbb{R} . Repeat for each j to get $\hat{x} = (\hat{x}_1, \hat{x}_2, \hat{x}_3, \dots)$

Claim 1. $\hat{x} \in \ell^{\infty}$.

Proof. We use Cauchy property (ii): the original sequence $(x^{(n)})$ must be bounded, so some M>0 obeys $x^{(n)}\in\mathbb{B}[0;M]$, where $0=(0,0,0,\dots)\in\ell^\infty$, i.e., $\sup_j\left|x_j^{(n)}\right|\leq M$ for each n. We fix j and let $n\to\infty$ to get $|\hat{x}_j|\leq M$. Hence, we see that indeed $\hat{x}\in\mathbb{B}[0;M]\subseteq\ell^\infty$.

Claim 2. $d(x^{(n)}, \hat{x}) \to 0$.

Proof. We require:

For all
$$\varepsilon>0$$
, there exists $N\in\mathbb{N}$ such that for all $n>N, \ \sup_{j}\left|x_{j}^{(n)}-\hat{x}_{j}\right|<\varepsilon.$

Fix some $\varepsilon>0$, and use $\varepsilon'=\frac{\varepsilon}{2}$ in the original Cauchy property. Estimate

$$\left| x_j^{(n)} - \hat{x}_j \right| \le \left| x_j^{(n)} - x_j^{(m)} \right| + \left| x_j^{(m)} - \hat{x}_j \right|$$
$$< \varepsilon' + \left| x_j^{(m)} - \hat{x}_j \right|$$

for all m, n > N', where N' comes from ε' via the Cauchy property shown above. Now, let $m \to \infty$ on both sides:

$$\left| x_j^{(n)} - \hat{x}_j \right| \le \frac{\varepsilon}{2} < \varepsilon;$$

this holds for all n > N'. Next, taking \sup_i on both sides, we get $d(x^{(n)}, \hat{x}) < \varepsilon$, as required.

2