

Concluding Topics

Chapter 4 – Hands on Data Analytics for Everyone

November 28, 2022

北京师范大学-香港浸会大学联合国际学院 United International College

Contents

- How to Present your Data Analytics Project
- A Common Mistake: Correlation and Causality
- Advanced Applications of Data Analytics
 - Autonomous Driving

November 28, 2022 2

Key Points for Presenting Data Analysis Results

- A visualization graph is worth more than thousands of worlds
- Visualization graphs are used for describing data (exploratory) and communicating data (explanatory)
- How we communicate can change the results
- Give context: Start a presentation by telling a story!

Data Visualization Examples

Examples of Ineffective Visualization

Source: Cole Nussbaumer Knaflic (2015), "Storytelling with Data", Wiley Eds.

Data Visualization Examples

Please approve the hire of 2 FTEs

to backfill those who quit in the past year

Ticket volume over time

Data source: XYZ Dashboard, as of 12/31/2014 | A detailed analysis on tickets processed per person and time to resolve issues was undertaken to inform this request and can be provided if needed.

Example of Effective Visualization

Source: Cole Nussbaumer Knaflic (2015), "Storytelling with Data", Wiley Eds.

Data Visualization Examples

Example of Effective visualization

Source: Cole Nussbaumer Knaflic (2015), "Storytelling with Data", Wiley Eds.

Is anything wrong with this plot?

Contents

- How to Present your Data Analytics Project
- A Common Mistake: Correlation and Causality
- Advanced Applications of Data Analytics
 - Autonomous Driving

November 28, 2022 8

A Stork

Hypothesis: Storks bring babies

Der Klapperstorch (The Stork), Carl Spitzweg (1808–1885)

German data for number of storks and population

Correlation is significant and positive!

Correlation ⇒ Causality

Correlation vs. Causality

.. and what about Chocolate and Nobel prices?

Image Credit: http://www.nejm.org/doi/full/10.1056/NEJMon1211064

Simpson's Paradox: Smoking and Mortality

Should I start smoking to live longer?

Mortality Rate Study

	Died	Survived	Total	Rate
Smokers	139	443	582	23.9%
Non Smokers	230	502	732	31.4%
Total	369	945	1314	28.1%

Credit:

http://www.significancemagazine.org/details/webexclusive/2671151/

Simpson's Paradox: Smoking and Mortality

Mortality Rates by Age

Distribution of Age by Smoking Status

Credit:

 $\underline{\text{http://www.significancemagazine.org/details/webexclusive/2671151/} Simpsons-Paradox-A-Cautionary-Tale-in-Advanced-Analytics.html}$

	Tax Rate		% of total income	
Adjusted gross income	1974	1978	1974	1987
Under \$5000	0.054	0.035	4.73	1.60
\$5000 - \$9999	0.093	0.072	16.63	9.89
\$10000 - \$14999	0.111	0.100	21.89	13.83
\$15000 - \$99999	0.160	0.159	53.40	69.62
\$100000 and more	0.384	0.383	3.34	5.06
Total	0.141	0.152	100	100

Table Credit: Counting for Something by William S. Peters

... does the overall tax rate go up, while all individual rates go down?

Contents

- How to Present your Data Analytics Project
- A Common Mistake: Correlation and Causality
- Advanced Applications of Data Analytics
 - Autonomous Driving

November 28, 2022 16

Three Philosophical Questions in Your Life

Where shall I go?

How do I get there?

Why Do We Need Autonomous Driving

How Do We Make a Car Drive Itself?

博文雅志 真知笃行

عانی. Perception System

博文雅志 真知笃行

Perception: Why So Many Sensors

Different sensors have their own strength and weakness

Sensors : Data Collection

• Perception: Data Processing, Information Extraction

Computer Vision and Pattern Recognition

Basic problems: understanding and interpreting images

- What is this in the image?
- Where are xxx's in the image?
- What are they doing in the image?

Typical Problem: Vehicle Detection

博文雅志 真知笃行

Perception: Camera Data Processing

- Sliding window
- Duplication removal
- Handle false positives

PERCEPTION

DETECTION

LANE DETECTION

TRAFFIC LIGHT
DETECTION & CLASSIFICATION

TRAFFIC SIGN
DETECTION & CLASSIFICATION

OBJECT DETECTION & TRACKING

FREE SPACE DETECTION

博文雅志 真知笃行

In knowledge and in deeds, unto the whole person

How to solve the problems?

Manual Features
+ Machine
Learning

Deep Learning

Train a classifier using designed features with labeled data

No feature extraction needed Large data set required Intensive computation

Algorithm Centric

Data Centric

Perception: Example Current Capabilities

博文雅志 真知笃行

Perception: State of the Art

Scene understanding through deep learning

博文雅志 真知笃行

Perception: Challenges

- The real world is far from perfect
- Robustness
 - Rain, snow, PM2.5, sunlight, perspective, darkness
- Computation power

How Do We Do It in UIC

Self-driving enabled vehicle platforms for outdoor experiments

Low cost self-driving vehicle platforms for outdoor /indoor experiments

