Stat 88: Probability & Mathematical Statistics in Data Science

Lecture 23: 3/15/2021

Sections 7.1, 7.2

Warm up

Let X be a non-negative random variable such that E(X) = 100 = Var(X).

a) Can you find $E(X^2)$ exactly? If not, what can you say?

b) Can you find P (70 < X < 130) exactly? If not, what can you say?

7.1: Sums of Independent Random Variables

Recall that expectation is additive, which we used many times.

$$(E(X+Y)=E(X)+E(Y))$$

- What about Var(X + Y)? Well, it depends.
- Consider tossing a fair coin 10 times. Let H be the number of heads and T be the number of tails in 10 tosses. Then H+T=10. Note that $Var(H), Var(T) \neq 0$, but Var(H+T) = Var(10) = 0
- But now let H_1 be the number of heads in the first 5 tosses, and H_2 the number of heads in the last 5 tosses. Will we have that $Var(H_1 + H_2) = 0$?
- It turns out that if X and Y are *independent*, then we have that Var(X + Y) = Var(X) + Var(Y)

Sums of iid random variables

• Let $X_1, X_2, ..., X_n$ be independent and identically distributed random variables with mean μ and variance σ^2 . Define S_n to be their sum: $S_n = X_1 + X_2 + \cdots + X_n$.

- We already know that $E(S_n) = \sum E(X_k) = n\mu$.
- Now we can further say that:

$$Var(S_n) = Var(X_1 + X_2 + \dots + X_n) = Var(X_1) + \dots + Var(X_n) = n\sigma^2$$

$$SD(S_n) = \sqrt{n}\sigma$$

• Notice that the expected value grows as n, but the sd grows as \sqrt{n} .

Variance of the Binomial distribution

- Recall that a binomial random variable $X \sim Bin(n, p)$ is the sum of n iid Bernoulli(p) random variables I_1, I_2, \ldots, I_n where I_k is the indicator of success on the kth trial.
- What are the mean and variance of I_k ? And therefore, what are the mean and variance of X? For what p will this variance be maximum?

Variance of Poisson (μ) and geometric(p)

- Recall that one way to get the Poisson rv is by approximating the Binomial (n, p) distribution when n is large and p is small. ($\mu = np$)
- SD of the binomial distribution is $\sqrt{np(1-p)}$.
- Note that if p is small, $(1-p) \approx 1$, and we can say that $np(1-p) \approx np$.
- This gives us that the SD of the Poisson(μ) distribution is $\sqrt{\mu}$

- Geometric(1/p) distribution: **Fact**: the variance of the geometric distribution is $\frac{1-p}{p^2}$
- Ex: (Waiting till the 10th success) Suppose you roll a die until the 10th success. Let R be the number of rolls required. Find SD(R).

Exercise 7.4.5

The number of typos on the cover page of an exam has a distribution

given by

x	0	1
P(X=x)	8.0	0.2

The number of misprints in the rest of the exam has the Poisson (3)(3) distribution, independently of the cover page.

Find the expectation and SD of the total number of misprints on the exam.

Sampling without replacement

- When we have a simple random sample (SRS), the draws are without replacement (like drawing cards from a deck).
- The random variables are not independent any more.
- So, how do we compute the variance of the sum of draws of a SRS?
- To begin with, let's look at the squares and products of indicators
- If I_A and I_B are indicator functions, what can we say about I_A^2 and I_AI_B ?

Variance of a hypergeometric random variable

- Let $X \sim HG(N, G, n)$, then can write $X = I_1 + I_2 + \cdots + I_n$, where I_k is the indicator of the event that the kth draw is good.
- We can compute the expectation of X using symmetry: E(X) =
- But what about variance?

Variance of a hypergeometric random variable

The finite population correction & the accuracy of SRS

Accuracy of samples

Simple random samples of the same size of 625 people are taken in Berkeley (population: 121,485) and Los Angeles (population: 4 million). True or false, and explain your choice: The results from the Los Angeles poll will be substantially more accurate than those for Berkeley.