MorphNet

참고자료

- MorphNet 논문: https://arxiv.org/pdf/1711.06798.pdf
- Google Al Blog: https://ai.googleblog.com/2019/04/morphnet-towards-faster-and-smaller.html
- GitHub: https://github.com/google-research/morph-net
- MobileNets: https://arxiv.org/pdf/1704.04861.pdf
 - : width multiplier 이해를 위하여
- Youtube: https://www.youtube.com/watch?v=UvTXhTvJ wM

INTRODUCTION

- 기존 L1 Normalize term을 적용하여 non-zero weigh를 줄였었음.
- 학습속도 향상에는 도움 안됨. 분산된 0 들
- Node자체를 목표로 하는 대안들. Structured sparcity. E.g. Grouped Lasso
- 단점1. 내가 원하는 특정 자원(FLOPs, Latency든)에 대하여 모델 architecture를 바꾸는게 아님.
- 단점2. Trial and Error를 통한 Parameter 찾기, 비효율적임
- 따라서, 본 논문에서는 간단하고 특정자원에 맞추어 모델을 바꿀 수 있는 방법론을 제안한다.

MorphNet: Architecture Learning

Efficient & scalable architecture learning for everyone

- Resource constraints guide customization
- Requires handful of training runs
- Trains on your data
- Start with your architecture
- Works with your code

Idea: Continuous relaxation of combinatorial problem

Simple & effective tool: weighted sparsifying regularization.

Learning the Size of Each Layer

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	
convolution	7×7/2	112×112×64	1							
max pool	3×3/2	56×56×64	0							
convolution	3×3/1	56×56×192	2		64	192				
max pool	3×3/2	28×28×192	0							
inception (3a)		28×28×256	2	64	96	128	16	32	32	
inception (3b)		28×28×480	2	128	128	192	32	96	64	
max pool	3×3/2	14×14×480	0							
inception (4a)		14×14×512	2	192	96	208	16	48	64	
inception (4b)		14×14×512	2	160	112	224	24	64	64	
inception (4c)		14×14×512	2	128	128	256	24	64	64	
inception (4d)		14×14×528	2	112	144	288	32	64	64	
inception (4e)		14×14×832	2	256	160	320	32	128	128	
max pool	3×3/2	7×7×832	0							
inception (5a)		7×7×832	2	256	160	320	32	128	128	
inception (5b)		7×7×1024	2	384	192	384	48	1	Lan	

Sizes

We focus on

Main Tool: Weighted **sparsifying** regularization.

Related work – L1 norm

- L1 norm 은 0으로 만들지만, L2 norm은 0에 가까울 뿐 0이 아
- L0 norm은 0이 아닌 것의 개수, Converge되기 힘들기 때문에 L1씀
 - L₀ Norm: $|\bar{x}|$ number of nonzero elements
 - L₁ Norm: $\|\bar{x}\|_1 = \sum_{n=1}^{N} |x_n|$

$$L_{\infty} = \lim_{p \to +\infty} L_p$$

$$\left\| \overline{x} \right\|_{\infty} = \lim_{p \to +\infty} \left(\sum_{n=1}^{N} \left| x_n \right|^p \right)^{1/p}$$

- $\blacksquare \mathbf{L}_{\infty} \mathbf{Norm} : \left\| \overline{x} \right\|_{\infty} = \max \left\{ |x_1|, ..., |x_N| \right\}$
- **L**_p Norm: $\|\overline{x}\|_p = \left(\sum_{n=1}^N |x_n|^p\right)^{1/p}$

Related work - Group Lasso

 $\min_{w} \ell(X, Y, w) + \lambda \sum_{k} \sqrt{w_{g_1}^2 + \dots w_{g_k}^2}$

(Group) LASSO: Sparsity in Optimization $\min_{w} \ell(X,Y,w) + \lambda |w|_{1}$ Weight matrix $g_{1} \qquad g_{2} \qquad g_{3} \qquad g_{4}$

Related work – width multiplier

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

Figure 2. The standard convolutional filters in (a) are replaced by two layers: depthwise convolution in (b) and pointwise convolution in (c) to build a depthwise separable filter.

- MobileNet
- Standard CNN: $D_K \cdot D_K \cdot M \cdot N \cdot D_F \cdot D_F$
- Depthwise and pointwise CNN:

$$D_K \cdot D_K \cdot M \cdot D_F \cdot D_F + M \cdot N \cdot D_F \cdot D_F$$

• Width multiplier (α):

$$D_K \cdot D_K \cdot \alpha M \cdot D_F \cdot D_F + \alpha M \cdot \alpha N \cdot D_F \cdot D_F$$

METHOD - MorphNet Algorithm

Algorithm 1 The MorphNet Algorithm

- 1: Train the network to find $\theta^* = \underset{\theta}{\operatorname{argmin}} \{ \mathcal{L}(\theta) + \lambda \mathcal{G}(\theta) \}$, for suitable λ .
- 2: Find the new widths $O'_{1:M}$ induced by θ^* .
- 3: Find the largests ω such that $\mathcal{F}(\omega \cdot O'_{1:M}) \leq \zeta$.
- 4: Repeat from Step 1 for as many times as desired, setting $O_{1:M}^{\circ} = \omega \cdot O_{1:M}'$.
- 5: **return** $\omega \cdot O'_{1:M}$.

• STEP 1-2 : Shrink

- $\mathcal{G}(\theta)$: regulation term
- : target source cost & L1 norm
- $\mathcal{L}(\theta)$: Loss

STEP 3: Expansion

- <u>O_{1:M}</u>: Output layer 1부터 m까지 (w 구해지면 layer 1부터 m까지 동일하게 넓힘)
- $Constraint(O_{1:M})$ 이 정해진 숫자 (source) ς 를 넘지 않을 때의 가장 큰 width multiple 해 줌.

1. Constraints $F(\omega idth \cdot O'_{i:m})$

- FLOPs도 model size도 둘다 matrix multiplication에 따라서 증가 $\mathcal{F}(\text{layer }L) = C(w_L, x_L, y_L, z_L, f_L, g_L) \cdot I_L O_L$.
 - FLOPs: C(w,x,y,z,f,g)=2yzfg, (Eq. 4)
 - Model Size: C(w, x, y, z, f, g) = fg. (Eq 5)

$$\mathcal{F}(ext{layer }L) = C\sum_{i=0}^{I_L-1} A_{L,i}\sum_{j=0}^{O_L-1} B_{L,j}, \quad ext{where } A_{L,i} (B_{L,j}) ext{ is an indicator function which equals one if the } i- ext{th input } (j- ext{th output}) ext{ of layer } L ext{ is } alive- ext{ not zeroed}$$

$$\mathcal{F}(O_{1:M}) = \sum_{L=1}^{M+1} \mathcal{F}(\text{layer } L). \tag{Eq. 7}$$

2. Regularization G()

- Constraint는 수식(7)에 따라 정의, 최적화 문제는 Loss에 penalty부가 $\min_{\theta} \mathcal{L}(\theta) + \lambda \mathcal{F}(O_{1:M})$, (8)
- 수식 (6)은 discontinuous하므로 continuous proxy norm (L1 norm)으로 변형
- Batch Norm을 통해 얻어지는 scale factor γ 활용, gamma 가 0이되면 filter 제거됨.
- 수식 (9)를 통해 수식 (6)을 근사

$$\mathcal{G}(\theta, \text{layer } L) = C \sum_{i=0}^{I_L - 1} |\gamma_{L-1,i}| \sum_{j=0}^{O_L - 1} B_{L,j} + C \sum_{i=0}^{I_L - 1} A_{L,i} \sum_{j=0}^{O_L - 1} |\gamma_{L,j}|, \quad (9)$$

• 전체 네트워크에 대한 수식 $\mathcal{G}(\theta) = \sum_{L=1}^{M+1} \mathcal{G}(\theta, \text{layer } L).$ (10)

2. Regularization

• L1이기 때문에 비록 수식 (9)도 discontinuity로 부터 자유롭진 않지만, 실용적인 상황에서는 문제가 없음. 일반적인 미니 배치기반 옵티마이저는 $\mathbf{g}()$ 의 불연속성을 해결함.

• Fig2 - ⁷ 활용하여 제로 vs non-zero로 확연히 나뉘어짐을 확인

Figure 2. A histogram of γ for one of the ResNet101 bottleneck layers when trained with a FLOP regularizer. Some of the $|\gamma|$'s are zeroed out, and are separated by a clear gap from the nonzero $|\gamma|$'s.

3. Network Topology

- Resnet처럼 레이어들이 건너 뛰어 연결된 경우
- Input of Layer 3 = Out(Layer 1) + Out (Layer 2)
- 연결을 가지는 layer들을 Group Lasso로 묶어서 처리한다.
- <u>Layer 1의 j번째 Output 과 Layer 2의 j번째 Output은 묶여서 처</u> <u>리된다. 0이면 같이 0</u>

 L_{∞} norm - the maximum of the $|\gamma|$'s in the group.

RESULT

Figure 4. ImageNet evaluation accuracy for various downsized versions of Inception V2 using both a naïve width multiplier (red circles) and a sparsifying FLOP regularizer (blue squares). We also show the result of re-expanding one of the networks induced by the FLOP regularizer to match the FLOP cost of the original network (pentagon point). A further increase in accuracy is achieved by performing the sparsifying and expanding process a second time (star point).

Network	Baseline	MorphNet	Relative Gain
Inception V2	74.1	75.2	+1.5%
MobileNet 50%	57.1	58.1	+1.78%
MobileNet 25%	44.8	45.9	+2.58%
ResNet101	0.477	0.487	+2.1%
AudioResNet	0.182	0.186	+2.18%

Table 2. The result of applying MorphNet to a variety of datasets and model architectures while maintaining FLOP cost.

RESULT

Figure 5. MAP vs. FLOPs (left) and MAP vs. model-size (right) curves on JFT (top) and AudioSet (bottom). The magenta points in the AudioSet figures represent models expanded from a FLOP (diamond) or size (pentagon) regularizes.

• Target한 resource에 따라서 다른 결과

RESULT

Figure 1. ResNet101 based models with similar performance (around 0.426 MAP on JFT, see Section 5). A structure obtained by shrinking ResNet101 uniformly by a $\omega=0.5$ factor (left), and structures learned by MorphNet when targeting FLOPs (center) or model size (*i.e.*, number of parameters; right). Rectangle width is proportional to the number of channels in the layer and residual blocks are denoted in gray. 7×7 , 3×3 , and 1×1 convolutions are in purple, blue and green respectively. The purple bar at the bottom of each model is thus the input layer. Learned structures are markedly different from the human-designed model and from each other. The FLOP regularizer primarily prunes the early, compute-heavy layers. It notably learns to *remove whole layers* to further reduce computational burden. By contrast, the model size regularizer focuses on removal of 3×3 convolutions at the top layers as those are the most parameter-heavy.

- FLOPs는 low layer 들을 줄이는 경향, Model Size는 Upper layer들을 줄 이는 경향
- 둘 다 정확도는 비슷 하게 오름 (Base MAP: 0.405, Flops 0.428, Size: 0.421)

Latency Roofline Model

Each op needs to read inputs, perform calculations, and write outputs.

Evaluation time of an op depends on the **compute** and **memory** costs.

Compute time = FLOPs / compute_rate.

Device Specific

Memory time = tensor_size / memory_bandwidth.

Latency = max(Compute time, Memory time)

Example Latency Costs

Different platforms have different cost profile

Platform	Peak Compute	Memory Bandwidth
P100	9300 GFLOPs/s	732 GB/s
V100	125000 GFLOPs/s	900 GB/s

Leads to different relative cost

Inception V2 Layer Name	P100 Latency	V100 Latency	Ratio
Conv2d_2c_3x3	74584	5549	7%
Mixed_3c/Branch_2/Conv2d_0a_1x1	2762	1187	43%
Mixed_5c/Branch_3/Conv2d_0b_1x1	1381	833	60%

When Do FLOPs and Latency Differ?

- Create 5000 sub-Inception V2 models with a random number of filters.
- Compare FLOPs, V100 and P100 Latency.

P100 - is compute bound, tracks FLOPs "too" closely

V100 - gap between FLOPs and Latency is looser

Open Source

• 지금은 Error...

Ouick User Guide

```
from morph_net.network_regularizers import flop_regularizer
from morph_net.tools import structure_exporter

logits = build_model()

network_regularizer = flop_regularizer.GammaFlopsRegularizer(
        [logits.op], gamma_threshold=1e-3)
regularization_strength = 1e-10
regularizer_loss = (network_regularizer.get_regularization_term() * regularization_strength)

model_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels, logits)

optimizer = tf.train.MomentumOptimizer(learning_rate=0.01, momentum=0.9)

train_op = optimizer.minimize(model_loss + regularizer_loss)
```

Exact same API works for different costs and settings: GroupLassoFlops, GammaFlops, GammaModelSize, GammaLatency

FLOPs

• 컴퓨터의 연산 속도를 나타내는 단위로, 1초당 부동 소수점 연산 명령을 몇 번 실행할 수 있는지를 말한다.

부형	' 지수부 8비트						가수부 23비트							

$$\begin{aligned} &11001.1110_{(2)} = 1.100111110 \times 2^4 \\ &0.00001111_{(2)} = 1.111000000 \times 2^{-5} \\ &11.0001000_{(2)} = 1.10001000 \times 2^1 \end{aligned}$$

What is the Cost of a Filter?

