Math 240: Midterm 2 Q6bc

Daniel Ko

Spring 2020

Given positive integers a and b, we want to compute some integers s and t such that

$$gcd(a, b) = sa + tb$$

Consider the following iterative program LIN_COMB (a,b) which is supposed to accomplish this: Initialize variables $c=a, d=b, s_0=1, t_0=0, s_1=0, t_1=1$ While $c \neq d$, do the following:

If c < d, then decrement d by c, decrement s_1 by s_0 , decrement t_1 by t_0 Else if c > d, then decrement c by d, decrement s_0 by s_1 , decrement t_0 by t_1 Return s_0 and t_0

§1 6b

Assume, in addition to (a), that gcd(a, b) = gcd(c, d) is a loop invariant for the while loop in LIN COMB. Prove that LIN COMB satisfies partial correctness.

Proof. Suppose that LIN_COMB halts. Fix $n \in \mathbb{N}$ such that exactly n iterations of the while loop are executed. Consider the values of c, d, s_0 , t_0 after the nth iteration. Since the (n+1)th iteration is not executed, the loop condition fails, which means c=d. This must mean that gcd(c,d)=c=d. Moreover, gcd(a,b)=c by the given loop invariant. From (a), we know $(c=s_0a+t_0b) \wedge (d=s_1a+t_1b)$ is a loop invarient. Since $gcd(a,b)=c=s_0a+t_0b$, we get the correct output.

§2 6c

Prove that $(c > 0) \land (d > 0)$ is a loop invariant for the while loop in LIN_COMB.

Proof. Proof. Let P(n) be the predicate asserting that if the while loop has run for n iterations, then $(c > 0) \land (d > 0)$. Domain: \mathbb{N} . We prove by induction that for all k, P(k) holds.

Base case: Before any iteration of the loop: c = a and d = b. a and b are positive integers by definition. Hence, P(0) holds as desired.

Inductive step: Suppose that $n \in \mathbb{N}$ such that P(n) holds. We prove that P(n+1) holds. Suppose the loop has run for n+1 iterations. Let c', d', s'_0 , t'_0 , s'_1 , t'_1 be the value of the variables after the loop has run for n iterations. Now we consider what happens in the $(n+1)^{th}$ iteration.

i. Case 1: c' < d'

$$c = c'$$
$$d = d' - c'$$

By our induction hypothesis, we know that c' > 0, so c > 0 holds. Since c' < d' and c' > 0, so d' - c' > 0. Because d = d' - c', this means that d > 0 holds. Thus, P(n+1) holds for when c' < d'.

ii. Case 2: c' > d'

$$c = c' - d'$$
$$d = d'$$

By our induction hypothesis, we know that d'>0, so d>0 holds. Since c'>d' and d'>0, so c'-d'>0. Because c=c'-d', this means that c>0 holds. Thus, P(n+1) holds for when c'< d'.

This proves the inductive step. By induction, we conclude that P(n) holds for all $n \in \mathbb{N}$ which makes it an loop invarient for LIN COMB.