République Islamique de Mauritanie Ministère de l'Education Nationale Direction des Examens et Concours Service des Examens

Baccalauréat 2015

Session Normale

Honneur - Fraternité - Justice

Série : Sciences de la Nature Epreuve: Mathématiques Durée: 4 heures Coefficient: 6

Exercice 1 (3 points)

Une usine fabrique une série de montres. Au cours de la fabrication peuvent apparaître deux types de défauts, désignés par a et b. On a constaté que 6% des montres fabriquées présentent le défaut a (et peut-être aussi le défaut b), 5% le défaut b (et peut-être aussi le défaut a) et 2% présentaient simultanément les défauts a et b.

Une montre est tirée au hasard dans la production. On définit les évènements suivants :

A : «la montre tirée présente le défaut a»;

B : «la montre tirée présente le défaut **b**» ;

C : «la montre tirée ne présente aucun des deux défauts»;

D : «la montre tirée présente un et un seul des deux défauts».

Parmi les réponses proposées pour chaque question ci-après, une seule réponse est exacte.

N°	Question	Réponse A	Réponse B	Réponse C	
1	La probabilité p (A) est :	0.6	0.06	6	(0,5pt)
2	La probabilité p (C) est :	0.91	0.89	0.87	(0,5pt)
3	La probabilité p(D) est :	0.05	0.07	0.98	(0,5pt)
4	La probabilité $p_B(A)$ est :	0.4	0.04	0.3	(0,5pt)
5	La probabilité $\mathbf{p}_{\overline{\mathbf{A}}}(\mathbf{B})$ est :	3/96	9 <u>1</u> 94	3 94	(0,5pt)
6	La probabilité $p_D(A)$ est :	$\frac{3}{7}$	$\frac{4}{7}$	$\frac{6}{7}$	(0,5pt)

Recopie sur la feuille de réponse et complète le tableau ci-contre en choisissant la bonne réponse. Aucune justification n'est demandée :

Question n°	1	2	3	4	5	6
Réponse						

Exercice 2 (5 points)

(0,5 pt)a) Calculer **P(2)**.

 $P(z) = (z-2)(z^2 + az + b)$. b) Déterminer les réels a et b tels que pour tout z on a: (0,5 pt)

c) Résoudre, dans l'ensemble des nombres complexe, l'équation P(z) = 0. On note z_0 ; z_1 et z_2 les

solutions de (E) telles que $Im(z_2) < Im(z_0) < Im(z_1)$. (0,5 pt)

2) Le plan complexe est rapporté à un repère orthonormé direct $(\mathbf{O}; \mathbf{u}, \mathbf{v})$.

Soient les points A, B et C d'affixes respectives : $\mathbf{z}_A = \mathbf{z}_1 + 3\mathbf{i}$, $\mathbf{z}_B = \mathbf{z}_2 + \mathbf{i}$ et $\mathbf{z}_C = 6 + 2\mathbf{i}$.

a) Vérifier que $z_A = 4+4i$ et $z_B = 4$. (0,5 pt)

b) Ecrire les nombres \mathbf{z}_{A} et \mathbf{z}_{B} sous forme trigonométrique. (0,5 pt)

c) Placer les points A, B et C dans le repère. (0,5 pt)

3) Pour tout nombre $z \neq 4+4i$ on pose : $f(z) = \frac{z-4}{z-4-4i}$.

(0,5 pt)a) Vérifier que $f(z_c) = i$ et interpréter graphiquement.

b) Déterminer et construire Γ_1 l'ensemble des points M du plan d'affixe z tel que $|\mathbf{f}(\mathbf{z})| = 1$. (0,5 pt)

c) Déterminer et construire Γ_2 l'ensemble des points M d'affixe z tel que f(z) soit imaginaire pur. (0,5 pt)

4) Pour tout entier naturel n, on pose $z_n = (z_A)^n$ et soit M_n le point d'affixe z_n .

a) Déterminer l'ensemble des entiers n pour lesquels le point M_n appartient à l'axe des abscisses. (0,25 pt)

(0,25 pt)b) Déterminer l'ensemble des entiers n pour lesquels on a $OM_n > 2015$.

Exercice 3 (6 points)

On considère la fonction \mathbf{f} définie sur $[0;+\infty[$ par : $\begin{cases} \mathbf{f}(\mathbf{x}) = 3\mathbf{x} - 3 - 2\mathbf{x} \ln \mathbf{x}, \ \mathbf{x} > 0 \\ \mathbf{f}(0) = -3 \end{cases}$. Soit (C) sa courbe représentative dans un repère orthonormé (O; i, j) d'unité 1cm. 1.a) Calculer $\lim f(x)$. En déduire que f est continue à droite de $x_0 = 0$. (0,5 pt)b) Montrer que $\lim_{x\to 0^+} \frac{f(x)-f(0)}{x} = -\infty$ et interpréter graphiquement. (0,5 pt)(0,5 pt)c) Montrer que $\lim f(x) = -\infty$. 2.a) Calculer $\mathbf{f}'(\mathbf{x})$ pour $\mathbf{x} \in]0; +\infty[$ et vérifier que $\mathbf{f}'(\sqrt{\mathbf{e}}) = \mathbf{0}$. (0,5 pt)(0,5 pt)b) Dresser le tableau de variation de la fonction **f**. (0,5 pt)3.a) Déterminer une équation de la tangente (T) à (C) au point A d'abscisse $x_0 = 1$. b) Montrer que (C) coupe l'axe des abscisses (Ox) en un point B autre que A dont l'abscisse α est telle que : $2.3 \le \alpha \le 2.4$. (0,5pt)c) Déduire de ce qui précède le signe de f(x) sur $[0;+\infty]$. (0,5 pt)4) On considère la fonction **g** définie par : $\begin{cases} g(x) = \frac{1}{2}x^2 - x^2 \ln x; x > 0 \\ g(0) = 0 \end{cases}$ a) Montrer que pour tout x > 0, f(x) = 3x - 3 + g'(x). (0.5 pt)(0,5 pt)b) En déduire une primitive \mathbf{F} de f sur $\mathbf{0};+\infty$. $U_n = \int_{\frac{1}{a}}^{1} f(x) dx$ 5) Pour tout entier nature $n \ge 1$ on pose: (0,5 pt)a) Montrer que la suite (U_n) est décroissante. (0,25 pt)b) Exprimer U_n en fonction de n. (0,25 pt)c) Calculer lim U_n. Exercice 4 (6 points) On considère la fonction f définie sur \mathbb{R} par $\mathbf{f}(\mathbf{x}) = (\mathbf{x} - 2)(1 + \mathbf{e}^{\mathbf{x}})$. Soit (C) sa courbe représentative dans un repère orthonormé (O; i, j). 1.a) Justifier que $\lim_{x \to +\infty} \mathbf{f}(\mathbf{x}) = +\infty$. Calculer $\lim_{x \to +\infty} \frac{\mathbf{f}(\mathbf{x})}{\mathbf{x}}$ et interpréter graphiquement. (0.5 pt)(0,5 pt)b) Calculer $\lim (f(x)-(x-2))$ et en donner une interprétation graphique. (0,5 pt)2.a) Calculer la dérivée f'(x) puis la dérivée seconde f''(x). (0,25 pt)b) En déduire que la courbe (C) possède un point d'inflexion A dont on précisera les coordonnées. (0,5 pt)c) Dresser le tableau de variation de la dérivée f'. En déduire le signe de f'(x) pour tout réel x. (0.5 pt)3.a) A l'aide des questions précédentes, dresser le tableau de variation de f. b) Montrer que f réalise une bijection de R sur un intervalle J que l'on déterminera. On désigne (0,5 pt)par (C') la courbe représentative de la réciproque \mathbf{f}^{-1} dans le repère ($\mathbf{O}; \mathbf{i}, \mathbf{j}$). (0,5 pt)4.a) Déterminer les points d'intersection de la courbe (C) avec les axes de coordonnées. b) Déterminer le point **B** de (**C**) où la tangente **T** à la courbe (**C**) est parallèle à l'asymptote (**D**). (0,5 pt)Donner une équation de **T**. (0,5 pt)c) Tracer (C), T, (D) et (C'). (0,5 pt)d) Discuter graphiquement le nombre de solutions de l'équation $x-2=(2+m)e^{-x}$. (0,25 pt)5.a) Calculer l'intégrale $I = \int_0^2 (x-2-2e^x) dx$. (0,25 pt)b) En utilisant une intégration par parties, calculer $\mathbf{J} = \int_{a}^{2} \mathbf{x} e^{\mathbf{x}} d\mathbf{x}$. c) Calculer l'aire du domaine plan limité par la courbe (C), l'axe des abscisses, et les droites (0,25 pt)d'équations x=0 et x=2.

Fin.