On the Generation and Evaluation of Synthetic Data with GANs

Bauke Brenninkmeijer 2019

Outline

- Introduction
- Preliminaries
- Tabular GANs
- Contributions
- Results

Problem

- Synthesizing tabular data with GANs is difficult.
 - Different data types (continues, discrete)
 - Multi-modal data
 - Might contain long distance relationships
- 2. Evaluation of synthetic data is hard and performed inconsistent. What is 'Good' synthetic data? Different approaches in literature.

Motivation

Realistic synthesized data is very valuable for any domain where flow of data is restricted due to privacy, like in governments, healthcare and finance.

Goal

The Goal is twofold:

- 1. Improve the State-of-the-art for tabular data generation with GANs
- 2. Create a improved evaluation method that covers all aspects of data

Why Generative Adversarial Networks (GANs)?

Simple. They are the best for generating high dimensional data.

Clear in domains of images, audio and video

Preliminaries

Neural Networks

- Several layers that perform calculations
- Can be thought of as a function with parameters, which are trained to map domain X to Y.
- Results in one final layer, whose values can be trained to represent many things
- If the network has many layers, this is often referred to as deep learning

Convolutional Neural Networks (CNNs)

- Finds specific structures
 High activation with cat face,
 low with dog face
- Translation Invariant
 Cat face in left corner and right corner cause similar reaction
- Many filters that capture patterns

Recurrent Neural Networks (RNNs)

- Way to deal with sequential data
 Timeseries or text
- Often done with either GRU of LSTM Both have "internal memory"

GANs in 5 minutes

Generative Adversarial Nets¹

- Generator tries to imitate real data
- Discriminator tries to distinguish fake from real
- Minimax game between generator and Discriminator

GANs in 5 minutes

Wasserstein GAN¹

- **Uses 1-Wasserstein Distance**
- Bring logit distributions of last layer closer together
- To enforce 1-Lipschitz constraint, clips critic weights to [-0.01, 0.01]
- Less mode collapse

WGAN-GP²

- Introduces gradient penalty instead of weight clipping
- Converges better, faster training

Generative Adversarial Network

Related Work

Related work 1: TGAN¹

- Encodes continuous values with Gaussian Mixture Models.
- Recurrent Neural Network
- Has an attention mechanism

Problems:

Uses classic GAN Architecture

 $\mathbf{u}_{\scriptscriptstyle 1}$

Age	Education	Income/h	label
numerical	categorial	numerical	categorial
0 ~ 120	highschool college 	0 ~ 1000	<50000 >50000
V_1	d	V_2	d

u,

log probability $\uparrow f_2^{(D)} \longrightarrow \text{diversity}$ $\uparrow f_1^{(D)} \longrightarrow \text{diversity}$ $\downarrow f_1^{(D)} \longrightarrow \text{diversity}$

Discriminator

Related work 2: TableGAN¹

- Uses DCGAN, SotA method for images
- Handles 'all' datatypes
- Has classifier, identical to the discriminator, for semantic coherence as third GAN part

Problems

- Everything is represented as a float [0, 1].
 Not ideal for discrete values.
- Also uses classic GAN architecture

Related work 3: MedGAN¹

- Autoencoders translates categorical features to continuous ones
- Circumvent categorical features in the generator

Problems

- Sampling autoencoder latent space is arbitrary for locations unseen during training
- Original implementation does not work with multiple data types

Related work: Evaluations

Baselines are all over the place

- Compared with data perturbation/anonymization tools sdcMicro, ARX
- Statistical sampling techniques
 Gaussian Copula, Bayesian Networks
- Neural approaches
 Boltzmann Machines, Variational autoencoders
- Humans experts

Evaluation approaches differ:

- Statistical evaluations
- Privacy evaluations

Tabular GANs

Lets get to it!

Hold on just a minute...

Types of data

- Continues data
- Categorical data
- Ordinal data

Data Encoding: Categorical values

- Still often done using one-hot encoding
- In classifiers, success using embeddings
- Inverse transformation becomes very expensive.
 Requires distance measure which are often ambiguous in high dimensions.
 Options: Euclidean distance, cosine similarity, etc.

One-hot encoding

A 4-dimensional embedding

Data Encoding: Nominal values

- Test data might have unseen or higher values than train data.
- Some do it categorical, some continuous.
- Effectiveness depends on the number of unique values. If large number of unique variables, approximate continuously or use embeddings

Related work 1: TGAN¹

- Encodes continuous values with Gaussian Mixture Models.
- Recurrent Neural Network
- Has an attention mechanism

Advantages

- Continuous encoding
- Attention

Related work 2: TableGAN¹

- Uses DCGAN, SotA method for images
- Encodes everything in range [0,1]

Advantages

 Can capture relations that are quite far apart due to spatial closeness, but also not

Age 0.25	Working Class 0.1	Education 0.125
Occupation 0.03	Relationship 0.75	0
0	0	0

Related work 3: MedGAN¹

- Autoencoders translates categorical features to continuous ones
- Circumvent categorical features in the generator
- Sampling autoencoder latent space is arbitrary for locations unseen during training
- Original implementation does not work with multiple data types

Advantages

No discrete/categorical values in the GAN

Contributions

Contributions

- 1. Two improvements on the State of the Art model: TGAN
- 2. Improved evaluation metric for synthetic tabular data

Proposals

- 1. Use the WGAN-GP architecture
- 2. Add skip connections to the generator
- 3. An aggregate evaluation metric called the Similarity Score

Experimental Setup

- 1. Take our two GAN versions
- 2. Compare with three other models
- 3. Generate 100k rows
- 4. See how close generated data is to original

Data

Dataset	#Features	#D	#C	#rows	#labels
Berka	8	4	4	1056320	3
Census	40	33	7	199522	2
Creditcard	30	1	29	248808	2

Proposal 1: WGAN-GP architecture

Built upon TGAN to use the WGAN-GP architecture. This has shown improvements in visual domain with higher image fidelity and improved convergence.

Hypothesis: Model will converge faster, not mode-collapse and yield higher quality samples

Proposal 1: WGAN-GP architecture

- 1. Adam optimizer parameter change to essentially become RMSProp (momentum=0)
- 2. Training discriminator more often than generator (5 times)
- 3. Output of discriminator no longer has sigmoid activation
- 4. Adapting loss function use gradient penalty

$$L_D = \log D(x) + \log(1 - D(G(z))) \rightarrow L_D = \frac{1}{m} \sum_{i=1}^m D(x) - \frac{1}{m} \sum_{i=1}^m D(G(z))$$

$$L_G = \log(D(G(z)) + \sum_{i=1}^{n_c} KL(u_i', u_i) + \sum_{i=1}^{n_d} KL(\mathbf{d}_i', \mathbf{d}_i) \rightarrow L_G = \frac{1}{m} \sum_{i=1}^m D(G(z))$$

Proposal 2: skip-connections

- Essential part of many classifiers (ResNets)
- Greater information and gradient retention
- Use it in the Generator

Hypothesis: Model will converge faster and more stable.

Proposal 2: skip-connections

Mathematically:

$$x_k = \text{RELU}(W_k x_{k-1}) + x_{k-1}$$

Proposal 3: Similarity Score

Aggregate results from several metrics

Given a real and synthetic dataset

- 1. Correlation coefficient between basic statistical measures (mean, variance, etc.)
- 2. Correlation coefficient between the correlations of columns within a dataset
- 3. Correlations between column's distributions between datasets
- 4. 1 MAPE of the variance top-5 PCA components
- 5. Machine learning efficacy
 - a. 1 MAPE for classifiers
 - b. Correlation coefficient for RMSE scores

Take the mean for the final Similarity Scores Give a single value to indicate similarity!

Proposal 3: Similarity Score

1. Basic statistical properties Correlation S_{basic} Are column distributions consistent?

	Real	Fake
Mean Columns 1	5	6
Mean Column 2	3	2
Variance Column 1	4	4
Variance Column 2	1	1,5

2. Column Correlations Correlation S_{corr} Are relations within the datasets consistent?

3. Mirror column Correlations S_{mirr} Are relations between the datasets consistent?

Real Column x	Fake column x
2	1
4	3
4	4
5	4

4. PCA Correlations S_{PCA}

Are the PCA explained variances similar?

$$S_{pca} = 1 - MAPE(real \ variance, fake \ variance)$$

Explained Variance

Component	Real	Fake
1	10000	11000
2	450	400
3	8	6
4	0.2	0.22

5. Machine learning Efficacy S_{est} Is the performance on machine learning algorithms comparable?

$$S_{est} = 1 - MAPE(real\ scores, fake\ scores)$$

- 0	4		
H-Qti	mato	reco	rae
டலப	mato	ı occ	

Trained on	Model	Real	Fake
Real	Random Forest	0.768	0.735
Real	Logistic Regression	0.985	0.974
Estra	Random Forest	0.712	0.725
Fake	Logistic Regression	0.923	0.940

Average all metrics

 $SimilarityScore = Average(S_{basic}, S_{corr}, S_{mirr}, S_{pca}, S_{est})$

Results

Results 1: Basic Statistics Correlations

Correlation coefficient between means, median, std and variance

		Best								
Dataset	TGAN	WGAN	SKIP	MedGAN	TableGAN	TGAN	TGAN-WGAN-GP	TGAN-skip	MedGAN	TableGAN (6) 4 (8) usu 2
Berka	0.9910	0.9955	0.9850	0.9115	0.9895	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-2.5 0.0 2.5 5.0 7.5 real data mean (log)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 0 2 4 6 real data mean (log)	2 0 2 4 6 real data mean (log)
Census	0.9212	0.9909	0.9894	0.4325	0.9947	Sits of real and take data	Stds of real and take data 8 (00) 6 10 10 10 10 10 10 10 10 10 10 10 10 10 1	Sids of real and take data 8 8 8 9 9 9 9 9 9 9 9	Stds of real and fake data	Sitis of real and take data 8 8 000 6 100 100 100 100 100 100 100 100
Creditcard	0.8028	0.8661	0.8799	-0.0329	0.8734	2 2 0 25 50 7.5 real data std (log)	0 25 50 7.5 real data atd (log)	-2 00 25 50 7.5 real data std (log)	2 -2 -4 0.0 2.5 5.0 7.5 real data std (log)	2 2 0 25 50 7.5 read data std (log)

Results 2: Column Correlations

Correlation coefficient between column correlations

		Best							
ataset	TGAN	WGAN	SKIP	MedGAN	TableGAN	Real	TGAN	TGAN-WGAN-GP	TGAN-skip
erka	0.9821	0.9470	0.9832	0.7694	0.6468				
ensus	0.9581	0.9773	0.9053	0.0644	0.9128				
reditcard	0.0968	0.2932	0.2114	-0.0471	0.2157				
•	ataset erka ensus reditcard	erka 0.9821 ensus 0.9581	ataset TGAN WGAN erka 0.9821 0.9470 ensus 0.9581 0.9773	ataset TGAN WGAN SKIP erka 0.9821 0.9470 0.9832 ensus 0.9581 0.9773 0.9053	ataset TGAN WGAN SKIP MedGAN erka 0.9821 0.9470 0.9832 0.7694 ensus 0.9581 0.9773 0.9053 0.0644	ataset TGAN WGAN SKIP MedGAN TableGAN erka 0.9821 0.9470 0.9832 0.7694 0.6468 ensus 0.9581 0.9773 0.9053 0.0644 0.9128	ataset TGAN WGAN SKIP MedGAN TableGAN erka 0.9821 0.9470 0.9832 0.7694 0.6468 ensus 0.9581 0.9773 0.9053 0.0644 0.9128	ataset TGAN WGAN SKIP MedGAN TableGAN erka 0.9821 0.9470 0.9832 0.7694 0.6468 ensus 0.9581 0.9773 0.9053 0.0644 0.9128	ataset TGAN WGAN SKIP MedGAN TableGAN erka 0.9821 0.9470 0.9832 0.7694 0.6468 ensus 0.9581 0.9773 0.9053 0.0644 0.9128

Results 3: Mirror Column Correlations

Correlation coefficient between datasets

		Best			
Dataset	TGAN	WGAN	SKIP	MedGAN	TableGAN
Berka	0.9276	0.9150	0.9572	0.5602	0.8864
Census	0.7008	0.8722	0.7941	0.2092	0.8651
Creditcard	0.9215	0.9605	0.9342	0.7888	0.9425

Results 4: PCA Variance Correlation

1 - MAPE(Real Variance, Fake Variance)

	Best				
Dataset	TGAN	WGAN	SKIP	MedGAN	TableGAN
Berka	0.9456	0.9399	0.9424	0.8236	0.9465
Census	0.9507	0.9739	0.9643	0.6907	0.9748
Creditcard	0.8501	0.7810	0.7266	0.1726	0.8667

Results 5: Estimator results

1 - MAPE(real F1/real RMSE, fake F1/fake RMSE)

		Best			
Dataset	TGAN	WGAN	SKIP	MedGAN	TableGAN
Berka	0.9929	0.9807	0.9572	0.4168	0.8899
Census	0.9854	0.9871	0.9840	-292.1544	0.9673
Creditcard	0.7999	0.9817	0.9712	-0.8533	0.1696

Results: Similarity scores

		Best			
Dataset	TGAN	WGAN	SKIP	MedGAN	TableGAN
Berka	0.9678	0.9556	0.9464	0.6963	0.8718
Census	0.9032	0.9603	0.9274	-58.1515	0.9429
Creditcard	0.6942	0.7765	0.7447	0.0056	0.6136

Takeaways

Models

- 1. Using the WGAN-GP architecture typically better than classic GAN
- 2. Skip connections typically improve on non-skip variant
- 3. Combining both would likely work very well. Coincidentally, this is exactly what happened in a follow-up paper from MIT¹

Evaluation

- 1. Similarity score gives consistent single value performance indicator
- 2. Can be split into its parts for detailed information

Thanks you. Questions?