A Useful probability tools

A separable process 1 $\{G_{\phi}\}_{\phi\in\Theta}$ with respect to a metric space (Θ,d) is sub-Gaussian if for any $\lambda\in\mathbb{R}$ and $\phi,\phi'\in\Theta$, $\mathbb{E}[e^{\lambda(X_{\phi}-X_{\phi'})}]\leq e^{\lambda^2d^2(\phi,\phi')/2}$. Let also $\operatorname{diam}(\Theta)=\sup_{\phi,\phi'\in\Theta}d(\phi,\phi')$ be the $\operatorname{diameter}$ of the metric space (Θ,d) . The following result is cited from [van Handel, 2014, Theorem 5.29].

Lemma 10. There exists a universal constant $C_0 < \infty$ such that for all z > 0 and $\phi_0 \in \Theta$,

$$\Pr\left[\sup_{\phi\in\Theta} G_{\phi} - G_{\phi_0} \ge C_0 \int_0^{\infty} \sqrt{\ln N(\Theta; d, \epsilon)} d\epsilon + z\right]$$

$$\le C_0 e^{-z^2/(C_0 \cdot \operatorname{diam}(\Theta))},$$

where $N(\Theta; d, \epsilon)$ is the covering number of the metric space (Θ, d) up to precision ϵ .

B Omitted proofs in Section 7

Proof of Lemma 9. Let \mathcal{T}_{ζ} be all time periods t such that $\zeta_t = \zeta$, and define $T_{\zeta} = |\mathcal{T}_{\zeta}|$. We have

$$\sum_{t} \varpi_{\zeta_{t}, t}^{x_{t}} \lesssim \sqrt{d} \cdot \sum_{\zeta} \sum_{t \in \mathcal{T}_{c}} \alpha_{\zeta, t}^{x_{t}} \omega_{\zeta, t}^{x_{t}}.$$
 (27)

First by Lemma 8, we have

$$\sum_{t \in \mathcal{T}_c} (\omega_{\zeta, t}^{x_t})^2 \le \ln(\det(\Lambda_{T_\zeta})) \lesssim d \ln(T_\zeta/d), \qquad (28)$$

where the last inequality is due to

$$\det(\Lambda_{T_{\zeta}}) \le \operatorname{tr}(\Lambda_{T_{\zeta}}/d)^{d} \le ((T_{\zeta}+1)/d)^{d}.$$
 (29)

Let us now focus on the Right-Hand Side of Eq. (27), let

$$\mathcal{T}_{\zeta}^{+} := \left\{ t \in \mathcal{T}_{\zeta} : \omega_{\zeta,t}^{x_{t}} \geq \sqrt{d\delta^{2}/(T\ln^{4}T\ln^{2}(1/\delta))} \right\}$$

and let

$$\mathcal{T}_{\zeta}^{-} := \left\{ t \in \mathcal{T}_{\zeta} : \omega_{\zeta,t}^{x_{t}} < \sqrt{d\delta^{2}/(T \ln^{4} T \ln^{2}(1/\delta))} \right\}$$
$$= \mathcal{T}_{\zeta} \setminus \mathcal{T}_{\zeta}^{+}.$$

We have that

$$\sum_{t \in \mathcal{T}_{\zeta}} \alpha_{\zeta,t}^{x_{t}} \omega_{\zeta,t}^{x_{t}} = \sum_{t \in \mathcal{T}_{\zeta}^{+}} \alpha_{\zeta,t}^{x_{t}} \omega_{\zeta,t}^{x_{t}} + \sum_{t \in \mathcal{T}_{\zeta}^{-}} \alpha_{\zeta,t}^{x_{t}} \omega_{\zeta,t}^{x_{t}}$$

$$= \sum_{t \in \mathcal{T}_{\zeta}^{+}} \sqrt{\ln((T \ln^{4} T \ln^{2}(1/\delta))(\omega_{\zeta,t}^{x_{t}})^{2}/(d\delta^{2}))} \omega_{\zeta,t}^{x_{t}}$$

$$+ \sum_{t \in \mathcal{T}_{\zeta}^{-}} \omega_{\zeta,t}^{x_{t}}$$

$$\leq \sum_{t \in \mathcal{T}_{\zeta}^{+}} \sqrt{\ln((T \ln^{4} T \ln^{2}(1/\delta))(\omega_{\zeta,t}^{x_{t}})^{2}/(d\delta^{2}))} \omega_{\zeta,t}^{x_{t}}$$

$$+ T_{\zeta} \sqrt{d\delta^{2}/(T \ln^{4} T \ln^{2}(1/\delta))}. \tag{30}$$

Note that the univariate function $f(\tau) = \sqrt{\tau \ln((T\ln^4T\ln^2(1/\delta))\tau/(d\delta^2)}$ is concave for $\tau \geq d\delta^2/(T\ln^4T\ln^2(1/\delta))$. Applying Jensen's inequality to $f(\tau)$ with $\tau = (\omega_{\zeta,t}^{x_t})^2$ $(t \in \mathcal{T}_\zeta^+)$, we have

$$\sum_{t \in \mathcal{T}_{\zeta}^+} \sqrt{\ln((T\ln^4T\ln^2(1/\delta))(\omega_{\zeta,t}^{x_t})^2/(d\delta^2))} \omega_{\zeta,t}^{x_t}$$

$$\leq |\mathcal{T}_{\zeta}^{+}| \cdot \sqrt{\frac{\sum_{t \in \mathcal{T}_{\zeta}^{+}} (\omega_{\zeta,t}^{x_{t}})^{2}}{|\mathcal{T}_{\zeta}^{+}|}} \times \sqrt{\ln\left(\frac{T \ln^{4} T \ln^{2}(1/\delta)}{d\delta^{2}} \cdot \frac{\sum_{t \in \mathcal{T}_{\zeta}^{+}} (\omega_{\zeta,t}^{x_{t}})^{2}}{|\mathcal{T}_{\zeta}^{+}|}\right)}$$

$$\lesssim \sqrt{|\mathcal{T}_{\zeta}^{+}| d \ln(|\mathcal{T}_{\zeta}|/d) \ln\left(\frac{T \ln^{4} T \ln^{2}(1/\delta)}{d \delta^{2}} \cdot \frac{d \ln(|\mathcal{T}_{\zeta}|/d)}{|\mathcal{T}_{\zeta}^{+}|}\right)}$$

$$\lesssim \sqrt{dT_{\zeta} \ln(T_{\zeta}/d) \ln\left(\frac{T \ln^4 T \ln^2(1/\delta)}{d\delta^2} \cdot \frac{d \ln(T_{\zeta}/d)}{T_{\zeta}}\right)}$$

$$\lesssim \sqrt{dT_{\zeta} \ln(T_{\zeta}/d) \ln(T \ln^5 T/(T_{\zeta} \delta^3))},\tag{31}$$

where the second inequality is due to Lemma 8 and Eq. (28), and the third inequality is due to the monotonicity of the function $g(x) = \sqrt{x d \ln(T_{\zeta}/d) \ln((T \ln^4 T \ln^2(1/\delta))/(d\delta^2) \cdot (d \ln(T_{\zeta}/d)/x))}$ for large enough x. Combining Eq. (30), and Eq. (31), we have

$$\sum_{t \in \mathcal{T}_{\zeta}} \alpha_{\zeta,t}^{x_t} \omega_{\zeta,t}^{x_t} \lesssim \sqrt{dT_{\zeta} \ln(T_{\zeta}/d) \ln(T \ln^5 T/(T_{\zeta}\delta^3))} + T_{\zeta} \delta \sqrt{d/(T \ln^4 T \ln^2(1/\delta))}.$$
(32)

By Algorithm 1, we know that $\varpi_{\zeta,t}^{x_t} = \sqrt{d} \cdot \alpha_{\zeta,t}^{x_t} \omega_{\zeta,t}^{x_t} \ge 2^{1-\zeta}$ for all $t \in \mathcal{T}_{\zeta}$. Subsequently,

$$(2^{-\zeta-1})^2 \cdot T_{\zeta} \leq \sum_{t \in \mathcal{T}_{\zeta}} (\varpi_{\zeta,t}^{x_t})^2 \leq \sqrt{d} \cdot \max_{t \in \mathcal{T}_{\zeta}} (\alpha_{\zeta,t}^{x_t})^2 \cdot \sum_{t \in \mathcal{T}_{\zeta}} (\omega_{\zeta,t}^{x_t})^2$$
$$\lesssim \sqrt{d} \cdot \log(T \ln^4 T \ln^2(1/\delta)/(d\delta^2)) \cdot d \log T,$$

¹See Definition 5.22 in [van Handel, 2014] for a technical definition of separable stochastic processes.

where the last inequality holds by applying Lemma 8. Therefore,

$$T_{\zeta} \lesssim 4^{\zeta} \cdot d^{3/2} \log T \log(T/\delta).$$
 (33)

We first divide the resolution levels $\zeta \in \{0, 1, \dots, \zeta_0\}$ into two different sets: $\mathcal{Z}_1 := \{0, 1, \dots, \zeta^*\}$ and $\mathcal{Z}_2 := \{\zeta^* < \zeta \le \zeta_0\}$, where ζ^* is an integer to be defined later. Clearly \mathcal{Z}_1 and \mathcal{Z}_2 partition $\{0, \dots, \zeta_0\}$. Note that $\sqrt{d} \cdot \sum_{t \in \mathcal{T}_\zeta} \alpha_{\zeta,t}^{x_t} \omega_{\zeta,t}^{x_t} \lesssim 2^{-\zeta} T_\zeta$ because $\varpi_{\zeta,t}^{x_t} \le 2^{1-\zeta}$ for all $t \in \mathcal{T}_\zeta$.

$$\sqrt{d} \sum_{\zeta \in \mathcal{Z}_1} \sum_{t \in \mathcal{T}_{\zeta}} \alpha_{\zeta,t}^{x_t} \omega_{\zeta,t}^{x_t} \lesssim \sum_{\zeta=0}^{\zeta^*} 2^{-\zeta} \cdot 4^{\zeta} \cdot d^{3/2} \log T \log(T/\delta)$$

$$\leq 2^{\zeta^* + 1} \cdot d^{3/2} \log T \log(T/\delta); \tag{34}$$

$$\sqrt{d} \sum_{\zeta \in \mathcal{Z}_{2}} \sum_{t \in \mathcal{T}_{\zeta}} \alpha_{\zeta,t}^{x_{t}} \omega_{\zeta,t}^{x_{t}}$$

$$\lesssim d \sum_{\zeta \in \mathcal{Z}_{2}} \sqrt{T_{\zeta} \log(T) \log(T \log^{5} T / (T_{\zeta} \delta^{3}))} + \delta d \sqrt{T} / \log^{2} T$$

$$\leq d \sqrt{|\mathcal{Z}_{2}| \left(\sum_{\zeta \in \mathcal{Z}_{2}} T_{\zeta}\right) \log(T) \log \left(T \log^{5} T \cdot \frac{|\mathcal{Z}_{2}|}{\delta^{3} \sum_{\zeta \in \mathcal{Z}_{2}} T_{\zeta}}\right)}$$

$$+ \delta d \sqrt{T} / \log^{2} T$$

$$\lesssim d \sqrt{|\mathcal{Z}_{2}| T \log(T) \log \left(\log^{5} T |\mathcal{Z}_{2}| / \delta^{3}\right)} + \delta d \sqrt{T} / \log^{2} T,$$

$$(35)$$

where the inequality above Eq. (35) is because of the concavity of the function $\sqrt{x \ln(T \log^5 T |\mathcal{Z}_2|/(x\delta^3))}$ and Jensen's inequality, and Eq. (35) is due to $\sum_{\zeta \in \mathcal{Z}_2} T_\zeta \leq T$ and the monotonicity of the function $\sqrt{x \ln(T \log^5 T |\mathcal{Z}_2|/(x\delta^3))}$.

Recall that $\sqrt{T/d}/\delta \leq 2^{\zeta_0} \leq 2\sqrt{T/d}/\delta$. Select $\zeta^* = \zeta_0 - \lfloor \log_2(\ln(T)\ln(T/\delta)/\delta) \rfloor$; we have that $|\mathcal{Z}_2| = O(\log\log(T/\delta) + \log(1/\delta))$ and $2^{\zeta^*} \leq 2\sqrt{T}/(\sqrt{d}\ln(T)\ln(T/\delta))$.

Finally, we combine Eq. (27), Eq. (34), and Eq. (35), and have that

$$\sum_{t} \varpi_{\zeta_{t}, t}^{x_{t}} \lesssim \delta d\sqrt{T} + d\sqrt{T \log T \log(1/\delta)} \cdot \log \log(T/\delta)$$
$$\lesssim d\sqrt{T \log T \log(1/\delta)} \cdot \log \log(T/\delta),$$

which is to be demonstrated.