Large Margin Intuition

Large Margin Classification
Support Vector Machines

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

If y = 1, we want $\theta^T x \ge 1$ (not just ≥ 0) If y = 0, we want $\theta^T x \le -1$ (not just < 0)

- \rightarrow If y=1, we want $\underline{\theta^T x} \geq 1$ (not just ≥ 0)
- \rightarrow If y=0, we want $\theta^T x \leq -1$ (not just < 0)

$$\longrightarrow \min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} \underline{cost_1(\theta^T x^{(i)})} + (1 - y^{(i)}) \underline{cost_0(\theta^T x^{(i)})} \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

$$\rightarrow$$
 If $y=1$, we want $\theta^T x \geq 1$ (not just ≥ 0)

$$\rightarrow$$
 If $y=0$, we want $\theta^T x \leq -1$ (not just < 0)

$$\longrightarrow \min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} \underline{cost_1(\theta^T x^{(i)})} + (1 - y^{(i)}) \underline{cost_0(\theta^T x^{(i)})} \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

$$\rightarrow$$
 If $y=1$, we want $\theta^T x \geq 1$ (not just ≥ 0)

$$\rightarrow$$
 If $y=0$, we want $\theta^T x \leq -1$ (not just < 0)

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

Whenever $y^{(i)} = 1$:

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$
Whenever $y^{(i)} = 1$:

Cost is zero when z>1

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

Whenever $y^{(i)} = 1$:

Whenever $y^{(i)} = 0$:

$$\min_{\theta} C \left[\sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2 \right]$$

Whenever $y^{(i)} = 1$:

$$\Theta^{T}_{\star}^{(i)} \geq 1$$

Whenever
$$y^{(i)} = 0$$
:

min
$$C \times O + \frac{1}{2} \sum_{i=1}^{n} O_{i}^{2}$$

S.t. $O^{T} \times (i) \ge 1$ if $y^{(i)} = 1$
 $O^{T} \times (i) \le -1$ if $y^{(i)} = 0$.

SVM Decision Boundary: Linearly separable case

SVM Decision Boundary: Linearly separable case

SVM Decision Boundary: Linearly separable case

Large Margin Classifier

