CSC 860 / MATH 795: Stochastic Optimization & Simulation Methodology Fall 2022 Assignment 5

Mariia Aleksandrovych, Yaffa Atkins, Atoosa Lotfi, Olga Kliuchnik Exercises 7.4, (7.7 and 8.11), 8.13, 8.20, 8.21.

EXERCISE 7.4. Consider a random variable $X(\theta)$. Assume that $\theta = \mathbb{E}[X(\theta)]$ is a scale parameter of the distribution F_{θ} ; in other words, using the inverse function representation, $X(\theta) = F_{\theta}^{-1}(U) = \theta F_{\theta}^{-1}(U)$. Explain which of the following is a sufficient condition for:

$$\mathbb{E}\left[\frac{X(\theta)}{\theta}\right] = \frac{d}{d\theta}\mathbb{E}[X(\theta)].$$

- (a) $\mathbb{E}[|X(1)|] < \infty$,
- (b) $\mathbb{E}[X(\theta)^2] < \infty$, or
- (c) $\mathbb{E}[|\theta X(\theta)|] < \infty$.
- a) Expectation value of the X(theta) bounded is sufficient condition for the interchanging derivative and expectation of X(theta). However, when theta =1 it doesn't have any information about theta that is increase
- b) $E(X(\theta)^2) = E\left(\theta^2\left(F_1^{-1}\left(U\right)\right)^2\right) = \theta E\left(\left(F_1^{-1}\left(U\right)\right)^2\right)$

This is one is not sufficient to satisfy the condition

c) $E(\theta X(\theta)) = \theta E(X(\theta)) < \infty \implies E(X(\theta)) < \infty$ which is sufficient for the condition above

EXERCISE 7.7. Repeat the stochastic approximation method for the mining investment problem of Example 7.3 using IPA, SF and MVD for derivative estimation. Assume here that the estimators are unbiased.

- (a) Using simulation, estimate the corresponding confidence intervals and CPU times for the three derivative estimation methods for $\theta = 5, 8, 10, 12, 15$ and compare.
- (b) Apply an appropriate theorem from Part I to establish convergence of the stochastic approximation to the true optimal value θ^* . Specify your choice of step size sequence and, for each method, verify the assumptions of the theorems that you use.
- (c) Run the stochastic approximations and discuss.

Exersise 7.7.

$$\frac{(PA)}{dP} = \frac{X(\theta)}{\theta} = -50\theta \ln(1-u)$$

$$\frac{dX(\theta)}{d\theta} = \frac{x}{\theta} = -50\ln(1-u)$$

$$h = \frac{x}{\sqrt{12+17}} \quad h'(X(\theta)) = \frac{1}{\sqrt{x+1}} - \frac{x}{2(1+x)^{3/2}}$$
Then algorithm,

$$\theta_{hH} = \theta_{h} + \mathcal{E}\left(\frac{X(\theta)}{\theta_{h}} \cdot h'(X(\theta)) - 1\right) = \frac{1}{2\theta_{h}} + \mathcal{E}\left(\frac{X(\theta)}{\theta_{h}} - \frac{X^{2}(\theta_{h})}{2\theta_{h}} - \frac{X^{2}(\theta_{h})}{2\theta_{h}$$

Then algorith
$$\theta_{n+1} = \theta_{n} + \mathcal{E}\left[\frac{X(\theta_{n})}{(X(\theta_{n})+1)^{\frac{1}{2}}} \frac{1}{\theta_{n}} \left(\frac{X(\theta_{n})}{50\theta_{n}} - 1\right) - 1\right]$$
for $X(\theta) \approx -50\theta \ln(1-u)$

$$MVD) \qquad f_{\theta} = \frac{f}{50\theta} e^{-\frac{X(\theta)}{50\theta}}$$

$$\frac{1}{\theta_{0}} f_{\theta}(X) = -\frac{1}{50\theta^{2}} e^{-\frac{X(\theta)}{50\theta}} + \frac{1}{50\theta} e^{-\frac{X(\theta)}{50\theta^{2}}} + \frac{1}{50\theta^{2}} e^{-\frac{X(\theta)}{50\theta^{2}}} = \frac{1}{\theta} \left(\frac{X-50\theta}{(50\theta)^{2}}\right) e^{-\frac{X}{50\theta}}$$

$$f^{+} = \frac{X(\theta)-50\theta}{(50\theta)^{2}} e^{-\frac{X}{50\theta}}, \quad X > 50\theta$$

$$f^{-} = -\frac{(X(\theta)-50\theta)}{(50\theta)^{2}} e^{-\frac{X}{50\theta}}, \quad X \leq 50\theta$$

$$C_{\theta} = \frac{1}{\theta}$$
Then derivative
$$\frac{1}{d\theta} E \left[h(X(\theta))\right] = \frac{1}{\theta} E \left[h(X^{+}(\theta)) - h(X^{-}(\theta))\right]$$
where $X^{\pm} \approx f^{\pm}$

$$h(X(\theta)) = \frac{X(\theta)}{(1+x(\theta))^{2}}$$

```
Then algorithm
   \Theta_{h+1} = \Theta_h + \varepsilon \left[ \frac{1}{\Theta_h} \frac{1}{E[h(x^{\dagger}(\Theta_h)) - h(x^{\dagger}(\Theta_h))]} - 1 \right]
          X± & f±
  b) applying Theorem 6.2. we have
 Then G is bounded and continious, with rungue point of such that $610*)=0 and A = DG10*) is a their witz
   there is the constant \delta, \beta, \delta such that
\varepsilon_n = N^{-\delta} \quad ||\beta_n|| = O(N^{-\beta}), \quad V_n = O(N^{-\delta})
\delta = N^{-\delta} \quad ||\beta_n|| = O(N^{-\delta}), \quad V_n = O(N^{-\delta})
Then On -> 0 * w.p. 1., and if 8 21
                                  E[110n-04|12]=0(n-x), note min(28, 4,6)
if 8=1, then above condition satisfied provided that

I max (2B, 1+6, 1).

So, X(0) is exponential with meden 500

for all methods.

for for all methods.
           War [X_n|\theta] = (50\theta)^2 is bounded function of \theta
      G(0) = -\left(\frac{d}{d\theta} \mathbb{E} \left[h(X(\theta)) - 1\right)\right)
```

```
For IPA: in example 7.3 said that \mathbb{E}\left[\frac{X(D)}{\sqrt{1+X(D)}}\right] is convex and hoes unique nun D^{*}
  G(\theta) = -\left[\frac{\chi(\theta)}{(\chi(\theta)+1)^{\frac{1}{2}}} \frac{1}{\theta} \left(\frac{\chi(\theta)}{50\theta} - 1\right) - 1\right]
      E(Xu) = 500
     Var (Xn(0)) = (500) 2 - bounded in D
6(0) is monotonic on (0; +\infty], 6(0) is strictly decreasing \Rightarrow we have remigue 0^{+} 6''(0) < 0 \Rightarrow So we have remigue globaly assymptotic stable point x(t) = 0^{+} also,
            G'(0) <0 =) obsorithm is converges to ODE
                                    \frac{dx(t)}{dt} = \theta(x(t))
 6(0)== [ ( Campa (2, 500) ) - [ 1
For: [MVD]:
G(0) = -\left[\frac{1}{6}E(h(x^{+10})) - h(x^{-10})\right]^{-1}
                   h = \frac{\chi(0)}{\sqrt{1+\chi(0)}} \qquad \chi^{+} \sim \frac{6ama(2, \frac{1}{500})}{\sqrt{200}} \times \frac{1}{500} \times \frac{1}{500}
   Var (x 10)) = (500) 2 - bounded in 0 on (x ≤ 500)
  Var (Kh(b)) = 2 (500) 2 bounded suint on (x7500)
G(b) is coev sive - we have unique &*
```

In IPA, SF, and MVD we have
$$X10)^{kos}$$
 exponential distribution with mean 500 white $S=100$ where $S=100$ is $S=100$ and $S=100$ where $S=100$ in our estimators $S=100$ in $S=100$ in

a) using simulation we find out the CPU time for the IPA, N = 500 iterations for the theta = [5,8,10,12,15]; we have relevant CPU time in seconds
 CPU time = [0.0225 0.0243 0.0268 0.0204 0.0212] around 0.02 seconds. Also we used batch size in 10 sample of random variable with mean 50*theta

For the SF

b) following table shows all the graphs for the initial theta give as in exercise.

IPA	SF method	MVD
CPU time = 0.02 seconds	CPU time = 0.02 seons	CPU time = around 1 second
For theta zero = 15	For theta zero = 15	For theta zero =15
Theta = 14.5	Theta = 11.25	Theta = 17.5

EXERCISE 8.11. Refer to Exercise 7.7 on the optimal strategic investment for the mining model. Show that the IPA, the SF and the MVD methods provide unbiased estimators for the derivative.

We apply theorem S.1 to show that are uprased. Estimators in IPA, SF, MVD methods are uprased. Exercise 8.11. Thus we need show that all conditions of T. 8.1 IPA: Using represateur X10) x 500 hi(1-4) holds. from Example 7.2 we have $\frac{dx(0)}{dx} = \frac{x(0)}{x} \Rightarrow exist (i). V$ h is deferentiable mapper with derivative dh(x10)) = {X10)h'(x10) $X(\theta) = 500 \ln(1-u)$ - monotone increasing in θ so hos monotone increasing devivative Sup dh (x10)) < d x(a) h (x1a) = de x(on) h (x1on) = K So E[x(On)|h'(x(On))] is fine to => h(x(0)) - is Lipschitz continous (cii) IPA estimator is rentrascol SF: X10) = 500 Cult-u) Representation is exist, such that dx(0) x/0) so and derivative exist. (i) Cummulostève destributeon femeton of Exponential $f(0) = 1 - e^{-\frac{\chi(0)}{500}}$ F(0) is continuously differentiable with respect to 0 and continously differentiable with respect to X

Then
$$\frac{d}{d\theta} \chi(\theta) = -\frac{\frac{2}{36} F_0(\chi(\theta))}{\frac{2}{3\chi} F_0(\chi(\theta))} = +\frac{1}{4} \frac{e^{-\frac{\chi(\theta)}{300}} \cdot (+\frac{\chi(\theta)}{300})}{\frac{2}{300} \cdot (+\frac{\chi(\theta)}{300})} =$$

$$= \frac{\chi(\theta)}{\theta} - exist \quad |i|$$

$$h = \frac{\chi(\theta)}{\sqrt{\chi(\theta)+1}} - is differentiable on $[0; +\infty)$. (ii)
$$h' = \frac{1}{(1+\chi(\theta))^2} - \frac{\chi(\theta)}{2(1+\chi(\theta))^3}$$
as $\chi \to \infty$

$$h' \to \frac{\chi(\theta)}{(1+\chi(\theta))^2} - \frac{\chi(\theta)}{2(1+\chi(\theta))^3}$$

$$\Rightarrow h' \subset \infty \Rightarrow sufficien condition to have imbinated estimator
$$\int_0^{\infty} \frac{1}{\chi(\theta)} \left(\frac{\chi(\theta)}{\chi(\theta)} \right) = \frac{1}{300} \left(\frac{\chi(\theta)}{300} \right) = \frac{1}{300} \left(\frac{$$$$$$

EXERCISE 8.13. Refer to the reliability model of Examples 7.15, 8.4 and 8.17, illustrated in Figure 8.3 Consider now the model where the lifetimes have a Weibull distribution with parameters (λ_i, k) . In particular, for component 3 we have: $\mathbb{P}(T_3 \leq x) = G_3(x) = 1 - e^{-(x/\theta)^k}$, so that now $\mathbb{E}(T_3) = 0$ $\theta \Gamma(1+1/k)$.

Figure 8.3: Reliability Network

(a) Find the representation
$$T_3 = G_3^{-1}(U)$$
 and show that the IPA estimator:
$$\widehat{L}^{\text{IPA}}(\theta,\omega) = \begin{cases} \frac{T_3(\theta,\omega)}{\theta} & T_2(\omega) < T_3(\theta,\omega) < \bar{T}(\omega) = \min(T_1(\omega),T_4(\omega),T_5(\omega)) \\ 0 & \text{otherwise} \end{cases} \tag{8.36}$$

is valid for this case. For what family of distributions G_3 will the IPA estimator remain unchanged?

(b) Explain how the SF and MVD estimators of Exercise 8.12 should be modified for this problem.

Possible paths : R, = 11, 2, 53 R, = 31, 2, 4, 53 R3 = 11, 3, 4, 53 distribution is P(T3 = x) = G3(x) =1 - e E (T3) = OP (1+ 4x) where V= V/0,1 Since 63(x) = 1-T3 = 63' = (1-e distribution $(0, \omega)$, $T_2(w) < T_3(0, \omega) < T(w) = 0$ win $(1, (\omega), T_4(w), T_5(w))$ etherwise there is a piece-wise linear Rz and when it breaks at if T3(0) < T. if T3>T then whole system will break at T and we have that T depends on In case if T3(B) & T2 and then R3 will breaks at carliest time possible BUT a time T3(0) but again R, and R2 don't depend on Ra and its break

Li	so corres prondind MND estimated will be:
À	Dr. mars
	1 mo = 1 (L(T, T2, 1-e-(x) +x/4), T4, T5) -
	0/6/11,12,
	$-L(T_1, T_2, T_{-e}^{-(b)}, T_4, T_5))$ with $X(\theta) \sim \exp(1/b)$
	with X(A) a pro (1/4)
	(10) Exp (10)
	SF: from Fo(x) = E[T3] = 8 1 (1+1/k)
15:1	$ F[X'(\theta) X(\theta)] = -\frac{(o)}{f\theta[X(\theta)]} F[\theta F(1+\frac{1}{K})SF_{\theta}]$ $ X(\theta) $
17	1-[10]11(b)]=
11.	70 [X[0]] X(0)
	X(8)) where X(b) is a copy
	A STATE OF THE STA

EXERCISE 8.20. Train A arrives at the central station at time $X(\theta)$ and it is next schedule for departure at time s. The delay is $\max(0, X(\theta) - s) = (X(\theta) - s)_+$. The parameter θ governs the distribution of $X(\theta)$ and can in principle be adjusted (speed of train is one example, make and model, or driver's experience are other examples), perhaps satisfying some constraints. In order to carry out an optimization procedure it is first necessary to estimate the sensitivity or derivative of the expected delay with respect to θ . In other words, we wish to estimate

$$\frac{d}{d\theta} \mathbb{E}[h(X(\theta))]; \quad h(x) = \max(0, x - s).$$

with respect to θ . In other words, we wish to estimate $\frac{d}{d\theta} \, \mathbb{E}[h(X(\theta))]; \quad h(x) = \max(0,x-s).$ For this exercise consider $X(\theta) \sim \mathrm{Erlang}(3,1/\theta)$, with density $f_{\theta}(x) = (x^2/2\theta^3)e^{-x/\theta}$ for x>0.

- (a) Calculate the score function for this distribution.
- (b) Verify the conditions of Theorem 8.3. What family of functions $v(\cdot)$ can be used? Is h in the family?
- (c) Give the simulation algorithm for generating n replications of $D^{SF}(\theta)$. From these n replications, give the sample average, the sample variance, and provide the formula for estimating a confidence interval at confidence level α .

a).
$$f_{\theta}(x) = \left(\frac{x^{2}}{2\theta^{3}}\right)e^{-\frac{x}{\theta}}$$

 $SF = \frac{1}{10}\ln(f_{\theta}(x)) = \frac{1}{10}\ln(\frac{x^{2}}{2\theta^{3}}e^{-\frac{x}{\theta}}) = \frac{x^{2}}{2\theta^{3}}e^{-\frac{x}{\theta}} + \frac{x^{2}}{2\theta^{3}}e^{-\frac{x}{\theta}} + \frac{x^{2}}{2\theta^{3}}e^{-\frac{x}{\theta}} = \left(-\frac{3}{\theta} + \frac{x}{\theta^{2}}\right) = SF$

EXERCISE 8.21. Consider $L(\theta) = \mathbb{E}[h(X(\theta))]$, where $h(X(\theta)) = \max(X(\theta) - s, 0)$, for some given s > 0, and where $X(\theta)$ has an Erlang- $(3, 1/\theta)$ -distribution for $\theta > 0$ with pdf

$$\frac{1}{2\theta^3}x^2e^{-x/\theta}, x \ge 0.$$

- (a) Derive the MVD estimator $D^{\text{MVD}}(\theta)$ of $L'(\theta)$. [*Hint:* it is a difference of two estimators involving Erlang- $(4,1/\theta)$ and Erlang- $(3,1/\theta)$ distributions.]
- (b) Give the simulation algorithm for generating n replications of $D^{\text{MVD}}(\theta)$, including how you generate from the Erlang- $(4,1/\theta)$ and Erlang- $(3,1/\theta)$ distributions. Make sure to exploit common random numbers as much as possible. From these n replications, give the sample average, the sample variance, and provide the formula for estimating a confidence interval at confidence level α .
- (c) Give the expression for a randomized MVD estimator $D^{\mathrm{MVDrand}}(\theta)$ that involves a single estimator (instead of the difference in (b)). Show that $\mathbb{E}[D^{\mathrm{MVDrand}}(\theta)] = \mathbb{E}[D^{\mathrm{MVD}}(\theta)]$.

Excersize 8.21

$$L(\theta) = E[h(x(\theta))]$$

$$h(x(\theta)) = \max(x(\theta) - 5, 0) \quad \text{spo}$$

$$f_{\theta}(x) = \frac{1}{2\theta^{2}} x^{2} e^{-x/\theta} \quad \text{xgo}$$
a) Find MND Estimator D^{NND}(\theta) of \text{spo} \t

$$\begin{array}{c}
\varphi_{\theta}^{+}(x) = \frac{x^{2}e^{-x/\theta}}{2\theta^{5}} (x^{2}\theta^{9}) & \text{when } x>3\theta \\

\varphi_{\theta}^{-}(x) = \frac{x^{2}e^{-x/\theta}}{2\theta^{5}} (3\theta^{-}x) & \text{when } 3\theta>x \\

C\theta = \int_{3\theta}^{\infty} \varphi_{\theta}^{-}(x) & \text{or } \int_{3\theta}^{\infty} \varphi_{\theta}^{-}(x) \\

\text{they are equal because a pade always integertes} \\
\text{to 1 and born ports concel out, so changing one} \\
\text{cherizes the other. And a PDF is always non negative} \\
\text{so for } f_{\theta}(x) \text{ we take the apposite of the negative}.$$

$$C_{\theta} = \int_{3\theta}^{\infty} \frac{x^{2}e^{-x/\theta}}{2\theta^{5}} (x^{2}\theta^{9}) & \text{take out constants } \frac{1}{2\theta^{5}} \\
= \int_{3\theta}^{\infty} \frac{x^{2}e^{-x/\theta}}{2\theta^{5}} (x^{2}\theta^{9}) & \text{take out constants } \frac{1}{2\theta^{5}}$$

$$= \int_{3\theta}^{\infty} \frac{x^{2}e^{-x/\theta}}{2\theta^{5}} (x^{2}\theta^{9}) & \text{take out constants } \frac{1}{2\theta^{5}} (x^{2}\theta^{9}) \\
= \int_{3\theta}^{\infty} \frac{x^{2}e^{-x/\theta}}{2\theta^{5}} (x^{2}\theta^{9}) & \text{take out constants } \frac{1}{2\theta^{5}}$$

$$= \int_{3\theta}^{\infty} \frac{x^{2}e^{-x/\theta}}{2\theta^{5}} (x^{2}\theta^{9}) & \text{take out constants } \frac{1}{2\theta^{5}}$$

$$= \int_{3\theta}^{\infty} \frac{x^{2}e^{-x/\theta}}{2\theta^{5}} (x^{2}\theta^{9}) & \text{take out constants } \frac{1}{2\theta^{5}}$$

$$= \int_{3\theta}^{\infty} \frac{x^{2}e^{-x/\theta}}{2\theta^{5}} (x^{2}\theta^{9}) & \text{take out constants } \frac{1}{2\theta^{5}}$$

$$= \int_{3\theta}^{\infty} \frac{x^{2}e^{-x/\theta}}{2\theta^{5}} (x^{2}\theta^{9}) & \text{take out constants } \frac{1}{2\theta^{5}}$$

$$= \int_{3\theta}^{\infty} \frac{x^{2}e^{-x/\theta}}{2\theta^{5}} (x^{2}\theta^{9}) & \text{take out constants } \frac{1}{2\theta^{5}}$$

$$= \int_{3\theta}^{\infty} \frac{x^{2}e^{-x/\theta}}{2\theta^{5}} (x^{2}\theta^{9}) & \text{take out constants } \frac{1}{2\theta^{5}}$$

$$= \int_{3\theta}^{\infty} \frac{x^{2}e^{-x/\theta}}{2\theta^{5}} (x^{2}\theta^{9}) & \text{take out constants } \frac{1}{2\theta^{5}}$$

$$= \int_{3\theta}^{\infty} \frac{x^{2}e^{-x/\theta}}{2\theta^{5}} (x^{2}\theta^{9}) & \text{take out constants } \frac{1}{2\theta^{5}}$$

$$= \int_{3\theta}^{\infty} \frac{x^{2}e^{-x/\theta}}{2\theta^{5}} (x^{2}\theta^{9}) & \text{take out constants } \frac{1}{2\theta^{5}}$$

$$= \int_{3\theta}^{\infty} \frac{x^{2}e^{-x/\theta}}{2\theta^{5}} (x^{2}\theta^{9}) & \text{take out constants } \frac{1}{2\theta^{5}}$$

$$= \int_{3\theta}^{\infty} \frac{x^{2}e^{-x/\theta}}{2\theta^{5}} (x^{2}\theta^{5}) & \text{take out constants } \frac{1}{2\theta^{5}}$$

$$= \int_{3\theta}^{\infty} \frac{x^{2}e^{-x/\theta}}{2\theta^{5}} (x^{2}\theta^{5}) & \text{take out constants } \frac{1}{2\theta^{5}}$$

$$= \int_{3\theta}^{\infty} \frac{x^{2}e^{-x/\theta}}{2\theta^{5}} (x^{2}\theta^{5}) & \text{take out constants } \frac{1}{2\theta^{5}}$$

$$= \int_{$$

$$-e^{-3}(-30^{4}) \quad \text{bring back } \frac{1}{20^{5}}$$

$$C_{\theta} = -e^{-3}(-\frac{30^{4}}{20^{5}}) = e^{-3}(\frac{3}{20})$$

$$C_{\theta} = -e^{-3}(-\frac{30^{4}}{20^{5}}) = e^{-3}(\frac{3}{20})$$

$$C_{\theta} = \frac{\sqrt{2}e^{-x/\theta}}{20^{5}}(x-3\theta) \quad 2\theta$$

$$= \frac{\sqrt{2}e^{-x/\theta}}{0^{4}}(x-3\theta) \quad e^{3}$$

$$= \frac{\sqrt{2}e^{3-x/\theta}(x-3\theta)}{30^{4}} \quad \frac{1}{3}$$

$$= \frac{\sqrt{2}e^{3-x/\theta}(x-3\theta)}{30^{4}}$$

$$= \frac{\sqrt{2}e^{3-x/\theta}(x-3\theta)}{30^{4}}$$

$$= \frac{\sqrt{2}e^{3-x/\theta}(x-3\theta)}{30^{4}}$$
Since $f \neq and f = are$
the same except the order of $x-3\theta$ and $x-3\theta$.

Now we have C_{θ} , $f \neq f$, and $f = f$.

F+ and f-: Divide each by c theta so they integrate to 1.

B) https://colab.research.google.com/drive/1pS-TyA-9EArxejGjOTiRKA-fjTg8g1Lr?usp=sharing

```
import random
import math
from statistics import mean, stdev
```

```
h_thetax = []
N = 1000
S = 2
#theta = 1 so ignoring it
def integral_f_neg(x):
return 0.5*(x**3) * math.exp(-x)
def integral_f_pos(x):
return -0.5*(x**3) * math.exp(-x)
def h_x(y):
return (max(y-S, 0))
negative\_space = integral\_f\_neg(3) - integral\_f\_neg(0)
positive_space = 0 - integral_f_pos(3)
dict_neg_y = {}
y = 0
while y <= 3:
dict_neg_y[y] = integral_f_neg(y)/negative_space
y += .01
y=3
dict_pos_y = {}
while y <=20:
dict_pos_y[y] = (integral_f_pos(y)-integral_f_pos(3))/positive_space
y += .01
dict_pos_y[20] = 1
```

```
int_1 = 0
for n in range(1,N):
z = random.uniform(0,1)
 u = random.uniform(0,1)
 if u > 0.5:
   #positive space
   for key in dict_pos_y:
    if dict_pos_y[key] <= z:</pre>
     int_1 = key
   int_2 = list(dict_pos_y)[list(dict_pos_y).index(int_1) + 1]
   y = (int_1+int_2)/2
   h_{thetax.append(h_x(y))}
  else:
   #negative space
   for key in dict_neg_y:
     if dict_neg_y[key] <= z:</pre>
      int_1 = key
   int_2 = list(dict_neg_y)[list(dict_neg_y).index(int_1) + 1]
   y = (int_1+int_2)/2
  h_thetax.append(h_x(y))
#avergae and variance
avg = mean(h_thetax)
var = stdev(h_thetax)**2
#confidence interval
a = avg + stdev(h_thetax)*2
b = avg - stdev(h_thetax)*2
```

Avg: 1.9793143143142828 Var: 5.322885125556232

Confidence Interval: (6.593590043204455, -2.6349614145758897)