Spectroscopy

Spectroscopy is the study of the interaction between matter and electromagnetic radiation as a function of the wavelength or frequency of the radiation

Spectroscopy

★ UV-Spectroscopy:

Studies the changes in the electronic energy levels within the molecule arising due to transfer of electrons from π or non-bonding electrons

★ IR-Spectroscopy:

Studies the changes in the vibrational and rotational movements of the molecule

★ NMR-Spectroscopy: Provides the information about changes in magnetic properties of certain atomic nuclei (eg: ¹H and ¹³C).

¹H NMR Spectroscopy Sample of Ethyl chloride Question: How can we identify ethyl chloride from this graph (spectra)? **Amplifier RF** Generator ¹H NMR **Detector** CH₃CH₂Cl Magnet Helmholtz Sample Holder 00 Coil Recorder NMR Spectra ethyl chloride (Oscilloscope) **Sweep Generator**

NMR Instrumentation

★ Principle:

Magnet

¹H NMR Spectroscopy

¹*H*, ¹³*C*, ¹⁵*N*, ¹⁹*F*, ³¹*P*

Odd number of protons (or) Odd number of Neutrons (or) Both

Align in one direction

★ Basic concept:

Applied magnetic field (B)

α-spin state (lower in energy)

β-spin state (higher in energy) very few

Proton

Neutron

➤ Electron

The nucleus has a positive

magnetic field. This nucleus

behave like a tiny magnet

charge and is spinning.

This generates a small

→ Nucleus

¹H NMR Spectroscopy

electrons

¹H NMR Spectroscopy

★ H_a is deshielded

Requires more energy (E1)

★ H_b is shielded

Requires less energy (E2)

\bullet CH₃CH₂Cl

¹H NMR Spectroscopy

signal

signal

 H_b

Energy

H_a and H_b are chemically non-equivalent

★ Example-2:

¹H NMR Spectroscopy

$$H_{3}C - C - C - C$$

most shielded (Lower energy)

most Deshielded (higher energy)

¹H NMR Spectroscopy

How many signals would appear in ¹H NMR for the following molecules?

$$H_3C$$
— CH_2 — CH_3

$$H_3C$$
 $CH-CH_2$
 CH_3

Topicity

Both are Enantiomers
 H and H are Enantiotopic

Both are Diastereomers
 H and H are Diastereotopic

¹H NMR Spectroscopy

How many signals would appear in ¹H NMR for the following molecules?

$$H_3C$$
 $=$ C

