Рассмотрим задачу

$$5x_1 + x_2 + x_3 \to \max,$$

$$\begin{cases} 2x_1 - 3x_2 + 2x_3 = 6, \\ x_1 - 3x_2 + x_3 = 6, \\ x_1 \ge 0, x_2 \ge 0. \end{cases}$$

Сведем ее к канонической форме, а затем рассмотрим "буферную" задачу:

$$5x_1 + x_2 + x_3 \rightarrow \max,$$

$$\begin{cases} 2x_1 - 3x_2 + 2x_3 + x_4 = 6, \\ x_1 - 3x_2 + x_3 + x_5 = 6, \end{cases}$$

$$0 \le x_1 \le M, \quad -M \le x_2 \le M,$$

$$0 \le x_3 \le M, \quad 0 \le x_4 \le 0, \quad 0 \le x_5 \le 0.$$

В качестве начальной базисной матрицы возьмем $A_{\mathbb B} = A_{\mathsf{бу} \phi} = (a_4, \ a_5) = E$.

Итерация 1.

- 1. Потенциалы: $u_1 = 0$, $u_2 = 0$.
- 2. Небазисные компоненты коплана: $\delta_{u1} = 5$, $\delta_{u2} = 1$, $\delta_{u3} = 1$.
- 3. Псевдоплан. Небазисные компоненты: $\mathfrak{X}_1 = M$, $\mathfrak{X}_2 = M$, $\mathfrak{X}_3 = M$. Тогда базисные компоненты равны $\mathfrak{X}_4 = 6 M$ (–), $\mathfrak{X}_5 = 6 + M$ (–).
 - 4. $j_* = 5$.
 - 5. Таким образом, будем иметь $p_{u1} = 0$, $p_{u2} = -1$.
 - 6. Направление $p_{\delta H}$: $p_{\delta_1} = -1$, $p_{\delta_2} = 3$, $p_{\delta_3} = -1$.
 - 7. Шаги: $\sigma_1 = 5$, $\sigma_2 = +\infty$, $\sigma_3 = 1$. Следовательно, $j_1 = 3$, $j_2 = 1$.
- 8. Имеем $\alpha^1=-(6+M)$. Тогда получим: $\Delta\alpha^1=(d_3^*-d_{*3})\mid p_{\delta_3}\mid=M$. Таким образом, $\alpha^2=\alpha^1+\Delta\alpha^1=-6<0\,,\qquad \Delta\alpha^2=(d_1^*-d_{*1})\mid p_{\delta_1}\mid=M\,,\qquad \alpha^3=\alpha^2+\Delta\alpha^2=-6+M>0\,,$ следовательно, $\sigma^1=\sigma_3=1\,,\;j_0=3\,.$
- 9. Новая базисная матрица $\overline{A}_{\rm B}=(a_3,\,a_4)$. Из задачи удаляем фиктивную переменную x_5 и вектор $a_5=e_2$.

Итерация 2.

- 1. Уравнения для потенциалов $2u_1 + u_2 = 1$, $u_1 = 0$, откуда получим $u_2 = 1$.
- 2. Небазисные компоненты коплана: $\delta_{u1} = 5 1 = 4$, $\delta_{u2} = 1 + 3 = 4$.
- 3. Псевдоплан. Небазисные компоненты: $\mathbf{æ}_1 = M$, $\mathbf{æ}_2 = M$. Тогда базисные определяются из системы уравнений: $2\mathbf{æ}_3 + \mathbf{æ}_4 = 6 + M$, $\mathbf{æ}_3 = 6 + M$. Получаем: $\mathbf{æ}_3 = 6 + M$ (–), $\mathbf{æ}_4 = -(6 + M)$ (–).
 - 4. Положим $j_* = 4$.
- 5. Для направления p_u имеем систему уравнений: $2p_{u1}+p_{u2}=0$, $p_{u1}=1$. Отсюда получим $p_{u1}=1$, $p_{u2}=-2$.

- 6. Направление $p_{\delta H}$: $p_{\delta_1} = -(2 \cdot 1 + 1 \cdot 2) = 0$, $p_{\delta_2} = -(-3 \cdot 1 + 3 \cdot 2) = -3$.
- 7. Шаги: $\sigma_1 = \infty$, $\sigma_2 = 4/3$. Тогда $j_0 = 2$.
- 8. Новая базисная матрица $\overline{A}_{\rm B}=(a_2,\,a_3)$. Из задачи удаляем фиктивную переменную x_4 и вектор $a_4=e_1$.

Итерация 3.

- 1. Уравнения для потенциалов $-3u_1-3u_2=1$, $2u_1+u_2=1$. Решая эту систему, получим $u_1=4/3,\ u_2=-5/3$.
 - 2. Небазисная компонента коплана равна $\delta_{u1} = 5 (2 \cdot 4/3 5/3) = 4$.
- 3. Псевдоплан. Небазисная компонента $\mathfrak{a}_1=M$. Тогда базисные определяются из системы уравнений: $2M-3\mathfrak{a}_2+2\mathfrak{a}_3=6$, $M-3\mathfrak{a}_2+\mathfrak{a}_3=6$. Решая ее, получим: $\mathfrak{a}_2=-2$ (+), $\mathfrak{a}_3=-M$ (–).
 - 4. $j_* = 3$.
- 5. Для направления p_u имеем систему уравнений: $-3p_{u1}-3p_{u2}=0$, $2p_{u1}+p_{u2}=1$. Отсюда получим $p_{u1}=1$, $p_{u2}=-1$.
 - 6. Направление $p_{\delta H}$: $p_{\delta_1} = -(2 \cdot 1 1 \cdot 1) = -1$.
 - 7. Шаг $\sigma_1 = 4$. Тогда $j_0 = 1$.
 - 8. Новая базисная матрица $\overline{A}_{\rm B} = (a_1, a_2)$.