Moment Condition, Identification, and Point Estimation (I):

From Estimating Equation to GMM

Yuan Liao

ORFE

November 17, 2011

Outline

Research Motivation

From Estimating Equation to GMM

Moment Condition and Estimating Equations

Identification: partial, exact, and over

GMM and EL

More on Partial identification

Conclusion

High Dimensional Variable Selection Problem

• Consider a high dimensional variable selection problem:

$$y = x^T \beta_0 + \epsilon$$
, $dim(\beta_0) = p >> n$

$$\beta_0 = (\beta_{0S}^T, \beta_{0N}^T)^T$$
, where $\beta_{0N} = 0$, dim $(\beta_{0S}) = s << n$.

Sparse estimation: minimizing an objective function:

$$\hat{\beta} = \operatorname{arg\,min} L(\beta) + \operatorname{\textit{Penalty}}(\beta)$$

- Oracle property: $\hat{\beta} = (\hat{\beta}_S^T, \hat{\beta}_N^T)^T$:
 - 1. $\hat{\beta}_{\mathcal{S}} \rightarrow^{p} \beta_{\mathcal{S}0}$,
 - 2. $\hat{\beta}_N = 0$ with probability approaching one.

Research Motivation

Usually OLS+penalty is used:

$$\hat{\beta} = \arg\min \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \beta)^2 + Penalty$$

The objective function $L(\beta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \beta)^2$.

• The literature has been mainly focusing on Penalty(β).

$$\sqrt{n}(\hat{\beta}_{\mathcal{S}} - \beta_{0\mathcal{S}}) \rightarrow^{d} N(0, V).$$

V depends on L but not on penalty.

Can we do something on the objective function as well?

- Soon I noticed that Jelena has done something on L(β).
 Bradic, Fan and Wang (2010) proposed a robust objective function "that is applicable to a large collection of error distribution".
- $\hat{\beta}_{S,BFW} \rightarrow^d N(0, V)$. They compared V of $\hat{\beta}_{S,BFW}$ with other methods numerically.
- Is there a best L that we can use, in the sense of minimizing V?

Semiparametric Efficiency

Efficiency

• Cramer Rao's bound: Suppose $\sqrt{n}(\hat{\beta} - \beta_0) \to^d N(0, V)$, where $\dim(\beta)$ is fixed. Then

$$V \geq I(\beta_0)^{-1},$$

i.e., up to the leading order, we can do no better than MLE.

- Semiparametric efficiency was introduced by Stein (1956), and was developed by Bickel (1982), Bickel Klaassen, Ritov and Wellner (1990), etc.
- At this point, you can think of it as a bound similar to CR-bound when the likelihood function is not available.

My Research Questions

- Sufficient conditions for oracle properties:
 For a general objective function L(β), under what conditions minimizing L+Penalty achieves the oracle?
- 2. Efficiency:

For $y = x^T \beta + \epsilon$, but the distribution of ϵ is unknown, what L should be used such that

$$arg min L + Penalty$$

gives the minimum asymptotic variance?

Outline

Research Motivation

From Estimating Equation to GMM

Moment Condition and Estimating Equations

Identification: partial, exact, and over

GMM and EL

More on Partial identification

Conclusion

Consider simple linear model WITHOUT variable selection

$$y = x^T \beta_0 + \epsilon, E(\epsilon) = 0$$

The distribution of ϵ is unknown.

• In addition, assuming: $E(\epsilon x) = 0$, we have

$$E((y - x^T \beta_0)x) = 0$$
 Moment Condition

• Estimation: simply replace $E \to \frac{1}{n} \sum_{i=1}^{n}$

$$\frac{1}{n}\sum_{i=1}^{n}(y_i-x_i^T\hat{\beta})x_i=0 \text{ (Estimating Equation)}.$$

• Recall: min $\frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \beta)^2$: taking derivative:

$$\frac{1}{n}\sum_{i=1}^{n}(y_i-x_i^T\hat{\beta})x_i=0 \Rightarrow \text{OLS} \Leftrightarrow \text{EE}.$$

Estimating Equation: Suppose $Em(y, x, \beta_0) = 0$, obtain an estimator by solving:

$$\frac{1}{n}\sum_{i=1}^n m(y_i,x_i,\hat{\beta})=0.$$

MLE: Under regularity conditions,

$$E(\frac{\partial}{\partial \beta}\log L(\beta_0))=0.$$

$$\frac{1}{n}\sum_{i=1}^{n}\partial \log L(\hat{\beta})=0\Rightarrow \mathsf{MLE}\Leftrightarrow \mathsf{EE}.$$

From Estimating Equation to GMM

• GLS: Suppose $y = x^T \beta_0 + \epsilon$, $E(\epsilon | x) = 0$. For any function f(x),

$$E(\epsilon f(x)) = 0 \Leftrightarrow E((y - x^T \beta_0) f(x)) = 0.$$

EE: $\frac{1}{n}\sum_{i=1}^{n}(y_i-x_i^T\hat{\beta})f(x_i)=0$. In particular,

$$f(x) = x \Rightarrow \hat{\beta} = OLS.$$

 $f(x) = Var(\epsilon)^{-1}x \Rightarrow \hat{\beta} = GLS$: smaller variance than OLS.

Identification

Still consider simple linear model:

$$y = x^T \beta_0 + \epsilon, E(\epsilon) = 0$$

$$x \perp \epsilon$$
, $E(\epsilon|x) = 0$, or $E(\epsilon x) = 0$ is important.

With any of the above three, we have moment condition:

$$E((y-x^T\beta_0)x)=0$$

Number of Unknowns = Number of equations.

 β_0 is uniquely determined (**identified**), i.e.,

$$E((y - x^T \beta)x) = 0$$
 iff $\beta = \beta_0 = (Exx^T)^{-1}Exy$

Simply solve $\frac{1}{n}\sum_{i}(y_i - x_i^T\beta)x_i = 0$.

From Estimating Equation to GMM

Three types of Identification

$$Em(X,\beta)=0$$

- 1. Exact Identification: Usually in this case, $\dim(m) = \dim(\beta)$. we can solve $\frac{1}{n} \sum_{i} m(X_{i}, \hat{\beta}) = 0$. **OLS, MLE, EE**, etc.
- Partial Identification: Em(X, β) = 0, but dim(m) < dim(β):
 <p>More unknowns than equations.
 Solving ¹/_n ∑_i m(X_i, β̂) = 0 gives infinitely many solutions.

e.g., $\frac{1}{n}\sum_{i}y_{i}-x_{i}^{T}\beta=0$ if $dim(\beta)>1$.

Surprisingly, partial identification exists **almost everywhere** (my Ph.D. thesis). Unfortunately, it has been avoided all the time, partially due to the lack of point estimation consistency.

3. Over Identification: GMM/ EL.

Over Identification

• Refers to the case: β_0 is uniquely determined by $Em(X, \beta_0) = 0$, but usually $dim(m) > dim(\beta)$.

No solution for: (more equations than unknowns)

$$\frac{1}{n}\sum_{i=1}^n m(X_i,\beta)=0.$$

Therefore, EE does not work.

Examples of over-identification:

$$y = x^T \beta_0 + \epsilon$$
, $E(\epsilon|x) = 0$. We have:

$$E((y - x^T \beta_0) x_i^k) = 0, i = 1, ..., p, \text{ and } k = 1, 2,$$

Instrumental Variables

Wage regression in labor economics:

$$\log(wage) = \beta_0 + \beta_1$$
 (years of education) + ϵ .

$$y = \beta_0 + \beta_1 x + \epsilon$$
. An overview: Card (1999).

From Estimating Equation to GMM

- Other variables are also correlated with wage, e.g., family wealth. Thus the above equation with the assumption $E(\epsilon|x)=0$ is a mis-specified model.
- When $E(x\epsilon) \neq 0$, x is **endogenous**; o.w. is **exogenous**.
- The biggest problem is the lack of identification.

Instrumental Variables

$$y = x^T \beta_0 + \epsilon, E(x\epsilon) \neq 0.$$

- We observe $w = (w_1, ..., w_k)$. $E(\epsilon w) = 0$.
- $E((y x^T \beta_0)w) = 0$. If $dim(w) \ge dim(\beta_0)$, β_0 is identified. (Rigorously, $rank(Ewx^T) = dim(\beta_0)$.)
- w is called Instrumental Variable (IV).
- If β_0 is identified and dim(w) > dim(β_0): over-identification.
- Of course, we can discard some IV's so that $dim(w) = dim(\beta_0)$: exact identification.
- However, we lose some information⇒ large variance.

Suppose β₀ is uniquely determined by Em(X, β₀) = 0
 Equivalently, for positive definite W,

From Estimating Equation to GMM

$$Em(X, \beta)^T WEm(X, \beta) = 0 \text{ iff } \beta = \beta_0,$$

 β_0 is the unique minimizer of Q.

Hansen (1982 Econometrica):

000000

$$\hat{\beta}_{GMM} \equiv \arg\min \frac{1}{n} \sum_{i=1}^{n} m(X_i, \beta)^T W \frac{1}{n} \sum_{i=1}^{n} m(X_i, \beta).$$

Note that GMM allows $\dim(m) > \dim(\beta)$, but EE does not. But when $\dim(m) \leq \dim(\beta)$, GMM=EE.

Example

$$y = x^T \beta_0 + \epsilon, E(\epsilon) = 0.$$

Suppose $E(\epsilon|x)=0$:

• For any $k \times 1$ vector function f(x), $k \ge \dim(\beta_0)$,

From Estimating Equation to GMM

000000

$$\hat{\beta}_{GMM} = \arg\min \frac{1}{n} \sum_{i=1}^{n} [(y_i - x_i^T \beta) f(x_i)]^T W \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \beta) f(x_i).$$

- If f(x) = x, GMM=OLS.
- Good choice of W and f(x) yields smaller variance than OLS.
- Each choice $(f, W) \Rightarrow \sqrt{n}(\hat{\beta}_{GMM} \beta_0) \rightarrow^d N(0, V)$.
- There exist best (f^*, W^*) , depending on $Var(\epsilon|x)$.

000000

$$y = x^T \beta_0 + \epsilon, E(\epsilon) = 0.$$

Suppose $E(\epsilon|x) \neq 0$:

• $E(\epsilon|x) \neq 0$, but $E(\epsilon w) = 0$, dim $(w) > \dim(\beta_0)$ Famous example: $y = \log(wage)$, x = Edu, w = distance.

$$\hat{\beta}_{GMM} = \arg\min \frac{1}{n} \sum_{i=1}^{n} [(y_i - x_i^T \beta) w_i]^T W \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \beta) w_i.$$

- W*: minimizes asymptotic variance.
- When $W = W^*$, $\hat{\beta}_{GMM}$ is equivalent to two stage least square.

0000000

2SLS

$$y = x^T \beta_0 + \epsilon,$$

 $E(\epsilon|x) \neq 0$, but $E(\epsilon w) = 0$.

- We can write $u = x \pi$, where π is such that Eu = 0.
- Assume *E(uw)* = 0:

$$y = x^T \beta_0 + \epsilon, \quad x = \pi w + u.$$

• Stage 1 OLS $\Rightarrow \hat{\pi} \Rightarrow \hat{x} = \hat{\pi} w$ Stage 2 OLS on $(y, \hat{x}) \Rightarrow \hat{\beta}_{2SLS}$. 1. EL is an alternative to GMM.

0000000

- 2. Suppose β_0 is identified by $Em(X, \beta_0) = 0$:
- 3. Owen (1990 Annals):

$$L(\beta) = \max \prod_{i=1}^{n} p_i$$

$$s.t.p_i \ge 0, \sum_{i=1}^n p_i = 1, \sum_{i=1}^n p_i m(X_i, \beta) = 0.$$

$$\hat{\beta}_{EL} = \arg\max L(\beta).$$

From Estimating Equation to GMM

00000

- Under regularity conditions, we have consistency and asym.
 norm, for both GMM and EL.
- In particular,

$$\sqrt{n}(\hat{\beta}_{GMM} - \beta_0) \rightarrow^d N(0, V(W)).$$

Let $W^* = \arg \min V(W)$, then

$$\sqrt{n}(\hat{\beta}_{EL}-\beta_0) \rightarrow^d N(0, V(W^*)).$$

In general, more moment conditions⇒ smaller variance.

Semiparametric Efficiency

• Suppose $Em(X, \beta_0) = 0$. Let $W^* = \arg\min V(W)$. Chamberlain (1987 *Journal of Econometrics*):

$$\arg\min\frac{1}{n}\sum_{i=1}^{n}m(X_{i},\beta)^{T}W^{*}\frac{1}{n}\sum_{i=1}^{n}m(X_{i},\beta)$$

is the best thing we can do, if only $Em(X, \beta_0) = 0$ is known, instead of the likelihood.

• So is $\hat{\beta}_{FI}$.

Outline

Research Motivation

From Estimating Equation to GMM

Moment Condition and Estimating Equations

Identification: partial, exact, and over

GMM and EL

More on Partial identification

Conclusion

More on Partial identification

- As we've seen, if $Em(X, \beta_0) = 0$, and $dim(m) < dim(\beta)$, β_0 is not identified, e.g., $y = x^T \beta_0 + \epsilon$, $E(\epsilon) = 0$.
- One important example: moment inequality:

$$Em(X, \beta_0) \geq 0.$$

Equivalently, $Em(X, \beta_0) - \lambda = 0$ for $\lambda > 0$.

$$Eg(X, \beta_0, \lambda) = 0.$$

- Partial identification is the most robust model.
- However, there is no consistent point estimation.

More Examples of Moment Inequality

Missing Data & Causal Effect $y \in \{0, 1\}$, but subject to missing.

We want to estimate $\beta = P(y = 1)$.

$$P(y = 1) = P(y = 1 | missing)P(missing)$$

$$+P(y=1|notmissing)P(notmissing).$$

Missing at random: P(y = 1) = P(y = 1 | notmissing)

More robust: $P(y = 1 | notmissing) P(notmissing) < \beta$

< P(y = 1 | notmissing) P(notmissing) + P(missing).

Censored Data $y = x^T \beta_0 + \epsilon$, observe $Z = \min\{y, C\}$.

Assume $Median(\epsilon|x) = 0$. Khan and Tamer (2009, JOE):

$$E(I(Z \ge x^T \beta_0)|x) = P(Z \ge x^T \beta_0|x) = P(y \ge x^T \beta_0, C \ge x^T \beta_0|x)$$

$$= P(\epsilon \ge 0, C \ge x^T \beta_0|x) \le P(\epsilon \ge 0|x)$$

$$= 0.5$$

Let
$$m(X, \beta_0) = I(Z \ge x^T \beta_0) - 0.5 \Rightarrow E(m(X, \beta)|x) \ge 0$$
.
For any $f(x) \ge 0$, $Em(X, \beta_0)f(x) \ge 0$.

English Auction
$$y = x^T \beta_0 + \epsilon$$
, $E(\epsilon | x) = 0$.

y : valuation: max value a bidder is willing to pay, unobservable.

x : object, organization, income..., observable.

 (y_1, y_2) : (bidder's final bid, winning bid): observable.

 Δ : minimum increment: observable.

It is known $y_1 \leq y \leq y_2 + \Delta$.

$$E(y_1|x) \leq E(y|x) = x^T \beta_0 \leq E(y_2 + \Delta|x).$$

Is β_0 identified? How do we estimate it/ inference? (known) Variable selection? (unknown)

Conclusion

- Three types of identification:
 - 1. exact: regular simple linear model, nonlinear model
 - over: EE does not work
 - partial: most robust. Moment inequality
- Need to be careful when assuming either $E(x\epsilon) = 0$ or $E(\epsilon|x)=0.$
- GMM and EL
 - Semiparametric efficient
 - Can be used as alternative objective functions to LS.

