Recitation 6

Seung-hun Lee

Columbia University

November 15th, 2021

Motivation and advantages for panel estimation

Panel data: We observe multiple individuals for multiple periods of time.

$$Y_{it} = \beta_0 + \beta_1 X_{1,it} + \dots + \beta_k X_{k,it} + u_{it}$$

 $i = 1, 2, ..., N \rightarrow \text{individuals}, t = 1, 2, ..., T \rightarrow \text{time periods}.$

- Balanced: There are T datasets for each of the N individuals.
- Unbalalced: There are $t \leq T$ datapoints for some of the N individuals.
- Panel data allows us to use more datasets.
- Panel data allows us to control for unobserved heterogeneity that are
 - different accross N entities but always remain same for T periods in a given entity (cross section fixed effect)
 - different accross T times periods but remains the same for all N entities in a particular time period (time fixed effects)
 - 3 both of 1) and 2). (two-way fixed effects)

November 15th, 2021 Recitation 6 2 / 17

What OVB problems could we be dealing with?

• Suppose that T=2 and we are interested in the relationship between vehicle related fatality rate (deaths per 10,000 people) and the beer tax. Suppose that we get these result for the two years

$$\hat{Y}_{i1} = 2.01 + 0.15 X_{i1}$$
 $(0.15) \quad (0.20)$
 $\hat{Y}_{i2} = 1.86 + 0.44 X_{i2}$
 $(0.11) \quad (0.20)$

- In such case, one might suspect that there is an omitted variable bias that affects these coefficients.
 - Omitted variable specific to the states (Strictness of the relevant law)
 - ► Time-trends? (Specific to each of years 1 and 2)

November 15th, 2021 Recitation 6 3 / 17

How can panel regression do better?

- Let Z_i denote the strictness of state laws on DUI that are unchanging.
- Now write

$$Y_{i1} = \beta_0 + \beta_1 X_{i1} + \beta_2 Z_i + u_{i1}$$

$$Y_{i2} = \beta_0 + \beta_1 X_{i2} + \beta_2 Z_i + u_{i2}$$

Subtract the second equation from the first to get

$$(Y_{i2}-Y_{i1})=\beta_1(X_{i2}-X_{i1})+\beta_2(Z_i-Z_i)+u_{i2}-u_{i1}$$

With Z_i being the same for all periods, the above equation is reduced to

$$(Y_{i2}-Y_{i1})=\beta_1(X_{i2}-X_{i1})+(u_{i2}-u_{i1})$$

- The Z_i variable has no role in this equation because it is now gone.
- If we estimate this particular β_1 , we can obtain much more accurate estimates of the effect of beer tax on fatality rate.

November 15th, 2021 Recitation 6 4 / 17

Specific methodologies for cross-sectional FE

- There are two ways of estimating the data when $T \ge 3$
- Least square dummy variables (LSDV): Include N-1 individual dummies
- Within estimation: Subtract "demeaned" equation from the original
- Use:

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \beta_2 Z_i + u_{it} \tag{1}$$

where Z_i is the cross section fixed effect.

• Define $\alpha_i = \beta_0 + \beta_1 Z_i$. Then the above equation can be written as

$$Y_{it} = \beta_1 X_{it} + \alpha_i + u_{it} \tag{2}$$

• α_i term can be thought of as an effect of being an entity i, which is **correlated with** X_{it}

November 15th, 2021 Recitation 6 5 / 17

LSDV method

• Define a new variable D_{ki} as follows

$$D_{ki} = egin{cases} 1 & ext{If } i = k \ 0 & ext{Otherwise} \end{cases}, \; k \in \{1, 2, ..., N\}$$

- Since we are going to include β_0 , a common intercept, in our regression we need to remove one of the N (dummy variable trap)
- Then we can write

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \delta_2 D_{2i} + ... + \delta_N D_{Ni} + u_{it}$$
 (LSDV)

- This equation gives different intercepts for each i (can you see why?), while keeping the slope on X_{it} constant at β_1
- Control for unobserved cross section fixed effect by allowing the intercept to differ by each i

November 15th, 2021 Recitation 6 6 / 17

Within estimation methods

• Define \bar{X}_i , \bar{Y}_i as sample mean of X_{it} , Y_{it} for given i over all possible t's.

$$\bar{X}_i = \frac{1}{T} \sum_{t=1}^T X_{it}$$

Consequently, \bar{Y}_i can be written as

$$\bar{Y}_i = \frac{1}{T} \sum_{t=1}^T Y_{it} = \frac{1}{T} \sum_{t=1}^T (\beta_1 X_{it} + \alpha_i + u_{it}) = \beta_1 \bar{X}_i + \alpha_i + \bar{u}_i$$

• Subtract Y_{it} by \overline{Y}_i to get

$$Y_{it} - \bar{Y}_i = \beta_1(X_{it} - \bar{X}_i) + (u_{it} - \bar{u}_i) \implies \tilde{Y}_{it} = \beta_1 \tilde{X}_{it} + \tilde{u}_{it}$$

• This process gets rid of α_i . Then, apply OLS estimation on this equation to get the within estimator

November 15th, 2021 Recitation 6 7/17

Having both FEs with two-way fixed effects

We have a DGP

$$Y_{it} = \beta_1 X_{it} + \alpha_i + \lambda_t + u_{it}$$

- LSDV: With an overall constant β_0 , we can put N-1 individual and T-1 time dummies
- WE: Demeaning should be done in the following method

$$Y_{it} - \bar{Y}_i - \bar{Y}_t + \bar{Y}$$

This (and only this) would allow us to get rid of both the α_i individual fixed effect and the λ_t time effects

November 15th, 2021 Recitation 6 8 / 17

Least square assumptions for panels

- P1 : $E[u_{it}|X_{i1},...,X_{iT},\alpha_i]=0$. It means that the conditional mean of the u_{it} term does not depend on any of the X_{it} values for entity i, whether in the future or in the past.
- P2: $(X_{i1},...,X_{iT},u_{i1},...u_{iT})$ is IID across i=1,...,n. This does not rule out the correlation between u_{it},u_{ij} within entity i for different j and t, allowing serial correlation within the same entity
- P3: (X_{it}, u_{it}) have nonzero finite fourth moments (outliers are very unlikely) so that the panel estimators have a distribution
- P4: There is no perfect multicollinearity
- → Because of P2, we need to use **clustered standard error** at a cross-sectional level.

November 15th, 2021 Recitation 6 9 / 17

Binary dependent variables: What do we do now?

- Y_i now takes either 0 or 1 (Think of yes-no questions)
- Assume that we are interested in how X_i affects responses to yes-no quesitons

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

• Non-regressional definition: We look at $E[Y_i|X_i]$, which can be broken into

$$E[Y_i|X_i] = 0 \times \Pr(Y_i = 0|X_i) + 1 \times \Pr(Y_i = 1|X_i)$$

Or in the regression equation context.

$$E[Y_i|X_i] = E[\beta_0 + \beta_1 X_i + u_i|X_i]$$

$$= \beta_0 + \beta_1 X_i + E[u_i|X_i]$$

$$(\because E[u_i|X_i] = 0) = \beta_0 + \beta_1 X_i$$

or the probability of $Y_i = 1$ given X_i

November 15th, 2021 Recitation 6 10 / 17

Binary dependent variables: Interpreting main coefficient of interest

• Notice that $\beta_1 = \frac{\Delta Y_i}{\Delta X_i}$ and $\Delta Y_i = \text{Change in } \Pr(Y_i = 1 | X_i)$ with respect to change in X_i , or

$$\Delta Y_i = \Pr(Y_i = 1 | X_i = x + \Delta X_i) - \Pr(Y_i = 1 | X_i = x)$$

• Since $\Pr(Y_i = 1 | X_i = x + \Delta X_i) - \Pr(Y_i = 1 | X_i = x) = E[Y_i | X_i = x + \Delta X_i] - E[Y_i | X_i = x]$, we get

$$\beta_0 + \beta_1(x + \Delta X_i) - \beta_0 + \beta_1(x) = \beta_1 \Delta X_i$$

• So we get $\Delta Y_i = \beta_1 \Delta X_i \iff \beta_1 = \frac{\Delta Y_i}{\Delta X_i}$. Therefore, β_1 now measures how much the predicted probability of $Y_i = 1$ changes with respect to X_i (percentage points!)

November 15th, 2021 Recitation 6 11 / 17

Simplest approach: Linear probability models

- Linear probability model is the estimation in which you run an OLS on the type of regression equation where Y_i is a binary dependent variable.
- The advantage is that it is simple there is no difference in terms of methods between this and the OLS methods we have learned so far.
- However, there are some critical disadvantages to this model.
 - By setting the regression model as above, we are assuming that the change of predicted probability of $Y_i = 1$ is constant for all values of X_i .
 - More critically, it is possible that the predicted probability \hat{y} may be greater than 1 or strictly less than 0.
 - ► The distribution of the error term is no longer normal distribution, potentially affecting the asymptotic properties of the OLS estimators.

November 15th, 2021 Recitation 6 12 / 17

Setting up logit regression

- Logit regression: Let $Z_i = \beta_0 + \beta_1 X_i$.
- Logit regression assumes that $Pr(Y_i = 1|X_i)$ is distributed as

$$Pr(Y_i = 1|X_i) = F(Z_i) = \frac{1}{1 + e^{-Z_i}}$$

• Changes in X_i affect the probability $F(Z_i)$ in this manner

$$\frac{\partial F}{\partial X_i} = \frac{\partial F}{\partial Z_i} \frac{\partial Z_i}{\partial X_i}$$

where
$$\frac{\partial Z_i}{\partial X_i} = \beta_1$$

• Value of β_1 does not mean that much in. Its sign does, since

$$\frac{\partial F}{\partial Z_i} = \frac{e^{-\beta_0 - \beta_1 X_i}}{(1 + e^{-\beta_0 - \beta_1 X_i})^2}$$

and its sign depends on that of β_1

November 15th, 2021 Recitation 6 13 / 17

Using normal CDF: Probit regression

- Probit regression: Let $Z_i = \beta_0 + \beta_1 X_i$.
- Probit regression assumes that $Pr(Y_i = 1|X_i)$ is a standard normal distribution

$$\Pr(Y_i = 1 | X_i) = F(Z_i) = \Phi(Z_i) = \Phi(\beta_0 + \beta_1 X_i)$$

where $\Phi(v)$ means the cumulative normal function $\Pr(Z \leq v)$

Again, taking the similar approach as before,

$$\frac{\partial F}{\partial X_i} = \frac{\partial F}{\partial Z_i} \frac{\partial Z_i}{\partial X_i}$$

and $\frac{\partial F}{\partial Z_i}$ is the pdf of a standard normal distribution.

• Again, its sign depends on that of β_1

November 15th, 2021 Recitation 6 14 / 17

Different approach to regression: Maximum likelihood estimators

- Both probit and logit are nonlinear: β_0 , β_1 parameters are no longer in linear relationship with the X_i 's and subsequently Y_i 's
- A **likelihood function** is the conditional density of $Y_1, ..., Y_n$ given $X_1, ..., X_n$ that is treated as the function of the unknown parameters $(\beta_0, \beta_1 \text{ in our case})$
- What we are trying to do here is to find the values of β_i's that best matches the values of X_i's and Y_i's
- **Maximum likelihood estimators** is the value of β_i 's that best describes the data and maximizes the value of the likelihood function

November 15th, 2021 Recitation 6 15 / 17

Maximum likelihood estimators in practice

- Assume Y_i 's are IID normal with mean μ and standard error σ (both are unknown)
- The joint probability of Y_i 's are (our likelihood function)

$$Pr(Y_{1} = y_{1}, ..., Y_{n} = y_{n} | \mu, \sigma) = Pr(Y_{1} = y_{1} | \mu, \sigma) \times ... \times Pr(Y_{n} = y_{n} | \mu, \sigma)$$

$$= \prod_{i=1}^{n} f(y_{i} | \mu, \sigma)$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(Y_{i} - \mu)^{2}}{2\sigma^{2}}}$$

$$= (2\pi)^{-\frac{n}{2}} (\sigma^{2})^{-\frac{n}{2}} e^{-\sum_{i=1}^{n} \frac{(Y_{i} - \mu)^{2}}{2\sigma^{2}}}$$

November 15th, 2021 Recitation 6 16 / 17

Maximum likelihood estimators in practice

Calculation is made easier by using log-likelihood functions (take logs to likelihood functions)

$$-\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln\sigma^2 - \sum_{i=1}^{n} \frac{(Y_i - \mu)^2}{2\sigma^2}$$

- We differentiate the above with respect to μ and σ to find the MLE of these parameters.
- This gets us

$$\mu_{MLE} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

$$\sigma_{MLE}^2 = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \mu_{MLE})^2$$

November 15th, 2021 Recitation 6 17 / 17