《数字信号处理》复习题

一、	单项选择	¥题(在每小题)	的四个备	选答案	中,选	出一个	正确名	答案,	并将	正硝	答
的序	号填在题	干的括号内。每	小题 2 タ	分)							
					s,信 ⁻	号最高	截止频	率为	Ωc,	则护	叠
率为(\mathbf{D}).									
A. :	Ω s			B. Ω c							
C. 9	Ω c/2			D. $\Omega s/2$	2						
若一	线性移动	不变系统当输。	入为 x(n	$\delta = \delta $ (n)	时输出	出为 y($(n)=R_3($	n),	则当	输入	、为
u(n)-t	ı(n-2)时输	i出为(C)。									
A. R3	(n)	B. R:	(n)								
			,								
		变系统稳定的充				函数的	收敛域	包含	(A)。
		N. E. A. DET				5) (ъ ,				
								0			
								5 図 绍	· 是		
		_				H 129K/U	/心开切	마르기기	1.20		
-											
. , ,					, –						
		\times									
		<u> </u>									
		W_N^k	-1								
	的在率 A.C.若 u(A.C.一 A.C.己 A.如 A.序)为()。一一4.R.3个 1. 等知 N.图 挖	的序号填在题- 在对连 D A. Ω s C. Ω c/2 若 C. Ω c/2 若 U(n)-u(n-2)时 A. R ₃ (n) C. R ₃ (n)+R ₃ (n- 一个线位圆 C. 平 单位圆 C. 知 x(n)= δ (n- A. N M M M M M M M M M M M M M M M M M M M	的序号填在题干的括号内。每 在对连续信号均匀采样时,若 率为(D)。 A. Ω s C. Ω c/2 若一线性移不变系统当输力 u(n)-u(n-2)时输出为(C)。 A. R 3(n) B. R 2 C. R 3(n)+R 3(n-1) D. R 2(一个线性移不变系统稳定的充 A. 单位圆 C. 实轴 己知 x(n)=δ(n), N 点的 DFT A. N B. 1 如图所示的运算流图符号是(A. 按频率抽取 C. 两者都是	的序号填在题干的括号内。每小题 2 分 在对连续信号均匀采样时,若采样角射率为(D)。 A. Ωs C. Ωc/2 若一线性移不变系统当输入为 x(nu(n)-u(n-2)时输出为(C)。 A. R₃(n) B. R₂(n) C. R₃(n)+R₃(n-1) D. R₂(n)+R₂(n-个线性移不变系统稳定的充分必要A. 单位圆C. 实轴已知 x(n)=δ(n), N点的 DFT [x(n)]A. N B. 1 C. 0 如图所示的运算流图符号是(D A. 按频率抽取 B. 至 C. 两者都是 D.	的序号填在题干的括号内。每小题 2 分) 在对连续信号均匀采样时,若采样角频率为 Ω ; 率为(D)。 A. Ω s B. Ω c C. Ω c/2 D. Ω s/2 若一线性移不变系统当输入为 x(n)= δ (n) u(n)-u(n-2)时输出为(C)。 A. R 3(n) B. R 2(n) C. R 3(n)+R 3(n-1) D. R 2(n)+R 2(n-1) 一个线性移不变系统稳定的充分必要条件是其A. 单位圆 B. 原点 C. 实轴 D. 虚轴已知 x(n)= δ (n), N 点的 DFT [x(n)] = X(k), A. N B. 1 C. 0 如图所示的运算流图符号是(D)基 2 FF A. 按频率抽取 C. 两者都是 D. 两者都不	的序号填在题干的括号内。每小题 2 分) 在对连续信号均匀采样时,若采样角频率为 Ω s,信息率为(D)。 A. Ω s B. Ω c C. Ω c/2 D. Ω s/2 若一线性移不变系统当输入为 x(n)= δ (n) 时输 b u(n)-u(n-2)时输出为(C)。 A. R 3(n) B. R 2(n) C. R 3(n)+R 3(n-1) D. R 2(n)+R 2(n-1) 一个线性移不变系统稳定的充分必要条件是其系统 A. 单位圆 B. 原点 D. 虚轴 已知 x(n)= δ (n), N 点的 DFT [x(n)] = X(k), 则 X(A. N B. 1 C. 0 如图所示的运算流图符号是(D)基 2 FFT 算法 A. 按频率抽取 B. 按时间抽取 C. 两者都是 D. 两者都不是	的序号填在题干的括号内。每小题 2 分) 在对连续信号均匀采样时,若采样角频率为 Ω s,信号最高。率为(D)。 A. Ω s B. Ω c C. Ω c/2 D. Ω s/2 若一线性移不变系统当输入为 x(n)= δ (n)时输出为 y(u(n)-u(n-2)时输出为(C)。 A. R 3(n) B. R 2(n) C. R 3(n)+R 3(n-1) D. R 2(n)+R 2(n-1) 一个线性移不变系统稳定的充分必要条件是其系统函数的 A. 单位圆 B. 原点 C. 实轴 D. 虚轴 已知 x(n)= δ (n), N 点的 DFT [x(n)] = X(k), 则 X(5)=(A. N B. 1 C. 0 D 如图所示的运算流图符号是(D)基 2 FFT 算法的蝶形 A. 按频率抽取 B. 按时间抽取 C. 两者都是 D. 两者都不是	的序号填在题干的括号内。每小题 2 分) 在对连续信号均匀采样时,若采样角频率为 Ω s,信号最高截止频率为(D)。 A. Ω s B. Ω c C. Ω c/2 D. Ω s/2 若一线性移不变系统当输入为 x(n)= δ (n)时输出为 y(n)=R s(u(n)-u(n-2)时输出为(C)。 A. R s(n) B. R 2(n) C. R 3(n)+R 3(n-1) D. R 2(n)+R 2(n-1) 一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域A. 单位圆 B. 原点 D. 虚轴 己知 x(n)= δ (n), N 点的 DFT [x(n)] = X(k), 则 X(5)=(B) A. N B. 1 C. 0 D N 如图所示的运算流图符号是(D)基 2 FFT 算法的蝶形运算流A. 按频率抽取 B. 按时间抽取 D. 两者都不是	的序号填在题干的括号内。每小题 2 分) 在对连续信号均匀采样时,若采样角频率为 Ω s,信号最高截止频率为 率为(D)。 A. Ω s B. Ω c C. Ω c/2 D. Ω s/2 若一线性移不变系统当输入为 x(n)= δ (n)时输出为 y(n)=R ₃ (n), u(n)-u(n-2)时输出为(C)。 A. R ₃ (n) B. R ₂ (n) C. R ₃ (n)+R ₃ (n-1) D. R ₂ (n)+R ₂ (n-1) 一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包含 A. 单位圆 B. 原点 C. 实轴 D. 虚轴 己知 x(n)= δ (n), N 点的 DFT [x(n)] = X(k),则 X(5)=(B)。 A. N B. 1 C. 0 D N 如图所示的运算流图符号是(D)基 2 FFT 算法的蝶形运算流图符 A. 按频率抽取 B. 按时间抽取 C. 两者都是 D. 两者都不是	的序号填在题干的括号内。每小题 2 分) 在对连续信号均匀采样时,若采样角频率为 Ω s,信号最高截止频率为 Ω c,率为(D)。 A. Ω s B. Ω c C. Ω c/2 D. Ω s/2 若一线性移不变系统当输入为 x(n)= δ (n)时输出为 y(n)=R₃(n),则当 iu(n)-u(n-2)时输出为(C)。 A. R₃(n) B. R₂(n) C. R₃(n)+R₃(n-1) D. R₂(n)+R₂(n-1) 一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包含(A 总 单位圆 B. 原点 D. 虚轴 已知 x(n)= δ (n), N 点的 DFT [x(n)] = X(k),则 X(5)=(B)。 A. N B. 1 C. 0 D N 如图所示的运算流图符号是(D)基 2 FFT 算法的蝶形运算流图符号。A. 按频率抽取 B. 按时间抽取 D. 两者都不是	在对连续信号均匀采样时,若采样角频率为 Ω s,信号最高截止频率为 Ω c,则扩率为(D)。 A. Ω s B. Ω c C. Ω c/2 D. Ω s/2 若一线性移不变系统当输入为 x(n)= δ (n)时输出为 y(n)=R₃(n),则当输入u(n)-u(n-2)时输出为(C)。 A. R₃(n) B. R₂(n) C. R₃(n)+R₃(n-1) D. R₂(n)+R₂(n-1) —个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包含(A A. 单位圆 B. 原点 C. 实轴 D. 虚轴 已知 x(n)= δ (n), N 点的 DFT [x(n)] = X(k),则 X(5)=(B)。 A. N B. 1 C. 0 D N 如图所示的运算流图符号是(D)基 2 FFT 算法的蝶形运算流图符号。 A. 按频率抽取 B. 按时间抽取 D. 两者都不是

6. 直接计算 N 点 DFT 所需的复数	效乘法次数与(B)成正比。
A. N	$B. N^2$
C. N ³	D. Nlog ₂ N
7. 下列各种滤波器的结构中哪种	不是 IIR 滤波器的基本结构(D)。
A. 直接型	B. 级联型
C. 并联型	D. 频率抽样型
8. 以下对双线性变换的描述中正	
A. 双线性变换是一种线性变换	
B. 双线性变换可以用来进行数	
C. 双线性变换是一种分段线性	
	文揆
D. 以上说法都不对	
9. 己知序列 Z 变换的收敛域为 :	z >1,则该序列为(<mark>B</mark>)。
A. 有限长序列	B. 右边序列
C. 左边序列	D. 双边序列
	1
10. 序列 x(n)=R _s (n), 其 8 点 DFT	C 记为 X(k),k=0,1,···,7,则 X(0)为(D)。
A. 2 B. 3	12,7 - (-),
C. 4 D. 5	
11. 下列关于 FFT 的说法中错误的	均長(A)
A. FFT 是一种新的变换	intel A).
B. FFT 是 DFT 的快速算法	n 沙和梅安林 n 沙 玉 米
C. FFT 基本上可以分成时间抽具	
D. 基 2 FFT 要求序列的点数为	
12. 下列结构中不属于 FIR 滤波器	器基本结构的是(C)。

A. 横截型	B. 级联型
C. 并联型	D. 频率抽样型
13. 己知某 FIR 滤波器单位抽槽	羊响应 h(n)的长度为(M+1),则在下列不同特性的单位
抽样响应中可以用来设计线性	生相位滤波器的是(A)。
A. h[n] = -h[M-n]	
B, h[n] = h[M+n]	
C. h[n] = -h[M-n+1]	
D. h[n] = h[M-n+1]	
14. 下列关于用冲激响应不变流	去设计 IIR 滤波器的说法中错误的是(D)。
A. 数字频率与模拟频率之间	J呈线性关系
B. 能将线性相位的模拟滤波	2器映射为一个线性相位的数字滤波器
C. 容易出现频率混叠效应	
D. 可以用于设计高通和带阻	l滤波器
15. 利用矩形窗函数法设计 FII	? 滤波器时,在理想特性的不连续点附近形成的过滤带
的宽度近似等于(A)。	
A. 窗函数幅度函数的主瓣宽	法 度
B. 窗函数幅度函数的主瓣宽	度的一半
C. 窗函数幅度函数的第一个	旁瓣宽度
D. 窗函数幅度函数的第一个	旁瓣宽度的一半
16. 序列 x(n) = nR₄(n-1),则其	能量等于(D)。
A. 5	B. 10
C. 15	D. 30
17. 以下单位冲激响应所代表的	的线性移不变系统中因果稳定的是(C)。
A. h(n) = u(n)	B. $h(n) = u(n+1)$
C. $h(n) = R_4(n)$	D. $h(n) = R_4(n+1)$
18. 下列序列中 z 变换收敛域钅	型括 z = 0 的是(
A. u(n)	Bu(n)
C. u(-n)	D. u(n-1)
19. 实序列的傅里叶变换必是(A).
A. 共轭对称函数	B. 共轭反对称函数
C. 线性函数	D. 双线性函数

2
次 FFT 算法。
A. 1 B. 2 C. 3 D. 4
21. 不考虑某些旋转因子的特殊性,一般一个基 2 FFT 算法的蝶形运算所需的复数乘
法及复数加法次数分别为(A)。
A.1和2 B.1和1
C. 2 和 1 D. 2 和 2
22. 因果 FIR 滤波器的系统函数 H(z)的全部极点都在(A)处。
$A. z = 0 \qquad B. z = 1$
C. $z = j$ D. $z = \infty$
23.以下关于用双线性变换法设计 IIR 滤波器的论述中正确的是(B)。
A. 数字频率与模拟频率之间呈线性关系
B. 总是将稳定的模拟滤波器映射为一个稳定的数字滤波器
C. 使用的变换是 s 平面到 z 平面的多值映射
D. 不宜用来设计高通和带阻滤波器
24. 线性相位 FIR 滤波器主要有以下四类
(I)h(n)偶对称,长度 N 为奇数 (Ⅱ)h(n)偶对称,长度 N 为偶数
(Ⅲ) h(n)奇对称,长度 N 为奇数 (Ⅳ) h(n)奇对称,长度 N 为偶数
则其中不能用于设计高通滤波器的是(B)。
A. I , II B. II , III C. III , IV D. IV , I
25. 若一模拟信号为带限,且对其抽样满足奈奎斯特条件,则只要将抽样信号通过
(A)即可完全不失真恢复原信号。

20. 欲借助 FFT 算法快速计算两有限长序列的线性卷积,则过程中要调用(C)

A. 理想低通滤波器	B. 理想高通滤波器
C. 理想带通滤波器	D. 理想带阻滤波器
26. 下列哪一个单位抽样响	应所表示的系统不是因果系统?(D)
A. $h(n) = \delta(n)$	B. $h(n)=u(n)$
C. $h(n)=u(n)-u(n-1)$	D. $h(n)=u(n)-u(n+1)$
27. 若序列的长度为 M,要	能够由频域抽样信号 X(k)恢复原序列, 而不发生时域混叠
现象,则频域抽样点数 N	「需满足的条件是(A)。
A. N≥M	B. N≤M
C. N≤2M	D. N≥2M
28. 用按时间抽取 FFT 计算	IN点 DFT 所需的复数乘法次数与(D)成正比。
A. N	$B.N^2$
C. N ³	$D.Nlog_2N$
29. 序列 x(n)=Re(e ^{jn */12})+In	n(e ^{jn = /18}),周期为(B)。
π	
A. 18	B. 72
111	5. 72
С. 18 п	D. 36
	3
	N - 1
30. 有限长序列 h(n)(0≤n≤	$(N-1)$ 关于 $\tau = 2$ 偶对称的条件是(B)。
20. 1118 50/1 / 3 11/11/(0 / 11 /	industrial management ()
A. $h(n)=h(N-n)$	B. $h(n)=h(N-n-1)$

37. 下列对 IIR 滤波器特点的论述中错误的是(C)。 A.系统的单位冲激响应 h(n)是无限长的 B. 结构必是递归型的 C.肯定是稳定的 D.系统函数 H(z)在有限 z 平面(0< z <∞)上有极点
4
38. 下列关于窗函数设计法的说法中错误的是(D)。 A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小 B. 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关 C. 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加 D. 窗函数法不能用于设计 FIR 高通滤波器
二、判断题 (判断下列各题,正确的在题后括号内打"√",错的打"×"。每小题 2分) 1. 移不变系统必然是线性系统。(×) 2. 当输入序列不同时,线性移不变系统的单位抽样响应也不同。(×) 3. 离散时间系统的滤波特性可以由其幅度频率特性直接看出。(√) 4. 因果稳定系统的系统函数的极点必然在单位圆内。(√) 5. 与 FIR 滤波器相似,II R 滤波器也可以方便地实现线性相位。(×) 6. 非零周期序列的 Z 变换不存在。(√) 7. 按时间抽取的基 2 FFT 算法的运算量等于按频率抽取的基 2 FFT 算法。(√) 8. 通常 FIR 滤波器具有递归型结构。(×)

9. 双线性变换法是非线性变换,所以用它设计 IIR 滤波器不能克服频率混叠效应。
(\times)
10. 非零周期序列的能量为无穷大。(✓)
11. 序列的傅里叶变换就是序列 z 变换在单位圆上的取值。(×)
12. 离散傅里叶变换具有隐含周期性。(✓)
13. FIR 滤波器必是稳定的。(✓)
14. 用窗函数法设计 FIR 低通滤波器时,可以通过增加截取长度 N 来任意减小阻带衰
减。(×)
15. 对正弦信号进行采样得到的正弦序列必定是周期序列。(×)
16. 常系数差分方程表示的系统必为线性移不变系统。(×)
17. 序列的傅里叶变换是周期函数。(✓)
18. 因果稳定系统的系统函数的极点可能在单位圆外。(×)
19. FIR 滤波器较之 IIR 滤波器的最大优点是可以方便地实现线性相位。(✓)
20. 设 y(n)=kx(n)+b, k>0,b>0 为常数,则该系统是线性系统。(×)
21. y(n)=g(n)x(n)是线性系统。(✓)
22. 离散傅立叶变换是 Z 变换在单位圆周上取值的特例。(✓)
23. 一般来说, 左边序列的 Z 变换的收敛域一定在模最小的有限极点所在的圆之内。
(✓)
24. 只要找到一个有界的输入,产生有界输出,则表明系统稳定。(×)

三、填空题 (每空2分)

- 1. 序列 x(n)的能量定义为 序列各抽样样值的平方和 。
- 2. 线性移不变系统是因果系统的充分必要条件是 h(n)=0, n<0。
- 3. 设两个有限长序列的长度分别为 N 和 M,则它们线性卷积的结果序列长度为 N+M-1。
- 4. 一个短序列与一个长序列卷积时,有 重叠相加法 和 重叠保留法 两种分段卷积法。
- 5. 如果通用计算机的速度为平均每次复数乘需要 4 μ s,每次复数加需要 1 μ s,则在此计算机上计算 2^{10} 点的基 2FFT 需要 10 级蝶形运算,总的运算时间是 30720 μ s。
- 7. 在 FIR 滤波器的窗函数设计法中,常用的窗函数有 矩形窗、哈明窗 和 凯塞窗 等等。
- 8. 线性系统同时满足 可加性 和 比例性 两个性质。
- 9. 下图所示信号流图的系统函数为 $H(z)=a+bz^-1+cz^-2$ 。

- 10. 有限长单位冲激响应(FIR)滤波器的主要设计方法有 窗函数法 , 频率采样法 两种。
- 11. 将模拟滤波器映射成数字滤波器主要有<u>阶跃响应不变法</u>、<u>冲击响应不变法</u>及双线性变换 法等。
- 12. 用按时间抽取的基 2 FFT 算法计算 N 点($N=2^L$, L 为整数)的 DFT, 共需要作 $N/2\log N$ 次复数 乘和 $N\log_2 N$ 次复数加。
- 13. FFT 的基本运算单元称为 蝶形 运算。
- 14. 某线性移不变系统当输入 $x(n) = \delta(n-1)$ 时输出 $y(n) = \delta(n-2) + \delta(n-3)$,则该系统的单位冲激响应 $h(n) = \frac{\delta(n-1) + \delta(n-2)}{\delta(n-2)}$ 。
- 15. 序列 $x(n) = \cos(3\pi n)$ 的周期等于__2___。
- 16. 实序列 x(n)的 10 点 DFT[x(n)] = X(k) (0 $\leq k \leq 9$),已知 X(1) = 1 + j,则 X(9) = 1 j 。
- 17. 基 2 FFT 算法计算 $N = 2^L$ (L 为整数)点 DFT 需 ____ 级蝶形,每级由___ <u>N/2</u>__ 个蝶形运算组成。

18. 下图所示信号流图的系统函数为 $H(z) = a+bz^{-1}/1-cz^{-1}-dz^{-2}$ 。

6

- 19. 在用模拟滤波器设计 IIR 数字滤波器时,模拟原型滤波器主要有<u>巴特沃斯</u>型滤波器、<u>切</u>比雪夫型滤波器等。
- 20. 在利用窗函数法设计 FIR 滤波器时,窗函数的窗谱性能指标中最重要的是<u>过渡带宽</u>与 <u>阻带</u> <u>最小衰减</u>。
- 21. 序列 R₄(n)的 Z 变换为 z^4-1/z^3(z-1) , 其收敛域为 0<|z|<=∞ 。
- 22. 已知系统的单位抽样响应为 h(n),则系统稳定的充要条件是<u>系统的单位取样响应 h(n)绝对可</u> 和 或填($n=-\infty^-\infty$) $\Sigma |h(n)|<\infty$
- 23. 输入 $x(n)=cos(\omega_0 n)$ 中仅包含频率为 ω_0 的信号,输出 $y(n)=x(n)cos(\frac{\pi}{4}n)$ 中包含的频率为 ω_0

$$+\frac{\pi}{4}$$
, $\omega_0 - \frac{\pi}{4}$

- 24. $x((n))_N$ 的数学表达式为 $1/N(K=0^N-1)$ $\sum X(k)W_{N^k-kn}$,表示 x(n) 以 N 为周期的周期延拓</u>序列。
- 25. 对时间序列 x(n)后补若干个零后,其频域分辨率 不变, 采样间隔 减小。
- 26. 将离散傅立叶反变换 IDFT 的公式 $1/N(K=0^{\circ}N-1)$ $\sum X(k)W_{N^{\circ}kn}$ 改写为 $1/N[(K=0^{\circ}N-1)$ $\sum X*(k)W_{N^{\circ}kn}$]* ,就可调用 FFT 例程(子程序)计算 IDFT。
- 27. 用按时间抽取的基-2FFT 算法计算 $N=2^L$ (L 为整数)点的 DFT 时,每级蝶形运算一般需要 N/2 次复数乘。
- 28. 无限长单位冲激响应(IIR)滤波器的基本结构有直接 I 型,直接 II 型, <u>级联型</u>和 <u>并联型</u> 四种。