Mes objectifs:

- → Je dois savoir si un entier est ou n'est pas multiple ou diviseur d'un autre entier. Et savoir reconnaître un nombre premier,
- → Je dois connaître et savoir utiliser les critères de divisibilité (par exemple par 2, 3, 5, 4, 9 ou 10),
- → Je dois savoir simplifier une fraction donnée pour la rendre irréductible.

• Un nombre est divisible par 2 si , donc si il se termine par

Exemple:

• Un nombre est divisible par 5 si il se termine par.

Exemple:

<u>**DÉMONSTRATION**</u>: On va essayer de justifier cette règle de manière générale.

Tout nombre entier peut être décomposé en somme de ses différents ordres. Un exemple :

Or, 40000 =

De même, 3000 =

200 =

= 08

43281 =

43281 =

La question de savoir si 43 281 est multiple de 3 revient donc à savoir si est multiple de 3.

Arithmétique : Diviseurs communs et nombres premiers

•	Un nombre est divisible par 9 si
	Exemple : 738 est divisible par 9, car et est un multiple de 9.
•	Un nombre est divisible par 10 si
	Exemple:
	×

Activité n°2 : Le crible d'Erathostène

Cette activité met en œuvre un algorithme appelé "le crible d'Erathostène" permettant de trouver tous les nombres premiers inférieurs à 100.

					1			1	
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- 1. (a) Expliquer pourquoi le nombre 1 n'est pas premier puis le barrer dans la grille.
- (b) Le nombre 2 ne possède aucun diviseur autre que 1 et lui-même. 2 est donc un nombre premier. Entourer le nombre 2.
- (c) Barrer tous les multiples de 2, qui ne sont donc pas des nombres premiers.
- 2. (a) Entourer le plus petit nombre non barré et barrer tous ses multiples.
- (b) Poursuivre de la même façon jusqu'à ce que le plus petit nombre non barré soit supérieur à 10. Tous les nombres non barrés dans la liste, sont les nombres qui n'ont pas d'autre diviseur que 1 ou eux-mêmes. **On obtient tous les nombres premiers inférieur à 100**.
 - 3. Écrire tous les nombres premiers inférieur à 100.