Elektrische und magnetische Monopole

Jürgen Womser-Schütz, https://github.com/JW-Schuetz

Vektoren v werden im folgenden durch einen Unterstrich kenntlich gemacht \underline{v} , weiterhin sollen Kugelkoordinaten (ρ, ϕ, Θ) zur Anwendung kommen.

Grundlegendes

Satz von Stokes

Sei S eine glatte, orientierte Fläche im \mathbb{R}^3 mit Rand ∂S . Dann gilt für ein Vektorfeld \underline{A} mit kontinuierlichen 1. partiellen Ableitungen in einer Umgebung, die S enthält

$$\iint_{S} (\operatorname{rot} \underline{A}) d\underline{a} = \oint_{\partial S} \underline{A} d\underline{l}. \tag{1}$$

Dabei ist $d\underline{a} = \underline{n}dS$ und $d\underline{l} = \underline{t}ds$ mit dem Normalenvektor \underline{n} der Fläche S und dem Tangentialvektor \underline{t} des Flächenrandes ∂S .

Maxwellgleichungen

Es gelten die quellenfreien Maxwellgleichungen

$$\operatorname{div}(\underline{E}) = 0$$

$$\operatorname{div}(\underline{B}) = 0$$

$$\operatorname{rot}(\underline{E}) = \underline{0}$$

$$\operatorname{rot}(\underline{B}) = \underline{0}.$$
(2)

Potentiale

Aus der Vektoranalysis ist für den dreidimensionalen Raum \mathbb{R}^3 hinlänglich bekannt

$$rot \operatorname{grad}(\psi) = \underline{0}$$
$$\operatorname{div} \operatorname{rot}(A) = 0.$$

Damit gelten die folgenden Aussagen

$$\underline{V} = \operatorname{grad}(\psi) \implies \operatorname{rot}(\underline{V}) = \underline{0}$$

 $W = \operatorname{rot}(A) \implies \operatorname{div}(W) = 0.$

Aber gilt auch die Umkehrung?

Existiert für jedes rotationsfreie Feld \underline{V} eine skalare Funktion ψ mit $\underline{V} = \operatorname{grad}(\psi)$ und existiert für jedes divergenzfreie Feld \underline{W} ein Feld \underline{A} mit $\underline{W} = \operatorname{rot}(\underline{A})$?

Die Antworten auf diese Fragen hängen von der Topologie des betrachteten Definitionsbereich U ab.

Definitionsbereich U

Der Definitionsbereich der Felder und Potentiale beider Monopole ist der gesamte \mathbb{R}^3 mit Ausnahme des Ortes des Monopoles im Koordinatenursprung, also $U = \mathbb{R}^3 - \underline{0}$. Der Ursprung ist ein singulärer Punkt der Betrachtung.

Topologische Eigenschaften des Definitionsbereiches U

- Die erste Homotopiegruppe (die Fundamentalgruppe) von U ist trivial $\pi_1(U) = 0$, d.h. eine beliebige 1-Sphäre S^1 (Kreislinie) in U kann kontinuierlich auf einen Punkt in U zusammengezogen werden. Man nennt U auch einfach zusammenhängend.
- Die zweite Homotopiegruppe von U ist nicht trivial $\pi_2(U) \neq 0$, d.h. es ist nicht möglich, eine beliebige 2-Sphäre S^2 (Kugeloberfläche) in U kontinuierlich auf einen Punkt in U zusammenzuziehen dies scheitert für jede Kugeloberfläche, die den Ursprung umschliesst.

Diese beiden Eigenschaften des Definitionsbereiches U haben Konsequenzen für die Existenz der Potentiale.

- 1. Im Fall $\pi_1(U) = 0$ wird sich zeigen, dass für jedes rotationsfreie Feld \underline{V} die Existenz eines skalaren Potentiales ψ folgt.
- 2. Im Fall $\pi_1(U) = 0$ existieren aber divergenzfreie Felder <u>W</u> die kein Vektorpotential <u>A</u> besitzen.
- 3. Im Fall $\pi_2(U) \neq 0$ wird sich zeigen, dass jedes divergenzfreie Feld W eine Vektorpotential A besitzt.

Potentiale des elektrischen Monopols

Sein elektrisches und magnetisches Feld ist auf U durch

$$\underline{E} (\rho, \phi, \Theta) = \frac{q}{\rho^2} \underline{e}_{\rho}
\underline{B} (\rho, \phi, \Theta) = \underline{0}$$
(3)

gegeben.

Noch zu tun: skalares Potential und Vektorpotential herleiten.

Potentiale des magnetischen Monopols

Ein magnetischer Monopol wurde bisher noch nicht beobachtet und ist deshalb hypothetisch.

Sein magnetisches und elektrisches Feld in Kugelkoordinaten ist auf $\mathbb{R}^3 - 0$ analog zum elektrischen Monopol durch

$$\underline{E}(\rho, \phi, \Theta) = \underline{0}$$

$$\underline{B}(\rho, \phi, \Theta) = \frac{g}{\rho^2} \underline{e}_{\rho}$$
(4)

gegeben.

Noch zu tun: skalares Potential herleiten, Dirac-Strings thematisieren.

Beweis zu Punkt 2 für den Spezialfall "Magnetischer Monopol"

Betrachtet man eine Kugeloberfläche S des Radiuses R um den Ursprung und sei ∂S ihr Äquator. Weiterhin seien S^+ und S^- ihre obere und untere Hemisphären. ∂S sei entgegen des Uhrzeigersinns orientiert und die beiden Hemisphären S^+ und S^- besitzen einen nach aussen gerichteten Normalenvektor n.

Wir nehmen an, dass ein Vektorpotential \underline{A} mit kontinuierlichen 1. partiellen Ableitungen in einer Umgebung, die S enthält, existiert.

Dann erhält man für den Fluss der Rotation des Vektorpotentials \underline{A} durch S zusammen mit (4)

$$\iint_{S} (\operatorname{rot} \underline{A}) d\underline{a} = \iint_{S} \underline{B} d\underline{a}$$

$$= \iint_{S} \left(\frac{g}{\rho^{2}} \underline{e}_{\rho} \right) d\underline{a}$$

$$= \frac{g}{R^{2}} \iint_{S} \underline{e}_{\rho} d\underline{a}$$

$$= \frac{g}{R^{2}} \left(4\pi R^{2} \right)$$

$$= 4\pi a.$$
(5)

Andererseits folgt aus dem Satz von Stokes (1) für diesen Fluss

$$\iint_{S} (\operatorname{rot} \underline{A}) d\underline{a} = \iint_{S^{+}} (\operatorname{rot} \underline{A}) d\underline{a} + \iint_{S^{-}} (\operatorname{rot} \underline{A}) d\underline{a} \\
= \oint_{\partial S} \underline{A} d\underline{l} + \oint_{-\partial S} \underline{A} d\underline{l} \\
= \oint_{\partial S} \underline{A} d\underline{l} - \oint_{\partial S} \underline{A} d\underline{l} \\
= 0$$
(6)

Zwischen (5) und (6) besteht ein Widerspruch.

Die getroffene Annahme ist also falsch und es existiert kein solches Vektorpotential \underline{A} Noch zu tun: 1. und 3. beweisen.

Helmholtz Zerlegung

Theorem 1

Nehmen wir an, dass \underline{H} in Ω rotationsfrei ist und dass jede geschlossene Kurve in Ω der Rand ∂S einer Fläche $S \subset \Omega$ ist. Dann existiert eine skalare Funktion ψ mit $H = \operatorname{grad}(\psi)$ in Ω .

Beweis

Da der Fluss von rot \underline{H} auf jeder Oberfläche S verschwindet, folgt aus dem Satz von Stokes (1), dass das Linienintegral einer geschlossenen Kurve über \underline{H} verschwindet

Theorem 2

Nehmen wir an, dass \underline{B} in Ω divergenzfrei ist und dass jede geschlossene Oberfläche in Ω der Rand ∂S einer Teilmenge $D \subset \Omega$ ist. Dann existiert ein skalares Vektorfeld \underline{A} mit $\underline{A} = \operatorname{rot}(\underline{B})$ in Ω .

Beweis

Da das Intergal div (\underline{B}) auf jeder Teilmenge D verschwindet,

Theorem 3

Nehmen wir an, dass \underline{H} in Ω rotationsfrei ist und dass $\underline{H} \times \underline{n} = 0$ auf dem Rand $\partial \Omega$ von Ω gilt. Dann existiert eine skalare Funktion ψ mit $\underline{H} = \operatorname{grad}(\psi)$ in Ω .

Beweis

Setzt man \underline{H} ausserhalb von Ω durch $\underline{0}$ fort, dann bleibt \underline{H} rotationsfrei. \underline{H} ist also der Gradient eines skalaren Potentials

Theorem 4

Nehmen wir an, dass \underline{B} in Ω divergenzfrei ist und dass $\underline{Bn}=0$ auf dem Rand $\partial\Omega$ von Ω gilt. Dann existiert ein Vektorfeld \underline{A} mit $\underline{B}=\mathrm{rot}\,(\underline{A})$ in Ω .

Beweis

Setzt man \underline{B} ausserhalb von Ω durch $\underline{0}$ fort, dann bleibt \underline{B} divergenzfrei. \underline{B} ist also die Rotation eine Vektorpotentials Noch zu tun: Verstehen! Das ist die Stelle, in der die Topologie ins Spiel kommt! Die Voraussetzungen von Theorem 3 sind für den magnetischen Monopol nicht erfüllt!

Inhaltsverzeichnis

Literatur

- [1] Topology, Geometry and Gauge fields; Naber, Gregory; Springer Science+Business Media; 2011
- [2] Scalar and vector potentials, Helmholtz decomposition and de Rham cohomology; Valli, Alberto; University of Trento, Italy