代数学1,第4回の内容の理解度チェックの解答

2024/10/17 担当:那須

基準の正三角形 △ を次の合成変換で変換した正 三角形を求めよ.なお解答は解答欄の三角形の 頂点に数字を記入して答えよ.なお合同変換 f $\Delta =$ l_3 l_2

l 1

に対し f^{-1} は f の逆変換を表すものとする.

解答) 正三角形の合同変換 I,R_i (i=1,2), T_j (j=1,2,3) は, Δ の 3 頂点の置換を誘導する. 置換の積の計算を用いて対応する合同変換を求めればよい.

 $(1) T_2 \circ R_1$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}.$$

よって $T_2 \circ R_1 = T_3$.

(2) R_2^{-1}

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}.$$
よって $R_2^{-1} = R_1$.

1

 $(3) T_3 \circ R_2 \circ T_3$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}.$$

よって $T_3 \circ R_2 \circ T_3 = R_1$.

 $(4) \ R_1^{-1} \circ T_2 \circ R_1$

 $R_1^{-1} \circ T_2 \circ R_1 = R_2 \circ T_2 \circ R_1$ に注意する.

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}.$$

よって $R_1^{-1} \circ T_2 \circ R_1 = T_1$.

② 右の基準の正方形口を含む平面において, I を恒等変換, R_1,R_2,R_3 を口の中心の周りのそれぞれ角度 90° , 180° , 270° の回転 (反時計回り) とし、さらに T_i (i=1,2,3,4) を, 直線 l_i に関する折り返し (対称移動) とする.

基準の正方形□を次の合成変換で変換した正方 形を求めよ.なお解答は解答欄の正方形の頂点 に数字を記入して答えよ.

解答) 対応する4次置換を用いて計算する.

(1) $T_2 \circ R_2$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} = (23)(14).$$

$$\updownarrow \neg \tau T_2 \circ R_2 = T_4.$$

(2) $T_4 \circ R_3 \circ T_1$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}.$$

$$\updownarrow \neg \tau T_4 \circ R_3 \circ T_1 = I.$$

- ③ (1) 次の群の位数を答えよ.
 - (a) 6 次対称群 S₆

解答) n 次対称群 S_n の位数は n! に等しい. したがって S_6 の位数は 6!=720.

(b) 5次交代群 A₅

解答) n 次交代群 A_n の位数は n!/2 に等しい. したがって A_5 の位数は 5!/2 = 60.

- (2) 次の対称群の元σの位数を求めよ.
 - (c) $\sigma = (1\ 2\ 5\ 3)(4\ 8)(6\ 9\ 7) \in S_9$

解答) サイクル $(1\ 2\ 5\ 3)$, $(4\ 8)$, $(6\ 9\ 7)$ の位数はそれぞれ 4,2,3 に等しい. したがって σ の位数は、それらの最小公倍数に等しく、 $\operatorname{ord}(\sigma) = \operatorname{lcm}(4,2,3) = 12$.

(d)
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 5 & 4 & 9 & 8 & 7 & 6 & 2 & 1 \end{pmatrix} \in S_9$$
 解答) σ をサイクルの分離積として表すと、 $\sigma = (1 \ 3 \ 4 \ 9)(2 \ 5 \ 8)(6 \ 7)$ と表される. したがって $\operatorname{ord}(\sigma) = \operatorname{lcm}(4,3,2) = 12$.