

Jakub Kryczka

Algorytmy i struktury danych projekt 2

Rzeszów, 2022

Spis treści

- 1. Opis problemu
- 2. Teoretyczne podstawy macierzy sąsiedztwa
- 3. Funkcje
- 4. Przykłady działania programu

1. Opis problemu

Treść problemu:

Napisz program, który dla zadanego grafu skierowanego reprezentowanego przy pomocy macierzy sąsiedztwa wyznaczy i wypisze następujące informacje:

- 1. Wszystkich sąsiadów dla każdego wierzchołka grafu
- 2. Wszystkie wierzchołki, które są sąsiadami każdego wierzchołka
- 3. Stopnie wychodzące wszystkich wierzchołków
- 4. Stopnie wchodzące wszystkich wierzchołków
- 5. Wszystkie wierzchołki izolowane
- 6. Wszystkie pętle
- 7. Wszystkie krawędzie dwukierunkowe

Graf wykorzystywany przez program jest podawany przez użytkownika w postaci pliku tekstowego. W pierwszej linijce pliku użytkownik wpisuje liczbę wierzchołków, liczba ta zostaje wykorzystana do stworzenia dwuwymiarowej tablicy dynamicznej o szerokości i wysokości równej liczbie wierzchołków. Tablica ta zostaje potem wypełniona wartościami znajdującymi się w pozostałych linijkach pliku tekstowego, każda linijka odpowiada kolejnej komórce macierzy. Wszystkie funkcje programu operują na tej tablicy.

2. Teoretyczne podstawy macierzy sąsiedztwa

Graf jest reprezentowany przy pomocy macierzy kwadratowej stopnia n, liczba n oznacza ilość wierzchołków w grafie.

Macierz ta jest macierzą sąsiedztwa. Jest to jeden ze sposobów reprezentacji grafu skierowanego. Wiersze tej macierzy oznaczają wierzchołki startowe krawędzi, kolumny wierzchołki końcowe. Jeśli komórka ma wartość 1 to krawędź o wierzchołku startowym odpowiadającym wierszowi elementu i końcowym odpowiadającym kolumnie. Jeśli komórka ma wartość 0 to krawędź ta nie istnieje.

Rysunek 1 Przykładowy graf skierowany

	0	1	2	3	4
0	0	1	0	0	1
1	0	0	1	0	0
2	1	0	0	0	0
3	0	0	0	0	0
4	0	0	0	1	0

Rysunek 2 Macierz sąsiedztwa dla grafu z rysunku 1

3. Funkcje

3.1. Funkcja wypisująca wszystkich sąsiadów każdego wierzchołka grafu

```
pobierz tablicę (macierz sąsiedztwa)
pobierz liczbę n (stopień macierzy)
utwórz zmienne i, j, temp
dla i od 0 do n
       temp = 0
       dla j od 0 do n
               jeśli tablica(i, j) = 1
                      kontrolna = kontrolna + 1
       jeśli temp > 0
               wypisz wierzchołek i ma temp
              jeśli temp = 1
                      wypisz sąsiada, jest to wierzchołek:
              jeśli nie
                      wypisz sąsiadów, są to wierzchołki
               dla j od 0 do n
                      jeśli tablica (i, j) = 1
                              wypisz j
       jeśli nie
               wypisz wierzchołek i nie ma sąsiadów
       idź do następnej linijki
idź do następnej linijki
koniec
```


3.2. Funkcja wypisująca wszystkie wierzchołki będące sąsiadami każdego wierzchołka

```
pobierz tablicę (macierz sąsiedztwa)

pobierz liczbę n (stopień macierzy)

utwórz zmienne i, j, temp

dla i od 0 do n

temp = 0

dla j od 0 do n

jeśli tablica( i, j ) = 1

temp = temp + 1

jeśli temp = n

wypisz "wierzchołek" i " jest sąsiadem każdego wierzchołka" idź do następnej linijki

idź do następnej linijki

koniec
```


3.3. Funkcja wypisująca stopnie wychodzące każdego wierzchołka

```
pobierz tablicę (macierz sąsiedztwa)

pobierz liczbę n (stopień macierzy)

utwórz zmienne i, j, temp

dla i od 0 do n

temp = 0

dla j od 0 do n

jeśli tablica( i, j ) = 1

temp = temp + 1

wypisz "wierzchołek" i " ma stopień wychodzący równy" temp
idź do następnej linijki

idź do następnej linijki
koniec
```


3.4. Funkcja wypisująca stopnie wchodzące każdego wierzchołka

```
pobierz tablicę (macierz sąsiedztwa)

pobierz liczbę n (stopień macierzy)

utwórz zmienne i, j, temp

dla i od 0 do n

temp = 0

dla j od 0 do n

jeśli tablica( j, i ) = 1

temp = temp + 1

wypisz "wierzchołek" i " ma stopień wchodzący równy" temp
idź do następnej linijki

idź do następnej linijki
koniec
```


3.5.Funkcja wypisująca wierzchołki izolowane

```
pobierz tablicę (macierz sąsiedztwa) pobierz liczbę n (stopień macierzy) utwórz zmienne i, j, temp dla i od 0 do n temp = 0 dla j od 0 do n jeśli tablica( j, i ) = 1 temp = 1 jeśli tablica( i, j ) = 1 temp = 1 jeśli temp = 0 wypisz "wierzchołek" i " jest wierzchołkiem izolowanym" idź do następnej linijki idź do następnej linijki koniec
```


3.6. Funkcja wypisująca pętle

3.7. Funkcja wypisująca krawędzie dwukierunkowe

```
pobierz tablicę (macierz sąsiedztwa)

pobierz liczbę n (stopień macierzy)

utwórz zmienne i, j

dla i od 0 do n

dla j od 0 do n

jeśli tablica( j, i ) = 1 oraz tablica( j, i )

wypisz krawędź dwukierunkowa to krawędź pomiędzy wierzchołkiem i " a " j

idź do następnej linijki

idź do następnej linijki

koniec
```


4. Przykłady działania programu

Przykład 1: Wejście: 1111 0010 1010 0100 (linijki zostały scalone, w celu uzyskania lepszej czytelności) Wyjście: wierzcholek 0 ma 4 sasiadow, sa to wierzcholki: 0 1 2 3 wierzcholek 1 ma 1 sasiada, jest to wierzcholek: 2 wierzcholek 2 ma 2 sasiadow, sa to wierzcholki: 0 2 wierzcholek 3 ma 1 sasiada, jest to wierzcholek: 1 wierzcholek 0 jest sasiadem kazdego wierzcholka wierzcholek 0 ma stopien wychodzacy rowny: 4 wierzcholek 1 ma stopien wychodzacy rowny: 1 wierzcholek 2 ma stopien wychodzacy rowny: 2 wierzcholek 3 ma stopien wychodzacy rowny: 1 wierzcholek 0 ma stopien wchodzacy rowny: 2 wierzcholek 1 ma stopien wchodzacy rowny: 2 wierzcholek 2 ma stopien wchodzacy rowny: 3 wierzcholek 3 ma stopien wchodzacy rowny: 1 wierzcholek 0 tworzy petle z samym soba

wierzcholek 0 i wierzcholek 2 tworza petle wierzcholek 2 tworzy petle z samym soba

krawedz dwukierunkowa to krawedz pomiedzy wierzcholkiem 0 a 2

wykonanie programu zajelo: 0.0039989 sekund

Przykład 2: Wejście: 5 11101 00101 01001 00000 11101 (linijki zostały scalone, w celu uzyskania lepszej czytelności) Wyjście: wierzcholek 0 ma 4 sasiadow, sa to wierzcholki: 0 1 2 4 wierzcholek 1 ma 2 sasiadow, sa to wierzcholki: 2 4 wierzcholek 2 ma 2 sasiadow, sa to wierzcholki: 1 4 Wierzcholek 3 nie ma sasiadow. wierzcholek 4 ma 4 sasiadow, sa to wierzcholki: 0 1 2 4 wierzcholek 0 ma stopien wychodzacy rowny: 4 wierzcholek 1 ma stopien wychodzacy rowny: 2 wierzcholek 2 ma stopien wychodzacy rowny: 2 wierzcholek 3 ma stopien wychodzacy rowny: 0 wierzcholek 4 ma stopien wychodzacy rowny: 4 wierzcholek 0 ma stopien wchodzacy rowny: 2 wierzcholek 1 ma stopien wchodzacy rowny: 3 wierzcholek 2 ma stopien wchodzacy rowny: 3 wierzcholek 3 ma stopien wchodzacy rowny: 0 wierzcholek 4 ma stopien wchodzacy rowny: 4 wierzcholek 3 jest wierzcholkiem izolowanym wierzcholek 0 tworzy petle z samym soba

wierzcholek 0 i wierzcholek 4 tworza petle wierzcholek 1 i wierzcholek 2 tworza petle wierzcholek 1 i wierzcholek 4 tworza petle wierzcholek 2 i wierzcholek 4 tworza petle wierzcholek 4 tworzy petle z samym soba

krawedz dwukierunkowa to krawedz pomiedzy wierzcholkiem 0 a 4 krawedz dwukierunkowa to krawedz pomiedzy wierzcholkiem 1 a 2 krawedz dwukierunkowa to krawedz pomiedzy wierzcholkiem 1 a 4 krawedz dwukierunkowa to krawedz pomiedzy wierzcholkiem 2 a 4

wykonanie programu zajelo: 0.0144349 sekund