CS 5000: Theory of Computation

Assignment 11: Partially Computable & Computable Functions

Vladimir Kulyukin Department of Computer Science Utah State University

Learning Objectives

- 1. Bounded Existential & Universal Quantification
- 2. Primitive Recursive Functions
- 3. Minimalization

Problem 1 (5 points)

Let $sum_of_2_squares(n)$ the the n-th natural number which is the sum of two squares. For example, 0 is the 0-th such number, 2 is the 1^{st} such number, because $1^2 + 1^2 = 2$, 4 is the 2^{nd} such number, because $0^2 + 2^2 = 4$, 5 is the 3^{rd} such number, because $1^2 + 2^2 = 5$, etc. Show that $sum_of_2_squares(n)$ is primitive recursive.

Problem 2 (4 points)

Let gcd(x,y) and lcm(x,y) be the greatest common divisor and the least common multiple, respectively, of x and y. Show that both are primitive recursive.

Problem 3 (3 points)

Let h(x) be the natural number n such that $n \le (1 + \sqrt{2})x < n + 1$. Show that h(x) is computable.

Problem 4 (3 points)

Show that there exists a computable predicate $P(t, x_1, ..., x_n)$ such that $min_t P(t, x_1, ..., x_n)$ is not computable.