Problem X. Strange Functions

Time limit 2000 ms **Mem limit** 262144 kB

Let's define a function f(x) (x is a positive integer) as follows: write all digits of the decimal representation of x backwards, then get rid of the leading zeroes. For example, f(321)=123, f(120)=21, f(1000000)=1, f(111)=111.

Let's define another function $g(x)=\dfrac{x}{f(f(x))}$ (x is a positive integer as well).

Your task is the following: for the given positive integer n, calculate the number of different values of g(x) among all numbers x such that $1 \le x \le n$.

Input

The first line contains one integer t ($1 \le t \le 100$) — the number of test cases.

Each test case consists of one line containing one integer n ($1 \le n < 10^{100}$). This integer is given without leading zeroes.

Output

For each test case, print one integer — the number of different values of the function g(x), if x can be any integer from [1, n].

Examples

Input	Output
5	1
4	2
37	9
998244353	10
100000007	26
12345678901337426966631415	

Note

Explanations for the two first test cases of the example:

- 1. if n=4, then for every integer x such that $1\leq x\leq n, \dfrac{x}{f(f(x))}=1;$
- 2. if n=37, then for some integers x such that $1\leq x\leq n$, $\frac{x}{f(f(x))}=1$ (for example,

if x=23, f(f(x))=23, $\dfrac{x}{f(f(x))}=1$); and for other values of x, $\dfrac{x}{f(f(x))}=10$

(for example, if x=30, f(f(x))=3, $\dfrac{x}{f(f(x))}=10$). So, there are two different values of g(x).