Calculus

I		A	••	
IIMITE	ana	ı -on	TINI	HTV
Limits	allu	CUII	LIIIL	JI L V

Limits	5
Limits of a Functions and Sequences	5
Properties of Limits	6
One-Sided Limit	6
Continuity	7
Continuous Functions	7
Intermediate Value Theorem	7
Limits Involving Infinity	8
Limits at Infinity and Infinite Limits	8
Asymptotes of functions	
Derivatives	
Derivative Fundamentals	9
Definition, Notation	9
Differentiation Rules	10
Linear, Product, Chain, Inverse	10
Powers, Polynomials, Quotients, Reciprocals	
Exponential, Logarithmic	11
Trigonometric, Hyperbolic	11
Differentials and Related Concepts	12
Differentials	12
Linearization	
Implicit Differentiation	12
Related Rates	12
Applications of Derivatives	
Stationary Point	13
Maxima and Minima	13
Extreme Value Theorem	13
Interior Extremum Theorem	13
Mean Value Theorem	14
Rolle's Theorem	14
Corollaries of the Mean Value Theorem	14
Monotonic Functions	14
Derivative Tests	15
First-Derivative Test	15

Second-Derivative Test	15
Concavity	15
Higher-Order Derivative Test	15
Differential Methods	16
Newton's Method	16
Taylor's Theorem	16
General Leibniz Rule	16
Integrals	
Integral Fundamentals	17
Terminology and Notation	17
Primer: Formal Definitions	17
Definite Integrals	18
Riemann Integral	18
Integrability	18
Properties of Definite Integrals	18
The Fundamental Theorem of Calculus	19
Fundamental Theorem, Part 1	19
Fundamental Theorem, Part 2	
The Integral of a Rate	
Total Area	19
Integration By Substitution	20
Indefinite Integrals	20
Definite Integrals	20
Symmetric Functions	20
Area Between Curves	20
Applications of Definite Integrals	
Solid of Revolution	21
Disc Integration	
Shell Integration	21
Arc Length	22
Dealing with Discontinuities	22
Differential Arc Length	22
Surface of Revolution	23
Revolution about the y-Axis	23
Transcendental Functions	
Inverse Functions	24

One-to-One Functions	. 24
Derivative Rule for Inverses	. 24
Logarithmic Functions	25
Natural Logarithm	. 25
Properties of Logarithms	. 25
Trigonometric Integrals	. 25
Logarithmic Differentiation	. 25
Exponential Functions	26
Euler's Number	. 26
Natural Exponential Function	. 26
Laws of Exponents	. 26
General Exponential Function	. 26
Exponential Change	27
Separable Differential Equations	. 27
Examples of Exponential Change	. 27
Indeterminate Forms	28
Indeterminate Form 0/0	. 28
ĽHôpital's Rule	. 28
Infinite Indeterminate Forms	
Indeterminate Powers	. 28
Inverse Trigonometric Functions	29
Principal Trigonometric Values	. 29
Inverse Trigonometric Tables	
Hyperbolic Functions	30
Hyperbolic Function Tables	
echniques of Integration	
Integration by Parts	31
Definite Integrals by Parts	. 31
Trigonometric Integral Methods	32
Trigonometric Products and Powers	. 32
Trigonometric Square Roots	. 32
Trigonometric Substitutions	. 32
Partial Fraction Decomposition	33
Partial Fraction Principles	. 33
General Statement	. 33
Numerical Integration	34
Trapezoidal Rule	
Simpson's Dula	3/1

Improper Integrals	35
Indirect Evaluation	35
Infinite Sequences and Series	
First-Order Differential Equations	
Parametric Equations and Polar Coordinates	
Vectors and Vector-Valued Functions	
Partial Derivatives	
Multiple Integrals	
Vector Calculus	
Second-Order Differential Equations	

Limits and Continuity

Limits

- Limit [%] | Thomas's Calculus^{14th} (2.2-2.4) [■]
- **Limit** $\lim_{x\to c}$: the value of a function (or sequence) approaches as the input (or index) approaches some value (informal definition).
 - Limits are used to define continuity ↓, derivatives ↓, and integrals ↓.

Limits of a Functions and Sequences

- **Limit of a function**: a fundament concept in calculus and analysis concerning the behavior of a function near a particular input *c*, i.e.,

$$\lim_{x \to c} f(x) = L$$

- Reads as "f of x tends to L as x tends to c"
- \circ \mathcal{E} , δ **Limit of function**: a formalized definition, wherein f(x) is defined on an open interval \mathcal{I} , except possibly at c itself, leading to above definition, if and only if:
 - For every real measure of closeness $\mathcal{E} > 0$, there exists a real corresponding $\delta > 0$, such that for all existing further approaches there exist a smaller \mathcal{E} , i.e.,

$$f: \mathbb{R} \to \mathbb{R}, \ c, L \in \mathbb{R} \Rightarrow \lim_{x \to c} f(x) = L$$

$$\updownarrow$$

$$\forall \varepsilon > 0 \ (\exists \delta > 0 : \forall x \in \mathcal{I} \ (0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon))$$

- Functions do not have a limit when the function:
 - has a unit step, i.e., it "jumps" at a point;
 - is not bounded, i.e., it tends towards infinity;
 - or it oscillates, i.e., does not stay close to any single number.
- **Limit of a sequence**: the value that the terms of a sequence (x_n) "tends to" (and not to any other) as n approaches infinity (or some point), i.e.,

$$\lim_{n\to\infty} x_n = x$$

• \mathcal{E} Limit of sequence: for every measure of closeness \mathcal{E} , the sequence's x_n term eventually converge to the limit, i.e.,

$$\forall \varepsilon > 0 \ (\exists N \in \mathbb{N} \ (\forall n \in \mathbb{N} \ (n \geq N \Rightarrow |x_n - x| < \varepsilon)))$$

- · Convergent: when a limit of a sequence exists.
- Divergent: a sequence that does not converge.

Properties of Limits

- S List of limits 1 Squeeze theorem
- Operations on a single known limit: if $\lim_{x\to c} f(x) = L$ then:
 - $\cdot \lim_{x \to c} [f(x) \pm \alpha] = L \pm \alpha$
 - $\cdot \lim_{x \to c} \alpha f(x) = \alpha L$
 - $\lim_{x \to c} f(x)^{-1} = L^{-1}, L \neq 0$
 - $\lim_{x\to c} f(x)^n = L^n, n \in \mathbb{N}$
 - $\overline{\cdot \lim_{x \to c} f(x)^{n-1}} = L^{n-1}, n \in \mathbb{N}, \text{ if } n \in \mathbb{N}_e \Rightarrow L > 0$
- Operations on two known limits: if $\lim_{x\to c} f(x) = L_1$ and $\lim_{x\to c} g(x) = L_2$
 - $\cdot \lim_{x \to c} [f(x) \pm g(x)] = L_1 \pm L_2$
 - $\cdot \lim_{x \to c} [f(x)g(x)] = L_1 L_2$
 - $\frac{1}{1} \lim_{x \to c} f(x)g(x)^{-1} = L_1 L_2^{-1}$
- Squeeze theorem: used to confirm the limit of a difficult to compute function via comparison with two other functions whose limits are easily known or computed.
 - Let \mathcal{I} be an interval having the point c as a limit point.
 - Let g, f, and h, be functions defined on \mathcal{I} , except possibly at c itself.
 - Suppose that $\forall x \in \mathcal{I} \land x \neq c \Rightarrow g(x) \leq f(x) \leq h(x)$
 - And suppose that $\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L$
 - Then, $\lim_{x\to c} f(x) = L$
 - Essentially, the hard to compute limit of the "middle function" is found by finding two other easy functions that "squeeze" the middle function at that point.

One-Sided Limit

- One-Sided Limit %
- One-sided limit: one of two limits of f(x) as x approaches a specified point from either the left or from the right.
 - From the left: $\lim_{x\to c^-} = L$ From the right: $\lim_{x\to c^+} = L$
- o If the left and right limits exist and are equal, then

$$\lim_{x \to c} f(x) = L \Leftrightarrow \lim_{x \to c^{-}} f(x) = L \wedge \lim_{x \to c^{+}} f(x) = L$$

 Limits can still exist, even if the function is defined at a different point, as long as both one-sided limits approach the same value near the given input.

Continuity

- Continuity of functions is one of the core concepts of topology, however, there are definitions in terms of limits that prove useful; the following is only a primer.

Continuous Functions

- Continuous function: a function that does not have any abrupt changes in value.
 - I.e., a function is continuous if and only if arbitrarily small changes in its output can be assured by restricting to sufficiently small changes in its input.
- **Discontinuous**: when a function is not continuous at a point in its domain, leading to a discontinuity; there are three classifications:
 - **Removable**: when both one-sided limits $^{\uparrow}$ exist, are finite, and are equal, but the actual value of f(x) is not equal to the limit and equal to some other value.
 - · The discontinuity can be removed to regain continuity.
 - · Sometimes the term *removable discontinuity* is mistaken for *removable singularity*, or a "whole" in the function (the point is not defined elsewhere).
 - **Jump**: when a single limit does not exist because the one-sided limits exist and are finite, but not equal.
 - · Points can be defined at the discontinuity, but the function can not be made continuous
 - **Essential**: when at least one of two one-sided limits doesn't exist; can be the result of oscillating or unbounded functions.

Intermediate Value Theorem

- (2) Intermediate value theorem %
- **Intermediate value theorem**: if f is a continuous function whose domain contains the interval [a, b], then it takes on any given value between f(a) and f(b) at some point within the intervals.
- Relevant deductions, i.e., important corollaries:
 - **Bolzano's theorem**: if a continuous function has values of opposite sign inside an interval, then it has a root in that interval.
 - The image of a continuous function over an interval is itself an interval.
- \circ Thus, the image set $f(\mathcal{I})$ (which has no gaps) is also an interval, and it contains:

$$[\min(f(a), f(b)), \max(f(a), f(b))]$$

Limits Involving Infinity

- Limits involving infinity
 I Thomas's Calculus
 14th (2.6)
 ■
- Let $S \subseteq \mathbb{R}$, $x \in S$ and $f : S \mapsto \mathbb{R}$, then limits of these functions can approach arbitrarily large (\pm) values, providing a connection to asymptotes, and thus, analysis.

Limits at Infinity and Infinite Limits

• **Limits at infinity**: limits defined as $f(x) \pm infinity$ are defined much like normal limits:

$$\lim_{x \to -\infty} f(x) = L \qquad \lim_{x \to \infty} f(x) = L$$

• Formally, for all measures of closeness \mathcal{E} there exists a point c such that $|f(x) - L| < \mathcal{E}$ whenever $x < c \lor x > c$ (respectively), i.e.,

$$\forall \varepsilon > 0 (\exists c (\forall x \{<, >\} c : |f(x) - L| < \varepsilon))$$

- o Basic rules for rational functions $f(x) = p(x)q(x)^{-1}$, where p and q are polynomials, the degree of each is denoted as $\{p,q\}^{\circ}$, and the leading coefficients are denoted as P, Q, then:
 - $\cdot p^{\circ} > q^{\circ} \Rightarrow L$ is $\{+, -\}$ depending on the sign of the leading coefficients.
 - $p^{\circ} = q^{\circ} \Rightarrow L = PQ^{-1}$
 - $p^{\circ} < q^{\circ} \Rightarrow L = 0$
- **Infinite limits**: the usual limit does not exist for a limit that grows out of bounds, however, limits with infinite values can be introduced:

$$\lim_{x \to a} f(x) = \infty$$
, i.e., $\forall n > 0 \ (\exists \delta > 0 : f(x) > n \Leftrightarrow 0 < |x - a| < \delta)$

Asymptotes of functions

- Asymptotes %
- **Asymptote**: a tangent line of a curve at a point at infinity; the distance between the curve and the line approaches zero as a coordinate tends to infinity.
- There are three kinds of asymptotes: *horizontal, vertical* and *oblique*; nature of the asymptote is dependent on a function's relation to infinity.
 - Horizontal asymptotes: a result of limits at infinity, i.e., when $x \to \pm \infty$
 - **Vertical asymptotes**: a result of infinite limits, i.e., when $x \to \pm a = \pm \infty$
 - **Oblique asymptotes**: when a linear asymptote is not parallel to either axis. f(x) is asymptotic to the straight line $y = mx + n(m \neq 0)$ if:

$$\lim_{x \to \pm \infty} [f(x) - (mx + n)] = 0$$

Derivatives

Derivative Fundamentals

- ♦ Derivative

 † Thomas's Calculus

 14th (3.2)

 †

 | Thomas | Calculus | Calculu
- **Derivative**: the measure of sensitivity to change of the function value with respect to some change in its in argument.
 - Often described as the instantaneous rate of change of a single variable function, since it is the slope a tangent line at a particular point, when it exists.
 - **Tangent line**: the line through a pair of points on a curve (secant line), except the points are infinitely close, thus, it's the rate of change at that "instant".

Definition, Notation

• Formally, a derivative of the function f(x) with respect to the variable x is the function f' whose value at x is (provided the limit exists)

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

• Let z = x + h, then $h = z - x \land h \to 0 \Leftrightarrow z \to x$; this leads to an equivalent definition of the derivative (sometimes more convenient):

$$f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}$$

• **Notation**: there are many ways to denote the derivative; notations can be useful in various contexts, some common notations (for y = f(x)):

$$f'(x) = y' = \dot{y} = \frac{dy}{dx} = \frac{d}{dx}f(x) = D(f)(x) = D_x f(x)$$

- **Differentiation**: the process of finding a derivative; if f' exists at a particular point, then f is said to be differentiable at that point.
 - If f' exists at every point on an interval, then f is differentiable on that interval.
 - f' is differentiable on a closed interval [a, b] if both one-sided limits \uparrow of the function $(h \rightarrow \{0^+:a, 0^-:b\})$ exist at the end points and is differentiable on the interior.
 - Not all continuous functions have a derivative, but functions with a derivative are continuous; functions with any of following do not have derivatives:
 - · corners (one-sided derivatives differ at a point),
 - · cusps (slope approaches alternating $\pm \infty$ on both sides of a point),
 - · discontinuities, or vertical tangent lines.

Differentiation Rules

- Oifferentiation rules
 I Thomas's Calculus 14th (3.3, 3.5, 3.7)
 ☐
- Derivatives can be found by computing its limit, but there are several methods that use
 of combinations of simpler functions to make computation easier.

Linear, Product, Chain, Inverse

• **Linear**: differentiation of linear functions consists of the constant and sum (& subtraction) rules, given the following

$$\forall (f \land g) \land \forall (a \land b \in \mathbb{R}) \Rightarrow \frac{d(af + bg)}{dx} = a\frac{df}{dx} + b\frac{dg}{dx}$$
Constant
Constant factor
Sum (Difference)
$$\frac{d}{dx}(c) = 0 \qquad (af)' = af' \qquad (f + f - g)' = f' + f - g'$$

• **Product rule**: used for the product of two functions; can be generalized \(\psi

$$\frac{d(fg)}{dx} = \frac{df}{dx}g + f\frac{dg}{dx}$$

• **Chain rule**: used for the composition of two functions f(g(x)); if z depends on y, which is dependent on x, then z depends on x as well, i.e.,

$$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$$

The following is used to indicate which points the derivatives have to evaluated at:

$$\left. \frac{dz}{dx} \right|_{x} = \left. \frac{dz}{dy} \right|_{y(x)} \cdot \left. \frac{dy}{dx} \right|_{x}$$

- "Outside-Inside Rule": take the derivative of the "outside" function, leave "inside" alone, and multiply it be the derivative of the "inside."
- This method must be recursively "chained" when there are further compositions in the inside function, hence the name.
- **Inverse function rule**: can be applied if the function f has an inverse function g, i.e., a function that "undoes" the effect of f.

$$\{g(f(x)) = x \land f(g(y)) = y\} \Rightarrow \frac{dx}{dy} = \left(\frac{dy}{dx}\right)^{-1}$$

• Application of the chain rule on $f^{-1}(y) = x$ in terms of x clearly shows the result if the derivatives exist and are reciprocal,

$$\frac{dx}{dy} \cdot \frac{dy}{dx} = \frac{dx}{dx} = 1$$

Derivatives Differentiation Rules

Powers, Polynomials, Quotients, Reciprocals

0

Exponential, Logarithmic

0

Trigonometric, Hyperbolic

Differentials and Related Concepts

Differentials

0

Linearization

0

Implicit Differentiation

0

Related Rates

Applications of Derivatives

Stationary Point

Maxima and Minima

0

Extreme Value Theorem

0

Interior Extremum Theorem

Mean Value Theorem

Rolle's Theorem

0

Corollaries of the Mean Value Theorem

0

Monotonic Functions

Derivative Tests

First-Derivative Test

0

Second-Derivative Test

0

Concavity

0

Higher-Order Derivative Test

Differential Methods

Newton's Method

0

Taylor's Theorem

0

General Leibniz Rule

Integrals

Integral Fundamentals

Terminology and Notation

0

Primer: Formal Definitions

Integrals Definite Integrals

Definite Integrals

Riemann Integral

0

Integrability

0

Properties of Definite Integrals

The Fundamental Theorem of Calculus

Fundamental Theorem, Part 1

0

Fundamental Theorem, Part 2

0

The Integral of a Rate

0

Total Area

Integration By Substitution

Indefinite Integrals

0

Definite Integrals

0

Symmetric Functions

0

Area Between Curves

Applications of Definite Integrals

Solid of Revolution

Disc Integration

0

Shell Integration

Arc Length

Dealing with Discontinuities

0

Differential Arc Length

Surface of Revolution

Revolution about the y-Axis

Transcendental Functions

Inverse Functions

One-to-One Functions

0

Derivative Rule for Inverses

Logarithmic Functions

Natural Logarithm

0

Properties of Logarithms

0

Trigonometric Integrals

0

Logarithmic Differentiation

Exponential Functions

Euler's Number

0

Natural Exponential Function

0

Laws of Exponents

0

General Exponential Function

Exponential Change

• Separable Differential Equations

0

Examples of Exponential Change

Indeterminate Forms

Indeterminate Form 0/0

0

L'Hôpital's Rule

0

Infinite Indeterminate Forms

0

Indeterminate Powers

Inverse Trigonometric Functions

Principal Trigonometric Values

0

Inverse Trigonometric Tables

Hyperbolic Functions

Hyperbolic Function Tables

Techniques of Integration

Integration by Parts

Definite Integrals by Parts

Trigonometric Integral Methods

Trigonometric Products and Powers

0

Trigonometric Square Roots

0

Trigonometric Substitutions

Partial Fraction Decomposition

Partial Fraction Principles

0

General Statement

Numerical Integration

Trapezoidal Rule

0

Simpson's Rule

Improper Integrals

Indirect Evaluation

Infinite Sequences and Series

First-Order Differential Equations

Parametric Equations and Polar Coordinates

Vectors and Vector-Valued Functions

Partial Derivatives

Multiple Integrals

Vector Calculus

Second-Order Differential Equations

