ano-cue

Liposome Technology 2nd Edition

Volume II

Entrapment of Drugs and Other Materials

March of al.

Edited by Gregory Gregoriadis, Ph.D.

Professor School of Pharmacy University of London London, England

CRC Press

Boca Raton Ann Arbor London Tokyo

JUN 14 '04 15:34 9196608963 PAGE.03

Volume II

Chapter 2

PH GRADIENT-MEDIATED DRUG ENTRAPMENT IN LIPOSOMES

L. D. Mayer, T. D. Madden, M. B. Bally, and P. R. Cullis

TABLE OF CONTENTS

I.	Intro	tuction	28
II.	Merb	odology	. , 29
•• .	Α.	Preparation of Liposomes	.,29
	В.	Generation of Transmembrane pH Gradients	31
	Ċ.	Drug Entrapment	31
	D.	Determination of Drug Entrapment AnH and	
	. .	Drug Retention	32
m.	Results and Discussion		
	Α.	Theoretical Considerations	34
	В.	Influence of Lipid Composition	35
	C.	Influence of Entrapped Buffer Composition	37
	D.	Influence of the Drug:Lipid Ratio	38
	E.	Influence of Vesicle Size	39
	F.	Drug-Specific Effects	4]
I٧.	Conc	luding Remarks	4]
Refer	rences .		43

27

14. 2004 2:20PM DEPT OF MECH ENG NO. 6950 P.

28

Liposome Technology

I. INTRODUCTION

Some of the more significant obstacles to be faced in the development of liposome-based pharmaceuticals lie in the ability to produce formulations that not only provide a therapeutic benefit, but also meet pharmaceutical demands such as large-scale production and long-term stability. These issues can be particularly difficult to resolve for many amphipathic drugs employing passive liposome entrapment procedures, where the drug is included in the hydration buffer during liposome preparation. This is due to the fact that, for passively trapped formulations, the liposomes must retain such drugs (after removal of unencapsulated drug) for 1 year or more during storage, an especially challenging task given the relatively high membrane permeabilities of these dual hydrophobic-hydrophilic agents. Similar problems can be experienced for these systems when cryoprotectant-based storage approaches (freezing and lyophilization) are utilized in that drug leakage can occur at the time of reconstitution.2 Furthermore, many agents in various drug classes, such as antineoplastics, are extremely toxic. This presents specific scale-up problems because large-scale liposome processing techniques such as high pressure extrusion must be performed in the presence of the drug, thus making the procedures potentially very dangerous.

The use of transmembrane pH gradients to encapsulate certain amphipathic drugs resolves many of the problems associated with passive trapping techniques. In this "active entrapment" approach the drugs (lipophilic amines as presented here) are added to preformed liposomes with an imposed pH gradient (inside acidic). The drugs redistribute across the membrane in response to the pH gradient, resulting in trapping efficiencies that can approach 100%. This allows the drug to be encapsulated just prior to use, thus alleviating problems associated with postencapsulation processing and long-term storage. In addition, the pH gradient increases the retention of such drugs inside the liposomes once entrapped. Finally, since this approach does not rely on any specific drug-lipid interaction to enhance entrapment, it can be used for virtually any lipid mixture that forms liposomes capable of maintaining a stable transmembrane pH gradient.

The use of transmembrane pH gradients to encapsulate drugs in liposomes is applicable to a wide variety of agents in many drug classes. Table 1 lists several lipophilic, amine drugs that respond to liposomes exhibiting a pH gradient (inside acidic) by accumulating in the vesicle interior. This encapsulation procedure is suitable for drugs ranging from antineoplastics to local anesthetics and antiparasitic agents. Such information suggests that pH gradient-mediated drug entrapment may be of use in a broad spectrum of applications.

In the sections to follow, the authors describe the techniques for preparing liposomes that exhibit pH gradients, loading the liposomes with drugs and analyzing the resulting systems for drug entrapment, as well as the magnitude

JUN 14 '04 15:35 9196608963 PAGE.05

i.

development formulations armaceutical These issues gs employing cluded in the fact that, for i drugs (after prage, an esermeabilitles is can be exe approaches a occur at the drug classes, cific scale-up such as high

, thus making

ertain amphi-

sive trapping philic amines

imposed pH

nbrane in recan approach

se, thus alleind long-term of such drugs

ach does not

ent, it can be ible of main-

; in liposomes

Table 1 lists

TABLE 1 Lipophilic Amine Drugs That Accumulate Inside Liposomes in Response to Transmembrane pH Gradients

Drug	Class			
Daunorobicin	Antineoplastic			
Doxorubicin	Antineoplastic			
Epirublein	Antineoplastic			
Mitoxanthrone	Antineoplastic			
Vinblastine	Antineoplastic			
Vincristine	Antineoplastic			
Chlorpromazine	Local anesthetic			
Dibucaine	Local anesthetic			
Lidocsina	Local anesthetic			
Quinidine	Antiarthythmic agent			
Dopamine	Biogenic amine			
Seratonin	Biogenic amine			
Imipramine	Antidepressant			
Diphenhydramine	Antihistamine			
Quinine	Antimalarial			
Coloroquine	Antimalarial			

From Madden, T. D. et al., Chem. Phys. Lipids, 53, 37, 1990. With permission.

of the pH gradient. Also discussed is the theory behind the technique and the importance of parameters such as liposome size, lipid composition, drug to lipid ratio, and entrapped buffering capacity in determining the properties of such systems, employing doxorubicin and vincristic as representative drugs.

II. METHODOLOGY

A. PREPARATION OF LIPOSOMES

Volume 1 of this second edition presents a very thorough overview of the various techniques for preparing and evaluating liposomes. In this chapter, issues regarding liposome production that directly influence pH gradientmediated drug encapsulation are discussed. The liposome preparation techniques described here are meant to serve as examples and the overall concepts should be applicable to most liposome production procedures.

Most liposomes to be used for therapeutic applications are composed of more than one lipid species. It is therefore important to ensure that all the lipid components are homogeneously mixed prior to hydration, regardless of the preparation procedure. Typically, the lipids are co-dissolved in organic solvents such as chloroform, methylene chloride or benzene: methanol (95:5, volvol). The solvents can then be removed by high vacuum evaporation in the case of the halogenated solvents or by lyophilization in the case of the benzene:methanol solvent system. The resulting lipid films or lyophilized

libiting a pH . This encapastics to local ; that pH gracurum of ap-

for preparing ith drugs and he magnitude

Liposome Technology

powder, respectively, are then ready for hydration in aqueous buffer. It should be noted that for lipid systems containing cholesterol, special attention should be given to the methanol or ethanol content in chloroform during solvent evaporation. During this process, the solvent becomes enriched in alcohol which can result in precipitation of cholesterol in the latter stages of evaporation. Such an occurrence precludes the success of further liposome processing, as the resulting cholesterol microcrystals do not readily incorporate into lipid bilayers after hydration. The remedy for this situation is to avoid the use of alcohol in the preparation of a lipid film from chloroform or methylene chloride solutions and to maintain elevated solution temperatures (40°C) during evaporation. Finally, it is imperative that residual solvent content in the lipid film or powder be negligible, since the presence of solvent in the liposome solution may adversely alter the ability of the liposomes to maintain a stable pH gradient and retain entrapped drug.

rlydration of lipid films or powders can be accomplished by adding buffer of the desired composition and pH and swirling or vortexing until all of the lipid is evenly dispersed in solution (50 to 200 mg lipid per milliliter of buffer). In the case of saturated acyl chain phospholipids, the buffer solution should be maintained above the transition temperature of the highest melting lipid species throughout the hydration process. The resulting multilamellar vesicles (MLVs) are heterogeneous with regard to size (500 nm to several microns in diameter) and display small aqueous trapped volumes (≤1.0 μl/ umol lipid). In addition, these MLVs often do not have interlamellar equilibrium solute distribution, a property that can give rise to destabilizing transmembrane osmotic gradients.5 The trapped volume and solute distribution problems can be alleviated by freezing and thawing the liposome solution several times using liquid nitrogen and a water bath equilibrated above the transition temperature of the highest melting lipid component.6 This process results in interlamellar equilibrium solute distribution and increases the aqueous trapped volume of the liposomes above 5 µI/µmol lipid. Similar increases in trapped volume and equilibrium solute distribution can be accomplished by employing reversed-phase solvent evaporation techniques. However, special attention must be given to ensure complete solvent removal during this procedure in order to avoid the membrane permeability problems referred to above.

Although precursor vesicles such as frozen and thawed MLVs can be used directly to entrap drugs in response to pH gradients, their size heterogeneity is often unacceptable for therapeutic applications. Consequently, additional processing to achieve the desired size distribution is often necessary. Several techniques exist for adjusting liposome size, such as sonication, homogenization, microfluidization, detergent dialysis, and extrusion (see related chapters in Volume 1). The authors have found high pressure extrusion to be the most versatile procedure for their applications since a wide range of mean vesicle diameters can readily be selected on the basis of the filter pore size

Technology

er. It should ation should ring solvent i in alcohol is of evapoiosome proincorporate is to avoid loroform or emperatures

solvent con-

c of solvent

iposomes to

iding buffer til all of the milliliter of fer solution nest melting ultilamellar 1 to several s (≤1.0 µl/ nellar equilizing transdistribution me solution i above the his process the aqueous increases in nplished by ver, special

LVs can be size heteroquently, adquently, adquently, ication, ho-(see related quision to be tige of mean at pore size

ng this pro-

referred to

used.7 In addition, this procedure does not employ agents such as detergents, which can compromise the drug retention properties of the liposomes.

B. GENERATION OF TRANSMEMBRANE PH GRADIENTS

Selection of the buffer composition and pH during liposome hydration and subsequent processing establishes the conditions of the vesicle interior aqueous compartment. In order to create a transmembrane pH gradient (inside acidic), the pH of the extravesicular aqueous compartment must be increased. This can be accomplished by two general approaches: (1) addition of an alkalinizing agent (typically a concentrated base or alkaline buffer) to increase the exterior pH to the desired level, or (2) exchanging the extravesicular media with the desired buffer by gel exclusion column chromatography or dialysis techniques. For the alkalinizer addition technique, solutions of sodium carbonate or dibasic phosphate (concentrations between 0.1 and 1.0 M) can be used to rapidly adjust the extravesicular pH to the desired level (typically pH 7.0 to 7.5) for conditions under which sterility can be easily maintained. Potential drawbacks are that transmembrane osmotic gradients can result upon addition of the alkalinizer and buffer/drug incompatibilities can limit the choice of the alkalinizing agent. Exchanging the exterior buffer by chromatography or dialysis provides more flexibility in selecting the extravesicular buffer composition, thereby avoiding transmembrane osmotic gradients. However, these techniques are more cumbersome and maintaining sample sterility can be problematic.

C. DRUG ENTRAPMENT

Once the liposomes have been manipulated to exhibit a transmembrane pH gradient they should be used for drug entrapment within a time frame in which the ApH has not been significantly depleted. This time will depend largely on the lipid composition and can be determined by monitoring the transmembrane pH gradient as described in the following section. Although it is typically most convenient to alkalinize an aliquot of liposomes with 0.5 M Na₂CO₃ or 0.5 M Na₂HPO₄ for immediate use, 8.9 we have observed that liposomes displaying a transmembrane pH gradient can be stored unchanged at 4°C for several days. 18 The alkalinized liposomes are then mixed with the appropriate amount of drug dissolved in saline (drug concentration 1.0 to 10.0 mg/ml). Some liposomal preparations will require incubation at elevated temperatures to accomplish complete uptake of the drug into the vesicles. Figure 1 shows the influence of the incubation temperature on doxorubicing uptake into EPC:cholesterol (55:45, molimol) liposomes displaying a pH gradient (pH 4.0 inside and pH 7.5 outside). At 37°C, approximately 100% of the drug is entrapped by the liposomes over 90 min. Increasing the temperature to 60°C results in trapping efficiencies approaching 100% within 2 minutes. For more membrane permeable drugs such as vincristine, incubation temperatures can be lowered, depending on the selection of lipid components.°

UN. 14. 2004 2:21PM DEPT OF MECH ENG

Liposome Technology

FIGURE 1. Effect of incubation temperature on pH gradient-mediated doxorubicin uptake into EPC:cholesterol (55:45, mol:mol) vesicles. Vesicles were prepared in 300 mM citric acid (pH 4.0) and extruded through 200 nm pore size polycarbonate filters. Prior to doxorubicin addition, the external vesicle medium was brought to pH 7.8 with sodium hydroxide. Doxorubicin (3.0 mg/ml) was added to liposomes (11.0 mg/ml) equilibrated at 21 (=), 37 (0), and 60°C (•). Entrapped doxorubicin was determined as described in the Methodology section. (From Mayer. L. D. et al., Cancer Res., 49, 5922, 1989. With permission.)

Conditions required to achieve ≥95% trapping efficiency within a desired length of time should be determined for each drug/liposome combination used. Once identified, these conditions will yield very reproducible entrapment properties. It should be pointed out that, for some agents, the drug must be added to the liposome solution prior to the alkalinization step to avoid solubility problems. For example, addition of vincristine to DSPC:cholesterol (DSPC, distearoyl phosphatidylcholine) liposomes alkalinized to pH 7.5 results in drug precipitation, whereas alkalinization of the liposomes with 0.5 M Na₂HPO₄ after addition of the drug results in complete drug solubility and efficient encapsulation.

D. DETERMINATION OF DRUG ENTRAPMENT, $\Delta p H$, AND DRUG RETENTION

The extent of drug entrapment by vesicles can be readily determined by column chromatography. A small aliquot of the liposomal drug solution is diluted (if necessary) with unbuffered saline to achieve a lipid concentration of 5 mM. Lipid and drug concentrations are then determined employing scintillation counting, spectrophotometric assays, fluorescence assays, or high

JUN 14 '04 15:36

: Technology

Volume 11

33

pressure liquid chromatography (HPLC) analysis depending on the nature of the drug and whether the liposomes contain a radiolabeled lipid marker. Untrapped drug is separated from the liposomes by centrifuging 0.1 ml of the diluted sample through a 1.0-ml Sephadex® G-50 minicolumn equilibrated in saline buffered to the pH of the encapsulation solution. The vesicle-containing cluant fraction is then assayed for lipid and drug content. Trapping efficiencies are calculated as the drug-lipid ratio after separation of free drug divided by the drug-lipid ratio before separation.

Transmembrane pH gradients are monitored employing ¹⁴C-methylamine as a probe of Δ pH. Typically, ¹⁴C-methylamine is added to a liposome solution containing ≤ 10 mM lipid to achieve a finel level of approximately 0.5 μ Ci/ml. Samples should be incubated for 15 min at a temperature above the transition temperature of the highest melting lipid. After cooling the mixtures to room temperature, 0.1 ml aliquots are passed down 1.0 ml Sephadex® G-50 columns equilibrated at 21°C with a buffer comparable in osmotic strength and pH to the incubation media to remove unencapsulated methylamine. Methylamine and lipid concentrations before and after column chromatography are determined by scintillation counting and lipid phosphorus assay for liposomes that do not contain a radiolabeled marker. Upon determination of the aqueous trapped volume of the vesicles (refer to Chapter 8, Volume 1 of this set) the transmembrane pH gradient is then calculated according to the relationship:

 $\frac{[H^+]_{in}}{[H^+]_{out}} = \frac{[\text{methylamine}]_{in}}{[\text{methylamine}]_{out}}$

It should be noted that radioactive methylamine of the highest specific activity should be utilized for determinations of transmembrane pH gradients in liposomal systems with very small entrapped buffering capacities and/or very small pH gradients (<0.5 U). Methylamine molecules redistributing to the vesicle interior sequester protons in a stoichiometric fashion. As a result, special attention should be given to ensure that conditions used to monitor the transmembrane pH gradient do not, in themselves, cause a reduction of the ΔpH . ¹⁹

The in vitro retention of liposomal drugs encapsulated in response to pH gradients can be monitored by dialyzing samples (2 mM lipid) for 24 h vs. 1000 vol of 20 mM Hepes, 150 mM NaCl (pH 7.5) at 37°C. At various times 0.15 ml aliquots are removed and entrapped drug is determined employing column chromatography, as described above. The residual pH gradient of these samples can be determined by incubating the aliquot for 15 min with the appropriate amount of methylamine prior to passage down gel filtration columns.

bicin uptake into I citric acid (pH rubicin addition, toxorubicin (3.0, and 60°C (•)). (From Mayer.

hin a desired combination neible entrapthe drug must step to avoid C:cholesterol to pH 7.5 remes with 0.5 solubility and

etermined by ig solution is concentration d employing ssays, or high

FIGURE 2. Schematic representation of equilibria involved in uptake of lipophilic amine drugs across bilayer membranes in response to transmembrane pH gradients. The neutral (unprotonated) drug species is denoted as "A", whereas the positively charged (protonated) drug species is denoted as "AHA".

HI. RESULTS AND DISCUSSION

A. THEORETICAL CONSIDERATIONS

Lipophilic drugs that contain titratable, amine moieties permeate bilayer membranes orders of magnitude faster in the neutral (uncharged) form than in the positively charged form. As a result, the neutral species of many lipophilic, amine drugs (see Table 1) can readily equilibrate across membranes. As shown in Figure 2, drug molecules on both sides of the membrane will equilibrate between protonated and neutral forms on the basis of the pK, of the drug and the pH of the bulk media. Assuming that the pK of the drug is the same in the intra- and extravesicular aqueous compartments, the relationship between the proton concentration gradient and protonated drug (AH+) concentration gradient can be simplified to $[H^+]_m/[H^+]_{out} = [AH^+]_m/[AH^+]_{out}$ For unilamellar vesicles exhibiting a transmembrane pH gradient of 3 U (interior pH of 4.0 and exterior pH of 7.0), this relationship predicts a drug concentration gradient of 1000 (assuming a drug pK, that is substantially higher than the pH of the extravesicular medium). One of the first reports of such behavior for biologically active molecules was presented by Nicholls and Deamer, 10 who demonstrated that dopamine could be accumulated inside model membrane vesicle systems in response to a proton gradient (inside acidic). Numerous studies by the authors' laboratory^{3,4,8,9,11-13} have demonstrated that this response can be utilized to accomplish the efficient entrapment of a wide variety of drugs to high concentrations inside liposomes. The resulting preparations are well suited for therapeutic applications.

Although the analysis presented above suggests that the generation of liposomal drug systems with trapping efficiencies above 90% is straightforward, the ability to obtain stable preparations with specific entrapment, size, and drug:lipid ratio characteristics requires a more thorough examination of the uptake process. Figure 2 shows that protons are consumed as the neutral drug species equilibrates with the charged form upon exposure to the acidic vesicle interior, resulting in a net depletion of the entrapped proton pool. Failure to ensure a sufficient intravesicular buffering capacity can therefore lead to a collapse of the transmembrane pH gradient and a preparation with inferior encapsulation and drug retention properties. This effect will depend

UN. 14. 2004⊊a 2:22PM

rmeate bilayer zed) form than ecles of many across memthe membrane asis of the pK, pK of the drug ients, the relaed drug (AH -) 1'] / [AH+] adient of 3 U prodicts a drug s substantially first reports of ed by Nicholls mulated inside radient (inside 3 have demonent entrapment posomes. The

generation of is straightfor-rapment, size, examination of as the neutral e to the acidic 1 proton pool. can therefore eparation with ct will depend

Volume II

FIGURE 3. Uptake of vincristine into DSPC:cholesterol (•, 0) and EPC:cholesterol (•) vesicles at 21°C (•, 0) and 60°C (•). Vincristine was incubated with PC:cholesterol vesicles (55:45, nol:mol) at a drug:lipid ratio of 0.17:1 (w/w) and trapping efficiencies were determined as described in the Methodology section. (From Mayer, L. D. et al., Cancer Res., 50, 575, 1990. With permission.)

on the vesicle size, drug:lipid ratio, and the number of protonatable groups per drug molecule. Consequently, these parameters must be carefully analyzed for individual liposomal drug formulations prepared by the pH gradient-mediated drug entrapment procedure. Further, the trapping efficiency is related to the absolute drug and lipid concentrations. Specifically, decreasing the liposome concentration for a given drug:lipid ratio will tend to result in decreased drug trapping efficiencies. In the sections to follow, these relationships are described in more detail and are related to specific liposomal doxorubicin and vincristine formulations.

B. INFLUENCE OF LIPID COMPOSITION

Alterations in the lipid composition of liposomes for use ln pH gradient-mediated drug encapsulation may be made on the basis of biological response requirements or pharmaceutical issues such as chemical and physical stability. These changes often involve manipulations of cholesterol content or the degree of saturation of the phospholipid acyl chains. In the context of pH gradient-mediated liposomal drug entrapment, changes in lipid composition primarily affect the relative rates of drug uptake and drug retention, whereas characteristics such as the maximum attainable drug:lipid ratio and pH gradient depletion are influenced to a far lesser extent.

Figure 3 shows the dependence of the rate of vincristine uptake into liposomes on lipid composition and incubation temperature. At an incubation temperature of 21°C vincristine accumulates inside EPC/cholesterol (55:45, mol:mol) liposomes, achieving 78% drug entrapment within 15 min and >90% entrapment within 1 h. In contrast, DSPC:cholesterol (55:45, mol:mol)

35

FIGURE 4. Release of doxorabioin from ilposomes under dialysis conditions at 37°C after pH gradient-mediated encapsulation (a to f) or passive encapsulation (g). The liposomes were composed of EPC:cholesterol at molar ratios of 55:45 (a, g), 67:33 (b), and 85:15 (c); pure EPC (f); EPC:EPG:cholesterol at molar ratios of 52.5:2.5:45 (e) and 27.5:27.5:45 (d).

liposomes entrap only 20% of the available vincristine over 1 h at this temperature. However, the DSPC:cholesterol liposomes are capable of encapsulating high levels of vincristine, since elevation of the incubation temperature to 60°C results in rapid and efficient (≈95%) vincristine entrapment for this vesicle system. Note that the relatively stable uptake level observed for the DSPC:cholesterol liposome system between 15 and 60 min suggests that this effect is not related solely to permeability rates. pH gradient-mediated uptake properties not only vary as a function of lipid composition, but also according to the drug to be entrapped. For example, whereas vincristine accumulates relatively rapidly in EPC:cholesterol liposomes at 21°C (Figure 3), doxorubicin incubated with these liposomes under identical temperature conditions results in only 30% entrapment over the same time course (Figure 1).

In addition to influencing the pH gradient-dependent uptake process, vesicle lipid composition can also exert effects on the drug retention properties of the liposomes subsequent to encapsulation. As shown in Figure 4, liposomal doxorubicin preparations varying only in lipid composition exhibit different drug release kinetics at 37°C. Three general trends can be identified from these data and other similar studies. First, increasing the cholesterol content of the bilayer membrane increases the ability of the liposomes to retain entrapped doxorubicin. Second, increasing the degree of acyl chain saturation of the phospholipid component (which increases membrane rigidity) increases

PAGE. 13

JUN 14 '04 15:38 9196608963

the drug retention properties of the liposomes. Third, inclusion of negatively charged lipids in the membrane results in increased leakage of lipophilic cations such as doxorubicin (Figure 4) and vincristine²⁰ from liposomes after pH gradient-mediated drug encapsulation.

C. INFLUENCE OF ENTRAPPED BUFFER COMPOSITION

As noted above, it is generally accepted that lipophilic amines permeate membranes in the neutral (deprotonated) form. Thus, vesicle uptake of these agents in response to transmembrane pH gradients results in a depletion of the internal proton pool as the neutral species is reprotonated upon exposure to the acidic intravesicular medium. Consequently, pH gradient-mediated drug encapsulation is dependent on the entrapped buffering capacity and a major determinant of this parameter is buffer composition. The three primary factors in this area are buffer chemical composition, buffer concentration, and the preuptake pH relative to the pK₂ of the selected buffer.

For liposomal systems exhibiting transmembrane pH gradients (inside acidic) in which the internal pH is <5.0 we have found citric acid to be the buffer of choice. It has several advantages over other buffers that are particularly applicable for drug delivery applications. First, it is a widely used, pharmaceutically acceptable excipient for use in injectable therapeutic formulations. Limitations must be placed on the total amount and concentration of citrate administered in vivo, however, due to its chelation of plasma calcium. Second, citric acid is a triprotic buffer that exhibits a wide buffering range (pH 3.0 to 6.5). Third, because citric acid has three titratable groups, osmotic contributions on a per proton equivalent basis are reduced as compared to diprotic and monoprotic buffers such as oxalic acid and acetic acid. This is an important consideration since liposomal systems exhibiting hyperosmolar intravesicular media are susceptible to serum- and plasma-induced leakage of entrapped contents.

Figure 5 demonstrates that for the lipophilic amine drug doxorubicin pH gradient-mediated drug entrapment is dependent on the buffer concentration in the entrapped aqueous compartment. For an initial doxorubicin to lipid ratio of 0.36:1 (mol:mol), increasing the citrate concentration from 10 to 100 mM produces an increase in the doxorubicin trapping efficiency from 24% to >98%. Further increases in the entrapped citrate concentration above 100 mM result in trapping efficiencies of approximately 100%. Again, this is consistent with the consumption of entrapped protons during the uptake process, where citrate concentrations below 100 mM result in a collapse of the transmembrane pH gradient and inhibition of further drug uptake. The relationship between drug uptake and buffer concentration will also depend on the vesicle aqueous captured volume and the number of titratable groups per drug molecule.

The buffering capacity inside the liposomes also can be increased by lowering the pH of the intravesicular media. The authors have observed that

ns at 37°C after pH osomes were com-1:15 (e); pure EPC i (d).

me Technology

h at this temable of encapbation temperine entrapment level observed I min suggests dient-mediated sition, but also eas vincristine t 21°C (Figure tical temperate time course

ptake process, ition properties re 4, liposomal whibit different dentified from esterol content is to retain enhain saturation idity) increases

Liposome Technology

38

FIGURE 5. Effect of internal buffering capacity on doxorubicin uptake into EPC:cholesterol liposomes extruded through 200 nm pore size polycarbonate filters. Vesicles were prepared in the presence of the indicated citric acid concentrations (pH 4.0). Vesicles (15 mM lipid) were incubated in the presence of doxorubicin (5 mM) for 5 min at 60°C after the vesicle external medium was adjusted to pH 7.8. Trapping efficiencies were determined as described in the Methodology section. (From Mayer, L. D. et al., Biochim. Biophys. Acta, 1025, 143, 1990. With permission.)

decreasing the pH of the citrate buffer below 4.0 results in the ability to increase the amount of doxorubicin that can be accumulated for a given citrate concentration. In addition, the pH gradient remaining subsequent to the uptake process is increased. However, a drawback to this approach is that further decreases in the pH exacerbates lipid stability problems associated with acid catalyzed hydrolysis of acyl chains in the phospholipid components.

D. INFLUENCE OF THE DRUG:LIPID RATIO

Given the relationship between drug uptake and depletion of the entrapped proton pool, it may be expected that attempts to encapsulate extremely high levels of drug will result in a collapse of the transmembrane pH gradient and reduced drug trapping efficiencies. The maximum drug uptake obtainable while maintaining a significant postencapsulation pH gradient can be determined by monitoring trapping efficiency, liposomal drug uptake, and ApH as a function of the drug:lipid ratio in the incubation mixture. 13 Figure 6 presents such an analysis for doxorubicin uptake into 175 nm EPC:cholesterol (55:45, mol:mol) liposomes. Varying the drug:lipid ratios for vesicles containing 300 mM citrate (pH 4.0) between 0.11:1 and 0.36:1 (mol:mol) has no effect on doxorubicin trapping efficiency and values of approximately 100% are achieved in this range. Increasing the incubation drug:lipid molar ratio above 0.36:1 results in uptake levels as high as 1.2 mol/mol lipid (Figure 6B). It should be noted that such entrapped drug:lipid ratios are several-fold higher than those obtainable by traditional passive entrapment techniques. Trapping efficiencies decrease significantly, however, as the initial drug:lipid

JUN 14 '04 15:39

FIGURE 6. Effect of the drug to lipid ratio on doxorubicin trapping efficiency (A), entrapped drug to lipid ratio (B), and post encapsulation pH gradient (C). EPC/cholesterol 175 nm vesicles (300 mM citric acid, pH 4.0 inside; pH 7.8 outside) were incubated (5 mM lipid) at 60°C for 5 min in the presence of doxorubicin at the indicated drug to lipid ratios. The amounts of entrapped drug as well as trapping efficiencies were determined as described in the Methodology section. Transmembrane pH gradients were determined subsequent to doxorubicin uptake by monitoring the transmembrane distribution of radioactive methylamine and correlating laside/outside concentrations to the transmembrane proton gradient as described in the Methodology section. (From Mayer, L. D. et al., Biochim. Biophys. Acra, 1025, 143, 1990. With

ne vesicle external s described in the 1025, 143, 1990. the ability to a given citrate

to EPC:cholesterol

; were prepared in

5 mM lipid) were

0

ne Technology

a given citrate
it to the uptake
is that further
lated with acid
ments.

f the entrapped extremely high H gradient and ake obtainable t can be detertake, and ΔpH ire.13 Figure 6 PC:cholesterol r vesicles con-(mol:mol) has approximately rug:lipid molar ol lipid (Figure tre several-fold ent techniques. nitial drug:lipid

ratio is increased above 0.55:1 (mol:mol). The reason for decreased trapping efficiencies observed for the high drug:lipid ratios can be seen in Figure 6C, in which the transmembrane pH gradient remaining after encapsulation is monitored. Systems exhibiting incubation drug:lipid ratios below 0.36:1 (mol:mol) maintain pH gradients in excess of 2.0. Drug entrapment does deplete the internal proton pool for all systems studied such that ΔpH values are lower than initially imposed. This effect becomes most pronounced for initial drug:lipid ratios >0.55:1 (mol:mol) where the postencapsulation pH gradient falls below 1.5 and corresponding trapping efficiencies decrease below 90%.

E. INFLUENCE OF VESICLE SIZE

Several reports^{5,14-16} indicate that decreasing vesicle size may be advantageous for a wide variety of therapeutic liposome applications. Studies have demonstrated that small liposomes are able to accumulate in disease sites such as tumors and exhibit extended circulation lifetimes, ¹⁵⁻¹⁷ a property desirable for designing slow release drug delivery carriers. Since decreasing the vesicle size will reduce the entrapped buffering capacity of the liposomes due to the dminished aqueous captured volume, it is important to characterize the relationship between liposome size and drug trapping efficiency as well as pH gradient stability.

FIGURE 7. Percent doxorubicin trapping efficiency and postencapsulation pH gradient for EPC/cholesterol (55:45, mol:mol) vesicles obtained by extrusion through 200 (0), 100 (O), 50 (0), and 30 nm (II) pore size polycarbonate filters. The mean diameters of these systems were 175, 98, 65, and 55 nm, respectively. All vesicles were prepared in the presence of 300 mM citrate buffer (pH 4.0). The indicated drug to lipid ratios reflect initial drug to lipid ratios in the incubation mixture (lipid concentration, 5 mM). Percent trapping efficiencies and postencapsulation pH gradients were determined as described in the Methodology section. (From Mayer, L. D. et al., Biochint, Biophys. Acta, 1025, 143, 1990. With permission.)

Figure 7 shows the dependence of doxorubician trapping efficiency and residual pH gradient on vesicle size for EPC:cholesterol (55:45, mol:mol) liposomes as a function of the incubation drug:lipid ratio. The vesicles were extruded through 200, 100, 50, and 30 nm pore size polycarbonate filters, resulting in measured mean diameters of 175, 98, 65, and 55 nm, respectively. Decreasing the vesicle size from 175 to 55 nm decreases the doxorubicin trapping efficiency from approximately 100 to 66%. A more dramatic difference is revealed in the postencapsulation pH gradient in which a value of 2.2 is observed for the 175 nm system while vesicles exhibiting a mean diameter of <100 nm retained a pH gradient of <0.5 U. At a drug:lipid ratio of 0.22:1 (mol:mol), trapping efficiencies in excess of 90% are obtained for all vesicle systems studied; however, residual pH gradients decrease with decreasing liposome size. Decreasing the drug:lipid ratio further to 0.1:1 (mol:mol) yields liposomal doxorubicin preparations that display trapping efficiencies in excess of 98% and postencapsulation pH gradients in excess

JUN 14 '04 15:40

ome Technology

Volume II

41

of 2.0 U. For liposomes with mean diameters <100 nm, increased trapping efficiencies and residual pH gradients can be achieved by increasing the entrapped citrate concentration above 300 mM (data not shown).

F. DRUG-SPECIFIC EFFECTS

The discussions to this point have assumed ideal behavior for drug redistribution across bilayer membranes in response to transmembrane pH gradients. However, for many drugs (including doxorubicin) the uptake levels achieved indicate transmembrane drug concentration gradients that are in excess of the pH gradient.13 Although such deviations from ideality are not fully understood, two parameters are likely to affect the final uptake characteristics of pH gradient-mediated drug entrapment. First, most drugs that can be entrapped inside liposomes in response to pH gradients have substantial lipophilic character. As a result, these agents will display a capacity to associate with or partition into the lipid bilayer. Due to the relatively high membrane surface area: aqueous volume ratio of the vesicle interior, it may be expected that a significant portion of accumulated drug molecules will partition into the membrane. The extent to which this influences pH gradientdependent drug uptake will depend largely on the lipophilicity of the drug in question, the prl of the vesicle interior, and the maximum capacity of the membrane for drug insertion. If the membrane-bound drug fraction is significant relative to the intravesicular soluble drug fraction, total uptake levels may be expected to surpass those predicted by the Henderson-Hasselbach relationship. Second, many of the systems described here display very high entrapped drug:lipid ratios that represent apparent intravesicular drug concentrations above 100 mM. As shown in Table 2, many lipophilic, cationic drugs have maximum solubilities far below this concentration. Consequently, it is unlikely that these accumulation levels represent actual drug concentrations that can be related directly to the transmemorane proton concentration gradient. The ability of these drugs to form microprecipitates or alternate phases inside liposomes would also increase equilibrium uptake levels since the exterior drug concentration would need to be depleted until [solubleAH+], J [solubleAH+] out = [H+] [H+] out. Again, the relative importance of these phenomena has not been fully defined, however, such properties may be useful in enhancing drug encapsulation characteristics.

IV. CONCLUDING REMARKS

The use of transmembrane pH gradients to encapsulate drugs in liposomes represents a versatile technique to achieve well-defined formulations for a variety of therapeutic agents and liposome types. By monitoring drug entrapment, drug retention in the liposomes, and the transmembrane pH gradient, liposomal formulations can be designed to exhibit specific lipid compositions,

ton pH gradient for 00 (4), 100 (C), 50 these systems were resence of 300 mM to lipid ratios in the cies and postencaption. (From Mayer,

efficiency and 5:45, mol:mol) ne vesicles were arbonate filters, m, respectively, he doxorubicin e dramatic difhich a value of ibiting a mean drug:lipid ratio are obtained for decrease with urther to 0.1:1 isplay grapping

lients in excess

JUN 14 '04 15:41

Lipusome Technology

TABLE 2
Apparent Maximum Drug Solubility in 300 mM Citrate (pH 5.0)

Drug	Apparent max solubility (mM)		
Mitoxonthrone	< 0.01		
Epirubion	0.26		
Daunorubicin 1	9.10		
Doxorubicin	0.24		
Vincustine	>35		
Vinblastine	19.1		
Lidocaine	240		
Dihucsine	>700		
Propranoiol	326		
Timolol	135		
Quinidine	5.83		
Dopamine	1400		
Imigramine	4,43		
Quinine	3.05		
Chloroquine	585		
Quinagrine	90		
•			

From Medden, T. D. et al., Chem. Phys. Lipids, 53, 37, 1990. With permission.

size distributions, and drug:lipid ratios while maintaining high trapping efficiencies and minimal drug leakage. Several features of this process are particularly desirable for pharmaceutical applications. First, the ability to entrap virtually 100% of the drug in preformed liposomes enables the formulation to be constituted just prior to use. This alleviates possible stability problems related to drug chemical stability and drug retention in the liposomes that are associated with traditional passive entrapement procedures. In addition, manufacturing concerns are greatly simplified by the fact that highly toxic drugs are not present during liposome manufacturing processes. Second, the pH gradient imparts excellent drug retention properties to the liposomal systems subsequent to drug uptake. This property is particularly germane for applications in which liposomes are utilized as slow release drug carriers in the circulation. Third, since drug uptake is relatively independent of vesicle lipid composition, potentially labile lipids can be omitted unless dictated by biological response requirements. Fourth, drug:lipid ratios far greater than those previously obtainable can be achieved, thus reducing production costs associated with lipid components. These properties suggest that pH gradientmediated drug encapsulation will be well suited for preparing therapeutically effective and pharmaceutically acceptable liposomal formulations for a wide range of drugs.

JUN 14 '04 15:41

REFERENCES

- Ostro, M. J., Liposomes from the bench to the marketplace: doxorubicin liposomes as an example, in Liposomes in the Therapy of Infectious Diseases and Cancer, Lopez-Berestein, G. and Fidler, I. J., Eds., Alan R. Liss, New York, 1989, 155
- 2 Madden, T. D., Bally, M. B., Hope, M. J., Cullis, P. R., Schieren, H. P., and Junoff, A. S., Protection of large unilamellar vesicles by trehalose during dehydration: retention of vesicle contents, Biochim. Biophys. Acta, 817, 67, 1985.
- 3 Mayer, L. D., Bally, M. B., and Cullis, P. R., Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient, Biochim. Biophys. Acta, 857, 123, 1986.
- 4. Mudden, T. D., Harrigan, P. R., Tai, L. C. L., Bally, M. B., Mayer, L. D., Redelmeier, T. E., Loughrey, H. C., Tilcock, C. P. S., Reinish, L. W., and Cullis, P. R., The accumulation of drugs within large unilamellar vesioles exhibiting a proton gradient: a survey, Chem. Phys. Lipids, 53, 37, 1990.
- 5 Gruner, S. M., Lenk, R. P., Janoff, A. S., and Ostro, M. J., Novel multilayered lipid vesicles: comparison of physical characteristics of multilamellar liposomes and stable pleurilamellar vesicles. *Biochamistry*, 24, 2833, 1985.
- Mayer, L. D., Hope, M. J., Cullis, P. R., and Janoff, A. S., Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles, *Biochim. Biophys. Acta*, 817, 193, 1985.
- Hope, M. J., Baily, M. B., Mayer, L. D., Janoff, A. S., and Cullis, P. R., Generation
 of multilamellar and unilamellar phospholipid vesicles, Chem. Phys. Lipids; 40, 89,
 1986.
- Mayer, L. D., Tai, L. C. L., Ko, D. S. C., Masin, D., Ginsberg, R. S., Cullis, P. R., and Bally, M. B., Influence of vesicle size, lipid composition, and drug to lipid ratio on the biological activity of liposomal doxorubicin in mice, Cancer Res., 49, 5922, 1989.
- Mayer, L. D., Bally, M. B., Loughrey, H., Masin, D., and Cullis, P. R., Liposomal vineristine preparations which exhibit decreased drug texicity and increased activity against murine L1210 and P388 cumors, Cancer Res., 50, 575, 1990.
- Nichols, J. W. and Deamer, D. W., Carecholamine uptake and concentration by liposomes maintaining pH gradients, Biochim. Biophys. Acta, 455, 269, 1976.
- Mayer, L. D., Wong, K. F., Menon, K., Chong, C., Harrigan, P. R., and Cuills, P. R., Influence of ion gradients on the transpilayer distribution of dibucaine in large unilamellar vesicles. Biochemistry, 27, 2053, 1988.
- Bally, M. B., Mayer, L. D., Loughrey, H., Redelmeier, T.. Madden, T. D., Wong, K., Harrigan, P. R., Hope, M. J., and Cullis, P. R., Dopamine accumulation in large unilamellar vesicle systems induced by transmembrane ion gradients. Chem. Phys. Lipids. 47, 97, 1988.
- Mayer, L. D., Tai, L. C. L., Bally, M. B., Mitilenes, G. N., Ginsberg, R. S., and Cullis, P. R., Characterization of liposome systems containing doxorubicin entrapped in response to pH gradients. *Diochim. Biophys. Acta*, 1025, 143, 1990.
- 14. Gabizon, A., Goren, D., Fuks, A., Berenholz, Y., Dagon, A., and Meshoren, A., Enhancement of adriamycin delivery to liver metastatic cells with increased tumoricidal effect using liposomes as drug carriers, Cancer Res., 43, 4730, 1983.
- Present, C. A., Proffitt, R. T., Smith, J. D., and McKenna, R. J., Evidence for solid tumor accumulation of intravenously injected lipid vesicles (LV) in patients, Am. Assoc. Concer Res., 27, 158, 1986.
- Gabizon, A. and Papahadjopoulos, D., Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors, Proc. Natl. Acad. Sci. U.S.A., 85, 6949, 1988.

st, the ability to enables the forpossible stability in the liposomes ocedures. In ade fact that highly ucesses. Second, to the liposomal larly germane for e drug carriers in endent of vesicle nless dictated by far greater than production costs that pH gradientig therapeutically

ations for a wide

high trapping of-

this process are

IN. 14. 2004

PHYSIOLOGICAL REVIEWS Vol. 60. No. 2. April 1980 Pronted in U.S.A.

Water Permeability of Lipid Membranes

R. FETTIPLACE AND D. A. HAYDON

Physiological Laboratory, University of Cambridge,	Cambridge,	England
I. Introduction		51
II. Optically Black Lipid Films		51
A. Structure and relation to lipid bilayer		51
B. Measurement of water permeability		51
C. Results for unmodified bilayers		52
D. Permeability to nonelectrolytes		52
E. Pore-containing membranes		52
III. Liposomes		52
A. Osmotic-shock experiments		52
B. Spectroscopic techniques		53
C. Results		58
IV. Discussion		530
A. Comparison between black-film and liposome results	• • • • • • • • • • • • • •	530
B. Mechanisms of water transport	.	53
C. Predictions based on solubility and diffusion mechanic		
D. Environment of lipid chains and "bulk hydrocarbon"	assumption	54
E. Relation between osmotic flow and tracer diffusion .		54;
F. Water permeability of a biological membrane		54-
V Summary		510

I. INTRODUCTION

Water balance is a central feature in the adaptation of an animal to its environment. Any discussion of water balance requires consideration of the movement of water across cells. The swelling or shrinking of a cell when placed in a nonisotonic solution is usually taken to indicate that the cell contents are enclosed in a semipermeable membrane (88). This cell membrane behaves as a selective permeability barrier to the passage of polar solutes and water into and out of the cell and is thought to consist to some extent at least of a bimolecular lipid leaflet. In practice a quantitative determination of the water permeability of a cell membrane is often complicated by the presence of other diffusion barriers and by the geometrical complexity of the tissue. The study of water transport in artificial lipid membranes, the subject of this review, may help to improve our understanding of the problems in the interpretation of measurements on biological membranes. In addition, while bearing some similarities to biological membranes, the artificial system is sufficiently simple chemically for there to be some prospect of understanding the mechanisms of water transport. Moreover these mechanisms may also apply to the more complex biological membranes.

510 0031-9339/80/000000-00\$01.25 Copyright © 1980 the American Physiological Society lembranes

NC

ımbridge, England

..... 51 51 51

522 526 527 527 528 528

> 533 534 536 536

ption 541 543

on of an animal to its consideration of the g of a cell when placed, the cell contents are embrane behaves as a tes and water into and least of a bimolecular ne water permeability nee of other diffusion e. The study of water is review, may help to me interpretation of while bearing some is sufficiently simple no the mechanisms of

rican Physiological Society

o apply to the more

Two methods have been used to measure the water permeability of the cell membrane. The diffusional permeability coefficient (P_d) has been determined by measuring the exchange of radioactively labeled water between the cell and its surroundings. Alternatively a permeability coefficient (P_t) has been obtained from the hydraulic conductivity of the membrane, the latter being inferred from the net water flux generated by a given gradient of an osmotic or, more rarely, a hydrostatic pressure. In practice this usually involves measuring the rate of change of the volume of a cell when it is immersed in a nonisotonic solution. Both diffusional and net flux techniques have been applied most extensively to free-living cells such as erythrocytes (51, 97, 130) or eggs (81, 87, 88, 106). Even for such simple single-cell systems, there have been difficulties in interpreting the results. These revolve around whether the cell membrane really constitutes the rate-limiting step in the transport of water and solutes. It has been argued that the diffusion of water both within the cytoplasm (34) and in unstirred layers outside the cell (32) may pose extra limitations to transport. The unstirred layer is a layer of static fluid close to the membrane where the concentrations are different from those in the bulk solution. Within such layers there is no convective mixing and movement takes place solely by diffusion. Whether diffusion in these layers limits the rate of movement of a given substance depends largely on the membrane's permeability to that substance, as discussed later.

The presence of unstirred layers can lead to an underestimate in the true membrane permeability. This problem is likely to be most serious for measurements of the diffusional permeability P_a (see sect. II) and could lead to a difference in the apparent permeability determined by the two different methods. To a lesser extent, it will also cause the osmotic permeability P_t to be underestimated. It has been a consistent finding in experiments on biological membranes that P_a was smaller than P_t (72, 97, 106). This was originally interpreted as being due to the fact that water was moving through aqueous channels or pores in the membrane (80, 97, 106). Depending on their dimensions, these channels could present a different resistance to bulk flow and diffusion, and hence the difference in permeabilities was used to try to derive the dimensions of the channel (80, 97, 102, 132). The effect of the presence of both aqueous channels and unstirred layers on the measured permeability ratio P_d/P_a for artificial membranes is discussed later.

Even if in a given system the measurements of the cell water permeability accurately reflect the permeability of the surface membrane, there are still difficulties in understanding the mechanism of transport in such a membrane. The problem arises from the chemical complexity of a biological membrane and the inability to manipulate the composition to any great extent. The lipid bilayer is thought to be a fundamental component of biological membranes, but there is a mixture of lipids present with different head groups and chain compositions, and the permeability and fluidity of the bilayer may also be modified by membrane proteins. The heterogeneity and complexity of biological membranes thus require the use of a simpler system in order to understand some of the detailed mechanisms. The bimolecular lipid leaflet, as a likely component in the biological

Ę

Ì

512

membrane structure, is such a system and is the only type of artificial membrane considered in this review. Water permeabilities have also been measured for artificial membranes formed from other substances [e.g., cellophane, cellulose acetate, Visking dialysis tubing (87, 112, 135)], but these are not discussed here.

Ideally the water permeability of a lipid bilayer should be measured for a single pure lipid leaflet extended across a hole in a septum separating two semi-infinite compartments. The Montal-Mueller "solventless" bilayers (93) seem at first sight to meet these requirements, but in practice their use for water permeability measurements is not technically easy and no work on this system has yet been reported. Two other preparations, the optically black lipid film and the liposomal or vesicular suspension, are available, however, and each has its advantages and disadvantages. These are discussed in detail in sections II and III.

One of the main findings from studying artificial lipid membranes is that the magnitude of the water permeability can vary over nearly two orders of magnitude depending on the type of lipid used. In addition the permeability can be increased further by the addition of polypeptides that form hydrophilic channels through the nonpolar core of the membrane. The conclusions about the mechanisms of water transport across lipid membranes are presented in section IV, along with the significance of such conclusions for biological membranes. This review is not concerned with the detailed results of water permeability measurements on biological membranes and for this kind of information the reader is referred to other sources (35, 51, 72).

II. OPTICALLY BLACK LIPID FILMS

A. Structure and Relation to Lipid Bilayer.

Before presenting the results of water permeability studies on black lipid films, it is desirable to say something concerning their structure and relation to the kind of lipid leaflet likely to be present in biological membranes. Many questions discussed in this section have been covered in more detail in a review of black-film techniques (47).

A "black" lipid film is formed by extending a solution of a lipid in a nonpolar solvent across a hole in a suitable support, under an aqueous solution. On completion of the drainage process the structure is schematically as illustrated in Figure 1. In addition to the planar region of thin membrane in the center of the hole, there is a ring of bulk lipid solution, often described as the annulus but completely analogous to the Plateau-Gibbs border of an aqueous soap film. By an appropriate choice of lipid it is possible to produce a system in which the thin film, the annulus, and the aqueous solution are in chemical equilibrium. From consideration of such a system it is obvious that since the chemical potentials of all components are equal in all phases, there must be some, however little, nonpolar solvent in the membrane. Owing to the presence of this solvent, the black film is never quite comparable to the lipid leaflet found in biological

cor sul are eri

bla

Aj.

fer pridis by aquido plical bli

m

co bli

> ph arth

> > the

YDON V

Volume 60

y type of artificial membrane ave also been measured for s [e.g., cellophane, cellulose hese are not discussed here. er should be measured for a n a septum separating two "solventless" bilayers (93) n practice their use for water and no work on this system optically black lipid film and e, however, and each has its n detail in sections II and III. l lipid membranes is that the over nearly two orders of ddition the permeability can ides that form hydrophilic e. The conclusions about the nes are presented in section biological membranes. This ilts of water permeability his kind of information the

ibility studies on black lipid sir structure and relation to ological membranes. Many id in more detail in a review

ution of a lipid in a nonpolar r an aqueous solution. On schematically as illustrated embrane in the center of the scribed as the annulus but an aqueous soap film. By an ystem in which the thin film, emical equilibrium. From e the chemical potentials of t be some, however little, resence of this solvent, the leaflet found in biological

April 1980

DEPT OF MECH ENG

BILAYER WATER PERMEABILITY

513

membranes. However, as will be shown, solvents of more than a certain molecular volume are largely excluded from lipid bilayers and may occupy only a few percent by volume of the membrane. For systems at equilibrium' the presence of the annulus does not necessarily have to be considered when discussing the solvent content of the membrane because the latter is determined by the concentration (or, strictly, the activity) of the solvent in solution in the aqueous phase. Thus, hypothetically at least, a black film of composition identical to the equilibrium films under discussion may be formed by placing a planar lipid leaflet in an aqueous solution of the solvent such that, after adsorption of the solvent, the concentration is similar to that in the actual black-film system. By extension of this line of thought, a biological cell membrane, such as a red blood cell ghost, when placed in an appropriately

black film in which the membrane proteins are embedded.

The clearest examples of the equilibrium black films are probably those involving monoglycerides and n-alkanes (7, 46, 115). By contrast most of the phospholipid black films described in the literature exhibit characteristics that are time dependent in some respect (23, 46, 58, 147). With sufficient care during the experimental procedure, however, it is possible to prepare membranes with

concentrated solution of nonpolar solvent, will become effectively a spherical

^{&#}x27;Black films, including spherical black films (99), usually have finite tensions, which cause them to collapse when perturbed beyond some critical level. Thus the films are really in a metastable equilibrium. This does not, however, affect the discussion of film structure that follows.

reproducible, stable capacitances (46, 58, 115) that respond reversibly to compression by electric fields (115). These films can remain for hours without significant changes (58) and their structure can thus remain effectively constant over the time of a water permeability experiment.

Black-film structure and composition have been determined by various techniques, but usually a common line of argument is used that briefly is as follows. First, the thickness of the hydrocarbon-chain region of the film is estimated; this yields the volume of unit area of the nonpolar part of the leaflet. Next, the number of lipid molecules per unit area is determined; from this and an approximate knowledge of the molecular volume or density of the lipid chains, the volume occupied by the lipid can be calculated. The difference between this volume and the total volume of the nonpolar part of the membrane is assumed to be occupied by the solvent.

The thickness of the hydrocarbon-chain region of the film may be obtained from electrical capacitance measurements, provided a dielectric constant can be assumed. In fact when alkanes are used as solvents for black-film formation there is little scope for error in this assumption (for a detailed discussion see 47) and the thicknesses obtained are probably accurate to within 2-3 Å.

The number of lipid molecules per unit area has been determined for a few black films, either from the application of surface thermodynamics (29, 47), or by the method of mercury-droplet sampling (47, 98). No serious discrepancies between these two techniques have emerged, and when n-alkanes are used as solvents the area per molecule for a given lipid is effectively independent of the alkane selected (7, 46, 98, 145). The film thickness, on the other hand, is strongly dependent on the chain length of the alkane. Tables 1 and 2 show some of the structural features of the better characterized black films. Capacity measurements for the "solventless" membranes made by the Montal-Mueller method give hydrocarbon-layer thicknesses very close to that obtained from X-ray diffraction in the multilamellar liquid crystal (15, 44, 45, 62). This helps to justify the calculation of thicknesses from capacity measurements. It is also physically reasonable that the smaller alkanes should thicken the membranes more than the larger ones (which are eventually excluded almost entirely) and that the maximum thicknesses found for both the phospholipids and the monoglycerides are about twice the extended chain length of the lipids. A film thicker than this would have a layer of pure solvent in the middle and hence no obvious means of achieving stability.

When cholesterol, in addition to phospholipid, is added to the film-forming solution, the final membranes obtained are usually thinner than in the absence of cholesterol [though not when hexadecane is used as a solvent (46)]. As shown in Table 2 and in a previous publication (63), the introduction of cholesterol

[&]quot; It is doubtful whether these membranes are ever really solventless, since attempts to form them in the complete absence of any solvent or grease, in our experience, fail. Indeed, theoretical arguments have been advanced that this should be so (146). Nevertheless the Montal-Mue ler membranes should contain very little solvent.

DEPT OF MECH ENG

Volume 60

nat respond reversibly to a remain for hours without remain effectively constant

en determined by various t is used that briefly is as hain region of the film is nonpolar part of the leaflet. etermined; from this and an density of the lipid chains, he difference between this ne membrane is assumed to

of the film may be obtained a dielectric constant can be as for black-film formation cletailed discussion see 47) to within 2–3 Å.

been determined for a few modynamics (29, 47), or by No serious discrepancies then n-alkanes are used as ectively independent of the the other hand, is strongly 1 and 2 show some of the films. Capacity measurene Montal-Mueller method that obtained from X-ray 15, 62). This helps to justify ments. It is also physically the membranes more than ost entirely) and that the ds and the monoglycerides ds. A film thicker than this hence no obvious means of

added to the film-forming nner than in the absence of solvent (46)]. As shown in atroduction of cholesterol

lventless, since attempts to form perience, fail. Indeed, theoretical levertheless the Montal-Mueller April 1980 BILAYER WATER PERMEABILITY

515

TABLE 1. Structural features of monoolein black films and "solventless" bilayers

Membrane (Monoolein, ca. 6 mM in n-Alkane)	Film Electrical Capacity per Unit Area, aF/cm ²	Hydrocarbun- Ləyer Thickness, A	Volume Fraction of Alkans in Film	Area per Molecule of Monoclein, A ⁿ /molecule	Re
n-Heptane	0.389	47.1	0.48*	39)	
n-Octane	0.385	47.8	0.49	39	
n-Decane	0.386	48.1	0.49*	39	
n-Dodecane	0.414	45.3	0.46	39 }	11:
n-Tetradecane	0.465	40.7	0.40*	39	
u-Pentadecane	0.520	36.6	0.38	39	
n-Hexadecane	0.585	32.7	0.26-	39	
None	0.745	25.0	0	,	15

^{*} These values differ slightly from those in Ref. 46 because different assumptions were made concerning molecular volumes.

substantially reduces the thickness of a lecithin/decane black film and, from the values tentatively deduced for the areas per molecule (29), it can be concluded that a considerable proportion of the decane is probably displaced, giving an almost solventless film.

TABLE 2. Structural features of phosphatidylcholine black films and "solventless" bilayers

Membrane	Film Electrical Capacity per Unit	Hydrocarbon- Layer	Volume Fraction			
Lipiu	Solvent	Area, #f/em=	Thickness.	of Alkane in Film	of Lipid,	Ref.
1,2-Dioleyl phosphatidyl- choline	n-Decane	0.890	48.3	0.85	61	116
Egg phosphatidylcholine	Isooctane	0.387	48.2	0.37	61	44
	n-Decane	0.387	48.6	0.37	61	44, 46
	n-Dodecane	0.445	42.7	0.29*	61	44, 46
	n-Tetradecane	0.526	36.6	0.17*	61	44, 46
	n-Hexadecane	0.603	32.2	0.05*	61	44, 46
	n-Octadecanet	0.627	\$1.0	0.02	61	44
1,2-Dioleyl phosphatidyl- choline	None	0.721	25.8	Zero		15
Egg phosphatidylcholine	None	0.76	25.6	Zero		45
Liquid crystal	None		26‡	Zero	71.7	131
Egg phosphatidylcholine + cholesterol (9 and 28 mM, re-						
spectively)	n-Decane	0.600	33.6	Small		45

^{*} These values differ slightly from those of Ref. 46 because different assumptions were made concerning molecular volumes. † 32°C. ‡ X ray.

2:31PM

THE PROPERTY OF THE PARTY OF TH

Volume 60

Tables 1 and 2 show that the choice of solvent is important when working with black films. However, the approach described above gives only indirectly the proportion of solvent in the film and it would be useful to be able to determine the solvent content directly. Unfortunately thermodynamic methods fail because they give only surface excess concentrations and, although the technique of mercury-droplet sampling should work in some instances, it gives gross overestimates in others owing to the tendency of microscopic lenses of solvent to form in the films. These microlenses arise almost certainly because, in equilibrium systems, the final stages of drainage of the film involve a disproportionation that yields the bilayer and a small amount of bulk lipid solution that is temporarily trapped in the film. This bulk solution quickly takes the form of microscopically visible droplets or lenses that drift about in the film for some time before coalescing with the annulus. The lenses do not usually occupy more than a small percentage of the film area [e.g., their presence scarcely affects the capacity per unit area (6, 47, 114)] but they contain a large proportion of the solvent and this is picked up by the mercury droplets. Lens formation is most prominent in systems where highly water-insoluble solvents (e.g., n-decane-n-hexadecane) are used. In systems containing the more water-soluble and volatile lower homologues (e.g., n-hexane-n-octane) the aqueous-phase concentration of the alkane is usually sufficiently far below the equilibrium value that the excess solvent in the film dissolves out before lenses can form (6, 47, 114). Although lenses are commonly observed, their presence (or absence) does not affect the solvent contents given in Tables 1 and 2, which are equilibrium values, nor is there any reason to suppose that they significantly affect the water permeability of a black film.

B. Measurement of Water Permeability

When the black-film system is immersed in an ideal aqueous solution of only two components (water and a solute) the fluxes across the membrane are given by irreversible thermodynamics as (78)

$$J_{v} = L_{p}(\Delta p - \sigma R T \Delta c_{s})$$

$$J_{c} = c_{s} L_{p}(1 - \sigma) \Delta p + [\omega - c_{s} L_{p}(1 - \sigma)\sigma] R T \Delta c_{s}$$

$$(2)$$

where J_{ν} is the volume flux, J_{ν} is the solute flux, L_{ν} is the filtration coefficient, σ is the reflection coefficient, R is the gas constant, and T is the temperature; c_s is the mean solute concentration, Δc_s and Δp are the solute concentration and hydrostatic pressure differences, respectively, across the membrane, and ω is a permeability coefficient for the solute. Thus a volume flux may arise in two different ways, one because of a finite hydrostatic pressure difference across the membrane and the other through the asymmetric distribution of a solute for which the reflection coefficient is not zero. In practice

HAYDON

Volume 60

ent is important when working ed above gives only indirectly e useful to be able to determine thermodynamic methods fail ons and, although the technique ome instances, it gives gross microscopic lenses of solvent to almost certainly because, in inage of the film involve a a small amount of bulk lipid his bulk solution quickly takes ises that drift about in the film us. The lenses do not usually lm area [e.g., their presence 114)] but they contain a large y the mercury droplets. Lens ighly water-insoluble solvents systems containing the more e.g., n-hexane-n-octane) the ually sufficiently far below the ilm dissolves out before lenses only observed, their presence given in Tables 1 and 2, which suppose that they significantly

n ideal aqueous solution of only es across the membrane are

(1)

$$1 - \sigma \sigma RT \Delta c_s \tag{2}$$

 $L_{\rm p}$ is the filtration coefficient, int, and T is the temperature; are the solute concentration vely, across the membrane, solute. Thus a volume flux f a finite hydrostatic pressure er through the asymmetric efficient is not zero. In practice

BILAYER WATER PERMEABILITY April 1980

the maximum hydrostatic pressure differences that black films will support produce extremely small volume fluxes of water and in all measurements so far reported, p was effectively zero. Volume fluxes arise therefore almost exclusively from osmotic pressure gradients. Isotopic water fluxes are described by Equation 2. Thus if tritiated water is considered to be the solute ih normal water, $\sigma = 0$, $\Delta p = 0$ and Equation 2 reduces to

$$J_s = \omega R T \Delta c_s \tag{3}$$

Two different techniques are required to measure volume and solute water fluxes, respectively; these are described in separate sections below. Neither measurement is entirely straightforward, because in both instances unstirred layers adjacent to the membrane can have resistances comparable to that of the membrane itself.

Osmotic fluxes

Apparatus suitable for this type of measurement has been described by a number of authors (25, 42, 47, 56, 67, 74). The bare essentials are to be able to form a membrane that initially separates two aqueous solutions of similar composition and, when the membrane is stable in its area and thickness, to change to a known extent the osmotic pressure on one side only. The resulting volume flow is measured by closing one of the aqueous compartments so that it contains no air and so that changes in its volume can be backed off by means of a micrometer syringe. A suitable apparatus is illustrated in Figure 2, a detailed description of which has been given elsewhere (25, 47). Briefly, black films are formed across one end of a piece of polytetrafluoroethylene (PTFE) tubing. A Hamilton syringe, coupled to a micrometer drive, is attached to the other end of the tubing and creates the required closed compartment of adjustable volume The steel needle of the syringe and a stainless steel wire in the outer compart ment may be used as electrodes to monitor changes in membrane capacity. The whole unit is placed in an air thermostat that can be controlled to about $0.5^{\circ}\mathrm{C}$

The brush or pipette techniques (47, 94, 134) may conveniently be used to form the membranes, which may be inspected and have their areas measured with the aid of a low-power microscope. When the membrane has reached a steady state the external solution is either exchanged or concentrated by the addition of a small volume of solid or highly concentrated impermeable solute The resulting volume flux of water causes the membrane to bulge inward or outward, as may be seen through the microscope. The micrometer is then adjusted to restore the membrane to its planar state. This operation is carried out at regular intervals and the water flux J_v is determined from a plot of the volume flow against time, examples of which are given in Figure 3, and a knowledge of the membrane area.

Volume 60

JUN. 14. 2004

田 王 会議者を保護されてお願い。 できまず

R. FETTIPLACE AND D. A. HAYDON

FIG. 2. Apparatus for measuring osmotic water permeabilities of black films.

If the hydrostatic pressure difference across the membrane is taken to be zero and the solute is assumed impermeable (for purely lipid membranes this will be effectively true for solutes such as inorganic salts, urea, glucose, sucrose), i.e., $\Delta p = 0$, $\sigma = 1$, Equation 1 reduces to

$$J_{v} = -L_{p}RT\Delta c_{z} \tag{4}$$

The osmotic water permeability coefficient, normally symbolized as P_{t} , is de-

Volume 60

niltan syringe

capacitance bridge

thermistor

pilities of black films.

membrane is taken to be lipid membranes this will , urea, glucose, sucrose),

(4)

r symbolized as P_{I} , is de-

FIG. 3. Volume flow of water across black films formed from various lipids in decane: 0, ~. egg phosphatidylcholine; △ dioleyl phosphatidylcholine; □ glyceryl monooleate; • sphingomyelin/ cholesterol. Osmotic gradient was 0.3 M NaCl ($T=25^{\circ}$ C) for all films except sphingomyelin, where it was 0.47 M NaCl (T = 30°C). Different slopes of plots reflect differing film areas as well as different permeabilities. [From Fettiplace (45).]

TIME (min)

fined as3

$$P_{\rm f} = L_{\nu} \frac{RT}{V_{\omega}} \tag{5}$$

where V_a is the partial molar volume of water. Taking into account nonideality in the aqueous solutions and using Equation 5, Equation 4 may be rewritten

$$J_{v} = P_{1}^{L} \bar{V}_{\omega} (g_{22} c_{22} - g_{31} c_{31})$$
 (6)

 $^{^{2}}$ P_{t} is expressed in this form so that it has the units of a permeability coefficient. A P_{t} of 1 cm s⁻¹ is equivalent to a hydraulic conductivity (L_p) of 7.386 \times 10 $^{-1}$ cm·s⁻¹·atm⁻¹ or to $L_p \cdot RT$ of 18.07 cm¹·s⁻¹·osmol⁻¹. both at 25°C.

Volume 60

where c_{s2} and c_{s1} are the concentrations of solute on the two sides of the membrane and y_{s2} and y_{s1} are the corresponding rational osmotic coefficients. Obviously if $\sigma < 1$ or $\omega > 1$ the interpretation of volume flows is more complicated.

In Equation 6 c_{s2} and c_{s1} are the solute concentrations at the membrane surfaces and cannot in general be assumed to be equal to the bulk concentrations in the two compartments. This is because the water that passes through the membrane dilutes the solution it enters and concentrates the solution it leaves. Solute concentration gradients thus tend to occur, the size and importance of which depend on their rate of dissipation through backdiffusion of the solute and by the various stirring effects that may be present. If it is assumed that the solute concentration c_s has its bulk value $c_s(b)$ to within a distance δ of the membrane surface, that its value at the membrane surface is $c_s(m)$, and that no stirring occurs in the boundary layer of thickness δ , then for that side of the membrane toward which the water is moving, $c_s(m)$ and $c_s(b)$ are related by the expression (32)

$$c_s(m) = c_s(b) \exp[-J_v \delta/D_s] \tag{7}$$

where D_n is the diffusion coefficient of the solute. The use of Equation 7 is complicated by the fact that the flux J_v is related to $c_{\kappa}(m)$ also through Equation 6. Using an iterative approach, Hanai and Haydon (56) concluded that in the black-film systems that they studied a neglect of the effects underlying Equation 7 should give rise to serious errors in the permeability coefficient. [A similar conclusion may be reached from the recent analysis of Pedley and Fischbarg (104)]. However, Hanai and Haydon also pointed out that although the uncorrected permeability coefficients obtained with different solutes were very similar, the application of corrections according to Equation 7 led to permeability coefficients that depended strongly on the nature and concentration of the osmotically active solute. This finding seemed sufficiently unlikely for it to be suggested that, in the osmotic systems, the effects of unstirred layers may be largely nullified by natural convection (56). Thus the differences between the solute concentrations $c_s(m)$ and $c_s(b)$ would give rise to density gradients that would in turn produce convection and mixing of the solution adjacent to the membrane (56). An approximate theoretical treatment of natural convection during osmotic flow has to some extent confirmed this idea (41). In general therefore errors caused by unstirred layers in osmotic permeability studies on lipid bilayers seem likely to be fairly small. However, whether this is so in any particular instance will depend strongly on the solute used and on the design of the measuring chamber, and of course the errors will become more serious the more permeable the bilayer.

2. Isotopic exchange diffusion

The diffusion of tritiated water across black films has been studied by a number of authors (25, 42, 57, 74, 141–143). The technical problems involved,

Volume 60

,

te on the two sides of the ational osmotic coefficients. of volume flows is more

ntrations at the membrane alto the bulk concentrations ter that passes through the trates the solution it leaves. the size and importance of ckdiffusion of the solute and it. If it is assumed that the within a distance δ of the surface is $c_s(m)$, and that no δ , then for that side of the and $c_s(b)$ are related by the

$$O_s$$
] (7)

. The use of Equation τ is ited to $c_s(m)$ also through Haydon (56) concluded that ect of the effects underlying permeability coefficient. [A ent analysis of Pedley and o pointed out that although with different solutes were ding to Equation 7 led to n the nature and concentramed sufficiently unlikely for e effects of unstirred layers hus the differences between ve rise to density gradients f the solution adjacent to the ment of natural convection l this idea (41). In general otic permeability studies on er, whether this is so in any te used and on the design of vill become more serious the

films has been studied by a echnical problems involved,

April 1980 BILAYER WATER PERMEABILITY

521

aside from the effects of unstirred layers, are rather less serious than for osmotic flux measurements. The main requirement is simply that the two aqueous compartments should be completely isolated from each other, but that at the same time samples should be obtainable from one or both of them. Other details of the technique have been described elsewhere (47).

Equation 3 may be rewritten

$$J_{s} = -P_{d}(c_{sx} - c_{s1}) (8)$$

where $P_d = \omega RT$ and $c_{\rm st}$ and $c_{\rm st}$ are the concentrations of the isotope on the two sides of the membrane. Unlike the situation in the osmotic flux measurements, where density gradients appear largely to nullify the effects of unstirred layers, isotope diffusion creates no density gradients and unstirred layers pose a serious problem. The evidence for the presence and thickness of the unstirred layers in black-film systems came originally from a series of experiments in which water fluxes were measured across open holes and holes containing glass meshes (57). Subsequently a great deal more evidence has been accumulated (5, 25, 42, 71, 141–143). As a diffusion barrier is in series with the lipid membrane, the combined unstirred-layer permeability $D_{\rm H,o}/(\delta_{\rm t} + \delta_{\rm s})$ must be added reciprocally to the membrane permeability $D_{\rm H,o}/(\delta_{\rm t} + \delta_{\rm s})$ must be added reciprocally to the membrane permeability $D_{\rm H,o}/(\delta_{\rm t} + \delta_{\rm s})$ must be remeability of the membrane P, which is obtained from experiment, is given by

$$\frac{1}{P} = \frac{1}{P_d} + \frac{\delta_1 + \delta_2}{D_{B,0}} \tag{9}$$

From the estimates of $\delta_1 + \delta_2$ it becomes clear that, despite maximal stirring of the bulk phases, the second term on the right-hand side of Equation 9 is normally comparable to the first. Various methods have been used in attempts to overcome this problem. The first was based on a suggestion by Ginzburg and Katchalsky (53). This approach involves placing in the hole normally occupied by the lipid membrane first one and then two layers of identical membrane—the thinner varieties of cellophane being usually suitable. The permeability to tritiated water is measured in each case, yielding two values, P' and P'', which may be expressed

$$\frac{1}{P'} = \frac{1}{P_0} + \frac{\delta_1 + \delta_2}{D_{1120}} \tag{10}$$

and

$$\frac{1}{P''} = \frac{2}{P_{\rm d}} + \frac{\delta_1 + \delta_2}{D_{\rm HeO}} \tag{11}$$

where P_d is here the permeability of a single layer of cellophane. Knowing P' and P'' and D_{H_20} , Equations 10 and 11 may be solved for $\delta_1 + \delta_2$. If it is then assumed that the hydrodynamic conditions in the system are independent of whether cellophane or black films are present, this value of $\delta_1 + \delta_2$ may be used to correct

Volume 60

the lipid membrane permeabilities (42, 47). Another method utilizes the supposition that butanol permeates lipid bilayers so readily that flux measurements of this substance, labeled isotopically, yield effectively the permeability of the unstirred layers (71). A third approach, that of Andreoli and Troutman (5), rests on the assumption that the diffusion coefficient of water in the unstirred layers is inversely proportional to the viscosity of the aqueous solutions. When the latter was changed by adding sucrose or dextran a linear relationship was found between 1/P (see Eq. 9) and the viscosity and, from the slope of the line, $\delta_1 + \delta_2$ was estimated. The results seem reasonable, but it must be pointed out that physically δ is a very ill-defined quantity and can be given numerical values only through expressions such as Equations 7 and 9. Thus there are no theoretical reasons to suppose that the effective unstirred-layer thickness does not vary with viscosity.

C. Results for Unmodified Bilayers

The results obtained with the two different methods (osmotic and isotopic) for measuring the water permeability are described separately. The osmotic method is dealt with first, and emphasis is placed on the extent to which the membrane constituents can influence the permeability. As assayed by tritiated water transfer the permeability nearly always requires correction for the resistance of the unstirred layers and, without such correction, is less useful for indicating the properties of the membrane itself. As discussed in section IIA, the use of black films suffers from the disadvantage that in all but the simplest cases it is difficult to determine the composition of the membrane, particularly when lipid mixtures (e.g., lecithin-cholesterol) are used. Even for membranes formed from a single species of lipid dissolved in a nonpolar solvent, the membrane interior is a mixture of lipid chains and solvent. The relative proportions of lipid and solvent in the membrane differ from that in the film-forming solution and, depending on the type of solvent, there can be up to 50% by volume of solvent retained in the membrane. The presence of this solvent affects the thickness and fluidity of the nonpolar region of the membrane and both properties are likely to influence the water permeability.

1. Osmotic measurements

The commonest type of black film examined is that formed from egg yolk phosphatidylcholine dispersed in an alkane solvent such as n-decane. With decane as the solvent, the nonpolar core of the membrane is about 48 Å thick and 30-40% of its volume consists of decane (see Table 2). The osmotic permeability of egg phosphatidylcholine membranes has been measured by different people at a variety of temperatures, and in order that a comparison may be made the values have all been scaled to 25°C by use of measured or assumed activation energies (Table 3). Permeabilities range from about 20 to 50

JUN 14 '04 15:48

9196608963

PAGE.35

OON

Volume 60

ther method utilizes the rs so readily that flux ally, yield effectively the reach, that of Andreoli and sion coefficient of water in a viscosity of the aqueous ucrose or clextran a linear he viscosity and, from the em reasonable, but it must quantity and can be given Equations 7 and 9. Thus a effective unstirred-layer

nods (osmotic and isotopic) l separately. The osmotic n the extent to which the y. As assayed by tritiated quires correction for the orrection, is less useful for scussed in section IIA, the n all but the simplest cases nbrane, particularly when en for membranes formed ır solvent, the membrane elative proportions of lipid film-forming solution and, 50% by volume of solvent it affects the thickness and oth properties are likely to

hat formed from egg yolk such as n-decane. With membrane is about 48 Å see Table 2). The osmotic s has been measured by a order that a comparison C by use of measured or range from about 20 to 50

April 1980

BILAYER WATER PERMEABILITY

523

TABLE 3. Osmotic permeability coefficients for black films formed from various lipids

L ipld :	Mean Number of Double Bunds per Chain	P; (Meanured), "Am/e	Temper- ature. *C	P, Corrected In 26°C. µm/s	E kcal/mol	Ref.
Egg phosphatidylcholine*	0.81	78.9	86	36	1	
•	,	86.8	36	40	(12.7)	74
		104	36	48	j	• •
Egg phosphatidylcholine*		42	36	19	(12.7)	49
Egg phosphatidylcholine*	0.67	18.4	20-22	25	(12.7)	54
Egg phosphatidylcholine	0.73	55.3	37	24	12.96	
Dipalmitoyl (16:0/16:0)	_				Į	55
phosphatidylcholine	0	\$1.5	37	13‡	13.75	55
Plant phosphatidylcholine	1.73	64.1	37	32	10.76	
Egg phosphatidylcholine	1.2	37.4	25	37.4	10.8	
Egg phosphatidylcholine Dioleyl (18:1/18:1)	1.2	36.9	25	36.9	10.6	
phosphatidylcholine	1.0	35.8	25	35.3		
Monoolein (18:1)	1.0	51.2	25			
Monoolein (18:1)†	1.0	50	25		14.2	
Monolinolein (18:2)†	2.0	73.2	25			
Egg phosphatidylcholine + cholesterol in film- forming solution					}	45
Cholesterol 14 mM		30.3	25		-	
Chalesterol 22 mM		17.2	25		Ý	
Cholesterol 28 mM		14.4	25			
Sphingomyelin + 14 mM cholesterol in film-				,		
forming solution		3.7	31	2.3	14.9	

All lipids dispersed in n-decane except * n-tetradecane/chloroform/methanol and † n-hexadecane. Egg phosphatidylcholine contains a mixture of chains of filiferent lengths and unsaturation (mean length about 18 carbons, mean unsaturation given in 2nd column). Temperature corrections are based on activation energy E_a . E_a values in parentheses have been assumed, on composition grounds, to be the value of Price and Thompson (107). Mean P_i (egg phosphatidylcholine) = 33.3 μ m/s. ‡ Obtained by correcting P_i at 37°C, to 25°C with the E_a given.

 μ m/s with a mean of 33.3 μ m/s (Table 3). This corresponds to a variation of 45–112 μ m/s at 37°C. Much of this scatter in values may have arisen because of differences between the various lipid samples used. The kinds of differences that could occur include variations in chain composition (egg phosphatidylcholine contains a mixture of alkyl chains of different lengths and unsaturation) and also the presence of contaminating lipids such as sphingomyelin or lysophosphatidylcholine (101, 117). One investigation has avoided this problem by use of a pure synthetic phosphatidylcholine (43).

The fraction of solvent retained in the nonpolar interior of the membrane can be reduced by use of a long-chain alkane such as n-hexadecane (Tables 1 and

2). Membranes formed from monoolein dissolved in either decane or hexadecane have similar osmotic permeabilities of about 50 μ m/s at 25°C (Table 3). The hexadecane membranes retain only about 26% by volume of solvent compared with 49% for the decane membranes (Table 1). The different composition results in the hexadecane membranes being thinner (33 Å compared with 48 Å for decane). It is difficult to interpret the results with the different solvents because the substitution may result in several factors changing simultaneously, each of which could influence the permeability. On the simple idea that water permeation is limited by solution and diffusion of the water in the nonpolar interior of the membrane, changes in thickness and fluidity will both influence the permeability. Thus, although membranes formed with decane as the solvent are thicker, they also contain a considerable amount of lower viscosity solvent in which water might more easily dissolve and diffuse.

If the barrier to the movement of water across lipid bilayers is considered to be the nonpolar interior (this question is examined more closely in sect. IV) variations in the lipid that would alter the fluidity and thickness of the hydrocarbon core might be expected to produce permeability changes. In fact, increasing the degree of unsaturation of the acyl chains of the lipid increases the water permeability (Table 3). Conversely, hydrogenating the lipid or using analogues with saturated chains can reduce the permeability (45, 49, 55). The maximum variation observed by altering the unsaturation is of the order of ±50%. Increasing the length of the chains also decreases the permeability (45). Lower permeabilities therefore can be achieved with lipids containing long saturated chains (e.g., 22:0, 24:0, and 24:1) such as those occurring in sphingomyelin (13, 45, 129). Possibly membrane fluidity and water-solubilizing properties can also be influenced by interactions between the lipid head groups and such interactions may therefore affect the water permeability. Graham and Lea (54) have shown that the permeability of phosphatidylserine films is a function of the pH of the aqueous phase (0.1 M NaCl). Increasing the pH from 3.0 to 9.0, which results in a change in the head-group ionization (100), produces an increase in the water permeability.

One common manipulation that alters the water permeability is the addition of cholesterol. This has been demonstrated to produce up to a three- to fivefold reduction in the permeabilities of membranes formed from phosphatidylcholine (45, 49) and other types of lipid (49). The reduction in permeability was graded with the amount of cholesterol added. The major difficulty with this kind of manipulation in black films is that the relative proportions of phosphatidylcholine, cholesterol, and solvent in the membrane are not accurately known under any of the conditions. The addition of increasing amounts of cholesterol produces a graded increase in the capacity per unit area of phosphatidylcholine/decane films from 0.38 to 0.60 μ F/cm² (60, 108) and changes in thickness and solvent content appear to be taking piece that the cholesterol/lipic ratios in the recursion of the production of the recursion of th

YDON

either decane or hexadecane

m/s at 25°C (Table 3). The

volume of solvent compared

lifferent composition results

Å compared with 48 Å for

e different solvents because

ring simultaneously, each of

e simple idea that water

the water in the nonpolar

l fluidity will both influence

d with decane as the solvent

of lower viscosity solvent in

pid bilayers is considered to

d more closely in sect. IV),

dity and thickness of the

rmeability changes. In fact,

ins of the lipid increases the

genating the lipid or using

rmeability (45, 49, 55). The

ituration is of the order of

eases the permeability (45).

with lipids containing long

ch as those occurring in idity and water-solubilizing ween the lipid head groups

permeability. Graham and

osphatidylserine films is a

D). Increasing the pH from

p ionization (100), produces

water permeability is the

to produce up to a three- to

ranes formed from phos-

d (49). The reduction in

lesterol added. The major

films is that the relative

d solvent in the membrane . The addition of increasing

the capacity per unit area .60 μ F/cm² (60, 108), and

taking place (Table 2). The

rol incorporated into black

the membrane is different

3). Osmotic permeability

Volume 60

April 1980

BILAYER WATER PERMEABILITY

525

measurements on black films usually require good membrane stability, and this can often be achieved by addition of small amounts of cholesterol. Consequently there are a number of estimates of the permeability of phosphatidylcholine/ decane membranes containing a little cholesterol. The values obtained are all about 20-30 μ m/s at 25°C (67, 107, 108) and are slightly lower than the mean value of 33.3 μ m/s for the pure phosphatidylcholine/decane membranes. The maximum reduction in the permeability on addition of cholesterol to phosphatidylcholine/decane membranes has been reported to give values of 7.5 μ m/s [36°C (49)] and 14.4 μ m/s [25°C (45)]. The first value is rather low, largely reflecting an abnormally low permeability for phosphatidylcholine in the absence of cholesterol. Tien and Ping Ting (136) found that films formed from oxidized cholesterol or cholesterol films stabilized with a charged surfactant such as dodecyl acid phosphate or cetyltrimethylammonium bromide had permeabilities of 8-9 $\mu m/s$ (22.5°C). These permeabilities should be close to that for a pure cholesterol membrane, and the addition of phosphatidylcholine chains would be expected to increase the permeability. Thus 8-9 μ m/s may represent the lower limit to which the permeability of phosphatidylcholine/ decane membranes could be reduced by cholesterol addition.

The temperature dependence of the water permeability was originally studied for the light that it might throw on the possible mechanisms for the movement of water across the bilayer (107, 108). When the results were expressed in the form of an Arrhenius plot, a linear relationship was obtained between $\ln P_i$ and the reciprocal of the absolute temperature (107, 108). On the assumption that the permeability coefficient could be expressed in the form

$$P_I = A \exp(-E_a/RT) \tag{12}$$

an activation energy (E_a) could be determined. The values obtained for E_a were 12.7, 13.1 (107), and 14.6 kcal/mol (108) for phosphatidylcholine/decane films containing various amounts of cholesterol. Even though there is some question about the interpretation of these results, since there are changes in film composition and cholesterol content with temperature (108), they are largely in agreement with subsequent experiments on membranes containing no cholesterol (45, 55). In these experiments the activation energy for water transport across phosphatidylcholine/decane membranes lay in the range 10.8-13 kcal/mol, the value depending on the type of phosphatidylcholine used. There was some suggestion from the latter experiments that the more unsaturated the lipid, the lower the activation energy (Table 3; 55).

Since the types of lipid in a membrane can affect its water permeability, it is of interest to ask whether much lower permeabilities can be achieved by an appropriate choice of lipid. Finkelstein and Cass (49) and Holz and Finkelstein (71) have reported permeability coefficients of about $2.5\,\mu\text{m/s}$ by using a mixture of ox brain lipids plus tocopherol and additional cholesterol. The mixture contained a number of different glycero- and sphingolipids. Osmotic permeability coefficients of $3-4\,\mu\text{m/s}$ have been reported for membranes formed from

Volume 60

sphingomyelin and cholesterol (Table 3; 45), and the use of sphingomyelin also produced low tracer permeabilities (48). The high content of long and saturated acyl chains in the sphingomyelin might be partly responsible for the low permeabilities. In addition there could be substantial head-group interaction in sphingomyelin, occurring by hydrogen bonding between the 3-hydroxy groups of the sphingosines (22, 103). This would restrict the chain movement and alter the fluidity of the membrane interior and might lower the water diffusion coefficient compared with phosphatidylcholine. The use of other sphingolipids such as cerebrosides might produce membranes with an even lower permeability.

2. Isotopic measurements

There have been a number of measurements of the diffusion of tritiated water across black-lipid films, and for various lipid systems an apparent permeability coefficient in the range 1–11 μ m/s has been obtained (25, 48, 57, 59), 74, 143). Most of these measurements have been accompanied by determination of the osmotic permeability coefficient P_{ℓ} for the same lipid under similar experimental conditions and the common finding has been that the coefficient obtained from isotope diffusion is always smaller than $P_{
m f}$, the ratio sometimes being as large as 20 (74). The value obtained for the apparent tracer permeability has also been shown to depend on various experimental conditions such as the geometry of the cell and the degree of stirring of the aqueous phase (25, 42, 57) but in some cases to be independent of lipid variations that have large effects on the osmotic coefficient P_1 (74). From these kinds of experiments and others described in section ILB, the general conclusion has been that the tracer data do not reflect the true permeability of the membrane, but rather that of the unstirred layers adjacent to the membrane. The tracer permeability is therefore only useful either if an adequate correction can be made for the resistance of the unstirred layers or if the membrane permeability is low compared with that of the unstirred layers. In those situations where an attempt has been made to correct for the unstirred layers, it has been shown that P_i and P_d are equal, to within experimental error (25, 42, 57).

D. Permeability to Nonelectrolytes

The techniques used for measuring the tritiated water flux across black films can also be applied to nonelectrolytes, the permeability being obtained by measuring the flux of labeled solute across the film. The kinds of nonelectrolytes whose permeabilities have been measured in this way include urea, glycerol, erythritol, formamide, and butyramide (86, 105, 143, 148). For all these substances the permeabilities are considerably lower than that for water but, like the water permeability, depend on the lipid composition of the membrane (52, 86). For example, the permeability coefficient for urea in phosphatidyl-

JUN 14 '04 15:51

Manhar Don

9196608963

April 1980

YDON

Volume 60

e use of sphingomyelin also ontent of long and saturated ly responsible for the low al head-group interaction in ween the 3-hydroxy groups to chain movement and alter lower the water diffusion e use of other sphingolipids nes with an even lower

of the diffusion of tritiated lipid systems an apparent been obtained (25, 48, 57, 59, been accompanied by -a at P_I for the same lipid under finding has been that the is smaller than P_0 , the ratio ined for the apparent tracer ous experimental conditions tirring of the aqueous phase oid variations that have large se kinds of experiments and ion has been that the tracer brane, but rather that of the cer permeability is therefore racle for the resistance of the s low compared with that of attempt has been made to that P_r and P_d are equal, to

ted water flux across black meability being obtained by The kinds of nonelectrolytes way include urea, glycerol, 1, 143, 148). For all these ver than that for water but, imposition of the membrane it for urea in phosphatidyl-

BILAYER WATER PERMEABILITY

527

choline films is about $4 \times 10^{-2} \mu \text{m/s}$ [20–28°C (86, 105, 143)] and in phosphatidylcholine + cholesterol films is about $6 \times 10^{-3} \mu \text{m/s}$ [25°C (48)]. These values are low enough to justify the use of urea as an impermeant solute for osmotic measurements.

E. Pore-Containing Membranes

The ion permeabilities of black films, as indicated by their electrical conductance, can increase enormously on addition of certain polypeptide antibiotics (for reviews see 64, 92). One mechanism by which this increase in permeability is thought to occur is by the formation across the membrane of hydrophilic channels—small holes a few angstrom units in diameter that can accommodate ions and water molecules. For gramicidin A, which is the best example of channel formation, the evidence that pores exist rests largely on the presence of conductance changes that arise from the formation and breakup of the single channels (64, 69). The channels are thought to be about 28 A long and 4 $ilde{\mathbf{A}}$ internal diameter (138). Rosenberg and Finkelstein (120) have measured the additional water permeability induced in a black film by the presence of the gramicidin channels and have shown that it is linearly related to the increase in ion permeability as reflected by the electrical conductance of the film. They obtained an additional P_i of 3.42 μ m/s normalized to a film conductance in 0.01 M NaCl of $10^{-2} \Omega^{-1}$ cm⁻². (The background conductance of an unmodified black film is ca. $10^{-8} - 10^{-9} \Omega^{-1}$ cm⁻².) Since the conductance per unit channel is known, it is possible to calculate the number of channels per unit area for a given conductance and hence determine the water permeability of a single gramicidin channel. From the measurements mentioned above, this value was determined to be 9.58×10^{-15} cm³/s (120). Thus it is clearly possible to have a membrane with a large ion permeability through aqueous pores without the water permeability being altered much. This reflects the fact that, even when in a highly conducting state, a very small fraction (<0.1%) of the membrane area is occupied by the gramicidin channels.

In contrast to gramicidin, addition of a polyene antibiotic such as nystatin or amphotericin B to black films induces a substantial increase in the permeability to water as well as to ions. Nystatin and amphotericin B have been shown to induce an anion selective increase in conductance (4, 26, 50) and also up to a 20-fold increase in the water permeability of black films containing cholesterol (3, 5, 71), with P_t values as large as about 500 μ m/s reported for amphotericin B (3). For a membrane conductance in 0.1 M NaCl of $10^{-2} \,\Omega^{-1}$ cm⁻², the normalized osmotic permeability P_t is found to be 40 μ m/s for nystatin (71) and $18-27 \,\mu$ m/s for amphotericin B (5, 71). It is generally thought that the polyene antibiotics also produce aqueous channels in the membrane, and recently the measurements of single-channel conductances have been reported for amphotericin B (40). In 0.1 M NaCl, the single-channel conductance is about $2.5 \times 10^{-13} \,\Omega^{-1}$, which is an order of magnitude smaller than for gramicidin. With this

528

conductance per channel the water permeability of a single channel can be calculated as 5.6×10^{-14} cm³/s. The polyenes have also been demonstrated to increase the permeability of membranes to small polar nonelectrolytes such as urea, ethylene glycol, and glycerol (2, 3, 71). The reflection coefficient increased with increasing molecular diameter, and molecules larger than glucose (radius = 4 Å) were essentially impermeant (2, 71). The "cutoff" was assumed to be caused by the limit imposed by the dimensions of the channel, which is taken to have an internal radius of 4–5 Å (2, 71). The cross-sectional area of the polyene channel is thus about a factor of 5 larger than the gramicidin channel, and this could largely account for the different single-channel water permeabilities for the two types of antibiotic.

Only a small fraction of the membrane area need consist of aqueous channels in order to substantially modify its permeability properties. This point can be illustrated by considering a membrane with a high water permeability, due to amphotericin, of $500~\mu\text{m/s}$. From the permeability per single channel, it can be estimated that this would require about 10^{12} channels/cm², and these would

occupy 0.5% of the membrane area.

Isotopic water permeabilities have been measured for pore-containing membranes and, despite attempts to correct for unstirred layers, the measured permeability was found to be lower than that obtained from the osmotic method. For membranes containing polyenes, P_d/P_d was 3.0-3.75 (5, 71); for gramicidin P_d/P_d was 5.3 (120).

III. LIPOSOMES

A. Osmotic-Shock Experiments

At temperatures greater than their phase-transition temperature, phospholipids in water form structures that consist essentially of lipid bilayers completely surrounding aqueous spaces (9, 11, 24). Usually these structures are made up of many layers of bilayer membrane, but their precise shape, size, and number of layers depend strongly on the method of preparation. For example, with minimal mechanical disruption, relatively large droplets (or particles) several microns across and consisting of hundreds of concentric bilayers tend to predominate, whereas it is possible to produce by exposure to ultrasonic radiation a dispersion of very small vesicles some 200-500 Å in diameter and with only one or two layers of membrane (73). Regardless of their structural details, the liposomes or vesicles all embody closed shells of lipid bilayer surrounding aqueous compartments and, because the bilayers are poorly permeable to solutes such as inorganic electrolytes, sucrose, and other highly polar molecules and are relatively permeable to water, they tend to shrink or swell when the osmolarity of the external solution is changed. This phenomenon is the basis of one of the methods used to measure the water permeability of the lipid bilayer. Another method, developed more recently, involves the application April

of nuc single oppos

signif This i lipid. electr prope electr (10). therebetwee chang of 4% various

the extheore by the relate perme susperspection invest Wheti rapidlobtain stopp reading suspersu

a rath liposo that h Dowb vesich forme the at obsermore extensions the otradios

÷.

Volume 60

April 1980

BILAYER WATER PERMEABILITY

of nuclear magnetic resonance (NMR) spectroscopy to suspensions of the small single-walled vesicles. This method measures exchange diffusional fluxes, as opposed to the net fluxes produced in the swelling or shrinking approach.

A pure phosphatidylcholine liposome that has many lamellae and no significant hole in the middle contains little or no osmotically active solution (10). This is because the leaflet separation is small. If, however, a negatively charged lipid, such as phosphatidic acid, is added to the phosphatidylcholine, an electrostatic repulsion between the leaflets arises, with a range that is inversely proportional to the square root of the electrolyte concentration (10). Thus at low electrolyte concentration the leaflet separation tends to be high and vice versa (10). Liposomes made with charged lipids in low electrolyte concentrations therefore contain relatively large volumes of osmotically active solution between their leaflets and can usually be made to shrink or swell by appropriate changes in the osmolarity of the suspending medium. Figure 4 shows the effect of 4% phosphatidic acid on the volume of phosphatidylcholine liposomes in various concentrations of potassium chloride.

The shrinking or swelling produced by a sudden change in the osmolarity of the external medium may be followed by turbidity measurement. A satisfactory theoretical relationship between the optical extinction and the volume occupied by the phospholipid in a suspension is not available, but the two quantities can be related empirically by using a suitable calibration procedure (10, 111). The permeation of water into or out of the liposomes is fairly rapid and the liposomal suspension and the diluting solution have to be mixed quickly in a spectrophotometer cell. In fact stopped-flow methods are desirable to investigate the full range of permeabilities that can be encountered (16, 110). Whether swelling or shrinking occurs, the internal osmolarity will change rapidly, and obviously, unless the water flux at the instant of mixing can be obtained, inaccurate values of the permeability are likely to result. With a stopped-flow technique, mixing may be accomplished and spectrophotometer readings commenced 100-200 ms after the initial contact of the liposome suspension and the solution (16).

The interpretation of the initial shrinking or swelling rates requires ideally a rather precise knowledge of how the structure and permeability of the liposomes vary as their volume changes. For shrinkage it is generally assumed that both the permeability and effective area remain constant. Reeves and Dowben (109) found from microscopic examination of one- to three-layered vesicles after osmotic shrinkage that extruded filaments or spherules had formed but that these remained attached to the vesicles. Although the manner of the attachment was not described and probably could not be discerned, these observations lend considerable support to the assumption of constant area. Moreover there is at present no evidence that lipid bilayers are appreciably extensible or compressible in directions parallel to the leaflet, so that the assumption of constant permeability is also probably reasonable. For swelling, on the other hand, the situation is less clear. The immersion of liposomes containing radioactive ions or molecules in hypotonic media has been reported to cause a

f a single channel can be ilso been demonstrated to ar nonelectrolytes such as

ection coefficient increased iles larger than glucose ne "cutoff" was assumed to he channel, which is taken ross-sectional area of the an the gramicidin channel, nt single-channel water

consist of aqueous channels perties. This point can be vater permeability, due to er single channel, it can be nels/cm², and these would

sured for pore-containing irred layers, the measured I from the osmotic method. 3.75 (5, 71); for gramicidin

e-transition temperature, essentially of lipid bilayers sually these structures are eir precise shape, size, and preparation. For example, ge droplets (or particles) concentric bilayers tend to by exposure to ultrasonic 00–500 Å in diameter and ardless of their structural sed shells of lipid bilayer the bilayers are poorly

sucrose, and other highly ter, they tend to shrink or changed. This phenomenon e water permeability of the tly, involves the application

9196608963

PAGE, 42

.

530

R. FETTIPLACE AND D. A. HAYDON

Volume 60

FIG. 4. Innate pellet volumes (mm²/μmol of lipid) of dispersions of phosphatidylcholine (O) and of phosphatidylcholine-phosphatidic acid (mol ratio 96:4) (C) allowed to form in various concentrations of KCl. [From Bangham et al. (10).]

loss of isotope from the structures that is well in excess of the loss that occurs in hypertonic media (10, 110). However, since many of the structures commonly present in a lipid suspension are not necessarily spherical, some swelling in some liposomes might be expected without rupture and release of the contents. Clearly, as soon as a significant proportion of the liposomal material has been ruptured the preparation will not yield reliable permeability data and no doubt for this reason most investigators have concentrated on the shrinkage experiment.

Effectively all the permeability results obtained on systems of the type discussed above are comparative rather than absolute, if only because the surface area of the lipid was not determined. Bangham et al. (10) did determine the surface area of their liposomes, but the interpretation of their data is still complicated by uncertainty about the number of bilayers involved. This latter difficulty may account for the unusually low value of 0.8 µm/s at 20°C they obtained for egg phosphatidylcholine containing 4% phosphatidic acid. However, the fact that this result was obtained from a swelling as opposed to a shrinkage experiment may also be relevant. Although the surface area was not reliably known for the liposomes that were shrunk, these experiments yielded the more likely permeability of about 16 µm/s (Table 4). Some initial shrinking rates (strictly speaking, initial absorbance changes) of liposomes of different lipid composition have been determined (16, 76) and these values may reflect quite accurately the relative water permeabilities of these systems. It does not seem wholly clear, however, that the initial absorbance changes might not vary somewhat from one lipid preparation to another simply because particle size, shape, or structure varies. In other investigations, activation energies for water permeation have been calculated for different lipid preparations from the temperature dependence of the initial absorbance changes. Again it is not entirely clear whether, at different temperatures, some variation in the rate of the initial absorbance change might not occur even if the permeability of the bilayers remained constant.

April 1980

Volume 60

nate pellet volumes (mm²/ of dispersions of phoso(a) and of phosphatidylhatidic acid (mol ratio wed to form in various of KCl. (From Bangham

he loss that occurs in structures commonly ome swelling in some ase of the contents. It material has been ty data and no doubt on the shrinkage

systems of the type if only because the al. (10) did determine n of their data is still involved. This latter $8 \mu m/s$ at $20^{\circ}C$ they phosphatidic acid. elling as opposed to a surface area was not experiments yielded ome initial shrinking posomes of different se values may reflect systems. It does not anges might not vary pecause particle size, on energies for water eparations from the ges. Again it is not ariation in the rate of e permeability of the

nyi I	16 1980 ··	9	۰		. wAII	Tie I Dieni		18		1
	Ref.		110		Ψ.			_		
	δ., kcal/mol	8.25*	8.25 ± 0.25	8.5* 15 ± 1	12 ± 2	10.6 ± 0.4 15.0 ± 0.5	11.4 ± 0.5 12.7 ± 0.4	12.5 ± 0.7 10.2 ± 2.7 21.4 ± 4.3 20.9 ± 0.8	28.3 ± 1.0 21.9 ± 0.4	
	Permostbilly Corrected to 25°C, µm/8	1.0-20	40.6-48.9	6.8-7.7 2.6	8.8					
	Temperature,	20	25 37	44 20	22	8-25 (>T _c) 8-25	>7. >7.	43,8 (>Tr)	34.1 (<t.) 30.7</t.) 	
	Permeability µm/s	0.8-16	40.6-48.9 68.5-90.6	16-18 1.7	ω					
eparulions	Methos	Osmotic swelling and shrinking	Osmotic shrinking	Exchange diffusion ('H NMR)	Exchange diffusion ("O NMR)	Osmotic shrinking	Osmotic shrinking	Osmolic shrinking	Osmotic shrinking	
ilies for liposomal pr	Portn	Large multilayered liposomes	Large vesicles (1–3 bilayers)	Small (ca. 400 A) single-walled vesicles	Small (ca. 500 Å) single-walled vesicles	Large multilayered liposomes	Large multilayered liposomes	Large multilayeved liposomes	Large mullilayered liposomes	
TABLE 4. Water permeubilities for liposomal preparations	Сби	Egg phosphatidylcholine + 4% phosphalidic acid	Egg phosphatidylcholine	Dipalmitoyl phosphatidylcholine	Egg phosphatidylcholine: cholesterol (molar ratio 1:1)	Egg phosphatidylcholine + 4% phosphatidic acid + 50% (moUnol) cholestevol	Dioleoyl phosphatidyl- choline + 4 % phosphatidic acid + 50% (moVmol) cholesterol	Dipalmiloy) phosphatidyl- cholinc + 4% phosphatidic acid + 50% (moVmol) cholesterol	Dipalmicoyl phosphatidyl- choline + 4% phosphatidic acid + 50% (mol/mol) cholesterol	* Assumed value.

BILAYER WATER PERMEABILITY

2:39PM

The most thorough examination of the absolute water permeability of lipid vesicles, by the osmotic technique, has been done by Reeves and Dowben (110). An important difference between this study and those discussed above was the nature of the lipid preparation, which consisted of roughly spherical vesicles of approximately 1 μ m diameter and wall thicknesses of only a few (ca. 1-3) bilayers. The preparation and characterization of these vesicles are described in an earlier paper (109). No acidic or otherwise net charge lipid was added to the egg phosphatidylcholine used and the large aqueous volume inside the vesicles was assumed to consist of the 0.2 M sucrose solution in which the dispersion was prepared. A theoretical expression for the turbidity of homogeneous spheres (79, 139) was applied to the vesicle suspension and was found to account tolerably well for variations in the turbidity with vesicle concentration, refractive index change, and wavelength of the light used. The vesicle suspensions were mixed in a stopped-flow apparatus with hypertonic solutions and the resulting shrinkage was followed in the usual way by measuring optical extinction. Shrinkage was assumed to proceed until the osmolarities of the inner and outer solutions were equal. The time courses of the observed extinction changes were compared with curves predicted from theory (see Fig. 5) and from calibration experiments, and

FIG. 5. Experimental and theoretical optical-density changes during shrinkage of egg phosphatidylcholine vesicles. Permeability coefficient of 68.5 μ m/s ($T = 37^{\circ}$ C) was chosen so that theoretical curve (solid line) and experimental curve (circles) would coincide at half time. [From Reeves and Dowben (110).]

JUN 14 '04 15:54

9196608963

ater permeability of lipid eeves and Dowben (110). discussed above was the ghly spherical vesicles of of only a few (ca. 1-3) vesicles are described in ge lipid was added to the olume inside the vesicles which the dispersion was omogeneous spheres (79, und to account tolerably itration, refractive index uspensions were mixed in d the resulting shrinkage ctinction. Shrinkage was and outer solutions were nges were compared with bration experiments, and

iges during shrinkage of egg $(T = 37^{\circ}C)$ was chosen so that ild coincide at half time. (From

BILAYER WATER PERMEABILITY April 1980

the permeability coefficients were calculated. The results are shown in Table 4. The uncertainties in the data are discussed by the authors. They point out that light scattered at low angles from the vesicles may have reached the photomultiplier and that, if so, the permeability coefficient could have been overestimated. On the other hand, the permeabilities shown were calculated assuming single-walled vesicles, whereas there was evidence that some vesicles had more than one layer. This error could lead to an underestimate of the permeability. Stagnant water layers were also considered but, as pointed out in section IIB, it is unlikely that errors arising in this way would be significant. It is concluded that the major sources of error act in opposite directions but to extents that are not easy to estimate.

B. Spectroscopic Techniques

The use of NMR spectroscopy to determine the water permeability of lipid vesicles rests principally on the fact that lipid bilayers are very impermeable to inorganic ions. Thus if the paramagnetic ion Mn2+, which greatly reduces the relaxation times of 'H and '70, is placed either inside or outside the vesicles, it enables the water molecules in the two regions to be distinguished from each other. Since, however, the water may exchange relatively freely across the vesicle membrane, the observed relaxation times are a function of the mean residence time of the water molecules in the vesicles and this in turn is a function of the vesicle radius and permeability. Andrasko and Forsén (1) examined the 'H relaxations in systems in which 43 mM or more Mn²⁺ was trapped inside the vesicles. As the authors point out, such a high concentration of divalent ions is not wholly desirable, since it may affect the bilayer water permeability. Haran and Shporer (61) made use of the greater sensitivity of 170 to Mn2+ and were able to work with 5 mM solutions. Thus, for a vesicle suspension in which the continuous aqueous phase contains MnCl2 and therefore yields the short relaxation times, Haran and Shporer give the mean lifetime (7) of the water molecules within the vesicles as

$$\frac{1}{\tau} = \frac{(1/T_{20} - 1/T_2)(1/T_2 - 1/T_{21})}{(P_0/T_{20} + P_1/T_{21} - 1/T_2)} P_0$$
 (13)

where $1/T_z$ is the modified relaxation rate of the water within the vesicle (i.e., the longest component of the 170 transverse relaxation rate) as a result of the exchange with the external solution, $1/T_{20}$ is the relaxation rate of water in the presence of the Mn²⁺, $1/T_{2i}$ is the relaxation rate of pure water, P_i is the fraction of water within the vesicles, and P_{o} is the fraction of water in the external solution. In the suspensions examined, $P_1 \ll P_0$ and $1/T_{2i} \ll 1/T_{20}$ so that

$$1/\tau \cong 1/T_2 - 1/T_{21} \tag{14}$$

1

R. FETTIPLACE AND D. A. HAYDON

Volume 60

If the volume V and surface area A of the vesicles is known, then the water permeability coefficient $P_{\rm d}$ is given by

$$P_{\rm d} = (V/A)(1/\tau) \tag{15}$$

and if the vesicles are spherical, by

$$P_{\alpha} = r/3\tau \tag{16}$$

where r is the vesicle radius. Note that it is the equilibrium or exchange-diffusion coefficient that is obtained from this technique. Vesicle characterization in this investigation was by electron microscopy and by the addition of $PrCl_3$, which produces an upfield shift in the NMR signal of the choline group of the phospholipids. This allowed estimation of the proportions of external and internal surface in the preparation, thus providing further evidence as to how many of the vesicles were single walled. Permeabilities and activation energies determined by Andrasko and Forsen and by Haran and Shporer are given in Table 4.

C. Results

The few absolute values for bilayer water permeability determined for liposomal or vesicular preparations are shown in Table 4. The permeabilities have been given both at the temperature of the experiment and for 25°C by the use of an activation energy from another source, if necessary. Comparisons within this set of data are not easy because, with one exception, different lipids have been used in each instance. In addition the first value should probably be discounted since the number of lipid layers involved is not known and could be quite large. The second and fifth values are remarkably similar to several of the black-film results (Table 3) and suggest that the presence of cholesterol substantially reduces the water permeability, a conclusion further confirmed by comparative studies described below. The third and fourth values are for dipalmitoyl phosphatidylcholine above and below its phase-transition temperature ($T_c = 41$ °C). Even after normalizing the results to 25°C, the permeability for the (hypothetically) fluid leaflet is significantly larger than that for the leaflet in the gel state, as might have been expected, although, as will be seen, other approaches suggest that this difference should be greater. Also the absolute value of the permeability for dipalmitoyl phosphatidylcholine for $T>T_c$ is lower in relation to the egg phosphatidylcholine value than is indicated by other (comparative) data, and both inconsistencies might be a consequence of the fact that appreciable concentrations of Mn²⁺ were present in the vesicles.

Determinations of activation energy and nonabsolute permeability measurements (such as initial shrinking rates) are more plentiful. From the comparison of initial shrinking rates for a wide range of systems Bittman and

AYDON

Volume 60

2:40PM

les is known, then the water

JUN. 14. 2004

(15)

(16)

the equilibrium or exchangechnique. Vesicle characterizaiscopy and by the addition of R signal of the choline group of the proportions of external and ing further evidence as to how bilities and activation energies aran and Shporer are given in

· permeability determined for in Table 4. The permeabilities experiment and for 25°C by the ce, if necessary. Comparisons i one exception, different lipids : first value should probably be lved is not known and could be irkably similar to several of the t the presence of cholesterol conclusion further confirmed by ird and fourth values are for w its phase-transition temperasults to 25°C, the permeability y larger than that for the leaflet although, as will be seen other be greater. Also the absolute atidylcholine for $T > T_c$ is lower lue than is indicated by other ght be a consequence of the fact present in the vesicles.

ionabsolute permeability measure more plentiful. From the range of systems Bittman and

April 1980

BILAYER WATER PERMEABILITY

585

Blau (16) reached a number of interesting conclusions. For dipalmitoyl phosphatidylcholine the water permeability appears to increase by more than 20-fold between 38°C and 45°C, i.e., as it passes through its phase-transition temperature. If the activation energy for this system is taken to be that determined by Blok et al. (17), the 45°C value can be converted to the value that the liquid crystalline leaflet would have at 38°C were it not to revert to the gel phase. This suggests that the phase transition alone increases the permeability by about 17-fold at this temperature. Again, the calculated hypothetical permeability of the liquid crystalline leaflet at 25°C is only about one-third that of egg phosphatidylcholine at this temperature. It is not surprising therefore that Bittman and Blau find that on adding dipalmitoyl phosphatidylcholine to dioleoyl phosphatidylcholine at 25°C there is a marked reduction in the water permeability, which is attributed to the decrease in the concentration of double bonds in the membrane—a conclusion that has also been reached from black-film experiments (sect. II).

The large changes in water permeability that occur at the gel-liquid crystalline phase transition of a lipid have received considerable attention from Blok et al. (17). The increase in the initial shrinkage rate for dipalmitoyl phosphatidylcholine between about 38°C and 42°C was similar to that reported by Bittman and Blau (16), but Blok et al. (17) also show that there is a large discontinuity in the activation energy in the region of the transition temperature. Above T_c , activation energies of 7-11 kcal/mol were found, as opposed to values of 20-28 kcal/mol below T_c (Table 4). This latter value is considerably larger than that calculated by Andrasko and Forsen (1) from their exchange-diffusion data for ostensibly the same system. Since for egg phosphatidylcholine + cholesterol (a system essentially above any phase transition) the activation energies for exchange diffusion and osmotic shrinkage are very similar (Table 4), the question arises as to whether for lipids in the gel state the two methods measure the same quantity.

The addition of cholesterol to egg phosphatidylcholine liposomes was shown by Bittman and Blau (16) and by Jain et al. (76) to produce a roughly threefold reduction in the initial shrinkage rate at 1:1 mol ratios. This is qualitatively similar to the results of black-film experiments (sect. II). Modifying cholesterol at the 3 position to give 3-hydroxycholestene and 3-thiocholestene reduced the potency of small proportions of the steroid, but at the 1:1 mol ratio the differences from cholesterol were small. The influence of cholesterol on the activation energy for water permeation in a variety of lipid preparations and especially the relative effects it has above and below the phospholipid phase transitions have been studied by Blok et al. (18). When added in about 30% (mol/ mol), or more, to either dimyristoyl or dipalmitoyl phosphatidylcholine, choesterol abolished the abrupt changes in water permeability and activation energy for permeation, which normally occur at the transition temperature. Above the phase-transition temperature, cholesterol produced a substantial increase in the activation energies for the above-mentioned lipids (Table 4). This effect was in contrast to the change in the activation energy on addition of cholesterol to egg

Volume 60

536

2:41PM

or dioleoyl phosphatidylcholine, where the increases were much smaller (Table 4). Below the phase-transition temperature, the addition of cholesterol to dipalmitoyl phosphatidylcholine had very little effect on the activation energy.

IV. DISCUSSION

A. Comparison Between Black-Film and Liposome Results

The chief advantage of the use of black-lipid films for water permeability measurements is that they have accurately known areas and hence precisely calculable permeabilities. The chief disadvantages are that their lipid composition is restricted by the requirement that they form stable membranes; that the amounts of the various lipids present in multicomponent membranes is not easy to estimate; and that of necessity they contain some, though possibly small, amounts of solvent. All these disadvantages may be overcome, at least in principle, by the use of liposomes or vesicles. These, however, have the disadvantages that in osmotic experiments there are complex geometrical changes that are not properly understood, that volume changes have to be studied by essentially empirical optical methods, and that uncertainty in the number of layers of leaflet involved precludes the calculation of accurate permeabilities. Spectroscopic experiments on small single-layered vesicles appear to suffer only from the uncertainty in the area of vesicle surface under examination, but then these methods measure only the equilibrium or exchange-diffusion coefficient P_a , not the coefficient of net flux P_t .

Despite the lack of an ideal experimental system, there is considerable agreement among the results obtained from the different preparations and different techniques. As shown in Table 3, the water permeabilities of monoolein membranes formed with decane and with hexadecane are very close. This might originate from the possibly lower viscosity of the decane film being offset by the greater thickness. For present purposes, it is assumed that this argument can be extended to the case of zero solvent content, thus allowing a direct comparison between the black-film and liposome results. This procedure should be regarded warily, however, because the exclusion of the last vestiges of solvent may have a disproportionate effect on the permeability, as discussed later.

With these reservations in mind, the mean permeability of 33.3 μ m/s ($T=25^{\circ}$ C) for egg phosphatidylcholine black films is in reasonable agreement with the values of 40.6–48.9 μ m/s obtained by Reeves and Dowben (110) for egg phosphatidylcholine liposomes. The activation energy for water transport is slightly lower for egg phosphatidylcholine liposomes [8.25 kcal/mol (110), 10.6 kcal/mol (18)] than for black films [10.8 kcal/mol (45), 12.96 kcal/mol (55)]. A reduction of the permeability of egg phosphatidylcholine by incorporation of cholesterol has been observed in both types of bilayer preparation, each giving a limiting permeability at high cholesterol content of the order of 10 μ m/s at 25°C (45, 61). The two systems may not be strictly comparable, however, since

April 1980

Volume 60

BILAYER WATER PERMEABILITY

vere much smaller (Table idition of cholesterol to n the activation energy.

Results

s for water permeability reas and hence precisely s are that their lipid form stable membranes; component membranes is in some, though possibly y be overcome, at least in ese, however, have the re complex geometrical ame changes have to be I that uncertainty in the calculation of accurate I single-layered vesicles i of vesicle surface under nly the equilibrium or of net flux P_i .

m, there is considerable fferent preparations and remeabilities of monoolein are very close. This might ne film being offset by the that this argument can be wing a direct comparison edure should be regarded iges of solvent may have a ssed later.

rmeability of 33.3 μ m/s in reasonable agreement and Dowben (110) for egg y for water transport is [8.25 kcal/mol (110), 10.6), 12.96 kcal/mol (55)]. A oline by incorporation of preparation, each giving a corder of 10 μ m/s at 25°C parable, however, since

interactions between the phospholipid and cholesterol molecules that occur in the liposomes could be affected by solvent in the black films.

There is also qualitative agreement between the results for the two systems on the effects of varying the unsaturation of the alkyl chains. On the other hand, there are quantitative differences for the permeabilities of saturated lipids. Thus measurements on liposomes formed from dipalmitoyl phosphatidylcholine suggest that there is a big drop in permeability on taking the temperature below the phase transition, which is at 41°C (1), whereas the permeability measured for black films formed from dipalmitoyl phosphatidylcholine at 37°C is not particularly low (55). This discrepancy may be due to the solvent in the black film, which may lower the transition temperature by more than 4°C (see, e.g., 77). Alternatively, there could be patches of the black film containing phospholipid in the gel state and patches of liquid chains and solvent. Thus, besides altering the transition temperature of the lipid, the hydrocarbon solvent could also be instrumental in producing a permeability in parallel with that of the alkyl chains of the lipid. If the lipid itself had a very low permeability, the permeability of the black film could then be greatly affected by the solvent. These kinds of argument also apply to measurements on other impermeable bilayers. Thus, for example, the permeability of the bilayers formed from sphingomyelin may be overestimated on the basis of the black-film results, since the transition temperature for bovine brain sphingomyelin is in the region of 20-45°C (13, 129). Nevertheless, apart from these reservations over the measurements on impermeable bilayers, there is reasonable agreement between the liposome and black-film results.

B. Mechanisms of Water Transport

As yet there is no conclusive evidence for the mechanism by which water crosses lipid or lipid + hydrocarbon bilayers. The following discussion is therefore necessarily speculative and inconclusive.

At the outset it is convenient to divide the existing possibilities into two types: those that assume water is aggregated in the bilayer such that it forms more or less continuous files stretching from one aqueous phase to the other (74), and those that assume the water is completely dispersed, as in dilute solution (56).

It is assumed that files might occur at dislocations or discontinuities in the lipid and that the permeabilities of these regions would be very much higher than other regions of the bilayer. There is no direct evidence for the existence of such files and the following, admittedly rather weak, arguments are not in their favor. If the total amount of water per unit area of the membrane is assumed to be similar to that in bulk hydrocarbon of similar chain length to that of the lipid molecules, and all of this water were in the form of files one molecule in width, then there would be about 10¹⁰ files or pores/cm². Furthermore, if the water molecules in these pores were able to rotate and exchange protons with their

JUN. 14. 2004

2:42PM

Volume 60

neighbors as they do in bulk, it seems likely that the electrical resistance of the bilayers would be several orders of magnitude less than the observed value—which corresponds roughly with that expected for wet bulk hydrocarbon. Another argument against the existence of pores is the high activation energy observed for water transport. If the diffusion of water in the pores were as in bulk solution, the activation energy would be 4.6 kcal/mol (144) rather than the values of 8-15 kcal/mol given in Tables 3 and 4. Finally it is pertinent that the permeability for diffusional exchange of water (P_d) seems to be similar, if not equal, to the permeability for net movement (P_l) . This implies that there is no significant interaction between water molecules crossing the membrane (65, 66) and hence that there is in general no more than one molecule at a time in the pores. This clearly does not support the type of filing mechanism discussed above.

In the second type of mechanism the membrane is assumed to be a homogeneous layer in which water dissolves and moves across by diffusion. There are two possible rate-limiting steps in this process: 1) the transport in the interfacial region between the membrane and the aqueous solution and 2) diffusion in the nonpolar interior of the membrane. If the diffusion and concentration of the water within the bilayer are uniform, and the diffusion is isotropic, P may be described by the following equation (149)

$$1/P = (h/KD) + (2\lambda/D_{sm})$$
 (17)

where K is the partition coefficient, D is the diffusion coefficient of water within the membrane interior, h is the thickness of the interior, λ is the width of each interfacial region containing the polar head groups of the lipids, and D_{sm} is the diffusion coefficient across this interfacial region from the aqueous solution to the membrane. The first and second terms on the right-hand side of $Equation\ 17$ are the diffusional resistances of the membrane interior and the interfacial regions, respectively. Strictly, to account for the inhomogeneity of the interior of the membrane, the first term should be replaced by the integral (33)

$$\int_{0}^{h} \frac{dx}{K(x)D(x)}$$

where x is distance across the bilayer.

There is no simple way to decide which of the two resistance terms is the most important in limiting the permeability. The observation that the water permeability of black films can be altered by varying the chain composition but keeping the head group the same (45, 55) is consistent with the idea that the interior constitutes the main barrier to movement. This argument is strengthened for the monoglycerides, where it is known that the area per glycerol head group does not change detectably as the chain length or unsaturation is altered (45) and, at least for the change in chain length, there are no major changes in solvent content or composition of the films (45).

Volume 60

JUN. 14. 2004

ectrical resistance of the

ess than the observed

spected for wet bulk

ce of pores is the high

diffusion of water in the

ould be 4.6 kcal/mol (144)

les 3 and 4. Finally it is

e of water (P_d) seems to

ement (P_i) . This implies

r molecules crossing the

more than one molecule

type of filing mechanism

ne is assumed to be a

ves across by diffusion.

ss: 1) the transport in the

aqueous solution and 2)

e. If the diffusion and

orm, and the diffusion is

on (149)

April 1980

BILAYER WATER PERMEABILITY

539

Dix et al. (36) have recently concluded that the movement of certain small nonelectrolytes across the bilayer is dominated by the interfacial resistance. They used electron spin resonance (ESR) spectroscopy to measure the mobilities and partition coefficients of various nitroxide solutes in phosphaticlylcholine liposomes. The nitroxide molecules are larger than water, however, and are to some extent amphiphilic. Both factors could result in the nitroxide solutes spending a relatively long time in the interface. It is not obvious that the same conclusions would be reached for water molecules.

Although there is no definitive evidence available at present that clearly establishes where the rate-limiting step in water transport is located, it is assumed for the purpose of the analysis given in the next section that the nonpolar interior is limiting. This is done partly because the circumstantial evidence favors this mechanism and partly because it is at least possible to estimate theoretically what the permeability might be, based on a knowledge of diffusion and partition coefficients of water in liquid hydrocarbons. The properties of the interfacial region are more difficult to model. Conceivably the resistances of both regions make a contribution toward the permeability. If this were the case, however, it might be expected that the Arrhenius plot of $\ln P$ against 1/T would not be linear; i.e., there would not be a single activation energy for water permeation (107).

C. Predictions Based on Solubility and Diffusion Mechanism

If it is assumed that the water crosses the bilayer by solution and diffusion in the nonpolar interior, and it is also assumed that the rate at which water traverses the interfacial region is fast compared with this process, only the first term in Equation 17 need be considered, and this can be written as follows (56)

$$P = (D/h)(X_{\mathsf{w}})(\vec{V}_{\mathsf{w}}/\vec{V}_{\mathsf{h}}) \tag{18}$$

where D and X_w are the diffusion coefficient and mole fraction of water in the nonpolar interior, of thickness h. \bar{V}_w is the partial molar volume of water and \bar{V}_h is the partial molar volume of hydrocarbon in the membrane. No values are yet available for the diffusion and partition coefficients of water in the membrane, but they are available for long-chain saturated hydrocarbons up to hexadecane. For the purpose of this analysis therefore, it is also assumed that the membrane interior can be treated like a layer of bulk liquid hydrocarbon, and the bulk values are used for D, X_w , and V_h . The theoretical permeability properties of a bulk layer of liquid hexadecane 30 Å in thickness are given in Table 5. These have been calculated on the basis of Equation 18, with the two sets of values for the different water solubilities as determined by Schatzberg (123, 124) and Englin et al. (39). For comparison the measured water permeabilities are given for liposomes and black films formed from dipalmitoyl phosphatidylcholine (above its transition temperature) and also for monoolein/hexadecane black films. For all

(17)

perficient of water within or, λ is the width of each the lipids, and D_{xm} is the the aqueous solution to hand side of Equation 17 erior and the interfacial nogeneity of the interior y the integral (33)

o resistance terms is the servation that the water he chain composition but it with the idea that the ent. This argument is nown that the area per as the chain length or in chain length, there are f the films (45).

TABLE 5. Comparison of theoretical and experimental permeabilities

	Perment	ility, µm/s	-	
Syatem	25°C	15°C	E _a . kesVmol	Ref.
Layer of liquid hexadecane	99	404	13.3	39
30 Å thick*	58	190	11.3	123, 124
Dipalmitoyl phosphatidyl- choline liposomes		18		1
Monoolein/hexadecane black films	50		14.2	45
Dipalmitoyl phosphatidyl- choline/decane black films		55†	13.75	55

Theoretical permeabilities were calculated from Equation 18. D was taken as diffusion coefficient of water in liquid n-hexadecane [4.16 \times 10⁻³ cm²/s at 25°C and 5.97 \times 10⁻³ cm²/s at 45°C (124)]; V_h was taken as molar volume of hexadecane (294 cm³). * The 2 sets of values refer to differences in measured partition coefficients between water and n-hexadecane. * Value extrapolated with the given E_n and the measured permeability at 37°C.

the examples, the theoretical permeabilities are higher than the measured ones, and this seems to be consistent with the hydrocarbon chains in the lipid bilayer being more restricted in their motion than in liquid hexadecane, thus lowering the diffusion coefficient of water in the membrane. Although the theoretical and measured permeabilities agree best for monoolein, the discrepancy here might be larger if the diffusion and solubility values for the corresponding unsaturated hydrocarbon, cis-9-heptadecene, were available. Finkelstein and Cass (49) found that the water solubility in I-hexadecene was about 15% higher than in the saturated hydrocarbon.

The water permeability of a lipid bilayer has also been calculated for a solution and diffusion mechanism by Träuble (137). He proposed that water crossed by transient holes or pockets of free volume that were due to the thermal motion of the hydrocarbon chains. The diffusion coefficient of the holes was calculated to be about 10⁻⁵ cm²/s, and thus the theoretical water permeability was smaller than those in Table 5. Although it seems probable that water is accommodated within the bilayer through the presence of kinks in the chains, Träuble's picture of water "hitchhiking" across the membrane in the kinks seems less likely to be correct. Thus, it is not known to what extent kinks actually cross the membrane nor is it known whether water molecules may hop from one kink to another. Certainly the interior of a bilayer above its phase transition is now known to be much more disordered than in the illustration in Träuble's paper.

A number of investigators (107, 108, 110) pointed out that the observed value for the activation energy for water permeation (E_n) is consistent with the mechanism in which water crosses by dissolving and diffusing in the nonpolar core. On this mechanism E_n should be equal to the sum of the activation energy for water diffusion and the enthalpy of the partition coefficient of water between

JUN 14 '04 15:58

9196608963

PAGE.54

he ve m fo de in occit: he su

th av korc e: e: e:

m lij hy or di h;

vi

m

D

bi fil

וק

th

m ai lie fr ui

aı

meabilities

E cal/mal	Ref.			
13.3	39 123, 124			
	1			
14.2	45			

as taken as diffusion cond 5.97 × 10⁻³ cm²/s at * The 2 sets of values hexadecane. † Value

13.75

55

the measured ones, s in the lipid bilayer cane, thus lowering the theoretical and repancy here might conding unsaturated tein and Cass (49) higher than in the

een calculated for a ed that water crossed he thermal motion of es was calculated to eability was smaller for is accommodated is, Träuble's picture ems less likely to be cross the membrane me kink to another. It is now known to be a paper.

t that the observed consistent with the sing in the nonpolar he activation energy ent of water between the aqueous phase and the membrane interior. Values of these parameters are available for liquid n-hexadecane, and from them E_n can be calculated to be 11.3 kcal/mol with the results of Schatzberg (123, 124) and 13.3 kcal/mol with the results of Englin et al. (39). These are in reasonable agreement with the experimentally determined activation energies (see Tables 3 and 5). The enthalpy of solution is reduced by hydrocarbon unsaturation, and this would be consistent with the correlation of E_a and lipid unsaturation (see Table 3).

On the basis of the solubility and diffusion model, the water permeability might be expected to be susceptible to the length and unsaturation of the lipid chains. Englin et al. (39) showed that the solubility of water in bulk hydrocarbon was increased by unsaturation, but was only weakly dependent on the length of the hydrocarbon molecule. No comparable data are available for the diffusion coefficient. Empirical approaches to water diffusion in organic solvents have represented the diffusion coefficient as being inversely proportional to the viscosity of the solvent (56), which for long-chain hydrocarbons increases markedly with chain length at room temperature (121).

D. Environment of Lipid Chains and "Bulk Hydrocarbon" Assumption

Both for the above theoretical analysis of the water permeability of lipid bilayers and for the interpretation of capacity data and the compositions of black films, it has been assumed that the nonpolar core of the membrane has the properties of bulk lipid hydrocarbon. The properties of particular interest are the density, the water solubility (both of which are reflected to some extent in the dielectric constant), and the fluidity.

No precise measurements appear to have been made on the partial molar volumes of methylene groups in lipid bilayers. Comparable information is, however, available for surfactant micelles (30). Here it was found that the mean volume per CH₂ was about 3% larger than in bulk liquid hydrocarbons. The micelles in question were globular and the constraints on chain packing were therefore probably more severe than in planar bilayers. Therefore the hydrocarbon density in phospholipid bilayers probably is very close to bulk values.

The amount of water in a bilayer, and its distribution, is obviously important for the understanding of the water permeability. Suggestions have occasionally been made that more water may be present than that expected from its solubility in bulk hydrocarbons. The evidence for this is not very strong, however. For instance it could be argued, on the basis of the results for surfactant micelles mentioned earlier, that the partial molar volume of the methylene groups in the bilayer is about 3% larger than in bulk hydrocarbons and that the additional 3% free volume is occupied by water. On the other hand, liquid hydrocarbons always have at least 20% free volume (20), only a minute fraction of which can be occupied by water, and thus a further 3% would be very unlikely to make an appreciable difference to the water solubility. It has been argued that water penetrates the outer regions of the hydrocarbon layer. One

541

DEPT OF MECH ENG

542

Volume 60

13 t

I

b

0

u

ţ,

F

u

p

w

b

tŀ

F

is

h;

21

m

m

th

Ĭſ

such argument arose from a finding that in Montal-Mueller "solventless" bilayers, the electrical capacity was 0.9 μF cm⁻² (93). For this capacity to give the same leaflet thickness as that found from X-ray diffraction it is necessary to assume a dielectric constant of 2.65 rather than that for n-alkanes, i.e., about 2.1. The high value for the dielectric constant was taken to indicate that water penetrated into the chains of the leaflet. It has now been shown, however, that this result is incorrect (15, 45) and that the true value is about 0.74 μF cm⁻², which with a dielectric constant of 2.2, is entirely consistent with the X-ray data (Table 2).

Spectroscopic evidence for surfactant micelles (27, 28, 95, 96) shows that all the segments of the surfactant chains are to some extent exposed to water, but it is not clear that water penetrates the micelles. Thus a considerable amount of hydrocarbon is necessarily at the micelle surface and the thermal motion of the chains is bound, in the course of time, to bring all the segments into contact, if only briefly, with the water. Similar arguments can be applied to the phospholipid bilayer above its phase-transition temperature. Under these conditions the area per phospholipid molecule is about 70 ${
m \AA}^2$ (131). Since the polar group occupies only about 40 ${
m A}^z$, some 30 ${
m A}^2$ of hydrocarbon per molecule must be exposed to the water. This is equivalent to three or four methylene groups.

The detection of water within the hydrocarbon region of the bilayer by ESR spectroscopy appears at first sight an attractive proposition. However, spectroscopic probes, such as those employed in the ESR technique, are exceptionally unsuitable for the detection of water in micelles and bilayers, because the probes must have considerably greater affinities for water than the

hydrocarbon moieties normally present. Within bilayers at temperatures above their transition temperatures, the order parameter for the various carbon atoms decreases along the chain, reaching a minimum at the terminal methyl groups (125, 126). More relevant to the problem of water permeability is the deduction of D. Gruen (personal communication) that in a liquid bilayer the chains are sufficiently delocalized that the order at various points across the hydrocarbon region varies remarkably little. This conclusion does not hold when cholesterol is present. In such instances the segments adjacent to the rigid cholesterol ring system are always restricted in their motion and the average order in the bilayer now decreases appreciably toward the center (133).

If the rate-determining step for the movement of water across the bilayer is the diffusion through the hydrocarbon-chain region, a knowledge of the segmental motions of the lipids is likely to be necessary for a detailed understanding of the process. Unfortunately it is by no means clear either how the water is distributed or how it moves. Various estimates have been made of the "microviscosity" of the bilayer (8, 36, 38, 128). These are useful if it is desired to produce a continuum model for the water transfer, but the microviscosities differ according to the manner of their determination and it is not obvious which values are the most relevant to the present problem.

JUN 14 '04 15:59

9196608963

DON.

Volume 60

ntal-Mueller "solventless"

1). For this capacity to give

liffraction it is necessary to

t for n-alkanes, i.e., about

aken to indicate that water

been shown, however, that

lue is about $0.74 \,\mu\text{F cm}^{-2}$,

sistent with the X-ray data

27, 28, 95, 96) shows that all

ent exposed to water, but it

s a considerable amount of

I the thermal motion of the

e segments into contact, if

s can be applied to the

emperature. Under these.

out 70 $Å^2$ (131). Since the-

hydrocarbon per molecule

o three or four methylene

egion of the bilayer by ESR

e proposition. However,

the ESR technique, are in micelles and bilayers, ffinities for water than the

insition temperatures, the

creases along the chain.

.25, 126). More relevant to on of D. Gruen (personal

ufficiently delocalized that

region varies remarkably

erol is present. In such

col ring system are always

the bilayer now decreases

water across the bilayer is

on, a knowledge of the

necessary for a detailed no means clear either how

imates have been made of

se are useful if it is desired

, but the microviscosities

ind it is not obvious which

April 1980

BILAYER WATER PERMEABILITY

543

E. Relation Between Osmotic Flow and Tracer Diffusion

Experiments on biological membranes have usually yielded values for the diffusional permeability P_d that were smaller than the osmotic permeability P_I , with P_I/P_d depending on the type of membrane (72, 106). Aside from any differences caused by unstirred layers, the relation between the two permeability measurements has been considered of interest because it was thought to be associated with the mechanism by which water crosses the membrane.

For unmodified lipid membranes where the concentration of water in the membrane is thought to be extremely small there should be no interactions between the water molecules. Hence the values for $P_{\rm f}$ and $P_{\rm d}$ should be equal and this is the experimental finding if corrections are made for the unstirred layers. If water moves through aqueous pores, however, $P_{\rm f}$ can be larger than $P_{\rm d}$, as has been demonstrated for lipid membranes rendered porous with gramicidin or one of the polyene antibiotics. For large pores this inequality could arise because under an osmotic pressure gradient the water moves by viscous flow, whereas the labeled water molecules move simply by diffusion (80, 97, 102). Assuming Poiseuille flow for the net water movement, the ratio $P_{\rm f}/P_{\rm d}$ can be related to r, the radius of the pore, by

$$r^{2} = \frac{8D_{w}\eta_{w}\tilde{V}_{w}}{RT} [(P_{l}/P_{d}) - 1]$$
 (19)

where D_w and η_w are the diffusion coefficient and viscosity of the water in the pore. For example, consider a pore the size of that created by nystatin (r = 4 Å): with bulk values for D_w and η_w , Equation 19 predicts that the pore radius should be about 5 Å for the experimental P_d/P_d ratio of about 3.0 (71). To some extent, this agreement may be fortuitous and may be due to several errors canceling. For the gramicidin pore, where r = 2 Å, the predicted P_d/P_d with Equation 19 is 1.3, which is substantially different from the experimental value of 5.3 (120).

The validity of a calculation of the pore radius based on the continuum hydrodynamic theory has been checked experimentally for pores several tens of angstroms in radius (14). Although the calculation may still give tolerable answers even for pores a few angstroms in radius (83), the validity of the theory must become questionable when r is comparable to the dimensions of the water molecule; in addition it is probably invalid to assign bulk values for $D_{\rm w}$ and $\eta_{\rm w}$ for the inside of the pore. Alternative theoretical treatments have been applied

$$r = (2a_w^2 + \lambda)^{i/3} - a_w$$

If this correction is used when calculating the radius of the nystatin pore from P_t/P_d , the agreement with the experimental value is even better.

JUN 14 '04 15:00

⁴ A correction sometimes introduced (97) when r becomes comparable to a_w , the radius of the water molecule, is to replace r^2 in Equation 19 by λ , where r and λ are related by

Volume 60

544

JUN. 14. 2004

when the pore becomes sufficiently narrow that only a single file of water molecules can be accommodated along the length of the pore and solute and solvent molecules cannot overtake. As an extension of the single-file kinetics (65, 66, 68, 70) and explicit in other approaches (35, 82, 84) is the prediction that $P_d P_d$ will have a value near n, the average number of water molecules in the pore; clearly n can be larger than unity. One other theoretical treatment has indicated that P_i and P_a should be equal under single-file conditions (91). The pores created by gramicidin are sufficiently narrow ($r \approx 2 \text{ Å}$) that the movement of water molecules through them probably approximates to single filing. The $P_d P_d$ ratio of 5.3 measured for gramicidin (120) suggests that the latter theoretical analysis is inapplicable. Although this review is not concerned with the detailed properties of the gramicidin pore, it should be noted that the average number of water molecules in the pore has been inferred to be 6 (119) or 12 (85). These values have been deduced from measurements of streaming potentials produced by osmotic pressure differences across gramicidin-containing membranes and also from the electro-osmotic flux per ion.

One interesting conclusion that can be drawn is that there is not necessarily a monotonic relationship between the P_d/P_d ratio and the pore radius. This makes it impossible to determine the pore dimensions solely from the measurements of osmotic and diffusional permeabilities.

F. Water Permeability of a Biological Membrane

In this final section the general properties of water transport in artificial membranes are compared with those found for the plasma membrane of the erythrocyte. The techniques used to measure the water permeability of liposomes (see sect. III) have also been previously applied to the erythrocyte (31, 51, 97, 130). For the cell membrane the techniques might be expected to give more accurate answers, because each cell in a suspension is uniform and has a single membrane of known area. The lipid composition of the membrane in mammals consists of approximately an equimolar mixture of cholesterol and phospholipid, with the phospholipids being sphingomyelin, phosphatidyl-choline, phosphatidylethanolamine, and phosphatidylserine (122).

The osmotic permeability of erythrocytes of various mammals has been measured and in almost all cases the value of P_t has been greater than 100 μ m/s at room temperature (51). For the human erythrocyte the osmotic and diffusional permeabilities are given in Table 6. These permeability values and the P_t/P_d ratio are all larger than one would expect for comparable artificial membranes. Thus, for example, artificial membranes made with the phospholipids extracted from sheep HK erythrocytes plus cholesterol were found to have a $P_t = 16.8 \ \mu$ m/s and $P_d = 13.8 \ \mu$ m/s ($P_t/P_d = 1.22$) at 26.5°C (5). These membranes probably did not contain equimolar phospholipid and cholesterol; if they had, these permeabilities could have been even lower. By comparison a membrane containing an equimolar mixture of egg phosphatidylcholine and

a me

JUN 14 '04 16:00

9196608963

DN Volume 60

y a single file of water the pore and solute and he single-file kinetics (65, the prediction that P_t/P_t er molecules in the pore; I treatment has indicated nditions (91). The pores A) that the movement of to single filing. The P_t/P_a hat the latter theoretical neerned with the detailed at the average number of (9) or 12 (85). These values g potentials produced by ning membranes and also

at there is not necessarily not the pore radius. This ensions solely from the lies.

ater transport in artificial plasma membrane of the e water permeability of lied to the erythrocyte (31, might be expected to give usion is uniform and has a ition of the membrane in tixture of cholesterol and ugomyelin, phosphatidylyserine (122).

arious mammals has been peen greater than 100 µm/s hrocyte the osmotic and be permeability values and it for comparable artificial nes made with the phossicholesterol were found to 1.22) at 26.5°C (5). These pholipid and cholesterol; if in lower. By comparison a g phosphatidylcholine and

cholesterol might be expected to have a $P_{\rm f}$ and $P_{\rm d}$ of 10–15 μ m/s at the same temperature. (The chain composition of egg phosphatidylcholine is roughly similar to the erythrocyte phospholipids.) The osmotic permeabilities of comparable artificial membranes are thus about an order of magnitude smaller than the values for the erthyrocyte. This suggests that the additional permeability is due to aqueous pores in the erythrocyte membrane, and consistent with this idea is the low activation energy for transport and also the high $P_{\rm f}/P_{\rm d}$ ratio. This ratio is not accounted for by unstirred layers, as these have been estimated to be only about 5 μ m in a permeability experiment (127) and are therefore negligible.

An argument that seems to confirm this conclusion about the presence of pores is the fact that after treatment of human red cells with p-chloromercuribenzosulfonic acid, the water permeability was reduced to that expected for the equivalent artificial membrane (89, 90). The osmotic permeability decreased from 200 μ m/s to 20 μ m/s, the ratio of osmotic to diffusional permeability became close to unity, and the activation energy for water transport increased from 4 to 11.5 kcal/mol (90). The erythrocytes of the chicken, unlike mammals, have water permeability properties closer to those of artificial membranes and p-chloromercuribenzosulfonic acid—treated human red cells (Table 6). This may indicate that they do not contain such pores.

One curious feature about these "pores" in the human erythrocyte is that although they may contribute a large additional water permeability they add very little ion permeability. Thus the conductance of the membrane of the human erythrocytes has been estimated to be about $4\times 10^{-6}~\Omega^{-1}~\rm cm^{-2}$ at 25°C (75). Even if all this conductance were contributed by the pores, which is not necessarily the case, then the pores would have a water permeability of about $5\times 10^5~\mu \rm m/s$ normalized to a membrane conductance of $10^{-2}~\Omega^{-1}~\rm cm^{-2}$. This is much larger than the comparable values for gramicidin or nystatin (see sect.

TABLE 6. Water permeabilities of erythrocytes at room temperature (19-25°C)

	Permeability, unve				
System	r,	Pu	P_t/P_d	E keaVmol	Ref.
Human erythrocytes*	173	53	8.3	3.9	97, 118, 140
Human erythrocytes + 1 mM p-chloro- mericuribenzo- sulfonic acid	20	18	1.1	11.5	90
Chicken erythrocytes	21†	13.5	1.5	11.4	19, 21, 43

Activation energy (\mathcal{E}_n) is that for the osmotic permeability. * Values given here are typical, but more extensive data are summarized in review by Forster (51). † This value is the mean from 2 sets of measurements (19, 43).

Volume 60

IIE), and indicates that the water-to-ion selectivity for the erythrocyte pore is very high.

The permeabilities for mammalian erythrocytes are toward the upper end of the range of water permeabilities for biological membranes (72). By comparison, egg cells that have to survive in freshwater have water permeabilities of 1 μ m/s or less (81, 106), which is toward the lower end of the biological range. It is not clear how such low permeabilities are achieved. From results with artificial membranes the presence of sphingolipids with long and saturated chains would be expected to produce water permeabilities of the right order of magnitude, but at present no data are available on the lipid composition of the frog or toad egg cell membrane to confirm this as the mechanism.

V. SUMMARY

Knowledge of the permeability of lipid bilayers to water has been gleaned largely from studies with black-lipid films, on the one hand, and multi- and single-walled lipid vesicles, on the other. These two experimental systems, the techniques required for their study, the results they yield, and the relevance of these results to those expected for the type of lipid structure thought to be present in biological cell membranes form the main part of this review. The mechanisms by which water may cross the bilayer are considered in the light of recent spectroscopic and other evidence about the structure of the bilayer. The modification of lipid membrane permeability brought about by the incorporation of pore-forming molecules is discussed briefly.

We are grateful to Dr. S. B. Hludky for his constructive criticism and to Mrs. Mary Edwards for preparing the manuscript.

REFERENCES

- ANDRASKO, J., AND S. FORSEN. NMR study of rapid water diffusion across lipid bilayers in dipalmitteyl lecithin vericles. Biochem. Biophys. Res. Commun. 60: 313-319, 1074.
- ANDREOLI, T. E. The structure and function of amphatericin B-cholosterol pares in lipid bilayer membranes. Ann. NY Acad Sci. 235: 449-468, 1974.
- ANDREOLI, T. E., V. W. DENNIS, AND A. M. WEIGL.
 The effect of amphotericin B on the water and nonelectrolyte permeability of thin lipid membranes. J. Gam.
 Phymiol. 53: 133-159, 1989.
- ANDREOLI, T. E., AND M. MONAHAN. The interaction of polyeno antibiotics with thin lipid membranes. J. Gon. Physiol. 52: 200-225, 1968.
- ANDREOLI, T. E., AND S. L. TROUTMAN. An analysis
 of unattred layers in series with "tight" and "porous"
 lipid bilayer membranes. J. Gan. Physiol. 57: 464-478,
 1971.
- ANDREWS, D. M., and D. A. HAYDON. Electron microscope studies of lipid bilayer membranes. J. Mol. Biol. 32: 140-150, 1968.

- ANDREWS, D. M., E. D. MANEV, AND D. A. HAYDON. Composition and energy relationships for some thin lipid films, and the chain conformation in monolayers at liquid-liquid interfaces. Spec. Discuss. Faraday Soc. 1: 45-55, 1970.
- AZZI. A. The application of fluorescent probes in membrane studies. Q. Rev. Biophys. 9: 287-316, 1975.
- BANGHAM, A. D. Membrane models with phospholipide. Prog. Biophys. Mol. Biol. 18: 29-95, 1968.
- BANCHAM, A. D., J. DE GIER, AND G. D. GREVILLE.
 Osmotic properties and water permeability of phospholipid crystuls. Chem. Phys. Lipids 1: 225-245, 1967.
- BANGHAM, A. D., M. W. HILL, AND N. G. A. MILLER. Preparation and use of liposomes as models of biological membranes. In: Mathods in Membrane Biology, edited by E. D. Korn, New York: Plenum, 1974, vol. 1, p. 1-68.
- BANGHAM, A. D., M. M. STANDISH, and J. C. WATKINS, Diffusion of univalent ions scross the ismellae of awaiten phospholipids. J. Mol. Biol. 18: 283-262, 1966.
- IS. BARENHOLZ, Y., J. SUURKUUSK, D. MOUNT-CASTLE, T. E. THOMPSON, AND R. L. BILTONEN. A calorimetric study of the thermotropic behavior of

Volume 60

or the erythrocyte pore is

are toward the upper end cal membranes (72). By shwater have water pervard the lower end of the oilities are achieved. From phingolipids with long and permeabilities of the right ble on the lipid composition is as the mechanism.

to water has been gleaned one hand, and multi- and experimental systems, the yield, and the relevance of d structure thought to be n part of this review. The e considered in the light of ructure of the bilayer. The about by the incorporation

ism and to Mrs. Mary Edwards for

D. M., E. D. MANEV, AND D. A. omposition and energy relationships for some ne, and the chain conformation in monolayers id interfaces. Spec. Discuss. Faraday Soc. TU.

The application of fluorescent probes in udies. Q. Rev. Biophys. 8: 237-218. 1976. A. D. Membrane models with phospholipids.

ys. Met. Bul. 16: 29-95, 1968. A. D., J. DE GIER, AND G. D. GREVILLE. perties and water permeability of phospho-. Chem. Phys. Lipids 1: 226-246, 1967. A. D., M. W. HILL, AND N. G. A. MILLER.

and use of lipoxomes as models of biological In: Methoda in Membrans Biology, edited rn. New York: Plenum, 1974, vol. 1, p. 1-68. A. D., M. M. STANDISH, AND J. C. Diffusion of univalent ions across the lamellae nospholipids, J. Mol. Biol. 13: 238-252, 1966. LZ, Y., J. SUURKUUSK, D. MOUNT-E. THOMPSON. AND R. L. BILTONEN.

rie study of the thermotropic behavior of

April 1980

BILAYER WATER PERMEABILITY

32. DAINTY, J. Water relations of plant cells. Adv. Bot. Res

- aqueous dispersions of nacuml and synthetic aphingomyelins. Biochemistry 15: 2441-2447, 1978.
- 14. BECK, R. E., AND J. S. SCHULTZ. Hindrance of solute diffusion within membranes as measured with microporous membranes of known pore geometry, Biochim. Biophys. Acta 255, 273-903, 1972.
- 15. BENZ, R., O. FROHLICH, P. LAUGER, AND M. MONTAL. Electrical capacity of black lipid films and of lipid bilayers made from monolayers. Biochim. Biophys. Aeta 804: 923-334, 1075.
- 16. BITTMAN. R., AND L. BLAU. The phoepholipidcholesterol interaction. Kinetics of water permeability in liposomes. Biochemistry 11: 4831-4839, 1972.
- 17. BLOK. M. C., L. L. M. VAN DEENEN, AND J. DE GIER. Effect of the gel to liquid crystalline phase transition on the esmotic behaviour of phosphatidyl choline liposomes, Biochim. Biophys. Acta 433: 1-12, 1976.
- IS. BLOK, M. C., L. L. M. VAN DEENEN, AND J. DE GIER. The effect of chalescerol incorporation on the temperature dependence of water permeation through liposomal membranes prepared from phosphatidylcholines. Biochim. Blophye. Acta 461: 509-518, 1977.
- 19. BLUM, R. M., AND R. E. FORSTER. The water permeability of erythrocytes. Biochim. Biophys. Acta 203: 410-423, 1970.
- 20. BONDI, A. Free volumes and free rotation in simple ilquids and ilquid saturated hydrocarbons. J. Phys. Chem. 68: 929-939, 1964.
- 21. BRAHM, J., AND J. O. WIETH, Separace pathways for ures and water, and for chloride in chicken erythrocytes.

 J. Physiol. London 265; 727-749, 1977.
- 22. BROCKERHOFF. H. Model of interaction of polar lipids. cholesterol and proteins in biological membranes. Lipids 9: 645-650, 1974.
- 23. BUNCE, A. S., AND R. C. HIDER. The composition of black lipid membranes formed from egg-yolk lecithin. cholesterol and n-decane. Biochim. Biophys. Acta 862: 423-427, 1974.
- 24. BUNGENBERG DE JONG. H. G. Morphology of concervates. In: Colloid Science, edited by H. R. Kruye. Amsterdam: Elsevier, 1949, vol. II, p. 480-482.
- 25. CASS, A., AND A. FINKELSTEIN, Water permanbility of thin lipid membrunes, J. Gen. Physial, 50: 1765-1784,
- 26. CASS, A., A. FINKELSTEIN, AND V. KRESPI. The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J. Gen. Physiol. 56: 100-124, 1970.
- 27. CLIFFORD. J. Properties of micellar solutions. Part 4. Spin lattice relaxation times of hydrocarbon chain protons in solutions of sodium alkyl sulphates. Trans. Furaday Soc. 61: 1278-1282, 1965.
- 28. CLIFFORD, J., AND B. A. FETHICA. Properties of micellar solutions. Part 3. Spin lattice relaxation times of water procons in solutions of sodium alkyl sulphates. Trans. Faraday Soc. 61: 182-189, 1965.
- 29. COOK, C. M. W., W. R. REDWOOD, A. R. TAYLOR. AND D. A. HAYDON. The molecular composition of black hydrocarbon tilms in aqueous solutions. Kelloid Z. Z. Polym, 227, 29-87, 1968.
- 30. CORKILL, J. N., J. F. GOODMAN, AND T. WALKER. Partial molar volumes of surface-active agente in aqueous solution. Trans. Faraday Sec. 68: 768-772, 1967.
- 31. CONLON, T., AND R. OUTHRED. Water diffusion permoability of erychrocytes using an NMR technique. Binchim, Biophys. Acra 289: 854-861, 1972.

- 1: 279-326, 1968.
- 88. DIAMOND, J. M., G. SZABO, AND Y. KATZ. Theory of non-electrolyte permeation in a generalised membrane J. Membr. Biol. 17; 121-154, 1974, (Appendix to J. M. Diamond and Y. Katz.)
- 24. DICK, D. A. T. The permeability coofficient of water in the cell membrane and the diffusion coefficient in the cell interior. J. Theor. Biol. 7: 504-532, 1974.
- 35. DICK, D. A. T. Cell Water. Landon: Rutterworth, 1966.
- 26. DIX, J. A., D. KIVELSON, AND J. M. DIAMOND Molecular motion of small non-electrolyte molecules lecithin bilavers, J. Membr. Buol. 40: 315-342, 1978.
- 37. DURBIN, R. P. Oamotic flow of water across parmeable cellulose membranes. J. Gen. Physiol. 44: 316-326, 1960
- 38. EDIDIN, M. Rocacional and cranslacional diffusion is membranes, Airs, Rev. Biophys. Bioeng. 3: 179-201
- 39. ENGLIN, B. A., A. F. PLATE, V. M. TUGOLUKOV AND M. A. PRYANISHNIKOVA. Solubility of water i individual hydrocarbons, Khim. Tekhnol. Topl. Mase 10. 42-46, 1965.
- 40. ERMISHKIN, L. N., KH. M. KASUMOV, AND V. M. POTSELUYEV, Properties of amphotoricin B channels in a lipid bilayer. Brochim. Biophys. Acta 470: 367-367
- 41. EVERITT, C. T., AND D. A. HAYDON, Influence of diffusion layers during esmetic flow across bimelecular lipid membranes. J. Theor. Biol. 22: 9-19, 1969.
- EVERITT, C. T., W. R. REDWOOD, AND D. A HAYDON. Problem of boundary layers in the exchange diffusion of water across bimolecular lipid membranes J. Thror. Biol. 22: 20-32, 1969.
- 43. FARMER, R. E. L., AND R. I. MACEY, Porturbacion of red cell volume: rectification of osmasic flow. Biochim Biophyn. Acta 196: 53-65, 1970.
- 44. FETTIPLACE. R. Physicochemical Studies on This Lipid Membranes (PhD Dissertation), University of Cambridge, 1974.
- 45. FETTIPLACE. R. The influence of the lipid on the water permeability of artificial membranes. Biochim. Biophys Aeta 518: 1-10, 1978.
- 46. FETTIPLACE, R., D. M. ANDREWS, AND D. A. HAYDON. The thickness, composition and structure of some lipid bilayers and natural membranes. J. Membr. Biol. 5: 277-296, 1971.
- 47. FETTIPLACE, R., L. G. M. CORDON, S. B. HLADKY. J. REQUENA, H. P. ZINGSHEIM, AND D. A. HAYDON Techniques in the formation and examination of "black" lipid bilayer membranes. In: Methods in Membrane Biology, edited by E. D. Korn, New York: Plenum. 1974, vol. 4. p. 1-76.
- 46. FINKELSTEIN. A. Water and non-electrolyte perme ability of lipid bilayer membranes. J Gan. Phijazzi 68: 127-195, 1976.
- 49. FINKELSTEIN, A., AND A. CASS, Effect of cholesterol on the water permeability of thin lipid membranes. Nature London 216: 717-718, 1967.
- 50. FINKELSTEIN, A., AND R. HOLZ, Aqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. In: Membranes, a Series of Advances, edited by G. Einenman, New York: Dekker, 1975, vol. 2. p. 577-408.
- 51. FORSTER, R. E. The transport of water in erythrocytes Curr. Top. Memor. Transp. 2: 41-98. 1971.
- S2. GALLUCCI, E., S. MICELLI, AND C. LIPPE. Non electrolyte permeability across thin lipid membranes. Arch. Int. Physiol. Biochim. 79, 881-887, 1971.

- 548
- GINZBURG, B. Z., AND A. KATCHALSKY. The Prictional coefficients of the flows of non-electrolytes through strifical membranes. J Gen. Physiol. 47: 408–416, 1968.
- CRAHAM, D. E., AND E. J. A. LEA. The effect of surface charge on the water permeability of phospholipid bilayers. Blochym. Blophys. Acta 274: 288-293, 1972.
- GRAZIANI, Y., and A. LIVNE. Water permeability of bilayer lipid mombranest sterol-lipid interaction. J. Membr. Biol. 7: 275-284, 1972.
- HANAI, T., AND D. A. HAYDON. The permeability to water of bimolecular lipid membranes. J. Theor. Biol. 11: 870-382, 1966.
- 67. HANAI, T., D. A. HAYDON, AND W. R. REDWOOD. The water permeability of artificial bimolecular leaflets: a comparison of radio-tracer and exmotic methods. Ann. NY Acad. Sci. 197: 731-739, 1866.
- HANAI, T., D. A. HAYDON, AND J. TAYLOR. An Investigation by electrical methods of lecithin-in-hydrocarbon films in aqueous solutions. Proc. R. Soc. Loudon Ser. A 231: 377-391, 1984.
- HANAI, T., D. A. HAYDON, and J. TAYLOR. Some further experiments on bimolecular lipid membranes. J. Gen. Physiol. 48: 59x-63s, 1964.
- HANAI, T., D. A. HAYDON, AND J. TAYLOR. The influence of lipid composition and of some adsorbed proteins on the capacisance of black hydrocarbon membranes. J. Theor. Biol. 9: 429-428, 1966.
- HARAN, N., AND M. SHPORER. Study of water permeability through phospholipid vestels membranes by "O NMR. Blochlin. Biophys. Acta 426: 688-646, 1976.
- HAYDON, D. A. Functions of the lipid in bilayer for permeability. Ann. NY Acad. Sci. 264: 2-16, 1974.
- 69. HAYDON, D. A., B. M. HENDRY, S. R. LEVINSON, AND J. REQUENA. Anaesthesia by the malkanes. A comparative study of nerve impulse blockage and the properties of black lipid bilayer membranes. Biochim Biophys. Acta 470: 17-84, 1977.
- 84. HAYDON, D. A., AND S. B. HLADKY. Ion transport across, thin lipid membranes: a critical discussion of mechanisms in scienced systems. Q. Rav. Biophys. 5: 187-282, 1972.
- HECKMANN, K. Zur theorie der "single file" diffusion.
 Z. Phys. Chem. Fronkf. Ausg. None Fulge 46: 1-25, 1965.
- 66. HECKMANN, K. Single file diffusion. In: Passive Permeability of Cell Membranes. edited by F. Kreuzer and J. F. G. Slegers. New York: Plenum. 1972, vol. 3, p. 127-15S.
- 67. HENSON, A. F., R. B. LESLIE, L. RAYNER, AND N. SANDERS. A cell design for lipid bilayer studies. Chem. Phys. Lipids 4: \$45-\$50.
- HLADKY, S. B. The single file model for the diffusion of ione through a membrane. Bull. Math. Biophys. 27: 79-86, 1965.
- HUADKY, S. B., AND D. A. HAYDON. Ion transfer ucross lipid mombranes in the presence of gramicidin A. I. Studies of the unic conductance channel. Biochim. Biophys. Acts 274: 294-212, 1972.
- HODGKIN, A. L., AND R. D. KEYNES. The potassium permeability of a grant nerve fibre. J. Physiol. London 128; 61-88, 1965.
- HOUZ, R., AND A. FINKELSTEIN. The water and non-electrolyte permeability induced in thin lipid membranes by the polyene antiblotics mystatin and amphotericin B. J. Con. Physiol. 68: 123-145, 1970.

- 72. HOUSE, C. R. Water Transport in Cells and Tissues. Lundon: Arnold, 1974.
- HUANG, C. Scudies on phosphatidylcholine vesicles. Formation and physical characteristics. Binchemistry 8: \$44-952, 1969.
- HUANG, C., AND T. E. THOMPSON. Properties of lipid bilayer membranes separating two aqueous phases: water permeability. J. Mol. Biol. 15: 539-554, 1968.
- HUNTER, M. J. Human crychrocyte anion permeabilities measured under conditions of net charge transfer. J. Physiol. London 268: 33-49, 1977.
- JAIN, M. K., D. G. TOUISSAINT, AND E. H. CORDES. Kluecies of water penetration into unsonicated liposomes. J. Membr. Biol. 14: 1–16, 1972.
- JAIN, M. K., AND N. M. WU. Effect of small molecules on the dipulmitoyl lecithin liposomal bilayer. III. Phase transition in lipid bilayer. J. Membr. Biol. 34: 157-201.
- KEDEM, O., AND A. KATCHALSKY. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 27: 229-246, 1958.
- KOCH, A. L. Some calculations on the turbidity of mitochondria and bacteria. Biochim. Biophys. Acta 51: 429-441, 1961.
- 80. KOEFOED_JOHNSEN, V., AND H. H. USSING. The contributions of diffusion and flow to the passage of D₂O through living membranes. Acta Physiol. Scand. 22: 60-76, 1962.
- KROCH, A., AND H. H. USSING. A note on the permeability of trout eggs to D₂O and H₂O, J. Exp. Biol. 14: 95-97, 1987.
- LEA, E. J. A. Permeation through long narrow pores J. Theor. Biol. 6: 102-107, 1963.
- LEVITT, D. C. Kinetics of diffusion and convection in A.2 A prices: exact solution by computer simulation. Hiophys. J. 13: 186-206, 1978.
- LEVITT, D. C. A new theory of transport for cell mombrane porce. I. Ceneral theory and application to red cell. Biochim. Biophys. Acta 373: 116-181, 1974.
- LEVITT, D. G., S. R. EUIAS, AND J. M. HAUTMAN. Number of water molecules coupled to the transport of softium, potassium and hydrogen tons via grandicidis. nonactin or valinomycin. Binchim. Biophys. Acta 512: 486-461. 1978.
- LIPPE, C. Urea and thiourea permeabilities of phospholipid and cholesterol bilayer membranes. J. Mol. Biol. 39: 669-672, 1969.
- 67. LUCKE, B., H. K. HARTLINE, AND M. MCCUT-CHEON. Further studies on the kinetics of osmosis in living cells. J. Gen. Physiol. 14: 405-419, 1931.
- LUCKÉ, B., and M. MCCUTCHEON. The living cell so an osmotic system and its permeability to water. Physiol. Rev. 12: 68-139, 1932.
- MACEY, R. I., and R. E. L. FARMER. Inhibition of water and solute permeability in human red cells. Biochim. Biophys. Acta 211: 104-106, 1970.
- MACEY, R. L. D. M. KARAN, AND R. E. L. FARMER. Proporties of water channels in human red cells. In: Passive Permicability of Cell Membranes, edited by F. Kreuzer and J. F. G. Slegera. New York: Plentum, 1972, vol. 8, p. 881-840.
- MANNING, G. S. The relation between usmotic flow and tracer solvent diffusion for single-file transport. Biophys. Chem. 3: 147-152, 1975.
- DZ. McLAUGHLIN, S., AND M. EISENBERG. Antibiration

er Transport in Cells and Tingues.

Volume 60

er on phosphatidylcholine vealcles, sical characteristics. Biorhenistry

E. THOMPSON, Properties of lipid sparacing two aqueous phases: water Biol. 15: 539-664, 1966.

nan crythrocyte anion parmeabilities whitions of net charge transfer. J_c : 35–49, 1977.

OUISSAINT, AND E. H. CORDES, letration into unsonicated liposomes. 1-15, 1978.

M. WU. Effect of small molecules cithin liposonial bilayer: 111. Phase ayer. J. Membr. Biol. 34: 157-201.

. KATCHALSKY. Thermodynamic neability of biological membranes fochim. Biophys. Acta 27: 229-246,

e calculations on the turbidity of ucceria. Biochim. Bloghys. Acta

IN. V., AND H. H. USSING. The tion and flow to the passage of D,O brunes. Acta Physiol. Sound. 28:

H. USSING. A note on the permeto D₂O and H₂O. J. Exp. Biol. 14:

leation through long narrow pores. -107, 1963.

ties of diffusion and convection in solution by computer slinulation. 195, 1973.

new theory of transport for cell eneral theory and application to red s. Acta 379: 115-131, 1974.

 ELIAS, AND J. M. HAUTMAN. locules coupled to the transport of nd hydrogen ions via gramicidin, ein. Ruchim. Biophys. Acta 512:

thiouren permeabilities of phosphobilayer membrangs. J. Mal. Biol.

HARTLINE, AND M. McCUTnlies on the kinetics of osmocia in hysiol. 14: 405–419, 1991.

MCCUTCHEON. The living cell as its permeability to water. Physiol.

R. E. L. FARMER. Inhibition of sability in human red cells. Biochim, 4-106, 1970.

KARAN, AND R. E. L. FARMER, channels in human red cells. In: of Cell Membranes, edited by G. Slegers, New York: Plenum, in.

he relation between osmotic flow liftusion for single-file transport. -152, 1976.

UND M. EISENBERG. Antibiotics

and membrane biology. Ann. Rev. Biophys. Bionng. 4: 886-866, 1975.

 MONTAL, M., AND P. MUELLER. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. USA 89: 2561–2569, 1972.

 MUELLER, P., D. O. RUDIN, H. T. TIEN, AND W. C. WESCOTT. Reconstitution of cell membrane structure in view and its transformation into an excitable system. Nature London 194: 979–980, 1962.

 MULLER, N., AND R. H. BIRKHAHN. Investigation of micelle structure by fluorine magnetic resonance. II. Effects of temperature changes, added electrolyte and counterion size. J. Phys. Chem. 72: 583-588, 1971.

 MULLER, N., and M. SIMSOHN. Investigation of micelle structure by fluorine magnetic resonance. V. Sodium perfluorocetanoste. J. Phys. Chem. 75: 942– 946, 1971.

 PAGANELLI, C. V., AND A. K. SOLOMON. The rece of exchange of trituted water across the human red cell membrane. J. Gen. Physiol. 41: 259-277, 1967.

 PAGANO, R. E., J. M. RUYSSCHAERT. AND J. R. MILLER. The molecular composition of some lipid bilayer membranes in aqueous solution. J. Membr. Biol. 10: 11-30, 1972.

 PAGANO, R., AND T. E. THOMPSON, Spherical lipid bilayer membranes. Bischim. Biophys. Acta 144: 666– 669, 1967.

100. PAPAMADJOPOULOS. D. Surface properties of acidic phospholipids: interaction of monolayers and hydrated liquid crystals with uni- and bi-valent metal ions. Biochim. Biophys. Acta 188: 240-254, 1968.

101. PAPAHADJOPOULOS, D., AND N. MILLER, Phospholipid model membranes. I. Structural characteristics of hydrated liquid crystals. Biochim. Biophys. Acta 13s. 824–838, 1967.

 PAPPENHEIMER, J. R., E. M. RENKIN, and L. M. BORRERO. Filtration, diffusion and molecular sieving through perspheral capillary membranes. A contribution to the pore cheery of capillary permeability. Am. J. Physiol. 167: 12-46, 1951.

103. PASCHER, I. Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane scability and permeability. Biochim. Biophys. Acts 152: 333-451, 1976.

 PEDLEY, T. J., and J. FISCHBARG. The development of comotic flow through an unstirred layer. J. Theor. Riol. 70: 427-447, 1978.

105. POZNANSKY, M., S. TONG, P. C. WHITE, J. M. MILGRAM, AND A. K. SOLOMON. Non-electrolyte diffusion across lipid bilayer systems. J. Gen. Physiol. 67: 45-66, 1976.

106. PRESCOTT, D. M., AND E. ZEUTHEN. Comparison of water diffusion and water filtration across cell surfaces. Acta Physiol. Scand. 28: 77-94, 1963.

107. PRICE, H. D., AND T. E. THOMPSON, Properties of lipid bilayer mambrance separating two aqueous phases: temperature dependence of water permeability. J. Mol. Biol. 41: 443-457, 1949.

106. REDWOOD, W. R., AND D. A. HAYDON. Influence of temperature and membrane composition on the water permeability of ligid bilayers. J. Theor. Biol. 22: 1-6, 1969.

 REEVES, J. P., AND R. M. DOWBEN. Formation and properties of thin-walled phospholipid vesicles. J. Cell. Physiol. 78: 49-50, 1969. REEVES, J. P., AND R. M. DOWREN, Water permeability of phospholipid vesicles. J. Membr. Biol. 3: 128-141, 1970.

 RENDI, R. Water extrusion in isolated subcellular fractions. VI. Osmotic properties of swollen phospholipid suspensions. Biochim. Biophys. Acta 135: 339-346, 1967.

112 RENKIN, E. M. Filtration, diffusion and molecular sieving through purous cellulose membranes. J. Gen. Physiol. 38: 225-245, 1954.

113. REQUENA, J., D. F. BILLETT, AND D. A. HAYDON. Van der Waale forces in oil-water systems from the study of thin lipid films. I. Measurement of the contact ungle and the estimation of the van der Waale free energy of thinning of a film. Proc. R. Suc. London Ser. A 347: 141-159, 1975.

114. REQUENA, J., D. A. HAYDON, AND S. B. HLADKY. Lenses and the compression of black lipid membranes by an electric field. Biophys. J. 15: 77-61, 1975.

116. REQUENA, J., AND D. A. HAYDON. The Lippmann equation and the characterization of black lipid films. J. Colloid Interface Soi. 61: 315-327, 1976.

116. REQUENA, J., AND D. A. HAYDON. Van der Waals forces in oil-water systems from the study of thin lipid films. II. The dependence of the van der Waals free energy of thinning on film composition and structure. Proc. R. Soc. London Ser. A 347: 181-177, 1975.

 RHODES, D. N., AND C. H. LEA. Phonpholipids. 4. On the composition of hen's egg phospholipids. Biochem. J. 65; 526-589, 1957.

118. RICH, G. T., R. I. SHA'AFI. A. ROMUALDEZ. AND A. K. SOLOMON. Effect of osmolality on the hydraulic permeability coefficient of red cells. J. Gen. Physiol. 52: 341-354, 1968.

 ROSENBERG, P. A., and A. FINKELSTEIN. Internction of ions and water in gramicidin A channels: streaming potentials across lipid bilayer membranes. J. Gen. Physiol. 72: 327-340, 1979.

 ROSENBERG, P. A., and A. FINKELSTEIN. Water permeability of gramicidin Astroaced lipid bilayer membranes, J. Gen. Physiol. 72: 241-350, 1978.

121. ROSSINI, F. D., K. S. PITZER, R. L. ARNETT, R. M. BRAUN, AND G. C. PIMENTEL. Selected values of physical and thermodynamic properties of hydrocarbons and related compounds. In: Tables of the American Petroleum Institute Research Project 13. New York; Carnegie, 1953.

122. ROUSER, G., G. J. NELSON, S. FLEISCHER, AND G. SIMON. Lipid composition of animal cell membranes organelles and organs. In: Biological Membranes, Physical Fact and Fiction, edited by D. Chapman, New York: Academic, 1985, p. 5-69.

 SCHATZBERG, P. Solubilities of water in several normal alkanes from C₇ to C₁₀. J. Phys. Chem. 87: 776-779, 1983.

124. SCHATZBERG, P. Diffusion of water through hydrocarbon liquids. J. Polymer Sci. C 10: 87-92, 1965.

125. SEELIG, A., AND J. SEELIG. The dynamic scructure of facty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry 13: 4839-4846, 1974.

126. SEELIG, A., AND J. SEELIG. Effect of a single cisdouble bond on the structure of a phospholipid bilayer. Biochemistry 16: 45-50, 1977.

127. SHA'AFI, R. I., G. T. RICH, V. W. SIDEL, W. BOSSERT, AND A. K. SOLOMON. The effect of the unstirred layer on human red cell water permeability. J. Gen. Physiol. 50: 1377-1399, 1967.

- 550
- 126. SHINITZKY, M., AND Y. BARENHOLZ. Fluidity parameters of lipid regions determined by fluorescence pularization. Biochim. Biophys. Acta 515: 367-394, 1978.
- 129. SHIPLEY, G. G., L. S. AVECILLA, AND D. M. SMALL. Phase behavior and structure of squeous dispersions of sphingomyelin. J. Lipid Res. 15: 124-131, 1974.
- SIDEL, V. W., AND A. K. SOLOMON. Entrance of water into human red cells under an ownotic pressure gradient. J. Gen. Physiol. 41: 243-257, 1967.
- SMALL, D. M. Phase equilibria and structure of dry and hydrated egg lecithin. J. Lipid Rev. 8: 551-557, 1967.
- 132 SOLOMON, A. K. Characterization of biological membranes by equivalent pores. J. Gen. Physiol. 51: 335u-26ac, 1968.
- 123. STOCKTON, G. W., AND J. C. P. SMITH. A deuterium nuclear magnetic reconnece study of the condensing effect of cholesterol on egg phosphatidyl choline bilayer mambranes. I. Perdeuterated fatty acid probes. Chem. Phys. Lipids 17: 251-263, 1976.
- 134. SZABO, G., G. EISENMAN, AND S. CIANI. The effects of the macrococculide actin antibiotics on the electrical properties of phospholipid bilayer membranes. J. Membr. Biol., 1: 346-352, 1969.
- THAU, C., R. BLOCH, AND O. KEDEM. Water transport in purous and non-purous membranes. Desatination 1: 129-138, 1966.
- TIEN, H. T., AND H. PING TING. Permeation of water through bilayer lipid membranes. J. Colloid Interface Sci. 27: 702-712, 1968.
- 187. TRAUBLE, H. The movement of molecules across lipid membranes: a molecular theory. J. Membr. Biol. 4: 198-208, 1971.
- 138. URRY, D. W., M. C. GOODALL, J. D. GLICKSON, AND D. F. MAYERS. The granificidin A transmembrane

- channel characteristics of head-to-head dimerized $n_{\rm max}$ helices. Proc. Natl. Acad. Sci. USA 69: 1907–1911, 1971.
- 139, VAN DE HULST, H. C. Light Scattering by Small Particles, New York: Wiley, 1957.
- 140. VIETRA, F. L., R. I. SHA'AFI, AND A. K. SOLOMON, The state of water in human and dog red cell membranes. J. Gen. Physiol. 55: 451-466, 1970.
- VREEMAN, H. J. Permeability of thin phospholipid films.
 Theoretical description of permeation. Proc. K. Ned. Akad. Wet. Ser. B 69: 542-554, 1966.
- VREEMAN, H. J. Permeability of thin phospholipid films.
 Proc. K. Nut. Akad. Wet. Ser. B 69: 555-568, 1966.
- VREEMAN, H. J. Permeability of thin phospholipid films, III. Experimental method and results. Proc. K. Ned. Akad. Wel. Ser. B 69: 564-577, 1966.
- 144. WANG, J. H., C. V. ROBINSON, AND I. S. EDELMAN, Self-diffusion and structure of liquid water. III. Measurement of the self-diffusion of liquid water with H³. H³ and O¹¹ am tracers. J. Am. Chem. Soc. 75: 486–470, 1953.
- 145. WHITE, S. H. Formation of "nolvent-free" black lipid bilayer membranes from glyceryl monoologic dispersed in aqualene. Biophys. J. 23: 337-347, 1978.
- 146. WHITE, S. H., D. C. PETERSEN, S. SINON, AND M. YAFUSO. Formation of planar bilayer membranes from lipid monolayers. A critique. Biophys. J. 16: 481-499, 1976.
- 147. WHITE, S. H., AND T. E. THOMPSON. Capacitance, area and thickness variations in thin lipid films. *Biochim.*, Biophys. Acta 523: 7-22, 1973.
- 148. WOOD, R. E., F. P. WIRTH, and H. F. MORGAN, Glucose permeability of lipid bilayer membranes. Biochim. Biophys. Acta 163: 171-178, 1968.
- 149. ZWOLINSKI, B. J., H. EYRING, AND C. E. REESE. Diffusion and membrane permeability. J. Phys. Colloid Chem. 53: 1426-1453, 1949.