Requisiti di sicurezza per il sistema:

Autenticazione

Assicurazione dell'identità dei soggetti coinvolti nella trasmissione

• Controllo degli accessi

I soggetti non autorizzati non possono accedere alle risorse

Confidenzialità

Nessun soggetto terzo deve accedere ai dati

• Integrità

Assicurazione che i dati non siano stati alterati da soggetti non autorizzati

• Non ripudiabilità (paternità)

Protezione contro la negazione di un soggetto coinvolto nella comunicazione

- ❖ Crittografia → insieme di procedure con lo scopo di nascondere un messaggio
- ❖ Testo in chiaro → messaggio originale
- ❖ Testo cifrato → messaggio che viene trasmesso
- ❖ Chiave → sequenza finita di bit usata come ingresso di un algoritmo crittografico.

I sistemi crittografici sono classificati in base al:

- Tipo di operazioni per cifrare il testo (sostituzione o trasposizione)
- Modo in cui il testo in chiaro è elaborato (crittografia a blocchi o a flusso)
- Numero di chiavi (chiave simmetrica o asimmetrica)

Cifrario di Giulio Cesare con chiave = 5.

Alfabeto non cifrato	А	В	c	D	E	F	G	н	1	J	K	L	М	N	0	Р	Q	R	s	т	U	v	w	x	Υ	z
Alfabeto cifrato (chiave=5)	F	G	н	1	J	к	L	М	N	0	Р	Q	R	s	т	U	V	w	х	Υ	Z	А	В	С	D	E

Cifrario di Vigenère

Con una chiave lunga 6 cifre: 3-15-2-6-21-8, otteniamo:

Testo in chiaro	0	т	Т	0	В	ı	Т	F	А	N	N	o	U	N	В	Υ	т	E
Chiave ripetuta	3	15	2	6	21	8	3	15	2	6	21	8	3	15	2	6	21	8
Testo cifrato	R	ı	٧	U	w	Q	w	U	С	т	ı	w	х	С	D	E	0	М

Cifrario One-Time Pad (OTP)

con chiave di lunghezza variabile e pari alla lunghezza del testo in chiaro;

prevede che la chiave venga utilizzata una sola volta.

Un cifrario è perfetto quando:

LunghezzaChiave ≥ LunghezzaMessaggio

Testo in chiaro	0	Т	т	О	В	ı	Т	F	А	N	N	0	U	N	В	Y	Т	Е
Chiave NON ripetuta	2	16	3	6	21	2	4	14	1	6	20	8	1	15	7	6	19	5
Testo cifrato	Q	J	w	U	w	К	х	т	В	т	н	w	V	С	ı	E	Р	J

CRITTOGRAFIA A TRASPOSIZIONE

Cifrario a matrice

gli elementi del testo in chiaro non sono sostituiti, ma riorganizzati.

Chiave	С	1	F	R	Α
Testo	0	Т	Т	0	В
	I	Т	F	А	N
	N	0	U	N	В
	Υ	Т	Е	Е	D
	U	E	В	Υ	Т
	E	F	Α	N	N
	0	U	N	А	w
	0	R	D	*	*

Il messaggio cifrato da inviare risulta:

BNBDTNW*OINYUEOOTFUEBANDTTOTEFUROANEYNA*

(si prendono le colonne in ordine alfabetico)

IL DES

Confusion → rendere confusa la relazione tra il testo in chiaro e quello cifrato, tipicamente tramite la sostituzione dei caratteri in chiaro con caratteri diversi **Diffusion** → alterare la struttura del testo in chiaro spargendo i caratteri su tutto il testo cifrato, tipicamente permutando (trasponendo) i caratteri del testo in chiaro.

Nel DES il messaggio viene diviso in blocchi da 64 bit, si usano chiavi a 64 bit (2^56 possibili combinazioni (8 bit non vengono utilizzati))

L'input viene suddiviso in 2 parti:

- sinistra (L)
- destra (R)

Il round i-esimo genera:

- L_i =R_{i-1}
- $R_i = L_{i-1} F \oplus (R_{i-1}, K_i)$

La funzione F:

- Espande R a 48 bit mediante una permutazione/espansione
- Effettua lo XOR del risultato con la sottochiave
- Invia il tutto a 8 S-BOX per ottenere un output di 32 bit
- Infine, esegue una permutazione finale dei 32 bit

Le S-BOX:

Ci sono 8 S-Box → funzioni che accettano in ingresso 6 bit e ne producono 4

- Ogni S-Box è una matrice 4x16 contenente numeri interi tra 0 e 15
- I bit 1 e 6 selezionano la riga
- I bit 2-5 selezionano la colonna

- Il risultato è l'espansione binaria dell'elemento selezionato della matrice
- L'output delle S-Box dipende sia dai dati che dalla chiave

