

Are Snapshots Backups?

Bob Ward

He/Him

Principal Architect

Microsoft

Anthony E. Nocentino

He/Him

Principal Field Solution Architect

Pure Storage

Bob Ward

Principal Architect
Microsoft

bobward@microsoft.com

🤥 http://aka.ms/bobsql

Anthony Nocentino

Principal Field Solution Architect Pure Storage Specializes in system architecture, performance, SQL Server, Kubernetes, Containers, Microsoft Azure, and VMware

y @nocentino

www.nocentino.com

👥 github.com/nocentino

Session evaluation

Your feedback is important to us

Evaluate this session at:

www.PASSDataCommunitySummit.com/evaluation

Agenda

- Anatomy of a full backup
- Anatomy of a T-SQL snapshot
- Use cases
- Is this a backup?
- Best practices for snapshot backups

Bob... How did we get here?

Anatomy of a full database backup

- 1. Checkpoint
 - 3. Database files read sequentially

- 2. Mark that the backup started
 - 5. Mark that the backup finished

Challenges with full backups

Size of data operation

Takes time

Pressure on resources CPU/Network/Disk

Impact your workload

Costs

Recovery Time Objective (RTO)

Let's talk about snapshots

- Full, read only representation of the disk or volume
 - Azure point in time, read only copy of a virtual hard disk (VHD)
 - Storage devices point in time, read only representation of a volume
- Reverted to a previous point in time
- Copied / Cloned to provide others access to the data
- Experiment using Trace Flag 3661

But I've used snapshots before

Slow to execute and long IO stuns

Required Third Party Tools

Operating System Specific (VSS)

Application Consistent

No Point in Time Recovery

If write ahead logging is followed, you always get a recoverable DB

Crash Consistent Performance
Challenges due to
Copy on Write

No Portability

Database Snapshots

Granularity of restore

Consistency Issues

Infrastructure Specific Azure / VMware

Vendor Specific Implementation

Introducing T-SQL Snapshot Backup

- Ability to quiesce the database with no external tools
- SQL Server aware and in complete control
- Snapshot at the storage or service tier
- Unlocks point in time recovery
- Instantaneous restore for a FULL database, group or server
- Seeding Availability Groups and Log Shipping
- Enables cross platform scenarios Windows and Linux
- Its FAST!!! (Especially when compared with VSS)

Virtual Device Interface

- Exposes an interface to external tools for backup and restore
- Enables conventional byte by byte copies of database
- Enables Snapshot backups using mirroring and copy-on-write technology
- Basically, a contract saying SQL Server knows what's in the backup...files or snapshot

Anatomy of a snapshot backup - database

- 1. Checkpoint
- 3. Freeze the database and log

Disk A

Disk B

Read / Write

6. Thaw the database and log 7. Mark that the backup finished

8. Update MSDB

2. Mark that the backup started

- 4. Perform a snapshot at the storage layer
- 5. Write a metadata file

Snapshot backup - TSQL

Suspend

ALTER DATABASE DB1
SET SUSPEND_FOR_SNAPSHOT_BACKUP = ON

Snapshot

Take the storage snapshot – Azure, Storage Array, Hypervisor

Backup

BACKUP DATABASE DB1
TO DISK=DB1.bkm
WITH METADATA_ONLY,
MEDIADESCRIPTION='SNAPSHOT_NAME|SNAPSHOT_LOCATION'

Required

The backup metadata file

- Describes what's in the backup
- You must protect it...
 - You do this anyway with your backups
 - If you're using enterprise backup same as protecting your backup catalog
- You can online the databases without it, but you'll lose point in time recovery
- Use the media description to locate your snapshot and name

Anatomy of a snapshot backup - Group

What about DB2??

- No IO Stun
- Allows granularity of freeze, rather than just volume

Anatomy of a snapshot backup - Server

Anatomy of a snapshot backup – Restore!

RESTORE DB1 FROM DISK = 'db1.bkm' WITH METADATA_ONLY, NO_RECOVERY

Let's do a demo

Snapshot backup and Point and Time Recovery

Is this backup?

SQL Server 1

SQL Server 2

SQL Server - DR

Seeding an Availability Group

Let's do a demo

Seeding an Availability Group using Snapshot Backup

Let's talk best practices

- Don't like that IO stun...perform the snapshot during your normal backup window
- Protect your metadata files
- Replicate snapshots to other physical systems, locations and media types
- Consider using Accelerated Data Recovery
- Snapshot retention = costs
- Data file layout on storage
- Only user databases, not system databases
- Snapshot only Primary AG replicas

Are T-SQL-based snapshots backups?

Review

- Anatomy of a full backup
- Anatomy of a T-SQL snapshot
- Use cases
- Is this a backup?
- Best practices for snapshot backups

Session evaluation

Your feedback is important to us

Evaluate this session at:

www.PASSDataCommunitySummit.com/evaluation

Thank you

- @nocentino
- www.nocentino.com
- github.com/nocentino/Presentations/

