

Desenvolvimento de Base de Dados para Treinamento de Redes Neurais de Reconhecimento de Voz Através da Geração de Áudios com Resposta ao Impulso Simuladas por Técnicas de Data Augmentation

Bruno Machado Afonso

bruno.ma@poli.ufrj.br

Departamento de Engenharia Eletrônica e de Computação - Escola Politécnica

Universidade Federal do Rio de Janeiro

11 de julho de 2021

Sumário

- 1 Motivação
- 2 Metodologia
- 3 Resultados
- 4 Conclusão

Referências

Motivação

Motivação

•00000

Crescimento no número de aplicações de algoritmos de processamento de áudio.

- Detecção e reconhecimento de voz
 - Smartphones
 - Automação residencial
 - Comunicação online
- Cancelamento de eco
- Separação de fontes

Deep Learning

Motivação

000000

Aumento no número de artigos que envolvem *deep learning* publicados em grandes conferências.

Amostra de Voz em Campo Distante (AVCD)

Sinal de voz anecóico que é corrompido pela reverberação do ambiente fechado e ruído.

(a) Sala anecóica

(b) Sala reverberante

Motivação ○○○●○○

Amostra de Voz em Campo Distante (AVCD)

$$Y(t) = s(t) * h(t) + n(t)$$

- $Y(t) \rightarrow \mathsf{AVCD}$
- $s(t) \rightarrow$ Amostra de Voz Anecóica
- $h(t) \rightarrow \text{Resposta ao Impulso de Sala (RIR)}$
- $n(t) \rightarrow \text{Sinal de Ruído}$

Motivação

000000

Resposta ao Impulso de Sala (RIR)

Representa um modelo acústico de um ambiente para um par fonte/receptor.

Motivação Metodologia Resultados Conclusão Referências
OOOOO● OOO

Desafios

- Baixa quantidade e variedade de bases de dados contendo RIRs anotadas para treinamento de redes de deep learning.
- Dificuldade para realizar gravações de RIRs (equipamentos especializados, variedade de ambientes, etc.)

Metodologia Resultados **Conclusão** Referências

Conclusões

- Em grande parte, os resultados alcançados estão condizentes com os valores esperados.
- Discrepância nos valores de T60 podem ser explicados pelas diferenças de implementação entre este projeto e [1].
- Avaliação empírica das sensações subjetivas de "distância" e "eco" condizentes com as modificações esperadas.

Metodologia Resultados **Conclusão** Referências

Trabalhos Futuros

- Implementação de uma metodologia de data augmentation de T60 mais próxima à usada no artigo [1].
- Comparação entre as RIRs geradas com a metodologia implementada e RIRs geradas através de programas de simulação acústicas (RAIOS [2]).
- Proposta de um modelo de rede de deep learning para estimação de T60 e DRR em AVCDs para observação da eficácia das RIRs como aprimoradoras do treinamento de redes neurais.

otivação Metodologia Resultados **Conclusão** Referência ○○○○

Obrigado!

Metodologia Resultados Conclusão Referências

Referências

Motivação

- [1] N. J. Bryan. "Impulse Response Data Augmentation and Deep Neural Networks for Blind Room Acoustic Parameter Estimation". Em: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2020, pp. 1–5. DOI: 10.1109/ICASSP40776.2020.9052970.
- [2] Roberto Tenenbaum et al. "Hybrid method for numerical simulation of room acoustics: Part 2-validation of the computational code RAIOS 3". Em: Journal of the Brazilian Society of Mechanical Sciences and Engineering 29 (abr. de 2007). DOI: 10.1590/S1678-58782007000200013.