3 Week 3 Homework

- **3.1 Exercise.** Let $S \subseteq C[0,1]$. Consider the following two statements:
 - S is an open subset of $(C[0,1], \|\cdot\|_1)$.
 - S is an open subset of $(C[0,1], \|\cdot\|_{\infty})$.

Determine if the first statement implies the second, and vice-versa. Supply proof or counterexample as appropriate.

Proof. We claim that the first statement implies the second, but not the converse.

Suppose that S is an open subset of $(C[0,1], \|\cdot\|_1)$. For any $g \in S$, there is an open ball with respect to the 1-norm centered around g with radius ε such that $B_1(g,\varepsilon) \subseteq S$. We proceed to show that $B_{\infty}(g,\varepsilon) \subseteq B_1(g,\varepsilon)$. Let $f \in B_{\infty}(g,\varepsilon)$. Then

$$||f - g||_1 = \int_0^1 |f - g| \le \int_0^1 \sup\{|f - g|\} = ||f - g||_\infty < \varepsilon$$

Thus $B_{\infty}(g,\varepsilon) \subseteq B_1(g,\varepsilon) \subseteq S$. Thus S is an open subset of $(C[0,1], \|\cdot\|_1)$.

Now we show that the converse is not necessarily true. Let $S=B_{\infty}(0,1)$. This is an open subset of $(C[0,1],\|\cdot\|_{\infty})$. Consider $f(x)=0\in B_{\infty}(0,1)$. For every $\varepsilon>0$, we can always find $n\in\mathbb{N}$ such that $n>\frac{1}{\varepsilon}$. Let $g(x)=x^{n-1}$. Since $\int_0^1g(x)dx=\frac{1}{n}<\varepsilon$, $g(x)\in B_1(0,\varepsilon)$. But g(1)=1, which means that $g(x)\notin B_{\infty}(0,1)$. Thus f is not an interior point of $B_{\infty}(0,1)$ with respect to the 1-norm, which means that $B_{\infty}(0,1)$ is not an open subset of $(C[0,1],\|\cdot\|_1)$.

3.2 Exercise. Let X be any set. The **diagonal** of $X \times X$ is the following set:

$$\Delta = \{(x, x) : x \in X\}.$$

Prove that if (X, d) is a metric space, then Δ is a closed subset of $X \times X$ (with respect to the product metric).

- **3.3 Exercise.** Can linear subspaces be open and/or closed?
 - (a) Let $C^{\infty}[0,1]$ denote the set of infinitely differentiably functions $f:[0,1] \to \mathbf{R}$. Prove that $C^{\infty}[0,1]$ is not a closed subset of $(C[0,1], \|\cdot\|_{\infty})$.

Proof. To show that this set is not closed, we just need to find a limit point that is not an element of the set. Let $f(x) = |x - \frac{1}{2}|$. Clearly $f \notin C^{\infty}[0,1]$. To prove f is a limit point of $C^{\infty}[0,1]$, first let $\varepsilon > 0$ and consider the open ball $B(f,\varepsilon)$. There exists an $n \in \mathbb{N}$ such that $n+1 > \frac{1}{\varepsilon} \implies asdfasfas$.

- (b) Let C be the set of **convergent** sequences of real numbers. Prove that C is a closed subset of $(\ell^{\infty}, \|\cdot\|_{\infty})$.
- (c) Let $(X, \|\cdot\|)$ be a normed vector space, and let M be a linear subspace of X. Prove that M is an open set if and only if M = X.
- **3.4 Exercise.** The Bolzano-Weierstrass Theorem.
 - (a) Prove that every bounded sequence in $(\mathbf{R}^d, \|\cdot\|_2)$ has a convergent subsequence.

Proof. We take the Bolzano-Weierstrass Theorem in \mathbb{R} for granted and use this to prove it for \mathbb{R}^d . We will do this using induction on d. When d = 1, it follows trivially from the theorem in \mathbb{R} .

Now suppose that the claim is true for some d=k, for some $k\in\mathbb{N}$. Let $(a_n)_{n\geq 1}$ be a bounded sequence in $(\mathbf{R}^k,\|\cdot\|_2)$. Define another sequence $(b_n)_{n\geq 1}$ in \mathbb{R}^{k-1} such that b_i is the first k-1 components of a_i . From our assumption, b_i has a convergent subsequence $(b_{n_i})_{i\geq 1}$. Consider another sequence $(c_{n_i})_{i\geq 0}$ in \mathbb{R} , where c_{n_i} is equal to the last component of a_{n_i} . By the Theorem in \mathbb{R} , $(c_{n_i})_{i\geq 1}$ has a convergent subsequence $(c_{n_{m_i}})_{i\geq 1}$. Suppose that $(b_{n_{m_i}})_{i\geq 1}$ converges to $B=(B_1,B_2,\ldots,B_{k-1})$ and $(c_{n_{m_i}})_{i\geq 1}$ converges to C. We claim that $(a_{n_{m_i}})_{i\geq 1}$ is our desired subsequence, which converges to $(B_1,B_2,\ldots,B_{k-1},C)$.

Let $\varepsilon > 0$. Since $(B_1, B_2, \ldots, B_{k-1})$ and $(c_{n_{m_s}})_{i \geq 1}$ converge,

$$\exists N_b, N_c > 0 \text{ such that } n_b > N_b \implies \|b_{n_b} - B\|_2 < \frac{\varepsilon}{2} \text{ and } n_c > N_c \implies |c_{n_c} - C| < \frac{\varepsilon}{2}$$

Let $N = \max\{N_b, N_c\}$. Let $n \in \mathbb{N}$, n > N. Then

$$||a_n - (B_1, B_2, \dots, B_{k-1}, C)||_2 = \sqrt{(a_1 - B_1)^2 + (a_2 - B_2)^2 + \dots + (a_{k-1} - B_{k-1})^2 + (a_k - C)^2}$$

Using an inequality that I don't know the name of, we have

$$\sqrt{(a_1 - B_1)^2 + (a_2 - B_2)^2 + \dots + (a_{k-1} - B_{k-1})^2 + (a_k - C)^2}$$

$$\leq \sqrt{(a_1 - B_1)^2 + (a_2 - B_2)^2 + \dots + (a_{k-1} - B_{k-1})^2} + \sqrt{(a_k - C)^2} = ||b_n - B||_2 + |c_n - C|_2$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Thus $(a_{n_{m_i}})_{i\geq 1}$ converges, which means that $(a_n)_{n\geq 1}$ does indeed have a convergent subsequence. By the principle of induction, the Bolzano-Weierstrass Theorem holds in $(\mathbb{R}^d, \|\cdot\|_2)$ and we are done.

(b) Give an example of a normed vector space $(X, \|\cdot\|)$ containing a (bounded?) sequence (x_n) which has no convergent subsequences.

Proof. Consider the normed vector space $(\ell^{\infty}, \|\cdot\|_{\infty})$. Let $(\vec{x_n})_{n\geq 1}$ be a sequence in $(\ell^{\infty}, \|\cdot\|_{\infty})$ defined by $\vec{x_{ik}} = \begin{cases} 1, & \text{if } k=i; \\ 0, & \text{otherwise.} \end{cases}$

Clearly $(\vec{x_n})_{n\geq 1}$ is bounded. Let $(\vec{x_{n_i}})_{i\geq 1}$ be a subsequence of $(\vec{x_n})_{n\geq 1}$. We will show that $(\vec{x_{n_i}})_{i\geq 1}$ diverges.

For any $L \in \ell^{\infty}$ Let $\varepsilon = 1$. For any $N \in \mathbb{N}$, we just take n = N. Then

 $\vec{x_{ik}}$