Amendments To The Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

In the Claims:

What is claimed is:

Claims 1-12 (Cancelled)

- (New) A method of treating cancer in a mammal, comprising: administering to said mammal
 - (a) a compound of formula I

or a salt, solvate, or physiologically functional derivative thereof; wherein:

D is

$$X_2 - N$$
 X_3
 $X_2 - N$
 X_3
 X_4
 X_4
 X_4
 X_4
 X_4
 X_5
 X_5
 X_5
 X_5
 X_7
 X_8
 X_8

PPR60682USW

X₁ is hydrogen, C₁₋₄ alkyl, C₁₋₄ haloalkyl, or C₁₋₄ hydroxyalkyl;

X₂ is hydrogen, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C(O)R¹, or aralkyl;

X₃ is hydrogen or halogen;

 X_4 is hydrogen, $C_{1^{\hspace{-0.05cm}-\hspace{-0.05cm}4}}$ alkyl, $C_{1^{\hspace{-0.05cm}-\hspace{-0.05cm}4}}$ haloalkyl, heteroaralkyl, cyanoalkyl,

 $\hbox{-(CH$_2$)$}_pC \hbox{=CH$(CH$_2$)$}_tH, \hbox{-(CH$_2$)}_pC \hbox{=C(CH$_2$)$}_tH, \hbox{ or } C_{3^{-7}} \hbox{ cycloalkyl};$

p is 1, 2, or 3;

t is 0 or 1;

W is N or C-R, wherein R is hydrogen, halogen, or cyano;

 Q_1 is hydrogen, halogen, $C_{1^{-2}}$ haloalkyl, $C_{1^{-2}}$ alkyl, $C_{1^{-2}}$ alkoxy, or $C_{1^{-2}}$ haloalkoxy; Q_2 is A^1 or A^2 :

 Q_3 is A^1 when Q_2 is A^2 and Q_3 is A^2 when Q_2 is A^1 ;

wherein

 A^1 is hydrogen, halogen, $C_{1\mbox{--}3}$ alkyl, $C_{1\mbox{--}3}$ haloalkyl, -OR 1 , and

 A^2 is the group defined by $-(Z)_{m}-(Z^1)-(Z^2)$, wherein

Z is CH2 and m is 0, 1, 2, or 3, or

Z is NR2 and m is 0 or 1, or

Z is oxygen and m is 0 or 1, or

Z is CH₂NR² and m is 0 or 1:

Z1 is S(O)2, S(O), or C(O); and

 Z^2 is $C_1.C_4$ alkyl, NR^3R^4 , aryl, arylamino, aralkyl, aralkoxy, or heteroaryl:

R1 is C1-4 alkyl;

 R^2 , R^3 , and R^4 are each independently selected from hydrogen, C_{1-4} alkyl, C_{3-7} cycloalkyl, $-S(O)_2R^5$, and $-C(O)R^5$;

R5 is C1-4 alkyl, or C3-7 cycloalkyl; and

when Z is oxygen then Z1 is S(O)2 and when D is

then X_2 is $C_{1^{-4}}$ alkyl, $C_{1^{-4}}$ haloalkyl, $C(O)R^1$, or aralkyl; and (b) a compound of formula II

or a salt, solvate, or physiologically functional derivative thereof; wherein

Y is CR⁶ and V is N; or Y is CR⁶ and V is CR⁷;

R⁵ represents a group CH₃SO₂CH₂CH₂NHCH₂-Ar-, wherein Ar is selected from phenyl, furan, thiophene, pyrrole and thiazole, each of which may optionally be substituted by one or two halo, C₁₋₄ alkyl or C₁₋₄ alkyxy groups;

 R^7 is selected from the group consisting of hydrogen, halo, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-4} alkylamino and dif C_{1-4} alkylamino:

U represents a phenyl, pyridyl, 3<u>H</u>-imidazolyl, indolyl, isoindolyl, indolinyl, isoindolinyl, 1<u>H</u>-indazolyl, 2,3-dihydro-1<u>H</u>-indazolyl, 1<u>H</u>-benzimidazolyl, 2,3-dihydro-1<u>H</u>-benzimidazolyl or 1<u>H</u>-benzotriazolyl group, substituted by an R⁸ group and optionally substituted by at least one independently selected R⁹ group;

R⁸ is selected from the group consisting of benzyl, halo-, dihalo- and trihalobenzyl, benzoyl, pyridylmethyl, pyridylmethoxy, phenoxy, benzyloxy, halo-, dihalo- and trihalobenzyloxy and benzenesulphonyl;

or R^8 represents trihalomethylbenzyl or trihalomethylbenzyloxy; or R^8 represents a group of formula

wherein each R^{10} is independently selected from halogen, C_{1-4} alkyl and C_{1-4} alkoxy; and n is 0 to 3; and

each R^9 is independently hydroxy, halogen, $C_{1\cdot4}$ alkyl, $C_{2\cdot4}$ alkenyl, $C_{2\cdot4}$ alkynyl, $C_{1\cdot4}$ alkoxy, amino, $C_{1\cdot4}$ alkylamino, di[$C_{1\cdot4}$ alkyl]amino, $C_{1\cdot4}$ alkylthio, $C_{1\cdot4}$ alkylsulphinyl, $C_{1\cdot4}$ alkylsulphonyl, $C_{1\cdot4}$ alkylcarbonyl, carboxy, carbamoyl, $C_{1\cdot4}$ alkoxycarbonyl, $C_{1\cdot4}$ alkanoylamino, N-($C_{1\cdot4}$ alkyl)carbamoyl, N-di(N-di(N-di)carbamoyl, N-di(N-di)carbamoyl, N-di(N-di

 (New) The method of claim 1, wherein (a) the compound of formula I is a compound of formula I^a

or a salt, solvate or physiologically functional derivative thereof; wherein Q_3 is A^1 when Q_2 is A^2 and Q_3 is A^2 when Q_2 is A^1 ; wherein

 $\begin{array}{l} A^1 \text{ is hydrogen, halogen, } C_{1^{-3}} \text{ alkyl, and} \\ A^2 \text{ is the group defined by } -(Z)_m -(Z^1) -(Z^2), \text{ wherein} \\ Z \text{ is } CH_2 \text{ and m is } 0, 1, 2, \text{ or } 3; \\ Z^1 \text{ is } S(O)_2, S(0), \text{ or } C(O); \text{ and} \\ Z^2 \text{ is } C_{1^{-4}} \text{ alkyl, or } NR^3R^4; \end{array}$

 ${\sf R}^3$ and ${\sf R}^4$ are each independently selected from hydrogen, or ${\sf C}_{1^-\!4}$ alkyl; and

(b) the compound of formula II is a compound of formula IIa

or a salt, solvate or physiologically functional derivative thereof; wherein R¹¹ is –Cl or –Br, X is CH, N, or CF, and Z is thiazole or furan.

15. (New) The method of claim 1, wherein (a) the compound of formula I is a compound of formula I $^{\rm b}$

 $(1)^b$

or a salt, solvate, or physiological functional derivative thereof; and

(b) the compound of formula II is a compound of formula II^b

or a salt, solvate, or physiological functional derivative thereof.

16. (New) The method of claim 1, wherein (a) the compound of formula I is a monohydrochloride salt of a compound of formula I b

; and

(b) the compound of formula II is a monohydrate ditosylate salt of a compound of formula II $^{\rm b}$

17. (New) The method of claim 1, wherein the compound of formula I is a monohydrochloride salt of a compound of formula I ^b

; and

(b) the compound of formula II is an anhydrous ditosylate salt of a compound of formula II $^{\rm b}$

- 18. (New) A pharmaceutical composition comprising:
 - (a) a compound of formula I

or a salt, solvate, or physiologically functional derivative thereof; wherein:

D is
$$X_1$$
 X_2 X_3 X_2 X_3 X_4 X_4 X_5 X_4 X_5 X_5

X₁ is hydrogen, C₁₋₄ alkyl, C₁₋₄ haloalkyl, or C₁₋₄ hydroxyalkyl;

X₂ is hydrogen, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C(O)R¹, or aralkyl;

X₃ is hydrogen or halogen;

 X_4 is hydrogen, C_{1^-4} alkyl, C_{1^-4} haloalkyl, heteroaralkyl, cyanoalkyl,

 $-(CH_2)_p C = CH(CH_2)_t H, \ -(CH_2)_p C = C(CH_2)_t H, \ or \ C_{3^{-7}} \ cycloalkyl;$

p is 1, 2, or 3;

t is 0 or 1;

W is N or C-R, wherein R is hydrogen, halogen, or cyano;

 Q_1 is hydrogen, halogen, $C_{1^{-2}}$ haloalkyl, $C_{1^{-2}}$ alkyl, $C_{1^{-2}}$ alkoxy, or $C_{1^{-2}}$ haloalkoxy; Q_2 is A^1 or A^2 :

Q₃ is A¹ when Q₂ is A² and Q₃ is A² when Q₂ is A¹;

wherein

A¹ is hydrogen, halogen, C₁₋₃ alkyl, C₁₋₃ haloalkyl, -OR¹, and

 A^2 is the group defined by $-(Z)_{m}-(Z^1)-(Z^2)$, wherein

Z is CH_2 and m is 0, 1, 2, or 3, or

Z is NR2 and m is 0 or 1, or

Z is oxygen and m is 0 or 1, or

Z is CH₂NR² and m is 0 or 1;

 Z^1 is $S(O)_2$, S(O), or C(O); and

 Z^2 is C_{1-4} alkyl, NR^3R^4 , aryl, arylamino, aralkyl, aralkoxy, or heteroaryl:

R1 is C1-4 alkyl;

 R^2 , R^3 , and R^4 are each independently selected from hydrogen, $C_{1\text{-}4}$ alkyl, $C_{3\text{-}7}$ cycloalkyl, $-S(O)_2R^5$, and $-C(O)R^5$;

R5 is C1.4 alkyl, or C3.7 cycloalkyl; and

when Z is oxygen then Z1 is S(O)2 and when D is

then X_2 is $C_{1^{-4}}$ alkyl, $C_{1^{-4}}$ haloalkyl, $C(O)R^1$, or aralkyl; and (b) a compound of formula II

or a salt, solvate, or physiologically functional derivative thereof; wherein

Y is CR⁶ and V is N;

or Y is CR6 and V is CR7:

R⁶ represents a group CH₃SO₂CH₂CH₂NHCH₂-Ar-, wherein Ar is selected from phenyl, furan, thiophene, pyrrole and thiazole, each of which may optionally be substituted by one or two halo, C₁₋₄ alkyl or C₁₋₄ alkoxy groups;

 R^7 is selected from the group consisting of hydrogen, halo, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-4} alkylamino and di[C_{1-4} alkyl]amino;

U represents a phenyl, pyridyl, 3<u>H</u>-imidazolyl, indolyl, isoindolyl, indolinyl, isoindolinyl, 1<u>H</u>-indazolyl, 2,3-dihydro-1<u>H</u>-indazolyl, 1<u>H</u>-benzimidazolyl, 2,3-dihydro-1<u>H</u>-benzimidazolyl or 1<u>H</u>-benzotriazolyl group, substituted by an R⁸ group and optionally substituted by at least one independently selected R⁹ group; R⁸ is selected from the group consisting of benzyl, halo-, dihalo- and trihalobenzyl, benzoyl, pyridylmethyl, pyridylmethoxy, phenoxy, benzyloxy, halo-, dihalo- and trihalobenzyloxy and benzenesulphonyl:

or R⁸ represents trihalomethylbenzyl or trihalomethylbenzyloxy; or R⁸ represents a group of formula

wherein each R¹⁰ is independently selected from halogen, C₁₋₄ alkyl and C₁₋₄ alkoxy; and n is 0 to 3; and each R⁹ is independently hydroxy, halogen, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ alkoxy, amino, C₁₋₄ alkylamino, di[C₁₋₄ alkyl]amino, C₁₋₄ alkylthio, C₁₋₄ alkylsulphinyl, C₁₋₄ alkylsulphonyl, C₁₋₄ alkylcarbonyl, carboxy, carbamoyl, C₁₋₄ alkoxycarbonyl, C₁₋₄ alkanoylamino, N-(C₁₋₄ alkyl)carbamoyl, N,N-di(C₁₋₄ alkyl)carbamoyl, cyano, nitro and trifluoromethyl.

19. (New) The pharmaceutical composition of claim 6, wherein (a) the compound of formula I is a compound of formula I ^a

or a salt, solvate or physiologically functional derivative thereof; $wherein \ Q_3 \ is \ A^1 \ when \ Q_2 \ is \ A^2 \ and \ Q_3 \ is \ A^2 \ when \ Q_2 \ is \ A^1;$ wherein

A¹ is hydrogen, halogen, $C_{1^{-3}}$ alkyl, and A² is the group defined by $-(Z)_m - (Z^1) - (Z^2)$, wherein Z is CH₂ and m is 0, 1, 2, or 3; Z¹ is S(O)₂, S(0), or C(O); and Z² is $C_{1^{-4}}$ alkyl, or NR³R⁴.

 \mbox{R}^{3} and \mbox{R}^{4} are each independently selected from hydrogen, or $\mbox{C}_{1^{-4}}$ alkyl; and

(b) the compound of formula II is a compound of formula II a

$$H_3C \underset{O}{\overset{N}{\overset{}}{\overset{}}} \underset{N}{\overset{}{\overset{}}} \underset{N}{\overset{}} \underset{N}{\overset{}{\overset{}}} \underset{N}{\overset{}} \underset{N}{\overset{}}$$

or a salt, solvate or physiologically functional derivative thereof; wherein R¹¹ is –Cl or –Br, X is CH, N, or CF, and Z is thiazole or furan.

 (New) The pharmaceutical composition of claim 6, wherein (a) the compound of formula 1 is a compound of formula 1 b

or a salt, solvate, or physiological functional derivative thereof; and
(b) the compound of formula II is a compound of formula II b

(II) or a salt, solvate, or physiological functional derivative thereof.

 (New) The pharmaceutical composition of claim 6, wherein (a) the compound of formula I is a monohydrochloride salt of a compound of formula I^b

; and

(b) the compound of formula II is a monohydrate ditosylate salt of the compound of formula II $^{\rm b}$

 (New) The pharmaceutical composition of claim 6, wherein (a) the compound of formula I is a monohydrochloride salt of a compound of formula I b

; and

(b) the compound of formula II is an anhydrous ditosylate salt of the compound of formula II $^{\rm b}$

23. (New) A pharmaceutical combination comprising: a compound of formula I, I^a or I^b or salt, solvate or physiologically functional derivative thereof, and a compound of formula II, II^a or II^b or salt, solvate or physiologically functional derivative thereof for use in therapy.

PPR60682USW

24. (New) The use of a pharmaceutical combination comprising: a compound of formula I, I^a or I^b or salt, solvate or physiologically functional derivative thereof, and a compound of formula II, II^a or II^b or salt, solvate or physiologically functional derivative thereof for the preparation of a medicament useful in the treatment of cancer.