

FIG. 1

GACGTCGCGG	CCGCTCTAGG	ССТССААААА	AGCCTCCTCA	CTACTTCTGG	AATAGCTCAG	60
AGGCCGAGGC	GGCCTCGGCC	TCTGCATAAA	TAAAAAAAAT	TAGTCAGCCA	TGCATGGGGC	120
GGAGAATGGG	CGGAACTGGG	CGGAGTTAGG	GGCGGGATGG	GCGGAGTTAG	GGGCGGGACT	180
ATGGTTGCTG	ACTAATTGAG	ATGCATGCTT	TGCATACTTC	TGCCTGCTGG	GGAGCCTGGG	240
GACTTTCCAC	ACCTGGTTGC	TGACTAATTG	AGATGCATGC			300
GGGGAGCCTG	GGGACTTTCC	ACACCCTAAC	TGACACACAT		CER #2=13bp TAATTCCCCT 360	360 1
AGTTATTAAT	AGTAATCAAT	TACGGGGTCA	TTAGTTCATA	GCCCATATAT	GGAGTTCCGC	420
GTTACATAAC	TTACGGTAAA		GGCTGACCGC		CCGCCCATTG	480
ACGTCAATAA	TGACGTATGT	CMV PROMOTICCCATAGTA	TER-ENHANC! ACGCCAATAG	ER=567bp GGACTTTCCA	TTGACGTCAA	540
TGGGTGGACT	ATTTACGGTA	AACTGCCCAC	TTGGCAGTAC	ATCAAGTGTA	TCATATGCCA	600
AGTACGCCCC	CTATTGACGT	CAATGACGGT	AAATGGCCCG	CCTGGCATTA	TGCCCAGTAC	660
ATGACCTTAT	GGGACTTTCC	TACTTGGCAG	TACATCTACG	TATTAGTCAT	CGCTATTACC	720
ATGGTGATGC	GGTTTTGGCA	GTACATCAAT	GGGCGTGGAT	AGCGGTTTGA	CTCACGGGGA	780
TTTCCAAGTC	TCCACCCCAT	TGACGTCAAT	GGGAGTTTGT	TTTGGCACCĄ	AAATCAACGG	340
GACTTTCCAA	AATGTCGTAA		CCATTGACGC	AAATGGGCGG	TAGGCGTGTA	900
CGGTGGGAGG	TCTATATAAG	LINKER CAGAGCTGGG 727 8	#3=76bp TACGTGAACC			960
Bgl CATCAC <u>AGAT</u>	CTCTCACCAT		GCTCAGCTCC	LEADER=60b ₁ TGGGGCTCCT		1020
CTCCCAGGTG		TGGTACCAAG	GTGGAAATCA	07 108 AA <mark>CGTACG</mark> GT 62	GGCTGCACCA	1080
TCTGTCTTCA	TCTTCCCGCC	ATCTGATGAG	CAGTTGAAAT	CTGGAACTGC	CTCTGTTGTG	1140
					GGATAACGCC	1200
HUMAN CTCCAATCGG	KAPPA CONS GTAACTCCCA	STANT 324bp GGAGAGTGTC	107 AMINO A ACAGAGCAGG	.CID & STOP ACAGCAAGGA	CODON CAGCACCTAC	1260
AGCCTCAGCA	GCACCCTGAC	GCTGAGCAAA	GCAGACTACG	AGAAACACAA	AGTCTACGCC	1320
STOP	CCCATCAGGG	CCTGAGCTCG	CCCGTCACAA	AGAGCTTCAA	CAGGGGAGAG	1380
LIGHT CHAIN Eco TGTTGAATTC 1386 7	RI AGATCCGTTA	LINKER # ACGGTTACCA	4=85bp ACTACCTAGA	CTGGATTCGT	GACAACATGC	1440
	TCTACGTATG	ATCAGCCTCG	ACTGTGCCTT	CTAGTTGCCA	GCCATCTGTT	1500

STTTGCCCCT	CCCCCGTGCC	TTCCTTGACC	CTGGAAGGTG	CCACTCCCAC	TGTCCTTTCC	1560
TAATAAAATG	AGGAAATTGC	BGH poly ATCGCATTGT	A=231bp CTGAGTAGGT	GTCATTCTAT	TCTGGGGGGT	1620
	AGGACAGCAA				TGCTGGGGAT	1680
GCGGTGGGCT	CTATGGAACC	LINKER # AGCTGGGGCT 02 3	5=15bp CGACAGCTAT 1717 8	GCCAAGTACG	CCCCCTATT	1740
ACGTCAATGA	CGGTAAATGG		ATTATGCCCA	GTACATGACC	TTATGGGACT	1800
TTCCTACTTG	GCAGTACATC	TACGTATTAG	TCATCGCTAT	TACCATGGTG	ATGCGGTTTT	1860
	CMV	PROMOTER-E	ENHANCER=33	4bp		
	CAATGGGCGT	GGATAGCGGT	TTGACTCACG	GGGATTTCCA		1920
CCATTGACGT	CAATGGGAGT	TTGTTTTGGC	ACCAAAATCA	ACGGGACTTT	CCAAAATGTC	1980
	CGCCCCATTG		GCGGTAGGCG	TGTACGGTGG		2040
ليا TAAGCAGAGC	NKER #6=7bp TGGGTACGTC 1 2 2058 9	OTCACATTCA	GTGATCAGCA	CTGAACACAG	Sal I ACCCGTCGAC	2100
ATGGGTTGGA START HEAV	GCCTCATCTT VY CHAIN	GCTCTTCCTT	GTCGCTGTTG	-5 -4 -:	CGCTAGCACC 3 114 115	2160
AAGGGCCCAT	CGGTCTTCCC	CCTGGCACCC	TCCTCCAAGA	GCACCTCTGG	GGGCACAGCG	2220
GCCCTGGGCT	GCCTGGTCAA	GGACTACTTC	CCCGAACCGG	TGACGGTGTC	GTGGAACTCA	2280
GGCGCCCTGA	CCAGCGGCGT				AGGACTCTAC	2340
	F	HUMAN GAMMA	A 1 CONSTAN	T		
TCCCTCAGCA	GCGTGGTGAC	CGTGCCCTCC =330 AMINO A			CTACATCIGC	2400
AACGTGAATC	ACAAGCCCAG	CAACACCAAG	GTGGACAAGA	AAGCAGAGCC	CAAATCTTGT	2460
GACAAAACTC	ACACATGCCC	ACCGTGCCCA	GCACCTGAAC	TCCTGGGGGG	ACCGTCAGTC	2520
ттсстсттсс	CCCCAAAACC	CAAGGACACC	CTCATGATCT	CCCGGACCCC	TGAGGTCACA	2580
тосотостос	TGGACGTGAG	CCACGAAGAC	CCTGAGGTCA	AGTTCAACTG	GTACGTGGAC	2640
GGCGTGGAGG	TGCATAATĞC	CAAGACAAAG	CCGCGGGAGG	AGCAGTACAA	CAGCACGTAC	2700
CGTGTGGTCA	GCGTCCTCAC	CGTCCTGCAC	CAGGACTGGC	TGAATGGCAA	GGACTACAAG	2760
TGCAAGGTCT	CCAACAAAGC	CCTCCCAGCC	CCCATCGAGA	AAACCATCTC	CAAAGCCAAA	2820
					GCTGACCAGG	
					CGCCGTGGAG	
TGGGAGAGCA	ATGGGCAGCC	GGAGAACAAC	TACAAGACCA	CGCCTCCCGT	GCTGGACTCC	3000

GACGGCTCCT TCTTCCTCTA CAGCAAGCTC ACCGTGGACA AGAGCAGGTG GCAGCAGGGG 3060 AACGTCTTCT CATGCTCCGT GATGCATGAG GCTCTGCACA ACCACTACAC GCAGAAGAGC 3120 STOP HEAVY CHAIN | Bam HI LINKER #7=81bp CTCTCCCTGT CTCCGGGTAA ATGAGGATCC GTTAACGGTT ACCAACTACC TAGACTGGAT 3180 TCGTGACAAC ATGCGGCCGT GATATCTACG TATGATCAGC CTCGACTGTG CCTTCTAGTT 3240 GCCAGCCATC TGTTGTTTGC CCCTCCCCG TGCCTTCCTT GACCCTGGAA GGTGCCACTC 3300 BOVINE GROWTH HORMONE POLYADENYLATION REGION=231bp CCACTGTCCT TTCCTAATAA AATGAGGAAA TTGCATCGCA TTGTCTGAGT AGGTGTCATT 3360 CTATTCTGGG GGGTGGGGTG GGGCAGGACA GCAAGGGGGA GGATTGGGAA GACAATACCA 3420 LINKER #8=34bp GGCATGCTGG GGATGCGGTG GGCTCTATGG AACCAGCTGG GGCTCGACAG CGCTGGATCT 3480 3456 7 AGCTTTGCTT CTCAATTTCT TATTTGCATA ATGAGAAAAA AAGGAAAATT 3540 AATTITAACA CCAATTCAGT AGTTGATTGA GCAAATGCGT TGCCAAAAAG GATGCTTTAG 3600 MOUSE BETA GLOBIN MAJOR PROMOTER=366bp AGACAGTGTT CTCTGCACAG ATAAGGACAA ACATTATTCA GAGGGAGTAC CCAGAGCTGA 3060 GACTECTAAG CEAGTGAGTG GEACAGEATT CTAGGGAGAA ATATGETTGT CATCACEGAA 3720 · GCCTGATTCC GTAGAGCCAC ACCTTGGTAA GGGCCAATCT GCTCACACAG GATAGAGAGG 3780 GCAGGAGCCA GGGCAGAGCA TATAAGGTGA GGTAGGATCA GTTGCTCCTC ACATFTGCTT 3840 5' UNTRANSLATED DHFR=82bp LINKER #9=19bp CTGACATAGT TGTGTTGGGA GCTTGGATAG CTTGGACAGC 3856 7 3875 6 TCAGGGCTGC GATTTCGCGC CAAACTTGAC GGCAATCCTA GCGTGAAGGC TGGTAGGATT TTATCCCCGC TGCCATCATC 3960 GTTCGACCAT TGAACTGCAT CGTCGCCGTG TCCCAAAATA TGGGGATTGG CAAGAACGGA 4020 GACCTACCCT GGCCTCCGCT CAGGAACGAG TTCAAGTACT TCCAAAGAAT GACCACAACC 4080 TCTTCAGTGG AAGGTAAACA GAATCTGGTG ATTATGGGTA GGAAAACCTG GTTCTCCATT 4140 MOUSE DHFR=564bp=187 AMINO ACID & STOP CODON CCTGAGAAGA ATCGACCTTT AAAGGACAGA ATTAATATAG TTCTCAGTAG AGAACTCAAA 4200 GAACCACCAC GAGGAGCTCA TITTCTTGCC AAAAGTTTGG ATGATGCCTT AAGACTTATT 4260 GAACAACCGG AATTGGCAAG TAAAGTAGAC ATGGTTTGGA TAGTCGGAGG CAGTTCTGTT 4320 TACCAGGAAG CCATGAATCA ACCAGGCCAC CTTAGACTCT TTGTGACAAG GATCATGCAG 4380 GAATTTGAAA GTGACACGTT TTTCCCAGAA ATTGATTTGG GGAAATATAA ACTTCTCCCA 4440 GAATACCCAG GCGTCCTCTC TGAGGTCCAG GAGGAAAAAG GCATCAAGTA TAAGTTTGAA 4500


~~~~.~~.	STOP DHE		COTTTOAACT	TOTOTOTO	CCTCCTAAAC	4500
GTCTACGAGA		ALAGGAAGA 1	GUTTICAAGT		CCTCCTAAAG	4560
3' UNTR	ANSLATED DH	FR=82bp		LINKER #10		
TCATGCATTT	TTATAAGACC	ATGGGACTTT	TGCTGGCTTT 4	AGATCAGCCT 603 4 4	CGACTGTGCC 613 4	4620
					CCCTGGAAGG	4680
TGCCACTCC	INE GROWTH ACTGTCCTTT	HORMONE PO CCTAATAAAA	TGAGGAAATT	ON REGION=2: GCATCGCATT	GTCTGAGTAG	4740
GTGTCATTCT	ATTCTGGGGG	GTGGGGTGGG	GCAGGACAGC		ATTGGGAAGA	4800
CAATAGCAGG	CATGCTGGGG	ATGCGGTGGG	CTCTATGGAA	LINKER CCAGCTGGGG 4844 5	#11=17bp CTCGAGCTAC	4860
TAGCTTTGCT	TCTCAATTTC	TTATTTGCAT	AATGAGAAAA	AAAGGAAAAT	TAATTTTAAC	4920
ACCAATTCAG	TAGTTGATTG				GAGACAGTGT	4980
TCTCTGCACA	MOUSE BE GATAAGGACA	TA GLOBIN M AACATTATTC	AJOR PROMOT AGAGGGAGTA	ER=366bp CCCAGAGCTG	AGACTCCTAA	5040
GCCAGTGAGT	GGCACAGCAT	TCTAGGGAGA	AATATGCTTG	TCATCACCGA	AGCCTGATTC	5100
CGTAGAGCCA	CACCTTGGTA	AGGGCCAATC	TGCTCACACA	GGATAGAGAG	GGCAGGAGCC	5160
AGGGCAGAGC				CACATTTGCT	TCTGACATAG	5220
TTGTGTTGGG 5227 8	LINKER #12= AGCTTGGATC	21bp ST GATCCTCTAT 5248 9	ART NEO _GGTTGAACAA	GATGGATTGC	ACGCAGGTTC	5280
TCCGGCCGCT	TGGGTGGAGA	GGCTATTCGG	CTATGACTGG	GCACAACAGA	CAATCGGCTG	5340
					TTGTCAAGAC	
CGACCTGTCC	GGTGCCCTGA NEC	MYCIN PHOSI ATGAACTGCA	PHOTRANSFER GGACGAGGCA	ASE GCGCGGCTAT	CGTGGCTGGC	5460
CACGACGGGC	795bp= GTTCCTTGCG	=264 AMINO A CAGCTGTGCT	CIDS & STOP CGACGTTGTC	CODON ACTGAAGCGG	GAAGGGACTG	5520
GCTGCTATTG	GGCGAAGTGC	CGGGGCAGGA	TCTCCTGTCA	TCTCACCTTG	CTCCTGCCGA	5580
GAAAGTATCC	ATCATGGCTG	ATGCAATGCG	GCGGCTGCAT	ACGCTTGATC	CGGCTACCTG	5640
CCCATTCGAC	CACCAAGCGA	AACATCGCAT	CGAGCGAGCA	CGTACTCGGA	TGGAAGCCGG	5700
TCTTGTCGAT	CAGGATGATC	TGGACGAAGA	GCATCAGGGG	CTCGCGCCAG	CCGAACTGTT	5760
CGCCAGGCTC	AAGGCGCGCA	TGCCCGACGG	CGAGGATCTC	GTCGTGACCC	ATGGCGATGC	5820
					ACTGTGGCCG	
GCTGGGTGTG	GCGGACCGCT	ATCAGGACAT	AGCGTTGGCT	ACCCGTGATA	TTGCTGAAGA	5940
GCTTGGCGGC	GAATGGGCTG	ACCGCTTCCT	CGTGCTTTAC	GGTATCGCCG	CTTCCCGATTC	6000

STOP NEO GCAGCGCATC GCCTTCTATC GCCTTCTTGA CGAGTTCTTC TGAGCGGGAC TCTGGGGTTC 6060 GAAATGACCG ACCAAGCGAC GCCCAACCTG CCATCACGAG ATTTCGATTC CACCGCCGCC 6120 3' UNTRANSLATED NEO=173bp T CGGAATCGTT TTCCGGGACG CCGGCTGGAT GATCCTCCAG 6180 TTCTATGAAA GGTTGGGCTT CGGAATCGTT CGCGGGGGATC TCATGCTGGA GTTCTTCGCC CACCCCAACT TGTTTATTGC AGCTTATAAT 6240 GGTTACAAAT AAAGCAATAG CATCACAAAT TTCACAAATA AAGCATTTTT TTCACTGCAT 6300 SV40 POLY A EARLY=133bp GAGCTTGGCG TAATCATGGT CATAGCTGTT TCCTGTGTGA AATTGTTATC 6420 CGCTCACAAT TCCACACAAC ATACGAGCCG GAAGCATAAA GTGTAAAGCC TGGGGTGCCT 6480 AATGAGTGAG CTAACTCACA TTAATTGCGT TGCGCTCACT GCCCGCTTTC CAGTCGGGAA 6540 ACCTGTCGTG CCAGCTGCAT TAATGAATCG GCCAACGCGC GGGGAGAGGC GGTTTGCGTA 6600 PVC 19
TTGGGCGCTC TTCCGCTTCC TCGCTCACTG ACTCGCTGCG CTCGGTCGTT CGGCTGCGGC 6660 GAGCGGTATC AGCTCACTCA AAGGCGGTAA TACGGTTATC CACAGAATCA GGGGATAACG 6720 CAGGAAAGAA CATGTGAGCA AAAGGCCAGC AAAAGGCCAG GAACCGTAAA AAGGCCGCGT 6780 6792=BACTERIAL ORIGIN OF REPLICATION
TGCTGGCGTT TTTCCATAGG CTCCGCCCC CTGACGAGCA TCACAAAAAT CGACGCTCAA 6840 GTCAGAGGTG GCGAAACCCG ACAGGACTAT AAAGATACCA GGCGTTTCCC CCTGGAAGCT 6900 CCCTCGTGCG CTCTCCTGTT CCGACCCTGC CGCTTACCGG ATACCTGTCC GCCTTTCTCC 6960 CTTCGGGAAG CGTGGCGCTT TCTCAATGCT CACGCTGTAG GTATCTCAGT TCGGTGTAGG 7020 TOGTTOGOTO CAAGOTGGGO TGTGTGCACG AACCCCCCGT_TCAGCCCGAC CGCTGCGCCT 7080 TATCCGGTAA CTATCGTCTT GAGTCCAACC CGGTAAGACA CGACTTATCG CCACTGGCAG 7140 CAGCCACTGG TAACAGGATT AGCAGAGCGA GGTATGTAGG CGGTGCTACA GAGTTCTTGA 7200 AGTGGTGGCC TAACTACGGC TACACTAGAA GGACAGTATT TGGTATCTGC GCTCTGCTGA 7260 AGCCAGTTAC CTTCGGAAAA AGAGTTGGTA GCTCTTGATC CGGCAAACAA ACCACCGCTG 7320 GTAGCGGTGG TTTTTTTGTT TGCAAGCAGC AGATTACGCG CAGAAAAAAA GGATCTCAAG 7380 AAGATCCTTT GATCTTTTCT ACGGGGTCTG ACGCTCAGTG GAACGAAAAC TCACGTTAAG 7440 GGATTTTGGT CATGAGATTA TCAAAAAGGA TCTTCACCTA GATCCTTTTA AATTAAAAAT 7500

GAAGTITTAA ATCAATCTAA AGTATATATG AGTAAACTTG GTCTGACAGT TACCAATGCT 7560 TAATCAGTGA GGCACCTATC TCAGCGATCT GTCTATTTCG TTCATCCATA GTTGCCTGAC 7620 TCCCCGTCGT GTAGATAACT ACGATACGGG AGGGCTTACC ATCTGGCCCC AGTGCTGCAA 7680 TGATACCGCG AGACCCACGC TCACCGGCTC CAGATTTATC AGCAATAAAC CAGCCAGCCG 7740 BETA LACTAMASE=861bp

GAAGGGCCGA GCGCAGAAGT GGTCCTGCAA CTTTATCCGC CTCCATCCAG TCTATTAATT 7800 286 AMINO ACID & STOP CODON
GTTGCCGGGA AGCTAGAGTA AGTAGTTCGC CAGTTAATAG TTTGCGCAAC GTTGTTGCCA 7860 TTGCTACAGG CATCGTGGTG TCACGCTCGT CGTTTGGTAT GGCTTCATTC AGCTCCGGTT 7920 CCCAACGATC AAGGCGAGTT ACATGATCCC CCATGTTGTG CAAAAAAGCG GTTAGCTCCT 7980 TCGGTCCTCC GATCGTTGTC AGAAGTAAGT TGGCCGCAGT GTTATCACTC ATGGTTATGG 8040 CAGCACTGCA TAATTCTCTT ACTGTCATGC CATCCGTAAG ATGCTTTTCT GTGACTGGTG 8100 AGTACTCAAC CAAGTCATTC TGAGAATAGT GTATGCGGCG ACCGAGTTGC TCTTGCCCGG 8160 CGTCAATACG GGATAATACC GCGCCACATA GCAGAACTTT AAAAGTGCTC ATCATTGGAA 8220 AACGTTCTTC GGGGCGAAAA CTCTCAAGGA TCTTACCGCT GTTGAGATCC AGTTCGATGT 8280 AACCCACTCG TGCACCCAAC TGATCTTCAG CATCTTTTAC TTTCACCAGC GTTTCTGGGT 8340 GAGCAAAAAC AGGAAGGCAA AATGCCGCAA AAAAGGGAAT AAGGGCGACA CGGAAATGTT 8400 START BETA LACTAMASE GAATACTCAT ACTCTTCCTT TTTCAATATT ATTGAAGCAT TTATCAGGGT TATTGTCTCA 8460 8410 TGAGCGGATA CATATTTGAA TGTATTTAGA AAAATAAACA AATAGGGGTT CCGCGCACAT 8520 TTCCCCGAAA AGTGCCACCT

FIG. 2F

12

LINKER #1= GACGTCGCGG	CCGCTCTAGG	CCTCCAAAAA	AGCCTCCTCA	CTACTTCTGG	AATAGCTCAG	60
AGGCCGAGGC	GGCCTCGGCC			TAGTCAGCCA	TGCATGGGGC	120
GAGAATGGG	CGGAACTGGG	SV40 ORIG	IN=332bp GGCGGGATGG	GCGGAGTTAG	GGGCGGGACT	180
ATGGTTGCTG	ACTAATTGAG	ATGCATGCTT	TGCATACTTC	TGCCTGCTGG	GGAGCCTGGG	240
SACTTTCCAC	ACCTGGTTGC	TGACTAATTG	AGATGCATGC			300
GGGAGCCTG	GGGACTTTCC	ACACCCTAAC	TGACACACAT	TCCACAGAAT 347 8	TAATTCCCCT	360
AGTTATTAAT	AGTAATCAAT	TACGGGGTCA	TTAGTTCATA	GCCCATATAT	GGAGTTCCGC	420
TTACATAAC	TTACGGTAAA	TGGCCCGCCT	GGCTGACCGC	CCAACGACCC	CCGCCCATTG	480
ACGTCAATAA	TGACGTATGT				TTGACGTCAA	540
GGGTGGACT	CVM ATTTACGGTA	PROMOTER - AACTGCCCAC	ENHANCER=56 TTGGCAGTAC	37bp ATCAAGTGTA	TCATATGCCA	600
AGTACGCCCC	CTATTGACGT	CAATGACGGT	AAATGGCCCG	CCTGGCATTA	TGCCCAGTAC	660
ATGACCTTAT	GGGACTTTCC	TACTTGGCAG	TACATCTACG	TATTAGTCAT	CGCTATTACC	720
ATGGTGATGC	GGTTTTGGCA	GTACATCAAT	GGGCGTGGAT	AGCGGTTTGA	CTCACGGGGA	780
TTCCAAGTC	TCCACCCCAT	TGACGTCAAT	GGGAGTTTGT	TTTGGCACCA	AAATCAACGG	840
SACTTTCCAA	AATGTCGTAA			AAATGGGCGG	TAGGCGTGTA	900
CGGTGGGAGG	TCTATATAAG	LINKER CAGAGCTGGG 927 8	#3=7bpj TACG TGAACC 934 5	GTCAGATCGC	CTGGAGACGC	960
Bgl CATCACAGAT	2 STA	ART LIGHT CH	IAIN N GTGCAGATTA	ATURAL LEAD	ER=66bp GCTAATCAGT	1020
	978 9	 				
SCTTCAGTCA	TAATGTCCAG	1044 5 + 1	GITCILICCE	AGILILLAGE	AATCCTGTCT	1000
CATCTCCAG	GGGAGAAGGT		TGCAGGGCCA	GCTGAAGTGT	AAGTTACATC	1140
CACTGGTTCC					CACATCCAAC	1200
тббсттстб	LIGHT CHA	AIN VARIABLE TCGCTTCAGT	REGION 3181 GGCAGTGGGT	op 106 AMINO CTGGGACTTC	TTACTCTCTC	1260
ACCATCAGCA	GAGTGGAGGC	TGAAGATGCT	GCCACTTATT	ACTGCCAGCA	GTGGACTAGT	1320
AACCCACCCA	CGTTCGGAGG	GGGGACCAAG	CTGGAAATCA 13	BsiWI   AACGTACGGT   62 3	GGCTGCACCA	1380
CTGTCTTCA	TCTTCCCGCC	ATCTGATGAG	CAGTTGAAAT	CTGGAACTGC	CTCTGTTGTG	1440
GCCTGCTGA	ATAACTTCTA	TCCCAGAGAG	GCCAAAGTAC	AGTGGAAGGT	GGATAACGCC	1500

HUMAN	KAPPA CON	STANT=324bp	=107 AMINO	ACID & STOP	CODON	4500
			ACAGAGCAGG			1560
AGCCTCAGCA	GCACCCTGAC	GCTGAGCAAA	GCAGACTACG	AGAAACACAA	AGTCTACGCC	1620
TGCGAAGTCA STOP LIGHT	CCCATCAGGG	CCTGAGCTCG	CCCGTCACAA	AGAGCTTCAA	CAGGGGAGAG	1680
CHAIN Eco	<b>RI</b> AGATCCGTTA	LINKER ACGGTTACCA	#4=81bp ACTACCTAGA	CTGGATTCGT	GACAACATGC	1740
GGCCGTGATA	TCTACGTATG		ACTGTGCCTT	CTAGTTGCCA	GCCATCTGTT	1800
GTTTGCCCCT	CCCCCGTGCC	TTCCTTGACC	CTGGAAGGTG	CCACTCCCAC	TGTCCTTTCC	1860
TAATAAAATG	AGGAAATTGC	ATCGCATTGT	CTGAGTAGGT	GTCATTCTAT	TCTGGGGGGT	1920
BOV GGGGTGGGGC	INE GROWTH AGGACAGCAA	HORMONE PO GGGGGGAGGAT	LYADENYLATIO TGGGAAGACA	N REGION=2: ATAGCAGGCA	31 <b>bp</b> TGCTGGGGAT	1980
GCGGTGGGCT	CTATGGAACC 20	LINKER # AGCTGGGGCT 02 3	5=15bp CGACAGCTAT 2017 8	GCCAAGTACG	CCCCCTATTG	2040
ACGTCAATGA	CGGTAAATGG	CCCGCCTGGC	ATTATGCCCA	GTACATGACC	TTATGGGACT	2100
TTCCTACTTG	GCAGTACATC	TACGTATTAG	TCATCGCTAT	TACCATGGTG	ATGCGGTTTT	2160
GGCAGTACAT			ENHANCER=30 TTGACTCACG		AGTCTCCACC	2220
CCATTGACGT	CAATGGGAGT	TTGTTTTGGC	ACCAAAATCA	ACGGGACTTT	CCAAAATGTC	2280
			GCGGTAGGCG	TGTACGGTGG	GAGGTCTATA	2340
LI	INKER #6=7bj	OTCACATTCA	CTCATCACCA	CTCAACACAG	Sal I	2400
					ACCCGTCGAC	2400
HEAVY CHAIN ATGGGTTGGA 2401	GCCTCATCTT	THETIC & NA GCTCTTCCTT	GTCGCTGTTG	CTACGCGTGT	2457 8 CCTGTCCCAG 3 -2 -1 +1	2460
GTACAACTGC	AGCAGCCTGG	GGCTGAGCTG	GTGAAGCCTG	GGGCCTCAGT	GAAGATGTCC	2520
TGCAAGGCTT	CTGGCTACAC	ATTTACCAGT	TACAATATGC	ACTGGGTAAA	ACAGACACCT	2580
GGTCGGGGCC	HEAVY CHA	IN VARIABLE: TGGAGCTATT	=363bp=121 A TATCCCGGAA	MINO ACID ATGGTGATAC	TTCCTACAAT	2640
CAGAAGTTCA	AAGGCAAGGC	CACATTGACT	GCAGACAAAT	CCTCCAGCAC	AGCCTACATG	2700
CAGCTCAGCA	GCCTGACATC	TGAGGACTCT	GCGGTC.TATT	ACTGTGCAAG	ATCGACTTAC	2760
TACGGCGGTG	ACTGGTACTT	CAATGTCTGG	GGCGCAGGGA	CCACGGTCAC	CGTCTCTGCA	2820
<u>Nhe I</u> GCTAGCACCA	AGGGCCCATC	GGTCTTCCCC	CTGGCACCCT	CCTCCAAGAG	CACCTCTGGG	2880
					GACGGTGTCG	
TGGAACTCAG	HUM GCGCCCTGAC	AN GAMMA 1 CAGCGGCGTG	CONSTANT=9 CACACCTTCC	93bp CGGCTGTCCT	ACAGTCCTCA	3000

FIG. 3B

330 AMINO ACID & STOP CODON
GGACTCTACT CCCTCAGCAG CGTGGTGACC GTGCCCTCCA GCAGCTTGGG CACCCAGACC 3060 TACATCTGCA ACGTGAATCA CAAGCCCAGC AACACCAAGG TGGACAAGAA AGCAGAGCCC 3120 AAATCTTGTG ACAAAACTCA CACATGCCCA CCGTGCCCAG CACCTGAACT CCTGGGGGGA 3180 CCGTCAGTCT TCCTCTTCCC CCCAAAACCC AAGGACACCC TCATGATCTC CCGGACCCCT 3240 GAGGTCACAT GCGTGGTGGT GGACGTGAGC CACGAAGACC CTGAGGTCAA GTTCAACTGG 3300 TACGTGGACG GCGTGGAGGT GCATAATGCC AAGACAAAGC CGCGGGAGGA GCAGTACAAC 3360 AGCACGTACC GTGTGGTCAG CGTCCTCACC GTCCTGCACC AGGACTGGCT GAATGGCAAG 3420 GAGTACAAGT GCAAGGTCTC CAACAAAGCC CTCCCAGCCC CCATCGAGAA AACCATCTCC 3480 AAAGCCAAAG GGCAGCCCCG AGAACCACAG GTGTACACCC TGCCCCCATC CCGGGATGAG 3540 CTGACCAAGA ACCAGGTCAG CCTGACCTGC CTGGTCAAAG GCTTCTATCC CAGCGACATC 3600 GCCGTGGAGT GGGAGAGCAA TGGGCAGCCG GAGAACAACT ACAAGACCAC GCCTCCCGTG 3560 CTGGACTCCG ACGGCTCCTT CTTCCTCTAC AGCAAGCTCA CCGTGGACAA GAGCAGGTGG 3720 CAGCAGGGGA ACGTCTTCTC ATGCTCCGTG ATGCATGAGG CTCTGCACAA CCACTACACG 3780 STOP HEAVY CHAIN Bam HI CAGAAGAGCC TCTCCCTGTC TCCGGGTAAA TGAGGATCCG LINKER #7=81bp TTAACGGTTA CCAACTACCT 3840 3813 4 AGACTGGATT CGTGACAACA TGCGGCCGTG ATATCTACGT ATGATCAGCC TCGACTGTGC 3900 CTTCTAGTTG CCAGCCATCT GTTGTTTGCC CCTCCCCCGT GCCTTCCTTG ACCCTGGAAG 3960 GTGCCACTCC CACTGTCCTT TCCTAATAAA ATGAGGAAAT TGCATCGCAT TGTCTGAGTA 4020 BOVINE GROWTH HORMONE POLYADENYLATION REGION=231bp GGTGTCATTC TATTCTGGGG GGTGGGGTGG GGCAGGACAG CAAGGGGGAG GATTGGGAAG 4080 ACAATAGCAG GCATGCTGGG GATGCGGTGG GCTCTATGGA ACCAGCTGGG GCTCGACAGC 4140 4125 6 GCTGGATCTC CCGATCCCCA GCTTTGCTTC TCAATTTCTT ATTTGCATAA TGAGAAAAAA 4200 AGGAAAATTA ATTITAACAC CAATTCAGTA GTTGATTGAG CAAATGCGTT GCCAAAAAGG 4260 MOUSE BETA GLOBIN MAJOR PROMOTER=366bp ATGCTTTAGA GACAGTGGTC TCTGCACAGA TAAGGACAAA CATTATTCAG AGGGAGTACC 4320 CAGAGCTGAG ACTCCTAAGC CAGTGAGTGG CACAGCATTC TAGGGAGAAA TATGCTTGTC 4380 ATCACCGAAG CCTGATTCCG TAGAGCCACA CCTTGGTAAG GGCCAATCTG CTCACACAGG 4440 ATAGAGAGGG CAGGAGCCAG GGCAGAGCAT ATAAGGTGAG GTAGGATCAG TTGCTCCTC4 4500

		LINKER #9	=19bP <u>[5' U</u>	INTRANSLATEI	DHFR=82bp	
CATTTGCTTC	TGACATAGTT	GTGTTGGGAG 4525 6	CTTGGATAGC	TTGGACAGCT 4544 5	CAGGGCTGCG	4560
ATTTCGCGCC	AAACTTGACG	GCAATCCTAG	CGTGAAGGCT	GGTAGGATTT	TATCCCCGCT	4620
STAR GCCATCATGG 4626 7	T DHFR TTCGACCATT	GAACTGCATC	GTCGCCGTGT	CCCAAAATAT	GGGGATTGGC	4680
AAGAACGGAG	ACCTACCCTG	GCCTCCGCTC	AGGAACGAGT	TCAAGTACTT	CCAAAGAATG	4740
ACCACAACCT	CTTCAGTGGA	AGGTAAACAG	AATCTGGTGA	TTATGGGTAG	GAAAACCTGG	4800
TTCTCCATTC	DHFR=564	bp=187 AMIN	O ACID & ST	OP CODON TTAATATAGT	TCTCAGTAGA	4860
			TTTCTTGCCA			4920
AGACTTATTG	AACAACCGGA	ATTGGCAAGT	AAAGTAGACA	TGGTTTGGAT	AGTCGGAGGC	4980
AGTTCTGTTT	ACCAGGAAGC	CATGAATCAA	CCAGGCCACC	TTAGACTCTT	TGTGACAAGG	5040
ATCATGCAGG	AATTTGAAAG	TGACACGTTT	TTCCCAGAAA	TTGATTTGGG	GAAATATAAA	5100
CTTCTCCCAG	AATACCCAGG	CGTCCTCTCT	GAGGTCCAGG	AGGAAAAAGG	CATCAAGTAT	5160
AAGTTTGAAG	TCTACGAGAA	STOP DHFR GAAAGACTAA 5140	3' UNTR CAGGAAGATG 1	ANSLATED DH CTTTCAAGTT	CTCTGCTCCC	5220
	TATGCATTTT	TATAAGACCA	TGGGACTTTT	GCTGGCTTTA 52	LINKER #10 GATCAGCCTC 72 3	5280
=10bpj GACTGTGCCT	TCTAGTTGCC	AGCCATCTGT	TGTTTGCCCC	TCCCCCGTGC	CTTCCTTGAC	5340
I	BOVINE GROW	TH HORMONE	POLYADENYI	ATION=231bp		5 400
CCTGGAAGGT	GCCACTCCCA	CTGTCCTTTC	СТААТААААТ	GAGGAAATTG	CATCGCALIG	5400
TCTGAGTAGG	TGTCATTCTA	TTCTGGGGGG	TGGGGTGGGG	CAGGACAGCA	A <u>G</u> GGGGAGGA	5460
	AATAGCAGGC	ATGCTGGGGA	TGCGGTGGGC	TCTATGGAAC 5	LINKER #11 CAGCTGGGGC 513 4	5520
=17bp TCGAGCTACT 5530		CTCAATTTCT	TATTTGCATA	ATGAGAAAAA	AAGGAAAATT	5580
AATTTTAACA	CCAATTCAGT	AGTTGATTGA.	.GCAAATGCGT	TGCCAAAAAG	GATGCTTTAG	5640
AGACAGTGTT	MOUSE BE CTCTGCACAG	TA GLOBIN M ATAAGGACAA	AJOR PROMÖT CTAGGGAGAA	TER=366bp ATATGCTTGT	CATCACCGAA	5700
GACTCCTAAG	CCAGTGAGTG	GCACAGCATT	CTAGGGAGAA	ATATGCTTGT	CATCACCGAA	5760
GCCTGATTCC	GTAGAGCCAC	ACCTTGGTAA	GGGCCAATCT	GCTCACACAG	GATAGAGAGG	5820
GCAGGAGCCA	GGGCAGAGCA	TATAAGGTGA	GGTAGGATCA	GTTGCTCCTC	ACATTTGCTT	5880
CTGACATAGT	TGTGTTGGGA	LINKER #12=2 GCTTGGATCG	21bp STA ATCCTCTATG 5917 8	RT NEO GTTGAACAAG	ATGGATTGCA	5940
CGCAGGTTCT		GGGTGGAGAG		TATGACTGGG	CACAACAGAC	6000

AATCGGCTGC	TCTGATGCCG	CCGTGTTCCG	GCTGTCAGCG	CAGGGGGGGC	CGGTTCTTTT	6060
NEOMYCIN TGTCAAGACC	PHOSPHOTRAI GACCTGTCCG	NSFERASE=79: GTGCCCTGAA	5bP=264 AMI TGAACTGCAG	NO ACID & ST GACGAGGCAG	CGCGGCTATC	6120
GTGGCTGGCC	ACGACGGGCG	TTCCTTGCGC	AGCTGTGCTC	GACGTTGTCA	CTGAAGCGGG	6180
AAGGGACTGG	CTGCTATTGG	GCGAAGTGCC	GGGGCAGGAT	CTCCTGTCAT	CTCACCTTGC	6240
TCCTGCCGAG	AAAGTATCCA	TCATGGCTGA	TGCAATGCGG	CGGCTGCATA	CGCTTGATCC	F300
GGCTACCTGC	CCATTCGACC	ACCAAGCGAA	ACATCGCATC	GAGCGAGCAC	GTACTCGGAT	6360
GGAAGCCGGT	CTTGTCGATC	AGGATGATCT	GGACGAAGAG	CATCAGGGGC	TCGCGCCAGC	6420
CGAACTGTTC	GCCAGGCTCA	AGGCGCGCAT	GCCCGACGGC	GAGGATCTCG	TCGTGACCCA	₹430
TGGCGATGCC	TGCTTGCCGA	ATATCATGGT	GGAAAATGGC	CGCTTTTCTG	GATTCATCGA	6540
стдтддссдд	CTGGGTGTGG	CGGACCGCTA ⁻	TCAGGACATA	GCGTTGGCTA	CCCGTGATAT	6600
TGCTGAAGAG	CTTGGCGGCG	AATGGGCTGA	CCGCTTCCTC			6660
TCCCGATTCG	CAGCGCATCG	CCTTCTATCG	CCTTCTTGAC	STOP N GAGTICITCE 67		6720
стааасттса		CCAAGCGACG			TTTCGATTCC	6780
ACCGCCGCCT	3' TCTATGAAAG	UNTRANSLAT GTTGGGCTTC	ED NEO=1731 GGAATCGTTT	TCCGGGALGC	CGGCTGGATG	6840
ATCCTCCAGC	GCGGGGATCT	CATGCTGGAG	TTCTTCGCCC	ACCCCAACTT 6885 6	GTTTATTGCA	€900
GCTTATAATG		AAGCAATAGC			AGCATTTTTT	6360
	CTAGTTGTGG	Y POLYADENY TTTGTCCAAA	CTCATCAATC	ON=133bp TATCTTATCA	TGTCTGGATC 7018 9	7020
LINKER #1 GCGGCCGCGA	3=19bp   TCCCGTCGAG 7037 8	AGCTTGGCGT	AATCATGGTC	ATAGCTGTTT	CCTGTGTGAA	7080
ATTGTTATCC	GCTCACAATT	CCACACAACA	C 19 TACGAGCCGG	AAGCATAAAG	TGTAAAGCCT	7140
GGGGTGCCTA	ATGAGTGAGC	TAACTCACAT	ŢAĄTĮTGCGTT	GCGCTCACTG	CCCGCTTTCC	7200
AGTCGGGAAA	CCTGTCGTGC	CAGCTGCATT	AATGAATCGG	CCAACGCGCG	GGGAGAGGCG	7260
GTTTGCGTAT	TGGGCGCTCT	TCCGCTTCCT	CGCTCACTGA	CTCGCTGCGC	TCGGTCGTTC	7320
GGCTGCGGCG	AGCGGTATCA	GCTCACTCAA	AGGCGGTAAT	ACGGTTATCC	ACAGAATCAG	7380
GGGATAACGC					AACCGTAAAA	7440
AGGCCGCGTT	7461=B GCTGGCGTTT	ACTERIAL ORI	GIN OF REPL	ICATION TGACGAGCAT	CACAAAAATC	7500

GACGCTCAAG TCAGAGGTGG CGAAACCCGA CAGGACTATA AAGATACCAG GCGTTTCCCC 7560 CTGGAAGCTC CCTCGTGCGC TCTCCTGTTC CGACCCTGCC GCTTACCGGA TACCTGTCCG 7620 CCTTTCTCCC TTCGGGAAGC GTGGCGCTTT CTCAATGCTC ACGCTGTAGG TATCTCAGTT 7680 CGGTGTAGGT CGTTCGCTCC AAGCTGGGCT GTGTGCACGA ACCCCCCGTT CAGCCCGACC 7740 GCTGCGCCTT ATCCGGTAAC TATCGTCTTG AGTCCAACCC GGTAAGACAC GACTTATCGC 7800 CACTGGCAGC AGCCACTGGT AACAGGATTA GCAGAGCGAG GTATGTAGGC GGTGCTACAG 7860 AGTICITGAA GIGGIGGCCI AACTACGGCI ACACTAGAAG GACAGIATII GGIATCIGCG 7920 CTCTGCTGAA GCCAGTTACC TTCGGAAAAA GAGTTGGTAG CTCTTGATCC GGCAAACAAA 7980 CCACCGCTGG TAGCGGTGGT TTTTTTGTTT GCAAGCAGCA GATTACGCGC AGAAAAAAA 8040 GATCTCAAGA AGATCCTTTG ATCTTTTCTA CGGGGTCTGA CGCTCAGTGG AACGAAAACT 8100 CACGTTAAGG GATTTTGGTC ATGAGATTAT CAAAAAGGAT CTTCACCTAG ATCCTTTTAA 8:60 ATTAAAAATG AAGTTITAAA TCAATCTAAA GTATATATGA GTAAACTTGG TCTGACAGTT 8220 BETA LACTAMASE ACCAATGCTT AATCAGTGAG GCACCTATCT CAGCGATCTG TCTATTTCGT TCATCCATAG 8280 TTGCCTGACT CCCCGTCGTG TAGATAACTA CGATACGGGA GGGCTTACCA TCTGGCCCCA 8340 GTGCTGCAAT GATACCGCGA GACCCACGCT CACCGGCTCC AGATTTATCA GCAATAAACC 8400 BETA LACTAMASE=861bp=286 AMINO ACID & STOP CODON AGCCAGCCGG AAGGGCCGAG CGCAGAAGTG GTCCTGCAAC TTTATCCGCC TCCATCCAGT 8460 CTATTAATIG TIGCCGGGAA GCTAGAGTAA GTAGTICGCC AGTTAATAGT TIGCGCAACG 8520 TTGTTGCCAT TGCTACAGGC ATCGTGGTGT CACGCTCGTC GTTTGGTATG GCTTCATTCA 8580 GCTGCGGTTC CCAACGATCA AGGCGAGTTA CATGATCCCC CATGTTGTGC AAAAAAGCGG 8540 TTAGCTCCTT CGGTCCTCCG ATCGTTGTCA GAAGTAAGTT GGCCGCAGTG TTATCACTCA 8700 TGGTTATGGC AGCACTGCAT AATTCTCTTA CTGTCATGCC ATCCGTAAGA TGCTTTTCTG 8760 TGACTGGTGA GTACTCAACC AAGTCATTCT GAGAATAGTG TATGCGGCGA CCGAGTTGCT 2820 CTTGCCCGGC GTCAATACGG GATAATACCG CGCCACATAG CAGAACTTTA AAAGTGCTCA 8880 TCATTGGAAA ACGITCITCG GGGCGAAAAC TCTCAAGGAT CTTACCGCTG TTGAGATCCA 8940 GGTCGATGTA ACCCACTCGT GCACCCAACT GATCTTCAGC ATCTTTTACT TTCACCAGCG 9000 TTTCTGGGTG AGCAAAAACA GGAAGGCAAA ATGCCGCAAA AAAGGGAATA AGGGCGACAC 9060 GGAAATGTTG AATACTCATA CTCTTCTTT TTCAATATA TTGAAGCATT TATCAGGGTT 9120 ATTGTCTCAT GAGCGGATAC ATATTTGAAT GTATTTAGAA AAATAAACAA ATAGGGGTTC 9180 CGCGCACATT TCCCCGAAAA GTGCCACCT

FIG. 3F

### LEADER

FRAI	ME 1	Met AŢG	Asp GAT	-20 Phe TTT 987	Gln CAG	Val GTG	CAG	Ile ATT	ATC	AGC	TTC	CTG	Leu CTA 1014	-10 Ile ATC	AGT	Ala GCT 1023	TCA	Vại GTC	
	Met		AGA	GGA	+1   Gtn   CAA   1047		GTT		TCC	CAG			GCA			TCT			
	GGG			GTC	20 Thr ACA 1104	ATG	ACT	Cys	Arg AGG	Ala GCC	Ser AGC	Ser	Ser AGT		Ser	TAC			
Trp	Phe				40 Pro CCA 1161		TCC		CCC	AAA	Pro		Ile ATT		Ala GCC	Thr ACA			
Leu CTG	Ala GCT	56 Ser TCT 1209	Gly GGA	GTC	Pro CCT 1218	GTT	Arg CGC	FR: Phe TTC 1227	Ser	GGC	Sec	Gly GGG	TCT	G!.y GGG 1245	Thr ACT	TCT	Tyr TAC 1254	Ser TCT	
Leu CTC	ACC	75 Ile ATC 1266	Ser AGC	AGA	Val GTG 1275	GAG	GCT	Glu GAA 1284	GAT	GCT	Ala GCC 1293	85 Thr ACT	TAT	Tyr TAC 1302	Cys	CAG	Gla	Trp TGG	
	Ser AGT		Pro	Pro CCC	97 Thr ACG 1332	Phe TTC	Gly GGA	Gly	Gly	Thr ACC		Leu	GAA	Ile					

### LEADER

-19	-15	-10	<del>-</del> 5	
			Val Ala Val Ala Thr Arg Vo	
ATG GGT TGG			GTC GCT GTT GCT ACG CGT GT	ГС
2409	2418	2427	2436 2445	
-1 $+1$ FR1		10	<b>Q</b> V <b>Q</b> 15	
			Leu Val Lys (Ala) Gly Ala Se	
CTG TCC CAG GTA CAA			CTG GTG AAG CCT GGG GCC TC	CA
2460 2	469 2478	2487	2496 GCT 2505	
20	25		30   31 CDR1 35  36	ś
			Thr Ser Tyr Asn Met His Tr	
			ACC AGT TAC AAT ATG CAC TG	3G
2517 2	526 2536	2544	2553 2562	
40 FR2	45		49   50 52 52A 53 54	1
Val Lys Gln Thr Pro	Gly Arg Gly Leu	Glu Trp Ile	Gly Ala Ile Tyr Pro G's As	sn.
GTA AAA CAG ACA CCT			GGA GCT ATT TAT CCC GGA AA	١T
2574 2	583 2592	2601	1 2610 2619	
55 CDR2	60	65   66	FR3 70	
Gly Asp Thr Ser Tyr	Asn Gln Lys Phe	Lys Gly Lys	Ala Thr Leu Thr Ala Asp Ly	
Gly Asp Thr Ser Tyr GGT GAT ACT TCC TAC	Asn Gln Lys Phe AAT CAG AAG TTC	Lys Gly Lys AAA GGC AAG	Ala Thr Leu Thr Ala Asp Ly GCC ACA TTG ACT GCA GAC AA	
Gly Asp Thr Ser Tyr GGT GAT ACT TCC TAC	Asn Gln Lys Phe	Lys Gly Lys AAA GGC AAG	Ala Thr Leu Thr Ala Asp Ly	
Gly Asp Thr Ser Tyr GGT GAT ACT TCC TAC	Asn Gln Lys Phe AAT CAG AAG TTC 640 2649	Lys Gly Lys AAA GGC AAG	Ala Thr Leu Thr Ala Asp Ly GCC ACA TTG ACT GCA GAC AA 2667 2676	
Gly Asp Thr Ser Tyr GGT GAT ACT TCC TAC 2631 2 75 Ser Ser Ser Thr Ala	Asn Gln Lys Phe AAT CAG AAG TTC 640 2649  80 82 Tyr Met Gln Leu	Lys Gly Lys AAA GGC AAG 2658  82A 82B 82C Ser Ser Leu	Ala Thr Leu Thr Ala Asp Ly GCC ACA TTG ACT GCA GAC AA 2667 2676  83 85 Thr Ser Glu Asp Ser Ala Vo	AA
Gly Asp Thr Ser Tyr GGT GAT ACT TCC TAC 2631 2  75 Ser Ser Ser Thr Ala TCC TCC AGC ACA GCC	Asn Gln Lys Phe AAT CAG AAG TTC 640 2649 80 82 Tyr Met Gln Leu TAC ATG CAG CTC	Lys Gly Lys AAA GGC AAG 2658  82A 82B 82C Ser Ser Leu AGC AGC CTG	Ala Thr Leu Thr Ala Asp Ly GCC ACA TTG ACT GCA GAC AA 2667 2676  83 85 Thr Ser Glu Asp Ser Ala Vo ACA TCT GAG GAC TCT GCG GT	AA
Gly Asp Thr Ser Tyr GGT GAT ACT TCC TAC 2631 2  75 Ser Ser Ser Thr Ala TCC TCC AGC ACA GCC	Asn Gln Lys Phe AAT CAG AAG TTC 640 2649  80 82 Tyr Met Gln Leu	Lys Gly Lys AAA GGC AAG 2658  82A 82B 82C Ser Ser Leu	Ala Thr Leu Thr Ala Asp Ly GCC ACA TTG ACT GCA GAC AA 2667 2676  83 85 Thr Ser Glu Asp Ser Ala Vo	AA
Gly Asp Thr Ser Tyr GGT GAT ACT TCC TAC 2631 2  75 Ser Ser Ser Thr Ala TCC TCC AGC ACA GCC	Asn Gln Lys Phe AAT CAG AAG TTC 640 2649  80 82 Tyr Met Gln Leu TAC ATG CAG CTC 697 2706	Lys Gly Lys AAA GGC AAG 2658  82A 82B 82C Ser Ser Leu AGC AGC CTG 2715	Ala Thr Leu Thr Ala Asp Ly GCC ACA TTG ACT GCA GAC AA 2667 2676  83 85 Thr Ser Glu Asp Ser Ala Vo ACA TCT GAG GAC TCT GCG GT	al TC
Gly Asp Thr Ser Tyr GGT GAT ACT TCC TAC 2631 2 75 Ser Ser Ser Thr Ala TCC TCC AGC ACA GCC 2688 2 90 94 Tyn Tyr Cys Ala Arg	Asn Gln Lys Phe AAT CAG AAG TTC 640 2649  80 82 Tyr Met Gln Leu TAC ATG CAG CTC 697 2706  95 CDR3 Ser Thr Tyr Tyr	Lys Gly Lys AAA GGC AAG 2658  82A 82B 82C Ser Ser Leu AGC AGC CTG 2715  100 100A Gly Gly Asp	Ala Thr Leu Thr Ala Asp Ly GCC ACA TTG ACT GCA GAC AA 2667 2676  83 85 Thr Ser Glu Asp Ser Ala Vo ACA TCT GAG GAC TCT GCG GT 2724 2733  100B 100C 100D 101 102 103 Trp Tyr Phe Asn Val Trp Gl	al TC
Gly Asp Thr Ser Tyr GGT GAT ACT TCC TAC 2631 2 75 Ser Ser Ser Thr Ala TCC TCC AGC ACA GCC 2688 2 90 94 Tyn Tyr Cys Ala Arg	Asn Gln Lys Phe AAT CAG AAG TTC 640 2649  80 82 Tyr Met Gln Leu TAC ATG CAG CTC 697 2706  95 CDR3 Ser Thr Tyr Tyr TCG ACT TAC TAC	Lys Gly Lys AAA GGC AAG 2658  82A 82B 82C Ser Ser Leu AGC AGC CTG 2715  100 100A Gly Gly Asp GGC GGT GAC	Ala Thr Leu Thr Ala Asp Ly GCC ACA TTG ACT GCA GAC AA 2667 2676  83 85 Thr Ser Glu Asp Ser Ala Vo ACA TCT GAG GAC TCT GCG GT 2724 2733  100B 100C 100D 101 102 103 Trp Tyr Phe Asn Val Trp Gl TGG TAC TTC AAT GTC TGG GG	al TC
Gly Asp Thr Ser Tyr GGT GAT ACT TCC TAC 2631 2  75 Ser Ser Ser Thr Ala TCC TCC AGC ACA GCC 2688 2  90 94 Tyn Tyr Cys Ala Arg TAT TAC TGT GCA AGA	Asn Gln Lys Phe AAT CAG AAG TTC 640 2649  80 82 Tyr Met Gln Leu TAC ATG CAG CTC 697 2706  95 CDR3 Ser Thr Tyr Tyr	Lys Gly Lys AAA GGC AAG 2658  82A 82B 82C Ser Ser Leu AGC AGC CTG 2715  100 100A Gly Gly Asp GGC GGT GAC	Ala Thr Leu Thr Ala Asp Ly GCC ACA TTG ACT GCA GAC AA 2667 2676  83 85 Thr Ser Glu Asp Ser Ala Vo ACA TCT GAG GAC TCT GCG GT 2724 2733  100B 100C 100D 101 102 103 Trp Tyr Phe Asn Val Trp Gl	al TC
Gly Asp Thr Ser Tyr GGT GAT ACT TCC TAC 2631 2 75 Ser Ser Ser Thr Ala TCC TCC AGC ACA GCC 2688 2 90 94 Tyn Tyr Cys Ala Arg TAT TAC TGT GCA AGA 2745 2	Asn Gln Lys Phe AAT CAG AAG TTC 640 2649  80 82 Tyr Met Gln Leu TAC ATG CAG CTC 697 2706  95 CDR3 Ser Thr Tyr Tyr TCG ACT TAC TAC	Lys Gly Lys AAA GGC AAG 2658  82A 82B 82C Ser Ser Leu AGC AGC CTG 2715  100 100A Gly Gly Asp GGC GGT GAC	Ala Thr Leu Thr Ala Asp Ly GCC ACA TTG ACT GCA GAC AA 2667 2676  83 85 Thr Ser Glu Asp Ser Ala Vo ACA TCT GAG GAC TCT GCG GT 2724 2733  100B 100C 100D 101 102 103 Trp Tyr Phe Asn Val Trp Gl TGG TAC TTC AAT GTC TGG GG	al TC
Gly Asp Thr Ser Tyr GGT GAT ACT TCC TAC 2631 2 75 Ser Ser Ser Thr Ala TCC TCC AGC ACA GCC 2688 2 90 94 Tyn Tyr Cys Ala Arg TAT TAC TGT GCA AGA 2745 2 105 FR4 Ala Gly Thr Thr Val	Asn Gln Lys Phe AAT CAG AAG TTC 640 2649  80 82 Tyr Met Gln Leu TAC ATG CAG CTC 697 2706  95 CDR3 Ser Thr Tyr Tyr TCG ACT TAC TAC 754 2763  110 113 Thr Val Ser Ala	Lys Gly Lys AAA GGC AAG 2658  82A 82B 82C Ser Ser Leu AGC AGC CTG 2715  100 100A Gly Gly Asp GGC GGT GAC 2772	Ala Thr Leu Thr Ala Asp Ly GCC ACA TTG ACT GCA GAC AA 2667 2676  83 85 Thr Ser Glu Asp Ser Ala Vo ACA TCT GAG GAC TCT GCG GT 2724 2733  100B 100C 100D 101 102 103 Trp Tyr Phe Asn Val Trp Gl TGG TAC TTC AAT GTC TGG GG	al TC
Gly Asp Thr Ser Tyr GGT GAT ACT TCC TAC 2631 2  75  Ser Ser Ser Thr Ala TCC TCC AGC ACA GCC 2688 2  90  Tyn Tyr Cys Ala Arg TAT TAC TGT GCA AGA 2745 2  105 FR4 Ala Gly Thr Thr Val GCA GGG ACC ACG GTC	Asn Gln Lys Phe AAT CAG AAG TTC 640 2649  80 82 Tyr Met Gln Leu TAC ATG CAG CTC 697 2706  95 CDR3 Ser Thr Tyr Tyr TCG ACT TAC TAC 754 2763  110 113 Thr Val Ser Ala	Lys Gly Lys AAA GGC AAG 2658  82A 82B 82C Ser Ser Leu AGC AGC CTG 2715  100 100A Gly Gly Asp GGC GGT GAC 2772	Ala Thr Leu Thr Ala Asp Ly GCC ACA TTG ACT GCA GAC AA 2667 2676  83 85 Thr Ser Glu Asp Ser Ala Vo ACA TCT GAG GAC TCT GCG GT 2724 2733  100B 100C 100D 101 102 103 Trp Tyr Phe Asn Val Trp Gl TGG TAC TTC AAT GTC TGG GG	al TC





FIG. 7



ANTIBODY

FIG. 8







FIG. 9C





FIG. 11









FIG. 14B

Figure 1
Binding of IDEC-C2B3 to CDW32 Mouse Fibroblast Cells Transferred with
Human Low Affinity ForRif Membrane Recaptors



Figure 1. IDEC-C2B8 antibody was serially diluted in the absence of CD20, along with positive and negative isotype control human IgG1 and IgG4 antibodies. Aliquots were added in triplicate to sets of wells each containing  $Fc\gamma RII$  (human type II Fc receptor) transfected CDW32 mouse L cells. Binding of antibodies to Fc receptors was determined by ELISA. These results indicate that IDEC-C2B8 binds much more strongly to the low affinity human  $Fc\gamma RII$  receptor than typical human IgG1 antibodies with similar receptor binding sites.