Global EMC Inc. Labs EMC & RF Test Report

As per RSS 210 Issue 8:2010

&

FCC Part 15 Subpart C:2014
Unlicensed Intentional Radiators

on the

Myo Armband

Min Xie Project Engineer 11 Gordon Collins Dr, Gormley, ON, LOH 1G0 Canada Ph: (905) 883-8189

Testing produced for

THALMICLABS™

See Appendix A for full customer & EUT details.

R-4023, G-506 T-1246, C-4498

Page 1 of 82

Report issue date: 7/8/2014

GEMC File #:GEMC-FCC-21709R1

Client	Thalmic Labs Inc
Product	Myo Armband
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014

Table of Contents

Table of Contents	2
Report Scope	3
Summary	4
Test Results Summary Justifications, Descriptions, or Deviations Applicable Standards, Specifications and Methods Sample calculation(s) Document Revision Status	6 7
Definitions and Acronyms	9
Testing Facility	10
Calibrations and Accreditations Testing Environmental Conditions and Dates	
Detailed Test Results Section	12
6dB Bandwidth of Digitally Modulated Systems Maximum Peak Envelope Conducted Power Antenna Spurious Conducted Emissions (-20 dBc Requirement) – 15.247 Radiated Emissions – 15.247 Power Spectral Density – 15.247 DM Maximum Permissible Exposure – 15.247 Power Line Conducted Emissions	
Appendix A – EUT Summary	71
Appendix B – EUT and Test Setup Photographs	75

Client	Thalmic Labs Inc	CLODA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMUINU

Report Scope

This report addresses the EMC verification testing and test results of Thalmic Labs Inc's Myo Armband, herein referred to as EUT (Equipment Under Test) performed at Global EMC Labs.

The EUT was tested for compliance against the following standards:

RSS 210 Issue 8:2010 FCC Part 15 Subpart C 15:2014

Test procedures, results, justifications, and engineering considerations, if any, follow later in this report.

The results contained in this report relate only to the item(s) tested.

This report does not imply product endorsement by A2LA or any other accreditation agency, any government, or Global EMC Inc.

Opinions/interpretations expressed in this report, if any, are outside the scope of Global EMC Inc accreditation. Any opinions expressed do not necessarily reflect the opinions of Global EMC Inc, unless otherwise stated.

Client	Thalmic Labs Inc	OLODA T
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMCING

Summary

The results contained in this report relate only to the item(s) tested.

EUT FCC Certification #, FCC ID:	2ACKV-TL9B
EUT Industry Canada Certification #, IC:	12013A-TL9A
EUT Passed all tests performed.	Yes (see test results summary)
Tests conducted by	Min Xie

Client	Thalmic Labs Inc	OLODA PARA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMCINC

Test Results Summary

Standard/Method	Description	Class/Limit	Result
FCC 15.203	Antenna Requirement	Unique	Pass See Justification
FCC 15.205 RSS 210 (Table 1)	Restricted Bands for intentional operation	QuasiPeak Average	Pass
FCC 15.207	Power line conducted emissions	QuasiPeak Average	N/A, (See Justifications)
FCC 15.209 RSS-210 (Table 2)	Spurious Radiated emissions	QuasiPeak Average	Pass
FCC 15.247(a)2 RSS-210 A8.2(a)	6 dB Bandwidth	> 500 kHz	Pass
FCC 15.247(b)2 RSS-210 A8.4(4)	Max output power	< 1 Watt	Pass
FCC 15.247(b)(4) RSS-210 A8.4(5)	Antenna Gain	< 6 dBi	Pass See Justifications
FCC 15.247(d) RSS-210 A8.5	Antenna conducted spurious	< 20 dBc	Pass
FCC 15.247(e) RSS-210 A8.2(b)	Spectral Density	< 8 dBm (3 kHz BW)	Pass
FCC 15.247(i) IC Safety code 6	Maximum Permissible Exposure	> 20 cm separation.	Pass See justification and calculations
Overall	Result		PASS

All tests were performed by Min Xie.

If the product as tested or otherwise complies with the specification, the EUT is deemed to comply with the requirement and is deemed a 'PASS' grade. If not 'FAIL' grade will be issued. Note that 'PASS' / 'FAIL' grade is independent of any measurement uncertainties.

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMCINC

Justifications, Descriptions, or Deviations

The following justifications for tests not performed or deviations from the above listed specifications apply:

For the Antenna requirement specified in FCC 15.203 (RSS 210 section 5.5), the unit uses a permanently connected SMD ceramic chip antenna (0.5 dBi peak gain –Johanson Technology 2.45 GHz Antenna, Model: 2450AT18B100).

For the Restricted Bands of operation, the EUT is designed to only operate between 2400 – 2483.5 MHz.

For maximum permissible exposure, this device operates at less than 1 Watt at 2400 – 2483.5 MHz and is designed to operate greater than 5 mm from any personnel during normal operation. No testing is required, however worst case calculated exposure compliance follows later in this report.

The EUT is not a hybrid system and FCC 15.247 (f) does not apply to it. However the 15.247 (d) requirement of power density were met and are detailed later in this test report.

For the scope of this test report the EUT was mounted in three orthogonal axes to maximize emissions. Worst case results are presented.

For FCC 15.107 power line conducted emission, the device is battery operated, this requirement does not apply. The batteries are rechargeable batteries and the device turns the transmitter off when charging. The devices charges through a micro USB port and it does not sell with a power supply. Power line conducted emissions test is include for information purpose only and is performed on an Lenovo T410 laptop with AC Adapter (Model: ADLX90NCT2A).

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMCINC

Applicable Standards, Specifications and Methods

CFR 47 FCC 15	- Code of Federal Regulations – Radio Frequency Devices
CISPR 22:2008	- Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement
ANSI C63.10:2009	- American national standard for testing unlicensed wireless devices
FCC KDB 558074	- FCC KDB 558074 Digital Transmission Systems, measurements and procedures
ICES-003:2012	- Digital Apparatus - Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard
ISO 17025:2005	- General Requirements for the competence of testing and calibration laboratories
RSS-GEN	General Requirements and Information for the Certification of Radio Apparatus
RSS 210:2010	- Issue 8: Spectrum Management and Telecommunications Policy. Radio Standards Specification Low Power License-Exempt Radiocommunication Devices

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMCINC

Sample calculation(s)

 $Margin = limit - (received \ signal + antenna \ factor + cable \ loss - pre-amp \ gain)$

Margin = 50.5dBuV/m - (50dBuV + 10dB + 2.5dB - 20dB)

Margin = 8.5 dB

Document Revision Status

Revision 1 - July 8, 2014 Initial release

Client	Thalmic Labs Inc	OLODA TARA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMCINC

Definitions and Acronyms

The following definitions and acronyms are applicable in this report. See also ANSI C63.14.

AE – Auxiallary Equipment.

BW – Bandwidth. Unless otherwise stated, this is refers to the 6 dB bandwidth.

EMC – Electro-Magnetic Compatibility

EMI – Electro-Magnetic Immunity

EUT – Equipment Under Test

ITE – Information Technology Equipment with a primary function(s) of entry, storage, display, retrieval, transmission, processing, switching, or control, of data.

LISN – Line impedance stabilization network

NCR - No Calibration Required

RF – Radio Frequency

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL THE
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EINCINC

Testing Facility

Testing for EMC on the EUT was carried out at Global EMC labs in Gormley, Ontario, Canada. The testing lab consists of a 3m semi-anechoic chamber that is calibrated to be able to allow measurements on an EUT that has a maximum width or length of up to 2m and a height of up to 3m. The chamber is equipped with a turntable that is capable of testing devices that are up to 3300lb in weight. This facility is capable of testing products that are rated for 120 Vac and 240Vac single phase, or devices that are rated for a 208 Vac 3 phase input. DC capability is also available for testing. The chamber is equipped with an antenna mast, which controls the polarization and height of the measuring antenna from the control room adjoining the shielded chamber. Radiated emissions measurements are performed using a Bilog and Horn antenna where applicable. Conducted emissions, unless otherwise stated, are performed using a LISN.

For ESD testing, the HCP is 1.6m x 0.8m and the VCP is 0.5m x 0.5m. The reference ground plane, when applicable, is 1.6m x 1.6m.

Calibrations and Accreditations

The 3m semi-anechoic chamber is registered with Federal Communications Commission (FCC, 377448), Industry Canada (IC, 6844A-3) and VCCI (R-4023, G-506, C-4498, and T-1246). This chamber was calibrated for Normalized Site Attenuation (NSA) using test procedures outlined in ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The chamber is lined with ferrite tiles and absorption cones to minimize any undesired reflections. The NSA data is kept on file at Global EMC. For radiated susceptibility testing, a 16 point field calibration has been performed on the chamber. The field uniformity data is kept on file at Global EMC. Global EMC Inc is accredited to ISO 17025 by A2LA with Testing Certificate #2555.01. The laboratory's current scope of accreditation listing can be found as listed on the A2LA website. All measuring equipment is calibrated on an annual or bi-annual basis as listed for each respective test.

Page 10 of 82 Report issue date: 7/8/2014 GEMC File #: GEMC-FCC-21709R1

Client	Thalmic Labs Inc	CLODA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMUINU

Testing Environmental Conditions and Dates

Following were the environmental conditions in the facility during time of testing –

Date	Test	Init.	Temperature (°C)	Humidity (%)	Pressure (kPa)
2014/6/25	Radiated Emissions	MX	21-25°C	38 - 45%	98 -103kPa
2014/7/4	Antenna Conducted Emissions	MX	21-25°C	38 - 45%	98 -103kPa
2014/6/3	Power Line Conducted Emissions	MX	21-25°C	38 - 45%	98 -103kPa

Client	Thalmic Labs Inc	CLODA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMUINU

Detailed Test Results Section

Client	Thalmic Labs Inc	CLADA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	ENCINC

6dB Bandwidth of Digitally Modulated Systems

Purpose

The purpose of this test is to ensure that the bandwidth occupied exceeds a stated minimum. This helps ensure the utilization of the frequency allocation is sufficiently wide. This also helps prevent corruption of data by ensuring adequate data separation to distinguish the reception of the intended information.

Limits and Methods

The Limit is as specified in FCC Part 15.247 (a) and RSS 210.

Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz. This should be measured with a 100 kHz RBW and a 300 kHz VBW.

The method is given in Section 8.1 of FCC KDB 558074: April 9, 2013.

Results

The EUT passed. The minimum 6 dB BW measured was 806.4 kHz.

Page 13 of 82 Report issue date: 7/8/2014 GEMC File #: GEMC-FCC-21709R1

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	ENICTNC

Graph(s)

The graphs showed below shows the OBW during the operation of the device. This is measured by a max hold on the spectrum analyzer and the highest resolution bandwidth that is sufficiently low to exhibit the 6 dB bandwidth of a channel during operation of the EUT. This measurement is a peak measurement. Max hold is performed for a duration of not less than 1 minute.

Date: 4.JUL.2014 14:27:10

6 dB BW = 856.0 kHz20 dB BW = 1985.0 kHz

Client	Thalmic Labs Inc	OLODA PAR
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	ENCINC

Date: 4.JUL.2014 15:23:48

6 dB BW = 854.3 kHz20 dB BW = 1964.1 kHz

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EIVICING

Date: 4.JUL.2014 15:44:43

6 dB BW = 806.4 kHz20 dB BW = 2060.0 kHz

Note: See 'Appendix B – EUT & Test Setup Photographs' for photos showing the test setup.

Client	Thalmic Labs Inc	CLODA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMUINU

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Spectrum Analyzer	ESL6	Rohde & Schwarz	15-Nov-13	15-Nov-15	GMEC 160
RF Cable 9"	8120-5148-B	HP/Agilent	NCR	NCR	GEMC 6100

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Thalmic Labs Inc	CLODA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMUINU

Maximum Peak Envelope Conducted Power

Purpose

The purpose of this test is to ensure that the maximum power conducted to the radiating element does not exceed the limits specified. This ensures that if the end-user replaces the antenna, that the maximum power does not exceed an amount which may create an an excessive power level.

Limits and Methods

The limits are defined in FCC Part 15.247(b) and RSS 210. For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands, the peak limit is 1 watt.

The method is given in Section 9.1.3 of FCC KDB 558074: April 9, 2013.

Results

The EUT passed. The power of the EUT was set to transmit at maximum power. Three channels were measured. The following table shows the peak power of each channel:

Channel	Frequency	Power	Power (mW)
	(MHz)	(dBm)	
Lo Channel	2402	3.92	2.47
Mid Channel	2440	3.84	2.42
Hi Channel	2480	3.72	2.36

Page 18 of 82 Report issue date: 7/8/2014 GEMC File #: GEMC-FCC-21709R1

Client	Thalmic Labs Inc	CLODA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMUINU

Readings

The photos shown below shows the peak power output of the device during the antenna conducted measurement during transmit operation of the EUT.

Tests were conducted using a spectrum analyzer.

Date: 4.JUL.2014 15:09:20

Client	Thalmic Labs Inc	CLODA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EINCINC

Date: 4.JUL.2014 15:20:47

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EIVICING

Date: 4.JUL.2014 15:32:45

Note: See 'Appendix B - EUT & Test Setup Photographs' for photos showing the test setup.

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	ENICTNC

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Spectrum Analyzer	ESL6	Rohde & Schwarz	15-Nov-13	15-Nov-15	GMEC 160
RF Cable 9"	8120-5148-B	HP/Agilent	NCR	NCR	GEMC 6100

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	ENICTNC

Antenna Spurious Conducted Emissions (-20 dBc Requirement) – 15.247

Purpose

The purpose of this test is to ensure that the maximum power conducted to the radiating element at frequencies outside of the authorized spectrum does not exceed the limits specified. This ensures that the only the intended signal is delivered to the radiating element.

Limits and Methods

The limits are defined in 15.247(d). In any 100 kHz band, the peak spurious harmonics emissions must be at least 20 dB below the fundamental. Spurious Conducted emissions are to be evaluated up to the 10th harmonic. This -20 dBc requirement also applies at the 'band edge' or 2.4 GHz and 2.4835 GHz.

The method is given in Section 11 of FCC KDB 558074: April 9, 2013.

Results

The EUT passed the limits. Low, middle and high channels were measured. The worst case was presented as a graph for the spectrum. The -20 dBc requirement is shown for the lower band edge at 2.4 GHz in the low band. The -20 dBc requirement is also shown for the higher band edge at 2.4835 GHz in the high band.

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EINCINC

Graph(s)

The graphs shown below shows the peak power output of the device during the antenna conducted measurement during transmit operation of the EUT.

Date: 4.JUL.2014 14:51:57

Client	Thalmic Labs Inc	OL ODA
Product	Myo Armband	GLORAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EINIC

Low Channel 2.4 GHz – 24 GHz

Client	Thalmic Labs Inc	OL ODA
Product	Myo Armband	GLORAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMCIN

Low Channel 24 GHz – 26 GHz

Client	Thalmic Labs Inc	AL AD
Product	Myo Armband	GLOR
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EIVI

Date: 4.JUL.2014 14:22:53

Client	Thalmic Labs Inc	OLODA PARA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	ENICING

Date: 4.JUL.2014 14:56:39

Note: See 'Appendix B - EUT & Test Setup Photographs' for photos showing the test setup.

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	ENICTNC

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Spectrum Analyzer	8566B	HP	2013-01-22	2015-01-22	GEMC 169
Quasi Peak Adapter	85650A	HP	2013-01-23	2015-01-23	GEMC 170
Spectrum Analyzer	ESL6	Rohde & Schwarz	15-Nov-13	15-Nov-15	GEMC 160
RF Cable 9"	8120-5148-B	HP/Agilent	NCR	NCR	GEMC 6100

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Thalmic Labs Inc	CLODA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMUINU

Radiated Emissions – 15.247

Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT does not exceed the limits listed below as defined in the applicable test standard, as measured from a receiving antenna. This helps protect broadcast radio services such as television, FM radio, pagers, cellular telephones, emergency services, and so on, from unwanted interference.

Limit(s) and Method

The method is given in Section 12.1 of FCC KDB 558074: April 9, 2013. The limits are as defined in FCC Part 15, Section 15.209:

The limits, as defined in 15.247(d) for unintentional radiated emissions apply for those emissions that fall in the restricted bands, as defined in Section 15.205(a). These emissions must comply with the radiated emission limits specified in Section 15.209(a).

All unintentional emissions must also meet the 'Spurious Conducted Emissions' requirements of -20 dBc or greater. See also 'Spurious Conducted Emissions' for further details.

```
0.009~\mathrm{MHz} - 0.490~\mathrm{MHz}, 2400/\mathrm{F}(\mathrm{kHz})~\mathrm{uV/m} at 300~\mathrm{m}^1 0.490~\mathrm{MHz} - 1.705~\mathrm{MHz}, 24000/\mathrm{F}(\mathrm{kHz})~\mathrm{uV/m} at 30~\mathrm{m}^1 1.705~\mathrm{MHz} - 30~\mathrm{MHz}, 30~\mathrm{uV/m} at 30~\mathrm{m}^1 30~\mathrm{MHz} - 88~\mathrm{MHz}, 100~\mathrm{uV/m} (40.0~\mathrm{dBuV/m}^1) at 3~\mathrm{m} 88~\mathrm{MHz} - 216~\mathrm{MHz}, 150~\mathrm{uV/m} (43.5~\mathrm{dBuV/m}^1) at 3~\mathrm{m} 216~\mathrm{MHz} - 960~\mathrm{MHz}, 200~\mathrm{uV/m} (46.0~\mathrm{dBuV/m}^1) at 3~\mathrm{m} Above 960~\mathrm{MHz}, 500~\mathrm{uV/m} (54.0~\mathrm{dBuV/m}^2) at 3~\mathrm{m} Above 1000~\mathrm{MHz}, 500~\mathrm{uV/m} (54~\mathrm{dBuV/m}^2) at 3~\mathrm{m} Above 1000~\mathrm{MHz}, 500~\mathrm{uV/m} (74~\mathrm{dBuV/m}^3) at 3~\mathrm{m}
```

Page 30 of 82 Report issue date: 7/8/2014 GEMC File #: GEMC-FCC-21709R1

¹Limit is with Quasi Peak detector with bandwidths as defined in CISPR-16-1-1 ²Limit is with 1 MHz measurement bandwidth and using an Average detector

³Limit is with 1 MHz measurement bandwidth and using a Peak detector

Client	Thalmic Labs Inc	CLODAT
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMUINU

Typical Radiated Emissions Setup

Measurement Uncertainty

The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is +/-4.4 dB with a 'k=2' coverage factor and a 95% confidence level.

Preliminary Graphs

Note the graphs shown below are for graphical illustration only. For final measurements with the appropriate detector, please refer to the final measurement table where applicable. The graph shown below is a maximized peak measurement graph, measured with a resolution bandwidth greater then the final required detector and over a full 0-360 rotation. This peaking process is done as a worst case measurement. This process enables the detection of frequencies of concern for final measurement, and provides considerable time savings.

In accordance with FCC Part 15, Subpart A, Section 15.33, the device was scanned to the 10th harmonic (a minimum of a 24.835 GHz).

Devices scanned may be scanned at alternate test distances, and in accordance with FCC Part 15, Subpart A, Section 15.31, an extrapolation factor of 20 dB/decade was used above

Client	Thalmic Labs Inc	OLODA PARA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	ENICING

30 MHz and 40 dB/decade below 30 MHz. For example for 1 meter measurements, an extrapolation factor 9.5 dB from 20 Log (1m/3m) is applied.

Low, middle and high channels were measured, each in three orthogonal axes were checked; however the worst case graphs are presented.

Band edge measure graphs were shown for illustrations purpose. See final measurement section for all measurements.

Client	Thalmic Labs Inc
Product	Myo Armband
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014

150 kHz – 30 MHz

Client	Thalmic Labs Inc	
Product	Myo Armband	
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	

High Channel - 30 MHz - 1 GHz Vertical - Peak Emission Graph

Client	Thalmic Labs Inc	
Product	Myo Armband	
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	

High Channel – 30 MHz – 1 GHz Horizontal - Peak Emission Graph

Client	Thalmic Labs Inc
Product	Myo Armband
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014

High Channel – 1 GHz – 2 GHz Vertical - Peak Emission Graph

Client	Thalmic Labs Inc
Product	Myo Armband
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014

High Channel – 1 GHz – 2 GHz Horizontal - Peak Emission Graph

Client	Thalmic Labs Inc	ALAB
Product	Myo Armband	GLOB
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EM

High Channel – 2 GHz – 10 GHz Vertical - Peak Emission Graph

Note: See Final Measurements and Results section starting on page 52 for measurements.

Client	Thalmic Labs Inc	AL AL
Product	Myo Armband	GLUE
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EM

High Channel – 2 GHz – 10 GHz Horizontal - Peak Emission Graph

Note: See Final Measurements and Results section starting on page 52 for measurements.

Client	Thalmic Labs Inc	OLODA TO
Product	Myo Armband	GLOBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMCINC

High Channel – 10 GHz – 18 GHz Vertical - Peak Emission Graph

Plot was taken at 1 meter distances. All emission shown were instrument noise floor of measurement instrument. No emissions were found in this frequency range.

Client	Thalmic Labs Inc	OL OD A
Product	Myo Armband	GLOBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	ENIC

High Channel – 10 GHz – 18 GHz Horizontal - Peak Emission Graph

Plot was taken at 1 meter distances. All emission shown were instrument noise floor of measurement instrument. No emissions were found in this frequency range.

Client	Thalmic Labs Inc	OLODA PAR
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EINCINC

High Channel – 18 GHz – 26 GHz Vertical - Peak Emission Graph

Plot was taken at 1 meter distances. All emission shown were instrument noise floor of measurement instrument. No emissions were found in this frequency range.

Page 42 of 82 Report issue date: 7/8/2014 GEMC File #: GEMC-FCC-21709R1

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMUINU

High Channel – 18 GHz – 26 GHz Horizontal - Peak Emission Graph

Plot was taken at 1 meter distances. All emission shown were instrument noise floor of measurement instrument. No emissions were found in this frequency range.

Page 43 of 82 Report issue date: 7/8/2014 GEMC File #: GEMC-FCC-21709R1

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMUINU

Band Edge – Low Channel Vertical - Peak Emission

Note: Bandedge plots were taken with 3 m measurements distance. The marker shows the raw value; see Final Measurements and Results section for corrected values.

Page 44 of 82 Report issue date: 7/8/2014 GEMC File #: GEMC-FCC-21709R1

Client	Thalmic Labs Inc	OLODA PAR
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EINCINC

Band Edge – Low Channel Horizontal - Peak Emission

Note: Bandedge plots were taken with 3 m measurements distance. The marker shows the raw value; see Final Measurements and Results section for corrected values.

Page 45 of 82 Report issue date: 7/8/2014 GEMC File #: GEMC-FCC-21709R1

Client	Thalmic Labs Inc	CLODA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EINCINC

Band Edge – Low Channel Vertical – Average Emission

Note: Bandedge plots were taken with 3 m measurements distance. The marker shows the raw value; see Final Measurements and Results section for corrected values.

Page 46 of 82 Report issue date: 7/8/2014 GEMC File #: GEMC-FCC-21709R1

Client	Thalmic Labs Inc	OLODA PAR
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EINCINC

Band Edge – Low Channel Horizontal - Average Emission

Note: Bandedge plots were taken with 3 m measurements distance. The marker shows the raw value; see Final Measurements and Results section for corrected values.

Page 47 of 82 Report issue date: 7/8/2014 GEMC File #: GEMC-FCC-21709R1

Client	Thalmic Labs Inc	CLODA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMUINU

Band Edge – Hi Channel Vertical - Peak Emission

Note: Bandedge plots were taken with 3 m measurements distance. The marker shows the raw value; see Final Measurements and Results section for corrected values.

Page 48 of 82 Report issue date: 7/8/2014 GEMC File #: GEMC-FCC-21709R1

Client	Thalmic Labs Inc	CLODA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EINCINC

Band Edge – Hi Channel Horizontal - Peak Emission

Note: Bandedge plots were taken with 3 m measurements distance. The marker shows the raw value; see Final Measurements and Results section for corrected values.

Page 49 of 82 Report issue date: 7/8/2014 GEMC File #: GEMC-FCC-21709R1

Client	Thalmic Labs Inc	ALADA A
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EINUIN

Band Edge – Hi Channel Vertical - Average Emission

Note: Bandedge plots were taken with 3 m measurements distance. The marker shows the raw value; see Final Measurements and Results section for corrected values.

Page 50 of 82 Report issue date: 7/8/2014 GEMC File #: GEMC-FCC-21709R1

Client	Thalmic Labs Inc	CLODA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EINCINC

Band Edge – Hi Channel Horizontal - Average Emission

Note: Bandedge plots were taken with 3 m measurements distance. The marker shows the raw value; see Final Measurements and Results section for corrected values.

Page 51 of 82 Report issue date: 7/8/2014 GEMC File #: GEMC-FCC-21709R1

Client	Thalmic Labs Inc	CLODA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMUINU

Final Measurements and Results

The EUT passed the limits. Low, middle and high bands were measured.

In accordance with 15.247(d), only frequencies exceeding the 15.209 limit that occur within the bands listed in 15.205, need to be verified with a final detector.

For frequency shown on the peak graphs and not listed in 15.205, measurements were taken for reference (these emissions were from the engineering control board used to set the WIFI device).

Emissions Table - Vertical									
				Cable					
			Antenna	RE	Pre-	Level			
Frequency		Raw	Factor	Factor	Amp	(dBuV/	Limit	Margin	Pass
(MHz)	Detector	(dBuV)	(dB/m)	(dB)	(dB)	m)	(dB)	(dB)	/Fail
9859.67	AVG	36.01	40.1	9.4	-36.3	49.21	54	4.79	Pass
Emissions Table - Horizontal									
9739	AVG	36.1	40	9.3	-36.2	49.2	54	4.8	Pass

Page 52 of 82 Report issue date: 7/8/2014 GEMC File #: GEMC-FCC-21709R1

Client	Thalmic Labs Inc
Product	Myo Armband
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014

	-										
					Cable						
Test	Detection	Antenna	Raw	Antenna	loss	Atten	Pre-Amp		Emission	Margin	D
Frequency	mode	polarity	signal	factor	dB+	uator	Gain dB	d signal	limit	dB(μV)	Result
(MHz)	(Q-Peak)	(Horz/Vert)	dB(µV)	dB	Prese	dB		aB(µv/m)	dB(μV/m)		
				L ovy Ch	lecor nannel -	V ovio					
2402	Peak	Horz	99.4	30.6	5.4	0.0	36.2	99.2			PASS
2402	Avg	Horz	95.0	30.6	5.4	0.0	36.2	94.8			PASS
2402	Peak	Vert	92.2	30.7	5.4	0.0	36.2	92.1			PASS
2402	Avg	Vert	88.0	30.7	5.4	0.0	36.2	87.9			PASS
2390	Peak	Horz	56.0	30.6	5.4	0.0	36.2	55.8	74.0	18.2	PASS
2390	Avg	Horz	32.2	30.6	5.4	0.0	36.2	32.0	54.0	22.0	PASS
2390	Peak	Vert	50.3	30.7	5.4	0.0	36.2	50.2	74.0	23.8	PASS
2390	Avg	Vert	32.3	30.7	5.4	0.0	36.2	32.2	54.0	21.8	PASS
4804	Peak	Horz	46.7	33.4	7.7	0.0	35.7	52.1	74.0	21.9	PASS
4804	Avg	Horz	33.5	33.4	7.7	0.0	35.7	38.9	54.0	15.1	PASS
4804	Peak	Vert	45.3	33.4	7.7	0.0	35.7	50.7	74.0	23.3	PASS
4804	Avg	Vert	32.9	33.4	7.7	0.0	35.7	38.3	54.0	15.7	PASS
4004	Avg	veit	32.9		annel Y		33.7	30.3	34.0	13.7	FASS
2402	Peak	Horz	93.1	30.6	5.4	0.0	36.2	92.9			PASS
2402	Avg	Horz	88.8	30.6	5.4	0.0	36.2	88.6			PASS
2402	Peak	Vert	99.1	30.7	5.4	0.0	36.2	99.0			PASS
2402	Avg	Vert	94.6	30.7	5.4	0.0	36.2	94.5			PASS
2390	Peak	Horz	48.1	30.7	5.4		36.2	47.9	74.0	26.1	PASS
2390		Horz	32.2	30.6	5.4	0.0	36.2	32.0	54.0	22.0	PASS
2390	Avg Peak	Vert	55.0	30.6	5.4	0.0	36.2	54.9	74.0	19.1	PASS
2390	Avg	Vert	32.4	30.7	5.4	0.0	36.2	32.3	54.0	21.7	PASS
4804	Peak	Horz	46.1	33.4	7.7	0.0	35.7	51.5	74.0	22.5	PASS
4804	Avg	Horz	32.9	33.4	7.7	0.0	35.7	38.3	54.0	15.7	PASS
4804	Peak	Vert	46.5	33.4	7.7	0.0	35.7	51.9	74.0	22.1	PASS
4804	Avg	Vert	34.3	33.4	7.7	0.0	35.7	39.7	54.0	14.3	PASS
7206	Peak	Vert	47.4	37.9	9.6	0.0	35.7	59.0	74.0	15.0	PASS
7206	Avg	Vert	34.4	37.9	9.6	0.0	35.9	46.0	54.0	8.0	PASS
7206	Peak	Horz	47.2	37.9	9.6	0.0	35.9	58.8	74.0	15.2	PASS
7206	Avg	Horz	34.5	37.9	9.6	0.0	35.9	46.1	54.0	7.9	PASS
7200	Avg	11012	34.3		nannel Z		33.9	40.1	34.0	1.9	FASS
2402	Peak	Horz	97.6	30.6	5.4	0.0	36.2	97.4			PASS
2402	Avg	Horz	93.1	30.6	5.4	0.0	36.2	92.9			PASS
2402	Peak	Vert	95.2	30.7	5.4	0.0	36.2	95.1			PASS
2402	Avg	Vert	90.8	30.7	5.4	0.0	36.2	90.7			PASS
2390	Peak	Horz	54.7	30.6	5.4	0.0	36.2	54.5	74.0	19.5	PASS
2390	Avg	Horz	32.4	30.6	5.4	0.0	36.2	32.2	54.0	21.8	PASS
2390	Peak	Vert	51.1	30.7	5.4	0.0	36.2	51.0	74.0	23.0	PASS
2390	Avg	Vert	32.4	30.7	5.4	0.0	36.2	32.3	54.0	21.7	PASS
4804	Peak	Horz	46.3	33.4	7.7	0.0	35.7	51.7	74.0	22.3	PASS
4804	Avg	Horz	32.8	33.4	7.7	0.0	35.7	38.2	54.0	15.8	PASS
4804	Peak	Vert	46.2	33.4	7.7	0.0	35.7	51.6	74.0	22.4	PASS
4804	Avg	Vert	32.7	33.4	7.7	0.0	35.7	38.1	54.0	15.9	PASS
7206	Peak	Vert	47.4	37.9	9.6	0.0	35.7	59.0	74.0	15.9	PASS
7206	Avg	Vert	34.4	37.9	9.6	0.0	35.9	46.0	54.0	8.0	PASS
7206	Peak	Horz	47.5	37.9	9.6	0.0	35.9	59.1	74.0	14.9	PASS
7206	Avg	Horz	34.4	37.9	9.6	0.0	35.9	46.0	54.0	8.0	PASS

Client	Thalmic Labs Inc
Product	Myo Armband
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014

				_	Cable	-	_	_	_	_	
Test Frequency (MHz)	Detection mode (Q-Peak)	Antenna polarity (Horz/Vert)	Raw signal dB(µV)	Antenna factor dB	loss dB + Prese lecor	Atten uator dB	Pre-Amp Gain dB	d signal	Emission limit dB(µV/m)	Margin dB(μV)	Result
				Mid cl	hannel >	(-Axis					
2440	Peak	Horz	97.5	30.6	5.4	0.0	36.2	97.3			PASS
2440	Avg	Horz	93.2	30.6	5.4	0.0	36.2	93.0			PASS
2440	Peak	Vert	93.7	30.7	5.4	0.0	36.2	93.6			PASS
2440	Avg	Vert	89.5	30.7	5.4	0.0	36.2	89.4			PASS
4880	Peak	Horz	46.1	33.4	7.7	0.0	35.7	51.5	74.0	22.5	PASS
4880	Avg	Horz	33.5	33.4	7.7	0.0	35.7	38.9	54.0	15.1	PASS
4880	Peak	Vert	44.7	33.4	7.7	0.0	35.7	50.1	74.0	23.9	PASS
4880	Avg	Vert	32.8	33.4	7.7	0.0	35.7	38.2	54.0	15.8	PASS
				Mid cl	nannel Y	'-Axis					
2440	Peak	Horz	97.0	30.6	5.4	0.0	36.2	96.8			PASS
2440	Avg	Horz	92.7	30.6	5.4	0.0	36.2	92.5			PASS
2440	Peak	Vert	100.2	30.7	5.4	0.0	36.2	100.1			PASS
2440	Avg	Vert	95.6	30.7	5.4	0.0	36.2	95.5			PASS
4880	Peak	Horz	46.3	33.4	7.7	0.0	35.7	51.7	74.0	22.3	PASS
4880	Avg	Horz	33.2	33.4	7.7	0.0	35.7	38.6	54.0	15.4	PASS
4880	Peak	Vert	47.1	33.4	7.7	0.0	35.7	52.5	74.0	21.5	PASS
4880	Avg	Vert	35.2	33.4	7.7	0.0	35.7	40.6	54.0	13.4	PASS
7320	Peak	Vert	46.9	37.9	9.6	0.0	35.9	58.5	74.0	15.5	PASS
7320	Avg	Vert	34.3	37.9	9.6	0.0	35.9	45.9	54.0	8.1	PASS
7320	Peak	Horz	47.0	37.9	9.6	0.0	35.9	58.6	74.0	15.4	PASS
7320	Avg	Horz	34.2	37.9	9.6	0.0	35.9	45.8	54.0	8.2	PASS
				Mid cl	hannel Z	Z-Axis					
2440	Peak	Horz	97.3	30.6	5.4	0.0	36.2	97.1			PASS
2440	Avg	Horz	92.5	30.6	5.4	0.0	36.2	92.3			PASS
2440	Peak	Vert	97.6	30.7	5.4	0.0	36.2	97.5			PASS
2440	Avg	Vert	93.2	30.7	5.4	0.0	36.2	93.1			PASS
4880	Peak	Horz	45.4	33.4	7.7	0.0	35.7	50.8	74.0	23.2	PASS
4880	Avg	Horz	33.2	33.4	7.7	0.0	35.7	38.6	54.0	15.4	PASS
4880	Peak	Vert	46.3	33.4	7.7	0.0	35.7	51.7	74.0	22.3	PASS
4880	Avg	Vert	33.5	33.4	7.7	0.0	35.7	38.9	54.0	15.1	PASS

Client	Thalmic Labs Inc	AL ADA
Product	Myo Armband	GLORA
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EIVIU

9.6

9.6

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.4

High channel

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

- Z

35.9

35.9

36.2

36.2

36.2

36.2

36.2

36.2

36.2

36.2

58.5

46.1

97.2

92.8

94.8

90.7

38.3

33.9

35.7

31.6

74.0

54.0

74.0

54.0

74.0

54.0

30.9 Note: Bandedge measurements were performed using the Marker Delta method.

38.6

38.6

30.8

30.8

30.9

30.9

30.8

30.8

30.9

7440

7440

2480

2480

2480

2480

2483.5

2483.5

2483.5

2483.5

Peak

Avg

Peak

Avg

Peak

Avg

Peak

Avg

Peak

Avg

Horz

Horz

Horz

Horz

Vert

Vert

Horz

Horz

Vert

Vert

46.2

33.8

97.2

92.8

94.7

90.6

38.3

33.9

35.6

31.5

PASS

PASS

PASS

PASS

PASS

PASS

PASS

15.5

7.9

35.7

20.1

38.3

22.4

Client	Thalmic Labs Inc	OL ADA
Product	Myo Armband	GLORA
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EINIC

Lowest Marker Delta value

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMUINU

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Spectrum Analyzer	8566B	HP	2013-01-22	2015-01-22	GEMC169
Quasi Peak Adapter	85650A	HP	2013-01-23	2015-01-23	GEMC170
Spectrum Analyzer	ESL 6	Rohde & Schwarz	15-Nov-13	15-Nov-15	GEMC 160
Loop Antenna	EM 6871	Electro-Metrics	Feb 5, 2013	Feb 5, 2015	GEMC 70
Loop Antenna	EM 6872	Electro-Metrics	Feb 5, 2013	Feb 5, 2015	GEMC 71
BiLog Antenna	3142-C	ETS	Feb 4, 2013	Feb 4, 2015	GEMC 137
Attenuator 10 dB	8493B	Agilent	NCR	NCR	GEMC 133
4GHZ-12GHz High Pass filter	11SH10- 4000/T12000-0/0	K & L Microwave	NCR	NCR	GEMC 119
Chase Preamp 9kHz - 2 GHz	CPA9231A	Chase	8/29/2012	8/29/2014	GEMC 6403
Q-Par 1.5-18 GHz Horn	6878/24	Q-par	8/23/2012	8/23/2014	GEMC 6365
Q-Par Horn Antenna (2 to 18 GHz Freq.)	WBH218HN	Q-par	1/23/2014	1/23/2016	GEMC 6375
Horn Antenna 18 GHz - 26.5 GHz	SAS-572	A.H. Systems	8/27/2012	8/27/2014	GEMC 6371
18.0-26.5 GHz Harmonic Mixer	11970K	HP	28-Jan-14	28-Jan-16	GEMC 158
1-26G pre-amp	HP 8449B	HP	8/22/2012	8/22/2014	GEMC 6351
RF Cable 7m	LMR-400-7M- 50OHM-MN-MN	LexTec	NCR	NCR	GEMC 28
RF Cable 1m	LMR-400-1M- 50OHM-MN-MN	LexTec	NCR	NCR	GEMC 29
RF Cable 0.5M	LMR-400-0.5M- 50OHM-MN-MN	LexTec	NCR	NCR	GEMC 31

This report module is based on GEMC template "FCC - 15.209 - Radiated Emissions_Rev1.doc"

Client	Thalmic Labs Inc	CLODA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMUINU

Power Spectral Density - 15.247 DM

Purpose

The purpose of this test is to ensure that the maximum power spectral density to the radiating element does not exceed the limits specified. This ensures that the modulation is significantly wide enough, or low enough in power that it will allow for co-operation of other wireless devices operating within this frequency allocation.

Limits and Methods

The limits are defined in 15.247(e).

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

The method is given in Section 9.1.3 of FCC KDB 558074: April 9, 2013.

Results

The EUT passed. Low, medium, and high band was tested. The maximum power spectral density is -7.67 dBm/3 kHz

Graph(s)

The graphs shown below show the power spectral density of the device during the conducted measurement operation of the EUT. Low, middle, and high channel was investigated.

Page 58 of 82 Report issue date: 7/8/2014 GEMC File #: GEMC-FCC-21709R1

Client	Thalmic Labs Inc	CLODA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EINICINC

Date: 4.JUL.2014 15:30:29

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EINCINC

Date: 4.JUL.2014 15:27:39

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EIVICING

Date: 4.JUL.2014 15:14:56

Note: See 'Appendix B - EUT & Test Setup Photographs' for photos showing the test setup.

Client	Thalmic Labs Inc	OLODA TARA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMUINU

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Spectrum Analyzer	ESL6	Rohde & Schwarz	15-Nov-13	15-Nov-15	GMEC 160
RF Cable 9"	8120-5148-B	HP/Agilent	NCR	NCR	GEMC 6100

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Thalmic Labs Inc	CLODA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMUINU

Maximum Permissible Exposure - 15.247

Purpose

The purpose of this test is to ensure that the RF energy intentionally transmitted, in terms of power density emitted from the EUT at a stated operating distance does not exceed the limits listed below as defined in the applicable test standard, as calculated based upon readings obtained during testing. This helps protect human exposure to excessive RF fields.

Limit(s) and Method

The limits, as defined in FCC 15.247(i) and FCC 1.1310 Table 1 (B) limits for general public exposure was applied. The limit for the frequency range of 1.5 GHz to 100 GHz was applied to the 15.247 device. This is a limit of 1.0 mW/cm². The distance used for calculations was 0.5 cm, as this is the minimum distance an operator will be from the EUT during normal operation, as stated by the manufacturer.

Page 63 of 82 Report issue date: 7/8/2014 GEMC File #: GEMC-FCC-21709R1

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMUINU

Results

The EUT passed the requirements. The worst case calculated power density was 0.88 mW/cm², this is under the 1.0 mW/cm² requirement.

Calculations

Method 1 (conducted power) Internal antenna

$$P_d = (P_t *G) / (4*pi*R^2)$$

Where Pt = 3.92 dBm or 2.47 mW as per Peak power conducted output

Where G = 0.5 dBi, or numerically 1.12

Where R = 0.5 cm

$$\begin{aligned} P_{d} &= (2.47 \ mW \ * \ 1.12) \ / \ (4 \ * \ pi \ * \ 0.5 \ cm^{2}) \\ P_{d} &= 2.77 \ \ mW \ / \ 3.14 \ cm^{2} \end{aligned}$$

 $P_d = 0.88 \text{ mW/cm}^2$

Page 64 of 82 GEMC File #: GEMC-FCC-21709R1 Report issue date: 7/8/2014

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	ENICTNC

Power Line Conducted Emissions

Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT's power line does not exceed the limits listed below as defined in the applicable test standard, as measured from a LISN. This helps protect lower frequency radio services such as AM radio, shortwave radio, amateur radio operators, maritime radio, CB radio, and so on, from unwanted interference.

Limits & Method

The limits are as defined in 47 CFR FCC Part 15 Section 15.207 Method is as defined in ANSI C64.10:2009

Average Limits		QuasiPeak Limits			
150 kHz - 500 kHz	56 to 46 dBuV	150 kHz - 500 kHz	66 to 56 dBuV		
500 kHz - 5 MHz	46 dBuV	500 kHz - 5 MHz	56 dBuV		
5 MHz - 30 MHz	50 dBuV	500 kHz - 30 MHz	60 dBuV		
The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.					

Note: If the Peak or Quasi Peak detector measurements do not exceed the Average limits, then the EUT is deemed to have passed the requirements.

Both limits are applicable, and each is specified as being measured with a 9 kHz measurement bandwidth.

Page 65 of 82 Report issue date: 7/8/2014 GEMC File #: GEMC-FCC-21709R1

Client	Thalmic Labs Inc	OLODA PAR
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EINCINC

Typical Setup Diagram

Measurement Uncertainty

The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is \pm -3.6 dB with a 'k=2' coverage factor and a 95% confidence level.

Preliminary Graphs

Note the graphs shown below are for graphical illustration only. For final measurements with the appropriate detector where applicable, please refer to the table. The graph shown below is a peak measurement graph, measured with a resolution bandwidth greater then or equal to the final required detector. These graphs are performed as a worst case measurement to enable the detection of frequencies of concern and for considerable time savings.

Power line conducted emissions were performed with the device is charging mode.

Client	Thalmic Labs Inc
Product	Myo Armband
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014

L1(Line) – 120Vac 60Hz

Client	Thalmic Labs Inc
Product	Myo Armband
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014

L2 (Neutral) – 120Vac 60Hz

Client	Thalmic Labs Inc	OLODA PARA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	ENICING

Final Measurements

rillai wea	aSul Cili	CIIIO						
Product Category Class B								
Produ	ct			Myo Armband				
Supply 120 VAC 60 Hz								
L1(Line) Emission Table								
Frequency (MHz)	Detecto	or Raw (dBuV)	Factors	Level (dBuV)	Limit (dB)	Margin (dB)	Pass/Fail	
16.2917	Peak	37.5	10.3	47.8	50	2.2	Pass	
0.5718	Peak	32.3	10.2	42.5	46	3.5	Pass	
0.4712	Peak	31.5	10.2	41.7	46.5	4.8	Pass	
0.9968	Peak	30.5	10.2	40.7	46	5.3	Pass	
1.078	Peak	29.8	10.2	40	46	6	Pass	
0.2344	Peak	36.1	10.2	46.3	52.3	6	Pass	
L2 (Neutral) Emission Table								
0.4939	Peak	34	10.2	44.2	46.1	1.9	Pass	
0.5718	Peak	32.8	10.2	43	46	3	Pass	
2.9079	Peak	31.9	10.2	42.1	46	3.9	Pass	
16.8757	Peak	34.6	10.3	44.9	50	5.1	Pass	
0.9709	Peak	30.1	10.2	40.3	46	5.7	Pass	
1.172	Peak	29.7	10.2	39.9	46	6.1	Pass	

Notes:

- 1. No peak emissions exceeded power line conducted emission average limits; therefore, the unit was deemed to meet power line conducted emission requirements base on peak emissions.
- 2. See 'Appendix B EUT & Test Setup Photographs' for photos showing the test set-up for the highest line conducted emission

Page 69 of 82 Report issue date: 7/8/2014 GEMC File #: GEMC-FCC-21709R1

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMUTNU

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Spectrum Analyzer	ESL 6	Rohde & Schwarz	15-Nov-13	15-Nov-15	GEMC 160
LISN	FCC-LISN- 50/250-16-2- 01	FCC	2013-02-06	2015-02-06	GEMC 65
RF Cable 7m	LMR-400-7M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 28

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Thalmic Labs Inc	OLODA TARA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMUINU

Appendix A – EUT Summary

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMUINU

For further details for filing purposes, refer to filing package.

General EUT Description

Contact Phone 1-226-868-9 Email 2ack.maclen EUT (Equipment Under EUT Name (for report title) Myo Armba EUT revision New produ Equipment category Consumer d EUT is powered using Battery 3.7 Input voltage range(s) (V) Frequency range(s) (Hz) Rated input current (A) Nominal power consumption (W) Number of power supplies in EUT Transmits RF energy? (describe) Yes 2.4G	os, Inc. St. W., Kitchener, ON
Contact Phone 1-226-868-9 Email 2ack.maclen EUT (Equipment Under EUT Name (for report title) Myo Armba EUT revision New produ Equipment category Consumer d EUT is powered using Battery 3.7 Input voltage range(s) (V) Frequency range(s) (Hz) Rated input current (A) Nominal power consumption (W) Number of power supplies in EUT Transmits RF energy? (describe) Yes 2.4G	St. W., Kitchener, ON
Phone 1-226-868-9 Email zack.maclen EUT (Equipment Under EUT Name (for report title) Myo Armba EUT Model / SN (if known) N/A EUT revision New produ Equipment category Consumer d EUT is powered using Battery 3.7 Input voltage range(s) (V) 5.0V (Charge Frequency range(s) (Hz) N/A Rated input current (A) ~450mA (Charge) Nominal power consumption (W) ~100mW Number of power supplies in EUT 2 Transmits RF energy? (describe) Yes 2.4G	
Email zack.maclen EUT (Equipment Under EUT Name (for report title) Myo Armba EUT Model / SN (if known) N/A EUT revision New produ Equipment category Consumer d EUT is powered using Battery 3.7 Input voltage range(s) (V) 5.0V (Charge Frequency range(s) (Hz) N/A Rated input current (A) ~450mA (CON) Nominal power consumption (W) ~100mW Number of power supplies in EUT 2 Transmits RF energy? (describe) Yes 2.4G	ennan
EUT (Equipment Under EUT Name (for report title) Myo Armba EUT Model / SN (if known) N/A EUT revision New produ Equipment category Consumer d EUT is powered using Battery 3.77 Input voltage range(s) (V) 5.0V (Charge Frequency range(s) (Hz) N/A Rated input current (A) ~450mA (CON Nominal power consumption (W) ~100mW Number of power supplies in EUT 2 Transmits RF energy? (describe) Yes 2.4G	740
EUT Name (for report title) EUT Model / SN (if known) EUT revision Equipment category EUT is powered using Input voltage range(s) (V) Frequency range(s) (Hz) Rated input current (A) Nominal power consumption (W) Number of power supplies in EUT Transmits RF energy? (describe) Myo Armba N/A Sew produ Consumer d 5.0V (Charg N/A ~450mA (C) ~100mW Number of power supplies in EUT Transmits RF energy? (describe) Yes 2.4G	nan@thalmic.com
EUT Model / SN (if known) EUT revision Equipment category EUT is powered using Input voltage range(s) (V) Frequency range(s) (Hz) Rated input current (A) Nominal power consumption (W) Number of power supplies in EUT Transmits RF energy? (describe) N/A Ves 2.4G	
EUT revision Equipment category EUT is powered using Input voltage range(s) (V) Frequency range(s) (Hz) Rated input current (A) Nominal power consumption (W) Number of power supplies in EUT Transmits RF energy? (describe) New produ Consumer d Solv (Charge N/A ~450mA (C) ~100mW Number of power supplies in EUT Transmits RF energy? (describe)	nd
Equipment category EUT is powered using Input voltage range(s) (V) Frequency range(s) (Hz) Rated input current (A) Nominal power consumption (W) Number of power supplies in EUT Transmits RF energy? (describe) Consumer of Date of Consumer	
EUT is powered using Input voltage range(s) (V) Frequency range(s) (Hz) Rated input current (A) Nominal power consumption (W) Number of power supplies in EUT Transmits RF energy? (describe) Battery 3.7 5.0V (Charge N/A -450mA (C) -100mW Very 100mW Very 2.4G	ct Rev. D
Input voltage range(s) (V) 5.0V (Charge Frequency range(s) (Hz) N/A Rated input current (A) ~450mA (Composite Nominal power consumption (W) ~100mW Number of power supplies in EUT 2 Transmits RF energy? (describe) Yes 2.4G	evice
Frequency range(s) (Hz) Rated input current (A) Nominal power consumption (W) Number of power supplies in EUT Transmits RF energy? (describe) Yes 2.4G	V Nominal
Rated input current (A) ~450mA (C Nominal power consumption (W) ~100mW Number of power supplies in EUT 2 Transmits RF energy? (describe) Yes 2.4G	ging)
Nominal power consumption (W) ~100mW Number of power supplies in EUT 2 Transmits RF energy? (describe) Yes 2.4G	
Number of power supplies in EUT 2 Transmits RF energy? (describe) Yes 2.4G	harging)
Transmits RF energy? (describe) Yes 2.4G	
Basic EUT functionality It is a wirele	Hz Bluetooth LE
	ess electronic wearable armband that is
1	e forearm. While connected to a device
	ne, tablet, etc) over Bluetooth, using
	sensors it can detect electrical impulses y the muscles in your forearm. It can use
	s to determine which poses or gestures
	ing with your hand / arm
High level block diagram of EUT	-
(attachment) See attached	1
	s only useable when on your arm and
	a device using its Bluetooth low energy
radio	
The device i	s only meant to be charged while it is off
your arm	is only meant to be charged while it is off
Step by step instructions for See attached	l manual

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EINCINC

setup and operation	
Customer to setup EUT on site?	Yes
EUT response time (ms)	<= 0.5ms
•	~1min
EUT setup time (min)	32MHz and 120MHz
Frequency of all clocks present in EUT	32MHZ and 120MHZ
I/O cable description Specify length and type	N/A
Available connectors on EUT	microUSB
Peripherals required to exercise	None
EUT	
Ex. Signal generator	
Dimensions of product	L 82mm
	W 51mm
	H 76mm
Method of monitoring EUT and	Using software provided by Thalmic Labs, we can
description of failure for	monitor the signals that are detected by the sensors
immunity.	on the Myo armband.
	During andicted immunity if the device feils the
	During radiated immunity, if the device fails, the Myo device will no longer be transmitting data to
	the test PC.
Other notes to test lab (URL to	Bluetooth antenna is 5.00mm away from skin, but
product, etc).	trasmit power is 0dBm (~1.0mW) so SAR should
	not be required

Note the EUT is considered to have been received the date of the commencement of the first test, unless otherwise stated. For a close-up picture of the EUT, see 'Appendix B – EUT & Test Setup Photographs'.

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	ENICTNC

EUT Configuration

Please see Appendix B for a picture of the unit running in normal conditions.

• Wireless were configured to transmit at 100% duty cycle

Operational Setup

No devices are required to be attached to the EUT for its normal operation.

Client	Thalmic Labs Inc	CLODA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMCINC

Appendix B – EUT and Test Setup Photographs

Client	Thalmic Labs Inc	OLODA PARA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMCINC

Note: These photos are for information purposes only. Also refer to PDF files that are separate from this test report.

Illustration 1: EUT external top view

Client	Thalmic Labs Inc	CLODA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	ENCINC

Illustration 2: EUT external side view

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	ENCINC

Illustration 3: Radiated emission setup – photo 1

Client	Thalmic Labs Inc	CLADAT
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EINICING

Illustration 4: Radiated emission setup - photo 2

Client	Thalmic Labs Inc	CLODATE
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EINCINC

Illustration 5: Radiated setup - photo 3

Client	Thalmic Labs Inc	CLODA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EINCINC

Illustration 6: Antenna conducted emission setup

Client	Thalmic Labs Inc	CLODA
Product	Myo Armband	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2014	EMUINU

Illustration 7: Power line conducted emission setup – photo 1