Intento 5

La diferencia entre este intento y el anterior es que hemos reducido el batch_size de 32 a 20 imágenes por lote.

0. Descarga del dataset

```
In [1]: # from google.colab import drive
  # drive.mount('/content/drive')

train_ds_path ='../../deeplearning-az/datasets/Part 2 - Convolutional Neu
  test_ds_path ='../../deeplearning-az/datasets/Part 2 - Convolutional Neu
  cat_or_dog_path='../.deeplearning-az/datasets/Part 2 - Convolutional Neu
  #train_ds_path ='C:/Users/Usuario/Documents/Master/Aprendizaje Profundo/Ud
  #test_ds_path ='C:/Users/Usuario/Documents/Master/Aprendizaje Profundo/Ud
  #cat_or_dog_path='C:/Users/Usuario/Documents/Master/Aprendizaje Profundo/Ud
  #train_ds_path ='.\\data\\training_set'
  #test_ds_path ='.\\data\\training_set'
  #cat_or_dog_path='.\\data\\test_set'
  #cat_or_dog_path='.\\data\\test_set'
  #cat_or_dog_path='.\\data\\single_prediction\\cat_or_dog_1.jpg'
```

Primero, importar las librerías y paquetes

```
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
from keras.layers import GlobalAveragePooling2D
from keras.layers import Dropout
# Nota, algunas capas no están importadas aquí y se importan directamente d
import matplotlib.pyplot as plt
import tensorflow as tf
import os
import numpy as np
import random as rn
```

Fijamos seeds para poder reproducir resultados (aunque aun así a veces no lo conseguimos, probablementa haya inicializaciones que no dependan de estas seeds)

```
In [3]:
    os.environ['PYTHONHASHSEED'] = '0'
    np.random.seed(42)
    rn.seed(12345)
    tf.random.set_seed(1234)
```

1. Construcción del modelo CNN añadiendo un tamaño de imagen mayor

El tamaño de imagen que emplearemos será de 96x96, y el dropout rate es del 50%

```
In [4]:
         frame_size = (96, 96)
         esta dupla nos permitirá parametrizar la resolución
         de entrada de las imágenes
         def crear clasificador intento5():
             classifier = Sequential()
             classifier.add(Conv2D(filters = 32,kernel size = (3, 3),
                               input_shape = (*frame_size, 3), activation = "relu")
             classifier.add(MaxPooling2D(pool_size = (2,2)))
             classifier.add(Conv2D(filters = 32,kernel_size = (3, 3), activation =
             classifier.add(MaxPooling2D(pool_size = (2,2)))
             classifier.add(Flatten())
             classifier.add(Dense(units = 128, activation = "relu"))
             classifier.add(Dropout(0.5))
             classifier.add(Dense(units = 1, activation = "sigmoid"))
             return classifier
```

2. Entrenamiento del intento 5

En primer lugar instanciamos nuestro modelo y compilamos usando:

- Un optimizador Adam. La learning rate que emplea por defecto es 0.001
- Binary cross entropy como función de coste a minimizar.

Model: "sequential"

Non-trainable params: 0

Layer (type)	0utput	Shape	Param #
conv2d (Conv2D)	(None,	94, 94, 32)	896
max_pooling2d (MaxPooling2D)	(None,	47, 47, 32)	0
conv2d_1 (Conv2D)	(None,	45, 45, 32)	9248
max_pooling2d_1 (MaxPooling2	(None,	22, 22, 32)	0
flatten (Flatten)	(None,	15488)	0
dense (Dense)	(None,	128)	1982592
dropout (Dropout)	(None,	128)	0
dense_1 (Dense)	(None,	1)	129

1----- de beteb de 00

```
In [6]:
         from keras.preprocessing.image import ImageDataGenerator
         batch size=20
         train datagen = ImageDataGenerator(
                 rescale=1./255,
                 shear range=0.2,
                 zoom range=0.2,
                 horizontal flip=True)
         test datagen = ImageDataGenerator(rescale=1./255)
         training_dataset = train_datagen.flow_from_directory(train_ds_path,
                                                               target size=frame size
                                                               batch size=batch size
                                                               class mode='binary')
         testing dataset = test datagen.flow from directory(test ds path,
                                                             target size=frame size,
                                                             batch size=batch size,
                                                             class mode='binary')
```

Found 8000 images belonging to 2 classes. Found 2000 images belonging to 2 classes.

Definimos el callback y realizamos el entrenamiento con las condiciones descritas en la sección de introducción.

```
Epoch 1/100
accuracy: 0.5504 - val loss: 0.6769 - val accuracy: 0.5725
Epoch 2/100
accuracy: 0.6101 - val loss: 0.6686 - val accuracy: 0.6155
Epoch 3/100
accuracy: 0.6530 - val_loss: 0.6107 - val_accuracy: 0.6815
Epoch 4/100
accuracy: 0.6865 - val loss: 0.5768 - val accuracy: 0.7135
Epoch 5/100
accuracy: 0.7014 - val loss: 0.5922 - val accuracy: 0.6945
Epoch 6/100
accuracy: 0.7147 - val loss: 0.5656 - val accuracy: 0.7270
Epoch 7/100
accuracy: 0.7361 - val loss: 0.5642 - val accuracy: 0.7240
```

```
Epoch 8/100
accuracy: 0.7475 - val loss: 0.5380 - val accuracy: 0.7330
Epoch 9/100
accuracy: 0.7602 - val_loss: 0.4951 - val_accuracy: 0.7625
Epoch 10/100
accuracy: 0.7661 - val loss: 0.5526 - val accuracy: 0.7370
Epoch 11/100
accuracy: 0.7684 - val loss: 0.5245 - val accuracy: 0.7415
Epoch 12/100
accuracy: 0.7747 - val loss: 0.5040 - val accuracy: 0.7620
Epoch 13/100
accuracy: 0.7864 - val loss: 0.4805 - val accuracy: 0.7840
Epoch 14/100
accuracy: 0.7894 - val loss: 0.4879 - val accuracy: 0.7770
Epoch 15/100
accuracy: 0.7956 - val loss: 0.4864 - val accuracy: 0.7785
Epoch 16/100
accuracy: 0.7946 - val loss: 0.4869 - val accuracy: 0.7810
Epoch 17/100
accuracy: 0.8050 - val loss: 0.4827 - val accuracy: 0.7745
Epoch 18/100
accuracy: 0.8046 - val loss: 0.4856 - val accuracy: 0.7800
Epoch 19/100
accuracy: 0.8124 - val loss: 0.4728 - val accuracy: 0.7655
Epoch 20/100
accuracy: 0.8138 - val loss: 0.4641 - val accuracy: 0.7785
Epoch 21/100
accuracy: 0.8263 - val_loss: 0.4703 - val_accuracy: 0.7870
Epoch 22/100
accuracy: 0.8259 - val loss: 0.4679 - val accuracy: 0.7840
Epoch 23/100
accuracy: 0.8319 - val loss: 0.4627 - val accuracy: 0.7895
Epoch 24/100
accuracy: 0.8311 - val loss: 0.4907 - val accuracy: 0.7965
Epoch 25/100
accuracy: 0.8396 - val loss: 0.4536 - val accuracy: 0.8075
Epoch 26/100
accuracy: 0.8384 - val loss: 0.4898 - val accuracy: 0.7895
Epoch 27/100
accuracy: 0.8516 - val loss: 0.5183 - val accuracy: 0.7835
Epoch 28/100
accuracy: 0.8435 - val loss: 0.4958 - val accuracy: 0.7805
Epoch 29/100
```

```
accuracy: 0.8504 - val loss: 0.5429 - val accuracy: 0.7720
Epoch 30/100
accuracy: 0.8520 - val loss: 0.5438 - val accuracy: 0.7790
Epoch 31/100
accuracy: 0.8518 - val_loss: 0.4823 - val_accuracy: 0.7935
Epoch 32/100
400/400 [============= ] - 63s 157ms/step - loss: 0.3159 -
accuracy: 0.8634 - val loss: 0.5004 - val accuracy: 0.7855
Epoch 33/100
accuracy: 0.8586 - val_loss: 0.4856 - val_accuracy: 0.7905
Epoch 34/100
accuracy: 0.8669 - val loss: 0.4897 - val accuracy: 0.7940
Epoch 35/100
accuracy: 0.8660 - val loss: 0.5026 - val accuracy: 0.7945
Epoch 36/100
accuracy: 0.8677 - val loss: 0.5205 - val accuracy: 0.7865
Epoch 37/100
accuracy: 0.8736 - val loss: 0.4962 - val accuracy: 0.7980
Epoch 38/100
accuracy: 0.8690 - val loss: 0.5053 - val accuracy: 0.7900
Epoch 39/100
accuracy: 0.8726 - val loss: 0.5193 - val accuracy: 0.8000
Epoch 40/100
accuracy: 0.8755 - val loss: 0.5133 - val accuracy: 0.8030
Epoch 41/100
accuracy: 0.8783 - val loss: 0.5399 - val accuracy: 0.7975
Epoch 42/100
accuracy: 0.8850 - val loss: 0.5444 - val accuracy: 0.7925
Epoch 43/100
accuracy: 0.8802 - val_loss: 0.5327 - val_accuracy: 0.7995
Epoch 44/100
accuracy: 0.8839 - val loss: 0.5396 - val accuracy: 0.7890
Epoch 45/100
accuracy: 0.8831 - val loss: 0.5437 - val accuracy: 0.8030
Epoch 46/100
accuracy: 0.8901 - val loss: 0.5166 - val accuracy: 0.8040
Epoch 47/100
accuracy: 0.8969 - val loss: 0.5111 - val accuracy: 0.7975
Epoch 48/100
accuracy: 0.8934 - val loss: 0.5454 - val accuracy: 0.7945
Epoch 49/100
accuracy: 0.8916 - val loss: 0.5445 - val accuracy: 0.7975
Epoch 50/100
```

```
accuracy: 0.8974 - val loss: 0.5336 - val accuracy: 0.7845
Epoch 51/100
accuracy: 0.8904 - val_loss: 0.5987 - val_accuracy: 0.8015
Epoch 52/100
accuracy: 0.8972 - val_loss: 0.5794 - val_accuracy: 0.7970
Epoch 53/100
accuracy: 0.9010 - val loss: 0.5582 - val accuracy: 0.8010
Epoch 54/100
400/400 [============== ] - 71s 177ms/step - loss: 0.2451 -
accuracy: 0.8970 - val loss: 0.5773 - val accuracy: 0.8020
Epoch 55/100
accuracy: 0.9060 - val loss: 0.5629 - val accuracy: 0.7995
Epoch 56/100
accuracy: 0.9034 - val loss: 0.5397 - val accuracy: 0.7940
Epoch 57/100
accuracy: 0.9065 - val loss: 0.5475 - val accuracy: 0.8060
Epoch 58/100
accuracy: 0.9076 - val loss: 0.5976 - val accuracy: 0.7885
Epoch 59/100
accuracy: 0.9069 - val loss: 0.5555 - val accuracy: 0.7940
Epoch 60/100
accuracy: 0.9064 - val loss: 0.5553 - val accuracy: 0.8035
Epoch 61/100
accuracy: 0.9104 - val loss: 0.5952 - val accuracy: 0.8105
Epoch 62/100
accuracy: 0.9115 - val loss: 0.5896 - val accuracy: 0.8030
Epoch 63/100
accuracy: 0.9166 - val loss: 0.6615 - val accuracy: 0.8030
Epoch 64/100
accuracy: 0.9097 - val loss: 0.6891 - val accuracy: 0.8000
Epoch 65/100
accuracy: 0.9143 - val loss: 0.5849 - val accuracy: 0.8095
Epoch 66/100
accuracy: 0.9143 - val loss: 0.6366 - val accuracy: 0.8025
Epoch 67/100
accuracy: 0.9215 - val loss: 0.5902 - val accuracy: 0.8075
Epoch 68/100
accuracy: 0.9168 - val_loss: 0.6109 - val_accuracy: 0.8015
Epoch 69/100
accuracy: 0.9159 - val loss: 0.6387 - val accuracy: 0.7945
Epoch 70/100
accuracy: 0.9120 - val loss: 0.6369 - val accuracy: 0.7985
Epoch 71/100
accuracy: 0.9197 - val loss: 0.6448 - val accuracy: 0.8030
```

```
Epoch 72/100
accuracy: 0.9279 - val loss: 0.6212 - val accuracy: 0.8065
Epoch 73/100
accuracy: 0.9195 - val_loss: 0.6680 - val_accuracy: 0.8040
Epoch 74/100
accuracy: 0.9212 - val loss: 0.7121 - val accuracy: 0.7865
Epoch 75/100
accuracy: 0.9218 - val loss: 0.6666 - val accuracy: 0.7995
Epoch 76/100
accuracy: 0.9276 - val loss: 0.6559 - val accuracy: 0.7880
Epoch 77/100
accuracy: 0.9226 - val loss: 0.6945 - val accuracy: 0.7960
Epoch 78/100
accuracy: 0.9214 - val loss: 0.6047 - val accuracy: 0.8000
Epoch 79/100
accuracy: 0.9241 - val loss: 0.6136 - val accuracy: 0.8070
Epoch 80/100
accuracy: 0.9281 - val_loss: 0.6507 - val_accuracy: 0.7925
Epoch 81/100
accuracy: 0.9270 - val loss: 0.6070 - val accuracy: 0.7980
Epoch 82/100
accuracy: 0.9296 - val loss: 0.7638 - val accuracy: 0.7960
Epoch 83/100
accuracy: 0.9244 - val loss: 0.6577 - val accuracy: 0.7990
Epoch 84/100
accuracy: 0.9250 - val loss: 0.6616 - val accuracy: 0.8115
Epoch 85/100
accuracy: 0.9309 - val_loss: 0.6322 - val_accuracy: 0.7995
Epoch 86/100
accuracy: 0.9293 - val loss: 0.6730 - val accuracy: 0.8000
Epoch 87/100
accuracy: 0.9285 - val loss: 0.6465 - val accuracy: 0.8030
Epoch 88/100
accuracy: 0.9306 - val loss: 0.6676 - val accuracy: 0.8105
Epoch 89/100
accuracy: 0.9349 - val loss: 0.6971 - val accuracy: 0.8020
Epoch 90/100
accuracy: 0.9326 - val loss: 0.6851 - val accuracy: 0.8090
Epoch 91/100
accuracy: 0.9312 - val loss: 0.6744 - val accuracy: 0.8095
Epoch 92/100
accuracy: 0.9281 - val loss: 0.6401 - val accuracy: 0.8130
Epoch 93/100
```

```
accuracy: 0.9404 - val loss: 0.7896 - val accuracy: 0.7995
Epoch 94/100
accuracy: 0.9325 - val loss: 0.6293 - val accuracy: 0.8005
Epoch 95/100
accuracy: 0.9346 - val_loss: 0.6907 - val_accuracy: 0.7985
Epoch 96/100
accuracy: 0.9330 - val loss: 0.6273 - val accuracy: 0.8095
Epoch 97/100
accuracy: 0.9386 - val loss: 0.7284 - val accuracy: 0.8035
Epoch 98/100
accuracy: 0.9351 - val loss: 0.6480 - val accuracy: 0.8055
Epoch 99/100
accuracy: 0.9377 - val loss: 0.7406 - val accuracy: 0.8115
Epoch 100/100
```

Ploteamos el resultado

```
def plot_resultados_training(history):
    fig, axes = plt.subplots(1,2, figsize=(18,6))
    axes[0].plot(history.history['accuracy'], label='Train')
    axes[0].plot(history.history['val_accuracy'], label='Validation')
    axes[0].legend()
    axes[0].set_title('Accuracy')
    axes[1].plot(history.history['loss'], label='Train')
    axes[1].plot(history.history['val_loss'], label='Validation')
    axes[1].set_title('Cross entropy')
```


In [9]: classifier.save('./models/clasificador5')

WARNING:tensorflow:From /home/llbernat/anaconda3/envs/musi-ap/lib/python3.7 /site-packages/tensorflow/python/training/tracking/tracking.py:111: Model.s tate_updates (from tensorflow.python.keras.engine.training) is deprecated a nd will be removed in a future version.

Instructions for updating:

This property should not be used in TensorFlow 2.0, as updates are applied automatically.

WARNING:tensorflow:From /home/llbernat/anaconda3/envs/musi-ap/lib/python3.7 /site-packages/tensorflow/python/training/tracking/tracking.py:111: Layer.u

pdates (from tensorflow.python.keras.engine.base_layer) is deprecated and w ill be removed in a future version.

Instructions for updating:

This property should not be used in TensorFlow 2.0, as updates are applied automatically.

Comentario

La reducción del número de imágenes por lote no ha dado el resultado esperado. De hecho en esta ejecución ha arrojado precisiones un poco peores que en el anterior y se sigue produciendo sobre-entrenamiento, que despunta a partir de la epoch 20.

Propuesta de mejora

Un número más rico de *features* a la salida de la convolución también puede favorecer que la red neuronal valore otros patrones de las imagenes que ayuden a evitar el sobre-entrenamiento.

Porponemos la creacion de una tercera capa de convolucion mas rica en filtros (actualmente trabajamos con 2) y volver al tamaño de lote por defecto en keras (32).