El álgebra relacional

Elmasri y Navathe 2007

Cap 6 "El álgebra relacional y los cálculos relacionales"

Índice

- Introducción
- Operaciones unarias
- Operaciones de teoría de conjuntos
- Operaciones específicas binarias
- Otras operaciones

Conceptos del modelo relacional

Tema 1

1. Estructuras: relaciones

Tema 1

2. Restricciones: reglas para mantener la consistencia

3. Operadores: álgebra y cálculo relacional

Álgebra relacional

- Operaciones entre relaciones
- ◆ El resultado es otra relación
- Para especificar consultas
- Dos tipos de operación:
 - Teoría de conjuntos
 - Creadas para trabajar con relaciones

Índice

- Introducción
- Operaciones unarias:
 - Seleccionar: σ
 - Proyectar: π
 - Resultados intermedios y renombrar atributos
- Operaciones de teoría de conjuntos
- Operaciones específicas binarias
- Otras operaciones

Selectionar: σ_{cond} (1/3) (sigma)

Tuplas que satisfacen una condición

EMP

<u>N</u>	<u>ISS</u>	NOM- BRE	APE- LLIDO	SALA- RIO	ND
1234	156789	John	Smith	30.000	5
3334	145555	Franklin	Wong	40.000	5
9998	387777	Alicia	Zelaya	25.000	4
9876	554321	Jennifer	Wallace	43.000	4
6668	384444	Ramesh	Narayan	38.000	5
4534	153453	Joyce	English	25.000	5
9879	987987	Ahmad	Jabbar	25.000	4
8888	665555	James	Borg	55.000	1

select *
from **EMP**where ND=4

 $\sigma_{ND=4}$ (EMP)

NSS	NOM-	APE- LLIDO	SALA-	ND
1400	BRE	LLIDO	RIO	
999887777	Alicia	Zelaya	25.000	4
987654321	Jennifer	Wallace	43.000	4
987987987	Ahmad	Jabbar	25.000	4

Seleccionar: σ_{cond} (2/3)

 $\sigma_{ND=4}$ (EMP)

NSS	NOM- BRE	APE- LLIDO	SALA- RIO	ND
999887777	Alicia	Zelaya	25.000	4
987654321	Jennifer	Wallace	43.000	4
987987987	Ahmad	Jabbar	25.000	4

- Relación resultado: mismos atributos.
 Menos tuplas o las mismas
- ◆ Selectividad de la condición: fracción de tuplas resultante (3/8)

Seleccionar: σ_{cond} (3/3)

	4 4			_ 1 _ 1 _ 1 _ 1	
<u>N</u>	ISS .	NOM- BRE	APE- LLIDO	SALA- RIO	ND
1234	156789	John	Smith	30.000	5
3334	45555	Franklin	Wong	40.000	5
9998	887777	Alicia	Zelaya	25.000	4
9876	54321	Jennifer	Wallace	43.000	4
6668	384444	Ramesh	Narayan	38.000	5
4534	153453	Joyce	English	25.000	5
9879	87987	Ahmad	Jabbar	25.000	4
8886	65555	James	Borg	55.000	1

(ND=4 AND SALARIO>25.000) OR (EMP) (ND=5 AND SALARIO>30.000)

NSS	NOM- BRE	APE- LLIDO	SALA- RIO	ND
333445555				
987654321	Jennifer	Wallace	43.000	4
666884444	Ramesh	Narayan	38 000	5

select *
from **EMP**where (ND=4 AND SALARIO>25.000) OR
(ND=5 AND SALARIO>30.000)

Tema 3: El álgebra relacional

Propiedades de seleccionar

Conmutativa:

$$\sigma_{\text{COND1}}(\sigma_{\text{COND2}}(R)) = \sigma_{\text{COND2}}(\sigma_{\text{COND1}}(R))$$

Combinar cascada de σ:

$$\sigma_{\text{}}(\sigma_{\text{}}(R)) = \sigma_{\text{}AND\text{<}COND2>}(R)$$

Proyectar: $\pi_{col1...colN}$ (1/2) (pi)

◆Tomar columnas dadas

	_ :-	_	
_	R /		
_	W		
_	IVI	•	

NSS	NOM- BRE	APE- LLIDO	SALA- RIO	ND
123456789	John	Smith	30.000	5
333445555	Franklin	Wong	40.000	5
999887777		Zelaya		4
987654321	Jennifer	Wallace	43.000	4
666884444	Ramesh	Narayan	38.000	5
453453453	Joyce	English	25.000	5
987987987	Ahmad	Jabbar	25.000	4
888665555	James	Borg	55.000	1

$\pi_{ND, SALARIO}$ (EMP)

 ND	SALA- RIO
5	30.000
5	40.000
4	25.000
4	43.000
5	38.000
5	25.000
1	55.000

Select distinct ND, SALARIO from **EMP**

Proyectar: $\pi_{col1...colN}$ (2/2)

- Resultado: atributos indicados en el orden indicado.
- Elimina tuplas repetidas (relación=conjunto de tuplas)
- Propiedades:
 - $\pi_{< LISTA1>}$ ($\pi_{< LISTA2>}$ (R)) = $\pi_{< LISTA1>}$ (R)
 - No conmutativa

LISTA1 ⊂ LISTA2

Necesidad de auxiliares

 π_{NOMBRE} , APELLIDO, SALARIO ($\sigma_{\text{ND}=5}(\text{EMP})$)

¿cambiar nombres atributo?

EMP

<u>NSS</u>	NOM- BRE	APE- LLIDO	SALA- RIO	ND
123456789	John	Smith	30.000	5
333445555	Franklin	Wong	40.000	5
999887777	Alicia	Zelaya	25.000	4
987654321	Jennifer	Wallace	43.000	4
666884444	Ramesh	Narayan	38.000	5
453453453	Joyce	English	25.000	5
987987987	Ahmad	Jabbar	25.000	4
888665555	James	Borg	55.000	1

NOM-		SALA-
BRE	LLIDO	RIO
John	Smith	30.000
Franklin	Wong	40.000
Ramesh	Narayan	38.000
Joyce	English	25.000

¿guardar relación $\sigma_{ND=5}(EMP)$?

Resultados intermedios (1/2)

 $\pi_{\text{NOMBRE, APELLIDO, SALARIO}}(\sigma_{\text{ND}=5}(\text{EMP}))$

EMP_DEP5
$$\leftarrow \sigma_{ND=5}(EMP)$$

EMP

	NOM-	APE-	SALA-	
<u>NSS</u>	BRE	LLIDO	SALA- RIO	ND
123456789	John	Smith	30.000	5
333445555	Franklin	Wong	40.000	5
999887777	Alicia	Zelaya	25.000	4
987654321	Jennifer	Wallace	43.000	4
666884444	Ramesh	Narayan	38.000	5
453453453	Joyce	English	25.000	5
987987987	Ahmad	Jabbar	25.000	4
888665555	James	Borg	55.000	1

EMP_DEP5

 NSS	NOM- BRE	APE- LLIDO	SALA- RIO	ND
123456789	John	Smith	30.000	5
 333445555	Franklin	Wong	40.000	5
666884444				
 453453453	Joyce	English	25.000	5

Resultados intermedios (2/2)

EMP_DEP5

 $\pi_{\text{NOMBRE, APELLIDO, SALARIO}}(\sigma_{\text{ND}=5}(\text{EMP}))$

 $\mathbf{R} \leftarrow \pi_{\text{NOMBRE,APELLIDO,SALARIO}}(\mathbf{EMP}_\mathbf{DEP5})$

EMP_DEP5

NSS	NOM- BRE	LLIDO	SALA- RIO	ND
123456789	John	Smith	30.000	5
333445555	Franklin	Wong	40.000	5
666884444	Ramesh	Narayan	38.000	5
453453453	Joyce	English	25.000	5

NOM-	APE-	SA	LA-
BRE	LLIDO	R	10
John	Smith	30.	000
Franklin	Wong	40.	000
Ramesh	Narayan	38.	000
Joyce	English	25.	000

Renombrar columnas

EMP_DEP5

R

 $\pi_{\text{NOMBRE, APELLIDO, SALARIO}}(\sigma_{\text{ND}=5}(\text{EMP}))$

R(NOM, APE, SALARIO) $\leftarrow \pi_{\text{NOMBRE,APELLIDO,SALARIO}}$ (EMP_DEP5)

EMP_DEP5

	NSS	NOM- BRE	APE- LLIDO	SALA-	ND
	100450700	3 3	5 5 5	5 5	1
_	123456789				
3	33445555	Franklin	Wong	40.000	5
6	666884444	Ramesh	Narayan	38.000	5
4	153453453	Joyce	English	25.000	5

 NOM	APE	SALA- RIO
 John	Smith	30.000
 Franklin	Wong	40.000
Ramesh	Narayan	38.000
 Joyce	English	25.000

Índice

- Introducción
- Operaciones unarias
- Operaciones de teoría de conjuntos:
 - Unión: ∪
 - Intersección: ∩
 - Diferencia: —
 - Producto cartesiano: x
- Operaciones específicas binarias
- Otras operaciones

Unión e intersección

ALUMNO

NOM **APEL** Susan Yao Shah Ramesh Kohler **Johnny** Bárbara Jones Ford Amy Jimmy Wang Gilbert **Ernest**

PROFESOR

NOMBRE	APELLIDO
John	Smith
Ricardo	Browne
Susan	Yao
Francis	Johnson
Ramesh	Shah

Convenio: resultado nombres atributo **primera** relación

ALUMNO UPROFESOR

NOM	APEL
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Bárbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert
John	Smith
Ricardo	Browne
Francis	Johnson

ALUMNO OPROFESOR

^	NOM	APEL
	Susan	Yao
	Ramesh	Shah

- **♦ Conmutativas**: R∪S=S∪R y R∩S=S∩R
- ◆Asociativas: (R∪S)∪T=R∪(S∪T) y

 $(R \cap S) \cap T = R \cap (S \cap T)$

Diferencia

PROFESOR

NOMBRE	APELLIDO
John	Smith
Ricardo	Browne
Susan	Yao
Francis	Johnson
Ramesh	Shah

ALUMNO

NOM	APEL
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Bárbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

PROFESOR — ALUMNO

NOMBRE	APELLIDO
John	Smith
Ricardo	Browne
Francis	Johnson

ALUMNO — PROFESOR

 NOM	APEL
 Johnny	Kohler
 Bárbara	Jones
Amy	Ford
 Jimmy	Wang
 Ernest	Gilbert

Compatibilidad con la unión

- ◆ Condición: las relaciones para ∪, ∩
 y —, deben tener ...
 - 1. mismo número de atributos
 - dominios compatibles cada par de atributos correspondientes

Producto Cartesiano: × (crossjoin) (1/2)

DEP

NÚME- ROD	NOMBRED	
5	Investigación	
4	Administración	
1	Dirección	

No es necesario que sean compatibles con la unión

DEP X L_HOUSTON

NÚME- ROD	NOMBRED	NÚMD	LOCALI- ZACIÓND
5	Investigación		Houston
5	Investigación	5	Houston
4	Administración		Houston
4	Administración	5	Houston
1	Dirección		Houston
1	Dirección	5	Houston

Todos los atributos de las relaciones originales en el resultado

Producto Cartesiano: × (crossjoin) (2/2)

- Cada fila de la 1ª relación seguida de cada fila de la 2ª
- Resultado: emparejamientos hechos así
- ◆Si 1ª relación n filas y 2ª m filas: resultado n*m filas

Índice

- Introducción
- Operaciones específicas unarias
- Operaciones de teoría de conjuntos
- Operaciones específicas binarias:
 - Reunir (join): ⋈ , *
- Otras operaciones

Reunión (join): 🖂 cond

- Muy frecuente: procesa relaciones entre tablas
- Filas del p. cartesiano que cumplen una condición
- No puede ser una condición cualquiera

DEP

NÚME- ROD	NOMBRED	
5	Investigación	
4	Administración	
1	Dirección	

L_HOUSTON

~	<u>NÚMD</u>	LOCALI- ZACIÓND
~	1	Houston
	5	Houston

 NÚME- ROD	NOMBRED	NÚMD	LOCALI- ZACIÓND
 5	Investigación	5	Houston
1	Dirección	1	Houston

Tema 3: El álgebra relacional

\bowtie_{cond} equivale a \times más σ_{cond}

 $\mathsf{DEP} \bowtie_{\mathsf{NUMEROD}=\mathsf{NUMD}} \mathsf{L_HOUSTON} = \sigma_{\mathsf{NUMEROD}=\mathsf{NUMD}} (\mathsf{DEP} \times \mathsf{L_HOUSTON})$

	_	_
٦		
١		1
4	_	

NÚME- ROD	NOMBRED	
5	Investigación	
4	Administración	
1	Dirección	

 <u>NÚMD</u>	LOCALI- ZACIÓND
 1	Houston
5	Houston

DEP X L_HOUSTON

NÚME- ROD	NOMBRED	NÚMD	LOCALI- ZACIÓND
5	Investigación		Houston
5	Investigación	5	Houston
4	<u>Administración</u>		Houston
4	<u>Administración</u>	5	Houston
1	Dirección		Houston
1	Dirección	5	Houston

$\sigma_{\text{NÚMEROD=NUMD}}$ (DEP × L_HOUSTON)

NÚME- ROD	NOMBRED	NÚMD	LOCALI- ZACIÓND
5	Investigación	5	Houston
1	Dirección	1	Houston

Tema 3: El álgebra relacional

$$R(A_{1},...,A_{n}) \times |_{cond} S(B_{1},...,B_{m}) = Q(A_{1},...,A_{n}, B_{1},...,B_{m})$$

- R y S pueden o no ser compatibles con la unión
- Q tiene los emparejamientos del prod. cartesiano que satisfacen cond.
- Como máximo Q tiene tantas tuplas como el producto cartesiano
- R y S pueden ser la misma relación

Condiciones de X_{cond}

- ♦Sólo admiten and:
 - <comparación> and <comparación>... and <comparación>
- Cada comparación A_i θ B_j cumple:
 - ◆A_i∈Ry B_j∈S
 - $\bullet \theta \in \{=, <, \leq, >, \geq, \neq\}$
- \bullet Ejemplo: R $\bowtie_{R1>S1 \text{ and } R2\neq S2} S$

Tipos de X cond

- ♦ Theta: todas
- Equirreunión (equijoin):
 - Sólo comparaciones de igualdad
 - Obtiene pares de atributos con igual valor en todas las tuplas
- Reunión natural (join natural):
 - Símbolo *
 - Equirreunión eliminando atributos iguales.
 - Condición implícita: comparación de atributos de igual nombre
 - Exige algún par de atributos de igual nombre

Reunión (join) natural: * (1/2)

Reunión (join) natural: * (2/2)

T1		
A	<u>B</u>	С
1	7984	4
1	7450	4,5
1	7540	8,5
2	7984	6
2	4544	3
3	7984	7,5
3	4544	9
3	7540	8

5 5	5 5 5	
<u>A</u>	N	С
1	Javier	8,5
2	Sandra	3,5
3	Luisa	7,5

T1 * T2?

¿Condición implícita?

La condición implícita incluye todas las parejas de igual nombre unidas con and

Selectividad de la reunión y conjunto completo

◆ Selectividad reunión: tamaño esperado de la reunión dividido entre el tamaño máximo (producto cartesiano)

Conjunto completo:

- Cada operación expresada como secuencia de $\{\sigma, \pi, \cup, -, \times\}$
- Intersección [R ∩ S = R (R S)] y reunión (join) no son estrictamente necesarias
- Mantenidas por comodidad

Índice

- Introducción
- Operaciones específicas unarias
- Operaciones de teoría de conjuntos
- Operaciones específicas binarias
- Otras operaciones:
 - División: ÷
 - Funciones agregadas y de agrupación: 3
 - Reunión externa (outer join):

División: ÷

Código de asignaturas matriculadas por todos los alumnos

matrícula

Iniationia			
	<u>dni</u>	<u>asig</u>	nota
	1	10	4
	1	5	4 3 9 9 3
	1	8	9
	2	10	9
	2	3	
	3	10	7.5
	2 2 3 3	5 8 10 3 10 3 8	9
	3	8	7.5

alumno

nombre
Jon
Ana
Begoña

Requisito y resultado ÷

División: ÷

Código de asignaturas matriculadas por todos los alumnos

matrícula

	dti i ot	AIG _
 <u>dni</u>	asig	nota
 1	10	4
 1	5 8 10 3 10 3 8	4 3 9 9
 1	8	9
 2	10	9
 2	3	3
 3	10	7.5
 2 2 3 3	3	9
 3	8	7.5

alumno

nombre
Jon
Ana
Begoña

 $R \leftarrow \pi_{dni,asig}$ (matrícula)

¿aprobadas?

$$R1 \leftarrow \pi_{dni,asig}(\sigma_{nota>=5}(matricula))$$

Tema 3: El álgebra relacional

Funciones agregadas y agrupación: 3

Select A count(B)
From Tabla
Group by A

AScuenta B (Tabla)

El subíndice izquierdo

EMP

<u>NSS</u>	SALA- RIO	ND
123456789	30.000	5
333445555	40.000	5
999887777	25.000	4
987654321	43.000	4
666884444	38.000	5
453453453	25.000	5
987987987	25.000	4
888665555	55.000	1

 $\mathfrak{I}_{\text{CUENTA NSS, PROMEDIO SALARIO}}(\text{EMP})$

	CUENTA	PROMEDIO
	_NSS	_SALARIO
İ	8	35125

Sin subíndice izdo= 1 tupla

ND 3 CUENTA NSS, PROMEDIO SALARIO (EMP)

 	CUENTA	PROMEDIC)
 ND	_NSS	_SALARIO	
 5	4	33250	_
4	3	31000	
 1	1	55000	

Agrupación = subíndice izdo.

Funciones agregadas y agrupación

- Imprescindibles para ciertas consultas
- Funciones agregadas:
 - SUMA, PROMEDIO, MÁXIMO, MÍNIMO y CUENTA
 - No eliminan duplicados al agregar (no hay distinct dentro de función agregación)
- ◆ Agrupación: como group by, aplica funciones agregadas a grupos de tuplas con igual valor de atributo (o conjunto de atributos)

Funciones agregadas y agrupación

EMP

NSS	NOM	DPTO
11	Alfredo	LSI
22	Ana	LSI
33	Juan	ATC
44	Federico	nulo
55	Ana	LSI

NOM 3 CUENTA DPTO(EMP)

NOM	CUENTA _DPTO
Alfredo	1
Ana	2
Juan	1
Federico	0

DPTO 3 CUENTA NOM (EMP)

J			 لمميمم		
	DP.	TO	CI	JE	
	JP.	IU	 	NC	M
	 LS	SI	 	3	
	AT			1	
	nu	lo		1	

No hace count distinct

NO considera los nulos en la cuenta (promedio, suma, ...)

El nulo es valor de agrupación

NOM, DPTO 3 CUENTA NSS(EMP)

NOM	DPTO	CUENTA NSS
Alfredo	LSI	1
Ana	LSI	2
Juan	ATC	4
Federico	nulo	1

Tema 3: El álgebra relacional

La agrupación puede tener varios atributos

Reunión (join) externa:

DEP

NÚME- ROD	NOMBRED	
5	Investigación	
4	Administración	
1	Dirección	

L_HOUSTON

 <u>NÚMD</u>	LOCALI- ZACIÓND
(1)	Houston
 5	Houston

left outer join

DEP NÚMEROD=NUMD L_HOUSTON

 NÚME- ROD	NOMBRED	NÚMD	LOCALI- ZACIÓND
 5	Investigación	(5)	Houston
 4	Administración	nulo	nulo
1	Dirección	1	Houston

Conserva tuplas de DEP no emparejadas rellenando a nulos los campos de L_HOUSTON

Unión externa

ALUMNO

NOMBRE	APELLIDO	CENTRO
Susan	Yao	FISS
Ramesh	Shah	FDSS
Johnny	Kholer	FQSS
Barbara	Jones	FISS
Amy	Ford	EPSS

tipo incompatible

PROFESOR

NOMBRE	APELLIDO	DPTO
John	Smith	1
Ricardo	Browne	2
Susan	Yao	1
Ramesh	Shah	3

ALUMNO Uext PROFESOR

NOMBRE	APELLIDO	CENTRO	DPTO
Susan	Yao	FISS	1
Ramesh	Shah	FDSS	3
Johnny	Kholer	FQSS	nulo
Barbara	Jones	FISS	nulo
Amy	Ford	EPSS	nulo
John	Smith	nulo	1
Ricardo	Browne	nulo	2

Consultas álgebra (1/5)

EMPLEADO

NSS NOMBRE INIC APELLIDO FECHA_NCTO DIRECCIÓN SEXO SALARIO SUPERV ND

DEPARTAMENTO

NÚMEROD NOMBRED NSS_JEFE FECHA_INIC_JEFE

PROYECTO

CE: EMPLEADO

NÚMEROD NOMBRED LOCALIZACIÓNE NÚMEROD

NÚMEROP NOMBREP LOCALIZACIÓNP NÚMD

CE:DEPARTAMENTO

Nombre, apellido y dirección de los empleados del departamento de investigación:

 $\mathsf{DEPTO}_\mathsf{INVEST} \leftarrow \sigma_{\mathsf{NOMBRED}=\mathsf{`Investigación'}}(\mathsf{DEPARTAMENTO})$

EMPS_DP_INV←DEPTO_INVEST ⋈ NÚMEROD=ND EMPLEADO

RESULTADO $\leftarrow \pi_{NOMBRE,APELLIDO,DIRECCIÓN}$ (EMPS_DP_INV)

Tema 3: El álgebra relacional

Consultas álgebra (2/5)

EMPLEADO

CE:DEPAR-TAMENTO

NSS NOMBRE INIC APELLIDO FECHA_NCTO DIRECCIÓN SEXO SALARIO SUPERV ND

DEPARTAMENTO

CE:EM-PLEADO

NÚMEROD NOMBRED NSS_JEFE FECHA_INIC_JEFE

PROYECTO

CE:EMPLEADO

NÚMEROP NOMBREP LOCALIZACIÓNP NÚMD

CE:DEPARTAMENTO

Nº proyecto, nº su departamento, apellido, dirección y fecha de nacimiento del jefe del depto de los proyectos realizados en Stafford:

PRYS_STAFFORD $\leftarrow \sigma_{\text{LOCALIZACIÓNP='Stafford'}}(PROYECTO)$ DPT_CONTR \leftarrow PRYS_STAFFORD \bowtie NÚMD=NÚMEROD DEPARTAMENTO

JEFE_DP_PRY \leftarrow DPT_CONTR \bowtie NSS_JEFE=NSS EMPLEADO

RESULTADO $\leftarrow \pi_{\text{NÚMEROP,NÚMD,APELLIDO,DIRECCIÓN,FECHA_NCTO}}(JEFE_DP_PRY)$

Consultas álgebra (3/5)

CE: DEPAR-**EMPLEADO TAMENTO** NSS NOMBRE INIC APELLIDO FECHA_NCTO DIRECCIÓN SEXO SALARIO SUPERV ND CE:EM-DEPARTAMENTO NÚMEROD NOMBRED NSS_JEFE FECHA_INIC_JEFE **PLEADO** CE: EMPLEADO TRABAJA EN **PROYECTO** NÚMEROP NOMBREP LOCALIZACIÓNP NÚMD NSSE NP HORAS CE: DEPAR. EMPLE. PROY. Nombre de los empleados que trabajan

todos los proyectos del depto 5.

PRY_DP5 (NÚMP) $\leftarrow \pi_{NÚMEROP} (\sigma_{NÚMD=5} (PROYECTO))$ EMP_PRY(NSS,NÚMP) $\leftarrow \pi_{NSSE,NP}$ (TRABAJA_EN) NSSS_EMP← EMP_PRY ÷ PRY_DP5 RESULTADO $\leftarrow \pi_{APELLIDO, NOMBRE}$ (NSSS_EMP * EMPLEADO)

Tema 3: El álgebra relacional

Consultas álgebra (4/5)

```
CE:DEPAR-
EMPLEADO
                                                               TAMENTO
NSS NOMBRE INIC APELLIDO FECHA_NCTO DIRECCIÓN SEXO SALARIO SUPERV ND
                                                              CE:EM-
DEPARTAMENTO
              NÚMEROD NOMBRED NSS_JEFE FECHA_INIC_JEFE
                                                              PLEADO
                                 CE:EMPLEADO
                                                     TRABAJA EN
PROYECTO NÚMEROP NOMBREP LOCALIZACIÓNP NÚMD
                                                     NSSE NP HORAS
                                          CE:DEPAR.
                                                      CE: CE:
Nos proyecto donde interviene Smith
                                                    EMPL PROY.
como trabajador o jefe del departamento que lo controla:
 SMITHS(NSSE) \leftarrow \pi_{NSS} (\sigma_{APELLIDO='Smith'} (EMPLEADO))
 SMITH_TRB_ PRY \leftarrow \pi_{NP} (TRABAJA_EN * SMITHS)
 DPT_DIR_SMITH(NÚMD) \leftarrow \pi_{NÚMEROD} (SMITHS |×| NSSE=NSS JEFE
                                   DEPARTAMENTO)
 SMITH_JEFE_PRY(NÚMP) \leftarrow \pi_{NÚMEROP}(DPT_DIR\_SMITH * PROYECTO)
 RESULTADO 		SMITH_TRB_ PRY U SMITH_JEFE_PRY
```

Consultas álgebra (5/5)

EMPLEADO

NSS NOMBRE INIC APELLIDO FECHA_NCTO DIRECCIÓN SEXO SALARIO SUPERV ND

DEPARTAMENTO

NÚMEROD NOMBRED NSS JEFE FECHA INIC JEFE

CE:EMPLEADO

NSSE NOMBRE FECHA NCTO ...

CE:EM- CE:DEPAR-

PLEADO TAMENTO

CE:EMPLEADO

FAMILIAR

- ♦ Empleados (apellido, nombre) con 2 o más familiares T1(NSS, NÚM_FAMS) ← NSSE $\mathfrak{I}_{CUENTA\ NOMBRE}$ (FAMILIAR) RESULTADO ← $\pi_{APELLIDO,\ NOMBRE}$ ($\sigma_{NÚM_FAMS>=2}$ (T1) * EMPLEADO)
- $\begin{array}{ll} \bullet & \mbox{Empleados (apellido, nombre) sin familiares} \\ & \mbox{TODOS_EMPS} \leftarrow \pi_{\mbox{NSS}}(\mbox{EMPLEADO}) \\ & \mbox{EMPS_CON_FAMS}(\mbox{NSS}) \leftarrow \pi_{\mbox{NSSE}}(\mbox{FAMILIAR}) \\ & \mbox{EMPS_SIN_FAMS} \leftarrow \mbox{TODOS_EMPS} \mbox{EMPS_CON_FAMS} \\ & \mbox{RESULTADO} \leftarrow \pi_{\mbox{APELLIDO, NOMBRE}}(\mbox{EMPS_SIN_FAMS} * \mbox{EMPLEADO}) \\ \end{array}$
- ♦ Jefes (apellido, nombre) con algún familiar JEFES(NSS) $\leftarrow \pi_{\text{NSS_JEFE}}(\text{DEPARTAMENTO})$ EMPS_CON_FAMS(NSS) $\leftarrow \pi_{\text{NSSE}}(\text{FAMILIAR})$ JEFES_CON_FAMS \leftarrow JEFES \cap EMPS_CON_FAMS RESULTADO $\leftarrow \pi_{\text{APELLIDO}, \text{NOMBRE}}(\text{JEFES_CON_FAMS} * \text{EMPLEADO})$

Tema 3: El álgebra relacional

Ejercicios

Ejercicio: Operaciones álgebra (1/2)

NOMBRE	NSS	ND
lker	11	1
Ana	22	1
Jon	33	2
Karmele	44	2

DEP

EMP

 <u>NUMD</u>	NOMD
1	LSI
2	ATC

PROY

<u>NP</u>	NOMBRE
1	.NET
2	XML
3	EJB
4	UML

TRAB

NSSE	<u>NP</u>	HORAS
11	1	5
11	2	2
22	1	3
22	3	1
44	3	4

Dibujar relaciones resultantes:

NSS de los empleados que trabajan más de 1 hora en el proyecto 1:

PRY1_MAS1HORA $\leftarrow \sigma_{\text{NP=1 AND HORAS}>1}$ (TRAB) R1 $\leftarrow \pi_{\text{NSSE}}$ (PRY1_MAS1HORA)

NP de los proyectos en los que trabaja alguna persona:

 $R2 \leftarrow \pi_{NP} (TRAB)$

NP de los proyectos donde NO trabaja ninguna persona:

TODOS_PRY $\leftarrow \pi_{NP}$ (PROY) R3 \leftarrow TODOS_PRY - R2

Información de cada persona asociada a la información de SU departamento:

 $R4 \leftarrow EMP \mid \times \mid_{ND=NNUMD} DEP$

Tema 3: El álgebra relacional

47

Ejercicio: Operaciones álgebra (2/2)

	NOMBRE	NSS	ND	
	Iker	11	1	
	Ana	22	1	
١	Jon	33	2	
	Karmele	44	2	

Nombre de cada persona junto al nombre del departamento en el que trabaja:

 $R5 \leftarrow \pi_{NOMBRE, NOMD}(R4)$

DEP

EMP

NUMD	NOMD
1	LSI
2	ATC

		de cada			
número	de cada	proyecto	en el qu	e trabaja	1:
BEBG		(E) (D)			

PERS $\leftarrow \pi_{\text{NOMBRE, NSS}}$ (EMP) TRB(NSS,NP) $\leftarrow \pi_{\text{NSSE, NP}}$ (TRAB) R6 \leftarrow PERS * TRB

PROY

<u>NP</u>	NOMBRE
1	.NET
2	XML
3	EJB
4	UML

Nombre de cada empleado junto al nombre de cada proyecto en el que trabaja:

PRY(NP,NOMP) \leftarrow PROY PERS_PRY \leftarrow R6 * PRY R7 \leftarrow $\pi_{NOMBRE, NOMP}$ (PERS_PRY)

TRAB

NSSE	<u>NP</u>	HORAS
11	1	5
11	2	2
22	1	3
22	3	1
44	3	4

¿Qué cambia en PERS_PRY si se usa PROY en lugar de PRY?

- 1. Nombre de los departamentos ubicados en Logroño.
- 2. Nombre y apellidos de cada empleado junto al nombre y parentesco de cada uno de sus familiares.

- Obtener los NSS, tanto de los trabajadores del departamento 5, como de los jefes de estos trabajadores (que no tienen por qué ser del departamento 5).
- 4. Nombre y apellido de los empleados del departamento 5 que trabajan más de 10 horas/semana en el proyecto 'Producto X'.

ESQUEMA BD EMPRESA

50

- 5. Nombre y apellido de los empleados con un familiar con su mismo nombre de pila.
- 6. Nombre y apellido de los empleados cuyo jefe directo es Franklin Wong.

- 7. Nombre de cada proyecto junto al número total de horas invertidas por los empleados en él.
- 8. Nombre y apellido de los empleados que trabajan en todos los proyectos.
- 9. Nombre y apellido de los empleados que no trabajan en ningún proyecto.

- 10. Nombre de cada departamento junto al salario medio de los empleados asignados al mismo.
- 11. Incluir departamentos sin empleados asignados y departamento nulo para los empleados sin departamento
- 12. Salario medio de las empleadas de la empresa.

13. Nombre y dirección de los empleados que trabajan en algún proyecto que, por una parte, está situado en Houston y por otra el proyecto pertenece a un departamento que no está situado en Houston.

- 14. Nombre y apellido de los directores de departamento sin familiares.
- 15. Nombres de los proyectos donde trabajan todos los subordinados del jefe con NSS=111.

