Lab 1

1 Introduction

1.1 Target

- Know how to read datasheet.
- Design simple circuit with 74 familly.
- Optimize boolean expression by using boolean algebra and K-map.
- Know how to use VOM.

1.2 Contents

- Investigate some IC in 74 familly.
- Optimize boolean expression and implement it by using 74s IC.

2 Exercises

Note: Take pictures for every circuits that are implemented and attach its into your report.

Ex 1: Investigate the function of 2 in 6 IC that was mentioned. Sources of inputs are switch, destinations of outputs are LEDs. Draw your circuit and fill the two truth tables below.

IC 7408:
$$X = AB$$

Input 1	Input 2	Output	
1	1	1	
1	0	0	
0	1	0	
0	0	0	

IC 7432: X = A + B

Input 1	Input 2	Output	
1	1	1	
1	0	1	
0	1	1	
0	0	0	

Ex 2: Optimize these expressions below by using bolean algebra for x, K-map for z. Present each step which you do in the report. Draw the circuit and implement your design.

•
$$x = \overline{A}BCD + A\overline{B}\overline{C}\overline{D} + A\overline{B}\left(\overline{\overline{C}} + \overline{D}\right) + A(\overline{B} + \overline{C})D + A(\overline{B} + \overline{C} + \overline{D}) + ABC$$

= $\overline{A}BCD + A(\overline{B} + \overline{C} + \overline{D}) + A\overline{B}C\overline{D} + A\overline{B}\overline{C}D + A(\overline{B}CD + B\overline{C}) + ABC$
= $\overline{A}BCD + A(\overline{B} + \overline{C} + \overline{D}) + (A\overline{B}C\overline{D} + A\overline{B}CD) + A\overline{B}\overline{C}D + (AB\overline{C} + ABC)$
= $\overline{A}BCD + A(\overline{B} + \overline{C} + \overline{D}) + A\overline{B}C + A\overline{B}\overline{C}D + AB$
= $\overline{A}BCD + A(B + \overline{B} + \overline{C} + \overline{D} + \overline{B}C + \overline{B}\overline{C}D)$
= $\overline{A}BCD + A(1 + \overline{C} + \overline{D} + \overline{B}C + \overline{B}\overline{C}D)$
= $\overline{A}BCD + A.1$

= A + BCD

•
$$z = (M+N)(\overline{M}+P)(\overline{N}+\overline{P})$$

$$= (M\overline{M} + MP + N\overline{M} + NP)(\overline{N} + \overline{P})$$

$$= M\overline{M} \, \overline{N} + MP\overline{N} + \overline{M}N\overline{N} + N\overline{N}P + M\overline{M} \, \overline{P} + MP\overline{P} + \overline{M}N\overline{P} + NP\overline{P}$$

$$= 0 + M\overline{N}P + 0 + 0 + 0 + 0 + \overline{M}N\overline{P} + 0$$

$$= M\overline{N}P + \overline{M}N\overline{P}$$

K-Map:

	P	\overline{P}
$\overline{M} \overline{N}$	0	0
$\overline{M}N$	0	1
$M\overline{N}$	1	0
MN	0	0

Ex 3: Use 7404s, 7408s, 7432s to implement these boolean expressions below. Draw your circuit and fill the truth table below.

•
$$x = AB + \overline{C}$$

• $y = (A + B)\overline{C}$

A	В	С	x	y	Z
1	1	1	1	0	
1	1	0	1	1	
1	0	1	0	0	
1	0	0	1	1	
0	1	1	0	0	
0	1	0	1	1	
0	0	1	0	0	
0	0	0	1	0	