Foundations of Computing Lecture 15

Arkady Yerukhimovich

March 7, 2024

Outline

- 1 Lecture 14 Review
- 2 Review: Decidable Languages
- 3 Preliminaries Countable and Uncountable Sets
- Proving A_{TM} Undecidable
- 5 Reductions between Languages

Lecture 14 Review

- Decidable and Turing-recognizable languages
- Decidability of regular and context-free languages

Outline

- 1 Lecture 14 Review
- 2 Review: Decidable Languages
- Preliminaries Countable and Uncountable Sets
- Proving A_{TM} Undecidable
- 5 Reductions between Languages

Characterizing Computability of Languages

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

- M halts on ALL inputs, accepts those in L and rejects those not in L
- Seems to match informal definition we wanted before

Definition: Turing-recognizable languages

A language L is Turing-recognizable or recursively enumerable if some TM M recognizes it

- M halts and accepts all strings in L
- M may not halt on strings not in L does not necessarily have to reject

Observation

Every Decidable language is also Turing-recognizable, but the reverse direction is not true.

Decidable Languages

We showed the following languages are decidable:

- Languages about Finite Automata
 - **1** $A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$
 - ② $A_{NFA} = \{\langle B, w \rangle \mid B \text{ is a NFA that accepts input string } w\}$
 - **3** $A_{REX} = \{\langle R, w \rangle \mid R \text{ is a reg. exp. that generates the string } w\}$
 - **4** $E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$
- Languages about CFGs

 - ② $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}$

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

$$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1\}$$

- Observation: A_{TM} is Turing-recognizable On input $\langle M, w \rangle$:
 - Simulate M on input w
 - ② If M ever enters its accept state, halt and accept. If M ever enters its reject state, halt and reject

$$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1\}$$

- Observation: A_{TM} is Turing-recognizable On input $\langle M, w \rangle$:
 - Simulate M on input w
 - ② If M ever enters its accept state, halt and accept. If M ever enters its reject state, halt and reject
- Is A_{TM} Decidable?
 - The problem: *M* may never halt
 - In this case, above algorithm will never output accept or reject
 - If could determine that M will never halt (i.e, it has entered an infinite loop), could reject.

$$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1\}$$

- Observation: A_{TM} is Turing-recognizable On input $\langle M, w \rangle$:
 - Simulate M on input w
 - ② If M ever enters its accept state, halt and accept. If M ever enters its reject state, halt and reject
- Is A_{TM} Decidable?
 - The problem: M may never halt
 - In this case, above algorithm will never output accept or reject
 - If could determine that M will never halt (i.e, it has entered an infinite loop), could reject.

An Undecidable Problem

• We will prove today that A_{TM} is undecidable

Relationships Among Language Classes

Outline

- Lecture 14 Review
- 2 Review: Decidable Languages
- 3 Preliminaries Countable and Uncountable Sets
- 4 Proving A_{TM} Undecidable
- 5 Reductions between Languages

ullet Cardinality of a set S is the number of elements in that set (|S|)

- Cardinality of a set S is the number of elements in that set (|S|)
- A set S can be finite $(|S| < \infty)$ or infinite $(|S| = \infty)$

- ullet Cardinality of a set S is the number of elements in that set (|S|)
- A set S can be finite $(|S| < \infty)$ or infinite $(|S| = \infty)$
- ullet $|S_1|=|S_2|$ if there's a one-to-one and onto mapping from S_1 to S_2

- ullet Cardinality of a set S is the number of elements in that set (|S|)
- A set S can be finite $(|S| < \infty)$ or infinite $(|S| = \infty)$
- ullet $|S_1|=|S_2|$ if there's a one-to-one and onto mapping from S_1 to S_2
- Example:

$$A = \{0, 1, 2, 3\}$$

$$B = \{a, b, c, d\}$$

$$f(0) = a f(1) = b f(2) = b$$

$$f(0) = a, f(1) = b, f(2) = c, f(3) = d$$

Intuition: Countable sets are ones where we can arrange elements into a "first element", "second element", and so on.

Intuition: Countable sets are ones where we can arrange elements into a "first element", "second element", and so on.

• An infinite set A is *countably infinite* if it has the same cardinality as the natural numbers: $\mathcal{N}=1,2,3,\ldots$

Intuition: Countable sets are ones where we can arrange elements into a "first element", "second element", and so on.

- An infinite set A is *countably infinite* if it has the same cardinality as the natural numbers: $\mathcal{N} = 1, 2, 3, \dots$
- A set A is countable if it is finite or countably infinite

Intuition: Countable sets are ones where we can arrange elements into a "first element", "second element", and so on.

- An infinite set A is *countably infinite* if it has the same cardinality as the natural numbers: $\mathcal{N}=1,2,3,\ldots$
- A set A is countable if it is finite or countably infinite
- A set that is not countable is uncountable

Example 1: Evens

Evens

The set of even numbers is

Example 1: Evens

Evens

The set of even numbers is countable

Example 2: Rationals

Rationals

The set of rational numbers is

Example 2: Rationals

Rationals

The set of rational numbers is countable

Example 2: Rationals

Rationals

The set of rational numbers is countable

	1			
1	1/1	1/2	1/3	
2	2/1	2/2	2/3	
3	3/1	1/2 2/2 3/2	3/3	
4	4/1	4/2	:	

Example 3: Strings

Strings

The set of strings in $\{0,1\}^*$ is

Example 3: Strings

Strings

The set of strings in $\{0,1\}^*$ is countable

Real Numbers

The set of real numbers (\mathcal{R}) is uncountable

Real Numbers

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

Real Numbers

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

ullet Assume that ${\cal R}$ is countable

Real Numbers

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

- Assume that \mathcal{R} is countable
- ullet Then there is a one-to-one and onto mapping f from ${\mathcal N}$ to ${\mathcal R}$

Real Numbers

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

- Assume that \mathcal{R} is countable
- ullet Then there is a one-to-one and onto mapping f from ${\mathcal N}$ to ${\mathcal R}$

n	f(n)		
1	1.234		
2	3.141		
3	5.556		
:	:		

Real Numbers

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

- Assume that \mathcal{R} is countable
- ullet Then there is a one-to-one and onto mapping f from ${\mathcal N}$ to ${\mathcal R}$

n	f(n)	
1	1.234	
2	3.141	
3	5.556	
:	:	

• We construct a value $x \in \mathcal{R}$ s.t $x \neq f(n)$ for any n Idea: For all $i \in \mathcal{N}$, make $x_i \neq f(i)_i$

Real Numbers

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

- Assume that \mathcal{R} is countable
- ullet Then there is a one-to-one and onto mapping f from ${\mathcal N}$ to ${\mathcal R}$

n	f(n)
1	1.234
2	3.141
3	5.556
:	:

- We construct a value $x \in \mathcal{R}$ s.t $x \neq f(n)$ for any n Idea: For all $i \in \mathcal{N}$, make $x_i \neq f(i)_i$
- ullet Contradiction f is not mapping between ${\mathcal R}$ and ${\mathcal N}$

Outline

- 1 Lecture 14 Review
- 2 Review: Decidable Languages
- 3 Preliminaries Countable and Uncountable Sets
- 4 Proving A_{TM} Undecidable
- 5 Reductions between Languages

The Set of Turing Machines

Turing Machines

The set of all Turing Machines is

Turing Machines

Turing Machines

The set of all Turing Machines is countable

 \bullet We already showed that the set of strings $\{0,1\}^*$ is countable

Turing Machines

- ullet We already showed that the set of strings $\{0,1\}^*$ is countable
- ullet Can similarly show that for any finite alphabet Σ , Σ^* is countable

Turing Machines

- We already showed that the set of strings $\{0,1\}^*$ is countable
- Can similarly show that for any finite alphabet Σ , Σ^* is countable
- ullet But, a TM M can be written as a string $\langle M
 angle \in \Sigma^*$

Turing Machines

- ullet We already showed that the set of strings $\{0,1\}^*$ is countable
- Can similarly show that for any finite alphabet Σ , Σ^* is countable
- But, a TM M can be written as a string $\langle M \rangle \in \Sigma^*$
- \bullet Hence, by omitting all strings that are not encodings of valid TMs we get a mapping of TMs to ${\cal N}$

Languages over alphabet Σ

 ${\cal L}$ – the set of all languages over alphabet Σ is

Languages over alphabet Σ

 \mathcal{L} – the set of all languages over alphabet Σ is uncountable

Languages over alphabet Σ

 ${\cal L}$ – the set of all languages over alphabet Σ is uncountable

- Consider the set B of infinite binary sequences
 - An infinite binary sequence is an infinite length string of 0's and 1's

Languages over alphabet Σ

 ${\cal L}$ – the set of all languages over alphabet Σ is uncountable

- Consider the set B of infinite binary sequences
 - An infinite binary sequence is an infinite length string of 0's and 1's
 - B is uncountable

Languages over alphabet Σ

 ${\cal L}$ – the set of all languages over alphabet Σ is uncountable

- Consider the set B of infinite binary sequences
 - An infinite binary sequence is an infinite length string of 0's and 1's
 - B is uncountable
- **2** $|\mathcal{L}| = |B|$

Languages over alphabet Σ

 \mathcal{L} – the set of all languages over alphabet Σ is uncountable

- Consider the set B of infinite binary sequences
 - An infinite binary sequence is an infinite length string of 0's and 1's
 - B is uncountable
- $|\mathcal{L}| = |B|$
 - Define the characteristic sequence χ_A of language $A \in \mathcal{L}$

Languages over alphabet Σ

 \mathcal{L} – the set of all languages over alphabet Σ is uncountable

Proof:

- Consider the set B of infinite binary sequences
 - An infinite binary sequence is an infinite length string of 0's and 1's
 - B is uncountable
- $|\mathcal{L}| = |B|$
 - Define the characteristic sequence χ_A of language $A \in \mathcal{L}$

ullet This is a one-to-one and onto mapping from ${\cal L}$ to B, so $|{\cal L}|=|B|$

Languages over alphabet Σ

 \mathcal{L} – the set of all languages over alphabet Σ is uncountable

- Consider the set B of infinite binary sequences
 - An infinite binary sequence is an infinite length string of 0's and 1's
 - B is uncountable
- **2** $|\mathcal{L}| = |B|$
 - Define the characteristic sequence χ_A of language $A \in \mathcal{L}$

- This is a one-to-one and onto mapping from $\mathcal L$ to B, so $|\mathcal L|=|B|$
- \odot Therefore, \mathcal{L} is uncountable

We have proven:

- The set of Turing Machines is countable
- The set of languages is uncountable

We have proven:

- The set of Turing Machines is countable
- The set of languages is uncountable

Therefore:

We have proven:

- The set of Turing Machines is countable
- The set of languages is uncountable

Therefore:

 There is no one-to-one and onto mapping from languages to Turing Machines

We have proven:

- The set of Turing Machines is countable
- The set of languages is uncountable

Therefore:

- There is no one-to-one and onto mapping from languages to Turing Machines
- Thus, there exist languages that have no corresponding TM that recognizes them

We have proven:

- The set of Turing Machines is countable
- The set of languages is uncountable

Therefore:

- There is no one-to-one and onto mapping from languages to Turing Machines
- Thus, there exist languages that have no corresponding TM that recognizes them
- Note, that such languages are also undecidable

Where are we now?

We have proven:

- The set of Turing Machines is countable
- The set of languages is uncountable

Therefore:

- There is no one-to-one and onto mapping from languages to Turing Machines
- Thus, there exist languages that have no corresponding TM that recognizes them
- Note, that such languages are also undecidable

Where are we now?

• We have proven that some languages are not Turing-recognizable

We have proven:

- The set of Turing Machines is countable
- The set of languages is uncountable

Therefore:

- There is no one-to-one and onto mapping from languages to Turing Machines
- Thus, there exist languages that have no corresponding TM that recognizes them
- Note, that such languages are also undecidable

Where are we now?

- We have proven that some languages are not Turing-recognizable
- But, we have not given any examples of such a language

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

A_{TM} is Undecidable

$$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1\}$$

Proof: By contradiction

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

• Assume that A_{TM} is decided by a TM H

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

$$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1\}$$

Proof: By contradiction

• Assume that A_{TM} is decided by a TM H

$$H(\langle M, w \rangle) = \left\{ egin{array}{ll} \textit{accept} & \textit{if } M \textit{ accepts } w \\ \textit{reject} & \textit{if } M \textit{ does not accept } w \end{array}
ight.$$

• Use *H* to build the following TM *D*:

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

• Assume that A_{TM} is decided by a TM H

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

- Use H to build the following TM D: On Input ⟨M⟩, where M is a TM
 - **1** Run H on input $\langle M, \langle M \rangle \rangle$
 - Output the opposite of what H outputs

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

• Assume that A_{TM} is decided by a TM H

$$H(\langle M, w \rangle) = \left\{ egin{array}{ll} \textit{accept} & \textit{if } M \textit{ accepts } w \\ \textit{reject} & \textit{if } M \textit{ does not accept } w \end{array}
ight.$$

- Use H to build the following TM D: On Input ⟨M⟩, where M is a TM
 - **1** Run H on input $\langle M, \langle M \rangle \rangle$
 - ② Output the opposite of what *H* outputs

$$D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$$

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

• Assume that A_{TM} is decided by a TM H

$$H(\langle M, w \rangle) = \left\{ egin{array}{ll} \textit{accept} & \textit{if } M \textit{ accepts } w \\ \textit{reject} & \textit{if } M \textit{ does not accept } w \end{array}
ight.$$

- Use H to build the following TM D: On Input $\langle M \rangle$, where M is a TM
 - **1** Run H on input $\langle M, \langle M \rangle \rangle$
 - ② Output the opposite of what *H* outputs

$$D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$$

• Now consider what happens if we run D on $\langle D \rangle$

$$D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \\ reject & \text{if } D \text{ accepts } \langle D \rangle \end{cases}$$

Contradiction!

How Is This a Diagonalization?

How Is This a Diagonalization?

	$\langle \mathcal{M}_1 angle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$		$\langle D angle$	• • •
M_1		reject			accept	
M_2	reject	reject	reject		accept	
M_3	accept	accept	accept		reject	
:		:		٠.		
D	reject	accept	reject		?	

- ullet We have defined D to do the opposite of what M_i does on input $\langle M_i
 angle$
- But what does D do on input $\langle D \rangle$??

A Turing-unrecognizable Language

$\overline{L_{TM}}$

The language

$$\overline{L_{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM and } M(w) \neq 1\}$$

is not Turing-recognizable

Outline

- 1 Lecture 14 Review
- 2 Review: Decidable Languages
- 3 Preliminaries Countable and Uncountable Sets
- Proving A_{TM} Undecidable
- 5 Reductions between Languages

Reductions Between Problems

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Examples:

 $lue{0}$ Finding area of a rectangle \leq Finding its length and width

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Examples:

- lacktriangle Finding area of a rectangle \leq Finding its length and width

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Examples:

- lacktriangle Finding area of a rectangle \leq Finding its length and width
- ② Finding temperature outside ≤ Reading a thermometer Observations:

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Examples:

- lacktriangle Finding area of a rectangle \leq Finding its length and width
- $oldsymbol{\circ}$ Finding temperature outside \leq Reading a thermometer

Observations:

• Reductions not always symmetrical: $A \leq B$ does not mean $B \leq A$

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Examples:

- lacktriangle Finding area of a rectangle \leq Finding its length and width
- $oldsymbol{0}$ Finding temperature outside \leq Reading a thermometer

Observations:

- Reductions not always symmetrical: $A \leq B$ does not mean $B \leq A$
- For now, no restriction on how the reduction works

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Examples:

- lacktriangle Finding area of a rectangle \leq Finding its length and width
- $oldsymbol{0}$ Finding temperature outside \leq Reading a thermometer

Observations:

- Reductions not always symmetrical: $A \leq B$ does not mean $B \leq A$
- For now, no restriction on how the reduction works

Intuition

A < B means that:

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Examples:

- lacktriangle Finding area of a rectangle \leq Finding its length and width
- Finding temperature outside Reading a thermometer

Observations:

- Reductions not always symmetrical: $A \leq B$ does not mean $B \leq A$
- For now, no restriction on how the reduction works

Intuition

A < B means that:

• problem A is no harder than problem B.

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Examples:

- lacktriangle Finding area of a rectangle \leq Finding its length and width
- Finding temperature outside Reading a thermometer

Observations:

- Reductions not always symmetrical: $A \leq B$ does not mean $B \leq A$
- For now, no restriction on how the reduction works

Intuition

A < B means that:

- problem A is no harder than problem B.
- Equivalently, problem B is no easier than problem A

Main Observation

Suppose that $A \leq B$, then:

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

Suppose that B is decidable

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

- Suppose that B is decidable
- Since $A \leq B$, there exists an algorithm (i.e., a reduction) that uses a solution to B to solve A

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

- Suppose that B is decidable
- Since $A \leq B$, there exists an algorithm (i.e., a reduction) that uses a solution to B to solve A
- But, this means that A is decidable by running the machine for B as needed by the reduction

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

 $\mathit{HALT}_{\mathit{TM}} = \{ \langle \mathit{M}, \mathit{w} \rangle \mid \mathit{M} \text{ is a TM and } \mathit{M} \text{ halts on input } \mathit{w} \}$

Theorem: HALT is undecidable

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

• We show that $A_{TM} \leq HALT$

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

- We show that $A_{TM} \leq HALT$
- Since we know that A_{TM} is undecidable, this shows that HALT is also undecidable

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

- We show that $A_{TM} \leq HALT$
- Since we know that A_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

Construct algorithm S that decides A_{TM} given a TM R that decides HALT

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

- We show that $A_{TM} \leq HALT$
- Since we know that A_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: *HALT* is undecidable Proof Sketch:

- We show that $A_{TM} < HALT$
 - Since we know that A_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

Construct algorithm S that decides A_{TM} given a TM R that decides HALT On input $\langle M, w \rangle$, S does the following:

• Run $R(\langle M, w \rangle)$

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: *HALT* is undecidable Proof Sketch:

- We show that $A_{TM} < HALT$
- Since we know that A_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

- Run $R(\langle M, w \rangle)$
- If R rejects M(w) doesn't halt halt and reject

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

• We show that $A_{TM} < HALT$

- Proof Sketch:
 - Since we know that A_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

- Run $R(\langle M, w \rangle)$
- If R rejects M(w) doesn't halt halt and reject
- if R accepts M(w) halts Simulate M(w) until it halts

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: *HALT* is undecidable Proof Sketch:

- We show that $A_{TM} < HALT$
- Since we know that A_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

- Run $R(\langle M, w \rangle)$
- If R rejects M(w) doesn't halt halt and reject
- if R accepts M(w) halts Simulate M(w) until it halts
- Output whatever M output