(iii) as it is equal to the morrginal PMF product
of (Px=2) & P(y=4) then, ups it is "dependent.

COVARIANICE	CORRELATION.
Used specifically to	Used to describe the
describe association blw	association b/w two
two Random Variables	quantities
It usec probability to evaluate.	It uses numericaldata
evaluate.	to evaluate.
It has dimensions (xandy)	It is dimensionless
It has units.	and unitless.
	The value typically ranges
Cov(X,Y)>0 positively correlated	from (-1 to 1).
COV(X,Y) 40 negatively "	
COV(X,Y) 40 negatively " (ov(X,Y) = 0 not correlated.	

Cov(xy) = E[xy] - E[x] E[y]

Important Note:
Consider a random Variable X has mean p & 1std) = 02

Jet 1 - 02

X D (variance)

Now consider another random variable A such that

Date

A=KX

then

r expected value of that Random Variable.

E[A] = KM

J= <252.

where kis a constant.