Ce qu'il m'arrive de faire

- Consommer des boissons alcoolisées.
- Se saouler.
- Fumer des joints.
- Avoir des relations sexuelles non protégées.

Moi et ma vie

- Je ne suis pas satisfait e de ma vie.
- ▶ Je ne suis pas content e de la façon dont je mène mon existence.
- Je suis, la plupart du temps, content e de moi-même.
- J'aimerais souvent être quelqu'un d'autre.
- ▶ je suis content·e d'être comme je suis.

Représentation des données et hyperplan

Construire un modèle

Cheminement dans JAMOVI

Analyses
↓
Regression
↓
Linear Regression

Estimation

Construire un modèle

Estimation

Construire un modèle

Model Coefficients

Predictor	Estimate	SE	t	р
Intercept	0.355	0.331	1.073	0.284
AGE	0.089	0.022	4.116	< .001
EST	-0.092	0.013	-6.928	< .001

Ajustement

Indice de séparation $(s_y/\hat{\sigma}_{\varepsilon})$

Régression multiple
Ajustement

Indice de séparation $(s_y/\hat{\sigma}_{\varepsilon})$

Indice de séparation $(s_y/\hat{\sigma}_{\varepsilon})$

Table 1
ES Indexes and Their Values for Small, Medium, and Large Effects

		Effect size			
Test	ES index	Small	Medium	Large	
 m_A vs. m_B for independent means 	$d = \frac{m_A - m_B}{\sigma}$.20	.50	.80	
Significance of product— moment r	r	.10	.30	.50	
 r_A vs. r_B for independent 	$q = z_A - z_B$ where $z = \text{Fisher's } z$.10	.30	.50	
4. P = .5 and the sign test	g=P50	.05	.15	.25	
 P_A vs. P_B for independent proportions 	$h = \phi_A - \phi_B$ where $\phi = \arcsin \theta$ transformation	.20	.50	.80	
6. Chi-square for goodness of fit and contingency	$w = \sqrt{\sum_{i=1}^{k} \frac{(P_{1i} - P_{0i})^2}{P_{0i}}}$.10	.30	.50	
7. One-way analysis of variance	$f = \frac{\sigma_m}{\sigma}$.10	.25	.40	
8. Multiple and multiple partial correlation	$f^2 = \frac{R^2}{1 - R^2}$.02	.15	.35	

Note. ES = population effect size.

Régression multiple
Ajustement

Indice de séparation $(s_y/\hat{\sigma}_{\varepsilon})$

ES	$f^2 = \frac{R^2}{1 - R^2}$	$R = \sqrt{\frac{f^2}{1 + f^2}}$	$s_y/\hat{\sigma}_{arepsilon}$
Small	0.02	0.14	1.010
Medium	0.15	0.36	1.072
Large	0.35	0.51	1.162

Évaluer l'ajustement des données au modèle

Ajustement

Evaluer l'ajustement des données au modèle

Model Fit Measures

Model	R	R²	Adjusted R ²	RMSE
1	0.334	0.112	0.108	0.307

Test global

└ Inférence

Test global

Model Fit Measures

					Overall Model Test			
Model	R	R²	Adjusted R ²	RMSE	F	df1	df2	р
1	0.334	0.112	0.108	0.307	32.906	2	524	< .001

$$F(2,524) = 32.906, p < .001$$

└ Inférence

Tests marginaux

Model Coefficients

Estimate	SE	t	р
0.355	0.331	1.073	0.284
0.089	0.022	4.116	< .001
-0.092	0.013	-6.928	< .001
	0.355 0.089	0.355 0.331 0.089 0.022	0.355 0.331 1.073 0.089 0.022 4.116

$$t(524) = 4.116, p < .001$$

 $t(524) = -6.928, p < .001$