Week 5 Project

Question 1

In this question, we need to fit a Normal Distribution and a Generalized T distribution to the data and calculate the VaR and ES for both fitted distributions.

$$t \, VaR_{\nu,\alpha,h} = \sqrt{\nu^{-1}(\nu - 2)} t_{\nu}^{-1} (1 - \alpha) \sigma_h - \mu_h$$

$$t \, CVaR_{\nu,\alpha,h} = -\alpha^{-1} (1 - \nu)^{-1} (\nu - 2 + x_{\alpha,\nu}^2) f_{\nu}(x_{\alpha,\nu}) \sigma_h - \mu_h$$

$$ext{CVaR}_{h,lpha}(X)=lpha^{-1}arphi(\Phi^{-1}(lpha))\sigma_h-\mu_h$$
 $arphi(z)$ standard normal density function $\Phi^{-1}(lpha)$ $lpha$ quantile of the standard normal distribution

After the calculation, I got the result and plot the graph of the distribution PDFs, VaR, and ES values.

	Name	Value
0	Empirical VaR	0.075981
1	Empirical CVaR	0.116777
2	Normal VaR	0.081335
3	Normal CVaR	0.101774
4	T VaR	0.081323
5	T CVaR	0.101660

I notice that VaR is closer to 0 compared to CVaR, because the meaning of the CVaR is actually the mean of the value below VaR, so it will be further that 0 compared to VaR.

Question 2

I put all the functions in the "library. ipynb" file, please check that file.

Question 3

After splitting the file into three portfolios, I calculated the weight and got the return, and then simulate a Generalized T model to get the VaR and ES.

	Name	VaR	CVaR
0	Portfolio_A	0.021169	0.026364
1	Portfolio_B	0.019104	0.023793
2	Portfolio_C	0.017026	0.021205
3	Whole_Portfolio	0.017594	0.021912