LUNDS TEKNISKA HÖGSKOLA MATEMATIK

TENTAMENSSKRIVNING Tredimensionell vektoranalys 2013–08–23 kl 14–16

INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar.

1. Sätt $\boldsymbol{u}=(1,x+y+z,xyz)$ och låt K vara den kropp som beskrivas av

$$z^2 > x^2 + y^2$$
, $0 < z < 2$.

- a) Bestäm divergensen och rotationen av vektorfältet \boldsymbol{u} . (0.2) Svar: div $\boldsymbol{u} = 1 + xy$, rot $\boldsymbol{u} = (xz - 1, -yz, 1)$.
- b) Rita en skiss av kroppen K och beräkna arean av randen till K. (0.4) Svar: K är en kon, $A = 4\pi(1 + \sqrt{2})$.
- c) Beräkna flödet av \boldsymbol{u} ut ur K. (0.4) Svar: $8\pi/3$.
- 2. Betrakta vektorfältet

$$F(x, y, z) = \frac{(x, y, z)}{x^2 + y^2 + z^2}.$$

- a) Är \mathbf{F} konservativt i $\mathbb{R}^3 \setminus \{(0,0,0)\}$? (0.2) Svar: Ja, ty rot $\mathbf{F} = \underline{0}$ och $\mathbb{R}^3 \setminus \{\underline{0}\}$ är enkelt sammanhängande.
- b) Beräkna kurvintegralen $\int_{\gamma} \boldsymbol{F} \cdot d\boldsymbol{r}$ där γ är kurvan given av

$$\mathbf{r}(t) = \left(\cos t, 2\sin t, \sqrt{t/\pi}\right), \quad 0 \le t \le 3\pi. \tag{0.3}$$

Svar: $\ln 2$. [$U(x, y, z) = \ln \sqrt{x^2 + y^2 + z^2}$ är en potential till \boldsymbol{F}]

c) Låt $\mathbf{u} = (u_1, u_2, u_3)$ vara ett \mathcal{C}^1 -fält definierat i en öppen mängd $\Omega \subseteq \mathbb{R}^3$. Antag att Y är ett orienterat ytstycke i Ω med orienterad rand ∂Y .

Formulera Stokes' sats för fältet
$$\boldsymbol{u}$$
 och ytstycket Y . (0.2)
Svar: $\int_{\partial Y} \boldsymbol{u} \cdot d\boldsymbol{r} = \iint_{Y} \operatorname{rot} \boldsymbol{u} \cdot \boldsymbol{N} dS$.

d) Visa att

$$\int_{\gamma} e^x \cos y \, dx - e^x \sin y \, dy + xyz^2 dz = 0$$

för alla enkla slutna \mathcal{C}^1 -kurvor γ som ligger i xy-planet.

(0.3)

<u>Svar</u>: Sätt $\mathbf{v} = (e^x \cos y, -e^x \sin y, xyz^2)$ och observera att

$$rot \mathbf{v} = (xz^2, -yz^2, 0) \perp (0, 0, 1).$$

Använda Stokes' sats.