Analyse von Petri Netzen:

Erreichbarkeit, Invarianten und Simulation

Basiert auf Material von

Prof.dr.ir. Wil van der Aalst

Eindhoven University of Technology

Erinnerung: Petrinetz

Erinnerung: Ausführungssemantik

Der Zustand (marking) eines Petri-Netzes ist eine Funktion s: -> IN

Eine Transition t ist im Zustand s enabled genau dann, wenn:

$$\forall p \in P: s(p) \ge I(p,t)$$

Die Transition t kann feuern und der daraus resultierende Zustand ist wie folgt definiert:

$$\forall p \in P: s'(p) = s(p) - I(p,t) + O(t,p)$$

Eine Folge von Zustandsübergängen heisst run

Zustände und Erreichbarkeit

Typen von Zuständen

- Startzustand: Initiale Verteilung der Token.
- Erreichbarer Zustand: Zustand, der vom Startzustand aus erreichbar ist.
- Deadlock Zustand: Zustand, in dem keine Transition enabled ist
- Home Zustand: Zustand, zu dem immer zurückgekehrt werden kann (= der von jedem Zustand aus erreichbar ist.

Wie kann man diese Zustände erkennen?

Erreichbarkeitsgraphen

Graph, der die Erreichbarkeit von Zuständen darstellt.

 Erstellung durch Generierung erreichbarer Zustände vom Startzustand aus

 Jeder Pfad im Erreichbarkeitsgraphen entspricht einem run

Ereichbarkeit

- Der Erreichbarkeitsgraph G = (N,E) eines Petri-Netzes ist wie folgt definiert:
 - -G=S
 - E = {(s,s') |∃t∈T: t ist in s enabled und s' ist der Zustand, der durch das feuern von t in s entsteht}

Konstruktion des Graphen

- Der Erreichbarkeitsgraph kann wie folgt aus einem Petrinetz erzeugt werden:
 - 1. Sei X die Menge, die nur den Initialen Zustand des Petri-Netzes enthält sowie Y die leere Menge
 - 2. Nimm ein Element x aus X und füge diesen zu Y hinzu. Berechen alle Zustände, die sich durch das feuern einer Transitionen ergibt, die enabled ist. Füge alle Zustände, die nicht in Y sind zu X hinzu.
 - 3. Ist X leer stoppe, sonst gehe zu 2.

Beispiel

Knoten im Erreichbarkeitsgraphen können durch Vektoren oder durch Ausdrücke der Form "3 red + 2 black" dargestellt werden

Übung: Konstruiere den Erreichbarkeitsgraphen

Netzeigenschaften

Eigenschaften des gesamten Netzes

- Boundedness: Ein Petrinetz ist k-bounded, wenn keine Stelle in einer erreichbaren Markierung mehr als k Marken enthält
- Termination: Ein Petrinetz ist terminierend, wenn jeder mögliche run endlich ist.
- **Deadlockfreiheit:** Ein Petrinetz ist deadlockfrei, wenn es keine Deadlockzustände enthält.
- Reversibility: Ein Petrinetz ist reversible, wenn der Startzustand aus jedem erreichbaren Zustand erreicht werden kann.

Beispiel

Erreichbarkeitsgraph

Dining Philosophers

- 5 Philosphen teilen sich 5 Stäbchen
- Ein Philosoph denkt oder Isst. Zum Essen benötigt er 2 Stäbchen

Übung: Dining philosopher

- Angenommen, Philosophen nehmen immer erst das rechte und dann das linke Stäbchen
- Wie sieht das entsprechende Petri-Netz aus ?

Übung: Dining philosopher

 Angenommen Philosophen nehmen die Stäbchen in beliebiger Reihenfolge und können diese auch wieder zurücklegen

Wie sieht das entsprechende Petri-Netz aus ?

Dead Transitions und Liveness

- **Dead Transistion:** Eine Transition ist dead, wenn sie in keinem erreichbaren Zustand enabled ist.
- Live Transistion: Eine Transition ist live, wenn es von jedem erreichbaren Zustand aus möglich ist, einen Zustand zu erreichen, in dem die Transition enabled ist.
- **Liveness:** Ein Netz ist live, wenn alle seine Transitionen live sind.

Beispiel

Dead Transitions:

Live Transitions:

→ Das Netz ist nicht Live

Unendliche Zustandsräume

Erinnerung: Erreichbarkeitsgraphen

Graph, der die Erreichbarkeit von Zuständen darstellt.

 Erstellung durch Generierung erreichbarer Zustände vom Startzustand aus

 Jeder Pfad im Erreichbarkeitsgraphen entspricht einem run

Erinnerung: Erreichbarkeitsgraphen

Knoten im Erreichbarkeitsgraphen können durch Vektoren oder durch Ausdrücke der Form "3 red + 2 black" dargestellt werden

Frage

Wie sieht der Erreichbarkeitsgraph für dieses
 Netz aus?

Zustände für unbounded-Netze

Erweiterung des Konzept einer Markierung:

$$m: P \to N \cup \omega$$

$$\omega + n = \omega - n = \omega, n \in N$$

Stellen können eine bestimmte, oder eine unbestimmte Anzahl von Token enthalten.

- Abdeckungsgraphen: Erreichbarkeitsgraph für das erweiterte Konzept der Markierung
- Wie erkennen wir, dass ein Zustand unbounded ist ?

Abdeckungsgraphen

Analyse von unbounded Petri Netzen

Erreichbarkeitsgraph: (unendlich)

Abdeckungsgraph: (endlich)

[p1]
$$\leq$$
 [p1,p2]
0 · p2 $<$ 1 · p2
 \rightarrow [p1, ω p2]

Konstruktion von Abdeckungsgraphen

- Der Erreichbarkeitsgraph kann wie folgt aus einem Petrinetz erzeugt werden:
 - Sei X die Menge, die nur den Initialen Zustand des Petri-Netzes enthält sowie Y die leere Menge
 - 2. Nimm ein Element x aus X und füge diesen zu Y hinzu.
 - Berechen alle Zustände, die sich durch das feuern Transitionen ergibt, die enabled sind.
 - 4. Für jede Markierung m, ersetze die Anzahl der Tokens der Stelle p durch ω falls es eine Markierung m' \leq m gibt, in der m'(p) > m(p).
 - 5. Füge alle Zustände, die nicht in Y sind zu X hinzu.

Ist X leer stoppe, sonst gehe zu 2.

Aufgabe

Wie sieht der Abdeckungsgraph für dieses

Netz aus?

Aufgabe

 Wie sieht der Abdeckungsgraph für dieses Netz aus?

Eigenschaften des Abdeckungsgraphen

- Ereichbarkeits- und Adeckungsgraph eines bounded Petri Netzes sind identisch
- Der Abdeckungsgraph ist immer endlich
- Eine Transistion t ist dead genau dann, wenn sie nicht im Abdeckungsgraphen auftritt
- Eine Stelle ist k-bounded genau dann wenn sie in keiner Markierung im Abdeckungsgraphen mehr als k Token enthält

Fairness

Fairness von Prozessen

- Dining Philosophers: unfair Philosoph kann verhungern
- Eigenschaften von Transitionen in unendlichen runs:
 - Impartial: wird in jedem unendlichen run unendlich oft ausgeführt
 - Fair: wird in jedem unendlich run, in dem die Transition unendlich oft enabled ist unendlich oft ausgeführt

Fair vs. Unfair

Unfair:

Fair:

Beispiel

t1: fair

T2-t6: not fair

Beispiel:

t1: impartial

t2: impartial

t3: not fair

Übung

Welche Transitionen sind impartial, bzw. fair?

Vektordarstellung und Invarianten

Petri Netze und Vektoraddition

Vektordarstellung von Markierungen:

$$\overrightarrow{m} = \begin{pmatrix} u_1 \\ \vdots \\ u_k \end{pmatrix}, u_i = m(p_i)$$

Vektordarstellung von Transitionen:

$$\vec{t} = \begin{pmatrix} v_1 \\ \vdots \\ v_k \end{pmatrix}, v_i = O(t, p_i) - I(p_i, t)$$

Matrixdarstellung des Netzes:

$$C = (\overrightarrow{marriage} \ \overrightarrow{divorce})$$

m + marriage = m'

$$\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$

m + marriage + divorce = m

$$\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$

Erreichbarkeit und Invarianten

 Durch eine bestimmte Kombination von Transitionen erreichbarer Zustand:

$$\overrightarrow{m} = \overrightarrow{m_0} + C * \overrightarrow{x}$$

 X ist ein Vektor mit der Anzahl der Ausführungen der verschiedenen Transitionen.

$$\binom{2}{1} = \binom{2}{1} + C * \binom{1}{1}$$

 Bietet einen Ansatz zur Berechnung von Invarianten durch lineare Gleichungssysteme

Strukturelle Analyse

- Vermeidet Probleme der Zustandsanalyse, insbes. Größe der generierten Graphen.
- Erfasst Eigenschaften, die unabhängig vom Anfangszustand sind.
- Wir betrachten:
 - Stelleninvarianten
 - Transitionsinvarianten
- Invarianten können mit Hilfe von Methoden der linearen Algebra ermittelt werden

Stelleninvarianten

- Jeder Stelle wird ein Gewicht zugeordnet.
- Das Gewicht eines Tokens entspricht dem Gewicht der Stelle.
- Die gewichtete Summe der Token bleibt durch transitionen unverändert (invariant)

1 man + 1 woman + 2 couple

Beispiele für Invarianten

- 1 man + 0 woman + 1 couple
 (Also denoted as: man + couple)
- 2 man + 3 woman + 5 couple
- -2 man + 3 woman + couple
- man woman
- woman man

(Jede lineare Kombination von Invarianten ist eine Invariante.)

Übung: Bestimme Stelleninvarianten

Transitionsinvarianten

- Jeder Transitionen wird ein Gewicht zugewiesen.
- Feuert jede Transition die angegebene Anzahl von malen, ist das System wieder im Ausgangszustand.
- D.h. diese Invarianten beschreiben mögliche Transistionsmengen

2 marriage + 2 divorce

Andere Invarianten

1 marriage + 1 divorce

(Also denoted as: marriage + divorce)

- 20 marriage + 20 divorce
- Bemerkungen
 - Jede lineare Kombination von Transitionsinvarianten ist wieder eine Transitionsinvariante.
 - Negative Gewichte haben jedoch keine sinnvolle Interpretation
 - Invarianten können nicht immer tatsächlich ausgeführt werden!

Beispiel: Ampelschaltung

Analyse mit Invarianten

- Invarianten können verwendet werden, um indirekt Eigenschaften von Netzen zu überprüfen:
 - Eine Stelle p ist bounded wenn es eine semipositive
 Stelleninvariante gibt, in dem p ein positives Gewicht hat
 - Wenn es eine positive Stelleninvariante gibt, dann ist das Netz für jede mögliche Startmarkierung bounded
 - Ist ein Netz *live* und *bounded*, dann hat es eine positive
 Transitionsinvariante, die alle Transitionen beinhaltet

Bestimmung von Invarianten

Bestimmung von Invarianten

- "intuitive Bestimmung": Formuliere eine Hypothese und überprüfe diese.
- "algebraische Bestimmung": Bestimmung durch Lösung eines linearen Gleichungssystems

Menschen bevorzugen den intuitiven Weg, Computer den algebraischen

Inzidenzmatrizen

- Reihen → Stellen.
- Spalten → Transitionen.
- Wert ij in der Matrix gebenmarriage die Veränderung der Tokenmenge in der Stelle i bei feuern der Transition j an.

$$N = \begin{pmatrix} -1 & 1 \\ -1 & 1 \\ 1 & -1 \end{pmatrix}$$

Stelleninvarianten

 Sei N eine Inzidenzmatrix mit n Stellen und m Transitionen

- Jede Lösung der Gleichung X*N = 0 ist eine Stelleninvariante
 - X ist ein Stellenvektor (i.e., 1 x n Matrix)
 - O ist ein Transitionsvektor (i.e., 1 x m Matrix)
- Berechnung der Basis (polynomiell)

Beispiel

$$X \begin{pmatrix} -1 & 1 \\ -1 & 1 \\ 1 & -1 \end{pmatrix} = (0,0)$$

Lösungen:

$$(man, woman, couple)$$
 $\begin{pmatrix} -1 & 1 \ -1 & 1 \ 1 & -1 \end{pmatrix} = (0,0)$ \bullet $(1,0,1)$ \bullet $(0,1,1)$

- (0,0,0)

- (1,-1,0)

Transitionsinvarianten

- Sei N eine Inzidenzmatrix mit n Stellen und m Transitionen
- Jede Lösung der Gleichung N*X = 0 ist eine Transitionsinvariante
 - X ist ein Transitionsvektor (i.e., m x 1 matrix)
 - 0 ist ein Stellenvektor (i.e., n x 1 matrix)
- Berechnung der Basis (polynomial)

Beispiel

$$\begin{pmatrix} -1 & 1 \\ -1 & 1 \\ 1 & -1 \end{pmatrix} X = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 1 \\ -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} marriage \\ divorce \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Lösungen:

- $(0,0)^T$
- $(1,1)^T$
- $(32,32)^T$

Übung

- Gib die Inzidenzmatrix an.
- Berechne/Bestimme die Stelleninvarianten.
- Berechne/bestimme die Transitionsinvarianten.

