§7 Основные операции с обобщёнными функциями

Элементарная лемма 6.3 говорит, что обобщённые функции из $D'(\mathbb{R}^n)$ можно складывать и умножать на числа. В этом параграфе изучаются некоторые другие операции с обобщёнными функциями.

Определение 7.1. Будем говорить, что в обобщённой функции $f \in D'(\mathbb{R}^n)$ сделана линейная невырожденная замена переменных $x = Ay + b, \ x, y \in \mathbb{R}^n$, если задана новая обобщённая функция $f(Ay + b) \in D'(\mathbb{R}^n)$ правилом

$$\left(f\left(Ay+b\right), \varphi(y)\right) = \left(f(x), \frac{1}{\det A} \cdot \varphi\left(A^{-1}(x-b)\right)\right). \tag{64}$$

Рассмотрим частные случаи.

A)
$$b=0, A$$
 – ортогональная матрица, то есть $A^{-1}=A^{T}$. Тогда $\Big(f\Big(Ay\Big), \, \varphi(y)\Big) = \Big(f(x), \, \varphi\Big(A^{T}(x)\Big)\Big).$

Б) Отражение:
$$(f(-y), \varphi(y)) = (f(x), \varphi(-x))$$
.

B) Подобие:
$$(f(k \cdot y), \varphi(y)) = \frac{1}{|k|^n} (f(x), \varphi(\frac{x}{k})).$$

$$\Gamma$$
) Сдвиг: $(f(y+b), \varphi(y)) = (f(x), \varphi(x-b)).$

Упражнение. Докажите с помощью Б), что $\delta(x) = \delta(-x)$, а с помощью Г), что $(\delta(x-x_0), \varphi(x)) = \varphi(x_0)$.

Далее нам понадобится ещё один важный пример (сингулярной) обобщённой функции. Это связано с тем, что, как известно, функция 1/x не локально интегрируема на числовой прямой. Это преодолевается заменой интеграла его главным значением.

Пример 7.2. $P^{\frac{1}{x}}:D(\mathbb{R}^1)\to\mathbb{R}$,

$$\left(P\frac{1}{x}, \varphi(x)\right) = V.p. \int_{-\infty}^{+\infty} \frac{\varphi(x)}{x} dx = \lim_{\epsilon \to +0} \left(\int_{-\infty}^{-\epsilon} \frac{\varphi(x)}{x} dx + \int_{\epsilon}^{+\infty} \frac{\varphi(x)}{x} dx\right)$$
(65)

Покажем, что главное значение – $V.p.\int_{-\infty}^{+\infty} \frac{\varphi(x)}{x} dx$ – существует. Заметим,

что $supp \varphi \subset [-a, a]$ для достаточно большого a > 0. С учётом этого

$$(65) = \lim_{\varepsilon \to +0} \left(\int_{-a}^{-\varepsilon} + \int_{\varepsilon}^{a} \frac{\varphi(0)}{x} dx + \int_{-a}^{a} \frac{\varphi(x) - \varphi(0)}{x} dx \right) = 0 + \int_{-a}^{a} \frac{\varphi(x) - \varphi(0)}{x} dx.$$

Последний интеграл от функции с единственным (устранимым) разрывом при x=0 существует.

Далее, линейность отображения $P\frac{1}{x}$ очевидна. Докажем его непрерывность в смысле (62). Пусть $\varphi_n \xrightarrow[n \to \infty]{D(\mathbb{R})} 0$. Значит, $\operatorname{supp} \varphi_n \subset [-b,b]$ при всех n, и $\max_{\xi \in [-b,b]} |\varphi_n'(\xi)| \xrightarrow[n \to \infty]{} 0$. Поэтому $\left(P\frac{1}{x}, \varphi_n(x)\right) = \int_{-b}^{b} \varphi_n'(\xi(x)) dx \xrightarrow[n \to \infty]{} 0$, что и означает выполнение свойства (62).

Покажем ещё, что функция $P\frac{1}{x}$ сингулярна. Предположим противное: найдётся $f \in L^{loc}(\mathbb{R})$ такая, что при всех $\phi \in D(\mathbb{R})$ выполнено

найдётся
$$f \in L^{loc}(\mathbb{R})$$
 такая, что при всех $\varphi \in D(\mathbb{R})$ выполнено $\left(P\frac{1}{x}, \varphi(x)\right) = \lim_{\epsilon \to +0} \int\limits_{\mathbb{R} \setminus (-\epsilon, \epsilon)} (1/x) \cdot \varphi(x) dx = \int\limits_{\mathbb{R}} f(x) \cdot \varphi(x) dx$. Следовательно, если $\sup p \varphi \subset \mathbb{R} \setminus \left(-\frac{1}{n}, \frac{1}{n}\right)$, то $\int\limits_{\mathbb{R}} (1/x) \cdot \varphi(x) dx = \int\limits_{\mathbb{R}} f(x) \cdot \varphi(x) dx$, или $\int\limits_{\mathbb{R}} \left(\left(\frac{1}{x}\right) - f(x)\right) \cdot \varphi(x) dx = 0$. То есть, $\left(\left(\frac{1}{x}\right) - f(x)\right) \cdot \varphi(x) = 0$ для любого $\varphi \in D(\mathbb{R} \setminus \left(-\frac{1}{n}, \frac{1}{n}\right))$. По теореме дю Буа-Реймона, $f(x) = 1/x$ почти везде на множестве $\mathbb{R} \setminus \left(-\frac{1}{n}, \frac{1}{n}\right)$. Так как n произвольно, то, добавляя ещё точку 0 , заключаем, что $f(x) = 1/x$ почти везде на \mathbb{R} . Но тогда $f \notin L^{loc}(\mathbb{R})$. Противоре-

Вернёмся к изучению операций с обобщёнными функциями.

Определение 7.3. Пусть G – область в \mathbb{R}^n . Функция a(x) называется *мультипликатором* на $S(\mathbb{R}^n)$ (на D(G)), если $a(x) \cdot \varphi(x) \in S(\mathbb{R}^n)$ для любой функции $\varphi \in S(\mathbb{R}^n)$. (Соответственно, если $a(x) \cdot \varphi(x) \in D(G)$ для любой функции $\varphi \in D(G)$). Множество всех мультипликаторов на $S(\mathbb{R}^n)$ (на D(G)) обозначим M(S) (соответственно, M(D)).

Очевидно следующее

чие.

Предложение 7.4. (a)
$$BC^{\infty}(\mathbb{R}^n) \subset M(S) \subset C^{\infty}(\mathbb{R}^n);$$
 (б) $M(D) = C^{\infty}(G)$.

Обобщённые функции тоже можно умножать на мультипликаторы.

Определение 7.5. Произведение обобщённой функции f (из $S'\Big(\mathbb{R}^n\Big)$ или из D'(G)) на мультипликатор a определяется формулой

$$(a(x)\cdot f(x), \varphi(x)) = (f(x), a(x)\cdot \varphi(x)). \tag{66}$$

Пример 7.6. (a)
$$x \cdot \delta(x) = 0$$
; (б) $x \cdot P \frac{1}{x} = 1$.

Доказательство – упражнение.

Следствие 7.7. На множестве обобщённых функций нельзя ввести операцию умножения, совпадающую с умножением обычных функций.

Доказательство. Обычная операция умножения функций ассоциативна. Следующие равенства показывают, что умножение обобщённых функций не может быть ассоциативным: $0 = 0 \cdot P \frac{1}{x} = (\delta(x) \cdot x) \cdot P \frac{1}{x} = \delta(x) \cdot (x \cdot P \frac{1}{x}) = \delta(x)$.

Пример 7.8. Покажем, что $M(S) \neq C^{\infty}(\mathbb{R})$. Рассмотрим бесконечно дифференцируемую функцию $a(x) = e^{x^2}$. Мы знаем, что $\phi(x) = e^{-x^2} \in S(\mathbb{R})$. Тогда $a(x) \cdot \phi(x) \equiv 1$, но $1 \notin S(\mathbb{R})$. Следовательно, $a(x) = e^{x^2}$ не является мультипликатором на $S(\mathbb{R})$. Значит, $M(S) \neq C^{\infty}(\mathbb{R})$.

Предложение 7.9. Пусть функция $a(x) \in C^{\infty}(\mathbb{R}^n)$ и для каждого мультииндекса α существует число $m(\alpha) \in \mathbb{N}$ такое, что $\left|a^{(\alpha)}(x)\right| \leq C \cdot \left(1 + \left|x\right|^{2 \cdot m(\alpha)}\right)$ при всех $x \in \mathbb{R}^n$. Тогда $a(x) \in M(S)$.

Доказательство. Проверим, что $a(x) \cdot \varphi(x) \in S\left(\mathbb{R}^n\right)$, если $\varphi(x) \in S\left(\mathbb{R}^n\right)$. Ясно, что функция $a(x) \cdot \varphi(x)$ бесконечно дифференцируема. Покажем, что она быстро убывает (см. определение 5.13). Заметим, что любая производная $\left(a(x) \cdot \varphi(x)\right)^{(\alpha)}$ равна сумме некоторого числа $k(\alpha)$ слагаемых вида $a^{(\beta)}(x) \cdot \varphi^{(\gamma)}(x)$, причём, по условию, $\left|a^{(\beta)}(x)\right| \leq C \cdot \left(1+\left|x\right|^{2\cdot m(\beta)}\right) = P_{\beta}(x)$. В итоге, если P(x) — некоторый многочлен, α — мультииндекс, то $\left|P(x) \cdot \left(a(x) \cdot \varphi(x)\right)^{(\alpha)}\right|$ не превышает конечной суммы слагаемых вида $\left|P(x) \cdot P_{\beta}(x) \cdot \varphi^{(\gamma)}(x)\right|$. Но $\varphi^{(\gamma)}(x) \in S\left(\mathbb{R}^n\right)$, поэтому существуют числа $A(\beta,\gamma) > 0$ такие, что если $\left|x\right| > A(\beta,\gamma)$, то $\left|P(x) \cdot P_{\beta}(x) \cdot \varphi^{(\gamma)}(x)\right| < \varepsilon / k(\alpha)$. Значит, взяв $A = \max_{|\beta|, |\gamma| \leq |\alpha|} A(\beta,\gamma)$, получим, что $\left|P(x) \cdot \left(a(x) \cdot \varphi(x)\right)^{(\alpha)}\right| < \varepsilon$ при $\left|x\right| > A$.

Предложение 7.10. Пусть a(x) – как в предложении 7.9. Тогда отображение $T: S(\mathbb{R}^n) \to S(\mathbb{R}^n)$, $T\varphi(x) = a(x) \cdot \varphi(x)$ – линейно и непрерывно.

Доказательство очевидно.

- 1) Почему $\delta(x) = \delta(-x)$?
- 2) Чем отличается интеграл от его главного значения?
- 3) Почему $\varphi'(\xi(x))$ измеримая функция?
- 4) Почему, всё-таки, f(x) = 1/x почти везде на \mathbb{R} ?
- 5) Что такое $BC^{\infty}(\mathbb{R}^n)$?
- 6) Почему $C \cdot \left(1 + \left|x\right|^{m(\beta)}\right) \le P_{\beta}\left(x\right)$, где $P_{\beta}\left(x\right)$ многочлен?