$Coordenadas\ polares$

Definição

Um sistema de coordenadas polares no plano é definido por um ponto $O \in \mathbb{R}^2$ e uma semirreta com origem no ponto O. O ponto diz-se polo e a semirreta diz-se eixo polar.

Considerado um sistema de coordenadas polares

$Coordenadas\ polares$

A cada ponto P podemos associar um par de coordenadas polares (r,θ) , sendo r a distância do ponto P ao polo O e θ o ângulo que a semirreta $\dot{O}P$ faz com o eixo polar. r e θ dizem-se coordenadas radial e polar de P, respetivamente. Se P coincide com o polo, $(0,\theta)$ são coordenadas polares de P para qualquer valor de θ .

Observação

A coordenada radial toma valores não negativos $0 \le r < \infty$.

• Vamos considerar $r \in [0, +\infty[$ e $\theta \in [0, 2\pi]$.

$Coordenadas\ cartesianas$ - $Coordenadas\ polares$

Dado um sistema de coordenadas polares podemos traçar um sistema de coordenadas cartesianas tomando como origem o polo e como semieixo positivo dos x o eixo polar. Assim qualquer ponto P do espaço pode ser descrito em coordenadas cartesianas (x,y) e em coordenadas polares (r,θ) .

$Coordenadas\ cartesianas$ - $Coordenadas\ polares$

As coordenadas (x, y) e (r, θ) do ponto P têm a seguinte relação:

$$\begin{cases} x = r \cos \theta, \\ y = r \sin \theta. \end{cases}$$

Esta relação permite obter diretamente as coordenadas cartesianas (x, y) sabendo as coordenadas polares (r, θ) . Se forem dadas as coordenadas cartesianas e quisermos calcular as coordenadas polares é mais conveniente usar as relações:

$$\begin{cases} r = \sqrt{x^2 + y^2}, \\ \operatorname{tg} \theta = \frac{y}{x}, \quad x \neq 0. \end{cases}$$

$Coordenadas\ polares$ - Exemplos

Exemplo

considere o ponto P com coordenadas cartesianas $(\sqrt{3},1)$. Determine as coordenadas polares de P.

Resolução:

P pertence ao 1° quadrante.
$$r = \sqrt{4} = 2$$
 e $\operatorname{tg}(\theta) = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$ portanto $\theta = \frac{\pi}{6}$. As coordenadas polares de *P* são $(2, \frac{\pi}{6})$

Coordenadas polares - Exemplos

Exemplos

considere os seguintes subconjuntos de \mathbb{R}^2 definidos em coordenadas cartesianas e caracterize-os usando coordenadas polares.

(a) $A = \{(x,y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} = 2\}$ Resolução: A condição $\sqrt{x^2 + y^2} = 2$ corresponde, em coordenadas polares, a r = 2. Então

$$A = \{(x, y) = (r\cos\theta, r\sin\theta): r = 2 \land \theta \in [0, 2\pi]\}.$$

Coordenadas polares - Exemplos

(b)
$$B = \{(x,y) \in \mathbb{R}^2 : y = \sqrt{3}x\}$$

Resolução:
 $y = \sqrt{3}x$, então $\frac{y}{x} = \sqrt{3}$, $x \neq 0$. Obtemos $\operatorname{tg}\theta = \sqrt{3}$, que é equivalente a $\theta = \frac{\pi}{3} \lor \theta = \frac{\pi}{3} + \pi$.
A condição $y = \sqrt{3}x$ corresponde, em coordenadas polares, a $\theta = \frac{\pi}{3} \lor \theta = \frac{4\pi}{3}$ e r arbitrário. Notar que $(0, \frac{\pi}{3})$ e $(0, \frac{4\pi}{3})$ são coordenadas polares da origem.

$$B = \left\{ (x, y) = (r \cos \theta, r \sin \theta) : r \in [0, +\infty[\land (\theta = \frac{\pi}{3} \lor \theta = \frac{4\pi}{3})] \right\}.$$

Coordenas polares - Exemplos

(c)
$$B = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le x\}$$

Resolução:

A condição $0 \le y \le x$ corresponde, em coordenadas polares, a $0 \le \theta \le \frac{\pi}{4}$ (fazer um esboço geométrico). Então

$$C = \{(x,y) = (r\cos\theta, r\sin\theta) : r \in [0, +\infty[\land 0 \le \theta \le \frac{\pi}{4}]\}.$$

Coordenas polares - Exemplos

(d)
$$C = \{(x,y) \in \mathbb{R}^2 : 2 \le x^2 + y^2 \le 3 \land x \le 0\}$$

Resolução:
A condição $2 \le x^2 + y^2 \le 3$ corresponde, em coordenadas polares, a $\sqrt{2} \le r \le \sqrt{3}$. A condição $x \le 0$ corresponde, em coordenadas polares, a $\frac{\pi}{2} \le \theta \le \frac{3\pi}{2}$. Então $D = \{(x,y) = (r\cos\theta, r\sin\theta) : \sqrt{2} \le r \le \sqrt{3} \land \frac{\pi}{2} \le \theta \le \frac{3\pi}{2}\}$.

Coordenadas cilíndricas

- Para localizar um ponto P em \mathbb{R}^3 normalmente usamos as coordenadas cartesianas ou retangulares (x, y, z).
- As coordenadas cilíndricas de um ponto P com coordenadas cartesianas (x, y, z) são (r, θ, z) sendo (r, θ) as coordenadas polares no plano z = 0 do ponto (x, y, 0).

Coordenadas cilíndricas

Coordenadas cartesianas - Coordenadas cilíndricas

As coordenadas (x, y, z) e (r, θ, z) de um ponto P têm a seguinte relação:

$$\begin{cases} x = r \cos \theta, \\ y = r \sin \theta, \\ z = z. \end{cases}$$

Esta relação permite obter diretamente as coordenadas cartesianas (x, y, z) através das coordenadas cilíndricas (r, θ, z) . Se forem dadas as coordenadas cartesianas e quisermos calcular as coordenadas cilíndricas é mais conveniente usar as relações:

$$\begin{cases} r = \sqrt{x^2 + y^2}, \\ \operatorname{tg} \theta = \frac{y}{x}, \quad x \neq 0 \\ z = z. \end{cases}$$

Coordenadas cilíndricas - Exemplos

• $r \in [0, +\infty[$ e $\theta \in [0, 2\pi]$ e $z \in]-\infty, +\infty[$.

Exemplo

Considere o ponto P com coordenadas cartesianas (-6, -6, 8). Determine as coordenadas cilíndricas de P.

Resolução:

A projeção de P no plano z=0 é $\tilde{P}=(-6,-6,0)$. $r=\sqrt{(-6)^2+(-6)^2}=6\sqrt{2},\ \mathrm{tg}(\theta)=\frac{-6}{-6}=1\ \mathrm{e}\ \tilde{P}$ pertence ao 3° quadrante no plano z=0, portanto $\theta=\frac{5\pi}{4}$. As coordenadas cilíndricas de P são $(6\sqrt{2},\frac{5\pi}{4},8)$.

Coordenadas cilíndricas

Coordenadas cilíndricas - Exemplos

Exemplos

Considere os seguintes subconjuntos de \mathbb{R}^3 definidos em coordenadas cartesianas e caracterize-os usando coordenadas cilíndricas.

(a)
$$A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 4 \land -1 \le z \le 1\}$$

Resolução:

A projeção do conjunto A no plano z=0 é $\tilde{A}=\{(x,y,0)\in\mathbb{R}^3: x^2+y^2\leq 4\}$. A condição $x^2+y^2\leq 4$ corresponde, em coordenadas polares, a $0\leq r\leq 2$. Assim $\tilde{A}=\{(x,y,0)=(r\cos\theta,r\sin\theta,0): r\leq 2\land 0\leq \theta\leq 2\pi\}$. Então

$$A = \{(x, y, z) = (r\cos\theta, r\sin\theta, z) : 0 \le r \le 2 \land 0 \le \theta \le 2\pi \land -1 \le z \le 1\}.$$

Coordenadas cilíndricas - Exemplos

(b)
$$B = \{(x, y, z) \in \mathbb{R}^3 : 1 \le x^2 + y^2 \le 4 \land |z| \le 1 \land y \ge 0\}$$

Resolução:

A projeção do conjunto B no plano z=0 é $\tilde{B}=\{(x,y,0)\in\mathbb{R}^3:1\leq x^2+y^2\leq 4 \land y\geq 0\}$. A condição $1\leq x^2+y^2\leq 4$ corresponde, em coordenadas polares, a $1\leq r\leq 2$. A condição $y\geq 0$ em coordenadas polares escreve-se $0\leq \theta\leq \pi$. Assim

$$\tilde{B} = \{(x, y, 0) = (r\cos\theta, r \sin\theta, 0) : 1 \le r \le 2 \land 0 \le \theta \le \pi\}.$$

Então

$$B = \{(x, y, z) = (r\cos\theta, r\sin\theta, z) : 1 \le r \le 2 \land 0 \le \theta \le \pi \land -1 < z < 1\}.$$

Coordenadas cilíndricas

Em coordenadas cilíndricas:

- A equação $r = r_0$, $r_0 > 0$ define uma superfície cilíndrica.
- A equação $\theta = \theta_0$ define um semiplano.
- A equação $z = z_0$ define um plano horizontal.

Coordenadas esféricas

Seja P um ponto em \mathbb{R}^3 com coordenadas cartesianas (x, y, z). As coordenadas esféricas de P são (ρ, θ, φ) onde

- ρ é a distância de P à origem O = (0,0,0),
- θ e o ângulo que a semirreta $\dot{O}\tilde{P}$ faz com o semieixo positivo dos x, sendo \tilde{P} a projeção de P no plano z=0,
- φ e o ângulo que a semirreta $\dot{O}P$ faz com o semieixo positivo dos z.

As coordenadas esféricas são apropriadas para descrever subconjuntos com uma forma esférica.

•
$$\rho \in [0, +\infty[$$
 e $\theta \in [0, 2\pi]$ e $\varphi \in [0, \pi]$.

Coordenadas esféricas

Coordenadas cartesianas - Coordenadas esféricas

As coordenadas (x, y, z) e (ρ, θ, φ) de em ponto P têm a seguinte relação:

$$\begin{cases} x = \rho \sec \varphi \cos \theta, \\ y = \rho \sec \varphi \sec \theta, \\ z = \rho \cos \varphi. \end{cases}$$

Esta relação permite obter diretamente as coordenadas cartesianas (x, y, z) através das coordenadas esféricas (ρ, θ, φ) . Se forem dadas as coordenadas cartesianas e quisermos calcular as coordenadas esféricas é mais conveniente usar as relações:

$$\begin{cases} \rho = \sqrt{x^2 + y^2 + z^2}, \\ \operatorname{tg} \theta = \frac{y}{x}, \quad x \neq 0 \\ \rho \cos \varphi = z. \end{cases}$$

Coordenadas esféricas

Coordenadas esféricas - Exemplos

Exemplos

Considere os seguintes subconjuntos de \mathbb{R}^3 definidos em coordenadas cartesianas e caracterize-os usando coordenadas esféricas.

(a)
$$A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4\}$$

Resolução:

$$A = \{(x, y, z) = (\rho \sec \varphi \cos \theta, \rho \sec \varphi \sec \theta, \rho \cos \varphi) : \\ \rho = 2 \land 0 \le \theta \le 2\pi \land 0 \le \varphi \le \pi\}.$$

Coordenadas esféricas - Exemplos

Exemplos

Considere os seguintes subconjuntos de \mathbb{R}^3 definidos em coordenadas cartesianas e caracterize-os usando coordenadas esféricas.

(b)
$$B = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 2 \land z \ge 0\}$$

Resolução:

$$B = \{(x, y, z) = (\rho \operatorname{sen} \varphi \operatorname{cos} \theta, \rho \operatorname{sen} \varphi \operatorname{sen} \theta, \rho \operatorname{cos} \varphi) : 0 \le \rho \le \sqrt{2} \wedge 0 \le \theta \le 2\pi \wedge 0 \le \varphi \le \frac{\pi}{2} \}.$$

Coordenadas esféricas - Exemplos

Exemplos

Considere os seguintes subconjuntos de \mathbb{R}^3 definidos em coordenadas cartesianas e caracterize-os usando coordenadas esféricas.

(c)
$$C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 2 \land y \ge 0\}$$

Resolução:

$$C = \{(x, y, z) = (\rho \operatorname{sen}\varphi \cos \theta, \rho \operatorname{sen}\varphi \operatorname{sen}\theta, \rho \cos \varphi) : 0 \le \rho \le \sqrt{2} \land 0 \le \theta \le \pi \land 0 \le \varphi \le \pi\}.$$

Coordenadas esféricas

Em coordenadas esféricas:

- A equação $\rho=\rho_0$, $\rho_0>0$ define uma superfície esférica de raio ρ_0 .
- A equação $\theta = \theta_0$ define um semiplano.
- A equação $\varphi = \varphi_0, \ \varphi_0 > 0$ define uma folha de uma superfície cónica.

