

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICA

Profesor: Gregorio Moreno – Estudiante: Benjamín Mateluna

Teoría de Integración - MAT2534 Tarea 3 06 de junio de 2025

Problema 1

a) Sea t>0, notemos que $e^{-tx^2}< e^{-tx}$ para x>1, es positiva y continua, luego

$$I = \int_0^\infty e^{-tx^2} dx = \int_{(0,\infty)} e^{-tx^2} d\lambda(x)$$

entonces

$$\begin{split} I^2 &= \left(\int_{(0,\infty)} e^{-tx^2} d\lambda(x) \right) \left(\int_{(0,\infty)} e^{-ty^2} d\lambda(y) \right) = \int_{(0,\infty)} e^{-ty^2} \left(\int_{(0,\infty)} e^{-tx^2} d\lambda(x) \right) d\lambda(y) \\ &= \int_{(0,\infty)} \left(\int_{(0,\infty)} e^{-t(x^2 + y^2)} d\lambda(x) \right) d\lambda(y) \end{split}$$

Como la función $e^{-t(x^2+y^2)}$ es continua y positiva, por tonelli, vemos que

$$I^{2} = \int_{(0,\infty)^{2}} e^{-t(x^{2}+y^{2})} (\lambda \otimes \lambda) dx dy$$

Consideremos el cambio de variables $x = rcos(\theta)$ y $y = rsen(\theta)$ con $r \in (0, \infty)$ y $\theta \in (0, \frac{\pi}{2})$ con determinante jacobiano igual a r, luego, por cambio de variables se sigue que

$$I^{2} = \int_{(0,\infty)^{2}} e^{-t(x^{2}+y^{2})} (\lambda \otimes \lambda) dx dy = \int_{\left(0,\frac{\pi}{2}\right)\times(0,\infty)} re^{-tr^{2}} (\lambda \otimes \lambda) d\theta dr$$

por tonelli, vemos que

$$I^{2} = \int_{\left(0, \frac{\pi}{2}\right)} \left(\int_{(0, \infty)} re^{-tr^{2}} dr \right) d\theta = \int_{0}^{\frac{\pi}{2}} \left(\int_{0}^{\infty} re^{-tr^{2}} dr \right) d\theta = \frac{\pi}{2} \int_{0}^{\infty} re^{-tr^{2}} dr$$

donde la segunda igualdad se debe a la continuidad y positividad. Utlizando el cambio de variable $u=tr^2$, observamos que

$$\int_0^\infty r e^{-tr^2} dr = \frac{1}{2t} \int_0^\infty e^{-u} du = \frac{1}{2t} - e^{-u} \Big|_0^\infty = \frac{1}{2t} < \infty$$

De este modo,

$$I^2 = \frac{\pi}{4t}$$

concluimos que $g(t) = \frac{1}{2} \sqrt{\frac{\pi}{t}}$.

b) Consideremos la función $F(x,t)=e^{-x^2}cos(tx)$. Dado $t_0\in\mathbb{R}$ vemos que la función $F(x,t_0)$ es continua y por ende medible, además, $\frac{\partial f}{\partial t}$ existe para todo $(x,t)\in\mathbb{R}^2$. Para t=0 notamos que

$$f(0) = \int_0^\infty e^{-x^2} = \frac{\sqrt{\pi}}{2}$$

y por lo tanto f(x,0) es integrable. Por otro lado,

$$\left| \frac{\partial f}{\partial t}(x,t) \right| = \left| -xe^{-x^2} sen(tx) \right| \le |x| e^{-x^2} =: g$$

es claro que g es una función integrable, basta notar que su integral impropia es finita. Luego, la función f es diferenciable y como $|F(x,t)| \le e^{-x^2}$ se tiene que

$$f'(t) = \frac{d}{dt} \left(\int_0^\infty e^{-x^2} \cos(tx) dx \right) = \frac{d}{dt} \left(\int_{(0,\infty)} e^{-x^2} \cos(tx) d\lambda(x) \right) = \int_{(0,\infty)} \frac{\partial}{\partial t} \left(e^{-x^2} \cos(tx) \right) d\lambda(x)$$

$$= \int_{(0,\infty)} -xe^2 \sin(tx) d\lambda(x) = \int_0^\infty -xe^2 \sin(tx) dx$$

$$= \frac{e^{-x^2}}{2} \sin(tx) \Big|_{x=0}^{x=\infty} - \frac{t}{2} \int_0^\infty e^{-x^2} \cos(tx) dx = \frac{t}{2} f(t)$$

Tenemos una EDO de variables separables $f' = -\frac{t}{2}f$ con condición inicial $f(0) = \frac{\sqrt{\pi}}{2}$. Luego

$$\int \frac{df}{f} = \int -\frac{t}{2}dt$$

se sigue que

$$log(f) = -\frac{t^2}{4} + C$$
 entonces $f = e^{-\frac{t^2}{4} + C}$

evaluando en la condición inicial vemos que

$$f(t) = \frac{\sqrt{\pi}}{2}e^{-\frac{t^2}{4}}$$

para todo $t \in \mathbb{R}$.

c) Sean $0 < a < b < \infty$. Notemos que

$$\frac{e^{-ax} - e^{-bx}}{x} = \int_a^b e^{-tx} dt$$

La función e^{-tx} es continua y positiva, por tonelli vemos que

$$\int_{(0,\infty)\times(a,b)} e^{-tx} dt dx = \int_{(a,b)} \int_{(0,\infty)} e^{-tx} dx dt = \int_a^b \int_0^\infty e^{-tx} dx dt = \int_a^b \int_0^{-\infty} -\frac{e^u}{t} du dt$$

$$= \int_a^b -\frac{1}{t} e^u \Big|_0^{-\infty} dt = \int_a^b \frac{1}{t} dt = \log\left(\frac{b}{a}\right)$$

la segunda igualdad se debe a la continuidad y que la función e^{-tx} es positiva. Por otro lado tenemos que

$$\int_{(0,\infty)\times(a,b)} e^{-tx} dt dx = \int_{(0,\infty)} \int_{(a,b)} e^{-tx} dt dx = \int_0^\infty \int_a^b e^{-tx} dt dx = h(a,b)$$

Por lo tanto $h(a,b) = log(\frac{b}{a})$.

Problema 2

- a)
- b)

Problema 3

Problema 4

Problema 5

Sea $I = (c, d) \subseteq [a, b]$ un intervalo, como g es absolutamente continua, por TFC se sigue que

$$\lambda(g(I)) = \lambda((g(c), g(d))) = g(d) - g(c) = \int_{(c,d)} g' d\lambda$$

además utilizamos el hecho de que g es creciente y g(I) un intervalo. Sea $(I_n)_n$ intervalos disjuntos de a pares contenidos en [a,b], entonces como g es estrictamente creciente, en particular es inyectiva, se sigue que $g(I_n)$ son disjuntos de a pares. Notemos que

$$\lambda\left(g\left(\bigcup_{n\in\mathbb{N}}I_n\right)\right)=\lambda\left(\bigcup_{n\in\mathbb{N}}g(I_n)\right)=\sum_{n\in\mathbb{N}}\lambda(g(I_n))=\sum_{n\in\mathbb{N}}\int_{I_n}g'd\lambda=\int_{n\in\mathbb{N}}\mathbb{1}_ng'd\lambda=\int_{\bigcup_{n\in\mathbb{N}}}g'd\lambda$$

en donde para intercambiar la suma con la integral usamos teorema de convergencia dominada. Como todo abierto se puede escribir como unión numerable de intervalos abiertos disjuntos de a pares, lo anterior prueba el argumento para abiertos $U \subseteq [a, b]$.

Sea $G \in G_{\delta}$, luego existen $(U_n)_n$ abiertos de [a,b] tales que

$$G = \bigcap_{n \in \mathbb{N}} U_n$$

sin perdida de generalidad podemos suponer que estos abiertos estan encajonados. Como [a, b] es compacto entonces g([a, b]) es compacto, así

$$\lambda(g(G)) = \lambda\left(g\left(\bigcap_{n\in\mathbb{N}} U_n\right)\right) = \lambda\left(\bigcap_{n\in\mathbb{N}} g(U_n)\right) = \lim_{n\to\infty} \lambda(g(U_n)) = \lim_{n\to\infty} \int_{U_n} g'd\lambda = \int_G g'd\lambda$$

donde la última igualdad se debe al teorema de convergencia dominada, notando que $\mathbbm{1}_{U_n}$ converge a $\mathbbm{1}_G$. Sea $E \subseteq [a,b]$ medible, existe $G \in G_\delta$ tal que $\lambda(G \setminus E) = 0$ lo que implica que