# Осенний коллоквиум курса «Теория вероятностей»

ФКН НИУ ВШЭ, 2-й курс ОП ПМИ, 2-й модуль, 2016 учебный год

### Билет 1

Дискретное вероятностное пространство. Вероятностный алгоритм проверки на простоту. Универсальная хэш-функция.

## Дискретное вероятностное пространство

Рассмотрим некоторый эксперимент, все мыслимые исходы которого описываются конечным числом различных исходов  $\omega_1, ..., \omega_N$ . Несущественна природа этих исходов, важно лишь то, что их число N конечно.

**Определение 1.** Исходы  $\omega_1, ..., \omega_N$  будем называть элементарными событиями, а их совокупность

$$\Omega = \{\omega_1, ..., \omega_N\}.$$

(конечным) пространством элементарных событий или пространством исходов.

Замечание 1. Можно также называть  $\Omega$  множеством элементарных исходов. Именно так его называют в кратком конспекте лекций.

**Определение 2.** Все те подмножества  $A\subseteq \Omega$ , для которых по условиям эксперимента возможен ответ одного из двух типов: «исход  $\omega\in A$ » или «исход  $\omega\notin A$ », — будем называть *событиями*.

# Определение 3. Функцию

$$P: 2^{\Omega} \to [0,1],$$

удовлетворяющую следующим свойствам:

- (a)  $P(\Omega) = 1$ ,
- (b)  $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$  (правило суммы или аддитивность)

называют вероятностной мерой, а значение P(A) вероятностью события A.

Замечание 2. Вероятностная мера Р полностью определяется значениями  $P(\omega_1) = p_1, ..., P(\omega_N) = p_N.$ 

Следствие 1. Из определения вероятностной меры следует, что

- (a)  $p_{\omega} \geqslant 0$ ,
- (b)  $\sum_{\omega} p_{\omega} = 1$ ,
- (с) вероятность произвольного события А вычисляется по формуле

$$P(A) = \sum_{\omega \in A} p_{\omega}.$$

Определение 4. Если все элементарные исходы равновозможны, то полагаем, что

$$p_{\omega_1} = \dots = p_{\omega_n} = \frac{1}{n}.$$

Замечание 3. В случае, если все элементарные исходы равновозможны, вероятность события A равна отношению количества исходов из A к числу всех исходов в  $\Omega$ .

**Определение 5.** Дискретное вероятностное пространство — это пара из множества элементарных событий  $\Omega$  и определенной для него вероятностной мерой.

#### Вероятностный алгоритм проверки на простоту

Пусть дано некоторое натуральное число N>1. Мы хотим проверить, является ли это число простым. Можно перебирать все простые делители до  $\sqrt{N}$ , но это очень долго. Хотелось бы иметь быстрый способ проверки.

Если N — простое число, то по малой теореме Ферма для всякого натурального числа b такого, что (b,N)=1, число  $b^{N-1}-1$  делится на N. Следовательно, если для некоторого b, удовлетворяющего условию (b,N)=1, число  $b^{N-1}-1$  не делится на N, то N не является простым.

Пусть основание b мы выбираем случайно из множества  $\mathbb{Z}_N^*$ . Предположим, что существует такое основание, для которого N не проходит тест. Какова вероятность выбрать такое основание?

Предположим, что для  $a \in \mathbb{Z}_N^*$  число N не проходит тест.

Замечание 4.  $\mathbb{Z}_p^*$  - мультипликативная группа поля  $\mathbb{Z}_p$ , то есть группа, содержащая все ненулевые элементы из  $\mathbb{Z}_p$ , и операция в ней совпадает с операцией умножения в  $\mathbb{Z}_p$ .

Если N проходит тест для основания b, то для основания ab число N уже тест не проходит. В противном случае

$$(ab)^{N-1} \equiv 1 \pmod{N}, (b^{-1})^{N-1} \equiv 1 \pmod{N}.$$

Следовательно,

$$\begin{cases} a^{N-1} \equiv (b^{-1})^{N-1} (ab)^{N-1} \ (mod \ N), \\ (b^{-1})^{N-1} (ab)^{N-1} \equiv 1 \ (mod \ N), \end{cases} \Rightarrow a^{N-1} \equiv 1 \ (mod \ N),$$

что противоречит предположению. Таким образом, каждому основанию b, для которого N не проходит тест, можно сопоставить основание ab, для которого результат теста отрицательный. Значит, оснований, для которых N не проходит тест, не меньше оснований, для которых N проходит тест на простоту. Искомая вероятность не меньше  $\frac{1}{2}$ . Если независимым образом повторять выбор основания k раз, то вероятность выбрать основание, для которого данное число проходит тест, меньше  $\frac{1}{2^k}$ .

Замечание 5. Бывают числа, которые проходят тест для всех оснований b. Это числа Кармайкла, например 561.

Замечание 6. Докажем, что  $(b^{-1})^{N-1} \equiv 1 \pmod{N}$ .

Доказательство. Число  $b^{N-1}-1$  делится на N, так N проходит тест для основания b. А значит,

$$b^{N-1} \equiv 1 \pmod{N} \mid \cdot (b^{-1})^{N-1},$$
  
$$1 \equiv (b^{-1})^{N-1} \pmod{N}.$$

#### Универсальная хэш-функция

**Определение 6.** Пусть H - конечное множество хэш-функций, которые отображают пространство ключей U (|U|=n) в диапазон  $\{0,1,...,m-1\}$ . Такое множество называется *универсальным*, если для каждой пары ключей  $k,l\in U, (k\neq l)$ , количество хэш-функций  $h\in H$ , для которых h(k)=h(l) не превышает  $\frac{|H|}{m}$ .

Иными словами, при случайном выборе хэш-функции из множества H вероятность коллизии между двумя различными ключами k, l не превышает вероятности совпадения двух случайным образом выбранных хэш-значений из множества  $\{0,1,...,m-1\}$ , которая равна  $\frac{1}{m}$ . Далее будем считать, что  $U=\{0,1,...,n-1\}$ .

**Теорема 1.** Множество хэш-функций  $H_{p,m}=\{h_{a,b}:a\in\mathbb{Z}_p^*,b\in\mathbb{Z}_p\}$ , где

$$h_{a,b}(k) = ((ak+b) \mod p) \mod m,$$

 $\mathbb{Z}_p^* = \{1, 2, ..., p-1\}, \mathbb{Z}_p = \{0, 1, ..., p-1\}$ , p - простое число, p > n, является универсальным.

Доказательство. Рассмотрим  $k,l\in\mathbb{Z}_p:k\neq l$ . Пусть для данной хэш-функции  $h_{a,b}$ 

$$r = (ak + b) \bmod p,$$

$$s = (al + b) \bmod p.$$

Заметим, что  $r \neq s$ , так как  $r-s \equiv a(k-l) \pmod p$ , а p - простое число, a и (k-l) не равны нулю по модулю p, а значит и разность r и s также отлична от нуля по модулю p. Таким образом, коллизии "по модулю p" отсутствуют. Более того, каждая из p(p-1) возможных пар (a,b) приводит к различным  $(r,s): r \neq s$ . Чтобы доказать это, достаточно рассмотреть возможность однозначного определения a и b по заданным r и s:

$$a = ((r - s) \cdot (k - l)^{-1}) \mod p,$$
  
 $b = (r - ak) \mod p.$ 

(Доказательство приведено ниже, в Замечании под номером 7).

Поскольку имеется только p(p-1) возможных пар (r,s):  $r \neq s$ , то имеется взаимооднозначное соответствие между парами (a,b) и парами (r,s):  $r \neq s$ . Таким образом, для любых k,l при равномерном случайном выборе пары (a,b) из  $\mathbb{Z}_p^* \times \mathbb{Z}_p$  получаемая в результате пара (r,s) может быть с равной вероятностью любой из пар с отличающимися значениями по модулю p.

Отсюда следует, что вероятность того, что различные ключи k,l приводят к коллизии, равна вероятности того, что  $r\equiv s\pmod m$  при произвольном выборе отличающихся по модулю p значений r и s. Для данного r имеется p-1 возможное значение s. При этом число значений  $s:s\neq r$  и  $s\equiv r\pmod m$ , не превышает

$$\left\lceil \frac{p}{m} \right\rceil - 1 \leqslant \frac{p+m-1}{m} - 1 = \frac{p-1}{m}.$$

Вероятность того, что s приводит к коллизии с r при приведении по модулю m, не превышает  $\frac{p-1}{m} \cdot \frac{1}{p-1} = \frac{1}{m}$ . Значит,  $\forall k \neq l \in \mathbb{Z}_p$   $P(h_{a,b}(k) = h_{a,b}(l)) \leqslant \frac{1}{m}$ , что означает, что множество хэш-функций  $H_{p,m}$  является универсальным.

Замечание 7. Докажем, что  $a = ((r-s) \cdot (k-l)^{-1}) \mod p$ .

Доказательство.

$$r = (ak + b) \mod p,$$

$$s = (al + b) \mod p.$$

$$r - s = (a(k - l)) \mod p,$$

$$a \equiv (r - s) \cdot (k - l)^{-1} \pmod p$$

Так как  $a \in \mathbb{Z}_p$ , то верно равенство

$$a = ((r-s)\cdot (k-l)^{-1}) \ mod \ p$$

Докажем, что  $b = (r - ak) \mod p$ .

Доказательство. Достаточно вспомнить, что

$$\begin{cases} r = (ak + b) \mod p, \\ b \in \mathbb{Z}_p \end{cases}$$