I. Variations

On considère une quantité ayant une valeur y_1 , exprimée dans une unité de mesure. Cette quantité est modifiée et on lui affecte une nouvelle valeur y_2 , exprimée dans la même unité de mesure. Il y a donc une variation entre y_1 et y_2 .

A. Variation absolue

La variation absolue est définie par $y_2 - y_1$.

Si ce nombre est positif, on parlera d'une hausse ou d'une augmentation. Sinon, on parlera d'une baisse ou d'une diminution.

<u> Remarque</u>

La variation absolue est exprimée dans la même unité de mesure que la quantité.

Exemples • En Essonne: En 1 990, l'Essonne comptait 1 084 824 habitants. En 2 010, ont été comptabilisés 1 215 340 habitants.

La variation absolue est donc égale à : 1 $215\ 340-1\ 084\ 824=130\ 516$. Cette variation est positive donc la population en Essonne a augmenté de 130 516 habitants en 20 ans.

En France: En 1 990, la France comptait 58 040 660 habitants. En 2 010, ont été comptabilisés 64 612 940 habitants.

La variation absolue est donc égale à : $64\ 612\ 940-58\ 040\ 660=6\ 572\ 280$. Cette variation est positive donc la population en France a augmenté de $6\ 572\ 280$ habitants en $20\ ans$.

<u> Remarque</u>

Évidemment, la variation absolue du nombre d'habitants en France est plus importante que celle du nombre d'habitants en Essonne.

Comment peut-on alors comparer ces deux évolutions? En Essonne, l'évolution du nombre d'habitant correspond-elle à l'évolution du nombre d'habitants en France?

B. Variation relative

Bien comprendre le symbole % : Le symbole % correspond simplement à une écriture simplifiée d'une fraction ayant pour dénominateur 100.

Exemples •
$$7,5\% = \frac{7,5}{100} = 0,075$$
.
 $\frac{4}{10} = \frac{40}{100} = 40\%$.
 $0,0125 = \frac{1,25}{100} = 1,25\%$.

)<u>Remarques</u>

- La variation relative est souvent exprimé à l'aide de pourcentage afin de faciliter les comparaisons.
- Il est important de comprendre la signification de la variation relative afin d'éviter parfois certains calculs.

Exemples •

- Durant les soldes, un article coûte 10€. À la fin des soldes, l'article coûte 20€. Le prix a doublé : t = 100%.
- Dans une station service, le Sans Plomb 95 coûte 1,52 €. Le lendemain, le prix affiché est de 1,52 €. Le prix n'a pas changé donc : t = 0%.
- Ce matin, il y avait 60 croissants à la boulangerie. À midi, il en restait 30. Le nombre de croissants a diminué de moitié donc t = -50%.

)<u>Remarque</u>

Sauf indication contraire, on supposera jusqu'à la fin du cours que $y_1 \neq 0$.

Définition 2

La variation relative ou taux d'évolution t est calculée à partir de la formule suivante :

$$t = \frac{y_2 - y_1}{y_1}.$$

Une fois encore, un nombre positif indique une augmentation et un nombre négatif indique une diminution.

Exemples • En Essonne:
$$t = \frac{1215340 - 1084824}{1084824} = \frac{130516}{1084824} \approx 0,1203$$

Le taux d'évolution est donc environ égal à 0,120 3 : la population a augmenté d'environ 12,03%.

En France:
$$t = \frac{64\ 612\ 940 - 58\ 040\ 660}{58\ 040\ 660} = \frac{6\ 572\ 280}{58\ 040\ 660} \approx 0,113\ 2.$$

Le taux d'évolution est donc environ égal à 0,113 2 : la population a augmenté d'environ 11, 32%.

Conclusion: En Essonne, l'augmentation de population entre 1 990 et 2 010 a été légèrement plus importante qu'en France.

C. Lorsque l'on connaît le taux de variation

Un commerçant de meubles a vendu 125 chaises ce mois-ci. Son contrat stipule qu'il doit augmenter Exemple • ses ventes d'au moins 3% chaque mois.

Combien doit-il vendre de chaises le mois prochain?

On commence par calculer l'augmentation souhaitée en nombre de chaises :

3% de
$$125 = 3\% \times 125 = \frac{3}{100} \times 125 = \frac{3 \times 125}{100} = 3,75.$$

Le commerçant doit vendre 3,75 chaises au minimum c'est-à-dire 4 chaises.

On calcule le nombre total : 125+4=129. Le commerçant doit vendre au moins 129 chaises le mois prochain.

()Remarque

Bilan de l'exemple:

 y_1 correspond au nombre de chaises ce mois-ci. Donc $y_1 = 125$.

On cherche la valeur y_2 sachant que le taux de variation est égal à t = 3% = 0,03.

Pour trouver y_2 , on calcule 3% de y_1 en faisant $0,03 \times y_1$ puis on ajoute y_1 . On obtient alors :

$$y_2 = y_1 + 0.03y_1 = y_1(1+0.03) = (1+0.03)y_1.$$

On applique le raisonnement précédent à un taux de variation quelconque égal à t :

Propriété 1

Lorsque l'on passe de la valeur y_1 à la valeur y_2 avec une variation relative égale à t, on a :

$$y_2 = (1 + t) \times y_1$$
.

On peut démontrer la propriété précédente en utilisant la démarche de l'exemple. Utilisons plutôt la définition du taux de variation :

$$t = \frac{y_2 - y_1}{y_1} \quad \Leftrightarrow \quad t \times y_1 = y_2 - y_1 \quad \Leftrightarrow \quad t \times y_1 + y_1 = y_2 \quad \Leftrightarrow \quad (t+1) \times y_1 = y_2.$$

П

(P) Définition 3

Le nombre 1 + t est appelé **cœfficient multiplicateur** de y_1 à y_2 .

Le nombre 1 + t est appelé
Un cœfficient supérieur à 1
1, il n'y a pas de variation. Un cœfficient supérieur à 1 traduit une augmentation, inférieur à 1 une diminution. S'il est égal à

Exemple • Dans une usine, le coût de production c_1 d'un objet est égal à 2 530 \in . Afin d'augmenter les bénéfices, le gérant décide de diminuer le coût de production de 2%. Quel est alors le nouveau de coût de production c_2 ?

Puisqu'il s'agit d'une diminution, t = -2% = -0,02 donc :

$$c_2 = (1+t)c_1 = (1+(-0,02)) \times 2530 = 0,98 \times 2530 = 2479,40 \in$$

II. Taux d'évolution successifs

Exemple • Dans une commune, le maire décide d'augmenter les impôts locaux de 5%. Ses conseillers lui suggèrent d'y aller en douceur en augmentant les impôts seulement de 2% la première année puis de 3% la seconde année. Le maire doit-il suivre l'avis de ses conseillers?

Dans l'exemple précédent, la quantité (impôts) augmente de y₁ à y₂ puis de y₂ à y₃. On souhaite connaître le taux de variation t de y_1 à y_3 . Par définition, $t = \frac{y_3 - y_1}{y_3}$. Ici, on ne peut pas utiliser cette définition puisque les valeurs y_1 et y_3 sont inconnues. On a alors la propriété suivante :

Propriété 2

On considère une quantité qui évolue de y_1 à y_2 puis de y_2 à y_3 avec $y_2 \neq 0$. On appelle t_1 le taux d'évolution de y_1 à y_2 , t_2 le taux d'évolution de y_2 à y_3 . Le taux d'évolution global t permettant de passer de y₁ à y₃ est tel que :

$$1 + t = (1 + t_1)(1 + t_2).$$

)<u>Remarque</u>

Les valeurs t₁, t₂ et t peuvent évidemment être négatives.

⁾ <u>Démonstration</u>

On sait que $y_3 = (1 + t_2) \times y_2$ et $y_2 = (1 + t_1) \times y_1$. De plus, $y_3 = (1 + t)y_1$. Donc :

$$y_3 = (1 + t_2) \times y_2 = \underbrace{(1 + t_2) \times (1 + t_1)}_{=1+t} \times y_1.$$

Exemple • Calculons la véritable augmentation des impôts prévus par les conseillers :

$$1 + t = (1 + 0,02) \times (1 + 0,03) = 1,050 \text{ 6}.$$

L'augmentation sera alors de 5,06% au lieu de 5%.

III. Taux d'évolution réciproque

Exemple • Afin de faire des économies, un patron décide de baisser les salaires de 4%. Le mois suivant, les ouvriers entrent en grève pour retrouver leur ancien salaire. Le patron accepte et décide alors d'augmenter les salaires de 4% pour qu'ils retrouvent leur valeur d'origine. La grève doit-elle continuer?

Propriété 3

On considère une quantité de valeur $y_1 \neq 0$ qui passe à la valeur $y_2 \neq 0$ avec un taux égal à t. Afin de passer de y_2 à y_1 , il faut utiliser le coefficient t' tel que :

$$1+t'=\frac{1}{1+t}.$$

<u> Remarque</u>

 \S On rappelle que t et t' peuvent être négatifs. De plus, on a bien t $\neq -100\%$ puisque $y_2 \neq 0$.

Démonstration

On a les égalités suivantes : $y_2 = (1+t)y_1$ et $y_1 = (1+t')y_2$ d'où :

$$\begin{split} y_2 = (1+t)y_1 = (1+t)(1+t')y_2 & \Leftrightarrow & 1 = (1+t)(1+t') \quad (puisque \ y_2 \neq 0) \\ & \Leftrightarrow & 1+t' = \frac{1}{1+t} \quad (puisque \ t \neq -1). \end{split}$$

Exemple • Le taux appliqué par le patron est égal à (1-0,04)(1+0,04) = 0,998 4 soit 99,84% ce qui signifie qu'au final, les salaires ont baissé de 0,16%.

Il faut donc trouver le taux de variation réciproque t' sachant que t=-0,04 et que donc 1+t=0,96 :

$$1 + t' = \frac{1}{1 + t}$$
 \Leftrightarrow $1 + t' = \frac{1}{0.96}$ \Leftrightarrow $t' = \frac{1}{0.96} - 1 \approx 1.0417$ donc $t' \approx 4.17\%$