Лабораторна робота № 4.

Тема: Перевірка гіпотези про нормальний закон розподілу випадкової величини

Мета: навчитись перевіряти статичні гіпотези про нормальний закон розподілу випадкової величини.

Теоретичні відомості

Перевірку гіпотези здійснюємо за допомогою критерію хі-квадрат. Теоретичні частоти для нормального розподілу обчислюють за формулою:

$$p_i = \Phi(z_{i+1}) - \Phi(z_i),$$

де
$$z_i = \frac{x_i - \overline{x}_s}{\sigma^*}$$
, $z_{i+1} = \frac{x_{i+1} - \overline{x}_s}{\sigma^*}$, x_i , x_{i+1} — початок та кінець інтервалу в

інтервальному розподілі вибірки, $\Phi(z)$ — інтегральна функція Лапласа, значення якої наведено в таблицях (див. додаток, таблиця 2), \bar{x}_s, σ^* — точкові оцінки математичного сподівання і середньоквадратичного відхилення.

Завдання: задано інтервальний статистичний розподіл випадкової величини X — показник тестування продуктивності.

h=0,5	1,0-1,5	1,5-2,0	2,0-2,5	2,5-3,0	3,0-3,5	3,5-4,0	4,0-4,5
n_i	10	20	50	35	28	15	12

При рівнях значущості $\alpha = 0.01$ та $\alpha = 0.05$ перевірити правильність гіпотези про нормальний закон розподілу ознаки.

Хід роботи

Сформулюємо дві гіпотези:

- H_0 : розподіл показника тестування продуктивності ε нормальним.
- H_1 : розподіл показника тестування продуктивності не ε нормальним.
 - 1. Вводимо у комірку **A1** назву «**Розподіл показника тестування продуктивності**». Вводимо у комірку **A2** «**Показник**», а у комірку **A3** «**Частота**». Вводимо у комірку **B2:H3** дані таблиці. Називаємо робочий лист «**Результати**».
 - 2. Відкриваємо новий робочий лист, де введемо дані про показник тестування у дискретному вигляді: в комірки **A1:A170** вводимо середини інтервалів, а саме: в **A1:A10** 1,25; **A11:A30** 1,75; **A31:A80** 2,25; **A81:A115** 2,75; **A116:A143** 3,25; **A144:A158** 3,75;
 - **A159:A170** –4,25. Введення даних здійснюємо за допомогою маркера заповнення. Називаємо робочий лист «**Чернетка**».
 - 3. У робочому листі «**Результати**» вводимо заголовки стовпців таблиці, в якій будуть проводитись обчислення: $\mathbf{A5} \mathbf{Xi}$, $\mathbf{B5} \mathbf{Xi} + 1$, $\mathbf{C5} \mathbf{ni}$, $\mathbf{D5} \mathbf{Zi}$, $\mathbf{E5} \mathbf{Zi} + 1$, $\mathbf{F5} \Phi(\mathbf{Zi})$, $\mathbf{G5} \Phi(\mathbf{Zi} + 1)$, $\mathbf{H5} \mathbf{ni'}$, $\mathbf{I5} \mathbf{середн} \epsilon$, $\mathbf{J5} \sigma$.

4. Заповнюємо комірки A6:A12 числами, що відповідають початкам інтервалів, комірки B6:B12 — числами, що є кінцями інтервалів. У комірки C6:C12 вводимо відповідні частоти. Редагуємо формат комірок у числовий із двома знаками після коми. Для цього виділяємо необхідні комірки і правою клавішею миші викликаємо меню, в якому заходимо в Формат ячеек..., де вибираємо числовий формат і необхідну кількість знаків після коми (Рис. 4.1).

Рис. 4.1. Вибір числового формату комірок

- 5. Переходимо в робочий лист «**Чернетка**», в якому обчислюємо середнє значення (**СРЗНАЧ**) і середнє квадратичне відхилення (**СТАНДОТКЛОН**). Результати обчислень копіюємо в робочий лист «**Результати**» в комірки **Іб** та **Јб** відповідно.
- У робочому листі «Чернетка» будуємо гістограму і копіюємо її в робочий лист «Результати», розмістивши справа від таблиць (див. ЛР № 2).
- 7. Вводимо в комірку **A13** текст «**Всього показників тестування**» і в комірці **C13** за допомогою формули = **СУММ(C6:C12)** обчислюємо обсяг вибірки.
- 8. Редагуємо вміст комірок **A13:C13**, виконавши такі операції: виділяємо комірки, копіюємо їх вміст, викликаємо команду **Правка**
 - → Специальная вставка і ставимо позначку "•" на «Значения».

- 9. Вводимо у комірку **D6** формулу = (**A6 I\$6**)/**J\$6**, яку за допомогою маркера заповнення відображаємо на весь стовпець **D7:D12**.
- 10. Вводимо у комірку **E6** формулу = (**B6 I\$6**)/**J\$6**. Відображаємо за допомогою маркера заповнення цю формулу на весь стовпець **E7:E12**.
- 11. Вводимо у комірку **F6** формулу = **HOPMCTPACII(D6) 0,5** і відображаємо її на стовпець **F7:F12**.
- 12. Вводимо у комірку **G6** формулу **=HOPMCTPACП(E6) 0,5** і відображаємо її на весь стовпець **G7:G12**.
- 13. Вводимо в комірку **H6** формулу = \mathbb{C}13*(G6 F6)$ і відображаємо її на весь стовпець **H7:H12**.
- 14. Вводимо у комірки **A17 Точність**, **A18 Імовірність**, **A19 Розподіл**, **C17** 0,01, **D17** 0,05.
- 15. У комірці **C18** викликаємо формулу = **XИ2TECT(C6:C12;H6:H12)**
- 16. У комірці **C19** викликаємо формулу = **ECЛИ(C18>C17**; "**Hopm**"; "**He нopm**"). У комірці **D19** викликаємо формулу = **ECЛИ(D18>D17**; "**Hopm**"; "**He нopm**").
- 17. Проведемо обчислення іншим способом. Для цього відредагуємо вміст таблиці **A5:H12** командами **Правка** → **Специальная вставка** → **Значения.** Скопіюємо вміст стовпців **C5:C12** та **H5:H12** у комірки **A22:A29** та **B22:B29**. Введемо в **C22** текст «**хі-квадрат**», а в **A30** − «**Сума**».
- 18. Викличемо в **C23** формулу = (**A23 B23**)^2/**B23** і відобразимо її у комірки **C24**:**C29**.
- 19. Обчислимо в комірці **C30** суму =**CУММ(C23:C29).**
- 20. Вводимо у комірки **A32 Точність**, **A33 Свобода**, **A34 Хі-крит**, **A35 Розподіл**, **C32 0**,**01**, **D32 0**,**05**, **C33 4**, **D33 4**.
- 21. Обчислюємо критичну точку критерію хі-квадрат в комірці **C34** за формулою = **XИ2ОБР**(**C32**; **C33**) і відображаємо її вміст у комірку **D34**.
- 22. У комірці C35 викликаємо формулу = ECЛИ(C\$30>C34; "Не норм"; "Норм") і аналогічні дії виконуємо в комірці D35.

Рекомендації щодо оформлення звіту

Звіт повинен містити:

- титульний аркуш;
- найменування і мету роботи;
- відомості щодо виконання завдання;
- висновки по роботі.

Індивідуальні завдання №4

За даним статистичним розподілом вибірки потрібно висунути гіпотезу про закон розподілу ознаки генеральної сукупності та перевірити цю гіпотезу при рівнях значущості α =0,01 та α =0,05.

Ba	ріант	Ι.

	Buplani	•						
I	h=4	30-34	34-36	36-40	40-44	44-46	46-50	50-54
ĺ	n _i	7	10	16	25	10	8	6

Варіант 2.

r							
h=2	22-24	24-26	26-28	28-30	30-32	32-34	34-36
n_i	8	10	15	20	11	8	6

Варіант 3.

h=3	11-14	14-17	17-20	20-23	23-26	26-29	29-32
n_i	12	20	25	30	24	18	10

Варіант 4.

h=5	20-25	25-30	30-35	35-40	40-45	45-50	50-55
ni	10	15	25	29	23	18	11

Варіант 5.

F	•						
h=4	18-22	22-26	26-30	30-34	34-40	40-44	44-48
n _i	9	12	18	16	11	7	6

Варіант 6.

h=2	18-20	20-22	22-24	24-26	26-28	28-30	30-32
$n_{\rm i}$	7	10	14	18	15	11	8

Варіант 7.

Dupluii /	•						
h=3	15-18	18-21	21-24	24-27	27-30	30-33	33-36
n_i	8	14	16	18	15	13	10

Варіант 8.

h=2	120-122	122-124	124-126
n_i	7	10	15

126-128	128-130	130-132	132-134
21	14	11	9

Варіант 9.

h=5	130-135	135-140	140-145
n _i	11	16	20

145-150	150-155	155-160	160-165	
24	18	15	7	

Варіант 10.

zaprami i							
h=3	25-28	28-31	31-34	34-37	37-40	40-43	43-47
n _i	7	11	15	17	14	10	6

Варіант 11.

h=4	118-122	122-126	126-130
$n_{\rm i}$	13	23	29

130-134	134-138	138-142	142-146	
30	20	18	13	

Варіант 12.

1 2	00.00	00.04	0.4.0.5	0.5.00	00.100	100 100	100 101
h=2	90-92	92-94	94-96	96-98	98-100	100-102	102-104
ni	8	9	12	18	15	10	8

Варіант 13.

Bullian 13.								
	h=3	18-21	21-24	24-27	27-30	30-33	33-36	36-39
	ni	15	12	9	7	4	3	1

Варіант 14.

I	h=3	23-26	26-29	29-32	32-35	35-38	38-41	41-44
	n _i	10	15	21	24	20	15	11

Варіант 15.

h=3	80-83	83-86	86-89	89-92	92-95	95-98	98-101
ni	16	22	27	34	29	15	10

Варіант 16.

h=4	20-24	24-26	26-30	30-34	34-36	36-40	40-44
n_i	7	10	16	25	10	8	6

-	•	-		
LZ O	MIDIT		. 1	
1)a	ріант	- 1	-/	

Ī	h=2	12-14	14-16	16-18	18-20	20-22	22-24	24-26
	ni	8	10	15	20	11	8	6

Варіант 18.

Supium 10.								
	h=3	21-24	24-27	27-30	30-33	33-36	36-39	39-42
	n _i	12	20	25	30	24	18	10

Варіант 19.

h=5	30-35	35-40	40-45	45-50	50-55	55-60	60-65
n_i	10	15	25	29	23	18	11

Варіант 20.

1	h=4	8-12	12-16	16-20	20-24	24-30	30-34	34-38
	ni	9	12	18	16	11	7	6

Варіант 21.

ı	h=2	18-20	20-22	22-24	24-26	26-28	28-30	30-32
	ni	7	10	14	18	15	11	8

Варіант 22.

Ī	h=3	15-18	18-21	21-24	24-27	27-30	30-33	33-36
	n _i	18	24	26	28	15	13	10

Варіант 23.

Dupium 25.			
h=2	120-122	122-124	124-126
n_i	17	20	25

126-128	128-130	130-132	132-134
21	14	11	9

Варіант 24.

	h=5	30-35	35-40	40-45	45-50	50-55	55-60	60-65
ſ	n_i	11	16	20	24	18	15	7

Варіант 25.

Dupium 2							
h=3	25-28	28-31	31-34	34-37	37-40	40-43	43-47
ni	17	21	25	27	24	20	16

Варіант 26.

h=4	18-22	22-26	26-30	30-34	34-38	38-42	42-46
ni	13	23	29	30	20	18	13

Варіант 27.

h=2	90-92	92-94	94-96	96-98	98-100	100-102	102-104
n_i	18	19	20	28	25	15	10

Варіант 28.

h=3	18-21	21-24	24-27	27-30	30-33	33-36	36-39
n_i	15	12	9	7	4	3	1

Варіант 29.

h=3	23-26	26-29	29-32	32-35	35-38	38-41	41-44
ni	10	15	21	24	20	15	11

Варіант 30.

h=3	80-83	83-86	86-89	89-92	92-95	95-98	98-101
ni	16	22	27	34	29	15	10