Una finale olimpica della gara di tuffi dal trampolino di 3 metri vede la partecipazione di 12 atlete. Le atlete eseguono una serie di 6 tuffi ciascuna. Il punteggio di ciascun tuffo è determinato da un panel di 7 giudici. Per ogni tuffo, ogni giudice assegna un punteggio tra 0 e 10: il punteggio migliore e il punteggio peggiore vengono scartati ed il punteggio totale del singolo tuffo è calcolato come la somma dei restanti punteggi. Si noti che quando due o più voti equivalgono al minimo o al massimo, solo uno dei voti deve essere scartato. La somma dei punteggi totali dei singoli tuffi costituisce il punteggio finale per l'atleta.

La seguente tabella riporta, a titolo d'esempio, i punteggi ottenuti da 2 delle 12 atlete alla finale della gara di tuffi. Oltre ai punteggi assegnati dai giudici ai singoli tuffi (G1 - G7), vengono riportati il punteggio totale di ogni tuffo e il punteggio totale di ogni atleta. Per ogni tuffo, i punteggi scartati sono barrati.

Atleta	Tuffo	G1	G2	G3	G4	G5	G6	G7	Totale Tuffo	Totale Atleta
Tania Cagnotto	#1	7	6	1	6	5	4	2	23	
	#2	1	6	θ	9	5	7	2	21	152
	#3	1	Θ	0	10	7	5	7	20	
	#4	10	3	3	7	8	6	$\frac{2}{2}$	27	
	#5	Θ	10	0	3	10	9	4	26	
	#6	8	10	4	8	6	4	9	35	
Guo Jingjing	#1	9	8	2	2	9	6	2	27	
	#2	4	4	5	7	3	1	Θ	17	
	#3	5	4	8	4	3	5	3	21	154
	#4	8	Θ	9	1	6	9	0	24	
	#5	9	6	8	9	9	6	7	39	
	#6	8	5	5	4	2	8	4	26	

I punteggi grezzi (prima degli scarti) possono essere rappresentati in Python come una matrice (lista di liste) di dimensione 72×7 . Essa contiene i punteggi assegnati dai 7 giudici ai 6 tuffi delle 12 atlete. Il numero di righe della matrice è dunque dato dal numero di atlete (12) per il numero di tuffi per atleta (6). Con riferimento all'esempio precedente, la matrice contiene i seguenti valori (si riportano solo le prime due liste per brevità).

$$matrice_punteggi = [[7, 6, 1, 6, 5, 4, 2], [1, 6, 0, 9, 5, 7, 2], \ldots]$$

I nomi delle 12 atlete finaliste possono essere rappresentati in Python come una lista di stringhe. Con riferimento all'esempio precedente, la lista contiene i seguenti valori (si riportano solo le prime due stringhe per brevità).

Nello svolgimento dell'esercizio si assume che, per ogni atleta presente nella lista nomi_atlete, i punteggi dei suoi sei tuffi siano rappresentati da sei righe consecutive corrispondenti nella matrice matrice_punteggi, nell'ordine in cui compaiono. Ad esempio, i primi sei tuffi (prime sei righe della matrice) appartengono alla prima atleta, i successivi sei alla seconda, e così via.

- 1. Definire la funzione calcola_punteggio_tuffo
 - Parametri di ingresso:
 - lista_punteggi: una lista di interi.
 - Restituisce: un intero.
 - **Descrizione**: la funzione calcola e restituisce la somma della lista di interi fornita in input, escludendo dal calcolo il valore massimo e il valore minimo. Quando due o più valori equivalgono al minimo o al massimo, il corrispondente valore viene escluso solo una volta. Si noti che la lista fornita in ingresso non deve essere modificata.
 - Output atteso:
 - [7, 6, 1, 6, 5, 4, 2] \rightarrow 23 (1 e 7 sono esclusi)
 - $[1,6,0,9,5,7,2] \rightarrow 21$ (0 e 9 sono esclusi)
 - $-[9,8,2,2,9,6,2] \rightarrow 27$ (2 e 9 sono esclusi: per entrambi, viene esclusa solo una occorrenza)

- 2. Definire la funzione calcola_punteggi_atlete
 - Parametri di ingresso:
 - matrice_punteggi: lista di liste.
 - nomi_atlete: lista di stringhe.
 - Restituisce: un dizionario che associa una stringa (chiave) ad un intero (valore).
 - Descrizione: la funzione restituisce un dizionario associando a ciascuna stringa della lista nomi_atlete la somma dei risultati della applicazione della fuzione calcola_punteggio_tuffo sulle righe della matrice_punteggi, prese a gruppi di sei.
 - Output atteso: con riferimento all'esempio riportato nella pagina iniziale (si riportano solo le prime due coppie chiave-valore, per brevità):

```
{ ''Tania Cagnotto'': 152, ''Guo Jingjing'': 154, ... }
```

• Suggerimento: utilizzare la funzione calcola_punteggio_tuffo

- 3. Definire la funzione trova_giudice_severo
 - Parametri di ingresso:
 - matrice_punteggi: una lista di liste.
 - Restituisce: una tupla (intero, float).
 - **Descrizione**: la funzione calcola la media delle colonne della matrice fornita in input. Quindi, restituisce una tupla costituita dal valore medio minimo e il relativo indice della colonna.
 - Output atteso: si consideri a titolo di esempio la seguente matrice 2×3 :

7 6 1 1 6 0

la funzione restituisce (0.5, 2).

- 4. Infine, completare la funzione main in modo che svolga i seguenti compiti:
 - generi la matrice matrice punteggi di dimensioni 72×7 con valori interi casuali in [0, 10];
 - $\bullet \ \, {\rm ottenga} \ i \ punteggi\ complessivi \ delle \ \, at lete \ \, utilizzando \ \, la \ funzione \ \, {\tt calcola_punteggi_atlete}; \\$
 - stampi riga per riga i punteggi complessivi delle atlete, calcolati utilizzando la funzione calcola_punteggi_atlete, opportunamente formattati. Esempio di output atteso (si riportano solo le prime due righe per brevità):

```
\begin{array}{ll} {\tt Tania~Cagnotto} & 152 \\ {\tt Guo~Jingjing} & 154 \\ \end{array}
```

. . .

• stampi indice e voto medio del giudice più severo, ottenuti utilizzando la funzione trova_giudice_severo.

```
import random
def main():
   nomi_atlete = ["Tania Cagnotto", "Guo Jingjing", "Julija Pachalina", "Wu Minxia",
         "Blythe Hartley", "Anna Lindberg", "Sharleen Stratto", "Nancilea Foster",
         "Christina Loukas", "Laura Sánchez", "Olena Fedorova", "Nóra Barta"]
```