- Finde Extrema von $f(x_1,...,x_n)$ unter den Nebenbedingungen
 - $-N_1(x_1,...,x_n)=0$
 - ...
 - $-N_k(x_1,...,x_n)=0$
- Anzahl der Nebenbedingungen k ist beliebig
- grad f senkrecht auch Tangentialebene von A
 - $gradf \in span\{gradN_1, ..., gradN_p\}$
- Satz:
 - $M \subseteq \mathbb{R}^n$ offen
 - f (mind.) 1x stetig diffbar
 - Extremum x_0 unter NB $N_1(x) = ... = N_k(x) = 0 ==> \exists \lambda$ für jede NB
 - $-\ grad(f(x_0)) \lambda_1 grad(N_1)(x_0) \ldots \lambda_k grad(N_k)(x_0) = 0$
 - $* gradf = \lambda gradN$
- ullet Vorgehensweise
 - in obige Formel einsetzen
 - eine Gleichung für jede Variable nach der abgeleitet wird
 - Determinante der Koeffizientenmatrix mit 0 gleichsetzen
 - * λ bestimmen
 - $-\lambda$ in Gleichung einsetzen und Variablenwerte bestimmen
 - * ==> mögliche Extrema
 - * Satz von Weierstraß ==> Min und Max muss existieren
 - * Min und Max durch logische Vergleiche bestimmen?
- Anschauliches Beispiel

 $[[{\bf Mehr dimensionale\ Differential rechnung}]]$