# Chapter 5 Steady-State Sinusoidal Analysis

# 5.1 Sinusoidal Currents and Voltages

A sinusoidal voltage





$$\omega$$
 Angular frequency (角頻率, rad/sec)

 $T$  Period (週期)

 $\omega T = 2\pi$ 

Figure 5.1 A sinusoidal voltage waveform given by 
$$v(t) = V_m \cos(\omega t + \theta)$$
. Note: Assuming that  $\theta$  is in degrees, we have  $t_{\max} = \frac{-\theta}{360} \times T$ . For the waveform shown,  $\theta$  is  $-45^{\circ}$ .

$$\omega = 2\pi f = \frac{2\pi}{T}$$

 $V_m$  is the **peak value** 

 $\omega$  is the **angular frequency** in radians per second

 $\theta$  is the phase angle (0°~360°)

T is the **period** 

Frequency 
$$f = \frac{1}{T}$$

Angular frequency 
$$\omega = \frac{2\pi}{T} = 2\pi f$$

$$\omega t + \theta$$

Radians Degree  $(0\sim2\pi)$   $(0^{\circ}\sim360^{\circ})$ 

For uniformity, we express sinusoidal functions by cosine function.

$$\implies \sin(z) = \cos(z - 90^\circ)$$

Ex

$$v_x(t) = 10\sin(200t + 30^\circ) = 10\cos(200t + 30^\circ - 90^\circ)$$
  
=  $10\cos(200t - 60^\circ)$ 

## Root-Mean-Square (均方根)Values

$$V_{\rm rms} = \sqrt{\frac{1}{T}} \int_{0}^{T} v^2(t) dt$$

$$I_{\rm rms} = \sqrt{\frac{1}{T}} \int_{0}^{T} i^{2}(t) dt$$

## Root-Mean-Square (均方根)Values

假設電壓源(v(t))週期為T,與電阻連接,計算其平均功率  $P_{avo}$ 

$$p(t) = \frac{v^{2}(t)}{R}$$

$$E_{T} = \int_{0}^{T} p(t)dt$$

$$P_{avg} = \frac{E_{T}}{T} = \frac{1}{T} \int_{0}^{T} p(t)dt = \frac{1}{T} \int_{0}^{T} \frac{v^{2}(t)}{R} dt = \frac{\left[\sqrt{\frac{1}{T} \int_{0}^{T} v^{2}(t)dt}\right]^{2}}{R}$$

$$P_{avg} = \frac{V_{rms}^2}{R} = I_{rms}^2 R$$

## RMS Value of a Sinusoid

$$v(t) = V_m \cos(\omega t + \theta)$$

$$V_{rms} = \sqrt{\frac{1}{T}} \int_0^T V_m^2 \cos^2(\omega t + \theta) dt$$

$$\therefore \quad \cos^2(z) = \frac{1}{2} + \frac{1}{2}\cos(2z)$$

$$V_{rms} = \sqrt{\frac{V_m^2}{2T}} \int_0^T \left[ 1 + \cos(2\omega t + 2\theta) \right] dt$$

## RMS Value of a Sinusoid

$$V_{rms} = \sqrt{\frac{V_m^2}{2T}} \left[ t + \frac{1}{2\omega} \sin(2\omega t + 2\theta) \right]_0^T$$

$$V_{rms} = \sqrt{\frac{V_m^2}{2T}} \left[ T + \frac{1}{2\omega} \sin(2\omega T + 2\theta) - \frac{1}{2\omega} \sin(2\theta) \right]$$

$$\omega = \frac{2\pi}{T}$$

$$\omega = \frac{2\pi}{T}$$

$$\frac{1}{2\omega}\sin(2\omega T + 2\theta) - \frac{1}{2\omega}\sin(2\theta) = \frac{1}{2\omega}\sin(4\pi + 2\theta) - \frac{1}{2\omega}\sin(2\theta)$$

$$= \frac{1}{2\omega}\sin(2\theta) - \frac{1}{2\omega}\sin(2\theta)$$

$$= 0$$

$$V_{rms} = \frac{V_m}{\sqrt{2}}$$

### RMS Value of a Sinusoid

$$V_{\rm rms} = \frac{V_m}{\sqrt{2}}$$

The rms value for a sinusoid is the peak value divided by the square root of two. This is not true for other periodic waveforms such as square waves or triangular waves.

# Example 5.1 Power delivered to a resistance by a sinusoidal source

- •A voltage  $v(t) = 100\cos(100\pi t)$  is applied to a 50- $\Omega$  resistance. Find
- •the rms value of the voltage.
- •Find the average power delivered to the resistance.
- •Find the power as a function of time and sketch to scale.

1. 
$$\omega = 100\pi = \frac{2\pi}{T}$$
  $\longrightarrow$   $T = \frac{2\pi}{100\pi} = 20ms$ 



Example 5.1 Power delivered to a resistance by a sinusoidal source

#### 2. The rms value of the voltage

$$V_m = 100V \longrightarrow V_{rms} = \frac{V_m}{\sqrt{2}} = 70.71 \text{ V}$$

#### 3. The average power

$$P_{avg} = \frac{V_{rms}^2}{R} = \frac{(70.71)^2}{50} = 100W$$

Example 5.1 Power delivered to a resistance by a sinusoidal source

#### 4. The power as a function of time is

$$p(t) = \frac{v^2(t)}{R} = \frac{100^2 \cos^2(100\pi t)}{50} = 200 \cos^2(100\pi t)W$$



## 5.2 Phasors (相量)

Refer to Appendix A Complex Numbers

#### **Phasor Definition**

•Phasor 以複數(complex numbers)來表示 sinusoidal voltages or currents. Ex.

Phasor: 
$$\mathbf{V} = V_m \angle \theta$$

- •Magnitude (V<sub>1</sub>) 代表最大振福(peak value).
- •Angle  $(\theta_1)$ 代表相位(phase).

#### A sinusoidal cosine voltage

$$v_1(t) = V_1 \cos(\omega t + \theta_1)$$
 (Time function, 時間函數)

其 phasor 為

Phasor: 
$$\mathbf{V}_1 = V_1 \times \theta_1$$

#### A sinusoidal sine voltage

$$v_2(t) = V_2 \sin(\omega t + \theta_2)$$

$$\sin(z) = \cos(z - 90^\circ)$$

$$v_2(t) = V_2 \cos(\omega t + \theta_2 - 90^\circ)$$

$$\nabla_2 = V_2 \angle \theta_2 - 90^\circ$$

#### For sinusoidal currents

$$i_1 = I_1 \cos(\omega t + \theta_1)$$

phasor  $I_1 = I_1 \angle \theta_1$ 
 $i_2 = I_2 \sin(\omega t + \theta_2)$ 

phasor  $I_2 = I_2 \angle \theta_2 - 90^\circ$ 

# Adding Sinusoids Using Phasors

Step 1: Determine the phasor for each term.

Step 2: Add the phasors using complex arithmetic.

Step 3: Convert the sum to polar form.

Step 4: Write the result as a time function.

## **Using Phasors to Add Sinusoids**

$$v_1(t) = 20\cos(\omega t - 45^\circ)$$
$$v_2(t) = 10\sin(\omega t + 60^\circ)$$

To find  $v_s(t) = v_1(t) + v_2(t)$ .

#### 1. The phasors

$$V_1 = 20 \angle -45^{\circ}$$
  $V_2 = 10 \angle -30^{\circ}$ 

#### 2. Complex arithmetic

$$\mathbf{V}_{1} = x_{1} + jy_{1} = 20\cos(-45^{\circ}) + j20\sin(-45^{\circ}) = 14.14 - j14.14$$

$$\mathbf{V}_{2} = x_{2} + jy_{2} = 10\cos(-30^{\circ}) + j10\sin(-30^{\circ}) = 8.66 - j5$$

$$\mathbf{V}_{3} = 14.14 - j14.14 + 8.660 - j5 = 22.80 - j19.14$$

## **Using Phasors to Add Sinusoids**

#### 3. Convert the sum to polar form

$$V_s = 22.80 - j19.14$$

$$V_m = \sqrt{(22.80)^2 + (19.14)^2} = 29.77$$

$$\theta = \arctan(\frac{-19.14}{29.77}) = -40.01^{\circ}$$

$$V_s = 29.77 \angle -40.01^{\circ}$$

$$v_s(t) = 29.77\cos(\omega t - 40.01^{\circ})$$

# Using Euler's formula to Add Sinusoids

$$v_{1}(t) = 20\cos(\omega t - 45^{\circ}) = 20\operatorname{Re}(e^{j(wt - 45^{\circ})})$$

$$v_{2}(t) = 10\sin(\omega t + 60^{\circ}) = 10\cos(wt - 30^{\circ}) = 10\operatorname{Re}(e^{j(wt - 30^{\circ})})$$

$$v_{3}(t) = v_{1}(t) + v_{2}(t) = \operatorname{Re}\left[(20e^{-j45^{\circ}} + 10e^{-j30^{\circ}})e^{jwt}\right]$$

$$20e^{-j45^{\circ}} + 10e^{-j30^{\circ}} = 29.77 \angle -40.01^{\circ} = 29.77e^{-j40.01}$$

$$v_s(t) = \text{Re}\left[29.77e^{-j40.01}e^{jwt}\right] = 29.77\cos(wt - 40.11^\circ)$$

### Visualization of Sinusoids

A sinusoidal voltage 
$$v(t) = V_m \cos(\omega t + \theta)$$

Exponential form 
$$v(t) = \text{Re}[V_m e^{j(\omega t + \theta)}]$$

Complex Polar form 
$$V_m e^{j(\omega t + \theta)} = V_m \angle \omega t + \theta$$

•Sinusoids 可視為複數向量(complex vectors) 隨時間改變在實數軸的投影量。

$$V_m e^{j(\omega t + \theta)} = V_m \angle \omega t + \theta$$

可視為Vector with length  $V_m$ 以  $\omega$  rad/s 角速度 (angular velocity) 在複數平面以逆時針 (counterclockwise) 方向旋轉。

v(t)為 $V_m e^{j(\omega t + \theta)}$ 在實數軸的投影量。

v(t) 的Phasor  $V_m \angle \theta$  為  $V_m e^{j(\omega t + \theta)}$  在 t = 0 時的向量。



## Phasors as Rotating Vectors

- •Sinusoids can be visualized as the realaxis projection of vectors rotating in the complex plane.
- •The phasor for a sinusoid is a snapshot of the corresponding rotating vector at *t* = 0.

## Phase Relationships from Phasors

- 1. To determine phase relationships from a phasor diagram, consider the phasors to rotate counterclockwise.
- 2. Then when standing at a fixed point, if  $V_1$  arrives first followed by  $V_2$  after a rotation of  $\theta$ , we say that  $V_1$  leads  $V_2$  by  $\theta$ .
- 3. Alternatively, we could say that  $V_2$  lags  $V_1$  by  $\theta$ . (Usually, we take  $\theta$  as the smaller angle between the two phasors.)

## Phase Relationships from Phasors

 $V_1$  leads  $V_2$  by  $60^\circ$  .



Figure 5.5 Because the vectors rotate counterclockwise,  $v_1$  leads  $v_2$  by  $60^\circ$  (or, equivalently,  $v_2$  lags  $v_1$  by  $60^\circ$ .)

# Phase Relationships from Time Functions

To determine phase relationships between sinusoids from their plots versus time, 1.find the shortest time interval  $t_p$  between positive peaks of the two waveforms.

- 2. Then, the phase angle is
  - $\theta = (t_p/T) \times 360^{\circ}$ .
- 3.If the peak of  $v_1(t)$  occurs first, we say that  $v_1(t)$  leads  $v_2(t)$  or that  $v_2(t)$  lags  $v_1(t)$ .

 $v_1(t)$  leads  $v_2(t)$  by  $\theta$  (60°).

$$\theta = (t_p/T) \times 360^{\circ}$$
.



#### Exercise 5.5

$$v_1(t) = 10\cos(\omega t - 30^\circ)$$

$$v_2(t) = 10\cos(\omega t + 30^\circ)$$

$$v_3(t) = 10\sin(\omega t + 45^\circ)$$

State the phase relationship between each pair of voltages.

The phasors are  $V_1 = 10 \angle -30^\circ$   $V_2 = 10 \angle +30^\circ$  and  $V_3 = 10 \angle -45^\circ$ 



и lags и by 60° (or we could say и leads и by 60°)

и leads и<u>з by 15° (or we could say</u> из lags и by 15°)

vz leads vz by 75° (or we could say vz lags vz by 75°)

# 5.3 COMPLEX IMPEDANCES (複數阻抗)

### Inductance

假設通過電感L的 sinusoidal current 為

$$i_L(t) = I_m \sin(\omega t + \theta)$$

則電感L兩端的voltage為

$$v_L(t) = L \frac{di_L(t)}{dt} = \omega L I_m \cos(\omega t + \theta)$$
 ( † \*\text{\$\sigma} \sinusoid)

### Inductance

#### Voltage & current 的 phasors 為

$$I_L = I_m \angle \theta - 90^\circ$$

$$V_L = \omega L I_m \angle \theta = V_m \angle \theta$$



#### Current lags the voltage by 90°

(a) Phasor diagram



(b) Current and voltage versus time

#### Ohm's Law

$$V = IR$$

What is the relationship between phaor vltage and phasor current? Does it be similar to Ohm's law?

$$I_{L} = I_{m} \angle \theta - 90^{\circ}$$

$$V_{L} = \omega L I_{m} \angle \theta = (\omega L \angle 90^{\circ}) \times I_{m} \angle \theta - 90^{\circ}$$

$$= (\omega L \angle 90^{\circ}) \times I_{L} = j\omega L \times I_{L}$$

$$(\because \omega L \angle 90^{\circ} = \omega L (\cos 90^{\circ} + j \sin 90^{\circ}))$$

$$\Rightarrow Z_{L} = j\omega L = \omega L \angle 90^{\circ}$$
稱為L的阻抗(impedance)

$$V_L = Z_L \times I_L$$

Phasor voltage = impedance ×phasor current (similar to Ohm's law)

Note the impedance of an inductance is an imaginary number 虚數 (called reactance). Resistance is a real number.

## Capacitance

假設通過電容C的 sinusoidal voltage為

$$v_c(t) = V_m \cos(\omega t + \theta)$$

則電容C兩端的current為

$$i_c(t) = C \frac{dv_c(t)}{dt} = -\omega C V_m \sin(\omega t + \theta)$$

$$V_C = V_m \angle \theta$$

$$I_c = -\omega C V_m \angle \theta - 90^\circ = \omega C V_m \angle \theta - 90^\circ + 180^\circ$$
$$= \omega C V_m \angle \theta + 90^\circ = I_m \angle \theta + 90^\circ$$

$$-1 = \cos(180^{\circ})$$

## Capacitance

$$Z_{c} = \frac{V_{c}}{I_{c}} = \frac{V_{m} \angle \theta}{\omega C V_{m} \angle \theta + 90^{\circ}} = \frac{1}{\omega C} \angle -90^{\circ}$$

$$(=-j\frac{1}{\omega C} = \frac{1}{j\omega C})$$

$$V_C = V_m \angle \theta$$

$$I_C = \omega C V_m \angle \theta + 90^\circ$$

Current leads the voltage by 90°

## Capacitance



Figure 5.8 Current leads voltage by  $90^{\circ}$  in a pure capacitance.

### Resistance

$$V_R = RI_R$$

The current and voltage are in phase. (同相位)



Figure 5.9 For a pure resistance, current and voltage are in phase.

## Current leads voltage by 90° 電容阻抗 $\mathbf{V}_C = V_M / \theta$ $\mathbf{I}_C = I_M \underline{/\theta + 90^\circ}$ Current lags voltage by 90° 電感阻抗 $Z_L = j\omega L$ Current and voltage are in phase $Z_R = R$ 電阻

# 5.4 Circuit Analysis with Phasors and Complex Impedances

## Kirchhoff's Laws in Phasor Form

We can apply KVL directly to phasors. The sum of the phasor voltages equals zero for any closed path.

KCL-The sum of the phasor currents entering a node must equal the sum of the phasor currents leaving.

# **Circuit Analysis Using Phasors and Impedances**

- 1. Replace the time descriptions of the voltage and current sources with the corresponding phasors. (All of the sources must have the same frequency.)
- 2. Replace inductances by their complex impedances  $Z_L = j\omega L$ . Replace capacitances by their complex impedances  $Z_C = 1/(j\omega C)$  or  $-j(1/\omega C)$ . Resistances have impedances equal to their resistances.

3. Analyze the circuit using any of the techniques studied earlier in Chapter 2, performing the calculations with complex arithmetic.

### Example 5.4 Steady-state AC Analysis of a Series Circuit



### 1. Phasors

$$V_{s} = 100 \angle 30^{\circ}$$



### 2. Complex impedances

$$\begin{split} Z_L &= j\omega L = j500 \times 0.3 = j150\Omega \\ Z_C &= -j\frac{1}{\omega C} = -j\frac{1}{500 \times 40 \times 10^{-6}} = -j50\Omega \\ Z_{eq} &= R + Z_L + Z_C = 100 + j150 - j50 = 100 + j100 \\ &= 141.4 \angle 45^\circ \qquad (\sqrt{100^2 + 100^2} \angle \arctan \frac{100}{100}) \end{split}$$



### 3. Circuit Analysis

$$I = \frac{V_S}{Z_{eq}} = \frac{100 \angle 30^{\circ}}{141.4 \angle 45^{\circ}} = \frac{100}{141.4} \angle (30^{\circ} - 45^{\circ}) = 0.707 \angle -15^{\circ}$$

$$i(t) = 0.707 \cos(500t - 15^{\circ})$$



### 3. Circuit Analysis

$$V_R = R \times I = 100 \times 0.707 \angle -15^\circ = 70.7 \angle -15^\circ$$

$$V_L = j\omega L \times I = \omega L \angle 90^\circ \times I = 150 \angle 90^\circ \times 0.707 \angle -15^\circ$$

$$=106.1\angle 75^{\circ}$$

$$V_C = -j\frac{1}{\omega C} \times I = \frac{1}{\omega C} \angle -90^{\circ} \times I = 50 \angle -90^{\circ} \times 0.707 \angle -15^{\circ}$$

$$=35.4\angle -105^{\circ}$$

Note 
$$j = \angle 90^{\circ}, -j = \angle -90^{\circ}$$



**Figure 5.13** Phasor diagram for Example 5.4.

Example 5.5 Series and Parallel Combinations of Complex Impedances.



### 1. Phasors

$$V_{s} = 10 \angle -90^{\circ}$$



### 2. Complex impedances

$$Z_{L} = j\omega L = j1000 \times 0.1 = j100\Omega$$

$$Z_{C} = -j\frac{1}{\omega C} = -j\frac{1}{1000 \times 10 \times 10^{-6}} = -j100\Omega$$

$$Z_{RC} = \frac{1}{1/R + 1/Z_{C}} = \frac{1}{1/100 + 1/(-j100)} = \frac{1}{0.01 + j0.01}$$

$$= \frac{1\angle 0^{\circ}}{0.01414\angle 45^{\circ}} = 70.71\angle -45^{\circ} = 70.71(\cos -45^{\circ} + j\sin -45^{\circ}) = 50 - j50$$

$$\text{Or } \frac{1}{0.01 + j0.01} = \frac{1}{0.01 + j0.01} \begin{bmatrix} 0.01 - j0.01 \\ 0.01 - j0.01 \end{bmatrix} = 50 - j50$$

$$= \sqrt{50^{2} + 50^{2}} \angle \arctan \frac{-50}{50} = 70.71\angle -45^{\circ}$$



### 3. Circuit Analysis

$$\begin{split} V_C &= V_s \, \frac{Z_{RC}}{Z_L + Z_{RC}} = 10 \angle -90^\circ \, \frac{70.71 \angle -45^\circ}{j100 + 50 - j50} \\ &= 10 \angle -90^\circ \, \frac{70.71 \angle -45^\circ}{50 + j50} = 10 \angle -90^\circ \, \frac{70.71 \angle -45^\circ}{70.71 \angle 45^\circ} \\ &= 10 \angle -180^\circ \\ v_C(t) &= 10\cos(1000t - 180^\circ) = -10\cos(1000t) \end{split}$$



$$I = \frac{V_s}{Z_L + Z_{RC}} = \frac{10\angle -90^{\circ}}{j100 + 50 - j50} = \frac{10\angle -90^{\circ}}{50 + j50} = \frac{10\angle -90^{\circ}}{70.71\angle 45^{\circ}} = 0.1414\angle -135^{\circ}$$

$$I_R = \frac{V_C}{R} = \frac{10\angle -180^{\circ}}{100} = 0.1\angle -180^{\circ}$$

$$I_C = \frac{V_C}{Z_C} = \frac{10\angle -180^\circ}{-i100} = \frac{10\angle -180^\circ}{100\angle -90^\circ} = 0.1\angle -90^\circ$$



### Example 5.6 Steady-State AC Node-Voltage Analysis



### 1. Phasors

$$2\sin(100t) = 2\angle -90^{\circ}$$
$$1.5\cos(100t) = 1.5\angle 0^{\circ}$$

### 2. Complex impedances

$$jwL = j100 \times 0.1 = j10$$

$$-j\frac{1}{wc} = -j\frac{1}{100 \times 2000 \times 10^{-6}} = -j$$





### 3. Circuit Analysis

KCL Node 1 
$$\frac{V_1}{10} + \frac{V_1 - V_2}{-j5} = 2\angle -90^{\circ}$$

KCL Node 2 
$$\frac{V_2}{j10} + \frac{V_2 - V_1}{-j5} = 1.5 \angle 0^{\circ}$$

$$(0.1+j0.2)V_1 - j0.2V_2 = -j2 \quad \because \quad \frac{1}{-j5} = \frac{1}{-j5} \cdot \frac{j}{j} = j0.2$$

$$\frac{1}{-j5} = \frac{1}{-j5} \cdot \frac{j}{j} = j0.2$$

$$-j0.2V_1 + j0.1V_2 = 1.5$$



$$(0.1 - j0.2)V_1 = 3 - j2$$



$$V_{1} = \frac{3 - j2}{0.1 - j0.2} = \frac{3 - j2}{0.1 - j0.2} \cdot \frac{0.1 + j0.2}{0.1 + j0.2}$$
$$= \frac{0.7 + j0.4}{0.05} = 14 + j8 = 16.1 \angle 29.7^{\circ}$$

$$\sim v_1(t) = 16.1\cos(100t + 29.7^{\circ})$$

## 5.5 Power in AC Circuits



 | Z| / (2)
 阻抗有實數(電阻)或虚數(電感,電容), 電感,電容), 功率有無實虚?

A voltage source delivering power to a load impedance Z = R + jX.

$$Z = R + jX = |Z| \angle \theta$$

$$I = \frac{V}{Z} = \frac{V_m}{|Z|} \angle -\theta = I_m \angle -\theta$$

$$I_m = \frac{V_m}{|Z|}$$

# 1. If X=0 → 實阻抗(純電阻) $v(t) = V_m \cos(\omega t)$ $i(t) = I_m \cos(\omega t)$ $p(t) = v(t)i(t) = V_m I_m \cos^2(\omega t)$ $p_{avg} > 0$ i(t)實功率 (real power)

Figure 5.20 Current, voltage, and power versus time for a purely resistive load.

### 1. If X=0 → 實阻抗(純電阻)

$$P_{avg} = \frac{V_{rms}^2}{R} = I_{rms}^2 R$$

$$P_{avg}^2 = \frac{V_{rms}^2}{R} \cdot I_{rms}^2 R = V_{rms}^2 \cdot I_{rms}^2$$

$$P_{avg} = V_{rms} \cdot I_{rms} = \frac{V_m}{\sqrt{2}} \cdot \frac{I_m}{\sqrt{2}} = \frac{V_m I_m}{2}$$

$$V_{rms} = \frac{V_m}{\sqrt{2}}$$

### 2. If R=0, X>0 → 虚阻抗(電感性)

$$v(t) = V_m \cos(\omega t)$$

$$i(t) = I_m \cos(\omega t - 90^\circ) = I_m \sin(\omega t)$$

$$p(t) = v(t)i(t) = V_m I_m \cos(\omega t) \sin(\omega t) = \frac{V_m I_m}{2} \sin(2\omega t)$$

$$p(t) = 0$$

→ 虚功率 or 無效功率 (Reactive power)





### 3. If R=0, X<0 → 虚阻抗(電容性)

$$v(t) = V_m \cos(\omega t)$$

$$i(t) = I_m \cos(\omega t + 90^\circ) = -I_m \sin(\omega t)$$

$$Z = jX,$$

$$\theta = -90^\circ$$

$$p(t) = v(t)i(t) = -V_m I_m \cos(\omega t) \sin(\omega t) = -\frac{V_m I_m}{2} \sin(2\omega t)$$

## (Reactive power)





## Power for a General Load

一般狀況 R≠0且X≠0, RLC 電路 (有實與虛阻抗)

$$v(t) = V_m \cos(\omega t)$$

$$Z = R + jX, -90^{\circ} < \theta < 90^{\circ}$$

$$i(t) = I_m \cos(\omega t - \theta)$$

$$p(t) = V_m I_m \cos(\omega t) \cos(\omega t - \theta)$$

$$= V_m I_m \cos(\theta) \cos^2(\omega t) + V_m I_m \sin(\theta) \cos(\omega t) \sin(\omega t)$$

$$(\because \cos(\omega t - \theta) = \cos(\theta)\cos(\omega t) + \sin(\theta)\sin(\omega t))$$

$$= \frac{V_m I_m}{2} \cos(\theta) [1 + \cos(2\omega t)] + \frac{V_m I_m}{2} \sin(\theta) \sin(2\omega t)$$

$$(::\cos^2(\omega t) = \frac{1}{2}(1 + \cos(2\omega t), \quad \cos(\omega t)\sin(\omega t) = \frac{1}{2}\sin(2\omega t))$$

$$P_{avg} = \frac{1}{T} \int_0^T p(t) dt$$

$$= \frac{1}{T} \int_0^T \frac{V_m I_m}{2} \cos(\theta) [1 + \cos(2wt)] + \frac{V_m I_m}{2} \sin(\theta) \sin(2wt) dt$$
 積分為0

$$=\frac{V_m I_m}{2}\cos(\theta)$$

$$V_{\text{rms}} = \frac{V_m}{\sqrt{2}}, I_{\text{rms}} = \frac{I_m}{\sqrt{2}}$$

$$P_{avg} = V_{rms}I_{rms}\cos(\theta)$$

$$P_{avg} = P = V_{rms}I_{rms}\cos(\theta)$$
 為real power (有效功律or 實功率) 單位為W

 $\cos(\theta)$  為power factor, PF (功率因子)

$$\theta = \theta_v - \theta_i$$
 為power angle (功率角)代表電流lags電壓的角度

 $V_{rms}I_{rms}$  為apparent power (視出功律) 單位為VA(volt-amperes)

 $Q = V_{rm}I_{rms}\sin(\theta)$  為reactive power (無效功律or 虚功率),單位為 VAR (volt amperes reactive)



Power triangles for inductive and capacitive loads.

## **AC Power Calculations**

$$P = V_{
m rms} I_{
m rms} \cos( heta)$$
 (W)
 ${
m PF} = \cos( heta)$ 
 $heta = heta_v - heta_i$ 
 $Q = V_{
m rms} I_{
m rms} \sin( heta)$  (VAR)
 $V_{
m rms} I_{
m rms} = \sqrt{P^2 + Q^2}$  (VA)

$$\sqrt{P^2 + Q^2} = V_{\rm rms} I_{\rm rms} \qquad (VA)$$

$$P = I_{\rm rms}^2 R \tag{W}$$

$$Q = I_{\rm rms}^2 X \tag{VAR}$$

$$P = I_{\rm rms}^2 R$$

**Proof:** 

$$\cos(\theta) = \frac{R}{|Z|}$$
Figure 5.23 The load impedance in the complex plane.

$$P = I_{rms}V_{rms}\cos\theta = I_{rms}\frac{V_m}{\sqrt{2}}R = I_{rms}\frac{I_m}{\sqrt{2}}$$

$$V_{rms} = \frac{V_m}{\sqrt{2}}$$

$$I = \frac{V}{Z}, I_m = \frac{V_m}{|Z|}$$

$$Q = I_{rms}^2 X$$

**Proof:** 

$$Q = I_{rms} V_{rms} \sin \theta = I_{rms} \frac{V_m}{\sqrt{2}} \frac{X}{|Z|} = I_{rms} \frac{I_m}{\sqrt{2}} X = I_{rms}^2 X$$

# Appendix A Complex Numbers

# Basic Complex-Number Concepts

- Complex numbers involve the imaginary number(虚 數)  $j = \sqrt{-1}$
- Z=x+jy has a **real part** (實部) x and an **imaginary part** (虛部) y, we can represent complex numbers by points in the **complex plane** (複數平面)
- The complex numbers of the form x+jy are in rectangular form (直角座標)



- The complex conjugate (共軛複數) of a number in rectangular form is obtained by changing the sign of the imaginary part.
- For example if  $Z_2 = 3 j4$  then the complex conjugate of  $Z_2$  is

$$Z_2^* = 3 + j4$$

 $j^2 = -1$ 

# Example A.1 Complex Arithmetic in Rectangular Form

Given that  $Z_1 = 5 + j5$  and  $Z_2 = 3 - j4$ , reduce  $Z_1 - Z_2$ ,  $Z_1 Z_2$ ,  $Z_1 Z_2$  to rectangular form

#### • Solution:

For the sum, we have

$$Z_1 + Z_2 = (5 + j5) + (3-j4) = 8 + j1$$

The difference is

$$Z_1 - Z_2 = (5 + j5) - (3 - j4) = 2 + j9$$

# Example A.1 Complex Arithmetic in Rectangular Form

For the product, we get

$$Z_1 Z_2 = (5 + j5)(3-j4)$$
  
=  $15-j20 + j15-j^2 20$   
=  $15 - j20 + j15 + 20$   
=  $35 - j5$ 

To divide the numbers, we obtain

$$\frac{Z_1}{Z_2} = \frac{5+j5}{3-j4}$$

We can reduce this expression to rectangula r form by multiplyin g the numberator and denominato r by the complex conjugate of the denominato r

$$\frac{Z_1}{Z_2} = \frac{5+j5}{3-j4} \times \frac{Z_2^*}{Z_2^*}$$

$$= \frac{5+j5}{3-j4} \times \frac{3+j4}{3+j4}$$

$$= \frac{15+j20+j15+j^220}{9-j12-j12-j^216}$$

$$= \frac{15+j20+j15-20}{9+j12-j12+16}$$

$$= \frac{-5+j35}{25}$$

$$= -0.2+j1.4$$

# Complex Numbers in Polar Form(

# 極座標)

Complex numbers can be expressed in polar form (極座標).
 Examples of complex numbers in polar form are:

$$Z_3 = 5 \angle 30^{\circ}$$
 and  $Z_4 = 10 \angle -45^{\circ}$ 

The length of the arrow that represents a complex number Z is denoted as |Z| and is called the **magnitude**(幅值 or 大小) of the complex number.



• Using the magnitude |Z|, the real part x, and the imaginary part y form a right triangle (直角三角形).



• Using trigonometry, we can write the following relationships:

$$|Z|^2 = x^2 + y^2$$
 (A.1)

$$\tan(\theta) = \frac{y}{x} \qquad (A.2)$$

$$x = |Z| \cos(\theta)$$
 (A.3)

$$y = |Z| \sin(\theta)$$
 (A.4)

These equations can be used to convert numbers from polar to rectangular form.

## Example A.2 Polar-to Rectangular Conversion

Convert  $Z_3 = 5\angle 30^\circ$  to rectangula r form

#### Solution:

Using Equation A.3 and A.4 (pre. page) =>

$$x = |Z| \cos(\theta) = 5 \cos(30^{\circ}) = 4.33$$

$$y = |Z| \sin(\theta) = 5 \sin(30^{\circ}) = 2.5$$

$$\therefore Z_3 = 5 \angle 30^\circ = x + jy = 4.33 + j2.5$$

## Example A.3 Rectangular-to-Polar Conversion

Convert 
$$Z_5 = 10 + j5$$
 and  $Z_6 = -10 + j5$  to polar form.

#### Solution:

First, using Equation A.1 to find the magnitudes of each of the numbers

$$|Z_5| = \sqrt{x_5^2 + y_5^2} = \sqrt{10^2 + 5^2} = 11.18$$
  
 $|Z_6| = \sqrt{x_6^2 + y_6^2} = \sqrt{(-10)^2 + 5^2} = 11.18$ 



Figure A.4

To find the angles, we use Equation A.2.

For 
$$Z_5$$

$$\tan(\theta_5) = \frac{y_5}{x_5} = \frac{5}{10} = 0.5$$

$$\theta_5 = \arctan(0.5) = 26.57^{\circ}$$
  $\theta_6 = 180 + \arctan(\frac{y_6}{y_6})$ 

$$\therefore Z_5 = 10 + j5$$
  
= 11.18\(\angle 26.57^\circ\)

### For $Z_6$

$$\tan(\theta_5) = \frac{y_5}{x_5} = \frac{5}{10} = 0.5$$
  $\tan(\theta_6) = \frac{y_6}{x_6} = \frac{5}{-10} = -0.5$ 

$$\theta_6 = 180 + \arctan(\frac{y_6}{x_6})$$

$$=180-26.57=153.43^{\circ}$$

$$Z_6 = 10 + j5$$
  
= 11.18\(\angle 153.43^\circ\)

• The procedures that we have illustrated in Examples A.2 and A.3 can be carried out with a relatively simple calculator. However, if we find the angle by taking the arctangent of y/x, we must consider the fact that the principal value of the arctangent is the true angle only if the real part x is positive. If x is negative,

we have:

$$\theta = \arctan(\frac{y}{x}) \pm 180^{\circ}$$

### Euler's Identities

• The connection between sinusoidal signals and complex number is through Euler's identities, which state that

$$\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2}$$
 and  $\sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j}$ 

Another form of these identities is

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)^{\text{and}}$$
  $e^{-j\theta} = \cos(\theta) - j\sin(\theta)$ 

•  $e^{j\theta}$  is a complex number having a real part of  $\cos(\theta)$  and an imaginary part of  $\sin(\theta)$ 



• The magnitude is

$$|e^{j\theta}| = \sqrt{\cos^2(\theta) + \sin^2(\theta)} = 1$$

• The angle of  $e^{j\theta}$  is  $\theta$ 

$$e^{j\theta} = 1\angle \theta = \cos(\theta) + j\sin(\theta)$$
$$e^{-j\theta} = 1\angle -\theta = \cos(\theta) - j\sin(\theta)$$

- A complex number such as  $A \angle \theta$  can be written as  $A \angle \theta = A \times (1 \angle \theta) = Ae^{j\theta} = A\cos(\theta) + jA\sin(\theta)$
- We call  $Ae^{j\theta}$  the exponential form (指數形式)of a complex number.

- Given complex number can be written in three forms:
  - The rectangular form
  - The polar form
  - Exponential form

# Example A.4 Exponential Form of a Complex Number

Express the complex number  $Z = 10 \angle 60^{\circ}$  in exponentia 1 and rectangula r forms. Sketch the number in the complex plane

### • Solution:

$$Z = 10 \angle 60^{\circ} = 10e^{j60^{\circ}}$$

$$Z = 10 \times (e^{j60^{\circ}}) = 10 \times [\cos(60^{\circ}) + j\sin(60^{\circ})] = 5 + j8.66$$



# Arithmetic Operations in Polar and Exponential Form

• To add (or subtract) complex numbers, we must first convert them to rectangular form. Then, we add (or subtract) real part to real part and imaginary to imaginary.

• Two complex numbers in exponential form:

$$Z_1 = |Z_1|e^{j\theta_1}$$
 and  $Z_2 = |Z_2|e^{j\theta_2}$ 

• The polar forms of these numbers are

$$Z_1 = |Z_1| \angle \theta_1$$
 and  $Z_2 = |Z_2| \angle \theta_2$ 

• For multiplication of numbers in exponential form, we have  $Z_1 \times Z_2 = |Z_1|e^{j\theta_1} \times |Z_2|e^{j\theta_2} = |Z_1||Z_2|e^{j(\theta_1+\theta_2)}$ 

• In polar form, this is  $Z_1 \times Z_2 = |Z_1| \angle \theta_1 \times |Z_2| \angle \theta_2 = |Z_1| |Z_2| \angle \theta_1 + \theta_2$ Proof:

$$\begin{split} &Z_1 \times Z_2 = \big| Z_1 \big| (\cos \theta_1 + j \sin \theta_1) \times \big| Z_2 \big| (\cos \theta_2 + j \sin \theta_2) \\ &= \big| Z_1 \big\| Z_2 \big| (\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 + j (\sin \theta_1 \cos \theta_2 + \sin \theta_2 \cos \theta_1)) \\ &= \big| Z_1 \big\| Z_2 \big| (\cos(\theta_1 + \theta_2) + j \sin(\theta_1 + \theta_2)) \\ &( \begin{aligned} &\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta \\ &\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta \end{aligned} \end{split}$$

• Now consider division:

$$\frac{Z_1}{Z_2} = \frac{|Z_1|e^{j\theta_1}}{|Z_2|e^{j\theta_2}} = \frac{|Z_1|}{|Z_2|}e^{j(\theta_1 - \theta_2)}$$

In polar form, this is 
$$\frac{Z_1}{Z_2} = \frac{|Z_1| \angle \theta_1}{|Z_2| \angle \theta_2} = \frac{|Z_1|}{|Z_2|} \angle \theta_1 - \theta_2$$

## Example A.5 Complex Arithmetic in Polar Form

Given 
$$Z_1 = 10 \angle 60^\circ$$
 and  $Z_2 = 5 \angle 45^\circ$ , find  $Z_1 Z_2$ ,  $Z_1 / Z_2$ , and  $Z_1 + Z_2$  in polar form.

#### • Solution:

$$Z_1 \times Z_2 = 10 \angle 60^{\circ} \times 5 \angle 45^{\circ} = 50 \angle 105^{\circ}$$
  
$$\frac{Z_1}{Z_2} = \frac{10 \angle 60^{\circ}}{5 \angle 45^{\circ}} = 2 \angle 15^{\circ}$$

Before we can add (or subtract) the numbers, we must convert them to rectangular form.

$$Z_1 = 10 \angle 60^{\circ} = 10\cos(60^{\circ}) + j10\sin(60^{\circ}) = 5 + j8.66$$
  
 $Z_2 = 5 \angle 45^{\circ} = 5\cos(45^{\circ}) + j5\sin(45^{\circ}) = 3.54 + j3.54$ 

The sum as Zs:

$$Z_s = Z_1 + Z_2 = 5 + j8.66 + 3.54 + j3.54 = 8.54 + j12.2$$

### Convert the sum to polar form:

$$|Z_s| = \sqrt{(8.54)^2 + (12.2)^2} = 14.9$$
  
 $\tan \theta_s = \frac{12.2}{8.54} = 1.43$   $\theta_s = \arctan(1.43) = 55^\circ$ 

Because the real part of  $Z_s$  is positive, the correct angle is the principal value of the arctangent.

$$Z_s = Z_1 + Z_2 = 14.9 \angle 55^{\circ}$$