Conhecimento e Raciocínio

Aula 1 Redes Neuronais

Viriato M. Marques

Licenciatura em Engenharia Informática

DEIS – Departamento de Engenharia Informática e de Sistemas ISEC – Instituto Superior de Engenharia de Coimbra

(Biblio: Tom Mitchell)

1. Introdução

- As Redes Neuronais (Artificial Neural Networks ANN ou NN) constituem um suporte geral e prático para aprendizagem de modelos de classificação
- O conceito de Rede Neuronal provém de uma analogia biológica:
 - Cérebro = Neurónios densamente interligados
 - Cada neurónio recebe inputs de outros neurónios e produz uma saída que se liga a outros neurónios.
 - O cérebro humano tem cerca de 10¹¹ neurónios.
 - Cada neurónio liga-se, em média, a 10⁴ outros neurónios.
 - A actividade de um neurónio é comandada pelos que a ele se ligam, dependendo dos valores de input que o neurónio recebe
 - Uma Rede Neuronal é composta por Unidades. Cada unidade simula o funcionamento de um neurónio.

Os neurónios interligam-se através dos axónios e dendrites

- O ponto de contacto chama-se sinapse
- A transmissão faz-se por via eléctrica, através de iões
 - Os neurologistas descobriram que o cérebro aprende alterando resistência da ligação sináptica entre neurónios após estimulação repetida pelo mesmo impulso

As ANNs são compostas por unidades, designadas por **perceptrões**

- Unidades: organizadas em camadas, geralmente 2 ou 3
- "Primeiras" unidades: entrada (input units) (não constituem uma camada)
- Unidades internas (hidden units): constituem a ou as camadas internas (hidden layer(s))
- Saída: output units constituindo a camada de saída (output layer)

Uma ANN de 3 camadas

- Vamos estudar apenas a topologia Feedforward ANN (que corresponde aos diagramas atrás apresentados)
- As ANNs são capazes de aprender a classificar, i.e., distinguir imagens, caracteres, sons, etc.
- A cada classificação corresponde uma saída ou combinação de saídas distintas
- A aprendizagem pode ser supervisionada, não supervisionada ou por reinforcement learning (i.e. aproximadamente "por recompensa")
- Vamos estudar apenas a aprendizagem (treino) supervisionada
- O treino <u>supervisionado</u> faz-se por aplicação de exemplos previamente classificados (i.e. em que as entradas e as saídas pretendidas são previamente conhecidas)
- A aprendizagem faz-se por alteração dos coeficientes sinápticos através de um algoritmo chamado backpropagation

Pomerleau, 1993, Sistema ALVINN:

Usa uma matriz
30*32=960 pixels como
entrada para uma rede
neuronal previamente
treinada por replicação
das atitudes de um
humano durante 5
minutos

Controlou a condução numa auto-estrada, numa faixa, com outros veículos presentes, a cerca de 100Km/h durante mais de 100Km

O branco significa
"voltar à esquerda"
porque é
interpretado como
maior peso
activando, assim, as
saídas à esquerda)

As 960 entradas de uma das unidades intermédias

Input: 960 unidades de entrada ligadas a uma câmara

Camada Intermédia: 4 unidades

Output para actuadores: 30 unidades

2. Perceptrão e Outras Unidades

- Um perceptrão
 - Tem um conjunto de entradas de valor real, $(x_1...x_n)$
 - Calcula uma combinação linear destas entradas, C
 - Saída=1 se $C>-w_0$ (threshold). Saída= -1 caso contrário

Função SINAL, sng(y)

 w_0 pode passar para o $2^{\rm o}$ membro, o que evidencia saídas de valor +1 ou -1 consoante Soma > ou < que $-w_0$

Portanto:

$$o(x_1, x_2...x_n) = \begin{cases} 1 & \text{se } w_0 + w_1 x_1 + ... + w_n x_n > 0 \\ -1 & \text{caso contrário} \end{cases}$$

- Os w_i designam-se por Coeficientes Sinápticos ou de Ponderação (weighting factors) que determinam a contribuição da entrada x_i para a adição realizada no seio do perceptrão.
- Se $x_0=1$ (fixo em vez de entrada variável), então $-w_0$ representa o limite que a combinação linear das entradas tem de ultrapassar para a saída ser +1
 - ullet Seja $ec{w}$ o vector dos coeficientes de ponderação
 - Seja \mathcal{X} o das entradas
- Então a saída O do perceptrão, função apenas das entradas considerando os pesos invariáveis, é:

$$o(\vec{x}) = \operatorname{sgn}(\vec{w}.\vec{x})$$
 Com $\operatorname{sng}(y) = \operatorname{Função} \operatorname{Sinal} = \begin{cases} +1 \text{ se } y > 0 \\ -1 \text{ se } y < 0 \end{cases}$

- Uma unidade linear
 - Calcula apenas a combinação linear das entradas, $(x_0...x_n)$
 - $W_0 = 0$
- Portanto, para uma unidade linear

$$o(\vec{x}) = \vec{w} \cdot \vec{x}$$

 \triangleright ou seja, a função f(s) reduz-se a o=s

Tipos de funções de activação mais comuns:

(Biblio: Russel & Norvig)

- O que pode "aprender" ou "representar" um perceptrão?
 - Seja um perceptrão de 2 entradas x_1 , x_2 e coeficientes $w_1=1$, $w_2=1$
 - Seja $w_0 = 0$
 - A sua saída será +1 se $x_1.w_1 + x_2.w_2 > 0 ...$
 - ... e -1 se $x_1.w_1 + x_2.w_2 < 0$
 - Como estamos a considerar $w_i=1$:

$$\begin{cases} o=1 \text{ se } x1>-x2 \\ o=-1 \text{ se } x1<-x2 \end{cases}$$

- Graficamente, com x₁ no eixo dos x e x₂
 no eixo dos y, podem visualizar-se as zonas de outputs (exemplos) positivos (+1) e negativos (-1)
- Neste exemplo, estas zonas são separadas pela recta $x_1+x_2=0$ (ou, doutro modo, $x_2=-x_1$)
- Trata-se da forma y = -x, que se representa na figura.

(Biblio: Russel & Norvig)

- Se os coeficientes sinápticos não fossem 1 teríamos:
 - $x_1.w_1 + x_2.w_2 = 0$
 - $X_2 = -w_1/w_2.x1$
 - Ou seja, os valores (relativos) de w1 e w2 regulam o declive da recta
- E se w0 não fosse 0, teríamos:
 - $x_1.w_1 + x_2.w_2 + w_0 = 0$
 - $X_2 = -w_1/w_2.x1 w_0/w_2$
 - Ou seja, o valor de w0 (relativamente a w2) regula a ordenada na origem
- Isto possibilita a separação de exemplos +e em situações diversas
- Por isso a aprendizagem se faz regulando os valores dos w's de modo a ajustar a recta ao conjunto de exemplos de treino fornecidos, i.e., a separar os + dos -

Como as duas zonas + e - são separáveis por uma recta, diz-se que um perceptrão pode representar (apenas) Funções Linearmente Separáveis

- Nesta figura:
 - (a) I1+I2=1.5 Saída + se I1 e I2 forem ambas próximas de 1: AND
 - (b) I1+I2=0.5 Saída se I1 e I2 forem ambos próximos de 0: OR
 - (c) Representa a função XOR. Esta função NÃO é Linearmente Separável porque nenhuma recta consegue separar os exemplos positivos dos negativos. Um único perceptrão não pode representar um XOR.

- A recta que separa os exemplos positivos dos negativos chama-se superfície de decisão (decision surface)
- Para um perceptrão é sempre linear, mesmo que a função de activação o não seja. Por exemplo, para a unidade sigmóide cuja função de activação é traduzida por

$$o = \sigma(s) = \frac{1}{1 + e^{-s}}$$

- A condição de decisão será $\frac{1}{1+e^{-s}} = \frac{1}{2}$
- Que resolvida dá

$$1+e^{-s} = 2$$
 $e^{-s} = 1$ $\ln(e^{-s}) = \ln(1)$ $-s = 0$
 $s = x1 + x2$ (com w1=w2=1 e w0=0)
 $x2 = -x1$

(Biblio: Tom Mitchell)

3. Treino de Perceptrões e de Outras Unidades

- Algoritmos de treino:
 - 1. Perceptron Training Rule
 - Gradient Descent
 - 3. Stochastic Approximation to Gradient Descent (Delta Rule)
- Em qualquer deles:
 - Ao perceptrão ou unidade são aplicadas entradas que constituem exemplos de treino classificados como "positivos" e "negativos"
 - A cada um corresponde um valor alvo (target) que se compara com um resultado: A saída apresentada pelo perceptrão ou unidade linear
 - Se este resultado gerar uma classificação errada, reajustam-se os coeficientes sinápticos
 - Terminado o treino, em presença de exemplos diferentes dos utilizados, o perceptrão ou unidade deverá responder correctamente (<u>generalização</u>)

3.1 Perceptron Training Rule

- Os coeficientes w são inicializados com valores aleatórios
- Por cada exemplo aplicado ao perceptrão, a alteração dos coeficientes w é feita segundo a regra:

$$w_i \leftarrow w_i + \Delta w_i$$
 $t = target \ value \ (classed)$
 $\Delta w_i = \eta(t-o)x_i$ $x_i = input \ ao \ qual \ foi \ a$
 $n = Learning \ Rate: Co$

t = target value (classe) para o exemplo actual

o = output (valor da saída do perceptrão)

 $x_i = input$ ao qual foi aplicado o atributo i do exemplo

 $\eta =$ **Learning Rate**: Constante de baixo valor (i.e. 0,05)

- Porque é que este processo converge para os valores w pretendidos?
 - Se t-o=0, nenhuma actualização é realizada, o que está correcto
 - Se t=+1 e o=-1, os w devem aumentar para que a Função Sinal receba como entrada um valor mais alto e passe a dar como resultado +1
 - Neste caso, para uma entrada $x_i > 0$, o aumento de w_i resultará bem. Ora, também neste caso será positivo porque t-o>0, $x_i>0$ e $\eta>0$

- Pode demonstrar-se que existe convergência para os valores de w que classificarão correctamente os exemplos, desde que:
 - Os exemplos de treino sejam Linearmente Separáveis
 - η tenha um valor suficientemente baixo

3.2 Gradient Descent

- Considere-se uma Unidade Linear:
 - A sua saída é dada por

$$o(\vec{x}) = \vec{w} \cdot \vec{x}$$

- Para iniciar a dedução do algoritmo, há que definir uma medida do erro observado entre um valor alvo e a saída da Unidade Linear
- Seja a Soma do Erro Quadrático (SSE):

$$E(\vec{w}) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

D = conjunto de exemplos de treino

 t_d = target value para o exemplo d

 o_d = saída da Unidade Linear para o exemplo d

- Note-se que se exprimiu o erro *E* como função de *w* porque é em *w* que vamos actuar de modo a minimizar a diferença *t-o* entre *target* e *output* (o_d é função de w)
- A variação de $E(\vec{w})$ em função dos coeficientes w pode ser vista graficamente:

$$E(\vec{w}) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

Gradiente negado (neste ponto)

Direcção no plano w_1 , w_2 correspondente à variação mais rápida de E(w)

ightharpoonup O gradiente de $E(\vec{w})$ é dado pelas suas derivadas parciais:

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

- Exprime a direcção que produz o aumento mais rápido de $E(ec{w})$
- Como pretendemos uma diminuição, a expressão do gradiente terá de ser multiplicada por -1 (o vector muda de sentido)
- No Gradient Descent os w são actualizados assim:

$$w_i \leftarrow w_i + \Delta w_i$$
 em que $\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$ (eq.1)

Agora, há que determinar a expressão de

$$\frac{\partial E}{\partial w_i}$$

Como a função de erro é

$$E(\vec{w}) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

Temos

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d} (t_d - o_d)^2
= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2
= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)
= \sum_{d} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x_d})$$

Donde:

$$\frac{\partial E}{\partial w_i} = \sum_{d} (t_d - o_d)(-x_{i,d})$$
 (eq.2)

• Substituindo eq.2 na eq.1 obtém-se a correcção Δw_i dos factores $\mathbf{w_i}$ em cada passo do algoritmo:

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i} \qquad \text{(eq.1)}$$

$$\frac{\partial E}{\partial w_i} = \sum\limits_d (t_d - o_d)(-x_{i,d})$$
 (eq.2)

$$\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) x_{id}$$

d é o índice do exemploD é o conjunto de todos os exemplos

- Resumo do Gradient Descent:
 - Inicializar os coeficiente w aleatoriamente
 - Aplicar todos os exemplos de treino à unidade linear
 - Calcular o erro Δw_i para cada coeficiente w segundo a eq. anterior
 - Recalcular cada w_i por adição do respectivo Δw_i calculado pela eq. acima
 - Voltar ao passo 2 até que o erro seja suficientemente baixo

O Gradient Descent

- Converge para um vector de factores w que minimiza o erro
- Se os exemplos não forem linearmente separáveis, o erro é minimizado mas nem para todos os exemplos se atingirá o alvo
- η tem de ser suficientemente baixo para não se "ultrapassar" o ponto de erro mínimo. Por isso é vulgar reduzir η ao longo das iterações de treino
- Desvantagens do Gradient Descent:
 - Por vezes a convergência é muito lenta (alguns milhares de passos)
 - Se o valor de erro tem mínimos locais, não há a garantia de ser atingido o mínimo absoluto

Gradient-Descent $(training_examples, \eta)$

Each training example is a pair of the form $\langle \vec{x}, t \rangle$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05).

- ullet Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - Initialize each Δw_i to zero.
 - For each $\langle \vec{x}, t \rangle$ in $training_examples$, Do
 - * Input the instance \vec{x} to the unit and compute the output o
 - * For each linear unit weight w_i , Do

$$\Delta w_i \leftarrow \Delta w_i + \eta(t - \sigma)x_i$$

– For each linear unit weight w_i , Do

$$w_i \leftarrow w_i + \Delta w_i$$

Gradient Descent

Note-se que o valor de correcção ∆w; a aplicar a cada coeficiente w;, é calculado somando os erros provenientes da apresentação de todos os exemplos de treino uma vez que

$$\Delta W_i = \Delta W_i + \eta(...)$$

figura dentro do ciclo "exemplos de treino"

Compara a saída, o, da unidade linear, com o alvo (target)

3.3 Stochastic Approximation to Gradient Descent

- Também designado por Incremental Gradient Descent
- > Tenta ultrapassar alguns inconvenientes do *Gradient Descent*
- A diferença reside no seguinte:
 - O valor de correcção Δw_i de cada coeficiente w_i é calculado logo após a apresentação de um só exemplo, em vez de se somarem os erros de todos os exemplos
 - Ou seja, em vez de

$$\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) x_{id}$$

Usa-se apenas

$$\Delta w_i = \eta(t-o)x_i$$
 — Delta Rule

Stochastic Approximation to Gradient Descent

Each training example is a pair of the form $\langle \vec{x}, t \rangle$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05).

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - Initialize each Δw_i to zero.
 - For each $\langle \vec{x}, t \rangle$ in training_examples, Do
 - * Input the instance \vec{x} to the unit and compute the output o
 - * For each linear unit weight w_i , Do

$$w_i = w_i + \eta (t - o) x_i$$

– For each linear unit weight w_i , Do

$$w_i \leftarrow w_i + \Delta w_i$$

Stochastic Approximation to Gradient Descent)

Este algoritmo pode obter-se do anterior (*Gradient Descent*) modificando-o da forma apresentada na figura ao lado

Agora o valor de correcção Δw_i a aplicar a cada coeficiente w_i , é calculado imediatamente após se saber o erro Δw_i resultante de um só exemplo de treino, e não da soma de todos. Isto porque o somatório $\Delta w_i = \Delta w_i + \eta(...)$ desapareceu

Compara a saída, *o*, da unidade linear, com o alvo (*target*)

4. Unidade Sigmóide e Tangente

- Os perceptrões e as unidades lineares apenas podem representar superfícies de decisão lineares.
- As Redes Neuronais multi-nível, treinadas pelo BackPropagation Algorithm, podem representar superfícies de decisão de forma muito variada:
 - O exemplo seguinte mostra superfícies de decisão não lineares obtidas num sistema de reconhecimento de voz que envolve a distinção de 10 vogais todas pronunciadas num contexto "h...d": "hid", "had", "head", "hood", etc.
- Redes Neuronais com estas características usam unidades não lineares, normalmente de função sigmoide ou tangente hiperbólica, distribuídas por várias camadas (normalmente 2 ou 3) interligadas entre si

Distinção entre 10 vogais num contexto "h...d"

As superfícies de decisão delimitam zonas dentro das quais diferentes exemplos de treino referentes à mesma palavra são efectivamente reconhecidos como sendo "a mesma palavra"

- A opção pela função sigmóide deve-se aos seguintes factos:
 - É não linear
 - É contínua e diferenciável, o que permite a aplicação dos princípios usados no Gradient Descent
 - É semelhante à Função Sinal, o que sugere um comportamento parecido com o desta função

 $\sigma(x)$ is the sigmoid function

$$\frac{1}{1+e^{-x}}$$

Unidade Sigmóide:

Calcula uma combinação linear das entradas, *net*, tal como a linear

A saída **o** é gerada por uma função contínua:

$$o = \sigma(net) = \frac{1}{1 + e^{-net}}$$

- **Unidade Tangente**
 - Idêntica à sigmoide mas substituindo-a pela tangente hiperbólica

5. Backpropagation

- O BackPropagation Algoritm ajusta os coeficientes sinápticos de toda uma rede neuronal multi-camada
- Para a sua dedução, ver (Biblio: Tom Mitchell)
- Normalmente uma NN compreende 2 ou 3 grupos de unidades que definem 2 ou 3 camadas:
 - Camada(s) Hidden (Interna(s))
 - Camada Output

NOTA: em *input* não há "unidades" porque não se fazem cálculos

Backpropagation Algorithm

Initialize all weights to small random numbers. Until satisfied, Do

- For each training example, Do
 - 1. Input the training example to the network and compute the network outputs
 - 2. For each output unit k

$$\delta_k \leftarrow o_k(1 - o_k)(t_k - o_k)$$

3. For each hidden unit h

$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

4. Update each network weight $w_{i,j}$

$$w_{i,i} \leftarrow w_{i,i} + \Delta w_{i,i}$$

where

$$\Delta w_{i,j} = \eta \delta_j x_{i,j}$$

 o_k = Saída da Output Unit de ordem k

 $t_k = target$ na Output Unit de ordem k

Cálculos entre Output e Hidden

Cálculos entre Hidden e Input

 \mathbf{w}_{hk} = Coeficiente do *link* entre Hidden Unit h e Output Unit k

 o_h = Saída da Hidden Unit de ordem h

Correcção de todos os w_{ij}

Neural Nets for Face Recognition

Typical input images

4 Output Units para 4 posições

Rede de 960*3*4 treinada com 260 imagens:

- Objectivo: Classificar a posição da face: Olhar à esquerda, direita, cima baixo
- Resultado: 90% de acertos num conjunto de imagens distinto dos exemplos de treino

Redes Neuronais FIM

