Olasılık Ölçüsü. Olasılık Uzayı

Önceki derste, gerçek dünya ile ilgili,

Rasgele Sonuçlu Deney: Sonuçlarının kümesi belli olan, ancak hangi sonucun ortaya çıkacağı önceden söylenemeyen bir işleme Rasgele Sonuçlu Deney veya kısaca Deney denir, Örnek Uzay: Bir deneyin tüm olabilir sonuçlarının kümesine Örnek Uzay denir,

Olay: Örnek uzayın bir altkümesine Olay denir,

kavramlarını ve aklımızın dünyasında,

$$\sigma$$
-cebir: $\Omega \neq \emptyset$ ve U , Ω 'da bir sınıf olmak üzere

i)
$$\Omega \in U$$

ii)
$$A \in U \implies \overline{A} \in U$$

iii) (
$$A_n$$
), U 'daki kümelerin bir dizisi $\Rightarrow \bigcup_{n=1}^{\infty} A_n \in U$

özellikleri sağlandığında U'ya Ω 'da σ -cebir denir,

kavramını tanımladık.

Deney-Örnek Uzay	Ω
olay	$A \subset \Omega$
ve	\cap
veya	U
değil	tümleme
ilgilendiğimiz olaylar	σ -cebir
bir olayın olasılığı	?

Şimdi Olasılık Ölçüsü tanımını verelim.

Tanım: U, Ω 'da bir σ -cebir olsun. Bir

$$P: U \to \mathbb{R}$$

 $A \to P(A)$

fonksiyonu,

i)
$$\forall A \in U \text{ için } P(A) \ge 0$$

ii)
$$P(\Omega) = 1$$

iii)
$$A_1, A_2, ..., A_n, ...$$
 ler U 'da ayrık olaylar $\Rightarrow P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$

özelliklerine sahip olduğunda, P fonksiyonuna olasılık ölçüsü denir. P(A) değerine A olayının olasılık ölçüsü ya da kısaca A'nın olasılığı denir.

Tanım: U, Ω 'da bir σ -cebir ve P, U'da bir olasılık ölçüsü olmak üzere (Ω, U, P) üçlüsüne olasılık uzayı denir.

Teorem: (Ω, U, P) bir olasılık uzayı olsun:

a) $P(\emptyset) = 0$

b)
$$A_1, A_2, ..., A_n, U$$
 da ayrık kümeler $\Rightarrow P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + ... + P(A_n)$

c)
$$P(\overline{A}) = 1 - P(A)$$

d)
$$A \subset B \Rightarrow P(A) \leq P(B)$$

e)
$$0 \le P(A) \le 1$$

f)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A_{1} \cup A_{2} \cup ... \cup A_{n}) = \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \le i < j \le n} P(A_{i} \cap A_{j}) + \sum_{1 \le i < j < k \le n} P(A_{i} \cap A_{j} \cap A_{k}) - ... + (-1)^{n-1} P(A_{1} \cap A_{2} \cap ... \cap A_{n})$$

g)
$$P(A_1 \cup A_2 \cup ... \cup A_n) \le P(A_1) + P(A_2) + ... + P(A_n)$$

$$\left(P(\bigcup_{i=1}^n A_i) \le \sum_{i=1}^n P(A_i)\right)$$

$$P(A_1 \cup A_2 \cup ... \cup A_n \cup ...) \le P(A_1) + P(A_2) + ... + P(A_n) + ...$$

$$\left(P(\bigcup_{i=1}^n A_i) \le \sum_{i=1}^n P(A_i)\right)$$

h)
$$A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots$$
 $\Rightarrow \lim_{n \longrightarrow \infty} P(A_n) = P(\bigcup_{n=1}^{\infty} A_n)$
 $A_1 \supset A_2 \supset \cdots \supset A_n \supset \cdots$ $\Rightarrow \lim_{n \longrightarrow \infty} P(A_n) = P(\bigcap_{n=1}^{\infty} A_n)$

dır.

İspat:

a) $A_n = \emptyset$, n = 1, 2, ... olsun. Bu durumda, A_n 'ler ayrık ve

$$\bigcup_{n=1}^{\infty} A_n = \emptyset$$

dır. Ölasılık ölçüsü tanımındaki (iii) şıkkından,

$$P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$$

$$P(\varnothing) = \sum_{n=1}^{\infty} P(\varnothing) \Rightarrow P(\varnothing) = 0$$

dır.

b) $A_1, A_2, ..., A_n \in U$ kümeleri ayrık olsun. $A_{n+1} = A_{n+2} = \cdots = \emptyset$ olmak üzere (A_n) dizisindeki kümeler ayrıktır.

$$P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1 \cup A_2 \cup ... \cup A_n \cup \emptyset \cup \emptyset \cup ... \cup \emptyset \cup ...)$$

$$(iii) = P(A_1) + P(A_2) + ... + P(A_n) + P(\emptyset) + P(\emptyset) + ...$$

(a)
$$= P(A_1) + P(A_2) + ... + P(A_n)$$

dir.

c)
$$A \cup \overline{A} = \Omega$$
 ve $P(\Omega) = 1 \Rightarrow P(A \cup \overline{A}) = 1 \Rightarrow P(A) + P(\overline{A}) = 1 \Rightarrow P(\overline{A}) = 1 - P(A)$

d)
$$A \subset B \implies B = A \cup (\overline{A} \cap B)$$

$$\Rightarrow P(B) = P(A) + P(\overline{A} \cap B)$$

$$\Rightarrow P(A) \le P(B), (P(\overline{A} \cap B) \ge 0)$$

e) $\forall A \in U \text{ için } \emptyset \subset A \subset \Omega \Rightarrow 0 \leq P(A) \leq 1 \text{ dır.}$

f)
$$A \cup B = A \cup (\overline{A} \cap B) \Rightarrow P(A \cup B) = P(A) + P(\overline{A} \cap B)$$
 ve
$$B = (A \cap B) \cup (\overline{A} \cap B) \Rightarrow P(B) = P(A \cap B) + P(\overline{A} \cap B)$$
 olmak üzere,
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 elde edilir.

$$P(A_{1} \cup A_{2} \cup ... \cup A_{n}) = \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \le i < j \le n} P(A_{i} \cap A_{j}) + \sum_{1 \le i < j < k \le n} P(A_{i} \cap A_{j} \cap A_{k}) - ... + (-1)^{n-1} P(A_{1} \cap A_{2} \cap ... \cap A_{n})$$

eşitliğini ödev olarak ispatlayınız.

g)
$$P(A_{1} \cup A_{2} \cup ... \cup A_{n}) \leq P(A_{1} \cup (\overline{A}_{1} \cap A_{2}) \cup (\overline{A}_{1} \cap \overline{A}_{2} \cap A_{3}) \cup ... \cup (\overline{A}_{1} \cap \overline{A}_{2} \cap ... \cap \overline{A}_{n-1} \cap A_{n}))$$

$$= P(A_{1}) + P(\overline{A}_{1} \cap A_{2}) + P(\overline{A}_{1} \cap \overline{A}_{2} \cap A_{3}) + ... + P(\overline{A}_{1} \cap \overline{A}_{2} \cap ... \cap \overline{A}_{n-1} \cap A_{n})$$

$$\leq P(A_{1}) + P(A_{2}) + P(A_{3}) + ... + P(A_{n})$$

h) $A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots$ olsun.

$$\begin{split} \mathrm{P}(\bigcup_{n=1}^{\infty}A_{n}) =& \mathrm{P}(A_{1}) + P(\overline{A}_{1} \cap A_{2}) + P(\overline{A}_{1} \cap \overline{A}_{2} \cap A_{3}) + \ldots + P(\overline{A}_{1} \cap \overline{A}_{2} \cap \ldots \cap \overline{A}_{n-1} \cap A_{n}) + \ldots \quad \text{(seri)} \\ =& \lim_{n \to \infty} \mathrm{P}(A_{1}) + P(\overline{A}_{1} \cap A_{2}) + P(\overline{A}_{1} \cap \overline{A}_{2} \cap A_{3}) + \ldots + P(\overline{A}_{1} \cap \overline{A}_{2} \cap \ldots \cap \overline{A}_{n-1} \cap A_{n}) \\ & \qquad \qquad \qquad \qquad \text{(kısmi toplamlar dizisinin limiti)} \\ =& \lim_{n \to \infty} \mathrm{P}(A_{1} \cup (\overline{A}_{1} \cap A_{2}) \cup (\overline{A}_{1} \cap \overline{A}_{2} \cap A_{3}) \cup \ldots \cup (\overline{A}_{1} \cap \overline{A}_{2} \cap \ldots \cap \overline{A}_{n-1} \cap A_{n}) \\ =& \lim_{n \to \infty} \mathrm{P}(A_{1} \cup A_{2} \cup \ldots \cup A_{n}) \\ =& \lim_{n \to \infty} \mathrm{P}(A_{n}) \end{split}$$

dır.

Şimdi
$$A_1 \supset A_2 \supset \cdots \supset A_n \supset \cdots$$
 olsun. Bu durumda, $\overline{A}_1 \subset \overline{A}_2 \subset \cdots \subset \overline{A}_n \subset \cdots$

olmak üzere,

$$\lim_{n \to \infty} P(\overline{A}_n) = P(\bigcup_{n=1}^{\infty} \overline{A}_n)$$

$$\lim_{n \to \infty} 1 - P(A_n) = 1 - P(\bigcup_{n=1}^{\infty} \overline{A}_n)$$

$$\lim_{n \to \infty} P(A_n) = P(\bigcap_{n=1}^{\infty} A_n)$$

dır.

<u>Örnek</u> (Ω, U, P) bir olasılık uzayı ve $A, B \in U$ için P(A) = 0.5, P(B) = 0.4, $P(\overline{A} \cap B) = 0.3$ olmak üzere

a)
$$P(\overline{A}) = 1 - P(A) = 1 - 0.5 = 0.5$$

b)
$$P(A \cap B) = ?$$

 $P(B) = P(A \cap B) + P(\overline{A} \cap B)$
 $P(A \cap B) = P(B) - P(\overline{A} \cap B) = 0.4 - 0.3 = 0.1$

c)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.5 + 0.4 - 0.1 = 0.8$$

d)
$$P(A \cup \overline{B}) = ?$$

 $P(A \cup \overline{B}) = P(A) + P(B) - P(A \cap \overline{B})$
 $P(A) = P(A \cap B) + P(A \cap \overline{B})$
 $P(A \cap \overline{B}) = 0.5 - 0.1 = 0.4$
 $P(A \cup \overline{B}) = P(A) + P(B) - P(A \cap \overline{B}) = 0.5 + 0.4 - 0.4 = 0.5$

e)
$$P(\overline{A \cap B}) = 1 - P(A \cap B) = 1 - 0.1 = 0.9$$

f)
$$P(\overline{A} \cup \overline{B}) = 1 - P(\overline{A} \cup \overline{B}) = 1 - P(A \cap B) = 1 - 0.1 = 0.9$$