

«Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ДАКУПІ ТЕТ	информ /		прарпения
		АТИКА И СИСТЕМЫ У	
КАФЕДРА	KOMIIIBIO I	ГЕРНЫЕ СИСТЕМЫ И С	<u> </u>
		ОТЧЕТ	
	по лабој	раторной работе № 2	
Дисциплина: <u>(</u>	<u> Схемотехника</u>		
Название лаборат		ы: <u>Проектирование цио</u> основе ПЛИС	фровых устройств на
	J	Вариант № 14	
Студент гр. <u>И</u>	ЛУ6-53Б		В.К. Залыгин_
J., 1 <u>—</u>		(Подпись, дата)	(И.О. Фамилия)
Преподаватель			<u>М. Гейне</u>
		(Подпись, дата)	(И.О. Фамилия)

Цель работы

Закрепление на практике теоретических сведений, полученных при цифровых устройств изучении методики проектирования основе на (ПЛИС), программируемых логических интегральных схем получение необходимых навыков работы с системой автоматизированного проектирования ISE WebPack устройств на основе ПЛИС фирмы Xilinx, изучение аппаратных и программных средств моделирования, макетирования и отладки устройств на основе ПЛИС.

Выполнение работы

На рисунке 1 приведена функциональная схема устройства.

Рисунок 1 – Функциональная схема устройства

На рисунке 2 приведена диаграмма состояний автомата подавления дребезга.

Рисунок 2 - Диаграмма состояния автомата подавления дребезга

Задание: выполнить кодирование состояний автомата, представленного на рисунке 3, в соответствии с индивидуальным вариантом из таблицы 1.

Таблица 1 – Вариант 14

Вариант	Набор	Двоичный код состояния S(1), S(0)				
		State0	State1	State2	State3	
14	XC3S200	10	00	11	01	

В таблице выходов 2 определены функции сигналов управления в соответствии с заданным вариантом.

Таблица 2 – Таблица выходов

Состояние	State0	State1	State2	State3
Двоичный код состояния	1 0	0 0	1 1	0 1
CNT	0	1	1	0
DLY_EN	0	1	0	1

Заполненная таблица 3 иллюстрирует значение сигналов SN0 и SN1 в соответствии с различными этапами работы устройства.

Таблица 3 – Сигналы SN(*) и D*

COUNT	DLY_O VF	S1(t)	S0(t)	S1(t+1)	S0(t+1)	SN(1)	SN(0)	Описание события
0	X	1	0	1	0	1	0	Ожидание нажатия кнопки
1	X	1	0	0	0	0	0	Нажатие кнопки
X	0	0	0	0	0	0	0	Ожидание окончания счета
X	1	0	0	1	1	1	1	Конец счета
1	X	1	1	1	1	1	1	Ожидание отпускания
0	X	1	1	0	1	0	1	Отпускание кнопки
X	0	0	1	0	1	0	1	Ожидание окончания счета
X	1	0	1	1	0	1	0	Конец счета

Таблицы 4 и 5 демонстрируют карты Карно для минимизации функций SN0 и SN1.

Таблица 4 – Минимизация SN0

	S1, S0	00	01	11	10
CNT,					
DLY_OVF					
00			1	1	
01		1		1	
11		1		1	
10			1	1	

Тогда SN0 = (DLY_OVF && ~ S1 && ~S0) || (~DLY_OVF && ~S1 && S0) || (S1 && S0).

Таблица 5 – Минимизация SN1

	S1, S0	00	01	11	10
CNT,					
DLY_OVF					
00					1
01		1	1		1
11		1	1	1	
10				1	

Тогда SN1 = (DLY_OVF && ~S1) || (COUNT && S1 && S0) || (~COUNT && S1 && ~S0).

Задание 2

Задание: разработайте текстовое описание модуля в соответствии с полученными функциями DLY_EN, CNT, SN[0], SN[1] на основе шаблона.

Выполнение данного задание приведено в листинге 1.

Листинг 1 – Описание модуля подавления дребезга

```
// 10 .
module lab2_example (
    input rst, //
    input clk, //
    input count, //
    output wire cnt, // ,
    output wire[1:0] s_out //
    );
    //
    localparam STATE0 = 2'b10;
    localparam STATE1 = 2'b00;
    localparam STATE2 = 2'b11;
    localparam STATE3 = 2'b01;
    // t
```

```
reg[1:0]
             t+1
     //
     wire[1:0] sn;
     reg [20:0] counter; // 2^20
     wire dly ovf; // " "
     wire dly_en;//
     assign s out = s;
     //
     always @(posedge clk)
          if(rst)
               s <= STATE0;
          else
               s \le sn;
                 CNT DLY EN ( )
     assign cnt = s[0] == s[1];
     assign dly en = \sims[1];
     assign sn[1] = (dly_ovf & ~s[1]) | (count & s[1] & s[0]) |
(\sim count \& s[1] \& \sim s[0]);
     assign sn[0] = (dly ovf & ~s[1] & ~s[0]) | (~dly_ovf & ~s[1] &
s[0]) | (s[1] \& s[0]);
          //
     always @(posedge clk)
          if(rst || (dly en == 1'b0))
               counter <= 1'b0;</pre>
          else
               counter <= counter + 1;</pre>
     assign dly ovf = (counter == 2**20); //
endmodule
```

Также был создан проект для ПЛИС заданной вариантом, что показано на рисунке 3.

Рисунок 3 – Созданный проект

Задание: в интегрированном редакторе тестов САПР Xilinx ISE разработать тест для полученного устройства и выполнить моделирование его работы в симуляторе Isim.

Код теста приведен в листинге 2.

Листинг 2 – Код теста

```
`timescale 10ns/1ns
module main tb();
    reg clk=1'b0, count=1'b0, rst=1'b1;
    wire [3:0] a;
    wire [7:0] led;
    wire [1:0] state;
    main uut (
         .clk,
         .count,
         .rst,
         .a,
         .led,
         .state
    );
    task click();
        begin
            @(posedge clk) count = #1 1'b1;
            @(posedge clk) count = #1 1'b0;
            @(posedge clk) count = #1 1'b1;
            @(posedge clk) count = #1 1'b0;
            @(posedge clk) count = #1 1'b1;
            @(posedge clk) count = #1 1'b0;
            @(posedge clk) count = #1 1'b1;
            #1000
            @(posedge clk) count = #1 1'b0;
            @(posedge clk) count = #1 1'b1;
            @(posedge clk) count = #1 1'b0;
            @(posedge clk) count = #1 1'b1;
            @(posedge clk) count = #1 1'b0;
            @(posedge clk) count = #1 1'b1;
            @(posedge clk) count = #1 1'b0;
        end
    endtask
    always #10 clk = \simclk;
    initial begin
        #200 \text{ rst} = 1'b0;
        #1000;
        click;
        #1000;
        click;
        #1000;
```

```
click;
#1000;
click;
#1000;
#1000;
$finish;
end
endmodule
```

При запуске симуляции была получена картина, представленная на рисунке 4. Состояния изменяются в заданной вариантом последовательности.

Рисунок 4 – Результат симуляции

Задание 4

Разработать устройство управления, принимающее 16-разрядное информационное слово Q[0..15] и управляющее их последовательной выдачей по шине D[0..3] на декодер 7-сегментных индикаторов в соответствии с показанной на рисунке 6 диаграммой.

Код модуля приведен в листинге 3.

Листинг 3 – Код модуля

```
module seven_segment_driver (
    input clk,
    input clk_div,
    input [15:0] q,
    input rst,
    output [3:0] d,
    output reg [3:0] a
);

always @(posedge clk)
    if (rst)
        a<=4'b1110;
    else
        if (clk_div)
        a <= {a[2:0], a[3]};</pre>
```

```
assign d[0] = q[0] \& \sim a[0] | q[4] \& \sim a[1] | q[8] \& \sim a[2] | q[12] \& \sim a[3]; assign d[1] = q[1] \& \sim a[0] | q[5] \& \sim a[1] | q[9] \& \sim a[2] | q[13] \& \sim a[3]; assign d[2] = q[2] \& \sim a[0] | q[6] \& \sim a[1] | q[10] \& \sim a[2] | q[14] \& \sim a[3]; assign d[3] = q[3] \& \sim a[0] | q[7] \& \sim a[1] | q[11] \& \sim a[2] | q[15] \& \sim a[3]; endmodule
```

Код модуля с тестом приведен в листинге 4.

Листинг 4 – Код модуля тестирования

```
module test seven seg driver;
     // Inputs
     reg clk;
     reg clk div;
     reg [15:0] q;
     reg rst;
     // Outputs
     wire [3:0] d;
     wire [3:0] a;
     // Instantiate the Unit Under Test (UUT)
     seven seg driver uut (
          .clk(clk),
          .clk div(clk div),
          .q(q),
          .rst(rst),
          .d(d),
          .a(a)
     );
  parameter clk period = 20;
  initial begin
    clk = 0;
    forever #(clk period/2) clk = ~clk;
  // clk div generation (более реалистичный пример)
  initial begin
    clk div = 0;
    forever #(clk period*2) clk div = ~clk div; // Меняется каждые 2
такта clk
  end
  initial begin
    rst = 1;
    #(clk period*2);
    rst = 0;
  end
  initial begin
  #(clk period*2);
    q = 16'h0000;
    repeat (16) begin
        q = q + 1;
```

```
#(clk_period*4); // wait
  end
  end
end
endmodule
```

Результат моделирования приведен на рисунке 5.

Рисунок 5 – Результат моделирования

Задание 5

Разработать поведенческое Verilog описание схемы преобразования четырехразрядного информационного кода D[0..3] в код активизации 7 - сегментного индикатора LED[0..7] в соответствии с таблицей 4.

Код для данного задания приведен в листинге 5.

Листинг 5 – Код модуля преобразования

```
module led decode (
input [3:0] dh,
output reg [7:0] seg data
);
always @(dh)
     case (dh)
          4'b0000: seg data = 8'b10000001;
          4'b0001: seg data = 8'b11001111;
          4'b0010: seg data = 8'b10010010;
          4'b0011: seg data = 8'b10000110;
          4'b0100: seg data = 8'b11001100;
          4'b0101: seg data = 8'b10100100;
          4'b0110: seg data = 8'b10100000;
          4'b0111: seq data = 8'b10001111;
          4'b1000: seg data = 8'b10000000;
          4'b1001: seg data = 8'b10000100;
          4'b1010: seg data = 8'b10001000;
          4'b1011: seg data = 8'b11100000;
          4'b1100: seg data = 8'b10110001;
          4'b1101: seg_data = 8'b11000010;
          4'b1110: seg data = 8'b10110000;
          4'b1111: seg data = 8'b10111000;
          default: seg data = 8'bx;
     endcase
endmodule
```

Залание 6

В редакторе схем САПР ISE добавить исходное описание, указав путь к файлу main.v.

Код файла main.v приведен в листинге 6.

Листинг 6 – Код main.v

```
module main (
     input clk,
     input count,
     input rst,
     output [3:0] a,
     output [7:0] led,
     output [1:0] state
);
    wire cnt;
    lab2 example lab2 example inst (
        .clk(clk),
        .rst(rst),
        .count(count),
        .cnt(cnt),
        .s out(state)
    );
     //
     reg [16:0] counter;
     wire counter ovf = (counter == 2**16);
     always @(posedge clk)
          if(rst || counter ovf)
               counter <= 16'b0;</pre>
          else
               counter <= counter + 1;</pre>
     // CNT
    reg cnt ff;
    wire cnt rise = (cnt==1'b1) && (cnt ff==1'b0); /* */
    always @(posedge clk)
        if(rst)
            cnt ff <= 1'b0;
        else
            cnt ff <= cnt; /* */</pre>
    //
    reg [15:0] main counter;
    always @(posedge clk)
        if(rst)
            main counter <= 1'b0;</pre>
        else
            if(cnt rise)
                main counter <= main counter + 1;</pre>
    wire [3:0] driver decoder bus;
    seven_segment driver ssd inst (
        .clk(clk),
```

```
.rst(rst),
.q(main_counter),
.clk_div(counter_ovf), /* */
.d(driver_decoder_bus), /* */
.a(a)
);

led_decode led_decode_inst (
.dh(driver_decoder_bus), /* */
.seg_data(led) /* */
);
endmodule
```

В программе Xilinx PACE создать файл ограничений *.ucf или добавьте в проект имеющийся main_xc3s200.ucf. В редакторе необходимо назначить внешние выводы сигналам разрабатываемого устройства в соответствии с таблицей 5.

Результат распиновки приведен на рисунке 6.

```
NET "a[3]" LOC = E13;
NET a[2] LOC = F14;
NET "a[1]" LOC = G14;
NET "a[0]" LOC = D14;
NET "led[7]" LOC = P16;
NET "led[6]" LOC = E14;
NET "led[6]" LOC = E14;

NET "led[5]" LOC = G13;

NET "led[4]" LOC = N15;

NET "led[3]" LOC = P15;

NET "led[2]" LOC = R16;

NET "led[1]" LOC = F13;
NET "led[0]" LOC = N16;
NET "U[7]" LOC = K13;
NET "U[6]" LOC = K14;
NET "U[5]" LOC = J13;
NET "U[4]" LOC = J14;
NET "U[3]" LOC = H13;
NET "U[2]" LOC = H14;

NET "U[1]" LOC = G12;

NET "U[0]" LOC = F12;

NET "clk" LOC = T9;
NET "count" LOC = M13;
NET "rst" LOC = L14;
NET "C_to_print[7]" LOC = P11;
NET "C_to_print[6]" LOC = P12;

NET "C_to_print[6]" LOC = N12;

NET "C_to_print[4]" LOC = P13;
NET "C_to_print[3]" LOC = N14;
NET "C_to_print[2]" LOC = L12;
NET "C_to_print[1]" LOC = P14;
# PlanAhead Generated physical constraints
NET "C_to_print[0]" LOC = K12;
```

Рисунок 6 – Результат распиновки

В САПР ISE выполнить автоматический синтез технологической схемы, размещение и трассировку полученного устройства на кристалле.

Результат представлен на рисунке 7.

main Project Status (01/13/2025 - 22:15:59)							
Project File:	l1.xise	l1.xise		Parser Errors: N		No Errors	
Module Name:	main	I	mplementation State:		Programm	ning File Generated	
Target Device:	xc3s200-5ft256		• Errors:		No Errors		
Product Version:	ISE 14.7		• Warnings:		No Warnir	ngs	
Design Goal:	Balanced		• Routing Results:		All Signals	s Completely Routed	
Design Strategy:	Xilinx Default (unlocked	1)	• Timing Constraints:		All Constr	aints Met	
Environment:	System Settings		• Final Timing Score:		0 (Timing	Report)	
	·						
		Davida - Hallissalas	C				r
		Device Utilization	-				Ŀ
Logic Utilization	gic Utilization		Available	Utilization		Note(s)	
Number of Slice Flip Flops		61	3,840	1%			
Number of 4 input LUTs		39	3,840	3,840 1%			
Number of occupied Slices		49	1,920		2%		
Number of Slices containing or	nly related logic	49	49	100%			
Number of Slices containing ur	nrelated logic	C	49	0%			
Total Number of 4 input LUTs		90	3,840	2%			
Number used as logic		39					
Number used as a route-thru		51					
Number of bonded IOBs		17	173	9%			
Number of BUFGMUXs		1	. 8	12%			
Average Fanout of Non-Clock Nets		2.61					

Рисунок 7 – Design Summary

Выполнить программирование макетной ПЛИС Spartan3 отладочного набора XC3S200 или Nexys2.

Результаты тестирования в виде таблицы приведены в таблице 5.

Таблица 5 – Результаты тестирования

Номер	Ожидаемый результат	Полученный результат
теста		
1	При нажатии кнопки происходит	При нажатии кнопки происходит
	увеличение значения на 1 на	увеличение значения на 1 на
	семисегментом индикаторе	семисегментом индикаторе
2	При нажатии и удерживании	При нажатии и удерживании кнопки
	кнопки в течении 10 секунда	в течении 10 секунда происходит
	происходит увеличение значения	увеличение значения на 7-
	на 7-сегментном индикаторе на 1	сегментном индикаторе на 1
3	При нажатии кнопки 22 раза на 7-	При нажатии кнопки 22 раза на 7-
	сегментном индикаторе	сегментном индикаторе
	отображается значение 22	отображается значение 22

Вывод

В ходе лабораторной работы были закреплены на практике теоретические сведения, полученных при изучении методики проектирования цифровых устройств на основе программируемых логических интегральных схем (ПЛИС) и получены необходимые навыки работы с системой автоматизированного проектирования ISE WebPack устройств на основе ПЛИС фирмы Xilinx. А также были изучены аппаратные и программные средства моделирования, макетирования и отладки устройств на основе ПЛИС.