Secure Hash Algorithm SHA-256

Chi Trung Nguyen *T-Systems*

18. Juni 2012

INHALT

EINFÜHRUNG

Was ist ein Hash?

GESCHICHTE

GESCHICHTE

SHA

SHA-0

SHA-1

SHA-2

eig

IMPLEMENTIERUNG

Algorithmus Pseudocode

ANWENDUNG

Verwendungszweck Sicherheitslücken

AUSBLICK

SHA-3

▶ deutsch: "zerhacken", "verstreuen"

Was ist ein Hash?

- ► deutsch: "zerhacken", "verstreuen"
- ► Hashfunktion oder Streuwertfunktion erstellt aus beliebiger großer Quellmenge eine immer gleich große Zielmenge

$$f(x) = f(x')$$

Was ist ein Hash?

- ► deutsch: "zerhacken", "verstreuen"
- ► Hashfunktion oder Streuwertfunktion erstellt aus beliebiger großer Quellmenge eine immer gleich große Zielmenge

$$f(x) = f(x')$$

► Item C

SHA ALLGEMEIN

► 1993 vom National Institute of Standards(NIST) als ein U.S. Federal Information Processing Standard (FIPS) veröffentlicht

SHA ALLGEMEIN

- ► 1993 vom National Institute of Standards(NIST) als ein U.S. Federal Information Processing Standard (FIPS) veröffentlicht
- ► Gruppe von kryptologischer Hashfunktionen
 - ► SHA-0
 - ► SHA-1
 - ► SHA-2
 - ► SHA-3

SHA-0

► Item A

- ► Item A
- ► Item B
 - ▶ Subitem 1
 - ► Subtem 2
- ► Item C

AUSBLICK

0

GESCHICHTE

00000

AUSBLICK

0

SHA-2

Tabelle: Secure Hash Algorithmus Eigenschaften

Algorithmus	Message Size(bits)	Block Size(bits)	Word Size(bits)	Message Digest Size(bits)
SHA-1	< 2 ⁶⁴	512	32	160
SHA-224	$< 2^{64}$	512	32	224
SHA-256	$< 2^{64}$	512	32	256
SHA-384	< 2128	1024	64	384
SHA-512	$< 2^{128}$	1024	64	512

$$Ch(E, F, G) = (E \land F) \oplus (\neg E \land G)$$

$$Ma(A, B, C) = (A \land B) \oplus (A \land C) \oplus (B \land C)$$

$$\Sigma_0 = (A \ggg 2) \oplus (A \ggg 13) \oplus (A \ggg 22)$$

$$\Sigma_1 = (A \ggg 6) \oplus (A \ggg 11) \oplus (A \ggg 25)$$

ANWENDUNG

AUSBLICK

0

VERWENDUNGSZWECK

► Digitale Zertifikate und Signaturen

VERWENDUNGSZWECK

- ► Digitale Zertifikate und Signaturen
- ► Passwortverschlüsselung
 - ▶ pam_unix: sha2, md5
 - ► htpasswd(Apache): sha1, md5
 - ► MySQL: sha1

VERWENDUNGSZWECK

- ► Digitale Zertifikate und Signaturen
- ► Passwortverschlüsselung
 - ▶ pam_unix: sha2, md5
 - ► htpasswd(Apache): sha1, md5
 - ► MySQL: sha1
- ▶ Prüfsummen bei Downloads

ANWENDUNG

SICHERHEITSLÜCKEN & ANGRIFFSVEKTOREN

GESCHICHTE

AUSBLICK