Lab 2D: Norms

2018/10/15 李岳洲

Review

Vector Norms

• 1-norm:

$$||x||_1 = \sum_{i=1}^n |x_i|$$

• 2-norm:

$$\left|\left|x
ight|
ight|_2 = \left(\sum_{i=1}^n \left|x_i
ight|^2
ight)^{1/2} = \sqrt{\mathbf{x^T}\mathbf{x}}$$

• ∞ -norm:

$$||x||_{\infty}=\max_{i=1,...,n}|x_i|$$

• p-norm:

$$\left|\left|x
ight|
ight|_p = \left(\sum_{i=1}^n \left|x_i
ight|^p
ight)^{1/p}$$

Matrix Norms

$$A = egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

• 1-norm:

$$||A||_1 = \max_{1 \leq j \leq n} \sum_{i=1}^m |a_{ij}|$$
 (The maximum of the column sum.)

• 2-norm:

$$||A||_2 = \max_{x
eq 0} rac{||Ax||_2}{||x||_2}$$

• ∞ -norm:

$$||A||_{\infty} = \max_{1 \leq i \leq m} \sum_{j=1}^{n} |a_{ij}|$$
 (The maximum of the row sum.)

Recall

Polar coordinate system:

$$egin{aligned} P(x,y) &
ightarrow P(r, heta) \ & & x
ightarrow r\cos(heta) \ & & y
ightarrow r\sin(heta) \end{aligned}$$

Hands On

- Define a vector theta (θ) of 200 equally spaced values from 0 to π .
- Define the vector x and y as $\cos(\theta)$ and $\sin(\theta)$. (without using any loops)
- Plot x and y.

- Let A = magic(2).
- For each j, define the vector $v = [x_j \ y_j]^T$, and compute u = Av.
- Plot all u.
- Store the vector $||u||_2$ for all j.

$$\left|\left|x
ight|
ight|_2 = \left(\sum_{i=1}^n \left|x_i
ight|^2
ight)^{1/2} = \sqrt{\mathbf{x^T}\mathbf{x}}$$

- Plot $||u||_2$.
- Set x-axis as θ and y-axis as $||u||_2$ or $||Av||_2$.

- ullet Use format long and max to compute the maximum value of $||u||_2$.
- Compute estimate as the norm $||A||_2$.
- Use norm (A, 2) to compute actual as the actual value of the norm $||A||_2$.

Recall:

$$||A||_2 = \max_{x
eq 0} rac{||Ax||_2}{||x||_2}$$

```
estimate =

5.116671165042550

actual =

5.116672736016928
```

- Define x and y be the unit vectors in the ∞ -norm.
- Plot x and y.
- Set x-label, y-label and title.

- Repeat Step 2.
- Let A = magic(2).
- For each j, define the vector $v = [x_j \ y_j]^T$, and compute u = Av.
- Plot all u.
- Store the vector $||u||_{\infty}$ for all j.

$$\left|\left|x
ight|
ight|_{\infty}=\max_{i=1,...,n}\left|x_{i}
ight|$$

- Plot $||u||_{\infty}$ for all j.
- ullet Set x-axis as the index \exists and y-axis as $||u||_{\infty}$ or $||Av||_{\infty}$.

- Compute estimate_inf as the norm $||A||_{\infty}$.
- Compute actual_inf as the actual value of the norm $||A||_{\infty}$.

Recall:

$$\left|\left|A
ight|
ight|_{\infty}=\max_{1\leq i\leq m}\sum_{j=1}^{n}\left|a_{ij}
ight|$$

```
estimate_inf =
    6
actual_inf =
    6
```

What We Learned?

What We Leanered?

• How to compute the vector norm and the matrix norm in MATLAB.

Questions or comments?