1. (__ /3 pts) Complete the statement of the pumping lemma below.

If A is a regular language, then there is a number p, the purple length, where if $\triangle \in A$ has length at least p, then we may write $\triangle = xyz$ satisfying the following conditions:

- for each $i \geq 0$, $\chi q^i \not\in A$,
- <u>|y| > 0</u>, and
- · lxyl >p.
- 2. Answer the following questions about the proof of the pumping lemma.
 - (a) $(_/2 \text{ pts})$ Why is p taken to be the number of states of a given finite automaton recognizing a given regular language?

Any string of largth p or greater is gravanteed to pass through some state of the machine more than once by the pigeon-hole principle.

(b) ($_$ /2 pts) How is the substring y chosen?

Let q' be the first repreted state in the machine. The string y is the string of characters that lead from q' back to q'.

3. (__ /3 pts) Let $A = \{ww^{\mathcal{R}} \mid w \in \{a, b\}^*\}$, where $w^{\mathcal{R}}$ is the reverse string of w. Write a formal proof that A is not regular using the pumping lemma.

By very of contradiction, suppose A is regular. We may apply the pumping lumina to $J = aPbbaP \in A$, where p is the pumping length of A. Therefore, J = xyZ where $y \neq E$ and $|xy| \leq p$. This implies $y = a^k$ with $k \approx 1$. Note that xy^2Z has no be on the left-half of the string, so therefore cannot be written as ww. Contradiction.