Zadania przygotowawcze do kolokwium

Uwaga: Wśród poniższych zadań nie ma nic o warunkowej wartości oczekiwanej i jest tylko jedno zadanie na CTG. Zagadnienia te są poruszane w zadaniach na trzecią kartkówkę.

- 1. Dany jest ciąg (X_n) zmiennych losowych, taki, że $\mathbb{P}(\lim_{n\to\infty} X_n = -\infty) = p$, $\mathbb{P}(\lim_{n\to\infty} X_n = 0) = q$, $\mathbb{P}(\lim_{n\to\infty} X_n = \infty) = r$, przy czym p+q+r=1. Zbadać asymptotyczne zachowanie się ciągu dystrybuant X_n . Czy (X_n) jest zbieżny według rozkładu?
- **2.** Dane są ciągi (X_n) , (Y_n) zmiennych losowych, przy czym (X_n) oraz $(X_n + Y_n)$ są zbieżne według rozkładu.
 - a) Czy (Y_n) jest zbieżny według rozkładu?
- b) Jaka jest odpowiedź w a), jeśli założymy, że dla każdego $n \geq 1$ zmienne X_n oraz Y_n są niezależne?
- **3.** Dane są ciągi (X_n) , (Y_n) zmiennych losowych, przy czym (X_n) jest zbieżny według rozkładu do X i $\mathbb{P}(\lim_{n\to\infty}Y_n=\infty)>0$.
 - a) Udowodnić, że ciąg $(X_n + Y_n)$ nie jest zbieżny według rozkładu.
- b) Udowodnić, że jeśli $\mathbb{P}(X \neq 0) = 1$, to $(X_n Y_n)$ nie jest zbieżny według rozkładu.
- 4. Niech (X_n) będzie ciągiem niezależnych zmiennych losowych o rozkładzie Cauchy'ego. Wyznaczyć gęstość zmiennej losowej

$$\frac{X_1 + X_2 + \ldots + X_{100}}{10}.$$

- 5. Załóżmy, że φ jest funkcją charakterystyczną pewnego rozkładu w $\mathbb{R}.$ Czy wynika stąd, że
 - a) $\text{Re}\varphi + \text{Im}\varphi$,
 - b) $e^{\varphi 1}$,
 - c) $e^{\varphi^4 1}$,
 - d) $\frac{2}{\varphi^2+1}$,

jest funkcją charakterystyczną pewnego rozkładu na prostej?

- **6.** Dane są ciągi (X_n) , (Y_n) zmiennych losowych, przy czym dla $n \geq 1$ zmienne X_n oraz Y_n są niezależne, X_n ma rozkład Poissona z parametrem 1+2/n, a Y_n ma rozkład jednostajny na odcinku [-n,n+2]. Czy ciągi $(2^{Y_n/n}X_n)$, $(X_n+e^{-Y_n^2})$ są zbieżne według rozkładu? Dla jakich wartości parametru $\alpha \in \mathbb{R}$, ciąg $(\frac{X_n+Y_n}{n^{\alpha}})$ jest zbieżny?
- 7. Zmienne losowe (ε_n) są niezależne i mają ten sam rozkład $\mathbb{P}(\varepsilon_n=-1)=\mathbb{P}(\varepsilon_n=1)=1/2.$ Czy ciąg

$$\frac{\sum_{i < j \le n} \varepsilon_i \varepsilon_j}{n}, \qquad n = 2, 3, \dots,$$

jest zbieżny według rozkładu? Jeśli tak, wyznaczyć rozkład graniczny.