Hypothesis testing for two samples

Giorgio Corani - (IDSIA, SUPSI)

Bayesian Data Analysis and Probabilistic Programming

Credits

■ The examples are mostly from D. P. Montgomery, *Introduction to Statistical Process Control*, 6th Edition, Wiley.

How to compare two populations

- The first population has mean μ_1 and variance σ_1^2 .
- The second population has mean μ_2 and variance σ_2^2 .

How to compare two populations

- lacksquare The sample sizes are n_1 e n_2 .
- We assume the samples of the populations to be *independent* from each other.

The assumption of equal variances

- We assume $\sigma_1^2 = \sigma_2^2$.
- This allows estimating σ^2 as a weighted average of s_1^2 e s_2^2 . This is generally more accurate than estimating the two variances separately.

Comparing the mean of two populations

■ The two-tailed test is:

$$H_0 \ : \mu_1 = \mu_2$$

$$H_1 \ : \mu_1 \neq \mu_2$$

Comparing the mean of two populations

We have:

- $\blacksquare \ \bar{x}_1$ e \bar{x}_2 : empirical means of the two samples
- \blacksquare s_1^2 e s_2^2 : empirical variances of the two samples.

Sampling distribution of $\bar{x}_1 - \bar{x}_2$

- It is the distribution of $\bar{x}_1 \bar{x}_2$ if we extract many times two samples of size n_1 e n_2 from the two populations.
- Assuming
 - $\sigma_1^2 = \sigma_2^2 = \sigma^2$.
 - $\blacksquare \ n_1 > 10$ and $n_2 > 10$, to have the normality of \bar{x}_1 e \bar{x}_2):

$$\bar{x}_1 - \bar{x}_2 \sim N\left(\mu_1 - \mu_2, \sigma^2\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\right)$$

Test statistic, assuming σ to be known

Given:

$$\bar{x}_1 - \bar{x}_2 \sim N\left(\mu_1 - \mu_2, \sigma^2\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\right)$$

under H_0 we have:

$$\frac{\bar{x}_1 - \bar{x}_2 - \overbrace{(\mu_1 - \mu_2)}^{\text{assumed 0 by } H_0}}{\sigma \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{\bar{x}_1 - \bar{x}_2}{\sigma \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim N(0, 1)$$

 \blacksquare Yet, σ is unknown and we cannot use this statistic.

■ The statistic of the *t*-test is:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

- \blacksquare It follows a t distribution with (n_1+n_2-2) degrees of freedom.
- \blacksquare s_p replaces $\sigma.$ Thus, the statistic only requires information from the samples.

Pooled variance

■ We estimate σ^2 as a weighted average of s_1^2 and s_2^2 :

$$\begin{split} s_P^2 &= \frac{(n_1-1)}{n_1+n_2-2} \cdot s_1^2 + \frac{(n_2-1)}{n_1+n_2-2} \cdot s_2^2 \\ s_P &= \sqrt{s_P^2} \end{split}$$

- $\blacksquare s_P^2$: pooled variance:
 - the weight are ~ proportional to the sample sizes (actually, they are proportional to the degrees of freedom).
 - $\qquad \text{if } n_1=n_2, s_p^2 \text{ is the simple mean of } s_1^2 \text{ and } s_2^2.$

The test statistic

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

- $\blacksquare \ \bar{x}_1 \bar{x}_2$ is the sample estimate of $\mu_1 \mu_2.$
- $lacksquare s_P\sqrt{rac{1}{n_1}+rac{1}{n_2}}$ is the standard error of $ar{x}_1-ar{x}_2$, i.e., a measure of how the estimate $ar{x}_1-ar{x}_2$ is spread around the actual value of $\mu_1-\mu_2$
- Practical interpretation of the standard error: $\mu_1 \mu_2$ lies with probability 95% in the interval $\bar{x}_1 \bar{x}_2 \pm 2$ standard errors.

Rejection region

■ The rejection region is a set of values of the test statistic for which the null hypothesis is rejected.

Two-tailed test

- $\blacksquare H_0: \mu_1 = \mu_2$
- $\blacksquare \ H_1: \mu_1 \neq \mu_2$
 - \blacksquare Rejection region: $t_0 < t_{n_1+n_2-2,\alpha/2}$ e $t_0 > t_{n_1+n_2-2,1-\alpha/2}$
 - Each tails contains probability $\alpha/2$

Right-tailed test

- $\blacksquare H_0: \mu_1 \le \mu_2$
- $\blacksquare H_1: \mu_1 > \mu_2$
 - The most positive values of the statistic support H_1 .
 - \blacksquare Rejection region: $t_0>t_{n_1+n_2-2,\alpha}$ (contains probability α).

Left-tailed test

- $\blacksquare \ H_0: \mu_1 \geq \mu_2$
- $\blacksquare H_1 : \mu_1 < \mu_2$
 - The most negative values of the statistic support H_1 .
 - \blacksquare Rejection region: $t_0 < -t_{n_1+n_2-2,\alpha}$ (contains probability α)

Example: comparing mean yields of catalysts

- Two catalysts are being compared: catalyst 1 is currently in use.
- Catalyst 2 is cheaper: it should be adopted, providing it does not change the process yield.
- An experiment is run in the pilot plant and results are in the next slide. Is there any difference between the mean yields?
- The two-tailed test is:

$$H_0: \mu_1 = \mu_2$$

$$H_1: \mu_1 \neq \mu_2$$

Comparing mean yields of catalysts

$$\begin{array}{ll} n_1 = 8 & n_2 = 8 \\ \bar{x}_1 = 92.25 & s_1 = 2.39 \\ \bar{x}_2 = 92.73 & s_2 = 2.98 \end{array}$$

■ We adopt α =0.05.

Comparing mean yields of catalysts

 \blacksquare Since $n_1=n_2, s_p^2$ is the average of s_1^2 and s_2^2 :

$$s_p^2 = \frac{7}{14}s_1^2 + \frac{7}{14}s_2^2 = \frac{2.39^2 + 2.98^2}{2} = 7.3$$

$$s_p = \sqrt{s_p^2} = \sqrt{7.3} = 2.7$$

Statistic and critical values

$$t_0 = \frac{x_1 - x_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
$$= \frac{92.25 - 92.73}{2.7 \sqrt{\frac{1}{8} + \frac{1}{8}}}$$
$$= -0.35$$

■ The critical values are $\pm t_{.975,14} = \pm 2.145$.

Decision

■ The statistic is in *non-rejection* region: we do not have strong evidence that the mean yield of the two catalysts is different.

Decision

Recall that the frequentist test can either:

- reject the null hypothesis (strong decisions)
- not reject (fail to reject) the null hypothesis (weak decisions)

Failing to reject H_0 implies that we have not found sufficient evidence to reject H0, that is, to make a strong statement. Failing to reject H0 does not necessarily mean that there is a high probability that H0 is true. It may simply mean that more data are required to reach a strong conclusion. (Montgomery, 9.1.2)

Confidence interval (CI) of $\mu_1 - \mu_2$

■ The CI contains the plausible values of $\mu_1 - \mu_2$:

$$\bar{x}_1 - \bar{x}_2 \pm t_{1-\alpha/2, n_1+n_2-2} \cdot s_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

- $t_{1-\alpha/2,n_1+n_2-2}$: quantile $(1-\alpha/2)$ of the t distributon with (n_1+n_2-2) degrees of freedom; it is the critical value of the test.
- $\blacksquare \ s_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ is the standard error of $(\bar{x}_1 \bar{x}_2)$

CI vs hypothesis test

Consider the null hypothesis $\mu_1 = \mu_2$.

- If the two-tailed test fails to reject H_0 , the CI contains 0.
- \blacksquare If the two-tailed test rejects H_0 the CI does not contain 0.

Confidence interval (CI)

■ The degrees of freedom are 8-1+8-1 = 14

$$\overbrace{\bar{x}_1 - \bar{x}_2 \pm t_{.975,14} \cdot s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} }^{\text{sd error}}$$

$$(92.25 - 92.73) \pm 2.145 \cdot 2.7 \sqrt{\frac{1}{8} + \frac{1}{8}} = (-3.38, 2.42)$$

- lacksquare 0 is a plausible value for $\mu_1-\mu_2$, as it is within the CI.
- Indeed the test does not refuse H_0 .

Example of one-tailed test

- A study reports the weight of calcium in standard cement and cement doped with lead, after a stress test.
- Reduced levels of calcium imply low hydration in the cement, possibly allowing water to attack various the cement structure.
- The dopes cement is more expensive, and we want evidence $(\alpha$ =0.05) of its higher performance compared to standard cement.

One-tailed test

lacktriangle The alternative hypothesis H_1 is what we try to demonstrate (*doped* cement has higher performance).

$$\begin{split} H_0: \mu_{\text{standard}} &\geq \mu_{\text{doped}} \\ H_1: \mu_{\text{standard}} &< \mu_{\text{doped}} \end{split}$$

Data

$$\begin{split} n_{\mathrm{standard}} &= 10 \\ \bar{x}_{\mathrm{standard}} &= 87.0 \\ s_{\mathrm{standard}} &= 5.0 \\ \\ n_{\mathrm{doped}} &= 15 \\ \bar{x}_{\mathrm{doped}} &= 90.0 \\ \\ s_{\mathrm{doped}} &= 4.0 \end{split}$$

Test statistic

$$\begin{split} s_P^2 &= \frac{9 \cdot (5)^2 + 14 \cdot (4)^2}{10 + 15 - 2} = 19.52 \\ s_P &= \sqrt{19.52} = 4.4 \end{split}$$

The statistic is:

$$\begin{split} t_0 &= \frac{x_{\rm standard} - x_{\rm doped}}{s_p \sqrt{\frac{1}{n_{\rm standard}} + \frac{1}{n_{\rm doped}}}} \\ &= \frac{87 - 90}{4.4 \sqrt{\frac{1}{10} + \frac{1}{15}}} = -1.67 \end{split}$$

Rejection region

- \blacksquare If $\bar{x}_{\rm doped} > \bar{x}_{\rm standard},$ the statistic is negative and thus in favor of $H_1.$
- \blacksquare Actually we reject H_0 if $t_0 < t_{0.05,23} = -1.71.$
- The statistic (-1.67) is in rejection region: there is no strong evidence that doped cement performs better than standard cement.

Comparing two proportions

Hypothesis test for two proportions

- The term success and failure refer to the outcome being 1 or 0.
- We denote by π_1 e π_2 the proportion of successes in two populations.
- We want to check whether π_1 e π_2 are significantly different.
- \blacksquare π_1 e π_2 cannot be observed.
- We observe instead the *sample* proportions, $p_1 = \frac{X_1}{n_1}$ and $p_2 = \frac{X_2}{n_2}$.

Comparing two proportions

- We have two samples of size n_1 e n_2 , containing X_1 and X_2 successes.
- The two-tailed test is:

$$\begin{split} H_0 \ : \pi_1 &= \pi_2 \\ H_1 \ : \pi_1 \neq \pi_2 \end{split}$$

The test statistic

$$Z = \frac{(p_1 - p_2)}{\sqrt{\bar{p}(1 - \bar{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

with:

$$\bar{p} = \frac{X_1 + X_2}{n_1 + n_2}$$

The test statistic

- If both samples contains at least 5 successes and failures, p_1-p_2 is approximately normal.
- $\blacksquare \ \ \mathsf{Under} \ H_0, \pi_1 = \pi_2 = \pi.$

$$\begin{aligned} p_1 - p_2 &\sim N(0, \sqrt{\pi(1-\pi)(\frac{1}{n_1} + \frac{1}{n_2})}) \\ Z &\sim N(0, 1) \end{aligned}$$

Sampling distribution of the test statistic

■ If we extract many times two samples of size n_1 and n_2 from two populations with $\pi_1=\pi_2$ and compute the statistic, it will be different every time, following approximately a N(0,1) distribution.

Rejection regions

H_1	Rejection region	p-value
$\pi_1 \neq \pi_2$	$z < z_{\alpha/2} \ \mathrm{e} \ z > z_{1-\alpha/2}$	$2(1-\Phi(z))$
$\pi_1 > \pi_2$	$z>z_{1-\alpha}$	$1-\Phi(z)$
$\pi_1 < \pi_2$	$z < z_{\alpha}$	$\Phi(z)$

Cl of $\pi_1 - \pi_2$

- If we extract many times two samples of size n_1 and n_2 from two populations with $\pi_1=\pi_2$ and compute the CI, it will contain the actual value of $\pi_1-\pi_2$ in $(1-\alpha)$ of the experiments.
- The CI is:

$$p_1 - p_2 \pm z_{1-\alpha/2} \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

■ The CI and the two-tailed test approximate differently the standard error and they might sometimes draw inconsistent conclusions.

Example: assess the effect of a process innovation

- From a traditional production process we have 262 boards, of which 154 without any defect.
- From a innovative production process we have 227 boards, of which 163 without any defect.
- Is the new process significantly more accurate than the previous one?

Comparing the two proportions

- We take as success the board being without any defect.
- Both samples contain more than 5 successes and 5 failures; the normal approximation is sound.
- The test is:

$$\begin{split} H_0 \ : \pi_{\text{new}} & \leq \pi_{\text{old}} \\ H_1 \ : \pi_{\text{new}} & > \pi_{\text{old}} \end{split}$$

 \blacksquare and we use $\alpha = 0.01$.

Comparing the two proportions

- \blacksquare The rejection region contains positive values of $p_{\rm new}-p_{\rm old}$ and thus also of the statistic.
- Rejection region: $Z_0 > \Phi^{-1}(.99)$ = 2.33

Comparing the two proportions

$$\begin{split} p_{\text{new}} &= 163/227 = 0.72 \\ p_{\text{old}} &= 154/262 = 0.59 \\ \bar{p} &= (163+154)/(227+262) = 0.65 \\ Z &= \frac{p_{\text{new}} - p_{\text{old}}}{\sqrt{\bar{p} \cdot (1-\bar{p}) \cdot 1/n}} = 3.01 > 2.33 \end{split}$$

- We reject H_0 .
- Frequentist tests do not allow however modelling any prior knowledge.

Beauty and sex ratio

Keep in mind these example, we will re-analyze the data in a later lecture using a Bayesian approach.

Taken from: > Chap. 9.4 of "Regression and other stories", A. Gelman, J. Hill, A. Vehtari

- Book published from Cambridge University Press (2020).
- The book is also freely available online.

Beauty and sex ratio

- A researcher analyzed data from a survey of 3000 Americans and observed a correlation between attractiveness of parents and the sex of their children.
- Among the 3000 couple of parents, 300 are classified as highly attractive.
- The proportion of girls among the children of "highly attractive" parents is 56% (X=168, n=300).
- The proportion of girls among the children of "standard" parents is 48% (X=1296, n=2700).

Is the difference significant?

The test is:

$$H_0 \ : \pi_{\mathsf{attr}} \leq \pi_{\mathsf{std}}$$

$$H_1\ : \pi_{\mathsf{attr}} > \pi_{\mathsf{std}}$$

Is the difference significant?

$$\begin{split} p_{\text{attr}} &= 0.56 \\ p_{\text{std}} &= 0.48 \\ \bar{p} &= \frac{168 + 1296}{300 + 2700} = 0.488 \\ \text{sd err} &= \sqrt{\bar{p} \cdot (1 - \bar{p}) \cdot (\frac{1}{n_1} + \frac{1}{n_2})} = 0.03 \\ Z &= \frac{p_{\text{new}} - p_{\text{old}}}{\text{sd err}} = 2.63 > 2.33, \end{split}$$

where 2.33 is the 99-th quantile (α =0.01).

■ The difference in the proportion of girls between the two groups is statistically *significant*.