

Aprenda Pensamento Computacional e Scratch!

AULA 01

Maristela Terto de Holanda (Prof.ª Dr.ª) Vinícius Aguiar Monteiro (Graduando)

SOBRE NÓS

Somos o CODIFICO, um projeto de extensão da Universidade de Brasília (UnB), coordenado pela Profa. Dra. Maristela Terto de Holanda, que tem como objetivo o ensino do Pensamento Computacional e da primeira linguagem de programação para os estudantes de escolas públicas do Distrito Federal.

E vocês? Quem são?

> Conteúdo Programático

Item	Conteúdo	Carga Horária	
Módulo I	Pensamento computacional	2h	
Módulo II	Scratch	8h	
	TOTAL:	10h	

> Módulo I

Conteúdo	Descrição	CH (h)			
Módulo I					
Introdução do curso e ambientação	Apresentar o curso e conhecer os estudantes				
Pensamento computacional	Apresentar o significado de Pensamento Computacional				
Pilares do pensamento computacional	Descrever os quatro pilares para o pensamento computacional	2			
Fluxograma	Apresentar Conceitos de fluxograma e exemplos				
Pseudocódigo	Apresentar Conceitos de pseudocódigo e exemplos				
	TOTAL:	2h			

> Módulo II - Parte I

Conteúdo	Descrição	CH (h)		
MÓDULO II – PARTE I				
ntrodução à programação e utilização do Scratch	Apresentar a programação para resolução de tarefas cotidianas para os alunos, o ambiente de programação Scratch e os diferentes tipos de comandos para criação de cenários			
Conceitos de algoritmos e criação de figuras e efeitos visuais e sonoros com Scratch	e Apresentar os conceitos de algoritmos, descrição narrativas de			
Procedimentos	Apresentar e Implementar procedimentos em Scratch e técnicas para construção de comandos			
Variáveis	Apresentar e Implementar tipos de dados no Scratch, criar e manipular dados			
	TOTAL:	4H		

> Módulo II - Parte II

Conteúdo	Descrição CI	CH (h)		
MÓDULO II – PARTE II				
Estruturas de decisão	Apresentar e Implementar técnicas para resolução de problemas, uso dos comandos de seleção e fluxo de controle	2		
Estruturas de repetição	Apresentar e Implementar estruturas de repetição para execução de comandos eficientes e variáveis de controle			
Processamento de strings	Processamento de strings Apresentar e Implementar técnicas para processamento de strings			
Finalização do trabalho	Finalização do trabalho Finalizar o projeto			
	TOTAL:	4H		

> Regras e Orientações

- Caso tenha dúvidas, pergunte na hora
- Pergunte sempre que tiver dúvidas
- A interação de vocês é a chave do aprendizado
- Toda aula terá lista de chamada
- Fiquem livres para pesquisarem por fora
- As aulas ocorrerão pelo presencialmente no laboratório da escola
- Aulas toda segunda-feira, das 14h às 16h, do dia 02/05/2022 até 30/05/2022
- O material de apoio e atividades estarão no Google Drive
- Iremos realizar sorteios de brindes para quem participar

> Objetivos de Aprendizagem

01 0 que é o Pensamento Computacional

Quatro pilares do pensamento computacional

O3 Aplicar os pilares para resolução de problemas

> Pilares do Pensamento Computacional

Decomposição

Reconhecimento de Padrões

Abstração

O Algoritmo

> Dados

Informação que o computador "guarda" para utilizar depois Ex: pdf, txt, números, imagem, programas (jogos)...

> Decomposição

Dividir (decompor) um problema complexo em problemas menores e mais fáceis de se resolver.

Ex.:

Problema: Estudar para as provas bimestrais

Problemas menores: Estudar cada matéria por vez

Problema: Limpar a casa

Problemas menores: Limpar cada cômodo por vez ou limpar de cima para baixo...

> Decomposição

> DECOMPOSIÇÃO: É HORA DE BRILHAR!

Deem exemplos de como aplicar a

decomposição no seu cotidiano!

> Reconhecimento de Padrões

Análise dos dados e suas características

Observar características em comum

.....

Propor uma solução geral para problemas de mesma característica

> Reconhecimento de Padrões

Ex.:

Qual o próximo número da sequência abaixo:

2, 4, 6, 8, []

Quais características as aves possuem em comum?

Todas possuem: Dois olhos, penas, asas, patas...

> RECONHECIMENTO DE PADRÕES: AGORA É A VEZ DE VOCÊS!

Deem exemplos de como aplicar

o reconhecimento de padrões

no seu cotidiano!

> Abstração

Analisar o "tipo" dos dados

> Abstração

Ex.:

Marcação de trechos de textos em livros

Resenhas/resumos de livros/filmes

Seleção de informações relevantes para nós no cotidiano

Mapas são abstrações do mundo real!

> Analisando os dados de uma turma

> Analisando os dados de uma turma

3º A BLOCO I						
HORÁRIO	SEGUNDA	TERÇA	QUARTA	QUINTA	SEXTA	
07:15 – 8:40	HISTÓRIA	QUÍMICA	HISTÓRIA	MATEMÁTICA	FILOSOFIA	
9:10 – 9:50	BIOLOGIA	MATEMÁTICA	FILOSOFIA	INGLÊS	ED. FÍSICA	
9:50 – 10:30	BIOLOGIA	PORTUGUÊS	FILOSOFIA	INGLÊS	ED. FÍSICA	
11:00 – 12:15	PORTUGUÊS	INGLÊS	BIOLOGIA	QUÍMICA	PORTUGUÊS	

> Analisando os dados de uma turma

3º A BLOCO I (40 alunos) – 08/03/2021						
HORÁRIO	SEGUNDA	TERÇA	QUARTA	QUINTA	SEXTA	
07:15 – 8:40	HISTÓRIA <mark>(Prof. Luiz)</mark>	QUÍMICA <mark>(Prof. José)</mark>	HISTÓRIA <mark>(Prof. Luiz)</mark>	MATEMÁTICA (Prof. Robson)	FILOSOFIA (Prof. Ailton)	
9:10 – 9:50	BIOLOGIA (Prof. A definir)	MATEMÁTICA (Prof. Robson)	FILOSOFIA (Prof. Ailton)	INGLÊS (Prof.ª Mª Clara)	ED. FÍSICA (Prof. Edmo)	
9:50 – 10:30	BIOLOGIA (Prof. A definir)	PORTUGUÊS <mark>(Prof. Lilene)</mark>	FILOSOFIA (Prof. Ailton)	INGLÊS (Prof. ^a M ^a Clara)	ED. FÍSICA (Prof. Edmo)	
11:00 – 12:15	PORTUGUÊS (Prof. Lilene)	INGLÊS (Prof. ^a M ^a Clara)	BIOLOGIA (Prof. A definir)	QUÍMICA <mark>(Prof. José)</mark>	PORTUGUÊS (Prof. Lilene)	

> ABSTRAÇÃO: VOCÊS CONSEGUEM!

Deem exemplos de como aplicar

a abstração e representação de

dados no seu cotidiano!

> Algoritmos

Instruções passo a passo para resolver um problema

Identifica o que deve ser feito e a ordem de execução

```
self.file

self.logdure
self.logdure
self.logdure
self.logdure
self.logdure
self.logdure
self.logdure
self.logdure
self.logdure
self.file
self.file
self.file
self.file
self.file
def from_settings(cls.
debug = settings.ed
fp = self.request
if p in self.file
self.file
self.file
self.file
self.file
self.file
self.file
return request_fingerprint(self.
```

Sim, é aqui que a coisa fica boa!

> Estrutura Básica

ENTRADA PROCESSAMENTO SAÍDA

> Fluxograma

> Assistir a uma aula online

> Chamar a pessoa que você gosta para sair

Condicional com entrada

> ATIVIDADE

Elaborar um fluxograma (algoritmo) para resolver algum problema.

Utilizar os símbolos apresentados na aula.

Utilizar condição e entrada de dados, igual o último exemplo apresentado em aula.

Preferencialmente feito a mão.

Enviar foto da resolução.

Algoritmos: Fluxogramas e Pseudocódigo

> Objetivos de Aprendizagem

Capacidade de elaborar a solução de um problema de maneira esquemática

Habilidade de desenvolvimento de algoritmos utilizando fluxogramas e pseudocódigos

02

> Fluxogramas e Pseudocódigo

> Fluxograma

Esquematização da solução de um problema

> Pseudocódigo

Pré-código em uma linguagem que o computador ainda não entende

"Se debugar é o processo de retirar erros, programar é o processo de adicioná-los" - Edsger Dijkstra

> Calculando a média das notas

MATÉRIA	1º BIM	2º BIM	3º BIM	4º BIM	MÉDIA
PORTUGUÊS	8,20	5,70	6,50	8,40	???
MATEMÁTICA	6,80	7,50	8,50	9,20	???
ED. FÍSICA	8,90	9,00	10,00	9,50	???
HISTÓRIA	7,10	8,20	9,30	10,00	???
INGLÊS	7,00	6,50	8,20	9,00	???
FILOSOFIA	8,20	6,50	5,20	8,00	???
BIOLOGIA	7,50	8,50	8,20	9,30	???
QUÍMICA	8,50	7,50	8,00	6,50	???

> Calculando a média das notas

> Fluxograma

> Calculando a média das notas

> Pseudocódigo

1 Entrada: nota 1. nota 2, nota 3, nota 4
2 Média <- soma(nota 1 + nota 2 + nota 3 + nota 4) /4
3 Saída: Apresentar a média do estudante
4 Parada</pre>

> Calculando a média das notas

PORTUGUÊS

8,20

> Pseudocódigo

```
1 Entrada: nota 1. nota 2, nota 3, nota 4

2 Média <- soma(nota 1 + nota 2 + nota 3 + nota 4) /4

3 Saída: Apresentar a média do estudante

4 Parada

28.80 / 4 = 7.20

MATÉRIA

1° BIM

2° BIM

3° BIM

4° BIM

MÉDIA
```

5,70

6,50

8.40

???

> Procurando o maior valor dentre uma lista de números

MATÉRIA	1º BIM	2º BIM	3º BIM	4º BIM	MÉDIA
PORTUGUÊS	8,20	5,70	6,50	8,40	7,20
MATEMÁTICA	6,80	7,50	8,50	9,20	8,00
ED. FÍSICA	8,90	9,00	10,00	9,50	9,35
HISTÓRIA	7,10	8,20	9,30	10,00	8,65
INGLÊS	7,00	6,50	8,20	9,00	7,68
FILOSOFIA	8,20	6,50	5,20	8,00	6,98
BIOLOGIA	7,50	8,50	8,20	9,30	8,38
QUÍMICA	8,50	7,50	8,00	6,50	7,63

7,20 8,00 9,35 8,65 7,68 6,98 8,38 7,63

> Pseudocódigo

```
1 Entrada: lista de valores e o valor a ser encontrado
2 Maior valor <- primeiro elemento da lista
3 Para cada item na lista:
       Se item > Maior valor:
              Então Maior_valor <- item</pre>
5
6 Saída: Apresentar o Maior_valor encontrado
 Parada
```


CDFC OIIO

$$Maior = 7,20$$

CDFC OIIO

> Em termos gráficos:

8,00 é maior que 7,20? Sim!

CDFC OIIO

CDFC 0110

> Em termos gráficos:

9,35 é maior que 8,00? Sim!

CDFC 0110

$$Maior = 9,35$$

CDFC 0110

> Em termos gráficos:

8,65 é maior que 9,35? Não!

CDFC OIIO

CDFC 0110

> Em termos gráficos:

Maior =
$$9,35$$

7,68 é maior que 9,35? Não!

CDFC OIIO

CDFC 0110

> Em termos gráficos:

Maior =
$$9,35$$

6,98 é maior que 9,35? Não!

CDFC OIIO

CDFC OIIO

> Em termos gráficos:

8,38 é maior que 9,35? Não!

CDFC 0110

CDFC 0110

> Em termos gráficos:

Maior =
$$9,35$$

7,63 é maior que 9,35? Não!

CDFC 0110

> Ordenando 3 elementos

> Ordenar 3 elementos

C D F C

> Pseudocódigo

```
1 Entrada: três elementos
2 Se primeiro_elem > segundo elem:
         Então auxiliar <- primeiro elem
                   primeiro_elem <- segundo_elem</pre>
                   segundo elem <- auxiliar
6 Se segundo elem > terceiro elem:
         Então auxiliar <- segundo elem</pre>
8
                   segundo elem <- terceiro elem
                   terceiro elem <- auxiliar
10 Se primeiro elem > segundo_elem:
         Então auxiliar <- primeiro elem
11
                   primeiro elem <- segundo elem</pre>
12
13
                   segundo elem <- auxiliar
14 Saída: elementos em ordem
15 Parada
```


> Números primos

Qual será o próximo número?

2, 3, 5, 7, 11, 13, 17, 19,

> Números primos

2	3	5	7	11	13	17	19	23	29	31	37	41	43
47	53	59	61	67	71	73	79	83	89	97	101	103	107
109	113	127	131	137	139	149	151	157	163	167	173	179	181
191	193	197	199	211	223	227	229	233	239	241	251	257	263
269	271	277	281	283	293	307	311	313	317	331	337	347	349
353	359	367	373	379	383	389	397	401	409	419	421	431	433
439	443	449	457	461	463	467	479	487	491	499	503	509	521
523	541	547	557	563	569	571	577	587	593	599	601	607	613
617	619	631	641	643	647	653	659	661	673	677	683	691	701
709	719	727	733	739	743	751	757	761	769	773	787	797	809
811	821	823	827	829	839	853	857	859	863	877	881	883	887
907	911	919	929	937	941	947	953	967	971	977	983	991	997

Crédito: https://static.todamateria.com.br/upload/ta/be/tabelaprimos1000.jpg

> É um número primo?

CDFC OIIO

> Pseudocódigo

```
1 Entrada: numero, total = 0, auxiliar = 1
2 Enquanto auxiliar <= numero:</pre>
3
       Se numero % auxiliar = 0:
               Então total = total + 1
       auxiliar = auxiliar + 1
6 Se total = 2:
       Então Saída: Número Primo
8 Senão Saída: Número não é primo
9 Parada
```

> ATIVIDADE

Fazer 1 fluxograma e 1 pseudocódigo para resolver um problema de sua escolha.

Fluxograma:

Observar o que significa cada figura geométrica As setas indicam a ordem de execução e sequência

Pseudocódigo:

Observar a "identação" das linhas A ordem das atividades importa

> Referência bibliográfica:

"Computational Thinking for Problem Solving" - University of Pennsylvania

https://coursera.org/share/0cd6c094004542e5da3f53f100ccdd68

Scratch - https://scratch.mit.edu/

GRATIDÃO!

Caso tenha dúvidas, entre em contato:

codifico.unb@gmail.com

Vinícius: +55(61) 99133-4991

Universidade de Brasília (UnB)

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**

