AI Planning Exercise Sheet 7

AI Planning

Exercise Sheet 7

Date: December 12, 2014

Students: Axel Perschmann, Tarek Saier

Exercise 7.1

(a) $\Pi' = \{V, I, O, \gamma\}$ with

- $V = \{above-a, above-b, above-c, below-a, below-b, below-c\}$ $\mathcal{D}_{above-\Upsilon} = \{A, B, C, n\} \setminus \{\Upsilon\}$ $\mathcal{D}_{below-\Upsilon} = \{A, B, C, t\} \setminus \{\Upsilon\}$ where $\Upsilon \in \{A, B, C\}$
- I(a) = 1 for $a \in \{below b = t, above b = A, above a = n, below c = t, above c = n\}$ I(a) = 0 else
- $O = \{move-X-Y-Z, move-X-Table-Z, move-X-Y-Table\}$ $move-X-Y-Z = \langle (below-X=Y) \land (above-X=n) \land (above-Z=n),$ $(above-Y:=n) \land (below-X:=Z) \rangle$ $move-X-Table-Z = \langle (below-X=t) \land (above-X=n) \land (above-Z=n),$ $(below-X:=Z) \rangle$ $move-X-Y-Table = \langle (below-X=Y) \land (above-X=n),$ $(above-Y:=n) \land (below-X:=t) \rangle$ for pair-wise distinct $X, Y, Z \in \{A, B, C\}$
- $\bullet \ \ \gamma = (above{-}c = B) \land (above{-}a = C)$

And the addition¹ that every $above|below[:]=\Upsilon$ with $\Upsilon \in \{A, B, C\}$ implies its counterpart (e.g. above-A[:]=B also tests/sets below-B[:]=A).

- (b) The induced propositional planning task Π'' is the (regular) planning task $\Pi'' = \langle A', I', O', \gamma \rangle$, where
 - $\begin{array}{l} \bullet \ A' = \{(above-a,B), (abova-a,C), (above-a,n), (above-b,A), (above-b,C), (above-b,n), \\ (above-c,A), (above-c,B), (above-c,n), (below-a,B), (below-a,C), (below-a,t), \\ (below-b,A), (below-b,C), (below-b,t), (below-c,A), (below-c,B), (below-c,t)\} \end{array}$
 - I'((v,d)) = 1iffI(v) = d $I'((v,d)) = 1 \text{ for } (v,d) \in \{below-b,n\}, (above-b,A), (above-a,n), (below-c,t), (above-c,n)\}$

¹to make this a bit less verbose and better readable

AI Planning Exercise Sheet 7

```
 \bullet \ O' = \{ move-X-Y-Z, move-X-Table-Z, move-X-Y-Table \} \\ move-X-Y-Z = \langle (below-X,Y) \land (above-X,n) \land (above-Z,n), \\ (above-Y,n) \land \neg (above-Y,X) \land \\ (below-X,Z) \land \neg (below-X,Y) \rangle \\ move-X-Table-Z = \langle (below-X,t) \land (above-X,n) \land (above-Z,n), \\ (below-X,Z) \land \neg (below-X,t) \rangle \\ move-X-Y-Table = \langle (below-X,Y) \land (above-X,n), \\ (above-Y,n) \land \neg (above-Y,X) \land (below-X,t \land \neg (below-X,Y)) \rangle \\ \end{cases}
```

- $\gamma = (above c, B) \wedge (above a, C)$
- (c) To show: There is an isomorphism between Π'' and Π , therefore Π' and Π are equivalent.

```
\begin{split} f: S \mapsto S'', \text{ with } f(s) = & \text{ replace all valiables } X-on-Y \text{ in s with } \\ & (above-y, X) \wedge (below-x, Y) \text{ and all } \\ & Z-clear \text{ in s with } (above-z, n) \\ g: O \mapsto O'', \text{ with } g(o) = & \text{ replace all valiables } X-on-Y \text{ in o with } \\ & (above-y, X) \wedge (below-x, Y) \text{ and all } \\ & Z-clear \text{ in o with } (above-z, n) \end{split}
```

Since both functions are just a relabeling of variables they have the required properties.

Exercise 7.2

(a) Since both h_1 and h_2 include the blank tile, $h_1 + h_2$ is not admissible. Proof by counterexample:

(b) Goal awareness: for every goal state s_{γ} of the full puzzle, $h_3(s_{\gamma}) = 0$ and $h_4(s_{\gamma}) = 0$. Hence $h_3 + h_4$ is goal aware.

Consistency: since a tile is accounted for in at most one of $\{h_3, h_4\}$, each step necessary to reach the goal counts as either 1 or 0 in $h_3 + h_4$. Therefore $h_3 + h_4$ is consistent. Since it is goal aware and consistent it is admissible.