Nenadzorovano učenje: odkrivanje vzorcev

Ljupčo Todorovski

Univerza v Ljubljani, Fakulteta za upravo Institut Jožef Stefan, Odsek za tehnologije znanja (E-8)

April 2020

Pregled predavanja

Razvrščanje v skupine (clustering)

- Problem razvrščanja v skupine
- Hierarhično razvrščanje v skupine
- Algoritem k-tih voditeljev (k-means)

Povezovalna pravila (association rules)

- Algoritem APRIORI za odkrivanje pogostih množic postavk
- Od pogostih množic postavk do povezovalnih pravil

Nenadzorovano in nadzorovano učenje

Nadzorovano učenje

- Primeri $e \in X_{i=1}^p D_i \times D_Y$, $e = (x, y) = (x_1, x_2, \dots x_p, y), x_i \in D_i, y \in D_Y$
- Rezultat učenja je napovedni model y = m(x)

Nenadzorovano učenje

- Primeri $e \in X_{i=1}^p D_i$ oziroma $e = \mathbf{x} = (x_1, x_2, \dots x_p), x_i \in D_i$
- Rezultat učenja so vzorci

Dva tipa vzorcev

Skupine primerov

- To so množice primerov, ki so si medsebojno podobni
- Algoritmi za razvrščanje v skupine (clustering)

Pogoste množice postavk (freqent itemsets)

- To so vrednosti spremenljivk, ki se pogosto pojavljajo skupaj
- Algoritem APRIORI za odkrivanje pogostih množic postavk
- Algoritem za odkrivanje povezovalnih pravil (association rules)

Problem razvrščanja v skupine

Vhoda

- Učna množica S primerov brez ciljne spremenljivke
- Želeno (pričakovano) število skupin k

Rezultat je razbitje množice S na k (disjunktnih) podmnožic S_i

$$S_i: \bigcup_{i=1}^k S_i = S, \ \forall i,j: S_i \cap S_j = \emptyset$$

Primeri v vsaki podmnožici S so medsebojno kar se da **podobni** (blizu).

Mera razdalje med primeri

$$d(e_1, e_2) = \sum_{i=1}^{p} \delta(x_{1i}, x_{2i})$$

- ullet Pri Evklidski razdalji velja $d(e_1,e_2)=\sqrt{\sum_{i=1}^{p}\delta(x_{1i},x_{2i})}$
- x_{ii} je vrednost spremenljivke X_i za primer e_i

δ je mera razdalje med vrednostmi $\delta:D_i imes D_i o \mathbb{R}_0^+$

Če je X_i numerična, sta običajni izbiri

- Evklidska razdalja $\delta(v_1, v_2) = (v_1 v_2)^2$
- Manhatnska razdalja $\delta(v_1, v_2) = |v_1 v_2|$

Če je X_i diskretna, je običajna izbira $\delta(v_1,v_2)=I(v_1
eq v_2)$

4 D > 4 A > 4 B > 4 B > B = 4 Q Q

Iterativni algoritem za hierarhično razvrščanje

Začetni pogoj

Vsak primer e_i iz učne množice S je v svoji skupini S_i .

Iteracija

- V trenutnem naboru skupin izberimo dve **najbližji**: S_i in S_i
- Izbrani dve skupini zlijemo v eno $S_{ij} = S_i \cup S_j$

Ustavitveni pogoj

- V vsaki iteraciji število skupin zmanjšamo za 1
- ullet Na koncu iteracije |S|-1 dobimo eno skupino, ki je enaka S

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Rezultat: dendrogram (hierarhija skupin)

Višina združevanja na osi *y*

Razdalja med skupinami primerov $\{2,1,5\}$ in $\{10,18\}$ je nekaj manj kot 1.

Kako merimo razdaljo med skupinami (linkage)?

MAX ali complete linkage

$$D(S_1, S_2) = \max_{e \in S_1, f \in S_2} d(e, f)$$

MIN ali single linkage

$$D(S_1, S_2) = \min_{e \in S_1, f \in S_2} d(e, f)$$

MEAN ali average linkage

$$D(S_1, S_2) = \frac{1}{|S_1||S_2|} \sum_{e \in S_1, f \in S_2} d(e, f)$$

Ward-ova razdalja med skupinami (linkage)

Na splošno lahko definiramo razdaljo nove skupine kot

$$D(S_1 \cup S_2, S_3) = \alpha_1 D(S_1, S_3) + \alpha_2 D(S_2, S_3) + \beta D(S_1, S_2) + \gamma |D(S_1, S_3) - D(S_2, S_3)|$$

Za Ward-ovo razdaljo velja

$$\alpha_{i} = \frac{|S_{i}| + |S_{3}|}{|S_{1}| + |S_{2}| + |S_{3}|}$$

$$\beta = -\frac{|S_{3}|}{|S_{1}| + |S_{2}| + |S_{3}|}$$

$$\gamma = 0$$

Tudi prve tri metode lahko pametriziramo na enak način

Za razdaljo MAX velja

$$\alpha_1 = \alpha_2 = \beta = \frac{1}{2}, \ \gamma = 0$$

Za razdaljo MIN velja

$$\alpha_1 = \alpha_2 = \frac{1}{2}, \ \beta = -\frac{1}{2}, \ \gamma = 0$$

Za razdaljo MEAN velja

$$\alpha_i = \frac{|S_i|}{|S_1| + |S_2|}, \ \beta = \gamma = 0$$

Primer podatkov za razvrščanje: dva kroga

Primer dendrograma: MAX, complete

Todorovski, UL-FU Nenadzorovano učenje

April 2020

Od dendrograma do skupin (complete): dve skupini

14 / 54

Todorovski, UL-FU Nenadzorovano učenje April 2020

Dve skupini (complete): podatki

◆□▶◆□▶◆불▶◆불▶ 불 ♡Q(

Od dendrograma do skupin (complete): tri skupine

Todorovski, UL-FU

Tri skupine (complete): podatki

Todorovski, UL-FU

Primer dendrograma: MIN, single

Od dendrograma do skupin (single): dve skupini

Dve skupini (single): podatki

Od dendrograma do skupin (single): tri skupine

Tri skupine (single): podatki

Primer dendrograma: Ward

Od dendrograma do skupin (Ward): dve skupini

Dve skupini (Ward): podatki

Primerjava združitvenih višin

Razvrščanje v skupine kot optimizacijski problem

Najdi razbitje učne množice S na skupine $S_1, S_2, \dots S_k$

$$\underset{S_1,S_2,...S_k}{\operatorname{arg min}} \sum_{i=1}^{k} |S_i| \operatorname{Var}(S_i)$$

Minimiziramo torej varianco primerov znotraj skupin, hkrati (ker je celotna varianca v podatkih konstantna) maksimiramo varianco primerov iz različnih skupin.

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

Iterativni algoritem za optimizacijo (Lloyd)

Začetni pogoj

Primere iz S naključno razdelimo v k skupin, za vsako skupino S_i izračunamo centroid

$$\mu_i = \mathit{Centroid}(S_i) = \frac{1}{|S_i|} \sum_{e \in S_i} e$$

Iteracija iz dveh zaporednih korakov

- Dodelitev (assignment) primerov skupinam
- Posodabljanje (update) centroidov: izračun po zgornji formuli

Ustavitvena pogoja (lahko je izpolnjen le eden)

- V zadnji iteraciji se skupine niso spremenile
- Maksimalno število iteraciji

Korak dodelitve (assignment)

Vsakemu primeru poiščemo najbližji centroid

In nato primer uvrstimo v skupino tega centroida:

$$S_i = \{e : d(e, \mu_i) \leq d(e, \mu_j), \forall j : 1 \leq j \leq k\}$$

Če je primer enako oddaljen od več centroidov, naključno izberemo enega.

Običajna predpostavka za uporabo algoritma Lloyd

Evklidski prostor in razdalje: formula za centroid je prilagojena temu.

Dve skupini (k-means): podatki

←□ → ←□ → ← = → ← = → ○

Tri skupine (k-means): podatki

Štiri skupine (k-means): podatki

Todorovski, UL-FU

Osnovne definicije

Množica vseh postavk $I = \{i_1, i_2, \dots i_p\}$

Predstavlja množico vseh postavk iz katerih so sestavljene transakcije.

Transakcijska baza podatkov T na množici postavk I

- Je množica transakcij $T = \{t_1, t_2, \dots t_n\}$
- Vsaka transakcija je množica postavk $t_i \subseteq I$

Običajni primer

- Postavke so produkti $I = \{jabolka, kruh, mleko, pivo, plenice\}$
- Transakcije so nakupi

4 □ ト 4 □ ト 4 亘 ト 4 亘 ト 9 Q ○

Transakcijska baza podatkov in učna množica

Transakcijska baza podatkov T na I je pravzaprav učna množica S:

- Vsaka postavka $i \in I$ ustreza Boolovi spremenljivki X_i iz S, $D_i = \{0, 1\}$
- ullet Vsaka transakcija $t \in \mathcal{T}$ ustreza enemu primeru iz S
- Vrednost spremenljivke X_i za primer t je $I(i \in t)$

Primer transakcijske baze devetih transakcij v trgovini

	transakcija	jabolka	kruh	mleko	pivo	plenice
t_1	jabolka, kruh, plenice	1	1	0	0	1
t_2	kruh, pivo	0	1	0	1	0
t_3	kruh, mleko	0	1	1	0	0
t_4	jabolka, kruh, pivo	1	1	0	1	0
t_5	jabolka, mleko	1	0	1	0	0
t_6	kruh, mleko	0	1	1	0	0
t ₇	jabolka, mleko	1	0	1	0	0
t_8	jabolka, kruh, mleko, plenice	1	1	1	0	1
t_9	jabolka, kruh, mleko	1	1	1	0	0

Todorovski, UL-FU

Algoritem APRIORI: vhodi in rezultat

Vhodi T, I in ϵ

- Transakcijska baza T na množici postavk I
- Parameter ϵ , ki določa minimalno pogostost množice postavk

Rezultat FreqentItemsets

Množica pogostih množic postavk, ki imajo pogostost $\geq \epsilon$.

Pogostost množice postavk s (tudi podpora, support) v T

$$support(s) = \frac{|\{t \in T : s \subseteq t\}|}{|T|}$$

Pogostost je ocena verjetnosti p(s), da transakcija iz T vsebuje s.

- 4 ロ ト 4 御 ト 4 恵 ト 4 恵 ト 9 Q (*)

Pomembna lastnost pogostosti: anti-monotonost

Vzamemo dve množici postavk s in r

- Naj velja $s \subseteq r$
- Kaj lahko rečemo o support(s) in support(r)?

Poglejmo najprej transakcije T_s in T_r

- $T_s = \{t \in T : s \subseteq t\}$
- $T_r = \{t \in T : r \subseteq t\}$

Očitno velja $s \subseteq r \implies T_r \subseteq T_s$.

Torej, velja anti-monotonost pogostosti

$$s \subseteq r \implies support(s) \ge support(r)$$

Algoritem $APRIORI(T, I, \epsilon) = FrequentItemsets$

- L_k je množica pogostih postavk velikosti k
- ullet C_k je množica kandidatov za pogoste postavke velikosti k

```
function APRIORI(T, I, \epsilon)
 1
         L_1 = \{ pogoste postavke iz I \}
         for k = 2 to |/| do
             C_k = Join(L_{k-1}, L_{k-1})
             C_k = C_k \setminus \{t : (\exists s : s \subset t \land |s| = k - 1 \land s \notin L_{k-1})\}
 4
            for t \in T do
 6
                for s \in \{s : s \in C_k \land s \subseteq t\} do
                   support[s] = support[s] + 1/|T|
            L_k = \{s : s \in C_k \land support[s] > \epsilon\}
 8
 9
            if L_{\nu} = \emptyset then break
10
         return FrequentItemsets = \bigcup_k L_k
```

Todorovski, UL-FU

Algoritem APRIORI: vrstica 1

```
Pogoste postavke L_1 = \{\{i\} : i \in I \land support(\{i\}) \geq \epsilon\}
```

- Za $\epsilon = 20\%$ je $L_1 = \{\{jabolka\}, \{kruh\}, \{mleko\}, \{pivo\}, \{plenice\}\}$
- Saj velja

postavkai				•	•
support(i)	6/9	7/9	6/9	2/9	2/9

Algoritem *APRIORI*: vrstica 3 (k = 2)

```
C_k = Join(L_{k-1}, L_{k-1})
C_k = \{t \cup \{i\} : t \in L_{k-1} \land i \notin t \land \exists s \in L_{k-1} : i \in s\}
```

- ullet Množicam pogostih postavk t iz L_{k-1} dodajamo po eno postavko i
- Postavka i ne sme biti element množice, kamor jo dodamo, $i \notin t$
- Postavka i mora biti element ene od množic L_{k-1}

Elementi $Join(L_1, L_1)$ za primer trgovine

```
{jabolka, kruh}, {jabolka, mleko}, {jabolka, pivo}, {jabolka, plenice}, {kruh, mleko}, {kruh, pivo}, {kruh, plenice}, {mleko, pivo}, {mleko, plenice}, {pivo, plenice}
```

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● ◆9.0°

Algoritem *APRIORI*: vrstica 4 (k = 2)

```
C_k = C_k \setminus \{t : (\exists s : s \subset t \land |s| = k - 1 \land s \notin L_{k-1})\}
```

Pobrišemo vse množice postavk iz C_k , ki imajo vsaj eno podmnožico velikosti k-1, ki ni iz L_{k-1} . ZAKAJ?

Anti-monotonost pogostosti: $s \subset t \implies support(t) \leq support(s)$

Torej: če s ni pogosta množica postavk, potem tudi t ni.

Elementi C_2 za primer trgovine so vsi elementi $Join(L_1, L_1)$ {jabolka, kruh}, {jabolka, mleko}, {jabolka, pivo}, {jabolka, plenice}, {jabolka, pivo}, {jabolka, plenice}, {jabolka, plenice}

4 D > 4 B > 4 E > 4 E > 9 Q C

Algoritem *APRIORI*: vrstice 5-8 (k = 2)

$t \in C_2$	transakcije iz T	support(t)
{jabolka, kruh}	t_1, t_4, t_8, t_9	4/9
{jabolka, mleko}	t_5, t_7, t_8, t_9	4/9
{jabolka, pivo}	t_4	1/9
{jabolka, plenice}	t_4, t_8	2/9
$\{kruh, mleko\}$	t_3, t_6, t_8, t_9	4/9
$\{kruh, pivo\}$	t_2, t_4	2/9
$\{kruh, plenice\}$	t_1, t_8	2/9
{mleko, pivo}		0/9
{mleko, plenice}	t_8	1/9
{pivo, plenice}		0/9

 $L_2 = \{\{jabolka, kruh\}, \{jabolka, mleko\}, \{jabolka, plenice\}, \{kruh, mleko\}, \}$ {kruh, pivo}, {kruh, plenice}}

Algoritem *APRIORI*: vrstica 3 (k = 3)

Elementi $Join(L_2, L_2)$ za primer trgovine

- $\{jabolka, kruh, mleko\} = \{jabolka, kruh\} \cup \{mleko\}$
- $\{jabolka, kruh, plenice\} = \{jabolka, kruh\} \cup \{plenice\}$
- $\{jabolka, mleko, plenice\} = \{jabolka, mleko\} \cup \{plenice\}$
- $\{kruh, mleko, pivo\} = \{kruh, mleko\} \cup \{pivo\}$
- $\bullet \ \{\mathit{kruh}, \mathit{mleko}, \mathit{plenice}\} = \{\mathit{kruh}, \mathit{mleko}\} \cup \{\mathit{plenice}\}$
- $\{kruh, pivo, plenice\} = \{kruh, pivo\} \cup \{plenice\}$

Todorovski, UL-FU

Algoritem *APRIORI*: vrstica 4 (k = 3)

Elementi C_3 za primer trgovine

- {jabolka, kruh, mleko} je, ker so vse podmnožice velikosti 2 v L₂
- { jabolka, kruh, plenice} je; enako kot zgoraj
- $\{jabolka, mleko, plenice\}$ ni, ker $\{mleko, plenice\} \notin L_2$
- $\{kruh, mleko, pivo\}$ ni, ker $\{mleko, pivo\} \notin L_2$
- $\{kruh, mleko, plenice\}$ ni, ker $\{mleko, plenice\} \notin L_2$
- $\{kruh, pivo, plenice\}$ ni, ker $\{pivo, plienice\} \notin L_2$

```
C_3 = \{\{jabolka, kruh, mleko\}, \{jabolka, kruh, plenice\}\}
```

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Algoritem *APRIORI*: vrstice 5-8 (k = 3)

$t \in C_3$	transakcije iz T	support(t)
{jabolka, kruh, mleko}	t_8, t_9	2/9
{ jabolka, kruh, plenice}	t_1, t_8	2/9

$$L_3 = \{\{jabolka, kruh, mleko\}, \{jabolka, kruh, plenice\}\}$$

Todorovski, UL-FU

Algoritem *APRIORI*: vrstici 3 in 4 (k = 4)

Element $Join(L_3, L_3)$ za primer trgovine

 $\{\textit{jabolka}, \textit{kruh}, \textit{mleko}, \textit{plenice}\} = \{\textit{jabolka}, \textit{kruh}, \textit{mleko}\} \cup \{\textit{plenice}\}$

Elementi C_4 za primer trgovine

 $\{jabolka, kruh, mleko, plenice\}$ ni, ker $\{kruh, mleko, plenice\} \notin L_3$

$$C_4 = \emptyset, L_4 = \emptyset$$

Algoritem APRIORI: vrstica 9

```
FrequentItemsets = L_1 \cup L_2 \cup L_3
 = \{\{jabolka\}, \{kruh\}, \{mleko\}, \{pivo\}, \{plenice\}, \{jabolka, kruh\}, \{jabolka, mleko\}, \{jabolka, plenice\}, \{kruh, mleko\}, \{kruh, pivo\}, \{kruh, plenice\}\}
```

Oblika povezovalnih pravil

if B then H

- B je pogoj (telo, body)
- H je posledica (glava, head)
- B in H sta pogosti množici postavk, $B \cap H = \emptyset$

Zaupanje povezovalnega pravila r: if B then H

$$confidence(H, B) = \frac{support(H \cup B)}{support(B)}$$

Zaupanje je ocena pogojne verjetnosti p(H|B), to je da transakcija iz T vsebuje H, pod pogojem, da vsebuje B.

Rudarjenje povezovalnih pravil: vhodi in rezultat

Vhodi T, I, ϵ in μ

- Transakcijska baza T na množici postavk I
- ullet Parameter ϵ , ki določa minimalno pogostost množice postavk
- Parameter μ , ki določa minimalno zaupanje pravila

Rezultat AssociationRules

Množica povezovalnih pravil, ki imajo zaupanje $\geq \mu$.

Algoritem za rudarjenje povezovalnih pravil MAR

```
MAR = MiningAssociationRules
```

```
function MAR(T, I, \epsilon, \mu)

F = APRIORI(T, I, \epsilon)

R = \emptyset

for f in F do

for (H, B) in \{(H, B) : H \subseteq f \land B \subseteq f \land H \cap B = \emptyset\} do

if confidence(H, B) \ge \mu then

R = R \cup \{r : \text{if } H \text{ then } B\}

return AssociationRules = R
```


Algoritem MAR: $f = \{jabolka, kruh, plenice\}$

povezovalno pravilo <i>r</i>	confidence(r)
if $\{jabolka\}$ then $\{kruh, plenice\}$	2/6 = 33%
if $\{kruh\}$ then $\{jabolka, plenice\}$	2/7 = 29%
if $\{plenice\}$ then $\{jabolka, kruh\}$	2/2 = 100%
if { jabolka, kruh} then { plenice}	2/4 = 50%
if { jabolka, plenice } then { kruh }	2/2 = 100%
if $\{kruh, plenice\}$ then $\{jabolka\}$	2/2 = 100%

Vzpon povezovalnih pravil

Vzpon (lift) povezovalnega pravila r: if B then H

$$lift(H,B) = \frac{support(H \cup B)}{support(H) \cdot support(B)}$$

Vzpon je mera (ne)odvisnosti med dogodkoma "transakcija vključuje H" in "transakcija vključuje B"; vzpon 1 nakazuje neodvisnost, višje vrednosti pa odvisnost.

povezovalno pravilo <i>r</i>	confidence(r)	lift(r)
if {plenice} then {jabolka, kruh}	2/2 = 100%	9/4 = 2.25
if $\{jabolka, plenice\}$ then $\{kruh\}$	2/2 = 100%	9/7 = 1.29
if {kruh, plenice} then {jabolka}	2/2 = 100%	9/6 = 1.50

52 / 54

Todorovski, UL-FU Nenadzorovano učenje April 2020

Povezovalna in odločitvena pravila: podobnost in razlike

Podobnost

Oboje enake oblike: if Pogoj then Posledica.

Razlike

- ullet Odločitvena pravila imajo posledico, ki omogoča napoved Y=v
- Množica (urejena ali ne) odločitvenih pravil je en napovedni model
- Povezovalna pravila v posledici se lahko sklicujejo na poljubni X
- Povezovalna pravila tolmačimo vsakega posebej kot **vzorec**, ki pojasni podatke oz. razkrije prej neznane podatkovne povezave
- Obstajajo algoritmi za učenje odločitvenih pravil iz povezovalnih

Znani algoritmi in implementacije

Hierarhično razvrščanje v skupine (Florek in ost 1951)

Vgrajena funkcija v R.

Algoritem k-tih voditeljev (Lloyd 1957)

Vgrajena funkcija v R.

APRIORI (Agrawal in ost 1993), a pravzaprav GUHA (Hájek 1966)

Pogoste množice postavk in rudarjenje povezovalnih pravil, tudi implementacija v R.