

advances.sciencemag.org/cgi/content/full/5/8/eaav9801/DC1

## Supplementary Materials for

## Viruses mobilize plant immunity to deter nonvector insect herbivores

Pingzhi Zhao, Xiangmei Yao, Congxi Cai, Ran Li, Jie Du, Yanwei Sun, Mengyu Wang, Zhen Zou, Qiaomei Wang, Daniel J. Kliebenstein, Shu-Sheng Liu, Rong-Xiang Fang, Jian Ye\*

\*Corresponding author. Email: jianye@im.ac.cn

Published 21 August 2019, *Sci. Adv.* **5**, eaav9801 (2019) DOI: 10.1126/sciadv.aav9801

## This PDF file includes:

- Fig. S1. Whitefly vector competes with nonvector CBM on cotton.
- Fig. S2. TYLCCNV βC1 protein interacts with WRKY20 proteins.
- Fig. S3. WRKY20 mediates plant immunity against whitefly.
- Fig. S4. WRKY20 and MYC2 form a negative feedback loop.
- Fig. S5. Plant WRKY20 is a dual-function transcription factor controlling GS biosynthesis.
- Fig. S6. WRKY20 directly targets GS biosynthetic-related genes by binding to their promoters.
- Fig. S7. WRKY20 regulates a JA-mediated GS accumulation in a vascular-specific pattern.
- Fig. S8. βC1 suppresses the WRKY20 activity by interfering with its homodimerization.
- Fig. S9. WRKY20 negatively regulates SA-mediated defense against the green peach aphid.
- Table S1. DNA primers used in this study.



**Fig. S1.** Whitefly vector competes with nonvector CBM on cotton. (A) Survival numbers of adult whiteflies after four days of infestation on healthy cotton, or cotton bollworm (CBM)-infestated cotton. (B) Larval weight of CBM reared on healthy cotton, or whiteflies-infestated cotton. (C) Phenotypes of healthy Xinhai 21 cotton and CLCuMuV complex (CA+β)-infected Xinhai 21 cotton. Scale bars, 1 cm. Red arrows indicate viral symptoms on CA+β-infected cotton leaves. (D) Quantification of viral DNA accumulation by qPCR in healthy cotton and CA+β-infected cotton. Bars represent means  $\pm$  SD (n=3) (\*\*, P< 0.01, Student's *t*-test). (E) Survival rates of CBM larvae infested on healthy cotton and CA+β-infected cotton together with whitefly infestation. (F) Larval weight of CBM infested on healthy and CA+β-infected cotton together with whitefly infestation. (A, B, E, and F) Bars represent means  $\pm$  SD (n=10) (\*, P< 0.05; \*\*, P< 0.01, Student's *t*-test). (Photo credit: Pingzhi Zhao, Chinese Academy of Sciences).





Fig. S2. TYLCCNV βC1 protein interacts with WRKY20 proteins. (A) Phylogenetic analysis of plant group I WRKY family proteins. Neighbor-joining phylogenetic trees were constructed using MEGA6 based on entire lengths of plant group I WRKY proteins sequence alignments made with ClustalX2. Species acronyms are included before the protein name: At, *Arabidopsis thaliana*; Os, *Oryza* 

sativa; Sl, Solanum lycopersicum; Bn, Brassica napus; Gh, Gossypium hirsutum; Nb, Nicotiana benthamiana; Nt, Nicotiana tabacum. The scale bar represents 0.1 amino acid substitutions per site in the primary structure. Accession numbers of the amino acid sequences included in the phylogenic tree as following as: AtWRKY1, NP\_178565.1; AtWRKY2, NP\_200438.1; AtWRKY3, NP\_178433.1; AtWRKY4, NP\_172849.1; AtWRKY10, NP\_175956.1; AtWRKY20, NP\_849450.1; AtWRKY25, NP\_180584.1; AtWRKY26, NP\_196327.1; AtWRKY32, NP\_567862.3; AtWRKY33, NP\_181381.2; AtWRKY34, NP\_194374.1; AtWRKY44, NP\_181263.2; AtWRKY45, NP 186846.1; AtWRKY58, NP 186757.2; GhWRKY10, AIE43817.1; GhWRKY20-1, AIE43819.1; AIE43818.1; GhWRKY20-2, GhWRKY40, AIE43824.1; GhWRKY46, AIE43823.1; GhWRKY97, AIE43909.1; NbWRKY7, BAI63295.1; NbWRKY8, BAI63296.1; NbWRKY20, BAS69353.1; NtWRKY2, BAA77383.1; NtWRKY6, BAB61053.1; NtWRKY9, BAB61056.1; OsWRKY30, NP 001062148.1; OsWRKY53, NP 001055252.1; OsWRKY70, NP 001055828.1; OsWRKY78, NP\_001060116.1; SIWRKY4, XP\_004239088.1; SIWRKY20-2, XP\_004244048.1; SIWRKY20-1, XP\_004251909.1; SIWRKY32, XP\_004242596.1; SIWRKY44, XP\_004249802.1; SIWRKY33, XP\_004246308.1; BnWRKY1, ACI14383.1; BnWRKY2, XP\_013714348.1; BnWRKY6, ACI14403.1; BnWRKY20, ACI14387.1; BnWRKY33, ACI14397.1. (B) GST-pull down assay. Two micrograms of MBP-AtWRKY20 fusion protein was used to pull down 2 μg of GST or GST-βC1 fusion. Membrane was stained with coomassie brilliant blue to monitor input protein amounts. (C) BiFC analysis of TYLCCNV BC1 protein interaction with tomato (Solanum lycopersicum) SIWRKY20 homologs (SIWRKY20-1 or SIWRKY20-2). Fluorescence was observed owing to complementation of βC1 fused with the C-terminal part of EYFP and SIWRKY20 proteins fused with the N-terminal part of EYFP. Scale bars, 50 μm.



Fig. S3. WRKY20 mediates plant immunity against whitefly. (A) Relative expression level of GhWRKY20 in vector control- and GhWRKY20 VIGS Xinhai 21 cotton plants. (B) Relative expression level of SIWRKY20-1 in vector control- and SlWRKY20-1 VIGS Zhongza No.9 tomato plants. (C) Daily number of eggs laid per female whitefly on vector control- and SIWRKY20-1 VIGS tomato plants. Bars represent means  $\pm$  SD (n=8) (\*, P< 0.05, Student's t-test). (**D**) Schematic diagram of Arabidopsis wrky20-1 (SALK\_055904) and wrky20-2 (SALK\_116115) mutants with the T-DNA insertion shown as an inverted triangle. (E) Relative expression level of AtWRKY20 in Arabidopsis Col-0 and wrky20 mutant plants under MeJA treatment. (F) Detection of AtWRKY20 protein in Arabidopsis Col-0 and wrky20 mutant plants by immunoblot using anti-AtWRKY20<sup>1-300</sup> monoclonal antibody. Stained membrane bands of the large subunit of Rubisco (rbcL) were used as a loading control. (G) Relative expression level of AtWRKY20 in overexpressing AtWRKY20 plants. (H) Daily number of eggs laid per female whitefly on Arabidopsis plants. AtWRKY20pro: AtWRKY20/wrky20-1 is the complementary line of wrky20-1 mutant. Vector/wrky20-1 line is transferred empty vector into wrky20-1 mutant as the negative control. Bars represent means  $\pm$  SD (n=8). Means with different letters are significantly different (P < 0.05, one-way ANOVA along with Duncan's multiple range test). (A, B, E, and G) Bars represent means  $\pm$  SD (n=3) (\*, P< 0.05; \*\*, P< 0.01, Student's t-test).



Fig. S4. WRKY20 and MYC2 form a negative feedback loop. (A) Schematic diagram of AtMYC2 promoter. The black triangles represent W-box like motifs and small hollow triangles represent W-box motifs. (B) Fold enrichment of YFP-AtWRKY20 associated with each of five DNA fragments of AtMYC2 promoter in ChIP assay. (C) Promoter activity of AtMYC2 in YFP expressing leaves and YFP-AtWRKY20 expressing leaves was measured by GUS quantification. (D) Luciferase imaging of AtWRKY20 suppressing AtMYC2 promoter activity in N. benthamiana. N. benthamiana leaves infiltrated with AtMYC2 promoter: LUC and 35S:YFP, or AtMYC2 promoter: LUC and 35S:YFP-AtWRKY20 were subjected to luciferase complementation imaging assay. (E) Quantitative luminescence of AtWRKY20 suppressing AtMYC2 promoter activity in N. benthamiana. N. benthamiana leaves infiltrated with indicated constructs were sliced into strips, and relative luminescence was determined by a microplate luminometer. (F) Schematic diagram of AtWRKY20 promoter. The diamonds represent G-box like motifs. (G) Fold enrichment of GFP-AtMYC2 associated with each of three DNA fragments of AtWRKY20 promoter in ChIP assay. (H) Promoter activity of AtWRKY20 in YFP expressing leaves and YFP-AtMYC2 expressing leaves was measured by GUS quantification. (**B** and **G**) Bars represent means  $\pm$  SD (n=4) (\*\*, P< 0.01, Student's t-test). (C, E and H) Bars represent means  $\pm$  SD (n=8) (\*\*, P< 0.01, Student's t-test).



Fig. S5. Plant WRKY20 is a dual-function transcription factor controlling GS biosynthesis. (A) The biosynthetic pathway of aliphatic- and indole-glucosinolates in *Arabidopsis*. (B to G) Relative expression levels of glucosinolate biosynthesis related-genes, *AtMYB51* (B), *AtCYP79B2* (C), *AtCYP83B1* (D), *AtMYB29* (E), *AtMYB76* (F) and *AtCYP79F1* (G) in six-week-old *Arabidopsis* Col-0, *wrky20* mutants and  $\beta$ C1-3/At plants after MeJA treatment for 6h. Bars represent means  $\pm$  SD (n=3). Means with different letters are significantly different (P < 0.05, one-way ANOVA along with Duncan's multiple range test).



Fig. S6. WRKY20 directly targets GS biosynthetic-related genes by binding to their promoters. (A), (C), and (E) Schematic diagram of AtCYP79B2 promoter (A), AtCYP83B1 promoter (C) or AtMYB76 promoter (E). The black triangles represent W-box like motifs and small hollow triangles represent W-box motifs. Lines under triangles various DNA fragments were amplified in ChIP assay. (B), (D), and (F), Fold enrichment of YFP-AtWRKY20 associated with each DNA fragments of AtCYP79B2 promoter (B), AtCYP83B1 promoter (D) or AtMYB76 promoter (F) in ChIP assay. Bars represent means  $\pm$  SD (n=4) (\*\*, P< 0.01, Student's t-test).



Fig. S7. WRKY20 regulates a JA-mediated GS accumulation in a vascular-specific pattern. (A) and (B) Contents of three IGSs (I3M, 4MI3G and 1MI3G) and four AGSs (4MSB, 4MTB, 3MSP and 8MSO) in non-veins tissues (A) or leaf veins (B) of six-week-old *Arabidopsis* plants after 6 h MeJA treatment. (C) Contents of AGS and IGS in leaf-veins and non-veins, respectively of six-week-old overexpressing AtWRKY20 plants after 6 h MeJA treatment. Bars represent means  $\pm$  SD (n=4). Means with different letters are significantly different (P < 0.05, one-way ANOVA along with Duncan's multiple range test).



**Fig. S8.** βC1 suppresses the WRKY20 activity by interfering with its homodimerization. (A) Relative expression levels of AtORA59 and AtWRKY20 genes in Col-0, RNAi-AtORA59 #2 and #3 lines. R2 indicated squared correlation coefficient. Bars represent means  $\pm$  SD (n=3). (B) Schematic diagram of AtPDF1.2 promoter. The black triangles represent W-box like motifs in the schematic diagram of the promoters. Three lines under triangles various DNA fragments were amplified in ChIP assay. (C) Fold enrichment of YFP-AtWRKY20 associated with DNA fragments of the AtPDF1.2 promoter in a ChIP assay. Bars represent means  $\pm$  SD (n=4) (\*\*, P< 0.01, Student's t-test). (D) Effects of WRKY20 and ORA59 on the trans-activation of AtPDF1.2 promoter. Bars represent means  $\pm$  SD (n=8). (E) Daily number of eggs laid per female whitefly on wild-type Col-0, RNAi-AtORA59 #2 and #3 lines, and pdf1.2a mutant. Bars represent means  $\pm$  SD (n=8). (F) Self-interaction of WRKY20 was confirmed by BiFC assay. Scale bars, 50 μm. (G) Modified BiFC competition assays.

The EYFP fluorescence was detected after coexpession of AtWRKY20-cEYFP + nEYFP-AtWRKY20 (Control),  $\beta$ C1 + AtWRKY20-cEYFP + nEYFP-AtWRKY20 ( $\beta$ C1), or GUS + AtWRKY20-cEYFP + nEYFP-AtWRKY20 (GUS). Scale bars, 50  $\beta$  µm. (**H**) Quantitative data of EYFP fluorescence intensity shows effects of  $\beta$ C1 on the formation of WRKY20 homodimers. Bars represent means  $\pm$  SD (n=20) (\*\*, P< 0.01, Student's *t*-test). (**I**) Pull-down protein competition assays. The indicated protein amount of His- $\beta$ C1 or GST was mixed with 2  $\beta$ g of GST-AtWRKY20 and pulled down by 2  $\beta$ g of MBP-AtWRKY20. Immunoblots were performed using anti-GST antibody to detect the associated proteins. Membranes were stained with Coomassie Brilliant Blue to monitor input protein amount. (**J**) Effects of  $\beta$ C1 on the trans-activation activity of AtWRKY20 on the *AtPDF1.2* promoter. Bars represent means  $\beta$  SD (n=8). (**D**, **E**, and **J**) Means with different letters are significantly different (P < 0.05, one-way ANOVA along with Duncan's multiple range test).



Fig. S9. WRKY20 negatively regulates SA-mediated defense against the green peach aphid. (A) Number of progeny produced by each aphid nine days after infestation of six-week-old overexpressing AtWRKY20 plants. Bars represent means ± SD (n=6) (\*, P< 0.05, Student's t-test). (B) Relative expression levels of SA related-genes (AtPAL1, AtSID2, AtPAD4, AtEDS5, and AtPR1) in six-week-old overexpressing AtWRKY20 plants. Bars represent means  $\pm$  SD (n=3) (\*\*, P< 0.01, Student's t-test). (C) Schematic diagram of AtPR1 promoter. The black triangles represent W-box like motifs and small hollow triangles represent W-box motifs in the schematic diagram of the promoters. Three lines under triangles various DNA fragments were amplified in ChIP assay. (D) Fold enrichment of YFP-AtWRKY20 associated with DNA fragments of the AtPR1 promoter in a ChIP assay. Bars represent means  $\pm$  SD (n=4) (\*, P<0.05; \*\*, P<0.01, Student's t-test). (E) A working model of begomoviruses manipulating plant immunity to promote performance of vector whitefly but deter non-vector herbivores. Host plants have evolved many mechanisms infections to circumvent against of Whitefly-transmitted begomovirus triggers several immune responses, including the emissions of terpenoids, the synthesis of glucosinolates, phytohormones (e.g., JA, ethylene, SA), toxic polypeptides defensin and (e.g., and

PATHOGENESIS-RELATED 1). The betasatellite of begomoviruses encoded  $\beta$ C1 interferes with multiple host defensive responses regulated by WRKY20 and MYC2 transcription factors.  $\beta$ C1 disrupts the dimerization of WRKY20-WRKY20 and WRKY20-ORA59, thereby mobilizing the biosynthesis and accumulation of aliphatic glucosinolates and several defensive compounds (e.g. PDF1.2 and PR1). This viral hijacking of WRK20 and other host targets confers benefits to whitefly but deters non-vector cotton bollworm and aphids.

Table S1. DNA primers used in this study.

| Gene                         | Primer Sequence (5'-3')          | Purpose |
|------------------------------|----------------------------------|---------|
| βC1-F (KpnI)                 | GGTACCATGACTATCAAATACAAC         | Cloning |
| βC1-R (XhoI)                 | CTCGAGACATCTGAATTTGTAAAT         | Cloning |
| βC1-C-F(BamHI)               | GGATCCATGACGAGGAGCAGAACAAACA     | Cloning |
| βC1-C-R(XhoI)                | CTCGAGACGGTGAACTTCTTATTGAA       | Cloning |
| GhWRKY20-1-F(BamHI)          | GGATCCATGGAGGAACAAATACTAGC       | Coning  |
| GhWRKY20-1-R(XhoI)           | CTCGAGGGACCTGTTAGTATTCTTCC       | Cloning |
| GhWRKY20-2-F(BamHI)          | GGATCCATGGAGGAGCAAATATTAGC       | Cloning |
| GhWRKY20-2-R(XhoI)           | CTCGAGGGACCGGTTAGTATTCTTCC       | Cloning |
| SIWRKY20-1-F(Kpn1)           | GGTACCATGGAAGACTCTCACTCT         | Cloning |
| SIWRKY20-1-R(Xho1)           | CTCGAGGGCCAAGAAGTATCTT           | Cloning |
| SIWRKY20-2-F(Kpn1)           | GGTACCATGCAAGGCTCTAGTGGG         | Cloning |
| SIWRKY20-2-R(Xho1)           | CTCGAGGGCCCAAAAGTATCCT           | Cloning |
| AtWRKY20-F(KpnI)             | GGTACCATGAACCCTCAAGCTAATGACCG    | Cloning |
| AtWRKY20-R(NotI)             | GCGGCCGGACCCGATTGTACTCTC         | Cloning |
| AtWRKY20 <sup>1-300</sup> -F | CGCGGCAGCCATATG ATGAACCCTCAAGCTA | Cloning |
| AtWRKY20 <sup>1-300</sup> -R | GTGGTGGTGCTCGAGAGAACTTGAGCTAGCAG | Cloning |
| AtORA59-F(Kpn1)              | GGTACCATGGAATATCAAACTAAC         | Cloning |
| AtOR59-R(Xho1)               | CTCGAGGAACATGATCTCATAAGC         | Cloning |
| AtERF1-F(Kpn1)               | GGTACCATGGATCCATTTTTAATTCAGTCC   | Cloning |
| AtERF1-R(Xho1)               | CTCGAGCAAGTCCCACTATTTTCA         | Cloning |
| AtMYC2-F(Kpn1)               | GGTACCATGACTGATTACCGGCTACA       | Cloning |
| AtMYC2-R(NotI)               | GCGGCCGCCGATTTTTGAAATCAAACT      | Cloning |
| GhWRKY20-1-F(XbaI)           | TCTAGACCAACATGTATGGCCAGATG       | VIGS    |
| GhWRKY20-1-R(BamHI)          | GGATCCAGTGCATTTACAGTTACTGG       | VIGS    |
| GhWRKY20-2-F(XbaI)           | TCTAGAATTGCGGTTATGGCCAGATGG      | VIGS    |
| GhWRKY20-2-R(BamHI)          | GGATCCGGCCCACACATTGCTACTGG       | VIGS    |
| SIWRKY20-1-F(BglII)          | CAAGAGATCTCCTAATCCTAGGAGCTATT    | VIGS    |
| SIWRKY20-1-R(XbaI)           | CAAGTCTAGAGAAGGTTGTAAAGGCAAAG    | VIGS    |
| AtWRKY20-qF                  | TATACAGGCAGGGGTTCCA              | RT-qPCR |
| AtWRKY20-qR                  | GCCTTTCTTGTGCAGCC                | RT-qPCR |
| GhWRKY20-1-qF                | TTATAACCACGTATGAGGGA             | RT-qPCR |
| GhWRKY20-1-qR                | GATCCATACTGGTTCATGCC             | RT-qPCR |
| GhWRKY20-2-qF                | CCACATACGAGGGAAAACAC             | RT-qPCR |
| GhWRKY20-2-qR                | CATACTGATTCATGCTGCCA             | RT-qPCR |
| GhUB7-qF                     | AGGCATTCCACCTGACCAAC             | RT-qPCR |
| GhUB7-qR                     | CTTGACCTTCTTCTTCTTGTGCTTG        | RT-qPCR |

| SIWRKY20-1-qF | CCTAATCCTAGGAGCTATT       | RT-qPCR |
|---------------|---------------------------|---------|
| SIWRKY20-1-qR | GAAGGTTGTAAAGGCAAAG       | RT-qPCR |
| SIACTIN2-qF   | TTGCTGACCGTATGAGCAAG      | RT-qPCR |
| SIACTIN2-qR   | GGACAATGGATGGACCAGAC      | RT-qPCR |
| AtMYC2-qF     | AACCACGTCGAAGCAGAGAG      | RT-qPCR |
| AtMYC2-qR     | TGCGTCACCGAGTAACGAAG      | RT-qPCR |
| AtMYC3-qF     | TGTTGAAGCAGAGAGGCAGA      | RT-qPCR |
| AtMYC3-qR     | CTCCGAGAAGCGAAGCTTTA      | RT-qPCR |
| AtMYC4-qF     | AGGAGCAAACGAGAACTGGA      | RT-qPCR |
| AtMYC4-qR     | CCATCTCCCCAACCTAACAA      | RT-qPCR |
| AtMYB51-qF    | AGCTCGTGGACTACCAGGAA      | RT-qPCR |
| AtMYB51-qR    | GGAGGTTATGCCCTTGTGTG      | RT-qPCR |
| AtMYB122-qF   | CAGGATCATCATCAGCTCGGT     | RT-qPCR |
| AtMYB122-qR   | CGTTGACCTCTCACCTTCTGA     | RT-qPCR |
| AtCYP79B2-qF  | AACAAAAAGAAACCGTATCTGCCAC | RT-qPCR |
| AtCYP79B2-qR  | TCCTAACTTCACGCATGCTATCTC  | RT-qPCR |
| AtCYP83B1-qF  | GGCAACAACCATGTCGTATCAAG   | RT-qPCR |
| AtCYP83B1-qR  | CGTTGACACTCTTCTTCTCTAACCG | RT-qPCR |
| AtMYB29-qF    | CGAAGGGAAGAAGCTGACA       | RT-qPCR |
| AtMYB29-qR    | TCGTCGTAATCTTGGCTCGT      | RT-qPCR |
| AtMYB76-qF    | TTGAGCCCATGAAGTTCGA       | RT-qPCR |
| AtMYB76-qR    | CGATCATGTACTCATATGATTG    | RT-qPCR |
| AtCYP79F1-qF  | GCATCGGTGTTAAAGTCGGG      | RT-qPCR |
| AtCYP79F1-qR  | TGGCTCAACGGACAAGTGAA      | RT-qPCR |
| AtPDF1.2-qF   | TTTGCTGCTTTCGACGCAC       | RT-qPCR |
| AtPDF1.2-qR   | GATTCTTGCATGCATTACTG      | RT-qPCR |
| AtORA59-qF    | GCTTATGATCAGGCGGCTTT      | RT-qPCR |
| AtORA59-qR    | GCGTCATAACAACACTCTGT      | RT-qPCR |
| AtPR1-qF      | TTCATTAGTATGGCTTCTCGTTCA  | RT-qPCR |
| AtPR1-qR      | GAAAACTTAGCCTGGGGTAGC     | RT-qPCR |
| AtPAL1-qF     | ATCTCCAGCCTAAGGAAGGTCT    | RT-qPCR |
| AtPAL1-qR     | AAAACCGCCGACAAAATCTCAG    | RT-qPCR |
| AtSID2-qF     | GAATTTGCAGTCGGGATCAG      | RT-qPCR |
| AtSID2-qR     | AATTAATCGCCTGTAGAGATGTTG  | RT-qPCR |
| AtEDS5-qF     | ATCATATCCGAGATGCATAGACTG  | RT-qPCR |
| AtEDS5-qR     | CGAACATTAGTGTGAGACAACCA   | RT-qPCR |
| AtPAD4-qF     | GGTTCTGTTCGTCTGATGTTT     | RT-qPCR |
| AtPAD4-qR     | GTTCCTCGGTGTTTTGAGTT      | RT-qPCR |

| AtACTIN2-qF               | AGTGGTCGTACAACCGGTATTGT    | RT-qPCR      |
|---------------------------|----------------------------|--------------|
| AtACTIN2-qR               | GATGGCATGAGGAAGAGAAAC      | RT-qPCR      |
| CLCuMuV-V1-qF             | ACAACAGGCATGGACAAACA       | RT-qPCR      |
| CLCuMuV-V1-qR             | CCAATACGATGGGTCAAACC       | RT-qPCR      |
| AtWRKY20 promoter-F(KpnI) | GGTACCATGATGGTGTGGTTATGTG  | promoter     |
| AtWRKY20 promoter-R(XhoI) | CTCGAG TTCAGAGATTCGCAAGGGT | promoter     |
| AtMYC2 promoter-F(KpnI)   | GGTACCTGTACACCAATTGATGAT   | promoter     |
| AtMYC2 promoter-R(XhoI)   | CTCGAGTCCATAAACCGGTGACCG   | promoter     |
| AtMYB122 promoter-F(KpnI) | GGTACCCCACAACTCGTGAGA      | promoter     |
| AtMYB122 promoter-R(XhoI) | CTCGAG GTATGTTCAGCCAAG     | promoter     |
| AtMYC2-Region I-F         | CTCTAAATCTAAGAATAACTCG     | ChIP-RT-qPCR |
| AtMYC2-Region I-R         | GCTTAGAATGGGGATGAT         | ChIP-RT-qPCR |
| AtMYC2-Region II-F        | TTGTTGTTTCTAGTGGCG         | ChIP-RT-qPCR |
| AtMYC2-Region II-R        | CTGAGACATCTGTATTGGG        | ChIP-RT-qPCR |
| AtMYC2-Region III-F       | CATGGAGGAAAAGATGCC         | ChIP-RT-qPCR |
| AtMYC2-Region III-R       | CGATTCTTGTCTGCTTAACT       | ChIP-RT-qPCR |
| AtMYC2-Region IV-F        | CATTATAAAATAAGTAATTAATCTG  | ChIP-RT-qPCR |
| AtMYC2-Region IV-R        | GTTTGGTCGCACGTGTAT         | ChIP-RT-qPCR |
| AtMYC2-Region V-F         | ACAACCATCCACGTTTCC         | ChIP-RT-qPCR |
| AtMYC2-Region V-R         | TCCATAAACCGGTGACCG         | ChIP-RT-qPCR |
| AtMYB122-Region I-F       | ACGAATGTATCCTTTATC         | ChIP-RT-qPCR |
| AtMYB122-Region I-R       | CTATGCACTATTTATTAG         | ChIP-RT-qPCR |
| AtMYB122-Region II-F      | GTGCATAGAAAACTTACA         | ChIP-RT-qPCR |
| AtMYB122-Region II-R      | TTTTAAACCAATGATATT         | ChIP-RT-qPCR |
| AtMYB122-Region III-F     | CAATATATGGCTAGGTAAG        | ChIP-RT-qPCR |
| AtMYB122-Region III-R     | CGTAGAGCTTTTTATCTT         | ChIP-RT-qPCR |
| AtMYB51-Region I-F        | AGAGTTGGGTTGATGTAAAC       | ChIP-RT-qPCR |
| AtMYB51-Region I-R        | TAAGGTAGAGAGGTACAACA       | ChIP-RT-qPCR |
| AtMYB51-Region II-F       | CATTGGTTAAAATTTGTTGC       | ChIP-RT-qPCR |
| AtMYB51-Region II-R       | TATGTCTGCTATGCAAATAG       | ChIP-RT-qPCR |
| AtMYB51-Region III-F      | ATCATATCAGATGTGGCGGT       | ChIP-RT-qPCR |
| AtMYB51-Region III-R      | AGCCCATCTCTATTTATGCT       | ChIP-RT-qPCR |
| AtCYP79B2-Region I-F      | GCTCATCATCAACAGACAAG       | ChIP-RT-qPCR |
| AtCYP79B2-Region I-R      | GAGAGTTCACCTGCCAAATA       | ChIP-RT-qPCR |
| AtCYP79B2-Region II-F     | CCAATTTCTATAGTTGGGAA       | ChIP-RT-qPCR |
| AtCYP79B2-Region II-R     | GCTAGTATTGTCGCAGTGGT       | ChIP-RT-qPCR |
| AtCYP79B2-Region III-F    | CTGTTTTTCGGCTGGACCGG       | ChIP-RT-qPCR |
| AtCYP79B2-Region III-R    | GTTAGTTTATGTGAAATGAC       | ChIP-RT-qPCR |
|                           |                            | •            |

| AtCYP83B1-Region I-F  | GTCACACTTCTTGTCAACCTTAA     | ChIP-RT-qPCR |
|-----------------------|-----------------------------|--------------|
| AtCYP83B1-Region I-R  | CTAAACTCTCAGTTTTTAAG        | ChIP-RT-qPCR |
| AtCYP83B1-Region II-F | GTAACCCAAGTTACATTTTT        | ChIP-RT-qPCR |
| AtCYP83B1-Region II-R | TTTTTCTGTTTGACTTACT         | ChIP-RT-qPCR |
| AtMYB76-Region I-F    | TGTGTGACATATATGGGCAG        | ChIP-RT-qPCR |
| AtMYB76-Region I-R    | TGATAATATGCAATTGCTAA        | ChIP-RT-qPCR |
| AtMYB76-Region II-F   | TCATTGTAAAACTTACCTTATAA     | ChIP-RT-qPCR |
| AtMYB76-Region II-R   | TCAGAGATTACGAATACGGT        | ChIP-RT-qPCR |
| AtPDF1.2-Region I-F   | GTTGAATGTCGTTGTTTACG        | ChIP-RT-qPCR |
| AtPDF1.2-Region I-R   | CCTTAAACGTAATGGACTATCG      | ChIP-RT-qPCR |
| AtPDF1.2-Region II-F  | GGTGATCCTCTAATCGAA          | ChIP-RT-qPCR |
| AtPDF1.2-Region II-R  | CCTAAGCGGCTGCTTCGG          | ChIP-RT-qPCR |
| AtPDF1.2-Region III-F | CCCAGGGATATATAAATGG         | ChIP-RT-qPCR |
| AtPDF1.2-Region III-R | TCGATTAGAGGATCACCC          | ChIP-RT-qPCR |
| AtPR1-Region I-F      | TTAAAGCCAGTGCATATCAG        | ChIP-RT-qPCR |
| AtPR1-Region I-R      | ATGCCGCCACATCTATGACG        | ChIP-RT-qPCR |
| AtPR1-Region II-F     | GGACTTTTCAGCCATAGGCA        | ChIP-RT-qPCR |
| AtPR1-Region II-R     | GAAGATATCTTCCTGTAAAT        | ChIP-RT-qPCR |
| AtPR1-Region III-F    | CTTCATTTAGGGTATACTTACA      | ChIP-RT-qPCR |
| AtPR1-Region III-R    | CTATAGATCTCACGTTTTTG        | ChIP-RT-qPCR |
| AtWRKY20-Region I-F   | CTGTTGCTTTATCATTTTACCG      | ChIP-RT-qPCR |
| AtWRKY20-Region I-R   | CCACCTCAAATCTTGTTAGA        | ChIP-RT-qPCR |
| AtWRKY20-Region II-F  | AACTGAGAACGGCCCAAAGA        | ChIP-RT-qPCR |
| AtWRKY20-Region II-R  | AAGTACCGAGTGGACAAGCG        | ChIP-RT-qPCR |
| AtWRKY20-Region III-F | GACTGTTGATACCTGATCC         | ChIP-RT-qPCR |
| AtWRKY20-Region III-R | GCAACAACAACAACGTT           | ChIP-RT-qPCR |
| Actin2-F              | CGTTTCGCTTTCCTTAGTGTTAGCT   | ChIP-RT-qPCR |
| Actin2-R              | AGCGAACGGATCTAGAGACTCACCTTG | ChIP-RT-qPCR |