Laboratório de Informática

Leopoldo Teixeira leo@leopoldomt.com

O que é mesmo um algoritmo?

Um algoritmo é uma série ordenada de passos finita, não-ambígua e executável.

Conceito de Algoritmo

- Esta definição exige que o conjunto de passos em um algoritmo seja ordenado, ou seja, os passos de um algoritmo devem possuir uma estrutura bem estabelecida em termos de ordem na qual são executadas.
- Não implica que os passos sejam executados em seqüência. Ex: algoritmos paralelos, algoritmos executados por circuitos (flip-flop).

Algoritmo?

- Construir uma lista de todos os inteiros positivos.
- Impossível realizar essa instrução. Nenhum conjunto de instruções que inclua esta instrução seria um algoritmo, pois ele não é executável (não-efetivo). Dizer que um passo de um algoritmo é efetivo significa que ele pode ser realizado.
- Definição também exige que um algoritmo defina um processo que termine. A execução de um algoritmo deve sempre levar o processamento a um estado de término.
- Quais são os limites reais dos algoritmos e das máquinas?
 - Teoria da Computação.

Natureza abstrata

- Diferença entre algoritmo e sua representação. O algoritmo é abstrato e distinto de suas representações. (possui várias formas)
 - F=(9/5)C+32
 - Multiplicar a temperatura, lida em graus Celsius, por 9/5, e então somar 32 ao produto assim obtido.
 - Circuito eletrônico.
- A distinção entre um algoritmo e sua representação apresenta um problema quando tentamos comunicá-lo. (nível de detalhe)
- Diferença entre dois conceitos inter-relacionados programa e processos.
 - programa é uma representação de um algoritmo.
 - processo é a atividade de executar um algoritmo.

Representação de Algoritmos - Primitivas

- Representação requer uma forma de linguagem.
- Primitivas conjunto bem-definido de elementos funcionais básicos com os quais podem ser construídas representações de algoritmos.
- Linguagem de programação conjunto de primitivas + regras
 (maneira que as primitivas podem ser combinadas para representar idéias mais complexas)
- Cada primitiva consiste em duas partes: sua sintaxe e sua semântica.
 - Sintaxe refere-se à representação simbólica das primitiva.
 - Semântica refere-se ao conceito representado, ou seja ao significado da primitiva

Pseudocódigo

- Sistema notacional no qual as idéias podem ser informalmente expressas durante o processo de desenvolvimento do algoritmo.
- Nome <— expressão
- Fundos < SaldoCC + Poupança
- Estrutura semântica
 - Se o produto interno bruto tiver aumentado, compre ações ordinárias; caso contrário, venda ações ordinárias.
 - se (condição) então (atividade) senão (atividade)

Pseudocódigo

- Enquanto houver ingressos para vender, permanecer vendendo ingressos.
 - enquanto (condição) faça (ação)
 - enquanto (há ingressos) faça (venda)
- Indentação facilita a leitura do programa se (produto está sujeito a imposto) então (se (preço > limite) então (pagar x) senão (pagar y) senão (pagar z)
- é mais fácil de ser entendido do que:
- se (produto está sujeito a imposto) então (se (preço > limite) então (pagar x) senão (pagar y)) senão (pagar z)

Procedimentos

- Queremos usar nosso pseudocódigo para descrever as atividades que podem ser usados como ferramentas abstratas em outras aplicações.
- Há uma variedade de termos para tais unidades do programa, incluindo subprograma, sub-rotina, procedimento, módulo e função, cada um com sua própria variação de significado.
- Declaramos um procedimento da seguinte maneira:
 - procedimento nome
- onde nome é o nome específico do procedimento. Seguimos esta declaração introdutória com os comandos que definem a ação do procedimento.

Procedimentos

- Devemos conceber procedimentos da forma mais genérica possível.
- Um procedimento para ordenar listas de nomes deve ser projetado para ordenar qualquer lista, não uma lista em particular.
- Para tanto, utilizamos parâmetros, para identificar entradas aos procedimentos. Por exemplo:
 - procedimento Ordenar (Lista)

Desenvolvimento de programas

- Descobrir o algoritmo
- Representá-lo em forma de programa.
- O maior desafio em termos de desenvolvimento é encontrar um método de solucionar um problema. Entender como os algoritmos são descobertos é entender o próprio processo de resolução de problemas (idéias).
- A arte da resolução de problemas
 - Em última instância, deseja-se reduzir o processo de resolução de problemas a um algoritmo autônomo, mas comprovou-se que essa meta é impossível. (Existem problemas que não têm solução algorítmicas).

Processo de resolução de problemas (G. Polya)

- Fase 1. Entender o problema.
- Fase 2. Construir um plano para solucionar o problema.
- Fase 3. Colocar o plano em funcionamento.
- Fase 4. Avaliar a solução quanto à precisão e ao seu potencial como ferramenta para solucionar outros problemas.

Desenvolvendo programas...

- Fase 1. Compreender o problema
- Fase 2. Adquirir uma ideia da forma que um procedimento algorítmico poderia resolver o problema
- Fase 3. Formular o algoritmo e representá-lo na forma de um programa
- Fase 4. Avaliar o programa quanto à precisão e ao seu potencial como ferramenta para solucionar outros problemas

Descobrindo algoritmos

- As fases não são passos a seguir quanto se tenta resolver um problema, mas fases a serem seguidas algum dia, durante o processo de solução.
- As quatro fases de Polya não são necessariamente executadas em seqüência.
- Estamos discutindo sobre a forma como os problemas são resolvidos, e não sobre como gostaríamos que fossem resolvidos.
- Queremos eliminar a perda de tempo com o método de tentativa e erro

Um exemplo

- Uma pessoa (X) é encarregada da tarefa de determinar as idades dos três filhos de Y. Y diz a X que o produto da idade das crianças é 36. Depois de considerar esta pista, X responde que outra pista é necessária, ao que Y diz a X a soma das idades dos filhos. Mais uma vez, X responde que outra pista é necessária, de modo que Y diz que seu filho mais velho toca piano. Depois de ouvir esta pista, X diz as idades dos três filhos.
- Qual é a idade das crianças?

Solução

Produto 36

(1,1,36) (1,6,6)

(1,2,18) (2,2,9)

(1,3,12) (2,3,6)

(1,4,9) (3,3,4)

Soma das Idades

$$1 + 1 + 36 = 38$$
 $1 + 6 + 6 = 13$

$$1 + 2 + 18 = 21$$
 $2 + 2 + 9 = 13$

$$1 + 3 + 12 = 16$$
 $2 + 3 + 6 = 11$

$$1 + 4 + 9 = 14$$
 $3 + 3 + 4 = 10$

Outro exemplo

- Antes de A,B,C e D participarem de uma corrida, eles fizeram as seguintes previsões:
 - A previu que B ganharia.
 - B previu que D seria o último.
 - C previu que A seria o terceiro.
 - D previu que a previsão de A estaria correta.
- Apenas uma destas previsões deu certo, e esta foi feita pelo vencedor da corrida.
- Em que ordem A, B, C e D terminaram a corrida?

Solucionando...

- Previsões A e D são equivalentes, e só uma previsão era verdadeira.
 - Subimos o primeiro degrau e obter a solução completa para o nosso problema será simplesmente uma questão de estender a partir daí o nosso conhecimento
- Previsão A é falso, B também não pode ter sido o vencedor.
- A única escolha que resta para o vencedor é C.
- C ganhou a corrida logo A chegou em terceiro lugar.
 - Opção CBAD ou então CDAB.
- Como a previsão de B é falsa a solução é CDAB.

Diversos enfoques

- Trabalhar o problema de marcha a ré consiste em encontrar um modo de produzir uma certa saída a partir de uma dada entrada.
- Procurar um problema relacionado que seja mais fácil de resolver ou já tenha sido resolvido antes, e então tentar solucionar o problema usando a mesma forma de resolução.
- Técnica do refinamento sucessivo consiste essencialmente em não tentar realizar imediatamente uma tarefa inteira, em todos os detalhes.
 - Decompor o problema em vários sub-problemas.
 - Dividir e conquistar.
 - Metodologias: top-down desenvolvimento leva do geral para o particular.
 bottom-up desenvolvimento leva do específico para o geral.
- A descoberta de algoritmos continua sendo uma ARTE desafiadora.

Estruturas iterativas - Busca Sequencial

```
procedure Search (List, TargetValue)
if (List empty)
   then
     (Declare search a failure)
   else
     (Select the first entry in List to be TestEntry;
      while (TargetValue > TestEntry and
              there remain entries to be considered)
          do (Select the next entry in List as TestEntry.);
      if (TargetValue = TestEntry)
          then (Declare search a success.)
          else (Declare search a failure.)
     end if
```

Componentes de Controle

- Iniciação:
 - Estabelecer um estado inicial que será modificado para atingir uma condição de terminação.
- Teste:
 - Comparar o estado corrente com a condição de terminação e finalizar a iteração se forem iguais.
- Modificação:
 - Alterar o estado de modo a convergir para a condição de terminação.

Controle Adequado

- Característica fundamental para que haja controle adequado da iteração:
 - Os passos de iniciação e de modificação conduzem a uma condição terminal apropriada.
 - É preciso ter certeza absoluta de sua correta aplicação sempre que se projetar uma estrutura iterativa.

```
Número = 1;

enquanto (Número ≠ 6) faça

(Número = Número + 2)
```

- Há duas estruturas iterativas comuns:
 - enquanto (condição) faça (ação) laço pré-teste
 - repete (ação) até (condição) laço pós-teste

procedure Sort (List)

 $N \leftarrow 2$;

while (the value of N does not exceed the length of List) do

(Select the Nth entry in List as the pivot entry;

Move the pivot entry to a temporary location leaving a hole in List;

while (there is a name above the hole and that name is greater than the pivot)

do (move the name above the hole down into the hole leaving a hole above the name)

Move the pivot entry into the hole in List;

$$N \leftarrow N + 1$$

O que é recursão?

Estruturas recursivas

- Recursão envolve a repetição do conjunto de instruções como uma subtarefa de si própria.
- Laço envolve repetição de um conjunto de instruções de modo que o conjunto seja completado e então repetido.
- Importante definir o caso base, para que termine

Busca Binária

```
procedure Search (List, TargetValue)
if (List empty)
  then
   (Report that the search failed.)
  else
   [Select the "middle" entry in List to be the TestEntry;
    Execute the block of instructions below that is
      associated with the appropriate case.
        case 1: TargetValue = TestEntry
             (Report that the search succeeded.)
        case 2: TargetValue < TestEntry
             (Apply the procedure Search to see if TargetValue
                is in the portion of the List preceding TestEntry,
                and report the result of that search.)
        case 3: TargetValue > TestEntry
            (Apply the procedure Search to see if TargetValue
                is in the portion of List following TestEntry,
                and report the result of that search.)
   l end if
```

procedure Search (List, TargetValue) if (List empty) then (Report that the search failed.) [Select the "middle" entry in List to be the TestEntry; Execute the block of instructions below that is associated with the appropriate case. case 1: TargetValue = TestEntry (Report that the search succeeded.) case 2: TargetValue < TestEntry (Apply the procedure Search to see if TargetValue is in the portion of the List preceding TestEntry, and report the result of that search.) case 3: TargetValue > TestEntry (Apply the procedure Search to see if TargetValue is in the portion of List following TestEntry, and report the result of that search.)] end if

David——(TestEntry) Evelyn Fred George

We are here. procedure Search (List, TargetValue) if (List empty) then (Report that the search failed.) [Select the "middle" entry in List to be the TestEntry; Execute the block of instructions below that is associated with the appropriate case. case 1: TargetValue = TestEntry (Report that the search succeeded.) case 2: TargetValue < TestEntry (Apply the procedure Search to see if TargetValue is in the portion of the List preceding TestEntry, and report the result of that search.) case 3: TargetValue > TestEntry (Apply the procedure Search to see if TargetValue is in the portion of List following TestEntry, and report the result of that search.)

l end if

List Alice Bill Carol

Eficiência de Algoritmos

- Se considerarmos um registro de 30 mil estudantes em uma universidade
- Usando busca sequencial, na média teremos que investigar 15 mil registros. Se cada pesquisa dura 10 ms, a média de tempo seria 2.5 minutos
- Com busca binária, no máximo avaliamos 15 entradas.
 Se cada pesquisa dura 10 ms, a média de tempo seria 0,15 segundos
 - No entanto, temos que nos certificar da ordem...

Análise de Algoritmos

- Envolve a avaliação do melhor caso, pior caso e caso médio dos algoritmos desenvolvidos
- Estas análises são feitas em contextos genéricos, para uma lista de tamanho N, por exemplo

Insertion Sort - pior caso

Comparisons made for each pivot

Initial list					Sorted
	1st pivot	2nd pivot	3rd pivot	4th pivot	list
Elaine David Carol Barbara Alfred	Elaine David Carol Barbara Alfred	David Elaine Carol Barbara Alfred	6 Carol David Elaine Barbara Alfred	Barbara Carol David Elaine Alfred	Alfred Barbara Carol David Elaine

Análise do pior caso -Insertion Sort

Análise do pior caso -Busca Binária

Corretude de Algoritmos

- Um viajante, com uma corrente de ouro formada por uma cadeia de sete argolas, deve ficar por sete noites em um hotel isolado.
- O aluguel por noite equivale a uma argola da corrente.
- Qual o número mínimo de argolas que devem ser cortadas de modo que o viajante possa pagar ao hoteleiro uma argola a cada manhã, sem antecipar o pagamento pela hospedagem?

Uma solução

Solução Correta

Como é impossível verificar completamente a precisão de programas complexos, em que circunstâncias, se houver, deve o criador de um programa ser responsabilizado por erros?

Suponha que um pacote de software é tão caro que ele está totalmente fora de sua faixa de preço. É ético copiá-lo para seu próprio uso?

(você não está 'roubando' o fornecedor de uma venda, pois não teria comprado o pacote de qualquer maneira.)

Trabalho em Grupo

- Escolher um tópico (sugestões a seguir) e fazer um estudo aprofundado do mesmo. Tal estudo aprofundado irá analisar a história, o estado da arte, desafios técnicos, o impacto social e uma visão para o futuro.
- Com base neste estudo, preparar uma apresentação de 20 minutos e um relatório no formato de ensaio.
- Os grupos podem ter até 5 pessoas. Após a formação do grupo e escolha do tema, devem enviar email para a lista da disciplina
- Datas das apresentações: <u>24/7</u> e <u>31/7</u>
- Prazo final para entrega do relatório: 31/7

Sugestões de Temas

- Interação homemmáquina
- Engenharia de Software
- Sistemas de Banco de Dados
- Inteligência Artificial e Aprendizagem de Máquina

- Computação Gráfica
- Processamento Digital de Imagens
- Computação Distribuída/ Paralela (Concorrência)
- Robótica
- Criptografia (Privacidade/ Segurança/Autenticação)

Trabalho Individual

- Faça um ensaio sobre a vida e obra de um cientista que influenciou a computação. Lista em https://docs.google.com/spreadsheets/d/
 1SgsSikg2At-2LpdrQOVBYobfsWvYfNfjcAVtelJ1GvI/pubhtml
- Utilize diversas fontes independentes. Não confie em uma única fonte.
 Fontes utilizadas para quaisquer informações devem ser citadas.
- Além de informações biográficas, descreva como o trabalho do cientista se conecta com a computação. Aproveite para entender o trabalho realizado, o que você escreve deve ilustrar a sua compreensão.
- Discuta se as contribuições são relevantes ainda hoje (se aplicável).
- Ao concluir, envie por e-mail um arquivo PDF (5 páginas) nomeado como <u>EnsaioNomeSobrenome</u>.pdf até o <u>dia 2/8</u>.