Examen scris (restanţă/mărire) Structuri Algebrice în Informatică 01/09/2022

 $a = \dots,$ $b = \dots,$

unde

- (1) a este egal cu maximul dintre numerele de litere ale cuvintelor care compun numele vostru de familie. (de exemplu, dacă numele de familie este Popescu-Simion atunci a=7, maximul dintre 7 (nr. de litere al cuvântului Popescu) și 6 (nr. de litere al cuvântului Simion); dacă numele de familie este Moisescu atunci a=8)
- (2) b este egal cu maximul dintre numerele de litere ale cuvintelor care compun prenumele vostru. (de exemplu, dacă prenumele este Andreea-Beatrice-Luminița atunci b=8, maximul dintre 7 (nr. de litere al cuvântului Andreea) și 8 (nr. de litere atât al cuvântului Beatrice cât și al cuvântului Luminița).)

Problema	Punctaj	Total
1	1	
2	1	
3	1	
4	1	
5	1	
6	1	
7	1	
8	1	
9	1	
10	1	
Total	10	

Justificați toate răspunsurile!

- 1. Determinația și b.
- 2. Determinați numărul de permutări impare, dacă există, de ordin a-1 din grupul de permutări S_{b+1} .
- 3. Se consideră ciclul de lungime b+1, $\sigma=(a,\ldots,a+b)$ din S_{a+b} . Determinați numărul permutărilor $\tau\in S_{a+b}$, dacă există, astfel încât $\tau^5=\sigma$.
- 4. Calculați $b^{(a+b)^{a^a}} \pmod{37}$.
- 5. Se consideră mulțimea de numere naturale $A = \{x, \dots, a+b+2\}$, unde x este numărul natural egal cu minimul dintre a și b. Determinați o relație de echivalență ρ pe mulțimea A astfel încât mulțimea factor A/ρ să aibă exact 5 clase de echivalență diferite iar clasa de echivalență a lui a să conțină doar numerele a și b. (Precizare: dacă a = b atunci clasa de echivalență a lui a va fi formată doar din elementul a, iar dacă $a \neq b$ atunci clasa de echivalență a lui a va fi $\{a,b\}$.)
- 6. Fie H subgrupul ciclic al lui $(G, +) = (\mathbb{Z} \times \mathbb{Z}, +)$, generat de elementul (3a, 3b). Este grupul factor G/H ciclic?
- 7. Notăm cu X_a mulțimea tuturor numerelor naturale mai mari sau egale decât a, i.e. $X_a = \{x \in \mathbb{N} | x \ge a\}$ și similar construim mulțimile X_b și X_{a+b} . Dați câte un exemplu, dacă există, sau justificați de ce nu există în caz contrar, de:
 - Funcție injectivă, care nu este surjectivă, $f_{a,b}: X_a \times X_b \mapsto X_{a+b}$.
 - Funcție surjectivă, care nu este injectivă, $g_{a,b}: X_a \times X_b \mapsto X_{a+b}$.
 - Funcție bijectivă $h_{a,b}: X_a \times X_b \mapsto X_{a+b} \times X_{a+b}$.
- 8. Se consideră funcția $f: \mathbb{R} \mapsto \mathbb{R}$ definită astfel:

$$f(x) = \begin{cases} x^2 + 4x - 2, & \text{dacă} \ x \le -2, \\ -4x - 3, & \text{dacă} \ x \in (-2, 1), \\ -x^2 + 4x - 9, & \text{dacă} \ x \ge 1. \end{cases}$$

Decideți dacă restricția funcției f pe intervalul (-b+6,a+6] este injectivă. Calculați $f^{-1}((-a,b])$.

- 9. Fie inelul $\mathbb{Z}[X]$ și numerele întregi $c=a+b, d=ab+b^2+1$. Considerăm I, idealul lui $\mathbb{Z}[X]$, generat de c și dX. Este adevărat că polinomul $X^3-4X+6\in I$? Este inelul factor $\mathbb{Z}[X]/I$ finit? Dacă da, calculați-i numărul de elemente.
- 10. Determinați toate numerele întregi x, dacă există, care au proprietatea că $(b-1)x \equiv a \pmod{b}$, $bx \equiv a-1 \pmod{b+1}$ și $bx \equiv a+3 \pmod{2b+1}$.