

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

INF480

REDES COMPLEJAS

Tarea 1

Florencia Ramírez Sofía Riquelme

1. Introducción

En este informe se presenta un análisis de la red 6 de la lista otorgada por el profesor. Esta red proviene de una red social "tipo Facebook"de estudiantes de la Universidad de California en Irvine; los pesos son cantidad de mensajes entre ellos.

2. Datos básicos

2.1. Cantidad de nodos y aristas

La red cuenta con 1899 nodos y 13.838 aristas

2.2. Dibujo

2.3. Conexidad

La red tiene 4 componentes conexas, donde la componente gigante representa un 99,6 % de los nodos

3. Análisis

3.1. Grados

■ Grado mínimo: 1

■ Grado máximo: 255

■ Gráfico de distribución de grados:

Con escala logarítmica:

Se puede observar que si bien se esperaría que fuera una ley de potencia, no lo es

3.2. Distancias

Determine la distancia promedio entre los nodos, y el diámetro de la red. ¿Se justifica hablar de efecto small world?

La distancia promedio entre los nodos es de 3.055 y el diámetro de la red es 8 (hay que ver si es que se justifica)

3.3. Transitividad

Determine el coeficiente de clustering local de la red. ¿Hay transitividad alta?

El coeficiente de clustering promedio de la red es 0.11 y la transitividad de la red es 0.05. Esto indica que no hay un alto nivel de clustering ni tampoco una transitividad alta

3.4. Centralidad

Determine la centralidad de intermediación, PageRank y cercanía de cada nodo. Expórtelas a alguna herramienta de análisis y explore qué tan relacionadas están entre sí, y con el grado del nodo (en particular, haga gráficos de dispersión de grado y PageRank, PageRank e intermediación, etc.). Identifique las mayores desviaciones (nodos con centralidad alta según una métrica y baja según otra) e intente explicarlas en función de la estructura de la red. Obtenga imágenes de la red coloreada según los valores de las distintas centralidades. [Nota: Gephi es un poco críptico. Para calcular intermediación o cercanía hay que decirle que calcule "diámetro de la red", que no tiene nada que ver.]

3.5. Núcleo/Periferia

Determine la profundidad de k-cores (el máximo k para el cual el k-core es no vacío), y la cantidad de nodos en cada k-shell (cada "capa de la cebolla" en k-cores).

La profundidad de los k-cores es 20, y para cada k-core, a continuación se adjunta una tabla con su cantidad de nodos:

k	Cantidad de Nodos
0	0
1	401
2	228
3	141
4	118
5	100
6	75
7	54
8	64
9	59
10	44
11	57
12	39
13	32
14	63
15	54
16	29
17	53
18	55
19	32
20	201

Cuadro 1: Cantidad de nodos en cada k-shell

3.6. Comunidades

Aplique el algoritmo de Lovaina de detección de comunidades (Gephi lo trae por defecto). Si usa parámetros distintos al default, especifique. Reporte la cantidad y el tamaño de las comunidades encontradas, y el valor de modularidad conseguido. Use las comunidades obtenidas para colorear la red. ¿Se aprecia en el gráfico la estructura de comunidades? ¿Interactúan todas con todas, o cada comunidad se relaciona con unas pocas de las demás? [Aquí si hace falta puede jugar un poco más con las opciones de layout, para buscar un buen dibujo de la red.]

Se obtuvieron 15 comunidades distintas, con una modularidad de 0.355. A continuación se presenta una imagen coloreada por comunidad:

3.7. Asortatividad

Calcule el coeficiente de correlación de Newman para medir la asortatividad de la red. ¿Le parece asortativa, disasortativa, o ninguna?

El coeficiente de correlación de Newman es -0.18 para esta red. Esto indica que es disasortativa (por ser un valor negativo), sin embargo, no está lo suficientemente cerca de -1 como para ser completamente disasortativa

3.8. Modelo estructural

Genere 10 redes aleatorizadas que compartan la distribución de grados de su red, y para cada una de ellas determine la modularidad (aplicando el mismo algoritmo de Lovaina), el coeficiente de correlación, el

coeficiente de clustering local, y la profundidad de k-cores. Compare los valores con el obtenido para su red: ¿pueden explicarse sus valores a partir de la distribución de grados, o parecen ser propiedades específicas de la red?