For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. Programming languages are essential for software development. Scripting and breakpointing is also part of this process. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). However, Charles Babbage had already written his first program for the Analytical Engine in 1837. Integrated development environments (IDEs) aim to integrate all such help. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. Different programming languages support different styles of programming (called programming paradigms). He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. Computer programmers are those who write computer software. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. Scripting and breakpointing is also part of this process. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. There are many approaches to the Software development process. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. Integrated development environments (IDEs) aim to integrate all such help.