CS60065: Cryptography and Network Security

Assignment 4

Instructor: Monosij Maitra Due: 11.59 pm, Nov 07, 2024

Total: 50 points

Note: The basic policies are stated in the course page. Using GPT (or similar tools) to solve problems from the assignment is **strictly prohibited**. Use of any other (possibly online) source(s) **must** be clearly stated in the solution. **Any dishonesty, if caught, will yield zero credits for the entire assignment.**

A. [RSA and Primality Tests: 10+5+5=20 points.]

- 1. For n=pq, where p and q are distinct odd primes, define $\lambda(n)=\frac{\phi(n)}{\gcd(p-1,q-1)}$. Suppose that we modify the RSA encryption scheme by requiring that $ed\equiv 1\pmod{\lambda(n)}$. Prove that encryption and decryption are still inverse operations in this modified scheme.
- 2. Define the set $G(n) = \left\{ a \colon a \in \mathbb{Z}_n^*, \ \left(\frac{a}{n} \right) \equiv a^{(n-1)/2} \pmod{n} \right\}.$
 - (a) Prove that $|G(n)| \leq \frac{n-1}{2}$.
 - (b) Suppose $n=p^kq$, where p and q are odd, $p \in \mathbb{P}, k \geq 2$, and $\gcd(p,q)=1$. Let $a=1+p^{k-1}q$. Prove that $\left(\frac{a}{n}\right) \not\equiv a^{(n-1)/2} \pmod{n}$.

B. [ElGamal Encryption and Diffie-Hellman Problems: 10 + 10 = 20 points.]

- 1. Recall the ElGamal encryption scheme discussed in class. Show that reusing the ephemeral secret during encryption for just two ciphertexts can break secrecy of messages.
- 2. Recall the Diffie-Hellman problems discussed in class. Let \mathbb{G} be a finite, multiplicative, cyclic group of prime order p with two generators $g,h\in\mathbb{G}$ sampled randomly from \mathbb{G} . Next, for each $i\in[\ell]$, let $s_i,t_i\leftarrow\mathbb{Z}_p$ denote two randomly sampled integers and define $h_i=g^{s_i}\cdot h^{t_i}, \forall i\in[\ell]$. Consider a vector $\vec{\mathbf{y}}=(y_1,\ldots,y_\ell)\in\mathbb{Z}_p^\ell$. Define a secret key associated to the vector $\vec{\mathbf{y}}$ as

$$\mathsf{SK}_{\vec{\mathbf{y}}} := (s_{\vec{\mathbf{y}}}, t_{\vec{\mathbf{y}}}) = \left(\sum_{i=1}^{\ell} s_i \cdot y_i \pmod{p}, \sum_{i=1}^{\ell} t_i \cdot y_i \pmod{p}\right).$$

Consider a vector $\vec{\mathbf{x}} = (x_1, \dots, x_\ell) \in \mathbb{Z}_p^\ell$ describing a "message". The following steps are executed to encrypt the message vector $\vec{\mathbf{x}}$: Sample a uniformly random integer $r \leftarrow \mathbb{Z}_p$ and compute

$$C := g^r \; (\text{mod } p), \quad D := h^r \; (\text{mod } p), \quad \{E_1 := g^{x_1} \cdot h_1^r \; (\text{mod } p), \dots, E_\ell := g^{x_\ell} \cdot h_\ell^r \; (\text{mod } p)\}$$

The final ciphertext encrypting the vector $\vec{\mathbf{x}}$ is defined as $\mathsf{CT} = \left(C, D, \{E_i\}_{i \in \{1, 2, 3, \dots, \ell\}}\right)$. Show how to decrypt CT with secret key $\mathsf{SK}_{\vec{\mathbf{y}}}$ such that decryption yields $g^{\langle \vec{\mathbf{x}}, \vec{\mathbf{y}} \rangle \pmod{p}}$.

[Hint: Recall how decryption algorithm works in the ElGamal encryption scheme.]

C. [Elliptic Curves: 5 + 5 = 10 points.]

- 1. Compute discriminant for the elliptic curve $y^2 \equiv x^3 + 2x + 2$ over \mathbb{Z}_{17} . What is the sum of points P = (13,7) and Q = (6,3) in the Abelian group for the above curve? [2 + 3 = 5]
- 2. Let $E: y^2 = x^3 + 3x + 2$ be an elliptic curve defined over \mathbb{Z}_7 . Compute all the points on E over \mathbb{Z}_7 . What is the order of the group? Given the element $\alpha = (0,3)$, determine the order of α . Does α generate the group? [1 + 1 + 3 = 5]