Time Series Modeling –

ARIMA Model

Contents

- 1. Box-Jenkins (ARIMA) Models
- 2. Five Step Iterative Procedure
 - i. Stationarity Checking
 - Differencing, Correlograms, and Dickey Fuller Test in R
 - ii. Model Identification
 - iii. Parameter Estimation
 - Simple and Automated Model Estimation in R
 - Running ARIMA in R
 - iv. Diagnostic Checking
 - Box Pierce Test in R
 - v. Forecasting
 - Predictions on ARIMA Model in R

Box-Jenkins (ARIMA) Models

ARIMA (Auto Regressive Integrated Moving Average) models are Regression models
that use lagged values of the dependent variable and/or random disturbance term
as explanatory variables.

• ARIMA models rely heavily on the autocorrelation pattern in the data.

• ARIMA models can also be developed in the presence of seasonality in the time series.

 ARIMA models thus essentially ignore domain theory (by ignoring "traditional" explanatory variables)

When to Use ARIMA Models

Little or nothing is known about the dependent variable being forecasted

Basic ARIMA Models

1. Autoregressive model of order p (AR(p)):

$$y_t = \delta + \phi_1 y_{t-1} + \phi_2 y_{t-2} + ... + \phi_p y_{t-p} + \epsilon_t$$

Where y_t depends on its p previous values

2. Moving Average model of order q (MA(q))

$$y_t = \ \delta + \ \epsilon_t - \theta_1 \epsilon_{t-1} - \theta_2 \epsilon_{t-2} - \cdots - \theta_q \epsilon_{t-q}$$

 y_{t} depends on q previous random error terms

3. Autoregressive-Moving Average model of order p and q (ARMA(p,q))

$$\begin{aligned} y_t &= \delta + \phi_1 y_{t-1} + \phi_2 y_{t-2} + ... + \phi_p y_{t-p} \\ &+ \epsilon_t - \theta_1 \epsilon_{t-1} - \theta_2 \epsilon_{t-2} - \dots - \theta_q \epsilon_{t-q} \end{aligned}$$

Five-Step Iterative Procedure

Step 1: Stationarity Checking

Differencing

Differencing continues until stationarity is achieved

$$\Delta y_t = y_t - y_{t-1} \Delta^2 y_t = \Delta(\Delta y_t) = \Delta(y_t - y_{t-1}) = y_t - 2y_{t-1} + y_{t-2}$$

- The differenced series has n-1 values after taking the first-difference, n-2 values after taking the second difference, and so on
- The number of times that the original series must be differenced in order to achieve stationarity is called the order of integration, denoted by d

Case Study

Background

• Annual Sales for a specific company from year 1961 to 2017

Objective

• To develop time series model and forecast sales for next 3 years

Available Information

- Number of cases: 57
- Variables: Year, sales(in 10's GBP)

Data Snapshot

Columns

Year

sales

Creating and Plotting Time Series in R

```
#Importing the Data
turnover_annual <- read.csv("turnover_annual.csv",header=TRUE)

#Creating and Plotting a Time Series Object
salesseries<-ts(turnover_annual$sales,start=1961,end=2017)

ts() converts a column from a data frame to time series object. The start= and end= arguments specify start and end period

plot(salesseries,col="red",main="Sales Time Series (Simple Plot)")</pre>
```


Interpretation:

 The time-series clearly shows a positive trend.

Dickey Fuller Test For Checking Stationarity

```
Augmented Dickey-Fuller Test Unit Root Test
Test regression none
Call:
lm(formula = z.diff \sim z.lag.1 - 1)
Residuals:
  Min
         10 Median
                          Max
-73514 -19075 -8490
                    3412 76065
Coefficients:
       Estimate Std. Error t value Pr(>|t|)
z.lag.1 0.064334 0.003338 19.27 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 25950 on 55 degrees of freedom
Multiple R-squared: 0.871, Adjusted R-squared: 0.8687
F-statistic: 371.5 on 1 and 55 DF, p-value: < 2.2e-16
Value of test-statistic is: 19.2745
Critical values for test statistics:
    1pct 5pct 10pct
tau1 -2.6 -1.95 -1.61
```

Interpretation:

 Time series is non-stationary as value of test statistic is greater than 5% critical value.

Determining Order of Differencing

Install & load package "forecast"

```
install.packages("forecast")
library(forecast)
ndiffs(salesseries)
[1] 2

ndiffs() by default uses a Unit Root test to
estimate the number of differences required.

salesdiff2<-diff(salesseries, differences=2)
plot(salesdiff2, col="red")</pre>
```


Interpretation:

 After 2nd order differencing, the series looks stationary.

Correlogram for 2nd Order Differenced Time Series

ACF Plot

acf(salesdiff2,col="blue")

Output

Interpretation:

 Stationarity is achieved with 2nd order difference.

Step 2: Model Identification

Model Identification

• When the data are confirmed stationary, proceed to tentative identification of models through visual inspection of correlogram and partial correlogram

Model	AC	PAC
AR (p) $y_t = \delta + \phi_1 y_{t-1} + \phi_2 y_{t-2} + + \phi_p y_{t-p} + \varepsilon_t$	Dies down	Cuts off after lag p
MA (q) $y_{t} = \delta + \epsilon_{t} - \theta_{1}\epsilon_{t-1} - \theta_{2}\epsilon_{t-2} - \dots - \theta_{q}\epsilon_{t-q}$	Cuts off after lag q	Dies down
ARMA (p,q) $y_t = \delta + \phi_1 y_{t-1} + \phi_2 y_{t-2} + + \phi_p y_{t-p} + \epsilon_t - \theta_1 \epsilon_{t-1} - \theta_2 \epsilon_{t-2} - \dots - \theta_q \epsilon_{t-q}$	Dies down	Dies down

Model Identification

- ARIMA model is expressed as arima (p,d,q) where
 - p = no. of autoregressive terms
 - d = order of differencing
 - q = no. of moving average terms

ACF Plot

PACF Plot

 ACF and PACF correlograms will help in determining the MA and AR values respectively.
 Indicative Model:

arima(2,2,2)

Step 3: Parameter Estimation

Parameter Estimation in R

#Estimation using arima function salesmodel<-arima(salesseries, order=c(2,2,2))</pre> **arima()** fits a model to a univariate time series. order= argument specifies values of p,d and q coef(salesmodel) coef() and AIC() return the model coefficients and **AIC**(salesmodel) AIC value. # Output > coef(gdpmodel) ar2 ma1 ar1 ma2 -1.2355735 -0.6701038 0.7851143 0.3295140 > AIC(gdpmodel)

There are two AR coefficients and two MA coefficients.

[1] 1285.984

Smaller the AIC value, better is the model. We need to try out various combinations of AR and MA terms to arrive at final model.

Automatic Estimation of Model Parameters

```
# Install & load package "forecast"
# Automatic Model Identification and Parameter Estimation
install.packages("forecast")
library(forecast)
auto.arima(salesseries, d=2, max.p=2, max.q=2, trace=TRUE, ic="aic")
              auto.arima() generates the best order arima model.
              The function conducts a search over possible models
              within the order constraints provided.
              trace= TRUE returns the list of all models considered.
               ic= specifies the information criterion. We have
              specified it as "aic".
```

Automatic Estimation of Model Parameters

Output

```
ARIMA(2,2,2)
                                  : 1285.984
ARIMA(0,2,0)
                                  : 1294.497
ARIMA(1,2,0)
                                  : 1283.644
ARIMA(0,2,1)
                                  : 1285.212
ARIMA(2,2,0)
                                 : 1285.114
ARIMA(1,2,1)
                                 : 1285.361
ARIMA(2,2,1)
                                 : 1283.568
ARIMA(1,2,2)
                                  : 1286.479
Best model: ARIMA(2,2,1)
Series: gdpseries
ARIMA(2,2,1)
Coefficients:
          ar1
                   ar2
                           ma1
      -1.3949
              -0.5100 0.9727
      0.1171
               0.1168 0.1019
sigma^2 estimated as 714703483: log likelihood=-637.78
AIC=1283.57
              AICc=1284.37
                             BIC=1291.6
```

Interpretation:

Model with the lowest AIC value is selected as the best model.

arima Function Using BEST Order

```
# Run arima() for cross checking parameters based on model suggested
# by auto.arima
salesmodel<-arima(salesseries, order=c(2,2,1))</pre>
coef(salesmodel)
AIC(salesmodel)
# Output
> coef(gdpmodel)
      ar1
                 ar2
                            ma1
-1.3948728 -0.5100167 0.9726749
> AIC(gdpmodel)
[1] 1283.568
```

Model Selection Criteria

Akaike Information Criterion (AIC)

$$AIC = -2 ln(L) + 2k$$

where L = Likelihood function

k = Number of parameters to be estimated

Ideally, AIC should be as small as possible

Step 4: Diagnostic Checking

Residual Analysis

If an ARMA(p,q) model is an adequate representation of the data generating process then the residuals should be 'White Noise'

- White Noise time series has zero mean, constant variance and zero covariance with lagged time series.
- Box-Pierce Test (Q Statistic) is the most recommended method for checking if the residuals are white noise process.
- Ljung-Box test is also used for the same purpose.

Box Pierce Test

0	bj	e	c	ti	v	€
---	----	---	---	----	---	---

To test the null hypothesis that \mathbf{e}_{t} is a white noise process

Test Statistic	$Q_{BP}=T\sum_{\tau=1}^{m}\hat{\rho}^{2}\left(\tau\right)\sim\chi^{2}(m)$ for large T (based on autocorrelations upto lag m and T observations in a time series)
Decision Criteria	Reject the null hypothesis if p-value < 0.05

Box Pierce Test in R

```
# Box Test

resi<-residuals(salesmodel) residuals() calculates residual values.

Box.test(resi) Box.test() runs can run a variety of diagnostic tests. It computes the Box Pierce statistic by default.

Box.test() also has the provision for calculating Ljung–Box test statistic, by adding the type = "Ljung-Box" argument.
```


Interpretation:

- Do not reject Ho, as p-value is greater than 0.05.
- Errors follow white noise process.

Step 5: Forecasting

Forecasting

```
# Forecast for next 3years
predict(salesmodel,n.ahead=3)
                                predict() function is used to generate
# Output
                                next 3 years sales forecasts
$pred
Time Series:
Start = 2018
End = 2020
Frequency = 1
                                    Next 3 years sales forecasts
[1] 3072045 3308799 3537673
$se
Time Series:
Start = 2018
End = 2020
Frequency = 1
[1] 26017.21 48562.55 75729.34
```

Quick Recap

Stationarity Checking	 Use ndiffs()to determine order of differencing Plot correlogram using acf() and validate stationarity using ur.df()
Model Identification	 Tentative identification of models through visual inspection of correlogram and partial correlogram
Parameter Estimation	• auto.arima() is recommended for obtaining best ARIMA model
	 It uses AIC as the model selection criteria
Diagnostic Checking	 • Rox.test() performs a Box-Pierce test for checking whether errors follow white noise process