Tema 7. Memòria Virtual

Joan Manuel Parcerisa

Memòria Virtual

- Introducció
- Memòria virtual paginada
- Traducció ràpida amb TLB

Memòria Virtual

- Introducció
 - Requeriments de reubicació, protecció i capacitat
 - Traducció d'adreces
 - Jerarquia de memòria
- Memòria virtual paginada
- Traducció ràpida amb TLB

Necessitat de reubicació

- La compilació, assemblatge i enllaçat
 - Assignen adreces absolutes a instruccions i dades
 - o Les mateixes a tots els programes!

Necessitat de reubicació

- La compilació, assemblatge i enllaçat
 - Assignen adreces absolutes a instruccions i dades
 - o Les mateixes a tots els programes!

Necessitat de protecció

- Un programa podria accedir a dades d'un altre
 - Podria examinar tota la memòria...
 - o ... i buscar passwords!
 - o ... o modificar dades!
- Cal un mecanisme de protecció

- La capacitat de memòria RAM depèn del que instal·lem:
 4GB, 8GB, 16GB, 128GB, ...
 - Què passa si la mida del programa excedeix la capacitat instal·lada?

- La capacitat de memòria RAM depèn del que instal·lem:
 4GB, 8GB, 16GB, 128GB, ...
 - Què passa si la mida del programa excedeix la capacitat instal·lada?
 - → El programa ha d'estar parcialment carregat en memòria

- La capacitat de memòria RAM depèn del que instal·lem:
 4GB, 8GB, 16GB, 128GB, ...
 - Què passa si la mida del programa excedeix la capacitat instal·lada?
 - → El programa ha d'estar parcialment carregat en memòria
- Solució antiga: els overlays
 - El programador dividia el programa en mòduls
 - En executar-se, sols es carregaven en memòria els mòduls indispensables. La resta, sobre demanda

- La capacitat de memòria RAM depèn del que instal·lem:
 4GB, 8GB, 16GB, 128GB, ...
 - Què passa si la mida del programa excedeix la capacitat instal·lada?
 - → El programa ha d'estar parcialment carregat en memòria
- Solució antiga: els overlays
 - El programador dividia el programa en mòduls
 - En executar-se, sols es carregaven en memòria els mòduls indispensables. La resta, sobre demanda
 - Gestió a càrrec del propi programa
 - → Farragós i ineficient

- Espai d'adreçament lògic
 - Són les adreces que assigna el compilador a cada programa, i que la CPU envia a la memòria en cada accés
 - o Cada programa té el seu propi espai, mateixa mida (p.ex. 2³²)

- Espai d'adreçament lògic
 - Són les adreces que assigna el compilador a cada programa, i que la CPU envia a la memòria en cada accés

Cada programa té el seu propi espai, mateixa mida (p.ex. 2³²)

- Espai d'adreçament físic
 - Són les adreces "reals" que rep la MP

- Espai d'adreçament lògic
 - Són les adreces que assigna el compilador a cada programa, i que la CPU envia a la memòria en cada accés
 - o Cada programa té el seu propi espai, mateixa mida (p.ex. 2³²)

codi-1
data-1
codi-2
pila-2
pila-1
data-2

- Espai d'adreçament físic
 - Són les adreces "reals" que rep la MP
 - o Porcions de cada programa s'ubiquen en posicions lliures de MP

- Espai d'adreçament lògic
 - Són les adreces que assigna el compilador a cada programa, i que la CPU envia a la memòria en cada accés

o Cada programa té el seu propi espai, mateixa mida (p.ex. 2³²)

- o Són les adreces "reals" que rep la MP
- o Porcions de cada programa s'ubiquen en posicions lliures de MP
- El hardware MMU fa la traducció de cada adreça lògica a física
 - recorda en quines adreces físiques s'ha ubicat cada porció

- Espai d'adreçament lògic
 - Són les adreces que assigna el compilador a cada programa, i que la CPU envia a la memòria en cada accés

o Cada programa té el seu propi espai, mateixa mida (p.ex. 2³²)

- Són les adreces "reals" que rep la MP
- o Porcions de cada programa s'ubiquen en posicions lliures de MP
- El hardware MMU fa la traducció de cada adreça lògica a física
 - recorda en quines adreces físiques s'ha ubicat cada porció

MV: Programes parcialment carregats en MP

• Els programes resideixen íntegrament al disc

MV: Programes parcialment carregats en MP

- Els programes resideixen integrament al disc
- Les porcions accedides recentment es guarden en MP

MV: Programes parcialment carregats en MP

- Els programes resideixen integrament al disc
- Les porcions accedides recentment es guarden en MP
- El mecanisme de memòria virtual s'encarrega de moure dades del Disc a la MP, explotant la localitat

Vist així, la MP sembla una cache del Disc!!

- Traducció d'adreces lògiques a físiques
 - Permet reubicació automàtica
 - Proporciona protecció i compartició entre programes

- Traducció d'adreces lògiques a físiques
 - Permet reubicació automàtica
 - Proporciona protecció i compartició entre programes
- Usa la MP com una "cache" del disc
 - Però amb gestió conjunta de hardware (MMU) i Sistema Operatiu

- Traducció d'adreces lògiques a físiques
 - Permet reubicació automàtica
 - Proporciona protecció i compartició entre programes
- Usa la MP com una "cache" del disc
 - Però amb gestió conjunta de hardware (MMU) i Sistema Operatiu
 - Permet excedir la capacitat de la MP de forma transparent al programador

- Traducció d'adreces lògiques a físiques
 - Permet reubicació automàtica
 - Proporciona protecció i compartició entre programes
- Usa la MP com una "cache" del disc
 - Però amb gestió conjunta de hardware (MMU) i Sistema Operatiu
 - Permet excedir la capacitat de la MP de forma transparent al programador
 - MP esdevé un nivell més de la jerarquia de memòria

Memòria Virtual

- Introducció
- Memòria virtual paginada
- Traducció ràpida amb TLB

Memòria Virtual

- Introducció
- Memòria virtual paginada
 - Organització en pàgines
 - Traducció d'adreces
 - Polítiques d'emplaçament, reemplaçament i escriptura
 - Traducció amb Taula de Pàgines
- Traducció ràpida amb TLB

- Espai d'adreçament lògic o virtual
 - o És el format per les adreces determinades pel compilador i l'enllaçador

- Espai d'adreçament lògic o virtual
 - És el format per les adreces determinades pel compilador i l'enllaçador
- Es divideix en **pàgines**: blocs contigus de mida fixa, potència de 2 (p.ex. 4KB, 4MB,...), anàlogues als "blocs de cache"

espai lògic		
codi		
dades		
pila		

- Espai d'adreçament lògic o virtual
 - És el format per les adreces determinades pel compilador i l'enllaçador
- Es divideix en pàgines: blocs contigus de mida fixa, potència de 2 (p.ex. 4KB, 4MB,...), anàlogues als "blocs de cache"
 - Es numeren amb el VPN, (Virtual Page Number), per identificar-les

- Espai d'adreçament lògic o virtual
 - És el format per les adreces determinades pel compilador i l'enllaçador
- Es divideix en pàgines: blocs contigus de mida fixa, potència de 2 (p.ex. 4KB, 4MB,...), anàlogues als "blocs de cache"
 - Es numeren amb el VPN, (Virtual Page Number), per identificar-les
 - Sols les pàgines usades ("vàlides") poden ser accedides pel programa

- Espai d'adreçament físic
 - o Depèn de la memòria RAM instal·lada (p.ex. 4GB, 32GB, etc.)

- Espai d'adreçament físic
 - o Depèn de la memòria RAM instal·lada (p.ex. 4GB, 32GB, etc.)
- Es divideix en marcs de pàgina
 - De la mateixa mida que les pàgines

- Espai d'adreçament físic
 - Depèn de la memòria RAM instal·lada (p.ex. 4GB, 32GB, etc.)
- Es divideix en marcs de pàgina
 - De la mateixa mida que les pàgines
 - Es numeren amb el PPN (Physical Page Number), per identificar-los

espai lògic	VPN
	0
codi	1
dades	2
	3
	4
	5
	6
pila	

- Espai d'adreçament físic
 - Depèn de la memòria RAM instal·lada (p.ex. 4GB, 32GB, etc.)
- Es divideix en marcs de pàgina
 - De la mateixa mida que les pàgines
 - Es numeren amb el PPN (Physical Page Number), per identificar-los
 - Un marc és com un "contenidor", que pot allotjar una pàgina

Exemple

• Exemple:

- Pàgines de 4KB (2¹² bytes), memòria física de 16KB (4 marcs)
- Programa 1 i Programa 2 fan servir sols 2 p\u00e4gines l\u00f6giques (VPN0 i VPN1)

Exemple

• Exemple:

- Pàgines de 4KB (2¹² bytes), memòria física de 16KB (4 marcs)
- Programa 1 i Programa 2 fan servir sols 2 p\u00e4gines l\u00f6giques (VPN0 i VPN1)
- o La pàgina VPN1 del programa 1 no està carregada en memòria

Adreça lògica: com determinar el VPN

- A quina pàgina (VPN) pertany l'adreça lògica A?
 - o Si la mida de pàgina és T

VPN = A div T

Adreça lògica: com determinar el VPN

- A quina pàgina (VPN) pertany l'adreça lògica A?
 - Si la mida de pàgina és T

VPN = A div T

I la posició relativa de A dins la pàgina (offset) és

offset = A mod T

Adreça lògica: com determinar el VPN

- A quina pàgina (VPN) pertany l'adreça lògica A?
 - Si la mida de pàgina és T

$$VPN = A div T$$

I la posició relativa de A dins la pàgina (offset) és

- Exemple
 - Adreces lògiques de 32 bits
 - $_{\circ}$ T = 4KB = 2^{12} bytes
 - $_{\circ}$ A = 0x10010004

Adreça lògica: com determinar el VPN

- A quina pàgina (VPN) pertany l'adreça lògica A?
 - Si la mida de pàgina és T

$$VPN = A div T$$

I la posició relativa de A dins la pàgina (offset) és

- Exemple
 - Adreces lògiques de 32 bits
 - $_{\circ}$ T = 4KB = 2^{12} bytes
 - $_{\circ}$ A = 0x10010004

- A quin marc de pàgina (PPN) pertany l'adreça física AF?
 - o Si la mida de pàgina és T

PPN = AF div T

- A quin marc de pàgina (PPN) pertany l'adreça física AF?
 - Si la mida de pàgina és T

PPN = AF div T

o I la posició relativa de AF dins el marc de pàgina (offset) és

offset = AF mod T

- A quin marc de pàgina (PPN) pertany l'adreça física AF?
 - Si la mida de pàgina és T

I la posició relativa de AF dins el marc de pàgina (offset) és

- Exemple
 - Adreces físiques de 28 bits
 - $_{\circ}$ T = 4KB = 2^{12} bytes
 - \circ AF = 0x0301004

- A quin marc de pàgina (PPN) pertany l'adreça física AF?
 - Si la mida de pàgina és T

I la posició relativa de AF dins el marc de pàgina (offset) és

- Exemple
 - Adreces físiques de 28 bits
 - $_{\circ}$ T = 4KB = 2^{12} bytes
 - \circ AF = 0x0301004

Traducció d'adreces

- El processador treballa amb adreces lògiques
- Cada adreça (codi o dades) s'ha de traduir a una adreça física
 - Ho fa la MMU (Memory Management Unit)

Traducció d'adreces

- El processador treballa amb adreces lògiques
- Cada adreça (codi o dades) s'ha de traduir a una adreça física
 - Ho fa la MMU (Memory Management Unit)

Tradueix el VPN al corresponent PPN

Traducció d'adreces

- El processador treballa amb adreces lògiques
- Cada adreça (codi o dades) s'ha de traduir a una adreça física
 - Ho fa la MMU (Memory Management Unit)

- Tradueix el VPN al corresponent PPN
- L'offset no canvia

Traducció amb Taula de Pàgines

- Com sap la MMU en quin marc (PPN) està cada pàgina (VPN)?
 - Consultant la Taula de Pàgines que manté el S.O.
 - Té tantes entrades com pàgines té l'espai lògic (s'indexa amb el VPN)

Taula de pàgines VPN P D PPN

Traducció amb Taula de Pàgines

- Com sap la MMU en quin marc (PPN) està cada pàgina (VPN)?
 - Consultant la Taula de Pàgines que manté el S.O.
 - Té tantes entrades com pàgines té l'espai lògic (s'indexa amb el VPN)
- Cada entrada (PTE o Page Table Entry) conté
 - P: Bit de presència. Val 1 si la pàgina és vàlida i està present en MP
 - D: Bit de modificada. Val 1 si ha estat modificada (per un Store)
 - PPN: Marc de pàgina
 - Altres bits
 - Permisos (p.ex. Lectura/ Escriptura/ Execució)
 - Bit de Referència (per gestionar l'algorisme LRU)

Taula de pàgines

Traducció amb Taula de Pàgines

- Com sap la MMU en quin marc (PPN) està cada pàgina (VPN)?
 - Consultant la Taula de Pàgines que manté el S.O.
 - Té tantes entrades com pàgines té l'espai lògic (s'indexa amb el VPN)
- Cada entrada (PTE o Page Table Entry) conté
 - P: Bit de presència. Val 1 si la pàgina és vàlida i està present en MP
 - D: Bit de modificada. Val 1 si ha estat modificada (per un Store)
 - PPN: Marc de pàgina
 - Altres bits
 - Permisos (p.ex. Lectura/ Escriptura/ Execució)
 - Bit de Referència (per gestionar l'algorisme LRU)

Taula de pàgines

Si la pàgina no està present en memòria (P=0)

La PTE conté la ubicació en disc

Encert i Fallada de pàgina

- Memòria i Disc són 2 nivells de la jerarquia de memòria
 - Al principi, totes les pàgines resideixen al disc
 - A mesura que s'accedeixen, es van carregant en MP

Encert i Fallada de pàgina

- Memòria i Disc són 2 nivells de la jerarquia de memòria
 - Al principi, totes les pàgines resideixen al disc
 - A mesura que s'accedeixen, es van carregant en MP
- Encert de pàgina
 - Quan la pàgina accedida està present en MP (bit P=1)
 - La MMU obté el PPN de la PTE corresponent

Encert i Fallada de pàgina

- Memòria i Disc són 2 nivells de la jerarquia de memòria
 - Al principi, totes les pàgines resideixen al disc
 - A mesura que s'accedeixen, es van carregant en MP
- Encert de pàgina
 - Quan la pàgina accedida està present en MP (bit P=1)
 - La MMU obté el PPN de la PTE corresponent
- Fallada de pàgina
 - Quan la pàgina accedida no està present en MP (bit P=0)
 - El S.O. la copia del disc a un marc en MP (milions de cicles!)
 - El S.O. Actualitza la PTE corresponent (bits P, D i PPN)
 - Es reexecuta la instrucció que ha causat la fallada

- Algorisme d'emplaçament: on es pot allotjar una pàgina?
 - Mapeig totalment associatiu: en qualsevol marc
 - Evita fallades per conflicte

- Algorisme d'emplaçament: on es pot allotjar una pàgina?
 - Mapeig totalment associatiu: en qualsevol marc
 - Evita fallades per conflicte
- Algorisme de reemplaçament: en cas de fallada, com seleccionem un marc?
 - Si en queden, en un marc lliure
 - Si no en queden, reemplaçar-ne un d'ocupat
 - Reemplaçament LRU

- Algorisme d'emplaçament: on es pot allotjar una pàgina?
 - Mapeig totalment associatiu: en qualsevol marc
 - Evita fallades per conflicte
- Algorisme de reemplaçament: en cas de fallada, com seleccionem un marc?
 - Si en queden, en un marc lliure
 - Si no en queden, reemplaçar-ne un d'ocupat
 - Reemplaçament LRU
 - Si la pàgina reemplaçada està modificada (bit D=1), s'escriu al disc

- Algorisme d'emplaçament: on es pot allotjar una pàgina?
 - Mapeig totalment associatiu: en qualsevol marc
 - Evita fallades per conflicte
- Algorisme de reemplaçament: en cas de fallada, com seleccionem un marc?
 - Si en queden, en un marc lliure
 - Si no en queden, reemplaçar-ne un d'ocupat
 - Reemplaçament LRU
 - Si la pàgina reemplaçada està modificada (bit D=1), s'escriu al disc
 - La zona de disc on s'emmagatzemen les pàgines reemplaçades s'anomena fitxer d'intercanvi, espai d'intercanvi o swap

Política d'escriptura (stores)

- Escriptura immediata?
 - o Que cada store escrigui a MP i també al Disc?

Política d'escriptura (stores)

- Escriptura immediata?
 - Que cada store escrigui a MP i també al Disc?
 - o Però cada accés al disc tarda milions de cicles
 - És totalment impràctica!!

Política d'escriptura (stores)

- Escriptura immediata?
 - Que cada store escrigui a MP i també al Disc?
 - Però cada accés al disc tarda milions de cicles
 - És totalment impràctica!!
- Escriptura retardada amb assignació
 - Els stores només escriuen a MP (no al disc)
 - El store marca la pàgina "modificada" posant el bit Dirty (D=1)
 - Si més tard és reemplaçada, caldrà escriure-la al disc

El registre de Taula de Pàgines

- Múltiples processos poden executar-se concurrentment
 - Cada un té el seu propi espai lògic → la seva Taula de Pàgines
 - Alternen l'ús de CPU al llarg del temps, fent canvis de context

Taula de pàgines procés 0

Taula de pàgines procés 1

Taula de pàgines procés 2

El registre de Taula de Pàgines

- Múltiples processos poden executar-se concurrentment
 - Cada un té el seu propi espai lògic → la seva Taula de Pàgines
 - Alternen l'ús de CPU al llarg del temps, fent canvis de context
- Però sols el procés actiu s'executa en un instant donat
 - La CPU manté un Registre de Taula de Pàgines
 - Apunta a la Taula de Pàgines del procés actiu

El registre de Taula de Pàgines

- Múltiples processos poden executar-se concurrentment
 - Cada un té el seu propi espai lògic → la seva Taula de Pàgines
 - o Alternen l'ús de CPU al llarg del temps, fent canvis de context
- Però sols el procés actiu s'executa en un instant donat
 - La CPU manté un Registre de Taula de Pàgines
 - Apunta a la Taula de Pàgines del procés actiu
 - Es modifica cada cop que el S.O. fa un canvi de context

Traducció amb Taula de Pàgines (diagrama de flux)

Traducció amb Taula de Pàgines (diagrama de flux)

- Adreça lògica de 32 bits
- \circ Pàgines de 4KB (2¹² bytes) \rightarrow 20 bits de VPN i 12 bits d'offset

Traducció amb Taula de Pàgines (diagrama de flux)

- Adreça lògica de 32 bits
- $_{\circ}$ Pàgines de 4KB (2¹² bytes) \rightarrow 20 bits de VPN i 12 bits d'offset
- MP de 16KB (4 marcs) → 2 bits de PPN

Exemple

○ La MMU tradueix l'adreça lògica A = 0x00001801

Exemple

- La MMU tradueix l'adreça lògica A = 0x00001801
- La pàgina està Present en memòria (P=1) i resideix al marc PPN = 2

Exemple

- La MMU tradueix l'adreça lògica A = 0x00001801
- La pàgina està Present en memòria (P=1) i resideix al marc PPN = 2
- L'adreça física resultant és: 0x2801

Memòria Virtual

- Introducció
- Memòria virtual paginada
- Traducció ràpida amb TLB

Memòria Virtual

- Introducció
- Memòria virtual paginada
- Traducció ràpida amb TLB
 - Aspectes de disseny
 - Gestió de les fallades de pàgina i de TLB
 - Protecció i Compartició
 - Integració de TLB i Cache

Traducció ràpida amb TLB

• Problema: les TP resideixen en MP

Traducció ràpida amb TLB

- Problema: les TP resideixen en MP
- Cada accés a memòria de la CPU en requereix 2
 - 1 accés a la TP per traduir l'adreça

Traducció ràpida amb TLB

- Problema: les TP resideixen en MP
- Cada accés a memòria de la CPU en requereix 2
 - 1 accés a la TP per traduir l'adreça
 - 1 accés a MP per llegir/escriure la dada
 - ⇒ L'accés a la TP augmenta molt el temps d'accés a memòria!

- Solució: el TLB (Translation-Lookaside Buffer)
 - És una cache de traduccions
 - Guarda les entrades (PTE) de la TP accedides més recentment

- Solució: el TLB (Translation-Lookaside Buffer)
 - És una cache de traduccions
 - Guarda les entrades (PTE) de la TP accedides més recentment
 - En cas d'encert, no cal accedir a la TP

- Solució: el TLB (Translation-Lookaside Buffer)
 - És una cache de traduccions
 - Guarda les entrades (PTE) de la TP accedides més recentment
 - En cas d'encert, no cal accedir a la TP
 - En cas de fallada, ha de copiar la PTE, de la TP al TLB 😕

- Solució: el TLB (Translation-Lookaside Buffer)
 - És una cache de traduccions
 - Guarda les entrades (PTE) de la TP accedides més recentment
 - En cas d'encert, no cal accedir a la TP
 - En cas de fallada, ha de copiar la PTE, de la TP al TLB
 - Paràmetres típics
 - Capacitat: 16 512 PTEs
 - Temps de hit: 0,5 1 cicles
 - Taxa de fallades: 0,01% 1% → L'accés a TP té molta localitat!

Organització del TLB

- Cada entrada conté (exemple de MIPS)
 - Còpia de la PTE: PPN, bit V (còpia del bit P), bit D

Organització del TLB

- Cada entrada conté (exemple de MIPS)
 - o Còpia de la PTE: PPN, bit V (còpia del bit P), bit D
 - VPN (és l'etiqueta que identifica la pàgina)

Organització del TLB

- Cada entrada conté (exemple de MIPS)
 - Còpia de la PTE: PPN, bit V (còpia del bit P), bit D
 - VPN (és l'etiqueta que identifica la pàgina)
- Mapeig completament associatiu
 - Una PTE es pot guardar en qualsevol entrada del TLB

• Quan la MMU consulta el TLB, compara TOTS els VPN (etiquetes)

- Quan la MMU consulta el TLB, compara TOTS els VPN (etiquetes)
- Si algun VPN coincideix, tenim un encert de TLB

- Quan la MMU consulta el TLB, compara TOTS els VPN (etiquetes)
- Si algun VPN coincideix, tenim un encert de TLB
 - És un encert de TLB inclús si el bit V=0 (pàgina no-present)

- Quan la MMU consulta el TLB, compara TOTS els VPN (etiquetes)
- Si algun VPN coincideix, tenim un encert de TLB
 - És un encert de TLB inclús si el bit V=0 (pàgina no-present)
- El camp PPN és la traducció buscada

- Si cap VPN coincideix, tenim una fallada de TLB
 - o Cal accedir a la TP i copiar la PTE al TLB

- Si cap VPN coincideix, tenim una fallada de TLB
 - Cal accedir a la TP i copiar la PTE al TLB
- Algorisme d'emplaçament: on es pot allotjar una PTE?
 - Mapeig totalment associatiu: en qualsevol entrada del TLB

- Si cap VPN coincideix, tenim una fallada de TLB
 - Cal accedir a la TP i copiar la PTE al TLB
- Algorisme d'emplaçament: on es pot allotjar una PTE?
 - Mapeig totalment associatiu: en qualsevol entrada del TLB
- Algorisme de reemplaçament: quina entrada seleccionar?
 - Si en queden, en una entrada lliure del TLB (amb el bit V=0)

- Si cap VPN coincideix, tenim una fallada de TLB
 - Cal accedir a la TP i copiar la PTE al TLB
- Algorisme d'emplaçament: on es pot allotjar una PTE?
 - Mapeig totalment associatiu: en qualsevol entrada del TLB
- Algorisme de reemplaçament: quina entrada seleccionar?
 - Si en queden, en una entrada lliure del TLB (amb el bit V=0)
 - o Si no en queden, reemplaçar-ne una d'ocupada
 - Reemplaçament LRU (o Random)

- Si cap VPN coincideix, tenim una fallada de TLB
 - Cal accedir a la TP i copiar la PTE al TLB
- Algorisme d'emplaçament: on es pot allotjar una PTE?
 - Mapeig totalment associatiu: en qualsevol entrada del TLB
- Algorisme de reemplaçament: quina entrada seleccionar?
 - Si en queden, en una entrada lliure del TLB (amb el bit V=0)
 - o Si no en queden, reemplaçar-ne una d'ocupada
 - Reemplaçament LRU (o Random)
- Alternatives per a gestionar la fallada
 - MIPS: gestió per software
 - La MMU genera una excepció i invoca el S.O.

- Si cap VPN coincideix, tenim una fallada de TLB
 - Cal accedir a la TP i copiar la PTE al TLB
- Algorisme d'emplaçament: on es pot allotjar una PTE?
 - Mapeig totalment associatiu: en qualsevol entrada del TLB
- Algorisme de reemplaçament: quina entrada seleccionar?
 - Si en queden, en una entrada lliure del TLB (amb el bit V=0)
 - o Si no en queden, reemplaçar-ne una d'ocupada
 - Reemplaçament LRU (o Random)
- Alternatives per a gestionar la fallada
 - MIPS: gestió per software
 - La MMU genera una excepció i invoca el S.O.
 - Sparc v8, x86, PowerPC: gestió per hw
 - La pròpia MMU accedeix a la TP

- 1. El bit V del TLB pot valdre 0 per 2 raons
 - o Entrada Iliure, sense inicialitzar

- 1. El bit V del TLB pot valdre 0 per 2 raons
 - Entrada Iliure, sense inicialitzar
 - Entrada que conté una PTE acabada de copiar de la TP després d'una fallada de TLB, i on el bit de presència era 0
 - → Encara queda per resoldre la fallada de pàgina

1. El bit V del TLB pot valdre 0 per 2 raons

- Entrada Iliure, sense inicialitzar
- Entrada que conté una PTE acabada de copiar de la TP després d'una fallada de TLB, i on el bit de presència era 0
 - → Encara queda per resoldre la fallada de pàgina

2. El bit D del TLB

- Es posa a 1 quan s'executa un Store
- És l'únic camp del TLB que pot ser modificat pel programa

1. El bit V del TLB pot valdre 0 per 2 raons

- Entrada Iliure, sense inicialitzar
- Entrada que conté una PTE acabada de copiar de la TP després d'una fallada de TLB, i on el bit de presència era 0
 - → Encara queda per resoldre la fallada de pàgina

2. El bit D del TLB

- Es posa a 1 quan s'executa un Store
- És l'únic camp del TLB que pot ser modificat pel programa
- Escriptura immediata
 - S'escriu D=1 al TLB i també a la TP (sempre sincronitzats)

1. El bit V del TLB pot valdre 0 per 2 raons

- Entrada Iliure, sense inicialitzar
- Entrada que conté una PTE acabada de copiar de la TP després d'una fallada de TLB, i on el bit de presència era 0
 - → Encara queda per resoldre la fallada de pàgina

2. El bit D del TLB

- Es posa a 1 quan s'executa un Store
- És l'únic camp del TLB que pot ser modificat pel programa
- Escriptura immediata
 - S'escriu D=1 al TLB i també a la TP (sempre sincronitzats)
- Tots els stores han d'accedir a la TP en MP?
 - No! solament el primer cop que escrivim a la pàgina, quan D encara val 0 al TLB

- En una fallada de TLB s'accedeix la TP en MP (page table walk)
 - o En MIPS hi ha una excepció, i la resol el S.O. (per software)
 - → Un cop resolta, la instrucció causant s'ha de reexecutar

- En una fallada de TLB s'accedeix la TP en MP (page table walk)
 - o En MIPS hi ha una excepció, i la resol el S.O. (per software)
 - → Un cop resolta, la instrucció causant s'ha de reexecutar
 - En alguns sistemes (x86, PowerPC) la resol el hardware
 - → Un cop resolta, l'accés a memòria prossegueix (com en les caches)

- En una fallada de TLB s'accedeix la TP en MP (page table walk)
 - o En MIPS hi ha una excepció, i la resol el S.O. (per software)
 - → Un cop resolta, la instrucció causant s'ha de reexecutar
 - En alguns sistemes (x86, PowerPC) la resol el hardware
 - → Un cop resolta, l'accés a memòria prossegueix (com en les caches)
- En una fallada de pàgina s'accedeix al disc (milions de cicles)
 - Hi ha una excepció, i la resol el S.O. (per software)
 - → Mentre es resol, es pot executar un altre programa (canvi de context)
 - → Un cop resolta, la instrucció causant s'ha de reexecutar

- En una fallada de TLB s'accedeix la TP en MP (page table walk)
 - o En MIPS hi ha una excepció, i la resol el S.O. (per software)
 - → Un cop resolta, la instrucció causant s'ha de reexecutar
 - En alguns sistemes (x86, PowerPC) la resol el hardware
 - → Un cop resolta, l'accés a memòria prossegueix (com en les caches)
- En una fallada de pàgina s'accedeix al disc (milions de cicles)
 - Hi ha una excepció, i la resol el S.O. (per software)
 - → Mentre es resol, es pot executar un altre programa (canvi de context)
 - → Un cop resolta, la instrucció causant s'ha de reexecutar
- Les TP resideixen en memòria
 - Han de ser accessibles per al codi del SO sense traducció d'adreces

Protecció amb Memòria Virtual

- Com impedeix la MV que un procés accedeixi a pàgines d'un altre procés?
 - Cada marc de pàgina está assignat a un únic procés, i no apareix a les TP de cap altre procés

Protecció amb Memòria Virtual

- Com impedeix la MV que un procés accedeixi a pàgines d'un altre procés?
 - Cada marc de pàgina está assignat a un únic procés, i no apareix a les TP de cap altre procés
- Podria un procés modificar la seva TP o el TLB?
 - No! El procesador té 2 modes de funcionament: usuari i sistema
 - Les TP es guarden en adreces del S.O. (sols accesibles en mode sistema): en MIPS, adreces lògiques amb el bit 31=1

Protecció amb Memòria Virtual

- Com impedeix la MV que un procés accedeixi a pàgines d'un altre procés?
 - Cada marc de pàgina está assignat a un únic procés, i no apareix a les TP de cap altre procés
- Podria un procés modificar la seva TP o el TLB?
 - No! El procesador té 2 modes de funcionament: usuari i sistema
 - Les TP es guarden en adreces del S.O. (sols accesibles en mode sistema): en MIPS, adreces lògiques amb el bit 31=1
 - El TLB (com tots els dispositius) sols és accesible en mode sistema

Protecció amb Memòria Virtual

- Com impedeix la MV que un procés accedeixi a pàgines d'un altre procés?
 - Cada marc de pàgina está assignat a un únic procés, i no apareix a les TP de cap altre procés
- Podria un procés modificar la seva TP o el TLB?
 - No! El procesador té 2 modes de funcionament: usuari i sistema
 - Les TP es guarden en adreces del S.O. (sols accesibles en mode sistema): en MIPS, adreces lògiques amb el bit 31=1
 - El TLB (com tots els dispositius) sols és accesible en mode sistema
- És convenient prohibir l'escriptura en algunes pàgines
 - o P. ex., en pàgines de codi (no es permet el codi automodificable)
 - Bit de permís d'escriptura (E) en cada PTE (a la TP i al TLB)

Protecció amb Memòria Virtual

- Com impedeix la MV que un procés accedeixi a pàgines d'un altre procés?
 - Cada marc de pàgina está assignat a un únic procés, i no apareix a les TP de cap altre procés
- Podria un procés modificar la seva TP o el TLB?
 - No! El procesador té 2 modes de funcionament: usuari i sistema
 - Les TP es guarden en adreces del S.O. (sols accesibles en mode sistema): en MIPS, adreces lògiques amb el bit 31=1
 - El TLB (com tots els dispositius) sols és accesible en mode sistema
- És convenient prohibir l'escriptura en algunes pàgines
 - o P. ex., en pàgines de codi (no es permet el codi automodificable)
 - Bit de permís d'escriptura (E) en cada PTE (a la TP i al TLB)
- I si un procés escriu en una página amb el bit E=0?
 - Es produeix una excepció, i el S.O. avorta el procés

Compartició de memòria

- Un procés P1 pot demanar al S.O. compartir una página amb P2
 - → El S.O. escriu el PPN del marc de página compartit en les dues TPs

Compartició de memòria

- Un procés P1 pot demanar al S.O. compartir una página amb P2
 - → El S.O. escriu el PPN del marc de página compartit en les dues TPs

Exemple: PPN2 apareix a les 2 TPs

- Memòria cache indexada físicament
 - Simple, però té un temps d'accés elevat (s'accedeix seqüencialment a TLB i cache)

- Memòria cache indexada físicament
 - Simple, però té un temps d'accés elevat (s'accedeix seqüencialment a TLB i cache)

Test de repàs: Veritat o Fals?

- Si l'accés a dades d'una instrucció produeix un encert al TLB però el bit V val 0, llavors la instrucció causarà una excepció de fallada de pàgina
- 2. Una mateixa instrucció pot causar durant la seva execució 2 fallades de pàgina
- 3. Una fallada al TLB no implica que hi hagi una fallada de pàgina
- 4. En memòria virtual paginada, sempre que reemplacem una pàgina de la memòria física, cal escriure-la en disc

Annex (no entra)

- Integració de TLB i caches
- Taula de Pàgines multinivell

- Hem vist abans: Cache indexada físicament
 - Simple, però té un temps d'accés elevat (s'accedeix seqüencialment a TLB i cache)

- Cache indexada virtualment
 - Temps d'accés menor: en cas d'encert, no cal traduir l'adreça

Memòria

Cache indexada virtualment

 Temps d'accés menor: en cas d'encert, no cal traduir l'adreça, només en cas de fallada

Cache indexada virtualment

- Temps d'accés menor: en cas d'encert, no cal traduir l'adreça, només en cas de fallada
- Problema de l'aliasing: pàgines compartides poden quedar duplicades en línies diferents
 - El que s'escriu en una còpia no és visible a les lectures de l'altra
 - P.ex. quan un procés en crea un altre, sovint comparteixen codi

VA₂

Etiqueta blocs de dades VA, 1st Copy of Data at PA

2nd Copy of Data at PA

Cache

- Cache indexada virtualment i etiquetada físicament
 - S'accedeix a TLB i la cache simultàniament
 - L'índex de línea o conjunt s'obté dels bits de page-offset, que no s'han de traduir

Cache indexada virtualment i etiquetada físicament

- S'accedeix a TLB i la cache simultàniament
- L'índex de línea o conjunt s'obté dels bits de page-offset, que no s'han de traduir
- Les etiquetes es comproven al final, amb l'adreça física
 - En cas d'encert

Cache indexada virtualment i etiquetada físicament

- S'accedeix a TLB i la cache simultàniament
- L'índex de línea o conjunt s'obté dels bits de page-offset, que no s'han de traduir
- Les etiquetes es comproven al final, amb l'adreça física
 - En cas de fallada

TP multinivell

- Vegem el problema, amb quatre números. Suposem:
 - Espai lògic de 64 bits
 - Memòria física de 43 bits
 - Pàgines de 8KB = 2¹³ bytes
- Quanta memòria cal per implementar la TP?
 - Offset de 13 bits
 - $_{\circ}$ VPN de 64 13 = 51 bits \rightarrow TP de 2⁵¹ entrades
 - PPN de 43 13 = 30 bits
 - Cada entrada de la TP (PTE) té
 - PPN (30 bits) + P (1 bit) + D (1 bit) = 32 bits = 4 bytes
- En total
 - $_{\circ}$ 2⁵¹ entrades x 4 bytes = 2⁵³ bytes = 8 Petabytes (!!!)

 Observació: cada procés sol tenir unes poques pàgines vàlides, i molt agrupades

- Observació: cada procés sol tenir unes poques pàgines vàlides, i molt agrupades
- Dividim la TP en pàgines o porcions, i sols creem aquelles amb alguna entrada vàlida
- Generem una taula general amb punters a les porcions de la TP

- Observació: cada procés sol tenir unes poques pàgines vàlides, i molt agrupades
- Dividim la TP en pàgines o porcions, i sols creem aquelles amb alguna entrada vàlida
- Generem una taula general amb punters a les porcions de la TP

PT multinivell: exemple

