CLAIMS

	1.	A phosphor of SiC excited by an external light source for emitting light
doped	with	N and at least one of B and Al.

5

 The phosphor of Sic according to claim 1, wherein both of the doping concentration with at least one of B and Al and the doping concentration with N are 10¹⁵/cm³ to 10²⁰/cm³.

10

- 3. The phosphor of SiC according to claim 2, wherein both of the doping concentration with at least one of B and Al and the doping concentration with N are 10¹⁶/cm³ to 10²⁰/cm³.
- 4. The phosphor of SiC according to claim 1, emitting fluorescence having a wavelength of 500 nm to 750 nm with a peak wavelength in the range of 500 nm to 650 nm.
 - 5. The phosphor of SiC according to claim 4, wherein SiC is doped with N and B, the concentration of either N or B is 10¹⁵/cm³ to 10¹⁸/cm³, and the concentration of either B or N is 10¹⁶/cm³ to 10¹⁹/cm³.
 - 6. The phosphor of SiC according to claim 1, emitting fluorescence having a wavelength of 400 nm to 750 nm with a peak wavelength in the range of 400 nm to 550 nm.

25

20

7. The phosphor of SiC according to claim 6, wherein SiC is doped with N and Al, the concentration of either N or Al is 10¹⁵/cm³ to 10¹⁸/cm³, and the concentration of either Al or N is 10¹⁶/cm³ to 10¹⁹/cm³.

8. A method of manufacturing a phosphor of SiC excited by an external light source for emitting fluorescence having a wavelength of 500 nm to 750 nm with a peak wavelength in the range of 500 nm to 650 nm and doped with N and B so that the concentration of either N or B is 10^{15} /cm³ to 10^{18} /cm³ and the concentration of either B or N is 10^{16} /cm³ to 10^{19} /cm³.

by forming an SiC crystal by sublimation recrystallization with a B source of LaB₆, B₄C, TaB₂, NbB₂, ZrB₂, HfB₂, BN or carbon containing B.

9. A method of manufacturing a phosphor of SiC excited by an external light source for emitting fluorescence having a wavelength of 500 nm to 750 nm with a peak wavelength in the range of 500 nm to 650 nm and doped with N and B so that the concentration of either N or B is 10¹⁵/cm³ to 10¹⁸/cm³ and the concentration of either B

or N is 10^{16} /cm³ to 10^{19} /cm³,

5

15

20

25

by thermally diffusing a B source of simple B, LaB₆, B₄C, TaB₂, NbB₂, ZrB₂, HfB₂ or BN into SiC under a vacuum or an inert gas atmosphere at a temperature of at least 1500°C.

- 10. The method of manufacturing a phosphor of SiC according to claim 8 or 9, performing thermal annealing at a temperature of at least 1300°C for at least one hour after sublimation recrystallization or thermal diffusion.
- 11. The method of manufacturing a phosphor of SiC according to claim 9, removing a surface layer after thermal diffusion.
- 12. A substrate for a semiconductor consisting of a 6H-SiC single-crystalline phosphor excited by an external light source for emitting light and doped with N and at least one of B and Al.

- 13. The substrate for a semiconductor according to claim 12, consisting of a 6H-SiC single-crystalline phosphor doped with N and B for emitting fluorescence having a wavelength of 500 nm to 750 nm with a peak wavelength in the range of 500 nm to 650 nm.
- 14. The substrate for a semiconductor according to claim 12, consisting of a 6H-SiC single-crystalline phosphor doped with N and Al for emitting fluorescence having a wavelength of 400 nm to 750 nm with a peak wavelength in the range of 400 nm to 550 nm.
- 15. A method of manufacturing a substrate for a semiconductor consisting of a 6H-SiC single-crystalline phosphor excited by an external light source for emitting fluorescence having a wavelength of 500 nm to 750 nm with a peak wavelength in the range of 500 nm to 650 nm and doped with N and B so that the concentration of either N or B is 10¹⁵/cm³ to 10¹⁸/cm³ and the concentration of either B or N is 10¹⁶/cm³ to 10¹⁹/cm³, comprising the steps of:

thermally diffusing a B source of simple B, LaB₆, B₄C, TaB₂, NbB₂, ZrB₂, HfB₂ or BN into SiC under a vacuum or an inert gas atmosphere at a temperature of at least 1500°C; and

removing a surface layer.

5

10

15

20

25

16. A method of manufacturing a substrate for a semiconductor consisting of a 6H-SiC single-crystalline phosphor excited by an external light source for emitting fluorescence having a wavelength of 500 nm to 750 nm with a peak wavelength in the range of 500 nm to 650 nm and doped with N and B so that the concentration of either N or B is 10¹⁵/cm³ to 10¹⁸/cm³ and the concentration of either B or N is 10¹⁶/cm³ to 10¹⁹/cm³, wherein

atmosphere gas in crystal growth contains N_2 gas of 1 % to 30 % in gas partial pressure, and raw material SiC contains 0.05 mol % to 15 mol % of a B source, and an SiC crystal is formed by sublimation recrystallization.

5

17. The method of manufacturing a substrate for a semiconductor according to claim 15 or 16, performing thermal annealing at a temperature of at least 1300°C after sublimation recrystallization or thermal diffusion.

10

18. Powder for a semiconductor consisting of a 6H-SiC single-crystalline phosphor excited by an external light source for emitting fluorescence having a wavelength of 500 nm to 750 nm with a peak wavelength in the range of 500 nm to 650 nm, having a particle diameter of 2 μ m to 10 μ m and a central particle diameter of 3 μ m to 6 μ m.

15

19. A light-emitting diode comprising a substrate for a semiconductor consisting of a 6H-SiC single-crystalline phosphor doped with N and at least one of B and Al and a light-emitting device of a nitride semiconductor formed on said substrate.

20

20. A light-emitting diode having one or at least two layers consisting of a 6H-SiC single-crystalline phosphor doped with N and at least one of B and Al on a substrate of SiC for a semiconductor and comprising a light-emitting device of a nitride semiconductor on said 6H-SiC single-crystalline phosphor layer(s).

25

- 21. The light-emitting diode according to claim 19 or 20, wherein the emission wavelength of said light-emitting device of a nitride semiconductor is not more than 408 nm.
 - 22. The light-emitting diode according to claim 19 or 20, wherein

both of the doping concentration with at least one of B and Al and the doping concentration with N in said 6H-SiC single-crystalline phosphor are $10^{16}/\text{cm}^3$ to $10^{19}/\text{cm}^3$.

5 23. The light-emitting diode according to claim 22, wherein

both of the doping concentration with at least one of B and Al and the doping concentration with N in said 6H-SiC single-crystalline phosphor are 10^{17} /cm³ to 10^{19} /cm³.