$\mathbf{Aufgabe}\ \mathbf{1}$ Gegeben sei eine auf ganz \mathbf{R} stetige Funktion f und die Relation

$$R = \left\{ (a,b) \in \mathbf{R}^2 \, \middle| \, \int\limits_a^b f(x) \, dx = 0 \right\}.$$

- a) Untersuchen Sie, ob R eine Äquivalenzrelation ist.
- b) Es sei $f(x) = \sin x$. Bestimmen Sie für jedes $a \in \mathbf{R}$ die Menge $[a]_R := \{b \in \mathbf{R} \mid aRb\}$.

Aufgabe 2

a) Es sei $[a,b] \subset \mathbf{R}$ ein Intervall. Zeigen Sie: durch

$$\langle f,g \rangle = \int_{a}^{b} f(x)g(x) dx$$
 für $f,g \in C[a,b]$

ist ein Skalarprodukt auf dem Vektorraum C[a, b] erklärt.

b) Zeigen Sie für alle $m, n \in \mathbb{N}$:

$$\mathrm{i)}\int\limits_{0}^{2\pi}\sin mx\sin nx\,dx=\pi\delta_{mn}\qquad\mathrm{ii)}\int\limits_{0}^{2\pi}\cos mx\cos nx\,dx=\pi\delta_{mn}\qquad\mathrm{iii)}\int\limits_{0}^{2\pi}\sin mx\cos nx\,dx=0$$

c) Zeigen Sie: die Funktionen $f_n \in C[0, 2\pi]$ mit

i)
$$f_n(x) = \sin nx$$
 ii) $f_n(x) = \cos nx$

 $(n \in \mathbb{N})$ bilden bezüglich des Skalarproduktes aus a) ein Orthogonalsystem.

Aufgabe 3

a) Zeigen Sie für alle $n \in \mathbf{N}_0$:

$$\int_{0}^{\pi/2} \sin^{2n} x \ dx = \frac{\pi}{2} \prod_{k=1}^{n} \frac{2k-1}{2k}.$$

b) Die Funktion f sei auf dem Intervall [a, b] stetig und es gelte $f \ge 0$. Zeigen Sie:

$$\lim_{n \to \infty} \left(\int_{a}^{b} (f(x))^{n} dx \right)^{1/n} = \operatorname{Max} f([a, b]).$$

Aufgabe 4

- a) Berechnen Sie den Inhalt der Fläche, die
 - i) von den Koordinatenachsen, der Geraden x = 3 und der Parabel $y = x^2 + 1$,
 - ii) von der x-Achse, den Geraden x = -1 und x = 4 und der Kurve $y = e^x + 2$,
 - iii) von den Kurven $y = x^2$ und $y = \sqrt{x}$,
 - iv) von der x-Achse, den Geraden $x = \frac{\pi}{2}$ und $x = 2\pi$ und der Kurve $y = \sin x$,
 - v) von den Kurven $y = \frac{8}{3\pi^3}(x + \frac{\pi}{2})^2(x \frac{\pi}{2})$ und $y = \cos x$

begrenzt wird.

b) Berechnen Sie jeweils für $d=0,\ d=1$ und d=2 den Inhalt der Fläche zwischen den Graphen von f_1 und f_2 : $f_1(x)=\frac{1}{2}x^3\quad \text{und}\quad f_2(x)=\frac{3}{2}x^2-d.$

(Tipp: Beginnen Sie mit dem Fall d=0. Fertigen Sie eine Skizze des Graphen der Differenzfunktion $f=f_1-f_2$ an. Welche Auswirkung hat es anschaulich, wenn man von d=0 zu d=1 bzw. d=2 übergeht?)

Lösungen zu Aufgabe 1

a) R ist Äquivalenzrelation

$$[a]_R = \begin{cases} \{2\pi k \mid k \in \mathbf{Z}\} & \text{für } a = 0 \\ \{\pi + 2\pi k \mid k \in \mathbf{Z}\} & \text{für } a = \pi \\ \{a + 2\pi k \mid k \in \mathbf{Z}\} \cup \{-a + 2\pi k \mid k \in \mathbf{Z}\} & \text{für } a \in [0, 2\pi[\setminus \{0, \pi\}] \end{cases}$$

$$\text{Für } a \notin [0, 2\pi[\text{ ergibt sich } [a]_R \text{ aus der Eigenschaft } [a + 2\pi k]_R = [a]_R \text{ } (k \in \mathbf{Z}) \end{cases}$$

Für $a \notin [0, 2\pi[$ ergibt sich $[a]_R$ aus der Eigenschaft $[a+2\pi k]_R = [a]_R$ $(k \in \mathbf{Z})$

Lösungen zu Aufgabe 4

- a) i) 12
 - ii) $e^4 \frac{1}{e} + 10$
 - iii) $\frac{1}{3}$
 - iv) 3
 - v) $3 + \frac{5}{72}\pi$

b)
$$\begin{cases} \frac{27}{8} & \text{für } d = 0\\ \frac{9}{4} & \text{für } d = 1\\ \frac{27}{8} & \text{für } d = 2 \end{cases}$$