Уравнение Пелля

Пусть дано натуральное число m, не являющееся полным квадратом. Уравнением Пелля называется уравнение $x^2-my^2=1$. Мы будем искать решения, отличные от тривиальных решений $(\pm 1,0)$. Пару $(x,y)\in\mathbb{Z}^2$ отождествим с точкой на плоскости \mathbb{R}^2 и числом $x+\sqrt{m}y\in\mathbb{Z}[\sqrt{m}]$. Для каждого целого числа n рассмотрим фигуру ℓ_n , заданную уравнением $x^2-my^2=n$. Ясно, что все ℓ_n , $n\neq 0$, – гиперболы, а ℓ_0 – пара общих асимптот этих гипербол.

- 1. Выберем на ℓ_n пару симметричных относительно начала координат точек. Докажите, что на ℓ_{-n} можно выбрать такую пару симметричных относительно начала координат точек, что все четыре выбранные точки вершины параллелограмма со сторонами, параллельными ℓ_0 , и, более того, площадь этого параллелограмма зависит только от n.
- 2. Опишите геометрически, как на гиперболе ℓ_n , $n \neq 0$, действует умножение на положительное решение. Ответьте на этот вопрос для пары асимптот ℓ_0 .
- 3. Докажите, что все положительные решения (если они есть) получаются многократным умножением некоторого положительного решения на себя.
- 4. Пусть на гиперболе ℓ_n лежат хотя бы $|n|^2 + 1$ целых точек. Докажите, что уравнение Пелля имеет решение.
- 5. Докажите, что на некоторой гиперболе ℓ_n лежит бесконечно целых точек.
- 6. Пусть p простое число вида 4k+1, а $d^2 \equiv -1 \pmod p$. Докажите, что число p представимо в виде суммы двух квадратов натуральных чисел, рассмотрев на координатной плоскости решётку с базисными векторами $(1,0), (\frac{d}{p},1)$ и эллипс, заданный уравнением $px^2+\frac{y^2}{p}=1$.
- 7. Докажите, что числа $x, y \in \mathbb{Z}_{\geqslant 0}$ удовлетворяют уравнению $x^2 nxy + y^2 = 1$, $n \in \mathbb{Z}$, тогда и только тогда, когда x и y соседние числа последовательности, заданной соотношениями $a_0 = 0$, $a_1 = 1$ и $a_{k+1} = ma_k a_{k-1}$.
- 8. Пусть S множество всех натуральных чисел n таких, что n^4 делится хотя бы на одно из чисел $n^2+1, n^2+2, \ldots, n^2+2n$. Докажите, что среди элементов множества S бесконечно много чисел каждого из видов 7m, 7m+1, 7m+2, 7m+5, 7m+6 и нет ни одного числа вида 7m+3 и 7m+4, где m целое.
- 9. Даны целые числа x и $y=2+2\sqrt{28x^2+1}$. Докажите, что y полный квадрат.
- 10. Натуральное число n таково, что оба числа: 3n+1 и 4n+1 полные квадраты. Докажите, что n делится на 56.
- 11. Целые числа x, y, n и удовлетворяют равенству $x^2 (n^2 1)y^2 = a$, где $0 < a \le 2n + 1$. Докажите, что число a является полным квадратом.
- 12. Найдите все натуральные числа d, для которых у уравнения Пелля $x^2 dy^2 = 1$ есть решение (x, y) такое, что x y = d.
- 13. Докажите, что для любого простого числа $p \equiv 1 \pmod 4$ у уравнения $x^2 py^2 = -1$ есть решения в натуральных числах.
- 14. Найдите все натуральные числа d, для которых существуют многочлены $P,Q \in \mathbb{R}[x]$ такие, что $\deg P = d$ и $(P(x))^2 + 1 = (x^2 + 1) (Q(x))^2$.