Evaluation

Web信息处理与应用 金培权(jpq@ustc.edu.cn)

课程知识结构

本章讨论的问题

本章主要内容

- ■信息检索评价概述
- 评价指标

一、IR评价概述

- 评价很难,但是似乎又很容易
 - 主观的,依赖于特定用户的判断
 - 和情景相关的, 依赖于用户的需求
 - 认知的,依赖于人的认知和行为能力
 - 时变的,随着时间而变化
- 评价要公平!
 - 例如,在竞技体育中
 - ◆ 环境要基本一致:天气、风速、跑道等等
 - ◆ 比赛过程要一样: 竞走中的犯规
 - ◆ 指标要一样:速度、耐力

1、IR为什么需要评价?

- 通过评估可以评价不同技术的优劣,不同因素对系统的影响,从而促进本领域研究水平的不断提高
 - ◆ 类比: 110米栏各项技术---起跑、途中跑、跨栏、步频、冲刺等等
- 信息检索系统的目标是较少消耗情况下尽快、全面返回准确的结果。

2、IR需要评价什么?

- ■最主要的两个方面
 - 效率 (Efficiency)—可以采用通常的评价方法
 - ◆ 时间开销、空间开销、响应速度
 - 效果 (Effectiveness)
 - ◆ 返回的文档中有多少相关文档
 - ◆ 所有相关文档中返回了多少
 - ◆ 返回得靠不靠前
- ■其他指标
 - 覆盖率(Coverage)
 - 访问量
 - 数据更新速度

3、IR评价的前提

- 相同的文档集合,相同的查询主题集合,相同的 评价指标,不同的检索系统进行比较。
- ■可以使用多种类型的文档集
 - CACM: ACM通讯标题和摘要(1958-1979)(几 千个文档)
 - TREC(Text REtrieval Conference), 美国标准技术研究所, 1992 (上百万篇文档), 信息检索的"奥运会"
 - ◆ AP: Associated Press news corpus (几十万个文档)
 - ◆ GOV2: 从.gov域名爬取的网页(几百万个文档)

3、IR评价的前提

■不同的文档集具有完全不同的特征

● 数据集大小、相关性度量......

Collection	Number of	Size	Average number
	documents		of words/doc.
CACM	3,204	2.2 Mb	64
AP	242,918	$0.7~\mathrm{Gb}$	474
GOV2	$25,\!205,\!179$	$426~\mathrm{Gb}$	1073

Collection	Number of	Average number of	Average number of
	queries	words/query	relevant docs/query
$\overline{\text{CACM}}$	64	13.0	16
AP	100	4.3	220
GOV2	150	3.1	180

4、IR评价的例子

■ 两个系统,一批查询,对每个查询每个系统分别 得到一些结果。目标:哪个系统好?

系统 & 查询	1	2	3	4	•••
系统1,查询1	d3	d6	d8	d10	
系统1,查询2	d1	d4	d7	d11	
系统2,查询1	d6	d7	d3	d9	
系统2,查询2	d1	d2	d4	d13	

5、IR评价需要考虑的方面

- 评价指标:某个或某几个可衡量、可比较的值
 - 正确率
 - 召回率
 - F-measure
 - MAP
 - MRR
 - NDCG
- 评价过程:设计上保证公平、合理

- 效率评价指标(Efficiency)
- 效果评价指标(Effectiveness)

Efficiency metrics

Metric name	Description
Elapsed indexing time	Measures the amount of time necessary to build a
	document index on a particular system.
Indexing processor time	Measures the CPU seconds used in building a docu-
	ment index. This is similar to elapsed time, but does
	not count time waiting for I/O or speed gains from
	parallelism.
Query throughput	Number of queries processed per second.
Query latency	The amount of time a user must wait after issuing a
	query before receiving a response, measured in mil-
	liseconds. This can be measured using the mean, but
	is often more instructive when used with the median
	or a percentile bound.
Indexing temporary space	Amount of temporary disk space used while creating
	an index.
Index size	Amount of storage necessary to store the index files.

Effectiveness metrics

- 对单个查询进行评估的指标
 - ◆ 基于集合的评价指标
 - 正确率(Precision)、召回率(Recall)、F值
 - ◆ 基于序的评价指标
 - P@N、R-Precision、AP等
- 对多个查询进行评估的指标
 - MAP、MRR
- 其它的评价指标
 - NDCG

- 正确率(Precision)
 - RR/(RR + RN)
 - 返回的结果中真正相关结果的比率,也称为查准率P∈ [0,1]
- 召回率(Recall)
 - \circ RR/(RR + NR)
 - 返回的相关结果数占实际相关结果总数的比率,也称为 查全率,R∈ [0,1]
- 两个指标分别度量检索效果的某个方面,忽略任何一方面都有失偏颇。两个极端情况:返回有把握的1篇, P=100%,但R极低;全部文档都返回,R=1,但P极低

■四种关系的矩阵表示

■基于集合的表示

■举例

系统&查询	1	2	3	4	5
系统1,查询1	d3√	d6√	d8	d10	d11
系统1,查询2	d1	d4	d7	d11	d13
系统2,查询1	d6√	d7	d2	d9√	
系统2,查询2	d1	d2	d4	d13	d14

对于查询1的标准答案集合 {d3,d4,d6,d9}

对于系统1,查询1:正确率2/5,召回率2/4

对于系统2, 查询1: 正确率2/4, 召回率2/4

- ■正确率和召回率的应用领域
 - 拼写校对、中文分词、文本分类、人脸识别......
- 虽然Precision和Recall都很重要,但是不同的 应用、不用的用户可能会对两者的要求不一样。 因此,实际应用中应该考虑这点。
 - 垃圾邮件过滤:宁愿漏掉一些垃圾邮件,但是尽量少将正常邮件判定成垃圾邮件——召回率允许低一点
 - 海上目标检测:希望不要漏掉目标——召回率要求高
 - 知识问答:希望返回结果准一点,但不需要结果很全正确率要求高

■ 召回率的问题:

对于大规模文档集合,列举每个查询的所有相关文档 是不可能的事情,因此,不可能准确地计算召回率

- ■解决方法:缓冲池(Pooling)方法
 - Pooling: 针对某一检索问题,所有参与其检索试验的系统分别给出各自检索结果中的Top N个文档(例如N=100),将这些结果文档汇集起来,并进行人工标注,从而得到一个可能相关的文档池 "pool"
 - 潜在的假设
 - ◆ 绝大多数的相关文档都收录在这个"pool"中
 - 这种做法被验证是可行的(可以比较不同系统的相对效果)——虽然返回不了全部的相关文档,但能够评价各个系统的相对好坏
 - 在TREC评测中被广泛采用(N: 50~200)

■ Pooling方法

2. F-measure

■ F值(F-measure): 召回率R和正确率P的调和平均值, if P=0 or R=0, then F=0, else 采用下式计算:

$$F = \frac{2}{\frac{1}{P} + \frac{1}{R}} = \frac{2PR}{P+R} \text{ (P } \neq 0, R \neq 0)$$

■ 更一般的情况—— F_{β} : 参数 β 用于调节召回率和正确率的相对重要程度。 β >1更重视召回率, β <1更重视正确率。 F值即 β =1时的 F_1 值。 F_2 值(更重视召回率)和 $F_{0.5}$ 值(更重视正确率)也是常用的指标值

$$F_{\beta} = \frac{(1+\beta^2)PR}{\beta^2 P + R}$$
 (P \neq 0, R \neq 0)

2. F-measure

■ 为什么不使用其他平均来计算F, 比如算术平均

■ 如果采用算术平均计算F值,那么一个返回全部 文档的搜索引擎的F值就不低于50%,这有些 过高。

正确率P、召回率R、F值是信息检索领域最常用的3个评价指标

3, P@N

■正确率和召回率的问题

- 两个指标都是基于(无序)集合进行计算,并没有考虑 序的作用
- 举例:两个系统对某查询都返回20个文档,其中相 关文档数都是10,但第一个系统是前10条结果,后 一个系统是后10条结果。显然第一个系统优。但两 者的P和R一样。
- 解决方法: 引入序的作用
- ■考虑序的评价指标
 - P@N、R-precision、AP等

3, P@N

P@N

- 即Precision@N
- 指在第N个位置上的正确率
- 对于搜索引擎,大量统计数据表明,大部分搜索引擎用户只关注前一、两页的结果,因此,P@10,P@20对大规模搜索引擎来说是很好的评价指标

3, P@N

■举例

系统&查询	1	2	3	4	5
系统1,查询1	d3 √	d6 √	d8	d10	d11
系统1,查询2	d1 √	d4	d7	d11	d13 √
系统2,查询1	d6 √	d7	d2	d9 √	
系统2,查询2	d1 √	d2 √	d4	d13 √	d14

查询1的标准答案集合为 {d3,d4,d6,d9} 查询2的标准答案集合为 {d1,d2,d13}

系统1查询1: P@2=1, P@5=2/5; 系统1查询2: P@2=1/2, P@5=2/5;

系统2查询1: P@2=1/2, P@5=2/5; 系统2查询2: P@2=1, P@5=3/5

4. R-Precision

R-Precision

- 检索结果中,在所有相关文档总数位置上的正确率
- 如某个查询的相关文档总数为80,则计算检索结果中在前80篇文档的正确率。

系统&查询	1	2	3	4	5
系统1,查询1	d3 √	d6 √	d8	d10	d11
系统1,查询2	d1 √	d4	d7	d11	d13 √
系统2,查询1	d6 √	d7	d2	d9 √	
系统2,查询2	d1 √	d2 √	d4	d13 √	d14

查询1的标准答案集合为 {d3,d4,d6,d9} 查询2的标准答案集合为 {d1,d2,d13}

系统1查询1: R-Precision=2/4; 系统1查询2: R-Precision=1/3;

系统2查询1: R-Precision=2/4; 系统2查询2: R-Precision=2/3;

5. AP (Average Precision)

- 平均正确率(Average Precision, AP): 对不同召回率 点上的正确率进行平均
 - 未插值的AP: 某个查询Q共有6个相关结果,某系统排序返回了 5篇相关文档,其位置分别是第1,第2,第5,第10,第20位 ,则AP=(1/1+2/2+3/5+4/10+5/20+0)/6
 - 插值的AP: 在召回率分别为0,0.1,0.2,...,1.0的十一个点上的正确率求平均,等价于11点平均
 - ◆ 由于每个查询的召回率值不一定就是这11个标准召回率,因此需要 对正确率进行插补。
 - ▶ 对于t%,如果不存在该召回率点,则定义t%为从t%到 (t+10)%中最大的正确率值。
 - ◈ 召回率100%点若不存在,正确率可近似为0
 - 简化的AP: 只对返回的相关文档进行计算的AP,
 AP=(1/1+2/2+3/5+4/10+5/20)/5, 倾向那些快速返回结果的系统,没有考虑召回率

5. AP (Average Precision)

Example

```
1. d123 •(1/1) 6. d9 • (4/6) 11. d38 • (7/11) 2. d84 7. d511 12. d48 3. d56 •(2/3) 8. d129 • (5/8) 13. d250 4. d6 •(3/4) 9. d187 14. d113 • (8/14) 5. d8 10. d25 • (6/10) 15. d3
```

假设查询的标准答案集合包含10个文档,返回了8个相关文档

简化的AP = (1/1+2/3+3/4+4/6+5/8+6/10+7/11+8/14)/8

Effectiveness metrics

- 对单个查询进行评估的指标
 - ◆ 基于集合的评价指标
 - 正确率(Precision)、召回率(Recall)、F值
 - ◆ 基于序的评价指标
 - P@N、R-Precision、AP等
- 对多个查询进行评估的指标

- 其它的评价指标
 - NDCG

6, MAP

MAP(Mean AP)

- 对所有查询的AP求算术平均
- 反映在全部查询上的检索效果
- 例如: 假设有一个检索系统
 - 对查询1返回4个相关网页,其rank分别为1,2,4,7
 - 对查询2返回3个相关网页,其rank分别为1, 3, 5
 - 查询1共有4个相关文档,查询2共有5个相关文档

查询1: AP = (1/1+2/2+3/4+4/7)/4=0.83

查询2: AP = (1/1+2/3+3/5+0+0)/5=0.45

MAP = (0.83+0.45)/2 = 0.64

7、MRR

MRR(Mean Reciprocal Rank)

对于某些IR系统(如问答系统或主页发现系统),只关心第一个标准答案返回的位置(Rank),越前越好,这个位置的倒数称为RR,对问题集合求平均,则得到MRR

■例如

- 两个问题,系统对第一个问题返回的标准答案Rank 是2,对第二个问题返回的标准答案的Rank是4
- 则系统的MRR= (1/2+1/4)/2=3/8
- 意味着平均在第8/3个位置处找到相关文档

Effectiveness metrics

- 对单个查询进行评估的指标
 - ◆ 基于集合的评价指标
 - 正确率(Precision)、召回率(Recall)、F值
 - ◆ 基于序的评价指标
 - P@N、R-Precision、AP等
- 对多个查询进行评估的指标
 - MAP、MRR
- 其它的评价指标

NDCG

DCG

一种总体观察检索排序效果的方法,利用检索结果序列的相关度加和的思路来衡量。

■ 两个假设

- 相关度级别越高的结果越多越好
- 相关度级别越高的结果越靠前越好

■ CG(Cumulative Gain): 位于位置1 到p 的检索结果的相关度之和。

$$CG_p = \sum_{i=1}^p rel_i$$

- rel_i 表示第 i 个文档与查询的相关度
 - ◆ 可以不仅仅只有相关1和不相关0两种情况,允许有多个相关 度级别,比如0, 1, 2, 3
- 特点
 - ◆ CG得分高只能说明检索结果的总体质量比较高
 - lacktriangle 但不能说明结果排序的好坏: CG未考虑相关结果的位置,即前p项中两文档交换不影响计算结果
- DCG 则希望改变这个特性

8. NDCG

DCG(Discounted Cumulative Gain)

• 基本思想: 若搜索算法把相关度高的文档排在后面, 则应该给予惩罚。一般用log 函数表示这种惩罚。

DCG 的计算如下:

$$DCG_p = rel_1 + \sum_{i=2}^p \frac{rel_i}{\log_2 i}$$

另一种计算方法:

Discounted Gain

$$DCG_{p} = \sum_{i=1}^{p} \frac{2^{rel_{i}} - 1}{\log_{2}(1+i)}$$

更强调排在前面的相关文档的重要性(指数)

■ DCG计算例子

- 相关度0-3, 10个文档的得分如下:
 - 3, 2, 3, 0, 0, 1, 2, 2, 3, 0
- discounted gain:
- DCG= $3+\Sigma$ discounted gain:
 - ◆ 3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61,9.61

- DCG的值与具体查询有关,和结果列表的长度有关,不 利于检索系统之间的对比
 - 不同query的搜索结果有多有少,所以不同query的DCG值就 没有办法来做对比
 - 例如, DCG₅=6.89, DCG₁₀=9.61
- NDCG (Normalized DCG): 对DCG进行规范化
 - 把检索结果按相关度从大到小排序得到一个理想的输出序列
 - 计算此理想序列的DCG, 得到在位置p 的ideal DCG(IDCG)
 - 然后以位置p的DCG p与IDCG p比值作为评价指标

$$nDCG_p = \frac{DCG_p}{IDCG_p}$$

■ NDCG计算示例

- 沿用前面例子: 相关度0-3, 10个文档的得分如下:
 - 3, 2, 3, 0, 0, 1, 2, 2, 3, 0
- 理想的输出结果序列: 3, 3, 3, 2, 2, 2, 1, 0, 0, 0
- ideal DCG (IDCG):
 - 3, 6, 7.89, 8.89, 9.75, 10.52, 10.88, 10.88, 10.88, 10.88
- DCG= $3+\Sigma$ discounted gain:
 - 3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61
- NDCG: $(NDCG_i = DCG_i / IDCG_i)$
 - 1, 0.83, 0.87, 0.76, 0.71, 0.69, 0.73, 0.8, 0.88, 0.88
 - 可以看到任何查询结果位置p的NDCG值都规范化为 \leq 1 的值

本章小结

- ■对单个查询进行评估的指标
 - 基于集合的评价指标
 - ◆ 正确率(Precision)、召回率(Recall)、F值
 - 基于序的评价指标
 - ◆ P@N、R-Precision、AP等
- ■对多个查询进行评估的指标
 - MAP、MRR
- ■其它的评价指标
 - NDCG