CS 525: Theory of Computation Problem Set 6

Dustin Ingram, Aaron Rosenfeld, Eric Simon

March 7, 2012

6.4 **Solution:** For the purpose of contradiction, assume A_{TM}' is decidable by a TM A'. Let N be a TM defined as:

N = On input (m, c) where m is a TM and c is the code of m:

- (a) Simulate A' on (m, c)
- (b) If A' accepts reject; else accept.

Then, run N on input (N, m) where m is N's code. The output provides a contradiction: N accepts w if and only if N rejects w, proving that A_{TM} ' is undecidable relative to A_{TM} .

- 6.13 **Solution:** Unlike $\operatorname{Th}(\mathcal{N},+,\times)$ wherein the possible results of $a\times b$ is unbounded, in $\operatorname{Th}(\mathcal{Z}_m,+,\times)$, all results of $a\times b$ must be bounded by \mathcal{Z}_m and therefore the TM accepting $\operatorname{Th}(\mathcal{Z}_m,+,\times)$ can test every possibility, allowing a theorem to be decided.
- 6.14 **Solution:** Let $J = (A \times \{0\}) \cup (B \times \{1\})$. That is, a TM M deciding J decides words in the form w' = (w, c). To decide if $w \in A$, pass M the input (w, 0). This will accept if and only if the word is in A. Similarly, pass M the word (w, 1) to decide if $w \in B$.