LECTURE 15: Linear models with normal noise

$$X_i = \sum_{j=1}^m a_{ij} \Theta_j + W_i$$
 W_i , Θ_j : independent, normal

- Very common and convenient model
- Bayes' rule: normal posteriors
- MAP and LMS estimates coincide
- simple formulas
 (linear in the observations)
- Many nice properties
- Trajectory estimation example

Recognizing normal PDFs

$$X \sim N(\mu, \sigma^2)$$

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

$$c \cdot e^{-8(x-3)^2}$$

$$f_X(x) = c \cdot e^{-(\alpha x^2 + \beta x + \gamma)}$$
 $\alpha > 0$ Normal with mean $-\beta/2\alpha$ and variance $1/2\alpha$

Estimating a normal random variable in the presence of additive normal noise

$$X = \Theta + W$$

$$X = \Theta + W$$
 $\Theta, W : N(0,1)$, independent

$$f_{\Theta|X}(\theta \mid x) = \frac{f_{\Theta}(\theta) f_{X|\Theta}(x \mid \theta)}{f_{X}(x)}$$

$$f_X(x) = \int f_{\Theta}(\theta) f_{X|\Theta}(x \mid \theta) d\theta$$

$$f_{X|\Theta}(x|\theta)$$
:

$$f_{\Theta|X}(\theta \,|\, x) =$$

$$\hat{\theta}_{\mathsf{MAP}} = \hat{\theta}_{\mathsf{LMS}} = \mathbf{E}[\Theta \,|\, X = x] =$$

$$\widehat{\Theta}_{\mathsf{MAP}} = \mathbf{E}[\Theta \,|\, X] =$$

Estimating a normal random variable in the presence of additive normal noise

$$X = \Theta + W$$
 $\Theta, W : N(0,1)$, independent

$$\widehat{\Theta}_{\mathsf{MAP}} = \widehat{\Theta}_{\mathsf{LMS}} = \mathbf{E}[\Theta \,|\, X] = \frac{X}{2}$$

$$f_{\Theta|X}(\theta \mid x) = \frac{f_{\Theta}(\theta) f_{X|\Theta}(x \mid \theta)}{f_{X}(x)}$$
$$f_{X}(x) = \int f_{\Theta}(\theta) f_{X|\Theta}(x \mid \theta) d\theta$$

- Even with general means and variances:
 - posterior is normal
 - LMS and MAP estimators coincide
 - these estimators are "linear," of the form $\widehat{\Theta} = aX + b$

The case of multiple observations

$$X_1 = \Theta + W_1$$
 $\Theta \sim N(x_0, \sigma_0^2)$ $W_i \sim N(0, \sigma_i^2)$

$$\Theta \sim N(x_0, \sigma_0^2)$$

$$W_i \sim N(0, \sigma_i^2)$$

$$X_n = \Theta + W_n$$

$$X_n = \Theta + W_n$$
 Θ, W_1, \dots, W_n independent

$$f_{X_i|\Theta}(x_i|\theta) =$$

$$f_{X|\Theta}(x \mid \theta) =$$

$$f_{\Theta|X}(\theta \mid x) =$$

$$f_{\Theta|X}(\theta \mid x) = \frac{f_{\Theta}(\theta) f_{X|\Theta}(x \mid \theta)}{f_{X}(x)}$$

$$f_X(x) = \int f_{\Theta}(\theta) f_{X\mid\Theta}(x\mid\theta) d\theta$$

The case of multiple observations

$$f_{\Theta|X}(\theta \,|\, x) = c \cdot \exp\left\{-\operatorname{quad}(\theta)\right\} \qquad \operatorname{quad}(\theta) = \frac{(\theta - x_0)^2}{2\sigma_0^2} + \frac{(\theta - x_1)^2}{2\sigma_1^2} + \dots + \frac{(\theta - x_n)^2}{2\sigma_n^2}$$

$$\widehat{\theta}_{\mathsf{MAP}} = \widehat{\theta}_{\mathsf{LMS}} = \mathbf{E}[\Theta \,|\, X = x] = \frac{\sum\limits_{i=0}^{n} \frac{x_i}{\sigma_i^2}}{\sum\limits_{i=0}^{n} \frac{1}{\sigma_i^2}}$$

The case of multiple observations

- Key conclusions:
 - posterior is normal
 - LMS and MAP estimates coincide
- these estimates are "linear," of the form $\hat{\theta} = a_0 + a_1x_1 + \cdots + a_nx_n$
- Interpretations:
 - estimate $\hat{\theta}$: weighted average of x_0 (prior mean) and x_i (observations)
 - weights determined by variances

$$\widehat{\theta}_{\mathsf{MAP}} = \widehat{\theta}_{\mathsf{LMS}} = \mathbf{E}[\Theta \,|\, X = x] = \frac{\sum\limits_{i=0}^{n} \frac{x_i}{\sigma_i^2}}{\sum\limits_{i=0}^{n} \frac{1}{\sigma_i^2}}$$

The mean squared error

$$f_{\Theta|X}(\theta \,|\, x) = c \cdot \exp\left\{-\operatorname{quad}(\theta)\right\}$$

$$quad(\theta) = \frac{(\theta - x_0)^2}{2\sigma_0^2} + \frac{(\theta - x_1)^2}{2\sigma_1^2} + \dots + \frac{(\theta - x_n)^2}{2\sigma_n^2}$$

$$\widehat{\theta} = \frac{\sum_{i=0}^{n} \frac{x_i}{\sigma_i^2}}{\sum_{i=0}^{n} \frac{1}{\sigma_i^2}}$$

Performance measures:

$$\mathbf{E}\big[(\Theta - \widehat{\Theta})^2 \mid X = x\big] = \mathbf{E}\big[(\Theta - \widehat{\theta})^2 \mid X = x\big] = \operatorname{var}(\Theta \mid X = x) = 1 / \sum_{i=0}^n \frac{1}{\sigma_i^2}$$

$$\mathbf{E}[(\Theta - \widehat{\Theta})^2] =$$

$$f_X(x) = c \cdot e^{-(\alpha x^2 + \beta x + \gamma)}$$
 $\alpha > 0$ Normal with mean $-\beta/2\alpha$ and variance $1/2\alpha$

The mean squared error

$$\mathbf{E}\big[(\Theta - \widehat{\Theta})^2 \mid X = x\big] = \mathbf{E}\big[(\Theta - \widehat{\Theta})^2\big] = 1 \bigg/ \sum_{i=0}^n \frac{1}{\sigma_i^2}\bigg|$$

$$\widehat{\theta} = \frac{\sum_{i=0}^{n} \frac{x_i}{\sigma_i^2}}{\sum_{i=0}^{n} \frac{1}{\sigma_i^2}}$$

- Example: $\sigma_0^2 = \sigma_1^2 = \cdots = \sigma_n^2 = \sigma^2$
- ullet conditional mean squared error same for all x
- Example: $X = \Theta + W \quad \Theta \sim N(0,1), \quad W \sim N(0,1)$ independent $\Theta, W \quad \widehat{\Theta} = X/2$ $\mathbf{E} \big[(\Theta \widehat{\Theta})^2 \mid X = x \big] =$

The case of multiple parameters: trajectory estimation

• Random variables $\Theta_0, \Theta_1, \Theta_2$ independent; priors f_{Θ_i}

• Measurements at times t_1, \ldots, t_n $X_i = \Theta_0 + \Theta_1 t_i + \Theta_2 t_i^2 + W_i$ noise model: f_{W_i} independent W_i ; independent from Θ_i

A model with normality assumptions

$$X_i = \Theta_0 + \Theta_1 t_i + \Theta_2 t_i^2 + W_i$$
 $i = 1, ..., n$

$$f_{\Theta|X}(\theta \mid x) = \frac{f_{\Theta}(\theta) f_{X|\Theta}(x \mid \theta)}{f_{X}(x)}$$
$$f_{X}(x) = \int f_{\Theta}(\theta) f_{X|\Theta}(x \mid \theta) d\theta$$

- assume $\Theta_j \sim N(0, \sigma_j^2)$, $W_i \sim N(0, \sigma^2)$; independent
- Given $\Theta = \theta = (\theta_0, \theta_1, \theta_2)$, X_i is:

$$f_{X_i|\Theta}(x_i|\theta) = c \cdot \exp\left\{-(x_i - \theta_0 - \theta_1 t_i - \theta_2 t_i^2)^2/2\sigma^2\right\}$$

• posterior: $f_{\Theta|X}(\theta \mid x) =$

$$c(x) \exp \left\{-\frac{1}{2}(\frac{\theta_0^2}{\sigma_0^2} + \frac{\theta_1^2}{\sigma_1^2} + \frac{\theta_2^2}{\sigma_2^2}) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \theta_0 - \theta_1 t_i - \theta_2 t_i^2)^2\right\}$$

A model with normality assumptions

$$f_{\Theta|X}(\theta \mid x) = c(x) \exp\left\{-\frac{1}{2}(\frac{\theta_0^2}{\sigma_0^2} + \frac{\theta_1^2}{\sigma_1^2} + \frac{\theta_2^2}{\sigma_2^2}) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \theta_0 - \theta_1 t_i - \theta_2 t_i^2)^2\right\}$$

• MAP estimate: maximize over $(\theta_0, \theta_1, \theta_2)$; (minimize quadratic function)

Linear normal models

- ullet Θ_j and X_i and are linear functions of independent normal random variables
- $f_{\Theta|X}(\theta \mid x) = c(x) \exp \left\{ -\operatorname{quadratic}(\theta_1, \dots, \theta_m) \right\}$
- MAP estimate: maximize over $(\theta_1, \dots \theta_m)$; (minimize quadratic function)
 - $\widehat{\Theta}_{\mathsf{MAP},j}$: linear function of $X=(X_1,\ldots,X_n)$
- Facts:
 - $\circ \ \widehat{\Theta}_{\mathsf{MAP},j} = \mathbf{E}[\Theta_j \,|\, X]$
 - o marginal posterior PDF of Θ_j : $f_{\Theta_j|X}(\theta_j\,|\,x)$, is normal
 - MAP estimate based on the joint posterior PDF:
 same as MAP estimate based on the marginal posterior PDF
 - $\circ \mathbf{E}[(\widehat{\Theta}_{i,\mathsf{MAP}} \Theta_i)^2 \mid X = x]$: same for all x

MIT OpenCourseWare https://ocw.mit.edu

Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.