

Silence vs. Sound: Investigating How Background Music and Noise Influence Study Retention

Justin Beshay

Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Canada.

Introduction

- Many students believe that listening to music improves study performance
- Research findings on background sound and memory are mixed
- Most studies compare only two conditions (e.g., music vs. silence)
- Few studies test silence, music, and white noise within the same experiment
- This study addresses that gap using a within-subjects design
- · Also explores effects of individual differences

Objective

- To examine how different background sound conditions (silence, white noise, and music) affect verbal memory recall accuracy
- To test the hypothesis that silence would lead to the highest recall, while music would lead to the lowest
- To explore whether individual differences (e.g., music familiarity and study habits, Recall time) relate to performance in the music condition
- To inform evidence-based study strategies based on how auditory environments and personal habits influence memory

World

Subjects, Methods, And Procedure

Design:

One-way repeated measures, Within-subjects

Participants:

Simulated data model of 3 groups of 58 participants (174) equally divided into three sound conditions.

Measures

<u>Primary DV</u>: Recall accuracy (percentage of correctly recalled words)

Secondary measures:

- ► Recall response time
- Music familiarity
- Study habits (e.g., whether participants typically study with music)

Analysis

One-way ANOVA, one-tailed t-tests

Results

- A one-way repeated measures ANOVA revealed a significant effect of background sound condition on recall accuracy:
 - ► F(2, 114) = 52.26, p < .001 ► Effect size: n² = 0.38,
 - Effect size: η² = 0.38,
 (Shows a large effect of condition)
- Mean recall accuracy:
 - Silence: 74.47%
 White Noise: 65.91%
 Music: 56.33%

Music Familiarity vs. Recall Accuracy in the music Recall Time vs. Accuracy: No clear relationship. condition showed a very weak positive trend.

Study Habits vs. Music Condition Performance:

Participants who regularly study with music scored slightly higher in the music condition, but not significantly.

References Brighter

Carr, S. M., & Rickard, N. S. (2016). The use of emotionally arousing music to enhance memory for subsequently presented images. Psychology of Music, 44(5), 1145-1157_https://doi.org/10.1177/0305735615613846 Chew, A. S.-Q., Yu, Y.-T., Chua, S.-W., & Gan, S. K.-E. (2016). The effects of familiarity and language of background music on working memory and language tasks in Singapore. Psychology of Music, 44(6), 1431-

1438. https://doi.org/10.1177/03057356166362

Christopher, E. A., & Shelton, J. T. (2017). Individual diffeences in working memory predict the effect of music on student performance. Journal of Applied Research in Memory and Cognition, 6(2), 167–173. https://doi.org/10.1016/j.immare.2017.01016/j.

Echaide, C., del Río, D., & Pacios, J. (2019). The differential effect of background music on memory for verbal and visuospatial information. The Journal of General Psychology, 146(4), 443–458, https://doi.org/10.1080/00221309.2019.1602023 Furnham, A., & Strbac, L. (2002). Music is as distracting as noise: The differential distraction of background music and noise on the cognitive test performance of introverts and extraverts. Ergonomics, 45(3), 203–

Conzalez, M. F., & Aiello, J. R. (2019). More than meets the ear: Investigating how music affects cognitive task performance. Journal of Experimental Psychology: Applied, 25(3), 431-444. https://doi.org/10.1037/xao0000202 Lehmann, J. A. M., & Seufer, T. (2017). The influence of background music on learning in the light of different theoretical perspectives and the role of working memory capacity. Frontiers in Psychology, 8,

1902. https://doi.org/10.3389/fpsvg.2017.01902

Discussion/Conclusion

The silence condition produced the highest recall accuracy, supporting the primary hypothesis that background noise negatively affects memory performance. As shown in Figure 1, participants in the silence condition had a mean recall accuracy of 74.47%, which was significantly higher than both the white noise group (M = 65.91%) and the music group (M = 56.33%). These differences were statistically confirmed by a one-way ANOVA (F(2, 174) = 52.26, p < .001, p² = .38) and follow-up t-tests:

- Silence > Music: t(114.19) = 10.35, p < .001 (one-tailed)
- Silence > White Noise: t(114.75) = 4.94, p < .001 (one-tailed)
- White Noise > Music: t(115.95) = 5.21, p < .001 (one-tailed)
- Nesults support the hypothesis: silence has better memory recall compared to both music and white noise.
- How well you know the song did not impact memory.
- This suggests that auditory distractions, especially structured ones like music, may impair verbal memory performance.
- Implications for students: Studying in silence may optimize memory performance.
- Limitations: Simulated data; real participant variability and preferences may influence results.

Next steps: Apply the same analysis to real participant data. Extend the design to include different types of music (e.g., instrumental vs. lyrical) Explore longer study/retention intervals or other cognitive tasks (e.g., comprehension, attention)