Laboratory 4 (100 Points)

Assignment 1 (20 Points)

(4-5) A sequential circuit with two D flip-flops A and B, one input Y, and one output Z is specified by the following input equations:

$$D_A = BY + \bar{A}Y, \qquad D_B = \bar{Y}, \qquad Z = \bar{A}\bar{B}$$

(a) Draw the logic diagram of the circuit.

(b) Derive the state table.

(c) Derive the state diagram.

(d) Simulate the circuit:

- Initial state: 00

- Input sequence: 0100

- Check the output Z with the state table

(b) Derive the state table.

Present State		Input	Next State		Output
Α	В	Υ	Α	В	Z
0	0	0	0	1	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	0	1	0
1	0	1	0	0	0
1	1	0	0	1	0
1	1	1	1	0	0

(c) Derive the state diagram.

(d) Simulate the circuit with initial state AB = 00 and input sequence Y = 0100

🕥 Simulation Waveform Editor - D:/C206/Lab4/Assignment1/Assignment1 - Assignment1 - [Assignment1_20230805151946.sim.vwf (Rea

Assignment 2 (20 Points)

The state diagram of a sequential circuit is shown in the following figure. Design the circuit with D flip-flops using binary code state assignment. Simulate the circuit.

(a) Derive the state table from the above state diagram The circuit has 4 states A, B, C and D, one input X and one output Y.

Present State	Х	Next State	Υ
Α	0	В	1
Α	1	Α	1
В	0	В	0
В	1	С	0
С	0	D	0
С	1	С	0
D	0	D	0
D	1	А	0

(b) State assignment with using binary codes

Four states: Using 2 flip-flops

State assignment: A: 00 B: 01 C: 10 D:11

Present State	Х	Next State	Υ
00	0	01	1
00	1	00	1
01	0	01	0
01	1	10	0
10	0	11	0
10	1	10	0
11	0	11	0
11	1	00	0

Using 2 flip-flops named **A** and **B**:

	·		\wedge		
Present St	ate	Х	Next State		Υ
Α	В		A	В	
0	0	0	0	1	1
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	1	0
1	0	1	1	0	0
1	1	0	1	1	0
1	1	1	0	0	0
			\bigvee_{D_A}	\bigvee_{D_B}	

(c) Draw the logic diagram of the circuit.

- Input equation for the FF A: D_A

D _A	BX				
		00	01	11	10
Α	0			1	
	1	1	1		1

$$D_A = A\bar{B} + A\bar{X} + \bar{A}BX$$

- Input equation for the FF B: D_B

D _A	BX				
		00	01	11	10
Α	0	1			1
	1	1			1

$$D_B=\bar{X}$$

- Input equation for the output: Y

Υ	BX				
		00	01	11	10
Α	0	1	1		
	1				

$$Y = \bar{A}\bar{B}$$

Assignment 3 (20 Points)

(4-6) A sequential circuit with two D flip-flops A and B, two inputs X and Y, and one output Z is specified by the following input equations:

$$D_A = XA + \overline{X}\overline{Y}, D_B = XB + \overline{X}A, Z = \overline{X}B$$

- (a) Draw the logic diagram of the circuit.
- (b) Derive the state table.
- (c) Derive the state diagram.
- (d) Simulate the circuit:
 - Initial state: 00
 - Input sequence: (Given by you)
 - Check the output Z with the state table

Assignment 4 (20 Points)

(4-11) A sequential circuit has two D flip-flops, one input X, and one output Y. The logic diagram of the circuit is shown in the following figure. Derive the state table and state diagram of the circuit.

Assignment 5 (20 Points)

(4-13) Design a sequential circuit with two D flip-flops A and B and one input X. When X = 0, the state of the circuit remains the same. When X = 1, the circuit goes through the state transitions from 00 to 10 to 11 to 01, back to 00, and then repeats.