Heart Rate Predictions

Pooja Rathee

26 April 2022

Read the following packages

Read the file

```
heart_disease <- read_csv("Heart_Disease_Prediction.csv")

## Rows: 270 Columns: 14

## -- Column specification -------

## Delimiter: ","

## chr (1): Heart Disease

## dbl (13): Age, Sex, Chest pain type, BP, Cholesterol, FBS over 120, EKG resu...

##

## i Use 'spec()' to retrieve the full column specification for this data.

## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.</pre>
```

Viewing the table and column names in the file

```
colnames(heart_disease)
## [1] "Age"
                                  "Sex"
                                  "BP"
## [3] "Chest pain type"
## [5] "Cholesterol"
                                  "FBS over 120"
## [7] "EKG results"
                                  "Max HR"
## [9] "Exercise angina"
                                  "ST depression"
## [11] "Slope of ST"
                                  "Number of vessels fluro"
## [13] "Thallium"
                                  "Heart Disease"
View(heart_disease)
```

Rename the columnes to make it more consistent

```
heart_disease1 <-
  rename(heart_disease, "age"= "Age" , "chest_pain_type" = "Chest pain type" , "chl" = "Cholesterol" ,</pre>
```

Doing some analytical calculations alongwith formatting

```
# Format the heart rate
is.factor(heart_disease1$max_hr)

## [1] FALSE
heart_disease1$max_hr <- as.numeric(as.character(heart_disease1$max_hr))
is.numeric(heart_disease1$max_hr)

## [1] TRUE

# Find the mean, median, max and min values
mean(heart_disease1$max_hr) #straight average

## [1] 149.6778

median(heart_disease1$max_hr) #midpoint number in the ascending array of heart rate

## [1] 153.5

max(heart_disease1$max_hr) #max rate

## [1] 202</pre>
```

```
min(heart_disease1$max_hr) #min rate

## [1] 71

# Formatting the Sex column
is.numeric(heart_disease1$Sex)

## [1] TRUE

heart_disease1$Sex <- as.factor(as.numeric(heart_disease1$Sex))
is.factor(heart_disease1$Sex)

## [1] TRUE</pre>
```

Summarize the column of Heart Rate and aggregate further it with presence and absence of heart diseases

```
summary(heart_disease1$max_hr)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
      71.0
           133.0
                    153.5
                             149.7
                                     166.0
                                             202.0
##
# Compare presence and absence of disease with heart rate
aggregate(heart_disease1$max_hr ~ heart_disease1$heart_dis, FUN = mean)
##
    heart_disease1$heart_dis heart_disease1$max_hr
## 1
                      Absence
                                           158.3333
## 2
                     Presence
                                           138.8583
aggregate(heart_disease1$max_hr ~ heart_disease1$heart_dis, FUN = median)
    heart_disease1$heart_dis heart_disease1$max_hr
##
## 1
                      Absence
                                              161.0
## 2
                     Presence
                                              141.5
aggregate(heart_disease1$max_hr ~ heart_disease1$heart_dis, FUN = max)
    heart_disease1$heart_dis heart_disease1$max_hr
##
## 1
                      Absence
                                                 202
## 2
                     Presence
                                                 195
aggregate(heart_disease1$max_hr ~ heart_disease1$heart_dis, FUN = min)
    heart_disease1$heart_dis heart_disease1$max_hr
## 1
                      Absence
## 2
                     Presence
                                                 71
```

Aggregate further it with age category
aggregate(heart_disease1\$max_hr ~ heart_disease1\$heart_dis + heart_disease1\$age, FUN = mean)

##		heart_disease1\$heart_dis	heart_disease1\$age	heart_disease1\$max_hr
##	1	Absence	29	202.0000
##	2	Absence	34	183.0000
##	3	Absence	35	182.0000
##	4	Presence	35	143.0000
##	5	Absence	37	178.5000
##	6	Presence	38	182.0000
##	7	Absence	39	180.5000
##	8	Presence	39	140.0000
##	9	Absence	40	178.0000
	10	Presence	40	147.5000
##	11	Absence	41	163.3750
##	12	Presence	41	158.0000
##	13	Absence	42	165.2857
##	14	Presence	42	125.0000
##	15	Absence	43	168.0000
##	16	Presence	43	128.0000
##	17	Absence	44	172.8750
##	18	Presence	44	165.0000
##	19 20	Absence Presence	45 45	161.3333
##	21		46	147.0000 160.0000
##	22	Absence Presence	46	137.0000
	23	Absence	47	149.5000
##	24	Presence	47	135.0000
	25	Absence	48	170.0000
##	26	Presence	48	161.3333
##	27	Absence	49	165.3333
##	28	Presence	49	132.5000
##	29	Absence	50	160.5000
	30	Presence	50	139.0000
	31	Absence	51	149.4444
	32	Presence	51	145.6667
##	33	Absence	52	170.0000
##	34	Presence	52	163.0000
##	35	Absence	53	147.8000
##	36	Presence	53	125.0000
##	37	Absence	54	159.7000
##	38	Presence	54	127.8333
##	39	Absence	55	158.0000
##	40	Presence	55	126.2500
##	41	Absence	56	164.3333
##	42	Presence	56	129.5000
##		Absence	57	158.7143
	44	Presence	57	123.0000
	45	Absence	58	155.0000
	46	Presence	58	145.4000
	47	Absence	59	161.8000
	48	Presence	59	143.5714
##	49	Absence	60	142.3333

##	50	Presence	60	151.3333
##	51	Absence	61	137.0000
##	52	Presence	61	143.8333
##	53	Absence	62	151.5000
##	54	Presence	62	123.4286
##	55	Absence	63	167.0000
##	56	Presence	63	150.5000
##	57	Absence	64	131.6000
##	58	Presence	64	129.2500
##	59	Absence	65	149.0000
##	60	Presence	65	143.2500
##	61	Absence	66	134.3333
##	62	Presence	66	139.0000
##	63	Absence	67	158.0000
##	64	Presence	67	119.2000
##	65	Absence	68	133.0000
##	66	Presence	68	150.0000
##	67	Absence	69	141.0000
##	68	Presence	69	146.0000
##	69	Absence	70	143.0000
##	70	Presence	70	115.3333
##	71	Absence	71	139.0000
##	72	Absence	74	121.0000
##	73	Absence	76	116.0000
##	74	Presence	77	162.0000

Piping the data

```
heart_disease1 %>%
 group_by(age,heart_dis) %>%
 summarise(avg_max_hr = mean(max_hr)) %>%
 arrange(age,heart_dis)
## 'summarise()' has grouped output by 'age'. You can override using the '.groups'
## argument.
## # A tibble: 74 x 3
              age [41]
## # Groups:
##
       age heart_dis avg_max_hr
      <dbl> <chr>
##
                          <dbl>
##
        29 Absence
                           202
   1
##
        34 Absence
                          183
##
                           182
        35 Absence
## 4
        35 Presence
                           143
## 5
        37 Absence
                           178.
       38 Presence
## 7
        39 Absence
                           180.
## 8
        39 Presence
                           140
## 9
        40 Absence
                           178
## 10
        40 Presence
## # ... with 64 more rows
```

Let's do some visualization

```
heart_disease1 %>%
  group_by(age,heart_dis) %>%
  summarise(avg_max_hr = mean(max_hr)) %>%
  arrange(age,heart_dis) %>%
  ggplot(aes(x = age, y = avg_max_hr, fill = heart_dis)) +
  geom_col(position = "dodge") +
  labs(title = "Heart disease present mainly in 38-55 and above 77 years old groups.")
```

'summarise()' has grouped output by 'age'. You can override using the '.groups'
argument.

Heart disease present mainly in 38-55 and above 77 years old groups.

Heart diseases mainly present in 38-70 age groups people and as heart rate without any disease is generally increases in 27-28 age group youngsters. Doing some more

```
heart_disease1 %>%
  group_by(chest_pain_type,heart_dis) %>%
  summarise(avg_max_hr = mean(max_hr)) %>%
  arrange(chest_pain_type,heart_dis) %>%
  ggplot(aes(x = chest_pain_type, y = avg_max_hr, fill = heart_dis)) +
  geom_col(position = "dodge") +
  labs(title = "Heart disease present max in type 1 Chest Pain")
```

'summarise()' has grouped output by 'chest_pain_type'. You can override using

Heart disease present max in type 1 Chest Pain

Heart rate generally high in individuals that are having some diseases affecting from type 1 chest pain as compare to other types while type 2 chest pain generally having max high rate without any diseases.

```
heart_disease1 %>%
  group_by(Sex,heart_dis) %>%
  summarise(avg_max_hr = mean(max_hr)) %>%
  arrange(Sex,heart_dis) %>%
  ggplot(aes(x = Sex, y = avg_max_hr, fill = heart_dis)) +
  geom_col(position = "dodge") +
  labs(title = "Relationship between Sex and Average Max HR")
```

'summarise()' has grouped output by 'Sex'. You can override using the '.groups'
argument.

Relationship between Sex and Average Max HR

Level 1 Sex category having 140 heart rate in individuals that are affected by diseases while in level 2 Sex category having 165 beats in individuals that are free from any diseases.

```
heart_disease1 %>%
  group_by(bp,heart_dis) %>%
  summarise(avg_max_hr = mean(max_hr)) %>%
  arrange(bp,heart_dis) %>%
  ggplot(aes(x = bp, y = avg_max_hr, fill = heart_dis)) +
  geom_col(position = "dodge") +
  labs(title = "Relationship between BP and Average Max HR")
```

'summarise()' has grouped output by 'bp'. You can override using the '.groups'
argument.

Relationship between BP and Average Max HR

Heart rate generally reaching at high level of the individuals having BP > 190 upto 190 beats.

```
heart_disease1 %>%
  group_by(chl,heart_dis) %>%
  summarise(avg_max_hr = mean(max_hr)) %>%
  arrange(chl,heart_dis) %>%
  ggplot(aes(x = chl, y = avg_max_hr, fill = heart_dis)) +
  geom_col(position = "dodge") +
  labs(title = "Relationship between Cholestrol and Average Max HR")
```

'summarise()' has grouped output by 'chl'. You can override using the '.groups' ## argument.

Max Heart Disease present in individuals having chl in 200 - 300 range and heart rate reaching maximum upto 180 beats approximately at 220 level of cholestrol.

```
heart_disease1 %>%
  group_by(ST_depression,heart_dis) %>%
  summarise(avg_max_hr = mean(max_hr)) %>%
  arrange(ST_depression,heart_dis) %>%
  ggplot(aes(x = ST_depression, y = avg_max_hr, fill = heart_dis)) +
  geom_col(position = "dodge") +
  labs(title = "Relationship between ST Depression and Average Max HR")
```

'summarise()' has grouped output by 'ST_depression'. You can override using the
'.groups' argument.

ST Depression with diseases having max heart rate is of value 3.8 and having heart rate of 170 beats and without disease is of 0.7 and having heart rate of 180 beats.