# Теория вероятностей

(Ещё не)алгебраист

11 июня 2025 г.

# Предисловие

Эти записки созданы с целью аккуратно формализовать и заполнить пробелы в лекциях Елены Борисовны Яровой. В разделе 0 будут содержаться основные принятые в курсе обозначения, а также сведения и определения из разных разделов математики, которыми автор будет пользоваться. Поскольку автор считает полезным взгляд на всякий раздел математики с точки зрения теории категорий и её приложений, этот язык также будет упоминаться (тем не менее, не замещая собой прочие подходы).

# Содержание

| 0 | Предварительные сведения |                                                         |                                                               |   |
|---|--------------------------|---------------------------------------------------------|---------------------------------------------------------------|---|
|   | 0.1                      | Обозн                                                   | ачения                                                        | į |
|   | 0.2                      | 0.2 Предварительные сведения из действительного анализа |                                                               |   |
|   |                          | 0.2.1                                                   | Системы множеств и структуры на них                           |   |
|   |                          | 0.2.2                                                   | Минимальное кольцо и минимальная алгебра                      |   |
|   |                          | 0.2.3                                                   | Мера на полукольце и её продолжение на минимальное кольцо     |   |
|   |                          | 0.2.4                                                   | Лебеговское продолжение меры                                  |   |
|   |                          | 0.2.5                                                   | Мера Лебега-Стилтьеса                                         |   |
|   |                          | 0.2.6                                                   | Измеримое отображение                                         |   |
|   |                          | 0.2.7                                                   | Интеграл Лебега                                               |   |
|   |                          | 0.2.8                                                   | Прямой образ меры (pushforward measure)                       |   |
|   | 0.3                      | Теори                                                   | я категорий и взгляд на измеримые пространства с её точки     |   |
|   |                          | зрени                                                   | я                                                             |   |
|   |                          | 0.3.1                                                   | Категория измеримых пространств                               |   |
|   |                          | 0.3.2                                                   | Прямой образ $\sigma$ -алгебры                                |   |
|   |                          | 0.3.3                                                   | Обратный образ $\sigma$ -алгебры                              | 1 |
|   |                          | 0.3.4                                                   | Связь между минимальной $\sigma$ -алгеброй, прямым и обратным |   |
|   |                          |                                                         | образом $\sigma$ -алгебры                                     | 1 |
|   |                          | 0.3.5                                                   | $\Phi$ унктор борелевской $\sigma$ -алгебры                   | 1 |

|   | 0.4 Предварительные сведения из анализа Фурье 0.5 Предварительные сведения из линейной алгебры 0.5.1 Билинейные функции и квадратичные формы |    | 12<br>12<br>12                  |  |  |  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------|--|--|--|
|   | 0.5.2 Полуторалинейные функции                                                                                                               |    | 13                              |  |  |  |
| 1 | Вероятностное пространство, случайные события                                                                                                |    | 15                              |  |  |  |
| 2 | 2 Условные вероятности, формула Байеса, независимость событ                                                                                  | ий | 18                              |  |  |  |
|   | 2.1 Условная вероятность                                                                                                                     |    | 18                              |  |  |  |
|   | 2.2 Формула полной вероятности и формула Байеса                                                                                              |    | 19<br>20                        |  |  |  |
| 3 | 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                      |    |                                 |  |  |  |
|   | и плотности                                                                                                                                  | 2  | 23                              |  |  |  |
| 4 | 4 Классические примеры распределений                                                                                                         |    | 23                              |  |  |  |
|   | 4.1 Распределение константы                                                                                                                  |    | 24                              |  |  |  |
|   | 4.2 Распределение Бернулли                                                                                                                   |    | 24                              |  |  |  |
|   | 4.3 Дискретное равномерное распределение                                                                                                     |    | <ul><li>24</li><li>24</li></ul> |  |  |  |
|   | 4.4 Виномиальное распределение                                                                                                               |    | 24                              |  |  |  |
|   | 4.6 Геометрическое распределение                                                                                                             |    | $\frac{2}{24}$                  |  |  |  |
|   | 4.7 Гипергеометрическое распределение                                                                                                        |    | 24                              |  |  |  |
|   | 4.8 Отрицательное биномиальное распределение                                                                                                 |    | 24                              |  |  |  |
|   | 4.9 Равномерное распределение                                                                                                                |    | 24                              |  |  |  |
|   | 4.10 Экспоненциальное (показательное) распределение                                                                                          |    | 24                              |  |  |  |
|   | 4.11 Нормальное распределение (распределение Гаусса)                                                                                         |    | 24                              |  |  |  |
|   | 4.12 Распределение Коши                                                                                                                      | ٠  | 24                              |  |  |  |
| 5 | 5 Численные характеристики случайных величин                                                                                                 | 2  | 24                              |  |  |  |
| 6 | 3 Сходимости случайных величин                                                                                                               |    | 24                              |  |  |  |
| 7 | 7 Производящие функции                                                                                                                       |    | 24                              |  |  |  |
| 8 | 3 Характеристические функции                                                                                                                 |    | 25                              |  |  |  |
| 9 | Предельные теоремы                                                                                                                           |    |                                 |  |  |  |
|   | 9.1 Неравенства                                                                                                                              |    | 25                              |  |  |  |
|   | 9.2 Закон больших чисел                                                                                                                      |    | 25                              |  |  |  |
|   | 9.3 Теорема Муавра-Лапласа                                                                                                                   |    | 25                              |  |  |  |
|   | 9.4 Закон нуля или единицы                                                                                                                   |    | $\frac{25}{25}$                 |  |  |  |
|   | 9.6 Закон арксинуса                                                                                                                          |    | $\frac{25}{25}$                 |  |  |  |
|   |                                                                                                                                              |    |                                 |  |  |  |

| 9.7 Правило трёх сигм                                                                                                                             | 25<br>26   |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 10 Совместные распределения случайных величин                                                                                                     | 26         |
| 11 Свёртки случайных величин                                                                                                                      | 26         |
| 12 Указатель терминов                                                                                                                             | <b>2</b> 6 |
| 13 Указатель теорем                                                                                                                               | 26         |
| 0 Предварительные сведения                                                                                                                        |            |
| 0.1 Обозначения                                                                                                                                   |            |
| <ul> <li>Ω — пространство элементарных исходов;</li> </ul>                                                                                        |            |
| $ullet$ $\omega$ — элементарный исход;                                                                                                            |            |
| $ullet$ $\sigma$ -алгебра событий;                                                                                                                |            |
| • Р — вероятностная мера;                                                                                                                         |            |
| • $\xi, \eta, \zeta$ — случайные величины;                                                                                                        |            |
| $ullet$ Е $\xi$ — математическое ожидание случайной величины $\xi$ ;                                                                              |            |
| • $\mathrm{D}\xi$ — дисперсия случайной величины $\xi$ ;                                                                                          |            |
| • $\operatorname{Cov}(\xi,\eta)$ — ковариация случайных величин $\xi$ и $\eta$ ;                                                                  |            |
| • $\rho(\xi,\eta)$ — корреляция случайных величин $\xi$ и $\eta$ ;                                                                                |            |
| 0.2 Предварительные сведения из действительного анали                                                                                             | за         |
| 0.2.1 Системы множеств и структуры на них                                                                                                         |            |
| Система множеств (следует понимать как синоним термина «семейство множесть $S$ называется полуцольком, если она удовлетворяет следующим аксиомам: | в»)        |
| $(1) \varnothing \in S;$                                                                                                                          |            |
| $(2) \ \forall A, B \in S : A \cap B \in S;$                                                                                                      |            |
| (3) $\forall A, B \in S, A \subset B \ \exists n \in \mathbb{N} \ \exists C_1, \dots, C_n \in S : A = B \sqcup \bigsqcup_{k=1}^n C_k.$            |            |

Множество  $\Omega \in U$  называется единицей системы множеств U, если всякий элемент  $A \in U$  является подмножеством  $\Omega$ .

Система множеств R называется кольцом, если она удовлетворяет следующим аксиомам:

- $(1) \ \forall \ A, B \in R : A \cap B \in R;$
- (2)  $\forall A, B \in R : A \triangle B \in R$ .

Следующее утверждение проверяется непосредственно, исходя из теоретикомножественных тождеств, но его доказательство приведено, например, в книге [2].

**Предложение 0.1.** Пусть R- кольцо. Тогда R является полукольцом. Кроме того, для любых элементов  $A, B \in R$  в R также содержатся их объединение  $A \cup B$  и разность  $A \setminus B$ .

Кольцо называется  $\sigma$ -кольцом, если для любого счётного набора его элементов  $\{A_k\}_{k\in R}\subset R$  их объединение содержится в R ( $\bigcup_{k\in \mathbb{N}}A_k\in R$ ) и  $\delta$ -кольцом, если для любого счётного набора его элементов  $\{A_k\}_{k\in R}\subset R$  их пересечение содержится в R.

Кольцо с единицей  $\Omega$  называется алгеброй (подмножеств множества  $\Omega$ ).

В книгах по теории вероятностей понятие алгебры часто вводится с использование другого равносильного набора аксиом, что выражает следующее

**Предложение 0.2** (Определение алгебры в традиции теории вероятностей). Cu- стема множеств R является алгеброй подмножеств множества  $\Omega$  тогда и только тогда, когда R удовлетворяет следующим аксиомам

- (1)  $\Omega \in R$ ;
- $(2) \ \forall \ A, B \in R : A \cup B, A \cap B \in R;$
- $(3) \ \forall \ A \in R: \ \Omega \setminus A := \overline{A} \in R.$

Мы снова опускаем доказательство, сводящееся к тождествам теории множеств. Если алгебра является  $\sigma$ -кольцом или  $\delta$ -кольцом, то её называют  $\sigma$ -алгеброй или  $\delta$ -алгеброй, соответственно.

Предложение 0.3. Имеет место следующее:

- (1) Всякое  $\sigma$ -кольцо является  $\delta$ -кольцом, обратное вообще говоря не верно.
- (2) Всякая  $\sigma$ -алгебра является  $\delta$ -алгеброй и наоборот.

**Пемма 0.1.** Пусть  $R - (\sigma -)$  кольцо и  $A \in R$ . Тогда множество

$$R \cap A := \{ B \cap A | B \in R \}$$

является  $(\sigma$ -)алгеброй подмножеств A. Также  $R \cap A \subset R$ .

Доказательство. По построению  $\Omega \cap A = A$  содержится в  $R \cap A$  и всякий элемент  $R \cap A$  есть подмножество A. Так как кольцо замкнуто относительно пересечений, то  $R \cap A \subset R$ .

Пусть теперь  $C_1 = B_1 \cap A, C_2 = B_2 \cap A \in R \cap A$  — два множества. Тогда  $C_1 \cap C_2 = (B_1 \cap B_2) \cap A \in R \cap A$ , так как  $B_1 \cap B_2 \in R$ . Далее,  $C_1 \cup C_2 = (B_1 \cup B_2) \cap A \in R \cap A$ , так как  $B_1 \cup B_2 \in R$ . Окончательно,  $A \setminus C_1 = (A \setminus B_1) = (\Omega \setminus B_1) \cap A \in R \cap A$ , поскольку  $\Omega \setminus B_1 \in R$ .

Предположим, что R являлось  $\sigma$ -алгеброй. Пусть  $\{C_k\}$  — счётное семейство элементов  $R\cap A$  и  $C_k=B_k\cap A$ . Тогда

$$\bigcup_{i=1}^{\infty} C_k = \bigcup_{i=1}^{\infty} (B_k \cap A) = \left(\bigcup_{i=1}^{\infty} B_k\right) \cap A \in R \cap A,$$

принадлежность справедлива в силу того, что  $\bigcup_{i=1}^{\infty} B_k \in R$ .

Можно показать, что кольцо множеств является кольцом в алгебраическом смысле этого слова с операциями сложения  $\triangle$  и умножения  $\cap$ , а алгебра множеств является булевой алгеброй (в частности,  $\mathbb{F}_2$ -алгеброй).

#### 0.2.2 Минимальное кольцо и минимальная алгебра

Следующее утверждение сводится к проверке аксиом кольца или алгебры, но его доказательство также можно прочитать в книге [2].

Предложение 0.4. Пусть  $\{R_{\alpha}\}_{\alpha\in\mathcal{A}}$  — семейство  $(\sigma$ -, $\delta$ -)колец множеств. Тогда система  $R=\bigcap_{\alpha\in\mathcal{A}}R_{\alpha}$  является  $(\sigma$ -, $\delta$ -)кольцом. Кроме того, если все кольца  $R_{\alpha}$  являются  $(\sigma$ -)алгебрами подмножеств множества  $\Omega$  (то есть у них есть общая единица), то R также является  $(\sigma$ -)алгеброй подмножеств множества  $\Omega$ .

**Теорема 0.2.** Пусть U — система множеств. Тогда существует как минимум одно ( $\sigma$ -)кольцо, содержащее U. Пересечение всех таких ( $\sigma$ -)колец R(U) ( $R_{\sigma}(U)$ ) само является ( $\sigma$ -)кольцом. Всякое ( $\sigma$ -)кольцо, содержащее U, содержит и R(U). Если  $\Omega \in U$  — единица U, то R(U) ( $R_{\sigma}(U)$ ) является ( $\sigma$ -)алгеброй подмножеств множества  $\Omega$ .

 $\mathcal{A}$ оказательство. В качестве ( $\sigma$ -)кольца, содержащего U можно взять булеан  $2^{\Sigma}$ , где множество  $\Sigma$  определено как объединение  $\bigcup_{\Lambda \in U} A$ .

Пересечение всех таких  $(\sigma$ -)колец существует, поскольку имеется хотя бы одно кольцо и по предложению 0.4 это пересечение само является  $(\sigma$ -)кольцом.

Пусть ( $\sigma$ -)кольцо R' содержит множество U. Тогда по построению R(U) ( $R_{\sigma}(U)$ ) содержится в пересечении  $2^{\Sigma} \cap R'$ , откуда  $R(U) \subset R'$  ( $R_{\sigma}(U) \subset R'$ ).

Если  $\Omega$  — единица U, то по построению  $\Sigma = \Omega$ . Для всякого  $(\sigma$ -)кольца R', содержащего U имеем  $\Omega \in R$  и по лемме 0.1 система множеств  $R' \cap \Omega \subset R'$  является

 $(\sigma$ -)алгеброй подмножеств  $\Omega$ . Так как  $\Omega$  являлось единицей U, то U содержится в  $R' \cap \Omega$ . Следовательно, достаточно рассматривать пересечение только  $(\sigma$ -)алгебр подмножеств множества  $\Omega$ , содержащих U. По предложению 0.4 их пересечение является  $(\sigma$ -)алгеброй подмножеств  $\Omega$ .

Опираясь на предложение 0.2 дадим определение. Для системы множеств U пересечение всех колец, содержащих U называется минимальным кольцом, порождённым U и обозначается R(U).

**Предложение 0.5.** Пусть S- полукольцо и R(S)- минимальное кольцо, порождённое S. Тогда R(S) допускает следующие описания

- $R(S) = \{ A_1 \cup ... \cup A_n | n \in \mathbb{N}, \{A_i\}_{i=1}^n \subset S \};$
- $R(S) = \{ A_1 \sqcup ... \sqcup A_n | n \in \mathbb{N}, \{A_i\}_{i=1}^n \subset S \}.$

#### 0.2.3 Мера на полукольце и её продолжение на минимальное кольцо

Пусть S — некоторое полукольцо. Будем называть неотрицательную функцию  $m\colon S\to \mathbb{R}$  мерой на полукольце S, если m удовлетворяет аксиоме аддитивности

$$\forall A, B \in S, A \cap B = \varnothing, A \cup B \in S : m(A \sqcup B) = m(A) + m(B).$$

Если дополнительно для любой последовательности попарно непересекающихся подмножеств  $\{A_k\}_{k\in\mathbb{N}}$ , объединение которых есть элемент S (отметим, что это автоматически выполнено, если S является  $\sigma$ -кольцом) имеет место равенство

$$m\left(\bigsqcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} m(A_k),$$

то мера m называется  $\sigma$ -аддитивной (аксиома  $\sigma$ -аддитивности). Можно показать, что из этой аксиомы следует, что  $m(\varnothing)=0$  и поэтому из неё следует аксиома аддитивности.

Пользуясь предложением 0.5 введём функцию  $\nu: R(S) \to \mathbb{R}$  по правилу  $\nu(A_1 \sqcup \ldots \sqcup A_n) = \sum_{i=1}^n m(A_i)$ , где  $A_i \in S$ . Следующее предложение позволяет назвать  $\nu$  продолжением меры m с полукольца S на его минимальное кольцо.

#### Предложение 0.6. Справедливо следующее

- (1) функция  $\nu$  определена корректно, то есть значение  $\nu$  не зависит от выбора представления  $A_1 \sqcup \ldots \sqcup A_n$ ;
- (2) функция  $\nu$  является мерой на кольце R(S);
- (3) ограничение функции  $\nu$  на полукольцо S совпадает c m;

(4) если мера m была  $\sigma$ -аддитивной, то функция  $\nu$  также является  $\sigma$ -аддитивной.

Доказательство в  $[2, \Gamma]$ лава 1, Теорема  $[2, \Gamma]$ . □

**Лемма 0.3.** Пусть S- полукольцо  $u\ m\colon S\to \mathbb{R}-$  мера на S. Тогда  $m\ удовле-$  творяет следующим свойствам

- (1) если для  $A, B \in S$  выполнено  $A \subset B$ , то  $m(A) \leqslant m(B)$ ;
- (2)  $ecnu A, A_1, \ldots, A_n \in S \ u A \subset \bigcup_{i=1}^n A_i, \ mo$

$$m(A) \leqslant \sum_{i=1}^{n} m(A_i);$$

(3) если  $A_1, \ldots, A_n \subset S$  — попарно не пересекающиеся множества  $u \bigsqcup_{i=1}^n A_i \subset A \in S$ , то

$$\sum_{i=1}^{n} m(A_i) \leqslant m(A);$$

(4) если  $\{A_i\}_{i=1}^{+\infty} \subset S$  — попарно не пересекающиеся множества  $u \bigsqcup_{i=1}^{+\infty} A_i \subset A \in S$ ,

$$\sum_{i=1}^{+\infty} m(A_i) \leqslant m(A).$$

#### 0.2.4 Лебеговское продолжение меры

Далее будем рассматривать полукольцо S с единицей  $\Omega$  и  $\sigma$ -аддитивной мерой m. Пусть  $\nu\colon R(S)\to \mathbb{R}$  — продолжение этой меры на минимальное кольцо.

Введём функцию внешней меры  $\mu^*: 2^{\Omega} \to \mathbb{R}$ , заданную по правилу

$$\mu^*(A) := \inf_{\substack{A \subset \bigcup_{i=1}^{+\infty} B_i, B_i \in S}} \sum_{i=1}^{+\infty} m(B_i).$$

**Предложение 0.7.** Для всякого  $A \subset \Omega$  в определении внешней меры можно заменить дизъюнктные объединения на произвольные:

$$\mu^*(A) = \inf_{\substack{A \subset \bigcup_{i=1}^{+\infty} B_i, B_i \in S}} \sum_{i=1}^{+\infty} m(B_i).$$

Множество  $A \subset \Omega$  называется измеримым, если для любого  $\varepsilon > 0$  найдётся множество  $B \in R(S)$  такое, что  $\mu^*(A \triangle B) < \varepsilon$ . Если A измеримо, то его мерой называется значение  $\mu(A) := \mu^*(A)$ . Обозначим через M системы всех измеримых подмножеств единицы  $\Omega$ .

**Лемма 0.4.** Пусть  $\{A_i\}_{i=1}^{+\infty} \subset M$  — последовательность множеств,  $A \in M$  и  $A \subset \bigcup_{i=1}^n A_i$ . Тогда

$$\mu^*(A) \leqslant \sum_{i=1}^n \mu^*(A_i);$$

**Теорема 0.5.** Система измеримых множеств M является алгеброй.

**Теорема 0.6.** Функция  $\mu$  на алгебре множеств M является мерой.

**Теорема 0.7.** Алгебра измеримых множеств M является  $\sigma$ -алгеброй.

**Теорема 0.8.** Мера  $\mu$  на  $\sigma$ -алгебре измеримых множеств является  $\sigma$ -аддитивной.

- 0.2.5 Мера Лебега-Стилтьеса
- 0.2.6 Измеримое отображение
- 0.2.7 Интеграл Лебега
- 0.2.8 Прямой образ меры (pushforward measure)

Далее, если не оговорено иное, все алгебры являются  $(\sigma$ -)алгебрами с единицей  $\Omega$  и будут называться « $(\sigma$ -)алгебрами».

# 0.3 Теория категорий и взгляд на измеримые пространства с её точки зрения

Теория категорий в её лучшем проявлении выражает собой формализацию понятия "математическая конструкция" через понятие объектов, морфизмов, функторов, естественных преобразований, а также формализует интуицию в виде универсальных свойств, сопряжённости функторов, эквивалентности категорий и так далее.

В этом подразделе будет предполагаться, что вы знакомы с определением категории (например, основанном на теории множеств) и знакомы с понятиями объекта, морфизма между объектами и функтором из одной категории в другую. Остальные определения по возможности будут приведены здесь.

#### 0.3.1 Категория измеримых пространств

Пусть  $\mathcal{A}_X - \sigma$ -алгебра подмножеств множества X. Пара  $(X, \mathcal{A}_X)$  называется измеримым пространством.

Пусть  $(X, \mathcal{A}_X)$  и  $(Y, \mathcal{A}_Y)$  — пара измеримых пространств. Морфизмом измеримых пространств  $f: (X, \mathcal{A}_X) \to (Y, \mathcal{A}_Y)$  называется отображение множеств  $f: X \to Y$  такое, что для любого  $U \in \mathcal{A}_Y$  выполнено  $f^{-1}(U) \in \mathcal{A}_X$ , где  $f^{-1}$  — это полный прообраз.

В категории измеримых пространств **Жеа** объектами являются измеримые пространства, а морфизмами — морфизмы измеримых пространств.

#### 0.3.2 Прямой образ $\sigma$ -алгебры

Пусть  $(X, \mathcal{A}_X)$  — измеримое пространство и  $f: X \to Y$  — отображение множеств. Существует способ естественным образом построить  $\sigma$ -алгебру подмножеств Y.

Положим  $f_*(\mathcal{A}_X) = \{B \subset Y | f^{-1}(B) \in \mathcal{A}_X\}$ — все подмножества Y, полный прообраз которых лежит в  $\mathcal{A}_X$ .

**Предложение 0.8.** Конструкция  $f_*$  обладает следующими свойствами.

- (1) Система множеств  $f_*(\mathcal{A}_X)$  является  $\sigma$ -алгеброй подмножеств множества Y.
- (2) Отображение f является морфизмом измеримых пространств  $f:(X, \mathcal{A}_X) \to (Y, f_*(\mathcal{A}_X)).$
- (3) Если  $A_Y \sigma$ -алгебра подмножеств Y, то отображение f является морфизмом измеримых пространств  $f: (X, A_X) \to (Y, A_Y)$  тогда и только тогда, когда  $A_Y \subset f_*(A_X)$ .
- (4) Пусть имеются отображения множеств  $f: X \to Y, g: X \to Z$  и  $h: Y \to Z$  такие, что  $h \circ f = g$ , то h является морфизмом измеримых пространств  $h: (Y, f_*(\mathcal{A}_X)) \to (Z, g_*(\mathcal{A}_X)).$



#### 0.3.3 Обратный образ $\sigma$ -алгебры

Пусть  $(Y, \mathcal{A}_Y)$  — измеримое пространство и  $f: X \to Y$  — отображение множеств. Существует способ естественным образом построить  $\sigma$ -алгебру подмножеств X.

Положим  $f^*(\mathcal{A}_Y) = \{ f^{-1}(B) | B \in \mathcal{A}_Y \}$  — полные прообразы всех элементов  $\sigma$ -алгебры  $\mathcal{A}_Y$ .

**Предложение 0.9.** Конструкция  $f^*$  обладает следующими свойствами.

- (1) Система множеств  $f^*(\mathcal{A}_Y)$  является  $\sigma$ -алгеброй подмножеств множества X.
- (2) Отображение f является морфизмом измеримых пространств  $f:(X, f^*(\mathcal{A}_Y)) \to (Y, \mathcal{A}_Y)$ .
- (3) Если  $A_X \sigma$ -алгебра подмножеств X, то отображение f является морфизмом измеримых пространств  $f: (X, A_X) \to (Y, A_Y)$  тогда и только тогда, когда  $f^*(A_Y) \subset A_X$ .
- (4) Пусть имеются отображения множеств  $f: X \to Y, g: Z \to Y$  и  $h: X \to Z$  такие, что  $g \circ h = f$ , то h является морфизмом измеримых пространств  $h: (X, f^*(\mathcal{A}_Y)) \to (Z, g^*(\mathcal{A}_Y)).$



# 0.3.4 Связь между минимальной $\sigma$ -алгеброй, прямым и обратным образом $\sigma$ -алгебры

**Лемма 0.9.** Пусть X, Y -множества,  $f: X \to Y -$ отображение множеств. Если  $\mathcal{A}_X - \sigma$ -алгебра подмножеств X, то  $f^*(f_*(\mathcal{A}_X)) \subset \mathcal{A}_X$ . Если  $\mathcal{A}_Y - \sigma$ -алгебра подмножество Y, то  $\mathcal{A}_Y \subset f_*(f^*(\mathcal{A}_Y))$ .

Доказательство. По предложению 0.8 отображение f является морфизмом измеримых пространств  $f:(X,\mathcal{A}_X)\to (Y,f_*(\mathcal{A}_X))$ . Тогда по предложению 0.9 имеем включение  $f^*(f_*(\mathcal{A}_X))\subset \mathcal{A}_X$ .

Теперь По предложению 0.9 отображение f является морфизмом измеримых пространств  $f: (X, f^*(\mathcal{A}_Y)) \to (Y, \mathcal{A}_Y)$ . Тогда по предложению 0.8 имеем включение  $\mathcal{A}_Y \subset f_*(f^*(\mathcal{A}_Y))$ .

**Лемма 0.10.** Пусть X, Y — множества, T — система подмножеств  $Y, Y \in T$ . Пусть  $f: X \to Y$  — отображение множеств. Обозначим через  $f^{-1}(T)$  систему множеств  $\{f^{-1}(U)|U\in T\}$ . Тогда  $R_{\sigma}(f^{-1}(T))=f^*(R_{\sigma}(T))$ .

Доказательство. Так как  $T \subset R_{\sigma}(T)$ , то по построению  $f^*$  имеем включение  $f^{-1}(T) \subset f^*(R_{\sigma}(T))$ . По предложению 0.9 система множеств  $f^*(R_{\sigma}(T))$  является  $\sigma$ -алгеброй. Тогда по теореме 0.2 имеем включение  $R_{\sigma}(f^{-1}(T)) \subset f^*(R_{\sigma}(T))$ .

Далее, система множеств  $f_*(R_\sigma(f^{-1}(T)))$  является  $\sigma$ -алгеброй по предложению 0.8. По построению  $f_*$  имеем включение  $T \subset f_*(R_\sigma(f^{-1}(T)))$ . Снова по теореме 0.2 имеем включение  $R_\sigma(T) \subset f_*(R_\sigma(f^{-1}(T)))$ .

По лемме 0.9 имеем включение  $f^*(f_*(R_\sigma(f^{-1}(T))) \subset R_\sigma(f^{-1}(T))$ . Собирая вместе все включения и пользуясь тем, что  $f^*(A) \subset f^*(B)$  для  $A \subset B$  получаем

$$f^*(R_{\sigma}(T)) \subset f^*(f_*(R_{\sigma}(f^{-1}(T))) \subset R_{\sigma}(f^{-1}(T)) \subset f^*(R_{\sigma}(T)),$$

откуда следует требуемое.

#### 0.3.5 Функтор борелевской $\sigma$ -алгебры

Пусть  $(X,\tau)$  — топологическое пространство. Минимальная  $\sigma$ -алгебра, порождённая системой открытых множеств  $\tau$  называется борелевской  $\sigma$ -алгеброй. Мы будем обозначать её через  $\mathcal{B}(\tau)$ , а соответствующее измеримое пространство через  $\mathrm{Bor}((X,\tau))=(X,\mathcal{B}(\tau))$ . Мы докажем, что конструкция  $\mathrm{Bor}\colon\mathfrak{Top}\to\mathfrak{Meas}$ , сопоставляющая топологическому пространству  $(X,\tau)$  измеримое пространство  $(X,\mathcal{B}(\tau))$ , а непрерывному отображению f его же как отображение множеств, функториальна.

**Лемма 0.11.** Пусть  $f: X \to Y$  — отображение множеств,  $\theta$  — топология Y, A —  $\sigma$ -алгебра подмножеств X. Пусть также S — база топологии  $\theta$  такая, что всякое открытое подмножество представляется в виде не более, чем счётного объединения элементов базы, и T — предбаза топологии  $\theta$  такая, что всякое открытое множество представляется в виде не более, чем счётного объединения конечных пересечений элементов T. Тогда следующие утверждения равносильны

- (1) прообраз всякого элемента борелевской  $\sigma$ -алгебры  $\mathcal{B}(\theta)$  лежит в A;
- (2) прообраз всякого открытого множества лежит в А;
- (3) прообраз всякого элемента базы S лежит в A;
- (4) прообраз всякого элемента предбазы T лежит в A.

Доказательство. Все пункты являются частным случаем пункта (1), а пункты (3) и (4) — пункта (2). Так как база топологии (с данным дополнительным условие) является частным случаем предбазы топологии (с дополнительным условием), то достаточно вывести из пункта (4) пункт (1).

Рассмотрим систему множеств  $T_X = f^{-1}(T) \cup \{X\} := \{f^{-1}(U) | U \in T\} \cup \{X\}$ . По условию  $T_X \subset A$ . Пусть  $R_{\sigma}(T_X)$  — минимальная  $\sigma$ -алгебра, содержащая  $T_X$ . Так как A является  $\sigma$ -алгеброй, то  $R_{\sigma}(T_X) \subset A$ . Из построения  $f_*$  имеем  $f_*(R_{\sigma}(T_X)) \subset f_*(A)$ . Так же из построения  $f_*$  имеем включение  $T \subset f_*(R_{\sigma}(T_X))$ . Из условия наложенного на T следует, что минимальная  $\sigma$ -алгебра, порождённая T совпадает с  $\mathcal{B}(\theta)$ . Тогда по теореме 0.2 имеем включение  $\mathcal{B}(\theta) \subset f_*(R_{\sigma}(T_X))$ . Следовательно,  $\mathcal{B}(\theta) \subset f_*(A)$  и по предложению 0.8 f является морфизмом измеримых пространств  $f: (X, A) \to (Y, \mathcal{B}(\theta))$ , что и утверждается в пункте (1).

**Теорема 0.12.** Пусть  $(X, \tau), (Y, \theta)$  — топологические пространства,  $f: (X, \tau) \to (Y, \theta)$  — непрерывное отображение. Тогда отображение f является морфизмом измеримых пространств  $f: (X, \mathcal{B}(\tau)) \to (Y, \mathcal{B}(\theta))$ .

Доказательство. Следует из эквивалентности пунктов (1) и (2) леммы 0.11 для случая, когда  $A = \mathcal{B}(\tau)$ .

#### 0.4 Предварительные сведения из анализа Фурье

#### 0.5 Предварительные сведения из линейной алгебры

#### 0.5.1 Билинейные функции и квадратичные формы

Пусть k — некоторое поле (в нашем случае будут рассматриваться только поля вещественных чисел  $\mathbb{R}$ ) и V — векторное пространство над k.

Отображение  $B\colon V\! imes\!V\to \Bbbk$  называется билинейной функцией, если выполнены следующие аксиомы

- (1)  $\forall v, u, w \in V \ B(u+v, w) = B(u, w) + B(v, w);$
- (2)  $\forall v, u \in V, \lambda \in \mathbb{k} \ B(\lambda u, v) = \lambda B(u, v);$
- (3)  $\forall v, u, w \in V \ B(u, v + w) = B(u, w) + B(u, v);$
- (4)  $\forall v, u \in V, \lambda \in \mathbb{k} \ B(u, \lambda v) = \lambda B(u, v).$

Билинейная функция называется симметрической, если дополнительно для любых  $u, v \in V$  выполнено B(u, v) = B(v, u).

**Пример.** Пусть  $V = \mathbb{k}$  и  $B(a,b) = a \cdot b$ , где  $\cdot$  — умножение в поле  $\mathbb{k}$ . Тогда B — симметрическая билинейная функция.

**Пример.** Пусть в векторном пространстве V фиксирован базис  $e_1, \ldots, e_n$ . Тогда если  $B(x,y) = \sum_{i=1}^n x_i y_i$ , где  $x = \sum_{i=1}^n x_i e_i$  и  $y = \sum_{i=1}^n y_i e_i$ , то B — также билинейная симметрическая форма.

Квадратичной формой называется отображение  $Q\colon V\to \mathbb{k}$  такое, что для некоторой билинейной формы и любой вектора  $v\in V$  имеет место равенство Q(v)=

B(v,v). Если B — билинейная функция, то квадратичная форма Q, заданная формулой Q(v)=B(v,v) называется квадратичной формой соответствующей билинейной функции B. Пусть  $\mathbb{k}=\mathbb{R},\,Q$  — квадратичная форма и для любого ненулевого вектора  $v\in V$  выполнено неравенство Q(v)>0. Тогда форма Q называется положительно определённой. Если для любого  $v\in V$  выполнено неравенство  $Q(v)\geqslant 0$ , то форма Q называется неотрицательно определённой.

Симметрическую билинейную форму с положительно определённой соответствующей квадратичной формой называют скалярным произведением. Вместо B(u,v) часто пишут (u,v) или  $\langle u,v \rangle$ .

Примеры. Квадратичные формы, соответствующие билинейным функциям из примеров выше являются положительно определёнными.

**Теорема 0.13** (Коши, Буняковский, Шварц). Пусть V — векторное пространство над полем  $\mathbb{R}$  и B — скалярное произведение на V. Тогда дл любых двух векторов  $u,v\in V$  выполнено равенство

$$B(u,v)^2 \leqslant B(u,u)B(v,v),$$

причём равенство достигается тогда и только тогда, когда и и v коллинеарны.

Доказательство. Рассмотрим вектор u+tv, где  $t\in\mathbb{R}$  и значение квадратичной формы на нём. По билинейности, симметричности и положительной определённости имеем

$$B(u+tv,u+tv) = B(u,u) + tB(u,v) + tB(v,u) + t^2B(v,v) = B(u,u) + 2tB(u,v) + t^2B(v,v) \geqslant 0,$$

причём последнее равенство достигается тогда и только тогда, когда u + tv = 0.

Многочлен второй степени принимает только неотрицательные (положительные) значения тогда и только тогда, когда его дискриминант меньше или равен 0 (меньше 0). Итого

$$D = 4B(u, v)^2 - 4B(u, u)B(v, v) \leqslant 0 \Leftrightarrow B(u, v)^2 \leqslant B(u, u)B(v, v)$$

и  $D = 0 \Leftrightarrow B(u, v)^2 = B(u, u)B(v, v)$ . Последнее равносильно тому, что многочлен имеет корень t и u + tv = 0, то есть u и v пропорциональны.

Заметьте, что доказательство этого неравенства в случае поля комплексных чисел требует добавления дополнительной «поправки»  $\lambda$ .

#### 0.5.2 Полуторалинейные функции

В этом подразделе будем рассматривать только векторные пространства над полем комплексных чисел.

Отображение  $S: V \times V \to \mathbb{K}$  называется полуторалинейной функцией (по второму аргументу), если выполнены следующие аксиомы

- (1)  $\forall v, u, w \in V \ S(u+v, w) = S(u, w) + S(v, w);$
- (2)  $\forall v, u \in V, \lambda \in \mathbb{k} \ S(\lambda u, v) = \lambda S(u, v);$
- (3)  $\forall v, u, w \in V \ S(u, v + w) = S(u, w) + S(u, v);$
- (4)  $\forall v, u \in V, \lambda \in \mathbb{k}$   $S(u, \lambda v) = \overline{\lambda}S(u, v)$ , где надчёркивание означает комплексное сопряжение.

Полуторалинейная функция называется эрмитовой, если для любых векторов u и v дополнительно выполнено равенство  $S(u,v) = \overline{S(v,u)}$ .

Эрмитова функция называется скалярным произведением, если для любого ненулевого вектора v выполнено неравенство S(v,v)>0.

**Теорема 0.14** (Коши, Буняковский, Шварц). Пусть V — векторное пространство над полем  $\mathbb{C}$  и S — скалярное произведение на V. Тогда для любых двух векторов  $u, v \in V$  выполнено равенство

$$S(u,v)\overline{S(u,v)} \leqslant S(u,u)S(v,v),$$

причём равенство достигается тогда и только тогда, когда и и у коллинеарны.

Доказательство. Если S(u,v) = 0, то неравенство выполнено. При таком условии u и v пропорциональны тогда и только тогда, когда один из этих векторов равен 0. Последнее в свою очередь равносильно тому, что правая часть неравенства обращается в нуль. Далее будем считать, что  $S(u,v) \neq 0$ .

Рассмотрим вектор  $u+t\lambda v$ , где  $t\in\mathbb{R}$  и  $\lambda=S(u,v)$ . Поскольку S — скалярное произведение и из условий наложенных на  $\lambda$ , то

$$S(u+t\lambda v, u+t\lambda v) = S(u,u) + t\overline{\lambda}S(u,v) + t\lambda S(v,u) + t^2\lambda\overline{\lambda}S(v,v) =$$

$$= S(u,u) + 2tS(u,v)S(v,u) + t^2S(u,v)S(v,u)S(v,v) \leqslant 0$$

причём последнее равенство достигается тогда и только тогда, когда  $u + t\lambda v = 0$ .

Многочлен второй степени принимает только неотрицательные (положительные) значения тогда и только тогда, когда его дискриминант меньше или равен 0 (меньше 0). Итого

$$D = 4S(u, v)^{2}S(v, u)^{2} - 4S(u, u)S(v, v)S(u, v)S(v, u) \le 0 \Leftrightarrow S(u, v)S(v, u) \le S(u, u)S(v, v)$$

и  $D = 0 \Leftrightarrow S(u,v)^2 = S(u,u)S(v,v)$ . Последнее равносильно тому, что многочлен имеет корень  $t_0$  и  $u + t_0S(u,v)v = 0$ , то есть u и v пропорциональны.

# 1 Вероятностное пространство, случайные события

Пусть  $\Omega$  — некоторое множество,  $\mathfrak{F}$  —  $\sigma$ -алгебра с единицей  $\Omega$  и P —  $\sigma$ -аддитивная мера на  $\mathfrak{F}$ , удовлетворяющая свойству  $P(\Omega) = 1$ . Тогда тройка  $(\Omega, \mathfrak{F}, P)$  называется вероятностным пространством. Множество  $\Omega$  называется пространством элементарных событий (исходов), элементы  $\sigma$ -алгебры  $\mathfrak{F}$  называются событиями.

Вероятностное пространство называется дискретным, если множество  $\Omega$  не более, чем счётно.

Для кратности, если множество  $\{\omega\}$  является событием, вместо  $P(\omega)$  будем писать  $P(\omega)$ .

Примеры. Пусть  $\Omega = \{1, 2, 3, 4, 5, 6\}$  — числа, возникающие при броске игральной кости. Будем считать, что все элементарные исходы равновероятны, то есть  $P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = \frac{1}{6}$ . Тогда вероятность события  $A = \{2, 4, 6\}$  — «>выпало чётное число> равна  $P(A) = P(2) + P(4) + P(6) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$ .

Рассмотренный пример мотивирует нас ввести параллельные определения для дискретного пространства. Дискретным вероятностным пространством мы будем называть пару  $(\Omega, P)$ , где  $\Omega = \{\omega_k\}_{k \in \mathbb{N}}$  — не более чем счётное множество (также называемое пространством элементарных исходов), а  $P \colon \Omega \to \mathbb{R}$  — неотрицательная функция, удовлетворяющая свойству  $\sum_{k \in \mathbb{N}} P(\omega_k) = 1$ . Говорят, что в этом случае

на  $\Omega$  заданы вероятности элементарных событий и что функция P задаёт на  $\Omega$  распределение вероятностей. Событиями называются подмножества  $\Omega$ . Вероятностью события  $A \subset \Omega$  называется величина

$$P(A) = \sum_{\omega \in A} P(\omega),$$

которую мы также будем обозначать буквой Р. Последнее данное определение корректно, поскольку ряд в правой части сходится абсолютно.

**Предложение 1.1.** Пусть  $(\Omega, P) - \partial u$ скретное вероятностное пространство в смысле последнего определения. Пусть  $P: 2^{\Omega} \to \mathbb{R} - \phi$ ункция, сопоставляющая событию его вероятность. Тогда тройка  $(\Omega, 2^{\Omega}, P)$  является вероятностным пространством в смысле исходного определения.

Доказательство. Множество  $2^{\Omega}$  является  $\sigma$ -алгеброй, поэтому достаточно проверить, что функция Р удовлетворяет аксиомам вероятностной меры.

Из определения Р имеем

$$P(\Omega) = \sum_{i=1}^{+\infty} P(\omega_i) = 1.$$

Пусть  $A, B \subset \Omega$  и  $A \cap B = \emptyset$ . Положим  $A = \{\omega_i\}_{i \in I_A}$ ,  $B = \{\omega_i\}_{i \in I_B}$  и  $A \sqcup B = \{\omega_i\}_{i \in I_{A \sqcup B}}$ . Поскольку A и B не пересекаются, то  $I_A \sqcup I_B = I_{A \sqcup B}$ . Тогда, так как ряды в формуле ниже сходятся абсолютно, имеем

$$P(A \sqcup B) = \sum_{i \in I_{A \sqcup B}} \omega_i = \sum_{i \in I_A} \omega_i + \sum_{i \in I_B} \omega_i = P(A) + P(B).$$

Пусть теперь  $\{A_k\}_{k\in\mathbb{N}}$  — счётное семейство непересекающихся подмножеств множества  $\Omega$ . Положим  $A_k=\{\omega_i\}_{i\in I_k},\ A=\bigsqcup_{k\in I}A_k$ . Снова, поскольку  $A_k$  попарно не пересекаются, то  $I=\bigsqcup_{k\in\mathbb{N}}I_k$ . Поскольку все ряды ниже сходятся абсолютно, то выполнены равенства

$$P(A) = \sum_{i \in I} P(\omega_i) = \sum_{k \in \mathbb{N}} \sum_{i \in I_k} P(\omega_i) = \sum_{k \in \mathbb{N}} P(A_k).$$

Пусть  $A, B \in \mathfrak{F}$  — события. Введём основные операции над событиями и приведём их классические наименования и обозначения в теории вероятностей.

Событие  $\Omega \setminus A$  называется дополнением к событию A и обозначается  $\overline{A}$  («событие A не произошло»).

Событие  $A \cup B$  называется суммой событий A и B и обозначается A + B («произошло событие A или B»). В курсе лекций это обозначение использовалось для случаев, когда  $A \cap B = \emptyset$ .

Событие  $A \cap B$  называется произведением событий A и B и обозначается AB («произошло и событие A и событие B»).

События  $\Omega$  и  $\emptyset$  называются достоверным и невозможным, соответственно.

Если  $AB = \emptyset$ , то события A и B называются несовместными. («события A и B не происходят одновременно»).

**Предложение 1.2** (Начальные свойства вероятностной меры). Пусть  $A, B, A_k \in \mathfrak{F}$  — события. Тогда имеет место следующее:

- (1)  $P(\overline{A}) = 1 P(A);$
- (2)  $ecnu\ A \subset B$ ,  $mo\ P(B \setminus A) = P(B) P(A)$ ;
- (3)  $ecnu A \subset B$ ,  $mo P(A) \leq P(B)$ ;
- (4)  $P(A \cup B) = P(A) + P(B) P(AB);$
- (5)  $P(A \cup B) \leq P(A) + P(B);$

(6) 
$$P(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} \left( \sum_{i_1 < i_2 < \dots < i_k} (-1)^{k-1} P(A_{i_1} \dots A_{i_k}) \right);$$

(7) 
$$P\left(\bigcup_{k=1}^{+\infty} A_k\right) \leqslant \sum_{k=1}^{+\infty} P(A_k)$$
 (это свойство называется субаддитивностью).

Доказательство. Равенство (1) следует из цепочки

$$1 = P(\Omega) = P(A \sqcup \overline{A}) = P(A) + P(\overline{A}).$$

Равенство (2) — из цепочки

$$P(B) = P(A \cup (B \setminus A)) = P(A) + P(B \setminus A).$$

Неравенство (3) следует из этого равенства и неотрицательности вероятности.

Равенство (4) — из цепочки

$$P(A \cup B) = P((A \setminus B) \sqcup (A \cap B) \sqcup (B \setminus A)) =$$

$$= P(A \setminus B) + P(A \cap B) + P(B \setminus A) + P(A \cap B) - P(A \cap B) =$$

$$= P((A \setminus B) \sqcup (A \cap B)) + P((B \setminus A) \sqcup (A \cap B)) - P(A \cap B) =$$

$$= P(A) + P(B) - P(A \cap B).$$

Неравенство (5) немедленно следует из равенства (4).

Докажем (6) по индукции.

База n=2 была доказана в пункте 3.

Докажем шаг. Положим  $B = \bigcup_{k=1}^{n-1} A_k$ . По базе индукции

$$P(B \cup A_n) = P(B) + P(A_n) - P(BA_n).$$

Далее, положим  $B_k = A_k A_n$ . Тогда  $BA_n = \bigcup_{k=1}^{n-1} B_k$ . По индукционному предположению вероятность  $P(B \cup A_n)$  равна

$$\sum_{k=1}^{n-1} \left( \sum_{i_1 < i_2 < \dots < i_k} (-1)^{k-1} P(A_{i_1} \dots A_{i_k}) \right) + P(A_n) - \sum_{k=1}^{n-1} \left( \sum_{i_1 < i_2 < \dots < i_k} (-1)^{k-1} P(A_{i_1} \dots A_{i_k} A_n) \right) =$$

$$= \sum_{k=1}^{n} \left( \sum_{i_1 < i_2 < \dots < i_k} (-1)^{k-1} P(A_{i_1} \dots A_{i_k}) \right).$$

Докажем неравенство (7). Положим  $B_k = A_k \setminus \bigcup_{i=1}^{k-1} A_i$ . Тогда  $\bigcup_{k=1}^{+\infty} B_k = \bigcup_{k=1}^{+\infty} A_k$ , причём  $B_k$  попарно не пересекаются и  $\mathrm{P}(B_k) \leqslant \mathrm{P}(A_k)$  по (2). Тогда по  $\sigma$ -аддитивности имеем

$$\bigcup_{k=1}^{+\infty} A_k = \bigcup_{k=1}^{+\infty} B_k = \sum_{k=1}^{+\infty} P(B_k) \leqslant \sum_{k=1}^{+\infty} P(A_k).$$

# 2 Условные вероятности, формула Байеса, независимость событий

#### 2.1 Условная вероятность

В задачах бывает полезно рассмотреть вероятность того, что произойдёт некоторое событие B при условии, что произойдёт событие A. Пусть P(A) > 0. Тогда вероятность  $P(B \mid A) = \frac{P(AB)}{P(A)}$  называется условной вероятностью события B при условии того, что событие A произойдёт с вероятностью P(A) > 0. Вероятность P(B) также иногда называется априорной вероятностью события B.

Предложение 2.1. Пусть  $(\Omega, \mathfrak{F}, P)$  — вероятностное пространство. Пусть  $A \in \mathfrak{F}$  — событие, удовлетворяющее условию P(A) > 0. Тогда тройка

$$(\Omega, \mathfrak{F}, \left.\mathbf{P}\right|_A),$$

 $\operatorname{\it e}\partial\operatorname{\it e} \left.\operatorname{P}\right|_{A}(B):=\operatorname{P}(B\mid A)=rac{\operatorname{P}(AB)}{\operatorname{P}(A)},$  является вероятностным пространством.

Доказательство. Достаточно проверить аксиомы вероятностной меры (аксиомы  $\sigma$ -аддитивной меры и равенство  $P|_A(\Omega)=1$ ).

Так как обе величины P(AB) и P(A) неотрицательны (а последняя и вовсе положительна), то  $P(B \mid A) \leq 0$ .

Справедливость упомянутого равенства выводится из определения условной вероятности:

$$P|_{A}(\Omega) = \frac{P(A\Omega)}{P(A)} = \frac{P(A)}{P(A)} = 1.$$

Пусть  $\{B_k\}_{k\in\mathbb{N}}$  — счётная последовательность попарно не пересекающихся элементов алгебры  $\mathfrak{F}$ . Тогда элементы последовательности  $\{B_k\cap A\}_{k\in\mathbb{N}}$  также попарно не пересекаются. Тогда

$$P|_{A}\left(\bigsqcup_{k=1}^{+\infty}B_{k}\right) = \frac{1}{P(A)}P\left(A\cap\bigsqcup_{k=1}^{+\infty}B_{k}\right) = \frac{1}{P(A)}P\left(\bigsqcup_{k=1}^{+\infty}AB_{k}\right) = \sum_{k=1}^{+\infty}\frac{P(AB_{k})}{P(A)} = \sum_{k=1}^{+\infty}P|_{A}\left(B_{k}\right).$$

**Следствие 2.1.** Пусть  $A \in \mathfrak{F}$  — событие, вероятность которого больше 0,  $B_1, B_2 \in \mathfrak{F}$ . Тогда справедливы следующие свойства

(1)  $ecnu B_1 \supset A, mo P(B_1 | A) = 1;$ 

(2)  $P(B_1 \cup B_2 \mid A) = P(B_1 \mid A) + P(B_2 \mid A) - P(B_1B_2 \mid A);$ 

(3) если  $B_1$  и  $B_2$  несовместны, то  $P(B_1 + B_2 \mid A) = P(B_1 \mid A) + P(B_2 \mid A)$ .

#### 2.2 Формула полной вероятности и формула Байеса

Теперь мы покажем, как связаны условные вероятности с вероятностями произведений событий, как можно вычислять вероятность события, зная его условные вероятности для несовместных событий (формула полной вероятности) и как можно вычислить условную вероятность «с переставленными причиной и следствием» (формула Байеса).

**Лемма 2.2.** Пусть  $A, B \in \mathfrak{F}$  — события и P(A), P(B) > 0. Тогда имеют место равенства

$$P(AB) = P(A \mid B) P(B) = P(B \mid A) P(A),$$
  

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}.$$

Доказательство. Первое равенство немедленно следует из определения условной вероятности, второе – немедленно из первого и предположения, что P(B) > 0.

Второе равенство, доказанное в лемме иногда (особенно в школьных программах), называют формулой Байеса. Ниже, пользуясь этим простым свойством, мы докажем более общую формулу и в дальнейшем будем называть формулой Байеса её.

**Теорема 2.3** (Формула произведения вероятностей). Пусть  $A_1, \ldots, A_n \in \mathfrak{F}$  — события. Если вероятности событий  $A_2A_3\ldots A_n, \ldots, A_{n-1}A_n, A_n$  не равны нулю, то имеет место формула

$$P(A_1 A_2 ... A_n) = P(A_1 | A_2 ... A_n) P(A_2 | A_3 ... A_n) ... P(A_{n-1} | A_n) P(A_n).$$

Если вероятности событий  $A_1A_2...A_n, A_1A_2...A_{n-1},...,A_1$  не равны нулю, то имеет место формула

$$P(A_1 A_2 ... A_n) = P(A_n \mid A_1 ... A_{n-1}) P(A_{n-1} \mid A_1 ... A_{n-2}) ... P(A_2 \mid A_1) P(A_1).$$

Доказательство. Докажем первое утверждение индукцией по n, второе получается из первого перестановкой индексов в обратном порядке.

База: n=2 есть определение условной вероятности.

Докажем шаг индукции. Пусть для n-1 утверждение выполнено. Положим  $B=A_2A_3\ldots A_n$ . Тогда по базе индукции (здесь мы пользуемся тем, что P(B)>0) и затем по индукционному предположению (а здесь всеми остальными условиями) имеем

$$P(A_1B) = P(A_1 \mid B) P(B) = P(A_1 \mid A_2A_3...A_n) P(A_2 \mid A_3...A_n) ... P(A_{n-1} \mid A_n) P(A_n).$$

Набор событий  $A_1, \ldots, A_n \in \mathfrak{F}$  называется разбиением пространства  $\Omega$  (или просто «разбиение  $\Omega$ »), если  $P(A_i) > 0$  для каждого  $i, A_i$  попарно несовместны  $(A_i A_j = \varnothing \text{ при } i \neq j)$  и  $A_1 + A_2 + \ldots + A_n = \Omega$ .

**Теорема 2.4** (Формула полной вероятности). Пусть  $A_1, \ldots, A_n \in \mathfrak{F}$  — разбиение  $\Omega$ . Тогда для всякого события B имеет место равенство формула полной вероятности

$$P(B) = \sum_{i=k}^{n} P(B \mid A_k) P(A_k).$$

Доказательство. Так как события  $A_k$  попарно несовместны, то события  $A_kB$  также попарно несовместны. Имеем цепочку равенств

$$P(B) = P(B\Omega) = P(B(A_1 + \ldots + A_n)) = P(BA_1 + \ldots + BA_n) \stackrel{\text{несовместность}}{=} \sum_{k=1}^{n} P(BA_k) = \sum_{k=1}^{n} P(B \mid A_k) P(A_k).$$

Формула полной вероятности остаётся справедливой, если отказаться от требования  $A_1+A_2+\ldots+A_n=\Omega$  и заменить его на условие  $B\subset A_1+\ldots+A_n$  (сохраняя требования попарной несовместности событий  $A_i$  и  $P(A_i)>0$ ).

**Теорема 2.5** (Формула Байеса). Пусть события  $A_1, \ldots, A_n \in \mathfrak{F}$  образуют разбиение  $\Omega$ , пусть  $B \in \mathfrak{F}$  — ещё одно событие и P(B) > 0. Тогда справедлива формула Байеса

$$P(A_i \mid B) = \frac{P(B|A_i) P(A_i)}{\sum\limits_{k=1}^{n} P(B|A_k) P(A_k)}.$$

Доказательство. По лемме 2.2 («простейшая формула Байеса») имеем равенство

$$P(A_i \mid B) = \frac{P(B|A_i)P(B)}{P(B)}.$$

По формуле полной вероятности имеем

$$P(B) = \sum_{i=k}^{n} P(B \mid A_k) P(A_k),$$

откуда следует искомая формула.

#### 2.3 Независимость событий

Интуиция говорит нам, что события A и B «независимы», когда от того с какой вероятностью произойдёт событие A не зависит вероятность того, что произойдёт событие B и наоборот. Математически это выражается формулами  $P(B \mid A) = P(B)$  и  $P(A \mid B) = P(A)$ . Чтобы не ограничиваться случаями, когда вероятности событий больше 0, мы определим независимость следствием формул выше. События A и B называются независимыми, если справедливо равенство P(AB) = P(A) P(B).

**Предложение 2.2** (Свойства независимости). *Имеют место следующие утверждения:* 

- (1) если P(B) > 0, то независимость A и B равносильна равенству  $P(A \mid B) = P(A)$ ;
- (2) если A и B независимы, то  $\overline{A}$  и B независимы;
- (3) если события  $B_1$  и  $B_2$  несовместны, A и  $B_1$  независимы, а также A и  $B_2$  независимы, то A и  $B_1 + B_2$  независимы.

Доказательство. Проверим (1). Если P(B) > 0, то по независимости имеем

$$P(A \mid B) = \frac{P(AB)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A).$$

Обратно, если  $P(A \mid B) = P(A)$ , то  $\frac{P(AB)}{P(B)} = P(A)$ , откуда P(AB) = P(A) P(B). Для доказательства (2) выпишем цепочку равенств

$$P(\overline{A}B) = P((\Omega \setminus A)B) = P(B \setminus AB) = P(B) - P(AB) \stackrel{\text{независимость}}{=} P(B) - P(A) = P(B) - P(A) = P(B) = P(B$$

Наконец, для доказательства (3) заметим, что события  $B_1A$  и  $B_2A$  несовместны. Тогда

$$P((B_1 + B_2)A) = P(B_1A + B_2A) = P(B_1A) + P(B_2A) = P(B_1)P(A) + P(B_2)P(A) =$$

$$= (P(B_1) + P(B_2))P(A) = P(B_1 + B_2)P(A).$$

Теперь определим независимость для набора событий. Пусть  $B_1,\ldots,B_n\in\mathfrak{F}$ — события. Будем говорить, что они попарно независимы, если для всяких двух индексов  $i\neq j$  выполнено равенство  $\mathrm{P}(B_iB_j)=\mathrm{P}(B_i)\,\mathrm{P}(B_j)$  (то есть  $B_i$  и  $B_j$  независимы). Будем называть эти события независимыми, если для всякого набора индексов  $i_1<\ldots< i_k$  (здесь  $2\leqslant k\leqslant n$ ) имеет место равенство

$$P\left(\bigcap_{s=1}^k B_{i_s}\right) = \prod_{s=1}^k P(B_{i_s}).$$

**Предложение 2.3.** Если события  $B_1, \ldots, B_n$  независимы, то они попарно независимы.

**Пример.** Вообще говоря из попарной независимости не следует независимость, что демонстрируется следующим примером. Рассмотрим тетраэдр, три грани которого покрашены в красный, зелёный и синий цвета, соответственно, а последняя

разбита на три треугольника, покрашенных в те же цвета. Пусть вероятности выпадения граней равны  $\frac{1}{4}$ . покажем, что события «выпала грань с цветом A», где A — цвет попарно независимы, но не являются таковыми в совокупности. Формально ситуация выглядит следующим образом  $\Omega = \{\omega_R, \omega_G, \omega_B, \omega_{RGB}\}$  — элементарное событие — выпала грань с данной раскраской. По условию  $P(\omega_R) = P(\omega_G) = P(\omega_B) = P(\omega_{RGB}) = \frac{1}{4}$ . Обозначим через  $R = \{\omega_R, \omega_{RGB}\}$  ( $G = \{\omega_G, \omega_{RGB}\}, B = \{\omega_B, \omega_{RGB}\}$ ) события «выпала грань с красным (зелёным, синим) цветом», соответственно. Тогда  $P(R) = P(G) = P(B) = \frac{1}{2}$ ,  $P(RG) = P(GB) = P(BR) = \frac{1}{4} = P(R) P(G) = P(G) P(B) = P(B) P(B)$ , но  $P(RGB) = P(\omega_{RGB}) = \frac{1}{4} \neq P(R) P(G) P(B) = \frac{1}{8}$ .

**Пример.** Пользуясь примером выше, можно показать, что условие несовместности в пункте (3) предложения 2.2 нельзя опустить. Положим A=R и  $B_1=G$  и  $B_2=B$ . Тогда  $\mathrm{P}((B_1\cup B_2)A)=\mathrm{P}(\omega_{RGB})=\frac{1}{4},$  но  $\mathrm{P}(A)=\frac{1}{2},$   $\mathrm{P}(B_1+B_2)=\frac{3}{4}$  и  $\frac{1}{2}\cdot\frac{3}{4}\neq\frac{1}{4}.$  Таким образом, события  $B_1+B_2$  и A не являются независимыми.

**Пример.** Покажем, что из условия независимости нельзя удалить ни одно из равенств. Более того, мы докажем, что для всякого натурального n и семейства наборов индексов  $S_J = \{(i_{1,j}, \ldots, i_{k_j,j})\}_{j \in J}$  можно построить пример вероятностного пространства  $(\Omega, \mathfrak{F}, P)$  и событий  $A_1, \ldots, A_n \in \mathfrak{F}$  для которых множество наборов, на которых выполнены равенства

$$P\left(\bigcap_{s=1}^{k} A_{i_s}\right) = \prod_{s=1}^{k} P(A_{i_s})$$

в точности совпадает с J.

Построим пример для дискретного вероятностного пространства. Положим  $\Omega = \{(\varepsilon_1, \ldots, \varepsilon_n) | \varepsilon_i \in \{0, 1\}\}$  — множество всех кортежей из нулей и единиц длины n,  $P((\varepsilon_1, \ldots, \varepsilon_n)) = p_{(\varepsilon_1, \ldots, \varepsilon_n)}$  — будущее распределение вероятностей. Также положим  $A_k = \{(\varepsilon_1, \ldots, \varepsilon_n) | \varepsilon_i \in \{0, 1\}, \varepsilon_k = 1\}$ . Рассмотрим отображение  $\varphi \colon \mathbb{R}^{2^n} \to \mathbb{R}^{2^n}$ , заданное в некоторых фиксированных базисах этих пространств по правилу

$$\varphi \colon \begin{pmatrix} \dots \\ p_{(\varepsilon_1, \dots, \varepsilon_n)} \end{pmatrix} \mapsto \begin{pmatrix} \dots \\ P(A_{i_1} \dots A_{i_k}) \end{pmatrix},$$

где для k=0 предполагается, что в матрице стоит  $\mathrm{P}(\Omega)$ . Поскольку  $\mathrm{P}(A_{i_1}\dots A_{i_k})=\mathrm{P}(\{(\varepsilon_1,\dots,\varepsilon_n)|\,\varepsilon_i\in\{0,1\},\varepsilon_{i_s}=1,1\leqslant s\leqslant k\})=\sum_{\varepsilon_{i_s}=1,1\leqslant s\leqslant k}p_{(\varepsilon_1,\dots,\varepsilon_n)},$  то  $\varphi$  — линейное

отображение. Можно показать, что  $\varphi$  сюръективно (проверьте с помощью элементарных преобразований, что его матрица имеет ранг  $2^n$ ) и, следовательно, биективно. Таким образом, достаточно подобрать значения вероятностей все возможных произведений  $A_i$  так, чтобы вероятности  $p_{(\varepsilon_1,\ldots,\varepsilon_n)}$  были неотрицательны, в сумме давали 1 ( $P(\Omega)=1$ ) и при этом выполнялись в точности все желаемые равенства на вероятности произведений событий  $A_i$ . Положим  $P(A_i)=\frac{1}{2^{2n}}$ ,  $P(\Omega)=1$ . Если  $(i_1,\ldots,i_k)\in S_J$ , то положим  $P(A_{i_1}\ldots A_{i_k})=\frac{1}{2^{2kn}}$ . Иначе положим  $P(A_{i_1}\ldots A_{i_k})=\frac{1}{2^{2kn}}$ . Проверим, что имеют место неравенство  $\frac{1}{2^{2kn+2}}\leqslant p_{(\varepsilon_1,\ldots,\varepsilon_n)}\leqslant \frac{1}{2^{2kn}}$ , для кортежей с k>0 числом единиц. Для кортежа  $(1,\ldots,1)$  неравенство выполнено по

построению. Докажем неравенства для оставшихся кортежей с данным условием индукцией по числу нулей в кортеже. Пусть в текущем кортеже  $(\varepsilon_1,\ldots,\varepsilon_n)$  присутствует  $n-k\geqslant 1$  нулей. Прибавим к  $p_{(\varepsilon_1,\ldots,\varepsilon_n)}$  все остальные значения вероятностей элементарных исходов — кортежей, в которых некоторые нули из данного кортежа заменены на единицы. Тогда  $p_{(\varepsilon_1,\ldots,\varepsilon_n)}\leqslant \frac{1}{2^{2kn}}$ , так как по предположению индукции все остальные слагаемые положительны, а сумма не превосходит  $\frac{1}{2^{2kn}}$ . С другой стороны,  $p_{(\varepsilon_1,\ldots,\varepsilon_n)}\geqslant \frac{1}{2^{2kn+1}}-\frac{2^k-1}{2^{2(k+1)n}}=\frac{1}{2^{2kn+1}}-\frac{1}{2^{2kn+2}+(2n-k-2)}$ . Так как  $n-k-1\leqslant 0$  и  $n-1\leqslant 0$ , то последнее слагаемое по модулю не превосходит  $\frac{1}{2^{2kn+2}}$ . Тогда  $p_{(\varepsilon_1,\ldots,\varepsilon_n)}$  не меньше  $\frac{1}{2kn+2}$ . Остаётся убедиться в том, что  $p_{(0,\ldots,0)}=1-\sum_{(\varepsilon_1,\ldots,\varepsilon_n)\neq (0,\ldots,0)}p_{(\varepsilon_1,\ldots,\varepsilon_n)}\geqslant 1-\frac{2^n-1}{2^{2n}}>0$ .

# 3 Случайные величины, их распределения, функции распределения и плотности

НУЖНО: вписать все определения

НУЖНО: ввести функцию распределения

НУЖНО: определить распределение как прямой образ вероятностной меры

НУЖНО: доказать, что прямой образ вероятностной меры и мера Лебега-

Стилтьеса, порождённая функцией распределения совпадают

НУЖНО: ввести понятие абсолютно непрерывной случайной величины и её

плотности

## 4 Классические примеры распределений

НУЖНО: вписать описания для всех классических распределений Дискретные распределения.

- 4.1 Распределение константы
- 4.2 Распределение Бернулли
- 4.3 Дискретное равномерное распределение
- 4.4 Биномиальное распределение
- 4.5 Распределение Пуассона
- 4.6 Геометрическое распределение
- 4.7 Гипергеометрическое распределение
- 4.8 Отрицательное биномиальное распределение

Абсолютно непрерывные случайные величины

- 4.9 Равномерное распределение
- 4.10 Экспоненциальное (показательное) распределение
- 4.11 Нормальное распределение (распределение Гаусса)
- 4.12 Распределение Коши

# 5 Численные характеристики случайных величин

НУЖНО: записать определения и свойства, описать ковариацию как скалярное произведение

НУЖНО: доказать формулы для вычисленя матожидания через интегралы Лебега, Лебега-Стилтьеса и интеграл Римана для абсолютно непрерывной случайно величины

# 6 Сходимости случайных величин

НУЖНО: записать определения всех сходимостей и вывод одних сходимостей из других

# 7 Производящие функции

НУЖНО: записать определение

# 8 Характеристические функции

Теорема 8.1 (Бохнер, Хинчин).

# 9 Предельные теоремы

НУЖНО: дописать ниже доказательства теорем

#### 9.1 Неравенства

#### 9.2 Закон больших чисел

Теорема 9.1 (Закон больших чисел в форме Бернулли).

Теорема 9.2 (Закон больших чисел в форме Чебышёва).

Теорема 9.3 (Усиленный закон больших чисел).

**Теорема 9.4** (Закон больших чисел в форме Хинчина). content

#### 9.3 Теорема Муавра-Лапласа

Теорема 9.5 (Теорема Пуассона).

Теорема 9.6 (Формула Стирлинга).

Теорема 9.7 (Муавр, Лапласа).

## 9.4 Закон нуля или единицы

Лемма 9.8 (Борель, Кантелли).

Лемма 9.9 (Борель, Кантелли).

Теорема 9.10 (Закон нуля или единицы Колмогорова).

## 9.5 Закон повторного логарифма

Теорема 9.11 (Закон повторного логарифма).

## 9.6 Закон арксинуса

Теорема 9.12 (Закон арксинуса).

# 9.7 Правило трёх сигм

Теорема 9.13 (Правило трёх сигм).

#### 9.8 Центральная предельная теорема

Теорема 9.14 (Центральная предельная теорема).

Теорема 9.15 (Оценка Берри-Эссена).

# 10 Совместные распределения случайных величин

d

# 11 Свёртки случайных величин

d

# 12 Указатель терминов

d

# 13 Указатель теорем

d

# Список литературы

- [1] Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа, Физматлит, 2004, 572с.
- [2] Дьяченко М. И., Ульянов П. Л. Мера и интеграл, Факториал, 1998, 160с.
- [3] Боровков А. А. Теория вероятностей, Физматлит, 1986, 432с.