The details of the numerical setup are presented in Section ??.

Each element has $m_V = 16$ vertices so in total $ndof_V \times m_V = 32$ velocity dofs and $ndof_P * m_P = 9$ pressure dofs. The total number of velocity dofs is therefore $NfemV = nnp \times ndofV$ while the total number of pressure dofs is NfemP = nel. The total number of dofs is then Nfem = NfemV + NfemP.

As a consequence, matrix \mathbb{K} has size NfemV, NfemV and matrix \mathbb{G} has size NfemV, NfemP. Vector f is of size NfemV and vector h is of size NfemP.

60==	==61==	==62==	==63==	==64==	==65==	==66==	==67==	==68==	==70
Π			-11			-11			-11
50	51	52	53	54	55	56	57	58	59
11			11			11			- 11
40	41	42	43	44	45	46	47	48	49
11			11			11			11
30==	==31==	==32==	==33==	==34==	==35==	==36==	==37==	==38==	==39
11			11			11			$ \cdot $
20	21	22	23	24	25	26	27	28	29
11			11			11			$ \cdot $
10	11	12	13	14	15	16	17	18	19
11			11			11			$ \cdot $
00===01===02===03===04===05===06===07===08===09									

Example of 3x2 mesh. nnx=10, nny=7, nnp=70, nelx=3, nely=2, nel=6

The velocity shape functions are given by:

$$N_1(r) = (-1 + r + 9r^2 - 9r^3)/16$$

$$N_2(r) = (+9 - 27r - 9r^2 + 27r^3)/16$$

$$N_3(r) = (+9 + 27r - 9r^2 - 27r^3)/16$$

$$N_4(r) = (-1 - r + 9r^2 + 9r^3)/16$$

$$N_1(t) = (-1+t+9t^2-9t^3)/16$$

$$N_2(t) = (+9-27t-9t^2+27t^3)/16$$

$$N_3(t) = (+9+27t-9t^2-27t^3)/16$$

$$N_4(t) = (-1-t+9t^2+9t^3)/16$$

and their derivatives:

Write about 4 point quadrature.

features

- $Q_3 \times Q_2$ element
- $\bullet\,$ incompressible flow
- mixed formulation
- isothermal
- isoviscous
- ullet analytical solution

velocity error rate is cubic, pressure superconvergent since the pressure field is quadratic and therefore lies into the Q2 space.