Contents

1	Log	gic and Proofs								
	1.1	Propo	sitional Logic							
		1.1.1	Logical Connectives							
		1.1.2	Variations of Conditionals							
	1.2	Applic	eation of Propositional Logic							
		1.2.1	Classification of Proposition							
		1.2.2	Logical Equivalence $p \equiv q \ldots 2$							
		1.2.3	Laws of Logical Equivalence							
		1.2.4	Determine Logical Equivalence:							
	1.3	Predic	eate and Quantifier							
		1.3.1	Predicate							
		1.3.2	Quantifier							

1 Logic and Proofs

1.1 Propositional Logic

Proposition is a statement that is **either** true or false, but not both at the same time. We usually represent it with variables like p, q, and r.

e.g. "The sky is blue." is a proposition, but "Listen to me" is not.

1.1.1 Logical Connectives

• Negation: $\neg p$. It is not the case that p.

• Conjunction: $p \wedge q$. "and"

• Disjunction: $p \vee q$. "or"

• Implication: $p \to q$. If p then q, q if p, q is a consequence of p, p only if q

• biconditional: $p \leftrightarrow q$. $(p \to q) \land (q \to p)$, p if and only if q

1.1.2 Variations of Conditionals

• Implication: $p \to q$

• Converse: $q \to p$

• Inverse: $\neg p \rightarrow \neg q$

• Contrapositive: $\neg q \rightarrow \neg p$. This is logically equivalent to Implication

Truth Table

$$\begin{array}{c|cccc} p & q & p \lor q \\ \hline T & T & T \\ T & F & T \\ F & T & T \\ F & F & F \\ \end{array}$$

p	q	$p \wedge q$
Τ	Τ	${ m T}$
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	${ m T}$	\mathbf{F}
F	F	\mathbf{F}

$$\begin{array}{c|ccc} p & q & p \rightarrow q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$

Example

Find the truth value of $(p \lor q) \to \neg r$

p	q	r	$p\vee q$	$\neg r$	$(p \lor q) \to \neg r$
Т	Т	Т	${ m T}$	F	F
\mathbf{T}	T	F	${ m T}$	Τ	T
${\rm T}$	F	Т	${ m T}$	F	\mathbf{F}
${ m T}$	F	F	${ m T}$	T	${ m T}$
F	Т	Т	${ m T}$	F	\mathbf{F}
F	\mathbf{T}	F	${ m T}$	T	${ m T}$
\mathbf{F}	F	\mathbf{T}	\mathbf{F}	F	${ m T}$
F	F	F	F	Т	T

1.2 Application of Propositional Logic

1.2.1 Classification of Proposition

 \bullet Tautology: Always true. e.g. $p \vee \neg \, p$

• Contradiction: Always false. e.g. $p \land \neg p$

 \bullet Contingency: Depends on variable. e.g. $p \to q$

1.2.2 Logical Equivalence $p \equiv q$

Two statements are logically equivalent if they always have the same truth value in every possible scenario.

e.g. p and q are biconditional, i.e. $p \leftrightarrow q$, means that p and q are logically equivalent.

1.2.3 Laws of Logical Equivalence

Equivalence	Name
$\frac{1}{p \land T \equiv p}$	Identity laws
$p \lor F \equiv p$	
$\frac{P \lor T}{p \lor T \equiv T}$	Domination laws
$p \wedge F \equiv F$	
$p \lor p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$	Commutative laws
$p \wedge q \equiv q \wedge p$	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	
$\neg(p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws
$\neg(p \lor q) \equiv \neg p \land \neg q$	
$p \lor (p \land q) \equiv p$	Absorption laws
$p \land (p \lor q) \equiv p$	
$p \vee \neg p \equiv T$	Negation laws
$p \wedge \neg p \equiv F$	
$p \to q \equiv \neg p \lor q$	Conditional
$p \to q \equiv \neg q \to \neg p$	
$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$	Biconditional
$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$	

1.2.4 Determine Logical Equivalence:

- 1. Verify with Truth Table
- 2. Apply Known knowledge

Show that $p \to q$ is logically equivalent to $\neg q \to \neg p$

Show that $(p \to r) \lor (q \to r) \equiv (p \land q) \to r$

$$(p \to r) \lor (q \to r) \equiv (\neg p \lor r) \lor (\neg q \lor r)$$
$$\equiv (\neg p \lor \neg q) \lor (r \lor r)$$
$$\equiv \neg (p \land q) \lor r$$
$$\equiv (p \land q) \to r_{\#}$$

1.3 Predicate and Quantifier

1.3.1 Predicate

A predicate is a statement with variables that becomes true or false only once specific values are substituted. P(x) denotes a predicate involving x.

e.g. Let P(x) be the statement "x;4." We read P(x) as "x is greater than 4."

- P(x) is true if x = 5
- P(x) is false if x = 3

General Form

 $P(x_1, x_2, x_3, \dots, x_n)$ where each x_i is a variable from the domain of discourse.

1.3.2 Quantifier

- Universal quantifier ∀: "for all", "every".
- Existential quantifier ∃: "there exists", "some", "at least one".

Negating Quantifier

$$\begin{cases} \neg \forall x \, P(x) \equiv \exists x \, \neg P(x) \\ \neg \exists x \, P(x) \equiv \forall x \, \neg P(x) \end{cases}$$

Nested Quantifier

$$\forall x \exists y \, P(x,y) \neq \exists y \forall x \, P(x)$$