

Europäisches Patentamt European Patent Office Office européen des brevets

(11)

EP 0 982 401 A3

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3: 19.04.2000 Bulletin 2000/16

(51) Int. Cl. ':

C12N 15/31, C07K 14/40, A61K 31/70, A61K 38/16, C07K 16/14, G01N 33/50,

(43) Date of publication A2: 01.03.2000 Bulletin 2000/09

C12Q 1/68

(21) Application number: 98310694.9

(22) Date of filing: 23.12.1998

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE

Designated Extension States: AL LT LV MK RO SI

(30) Priority: 14.08.1998 GB 9817796

(71) Applicant: JANSSEN PHARMACEUTICA N.V. 2340 Beerse (BE)

(72) Inventors:

, Contreras, Roland Henri 9000 Gent (BE) , Nelissen, Bart 2340 Beerse (BE)

, De Backer, Marianne Denise 2340 Beerse (BE) Luyten, Walter Herman Maria Louis

2340 Beerse (BE) , Vlaene, Jasmine Elsa

9000 Gent (BE)

, Logghe, Marc George 9000 Gent (BE)

(74) Representative:

Baldock, Sharon Claire et al BOULT WADE TENNANT, 27 Furnival Street London EC4A 1PQ (GB)

(54) Drug targets in Candida albicans

(57) Nucleic acid molecules encoding polypeptides that are critical for survival and growth of the yeast Candida albicans are disclosed. Also provided are methods of identifying compounds which selectively modulate expression or activity of such polypeptides comprising the steps of (a) contacting a compound to be tested with one or more Candida albicans cells having a mutation in a nucleic acid

molecule according to the invention which mutation results in overexpression or underexpression of said polypeptides in addition to contacting one or more wild type Candida albicans cells with said compound, and (b) monitoring the growth and/or activity of said mutated cell compared to said wild type; wherein differential growth or activity of said one or more mutated Candida cells is indicative of selective action of said compound on a polypeptide or another polypeptide in the same or a parallel pathway.

ATTORNEY DOCKET NUMBER: 10182-016-999 SERIAL NUMBER: 10/032,585 REFERENCE: **CJ**

PARTIAL EUROPEAN SEARCH REPORT

Application Number

which under Rule 45 of the European Patent Convention EP 98 31 0694 shall be considered, for the purposes of subsequent proceedings, as the European search report

		ERED TO BE RELEVANT		ļ
ategory	Citation of document with of relevant pass	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IntCL7)
A	characterization o alpha-tubulin from GENE: AN INTERNATION AND GENOMES,GB,ELS PUBLISHERS. BARKING	Candida albicans" DNAL JOURNAL ON GENES EVIER SCIENCE G, Dage 151-158 XP004093273		C12N15/31 C07K14/40 A61K31/70 A61K38/16 C07K16/14 G01N33/50 C12Q1/68
`	WO 97 36925 A (SCR ;HARVARD COLLEGE (U 9 October 1997 (199 * the whole documen	JS)) 97-10-09)	ļ	
`	WO 97 37230 A (BRAI RICHARD; BURATOWSK: 9 October 1997 (1997) * the whole document	STEPHEN) 37-10-09)		
A	WO 96 36707 A (UNI\SANITA (IT); CASSOI 21 November 1996 (/ ROMA ;IST SUPERIORE HE ANTONIO (IT); VALLE) 1996-11-21) ht *		TECHNICAL FIELDS SEARCHED (Int.Cl.7) C12N C07K A61K G01N
INCOM	MPLETE SEARCH	<u> </u>		C12Q
not comply be carried Claims sed Claims sed	In Division considers that the present y with the EPC to such an extent that out, or can only be carried out partia arched completely: arched incompletely:	application, or one or more of its claims, does/d a meaningful search into the state of the art can ly, for these claims.	o inot	
	r the limitation of the search; sheet C	1		
	Place of search	Date of completion of the search		Examiner
	THE HAGUE	19 November 1999	Sma	lt, R
X : partic Y : partic docur A : techn	TEGORY OF CITED DOCUMENTS pularly relevant if taken alone pularly relevant if combined with anot ment of the same category pulcejoal background written disclosure	L ; document cited for a	ment, but publishe application other reasons	hed on, or

EPO FORM 1503 03.82 (P04C07)

Application Number

EP 98 31 0694

CLAIMS INCURRING FEES
The present European patent application comprised at the time of filing more than ten claims.
Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims and for those claims for which claims fees have been paid, namely claim(s):
No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims.
LACK OF UNITY OF INVENTION
The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:
see sheet B
All further search fees have been paid within the fixed time limit. The present European search report had been drawn up for all claims.
As all searchable claims could be searched without effort justifying an additional fee, the Search Division did not invite payment of any additional fee.
Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:
None of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims: 1,4-7,9,11-20,30,31 partially

LACK OF UNITY OF INVENTION SHEET B

Application Number EP 98 31 0694

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

1. Claims: Invention 1: claims 1,4-7,9,11-20,30,31 partially

Nucleic acid molecule comprising seq.ID.1 or capable of hybridizing thereto, expression vector comprising said nucleic acid, use of said vector for preparation of medicament or pharmaceutical composition, C. albicans cell comprising an induced mutation in said DNA sequence, oligonucleotides comprising 10-50 nt of said nucleic acid sequence, and method for identifying compounds which modulate expression of said nucleic acid.

2. Claims: Inventions 2-41: claims 1,4-7,9,11-20,30, 31 partially, and 2,3,8,10,32, 33 partially as applicable

As invention 1, but limited to the respective nucleic acid sequences 2,3,5,6,8,9,10,11,13,15,16,18,20,21,23,25,26,27,28,29,31,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69, and 71, and polypeptide sequences corresponding to said nucleic acid sequences in as far as they are provided, whereby invention 2 is limited to seq.ID.2, invention 3 is limited to seq.ID.3 and its translated polypeptide seq.ID.4,, and invention 41 is limited to seq.ID.71 and its translated polypeptide sequence seq.ID.72.

In as far as a polypeptide sequence, translated from the ORF of a corresponding nucleic acid sequence is provived, the polypeptide encoded by the corresponding nucleic acid sequence and their use in the preparation of a medicament, and antibodies against said polypeptide is also considered part of the respective invention.

3. Claims: Invention 42: claim 25-29

Method for identifying DNA sequences from a cell or organism, which encode polypeptides which are critical for growth and survival for said cell or organism, comprising screening a library of nucleic acids using a vector that either integrates into the genome of said cell or organism, or that permits expression of antisense RNA, and selecting growth-impaired cells or organisms. Plasmids pGAL1PSiST-1 and pGAL1PNiST-1, used in said method.

INCOMPLETE SEARCH SHEET C

Application Number EP 98 31 0694

Claim(s) no 21-		earched:				
Reason	for	the	limitation	of	the	search:	

Claims 21-24 refer to a compound identifiable with a method, without giving a true technical characteization of the compound. Moreover, no such compounds are defined in the application. In consequence, the scope of said claims is ambiguous and vague, and their subject-matter is not sufficiently disclosed and supported (Art. 83 and 84 EPC). No search can be carried out for such purely speculative claims whose wording is, in fact, a mere recitation of the results to be achieved.

EP 0 982 401 A3 ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLIC, TION NO.

EP 98 31 0694

This annex lists the patent family members relating to the patent documents ϵ : d in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are early given for the purpose of information.

19-11-1999

	atent document d in search rep		Publication date		Patent family member(s)	Publication date
WO	9736925	Α	09-10-1997	CA EP	2250129 A 0904289 A	09-10-199 31-03-199
WO	9737230	Α	09-10-1997	US CA EP	5863762 A 2250121 A 0894269 A	26-01-19 09-10-19 03-02-19
WO	9636707	Α	21-11-1996	IT AU EP	RM950314 A 5777696 A 0826040 A	18-11-199 29-11-199 04-03-199
						.,
						•

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

FORM PO458

Description

5

10

15

20

25

30

35

40

45

55

[0001] The present invention is concerned with the identification of genes or functional fragments thereof from Candida albicans which are critical for growth and cell division and which genes may be used as selective drug targets to treat Candida albicans associated infections. Novel nucleic acid sequences from Candida albicans are also provided and which encode the polypeptides which are critical for growth of Candida albicans.

[0002] Opportunistic infections in immunocompromised hosts represent an increasingly common cause of mortality and morbidity. Candida species are among the most commonly identified fungal pathogens associated with such opportunistic infections, with Candida albicans being the most common species. Such fungal infections are thus problematical in, for example, AIDS populations in addition to normal healthy women where Candida albicans yeasts represent the most common cause of vulvovaginitis.

[0003] Although compounds do exist for treating such disorders, such as for example, amphotericin, these drugs are generally limited in their treatment because of their toxicity and side effects. Therefore, there exists a need for new compounds which may be used to treat *Candida* associated infections in addition to compounds which are selective in their action against *Candida albicans*.

[0004] Classical approaches for identifying anti-fungal compounds have relied almost exclusively on inhibition of fungal or yeast growth as an endpoint. Libraries of natural products, semi-synthetic, or synthetic chemicals are screened for their ability to kill or arrest growth of the target pathogen or a related nonpathogenic model organism. These tests are cumbersome and provide no information about a compounds mechanism of action. The promising lead compounds that emerge from such screens must then be tested for possible host-toxicity and detailed mechanism of action studies must subsequently be conducted to identify the affected molecular target.

[0005] The present inventors have now identified a range of nucleic acid sequences from Candida albicans which encode polypeptides which are critical for its survival and growth. These sequences represent novel targets which can be incorporated into an assay to selectively identify compounds capable of inhibiting expression of such polypeptides and their potential use in alleviating diseases or conditions associated with Candida albicans infection.

Therefore, according to a first aspect of the invention there is provided a nucleic acid molecule encoding a polypeptide which is critical for survival and growth of the yeast *Candida albicans* and which nucleic acid molecule comprises any of the sequences of nucleotides in Sequence ID Numbers 1 to 3, 5, 6, 8 to 11, 13, 15, 16, 18, 20, 21, 23, 25 to 29, 31, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69 and 71.

[0007] A further aspect of the invention comprises a nucleic acid molecule encoding a polypeptide which is critical for survival and growth of the yeast *Candida albicans* and which nucleic acid molecule comprises any of the sequences of Sequence ID Numbers 1, 28, 35, 37 and 39 and fragments or derivatives of said nucleic acid molecules.

[0008] Also provided by the present invention is a nucleic acid molecule encoding a polypeptide which is critical for survival and growth of the yeast *Candidaelbicans* and which polypeptide has an amino acid sequence according to the sequence of any of Sequence ID Numbers 4, 7, 12, 14, 17, 19, 22, 24, 30, 32 to 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70 and 72.

[0009] Letters utilised in the nucleic acid sequences according to the invention which are not recognisable as letters of the genetic code signify a position in the nucleic acid sequence where one or more of bases A, G, C or T can occupy the nucleotide position. Representative letters used to identify the range of bases which can be used are as follows:

M: A or G R: A or T W: C or G S: C or T Y: K: G or T A or C or G V: A or C or T H: A or G or T D: C or G or T B: G or A or T or C N:

[0010] In one embodiment of the above identified aspects of the invention the nucleic acid may comprise a mRNA molecule or alternatively a DNA and preferably a cDNA molecule.

[0011] Also provided by the present invention is a nucleic acid molecule capable of hybridising to the nucleic acid molecules according to the invention under high stringency conditions.

[0012] Stringency of hybridisation as used herein refers to conditions under which polynucleic acids are stable. The stability of hybrids is reflected in the melting temperature (Tm) of the hybrids. Tm can be approximated by the formula:

81.5°C+16.6(1og 10[Na+]+0.41 (%G&C)-6001/l

wherein I is the length of the hybrids in nucleotides. Tm decreases approximately by 1-1.5°C with every 1% decrease in sequence homology.

[0013] The nucleic acid capable of hybridising to nucleic acid molecules according to the invention will generally be at least 70%, preferably at least 80 or 90% and mor preferably at least 95% homologous to the

nucleotide sequences according to the invention.

5

10

15

20

25

30

35

40

45

50

55

[0014] The DNA molecules according to the invention may, advantageously, be included in a suitable expression vector to express polypeptides encoded therefrom in a suitable host.

[0015] The present invention also comprises within its scope proteins or polypeptides encoded by the nucleic acid molecules according to the invention or a functional equivalent, derivative or bioprecursor thereof.

[0016] Therefore, according to a further aspect of the invention there is provided a polypeptide having an amino acid sequence of any of Sequence ID Numbers 4, 7, 12, 14, 17, 19, 22, 24, 30, 32 to 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70 and 72. A polypeptide encoded by the nucleic acid molecule according to the invention is also provided, which polypeptide preferably comprises an amino acid sequence of having the sequence of any of Sequence ID Numbers 4, 7, 12, 14, 17, 19, 22, 24, 30, 32 to 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70 and 72.

[0017] An expression vector according to the invention includes a vector having a nucleic acid according to the invention operably linked to regulatory sequences, such as promoter regions, that are capable of effecting expression of said DNA fragments. The term "operably linked" refers to a juxta position wherein the components described are in a relationship permitting them to function in their intended manner. Such vectors may be transformed into a suitable host cell to provide for expression of a polypeptide according to the invention. Thus, in a further aspect, the invention provides a process for preparing polypeptides according to the invention which comprises cultivating a host cell, transformed or transfected with an expression vector as described above under conditions to provide for expression by the vector of a coding sequence encoding the polypeptides, and recovering the expressed polypeptides.

[0018] The vectors may be, for example, plasmid, virus or phage vectors provided with an origin of replication, optionally a promoter for the expression of said nucleotide and optionally a regulator of the promoter. The vectors may contain one or more selectable markers, such as, for example, ampicillin resistance.

[0019] Polynucleotides according to the invention may be inserted into the vectors described in an antisense orientation in order to provide for the production of antisense RNA. Antisense RNA or other antisense nucleic acids may be produced by synthetic means.

[0020] In accordance with the present invention, a defined nucleic acid includes not only the identical nucleic acid but also any minor base variations including in particular, substitutions in bases which result in a synonymous codon (a different codon specifying the same amino acid residue) due to the degenerate code in conservative amino acid substitutions. The term "nucleic acid sequence" also includes the complementary sequence to any single stranded sequence given regarding base variations.

[0021] The present invention also advantageously provides nucleic acid sequences of at least approximately 10 contiguous nucleotides of a nucleic acid according to the invention and preferably from 10 to 50 nucleotides. These sequences may, advantageously be used as probes or primers to initiate replication, or the like. Such nucleic acid sequences may be produced according to techniques well known in the art, such as by recombinant or synthetic means. They may also be used in diagnostic kits or the like for detecting the presence of a nucleic acid according to the invention. These tests generally comprise contacting the probe with the sample under hybridising conditions and detecting for the presence of any duplex or triplex formation between the probe and any nucleic acid in the sample.

[0022] According to the present invention these probes may be anchored to a solid support. Preferably, they are present on an array so that multiple probes can simultaneously hybridize to a single biological sample. The probes can be spotted onto the array or synthesised *in situ* on the array. (See Lockhart *et al.*, Nature Biotechnology, vol. 14, December 1996 "Expression monitoring by hybridisation to high density oligonucleotide arrays". A single array can contain more than 100, 500 or even 1,000 different probes in discrete locations.

[0023] Advantageously, the nucleic acid sequences, according to the invention may be produced using such recombinant or synthetic means, such as for example using PCR cloning mechanisms which generally involve making a pair of primers, which may be from approximately 10 to 50 nucleotides to a region of the gene which is desired to be cloned, bringing the primers into contact with mRNA, CDNA, or genomic DNA from a human cell, performing a polymerase chain reaction under conditions which bring about amplification of the desired region, isolating the amplified region or fragment and recovering the amplified DNA. Generally, such techniques as defined herein are well known in the art, such as described in Sambrook et al (Molecular Cloning: a Laboratory Manual, 1989).

[0024] The nucleic acids or oligonucleotides according to the invention may carry a revealing label. Suitable labels include radioisotopes such as ³²àP or ³⁹àS, enzyme labels or other protein labels such as biotin or fluorescent markers. Such labels may be added to the nucleic acids or oligonucleotides of the invention and may be detected using known techniquesper se.

[0025] The polypeptide or protein according to the invention includes all possible amino acid variants encoded by the nucleic acid molecule according to the invention including a polypeptide encoded by said molecule and having conservative amino acid changes. Polypeptides according to the invention further include variants of such sequences, including naturally occurring allelic variants which are substantially homologous to said polypeptides. In this context, substantial homology is regarded as a sequence which has at least 70%, preferably 80 or 90% amino acid homology with the polypeptides encoded by the nucleic acid molecules according to the invention.

[0026] A nucleic acid which is particularly advantageous is one comprising the sequences of nucleotides illustrated in Figures 1 which is specific to *Candida albicans* with no functionally related sequences in other prokaryotic or eukaryotic organism as yet identified from the respective genomic databases.

[0027] Nucleotide sequences according to the invention are particularly advantageous for selective therapeutic targets for treating *Candida albicans* associated infections. For example, an antisense nucleic acid capable of binding to the nucleic acid sequences according to the invention may be used to selectively inhibit expression of the corresponding polypeptides, leading to impaired growth of the *Candida albicans* with reductions of associated illnesses or diseases.

[0028] The nucleic acid molecule or the polypeptide according to the invention may be used as a medicament, or in the preparation of a medicament, for treating diseases or conditions associated with Candida albicans infection.

5

10

15

20

25

30

35

45

50

55

[0029] Advantageously, the nucleic acid molecule or the polypeptide according to the invention may be provided in a pharmaceutical composition together with a pharmaceutically acceptable carrier, diluent or excipient therefor.

[0030] Antibodies to the protein or polypeptide of the present invention may, advantageously, be prepared by techniques which are known in the art. For example, polyclonal antibodies may be prepared by inoculating a host animal, such as a mouse, with the polypeptide according to the invention or an epitope thereof and recovering immune serum. Monoclonal antibodies may be prepared according to known techniques such as described by Kohler R. and Milstein C., Nature (1975) 256, 495-497.

[0031] Antibodies according to the invention may also be used in a method of detecting for the presence of a polypeptide according to the invention, which method comprises reacting the antibody with a sample and identifying any protein bound to said antibody. A kit may also be provided for performing said method which comprises an antibody according to the invention and means for reacting the antibody with said sample.

[0032] Proteins which interact with the polypeptide of the invention may be identified by investigating protein-protein interactions using the two-hybrid vector system first proposed by Chien et al (1991).

[0033] This technique is based on functional reconstitution in vivo of a transcription factor which activates a reporter gene. More particularly the technique comprises providing an appropriate host cell with a DNA construct comprising a reporter gene under the control of a promoter regulated by a transcription factor having a DNA binding domain and an activating domain, expressing in the host cell a first hybrid DNA sequence encoding a first fusion of a fragment or all of a nucleic acid sequence according to the invention and either said DNA binding domain or said activating domain of the transcription factor, expressing in the host at least one second hybrid DNA sequence, such as a library or the like, encoding putative binding proteins to be investigated together with the DNA binding or activating domain of the transcription factor which is not incorporated in the first fusion; detecting any binding of the proteins to be investigated with a protein according to the invention by detecting for the presence of any reporter gene product in the host cell; optionally isolating second hybrid DNA sequences encoding the binding protein.

[0034] An example of such a technique utilises the GAL4 protein in yeast. GAL4 is a transcriptional activator of galactose metabolism in yeast and has a separate domain for binding to activators upstream of the galactose metabolising genes as well as a protein binding domain. Nucleotide vectors may be constructed, one of which comprises the nucleotide residues encoding the DNA binding domain of GAL4. These binding domain residues may be fused to a known protein encoding sequence, such as for example the nucleic acids according to the invention. The other vector comprises the residues encoding the protein binding domain of GAL4. These residues are fused to residues encoding a test protein. Any interaction between polypeptides encoded by the nucleic acid according to the invention and the protein to be tested leads to transcriptional activation of a reporter molecule in a GAL-4 transcription deficient yeast cell into which the vectors have been transformed. Preferably, a reporter molecule such as β -galactosidase is activated upon restoration of transcription of the yeast galactose metabolism genes.

[0035] Further provided by the present invention is one or more *Candida albicans* cells comprising an induced mutation in the DNA sequence encoding the polypeptide according to the invention.

[0036] A further aspect of the invention provides a method of identifying compounds which selectively inhibit or interfere with the expression, or the functionality of polypeptides expressed from the nucleotides sequences according to the invention or the metabolic pathways in which these polypeptides are involved and which are critical for growth and survival of *Candida albicans*, which method comprises (a) contacting a compound to be tested with one or more *Candida albicans* cells having a mutation in a nucleic acid molecule according to the invention which mutation results in overexpression or underexpression of said polypeptides in addition to one or more wild type *Candida cells*, (b) monitoring the growth and/or activity of said mutated cell compared to said wild type wherein differential growth or activity of said one or more mutated *Candida cells* provides an indication of selective action of said compound on said polypeptide or another polypeptide in the same or a parallel pathway.

[0037] Compounds identifiable or identified using the method according to the invention, may advantageously be used as a medicament, or in the preparation of a medicament to treat diseases or conditions associated with Candida albicans infection. These compounds may also advantageously be included in a pharmaceutical composition together with a pharmaceutically acceptable carrier, diluent or excipient therefor.

[0038] A further aspect of the invention provides a method of identifying DNA sequences from a cell or organism which DNA encodes polypeptides which are critical for growth or survival, which method comprises (a) preparing a cDNA or genomic library from said cell or organism in a suitable expression vector which vector is such that it can either integrate into the genome in said cell or that it permits transcription of antisense RNA from the nucleotide sequences in said cDNA or genomic library, (b) selecting transformants exhibiting impaired growth and determining the nucleotide sequence of the cDNA or genomic sequence from the library included in the vector from said transformant. Preferably, the cell or organism may be any yeast or filamentous fungi, such as, for example, Saccharomyces cervisiae, Saccharomyces pombe or Candida albicans.

[0039] A further aspect of the invention provides a pharmaceutical composition comprising a compound according

to the invention together with a pharmaceutically acceptable carrier, diluent or excipient therefor.

[0040] A further aspect of the invention comprises nucleic acid molecules encoding proteins which are critical for survival and growth of *Candida albicans*, which nucleic acid molecules comprise any of the sequences illustrated in Figures 5 to 29. Polypeptides which are critical for survival and growth of *Candida albicans* are also encompassed within the present invention, and which polypeptides comprise any of the amino acid sequences illustrated in Figures 29 to 39.

[0041] The present invention may be more clearly understood with reference to the accompanying example, which is purely exemplary, with reference to the accompanying drawings wherein:

Figure 1: is a diagrammatic representation of plasmid pGAL1PNiST-1.

Figure 2: is a nucleotide sequence of plasmid pGAL1PNiST-1 of Figure 1.
Figure 3: is a diagrammatic representation of plasmid pGAL1PSiST-1.

Figure 4: is a nucleotide sequence of plasmid pGAL1PSiST-1 of Figure 3.

Figures 5 to 28: illustrate the nucleotide sequences of oligonucleotides encoding polypeptides of previously

unknown function isolated from Candida albicans which are critical for its survival and

growth, according to the invention.

Figures 29 to 39: illustrate the amino acid sequences of polypeptides from Candida albicans which are

critical for its survival and growth, according to the invention.

Example 1

5

10

15

30

35

50

55

Identification of novel drug targets in C. albicans by anti-sense and disruptive integration

20 **[0042]** The principle of the approach is based on the fact that when a particular *C. albicans* mRNA is inhibited by producing the complementary anti-sense RNA, the corresponding protein will decrease. If this protein is critical for growth or survival, the cell producing the anti-sense RNA will grow more slowly or will die.

[0043] Since anti-sense inhibition occurs at mRNA level, the gene copy number is irrelevant, thus allowing applications of the strategy even in diploid organisms.

[0044] Anti-sense RNA is endogenously produced from an integrative or episomal plasmid with an inducible promoter, induction of the promoter leads to the production of a RNA encoded by the insert of the plasmid. This insert will differ from one plasmid to another in the library. The inserts will be derived from genomic DNA fragments or from cDNA to cover-to the extent possible- the entire genome.

[0045] The vector is a proprietary vector allowing integration by homologous recombination at either the homologous insert or promoter sequence in the *Candida* genome. After introducing plasmids from cDNA or genomic libraries into *C. albicans*, transformants are screened for impaired growth after promoter (& thus anti-sense) induction in the presence of lithium acetate. Lithium acetate prolongs the G1 phase and thus allows anti-sense to act during a prolonged period of time during the cell cycle. Transformants which show impaired growth in both induced and non-induced media, thus showing a growth defect due to integrative disruption, are selected as well.

[0046] Transformants showing impaired growth are supposed to contain plasmids which produce anti-sense RNA to mRNAs critical for growth or survival. Growth is monitored by measuring growth-curves over a period of time in a device (Bioscreen Analyzer, Labsystems) which allows simultaneous measurement of growth-curves of 200 transformants.

[0047] Subsequently plasmids can be recovered from the transformants and the sequence of their inserts determined, thus revealing which mRNA they inhibit. In order to be able to recover the genomic or cDNA insert which has integrated into the *Candida* genome, genomic DNA is isolated, cut with an enzyme which cuts only once into the library vector (and estimated approx. every 4096 bp in the genome) and religated. PCR with primers flanking the insert will yield (partial) genomic or cDNA inserts as PCR fragments which can directly be sequenced. This PCR analysis (on ligation reaction) will also show us how many integrations occurred. Alternatively the ligation reaction is transformed to E. coli and PCR analysis is performed on colonies or on plasmid DNA derived thereof.

[0048] This method is employed for a genome wide search for novel *C. albicans* genes which are important for growth or survival.

Materials & Methods

Construction of pGal1PNiST-1

[0049] The backbone of the pGAL1PNiST-1 vector (integrative anti-sense Sfil-Notl vector) is pGEM11Zf(+) (Promega Inc.). First, the CaMAL2EcoRI/Sail promoter fragment from pDBV50 (D.H. Brownet ai.) was ligated into EcoRI/Sail-opened pGEM11Zf(+) resulting in the intermediate construct pGEMMAL2P-1. Into the latter (MscI/CIP) the CaURA3 selection marker was cloned as a Eco47III/Xmnl fragment derived from pRM2. The resulting pGEMMAL2P-2 vector was Notl/HindIII opened in order to accept theNotl-stuffer-Sfil cassette from pPCK1NiSCYCT-1 (EagI/HindIII fragment): pMAL2PNiST-1. Finally, the plasmid pGAL1PNiST-1 was constructed by xchanging theSail/Eci136II MAL2 promoter in pMAL2PNiST-1 by theXhol/Smal GAL1 promoter fragment derived from pRM2GAL1P.

Constructi n of pGal1PSiST-1

[0050] The vector pGAL1PSiST-1 was created for cloning the small genomic DNA fragments (flanked by *Sfil* sites) behind the GAL1 promoter. The only difference with pGAL1PNiST-1 is that the hIFNβ (stuffer fragment) insert fragment in pGAL1PSiST-1 is flanked by two *Sfil* sites in stead of a *Sfil* and a *Notl* site as in pGAL1PNiST-1. To construct pGAL1PSiST-1 the *EcoRI-Hind*III fragment, containing hIFNβ flanked by a *Sfil* and a *Notl* site, of pMAL2pHiET-3 (unpublished) was exchanged by the *EcoRI-Hind*III fragment, containing hIFNβ flanked by two *Sfil* sites, from YCp50S-S (an *E. coli / S. cerevisiae* shuttle vector derived from the plasmid YCp50, which is deposited in the ATCC collection (number 37419; Thrash *et al.*, 1985); an *EcoRI-Hind*III fragment, containing the gene hIFNβ, which is flanked by two *Sfil* sites, was inserted in YCp50, creating YCp50S-S), resulting into plasmid pMAL2PSiST-1. The *mal2* promoter from pMAL2PSiST-1 (by a *Nael-Fspl* digest) was further replaced by the *gal*1 promoter from pGAL1PNiST-1 (via a *Xhol-Sall* digest), creating the vector pGAL1PSiST-1.

Candida albicans genomic library

5

10

- * Preparation of the genomic DNA fragments
- A Candida albicans genomic DNA library with small DNA fragments (400 to 1,000 bp) was prepared. 15 Genomic DNA of Candida albicans B2630 was isolated following a modified protocol of Blin and Stafford (1976). The quality of the isolated genomic DNA was checked by gel electrophoresis. Undigested DNA was located on the gel above the marker band of 26,282 bp. A little smear, caused by fragmentation of the DNA, was present. To obtain enrichment for genomic DNA fragments of the desired size, the genomic DNA was partially digested. Several restriction enzymes (Alul, Haelli and Rsal; all creating blunt ends) were tried out. The appropriate digest conditions have been determined by titration of the enzyme. Enrichment of small DNA fragments was obtained with 70 units of Alul on 10 µg of genomic DNA for 20 min. T4 DNA polymerase (Boehringer) and dNTPs (Boehringer) were added to polish the DNA ends. After extraction with phenolchloroform the digest was size-fractionated on an agarose gel. The genomic DNA fragments with a length of 500 to 1,250 bp were eluted from the gel by centrifugal filtration (Zhu et al., 1985). Sfil adaptors (5' GTTGGCCTTTT) or (5' AGGCCAAC) were attached to the DNA ends (blunt) to facilitate cloning of the fragments into the vector. Therefore, a 8-mer and 11-mer oligonucleotide (comprising the Sfil site) were kinated and annealed. After ligation of these adaptors to the DNA fragments a second size-fractionation 25 was performed on an agarose gel. The DNA fragments of 400 to 1150 bp were eluted from the gel by centrifugal
 - * Preparation of the pGAL1PSiST-1 vector fragment
- [0052] The small genomic DNA fragments were cloned after the GAL1 promoter in the vector pGAL1PSIST-1. Qiagen-purified pGAL1PSiST-1 plasmid DNA was digested with Sfil and the largest vector fragment eluted from the gel by centrifugal filtration (Zhu et al., 1985). Ligation with a control DNA fragment, flanked by Sfil sites, was performed as a control. The ligation mix was electroporated to MC1061 E. coli cells. Plasmid DNA of 24 clones was analyzed. In all cases the control fragment was inserted in the pGAL1PSiST-1 vector fragment.
 - * Upscaling

35

45

50

[0053] All genomic DNA fragments (450 ng) were ligated into the pGAL1PSiST-1 vector (20 ng). After electroporation at 2500V, 40µF circa 400,000 clones were obtained. These clones were pooled into three groups and stored as glycerol slants. Also Qiagen-purified DNA was prepared from these clones. A clone analysis showed an average insert length of 600 bp and a percentage of 91 for clones with an insert. The size of the library corresponds to 5 times the diploid genome. The genomic DNA inserts are sense or anti-sense orientated in the vector.

Candida albicans cDNA library

- [0054] Total RNA was extracted from Candida albicans B2630 grown on respectively minimal (SD) and rich (YPD) medium as described by Chirgwin et ai in Sambrook et ai. mRNA was prepared from total RNA using the Invitrogen Fast Track procedure.
 - [0055] First strand cDNA is synthesised with the Superscript Reverse Transcriptase (BRL) and with an oligo dT-Notl Primer adapter. After second strand synthesis, cDNA is polished with Klenow enzyme and purified over a Sephacryl S-400 spun column. Phosphorylated Sfil adapters are then ligated to the cDNA, followed by digestion with the Notl restriction enzyme. The Sfil/Notl cDNA is then purified and sized on a Biogel column A150M.
- [0056] First fraction contains approximately 38,720 clones by transformation, the second fraction only 1540 clones. Clone analysis:
 - Fr. I: 22/24 inserts, $16 \ge 1000$ bp, $4 \ge 2000$ bp, average size: 1500 bp.
- Fr. II: 9/12 inserts, 3 ≥ 1000 bp, average size: 960 bp cDNA was ligated in a *Notl/Sfi*l opened pGAL1PNiST-1 vector (anti-sense)

Candida transformation

[0057] The host strain used for transformation is a *C. albicans* ura3 mutant, CAI-4, which contains a deletion in orotidine-5'-phosphate decarboxylase and was obtained from William Fonzi, Georgetown University (Fonzi and Irwin). CAI-4 was transformed with the above described cDNA library or genomic library using the Pichia spheroplast module (Invitrogen). Resulting transformants were plated on minimal medium supplemented with glucose (SD, 0.67% or 1.34% Yeast Nitrogen base w/o amino acids + 2% glucose) plates and incubated for 2-3 days at 30°C.

Screening for mutants

5

10

20

25

30

35

50

[0058] Starter cultures were set up by inoculating each colony in 1 ml SD medium and incubating overnight at 30°C and 300 rpm. Cell densities were determined using a Coulter counter (Coulter Z1; Coulter electronics limited). 250.000 cells/ml were inoculated in 1 ml SD medium and cultures were incubated for 24 hours at 30°C and 300 rpm. Cultures were washed in minimal medium without glucose (S) and the pellet resuspended in 650 µl S medium. 8 µl of this culture is used for inoculating 400 µl cultures in a Honeywell-100 plate (Bioscreen analyzer; Labsystems). Each transformant was grown during three days in S medium containing LiAc; pH 6.0, with 2% glucose/2% maltose or 2% galactose/2% maltose respectively while shaking every 3 minutes for 20 seconds. Optical densities were measured every hour during three consecutive days and growth curves were generated (Bioscreen analyzer; Labsystems).

[0059] Growth curves of transformants grown in respectively anti-sense non-inducing (glucose/maltose) and inducing (galactose/maltose) medium are compared and those transformants showing impaired growth upon anti-sense induction are selected for further analysis. Transformants showing impaired growth by virtue of integration into a critical gene are also selected.

Isolation of genomic or cDNA inserts

[0060] Putatively interesting transformants are grown in 1.5 ml SD overnight and genomic DNA is isolated using the Nucleon Ml Yeast kit (Clontech). Concentration of genomic DNA is estimated by analyzing a sample on an agarose gel.

[0061] 20 ng of genomic DNA is digested for three hours with an enzyme that cuts uniquely in the library vector (Sacl for the genomic library; Pstl for the cDNA library) and treated with RNAse. Samples are phenol/chloroform extracted and precipitated using NaOAc/ethanol.

[0062] The resulting pellet is resuspended in 500 µl ligation mixture (1 x ligation buffer and 4 units of T4 DNA ligase; both from Boehringer) and incubated overnight at 16°C.

[0063] After denaturation (20 min 65°C), purification (phenol/chloroform extraction) and precipitation (NaOAc/ethanol) the pellet is resuspended in 10 µl MilliQ (Millipore) water.

PCR analysis

[0064] Inverse PCR is performed on 1 μl of the precipitated ligation reaction using library vector specific primers (oligo23 5' TGC-AGC-TCG-ACC-TCG-ACT-G 3' and oligo25 5' GCG-TGA-ATG-TAA-GCG-TGA-C 3' for the genomic library; 3pGALNistPCR primer: 5'TGAGCAGCTCGCCGTCGCGC 3' and 5pGALNistPCR primer: 5'GAGTTATACCCTGCAGCTCGAC 3' for the cDNA library; both from Eurogentec) for 30 cycles each consisting of (a) 1 min at 95 °C, (b) 1 min at 57 °C, and (c) 3 min at 72 °C. In the reaction mixture 2.5 units of Taq polymerase (Boehringer) with TaqStart antibody (Clontech) (1:1) were used, and the final concentrations were 0.2 μM of each primer, 3 mM MgCl2 (Perkin Elmer Cetus) and 200 μM dNTPs (Perkin Elmer Cetus). PCR was performed in a Robocycler (Stratagene).

Sequence determination

[0065] Resulting PCR products were purified using PCR purification kit (Qiagen) and were quantified by comparison of band intensity on EtBr stained agarose gel with the intensity of DNA marker bands. The amount of PCR product (expressed in ng) used in the sequencing reaction is calculated as the length of the PCR product in basepairs divided by 10. Sequencing reactions were performed using the ABI Prism BigDye Terminator Cycle Sequencing Ready Reaction Kit according to the instructions of the manufacturer (PE Applied Biosystems, Foster City, CA) except for the following modifications.

[0066] The total reaction volume was reduced to 15 µl. Reaction volume of individual reagents were changed accordingly. 6.0 µl Terminator Ready Reaction Mix was replaced by a mixture of 3.0 µl Terminator Ready Reaction Mix + 3.0 µl Half Term (GENPAK Limited, Brighton, UK). After cycle sequencing, reaction mixtures were purified over Sephadex G50 columns prepared on Multiscreen HV opaque microtiter plates (Millipore, Molsheim, Fr) and were dried in a speedVac. Reaction products were resuspended in 3 µl loading buffer. Following denaturation for 2 min at 95°C, 1 µl of sample was applied on a 5% Long Ranger Gel (36 cm well-to-read) prepared from Singel Packs according to the supplier's instructions (FMC BioProducts, Rockland, ME). Samples were run for 7 hours 2X run on a ABI 377XL DNA sequencer. Data collection version 2.0 and Sequence analysis version 3.0 (for basecalling) software packages are from PE Applied Biosystems. Resulting sequence text files were copied onto a server for further analysis.

Sequenc analysis

[0067] Nucleotide sequences were imported in the VectorNTI software package (InforMax Inc, North Bethesda, MD, USA), and the vector and insert regions of the sequences were identified. Sequence similarity searches against public and commercial sequence databases were performed with the BLAST software package (Altschul et al., 1990) version 1.4. Both the original nucleotide sequence and the six-frame conceptual translations of the insert region were used as query sequences. The used public databases were the EMBL nucleotide sequence database (Stoesser et al., 1998), the SWISS-PROT protein sequence database and its supplement TrEMBL (Bairoch and Apweiler, 1998), and the ALCES Candida albicans sequence database (Stanford University, University of Minnesota). The commercial sequence databases used were the LifeSeq® human and PathoSeq™ microbial genomic databases (Incyte Pharmaceuticals Inc., Palo Alto, CA, USA), and the GENESEQ patent sequence database (Derwent, London, UK). Three major results were obtained on the basis of the sequence similarity searches: function, novelty, and specificity. A putative function was deduced on the basis of the similarity with sequences with a known function, the novelty was based on the absence or presence of the sequences in public databases, and the specificity was based on the similarity with vertebrate homologues.

Methods

5

10

15

20

25

30

35

40

45

50

[0068] Blastx of the nucleic acid sequences against the appropriate protein databases: Swiss-Prot for clones of which the complete sequence is present in the public domain, and paorfp (PathoSeq™)for clones of which the complete sequences is not present in the public domain.

[0069] The protein to which the translated nucleic acid sequence corresponds to is used as a starting point. The differences between this protein and our translated nucleic acid sequences are marked with a double line and annotated above the protein sequence. The following symbols are used: a one-letter amino acid code or the ambiguity

code X is used if our translated nucleic acid sequence has another amino acid on a certain position,

the stop codon sign *is used if our translated nucleic acid sequence has a stop codon on a certain position,

The letters fs (frame shift) are used if a frame shift occurs in our translated nucleic acid sequence, and another reading frame is used,

the words ambiguity or ambiguities are used if a part of our translated nucleic acid sequence is present in the proteins, but not visible in the alignments of the blast results,

The phrase missing sequence is used if the translated nucleic acid sequence does not comprise that part of the protein.

Blastx: compares the six-frame conceptual translation products of a nucleotide query sequence (both strands) against a protein sequence database.

Screening for compounds modulating expression of polypeptides critical for growth and survival of C. albicans

[0070] The method proposed is based on observations (Sandbaken et al., 1990; Hinnebusch and Liebman 1991; Ribogene PCT WO 95/11969, 1995) suggesting that underexpression or overexpression of any component of a process (e.g. translation) could lead to altered sensitivity to an inhibitor of a relevant step in that process. Such an inhibitor should be more potent against a cell limited by a deficiency in the macromolecule catalyzing that step and/or less potent against a cell containing an excess of that macromolecule, as compared to the wild type (WT) cell.

[0071] Mutant yeast strains, for example, have shown that some steps of translation are sensitive to the stoichiometry of macromolecules involved. (Sandbakenet al.) Such strains are more sensitive to compounds which specifically perturb translation (by acting on a component that participates in translation) but are equally sensitive to compounds with other mechanisms of action.

[0072] This method thus not only provides a means to identify whether a test compound perturbs a certain process but also an indication of the site at which it exerts its effect. The component which is present in altered form or amount in a cell whose growth is affected by a test compound is potentially the site of action of the test compound.

[0073] The assay to be set up involves measurement of growth of an isogenic strain which has been modified only in a certain specific allele, relative to a wild type (WT) *C. albicans* strain, in the presence of R-compounds. Strains can be ones in which the expression of a specific essential protein is impaired upon induction of anti-sense or strains which carry disruptions in an essential gene. An in silico approach to finding novel essential genes in *C. albicans* will be performed. A number of essential genes identified in this way will be disrupted (in one allele) and the resulting strains can be used for comparative growth screening.

Assay for High Thr ughput scr ening f r drugs

[0074] 35 µl minimal medium (S medium + 2% galactose + 2% maltose) is transferred in a transparent flat-

bottomed 96 well plate using an automated pipetting system (Multidrop, Labsystems). A 96-channel pipettor (Hydra, Robbins Scientific) transfers 2.5 µl of R-compound at 10⁻³à M in DMSO from a stock plate into the assay plate.

[0075] The selected *C. albicans* strains (mutant and parent (CAI-4) strain) are stored as glycerol stocks (15%) at -70_oC. The strains are streaked out on selective plates (SD medium) and incubated for two days at 30_oC. For the parent strain, CAI-4, the medium is always supplemented with 20 μg/ml uridine. A single colony is scooped up and resuspended in 1 ml minimal medium (S medium + 2% galactose + 2% maltose). Cells are incubated at 30_oC for 8 hours while shaking at 250 rpm. A 10 ml culture is inoculated at 250.000 cells/ml. Cultures are incubated at 30_oC for 24 hours while shaking at 250 rpm. Cells are counted in Coulter counter and the final culture (S medium + 2% galactose + 2% maltose) is inoculated at 20.000 to 50.000 cells/ml. Cultures are grown at 30_oC while shaking at 250 rpm until a final OD of 0.24 (+/- 0.04) 6nM is reached.

10 [0076] 200 μl of this yeast suspension is added to all wells of MW96 plates containing R-compounds in a 450 μl total volume. MW96 plates are incubated (static) at 30_oC for 48 hours.

[0077] Optical densities are measured after 48 hours.

[0078] Test growth is expressed as a percentage of positive control growth for both mutant (x) and wild type (y) strains. The ratio (x/y) of these derived variables is calculated.

15 References

5

20

30

35

[0079]

Thrash C., Bankier A. T., Barrell B. G. and Sternglanz R. (1985) Proc. Natl. Acad. Sci. USA 82: 4374-4378.

Blin N. and Stafford D. W. (1976) Nucleic Acids Res.3: 2303-2308.

Zhu J., Kempenaers W., Van Der Straeten D., Contreras R., and Fiers W. (1985) Bio/Technology 3: 1014-1016.

Sambrook J., Fritsch E.F. and Maniatis T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

Fonzi W. and Irwin H. (1993) *Genetics* **134**:717-728. Altschul S.F, Gish W., Miller W., Myers E.W., Lipman D.J. (1990) *J. Mol. Biol.* **215**(3):403-410.

Bairoch A. and Apweiler R. (1998) Nucleic Acids Res.26(1):38-42:

Stoesser G., Moseley M.A., Sleep J., McGowran M., Garcia-Pastor M., Sterk P. (1998) Nucleic Acids Res.26(1):8-15

Chien et al., (1991) Proc. Natl. Acad. Sci USA 88, 9578-9582.

Sandbaken M.G. Lupisella J.A., DiDomenico B. and Chakraburtty K., J. Biol. Chem. 265:15838-15844, 1990.

Hinnebusch A.G. and Liebman S.W., in : The Molecular Biology of the Yeast *Saccharomyces*, Broach J.R., Pringle J.R. and Jones E.W., eds., CSH Laboratory Press; NY 1991.

Patent application RiboGene Inc., PCT WO 95./11969, 1995.

Brown, D.H. et al., Molecular General Genetics 251 (1) 75-80, 1996.

55

50

SEQUENCE LISTING

	(I) GERBAR INTONSTITUTE	
5	(i) APPLICANT: (A) NAME: Janssen Pharmaceutica (B) STREET: Turnhoutseweg 30 (C) CITY: Beerse (E) COUNTRY: Belgium (F) POSTAL CODE (ZTP): B-2340 (G) TELEPHONE: +32 (0)14/60.21.11 (H) TELEFAX: +32 (0) 14/60.28.41	
10	(ii) TITLE OF INVENTION: DRUG TARGETS IN CANDIDA ALBICANS	
	(iii) NUMBER OF SEQUENCES: 72	
15	(iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: Patentin Release \$1.0, Version \$1.30 (EPO) (vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: GB 9817796.7 (B) FILING DATE: 14-AUG-1998	
	(B) FILING DALE: 14-A00-1770	
20	(2) INFORMATION FOR SEQ ID NO: 1:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LEMGTH: 255 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
25	(iii) HYPOTHETICAL: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
30	AACGTTCGTG CAAAAGGCTA TACTGGTGAT ATCCACGCAG ATGAAGAGCA AGTTTAATCA	60
	ACTETTIGIC AATTAATGCT GTACTIGITT TCATTTTATT TGCTGGCATT TAAAGAATAC	120
	CCATAGTICA GAAAATAAAA TIGAAAAATT TAAAAAAAAA CGCAATATCA TICATTITIT	180
	TIGITITITI GACAATAATA TIAATATGTA GITACCAATG TITITAGATT TIATATGTTT	240
35	TGAAAAAATA GTTTG	259
	(2) INFORMATION FOR SEQ ID NO: 2:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 648 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
50		

	AACCTCTTAT TCGGTTCTAG TGTCTCAATT GGTTATCCAT TAACATCTAT TCCCAACTCC	•
	ATCATTATTG GCAATAAATA AATGGGTGTT ATATCTATTG GTAATAACTA AACTGGTGTC	120
5	ARTICARTIC CARTATGGTC ATGACARTIG ARAGIGITAC IGITCIGGIT TACATATICI	180
3	ACAGGITACA ACIAITGAIT GGITAGAAGI TIGGITTCAA CATCACCIGI IGCIAAGAAI	240
	ARATGTTGGT CATATCAATT GAATCATTTG TTGGTGTTAT GGTAAGTAAA TGCTGGTTAT	300
	ATCTATTATC TACAACCACC AAGTGATAAA TGCTGAACCG TAGTCACCAA CTGTTATGCT	360
10	GGTTGTATCT ATTGACTANA ACTACCCTAG GGATANATGC TGANCCGTGG TTACCANCTG	420
	TTATGCTGGT TGTATCTATT AACTGCAACC ACCAAATGAT AAATGCTGAA CCATAATTAC	480
	CARCTGTTAC ATTGCTGGTA CTACATTANG ANTANATGCT GCATCTACAN GTACCACCTG	540
15	TIGIGITARI ARRIGCIGCA CCIGCIAGIA CRACIGITGC IGGICATGRI AGITACIACA	600
	CATTACACAC CAGACAGTGG CAAACAAGGT TATGTAGAAA CCAACGTT	648
	(2) INFORMATION FOR SEQ ID NO: 3:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 904 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
25	(iii) HYPOTHETICAL: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: ARCTGICCTG TGAAGACGAA CATCACAACC ACAATCATGG TCATAACCAA AATCACAATC	60
30	ATGTTGCTCC TATTCCTACA ACAGCTGGAC AATCATTAAA TAATAAAATT GATACATCTA	120
	AAGTGACAGC TCTCAACATG GCCAACTCTG CTGACGATCT AGCAAAAGTT TTCAAAGATT	180
	CGACTARAR ATATCARATC RARCCARTTA TCARATCAGA CAGTGATGAA CARATGATTA	240
35	TCAACATTCC ATTICTTAAT GGTAGTGTCA AATTGTATTC GATAATTCTA CGTACCAATG	300
	GGGATTTGTA TTGTCCCAAA ACAATAAAAT TATTCAAAAA TGACACATCA ATTGATTTTG	360
•	ATAATGTGGA TICGAAGAAA CCAATACAGG TGTTAACTCA TCCTCAAGTT GGTGTTGCTA	420
40	ATAATGATAG CGATGATCTT CCAGAGTTTT TGGAATCAAA TAACGATGAC GATTTTGTCG	480
40	ARCATTATGT GTCTCGACAT AAATTCACTG GGGTAAATCA ATTGACAATA TTTATTGAAG	540
	ATATTATGA TGAAGGAGAA GAAGAGTGTC ATTTACATTC AATTGAATTG	600
	TCACTGARTT AAACAAAGAC CCTGTCATTA CATTATATGA ACTGGCTGCT AATCCTGCTG	660
45	ATCATAAGAA TITAACGATT GTTGAAAATC AAAATCTAGC ATAAAACAAA GAAGTGAAAG	720
	GTATCAGATA AGCTGGTTAC ATTACAATTG ATCTAATTTA GAATCTCAAG GTATTTAAAT	780
	TTGCCGTTTT GCGATAATAT AACATGGTCA AGAACGTTGA ATCGATTACG TTAATGGTTT	840
50	AGCTAATTGA TTTTTAGGAT CGAGTATTTA GAGTGAATAA ACAATAAACA AGAATGATGA	900
	ATTG	904

 $(x_1,\dots,x_n)\in \mathbb{R}^n$

	(Z) INFOR	CIVI)	.014	· OR .	, Ly											
5	(i)	(B)	Len Tyl Sti	igth: Pe: : Vandi	232 min DNE	2 am	ino a id		3							
	(ii)	MOLE	CUL	TYI	?E: 1	pept	ide									
	(iii)	HYPO	THE	ricai	L: N)										
10																
	(xi)													•		
	Ser 1	Cys	Glu	Asp	Glu 5	His	His	Asn ·	His	Asn 10	His	Gly	His	Asn	Gln 15	Asr
15	His	Asn	His	Val 20	Ala	Pro	Ile	Pro	Thr 25	Thr	Ala	Gly	Gln	Ser 30	Leu	ne,
	Asn	Lys	11e 35	Asp	Thr	Ser	Lys	Val 40	Thr	Ala	Leu	Asn	Met 45	Ala	Asn	Ser
20	Ala	Asp 50	Asp	Leu	Ala	Lys	Val 55	Phe	Lys	Asp	Ser	Thr 60	Lys	Lys	Tyr	Glr
	65					70					15				Ile	80
25	Ile	Pro	Phe	Leu	As n 85	Gly	Ser	Val	Lys	Leu 90	Tyr	Ser	Ile	Ile	Leu 95	Arg
	Thr	Asn	Gly	Asp 100	Leu	Tyr	Cys	Pro	Lys 105	Thr	Ile	Lys	Leu	Phe 110	Lys	Asn
30			115					120					125		Ile	
		130					135					140		•	Asp	
	145					150					155				Glu	100
35					165					170					11e 175	
	Ile	Glu	Asp	11e 180	Tyr	Asp	Glu	Gly	185	GIU	GIU	Cys	nis	190	His	
40			195					200					205		Val	
		210					215		Pro	Ala	Asp	His 220	Lys	Asn	Leu	Thr
45	225	Val				230										
	(2) INFO															
50	(i)	(B)	LEN TYI STI	ngth: Pe: 1 Randi	: 60: nucl: ZDNE:	reni: 8 ba: eic : SS: :	se pa acid sing:	airs	•							
	(ii)	MOLE	CUL	E TY	PE: (CDNA					٠					

(iii) HYPOTHETICAL: NO

5	(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
	AACCTACAAA AGACTCACAT GTGCTGTACA ATAAATTTCT GGATAAGCAT ATAAGTGATG	6
	AGCAACTATC ACACTTACTC GACAATCATA AACCCAATCT AGTGACTACC ACAACTTTAA	120
10	TIGATICIAT CARAGRARGI GRACIGITAI RIBATACCAI GGACAGITIG RIGATARRAI	180
70	CCATCAATTT TCCTGCAGCC ATGTACCAGT CAAATGACAA CAATTCACAA TCACCAATCG	240
	AGTATITATO TAACAGAGTA AAATTGCTCA CACAAGAGTT ATACGAAGAT TCAGTCAAAT	300
	ATGGCAAGTT TCTACAGAGT GGTAATAATC ATATATATCA ATTACGAAGT AGGATTTTAC	360
15	AGACCITIGA TCAGTTGTCA GAGAGTCACT ATTCTTTAAA TGAACTATAT AATAAAGACA	420
	TGTCTTACGC AGAAACATTA CACGGATCTT TCAAGAAATG GGATCAACAA AGAAATAAAG	486
	TATTGTCCAA AGTGAAATCT ATAAAAAGTG ATACAAGCAA ACATGGAGCC AAATTATTCA	540
20	CCTTATTAGA TGAAGTTAAT GATGTTGATG ACGAGATCAA ACTTTTGGAA GCAAAACTAC	600
24	AGCAGGTT	608
	(2) INFORMATION FOR SEQ ID NO: 6:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1497 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
30	(iii) HYPOTHETICAL: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
35	GATATCTGCA GAATTCGGCT TCTCTCTCAT CTTCACACAA TGCATTTTAC AAGTAGCCTA	60
	CTAGCCACCT TGATATGGTT TACATTACCG GTTCAAAGTT TGAATACTGA ATCTAGGACA	120
	ACTICAAATA ACACAATATC AATACTTACA AACCATTITC AAATACTAAA GGATTIGCTA	180
	CCATATAGCA AAACTTCTAA ACCGCAAATC AAGGAATCCA GACCGTTGAT TAAAGTTCTG	240
40	AGAGATGGAG TGCCAATAAA TTTCCACAGG GCTCCGGCTA TAATAATGAA ATCGAACAAA	300
	ACAGACGATT TAGTCAGGAA TAGCAATAAA ACAATGGTGC TAACTGAAAT AAAAACGATT	360
	ACTGAATTTG CAACTACCAC TGTTTCCCCT ACACAAGAAT TTCAAGCACT ACAGATAAAC	420
45	CTTAACACGT TATCAATAGA GACTTCAACA CCAACATTCC AATCCCATGA CTTTCCACCG	480
	ATTACCATTG AAGACACACC CAAAACACTA GAACCAGAAG AATCGTCAGA TGCTTTGCAG	540
	AGGGATGCAT TTGATCAAAT TAAGAAACTA GAAAAATTGG TATTGGATTT GAGACTTGAA	600
	ATGARAGAGC AACAARAGAG TITCARCGAT CARTTAGTGG ATATATATAC CGCAAGAAGT	660
50	ATTGTTCCAA TTTATACTAC ACATATCGTC ACTTCGGCGA TTCCATCGTA TGTACCAAAA	720
	GAAGAAGTAA TGGTTTCACA TGATACTGCA CCAATTGTAA GTCGTCCTAG AACAGATATT	780
	GAAGAAGTAA TGGTTTCACA TGATACTGCA CCAATTGTAA GTGGTCCTAG	

	CCAGTATCTC AACGAATTGA TACTATCTCA AAACATAAAA TGAATGGAAA AAATATATTG 840
	AACAACAATC CTCCGCCCAA TTCAGTTTTA ATAGTTCCTC AGTTTCAGTT CCATGAAAGA 900
	ATGGCCACCA ANACCGAAGT AGCTTATATG ANACCANANA TTGTCTGGAC CAACTTTCCA 960
5	ACCACTACTG CAACGTCAAT GTTTGACAAT TTTATTTTAA AAAATCTTGT TGACGAAACG 1020
	GATTCTGAAA TTGATAGTGG TGAAACTGAA TTGTCTGACG ATTATTATTA CTATTATAGT 1080
	TACGAAGATG ATGGTAAAGA AGACGATAGT GATGAGATTA CGGCTCAAAT ACTATTATCC 1140
10	AATTCAGAAT TAGGCACGAA GACGCCAAAT TTTGAGGATC CTTTTGAACA AATCAATATT 1200
	GAAGACAATA AAGTAATATC TGTTAATACA CCAAAGACAA AGAAACCTAC TACAACAGTA 1260
	TTTGGCACTT CTACTAGTGC ATTATCAACT TTTGAAAGTA CAATATTTGA AATTCCCAAA 1320
	TTCTTTTATG GTAGCAGAAG AAAACAACTG AGCTCATTCA AAAATAAGAA CAGTACAATC 1380
15	ARATTIGATG IGITIGATIG GATATTIGAA AGIGGTACTA CCAATGAGAA AGIACATGGA 1440
•	TTAGTGTTGG TGTCTAGTGG TGTTCTACTA GGAACTTGTC TATTGTTCAT TTTGTAG 1497
	(2) INFORMATION FOR SEQ ID NO: 7:
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 485 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown
	(ii) MOLECULE TYPE: peptide
25	(iii) HYPOTHETICAL: NO
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7: Met His Phe Thr Ser Ser Leu Leu Ala Thr Leu Ile Trp Phe Thr Leu 1 10 15 Pro Val Gln Ser Leu Asn Thr Glu Ser Arg Thr Thr Ser Asn Asn Thr
	20 25 30
35	Ile Ser Ile Leu Thr Asn His Phe Gln Ile Leu Lys Asp Leu Leu Pro 35 40 45
	Tyr Ser Lys Thr Ser Lys Pro Gln Ile Lys Glu Ser Arg Pro Leu Ile 50 55 60
	Lys Val Ser Arg Asp Gly Val Pro Ile Asn Phe His Arg Ala Pro Ala
40	65 70 75 80
40	Ile Ile Met Lys Ser Asn Lys Thr Asp Asp Leu Val Arg Asn Ser Asn 85 90 95
40 .	Ile Ile Met Lys Ser Asn Lys Thr Asp Asp Leu Val Arg Asn Ser Asn
40 .	Ile Ile Met Lys Ser Asn Lys Thr Asp Asp Leu Val Arg Asn Ser Asn 90 95 Lys Thr Met Val Leu Thr Glu Ile Lys Thr Ile Thr Glu Phe Ala Thr
,	Ile Ile Met Lys Ser Asn Lys Thr Asp Asp Leu Val Arg Asn Ser Asn 95 Lys Thr Met Val Leu Thr Glu Ile Lys Thr Ile Thr Glu Phe Ala Thr 100 Thr Thr Val Ser Pro Thr Gln Glu Phe Gln Ala Leu Gln Ile Asn Leu
,	Ile Ile Met Lys Ser Asn Lys Thr Asp Asp Leu Val Arg Asn Ser Asn 95 Lys Thr Met Val Leu Thr Glu Ile Lys Thr Ile Thr Glu Phe Ala Thr 100 Thr Thr Val Ser Pro Thr Gln Glu Phe Gln Ala Leu Gln Ile Asn Leu 115 Asn Thr Leu Ser Ile Glu Thr Ser Thr Pro Thr Phe Gln Ser His Asp

					165					170					175	
	Leu	Glu	Lys	Leu 180	Val	Leu	Asp	Leu	Arg 185	Leu	Glu	Met	Lys	Glu 190	Gln	Gln
5	Lys	Ser	Phe 195	Asn	Asp	Gln	Leu	Val 200	Asp	Ile	Tyr	Thr	Ala 205	Arg	Ser	Ile
	Val	Pro 210	Ile	Tyr	Thr	Thr	His 215	Ile	Val	Thr	Ser	Ala 220	Ile	Pro	Ser	Tyr
10	Val 225	Pro	Lys	Glu	Glu	Val 230	Met	Val	Ser	His	Asp 235	Thr	Ala	Pro	Ile	Val 240
	Ser	Arg	Pro	Arg	Thr 245	Asp	Ile	Pro	Val	Ser 250	Gln	Arg	Ile	Asp	Thr 255	Ile
15	Ser	Lys	His	Lys 260	Met	Asn	Gly	Lys	Asn 265	Ile	Leu	Asn	Asn	Asn 270	Pro	Pro
15	Pro	Asn	Ser 275	Val	Leu	Ile	Val	Pro 280	Gln	Phe	Gln	Phe	His 285	Glu	Arg	Met
	Ala	Thr 290	Lys	Thr	Glu	Val	Ala 295	Tyr	Met	Lys	Pro	Lys 300	Ile	Val	Trp	Thr
20	Asn 305	Phe	Pro	Thr	Thr	Thr 310	Ala	Thr	Ser	Met	Phe 315	Asp	Asn	Phe	Ile	Leu 320
					325	Glu				330					333	
25				340		Tyr			345					330		
			355			Asp		360					363			
30		370				Lys	375					300				
	385					Asn 390					393					100
					405	Thr				410					713	
35				420		Ile			425					430		
	-		435			Ser		440					443			
40		450				Trp	455					460				
	Val 465	His	Gly	Leu	Val	Leu 470	Val	Ser	Ser	Gly	Val 475	Leu	Leu	Gly	Thr	480
45	Leu	Leu	Phe	Ile	Leu 485											
	(2) INFO	RMAT	ION I	FOR :	SEQ	ID N	0: 8	:								
50	(i)	(A) (B) (C)) LEI) TY:) ST!	ngth Pe: : Rand!	: 16 nucl EDNE	TERI 51 b eic ss: line	ase ; acid sing	pair	5							
	(ii)	MOL	ECUL	E TY	PE:	cDNA										

(iii) HYPOTHETICAL: NO

5	(xi) SEQUENCE DESCRIPTION: SEQ 1D NO: 6:	
	GAGCTCTTCC AGAGGCAACA AGCGGAAGAA GCACAACGAA AGAAGGAATT TGAACAAAAG	60
	GCCGAATTCA TCAAAGCATC ATTACTTGAA ATGCGCCGAA GAGAAATAGA GAGGCGGAAA	120
	CAGCARAGG ARAGGGAACA ARGACARAAG GAGCACGAAG CARAGAGGGA TATCAGGATA	180
10	CARCARCTIT CAGAGCAGGA TICACGGAGT ANTCARACTA AAGAAGAAGA GGAAGTGTIC	240
	AAGAAGGCCC GGTCTACTAA TTCGGGAGCA GACGAGACTG GTTTGATGTC AGATAAAGAG	300
	TTTGATGATT CTGCATATTC ACCCGATTAT TTGTTTGAAG AGAATTTGTG GAATAAACCA	360
15	AATCATCCAG ATACAAATCA TAAAACCAAA AAATATACTG AGAATGTGGT TGAARATCTA	420
	GATTCTCCAC CARATGATAC ATCTGCGTAC AATTCAAGTT TTCATGATGA AACTAATATT	480
	CAAAATGAGA TCCAAATACC AGAAAATGAC GAGTATGTAC CACAGATGAA AGCTACATCC	540
	AGTGTCAATA ATACCACCAT CCCTGCACAA AGAAGACATG AGTCACTTTC CACTTCTGAA	600
20	AACAAAAGAA GGAAATTTGA AACAGCCGAC GTTGGGGTTG ATGGGTTAGA TTCCCCAGTG	660
	CGGGCACAAC CAGAAATATC TGGAAAATCC AAGTCTCCGA TAATCCCTGA TGTAATACTT	720
	TTACTGGACG AAGAGACTGA AACTCCTGAA GCAAATGCTG TGCAGGACAA TAGTACATAT	780
25	ATTCCTCAGG GGTCTTTAGG ACACGAATTT AGAAATATTT TGGAAGAGCA TCCACGTCAA	840
	GTAAAGAATA AACAAAATTC TGGTGTTGCT TTTGCATTTC CGAATGCTTC CAAGAATACC	900
	GAAAACAAAC TCCACTCTAA TTTCAAAGAT AAAGATGAAG GAATAATTGA TGTTGAAGCT	960
	TACGTACCTG ATGTCAAAGC AGCAACTTCA AACACCACCC CAGCAACAGG ACAAACATCA	1020
30	GCAAGGTCGG AAAAACTGCC ACCCTTACCT ACTCATATTC CAAATCCATC GACCATGAAT	1080
	GAAGCTCGAC CTCATCCAAC AACTCCACAT AAAAGATCAA AAGTCATTTT CGATTTAAAA	1140
	GATTTAGAAC AAAAGTTAGG TAATGATATT GAGGATTTGG ATTTTAAGGA TATGTATG	1200
35	AGTTTGCCTG ACCATTCAAG TAAGGCAACA CCTAAAGACG ATATTTTAAC CCGTTCTAAA	1260
	AGAAGACTTT ATACATATAC CGATGGAACA TCAAAGGCTG AAACGTTATC TACACCAATG	1320
	AACAAAAATC CTGTTCGTGG ACATAGTACC AAGAAAAAGC TTAGTATGTT GGACATGCAT	1380
	GCGTCTTCTA AAATTCAAAG TCTTTTACCT CCACAACCGC CACAAATGTC AATTGATCCT	1440
40	TCTGTTTCCA AGCAAGTGTG GGCTAAATAC GTTGATGCAA TCTTGACTTA TCAAAGAGAA	1500
	TTTTTCAATT ATAAAAAAGT GATTGTTCAA TACCAAATGG AACGGATAAA CAAAGACCTT	1560
	GAACATTTTG ACGATATAAA TGATGGTTCA CACACTGAGA ATTTGGATAC TTTCAAGCAT	1620
45	TGTTTAGAAC AAGATTATTT GGTTAGTTGA C	165
	(2) INFORMATION FOR SEQ ID NO: 9:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 463 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

55

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
	AACCTGTTGA CGCGTTGTCT TTTTCTACCC CACGTTTAAC AATCTTGCCA GTCAATTCAC	60
	TAGCCARATA AACTTTAGAC TCACAACTCT AACACTGACT CGCCCCCCC TGTTTAAACT	120
	CTARATTACT TCACAGAGCC TTTACTACCT TAATTTAAGA TTATCTATTG TTTCTGTTCT	180
10	TITGCAATCA CCCTGACTCG TITTTTTTTC AGCCAGTTTT TICGTAAAAT CTGACCAAAA	240
	ATTTACAACT CTAATTTAAA ACTCTAAATA ACAATTAAAA CTCAATTCAG ACAAGTCCTT	300
	CTGCTCATTC TGACTCTTCT CTATTGTCTT TTGACTTTTT GTGTGTGACT ATTTTCATGA	360
15	TCACCCCGTT TCTTGCATTT TTTTCAGTCA ACTTTTTCTC AAAATCAAGC CAAAAAAACA	420
	CATTTAACTG CCTATACAAC GCAAACCTAT TCAAAACAAG GTT	463
	(2) INFORMATION FOR SEQ ID NO: 10:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 582 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: CDNA	
25	(iii) HYPOTHETICAL: NO	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10: AACCTCCCCG TTAACCACTT CTAGGTATAC CATTTCATCT GACTGAATAA CTGGTTAGTC	60 120
	GATTTGTTGT TGAAGAAAAG TGACCACCTA GTTTTTTCTG CCAACATTTT TTGCGATGAG	180
	CCGTCGACGC GTTGTCTTTT TCTACCCCAC GTTTAACAAT CTTGCCAGTC AATTCCCTAG	240
35	CCAAATAAAC TTTAGACTCA CAACTCTAAC ACTGACTCGT GCCCCCCTGT TTAAACTCTA	300
	AATTACTICA CAGAGCCTTT ACTACCTTAA TITAAGATTA TCTATTGTTT CTGTTTTTTT	360
	GCAATCACCC TGACTCGTTT TTTTTTCAGC CAGTTTTTTC GTAAAATCTG ACCAAAAATT	420
40	TACAACTCTA ATTTAAAACT CTAAATAACA ATTAAAACTC AATTCAGACA AGTCCTTCTG	480
40	CTCATTCTGA GTCTTCTCTA TTGTCTTTTG ACTTTTTGTG TGTGACTATT TTCATGATCA	540
	CCCCGTTTCT TGCATTTTTT TCAGTCAACT TTTTCTCAAA ATCAAGCCAA AAAAACACAC	582
	CTTTAACTAC CTATACAACG CAAACCTATT CAAAACAAGG TT	302
45	(2) INFORMATION FOR SEQ ID NO: 11:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1066 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	

-17-

	(ix) FEATURE:	
	(A) NAME/KEY: misc_feature (B) LOCATION:183	
	(D) OTHER INFORMATION:/note= "W = A or T"	
5	(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION:564	
	(D) OTHER INFORMATION:/note= "Y = C or T"	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
	AACCATAAAT ATGCCAAGAT TTAAACAAGT TGATGTATTC ACCAATGTCA AATATTTGGG	60
	TARTCCAGTT GCCGTTATTT ATGATAGTGA TAATTTAACC ACTCAAGAAA TGCAARAAAT	120
	TGCTCGATGG ACAAATTTAT CAGAAACAAC ATTTATATTG ACTCCAAAAT CATCAATTGC	180
15	TGWTTATAGT ATTAGAATTT TCACTTCTGG TGGGAATGAA TTACCATTTG CTGGTCATCC	240
	TACTITAGGI ACTGCATTIG CATTATIGGA AGAIGGIAAA ATAAAACCAA ATGACAAIGG	300
	ACARATAATT CAAGAATGTG GTGCTGGATT AGTGAAAATA TCCGTTGAAA AAACACCTAA	360
20	TAATAATAGT AATGAGTTGC CGTTTTTGTT ATCTTTTGAA TTACCATATT TCAAATTTCA	420
	TGAAATTGAT GACAAAGTAA TCGAGGAATT ACAACATTCA TGGAATGGAA	480
	TGGTAAACCG GTACTTATTG ATGCTGGTCC AAAATGGGCA GTTTTCCAAC TTGGCTCCGG	540
	TAAAGAAGTA TTAGACTTGA ATGYTGATTT AGCACAAATT GAGAGATTAA GTTTAGAAAA	600
25	TGGTTGGACA GGAATTGGTG TCTTTGGAAA ACATAATGAA AATGGTGATT CGGTCGAATT	660
	GAGAAATATT GCTCCTGCTG TTGGAGTCGC TGAAGATCCT GCTTGTGGAA GTGGATCAGG	720
	TGCTATTGGA GCATATTTGG CAAATCACGT TTTCAATGAA AAGGAAAAAT TTACAATTGA	780
30	TATTTCTCAA GGTAAACCAA TTGAAAGAGA TGCTAAGATT CAAGTTAAAG TTAATCGTCT	840
	TACCACCAAA AATGGTGATT TATCTATTCA TGTTGGTGGT CATGCCATCA CTTGTTTCGA	900
	AGGTACTTAT TCTATTTAAA ACTTGATATA ATTCTTGAGT TATATCTAAT TTATCTAATT	960
35	CACTTGTCCC TGGAGTAGTT TGATCTAATT GATGTAATTT ATTTAATAAA TCACGTTCTA	1020
33	AATCAGTTTG TTTAGATAAA TCATTTAATA AATCATCTTC AGCATT	1066
	(2) INFORMATION FOR SEQ ID NO: 12:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 302 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: peptide	
45	(iii) HYPOTHETICAL: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
50	Met Pro Arg Phe Lys Gln Val Asp Val Phe Thr Asn Val Lys Tyr Leu 1 5 10 15	
	Gly Asn Pro Val Ala Val Ile Tyr Asp Ser Asp Asn Leu Thr Thr Gln	

				20					25	-				30		
	Glu	Met	Gln 35	Lys	Ile	Ala	Arg	Trp 40	Thr	Asn	Leu	Ser	1u 45	Thr	Thr	Phe
5	Ile	Leu 50	Thr	Pro	Lys	Ser	Ser 55	Ile	Ala	Xaa	Tyr	Ser 60	Ile	Arg	Ile	Phe
	Thr 65	Ser	Gly	Gly	Asn	Glu 70	Leu	Pro	Phe	Ala	Gly 75	His	Pro	Thr	Leu	80 Gly
10	Thr	Ala	Phe	Ala	Leu 85	Leu	Glu	Asp	Gly	Lys 90	Ile	Lys	Pro	As n	A5p 95	Asn
	Gly	Gln	Île	Ile 100	Gln	Glu	Cys	Gly	Ala 105	Gly	Leu	Val	Lys	11e 110	Ser	Val
	Glu	Lys	Thr 115	Pro	Asn	Asn	Asn	Ser 120	Asn	Glu	Leu	Pro	Phe 125	Leu	Leu	Ser
15	Phe	Glu 130	Leu	Pro	Tyr	Phe	Lys 135	Phe	His	Glu	Ile	Asp 140	Азр	Lys	Val	Ile
	Glu 145	Glu	Leu	Gln	His	Ser 150	Trp	Asn	Gly	Thr	Asn 155	Ile	Ile	Gly	Lys	Pro 160
20	Val	Leu	Ile	Asp	Ala 165	Gly	Pro	Lys	Trp	Ala 170	Val	Phe	Gln	Leu	Gly 175	Ser
	Gly	Lys	Glu	Val 180	Leu	Asp	Leu	Asn	Xaa 185	Asp	Leu	Ala	Gln	Ile 190	Glu	Arg
25	Leu	Ser	Leu 195	Glu	Asn	Gly	Trp	Thr 200	Gly	Ile	Gly	Val	Phe 205	Gly	Lys	His
	Asn	Glu 210	Asn	Gly	Asp	Ser	Val 215	Glu	Leu	Arg	Asn	Ile 220	Ala	Pro	Ala	Val
30	Gly 225	Val	Ala	Glu	Asp	Pro 230	Ala	Суз	Gly	Ser	Gly 235	Ser	Gly	Ala	Ile	Gly 240
30	Ala	Tyr	Leu	Ala	Asn 245	His	Val	Phe	Asn	Glu 250	Lys	Glu	Lys	Phe	Thr 255	Ile
	Ąsp	Ile	Ser	Gln 260	Gly	Lys	Pro	Ile	Glu 265	Arg	Asp	Ala	Lys	11e 270	Gln	Val
35	Lys	Val	Asn 275	Arg	Leu	Thr	Thr	Lys 280	Asn	Gly	Аsp	Leu	Ser 285	Ile	His	Val
	Gly	Gly 290	His	Ala	Ile	Thr	Cys 295	Phe	Glu	Gly	Thr	Tyr 300	Ser	Ile		
40) INFO	l tams	ON I	OR S	EQ I	D NC	: 13	3:								
40	(i)	(B)	LEN TYI STI	igth: Pe: i Randi	: 282 nucle ZDNES	reals 29 ba eic a 39: s linea	se p cid ing]	airs	3							
45	(ii)	MOLE	CULI	Z TY	PE: 0	DNA										
	(iii)	нүрс	THE	rical	L: No	•										
50	(xi)	SEQU	JENCI	e de:	SCRI	PTION	1: SI	11 9 3	OM C	: 13	•					
AT	GACGGAI	AA CI	'GTG	ATAG	A AA	AGAA J	AGA	AAG	STTG	ATT :	raan:	rgcci	C A	GTA:	rtac)	4

55

,	AAACAACCAA AAGCTTCT	A AATCTTCAGI	CCATTCAGAG	TTTTAGGGAA	TGTTACAGAC	12
	TCAACTCCTT TTGCCATG	G GACATTAGGT	TCAACATTTT	ATGCTGTCAC	TTCTGTTGGC	180
5	AGATOTTTCC AAATTTATO	GA CTTGGCTACA	TTACATTTAT	TGTTTGTTTC	CCAAACTCAA	24
J	ACTCCTTCAA GAATTACA	G TTTGGCTGCA	CACCATCACT	ATGTCTATGC	ATCTTATGGT	30
	GATCGTATTG GTATTTTT	AG ACGTGGTAGA	TTAGAGCATG	AATTGGTTTG	TGAAGGGAAC	36
	TCTACAGTTA ACCAATTA	T AGTATTTGGA	GAATACCTTA	TTGCTACCAC	ATTAGAAGGT	420
10	GATATTTTCG TATTTAGA	A AACTGAAGGA	AAGAAATTCC	CAACTGAATT	ATACACTACA	480
	ATCAGARTAR TTRATTCT	T AGTTGAAGGA	GAAATTGTGG	GATTAATTCA	TCCACCTACG	540
	TATTTAAATA AAGTAATTO	T TGCTACTACT	CAATCTGTGT	TTGTTATAAA	TGTGAGAACT	600
15	GGCAAATTAT TATACAAA1	C CCGGGAATTA	CAATTCGAAG	GCGAAAAGAT	TTCATCAATC	660
15	GAAGCTGCTC CAGTTTTGC	a tgtaattgct	GTTGGTACAT	CTAATGGAAA	TGTATTTTTA	720
	TTCAACATTA AAAAGGGG	A AGTGTTGGGC	CAAAAAATTA	TTACTTCTGG	AACTGAATCT	780
	TCTTCGAAAG TTGCCTCG	T CTCTTTTAGA	ACAGATGGAG	CACCTCATTT	GGTTGCTGGT	840
20	TTGAATAACG GGGACTTAT	A TTTCTACGAT	TTAGACÀAGA	AATCACGTGT	TCATGTTTTG	900
	AGAAATGCCC ATAAAGAGA	C TCATGGGGGT	GTTGCAAACG	CCAAATTTTT	GAATGGTCAA	960
	CCAATAGTAT TATCAAATG	G TGGTGATAAT	CATTTGAAAG	AATTTGTTTT	TGATCCTAAT	1020
25	TTAACCACTT CGAATTCAT	C CATTGTTCCT	CCTCCAAGAC	ATCTCAGATC	TAGAGGTGGG	1080
20	CATTCAGCAC CACCAGTAG	C TATTGAATTT	CCTCAAGAAG	ATAAAACCCA	TTTTTTATTG	1140
	AGTGCTTCTA GAGATAAAA	C ATTTTGGACA	TTCTCTTTGA	GAAAAGATGC	TCAAGCACAG	1200
	GAAATGTCTC AAAGATTGC	A AAAATCTAAG	GATGGTAAAA	GACAGGCTGG	ACAAGTTGTT	1260
30	TCTATGAGAG AGAAATTC	C AGAAATCATT	TCCATTTCAT	CCTCTTATGC	CAGAGAAGGT	1320
	GATTGGGAAA ATATCATAA	C CGCCCACAAG	GATGAAACTT	TTGCGAGAAC	ATGGGATTCA	1380
	AGAAATAAAA GAGTCGGTA	G ACATTTGTTA	AACACTATTG	ATGGTGGCAT	TGTGAAATCT	1440
35	GTATGTGTGT CTCAGTGTG	G TAATTTTGGT	TTAGTGGGAT	CATCACTGGG	TGGTATTGGA	1500
	TCATACAACC TTCAAAGT	G ATTGTTGCGT	AAAAAATATG	TTTTACATAA	ACAAGCTGTC	1560
	ACCESTITAS CARTIGATE	G AATGAATAGA	AAAATGGTTA	GTTGTGGTTT	AGATGGAATT	1620
	GTGGGATTCT ATGATTTT	G AAAGTCTGTC	TATTTAGGCA	AATTACAACT	TGAAGCACCT	1680
40	ATAACATCCA TGATATATC	A CAAACTGTCT	GATCTTGTTG	CTIGTGCCTT	GGATGATTTG	1740
	TCCATAGTTG TTATTGACG	T GACTACTCAA	AAAGTCATAA	GAATATTATA	TGGTCATACC	1800
	AACAGAATTT CAGGAATGG	A TTTCTCGCCT	GATGGGAGAT	GGATAGTTTC	AGTTGCATTG	1860
45	GACTCCACTT TGCGAACTT	G GGACTTGCCA	ACTGGTGGTT	GTATTGATGG	GGTGATTTTA	1920
	CCAATTGTGG CAACTGCAG	T TAAATITTCT	CCTATTGGTG	ATATCTTAGC	GACAACACAT	1980
	GTCTCTGGAA ATGGTGTAT	C CTTATGGACT	AATCGTGCCC	AGTTCAAGCC	TGTGTCCACC	2040
	AGACACGTAG AAGAAGATG	A GTTTTCAACT	ATTTTATTAC	CAAATGCTTC	TGGAGATGGC	2100
50	GGTTCAACAA TGCTAGACG					2160
			CC18CC88C1			2220

	AGATCAAA	AT T	CAAC	CTTI	AT:	rgca:	rttg	GATA	ACCAT	TA	AACA	ACAA	AG C	AAAC	CGAA	A.	2280
	GAAGCACC	TA A	AAAA	CAGA	. AA	ATGC	ACCT	TTC:	rttt1	TAC A	AATT(GACT	GG A	CAAG	CAGT	T	2340
5	GGTGATAG	GG C	ATCG	TTGC	TG!	AAGG	CAAA	ACT:	rcagj	AC I	AAAC	NAAT	AA C	ACTG'	ITGA	A	2400
5	GAAACCAA	CA G	CAAA1	TGCG	TA)	AATTO	GAT	ACAI	AACGO	TA I	ACCA	CGCA:	T T	GAAA	GTGA	A	2460
	TTCACAAA	AC T	ATTA	\GGGA	AGG	TGG	AG A G	AGT	GACI	AT :	TTGA.	NAGA:	T T	TTGA	CTTAC	c	2520
	TTACTTAA	CT T	ATCT	CTGC	TG	TATT	GAC	TTG	EAAA T	TA (GATC	ACTT	AA T	TCAT:	rtgt:	r	2580
10	CCATTGAC	TG A	AATG	CAAA	TT	TAT?	CAA	GCT	KAAT 1	TG (TGG:	TTTG	AA A	TCAN	ACGCI	A.	2640
	AATTATGA	AA T	ATGG	AAAC	TT	rata?	rgcc	ATG?	rttti	CA 1	ACAT	ACAT	G T	GATG'	TAT	2	2700
	CATCAGTT	TG A	AAAT	AAAC	TAG	STCT	TKD	GAAG	CTT1	rgg 1	NAGA	ATAC	AG A	CAGT	raaa:	ľ	2760
15	GATGAAAA	GA A	TAACJ	TAAAT	GGJ	ATTC:	KTT 1	GTG	NAAT A	TT (STGC:	ragt:	AT C	GTAA	STIT	r	2820
,,	ATTAGTTA	.G															2829
	(2) INFO	RMAT	ION I	OR S	EQ :	D NO): 1	I :									
20	(i)	(A (B (C	UENCE) LEP) TYP) STE) TOP	IGTH: PE: a VANDE	94; mino DNE:	2 ami caci 55:	ino a id	S: acid:	3						,		
	(ii)	MOL	ECULI	TYP	E: 1	epti	ide										
25	(iii)	HYP	othe1	CAL	: N C)											
			UENCE														
30	1		Glu		5					10					15		
	Ser	Gly	Ile	Thr 20	Lys	Gln	Pro	Lys	Ala	Ser	Lys	Ile	Phe	Ser 30	Pro	Phe	
									25								
35	Arg	Val	Leu 35	Gly	Asn	Val	Thr	Asp 40	Ser	Thr	Pro	Phe	Ala 45	Met	Gly	Thr	
35	_							40	Ser				45				
35	Leu	Gly 50	35	Thr	Phe	туr	Ala 55	40 Val	Ser Thr	Ser	Val	Gly 60	45 Arg	Ser	Phe	Gln	
35	Leu Ile 65	Gly 50	35 Ser	Thr Leu Arg	Phe Ala	Tyr Thr 70	Ala 55 Leu	40 Val His	Ser Thr	Ser Leu	Val Phe 75	Gly 60 Val	Arg Ser	Ser Gln	Phe Thr	Gln Gln 80	
	Leu Ile 65 Thr	Gly 50 Tyr Pro	35 Ser Asp	Thr Leu Arg	Phe Ala Ile 85	Tyr Thr 70 Thr	Ala 55 Leu Ser	40 Val His Leu	Ser Thr Leu	Ser Leu Ala 90	Val Phe 75 His	Gly 60 Val His	Arg Ser His	Ser Gln Tyr	Phe Thr Val 95	Gln Gln 80 Tyr	
	Leu Ile 65 Thr	Gly 50 Tyr Pro	35 Ser Asp Ser	Thr Leu Arg Gly 100	Phe Ala Ile 85 Asp	Tyr Thr 70 Thr	Ala 55 Leu Ser	40 Val His Leu Gly	Ser Thr Leu Ala Ile 105	Ser Leu Ala 90 Phe	Val Phe 75 His	Gly 60 Val His	Arg Ser His	Ser Gln Tyr Arg	Phe Thr Val 95 Leu	Gln Gln 80 Tyr Glu	
40	Leu Ile 65 Thr Ala His	Gly 50 Tyr Pro Ser	35 Ser Asp Ser Tyr Leu 115 Glu	Thr Leu Arg Gly 100 Val	Phe Ala Ile 85 Asp Cys	Tyr Thr 70 Thr Arg	Ala 55 Leu Ser Ile Gly	40 Val His Leu Gly Asn 120	Ser Thr Leu Ala Ile 105 Ser	Ser Leu Ala 90 Phe	Val Phe 75 His Arg	Gly 60 Val His Arg	Arg Ser His Gly Gln 125	Ser Gln Tyr Arg 110 Leu	Phe Thr Val 95 Leu Leu	Gln 80 Tyr Glu Val	
40	Leu Ile 65 Thr Ala His	Gly 50 Tyr Pro Ser Glu Gly 130	35 Ser Asp Ser Tyr Leu 115 Glu	Thr Leu Arg Gly 100 Val	Phe Ala Ile 85 Asp Cys	Tyr Thr 70 Thr Arg Glu Ile	Ala 55 Leu Ser Ile Gly Ala 135	40 Val His Leu Gly Asn 120 Thr	Ser Thr Leu Ala Ile 105 Ser Thr	Ser Leu Ala 90 Phe Thr	Val Phe 75 His Arg Val Glu	Gly 60 Val His Arg Asn Gly 140	Arg Ser His Gly Gln 125 Asp	Ser Gln Tyr Arg 110 Leu	Phe Thr Val 95 Leu Leu	Gln 80 Tyr Glu Val	

	His	Pro	Pro	Thr 180	Tyr	Leu	Asn	Lys	Val 185	Ile	Val	Ala	Thr	Thr 190	Gln	Ser
5	Val	Phe	Val 195	Ile	Asn	Val	Arg	Thr 200	Gly	Lys	Leu	Leu	Tyr 205	Lys	Ser	Arg
	G1u	Leu 210	Gln	Phe	G1u	Gly	Glu 215	Lys	Ile	Ser	Ser	Ile 220	Glu	Ala	Ala	Pro
	Val 225	Leu	Asp	Val	Ile	Ala 230	Val	Gly	Thr	Ser	Asn 235	Gly	Asn	Val	Phe	Leu 240
10	Phe	Asn	Ile	Lys	Lys 245	Gly	Lys	Val	Leu	Gly 250	Gln	Lys	Ile	Ile	Thr 255	Ser
-	Gly	Thr	Glu	Ser 260	Ser	Ser	Lys	Val	Ala 265	Ser	Ile	Ser	Phe	Arg 270	Thr	Asp
15	Gly	Ala	Pro 275	His	Leu	Val	Ala	Gly 280	Leu	Asn	Asn	Gly	Asp 285	Leu	Tyr	Phe
	Tyr	A5p 290	Leu	Asp	Lys	Lys	Ser 295	Arg	Val	His	Val	Leu 300	Arg	Asn	Ala	His
20	Lys 305	Glu	Thr	His	Gly	Gly 310	Val	Ala	Asn	Ala	Lys 315	Phe	Leu	Asn	Gly	Gln 320
	Pro	Ile	Val	Leu	Ser 325	Asn	Gly	Gly	Asp	Asn 330	His	Leu	Lys	Glu	Phe 335	Val
	Phe	Asp	Pro	Asn 340	Leu	Thr	Thr	Ser	Asn 345	Ser	Ser	Ile	Val	Pro 350	Pro	Pro
25	Arg	His	Leu 355	Arg	Ser	Arg	Gly	Gly 360	His	Ser	Ala	Pro	Pro 365	Val	Ala	Ile
	Glu	Phe 370	Pro	Gln	Glu	qeA	Lys 375	Thr	His	Phe	Leu	Leu 380	Ser	Ala	Ser	Arg
30	Asp 385	Lys	Thr	Phe	Trp	Thr 390	Phe	Ser	Leu	Arg	Lys 395	Asp	Ala	Gln	Ala	Gln 400
	Glu	Met	Ser	Gln	Arg 405	Leu	Gln	Lys	Ser	Lys 410	Asp	Gly	Lys	Arg	Gln 415	Ala
35				420					425					430	Ser	
			435					440					443		Thr	
40		450					455					460			Lys	
40	465					470					4/5				Lys	450
					485					490					Ser 495	
45	Gly	Gly	Ile	Gly 500	Ser	Tyr	Asn	Leu	Gln 505	Ser	Gly	Leu	Leu	Arg 510	Lys	Lys
	Tyr	Val	Leu 515	His	Lys	Gln	Ala	Val 520	Thr	Gly	Leu	Ala	11e 525	Q eA	Gly	Met
50	Asn	Arg 530	Lys	Met	Val	Ser	Cys 535	Gly	Leu	Asp	Gly	11e 540	Val	Gly	Phe	Tyr
	Asp 545	Phe	Gly	Lys	Ser	Val 550	Tyr	Leu	Gly	Lys	Leu 555	Gln	Leu	Glu	Ala	Pro 560

	Ile	Thr	Ser	Met	11e 565	Tyr	Hi:	Lys	Ser	Ser 570	Asp	Leu	Val	Ala	Cys 575	Ala
_	Leu	Asp	Asp	Leu 580	Ser	Ile	Val	Val	Ile 585	Asp	Val	The	Thr	Gln 590	Lys	Val
5	Ile	Arg	Ile 595	Leu	Tyr	Gly	His	Thr 600	Asn	Arg	Ile	Ser	Gly 605	Met	Asp	Ph•
	Ser	Pro 610	Asp	Gly	Arg	Trp	Ile 615	Val	Ser	Val	Ala	Leu 620	Asp	Ser	Thr	Leu
10	Arg 625	Thr	Trp	Asp	Leu	Pro 630	Thr	Gly	Gly	Cys	Ile 635	Ąsp	Gly	Val	Ile	Leu 640
	Pro	Ile	Val	Ala	Thr 645	Ala	Val	Lys	Phe	Ser 650	Pro	Ile	Gly	Asp	11e 655	Leu
15	Ala	Thr	Thr	His 660	Val	Ser	Gly	Asn	Gly 665	Val	Ser	Leu	Trp	Thr 670	Asn	Arg
	Ala	Gln	Phe 675	Lys	Pro	Val	Ser	Thr 680	Arg	His	Val	Glu	Glu 685	qeA	Glu	Phe
	Ser	Thr 690	Ile	Leu	Leu	Pro	A5n 695	Ala	Ser	Gly	Asp	Gly 700	Gly	Ser	Thr	Met
20	Leu 705	Ąsp	Gly	Phe	Leu	Asp 710	Glu	Asp	Ser	Asn	Glu 715	Asp	Gly	Thr	Ile	Asp 720
	Glu	Gln	Tyr	Thr	Ser 725	Ala	Ala	Gln	Ile	Дэр 730	Ala	Ser	Leu	Ile	Thr 735	Leu
25	Ser	Ser	Glu	Pro 740	Arg	Ser	Lys	Phe	Asn 745	Thr	Leu	Leu	His	Leu 750	Asp	Thr
	Ile	Lys	Gln 755	Gln	Ser	Lys	Pro	Lys 760	Glu	Ala	Pro	Lys	Lys 765	Pro	Glu	Asn
30	Ala	Pro 770	Phe	Phe	Leu	Gln	Leu 775	Thr	Glγ	Gln	λla	Val 780	Gly	Азр	Arg	Ala
	Ser 785	Val	Ala	Glu	G1 y	Lys 790	Thr	Ser	Glu	Gln	Thr 795	Asn	Asn	Thr	Val	Glu 800
35	Glu	Thr	Asn	Ser	Lys 805	Leu	Arg	Lys	Leu	Asp 810	Thr	A s n	Gly	neA	His 815	Ala
33	Phe	Glu	Ser	Glu 820	Phe	Thr	Lys	Leu	Leu 825	Arg	Glu	Ala	Gly	Glu 830	Ser	Gly
		Phe	835					840					845			
40		Asp 850					855					860				
	865	Thr				870					875					880
45		Tyr			885					890					093	
		Asp		900					905					910		
50			915					920					925		Met	Asp
	Ser	Leu 930	Val	Lys	Tyr	Суз	Ala 935	Ser	Ile	Val	Ser	Phe 940	Ile	Ser		

	(2) INFORMATION FOR SEQ ID NO: 15:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 725 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
10		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
	AACCTGGCAA TTAACTGCCC GGCAAGTGAT AGCAGGAGAT AGGTGTGTAT AGATTATAAT	60
15	GGAACGCCGA TITTTGCAGT ATCACGCGTA ATAAGGACAG CAGTTGGACA TCGGTACATG	120
,,,	AGAGGCAAT GTAAGTCTTG ATAGTAATGA GCCGTGTTGA AGTAGTATTT TAATCTAATT	180
	TTACTCARAR ARGGACARTG GAGATCTGGA GATARCAGCA CACTARTCGG TTCTAGACAT	240
	AGACTAAGCC TGAAAGGGGG TACTACAGCT TGTTTTGAAA AGGTTTGCGT TGTATAGGCA	300
20		360
	GTTAAATGTG TGTTTTTTT GGGTAGAATT TGAGAAAAAG TTGACTGAAA AAAATGCAAG	420
	ARACGGGGTG ATCATGARAR TAGACACACA CARARAGTCA ARARACARTG GARARGCTTC	480
25	AGANTAAGCA GTAGGAGGTG TCTGAATTGA GTTTGTATTG TTATTTAGAG TTTTAAATTA	
25	GAGTTGTAAA TTTTTGGGTA GAATTTACGA AAAAGTCGAA CAAAAAAACG ACAAGTCAGG	540
	GTGATTGCAA AAAAACAGAA ACAATAGATA ATCTTAAATT AAGGTAGTAG AGGCTCTGTG	600
	AAGTAATTTA GAGTTTAAAC AGGGGGGCAC GAGTCAGTGT TAGAGTTGTG AAGTTTATTT	660
30	GGCTAGTGAA TTGACTGGCA AGATTGTTAA ACGTGGGGTA GAAAAAGACA ACGCATCGAC	720
	AGGTT	725
	(2) INFORMATION FOR SEQ ID NO: 16:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1144 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
40	(iii) HYPOTHETICAL: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
45	CCATGATATA GAAATTGGTG GGTCAACGTA CTATCAAATT AACATAAAAC TACCACTTCG	60
45	GTCATTCACG ATAAAGAAAC GGTACCTGGA ATTCCAGCAA TTGGTGCTGG ACTTGAGTCG	120
	TAATCTAGGC ATTGATAGTC GAGATTTTCC ATATGAATTA CCTGGGAAAC GGATCAACTG	180
	GCTTARCAAG ACCAGTATTG TTGAGGAGAG AAAAGTGGGA CTTGCAGAAT TTCTCAATAA	240
50	CCTCATTCAA GACTCAACAC TTCAGAATGA ACGAGAAGTG TTGTCGTTTT TGCAATTGCC	300
	GICTARTITA GATTCACCA AGGATATGIT ACAGAATAAT CGAGCAGACT TGGATCTGT	360
	GICTARITIT AGRICACCA AGGAINIGH ACAGAMANA COAGGAIGH.	

-24-

	GCARATAAC TGGTACGATG TATATCGTAA GTTGAAACTG GATATACTCA ACGATTCGTCA	72.4
	TAGCAGCATT AGTGAACAGA TACATATTCG TGATCGCATT AGTCGGGTCT ACCAACCACG	480
5	GATTCTCGAC TTGGTCAGGG CTATTGGTAC AGATAAAGAA GAGGCCCTAA AGAAGAAGCA	540
ŭ	GTTGGTTTCC CAATTACAAG AGAGTATAGA TAATTTGTTA GTACAGGAAG TTCCCCGATC	600
	AAAGAGGGTG TTGGGTGGAG CAGTTAAGGA AACGCCAGAG ACATTACCAT TAAACAATAA	660
	AGAACTICTI CARCACCAAG TACAAATTCA TCAAAACCAA GACAAAGAAC TAGACCAGCT	720
10	TAGGGTGTTA ATTGCCCGGC AGAAACAGAT TGGCGAGCTA ATTAATGCAG AAGTAGAGGA	780
	ACAGAATGAA ATGTTGGATA GGTTTAATGA AGAGGTCGAC TACACGTCCA GCAAAATCAA	840
	GCAAGCAAGA CGCAGAGCTA AGAAGATATT ATAGTAATTT GTTCGCTACT TCGATATTAT	900
15	CTGCCATTGA CGITATTCTT GCAGGITGGC CEAATTGTTC GTTTGAAAGT TTTTCGAGGT	960
	CTTCAGCGTC TAATGCCCTA TCTGAGCTCT CGCCATCGAG TTTCCAAAAC CCGCCGATAT	1020
	TTTGAAAGAA TCTTTGAATG CCAAACCGTC GTGGCGGGAA CGATCTGCCT GCGTTGGCCA	1080
	AGTTGAATAT GCTAGGGTGG TACTGTAAAT AGAAGACAGA TCCAATAAAC GTTCCTATAA	1140
20	ATGC	1144
	(2) INFORMATION FOR SEQ ID NO: 17:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 290 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: peptide	
	(iii) HYPOTHETICAL: NO	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
05	His Asp Ile Glu Ile Gly Gly Ser Thr Tyr Tyr Gln Ile Asn Ile Lys 1 5 10 15	
35	Leu Pro Leu Arg Ser Phe Thr Ile Lys Lys Arg Tyr Ser Glu Phe Gln 20 25 30	
	Gln Leu Val Ser Asp Leu Ser Arg Asn Leu Gly Ile Asp Ser Arg Asp 35 40 45	
40	Phe Pro Tyr Glu Leu Pro Gly Lys Arg Ile Asn Trp Leu Asn Lys Thr 50 60	
	Ser Ile Val Glu Glu Arg Lys Val Gly Leu Ala Glu Phe Leu Asn Asn 65 70 75 80	
45	Leu Ile Gln Asp Ser Thr Leu Gln Asn Glu Arg Glu Val Leu Ser Phe 85 90 95	
	Leu Gln Leu Pro Ser Asn Phe Arg Phe Thr Lys Asp Met Leu Gln Asn 100 105 110	
50	Asn Arg Ala Asp Leu Asp Ser Val Gln Asn Asn Trp Tyr Asp Val Tyr 115 120 125	
~~	Arg Lys Leu Lys Ser Asp Ile Leu Asn Glu Ser Ser Ser Ser Ile Ser 130 135 140	

	G1u 145	Gln .	Ile	H15	11e	150	Азр	Arg	116	Ser	155	Val	ıyı	GIN	710	160	
_	Ile	Leu i	Asp	Leu	Val 165	Arg	Ala	Il•	Gly	Thr 170	qeA	Lys	Glu	Glu	Ala 175	Leu	
5	Lys	Lys i	Lys	Gln 180	Leu	Val	Ser	Gln	Leu 185	Gln	Glu	Ser	Ile	Asp 190	Asn	Leu	
	Leu	Val (Gln 195	Glu	Val	Pro	Arg	Ser 200	Lys	Arg	Val	Leu	Gly 205	Gly	Ala	Val	
10	Lys	Glu 1 210	Thr	Pro	Glu	Thr	Leu 215	Pro	Leu	Λsn	Asn	Lys 220	Glu	Leu	Leu	Gln	
	His 225	Gln '	Val	Gln	Ile	His 230	Gln	Asn	Gln	Asp	Lys 235	Glu	Leu	Asp	Gln	Leu 240	
15	Arg	Val :	Leu	Ile	Ala 245	Arg	Gln	Lys	Gln	11e 250	Gly	Glu	Leu	Ile	Asn 255	Ala	
	Glu	Val (Glu	Glu 260	Gln	As n	Glu	Met	Leu 265	Asp	Arg	Phe	Asn	Glu 270	Glu	Val	
	Asp	Tyr	Thr 275	Ser	Ser	Lys	Ile	Lys 280	Gln	Ala	Arg	Arg	Arg 285	Ala	Lys	Lys	
20	Ile	Leu 290															
	(2) INFOR	MATIC	ON F	OR S	EQ I	D NO	: 16	3 :									
25	(i)	(B) (C)	LEN TYP STR	GTH: E: n ANDE	273 ucle	reris 36 ba sic a SS: s linea	se p icid ingl	airs	ı								
	(ii)	MOLEC	ULE	TYP	E: c	DNA							•				
30	(iii)	нүрот	rhet	ICAL	.: NC	•											
25	(xi)	(A) (B)	NAM	E/KE ATIC	N:11	nisc_ l WATI	-		:= "N	r = G	or	A or	: T c	or C"	•		
35	(ix)	(A)	NAM	ATIC	N: 27	nisc_ 723 WATI	2724	ļ	:= "N	J == 7	or	T or	: C d	or G'	•		
40	(ix)	(A) (B)	NAM	E/KE ATIC	N: 27	nisc_ 714 WATI	2715	•	. - "N	r – 2	or	T OI	: C d	or G"	•		
45	(ix)	(A)	NAM	ATTO	N: 27	nisc_ 710 RMATI	_		·= "N	ı – 2	or	T or	: C d	or G"	•		
	(ix)	(A)	NAM	E/KE	N: 27	nisc_ 706 WATI	2707	,	= "N	I = A	or	T OF	. C c	or G"	•		
50	(xi)	SEQUE	NCE	DES	CRIE	PTION	i: SE	Q ID	NO:	18:							
	ATGGAAAAA	A NTI	TGG	CGAG	TG1	'AAAC	TTG	TACA	CCGA	TT T	GGAG	TGTG	T TI	AATT	TTC		60

	AACTATCCAA	CAAGAATTGT	TTGGGGTGCT	TCTTACAATT	TTGGAATTCA	ACAGATGATG	120
	GCAAACTTTG	ATCGGTTTTC	AAAACCACCA	GTGGATCCAT	CTACAAAATT	AGGATTTTGG	180
_	GATAAGTTAA	AGTATATCTT	ACATGGTAAA	TGCCAAATCA	GAACTAGGAA	aagtttagaa	240
5	GTTGCATTTA	AAGGATCAAG	AGATCCGTAT	GATTTGTTCA	CGACTGCAGG	CGGGTTTGTA	300
	TTGTCATTTA	GAAAGAATGT	TGTCTGGGAC	ATCARTARAG	ACGATAATTC	GAAAAATTAC	360
	TTCGATATCA	CGGCAGATAA	AGTTTCCTGG	TATATTCCAA	ACTATTTAGC	AGGACCATTA	420
10	TTGGCTTGGA	CAAGAAGTAG	TAAAAATTCA	ATTTATTTAC	CAAATTCACC	AAATGTGGTT	480
	AATTCTTGCT	TTGCATATTA	CCTTCAAGAT	TTTACTGGAC	AAGCTGATTT	TGATCATGCT	540
	GCCCGAGTAT	TTGAAAGAAA	TGTGGTCAAT	CTTAGTGGAG	GAATTCATTT	TCAAGTTGGG	600
	TTTCTACTTG	AACGTAAAGA	TACAAATGGT	AAGAGAACCG	ATGAATTCAA	ACCTCATTAC	660
15	GAAGTGCAGT	TGTTTGATCC	CAAGTATTGT	GAGAAAGGAC	ATGACTCTTA	TGCTGGGTTC	720
	CGAAGTCAAT	TTATACATAT	GGCTATCTCA	TTGGAATCAA	CAAACAGTTC	AAGTTATAAT	780
	ACAATCCATC	TTAGTCCTGG	TACTTTCCAA	CAGTTTTTCG	attggtggaa	GTTATTTGCT	840
20	AGTAATATGC	AGTTACCTAT	TAGACGTGGC	AAAATGTTTG	GAGAAGCAAA	AGAATCTGTC	900
	AAGTTTTCGC	AACATTTATT	CACAAACAAG	TTTTCTTTCA	TGTTGAAATC	TTTGTTTATT	960
	GCTCATGTTT	ATCGAGACGA	AATTGTTGAT	ATCAATAACG	ATAGAATAGA	AAGTATTGGT	1020
	TTAAGAGCCA	AAGTAGATGA	TTTTATGGTT	GATTTACATC	aaagaaaaga	GCCAGCAACC	1080
25	CTTTACCATG	AAGAATTATC	TAAGAATGAG	AAGGTGATGA	AAATGAATTT	TGATTTAGGA	1140
	GAAGTCGTTT	TATCAGGAAT	AGACTTACGT	GTCATGCATG	TTTCATTTCT	CCAAAATTTA	1200
	TACACTCAAT	CACATTCCAA	TTCAGGTGAC	GCTAAATCAA	CTTATAATAT	TTACGACAAT	1260
30	GATCATCGAT	GGTTTGATAT	TATGGATTTC	CAAGAGGCAT	TTTTGACATC	AATTAAGGAT	1320
,	TGTGTCAGGA	CAGTTGATAT	TTATCCATTG	ATGTATTTAC	AAAGATTCTT	TTATGAAAGA	1380
	GATACACATG	GTGGCAAGTC	TGAGGATGAG	ACTGCATTTG	GAAAAGAAGT	TATTCATAAA	1440
						TCAAAGACTT	1500
35						ACCTGTAGCA	1560
						AGCTGGCGTT	1620
						AAATTACCAC	1680
40						GAATTTGACA	1740
						GTCACACAAG	1800
			AATGATGGAT				1860
						ATCACAGACA	1920
45						AATATTACGA	1980
						CGCACCTCAA	2040
						ACCATCTATT	2100
50						CTTGTTAGAA	2160
	ACTAGGTATG	GTATTTTACT	AAAAGATGCC	AATGTTTTTG	TATTAAACAA	AGAGGATATT	2220

	CTAGGGTGTC CAGATAT TT AAGTATTAGT AATCCATATG GAGCTAAATC TAATTGGCCA	2280
	CCATGGCTAG GAACAGAAAT AACCCAAAAT GGTAAATGGG CTGGAGCCAA CAACTTATTG	2340
5	ATTGAAAAGC TTTCTGTTAT GACAATGTGT TATGAAAGTG AAATTTTGTC AAGCAAGCTT	2400
	TCTCCAAATG CACAAGATCT GGATCAAGAA GAGCAAGAAA ATTACAATGA TGATAATTCG	2460
	ARACAGGCTC CTCTTCGACT TGGTATTGAT ATGCCTTCTG TGGTGATTAC ATCTACATCA	2520
	AGTCAATACT TTACCTTATA TGTTATCATA GTGAGCTTGT TGTTTTATAG CGAGCCTATG	2580
10	AGTAAAGTGA TCCACAAGAA AATCGAAAAG ATGAAGTTTT CTATTGATTT CGAAGATTTG	2640
	GGTGCTCTTA CTAGCAGATT AACGAARATG CAGCAACATC ATAAATTGTT GAAAGTATTG	2700
	TCTAANNACN AATHNTTTCC CGNNCGGGGG AATTAA	2736
15	(2) INFORMATION FOR SEQ ID NO: 19:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 911 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown	
20	(ii) MOLECULE TYPE: peptide	
	(iii) HYPOTHETICAL: NO	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
	Met Glu Lys Xaa Leu Ala Ser Val Lys Leu Tyr Thr Asp Leu Glu Cys 1 5 10	
30	Val Phe Asn Ser Asn Tyr Pro Thr Arg Ile Val Trp Gly Ala Ser Tyr 20 25 30	
	Asn Phe Gly Ile Gln Gln Met Met Ala Asn Phe Asp Arg Phe Ser Lys 35 40 45	
35	Pro Pro Val Asp Pro Ser Thr Lys Leu Gly Phe Trp Asp Lys Leu Lys 50 55 60	
	Tyr Ile Leu His Gly Lys Cys Gln Ile Arg Thr Arg Lys Ser Leu Glu 65 70 75 80	
	Val Ala Phe Lys Gly Ser Arg Asp Pro Tyr Asp Leu Phe Thr Thr Ala 85 90 95	
40	Gly Gly Phe Val Leu Ser Phe Arg Lys Asn Val Val Trp Asp Ile Asn 100 105 110	
	Lys Asp Asp Asn Ser Lys Asn Tyr Phe Asp Ile Thr Ala Asp Lys Val	
45	Ser Trp Tyr Ile Pro Asn Tyr Leu Ala Gly Pro Leu Leu Ala Trp Thr 130 135 140	
	Arg Ser Ser Lys Asn Ser Ile Tyr Leu Pro Asn Ser Pro Asn Val 145 150 155 160	
50	Asn Ser Cys Phe Ala Tyr Tyr Leu Gln Asp Phe Thr Gly Gln Ala Asp 165 170 175	
	Phe Asp His Ala Ala Arg Val Phe Glu Arg Asn Val Val Asn Leu Ser 180 185 190	

Gly	Gly	Ile 195	His	Phe	Gln	Val	Gly 200	Phe	Leu	Leu	Glu	Arg 205	Lys	Asp	Thr
Asn	Gly 210	Lys	Arg	Thr	Asp	Glu 215	Phe	Lys	Pro	His	Tyr 220	Glu	Val	Gln	Leu
Phe 225	Asp	Pro	Lys	Tyr	Cys 230	Glu	Lys	Gly	His	Asp 235	Ser	Tyr	Ala	Gly	Phe 240
Arg	Ser	Gln	Phe	1le 245	His	Met	Ala	Ile	Ser 250	Leu	G1u	Ser	Thr	Asn 255	Ser
Ser	Ser	Tyr	Asn 260	Thr	Ile	His	Leu	Ser 265	Pro	Gly	Thr	Phe	Gln 270	Gln	Phe
Phe	Asp	Trp 275	Trp	Lys	Leu	Phe	Ala 280	Ser	Asn	Met	Gln	Leu 285	Pro	Ile	Arg
Arg	Gly 290	Lys	Het	Phe	G1 y	Glu 295	Ala	Lys	Glu	Ser	Val 300	Lys	Phe	Ser	Gln
His 305	Leu	Phe	Thr	Asń	Lys 310	Phe	Ser	Phe	Met	Leu 315	Lys	Ser	Leu	Phe	11e 320
Ala	His	Val	T yr	Arg 325	Asp	Glu	Ile	Val	Asp 330	Ile	Asn	Asn	Asp	Arg 335	Ile
Glu	Ser	Ile	Gly 340	Leu	Arg	Ala	Lys	Val 345	Asp	Asp	Phe	Met	Val 350	Asp	Leu
His	Gln	Arg 355	Lys	Glu	Pro	Ala	Thr 360	Leu	Tyr	His	Glu	Glu 365	Leu	Ser	Lys
Asn	Glu 370	Lys	Val	Met	Lys	Met 375	Asn	Phe	Asp	Leu	Gly 380	Glu	Val	Val	Leu
Ser 385	Gly	Ile	Asp	Leu	Arg 390	Val	Met	His	Val	Ser 395	Phe	Leu	Gln	Asn	Leu 400
Tyr	Thr	Gln	Ser	His 405	Ser	Asn	Ser	Gly	Asp 410	Ala	Lys	Ser	Thr	Tyr 415	As n
Ile	Tyr	Asp	Asn 420	Asp	His	Arg	Trp	Phe 425	Asp	Ile	Met	Азр	Phe 430	Gln	Glu
Ala	Phe	Leu 435	Thr	Ser	Ile	Lys	Asp 440	Cys	Val	Arg	Thr	Val 445	Asp	Ile	Tyr
Pro	Leu 450	Met	Tyr	Leu	Gln	Arg 455	Phe	Phe	Tyr	Glu	Arg 460	Asp	Thr	His	Gly
Gly 465	Lys	Ser	Glu	Asp	Glu 470	Thr	Ala	Phe	Gly	Lys 475	Glu	Val	Ile	His	Lys 480
				485					490					493	
Val	Gln	Arg	Leu 500	Asn	Ala	Leu	Gln	Glu 505	Gln	Val	Lys	Lys	Leu 510	Ser	Lys
Thr	Ser	Ala 515	Pro	Glu	Pro	Val	Ala 520	Asp	Leu	Lys	Lys	Arg 525	Ile	Ser	Phe
Leu	Gln 530	Lys	Glu	Ile	Ser	Thr 535	Thr	Lys	Ala	Gly	Val 540	Lys	Ser	Lys	Met
Arg 545	Arg	Thr	Ser	Thr	11e 550	Asn	Gly	Met	Asn	Asn 555	Ser	Glu	neA	Tyr	His 560
Asn	Lys	Phe	Thr	Phe 565	Tyr	Asn	Met	Leu	Leu 570	Lys	Trp	Asn	Phe	Asn 575	Cys
	Asn Phee 225 Arg Ser Phe Arg His 305 Ala Glu His 385 Tyr Ile Ala Pro Gly5 Cys Val Thr Leu Arg 545	Asn Gly 210 Phe Asp 225 Arg Ser Ser Ser Ser Ser Gly 305 Ala His Gln Asn Glu 370 Ser Gly 385 Tyr Thr Ile Tyr Thr Ile Tyr Thr Cleu 450 Gly Lys 465 Cys Asn Val Gln Thr Ser Leu Gln Arg 545	Asn Gly Lys 210 Phe Asp Pro 225 Arg Gly Lys 290 Phe 305 Phe 305 Phe 305 Phe 305 Phe 305 Phe 305 Pro Leu Met 450 Pro Leu Met 45	195 Asn Gly Lys Arg 210 Phe Asp Pro Lys 260 Phe Asp 275 Arg 290 Arg Arg	Asn Gly Lys Arg Thr 210 Phe Asp Pro Lys Tyr 225 Arg Ser Gln Phe 11e 245 Ser Ser Tyr Asn Thr 260 Phe Asp Trp Trp Lys 275 Arg Gly Lys Met Phe His Leu Phe Thr Asn 305 Ala His Val Tyr Arg 325 Glu Ser Ile Gly Leu 340 His Gln Arg Lys Glu 355 Asn Glu Lys Val Met Ser Gly Ile Asp Leu 385 Tyr Thr Gln Ser His 305 Ile Tyr Asp Asn Asp 420 Ala Phe Leu Thr Ser 405 Ala Phe Leu Thr Ser 435 Pro Leu Met Tyr Leu 450 Gly Lys Ser Glu Asp 465 Cys Asn Leu Gly Ala 485 Val Gln Arg Leu Asn 500 Thr Ser Ala Pro Glu Leu Gln Lys Glu Ile Arg Arg Thr Ser Thr 545 Asn Lys Phe Thr Phe	Asn Gly Lys Arg Thr Asp 225	Asn Gly Lys Arg Thr Asp Glu 215 Phe Asp Pro Lys Tyr Cys Glu 225 Arg Ser Gln Phe Ile His Met 245 Ser Ser Tyr Asn Thr Ile His Phe Asp 275 Arg Gly Lys Met Phe Gly Glu 295 His Leu Phe Thr Asn Lys Phe 310 Ala His Val Tyr Arg Asp Glu 325 Glu Ser Ile Gly Leu Arg Ala 355 Asn Glu Lys Val Met Lys Met 375 Ser Gly Ile Asp Leu Arg Ala 385 Tyr Thr Gln Ser His Ser Asn 405 Tyr Thr Gln Ser His Arg 420 Ala Phe Leu Thr Ser Ile Lys 425 Ala Phe Leu Thr Ser Ile Lys 425 Gly Lys Ser Glu Asp Glu Thr 455 Gly Lys Ser Glu Asp Glu Thr 455 Gly Lys Ser Glu Asp Glu Thr 455 Cys Asn Leu Gly Ala Met Asn 465 Ala Cha Arg Leu Asp Glu Thr 567 Asn Gln Arg Leu Asp Asn Ala Leu 500 Thr Ser Ala Pro Glu Pro Val Leu Gln Lys Glu Ile Ser Thr 535 Arg Arg Thr Ser Thr Ile Asn 545 Asn Lys Phe Thr Phe Tyr Asn	195	Asn Gly Lys Arg Thr Asp Glu Phe Lys 215 Phe Asp Pro Lys Tyr Cys Glu Lys Gly 230 Arg Ser Gln Phe Ile His Met Ala Ile Ser Ser Tyr Asn Thr Ile His Leu Ser 265 Phe Asp Trp Trp Lys Leu Phe Ala Ser Gly Lys Met Phe Gly Glu Ala Lys 295 Arg Gly Lys Met Phe Gly Glu Ala Lys 295 Ala His Val Tyr Asp Asp Glu Ile Val 325 Glu Ser Ile Gly Leu Arg Ala Lys Val 345 His Gln Arg Lys Glu Pro Ala Thr Leu 365 Asn Glu Lys Val Met Lys Met Asn Phe 375 Ser Gly Ile Asp Leu Arg Asp Ser Gly Ile Val 365 Asn Glu Ser His Ser Asn Ser Gly 405 Tyr Thr Gln Ser His Ser Asn Ser Gly 405 Tyr Thr Gln Ser His Asp His Arg Trp Phe 425 Ala Phe Leu Thr Ser Ile Lys Asp Cys 435 Pro Leu Met Tyr Leu Gln Arg Phe Phe 465 Gly Lys Ser Glu Asp Glu Thr Ala Phe 465 Cys Asn Leu Gly Ala Met Asn Pro Leu 485 Thr Ser Ala Pro Glu Pro Val Ala Asp 505 Thr Ser Ala Pro Glu Pro Val Ala Asp 505 Thr Ser Ala Pro Glu Pro Val Ala Asp 505 Thr Ser Ala Pro Glu Pro Val Ala Asp 505 Arg Arg Thr Ser Thr Ile Asn Gly Met 545 Asn Lys Phe Thr Phe Tyr Asn Met Leu	Asn Gly Lys Arg Thr Asp Glu Phe Lys Pro 215	Asn Gly Lys Arg Thr Asp Glu Phe Lys Pro His 235 Arg Ser Gln Phe 144 His Met Ala Ile Ser Leu 250 Ser Ser Tyr Asn Thr Ile His Leu 3er Pro Gly 275 Phe Asp Trp Trp Lys Leu Phe Ala Ser Asn Met 275 Arg Gly Lys Met Phe Gly Glu Ala Lys Glu Ser 290 His Leu Phe Thr Asn Lys Phe Ser Phe Met Leu 315 Ala His Val Tyr Arg Asp Glu Ile Val Asp Ile 325 Glu Ser Ile Gly Leu Arg Ala Lys Val Asp Asp 375 Asn Glu Lys Val Met Lys Met His Val Ser 375 Asn Gly Ile Asp Leu Arg Val Met His Val Ser 375 Tyr Thr Gln Ser His Ser Asn Ser Gly Asp Ala 405 Tyr Thr Gln Ser His Arg Trp Phe Asp Ile 425 Ala Phe Leu Thr Ser Ile Lys Asp Cys Val Arg 440 Pro Leu Met Tyr Leu Gln Arg Phe Phe Tyr Glu 465 Cys Asn Leu Gly Asn Asn Ala Leu Gln Glu Cys Cys Cys Asn Leu Gln Arg Leu Gln Lys Sils Phe Tyr Cys Cys Asn Leu Gln Asp Asn Asn Sot Sils Phe Phe Tyr Glu 485 Asn Gln Arg Leu Asn Asn Asn Asn Pro Leu Glu Thr 485 Cys Asn Leu Gly Asn Asn Asn Asn Pro Leu Glu Cys Cys Cys Cys Cys Cys Asn Leu Gln Arg Leu Gln Cys	Asn Gly Lys Arg Thr Asp Glu Phe Lys Pro His Tyr 220 Phe Asp Pro Lys Tyr Cys Glu Lys Gly His Asp Ser 235 Arg Ser Gln Phe Ile His Met Ala Ile Ser Leu Glu 245 Ser Ser Tyr Asn Thr Ile His Leu Ser Pro Gly Thr 260 Phe Asp Trp Trp Lys Leu Phe Ala Ser Asn Met Gln 275 Arg Gly Lys Met Phe Gly Glu Ala Lys Glu Ser Val 310 Ala His Val Tyr Arg Asp Glu Ile Val Asp Ile Asn 330 Glu Ser Ile Gly Leu Arg Ala Lys Val Asp Phe 345 Asn Glu Lys Val Met Lys Met Ala Thr Leu Tyr His Glu 355 Asn Gly Ile Asp Leu Arg Ala Lys Val Asp Phe 388 Asn Gly Ile Asp Leu Arg Ala Lys Val Asp Phe 388 Tyr Thr Gln Ser His Ser Asn Ser Gly Asp Ala Lys 380 Tyr Thr Gln Ser His Asp Asp Asp Fre Asp Phe 395 Tyr Thr Gln Ser His Asp Asp Asp Fre Asp Ser Gly Asp Ala Lys 405 Ala Phe Leu Thr Ser Ile Lys Asp Cys Val Arg Thr 435 Cys Asn Leu Gly Ala Met Asn Pro Leu Gly Aff Aff Aff Cys Asp Asp Asp Phe 395 Tyr Gln Arg Leu Gln Arg Phe Phe Tyr Glu Arg 460 Gly Lys Ser Glu Asp Glu Thr Ala Phe Gly Lys Glu 465 Cys Asn Leu Gly Ala Met Asn Pro Leu Glu Thr Arg 485 Val Gln Arg Leu Asp Ala Leu Gln Glu Gln Val Lys 505 Thr Ser Ala Pro Glu Pro Val Ala Asp Leu Lys Lys 515 Leu Gln Lys Glu Ile Ser Thr Thr Lys Ala Gly Val Arg Arg Arg Arg Thr Ser Ala Pro Glu Pro Val Ala Asp Leu Lys Lys 540 Arg Arg Thr Ser Thr Ile Asn Gly Met Asn Asn Ser 555 Asn Lys Phe Thr Phe Tyr Asn Met Leu Leu Lys Trp	Asn Gly Lys Arg Thr Asp Glu Phe Lys Pro His Tyr Glu 2205 Arg Ser Gln Phe Lys Tyr Cys Glu Lys Gly His Asp Ser Tyr 230	Asn Glu Lys Net Phe Gly Glu Ala Lys Glu Ser Val Leu Glu Ser I Glu Val 325 Ala Glu Lys Val Reg Thr Asp Glu Phe Lys Pro His Tyr Glu Val 225 Arg Ser Gln Phe Ile His Met Ala Ile Ser Leu Glu Ser Thr Ala 265 Ser Ser Tyr Asn Thr Ile His Leu Ser Pro Gly Thr Phe Gln 265 Phe Asp Trp Trp Lys Leu Phe Ala Ser Asn Met Gln Leu Pro 280 Arg Gly Lys Met Phe Gly Glu Ala Lys Glu Ser Val Lys Phe 300 Ala His Val Tyr Arg Asp Glu Ile Val Asp Ile Asn Asn Asp 305 Glu Ser Ile Gly Leu Arg Ala Lys Val Asp Asp Phe Met Val 345 Asn Glu Lys Val Met Lys Met Asn Phe Asp Leu Gly 365 Asn Glu Lys Val Met Lys Met Asn Phe Asp Leu Gly 385 Gry Ile Asp Leu Arg Val Met His Val Ser Phe Leu Gln 385 Ser Gly Ile Asp Leu Arg Val Met His Val Ser Phe Leu Gln 395 Tyr Thr Gln Ser His Ser Asn Ser Gly Asp Ala Lys Ser Thr 405 Ala Phe Leu Thr Ser Ile Lys Asp Cys Val Arg Thr Val Asp 420 Ala Phe Leu Thr Ser Ile Lys Asp Cys Val Arg Thr Val Asp 485 Cys Asn Leu Gly Ala Met Asn Phe Gly Lys Glu Val 350 Cys Asn Leu Gly Ala Met Asn Phe Gly Lys Glu Val Asp 485 Val Gln Arg Leu Asp Glu Thr Ala Phe Gly Lys Glu Val 350 Cys Asn Leu Gly Ala Met Asn Pro Leu Gln Glu Val 350 Thr Ser Ala Pro Glu Pro Val Ala Asp Leu Lys Lys Leu Asn 485 Val Gln Arg Leu Asn Ala Leu Gln Glu Gln Val Lys Lys Leu Soo Soo Soo Soo Soo Soo Soo Soo Soo So	Asn Gly Lys Arg Thr Asp Glu Phe Lys Pro His Tyr Glu Val Gln 210 Phe Asp Pro Lys Tyr Cys Glu Lys Gly His Asp Ser Tyr Ala Gly 225 Pro Gln Phe Ile His Met Ala Ile Ser Leu Glu Ser Thr Asn 255 Pro Gly Thr Phe Gln Gln Cys 275 Pro Gly Thr Phe Gln Gln Cyr 275 Pro Lys Het Phe Ala Ser Asn Met Gln Leu Pro Ile 280 Pro Gly Uss Het Phe Gly Glu Ala Lys Glu Ser Val Lys Phe Ser 290 Pro Gly Thr Phe Gln Gln Cyr 290 Pro His Ash Lys Phe Ser Phe Met Leu Lys Ser Leu Phe 305 Pro Gly Uss Het Phe Gly Glu Ala Lys Glu Ser Val Lys Phe Ser 305 Pro Gly Ile Ash

	Arg	Asn	Leu	Thr 580	Leu	Lys	Tyr	Ile	His 585	Phe	Val	Lys	Leu	Lys 590	Ser	Gln
5	Leu	Arg			Leu	Ser	His	Lys		Ile	Glu	Thr	Leu		Lys	Met
	Met	Asp	595 Ser	Val	Asn	Ala	Tyr	600 As n	Asp	Lys	Asp	Asp	605 Leu	Ser	Ser	Thr
		610				•	615					620				
10	625	Glu				630					635					640
	Ser	Thr	Ser	Lys	A3p 645	Ile	Thr	Ser	Gln	Gln 650	Lys	Leu	Азр	Asn	Phe 655	Asn
	Thr	Ile	Leu	Arg 660	Glu	Thr	Arg	Pro	Asp 665	Glu	Lys	Val	Val	Glu 670	Asp	Tyr
15	Leu	Ile	Asp 675	Val	Ile	Ala	Pro	Gln 680	Ile	Gln	Leu	Gln	Ser 685	Glu	Asp	Tyr
	Pro	Asp 690	Ser	Val	Val	Leu	Ile 695	Ser	Thr	Pro	Ser	Ile 700	Lys	Gly	Lys	Ile
20	Leu 705	Ser	Ile	Arg	Asp	Ser 710	Arg	Asn	Asn	Ala	Asn 715	Gln	Ile	Leu	Leu	Glu 720
	Thr	Arg	Tyr	Gly	Ile 725	Leu	Leu	Lys	Asp	Ala 730	Asn	Val	Phe	Val	Leu 735	Asn
	Lys	Glu	Asp	Ile 740	Val	Gly	Cys	Pro	Asp 745	Met	Leu	Ser	Ile	Ser 750	Asn	Pro
25	Tyr	Gly	Ala 755	Lys	Ser	Asn	Trp	Pro 760	Pro	Trp	Leu	Gly	Thr 765	Glu	Ile	Thr
	Gln	Asn 770	Gly	Lys	Trp	Ala	Gly 775	Ala	Asn	As n	Leu	Leu 780	Ile	Glu	Lys	Leu
30	Ser 785	Val	Met	Thr	Met	Cys 790	Tyr	Glu	Ser	Glu	11e 795	Leu	Ser	Ser	Lys	Leu 800
	Ser	Pro	Asn	Ala	Gln 805	Asp	ser	Asp ·	Gln	Glu 810	Glu	Gln	Glu	Asn	Tyr 815	Asn
	Asp	Азр	Asn	Ser 820	Lys	Gln	Ala	Pro	Leu 825	Arg	Leu	Gly	Ile	Asp 830	Met	Pro
35	Ser	Val	Val 835	Ile	Thr	Ser	Thr	Ser 840	Ser	Gln	Tyr	Phe	Thr 845	Leu	Tyr	Val
	Ile	11e 850	Val	Ser	Leu	Leu	Phe 855	Tyr	Ser	Glu	Pro	Met 860	Ser	Lys	Val	Ile
40	His 865	Lys	Lys	Ile	Glu	Lys 870	Met	Lys	Phe	Ser	Ile 875	Asp	Phe	Glu	Дзр	Leu 880
	Gly	Ala	Leu	Thr	Ser 885	Arg	Leu	Thr	Lys	Met 890	Gln	Gln	His	His	Lys 895	Leu
45	Leu	Lys	Val	Leu 900	Ser	Xaa	Xaa	Xaa	Xaa 905	Phe	Pro	Xaa	Arg	Gly 910	As n	
	(2) INFO	RMAT I	ON E	OR S	eo i	D NO): 20):								
	(i)		LEN	IGTH:	626	bas	e pa	i: irs								
50		(B)	TYF	E: r	nucle	eic a	cid									

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

55

5	(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
	ATTCTTTGTT TGTTTGTTGA TTTTTGATCT CTTGTCTAGA ATCACTCATT AATATTTGAT	60
10	TCAGGGTTTT GATTTGCTAA ATAAGGGGTC TATTAGGAGG ATATTATATA TAATGTGATG	120
	TGGCGAAAAA AAAAAACAAG ATCTACTACT CTGTTGGATT TATTTGTGAT GGCGATTGAA	180
	GAGAAAACAC GTCTTTTTAA CGCGTTTTTT TATTTTTTGG AGAAGCAAAT TTCAAGCAAA	240
	GACTOTTATT GTGTTGCTTT TGATCCATTC AAATTTTGTA TTACTTTTCA TTAGAACTAT	300
15	AACTGTTCAT TATCAATGAC GTATACATGT CTGGTTCCTG TTATGTATTG TAATTTTAGT	360
	TAATTATAAG CCGTATATTG GTAGTATTCC TCTGTACTCA CAATGGAATT GGTCTTTCAA	420
	CAGCAACAAG TGTTATTTTC CCTGAATGTA GAAAATGAAA GGTAGTGTTT ACATATAGTT	480
20	GGAAATCAAG CCTCTGAAAT GAATCACAAT ATAATAACAA TTTGTAGTTG CAGAGAAAAA	540
	CAATTCAAGT TGACGGGTAG TTTTTTTTT TTCACTGCAT TTTTCAACGA AAACTAAATA	600
	AAATTTCGCT GATATTGATA AAGTAT	626
	(2) INFORMATION FOR SEQ ID NO: 21:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 652 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
30	(iii) HYPOTHETICAL: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
35	ATGGCGTCAA TTTCTGTTCC AATTGAAAAA GGATCATTTC ACGATGGAGA TGGATTCAAT	60
	CANCATCATT TAGGAGACCC AGTTATTTCA GGACCTCCCT ATATTATTAA ATTATTAAAC	120
	TTACCCGTCA CAGCTAATGA TTCATTTGTC CAAGACTTGT TTCAAAGCAG ATTTACCCCA	180
40	TATGTCAAAT TTAAAATTGT AACAGACCCC GCATCAAATA TTTTGGAGAC TCATGTCATT	240
	AGACAAGTGG CTTTTGTGGA ATTGGAATCG GCCAGTGATA TGTCAAAAGC TTTAAAATGG	300
	CATGATTTGT ATTATAAGAC AAATAGAAGA GTAACTGTTG AAGTGGCAGA TTTTAATGAT	360
45	TTTCAAAATT GTATTAAATT CAATCAAGAA CATGAACGTG AAATTATGCA AATCCAACAA	420
	GAATTCATTG CTCAGAAACA ACAACAACGG CAACCCAGAC ATATGGCTCT TTTAGATGAA	480
	TTTGAAAGAA ACCAGCGCGG TCCTGGATCA CCCTTGCATC AAAACCATGA TCACCACAAT	540
	CCCCACCCAC AACAACAACA ACACCATCAT TTCAATCCTA ATTTAAACAG ACCTTCAGGT	600
50	AGATCAAGTC TTCCAATAGA TGAAACGTCT CATTCAAGAA GACTTTCTTT TG	652
	(2) INFORMATION FOR SEQ ID NO: 22:	
	(i) SEQUENCE CHARACTERISTICS:	

-31-

		(B (C) LE:) TY:) ST:	PE: RAND	amin EDNE:	o ac SS:	id	acid	5							
5	(ii)	MOL	ECUL	YT S	PE: 1	pept	ide									
	(iii)	HYP	OTHE:	rica	L: N	0										
								.	D 170	. 22						
10		SEQ											-1 -	•••	•	~ 1.
	1	Ala			5					10					15	
45	Asp	Gly	Phe	As n 20	Gln	His	His	Leu	Gly 25	Asp	Pro	Val	Ile	Ser 30	Gly	Pr
15	Pro	Tyr	11e 35	Il•	Lys	Leu	Leu	Asn 40	Leu	Pro	Val	Thr	Ala 45	Asn	Asp	Se
	Phe	Val 50	Gln	Asp	Leu	Phe	Gln 55	Ser	Arg	Phe	Thr	Pro	Tyr	Val	Lys	Ph
20	Lys 65	Ile	Val	Thr	Asp	Pro 70	Ala	Ser	Asn	Ile	Leu 75	Glu	Thr	His	Val	11e
	Arg	Gln	Val	Ala	Phe 85	Val	Glu	Leu	Glu	Ser 90	Ala	Ser	As p	Met	Ser 95	Ly
25	Ala	Leu	Lys	Trp 100	His	Asp	Leu	Tyr	туг 105	Lys	Thr	Asn	Arg	Arg 110	Val	Th
	Val	Glu	Val 115	Ala	Азр	Phe	neA	Asp 120	Phe	Gln	Asn	Cys	Ile 125	Lys	Phe	λsı
	Gln	Glu 130	His	Glu	Arg	Glu	Ile 135	Met	Gln	Ile	Gln	Gln 140	Glu	Phe	Ile	Ala
30	Gln 145	Lys	Gln	Gln	Gln	Arg 150	Gln	Pro	Arg	His	Met 155	Ala	Leu	Leu	Asp	Glv 160
	Phe	Glu	Arg	Asn	Gln 165	Arg	Gly	Pro	Gly	Ser 170	Pro	Leu	His	Gln	Asn 175	His
35	Азр	His	His	Asn 180	Pro	His	Pro	Gln	Gln 185	Gln	Gln	His	His	His 190	Phe	Asr
	Pro	Asn	Leu 195	Asn	Arg	Pro	Ser	Gly 200	Arg	Ser	Ser	Leu	Pro 205	Ile	Asp	Gli
	Thr	Ser 210	His	Ser	Arg	Arg	Le u 215	Ser	Phe							
40	(2) INFO	RMAT I	ON E	FOR S	SEQ I	D NO): 23):								
	(1)	(B)	LENCE LEN TYE STE	IGTH: PE: 1	: 151 nucle	13 ba	se p	air:	,							
45			TO													
	(ii)	MOLE	CULE	TYI	PE: c	DNA										
	(iii)	нүрс	THET	TICAL	L: NO											
50	(ix)	(A)	URE: NAP LOC	Œ/KI			feat	ure								

(D) OTHER INFORMATION:/note= "N = A or G or C or T"

(xi) S	EQUENCE	DESCRIPTION:	SEQ	ID	NO:	23:
--------	---------	--------------	-----	----	-----	-----

5	GTAGTTTGTG	AAGAAATTGA	AACAATCGGA	AAACAACAAT	ATCAAACTGA	TGCCCAATAA	60
	CACTGTATGT	ACCTAGATGG	ATTACCAAGA	TCTACTACAT	AAAATAATAA	AGGAGTTCCA	120
	CTCACTCAAA	GAGTTCAAAC	CATGGGATAG	CAGTGTTTTG	TATGAGACGT	TACTACGATC	180
10	AGTATTAACT	ACTTTGATCG	AACTTTTGGG	CATAGACAAT	CCACCCAGTT	ATCTACACCT	240
	CACCACCAAC	AATGATAGTA	TAGGTGATTT	GAAAATAAAA	TACTATGGAA	ATGCATTAAG	300
	CAAGTCAATC	AACGGTCATA	GCATGTTGCA	ATATCTTGAA	TCAAAGCATG	TATCGATATT	360
	ACAGGCCGTG	GTTGAGATTA	TTAATACGCG	ATCATATAGA	ATCAAAGAGT	CTTATTCTGC	420
15	TGTTTTCAAA	GACGTTTCTC	ATTTATTTGA	AAAACTACTA	AAGGAAAGAT	ATGAAGCTGA	480
	ATCTAATCTA	GAGGATTATA	TATTGCAGTG	CTTGATGTAC	GAGACCCAAT	TTTACCAAGG	540
	AATTGTTGAT	AATGTTTTAA	CTGCCGATGA	CACCGAAAAA	TTGGCTAGTT	TTTTGGGGAC	600
20	ACGACTATCT	GAAGAAGATT	CGATGTTTAG	CTATAGGGAT	ATAGATTATC	CACTAGAGTT	660
	AAACATTAAT	AATGAATCTC	TTGAAAAGAT	ATATAAAATT	TTCTTAGGAG	TCATTGGCAC	720
	CAAAAGATTC	GATATCAAGG	AGGTTGCGTC	TGCTGTTGTT	GGTGTGTATA	AACGACACCA	780
25	GAGAATAGAT	CATTTTGAAA	AGTTGGATTC	AGATGAGATT	TTGGGAAAGT	TTTTCAGAAA	840
25	TATATTGCCA	CAACTGTTCC	AGAGTGTGAC	AAATAAGGTT	TTCCGGGAAT	TTCACAAAGA	900
	GGTAGATGAC	CCACCATCGG	ACGTGCTAGA	CCAGCTAGAT	AATATTGTTG	ATGACTTTAT	960
	TGCGGTTGGA	ATTGAAGGGG	TAGATTTGGG	CTTTCCGGCT	TTGTTCAGAC	ACTACATAAA	1020
30	ATTCATGAAC	GAAATTTTTC	CCACTGTGGT	CGAGGATGCT	GACCGCGATT	TTGTTGCAAG	1080
	AATTAATAGT	TTAATTGCTC	AAGTCTTGGA	GTTTAAAGAC	GATGAAAAAT	CCTGTGATAT	1140
	CAATCAAGTG	GTATCTGAAT	TTGTTTCATT	ACAAAGTTTG	CTACTTAAGA	ATAACTATCT	1200
35	TTCACCATCT	ACATTATTGA	TGCGTGCAAG	TACTCACGAT	TACTATAAAA	ATTTACAGAT	1260
	CGTGAAAATA	ACCTTTGATG	GATGGAATGA	GAATTCAAAG	AGGATATTGA	aattggagaa	1320
	CAGCGGCTTT	TTACAAAGCA	AGACATTGCC	AAAGTATTTA	aaattatggt	ACTCAAAAAG	1380
40	TATGAAGTTG	AATGAATTAT	GTAACCGGGT	AGATGAATTT	TATAATGGAG	AACTTTGTCG	1440
40						CNCAAAAATG	1500
	GGAGGGTTGC	TGA					1513

(2) INFORMATION FOR SEQ ID NO: 24:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 478 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: unknown

- 50 (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO

55

	(xi)	SEQU	JENCE	e des	CRI	PTIO	V: S1	ZQ II	: סא	24	:					
	Met 1	Asp	Tyr	Gln	Asp 5	Leu	Leu	His	Lys	Ile 10	Ile	Lys	Glu	Phe	His 15	Ser
5	Leu	Lys	Glu	Phe 20	Lys	Pro	Trp	Asp	Ser 25	Ser	Val	Leu	Tyr	Glu 30	Thr	Leu
	Leu	Arg	Ser 35	Val	Leu	Thr	Thr	Leu 40	Ile	Glu	Leu	Leu	Gly 45	Ile	qeA	Asn
10	Pro	Pro 50	Ser	Tyr	Leu	His	Leu 55	Thr	Thr	Asn	Asn	Asp 60	Ser	Ile	Gly	Asp
	Leu 65	Lys	Ile	Lys	Tyr	Tyr 70	Gly	Asn	Ala	Leu	Ser 75	Lys	Ser	Ile	Asn	80 Gly
	His	Ser	Met	Leu	Gln 85	Tyr	Leu	Gļu	Ser	Lys 90	His	Val	Ser	Ile	Le u 95	Gln
15	Ala	Val	Val	Glu 100	Ile	Ile	Asn	Thr	Arg 105	Ser	Tyr	Arg	lle	Lys 110	G) u	Ser
	Tyr	Ser	Ala 115	Val	Phe	Lys	Asp	Val 120	Ser	His	Leu	Phe	Glu 125	Lys	Leu	Leu
20	Lys	Glu 130	Arg	Tyr	Glu	Ala	Glu 135	Ser	Asn	Leu	Glu	Asp 140	Tyr	Ile	Leu	Gln
	Cys 145	Leu	Met	Tyr	Gl u	Thr 150	Gln	Phe	Tyr	Gln	Gly 155	Ile	Val	Asp	Asn	Val 160
25	Leu	Thr	Ala	Asp	Asp 165	Thr	Glu	Lys	Leu	Ala 170	Ser	Phe	Leu	Gly	Thr 175	Arg
-	Leu	Ser	Glu	Glu 180	Asp	Ser	Met	Phe	Ser 185	Tyr	Arg	Asp	Ile	Asp 190	Tyr	Pro
	Leu	Glu	Leu 195	Asn	Ile	Asn	Asn	Glu 200	Ser	Leu	Glu	Lys	11e 205	Tyr	Lys	Ile
30	Phe	Leu 210	Gly	Val	Ile	Gly	Thr 215	Lys	Arg	Phe	Asp	11e 220	Lys	Glu	Val	Ala
	Ser 225	Ala	Val	Val	Gly	Val 230	Tyr	Lys	Arg	His	Gln 235	Arg	Ile	Asp	His	Phe 240
35	Glu	Lys	Leu	Asp	Ser 245	Asp	Glu	Ile	Leu	Gly 250	Lys	Phe	Phe	Arg	Asn 255	Ile
	Leu	Pro	Gln	Ser 260	Phe	Gln	ser	Val	Thr 265	Asn	Lys	Val	Phe	Arg 270	Glu	Phe
40	His	Lys	Glu 275	Val	Asp	Азр	Pro	Pro 280	Ser	Asp	Val	Leu	Asp 285	Gln	Leu	Asp
40	Asn	Ile 290	Val	qeA	Asp	Phe	11e 295	Ala	Val	Gly	Ile	Glu 300	Gly	Val	Asp	Leu
	Gly 305	Phe	Pro	Ala	Leu	Phe 310	Arg	His	Tyr	Ile	Lys 315	Phe	Met	Asn	Glu	11e 320
45	Phe	DIO	The	Val	Val 325	Glu	Asp	Ala	Asp	Arg 330	Asp	Phe	Val	Ala	Arg 335	Ile
	Asn	Ser	Leu	Ile 340	Ala	Gln	Val	Leu	Glu 345	Phe	Lys	Asp	Asp	Glu 350	Lys	Ser
50	Суз	Asp	11e 355	Asn	Gln	Val	Val	Ser 360	Glu	Phe	Val	Ser	Leu 365	Gln	Ser	Leu
	Leu	Leu	Lys	Asn	Asn	Tyr	Leu	Ser	Pro	Ser	Thr	Leu	Leu	Met	Arg	Ala

	370		375	380	
	Ser Thr 1 385	is Asp Tyr Tyr 390	Lys Asn Leu Gl	n Ile Val Lys Ile 395	Thr Phe 400
5	Asp Gly T	rp Asn Glu Asn 405	Ser Lys Arg II 41	e Leu Lys Leu Glu O	Asn Ser 415
	Gly Phe I	eu Gln Ser Lys 420	Thr Leu Pro Ly 425	s Tyr Leu Lys Leu 430	Trp Tyr
10		er Met Lys Leu 35	Asn Glu Leu Cy. 440	s Asn Arg Val Asp 445	Glu Phe
	Tyr Asn G 450	ly Glu Leu Cys	Arg Lys Val Let 455	u Gly Ile Val Gly 460	Arg Val
15	Thr Thr L 465	ys Met Ser Ile 470	Asn Xaa Gln Ly:	s Trp Glu Gly Cys 475	
,,	(2) INFORMATIC	N FOR SEQ ID NO): 25:		
20	(A) (B) (C)	NCE CHARACTERIS LENGTH: 436 bas TYPE: nucleic a STRANDEDNESS: s TOPOLOGY: linea	e pairs scid single		
	(ii) MOLEC	ULE TYPE: cDNA			
	(iii) HYPOT	HETICAL: NO			
25	(xi) SEQUE	NCE DESCRIPTION	i: SEQ ID NO: 25	5:	,
	• •			TTAAATGATA AATTG	AAATA 60
				TACTGGTACT TTCTA	
30				TTGCATTTTC GAGACO	
				CTAGTGAAAC TAGTCO	
				CTTACTATGC GITTA	
35				CAATCTTTGA ACTTG	
33				TTCATACAAA TTCATO	
	ACATCTACAT AAG				436
		N FOR SEQ ID NO	: 26:		
40	(i) SEQUE (A) (B) (C)	NCE CHARACTERIS LENGTH: 717 bas IYPE: nucleic a STRANDEDNESS: S TOPOLOGY: linea	TICS: e pairs cid ingle		
45	(ii) MOLEC	ULE TYPE: cDNA		1	
	(iii) HYPOT	HETICAL: NO			
50			: SEQ ID NO: 26	S: GTACACTTGC TAGTT	rgaat 60
				•	

	TTACGTTTTT CCTCTTTACG TTGTTTCACA ATGGCTGCAC GTTCTTCAAA ATTTATTCCC	120
	TTCTTCTTGG TTGGTCTTAT ATCGTTCTCA TCTTCAGGCT TCCTCCTC TTGTAACCCT	180
	TCTTTTCTA ATAGTTTGAA ATAGTTCTTT CTTAATCTAG CCCTATGGGT TAATGCACGT	240
5	TTTATATCTT GAGACTTGGC TTCTCGACGA TCTATAAATT TCTTTTTTGA TTTAAATGAA	300
	TTTTTATTAT TTGGATGCAT TGTTGTGGAG GTGTATTTGA TAGGTTGATA ACTAGAAATA	360
	AAAACTATGT GAAAGAACAA AATGCCAATC ACTAAAAAAA ATTTAAGATG AGTATGAAAT	420
10	CAAAACTTTA CGACATCTTT GCGACATGCA CATTATGAGC GACATTTTGA TTCGATACCA	480
	GAAATAGACA GATTTAGACA GGGTCTATAA CAGAGAAATC AACAATTAAC TGGTATCAAC	540
	CTTANGATTA AAAATGGTCT ATGGCGATAT GAACTGTTGT GATGAAAAAC AATATATTTG	600
	GAAATACTTC TTTTCATTTG ACAATTTTTT ATAAAATTTT GGCAACAATT TTGTACCTAA	660
15	AAATTCTTTT GTCTTCAAAA GTGAAATGTA ATATAGAAAT ACTATTACAA CCAAACA	717
	(2) INFORMATION FOR SEQ ID NO: 27:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 667 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
	TITAGITITA TATIGATGAT GITTITAAGI GCITGITTAT CATGGIGGAT GGAAAITAGA	60
30	ATGAGTAAAT TGAATGGAAA ATCACTGCAA CACCAACAAC AACCACTGGT GGATACGAAA	120
	ATTTAGTGTA CAAATTTCTG CCAAAAAAT ACAATAAAAA CCGCTTATAG TCTTCTACTG	180
	ACATARCARC ACAAGTCART ARATCARCAR CTCRTRARCA ATGTAGACTT ARTACTATCG	240
35	CTTAATTATT TAAACTATAA TAAATACCCT ATAGTATTAT GCCTTTGTCA ATGTGTGTAG	300
33	AATTTGGTTA TTACATATCC ATGTGTAATA TATATGTTGA TCAAAAAACG CGATCTTCTC	360
	TTTGGTGTAG TGTGTTACAC AAAAAATTCA CTAGTCTAGG TCACATGATA ATCACGTGAA	420
	AATCAAAAAT TIGITGAAAT TGAATTTCCT CAATTTTGAA ATTTTGTTTG AAATTTTTTT	480
40	TTTGCTTTAC AAAAAGACTC CATTTTGTTT TCCATTTCAC AACCAATTAC TTAATTCCTC	540
	TTTTTCATAA TTAATAACTA TCATTACTTA CAACTACAAA CAACTACGAT CATTTCCTAA	600
	GAAAAAGCAA CGAGGGCGAA TTGAGACATT AATCCCCTTT ATTTTATCAT CATGCCTTAT	660
45	ACAGAAC	667
40	(2) INFORMATION FOR SEQ ID NO: 28:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 165 base pairs (B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA	
	/	

(iii) HYPOTHETICAL: NO

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
	AACTATTGCC AATGGTAAAT ATGCCAGTGA AATCGAGAAT TTTAATAAGT CGGTCCCTCT	60
	TARGETCCCA TTCARATTCA CTRATGCACA ATTGGATCTT TATGCTGCTA GCACACATAR	120
10	CCAAGAGCCA ATATCCTAGT AACGACGCAC CATAGTAGAC CGAAT	165
10	(2) INFORMATION FOR SEQ ID NO: 29:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 207 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
20	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION:120 (D) OTHER INFORMATION:/note= "N = A or C or G or T"</pre>	
25	(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION:129 (D) OTHER INFORMATION:/note= "N = A or T or C or G"	
30	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION:162 (D) OTHER INFORMATION:/note= "N = A or T or C or G"</pre>	
	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION:178 (D) OTHER INFORMATION:/note= "N = A or T or C or G"</pre>	
35	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION:194 (D) OTHER INFORMATION:/note= "N = A or T or C or G"</pre>	
40	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION:195 (D) OTHER INFORMATION:/note= "N = A or T or C or G"</pre>	
45	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION:199 (D) OTHER INFORMATION:/note= "N = A or T or C or G"</pre>	
45	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION:203 (D) OTHER INFORMATION:/note= "N = A or T or C or G"</pre>	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
	ATGAAGATTT CACCAGAGAC AGTAAATAAA CTACAACTGG ATGCATCGTG TATAAGAAAC	6

	ATCTGTATTT TAGCACATGT CGACCACGGT AAAACCTCAT TGAGTGACTC ATTATTAGCN	120
	ACCARTGGNA TCATTTCCCA ACGTATGGCA GGTARAGTTA GNTATCTTGA TTCGAGANGA	180
E	GATGAACAAT TGANNGGTNT AANCATG	207
5	(2) INFORMATION FOR SEQ ID NO: 30:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: peptide	
	(iii) HYPOTHETICAL: NO	
	•	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:	
	Met Lys Ile Ser Pro Glu Thr Val Asn Lys Leu Gln Ser Asp Ala Ser	
	1 5 10 15	
20	Cys Ile Arg Asn Ile Cys Ile Leu Ala His Val Asp His Gly Lys Thr 20 25 30	
	Ser Leu Ser Asp Ser Leu Leu Xaa Thr Asn Xaa Ile Ile Ser Gln Arg 35 40 45	
25	Met Ala Gly Lys Val Xaa Tyr Leu Asp Ser Arg Xaa Asp Glu Gln Leu 50 55 60	
25	Xaa Gly Xaa Xaa Met 65	
	(2) INFORMATION FOR SEQ ID NO: 31:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2510 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
35	(iii) HYPOTHETICAL: NO	
40	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION:2481</pre>	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:	
	AAGTCATGCG ATTGCAACAA GGATCACAAG AACCAGAAGT TCACGAACAT TTGATTAATT	60
		120
45		180
		240
	GGTTAATCAC AGAATGGAAA TTGTCTCCCT TGGAGGCATA CCAACACATT TCCAGAATTA	300
50	TAGAACAAGT AAACTCTGTG ATTGGGTCAT TTTTTGCTGG TGATAGACTA GAAGATGACT	360
	TGAATTGGCG TGAGGCTGGT TCTGTCGGGG AGTTTATCGA GAAGAGTGAT GAAGACTTGT	420

	ATTTCACACC	TGAAAAGAAT	AATGTAATAT	TTGCCTCGGC	AATAGATGGA	TGGGCATTTT	480
	CAGTCAATAC	ATTTGCCAAA	ATATACCTGA	AAAAATTAGG	GTTCTCTCAA	CAAGCATTGT	540
E	CAAAAACTCT	CTGGGGAGAC	TITTACTTGG	ATATGAAAAA	TAAAAAAATC	ATCCCTGGTA	600
5	AAAATTGAA	AAATAATAGT	AACAGTTTGA	AGCCATTATT	TGTTTCGTTG	ATTTTGGACC	660
	AGGTTTGGGC	TGTTTATGAA	AACTGTGTTA	TTGAAAGAAA	TCAAGACAAG	TTGGAAAAA	720
	TCATTGAGAA	ATTAGGGGCC	AAAATCACCC	CTCGTGATTT	GCGATCCAAA	GATTACAAGA	780
10	acttgctaaa	CTTGATTATG	TCTCAGTGGA	TTCCTTTGAG	TCATGCCATA	TTGGGGTCAG	840
	TGATTGAATA	CTTGCCAAGC	CCCATTGTTG	CTCAGCGTGA	AAGAATAGAC	AAGATTTTGG	900
	ATGAAACGAT	TTATAGTGCA	GTGGATTCAG	AACTGAGATA	AATCCAAACT	AGTCGACCCT	960
15	TCATTTGTCA	AGGCGATGCA	GGAATGTGAT	AGTTCACACC	CGGAAACCCA	TACAATAGCA	1020
	TATGTATCAA	AATTGTTGTC	AATCCCCAAT	GAAGACTTAC	CCAAAGCTAG	TAATGCCGCT	1080
	ACTGGAGGAT	TGACGGCCGA	TGAAATCCAA	GAACGAGGAA	GAATTGCTCG	AGAATTAGCC	1140
	AAAAAGGCAT	CTGAAGCAGC	TGCTTTGGCA	CAAGAAGGTT	CCAAAAATGA	AGATGAGTTT	1200
20	GCCATTAAAC	CCAAGAAAGA	TCCATTTGAA	TGGGAATTTG	AGGAGGACGA	TTTTGAGAAT	1260
	GAGGAAGATG	AGAGCGATGC	AAACGCAGTT	GAAGAATCAA	CTGAAACCAT	AGTGGGTTTC	1320
	ACTCGTATTT	ATTCTGGATC	GTTATCTAGA	GGCCAAAAGC	TCACGGTAAT	TGGACCCAAA	1380
25	TACGACCCTT	CATTACCTAG	AGACCATCAA	ACCAACTTTG	AACAAATAAC	CAATGAAGTT	1440
	GAAATTAAAG	ACTTGTTTTT	AATCATGGGA	CGAGAATTAG	TGAGAATGGA	AAAAGTCCTG	1500
	CGGGTAATAT	TGTTGGGGTT	GTTGGATTGG	ATACGCCGTG	CTTAAGAATG	CCACAATTTG	1560
	CTCACCGTTA	CCTGAAGATA	AACCATACAT	TAATTTAGCT	TCAACATCAA	CCTTGATCCA	1620
30	CAATAAACCA	ATTATGAAAA	TAGCAGTTGA	ACCAACAAAC	CCAATAAAAC	TAGCAAAATT	1680
	GGAACGAGGA	TTAGATTTAT	TGGCCAAAGC	CGACCCGGTT	TTGGAATGGT	ATGTCGACGA	1740
	CGAGTCAGGT	GAATTGATTG	TTTGTGTTGC	TGGAGAATTG	CATCTAGAAC	GATGCTTGAA	1800
35	agatttagaa	GAGAGATTCG	CTAAGGGTTG	TGAAGTTACC	GTCAAAGAGC	CAGTCATTCC	1860
	CTTCAGAGAG	GGGTTGGCAG	ATGACAAAAT	CAGTACCAAC	ACCAATAATA	ACAACGACGA	1920
	CAATGAAGAT	CATGAATTAG	ATGAAAACGA	AGATGAGCTT	GCTGATTTAG	AGTTTGATAT	1980
	TTCTCCGTTG	CCATTAGAAG	TGACTCAGTT	TTTAATTGAG	AATGAAACGA	TTATTGCCGA	2040
40	AATTGTCAAC	AACAAGCAAG	ATACTCATGA	AATTAGAAAC	GATTTTATTG	AAAAATTTGC	2100
	CACTATTATT	GATAATTCTA	ATTTGGCTAC	ACAATTTCCA	GACACCAAGT	CTTTTATCAA	2160
	CAATATAATT	TGCTTTGGAC	CTAAACGTGT	TGGGCCTAAT	ATTTTCATTG	AAGATTATGG	2220
45	GTTAAACAAA	TTTAGACATC	TACTTGGTGA	ATCTGCCACT	GAATCTCGAT	TIGTTTATGA	2280
	GAATAATGTG	TTCAATGGGG	TTCAATTGGT	ATTCAATGGG	GGTCCGTTAG	CATCAGAGCC	2340
	AATGCAAGGT	ATTATTGTTA	GACTTAAGAA	GGCAGAAAAA	AGAGAAGTTG	ACGAGGATAA	2400
	GATAGTCAAC	CCTGGTAAAA	TAATCACACA	GACTCGTGAC	TTGATTTACA	AGCGGTTTTT	2460
50	GCAAAAATCA	CCACGCTTGT	NCCTTGCAAT	GTATACGTGT	GAAATCCAAG		2510

(2) INFORMATION FOR SEQ ID NO: 32:

	(i)	(B (C	UENCI) LEI) TYI) STI) TOI	ngth Pe: Rand:	: 31 amin EDNE:	0 am: o ac: 55:	ino i id		3							
5	(ii)	MOL	ECULI	E TY	PE: j	pept:	ide									
	(iii)	HYP	OTHE:	TICA	L: N	•										
10	(xi)	SEQ	JENCI	e des	5CRII	PTIO	N: S1	EQ II	D NO:	: 32	:					
		Met										Glu	Val	ніз	G1u 15	His
15	Leu	Ile	Asn	Leu 20	Ile	qeA	Ser	Pro	Gly 25	His	Ile	Asp	Phe	Ser 30	Ser	G1u
	Val	Ser	Thr 35	Ser	Ser	Arg	Leu	Cys 40	Asp	Gly	Ala	Val	Val 45	Leu	Val	Asp
20	Val	Val 50	G1u	Gly	Val	Суз	Ser 55	Gln	Thr	Val	Asn	Val 60	Leu	Arg	Gln	Суз
20	Trp 65	Ile	Asp	Lys	Leu	Lys 70	Pro	Leu	Leu	Val	Ile 75	Asn	Lys	Ile	Asp	Arg 80
	Leu	Ile	Thr	Glu	Trp 85	Lys	Leu	Ser	Pro	Leu 90	Glu	Ala	Tyr	Gln	His 95	Ile
25	Ser	Arg	Ile	Ile 100	Glu	Gln	Val	Asn	Ser 105	Val	Ile	Gly	Ser	Phe 110	Phe	Ala
		Asp	115					120					125			
30		Glu 130					135					140				
	145	Asn				150					155					160
35		Asn			165					170					1/3	
		Ala		180					185					190		
40		Lys	195					200					205			
		Lys 210					215					220				
	225	Glu				230					235			•		240
45		Glu		,	245					250					233	
		Tyr		260					265					210		
50		His	275					280					285			
	Val	Ala 290	Gln	Arg	Glu	Arg	11e 295	Asp	Lys	Ile	Leu	300	Glu	Thr	116	TYF

	Ser 305	Ala	Val	Asp	Ser	Glu 310										
	(2) INFO	ITAMS	ON P	R:	SEQ :	ID N	o: 3	3:								
5	(1)	(B) (C)	LEN TYP STP	igth E: (and)	: 180 Lmin EDNE:	am:	ino a		s							
10	(ii)	MOLE	CULE	TY	PE: 1	pept	lde									
	(iii)	нуро	THET	'ICA	L: N	•										
15	(xi)	SEQU	ence	DES	SCRII	PTIO	4: SI	EQ II	ON O	: 33	:					
	Asp 1	Lys	Ser	Lys	Leu 5	Val	Asp	Pro	Ser	Phe 10	Val	Lys	Ala	Met	Gln 15	G1
20	Cys	Asp	Ser	ser 20	His	Pro	Glu	Thr	His 25	Thr	Ile	Ala	Tyr	Val 30	Ser	Ly
	Leu	Leu	Ser 35	Ile	Pro	Asn	Glu	Asp 40	Leu	Pro	Lys	Ala	Ser 45	Asn	Ala	Al
	Thr	Gly 50	Gly	Leu	Thr	Ala	Asp 55	Glu	Ile	Gln	Glu	Arg 60	Gly	Arg	Ile	Al
25	Arg 65	Glu	Leu	Ala	Lys	Lys 70	Ala	Ser	Glu	Àla	Ala 75	Ala	Leu	Ala	Gln	G1: 80
	Gly	Ser	Lys	Asn	Glu 85	Asp	Glu	Phe	Ala	Ile 90	Lys	Pro	Lys	Lys	Asp 95	Pr
30	Phe	Glu	Trp	Glu 100	Phe	Glu	Glu	Asp	Asp 105	Phe	Glu	Asn	Glu	Glu 110	Asp	Gl
	Ser	Asp	Ala 115	As n	Ala	Val	Glu	Glu 120	Ser	Thr	Glu	Thr	11e 125	Val	Gly	Ph
35	Thr	Arg 130	Ile	Tyr	Ser	Gly	Ser 135	Leu	Ser	Arg	Gly	Gln 140	Lys	Leu	Thr	Va:
	Ile 145	Gly	Pro	Lys	Tyr	Asp 150	Pro	Ser	Leu	Pro	Arg 155	Asp	His	Gln	Thr	16
40	Phe	Glu	Gln	Ile	Thr 165	Asn	Glu	Val	Glu	Ile 170	Lys	Asp	Leu	Phe	Leu 175	11
	Met	Gly .	Arg	Glu 180	Leu	Val	Arg	Met	Glu 185	Lys	Val	Ser				
	(2) INFO	MATI	ON F	OR S	SEQ I	מ מו	o: 3	4 :								
45	(i)	(B)	LEN TYP STR	GTH: E: 4 VANDI	: 330 mino DNE:	s ami	ino a	S: acid:	•							
50	(ii)	MOLE	CULE	TY	PE: (DNA										

(iii) HYPOTHETICAL: NO

		SEQ														
	Gly 1	Asn	Ile	Val	Gly 5	Val	Val	Gly	Leu	Asp 10	Xaa	Ala	Val	Leu	Lys 15	Asn
5	Ala	Thr	Ile	Cys 20	Ser	Pro	Leu	Pro	Glu 25	Asp	ГЛЭ	Pro	Tyr	Ile 30	A5n	Leu
	Al a	Ser	Thr 35	Ser	Thr	Leu	Ile	His 40	Asn	Lys	Pro	Ile	Met 45	Lys	Ile	Ala
10	Val	Glu 50	Pro	Thr	Asn	Pro	Ile 55	Lys	Leu	Ala	Lys	Leu 60	Ģlu	Arg	Gly	Leu
	65	Leu				70					75					80
15		Ser			85			•		90					90	
,5	Arg	Суз	Leu	Lys 100	Asp	Leu	Glu	Glu	Arg 105	Phe	Ala	Lys	Gly	Cys 110	Glu	Val
	Thr	Val	Lys 115	Glu	Pro	Val	Ile	Pro 120	Phe	Arg	Glu	Gly	Leu 125	Ala	Asp	Азр
20	_	11e 130					135					140				
	145					150					155					160
25		Pro			165					170					1/3	
		Ile		180					185					190		
30		Азр	195					200					205			
50		Thr 210					215					220				
	225	Gly				230					235					240
35		Asn			245					250					255	
		V al		260					265					270		
40		Gly	275					280					203			
		Lys 290					295					300				
45	305					310					312					720
	Gln	Lys	Ser	Pro	Arg 325	Leu	Xaa	Leu	Ala	Met 330	Tyr	Thr	Cys	Glu	11e 335	Gln
	(2) INFO	RMAT	ION I	FOR :	SEQ :	ID N	o: 3!	5 :								
50	(5)	SEO	UENCI	R CH	ARAC'	TERI:	STIC	S:								

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 841 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: single

	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
5	(iii) HYPOTHETICAL: NO	
	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION:8 (D) OTHER INFORMATION:/note= "N = A or T or C or G"</pre>	
10	<pre>(ix) FEATURE:</pre>	
15	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION:18 (D) OTHER INFORMATION:/note= "N = A or T or C or G"</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
20	CGCGAAGNNT CAATCAINTC AGAAGAAATG AAAGAAGGTA CTCCGTTCTT TACTAITGTG	6
	GCAAGAATCC CTGTGATTGA GGCATTTGGG TTTTCCGAGG ATATTAGAAA GAAGACATCC	12
	GGGGCAGCTA GTCCTCAATT AGTTTTTGAT GGGTATGATA TGTTAGATAT CGATCCATTT	18
	TGGGTTCCAC ATACTGAAGA AGAATTAGAA GAATTGGGTG AATTTGCAGA AAGAGAAAAT	24
25	GTTGCTAGAA GATATATGAA TAATATCAGA AGAAGAAAAG GGTTATTTGT TGATGAGAAA	30
	GTCGTCAAAA ATGCTGAAAA GCAAAGAACT TTGAAAAGAG ATTAGATTAT CCAGTAAAAC	36
	AGGCAATATG TGTGAAATTG TTACAGAAAA GACAGATACG ATGTGGCCAT TATTTGTTTA	42
	ATATTCAACA ACAAGTAAAT GTATTGATAT AGATGTATAA TATAGTCAAA TGTTGAGACT	48
30	ATCCGAATAG ACATAGACAC ACAACTCAGC CTGTCAGGGC TGTTTATTAA GTTGTGATGT	54
	ATACTAAAAT CCATCCACAC TTCTCGTAAT TGTAGGGAAG AATTACAAAA AAGATCACAT	60
	AAAAATAATA ATTCTATCAC ACTTTGAAAA TTTGATTGAA GGTGTTACTA GTATTGTTTC	66
35	AACATTACTC TTTTCAAACA ACGAGATCCA AATACTGCAC AATCTTCAAA CGAACGGAGT	72
	TACATCACTA TAGTTTTCTA TTGTTGTAAG ATCAATACAG ACAAAAAGAA AGTGTAGCAT	78
	AAATAATTGA TTGCAATTTG CCAAACTAGA AAACAAAGAG GAAAAAAAGA AAAAAATTTC	84
	A	84
40	(2) INFORMATION FOR SEQ ID NO: 36:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 114 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:	
45	(D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: peptide	
	(iii) HYPOTHETICAL: NO	
50		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	

	Arg Glu Xaa Ser Ile Xaa Ser Glu Glu Met Lys Glu GIy Thr Pro Phe 1 15	
•	Phe Thr Ile Val Ala Arg Ile Pro Val Ile Glu Ala Phe Gly Phe Ser 20 25 30	
5	Glu Asp Ile Arg Lys Lys Thr Ser Gly Ala Ala Ser Pro Gln Leu Val	
	Phe Asp Gly Tyr Asp Met Leu Asp Ile Asp Pro Phe Trp Val Pro His 50 55 60	
10	Thr Glu Glu Glu Leu Glu Glu Leu Gly Glu Phe Ala Glu Arg Glu Asn 65 70 75 80	
	Val Ala Arg Arg Tyr Met Asn Asn Ile Arg Arg Arg Lys Gly Leu Phe 85 90 95	
15	Val Asp Glu Lys Val Val Lys Asn Ala Glu Lys Gln Arg Thr Leu Lys 100 105 110	
	Arg Asp	
	(2) INFORMATION FOR SEQ ID NO: 37:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 564 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO	
30	(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	61
,	AACCTAAAAA TGGCTAAGTT CATCAAATCT GGTAAAGTTG CTATTGTTGT AAGAGGTCGT TACGCTGGTA AAAAAGTAGT CATTGTGAAA CCACATGATG AAGGTACCAA ATCTCACCCA	120
	TTCCCACATG CCATTGTCGC TGGTATTGAA AGAGCTCCAT TGAAGGTTAC CAAGAAGATG	180
35	GATGCTAAAA AAGTTACCAA AAGAACTAAA GTCAAGCCAT TTGTTAAATT AGTAAACTAC	300
	AACCATTTAA TGCCAACTAG ATACTCATTG GATGTTGAAT CATTCAAATC TGCTGTCACT TCTGAAGCTT TAGAAGAACC ATCTCAAAGA GAAGAAGCTA AAAAAGTTGT CAAGAAGGCT	360
	TTTGAAGAAA AACATCAAGC TGGTAAGAAC AAATGGTTCT TCCAAAAATT ACACTTTTAA	420
40	GAAAGGAACC ACCTTTATTT GAATGTTTGT AATATAGGTT GAATCAGAGA GACAAAGTAG	480
	AAGAAAATAC AAAAAAGAGA GTATATCTGT ATAGTATAAT TTAATGGGGG TCTAATTTAC	540
	TTACCACTTT ATTCGTGCAT TATT	564
45	(2) INFORMATION FOP SEQ ID NO: 38:	
-	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 136 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown	
50	(ii) MOLECULE TYPE: peptide	
	(iii) HYPOTHETICAL: NO	

		SEQ															
	Met 1	Ala	Lys	Phe	Ile 5	Lys	Ser	Gly	Lys	Val 10	Ala	Ile	Val	Val	Arg 15	Gly	
5	Arg	Tyr	Ala	Gly 20	Lys	Lys	Val	Val	11e 25	Val	Lys	Pro	His	Asp 30	Glu	Gly	
	Thr	Lys	Ser 35	His	Pro	Phe	Pro	His 40	Ala	Ile	Val	Ala	Gly 45	Ile	Glu	Arg	
10	Ala	Pro 50	Leu	Lys	Val	Thr	Lys 55	Lys	Met	Asp	Ala	Lys	Lys	Val	Thr	Lys	
	Arg 65	Thr	Lys	Val	Lys	Pro 70	Phe	Val	Lys	Leu	Val 75	As n	Tyr	Asn	His	Leu 80	
15	Met	Pro	Thr	Arg	Tyr 85	Ser	Leu	Asp	Val	Glu 90	Ser	Phe	Lys	Ser	Ala 95	Val	
	Thr	Ser	Glu	Ala 100	Leu	Glu	Glu	Pro	Ser 105	Gln	Arg	Glu	Glu	Ala 110	Lys	Lys	
20	Val	Val	Lys 115	Lys	Ala	Phe	Glu	Glu 120	Lys	His	Gln	Ala	Gly 125	Lys	Asn	Lys	
20	Trp	Phe 130	Phe	Gln	Lys	Leu	His 135	Phe									
	(2) INFO	RMAT	ON I	FOR S	SEQ I	מא סו): 39	9:									
25	(i)	(B)	LEN TYP STF	NGTH: PE: r RANDI	119 nucle DNES	reris 2 ba eic a 55: s linea	se p cid ingl	airs	3								
30	(ii) (iii)																
35	(xi)	SEQU	JENCE	E DES	CRIE	TION	l: SE	ıı g	NO:	39:	:						
••	TTTGAAAC	a Ti	AAGI	CCA	TC	AACA	ATC	TTAT	TCAP	AA.	TACT	CGC	A TA	CGT	CAAT	•	6
	GTCAATTC	CA TO	TACI	rcag1	. ACC	GATT	TTT	TTAT	TAAT?	AA (CTAC	TGGI	C T	TAAT	TGA		12
	AAAAGACT:	rg co	GGT1	TAAC!	A AGO	CAGG	TGC	TGG1	CAAT	TG (TTTT	'AAAC	G T	GATO	CAGI	•	18
40	TGGCCTTT	ST C	\TTC#	\GAT1	TAC	ATGI	TCT	CTAT	'GAAG	GT 7	rtgg#	\TTG1	G G1	GAT	ATTA		24
	TGTGATGG	5C C#	CGA	ATTO	CTO	GGAC	TGT	TGC1	'GAAC	TA (GTGA	AGAG	G T	AGT	agt1	•	30
	TGCAGTTG	GA GA	ATCG1	GTC	CT1	GTGI	CGG	ccc	CAATO	GA 1	GTGC	TCT1	T G	AAA1	ACTO	;	36
45	TCTTACTG	ST AF	CGAT	TAAT	; TTI	CTAC	CAA	GTC	TTTT	TG (SATTO	GTTI	G G	ATTGO	GTTA	١.	42
	CAATGGAGG	ST TA	CGAC	CAA1	TT1	TGT1	AGT	CAAC	SAGAC	CA A	AG AA Z	CTT	G T	:AAG/	TCCC	:	48
	TGACAATG	OA TI	TTC	GAGO	AAC	CTGC	AGC	TAT1	CACGO	AT (GCCG1	ATTO	A CI	CCTI	ACCA	١.	54
50	TGCTATCA	AG TO	TGC	AGGT	TTC	GTCC	AGC	AAG1	KTAATA	ATA :	[AAT]	TATO	G G	GCT	GTGC	;	60
	ATTAGGAGG	ST AJ	ACGC1	TATT	: AAC	TTGC	:AAA	AGC	TTT	GT (CGA	\GGT1	A CI	GTT	TGGA		66

	TARARAGGAT RAGGCRAGAG ACCRAGCTRA GGCCTTTGGA GCTGACCAGG TTTACAGTGA	720
	ATTACCAGAC AGCGTTTTAC CTGGGTCATT CAGTGCTTGT TTTGATTTTG TTTCGGTTCA	780
_	GGCAACATAC GATTTGTGTC AAAAGTATTG TGAGCCAAAG GGTACTATTG TTCCCGTAGG	840
5	TCTAGGTGCA ACTTCGCTTA ACATAAATCT TGCTGATTTA GATCTTCGTG AAATTACCGT	900
	CAAGGGCTCA TTCTGGGGTA CCCTGATGGA TTTAAGAGAA GCATTTGAAT TGGCTGCACA	960
	GGGAAAGGTC AAACCAAATG TTGCTCATGC TCCATTGTCA GAATTGCCTA AGTATATGGA 1	020
10	GAAGTTGAGA GCCGGTGGTT ATGAAGGAAG AGTCGTGTTT AATCCATAAT ACTGAAAAGT 10	080
(GAAGAAACCA TCAATAATAG CTTGGTGAGT ATGTATGGGA AATATTCATT TATGTATGTA 1	140
	GGTCATTTAT ATGTGTGTAA TGATTTCTAA TCTGAATTTC GTACAATTCT TT	192
	(2) INFORMATION FOR SEQ ID NO: 40:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 336 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown	
20	(ii) MOLECULE TYPE: peptide	
	(iii) HYPOTHETICAL: NO	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
	Met Ser Ile Pro Ser Thr Gln Tyr Gly Phe Phe Tyr Asn Lys Ala Ser 1 5 10 15	
	Gly Leu Asn Leu Lys Lys Asp Leu Pro Val Asn Lys Pro Gly Ala Gly 20 25 30	
30	Gln Leu Leu Lys Val Asp Ala Val Gly Leu Cys His Ser Asp Leu 35 40 45	
	His Val Leu Tyr Glu Gly Leu Asp Cys Gly Asp Asn Tyr Val Met Gly 50 55 60	
35	His Glu Ile Ala Gly Thr Val Ala Glu Leu Gly Glu Glu Val Ser Glu 65 70 75 80	
	Phe Ala Val Gly Asp Arg Val Ala Cys Val Gly Pro Asn Gly Cys Gly	
	85 90 95	
40	Leu Cys Lys His Cys Leu Thr Gly Asn Asp Asn Val Cys Thr Lys Ser 100 105 110	
	Phe Leu Asp Trp Phe Gly Leu Gly Tyr Asn Gly Gly Tyr Glu Gln Phe 115 120 125	
	Leu Leu Val Lys Arg Pro Arg Asn Leu Val Lys Ile Pro Asp Asn Val 130 135 140	
45	Thr Ser Glu Glu Ala Ala Ala Ile Thr Asp Ala Val Leu Thr Pro Tyr 145 150 155 160	
	His Ala Ile Lys Ser Ala Gly Val Gly Pro Ala Ser Asn Ile Leu Ile 165 170 175	
50	Ile Gly Ala Gly Gly Leu Gly Gly Asn Ala Ile Gln Val Ala Lys Ala 180 185 190	
	Phe Gly Ala Lys Val Thr Val Leu Asp Lys Lys Asp Lys Ala Arg Asp	

		195			200			2	05			
	Gln Ala 210	Lys Ala	Phe Gly	Ala 215	Asp Gl	n Val	Tyr S	er G	lu Leu	Pro	Asp	
5	Ser Val 225	Leu Pro	Gly Ser 230	Phe	Ser Al	a Cys	Phe 3 235	Lap Pl	he Val	Ser	Val 240	
	Gln Ala	Thr Tyr	Asp Leu 245	Cys	Gln Ly	s Tyr 250	Cys (ilu P	ro Lys	Gly 255	Thr	
10	Ile Val	Pro Val 260	Gly Leu	Gly .	Ala Th 26	r Ser 5	Leu J	lsn I	le Asn 270	Leu	Ala	
	Asp Leu	Asp Leu 275	Arg Glu	Ile	Thr Va 280	l Lys	Gly S	Ser Pl	he Trp 85	Gly	Thr	
	Ser Met 290	Asp Leu	Arg Glu	Ala 295	Phe Gl	u Leu	Ala A	la G 100	ln Gly	Lys	Val	
15	Lys Pro 305	Asn Val	Ala His 310		Pro Le	u Ser	Glu I 315	Leu P	ro Lys	Tyr	Met 320	
	Glu Lys	Leu Arg	Ala Gly 325	Gly	Tyr Gl	u Gly 330	Arg V	al V	al Phe	Asn 335	Pro	
20	(2) INFORMAT	ON FOR S	EQ ID N	0: 41	:							
25	(A) (B) (C)	JENCE CHA LENGTH: TYPE: 1 STRANDE TOPOLOG	: 2021 b nucleic DNESS:	ase pa acid singl	airs							
	(ii) MOLI	CULE TYP	E: cDNA									
	(iii) HYPO	THETICAL	: NO									
30	(B)	TURE: NAME/KE LOCATIO OTHER I	N:1270	_		"R = }	\ or G	;"				
35	(B)	TURE: NAME/KE LOCATIO OTHER I	N:1395			"R = 3	A or G	;"				
	(xi) SEQ								00181	N C TT T	. 4	60
40	ATGGAAAAAA T											
	STTAGAGGAG A											
	ACGTCACTG AL											
	:AAGTTCAAT T											30
	TGTTAGGAT GO											
	TTGCTGATG TO											
	CCACTCAAA C1											30
EA	CTGTTGTTG C											10
	AGCCTGTTG C)0

	GATGCTGAAG ACGTTGAGGA	AAGAGACTTT	GACAAGAAAC	CTTTGGATAA	CGTTCCATCG	660
	GCATATAAAC CAACAAAGGT	TAACATTGAC	GAATTGAGAA	AACAAAAATC	AGATACAACT	720
-	AGCTCAACTC CTAAAACATT	CAAATCTGAA	CCACAAGAAG	AAAAGAATGA	CGATGATGGG	78
•	CARTCCARAC CTTTATCGGA	AAGGATGAAA	GCCTATGATC	AACCATCAAG	TAGTGATGGA	840
	AGATTGACTT CTTTACCAAA	ACCAAAGATT	GGACATTCTG	TTGCCGATAA	ATATAAAGCT	900
	AGTGCATCTG GGAATGGTGC	TGCTCCTGCG	TTTGGTGCTA	AACCAGCATT	TGGTACACAA	960
10	TCAGTTGATT CAAGAAAGGA	TAAATTGGTA	GGTGGTTTGT	CGAGAGATTT	TGGTGCTGAA	1020
	AATGGAAAAA CTCCGGCACA	AATTTGGGCT	Gaaaaaaaggg	GAAAATACAA	AACAGTGGCC	1080
	TCCGATGAGA AAGAAACTAA	CTCAAGTGAA	AAAGTTGAT G	AGCCAGAGGA	ACATCATGCT	1140
15	GCCGACTTGG CCAAAAAATT	TGAAGAAAAG	GCAAATATTG	CTGGCGATAC	TCCTTCCTTG	1200
	CCAACTAGAA ACTTACCACC	AGCACCACCA	GCACGAGAAA	CCGCAATTCC	ATCTAACGAA	1260
	AAAGACAAAR AAGAAAAGGA	AGAGGAAGAA	CAAGCTCCAG	CACCATCTTT	GCCTACTAGA	1320
	AACTTACCAC CACCGTCACA	AAGACAACCT	GAGCCCGAAC	CAGAACCAGA	AGAAGAGGAG	1380
20	GAAGAAGAAG AAGARGAGGC	TCCTGCTCCA	AGCTTACCAG	CAAGAAATCT	CCCACCAGCA	1440
	CCAAAAGCAG AAGCAGAAGA	ATCAAAAAA	CAGTCAACCA	CAGCCACCGC	AGAGTATGAT	1500
	TACGAAAAGG ACGAAGATAA	TGAAATTGGA	TTCTCCGAAG	GTGACTTGAT	TATTGATATT	1560
25	GAATTTGTGG ATGACGATTG	GTGGCAAGGT	AAACATGCTA	AAACTGGTGA	AGTTGGTTTG	1620
	TTTCCTGCCA CTTATGTGTC	ATTAAATGAA	AAAGCTGCTG	ACAAAGAAGA	GGAAGCCCCA	1680
	GCTCCAGCTC CAGCGCCATC	ATTACCTTCT	agagaagaaa	CACAAGCAGC	ACCAGCATTA	1740
	CCAAGTAGAT CAGAGCAAAA	ACCAGAATCA	AAAACTGCTA	CAGCTGAATA	CGATTACGAA	1800
30	AAGGACGAAG ACAATGAAAT	TGGTTTTTCA	GAAGGTGATT	TGATTGTTGA	AATCGAATTT	1860
	GTTGACGATG ATTGGTGGCA	AGGAAAACAT	TCCAAGACAG	GAGAAGTCGG	ATTGTTCCCT	1920
	GCTAACTATG TTGTCTTGAA	TGAGTAGATT	TAGTATAAAC	AATATTCGTT	TTTTTTTAT	1980
35	ATGAATCTAT AATATAAATA	CAAAGAAAAG	ATAAATTGGT	G		2021
	(2) INFORMATION FOR SI	EQ ID NO: 42	:			
40	(i) SEQUENCE CHAI (A) LENGTH: (B) TYPE: an (C) STRANDE: (D) TOPOLOG: (11) MOLECULE TYPE	648 amino a nino acid DNESS: Y: unknown	: cids			
	(iii) HYPOTHETICAL					
45	,,					

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

Met Glu Lys Ile Asp Ile Asn Thr Asn Ser Asn Lys Ile Gln Gln Ala 1 5 10 15

Tyr Asp Lys Val Val Arg Gly Asp Pro Asn Ala Thr Phe Val Val Tyr 20 25 30

	Ser	Val	Asp 35	Lys	Asn	Ala	Thr	Met 40	qzA	Val	Thr	Glu	Thr 45	Gly	Ąsp	Gly
5	Ser	Leu 50	Glu	Asp	Phe	Val	Glu 55	His	Phe	Thr	Asp	Gly 60	Gln	Val	Gln	Phe
,	Gly 65	Leu	Ala	Arg	Val	Thr 70	Val	Pro	Gly	Ser	Asp 75	Val	Ser	Lys	Asn	Ile 80
	Leu	Leu	Gly	Trp	Cy3 85	Pro	qεĄ	Ser	Ala	Pro 90	Ala	Lys	Leu	Arg	Leu 95	Ser
10	Phe	Ala	As n	Asn 100	Phe	Ala	Asp	Val	Ser 105	Arg	Val	Leu	Ser	Gly 110	Tyr	His
	Val	Gln	Ile 115	Thr	Ala	Arg	Asp	Gln 120	Asp	Asp	Leu	Asp	Val 125	As n	Glu	Phe
15	Leu	Asn 130	Arg	Val	Gly	Ala	Ala 135	Ala	Gly	Ala	Arg	Tyr 140	Ser	Thr	Gln	Thr
	Ser 145	Gly	Leu	Lys	Lys	Pro 150	Ser	Pro	Ala	A) a	Pro 155	Lys	Pro	Thr	Ser	Lys 160
	Pro	Val	Val	Ala	Lys 165	Ser	Ser	Ser	Ala	Ser 170	Lys	Pro	Ser	Phe	Val 175	Pro
20	Lys	Ser	Thr	Gly 180	Lys	Pro	Val	Ala	Pro 185	Ala	Lys	Pro	Lys	Pro 190	Lys	Asn
	Ile	Thr	Lys 195	Asp	Ala	Gly	Trp	Gly 200	qzA	Ala	Glu	Asp	Val 205	Glu	Glu	Arg
25	Asp	Phe 210	Asp	Lys	Lys	Pro	Leu 215	Asp	Asn	Val	Pro	Ser 220	Ala	Tyr	Lys	Pro
	Thr 225	Lys	Val	Asn	Ile	Asp 230	Glu	Leu	Arg	Lys	Gln 235	Lys	Ser	Asp	Thr	Thr 240
30	Ser	Ser	Thr	Pro	Lys 245	Thr	Phe	Lys	Ser	Glu 250	Pro	Gln	Glu	Glu	Lys 255	Asn
	Asp	Asp	Asp	Gly 260	Gln	Ser	Lys	Pro	Leu 265	Ser	Glu	Arg	Met	Lys 270	Ala	Tyr
05	Asp	Gln	Pro 275	Ser	Ser	Ser	Asp	Gly 280	Arg	Leu	Thr	Ser	Leu 285	Pro	Lys	Pro
35	Lys	Ile 290	Gly	His	Ser	Val	Ala 295	Азр	Lys	Tyr	Lys	Ala 300	Ser	Ala	Ser	Gly
	Asn 305	Gly	Ala	Ala	Pro	Ala 310	Phe	Gly	Ala	Lys	Pro 315	Ala	Phe	Gly	Thr	Gln 320
40	Ser	Val	Asp	Ser	Arg 325	Lys	qeA	Lys	Leu	Val 330	Gly	Gly	Leu	Ser	Arg 335	Asp
	Phe	Gly	Ala	Glu 340	Asn	Gly	Lys	Thr	Pro 345	Ala	Gln	Ile	Trp	Ala 350	Glu	Lys
45	Arg	Gly	Lys 355	Tyr	Lys	Thr	Val	Ala 360	Ser	Asp	Glu	Lys	Glu 365	Thr	Asn	Ser
	Ser	Glu 370	Lys	Val	Asp	Glu	Pro 375	Glu	Glu	His	His	Ala 380	Ala	Asp	Leu	Ala
E0.	Lys 385	Lys	Phe	Glu	Glu	Lys 390	Ala	Asn	Ile	Ala	Gly 395	Asp	The	Pro	Ser	Leu 400
50	Pro	Thr	Arg	Asn	Leu 405	Pro	Pro	Ala	Pro	Pro 410	Ala	Arg	Glu	Thr	Ala 415	Ile

	Pro	Ser	Asn	G1u 420	Lys	qeA	Lys	Xaa	G1u 425	Lys	Glu	Glu	Glu	Glu 430	Gln	Ala	
5	Pro	Ala	Pro 435	Ser	Leu	Pro	Thr	Arg 440	Asn	Leu	Pro	Pro	Pro 445	Ser	Gln	Arg	
3	Gln	Pro 450	Glu	Pro	Glu	Pro	Glu 455	Pro	Glu	Glu	Glu	Glu 460	Glu	Glu	Glu	Glu	
	Xaa 465	Glu	Ala	Pro	Ala	Pro 470	Ser	Leu	Pro	Ala	Arg 475	Asn	Leu	Pro	Pro	Ala 480	
10	Pro	Lys	Ala	Glu	Ala 485	Glu	Glu	Ser	Lys	Lys 490	Gln	Ser	Thr	Thr	Ala 495	Thr	
	Ala	Glu	Tyr	Asp 500		Glu	Lys	qeA	Glu 505	Asp	Asn	Glu	Ile	Gly 510	Phe	Ser	
15	Glu	Gly			Ile	Ile	Asp	Ile 520		Phe	Val	Asp	Asp 525	Asp	Trp	Trp	
	Gln	Gly	515 Lys	His	Ala	Lys			Glu	Val	Gly	Leu 540		Pro	Ala	Thr	
\	Tyr	530 Val	Ser	Leu	Asn		535 Lys	Ala	Ala	Asp	Lys		Glu	Glu	Ala	Pro	
20	545 Ala	Pro	Ala	Pro	Ala	550 Pro	Ser	Leu	Pro	Ser	555 Arg	Glu	Glu	Thr	Gln	560 Ala	
		Pro			565					570					5/5		
25		Thr		580					585					590			
			595					600					605				
		Ser 610					615					620					
30	Trp 625	Trp	Gln	G] À	Lys	His 630	Ser	Lys	Thr	Gly	G1u 635	Val	GIÀ	Leu	Pne	640	
	Ala	Asn	Tyr	Val	Val 645	Leu	Asn	Glu									
35	(2) INFO	rmati Sequ															
	(1)	(A) (B)	LEN TYI	IGTH:	: 134 nucle	io ba	se r	airs	1								
40	(ii)	(D)	TOE				ır										
40	(iii)																
45		SEQU															60
	ATGTGTGA																120
	TTATTATG																180
50	ACAATTGT																240
	CCTAAATG															•	300
	GAATTGGA	AA AG	TTGC	SAAGO	: AA	V AGG(TTA	GATT	GTC	TG A	\TAG#	\TTG1	T TC	,TTTC	.ATCI	•	200

-50-

	AGAGCTCATT TGGTCTTTGA CTTCCATCAA CGTACTGATA AATTGAAAGA AGCTGAATTA 3	60
	TCAACCAATA AGAAATCAAT AGGTACTACC GGTAAAGGTA TTGGTCCAAC TTACTCAACC 4	20
	AAGGCAAGTA GATCAGGTAT CAGAGTCCAC CATTTAGTCA ACCCTGATCC AGAAGCTTGG 4	80
5	GAAGAATTCA AAACTAGATA TTTGAGATTA GTCGAGAGTA GACAAAAAAG ATACGGTGAA 5	40
	TTTGAATATG ATCCTAAGGA AGAATTGGCA AGATTTGAAA AATACCGTGA AACCTTGAGA 6	00
	CCATTCGTCG TCGACTCCGT CAACTTCATG CACGAAGCTA TTGCTGCCAA TAAAAAAATC 6	60
10	TIGGITGAAG GIGCTAAIGC GITAAIGTIG GATATIGATI ICGGIACTIA ICCATACGIC 7.	20
	ACTICITCAT CAACTGGTAT TGGTGGTGTT TTGACTGGGT TGGGTATTCC TCCAAGAACC 7	80
	ATCAGAAATG TCTATGGTGT TGTTAAAGCC TACACCACTA GAGTTGGTGA GGGTCCATTC 8	40
	CCAACAGAAC AATTGAACAA GGTAGGTGAA ACTTTGCAAG ATGTTGGTGC CGAATATGGT 9	00
15	GTTACTACTG GAAGAAAAG AAGATGTGGT TGGTTGGATT TGGTTGTGTT GAAATATTCC 9	60
	AACCTGATCA ACGGATACAC TTCTTTGAAC ATCACCAAAT TGGATGTTTT GGATAAATTC 10	20
	AAGGAAATTG AAGTTGGTGT TGCTTATAAA TTGAATGGAA AAGAGTTGCC AAGTTTCCCT 10	80
20	GAAGATTTGA TTGATTTAGC TAAAGTCGAG GTTGTGTATA AGAAATTCCC AGGTTGGGAA 11	40
	CAAGATATCA CCGGTATCAA GAAATATGAA GACTTGCCAG AAAACGCTAA GAACTATCTT 12	00
	AAATTCATTG AAGATTACTT GCAAGTTCCA ATCCAATGGG TAGGTACCGG TCCAGCTAGA 12	60
	GATTCTATGT TAGAAAAGAA GATTTAGTTG TACACATGCT ACGGAAGACG ATTAGATTTG 13	20
25	TTTTATTAGA TTAATAACCT 13	40
	(2) INFORMATION FOR SEQ ID NO: 44:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 428 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: peptide	
	(iii) HYPOTHETICAL: NO	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:	
40	Met Cys Asp Val Val Leu Gly Ser Gln Trp Gly Asp Glu Gly Lys Gly 1 10 15	
40	Lys Leu Val Asp Leu Leu Cys Asp Asp Ile Asp Val Cys Ala Arg Cys 20 25 30	
	Gln Gly Gly Asn Asn Ala Gly His Thr Ile Val Val Gly Lys Val Lys 35 40 45	
45	Tyr Asp Phe His Met Leu Pro Ser Gly Leu Val Asn Pro Lys Cys Gln 50 55 60	
	Asn Leu Val Gly Ser Gly Val Val Ile His Val Pro Ser Phe Phe Ala 65 70 75 80	
50	Glu Leu Glu Asn Leu Glu Ala Lys Gly Leu Asp Cys Arg Asp Arg Leu 85 90 95	
	Phe Val Ser Ser Arg Ala His Leu Val Phe Asp Phe His Gln Arg Thr	

55

-51-

				0 302 4	01 A=		
		100			105		110 .
	Asp Lys	Leu Lys 115	Glu Ala	Glu Leu 120	Ser Thr As	n Lys Lys 125	Ser Ile Gly
5	Thr Thr 130	Gly Lys	Gly Ile	Gly Pro 135	Thr Tyr Se	r Thr Lys	Ala Ser Arg
	_	Ile Arg	Val His	His Leu	Val Asn Pr 15	o Asp Pro	Glu Ala Trp 160
40		Phe Lys		Tyr Leu	Arg Leu Va	l Glu Ser	Arg Gln Lys
10	Arg Tyr			Tyr Asp		u Glu Lev	Ala Arg Phe
	Glu Lys	180 Tyr Arg	Glu Thr	Leu Arg		l Val Asp 205	Ser Val Asn
15	Phe Met	195 His Glu	Ala Ile	200 Ala Ala	Asn Lys Ly	s Ile Leu	Val Glu Gly
	210 Ala Asn	Ala Leu	Met Leu	215 Asp Ile	Asp Phe Gl	220 y Thr Tyr	Pro Tyr Val
20	225		230		23	5	Z40 Leu Gly Ile
			245		250		255 Ala Tyr Thr
		260			265		270 Asn Lys Val
25		275		280		283	
	290			295		300	Thr Thr Gly
30	305		310		31	5	Lys Tyr Ser 320
			325		330		Leu Asp Val 335
		340			345		: Lys Leu Asn 350
35	Gly Lys	Glu Leu 355	Pro Ser	Phe Pro 360	Glu Asp Le	u Ile Asp 365	Leu Ala Lys
	Val Glu 370	Val Val	Tyr Lys	Lys Phe 375	Pro Gly Tr	p Glu Glr 380	Asp Ile Thr
40	Gly Ile 385	Lys Lys	Tyr Glu 390	Asp Leu	Pro Glu As	n Ala Lys 5	Asn Tyr Leu 400
	Lys Phe	Ile Glu	Asp Tyr 405	Leu Gln	Val Pro II 410	e Gln Tr	Val Gly Thr 415
45	Gly Pro	Ala Arg 420		Met Leu	Glu Lys Ly 425	s Ile	
	(2) INFORMAT	ION FOR	SEQ ID N	0: 45:			
	(i) SEQ	UENCE CH	ARACTERI	STICS:			
	(A)) LENGTH	: 2481 b nucleic	ase pair:	•		
50	(C	STRAND	EDNESS: GY: line	single			

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:	
	ATGACTGGTG AAGAAGATAA AAAACAACAT TTTGATGCTT CTGGTGCTTC TGCTGTAGAT	60
	GATAAAACAG CAACTGCAAT TTTAAGAAGA AAAAGAAAG ATAATGCCTT GGTCGTTGAT	120
	GACGCCACCA ACGATGACAA TTCTGTCATA ACCATGTCGT CAAACACAAT GGAATTGTTA	180
10	CARTTATTCC GTGGTGATAC AGTCTTGGTG AMAGGTAMGA AGAGMAAGGA CACAGTGTTG	240
	ATCGTTTTAG CTGATGATGA TATGCCTGAT GGCGTTGCTA GAGTTAACAG ATGTGTTCGT	300
	AACAATTTGC GTGTCAGATT GGGAGATATC GTTACTGTCC ATCCATGTCC TGATATTAAA	360
15	TATGCCAACA GAATCTCAGT ATTGCCAATT GCTGATACTG TTGAAGGTAT TAATGGTTCC	420
	TTATTCGACC TTTACTTGAA GCCATATTTT GTTGAAGCCT ATAGACCAGT GAGAAAAGGT	480
	GATTTATTCA CTGTGAGGGG TGGTATGAGA CAAGTAGAAT TCAAAGTTGT TGAAGTTGAC	540
	CCTGAAGAAA TIGCAATTGT TGCTCAAGAT ACCATTATTC ATTGTGAAGG AGAACCTATT	600
20	AATCGTGAAG ATGAAGAAAA TAGCTTGAAT GAAGTGGGTT ACGACGATAT TGGAGGTTGT	660
	AAGAAACAAA TGGCCCAAAT TAGAGAATTG GTTGAATTGC CTTTAAGACA TCCACAATTA	720
	TTCAAATCGA TTGGTATTAA GCCACCAAAG GGTATTTTGA TGTATGGTCC ACCTGGTACC	780
25	GGTAAAACCA TTATGGCAAG AGCAGTGGCC AATGAAACAG GTGCCTTCTT TTTCTTAATA	840
	ANTIGETCEAG ANATTATETC TANNATEGET GETERGTETE ANTICANTIT ANGANANGET	900
	TTTGAAGAGG CTGAAAAGAA TTCTCCTTCC ATTATTTTCA TTGATGAGAT TGACTCTATT	960
	GCCCCAAAGA GAGACAAAAC TAATGGTGAA GTAGAAAGAA GAGTTGTTTC TCAATTGTTA	1020
30	ACCOTTATGG ATGGTATGAA GGCCAGATCT AATGTAGTTG TTATTGCTGC TACTAACAGA	1080
	CCAAATTCTA TTGATCCTGC TTTGAGAAGA TTTGGAAGAT TCGACAGAGA AGTTGACATT	1140
	GGTGTTCCGG ATGCTGAAGG ACGTTTAGAG ATTTTGAGAA TCCACACAAA GAATATGAAA	1200
35	TTGGCTGATG ATGTTGACTT GGAAGCCATC GCTTCTGAAA CACATGGTTT CGTTGGTGCT	1260
30	GATATTGCTT CATTATGTTC AGAAGCTGCT ATGCAACAAA TCCGTGAAAA GATGGATCTT	1320
	ATCGACTIGG AAGAAGAAAC CATTGATACT GAAGTGTTGA ACTCTTTGGG TGTCACTCAA	1380
	GACAACTICA GATTIGCTCT CGGAAACTCC AACCCATCTG CCTIGCGTGA AACTGTTGTT	1440
40	GAAAATGITA AIGTCACTIG GGAIGATATI GGIGGITIGG ACAACAITAA GAATGAATTA	1500
	AAAGAAACCG TGGAGTATCC TGTTTTACAT CCAGATCAAT ACCAAAAATT CGGATTGGCA	1560
	CCAACAAAAG GTGTTTTGTT CTTTGGTCCA CCAGGTACTG GTAAGACACT TTTGGCCAAG	1620
45	GCTGTTGCTA CTGAAGTTTC TGCTAATTTC ATTTCTGTCA AAGGTCCAGA ATTGTTGAGT	1680
45	ATGTGGTATG GTGAATCTGA GTCTAATATC CGTGATATAT TTGACAAGGC CAGAGCTGCT	1740
	GCTCCTACTG TGGTGTTTTT GGATGAATTG GACTCCATTG CCAAAGCTAG AGGTGGTTCT	1800
	CACGGTGATG CTGGTGGTGC CTCCGACAGA GTGGTCAATC AATTGTTGAC TGAAATGGAC	1860
50	GGTATGAATG CTAAGAAGAA TGTGTTTGTC ATTGGTGCCA CTAACAGACC AGATCAAATT	1920
	THE TAXABLE PROTECTION OF THE CATCABITAN TITATETETE ATTECCAGAT	1980

	GAGCCAGCTA GATTGTCTAT TTTACAAGCT CAATTGAGAA ACACTCCATT AGAACCTGGT	2040
	TTGGACTTGA ACGAAATTGC CAAGATCACT CACGGTTTCT CGGGTGCAGA TTTGTCTTAT	2100
_	ATTGTTCAAA GATCTGCTAA ATTTGCTATT AAAGACTCTA TTGAAGCCCA AGTAAAGATT	2160
5	AACAAGATTA AAGAAGAAAA AGAAAAGGTG AAAACTGAAG ATGTTGATAT GAAGGTAGAT	2220
	GAAGTTGAAG AAGAAGACCC TGTGCCTTAC ATTACCAGAG CTCACTTTGA AGAGGCTATG	2280
	AAGACCGCAA AAAGATCTGT TTCAGACGCT GAATTACGTC GTTATGAGTC TTACGCTCAA	2340
10	CANTIGCAAG CCTCAAGAGG TCAATITTCT AGCTTTAGAT TCAATGAAAA TGCTGGTGCC	2400
	ACTGATAATG GTTCAGCAGC AGGTGCCAAC TCAGGTGCAG CTTTCGGAAA CGTTGAAGAG	2460
	GAAGACGATT TGTACAGTTG A	2481
15	(2) INFORMATION FOR SEQ ID NO: 46:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 826 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown	
20	(ii) MOLECULE TYPE: peptide	
	(iii) HYPOTHETICAL: NO	
	·	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:	
	Met Thr Gly Glu Glu Asp Lys Lys Gln His Phe Asp Ala Ser Gly Ala 1 5 10	
30	Ser Ala Val Asp Asp Lys Thr Ala Thr Ala Ile Leu Arg Arg Lys Lys 20 25 30	
	Lys Asp Asn Ala Leu Val Val Asp Asp Ala Thr Asn Asp Asp Asn Ser 35 40 45	
	Val Ile Thr Met Ser Ser Asn Thr Met Glu Leu Leu Gln Leu Phe Arg 50 55 60	
35	Gly Asp Thr Val Leu Val Lys Gly Lys Lys Arg Lys Asp Thr Val Leu 65 70 75 80	
	The Val Leu Ala Asp Asp Asp Met Pro Asp Gly Val Ala Arg Val Asn 85 90 95	
40	Arg Cys Val Arg Asn Asn Leu Arg Val Arg Leu Gly Asp Ile Val Thr 100 105 110	
	Val His Pro Cys Pro Asp Ile Lys Tyr Ala Asn Arg Ile Ser Val Leu 115 120 125	
45	Pro Ile Ala Asp Thr Val Glu Gly Ile Asn Gly Ser Leu Phe Asp Leu 130 135 140	
	Tyr Leu Lys Pro Tyr Phe Val Glu Ala Tyr Arg Pro Val Arg Lys Gly 145 150 155 160	
50	Asp Leu Phe Thr Val Arg Gly Gly Met Arg Gln Val Glu Phe Lys Val 165 170 175	
50	Val Glu Val Asp Pro Glu Glu Ile Ala Ile Val Ala Gln Asp Thr Ile 180 185 190	,

	Ile	His	Cys 195	Glu	Gly	Glu	Pro	Ile 200	Asn	Arg	Glu	Asp	Glu 205	Glu	Asn	Ser
5	Leu	Asn 210	Glu	Val	Gly	Tyr	Asp 215	Asp	Ile	Gly	Gly	Cys 220	Lys	Lys	Gln	Met
	Ala 225	Gln	Ile	λrg	Glu	Leu 230	Val	Glu	Leu	Pro	Leu 235	Arg	His	Pro	Gln	Leu 240
	Phe	Lys	Ser	Ile	Gly 245	Ile	Lys	Pro	Pro	Lys 250	Gly	Ile	Leu	Met	Tyr 255	Gly
10	Pro	Pro	Gly	Thr 260	Gly	Lys	Thr	Ile	Met 265	Ala	Arg	Ala	Va1	Ala 270	Asn	Glu
	Thr	Gly	Ala 275	Phe	Phe	Phe	Leu	11e 280	Asn	Gly	Pro	Glu	Ile 205	Met	Ser	Lys
15	Met	Ala 290	Gly	Gl u	Ser	Glu	Ser 295	Asn	Leu	Arg	Lys	Ala 300	Phe	Glu	Glu	Ala
	Glu 305	Lys	Asn	Ser	Pro	Ser 310	Ile	Ile	Phe	Ile	Asp 315	Glu	Ile	Asp	Ser	11e 320
20	Ala	Pro	Lys	Arg	Asp 325	Lys	Thr	Asn	Gly	Glu 330	Val	Glu	Arg	Arg	Val 335	Val
	Ser	Gln	Leu	Leu 340	Thr	Leu	Met	Asp	Gly 345	Met	Lys	Ala	Arg	Ser 350	Asn	Val
	Val	Val	11e 355	Ala	Ala	Thr	A s n	Arg 360	Pro	Asn	Ser	Ile	As p 365	Pro	Ala	Leu
25	Arg	Arg 370	Phe	Gly	Arg	Phe	Азр 375	Arg	Glu	Val	Asp	Ile 380	Gly	Val	Pro	Asp
	Ala 385	Glu	Gly	Arg	Leu	Glu 390	Ile	Leu	Arg	Ile	His 395	Thr	Lys	Asn	Met	Lys 400
30	Leu	Ala	Asp	Asp	Val 405	Asp	Leu	Glu	Ala	Ile 410	Ala	Ser	Glu	Thr	His 415	G] À
	Phe	Val	Gly	Ala 420	Asp	Ile	Ala	Ser	Leu 425	Суз	Ser	Glu	Ala	Ala 430	Met	Gln
35	Gln	Ile	Arg 435	G1 u	Lys	Met	Азр	Leu 440	Ile	Asp	Leu	Glu	Glu 445	Gl u	Thr	Ile
	Asp	Thr 450	G1u	Val	Leu	Asn	Ser 455	Leu	Gly	Val	Thr	Gln 460	Asp	Asn	Phe	Arg
40	Phe 465	Ala	Leu	Gly	Asn	Ser 470	Asn	Pro	Ser	Ala	Leu 475	Arg	Glu	Thr	Val	Val 480
40	Glu	Asn	Val	Asn	Val 485	Thr	Trp	qeA	Asp	11e 490	Gly	Gly	Leu	Asp	Asn 495	Ile
	Lys	Asn	Glu	Leu 500	Lys	Glu	Thr	Val	Glu 505	Tyr	Pro	Val	Leu	His 510	Pro	Asp
45	Gln	Tyr	Gln 515	Lys	Phe	Gly	Leu	Ala 520	Pro	Thr	Lys	Gly	Val 525	Leu	Phe	Phe
	Gly	Pro 530	Pro	Gly	Thr	Gly	Lys 535	Thr	Leu	Leu	Ala	Lys 540	Ala	Val	Ala	Thr
50	Glu 545	Val	Ser	Ala	Asn	Phe 550	Ile	Ser	Val	Lys	Gly 555	Pro	Glu	Leu	Leu	Ser 560
	Met	Trp	Tyr	Gly	Glu 565	Ser	Glu	Ser	As n	11e 570	Arg	qeA	Ile	Phe	Asp 575	Lys

	Ala	Arg	Ala	Ala 580	Ala	Pro	Thr	Val	Val 585	Phe	Leu	Asp	Glu	Leu 590	Asp	Ser	
	Ile	Ala	Lys 595	Ala	Arg	Gly	Cly	Ser 600	His	ely	qeA	Ala	Gly 605	Gly	Ala	Ser	
5	Asp	Arg 610	Va1	Val	Asn	Gln	Leu 615	Leu	Thr	Glu	Met	Asp 620	Gly	Met	Asn	Ala	
	Lys 625	Lys	Asn	Val	Phe	Val 630	Ile	Gly	Ala	Thr	Asn 635	Arg	Pro	Asp	Gln	Ile 640	
10	qeA	Pro	Ala	Leu	Leu 645	Arg	Pro	Gly	Arg	Leu 650	Asp	Gln	Leu	Ile	Tyr 655	Val	
	Pro	Leu	Pro	Asp 660	G lu	Pro	Ala	Arg	Leu 665	Ser	Ile	Leu	Gln	Ala 670	Gln	Leu	
15	Arg	Asn	Thr 675	Pro	Leu	Glu	Pro	680 61y	Leu	Asp	Leu	Asn	G1u 685	Ile	Ala	Lys	
	Ile	Thr 690	His	Gly	Phe	Ser	Gly 695	Ala	Asp	Leu	Ser	Tyr 700	Ile	Va1	Gln	Arg	
	Ser 705	Ala	Lys	Phe	Ala	Ile 710	Lys	Asp	Ser	Ile	Glu 715	Ala	Gln	Val	Lys	11e 720	
20	Asn	Lys	Ile	Lys	Glu 725	Glu	Lys	Glu	Lys	Val 730	Lys	Thr	Glu	Asp	Val 735	Asp	
	Met	Lys	Val	Asp 740	Glu	Val	Glu	Glu	G1u 745	Asp	Pro	Val	Pro	Tyr 750	Ile	Thr	
25	Arg	Ala	His 755	Phe	Gl u	Glu	Ala	Met 760	Lys	Thr	Ala	Lys	Arg 765	Ser	Val	Ser	
•	Ąsp	Ala 770	Glu	Leu	Arg	Arg	Tyr 775	Glu	Ser	Tyr	Ala	Gln 780	Gln	Leu	Gln	Ala	
30	Ser 785	Arg	Gly	Gln	Phe	Ser 790	Ser	Phe	Arg	Phe	Asn 795	Glu	neA	Ala	Gly	Ala 800	
	Thr	Asp	Asn	Gly	Ser 805	Ala	Ala	Gly	Ala	A5 n 810	Ser	Gly	Ala	Ala	Phe 815	Gly	
	Asn	Val	Glu	Glu 820	Glu	qeA	Asp	Leu	Tyr 825	Ser							
35	(2) INFO	RMATI	ON F	OR S	EQ I	D NO): 47	7:									
40	(i)	(B) (C)	ENCE LEN TYP STR TOP	GTH: E: n Ande	191 ucle	.8 ba ic a is: s	se p cid ingl	airs	1								
40	(ii)																
	(iii)	нчрс	THET	ICAL	.: NC)											
45																	
	(xi)																60
	TTTTTTTT																120
50	TCAGACTTT																180
	CACGACAGA																240
	CAUGACAGA	AC AC	.А.А.А.А	CTAA	. AGT	.AAA`I	CLA	1 GMC	~3r\/\ ⁰	444 7	G I MA						

	TCACCACAAC	TTCAAGAGCC	ATTAAAACCA	AAAATTTGGA	ATATAAATTT	CAACTGATTT	300
•	CTTGCTGGAT	TTTTTTGTAT	ATATTTGCAA	TTGATTTCCT	TTTACTTTTT	TTTTTTCCAT	360
5	TTCTTCTTTT	CCTTTTTCCA	TCTTTTAAGT	TTCTTTTAGA	ATATAGTATA	TTTATCAAAC	420
3	AATGTCTGCA	TTCAGATCAA	TTCAACGTTC	AACCAACGTA	GCCAAGAGCA	CTTTCAAAAA	480
	CAGCATCAGA	ACATATGCTT	CTGCTGAACC	AGTATGTATT	CACTTTTTTG	AGGATCCGGG	540
	CAATGTGCTT	GGGATTTTAC	TTTTAACGTA	TATACAAAGA	TAATTTACTA	ACTTGCTTTC	600
10	TTAGACCTTA	AAACAAAGAT	TGGAAGAAAT	CTTGCCAGCC	AAAGCTGAAG	AAGTTAAACA	660
	ATTCAAAAAA	GAACACGGTA	AAACTGTCAT	TGGTGAAGTT	TTATTAGAAC	AAGCTTACGG	720
	TGGTATGAGA	GGTATCAAAG	GTTTAGTTTG	GGAAGGTTCT	GTTTTGGACC	CAATTGAAGG	780
15	TATCCGTTTC	AGAGGAAGAA	CCATCCCAGA	CATTCAAAAA	GAATTGCCAA	AAGCACCAGG	840
	TGGTGAAGAA	CCATTACCAG	AAGCTCTTTT	CTGGTTGTTG	TTGACTGGTG	AAGTTCCAAC	900
	TGACGCCCAA	ACTAAGGCTT	TATCCGAAGA	ATTTGCTGCT	AGATCAGCAT	TACCAAAGCA	960
20	CGTTGAAGAA	TTGATCGACA	GATCTCCATC	TCACTTGCAC	CCAATGGCTC	AATTCTCCAT	1020
•	TGCCGTTACT	GCTTTGGAAT	CTGAATCCCA	ATTTGCCCAA	GCTTATGCTA	AAGGTGCCAA	1080
	CAAATCCGAA	TACTGGAAAT	ACACTTACGA	AGATTCCATC	GATTTGTTAG	CTAAATTGCC	1140
25	AACCATTGCT	GCTAAGATTT	ACAGAAACGT	TTTCCACGAT	GGTAAATTGC	CAGCTGCCAT	1200
25	TGACTCCAAA	TTGGATTACG	GTGCTAACTT	GGCCAGTTTG	TTAGGTTTTG	GTGACAACAA	1260
	GGAATTTGTT	GAATTAATGA	GATTGTACCT	TACCATCCAC	TCTGACCACG	AAGGTGGTAA	1320
	CGTCTCTGCA	CACACCACCC	ACTTGGTTGG	TTCCGCTTTA	TCTTCCCCAT	TCTTGTCATT	1380
30	AGCTGCTGGT	TTGAATGGTT	TAGCTGGTCC	ATTACACGGT	AGAGCTAACC	AAGAAGTTTT	1440
	GGAATGGTTG	TTCAAATTAA	GAGAAGAATT	AAACGGTGAC	TACTCCAAGG	AAGCCATTGA	1500
	AAAATACTTG	TGGGAAACCT	TGAACTCCGG	TAGAGTTGTC	CCAGGTTACG	GTCACGCTGT	1560
35	CTTGAGAAAG	ACCGATCCAA	GATACACTGC	TCAAAGAGAA	TTTGCTCTTA	AACATATGCC	1620
	AGACTACGAA	TTGTTCAAAT	TGGTTTCAAA	CATTTACGAA	GTCGCTCCAG	GTGTTTTAAC	1680
	CAAACACGGT	AAGACCAAGA	ACCCATGGCC	AAATGTGGAC	TCCCACTCTG	GTGTCTTGTT	1740
40	ACAATACTAC	GGTTTGACTG	AACAATCTTT	CTACACTGTC	TTGTTCGGTG	TTTCCAGAGC	1800
	CTTTGGTGTC	TTGCCACAAT	TGATCTTGGA	CCGTGGTATC	GGTATGCCAA	TTGAAAGACC	1860
	AAAATCTTTC	TCCACTGAAA	AATACATTGA	ATTGGTCAAA	AACATCAACA	AAGCTTAA	1918
45	(2) INFORM	ATION FOR S	EQ ID NO: 4	9: ·			
45							

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 466 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

55

		SEQ														
	Met 1	Ser	Ala	Phe	Arg 5	Ser	Ile	Gln	Arg	Ser 10	Thr	Asn	Val	Ala	Lys 15	Ser
5	Thr	Phe	Lys	Asn 20	Ser	Ile	Arg	Thr	Tyr 25	Ala	Ser	Ala	Glu	Pro 30	Thr	Leu
	Lys	Gln	Arg 35	Leu	Glu	Glu	Ile	Leu 40	Pro	Ala	Lys	Ala	Glu 45	Glu	Val	Lys
10	G1n	Phe 50	Lys	Lys	Ģlu	His	Gly 55	Lys	Thr	Val	Ile	Gly 60	Glu	Val	Leu	Leu
	Glu 65	Gln	Ala	Tyr	Gly	Gly 70	Met	Arg	Gly	Ile	Lys 75	Gly	Leu	Val	Trp	Glu 80
	Gly	Ser	Val	Leu	Asp 85	Pro	Ile	Glu	Gly	Ile 90	Arg	Phe	Arg	Gly	Arg 95	Thr
15	Ile	Pro	Asp	Ile 100	Gln	Lys	Glu	Leu	Pro 105	Lys	Ala	Pro	Gly	Gly 110	Glu	Glu
	Pro	Leu	Pro 115	Glu	Ala	Leu	Phe	Trp 120	Leu	Leu	Leu	Thr	Gly 125	Glu	Val	Pro
20	Thr	Asp 130	Ala	Gln	Thr	Lys	Ala 135	Leu	Ser	Glu	Glu	Phe 140	Ala	Ala	Arg	Ser
	Ala 145	Leu	Pro	Lys	His	Val 150	Glu	Glu	Leu	Ile	Asp 155	Arg	Ser	Pro	Ser	His 160
os.	Leu	His	Pro	Met	Ala 165	Gln	Phe	Ser	Ile	Ala 170	Val	Thr	Ala	Leu	G1u 175	Ser
25	Glu	Ser	Gln	Phe 180	Ala	Gln	Ala	Tyr	Ala 185	Lys	Gly	Ala	Asn	Lys 190	Ser	Glu
	Tyr	Trp	Lys 195	Tyr	Thr	Tyr	Glu	Asp 200	Ser	Ile	Asp	Leu	Leu 205	Ala	Lys	Leu
30	Pro	Thr 210	Ile	Ala	Ala	Lys	11e 215	Tyr	Arg	Asn	Val	Phe 220	His	Asp	Gly	Lys
	Leu 225	Pro	Ala	Ala	Ile	Asp 230	Ser	Lys	Leu	Asp	Tyr 235	Gly	Ala	Asn	Leu	Ala 240
35	Ser	Leu	Leu	Gly	Phe 245	Gly	Αsp	Asn	Lys	Glu 250	Phe	Val	Glu	Leu	Met 255	Arg
	Leu	Tyr	Leu	Thr 260	Ile	His	Ser	Asp	His 265	Glu	Gly	Gly	Asn	Val 270	Ser	Ala
	His		Thr 275	His	Leu	Val	Gly	Ser 200	Ala	Leu	Ser	Ser	Pro 285	Phe	Leu	Ser
40	Leu	Ala 290	Ala	Gly	Leu	Asn	Gl y 295	Leu	Ala	Gly	Pro	Leu 300	His	Gly	Arg	Ala
	Asn 305	Gln	Glu	Val	Leu	Glu 310	Trp	Leu	Phe	Lys	Leu 315	Arg	Glu	Glu	Leu	Asn 320
45	Gly	Asp	Tyr	Ser	Lys 325	Glu	Ala	Ile	Glu	Lys 330	Tyr	Leu	Trp	Glu	Thr 335	Leu
	Asn	Ser	Gly	Arg 340	Val	Val	Pro	Gly	Tyr 345	Gly	His	Ala	Val	Leu 350	Arg	Lys
50	Thr		Pro 355	Arg	Tyr	Thr	Ala	Gln 360	Arg	Glu	Phe	Ala	Leu 365	Lys	His	Met
	Pro	Asp	Tyr	Glu	Leu	Phe	Lys	Leu	Val	Ser	Asn	Ile	Tyr	Glu	Val	Ala

	370		375		380	
	Pro Gly 385	Val Leu Thi	r Lys His Gl 390	ly Lys Thr Ly 39	ys Asn Pro Trp 05	Pro Asn 400
5	Val Asp	Ser His Ser 405		eu Leu Gln Ty 410	yr Tyr Gly Leu	Thr Glu 415
	Gln Ser	Phe Tyr Thi 420	r Val Leu Ph	ne Gly Val Se 425	or Arg Ala Phe 430	Gly Val
10	Leu Pro	Gln Leu Ile 435	Leu Asp Ai	rg Gly Ile Gl 10	ly Met Pro Ile 445	Glu Arg
	Pro Lys 450	Ser Phe Sea	r Thr Glu Ly 455	ys Tyr Ile Gl	u Leu Val Lys 460	Asn Ile
	Asn Lys 465					
15	(2) INFORMAT	ON FOR SEQ	ID NO: 49:			
20	(A (B (C	JENCE CHARAC LENGTH: 67 TYPE: nucl STRANDEDNE TOPOLOGY:	/8 base pair Leic acid ESS: single	rs.		
	(ii) MOL	CULE TYPE:	CDNA			
	(iii) HYP	THETICAL: N	10			
25						
25	(xi) SEQ	JENCE DESCRI	PTION: SÉQ	ID NO: 49:		
	TTTTCTGATT A	CATGTTAT T	rggttaget aa	ACGGAATA ATG	GGATAAT GGAAG	CTGAA 60
	TATCGATTAT A	TTATTAGT TA	ATCACTITA AI	CATTICAC CCG	TAGGGTT AATTA	TGTTT 120
30	GGTGTTGGTG C	GCTAGAGA AI	GGCCATGG CA	AGTGATTT ATG	TTGGATT AGGTT	TCATT 180
	GGGTTTGGTT G	GGATCAAT TO	GTGATACT TO	AATGTCTT ATT	TAATGGA TGCTT	ATCCT 240
	GATATTGTCA T	CAAGGAAT GO	TGGGAGTA AG	STATTATTA ATA	ATACTTT GGCTT	GTATT 300
35	TTCACTTTTG C	TGTTCTTA TI	GGTTAGAT GG	GATCAGGAA CAC	AAAACAC ATATA	TTGCC 360
30	TTGTCAATTA T	GATTTTGC TA	ACCATAGCA TI	GGTTTTCC CCT	TTTTATA TTATG	GTAAA 420
	ACATTTAGAA G	GAAAACTAA AA	GACTTTAT GT	TTCAATGG TTG	AATTGAC TCAAG	GGATG 480
	GGATAAGAGA G	GAGTGGTA A	AGAATTTT AI	TAATGATA CAT	TTATTAT TAGAA	TTACT 540
40	ACTATGGAAA T	CGAGTCTG TO	TTTTTTTT AG	SAAGTATAT TTI	AGACGTA TTTAG	AGTTG 600
	TTTTTCTCCT T	GTACTITA TI	TAGCATTT TA	NTAATATAT TAA	TTCAAGT TGCAT	TAATA 660
	TATATAAATA A	AAAACT				678
45	(2) INFORMAT	ON FOR SEQ	ID NO: 50:			
	(A (B (C	JENCE CHARAC LENGTH: 15 TYPE: amir STRANDEDNE TOPOLOGY:	59 amino aci no acid ESS:	ids		
50	(ii) MOL	ECULE TYPE:	peptide			
	(iii) HYP	THETICAL: 1	10			

	(xi)	SEQUI	ence 1	Descr	PTIO	N: S	eq II	D NO	: 50	:					
	Ser 1	Asp 1	Tyr H	is Va	l Ile	Trp	Leu	Ala	Lys 10	Arg	Asn	Asn	Gly	Ile 15	Met
5	Glu	Ala (Glu T	yr Ar	g Leu	Tyr	Leu	Leu 25	Val	Ile	Thr	Leu	Ile 30	Ile	Ser
	Pro	Val (Gly Lo 35	eu Il	e Met	Phe	Gly 40	Val	Gly	Ala	Ala	Arg 45	Gl u	Trp	Pro
10	Trp	Gln V 50	Val I	le Ty	r Val	G1 y 55	Leu	Gly	Phe	Ile	Gly 60	Phe	Gly	Trp	Gly
	Ser 65	Ile	Gly A	sp Th	r Ser 70	Met	Ser	Tyr	Leu	Met 75	Asp	Ala	Tyr	Pro	Asp 80
15	Ile	Val :	Ile G	ln Gl 85	y Met	Val	Gly	Val	Ser 90	Ile	Ile	Asn	Asn	Thr 95	Leu
		Cys I	10	00				105					110		
20	Thr	Gln A	Asn Ti 115	hr Ty	r Ile	Ala	Leu 120	Ser	Ile	Ile	Asp	Phe 125	Ala	Thr	Ile
		Leu \ 130				135					140				Lys
25	Thr 145	Lys A	Arg L	eu Ty	150	Ser	Met	Val	Glu	Leu 155	Thr	Gln	Gly	Met	
25	(2) INFORMATION FOR SEQ ID NO: 51: (i) SEQUENCE CHARACTERISTICS:														
30		(A) (B) (C) (D)	LENG: TYPE: STRAI TOPO:	TH: 1: nuc: NDEDNI LOGY:	180 b leic ESS: line	ase p acid sing: ar	pair	•							
	(ii)	MOLEC	CULE :	TYPE:	cDNA										
35	(iii)			CAL: 1	40										
	(ix)	(B)	NAME: LOCA: OTHE	TION:	1060	_		e= "1	R = 1	A or	G"				
40	(ix)	(B)	URE: NAME, LOCA: OTHE	TION:	1063			e= ";	Y = 0	C or	T-				
45	(ix)	/RI	JRE: NAME, LOCA: OTHE	TON.	1123	_		t= ":	Y = (c or	T"				
		SEQUE													. 6
	TTTGGATT:														
50	TATTTCAG														
	TAAATTCA	A CA	AGATT'	T AA1	SAAAA	TTTT	GAA	AGAT"	rgt 1	CAAT1	CGT	VA G1	CACC	ata?	18

	ATCGAATATA GAGAGGTTTC TTCAGTTTAA TGAATTTATT TATTACTGCT TTTACTCAAT	240
	GGAGGAATAT AATTATGAAT TGGTTGATGA TTTGATAAAA TTTATAACTA TAAATATGAA	300
•	TTCTCATGGC AGAATAGTTA ATTTTGGCAC TAATGTTAAA ATTAATAAAT TACACGAATT	360
5	AATTAAGAAT TTGATTGATA AAGTTAATAA AAACAAACAA AATGTGACTA GCAACAACAA	420
	AAACAACAAC AACAACAACA GCAACAACAA CAGCAACAGC AACAATTCCC AACATATTGT	480
	TITGATACCT AATGCCAACT GITCCAATTI CCCATGGGAA TCGATGGAAT TICTTCGTAG	540
10	TARATCARTT TCARGARTGC CATCARTTCA TATGTTACTT GATCTAGTCA ARTCARACAC	600
	CANTANCANG ANCANGITAN TGTTTGTTGN TANATCTNAT TTGTATTATT TGRTTANTCC	660
	CAGTGGTGAT TTAATTCGAT CAGAAAATCG ATTCAAAAAA CTATTTGAAT CAAATCATTT	720
15	ATGGAGAGGG GAAATTGGAA AATTATCAAG TAATGAACAT GAAGATTATC AAGATTCAAT	780
15	ATTATGTGAA ATCTTGAAAA GTCATTTATT TGTTTATATT GGTCATGGTG GTTGTGATCA	840
	ATATATTAAA GTATCAAAAT TATTTAAAAA ATGTGGCAAT AATCAAGATT TACTGAATAA	900
	ATTACCTCCT AGTTTATTGT TAGGTTGTTC ATCAGTTAAA TTAGATAATT GTAATTATAA	960
20	CTATAATTCC AGTATGTTAC AACCACTGGG TAATATTTAT AATTGGTTGA ACTGTAAATC	1020
	GTCAATGATA CTCGGGAATC TATGGGATGT TACTGATAAR GAYATTGATA TTTTTACACT	1080
	TTCATTACTA CAAAAATGGG GGTTAATAGA TGATTATAAT GGYAGTGGCC ATGATTATGG	1140
25	TATGAAGAAA TTGGATTTGA CTAATTGTGT TGTTCAAAGT CGAAGTAAAT GTACTTTGAA	1200
25	ATACTTGAAT GGATCAGCAC CTGTGGTTTA TGGTCTACCA ATGTATTTAA AATAGACATT	1260
	CTGTTTGCAT ATAAGTTTAT ATATTTAAT AATAAGAAAA AGAGCATAAT TTGGATCTTG	1320
	ATTTTGTATT GTTTGGTTTG TTATGAACAA ATTTTGCACC CAATCACTAT CGAACTTTCT	1380
30	TTTTTAAACA GAGAACATT AATCAACATT TAIGTTACAT TTAAGCGTTT AAATACATAT	1440
	TTGTGTTAGA TAGTTATATA ATGTTTGATG CAAACATACA	1480
	(2) INFORMATION FOR SEQ ID NO: 52:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 417 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: peptide	
40	(iii) HYPOTHETICAL: NO	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52: Leu Asp Phe Gln Leu Gln Asp Ile Leu His His Val Glu Ser Lys Trp 1 10 15 Phe Gly Gly Phe Ile Ser Gly Ile Phe Thr Asn Asp Asn Asp Val Glu 20 25 30	
50	Asn Glu Ser Lys Asn Val Phe His Lys Phe Lys Gln Asp Leu Met Lys 35 40 45	
	Ile Leu Lys Asp Cys Leu Thr Val Ser Asp Asp Lys Ser Asn Ile Glu	

		50					55					60				
	Arg 65	Phe	Leu	Gln	Phe	Asn 70	Gl u	Phe	I1e	Tyr	Tyr 75	Cys	Phe	Tyr	Ser	Me1 80
5	Glu	Glu	Tyr	As n	Tyr 85	Glu	Leu	Val	Asp	A sp 90	Leu	Ile	ГУэ	Phe	11e 95	Th
	Ile	Asn	Met	Asn 100	Ser	His	Gly	Arg	11e 105	Val	Asn	Phe	Gly	Thr 110	Asn	Va]
10	Lys	Ile	Asn 115	Lys	Leu	His	Glu	Leu 120	Ile	Lys	Asn	Leu	Ile 125	Asp	Lys	Va]
	Asn	Lys 130	Asn	Lys	Gln	Asn	Val 135	Thr	Ser	Asn	Asn	Lys 140	Asn	Asn	Asn	Asr
40	145					150		٠			155				Ile	160
15					165					170					Met 175	
				180					185					190	Met	
20			195					200					205		Met	
		210					215					220			qεA	
25	225	-				230					235					240
					245					250					Asp 255	
				260					265					270	Val	
30			275					280					285		Leu	
		290					295					300			Pro	
35	305					310					315					320
,					325					330					Trp 335	
40	Asn			340					345					350		
	Xaa		355					360					365			
		370					375					380			Lys	
45	385					390					395					400
	Tyr	Leu	Asn		Ser 405	Ala	Pro	Val	Val	Tyr 410	Gly	Leu	Pro	Met	Tyr 415	Leu
50	Lys															

(2) INFORMATION FOR SEQ ID NO: 53:

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1443 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
3	(ii) MOLECULE TYPE: CDNA	
	(iii) HYPOTHETICAL: NO	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:	
	CTTCTTTTAG AGACAATGCA GTGGTTTTCT TACCAGATGC ATGACCCCCA CCCAATAAAA	60
	CTATARTOGA TOTATTOACA GTATTTGATG CONTITTGAT GGTGATGAAT GATGTGATGT	120
15	GATGCTCATC TTATTGGGAG TTTCAAAAAA AAAAGTTACA CTCGAAAAAA AAAAAATAGC	180
	ATTATAAATA GAAGCTITAC TATCTTATAG AACAAAACAA AAAACACTAT CTTCTAATTA	240
	ATANTGGATG ATTTTGATAG AGATTTAGAT ANTGAGTTGG AATTTAGTCA TAAATCAACG	300
00	AAAGGAATAA AGGTTCATCG CACTTTTGAA AGTATGAATT TGAAACCTGA TCTTTTGAAA	360
20	GGAATATATG CCTATGGATT TGAAGCACCA TCTGCTATTC AATCTAGGGC TATTATGCAG	420
	ATCATCAGTG GTAGAGACAC AATAGCACAG GCACAATCTG GAACTGGTAA AACTGCTACT	480
	TTTTCTATTG GTATGCTTGA GGTTATAGAT ACTAAATCAA AAGAGTGTCA AGCACTTATC	540
25	TTGTCTCCTA CTAGAGAGTT GGCAATTCAA ATACAAAATG TGGTCATGCA TTTAGGAGAT	600
	TATATGAACA TTCACACCCA TGCCTGTATT GGTGGGAAAA ATGTCGGTGA GGATGTTAAG	660
	AAATTGCAGC AAGGGCAACA AATAGTTAGT GGGACACCAG GTAGAGTGAT TGATGTGATA	720
30	AAAAGAAGAA ATCTACAAAC TAGAAATATC AAGGITCTTA TTTTAGATGA AGCTGATGAA	780
	CITITIACAA AAGGGTITAA AGAACAGATC TACGAAATCT ACAAACATTT ACCACCTICG	840
	GTTCAAGTAG TAGTTGTTAG TGCCACTTTG CCACGTGAAG TATTGGAGAT GACAAGTAAG	900
	TITACCACTG ATCCAGTGAA AATCTTGGTG AAGAGGGATG AGATTTCGCT TCTGGGAATC	960
35	AAACAATATT ATGTTCAATG TGAACGTGAA GATTGGAAGT TTGATACACT ATGTGATTTG	1020
	TATGACAACC TTACAATAAC TCAAGCAGTG ATATTTTGTA ATACCAAATT GAAGGTGAAT	1080
	TGGCTTGCTG ATCAAATGAA AAAGCAAAAC TTTACTGTTG TGGCAATGCA TGGTGATATG	1140
40	AAACAAGATG AACGAGATTC AATTATGAAC GATTTTAGAA GGGGGAATTC AAGAGTATTA	1200
	ATATCTACAG ATGTTTGGGC AAGAGGTATT GATGTCCAAC AAGTCTCGTT GGTAATAAAT	1260
	TATGATTIGC CCACCGATAA GGAAAACTAT ATTCATAGAA TTGGACGATC AGGTAGATTT	1320
	GGTAGAAAGG GAACAGCTAT AAACTTGATA ACTAAAGATG ATGTGGTCAC TTTAAAAGAA	1380
45	TTGGAGAAAT ATTATTCAAC GAAAATTAAG GAAATGCCAA TGAATATTAA TGATATAATG	1440
	TAA	1443
	(2) INFORMATION FOR SEQ ID NO: 54:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 399 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:	

	(ii)	MOL	ECUL	E TY	PE: 1	pept	ide									
•	iii)	HYP	othe:	rica:	L: N	0										
5																
	(xi)	SEQ	UENCI	e de:	SCRI	PTIO	N: S	eq I	D NO	: 54	:					
10	Met 1	Asp	Asp	Phe	Asp 5	Arg	Ąsp	Leu	Asp	Asn 10	Glu	Leu	Glu	Phe	Ser 15	His
	Lys	Ser	Thr	Lys 20	Gly	Ile	Lys	Val	His 25	Arg	Thr	Phe	Glu	Ser 30	Met	Asn
	Leu	Lys	Pro 35	Азр	Leu	Leu	Lys	Gly 40	Ile	Tyr	Ala	Tyr	Gly 45	Phe	Glu	Ala
15	Pro	Ser 50	Ala	Ile	Gln	Ser	Arg 55	Ala	Ile	Met	Gln	11e 60	Ile	Ser	Gly	Arg
	Asp 65	Thr	Ile	Ala	Gln	Ala 70	Gln	Ser	Gly	Thr	Gly 75	Lys	Thr	Ala	Thr	Phe 80
20	Ser	Ile	Gly	Met	Leu 85	Glu	Val	Ile	Азр	Thr 90	Lys	Ser	Lys	Glu	Cys 95	Gln
	Ala	Leu	Ile	Leu 100	Ser	Pro	Thr	Arg	Glu 105	Leu	Ala	Ile	Gln	Ile 110	Gln	Asn
25	Val	Val	Met 115	His	Leu	Gly	Asp	Tyr 120	Met	Asn	Ile	His	Thr 125	His	Ala	Cys
25	Ile	Gly 130	Gly	Lys	As n	Val	Gly 135	Glu	Asp	Val	Lys	Lys 140	Leu	Gln	Gln	Gly
	Gln 145	Gln	Ile	Val	Ser	Gly 150	Thr	Pro	Gly	Arg	Val 155	Ile	Asp	Val	Ile	Lys 160
30	Arg	Arg	Asn	Leu	Gln 165	Thr	Arg	Asn	Ile	Lys 170	Val	Leu	Ile	Leu	Asp 175	Glu
				180					185				Ile	190		
35			195					200					Val 205			
		210					215					220	Thr			
40	225					230					235		Ser			240
40					245					250			Phe		233	
				260					265				Val	210		
45			275					280					263			Gln
		290					295					300				Arg
50	305					310					315					11e 320
	Ser	Thr	Asp	Val	Trp	Ala	Arg	Gly	Ile	Asp	Val	Gln	Gln	Val	Ser	Leu

(D) TOPOLOGY: unknown

	325 330 335	
	Val Ile Asn Tyr Asp Leu Pro Thr Asp Lys Glu Asn Tyr Ile His Arg 340 345 350	
5	Ile Gly Arg Ser Gly Arg Phe Gly Arg Lys Gly Thr Ala Ile Asn Leu 355 360 365	
	Ile Thr Lys Asp Asp Val Val Thr Leu Lys Glu Leu Glu Lys Tyr Tyr 370 375 380	
10	Ser Thr Lys Ile Lys Glu Met Pro Met Asn Ile Asn Asp Ile Met 385 390 395	
	(2) INFORMATION FOR SEQ ID NO: 55:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1020 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:	
		60
25		.20
25		80
		40
		00
30		60
		20
		80
35		40
	, , , , , , , , , , , , , , , , , , ,	00
		66
		20
40		80
		4 (
		900
45		60
	AGGGTGAAGT TGAAAAGTAT TTAAAGCATG TACCAAAATA GATTATGTAG AAAATTTATG 10	2(
	(2) INFORMATION FOR SEQ ID NO: 56:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 320 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:	

(D) TOPOLOGY: unknown

(ii	i) MOLECULE TYPE: peptide														
5) HYP	othe	TICA	L: N	0										
ix)) SEC	UENC	e de:	SCRI	PTIO	N: S	EQ I	D NO	: 56	:					
10 Me	t A sn	Val	Asp	Thr 5	Ąsp	Ile	Ile	Thr	Leu 10	Thr	Arg	Phe	Ile	Leu 15	Gl
G	u Gln	Gln	Thr 20	Val	Ala	Pro	Thr	Ala 25	Thr	Gly	Glu	Leu	Ser 30	Leu	Let
Le 15	u Asn	35	Leu	Gln	Phe	Ala	Phe 40	Lys	Phe	Ile	Ala	H15 45	Asn	Ile	Ar
A:	g Ala 50	Glu	Leu	Val	Asn	Leu 55	Ile	Gly	Val	Ser	Gly 60	Ser	Ala	Asn	Se
Th 65	r Gly	qeA v	Val	Gln	Lys 70	Lys	Leu	qeA	Val	11e 75	Gly	Asp	Glu	Ile	Ph:
20 11	e Asn	Ala	Met	Arg 85	Ser	Ser	Asn	Asn	Val 90	Lys	Val	Leu	Val	Ser 95	Gli
G1	u Gln	Glu	Asp 100	Leu	Ile	Val	Phe	Pro 105	G1y	Gly	Gly	Thr	Tyr 110	Ala	Va:
25 Cy	s Thr	Asp 115	Pro	Ile	Азр	Gly	Ser 120	Ser	Asn	Ile	Asp	Ala 125	Gly	Val	Se
Va	1 Gly 130		Ile	Phe	Gly	Val 135	Tyr	Lys	Leu	Gln	Glu 140	Gly	Ser	Thr	G1
30 G1	y Ile 5	Ser	Дзр	Val	Leu 150	Arg	Pro	Gly	Lys	Glu 155	Met	Val	Ala	Ala	G1:
Ту	r Thr	Met	Tyr	Gly 165	Ala	Ser	Ala	His	Leu 170	Ala	Leu	Thr	Thr	Gly 175	Hi
G)	y Val	Asn	Leu 180	Phe	Thr	Leu	Asp	Thr 185	Gln	Leu	Gly	Glu	Phe 190	Ile	Let
35 Th	r His	Pro 195	Asn	Leu	Lys	Leu	Pro 200	Asp	Thr	Lys	Asn	11e 205	Tyr	Ser	Let
As	n Glu 210		Tyr	Ser	Asn	Lys 215	Phe	Pro	Glu	Tyr	Val 220	Gln	Asp	Tyr	Se
40 Ly	s Asp S	Ile	Lys	Lys	Glu 230	Gly	Tyr	Ser	Leu	Arg 235	Tyr	Ile	Gly	Ser	Me1 240
Va	l Ala	qeA		His 245		Thr	Leu	Leu	Tyr 250	Gly	Gly	Ile	Phe	Ala 255	ту
Pr 45	o Thr	Leu	Lys 260	Leu	Arg	Val	Leu	Tyr 265	Glu	Суз	Phe	Pro	Met 270	Ala	Let
Le	u Met	Glu 275	Gln	Ala	Gly	Gly	Ser 280	Ala	Val	Thr	Ile	Lys 285	Gly	Glu	Arq
	e Leu 290		Ile	Leu	Pro	Lys 295	Gly	Ile	His	Ąsp	Lys 300	Ser	Ser	Ile	Va]
50 Le 30	u Gly 5	Ser	Lys	Gly	Glu 310	Val	Glu	Lys	Tyr	Leu 315	Lys	His	Val	Pro	Ly: 320

	(2) INFORMATION FOR SEQ ID NO: 57:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LEN TH: 825 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(11) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
10	•	
	TO TO NO. 57.	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:	60
	AACCCCACCT TCAAAGACAA AGAAGATTTC GTCAAGCAAA CGAATGTCAG AGCAGAAAAG	120
15	AACCAAGAAC TAATCAAATT TGCCCGTGAC AACCTTAACC ATTTACCATT CACCGAAAAA	180
	GACGGAGGTG CATGGGAAAA CTATGAACGA ATGATCAGTG GTATGCTCTA CAACTGTTTA	240
	CAAAAAGAAT TGGAAACAAC ACGTATGTCT TGCAGAGACT ACATGTTGGA CTACGGCAGT	
	TTCAGAACTA GAGATTATAA AACAACCCAA GAATTTCTTG ATGCAAAATA CAAACATTTA	300
20	GAAAGTTTCA TTGGACATGT TGGCAAAAAT GCATTTATGG AATATCCAAT CTATTTTGAT	360
	TATGGGTTTA ACACTTATTT GGGTGATAAT TTCTATTCCA ATTACAATTT GACAATTTTG	420
	GATGTTTCCA TAGTCAGAAT TGGTAATAAT GTCAAGTGTG GTCCCAATGT ATCTATCCTT	480
25	ACCCCAACAC ACCCAGTGGA TCCCACTTTG CGCTATGATC AATTGGAAAA TGCCTTGCCT	540
	GTGACGGTGG GTAACGGGGT CTGGTTGTGT GGAAGCTGTA CCATTCTTGG TGGGGTGACA	600
	GTAGGTGATG GCAGCATTGT GGCTGCTGGT GCAGTTGTCA ACAAGGACGT TCCACCAAAC	660
	ACTGTAGTTG CGGGAGTTCC TGCTAGGGTA GTTAAGCAGC TAGAACCTAG AGACCCTAAC	720
30	TTTGACACTA TGGCAGTTTT CAAACAATAT GGTATGGGTT ATATAGATTA GTAATTAGAT	780
	TTGATGTAAT GTACACGACT ACACTATTTG CTGGTGTCTG TTTTT	825
	(2) INFORMATION FOR SEQ ID NO: 58:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 206 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: peptide	
40	(iii) HYPOTHETICAL: NO	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58: Met Ile Ser Gly Met Leu Tyr Asn Cys Leu Gln Lys Glu Leu Glu Thr	
	1 5	
	Thr Arg Met Ser Cys Arg Asp Tyr Met Leu Asp Tyr Gly Ser Phe Arg 20 25 30	
50	Thr Arg Asp Tyr Lys Thr Thr Gln Glu Phe Leu Asp Ala Lys Tyr Lys 35 40 45	
	His Leu Glu Ser Phe Ile Gly His Val Gly Lys Asn Ala Phe Met Glu	

	50				55					60		•			
	Tyr Pr 65	o Ile	Tyr P	he Asp 70	Tyr	Gly	Phe	Asn	Thr 75	Tyr	Leu	Gly	Asp	Asn 80	
5	Phe Ty	r Ser	Asn T	yr Asn S	Leu	Thr	Ile	Leu 90	Asp	Val	Ser	Ile	Val 95	Arg	
	Ile Gl		Asn V 100	al Lys	Cys	Gly	Pro 105	Asn	Val	Ser	Ile	Leu 110	Thr	Pro	
10	Thr Hi	5 Pro 115	Val A	sp Pro	Thr	Leu 120	Arg	Tyr	Asp	Gln	Leu 125	Glu	Asn	Ala	
	Leu Pr 13		Thr V	al Gly	Asn 135	Gly	Val	Trp	Leu	Cys 140	Gly	Ser	Суз	Thr	
	Ile Le 145	ı Gly	Gly V	al Thr	Val	Gly	Asp	Gly	Ser 155	Ile	Val	Ala	Ala	Gly 160	
15		L Val .		ys Asp 65	Val	Pro	Pro	Asn 170	The	Val	Val	Ala	Gly 175	Val	
t.	Pro Al		Val V 180	al Lys	Gln	Leu	Glu 185	Pro	Arg	Asp	Pro	Asn 190	Phe	Asp	
20	Thr Me			eu Lys	Gln	Tyr 200		Met	Gly	Tyr	Ile 205	Asp			
	(2) INFORMA		OR SE	OIDNO	o: 59										
	(i) SE	QUENCE	CHAR	ACTERIS	STICS	i:	1								
25	i (i	3) TYP:	E: nu Anded	cleic a NESS: s	acid singl		•								
	(ii) MO	LECULE	TYPE	: cDNA											
30	(iii) HY	POTHET	ICAL:	NO											
															•
	(xi) SE	DUENCE	DESC	RIPTION	N: SE	Q ID	NO:	59:							
05	AATTACAATC											•			60
35	ATAATGGTTA														120
	AATTCGATGC														180
	AACCCATCAA														240
40	TATATATAAC .														300
	CATAATCCAT														360
	TCATCATCAT														420
45	GAAGACGACG														480
45	ATTTTACAAT														540
	AAACCTTCAT														600
	GAAGATGAGT														660
50	GAAGATGCAG														720
	GGTGAAGCTA	ATAATA	ATGA	TGATGA"	TAAT	TCAT	TTC	VAC (:AAC/	WIN	VA T	rtago	TGA:	ľ.	780

	AAAATCTTA	AG CCA	AAATTC.	A AG	LAAAA	AGAA	TCC	CAAC	AAC .	AACA	ACAA	CA A	CAAA	GCTC	T	840
	CCAGATAAT	A GTA	ATGAAG	A TG	CCGT	TTG	TTA	CCAC	CAA .	aagt	CATT'	TT A	GCTT	ATGA	A	900
_	AAAATTGG1	C AAA	TTTTAT	C AA	CTTAT	TACT	CAT	GGGA	TAA	TACC	'AAAT	TT A	TTTA	TAAA	T	960
5	TTACCAAG1	AAT TAA	TTAAAA	G GC	aaga1	rgta	TTA	TACG	TGA	CAAA	TCCA	AA T	agtt	GGAC	T	1020
	CCTCATGCC	A CAT	ATGAAG	C AA	CTAA	ATTA	TTT	GTGT	CGA .	ATTT.	ATCA	AG T	AATG	AAGC	T	1080
	ACAGTTTT	A TTG	AAACTA	T CT	rg tt g	CCA	CGA:	TTCC	GTG .	ATTC'	TATT	GA A	AATT	CCGA	T	1140
10	GATCATTC	A TAA	ATTATC	A TA	TTTAT	CGA	GCA:	ITAA	AAA I	AATC	ATTA:	TA T	AAAC	CAGG	A	1200
	GCTTTTTTC	A AAG	GGTTCT	T GT	PACCI	TTA	GTC	GATG	STT .	attg	PTCT	GT A	CGTG	AAGC	С	1260
	ACTATTGCT	CTT	CAGTGT	T AAG	STAA#	CTT	TCT	CTCC	CTG '	TTTT	ACAT:	rc A	TGTC	ATTA'	T	1320
	TGTGGCGTA	C TGA	TGAATA	A AAJ	NACG	GAA	TCA	CCTG:	TAT	rtgt(CTAC	CG G	CGAA!	IATA	A	1380
15	(2) INFOR	MATTO	N FOR	SEO I	ID NO): 60):									
20		SEQUE (A) (B) (C)	NCE CHI LENGTH TYPE: STRANDI TOPOLOG	ARACT : 373 amino EDNES	reris 3 ami 5 aci 55:	TICS no a	3 :	5								
	(ii)		ULE TY													
	(iii)	нүрот	HETICAL	L: NO)											
25																
20								. NO	. 60							
	•		NCE DE								Tve	Gln	Ara	His	Asn	
	Met 1	GIÅ r	ys Ile	5	Inr	Ser	Азр	1111	10	1111	2 73	U1	712.9	15	••	
30	Pro	Leu L	eu Lys 20	Asp	Ile	Ser	Ser	Gln 25	Gly	Gly	Asn	Leu	Arg 30	Thr	Val	
	Pro	Arg S 3	er Ser 5	Ser	Ser	Ser	Ser 40	Ser	G1n	Lys	Lys	Lys 45	Ser	Ser	Lys	
35	Lys	Gln A 50	rg His	Asn	Asp	Glu 55	Asp	Asp	Glu	Glu	Asn 60	Gly	Gly	Gly	Glu	
	65		eu Asp		70					15					80	
40			ln Asp	85					90					93		
40			la Gln 100					105					110			
		1	lu Asp 15				120					123				
45		130	al Tyr			135					140					
	145		he Asn		150					155					100	
50			sp Asn	165					170					1/5		
	Leu	Ala L	ys Ile	Gln	Glu	Lys	Glu	Ser	Gln	Gln	Gln	Gln	Gln	Gln	Gln	

		180	185		190
	Ser Ser Pro 195	Asp Asn Ser	Asn Glu Asp A 200	la Val Leu Leu 20	u Pro Pro Lys 5
5	Val Ile Leu 210	Ala Tyr Glu	Lys Ile Gly G 215	in Ile Leu Se 220	r Thr Tyr Thr
	His Gly Lys 225	Leu Pro Lys 230	Leu Phe Lys I	le Leu Pro Se. 235	r Leu Lys Asn 240
10	Trp Gln Asp	Val Leu Tyr 245	Val Thr Asn P	ro Asn Ser Tr 50	p Thr Pro His 255
	Ala Thr Tyr	Glu Ala Thr 260	Lys Leu Phe V 265	al Ser Asn Le	u Ser Ser Asn 270
	Glu Ala Thr 275	Val Phe Ile	Glu Thr Ile L 280	eu Leu Pro Arc 28!	g Phe Arg Asp
15	Ser Ile Glu 290	Asn Ser Asp	Asp His Ser L 295	eu Asn Tyr Hi: 300	s Ile Tyr Arg
	Ala Leu Lys 305	Lys Ser Leu 310	Tyr Lys Pro G	ly Ala Phe Pho 315	e Lys Gly Phe 320
20	Leu Leu Pro	Leu Val Asp 325	Gly Tyr Cys S	er Val Arg Glu 30	u Ala Thr Ile 335
	Ala Ala Ser	Val Leu Thr 340	Lys Val Ser V 345	al Pro Val Leu	1 His Ser Cys 350
25	His Tyr Cys 355	Gly Val Ser	Met Asn Lys L 360	ys Arg Glu Ser 365	r Pro Val Phe
	Val Leu Arg 370	Arg Ile			•
	(2) INFORMATION F	OR SEQ ID NO): 61:		
30	(A) LEN (B) TYE (C) STF	C CHARACTERIS GTH: 823 bas PE: nucleic a RANDEDNESS: S POLOGY: linea	se pairs acid single		
	(ii) MOLECULE	TYPE: cDNA			
35	(ііі) НУРОТНЕТ	rical: NO			
		. Norch(D#10)	: SEQ ID NO:	61 •	
40	AACCAACAAT GAGTCA				CCAGCTCCAA 6
	AACAAACCAG AAAGAC	TGCT CGTCCAC	AAA AATTACGTG	C CTCTTTAGTC (CCAGGTACCG 12
	TTTTAATTTT ATTGGG	CGGT AGATTC	ngag G taaaaga g	T TGTTTACTTG A	AAGAACTTGG 18
45	AAGACAACAC CTTATT	GGTT TCTGGT	CAT TCAAAGTCA	A TGGTGTTCCA 1	rtgagaagag 24
40	TTAACGCTAG ATACGT	TATC GCCACCI	CCA CCAAAGTCA	A CGTTTCTGGT (GTTGATGTTT 30
	CTAAATTCAA CGTCGA	ATAC TTTGCT	AGAG AAAAATCTT	C TARATCTARA A	AAATCCGAAG 36
	CTGAATTCTT CAATGA				
50	AAAAATCTGT CGATGO				
	ACTTGGCCGC TTCATT	CTCT TTGAAG	VACG GTGACAGAC	C ACACTTGTTA /	AAATTTTAAT 54

	TTAGG	TGAA	A TI	'AATA	\TTT1	GCF	AACA	TGT	TCAT	'GATA	L AAJ	AACA	latg1	G GC	TTT	CAAAC	;	600
	CAATG	GATG	G G	TATO	GTT)	AGA	GGAT	GTC	TTT	TATI	TT G	agti	TTAT	A TA	TGGG	TACI		660
	TTGTT	Taat	A A	GGA	\GGT <i>}</i>	TTC	GCTC	AGA	TGAJ	CTTC	A A	ATGG	agai	T AC	TTT	TTCI		720
5	TTTAC	TTTT	A C	CATA!	TTT	GTC	TAT	TGC	TGT1	AAT	CT G	CAA	AACA	ta aj	TTT	TAAT	:	780
	GGTGT	ATCT	T AZ	CTCI	TAT	CAT	TTT	TAT	ATT	KTAAT?	CA I	'AT						823
	(2) I	NFOR	MAT	ON I	OR S	eq 1	D NC): 62	2:									
10		(i)	(A) (B) (C)	LENCE TYPE STE TOE	igth: Pe: a Vandi	mino DNES	ami aci S:	no a	;: acid:	•								
	(ii)	HOLE	CULI	TY:	e: I	epti	de	•									
15	(i	ii)	HYPO	THE	CAI	.: NC	•											
20				JENCI														
		Met 1	Ser	Gln	Val	Ala 5	Pro	Lys	Trp	Tyr	Gln 10	Ser	Glu	Asp	Val	Pro 15	Ala	
		Pro	Lys	G1 n	Thr 20	Arg	Lys	Thr	Ala	Arg 25	Pro	Gln	Lys	Leu	Arg 30	Ala	Ser	
25		Leu	Val	Pro 35	Gly	Thr	Val	Leu	Ile 40	Leu	Leu	Ala	Gly	Arg 45	Phe	Arg	Gly	
		Lys	Arg 50	Val	Val	Tyr	Leu	Lys 55	Asn	Leu	Glu	Asp	Asn 60	Thr	Leu	Leu	Val	
30		Ser 65	Gly	Pro	Phe	Lys	Val 70	Asn	Gly	Val	Pro	Leu 75	Arg	Arg	Val	Asn	Ala 80	
			Tyr	Val	Ile	Ala 85	Thr	Ser	Thr	Lys	Val 90	Asn	Val	Ser	Gly	Val 95	Asp	
25		Val	Ser	Lys	Phe 100	Asn	Val	Glu	Tyr	Phe 105	Ala	Arg	Glu	Lys	Ser 110	Ser	Lys	
35		Ser	Lys	Lys 115		Glu	Ala	Glu	Phe 120	Phe	Asn	Glu	Ser	Gln 125	Pro	Lys	Lys	
		Glu	Ile 130	Lys	Ala	Glu	Arg	Val 135	Ala	Asp	Gln	Lys	Ser 140	Val	Asp	Ala	Ala	
40		Leu 145		Ser	Glu	Ile	Lys 150	Lys	Thr	Pro	Leu	Leu 155	Lys	Gln	Tyr	Leu	Ala 160	
		Ala	Ser	Phe	Ser	Leu 165	Lys	Asn	Gly	Asp	Arg 170	Pro	His	Leu	Leu	Lys 175	Phe	
45			•															
,,	(2) I	NFOE	TAM!	ION I	FOR :	SEQ	ID N	o: 6	3:									
		(i)	(A (B	UENC: Lei	NGTH PE: :	: 41: nucl	5 ba: eic a	se p acid	airs									
50			(C) ST	RAND	edne:	5S: :	sing	le									
	(ii)	HOL	ECUL	e Ty	PE:	CDNA											

(iii) HYPOTHETICAL: NO

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:	
	AACATTAAAG CAAGATGGAA AACGATAAAG GTCAATTAGT TGAATTATAC GTCCCAAGAA	60
	AATGTTCTGC TACCAACAGA ATCATTAAAG CCAAAGATCA CGCTTCTGTT CAAATCTCAA	120
	TTGCTAAAGT TGATGAAGAC GGTAGAGCTA TTGCTGGTGA AAACATCACT TACGCTTTAA	180
10	GTGGTTACGT TAGAGGTAGA GGTGAAGCTG ATGACTCATT AAACAGATTG GCTCAACAAG	240
	ACGGTTTATT GAAGAACGTC TGGTCTTACT CTCGTTAAGA GAATAGAAGA ATAGACAAAA	300
	TTGATAATTG GGTATITTAA GAAATTACTT TTTTTATATT GCAAATTAAT TTTAATCTTT	360
15	CTTCTGTGTA TATTTAATGT CTTAACATAA TAAAAAAAA GAATAGAAAT GGTTT	415
	(2) INFORMATION FOR SEQ ID NO: 64:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 87 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: peptide	
	(iii) HYPOTHETICAL: NO	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:	
	Met Glu Asn Asp Lys Gly Gln Leu Val Glu Leu Tyr Val Pro Arg Lys	
30	Cvs Ser Ala Thr Asn Arg Ile Ile Lys Ala Lys Asp His Ala Ser Val	
	20 25 30	
	Gln Ile Ser Ile Ala Lys Val Asp Glu Asp Gly Arg Ala Ile Ala Gly 35 40 45	
35	Glu Asn Ile Thr Tyr Ala Leu Ser Gly Tyr Val Arg Gly Arg Gly Glu 50 55 60	
	Ala Asp Asp Ser Leu Asn Arg Leu Ala Gln Gln Asp Gly Leu Leu Lys 65 70 75 80	
40	Asn Val Trp Ser Tyr Ser Arg 85	
	(2) INFORMATION FOR SEQ ID NO: 65:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1519 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: CDNA	
	(iii) HYPOTHETICAL: NO	
50	(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION:749	

(D) OTHER INFORMATION:/note= "N = A or T or C or G"

(xi) SEQUENCE DESCRIPTION: SEQ ID N :	65:	:	N	ID	SEO	DESCRIPTION:	SPOURNCE	1011
---------------------------------------	-----	---	---	----	-----	--------------	----------	------

5	ACCATGTGTC	AAATTGCTTG	GTCGTGTCCT	TTCACCACAC	ATTTTTTGG	ATTAAATTTC	60
	TCGCACGCTC	AAAAAATGAC	TTCGACAAAA	AGCAATGCCA	CTCTTCCTAC	AATTAATTCC	120
	CTCCGCCCCT	TCCTTTTCAT	ATACTATCTC	CCTTCCTTCT	TCCTTCTCCT	TTTATTTTTT	180
10	CAATTATTAC	AATCTTATGT	CATTTAAAGG	ATTCAAAAAG	GGTGTCCTTA	GGGCCCCACA	240
,,	GACAATGCGT	CAGAAATTCA	ACATGGGAGA	AATCACCCAA	GATGCTGTTT	ATCTCGATGC	300
	TGAAAGAAGA	TTCAAAGAAA	TCGAAACGGA	AACAAAAAAG	TTGAGTGAAG	AATCCAAGAA	360
	ATATTTCAAT	GCTGTCAATG	GGATGTTAGA	TGAACAAATT	GATTTTGCCA	AAGCCGTGGC	420
15	TGAGATTTAT	AAACCAATCA	GTGGTAGATT	ATCGGACCCC	AGTGCTACGG	TACCAGAAGA	480
	TAACCCACAA	GGTATTGAAG	CATCGGAACT	GTACCAAGCA	GTGGTTAAAG	ATCTCAAAGA	540
	TACCTTAAAA	CCCGATTTGG	AATTGATTGA	AAAAAGAATT	GTTGAACCAG	CACAAGAATT	600
20	ATTGAAGATT	ATACAAGCTA	TAAGGAAAAT	GTCAGTGAAA	AGAGACCATA	AACAATTGGA	660
	TTTGGATCGT	CATAAGAGAA	ATTTTTCTAA	ATATGAACTG	aagaaagaaa	GAACTGTTAA	720
	AGATGAAGAA	AAAATGTTCA	GTGCTCAANC	AGAAGTAGAA	ATTGCTCAAC	AAGAGTACGA	780
05	TTATTATAAT	GATTTGTTAA	AGAATGAATT	GCCAGTTTTG	TTTCAAATGC	AAAGTGATTT	840
25	TATCAAACCA	TTGTTTGTTT	CATTCTATTA	CATGCAGTTG	AATATTTTCT	ACACATTATA	900
	CACTAGAATG	GAAGAGTTGA	AAATTCCATA	TTTTGATTTG	TCTACTGATA	TTGTCGAAGC	960
	TTATACTGCC	AAGAAGGGGA	ACATTGAGGA	ACAAACCGAT	GCTATTGGAA	TCACTCATTT	1020
30	CAAAGTCGGG	CATGCCAAAT	CCAAATTGGA	AGCCACTAAA	AGAAGACATG	CTGCTATGAA	1080
	TAGTCCACCT	CCTACCGGTG	CCAGCTCTAT	TGCATCTACA	GGTACTGGTG	GTGAATTACC	1140
	TGCATACTCC	CCAGGAGGTT	ACAACCAACC	atatggtgat	AGCAAGTATC	AACCACCATC	1200
35	TTCTCCAGCA	ACATACCAAT	CTCCAGTAGT	AGCAGCCACT	GCTCAATCTC	CAGCTACTTA	1260
	TCAATCGCCA	GTGGCTACTG	GACAACCTCC	ATCATATTTA	CCACAAACTC	CAGCCAGTGC	1320
	TCCACCACCA	CAAGTTGGTA	GTGGCCTTCC	AACATGCACG	GCTTTATACG	ATTATACTGC	1380
	ACAAGCCCAG	GGTGACTTGA	CTTTCCCTGC	AGGAGCTGTT	ATTGAAATTA	TACAAAGAAC	1440
40	CGAAGATGCC	AACGGATGGT	GGACTGGTAA	ATACAATGGT	CAAACCGGTG	TGTTCCCTGG	1500
	TAATTATGTG	CAATTATAG					1519

(2) INFORMATION FOR SEQ ID NO: 66:

_,45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 440 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide 50

(iii) HYPOTHETICAL: NO

55

٠,

•	(xi)	SEQU	JENCI	E DE:	SCRI	PTIO	N: 5	EQ I	D NO	: 66	:					
	Met 1	Ser	Phe	Lys	Gly 5	Phe	Lys	Lys	Gly	Val 10	Leu	Arg	Ala	Pro	Gln 15	Thr
5	Met	Arg	Gln	Lys 20	Phe	Asn	Met	Gly	Glu 25	Ile	Thr	Gln	qeA	Ala 30	Val	Tyr
	Leu	Asp	Ala 35	Glu	Arg	Arg	Phe	Lys 40	Glu	Ile	Glu	Thr	Glu 45	Thr	Lys	Lys
10	Leu	Ser 50	Glu	Glu	Ser	Lys	Lys 55	Tyr	Phe	As n	Ala	Val 60	As n	Gly	Met	Leu
•	Asp 65	Glu	Gln	Ile	Asp	Phe 70	Ala	Lys	Ala	Val	Ala 75	Glu	Ile	Tyr	Lys	Pro 80
15	Ile	Ser	Gly	Arg	Leu 85	Ser	Asp	Pro ·	Ser	Ala 90	Thr	Val	Pro	Glu	Asp 95	Asn
	Pro	Gln	Gly	11e 100	Glu	Ala	Ser	Glu	Ser 105	Tyr	Gln	Ala	Val	Val 110	Lys	Азр
	Leu	Lys	Asp 115	Thr	Leu	Lys	Pro	Asp 120	Leu	Glu	Leu	Ile	Glu 125	Lys	Arg	Ile
20	Val	Glu 130	Pro	Ala	Gln	Glu	Leu 135	Leu	Lys	Ile	Ile	Gln 140	Ala	Ile	Arg	Lys
	Met 145	Ser	Val	Lys	Arg	Asp 150	His	Lys	Gln	Leu	Asp 155	Leu	Asp	Arg	His	Lys 160
25	Arg	Asn	Phe	Ser	Lys 165	Tyr	Glu	Ser	Lys	Lys 170	Glu	Arg	Thr	Val	Lys 175	Asp
	Glu	Glu	Lys	Met 180	Phe	Ser	Ala	Gln	Xaa 185	Glu	Val	Glu	Ile	Ala 190	Gln	Gln
20			195					200					205		Val	
•		210					215					220			Phe	
	225					230					235				Glu	240
					245					250					Ala 255	
				260					265					270	Gly	
10			275					280					285		Thr	
		290					295					300			Ser	
	305					310					315				Pro	320
					325					330					Ser 335	
				340					345					350	Ser	
			355					360					365		Tyr	
	Pro	Gln	Thr	Pro	Ala	Ser	Ala	Pro	Pro	Pro	Gln	Val	Gly	Ser	Gly	Leu

	370 375 380	
	Pro Thr Cys Thr Ala Leu Tyr Asp Tyr Thr Ala Gln Ala Gln Gly Asp 385 390 395 400	
5	Leu Thr Phe Pro Ala Gly Ala Val Ile Glu Ile Ile Gln Arg Thr Glu 405 410 415	
	Asp Ala Asn Gly Trp Trp Thr Gly Lys Tyr Asn Gly Gln Thr Gly Val 420 425 430	
10	Phe Pro Gly Asn Tyr Val Gln Leu 435 440	
	(2) INFORMATION FOR SEQ ID NO: 67:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 855 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:	
	ATAATTTCA GAAAGAGACT AGATTCTGAT AGAAATATAG ACGCATCACT ATATTTTGGA	60
		120
25		180
		240
		300
30		360
	AACCCAAATA ATCAAACAAT AGGAACATIT GIACAATCAG ATTIGATGG	420
	ATAGATGTTG GAGCTARACT ATTTATCARC ARTCTARTC CATTOOTOGA	480
	TTAATGGATA CGTTTAGTAA GTTTGGAACC CITATAAGAA ACCCAATAAT TABIBUTET	540
35	TCAGAGGGAC ACTCTTTGGG ATACGGATTT CTTACGTACG ATGACTTTGA AACTAGT	600
	TTATGCATAC AAAAAATGAA CAACACGATT TTGATGAATA ACAAAATTGA	660
	GCATTCAAGG ATCTGAGTGT TGATGGGAAG AAAICCCGGC ATGGAGATGA AG	
	AAATTGGCTG AAAGTGCCAA AAAGAATAAT TTGTTGGTAA CGAAAAGTTC TAAGGATAAT	720
40	ACGACGAAGG GAAATAAAAG GAAGAATAAA CCACATAAAG TGACCAAAACC GTGAGATAAA	780
	GAGTTAGCTC CCCCTTTCAA AATAAGTAGA GTATCACCAT AGTTTATGAA ACAATTGATA	840
	TATTAAGCTT CTCTG	855
45	(2) INFORMATION FOR SEQ ID NO: 68:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 257 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown	
50	(ii) MOLECULE TYPE: peptide	
	(iii) HYPOTHETICAL: NO	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68: Ile Ile Phe Arg Lys Arg Leu Asp Ser Asp Arg Asn Ile Asp Ala Ser															
	Ile 1	Ile	Phe	Arg	Lys 5	Arg	Leu	Asp	Ser	Asp 10	Arg	Asn	Ile	Asp	Ala 15	Ser
5	Leu	Tyr	Phe	Gly 20	Asn	Ile	Asp	Pro	Gln 25	Val	Thr	Glu	Leu	Leu 30	Met	Tyr
	Glu	Leu	Phe 35	Ile	Gln	Phe	Gly	Pro 40	Val	Lys	Ser	Ile	A5n 45	Met	Pro	Lys
10	Asp	Arg 50	Ile	Leu	Lys	Thr	His 55	Gln	Gly	Tyr	Gly	Phe 60	Val	Glu	Phe	Lys
	Asn 65	Ser	Ala	Asp	Ala	Lys 70	Tyr	Thr	Met	Glu	11e 75	Leu	Arg	Gly	Ile	Arg 80
15	Leu	Tyr	Gly	Lys	Ala 85	Leu	Lys	Leu	Lys	Arg 90	Ile	Asp	Ala	Lys	Ser 95	Gln
	Ser	Ser	Thr	Asn 100	Asn	Pro	Asn	Asn	Gln 105	Thr	Ile	Gly	Thr	Phe 110	Val	Gln
20	Ser	Asp	Leu 115	Ile	Asn	Pro	Asn	Tyr 120	Ile	Asp	Val	Gly	Ala 125	Lys	Leu	Phe
	Ile	Asn 130	Asn	Leu	Asn	Pro	Leu 135	Val	Asp	Glu	Ser	Phe 140	Leu	Met	Asp	Thr
25	Phe 145	Ser	Lys	Phe	Gly	Thr 150	Leu	Ile	Arg	Asn	Pro 155	Ile	Ile	Arg	Arg	Asp 160
	Ser	Glu	Gly	His	Ser 165	Leu	Gly	Tyr	Gly	Phe 170	Leu	Thr	Tyr	Asp	Азр 175	Phe
30	Glu	Ser	Ser	Asp 180	Leu	Cys	Ile	Gln	Lys 185	Met	Asn	Asn	Thr	Ile 190	Leu	Met
	Asn	Asn	Lys 195	Ile	Ala	Ile	Ser	Tyr 200	Ala	Phe	Lys	Asp	Ser 205	Ser	Val	Asp
35	Gly	Lys 210	Lys	Ser	Arg	His	Gly 215	Asp	Gln	Val	Glu	Arg 220	Lys	Leu	Ala	Glu
	Ser 225	Ala	Lys	Lys	Asn	Asn 230	Leu	Leu	Val	Thr	Lys 235	Thr	Ser	Lys	Ala	Gly 240
40	Thr	Thr	Lys	Gly	Asn 245	Lys	Arg	Lys	Asn	Lys 250	Pro	His	Lys	Val	Thr 255	Lys
	Pro															
	(2) INFO	ITAM	ON F	or s	SEQ 1	D NO): 69):								
45	(i)	(B)	LEN Typ Str	igth: Pe: r Vande	168 nucle DNES	PERIS 55 ba 56 a 58: s Linea	se p acid singl	pairs	,							
50	(ii)	MOLE	CULE	TY	e: c	DNA										
	(iii)	нчро	THET	CAI	.: NO	•									٠	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:

	CTGTTTATTA	AATGGATATA	TGTTAAACCA	TGAACTTCGG	TTTATCAGAA	AAATTGGTGC	60
_	TGGTACCTAT	GGTTTGATTT	ACCTTGTGGA	AAATATCTAC	ACTANACAAC	AATTTGCTGC	120
5	TAAAATGGTT	CTTGAACAGC	CATTACTCAA	ACAAAAGCAA	CAACAACAAC	AAAGTCATCA	180
	TGGACATAAA	GGAGAATCTA	GTATGAACAA	ACAAATAATA	CTGCAAGAAT	TTTATCAATA	240
	TTTTTAAAC	AATAGTATGC	CACAACCACG	AAATTTGGAC	TTGAATTACC	TTCGAGACAA	300
10	CGGACATGAT	TGCCCCTTTT	TGACTGAAAT	CTCATTACAT	TTAAAAGTAC	ATCAACACCC	360
	AAACATAGCG	ACTATTCATC	AAGTATTAAA	CATTGAAGAT	TTTGCCATAA	TAATATTGAT	420
	GGATCATTTT	GAGCAAGGAG	ATTTGTTCAC	TAATATCATT	GATAGACAAA	TATTCACCAA	480
	TAATAGTCAT	AGAAAAGTTC	CAAGAACAGA	TTTTGAAACC	CAATTATTAA	TGAAGAATGC	540
15	CATGTTACAA	TTGATAGAAG	CCATTGAATA	TTGTCACGAA	AATAATATTT	ACCATTGTGA	600
	TTTAAAACCA	GAAAACATTA	TGGTTAGATA	TAATCCATAC	TATGTTCGTC	CAACTATCAA	660
	TAACAATAAT	AACAATGGAG	AAGATGATTT	ATGCTATGCC	AACAGTATTA	TTGACTATAA	720
20	TGAATTACAC	CTCGTGTTGA	TTGATTTTGG	TTTAGCTATG	GACTCTGCTA	CCATTTGTTG	780
	TAATTCATGT	CGTGGATCGT	CATTTTACAT	GGCACCAGAA	AGAACCACCA	ATTATAACAC	840
	CCATCGTTTA	ATCAACCAAT	TAATTGATAT	GAATCAATAT	GAGTCAATTG	AAATCAATGG	900
05	GACAACAGTG	ACAAAATCAA	ACTGTAAATA	TTTACCTACA	TTGGCTGGGG	ATATTTGGTC	960
25	ATTGGGAGTA	TTGTTCATTA	ATATCACTTG	TTCAAGAAAC	CCATGGCCCA	TTGCATCATT	1020
	TGATAATAAT	CAAAATAATG	AAGTGTTTAA	GAATTATATG	TTGAATAATA	ACAAGGCTGT	1080
	TTTGAGCAAA	ATCTTACCCA	TTTCCTCACA	ATTTAATCGC	TTATTAGATA	GAATTTTCAA	1140
30	ATTGAATCCT	AATGATAGAA	TAGATTTACC	AACTTTATAC	aaagaagtta	TTCGTTGTGA	1200
	TTTCTTCAAA	GATGATCATT	ACTACTATGC	CCAACATCAA	CATCATCACA	ATCACAATCA	1260
	AATCAATAAT	GCTTACAATC	ACTATCAGAA	ACAACCTAAT	CAAGCAAGAC	CTACTGCAAA	1320
25	CCAACAATTG	TATACACCAC	CGGAAACCAC	CACTTATAAT	TCATACGCTA	GTGATATGGA	1380
35	AGAAGATGAA	ATTAGTGATG	ATGAGTTTTA	TTCTGATGAA	GAAGATGAAG	ATATTGAAGA	1440
	CTATGAAGAG	GAAGAGGAAG	AGTATTTTGG	TAATGAGCAA	CAACAACAAC	AGCAAGTCAC	1500
	AACAGTGAAT	GGTAATTTTG	GTCAAGTTAA	AGGTACCTGT	TATTACGATA	ССААААССАА	1560
40						GTCAAAGTGT	1620
		TAAGTTGTAC					1680
	TĀTĀG						1685

(2) INFORMATION FOR SEQ ID NO: 70:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 537 amino acids

 (B) TYPE: amino acid

 (C) STRANDEDNESS:

 (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO

55

45

	(xi)	SEQ	JENCI	e de:	SCRI	PTIO	1: SI	II QS	D NO	: 70	:					
	Met 1	Leu	A5n	His	Glu 5	Leu	Arg	Phe	Ile	Arg 10	Lys	Ile	Gly	Ala	Gly 15	Thr
5	Tyr	Gly	Leu	Ile 20	Tyr	Leu	Val	Glu	Asn 25	Ile	Tyr	Thr	Lys	Gln 30	Gln	Phe
	Ala	Ala	Lys 35	Met	Val	Leu	G1u	Gln 40	Pro	Leu	Leu	Lys	Gln 45	Lys	Gln	Gln
10	Gln	Gln 50	Gln	Ser	His	His	Gly 55	His	Lys	Gly	Glu	Ser 60	Ser	Met	Asn	Lys
	Gln 65	Ile	Ile	Ser	Gln	Glu 70	Phe	Tyr	Gln	Tyr	Phe 75	Leu	Asn	Asn	Ser	Met 80
15	Pro	Gln	Pro	Arg	Asn 85	Leu	Asp	Leu	Asn	Tyr 90	Leu	Arg	Asp	Asn	Gly 95	His
	qeA	Cys	Pro	Phe 100	Leu	Thr	Glu	Ile	Ser 105	Leu	His	Leu	Lys	Val 110	His	Gln
	His	Pro	Asn 115	Ile	Ala	Thr	Ile	His 120	Gln	Val	Leu	Asn	11e 125	Glu	Asp	Phe
20	Ala	Ile 130	Ile	Ile	Leu	Met	Asp 135	His	Phe	Glu	Gln	Gly 140	QEA	Leu	Phe	Thr
	Asn 145	Ile	Ile	Asp	Arg	Gln 150	Ile	Phe	Thr	Asn	Asn 155	Ser'	His	Arg	Lys	Val 160
25	Pro	Arg	Thr	qeA	Phe 165	Glu	Thr	Gln	Leu	Leu 170	Met	Lys	Asn	Ala	Met 175	Leu
	Gln	Leu	Ile	Glu 180	Ala	Ile	Glu	Tyr	Cys 185	His	Glu	Asn	Asn	Ile 190	Tyr	His
30	Cys	Asp	Leu 195	Lys	Pro	Glu	Asn	Ile 200	Met	Val	Arg	Tyr	Asn 205	Pro	Tyr	Tyr
	Val	Arg 210	Pro	Thr	Ile	Asn	Asn 215	Asn	Asn	Asn	Asn	Gly 220	Glu	Asp	Asp	Leu
35	Cys 225	Tyr	Ala	Asn	Ser	Ile 230	Ile	Asp	Tyr	Asn	Glu 235	Leu	His	Leu	Val	Leu 240
	Ile	Asp	Phe	Gly	Leu 245	Ala	Met	Asp	Ser	Ala 250	Thr	Ile	Суз	Суз	Asn 255	Ser
40	Cys	Arg	Gly	Ser 260	Ser	Phe	Tyr	Met	Ala 265	Pro	Glu	Arg	Thr	Thr 270	A.sn	Tyr
40	Asn	Thr	His 275	Arg	Leu	Ile	Asn	Gln 280	Leu	Ile	Asp	Met	Asn 285	Gln	Tyr	Glu
	Ser	Ile 290	Glu	Ile	Asn	Gly	Thr 295	Thr	Val	Thr	Lys	Ser 300	Asn	Суз	Lys	Tyr
45	Leu 305	Pro	Thr	Leu	Al a	Gly 310	Asp	Ile	Trp	Ser	Leu 315	Cly	Val	Leu	Phe	11e 320
	Asn	Ile	Thr	Cys	Ser 325	Arg	Asn	Pro	Trp	Pro 330	Ile	Ala	Ser	Phe	Asp 335	Asn
50	Asn	Gln	Asn	Asn 340	Glu	Val	Phe	Lys	Asn 345	Tyr	Met	Leu	Asn	Asn 350	Asn	Lys
	Ala	Val	Leu	Ser	Lys	Ile	Leu	Pro	Ile	Ser	Ser	Gln	Phe	Asn	Arg	Leu

	3:	55		360		365		
	Leu Asp A 370	rg Ile Ph	e Lys Leu 375	Asn Pro	Asn Asp A	Arg Ile A	sp Leu Pr	:0
	Thr Leu T	yr Lys Gl	u Val Ile 390	Arg Cys	Asp Phe I	he Lys A	sp Asp Hi 40	. s 10
	Tyr Tyr T	yr Ala Gli 40	n His Gln	His His		lis Asn G	in Ile As 415	n
10	Asn Ala T	yr Asn Hi		Lys Gln 425		in Ala A	rg Pro Th 30	ır
	Ala Asn G		u Tyr Thr	Pro Pro	Glu Thr 1			r
		35		440	71- fan 1		lu Dha Tu	
15	Tyr Ala So 450		455	•	•	160		
	Ser Asp G 465	lu Glu As	p Glu Asp 470	Ile Glu	Asp Tyr 6 475	ilu Glu G	lu Glu Gl 48	0
	Glu Tyr P	ne Gly As: 48		Gln Gln	Gln Gln G 490	in Val T	nr Thr Va 495	.1
20	Asn Gly A	on Phe Gl	y Gln Val	Lys Gly 505	Thr Cys 1	Tyr Tyr A	sp Thr Ly 10	's
	Thr Lys T	nr Thr Th 15	r Tyr Ile	Lys Pro 520	Pro Ala A	la Tyr Ti 525	nr Leu Gl	·u
25	Thr Pro S	er Gln Se	r Val Glu 535	Tyr Cys				
(2) I	NFORMATIO	N FOR SEQ	ID NO: 7	1:				
30	(B) (C)	NCE CHARA LENGTH: 8 TYPE: nuc STRANDEDNI TOPOLOGY:	48 base p leic acid ESS: sing	airs -				
(ii) Molec	JLE TYPE:	CDNA					
35	ii) HYPOT	HETICAL:	NO					
					•			
	xi) SEQUE							60
40	atttt aga							120
	AAACA ACA							180
	GAAGT TGT							240
	CCAAC TGT							300
	GAAAC CTG							360
	GAAAG AAG TTGGA CAC							420
	GGTGT CAC							480
50	TGGTC AAA							540
	ACCCC AGA							600

Met Ala Arg Gln Phe Phe Val Gly Gly Asn Phe Lys Ala Asn Gly Thr Lys Gln Gln Ile Thr Ser Ile Ile Asp Asn Leu Asn Lys Ala Asp Leu 25 Pro Lys Asp Val Glu Val Val Ile Cys Pro Pro Ala Leu Tyr Leu Gly 45 Leu Ala Val Glu Gln Asn Lys Gln Pro Thr Val Ala Ile Gly Ala Gln 50 Asn Val Phe Asp Lys Ser Cys Gly Ala Phe Thr Gly Glu Thr Cys Ala 65 Ser Gln Ile Leu Asp Val Gly Ala Ser Trp Thr Leu Thr Gly His Ser 61 Glu Arg Arg Thr Ile Ile Lys Glu Ser Asp Glu Phe Ile Ala Glu Lys 105 Glu Thr Leu Glu Glu Arg Lys Gly Val Lys Val Ile Leu Cys Ile Gly 115 Glu Thr Leu Glu Glu Arg Lys Gly Gly Val Thr Leu Asp Val Cys Ala 130 Arg Gln Leu Asp Ala Val Ser Lys Ile Val Ser Asp Trp Ser Asn Ile 145 Val Val Ala Tyr Glu Pro Val Trp Ala Ile Gly Thr Gly Leu Ala Ala 175 Thr Pro Glu Asp Ala Glu Glu Thr His Lys Gly Ile Arg Ala His Leu		CCATTGGT	GC C	GAAC	AAGC	T GA	AAAA	ACCA	GAA	TCTT	GTA	CGGT	GGTT	CA G	TTAA	CGGT	A
TATATCCCTA TAGAATTTAG CATGITGTIG TGAATTGTA ATGAATCTAT AAAAATGTGC TCATGAAC (2) INFORMATION FOR SEQ ID NO: 72: (A) SEQUENCE CHARACTERISTICS: (A) LINGTH: 248 aning acids (C) STAMADEDNESS: (D) TOPOLOGY: unknown (41) MOLECULE TYPE: peptide (111) HYPOTHETICAL: NO (X1) SEQUENCE DESCRIPTION: SEQ ID NO: 72: Met Ala Arg Gln Phe Phe Val Gly Gly Aan Phe Lys Ala Aan Gly Thr 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		AGAACGCT	AA G	GATT	TCAA	A GA	CAAA	GCAA	ATG	TTGA	TGG	TTTC	TTAG	TC G	GTGG	TGCT	T
TATATGCCTA TAGAATTTAG CATGTTGTTG TGAATTGTA ATGAATCTAT AAAAATGTGC TCATGAAC (2) INFORMATION FOR SEQ ID NO: 72: (A) LENGTH: 248 amino acids (B) TYPE: maino acids (C) STANDEDMESS: (D) TOPOLOGY: Unknown (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72: Het Ala Arg Gln Phe Phe Val Gly Gly Asn Phe Lys Ala Asn Gly Thr 1	£	CATTAAAA	CC A	GAAT	TTGT	T GA	TATC	ATCA	AAT	CTAG	ATT	ATAA	ACAG	TA T	ATTA	AAAA	C
(2) INFORMATION FOR SEQ ID NO: 72: (4) SEQUENCE CHARACTERISTICS: (A) LENGTH: 248 amino acids (B) TYPE: amino acids (C) STRANDEDRESS: (D) TOPOLOCY: Unknown (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (ixi) SEQUENCE DESCRIPTION: SEQ ID NO: 72: Met Ala Arg Gln Phe Phe Val Gly Gly Asn Phe Lys Ala Asn Gly Thr 1 to 5 Lys Gln Gln Ile Thr Ser Ile Ile Asp Asn Leu Asn Lys Ala Asp Leu 20 Pro Lys Asp Val Glu Val Val Ile Cys Pro Pro Ala Leu Tyr Leu Gly 35 Pro Lys Asp Val Glu Gln Asn Lys Gln Pro Thr Val Ala Ile Gly Ala Gln 50 Asn Val Phe Asp Lys Ser Cys Gly Ala Phe Thr Gly Glu Thr Cys Ala 65 Ser Gln Ile Leu Asp Val Gly Ala Ser Trp Thr Leu Thr Gly His Ser 85 Glu Arg Arg Thr Ile Ile Lys Glu Ser Trp Thr Leu Thr Gly His Ser 85 Glu Arg Arg Thr Ile Ile Lys Glu Ser Asp Glu Phe Ile Ala Glu Lys 115 Glu Thr Leu Glu Glu Arg Lys Gly Gly Val Thr Leu Asp Val Cys Ala 40 Arg Gln Leu Asp Ala Val Ser Lys Ile Val Ser Asp Trp Ser Asn Ile 145 Glu Thr Glu Asp Ala Glu Glu Thr His Lys Gly Ile Arg Ala His Leu 160 Val Val Ala Tyr Glu Pro Val Trp Ala Ile Gly Thr Gly Leu Ala Ala 165 Thr Pro Glu Asp Ala Glu Glu Thr His Lys Gly Ile Arg Ala His Leu 180 Ala Lys Thr Ile Gly Ala Glu Glu Ala Glu Lys Thr Arg Ile Leu Tyr 195 Gly Gly Ser Val Asn Gly Lys Asn Ala Lys Asp Phe Lys Asp Lys Ala 210 Asn Val Asp Gly Phe Leu Val Gly Gly Ala Ser Leu Lys Pro Glu Phe	3	TATATGCC	TA T	AGAA	TTTA	G CA	TGTT	GTTG	TGA	ATTT	GTA .	ATGA	ATCT	AT A	аааа	TGTG	С
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 248 amino acids (B) TYPE: amino acids (C) STRANDEDNESS: (D) TOPOLOCY: UNKNOWN (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72: Met Ala Arg Gln Phe Phe Val Gly Gly Asn Phe Lys Ala Asn Gly Thr 1		TCATGAAC															
(A) LENGTH: 248 amino acids (B) TYPE: amino acids (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72: Met Ala Arg Gln Phe Phe Val Gly Gly Ann Phe Lys Ala Ann Gly Thr 1		(2) INFO	RMAT	ION	FOR .	SEQ	ID N	0: 7	2:								
(111) HYPOTHETICAL: NO (x1) SEQUENCE DESCRIPTION: SEQ ID NO: 72: Met Ala Arg Gln Phe Phe Val Gly Gly Asn Phe Lys Ala Asn Gly Thr 1	10	(i)	(A (B (C) LE:) TY) ST:	ngth Pe: Randi	: 24 amin EDNE	8 am o ac SS:	ino id		5							
(iii) HYPOTHETICAL: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72: Met Ala Arg Gln Phe Phe Val Gly Gly Asn Phe Lys Ala Asn Gly Thr 1	15	(ii)	MOL	ECUL	E TY	PE:	pept	ide	•								
Met Ala Arg Gln Phe Phe Val Gly Gly Asn Phe Lys Ala Asn Gly Thr 1	,,	(iii)	HYP	OTHE	TICA	L: N	0										
Met Ala Arg Gln Phe Phe Val Gly Gly Asn Phe Lys Ala Asn Gly Thr 1		(mi)	SPO	UPNC)	p ne	SCRT!	DT! (A)	NJ. CI	PO 11	n MO	. 79						
Lys Gln Gln Ile Thr Ser Ile Ile Asp Asn Leu Asn Lys Ala Asp Leu 25 Pro Lys Asp Val Glu Val Val Ile Cys Pro Pro Ala Leu Tyr Leu Gly 45 Leu Ala Val Glu Gln Asn Lys Gln Pro Thr Val Ala Ile Gly Ala Gln 50 Asn Val Phe Asp Lys Ser Cys Gly Ala Phe Thr Gly Glu Thr Cys Ala 65 Glu Arg Arg Thr Ile Ile Lys Glu Ser Asp Glu Phe Ile Ala Glu Lys 110 Glu Thr Lys Phe Ala Leu Asp Thr Gly Val Lys Val Ile Leu Cys Ile Gly 115 Glu Thr Leu Glu Glu Arg Lys Gly Gly Val Thr Leu Thr Gly Ala Gly Ala Ser Try Glu Thr Leu Thr Gly His Ser 115 Glu Thr Leu Glu Glu Arg Lys Gly Gly Val Thr Leu Asp Val Cys Ala 135 Thr Lys Phe Ala Leu Asp Thr Gly Val Lys Val Ile Leu Cys Ile Gly 115 Glu Thr Leu Glu Glu Arg Lys Gly Gly Val Thr Leu Asp Val Cys Ala 135 Arg Gln Leu Asp Ala Val Ser Lys Ile Val Ser Asp Trp Ser Asn Ile 145 Val Val Ala Tyr Glu Pro Val Trp Ala Ile Gly Thr Gly Leu Ala Ala 175 Thr Pro Glu Asp Ala Glu Glu Thr His Lys Gly Ile Arg Ala His Leu 180 Ala Lys Thr Ile Gly Ala Glu Gln Ala Glu Lys Thr Arg Ile Leu Tyr 205 Gly Gly Ser Val Asn Gly Lys Asn Ala Lys Asp Phe Lys Asp Lys Ala 200 Asn Val Asp Gly Phe Leu Val Gly Gly Ala Ser Leu Lys Pro Glu Phe Arg Ala Ala 200	20	••	_										T.va	Ala	Asn	Glv	The
20 25 30 Pro Lys Asp Val Glu Val Val Ile Cys Pro Pro Ala Leu Tyr Leu Gly 45 50 Leu Ala Val Glu Gln Asn Lys Gln Pro Thr Val Ala Ile Gly Ala Gln 65 50 Asn Val Phe Asp Lys Ser Cys Gly Ala Phe Thr Gly Glu Thr Cys Ala 66 60 Ser Gln Ile Leu Asp Val Gly Ala Ser Trp Thr Leu Thr Gly His Ser 85 60 Glu Arg Arg Thr Ile Ile Lys Glu Ser Asp Glu Phe Ile Ala Glu Lys 110 110 110 110 110 110 110 110 110 11			MI	Arg	GIN	5	riie	vaı	GLY	GIY		*****	2,3	7.24	,	15	
Leu Ala Val Glu Gln Asn Lys Gln Pro Thr Val Ala Ile Gly Ala Gln 65 Val Phe Asp Lys Ser Cys Gly Ala Phe Thr Gly Glu Thr Cys Ala 60 Ser Gln Ile Leu Asp Val Gly Ala Ser Trp Thr Leu Thr Gly His Ser 95 Glu Arg Arg Thr Ile Ile Lys Glu Ser Asp Glu Phe Ile Ala Glu Lys 110 100 100 100 100 100 100 100 100 10		Lys	Gln	Gln		Thr	Ser	Ile	Ile		Asn	Leu	Asn	Lys		Asp	Leu
30 Asn Val Phe Asp Lys Ser Cys Gly Ala Phe Thr Gly Glu Thr Cys Ala 80 Ser Gln Ile Leu Asp Val Gly Ala Ser Trp Thr Leu Thr Gly His Ser 100 Arg Arg Thr Ile Ile Lys Glu Ser Asp Glu Phe Ile Ala Glu Lys 110 Thr Lys Phe Ala Leu Asp Thr Gly Val Lys Val Ile Leu Cys Ile Gly Glu Thr Leu Glu Glu Arg Lys Gly Gly Val Thr Leu Asp Val Cys Ala 130 Glu Thr Leu Glu Glu Arg Lys Gly Gly Val Thr Leu Asp Val Cys Ala 145 Thr Gla Fer Lys Ile Val Ser Asp Trp Ser Asn Ile 145 Thr Pro Glu Asp Ala Glu Glu Thr His Lys Gly Ile Arg Ala His Leu 180 Ala Lys Thr Ile Gly Ala Glu Glu Thr His Lys Gly Ile Arg Ala His Leu 180 Ala Lys Thr Ile Gly Ala Glu Glu Ala Glu Lys Thr Arg Ile Leu Tyr Gly Gly Ser Val Asp Gly Lys Asp Asp Phe Lys Asp Lys Ala 210 Asp Val Asp Gly Phe Leu Val Gly Gly Ala Ser Leu Lys Pro Glu Phe Asp Ala Cys Asp Val Asp Cys Ala 210 Asp Val Asp Gly Phe Leu Val Gly Gly Ala Ser Leu Lys Pro Glu Phe Asp Cys Asp Val Asp Cys Asp	25	Pro	Lys	As p 35	Val	Glu	Val	Val		Cys	Pro	Pro	Ala	Leu 45	Tyr	Leu	Gly
Ser Gln Ile Leu Asp Val Gly Ala Ser Trp Thr Leu Thr Gly His Ser Glu Arg Arg Thr Ile Ile Lys Glu Ser Asp Glu Phe Ile Ala Glu Lys 110 Thr Lys Phe Ala Leu Asp Thr Gly Val Lys Val Ile Leu Cys Ile Gly 115 Glu Thr Leu Glu Glu Arg Lys Gly Gly Val Thr Leu Asp Val Cys Ala 130 Leu Asp Ala Val Ser Lys Ile Val Ser Asp Trp Ser Asn Ile 145 Thr Pro Glu Asp Ala Glu Fro Val Trp Ala Ile Gly Thr Gly Leu Ala Ala 170 Glu Pro Val Trp Ala Ile Gly Thr Gly Leu Ala Ala 180 Thr Pro Glu Asp Ala Glu Glu Thr His Lys Gly Ile Arg Ala His Leu 180 Thr 195 Thr Thr Pro Glu Asp Ala Glu Glu Thr His Lys Gly Ile Arg Ala His Leu 180 Thr 195 Thr Thr Gly Ser Val Asn Gly Lys Asn Ala Lys Asp Phe Lys Asp Lys Ala Asn Val Asp Gly Phe Leu Val Gly Gly Ala Ser Leu Lys Pro Glu Phe		Leu	Ala 50	Val	Glu	Gln	Asn		Gl n	Pro	Thr	Val		Ile	Gly	Ala	Gln
61u Arg Arg Thr 11e I1e Lys 61u Ser Asp 61u Phe I1e Ala 61u Lys 110 Thr Lys Phe Ala Leu Asp Thr 61y Val Lys Val I1e Leu Cys I1e 61y 125 Glu Thr Leu Glu Glu Arg Lys 61y 61y Val Thr Leu Asp Val Cys Ala 130 40 Arg 61n Leu Asp Ala Val Ser Lys I1e Val Ser Asp Trp Ser Asn I1e 145 Val Val Ala Tyr 61u Pro Val Trp Ala I1e 61y Thr 61y Leu Ala Ala 175 Thr Pro 61u Asp Ala 61u 61u Thr His Lys 61y I1e Arg Ala His Leu 190 Ala Lys Thr 11e 61y Ala 61u 61n Ala 61u Lys Thr Arg I1e Leu Tyr 61y 61y 61y Ser Val Asp 61y Phe Leu Val 61y 61y Ala Ser Leu Lys Pro 61u Phe 190 Asn Val Asp 61y Phe Leu Val 61y 61y Ala Ser Leu Lys Pro 61u Phe	30		Val	Phe	Asp	Lys		Суз	Gly	Ala	Phe	Thr 75	Gly	Glu	Thr	Суз	Ala 80
Thr Lys Phe Ala Leu Asp Thr Gly Val Lys Val Ile Leu Cys Ile Gly Glu Thr Leu Glu Glu Arg Lys Gly Gly Val Thr Leu Asp Val Cys Ala 130 Arg Gln Leu Asp Ala Val Ser Lys Ile Val Ser Asp Trp Ser Asn Ile 145 Val Val Ala Tyr Glu Pro Val Trp Ala Ile Gly Thr Gly Leu Ala Ala 175 Thr Pro Glu Asp Ala Glu Glu Thr His Lys Gly Ile Arg Ala His Leu 180 Ala Lys Thr Ile Gly Ala Glu Gln Ala Glu Lys Thr Arg Ile Leu Tyr Gly Gly Ser Val Asn Gly Lys Asn Ala Lys Asp Phe Lys Asp Lys Ala 210 Asn Val Asp Gly Phe Leu Val Gly Gly Ala Ser Leu Lys Pro Glu Phe		Ser	Gln	Ile	Leu		Val	Gly	Ala	Ser		Thr	Leu	Thr	Gly	His 95	Ser
Thr Lys Phe Ala Leu Asp Thr Gly Val Lys Val Ile Leu Cys Ile Gly Glu Thr Leu Glu Glu Arg Lys Gly Gly Val Thr Leu Asp Val Cys Ala 130 Arg Gln Leu Asp Ala Val Ser Lys Ile Val Ser Asp Trp Ser Asn Ile 145 Val Val Ala Tyr Glu Pro Val Trp Ala Ile Gly Thr Gly Leu Ala Ala 175 Thr Pro Glu Asp Ala Glu Glu Thr His Lys Gly Ile Arg Ala His Leu 180 Ala Lys Thr Ile Gly Ala Glu Gln Ala Glu Lys Thr Arg Ile Leu Tyr 195 Gly Gly Ser Val Asn Gly Lys Asn Ala Lys Asp Phe Lys Asp Lys Ala 210 Asn Val Asp Gly Phe Leu Val Gly Gly Ala Ser Leu Lys Pro Glu Phe	35	Glu	Arg	Arg		Ile	Ile	Lys	Glu		Азр	Glu	Phe	Ile	Ala 110	Glu	Lys
130 Arg Gin Leu Asp Ala Val Ser Lys Ile Val Ser Asp Trp Ser Asn Ile 150 Val Val Ala Tyr Glu Pro Val Trp Ala Ile Gly Thr Gly Leu Ala Ala 170 Thr Pro Glu Asp Ala Glu Glu Thr His Lys Gly Ile Arg Ala His Leu 180 Ala Lys Thr Ile Gly Ala Glu Gln Ala Glu Lys Thr Arg Ile Leu Tyr 195 Gly Gly Ser Val Asn Gly Lys Asn Ala Lys Asp Phe Lys Asp Lys Ala 210 Asn Val Asp Gly Phe Leu Val Gly Gly Ala Ser Leu Lys Pro Glu Phe		Thr	Lys		Ala	Leu	Азр	Thr		Val	Lys	Val	Ile	Leu 125	Cys	Ile	Gly
Val Val Ala Tyr Glu Pro Val Trp Ala Ile Gly Thr Gly Leu Ala Ala 175 Thr Pro Glu Asp Ala Glu Glu Thr His Lys Gly Ile Arg Ala His Leu 180 Ala Lys Thr Ile Gly Ala Glu Gln Ala Glu Lys Thr Arg Ile Leu Tyr 195 Gly Gly Ser Val Asn Gly Lys Asn Ala Lys Asp Phe Lys Asp Lys Ala 210 Asn Val Asp Gly Phe Leu Val Gly Gly Ala Ser Leu Lys Pro Glu Phe		Glu		Leu	Glu	Glu	Arg		Gly	Gly	Val	Thr	Leu 140	qeA	Val	Cys	Ala
Thr Pro Glu Asp Ala Glu Glu Thr His Lys Gly Ile Arg Ala His Leu 180 Ala Lys Thr Ile Gly Ala Glu Gln Ala Glu Lys Thr Arg Ile Leu Tyr 195 Gly Gly Ser Val Asn Gly Lys Asn Ala Lys Asp Phe Lys Asp Lys Ala 210 Asn Val Asp Gly Phe Leu Val Gly Gly Ala Ser Leu Lys Pro Glu Phe	40		Gln	Leu	Asp	Ala		Ser	Lys	Ile	Val	Ser 155	Asp	Trp	Ser	Asn	11e 160
Ala Lys Thr Ile Gly Ala Glu Gln Ala Glu Lys Thr Arg Ile Leu Tyr 195 Gly Gly Ser Val Asn Gly Lys Asn Ala Lys Asp Phe Lys Asp Lys Ala 210 Asn Val Asp Gly Phe Leu Val Gly Gly Ala Ser Leu Lys Pro Glu Phe	•	Val	Val	Ala	Tyr		Pro	Val	Trp	Ala	11e 170	Gly	Thr	Gly	Leu	Ala 175	Ala
Gly Gly Ser Val Asn Gly Lys Asn Ala Lys Asp Phe Lys Asp Lys Ala 210 215 220 Asn Val Asp Gly Phe Leu Val Gly Gly Ala Ser Leu Lys Pro Glu Phe	45	Thr	Pro	Glu		Ala	Glu	Glu	Thr	His 185	Lys	Gly	Ile	Arg	Ala 190	His	Leu
50 210 215 220 Asn Val Asp Gly Phe Leu Val Gly Gly Ala Ser Leu Lys Pro Glu Phe		Ala	Lys		île	Gly	Ala	Glu		Ala	Glu	Lys	Thr		Ile	Leu	Tyr
Asn Val Asp Gly Phe Leu Val Gly Gly Ala Ser Leu Lys Pro Glu Phe	50	Gly	Gly 210	Ser	Val	Αsn	Gly		Asn	Ala	Lys	Asp	Phe 220	Lys	Asp	Lys	Ala
			Val	Asp	Gly	Phe		Val	Gly	Gly	Ala		Leu	Lys	Pro	Glu	Phe 240

Val Asp Ile Ile Lys Ser Arg Leu 245

5

10

20

Claims

- 1. A nucleic acid molecule encoding a polypeptide which is critical for survival and growth of the yeast *Candida albicans* and which nucleic acid molecule comprises any of the sequences of nucleotides in Sequence ID Numbers 1 to 3, 5, 6, 8 to 11, 13, 15, 16, 18, 20, 21, 23, 25 to 29, 31, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69 and 71.
- 2. A nucleic acid molecule encoding a polypeptide which is critical for survival and growth of the yeast *Candida albicans* and which nucleic acid molecule comprises any of the sequences of nucleotides in Sequence ID Numbers 28, 35, 37 and 39 and fragments or derivatives of said nucleic acid molecules.
- 3. A nucleic acid molecule encoding a polypeptide which is critical for survival and growth of the yeast Candida albicans and which polypeptide has an amino acid sequence according to the sequence of any of Sequence ID Numbers 4, 7, 12, 14, 17, 19, 22, 24, 30, 32 to 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70 and 72.
 - A nucleic acid molecule according to any of claims 1 to 3 which is mRNA.
 - 5. A nucleic acid molecule according to any of claims 1 to 3 which is DNA.
 - 6. A nucleic acid molecule according to claim 5 which is cDNA.
- A nucleic acid molecule capable of hybridising to the molecules according to any of claims 1 to 5 under high stringency conditions.
 - 8. A polypeptide having the amino acid sequences of any of Sequence ID Numbers 4, 7, 12, 14, 17, 19, 22, 24, 30, 32 to 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70 and 72.
- 9. A polypeptide encoded by the nucleic acid molecule according to any of claims 1 to 6.
 - A polypeptide according to claim 9 having an amino acid sequence of any of Sequence ID Numbers 4, 7, 12, 14, 17, 19, 22, 24, 30, 32 to 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70 and 72.
 - 11. An expression vector comprising a nucleic acid molecule according to claim 5 or 6.

35

- 12. An expression vector according to claim 11 which comprises an inducible promoter.
- 13. An expression vector according to claim 11 or 12 which comprises a sequence encoding a reporter molecule.
- 14. A nucleic acid molecule according to any of claims 1 to 7 for use as a medicament.

40

- 15. Use of a nucleic acid molecule according to any of claims 1 to 7 in the preparation of a medicament for treating Candida albicans associated diseases.
- 16. A polypeptide according to any of claims 8 or 10 for use as a medicament.
- 45 17. Use of a polypeptide according to any of claims 8 to 10 in the preparation of a medicament for treating Candida albicans associated infections.
 - 18. A pharmaceutical composition comprising a nucleic acid molecule according to any of claims 1 to 7 or a polypeptide according to any of claims 8 to 10 together with a pharmaceutically acceptable carrier diluent or excipient therefor.

50

- 19. A Candida albicans cell comprising an induced mutation in the DNA sequence encoding the polypeptide according to any of claims 8 to 10.
- 20. A method of identifying compounds which selectively modulate expression of polypeptides which are crucial for growth and survival of Candida albicans, which method comprises:
 - (a) contacting a compound to be tested with one or more Candida albicans cells having a mutation in a nucleic acid molecule according to any of claims 1 to 6 which mutation results in overexpression or

underexpression of said polypeptides in addition to contacting one or more wild typeCandida albicans cells with said compound,

- (b) monitoring the growth and/or activity of said mutated cell compared to said wild type; wherein differential growth or activity of said one or more mutated Candida cells is indicative of selective action of said compound on a polypeptide or another polypeptide in the same or a parallel pathway.
- 21. A compound identifiable according to the method of claim 20.
- 22. A compound according to claim 21 for use as a medicament.
 - 23. Use of a compound according to claim 21 in the preparation of a medicament for treating Candida albicans associated diseases.
 - 24. A pharmaceutical composition comprising a compound according to claim 21 together with a pharmaceutically acceptable carrier, diluent or excipient therefor.
 - 25. A method of identifying DNA sequences from a cell or organism which DNA encodes polypeptides which are critical for growth or survival of said cell or organism, which method comprises:
 - (a) preparing a cDNA or genomic library from said cell or organism in a suitable expression vector which vector is such that it can either integrate into the genome in said cell or that it permits transcription of antisense RNA from the nucleotide sequences in said cDNA or genomic library,
 - (b) selecting transformants exhibiting impaired growth and determining the nucleotide sequence of the cDNA or genomic sequence from the library included in the vector from said transformant.
 - 26. A method according to claim 25 wherein said cell or organism is a yeast or filamentous fungi.
 - 27. A method according to claim 25 or 26 wherein said cell or organism is any of Saccharomyces cervisiae, Saccharomyces pombe or Candida albicans.
- 30 28. Plasmid pGAL1PSiST-1 having the sequence of nucleotides illustrated in Figure 2.
 - 29. Plasmid pGAL1PNiST-1 having the sequence of nucleotides illustrated in Figure 4.
 - 30. An antibody capable of binding to a polypeptide according to any of claims 8 or 10.
- 35. An oligonucleotide comprising a fragment of from 10 to 50 contiguous nucleic acid sequences of a nucleic acid molecule according to any of claims 1 to 7.
 - 32. A nucleic acid molecule encoding a polypeptide which is critical for survival and growth of the yeast Candida albicans, said nucleic acid molecule comprising the sequences of any of the nucleotide sequences illustrated in Figures 5 to 28.
 - 33. A polypeptide which is critical for survival and growth of the yeast *Candida albicans*, said polypeptide comprising the amino acid sequences of any of the sequences illustrated in Figures 29 to 39.

55

5

15

20

25

40

45

Figure 1

	HindIII					
	AGCTTGAGTA TCGAACTCAT	AACATATCAC	ACTYCCATTTA	TCGAACCGCA	TTAGTACCAG	
	 .					
	ATAGCTGTTT TATCGACAAA	CCACACACTT	TAACAATAGG	CGACTGTTAA	CCTCTCTTGT	
	TACGAGCCGG ATGCTCGGCC	JAIN TAILS AND JAINED	ACATTTCGGA	CCCCACGGAT	TACTCACTCG	
	· · · · · · · · · ·					
151	TAACTCACAT ATTGAGTGTA	ATTAACGCAA	GCGCTCACTG CGCGAGTGAC	GGGCGAAAGG	TCAGCCCTTT	
	CCTGTCGTGC GGACAGCACG	CTCGACGTAA	TTACTTAGCC	GGTTGCGCGC	CCCTCTCCCC	
					~~~~~	
	GTTTGCGTAT CAAACGCATA	ACCCGCGAGA	AGGCGAAGGA	GCGAGTGACT	GAGCGACGCG	
	TCGGTCGTTC AGCCAGCAAG	CCGACGCCGC	TCGCCATAGT	CCACTGAGTT	TCCGCCATTA	
	ACGGTTATCC TGCCAATAGG	TGTCTTAGTC	CCCTATTGCG	TCCTTTCTTG	TAÇACTCGTT	
	AAGGCCAGCA					
	THE PROPERTY OF THE PROPERTY O	THE PROPERTY OF THE PROPERTY O	TTGGCATTTT	TCCGGCGCAA	CGACCGCAAA	
	TTCCATAGGC AAGGTATCCG	ACCCCCCCCC	ACTGCTCGTA	GTGTTTTTAG	CTGCGAGTTC	
	TCAGAGGTGG AGTCTCCACC	COTTYCCCCT	GTCCTGATAT	TTCTATCCTC	CGCAAAGGUG	
	CTGGAAGCTC GACCTTCGAG	CCACCACCCC	AGAGGACAAG	GCTGGGACGG	CGAATGGCCT	
	TACCTGTCCG					
	ATGGACAGGC	GGAAAGAGGG	AAGCCCTTCG	CACCGCGAAA	GAGTATCGAG	
	ACGCTGTAGG TGCGACATCC	ATAGAGTCAA	GCCACATCCA	GCAAGCGAGG	TTCGACCCGA	
	Apali					
701	GTGTGCACGA CACACGTGCT	TGGGGGGCAA	GTCGGGCTGG	CGACGCGGAA	TAGGCCATIG	
					· · · · · · · · ·	
	TATCGTCTTG ATAGCAGAAC	TCAGGTTGGG	CCATTCTGTG	CTGAATAGCG	GTGACCGTCG	
	AGCCACTGGT TCGGTGACCA	TTGTCCTAAT	CGTCTCGCTC	CATACATCCG	CCACGATGIC	
	ACTTCTTGAA TCAAGAACTT	CACCACCGGA	TTGATGCCGA	TGTGATCTTC	CTGTCATAAA	
	GGTATCTGCG CCATAGACGC	CACACCACTC	CCCTCAATCC	V VCCCLLALALAL	CTCAACCATC	
						**************************************

Fig.2

	CTCTTGATCC GAGAACTAGG	CCGTTTGTTT	GGTGGCGACC	ATCGCCACCA	AAAAAACAAA	, ,
• • •						
	GCAAGCAGCA CGTTCGTCGT	CTAATGCGCG	TCTTTTTTTC	CTAGAGTTCT	TCTAGGAAAC	; ; ,,,.,,,
• • •						
	ATCTTTTCTA TAGAAAAGAT	GCCCCAGACT	GCGAGTCACC	TIGCTITIGA	GTGCAATTCC	; ; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
• • •	· · · · · · · · · ·	• • • • • • • • •				
	GATTTTGGTC CTAAAACCAG	ተልርጥንተንልተል	CHALLALCCLY	GAAGTGGATC	TAGGAAAATT	} 
	ATTAAAAATG TAATTTTTAC	THEALANTE	ACTTAGATTT	CATATATACT	CATTTGAACC	
	TCTGACAGTT AGACTGTCAA	TOCTTACGAS	TTAGTCACTC	CGTGGATAGA	GTCGCTAGAC	
	TCTATTTCGT AGATAAAGCA	ACTACCTATO	AACGGACTGA	GGGGCAGCAC	ATCTATIGAT	
	CGATACGGGA GCTATGCCCT	CCCGAATGGT	AGACCGGGGT	CACGACGTTA	CTATGGCGCT	
	GACCCACGCT CTGGGTGCGA	GTGGCCGAGG	TCTAAATAGT	CGTTATTTCG	TCGGTCGGCC	
	AAGGGCCGAG TTCCCGGCTC	GCGTCTTCAC	CAGGACGTTG	AAATAGGCGG	AGGTAGGTCA	
						•••••
	CTATTAATIG GATAATTAAC	Y Y COCOCOCOCO	LAD WALLAND COL	CATCAAGCGG	TCAATTATCA	
	TTGCGCAACG AACGCGTTGC	AACAACGGTA	ACGATGTCCG	TAGCACCACA	GTGCGAGCAG	
	GTTTGGTATG CAAACCATAC	CCAACTAACT	CGAGGCCAAG	CGTTCCTAGT	TCCGCTCAAT	
	CATGATCCCC GTACTAGGGG	GTACAACACG	TTTTTTCGCC	AATCGAGGAA	GCCAGGAGGC	
	ATCGTTGTCA TAGCAACAGT	CTTCATTCAA	CCGGCGTCAC	AATAGTGAGT	ACCAATACCG	
	AGCACTGCAT TCGTGACGTA	TTAAGAGAAT	GACAGTACGG	TAGGCATTCT	ACGAAAAGAC	
• • • •						
	TGACTGGTGA ACTGACCACT	CATGAGTTGG	TTCAGTAAGA	CTCTTATCAC	ATACGCCGCT	
1801		GAACGGGCCG	CAGTTATGCC	CTATTATGGC	CCCACATAG	
	· · · · · · · · · · ·					
	CAGAACTTTA GTCTTGAAAT	TTTCACGAGT	AGTAACCTTT	TGCAAGAAGC	CCCGCTTTTG	
	· · · · · · · · · ·		• • • • • • • • •	• • • • • • • • •		

ApaLI

1901	TCTCAAGGAT AGAGTTCCTA	GAATGGCGAC	AACTCTAGGT	CAAGCTACAT	TGGGTGAGCA	
	ApaLI					
	GCACCCAACT CGTGGGTTGA	CTAGAAGTCG	TAGAAAATGA	AAGTGGTCGC	AAAGACCCAC	•
2001	AGCAAAAACA TCGTTTTTGT	GGAAGGCAAA CCTTCCGTTT	ATGCCGCAAA TACGGCGTTT	AAAGGGAATA TTTCCCTTAT	AGGGCGACAC TCCCGCTGTG	•
2051	GGAAATGTTG CCTTTACAAC	AATACTCATA TTATGAGTAT	CTCTTCCTTT GAGAAGGAAA	TTCAATATTA AAGTTATAAT	TTGAAGCATT AACTTCGTAA	
2101	TATCAGGGTT	ATTGTCTCAT TAACAGAGTA	GAGCGGATAC CTCGCCTATG	ATATTTGAAT TATAAACTTA	GTATTTAGAA CATAAATCTT	
2151	АААТАААСАА	ATAGGGGTTC TATCCCCAAG	CGCGCACATT GCGCGTGTAA	TCCCCGAAAA AGGGGCTTTT	GTGCCACCTG CACGGTGGAC	
2201	ACGTCTAAGA	AACCATTATT	ATCATGACAT	TAACCTATAA ATTGGATATT	AAATAGGCGT	
2251	ATCACGAGGC	CCTTTCGTCT	CGCGCGTTTC GCGCGCAAAG	GGTGATGACG CCACTACTGC	GTGAAAACCT CACTTTTGGA	
2301	CTGACACATG GACTGTGTAC	CAGCTCCCGG	AGACGGTCAC TCTGCCAGTG	AGCTTGTCTG TCGAACAGAC	TAAGCGGATG ATTCGCCTAC	
2351	CCGGGAGCAG GGCCCTCGTC	ACAAGCCCGT TGTTCGGGCA	CAGGGGGGGT GTCCCGCGCA	CAGCGGGTGT GTCGCCCACA	TGGCGGGTGT ACCGCCCACA	
• • • •			· · · · · · · · · ·		ApaLI	
	CGGGGCTGGC GCCCGACCG	AATTGATACG	CCGTAGTCTC	GTCTAACATG	ACTOTOACGT	
	ApaLI					
	CCATATGCGG GGTATACGCC	ACACTTTATG	GCGTGTCTAC	GCATTCCTCT	TTTATGGCGT	
2501	TCAGGCGAAA AGTCCGCTTT	TTGTAAACGT AACATTTGCA	TAATATTTTG ATTATAAAAC	TTAAAATTCG AATTTTAAGC	CGTTAAATAT GCAATTTATA	
2551	TTGTTAAATC AACAATTTAG	AGCTCATTTT TCGAGTAAAA	TTAACCAATA AATTGGTTAT	GGCCGAAATC CCGGCTTTAG	GGCAAAATCC CCGTTTTAGG	
2601	CTTATAAATC GAATATTTAG	AAAAGAATAG TTTTCTTATC	ACCGAGATAG TGGCTCTATC	GGTTGAGTGT CCAACTCACA	TGTTCCAGTT ACAAGGTCAA	
2651	TGGAACAAGA ACCTTGTTCT	GTCCACTATT CAGGTGATAA	AAAGAACGTG TTTCTTGCAC	GACTCCAACG CTGAGGTTGC	TCAAAGGGCG AGTTTCCCGC	
2701	AAAAACCGTC TTTTTGGCAG	TATCAGGGCG ATAGTCCCGC	ATGGCCCACT TACCGGGTGA	ACGTGAACCA TGCACTTGGT	TCACCCÀAAT AGTGGGTTTA	
2751	CAAGTTTTTT	GCGGTCGAGG CGCCAGCTCC	TGCCGTAAAG ACGGCATTTC	CTCTAAATCG GAGATTTAGC	GAACCCTAAA CTTGGGATTT	
• • • •				• • • • • • • •		

	CCCTCGGGGG	CTAAATCTCG	TTGACGGGGA AACTGCCCCT	TTCGGCCGCT	ACGTGGCGAG TGCACCGCTC
2851	AAAGGAAGGG TTTCCTTCCC	AAGAAAGCGA TTCTTTCGCT	AAGGAGCGGG TTCCTCGCCC	CGCTAGGGCG	CTGGCAAGTG
2901	TAGCGGTCAC	GCTGCGCGTA CGACGCGCAT	ACCACCACAC TOGTOGTOTO	CCGCCGCGCT	TAATGCGCCG ATTACGCGGC
	CTACAGGGGG	CGTCCATTCG	CCATTCAGGC GGTAAGTCCG	TGCGCAACTG	TTGGGAAGGG
	GCTAGCCACG	CCCGGAGAAG	GCTATTACGC CGATAATGCG	GTCGACCGCT	TTCCCCCTAC
3051	TGCTGCAAGG ACGACGTTCC	CGATTAAGTT GCTAATTCAA	GGGTAACGCC CCCATTGCGG	AGGGTTTTCC TCCCAAAAGG	CAGTCACGAC GTCAGTGCTG
	CTTCTAAAAC	GACGGCCAGT	GAATTGTAAT CTTAACATTA	ACGACTCACT	ATAGGGGGAA
					• • • • • • • • • • • • • • • • • • • •
	AACCAAAAGG	TTACTACTCG	ACTITITAAAG TGAAAATTIC	AAGACGATAC	ACCGCGCCAT
3201	TTATCCCGTG	TTGACGCCGG	GCAAGAGCAA CGTTCTCGTT	CTCGGTCGCC GAGCCAGCGG	GCATACACTA
3251	TTCTCAGAAT AAGAGTCTTA	GACTTGGTTG CTGAACCAAC	AGTACTAATA TCATGATTAT	GGAATTGATT CCTTAACTAA	TGGATGGTAT ACCTACCATA
3301	AAACGGAAAC TTTGCCTTTG	AAAAAAAGA TTTTTTTTCT	GCTGGTACTA CGACCATGAT	CTTTCTTTAA GAAAGAAATT	AATTATTTA TTAATAAAT
	TTATTTGATT	TTATTTAATA	GTATATATTA	TATTTTGAAC	GTAGATTATT
	AATAAACTAA	AATAAATTAT	CATATATAAT	ATAAAACTIG	CATCHARIAA
	AACAACTTTC	AACGACATCA	GCCATTGATT CGGTAACTAA	GCATTGTGAT	ATTCTGTATT TAAGACATAA
3451	AGTCATTCCT TCAGTAAGGA	CTTGTTTGAT GAACAAACTA	AGTATCCAAA TCATAGGTTT	AAAACGGCTA TTTTGCCGAT	TTTTTTGCA AAAAAACGT
			TACAGATAAC		
	TAGAATAAAG	GACGTATAAT	ATGTCTATTG	TATTACTTTC	TTTTTAGAA
3551	TTTTTTTGTT AAAAAAAACAA	CTTCAATGAT GAAGTTACTA	GATTTCAACC CTAAAGTTGG	ATTCTTTTAA TAAGAAAATT	ACATTGATCA TGTAACTAGT
3601	ATTCCTGAGC TAAGGACTCG	AACAACCCCA TTGTTGGGGT	TACACACTGG ATGTGTGACC	TTTATATACC AAATATATGG	GCCCCTTTA CGGGGAAAAT
3651	CAGTTGAAGA GTCAACTTCT	AAGAAATAGA TTCTTTATCT	AATAGAAATA TTATCTTTAT	GCAAACAAAA CGTTTGTTTT	GATATGACAG CTATACTGTC
	TCAACACTAA	GACCTATAGT	GAGAGAGCAG CTCTCTCGTC	AAACTCATGC	CTCACCAGTA
	COTOTOCOTA	ATABACCTAB	AATGGAACTG TTACCTTGAC	TECTTTTTCCT	ATTTATGTOC TAAATACACG
	· · · · · · · · ·	. <b></b> .	<b></b> .		

#### EcoRI

	ATCAATTGAC TAGTTAACTG	CAACTATGGT	GATTCCTTAA	GGAACTTAAT	TAACTATTTA	
	TAGGTCCTTA	TGTATGCTTA	ATCAAGACTC	ATATTGATAT	AATCAATGAT	
3901		TTAGGTGATA	ACTTGGTAAT	AATCTTGAAA	CACGTAAACA GTGCATTTGT	
			• • • • • • • • •			
		TAAAAACTTC	TATCTTTTAA	ACGACTATAA	CCATTATGGC	
	• • • • • • • •					
	TAAAGAAACA ATTTCTTTGT	TATATAACCA	CCTCAAATAT	TTTAATCATC	AACCCGTCTA	
	ATTACCAATG TAATGGTTAC	GAGTACCACA	GTGACCCTTA	CCTCACCAAC	TTCCTAATIT	
	ACAGGGAGCT TGTCCCTCGA	TTTCTTTGGT	GGTGGTTGGT	TCTCGGTTCT	CCCAATAACT	
					<b></b>	
	TGTTAGCTGA	ATTATCATCA		TAGCATATGG	AGAATATTCT	
	CAAAAAACTG	TTGAAATTGC		AAGGAATTTG	TTATTGGATT	
	GIIIIIIGAC	MCIIIMCO				
	TATTGCCCAA ATAACGGGTT	CCACTATACC	CACCCCTTCT	TCTTCCTAAA	CTAACCGAAT	
						••••
	TTATGACACC AATACTGTGG	ACCTCAACCT	AATCTACTAT	TTCCACTACC	TAATCCTGTT	
				• • • • • • • •	· · · · · · · · ·	
	CAATATAGAA GTTATATCTT	GACAACTACT	TCAACAATCG	TGACCTTGAC	TATAATAGTA	
	TGTTGGTAGA ACAACCATCT	CCTAACAAAC	CATTTCCTTC	TCTAGGTCTA	TAACTICCAT	
	AAAGGTATAG	AAATGCTGGT		ATTTGAAAAA	GACTGGCCAA	
				• • • • • • • • •		
	TTATAAATGT AATATTTACA	CTTCCCCCTC	TAAAAGTGAA	ATARTCTARA	CATATATACA	
		<b></b> .			<i></i> .	
4551	AGAATAAATA TCTTATTTAT	AATAAATAAG TTATTTATTC	TAAATAAAT ATTTATTAA	AATAAATTAA TTATTTAATT	GGGTGGTAAT CCCACCATTA	
4601	TATTACTATT ATAATGATAA	TACAATCAAA ATGTTAGTTT	GGTGGTCCTT CCACCAGGAA	CTAGCTGTAA GATCGACATT	TCCGGGCAGC AGGCCCGTCG	
	GCAACGGAAC	ATTCATCAGT		AATCAATAAA	GCCCTGCGCA	
4701	GCGCGCAGGG	TCAGCCTGAA	TACGCGTTTA ATGCGCAAAT	ATGACCAGCA TACTGGTCGT	CAGTCGTGAT GTCAGCACTA	

	GGCAAGGTCA CCGTTCCAGT	CTTATCGGGT	TCAGCCGGCT	CCCCGGACAT	CICACICCCI	
4801	AGATCTGATA	TTGACGAAGA	GGAACCAATG CCTTGGTTAC	TAACGTTACA ATTGCAATGT	CTGAAGAAAA GACTTCTTTT	
4851	CACACAATAA	ACGGGAAGAA	ACGGTGTAAA	AGTGTGAAAA TCACACTTTT	TAATTTTTGA ATTAAAAACT	
4901	ATATCATTTC	CCTTGGTTTA GGAACCAAAT	ATTCCAAACG TAAGGTTTGC	AAACGTGTTT TTTGCACAAA	TTTTTAGAGA AAAAATCTCT	
• • • •	EcoRI				ApaLI	
	ATGGGAATTC	AATAACCTAC	AGATCTAACA	AACAAATGAG	GICIGACACG	
	ApaLI					
	ACAAAAACGT TGTTTTTGCA	AACCTACCTA	CTAGTCTTCT	ATAAAAATCC	GAATCGAGAT	
5051	*******	ATGATGCTTG TACTACGAAC	AAAAACCAGA TTTTTGGTCT	CAGAAATTGA GTCTTTAACT	GITTCAAAAA CAAAGITTTT	
5101	TTGGTAATGT	GAGGTATTAG	TCAACTAACC	AAATAACAAT TTTATTGTTA	GCAAACCGGT CGTTTGGCCA	
5151	TGATACATTT	CATTTTGAAA	ATAATGAAAC TATTACTTTG	TGGAATTGGA ACCTTAACCT	TGACCAGCAC ACTGGTCGTG	
5201	ACAAACACAT	AAAGTAATTA	TGGGAATTAG ACCCTTAATC	AAGCGAACAT TTCGCTTGTA	AGAGGAGTAC TCTCCTCATG	
5251	TTGGCCACGA AACCGGTGCT	ACAGAATACA TGTCTTATGT	AGTGGGAACA TCACCCTTGT	CTATTTTCTC GATAAAAGAG	CATTGTTTTA GTAACAAAAT	
5301		TTTGTCAGCC AAACAGTCGG	TAGTTTTGTG ATCAAAACAC	CTATGTGTAA GATACACATT	AAAATATTGC TTTTATAACG	
• • • •		 .ndIII		• • • • • • •		
	CAAGAAAAA GTTCTTTTT	TÇGAACAAAA	CACCGGTCAC	AGGCTTTTTT	TAAAACCCCT	
	ATCTTCGGAT TAGAAGCCTA	TAATTTATGT	TTTCATTCCA	TCGGGGAAAG	TGGGGGGGAA	
	AAAATTTTAA	. <i></i>	AAACCTTCCA	AAAAATATAT	GGACAAAGAT	
	GATTGTATTT CTAACATAAA	TCCCGACACC	AAAATCATAA	TTAATTATGA	GAAAGTTAAA	
	TGTAACGTTA	CAATTTATGT	TTATTTGAAG	GTGAAAAGCG	ATTTATGATT	
	ACATTGCAAT TTTCCGAAAT					
	ANAGGCTTTA	CTTTTAAAAA	AAATCCAAAT	AAAAAAAACA	GCCCGTTTCT	

**EcoRI** 

5651 AAAACTGAAC AAGGATTATT AAAATTTTTG GTGTTTGTTT GTGTCTGGAG TITTGACTTG TTCCTAATAA ITTTAAAAAC CACAAACAAA CACAGACCTC EcoRI 5701 AATTCATTCC TCTCTCATCT TCACACAATG TTTAGACATC TGACACGATT TTAAGTAAGG AGAGAGTAGA AGTGTGTTAC AAATCTGTAG ACTGTGCTAA ...... 5751 CATGATAGTT CGGTTTCCGG GGTTGGTGTT TAGTTTTCGT TTTTCTTTTT GTACTATCAA GCCAAAGGCC CCAACCACAA ATCAAAAGCA AAAAGAAAAA 5801 TTTTGGAAAG AATGTTTTAG CTCATTGGTT TTCTTTCTTC ATTCAATAGT AAAACCTTTC TTACAAAATC GAGTAACCAA AAGAAAGAAG TAAGTTATCA 5851 TTTGAAAGAA TTTGCCCACT TGTTATTACA ATCATATAAA ATTAAACTTT AAACTITCTT AAACGGGTGA ACAATAATGT TAGTATATIT TAATTTGAAA 5901 GATATAAAAT AGAGTITGAA AGTITCCCAG ATCCTTTTIG ATTTCTTIGT CTATATTTA TCTCAAACTT TCAAAGGGTC TAGGAAAAAC TAAAGAAACA 5951 AAATTTTTT TTCTCCCACA TATACACACA TACAAACCGA TTTTTATAAG
TTTAAAAAAA AAGAGGGTGT ATATGTGTGT ATGTTTGGCT AAAAATATTC PstI AvaI BamHI 6001 AAAGAGTTAT ACCCTGCAGC TCGACCTCGA GGGATCCGGG CCCTCTAGAT TITCTCAATA TGGGACGTCG AGCTGGAGCT CCCTAGGCCC GGGAGATCTA ...... AvaI 6051 GCGGCCGCTA GGCCTCGAGG GACTTTTGCA CCAAAAATAA TTTATTTTCC CGCCGGCGAT CCGGAGCTCC CTGAAAACGT GGTTTTTATT AAATAAAAGG 6101 AAAATAAAAT TTAAATAAAT AAAAATAACT CATAATTTAA TAAAAATTTC TTTTATTTA AATTTATTTA TTTTTATTGA GTATTAAATT ATTTTTAAAG 6151 AAAATCTTCT AGTGTCCTTT CATATGCAGT ACATTAGCCA TCAGTCACTT TTTTAGAAGA TCACAGGAAA GTATACGTCA TGTAATCGGT AGTCAGTGAA ..... 6201 AAACAGCATC TGCTGGTTGA AGAATGCTTG AAGCAATTGT CCAGTCCCAG TTTGTCGTAG ACGACCAACT TCTTACGAAC TTCGTTAACA GGTCAGGGTC 6251 AGGCACAGGC TAGGAGATCT TCAGTTTCGG AGGTAACCTG TAAGTCTGTT TCCGTGTCCG ATCCTCTAGA AGTCAAAGCC TCCATTGGAC ATTCAGACAA 6301 AATGAAGTAA AAGTTCCTTA SGATTTCCAC TCTGACTATG GTCCAGGCAC TTACTTCATT TTCAAGGAAT CCTAAAGGTG AGACTGATAC CAGGTCCGTG 6351 AGTGACTGTA CTCCTTGGCC TTCAGGTAAT GCAGAATCCT CCCATAATAT TCACTGACAT GAGGAACCGG AAGTCCATTA CGTCTTAGGA GGGTATTATA ..... 6401 CTTTTCAGGT GCAGACTGCT CATGAGTTTT CCCCTGGTGA AATCTTCTTT GAAAAGTCCA CGTCTGACGA STACTCAAAA GGGGACCACT TTAGAAGAAA 6451 CTCCAGTTTT TCTTCCAGGA CTGTCTTCAG ATGGTTTATC TGATGATAGA GAGGTCAAAA AGAAGGTCCT GACAGAAGTC TACCAAATAG ACTACTATCT 6501 CATTAGCCAG GAGGTTCTCA ACAATAGTCT CATTCCAGCC AGTGCTAGAT GTAATCGGTC CTCCAAGAGT TGTTATCAGA GTAAGGTCGG TCACGATCTA .....

	GAATCTTGTC CTTAGAACAG	ACTITITATCG	TTTCTACAAG	ACCTCGTAGA	GTATCTACCA			
	• • • • • • • •		Pst					• • •
		AGGAGGAAGA	CCTTGACGAC	GTCGACGAAT	TAGACGAGIC			
								• • •
	GGATGTCAAA CCTACAGTTT	CAAGTAGGAC	AGGAACTCCG	TCATAAGTTC	GGAGGGTAAG			
							• • • • • • • • • • • • • • • • • • • •	
	AATTGCCACA TTAACGGTGT	CCTCGAAGAC	TGTGACTTTT	AACGACGAAG	AAACATCCTT			
								- • •
	TCCAAGCAAG AGGTTCGTTC	AACATCGAGT	ACCTTTCTCG	ACATCACCTC	TICGIGITGI			
• • • •	• • • • • • • •	• • • • • • • • •						
				7 <b>A</b>	/aI			
	GGAGAGCAAT	mmccaccaca	CACTENCTOTICS	TCATCIPTCT	CGACGCCTTT			
	CCTCTCGTTA	<b>AACCTCCTCT</b>	GTGAACAACC	AGTACAAGGA	GCTCCGGAAA			
					BamHI			
					201111			
	TTGGCCAGCT AACCGGTCGA	CCGCGGACGA	CGCGCTGCCG	CTCGACGAGT	GGTGGGTCCT			
		• • • • • • • •	· · · · · · · · ·					• • •
	BamHI							
	TCCGTCCCCC	AAAAGGAAAC	AGCTATAGTA	CATTAATCAA	TACAGTGCGA			
								• • •
6951	TACATTCACG ATGTAAGTGC	CCCACCCCCC	TGTAGGCGAG	ATTGGCTTTT	CCTTCCTCAA			
							• • • • • • • • • • •	• • •
		TTCAGATCCA	GGGATAAATA	TTTTTTATAG AAAAAATATC	TIATGTTAGT AATACAATCA			
	• • • • • • • •							
	ATTAAGAACG TAATTCTTGC	ATABATATA	AAGTTTAAAA	AGAAAAAAA	GACATGTCTG			
						• • • • • • • • • • • • • • • • • • • •		• • •
	GCGTGTACGC CGCACATGCG	TACATTCTAA	TATGACTTTT	GGAACGAACT	CTTCCAAAAC			
		• • • • • • • •						
		His	edIII					
7151	GGACGCTCGA CCTGCGAGCT		AACGT					
			<b></b>					





Fig 3

1	AAGGTAGCCC	CTTTCACCCC	CCCTTTTTTA	TTTAAGCAGT AAATTCGTCA	AGIGITINGG				
51	TTCCAAAAAA	TATATOGACA ATATACCTGT	AAGATGATTG TTCTACTAAC		ACACCAAAAT TGTGGTTTTA				
101	CATAATTAAT GTATTAATTA	TATGAGAAAG ATACTCTTTC	TTAAATGTAA AATTTACATT		TATGTTTATT ATACAAATAA				
151	TGAAGGTGAA ACTTCCACTT	AAGCGATTTA TTCGCTAAAT	TGATTTTTCC ACTAAAAAGG		TTTTTTTTAG AAAAAAATC				
	GTTTATTTTT	TTTGTCGGGC AAACAGCCCG	AAAGAAAAAC TTTCTTTTTG	TGAACAAGGA ACTTGTTCCT	TTATTAAAAT AATAATTTTA				
			EcoRI						
	TTTTGGTGTT AAAACCACAA	ACAAACACAG	ACCTCTTAAG	TAAGGAGAGA	GTAGAAGIGI				
	CAATGTTTAG GTTACAAATC	ACATCTGACA	CGATTCATGA		TCCGGGGTTG				
 351	CTCTTTAGTT	TTCGTTTTTC	TTTTTTTTTG		TTTAGCTCAT AAATCGAGTA	• • • • • • • •		•••••	• • • •
	TGGTTTTCTT	TCTTCATTCA	ATAGTTTTGA		CCACTTGTTA				
	TTACARTCAT	ATAAAATTAA	ACTTTGATAT	AAAATAGAGT	TTGAAAGTTT	• • • • • • • •		• • • • • •	
	CCCAGATCCT		<b></b> .		• • • • • • • •			• • • • •	
	GGGTCTAGGA	AAAACTAAAG	AAACATTTAA	AAAAAAAGAG	GGTGTATATG		. <b></b>		
					tI				
551		TGGCTAAAAA	TATTCTTTCT	GTTATACCCT CAATATGGGA	CCTCGAGCTG				<i></i> .
		PstI	Hind	HIII	Aval				
	CTCGACTGTT GAGCTGACAA	ATTTGGACGT	GGCATGCAAG CCGTACGTTC	CTTGGCCAAA GAACCGGTTT	TTCCGGAGCT				
	AvaI				- • • • • • • • •	· · · · · · · · · · · ·			
651	GGAACATGAC CCTTGTACTG	GTTGTTCACA	GAGGAGGTTT	AACGAGAGGA	CAACACGAAG				
701	TCCACTACAG	CTCTTTCCAT	GAGCTACAAC	TTGCTTGGAT AACGAACCTA	TCCTACAAAG				
	AAGCAGCAAT	TTTCAGTGTC	AGAAGCTCCT		AATGGGAGGC			• • • • • •	
 801	TTGAATACTG	CCTCAAGGAC	AGGATGAACT	TTGACATCCC	TGAGGAGATT	• • • • • • •		• • • • •	
			TCCTACTTGA	AACTGTAGGG	ACTCCTCTAA				

Fig 4

PstT 851 AAGCAGCTGC AGCAGTTCCA GAAGGAGGAC GCCGCATTGA CCATCTATGA TTCGTCGACG TCGTCAAGGT CTTCCTCCTG CGGCGTAACT GGTAGATACT 901 GATGCTCCAG AACATCTTTG CTATTTTCAG ACAAGATTCA TCTAGCACTG CTACGAGGTC TIGTAGAAAC GATAAAAGTC TGTTCTAAGT AGATCGTGAC ...... 951 GCTGGAATGA GACTATTGTT GAGAACCTCC TGGCTAATGT CTATCATCAG CGACCTTACT CTGATAACAA CTCTTGGAGG ACCGATTACA GATAGTAGTC 1001 ATARACCATC TGAAGACAGT CCTGGAAGAA AAACTGGAGA AAGAAGATTT TATTTGGTAG ACTTCTGTCA GGACCTTCTT TTTGACCTCT TTCTTCTAAA 1051 CACCAGGGGA AAACTCATGA GCAGTCTGCA CCTGAAAAGA TATTATGGGA GTGGTCCCCT TTTGAGTACT CGTCAGACGT GGACTTTTCT ATAATACCCT 1101 GGATTCTGCA TTACCTGAAG GCCAAGGAGT ACAGTCACTG TGCCTGGACC CCTAAGACGT AATGGACTTC CGGTTCCTCA TGTCAGTGAC ACGGACCTGG 1151 ATAGTCAGAG TGGAAATCCT AAGGAACTTT TACTTCATTA ACAGACTTAC TATCAGTCTC ACCTTTAGGA TTCCTTGAAA ATGAAGTAAT TGTCTGAATG 1201 AGGTTACCTC CGAAACTGAA GATCTCCTAG CCTGTGCCTC TGGGACTGGA TCCAATGGAG GCTTTGACTT CTAGAGGATC GGACACGGAG ACCCTGACCT 1251 CAATTGCTTC AAGCATTCTT CAACCAGCAG ATGCTGTTTA AGTGACTGAT GTTAACGAAG TTCGTAAGAA GTTGGTCGTC TACGACAAAT TCACTGACTA ...... 1301 GGCTAATGTA CTGCATATGA AAGGACACTA GAAGATTTTG AAATTTTTAT CCGATTACAT GACGTATACT TTCCTGTGAT CTTCTAAAAC TTTAAAAATA 1351 TAAATTATGA GITATTITTA TITATTITAAA TITTATTITG GAAAATAAAT AAATAAATT AAAATAAAAC CITTTATTTA ..... XmaI SmaI BamHI AvaI AvaI 1401 TATTTTTGGT GCAAAAGTCC CTCGAGGCCT AGCGGCCGCC TAGAGGATCC ATAAAAACCA CGTTTTCAGG GAGCTCCGGA TCGCCGGCGG ATCTCCTAGG XmaI SmaI AVAI 1451 CCGGGGGGTA GGCGGCCGCT AGGCCTTTTT GGCCAAGCTC GAATTTCGAG GGCCCGCGAT CCGCCGGCGA TCCGGAAAAA CCGGTTCGAG CTTAAAGCTC XmaI Smal ClaI Ava: EcoRI 1501 GAATTCGAGC TCGGTACCCG GGGGATCGAT CCGTCCCCCT TTTCCTTTGT

.....

CTTAAGCTCG AGCCATGGGC CCCCTAGCTA GGCAGGGGGA AAAGGAAACA

1551	CGATATCATG	TAATTAGTTA	TGTCACGCTT	ACATTCACGC	CCTCCCCCCA	
	CCTATAGTAC	ATTAATCAAT	ACAGTGCGAA	TGTAAGTGCG	CGACGCGGGT	
						• • • • • • • • • • • • • • • • • • • •
1601	CATCCCCTCT	AACCGAAAAG TTGGCTTTTC	GAAGGAGTTA	GACAACCTGA	TCAGATCCAG	
	GTAGGCGAGA	TIGGCITTIC	CHCCICAAT	CIGIIGAACI		
	CCTATTTATT					
	CCNT1 5 5 T 5 5	ስ እ	ATACAATCAT	AATTCTTGCA	ATAAATATAA	
					• • • • • • • •	
1701	TCAAATTTTT	CTTTTTTTTC	TGTACAGACG	CGTGTACGCA	TGTAACATTA	
	AGTTTAAAAA 	GAAAAAAAAG	ACATGTCTGC	GCACATGCGT	ACAPIGIAAT	
	TACTGAAAAC					
	A USC A CAMMINIST	CARCCARCTC	TTCCAAAACC	CTGCGAGCTT	CCGAAATTAA	
	. <b></b>					
1801	TGCAAGCTAG	CTTGGCGTAA	TCATGGTCAT	AGCTGTTTCC	TGTGTGAAAT	
	ACGTTCGATC	GAACCGCATT	AGTACCAGTA	TCGACAAAGG	ACACACTITA	
	TGTTATCCGC					
	ACABERCOCC	አርጥርጥተል እርር	TATESTAT	CCTCCCCCTT	CGTATTTCAC	
	TARACCCTGG	GGTGCCTAAT	GAGTGAGCTA	ACTCACATTA	ATTGCGTTGC	
	AMMINICARCO	CCACCGATTA	CTCACTCGAT	TGAGTGTAAT	TAACGCAACG	
1951	GCTCACTGCC	CGCTTTCCAG	AGCCCTTTGG	ACAGCACGGT	CTCTAGAGAC	
	CGAGIGACGG					
	CATTANTGAN	TOGGCCAACG	CGCGGGGAGA	GGCGGTTTGC	GTATTGGGCG	
	CTAATTACTT	ACCCCCTTGC	GCGCCCCTCT	CCGCCAAACG	CATAACCCCC	
	CTCTTCCGCT	ACCACCGAGT	GACTGAGCGA	CGCGAGCCAG	CAAGCCGACG	
		ClaI				
2101	GGCGAGCGGT	ATCACATCG	TCTCACTCAA	AGGCGGTAAT	ACGGTTATCC	
	CCGCTCGCCA	TAGTCTAGCT	AGAGTGAGTT	TCCGCCATTA	TGCCAATAGG	
					· · · · · · · · · · ·	
2151	ACAGAATCAG	GGGATAACGC	AGGAAAGAAC	ATGTGAGCAA	AAGGCCAGCA	
	TGTCTTAGTC	CCCTATTGCG	TCCTTTCTTG	TACACTCGTT	Treedicgi	
	AAAGGCCAGG					
	THE STATE OF THE PERSON OF THE	JAKE CONTRACT	TCCGCGCAA	CGACCGCAAA	AAGGTATCCG	
2251	TCCGCCCCCC	TGACGAGCAT	CACAAAAATC	GACGCTCAAG	TCAGAGGTGG	
	AGGCGGGGG	ACTGCTCGTA	GTGTTTTTAG	CTGCGAGTTC	AGICICCACC	
	CGAAACCCGA					
2301	GCTTTGGGCT	GTCCTGATAT	TTCTATGGTC	CGCAAAGGGG	GACCTTCGAG	
					· · · · · · · · · · ·	
2351	CCTCGTGCGC	TCTCCTGTTC	CGACCCTGCC	GCTTACCGGA	TACCTGTCCG	
	GGAGCACGCG	AGAGGACAAG	GCTGGGACGG	CGAATGGCCT	ATGGACAGGC	
	CCTTTCTCCC	AACCCCTTCC	CACCGCGAAA	GAGTATCGAG	TGCGACATCC	
					ApaLI	
	TATCTCAGTT	000m0m100m	~~ <del>~~</del> ~~~~	y y COTYCCOT	GTGTGCACGA	
	ATACACTCAA	CCCACATCCA	CC77CCG9CG	TTCGACCCGA	CACACGTGCT	

	ACCCCCGTT TGGGGGGCAA	GTCGGGCTGG	CGACGCGGAA	TAGGCCATTG	TATCGTCTTG ATAGCAGAAC
2551	AGTCCAACCC	GGTAAGACAC	GACTTATCGC	CACTGGCAGC	AGCCACTGGT
2601	AACAGGATTA	GCAGAGCGAG	GTATGTAGGC CATACATCCG	GGTGCTACAG CCACGATGTC	ACTTCTTGAA
2651	GTGGTGGCCT CACCACCGGA	AACTACGGCT TTGATGCCGA	ACACTAGAAG TGTGATCTTC	GACAGTATTT CTGTCATAAA	GGTATCTGCG CCATAGACGC
	CTCTGCTGAA GAGACGACTT	CCCTCAATGC	AAGCCTTTTT	CTCAACCATC	GAGAACTAGG
	GGCAAACAAA	000000000	TACCCCTCCT	deleteded Chalada	CCAACCAGCA
	CONTRACTOR OF THE PERSON OF TH	CCTCCCCACC	ATCGCCACCA	AAAAAAGAAA	CGTTCGTCGT
	GATTACGCGC				
	CODE & PROCECCO	JAN TOTAL PARTY OF THE PARTY OF	CTAGAGTTCT	TCTAGGAAAC	TAGAAAAGAT
	CGGGGTCTGA				
	GCCCCAGACT	GCGAGTCACC	TTGCTTTTGA	GTGCAATTCC	CTAAAACCAG
	ATGAGATTAT				
	@3 ~~~~ B & T A	CALIFORNIA CALT	CAACTCCATC	TAGGAAAATT	TAATTTTAC
	AAGTTTTAAA TTCAAAATTT	AGTTAGATTT	CATATATACT	CATTTGAACC	AGACTGTCAA
	ACCAATGCTT TGGTTACGAA	THE STATE OF THE	CCTCCATAGA	GTCGCTAGAC	AGATAAAGCA
	TCATCCATAG				
	AGTAGGTATC	AACGGACTGA	GGGGCAGCAC	ATCTATTGAT	GCTATGCCCT
	GGGCTTACCA CCCGAATGGT	AGACCGGGGT	CACGACGTTA	CTATGGCGCT	CTGGGTGCGA
	CACCGGCTCC GTGGCCGAGG	TOTALATACT	CCTTATTTTCC	TCGGTCGGCC	TTCCCGGCTC
	• • • • • • • • •	• • • • • • • • •			
	CGCAGAAGTG GCGTCTTCAC	CAGGACGTTG	AAATAGGCGG	AGGTAGGTCA	GATAATTAAC
	· · · · · · · · · ·				
3251	TTGCCGGGAA AACGGCCCTT	GCTAGAGTAA CGATCTCATT	GTAGTTCGCC CATCAAGCGG	AGTTAATAGT TCAATTATCA	TTGCGCAACG AACGCGTTGC
	• • • • • • • • •	• • • • • • • •	• • • • • • • • •	• • • • • • • • •	
	TTGTTGCCAT AACAACGGTA	ACCATCTCCG	TAGCACCACA	GTGCGAGCAG	CAAACCATAC
					• • • • • • • • • • • • • • • • • • • •
	GCTTCATTCA CGAAGTAAGT	CCACCCCAAG	CCTTCCTACT	TCCGCTCAAT	GTACTAGGGG
		• • • • • • • •	• • • • • • • •	• • • • • • • •	
	CATGTTGTGC GTACAACACG	JANA PARTICULAR PROPERTY OF THE PROPERTY OF TH	12TCGAGGAA	GCCAGGAGGC	TAGCAACAGT
	GAAGTAAGTT CTTCATTCAA	CCCCCCCCCCC	ADTROTTACT	ACCAATACCG	AGCACTGCAT TCGTGACGTA
		• • • • • • • •		• • • • • • • •	

2501	AATTCTCTTA	CTCTCATCCC	ATCCGTAAGA	TGCTTTTCTG	TGACTGGTGA			
	TTAAGAGAAT	GACAGTACGG	TAGGCATTCT	ACGAAAAGAC	ACTGACCACT			
						• • • • • • • • • • • • • • • • • • • •		
	GTACTCAACC CATGAGTTGG	TTCAGTAAGA	CTCTTATCAC	ATACGCCGCT	GCCTCAACGA			
						• • • • • • • • • • • • • • • • • • • •		
	CTTGCCCGGC GAACGGGCCG	CAGTTATGCC	CTATTATGGC	CCCCTCTATC	GTCTTGAAAT			
	AAAGTGCTCA							
	TTTCACGAGT	AGTAACCTTT	TGCAAGAAGC	CCCGCTTTTG	AGAGTTCCTA			
• • •					paLI			
	CTTACCGCTG GAATGGCGAC	AACTCTAGGT	CAAGCTACAT	TGGGTGAGCA	CGTGGGTTGA			
	GATCTTCAGC CTAGAAGTCG	TAGAAAATGA	AAGTGGTCGC	AAAGACCCAC	TCGTTTTTGT			
	GGAAGGCAAA CCTTCCGTTT	TACGGCGTTT	TTTCCCTTAT	TCCCCCTCTC	CCTTTACAAC			
	AATACTCATA TTATGAGTAT	GAGAAGGAAA	AAGTTATAAT	AACTTCGTAA	ATAGTCCCAA			
	ATTGTCTCAT							
	TABCAGAGTA	CTCGCCTATG	TATAAACTTA	CATAAATCTT	TTTATTTGTT			
	ATAGGGGTTC TATCCCCAAG	GCGCGTGTAA	AGGGGCTTTT	CACGGTGGAC	TGCAGATTCT			
	AACCATTATT TTGGTAATAA	TAGTACTGTA	ATTGGATATT	TTTATCCGCA	TAGTGCTCCG			
	CCTTTCGTCT				CTCACACATG			
	CCAAACCAGA	GCGCGCAAAG	CCACTACTGC	CACTTTTGGA	GACTGTGTAC			
	CAGCTCCCGG GTCGAGGGCC	TCTGCCAGTG	TCGAACAGAC	ATTCGCCTAC	GGCCCTCGTC			
	ACAAGCCCGT TGTTCGGGCA	GTCCCGCGCA	GTCGCCCACA	ACCGCCCACA	GCCCCGACCG			
ApaLI								
4201	TTAACTATGC AATTGATACG	GGCATCAGAG CCGTAGTCTC	CAGATTGTAC GTCTAACATG	TGAGAGTGCA ACTCTCACGT	CCATATCGAC GGTATAGCTG			
4251	GCTCTCCCTT CGAGAGGGAA	TACCCTGAGG	ACGTAATCCT	TCGTCGGGTC	ATCATCCAAC	•		
	AGGCCGTTGA TCCGGCAACT	COTTOCCCCCC	GCGTTCCTTA	CCACGTACGT	TCCTCTACCG			
	GCCCAACAGT							
	CCCCTTCTCA	CCCCCCCCCC	GCCCCGGACG	GTGGTATGGG	TGCGGCTTTG			
	AAGCACTAAT							
	TTCGTGATTA	TCCTTAACTA	AACCTACCAT	ATTTGCCTTT	GTTTTTTTTC			
• • • •			· · · · · · · · · ·			• • • • • • • • • • • • • • • • • • • •		

	AGCTGGTACT TCGACCATGA	TGAAAGAAAT	AAAATAATT	TAATAAACTA	AAATAAATTA	
4501	AGTATATATT	ATATTTTGAA TATAAAACTT	CCTAGATTAT CCATCTAATA	TTTGTTGAAA AAACAACTTT	GTTGCTGTAG CAACGACATC	
4551	TGCCATTGAT ACGGTAACTA	TCGTAACACT AGCATTGTGA	AATTCTGTAT TTAAGACATA	TAGTCATTCC ATCAGTAAGG		
	TAGTATCCAA					
	ATCATAGGTT	TTTTTGCCGA	TAAAAAAAACG	TTAGAATAAA	GGACGTATAA	
	ATACAGATAA TATGTCTATT	CTATTACTTT	CTTTTTTAGA	AAAAAAAACA	AGAAGTTACT	
					212010000	•
	TGATTTCAAC ACTAAAGTTG	<b>GTAAGAAAAT</b>	TTGTAACTAG	TTAAGGACTC	CTTCTTCGGG	
	ATACACACTG					
	TATGTGTGAC	CAAATATATG	GCGGGGAAAA	TGTCAACTTC	TTTCTTTATC	
	AAATAGAAAT	AGCAAACAAA		GTCAACACTA	AGACCTATAG	
						•
	TGAGAGAGCA ACTCTCTCGT	CTTTGAGTAC	GGAGTGGTCA	TCGTGTCGCT	AATAAAGCTA	
4901	TAATGGAACT ATTACCTTGA	CTTCTTTTGG	TTAAATACAC	GTAGTTAACT	GCAACTATGG	
		<b></b> .				
		AvaI				
4951	ACTAAGGAGT TGATTCCTCA	AVAI TCCTCGAGTT AGGAGCTCAA	AATTGATAAA TTAACTATTT	TTAGGTCCTT AATCCAGGAA	ATGTATGCTT TACATACGAA	
4951	ACTAAGGAGT TGATTCCTCA	AVAI TCCTCGAGTT AGGAGCTCAA	AATTGATAAA TTAACTATTT	TTAGGTCCTT AATCCAGGAA	ATGTATGCTT TACATACGAA	
4951	ACTAAGGAGT TGATTCCTCA AATCAAGACT TTAGTTCTGA	AVAI TCCTCGAGTT AGGAGCTCAA CATATTGATA GTATAACTAT	AATTGATAAA TTAACTATTT TAATCAATGA ATTAGTTACT	TTAGGTCCTT AATCCAGGAA TTTTTCCTAT AAAAAGGATA	ATGTATGCTT TACATACGAA GAATCCACTA CTTAGGTGAT	
4951	ACTAAGGAGT TGATTCCTCA AATCAAGACT TTAGTTCTGA	AVAI TCCTCGAGTT AGGAGCTCAA CATATTGATA GTATAACTAT	AATTGATAAA TTAACTATTT TAATCAATGA ATTAGTTACT	TTAGGTCCTT AATCCAGGAA TTTTTCCTAT AAAAAGGATA	ATGTATGCTT TACATACGAA GAATCCACTA CTTAGGTGAT	
4951  5001  5051	ACTAAGGAGT TGATTCCTCA AATCAAGACT TTAGTTCTGA TTGAACCATT	AVAI TCCTCGAGTT AGGAGCTCAA CATATTGATA GTATAACTAT ATTAGAACTT TAATCTTGAA	AATTGATAAA TTAACTATTT TAATCAATGA ATTAGTTACT TCACGTAAAC AGTGCATTTG	TTAGGTCCTT AATCCAGGAA TTTTTCCTAT AAAAAGGATA ATCAATTTAT TAGTTAAATA	ATGTATGCTT TACATACGAA  GAATCCACTA CTTAGGTGAT  GATTTTTGAA CTAAAAACTT	
4951  5001 	ACTAAGGAGT TGATTCCTCA AATCAAGACT TTAGTTCTGA TTGAACCATT AACTTGGTAA	AVAI TCCTCGAGTT AGGAGCTCAA CATATTGATA GTATAACTAT ATTAGAACTT TAATCTTGAA	AATTGATAAA TTAACTATTT TAATCAATGA ATTAGTTACT TCACGTAAAC AGTGCATTTG	TTAGGTCCTT AATCCAGGAA TTTTTCCTAT AAAAAAGGATA ATCAATTTAT TAGTTAAATA	ATGTATGCTT TACATACGAA  GAATCCACTA CTTAGGTGAT  GATTTTTGAA CTAAAAACTT	
4951  5001  5051 	ACTAAGGAGT TGATTCCTCA AATCAAGACT TTAGTTCTGA TTGAACCATT AACTTGGTAA GATAGAAAAT CTATCTTTTA	AVAI TCCTCGAGTT AGGAGCTCAA CATATTGATA GTATAACTAT ATTAGAACTT TAATCTTGAA TTGCTGATAT AACGACTATA	AATTGATAAA TTAACTATTT TAATCAATGA ATTAGTTACT TCACGTAAAC AGTGCATTTG TGGTAATACC ACCATTATGG	TTAGGTCCTT AATCCAGGAA TTTTTCCTAT AAAAAGGATA ATCAATTTAT TAGTTAAATA GTAAAGAAAC CATTTCTTTG	ATGTATGCTT TACATACGAA  GAATCCACTA CTTAGGTGAT  GATTTTTGAA CTAAAAACTT  AATATATGG TTATATAACC	
4951  5001  5051 	ACTAAGGAGT TGATTCCTCA AATCAAGACT TTAGTTCTGA TTGAACCATT AACTTGGTAA GATAGAAAAT CTATCTTTTA	AVAI TCCTCGAGTT AGGAGCTCAA CATATTGATA GTATAACTAT ATTAGAACTT TAATCTTGAA TTGCTGATAT AACGACTATA	AATTGATAAA TTAACTATTT TAATCAATGA ATTAGTTACT TCACGTAAAC AGTGCATTTG TGGTAATACC ACCATTATGG	TTAGGTCCTT AATCCAGGAA TTTTTCCTAT AAAAAGGATA ATCAATTTAT TAGTTAAATA GTAAAGAAAC CATTTCTTTG	ATGTATGCTT TACATACGAA  GAATCCACTA CTTAGGTGAT  GATTTTTGAA CTAAAAACTT  AATATATGG TTATATAACC	
4951  5001  5051  5101 	ACTAAGGAGT TGATTCCTCA AATCAAGACT TTAGTTCTGA ACTTGGTAA CATAGAAAAT CTATCTTTTA TGGAGTTTAT ACCTCAAATA	AVAI TCCTCGAGTT AGGAGCTCAA CATATTGATA GTATAACTAT ATTAGAACTT TAATCTTGAA TTGCTGATAT AACGACTATA AACATTAGAACTAT AACATTAGAACTATA TTTTAATCATA	AATTGATAAA TTAACTATTT TAATCAATGA ATTAGTTACT TCACGTAAAC AGTGCATTTG TGGTAATACC ACCATTATGG GTTGGGCAGA CAACCCGTCT	TTAGGTCCTT AATCCAGAA TTTTTCCTAT AAAAAGGATA ATCAATTTAT TAGTTAAATA GTAAAGAAAC CATTTCTTTG TATTACCAAT ATAATGGTTA	ATGTATGCTT TACATACGAA  GAATCCACTA CTTAGGTGAT  GATTTTTGAA CTAAAAACTT  AATATATTGG TTATATAACC  GCTCATGGTG CGAGTACCAC	
4951  5001  5051  5101 	ACTAAGGAGT TGATTCCTCA AATCAAGACT TTAGTTCTGA ACTTGGTAA CATAGAAAAT CTATCTTTTA TGGAGTTTAT ACCTCAAATA	AVAI TCCTCGAGTT AGGAGCTCAA CATATTGATA GTATAACTAT ATTAGAACTT TAATCTTGAA TTGCTGATAT AACGACTATA AACACTATA AAAATTAGTA TTTTAATCAT	AATTGATAAA TTAACTATTT TAATCAATGA ATTAGTTACT TCACGTAAAC AGTGCATTTG TGGTAATACC ACCATTATGG GTTGGGCAGA CAACCCGTCT	TTAGGTCCTT AATCCAGGAA TTTTTCCTAT AAAAAGGATA ATCAATTTAT TAGTTAAATA GTAAAGAAAC CATTTCTTTG TATTACCAAT ATAATGGTTA	ATGTATGCTT TACATACGAA  GAATCCACTA CTTAGGTGAT  GATTTTTGAA CTAAAAACTT  AATATATTGG TTATATAACC  GCTCATGGTG CGAGTACCAC	
4951  5001  5051  5101  5151	ACTAAGGAGT TGATTCCTCA AATCAAGACT TTAGTTCTGA TTGAACCATT AACTTGGTAA CATAGAAAAT CTATCTTTTA TGGAGTTTAT ACCTCAAATA TCACTGGGAA AGTGACCCTT	AVAI TCCTCGAGTT AGGAGCTCAA CATATTGATA GTATAACTAT TAATCTTGAA TTGCTGATAT AACGACTATA AAAATTAGTA TTTTAATCAT TTTTAATCAT TTTTTAATCAT	AATTGATAAA TTAACTATTT TAATCAATGA ATTAGTTACT TCACGTAAAC AGTGCATTTG TGGTAATACC ACCATTATGG GTTGGGCAGA CAACCCGTCT SAAGGATTAA CTTCCTAATT	TTAGGTCCTT AATCCAGGAA TTTTTCCTAT AAAAAGGATA ATCAATTTAT TAGTTAAATA GTAAAGAAAC CATTTCTTTG TATTACCAAT ATAATGGTTA AACAGGGAGC TTGTCCCTCG	ATGTATGCTT TACATACGAA  GAATCCACTA CTTAGGTGAT  GATTTTTGAA CTAAAAACTT  AATATATTGG TTATATAACC  GCTCATGGTG CGAGTACCAC  TAAAGAAACC	
4951  5001  5051  5101  5201	ACTAAGGAGT TGATTCCTCA  AATCAAGACT TTAGTTCTGA  TTGAACCATT AACTGGTAA  CATAGAAAAT CTATCTTTTA  TCGAGTTTAT ACCTCAAATA  TCACTGGGAA AGTGACCCTT	AVAI TCCTCGAGTT AGGAGCTCAA CATATTGATA GTATAACTAT TAATCTTGAA TTGCTGATAT AACGACTATA AACAACTATA TTTTAATCATA TTTTAATCAT TGGAGTGGTT ACCTCACCAA	AATTGATAAA TTAACTATTT  TAATCAATGA ATTAGTTACT TCACGTAAAC AGTGCATTTG  TGGTAATACC ACCATTATCG GTTGGGCAGA CAACCCGTCT SAAGGATTAA CTTCCTAATT	TTAGGTCCTT AATCCAGGAA  TTTTTCCTAT AAAAAGGATA  ATCAATTTAT TAGTTAAATA  GTAAAGAAAC CATTTCTTTG  TATTACCAAT ATAATGGTTA AACAGGGAGC TTGTCCCTCG ATGTTAGCTG	ATGTATGCTT TACATACGAA  GAATCCACTA CTTAGGTGAT  GATTTTTGAA CTAAAAACTT  AATATATTGG TTATATAACC  GCTCATGGTG CGAGTACCAC  TAAAGAAACC ATTTCTTTGG  AATTATCATC	
4951  5001  5051  5101  5201 	ACTAAGGAGT TGATTCCTCA  AATCAAGACT TTAGTTCTGA  TTGAACCATT AACTTGGTAA  GATAGAAAAT CTATCTTTTA  TGGAGTTTAT ACCTCAAATA  TCACTGGGAA AGTGACCCTT  ACCACCAACC TGGTGGTTGG	AVAI TCCTCGAGTT AGGAGCTCAA CATATTGATA GTATAACTAT TAATCTTGAA TTGCTGATAT AACGACTATA AACAACTAT TATTAATCAT TTTTAATCAT TGGAGTGGTT ACCTCACCAA AAGAGCCAAG TTCTCGGTTC	AATTGATAAA TTAACTATTT TAATCAATGA ATTAGTTACT TCACGTAAAC AGTGCATTTG TGGTAATACC ACCATTATGG GTTGGGCAGA CAACCCGTCT SAAGGATTAA CTTCCTAATT AGGGTTATTG TCCCAATAAC	TTAGGTCCTT AATCCAGGAA  TTTTTCCTAT AAAAAGGATA  ATCAATTTAT TAGTTAAATA  GTAAAGAAAC CATTTCTTTG  TATTACCAAT ATAATGGTTA  AACAGGGAGC TTGTCCCTCG  ATGTTAGCTG TACAATCGAC	ATGTATGCTT TACATACGAA  GAATCCACTA CTTAGGTGAT  GATTTTTGAA CTAAAAACTT  AATATATTGG TTATATAACC  GCTCATGGTG CGAGTACCAC  TAAAGAAACC ATTTCTTTGG  AATTATCATC TTAATATGTAG	
4951  5001  5051  5101  5201 	ACTAAGGAGT TGATTCCTCA  AATCAAGACT TTAGTTCTGA  TTGAACCATT AACTTGGTAA  GATAGAAAAT CTATCTTTTA  TGGAGTTTAT ACCTCAAATA  TCACTGGGAA AGTGACCCTT  ACCACCAACC TGGTGGTTGG  ACTGGGTTCA	AVAI  TCCTCGAGTT AGGAGCTCAA  CATATTGATA GTATAACTAT  ATTAGAACTT TAATCTTGAA  TTGCTGATAT AACGACTATA AACAATTAGTA TTTAATCAT TGGAGTGGTT ACCTCACCAA  AAGAGCCAAG TCTCGGTTC  TTAGCATATG	AATTGATAAA TTAACTATTT TAATCAATGA ATTAGTTACT TCACGTAAAC AGTGCATTTG TGGTAATACC ACCATTATGG GTTGGGCAGA CAACCCGTCT SAAGGATTAA CTTCCTAATT AGGGTTATTG TCCCAATAAC	TTAGGTCCTT AATCCAGGAA TTTTTCCTAT AAAAAGGATA ATCAATTTAT TAGTTAAATA GTAAAGAAAC CATTTCTTTG TATTACCAAT ATAATGGTTA AACAGGGAGC TTGTCCCTCG ATGTTAGCTG TACAATCGAC TCAAAAAAACT	ATGTATGCTT TACATACGAA  GAATCCACTA CTTAGGTGAT  GATTTTTGAA CTAAAAACTT  AATATATTGG TTATATAAACC  GCTCATGGTG CGAGTACCAC  TAAAGAAACC ATTTCTTTGG  AATTATCATC TTAAATGTAG GTTGAAATTG	
4951  5001  5051  5101  5201 	ACTAAGGAGT TGATTCCTCA  AATCAAGACT TTAGTTCTGA  TTGAACCATT AACTTGGTAA  CATAGAAAAT CTATCTTTTA  TGGAGTTTAT ACCTCAAATA  TCACTGGGAA AGTGACCCTT  ACCACCAACC TGGTGGTTGG  AGTGGGATCA TCACCCTAGT	AVAI  TCCTCGAGTT AGGAGCTCAA  CATATTGATA GTATAACTAT  ATTAGAACTT TAATCTTGAA  TTGCTGATAT AACGACTATA AAAATTAGTA TTTTAATCAT TGGAGTGGTT ACCTCACCAA AAGAGCCAAG TCTCGGTTC TTAGCATATG AATCGTTATA	AATTGATAAA TTAACTATTT TAATCAATGA ATTAGTTACT TCACGTAAAC AGTGCATTTG TGGTAATACC ACCATTATCG GTTGGGCAGA CAACCCGTCT SAAGGATTAA CTTCCTAATT AGGGTTATTG TCCCAATAAC GAGAATATTC CTCTTATAAG	TTAGGTCCTT AATCCAGGAA  TTTTTCCTAT AAAAAGGATA  ATCAATTTAT TAGTTAAATA  GTAAAGAAAC CATTTCTTTG  TATTACCAAT ATAATGGTTA AACAGGGAGC TTGTCCCTCG  ATGTTAGCTG TACAATCGAC TTCAAAAAACT AGTTTTTTGA	ATGTATGCTT TACATACGAA  GAATCCACTA CTTAGGTGAT  GATTTTTGAA CTAAAAACTT  AATATATTGG TTATATAAACC  GCTCATGGTG CGAGTACCAC  TAAAGAAACC ATTTCTTTGG  AATTATCATC TTAAATGTAG GTTGAAATTG	
4951  5001  5101  5201  5251  5301	ACTAAGGAGT TGATTCCTCA  AATCAAGACT TTAGTTCTGA  TTGAACCATT AACTTGGTAA  CATAGAAAAT CTATCTTTTA  TGGAGTTTAT ACCTGGGAA AGTGACCCTT  ACCACCAACC TGGTGGTTGG  ACTGGGATCA TCACCCTAGT  CTACACCTAGT  CTACCCTAGT  CTACCCTAGC  CTACACCGA  CTACCCCTAGC  CTACACCGA  CTACCCCTAGC  CTACACCGA  CTACCCCTAGC  CTACACCGA  CTACCCCTAGC  CTACACCGA  CTACCCCTAGC  CTACACCCCACC  CTACACCCCCACC  CTACACCCCCACC  CTACACCCCACC  CTACACCCCCACC  CTACACCCCCCCC	AVAI TCCTCGAGTT AGGAGCTCAA CATATTGATA GTATAACTAT TAATCTTGAA TTGCTGATAT AACGACTATA AAAATTAGTA TTTTAATCAT TCGTGATAT ACGTGATAT AACGACTATA AAGAGCCAA AAGAGCCAAG TCCTCGGTTC TTAGCATATG AATCGTATAC TTAGCATATG AATCGTATAC TAAGGAATTT ATTCCTTAAA	AATTGATAAA TTAACTATTT TAATCAATGA ATTAGTTACT TCACGTAAAC AGTGCATTTG ACCATTATGG GTTGGGCAGA CAACCCGTCT SAAGGATTAA CTTCCTAATT AGGGTTATTG TCCCAATAAC GAGAATATTC CTCTTATAAG GTTATTGGAT CAATAACCTA	TTAGGTCCTT AATCCAGAA  TTTTTCCTAT AAAAAGGATA  ATCAATTTAT TAGTTAAATA  GTAAAGAAAC CATTTCTTTG  TATTACCAAT ATAATGGTTA  AACAGGGAGC TTGTCCCTCG  ATGTTAGCTG TACAATCGAC  TCAAAAAACT AGTTTTTTGA  TTATTGCCCA AATAACGGGT	ATGTATGCTT TACATACGAA  GAATCCACTA CTTAGGTGAT  GATTTTTGAA CTAAAAACTT  AATATATTGG TTATATAACC  GCTCATGGTG CGAGTACCAC  TAAAGAAACC ATTTCTTTGG  AATTATCATC TTAATATGG GTTGAAATTG GTTGAAATTG CAACTTTAAC  ACGTGATATGG ACGTGATATG	

	GGTGGCCAAG CCACCGGTTC	TTCTTCCTAA	ACTAACCGAA	TAATACTGTG	CTGGAGTTGG GACCTCAACC	
5451	ATTAGATGAT	AAAGGTGATG	GATTAGGACA CTAATCCTGT	ACAATATAGA TGTTATATCT	TGACAACTAC	
5501	AAGTTGTTAG	CACTGGAACT	GATATTATCA CTATAATAGT	TTGTTGGTAG AACAACCATC	AGGATTGTTT TCCTAACAAA	
5551	GGTAAAGGAA	GAGATCCAGA CTCTAGGTCT	TATTGAAGGT ATAACTTCCA	AAAAGGTATA TTTTCCATAT	GAAATGCTGG CTTTACGACC	
	THE ASSESSED		AGACTGGCCA	ATTATAAATG	TGAAGGGGGA	
	AACCTTACGA	ATAAACTTII				
5651	CATTITCACT	TTATTAGATT AATAATCTAA	TGTATATATG ACATATATAC	TAGAATAAAT ATCTTATTTA	AATAAATAA TTATTTATT	
5701	GTTAAATAAA	TAATTAAATA	AGGGTGGTAA TCCCACCATT	TTATTACTAT AATAATGATA	TTACAATCAA AATGTTAGTT	
					· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •
	AGGTGGTCCT TCCACCAGGA	AGATCGACAT	TAGGCCCGTC	GCGTTGCCTT	GTAAGTAGTC	
	TGTAAAAATG		ACCOCTOCCC	TCATGAGCCC	GAAGTGGCGA	• • • • • • • • • • • • • • • • • • • •
	ACATHETET AC	TTATTDATT	TCGGGACGCG	AGTACTCGGG	CTTCACCGCT	
	GCCCGATCTT					
	CGGGCTAGAA	GGGGTAGCCA	CTACAGCCGC	TATATCCGCG	GTCGTTGGCG	
	ACCTGTGGCG			CTGAATACGC	GTTTAATGAC	
	TGGACACCGC	GGCGTCGCGC	GTCCCAGTCG	GACTTATGCG	CAAATTACIG	
	CAGCACAGTC	GTGATGGCAA	GGTCAGAATA	GCCCAAGTCG	CCCGAGGGGC	
	GTCGTGTCAG	CACTACCGTT	CCAGTCTTAT	CGGGTTCAGC	GGGGGGGG	
	CTGTACAGTG	AGGGAAGATC	TGATATTGAC	GAAGAGGAAC	CAATGTAACG	
	CACATGTCAC	TCCCTTCTAG	ACTATAACTG	CTTCTCCTTG	GTTACATIGC	
	TTACACTGAA AATGTGACTT	CTTTTGTGTG	TTATTTGCCC	TTCTTTGCCA	CATTITCACA	
	GAAAATAATT					
9101	CTTTTATTAA	AAACTTATAG	TAAAGGGAAC	CAAATTAAGG	PTTGCTTTGC	
• • • •	• • • • • • • • •	• • • • • • • • •				
		~~	EcoRI			
6151	TGTTTTTTT ACAAAAAAA	AGAGAATGGG TCTCTTACCC	AATTCTTATT TTAAGAATAA	GGATGTCTAG CCTACAGATC	ATTGTTTGTT TAACAAACAA	
	· · · · · · · · · ·					
		ApaLI				
	TACTCCAGAC ATGAGGTCTG	ACACGTGTTT	TTGCAAACCT	ACCTACTAGT	CTTCTATAAA	
	TTAGGCTTAG AATCCGAATC	GAGATTTATA	TTCTTTACTA	CGAACTTTTT	GCTCTGTCTT	
					• • • • • • • • • • • • • • • • • • • •	
	ATTGAGTTTC TAACTCAAAG	TTTTTAACCA	TTACACTCCA	TAATCAGTTG	ATTGGTTTAT	

6351	ACAATGCAAA TGTTACGTTT	CCGGTTGATA	CATTTCATTT	TGAAAATAAT ACTITTATTA	GAAACTGGAA CTTTGACCTT	 • • • • •	 	 
6401	TTGGATGACC AACCTACTGG	AGCACACAAA TCGTGTGTTT	CACATAAAGT GTGTATTTCA	AATTATGGGA TTAATACCCT	ATTAGAAGCG TAATCTTCGC	 • • • • • •	 	 
6451	AACATAGAGG TTGTATCTCC	AGTACTTGGC TCATGAACCG	CACGAACAGA GTGCTTGTCT	ATACAAGTGG TATGTTCACC	GAACACTATT CTTGTGATAA	 	 · • • •	 
6501	TTCTCCATTG AAGAGGTAAC	TTTTAGTTCT AAAATCAAGA	GTTTTTTTGT CAAAAAAAACA	CASCCTAGTT GTCGGATCAA	TTGTGCTATG AACACGATAC	 	 	 
			HindII					
6551	TGTAAAAAAT ACATTTTTA	ATTGCCAAGA TAACGGTTCT	AAAAAAGCTT TTTTTTCGAA	GTTTTGTGGC CAAAACACCG	CAGTGTCCGA GTCACAGGCT	 	 	 
6601	TITITAAAAA TAAAATTIT	CCCCTTAGAA	GCCTAATTAA	ATACAAAAGT				
						 	 • • •	 

Sequences with unknown function, C. albicans sequence NOT present in the public domain (ALCES/EMBL)

>328c2 1803bp in-house: 1123-1803 public: 1-436/468-1021 PathoSeq: 437-467/1022-1122

ATGTCTATTACAGTTACATTTCCGAAATCTCCATCTACGAAAAAACGTGCACCG **GCATTTGGAATTGAGTTGGAGTTYAG** TCAMCAAGSCAGTAGCGATGGTGCTATAGAGAAAAGCGGCATTGGCAGTTCCT **GTGTTTAGCGTTGACAACCAAGACTWT** GTATTKATAAGAGAYCWTGCCAAGTACTGGGGCTACCCTTCATCGTATCAATT GATTGTCAAGTTGGTCAAATGTGCTAA CATTGAAAAGTCGCAAATCTTAAAGACCGATAAGGATTTGAATAGAGAGTTGT TTGAGTTGGATTTGATTGAAGAAGCAG ATACAAAGATTGATCTTTTTATATTTCGTTACCCTTGGTCTATTCAAGAATAGA AAATAAGAAGGTTTTTTATGTTCTG CGTGAACCAGAACAGCCAAAGGTGTCGAAAGCMCCAACACAAGAGAAACCAG CAAGTGTGGTTGCTGCAGAAGAAGATGA CGATAATCTAGATGATGAGGAGGAGGACGAAGTGGATGAAGACATGGATGAA GATAATGATAATAGTGGGGAATTGTCTA AAGGATACAAGCACATGCACAAGGACCATCCAAAGTATAAAATGACGATAG **GGTTACTATTGGACAAGTGTTTCATCAA** TACGGACTTGACCCTTCGACACCATTAACCCATTCACTTTTCAATAGTATCAAC TCAATGTCGAAGCTAAACTATTACAA GAATITIGGAGTTTCAGGTTACCGATTTCTTCCCAACAGCAAGTTATCTTATGC AGAACGAGAATTGGTGTTGAATGCCA ACAACTACAATGATATGCACATTAACGAAAAGACAGAATCCAAGCCGAAAAA GAGTTTCCGTAAACCCATTGGAAAGTCA **AAGAAACATAACTTGCAGATTGATCCGAACTCCATAGATTTAAGCGAGTCAGT** GATTCCGGGACAAGGGTTTATACCTGA CTTTAGTATCCACCTATCTTTGCAAAGTCCCTAATTATTATGTGACATCAACCC ACCAAAGTCTCCCGCTGTCGTTCAAC ACAAAGAATCTTAATGCAACTTCGAACTCTTCGTATTTGTTTAATGATAATGTC AAGATAAAGTCAAAAAGTATTCAGAA GTWSGTGTTCAACAGCGATACCGATAATTACCATCACACAAAGTATTTCTACA CCAAAACCTACCGTGGTCCAGGGTCGG GGAATTACAAGGATGGTGCATTGATGAACAAAATCAACAAGATACATCTTTCC AGTAATAAAAAGCCGCGCCACAAGAGA AAGGTGTCGAACAATAACAGGTACAACAAGAGTTTAAAGGGGTTAGTCCACG AAAAGTTTGACAAGAACTTTGTTGAGTA CTTGCTTTCTGAGCAACGCAAGTATACCGAGGACTATTCCAATCTTGAAATTTT ACACAATAGCTTACAGTTTAATGTTC TTTTGAATACGTATCGTGGTGTTGCCCAAGAGACATGGAATAACTACTACAAG TTTAAATTGATTGATTTCGAACAATTG AAGGCTITGCAAATGGAGGCAAATGAGCTTGAGGAGAAAATTGGATGCTG CTAGACACCAACAGTGGGCGGAAGAAGA GAAGCTTTNCCAAGAAAGATTGCGTTTAGTATTTGAAGATGAACGGACGAGTT

F.95

TGAGCAATTGCAAAGCGAGTTTGGTCA

# GAGAAGAAGGATTTGGAAGAGAAATTGCGTCGCCGTCAGCTANANGCATCTT TGANTGATAGTTTTGAACTTGATAGCG AAAATGACNATGAATCTTGACTTGNCCAAANTNAACAAGACTT

Fig 5 (cont'd)

Fig 6

Fig 7

- 1 QQSYVPQSQP HYSQQTQDRG MFSGGGGGHG HYQQQQGYNA YGPPPPQGGY
- 51 YQQQPCGGGG YYQQQQQQQP MYYQQQPRSG GNDSCINGCI AALCYCCTLD
- 101 MLF

Fig 8

Fig 9

Fig 10

>22g3 (5') 535bp in-house: 1-535

>22g3 (3') 426bp in-house 1-426

>35gK 1334bp in-house: 146-669 public: 1-145 PathoS q: 670-1334

ACAACGTATAATCGACAGTTTACTATATCTGCTGACTTCAAAACCAATGCATTC TTCAAGCGTGCTCTGTCGATTTCTAT CATAACATCCACTTTCCGGNGTAATCGGATTACTAAAGCCACAGAATCAAGGT GAACATCAAGCTTCAACTTCTTTCTTG GTCCACGAATAATTTTAATTTGGTTMTTSKKGSMAMKGCTTTCTACRGTAGGTT TGAATCTTTCCAACATTGTCTTTGCA TAGAAACMGCACCAGACAAGAAACATGTCCACTCGACCATCAACYTSKGGGT AWWGACAAAGTWAATCTGTCTGGATCCT TTTCATCCAGTTTCCCTGCATKGGAWACAAGTNTGTCCCGCACAGTTAAGACT **GTTTTTATTTTSKTGGTATTAGACTCA** TCAAGTTCCGAAGGAGGCATCATTTARGGGWATAGACTCCGCTGAGTTAAT **ACTGGATAAATCACTTATTTCAGATTC** ACTGACTTGTWCTTCAGTGACCTTATCAAAATCCTCAATGTACTCSGARGCGTW TTCMCTCMATGTGAAGGCTTTTAAAA GGGCAACRCTGGTTYCAAAATGCTTTCTTGCRAGTTTGTACKTGACAGAAAAA TCAAAAACYTTGAAAGATATACCTCTT

F19 13

CTAAAGTCTTTTAAATCAATTTCTTNTCCTAATTTTTCATCATATAGCTTATGAC TTGGCAAACCCTCCTTACATACCAT **ATCCATTACAATGCTAGAAATGTCAATCTTCACTGACGATATAAAGGATGGAA** GAACTTCAAATAATTTTATAAACTCAG GATTGGCTGGTGTATCTGCTGCAGGAGCTCCAGATTTATTGTCCATTTGCTCAC TCCATGGACATACATTATTAACGTCC **ATCTTTTTCCATTCTTCAAATTTCTTCGGTGAAATAAATTCGTTGACGRWTTTTA** AACAGACGTACAATGTGAAAGATAA TTTTGTTGTAACATATTGTAGGTGGCT AAAAGATTGACTTWRGTAAAATGRAACTTATTAACCCTGGGCCCTCACATTTC ACATTTTTCATCTTAAACAAAGKGGTT CAAAGKGGAACTTGGTTTGGATCCYTTAWTGGAAWATTTCYCAGKRAATACTT TCAAAATCAACTCCAGGAGAGCCACAG TGATAATTGAATTGGATTTAGATAAGCGGTTAAACTTCCCAATTTCAGTTTTAC CAAACTCTGGTAAATGAAGGTTAAGT TTTGTGTCCACCACAACAAGTTTACTAAAAACAGCCTTGAGCATTTTGGAGGCA Fig 13 (cont)

>36g2 (5') 520bp in-house: 1-520

>36g2 (3') 472bp in-house: 1-472

-106-

>38g1 1348bp in-house: 183-940 PathoSeq: 1-182 / 941-1348

TCTACACGTCCTCATCGCTACCCCA GATTTTTTTCTGGTGCGCCGGACACGCCCTCCGGTCCGCACCGAAAACCGGGG TAATCTCCGTCGGAGATACACATCCG CGGACACAAAATCAGATGAGCTACCACCGAAAATTCCGAAATTTCAAAAACTC AAAATCCCTAAAAACAAACTATCCAGA NATTATTGCCATGCCCTGAGGATGAGTTTAGTTTTTAATTTTTGAAAAATGTC CAAAACTGGTTGTGCTGTATAGGANG GGTAAGAATTTGCCATTCTGCCCCTTTGGGTGGGTCAGTCNAAAAAAAGANGTA TCACTCTGGTTCNAACGGGAAACAACN NAAAATGGGATTAAANTWATCTCCAGAMCAAACTTAGCTTMWWACACCCAY TTTAGTTGTACTSGYGWRCCMAAMMCMAA TTTTCCATTTTGTTTGGGGANGGGAATTTARACCAAAWTTTTTTTTTGAAATTT CGCTMAGTGTYMAGAMCCSCAAAAG TCACCTTTTTCGTTTTCMMCYACGGCARARGCYCACCGGTTTTKYKTGGKGS MCRGCCMAATTGAWTTTGTGGGTGSGC ACGKGGAAAAACAGTTKGTTAGTGGACACGTTTTTGCAGTGTGAAACTGCGCT CGGAGGTACTATATGCGAAAGCAGAAA AGACAATTGCAAGAATACAGAGAGTTCTTCTCTGGGCTANNGCAATGTGTTTA AGGCCAAGTCGACGAGTGGGGAGAGTC TGGAAGTGATATACACATCACGACCTACTTTATACGCTACGTTCGGCATGGGC GAGCCACTGTACGGTGGCAAGCCTGAA CAGTCCCACACCAGATATCTAACGATTCTGTGTATGGGCACTGATGGGATTTAG TGGATTACTAGCTGATAGCAAGTATT GAAAACTAAAACCCGACTCGGGGGTATGCCTTGGCAAGTAGCCGGAGTAAAAT CTGTGACTTTGCTGAGTGTAACTCCCT CCATGGTTGGCGATGTTCGACGTGCGCGGCAGTTCTTGTCGTATCACAGTCGCA CGGACACCACACCGGGAGAATCTTAA GAGGGCTATATGGATGTGGAACGGTTTGCTTGCTGTGGTAAAACACTGGCGGG CGAGCCGACGTTCCACGGACACAGCAA TGTGTTTGCAACCAAATAAATAACTTGTACGGTTTGAACGTGTTTTTGGCTGCT CCTTCCAGTTCTTGGCGGGAGAAGCT TGGGCGCGGGAAGACCACTACTACGTAGTTATCTGGTTGATCCTGCCAGTAGT CATATGCTTGTCTCA

>60gK 990bp in-house: 445-752 public: 1-140/753-990 PathoSeq: 141-444

ATTACCGATCCGTCGGATTTTAAAACCACAAAATTGCCTGCATTAGCAGAGCT
AGATATTTTCATAGGGTGCTATATATG
CAAAGATCTATTGAATGCACCCGTGAGGACACAATGTGATCACACGTACTGTT
CACAATGTATACGAGAATTTTTACTTC
GAGATAATAGATGTCCGCTTTC.IAAAACAGAGGTTTTTGAAAGTGGTCTAAAA
CGTGATCCATTGTTAGAAGAGATCGTC
ATTAGTTATGCCTCCCTTAGGCCTCATTGATTACGATTATTGGAGATTGAAAAG
GTGGAATCGAAGCAAGAGGTAGATCG

Fig 17

TGAGAAATCAGCCAATGAGTCAGCGCTGAATGGTAATAGAAATGTAAACAAC GATGTTGACGAAACTGTGCGCGTTAAAG ATCAACTGAATGCAGATAAACTAGGTGAAGAAAAAGGGCAAGCTCAACATGG **GGAACAAGTNAAACGAGCAGACTACTGA** AGTTATTCTGTTGCTATCTGATGATGAAGAGAATGGTTCTGATAGCCTAGTAAA ATGTCCTATTTGTTTTGAGAGAATGG AATTAGATGTACTACAGGGAAAGCNTATTGACGACTGTCTAAGTGGAAAGAGC ACGAAGAGGACGCCTACAGACATTTTA AGATACCANAACNCCTTCCCCCACCTA CCAGTTNNGGCGTCNACAACTCCCACAGCAACTCCGACAACTACATTGTTGAA AGCAAACGTCTCATCTCCATCCCAAGT GGCGCAAAGTACAGTAAACAAGGGCAAGCCATTACCTAAACTCGATATCAGCA GCTTGAGTACTAAAAAAAATAAAAGCCA AGTTGAGTGATATGAAACTACCAACAACAGGTAGTAGGAATGAAATGGAAGC CAGATACTAGCATTACTATGTGATTTAT AATGCCAACCTTGACACCAATCATCCTGTA

Fig 17 (cont)

>64gB 627bp in-house: 1-627

TNCANCCTNCCATNCNCCCAGGCNNNGCCACCCCNGCCGNNCCCCCNTNTTTC CCCCCTCCTTNGTNGCCCTCNNGGTG GTGTTTGTGGTGTGACNAATAAANATGGTNTATCATTAGAANAGGACATTGCN NCGGAAATGACTGTCGACAATAAAGAA GCAAATATATACAATGGATTATGAANGTGCTAGGATGGATTTGAAAGTTTATC TGGGTTTATTCCAATGTAAAAATTATT TGTAATTGATATGGCTAATTATTTTGCTCNATATNTATCACAAAAAAAATGATTA AGTTCGAAATGAAATTGGCNTCCATA TATAAAATTTCTGACAGGAAGAGAAAATTCANGACNTGTTGCCCNAAAAAAAA AACTITACCCCNCNTCNANTCNTGTNN GCCGGNNGTTTTTTAAAATTTNANNCTT GAATATGAACCCAANNTTTGNNTTCNTTTTTNCCACNCCCCCTTCAAATTTNAT TCCATGTTCCCAAGANNAGGGNGGNG GGGGNGGTTCCNNCTTTTAAACCNCCCCCCCGGGTGGNGGGGNCCGTNTTNT TTCCGGNGGGGCNT

Fig 18

>8c_cp 890bp in-house: 287-890 public: 1-124/154-286 PathoSeq: 125-153

ATGCAATTCTCATCCGGTGTCGTCTTATCCGCTGTTGCTGGGTCCGCTTTGGCTG
CTTACTCCAACTCCACTGTTACTGG
CATTCAAACCACTGTGTCACCATCACTTCATGTGAAGAAAACAAATGTCACGG
AAACTGGAAGGTTACCACTGGTGTTAC
CACCGTCACTGAAGTTGACACTACGTACACCACCTACTGCCCATTGTCAACCAC
TGAAGCTCCAGCTCCATCTACTGCTA
CTGATGTTTCTACCACCGTTGTCACCACCACCTCATGTGAAGAAGACAAATGTC
ATGAAACCGCTGTCACCACCGGTGTC

ACCACTGTCACTGAAGGTACTACCATCTACACTACCTACTGCCCATTGCCATCT **ACTGAAGCTCCAGGTCCAGCTCCATC** TACTGCTGAAGAATCTAAACCAGCTGAATCTTCCCCAGTTCCAACCACCGCTGC TGAATCTTCCCCAGCTAAAACTACTG CTGCTGAATCTTCCCCAGCTCAAGAACCACTCCAAAGACCGTTGCTGCAAT CTTCTTCAGCTGAAACTACTGCTCCA GCTGTCTCTACCGCTGAAGCCGGTGCTGCTGCTAACGCTGTCCCAGTTGCTGCT GGTTTGTTGGCTTTGGTT CCCTTTCCCTTTCTTCATTCTTCAAA **AAAGGGTTATTTACTATTAATTGATAAATTTATGGTTTCATGTTAATTTACCCTT** TTCTTTATAAACATTGGTATTATTA TTATCATCATTAGNTTTATTTATATTTTCGTGAGTTTTTCGGNTTTAATTAATTTT TTTGGATACATATTAAAAAATTTAT TTGGTACTAG Fig 19 (cont)

>66g4 579bp in-house: 1-579

CGCAAACCTATTCAAAACA

Fig 21

>NDI (17c_cp) 807bp in-house: 1-614 PathoSeq: 615-807

**AACCTATTCCATAATGTTTACTAGATCATTGATTAAAGGTGGTGGCAGACTTGC** TACTACCAGATCATTGGTCAACAACT CTACTAGTTTGGTTTTAAAAAATCAATTTAAGAAATATTCAACATCAACTCCTC CTAAGGTTGCCAAATCAAAATCTTCG ACAATTGGTAAAATATTCAGATACACTTTTTACACTGCTGTGATATCGGTTATT GGTTCTGCCGGTTTGATCGGTTACAA AATTTACGAAGAGTCTCAACCTGTTGATCAAGTGAAACAACACCATTGTTTCC TAATGGTGAAAAAAGAAAACTTTAG TTATTTTGGGTTCTGGTTGGGGTGCTATTTCATTATTGAAAAACTTGGATACCA CCTTGTATAATGTTGNTATTGTCTCC CCAAGAAACTATITCCTTTTCACCCCATTGTTACCATCTGTTCCTACCGGTACTG TTGAATTGAGATCTATTATTGAACC TGTCAGATCAGTCACCAGAAGATGCCCTGGCAAGTTATTTACCTTGAAGCAGA **AGCTACAAATATNAACCCCTAAAACTA** ATGAGTTGACACTTAACAAAGTACTACTGTCCGTTCTGGTCATTCTGGTAAAAA TACTTCCTCTTCTAAATCAACTGTTG CCGAATACACTGGGGTTGAAGAAATCACTACCACCTTGAATTATGACTATTTA GTTGTTGGTGTTGGTGCTCAAACAATN CTANTTTCGGNAATCCTGGGAGNCGCNTGAGGAANTTCAACCCCTTTTTTGAA AGAANGNCCAGTGGANGCCNTCTGCN AATTAGA

Fig ZZ

>HOL1 (409c5) part2 762bp PathoSeq: 1-762

GATCAGAATAATGAGGACTTTATACCTGGAACACTCAATATCTATTCCTTGGAA **GTTGACTCTGAAGATGAAAACGTGAG** TCATTACGATGCTTCCAGTCGACCAAAAGTGAAAACAAAAGGCAATATAATCC TCTTCCCACAACCATCGAATTCATGCA ATGATCCATTAAATTGGAGTAAATGGAGAAAGCTAAGTAACTTTTTTATTGTCA TITITATTACTGCTTTTACAGCAGCT ACTICAAATGACGCTGGATCAATTCAAGATTCACTTAATGAAAAATATGGAAT TAGTTACGACGCAATGAATACAGGGGC **TCGTTATATGGTCGAAAAATAACAT** ACTITATATGTATCTTTCTTGGTTTATTAGGCGCTGTTTGGTTTGCCTTGGTTAA AAGCACTTCCGACTCAATTTGGTCG CAATTGTTTGTTGGTATTAGTGAGAGTTGTGCTGAAGCTCAAGTACAATTAAGT TTATCAGAACTTTATTTTGCCCATAA **GGACCTTTAATTGCAGCCTTTATTG** TTCAAAACATTGGTTTTAGATGGGTTGGTTGGATTGCAGCAATTATTAGTGGTG CATTATTGTTCGTAATTGTTTTTTGT TTAGATG: AAACCTATTTTGATCGAGCAAAGTTTACCAAGCCA

Fig 23

>GAL2 (360c6) 1004bp in-house: 625-1004 PathoSeq: 1-624

CTTTGTTCATTTCCGAGGTTTCTCCAAAACATTTGAGAGGTACTTTGGTGTGCTG
TTTCCAATTGATGATTACCTTGGGT
ATCTTCNTGGGNTATTGGCTACCTATGGTACTAAGAGTTACTCAGACTCTAGAC
AATGGAGAATTCCATTAGGTTTATGT
TTCGCCTGGGCTTTATGTTTGGTTGCTGGTATGGTTAGAATGCCAGAATCTCCA
CGTTACCTTGTCGGTAAAGACAGAAT
TGAAGATGCTAAAATGTCACTTGCCAAAACTAACAAGGTTTCTCCAGAGGACC
CAGCATTATACCGTGAACTTCAATTAA
TCCAAGCTGGTGTTGAAAGAGAAAGATTGGCCGGTAAAGCATCTTGGGGTACT
TTATTCAATGGTAAACCAAGAATCTTT
GAAAGAGTTATTGTTGGTGTCATGTTACAAGCCTTACAACAATT

F19 24 (cont)

>KGD2 (98c_cp) 334bp in-house: 139-334 public: 1-138

TTCTAACAACAACATCTTTCTTGGATCTTCAATCAATTCCTTGATGGTTCTTAAG
AAAATAACAGCTTCACGACCGTCAA
CTACTCTGTGGTCGTAAGTCAATGCTAAGTACATCATTGGTCTAGAAACGATTT
GTCCGTTAACAGNAATTGGTCTTTNT
TTAAAANTGTGTAAACCAAATACGGNAGTTTAANGCATTTTTATAATTGGGGT
ACAGTATAATGATCCAATAACACNGNC
ATTANAAATAGTGAAAGAACCNCCGGTCATATCTTACAAAGTCAATTTACNAT
TTCTGGCTTTNTTACNCAAATTANANA
FTTCCTTTTNAATA

Fig 25

>RNR1 (38) 2562bp in-house: 1-2562

ATGTATGTTTATAAGAGAGATGGCCGTAAAGAGCCAGTACGTTTCGACAAAAT CACTGCCAGAGTTCAAAGATTATGTTA CGGTTTGAATCCAAACCACGTTGAACCAGTTGCTATTACCCAAAAAGTTATATC AGGTGTTTACCAGGGGGTTACTACTA TTGAGTTGGACAACTTGGCTGCAGAAATTGCTGCTACAATGACAACAATTCAC CCAGATTACGCTGTCTTAGCCGCTAGA ATTGCCGTATCAAATTTACATAAGCAAACCACCAAACAGTATTCCAAAGTGTC TAAGGATTTATATGAATACATTAATCC TAAGACTGGGTTACACTCCTATGATTTCCAAGGAAACCTACGACATCATTAT GGAACACGAAGATGAATTAAACTCAG

CCATTGTTTACGACAGAGATTTTAACTACAATTATTTTGGGTTCAAGACTTTGG **AAAGATCATATITGTTACGTATCAAC** GGTAAGGTTGCTGAAAGACCACAACATTTGATCATGAGGGTTGCTGTCGGTAT TCACGGTAATGATATACCAAGGGTCAT TGAAACCTATAACTTGATGTCTCAAAGATTCTTCACCCATGGTTCTCCTTGTTTA TTTAACGCTGGTACACCAAGACCAC AAATGTCCTCATGTTTCTTGCTTGCTATGAAGGATGATTCTATTGAAGGTATTT ACGACACTTTGAAATCGTGTGCTTTG ATCTCAAAAAGTGCTGGAGGAATCGGTTTACACATCCACAACATTCGTTCTACC GGTGCTTACATTGCTGGTACCAATGG TACTTCTAATGGTATTATTCCAATGGTAAGAGTATTCAATAACACTGCACGTTA TGTCGACCAAGGTGGTAACAAGAGAC CTGGTGCCTTTGCCTTGTACTTAGAACCATGGCACAGTGACATTTTTGATTTCA TTGATATTAGAAAGAATCACGGTAAA GAAGAAATCAGAGCCAGAGATTTGTTCCCAGCTTTGTGGATTCCAGATTTGTTC ATGAAAAGAGTTGAACAAAATGGTGA CTGGACTTTATTCTCACCAAATGAGGCCCCAGGCTTGGCTGATGTTTATGGTGA CGAATTCGAAGAATTATACACCAAAT ACGAAAAAGAAAACCGTGGTAGACAGACCATCAAAGCTCAAAAATTGTGGTA TGCTATTTTGGGAGCCCAAACTGAAACA GAACTTGGGTATTATCAAATCTTCCAA CTTGTGTTGTGAAATTGTTGAATATTCTGCTCCAGATGAAGTTGCTGTTTGTAA CTTGGCTTCCATTGCCTTGCCATCAT TTGTTGAAAATGATGAAAAAAGTACTTGGTACAACTTTGACAAATTACATCAG **GTCACTAAGGTTGTCACCCGTAACTTG** AACAGAGTTATTGACCGTAACCATTACCCAGTCCCAGAAGCTGAAAGATCAAA CATGAGACACAGACCAATTGCTTTGGG TGTTCAAGGTTTGGCTGATGCCTTTATGGAATTGAGATTACCATTTGACTCTCA **AGAAGCTAGAGAATTGAACATTCAAA** TTTTTGAGACTATCTACCATGCTGCTGTTGAAGCTTCAATTGAATTGGCTAAAG **AAGAAGGTGCCTACGAAACCTATCCA** ACTGAATTATGGGATTGGGATACATT TGCCTACTGCTTCCACATCACAAATTT TGGGTAACAATGAATGTTTTGAACCATACACTTCTAACATTTACTCTAGAAGAG TATTAGCTGGAGAATTCCAAATTGTC AATCCATATTTATTGAAGGACTTGGTTGATTTGGGTGTCTGGAACGACGCTATG **AAAAGTAGTATTATTGCTAACAATGG** TTCTATCCAAGCCTTACCAAACATCCCTGATGAAATCAAGGCATTGTACAAAA CTGTCTGGGAAATCTCACAAAAACATA TTATCGACATGGCTGCTGATAGAGCAGCATTTATTGATCAATCTCAATCATTAA **ACATTCACATCAAAGATCCAACAATG** GGTAAATTAACCAGTATGCACTTCTACGGTTGGAAGAAAGGTTTAAAGACTGG TATGTACTACTTAAGAACACAAGCTGC CAGTGCTGCTATTCAATTTACCATTGATCAAAAGATTGCTGAGACTGCCGGTCA TACGGTTGCAAACTTGGACAAATTAA

Fig 26 (cont)

ACATTAAGAAATATGTTAACAAAGGAAGAGTTGAGAGTGAGAATACCAGTGAT GCTCCATACAAGTCACCATCAACCGAA CCAACCTCATTAGAAAGTTCAGTTGCTGATTTGAAAATAAAAGATGAAGGTGA AAAGCCAGCTGAAGACAAAACCATTGA AGAACTCGAAAATGACATTTATAGTGCCAAAGTTATCGCATGTGCTATTGATA ATCCAGAATCTTGTACAATGTGTTCTG

Fig 26 (cont)

>SAM2 (36) 1155bp in-house: 1-1155

ATGACTACTTCCAAGGAAACTTTCCTTTTCACTTCAGAATCCGTTGGTGAAGGT CACCCAGATAAGATTTGTGACCAAGT CTCCGATGCCATTTTAGATGCTTGTTTAGCTGTTGATCCATTGTCAAAAGTTGCT

TGTGAAACTGCTGCCAAAACCGGTA

TGATTATGGTTTTTGGTGAAATTACCACTAAAGCTCAATTGGATTATCAAAAAA TCATTAGAGACACCATTAAACACATT

GGTTACGACGATTCTGAAAAAGGTTTTGATTACAAGACTTGTAACGTCTTGGTT GCAATTGAACAACAATCTCCAGATAT

TGCTCAAGGTTTACATTACGAAAAAGCTTTGGAAGAGTTGGGTGCTGGTGATC AAGGTATTATGTTTGGTTATGCCACCG

ATGAAACCGATGAAAAATTGCCATTGACCATTTTATTGGCCCACAAATTGAAT GCTGCCTTGGCTTCTGCCAGAAGATCA

GGTTCCTTGCCATGGTTGAGACCAGATACCAAAACCCAAGTCACCATCGAGTA TGAAAAAGATGGTGGTGCAGTTATCCC

AACATATCATCAAGCAAGTCATCCCAGAACATTTATTAGACGACAAAACTATC
TACCACATTCAGCCATCAGGCAGATTC

GTCATTGGTGGTCCCCAAGGTGATGCTGGTTTGACTGGTAGAAAGATCATTGTT GACACCTATGGTGGTTGGGGTGCACA

TGGTGGTGGTGCCTTCTCAGGCAAGGATTTCTCCAAAGTTGATAGGTCTGCTGC TTATGCCGCTCGGTGGGTTGCTAAGT

CGTTGGTGACCGCCGGATTGGCCAAAAGGGCCTTGGTGCAGTTCTCCTATGCTA
TTGGGGTTGCTGAACCCACCAGCATT

TATATAGACACCTATGGGACATCTAAATTGAGCACCGAAGCCCTTGTAGAAAT TATCAAGAATAATTTTGACTTACGCCC

AAAATTCTTGGGAACAACCAAAAAAAATTAAAATTT

F19 28

		x x		
1	HSITVTFORS PETYKRAPAF	s s GIBLEFSQQG		Lavevesvon
	x x x			R
51	QDFVLIRDLA XYWGYPSSYQ	LIVKLVKCAN	ieksqilkto	-
101	DLIBEADTRI CLFYISLPLV	YSRIENKKV <b>P</b>	YVLREPEQPK	VSKAPTÇEKP
151	ASVVAAEEDD ENLODDEEDE	UNCRCMO€CV	nsgeløkgyk	HWHKONDKAI
201	NODRYTIGQV FHQYGLDPST	flthslfns:	nemektnyak	nfgvsgyrfl
251	PNSKLSYAER BLVLHANNYN	DMHINEKTES	RPKKSFRKPI	gkskkhnlqi
		fs	<b>~</b>	
301	DENSIBLESS VIRGGGFIRD	FSIHHLCKVP	ичуутанноѕ	Lelsantanl
		x		
351	NATSNSSYLF HINKIKSKS	iqklvfnedt	DNAHHLKALA	TKTYEGPGSG
401	NYKDOALMSK INKIHLSSNK	K PF HKRKVSN	nnrynkslko	LUHEXFORNS
451	VZYLLSZQRK YTECYSNLEI	LHNSLQFNVL	PLITABOANGE	TWINYYKFKL
			X.	fs
501	IDFEQUEATE MEANELEERK	AWQQHRAADL	esekleçerl	RLVFEDEFNE
		x X	ı X	* x xx
£51	FEGLQSEFGQ REKELEEKLR	RRQLEASLSD	SFEADSENDD	esel <b>a</b> qiqqd
			missing	redreuce
			**********	
691	FESSANALKT KFERMRYDLI	npapppgpie	TB6707000V3	3-11/12-1-
	missing sequence			202222422
551	RNIPLELRGY VPESKEELPP	TRAMINIVI	o E Mile Nooms M	
	missing		•	
=01				
701	ansowig			

15c1

**!s** 3

1 COSYVEOSOF MYSCOTODRG MESGGGGGGG HYQQQQGGYNA YGFFFFQGGY

ambiguities

w w wx

51 YQQQPGGGGG YYQYQQQQQP MYYQQQQPRSG GDDSCLMGCL AALCYCCTLD

amb ==

101 MLF

Fig 30

22209

E E

- 1 MRRREIERRE DOMMREGROW EHEAKROIRI QQLSEGDSRS NOTKKEEXVF
- 51 KKARSTNSGA DETGLMSDKE FODSAYSPDY LFZENLWNKP NHPDTNHKTK
- 101 KYTENVYENI, DEPENDITSAY NGSTHOETNI QMEIQIPEND BYVPQMKATS

K D VR fs C

151 SVMNTTIPAQ REMESLETSE NKARNFETAD VGVMGLDSPN KAQTRNIWKI

**P** 

201 QVSDNPMMVY FFMCXRRLET PEGKLLCRDQ

FIG

1 ITSESSEKTT KLEALAELDI LKROYECKUL LNABVETGOD HTYOSQCIRE

51 FELROMROPL CKTEVFESGL KROPLLERIV ISYASLAPHL LALLEIEKVE

101 SKÇEVDREYS ANESALMGNR NYAMDVDET/ RVKDQLNADK LGEEKGQAQH

3 fs X

151 WEQVMEQTOS VILLISDOSE NGSDSLVKC? ICFERMELDV LQGNHIDDOL

Q Q X ambiguities

201 SCKSTKRIFT CILSPKAKAP KQITSFFKFT ICTKTPSPFT SKASTTPTAT

S Q N I K M

251 PTTTLLTAMV ASTSPVAQST VHKGKFLPKL DFSSLSTQKI KAKLSDLKLP

301 TIGSRNEMER BYLKYYVIYN AMLDSNHPV

Fig 32

8c co

G 3 ts D A

1 MOFSSAVVLS AVAGSALARY SNETVIDIQT TOVTITSCEE NECHETEVIT

51 GVET/TEVEN TYTTYCPLST TEAPAPSTAT OVSTT//TIT OCESORCHET

101 AVTOSVITVT EGYTIVITYC PLESTEARGP ARSTARESKP AESSPYPTTA

151 AESSPAKTIA AESSPAGETT PKTVAAESSS AETTAPAVST AEAGAAANAV

201 PVAAGLLALA ALF

## 17c_cp

1 PPXVAKEKSS TIGHIFRYTF YTAVISVIGS AGLIGYFIYE ESQPVDQVKQ

X

31 TPLFPNGEKK HILVILGSGW GAISLLKNID TTLYNYVIVS PRNYFLFTPL

ts % to to

101 LESVPIGIVE LESIIEPVRS UTRRCPGQVI YLEASATNIN PKTNELTLEQ

R N

151 STTVVSGHSG KDTSSSKSTV AEYTGVESIT TILNYDYLVV GVGAQTILIF

X X X XX XX X

201 GNPGRAMRYF NAFFEREISG SHLQIR

Fig 34

## 409c5 part2

- 1 DONNEDFIRG TIMINGLEVO SEDEMVSHYD ASSRPKVKTK GNIILFPQPS
- 51 NSCHOPLANS KARALSHFFI VIFITAFTAA TSHDAGSIQD SLNEXYGISY
- 101 DAMNTGAGVL FLOIGWGTFF LTPASSLYGR KITYFICIFL GLLGAVWFAL
- 151 VKSTSDSINS QLEVGISESC ARAQVQLSLS ELYFAHNLGS VLTSYIVATS
- 201 VGTYLGPLIA AFIVONIGER WYGWIAAIIS GALLFYIVEC LDETYFDRAK
- 251 FTKP

## 360c6

1	DINVSSTSTAB	CNVXIEWECK	elegeedy#1	SLEDKPVSAY	IGIIIMCFLI		
51	afcgfvfgfd	TGTISGFINK	SDFLERFGGT	Kadgtlyfsn	<b>AKAMIGTS</b>		
	x x		x				
101	NAGIAIGALF	LSKWGDMYGR	RVGINTAMIV	AIÇVIIÇVIY	sqhawyqvmi		
				6.7	rbiguities		
					Z ==		
151	GRIITGLAVG	MISVICELFI	SEVSPKHLRG	TLVCCFQLMI	TIGIFLGYCT		
	fs		·.·				
•••	TYGIKSYSDS	70177777	PANALCI VAG	M.BUPESPRY	LVGXDRIEDA	,	
201	TIGIKSISUS	AGNATINGEC	I AMPLCEVIA		22		
					77		
251	KNSLAKTNEV	SFEDPALYRE	LQL IQAGVER	erlagkas//g	TLPINIKTKIF		
	īv	::1551f(	sequence			_	_,
	= =	*****		•		Tue	.36
301	ZRVNI.G\MLQ	ALQQFNWOKN	LFPSYLTSXP	K		Fig	0
98c cp						<u></u>	
					g saquence		
	******		========			j.	
1	NAPVSGTITE	PUVUVDATVE	VGQEIIKMEE	GDAPAGGASA	Seatarneea	,	
					3 sedneuce	<del>!</del> -	
	###=##################################	*******	**********		22222222 24456222226		
51	Pekakeesa?	ampreste	KEEPKKESKP	ybkkeeskks	TOSTUSANTS		
	miesi	ng sequenc	œ				
	2123626400						
101	THESPHEERY	MIRLALA	erlkesqnta	<b>ASLTTENEV</b> D	MSNLMDFRK		

************************************ 151 YKDEFIEKTG IKLOFMBAFS KASALALMEI PAVNARIENN DOLVFKDYAD

Missing sequence X XX XX NX

201 ISIAVATOKG LYTYYRNAE SLSILGIEKE ISKLGKKARE GKLTLEDMTG

251 GOPTISNGGV FGSLYGTPID RMPQTAVLGL HGVKERPVTV NGQIVSRPMM

301 YEARTYDHRY WOOFERVEFE REEKELIBOP REMEL

missing sequence

(11)

EP 0 982 401 A2

(12)

# **EUROPEAN PATENT APPLICATION**

(43) Date of publication: 01.03.2000 Bulletin 2000/09

(51) Int. Cl. 7:

C12N 15/31, C07K 14/40, A61K 31/70, A61K 38/16, C07K 16/14, G01N 33/50,

C12Q 1/68

(21) Application number: 98310694.9

(22) Date of filing: 23.12.1998

(84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Designated Extension States: AL LT LV MK RO SI

(30) Priority: 14.08.1998 GB 9817796

(71) Applicant: JANSSEN PHARMACEUTICA N.V. 2340 Beerse (BE)

(72) Inventors:

Contreras, Roland Henri 9000 Gent (BE)

, Nelissen, Bart

2340 Beerse (BE)

De Backer, Marianne Denise

2340 Beerse (BE)

Luyten, Walter Herman Maria Louis

2340 Beerse (BE)

Viaene, Jasmine Elsa

9000 Gent (BE)

Logghe, Marc George

9000 Gent (BE)

(74) Representative:

Baldock, Sharon Claire et al **BOULT WADE TENNANT,** 27 Furnival Street

London EC4A 1PQ (GB)

## (54) Drug targets in Candida albicans

Nucleic acid molecules encoding (57)polypeptides that are critical for survival and growth of the yeast Candida albicans are disclosed. Also provided are methods of identifying compounds which selectively modulate expression or activity of such polypeptides comprising the steps of (a) contacting a compound to be tested with one or more Candida albicans cells having a mutation in a nucleic acid

molecule according to the invention which mutation results in overexpression or underexpression of said polypeptides in addition to contacting one or more wild type Candida albicans cells with said compound, and (b) monitoring the growth and/or activity of said mutated cell compared to said wild type; wherein differential growth or activity of said one or more mutated Candida cells is indicative of selective action of said compound on a polypeptide or another polypeptide in the same or a parallel pathway.

1	MANAKEDER:	K 27VRFDKIT	a rvorloygli	n Pihvepvai	l őkaiseatőg
31	VOTIELDNI	R ABIAATHOT	i hpyyavlaai	r iavenehko:	T TRQYSKVSKI
101	PAEAIN DKI	C LHSPMISKE	idzhamildy 1	E LNSAIVYDRI	PNYNYFGFKT
151	LEPSYLLRI:	Grylerpohi	l imrvavgiho	NDIPRVIETY	( NLMSQRFFTH
201	GSPCLFNAG	FRPQMSSCF1	LAMKDOSIEG	i ydtlkscal	ISKSAGGIGL
251	HIHNIRSTGA	YIAGTNGTSN	GIIPMÜRVFN	i ntaryvdogo	nkrpgafaly
301	Lepwhsdife	FIDIRKNHGK	EEIRARDLFP	ALWIPDLFMK	RVZQNGEWTL
351	fspnea <b>/</b> Cla	Dvygde? <b>z</b> el	YTXYEKENRG	rotikaoklw	YALLGA:TET
401	gtffmlykds	CHIKSNOKNL	GIIKSSNLCC	EIVEYSAPDE	VAVCNLASIA
451	LPSFVENDEK	STWYNFEKLH	QVTXVVTRNL	NRVIDRNHYP	vpeaersn <u>m</u> r
501	HRPIALGVQG	Lacafmeerl	PFDSQEAREL	KIQIFETIYH	AAVEASIELA
551	KEEGAYSTYP	GSPASQGLLQ	FOLWNRKFTE	LWDWDTLKQD	Laxhgmrnsl
601	Lvapmptast	SQUIGNNECF	epytsniysr	RVLAGEFÇIV	NEATTEDTAD
651	LGVWNDADEG	SIINNGSIQ	alphipdeik	AL/KTVWEIS	<b>OKHIIDWAAD</b>
701	RAAFIDQSQS	LNIHIKDPTN	GKLTSMHFYG	WKKGLKTGMY	YERTQAASAA
751	IQFTIDQKIA	ETACHTVANL	DHTWIKKAN	KGRVESENTS	DAPYKSFSTE
961	PTSLESSVAD	TKIKDEGEKE	AEDKTIEELE	NDIYSAKVIA	Cailneesct
	WC EG				

36

1	Mitskztflf	TSESVJZGHF	DKICDQVSDA	ILDACLAVDP	LSKVACETAI
51	KTGMIM/FGE	ITTKAQLDYQ	KIIFDTIKHI	gyddsexgfd	YKTONULVAI
101	EQQSPDIAGG	LHYEKALBEL	GACOGGIMFG	YATDETDEKL	PLTILLAHKI
151	MAALASARRS	GSLPWLR9DT	KTQVTĮSYBK	DGGAVIPKRV	Ctivistqha
201	eeillenfar	EHITHLIKOV	IBEHULDDKT	IYKIQPSGRF	VIGGPÇGEAG
251	LTGRKIIVDT	Y3G#3AHGGG	AFSGRDFSKV	DRSAAYAARW	Vaksivtagl
301	akralvçesy	Algyreptsi	YIOTYGTSKL	STEALVELIK	nnfdlrpgvi
351	VKELDLARPI	YFKTASYGHF	TNQENSWEQP	KKLKF	

F19 39

* 150