#### Lecture 14: Clustering

IST5573

統計方法 Statistical methods

2016/12/14

#### Clustering vs. classification

- Task. Assign observational units to classes on the basis of variables describing/characterizing these observations.
- Clustering. The classes are unknown a priori and need to be "discovered" from the data.
- Classification. The classes are predefined and the task is to understand the basis for the classification from a set of labeled observations (learning set). This information is then used to predict the class of future observations.

#### Clustering

#### Cluster analysis: R software

| Type                    | Package <b></b> | Functions  | Description <u> </u>                                  |
|-------------------------|-----------------|------------|-------------------------------------------------------|
| Hierarchical clustering | stats           | hclust     | Agglomerative hierarchical clustering                 |
|                         |                 | dendrogram | Visualization for cluster dendrograms                 |
|                         |                 | heatmap    | Heatmaps with row and column dendrograms              |
|                         | cluster         | agnes      | Agglomerative hierarchical clustering                 |
|                         |                 | diana      | Divisive hierarchical clustering                      |
|                         | dendextend      |            | Package provides functions for easy visualization,    |
|                         |                 |            | manipulation and comparison of dendrograms            |
|                         | dynamicTreeCut  |            | Package contains methods for detection of clusters in |
|                         |                 |            | hierarchical clustering dendrograms                   |
|                         | sparcl          |            | Package provides clustering for a set of n            |
|                         |                 |            | observations when p variables are available, where p  |
|                         |                 |            | >> n. Sparse K-means clustering and sparse            |
|                         |                 |            | hierarchical clustering are implemented.              |
| Partitioning clustering | stats           | kmeans     | Provide several algorithms for computing partitions   |
|                         |                 |            | with respect to Euclidean distance                    |
|                         | cluster         | pam        | Implement partitioning around medoids and can         |
|                         |                 |            | work with arbitrary distances                         |
|                         |                 | clara      | A wrapper to pam() for larger data sets               |
| Model based clustering  | mclust          |            | Package fits mixtures of Gaussians using the EM       |
|                         |                 |            | algorithm                                             |
|                         | Rmixmod         |            | Package provides tools for fitting mixture models of  |
|                         |                 |            | multivariate Gaussian or multinomial components       |
|                         | pmclust         |            | Package allows to use unsupervised model-based        |
|                         |                 |            | clustering for high dimensional (ultra) large data    |
|                         | bayesm          |            | Bayesian estimation of finite mixtures of             |
|                         |                 |            | multivariate Gaussians                                |
| Others                  | som             |            | Self-organizing maps                                  |

#### 照片分群

|    | Α    | В           | С         | D         | Е          | F          | G           |  |
|----|------|-------------|-----------|-----------|------------|------------|-------------|--|
| 1  | 相片ID | ISO         | 光圏        | 快門        | 焦距         | 上傳時間       | 檔案大小        |  |
| 2  | A1   | 360.0653506 | 2.6130405 | 0.0439826 | 3.188904   | 13.3870005 | 1118.63301  |  |
| 3  | A2   | 190.8895706 | 5.4165644 | 0.0126687 | 13.3067485 | 13.1804444 | 452.3329    |  |
| 4  | B1   | 296.4720559 | 2.6256684 | 0.0381651 | 3.2223553  | 13.3811521 | 1526.433641 |  |
| 5  | B2   | 852.8836207 | 5.6433908 | 0.9188491 | 28.512931  | 13.1366148 | 1054.067296 |  |
| 6  | C1   | 349.0976331 | 2.6867854 | 0.0494438 | 3.6104536  | 13.4497251 | 1151.851495 |  |
| 7  | C2   | 642.82143   | 3.9       | 0.1535    | 20.72619   | 13.28964   | 1874.38261  |  |
| 8  | D1   | 256.3334321 | 2.5447492 | 0.0510791 | 3.5425863  | 13.4020668 | 1349.647051 |  |
| 9  | D2   | 451.4408397 | 3.9257634 | 0.1241947 | 28.0381679 | 13.357224  | 2365.505334 |  |
| 10 | E1   | 184.5038285 | 2.5237727 | 0.0318157 | 3.1995916  | 13.5376638 | 1306.11761  |  |
| 11 | E2   | 328.2808989 | 3.7405618 | 0.0872045 | 16.4191011 | 13.1351475 | 1557.178984 |  |
| 12 | F1   | 280.0334604 | 2.4670366 | 0.0457241 | 3.6611605  | 13.4191389 | 536.4296947 |  |
| 13 | F2   | 310.0637733 | 5.5767936 | 0.4029655 | 32.2798937 | 13.1132247 | 1451.818641 |  |
| 14 | G1   | 184.2905405 | 2.5720988 | 0.0354213 | 3.2166988  | 13.4792813 | 1290.666303 |  |
| 15 | G2   | 582.9588608 | 3.9382911 | 0.0163196 | 30.4525316 | 13.186499  | 977.0938705 |  |

(RMD\_example 14.1)

| Variable | Description                                         |
|----------|-----------------------------------------------------|
| 相片ID     | E.g., A I → A: 相簿分類, I: 相機型號。共16張相片。                |
| ISO      | 照片的感光度,數值越高,對光越敏感                                   |
| 光圈       | 光圈值                                                 |
| 快門       | 快門速度(秒)                                             |
| 焦距       | 毫米 (mm)                                             |
| 上傳時間     | UNIX 時間戳,與1970年1月1日<br>00:00:00的秒差×10 <sup>-8</sup> |
| 檔案大小     | Bytes                                               |

#### Distance and similarity

- Clustering organizes points that are close into groups.
- What does it mean for two variables to be close?
- What does it mean for two samples to be close?
- Points: E<sub>ig</sub> = value of sample i, variable g
  - Variable  $I = (E_{11}, E_{21}, ..., E_{NI})$
  - Variable2= $(E_{12}, E_{22}, ..., E_{N2})$
  - Sample  $I = (E_{11}, E_{12}, ..., E_{1G})$
  - Sample2= $(E_{21}, E_{22}, ..., E_{2G})$

#### Distance and similarity

- Close: two points have a small distance or large similarity
- Every clustering method is based solely on the measure of distance or similarity.
- Distance
  - Euclidean distance
- Similarity
  - Correlation
  - Spearman correlation
  - Categorical measures

#### The similarity/distance matrices



Data matrix

Sample similarity matrix

#### The similarity/distance matrices



Data matrix

## Two common clustering approaches

- Hierarchical methods: provide a hierarchy of clusters, from the smallest, where all observations are in one cluster, through to the largest set, where each observation is in its own cluster.
  - either divisive or agglomerative
- Partitioning methods: partition the observations into disjoint clusters and usually require specification of the number of clusters.
  - K-means/K-medoids

#### Hierarchical clustering

- Agglomerative clustering (bottom-up)
  - Starts with as each sample in its own cluster
  - Joins the two most similar clusters
  - Then, joins next two most similar clusters
  - Continues until all samples are in one cluster
- Divisive clustering (top-down)
  - Starts with all samples in one cluster
  - Choose split so that samples in the two clusters are most similar (maximize "distance" between clusters)
  - Find next split in same manner
  - Continue until all samples are in single clusters

#### **Dendrograms**

- Hierarchical clustering provides with clusters of every size: where to "cut" the "dendrogram" is user-determined
- We can then make dendrograms showing divisions or merging.
- The y-axis represents the distance between the groups divided at that point.

#### 照片分群

- Sample:共16張相片
- Variable:ISO、光圈、快門、焦距、上傳時間、檔案大小



#### Heatmaps

- A two-dimensional, rectangular, colored grid.
- Displays the data matrix themselves.
- The color of each grid is determined by the value of the corresponding entry in the data matrix.
- The rows and columns of the matrix are reordered independently-- similar rows and columns are placed next to each other.

#### Heatmaps

- The orderings can be derived from a hierarchical clustering.
- Aid in determining which rows (the samples)
  have similar values within which subgroups of
  columns (the variables).

# Heatmaps



## How to make a hierarchical clustering

- Choose samples and variables to include in cluster analysis
- 2. Choose similarity/distance metric
- Choose clustering direction (top-down or bottom-up)
- 4. Choose linkage method (if bottom-up)
- Calculate dendrogram
- Choose height/number of clusters for interpretation
- 7. Assess cluster fit
- 8. Interpret resulting cluster structure

#### 3. Choose clustering direction

- Both are only "step-wise" optimal: at each step the optimal split or merge is performed
- This does not imply that the final cluster structure is optimal!
- Agglomerative/Bottom-up
  - Computationally simpler, and more available
  - More "precision" at bottom of tree
  - When looking for small and/or many clusters, use agglomerative
- Divisive/Top-down
  - More "precision" at top of tree
  - When looking for large and/or few clusters, use divisive

#### 4. Choose linkage method (if bottom-up)

Single

Linkage

- Single linkage: join clusters whose distance between closest samples is smallest
- Complete linkage: join clusters whose distance between furthest samples is smallest
- Average linkage: join clusters whose average distance is the smallest.



#### Partitioning clustering: k-means

- MUST choose number of clusters K a priori
- More of a "black box" because output is most commonly looked at purely as assignments
- Each object (variable or sample) gets assigned to a cluster
- Begin with initial partition
- Iterate so that objects within clusters are most similar
- Not unique solution: clustering can depend on initial partition

#### K-means algorithm

- Choose K centroids at random
- 2. Make initial partition of objects into k clusters by assigning objects to closest centroid
- 3. Calculate the centroid (mean) of each of the k clusters.
- 4. a) For object i, calculate its distance to each of the centroids.
  - b) Allocate object i to cluster with closest centroid.
  - c) If object was reallocated, recalculate centroids based on new clusters.
- 5. Repeat 4 for object i = 1,....N.
- 6. Repeat 3 and 4 until no reallocations occur.
- 7. Assess cluster structure for fit and stability

#### K-means algorithm



Iteration = 0



Iteration = 1

#### K-means algorithm



Iteration = 2



Iteration = 3

#### K-medoids

- A little different
- Centroid: The average of the samples within a cluster
- Medoid: The "representative object" within a cluster.
- Initializing requires choosing medoids at random.



(RMD\_example 14.6)

#### Determine number of clusters

- Plot the value of the clustering criterion against the number of clusters
- Large change of levels in the plot are taken as suggestive of a particular number of clusters

#### Determine number of clusters

Clustering criterion: within clusters sum of squares



(RMD\_example 14.7)

#### **Assess cluster fit**

- Most often ignored
- Usually the cluster structure is rather unstable, at least at the bottom
- Can be VERY sensitive to noise and to outliers
- Cluster silhouettes and silhouette coefficient: how similar samples within a cluster are to samples in other clusters (composite separation and homogeneity) (Rousseeuw, 1987)

#### **Silhouette**

- If clustering samples
- Silhouette of sample *i* is defined as:

$$s(i) = \frac{b_i - a_i}{\max(a_i, b_i)}$$

- a<sub>i</sub> = average distance of sample i to other samples in same cluster
- $b_i$  = average distance of sample i to samples in its nearest neighbor cluster

#### Silhouette plot

From 4-medoids



#### Some take-home points

- Clustering can be a useful exploratory tool.
- Cluster results are very sensitive to noise in the data.
- It is crucial to assess cluster structure to see how stable your result is.
- Different clustering approaches can give quite different results.
- For hierarchical clustering, interpretation is almost always subjective.

### Multidimensional scaling

#### Multidimensional scaling (MDS)

- A method for displaying (transformed)
   multivariate data in low-dimensional space.
  - Similar method: plotting scores on the first two principal components or factors.
- Multidimensional scaling techniques deal with the following problem: for a set of observed similarities (or distances) between every pair of *N* samples, find a representation of samples in few dimensions such that intersample proximities "nearly match" the original similarities (or distances).

Original data =

| Sample\Variable                                | 0, 02 Op                                      | 123 N7                                               |
|------------------------------------------------|-----------------------------------------------|------------------------------------------------------|
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | $\begin{array}{c} 1 \\ 2 \\ 3 \\ \end{array}$ | $\left  \begin{array}{c} a \\   \end{array} \right $ |
|                                                | N                                             | distance matrix                                      |

MDS configuration:

| Sample\Variable  | X, X2 X2 | _ 1      | 1 2           | - N <sub>T</sub> |
|------------------|----------|----------|---------------|------------------|
| 1<br>2<br>!<br>N | X        | > ;<br>N | b<br>distance | matrix           |

MDS finds the configuration that a and & are as closed as possible.

• Consequently, scaling techniques attempt to find configurations in  $q \le N - 1$  dimensions such that the match is as close as possible.

#### Glossary and steps for MDS

- The input target set of samples O: a set of N samples among which the distances are to be studied. Only degree of relationship (distances) can be observed among the samples.
- The proximity of a pair of samples  $(O_r, O_s)$ ,  $\delta_{rs}$ : a distance or similarity measurement used to represent the relationship between two samples.
- The dimensionality of output configuration space q: a pre-specified number for the desired MDS dimensions.

- The output configuration set X = X(q): a set of N q-dimensional MDS solution configuration points, usually in Euclidean space, to represent the set of input objects  $\mathbf{0}$ .
- The distance  $d_{rs} = d_{rs}(X)$  of a pair of configuration points (r,s) in X: the distance between points representing samples r and s in the configuration space to represent  $\delta_{rs}$  in the input set.

- The transformation function,  $f: \delta_{rs} \to d_{rs}$ : a function for specifying how the proximities should be related to the distances. Due to the existence of noise in the observed proximities, f is usually only used to map proximities to approximate distance.
  - Only the type (ratio, interval, log, exp, ...) of f is pre-specified, the exact form (parameters) of f is part of the MDS solution.
- The disparity of a pair of samples  $(O_r, O_s)$ ,  $\hat{d}_{rs} = f(\delta_{rs})$

- Stress $(q) = \sigma^2(d, \hat{d}) = \left\{ \frac{\sum \sum_{r < s} (d_{rs} \hat{d}_{rs})^2}{\sum \sum_{r < s} d_{rs}^2} \right\}^{1/2}$ : a loss function for measuring the closeness of the mapping from proximities to distance.
- MDS procedure attempts to find an appropriate transformation f and a set of points in configuration space X, such that the stress is as small as possible.

#### MDS for 照片分群





#### Determine the q

The Stress measure is a function of q. For each q, the configuration X leading to minimum Stress can be obtained. As q increases, minimum Stress will, within min stress(q) rounding error, decrease and will be zero for q = N - 1

A plot of minimum Stress(q) versus q:



looking for an "elbow" in the plot for the best q