Design and Analysis of Algorithms CS575 Spring 2023

Theory Assignment 1

Due on 2/27/2023 (Monday)

Remember to include the following statement at the start of your answers with a signature by the side. "I have done this assignment completely on my own. I have not copied it, nor have I given my solution to anyone else. I understand that if I am involved in plagiarism or cheating I will have to sign an official form that I have cheated and that this form will be stored in my official university record. I also understand that I will receive a grade of 0 for the involved assignment for my first offense and that I will receive a grade of "F" for the course for any additional offense."

Yash Sanjay Makwana

Please handwrite or type your answer to each question, scan or save your answers into a pdf file (with a vertical orientation so that we do not need to rotate your file to grade), and upload it to the homework submission site.

1. [20 points] Fill in all the missing values. For column A you need to compute the sums. For column B (the last two rows) you need to guess a function that does not contradict any of the yes/no answers already in the next three columns. Fill in each empty entry in the last three columns with either a yes/no answer.

Function	Function	О	Ω	θ
A	В	A = O(B)	$A = \Omega(B)$	$A = \theta(B)$
n ⁴	n³ lg n	No	Yes	No
$n\sqrt{n}$	n^2	Yes	No	No
$(n+1)!^{}$	n!	Yes	Yes	Yes
lg n	n^k where $k > 0$	Yes	No	No
$\sum_{i=1}^{n} (i+1) = ?$	$\sum_{i=1}^{n} i$	Yes	Yes	Yes
$\sum_{i=0}^{n-1} 3^i = ?$	$\sum_{i=0}^{n-1} 3^{i+1}$	No	Yes	No

2. [20 points] Prove the following using the original definitions of O, Ω , θ , o, and ω .

(a)
$$3n^3 + 50n^2 + 4n - 9 \in O(n^3)$$

3n³ + 50n² + 4n - 9
$$\in$$
 0 (n³).

The definition of Big-Oh state that

 $g(n) \in O(f(n))$: $f(n)$: there exists positive constants

 $f(n) \in O(f(n))$: $f(n)$: there exists positive constants

 $f(n) \in O(f(n))$: $f(n)$: there exists positive constants

 $f(n) \in O(f(n))$: $f(n)$: there exists positive constants

 $f(n) \in O(f(n))$: $f(n)$: $f(n)$:

 $f(n) \in O(f(n))$: $f(n)$: $f(n)$: $f(n)$:

 $f(n) \in O(f(n))$: $f(n)$: $f(n)$: $f(n)$:

 $f(n) \in O(f(n))$: $f(n)$: $f(n)$: $f(n)$:

 $f(n) \in O(f(n))$: $f(n)$: $f(n)$: $f(n)$:

 $f(n) \in O(f(n))$: $f(n)$: $f(n)$: $f(n)$:

 $f(n) \in O(f(n))$: $f(n)$: $f(n)$: $f(n)$:

 $f(n) \in O(f(n))$: $f(n)$: $f(n)$: $f(n)$:

 $f(n) \in O(f(n))$: $f(n)$: $f(n)$: $f(n)$:

 $f(n) \in O(f(n))$: $f(n)$: $f(n)$: $f(n)$:

 $f(n) \in O(f(n))$: $f(n)$: $f(n)$: $f(n)$:

 $f(n) \in O(f(n))$: $f(n)$: $f(n)$:

 $f(n) \in O(f(n))$: $f(n)$: $f(n)$: $f(n)$:

 $f(n) \in O(f(n))$: $f(n)$: $f(n)$: $f(n)$:

 $f(n) \in O(f(n))$: $f(n)$: $f(n)$: $f(n)$:

 $f(n) \in O(f(n))$: $f(n)$: $f(n)$: $f(n)$:

 $f(n) \in O(f(n))$: $f(n)$: $f(n)$: $f(n)$:

 $f(n) \in O(f(n))$:

 $f($

(b) $1000n^3 \in \Omega(n^2)$

-	$1000 \text{n}^3 \in \Omega (\text{n}^2)$
	The definition of Omega states that
6 0	$g(n) \in \Omega(f(n)) : g'(g(n)) : \text{ there easts positive consumes}$ $c \notin M \text{ such that}$ $0 < (:f(n) \le g(0))$
	$0 \le C \cdot f(n) \le g(n)$ for all $n \ge N $.
3	$1000 \mathrm{n}^3 \mathrm{\%cn}^2$
3	For $n \ge 1$ 4 $c \le 1000$ the condition of Onega holds that the Henre $1000 n^3 \in \mathcal{D}$ (n^2) .
3	holds for the Henre 1000 1- E-12 (1).

(c) $10n^3 + 7n^2 \in \omega(n^2)$

	$-10n^3 + 7n^2 \in \omega(n^2)$
9	The definition of small omega (w) sates that
M.	g(n) E w(f(n)): For every positive real constant c,
	g(n) $\in \omega(f(n))$: For every positive real constant c , there exists exists a positive integer N , for which $g(n) \geq c \cdot f(n)$ for all $n \geq N$.
12	g(n) > c.f(n) for all o > M.
	10 n ³ + 7 n ² 7 cn ²
10	Let C = 17
10	10n3+7n27 Hn2
10	10n3 > 10n2
I.	021
10	Therefore, N=1 for all n > M. Hence, the condition for small omega hats holds two.
10	Condition for said a little, the
10	contest on small onega that holds the
j.	

(d) $78n^3 \in o(n^4)$

8-	$-78n^{3} \in O(n4)$.	
	The definition of small-oh (o) states that G(W) & Off(W): For every positive real constant c,	200
-	g(N) & offind: For every positive real constant c, there oxists a positive integer N, for which g(n) \le cf(n) for all n >, N	000
	78n³ ≤ Cn4 Let C=78	6
-	78n ² ≤ 78n ⁴ 1 ≤ n	5
	-: N=1 Hence, 78n3 € 0 (n4) is proved.	6

(e) $n^2 + 3n - 10 \in \theta(n^2)$

-		
	$n^2 + 3n - 10 \in \theta(n^2)$	==
	The definition of Thura States that	=
1	The definition of Thura States that. there exists positive constants c, d. f H for which	
-		
	$0 < c \cdot f(n) \leq g(n) \leq df(n)$	-
-	for all n > N.	100
-	$(\cdot n^2 \le n^2 + 3n - 10 \le d \cdot f n^2$	
		-

-	
-	First we will prove n2+3n-10 € O(n2)
-	Need to find constants C & N sounderest, for all
	n>eN
	$n^2 + 3n - 10 \le dn^2$
	$n^2 + 3n - 10 \le n^2 + 3n^2 + 10n^2$ for all $n \ge 2$
	I since no is asymptotically
	n²+3n-10 ≤ 14n² peritire7.
610	[Since n^2 is asymptotically $n^2 + 3n^2 - 10 \le 14n^2$ positive].
	100000
	TP 18 class d=1 0 9 N=1 1000
	If we choose $d=4$ $f = N=1$, there $n^2+3n-10 \in O(n^2)$.
	11 + 311 -10 € O(N).
	Lets prove that nº+3n-10 € 12 (nº)
	0
	n2+3n-107 n2 for all n > 3 (since 3n-1070
	N for en 7,3)
	: we can choose $c=1+5=3$ = $9 n^2+3n-10 \in \Omega(n^2)$
	$-i$ 9 $n^2 + 3n - 10 ∈ Ω (n^2)$
	Since nº+3n-10 & belong to both O (Big-OL)
	since in the second
F	4 Ω (Omega). n2+3n-10 ∈ θ(n²)
	n + 317 (1

3. [15 points] Prove the following using limits.

(a) $n^{1/n} \in \theta(1)$ [Hint: you can use $x=e^{\ln x}$]

	(a) $n^{m} \in \theta(1)$ [Hint: you can use $x=e^{mx}$]
	1/4 2 0 (1)
	$ n'/n \in \Theta(1)$
	To prove that n'n E O (1), we need to show that
	there positive constants c1, c2 & = N such that
	there positive constants (1, C24 20) c1 < 1 m n/n < c2 for all n > N n > 00
	n→00
	Lets consider the limit (n'm)
	$\lim_{n \to \infty} n'm = \lim_{n \to \infty} e$
	1) -> 0 - (In n)
	$= \lim_{n \to \infty} e^{\frac{1}{n}(\ln n)}$
	17-02
	[In(n)
	$= e^{\frac{\ln(n)}{n}}$
	Z .
	Using the L'Hopital's to the rule to evaluate the
	limit:
	$\lim_{n\to\infty} \frac{\ln(n)}{n} = \lim_{n\to\infty} \frac{1}{1} = 0$
	00 lim n/n = 00 e° = 1
	n→∞
-	This means that n'n is bounded between 2 position
	this means that n'n is bounded between 2 positive constants ma 1 & I for all n > 1.
	$n'/n \in \Theta(1).$

(b) $4^n \in \omega(n^k)$ $-4^n \in \omega(n^k)$ To prove that $4^n \in \omega(n^k)$ we need to show that $\lim_{n \to \infty} 4^n = \infty$ Noing L'Hopital's Rule to evaluate this limit $\lim_{n \to \infty} 4^n = \lim_{n \to \infty} 4^n \ln 4$ $\lim_{n \to \infty} 4^n \ln 4 = \infty$ $\lim_{n \to \infty} 4^n \ln 4^n \ln 4 = \infty$ $\lim_{n \to \infty} 4^n \ln 4^n \ln 4 = \infty$ $\lim_{n \to \infty} 4^n \ln 4^n \ln 4^n \ln 4^n \ln 4^n \ln 4$

(c) $lg^3n \in o(n^{0.5})$

	//_
-	$lg^{3}n \in O(n^{0.5})$
	- lin (lgn)
-	10122241034 1950
	= lim 3 (lgn) 2. 1/n
49	$= \lim_{n \to \infty} \frac{3(lgn)^2}{\frac{1}{2}n}$
	= $\lim_{n\to\infty} \int \overline{h} \cdot 6 \left(\left \operatorname{lgn} \right ^2 \cdot 1 \right) = 0$
9	n->P
3	(lgn)3 + 10 0 (no·s)
,	
	TOTAL STATE OF THE PARTY OF THE

4. [10 points] Order the functions below by increasing growth rates (no justification required):

$$n^n$$
, n , n ln n , $n^{1/2}$, $2^{\lg n}$, ln n , 10 , $n^{1/n}$, $\sqrt{2^{\lg n}}$, $n!$, $\lg(n^{10})$, 2^n

Let $g_i(n)$ be the *i*th function from the left after the ordering (the leftmost function has the slowest growth rate). In the order, $g_i(n)$ should satisfy $g_i(n) \in O(g_{i+1}(n))$. If two or more functions are equivalent (in terms of Θ), put them in [] separated by comma (e.g., $[n^2, 5n^2]$).

Solution: 10,
$$[ln(n), lg(n^{10})]$$
, $n^{1/n}$, $[\sqrt{2^{lgn}}, n^{1/2}]$, $[2^{lgn}, n]$, $n ln(n)$, 2^n , $n!$, n^n

- 5. [20 points] Let f(n) and g(n) be asymptotically positive functions. For each of the following conjectures, either prove it is true or provide a counter example to show it is not true.
 - a. $(f(n) + g(n)) \in \Theta(\max(f(n), g(n))).$

b. $f(n) \in O(g(n))$ implies $2^{f(n)} \in O(2^{g(n)})$.

- J(n) \(\in O(g(n))\) implies
$$2^{f(n)} \in O(23^{(n)})$$

Consider $f(n) = 2n$ \(\in g(n) = n\)

J(n) \(\in O(g(n))\) will be $2_n \in O(n)$

Need to prove

 $2^{2n} \in O(2^n)$

Wheed to prove

 $2^{2n} \leq C(2^n)$
 $2^n \leq C$

De will be always inaggicient, even g large value of C taken for a large n' . The conjective g' g' g' g'

c. $f(n) \in O(g(n))$ implies $g(n) \in \Omega(f(n))$.

	c. $f(n) \in O(g(n))$ implies $g(n) \in \Omega(f(n))$.
-	$f(n) \in O(g(n))$ implies $-2(f(n))$
	If $f(n)$ is $O(gng(n))$ thus there exists a constant $c>0$ for a constant N such that for all $n>N$, $f(n) \leq c g(n)$
	Hence now there exists a constant $C>0$ f a constant $C>0$ f a constant $C>0$ f and f or all $n > 1$ f
	Hence now there exist a constant $K>0$, namely $K=1/c$ \$ If a constant N such that for all $n \ge N$, $g(s) \ge K$. $f(s)$ which is the definition of $g(s) = -2 f(s)$.

d. $f(n) \in O(g(n))$ implies $\lg(f(n)) \in O(\lg(g(n)))$, where $\lg(g(n)) \ge 1$ and $f(n) \ge 1$ for sufficiently large n.

- $f(n) \in O(g(n))$ implies $lg(f(n)) \in O(lg(g(n)))$, where $lg(g(n)) \ge 1$ $f(n) \ge 1$ for sufficiently large n.

The conjecture is stree. $f(n) \in O(g(n)) \rightarrow f(n) \le (g(n))$ For some compart c, this holds for all n sufficiently large c (inversing c g needed, we may assume $c \ge 1$). $f(n) \in O(g(n)) \rightarrow f(n) \le lg(c(g(n)))$ $f(n) \in O(g(n)) \rightarrow f(n) \le lg(c(g(n)))$ $f(n) \in O(g(g(n))) \rightarrow f(n) \le lg(c(g(n)))$ $f(n) \in O(g(g(n))) \rightarrow f(n) \le lg(c(g(n)))$ $f(n) \in O(g(g(n))) \ge lg(c(g(n)))$ $f(n) \in O(g(g(n)))$

6. [10 points] Prove that for all integers n>0,

$$\left(\sum_{i=1}^{n} i\right)^2 = \sum_{i=1}^{n} i^3.$$

by mathematical induction. Divide your proof into the three required parts: Induction Base, Induction Hypothesis, and Induction Steps.

_	$\begin{pmatrix} \sum_{i=1}^{n} i \end{pmatrix} = \sum_{i=1}^{n} i^{3}$
	(=1) =1
	Let take base case as n=1
	Left Hand Side.
	$\left(\frac{\Sigma}{\Sigma},i\right)^2 = \left(\frac{n(nH)}{2}\right)^2$
	Substituting N=1
	Substituting N=1 = (1 (1+1)) ² = 2
-	(2)
-	
-	Right Hand Side
3	
9	$\sum_{i=1}^{n} i^{2} = n(n^{2}+1)$
2	2
-	1st term = 1: Last term = n3
9	Last term = n3
9	
-	Oubstituting of = 1
	Substituting $n = 1$ $= \frac{2}{2} \cdot \left(\left(\frac{1}{2} + 1 \right) \right) = 1$
	The equality of LMS = RHS holds for bose case.
-	Induction Hypothesis
A	souning the equality holds the a constant k, sochthat
	$\left(\frac{\sum_{i=1}^{k}}{\sum_{i=1}^{k}}\right)^{2} = \sum_{i=1}^{k} i^{2} \text{ is tore for a constant } k$

	lets try to prove n= KH is true.
	LMS = (\sum \cdot \cdot)^2
	$= \left(\sum_{i=1}^{2} i + (kH)\right)^{2}$
	[C=1 /
	(K 2 K
	Squaring terms. (\(\Ti\)^2 = \(\Ti\)
	$= \sum_{i=1}^{3} \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)^{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)^{2} + \frac{1}{2} \left(\frac{1}{2} + $
	it 1 7
	= \(\frac{\x}{i}\)^2 \(\x + (\x + 1)^2\)
	$= \sum_{i=1}^{K} i^{3} + (\kappa_{H})^{2} (\kappa_{H})$
	$= \sum_{i=1}^{k} (k+i)^3$
	KH .
	$=\sum_{i}^{3}$
1311111111	i=1

(a) What is the output when n=4?

-	- a) 0/p
	202122324
	2 0
	2 1
	2 2
	2 3
	2 4
	3 0
330	3 1
	3 2
	3 3
	3 4
	4 0
	4 1
	4 2
	4 3
	4 4
	b) Lets say that n=24, 24 is divisible by \$4.
	Outer loop executes n-1 time, since it starts from 2'
	The outer loop was for O(n) time.
	Whatever may be the value or in the inner loss made
	Whatever may be the vam of 'n' the inner loop rous '6' times [divisible by 47. The inner loop rou time to
	independent of the role of '11' If the interior
	independent of the rate of 'N', therefore writing is
	0(1).
	Time complexity for the given algorithm
	T(n) = O(n),

8. [10 points] What is the time complexity T(n) of the nested loops below? For simplicity, you may assume that n is a power of 2. That is, $n = 2^k$ for some positive integer k. Give some justification for your answer.

```
\begin{array}{lll} & \text{for } (i=1; \ i <= n; \ i++) \{ \\ & j=n; \\ & \text{while } (j>=1) \{ \\ & < \text{body of the while loop} > \ // \text{Needs } \Theta(1). \\ & j=\lfloor j/2 \rfloor; \\ & \} \end{array}
```

	//_
_	The outer loop runs n+1 times, ie. O(n) times
	The inner loop runs log n times, since j is divided by 2 in each iteration till it becomes 0.)
	• The body of the while loop has a time complexity of $\theta(\Delta)$, which means it takes constant quant of theme
	to execute.
	Therefore the total time longlexity T(n) = 0 (n) * leg. (n) * O(1)
•	$= 0 (n \log n)$