CURS #10

CONTINUTUL CURSULUI #10:

V.1. Interpolare cu funcții spline liniare.

Interpolarea cu functii spline.

Definitia (V.1. (continuare)) (b) S interpolează f în x_i, j = 1, n + 1:

V.2. Interpolare cu funcții spline pătratice.

(3)

(c) S este continuă în nodurile interioare, i.e. x_{i+1}, j = 1, n − 1: $S_i(x_{i+1}) = S_{i+1}(x_{i+1}), \quad i = \overline{1, n-1}$

(4)

Relatiile (3)-(4) ne furnizează sistemul de ecuatii liniare, i.e. 2n ecuatii

December 14, 2020

liniare pentru necunoscutele $a_i, b_i \in \mathbb{R}, j = \overline{1, n}$. Conform condiției (b) și ținând cont de faptul că $x_i \in I_i, j = \overline{1, n}$ rezultă

 $S(x_i) = f(x_i), \quad j = \overline{1, n+1}$

 $S(x_i) = S_i(x_i) = f(x_i)$, deci $a_i = f(x_i)$, $j = \overline{1, n}$

Curs #10

Nodul
$$x_{n+1} \in I_n$$
, deci

$$S(x_{n+1}) = S_n(x_{n+1}) \Rightarrow a_n + b_n(x_{n+1} - x_n) = f(x_{n+1}) \Rightarrow$$

$$b_n = \frac{f(x_{n+1}) - f(x_n)}{2}$$
(5)

 $b_j = \frac{f(x_{j+1}) - f(x_j)}{x_{j+1} - x_j}, \quad j = \overline{1, n-1}$ Rezultă următoarea schemă numerică de determinare a coeficientilor

 $\begin{cases} a_j = f(x_j), & j = 1, n \\ b_j = \frac{f(x_{j+1}) - f(x_j)}{x_{j+1} - x_j}, & j = \overline{1, n} \end{cases}$

Rezultă următoarea sc
$$a_j, b_j, j = \overline{1, n}$$
:

n condiției
$$(c)$$
 se obțin succesiv următoarele relații:
$$(a_i+b_i(x-x_i))|_{x=x_{i+1}}=(a_{i+1}+b_{i+1}(x-x_{i+1}))|_{x=x_{i+1}}$$

cu $a_i, b_i \in \mathbb{R}$, $i = \overline{1, n}$, ce trebuie determinate.

$$S(x) = S_j(x), \quad \forall x \in I_j, \quad j = 1, n$$
unde
$$S_i : \overline{I}_i \longrightarrow \mathbb{R}, \quad S_i(x) = a_i + b_i(x - x_i), \quad j = \overline{1, n}$$

(a)
$$S$$
 este liniară pe porțiuni:
$$S(x) = S_i(x), \quad \forall \ x \in I_i, \quad j = \overline{1, n}$$

Funcția
$$S: [a,b] \longrightarrow \mathbb{R}$$
 s.n. funcție spline liniară pentru funcția $f: [a,b] \longrightarrow \mathbb{R}$ dacă:

V. Interpolarea cu functii spline V.1. Interpolare cu funcții spline liniare

 $I_n = \bar{I}_n = [x_n, x_{n+1}].$

Definiția (V.1.) Funcția
$$S: [a,b] \longrightarrow \mathbb{R}$$
 s.n. funcție spline liniară pentru funcția $f: [a,b] \longrightarrow \mathbb{R}$ dacă:

Fie $f: [a, b] \to \mathbb{R}$ și $(x_i)_{i=1}$ o diviziune a intervalului [a, b], i.e. $a = x_1 < ... < x_{n+1} = b$. Fie $I_i = [x_i, x_{i+1}]$ ou $\overline{I}_i = [x_i, x_{i+1}]$. $i = \overline{1, n-1}$.

(2)

$$=a_j+b_j(x-x_j), \quad j=1,n$$

$$a_j + b_j(x_{j+1} - x_j) = a_{j+1}, \quad j = \overline{1, n-1}$$

 $b_i = \frac{f(x_{j+1}) - f(x_j)}{1, j}, \quad i = \overline{1, n-1}$ (6)

ALGORITM (Interpolarea spline liniară) Date de intrare: X: Y: x:

Date de iesire: y:

STEP 1: Determină n; STEP 2: for j = 1:n do

2: for
$$j = 1$$
: n do $a_j = Y_j$; $b_j = \frac{Y_{j+1} - Y_j}{Y_{j+1} - Y_j}$;

endfor

endfor STEP 3: for
$$j=1:n$$
 do if $x \in [X_i, X_{i+1}]$ do

 $S = a_i + b_i(x - X_i);$ STOP

endif endfor

y = S;

de unde $a_1 = e^{-2}$, $a_2 = 1$, $a_2 + b_2 = e^2$, deci $b_2 = e^2 - 1$. Pe de altă parte. S este continuă în nodul $x_2 \in (-1,1)$, i.e.

 $S_1(x_2) = S_2(x_2)$ sau $S_1(0) = S_2(0)$, deci $a_1 + b_1 = a_2$, de unde rezultă $b_1 = 1 - e^{-2}$. Obţinem astfel, următoarea reprezentare:

$$\begin{split} S(x) &= \left\{ \begin{array}{l} e^{-2} + (1 - e^{-2})(x+1), & x \in [-1,0) \\ 1 + (e^2 - 1)x, & x \in [0,1] \end{array} \right. \\ &= \left\{ \begin{array}{l} 1 + (1 - e^{-2})x, & x \in [-1,0) \\ 1 + (e^2 - 1)x, & x \in [0,1] \end{array} \right. \end{split}$$

Y conține valorile funcției în nodurile de interpolare, $f(x_1), \dots, f(x_{n+1})$. **Exemplul** # 1: Să se afle funcția spline liniară pentru funcția $f(x) = e^{2x}$ relativ la diviziunea $(x_1, x_2, x_3) = (-1, 0, 1)$. Rezolvare:

 $S(x_1) = f(x_1), S(x_2) = f(x_2), S(x_3) = f(x_3)$

 $S_1(-1) = e^{-2}$, $S_2(0) = 1$, $S_2(1) = e^2$

Obs.: Vectorul X contine nodurile de interpolare x_1, \dots, x_{n+1} , iar vectorul

 $S(x) = \begin{cases} S_1(x), & x \in [x_1, x_2) \\ S_2(x), & x \in [x_2, x_2] \end{cases}$

unde
$$S_1(x) = a_1 + b_1(x - x_1)$$
 și $S_2(x) = a_2 + b_2(x - x_2)$. Se obține astfel
$$S(x) = \begin{cases} a_1 + b_1(x + 1), & x \in [-1, 0) \\ a_2 + b_2 x, & x \in [0, 1] \end{cases}$$

Deoarece S interpolează f în cele trei noduri rezultă

Definitia (V.2.) Functia $S:[a,b] \longrightarrow \mathbb{R}$ s.n. functie spline pătratică pentru funcția

 $f:[a,b]\longrightarrow \mathbb{R} \ dac \check{a}:$

(a) S este pătratică pe portiuni:

 $S(x) = S_i(x), \forall x \in I_i, j = \overline{1, n}$

unde

 $S_i: \overline{I}_i \longrightarrow \mathbb{R}$,

 $S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2, j = \overline{1, n}$

cu $a_i, b_i, c_i \in \mathbb{R}$, $j = \overline{1, n}$, ce trebuie determinate.

(b) S interpolează f în x_i, j = 1, n+1:

 $S(x_i) = f(x_i), \quad i = \overline{1, n+1}$ (10)

December 14, 2020

December 14, 2020

(8)

(9)

Definiția (V.2. (continuare))		$a_i + b_i(x_{i+1} - x_i) + c_i(x_{i+1} - x_i)^2 = a_{i+1}, j = \overline{1, n-1}$ (15)
(c) S este continuă în nodurile interioare x_{j+1} , $j = \overline{1, n-1}$:		$a_j + b_j(x_{j+1} - x_j) + c_j(x_{j+1} - x_j) - a_{j+1}, j = 1, n-1$ (13)
$S_j(x_{j+1}) = S_{j+1}(x_{j+1}), j = \overline{1, n-1}$	(11)	$a_j + b_j(x_{j+1} - x_j) + c_j(x_{j+1} - x_j)^2 = f(x_{j+1}), j = \overline{1, n-1}$ (16)
(d) S' este continuă în nodurile interioare x_{j+1} , $j=\overline{1,n-1}$:		Relațiile (14) și (16) pot fi cuplate și rescrise ca o singură relație pentru
$S'_{j}(x_{j+1}) = S'_{j+1}(x_{j+1}), j = \overline{1, n-1}$	(12)	$j=\overline{1,n}.$ Cum $S_j'(x)=b_j+2c_j(x-x_j),$ atunci conform condiției (d) rezultă
(e) Una din următoarele condiții este satisfăcută		$b_j + 2c_j(x_{j+1} - x_j) = b_{j+1}, j = \overline{1, n-1}$ (17)
$ (e)_1: S'(x_1) = f'(x_1) (e)_2: S'(x_{n+1}) = f'(x_{n+1}) $		Conform condiției (e) rezultă
Conform condiției (b) rezultă		$S_1'(x_1) = f'(x_1) \Rightarrow b_1 = f'(x_1)$ (18)
$a_j = f(x_j), j = \overline{1, n}$	(13)	sau
$a_n + b_n(x_{n+1} - x_n) + c_n(x_{n+1} - x_n)^2 = f(x_{n+1})$	(14)	$S'_n(x_{n+1}) = f'(x_{n+1}) \Rightarrow b_n + 2c_n(x_{n+1} - x_n) = f'(x_{n+1}) $ (19)
Conform condiției (c) rezultă		Dacă în (19) considerăm $b_{n+1} = f'(x_{n+1})$ atunci relațiile (19) și (17) pot fi cuplate și rescrise ca o singură relație pentru $j = \overline{1, n}$.
Fie $h_j = x_{j+1} - x_j, j = \overline{1,n}$ lungimea fiecărei subinterval $[x_j, x_{j+1}]$. Obținem astfel, sistemele complete de ecuații necesare pentru determinarea coeficienților b_j, c_j :	20 9 / 15	Curs #10 December 14, 2020 10 / 15 Rezultă schemele numerice de calcul a coeficienților $b_j, c_j, j=\overline{1,n}$
Obținem astfel, sistemele complete de ecuații necesare pentru	(20)	Rezultă schemele numerice de calcul a coeficienților $b_j, c_j, j = \overline{1,n}$
Obtinem astfel, sistemele complete de ecuații necesare pentru determinarea coeficienților b_j, c_j : $\begin{cases} a_j + b_j h_j + c_j h_j^2 = f(x_{j+1}), & j = \overline{1,n} \\ b_1 = f'(x_1) \\ b_j + 2c_j h_j = b_{j+1}, & j = \overline{1,n-1} \end{cases}$ sau	(20)	Rezultă schemele numerice de calcul a coeficienților $b_j, c_j, j = \overline{1, n}$ $\begin{cases} b_1 = f'(x_1) \\ b_{j+1} = \frac{2}{h_j} (f(x_{j+1}) - f(x_j)) - b_j, & j = \overline{1, n-1} \\ c_j = \frac{1}{h_j^2} (f(x_{j+1}) - f(x_j) - h_j b_j), & j = \overline{1, n} \end{cases} $ (24)
Obtinem astfel, sistemele complete de ecuații necesare pentru determinarea coeficienților b_j, c_j : $\begin{cases} a_j + b_j h_j + c_j h_j^2 = f(x_{j+1}), & j = \overline{1,n} \\ b_1 = f'(x_1) \\ b_j + 2c_j h_j = b_{j+1}, & j = \overline{1,n-1} \end{cases}$,	Rezultă schemele numerice de calcul a coeficienților $b_j, c_j, j = \overline{1, n}$ $\begin{cases} b_1 = f'(x_1) \\ b_{j+1} = \frac{2}{h_j} (f(x_{j+1}) - f(x_j)) - b_j, & j = \overline{1, n-1} \\ c_j = \frac{1}{h_j^2} (f(x_{j+1}) - f(x_j) - h_j b_j), & j = \overline{1, n} \end{cases} $ (24)
Obtinem astfel, sistemele complete de ecuații necesare pentru determinarea coeficienților b_j, c_j : $\begin{cases} a_j + b_j h_j + c_j h_j^2 = f(x_{j+1}), & j = \overline{1,n} \\ b_1 = f'(x_1) \\ b_j + 2c_j h_j = b_{j+1}, & j = \overline{1,n-1} \end{cases}$ sau $\begin{cases} a_j + b_j h_j + c_j h_j^2 = f(x_{j+1}), & j = \overline{1,n} \\ b_{n+1} = f'(x_{n+1}) \\ b_j + 2c_j h_j = b_{j+1}, & j = \overline{1,n} \end{cases}$,	Rezultă schemele numerice de calcul a coeficienților $b_j, c_j, j = \overline{1, n}$ $\begin{cases} b_1 = f'(x_1) \\ b_{j+1} = \frac{2}{h_j} (f(x_{j+1}) - f(x_j)) - b_j, & j = \overline{1, n-1} \\ c_j = \frac{1}{h_j^2} (f(x_{j+1}) - f(x_j) - h_j b_j), & j = \overline{1, n} \end{cases} $ (24)
Obţinem astfel, sistemele complete de ecuații necesare pentru determinarea coeficienților $b_j, c_j:$ $\begin{cases} a_j + b_j h_j + c_j h_j^2 = f(x_{j+1}), & j = \overline{1,n} \\ b_1 = f'(x_1) \\ b_j + 2c_j h_j = b_{j+1}, & j = \overline{1,n-1} \end{cases}$ sau $\begin{cases} a_j + b_j h_j + c_j h_j^2 = f(x_{j+1}), & j = \overline{1,n} \\ b_{n+1} = f'(x_{n+1}) \\ b_j + 2c_j h_j = b_{j+1}, & j = \overline{1,n} \end{cases}$ Din (20) $_1$ rezultă	(21)	Rezultă schemele numerice de calcul a coeficienților $b_j, c_j, j = \overline{1, n}$ $\begin{cases} b_1 = f'(x_1) \\ b_{j+1} = \frac{2}{h_j} (f(x_{j+1}) - f(x_j)) - b_j, & j = \overline{1, n-1} \\ c_j = \frac{1}{h_j^2} (f(x_{j+1}) - f(x_j) - h_j b_j), & j = \overline{1, n} \end{cases}$ sau $\begin{cases} b_{n+1} = f'(x_{n+1}) \\ b_n = \frac{2}{h_j} (f(x_{n+1}) - f(x_n)) & b_n = i = \overline{1, n} \end{cases}$
Obţinem astfel, sistemele complete de ecuaţii necesare pentru determinarea coeficienților b_j, c_j : $\begin{cases} a_j + b_j h_j + c_j h_j^2 = f(x_{j+1}), & j = \overline{1,n} \\ b_1 = f'(x_1) \\ b_j + 2c_j h_j = b_{j+1}, & j = \overline{1,n-1} \end{cases}$ sau $\begin{cases} a_j + b_j h_j + c_j h_j^2 = f(x_{j+1}), & j = \overline{1,n} \\ b_{n+1} = f'(x_{n+1}) \\ b_j + 2c_j h_j = b_{j+1}, & j = \overline{1,n} \end{cases}$ Din (20) $_1$ rezultă $c_j = \frac{1}{h_j^2} \left(f(x_{j+1}) - f(x_j) - h_j b_j \right), j = \overline{1,n} \end{cases}$	(21)	Rezultă schemele numerice de calcul a coeficienților $b_j, c_j, j = \overline{1, n}$ $\begin{cases} b_1 = f'(x_1) \\ b_{j+1} = \frac{2}{h_j} (f(x_{j+1}) - f(x_j)) - b_j, & j = \overline{1, n-1} \\ c_j = \frac{1}{h_j^2} (f(x_{j+1}) - f(x_j) - h_j b_j), & j = \overline{1, n} \end{cases} $ (24)

Exemplul #2: Să se afle funcția spline pătratică pentru funcția $f(x) = e^{2x}$ relativ la diviziunea $(x_1, x_2, x_3) = (-1, 0, 1)$. Rezolvare:

$$S(x) = \begin{cases} S_1(x), & x \in [x_1, x_2) \\ S_2(x), & x \in [x_2, x_3] \end{cases}$$

unde

$$S_1(x) = a_1 + b_1(x - x_1) + c_1(x - x_1)^2$$

$$S_2(x) = a_2 + b_2(x - x_2) + c_2(x - x_2)^2$$

Se obtine astfel

functiei spline pătratice S:

$$S(x) = \begin{cases} a_1 + b_1(x+1) + c_1(x+1)^2, & x \in [-1,0) \\ a_2 + b_2x + c_2x^2, & x \in [0,1] \end{cases}$$

Deoarece S interpolează f în cele trei noduri rezultă

$$S(x_1) = S_1(x_1) = f(x_1), S(x_2) = S_2(x_2) = f(x_2), S(x_2) = S_2(x_3) = f(x_3)$$

Considerăm în plus satisfăcută conditia $S'(x_1) = f'(x_1)$ sau $S_1'(-1) = f'(-1)$, de unde $b_1 = 2e^{-2}$. Din relația (27) rezultă $c_1 = 1 - 3e^{-2}$, jar din (28) rezultă $b_2 = 2 - 4e^{-2}$, În final, din relatia (26) rezultă $c_2 = e^2 + 4e^{-2} - 3$. Obtinem astfel, următoarea reprezentare a

 $S(x) = \begin{cases} e^{-2} + 2e^{-2}(x+1) + (1-3e^{-2})(x+1)^2, & x \in [-1,0) \\ 1 + (2-4e^{-2})x + (e^2+4e^{-2}-3)x^2, & x \in [0,1] \end{cases}$

Curs #10

echivalent

 $S_1(-1) = e^{-2}$, $S_2(0) = 1$, $S_2(1) = e^2$

 $b_2 + c_2 = e^2 - 1$

 $S_1(x_2) = S_2(x_2)$ sau $S_1(0) = S_2(0)$, deci $a_1 + b_1 + c_1 = a_2$, de unde rezultă

 $b_1 + c_1 = 1 - e^{-2}$.

 $S_1'(x) = b_1 + 2c_1(x - x_1), S_2'(x) = b_2 + 2c_2(x - x_2)$. Functia S' se exprimă

 $S'(x) = \begin{cases} b_1 + 2c_1(x+1), & x \in [-1,0) \\ b_2 + 2c_2x, & x \in [0,1] \end{cases}$ Derivata S' a functiei spline pătratice este continuă în nodul interior x_2 .

 $b_1 + 2c_1 = b_2$

Pe de altă parte. S este continuă în nodul $x_2 \in (-1,1)$, i.e.

i.e. $S_1'(x_2) = S_2'(x_2)$ sau $S_1'(0) = S_2'(0)$ de unde rezultă

(26)

(28)

Derivatele functiilor S₁ si S₂ sunt:

prin formula

de unde $a_1 = e^{-2}$, $a_2 = 1$, $a_2 + b_2 + c_3 = e^2$, deci

December 14, 2020 15 / 15