In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
from sklearn.decomposition import PCA
from sklearn.preprocessing import scale
import warnings
warnings.filterwarnings('ignore')
```

In [3]:

```
dt = pd.read_csv('wine.csv')
dt
```

Out[3]:

	Туре	Alcohol	Malic	Ash	Alcalinity	Magnesium	Phenols	Flavanoids	Nonflavanoids	Ρ
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
173	3	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	
174	3	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	
175	3	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	
176	3	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	
177	3	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	

178 rows × 14 columns

In [4]:

dt.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	Туре	178 non-null	int64
1	Alcohol	178 non-null	float64
2	Malic	178 non-null	float64
3	Ash	178 non-null	float64
4	Alcalinity	178 non-null	float64
5	Magnesium	178 non-null	int64
6	Phenols	178 non-null	float64
7	Flavanoids	178 non-null	float64
8	Nonflavanoids	178 non-null	float64
9	Proanthocyanins	178 non-null	float64
10	Color	178 non-null	float64
11	Hue	178 non-null	float64
12	Dilution	178 non-null	float64
13	Proline	178 non-null	int64

dtypes: float64(11), int64(3)

memory usage: 19.6 KB

In [5]:

Removing unwanted column

In [7]:

```
dt2 = dt.iloc[:,1:]
dt2
```

Out[7]:

	Alcohol	Malic	Ash	Alcalinity	Magnesium	Phenols	Flavanoids	Nonflavanoids	Proantho
0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
3	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
4	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
173	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	
174	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	
175	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	
176	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	
177	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	

178 rows × 13 columns

localhost:8888/notebooks/python_files/Assignment 8 (PCA).ipynb

In [8]:

dt2.describe()

Out[8]:

	Alcohol	Malic	Ash	Alcalinity	Magnesium	Phenols	Flavanoids	No
coun	t 178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	
mea	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	
ste	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	
miı	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	
25%	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	
50%	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	
75%	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	
ma	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	
4								•

In [9]:

```
# Converting into numpy array
```

In [10]:

```
dt3 = dt2.values
dt3
```

Out[10]:

```
array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00, 3.920e+00, 1.065e+03],
[1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00, 1.050e+03],
[1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00, 1.185e+03],
...,
[1.327e+01, 4.280e+00, 2.260e+00, ..., 5.900e-01, 1.560e+00, 8.350e+02],
[1.317e+01, 2.590e+00, 2.370e+00, ..., 6.000e-01, 1.620e+00, 8.400e+02],
[1.413e+01, 4.100e+00, 2.740e+00, ..., 6.100e-01, 1.600e+00, 5.600e+02]])
```

In [11]:

```
## Numerical data
```

```
In [12]:
```

```
dt4 = scale(dt3)
dt4
Out[12]:
array([[ 1.51861254, -0.5622498 , 0.23205254, ..., 0.36217728,
         1.84791957, 1.01300893],
       [0.24628963, -0.49941338, -0.82799632, ..., 0.40605066,
         1.1134493 , 0.96524152],
       [ 0.19687903,
                    0.02123125, 1.10933436, ..., 0.31830389,
        0.78858745, 1.39514818],
       [0.33275817, 1.74474449, -0.38935541, ..., -1.61212515,
       -1.48544548, 0.28057537],
       [0.20923168, 0.22769377, 0.01273209, ..., -1.56825176,
       -1.40069891, 0.29649784],
                    1.58316512, 1.36520822, ..., -1.52437837,
       [ 1.39508604,
        -1.42894777, -0.59516041]])
```

Applying PCA fit transfrom to dataset

```
In [13]:
```

```
pca = PCA(n_components=13)

dt_pca = pca.fit_transform(dt4)
dt_pca
```

Out[13]:

```
array([[ 3.31675081e+00, -1.44346263e+00, -1.65739045e-01, ..., -4.51563395e-01, 5.40810414e-01, -6.62386309e-02], [ 2.20946492e+00, 3.33392887e-01, -2.02645737e+00, ..., -1.42657306e-01, 3.88237741e-01, 3.63650247e-03], [ 2.51674015e+00, -1.03115130e+00, 9.82818670e-01, ..., -2.86672847e-01, 5.83573183e-04, 2.17165104e-02], ..., [ -2.67783946e+00, -2.76089913e+00, -9.40941877e-01, ..., 5.12492025e-01, 6.98766451e-01, 7.20776948e-02], [ -2.38701709e+00, -2.29734668e+00, -5.50696197e-01, ..., 2.99821968e-01, 3.39820654e-01, -2.18657605e-02], [ -3.20875816e+00, -2.76891957e+00, 1.01391366e+00, ..., -2.29964331e-01, -1.88787963e-01, -3.23964720e-01]])
```

In [14]:

```
pca.components
```

```
Out[14]:
```

```
array([[ 0.1443294 , -0.24518758, -0.00205106, -0.23932041, 0.14199204,
                    0.4229343 , -0.2985331 , 0.31342949, -0.0886167 ,
        0.39466085,
        0.29671456, 0.37616741, 0.28675223],
      [-0.48365155, -0.22493093, -0.31606881, 0.0105905, -0.299634
                    0.00335981, -0.02877949, -0.03930172, -0.52999567,
        -0.06503951,
        0.27923515, 0.16449619, -0.36490283],
      [-0.20738262, 0.08901289, 0.6262239, 0.61208035, 0.13075693,
                                              0.14945431, -0.13730621,
        0.14617896, 0.1506819, 0.17036816,
                    0.16600459, -0.12674592],
        0.08522192,
      [-0.0178563, 0.53689028, -0.21417556, 0.06085941, -0.35179658,
        0.19806835, 0.15229479, -0.20330102,
                                              0.39905653, 0.06592568,
        -0.42777141, 0.18412074, -0.23207086],
       [-0.26566365, 0.03521363, -0.14302547, 0.06610294, 0.72704851,
        -0.14931841, -0.10902584, -0.50070298, 0.13685982, -0.07643678,
       -0.17361452, -0.10116099, -0.1578688 ],
      [-0.21353865, -0.53681385, -0.15447466, 0.10082451, -0.03814394,
        0.0841223 , 0.01892002, 0.25859401,
                                              0.53379539, 0.41864414,
       -0.10598274, -0.26585107, -0.11972557],
      [-0.05639636, 0.42052391, -0.14917061, -0.28696914, 0.3228833,
        -0.02792498, -0.06068521, 0.59544729, 0.37213935, -0.22771214,
        0.23207564, -0.0447637, 0.0768045],
      [-0.39613926, -0.06582674, 0.17026002, -0.42797018, 0.15636143,
        0.40593409, 0.18724536, 0.23328465, -0.36822675, 0.03379692,
        -0.43662362, 0.07810789, -0.12002267],
      [ 0.50861912, -0.07528304, -0.30769445,  0.20044931,  0.27140257,
        0.28603452, 0.04957849, 0.19550132, -0.20914487, 0.05621752,
        0.08582839, 0.1372269, -0.57578611],
       [ 0.21160473, -0.30907994, -0.02712539, 0.05279942, 0.06787022,
        -0.32013135, -0.16315051, 0.21553507, 0.1341839, -0.29077518,
       -0.52239889, 0.52370587, 0.162116 ],
      [-0.22591696, 0.07648554, -0.49869142, 0.47931378, 0.07128891,
        0.30434119, -0.02569409, 0.11689586, -0.23736257, 0.0318388,
       -0.04821201, 0.0464233, 0.53926983],
       [-0.26628645, 0.12169604, -0.04962237, -0.05574287, 0.06222011,
        -0.30388245, -0.04289883, 0.04235219, -0.09555303, 0.60422163,
        0.259214 , 0.60095872, -0.07940162],
       [ 0.01496997,
                    0.02596375, -0.14121803, 0.09168285, 0.05677422,
        -0.46390791, 0.83225706, 0.11403985, -0.11691707, -0.0119928,
       -0.08988884, -0.15671813, 0.01444734]])
```

In [15]:

```
var = pca.explained_variance_ratio_
var
```

Out[15]:

```
array([0.36198848, 0.1920749 , 0.11123631, 0.0706903 , 0.06563294, 0.04935823, 0.04238679, 0.02680749, 0.02222153, 0.01930019, 0.01736836, 0.01298233, 0.00795215])
```

In [16]:

```
var1 = np.cumsum(np.round(var,4)*100)
var1
```

Out[16]:

```
array([ 36.2 , 55.41, 66.53, 73.6 , 80.16, 85.1 , 89.34, 92.02, 94.24, 96.17, 97.91, 99.21, 100.01])
```

In [17]:

```
## PCA PLot
```

In [18]:

```
plt.plot(var1,color='magenta')
plt.show()
```


In [20]:

```
final_data = pd.concat([dt['Type'],pd.DataFrame(dt_pca[:,0:3],columns=['PC1','PC2','PC3'])]
final_data
```

Out[20]:

	Type	PC1	PC2	PC3
0	1	3.316751	-1.443463	-0.165739
1	1	2.209465	0.333393	-2.026457
2	1	2.516740	-1.031151	0.982819
3	1	3.757066	-2.756372	-0.176192
4	1	1.008908	-0.869831	2.026688
173	3	-3.370524	-2.216289	-0.342570
174	3	-2.601956	-1.757229	0.207581
175	3	-2.677839	-2.760899	-0.940942
176	3	-2.387017	-2.297347	-0.550696
177	3	-3.208758	-2.768920	1.013914

178 rows × 4 columns

In [21]:

Visualisation of PCA's

In [22]:

```
plt.figure(figsize=(16,12))
sns.scatterplot(data=final_data)
plt.show()
```


Checking with other Clustering algorithum

In [23]:

1. Hierarchical Clustering

In [24]:

```
import scipy.cluster.hierarchy as sch
from sklearn.cluster import AgglomerativeClustering
from sklearn.preprocessing import normalize
```

In [25]:

Dendogram

In [26]:

```
plt.figure(figsize=(16,12))
dendogram = sch.dendrogram(sch.linkage(dt4,'complete'))
plt.show()
```


In [27]:

Clusters

In [28]:

```
cl = AgglomerativeClustering(n_clusters=3,affinity='euclidean',linkage='ward')
cl
```

Out[28]:

AgglomerativeClustering(n_clusters=3)

In [30]:

```
y_cl = cl.fit_predict(dt4)
Clusters=pd.DataFrame(y_cl,columns=['Clusters'])
Clusters
```

Out[30]:

	Clusters
0	2
1	2
2	2
3	2
4	2
173	1
174	1
175	1
176	1
177	1

178 rows × 1 columns

In [31]:

```
wine = dt.copy()
wine['h_clusterid'] = cl.labels_
wine
```

Out[31]:

	Type	Alcohol	Malic	Ash	Alcalinity	Magnesium	Phenols	Flavanoids	Nonflavanoids	Р
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
173	3	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	
174	3	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	
175	3	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	
176	3	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	
177	3	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	

178 rows × 15 columns

```
In [32]:
```

```
## K-measn clustering
```

```
In [33]:
```

```
from sklearn.cluster import KMeans
```

```
In [34]:
```

```
wcss = []
for i in range(1,6):
    kmeans = KMeans(n_clusters=i,random_state=2)
    kmeans.fit(dt4)
    wcss.append(kmeans.inertia_)
```

In [36]:

```
## WCSS PLot
```

In [35]:

```
plt.plot(range(1,6), wcss)
plt.title('Elbow Method')
plt.xlabel = ('Number of Clusters')
plt.ylabel('WCSS')
plt.show()
```


In [37]:

```
## Cluster algorithum
```

In [38]:

```
clusternew = KMeans(3,random_state=30).fit(dt4)
clusternew
```

Out[38]:

```
KMeans(n_clusters=3, random_state=30)
```

In [40]:

```
clusternew.labels_
```

Out[40]:

In [41]:

```
## Assigning Clusters to data set
```

In [43]:

```
wine2=dt.copy()
wine2['k_clustersid']=clusternew.labels_
wine2
```

Out[43]:

	Туре	Alcohol	Malic	Ash	Alcalinity	Magnesium	Phenols	Flavanoids	Nonflavanoids	Р
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
173	3	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	
174	3	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	
175	3	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	
176	3	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	
177	3	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	

178 rows × 15 columns

In [44]:

wine2['k_clustersid'].value_counts()

Out[44]:

2 651 620 51

Name: k_clustersid, dtype: int64

In []:			