1. Feladat (5 pont)

Definiáld a maximális folyam problémát az alábbi irányított G=(V,A) gráfon, amely egy szállító hálózatot reprezentál. Adja meg a matematikai modellt (1-es csúcs a forrás, 4-es a nyelő)!

2. Feladat (10 pont)

Add meg az alábbi ütemezés gráf Gantt diagramját és komponens gráfjait!

3. Feladat (5 pont)

Az alábbi táblázatokban definiált folyamathálózat-színtézis problémához adja meg a matematikai modellt (cél: minimális költség)!

Nyorsanyag	Δr	
Nyersanyag	AI	
Α	2	
В	3	
Végtermék		
E	>=10	

Műveleti egységek	Kap. Korl.	Bemenet	Kimenet	Fixköltség	Arányos költség
01	30	A(2),B(2)	C(3),D(1)	8	2
02	30	B(2)	D(2)	9	3
03	- (végtelen)	C(2),D(2)	E(4)	11	4

4. Feladat (5 pont)

Vezesse vissza az alábbi legrövidebb út problémát egy folyamatszintézis problémára. Adja meg a P-gráfot, a folyamatok paramétereit, illetve a célt.

5. Feladat (7 pont) Írja le a P-gráfnál alkamazott MSG (Maximal Structure Generation) algoritmus lépéseit!

6. Feladat (8 pont)

Az alábbi recept-gráffal adott problémán mutassuk be a Taszk alapú döntési stratégiát. Adjuk meg a keresési fát, részfeladatokat, illetve az optimális ütemezést.

