

Coupled generator decomposition for fusion of electro- and magnetoencephalography data

Anders S. Olsen¹, Jesper D. Nielsen², Morten Mørup¹

¹Department of Applied Mathematics and Computer Science, Technical University of Denmark
²Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Amager and Hvidovre, Denmark

Resume

- Data fusion can identify common features across diverse data sources, e.g., subjects or modalities, while accounting for data source-specific variability.
- Here we introduce the concept of *coupled generator decomposition* and demonstrate how it generalizes sparse principal component analysis for data fusion in a time-locked EEG/MEG face perception study.
- For data fusion, a source matrix G is shared across data sources, while mixing matrices $S^{(m,b)}$ for modality m and subject b allow for differing source activation profile.
- Our models reveal altered ~170ms fusiform face area activation for scrambled faces as opposed to real faces, particularly evident in the multimodal, multisubject model as opposed to a group model.

Model

$$\underset{\mathbf{G},\mathbf{S}}{\operatorname{argmin}} \sum_{b}^{B} \sum_{m}^{M} \left| \left| \mathbf{X}^{(m,b)} - \widetilde{\mathbf{X}}^{(m,b)} \mathbf{G} \mathbf{S}^{(m,b)} \right| \right|_{F}^{2} + \lambda_{2} \sum_{k=1}^{K} \left| \left| \mathbf{G}_{k} \right| \right|_{2}^{2} + \lambda_{1} \sum_{k=1}^{K} \left| \left| \mathbf{G}_{k} \right| \right|_{1}$$

- \widetilde{X} may be an altered version of X that sources are learned from, e.g., the poststimulus part of the data.
- G is learned via stochastic optimization in PyTorch (learning rate 0.01).
- S is inferred via a Procustes transformation: $(X^TX)G = U\Sigma V^T$

 $(X^TX)G = U\Sigma$ $S^T = UV^T$

PyTorch toolbox available here

Includes coupled generator decomposition using sparse PCA and archetypal analysis

Time-locked face perception data set [1]

Model estimation

K	Group		Multimodal		MMMS	
	λ_1	λ_2	λ_1	λ_2	λ_1	λ_2
2	10^{-4}	10^{-4}	10^{-4}	10^{-2}	10^{-5}	10^{-4}
3	10^{-3}	10^{-1}	10^{-4}	0	10^{-4}	10^{-4}
4	10^{-5}	10^{-1}	0	0	10^{-2}	10^{-5}
5	10^{-3}	10^{-1}	10^{-5}	0	10^{-2}	10^{-1}
6	10^{-2}	10^{-2}	10^{-2}	10^{-1}	10^{-2}	10^{-1}
7	10^{-2}	10^{-1}	10^{-2}	10^{-1}	10^{-2}	10^{-1}
8	10^{-2}	10^{-1}	10^{-2}	10^{-1}	10^{-2}	10^{-1}
9	10^{-2}	10^{-1}	10^{-2}	10^{-1}	10^{-2}	10^{-1}
10	10^{-2}	10^{-1}	10^{-3}	10^{-1}	10^{-2}	10^{-1}
11	10^{-2}	10^{-1}	10^{-2}	10^{-1}	10^{-1}	10^{-1}
12	10^{-2}	10^{-1}	10^{-2}	10^{-1}	10^{-1}	10^{-1}
13	10^{-2}	10^{-1}	10^{-2}	10^{-1}	10^{-1}	10^{-1}
4	10^{-2}	10^{-1}	10^{-2}	10^{-1}	10^{-1}	10^{-1}
15	10^{-2}	10^{-1}	10^{-2}	10^{-1}	10^{-2}	10^{-1}
16	10^{-2}	10^{-1}	10^{-2}	10^{-1}	10^{-2}	10^{-1}
17	10^{-2}	10^{-1}	10^{-2}	10^{-1}	10^{-2}	10^{-1}
18	10^{-2}	10^{-1}	10^{-2}	10^{-1}	10^{-2}	10^{-1}
19	10^{-2}	10^{-1}	10^{-2}	10^{-1}	10^{-2}	10^{-1}
20	10^{-2}	10^{-1}	10^{-2}	10^{-1}	10^{-2}	10^{-1}

Results

