

DRIVE ART

Sprint #1
26 Abril 2019
Stefany Ariana Chóez Bolaños 1459134
Daniel Panadero Espinosa 1458674
César Valcarce Pagán 1388811
Marina Riera Velasco 1457466

Contents

Descripció del projecte
Componentes electrónicos
Esquema
Arquitectura Software
Otros Esquemas: sketch del robot
Contribuciones
Componentes adicionales y piezas 3D
Riesgos previstos y plan de contingencia
Código
Proyecto en el cual está inspirado

Descripción del proyecto

Drive Art es un coche robot (con cierta autonomía) que permite dibujar con los gestos que hagamos con la cabeza (dibujo en físico). Drive Art dispone de dos sensores de ultrasonidos que permitirá que el coche evite obstáculos para no chocarse. Por otra parte, teniendo en cuenta que el dibujo que se realizará con los gestos puede no ser perfecto, ya que este proyecto se ha pensado para una posible utilidad para las personas con paraplejia, se realzará un filtrado para arreglar el dibujo que se haya hecho y se mostrará por pantalla el resultado final.

Componentes electrónicos

- · Arduino nano
- HC-SR04 ultrasonic sensor
- Motor shield l298n
- Motores DC y ruedas
- Baterías AA recargables
- Base para baterías
- Módulo wifi
- Micro servo SG90
- Cables

Esquema Hardware

A continuación, se muestra el esquema de conexiones de nuestro robot.

Figure 1: Esquema de connexiones de los componentes.

Arquitectura Software

A continuación, se muestran los distintos módulos software que usaremos y cómo se comunican entre ellos y con los distintos dispositivos.

Figure 2: Esquema de módulos software.

Otros Esquemas: sketch del robot

A continuación, se muestra un sketch inicial del concepto de nuestro robot, con las medidas de los componentes.

Figure 3: Sketch inicial del robot (cotas en milímetros).

Contribuciones

Como se ha comentado en la descripción del proyecto, DriveArt consiste en un coche robot que permita dibujar, y que se controla mediante los gestos de la cabeza. Está basado no en un sólo proyecto, sinó en una combinación de varios (consultar sección referencias). De modo que nuestra principal contribución ha sido la de unificar todos estos proyectos en uno solo, y al mismo tiempo permitir que el robot dibuje en físico.

Por otra parte, otra contribución notable será la de aplicar un filtrado al dibujo resultante (similar al proyecto "Fishes Can Drive Too", de RLP 2018) y mostrarlo por pantalla. El filtrado puede consistir en eliminación de ruido (especialmente al ser para personas con paraplejía, que pueden realizar algunos movimientos involuntários) y suavizar las líneas del dibujo.

Para el control del robot, se necesita comunicar el robot utilizando un módulo WIFI:

- Por una parte, con una aplicación móbil que le enviará al robot los datos de los gestos realizados con la cabeza, recogidos mediante un accelerómetro interno.
- Por otra parte, con un servidor que es el que recogerá el dibujo que realiza el robot, y que aplicará el filtrado descrito.

Finalmente, la nota a la cual aspiramos, cumpliendo con todos los objetivos y funcionalidades que nos hemos planteado, es el 10, porque consideramos que el proyecto es muy completo tanto a nivel hardware como a nivel software, y además se han propuesto varias contribuciones muy significativas, que añaden valor al proyecto, haciendo que destaque y se distinja de los que se pueden encontrar en internet.

También hemos relacionado el proyecto con otra asignatura de nuestra mención (APC, Aprendizaje Computacional), de la cual aprovecharemos algunos conocimientos para realizar algún filtraje tipo "smoothing" o de regresión (ya sea lineal o polinómica). Asimismo, también se aprovecharán conocimientos de otra asignatura fuera de la mención (Web) para desarollar la aplicación móbil y configurar el servidor.

Extra components and 3D pieces

• Chasis del coche (impreso en 3D)

Figure 4: Modelo 3D del chasis del coche robot

- Estructura de engranajes para realizar la funcionalidad del cambio de color (tomados del laboratorio)
- Rueda loca (comprada)
- Mini breadboard para realizar todas las connexiones

Riesgos previstos y planes de contingencia

A continuación, analizamos los riesgos que se prevé que podrían ocurrir en el proyecto, recogidos en la siguiente tabla:

Riesgo	Descripción	Probabilidad	Impacto	Plan contingencia
1	Desviación del coche	Media	Alto	Habrá que calibrar los
	provocada por			motores previamente,
	diferente rendimiento			adaptando la velocidad de
	entre los dos motores			cada uno para que el coche
				se mueva en línea recta.
2	Cambio color no	Baja	Medio	Simular el cambio de color
	funcional (a causa de			sólo en pantalla y no en
	la transmisión de los			físico (rebajando
	engranajes o por falta			ligeramente la ambición
	de potencia del servo)			inicial).
3	En caso de que se	Media/Alta	Bajo	Eliminar algún componente
	necesite un pin			no esencial, como el sensor
	adicional para RST del			de ultrasonidos secundario
	módulo WiFi, nos			(el de detrás).
	faltaria un pin			
4	Falta de precisión al	Media	Bajo	Aplicar un filtrado más
	realizar el dibujo (ya			potente/agresivo para
	sea por cómo se			suavizar, aunque el dibujo
	recogen los gestos con			no quedará tan bien.
	el accelerómetro, o por			
	falta de precisión del			
	robot)			
5	No poder realizar el	Media/Alta	Bajo	El dibujo en físico es más
	filtrado a tiempo real			visual, de modo que no
				supone un inconveniente si
				el filtrado se realiza una vez
				acabado el dibujo y se
				puestra por pantalla al final.

Table 1: Tabla de riesgos y plan de contingencia.

Códigos prueba

En este apartado se mostrarán todos los códigos que se han utilizado para probar cada una de las partes del robot.

```
Motores DC
                                                                        Servo SG90
                                                                         int servoAngle = 0; // servo position in degrees
int IN1 = 2;
int IN2 = 3;
                                                                           Serial, begin (9600);
int IN3 = 4;
                                                                          roid loop()
int IN4 = 5;
                                                                         //control the servo's direction and the position of th
int motor1 ena = 6;
                                                                            servo.write(45); // Turn SG90 servo Left to 45
int motor2_ena = 7;
                                                                            servo.write(45); // Turn SG90 servo Left to 42
delay(1000); // Wait 1 second
servo.write(90); // Turn SG90 servo back to 90
delay(1000); // Wait 1 second
servo.write(135); // Turn SG90 servo Right to 1
delay(1000); // Wait 1 second
servo.write(90); // Turn SG90 servo back to 90
delay(1000);
void setup()
  pinMode(LED_BUILTIN, OUTPUT);
  pinMode( motor1_ena , OUTPUT);
  pinMode ( motor2 ena , OUTPUT);
  pinMode (IN1, OUTPUT);
                                                                         //end control the servo's direction and the position of
  pinMode (IN2, OUTPUT);
  pinMode (IN4, OUTPUT);
  pinMode (IN3, OUTPUT);
                                                                         //if you change the delay value (from example change 5
                                                                           for(servoAngle = 0; servoAngle < 180; servoAngle++)
  digitalWrite( IN1, LOW);
                                                                              servo.write(servoAngle):
  digitalWrite( IN2, HIGH );
  digitalWrite ( IN3, HIGH);
                                                                           for(servoAngle = 180; servoAngle > 0; servoAngle--)
  digitalWrite( IN4, LOW );
                                                                              servo.write(servoAngle);
  analogWrite ( motor1 ena , 200);
  analogWrite( motor2_ena , 130 );
                                                                           //end control the servo's speed
```

Sensores HC-SR04

Módulo Wifi

```
#include < SoftwareSerial.h>
                                                      SoftwareSerial wifiSerial(2, 3);
                                                                                            // RX, TX for ESP8266
int trigPin = 2;//Trig - green Jumper
                                                      bool DEBUG = true; //show more logs
int echoPin = 3; //Echo - yellow Jumper
                                                      int responseTime = 10; //communication timeout
long duration, cm, inches;
void setup() {
                                                      void setup()
Serial.begin (9600);
pinMode(trigPin, OUTPUT);
                                                       pinMode(LED_BUILTIN,OUTPUT); //set build in led as output
pinMode(echoPin, INPUT);
                                                        // Open serial communications and wait for port to open esp8266:
                                                        Serial.begin(115200);
void loop() {
                                                       while (!Serial) {
digitalWrite(trigPin, LOW);
                                                         ; // wait for serial port to connect. Needed for Leonardo only
 delayMicroseconds(5);
 digitalWrite(trigPin, HIGH);
                                                       wifiSerial.begin(115200);
delayMicroseconds(10);
                                                       while (!wifiSerial) {
digitalWrite(trigPin, LOW);
                                                         ; // wait for serial port to connect. Needed for Leonardo only
 pinMode(echoPin, INPUT);
duration = pulseIn(echoPin, HIGH);
                                                       sendToWifi("AT+CWMODE=2",responseTime,DEBUG); // configure as access point
 cm = (duration/2) / 29.1;
                                                        sendToWifi("AT+CIFSR",responseTime,DEBUG); // get ip address
inches = (duration/2) / 74;
                                                       \verb|sendToWifi("AT+CIPMUX=1", responseTime, DEBUG); // configure for multiple connections| \\
Serial.print(cm);
                                                       sendToWifi("AT+CIPSERVER=1,80",responseTime,DEBUG); // turn on server on port 80
Serial.println();
                                                        sendToUno("Done!", responseTime, DEBUG);
```

Referencias

El proyecto ha estado inspirado, principalmente, como una combinación de los siguientes proyectos de internet:

- 1. Human Head to Robot Head: https://create.arduino.cc/projecthub/jegatheesan/ human-head-to-robot-head-364bfd?ref=\search&ref_id=head%20control&offset= 5
- 2. Obstacle Avoiding Robot: https://www.instructables.com/id/Arduino-Ultimate-Obstacle-Avoiding-Robot/
- 3. CNC Drawing Arm: https://www.instructables.com/id/CNC-Drawing-Arm/
- 4. Fishes Can Drive Too: https://rlpengineeringschooluab2018.wordpress.com/2018/05/29/fishes-can-drive-too/