"最优化理论与方法"课程说明

授课教师: 刘红英(liuhongying@buaa.edu.cn), 适用日期: 2017.9.11 - 2018.1.28

基本信息

- 课程主页: 北航课程中心搜索最新的"最优化理论与算法(刘红英)"
- 考核方式: 作业和出勤等(10%)+大作业(20%)+期中考试(40%)+期末考试(30%)=100分。
- 教材: 刘红英, 夏勇, 周水生, 数学规划基础. 北京航空航天大学出版社, 2012.10.
- 参考书: 推荐但不限于(1) 陈宝林,最优化理论与算法(第二版). 清华大学出版社,2005.10. (2) 黄红选,韩继业,数学规划. 清华大学出版社,2006. (3) Bertsekas D P. 非线性规划(第2版). 宋士吉等译. 清华大学出版社: 北京,2013.12.

重要提示

- 请每周四上课前交上周布置的作业。不接受任何理由的迟到作业! 允许最多缺交2次作业。
- 请每节课课前**预习上课内容**20-30**分钟**,确定自己学习中可能遇到的难点。

教学日历

/ ///////////////////////////////////	中家(茲立辛芷)	作业
次(周)	内容(预习章节)	
1(1)	课程简介、LP基本概念(§1.1-1.3,§2.1.1-2.1.2)	1.2, 1.3
2(1)	LP 基本定理和既约费用系数(§2.1.3-2.1.4, §2.2.1)	2.1(c), 2.2, 2.3, 2.5
3(2)	单纯形法(§2.2.2-§2.2.4)	2.8, 2.9, 2.10(a), 2.20, 2.21
4(3)	国庆节放假	完成大作业1:线性规划数值练习
5(3)	国庆节放假	
6(4)	单纯形法的启动及效率、修正单纯形法(§2.2.5-§2.2.6)	2.11, 2.12, 2.16(c), 2.19
7(5)	LP 的对偶(§2.3)	2.24, 2.25, 2.27
8(5)	网络流问题及网络单纯形法(§3.1)	2.32, 2.34, 2.36
9(6)	网络流问题的应用(§3.2)	3.1, 3.4
10(7)	线性整数规划(§3.4-§3.4)	3.7, 3.8, 3.9
11(7)	数学基础、最优性条件、凸函数(§1.4, §4.1-§4.2)	1.4, 1.6, 1.7, 4.2, 4.3, 4.6
12(8)	无约束优化算法综述、线搜索算法(§4.3-§4.4)	4.7, 4.8, 4.11的第一部分
13(9)	无约束优化:最速下降法、牛顿法(§5.1)	5.3, 5.4, 5.6, 5.11
14(9)	无约束优化: 共轭梯度法(§5.2)	5.9, 5.19, 5.21
15(10)	无约束优化: 拟牛顿法(§5.3)	5.22, 5.23(a)
16(11)	无约束优化: 最小二乘(§5.4) & 信赖域法(§6.1-§6.2)	5.27, 6.1, 6.2
17(11)	期中考试2017,11.30(周四上午10:00-12:00)	发布大作业2:非线性规划数值练习
18(12)	约束优化: 一阶条件(§7.1-§7.2)、凸规划(§7.5)	7.20, 7.3, 7.4
19(13)	约束优化:一阶条件续(§7.3)	7.6, 7.7(替换课本上的), 8.20(新补充的)
20(13)	约束优化: 二阶条件(§7.4)	7.9, 7.10, 7.11
21(14)	约束优化: Lagrange对偶(§7.6-§7.7)	7.13, 7.15
22(15)	约束优化: 二次规划(§8.1-§8.3)	8.1(替换课本上的), 8.2, 8.3, 8.12
23(15)	约束优化: 罚函数法(§9.1-§9.2)	8.18(新补充的), 9.1, 9.8
24(16)	约束优化: 罚函数法(§9.3)	9.4, 9.7
25(17)	约束优化:逐步二次规划法(§9.4)	9.10, 9.11
26(17)	期末考试(暂定) 2018,1.11(周四上午10:00-12:00)	

"最优化理论与方法"替换/补充习题

说明:用这里的7.7和8.1替换课本上的对应习题;这里的8.18和8.20是新补充的.

7.7 考虑问题

$$\label{eq:continuity} \begin{aligned} & \underset{\boldsymbol{x} \in \mathbb{R}^2}{\text{minimize}} & & -x_1 \\ & \text{subject to} & & x_1^2 + x_2^2 \leq 1, \\ & & & (x_1 - 1)^3 - x_2 \leq 0. \end{aligned}$$

- (a) 说明线性无关约束规范(LICQ)条件在点 $x^* = (1,0)^T$ 处成立.
- (b) 说明点 $x^* = (1,0)^T$ 是一个 KKT 点. 该点是全局极小点吗? 请给出理由.
- (c) 考虑盒子(界)约束优化问题

$$\begin{array}{ll}
\text{minimize} & f(\boldsymbol{x}) \\
\text{subject to} & l_i \leq x_i \leq u_i, i = 1, 2, \dots, n,
\end{array}$$

其中 $l_i, u_i (i = 1, 2, \dots, n)$ 是给定的常数,f(x) 是连续可微函数. 请问该问题一定有KKT点吗? 为什么? 如果有KKT点,它一定是问题的最优解吗? 请给出理由.

8.1 考虑等式二次规划问题

minimize
$$q(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^T \begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}^T \boldsymbol{x}$$
 subject to $x_1 + 2x_2 + x_3 = 4$.

消去变量 x_1 后,得到目标函数

$$\frac{1}{2} \boldsymbol{y}^{\scriptscriptstyle T} \boldsymbol{U} \boldsymbol{y} + \boldsymbol{v}^{\scriptscriptstyle T} \boldsymbol{y},$$

其中 U 是一个对称的矩阵, v 是一个固定的向量. 由此给出二次规划问题的解 x^* ,并给出等式约束的拉格朗日乘子 λ^* . 请问 x^* 是否是

minimize
$$q(\mathbf{x})$$

subject to $x_1 + 2x_2 + x_3 \ge 4$, $\mathbf{x} \ge \mathbf{0}$

的解.

8.18 以 $x^{(0)} = 0$ 为初始点,用积极集法求解二次规划问题

$$\begin{array}{ll} \text{minimize} & x_1^2 - x_1 x_2 + x_2^2 - 3 x_1 \\ \text{subject to} & x_1 + x_2 \leq 2 \\ & x_1 \geq 0 \\ & x_2 \geq 0. \end{array}$$

为简单起见,求解每一等式约束子问题时,不用对变量进行平移(从而利用图解法易于求解).

8.20 说明在约束条件

$$x_1 + 2x_2 - x_3 \ge 4$$

 $-x_1 + x_2 - x_3 \le 2$

下求到原点(在 \mathbb{R}^3 中)的欧几里得距离最短的点的问题可表述成一个二次规划问题. 通过消去变量 x_1 与 x_2 计算两个约束都是积极的等式问题的解. 这个解是否为最短距离二次规划问题的解.