ESP8266 Sleep 模块 功能描述

版本 1.0 乐鑫科技 IOT 团队 http://bbs.espressif.com 版权 © 2015

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归 © 2015 乐鑫信息技术有限公司所有。保留所有权利。

目录

1.	概述	
2.		n-sleep2
	2.1.	特性
	۷.۱.	
	2.2.	接口说明2
	2.3.	应用2
3.	Light-ς	leep3
٥.	LIGITE 3	
	3.1.	特性3
	3.2.	接口说明3
	3.3.	外部唤醒
	3.4.	应用
4.	Deep-s	leep4
	4.1.	特性4
	4.2.	接口说明4
		4.2.1. 进入 Deep-sleep
		4.2.2. 配置 Deep-sleep
	4.3.	外部唤醒5
	4.4.	应用5
	т. т.	<u> </u>

1. 概述

ESP8266 系列芯片提供以下三种可配置的睡眠模式,您可以结合具体需求选择和配置。

- Modem-sleep
- Light-sleep
- Deep-sleep

三种模式的区别如下:

项目		Modem-sleep	Light-sleep	Deep-sleep
	Wi-Fi	关闭	关闭	关闭
系	统时钟	开启 关闭		关闭
	RTC	开启	开启	开启
	CPU	开启	暂停	关闭
衬	底电流	15 mA	0.6 mA	~ 20 µA
	DTIM = 1	16.2 mA	1.8 mA	
平均电流	DTIM = 3	15.4 mA	0.9 mA	_ _
	DTIM = 10	15.2 mA	0.55 mA	_

说明:

- 对于 Modem-sleep 和 Light-sleep 模式,SDK 提供接口来使能睡眠模式,并由系统底层决定何时进入睡眠。具体请参考"2. Modem-sleep"和"3. Light-sleep"。
- 在Deep-sleep 模式下,何时进入睡眠由用户控制,调用接口函数就可立即进入 Deep-sleep 模式。具体请参考"4. Deep-sleep"。
- RTC (Real-Time Clock)
- DTIM (Delivery Traffic Indication Message)

2.

Modem-sleep

2.1. 特性

目前 ESP8266 的 Modem-sleep 仅工作在 Station 模式下,连接路由器后生效。ESP8266 通过 Wi-Fi 的 DTIM Beacon 机制与路由器保持连接。

说明:

一般路由器的 DTIM Beacon 间隔为 100 ms ~ 1000 ms。

在 Modem-sleep 模式下,ESP8266 会在两次 DTIM Beacon 间隔时间内,关闭 Wi-Fi 模块电路,达到省电效果,在下次 Beacon 到来前自动唤醒。睡眠时间由路由器的 DTIM Beacon 时间决定。睡眠同时可以保持与路由器的 Wi-Fi 连接,并通过路由器接受来自手机或者服务器的交互信息。

2.2. 接口说明

通过以下接口进入 Modem-sleep 模式。

wifi_set_sleep_type(MODEM_SLEEP_T)

说明:

在 Modem-sleep 模式下,系统可以自动被唤醒,无需配置接口。

2.3. 应用

Modem-sleep 一般用于必须打开芯片 CPU 的应用场景,例如 PWM 彩灯,需要 CPU 实时控制。

3.

Light-sleep

3.1. 特性

Light-sleep 的工作模式与 Modem-sleep 相似,不同的是,除了关闭 Wi-Fi 模块电路以外,在 Light-sleep 模式下,还会关闭时钟并暂停内部 CPU,比 Modem-sleep 功耗更低。

3.2. 接口说明

通过以下接口进入 Light-sleep 模式。

wifi set sleep type(LIGHT SLEEP T)

说明:

在 Wi-Fi 连接后,并且 CPU 处于空闲状态时,会自动进入 Light-sleep 状态。

3.3. 外部唤醒

在 Light-sleep 模式下,CPU 在暂停状态下不会响应来自外围硬件接口的信号与中断,因此需要配置通过外部 GPIO 信号将 ESP8266 唤醒,唤醒过程小于 3 ms。

通过 GPIO 唤醒只能配置为电平触发模式,接口如下。

void gpio_pin_wakeup_enable(uint32 i, GPIO_INT_TYPE intr_state);

uint32 i

唤醒功能的 IO 序号。

唤醒的触发模式。

GPIO_INT_TYPE intr_state

- GPIO_PIN_INTR_LOLEVEL
- GPIO PIN INTR HILEVEL

3.4. 应用

Light-sleep 模式可用于需要保持与路由器的连接,可以实时响应路由器发来的数据的场合。并且在未接收到命令时,CPU 可以处于空闲状态。比如 Wi-Fi 开关的应用,大部分时间 CPU 都是空闲的,直到收到控制命令,CPU 才需要进行 GPIO 的操作。

说明:

若系统应用中有小于 DTIM Beacon 间隔时间的循环定时,系统将不能进入 Light-sleep 模式。

4.

Deep-sleep

4.1. 特性

相对于其他两种模式,Deep-sleep 由用户控制,调用接口函数就可立即进入 Deep-sleep 模式。在该模式下,芯片会断开所有 Wi-Fi 连接与数据连接,进入睡眠模式,只有 RTC 模块仍然工作,负责芯片的定时唤醒。

使用 Deep-sleep 必须将 GPIO16 与芯片 EXT_RSTB 管脚连接。

4.2. 接口说明

4.2.1. 进入 Deep-sleep

接口名称

通过以下接口使能 Deep-sleep。

	void	svstem	deep	sleep	(uint32	time	in	us)
v O	ı u	3 y 3 C C III	uccp	3 LCCP ((uiiic52	C I III C	1 1 1	u.

参数说明

uint32 time_in_us = 0	不会定时唤醒,即不会主动醒来。			
uint32 time in us ≠0				

4.2.2. 配置 Deep-sleep

可以通过以下接口配置 Deep-sleep 唤醒时的软件工作流程,从而影响长期运行的平均功耗。

bool system_deep_sleep_set_option(uint8 option)				
deep_sleep_set_option(0)	由 init 参数的第 108 字节 控制 Deep-sleep 醒来后的是否作 RF 校准。			
deep_sleep_set_option(1)	表示下一次 Deep-sleep 醒来后要作 RF 校准,功耗较大。			
deep_sleep_set_option(2)	表示下一次 Deep-sleep 醒来后不作 RF 校准,功耗较小。			
deep_sleep_set_option(4)	表示下一次 Deep-sleep 醒来后,不打开 RF,和 Modem-sleep 一样,电流最小。			

说明:

init 参数即 esp_init_data_default.bin 内的参数值。比如,将第108 字节的数据改为 8,并且调用 deep_sleep_set_option(0),则表示芯片每 8 次Deep-sleep 唤醒才会进行 RF 校准。

应用详情参考: http://bbs.espressif.com/viewtopic.php?f=5&t=272。

4.3. 外部唤醒

在 Deep-sleep 状态下,可以通过外部 IO 在芯片 EXT_RSTB 管脚上产生一个低电平脉冲,芯片即可被唤醒并启动。

△ 注意:

如果自动唤醒与外部唤醒须要同时作用,须要在外部电路设计时,使用合适的线逻辑操作电路。

4.4. 应用

Deep-sleep 可以用于低功耗的传感器应用,或者大部分时间都不需要进行数据传输的情况。设备可以每隔一段时间从 Deep-sleep 状态醒来测量数据并上传,之后继续进入 Deep-sleep。也可以将多个数据存储于RTC memory (RTC memory 在 Deep-sleep 模式下仍然可以保存数据),然后一次发送出去。