Observed Characteristics of G21.5-0.9 Pulsar Wind Nebula

Dean Shaff NYUAD dshaff001@gmail.com

July 18, 2014

G21.5-0.9		
Property	Value	Citations
PWN radius	40"	Matheson & Safi-Harb (2010)
SNR radius	150"	Matheson & Safi-Harb (2010)
Spin down Luminosity	$3.3 \times 10^{37} \frac{erg}{s}$	Camilo et al. (2006)
Period	61.86 ms	Camilo et al. (2006)
Surface Magnetic Field	$3.6 \times 10^{12} G$	Camilo et al. (2006)
Distance	$4.7 \pm 0.4 \; kpc$	Camilo et al. (2006)
Expansion Speed	$910 \pm 160 \frac{km}{s}$	Bietenholz & Bartel (2008)
Angular Expansion Speed	$38.39 \pm 6.75 \frac{mas}{vr}$	Bietenholz & Bartel (2008)
Characteristic Age	4.85 kyr	Camilo et al. (2006)
1.43 GHz total flux density	$7 \pm 0.4 Jy$	Bietenholz et al. (2011)
4.7 GHz total flux density	$6.7 \pm 0.3 Jy$	Bietenholz & Bartel (2008)
15 GHz total flux density	$5.6 \pm 0.3 Jy$	Salter et al. (1989)
84.2 GHz total flux density	$3.9 \pm 0.7 Jy$	Salter et al. (1989)
0.5 - 10 keV unabsorbed	$9.35 \times 10^{-11} \frac{erg}{\frac{s cm^2}{s cm^2}} $ $7.5 \times 10^{-11} \frac{erg}{\frac{erg}{s cm^2}}$	Safi-Harb et al. (2001)
flux ¹	$7.5 \times 10^{-11} \frac{erg}{s \ cm^2}$	Safi-Harb et al. (2000)
0.5 - 10 keV photon index ²	$\Gamma_1 = 1.4$	Safi-Harb et al. (2000)
	$\Gamma_2 = 1.9$	
	$E_{break} = 2.7 keV$	
	$N_H = 1.97 \times 10^{22} \ cm^{-2}$	
2 - 8 keV flux, broken power	$5.27 \pm 0.08 \times 10^{-11} \frac{erg}{s \ cm^2}$	Nynka et al. (2014)
law $(r < 165")$		
3 - 45 keV photon index	$\Gamma_1 = 1.852 \pm 0.011$	Nynka et al. (2014)
$(r \le 30")$	$\Gamma_2 = 2.099^{+0.019}_{-0.017}$	
	$E_{break} = 9.0^{+0.6}_{-0.4} keV$ $\Gamma_1 = 1.98^{+0.02}_{-0.03}$	
3 - 45 keV photon index	$\Gamma_1 = 1.98^{+0.02}_{-0.03}$	Nynka et al. (2014)
$(30" < r \le 60")$	$\Gamma_2 = 2.14^{+0.02}_{-0.03}$	
	$E_{break} = 9.74 \pm 1.0 keV$	
20 - 40 keV unabsorbed	$0.28 \pm 0.02 \frac{ct}{c}$	Matheson & Safi-Harb (2010)
flux ³	$1.28 \pm 0.1 \times 10^{-11} \frac{erg}{s \ cm^2}$	

 $^{^1}$ The first reported value is calculated, using the fact that 85% of total unabsorbed flux comes from $r \leq 40$ " inner core. Note the discrepancy between values. 2 Using a broken power law. For $r \leq 40^\circ$ using $N_H = 1.97 \times 10^{22}~cm^{-2}$ 3 Flux energy value calculated using NASA's WebPIMMS tools with $\Gamma = 2.2 \pm 0.1$ (20-100 keV photon index)

40 - 100 keV unabsorbed		Matheson & Safi-Harb (2010)
flux ⁴	$2.19^{+0.14}_{-0.15} \times 10^{-11} \frac{erg}{s \ cm^2}$	
20 - 100 keV flux	$5.2 \times 10^{-11} \frac{erg}{s \ cm^2}$	de Rosa et al. (2009)
20 - 100 keV photon index	2.2 ± 0.1	de Rosa et al. (2009)
1 - 10 TeV photon index	2.08 ± 0.22	Djannati-Atai et al. (2008)
1 TeV photon density	$4.59 \pm 1.00 \times 10^{-13} \frac{photons}{TeV s cm^2}$	Djannati-Ataĭ et al. (2008)

References

Bietenholz, M., Matheson, H., S. Safi-Harb, C. B., & Bartel, N. 2011, Monthly Notices of the Royal Astronomical Society, 412, 1221

Bietenholz, M. F., & Bartel, N. 2008, 386, 1411

Camilo, F., Ransom, S. M., Gaensler, B. M., et al. 2006, , 637, 456

de Rosa, A., Ubertini, P., Campana, R., et al. 2009, Monthly Notices of the Royal Astronomical Society, 393, 527

Djannati-Ataĭ, A., de Jager, O. C., Terrier, R., & et al. 2008, International Cosmic Ray Conference, 2, 823

Matheson, H., & Safi-Harb, S. 2010, Astrophysical Journal, 724, 572

Nynka, M., Hailey, C. J., Reynolds, S. P., et al. 2014, Astrophysical Journal, 789, 72

Safi-Harb, S., Harrus, I. M., Petre, R., et al. 2000, in Bulletin of the American Astronomical Society, Vol. 32, American Astronomical Society Meeting Abstracts #196, 736

Safi-Harb, S., Harrus, I. M., Petre, R., et al. 2001, The Astrophysical Journal, 561, 308

Salter, C., Reynolds, S., Hogg, D., Payne, J., & Rhodes, P. 1989, Astrophysical Journal, 338, 171

 $^{^4}$ Flux energy value calculated using NASA's WebPIMMS tools with $\Gamma=2.2\pm0.1$ (20-100 keV photon index)