

Analysing Metabolic Pathways with Stable Isotope Labeling

Martin Zembaty | 17.1.2017

Diabetes

3.7 MILLION deaths due to diabetes and high blood glucose

1.5 MILLION deaths caused by diabetes

THAT'S 1 PERSON IN 11

Source: World Health Organization

Fate of pyruvate (aerobic / anaerobic)

Fate of pyruvate (aerobic / anaerobic)

Cori Cycle

Stable isotope labeling

Getting stable isotopes into the system

Source: virginpure.com

The Sampling Kit

Source: Karsten Hiller

Dried blood spots

Blood samples

t [min]

Dried blood spots

Source: Vitas.no

Source: technologyreview.com

Source: biomerieux.co.uk

Source: gizmag.com

Stable isotopes display the dynamics

Data from healthy patients

Modeling the Cori Cycle with Differential equation system

Modeling the Cori Cycle with Differential equation system

$$\frac{dG6_i}{dt} = -k1 \cdot G6_i(t)$$

$$\frac{dG6_i}{dt} = -k1 \cdot G6_i(t) - k2 \cdot G6_b(t) - k3 \cdot G6_b(t)$$

$$\frac{dL3_i}{dt} = k_3 \cdot G6_b(t) - k_4 \cdot L3(t) - k_5 \cdot L3(t)$$

$$\frac{dG3}{dt} = k_4 \cdot L3(t) - k_2 \cdot G3(t) - k_3 \cdot G3(t)$$

Data from healthy patients

Fitting the model

$$\frac{dG6_{i}}{dt} = -k1 \cdot G6_{i}(t)$$

$$\frac{dG6_{i}}{dt} = -k1 \cdot G6_{i}(t) - k2 \cdot G6_{b}(t) - k3 \cdot G6_{b}(t)$$

$$\frac{dL3_{i}}{dt} = k_{3} \cdot G6_{b}(t) - k_{4} \cdot L3(t) - k_{5} \cdot L3(t)$$

$$\frac{dG3}{dt} = k_{4} \cdot L3(t) - k_{2} \cdot G3(t) - k_{3} \cdot G3(t)$$

Fitting the model

I have a working model now. What can I do with it?

Calculating flows just by analysing DBS

Further investigations with unhealthy patients

Take home message

- Stable Isotope Labeling can be used to analyse metabolic pathways in vivo
- There are 3 major steps:
 - Developing a method to introduce the labled metabolites into your system & sampling them
 - Creating a model
 - Fitting the model with data from your experiments

Thank your for your attention!

 $\mathsf{BS}(\mathsf{t}{+}\Delta\mathsf{t}) = \mathsf{BS}(\mathsf{t}) + \mathsf{Rateimport}(\mathsf{t}) * \Delta\mathsf{t} - \mathsf{Rateexport}(\mathsf{t}) * \Delta\mathsf{t}$

$$BS(t+\Delta t) = BS(t) + Rateimport(t) * \Delta t - Rateexport(t) * \Delta t$$

$$\frac{BS(t + \Delta t) - BS(t)}{\Delta t} = Rate_{import}(t) - Ratee_{xport}(t)$$

$$\frac{BS(t + \Delta t) - BS(t)}{\Delta t} = Rate_{import}(t) - Ratee_{xport}(t)$$

$$\frac{dBS(t)}{dt} = Rate_{import}(t) - Ratee_{xport}(t)$$

$$\frac{dBS(t)}{dt}$$
 = derivative of the amount of Lactate

$$\frac{dBS(t)}{dt} = Rate_{import}(t) - Rateex_{port}(t)$$

General form of the ODE

$$\frac{dx}{dt} = \sum Rates_{production} - \sum Rates_{loss}$$

Mehr im Internet

