Assignment Description

Conceptual design and operation of the axial compressor of the RR Viper engine

Main Objective

To determine performance of Rolls-Royce turbojet VIPER engine and design the engine axial compressor

[Courtesy of RR]

Performance of Viper Engine on a Sea-Level Test Bed

Engine parameters on a sea-level test bed	
Gross thrust (measured)	15167 N
Air mass flow rate	23.81 kg/s
Fuel mass flow rate	0.4267 kg/s
Total compression ratio	5.5
Sea-level conditions	T0 = 288K, P0 = 1 bar

NB: assume proper values of efficiency for turbomachines, assume that efficiency of combustor and that of the propulsive nozzle is 1

Deliverables

- Compute engine performance on test-bed assuming choked turbine and propulsive nozzle
 - Is the propulsive nozzle choked?
 - What is the turbine to propulsive nozzle area ratio?
- Compute engine performance on the sea-level test bed at offdesign conditions (TIT=900K)
 - Is the propulsive nozzle choked?
 - What is gross thrust of the engine
- 3. Compute engine performance in flight-cruise conditions (M=0.78, 35000ft, TIT=1150K)
 - Is the propulsive nozzle choked?
 - What is gross thrust of the engine?
- Make the conceptual design of the axial compressor

Rules of Engagement of the Assignment

- 1. This is a group assignment. The ideal number of group members is **3**. Groups of 2 people are in any case allowed.
- The final product is a short report (no more than 5 pages)
- 3. The report must contain the following:
 - Deliverables 1-3: engine operating conditions, mass flow through engine, and answer to questions in slide 4
 - Deliverable 4: problem statement, assumptions (e.g. perfect gas, adiabatic machine, etc.), explanation of design choices and design procedure, results: meridional gas-path, velocity triangles, h-s diagram, aero-thermal flow properties along gas path in dimensionless form, e.g., $\frac{P}{P_{t0}}$, $\frac{P_t}{P_{t0}}$, $\frac{T_t}{T_{t0}}$, β_{stage}
 - Conclusions: what are the main take-aways? Present them shortly and in the form of max 3/4 bullet points.

Rules of Engagement for the Assignment

- 4. The due date for the delivery is 30/10/2022 (midnight). The pdf, along with the mathematical/numerical calculations (source code or Excel sheet), must be submitted via Brightspace. Please make a single .zip folder containing the report in pdf format (any other format will not be accepted) and your calculation sheets (e.g. a single Excel sheets or Matlab/Python scripts).
- 5. After the delivery, the lecturers can randomly ask a group to give a presentation to explain the results of the assignment. In case a group member shows little awareness of the project contents, this will be considered as a failure for the entire group.

Example of Meridional Gas-Path

Example of Aero-Thermal Flow Properties along Gas Path

