

厦门大学《概率统计 I》期末试卷

主考教师: 试卷类型: (A卷)

分数	阅卷人

一、(16分)(1)设随机变量 X和 Y的联合概率密度为

$$f(x,y) = \begin{cases} \frac{1+xy}{3} & 0 < x < 2, 0 < y < 1 \\ 0 & \text{# the} \end{cases}$$

求 X和 Y的相关系数;

(2) 对随机变量 X 和 Y, 己知 D(X)=2, D(Y)=3, Cov(X,Y)=1, Z=3X-2Y+1, U=X+4Y-3, 求 Z 和 U 的相关 系数。

$$\# (1)$$
 $f_X(x) = \frac{1}{3} + \frac{x}{6}, 0 < x < 2;$ $f_Y(y) = \frac{2}{3} + \frac{2y}{3}, 0 < y < 1$

E(X)=10/9,E(Y)=5/9,E(XY)=17/27, (3分)

Cov(X,Y)=1/81.

$$E(X^2) = \frac{14}{9}, D(X) = \frac{26}{81}; E(Y^2) = \frac{7}{18}, D(Y) = \frac{13}{162}.\rho_{XY} = \frac{1}{13}$$

(5分)

(2) Cov(Z,U)=3DX+10Cov(X,Y)-8DY=-8. (2分)

D(Z)=9DX+4DY-12Cov(X,Y)=18 (2分)

D(U)=DX+16DY+8Cov(X,Y)=58 (2分)

$$\rho_{\rm Z,U} = -\frac{4}{3\sqrt{29}} \tag{1 \%}$$

分粉	阅卷人	→ `
刀奴	四位八	抽本
		1田王
		,

二、(14 分)某药厂生产的某种药品医治一种疑难的血液病, 医院检验员任意 抽查 100 个服用此药品的病人,

(1) 若此药品对这种疾病治愈率是 0.8, 问多于 75 人治愈的概率是多少?

(2) 若有80人治愈,求治愈率p的置信水平为0.95的置信区间? $\Phi(1.25) = 0.8944$, $\Phi(1.96) = 0.975$

解 (1) X服从 B(100, 0.8),

$$P\{\sum_{i=1}^{100} X_i > 75\} = 1 - P\{X \le 75\} \approx 1 - \Phi\left(\frac{75 - 100 \times 0.8}{\sqrt{100 \times 0.8 \times 0.2}}\right)$$

$$= 1 - \Phi(-1.25) = \Phi(1.25) = 0.8944.$$

$$(3 \%)$$

(3) X服从b(100,p)

$$\left| \frac{X - 100p}{\sqrt{100p (1-p)}} \right| < 1.96$$

$$(X-100p)^2 < 1.96^2 \times 100 p(1-p)$$

$$64 - 163.841p + 103.841p^2 < 0$$

$$p \in (0.7889 - \sqrt{0.006}, 0.7889 + \sqrt{0.006}) = (0.711, 0.8667)$$

(3分)

分数	阅卷人

三、
$$(12\,
m eta)$$
 设总体 X 的概率密度为
$$f(x) = \frac{1}{\sigma} \exp\left\{-\frac{x+1}{\sigma}\right\}, \qquad x > -1$$

其中 σ 是未知参数,从总体中抽取 n=5 的简单随机样本,样本值为 1,1,2,3,3,求 σ 的矩估计(6 分) 和最大似然估计(6分)。

计算一阶矩

$$EX = \int_{-1}^{\infty} \frac{x}{\sigma} \exp\left\{-\frac{x+1}{\sigma}\right\} dx = \int_{0}^{\infty} \frac{1}{\sigma} (\sigma t - 1) e^{-t} dt = \sigma - 1$$

所以

$$\hat{\sigma} - 1 = \bar{X} = \frac{1}{5}(1 + 1 + 2 + 3 + 3) = 2$$

σ的矩估计量为

$$\hat{\sigma} = 3$$
.

数据的似然函数为

$$L = \prod_{i=1}^{5} \frac{1}{\sigma} \exp\left\{-\frac{X_i + 1}{\sigma}\right\} = \left(\frac{1}{\sigma}\right)^5 \exp\left\{-\frac{1}{\sigma}\sum_{i=1}^{5} (X_i + 1)\right\} = \frac{1}{\sigma^5} \exp\left\{-\frac{15}{\sigma}\right\}$$

取对数, 求导,

$$\frac{\partial \ln L}{\partial \sigma} = \frac{\partial \left(-5 \ln \sigma - \frac{15}{\sigma}\right)}{\partial \sigma} = \frac{-5}{\sigma} + \frac{15}{\sigma^2} = 0$$

所以σ的最大似然估计量为

$$\hat{\sigma}_{MLE} = 3$$
.

分数	阅卷人

四、(12分)设某种砖头的抗压强度 X 服从 N (μ, σ²), 今随机抽取 9 块砖 头, 测得数据如下: 64 69 49 92 55 97 41 84 88

- (1) 求μ的置信概率为 0.95 的置信区间;
- (2) 求σ²的置信概率为 0.95 的置信区间。

$$(t_{0.025}(8) = 2.306, \chi_{0.025}^2(8) = 17.534, \chi_{0.975}^2(8) = 2.18)$$

解
$$\overline{X}$$
 = 71, S^2 = 408.5, S = 20.21 (4分)
 μ 的置信概率为 0.95 的置信区间(71±2.306 $\frac{20.21}{3}$)=(55.464,86.535) (4分)
 σ^2 的置信概率为 0.95 的置信区间($\frac{8\times408.5}{17.534}$, $\frac{8\times408.5}{2.18}$)=(186.38,1499.082) (4分)

分数	阅卷人

五、(12 分)溪流混浊是由于水中有悬浮固体,分别以 X, Y 表示晴天和雨天水的混浊度(以 NTU 单位计)的总体。设 $X\sim N(\mu_{\rm X},\sigma_{\rm X}^{\ 2})$, $Y\sim N(\mu_{\rm Y},\sigma_{\rm Y}^{\ 2})$,

 $\mu_{\rm X}$, $\mu_{\rm Y}$, $\sigma_{\rm X}^{-2}$, $\sigma_{\rm Y}^{-2}$ 均未知。今取到总体 X 的容量 $n_{\rm I}=9$ 的样本,算得样本均值为 $\overline{\rm x}=93$,样本标准差为 $s_{\rm X}=12.9$;取到总体 Y 的容量为 $n_{\rm Z}=11$ 的样本,算得样本均值为 $\overline{\rm y}=132$,样本标准差为 $s_{\rm Y}=7.1$,两样本独立。

- (1) 试检验假设($\alpha = 0.05$): $H_0: \sigma_X^2 = \sigma_Y^2$, $H_1: \sigma_X^2 \neq \sigma_Y^2$;
- (2) 如能接受 H_0 ,接着检验假设($\alpha = 0.025$) $H_0^{'}: \mu_X \ge \mu_Y$, $H_1^{'}: \mu_X < \mu_Y$ 。

 $t_{0.025}(18) = 2.1009$, $F_{0.025}(8,10) = 3.85$, $F_{0.025}(10,8) = 4.3$

解: (1) 这是一个两个正态总体的方差之比的检验问题,属于双边检验。检验统计量为 $\mathbf{F} = \frac{\mathbf{s}_{\mathbf{X}}^2}{\mathbf{s}_{\mathbf{Y}}^2}$ (2分)

代入本题中的具体数据得到 $F = \frac{12.9^2}{7.1^2} = 3.301$ 。

检验的临界值为 $F_{0.025}(8,10)=3.85$, $F_{0.975}(8,10)=\frac{1}{4.3}=0.2326$ 。因为 0.2326 < F=3.301 < 3.85,所以 样本值没有落入拒绝域,因此接受原假设,即认为两总体方差相等。

(2分)

(2)因为两总体方差相等,所以这是一个方差相等的两个正态总体的均值之差的检验问题,属于左边检验。检验统计量为

$$t = \frac{\left(\overline{x} - \overline{y}\right) - 0}{s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \quad (2 \%)$$

代入本题中的具体数据得到 $t = \frac{\left(93 - 132\right) - 0}{10.1 \times \sqrt{\frac{1}{9} + \frac{1}{11}}} = -8.5929$ 。 (2分)

检验的临界值为 $t_{0.025}(18)=2.1009$ 。因为 t=-8.5929<-2.1009,所以样本值落入拒绝域,因此拒绝原假设。

(2分)

分数 阅卷人

六、(12分)美国《教育统计文摘》1993年版给出该国 18 岁或以上的人持有 学士或更高学位的年龄分布如下

年 龄	18 [~] 24	25 [~] 34	35 [~] 44	45 [~] 54	55~64	65 或以上	
百分比	5	29	30	16	10	10	

在阿拉斯加州随机选择 500 个 18 岁或以上的持有学士或更高学位的一项调查给出如下数据

年	龄	$18^{\sim}24$	$25^{\sim}34$	$35^{\sim}44$	$45^{\sim}54$	$55^{\sim}64$	65 或以上	
人	数	30	150	155	75	35	55	

试取 $\alpha = 0.1$ 检验该地区年龄分布是否和全国一样。 $\chi^2_{0.1}(5) = 9.236$

解:根据题意,要检验以下假设:

 H_0 : 阿拉斯加州的年龄分布律为

年	龄	18 [~] 24	25 [~] 34	35 [~] 44	45 [~] 54	55~64	65 或以上	
概	率	0.05	0.29	0.30	0.16	0.10	0.10	

检验统计量为 $\chi^2 = \sum_{i=1}^6 \frac{f_i^2}{np_i} - n$ 。(6 分)所需计算列表如下:

A_i	f_i	p_i	np_i	$f_i^2/(np_i)$
A_1	30	0.05	25	36
A_2	150	0. 29	145	155. 172
A_3	155	0.30	150	160. 167
A_4	75	0.16	80	70. 313
A_5	35	0.10	50	24. 5
A_6	55	0.10	50	60.5

$$\chi^2 = \sum_{i=1}^6 \frac{f_i^2}{np_i} - n = 506.652 - 500 = 6.652$$
,(4 分) 检验的临界值为 $\chi^2_{0.1}(6-1) = 9.236$ 。 因为

 $\chi^2 = 6.652 < 9.236$,所以样本值没有落入拒绝域,因此接受原假设,即认为阿拉斯加州的年龄分布与全国的分布一样。(2 分)

分数	阅卷人

七、(10分)灯泡厂用4种不同的材料制成灯丝,检验灯线材料这一因素对灯泡寿命的影响.若灯泡寿命服从正态分布,不同材料的灯丝制成的灯泡寿命的方差相同,试根据表中试验结果记录,在显著性水平0.05下检验灯泡寿命是否因

灯丝材料不同而有显著差异? $F_{0.05}(3,14) = 3.34$.

			Ť	试验批号		
		1	2	3	4	5
灯丝	A_1	19	22	20	18	15
材料	A_2	20	21	33	27	40
水平	A_3	16	15	18	26	17
	A_4	18	22	19		

【解】

$$r = 4, n = \sum_{i=1}^{r} n_i = 18;$$

$$S_T = \sum_{i=1}^{4} \sum_{j=1}^{4} x_{ij}^2 - \frac{T_{..}^2}{n} = 8992 - 386*386/18=714.44, \quad (2 \%)$$

$$S_A = \sum_{i=1}^4 \frac{1}{n_i} T_{i.}^2 - \frac{T_{...}^2}{n} = 318.98, (2 \%)$$

$$S_E = S_T - S_A = 395.46 (2 \text{ }\%)$$

$$F = \frac{S_A/(r-1)}{S_E/(n-r)} = \frac{318.98/3}{395.46/14} = 3.76, \quad (2 \%)$$
$$F_{0.05}(3,14) = 3.34 < F.$$

故灯丝材料对灯泡寿命有显著影响. (2分)

分数	阅卷人

八、(12分)某医院用光色比色计检验尿贡时,得尿贡含量与肖光系数读数的结果如下:

尿贡含量 <i>x</i>	2	4	6	8	10
肖光系数 y	64	138	205	285	360

- 求: (1) 求 y 与 x 的一元线性回归方程.
 - (2) 对所得的回归方程作显著性检验. (a=0.01) $F_{0.99}(1,3)=34.1$, $t_{0.005}(3)=5.8409$

【解】由数据可以求得, n=5

$$\sum_{\alpha} x_{\alpha} = 30, \quad \overline{x} = 6$$

$$\sum_{\alpha} y_{\alpha} = 1052, \overline{y} = 210.4$$

$$\sum_{\alpha} x_{\alpha}^{2} = 220, \sum_{\alpha} x_{\alpha} y_{\alpha} = 7790, \sum_{\alpha} y_{\alpha}^{2} = 275990$$

$$l_{xx} = 40, l_{xy} = 1478, l_{yy} = 54649.2$$
(5 \(\frac{1}{2}\))

则,最小二乘估计为:

$$\hat{\beta}_0 = -11.3, \hat{\beta}_1 = 36.95$$
 (2 $\%$)

检验假设 $H_0: \beta_1 = 0$ (1分)

$$\sigma^2 = (l_{yy} - \hat{\beta}_1 l_{xy}) / (n-2) = 12.36$$
 (1 $\%$)

$$t = \left| \frac{\hat{\beta}_1 \sqrt{l_{xy}}}{\sqrt{(l_{yy} - \hat{\beta}_1 l_{xy}) / (n - 2)}} \right| = 66.46 > t_{0.005}(3) = 5.8409,$$
(2 \(\frac{\frac{1}{2}}{2}\))

因此,拒绝原假设。(1分)

即两变量的线性相关关系是显著的.

或者

检验假设 $H_0: \beta_1 = 0$ 可用统计量

$$F = \frac{\hat{\beta}_1^2 l_{xy}}{(l_{yy} - \hat{\beta}_1 l_{xy}) / (n - 2)} = 4416 > F_{1-\alpha}(1,3) = 34.1, \alpha = 0.01$$

因此, 拒绝原假设。

即两变量的线性相关关系是显著的.

