Algebra

Gruppo

Insieme G forma un gruppo rispetto a una operazione o se l'operazione gode della proprietà associativa, G è chiuso rispetto al prodotto, esiste l'elemento neutro per il prodotto, esiste l'inversa di ogni elemento.

Spazio vettoriale

Insieme dotato di due operazioni: somma interna e prodotto per scalari.

- Gruppo commutativo rispetto alla somma: chiuso rispetto alla somma, elemento neutro 0
 appartiene a V, esiste l'opposto, la somma è commutativa.
- Prodotto per scalari

Sottospazio vettoriale

Sottinsieme S di uno spazio vettoriale è un sottospazio vettoriale se in S valgono le seguenti proprietà:

chiuso rispetto alla somma tra vettori e prodotto per scalare.

Formula di Grassmann

Dim(W1 + W2) = dim(W1) + dim(W2) - dim(W1 intersecato W2)

Trovare la base

Se io ho un sistema, allora cerco di avere X, y, z, w uguali a qualcos altro. Se io trovo che non ho il valore di una variabile, allora quella diventa una variabile libera. I coefficienti di queste variabili costituiscono la base.

Es.
$$z = 3x$$
, $y = 5x --> (x, 5x, 3x) = <(1,5,3)>$

Prodotto tra matrici

Prodotto = num. colonne prima matrice = num. righe seconda colonna.

C(i,j) = moltiplico la i-esima riga della prima con la j-esima colonna della seconda

Rango

Dim span(vettori colonna di A) -> $rg(A) \le m$

Dim span(vettori riga di A) \rightarrow rg(A) \leq n

Il primo elemento diverso da zero è il pivot

Si usano **operazioni elementari su righe** per trasformare ogni matrice in scala.

Il rango è il numero di righe e colonne **linearmente indipendenti**. Qualsiasi sottomatrice **più piccola** del rango sarà lin. Indip, e quindi avrà determinante non nullo.

Per vedere il rango, deve essere minore ovviamente del numero di colonne o di righe. Adesso

troviamo una sottomatrice con determinante diverso da zero, e il rango sarà più grande della dimensione di quella sottomatrice.

Se il rango di una matrice M di dimensione n x n è k < n allora det(M) = 0. Se il rango di una matrice M di dimensione n x n è n, allora det(M) \neq 0. Questo vuol dire che i vettori riga sono linearmente indipendenti.

Se il rango di una matrice M di dimensione n x n è la dimensione della matrice (massimo), allora $det(M) \neq 0$, ed è invertibile. Altrimenti det(M) = 0, e non è invertibile.

Quando abbiamo un rango, esiste almeno una sottomatrice di A di ordine n con determinante non nullo, e non vuol dire che non possono non esistere perché esiste almeno una.

Se rg(A) < dim(A) allora è non invertibile e det(A) = 0

Teorema di Rouchè-Capelli

Un sistema lineare Ax=B ammette soluzioni se e solo se il rango della matrice dei coefficienti A è uguale al rango della matrice completa A|B.

- se rg(A) = rg(A|B) = n il sistema ammette **un'unica soluzione**
- Se rg(A) = rg(A|B) = r < n, abbiamo più incognite che equazioni linearmente indipendenti, allora abbiamo **infinite soluzioni** con ∞^(n-r) soluzioni
- Se $rg(A) \neq rg(A|B)$ il sistema non ammette soluzioni

Algoritmo di Gauss

- 1. Consideriamo la prima colonna. Se il primo elemento è diverso da zero, manteniamo inalterata la posizione delle righe. Se il suo primo elemento è uguale a zero, si scambia la prima riga con un'altra riga che abbia il primo elemento non nullo
- 2. Operazioni elementari per far comparire tutti zero sotto il pivot. Mi raccomando, si parte a renderli zero dall'alto verso il basso
- 3. Si ripete la stessa procedura sulla sottomatrice ottenuta cancellando la prima riga e la prima colonna della matrice di partenza

Scambio di due colonne della matrice: Si scambia la posizione di due incognite.

Parametri: sempre conveniente spostare i parametri verso il basso.

Sempre meglio avere il pivot uguale ad uno.

Le **soluzioni** di un sistema lineare formano uno spazio vettoriale se e solo se il sistema è **omogeneo**.

Una volta che abbiamo finito di ridurre a scala, quello sarà la soluzione del sistema.

Se in un sistema da quattro incognite ho tre equazioni, ma queste tre hanno una variabile comune, allora quella diventerà un parametro.

Matrice inversa

Invertibile se è quadrata, e ammette l'inversa se det(A)≠0,rg(A)=n.

Il prodotto di due matrici quadrate dello stesso ordine ed invertibili produce esso stesso una matrice invertibile.

1º metodo:

Un elemento generico dell'inversa è x(ij) (-1)^(i+j) (det t^(Aij))/det(A)

2° metodo:

Dato una matrice quadrata, questa è invertibile se solo se esiste un numero finito di trasformazioni lineari su righe che mi portano ad una matrice identità.

Si scrive In|A, e trasformiamo A a scala, applicando le stesse trasformazioni a Id. Quando nel blocco a destra ho l'identità, a sinistra ho l'inversa di A.

Applicazione lineare

Un'applicazione lineare è **iniettiva** se Dim(Ker(V)) = 0. È **suriettiva** se Dim(Im(V)) = Dim(V) **Immagine**: insieme di tutti i vettori che sono immagini di qualche vettore. È un sottospazio di W. La sua **dimensione** è **rango** di T, rank(T).

Nucleo: insieme di tutti i vettori che sono mappati al vettore nullo in W. Ker(T) è un sottospazio di V. La sua **dimensione** è **nullità**.

Teorema del rango-nullità

dim(V) = dim(Ker(T)) + dim(Im(T))

Autovalori ed autovettori

- Trovare autovalori: $det(A \partial I) = 0$ -> equazione caratteristica
- Trovare autovettori per un dato δ: sostituisco il valore δ in (A-δl)v=0
- Trovare autospazi per un dato δ: insieme di tutti gli autovettori. Per ogni autovetture c'è un autospazio diverso.

Si può utilizzare per verificare che la matrice sia diagonalizzabile. Per farlo, le condizioni sono due:

- Il numero di autovalori deve essere uguale all'ordine della matrice
- La molteplicità algebrica dell'autospazio deve essere uguale alla relativa molteplicità geometrica

La molteplicità algebrica di ogni valore è quante volte è l'esponente per ciascuno nel polinomio caratteristico.

Se ho tutti autovalori distinti tra di loro, allora la matrice è diagonalizzabile.

Molteplicità geometrica

n - rank(A - f(1)I), quindi è la dimensione della matrice meno il rango della matrice con uno degli autovalori sostituiti

Vettori complanari

Per verificare che quattro vettori in R³ sono complanari significa che al massimo tre vettori possono essere linearmente indipendenti. **Se ho quattro vettori in R³, essi sono sempre dipendenti**.

Omomorfismo

F: U -> V lineare, B = (b1, ..., bn) base ordinata di U, C = (c1, ..., cn) base ordinata di C. Posso prendere i vettori della base b1, ..., bn, calcolare l'immagine. Questi saranno elementi di V. Scrivo le immagini dei vettori come combinazione lineare della base c1, ..., cm, e prendo i coefficienti in ordine, e li metto in colonna in una matrice.

Un omomorfismo è **iniettivo** se dim(ker(f)) = 0.

Cambiamento di basi

Spazi di dimensione finita; abbiamo B, B' e C, C' basi su ciascuno (base vecchia e base nuova). Quindi M(B', C') = M(C, C') (idU) * M(B,C) (f) * M(B,B') (idV)

Sottospazio generato

Se abbiamo un sottospazio generato da dei vettori, moltiplichiamo ciascuno dei due vettori per un coefficiente diverso. Questi vettori, con il coefficiente, poi sono sommati tra di loro.

Combinazione lineare

Per verificare se dei vettori sono in combinazione lineare, li moltiplichiamo ciascuno per un coefficiente diverso, e li sommiamo. La somma deve essere (0,0,0).

$$a(v1) + b(v2) + ... + n(vn) = (0)$$

Se a, b, ..., n = 0, allora sono linearmente indipendenti. Altrimenti, sono dipendenti.

Sistema di generatori e base

Per vedere se un insieme è un sistema di generatori, moltiplichiamo ciascun dei vettori per un coefficiente, il quale risultato sarà un vettore (a,b,c).

Creiamo la matrice completa, e la riduciamo a scala. Se il rango della matrice completa è uguale alla matrice A, allora il sistema ammette sempre soluzioni, e dunque il sistema genera.

Verifichiamo se ci sono dei vettori linearmente dipendenti -> se ci sono, li scartiamo. Gli altri indipendenti costituiscono una base.

Prodotto tra matrici

Si moltiplica gli elementi nella i-esima riga della matrice per gli elementi nella j-esima colonna della matrice.

Il numero di colonne della prima matrice deve essere uguale al numero di righe della seconda matrice.

Sia:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$

Allora:

$$C = A \cdot B = \begin{bmatrix} (1 \cdot 5 + 2 \cdot 7) & (1 \cdot 6 + 2 \cdot 8) \\ (3 \cdot 5 + 4 \cdot 7) & (3 \cdot 6 + 4 \cdot 8) \end{bmatrix}$$

Somma tra matrici

Si somma ciascun elemento della prima e della seconda matrice della posizione relativa. Le due matrici devono avere la stessa dimensione.

Retta di regressione lineare

- Verifico se i punti sono allineati: A * (1/2) | x1(y2 y3) + x2(y3 y1) + x3(y1 y2)|
 - Se = 0 allora sono **allineati**, altrimenti no
- Media dei valori x e y dati
- Coefficiente angolare

- b = y(media) a*x(media)
- **Retta**: y = a + bx

Soluzioni di un sistema in base a un parametro

Si fa il determinante della matrice e si uguaglia a zero. Per i valori per cui il determinante è diverso da zero, il sistema ha un'unica soluzione, che è la banale se il sistema è omogeneo;

altrimenti, ha un'unica soluzione non banale. Altrimenti ha infinite soluzioni.

Matrice diagonale reale

det(a-f, 0; 0, b-f) = (a-f)(b-f)

Geometria

R^2 parametrica: x = x0 + u1t, y = y0 + u2t

R^2 cartesiana: ax+by+k=0

R^3 parametrica: x = x0 + u1t, y = y0 + u2t, z = z0 + u3t**R^3** cartesiana: a1x + b1y + c1z = k1; a2x + b2y + c2z = k2

R^3 piano parametrica: x = x0 + u1t + v1s; y = y0 + u2t + v2s; z = z0 + u3t + v3s

R³ piano cartesiana: ax + by + cz = k; (a,b,c) perpendicolare al piano

Due rette sono **parallele** se hanno la stessa direzione, ovvero se i *vettori direzione sono proporzionali*.

In R^3 due rette sono **sghembe** se non sono parallele e non si intersecano.

In R^3 due rette sono **complanari** se non sono sghembe, ovvero se sono *parallele* o se si *intersecano*.

Due piani sono **paralleli** se non si intersecano. E se i vettori (a1, b1, c1) e (a2, b2, c2) sono proporzionali.

Una retta r è perpendicolare al piano ax+by+cz=k se r ha direzione parallela al vettore u=(a,b,c)

Date due rette r1 parallela a un vettore u, e r2 parallela a un vettore v, l'angolo tra le due rette è $\cos = (u,v) / (|u| * |v|)$

Prodotto scalare

Il **prodotto scalare** è quando si moltiplica ciascuno delle coordinate, e si sommano tutte le coordinate.

Prodotto vettoriale

Il prodotto vettoriale tra due vettori è nullo se e solo se i vettori sono colineari

Prodotto scalare

< u, v > = ||u|| ||v|| * cos(alpha)

Se il prodotto scalare tra due vettori è uguale a zero, allora i due vettori sono ortogonali

Sfera unitaria

Formula: $S = \{x^2 + y^2 + z^2 = 1\}.$

La sfera unitaria è l'insieme dei vettori con norma uno

Norma: lunghezza di u = sqrt(u,u) - prodotto scalare di u x u.

Isometrie

Dirette: mantengono l'orientamento degli angoli. x' = cx - sy + a, y' = sx + cy + b, con $c^2 = s^2$

=1

Due tipi: **traslazioni** se s = 0, **rotazioni** se s \neq 0

Inverse: x' = cx + sy + a, y' = sx - cy + b.

Due tipi: riflessioni o simmetrie rispetto ad una retta, glissoriflessioni.

Rette

Passante per due punti

- parametrica: si moltiplica per t la direzione (B A), e si somma uno dei due punti
- Es. A(1,2), B(-1,3) -> AB = (-2,1) si ottiene x = 1 2t, y = 2 + 1t
- Cartesiana: si isola t da una delle due equazioni, si sostituisce nell'altra

Passante ad un punto e parallela ad un vettore

Si sostituiscono i valori del punto, e del vettore moltiplicato per t.

Cartesiana -> Parametrica

Si eguaglia x o y a t, e lo si sostituisce nell'altra equazione.

Rette parallele

Due rette sono parallele se i vettori direzioni sono linearmente dipendenti.

Rette incidenti

Uguagliamo le coordinate x, y e z e vediamo se troviamo dei valori di t. O altrimenti, mettiamo le due rette in un sistema e vediamo se riusciamo a trovare una valida soluzione.

Rette complanari

Visto che i due vettori direzione sono paralleli lo sono anche le due rette, e in particolare, le rette sono complanari.

Rette sghembe

Per verificarlo, prima verifichiamo se sono parallele o no, e poi dopo si verifica se ci sono punti di intersezione. Se non ci sono allora sono sghembe.

Solution: d

Abbiamo la seguente situazione:

$$t \quad \begin{cases} x = p_x + tv_x \\ y = p_y + tv_y \\ z = p_z + tv_z \end{cases} \quad \begin{cases} x = q_x + sw_x \\ y = q_y + sw_y \\ z = q_z + sw_z \end{cases}$$

Page 32

Per calcolare la posizione di due rette nel piano usiamo la seguente formula:

$$A = egin{bmatrix} q_x - p_x & q_y - p_y & p_z - q_z \ v_x & v_y & v_z \ w_x & w_y & w_z \end{bmatrix}$$

Che è la matrice del punto d.

- Se $det(A) \neq 0$ le rette sono sghembe.
- Se det(A) = 0 le rette sono complanari, ma possono essere comunque parallele, coincidenti o incidenti.
- Se $det(A) = 0, v \times w \neq 0$ le rette sono incidenti, che è esattamente quello che ci dice l'ultima voce. Se v fosse linearmente dipendente di w (quindi multiplo di w), vorrebbe dire che il loro prodotto vettoriale è = 0, che invece può dirci se le rette sono coincidenti o parallele.

Proiezione

Lunghezza proiezione di v su w: (v * w) / ||w||

Formule geometriche

Lo circonferenza: luo go geometrico dei punti equidistanti da un punto fisso (como) centrals nell'origine: X2+y2=12 Centro (xo140): (x - Xo)2+(4-40)23x2 X2+42+3x+by+C=0

la Ellisse: sours delle distanze de due punh é costante centrata nell'origine i

Frochi sull'asse: $\frac{X^2}{b^2} + \frac{y^2}{b^2} = 1$ a : semiasse maggione relatione semiassi $c^2 = \partial^2 - b^2$

seuridistante socole

Funchi sull'assey: $\frac{z}{k^2} + \frac{y^2}{t^2} = 1$ trasleta, centro ((x0,40)) = (x-x0)2 + (4-40)2 = 1

Lo 1 perbole: il alore assoluto della differenza delle distanze do due punk fissi e costonie

Centrata rell'arigine (0,0,0)Fuochi sull'asse $x: X^2 \cdot Y^2 = 1 \cdot C^2 = 3^2 + 5^2$ $3^2 \cdot 5^2 \cdot y = \frac{15}{3} \times 1$ Fuochi sull'asse y: 42 - 52:1 4=1 3/6x horable equilatere: xy-h

peubole trosleto c(x0,40) = (x-x0)2 - (y-y0)2-1

La Parabola, punto equidistanti da un punto 4550 (tuco) e netta fissa (direthice)

Asse di simmetria coincident con l'age y a y= ex diethrice y= -1/40

Asse di simmetrio coincidente con l'asse x -> X=21/2

Trasleta con vertice $V(x_v, y_v)$ Asse verticele $y = 2x^2 + bx + c$ Asse orizontale $x = 2y^2 + by + c$

Quadriche in R3

5 terz: lungo gesuetrico dei punhi equidistanti del centro Origine: $X^2+y^2+Z^2=r^2$ centro $C(X_0,y_0,z_0): (X-X_0)^2+(y-y_0)^2+(z-z_0)^2=r^2$ $X^2+y^2+2x+by+cz+d=0$

Ellissoide Origine: x2 + y2 - 22=1 . Se 2=6=0 20000 et una spora

A und foldo: x^2 , y^2 , z^2 , y^3 , z^2 , y^3 , z^2 , y^3 , y^3 , z^2 , y^3 , $y^$

Paraboloide EQUITION: $x_{32}^2 + y_{52}^2 = z$]—a countrata nell'origine IPEZ bolico: $x_{32}^2 - y_{52}^2 = z$]—a countrata nell'origine

Cono: centrato nell'origine: x/2 = y/32 - 2/2= 0 -0 se == 5 e'un cono

Piani

Passante per tre punti

Passante per A, B e C -> si calcola AB (B-A) e AC (C-A). Facciamo passare per a, moltiplichiamo AB per t, e AC per s.

Se i due vettori sono paralleli, allora servirà un terzo vettore differente.

Altrimenti sostituiamo i tre punti in ax+by+cz=d, e poi scegliamo un valore di d.

Normale al piano

Prodotto vettoriale tra due vettori appartenenti allo stesso piano non paralleli tra loro sia uguale a 0.

Vettore ortogonale al piano

O si fa il prodotto vettoriale tra le due rette direttrici del piano, o altrimenti, dato un generico piano ax+by+cz=k il vettore (a,b,c) è ortogonale al piano.

Due piani o sono paralleli o la loro intersezione è una retta.

Piano parallelo a una retta

Si impone l'ortogonalità tra il vettore direzione della retta e il vettore normale al piano.

Un piano passante per l'origine ha dimensione massima. Un piano passante per l'origine ha dim = dimMax - 1.

Per vedere se un piano passa dall'origine basta vedere se d=0.

Quattro punti giacciono su un piano affine se il determinante della matrice con righe i vettori B-A, C-B,D-C è zero

Applicazione lineare

Se dim(V) > dim(W), l'applicazione lineare **non** sarà mai **iniettiva**. È **iniettiva** se è solo se Dim(Ker(V))=0.

Se dim(V) < dim(W), l'applicazione lineare **non** sarà mai **suriettiva**. È **suriettiva** se è solo se Dim Im(V) = Dim(V).

Se dim(V) = dim(W), l'applicazione lineare sarà **iniettiva se** e solo se è **suriettiva**.

Dim(V) = dim(Ker(F)) + dim(Im(F)).

Triangolo

Area = $(||AB \land AC||) / 2$

Se ho una funzione con questo tipo f(x,y,z) = (z-x, z, -y), ricalcola ogni punto applicando la funzione data

Angolo tra v e (a,b,c)

v * w = ||v|| * ||w|| * cos(alpha)

Se io ho una retta o un piano in forma parametrica definita da x,y,z, è parallela ai piani per cui le coordinate sono moltiplicare per t.

Es. x=1-t, y=3, z=1+2t -> giace a un piano parallelo a un piano x,z. Altrimenti, è parallela a una retta con x=t, z=t

Piani o rette a cui mancano una coordinata sono parallele all'asse per cui manca la coordinata. Ed. Se manca la x, allora è parallela all'asse x. Condizione sufficiente per cui tre punti siano sulla stessa retta è che il rango con questi punti sia 1. Dati tre punti, condizione necessaria e sufficiente affinchè siano su una stessa retta e che i vettori applicati AB e CA risultino paralleli.

Retta di regressione lineare

Per vedere se i punti sono allineati, si mettono i punti in una matrice 2x2 con (xa-xb, ya-yb; xc-xb, yc-yb).

Se det(A)=0 allora sono allineati, e non si continua; altrimenti, non si continua.

Calcolo b0 <-> q = y(media) - m * x(media)

Per vedere se A, B, C sono allineati basta fare la matrice $A 2 \times 2$ composta come segue:

$$A = \begin{pmatrix} x_a - x_b & y_a - y_b \\ x_c - x_b & y_c - y_b \end{pmatrix}$$

Se det(A) = 0 allora i tre punti A, B, C sono allineati.

Se $det(A) \neq 0$ allora i tre punti A, B, C non sono allineati.

In questo caso $det(A) \neq 0$ perciò possiamo proseguire con l'esercizio:

Retta di regressione lineare: y = mx + q

$$\begin{split} \beta_0 &\iff q = \overline{y} - m \cdot \overline{x} \\ \overline{x} = \frac{1}{n} \sum_{i=0}^n x_i = \frac{2 - 1 - 2}{3} = -\frac{1}{3} \\ \overline{y} = \frac{1}{n} \sum_{i=0}^n y_i = \frac{9 + 16 + 1}{3} = \frac{26}{3} \\ m = \frac{\sum_{i=0}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=0}^n (x_i - \overline{x})^2} = \frac{(2 + \frac{1}{3})(9 - \frac{26}{3}) + (-1 + \frac{1}{3})(16 - \frac{26}{3}) + (-2 + \frac{1}{3})(1 - \frac{26}{3}))}{(2 + \frac{1}{3})^2 + (-1 + \frac{1}{3}^2) + (-2 + \frac{1}{3})^2} = \\ = \cdots = 1 \\ q = \overline{y} - q \cdot \overline{x} = \frac{26}{3} - 1 \cdot (-\frac{1}{3}) = 9 \end{split}$$

$$\cos(\theta) = \frac{\vec{BA} \cdot \vec{BC}}{\left| \left| \vec{BA} \right| \left| \cdot \left| \left| \vec{BC} \right| \right|}$$

Omomorfismi

Se dobbiamo dire in un esercizio se esiste un omomorfismo e abbiamo dominio e immagine,

allora:

Controlliamo che i vettori del **dominio** siano linearmente indipendenti, e ne calcoliamo il **determinante**:

- se det(A) = 0 allora continuiamo
- Se det(A) ≠ 0 allora l'omomorfismo esiste sempre e finisce.

Troviamo quale vettore di quelli dati è dipendente, e lo scriviamo come combinazione. Poi scriviamo le immagini relative ai vettori, e l'omomorfismo sarà soddisfatto se esiste; altrimenti, non esiste. Troviamo poi i valori di t validi.

Teoria

Funzioni

Funzione f: A -> B legge che associa ad ogni elemento a un elemento f(a) E B. A è il dominio, B è il codominio.

C'è l'immagine, ovvero l'insieme dei valori assunti dalla funzione. La contro immagine è l'insieme degli elementi del dominio che la funzione manda in quell'insieme.

Il grafo rappresenta i punti della funzione in un sistema di coordinate.

Funzione composta: $(g \circ f)(a) = g(f(a))$.

Tipi di funzione

- Iniettiva se ogni elemento di A è determinato dalla sua immagine, $|A| \leq |B|$.
- Surjettiva se $im(f) = B, |A| \ge |B|$
- Biettiva se iniettiva è suriettiva , |A| = |B|

Biezione: A=B se esiste una bisezione A->B; solo i nomi degli elementi cambia. Se lo è, si può definire la funzione inversa con f^{-1} .

F è iniettiva sse i vettori sono linearmente indipendenti. Ogni combinazione lineare ha un risultato unico, quindi i vettori sono linearmente indipendenti.

F è suriettiva sse i vettori sono generatori. Ogni vettore v è raggiungibile come combinazione lineare dei vettori. Quindi, i vettori generano tutto lo spazio V.

F è biettiva sse i vettori sono una base. I vettori sono quindi linearmente indipendenti e generano tutto lo spazio.

Monoide

Struttura algebrica (M, *) dotato di una funzione legge E x E -> E, (x,y) |-> x*y, e di un elemento è chiamato elemento neutro tale che:

- e * x = x = x * e
- (X * y) * z = x * (y * z)

Elemento invertibile se esiste y tale che y * x = e = x * y. Y è l'inversa di x, ed è unico

Gruppo: monoide in cui ogni elemento è invertibile.

Anello: gruppo commutativo (A, +, °) dotato di un prodotto a*b=ab, e di un elemento 1 tale che:

- a1=1a=a
- A(bc) = (ab)c
- A(B+C) = ab + ac
- (B+C)a = ba + ca

(A, +) è un gruppo abeliano:

- + è associativo
- Elemento neutro per la somma, zero
- Ogni elemento ha un opposto
- La somma è commutativa

(A, °) è un monoide

- il prodotto associativo
- Esiste un elemento neutro per il prodotto, unità, se l'anello è unitario

Campo: un anello è un campo se per ogni a non nullo, esiste un b tale che ab=1, e si ha xy=yx. Quando ogni elemento non nullo ha un inverso rispetto alla moltiplicazione.

Spazi vettoriali

Gruppo commutativo dotato di una funzione prodotto per scalare. Proprietà:

- moltiplicare uno scalare per la somma di due vettori è lo stesso che moltiplicare lo scalare per ciascun vettore separatamente, e poi sommare i risultati
- Se sommiamo due scalari, e poi li moltiplichiamo per un vettore, è lo stesso che moltiplicare ciascun scalare separatamente per il vettore, e poi sommare i risultati
- Il numero 1 agisce come elemento neutro rispetto al prodotto per scalare
- Il prodotto tra due scalari e un vettore può essere fatto in due modi equivalenti: prima moltiplicare i due scalari tra loro, e poi applicare il risultato al vettore, oppure applicare il primo scalare al vettore, e poi moltiplicare il risultato per il secondo scalare.

Vettori collineari : se esiste un Δ tale che u = Δ v. Il vettore nullo 0v è sempre collineare con qualsiasi vettore u.

Un sottoinsieme U è un **sottospazio** se soddisfa le seguenti condizioni: U non è vuoto, u+v E U, Δu E U. Se U è un sottospazio di V, allora U è uno spazio vettoriale a sua volta. V e {0} sono sottospazio di V. -u E U.

L'intersezione di due sottospazi è ancora un sottospazio perchè contiene lo zero, è chiuso rispetto alla somma, è chiuso rispetto alla moltiplicazione per uno scalare.

L'unione di due sottospazi in generale non è un sottospazio. La somma di sottospazi è sottospazio di V.

Formula di Grassmann: se abbiamo quindi un insieme di vettori, è un altro vettore che è già una combinazione lineare di questi, cioè appartiene allo Span, allora aggiungere V all'insieme non cambia lo span.

Teoria di Grassmann

Dim(U) + dim(U') = dim(U + U') + dim(U intersecato U')Dim(V + W) = Dim(V) + dim(W) - dim(V intersecato W)

Combinazione lineare

Espressione ottenuta moltiplicando ciascun vettore per uno scalare, e sommando i risultati. 0 è sempre una combinazione lineare di qualsiasi insieme di vettori; anche ΔV è una combinazione lineare di V.

I vettori sono linearmente indipendenti se $\Delta n = 0$, altrimenti sono linearmente dipendenti. Altrimenti, possiamo mettere tutto in una matrice, e calcolarne il determinante; se det(a) = 0 i vettori sono linearmente dipendenti, altrimenti sono indipendenti.

Per verificare che un vettore sia la combinazione lineare, si eseguono i passaggi:

- lo si mette in un'equazione dove il vettore risultante è uguale alla somma degli altri due vettori, ciascuno moltiplicato per un coefficiente diverso
- Si risolve il sistema di quasi ogni cercando di trovare un risultato

Span: insieme di tutte le combinazioni lineari di V.

La famiglia v è un **insieme di generatori** se Span(v1, ..., vi) = V. Cioè se ogni vettore di V può essere scritto come una combinazione lineare dei vettori dell'insieme di generatori

Dimensione finita: spazio vettoriale V ha dimensione finita se esistono vn tali che V = Span(v1, ..., vn). Ogni vettore di V può essere scritto come combinazione lineare di v1, ..., vn

Teorema della base incompleta e completamento: Siano gk generatori. Allora esistono vn tali che vn è una base di V. Se abbiamo un insieme di generatori, possiamo estrarre da esso un sottoinsieme che sia una base di V. Nel caso in cui k = 0 (nessun generatore, il teorema si riduce al caso banale in cui $V = \{0\}$.

o _

