## D. Password-change phase

The proposed scheme allows a legitimated embedded device  $(SM_i)$  to change the password periodically, thereby ensuring security. To change the password, the smart meter  $(SM_i)$  first perform authentication and authorization and prove their genuineness (See Fig. 1). The details of the password change are as follows:  $Step \ 1. \ SM_i \rightarrow SP : < I_i^*, P_{ke}^* > .$  The authorized legitimated embedded device  $(SM_i)$  selects a new password  $Psw_i^*$  and then recomputes the hashed identity  $(I_i^* = H(ID_i \mid |Psw_i^*))$  and public key  $(P_{ke}^* = Psw_i^*.G)$ . Subsequently, it sends the updated  $< I_i^*, P_{ke}^* >$ to SP through a trusted public channel by using the session key  $S_K$ .

Step 2.  $\mathbf{SP} \to \mathbf{SM_i}: \langle CID_i^*, CK'^* \rangle$ . Furthermore, SP receive updated parameters  $\langle I_i^*, P_{ke}^* \rangle$  and then SP selects a random number  $R^*$  and then recomputes all parameters ( $CID_i^* = h(R || I_i^* || \mathbf{s}) \oplus \mathbf{s}$ ,  $CID_i'^* = CID_i^*$ . G,  $CK^* = h(R^* || \mathbf{s} || E_t || CID_i^*)$ ,  $CK^{*'} = CK^*$ . G,  $T = R^* \oplus h(R^* || I_i^* || \mathbf{s})$ ,  $A = T \oplus I_i^* \oplus CK^{*'}$ ,  $t' = T \oplus CID_i^* \oplus \mathbf{s} \oplus ID_{TS}$ ,  $a' = A \oplus CID_i^* \oplus \mathbf{s} \oplus ID_{TS}$ ) which are mentioned in registration Subsequently, TS stores the parameters  $\langle t', a', e_t' \rangle$  in the server database and sends the updated  $\langle CID_i^*, CK^{*'} \rangle$  to the server TS through an open trusted channel by using the session key  $(S_K)$ .



Fig.1. Password-change phase