WHITEBOARD" Final PRESENTATION

COMPUTER VISION ARGENTINA ORTEGA SAINZ NICOLAS LAVERDE ALFONSO Jan. 15 2015

Introduction

 Recognize the strokes made with a marker in a flat surface and to transform the strokes into drawings for later projection.

- Two synchronized cameras capture snapshots simultaneously.
- Process two snapshots from different perspectives to detect the position of a pre-defined marker.
- Draw detected strokes and project them into a screen for visualization.

Description

Description

Glass

System Description

Input

Resolution: 1920x1080

OFFLINE DESIGN:

50-100 frames (images) per view.

3 sessions "recorded", with three different colored markers (r,g,b).

Calibration

Background

Calibration Corners

Marker Detector System

Results Data Synchronization

Marker Detection Color Threshold

Marker Detection Background Difference

Guideline (Evaluation)

Results

images/frames/red/ detec=2, roi=auto

Results

