Problems 1 (revision)

Exercise 1. (Maximum likelihood)

Let Y_1, \ldots, Y_n be independent replicates following the distributions $Y_i \sim \mathcal{N}(\mu, \sigma^2/w_i)$, with known weights $w_i > 0$, $i = 1, \ldots, n$.

a) Prove that the log-likelihood satisfies

$$\ell(\mu, \sigma^2) = -\frac{1}{2} \left\{ \sum_{i=1}^n \log \left(2\pi \frac{\sigma^2}{w_i} \right) + \frac{1}{\sigma^2} \sum_{i=1}^n w_i (y_i - \mu)^2 \right\},\,$$

and that the maximum likelihood estimators for μ and σ^2 are

$$\hat{\mu} = \bar{y}_w = \frac{1}{\bar{w}} \sum_{i=1}^n w_i y_i \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n w_i (y_i - \bar{y}_w)^2,$$

with $\bar{w} = \sum_{i=1}^{n} w_i$.

We now suppose that Y_1, \ldots, Y_n are independent replicates $Y_i \sim \mathcal{N}\left(X_i\beta, \sigma^2/w_i\right)$, with known weights $w_i > 0$, $X \in \mathbb{R}^{n \times p}$, X_i is the *i*-th row of X, and a vector of unknown parameters $\beta \in \mathbb{R}^p$.

b) Prove that the maximum likelihood estimator for β is

$$\hat{\beta} = \left(X^T W X\right)^{-1} X^T W Y,$$

and find the bias and variance of this estimator.

c) Find an unbiased estimator of σ^2 .

Exercise 2 (Interpreting an R output). We adjust the model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$ to n = 13 measures of cement properties. We get the following table :

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 48.19363 3.91330 12.315 6.17e-07 ***

x1 1.69589 0.20458 8.290 1.66e-05 ***

x2 0.65691 0.04423 14.851 1.23e-07 ***

x3 0.25002 0.18471 1.354 0.209
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

- a) Explain in detail how the columns "t value" and "Pr(>|t|)" are computed. What does they mean? Comment on the observed values.
- b) Knowing that $\widehat{\text{corr}}(\hat{\beta}_2, \hat{\beta}_3) = -0.08911$, what is the *p*-value for the null hypothesis $\beta_2 \beta_3 = 0$? With 5% significance level, is it possible to reject the null hypothesis?

Reminder:
$$S^2 c^{\mathrm{T}} \left(X^{\mathrm{T}} X \right)^{-1} c = \left\{ \widehat{\mathrm{SE}} \left(\hat{\beta}_2 \right) \right\}^2 + \left\{ \widehat{\mathrm{SE}} \left(\hat{\beta}_3 \right) \right\}^2 - 2 \widehat{\mathrm{corr}} \left(\hat{\beta}_2, \hat{\beta}_3 \right) \widehat{\mathrm{SE}} \left(\hat{\beta}_2 \right) \widehat{\mathrm{SE}} \left(\hat{\beta}_3 \right),$$
 with $c = (0, 0, 1, -1)^{\mathrm{T}}$.

Exercise 3 (Automatic model selection). We consider the same dataset on cement properties as in Exercise 2. The residual sum of squares (RSS) and Mallows C_p (not all of them) for the models with intercept are:

Model	RSS	C_p	Model	RSS	C_p	Model	RSS	C_p
	2715.8	442.58	1 2	57.9		1 2 3 -	48.1	-
			1 - 3 -	1227.1	197.94	12-4	48.0	
1	1265.7	202.39	1 4	74.8	5.49	1 - 3 4	50.8	
- 2	906.3		- 2 3 -	415.4	62.38	- 2 3 4	73.8	7.325
3 -	1939.4	314.90	- 2 - 4	868.9	138.12			
4	883.9	138.62	34	175.7	22.34	$1\ 2\ 3\ 4$	47.9	5

a) Use forward selection and backward elimination to choose a model for this dataset with a 5% confidence level. Use the F-test statistic

$$F = \frac{\mathrm{RSS}\left(\hat{\beta}_{\mathrm{L}}\right) - \mathrm{RSS}\left(\hat{\beta}_{\mathrm{L} \cup \{j\}}\right)}{\mathrm{RSS}\left(\hat{\beta}_{\mathrm{full}}\right) / (13 - 5)},$$

to determine if the addition of the jth variable is significant.

b) Another selection criteria is Mallows C_p :

$$C_p = \frac{\mathrm{RSS}_p}{s^2} + 2p - n.$$

Note that here s^2 is the variance estimator of the full model.

- i) How do we use this criterion? Compute the missing C_p .
- ii) What are the selected models with Mallows criterion, using forward selection, and then backward elimination? What is the overall best model?

Exercise 4 (Graphical diagnostics).

- a) Figure 1 shows standardized residuals for four different datasets. For each case, discuss the fit and quickly explain how we could fix possible models misspecifications.
- b) Figure 2 shows four Gaussian Q-Q plots. None of the datasets follow a Gaussian law but distributions with
 - i) heavier tails than Gaussian law;
 - ii) lighter tails than Gaussian law;
 - iii) a positive skewness;
 - iv) a negative skewness.

Match every case i)—iv) with a Q-Q in Figure 2. Answers must be justified.

 $\label{eq:Figure 1-Standardized residuals for four Gaussian linear models.}$

 ${\it Figure~2}$ – Four Gaussian Q-Q plots with non-Gaussian distributed data.

Exercise 5 (Models with factors).

In R, the general formula for a model is

response~expression

where the left-hand side, reponse, can be missing, the right-hand side, expression, is a collection of terms joints by operators, and the full formula is similar to an arithmetic expression. Let

$$y = \begin{pmatrix} 217 \\ 143 \\ 186 \\ 121 \\ 157 \\ 143 \end{pmatrix}, \quad X = \begin{pmatrix} 152 & 1 & 1 \\ 93 & 1 & 2 \\ 127 & 1 & 3 \\ 109 & 2 & 1 \\ 141 & 2 & 2 \\ 136 & 2 & 3 \end{pmatrix},$$

and x, a, b denotes the columns of X = [x, a, b].

a) A factor is a variable which represents a categorical observation (command as.factor() in R). For instance, if a is a factor, then y~a represents the model

$$y_j = \beta_0 + \alpha_1 + \varepsilon_j, \quad j = 1, 2, 3; \qquad y_j = \beta_0 + \alpha_2 + \varepsilon_j, \quad j = 4, 5, 6,$$

where β_0 , α_1 et α_2 are unknown parameters. Formally, we use indicator functions:

$$y_{j} = \beta_{0} + \alpha_{1} I_{(a_{j} = u_{1})} + \alpha_{2} I_{(a_{j} = u_{2})} + \varepsilon_{j}, \tag{1}$$

where $I_E = 1$ is E is true, and 0 otherwise. Note that the values "1" and "2" in the vector **a** does not represent the numbers 1 and 2, but categories, groups, classes or levels. For instance, **a** could represent "1" = "regular food regime", and "2" = "food regime with growth inhibitors".

Suppose that a and b are factors:

- I. Give the design matrix for the model (1), as well as the vector of parameters.
- II. Note that this matrix is *not* full rank. What is the consequence on the parameters estimation?
- III. Erase the column corresponding to α_1 to make the matrix full rank. What is now the interpretation of the parameters β_0 and α_2 ?
- IV. When the model includes a constant β_0 , R supresses automatically the first level of every factors. Give the design matrix for the following models:

b) Suppose that a and b are (again) factors: an *interaction* component is represented as a:x or a:b. For instance, y~a:x stands for the model

$$y_j = \beta_0 + \alpha_1 x_j + \varepsilon_j, \quad j = 1, 2, 3; \qquad y_j = \beta_0 + \alpha_2 x_j + \varepsilon_j, \quad j = 4, 5, 6;$$

which can also be written

$$y_j = \beta_0 + \alpha_1 I_{(a_j = "1")} x_j + \alpha_2 I_{(a_j = "2")} x_j + \varepsilon_j$$

with indicator functions, i.e. a model with different slopes for the groups "1" and "2", but with a common intercept.

Similarly, the expression y~a:b represents the model

$$y_j = \beta_0 + \alpha_j + \varepsilon_j, \quad j = 1, \dots, 6;$$

which can also be written

$$y_j = \beta_0 + \sum_{i=1}^{2} \sum_{l=1}^{3} \gamma_{i,l} I_{(a_j = "i")} I_{(b_j = "l")} + \varepsilon_j.$$

It's a model with different *intercepts* for every level combinations of a et b.

Find the design matrices for the following models :

Precise which matrices have linearly independent columns.

Indication: You can check you answers using the following command lines:

- > y <- c(217,143,186,121,157,143)
- > X <- matrix(c(152,93,127,109,141,136,1,1,1,2,2,2,1,2,3,1,2,3),6,3)
- $> df \leftarrow data.frame(y = y, x = X[,1], a = as.factor(X[,2]), b = as.factor(X[,3]))$
- > model.matrix(reponse~expression, data = df)