

8259A

Povećanje broja INTR prekida (hardverskih maskirajućih)

8259A programabilni interapt kontoler

- Omogućuje 8 nivoa prekida
- Može se proširiti na 64, kaskadnim povezivanjem
- Može se programirati način rada i maskirati svaki od zahteva pojedinačno

8259A

programabilni interapt kontoler

- D₀-D₇ bidirekciona magistrala podataka (prenosi upravljačke, statusne i interapt-vektor podatke)
- CAS₀-CAS₂ kaskadne linije za upravljanje višestrukim PIC (izlazne za master, ulazne za slave)
- SP/EN SLAVE PROGRAM/ENABLE BUFFER, kada nije u baferovanom modu kao ulazni pin određuje da li je master (SP=1) ili slave (SP=0), u baf.modu, kao izlazni pin upravlja bafer transiverima
- INT prelazi na 1 kad god se javi zahtev za prekidom
- IR₀-IR₇ asinhroni ulazi zahteva za prekid (aktivira ga prednja ivica i ostaje visak nivo do potvrde u režimu okidanja ivicom, ili samo visok nivo kod režima okidanja nivoom)
- INTA omogućuje slanje interapt-vektora na magistralu podataka sekvencom potvrda od CPU
- A₀ selektuje komandnu reč, obično je vezan na A₁ liniju 8086

Interfejs prema standardnoj sistemskoj magistrali

8259A blok šema

Funkcionalni blokovi

- IRR (interrupt request register) smešta sve zahteve
- ISR (in-service register) smešta interapte koji se trenutno opslužuju
- PR (priority resolver) utvrđuje prioritet bitova setovanih u IRR i setovani bit najvišeg prioriteta prosleđuje u odgovarajući bit ISR tokom INTA impulsa
- IMR (interrupt mask register) maskira bitove u IRR
- Read/Write Logic prihvata komande od CPU i šalje status. Sadrži Initialization Command Word (ICW) i Operation Command Word (OCW) registre koji upravljaju radom komponente.
- Cascade Buffer/Comparator smešta i poredi ID-eve svih 8259A u sistemu. Master šalje ID slave-a na CASO-2 linije, čime se selektuje odgovarajući slave, koji šalje adresu prekidne procedure na magistralu podataka tokom narednog jednog ili dva uzastopna INTA impulsa.

Prekidna sekvenca

- 1. Jedna ili više IR linija prelaze na visok nivo, čime se postavljaju odgovarajući bitovi u IRR.
- 2. 8259A evaluira zahteve i šalje INT ka CPU.
- CPU potvrđuje INT slanjem INTA impulsa (aktivna niska vrednost).
- 4. Po pristizanju INTA impulsa, bit najvišeg prioriteta u ISR se postavlja, a odgovarajući bit u IRR resetuje. Magistrala podatak nije aktivna u ovom ciklusu. U kaskadnom režimu, master koristi ovaj ciklus za selekciju slave-a.
- 5. 8086 šalje drugi INTA impuls, tokom koga 8259A šalje 8-bitnu adresu (pointer) na magistralu podataka.
- 6. U AEOI modu, ISR bit se resetuje na kraju drugog INTA impulsa. U protivnom, ISR bit ostaje postavljen dok se ne izda EOI komanda na kraju rutine za obradu prekida.

Prekidna sekvenca

- Ako nijedna IR linija nije aktivna u koraku 4
 (zahtev je trajao suviše kratko), 8259A izdaje
 interapt level 7.
- Čim pristigne neki IR, INT postaje aktivan.
- Ako naiđe prekid višeg prioriteta između dva INTA impulsa, INT postaje neaktivan neposredno nakon drugog INTA impulsa.
- Nakon neodređenog vremena INT ponovo postaje aktivan, da ukaže da prekid višeg prioriteta čeka na obradu. To neaktivno vreme varira.

Programiranje 8259A

8259A prihvata dva tipa komandi:

- Initialization Command Words (ICWs) –
 inicijalizacija se obavlja sekvencom od 2 ili 4
 bajta, taktovanih WR impulsima
- Operation Command Words (OCWs) mogu se zadati bilo kada nakon inicijalizacije i definišu mod u kome će raditi, a mogu biti:
 - Fully nested mode
 - Rotating priority mode
 - Special mask mode
 - Polled mode

Inicijalizaciona sekvenca

Kad god se izda komanda sa $A_0=0$ i $D_4=1$, to se interpretira kao **ICW1** (prva inicijalizaciona) komanda.

ICW1 definiše:

- Kako se 8259A koristi u sistemu (pojedinačno ili kaskadno),
- Da li se prekidi okidaju ivicom ili nivoom
- Da li je potrebna ICW4

Kada se izvrši:

- Resetuju ulazna kola za IR (mora da se javi prelaz sa niskog na visok nivo da bi se detektovao novi zahtev).
- IMR se briše (dakle, svi prekidi su omogućeni).
- IR₇ ulazu je dodeljen prioritet 7 (najniži), a IR₀ prioritet 0 (najviši).
- Slave mod adresa je postavljena na 7.
- Special Mask Mode se briše, a Status Read se postavlja na IRR.
- Ako je $IC_4=0$ (bit najmanje težine u ICW1, tj. vrednost na D_0 liniji), tada se sve funkcije selektovane u ICW4 resetuju.

- D_0/IC_4 definiše da li je potrebna ICW4 (ako je IC_4 =0 nije potrebna; za 8086 je uvek 1).
- D₁/SNGL (single) definiše da li je samo jedna 8259A komponenta u sistemu (SNGL=1) ili je više kaskadno vezanih (SNGL=0), pa je potrebna i ICW3.
- D₂/ADI (adress interval) definiše da li je adresni interval 4B ili 8B – ne koristi se kod 8086
- D₃/LTIM (level triggered interrupt mode) definiše da li se zahtev za prekidom okida prednjom ivicom (LTIM=0) ili visokim nivoom (LTIM=1); nivo mora biti spušten pre izvršenja EOI komande, inače će biti protumačen kao novi zahtev
- D₇-D₅/A₇-A₅ definiše više adresne bitove nižeg bajta adrese ISR kod 8085 – ne koristi se kod 8086

- Zadaje se uvek nakon ICW1
- A₀ mora biti postavljeno na 1
- Definiše adresu ISR u memoriji
 - Za 8085 to je viši bajt ISR adrese
 - Za 8086/88 koriste se samo D_7 - D_3 koji zajedno sa rednim brojem IR (pošto ih ima 8, to su zapravo D_2 - D_0) da formiraju 8-bitni broj (u okviru vektora adresa ISR) koji definiše redni br. prekida

Npr. ako je D_7 - D_3 =00011, a zahtev je stigao sa IR_6 , dobija se 00011 $\frac{110}{2}$ tj. $1E_H$ (30), što znači da se CS i IP za ISR počinju od adrese 78_H (120).

ICW1 i ICW2

formati inicijalizacionih komandnih reči

ICW1

(8086/8088 mode)

- ICW3 se zadaje samo ako je SNGL=0 u okviru ICW1.
- $A_0 = 1$
- Ima 2 različita oblika:
 - Za master-a postavljen D_i znači da na IR_i postoji slave
 - Za slave-a, D₂-D₀ definiše slave-id (obično odgovara broju IR linije na masteru na koju je povezan dati slave, čime se praktično određuje i prioritet)

- Izdaje se samo ako je IC₄=1 u okviru ICW1
- $A_0 = 1$
- Koristi se kada je potrebno da se promeni podrazumevani (default) režim rada (u podrazumevanom režimu svi bitovi u ICW4 su resetovani), i to kada se koristi:
 - 8086/88 procesor
 - Baferovani izlaz (SP/EN pin se koristi da omogući uređaj za beferovanje)
 - AEOI (ako je postavljen, EOI se automatski generiše na zadnju ivicu poslednjeg INTA impulsa)
 - Specijalni "full nested" mod

ICW3 i ICW4

formati inicijalizacionih komandnih reči

ICW3 (MASTER DEVICE)

A ₀	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
1	s ₇	s ₆	S ₅	S ₄	s ₃	s ₂	s ₁	s ₀

1 = IR input has a slave 0 = IR input does not have a slave

ICW3 (SLAVE DEVICE)

	Α ₀	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	٥٥							
	1	0	0	0	0	0	ID ₂	ID ₁	ID ₀							
•											S	LA\	/E II) (N	OTE	:)
										0	1	2	3	4	5	(
									_	\Box	4	0	4	•	4	

A ₀	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	
1	0	0	0	SFNM	BUF	M/S	AEOI	μРМ	
						V	1		1 = 8086/8088 mode 0 = MCS-80/85 mode 1 = Auto EOI 0 = Normal EOI
					0	X	- Non buff	ered mod	le
					1	0	- Buffered	l mode sla	ave
					1	1	- Buffered	mode ma	aster

Operacione komandne reči (OCW)

- Zadaju se nakon inicijalizacije i biraju režim rada
- Mogu se zadati bilo kada i u bilo kom redosledu
- Postoje 3 OCW:
 - OCW1 maskira prekide
 - OCW2 bira algoritam za određivanje prioriteta
 - OCW3 upravlja specijalnim modom maskiranja i određuje da li se ISR (in-service register) ili IRR (interrupt request register) čitaju kada naiđe sledeći RD impuls

OCW1

- $A_0 = 1$
- Direkno upisuje vrednosti u IMR (interrupt mask register)
- $D_i = 1$ maskira IR_i (npr. 01100100_2 onemogućuje ulaze IR_2 , IR_5 i IR_6)
- Zahtev za prekid se upisuje u IRR u svakom slučaju, ali se ignoriše ako je maskiran
- Ukidanjem maske, prethodno upisana vrednost u IRR može biti obrađena

OCW2

- $A_0 = 0 \& D_4 = 0 \& D_3 = 0$
- Omogućuje EOI, čime se briše odgovarajući bit iz ISR
- Rotira prioritete u EOI i AEOI režimima
- R, SL i EOI bitovi zajedno definišu EOI komandu
 - 001 zadaje da EOI (kada stigne) briše trenutno najviši prioritet (postavljeni bit u ISR),
 - 011 zadaje da EOI briše bit zadat adresom $L_2L_1L_0$,
 - 101 rotira prioritete, tako da najviši prioritet (0) dobija IR sa sledećim većim rednim broje, u odnosu na onaj koji je uslužen(npr. ako je obrađen IR_4 , najviši prioritet dobija IR_5 (0), zatim IR_6 (1), zatim IR_7 (2), zatim IR_0 (3),... i na kraju IR_4 (7)),
 - 100 rotira prioritete, ali u AEOI režimu (slično kao 101, ali kada je AEOI postavljen),
 - 000 briše rotiranje prioriteta,
 - 111 rotira prioritete, ali na specifičnu poziciju (pozicija $L_2L_1L_0$ dobija najniži prioritet),
 - 110 postavlja prioritete, tako da pozicija L₂L₁L₀ dobija najniži (slično kao prethodna, ali bez uključivanja rotacije)

OCW1 i OCW2

formati operacionih komandnih reči

OCW1

A ₀	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
1	M ₇	M ₆	M ₅	M_4	M ₃	M ₂	M_1	M_0

Interrupt Mask 1 = Mask set 0 = Mask reset

OCW2

† L₀ - L₂ are used

OCW3

- $A_0 = 0 \& D_4 = 0 \& D_3 = 1$
- Definiše Specijalni Mask mod (D₆D₅)
 - 11 uključen
 - 10 isključen
- Omogućuje prozivku umesto standardne prekidne procedure (D₂)
- Definiše koji registar se čita pri sledećem RD impulsu (D₁D₀)
 - − 10 − IRR (interrupt request register)
 - − 11 − ISR (in-service register)
 - podrazumevano IMR (interrupt mask register)

OCW3

format treće operacione komandne reči

OCW3

Specijalni Mask mod

- Prekidne maske svaki prekid pojedinačno može biti maskiran IMR (interrupt mask register) korišćenjem OCW1, ako je odgovarajući bit 1
- Specijalni Mask Mod u ovom režimu, kada je postavljen bit maske u OCW1, on zabranjuje prekid na datom nivou, ali dopušta sve ostale (i više i niže) koji nisu maskirani (omogućuje selektivno dopuštanje prekida učitavanjem maske) – aktivira se u OCW3 sa ESMM=1 & SMM=1, a briše sa ESMM=1 & SMM=0

Poll mod

- U ovom režimu ne koristi se INT izlaz
- Uređaji se opslužuju prozivkom
- Ako je P (D₂)postavljeno u OCW3, 8259 tretira ulazni RD impuls (RD=0, CS=0) kao INTA i postavlja se odgovarajući ISR bit, ako postoji IR zahtev
- Tokom RD impulsa, na Data magistrali se nalazi binarni kod (na linijama D₂D₁D₀) zahteva najvišeg prioriteta, dok linija D₇ definiše da li ima prekida (1) ili nema (0)

Specijalni Full Nested mod

- Koristi se u velikim sistemima, gde su 8259 kaskadno povezani, kada prioritet treba da bude očuvan u okviru svake slave komponente
- Konfiguriše se na master komponenti pomoću ICW4
- Kada je u toku obrada zahteva koji potiče od nekog slave-a, naknadni zahtevi višeg prioriteta koji potiču od iste komponente biće prihvaćeni od strane master-a i prosleđeni CPU (kod normalnog Nested moda, slave je maskiran dok traje obrada njegovog zahteva i zahtevi višeg prioriteta, koji potiču od njega, se ne opslužuju)
- Pri napuštanju ISR (interrupt service routine), programski se mora ispitati da li je tekući i jedini zahtev od datog slavea (slave-u se šalje non-specific EOI komanda, a zaim čita inservice registar; ako je "prazan" non-specific EOI se šalje i master-u, u protivnom ne šalje se EOI)

Baferovani mod

- Koristi se u velikim sistemima, gde se zahevaju baferi za "napajanje" magistrale (obično je uparen sa kaskadnim povezivanjem)
- U ovom režimu, 8259A postavlja signal SP/EN (na nisku vrednost) kad god postavlja podatke na magistralu, kako bi omogućila bafere
- D₃ i D₂ u ICW4 uključuju ovaj mod, pri čemu
 D₂ definiše da li se radi o master-u ili slave-u

Kaskadni mod

- 8259A lako može da se poveže u sistem sa jedno master i do 8 slave komponenti, čime se podržava do 64 nivoa prekida
- Master upravlja slave komponentama preko linija CAS₂ do CAS₀, koje funkcionišu kao CS za slave tokom INTA sekvence impulsa (adresa slave komponente je na CAS linijama od prednje ivice prvog, do zadnje ivice drugog INTA impulsa)
- INT izlazne linije slave-a vezuju se na ulazne IR linije master-a
- Slave postavlja adresu programa za obradu prekida tokom drugog INTA impulsa

Kaskadni mod šema povezivanja

