
NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, MAY 21, 2004 BY BONNIE MCBRIDE AND SANFORD GORDON REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996

problem

rocket equilibrium frozen nfz=2 tcest,k=3800 p,bar=70,90,120,150,

sup, ae/at=10, 15, 20, 25,

oxid=NH4NO3(IV) wt=68 t,k=300 fuel=AL(cr) wt=18 t, k=300

name=HTPB wt=14 t,k=300

h,kj/mol=-51.8 C 4 H 6

siunits

end

OPTIONS: TP=F HP=F SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F INCD=F RKT=T FROZ=T EQL=T IONS=F SIUNIT=T DEBUGF=F SHKDBG=F DETDBG=F TRNSPT=F

TRACE= 0.00E+00 S/R= 0.000000E+00 H/R= 0.000000E+00 U/R= 0.000000E+00

Pc,BAR = 70.000000 90.000000 120.000000 150.000000

Pc/P =

SUBSONIC AREA RATIOS =

SUPERSONIC AREA RATIOS = 10.0000 15.0000 20.0000 25.0000

NFZ= 2 Mdot/Ac= 0.000000E+00 Ac/At= 0.000000E+00

REACTANT WT.FRAC (ENERGY/R),K TEMP,K DENSITY EXPLODED FORMULA

O: NH4NO3(IV) 1.000000 -0.439403E+05 300.00 0.0000

N 2.00000 H 4.00000 O 3.00000

0.562500 0.538838E+01 300.00 0.0000 F: AL(cr)

AL 1.00000

0.437500 -0.623007E+04 300.00 0.0000 N: HTPB

C 4.00000 H 6.00000

SPECIES BEING CONSIDERED IN THIS SYSTEM

(CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES)

LAST thermo.inp UPDATE: 9/09/04

tpis96 ALC2 tpis96 ALH3 tpis96 ALOH tpis96 AL(OH)3 tpis96 ALC g12/97 *AL tpis96 ALH2 tpis96 ALH tpis96 *ALO tpis96 ALN tpis96 ALO2 tpis96 AL(OH)2 tpis96 AL2 tpis96 AL2C2 tpis96 AL20

tpis96	AL202	tpis96	AL203	g 7/97	*C
tpis79	*CH	g 4/02	CH2	g 4/02	CH3
g11/00	CH2OH	g 7/00	CH30	g 8/99	CH4
g 7/00	СНЗОН	srd 01	СН300Н	g 8/99	*CN
g12/99	CNN	tpis79	*CO	g 9/99	*C02
tpis91	COOH	tpis91	*C2	g 6/01	C2H
g 1/91	C2H2,acetylene	g 5/01	C2H2, vinylidene	g 4/02	CH2CO, ketene
g 3/02	O(CH)20	srd 01	HO (CO) 2OH	g 7/01	C2H3, vinyl
g 9/00	CH3CN	g 6/96	CH3CO,acetyl	g 1/00	C2H4
g 8/88	C2H4O,ethylen-o	g 8/88	CH3CHO, ethanal	g 6/00	СНЗСООН
srd 01	OHCH2COOH	g 7/00	C2H5	g 7/00	C2H6
g 8/88	CH3N2CH3	g 8/88	С2Н5ОН	g 7/00	СН3ОСН3
srd 01	CH302CH3	g 7/00	CCN	tpis91	CNC
srd 01	OCCN	tpis79	C2N2	g 8/00	C20
tpis79	*C3	n 4/98	C3H3,1-propynl	n 4/98	C3H3,2-propynl
g 2/00	C3H4,allene	g 1/00	C3H4,propyne	g 5/90	C3H4,cyclo-
g 3/01	C3H5,allyl	g 2/00	C3H6,propylene	g 1/00	C3H6,cyclo-
g 6/01	C3H6O,propylox	g 6/97	C3H6O, acetone	g 1/02	C3H6O,propanal
g 7/01	C3H7,n-propyl	g 9/85	C3H7,i-propyl	g 2/00	C3H8
g 2/00	C3H8O,1propanol	g 2/00	C3H8O,2propanol	srd 01	CNCOCN
g 7/88	C302	g tpis	*C4	g 7/01	C4H2,butadiyne
g 8/00	C4H4,1,3-cyclo-	n10/92	C4H6,butadiene	n10/93	C4H6,1butyne
n10/93	C4H6,2butyne	g 8/00	C4H6,cyclo-	n 4/88	C4H8,1-butene
n 4/88	C4H8,cis2-buten	n 4/88	C4H8,tr2-butene	n 4/88	C4H8,isobutene
g 8/00	C4H8,cyclo-	g10/00	(CH3COOH) 2	n10/84	C4H9,n-butyl
n10/84	C4H9,i-butyl	g 1/93	C4H9,s-butyl	g 1/93	C4H9,t-butyl
g12/00	C4H10,n-butane	g 8/00	C4H10,isobutane	g 6/01	C4N2
g 8/00	*C5	g 5/90	C5H6,1,3cyclo-	g 1/93	C5H8,cyclo-
n 4/87	C5H10,1-pentene	g 2/01	C5H10,cyclo-	n10/84	C5H11,pentyl
g 1/93	C5H11,t-pentyl	n10/85	C5H12,n-pentane	n10/85	C5H12,i-pentane
n10/85	CH3C (CH3) 2CH3	g 2/93	C6H2	g11/00	C6H5,phenyl
g 8/00	C6H5O, phenoxy	g 8/00	C6H6	g 8/00	C6H5OH,phenol
g 1/93	C6H10,cyclo-	n 4/87	C6H12,1-hexene	g 6/90	C6H12,cyclo-
n10/83	C6H13,n-hexyl	g 6/01	C6H14,n-hexane	g 7/01	C7H7,benzyl
g 1/93	C7H8	g12/00	C7H8O,cresol-mx	n 4/87	C7H14,1-heptene
n10/83	C7H15,n-heptyl	n10/85	C7H16,n-heptane	n10/85	C7H16,2-methylh
n 4/89	C8H8,styrene	n10/86	C8H10,ethylbenz	n 4/87	C8H16,1-octene
n10/83	C8H17,n-octyl	n 4/85	C8H18,n-octane	n 4/85	C8H18,isooctane
n10/83	C9H19,n-nonyl	g 3/01	C10H8, naphthale	n10/83	C10H21,n-decyl
g 8/00	C12H9,o-bipheny	g 8/00	C12H10,biphenyl	g 6/97	*H
tpis96	HALO	tpis96	HALO2	g 6/01	HCN
g 1/01	HCO	tpis89	HCCN	g 6/01	HCCO
g 6/01	HNC	g 7/00	HNCO	g10/01	HNO
tpis89	HNO2	g 5/99	HNO3	g 4/02	HO2
tpis78	*H2	g 5/01	HCHO, formaldehy	g 6/01	НСООН
g 8/89		g 6/99	H2O2	g 6/01	(HCOOH) 2
g 5/97	*N	g 6/01	NCO	g 4/99	*NH
g 3/01	NH2	tpis89	NH3	tpis89	NH2OH
tpis89	*NO	g 4/99	NO2	j12/64	NO3
tpis78	*N2	g 6/01	NCN	g 5/99	N2H2
tpis89	NH2NO2	g 4/99	N2H4	g 4/99	N20
g 4/99	N2O3	tpis89	N2O4	g 4/99	N205
tpis89		g 4/99	N3H	g 5/97	*0
g 4/02	*OH	tpis89	*02	g 8/01	03
coda89	AL(cr)	coda89	AL(L)	tpis96	ALH3(a)
tpis96		tpis96	ALN(cr)	tpis96	ALN(L)
tpis96	ALN(L)	tpis96	AL(OH)3(a)	tpis96	AL203(a)

tpis96	AL4C3(cr)	tpis96	AL4C3(cr)	n 4/83	C(gr)
n 4/83	C(gr)	n 4/83	C(gr)	g11/99	H2O(cr)
	H2O(L)	g 8/01	H2O(L)		
O/F =	2.125000				
		EFFECTIVE F	UEL EFFEC	TIVE OXIDANT	MIXTURE
ENTHALP:	Y	h(2)/R]	n(1)/R	h0/R -0.38937944E+03
(KG-MOL)(K)/KG	-0.50278394E	+02 -0.548	895640E+03	-0.38937944E+03
KG-FORM	.WT./KG	bi(2)		bi(1)	b0i
*N					0.16990791E-01
*H		0.48529833E		972915E-01	
*0		0.0000000E		479686E-01	0.25486186E-01
*AL					0.66712283E-02
*C		0.32353222E	-01 0.000	J00000E+00	0.10353031E-01
POINT I	IN T		Н	0	AL
1 2:		-11.958	-7.886	-27.424	-9.748
ADD AL	203(a)	011			
		-12.694	-8.508	-20.590	-18.412
PHASE CI		E AL203(a)	WITH AL	203 (T ₁)	
1	2 2540.867	-12.582	-8.400	-21.190	-19.696
	-9.				
Pinf/Pt	= 1.764183				
2	3 2321.890 -9.	-12.706	-8.531	-22.155	-21.128
ADD AL		332			
		-12.710	-8.534	-22.130	-21.091
Pinf/Pt	= 1.613671				
		-12.665	-8.490	-22.130	-21.091
	-9.				
REMOVE	AL203(a)				
2 :	2 2355.341 -9.	-12.686 632	-8.510	-21.995	-20.888
WARNING	!! DISCONTIN	UITY AT THE T	HROAT (ROCKET))	
	= 1.740406				
2 :	2 2326.957 -9.	-12.703 598	-8.528	-22.131	-21.091
ADD AL	203 (a)				
2		-12.703 599	-8.528	-22.130	-21.091
3	5 1490.598 -7.	-13.302 418	-9.158	-28.738	-31.263
PHASE CI		E AL203(L)	WITH AL	203(a)	
	2 1584.601			-27.617	-30.750
3	4 1283.934		-9.522	-31.825	-38.155
3	2 1291.632	-13.653	-9.514	-31.691	-37.920
	-0.	565			

tpis96 AL203(a) tpis96 AL203(a) tpis96 AL203(L)

4	3	1175.960 -5.636	-13.777	-9.639	-33.902	-41.786
4	0	1175.961 -5.636	-13.777	-9.639	-33.902	-41.786
4	2	1169.816 -5.581	-13.784	-9.646	-34.033	-42.013
5	3	1085.673	-13.887	-9.748	-35.979	-45.396
5	2	1091.793 -4.812	-13.879	-9.740	-35.827	-45.132
6	3	1041.723 -4.251	-13.947	-9.808	-37.129	-47.386
6	2	1036.175 -4.185	-13.955	-9.815	-37.281	-47.650

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1015.3 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	NH4NO3(IV)	1.000000	-365342.184	300.000
FUEL	AL(cr)	0.5625000	44.802	300.000
NAME	HTPB	0.4375000	-51800.000	300.000

O/F= 2.12500 %FUEL= 32.000000 R,EQ.RATIO= 2.176413 PHI,EQ.RATIO= 4.529239

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7404	77.885	134.08	196.12	262.62
P, BAR	70.000	40.221	0.89876	0.52206	0.35693	0.26655
T, K	2540.87	2327.00	1291.63	1169.82	1091.79	1036.17
RHO, KG/CU M	7.5902 0	4.7650 0	1.9194-1	1.2311-1	9.0200-2	7.0999-2
H, KJ/KG	-3237.50	-3726.62	-6251.94	-6494.11	-6649.89	-6762.45
U, KJ/KG	-4159.74	-4570.70	-6720.19	-6918.17	-7045.60	-7137.87
G, KJ/KG	-29635.0	-27902.2	-19670.9	-18647.5	-17992.7	-17527.4
S, KJ/(KG)(K)	10.3892	10.3892	10.3892	10.3892	10.3892	10.3892
M, (1/n)	22.907	22.922	22.935	22.937	22.940	22.948
MW, MOL WT	21.282	21.294	21.305	21.306	21.310	21.317
(dLV/dLP)t	-1.00082	-1.00042	-1.00008	-1.00023	-1.00057	-1.00124
(dLV/dLT)p	1.0148	0.0000	1.0008	1.0026	1.0072	1.0169
Cp, KJ/(KG)(K)	2.3509	0.0000	1.9914	1.9949	2.0222	2.0799
GAMMAs	1.1879	0.0000	1.2229	1.2232	1.2214	1.2179
SON VEL, M/SEC	1046.7	0.0	756.7	720.2	695.2	676.2
MACH NUMBER	0.000	0.000	3.245	3.544	3.758	3.927

PERFORMANCE PARAMETERS

Ae/At	1.0000	10.000	15.000	20.000	25.000
CSTAR, M/SEC	1485.3	1485.3	1485.3	1485.3	1485.3

CF	0.6659	1.6531	1.7183	1.7589	1.7876
Ivac, M/SEC	1842.5	2646.1	2718.3	2763.9	2796.6
Isp, M/SEC	989.1	2455.4	2552.1	2612.4	2655.2

MOLE FRACTIONS

ALOH	0.00005	0.00001	0.00000	0.00000	0.00000	0.00000
AL(OH)3	0.00002	0.00001	0.00000	0.00000	0.00000	0.00000
CH4	0.00000	0.00000	0.00002	0.00005	0.00013	0.00029
*CO	0.21227	0.21166	0.19803	0.19267	0.18798	0.18379
*CO2	0.00801	0.00877	0.02252	0.02787	0.03251	0.03661
*H	0.00226	0.00110	0.00000	0.00000	0.00000	0.00000
HCN	0.00004	0.00002	0.00000	0.00000	0.00000	0.00000
*H2	0.42444	0.42607	0.44065	0.44593	0.45040	0.45415
H20	0.10099	0.10036	0.08671	0.08140	0.07686	0.07295
NH3	0.00009	0.00007	0.00002	0.00002	0.00002	0.00002
*NO	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000
*N2	0.18073	0.18085	0.18099	0.18100	0.18103	0.18108
*OH	0.00013	0.00005	0.00000	0.00000	0.00000	0.00000
AL203(a)	0.00000	0.00002	0.07107	0.07107	0.07108	0.07110
AL203(L)	0.07096	0.07100	0.00000	0.00000	0.00000	0.00000

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

*AL	ALC	ALC2	ALH	ALH2
ALH3	ALN	*ALO	ALO2	AL(OH)2
AL2	AL2C2	AL2O	AL202	AL203
*C	*CH	CH2	CH3	CH2OH
CH30	СНЗОН	CH300H	*CN	CNN
COOH	*C2	C2H	C2H2,acetylene	C2H2, vinylidene
CH2CO, ketene	O(CH)20	HO(CO)2OH	C2H3, vinyl	CH3CN
CH3CO,acetyl	C2H4	C2H4O,ethylen-o	CH3CHO, ethanal	СН3СООН
OHCH2COOH	C2H5	C2H6	CH3N2CH3	C2H5OH
СН3ОСН3	CH302CH3	CCN	CNC	OCCN
C2N2	C20	*C3	C3H3,1-propynl	C3H3,2-propynl
C3H4,allene	C3H4,propyne	C3H4,cyclo-	C3H5,allyl	C3H6,propylene
C3H6,cyclo-	C3H6O,propylox	C3H6O,acetone	C3H6O,propanal	C3H7,n-propyl
C3H7,i-propyl	С3Н8	C3H8O,1propanol	C3H8O,2propanol	CNCOCN
C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-	C4H6,butadiene
C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene	C4H8,cis2-buten
C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2	C4H9,n-butyl
C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane	C4H10,isobutane
C4N2	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	C6H6
C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	C7H8	C7H8O,cresol-mx	C7H14,1-heptene
C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene	C8H10,ethylbenz
C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18,isooctane	C9H19,n-nonyl
C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl	HALO
HALO2	HCO	HCCN	HCCO	HNC
HNCO	HNO	HNO2	HNO3	HO2
HCHO, formaldehy	HCOOH	H2O2	(HCOOH) 2	*N

NCO	*NH	NH2	NH2OH	NO2
NO3	NCN	N2H2	NH2NO2	N2H4
N20	N2O3	N2O4	N205	N3
N3H	*0	*02	03	AL(cr)
AL(L)	ALH3(a)	ALN(cr)	ALN(L)	AL(OH)3(a)
AL4C3(cr)	C(gr)	H2O(cr)	H2O(L)	

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1015.3 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	NH4NO3(IV)	1.0000000	-365342.184	300.000
FUEL	AL(cr)	0.5625000	44.802	300.000
NAME	HTPB	0.4375000	-51800.000	300.000

O/F= 2.12500 %FUEL= 32.000000 R,EQ.RATIO= 2.176413 PHI,EQ.RATIO= 4.529239

Pinf/P	1.0000	1.7404
P, BAR	70.000	40.221
T, K	2540.87	2327.00
RHO, KG/CU M	7.5902 0	4.7650 0
H, KJ/KG	-3237.50	-3726.62
U, KJ/KG	-4159.74	-4570.70
G, KJ/KG	-29635.0	-27902.2
S, KJ/(KG)(K)	10.3892	10.3892
M, (1/n)	22.907	22.922
MW, MOL WT	21.282	21.294
(dLV/dLP)t	-1.00082	-1.00042
(dLV/dLT)p	1.0148	0.0000
Cp, KJ/(KG)(K)	2.3509	0.0000
GAMMAs	1.1879	0.0000
SON VEL, M/SEC	1046.7	0.0
MACH NUMBER	0.000	0.000

CHAMBER THROAT

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1485.3
CF	0.6659
Ivac, M/SEC	1842.5
Isp, M/SEC	989.1

MOLE FRACTIONS

ALOH	0.00005	0.00001
AL(OH)3	0.00002	0.00001
*CO	0.21227	0.21166
*C02	0.00801	0.00877
*H	0.00226	0.00110
HCN	0.00004	0.00002
*H2	0.42444	0.42607
H20	0.10099	0.10036
NH3	0.00009	0.00007
*NO	0.00001	0.00000
*N2	0.18073	0.18085
*OH	0.00013	0.00005
AL203(a)	0.00000	0.00002
AL203(L)	0.07096	0.07100

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

*AL	ALC	ALC2	ALH	ALH2
ALH3	ALN	*ALO	ALO2	AL(OH)2
AL2	AL2C2	AL2O	AL202	AL203
*C	*CH	CH2	CH3	CH2OH
CH30	CH4	СНЗОН	CH300H	*CN
CNN	COOH	*C2	C2H	C2H2,acetylene
C2H2, vinylidene	CH2CO, ketene	O(CH)20	HO(CO)2OH	C2H3, vinyl
CH3CN	CH3CO,acetyl	C2H4	C2H4O, ethylen-o	CH3CHO, ethanal
CH3COOH	OHCH2COOH	C2H5	С2Н6	CH3N2CH3
С2Н5ОН	CH3OCH3	CH302CH3	CCN	CNC
OCCN	C2N2	C20	*C3	C3H3,1-propynl
C3H3,2-propynl	C3H4,allene	C3H4,propyne	C3H4,cyclo-	C3H5,allyl
C3H6,propylene	C3H6,cyclo-	C3H6O,propylox	C3H6O, acetone	C3H6O,propanal
C3H7,n-propyl	C3H7,i-propyl	С3Н8	C3H8O,1propanol	C3H8O,2propanol
CNCOCN	C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-
C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene
C4H8,cis2-buten	C4H8,tr2-butene	C4H8, isobutene	C4H8,cyclo-	(CH3COOH) 2
C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane
C4H10,isobutane	C4N2	*C5	C5H6,1,3cyclo-	C5H8,cyclo-
C5H10,1-pentene	C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane
C5H12,i-pentane	CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy
C6H6	C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-
C6H13,n-hexyl	C6H14,n-hexane	C7H7,benzyl	C7H8	C7H8O,cresol-mx
C7H14,1-heptene	C7H15,n-heptyl	C7H16,n-heptane	${\tt C7H16,2-methylh}$	C8H8,styrene
C8H10,ethylbenz	C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18, isooctane
C9H19,n-nonyl	C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl
HALO	HALO2	HCO	HCCN	HCCO
HNC	HNCO	HNO	HNO2	HNO3
HO2	HCHO, formaldehy	HCOOH	H2O2	(HCOOH) 2
*N	NCO	*NH	NH2	NH2OH
NO2	NO3	NCN	N2H2	NH2NO2
N2H4	N20	N203	N2O4	N205
N3	N3H	*0	*02	03
AL(cr)	AL(L)	ALH3(a)	ALN(cr)	ALN(L)
AL(OH)3(a)	AL4C3(cr)	C(gr)	H2O(cr)	H2O(L)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

Pin = 1015.3 PSIA CASE =

OXIDANT NH	ACTANT 4NO3 (IV) (cr) PB	(SEE NOTE) 1.0000000 0.5625000	ENERGY KJ/KG-MOL -365342.184 44.802 -51800.000	300.000 300.000
O/F= 2.1250	0 %FUEL= 32.00000	0 R,EQ.RATIO= 2.176	6413 PHI,EQ.RA	TIO= 4.529239
H, KJ/KG U, KJ/KG	CHAMBER THROAT 1.0000 1.740 70.000 40.22 2540.87 2327.0 7.5902 0 4.7650 -3237.50 -3726.6 -4159.74 -4570.7 -29635.0 -27902. 10.3892 10.389	4 1 0 0 2 0		
MW, MOL WT		4 0 0 0		
PERFORMANCE PA	RAMETERS			
Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC	1.000 1485. 0.665 1842. 989.	3 9 5		
MOLE FRACTIONS				
ALOH *CO2 *H2 *NO AL2O3(L)	0.00005 AL (OH) 0.00801 *H 0.42468 H2O 0.00001 *N2 0.07100	0.00226 0.10105	HCN	0.21239 0.00004 0.00009 0.00013

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

*AL	ALC	ALC2	ALH	ALH2
ALH3	ALN	*ALO	ALO2	AL(OH)2
AL2	AL2C2	AL20	AL202	AL203
*C	*CH	CH2	CH3	CH2OH
CH30	CH4	СНЗОН	СН300Н	*CN
CNN	COOH	*C2	C2H	C2H2,acetylene
C2H2, vinylidene	CH2CO, ketene	O(CH)20	HO (CO) 20H	C2H3, vinyl
CH3CN	CH3CO,acetyl	C2H4	C2H4O,ethylen-o	CH3CHO, ethanal
СНЗСООН	OHCH2COOH	C2H5	C2H6	CH3N2CH3
С2Н5ОН	CH3OCH3	CH302CH3	CCN	CNC
OCCN	C2N2	C20	*C3	C3H3,1-propynl
C3H3,2-propynl	C3H4,allene	C3H4,propyne	C3H4,cyclo-	C3H5,allyl
C3H6,propylene	C3H6,cyclo-	C3H6O,propylox	C3H6O, acetone	C3H6O,propanal
C3H7,n-propyl	C3H7,i-propyl	СЗН8	C3H8O,1propanol	C3H8O,2propanol
CNCOCN	C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-
C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene
C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2
C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane
C4H10,isobutane	C4N2	*C5	C5H6,1,3cyclo-	C5H8,cyclo-
C5H10,1-pentene	C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane
C5H12,i-pentane	CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy
C6H6	C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-
C6H13,n-hexyl	C6H14,n-hexane	C7H7,benzyl	C7H8	C7H8O,cresol-mx
C7H14,1-heptene	C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene
C8H10,ethylbenz	C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18, isooctane
C9H19,n-nonyl	C10H8, naphthale	C10H21,n-decyl	C12H9, o-bipheny	C12H10,biphenyl
HALO	HALO2	HCO	HCCN	HCCO
HNC	HNCO	HNO	HNO2	HNO3
HO2	HCHO, formaldehy	HCOOH	H2O2	(HCOOH)2
*N	NCO	*NH	NH2	NH2OH
NO2	NO3	NCN	N2H2	NH2NO2
N2H4	N20	N2O3	N2O4	N2O5
N3	N3H	*0	*02	03
AL(cr)	AL(L)	ALH3(a)	ALN(cr)	ALN(L)
AL(OH)3(a)	AL4C3(cr)	C(gr)	H2O(cr)	H2O(L)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	TITN	T	N	Н	0	AL
1	3	C 2542.255 -9.570	-12.457	-8.276	-21.184	-19.688
Pinf/	/Pt = 1	1.764536				
2	3	2322.432	-12.580	-8.405	-22.153	-21.124
		-9.343				
ADD	AL203	(a)				
2	2	2327.000	-12.584	-8.409	-22.130	-21.091
		-9.361				
Pinf/	/Pt = 1	1.613392				
2	2	2327.000	-12.539	-8.364	-22.130	-21.091
		-9.272				

RE	MOVE	AL20	03(a)					
	2	2	2356.	.115 -9.384	-12.561	-8.385	-21.991	-20.883
WA	RNINO	G!! I	DISCON	TINUITY	AT THE THROAT	(ROCKET)		
Ρi	nf/Pt	= 1.	.74333	33				
	2	2		.957 -9.349	-12.578	-8.403	-22.131	-21.091
AD	D AI	203 (a	a)					
	2	1		.000 -9.349	-12.578	-8.403	-22.130	-21.091
	3	5		.567 -7.166	-13.176	-9.032	-28.739	-31.264
PH	ASE (CHANGE	E, REI	PLACE AI	203(L)	WITH AL203	B(a)	
	3	2		.552 -7.941	-13.271	-9.124	-27.618	-30.751
	3	4		.909 -6.258	-13.535	-9.397	-31.826	-38.156
	3	2	1291.		-13.528	-9.389	-31.692	-37.921
	4	3	1176.		-13.651	-9.513	-33.900	-41.783
	4	0	1176.		-13.651	-9.513	-33.900	-41.783
	4	2	1169.		-13.658	-9.520	-34.030	-42.010
	5	3	1086.		-13.762	-9.623	-35.967	-45.379
	5	2	1092.		-13.754	-9.615	-35.815	-45.115
	6	3	1042.		-13.823	-9.683	-37.101	-47.347
	6	2	1037.		-13.831	-9.691	-37.251	-47.607

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1305.3 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	NH4NO3(IV)	1.0000000	-365342.184	300.000
FUEL	AL(cr)	0.5625000	44.802	300.000
NAME	HTPB	0.4375000	-51800.000	300.000

O/F= 2.12500 %FUEL= 32.000000 R,EQ.RATIO= 2.176413 PHI,EQ.RATIO= 4.529239

CHAMBER THROAT EXIT EXIT EXIT
Pinf/P 1.0000 1.7433 77.891 134.08 196.08 262.47
P, BAR 90.000 51.625 1.1555 0.67123 0.45900 0.34290

T, K RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG S, KJ/(KG)(K)	-3237.50 -4160.06	6.1168 0 -3728.17 -4572.16 -27691.5	2.4677-1 -6252.10 -6720.33 -19553.1	1.5828-1 -6494.23 -6918.30 -18542.2	1.1597-1 -6649.96 -7045.75 -17897.6	9.1285-2 -6762.41 -7138.04 -17443.1
MW, MOL WT	-1.00080 1.0133 2.3375 1.1885	21.296 -1.00042 0.0000 0.0000	21.305 -1.00013 1.0013 1.9932 1.2228 756.7	21.308 -1.00037 1.0043 2.0022 1.2228 720.1	21.313 -1.00092 1.0118 2.0433 1.2204	21.324 -1.00198 1.0269 2.1291 1.2157 675.8
PERFORMANCE PARAMETERS						
Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC		1.0000 1485.3 0.6670 1842.6 990.6	1485.3 1.6532	1485.3 1.7183 2718.3	1485.3 1.7589 2764.0	1485.3

MOLE FRACTIONS

ALOH	0.00004	0.00001	0.00000	0.00000	0.00000	0.00000
AL(OH)3	0.00002	0.00001	0.00000	0.00000	0.00000	0.00000
CH4	0.00000	0.00000	0.00003	0.00008	0.00021	0.00046
*CO	0.21230	0.21167	0.19803	0.19264	0.18794	0.18371
*C02	0.00801	0.00877	0.02252	0.02787	0.03251	0.03660
*H	0.00200	0.00097	0.00000	0.00000	0.00000	0.00000
HCN	0.00005	0.00003	0.00000	0.00000	0.00000	0.00000
HCO	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000
HNC	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000
*H2	0.42458	0.42614	0.44063	0.44586	0.45022	0.45376
H20	0.10104	0.10038	0.08672	0.08144	0.07696	0.07317
NH3	0.00011	0.00008	0.00002	0.00002	0.00002	0.00002
*N2	0.18074	0.18086	0.18099	0.18101	0.18105	0.18115
*OH	0.00011	0.00004	0.00000	0.00000	0.00000	0.00000
AL203(a)	0.00000	0.00002	0.07107	0.07107	0.07109	0.07113
AL203(L)	0.07097	0.07101	0.00000	0.00000	0.00000	0.00000

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

ne

ОНСН2СООН	С2Н5	С2Н6	CH3N2CH3	С2Н5ОН
СН3ОСН3	CH302CH3	CCN	CNC	OCCN
C2N2	C20	*C3	C3H3,1-propynl	C3H3,2-propynl
C3H4,allene	C3H4,propyne	C3H4,cyclo-	C3H5,allyl	C3H6,propylene
C3H6,cyclo-	C3H6O,propylox	C3H6O, acetone	C3H6O,propanal	C3H7,n-propyl
C3H7,i-propyl	С3Н8	C3H8O,1propanol	C3H8O,2propanol	CNCOCN
C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-	C4H6,butadiene
C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene	C4H8,cis2-buten
C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2	C4H9,n-butyl
C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane	C4H10, isobutane
C4N2	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	C6H6
C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	C7H8	C7H8O,cresol-mx	C7H14,1-heptene
C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene	C8H10,ethylbenz
C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18,isooctane	C9H19,n-nonyl
C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl	HALO
HALO2	HCCN	HCCO	HNCO	HNO
HNO2	HNO3	HO2	HCHO, formaldehy	НСООН
H2O2	(HCOOH) 2	*N	NCO	*NH
NH2	NH2OH	*NO	NO2	NO3
NCN	N2H2	NH2NO2	N2H4	N20
N203	N2O4	N205	N3	N3H
*0	*02	03	AL(cr)	AL(L)
ALH3(a)	ALN(cr)	ALN(L)	AL(OH)3(a)	AL4C3(cr)
C(gr)	H20(cr)	H2O(L)		

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1305.3 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	NH4NO3(IV)	1.000000	-365342.184	300.000
FUEL	AL(cr)	0.5625000	44.802	300.000
NAME	HTPB	0.4375000	-51800.000	300.000

O/F= 2.12500 %FUEL= 32.000000 R,EQ.RATIO= 2.176413 PHI,EQ.RATIO= 4.529239

	CHAMBER	THROAT
Pinf/P	1.0000	1.7433
P, BAR	90.000	51.625
T, K	2542.26	2327.00
RHO, KG/CU M	9.7554 0	6.1168 0
H, KJ/KG	-3237.50	-3728.17
U, KJ/KG	-4160.06	-4572.16
G, KJ/KG	-29417.6	-27691.5

S, KJ/(KG)(K)	10.2980	10.2980
M, (1/n)	22.912	22.924
MW, MOL WT	21.286	21.296
(dLV/dLP)t	-1.00080	-1.00042
(dLV/dLT)p	1.0133	0.0000
Cp, KJ/(KG)(K)	2.3375	0.0000
GAMMAs	1.1885	0.0000
SON VEL, M/SEC	1047.1	0.0
MACH NUMBER	0.000	0.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1485.3
CF	0.6670
Ivac, M/SEC	1842.6
Isp, M/SEC	990.6

MOLE FRACTIONS

ALOH	0.00004	0.00001
AL(OH)3	0.00002	0.00001
*CO	0.21230	0.21167
*CO2	0.00801	0.00877
*H	0.00200	0.00097
HCN	0.00005	0.00003
HCO	0.00001	0.00000
HNC	0.00001	0.00000
*H2	0.42458	0.42614
H2O	0.10104	0.10038
NH3	0.00011	0.00008
*N2	0.18074	0.18086
*OH	0.00011	0.00004
AL203(a)	0.00000	0.00002
AL203(L)	0.07097	0.07101

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

*AL	ALC	ALC2	ALH	ALH2
ALH3	ALN	*ALO	ALO2	AL(OH)2
AL2	AL2C2	AL20	AL202	AL203
*C	*CH	CH2	CH3	CH2OH
CH30	CH4	СНЗОН	CH300H	*CN
CNN	COOH	*C2	C2H	C2H2,acetylene
C2H2, vinylidene	CH2CO, ketene	O(CH)20	HO(CO)2OH	C2H3, vinyl
CH3CN	CH3CO,acetyl	C2H4	C2H4O,ethylen-o	CH3CHO, ethanal
CH3COOH	OHCH2COOH	C2H5	C2H6	CH3N2CH3
C2H5OH	CH3OCH3	CH302CH3	CCN	CNC
OCCN	C2N2	C20	*C3	C3H3,1-propynl
C3H3,2-propynl	C3H4,allene	C3H4,propyne	C3H4,cyclo-	C3H5,allyl
C3H6,propylene	C3H6,cyclo-	C3H6O,propylox	C3H6O, acetone	C3H6O,propanal
C3H7,n-propyl	C3H7,i-propyl	С3Н8	C3H8O,1propanol	C3H8O,2propanol

CNCOCN	C3O2	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-
C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene
C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2
C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane
C4H10,isobutane	C4N2	*C5	C5H6,1,3cyclo-	C5H8,cyclo-
C5H10,1-pentene	C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane
C5H12,i-pentane	CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy
C6H6	C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-
C6H13,n-hexyl	C6H14,n-hexane	C7H7,benzyl	C7H8	C7H8O,cresol-mx
C7H14,1-heptene	C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene
C8H10,ethylbenz	C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18, isooctane
C9H19,n-nonyl	C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl
HALO	HALO2	HCCN	HCCO	HNCO
HNO	HNO2	HNO3	HO2	HCHO, formaldehy
HCOOH	H2O2	(HCOOH) 2	*N	NCO
*NH	NH2	NH2OH	*NO	NO2
NO3	NCN	N2H2	NH2NO2	N2H4
N20	N2O3	N2O4	N205	N3
N3H	*0	*02	03	AL(cr)
AL(L)	ALH3(a)	ALN(cr)	ALN(L)	AL(OH)3(a)
AL4C3(cr)	C(gr)	H20(cr)	H2O(L)	

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION ${\tt AFTER\ POINT\ 2}$

Pin = 1305.3 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	NH4NO3(IV)	1.000000	-365342.184	300.000
FUEL	AL(cr)	0.5625000	44.802	300.000
NAME	HTPB	0.4375000	-51800.000	300.000

O/F= 2.12500 %FUEL= 32.000000 R,EQ.RATIO= 2.176413 PHI,EQ.RATIO= 4.529239

	CHAMBER	THROAT
Pinf/P	1.0000	1.7433
P, BAR	90.000	51.625
T, K	2542.26	2327.00
RHO, KG/CU M	9.7554 0	6.1168 0
H, KJ/KG	-3237.50	-3728.17
U, KJ/KG	-4160.06	-4572.16
G, KJ/KG	-29417.6	-27691.5
S, KJ/(KG)(K)	10.2980	10.2980
M, (1/n)	22.912	22.924
MW, MOL WT	21.286	21.296
Cp, KJ/(KG)(K)	2.3375	0.0000
GAMMAs	1.1885	0.0000
SON VEL, M/SEC	1047.1	0.0

MACH NUMBER 0.000 0.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1485.3
CF	0.6670
Ivac, M/SEC	1842.6
Isp, M/SEC	990.6

MOLE FRACTIONS

0.00004	AL(OH)3	0.00002	*CO	0.21240
0.00801	*H	0.00200	HCN	0.00005
0.00001	HNC	0.00001	*H2	0.42478
0.10109	NH3	0.00011	*N2	0.18083
0.00011	AL203(L)	0.07100		
	0.00801 0.00001 0.10109	0.00001 HNC	0.00801 *H 0.00200 0.00001 HNC 0.00001 0.10109 NH3 0.00011	0.00801 *H 0.00200 HCN 0.00001 HNC 0.00001 *H2 0.10109 NH3 0.00011 *N2

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

*AL	ALC	ALC2	ALH	ALH2
ALH3	ALN	*ALO	ALO2	AL(OH)2
AL2	AL2C2	AL2O	AL202	AL203
*C	*CH	CH2	CH3	CH2OH
CH30	CH4	СНЗОН	CH300H	*CN
CNN	COOH	*C2	C2H	C2H2,acetylene
C2H2, vinylidene	CH2CO, ketene	O(CH)20	HO (CO) 20H	C2H3, vinyl
CH3CN	CH3CO,acetyl	C2H4	C2H4O,ethylen-o	CH3CHO, ethanal
СН3СООН	OHCH2COOH	C2H5	C2H6	CH3N2CH3
С2Н5ОН	CH3OCH3	CH302CH3	CCN	CNC
OCCN	C2N2	C20	*C3	C3H3,1-propynl
C3H3,2-propynl	C3H4,allene	C3H4,propyne	C3H4,cyclo-	C3H5,allyl
C3H6,propylene	C3H6,cyclo-	C3H6O,propylox	C3H6O, acetone	C3H6O,propanal
C3H7,n-propyl	C3H7,i-propyl	С3Н8	C3H8O,1propanol	C3H8O,2propanol
CNCOCN	C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-
C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene
C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2
C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane
C4H10,isobutane	C4N2	*C5	C5H6,1,3cyclo-	C5H8,cyclo-
C5H10,1-pentene	C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane
C5H12,i-pentane	CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy
C6H6	C6H5OH,phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-
C6H13,n-hexyl	C6H14,n-hexane	C7H7,benzyl	C7H8	C7H8O,cresol-mx
C7H14,1-heptene	C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene
C8H10,ethylbenz	C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18, isooctane
C9H19,n-nonyl	C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl
HALO	HALO2	HCCN	HCCO	HNCO
HNO	HNO2	HNO3	HO2	HCHO, formaldehy
HCOOH	H2O2	(HCOOH) 2	*N	NCO
*NH	NH2	NH2OH	*NO	NO2
NO3	NCN	N2H2	NH2NO2	N2H4
N20	N2O3	N2O4	N205	N3
N3H	*0	*02	03	AL(cr)
AL(L)	ALH3(a)	ALN(cr)	ALN(L)	AL(OH)3(a)

 $AL4C3 (cr) \hspace{1cm} C (gr) \hspace{1cm} H2O (cr) \hspace{1cm} H2O (L)$

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	T	N	Н	0	AL
1	3	C 2543.680 -9.287	-12.315	-8.133	-21.178	-19.680
Pinf/	Pt = 1	.764880				
2	3	2322.998 -9.058	-12.437	-8.262	-22.150	-21.120
ADD .	AL203 (a)				
2	2	2327.000 -9.074		-8.265	-22.130	-21.091
Pinf/	Pt = 1	.613090				
		2327.000	-12.395	-8.220	-22.130	-21.091
		03 (a)				
2	2	2356.919 -9.099	-12.418	-8.241	-21.987	-20.878
		DISCONTINUITY	AT THE THRO	AT (ROCKET)		
,		2326.958	-12.435	-8.260	-22.130	-21.091
ממע	AL203 (
2	ды205 (1	2327.000	-12.435	-8.260	-22.130	-21.091
	_	-9.063				
3	5	1490.570 -6.879	-13.032	-8.888	-28.738	-31.264
PHASE	CHANG	E, REPLACE A	L203(L)	WITH AL2	03(a)	
3	2	1584.520 -7.654	-13.127	-8.980	-27.618	-30.752
3	4	1283.948 -5.971	-13.392	-9.253	-31.825	-38.155
3	2	1291.653	-13.384	-9.245	-31.691	-37.920
4	3	1176.346	-13.508	-9.370	-33.893	-41.774
4	0	-5.104 1176.348	-13.508	-9.370	-33.893	-41.774
4	2	-5.104 1170.241	-13.515	-9.377	-34.022	-42.000
5	3	-5.049 1087.027	-13.619	-9.481	-35.941	-45.343
5	2	-4.234 1093.089	-13.611	-9.473	-35.791	-45.082
6	3	-4.298 1044.353	-13.680	-9.542	-37.050	-47.273
6	2	-3.765 1038.998	-13.688	-9.550	-37.196	-47.527
		-3.703				

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1740.5 PSIA CASE =

REA	CTANT		FRACTION		RGY I G-MOL	EMP K
OXIDANT NH4	NO3(IV)		.0000000			0.000
FUEL AL(0	.5625000	44	.802 30	0.000
NAME HTP	B	0	.4375000	-51800	.000 30	0.000
O/F= 2.12500	%FUEL= 32.0000	00 R,EQ.RA	TIO= 2.17	6413 PHI,	,EQ.RATIO=	4.529239
	CHAMBER THROA	EXIT	EXIT	EXIT	EXIT	
Pinf/P	1.0000 1.74					
P, BAR	120.00 68.7					
т, к	2543.68 2327.					
	1.3003 1 8.1426					
H, KJ/KG	-3237.50 -3729. -4160.37 -4573.	75 -6252.25	-6494.32	-6649.95	-6762.22	
	-29166.7 -27450					
S, KJ/(KG)(K)	10.1936 10.19	36 10.1936	10.1936	10.1936	10.1936	
M, (1/n)	22.917 22.9	27 22.937	22.941	22.952	22.973	
MW, MOL WT	21.290 21.2	98 21.306	21.311	21.320	21.338	
(dLV/dLP)t	-1.00080 -1.000				-1.00329	
(dLV/dLT)p	1.0118 0.00	00 1.0022	1.0075	1.0202	1.0447	
Cp, KJ/(KG)(K)	2.3242 0.00	0 1.9969	2.0161	2.0828	2.2163	
GAMMAs	1.1891 0.00			1.2187		
SON VEL, M/SEC	1047.5 0					
MACH NUMBER	0.000 0.0	00 3.245	3.545	3.761	3.933	
PERFORMANCE PAR	AMETERS					
Ae/At	1.00	00 10.000	15.000	20.000	25.000	
CSTAR, M/SEC	1485		1485.3			
CF	0.66					
Ivac, M/SEC	1842					
Isp, M/SEC	992			2612.4		
1,						
MOLE FRACTIONS						
ALOH	0.00004 0.000	0.00000	0.00000	0.00000	0.00000	
AL(OH)3	0.00002 0.000	0.00000	0.00000	0.00000	0.00000	
CH4	0.00001 0.000	0.00004	0.00014	0.00036	0.00077	
*CO	0.21232 0.211	0.19801	0.19261	0.18786	0.18356	
*C02	0.00800 0.008	77 0.02253	0.02788	0.03251	0.03657	
* H	0.00174 0.000	35 0.00000	0.00000	0.00000	0.00000	
HCN	0.00006 0.000	0.00000	0.00000	0.00000	0.00000	
HCO	0.00001 0.000	0.00000	0.00000	0.00000	0.00000	

HNC	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000
*H2	0.42469	0.42618	0.44058	0.44572	0.44987	0.45305
H2O	0.10109	0.10041	0.08674	0.08151	0.07715	0.07358
NH3	0.00015	0.00011	0.00003	0.00003	0.00003	0.00003
*N2	0.18075	0.18086	0.18099	0.18103	0.18111	0.18126
*OH	0.00010	0.00004	0.00000	0.00000	0.00000	0.00000
AL203(a)	0.00000	0.00002	0.07107	0.07108	0.07112	0.07117
AL203(L)	0.07098	0.07102	0.00000	0.00000	0.00000	0.00000

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*AL	ALC	ALC2	ALH	ALH2
ALH3	ALN	*ALO	ALO2	AL(OH)2
AL2	AL2C2	AL2O	AL202	AL203
*C	*CH	CH2	CH3	CH2OH
CH30	СНЗОН	CH300H	*CN	CNN
COOH	*C2	C2H	C2H2,acetylene	C2H2, vinylidene
CH2CO, ketene	O(CH)20	HO(CO)2OH	C2H3, vinyl	CH3CN
CH3CO,acetyl	C2H4	C2H4O,ethylen-o	CH3CHO, ethanal	СН3СООН
OHCH2COOH	C2H5	С2Н6	CH3N2CH3	С2Н5ОН
СН3ОСН3	CH302CH3	CCN	CNC	OCCN
C2N2	C20	*C3	C3H3,1-propynl	C3H3,2-propynl
C3H4,allene	C3H4,propyne	C3H4,cyclo-	C3H5,allyl	C3H6,propylene
C3H6,cyclo-	C3H6O,propylox	C3H6O, acetone	C3H6O,propanal	C3H7,n-propyl
C3H7,i-propyl	С3Н8	C3H8O,1propanol	C3H8O,2propanol	CNCOCN
C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-	C4H6,butadiene
C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene	C4H8,cis2-buten
C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2	C4H9,n-butyl
C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane	C4H10,isobutane
C4N2	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	C6H6
C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	C7H8	C7H8O,cresol-mx	C7H14,1-heptene
C7H15,n-heptyl	C7H16,n-heptane	${\tt C7H16,2-methylh}$	C8H8,styrene	C8H10,ethylbenz
C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18,isooctane	C9H19,n-nonyl
C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl	HALO
HALO2	HCCN	HCCO	HNCO	HNO
HNO2	HNO3	HO2	HCHO, formaldehy	HCOOH
H2O2	(HCOOH) 2	*N	NCO	*NH
NH2	NH2OH	*NO	NO2	NO3
NCN	N2H2	NH2NO2	N2H4	N20
N2O3	N2O4	N205	N3	N3H
*0	*02	03	AL(cr)	AL(L)
ALH3(a)	ALN(cr)	ALN(L)	AL(OH)3(a)	AL4C3(cr)
C(gr)	H2O(cr)	H2O(L)		

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1740.5 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	NH4NO3(IV)	1.000000	-365342.184	300.000
FUEL	AL(cr)	0.5625000	44.802	300.000
NAME	HTPB	0.4375000	-51800.000	300.000

O/F= 2.12500 %FUEL= 32.000000 R,EQ.RATIO= 2.176413 PHI,EQ.RATIO= 4.529239

	CHAMBER	THROAT
Pinf/P	1.0000	1.7464
P, BAR	120.00	68.714
T, K	2543.68	2327.00
RHO, KG/CU M	1.3003 1	8.1426 0
H, KJ/KG	-3237.50	-3729.75
U, KJ/KG	-4160.37	-4573.64
G, KJ/KG	-29166.7	-27450.2
S, KJ/(KG)(K)	10.1936	10.1936
M, (1/n)	22.917	22.927
MW, MOL WT	21.290	21.298
(dLV/dLP)t	-1.00080	-1.00044
(dLV/dLT)p	1.0118	0.0000
Cp, KJ/(KG)(K)	2.3242	0.0000
GAMMAs	1.1891	0.0000
SON VEL, M/SEC	1047.5	0.0
MACH NUMBER	0.000	0.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1485.3
CF	0.6680
Ivac, M/SEC	1842.7
Isp, M/SEC	992.2

MOLE FRACTIONS

ALOH	0.00004	0.00001
AL(OH)3	0.00002	0.00001
CH4	0.00001	0.00001
*CO	0.21232	0.21168
*C02	0.00800	0.00877
*H	0.00174	0.00085
HCN	0.00006	0.00004
HCO	0.00001	0.00000
HNC	0.00001	0.00000
*H2	0.42469	0.42618
H20	0.10109	0.10041
NH3	0.00015	0.00011
*N2	0.18075	0.18086

*OH 0.00010 0.00004 AL203(a) 0.00000 0.00002 AL203(L) 0.07098 0.07102

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*AL	ALC	ALC2	ALH	ALH2
ALH3	ALN	*ALO	ALO2	AL(OH)2
AL2	AL2C2	AL2O	AL202	AL203
*C	*CH	CH2	CH3	CH2OH
CH30	СНЗОН	CH300H	*CN	CNN
COOH	*C2	C2H	C2H2,acetylene	C2H2, vinylidene
CH2CO, ketene	O(CH)20	HO(CO)2OH	C2H3, vinyl	CH3CN
CH3CO,acetyl	C2H4	C2H4O,ethylen-o	CH3CHO, ethanal	СН3СООН
OHCH2COOH	C2H5	C2H6	CH3N2CH3	C2H5OH
СН3ОСН3	CH302CH3	CCN	CNC	OCCN
C2N2	C20	*C3	C3H3,1-propynl	C3H3,2-propynl
C3H4,allene	C3H4,propyne	C3H4,cyclo-	C3H5,allyl	C3H6,propylene
C3H6,cyclo-	C3H6O, propylox	C3H6O, acetone	C3H6O,propanal	C3H7,n-propyl
C3H7,i-propyl	СЗН8	C3H8O,1propanol	C3H8O,2propanol	CNCOCN
C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-	C4H6,butadiene
C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene	C4H8,cis2-buten
C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2	C4H9,n-butyl
C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane	C4H10,isobutane
C4N2	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	C6H6
C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	C7H8	C7H8O,cresol-mx	C7H14,1-heptene
C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene	C8H10,ethylbenz
C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18, isooctane	C9H19,n-nonyl
C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl	HALO
HALO2	HCCN	HCCO	HNCO	HNO
HNO2	HNO3	HO2	HCHO, formaldehy	HCOOH
H2O2	(HCOOH) 2	*N	NCO	*NH
NH2	NH2OH	*NO	NO2	NO3
NCN	N2H2	NH2NO2	N2H4	N20
N2O3	N2O4	N205	N3	N3H
*0	*02	03	AL(cr)	AL(L)
ALH3(a)	ALN(cr)	ALN(L)	AL(OH)3(a)	AL4C3(cr)
C(gr)	H2O(cr)	H2O(L)		

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

Pin = 1740.5 PSIA

CASE =

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	NH4NO3(IV)	1.0000000	-365342.184	300.000
FUEL	AL(cr)	0.5625000	44.802	300.000
NAME	HTPB	0.4375000	-51800.000	300.000

O/F= 2.12500 %FUEL= 32.000000 R,EQ.RATIO= 2.176413 PHI,EQ.RATIO= 4.529239

	CHAMBER	THROAT
Pinf/P	1.0000	1.7464
P, BAR	120.00	68.714
T, K	2543.68	2327.00
RHO, KG/CU M	1.3003 1	8.1426 0
H, KJ/KG	-3237.50	-3729.75
U, KJ/KG	-4160.37	-4573.64
G, KJ/KG	-29166.7	-27450.2
S, KJ/(KG)(K)	10.1936	10.1936
M, (1/n)	22.917	22.927
MW, MOL WT	21.290	21.298
Cp, KJ/(KG)(K)	2.3242	0.0000
GAMMAs	1.1891	0.0000
SON VEL, M/SEC	1047.5	0.0
MACH NUMBER	0.000	0.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1485.3
CF	0.6680
Ivac, M/SEC	1842.7
Isp, M/SEC	992.2

MOLE FRACTIONS

ALOH	0.00004	AL(OH)3	0.00002	CH4	0.00001
*CO	0.21240	*CO2	0.00801	*H	0.00174
HCN	0.00006	HCO	0.00001	HNC	0.00001
*H2	0.42485	H20	0.10113	NH3	0.00015
*N2	0.18082	*OH	0.00010	AL203(L)	0.07101

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

*AL	ALC	ALC2	ALH	ALH2
ALH3	ALN	*ALO	ALO2	AL(OH)2
AL2	AL2C2	AL2O	AL202	AL203
*C	*CH	CH2	CH3	CH2OH
CH30	СНЗОН	СНЗООН	*CN	CNN
COOH	*C2	C2H	C2H2,acetylene	C2H2, vinylidene
CH2CO, ketene	O(CH)20	HO (CO) 20H	C2H3, vinyl	CH3CN
CH3CO,acetyl	C2H4	C2H4O,ethylen-o	CH3CHO, ethanal	СНЗСООН
OHCH2COOH	C2H5	C2H6	CH3N2CH3	C2H5OH
CH3OCH3	CH302CH3	CCN	CNC	OCCN
C2N2	C20	*C3	C3H3,1-propynl	C3H3,2-propynl

C3H4,allene C3H6,cyclo- C3H7,i-propyl C3O2 C4H6,lbutyne C4H8,tr2-butene C4H9,i-butyl C4N2 C5H10,cyclo- CH3C(CH3)2CH3 C6H5OH,phenol C6H14,n-hexane	C3H4,propyne C3H6O,propylox C3H8 *C4 C4H6,2butyne C4H8,isobutene C4H9,s-butyl *C5 C5H11,pentyl C6H2 C6H1O,cyclo- C7H7,benzyl	C3H4,cyclo- C3H6O,acetone C3H8O,1propanol C4H2,butadiyne C4H6,cyclo- C4H8,cyclo- C4H9,t-butyl C5H6,1,3cyclo- C5H11,t-pentyl C6H5,phenyl C6H12,1-hexene C7H8	C6H5O, phenoxy C6H12, cyclo-	C3H6,propylene C3H7,n-propyl CNCOCN C4H6,butadiene C4H8,cis2-buten C4H9,n-butyl C4H10,isobutane C5H10,1-pentene C5H12,i-pentane C6H6 C6H13,n-hexyl C7H14,1-heptene
C7H15, n-heptyl		C7H16,2-methylh	•	C8H10, ethylbenz
C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18, isooctane	C9H19,n-nonyl
C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl	HALO
HALO2	HCCN	HCCO	HNCO	HNO
HNO2	HNO3	HO2	HCHO, formaldehy	НСООН
H2O2	(HCOOH) 2	*N	NCO	*NH
NH2	NH2OH	*NO	NO2	NO3
NCN	N2H2	NH2NO2	N2H4	N20
N2O3	N2O4	N205	N3	N3H
*0	*02	03	AL(cr)	AL(L)
ALH3(a)	ALN(cr)	ALN(L)	AL(OH)3(a)	AL4C3(cr)
C(gr)	H20(cr)	H2O(L)		

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

PO	INT ITN	T C	N	Н	0	AL
	1 3	2544.681 -9.068	-12.204	-8.022	-21.174	-19.674
Pi	nf/Pt =	1.765104				
	2 3	2323.409 -8.837	-12.326	-8.151	-22.147	-21.117
AD	D AL203	(a)				
	2 2	2327.000 -8.851		-8.153	-22.130	-21.091
Ρi	nf/Pt =	1.612860				
	2 2	2327.000 -8.761	-12.284	-8.108	-22.130	-21.091
RE.	MOVE AL	203 (a)				
	2 2	2357.497 -8.878	-12.307	-8.130	-21.984	-20.874
WA	RNTNG!!	DISCONTINUITY	Y AT THE TH	ROAT (ROCKET)		
		1.748519		,		
	2 2	2326.959 -8.841	-12.324	-8.149	-22.130	-21.092
AD	D AL203	(a)				
	2 1	2327.000 -8.841		-8.149	-22.130	-21.091
	3 5	1490.611	-12.921	-8.777	-28.738	-31.263

		-6.656				
PHASE	CHANG	E, REPLACE A	L203(L)	WITH AL20	3(a)	
3	2	1584.517 -7.431	-13.016	-8.869	-27.618	-30.752
3	4	1284.051 -5.750	-13.280	-9.142	-31.822	-38.152
3	2	1291.759 -5.805	-13.272	-9.134	-31.688	-37.917
4	3	1176.743 -4.888	-13.396	-9.259	-33.883	-41.761
4	0	1176.744 -4.888	-13.396	-9.259	-33.883	-41.761
4	2	1170.672 -4.833	-13.404	-9.266	-34.012	-41.986
5	3	1088.171 -4.033	-13.508	-9.371	-35.910	-45.298
5	2	1094.186 -4.095	-13.500	-9.363	-35.761	-45.039
6	3	1046.369 -3.582	-13.570	-9.433	-36.990	-47.186
6	3	1041.132 -3.523	-13.578	-9.441	-37.132	-47.434

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 2175.6 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	NH4NO3(IV)	1.0000000	-365342.184	300.000
FUEL	AL(cr)	0.5625000	44.802	300.000
NAME	HTPB	0.4375000	-51800.000	300.000

O/F= 2.12500 %FUEL= 32.000000 R,EQ.RATIO= 2.176413 PHI,EQ.RATIO= 4.529239

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7485	77.893	134.04	195.87	261.84
P, BAR	150.00	85.787	1.9257	1.1190	0.76581	0.57288
T, K	2544.68	2327.00	1291.76	1170.67	1094.19	1041.13
RHO, KG/CU M	1.6250 1	1.0167 1	4.1127-1	2.6380-1	1.9329-1	1.5215-1
H, KJ/KG	-3237.50	-3730.87	-6252.33	-6494.34	-6649.85	-6761.96
U, KJ/KG	-4160.57	-4574.67	-6720.56	-6918.55	-7046.06	-7138.48
G, KJ/KG	-28970.9	-27262.9	-19315.4	-18332.9	-17714.9	-17290.5
S, $KJ/(KG)(K)$	10.1126	10.1126	10.1126	10.1126	10.1126	10.1126
$M_{,}$ (1/n)	22.921	22.929	22.938	22.945	22.962	22.991
MW, MOL WT	21.294	21.300	21.308	21.314	21.328	21.353
(dLV/dLP)t	-1.00083	-1.00048	-1.00034	-1.00098	-1.00238	-1.00477
(dLV/dLT)p	1.0108	0.0000	1.0034	1.0116	1.0304	1.0646
Cp, KJ/(KG)(K)	2.3152	0.0000	2.0015	2.0336	2.1302	2.3135

SON VEL, M/SEC	1047.8	0.0	756.6	719.8	694.3	674.5
MACH NUMBER	0.000	0.000	3.246	3.545	3.763	3.936
PERFORMANCE PARA	METERS					
Ae/At		1.0000	10.000	15.000	20.000	25.000
CSTAR, M/SEC		1485.3	1485.3	1485.3	1485.3	1485.3
CF		0.6688	1.6532	1.7183	1.7589	1.7875
Ivac, M/SEC		1842.8	2646.2	2718.4	2764.1	2796.8
Isp, M/SEC		993.3	2455.5	2552.2	2612.4	2655.0

GAMMAs 1.1894 0.0000 1.2225 1.2215 1.2167 1.2083

MOLE FRACTIONS

ALOH	0.00003	0.00001	0.00000	0.00000	0.00000	0.00000
AL(OH)3	0.00003	0.00001	0.00000	0.00000	0.00000	0.00000
CH4	0.00001	0.00001	0.00007	0.00022	0.00055	0.00114
*CO	0.21233	0.21168	0.19800	0.19256	0.18776	0.18339
*CO2	0.00800	0.00877	0.02253	0.02788	0.03250	0.03654
*H	0.00157	0.00076	0.00000	0.00000	0.00000	0.00000
HCN	0.00008	0.00004	0.00000	0.00000	0.00000	0.00000
HCO	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000
HNC	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000
HNCO	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000
*H2	0.42474	0.42620	0.44052	0.44555	0.44945	0.45223
HCHO, formaldehy	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000
H20	0.10114	0.10043	0.08677	0.08160	0.07739	0.07406
NH3	0.00019	0.00014	0.00003	0.00003	0.00003	0.00004
*N2	0.18076	0.18086	0.18100	0.18105	0.18117	0.18139
*OH	0.00009	0.00003	0.00000	0.00000	0.00000	0.00000
AL203(a)	0.00000	0.00002	0.07107	0.07110	0.07114	0.07123
AL203(L)	0.07100	0.07102	0.00000	0.00000	0.00000	0.00000

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

*AL ALC ALC2 ALH ALH2	
ALH3 ALN *ALO ALO2 AL (OH) 2	
AL2 AL2C2 AL2O AL2O2 AL2O3	
*C *CH CH2 CH3 CH2OH	
CH3O CH3OH CH3OOH *CN CNN	
COOH *C2 C2H C2H2,acetylene C2H2,viny	lidene
CH2CO, ketene O(CH)2O HO(CO)2OH C2H3, vinyl CH3CN	
CH3CO, acetyl C2H4 C2H4O, ethylen-o CH3CHO, ethanal CH3COOH	
OHCH2COOH C2H5 C2H6 CH3N2CH3 C2H5OH	
CH3OCH3 CH3O2CH3 CCN CNC OCCN	
C2N2 C2O *C3 C3H3,1-propynl C3H3,2-pro	opynl
C3H4, allene C3H4, propyne C3H4, cyclo- C3H5, allyl C3H6, propy	ylene
C3H6,cyclo- C3H6O,propylox C3H6O,acetone C3H6O,propanal C3H7,n-pro	opyl
C3H7,i-propyl C3H8 C3H8O,1propanol C3H8O,2propanol CNCOCN	
C302 *C4 C4H2, butadiyne C4H4, 1, 3-cyclo- C4H6, butad	diene
C4H6,1butyne C4H6,2butyne C4H6,cyclo- C4H8,1-butene C4H8,cis2-	-buten
C4H8, tr2-butene C4H8, isobutene C4H8, cyclo- (CH3COOH) 2 C4H9, n-but	tyl
C4H9,i-butyl C4H9,s-butyl C4H9,t-butyl C4H10,n-butane C4H10,isol	butane

C4N2	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	C6H6
C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	C7H8	C7H8O,cresol-mx	C7H14,1-heptene
C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene	C8H10,ethylbenz
C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18, isooctane	C9H19,n-nonyl
C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl	HALO
HALO2	HCCN	HCCO	HNO	HNO2
HNO3	HO2	HCOOH	H2O2	(HCOOH)2
*N	NCO	*NH	NH2	NH2OH
*NO	NO2	NO3	NCN	N2H2
NH2NO2	N2H4	N20	N2O3	N2O4
N205	N3	N3H	*0	*02
03	AL(cr)	AL(L)	ALH3(a)	ALN(cr)
ALN(L)	AL(OH)3(a)	AL4C3(cr)	C(gr)	H2O(cr)
H2O(L)				

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 2175.6 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	NH4NO3(IV)	1.0000000	-365342.184	300.000
FUEL	AL(cr)	0.5625000	44.802	300.000
NAME	HTPB	0.4375000	-51800.000	300.000

O/F= 2.12500 %FUEL= 32.000000 R,EQ.RATIO= 2.176413 PHI,EQ.RATIO= 4.529239

	CHAMBER	THROAT
Pinf/P	1.0000	1.7485
P, BAR	150.00	85.787
T, K	2544.68	2327.00
RHO, KG/CU M	1.6250 1	1.0167 1
H, KJ/KG	-3237.50	-3730.87
U, KJ/KG	-4160.57	-4574.67
G, KJ/KG	-28970.9	-27262.9
S, KJ/(KG)(K)	10.1126	10.1126
$M_{,}$ (1/n)	22.921	22.929
MW, MOL WT	21.294	21.300
(dLV/dLP)t	-1.00083	-1.00048
(dLV/dLT)p	1.0108	0.0000
Cp, KJ/(KG)(K)	2.3152	0.0000
GAMMAs	1.1894	0.0000
SON VEL, M/SEC	1047.8	0.0
MACH NUMBER	0.000	0.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1485.3
CF	0.6688
Ivac, M/SEC	1842.8
Isp, M/SEC	993.3

MOLE FRACTIONS

ALOH	0.00003	0.00001
AL(OH)3	0.00003	0.00001
CH4	0.00001	0.00001
*CO	0.21233	0.21168
*C02	0.00800	0.00877
*H	0.00157	0.00076
HCN	0.00008	0.00004
HCO	0.00001	0.00000
HNC	0.00001	0.00000
HNCO	0.00001	0.00000
*H2	0.42474	0.42620
HCHO, formaldehy	0.00001	0.00000
H2O	0.10114	0.10043
NH3	0.00019	0.00014
*N2	0.18076	0.18086
*OH	0.00009	0.00003
AL203(a)	0.00000	0.00002
AL203(L)	0.07100	0.07102

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

*AL	ALC	ALC2	ALH	ALH2
ALH3	ALN	*ALO	ALO2	AL(OH)2
AL2	AL2C2	AL2O	AL202	AL203
*C	*CH	CH2	CH3	CH2OH
CH30	СНЗОН	CH300H	*CN	CNN
COOH	*C2	C2H	C2H2,acetylene	C2H2, vinylidene
CH2CO, ketene	O(CH)20	HO(CO)2OH	C2H3, vinyl	CH3CN
CH3CO,acetyl	C2H4	C2H4O,ethylen-o	CH3CHO, ethanal	СН3СООН
OHCH2COOH	C2H5	C2H6	CH3N2CH3	С2Н5ОН
CH3OCH3	CH302CH3	CCN	CNC	OCCN
C2N2	C20	*C3	C3H3,1-propynl	C3H3,2-propynl
C3H4,allene	C3H4,propyne	C3H4,cyclo-	C3H5,allyl	C3H6,propylene
C3H6,cyclo-	C3H6O,propylox	C3H6O,acetone	C3H6O,propanal	C3H7,n-propyl
C3H7,i-propyl	C3H8	C3H8O,1propanol	C3H8O,2propanol	CNCOCN
C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-	C4H6,butadiene
C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene	C4H8,cis2-buten
C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2	C4H9,n-butyl
C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane	C4H10,isobutane
C4N2	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	С6Н6

C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	C7H8	C7H8O,cresol-mx	C7H14,1-heptene
C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene	C8H10,ethylbenz
C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18, isooctane	C9H19,n-nonyl
C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl	HALO
HALO2	HCCN	HCCO	HNO	HNO2
HNO3	HO2	HCOOH	H2O2	(HCOOH) 2
*N	NCO	*NH	NH2	NH2OH
*NO	NO2	NO3	NCN	N2H2
NH2NO2	N2H4	N20	N2O3	N2O4
N205	N3	N3H	*0	*02
03	AL(cr)	AL(L)	ALH3(a)	ALN(cr)
ALN(L)	AL(OH)3(a)	AL4C3(cr)	C(gr)	H2O(cr)
H2O(L)				

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

Pin = 2175.6 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	NH4NO3(IV)	1.000000	-365342.184	300.000
FUEL	AL(cr)	0.5625000	44.802	300.000
NAME	HTPB	0.4375000	-51800.000	300.000

O/F= 2.12500 %FUEL= 32.000000 R,EQ.RATIO= 2.176413 PHI,EQ.RATIO= 4.529239

	CHAMBER	THROAT
Pinf/P	1.0000	1.7485
P, BAR	150.00	85.787
T, K	2544.68	2327.00
RHO, KG/CU M	1.6250 1	1.0167 1
H, KJ/KG	-3237.50	-3730.87
U, KJ/KG	-4160.57	-4574.67
G, KJ/KG	-28970.9	-27262.9
S, KJ/(KG)(K)	10.1126	10.1126
M, (1/n)	22.921	22.929
MW, MOL WT	21.294	21.300
Cp, KJ/(KG)(K)	2.3152	0.0000
GAMMAs	1.1894	0.0000
SON VEL, M/SEC	1047.8	0.0
MACH NUMBER	0.000	0.000

PERFORMANCE PARAMETERS

Ae/At		1.0000
CSTAR,	M/SEC	1485.3
CF		0.6688

Ivac, M/SEC	1842.8
Isp, M/SEC	993.3

MOLE FRACTIONS

ALOH	0.00003	AL(OH)3	0.00003	CH4	0.00001
*CO	0.21240	*CO2	0.00800	*H	0.00157
HCN	0.00008	HCO	0.00001	HNC	0.00001
HNCO	0.00001	*H2	0.42488	HCHO, formaldehy	0.00001
H20	0.10117	NH3	0.00019	*N2	0.18081
*OH	0.00009	AL203(L)	0.07102		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*AL	ALC	ALC2	ALH	ALH2
ALH3	ALN	*ALO	ALO2	AL(OH)2
AL2	AL2C2	AL2O	AL202	AL203
*C	*CH	CH2	CH3	CH2OH
CH3O	СНЗОН	CH300H	*CN	CNN
COOH	*C2	C2H	C2H2,acetylene	C2H2, vinylidene
CH2CO, ketene	O(CH)20	HO(CO)2OH	C2H3, vinyl	CH3CN
CH3CO,acetyl	C2H4	C2H4O,ethylen-o	CH3CHO, ethanal	СН3СООН
OHCH2COOH	C2H5	С2Н6	CH3N2CH3	C2H5OH
СН3ОСН3	CH302CH3	CCN	CNC	OCCN
C2N2	C20	*C3	C3H3,1-propynl	C3H3,2-propynl
C3H4,allene	C3H4,propyne	C3H4,cyclo-	C3H5,allyl	C3H6,propylene
C3H6,cyclo-	C3H6O,propylox	C3H6O, acetone	C3H6O,propanal	C3H7,n-propyl
C3H7,i-propyl	СЗН8	C3H8O,1propanol	C3H8O,2propanol	CNCOCN
C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-	C4H6,butadiene
C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene	C4H8,cis2-buten
C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2	C4H9,n-butyl
C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane	C4H10,isobutane
C4N2	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	C6H6
C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	C7H8	C7H8O,cresol-mx	C7H14,1-heptene
C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene	C8H10,ethylbenz
C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18, isooctane	C9H19,n-nonyl
C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl	HALO
HALO2	HCCN	HCCO	HNO	HNO2
HNO3	HO2	HCOOH	H2O2	(HCOOH)2
*N	NCO	*NH	NH2	NH2OH
*NO	NO2	NO3	NCN	N2H2
NH2NO2	N2H4	N20	N2O3	N2O4
N205	N3	N3H	*0	*02
03	AL(cr)	AL(L)	ALH3(a)	ALN(cr)
ALN(L)	AL(OH)3(a)	AL4C3(cr)	C(gr)	H20(cr)
H2O(L)				

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

Nov 7, 2020 05:10 PM FileEditor:xEx8.out