BA 810: Team Project

INCOME PREDICTIONS: A CENSUS SNAPSHOT

Team4: Alima Abdirova, Gunjan Sharma, Oumou Barry, Raiymbek Ordabayev

Agenda

KEY TOPICS DISCUSSED IN THIS PRESENTATION

- Problem Statement
- Data Overview
- EDA
- Modeling
- Results
- Challenges
- Conclusion

Problem Statement

PREDICT INCOME LEVELS (ABOVE/BELOW \$50,000)

Using machine learning, considering demographics (age, education, marital status) and occupation details (job type, industry, employment status).

Importance of the Problem

PREDICTING INCOME LEVELS HAS SIGNIFICANT REAL-WORLD IMPLICATIONS:

- 1. Policy Making
 - Informs targeted government policies
- 2. Social Impact
 - Addresses inequality for a fairer society
- 3. Individual Financial Planning
 - Empowers informed career and financial choices

Data Overview

Source: Extracted from the 1994 Census Bureau Database by Ronny Kohavi and Barry Becker.

Dataset Statistics:

• Records: 32,561

• Columns: 15

Exploring the 1994 Census Bureau Database

6 Integer columns

9 categorical columns

EDA

Income Distribution
Numerical Count Plots
Categorical Count Plots

Age VS Income

Years of Education VS Income

Worklass VS Income

Occupation VS Income

Gender VS Income

Models

LOGISTIC REGRESSION

Best Parameters:

{'C': 2.782559402207126,

'max_iter': 100, 'penalty': 'l2',

'solver': 'liblinear'}

Train Balanced accuracy:

76.71

Test Balanced accuracy:

75.02

RANDOM FOREST

Best Parameters:

{'max_depth': 10,

'min_samples_leaf': 1}

Train Balanced accuracy:

76.32

Test Balanced accuracy:

74.96

KNN

Best Parameters:

{'metric': 'euclidean',

'n_neighbors': 7, 'weights':

'uniform'}

Train Balanced accuracy:

80.87.

Test Balanced accuracy:

75.43

SVC

Best Parameters:

{'C': 10, 'gamma': 0.1, 'kernel':

'rbf'}

Train Balanced accuracy:

78.69

Test Balanced accuracy:

75.37

PROCESS

Data Preprocessing Train Test Split Recursive & Sequential Selection Grid & Random Search Balanced Accuracy

Voting

Hard Voting or majority vote

Accuracy 84.87 (balanced 73.93)

Higher predicition than all except random forest

Stacking

Accuracy 84.83

Balanced accuracy 75.12

Higher than all except random forest

True Negative	s False Positives 323	 	
False Negativ	es True Positives 908		
	Precision Recall	F1-Score	Support
Class 0 Class 1	0.88 0.93 0.74 0.61	B 0.90 L 0.66	4533 1500
Accuracy Macro Avg Weighted Avg	0.81 0.77 0.84 0.85	0.85 0.78 0.84	6033

CONFUSION MATRIX

ROC CURVE

- The stacking model has an AUC of 0.89.
- Model with strong discriminative power between positive and negative instances.
- Performs well across various thresholds.

Feature Importance

Platform

14.3%

Ensemble

14.3%

Runtime Issues

 Addressed prolonged runtimes from large datasets and complex models affecting experimentation and tuning.

Feature Importance and Selection

 Overcame challenges in discerning key features from 60+ variables using correlation and importance ranking.

Ensemble Model Voting Decisions

 Resolved the dilemma of choosing voting strategies in ensemble models to improve accuracy and effectiveness.

Python Version Compatibility

 Managed Python version compatibility issues to ensure smooth code execution.

Platform Selection - Jupyter vs. Colab

• Chose Google Cloud Console for efficiency over Jupyter and Colab, due to dataset size.

Managing Coding Dependencies

• Ensured library compatibility and consistent package installation in a collaborative environment.

Hyperparameter Tuning Complexity

 Utilized various tuning methods to optimize model performance, balancing computational load.

