Chaotic Iterations

Mooly Sagiv
http://www.cs.tau.ac.il/~msagiv/courses/pa16.html
Tel Aviv University

640 - 6706

Textbook: Principles of Program Analysis

F. Nielson, H. Nielson, C.L. Hankin

Appendix A

Caterina's thesis

Content

- Mathematical Background
- Chaotic Iterations
- Examples
- Soundness, Precision and more examples next week

Mathematical Background

- Declaratively define
 - The result of the analysis
 - The exact solution
 - Allow comparison

Posets

- ♦ A partial ordering is a binary relation
 - $\sqsubseteq : L \times L \rightarrow \{false, true\}$
 - For all $1 \in L$: $1 \sqsubseteq 1$ (Reflexive)
 - For all $l_1, l_2, l_3 \in L : l_1 \sqsubseteq l_2, l_2 \sqsubseteq l_3 \Rightarrow l_1 \sqsubseteq l_3$ (Transitive)
 - For all $l_1, l_2 \in L : l_1 \sqsubseteq l_2, l_2 \sqsubseteq l_1 \Rightarrow l_1 = l_2$ (Anti-Symmetric)
- \bullet Denoted by (L, \sqsubseteq)

Posets

- In program analysis
 - $l_1 \sqsubseteq l_2 \Leftrightarrow l_1$ is more precise than $l_2 \Leftrightarrow l_1$ represents fewer concrete states than l_2
- Examples
 - Total orders (N, \leq)
 - Powersets (P(S), ⊆)
 - Powersets (P(S), \supseteq)
 - Even/Odd
 - Constant propagation
 - » Single variable
 - » Multiple variables
 - Intervals
- Bad examples
 - (N, <)
 - Non-transitive $x \sqsubseteq y \Leftrightarrow x = y \lor (x = 0 \land y = 1) \lor (x = 1 \land y = 2)$
 - Non anti-symmetric

Posets

More notations

$$-1_1 \supseteq 1_2 \Leftrightarrow 1_2 \sqsubseteq 1_1$$

$$-l_1 \sqsubset l_2 \Leftrightarrow l_1 \sqsubseteq l_2 \land l_1 \neq l_2$$

$$-l_1 \supset l_2 \Leftrightarrow l_2 \sqsubset l_1$$

Upper and Lower Bounds

- \bullet Consider a poset (L, \sqsubseteq)
- ♦ A subset L' \subseteq L has a lower bound $l \in$ L if for all $l' \in$ L' : $l \subseteq l'$
- ♦ A subset L' \subseteq L has an upper bound $u \in$ L if for all l' \in L': l' \subseteq u
- ♦ A greatest lower bound of a subset L' \subseteq L is a lower bound $l_0 \in$ L such that $l \sqsubseteq l_0$ for any lower bound 1 of L'
- ♦ A lowest upper bound of a subset L' \subseteq L is an upper bound $u_0 \in$ L such that $u_0 \subseteq$ u for any upper bound u of L'
- For every subset $L' \subseteq L$:
 - The greatest lower bound of L' is unique if at all exists
 » □L' (meet) a□b = □{a, b}
 - The lowest upper bound of L' is unique if at all exists
 » □L' (join) a□b = □{a, b}

Complete Lattices

- lacktriangle A poset (L, \sqsubseteq) is a complete lattice if every subset has least and upper bounds
- Examples
 - Total orders (N, ≤)
 - Powersets (P(S), ⊆)
 - Powersets $(P(S), \supseteq)$
 - Constant propagation
 - Intervals

Complete Lattices

- ♦ Lemma For every poset (L, \sqsubseteq) the following conditions are equivalent
 - L is a complete lattice
 - Every subset of L has a least upper bound
 - Every subset of L has a greatest lower bound

Cartesian Products

- A complete lattice $(L_1, \sqsubseteq_1) = (L_1, \sqsubseteq, \sqcup_1, \sqcap_1, \bot_1, \mathsf{T}_1)$
- A complete lattice $(L_2, \sqsubseteq_2) = (, \sqsubseteq, \sqcup_2, \sqcap_2, \perp_2, \mathsf{T}_2)$
- ◆ Define a Poset $L = (L_1 \times L_2, \sqsubseteq)$ where
 - $-(x_1, x_2) \sqsubseteq (y_1, y_2) \text{ if}$ $\Rightarrow x_1 \sqsubseteq y_1 \text{ and}$ $\Rightarrow x_2 \sqsubseteq y_2$
- ◆ L is a complete lattice

Finite Maps

- A complete lattice $(L_1, \sqsubseteq_1) = (L_1, \sqsubseteq, \sqcup_1, \sqcap_1, \bot_1, \intercal_1)$
- A finite set V
- ◆ Define a Poset $L = (V \rightarrow L_1, \sqsubseteq)$ where $-e_1 \sqsubseteq e_2$ if for all $v \in V$
 - $\Rightarrow e_1 v \sqsubseteq e_2 v$
- ◆ L is a complete lattice

Chains

- ♦ A subset $Y \subseteq L$ in a poset (L, \sqsubseteq) is a chain if every two elements in Y are ordered
 - For all $l_1, l_2 \in Y$: $l_1 \sqsubseteq l_2$ or $l_2 \sqsubseteq l_1$
- An ascending chain is a sequence of values
 - $l_1 \sqsubseteq l_2 \sqsubseteq l_3 \sqsubseteq \dots$
- A strictly ascending chain is a sequence of values
 - $l_1 \square l_2 \square l_3 \square \dots$
- ◆ A descending chain is a sequence of values
 - $l_1 \supseteq l_2 \supseteq l_3 \supseteq \dots$
- ♦ A strictly descending chain is a sequence of values
 - $l_1 \supset l_2 \supset l_3 \supset \dots$
- ◆ L has a finite height if every chain in L is finite
- ◆ Lemma A poset (L, □) has finite height if and only if every strictly decreasing and strictly increasing chains are finite

Monotone Functions

- \bullet A poset (L, \sqsubseteq)
- ♦ A function f: L → L is monotone if for every $l_1, l_2 \in L$:
 - $-l_1 \sqsubseteq l_2 \Rightarrow f(l_1) \sqsubseteq f(l_2)$

Fixed Points

- ♦ A monotone function $f: L \to L$ where $(L, \sqsubseteq, \sqcup, \sqcap, \bot, \intercal)$ is a complete lattice
- $Fix(f) = \{ 1: 1 \in L, f(1) = 1 \}$
- $\bullet \quad \text{Ext}(f) = \{1: 1 \in L, 1 \sqsubseteq f(1)\}$
 - $l_1 \sqsubseteq l_2 \Rightarrow f(l_1) \sqsubseteq f(l_2)$
- ◆ Tarski's Theorem 1955: if f is monotone then:
 - lfp(f) = \sqcap Fix(f) = \sqcap Red(f) \in Fix(f)
 - $gfp(f) = \bigsqcup Fix(f) = \bigsqcup Ext(f) \in Fix(f)$

Chaotic Iterations

- ♦ A lattice $L = (L, \sqsubseteq, \sqcup, \sqcap, \bot, \tau)$ with finite strictly increasing chains
- $L^n = L \times L \times ... \times L$
- ♦ A monotone function \underline{f} : $L^n \rightarrow L^n$
- \bullet Compute $lfp(\underline{f})$
- ♦ The simultaneous least fixed of the system $\{x[i] = \underline{f}_i(x) : 1 \le i \le n \}$

```
for i := 1 to n do
                                       x[i] = \bot
                                   WL = \{1, 2, ..., n\}
X := (\bot, \bot, ..., \bot)
                                   while (WL \neq \emptyset) do
                                      select and remove an element i \in WL
while (\underline{f}(x) \neq \underline{x}) do
                                     new := f_i(\underline{x})
            x := f(x)
                                      if (\text{new} \neq x[i]) then
                                           x[i] := new;
```

Add all the indexes that directly depends on i to WL

Specialized Chaotic Iterations System of Equations

```
S =
df_{entry}[s] = \iota
df_{entry}[v] = \bigsqcup\{f(u, v) (df_{entry}[u]) \mid (u, v) \in E \}
  F_s:L^n \to L^n
     F_s(X)[s] = \iota
     F_{S}(X)[v] = \bigsqcup \{f(u, v)(X[u]) \mid (u, v) \in E \}
```

$$lfp(S) = lfp(F_S)$$

Specialized Chaotic Iterations

```
Chaotic(G(V, E): Graph, s: Node, L: Lattice, \iota: L, f: E \rightarrow(L \rightarrowL))
  for each v in V to n do df_{entry}[v] := \bot
 df[s] = \iota
  WL = \{s\}
  while (WL \neq \emptyset) do
    select and remove an element u \in WL
    for each v, such that. (u, v) \in E do
            temp = f(e)(df_{entry}[u])
            new := df_{entry}(v) \sqcup temp
            if (new \neq df_{entry}[v]) then
                     df_{entry}[v] := new;
                     WL := WL \cup \{v\}
```

Constant Propagation

N	Value	WL		
1	$[x \mapsto ?, y \mapsto ?, z \mapsto ?]$	$\{2, 3, 4, 5, 6, 7\}$		
2	$[x \mapsto ?, y \mapsto ?, z \mapsto 3]$	{ 3, 4, 5, 6, 7}		
3	$[x \mapsto ?, y \mapsto ?, z \mapsto 3]$	{ 4, 5, 6, 7}		
4	$[x \mapsto 1, y \mapsto 7, z \mapsto 3]$	{5, 6, 7}		
5	$[x \mapsto ?, y \mapsto 7, z \mapsto 3]$	{6, 7}		
6	$[x \mapsto ?, y \mapsto 7, z \mapsto 3]$	{7}		

Example Constant Propagation

$$DF(1) = [x \mapsto 0]$$

$$DF(2) = DF(1)[x \mapsto 3] \sqcup DF(2)$$

$$DF(3) = DF(2)$$

DF[1]	DF [2]	DF [3]
$[x \mapsto 0]$	$[x \mapsto 3]$	$[x \mapsto 3]$
$[x \mapsto 0]$	$[x \mapsto ?]$	$[x \mapsto ?]$
[x → 7]	$[x \mapsto 9]$	$[x \mapsto 7]$
[x →?]	$[x \mapsto 3]$	$[x \mapsto 3]$

Complexity of Chaotic Iterations

Parameters:

- n the number of CFG nodes
- k is the maximum outdegree of edges
- A lattice of height h
- c is the maximum cost of

```
\Rightarrow applying f_{(e)}
```

- **≫** ∐
- » L comparisons
- Complexity

```
O(n * h * c * k)
```

Soundness

- Every detected constant is indeed such
- Every error will be detected
- ◆ The least fixed points represents all occurring runtime states
- Next week

Completeness

- Every constant is indeed detected as such
- Every detected error is real
- Cannot be guaranteed in general

The Join-Over-All-Paths (JOP)

- ◆ Let paths(v) denote the potentially infinite set paths from start to v (written as sequences of labels)
- ♦ For a sequence of edges $[e_1, e_2, ..., e_n]$ define $f[e_1, e_2, ..., e_n]$: L → L by composing the effects of basic blocks

$$f[e_1, e_2, ..., e_n](1) = f(e_n) (... (f(e_2) (f(e_1) (1)) ...)$$

◆ JOP[v] = $\sqcup \{f[e_1, e_2, ..., e_n](\iota)$ [$e_1, e_2, ..., e_n$] ∈ paths(v)}

JOP vs. Least Solution

- ◆ The DF solution obtained by Chaotic iteration satisfies for every *l*:
 - JOP[v] \sqsubseteq DF_{entry}(v)
- ◆ A function f is additive (distributive) if
 - $f(\bigsqcup\{x \mid x \in X\}) = \bigsqcup\{f(x) \mid \in X\}$
- If every f_l is additive (distributive) for all the nodes v
 - $JOP[v] = DF_{entry}(v)$

Conclusions

- Chaotic iterations is a powerful technique
- Easy to implement
- Rather precise
- But expensive
 - More efficient methods exist for structured programs
- Abstract interpretation relates runtime semantics and static information
- The concrete semantics serves as a tool in designing abstractions
 - More intuition will be given in the sequel

Widening

- Accelerate the termination of Chaotic iterations by computing a more conservative solution
- Can handle lattices of infinite heights

Specialized Chaotic Iterations+ ▽

```
Chaotic(G(V, E): Graph, s: Node, L: lattice, \iota: L, f: E \to (L \to L))
 for each v in V to n do df_{entry}[v] := \bot
 In[v] = \iota
  WL = \{s\}
  while (WL \neq \emptyset) do
    select and remove an element u \in WL
    for each v, such that. (u, v) \in E do
            temp = f(e)(df_{entry}[u])
            new := df_{entry}(v) \nabla temp
            if (new \neq df_{entry}[v]) then
                    df_{entry}[v] := new;
                    WL := WL \cup \{v\}
```

Example Interval Analysis

- Find a lower and an upper bound of the value of a variable
- Usages?
- Lattice

```
L = (Z \cup \{-\infty, \infty\} \times Z \cup \{-\infty, \infty\}, \sqsubseteq, \sqcup, \sqcap, \bot, \mathsf{T})
```

- $[a, b] \sqsubseteq [c, d] \text{ if } c \le a \text{ and } d \ge b$
- $[a, b] \sqcup [c, d] = [min(a, c), max(b, d)]$
- $[a, b] \sqcap [c, d] = [max(a, c), min(b, d)]$
- T =
- \bot =

Example Program Interval Analysis

```
IntEntry(1) = [minint,maxint]
 [x := 1]^1;
                                 IntExit(1) = [1,1]
 while [x \le 1000]^2 do
                                 IntEntry(2) = IntExit(1) \sqcup IntExit(3)
      [x := x + 1;]^3
                                 IntExit(2) = IntEntry(2)
                                 IntEntry(3) = IntExit(2) \sqcap [minint, 1000]
  [x:=1]^1
                                 IntExit(3) = IntEntry(3) + [1,1]
[x \le 1000]^2
                        -{exit}4
                                 IntEntry(4) = IntExit(2) \sqcap [1001, maxint]
                                 IntExit(4) = IntEntry(4)
```

Widening for Interval Analysis

```
\bullet \bot \nabla [c, d] = [c, d]
\bullet [a, b] \nabla [c, d] = [
         if a \le c
                   then a
                   else -\infty,
         if b \ge d
                   then b
                   else ∞
```

Example Program Interval Analysis

```
IntEntry(1) = [-\infty, \infty]
 [x := 1]^1;
                                 IntExit(1) = [1,1]
 while [x \le 1000]^2 do
                                 IntEntry(2) = InExit(2) \nabla (IntExit(1) \sqcup IntExit(3))
      [x := x + 1;]^3
                                 IntExit(2) = IntEntry(2)
                                 IntEntry(3) = IntExit(2) \sqcap [-\infty,1000]
  [x:=1]^1
                                 IntExit(3) = IntEntry(3) + [1,1]
[x \le 1000]^2
                         -{exit}4
                                 IntEntry(4) = IntExit(2) \sqcap [1001, \infty]
                                 IntExit(4) = IntEntry(4)
```

Requirements on Widening

- ♦ For all elements $l_1 \sqcup l_2 \sqsubseteq l_1 \triangledown l_2$
- For all ascending chains $l_0 \sqsubseteq l_1 \sqsubseteq l_2 \sqsubseteq \dots$ the following sequence is finite
 - $y_0 = l_0$ $- y_{i+1} = y_i \nabla l_{i+1}$
- For a monotonic function
 f: L → L
 define
 - $x_0 = \bot$
 $x_{i+1} = x_i \nabla f(x_i)$
- Theorem:
 - There exits k such that $x_{k+1} = x_k$
 - $x_k \in Red(f) = \{1: 1 \in L, f(1) \sqsubseteq 1\}$

Narrowing

- Improve the result of widening
- For all decreasing chains $x_0 \supseteq x_1 \supseteq ...$ the following sequence is finite
 - $y_0 = x_0$ $- y_{i+1} = y_i \triangle x_{i+1}$
- ♦ For a monotonic function $f: L \rightarrow L$ and $x \in Red(f) = \{1: 1 \in L, f(1) \sqsubseteq 1\}$ define
 - $y_0 = x$ $y_{i+1} = y_i \triangle f(y_i)$
- Theorem:
 - There exits k such that $y_{k+1} = y_k$
 - $y_k \in Red(f) = \{1: 1 \in L, f(1) \sqsubseteq 1\}$

Narrowing for Interval Analysis

```
\bullet [a, b] \triangle \perp = [a, b]
• [a, b] \triangle [c, d] = [
         if a = -\infty
                   then c
                   else a,
         if b = \infty
                   then d
                   else b
```

Example Program Interval Analysis

```
IntEntry(1) = [-\infty, \infty]
 [x := 1]^1;
                                 IntExit(1) = [1,1]
 while [x \le 1000]^2 do
                                 IntEntry(2) = InExit(2) \triangle (IntExit(1) \sqcup IntExit(3))
      [x := x + 1;]^3
                                 IntExit(2) = IntEntry(2)
                                 IntEntry(3) = IntExit(2) \sqcap [-\infty,1000]
  [x:=1]^1
                                 IntExit(3) = IntEntry(3) + [1,1]
[x \le 1000]^2
                         -{exit}4
                                 IntEntry(4) = IntExit(2) \sqcap [1001, \infty]
                                 IntExit(4) = IntEntry(4)
```

Non Montonicity of Widening

- \bullet [0,1] ∇ [0,2] = [0, ∞]
- \bullet [0,2] ∇ [0,2] = [0,2]

Widening and Narrowing Summary

- Very simple but produces impressive precision
- Sometimes non-monotonic
- The McCarthy 91 function int f(x) [-∞, ∞]
 if x > 100
 then [101, ∞] return x -10 [91, ∞-10];
 else [-∞, 100] return f(f(x+11)) [91, 91];

- Also useful in the finite case
- Can be used as a methodological tool

Conclusions

- Chaotic iterations is a powerful technique
- Easy to implement
- Rather precise
- But expensive
 - More efficient methods exist for structured programs