RECURSION:

- Recursive Algorithm
- Recurrence Relation
- Recurrence Relation Solving
- 1. A Recursion is calling itself is called Recursion to solve a particular problem.
- 2. Solving the bigger problem in terms of smaller problems

Example:
$$f(6) = 6 * f(5) = 6 * 5 * f(4) = 30 * 4 * f(3) = 120 * 3 * f(2) = 360 * f(1)$$

3. To execute the recursion program, we are using stack Data Structure.

1	f(1)			
2 * f(1)	f(2)			
3 * f(2)	f(3)			
4 * f(3)	f(4)			
5 * f(4)	f(5)			
6 * f(5)	f(6)			

- **4.** Every recursive program should have termination condition otherwise it will get into infinite loop and at the end you will get message stack overflow.
- **5.** In recursion, one function call to another function call . Number of parameters will not change, parameter's name will not change, code will not change but parameter values will change.
- **6.** For every Recursive program, equal & non-equal recursive program is possible.
- 7. Recursive program takes more stack space because more function calls.

Recursive Program

```
fact(n) 1
{
  if(n==1) return (1)
  else
  return (n * fact(n-1)
}
```

Non-Recursive Program

```
f(n) {
    for( i=1; i <= n ; i++ )
    {
        s = s * i ;
    }
    return(s)
```

Example 1: Write a Recursive C Program & Reurrence Relation to multiply 2 positive numbers m & n where m, n>0

RECURSIVE ALGORITHM:

```
\label{eq:multiple_model} \begin{split} & \text{MUL}(m,n) \\ & \{ & \text{if}(m == 0 \mid \mid n == 0) \quad (\text{ only for Stopping Condition}) \\ & \text{return } (0) \\ & \text{else} \qquad \qquad (\text{ Hero of Recursion }) \\ & \text{return } (n + \text{MUL}(m - 1, n)) \\ & \} \\ & \textbf{Time Complexity} = O(m) \end{split}
```

Stack Complexity = m - stack slots

Recurrence Relation:

$$MUL(m,n) = \begin{cases} 0, & \text{if } m=0 \text{ or } n=0 \\ \\ n + MUL(m-1,n) & \text{otherwise} \end{cases}$$

Example 2: Write a Recurrence program & Recurrence Relation to find the Fibonacci number.

Sample Input:

n	0	1	2	3	4	5	6	7	8	9
fib	0	1	1	2	3	5	8	13	21	34

Recursive Relation:

$$f(n) = \begin{cases} 0, & \text{if } n=0 \\ 1, & \text{if } n=1 \\ & \text{fib(n-1) + fib(n-2)} \text{ otherwise} \end{cases}$$

Recursive Program

```
fib(n)
{
    if (n==0) return 0
    if (n==1) return 1
    else
    return ( fib(n-1) + fib(n-2) )
}
```


In Recursion,

Time Complexity = Number of Function calls

= n-level

 $= 2^{n}$ -1 nodes

= O(2ⁿ) [UPPER BOUND]

n-level Binary Tree contain (2^n-1) nodes

n-level Ternary Tree contain (3ⁿ-1) nodes

There is a gap in Fibonacci binary tree that's why we are taking big-oh with 2ⁿ because exact complexity is less than 2ⁿ so we took Big-oh

Space Complexity = Number of levels (n)

Example 3: Write a Recurrence program & Recurrence Relation to find the GCD OF m & n.

Sample Input: GCD(10,20) = 10 GCD(5,7) = 1 GCD(0,0) = undefined GCD(0,10) = 10 Where one is zero other is answer GCD(10,0) = 10 Where one is zero other is answer

Recursive Relation:

```
GCD(m,n) = \begin{cases} & undefined, if m=0 \& n=0 \\ & m, if n=0 \\ & n if m=0 \end{cases} GCD(n\%m, m) otherwise
```

Recursive Program

```
GCD(m,n)
{

if (m==0 && n==0) return (∞)

if (n==0) return (m)

if (m==0) return (n)

else

return (GCD (n%m, m))
}
```

Time Complexity = $O(\log_m n)$