CSE 6363: Machine Learning

Assignment 1

Regression:

1. Model 1: input feature 'sepal length' to predict 'sepal width':

2. Model 2: input feature 'sepal length(cm)' to predict 'petal length(cm)'

3. Model 3: input feature 'sepal length(cm)' to predict 'petal width(cm)'.

4. Model 4: input feature 'sepal width(cm)' to predict 'petal length(cm)'

5. Model 5: input feature 'sepal width(cm)' to predict 'petal width(cm)'

6. Model 6: input feature 'petal length(cm)' to predict 'petal width(cm)'

7. Model 7: input feature 'sepal width(cm)' to predict 'sepal length(cm)'

8. Model 8: input feature 'petal length(cm)' to predict 'sepal length(cm)'

9. Model 9: input feature 'petal width(cm)' to predict 'sepal length(cm)'

10. Model 10: input feature 'petal length(cm)' to predict 'sepal width(cm)

11. Model 11: input feature 'petal width (cm)' to predict 'sepal width(cm)

12. Model 12: input feature 'petal width (cm)' to predict 'petal length(cm)

Models	Testing Accuracy
Model 1:'sepal length' to predict 'sepal width'	0.42742245355299663
Model 2: 'sepal length(cm)' to predict	1.5825071611326678
'petal length(cm)'	
Model 3: 'sepal length(cm)' to predict	0.3516786853122629
'petal width(cm)'	
Model 4: 'sepal width(cm)' to predict '	4.009234040912353
petal length(cm)'	
Model 5: 'sepal width(cm)' to predict	0.5911023664389997
'petal width(cm)'	
Model 6: 'petal length(cm)' to predict	0.10504993748525539
'petal width(cm)'	
Model 7: 'sepal width(cm)' to predict '	1.557224212087829
sepal length(cm)'	
Model 8: 'petal length(cm)' to predict	1.7534081822347347
'sepal length(cm)'	
Model 9: 'petal width(cm)' to predict '	2.067874631263814
sepal length(cm)'	
Model 10: 'petal length(cm)' to predict	1.2352392648028905
'sepal width(cm)	
Model 11: 'petal width (cm)' to predict	1.02765598594766
'sepal width(cm)	
Model 12: 'petal width (cm)' to predict	0.6499269585468069
'petal length(cm)	

As per table above for testing accuracy, we can say model 6, i.e., Petal length input feature is a good predictive for corresponding petal width.

L2 Regularization:

Classification:

```
Models
                                                                             Testing Accuracy
Naive Bayes
      In [11]: nb = naiveBayes()
    nb.fit(X_train, y_train)
                y\_prediction = nb.predict(X\_test)
                #print(prediction)
                {\it \#nb.getAccuracy}(y\_{\it test},\ prediction)
                def getAccuracy(y_new, y_p):
                    return np.sum(y_new==y_p) / len(y_new)
                print("Accuracy is:",getAccuracy(y_test,y_prediction))
                Accuracy is: 1.0
                                                                             0.8
Logistic Regression
     In [56]: logiReg = LoggisticRegression(learningRate = 0.01, iterations=100 )
               logiReg.fit(X_train, y_train)
               y_prediction = logiReg.predict(X_test)
               def getAccuracy(y_new, y_p):
                   return np.sum(y_new==y_p) / len(y_new)
               print("Accuracy is:",getAccuracy(y_test,y_prediction))
               Accuracy is: 0.8
Linear Discriminant Analysis
                                                                             1.0
             SHAPE OF X: (150, 4)
AFTER TRANSFORMATION X: (135, 2)
                                                              2.00
                -1.2
                                                              1.75
              7 -1.4 DISCRIMINANT -1.6 -2.0 -2.2
                                                              - 1.50
                                                              1.25
                                                              1.00
                                                              0.75
                                                              0.50
                 -2.4
                 -2.6
                                                              0.00
                               -1 0
LINEAR DISCRIMINANT 1
    In [11]: X_test_proj = lda.transform(X_test)
             model = LogisticRegression()
model.fit(X_proj,y_train)
   Out[11]: LogisticRegression()
   In [12]: predictions = model.predict(X_test_proj)
              accuracy = np.sum(predictions == y_test)/len(y_test)
             print(accuracy)
              1.0
```

For classification, Naive Bayes and Linear Discriminant Analysis is the best classification model.