CC Geometry Unit 8 Review packet

Tuesday, May 18, 2021 9:32 AM

Geometry...

CC Geometry...

Unit 8: Circles Review Packet

For each of the following, use the diagram to find the value for x.

- In circle O, the ratio of \widehat{BC} to \widehat{AB} is 2: 1.

In the following diagram, \overline{PT} is tangent to circle O at T, and \overline{PKT} is a secant. If PK=4 and PM=9, find pt

Page | 1

$$40 = \frac{12D - X}{2}$$

$$80 = 12D - X$$

$$-40 = -X$$
In circle O, chord $AB = 8$ and $OE = 3$. Find OA .

In the following diagram, quadrilateral ABCD is inscribed in circle O. If $m\angle A=4x-15$, $m\angle B=$ 3y + 1, $m \angle C = 81 - x$, $m \angle D = y + 47$. Solve for x

$$4^{2} + 3^{2} = X^{2}$$
 $16 + 9 = X^{2}$
 $25 = X^{2}$

In the diagram below of circle O, diameter \overline{AB} is parallel to chord CD.

If $\widehat{\text{mCD}} = 70$, what is $\widehat{\text{mAC}}$?

35

In the diagram below, two parallel lines intersect circle O at points A, B, C, and D, with

 $\widehat{\text{m}AB} = x + 20$ and $\widehat{\text{m}DC} = 2x - 20$. Find $\widehat{\text{m}AB}$.

x=40

In the diagram below, \overline{AC} and \overline{AD} are tangent to

circle B at points C and D, respectively, and \overline{BC} ,

If AC = 12 and AB = 15, what is the length of \overline{BD} ?

5.5

3 12 4 18

In the diagram, \overline{RS} , \overline{ST} , and \overline{TR} are tangent to circle O at A, B, and C, respectively. If SB = 3, BT = 5, and TR = 13, what is RS?

In the diagram of circle O, the measure of $\angle ABC$ is 42°. What is the number of degrees in the measure of $\angle AOC$?

mcAOL=84

7x =21.5

In the diagram, \overline{CD} is tangent to circle O at B. \overline{AO} and \overline{BO} are radii, and chord \overline{AB} is drawn. If $m \angle AOB = 108$, find $m \angle ABD$.

In a circle, chords \overline{AB} and \overline{CD} intersect at E. If AE = 21, EB = 5, and ED = 7, find CE.

4 point Regents question:

In the diagram below, circles X and Y have two tangents drawn to them from external point T. The points of tangency are C, A, S, and E. The ratio of TA to AC is 1:3. If TS = 24, find the length of \overline{SE} .

$$3x \cdot x = 24x$$

$$3x^{2} = 24x$$

$$3x = 24$$

$$5 = 8$$

3 | Page

6 point Regents question:

In circle O shown below, chords \overline{AB} and \overline{CD} and radius \overline{OA} are drawn, such that $\overline{AB} \cong \overline{CD}$, $\overline{OE} \perp \overline{AB}$, $\overline{OF} \perp \overline{CD}$, OF = 16, CF = y + 10, and CD = 4y - 20.

Determine the length of \overline{DF} .

Determine the length of \overline{OA} .

$$16^{2} + 30^{2} = x^{2}$$

Kimmy wants to determine the radius of a circular pool without getting wet. She is located at point K, which is 4 feet from the pool and 12 feet from the point of tangency, as shown in the accompanying

Determine the area of the shaded sector.

Area rounded to nearest tenth = 10.27cm²

Determine the area of the shaded sector.

Area rounded to nearest tenth = 317.06Ln²

Given the following diagram, what is the length of the arc created by the central angle measuring $\frac{\pi}{6}$ radians?

Find the length of the arc created by a central angle that measures $\frac{\pi}{4}$ radians within a circle whose radius is 15. Round your answer to the nearest tenth.

Which graph represents a circle with the equation

$$(x-5)^2 + (y+1)^2 = 9$$
?

Which graph represents a circle whose equation is $(x + 2)^2 + y^2 = 16$?

Which equation of a circle will have a graph that lies entirely in the first quadrant?

$$(x-4)^2 + (y-5)^2 = 9$$

2
$$(x+4)^2 + (y+5)^2 = 9$$

3
$$(x+4)^2 + (y+5)^2 = 25$$

4
$$(x-5)^2 + (y-4)^2 = 25$$

The equation of a circle is $(x-2)^2 + (y+5)^2 = 32$. What are the coordinates of the center of this circle and the length of its radius?

- 1 (-2,5) and 16
- 2 (2,-5) and 16
- 3 (-2,5) and $4\sqrt{2}$
 - (2,-5) and $4\sqrt{2}$

5 | Page

What is an equation of a circle with its center at (-3,5) and a radius of 4?

1
$$(x-3)^2 + (y+5)^2 = 16$$

$$(x+3)^2 + (y-5)^2 = 16$$

3
$$(x-3)^2 + (y+5)^2 = 4$$

$$4 \quad (x+3)^2 + (y-5)^2 = 4$$

What is an equation of the circle with a radius of 5 and center at (1, -4)?

1
$$(x+1)^2 + (y-4)^2 = 5$$

2
$$(x-1)^2 + (y+4)^2 = 5$$

3
$$(x+1)^2 + (y-4)^2 = 25$$

$$(x-1)^2 + (y+4)^2 = 25$$

What are the center and radius of a circle whose equation is $(x-A)^2 + (y-B)^2 = C$?

1 center =
$$(A, B)$$
; radius = C

2 center =
$$(-A, -B)$$
; radius = C

3 center =
$$(A, B)$$
; radius = \sqrt{C}

4 center =
$$(-A, -B)$$
; radius = \sqrt{C}

Write an equation of a circle whose center is (-3,2)

$$(x+3)^{2}+(y-2)^{2}=2\sqrt{5}$$

A circle shown in the diagram below has a center of (-5,3) and passes through point (-1,7).

Write an equation that represents the circle.

$$(x-3)^{2} + (y+5)^{2} = \sqrt{32}$$

Which equation is represented by the graph below?

1
$$(x-3)^2 + (y+1)^2 = 5$$

2
$$(x+3)^2 + (y-1)^2 = 5$$

$$(x-1)^2 + (y+3)^2 = 13$$

$$3 (x+3)^2 + (y-1)^2 = 3$$

$$4 (x+3)^2 + (y-1)^2 = 13$$

Determine the center and radius of the following circle:

$$x^2 - 24x + y^2 + 6y = -137$$

$$(x-12)^2 + (y+3)^2 = 16$$

Center = (12,-3)

Radius =

Determine the center and radius of the following circle:

$$x^2 + 2x + y^2 - 10y - 55 = 0$$

$$(x+2x+1)+y^2-10y+(-5)=55$$

 $(x+1)^2+(y-5)^2=81$

Center = (- | 5)

Radius = ____

Determine the center and radius of the following circle:

$$x^2 + y^2 + 4y - 12 = 0$$

$$(x)^{2} + y^{2} + 4y + 2 = 12$$

 $(x)^{2} + (y + 2) = 14$

Center = (0, -2)

Radius = $\sqrt{14}$

7 | Page