Jon Allen November 20, 2013

8.3

In Exercises 115, use Laplace transforms to solve the IVPs. Briefly describe how each equation could be solved using other methods such as undetermined coefficients or variation of parameters.

#12

$$y''' + y' = 0$$
, $y(0) = y'(0) = 0$, $y''(0) = 1$

this could be solved by integrating to get y'' + y = C and then proceeding with the method of undetermined coefficients

solution

$$y''' + y' = 0$$

$$\mathcal{L}\{y(t)\} = Y(s)$$

$$\mathcal{L}\{y'''\} + \mathcal{L}\{y'\} = \mathcal{L}\{0\}$$

$$s^{3}\mathcal{L}\{y(t)\} - s^{2}y(0) - sy'(0) - y''(0) + s\mathcal{L}\{y(t)\} - y(0) = 0$$

$$Y(s) (s^{3} + s) - 1 = 0$$

$$Y(s) (s^{3} + s) = 1$$

$$Y(s) = \frac{1}{s(s^{2} + 1)}$$

$$\frac{1}{s(s^{2} + 1)} = \frac{A}{s} + \frac{B}{s^{2} + 1}$$

$$1 = A(s^{2} + 1) + Bs$$

$$A = 1, \quad s^{2} + Bs = 0, \quad B = -s$$

$$Y(s) = \frac{1}{s} - \frac{s}{s^{2} + 1}$$

$$y(t) = 1 - \cos t$$

#13

$$y''' - y' = e^t + e^{-t}, \quad y(0) = y'(0) = y''(0) = 0$$

This could be solved essentially the same way that I describe for #10, it's just the right hand side of the equation will be a little more complicated

solution

$$\begin{split} y''' - y' &= e^t + e^{-t} \\ \mathcal{L}\{y(t)\} &= Y(s) \\ \mathcal{L}\{y'''\} - \mathcal{L}\{y'\} &= \mathcal{L}\{e^t + e^{-t}\} \\ s^3 \mathcal{L}\{y(t)\} - s^2 y(0) - sy'(0) - y''(0) - s\mathcal{L}\{y(t)\} + y(0) &= \frac{1}{s-1} + \frac{1}{s+1} \end{split}$$

$$Y(s)(s^3-s) = \frac{1}{s-1} + \frac{1}{s+1}$$

$$Y(s)s(s^2-1) = \frac{s+1+s-1}{s^2-1}$$

$$Y(s) = \frac{2}{(s-1)^2(s+1)^2}$$

$$\frac{A}{(s-1)} + \frac{B}{(s-1)^2} + \frac{C}{(s+1)} + \frac{D}{(s+1)^2} = \frac{1}{(s-1)^2(s+1)^2}$$

$$A(s-1)(s+1)^2 + B(s+1)^2 + C(s+1)(s-1)^2 + D(s-1)^2 = 1$$

$$As^3 + As^2 - As - A + Bs^2 + B2s + B + Cs^3 - Cs^2 - Cs + C + Ds^2 - D2s + D = 1$$

$$s^3(A+C) + s^2(A+B-C+D) + s(-A+2B-C-2D) + (-A+B+C+D) = 1, \quad A = -C$$

$$s^2(B-2C+D) + s(2B-2D) + (B+2C+D) = 1, \quad B = D$$

$$s^2(2D-2C) + (2D+2C) = 1, \quad C = D$$

$$4D = 1, \quad D = \frac{1}{4}$$

$$\frac{2}{4} \left(-\frac{1}{s-1} + \frac{1}{(s-1)^2} + \frac{1}{s+1} + \frac{1}{(s+1)^2} \right) = Y(s)$$

$$y(t) = \frac{1}{2} \left(-e^t + te^t + e^{-t} + te^{-t} \right)$$

8.5

#10

find the laplace transform of h where $h(t) = \int_0^t v \cos(t-v) \,\mathrm{d}v$

solution

$$\begin{split} f(t) &= \cos t, \quad g(t) = t \\ \mathcal{L}\{h(t)\} &= \mathcal{L}\{f * g\} = \mathcal{L}\{f(t)\}\mathcal{L}\{g(t)\} \\ \mathcal{L}\{h(t)\} &= \frac{s}{s^2 + 1} \cdot \frac{1}{s^2} = \frac{1}{s^3 + s} \end{split}$$

#18

find the inverse laplace of $\frac{s}{(s^2+1)^2}$

solution

$$\frac{s}{(s^2+1)^2} = \frac{s}{s^2+1} \cdot \frac{1}{s^2+1}$$

$$\mathcal{L}\{\sin t\} = \frac{1}{s^2+1}, \quad \mathcal{L}\{\cos t\} = \frac{s}{s^2+1}$$

$$\frac{s}{(s^2+1)^2} = \mathcal{L}\{\cos t\}\mathcal{L}\{\sin t\} = \mathcal{L}\{\cos t * \sin t\}$$

$$\mathcal{L}^{-1}\left\{\frac{s}{(s^2+1)^2}\right\} = \int_0^t \cos(t-v) \sin v \, dv$$

#27 extra credit

finish this to get +2 points on exam solve $\frac{\mathrm{d}y}{\mathrm{d}t}-4y+4\int_0^ty(v)\,\mathrm{d}v=t^3e^{2t},y(0)=0$

solution

$$\begin{split} g(t) &= 1 \\ sY(s) - 4Y(s) + 4\frac{1}{s}Y(s) &= \frac{6}{(s-2)^4} \\ Y(s) \left[s - 4 + \frac{4}{s} \right] &= \frac{6}{(s-2)^4} \\ Y(s) \left[\frac{s^2 - 4s + 4}{s} \right] &= \frac{6}{(s-2)^4} \\ Y(s) \left[(s-2)^2 \right] &= \frac{6s}{(s-2)^4} \\ Y(s) &= \frac{6s}{(s-2)^6} = \frac{6(s-2) + 12}{(s-2)^6} = \frac{6}{(s-2)^5} + \frac{12}{(s-2)^6} \\ &= \frac{1}{4} \cdot \frac{24}{(s-2)^5} + \frac{1}{10} \cdot \frac{120}{(s-2)^6} = \frac{1}{4} \cdot \frac{4!}{(s-2)^5} + \frac{1}{10} \cdot \frac{5!}{(s-2)^6} \\ \mathcal{L}\{e^{at}t^n\} &= \frac{n!}{(s-a)^{n+1}} \\ y(t) &= \frac{1}{4}e^{2t}t^4 + \frac{1}{10}e^{2t}t^5 \end{split}$$