搜索技术课外作业

[1] 利用 A* 搜索算法求解 8 数码问题,问最少移动多少次就可达到目标状态? 画出搜索树,并在搜索树上标注出各状态的估价函数值。估价函数定义为 f(n) = g(n) + h(n),其中 g(n)为节点 n 的深度,如 $g(S_0)$ =0。h(n)为节点 n 与目标棋局不相同的位数(不包括空格),简称"不在位数",如 $h(S_0)$ =4。

2	8	3		
1	6	4		
7		5		
初始状态 S_0				

解答:搜索树如下:

因为不在位的将牌数小于实际归位的移动步骤数,即 $h(n) \le h^*(n)$ 。所得的解路(s, B, E, I, K, L)为最优解路,其步数为状态 L(5)上所标注的 5。

[2] 对于8数码问题,令启发式函数*h*(*n*)为所有数码的当前位置与其目标位置的 曼哈顿距离之和。基于上述*h*(*n*),用A*搜索算法求解初始状态和目标状态如 下图所示的8数码问题。对于空白格,规定其按照向上、向下、向左、向右 的顺序进行移动。画出搜索图,并在图中标明所有状态的*f*, *g*, *h*值。

初始:

1	2	3
	8	4

目标:

2	8	3
1	6	4

7	6	5	7	5

注:每次行动的成本为1,左右(或上下)相邻数码的曼哈顿距离为1。可使用环检测。

[3] 在下图所示的博弈树中,方框表示极大方,圆圈表示极小方。以优先生成左边结点的顺序来进行 α - β 剪枝搜索,试在博弈树上给出何处发生剪枝的标记。

