Construcción y Evaluación de un Modelo de Clasificación Musical

Lucas Herranz

CONTEXTO

Problemática

La clasificación automática de géneros musicales, a partir de archivos de audio, es un desafío clave en la industria musical

Datos

- Tipos:
 - Archivos .wav
 organizados en
 carpetas por género.
 - Un CSV con id's, path y géneros
- Tamaño: ~50GB de datos de audio almacenados en Google Drive

CONTEXTOII

Técnicas

- La librería Librosa de python para extracción de características de audio.
- Modelos:
 - Redes Neuronales : Para aprendizaje sobre espectrogramas.
 - Modelos Clásicos (XGBoost, CatBoost, LightGBM, Random Forest): Comparación de enfoques tradicionales vs. deep learning.
- Evaluación:
 - Métricas: Accuracy, F1-score, Matriz de Confusión.
 - o Cross-validation para garantizar generalización.

CONTEXTOIII

Variables

Predictoras:

- MFCCs (Mel-Frequency Cepstral Coefficients): Capturan características del timbre y son clave para la clasificación.
- Chroma Features: Relacionadas con la tonalidad y armonía.
- Spectral Contrast: Diferencias en energía entre bandas de frecuencia, útil para distinguir géneros.
- Zero-Crossing Rate: Indica la cantidad de cambios de signo en la onda, relevante para distinguir sonidos percusivos.
- Tempo/BPM: Velocidad de la música, útil para diferenciar géneros rítmicamente distintos.

Target:

• Género musical

19.896

Pistas de audio

20 MFCC

12 Chroma Features **7**Spectral Contrast

Zero-Crossing Rate

1 Tempo

APROXIMACIONES

APROXIMACIÓN 0

Problema binario: Música digital vs Musica estudio

APROXIMACIÓN 1

Nueve géneros con mayor número de muestras

APROXIMACIÓN 2

Agrupación de los géneros en 4 super géneros

APROXIMACIÓN 3

Balanceo de target en los 4 super géneros

APROXIMACIÓN 0 - CatBoost

APROXIMACIÓN 1 - XGBoost

APROXIMACIÓN 2 - LighGBM

APROXIMACIÓN 3 - XGBoost

CONSIDERACIONES FINALES

Limitaciones

- Cantidad de datos de entrenamiento
- Complejidad de las características sonoras

Potenciales mejoras

- Aumentar el número de pistas de audio clasificadas
- Modelos más complejos
- Transfer Learning

Retos futuros

- Recolección de datos adicionales
- Costo computacional
- Diversidad cultural y evolución musical

Muchas Gracias

Construcción y Evaluación de un Modelo de Clasificación Musical

Lucas Herranz