$11n_{28} (K11n_{28})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -611u^{13} - 377u^{12} + \dots + 3054b + 169, -3787u^{13} - 7405u^{12} + \dots + 3054a - 21955, u^{14} + 2u^{13} + \dots + 7u + 1 \rangle$$

$$I_2^u = \langle b, -u^3 + u^2 + a - 3u + 2, u^4 - u^3 + 3u^2 - 2u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 18 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -611u^{13} - 377u^{12} + \dots + 3054b + 169, \ -3787u^{13} - 7405u^{12} + \dots + 3054a - 21955, \ u^{14} + 2u^{13} + \dots + 7u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1.24001u^{13} + 2.42469u^{12} + \dots + 26.9705u + 7.18893 \\ 0.200065u^{13} + 0.123445u^{12} + \dots + 1.85265u - 0.0553373 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1.03995u^{13} + 2.30124u^{12} + \dots + 25.1179u + 7.24427 \\ 0.200065u^{13} + 0.123445u^{12} + \dots + 1.85265u - 0.0553373 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1.03995u^{13} + 2.30124u^{12} + \dots + 25.1179u + 7.24427 \\ 0.399804u^{13} + 0.629666u^{12} + \dots + 4.44204u + 0.166012 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.599869u^{13} + 0.753111u^{12} + \dots + 5.29470u + 0.110675 \\ -0.400458u^{13} - 0.864113u^{12} + \dots + 4.96857u - 0.612639 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.612639u^{13} + 0.824820u^{12} + \dots + 2.56189u - 0.680092 \\ -0.446627u^{13} - 0.892600u^{12} + \dots - 4.08841u - 0.599869 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1.00033u^{13} + 1.61722u^{12} + \dots + 10.2633u + 0.723314 \\ -0.400458u^{13} - 0.864113u^{12} + \dots - 4.96857u - 0.612639 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1.00033u^{13} + 1.61722u^{12} + \dots + 10.2633u + 0.723314 \\ -0.400458u^{13} - 0.864113u^{12} + \dots + 4.96857u - 0.612639 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{1595}{509}u^{13} + \frac{2457}{509}u^{12} + \dots + \frac{11407}{509}u - \frac{1470}{509}u$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{14} - 5u^{13} + \dots - 3u + 1$
c_2	$u^{14} - u^{13} + \dots - 5u + 1$
c_3, c_7	$u^{14} + u^{13} + \dots + 72u + 16$
<i>C</i> 5	$u^{14} - 2u^{13} + \dots + 540u + 200$
c_6,c_{10}	$u^{14} - 2u^{13} + \dots - u + 1$
c_8, c_9, c_{11}	$u^{14} + 2u^{13} + \dots + 7u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{14} + y^{13} + \dots + 5y + 1$
c_2	$y^{14} + 37y^{13} + \dots + 73y + 1$
c_{3}, c_{7}	$y^{14} - 27y^{13} + \dots - 832y + 256$
<i>C</i> ₅	$y^{14} + 82y^{13} + \dots + 531600y + 40000$
c_6, c_{10}	$y^{14} + 2y^{13} + \dots + 7y + 1$
c_8, c_9, c_{11}	$y^{14} + 22y^{13} + \dots + 7y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.571781 + 0.561972I		
a = -0.501422 + 0.063559I	-0.35154 + 1.84409I	-0.79789 - 4.83996I
b = -0.607051 + 0.239027I		
u = -0.571781 - 0.561972I		
a = -0.501422 - 0.063559I	-0.35154 - 1.84409I	-0.79789 + 4.83996I
b = -0.607051 - 0.239027I		
u = 0.191932 + 1.332820I		
a = 0.818040 - 0.252861I	7.00688 + 0.55948I	2.27714 - 0.75874I
b = 1.48559 + 0.47442I		
u = 0.191932 - 1.332820I		
a = 0.818040 + 0.252861I	7.00688 - 0.55948I	2.27714 + 0.75874I
b = 1.48559 - 0.47442I		
u = -0.004664 + 0.621250I		
a = 0.877799 + 0.498919I	0.65784 + 1.53044I	1.45925 - 4.48215I
b = 0.331213 + 0.818885I		
u = -0.004664 - 0.621250I		
a = 0.877799 - 0.498919I	0.65784 - 1.53044I	1.45925 + 4.48215I
b = 0.331213 - 0.818885I		
u = -0.38042 + 1.43966I		
a = -0.689794 - 0.282260I	6.27413 + 5.41755I	1.11952 - 5.07443I
b = -1.401110 + 0.139917I		
u = -0.38042 - 1.43966I		
a = -0.689794 + 0.282260I	6.27413 - 5.41755I	1.11952 + 5.07443I
b = -1.401110 - 0.139917I		
u = -0.206958 + 0.197769I		
a = 2.96034 + 2.05739I	-1.89748 + 0.70166I	-5.60702 + 2.76477I
b = -0.386385 + 0.432449I		
u = -0.206958 - 0.197769I		
a = 2.96034 - 2.05739I	-1.89748 - 0.70166I	-5.60702 - 2.76477I
b = -0.386385 - 0.432449I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.07913 + 1.85059I		
a = 0.707024 - 0.611419I	18.9281 - 1.0022I	1.174737 - 0.209171I
b = 2.31698 - 0.44656I		
u = 0.07913 - 1.85059I		
a = 0.707024 + 0.611419I	18.9281 + 1.0022I	1.174737 + 0.209171I
b = 2.31698 + 0.44656I		
u = -0.10723 + 1.88534I		
a = -0.671987 - 0.615446I	18.7301 + 8.0616I	0.87427 - 4.09385I
b = -2.23924 - 0.56690I		
u = -0.10723 - 1.88534I		
a = -0.671987 + 0.615446I	18.7301 - 8.0616I	0.87427 + 4.09385I
b = -2.23924 + 0.56690I		

II.
$$I_2^u = \langle b, -u^3 + u^2 + a - 3u + 2, u^4 - u^3 + 3u^2 - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} - u^{2} + 3u - 2 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} - u^{2} + 3u - 2 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} - u^{2} + 3u - 2 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $6u^3 6u^2 + 17u 11$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^4$
c_2, c_4	$(u+1)^4$
c_3, c_7	u^4
c_5,c_8,c_9	$u^4 - u^3 + 3u^2 - 2u + 1$
c_6	$u^4 - u^3 + u^2 + 1$
c_{10}	$u^4 + u^3 + u^2 + 1$
c_{11}	$u^4 + u^3 + 3u^2 + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_7	y^4
c_5, c_8, c_9 c_{11}	$y^4 + 5y^3 + 7y^2 + 2y + 1$
c_6, c_{10}	$y^4 + y^3 + 3y^2 + 2y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.395123 + 0.506844I		
a = -0.95668 + 1.22719I	-1.85594 - 1.41510I	-5.13523 + 6.85627I
b = 0		
u = 0.395123 - 0.506844I		
a = -0.95668 - 1.22719I	-1.85594 + 1.41510I	-5.13523 - 6.85627I
b = 0		
u = 0.10488 + 1.55249I		
a = -0.043315 + 0.641200I	5.14581 - 3.16396I	0.63523 + 2.29471I
b = 0		
u = 0.10488 - 1.55249I		
a = -0.043315 - 0.641200I	5.14581 + 3.16396I	0.63523 - 2.29471I
b = 0		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^4)(u^{14} - 5u^{13} + \dots - 3u + 1)$
c_2	$((u+1)^4)(u^{14}-u^{13}+\cdots-5u+1)$
c_3, c_7	$u^4(u^{14} + u^{13} + \dots + 72u + 16)$
c_4	$((u+1)^4)(u^{14} - 5u^{13} + \dots - 3u + 1)$
<i>C</i> ₅	$(u^4 - u^3 + 3u^2 - 2u + 1)(u^{14} - 2u^{13} + \dots + 540u + 200)$
c_6	$(u^4 - u^3 + u^2 + 1)(u^{14} - 2u^{13} + \dots - u + 1)$
c_8, c_9	$(u^4 - u^3 + 3u^2 - 2u + 1)(u^{14} + 2u^{13} + \dots + 7u + 1)$
c_{10}	$(u^4 + u^3 + u^2 + 1)(u^{14} - 2u^{13} + \dots - u + 1)$
c_{11}	$(u^4 + u^3 + 3u^2 + 2u + 1)(u^{14} + 2u^{13} + \dots + 7u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y-1)^4)(y^{14} + y^{13} + \dots + 5y + 1)$
c_2	$((y-1)^4)(y^{14} + 37y^{13} + \dots + 73y + 1)$
c_3, c_7	$y^4(y^{14} - 27y^{13} + \dots - 832y + 256)$
<i>C</i> ₅	$(y^4 + 5y^3 + 7y^2 + 2y + 1)(y^{14} + 82y^{13} + \dots + 531600y + 40000)$
c_6,c_{10}	$(y^4 + y^3 + 3y^2 + 2y + 1)(y^{14} + 2y^{13} + \dots + 7y + 1)$
c_8, c_9, c_{11}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)(y^{14} + 22y^{13} + \dots + 7y + 1)$