Antenna Engineering Laboratory ECE-3208

Dual Band Dipole Antenna

Presented By:

Ayesha Sultana_1709001 Faijah Rashid_1709002 Abu Taher_1709003

Project Supervisor:

Dr. Md. Mostafizur Rahman Professor, Dept of ECE, KUET

Md. Ebtidaul Karim Lecturer, Dept of ECE, KUET

Contents

- ➤ Aim of the Design
- **≻**Theory
- ➤ Input Parameters
- ➤ Calculated Parameters
- ➤ Technical Objectives
- ➤ Design Optimization
- ➤ Output Considerations >
- Design Accuracy
- **→** Finally

- √S- parameter
- ✓ Reference Impedance
- **✓** VSWR
- √ Gain
- ✓ Directivity
- ✓ Radiation Patter (1-D & 2-D)

AIM OF THE DESIGN

- ✓ Our aim is to design and simulate a basic dual band dipole antenna on a particular frequency and study radiation properties and frequency response with the help of various antenna parameters.
- ✓ The process is done with the help
 of CST simulator Software.

Theory

- ✓ Consists of two identical conductive elements
- ✓ Lowest impedance
- ✓ Voltage and current varies along the radiating section
- ✓ Resonant condition

Input Parameters

Length of the Dipole

$$L = \frac{c}{f}k$$

Where,

Radius of the Dipole

 $r = \lambda/1000$

L= length of dipole
f= frequency of dipole antenna
c= velocity of light
k= adjustment factor (generally 0.95)
λ= wavelength of dipole antenna

Input Parameters

Input Impedance of the dipole

Radiation Intensity of the dipole, $U(\theta) = \frac{1}{2}r^2 \frac{|E_{\theta}|^2}{\eta} = \frac{1}{2} \frac{\eta I_m^2}{(2\pi)^2} \frac{\cos^2(\pi/2\cos\theta)}{\sin^2\theta}$.

Radiated Power by the antenna,
$$W_{rad} = \int_0^{2\pi} \int_0^{\pi} U(\theta) \sin \theta d\theta d\phi$$

$$= \frac{1}{2} (2\pi) \frac{\eta I_m^2}{(2\pi)^2} \underbrace{\int_0^{\pi} \frac{\cos^2(\frac{\pi}{2} \cos \theta)}{\sin \theta} d\theta}_{1.2188 \text{ numerically}}$$

$$= 30(1.2188) I_m^2 = 36.5640 I_m^2.$$

Input Impedance, Z=
$$\frac{2W_{rad}}{I_m^2}$$
 = 73.1280 Ω

Calculated Parameters

Frequency of the antenna = 2.4 GHz

Symbols	Value	Description
R	1.5	Radius of Dipole
L	62.46	Length of Dipole
F	10	Feed line of Dipole
Z	73	Input Impedance of Dipole

Technical Objectives

To design a dual band dipole antenna, the following parameters should be considered-

- ✓ Radiation Pattern
- √ Frequency Response
- √ Gain

Design Optimization

Para	Parameter List X					
\mathbb{V}	Name	Expression	Value	Description		
-)4	R :	1.5	1.5	Radius of Dipole		
-)11	L :	62.46*a	55.886085	Length of Dipole		
-):(F :	= 10	10	Length of Feed		
-)11	Z	- 73	73	Input Impedence		
-)4	a :	2.1474/2.4	.89475			
<new parameter=""></new>						

Output Considerations

√S-parameter

Fig-01: S-parameter of dual band dipole antenna

Bandwidth Calculation from S-parameters

- ✓ Dual Band dipole antenna
- ✓ Hence, there will be two bandwidths

From the previous figure,

✓ Reference Impedance

Fig-02: Input Impedance of dual band dipole antenna

✓ VSWR

Fig-03: VSWR of dual band dipole antenna

√ Gain

Fig-04: Gain of the dual band dipole antenna (Gain= 2.025 dBi)

✓ Directivity

Fig-05: Directivity of dual band dipole antenna

✓ Radiation Pattern (1-D)

Fig-06: 1-D Radiation Pattern of Dipole Antenna

✓ Radiation Pattern (2-D)

Fig-07: 2-D Radiation Pattern of Dipole Antenna

Design Accuracy

Directivity of the dipole,
$$D_m = \frac{4\pi U_m}{W_{rad}} = \frac{4\pi}{8\pi^2} \eta I_m^2 \cdot \frac{1}{36.5640 I_m^2} = 1.64$$

$$D_{dipole} = 1.64 = 2.15 \text{ dBi} = 0 \text{ dBd.}$$
 (Calculated)

From the figure, we can determine the directivity of the dipole achieved by the simulation process.

Finally...

- ✓ A dual band dipole antenna designed successfully.
- ✓ All the output parameters are found with maximum accuracy.

Thank you for your attention!!

