물질의상태

2018. 03. 00

CONTENTS

- I 액체
- Ⅱ기체
- Ⅲ 고체
- IV 용액
- ∨ 기출문제

출제 포인트

- 이 섹션에서는 기체 상태의 물질을 이상 기체 상태식을 이용 하여 물질의 온도, 압력, 부피 등을 계산하는 문제가 주로 출 제된다.
- 이상 기체 상태식을 이용하여 계산하는 방법을 암기하듯이 반복적으로 풀어보아야 하며, 물질의 농도를 계산하는 문제 가 반드시 출제되므로 물질의 농도를 나타내는 기본 개념과 함께 농도를 구하는 법을 익혀 두자.
- 또한 용액의 총괄성에 대한 용액의 끓는점 오름, 어는점 내림, 삼투압에 관한 문제가 빈번히 출제되고 있으므로 계산 과정 을 확실히 익혀 두어 고득점을 얻을 수 있도록 준비하자.

액체

- 분자 사이의 힘
 - 녹는점, 끓는점은 분자 사이의 인력이 클수록 높아진다.
 - 분자사이의 힘
 - ❖ 쌍극자-쌍극자 힘 : 부분 전하(δ+, δ-)를 띠고 있는 극성 분자 사이에 작용하는 인력으로 극성이 클수록 강하다.
 - ❖반데르발스힘
 - ▶ 분산력이라고도 하며 분자들의 접근으로 분자에 있는 전자 구름이 한쪽으로 치우치게 되면 부분 전하를 띠는 편극 현상이 일어나는데, 이로 인해 유발 쌍 극자가 생성
 - ▶ 분자 내의 편극 현상으로 생긴 유발 쌍극자 사이에 작용하는 전기적인 인력을 의미
 - ▶ 대체로 분자량이 클수록 커진다.
 - ▶ 극성 분자와 무극성 분자에서 모두 작용

❖ 수소결합

- ▶ N, O, F 같이 전기음성도가 큰 원자에 결합되어 있는 수소가 이웃에 근접한 N, O, F 등과 같은 원자 사이에 작용하는 강한 인력(단, 이온 결합, 공유 결합, 금속결합의 세기에 비해서는 약한 힘이다)
- ▶ 대표적인 수소 결합 물질 : NH₃, H₂O, HF 등
- ▶ 기화열 및 융해열이 크다.
- ▶ 녹는점 및 끓는점(비등점)이 높다.

기체

- 기체의 압력과 부피
 - 압력 (pressure) : 기체가 용기 벽의 단위 면적에 가하는 힘
 - 보일의 법칙 : 일정한 온도에서 일정량의 기체의 압력(P)과 부피(V)의 곱은 일정하다. 즉, 부피는 압력에 반비례한다.
 - ❖ PV=k (k: 상수)
- 기체의 온도와 부피
 - 절대 온도(T) = 섭씨 온도(t) + 273.15
 - ▶ 샤를의 법칙 : 일정한 압력에서 일정량의 기체의 부피는 절대 온도에 비례한다. 즉, 온도가 1°C 상승할 때 0°C 때 부피의 1/273.15 씩 증가 한다.

$$V = V_0 + \frac{V_0}{273.15}t$$

$$V = \frac{V_0}{273.15} (273.15 + t)$$

$$\to V \propto T$$

기체

- 이상 기체의 법칙
 - 아보가드로 법칙: 온도와 압력이 같다면 기체의 종류에 상관없이 같은 부피에는 같은 수의 분자를 갖는다. 즉, 기체의 부피는 기체의 종류에 관계없이 분자 수에 비례한다.
 - ❖ V ∝ n (T, P이 일정할 때)
 - 이상 기체 방정식 : 이상 기체의 압력과 부피, 몰수, 절대 온도의 관계를 나타낸 식
 - ❖ PV = nRT
 - ❖ P: 기체의 압력(atm)
 - ❖ V: 기체의 부피(L)
 - ❖ n: 기체의 몰수(mol)
 - ❖ R: 기체 상수(0.08206[(atm·L)/(mol·K)])
 - ❖ T: 절대 온도(K)

기체

- 기체의 확산
 - 확산 : 기체 분자들이 스스로 운동하여 액체나 기체 속으로 퍼져나가 는 현상
 - 그레이엄 확산 법칙 : 온도와 압력이 일정 할 때 기체의 확산 속도는 분자량의 제곱근에 반비례한다. 기체 1의 확산 속도를 V_1 , 분자량을 M_1 , 기체 2의 확산 속도를 V_2 , 분자량을 M_2 이라고 하면 다음과 같은 관계가 성립한다.

$$\frac{v_1}{v_2} = \sqrt{\frac{M_2}{M_1}}$$

고체

• 결정의 종류

분자 결정	 분자 사이의 익t한 인 력 에 의해 규칙적으로 배열되어 이루어진 결정 드라이아이스 (CO₂), 아이오딘 (I₂), 나프탈렌(C₁₀H₈) 등
원자 결정	 원자 사이의 공유 결합에 의해 연속적으로 배열되어 이루어 진 결정 다이아몬드(C), 흑연(C), 수정 (SiO₂)
금속 결정	금속 양이온과 자유 전자 사이의 전기적 인력에 의한 결합구리(Cu), 나트륨(Na), 마그네슘(Mg) 등
이온 결정	 양이온과 음이온의 전기적 인력에 의해 이루어지는 결정 염화나트륨(NaCl), 염화칼슘(CaCl₂)

- 용액과 용해
 - 용액: 용매와 용질이 균일하게 섞여 있는 물질
 - 용해 : 용매와 용질이 고르게 섞이는 현상
- 용액의 농도
 - 몰 농도 : 용액 1L 속에 녹아있는 용질의 몰수 몰 농도(M)= 용질의몰수(mol) 용액의부피(L)
 - 노르말 농도 : 용액 1L 속에 포함된 용질의 g 당량 수를 표시한 농도

❖ g당량

원자=
$$\frac{ 원자량(g)}{ 원자가}$$

▶ 원자가란 원자가 결합할 수 있는 개수를 의미함 (산소 원자의 g 당량은 16g/2 = 8g)

산,염기=
$$\frac{$$
화학식량 (g) } H^+,OH^- 의수 산화,환원반응= $\frac{$ 화학식량 (g) 이동하는전자수

- 용액의 농도
 - 노르말 농도 : 용액 1L 속에 포함된 용질의 g 당량 수를 표시한 농도
 - ❖ 노르말 농도 예제

 - > 산소(O) 24g이 녹아있는 1L 용액의 노르말(N) 농도 > → 산소의 g 당량은 16g/2=8g이고, 노르말 농도는 $\frac{24g/8g}{1L}$ = 3N 이다.
 - ▶ 황산(H₂SO₄) 98g이 녹아있는 1L 용액의 노르말(N) 농도
 - ▶ → 황산의 g 당량는 98g/2=49g이고, 노르말 농도는 $\frac{98g/49g}{11} = 2N$ 이다.
 - ❖ 몰 농도(M)와의 관계
 - ❖ 노르말 농도를 당량으로 나누어 줌
 - ❖ Ca(OH)₂의 당량은 2이고, N농도가 1N 일 때 M 농도는 0.5M이다.
 - 몰랄 농도 : 용매 1kg에 녹인 용질의 몰수

몰랄 농도(m)= 용질의몰수(
$$mol$$
) 용매의질량(kg) = 용질의몰수(mol) 용매의질량(g) ×1000

- 용액의 농도
 - 퍼센트 농도 : 용액 100g에 녹아 있는 용질의 질량을 퍼센트로 나타낸 것

퍼센트농도(%)=
$$\frac{8질의질량(g)}{8액의질량(g)} \times 100$$

■ ppm 농도 : 용액 106g 속에 녹아 있는 용질의 질량(g)

$$ppm 농도 = \frac{8질의질량(g)}{8액의질량(g)} \times 10^6$$

- 용액의 증기 압력
 - 증기 압력: 밀폐된 용기 속에서 액체의 증발 속도와 응축 속도가 같아지는 동적 평형 상태에서 증기가 나타내는 압력
 - 증기 압력 내림 : 비휘발성 용질이 녹아 있는 붉은 용액에서 용액의 증기 압력은 순수한 용매의 증기압력보다 낮다
 - ❖ 증기 압력 내림 (△P) = 용매의 증기 압력 (P₀) 용액의 증기 압력 (P)
 - 라울의 법칙 : 붉은 용액의 증기 압력 (P_{용액})은 용매의 몰분율(x_{용매})에 비례한 다 .

$$P_{\ensuremath{arsigma}} = P_{\ensuremath{arsigma}} imes x_{\ensuremath{arsigma}}$$
 म

■ 증기 압력 내림 : 용질의 몰 분율(x_{용질})에 비례한다 .

$$\Delta P = P_{\text{g-m}} \times x_{\text{g-a}}$$

- 끓는점 오름과 어는점 내림
 - 끓는점 오름
 - ❖ 용액의 증기 압력은 용매의 증기 압력보다 낮으므로 용액의 끓는점은 용매보다 높다.
 - ❖ 용매의 끓는점을 T_b , 용액의 끓는점을 T_b 라고 하면 끓는점 오름 ΔT_b 는 다음과 같다.

$$\Delta T_b = T_b' - T_b$$

- ❖ 외부 압력이 증가하면 물의 끓는점은 높아진다
- 어는점 내림
 - ❖ 용액의 어는점은 용매의 끓는점보다 낮다.
 - ❖ 용매의 어는점을 T_f, 용액의 어는점을 T'_f라고 하면 어는점 내림 △T_f는 다음과 같다.

$$\Delta T_f = T_f - T_f'$$

- 비휘발성 용질이 녹아있는 붉은 용액의 끓는점 오름(ΔT_b)과 어는점 내림 (ΔT_f) 은 용액의 몰랄 농도(m)에 비례한다.
 - ❖ ΔT_b = K_b⋅m(K_b는 몰랄 오름 상수)
 - ❖ ΔT_f = K_f · m(K_f는 몰랄 내림 상수)

• 삼투압

- 삼투: 반투막을 사이에 두고 농도가 다른 두 용액이 있을 때 용매 분자의 반투막을 이동하면서 농도가 낮은 용액의 농도는 진해지고 농도가 진한 용액의 농도는 묽어져 용액의 농도가 같아지는 현상
- 삼투압 : 삼투 현상을 막기 위해 용액 쪽에 가해 주어야 하는 최소한의 압력
- 판트호프 법칙: 비휘발성, 비전해질이 녹아 있는 붉은 용액은 용액의 몰 농도와 절대 온도에 비례한다.
 - \star $\pi = CRT$
 - ❖ □ : 삼투압
 - ❖ C : 몰 농도(mol/L)
 - ❖ R: 기체 상수(0.08206 atm · L/mol · K)
 - ❖ T : 절 대 온도(K)

1.	4℃의 물이	얼음의	밀도보다 원	큰 이유는	물분자의	무슨	결합	때문인기	가? (13 -
	01)								

① 이온 결합 ② 공유 결합 ③ 배위 결합 ④ 수소 결합

2. 물분자들 사이에 작용하는 수소결합에 의해 나타나는 현상과 가장 관계가 없 는 것은? (13-04)

① 물의 기화열이 크다. ② 물의 끓는점이 높다.

③ 무색투명한 액체이다. ④ 얼음이 물 위에 뜬다.

3. 물(H₂O)의 끊는점이 황화수소(H₂S)의 끓는점 보다 높은 이유는? (16-02)

① 분자량이 작기 때문에 ② 수소결합 때문에

③ pH가 높기 때문에

④ 극성 결합 때문에

4. H₂O가 H₂S보다 비등점이 높은 이유는? (12-01)

① 분자량이 적기 때문에

② 수소결합을 하고 있기 때문에

③ 공유결합을 하고 있기 때문에 ④ 이온결합을 하고 있기 때문에

5. 다음 중 끓는점이 가장 높은 물질은? (12-01)

(1) HF

(2) HCl

(3) HBr

(4) HI

6. 다음 중 어떤 조건하에서 실제기체가 이상기체에 가깝게 거동하는가? (09-04)

① 낮은 온도, 높은 압력 ② 높은 온도, 낮은 압력

③ 낮은 온도, 낮은 압력 ④ 높은 온도, 높은 압력

7. 이상기체의 밀도에 대한 설명으로 옳은 것은? (13-04)

- ① 절대온도에 비례하고 압력에 반비례한다.
- ② 절대온도와 압력에 반비례한다.
- ③ 절대온도에 반비례하고 압력에 비례한다.
- ④ 절대온도와 압력에 비례한다.

8. 이상기체상수 R 값이 0.082 라면 그 단위로 옳은 것은? (11-01)

 $L \cdot K$

 $L \cdot K$ $mol \cdot K$ $mol \cdot K$

9.		2L의 부피를 하면 부피는			앙기체를 온도의 (15-01)	l 변화 없이	압력을
	① 2.0L	② 1.5L	(3	3) 1.0L	④ 0.5L		
	20℃에서 4 하는가? (16		는 기체가	있다. 동일	실한 압력 40℃	에서는 몇 L	를 차지
	① 0.23	2 1.23		③ 4.27		4 5.27	
11.3	이 물질의 분	사량은 약 !	몇 g/mol	인가? (15-		에서 420ml	. 였다.
	(1) 53	2 73	(3) 101	(4)	150		
12.	어떤 물질 1 물질의 분자	g 을 증발시 량은? (단, 경	켰더니 _ §발한 기차	1 부피가 0 ᅨ는 이상기	℃, 4atm에서 체라 가정한디	329.2mL 였 ├.) (14-04)	한다. 이
	17	(2) 23	3 30	4 60		
	질소 2몰과 분압은 얼마			가 나타나	는 전압력이 1 0)기압 일 때	질소의
	① 2기압	② 4기압	(3	3) 8기압	④ 10기 위) <u>}</u>	

기추 므제

	12 64					
14.	1기압의 수소 전체 압력은			L를 동일 온도에/)-02)	너 5L의 용기에	넣으면
	1 4/5	② 8/5	③ 12/5	4	16/5	
	2기압의 수소 체 압력은 몇			L를 동일 온도에서	서 5L의 용기에	넣으면 전
	4/5	(2) 8/5	(3) 12/5	(4) 16/5	

16. 산소 5g을 27℃ 에서 1.0L의 용기 속에 넣었을 때 기체의 압력은 몇 기압인 가? (12-02)

① 0.52기압

② 3.84기압 ③ 4.50기압 ④ 5.43기압

17. 0℃, 일정 압력하에서 1L의 물에 이산화탄소 10.8g 을 녹인 탄산음료가 있다. 동일한 온도에서 압력을 1/4로 낮추면 방출되는 이산화탄소의 질량은 몇 g 인가? (13-01)

(1) 2.7

(2) 5.4 (3) 8.1 (4) 10.8

기축 무제

•					
18.	730mmHg, 100℃에서 그 무게는 1.671g 이다	너 257mL 부 다. 이 물질의	부피의 용기 속어 의 분자량은 약 '	∥ 어떤 기체가 채워져 있 얼마인가? (13-02)	!다.
	① 28	2 56	③ 207	4 257	
19. I				°C 740mmHg에서 80m	ıL 🎗
	1 40	2 46	3 78	4 121	

20. 1기압 27℃에서 어떤 기체 2g 의 부피가 0.82L 이다. 이 기체의 분자량은 약 얼마인가? (08-04)

(1) 16

(2) 32(3) 60

(4) 72

21. 휘발성 유기물 1.39g을 증발시켰더니 100°C , 760mmHg에서 420mL였다. 이 물질의 분자량은 약 얼마인가? (07-01)

① 53.67g ② 73.56g ③ 101.46g

4) 150.73g

- 22. 그레이엄의 법칙에 따른 기체의 확산 속도와 분자량의 관계를 옳게 설명한 것은? (11-02)
 - ① 기체 학산 속도는 분자량의 제곱에 비례한다.
 - ② 기체 학산 속도는 분자량의 제곱에 반비례한다.
 - ③ 기체 학산 속도는 분자량의 제곱근에 비례한다.
 - ④ 기체 학산 속도는 분자량의 제곱근에 반비례한다.
- 23. 분자량의 무게가 4배이면 확산 속도는 몇 배인가? (14-02)

① 0.5배

(2) 1 出

③ 2배

(4) 4HH

24. 어떤 기체의 확산 속도는 SO2의 2배 이다. 이 기체의 분자량은 얼마인가? (07-02)

(1) 8

(2) **16**

(3) 32

(4) 64

25. 공유 결정(원자 결정)으로 되어 있는 녹는점이 매우 높은 것은? (13-04)

① 얼음

② 수정 ③ 소금 ④ 나프탈렌

	. — —					
26.	다이아몬드의 결합 형			거소L		<u>خ</u> ا
	① 급속결합	② 이온걸압	3 5 7	·걸압	④ 수소결	얍
27.	NaCl 의 결정계는 다음					
	① 입방체형 (cubic) ③ 육방정계(hexagonal)					
28.	95Wt%황산의 비중은	1.84이다. 여	이 황산의 몰 등	농도는 약	얼마인가?	(07-02)
	1 4.5	2 8.9	③ 17.8	4 35.6		
	20℃, 28wt% 황산용약					고, 20°C
	에서 28wt% 황산용액	1mL 무게는	1.202g 이니	·.) (09-02)		
	1 3.43	2 3.97	3 4	.11		4 5.16
30.	황산 98g 으로 0.5M의	H2SO4 를	몇 mL 만들 -	수 있는가?	(08-02)	
	1 1000	2 2000	3 3000		4000	

31.	황산	196g으로	1M	- H ₂ SO ₄	용액을	몇 mL	만들	수	있는가?	(07-01)
-----	----	--------	----	----------------------------------	-----	------	----	---	------	---------

1000

2) 20003) 3000

(4) 4000

32. 농도 단위에서 "N" 의 의미를 가장 옳게 나타낸 것은? (15-02)

- ① 용액 1L 속에 녹아있는 용질의 몰 수
- ② 용액 1L 속에 녹아있는 용질의 g 당량수
- ③ 용액 1000g 속에 녹아있는 용질의 몰 수
- ④ 용액 1000g 속에 녹아있는 용질의 g 당량수

33. NaOH 1g 이 250mL 메스플라스크에 녹아 있을 때 NaOH 수용액의 농도는? (12-01)

(1) 0.1N

(2) 0.3N

(3) 0.5N

(4) 0.7N

34. NaOH 용액 100mL속에 NaOH 10g이 녹아 있다면 이 용액은 몇 N 농도인 가? (07-04)

(1) 1.0

(2) 1.5

③ 2.0

(4) 2.5

35.	3N 황산용액 200mL 중에는 몇 g의 H2SO4를 포함하고 있는가? (단, S의 원	2
	자량은 32 이다.) (09-01)	

(1) 29.4

⁽²⁾ 58.8

③ 98.0

(4) 117.6

36. 산성용액하에서 사용할 0.1N KMnO₄용액 500mL를 만들려면 KMnO₄ 몇g이 필요한가? (단, 원자량은 K:39 Mn :55 O: 16) (06-02)

(1) 15.8g

② 16.8g ③ 1.58g ④ 0.89g

37. 다음 중 1 몰랄 농도에 관한 설명으로 옳은 것은? (07-01)

- ① 용액 1L 속에 녹아 있는 용질의 몰 수
- ② 용매 1000g 에 녹아 있는 용질의 몰 수
- ③ 용액 100g 에 녹아 있는 용질의 g 수
- ④ 용액 1L 속에 녹아 있는 산-염기의 g 당량수

38. 용매 1kg에 녹아있는 용질의 몰 수 로 정의되는 용액의 농도는? (06-01)

① 몰랄농도 ② 몰농도 ③ 퍼센트농도 ④ 노르말농도

39.	분자량이 120인	물질	12g을 ¦	물 500g에	녹였다.	이 용액의	몰랄농도는	몇 m
	인가? (09-02)							

(1) 0.1 (2) 0.2

③ 0.3

(4) 0.4

40. 물 500g 중에 설탕(C12H22O11) 171g 이 녹아 있는 설탕물의 몰랄농도는? (14-02)

2.0
 1.5

(3) 1.0

(4) 0.5

41. 96wt% H₂SO₄(A)와 60wt% H₂SO₄(B)를 혼합하여 80wt% H₂SO₄ 100kg 만 들려고 한다. 각각 몇 kg 씩 혼합하여야 하는가? (09-01)

① A:30, B:70

② A:44.4, B:55.6

③ A:55.6, B:44.4

(4) A: 70, B: 30

42. 15wt%의 식염수 100g을 가열해서 질량이 처음의 2/5로 되었다면 이 때 식 염수의 농도는 몇 wt%인가? (09-04)

15.5

2 25.5

(3) 32.5 (4) 37.5

43.	2M Ca(OH)2 용액 20 필요한가? (단, Ca의 원 ① 29.6	원자량은 40	를고자 할 때 509)이다.) (08-02) ③ 79.2		2용액은 몇 g이
44.	Na ₂ CO ₃ · 10H ₂ O 20g을 Na ₂ CO ₃ 용액으로 되는 ① 3.7		80g의 물에 녹인 a의 원자량은 23 ③ 10		음약 몇 wt% 의 8-04) ④ 15
	물 2.5L 중에 어떤 불선 수 있는가? (10-01) ① 0.4	눈물이 10 m ② 1		Ի면 약 몇	ppm 으로 나타낼 ④ 40
46 .	100mL 메스플라스크 액 몇 mL를 취해야 하 ① 0.1	는가? (09-0	(4)		한다. 1000ppm 용

- 47. 다음 중 물의 끓는점을 높이기 위한 방법으로 가장 타당한 것은? (10-02)
 - ① 순수한 물을 끓인다.
 - ③ 감압하에 끓인다.

- ② 물을 저으면서 끓인다.
 - ④ 밀폐된 그릇에서 끓인다.
- 48. 물의 끓는점을 낮출 수 있는 방법으로 옳은 것은? (10-04)

 - ① 밀폐된 그릇에서 물을 끓인다. ② 열전도도가 높은 용기를 사용한다.
 - ③ 소금을 넣어준다.

- ④ 외부 압력을 낮추어 준다.
- 49. 그래프는 4가지 액체의 증기압력과 온도와의 관계를 나타낸 것이다. 1기압의 압력하에서 분자간의 인력이 가장 강한 액체는 ? (06-02)

50. 다음에서 설명하는 법칙은 무엇인가? (09-02)

일정한 온도에서 비휘발성이며, 비 전해질인 용질이 녹은 붉은 용액의 증 기 압력 내림은 일정량의 용매에 녹아 있는 용질의 몰수에 비례한다.

① 헨리의 법칙

- ② 라울의 법칙
- ③ 아보가드로의 법칙
- ④ 보일-샤를의 법칙
- 51. 요소 6g을 물에 녹여 1000L로 만든 용액의 27도에서의 삼투압은 약 얼마인 가? (단, 요소의 분자량은 60, R은 0.082 atm*L/(mol*K) (06-02)
 - (1) $1.5*10^{-1}$ atm (2) $1.5*10^{-2}$ atm (3) $2.5*10^{-3}$ atm (4) $2.5*10^{-4}$ atm

- 52. 27℃에서 500mL에 6g의 비전해질을 녹인 용액의 삼투압은 7.4기압이었다. 이 물질의 분자량은 약 얼마인가? (16-01)
 - (1) 20.78

- (2) 39.89 (3) 58.16 (4) 77.65

- 53. 27℃에서 9g 의 비전해질을 녹여 만든 900mL 용액의 삼투압은 3.84기압이 었다. 이 물질의 분자량은 약 얼마인가? (12-04)
 - (1) 18

(2) 32

(3) 44

(4) 64

- 54. 25.0g의 물 속에 2.85g 의 설탕(C12H22O11)이 녹아있는 용액의 끓는점은? (단, 물의 끓는점 오름 상수는 0.52 이다.) (12-04)

 - 100.0°C
 2) 100.08°C
 3) 100.17°C
 4) 100.34°C

- 55. 물 200g에 A물질 2.9g을 녹인 용액의 빙점은? (단, 물의 어는 점 내림 상수는 1.86℃・kg/mol 이고, A 물질의 분자량은 58 이다.) (09-01)
 - ① -0.465°C
- ② -0.932°C ③ -1.871°C ④ -2.453°C

- 56. 어떤 비전해질 12g 을 물 60.0g 에 녹였다. 이 용액이 -1.88℃ 의 빙점 강하를 보였을 때 이 물질의 분자량을 구하면? (단, 물의 몰랄 어는점 내림 상수 K_f=1.86°C/m 이다.) (16-02)
 - (1) 297

⁽²⁾ 202

③ 198

(4) 165

Thank you