CG1111: Engineering Principles and Practice I

Preparation for Week 2, Studio 2
How Systems Get Energy?

Energy

Energy is the ability to do work

Energy can be converted from one form to another

Energy Conversion

ENERGY SOURCES AND CONVERSION PROCESSES

Energy Transmission

- Energy can be transmitted from one part of the system to another
 - Transmission Lines

-Gears

Can I transmit all the energy???

Instantaneous Power and Efficiency

The instantaneous power p is the rate of change of transmitted or converted energy:

$$p = \frac{dW(t)}{dt}$$

• The efficiency is defined as $\eta = \frac{P_{out}}{P_{in}} = \frac{P_{out}}{P_{out} + P_{Total Loss}}$

Energy Balance in Engineering Systems

Energy Balance Equation

$$\sum E_{in} = \sum E_{out} + \sum E_{stored} + \sum E_{lost}$$

■ Power is the rate of energy flow $P = \frac{dE}{dt}$

er Balance Equation

Power Balance in a Laptop

Batteries!!!

• Why do we need batteries??

ACTIVITY 1

CG1111: Engineering Principles and Practice I

Preparation for Week 2, Studio 2 **Battery Characteristics**

Batteries!!!

■ Chemical energy → Electrical energy

Primary Batteries: Non-rechargeable

Secondary Batteries: Rechargeable

Battery Equivalent Circuit

Battery Parameters

- Open Circuit Voltage: Voltage across the battery terminals when nothing is connected across it
- Battery Capacity: product of current drawn from battery and time. Units: Ampere Hours/ milliAmpere Hours

 $-V_{bat}$: Voltage of Battery

 $-R_{bat}$: Internal Resistance of Battery

- R₁: Load Resistance

- I₁: Load Current

Battery Discharge Characteristics

Mid-Point Voltage

Approximate Operational Voltage of Battery

Cycling

 If the battery is not discharged at constant current, but the load or applications needs less current for some time and then a large current for another time period

- $I_{discharge} = I_{avg} = I_1 + (I_2 I_1) \frac{t_{12}}{T_S} if \frac{t_{12}}{T_S} < 0.65$
- $I_{discharge} = I_2 \ if \frac{t_{12}}{T_s} > 0.65$
- I_{discharge} is the approximated discharge current that we use to calculate C-rate

C-Rate of Battery

- C-rate is a commonly used terminology to indicate the amount of current drawn from the battery
- A "1C" rate means that the discharge current will discharge the entire battery in 1 hour.
 - 1 C rate for a 1000mA-h battery means, it is being discharged by
 1 A current for 1 hour
 - For the 1000mA-h battery, '5C' would mean it is being discharged at $5 \times 1 = 5A$
 - → Discharge Time = 60/5= 12 minutes
 - '0.5C' means it is being discharged at 0.5 x 1= 0.5A
 - → Discharge Time = 60/0.5= 120 minutes or 2 hours
- As C-rate increases, battery capacity decreases

Depth of Discharge

- When we draw a current from a battery we discharge the battery
- It is advisable not to discharge the battery completely as it reduces the life of the battery
- If we discharge the battery to 60% of its total capacity, the depth of discharge 'DoD' is said to be 60%
- The Depth of Discharge is a complement of State of Charge
- V_{eod}: End of Discharge Voltage

Series Connection of Batteries

If both batteries have capacity of 1000 mAh, what is the capacity of series connection?

- If no R_L , $i_L = 0$ (Open Circuit)
- \rightarrow Open Circuit Voltage $V_{o,i_L=0} = V_{bat1} + V_{bat2}$
- If R₁ is connected, i₁ flows

$$\rightarrow V_o = V_{bat1} + V_{bat2} - i_L (R_{bat1} + R_{bat2})$$

- Same current through both the batteries
- Capacity (Ah) in Series → Remains the same:
- → The available voltage has doubled

Two Batteries connected in Series double the voltage but have the same capacity

Parallel Connection of Batteries

If both batteries have capacity of 1000 mAh, what is the capacity of parallel connection?

- If no R_L , $i_L = 0$ (Open Circuit)
- \rightarrow Open Circuit Voltage $V_{o,i_L=0} = V_{bat1} = V_{bat2}$
- If R₁ is connected, i₁ flows

$$\rightarrow V_o = V_{bat1} - i_{L1}R_{bat1} = V_{bat2} - i_{L2}R_{bat2}$$

- Total Current adds up $i_L = i_{L1} + i_{L2}$
- Capacity(Ah) in Parallel→ Increases (Doubles)
- → Voltage of parallel combination → Same

Two Batteries connected in Parallel double the capacity but have the same voltage

CG1111: Engineering Principles and Practice I

Preparation for Week 2, Studio 2 **Battery Design**

Battery Design

Design a battery pack for an electronic system consisting of LiIon batteries, to last a period of 6 hours with characteristics shown below and a C-Rate of 10C. The laptop has 3 subsystems working in parallel and an operating voltage of 25V

- Subsystem 1: $P_{out1} = 120W$, $\eta_1 = 60\%$
- Subsystem 2: $P_{out2} = 80W$, $\eta_2 = 80\%$
- Subsystem 3: P_{out3} = 90W, η_3 = 90%

Battery Design

Mid-Point Voltage

- Calculate the mid-point voltage at given C-rate
- If C-rate is not given assume 1C

Mid Point Voltage at 10C ≈ 3.65V

No. of Batteries in Series

- Find the operating voltage of the load
- Use the operating voltage of the load and the mid-point voltage of each battery to estimate the number of batteries to be connected in series

•
$$n_S = \frac{Operating\ Voltage\ of\ Load}{Mid-Point\ Voltage}$$

$$\rightarrow n_S = \frac{25V}{3.65V} = 6.85$$

$$\rightarrow n_s \approx 7$$

No. of Batteries in Series n_s = 7

Power Requirements

Block Diagram Method to calculate power requirements

Power Requirement P_{in}= 400W

Load Capacity

- Find the Battery Bank Operating Voltage (V_{BB})
- \rightarrow V_{BB}=n_s*mid point voltage = 7*3.65= 25.55V
- Calculate Load Energy = P_{in} * time
- → Load Energy = 400W* 6 hours = 2400Wh
- Load Energy = V_{BB}*Load Capacity
- \rightarrow Load Capacity = 2400/25.55 = 93.93 Ah
- →Load Capacity = 93930 mAh

Load Capacity = 93930 mAh

Max. Depth of Discharge, C -Rate & Battery Capacity

 Choose the curve corresponding to the system C-Rate (10 C) and estimate the battery capacity at the Max. Depth of

Single Battery Capacity = 3800 mAh

No. of Parallel Branches

- Find the load capacity
- Use the load capacity and the battery capacity of one battery (3800 mAh)to estimate the number of branches to be connected in parallel

•
$$n_p = \frac{Load\ Capacity}{One\ Battery\ Capacity}$$

$$\rightarrow n_p = \frac{93930 \, mAh}{3800 \, mAh} = 24.71$$

$$\rightarrow n_p \approx 25$$

No. of Parallel Branches $n_p = 25$

Final Battery Design

- Operating Voltage: 25.55 V
 - 7 batteries connected in series with mid-point
 Voltage of 3.65V at 10C
- Load Capacity: 93930 mAh
 - -25 branches of 7 series connected batteries connected in parallel with each battery capacity of 3800 mAh
- Total number of batteries
 - 25* 7= 175 Li-lon batteries

ACTIVITY 2

THANK YOU