Tema seminar

Cerinte – analiza:

1. Sa se introduca in simulator schema propusa, cu valorile numerice personalizate.

Nume: Ionescu

Prenume: Cristina

 $L_1 = I$

 $L_2 = O$

 $L_3 = N$

 $L_4 = C$

 $L_5 = R$

 $L_6 = I$

$$\Rightarrow$$
 R₁ = 820 Ω , R₂ = R₃ = 16k Ω , R₈ = R₉ = 39k Ω

2. Simulare DC Sweep

$2.1\,$ Caracteristica de transfer a schemei (grafic V_{out} funție de V_1)

Am variat tensiunea intre -100mV si 100mV cu pasul de 1mV, obtinand astfel caracteristica de transfer. (am ales aceste tensiuni pentru ca in acest interval se poate vedea cel mai bine variatia de tensiune)

2.2 Domeniul tensiunii de intrare pentru care schema functioneaza linear

- Domeniul de intrare pentru care schema se comporta liniar este de la -82.5mV pana la 82.5mV.
- Domeniul de iesire pentru care schema se comporta liniar este de la -4,9V pana la 4,9V.

2.3 Amplificarea de tensiune a schemei (pentru semnale foarte lent variabile)

Amplificarea teoretica este aproximativ egala cu amplitudinea obtinuta din grafic, avand o avatere de 0,008%.

3. Sa se realizeze o simulare de tip AC

3.1 Caracteristica de frecventa a schemei la scara logaritmica

3.2 Banda de trecere a schemei (fiind de tip filtru trece-jos, este egala cu frecvența de -3dB)

Banda de trecere este egala cu frecventa de taiere si este 35.30Hz conform rezultatelor din grafic.

4.1 Raspunsul la semnal tip treapta, la o scala de timp potrivita pentru a observa fenomenul tranzitoriu (interval prea mare – va arata ca o tranzitie verticala; interval prea mic – nu se va observa stabilizarea)

4.2 Timpul de crestere (intervalul de la inceputul fenomenului tranzitoriu pana la parcurgerea a 90% din amplitudinea varf-la-varf a iesirii).

Timpul de crestere este de 8.75ms.

Perioada este $\frac{1}{35.30Hz} = 28.32ms$ (stim frecventa de la 3.2).

Relatia dintre perioada si timpul de crestere:

$$\frac{28.32ms}{8.75ms} = 3.23$$
 => perioada frecventei caracteristice a filtrului este de 3.23 ori mai mare decat timpul de crestere.

Cerinte – proiectare:

5. Sa se modifice schema:

$$L_2 = O$$

$$L_5 = R$$

$$L_6 = I$$

$$\Rightarrow$$
 V_{im} = 20mV, V_{om} = 3.5V, f_{-3dB} = 3000Hz

5.1 Schema trebuie sa transfere domeniul de intrare specificat ($-V_{im}$, $+V_{im}$) în domeniul de iesire specificat ($-V_{om}$, $+V_{om}$).

Domeniul de iesire este Vim = 20mV = (-20mV, 20mV).

Domeniul de iesire este Vout = 3.5V = (-3.5V, 3.5V).

Amplificarea este
$$A = \frac{v_{om}}{v_{im}} = \frac{3.5V}{-0.02V} = -175$$

Calculam teoretic valoarea R1 pentru care amplificarea sa fie -175.

$$\left(1 + \frac{R_2 + R_3}{R_1}\right) \left(-\frac{R_5}{R_4}\right) \left(1 + \frac{R_{11}}{R_{10}}\right) = A$$

$$\left(1 + \frac{R_2 + R_3}{R_1}\right) * (-1) * 1.5 = A$$

$$\frac{R_2 + R_3}{R_1} = \frac{-A}{1.5} - 1$$

$$\frac{R_2 + R_3}{R_1} = \frac{-A - 1.5}{1.5}$$

$$R_1 = \frac{(R_2 + R_3) * 1.5}{-A - 1.5}$$

$$R_1\cong 276,65 \ \rightarrow \ R_1\cong 276$$

Pentru a respecta standardul E24 folosim un calculator de rezistente pentru a alege niste valori standard pentru R₁, alegem sa punem doua rezistente in serie in locul lui.

$$R_1(276\Omega)$$
 => $R'_1(220\Omega) + R'_2(56\Omega)$

Apoi realizam o simulare DCSweep pentru a verifica rezultatul.

Se observa cum schema transfera domeniul de intrare (-20mV, 20mV) in (-3.5V, 3.5V) cu o amplificare de -175.36. Astfel, eroarea de la amplificare este de

$$\left(1 - \frac{-175}{-175,36}\right) * 100 = 0.2\%$$

fiind mai mica de 10%.

5.2 Schema trebuie sa aiba frecventa de -3dB specificata.

Frecventa de banda pe care trebuie să o obtinem este de 3000Hz. Frecventa caracteristica initiala (de la punctul 3.2) este de 35.30Hz.

Raportul dintru cele 2 fecvente este: $\frac{3000Hz}{35.30Hz} = 84.98$.

Prima frecventa este d.p cu $\frac{1}{\sqrt{R8*R9*C1*C2}}$

Frecventa care trebuie obtinuta este d.p. cu $\frac{1}{\sqrt{R8'*R9'*C1*C2}}$

$$\Rightarrow \frac{\sqrt{R8*R9*C1*C2}}{\sqrt{R8'*R9'*C1*C2}} = 84.98$$

Astfel, pentru obtinerea acestui raport, modificam rezistentele:

$$R8' = \frac{R8}{84.98} = 0.458k\Omega \cong 460 \Omega$$

$$R9' = \frac{R9}{84.98} = 0.458k\Omega \cong 460 \Omega$$

Dar, pentru a respecta standardul E24 vom folosi pentru R8 $^{'}$ si R9 $^{'}$ rezistente de 470 Ω .

Obtinem o frecventa de 3.462kHz.

Eroarea este de
$$\left(1 - \frac{3kHz}{3.462kHz}\right) * 100 = 13.34 \%$$

Concluzii:

Amplificarea reala difera de cea teoretica cu o abatere de 0.008%, aceasta diferenta este data de amplificatorul care simuleaza o piesa reala si are amplificare un bucla deschisa.

Eroarea obtinuta la exercitiul 5 este mai mare deoarece am incercat sa folosim valorile standard E24. Se putea evita folosind alta legare a rezistentelor sau alte valori ale lor.