Peter Smith, Introduction to Formal Logic (CUP, 2nd edition)

Exercises 20

- (a) Show that the following inferences (in suitable languages, of course) can be warranted by proofs using our rules for conjunction and negation:
 - (1) P, Q, R \therefore (P \wedge (P \wedge (Q \wedge Q)))
 - (2) $(P \wedge (Q \wedge R)) \therefore ((Q \wedge \neg \neg P) \wedge R)$
 - (3) $(P \wedge Q)$, $\neg(P \wedge R)$, $\neg(Q \wedge S)$ \therefore $(\neg R \wedge \neg S)$
 - $(4) \ \neg (\mathsf{P} \wedge \neg \mathsf{Q}), \ \neg (\mathsf{Q} \wedge \neg \neg \mathsf{R}) \ \therefore \ \neg (\mathsf{P} \wedge \neg \neg \mathsf{R})$
 - $(5) \quad \neg((\mathsf{P} \vee \mathsf{R}) \wedge \neg \neg(\neg \mathsf{S} \wedge \mathsf{Q})), \ \neg \neg(\neg \mathsf{S} \wedge \mathsf{Q}) \ \therefore \ \neg(\mathsf{P} \vee \mathsf{R})$
 - (6) $\neg (P \land S), \neg (\neg S \land Q) \therefore \neg ((P \land R) \land Q)$
 - (7) $\neg (P \land \neg (S \land Q)), (\neg R \land \neg \neg P) \therefore (Q \land \neg \neg \neg R)$
 - (8) $\neg (P \land S), \neg (\neg S \land Q), ((P \land R) \land Q) \therefore P'$
 - $(9) \neg (P \land \neg \neg \neg \bot) \therefore \neg P$
- $(10) \quad (\mathsf{P} \to \mathsf{Q}) \quad \therefore ((\mathsf{P} \to \mathsf{Q}) \quad \land \neg \bot)$
- (b*) Recall the ' Γ ' notation from Exercises 16(c*), introduced to indicate some wffs (zero, one, or many), with ' Γ , α ' indicating those wffs together with α . And recall the use of 'iff' introduced in §18.6. We now add a new pair of definitions

 Γ are S-consistent – i.e., are consistent as far as the proof system S can tell – iff there is no proof in system S of \bot from Γ as premisses.

 Γ are S-inconsistent iff there is an S-proof of \bot from Γ as premisses.

Let S be the current proof system with our conjunction and negation rules. Show:

- (1) α can be derived in S from Γ as premisses iff Γ , $\neg \alpha$ are S-inconsistent.
- Now for three results (for eventual use in the Appendix) about what we can add to S-consistent wffs while keeping them S-consistent. First, note that if Γ , α are S-inconsistent, Γ proves $\neg \alpha$; so if Γ , α are S-inconsistent and $\neg \neg \alpha$ is one of the wffs Γ , then Γ must already be S-inconsistent. (Explain why!) Conclude that
 - (2) If the wffs Γ are S-consistent and $\neg\neg\alpha$ is one of them, then Γ, α are also S-consistent.

We use Γ, α, β to indicate the wffs Γ together with α and β . Show that

(3) If the wffs Γ are S-consistent and $(\alpha \wedge \beta)$ is one of them, then Γ, α, β are also S-consistent.

Note too that if Γ , $\neg \alpha$ and Γ , $\neg \beta$ are both S-inconsistent, we can derive both α and β from Γ , and hence can derive $(\alpha \wedge \beta)$. So if Γ , $\neg \alpha$ and Γ , $\neg \beta$ are both S-inconsistent and these wffs Γ already include $\neg(\alpha \wedge \beta)$, then Γ are S-inconsistent (why?). Conclude

(4) If the wffs Γ are S-consistent and $\neg(\alpha \wedge \beta)$ is one of them, then either $\Gamma, \neg \alpha$ or $\Gamma, \neg \beta$ (or both) are also S-consistent.