1 he	e coefficient of restitution between the spheres is e .	
(a)	Find, in terms of u and e , the velocities of A and B after the collision.	[3
f <i>B</i> `he	esequently, <i>B</i> collides with a fixed vertical wall which makes an angle θ with <i>B</i> , where $\tan \theta = \frac{3}{4}$. The coefficient of restitution between <i>B</i> and the wall is $\frac{2}{3}$. Immediately after a kinetic energy of <i>A</i> is $\frac{5}{3}$ of the kinetic energy of <i>B</i> .	
of B The	B, where $\tan \theta = \frac{3}{4}$. The coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after a kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B.	B collides with the wal
of <i>B</i> Γhe he	B, where $\tan \theta = \frac{3}{4}$. The coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after a	B collides with the wal
of <i>B</i> Γhe he	B, where $\tan \theta = \frac{3}{4}$. The coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after a kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B.	B collides with the wal
of <i>B</i> Γhe he	B, where $\tan \theta = \frac{3}{4}$. The coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after a kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B.	B collides with the wal
of <i>B</i> Γhe he	B, where $\tan \theta = \frac{3}{4}$. The coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after a kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B.	B collides with the wal
of <i>B</i> Γhe he	B, where $\tan \theta = \frac{3}{4}$. The coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after a kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B.	B collides with the wal
of <i>B</i> Γhe the l	B, where $\tan \theta = \frac{3}{4}$. The coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after a kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B.	B collides with the wal
of <i>B</i> Γhe he	B, where $\tan \theta = \frac{3}{4}$. The coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after a kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B.	B collides with the wal
of <i>B</i> Γhe he	B, where $\tan \theta = \frac{3}{4}$. The coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after a kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B.	B collides with the wal
of <i>B</i> Γhe he	B, where $\tan \theta = \frac{3}{4}$. The coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after a kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B.	B collides with the wal
of B The the	B, where $\tan \theta = \frac{3}{4}$. The coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after a kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B.	

© UCLES 2020 9231/33/O/N/20