

Mašinsko učenje 2023

Sadržaj

* Podsetnik - praktičan deo

* Zadatak 1

*

*

SciPy Stack

Uputstva i saveti

- Praktičan deo predmeta nosi najviše 60* bodova.
- Sastoji se od:
 - 6 domaćih zadataka
 - Predmetnog projekta.
- Akcenat na timskom radu:
 - Svaki član tima mora dati svoj doprinos
 - Bodovi dodeljeni članovima istog tima mogu da se razlikuju.

^{*} u posebnim slučajevima 60 bodova donosi i dodatnih 40.

Opcije:

- Samo projekat = najviše 25 bodova
- 3 domaća zadatka (najviše 25) + projekat (najviše 25) = najviše 50 bodova
- 4+ domaćih zadataka (najviše 35) + projekat (najviše 25) = najviše 60 bodova
- Nagrada za najuspešnije = najviše 60 bodova.
- Najuspešniji od najuspešnijih = 100 bodova.

• Kriterijumi:

- Ostvareni rezultati i kako se do njih došlo:
 - Pristup problemima
 - Korišćeni algoritmi
 - Određivanje (hiper)parametara algoritama
 - Rad sa trening skupom podataka.
- Propratni izveštaji:
 - Sadržaj propratnih izveštaja
 - Usklađenost izveštaja i izvornih kodova rešenja.
- Diskusija:
 - Prezentovanje rešenja i odgovori na pitanja prilikom prezentovanja.

- Raspored domaćih zadataka:
 - 06.03. 17.03. Jednostruka linearna regresija
 - o 20.03. 06.04. Višestruka regresija
 - o 11.04. 25.04. SVM
 - o 03.05. 12.05. Ansambl klasifikatora
 - o 15.05. 26.05. Klasterovanje
 - o 29.05. 04.06. PCA

- Jednostruka linearna regresija:
 - Upotrebom jednostruke linearne regresije prediktovati Y na osnovu X.
 - Zadatak je uspešno urađen ukoliko se na kompletnom testnom skupu podataka dobije RMSE (Root Mean Square Error) manji od 126.
 - Algoritmi mašinskog učenja se samostalno implementiraju zabranjena upotreba algoritama iz biblioteka.
 - Rok za izradu zadatka je 17.03.2023. u 23:59h.
 - Instalirane biblioteke za Zadatak 1:
 - NumPy
 - Pandas.
 - Sledeći termin vežbi (odbrana Zadatka 1 i predstavljanje Zadatka 2) je u nedelji
 20.03. 24.03.2023.

- Koncepti vezani za Zadatak 1 (podsetiti se gradiva sa predavanja i ranijih predmeta):
 - Gradient Descent (Batch vs Stochastic)
 - Normal Equation
 - Outlier-i i ostale tačke visokog uticaja (high-leverage points)
 - Rad sa (trening) skupom podataka.

Metrika se računa na osnovu sledeće formule:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_{i} - Actual_{i})^{2}}{N}}$$

SciPy Stack

- Za izradu zadataka koristiti Python 3.5.x.
- Preporuka da se prilikom izrade zadataka oslonac bude SciPy Stack i njegove biblioteke:
 - NumPy
 - SciPy
 - Matplotlib
 - Jupyter
 - o Pandas.

- Za Zadatak 1 na platformi su instalirane biblioteke (verzije date u Uputstvu):
 - O NumPy:
 - <u>Docs</u>
 - Stanford Tutorial
 - Pandas:
 - Docs
 - Tutorial
 - 10 Minutes to Pandas.
- Za potrebe vizualizacije podataka i pisanja propratnog izveštaja od pomoći može biti biblioteka Matplotlib:
 - o <u>Docs</u>
 - Tutorial.

Uputstva i saveti

- Uputstvo za rad sa platformom i pisanje propratnog izveštaja se nalazi u:
 - Files/Vežbe/Uputstvo.pdf.
- Saveti za rešavanje zadataka:
 - Podsetiti se gradiva sa predavanja
 - Detaljno pročitati uputstvo za rad sa platformom i pisanje propratnog izveštaja
 - Vizualizacija podataka
 - Isprobati više pristupa podeliti zaduženja tako da svaki član tima implementira jedan pristup. Nakon toga, zajedno analizirati implementirano i odabrati najbolji pristup koji će se evaluirati na platformi.
 - Ako se radi normalizacija podataka, obratiti pažnju kako će se računati RMSE metrika.

- Savet za implementaciju:
 - Metoda fit(x, y) za "fitovanje" trening podataka
 - Metoda predict(x) za predikciju vrednosti testnog skupa
 - Metoda calculate_rmse(y_true, y_predict) za računanje RMSE na osnovu date formule.