TOPIC 4.4: TRANSFORMATION OF FUNCTIONS

1. HORIZONTAL SHIFTS OF GRAPHS

2. REFLECTING GRAPHS OF GRAPHS

3. VERTICAL STRETCHING AND SHRINKING OF GRAPHS

4. HORIZONTAL SHRINKING AND STRETCING OF GRAPHS

5. VERTICAL SHIFTING OF GRAPHS

EVEN AND ODD FUNCTIONS

If a function f satisfies f(-x) = f(x) for every number x in its domain, then f is called an even function

If f satisfies f(-x) = -f(x) for every number x in its domain, then f is called an odd function.

For instance, the function $f(x) = x^2$ is even because

$$f(-x) = (-x)^2 = (-1)^2 (-x)^2 = x^2 = f(x)$$

The graph of an even function is symmetric with respect to the y-axis

This means that if we have plotted the graph of f for $x \ge 0$, then we can obtain the entire graph simply by reflecting this portion in the y-axis.

For example, the function $f(x) = x^2$ is odd because

$$f(-x) = (-x)^3 = (-1)^3 (-x)^3 = -x^3 = -f(x)$$

The graph of an odd function is symmetric about the origin.

If we have plotted the graph of f for $x \ge 0$, then we can obtain the entire graph by rotating this portion through 180° about the origin. (This is equivalent to reflecting first in the x-axis and then in the y-axis.)