

Grading 100 points

- **Project Report (60 points)**
 - Segmentation (20 points)
 - Feature extraction (20 points)
 - Classification (20 points)
- Performance of your model (20 points)
 - Beat *Pattern Matching* baseline (10 points)
 - Beat *ML* baseline (10 points)
- Final Presentation (20 points)
 - Quality of the presentation (10 points)
 - Quality of the answers to the questions (10 points)
- **Kaggle Ranking** (10 <u>BONUS</u> points on the project):

 o 1st=10pts | 2nd=7pts | 3rd=5pts | 4th=4pts | 5th=3pts | 6th=2pts | 7th=1pt

First try: Simple **thresholding** method 💢

Second try: detection of the background + Canny algorithm

Noisy background issue: back to thresholding

Approach:

- H and S channels
- Try to capture every pixels of the pieces for the 2 channels
- Add an '&' between the two binary images

Time for morphology

Still not perfect -> Hough transform

e.g. L1010506 - Detected background: Hand

Number of coins: 3

e.g. L1010462 - Detected background: Noisy

Feature Extraction

Data Augmentation

- Rotation between [-25, 25] degrees
- Brightness factor between [0.8, 1.2]
- Gaussian with variance with std between [0, 0.05*255]
- Crop by up to 10% of image size

Skip Connections

Classification

Training

Hyperparameters:

Optimizer=Adam Learning Rate = 1e-3 Epochs = 30

Training

K=1

Final Training

Hyperparameters:

Optimizer=Adam Learning Rate = 1e-3 Epochs = 22

Results

- 40

- 30

- 20

- 10

Rank: #23

Beating Baseline ML

Possible Improvements

Add a grey-scale augmentation to the data to eliminate color confusion

 Encode a perimeter/area representative feature to eliminate confusion between coins with visual similarity

Conclusion

- We used classical image segmentation methods to extract coins for training and testing
- We used transfer learning to adapt a pre-trained deep learning model to the coins problem