1 Задача 1

Построить конечный автомат, распознающий язык:

1. L =
$$\left\{w \in \left\{a, b, c\right\} * ||w|_c = 1\right\}$$

2. L = $\{w \in a, b*||w|_a \le 2, |w|_b \ge 2\}$ Рассмотрим как прямое произведение двух автоматов: $|w|_b \ge 2$

 $|w|_a \le 2$

$$\begin{split} \sum_{} &= \left\{a, b\right\} \\ S &= ad \\ T &= < cd, ce, cf > \end{split}$$

3. L = $\{w \in \{a, b\} * ||w|_a \neq |w|_b\}$

Рассмотрим L как $L=Q_1\cup Q_2$, где $Q_1=\left\{w\in \left\{a,b\right\}*||w|_a<|w|_b\right\}$,

а $Q_2 = \{w \in \{a,b\} * ||w|_a > |w|_b\}$ Q_1 и Q_2 не являются регулярными и следовательно L не регулярный и его нельзя описать с помощью конечного автомата.

4. $L = \{ w \in a, b * | ww = www \}$

Если расмотреть относительно длины слова, то |ww| = |www| только в том случае когда $w = \lambda$. L описывает пустые слова.

Задача 2 2

Построить автомат используя прямое произведение.

1. $L = \{w \in \{a, b\} * ||w|_a \ge 2 \land |w|_b \ge 2\}$

Опишем два языка один их которых задает $|w|_a \geq 2$, а второй $|w|_b \geq 2$. Их произведение даст нам искомых язык.

Автомат которые описывает язык для которого $|w|_a \ge 2$

Автомат которые описывает язык для которого $|w|_b \geq 2$

$$\begin{split} &\sum \left\{a,b\right\} \\ &Q = \left\{ad,ae,af,bd,be,bf,cd,ce,cf\right\} \\ &s = < ad > \\ &T = < cf > \\ &\text{Прямое произведение:} \end{split}$$

2. $L = \{w \in \{a,b\} * ||w| \ge 3 \land |w| odd\}$ Опишем два языка которые описывают |w| - нечетное и $|w| \ge 3$

Прямое произведение:

$$\sum \{a,b\}$$

 $\sum_{a,b} \{a,b\}$ $Q = \{ae, af, ag, be, bf, bg, ce, cf, cg, de, df, dg\}$ $s = \langle ae \rangle$

$$T = < df >$$

Результат прямого произведения. Как видно содержит ветви, не выходящие из начального состояния - можно отбросить.

Результат в итоге:

3. $L=\left\{w\in\left\{a,b\right\}*||w|_aeven\wedge|w|_bdivisible3\right\}$ Опишем два языка, которые описывают $|w|_aeven\wedge|w|_bdivisible3$

$$\sum \{a,b\}$$

Прямое произведение:
$$\sum \left\{a,b\right\}$$

$$Q = \left\{ac,ad,ae,bc,bd,be\right\}$$

$$s = < ac >$$

$$s = \langle ac \rangle$$

$$T=$$

Автомат получанный в результате:

4.
$$L_4 = \overline{L}_3$$

$$\sum \{a, b\}$$

$$Q = \{ac, ad, ae, bc, bd, be\}$$

$$s = \langle ac \rangle$$

$$T = Q \backslash T_3 = ad, ae, bc, bd, be$$

5. $L_5 = L_2 \backslash L_3$ $L_5 = L_2 \backslash L_3 = L_2 \cap \overline{L}_3$ Переименуем состояния чтобы было удобнее работать L_2 :

 $\backslash L_3$:

После упрощения

3 Задача 3

Построить минимальный ДКА, который допускает язык, описанный регулярным выражением

1. (ab+aba)*а Построим в НДА:

Построим эквивалентный ДКА по НКА по алгоритму Томпсона

Q	a	b
1	25	-
25	_	3
3	1245	-
1245	25	3

Минимальный ДКА:

2. a(a(ab)*b)*(ab)* Построим НКА:

Нам повезло и это минимальный ДКА

3. (a+(a+b)(a+b)b)* Построим НКА:

Построим эквивалентный ДКА по НКА по алгоритму Томпсона

Q	a	b
1	12	2
12	123	23
123	123	123
23	3	13
13	12	12
2	3	3
3	_	1

Построим ДКА

Минимизируем:

Trimming ip j ciri.							
	1	2	3	12	13	23	123
1		+	+	+	+	+	+
2	+		+	+	+	+	+
3	+	+		+	+	+	+
12	+	+	+		+	+	+
13	+	+	+	+		+	+
23	+	+	+	+	+		+
123	+	+	+	+	+	+	

Полученный ДКА минимальный

4. (b+c)((ab)*c+(ba)*)* Построим НДА:

Получен ДКА, минимизируем

	1	2	3	4	5	6	7	8	9
1		+	+	+	+	+	+	+	+
2	+		+	+	+	+	+	+	+
3	+	+		+	+	+	+	+	+
4	+	+	+		+	+	+	+	+
5	+	+	+	+		+	+	+	
6	+	+	+	+	+		+	+	+
7	+	+	+	+	+	+		+	+
8	+	+	+	+	+	+	+		+
9	+	+	+	+		+	+	+	

Перестроим с состояниями <1,2,3,4,59,6,7,8>

5. $(a+b)^+(aa+bb+abab+baba)(a+b)^+$ Построим НКА:

ДКА:

Q	a	b
1	2	2
2	23	24
23	239	245
239	23910	24510
245	2368	249
24	236	249
23910	23910	24510
24510	236810	24910
2368	239	24579
249	23610	24910
236	239	2457
236810	23910	2457910
24910	23610	24910
24579	2368910	24910
23610	23910	245710
2457	23689	249
2457910	2368910	24910
2368910	23910	2457910
245710	2368910	24910
23689	23910	2457910

4 Задача 4

Построить автомат если язык регулярный или доказать обратное с помощью леммы о разростании

1.
$$L = \{(aab)^n b (aba)^m | n \ge 0, m \ge 0 \}$$
 Можнос построить

- 2. $L = \{uaav|u\in\{a,b\}^*,v\in\{a,b\}^*,|u|_b\geq |v|_a\}$ Фиксируем п Рассмотрим частный случай
- 3. $L = \{a^m w | w \in \{a, b\}^*, 1 \le |w|_b \le m\}$
- 4. $L = \{a^k b^m a^n | k = n \lor m > 0\}$
- 5. $L = \{ucv | u \in \{a, b\}^*, v \in \{a, b\}^*, u \neq v^R\}$