Các dạng toán về dãy số

1. Lý thuyết

a) Định nghĩa dãy số

- Mỗi hàm số u xác định trên tập số tự nhiên \mathbb{N}^* được gọi là một $d\tilde{a}y$ số vô hạn (gọi tắt là dãy số).

Kí hiệu: $u: \mathbb{N}^* \to \mathbb{R}$

$$n \mapsto u(n)$$
.

Dạng khai triển: $u_1; u_2; u_3; ...; u_n; ...$

Trong đó ta gọi: u_1 là số hạng đầu, $u_n = u(n)$ là số thứ n hay số hạng tổng quát của dãy số.

- Mỗi hàm số u xác định trên tập $M = \{1; 2; 3;...; m\}$ với $m \in \mathbb{N}^*$ được gọi là *một dãy* số hữu hạn.

Dạng khai triển của nó là $u_1;u_2;u_3;...\;;u_m$, trong đó u_1 là số hạng đầu và u_m là số hạng cuối.

- Ba cách cho một dãy số:
- + Cho dãy số bằng công thức của số hạng tổng quát.
- + Cho dãy số bằng phương pháp mô tả.
- + Cho dãy số bằng phương pháp truy hồi.

b) Dãy số tăng, dãy số giảm

- Dãy số $(u_{_{n}})$ được gọi là tăng nếu $\,u_{_{n+1}}\,{>}\,u_{_{n}}\,$ với mọi $\,n\in\mathbb{N}^{^{*}}.$
- Dãy số $(u_{_{n}})$ được gọi là giảm nếu $\,u_{_{n+1}} < u_{_{n}}\,$ với mọi $\,n \in \mathbb{N}^{^{*}}.$

c) Dãy số bị chặn

- Dãy số (u_n) được gọi là bị chặn trên nếu tồn tại số M sao cho $u_n \leq M, \forall n \in \mathbb{N}^*$.
- Dãy số (u_n) được gọi là bị chặn dưới nếu tồn tại số m sao cho $u_n \geq m, \forall n \in \mathbb{N}^*$.
- Dãy số (u_n) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số m, M sao cho $m \le u_n \le M, \forall n \in \mathbb{N}^*$.

2. Các dạng bài tập

Dạng 1. Tìm số hạng của dãy số

Phương pháp giải:

Bài toán 1: Cho dãy số (u_n) : $u_n = f(n)$ (trong đó f(n) là một biểu thức của n). Hãy tìm số hạng u_k .

 \rightarrow Thay trực tiếp n = k vào u_k để tìm.

Bài toán 2: Cho dãy số (u_n) cho bởi $\begin{cases} u_1 = a \\ u_{n+1} = f(u_n) \end{cases}$ (với $f(u_n)$ là một biểu thức của u_n).

Hãy tìm số hạng u_k.

 \rightarrow Tính lần lượt \boldsymbol{u}_2 ; \boldsymbol{u}_3 ;... ; \boldsymbol{u}_k bằng cách thế \boldsymbol{u}_1 vào \boldsymbol{u}_2 , thế \boldsymbol{u}_2 vào \boldsymbol{u}_3 , ..., thế $\boldsymbol{u}_{k\text{-}1}$ vào \boldsymbol{u}_k .

Bài toán 3: Cho dãy số
$$(u_n)$$
 cho bởi
$$\begin{cases} u_1 = a, u_2 = b \\ u_{n+2} = c.u_{n+1} + d.u_n + e \end{cases}$$
. Hãy tìm số hạng u_k .

 \rightarrow Tính lần lượt \boldsymbol{u}_3 ; \boldsymbol{u}_4 ;... ; \boldsymbol{u}_k bằng cách thế \boldsymbol{u}_1 ; \boldsymbol{u}_2 vào \boldsymbol{u}_3 ; thế \boldsymbol{u}_2 ; \boldsymbol{u}_3 vào \boldsymbol{u}_4 ; ... ; thế \boldsymbol{u}_{k-2} ; \boldsymbol{u}_{k-1} vào \boldsymbol{u}_k .

Bài toán 4: Cho dãy số
$$(u_n)$$
 cho bởi $\begin{cases} u_1 = a \\ u_{n+1} = f\left(\left\{n, u_n\right\}\right) \end{cases}$. Trong đó $f(\{n; u_n)\})$ là kí

hiệu của biểu thức \boldsymbol{u}_{n+1} tính theo \boldsymbol{u}_n và n. Hãy tìm số hạng $\boldsymbol{u}_k.$

 \rightarrow Tính lần lượt \boldsymbol{u}_2 ; \boldsymbol{u}_3 ;... ; \boldsymbol{u}_k bằng cách thế $\{1;\boldsymbol{u}_1\}$ vào $\boldsymbol{u}_2;$ thế $\{2;\boldsymbol{u}_2\}$ vào $\boldsymbol{u}_3;$... ; thế $\{k\text{-}1;\boldsymbol{u}_{k\text{-}1}\}$ vào \boldsymbol{u}_k .

Ví dụ minh họa:

Ví dụ 1: Cho dãy số (u_n) được xác định bởi $u_n = \frac{n^2 + 3n + 7}{n + 1}$. Viết năm số hạng đầu của dãy.

Lời giải

Ta có năm số hạng đầu của dãy

$$u_1 = \frac{1^2 + 3.1 + 7}{1 + 1} = \frac{11}{2}$$

$$u_2 = \frac{2^2 + 3.2 + 7}{2 + 1} = \frac{17}{3}$$

$$u_3 = \frac{3^2 + 3.3 + 7}{3 + 1} = \frac{25}{4}$$

$$u_4 = \frac{4^2 + 3.4 + 7}{4 + 1} = 7$$

$$u_5 = \frac{5^2 + 3.5 + 7}{5 + 1} = \frac{47}{6}$$

Vậy năm số hạng đầu của dãy là: $\frac{11}{2}$; $\frac{17}{3}$; $\frac{25}{4}$; 7; $\frac{47}{6}$.

$$\textbf{Ví dụ 2: Cho dãy số } (u_n) \text{ được xác định như sau: } \begin{cases} u_1 = 0 \\ u_{n+1} = \frac{n}{n+1} (u_n + 1) \end{cases}. \text{ Tìm số hạng }$$

u₁₁.

A.
$$u_{11} = \frac{11}{2}$$

B.
$$u_{11} = 4$$

C.
$$u_{11} = \frac{9}{2}$$
.

D.
$$u_{11} = 5$$

Lời giải

Chọn D.

Ta có:

$$\mathbf{u}_2 = \frac{1}{2}(\mathbf{u}_1 + 1) = \frac{1}{2}$$

$$u_3 = \frac{2}{3}(u_2 + 1) = 1$$

$$u_4 = \frac{3}{4}(u_3 + 1) = \frac{3}{2}$$

$$u_5 = \frac{4}{5}(u_4 + 1) = 2$$

$$u_6 = \frac{5}{6}(u_5 + 1) = \frac{5}{2}$$

$$u_7 = \frac{6}{7}(u_6 + 1) = 3$$

$$u_8 = \frac{7}{8}(u_7 + 1) = \frac{7}{2}$$

$$u_9 = \frac{8}{9}(u_8 + 1) = 4$$

$$u_{10} = \frac{9}{10}(u_9 + 1) = \frac{9}{2}$$

$$u_{11} = \frac{10}{11}(u_{10} + 1) = 5$$

 $\mbox{\bf Ví dụ 3: Cho dãy số } (u_n) \mbox{ được xác định như sau: } \begin{cases} u_1 = 1; u_2 = 2 \\ u_{n+2} = 2u_{n+1} + 3u_n + 5 \end{cases}. \mbox{ Tìm số }$

hạng u₈.

A.
$$u_8 = 3050$$
.

B.
$$u_8 = 5003$$
.

C.
$$u_8 = 3500$$
.

D.
$$u_8 = 3005$$
.

Lời giải

Chọn D.

Ta có:

$$u_3 = 2u_2 + 3u_1 + 5 = 12$$

$$u_4 = 2u_3 + 3u_2 + 5 = 35$$

$$u_5 = 2u_4 + 3u_3 + 5 = 111$$

$$u_6 = 2u_5 + 3u_4 + 5 = 332$$

$$u_7 = 2u_6 + 3u_5 + 5 = 1002$$

$$u_8 = 2u_7 + 3u_6 + 5 = 3005$$

Dạng 2: Xét tính tăng giảm của dãy số

Phương pháp giải

Cách 1: Xét hiệu $u_{n+1} - u_n$

- Nếu $u_{n+1} u_n > 0 \ \forall n \in \mathbb{N}^*$ thì (u_n) là dãy số tăng.
- Nếu $\,u_{_{n+1}}-u_{_{n}}<0\;\forall n\in\mathbb{N}^{^{*}}$ thì $(u_{_{n}})$ là dãy số giảm.

Cách 2: Khi
$$u_n > 0 \ \forall n \in \mathbb{N}^*$$
, ta xét tỉ số $\frac{u_{n+1}}{u_n}$

- Nếu
$$\frac{u_{_{n+1}}}{u_{_{n}}}$$
 > 1 thì $(u_{_{n}})$ là dãy số tăng.

- Nếu
$$\frac{u_{n+1}}{u_n}$$
 < 1 thì (u_n) là dãy số giảm.

Cách 3: Nếu dãy số (u_n) được cho bởi một hệ thức truy hồi thì ta có thể sử dụng phương pháp quy nạp để chứng minh $u_{n+1} > u_n \ \forall n \in \mathbb{N}^*$ (hoặc $u_{n+1} < u_n \ \forall n \in \mathbb{N}^*$)

- * Công thức giải nhanh một số dạng toán về dãy số
- Dãy số (u_n) có $u_n = an + b$ tăng khi a > 0 và giảm khi a < 0
- Dãy số (u_n) có $u_n = q^n$
- + Không tăng, không giảm khi q < 0
- + Giảm khi 0 < q < 1
- + Tăng khi q > 1
- Dãy số (u_n) có $u_n = \frac{an+b}{cn+d}$ với điều kiện $cn+d > 0 \ \forall n \in \mathbb{N}^*$
- + Tăng khi ad bc > 0
- + Giảm khi ad bc < 0
- Dãy số đan dấu cũng là dãy số không tăng, không giảm

- Nếu dãy số (u_n) tăng hoặc giảm thì dãy số $(q^n\!.\,u_n)$ (với q<0) không tăng, không giảm

Ví dụ minh họa:

Ví dụ 1: Xét tính tăng, giảm của dãy số sau $(\forall n \in \mathbb{N}^*)$:

a)
$$u_n = 3n + 6$$

b)
$$u_n = \frac{n+5}{n+2}$$

c)
$$u_n = n - \sqrt{n^2 - 1}$$

Lời giải

a) Ta có
$$u_n = 3n + 6 \Rightarrow u_{n+1} = 3(n+1) + 6 = 3n + 9$$

Xét hiệu
$$u_{n+1} - u_n = (3n+9) - (3n+6) = 3 > 0 \ \forall n \in \mathbb{N}^*$$

Vậy (u_n) là dãy số tăng.

b) Ta có
$$u_n = \frac{n+5}{n+2} \Rightarrow u_{n+1} = \frac{n+1+5}{n+1+2} = \frac{n+6}{n+3}$$

Xét hiệu

$$u_{n+1} - u_n = \frac{n+6}{n+3} - \frac{n+5}{n+2} = \frac{(n+6)(n+2) - (n+5)(n+3)}{(n+2)(n+3)} = \frac{-3}{(n+2)(n+3)} < 0 \text{ (do}$$

n là số tự nhiên)

Vậy (u_n) là dãy số giảm.

c) Ta có
$$u_n = n - \sqrt{n^2 - 1} \Rightarrow u_{n+1} = n + 1 - \sqrt{(n+1)^2 - 1}$$

$$u_{n+1} - u_n = \left[n + 1 - \sqrt{(n+1)^2 - 1} \right] - \left[n - \sqrt{n^2 - 1} \right]$$

$$= \frac{1}{n+1+\sqrt{(n+1)^2-1}} - \frac{1}{n+\sqrt{n^2-1}} < 0$$

Vậy (u_n) là dãy số giảm.

Ví dụ 2: Xét tính tăng, giảm của dãy số sau $(\forall n \in \mathbb{N}^*)$:

a)
$$u_n = \frac{5^n}{n^2}$$

b)
$$u_n = \frac{2^n}{n!}$$

c)
$$u_n = \sqrt{n^2 + n + 1}$$

Lời giải

a) Ta có
$$u_n = \frac{5^n}{n^2} > 0 \,\forall n \in \mathbb{N}^* \Longrightarrow u_{n+1} = \frac{5^{n+1}}{(n+1)^2}$$

Xét tỉ số
$$\frac{u_{n+1}}{u_n} = \frac{5^{n+1}}{(n+1)^2} \cdot \frac{n^2}{5^n} = \frac{5n^2}{n^2 + 2n + 1}$$

$$=\frac{n^2+2n+1+4n^2-2n-1}{n^2+2n+1}$$

$$=1+\frac{2n(n-1)+2n^2-1}{n^2+2n+1}>1, \forall n \in \mathbb{N}^*$$

Vậy (u_n) là dãy số tăng.

b)
$$u_n = \frac{2^n}{n!} > 0 \forall n \in \mathbb{N}^* \Rightarrow u_{n+1} = \frac{2^{n+1}}{(n+1)!}$$

Ta có:
$$\frac{\mathbf{u}_{n+1}}{\mathbf{u}_n} = \frac{2^{n+1}}{(n+1)!} : \frac{2^n}{n!} = \frac{2^{n+1}}{(n+1)!} : \frac{n!}{2^n} = \frac{2}{n+1} < 1 \quad \forall n \in \mathbb{N}^*$$

Vậy (u_n) là dãy số giảm.

c)
$$u_n = \sqrt{n^2 + n + 1}$$

Ta có:
$$u_n = \sqrt{n^2 + n + 1} > 0 \quad \forall n \in \mathbb{N}^*$$

$$\Rightarrow u_{n+1} = \sqrt{(n+1)^2 + (n+1) + 1}$$

$$\frac{\mathbf{u}_{n+1}}{\mathbf{u}_n} = \frac{\sqrt{(n+1)^2 + (n+1) + 1}}{\sqrt{n^2 + n + 1}} = \sqrt{\frac{n^2 + 3n + 3}{n^2 + n + 1}} > 1 \ \forall n \in \mathbb{N}^*$$

Vậy (u_n) là dãy số tăng.

Dạng 3: Xét tính bị chặn của hàm số

Phương pháp giải:

- **Cách 1:** Dãy số (u_n) có $u_n = f(n)$ là hàm số đơn giản.

Ta chứng minh trực tiếp bất đẳng thức $u_n = f(n) \le M, \forall n \in \mathbb{N}^*$ hoặc

$$u_n = f(n) \ge m, \forall n \in \mathbb{N}^*$$

- Cách 2: Dự đoán và chứng minh bằng phương pháp quy nạp.

Nếu dãy số (u_n) được cho bởi một hệ thức truy hồi thì ta có thể sử dụng phương pháp quy nạp để chứng minh

Chú ý: Nếu dãy số (u_n) giảm thì bị chặn trên, dãy số (u_n) tăng thì bị chặn dưới

* Công thức giải nhanh một số dạng toán về dãy số bị chặn

Dãy số
$$(u_n)$$
 có $u_n = q^n (|q| \le 1)$ bị chặn

Dãy số
$$(u_n)$$
 có $u_n = q^n (q < -1)$ không bị chặn

Dãy số (u_n) có $u_n = q^n$ với q > 1 bị chặn dưới

Dãy số (u_n) có $u_n = an + b$ bị chặn dưới nếu a > 0 và bị chặn trên nếu a < 0

Dãy số (u_n) có $u_n = an^2 + bn + c$ bị chặn dưới nếu a > 0 và bị chặn trên nếu a < 0

Dãy số $(u_n$ có $u_n = a_m n^m + a_{m-1} n^{m-1} + ... + a_1 n + a_0$ bị chặn dưới nếu $a_m > 0$ và bị chặn trên nếu $a_m < 0$

Dãy số (u_n) có $u_n=\frac{P\!\left(n\right)}{Q\!\left(n\right)}$ trong đó $P\!\left(n\right)$ và $Q\!\left(n\right)$ là các đa thức, bị chặn nếu bậc của

P(n) nhỏ hơn hoặc bằng bậc của Q(n)

Dãy số (u_n) có $u_n = \frac{P(n)}{Q(n)}$ trong đó P(n) và Q(n) là các đa thức, bị chặn dưới hoặc bị

chặn trên nếu bậc của P(n) lớn hơn bậc của Q(n).

Ví dụ minh họa:

Ví dụ 1: Xét tính bị chặn của dãy số sau (với $\forall n \in \mathbb{N}^*$):

$$a) u_n = \frac{4n+5}{n+1}$$

b)
$$u_n = 3n - 1$$

c)
$$u_n = \frac{n^3}{n^2 + 1}$$

Lời giải

a)
$$u_n = \frac{4n+5}{n+1}$$

Ta có
$$u_n = \frac{4n+5}{n+1} > 0, \forall n \in \mathbb{N}^*$$

$$\text{Mặt khác } u_n = \frac{4n+5}{n+1} = \frac{4(n+1)+1}{n+1} = 4 + \frac{1}{n+1} \leq 4 + \frac{1}{2} = \frac{9}{2} \Longrightarrow u_n \leq \frac{9}{2}, \forall n \in \mathbb{N}^*$$

Suy ra
$$0 < u_n \le \frac{9}{2}, \forall n \in \mathbb{N}^*$$

Vậy dãy số (u_n) bị chặn

b)
$$u_n = 3n - 1$$

Ta có:
$$n \ge 1 \Leftrightarrow 3n \ge 3 \Leftrightarrow 3n - 1 \ge 2 \Leftrightarrow u_n \ge 2 \quad \forall n \in \mathbb{N}^*$$

Vây (u_n) bị chặn dưới; không bị chặn trên.

c)
$$u_n = \frac{n^3}{n^2 + 1}$$

Ta có
$$u_n = \frac{n^3}{n^2 + 1} > 0, \forall n \in \mathbb{N}^*$$

Vậy (u_n) bị chặn dưới, không bị chặn trên do bậc của tử cao hơn bậc mẫu.

Ví dụ 2: Xét tính bị chặn của dãy số sau:

a)
$$\begin{cases} u_1 = 1 \\ u_{n+1} = \frac{1}{2}u_n - 1 \end{cases}$$

b)
$$u_n = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$

Lời giải

a)
$$\begin{cases} u_1 = 1 \\ u_{n+1} = \frac{1}{2}u_n - 1 \end{cases}$$

Ta dự đoán dãy số này bị chặn (dùng máy Casio để tính một vài số hạng). Ta sẽ chứng minh bằng quy nạp: $-2 \le u_n \le 1, \forall n \in \mathbb{N}^*$

Với
$$n = 1$$
 ta có $-2 \le u_1 = 1 \le 1$ (đúng)

Giả sử mệnh đề trên đúng với $n=k\geq 1$: $-2\leq u_k\leq 1$

Ta cần chứng minh mệnh đề trên đúng với n = k + 1

Ta có:
$$-2 \le u_k \le 1 \Rightarrow -1 \le \frac{1}{2}u_k \le \frac{1}{2} \Rightarrow -2 \le \frac{1}{2}u_k -1 \le -\frac{1}{2} \Rightarrow -2 \le u_{k+1} \le 1$$

Theo nguyên lí quy nạp ta đã chứng minh được $-2 \le u_n \le 1, \forall n \in \mathbb{N} *$

Vậy (u_n) bị chặn.

b)
$$u_n = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$

Xét
$$\frac{1}{k^2} < \frac{1}{(k-1)k} = \frac{1}{k-1} - \frac{1}{k}, \forall k \ge 2$$

Suy ra

$$u_{n} < \frac{1}{2} + \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \left(\frac{1}{5} - \frac{1}{6}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) = \frac{3}{2} - \frac{1}{n} < \frac{3}{2}$$

$$\Rightarrow 0 < u_n < \frac{3}{2}, \forall n \in \mathbb{N}^*$$

Vậy (u_n) bị chặn

3. Bài tập tự luyện

Câu 1. Cho dãy số (u_n) biết $u_n = \frac{1}{n+1}$. Ba số hạng đầu tiên của dãy số đó lần lượt là những số nào dưới đây?

A.
$$\frac{1}{2}; \frac{1}{3}; \frac{1}{4}$$
. **B.** $1; \frac{1}{2}; \frac{1}{3}$. **C.** $\frac{1}{2}; \frac{1}{4}; \frac{1}{6}$.

B.
$$1; \frac{1}{2}; \frac{1}{3}$$
.

C.
$$\frac{1}{2}$$
; $\frac{1}{4}$; $\frac{1}{6}$.

D.
$$1; \frac{1}{3}; \frac{1}{5}$$
.

Câu 2. Cho dãy số (u_n) biết $u_n = \frac{2n+1}{n+2}$. Viết năm số hạng đầu của dãy số.

A.
$$u_1 = 1, u_2 = \frac{3}{4}, u_3 = \frac{7}{5}, u_4 = \frac{3}{2}, u_5 = \frac{11}{7}$$

B.
$$u_1 = 1, u_2 = \frac{5}{4}, u_3 = \frac{7}{5}, u_4 = \frac{3}{2}, u_5 = \frac{11}{7}$$

C.
$$u_1 = 1, u_2 = \frac{5}{4}, u_3 = \frac{8}{5}, u_4 = \frac{3}{2}, u_5 = \frac{11}{7}$$

D.
$$u_1 = 1, u_2 = \frac{5}{4}, u_3 = \frac{7}{5}, u_4 = \frac{7}{2}, u_5 = \frac{11}{3}$$

Câu 3. Cho dãy số (u_n) xác định bởi $\begin{cases} u_1 = 7 \\ u_{n+1} = 2u_n + 3 \end{cases}$ khi đó u_5 bằng:

Câu 4. Cho dãy số (u_n) xác định bởi $\begin{cases} u_1 = -2 \\ u_1 = 2u_1 + n^2 \end{cases}$ $(n \ge 2)$. Số hạng thứ tư của dãy số đó bằng

Câu 5. Cho dãy số (u_n) xác định bởi: $\begin{cases} u_1 = 2, u_2 = 3 \\ u_{n-1} = 5u_n - 6u_{n-1}; \ n \ge 2. \end{cases}$ Tìm số hạng u_8 .

A.
$$u_8 = -1803$$

B.
$$u_8 = -5793$$

$$C_{\bullet} u_8 = -18147$$

D.
$$u_8 = -537$$

Câu 6. Cho dãy số (u_n) biết $u_n = \sqrt{5n+2}$. Mệnh đề nào sau đây đúng?

A. Dãy số tăng

B. Dãy số giảm

C. Dãy số không tăng, không giảm

D. Cả A, B, C đều sai

Câu 7. Cho dãy số (u_n) biết $u_n = \frac{10}{3^n}$. Mệnh đề nào sau đây đúng?

A. Dãy số tăng

B. Dãy số giảm

D.
$$u_{n-1} = \frac{10}{3^n - 1}$$

Câu 8. Trong các dãy số (u_n) cho bởi số hạng tổng quát u_n sau, dãy số nào giảm?

$$\mathbf{A.} \ \mathbf{u}_{n} = \left(\frac{4}{3}\right)^{n}.$$

B.
$$u_n = (-1)^n (5^n - 1)$$
. **C.** $u_n = -3^{n}$.

C.
$$u_n = -3^n$$

$$u_n = \sqrt{n+4}$$
.

Câu 9. Trong các dãy số (u_n) cho bởi số hạng tổng quát u_n sau, dãy số nào không tăng, không giảm?

A.
$$u_n = n + \frac{1}{n}$$
. **B.** $u_n = 5^n + 3n$.

B.
$$u_n = 5^n + 3n$$
.

C.
$$u_n = -3^{n}$$

C.
$$u_n = -3^{n}$$
. **D.** $u_n = (-3)^n . \sqrt{n^2 + 1}$

Câu 10. Cho dãy số (u_n) biết $\begin{cases} u_1 = 3 \\ u_{n+1} = \frac{3u_n}{3+u} \end{cases}$. Mệnh đề nào sau đây đúng?

A. Dãy số tăng

B. Dãy số giảm

C. Dãy số không tăng, không giảm

D. Có $u_{10} = 2$

Câu 11. Trong các dãy số (u_n) sau, dãy số nào bị chặn?

A.
$$u_n = n + \frac{1}{n}$$
.

B.
$$u_n = n + 1$$
.

A.
$$u_n = n + \frac{1}{n}$$
. **B.** $u_n = n + 1$. **C.** $u_n = \frac{n}{2n^2 + 1}$. **D.** $u_n = n^2 + n$

$$\mathbf{D.} \ \mathbf{u_n} = \mathbf{n}^2 + \mathbf{n}$$

+ 1.

Câu 12. Xét tính tăng, giảm và bị chặn của dãy số (u_n) , biết: $u_n = \frac{1}{\sqrt{1 + p_n + p_n^2}}$

A. Tăng, bị chặn trên

B. Tăng, bị chặn dưới

C. Giảm, bị chặn

D. Cả A, B, C đều sai

Câu 13. Xét tính tăng, giảm và bị chặn của dãy số (u_n) , biết: $u_n = \frac{2^n}{n!}$

A. Tăng, bị chặn trên

B. Tăng, bị chặn dưới

C. Giảm, bị chặn

D. Cả A, B, C đều sai

Câu 14. Xét tính bị chặn của các dãy số sau: $u_n = \frac{1}{13} + \frac{1}{24} + ... + \frac{1}{n(n+2)}$

A. Bị chặn

B. Không bị chặn

C. Bi chăn trên

D. Bi chăn

dưới

Câu 15. Xét tính tăng, giảm và bị chặn của dãy số (u_n) , biết:

$$u_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}.$$

A. Dãy số tăng, bị chặn B. Dãy số tăng, bị chặn dưới

C. Dãy số giảm, bị chặn trên

D. Cả A, B, C đều sai

Đáp án

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A	В	В	D	A	A	В	C	D	В	С	C	С	A	A