C11 - 7.1 - Absolute Value: |x| Notes

$$\begin{vmatrix} 2 \\ 2 \end{vmatrix} = 2$$

$$|-3| = 3$$

$$|2 - 4| = |-2| = 2$$

$$|3| - |-5| = 3 - 5 = -2$$

Do whatever is inside the absolute value, then make it positive.

$$-|3| = -3$$

$$-|-5| = -(5) = -5$$

Solve algebraically.

$$|x| = 4$$

Distribute a positive into the absolute value

$$+(x) = 4$$
$$x = 4$$

$$-(x) = 4$$
$$x = -4$$

Distribute a negative into the absolute value

Check your answer. (Left Hand Side LHS = RHS Right Hand Side)

$$|x| = 4$$

$$|4| = 4$$

$$4 = 4$$

$$|x| = 4$$

$$-4 = 4$$

 $4 = 4$

$$|x-2|=2$$

$$+(x-2) = 2$$
$$x-2 = 2$$

$$\begin{array}{c}
x - 2 = 2 \\
x = 4
\end{array}$$

$$-(x-2) = 2$$
$$-x + 2 = 2$$
$$-x = 0$$

Check your answer. (LHS =RHS)

$$|x - 2| = |4 - 2| =$$

$$|2| = 2$$

$$|x-2| = |0-2| = |x-2|$$

$$|-2| = |-2| = 2$$

C11 - 7.1 - Absolute Value: |x| Notes

$$2|x-2|=6$$

"-" case:

$$+2(x-2) = 6$$

$$2x - 4 = 6$$

$$2x = 10$$

$$x = 5$$

$$-2(x-2) = 6$$

$$-2x + 4 = 6$$

$$-2x = 2$$

$$x = -1$$

Check your answer.(LHS =RHS)

$$2|x-2| =$$
 $2|5-2| =$
 $2|3| = 6$

$$2|x-2| = 2|-1-2| = 2|-3| = 6$$

$$|x| = -6$$
 Impossible.

C11 - 7.1 - Absolute Value Inequalities: |x| Notes

5.
$$|x| \ge 2$$

"+" case:

Divide by a negative, change direction of sign.

Shade greater than two, and less than negative two.

Check your answer. Test values in shaded region.

$$|3| \ge 3$$
$$3 \ge 2$$

$$|-3| \ge |-3| \ge 3 \ge 2$$

6.
$$|x-3| < 2$$

"+" case:

$$+(x-3)<2$$

$$x-3<2$$

$$-(x-3) < 2$$

 $-x+3 < 2$
 $-x < 2$

Divide by a negative, change direction of sign.

Shade less than five, and greater than negative two.

Check your answer. Test values in shaded region.

$$|3| \ge$$

$$|3| \ge 3$$

$$|-3| \ge |-3| \ge 3 \ge 2$$

$$\checkmark$$

C11 - 7.2 - Linear Absolute Value: y = |x + c| Notes

Graphing Absolute Values

$$y = |x + 2|$$

"+" case:

"-" case:

Distribute a positive into the absolute value

$$y_1 = +(x+2)$$

 $y_1 = x+2$

$$y_2 = -(x+2)$$

 $y_2 = -x-2$

Distribute a negative into the absolute value

 $y_1 = x + 2$

Table of Values

Х	у		Х	у
-5	-3		-5	3
-3	, 1 ·	\rightarrow	-3	1
-2	0		-2	0
-1	1		-1	1
0	2		0	2

$$y = x + 2 \qquad \qquad y = |x + 2|$$

Notice the graph of y = |x + 2| is the graph of y = x + 2 and y = -x - 2 without any negative y values. Transfer any negative y value to a positive y value.

Piecewise function:
$$y = \begin{cases} x + 2, & \text{if } x \ge -2 \\ -x - 2, & \text{if } x < -2 \end{cases}$$
 $y = \begin{cases} "+" \text{ case, Domain of "+" case} \\ "-" \text{ case, Domain of "-" case} \end{cases}$

Notice: The domain of the negative case is not equal to.

Domain of positive case:

 $\begin{array}{ccc}
 x + 2 \ge 0 \\
 -2 & -2 \\
 x \ge -2
 \end{array}$

Set what is inside the absolute value greater than or equal to zero.

Domain of negative case:

x + 2 < 0 -2 -2x < -2 Set what is inside the absolute value less than zero.

C11 - 7.2 - Linear Absolute Value Equations |x| = c Notes

Solve algebraically

$$|x+2|=4$$

"-" case:

$$+(x+2) = 4$$

$$x+2=4$$

$$x=2$$

$$-(x + 2) = 4$$

$$-x - 2 = 4$$

$$-x = 6$$

$$x = -6$$

Check your answer.

$$|x + 2| =$$
 $|2 + 2| =$
 $|4| = 4$

$$|-6 + 2| =$$
 $|-4| =$
 $|-4| = 4$

Solve graphically.

$$|x + 2| = 4$$

Left hand side (LHS)

$$y_1 = +(x+2)$$

$$y_1 = x+2$$

$$y_2 = -(x+2)$$

 $y_2 = -x-2$

Right hand side (RHS)

$$y_3 = 4$$

C11 - 7.3 - Quadratic Absolute Value Notes

2.
$$y = |x^2 - 4|$$

"-" case:

$$y_1 = +(x^2 - 4)$$

$$y_1 = x^2 - 4$$

$$y_2 = -(x^2 - 4)$$

$$y_2 = -x^2 + 4$$

$$y = |x^2 - 4|$$

Notice the graph of $y = |x^2 - 4|$ is the graph of $y_1 = x^2 - 4$ less than two and greater than two and is the graph of $y_2 = -x^2 + 4$ less than two and greater than negative two.

Piecewise function:

C11 - 7.3 - Quadratic Absolute Value Equations Notes

Solve algebraically.

$$|x^2 - 4| = x + 2$$

"+" case:

"-" case:

$$+(x^{2}-4) = x + 2$$

$$x^{2}-4 = x + 2$$

$$x^{2}-x-6 = 0$$

$$(x-3)(x+2) = 0$$

$$x = 3, -2$$

$$-(x^{2} - 4) = x + 2$$

$$-x^{2} + 4 = x + 2$$

$$0 = x^{2} + x - 2$$

$$0 = (x + 2)(x - 1)$$

$$x = -2,1$$

Check Answers!

$$x = 3, -2$$

$$x = -2,1$$

Solve Graphically

$$y = |x^{2} - 4|$$

$$y = x$$

$$y = x$$

$$(3,5)$$

$$x$$

$$y = x$$

$$(1,3)$$

$$x$$

$$y = x$$

C11 - 7.4 - Linear Reciprocals Notes

$$y = x + 4$$

Line

$$y = \frac{1}{x+4}$$

Reciprocal line

Solve algebraically: set denominator = 0, 1, -1.

Vertical asymptote (VA): Denominator = 0

x + 4 = 0

x = -4

$$\sqrt{\text{VA: } x = -4}$$

Invariant points (IP): Denominator = 1 Invariant points (IP): Denominator = -1

$$x + 4 = 1$$
$$x = -3$$

$$x + 4 = -1$$
$$x = -5$$

(-5, -1)

- 1. Graph original
- 2. Graph VA: Dotted line
- 3. Graph IP's
- 4. Graph reciprocal

x	у	
-100	01	
-5	-1	
-4.1	-10	
-4.01	-100	
-4	UND	
-3.99	100	
-3.9	10	
-3	1	
100	.01	

$$y = \frac{1}{x+4}$$

Notice: The invariant points are the intersection of the original and the lines y = 1, y = -1

Notice: The vertical asymptote(s) of the reciprocal is the X intercept of the original

C11 - 7.4 - Quadratic Reciprocals Notes

$$y = x^2 - 4$$

Parabola

$$y = \frac{1}{x^2 - 4}$$

Reciprocal Parabola

Solve algebraically: set denominator = 0, 1, -1.

Vertical asymptote (VA):

Denominator = 0

Invariant points (IP):

Denominator = 1

Invariant points (IP):

Denominator
$$= -1$$

$$x^2 - 4 = 0$$
$$(x + 2)(x - 2) = 0$$

$$x = 2, -2$$

$$x^2 - 4 = 1$$
$$x^2 = 5$$

$$x^2 = 5$$
$$x = \sqrt{5}, -\sqrt{5}$$

$$x^{2} - 4 = -1$$

$$x^{2} = 3$$

$$x = \sqrt{3}, -\sqrt{3}$$

$$VA's: x = 2$$

$$\begin{pmatrix}
(\sqrt{5}, 1) \\
(-\sqrt{5}, 1)
\end{pmatrix}$$

$$(\sqrt{3}, -1)$$
 $(-\sqrt{3}, -1)$

 $y=x^2-4$

Solve graphically.

$$y = x^2 - 4$$
$$y = \frac{1}{x^2 - 4}$$

- 1. Graph original
- 2. Graph VA's: Dotted lines
- 3. Graph IP's
- 4. Graph reciprocal

Notice: The inflection points are the intersection of the original and the lines y = 1, y = -1