

EXAMINATION QUESTION PAPER

Exam in:	INF-2700 Database Systems
Date:	Thursday 30.11.2017
Time:	09:00 - 13:00
Place:	Adm.bygget, B.154
Approved aids:	None
Type of sheets (squares/lines):	Digital exam
Number of pages incl. cover page:	7
Contact person during the exam:	Weihai Yu
Phone:	41429077

NB! It is not allowed to submit scratch paper along with the answer sheets. If you do submit scratch paper, it will not be evaluated.

Question 1 (40%)

Below are some database tables with example data for a football application.

• Teams

tid	name
t1	team1
t2	team2
t3	team3

Players

The player pid with name plays for team tid.

pid	name	tid
p11	ola	t1
p12	odin	t1
p21	per	t2
p22	peter	t2
p31	martin	t3
p32	markus	t3

Matches

The match mid between two teams tid1 and tid2 was played on date at start time.

mid	tid2	tid2	date	start
m1	t1	t2	2017-10-01	18:00
m2	t3	t2	2017-11-01	18:00
m3	t3	t1	2017-11-20	17:00

Goals

The goal gid in match mid was scored by player pid.

A true value of attribute own indicates an own-goal. An *own-goal* occurs when a player (mistakenly) sets the ball into the goal of the player's own team, resulting in a goal being scored for the opposition.

gid	mid	pid	own
g1	m1	p11	false
g2	m1	p21	true
g3	m1	p22	false
g4	m1	p11	false
g5	m3	p11	false
g6	m3	p12	false
g7	m3	p11	false
g8	m3	p12	false

The *primary keys* of the tables are in **bold** text.

Foreign key in Players:

• tid: references tid of Teams

Foreign keys in Matches:

• tid1: references tid of Teams

• tid2: references tid of Teams

Foreign keys in Goals:

• mid: references mid of Matches

• pid: references pid of Players

Write queries to find the required information.

Queries 1–5 must be formulated in both relational algebra and SQL.

Queries 6–10 need only be formulated in SQL.

Note: In the result tables of your SQL queries, there should be *no* identical (duplicate) rows.

Relational algebra and SQL (1-5):

1. List of different names of all players.

The result for the example database is:

name
ola
odin
per
peter
martin
markus

2. Dates and start time of all t1's matches.

The result for the example database is:

date	start
2017-10-01	18:00
2017-11-20	17:00

3. Names of all players of team1.

The result for the example database is:

4. Matches without goals. For each match, show the names of the teams, date and start time.

The result for the example database is:

name	name	date	start
team3	team2	2017-11-01	18:00

5. Names of players who *only* made own-goals.

The result for the example database is:

6. Number of teams.

The result for the example database is:

numberOfTeams
3

7. List of team names and the numbers of players of the teams,

The result for the example database is:

name	numberOfPlayers
team1	2
team2	2
team3	2

8. List of players who scored at least two goals (own-goals are *not* counted).

The list should show the names of the players and the numbers of goals the players scored. The players are listed in the descending order of the numbers of goals they scored.

The result for the example database is:

name	numberOfGoals
ola	4
odin	2

9. The matches and scores of team1.

The scores include the goals scored by the team and the own-goals made by the opponent team.

The result for the example database is:

mid	scores
m1	3
m3	4

10. Names of players who scored in all matches of the team (own-goals are not included).

The result for the example database is:

name
ola

Question 2 (20%)

Now consider the physical data organization of the database in Question 1.

In the questions below, we will focus on queries like this one:

```
SELECT t1.name, t2.name
FROM Matches m, Teams t1, Teams t2
WHERE date = '2017-11-30' AND t1.tid = m.tid1 AND t2.tid = m.tid2;
```

The tables involved in the queries are organized as below:

- Table Teams is organized as a B+-tree on attribute tid.
- Table Matches is organized as a B+-tree on attribute date.

Answer the following questions.

- 1. What is the primary performance overhead of database systems in general?
- 2. Describe the file structure of the Teams table.
- 3. Sketch an execution plan of the above query.
- 4. What is the performance overhead of your execution plan?

Question 3 (20%)

Answer the following questions. Please explain the relevant concepts while answering the questions.

1. What is *functional dependency* $X \rightarrow Y$ of a relation instance r?

For the relation instance below, check if the following functional dependencies are satisfied. If your answer is "no", explain why.

A	В	C
Х	1	t
x	2	t
у	3	u
z	4	u

- a) $A \rightarrow B$
- b) $A \rightarrow C$
- c) $AB \rightarrow C$
- d) $AC \rightarrow B$
- 2. What is a superkey of a relation schema?

Can you define a superkey using functional dependencies?

- 3. What is a relation schema in Boyce-Codd Normal Form (BCNF)?
- 4. We have a relation schema Addresses (stname, stnr, postcode, city), where stname stands for "street name" and stnr for "street number".

The Addresses schema has the following functional dependencies:

- $\{stname, stnr, city\} \rightarrow postcode$
- $postcode \rightarrow city$

The Addresses schema is not in BCNF. Why? What is the problem with not being in BCNF?

- 5. How would you solve the problem?
- 6. Does your solution introduce any new problem?

Question 4 (20%)

- 1. What is an ACID transaction?
- 2. Is the following transaction schedule serializable? Explain why.

$$read_1(x), read_2(y), write_1(x), read_2(x), write_2(x), commit_2, commit_1$$

- 3. Is the above transaction schedule *strict*? Explain why.
- 4. Describe a concurrency control mechanism that enforces serializable and strict transaction schedules.

-END-