COL 362 & COL 632

Processing SQL – plan generation 03 Feb 2023

Assignment 1

- Remember that we will stop answering questions on Piazza 10 hours before the deadline – i.e., at 2PM today.
- Please remember that TAs are also humans (some of you will be TAs in the future), and have other courses
 - Be respectful, don't expect them to respond to you within seconds of posting.
- Check the clarification thread if your questions are already answered before you post
- Follow only the clarifications given on Piazza

Name	Age	Addr
Priyanka Chopra	36	Mumbai
Anthony Hopkins	81	LA
Bill Nighy	69	LA
Abhishek Bachchan	42	Mumbai

Name	Year	Title
Priyanka Chopra	2011	Don-II
Anthony Hopkins	2011	MI-IV
Bill Nighy	2009	Valkyrie
Abhishek Bachchan	2010	Raavan

Return the names of actors below the age of 50 who have acted in a movie in 2011

$$\Pi_{Name}(\sigma_{Age < 50 \text{ AND } Year = 2011}(Actors \bowtie_{A.Name = M.Name} Movies))$$

$$Allmovies = Actors \bowtie_{A.Name=M.Name} Movies$$

$$Movies1 = \sigma_{Age < 50 \text{ AND } Year = 2011}(AllMovies)$$

$$Result = \Pi_{Name}(Movies1)$$

Example (2/5)

 $\Pi_{Name}(\sigma_{Age < 50 \text{ AND } Year = 2011}(Actors \bowtie_{A.Name = M.Name} Movies))$

Example (3/5)

Mt

 $\Pi_{Name}(\sigma_{Age < 50 \text{ AND } Year = 2011}(Actors \bowtie_{A.Name = M.Name} Movies))$ $\Pi_{Name}(\sigma_{Age < 50}(\sigma_{Year=2011}(Actors \bowtie_{A.Name=M.Name} Movies))) \ \checkmark$ Π_{Name} $\sigma_{Age < 50}$ $\sigma_{C1 \text{ AND } C2}(S) = \sigma_{C1}(\sigma_{C2}(S))$ $\sigma_{Year=2011}$ $\bowtie_{A.Name=M.Name}$ MoviesActors

Example (4/5)

$$\Pi_{Name}(\sigma_{Age < 50 \text{ AND } Year = 2011}(Actors \bowtie_{A.Name = M.Name} Movies))$$

$$\Pi_{Name}(\sigma_{Age < 50}(\sigma_{Year = 2011}(Actors \bowtie_{A.Name = M.Name} Movies)))$$

$$\Pi_{Name}(\sigma_{Age < 50}(Actors \bowtie_{A.Name = M.Name}(\sigma_{Year = 2011}(Movies))))$$

$$\Pi_{Name}$$

$$\sigma_{Age < 50} \qquad \sigma_{C1 \text{ AND } C2}(S) = \sigma_{C1}(\sigma_{C2}(S))$$

$$\sigma_{C}(S \bowtie T) = \sigma_{C}(S) \bowtie T$$

$$\bowtie_{A.Name = M.Name}$$

$$\sigma_{Year = 2011}$$

$$Movies : Movies : Mov$$

Example (5/5)

Which is more efficient?

Pushing selections lower in the tree, almost always results in a more efficient plan

More Algebraic Laws (1/2)

$$\pi_L(T \bowtie S) = \pi_L(\pi_M(T) \bowtie \pi_N(S))$$
 $\pi_L(\sigma_C(S)) = \pi_L(\sigma_C(\pi_M(S)))$
 $\Pi_{Name,Addr}$
 $\sigma_{Age>35}$
 $\Pi_{Name,Addr,Age}$
Actor

More Algebraic Laws (2/2)

$$\delta(S) = S \longleftarrow \text{When?}$$

$$\delta(S \bowtie T) = \delta(S) \bowtie \delta(T)$$

$$\delta(\sigma_C(S)) = \sigma_C(\delta(S))$$

$$\delta(\gamma_L(S)) = \gamma_L(S)$$

General Rules

and Size

- Minimize the number of tuples you need to process
 - Push selections low
 - Push projections low
 - Push duplicate eliminations low
- Ordering of operations (we will study this)
 - Which of k selections first?
 - Which of k joins first?

Physical Plans

Physical operators — Selection

- SCAN the tuples in Movies one by one
- Retain tuples which satisfy the condition
- If an index is present on Year, then perform an INDEX-SCAN
- Fetch tuples which satisfy the condition

The output of the operator: disk or memory?

Physical Operators – Joins (1/2)


```
Nested-loop Join (R,S)
iterate over r<sub>i</sub> in R
iterate over s<sub>i</sub> in S
if (join-condition satisfied)
output join(r<sub>i</sub>,s<sub>i</sub>)
end iteration
end iteration
```


Physical Operators – Joins (2/2)

