Přírodovědecká fakulta Univerzita Karlova

Konstrukce polyedrických globů

Matematická kartografie

Eliška Králová, Eliška Pospěchová

1.N-GKDPZ

Praha 2025

1 Zadání

Úloha č. 2: Konstrukce polyedrických globů

Vybraná platonská tělesa (šestistěn, čtyřstěn a osmistěn nebo dvanáctistěn) použijte pro polyedrickou aproximaci sféry. Na plošky platonských těles znázorněte v gnomonické projekci

$$x = R \cdot \tan(90^{\circ} - \check{s}) \cos d,$$

$$y = R \cdot \tan(90^{\circ} - \check{s}) \sin d,$$

geografickou síť doplněnou zákresem kontinentů. Skript pro generování sítě poledníků, rovnoběžek a znázorněných kontinentů realizujte v programu MATLAB bez použití externích funkcí. Soubory se zákresem kontinentů exportujte z vhodné datové sady.

Vytvořte prostorové modely polyedrických globů v měřítku 1:100 000 000 nebo 1:50 000 000 dle možnosti Vaší tiskárny a pošlete fotografii/video Vašeho glóbu. Součástí úlohy bude příloha s rozloženými modely globů.

Zjistěte následující vlastnosti gnomonické projekce v okrajovém bodě Q jedné ze stěn Platonského tělesa:

- $\bullet\,$ měřítko m_p v poledníku, měřítko m_r v rovnoběžce,
- poloosy a, b Tissotovy indikatrix,
- úhel ω' mezi obrazem poledníku a rovnoběžky,
- maximální úhlové zkreslení $\Delta\omega$,
- $\bullet\,$ měřítko ploch P,meridiánovou konvergencic.

Vypočtené parametry v bodě Q použijte k zákresu Tissotovy indikatrix (doporučené měřítko 1:1 000 000), jako podklad využijte obraz geografické sítě na příslušné stěně Platonského tělesa v gnomonické projekci, volte $\Delta u = \Delta v = 10^{\circ}$ (formát A4, popř. odpovídající).

Výpočty proveď te pro referenční kouli s poloměrem R=6380 km, hodnoty měřítek a poloos Tissotovy indikatrix uveď te s přesností na 6 desetinných míst, úhlové hodnoty s přesností na ". Výsledky zkontrolujte s hodnotami získanými z programu Proj.4.

2 Popis a rozbor problému

Základním předpokladem při konstrukci polyedrických globů na platonských tělesech, v našem případě dvanáctistěnu je, že rovina definovaná hranou tělesa a střed sféry jemu opsané/vepsané řeže tuto sféru v hlavní kružnici, tj. ortodromě. Ortodroma se v gnómonické projekci zobrazuje jako polopřímka, hranice plošek tedy budou představovat úsečky. Sféru lze tedy v gnómonické projekci zobrazit na platonská těleso bez překryvů a spár.

Postup vytvoření polyedrického globu se skládá z několika kroků. Nejprve se určí zeměpisné souřadnice vrcholů zvoleného platonského tělesa, které zároveň tvoří vrcholy pravidelných n-úhelníků (plošek). Do těžiště každé plošky, jehož zeměpisné souřadnice je třeba určit, je umístěn kartografický pól.

V rámci každé plošky se následně vytvoří síť poledníků a rovnoběžek, která je vztažená ke kartografickému pólu. Dále je načten soubor s navzorkovanými body reprezentujícími kontinenty. Body na sféře, které spadají do příslušné plošky platonského tělesa, se transformují vzhledem k jejímu středu (tedy ke kartografickému pólu) a následně se zobrazí pomocí gnómonické projekce.

Výsledný obraz se ořízne podle hranic plošky, definovaných spojnicemi jejích vrcholů. Tento postup se opakuje pro všechny plošky daného platonského tělesa.

2.1 Gnómonická projekce

Gnómonická projekce patří mezi azimutální zobrazení. Je založena na promítání ze středu sféry na tečnou rovinu ke kartografickému pólu. Zobrazovací rovnice v obecné poloze v polárním tvaru lze zapsat jako:

$$(\rho, \varepsilon) = (r \tan(90^{\circ} - s), d) \tag{1}$$

kde s a d jsou zeměpisné souřadnice a r je poloměr sféry. V pravoúhlém tvaru lze vyjádřit zobrazovací rovnice jako:

$$(x,y) = (r \tan(90^{\circ} - s)\cos d, r \tan(90^{\circ} - s)\sin d)$$
(2)

V gnómonické projekci v jsou poledníky znázorněny jako polopřímky vycházející z pólu, zatímco rovnoběžky se zobrazují jako soustředné kružnice. Tato projekce však umožňuje zobrazit pouze jednu polokouli a není schopna zobrazit oblast rovníku.

2.2 Pravidelný dvanáctistěn

Plošky pravidelného dvanáctistěnu jsou tvořeny pravidelnými pětiúhelníky. Strany pětiúhelníku spolu svírají 108° . Poloměr kružnice opsané pětiúhelníku lze určit jako:

$$r_s = \frac{a}{10}\sqrt{10(5+\sqrt{5})}\tag{3}$$

Poloměr kružnice vepsané pětiúhelníku lze určit jako:

$$\rho_s = \frac{a}{2} \sqrt{\frac{5 + 2\sqrt{5}}{5}} \tag{4}$$

Úhel mezi ploškami dvanáctistěnu je $\beta=180^{\circ}-\alpha$ kde $\alpha=116,5651^{\circ}$. Sféra vepsaná se dotýká plošek dvanáctistěnu v těžišti, pro jejich zeměpisnou šířku platí:

$$u_{\alpha} = 90^{\circ} - \beta = \alpha - 90^{\circ} \approx 26,5651^{\circ} \tag{5}$$

Těžiště odpovídají kartografickým pólům K_n . Kartografické póly na severní polokouli K_{1-5} tedy mají souřadnice:

$$K_1 = [u_{\alpha}, 0^{\circ}], K_2 = [u_{\alpha}, 72^{\circ}], K_3 = [u_{\alpha}, 144^{\circ}], K_4 = [u_{\alpha}, 216^{\circ}], K_5 = [u_{\alpha}, 288^{\circ}]$$
 (6)

Díky středové souměrnosti mají kartografické póly na jižní polokouli K_{6-10} zeměpisnou šířku $-u_{\alpha}$, jejich souřadnice lze zapsat jako:

$$K_6 = [-u_{\alpha}, 36^{\circ}], K_7 = [-u_{\alpha}, 108^{\circ}], K_8 = [-u_{\alpha}, 180^{\circ}], K_9 = [-u_{\alpha}, 252^{\circ}], K_{10} = [-u_{\alpha}, 324^{\circ}]$$
 (7)

Zbylé dva kartografické póly odpovídají zeměpisným pólům, tedy:

$$K_{11} = [90^{\circ}, 0^{\circ}], K_{12} = [-90^{\circ}, 0^{\circ}]$$
 (8)

Poloměr sféry dvanáctistěnu lze určit jako:

$$\rho = \frac{a}{20}\sqrt{10(25 + 11\sqrt{5})}\tag{9}$$

Doplněk u_{γ} úhlu γ a doplněk u_{δ} úhlu δ určují zeměpisnou šířku jednotlivých vrcholů dvanáctistěnu:

$$u_{\gamma} = 90^{\circ} - \gamma \approx 52,6226^{\circ} \tag{10}$$

$$u_{\delta} = 90^{\circ} - \gamma - \delta = 10,8120^{\circ} \tag{11}$$

Vrcholy na severní polokouli tedy mají souřadnice:

$$P = [u_{\gamma}, 36^{\circ}], Q = [u_{\gamma}, 108^{\circ}], R = [u_{\gamma}, 180^{\circ}], S = [u_{\gamma}, 252^{\circ}], T = [u_{\gamma}, 324^{\circ}]$$
(12)

$$G = [u_{\delta}, 36^{\circ}], I = [u_{\delta}, 108^{\circ}], K = [u_{\delta}, 180^{\circ}], M = [u_{\delta}, 252^{\circ}], O = [u_{\delta}, 324^{\circ}]$$
(13)

Pro jižní polokouli mají vrcholy zeměpisnou šířku s opačným znaménkem:

$$A = [-u_{\gamma}, 0^{\circ}], B = [-u_{\gamma}, 72^{\circ}], C = [-u_{\gamma}, 144^{\circ}], D = [-u_{\gamma}, 216^{\circ}], E = [-u_{\gamma}, 288^{\circ}]$$
(14)

$$F = [-u_{\delta}, 0^{\circ}], H = [-u_{\delta}, 72^{\circ}], J = [-u_{\delta}, 144^{\circ}], L = [-u_{\delta}, 216^{\circ}], N = [-u_{\delta}, 288^{\circ}]$$
(15)

Obrázek 1: Řez dvanáctistěnem v rovině základního poledníku (zdroj: Bayer, 2025)

3 Výpočty a mezivýpočty

V rámci této úlohy bylo zjištění vlastností gnómonické projekce v některé okrajovém bodě jedné ze stěn Platonského tělesa.

3.1 Měřítko m_p v poledníku a měřítko m_r v rovnoběžce

Pro samotný výpočet měřítek bylo nutné nejdříve vypočítat parciální derivace zobrazovacích rovnic gnómonické projekce:

$$fu = \frac{\delta x}{\delta u} = -\frac{R}{\cos^2(90^\circ - u)}\cos d = -\frac{R}{\sin^2 u}\cos d \tag{16}$$

$$fv = \frac{\delta x}{\delta v} = -R \tan(90^{\circ} - u) \sin v \tag{17}$$

$$gu = \frac{\delta y}{\delta u} = -\frac{R}{\cos^2(90^\circ - u)} \sin d = -\frac{R}{\sin^2 u} \sin d \tag{18}$$

$$gv = \frac{\delta y}{\delta v} = R \tan(90^\circ - u) \cos v \tag{19}$$

Poté lze již vypočítat samotná délková měřítka:

$$m_p^2 = \frac{fu^2 + gu^2}{R^2} = \frac{1}{\sin^4 u} \tag{20}$$

$$m_r^2 = \frac{fv^2 + gv^2}{R^2 \cos^2 u} = \frac{1}{\sin^2 u} \tag{21}$$

3.2 Poloosy a, b Tissotovy indikatrix

Poloosa a vyjadřuje maximální délkové zkreslení a poloosa b naopak nejmenší délkové zkreslení:

$$a = m_p^2 \cos^2 A_1 + m_r^2 \sin^2 A_1 + p \sin A_1 \cos A_1$$
 (22)

$$b = m_p^2 \cos^2 A_2 + m_r^2 \sin^2 A_2 + p \sin A_2 \cos A_2, \tag{23}$$

kde A_1 , A_2 jsou azimuty hlavních paprsků a proměnná p:

$$A_1 = \arctan \frac{p}{m_p^2 - m_r^2} \tag{24}$$

$$A_2 = A_1 + \frac{\pi}{2} \tag{25}$$

$$p = 2 \cdot (fu \ fv + gu \ gv) \tag{26}$$

Jelikož se jedná o gnómonickou projekci, která patří mezi jednoduchá zobrazení, délky poloos se rovnají délkovým měřítkům $(m_p = b, m_r = a)$.

3.3 Zkreslení úhlu mezi poledníkem a rovnoběžkou

Pro výpočet úhlu ω' mezi obrazem poledníku a rovnoběžky slouží tento vzorec:

$$\tan \omega' = \frac{gu \ fv - gv \ fu}{fu \ fv + gu \ gv} \tag{27}$$

3.4 Maximální úhlové zkreslení $\Delta\omega$

Vzorec pro výpočet maximálního úhlového zkreslení vypadá následovně:

$$\sin\frac{\Delta\omega}{2} = \frac{|b-a|}{b+a} = \frac{|m_p - m_r|}{m_p + m_r} \tag{28}$$

3.5 Měřítko ploch P

Měřítko ploch lze vyjádřit následujícím vzorcem i za pomoci znalosti vzorce pro jednoduchá zobrazení:

$$P = \frac{gu \ fv - fu \ gv}{r^2 \cos u} = m_p \ m_r = \frac{1}{\sin^3 u}$$
 (29)

3.6 Meridiánová konvergence c

Meridiánová konvergence udává úhel, který svírá obraz místního poledníku v daném bodě s obrazem základního poledníku. Jinak řečeno udává rozdíl mezi skutečným severem a zdánlivým severem. Její výpočet je následující:

$$c = |\sigma_p - \sigma_0| = |\sigma_p - \frac{\pi}{2}|,\tag{30}$$

kde σ_p je směrnice obrazu poledníku:

$$\tan \sigma_p = \frac{gu}{fu} = \frac{\sin v}{\cos v} = \tan v \implies \sigma_p = v \tag{31}$$

4 Skripty v programech

Všechny skripty pro tvorbu polyedrického glóbu společně se všemi výpočty byly napsány v SW MATLAB.

- boundary skript pro vykreslení ořezových hranic plošek
- continent skript pro nahrání kontinentů z textových souborů
- globeFace skript s definovanými parametry pro vykreslení jedné plošky glóbu
- gnom_distortions skript pro výpočet vlastností gnómonické projekce v daném bodě a pro vykreslení Tissotovy indikatrix
- gnom skript pro gnómonickou projekci s použitím vzorců (2) v kapitole 2
- graticule skript pro vykreslení geografické sítě
- u2_n skript pro vykreslení plošek severní polokoule
- u2_s skript pro vykreslení plošek jižní polokoule
- uv_sd skript pro transformaci souřadnic bodu do obecné polohy vzhledem ke kartografickému pólu

5 Konstrukce polyedrického glóbu

Prvním krokem pro tvorbu jednotlivých plošek bylo definování společných parametrů, jako jsou rozestupy geografické sítě, poloměr glóbu a měřítkové číslo. Poté byly pro každou plošku určeny souřadnice kartografických pólů podle zmíněných předpisů (6), (7) a (8) v kapitole 2. V téže kapitole jsou uvedeny též vrcholy jednotlivých plošek (12), (13), (14) a (15). Jako poslední krok před samotným vykreslením plošek polyedrického glóbu bylo kromě rozestupů rovnoběžek a poledníků v geografické síti nutné definovat také její rozsah – tedy minimální a maximální hodnoty zeměpisné šířky a délky. Ty byly voleny tak, aby měly přesah přes krajní body (vrcholy) plošek. Společně s geografickou sítí byly vykresleny lomové body kontinentů z textových souborů se zeměpisnými souřadnicemi bodů.

Po vykreslení severní a jižní polokoule (*Obrázek 2* a *Obrázek 3*) pomocí skriptů uvedených v kapitole 4, bylo nutné oříznout jednotlivé plošky podle ořezových linií. Výstupní grafy byly tedy uloženy ve vektorovém formátu *.svg a poté otevřeny v SW Inkscape. Pro snazší oříznutí a následné složení plošek byly soubory *.svg uloženy do vektorového formátu *.dxf, který lze bez problému otevřít v SW ArcGIS Pro. Zde poté byly jednotlivé plošky oříznuty a sestaveny k sobě pro vyexportování ve formátu *.pdf (*Obrázek 4*).

Obrázek 2: Severní polokoule dvanáctistěnu ze SW MATLAB

Obrázek 3: Jižní polokoule dvanáctistěnu ze SW MATLAB

Obrázek 4: Výsledný model rozloženého dvanáctistěnu

6 Výsledky

Pro výpočet vlastností gnómonické projekce byl zvolen bod $P = [52,6226^\circ;36^\circ]$ umístěný na jižní polokouli na základním poledníku. Vypočítané parametry pro daný bod jsou uvedeny v následující tabulce (Tabulka~1).

Vlastnosti gnómonické projekce	Hodnota (MATLAB)	Hodnota (pyproj)
Měřítko m_p v poledníku	1,583593	1,581638
Měřítko m_r v rovnoběžce	1,258409	1,260527
Poloosa a Tissotovy indikatrix	1,583593	1,581638
Poloosa b Tissotovy indikatrix	1,258409	1,260527
Úhel ω' mezi obrazem poledníku a rovnoběžky	90°	89,999999°
Maximální úhlové zkreslení $\Delta \omega$	13° 8′ 25″	12° 58′ 28″
Měřítko ploch P	1,992808	1,993698
Meridiánová konvergence c	54°	36°

 $Tabulka\ 1:\ Vlastnosti\ gn\'omonick\'e\ projekce\ v\ bod\check{e}\ P$

Výsledné vykreslení Tissotovy indikatrix v bodě P je zobrazeno na dalším obrázku ($Obrázek\ 5$).

Obrázek 5: Tissotova indikatrix v bodě P

7 Zhodnocení výsledků a závěr

Při porovnání hodnot vlastností gnómonické projekce v SW MATLAB a pomocí knihovny pyproj, znázorněné v tabulce (Tabulka~1), jsou patrné obdobné hodnoty. Největší rozdíl nastal u meridiánové konvergence c, která vyšla o 18° jinak. Rozdíly ostatních hodnot jsou maximálně v řádech desetin.

V rámci této úlohy byl vytvořen polyedrický glóbus (dvanáctistěn) za použití gnómonické projekce. Při tvorbě byly do jednotlivých stěn polyedrického glóbu zakresleny geografické sítě a kontinenty. Zároveň byly zjištěny vlastnosti projekce ve zvoleném bodě na okraji jedné z plošek tělesa. Zde byla též následně zkonstruována Tissotova indikatrix. Ze zjištěných parametrů vyplývá, že v poledníkovém směru je větší délkové zkreslení než ve směru rovnoběžek. Toto tvrzení bylo potvrzeno i pomocí knihovny pyproj.

Výsledné plošky byly ze SW MATLAB vytištěny a slepeny v jeden glóbus.

Zdroje

BAYER, T. (2025): Kartografická zkreslení. Délkové zkreslení, plošné zkreslení, podmínky konformity. Tissotova indikatrix. Přednáška pro předmět Matematická kartografie, Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK [cit. 10.4.2025].

BAYER, T. (2025): Konstrukce globů na platonských tělesech - návod na cvičení. Výukový materiál pro předmět Matematická kartografie, Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK [cit. 7.4.2025].

ESRI (2025): World continents. https://hub.arcgis.com/datasets/esri::world-continents/about [cit. 7.4.2025].