

Bipedalism, Flight, and the Evolution of Theropod Locomotor Diversity

Author(s): Stephen M. Gatesy and Kevin M. Middleton

Source: Journal of Vertebrate Paleontology, Jun. 19, 1997, Vol. 17, No. 2 (Jun. 19,

1997), pp. 308-329

Published by: Taylor & Francis, Ltd. on behalf of The Society of Vertebrate

Paleontology

Stable URL: https://www.jstor.org/stable/4523809

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms

Taylor & Francis, Ltd. and The Society of Vertebrate Paleontology are collaborating with JSTOR to digitize, preserve and extend access to Journal of Vertebrate Paleontology

BIPEDALISM, FLIGHT, AND THE EVOLUTION OF THEROPOD LOCOMOTOR DIVERSITY

STEPHEN M. GATESY and KEVIN M. MIDDLETON

Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, Rhode Island 02912

ABSTRACT—The evolution of theropod flight has been characterized as a shift from one to three locomotor modules. Basal theropods, which were terrestrial bipeds, had a single locomotor module composed of the hind limb and tail. In birds, aerial locomotion was acquired with the origination of the wing module and a decoupling of the hind limb and tail into separate pelvic and caudal modules. This increase in modularity is thought to have granted birds more locomotor "options" than non-avian theropods. More specifically, an aerial locomotor system could have eased constraints on the hind limb and allowed specialization for habitats and lifestyles unavailable to non-birds. If so, bird hind limbs should be more disparate than those of non-avian theropods. We addressed this hypothesis by visualizing one aspect of limb design, the proportions of the three main segments, using ternary diagrams. Our results show that avian hind limb proportions are much more disparate than those of non-avian theropods. This broad range of limb design correlates with a radiation in locomotor diversity founded on three locomotor modules. We propose that birds have reached regions of proportion morphospace that are off limits to bipeds with only one locomotor module. In comparison, the limbs of non-avian theropods are conservatively proportioned. Despite great variation in body size, theropods other than birds do not exhibit specializations for locomotion other than terrestrial bipedalism. Although other aspects of size and shape need to be analyzed, the relationship between modular flexibility and morphological disparity appears to play an important role in theropod locomotor evolution.

INTRODUCTION

Birds are now widely recognized as flying theropod dinosaurs (Ostrom, 1976a; Gauthier, 1986; Fig. 1). During its 230 million year history, the clade Theropoda has given rise to an array of organisms as divergent as hummingbirds and tyrannosaurs. This spectrum of body form and scale makes the group particularly appealing for studying the evolution of disparity—the "range of anatomical design" (Gould, 1991:412; Foote, 1989, 1993; Wagner, 1995). By analyzing the distribution of theropods within a morphospace, it may be possible to reveal constraints on shape, to discern general rules of musculoskeletal design, and to shed light on locomotor evolution.

Birds have been characterized as having three anatomical subregions of the musculoskeletal system that are highly integrated and act as functional units during locomotion (Fig. 1A; Gatesy and Dial, 1996). These so-called "locomotor modules" are the wings, hind limbs, and tail. In contrast, basal theropods are thought to have had only a single locomotor module composed of the hind limb and tail, which were morphologically and functionally coupled. The origin of avian flight required transformation of the primitively non-locomotor forelimb into an aerodynamic surface; accordingly, the inception of the pectoral module has been the focus of most work (e.g., contributions in Hecht et al., 1985). All theropods remained bipedal, but modifications of the hind limb and tail (Gatesy, 1990, 1994) eventually led to their decoupling into separate pelvic and caudal locomotor modules (Gatesy and Dial, 1996). It has been proposed that such an increase in modularity (from one to three modules) offered birds more locomotor "options" than were available to non-bird theropods (Gatesy and Dial, 1996). This reorganization permitted a radiation of avian limb designs and locomotor strategies through the differential elaboration of modules in various lineages.

In this study, we analyze how the multi-segmented hind limbs of theropods are distributed in a limb morphospace. Patterns of design space filling are used to test the prediction that the hind limbs of birds (which have three locomotor modules or ancestors that did) should be more disparate than those of non-avian theropods (which had only one module). Theropods were primitively terrestrial obligate bipeds, in which the hind

limbs were vital to the sole locomotor mechanism. In birds a second, aerial locomotor capability was added through the novel allegiance of the wing and tail modules. We hypothesize that flight eased constraints on theropod hind limb design. If so, bird hind limbs should have been freed to evolve novelties and pioneer areas of morphospace that were inaccessible to non-flying theropods.

Herein we concentrate on one aspect of limb shape, the proportions of the main limb elements, which are visualized using ternary diagrams. Limb proportions have been employed to discern adaptations for different locomotor styles in mammals (e.g., Gregory, 1912; Osborn, 1929; Smith and Savage, 1956; Garland and Janis, 1993) and dinosaurs (e.g. Coombs, 1978; Holtz, 1994a). We intentionally disregard other important aspects related to function in order to simplify the complexities of limb design. Factors such as body size, body form, relative limb size, muscular mechanisms of limb movement, and differences in the phalanges all influence limb function, but we hoped that limb proportions alone would reveal major patterns.

MATERIALS AND METHODS

Terminology and Systematics

We consider birds to be a subclade of theropod dinosaurs (Fig. 1B). As such, birds are theropods, and we will use the term theropod to mean all theropods, including birds, unless further specified. We will use the terms birds and avian to refer to the common ancestor of Archaeopteryx and modern birds plus all of its descendants. Theropods that are not birds will be called either non-avian theropods, non-birds, or be designated by a more specific name (e.g., ceratosaurs, tyrannosaurs, nonavian maniraptorans, etc.). Despite major advances, theropod phylogeny still has many uncertainties. We follow the general hypotheses of Gauthier (1986) and Chiappe (1995), but draw upon phylogenies of Holtz (1994b) and Sereno et al. (1996) for more recently described non-bird taxa. Traditional bird orders (Wetmore, 1960) are used to organize modern theropods, even though some are probably not monophyletic. We treat ratites (ostriches, rheas, emus, cassowaries, kiwis, moas, elephantbirds, dromornithids) as a single group. Throughout the paper

FIGURE 1. Locomotor modules and theropod phylogeny (Modified from Gatesy and Dial, 1996). A, Theropod locomotor modules. Non-avian theropods were terrestrial bipeds in which the hind limb and tail were anatomically and functionally linked in a single locomotor module. In birds this primitive module decoupled into separate pelvic and caudal modules. The wing and tail formed the aerial locomotor system. B, A simplified cladogram of Theropoda (after Gauthier, 1986).

we make a distinction between disparity (range of anatomical design, Gould, 1991), taxonomic diversity (number of species), and locomotor diversity (range of locomotor ability and function). All potential anatomical designs constitute a morphospace.

Data Collection

We analyzed theropod hind limb shape by measuring the lengths of its three main segments: the femur, tibiotarsus, and tarsometatarsus (Fig. 2). The length of the femur is relatively straightforward, but tarsal elements make quantifying other segments more complicated. The length of the tibia is augmented by the proximal tarsals, which fuse in some theropods to form a tibiotarsus. We included the tarsal contribution to the tibia in all birds and in non-birds when available. Similarly, the distal

tarsals and metatarsals may fuse to form a tarsometatarsus. In theropods with unfused feet the length of metatarsal III was measured; the small distal tarsals were not included. For convenience, we will use the terms tibiotarsus and tarsometatarsus for all theropods, even those that lack fusion. Processes extending beyond the joint, such as the greater trochanter and cnemial crest, were excluded from measurement when possible to obtain interarticular segment lengths.

The vast majority of the data were restricted to complete limbs of individual specimens. For extinct theropods, segment lengths were taken from the literature. Fossil specimens with missing or incomplete elements were not included, although some bone lengths must be considered estimates due to distortion. Individual data on 91 hind limbs of 37 non-avian theropod genera were collected. Since complete limbs of extinct theropods are so rare, all are included in this study (Appendix 1).

Modern bird skeletons in the Museum of Comparative Zoology and the Peabody Museum were measured with a ruler and calipers. Birds were not randomly sampled. Instead, a preliminary survey was undertaken to estimate the area of morphospace birds might fill. We then deliberately sought out taxa at the periphery of this area to try to define the limits of bird limb design. At the same time, a more systematic survey of representatives of each order was done to insure adequate taxonomic coverage. As a result, the density of bird points does not reflect accurately the true distribution of modern bird diversity; taxa at the edges are heavily overrepresented and passerines are underrepresented. Our data set includes proportions of 649 hind limbs from 353 species of 262 genera in 104 families in 23 orders of living birds (Appendix 2). Fossil birds are represented by 86 hind limbs from 47 species (Appendix 3). The remaining bird data are published means of bone lengths from multiple individuals of 75 species (Appendix 3). These are plotted on the same graph as points for measured individuals. Mean lengths permit the inclusion of more published data, particularly from avian fossil deposits where individuals are not easily identified.

Analysis

Segment lengths were added to obtain total hind limb length. Percentages were calculated by dividing each segment's length by limb length and multiplying by 100. We visualized the potential limb morphospace using a ternary diagram, in which the percentage of each segment's contribution to the total is plotted on one of three axes oriented 120° apart (Fig. 2). Theoretically, a tripartite limb could be designed with any combination of segment lengths as long as none is zero. Any tripartite limb must fall somewhere within, but not on, the perimeter of the ternary triangle. In the following analysis we will refer to ternary diagram area as limb proportion morphospace. To estimate the area inhabited by each group, we split the ternary diagram into 5% divisions (400 triangles) and counted the number of occupied cells. We also calculated the range as the difference between highest and lowest percentages along each axis. No attempt was made to correct for the phylogenetic relatedness of data points (Felsenstein, 1985; Garland et al., 1992; Garland and Janis, 1993).

RESULTS

All Theropods

Theropods fill a small area of the overall range of proportions available to tripartite limbs, occupying only one ninth (45) of the 400 possible cells (Fig. 3A). Because the theropod area is contiguous (at 5% resolution), large regions of proportion mor-

_

FIGURE 2. Visualization of theropod limb proportion morphospace. A, A ternary diagram is constructed with three axes (I, II, and III) running from a side to the opposite vertex of an equilateral triangle. Each axis spans from 0-100% and represents the percentage of a limb segment's contribution to limb length. B, A tripartite limb, such as the hind limb of Tyrannosaurus, is divided into its three segmental proportions. Data are plotted on the ternary by making axis I the percent femur, axis II the percent tibiotarsus, and axis III the percent tarsometatarsus. C, A hind limb proportion ternary showing the position of Tyrannosaurus (T) in proportion morphospace. The positions of four hypothetical limbs (1-4) having different combinations of limb segment percentages are also shown. Limb 1 has equal elements and falls in the center of the ternary diagram. Any combination of three segments will fall within the boundaries of the morphospace triangle. Tyrannosaurus skeleton modified after Heilmann (1926). Limb segments have been arbitrarily oriented at 30° from the vertical.

FIGURE 3. Theropod hind limb proportions in ternary morphospace. A, All theropods occupy only a small fraction of potential tripartite limb designs; most regions are empty. B, Within theropods, non-birds (open circles) form a subset that is much smaller than that of birds (dots). Avian and non-avian distributions overlap in five cells. C, Hind limb skeletons representing extreme proportions (symbols in B) within non-avian theropods and birds. The femur, tibiotarsus, and tarsometatarsus have all been arbitrarily oriented at 30° from the vertical to permit comparison of proportions. Allosaurus after Paul, 1987; Gallimimus after Osmolska et al., 1972; Sinornithoides after Russell and Dong, 1993b; Deinonychus after Ostrom, 1976b; Archaeopteryx after Ostrom, 1976a; rhea after Heilmann, 1926; flamingo after Howell, 1965; Hesperornis after Marsh, 1880; penguin after Feduccia, 1980.

phospace are vacant. No limbs were found with a femur less than 10% or more than 48% of total length. Tibiotarsi vary from 35% to 57% of the limb, whereas tarsometatarsi range from 13% to 45%. Thus the femur is most variable in its contribution (38% range), followed by the tarsometatarsus (32% range) and the tibiotarsus (22% range).

Non-Avian Theropods

Limb proportions of non-avian theropods are restricted to a subset of theropod morphospace (Figs. 3B, 4). Of the 45 triangles occupied by the entire clade, non-birds are present in only 11. This represents one quarter of the theropod region and

FIGURE 4. Non-avian theropod and early bird hind limb proportion morphospace. Each point represents data from a single specimen. Note that non-avian maniraptoran theropods (underlined and bold), are found adjacent to Archaeopteryx and other Mesozoic birds (circled). The basal theropod, Eoraptor, is boxed. Symbols: A1, London Archaeopteryx; A2, Berlin Archaeopteryx; A3, Solnhofen Archaeopteryx; A4, Eichstätt Archaeopteryx; A5, Munich Archaeopteryx; Ab, Albertosaurus; Ac, Acrocanthosaurus; Af, Afrovenator; A1, Allosaurus; Ar, Archaeornithomimus; Au, Aublysodon; Av, Avimimus; Cd, Chuandongocoelurus; Ce, Ceratosaurus; Ch, Chirostenotes; Cl, Chilantaisaurus; Cm, Compsognathus; Cn, Confuciusornis; Co, Coelophysis; Ct, Cathayornis; Da, Daspletosaurus; De, Deinonychus; Di, Dilophosaurus; Dp, Dryptosaurus; Dr, Dromiceiomimus; dr, undescribed dromaeosaur; El, Elaphrosaurus; Eo, Eoraptor; Eu, Eustreptospondylus; Ga, Gallimimus; He, Herrerasaurus; In, Ingenia; Ma, Maleevosaurus; Me, Megalosaurus; Or, Ornithomimus; ov, undescribed oviraptorid; Po, Podokesaurus; Pr, Procompsognathus; Sa, Saurornithoides; Se, Segisaurus; Si, Sinraptor; Sn, Sinornithoides; St, Struthiomimus; Sy, Syntarsus; Sz, Szechuanosaurus; Ta, Tarbosaurus; Ty, Tyrannosaurus.

a mere 2.8% of the potential limb morphospace. The homogeneity of non-birds is borne out in the low variation in proportions of each element (Fig. 4). The femur has a range of only 17%, the tibiotarsus 9%, and the tarsometatarsus 11% across all non-avian theropods. The lowest femur values (ca. 31% of the limb) are shared by Sinornithoides, Avimimus, and three ornithomimids (Archaeornithomimus, Struthiomimus, Dromiceiomimus). Acrocanthosaurus has the largest femoral percentage of 48%. The extreme tibiotarsal values are represented by several taxa near 36% (Acrocanthosaurus, Tarbosaurus) and 44% of the limb (Ingenia, Sinornithoides, undescribed dromaeosaur). Acrocanthosaurus also has the lowest tarsometatarsal percentage (17%), whereas the ornithomimids Gallimimus and Archaeornithomimus have the highest at near 28%.

Species are not randomly distributed; clusters of more closely related taxa can be identified within the theropod cloud (Fig. 4). Tyrannosaurs (Tyrannosaurus, Tarbosaurus, Albertosaurus, Daspletosaurus, Aublysodon, Maleevosaurus) form a cluster running diagonally along the upper left edge of the distribution. Ornithomimids (Ornithomimus, Struthiomimus, Dromiceiomimus, Gallimimus, Archaeornithomimus) occupy the top of the cloud. Ceratosaurs (Ceratosaurus, Coelophysis, Syntarsus, Dilophosaurus, Procompsognathus, Podokesaurus, Elaphrosaurus) are located in a cluster running parallel below these groups. Non-coelurosaur tetanurines (Allosaurus, Acrocanthosaurus,

Sinraptor, Afrovenator, Chilantaisaurus, Eustreptospondylus) occupy the lower left region of the distribution, along with the basal theropods Eoraptor and Herrerasaurus. Non-avian maniraptoran groups such as dromaeosaurs (Deinonychus, undescribed form), elmisaurids (Chirostenotes), troodontids (Sinornithoides, Saurornithoides), and oviraptorids (Ingenia, undescribed form) have hind limb proportions making up the right side of the cloud.

Avian Theropods

Birds show much more disparity of hind limb proportions than do other theropods (Fig. 3B). Of the 45 theropod cells, birds occupy 39, and cover one tenth of the 400 potential hind limb morphospace cells. Birds and other theropods share five cells, indicating an overlap of one ninth of the theropod distribution and one hundredth of all possible designs. The ranges of bird proportions are all larger than in non-birds: femur 27%, tibiotarsus 19%, and tarsometatarsus 32%. Femur length is just over 10% of the limb in the flamingo (Ciconiiformes), but is over 37% of limb length in the oilbird (Caprimulgiformes). The tibiotarsus remains most conservative, with a minimum of 37% in the rhea (ratite) and a maximum of 56% in Hesperornis (Hesperornithiformes) and penguins (Sphenisciformes). Varia-

tion is greatest in the tarsometatarsus, spanning from a low of 13% in penguins to almost 45% in flamingos.

Basal birds are located on the right side of the non-avian theropod cloud amidst non-bird maniraptorans (Fig. 4). This position lies in the left region of the avian cloud (Fig. 5). Hind limbs of five specimens of *Archaeopteryx* are present in two of the five cells that birds and non-birds share. Tibiotarsal values are similar in all specimens, but the Eichstätt and Munich specimens have lower femoral values and higher tarsometatarsal values than the London, Berlin and Maxberg specimens, which cluster with *Confuciusornis*. Two enantiornithine birds (*Sinornis*, *Cathayornis*) are located in this general area.

Insight into the distribution of birds within avian morphospace can be found by studying different regions of the bird cloud (Fig. 5). The upper right portion is composed of birds with a relatively low femoral and high tarsometatarsal percentages. Taxa from several orders are present. Many are ciconiforms, such as herons, egrets, storks, ibises, and flamingos. Others are gruiforms: cranes, limpkins, bustards, and the seriema. Of similar proportions are some charadriiforms, including stilts, avocets, jacanas, godwits, crab plovers, stone curlews, and sandpipers. Finally, storm petrels (Procellariiformes) and a lone member of the Falconiformes, the secretarybird (Sagittarius), are found in this region.

Along the right side of the avian distribution (Fig. 5) are the loons (Gaviiformes), some grebes (Podicipediformes), alcids (Charadriiformes), and an extinct diving duck, Chendytes (Fig. 6). The extinct hesperornithiforms (Hesperornis, Baptornis) have a unique combination of high tibiotarsal values (patella not included) and intermediate femoral and tarsometatarsal proportions, placing them on the extreme right side of the avian cloud (Fig. 6). All but the alcids, which fly underwater, are foot propelled diving birds. Moas (Fig. 6), noted below, are also in this area. The lower regions of the bird cloud are also taxonomically mixed. Penguins (Sphenisciformes) dominate the lower edge (Fig. 6), forming a narrow band at tarsometatarsal values around 14%. Frigatebirds (Pelecaniformes) are present in this cluster. Parrots (Psittaciformes) and some kingfishers (Coraciiformes) also have limbs with relatively low tarsometatarsal percentages.

The left side of the avian distribution is dominated by the Galliformes, the chicken-like birds (Fig. 5). In this region bird and non-bird limb proportions overlap; quail, ptarmigan, grouse and capercaille, in particular, have hind limb proportions indistinguishable from some non-avian theropods. Other taxa are also present, however. Some hawks, eagles, falcons, and kites (Falconiformes), boobies, gannets, and some pelicans (Pelecaniformes), woodpeckers (Piciformes), a trogon (Trogoniformes), and tinamous (Tinamiformes) have limbs that fall in this region. The upper left corner of bird morphospace is filled almost exclusively by ratites, such as ostriches, rheas, emus, and cassowaries (Fig. 6), although some passerines are present (Fig. 5). These birds have hind limbs with relatively short tibiotarsi, relatively large tarsometatarsi, and femora of intermediate proportion. Not all ratites inhabit this region, however. Moas, kiwis, and elephantbirds have smaller tarsometatarsal percentages and are thus located much lower in the distribution. These are subdivided into an upper cluster containing the extinct elephantbird Aepyornis, the dromornithid Genyornis, and moas of the genus Dinornis, and a lower cluster containing kiwis and all other moas.

Between these edges and extremes lie birds with intermediate limb proportions (Fig. 5). As in other regions, the middle of the avian cloud is a mix of taxa from various orders that share similar combinations of limb segment length. Within this central area lie most passerines (Passeriformes), owls (Strigiformes), cuckoos and roadrunners (Cuculiformes), pigeons and doves (Columbiformes), ducks, geese, and screamers (Anseri-

formes), albatrosses, shearwaters, petrels, and fulmars (Procellariiformes), gulls and terns (Charadriiformes), nighthawks and goatsuckers (Caprimulgiformes), cormorants, anhingas, tropic-birds, and some pelicans (Pelecaniformes), vultures, condors, and ospreys (Falconiformes), rails and some bustards (Gruiformes), hornbills and most kingfishers (Coraciiformes), hummingbirds and swifts (Apodiformes), toucans (Piciformes), and the extinct sandcoleiforms.

Flying birds are found in three fourths (30) of the 39 bird cells. Flightless birds are also well distributed, occupying about one half (21) of the cells and sharing 12 cells with flying forms (Fig. 6). Major groups of flightless birds include the ratites (ostriches, rheas, emus, cassowaries, kiwis, moas, elephantbirds, Genyornis), the hesperornithiforms, and the penguins. Flight was also lost independently in members of otherwise flying orders, such as pigeons (Raphus), ducks (Chendytes, Mergus, Tachyeres), cormorants (Compsohalieus), parrots (Strigops), rails (Gallirallus, Aptornis, Atlantisia), alcids (Pinguinus, Mancalla, Praemancalla), and grebes (Rollandia).

DISCUSSION

Theropods have a 230 million year history of bipedal locomotion. One lineage of theropods, birds, evolved aerial locomotion. In turn, multiple independent lineages of birds lost this ability and became secondarily flightless. Such a clade offers an interesting opportunity to study locomotor evolution. We predict that theropods with such different locomotor module histories should differ in their limb morphology. In the following sections we address how the distribution of limbs in proportion morphospace allows us to gain insight into the evolution of theropod hind limb design.

Limb Proportion Disparity and Flight

We predicted that birds, because of their greater modularity, would have more disparate hind limb morphologies than non-avian theropods. The distribution of hind limbs within proportion morphospace lends strong support to this prediction. Compared to birds, which fill about 10% of the potential morphospace, non-avian theropods have much more conservative limb proportions and occupy less than 3%. This is consistent with the idea that birds have dual locomotor systems (Ostrom, 1979, 1986; Pennycuick, 1986; Butler, 1991; Gatesy and Dial, 1996) and are thus less constrained in their hind limb morphology than other theropods. Flight eased barriers to hind limb novelty previously imposed by obligate bipedalism and thereby made unused regions of morphospace accessible.

We suggest that the hind limb of non-avian theropods could not undergo major modification without jeopardizing walking or running proficiency. The hind limbs of many birds seem maladaptive for a theropod that is unable to capture food and escape predators in some other way. For example, it is highly unlikely that the feeble hind limbs of hummingbirds, swifts, nighthawks, and other highly specialized aerial foragers would have evolved in exclusively terrestrial theropods. Similarly, freshwater and marine habitats must have been available to nonbird theropods, but may have been rendered relatively inaccessible by their reliance on a single locomotor module. Only after the acquisition of flight do theropods become aquatic and evolve more bizarre hind limb morphologies. In general, we conclude that the initial morphological steps toward locomotor specialization are more easily tolerated by theropods with functional wing modules, since selective forces repressing hind limb novelty would be relatively weaker than in theropods with only one module.

If the possession of three locomotor modules allowed birds to colonize new hind limb morphospace, what happened when flight was subsequently lost? Interestingly, loss of the pectoral

FIGURE 5. A, Avian hind limb proportions in ternary morphospace. B, Extant bird orders with flying members occupy distinct regions of the avian cloud. Four genera of Mesozoic birds are included. Note that the two polygons drawn around bird data are intended to facilitate comparison only, not to represent the known or presumed edges of the avian cloud.

FIGURE 6. Ternary distribution of flightless bird hind limb proportions. Points are plotted within polygons drawn around data from all birds as in Figure 5. All moas are shown as triangles. Note the complete absence of flightless forms from the upper right region of the bird polygon.

module does not return birds to a more primitive, non-avian hind limb morphology. Rather, flightless birds occupy some of the extreme regions of the avian cloud (Fig. 6). Although there is not room here to fully discuss this issue (see Livezey, 1992, 1989, and Livezey and Humphrey, 1986 for more detail), such a distribution is not surprising when one considers the history of flightlessness. First, since flight was lost many times in birds, each lineage could have evolved from flying ancestors that already had disparate morphologies. For example, parrots (Psittaciformes) and cormorants (Pelecaniformes) occupy different regions of hind limb proportion morphospace (Fig. 5), and their relatively recent flightless members retain this distinction (Fig. 6). Second, the ecological conditions permissive to flightlessness (isolation, lack of predators, large body size) may themselves ease pressures hindering novelty. Although the importance of locomotor performance in their demise is not always clear, the relatively helpless Dodo, Great Auk, and other insular forms have fared poorly in the face of introduced predators. Third, many flightless birds (ducks, grebes, auks, cormorants, penguins, hesperornithiforms) are primarily aquatic. Penguins and some alcids are flightless, but still have three locomotor modules since the wings and tail function in water. Hesperornithiform hind limbs were so modified for subaqueous propulsion as to be useless on land. Specializations in other swimming forms are not so dramatic, but in most cases convergence with exclusively terrestrial flightless forms would not be expected. Thus, birds that revert to flightlessness should not necessarily return to a primitive hind limb morphology. Each started from a different point in morphospace, and many have limbs adapted for lifestyles other than terrestrial bipedalism. In this way the limb proportions of flightless birds often reflect their descent from flying theropods with three locomotor modules. It is for this reason that we included them in our comparison of avian and non-avian hind limbs.

Benefits of the Ternary Diagram

Ternary diagrams are a useful way of studying the relative contribution of three elements simultaneously, such as the percentage of quartz, feldspar, and clay in sandstones, the frequencies of three alleles at a locus, or morphological variables (Mattison and Giffin, 1989; Mattison, 1993). Bivariate plots have been used to study theropod limb design (Coombs, 1978; Gatesy, 1991; Holtz, 1994a), but representing three elements simultaneously has proven awkward. Typically, pairs of elements are plotted separately, making it difficult to compare data between graphs for single individuals. More derived graphs of tibia to femur ratio (T/F) versus metatarsal to tibia ratio (M/T) contain the same information as our ternary diagrams (Coombs. 1978; Holtz, 1994a), but in a less accessible form. Because it has three linear axes, the contribution of each element to limb length can be read directly from the ternary diagram. Another alternative has been expressing segment proportions as histograms (e.g., Engels, 1938), but this format severely limits comparison among individuals or species. Patterns of variation would be impossible to assimilate if we had made over nine hundred histograms from our data set. The ternary diagram allows proportion differences to be assessed easily since data for all individuals of all species can be plotted on the same graph.

A ternary diagram also sheds light on intramembral ratios. Traditional indices such as tibia length to femur length (T/F ratio) have been used to judge the degree of cursoriality in mammals (Gregory, 1912; Osborn, 1929). A high T/F ratio is typically interpreted as an adaptation for running, whereas a low T/F ratio is indicative of mediportal or graviportal locomotion. These criteria have been applied to dinosaurs in general (Coombs, 1978), and a relationship between T/F ratio and cursoriality continues to be invoked in almost every theropod described (e.g., Osborn, 1916; Ostrom, 1976b; Colbert, 1989).

The scope of avian hind limb disparity revealed by our data makes the reliance on T/F ratio alone highly suspect. Ratites such as ostriches, which have T/F ratios of about 1.5-2.0, are often used to exemplify cursorial birds. Unfortunately, there is no simple relationship between cursoriality and T/F ratio across birds. The problem can be visualized by projecting lines of equivalent T/F ratio on the theropod hind limb ternary (Fig. 7A). Birds to the right of ostriches have increasingly higher T/F ratios (Fig. 7B). Flamingos have ratios as high as 4.1, but like other wading birds in this region they could not be considered more cursorial than ostriches. Clearly, T/F ratios increase in birds for reasons other than cursoriality (Howell, 1965), making any straightforward interpretation of locomotor function impossible. Assuming that lower T/F ratios relate directly to cursoriality is likely to be similarly flawed. Yet, theropods with identical T/F ratios can still differ in proportion; the tarsometatarsus is variable and must be included in any evaluation of basic limb design. This points out the need to consider all three of the major skeletal elements when assessing limb function. The ternary allows one component of the limb to be assessed while the ratio of the other two is held constant. For example,

FIGURE 7. Intramembral ratios such as Tibia/Femur (T/F) can be visualized using ternary diagrams. A, Lines of equal ratio radiate from the top and allow hind limbs to be easily compared. B, Notice that ratites such as ostriches have the same T/F ratio as many non-cursorial birds, including penguins. Also note that birds with higher T/F ratios, such as flamingos, are not necessarily more terrestrial or adapted for running. However, at each T/F ratio species with the highest tarsometatarsal percentage may be more cursorial than those with relatively smaller tarsometatarsi. Ornithomimids and tyrannosaurs (shaded) are located along the top edge of the non-avian theropod cloud.

all birds within the shaded wedge (Fig. 7B) share similar T/F ratios. Hummingbirds, alcids, kingfishers, and penguins share T/F ratios with ostriches, but would never be considered cursors. This alone should warn of the absurdity of assessing running ability from just these two measures.

Running ratites, however, have the relatively longest tarsometatarsi among birds of similar T/F ratio. It is possible that for any given T/F ratio there is a gradient of cursoriality increasing with higher tarsometatarsal proportion. Within nonavian theropods the 0.75-1.4 range in T/F ratio is partially related to scale; larger taxa and more mature individuals tend to have lower T/F ratios (e.g., Gatesy, 1991; Holtz, 1994a). At any T/F ratio, however, tyrannosaurs and ornithomimids have higher tarsometatarsal values than other non-avian theropods (Fig. 7B). This pattern graphically distinguishes between the limbs of purported cursors (e.g., Holtz, 1994a) and other nonbirds. Unfortunately, non-bird theropod tarsometatarsi have a very small range. Tyrannosaur tarsometatarsal values exceed those of Sinraptor, Szechuanosaurus, Ceratosaurus, Afrovenator, Eustreptospondylus, Herrerasaurus, Dryptosaurus, Eoraptor, Coelophysis, and Dilophosaurus, but only by 5% of limb length at most. This is within the range of variation among ostriches, rheas, emus, and cassowaries. Therefore, the significance, if any, of such relatively minor differences for running ability or lifestyle (i.e., active predator, scavenger) is by no means clear.

Caveats

Several factors hamper the direct interpretation of our results. First, we are making a comparison between a paraphyletic group, non-avian theropods, and a monophyletic group, birds. Fortunately, the accepted time ranges for these groups are not too different. Non-birds survived for about 165 million years and birds at least 140 million, thus giving each group a similar amount of time to evolve limb disparity. A more rigorous comparison would be between birds and their sister taxon. However, this is difficult since the maniraptoran sister group of birds is still unclear and will have a very low diversity. Another concern is that the relationship we invoke between locomotor modules and limb disparity may be unique to theropods. Data from other clades will be required to advance our results toward more generalizable rules of limb evolution.

A more significant issue is sampling. This applies both to what was available as well as what was selected. Complete nonavian theropod limbs are relatively rare in paleontological collections. In contrast, bird limb skeletons are so abundant that thousands of individuals from thousands of extant species could have been measured. This led us to sample fossil and living theropods very differently; all complete non-bird limbs were used, whereas birds were selected non-randomly to try to define the edges of the avian cloud. Since our bird data set was nine times larger than that of non-birds, broader avian distributions could be due to sampling alone. By analyzing limb proportion disparity in terms of morphospace area or range, our conclusions are strongly influenced by sample size (Foote, 1993; Wagner, 1995). An alternative approach would have been to sample birds randomly to create equally sized data sets. However, we did our best to "push the envelope" and maximize morphospace filling with complete limbs. Even if this invalidates the testing of our hypothesis, we feel this is a more accurate representation of theropod morphospace as it is currently known. A random sampling from our bird data set or a calculation of average distance among points (e.g., Foote, 1993) would still be biased since we were so selective in our choice of taxa.

Biases against the preservation and recovery of small, thinwalled bones are probably skewing our knowledge about small extinct theropods, both bird and non-bird. The majority of theropod fossils of all size are incomplete; our exclusion of these specimens also affects our results. Notably missing from our hind limb data set are therizinosaurs (e.g., Segnosaurus, Erlikosaurus, Therizinosaurus, Alxasaurus), which have been reconstructed from partial material with a relatively long femur and a very short metatarsus (Russell and Russell, 1993; Russell and Dong, 1993a). If such restorations are correct, this clade of unusual theropods has deviated substantially from all other nonavian theropods. Another missing specimen is a juvenile Saurornithoides (Currie and Peng, 1993) with an incomplete tibia. Unlike any other non-avian theropod the tarsometatarsus is longer than the femur. The proportions of Mononykus are also of interest, but the metatarsals of the published specimen are incomplete (Perle, et al., 1994). Data from new theropod specimens and those that we were unable to obtain will undoubtedly expand the edges of the non-avian and avian clouds.

Measurement error will contribute to the displacement of proportions in morphospace. Excluding some tarsal elements will shift non-avian theropod points slightly, but not change our conclusions. Ontogenetic and intraspecific variation also has some impact. In birds we avoided immature specimens when possible. An assessment of individual variation was made by

FIGURE 8. Non-avian theropods diverged little (shaded arrows) from basal proportions (asterisk) and were primarily terrestrial. Their single locomotor module may have constrained hind limb novelty, resulting in low proportion disparity. One lineage, birds, developed three locomotor modules and flight. This increase in modularity sparked a major radiation in limb design (white arrows) from basal bird proportions (circle). Hind limbs specialized for aerial, arboreal, aquatic, and terrestrial lifestyles evolved after the flight apparatus eased the primitive constraint.

measuring 39 specimens of the Common Loon (Gavia immer; Fig. 5). Proportion ranges in this population were only about 2% for each limb element, well below the resolution level of our interpretations. We also combined ratios from individual birds with ratios calculated from mean bone lengths on the same plot. This is inconsistent, but should not severely alter our results. Since we were dealing exclusively with proportions rather than absolute measures, size was less influential than in bivariate length plots. Additionally, a study of coot skeletons has shown limb segment lengths to be highly correlated, such that a ratio of mean lengths is almost identical to a mean of individual ratios (Engels, 1938).

Finally, our reliance on the proportions of the lengths of the three main skeletal elements is a gross oversimplification of the intricacies of limb morphology and function. In many cases, disparate limb proportions reflect known differences in limb morphology and function. In others, disparity is masked by similar limb proportions. In the middle of the avian hind limb cloud, for example, there are regions of overlap between ducks, tube-nosed sea birds, hornbills, owls, nighthawks, swifts, chicken-like birds, hawks, and kiwis. Clearly, the locomotor variation (based on body size, foot morphology, relative limb size, behavior, etc.) in this region of proportion morphospace is much higher than indicated by the ternary diagram. More detailed comparisons of all aspects of theropod organization, from scaling to muscle mechanics to phalangeal design, are needed before we have a more complete picture of locomotor evolution in this clade.

Theropod Locomotor Diversity

A striking result of this study is the relative homogeneity of non-avian theropod hind limb proportions in light of avian disparity (Fig. 3). This similarity supports the notion that non-birds were primarily adapted for terrestrial bipedalism (Fig. 8). We suggest that the body plan of theropods other than birds remained relatively conservative throughout the Mesozoic and was accompanied by low locomotor diversity. Unlike birds, and despite dramatic variation in body size, there is no evidence for

highly reduced hind limbs or those specialized for diving, paddling, wading, trunk climbing, or perching. Due in part to their modular locomotor system, birds evolved much more disparate limbs than non-birds. Therefore, we should not expect non-avian theropods to have had as broad a locomotor spectrum as seen in birds today.

This superficial homogeneity, however, masks structural variation with potential functional consequences. Significant transformations in tail size, hind limb retraction mechanism, scaling, and pelvic morphology resulted in modification of the basal theropod locomotor module in coelurosaurs closely related to birds (Gatesy, 1990, 1994; Gatesy and Dial, 1996). We believe that a change in hind limb mechanics occurred during theropod evolution, and that this is reflected in a shift of proportions into a new region of morphospace. Maniraptorans occupy the lower right side of the non-bird morphospace (Fig. 4), indicating that they have the highest tibiotarsal percentages of the group. Together with changes in the tail and femur, these data support the presence of an incipient hamstring-driven propulsion mechanism using knee flexion in maniraptorans, which was replacing the primitive caudofemoral retraction mechanism centered on hip extension (Gatesy 1990, 1994; Gatesy and Dial, 1996). Basal birds such as Archaeopteryx have limb proportions only a short step away from non-avian maniraptorans (Fig. 4). We view subsequent evolution of bird hind limb proportions from this ancestral design as evidence of an explosive radiation in locomotor diversity founded on three locomotor modules (Fig.

Conclusions

As flying theropods with three locomotor modules, birds differ from their non-avian relatives, which only had a single locomotor module. We propose that non-birds were relatively conservative in design and were primarily terrestrial bipeds. However, a transformation of the primitive module occurred in theropods closely related to birds. This resulted in the eventual decoupling of the hind limb and tail into distinct locomotor modules in early birds, which had a flight apparatus formed by the novel allegiance of the pectoral and caudal modules (Gatesy and Dial, 1996). Aerial locomotion allowed birds access to previously unavailable habitats and food resources, but may not fully explain their success. We propose that flight increased modular flexibility, resulting in more disparity and locomotor diversity in birds than in non-avian theropods.

In the future, these conclusions need to be tested by addressing other aspects of limb morphology, since proportions alone do not adequately portray the true disparity among theropod limbs. However, proportions reveal patterns that are not yet fully understood. For example, is the shape of the theropod distribution real? Do theropods fill a relatively small or large portion of morphospace compared to other tetrapod clades? Are empty regions biomechanically off limits or simply vacant by chance? Further analysis of ontogenetic and phylogenetic trajectories within proportion morphospace may help answer these questions and reveal more general rules of theropod limb design.

ACKNOWLEDGMENTS

We thank R. Paynter of the Museum of Comparative Zoology and F. Sibley of the Peabody Museum for access to collections in their care. M. Norell and P. Sereno kindly provided data from their unpublished work. We appreciate the many helpful comments from two anonymous reviewers and from the Brown Morphology Group, particularly G. E. Goslow, Jr., D. Ritter, and K. Rafferty. K. Earls deserves special thanks for helpful insights and the use of her avian data set.

LITERATURE CITED

- Alexander, R. McN. 1983. Allometry of the leg bones of moas (Dinornithes) and other birds. Journal of Zoology, London 200:215–231.
- Barsbold, R., T. Maryanska, and H. Osmólska. 1990. Oviraptorosauria; pp. 249–258 *in* D. B. Weishampel, P. Dodson, and H. Osmólska (eds.), The Dinosauria. University of California Press, Berkeley.
- Berger, A. J. 1952. The comparative functional morphology of the pelvic appendage in three genera of Cuculidae. American Midland Naturalist 47:513-605.
- Bidar, A., L. Demay, and G. Thomel. 1972. Compsognathus corallestris, nouvelle espèce de dinosaurien théropode du Portlandien de Canjuers (Sud-Est de la France). Annales du Museum D'Histoire Naturelle de Nice 1:1-34.
- Butler, P. J. 1991. Exercise in birds. Journal of Experimental Biology 160:233-262.
- Camp, C. L. 1936. A new type of small bipedal dinosaur from the Navajo Sandstone of Arizona. University of California Publications in the Geological Sciences 24:39–56.
- Chiappe, L. M. 1995. The first 85 million years of avian evolution. Nature 378:349-355.
- Cohn, J. M. W. 1968. The convergent flight mechanism of swifts (Apodi) and hummingbirds (Trochili) (Aves). Ph.D. dissertation, University of Michigan, Ann Arbor, 201 pp.
- Colbert, E. H. 1989. The Triassic dinosaur *Coelophysis*. Museum of Northern Arizona Bulletin 57:1-160.
- Coombs, W. P., Jr. 1978. Theoretical aspects of cursorial adaptations in dinosaurs. Quarterly Review of Biology 53:393-418.
- Cracraft, J. 1976. The species of moas (Aves: Dinornithidae). Smithsonian Contributions to Paleobiology 27:189–205.
- Currie, P. J., and J. Peng. 1993. A juvenile specimen of *Saurornithoides* mongoliensis from the Upper Cretaceous of northern China. Canadian Journal of Earth Sciences 30:2224–2230.
- and X. Zhao. 1993. A new carnosaur (Dinosauria, Theropoda) from the Jurassic of Xinjiang, People's Republic of China. Canadian Journal of Earth Sciences 30:2037–2081.
- Engels, W. L. 1938. Variations in bone length and limb proportions in the coot (*Fulica americana*). Journal of Morphology 62:599-607.
- Feduccia, A. 1980. The Age of Birds. Harvard University Press, Cambridge, pp. 196.
- and M. R. Voorhies. 1992. Crowned cranes (Gruidae: Balearica) in the Miocene of Nebraska; pp. 240–248 in K. E. Campbell, Jr. (ed.), Papers in Avian Paleontology, Honoring Pierce Brodkorb. Natural History Museum of Los Angeles County, Los Angeles.
- Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125:1-15.
- Fisher, H. I. 1946. Adaptations and comparative anatomy of the locomotor apparatus of New World vultures. American Midland Naturalist 35:545-727.
- Foote, M. 1989. Perimeter-based fourier analysis: A new morphometric method applied to the trilobite cranidium. Journal of Paleontology 63:880-885.
- ——— 1993. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185–204.
- Garland, T., Jr., P. H. Harvey, and A. R. Ives. 1992. Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology 41:18–32.
- —— and C. M. Janis. 1993. Does metatarsal/femur ratio predict maximal running speed in cursorial mammals? Journal of Zoology, London 229:133–151.
- Gatesy, S. M. 1990. Caudofemoral musculature and the evolution of theropod locomotion. Paleobiology 16:170–186.
- ——— 1991. Hind limb scaling in birds and other theropods: Implications for terrestrial locomotion. Journal of Morphology 209:83–96.
- 1994. Functional evolution of the hindlimb and tail from basal theropods to birds; pp. 219-234 in J. J. Thomason (ed.), Functional Morphology in Vertebrate Paleontology. Cambridge University Press, New York.
- —— and K. P. Dial. 1996. Locomotor modules and the evolution of avian flight. Evolution 50:331–340.
- Gauthier, J. 1986. Saurischian monophyly and the origin of birds. Memoirs of the California Academy of Sciences 8:1-55.
- Gilmore, C. W. 1920. Osteology of the carnivorous dinosauria in the United States National Museum, with special reference to the gen-

- eral Antrodemus (Allosaurus) and Ceratosaurus. Bulletin of the United States National Museum 110:1-154.
- Gould, S. J. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: Why we must strive to quantify morphospace. Paleobiology 17:411-423.
- Gregory, W. K. 1912. Notes on the principles of quadrupedal locomotion and on the mechanisms of the limbs in hoofed animals. Annals of the New York Academy of Sciences 22:267–294.
- Hecht, M. K., J. H. Ostrom, G. Viohl, and P. Wellnhofer, (eds.). 1985.
 The Beginnings of Birds, Proceedings of the International Archaeopteryx Conference, Eichstätt 1984. Freunde des Jura-Museums Eichstätt, Eichstätt.
- Heilmann, G. 1926. The Origin of Birds. Witherby, London, pp. 210.
 Hesse, A. 1992. A new species of *Messelornis* (Aves: Gruiformes: Messelornithidae) from the middle Eocene Green River Formation; pp. 171-178 in K. E. Campbell, Jr. (ed.), Papers in Avian Paleontology, Honoring Pierce Brodkorb. Natural History Museum of Los Angeles County, Los Angeles.
- Holtz, T. R., Jr. 1994a. The arctometatarsalian pes, an unusual structure of the metatarsus of Cretaceous Theropoda (Dinosauria: Saurischia). Journal of Vertebrate Paleontology 14:480–519.
- ———— 1994b. The phylogenetic position of the Tyrannosauridae: Implications for theropod systematics. Journal of Paleontology 68: 1100–1117.
- Hou, L.-H., Z. Zhou, L. D. Martin, and A. Feduccia. 1995. A beaked bird from the Jurassic of China. Nature 377:616-618.
- Houde, P., and H. Haubold. 1987. *Palaeotis weigelti* restudied: A small middle Eocene ostrich (Aves: Struthioniformes). Palaeovertebrata 17:27–42.
- —— and S. L. Olson. 1992. A radiation of Coly-like birds from the Eocene of North America (Aves: Sandcoleiformes new order); pp. 137–160 in K. E. Campbell, Jr. (ed.), Papers in Avian Paleontology, Honoring Pierce Brodkorb. Natural History Museum of Los Angeles County, Los Angeles.
- Howell, A. B. 1965. Speed in Animals. Hafner, New York, 270 pp.
 Kuz'mina, M. A. 1992. Tetraonidae and Phasianidae of the USSR:
 Ecology and Morphology. Smithsonian Institution Libraries, Washington, 302 pp.
- Lambe, L. M. 1917. The Cretaceous theropodous dinosaur *Gorgosaurus*. Geological Survey of Canada Memoir 100:1–84.
- Livezey, B. C. 1989. Flightlessness in grebes (Aves, Podecipedidae): Its independent evolution in three genera. Evolution 43:29-54.
- 1992. Flightlessness in the Galápagos cormorant (Compsohalieus [Nannopterum] harrisi): Heterochrony, giantism and specialization. Zoological Journal of the Linnean Society 105:155-224.
- 1993. Morphology of flightlessness in *Chendytes*, fossil seaducks (Anatidae: Mergini) of coastal California. Journal of Vertebrate Paleontology 13:185–199.
- —— and P. S. Humphrey. 1986. Flightlessness is steamer ducks (Anatidae: *Tachyeres*): Its morphological bases and probable evolution. Evolution 40:540–558.
- Lowe, P. R. 1928. A description of *Atlantisia rogersi*, the diminutive and flightless rail of Inaccessible Island (southern Atlantic), with some notes on flightless rails. Ibis, 12th Series 4:99–131.
- Maleev, E. A. 1974. [Giant carnosaurs of the family Tyrannosauridae] Trudy/Sovmestnaia Sovetsko-Mongol'skaia Paleontologicheskaia Ekspeditsiia 1:132–191. [In Russian].
- Manion, B. L. 1984. The effects of size and growth on the hindlimb locomotion in the chicken. Ph.D. dissertation, University of Illinois at Chicago, Chicago, 201 pp.
- Marsh, O. C. 1880. Odontornithes: a monograph on the extinct toothed birds of North America. Report of the United States Geological Exploration of the Fortieth Parallel 7:1-201.
- Martin, L. D., and J. Tate, Jr. 1976. The skeleton of *Baptornis advenus* (Aves: Hesperornithiformes). Smithsonian Contributions to Paleobiology 27:35-66.
- Mattison, R. G. 1993. Are avian lifestyles of the present a key to behaviors of the past? Journal of Vertebrate Paleontology 13 (suppl. to No. 3):49A.
- ——— and E. G. Giffin. 1989. Limb use and disuse in ratites and tyrannosaurids. Journal of Vertebrate Paleontology 9 (suppl. to No. 3):32A.
- Miller, L., and H. Howard. 1949. The flightless Miocene bird *Mancalla*. Carnegie Institution of Washington Publication 584:201–228. Mourer-Chauviré, C. 1992. The Galliformes (Aves) from the phospho-

- rites du Quercy (France): Systematics and biostratigraphy; pp. 68–95 in K. E. Campbell, Jr. (ed.), Papers in Avian Paleontology, Honoring Pierce Brodkorb. Natural History Museum of Los Angeles County, Los Angeles.
- Norberg, U. M. 1979. Morphology of the wings, legs and tail of three coniferous forest tits, the goldcrest, and the treecreeper in relation to locomotor pattern and feeding station selection. Philosophical Transactions of the Royal Society of London 287, B:131-165.
- Novas, F. E. 1993. New information on the systematics and postcranial skeleton of *Herrerasaurus ischigualastensis* (Theropoda: Herrerasauridae) from the Ischigualasto Formation (Upper Triassic) of Argentina. Journal of Vertebrate Paleontology 13:400–423.
- Olson, S. L. 1992. A new family of primitive landbirds from the lower Eocene Green River Formation of Wyoming; pp. 127–136 in K. E. Campbell, Jr. (ed.), Papers in Avian Paleontology, Honoring Pierce Brodkorb. Natural History Museum of Los Angeles County, Los Angeles.
- Osborn, H. F. 1916. Skeletal adaptations of *Ornitholestes, Struthiomimus, Tyrannosaurus*. Bulletin of the American Museum of Natural History 35:733-771.
- Osmólska, H., E. Roniewicz, and R. Barsbold. 1972. A new dinosaur, *Gallimimus bullatus* n. gen., n. sp. (Ornithomimidae) from the Upper Cretaceous of Mongolia. Palaeontologia Polonica 27:103-143.
- Ostrom, J. H. 1976a. *Archaeopteryx* and the origin of birds. Biological Journal of the Linnean Society of London 8:91–182.
- ——— 1976b. On a new specimen of the Lower Cretaceous Theropod dinosaur *Deinonychus antirrhopus*. Breviora 439:1–21.
- ——— 1978. The osteology of *Compsognathus longipes* Wagner. Zitteliana 4:73-118.
- ——— 1979. Bird flight: How did it begin? American Scientist 67: 45-56.

- Owre, O. T. 1967. Adaptations for locomotion and feeding in the anhinga and double-crested cormorant. Ornithological Monographs 6:1–138.
- Paul, G. S. 1987. The science and art of restoring the life appearance of dinosaurs and their relatives; pp. 5-49 in S. J. Czerkas and E. C. Olson, (eds.). Dinosaurs Past and Present, vol. 2. University of Washington Press, Seattle.
- Pennycuick, C. J. 1986. Mechanical constraints on the evolution of flight. Memoirs of the California Academy of Sciences 8:83–98.
- Perle, A, L. M. Chiappe, R. Barsbold, J. M. Clark, and M. A. Norell. 1994. Skeletal morphology of *Mononykus olecranus* (Theropoda: Avialae) from the Late Cretaceous of Mongolia. American Museum Novitates 3105:1–29.
- Raath, M. A. 1969. A new coelurosaurian dinosaur from the Forest Sandstone of Rhodesia. Arnoldia 4:1–25.
- Russell, D. A. 1970. Tyrannosaurs from the Late Cretaceous of Western

- Canada. National Museum of Natural Science, Publications in Paleontology 1:1-34.
- —— and Z. Dong. 1993a. The affinities of a new theropod from the Alxa Desert, Inner Mongolia, People's Republic of China. Canadian Journal of Earth Sciences 30:2107–2127.
- and Z. Dong. 1993b. A nearly compete skeleton of a new troodontid dinosaur from the Early Cretaceous of the Ordos Basin, Inner Mongolia, People's Republic of China. Canadian Journal of Earth Sciences 30:2163–2173.
- ——— and D. E. Russell. 1993. Mammal-dinosaur convergence. National Geographic Research and Exploration 9:70–79.
- Sereno, P. C., D. B. Dutheil, M. Iarochene, H. C. E. Larsson, G. H. Lyon, P. M. Magwene, C. A. Sidor, D. J. Varricchio, and J. A. Wilson. 1996. Predatory dinosaurs from the Sahara and Late Cretaceous faunal differentiation. Science 272:986–991.
- —— and C. Rao. 1992. Early evolution of avian flight and perching: New evidence from the Lower Cretaceous of China. Science 255: 845–848.
- —, J. A. Wilson, H. C. E. Larsson, D. B. Dutheil, and H.-D. Sues. 1994. Early Cretaceous dinosaurs from the Sahara. Science 266: 267–271.
- Simpson, G. G. 1946. Fossil penguins. Bulletin of the American Museum of Natural History 87:1–99.
- Smith, J. M. and R. J. G. Savage. 1956. Some locomotory adaptations in mammals. Zoological Journal of the Linnean Society of London 42:603–622.
- Storer, R. W. 1976. The Pleistocene Pied-billed Grebes (Aves: Podicipedidae). Smithsonian Contributions to Paleobiology 27:147–153
- Stovall, J. W., and W. Langston Jr. 1950. Acrocanthosaurus atokensis, a new genus and species of Lower Cretaceous Theropoda from Oklahoma. American Midlands Naturalist 43:696–728.
- Wagner, P. J. 1995. Testing evolutionary constraint hypotheses with early Paleozoic gastropods. Paleobiology 21:248–272.
- Welles, S. P. 1984. *Dilophosaurus wetherilli* (Dinosauria, Theropoda) osteology and comparisons. Palaeontographica A 185:85–180.
- Wellnhofer, P. 1974. Das fünfte Skelettexemplar von *Archaeopteryx*. Palaeontographica A 147:169–216.
- 1988. A new specimen of Archaeopteryx from the Solnhofen limestone; pp. 1–23 in K. E. Campbell, Jr. (ed.), Papers in Avian Paleontology, Honoring Pierce Brodkorb. Natural History Museum of Los Angeles County, Los Angeles.
- ——— 1993. Das siebte Exemplar von Archaeopteryx aus den Solnhofener Schichten. Sonderdruck aus Archaeopteryx 11:1–48.
- Wetmore, A. 1960. A classification for the birds of the world. Smithsonian Miscellaneous Collections 139:1–37.
- Zhou, Z., F. Jin, and J. Zhang. 1992. Preliminary report on a Mesozoic bird from Liaoning, China. Chinese Science Bulletin 37:1365–1368.

Received 6 August 1996; accepted 30 September 1996.

APPENDIX 1. Limb segment lengths (in mm) of non-avian theropods (F, femur; T, tibiotarsus; M, tarsometatarsus).

Species	Specimen	F	T	M	Source
Acrocanthosaurus atokensis	MU 0-8O-59	1153	865	416	Stovall and Langston (1950)
Afrovenator abakensis	UC OBA 1	760	687	321	Sereno et al. (1994)
Ålbertosaurus libratus	NCM 2120	1040	1000	594	Lambe (1917)
Albertosaurus libratus	AMNH 5458	1025	990	625	Holtz (1994a)
Albertosaurus libratus	AMNH 5218	954	850	515	Holtz (1994a)
Albertosaurus libratus	NMC 11593	940	900	580	Russell (1970)
Albertosaurus libratus	USNM 12814	880	850	535	Holtz (1994a)
Albertosaurus libratus	AMNH 5664	700	748	480	Holtz (1994a)
Albertosaurus libratus	ROM 1247	730	775	542	Holtz (1994a)
Albertosaurus libratus	AMNH 5423	600	630	440	Holtz (1994a)
Albertosaurus sarcophagus	ROM 807	1020	1030	590	Holtz (1994a)
Albertosaurus sarcophagus	TMP 81.10.1	950	970	610	Holtz (1994a)
Allosaurus fragilis	UUVP 6000r	880	730	375	Holtz (1994a)
Allosaurus fragilis	UUVP 60001	850	745	372	Holtz (1994a)
Allosaurus fragilis	USNM 4734	850	690	327	Gilmore (1920)
Allosaurus sp.	AMNH 290	985	810	423	Holtz (1994a)
Archaeornitĥomimus asiaticus	AMNH 6565	314	401	286	Holtz (1994a)
Aublysodon sp.	OMNH 10131	1033	891	483	Holtz (1994a)

Species	Specimen	F	T	M	Source
Avimimus portentosus	PIN 3907/1	188	257	153	Holtz (1994a)
Ceratosaurus nasicornis	USNM 4735	620	555	254	Gilmore (1920)
Chilantaisaurus tashuikouensis	IVPP V.2884.7	1190	954	450	Holtz (1994a)
Chirostenotes pergracilis	TMP 79.30.1	310	367	208	Holtz (1994a)
Chuandongocoelurus primitivus		200	237	122	Holtz (1994a)
Coelophysis bauri	UCMP 129618	245	255	150	Holtz (1994a)
Coelophysis bauri	AMNH 7223	209	224	126	Holtz (1994a)
Coelophysis bauri	AMNH 7224	203	221	120	Holtz (1994a)
Coelophysis bauri	AMNH 7249	196	207	110	Holtz (1994a)
Coelophysis bauri	AMNH 7244	173	195	120	Holtz (1994a)
Coelophysis bauri	AMNH 7243	172	199	114	Holtz (1994a)
Coelophysis bauri	AMNH 7228	164	188	108	Holtz (1994a)
Coelophysis bauri	AMNH 7232	141	157	95	Holtz (1994a)
Coelophysis bauri	AMNH 7229	135	154	85	Holtz (1994a)
Coelophysis bauri	AMNH 7238	126	147	87	Holtz (1994a)
Coelophysis bauri	AMNH 7233	126	140	81	Holtz (1994a)
Coelophysis bauri	AMNH 7247	125	138	84	Holtz (1994a)
Coelophysis bauri	MNA V3318	123	136	82	Holtz (1994a)
Coelophysis bauri	AMNH 7246	122	136	79	Holtz (1994a)
Coelophysis bauri	AMNH 7234	118	135	84	Holtz (1994a)
Compsognathus longipes	MNHN CNJ 79	110	136	81	Bidar et al. (1972)
Compsognathus longipes	BSP AS I 536	67	88	56	Ostrom (1978)
Daspletosaurus torosus	AMNH 5438	1000	870	490	Holtz (1994a)
Daspletosaurus torosus	NMC 350	930	870	555	Holtz (1994a)
Daspletosaurus torosus	NMC 11315	655	736	448	Russell (1970)
Deinonychus antirrhopus	MCZ 4371	336	382	164	Ostrom (1976b)
Deinonychus antirrhopus	YPM	331	370	168	Holtz (1994a)
Dilophosaurus wetherilli	UCMP 37302	557	580	300	Welles (1984)
Promaeosaur—undescribed		208	243	101	Norell (pers. comm.)
Promiceiomimus brevitertius	NMC 12228	468	578	397	Holtz (1994a)
Promiceiomimus brevitertius	NMC 12068	440	527	353	Holtz (1994a)
Promiceiomimus brevitertius	ROM 852	440	520	370	Holtz (1994a)
Promiceiomimus brevitertius	ROM 797	390	483	288	Holtz (1994a)
Promiceiomimus brevitertius	NMC 12069	376	511	308	Holtz (1994a)
Pryptosaurus aquilunguis	ANSP 9995(10006)	787	781	380	Holtz (1994a)
Elaphrosaurus bambergi	HMN Gr.S 38-44	529	608	391	Holtz (1994a)
Eoraptor lunensis	PVSJ 512	152	157	81	Sereno (pers. comm.)
Eustreptospondylus oxoniensis	OUM J13558	520	500	235	Holtz (1994a)
Gallimimus bullatus	GI 100/11	665	740	530	Osmólska et al. (1972)
Gallimimus bullatus	ZPAL MgD-I/8	629	695	497	Holtz (1994a)
Gallimimus bullatus	ZPAL MgD-I/1	360	392	280	Holtz (1994a)
Gallimimus bullatus	ZPAL MgD-I/94	267	302	225	Holtz (1994a)
Gallimimus bullatus	GI 100/10	192	218	157	Osmólska et al. (1972)
Ierrerasaurus ischigualastensis	PVL 2566	473	411	223	Holtz (1994a)
Ierrerasaurus ischigualastensis	PVL 2054	385	327	176	Holtz (1994a)
Herrerasaurus ischigualastensis	PVSJ 373	345	315	165	Novas (1993)
Ierrerasaurus ischigualastensis	MACN 1890	286	280	134	Holtz (1994a)
ngenia yanshini	GI 100/30	228	281	125	Barsbold et al. (1990)
Ialeevosaurus novojlovi	PIN 552-2	560	605	420	Maleev (1974)
Ialeevosaurus novojlovi	PIN 551-2	970 700	880	540	Maleev (1974)
1egalosaurus bucklandi	BMNH 31806,9	700	650	393	Holtz (1994a)
Prnithomimus edmontonicus	ROM 851	435	475	310	Russell (1972)
Oviraptorid—undescribed		192	225	107	Norell (pers. comm.)
Odokesaurus holyokensis	Destroyed	86	104	65	Holtz (1994a)
Procompsognathus triassicus	SMNS 12591	93	113	69	Ostrom (1981)
aurornithoides mongoliensis	AMNH 6516	198	243	139	Holtz (1994a)
egisaurus halli	UCMP 32101	~145	160	99	Camp (1936)
inornithoides youngi	IVPP V9612	~140	198	111	Russell and Dong (1993b)
inraptor dongi	IVPP 10600	876	769	410	Currie and Zhao (1993)
truthiomimus altus	AMNH 5257	513	560	385	Holtz (1994a)
truthiomimus altus	UCMZ 1980.1	502	556 535	398	Holtz (1994a)
truthiomimus altus	AMNH 5339	480	535	365	Russell (1972)
truthiomimus altus	NMC 930	430	560	387	Holtz (1994a)
truthiomimus altus	ROM 1790	397	430	297	Holtz (1994a)
yntarsus rhodesiensis	QG 1	208	223	132	Raath (1969)
zechuanosaurus campi	IVPP V.239	364	360	200	Holtz (1994a)
Carbosaurus bataar	ZPAL MgD-I/3	700	700	445	Holtz (1994a)
arbosaurus bataar	ZPAL MgD-I/29	580	590	410	Holtz (1994a)
yrannosaurus rex	TMP 81.12.1	1340	1180	698	Holtz(1994a)
yrannosaurus rex	CM 9380	1300	1140	684	Holtz (1994a)
yrannosaurus rex	MOR 009	1143	1118	593	Holtz (1994a)

APPENDIX 2. Avian limb segment lengths (in mm; ${\bf F}$, femur; ${\bf T}$, tibiotarsus; ${\bf M}$, tarsometatarsus).

APPENDIX 2. (Continued)

Species	F		м	Specimen	Species	F	T	M	Specimen number
Species	r	1	M	number	Gavia immer	59.8	151.0	95.0	MCZ 7905
Ratites					Gavia immer	62.1	150.0	93.2	MCZ 7912
Apterigidae					Gavia immer Gavia immer	54.1 59.1	140.0 144.0	85.0 91.8	MCZ 7913 MCZ 7914
Apteryx australis	86.7	128.1	68.7	YPM 4384	Gavia immer Gavia immer	57.6	147.0	91.3	MCZ 7914 MCZ 7915
Apteryx australis	99.0	145.0	77.6	YPM 13486	Gavia immer	57.8	149.0	93.6	MCZ 7916
Apteryx oweni Apteryx oweni	80.4 72.1	113.7 103.9	62.9 56.6	MCZ 308 YPM 2118	Gavia immer	56.5	146.0	88.3	MCZ 7917
• •	72.1	103.7	30.0	11 W1 2110	Gavia immer	56.5	145.0	92.4	MCZ 7918
Struthionidae					Gavia immer	56.9	140.0	91.0	MCZ 7919
Struthio camelus	230.0	410.0	398.0	MCZ 828	Gavia immer	61.3 55.5	154.0 146.0	95.1 91.1	MCZ 7920 MCZ 7921
Struthio camelus Struthio camelus	320.0 317.0	545.0 567.0	483.0 493.0	MCZ 2686 MCZ 2686	Gavia immer Gavia immer	52.8	135.0	84.3	MCZ 7921 MCZ 7939
Struthio camelus	285.0	495.0	430.0	MCZ 2080 MCZ 3701	Gavia immer Gavia immer	54.1	138.0	88.6	MCZ 7940
Struthio camelus	266.0	494.0	437.0	YPM 4347	Gavia immer	55.9	138.0	88.5	MCZ 7941
		.,		11111 1517	Gavia immer	55.9	140.0	89.2	MCZ 7942
Rheidae	•				Gavia immer	63.5	154.0	101.8	MCZ 7943
Rhea americana	210.0	318.0	325.0	MCZ 2083	Gavia immer	57.3	138.0	89.1	MCZ 7944
Rhea americana Rhea americana	159.0 83.0	278.0 134.0	284.0 119.0	MCZ 689 MCZ 6552	Gavia immer	62.3	153.0	100.1	MCZ 7945
Rhea americana Rhea americana	215.0	325.0	320.0	MCZ 1631	Gavia immer	62.9	160.0	97.7	MCZ 7946
Rhea americana	187.0	278.0	285.0	YPM 6503	Gavia immer Gavia immer	65.8 63.5	155.0 151.0	96.1 93.2	MCZ 7947 MCZ 7948
Rhea americana	195.0	329.0	306.0	YPM 11524	Gavia immer Gavia immer	55.3	140.0	88.6	MCZ 7948 MCZ 7950
Rhea americana	206.0	346.0	332.0	YPM 14047	Gavia immer	58.8	146.0	94.2	MCZ 7951
Casuariidae					Gavia immer	53.1	131.0	82.9	MCZ 7952
	203.0	220.0	250.0	MCZ	Gavia immer	50.2	129.0	82.2	MCZ 7956
Casuarius bennetti Casuarius casuarius	47.4	320.0 81.8	250.0 65.2	MCZ YPM 6208	Gavia immer	64.2	159.0	98.0	MCZ 7957
Casuarius sp.	218.0	350.0	295.0	YPM 4351	Gavia stellata	36.7	113.6	70.9	MCZ 7009
Casuarius sp.	198.0	323.0	264.0	YPM 2123	Gavia stellata	38.6	113.9	71.6	MCZ 6996
Dromiceidae					Gavia stellata	40.3	114.4	72.4	MCZ 6531
					Gavia stellata	38.3 51.1	110.7 131.3	70.9 83.3	MCZ 6913 MCZ 899
Dromecius novaehollandiae	227.0	415.0	385.0	MCZ 198	Gavia sp.	31.1	131.3	65.5	MCZ 699
Dromecius novaehollandiae	225.0	400.0	375.0	MCZ 1627	Sphenisciformes				
Tinamiformes					Spheniscidae				
Tinamidae					Aptenodytes patagonica	92.9	170.0	43.2	MCZ 7208
Crypturellus boucardi	50.7	75.9	52.0	MCZ 2750	Aptenodytes patagonica	115.0	176.0	46.7	MCZ 7478
Crypturellus noctivagus	58.0	86.4	59.5	MCZ 276	Eudyptes chrysolophus	63.3	108.3	26.1	MCZ 6022
Eudromia elegans	56.0	77.1	46.6	MCZ 3064	Eudyptes crestatus	66.5	105.6	27.2	MCZ 6428
Nothura maculosa	42.4	62.3	39.0	MCZ 1653	Eudyptula minor Eudyptula minor	52.2 48.9	77.2 73.9	23.6 22.4	MCZ 6025 MCZ 1451
Rhynchotus rufescens	72.6	98.5	65.0	MCZ 1633	Eudypiuta minor Eudyptula minor	50.2	70.1	23.2	YPM 13356
Tinamus major Tinamus tao	65.0 70.0	98.2 108.0	69.0 70.8	MCZ 2774	Megadyptes antipodes	80.5	120.5	35.5	YPM 13392
	70.0	108.0	70.8	MCZ 3705	Spheniscus demersus	70.4	101.1	28.5	YPM 15882
Podicipediformes					Spheniscus humboldti	75.9	113.2	32.1	MCZ 7040
Podicipedidae					Spheniscus humboldti	77.9	112.7	32.3	MCZ 6957
Aechmophorus occidentalis	44.7	110.8	68.0	MCZ 2951	Spheniscus humboldti	83.2	119.7	34.7	MCZ 7571
Podiceps auritus	33.6	77.0	46.9	MCZ 6429	Spheniscus mendiculus	56.3	83.7	22.9	MCZ 3638
Podiceps auritus Podiceps auritus	31.4 30.8	70.3 70.7	44.5 43.3	MCZ 7099 MCZ 7163	Spheniscus sp.	70.5	104.0	32.3	MCZ 142(5
Podiceps auritus	32.5	73.3	46.1	MCZ 6044	Procellariiformes				
Podiceps auritus	33.2	77.1	48.4	MCZ 2726	Diomedeidae				
Podiceps caspicus	31.7	66.6	41.7	MCZ 6070	Diomedea chrysostoma	82.0	157.0	84.0	MCZ 5006
Podiceps caspicus	30.3	64.3	38.9	MCZ 4076	Diomedea exulans	109.0	224.0	126.0	MCZ 408
Podiceps caspicus Podiceps grisegena	29.8 46.0	63.9 107.5	40.8 61.9	MCZ 4080 MCZ 1015	Diomedea exulans	98.0	197.0	109.0	MCZ 2481
Podilymbus podiceps	41.8	75.3	43.9	MCZ 1466	Diomedea exulans	99.0	202.0	107.0	MCZ 6191
Podilymbus podiceps	36.2	63.2	36.9	MCZ 7647	Diomedea immutabilis Diomedea immutabilis	78.0	154.0	89.0	MCZ 3050
Podilymbus podiceps	37.1	63.1	37.5	MCZ 7648	Diomeaea immutabilis Diomedea nigripes	71.0 75.0	142.0 157.0	88.0 94.0	MCZ 2959 MCZ 2999
Gaviiformes					Phoebetria fusca	97.0	165.0	93.0	MCZ 2949
Gaviidae					Phoebetria juscu Phoebetria palpebrata	68.0	136.0	78.0	MCZ 2949 MCZ 2953
Gavia immer	61.8	150.0	93.6	MCZ 1432	• •	00.0	150.0	70.0	1.1CZ 2,33
Gavia immer	60.3	150.4	94.2	MCZ 1658	Procellariidae	a			
Gavia immer	56.4	143.3	90.2	MCZ 1661	Daption capense	37.7	73.5	44.9	MCZ 3873
Gavia immer	51.1	134.0	85.3	MCZ 2148	Daption capense	37.7 36.0	73.6 72.0	45.7	MCZ 6056 MCZ 6970
Gavia immer	58.0	141.1	87.8	MCZ 2593	Daption capense Daption capense	38.0	76.0	43.0 46.0	MCZ 6970 MCZ 2955
Gavia immer Gavia immer	60.0 55.9	146.0 135.0	91.7 86.3	MCZ 3030 MCZ 7019	Fulmarus glacialis	41.8	76.4	44.6	MCZ 2933 MCZ 4079
Gavia immer Gavia immer	57.7	140.0	87.1	MCZ 7019 MCZ 7103	Fulmarus glacialis	42.0	72.0	49.0	MCZ 4078
Gavia immer	49.8	134.0	81.6	MCZ 7893	Fulmarus glacialis	41.0	77.0	47.0	MCZ 4090
Gavia immer	60.5	155.0	97.0	MCZ 7894	Fulmarus glacialis	44.0	85.0	51.0	MCZ 5011
Gavia immer	57.6	145.0	95.0	MCZ 7895	Hydrobatidae				
Gavia immer	65.9 49.5	160.0	101.0	MCZ 7896	· · · · · · · · · · · · · · · · · · ·	175	17 5	26.0	MC7 6756
Gavia immer Gavia immer	49.5 57.3	127.0 146.0	82.2 92.5	MCZ 7903 MCZ 7904	Fregatta grallaria Fregatta grallaria	17.5 17.5	47.5 48.0	36.0 35.0	MCZ 6756 MCZ 6752
CATIO HIMIDI	51.5	1 70.0	12.5	1.102 / 704	i reguna granaria	17.3	+0.0	55.0	WICE 0/32

Specime								C'	
Species	F	Т	M	Specimen number	Species	F	T	М	Specimen number
Oceanites oceanicus	15.0	47.0	34.0	MCZ 2984	Jabiru mycteria	109.0	370.0	322.0	MCZ 1377
Oceanites oceanicus	15.5	47.0	34.5	MCZ 6722	Leptoptilus crumeniferus	105.0	289.0	224.0	MCZ 338
Oceanodroma leucorhoa	15.5	34.5	24.0	MCZ 7883	Leptoptilus dubius	122.0	356.0	282.0	MCZ 337
Oceanodroma leucorhoa	17.0	35.0	26.0	MCZ 6058	Mycteria americana	92.0	268.0	205.0	MCZ 2180
Pelecanoididae					Mycteria americana Xenorhynchus asiaticus	82.0 102.0	227.0 350.0	186.0 301.0	MCZ 3442 MCZ 261
Pelecanoides urinatrix	24.8	47.0	31.0	MCZ 1430	Ť	102.0	330.0	301.0	MCZ 201
Pelecaniformes					Threskiornithidae				
Phaethontidae					Ajaia ajaja	73.0	156.0	109.0	MCZ 6534
Phaethon lepturus	29.1	43.8	22.0	MCZ 2073	Ajaia ajaja	69.0	148.0	99.0	MCZ 6533
Phaethon lepturus	30.5	46.1	22.2	MCZ 1765	Eudocimus ruber	59.0 56.0	127.0 115.0	89.0 81.0	MCZ 7528 MCZ 7446
•	30.3	40.1	22.2	WCZ 1703	Eudocimus ruber Eudocimus ruber	57.0	124.0	90.0	MCZ 7440 MCZ 6741
Pelecanidae					Eudocimus ruber Eudocimus ruber	55.0	115.0	78.0	MCZ 6987
Pelecanus erythrorhnchos	108.4	183.0	126.4	MCZ 7480	Guara rubra	55.0	115.0	81.0	MCZ 3450
Pelecanus erythrorhnchos	119.0	181.0	121.0	MCZ 2914	Guara rubra	58.0	120.0	80.0	MCZ 1378
Pelecanus occidentalis	88.1	119.8	78.5	MCZ 1448	Guara rubra	57.0	115.0	83.0	MCZ 326
Pelecanus occidentalis	90.8	122.1	80.2	MCZ 1956	Plagadis sp.	53.0	129.0	101.0	MCZ 6955
Phalacrocoracidae					Platalea leucoroidia	85.0	195.0	149.0	MCZ 1468
Phalacrocorax auritus	60.9	98.5	60.6	MCZ 7537	Plegadis falcinellus	59.0	133.0	101.0	MCZ 6983
Phalacrocorax bougainvilli	56.5	107.5	60.7	MCZ 6953	Plegadis [falcinellus?]	54.0	136.0	97.0	MCZ 7288
Phalacrocorax carbo	61.7	105.7	65.0	MCZ 1447	Theristicus melanopis	60.0	112.0	75.0	MCZ 206
Phalacrocorax urile	64.2	107.4	57.0	MCZ 722	Theristicus melanopis	65.0	140.0	99.0	MCZ 295
Anhingidae					Phoenicopteridae				
	511	00.2	40.0	MC7 1402	Phoenicopterus antiquarum	90.8	367.0	351.0	MCZ 1445
Anhinga anhinga	54.4	80.2 87.5	40.9 60.0	MCZ 1483 MCZ 3615	Phoenicopterus antiquarum	85.5	286.0	269.0	MCZ 289
Anhinga anhinga	59.4	87.3	60.0	MCZ 3013	Phoenicopterus ruber	85.6	344.0	327.0	MCZ 7731
Sulidae					Phoenicopterus ruber	94.9	361.0	340.0	MCZ 7572
Morus bassanus	71.8	99.5	58.2	MCZ 3443	Phoenicopterus ruber	83.0	284.0	262.0	MCZ 7053
Sula variegata	54.9	78.5	46.6	MCZ 6959	Phoenicopterus ruber	90.0	352.0	313.0	MCZ 6736
Sula sp.	56.4	79.3	51.1	MCZ 455	Phoenicopterus ruber	78.0	290.0	264.0	MCZ 1939
Fregatidae					Phoenicopterus ruber	89.0	335.0	321.0	MCZ 2950
•	510	(7.0	10.0	MC7 1254	Phoenicopterus ruber	88.0	347.0	329.0	MCZ 2884
Fregata aquila Fregata sp.	51.0 43.8	67.0 62.4	19.0 18.0	MCZ 1354 MCZ 7744	Anseriformes				
•	43.0	02.4	10.0	MCZ //44	Anhimidae				
Ciconiiformes						99.0	184.0	126.0	MCZ 1387
Ardeidae					Anhima cornuta Anhima cornuta	99.0	166.0	113.0	MCZ 1387 MCZ 6993
Ardea cocoi	92.0	228.0	152.0	MCZ 3706	Chauna chavaria	95.0	177.0	126.0	MCZ 307
Ardea goliath	103.0	277.0	208.0	MCZ 1452		75.0	177.0	120.0	MCZ 307
Ardea goliath	116.0	220.0	167.0	MCZ 202	Anatidae				
Ardea herodias	103.5	240.0	173.0	MCZ 7038	Aix sponsa	40.0	62.0	35.0	MCZ 7372
Ardea herodias	100.0	238.0	174.0	MCZ 1970	Alopochen aegyptiacus	75.0	140.0	87.0	MCZ 260
Ardea herodias	97.4	242.0	177.0	MCZ 2473	Anas clypeata	49.0	65.0	34.0	MCZ 7105
Ardea sumatrana	99.4	195.0	129.0	MCZ 204	Anas platyrhynchos	48.0	78.0	43.0	MCZ 1898
Botarus stellaris	101.0	155.0	99.0	MCZ 2064	Anas platyrhynchos	41.0	67.0	37.0	MCZ 1914
Botaurus lentiginosus	81.0	135.0	94.0	MCZ 1759	Anas rubripes	48.0	75.0	42.0	MCZ 2850
Botaurus lentiginosus	83.0	135.0 130.0	95.0	MCZ 1499 MCZ 1279	Anas specularoides	56.0	87.0	49.0	MCZ 3053 MCZ 1883
Botaurus lentiginosus Butorides striata	47.8	72.0	48.5	MCZ 1279 MCZ 3573	Anser caerulescens	69.0 87.0	124.0 148.0	85.0	MCZ 1883 MCZ 330
Butorides striata	46.8	74.4	46.0	MCZ 5014	Anser erythropus Anser fabalis	75.0	127.0	74.0	MCZ 330 MCZ 262
Butorides virescens	51.4	85.0	54.4	MCZ 1860	Anser jabatis Aythya marila	44.0	70.0	35.0	MCZ 202 MCZ 1471
Egretta alba	75.0	195.0	148.0	MCZ 6731	Biziura lobata	62.0	108.0	50.0	MCZ 2067
Egretta alba	83.0	206.0	158.0	MCZ 6954	Branta canadensis	89.0	148.0	94.0	MCZ 6738
Egretta caerulea	53.1	121.3	91.3	MCZ 6977	Branta canadensis	78.0	140.0	85.0	MCZ 7645
Egretta gularis	57.0	122.5	88.8	MCZ 226	Branta leucopsis	71.0	123.0	74.0	MCZ 6931
Egretta thula	57.0	137.0	96.6	MCZ 7301	Bucephala albeola	40.0	59.0	33.0	MCZ 1915
Egretta thula	53.6	133.2	90.4	MCZ 7616	Cairina moschata	58.0	90.0	49.0	MCZ 1901
Egretta thula	48.4	123.0	86.9	MCZ 3821	Callonetta leucophrys	33.0	53.0	32.0	MCZ 7445
Nycticorax sp.	63.5	131.3	97.6	MCZ 7000	Cereopsis novaehollandiae	81.0	146.0	95.0	MCZ 7095
Pilherodias pileatus	49.5	78.2	52.5	MCZ 3830	Chloephaga picta	88.0	159.0	97.0	MCZ 3031
Tigrisoma lineatum	70.9	122.4	92.6	MCZ 3831	Clangula hyemalis	40.0	64.0	32.0	MCZ 6497
Cochleariidae					Cygnus atratus	84.0	141.0	93.0	MCZ 6936
		1100	70. 0	MOZ 25:5	Cygnus cygnus	107.0	188.0	110.0	MCZ 335
Cochlearius cochlearius	68.0	119.0	78.0	MCZ 3517	Cygnus [columbianus?]	114.0	212.0	113.0	MCZ 3544
Cochlearius cochlearius	65.0	112.0	73.0	MCZ 2201	Dendrocygna autumnalis	50.0	87.0	56.0 52.0	MCZ 273
Ciconiidae					Dendrocygna bicolor	49.0 44.0	84.0	52.0	MCZ 7071
	00.0	267.0	212.0	MC7 4007	Histrionicus histrionicus	44.0 55.0	70.0	38.0 47.0	MCZ 2957
Ciconia nigra	90.0	267.0	212.0	MCZ 6997	Melanitta fusca Merganetta armata	55.0 35.0	90.0 65.0	47.0 38.0	MCZ 6956 MCZ 5094
Ciconia nigra	86.0 70.0	250.0	218.0	MCZ 6747	Merganetta armata Mergus merganser	35.0 51.4	84.0	38.0 45.3	MCZ 3094 MCZ 1436
Ciconia nigra Ibis ibis	79.0 83.0	218.0	178.0	MCZ 290 MCZ 288	Mergus merganser Mergus merganser	51.4	85.9	43.3 47.6	MCZ 1436 MCZ 318
Ibis ibis Ibis ibis	83.0 89.0	229.0 250.0	188.0	MCZ 288	mergus merganser Mergus serrator	49.0	83.9	47.0	MCZ 318 MCZ 2835
Ibis ibis Ibis sp.	89.0 106.0	263.0	211.0 236.0	MCZ 6740 MCZ 1745	Mergus serraior Netta peposaca	51.0	82.0	40.0	MCZ 2833 MCZ 2988
	100.0	4UJ.U	∠30.0	WICZ 1/43	пени рерозиси	21.0	0∠.∪	4 0.0	17ICL 2700

APPENDIX	APPENDIX 2. (Continuea)				APPENDIX 2. (Continuea)				
Species	F	Т	М	Specimen number	Species	F	Т	M	Specimen number
Oxyura australis	46.0	73.0	37.0	MCZ 1437	Himantopus mexicanus	32.4	124.0	119.0	YPM 6108
Plecopterus gambensis	96.6	173.0	112.8	MCZ 196	Recurvirostra americana	36.8	108.0	90.7	MCZ 33
Somateria mollissima	67.0	110.0	50.0	MCZ 7453	Recurvirostra americana	38.3	120.3	86.7	MCZ 31
Tachyeres brachypterus	76.0	120.0	61.0	MCZ 2204	Recurvirostra americana	36.6	107.4	82.7	MCZ 29
Tadorna tadorna	57.0	102.0	68.0	MCZ 7538	Recurvirostra americana	40.1	115.1	97.9	MCZ 3300
Falconiformes					Recurvirostra americana	37.2 38.5	106.6 111.7	91.1 94.2	MCZ 2760 MCZ 32
Cathartidae					Recurvirostra americana	36.3	111./	94.2	MCZ 32
Cathartes aura	58.0	102.0	57.0	MCZ 1372	Phalaropodidae				
Coragyps atratus	78.0	128.0	73.0	MCZ 3577	Phalaropus fulicarius	19.3	37.4	21.8	MCZ 7369
Sarcorhamphus papa	97.0	161.0	93.0	MCZ 6960	Phalaropus lobatus	19.7	38.3	29.8	MCZ 3534
Vultur gryphus	138.0	220.0	121.0	MCZ 342	Phalaropus lobatus	15.9	32.1	21.1	MCZ 2702
Sagittariidae					Dromadidae				
Sagittarius serpentarius	100.0	283.0	272.0	MCZ 1925	Dromas ardeola	41.8	98.7	92.2	MCZ 2991
Sagittarius serpentarius	107.0	270.0	258.0	YPM 14510	Burhinidae		, , , ,	, _,_	
Pandionidae					Burhinus capensis	48.7	102.3	88.2	MCZ 6978
Pandion haliaetus	77.0	122.0	53.0	MCZ 7607	Burhinus capensis Burhinus capensis	52.2	115.1	95.1	MCZ 5978
	77.0	122.0	33.0	Mez 7007	Burhinus capensis Burhinus magnirostris	58.6	142.6	129.8	MCZ 3077
Falconidae					Burninus magnirosiris	36.0	142.0	127.0	WICZ 203
Falco jugger	70.0	90.0	56.0	MCZ 294	Stercorariidae				
Falco sparverius	36.0	49.0	33.0	MCZ 7402	Catharacta skua	63.0	109.2	72.5	MCZ 358
Herpetotheres cachinnans	61.0	99.0	63.0	MCZ 2931	Stercorarius parasiticus	36.4	66.3	42.7	MCZ 183
Microcaster semitorquatus	69.0	103.0	87.0	MCZ 3379	Tanidas				
Phalacoboenus australis	80.0	108.0	83.0	MCZ 252	Laridae				
Polyborus plancus	65.0	106.0	89.0	MCZ 1496	Larus argentatus	58.3	116.0	70.5	MCZ 2712
Polyborus plancus	67.0	104.0	88.0	MCZ 2845	Larus atricilla	36.7	73.0	51.7	MCZ 7271
Accipitridae					Larus glaucesens	67.0	126.0	78.0	MCZ 723
Accipiter gentilis	79.0	109.0	80.0	MCZ 216	Larus leucopterus Larus merinus	55.0	99.0	60.0	MCZ 2843
Aquila chrysaetus	122.0	170.0	107.0	MCZ 1419		65.4 35.0	125.1 64.0	80.4 32.0	MCZ 1617 MCZ 1502
Buteo jamaicensis	84.0	114.0	87.0	MCZ 7793	Rissa tridactyla Sterna fuscata	27.0	44.0	24.0	MCZ 1302 MCZ 3375
Buteo magnirostris	53.0	76.0	62.0	MCZ 2743	Sterna juscula Sterna hirundo	24.0	40.0	20.0	MCZ 3373 MCZ 2147
Buteo rufinus	71.0	111.0	74.0	MCZ 6912	Sterna striata	27.0	43.0	20.0	MCZ 5015
Circus cyaneus	69.0	103.0	82.0	MCZ 1417	Thallaseus maximus	38.0	64.0	33.0	MCZ 1427
Elanus leucurus	49.0	64.0	35.0	MCZ 3430	Thattaseus maximus	30.0	04.0	33.0	MCZ 1-27
Geranospiza caerulescens	71.0	108.0	80.0	MCZ 3032	Rhynchopidae				
Gypaetus barbatus	111.0	160.0	92.0	MCZ 329	Rynchops nigra	34.0	55.0	30.0	MCZ 1426
Gyps fulvus	128.0	182.0	104.0	MCZ 1412					
Harpia harpyia	116.0	168.0	105.0	MCZ 333	Alcidae				
Hieraeetus fasciatus	103.0	145.0	99.0	MCZ 211	Alca torda	45.6	71.0	32.4	MCZ 3688
Leucopternis albicollis	67.0	103.0	80.0	MCZ 3333	Alca torda	42.5	73.7	33.2	MCZ 2956
Melierax [metabutes?]	71.0	106.0	87.0	MCZ 7127	Alca torda	42.9	71.4	35.9	MCZ 2867
Milvus migranus	57.0	79.0	53.0	MCZ 241	Cepphus grylle	36.0	62.9	32.5	MCZ 2995
Neophron percnopterus	72.0	113.0	80.0	MCZ 213	Cerorhinca monocerata	40.8	66.8	30.4	MCZ 7676
Pernis apivorus	61.0	90.0	55.0	MCZ 253	Cerorhinca monocerata	41.2	66.1	30.9	MCZ 7697
Spizaetus ornatus	88.0	124.0	90.0	MCZ 2839	Cerorhinca monocerata	40.3	62.6	28.0	MCZ 7696
Charadriiformes					Fratercula arctica Fratercula arctica	38.9	62.4	27.3	MCZ 2994
Jacanidae					Fratercula arctica Fratercula arctica	38.8	61.9 56.6	27.1 26.0	MCZ 6006
Actophilornis albinucha	36.8	96.6	71.7	MCZ 284	Plautus alle	36.1 27.8	46.2	20.0	MCZ 1434
Jacana spinosa	29.2	82.6	50.8	MCZ 7013	Plautus alle Plautus alle	27.8	44.5	21.5	MCZ 3425 MCZ 1865
Jacana spinosa Jacana spinosa	28.5	81.2	55.5	MCZ 6943	Plautus alle	28.8	45.9	20.9	MCZ 1803
Jacana spinosa	27.9	75.9	54.1	MCZ 7060	Plautus impennes	71.2	130.3	50.0	MCZ 1871
	,				Plautus impennes	75.8	125.9	56.4	MCZ 1822
Charadriidae					Uria aalge	47.4	87.5	36.1	MCZ 6991
Vanellus chilensis	37.8	98.3	82.6	MCZ 6928	Uria aalge	48.0	86.0	38.1	MCZ 2989
Vanellus chilensis	40.6	92.2	72.8	MCZ 7010	Uria aalge	49.0	86.9	37.2	MCZ 3690
Scolopacidae					Uria lomvia	46.6	82.6	36.6	MCZ 7029
Bartramia longicauda	36.7	65.8	51.3	MCZ 1246	Uria lomvia	47.8	82.9	36.0	MCZ 6925
Bartramia longicauda Bartramia longicauda	36.7	63.6	53.2	MCZ 1246 MCZ 2107	Uria lomvia	48.0	86.8	37.9	MCZ 7018
Limosa fedoa	30.3 44.5	96.4	75.9	MCZ 2107 MCZ 1384					
Numenius americanus	59.6	118.3	96.6	MCZ 1584 MCZ 454	Columbiformes				
Numenius americanus Numenius arquata	54.9	106.1	85.4	MCZ 2108	Columbidae				
Numenius arquata	54.6	105.0	80.8	MCZ 1385	Caloenas nicobarica	47.6	71.5	41.5	MCZ 6958
Tringa flavipes	25.9	64.2	53.7	MCZ 3261	Columba aquatrix	41.7	53.7	26.6	MCZ 6798
Tringa flavipes Tringa flavipes	27.7	64.6	52.1	MCZ 2693	Columba cayennensis	34.3	47.7	23.5	MCZ 5012
Tringa flavipes Tringa flavipes	26.7	63.5	50.1	MCZ 2657	Columba livia	38.3	56.8	31.3	MCZ 1250
• •	_0.,				Columba speciosa	36.2	49.2	23.3	MCZ 4062
Recurvirostridae					Columbina talpacoti	20.3	28.3	14.0	MCZ 3514
Himantopus himantopus	31.9	114.4	104.6	MCZ 191	Ducula aenea	43.7	56.9	28.8	MCZ 7543
	33.8	135.0	132.0	YPM 2192	Ectopistes migratorius	40.6	53.8	27.0	MCZ 2355
Himantopus himantopus									
Himantopus himantopus Himantopus himantopus Himantopus leucocephalus	34.2 28.7	129.0 101.0	124.0 78.5	YPM 5950 YPM 13424	Geotrygon montana Leptoptila verreauxi	32.6 32.2	50.2 49.7	29.6 30.7	MCZ 2759 MCZ 3591

Species	F	T	M	Specimen number	Species	F	T	M	Specimen number
Ocyphaps lophotes	35.3	48.0	27.7	MCZ 279	Numididae				
Zenaidura macrocoura Psittaciformes	26.2	36.2	19.9	MCZ 2109	Guttera edouardii Numida meleagris	78.0 79.0	112.0 113.0	77.0 74.0	MCZ 2098 MCZ 1648
Psittacidae					Meleagrididae				
Amazona farinosa	53.5	74.5	24.7	MCZ 3384	Agriocharis ocellata	110.0	193.0	144.5	MCZ 2878
Amazona farinosa	54.8	77.3	25.8	MCZ 3062	Agriocharis ocellata	101.0	177.0	131.0	MCZ 3049
Amazona farinosa	51.8	71.4	23.9	MCZ 2869	Agriocharis ocellata	107.0	185.0	138.0	MCZ 3046
Ara macao	63.0	88.4	32.0	MCZ 3704	Meleagris gallopavo	127.0	200.0	144.0	MCZ 7157
Ara macao	58.1	78.9	29.3	MCZ 6930	Meleagris gallopavo	119.0	193.0	141.0	MCZ 819
Ara macao	62.0	84.3	30.2	MCZ 2241	Meleagris gallopavo	139.0	230.0	168.0	MCZ 1494
Calyptorhynchus magnificus	52.4	74.1	24.5	MCZ 359	Opisthocomidae				
Cacatua galerita	59.2	84.6	26.4	MCZ 1392	Opisthocomus hoatzin	62.8	86.7	53.5	MCZ 3617
Cacatua galerita	58.3	83.8 60.6	26.9 20.9	MCZ 1974	Opisthocomus hoatzin	64.6	89.1	54.9	MCZ 5084
Kakatoe leadbeateri Nestor meridionalis	43.5 53.6	87.1	36.0	MCZ 1991 MCZ 1490	Opisthocomus hoatzin	68.0	90.0	56.0	YPM 2437
Pionus senilis	37.8	50.0	17.4	MCZ 2899					
Pionus senilis	37.6	49.1	17.1	MCZ 2886	Gruiformes				
Probisciger aterrionus	62.0	91.4	27.4	MCZ 1491	Gruidae				
Probisciger aterrionus	58.2	81.4	26.5	MCZ 1369	Anthropoides paradisea	111.0	270.0	232.0	MCZ 7481
Strigops habroptilus	85.6	117.9	51.1	MCZ 309	Anthropoides virgo	85.0	202.0	176.0	MCZ 3036
Trichoglossus ornatus	27.4	40.3	15.2	MCZ 1926	Anthropoides virgo	112.0	251.0	217.0	MCZ 7569
Trichoglossus ornatus	28.1	37.4	15.8	MCZ 1929	Anthropoides virgo	87.0	199.0	166.0	MCZ 208
Trichoglossus ornatus	28.5	39.7	15.3	MCZ 1997	Balearica pavonina	101.0	268.0	194.0	MCZ 3601
Cuculiformes					Balearica pavonina	98.0 92.0	266.0 251.0	179.0 179.0	MCZ 2952 MCZ 200
Cuculidae					Balearica pavonina Grus antigone	140.0	374.0	332.0	MCZ 6600
Geococcyx californianus	55.0	85.0	63.0	MCZ 1495	Grus antigone Grus canadensis	118.0	266.0	236.0	MCZ 2483
• •	33.0	05.0	05.0	Mez 1175	Grus canadensis	126.0	286.0	255.0	MCZ 7482
Galliformes					Grus canadensis	113.0	268.0	242.0	MCZ 1336
Megapodiidae					Grus leucogeranus	128.0	357.0	299.0	MCZ 339
Macrocephalus maleo	85.4	127.0	91.1	MCZ 355					
Cracidae					Aramidae				
Crax alberti	107.0	155.0	103.0	MCZ 209	Aramus scolpaceus	74.0	167.0	126.0	MCZ 3576
Crax mitu	106.0	157.0	110.0	MCZ 3575	Aramus scolpaceus	79.0	182.0	139.0	MCZ 1383
Crax pauxi	110.0	169.0	113.0	MCZ 2121	Rallidae				
Ortalis vetula	65.5	95.0	62.0	MCZ 3099	Gallirallus australis	72.5	102.0	60.2	YPM 13391
Penelope purpascens	95.0	137.0	83.0	MCZ 293	Gallirallus australis Gallirallus australis	74.1	110.2	66.9	YPM 13475
Penelopina nigra	108.0	163.0	107.0	MCZ 2084	Gallirallus australis	67.1	99.0	58.7	YPM 13420
Tetraonidae					Gallirallus australis	77.8	113.7	68.2	YPM 13421
Bonasa umbellus	56.2	75.0	41.4	MCZ 3999	Gallirallus australis	76.0	112.0	67.0	YPM 556
Bonasa umbellus	52.8	75.0	41.2	MCZ 7935	Porphyrio porphyrio	72.9	134.4	91.8	MCZ 321
Bonasa umbellus	56.6	78.0	41.6	MCZ 7371					
Bonasa umbellus	27.3	36.2	22.1	MCZ 3809	Cariamidae				
Bonasa umbellus	53.0	75.6	42.1	MCZ 6061	Cariama cristata	82.0	205.0	193.0	MCZ 207
Bonasa umbellus	53.0	75.6	41.5	MCZ 7666	Otidae				
Centrocercus urophasianus	70.8	91.1	44.5	MCZ 110		72.0	136.0	101.0	MCZ 194
Centrocercus urophasianus	71.4	90.9 79.5	49.2 41.2	MCZ 1441 MCZ 1469	Chlamydotis undulata Chlamydotis undulata	59.0	114.0	82.0	
Lagopus mutus Tetrao urogallus	58.5 80.9	106.7	55.0	MCZ 1409 MCZ 315	Choriotus australis	107.0	242.0	197.0	MCZ 2856
Tympanuchus cupido	62.3	82.1	45.7	MCZ 2193	Chorions dustrans	207.0	_,_,	17710	
1 ympanaenus cuptuo	02.5	02.1			Strigiformes				
Odontophorinae					Tytonidae				
Callipepla squamata	37.3	55.7	31.3	MCZ 1254	Tyto alba	52.0	84.0	60.0	MCZ 352
Colinus nigrogularis	36.7	50.2	29.9	MCZ 5029	Tyto alba	50.0	90.0	64.0	MCZ 656
Colinus nigrogularis	34.9	46.9	27.6	MCZ 5030	Strigidae				
Colinus virginianus	37.8	52.3	30.7	MCZ 7347	Strigidae	20.2	42.0	22.0	MGZ 2222
Colinus virginianus	39.7	54.0	32.3	MCZ 7337	Aegolius acadica	30.3	42.9	23.0	MCZ 3772 MCZ 2828
Lophortyx gambelli	37.9 50.3	55.4 70.3	32.5 45.0	MCZ 7254 MCZ 2727	Aegolius funereus Asio flammeus	32.8 48.9	48.0 74.5	23.4 39.7	MCZ 2828 MCZ 6053
Odontophorus guttatus Odontophorus guttatus	47.1	67.0	42.7	MCZ 2727 MCZ 2770	Asio otus	49.9	75.9	39.9	MCZ 7534
Odomopnorus gundius	77.1	07.0	72.7	MCZ Z770	Bubo africanus	64.0	106.0	65.0	MCZ 255
Phasianidae					Bubo virginianus	82.0	124.0	63.0	MCZ 2174
Coturnix coturnix	34.5	42.1	25.7	MCZ 3164	Bubo virginianus	83.0	125.0	64.0	MCZ 7017
Coturnix coturnix	34.4	44.2	26.6	MCZ 3298	Ciccaba virgata	49.0	77.0	44.0	MCZ 3007
Coturnix delegorguei	31.5	39.9	24.2	MCZ 3037	Nyctea scadiaca	88.0	118.0	56.0	MCZ 6933
Excalfactoria chinensis	27.3	33.8	21.1	MCZ 7497	Otus asio	41.0	57.5	34.0	MCZ 3763
Gallus gallus	91.0	128.0	94.0	MCZ 1388	Otus asio	41.5	57.5	36.0	MCZ 6009
Lophura sp?	94.3	142.0	118.0	MCZ 3144	Pulsatrix perspicata	64.0	98.0	51.0	MCZ 3702
Pavo cristatus	109.0	202.0	137.0 139.0	MCZ 7161	Speotyto cunicularia	40.0	69.0	52.0 63.0	MCZ 270 MCZ 1414
Pavo cristatus Pavo cristatus	107.0 105.0	193.0 175.0	116.0	MCZ 311 MCZ 2651	Strix varia Strix varia	77.0 69.0	113.0 98.0	53.0	MCZ 1414 MCZ 2934
i avo crisiaias	105.0	1/5.0	110.0	11102 2001	SIIIA VUITU	09.0	70.0	55.0	11102 2734

		Specimen F T M number				ь т			Specimen
Species	F	T	M	number	Species	F	T	M	number
Caprimuliformes					Conopophagidae				
Steatornithidae					Conopophaga castaneiceps	20.3	35.5	27.0	MCZ 6014
Steatornis caripensis	39.0	45.3	19.8	MCZ 1401	Rhynocryptidae				
Aegothelidae					Scelorchilus albicollis	27.7	46.7	37.8	MCZ 224
Podargus ocellatus	47.6	76.1	40.7	MCZ 1400					
	17.0	70.1	10.7	Mez 1100	Cotingidae	26.0	56.4	25.5	MC7 2600
Caprimulgidae					Rupicola rupicola	36.8	56.4	35.5	MCZ 3699
Caprimulgus ridgwayi	21.5	32.7	18.5 17.0	MCZ 2974	Tyrannidae				
Caprimulgus vociferus Caprimulgus vociferus	22.0 20.0	36.0 30.5	18.5	MCZ 1402 MCZ 2416	Compostoma absoletum	11.2	20.7	15.6	MCZ 6285
Chordeiles minor	27.0	36.0	17.0	MCZ 7266	Empidonax flaviventris	12.5	22.7	16.1	MCZ 7877
Chordeiles minor	21.5	29.5	14.0	MCZ 3783	Muscigralla brevicauda	15.5 19.4	32.2 41.2	26.5 32.2	MCZ 6304 MCZ 7213
Chordeiles minor	22.9	32.2	19.0	MCZ 1480	Muscisaxicola plauinucha Myiobius barbatus	13.6	21.3	16.3	MCZ 7213 MCZ 3509
Nyctidromus albicollis	22.6	36.9	25.5	MCZ 3422	Pitangus sulforatus	24.1	39.7	26.9	MCZ 3358
Apodiformes					Pyrocephalus rubinus	13.1	21.3	16.3	MCZ 6500
Apodidae					Sayornis phoebe	14.4	25.6	18.2	MCZ 7728
Apus apus	18.7	25.5	10.4	MCZ 2077	Tyrannus verticalis	18.3	29.0	17.9	MCZ 7600
Apus apus	16.5	24.8	11.4	MCZ 349	Pittidae				
Chaetura pelagica	15.4	23.1	11.4	MCZ 3118	Pitta erythrogaster	30.3	52.2	42.4	MCZ 6581
Trochilidae					Menuridae				
Archilochus colubris	7.3	10.9	4.6	MCZ 7644		(7.7	122.0	1112	MC7 212
Archilochus colubris Archilochus colubris	6.5	10.9	4.1	MCZ 7397	Menura novaehollandiae	67.7	132.0	111.2	MCZ 313
Glaucis hirsuta	9.1	12.9	5.7	MCZ 6140	Alaudidae				
Patagona gigas	13.7	20.9	7.4	MCZ 246	Eremophila alpestris	17.7	28.9	20.6	MCZ 7440
Trogoniformes					Eremophila alpestris	16.8	28.2	21.6	MCZ 7439
•					Galerida theklae	17.6	29.0	22.6	MCZ 2905
Trogonidae	27.5	36.0	16.2	MCZ 2769	Melanocorypha yeltoniensis	23.4 19.3	36.2 30.7	25.6 23.4	MCZ 188 MCZ 7290
Trogon massena	27.5	30.0	10.2	MCZ 2709	Mirafa javanica	19.3	30.7	23.4	WICZ 7290
Coraciiformes					Hirundinidae				
Alcedinidae					Hirundo rustica	12.6	20.5	11.5	MCZ 2697
Alcedo atthis	16.3	24.8	8.7	MCZ 2721	Hirundo rustica	12.4	19.5	10.8	MCZ 4004
Alcedo atthis	13.6	20.4	7.6	MCZ 84	Progne subis	18.4	30.2	16.4	MCZ 1481
Ceryle alcyon	25.7	35.8	10.3	MCZ 7285	Campephagidae				
Dacelo novaeguineae	36.5 21.0	54.2 32.0	24.2 14.7	MCZ 2079 MCZ 1777	Coracina caeruleogrisea	34.0	45.6	29.3	MCZ 6475
Halcyon chloris Halcyon chloris	21.3	33.7	16.0	MCZ 7002	Dicruridae				
Halcyon chloris	20.8	34.6	13.5	MCZ 6907	Dicrurus macroceros	21.8	34.8	22.0	MCZ 3288
Halcyon sancta	19.8	30.9	13.7	MCZ 1802					
Halcyon sancta	17.7	28.6	13.3	MCZ 6768	Callaeidae				
Momotidae					Heteralocha? actutirostis	47.7	93.6	74.4	MCZ 350
Momotus mexicanus	27.5	39.8	27.4	MCZ 3065	Grallinidae				
					Corcorax melanorhamphus	44.4	79.8	63.9	MCZ 291
Bucerotidae	102.0	138.0	74.5	MCZ 7859	•		,,,,	00.5	
Buceros bicornis Buceros rhinoceras	102.0	138.0		MCZ 7839 MCZ 1446	Cracticidae				
	77.0	132.0	00.5	MCZ 1440	Strepera graculina	44.7	78.3	52.5	MCZ 277
Piciformes					Certhiidae				
Bucconidae					Certhia familiaris	10.6	16.1	15.1	MCZ 1487
Monasa morphoeus	21.8	31.9	18.4	MCZ 6107	•	10.0	10.1	15.1	MEZ 1407
Ramphastidae					Sittidae				
Pteroglossus aracari	58.7	89.0	53.7	MCZ 1498	Sitta carolinensis	15.7	24.5	18.3	MCZ 2526
Ramphastus toco	58.7	89.0	53.7	MCZ 6051	Timaliidae				
Picidae					Garrulax striatus	34.2	58.0	42.9	MCZ 286
Colaptes cafer	30.3	41.8	28.0	MCZ 3624	Garrulax striatus	34.2	36.0	42.7	MCZ 280
Dryocopus pileatus	41.9	53.5	36.0	MCZ 1396	Cinclidae				
Melanerpis erythrocephalus	30.5	40.7	27.0	MCZ 1397	Cinclus cinclus	20.0	36.8	27.0	MCZ 361
Passeriformes					Mimidae				
						27.0	47.6	21.1	MCZ 1801
Eurylaimidae	240	25.2	21.0	1407 7240	Toxostoma rufium	27.9	47.0	34.4	WCZ 1801
Calyptomina viridis	24.0	35.2	21.0	MCZ 7349 MCZ 2982	Turdidae				
Eurylaimus ochromalus	18.5	30.9	20.3	WICZ 2902	Turdus migratorius	25.5	42.0	30.4	MCZ 2701
Dendrocolaptidae					Myiophoneus caeruleus	37.3	68.4	53.1	MCZ 6059
Dedrocolaptes certhia	24.6	33.5	26.2	MCZ 3842	Motacillidae				
Furnariidae						16.3	20.2	22.4	MC7 2120
Furnarius rufus	22.9	39.5	31.3	MCZ 6030	Anthus correndera Anthus lutescens	16.2 15.5	29.3 27.8	22.4 20.1	MCZ 3138 MCZ 4016
Formicariidae	,	27.5	2 1.3		Anthus tutescens Budytes flavus	15.4	30.9	22.9	MCZ 4010 MCZ 3091
	28.4	45.6	35.9	MCZ 4083	Motacilla alba	16.1	31.5	22.9	MCZ 6945
Taraba major	∠0.4	45.0	33.9	WICZ 4003	100 Date of the Control of the Contr				

APPENDIX 2. (Continued)

Species	F	Т	М	Specimen number
Bombycillidae				
Bombycilla cedrorum	19.5	30.6	18.0	MCZ 2713
Laniidae				
Gymnorhina tibicen	45.2	82.8	61.4	MCZ 1405
Pitynasis gymnocephala	33.0	48.0	33.1	MCZ 230
Sturnidae				
Gracula religiosa	36.4	56.3	33.4	MCZ 7027
Nectariniidae				
Anthreptes collaris	11.5	20.5	15.7	MCZ 6880
Thraupidae				
Habia rubica	19.8	31.9	23.2	MCZ 2455

APPENDIX 3. Avian limb segment dimensions (in mm) taken from the literature (\mathbf{F} , femur; \mathbf{T} , tibiotarsus; \mathbf{M} , tarsometatarsus; *, mean values; %, percentages rather than absolute lengths; \mathbf{m} , males, \mathbf{f} , females).

Species	F	T	M	Source
atites				
Apterigidae				
Apteryx australis*	89.5	129.9	64.9	Cracraft (1976)
• •	09.5	129.9	04.9	Claciali (1970)
Struthionidae				
Palaeotis weigelti	145.0	268.0	200.0	Houde and Haubold (1987)
Struthio camelus	314.0	550.0	474.0	Holtz (1994a)
Struthio camelus	308.0	527.0	455.0	Holtz (1994a)
Struthio camelus	305.0	511.0	447.0	Holtz (1994a)
Struthio camelus	293.0	480.0	461.0	Holtz (1994a)
Struthio camelus	273.0	497.0	410.0	Holtz (1994a)
Struthio camelus	277.0	490.0	420.0	Holtz (1994a)
Struthio camelus	278.0	490.0	432.0	Holtz (1994a)
Dinornithidae				
Anomalopteryx didiformis	235.0	360.0	190.0	Holtz (1994a)
Anomalopteryx didiformis*	238.5	377.2	179.0	Cracraft (1976)
Anomalopteryx didiformis	275.0	427.0	212.0	Gatesy (1991)
Anomalopteryx didiformis	265.0	405.0	190.0	Gatesy (1991)
Dinornis gazella*	231.0	469.7	259.0	Cracraft (1976)
Dinornis giganteus	375.0	759.0	470.0	Holtz (1994a)
Dinornis giganteus*	390.9	875.2	486.1	Cracraft (1976)
Dinornis hercules*	353.0	779.8	420.3	Cracraft (1976)
Dinornis ingens	340.0	737.0	417.0	Holtz (1994a)
Dinornis maxiumus*	406.1	866.6	463.4	Cracraft (1976)
Dinornis maxiumus	470.0	990.0	518.0	Holtz (1994a)
Dinornis novaezealandiae	278.0	560.0	313.0	Holtz (1994a)
Dinornis novaezealandiae	280.0	540.0	296.0	Holtz (1994a)
Dinornis novaezealandiae	285.0	585.0	295.0	Holtz (1994a)
Dinornis novaezealandiae*	340.5	701.7	368.1	Cracraft (1976)
Dinornis robustus*	354.5	718.6	382.6	Cracraft (1976)
Dinornis sp.	225.0	390.0	168.0	Holtz (1994a)
Dinornis struthoides*	265.0	520.7	282.2	Cracraft (1976)
Dinornis struthoides	300.0	600.0	315.0	Holtz (1994a)
Dinornis torosus*	295.3	588.4	303.1	Cracraft (1976)
Dinornis torosus	330.0	650.0	334.0	Holtz (1994a)
Emeus crassus	245.0	435.0	200.0	Holtz (1994a)
Emeus crassus	255.0	422.0	190.0	Holtz (1994a)
Emeus crassus	260.0	460.0	215.0	Holtz (1994a)
Emeus crassus	260.0	450.0	188.0	Holtz (1994a)
Emeus crassus	272.8	464.2	213.6	Cracraft (1976)
Emeus crassus	285.0	450.0	225.0	Holtz (1994a)
Emeus crassus	287.0	493.0	220.0	Gatesy (1991)
Emeus huttonii	238.4	386.6	184.4	Holtz (1994a)
Emeus huttonii	244.0	397.0	187.0	Gatesy (1991)
Euryapteryx curtus*	167.6	268.8	124.7	Cracraft (1976)
Euryapteryx curtus Euryapteryx curtus	179.0	286.0	136.0	Gatesy (1991)
Euryapteryx exilis*	198.2	331.7	148.4	Cracraft(1976)
Euryapteryx exitis Euryapteryx exilis	205.0	347.0	152.0	Gatesy (1991)
Lui yupici ya cailis	200.0	JT1.U	134.0	Culcay (1771)

APPENDIX 3. (Continued)

Species	F	T T	M	Source
Euryapteryx geranoides	268.0	455.0	205.0	Holtz (1994a)
Euryapteryx geranoides	280.0	472.0	210.0	Holtz (1994a)
Euryapteryx geranoides	231.0	411.0	175.0	Gatesy (1991)
Euryapteryx gravis*	280.2	475.2	209.6	Cracraft (1976)
Euryapteryx gravis	315.0	520.0	217.0	Gatesy (1991)
Euryapteryx tane*	190.7 245.7	328.0 385.3	149.0 179.4	Cracraft (1976) Cracraft (1976)
Megalapteryx didinus* Megalapteryx didinus	243.7 265.0	405.0	179.4	Holtz (1994a)
Pachyornis elephantopus	329.0	574.0	242.0	Gatesy (1991)
Pachyornis elephantopus	320.0	525.0	225.0	Holtz (1994a)
Pachyornis elephantopus*	308.9	542.9	230.6	Cracraft (1976)
Pachyornis elephantopus	295.0	485.0	210.0	Holtz (1994a)
Pachyornis mappini*	206.3	365.5	156.3	Cracraft (1976)
Pachyornis mappini Pachyornis oweni	203.0 143.0	336.0 243.0	156.0 113.0	Gatesy (1991) Gatesy (1991)
Pachyornis septentrionalis*	174.1	291.7	133.0	Cracraft (1976)
Dromornithids		_,	10010	(12/c)
Aepyornis hildebrandti	320.0	580.0	303.0	Gatesy (1991)
Aepyornis hildebrandti	240.0	485.0	275.0	Gatesy (1991)
Aepyornis maximus	465.0	810.0	480.0	Gatesy (1991)
Aepyornis maximus	410.0	730.0	420.0	Gatesy (1991)
Aepyornis medius	368.0	680.0	380.0	Gatesy (1991)
Aepyornis medius	330.0	572.0	330.0	Gatesy (1991)
Genyornis newtoni	340.0	602.0	374.0	Gatesy (1991)
Rheidae				
Rhea americana	210.0	330.0	320.0	Holtz (1994a)
Rhea americana	110.0	163.0	147.0	Holtz (1994a)
Dromiceidae				
Dromecius novaehollandiae	243.0	465.0	404.0	Holtz (1994a)
Dromecius novaehollandiae	228.0 241.0	451.0	380.0	Holtz (1994a)
Dromecius novaehollandiae Dromecius novaehollandiae	234.0	451.0 436.0	407.0 401.0	Holtz (1994a) Holtz (1994a)
Dromecius novaehollandiae	228.0	403.0	375.0	Holtz (1994a)
Dromecius novaehollandiae	218.0	390.0	389.0	Holtz (1994a)
Dromecius novaehollandiae	225.0	374.0	354.0	Holtz (1994a)
Tinamiformes				
Tinamidae				
Rhynchotus rufescens	70.0	95.0	59.0	Holtz (1994a)
Podicipediformes				
Podicipedidae				
Podilymbus podiceps*	40.4	72.7	41.6	Storer (1976)
Podilymbus podiceps*	41.1	71.6	41.9	Storer (1976)
Podilymbus podiceps*	36.6	64.8	37.4	Storer (1976)
Sphenisciformes				
Spheniscidae				
Aptenodytes patagonica*	100.6	186.6	47.6	Simpson (1946)
Paraptenodytes antarcticus*	115.9	178.0	53.4	Simpson (1946)
Pelecaniformes				
Phalacrocoracidae				
Compsohalieus harrisi (m)*	71.2	146.5	72.5	Livezey (1992)
Compsohalieus harrisi (f)*	63.9	132.9	67.3	Livezey (1992)
Compsohalieus penicillatus (m)*	62.3	127.6	66.2	Livezey (1992)
Compsohalieus penicillatus (f)*	57.5 74.6	119.8	62.7	Livezey (1992)
Compsohalieus perspicillatus Hypoleucus auritus (m)*	74.6 59.1	136.9 110.4	70.1 64.3	Livezey (1992) Livezey (1992)
Hypoleucus auritus (fi)*	55.4	104.8	62.6	Livezey (1992) Livezey (1992)
Leucocarbo bougainvilli (m)*	57.0	125.4	68.1	Livezey (1992)
Leucocarbo bougainvilli (f)*	56.2	123.2	66.4	Livezey (1992)
Microcarbo melanoleucos (m)*	43.6	70.6	39.7	Livezey (1992)
Microcarbo melanoleucos (f)*	41.2	67.4	37.8	Livezey (1992)
Notocarbo atriceps (m)*	59.6	119.6	62.6	Livezey (1992)
Notocarbo atriceps (f)*	58.0 56.0	116.0	61.0	Livezey (1992)
Phalacrocorax auritus* Phalacrocorax carbo (m)*	56.9 66.7	101.3 123.2	60.1 69.1	Owre (1967) Livezey (1992)
Phalacrocorax carbo (ff)*	59.1	110.0	64.0	Livezey (1992) Livezey (1992)
Stictocarbo magellanicus (m)*	54.7	93.9	51.3	Livezey (1992)
Stictocarbo magellanicus (f)*	53.3	91.2	51.1	Livezey (1992)
Stictocarbo urile (m)*	63.7	114.5	56.9	Livezey (1992)
Stictocarbo urile (f)*	57.6	104.4	52.8	Livezey (1992)

APPENDIX 3. (Continued)

Species	F	T	M	Source
Anhingidae				
Anhinga anhinga*	55.6	89.2	41.2	Owre (1967)
Ciconiiformes				
Phoenicopteridae				
Phoenicopterus ruber*%	0.11	0.45	0.44	Howell (1965)
Fnoenicopierus ruber 70	0.11	0.43	0.44	110well (1703)
Anseriformes				
Anatidae				
Chendytes lawi*	71.3	149.2	66.8	Livezey (1993)
Melanitta fusca (m)*	59.1 55.5	105.0 98.9	51.1 47.6	Livezey (1993) Livezey (1993)
Melanitta fusca (f)* Somateria mollissima (m)*	66.8	113.3	55.5	Livezey (1993)
Somateria mollissima (f)*	65.6	109.0	53.1	Livezey (1993)
Falconiformes				
Cathartidae				
Cathartes aura*	69.8	119.3	64.5	Fisher (1946)
Coragyps atratus*	85.8	141.5	82.0	Fisher (1946)
Gymnogyps californianus*	138.5	210.0	114.7	Fisher (1946)
Sarcorhamphus papa*	100.0	165.0	99.0	Fisher (1946)
Vultur gryphus*	153.1	243.0	130.1	Fisher (1946)
Pandionidae				
Pandion haliaetus*	79.6	126.6	54.0	Fisher (1946)
Accipitridae				
Aquila chrysaetos*	127.4	168.8	104.6	Fisher (1946)
Charadriiformes				
Alcidae				
Mancalla diegense*	52.1	67.9	41.0	Miller and Howard (1949)
	32.1	07.5	11.0	Willier and Howard (1979)
Cuculiformes				
Cuculidae	20.0	20.0	26.2	Davis (1052)
Coccygus americanus* Coccygus erythropthalmus*	28.0 26.4	39.8 36.9	26.2 24.8	Berger (1952) Berger (1952)
Crotophaga sulcirostris*	34.4	54.3	36.6	Berger (1952)
Geococcyx californianus*	53.9	85.0	62.7	Berger (1952)
Foratidae				
Foro panarium	54.1	88.4	61.3	Olson (1992)
•				,
Galliformes				
Tetraonidae	0.040	0.404	0.006	T. 1 : (1000)
Falcipennis falcipennis (m)%	0.340 0.350	0.434 0.430	0.226 0.220	Kuz'mina (1992) Kuz'mina (1992)
Falcipennis falcipennis (f)*% Lagopus lagopus (m)*%	0.344	0.433	0.223	Kuz'mina (1992)
Lagopus lagopus (f)*%	0.349	0.436	0.215	Kuz'mina (1992)
Lagopus mutus (m)%	0.362	0.431	0.207	Kuz'mina (1992)
Lagopus mutus (f)*%	0.352	0.435	0.213	Kuz'mina (1992)
Lyrurus tetrix (m)*% Lyrurus tetrix (f)*%	0.345 0.345	0.431 0.432	0.224 0.223	Kuz'mina (1992) Kuz'mina (1992)
Tetrao urogalloides (m)*%	0.339	0.433	0.228	Kuz'mina (1992)
Tetrao urogalloides (f)*%	0.335	0.435	0.230	Kuz'mina (1992)
Tetrao urogallus (m)%	0.348	0.428	0.224	Kuz'mina (1992)
Tetrao urogallus (f)*% Tetrastes bonasia (m)*%	0.344 0.334	0.430 0.440	0.226 0.226	Kuz'mina (1992) Kuz'mina (1992)
Tetrastes bonasta (III) % Tetrastes bonasta (f)*%	0.334	0.437	0.230	Kuz'mina (1992)
. ,	5.555	3	3.25	(<u>-</u>)
Phasianidae				
Alectoris chukar (m)*%	0.322	0.435	0.243	Kuz'mina (1992)
Alectoris chukar (f) *% Alectoris griseogularis (m)*%	0.322 0.311	0.431 0.443	0.247 0.246	Kuz'mina (1992) Kuz'mina (1992)
Alectoris griseogularis (III)*% Alectoris griseogularis (f)*%	0.311	0.432	0.252	Kuz'mina (1992)
Coturnix coturnix (m)*%	0.336	0.420	0.249	Kuz'mina (1992)
Coturnix coturnix (f)%	0.332	0.413	0.260	Kuz'mina (1992)
Coturnix japonica (m)%	0.345	0.416	0.239	Kuz'mina (1992)
Excalfactoria chinensis Francolinus francolinus (m)*%	27.0 0.313	30.5 0.416	19.0 0.271	Alexander (1983) Kuz'mina (1992)
Francolinus francolinus (ff)*%	0.313	0.418	0.271	Kuz'mina (1992)
Gallus gallus*	84.6	120.6	81.8	Fisher (1946)
Palaeortyx brevipes*	35.6	56.8	28.0	Mourer-Chauviré (1992)
Palaeortyx gallica* Paraortyx lorteti*	41.4 41.9	59.7 52.0	30.6 33.5	Mourer-Chauviré (1992) Mourer-Chauviré (1992)

APPENDIX 3. (Continued)

Species	F	T	M	Source
Perdix dauurica (f)*%	0.333	0.417	0.250	Kuz'mina (1992)
Perdix perdix (m)*%	0.332	0.417	0.251	Kuz'mina (1992)
Perdix perdix (f)*%	0.331	0.417	0.250	Kuz'mina (1992)
Phasianus colchicus (m)*%	0.309	0.414	0.277	Kuz'mina (1992)
Phasianus colchicus (f)*%	0.311	0.413	0.276	Kuz'mina (1992)
Tetraogallus altaicus (m)*%	0.344	0.439	0.228	Kuz'mina (1992)
Tetraogallus altaicus (f)%	0.337	0.438	0.225	Kuz'mina (1992)
Tetraogallus caucasicus (m)%	0.336	0.441	0.223	Kuz'mina (1992)
Tetraogallus himalayensis (m)*%	0.331	0.442	0.227	Kuz'mina (1992)
Tetraogallus himalayensis (f) *%	0.332	0.443	0.225	Kuz'mina (1992)
Gruiformes Gruidae				
Balearica exigua*	80.2	~151	125.3	Feduccia and Voorhies (1992)
Rallidae	80.2	151	123.3	reduceia and voormes (1992)
Aptornis defosson	140.0	260.0	130.0	Holta (1004a)
Aptornis aejosson Aptornis otidiformis	165.0	227.0	100.0	Holtz (1994a)
Atlantisia rogersi	26.0	42.0	24.0	Holtz (1994a) Lowe (1928)
-	20.0	42.0	∠ 4. U	LUWC (1920)
Messelornithidae Messelornis neartica	35.0	62.0	46.0	Hessa (1002)
	33.0	63.0	46.0	Hesse (1992)
Apodiformes Apodidae				
Chaetura pelagica*	9.3	15.0	7.6	Cohn (1968)
Trochilidae	7.5	15.0	7.0	Com (1900)
Eugenes fulgens	10.9	15.8	6.0	Cohn (1968)
Florisuga mellivora*	10.4	15.0	5.7	Cohn (1968)
Patagona gigas	16.0	23.2	8.8	Cohn (1968)
Passeriformes				
Dendrocolaptidae				
	10.8	10.0	15 2	N (1070)
Certhis familiaris*	10.8	19.0	15.3	Norberg (1979)
Paridae				
Parus ater*	11.8	22.2	16.0	Norberg (1979)
Parus cristatus*	12.8	23.9	17.9	Norberg (1979)
Parus montanus*	12.9	23.8	16.6	Norberg (1979)
Sylviidae	0.7	21.2	17.1	N. J. (1050)
Regulus regulus*	9.7	21.2	17.1	Norberg (1979)
Sandcoleiformes				
Sandcoleidae	27.7	42.2	22.7	W 1 101 (2007)
Anneavis anneae Sandcoleus copiosus	27.7 36.5	43.3 50.9	23.7 28.1	Houde and Olson (1992) Houde and Olson (1992)
Mesozoic Birds	2 3.0	23.7	20.1	110ddc and 010011 (1772)
Archaeopteryx lithographica	~70	89.5	47.8	Wellnhofer (1988)
Archaeopteryx lithographica Archaeopteryx lithographica	61.0	81.0	40.0	Wellnhofer (1988)
Archaeopteryx lithographica	53.0	69.0	36.0	Wellnhofer (1974)
Archaeopteryx lithographica	48.0	71.0	40.5	Wellnhofer (1993)
Archaeopteryx lithographica	37.0	53.0	30.0	Wellnhofer (1974)
Baptornis advenus	71.0	191.0	84.0	Martin and Tate (1976)
Baptornis advenus	72.0	191.0	83.0	Martin and Tate (1976)
Cathayornis yandica	23.0	29.0	17.0	Zhou et al. (1992)
Confuciusornis sanctus	33.0	41.0	21.0	Hou et al. (1995)
Hesperornis regalis	99.0	298.0	136.0	Marsh (1880)
Hesperornis regalis	105.0	302.0	136.0	Marsh (1880)
Sinornis santensis	14.4	23.8	12.5	Sereno and Rao (1992)