

Departamento de Matemática

Ayudantía 9 MEŤODOS CUANTITATIVOS EN NEGOCIOS (MAT-033) Jueves 01 de julio de 2021

Problema 1.

Sea X una variable aleatoria, con función generadora de momentos:

$$\varphi_x(t) = \frac{1}{2}e^{-t} + \frac{1}{2}$$

Sean X_1, X_2, \ldots, X_n variables aleatorias independientes distribuidas de igual forma que X, encuentre $E(\bar{X})$ y $V(\bar{X})$.

Problema 2.

Sean X_1, X_2, \dots, X_n una m.a. de tamaño n, de una población con la siguiente función de densidad:

$$f_{X_i}(x_i) = \begin{cases} \frac{1}{x_i \sigma \sqrt{2\pi}} e^{\frac{-1(\ln(x_i) - \mu)^2}{2\sigma^2}} & x_i > 0; i = 1, \dots, n \\ 0 & e.o.c. \end{cases}$$

a Encuentre el EMV de μ , con σ^2 conocido.

b Si n=3 y $X_1=e, X_2=e^2$ y $X_3=e^3$. Evalué el μ_{EMV} encontrado en a.

Problema 3.

Sea X_1, X_2 una muestra aleatoria de tamaño 2 de X con media μ y varianza σ^2 . Si disponemos de dos estimadores para $\hat{\mu}_1 = \frac{X_1 + X_2}{2}$ y $\hat{\mu}_2 = \frac{X_1 + 2X_2}{3}$. ¿Cual de los dos estimadores es el mejor?.