МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по практической работе №2 по дисциплине «Вычислительная математика» Тема: Интерполирование функций

Студент гр. 8301	Готовский К.В.
Преподаватель	 Сучков А.И
	Колоницкий С.Б

Санкт-Петербург 2020

Цель работы.

Исследование различных методов интерполяции для узлов интерполирования с последующей реализацией на одном из языков программирования.

Основные теоретические положения.

Узлы, в которых определено значение $f(x_i)$ являются равноотстоящими, если $x_i = x_0 + i * h, x_0 < x_1 ... < x_n, i = 1...n$. Для получения узлов на произвольном отрезке [a,b] с помощью многочлена Чебышёва, можно применить следующую формулу:

$$x_i = \frac{a+b}{2} + \frac{b-a}{2} \cos\left(\pi \frac{(2k-1)}{2n}\right), k = 1..n.$$
 (1)

После нахождения интерполяционного многочлена методом Лагранжа, необходимо вычислить и оценить его погрешность. Должно выполнятся следующее неравенство:

$$\max_{x \in [a,b]} |R_n(x)| \le \frac{M_{n+1}}{(n+1)!} \max_{x \in [a,b]} |\omega_n(x)| = Q_n(x), \tag{2}$$

где [a,b] — промежуток интерполирования, $R_n(x) = f(x) - L_n(x)$, $M_{n+1} = \max_{\eta \in [a,b]} |f^{n+1}(\eta)|$, $\omega_n(x) = \prod_{j=0}^n (x-x_j)$. Правая часть неравенства является практической погрешностью, а левая — теоретической.

Постановка задачи.

Построить интерполяционный многочлен по 2, 3, 4, 5 и 6 узлам (равноотстоящим и чебышёвским) для функции $f(x) = \frac{A}{x^2 + px + q}$ на промежутке [a,b] по равноотстоящим и по чебышёвским узлам. Найти фактическую погрешность и сравнить её с теоретической оценкой.

- 1. Реализовать функцию f для вычисления значений в функции f(x).
- 2. Реализовать функцию df, вычисляющая n-ую производную функции f(x). Данную функцию можно реализовать с помощью switch,

предварительно посчитав производные в символьном виде, например, в Wolfram.

- 3. Реализовать функцию(-ии), вычисляющую интерполяционный многочлен по методу Лагранжа.
- 4. Построить график полученного интерполяционного многочлена n-го порядка по равномерной сетке и функции f(x) в одном окне. Отметить на графике узлы интерполяции.
- 5. Аналогично для чебышёвской сетки.
- 6. Построить следующую таблицу для каждой сетки:

Значение п	1	2	3	4	5
Значение M_{n+1}					
Значение $\max_{x \in [a,b]} \omega_n(x) $					
3начение $(n + 1)!$					
Значение $\max_{x \in [a,b]} R_n(x) $					
Значение $Q_n(x)$					

7. Сделать выводы.

Графики интерполяционных многочленов и их вид.

Рисунок 1 — интерполяционного многочлена 1-го порядка по равномерной сетке.

Рисунок 2 — интерполяционного многочлена 2-го порядка по равномерной сетке.

Рисунок 3 — интерполяционного многочлена 3-го порядка по равномерной сетке.

Рисунок 4 — интерполяционного многочлена 4-го порядка по равномерной сетке.

Рисунок 5 — интерполяционного многочлена 5-го порядка по равномерной сетке.

Рисунок 6 — интерполяционного многочлена 1-го порядка по чебышёвской сетке.

Рисунок 7 — интерполяционного многочлена 2-го порядка по чебышёвской сетке.

Рисунок 8 — интерполяционного многочлена 3-го порядка по чебышёвской сетке.

Рисунок 9 — интерполяционного многочлена 4-го порядка по чебышёвской сетке.

Рисунок 10 – интерполяционного многочлена 5-го порядка по чебышёвской сетке.

Таблицы для оценки погрешности.

Таблица 1 – Таблица значений для равномерных узлов.

Значение п	1	2	3	4	5
Значение M_{n+1}	0.76894	0.25106	0.18093	0.10601	0.10643
Значение $\max_{x \in [a,b]} \omega_n(x) $	5.0000	20.000	60.000	120.00	720
Значение $(n + 1)!$	1	2	6	24	120
Значение $\max_{x \in [a,b]} R_n(x) $	0	0	0	0	0
Значение $Q_n(x)$	3.8447	2.5106	1.8093	0.53004	0.63856

Таблица 2 – Таблица значений для чебышёвских узлов.

Значение п	1	2	3	4	5
Значение M_{n+1}	0.76894	0.25106	0.18093	0.10601	0.10643
Значение $\max_{x \in [a,b]} \omega_n(x) $	3.5000	6.1250	10.719	18.758	32.826
Значение (n + 1)!	1	2	6	24	120
Значение $\max_{x \in [a,b]} R_n(x) $	0	0	0	0	0
Значение $Q_n(x)$	2.6913	0.76887	0.32322	0.082853	0.029113

Выводы.

В результате работы были проведены аналитические расчёты и написана программа. Теоретическая погрешность всегда была меньше практической, что подтверждает правильность работы программы. Используя узлы Чебышёва теоретическая погрешность будет ниже, чем при равномерных узлах. Значение $\max_{x \in [a,b]} |R_n(x)|$ всегда равно нулю, потому ЧТО ПО методу Лагранжа интерполяционный многочлен равен значению функции. Это вызвано тем, что точек для вычисления <5, а точек дано 36, поэтому разница между функцией и интерполяционным многочленом равно нулю.

ПРИЛОЖЕНИЕ А

Программа в режиме для чебышёвских узлов

```
function [M, w, nf, R, Q] = Yrok 2(n)
  function [y] = f(x)
    y = 1000 / (x^2 - x^6 + 60);
  endfunction
  function [y] = df(x, dn)
    switch dn
      case 1
        y = (2000*(3 - x))/(60 - 6*x + x^2)^2;
      case 2
        y = (6000*(-8 - 6*x + x^2))/(60 - 6*x + x^2)^3;
      case 3
        y = (24000*(3 - x)*(-42 - 6*x + x^2))/(60 - 6*x + x^2)^4;
      case 4
        y = (24000*(-1584 + 2520*x - 240*x^2 - 60*x^3 +
5*x^4))/...
        (60 - 6*x + x^2)^5;
      case 5
        y = (720000*(3456 + 1584*x - 1260*x^2 + 80*x^3 + 15*x^4 - 1260*x^2)
x^5))/...
        (60 - 6*x + x^2)^6;
      case 6
        y = (720000*(219456 - 145152*x - 33264*x^2 + 17640*x^3 - 
        126*x^5 + 7*x^6))/(60 - 6*x + x^2)^7;
    endswitch
  endfunction
  function [s] = lagrang(x, y, t)
    ln = length(x);
    s = 0;
    for i = 1:ln
      p = 1;
        for j = 1:ln
          if (j ~= i)
            p = p*(t - x(j))/(x(i) - x(j));
          endif
        endfor
      s = s + y(i) *p;
```

```
endfor
  endfunction
  a = -1; b = 6; nf = 1; da = a;
  yw = 1:((b - a)/0.2 + 2); yw = diff(yw);
  %xk = 1:(n + 1);
  for k = 1:n
   xk(k) = (a + b)/2 + ((b - a)/2)*cos(pi*(2*k - 1)/(2*n));
  endfor
  for i = 1:((b - a)/0.2 + 1)
   x(i) = a;
   a = a + 0.2;
   y(i) = f(x(i));
   ym(i) = df(x(i), n + 1);
   for j = 1:n
     yw(i) = yw(i)*(x(i) - xk(j));
   endfor
  endfor
  for i = 1:((b - da)/0.2 + 1)
    yl(i) = y(i) - lagrang(x, y, x(i));
  endfor
 M = max(abs(ym));
  w = max(abs(yw));
  for i = 1:n
   nf = nf*i;
  endfor
 R = \max(abs(yl));
  Q = M*w/nf;
  for i = 1:(n + 1)
  for i = 1:n
   rsl(i) = lagrang(x, y, xk(i));
  endfor
  plot(x, y, '-g;True f ;', xk, rsl, '*b;interpolation;',...
 xk, rsl, '-r;interpolation;');
  grid();
endfunction
```