3 - The Perifocal Frame, Kepler's Equations and Conic Sections

Dmitry Savransky

Cornell University

MAE 4060

©Dmitry Savransky 2019

The Perifocal Frame

$$\mathbf{r} = r\cos(\nu)\hat{\mathbf{e}} + r\sin(\nu)\hat{\mathbf{q}}$$

$$\mathbf{v} = \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{r} = (\dot{r}\cos(\nu) - r\dot{\nu}\sin(\nu))\hat{\mathbf{e}}$$

$$+ (\dot{r}\sin(\nu) + r\dot{\nu}\cos(\nu))\hat{\mathbf{q}}$$

$$= \frac{\mu}{h}\left(-\sin(\nu)\hat{\mathbf{e}} + (e + \cos(\nu))\hat{\mathbf{q}}\right)$$

$$r = \|\mathbf{r}\| = \frac{h^2/\mu}{1 + e\cos(\nu)}$$

$$e = \|\mathbf{e}\| = \left\|\frac{\mathbf{v} \times \mathbf{h}}{\mu} - \frac{\mathbf{r}}{r}\right\|$$

$$h = \|\mathbf{h}\| = \|\mathbf{r} \times \mathbf{v}\|$$
Constants

$$h = r^2 \dot{\nu}$$

Kepler's Laws of Planetary Motion

- 1. The orbit of a planet is an ellipse (conic section) with the Sun at a focus
- 2. A line segment joining a planet and the Sun sweeps out equal areas in equal time
- 3. The square of the orbital period is proportional to the cube of the semi-major axis

First Law

Two body orbits are conic sections with the central body at a focus

$$\overline{FP} = e\overline{PQ}$$

Ellipse (Circle)	0 < e < 1
Parabola	e=1
Hyperbola	e > 0

Directrix

Elliptical Orbits

Parabolic and Hyperbolic Orbits

Conic Section Parameters

 $\ell=r(\nu=\pi/2)=$ semi-parameter: height above focus c=ae= linear eccentricity: distance from center to focus $p=\ell/e$ focal parameter: distance from focus to vertex

NB: p and ℓ frequently have reversed definitions, depending on the text.

		002201			
	Definition	e	c	ℓ	p
circle	$x^2 + y^2 = a^2$	0	0	\overline{a}	∞
ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\sqrt{1 - \frac{b^2}{a^2}}$	$\sqrt{a^2 - b^2}$	$\frac{b^2}{a}$	$\frac{b^2}{\sqrt{a^2 - b^2}}$
parabola	$y^2 = 4ax$	1	∞	2a	$2a^*$
hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\sqrt{1 + \frac{b^2}{a^2}}$	$\sqrt{a^2 + b^2}$	$\frac{b^2}{ a }$	$\frac{b^2}{\sqrt{a^2 + b^2}}$

^{*}a is the focus to vertex distance for a parabola

Second and Third Laws

$$r = \|\mathbf{r}\| = \frac{h^2/\mu}{1 + e\cos(\nu)}$$

$$e = \|\mathbf{e}\| = \left\|\frac{\mathbf{v} \times \mathbf{h}}{\mu} - \frac{\mathbf{r}}{r}\right\|$$

$$h = \|\mathbf{h}\| = \|\mathbf{r} \times \mathbf{v}\|$$

$$\Rightarrow h = r^2\dot{\nu}$$

$$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{h}{2}$$

$$T_p = \frac{2\pi}{\sqrt{\mu}} a^{\frac{3}{2}}$$

Energy

$$\mathcal{E} = \frac{v^2}{2} - \frac{\mu}{r} = \text{constant}$$
$$\mathcal{E} = -\frac{\mu}{2a}$$

The Vis-Viva Equation

$$v^2 = \mu \left(\frac{2}{r} - \frac{1}{a}\right)$$

$$\mathcal{E} = \frac{\dot{r}^2}{2} + \underbrace{U(r) + \frac{h^2}{2r^2}}_{\triangleq U_{\text{eff}}}$$