

Investigación Operativa I (MAT329)

Aplicación del Método Simplex en la Panadería: "Barrio Lindo"

Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones

Leonardo Henry Añez Vladimirovna Sebastián Durán Reg: 217002498 Reg: 217050662

8 de junio de 2019

Problema

En este trabajo se plantea utilizar el Método Simplex en la resolución de un problema de Programación Lineal. Para realizar el analisis de producción de panes en la Panadería "Barrio Lindo". Buscando la minimización de los costos de produccion basados en un lote de una arroba para distintos tipos de panes.

Información Técnica

Contamos con el precio unitario de los ingredientes representativos usados para preparar diferentes panes, esto para un lote.

	Lote (Arroba)													
	Harina A (Kg.)	Harina B (Kg.)	$egin{aligned} \operatorname{Huevo} \ & (\operatorname{Unidad}) \end{aligned}$	Queso (Kg.)	Leche (Litro)	Azucar (Kg.)	Costo Total							
Pan Frances	9	1	20	1	1	1	82							
Pan con Queso	9	1	20	2	1,5	1	104,5							
Pan Libro	10	1	10	1	1	1	81							
Pan Hamburguesa	8	1	20	1	1	1	78							
Pan Chama	1	8	10	1	1	1	80							
Marraqueta	7	2	10	1	1	1	74							
Costo Unitario (Bs.)	4	5	0,5	20	5	6								

Además de contar con cierta disponibilidad por cada ingrediente:

Disponibilidad											
Harina A (Kg.)	Harina B (Kg.)	Huevo (Unidad)	Queso (Kg.)	Leche (Litro)	Azucar (Kg.)						
46 - 92	20	200 - 400	20	100	46						

Modelo Matemático

El modelo matemático tendra el siguiente esquema:

Variables

Las variables del trabajo serán las cantidades por tipos de pan que se venden y estarán representados por:

$$x_1, x_2, x_3, x_4, x_5, x_6$$

Función Objetivo

La función objetivo estará dada de la siguiente manera:

$$z = 82x_1 + 104,5x_2 + 81x_3 + 78x_4 + 80x_5 + 74x_6$$

Restricciones

Las restricciones al problema serán las siguientes:

$$\begin{array}{c} 9x_1 + 9x_2 + 10x_3 + 8x_4 + x_5 + 7x_6 \geq 46 \\ 9x_1 + 9x_2 + 10x_3 + 8x_4 + x_5 + 7x_6 \leq 92 \\ x_1 + x_2 + x_3 + x_4 + 8x_5 + 2x_6 \leq 20 \\ 20x_1 + 20x_2 + 10x_3 + 20x_4 + 10x_5 + 10x_6 \geq 200 \\ 20x_1 + 20x_2 + 10x_3 + 20x_4 + 10x_5 + 10x_6 \leq 400 \\ x_1 + 2x_2 + x_3 + x_4 + x_5 + x_6 \leq 20 \\ x_1 + 1,5x_2 + x_3 + x_4 + x_5 + x_6 \leq 100 \\ x_1 + x_2 + 2x_3 + x_4 + x_5 + x_6 \leq 46 \end{array}$$

Resultados

Mediante el uso del programa realizado para el proyecto, procedemos a cargar el programa con las especificaciones necesarias:

Una vez hacemos click en Resolver nos genera todas las iteraciones hasta llegar a la solución final.

Iteraciones del Programa

_ i	Basis	С	В	X1	X2	Х3	X4	X5	Х6	X7	X8	X9	X10	X11	X12	X13	X14	X15	X16
1	X8	0	46	9	9	10	8	1	7	-1	0	0	0	0	0	0	0	1	0
_ 2	X9	0	92	9	9	10	8	1	7	0	1	0	0	0	0	0	0	0	0
3	X11	0	20	1	1	1	1	8	2	0	0	1	0	0	0	0	0	0	0
_ 4	X12	0	200	20	20	10	20	10	10	0	0	0	-1	0	0	0	0	0	1
_ 5	X13	0	400	20	20	10	20	10	10	0	0	0	0	1	0	0	0	0	0
_ 6	X14	0	20	1	2	1	1	1	1	0	0	0	0	0	1	0	0	0	0
_ 7	X15	-M	100	1	1,5	1	1	1	1	0	0	0	0	0	0	1	0	0	0
_ 8	X16	-M	46	1	1	2	1	1	1	0	0	0	0	0	0	0	1	0	0
m+1	F	Δj	0	82	104,5	81	78	80	74	0	0	0	0	0	0	0	0	0	0
m+2	М	Δj		-2	-2,5	-3	-2	-2	-2	0	0	0	0	0	0	-1	-1	1	1
i	Basis	С	В	X1	X2	Х3	X4	X5	X6	X7	X8	X9	X10	X11	X12	X13	X14	X15	X16
1	X3	-81	4,6	0,9	0,9	1	0,8	0,1	0,7	-0,1	0	0	0	0	0	0	0	0,1	0
2	X9	0	4,6	0,5	0,9	0	0,8	0,1	0,7	1	1	0	0	0	0	0	0	-1	0
3	X11	0	15,4	0,1	0,1	0	0,2	7,9	1,3	0,1	0	1	0	0	0	0	0	-0,1	0
4	X12	0	154	11	11	0	12	9	3	1	0	0	-1	0	0	0	0	-0,1	1
5		0						9	3	1	0	0	0		0	0	0		
6	X13 X14	0	354 15,4	0,1	11	0	12		0,3		0	0	0	0	1	0	0	-1	0
7	X14 X15	-M	95,4		1,1	0	0,2	0,9	0,3	0,1	0	0	0	0	0	1	0	-0,1	0
				0,1	0,6	0	0,2	0,9		0,1	0	0	0	0	0	0		-0,1	
8 m+1	X16 F	-M	36,8	-0,8	-0,8		-0,6	0,8	-0,4	0,2		0			0		1	-0,2	0
m+1 m+2	M	Δ <u>j</u> Δ <u>j</u>	-372,6	9,1	31,6 0,2	0	13,2 0,4	71,9	17,3 0,1	-0,3	0	0	0	0	0	-1	-1	-8,1 1,3	1
111+2	IVI	ΔΙ	l	0,7	0,2	U	0,4	-1,7	0,1	-0,5	0	0	0	0	0	-1	-1	ا ا	I
i	Basis	С	В	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	X11	X12	X13	X14	X15	X16
1	X3	-81	4,41	0,9	0,9	1	0,8	0	0,68	-0,1	0	-0,01	0	0	0	0	0	0,1	0
_ 2	X9	0	46	0	0	0	0	0	0	1	1	0	0	0	0	0	0	-1	0
3	X5	-80	1,95	0,01	0,01	0	0,03	1	0,16	0,01	0	0,13	0	0	0	0	0	-0,01	0
4	X12	0	136,46	10,89	10,89	0	11,77	0	1,52	0,89	0	-1,14	-1	0	0	0	0	-0,89	1
_ 5	X13	0	336,46	10,89	10,89	0	11,77	0	1,52	0,89	0	-1,14	0	1	0	0	0	-0,89	0
6	X14	0	13,65	0,09	1,09	0	0,18	0	0,15	0,09	0	-0,11	0	0	1	0	0	-0,09	0
_ 7	X15	-M	93,65	0,09	0,59	0	0,18	0	0,15	0,09	0	-0,11	0	0	0	1	0	-0,09	0
8	X16	-M	35,24	-0,81	-0,81	0	-0,62	0	-0,53	0,19	0	-0,1	0	0	0	0	1	-0,19	0
m+1	F	Δj	-512,76	8,19	30,69	0	11,38	0	5,47	7,19	0	-9,1	0	0	0	0	0	-7,19	0
m+2	M	Δj		0,72	0,22	0	0,44	0	0,38	-0,28	0	0,22	0	0	0	-1	-1	1,28	1
	n			1/4		V2		V/F	. V.C	V7		1/0	V40	V/4.4	V42	V42	V/4.4	VAE	V4.C
<u> </u>	Basis	C	В	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	X11	X12	X13	X14	X15	X16
1	X3	-81	4,41	0,9	0,9	1	0,8	0	0,68	-0,1	0	-0,01	0	0	0	0	0	0,1	0
2	X9	0	46	0	0	0	0	0	0	1	1	0 13	0	0	0	0	0	-1	0
3	X5	-80	1,95	0,01	0,01	0	0,03	1	0,16	0,01	0	0,13	0	0	0	0	0	-0,01	0
4	X12	0	136,46	10,89	10,89	0	11,77	0	1,52	0,89	0	-1,14	-1	0	0	0	0	-0,89	1
5	X13	0	336,46	10,89	10,89	0	11,77	0	1,52	0,89	0	-1,14	0	1	0	0	0	-0,89	0
6	X14	0	13,65	0,09	1,09	0	0,18	0	0,15	0,09	0	-0,11	0	0	1	0	0	-0,09	0
7	X13	0	93,65	0,09	0,59	0	0,18	0	0,15	0,09	0	-0,11	0	0	0	1	0	-0,09	0
8 m+1	X16	-M	35,24	-0,81	-0,81	0	-0,62	0	-0,53	0,19	0	-0,1	0	0	_	0	1	-0,19	0
m+1	F	Δ <u>j</u>	-512,76	8,19	30,69	0	11,38	0	5,47	7,19	0	-9,1	0	0	0	0	0	-7,19	0
m+2	М	Δϳ	I	0,81	0,81	0	0,62	0	0,53	-0,19	0	0,1	0	0	0	0	-1	1,19	1
i	Basis	С	В	X1	X2	Х3	X4	X5	X6	X7	X8	Х9	X10	X11	X12	X13	X14	X15	X16
1	Х3	-81	4,41	0,9	0,9	1	0,8	0	0,68	-0,1	0	-0,01	0	0	0	0	0	0,1	0
2	X9	0	46	0	0	0	0	0	0	1	1	0	0	0	0	0	0	-1	0
3	X5	-80	1,95	0,01	0,01	0	0,03	1	0,16	0,01	0	0,13	0	0	0	0	0	-0,01	0
4	X12	0	136,46	10,89	10,89	0	11,77	0	1,52	0,89	0	-1,14	-1	0	0	0	0	-0,89	1
5	X13	0	336,46	10,89	10,89	0	11,77	0	1,52	0,89	0	-1,14	0	1	0	0	0	-0,89	0
6	X14	0	13,65	0,09	1,09	0	0,18	0	0,15	0,09	0	-0,11	0	0	1	0	0	-0,09	0
7	X13	0	93,65	0,09	0,59	0	0,18	0	0,15	0,09	0	-0,11	0	0	0	1	0	-0,09	0
8	X14	0	35,24	-0,81	-0,81	0	-0,62	0	-0,53	0,19	0	-0,1	0	0	0	0	1	-0,19	0
m+1	F	Δϳ	-512,76	8,19	30,69	0	11,38	0	5,47	7,19	0	-9,1	0	0	0	0	0	-7,19	0
m+2	M	Δi	2.2,.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
111+2	141	- 41	1	, 0	. •		. •			. •		. •	. •		, 0			1 1	1 1

Finalmente podemos ver en el programa el resultado final de la minimización.

Por lo que tenemos los resultados para la minimización de z:

$$Min_z = 372,6$$

 $x_1 = 0$
 $x_2 = 0$
 $x_3 = 4,6$
 $x_4 = 0$
 $x_5 = 0$
 $x_6 = 0$

Conclusión