

Muon deflection uncertainties on directional reconstructions using PROPOSAL

Pascal Gutjahr
TU Dortmund University

Collaboration Meeting Madison, 18-23 September 2022

Motivation of muon deflection simulation

Why?

- TeV to PeV muons are strongly forward boosted
 - Single deflection lower than angular resolution of ~0.6°
 - Assume muon propagation along a straight line

But:

- Muons can propagate up to several km through media
 - Thousands of interactions
 - Large energy losses
 - Deflection in each interaction

What happens if thousands of deflections accumulate?

Is a total deflection on the order of magnitude of current angular resolutions possible?

Overview

- Motivation of muon deflection simulation
- Simulation tool PROPOSAL
- Muon deflection per interaction
- Comparison with other simulation tools
- Data-MC checks
- Estimate muon deflection uncertainty on angular reconstruction
- Summary & outlook

Simulation tool PROPOSAL

- C++/Python simulation framework for leptons -> muons
- Optimized for large-scale particle propagations
- Up-to-date parametrizations
- Relative and absolute energy cut to speed up propagation process
 - $v_{\rm cut}$, $e_{\rm cut}$
 - Continuous and stochastic processes

- Propagation
 - Initial energy
 - Final energy
 - Energy cuts
 - Medium
 - Distance

- Deflection
 - Multiple scattering
 - Molière
 - Highland
 - Stochastic deflection
 - Bremsstrahlung
 - Photonuclear interaction
 - Electron pair production
 - Ionization
 - Different parametrizations from Van Ginneken¹ and Geant4² are available

github.com/tudo-astroparticlephysics/PROPOSAL github.com/icecube/icetray/tree/main/PROPOSAL

¹ NIM A251 (1986) 21-39

² geant4.web.cern.ch

Muon deflection per interaction

- 1000 muons propagated in ice
- Initial energy 1 PeV
- Final energy 1 TeV
- e_cut = 500 MeV, v_cut = 0.05
- Largest median deflection by photonuclear interaction
- Largest outliers by bremsstrahlung
- Highland Gaussian approximation neglects outliers
- Deflection dominated by multiple scattering

Accumulated deflection

- Single deflections extend over several order of magnitudes up to a few degrees
- Muons do up to thousands of interactions

Question

Can all deflections along the muon propagation accumulate to a total deflection that impacts our angular resolution?

First, validate PROPOSAL results with other simulation tools and data

Comparison with other simulation tools

- MUSIC¹
 - 3D muon simulation code
- Geant4²
 - Simulates passage of particles through matter very precisely, but intensive computing
 - Made for simulations in particle detectors
- Good agreement in angular deflection
- Small deviations in lateral displacement
 - Highland approximation neglects outliers

distance of 3 km in water

arXiv:2208.11902

¹ Astropart. Phys. 7.4 (1997) 357-368

² geant4.web.cern.ch

Data-MC checks

Attwood¹

- $E_{\rm i} = 199 \, {\rm MeV}$
- $d = 109 \, \text{mm}$
- Liquid hydrogen (low Z)

Akimenko²

- $E_{\rm i} = 7.3~{\rm GeV}$
- d = 144 mm
- Copper

Good agreement in both measurements

Accumulated deflection for several final muon energies

- Use fixed initial energy $E_i = 1 \text{ PeV}$
- Vary final energy

median with 95% content level → exponential fit

- Deflection increases as final energy decreases
 - Check median deflection for different initial energies

Accumulated deflection impact on angular resolutions

- Check median of accumulated deflections for:
 - $E_i \in \{10 \text{ PeV}, 1 \text{ PeV}, 100 \text{ TeV}, 10 \text{ TeV}\}$
 - $E_{\text{f.min}} \in \{10 \text{ GeV}, ..., 500 \text{ TeV}\}$
 - number events > 50,000 for each data set

- Median of deflections overlap for different initial energies
 - No strong impact of the initial energy
- Median can be fit by third degree polynomial in log-space

Fit function:
$$f(x) = 0.018x^3 - 0.003x^2 + 0.093x + 0.073$$
 $g(x) = 10^{f(x)}$, $x = \log_{10}(E_f/\text{GeV})$ with $E_f \in [1 \text{ GeV}, 5 \text{ PeV}]$

E ≤ 1 TeV: minimal influence of deflection on angular resolution (KM3NeT)

Estimate muon deflection uncertainty on angular reconstruction

- No information about the muon before the detector entry
- We can only reconstruct the muon at the detector entry
 - Energy
 - Direction
- Detector entry energy = final muon energy
- Muon deflection depends only on the final muon energy
- Use reconstructed muon energy to estimate the muon deflection before the detector entry
- Systematic uncertainty

Summary

- Good agreement with MUSIC and Geant4 and two muon deflection measurements
- Muon deflection per interaction: $\theta \in [10^{-9}, 1]$ for $E_i = 1$ PeV, $E_{f,min} = 1$ TeV
- Deflections accumulate along the track
 - Deflections increase as the final muon energy decreases
 - Muon deflection is nearly independent of initial muon energy
 - Median deflections can be parametrized in dependence of final muon energy
- Fit function and reconstructed muon energy at detector entry can be used to estimate the muon deflection before the detector entry
- KM3NeT angular resolution is already impacted at ≤ TeV
- IceCube is not yet impacted

Outlook

- Paper submitted to EPJ C
- Use PROPOSAL 7 in IceCube
 - Now: PROPOSAL 6 -> without stochastic deflection
- Measure muon deflections at energies of TeV to PeV
 - Validate simulations at higher energies
 - IceCube Gen-2
- Muon deflection becomes more relevant with further angular reconstruction improvements
 - Especially at energies lower than TeV (IceCube Upgrade)

Appendix - median deflection with different energy cuts

1 PeV to 1 TeV, 1000 events each, Molière, 95% Interval

- Low cuts -> more stochastic propagation
- > Leads to lower deflections
- ➤ Molière simulates larger deflections at higher energies
 - > See Akimenko

Appendix – check deflection in dependence of propagation distance

- 3 data points per line
 - median ●, lower ▲ and upper ▼ bound 90% CL
- using data within ± 10%

- propagation distance depends on initial particle energy
 - deflection increases with propagation distance
 - deflection is similar for medians of propagation distance for different initial energies

Appendix – energy rescale to muon energy

Electron pair production - Van Ginneken

> Several orders of magnitude for fixed energy and energy loss

