

Problem Set 2 Physics 201b January 20, 2010. Due Jan 27

all content is licensed under a Creative Commons License (Attribution-NonCommercial-ShareAlike 3.0)

- 1. A rod has charge density $\lambda(x) = \frac{\lambda_0 x}{L}$ in the interval -L < x < L. Find the field at a point $x = x_0 > L$. Examine this result for $x_0 \to \infty$ and show that it falls off like a dipole field $\mathbf{E} = \mathbf{i} \frac{\lambda_0 L^2}{3\pi\varepsilon_0 x_0^3}$ and find the associated dipole moment. Hint: Expand in a Taylor series to an order that yields a nonzero result. Hint for doing integral: x/(...) = (x a + a)/(...).
- 2. A dipole with moment $p = 10^{-29} C \cdot m$ and of length $10^{-10} m$ is at an angle of $+\pi/6$ with respect to a uniform electric field along the x-axis $\mathbf{E} = \mathbf{i} \ 0.5 N/C$. What is the torque on it? What work will it take to align it an angle π ? If disturbed from the position of stable equilibrium, what will be the (angular) frequency (ω) of small oscillations if the dipole has a mass $10^{-27} kg$ at each end?
- 3. A solid nonconducting sphere of uniform charge density and total charge -Q and radius r=a is surrounded by a concentric conducting spherical shell of inner radius r=b and outer radius r=c with c>b>a. The outer shell has charge 2Q. Use Gauss' law to find the field for all r. Show with a sketch where the charges reside and some field lines.
- 4. Consider a hollow conducting cylinder of radius a and charge λ per unit length surrounded by an outer hollow conducting cylinder of radius b with charge $-\lambda$ per unit length. Find the field for all r. What is σ , the charge per unit area in the inner cylinder? Consider the field between two cylinders when b-a << a is very small and compare the field to that inside a parallel plate capacitor.
- 5. A charge of one Coulomb is at the center of a unit cube. What is the flux through one of its faces?
- 6. A charge density distribution is given by $\rho(r) = Ar^2$ C/m^3 $0 \le r \le R$. Remember that volume integrals in spherical coordinates are given by $\int \int \int r^2 \sin\theta dr d\theta d\phi f(r,\theta,\phi)$. Find the total charge Q and the field as for all r, expressed in terms of Q.
- 7. Find the volume of a sphere of radius R centered at the origin by slicing it parallel to the x-y plane into discs of thickness dz and appropriate radius. You may assume the formula for the area of a circle.
- 8. The gravitational field \mathbf{G} , defined as force on a unit mass, is very much like the electric field, with a magnitude $G = Gm/r^2$ for a point mass m at the origin. Write down Gauss' Law for this field in terms of the mass density ρ_m .
- 9. A point charge $1\mu C$ is at the center of a spherical shell of radius 1m and negligible thickness carrying $-2\mu C$. Find the electric field at r=.5m and r=2m.
- 10. A solid sphere of radius R has uniform charge density ρ . A hole of radius R/2 is scooped out of it as shown in Figure 10. Show that the field inside the hole is uniform and along the x-axis and of magnitude $\rho R/6\varepsilon_0$. Hint: Think of the hole as a superposition of positive and negative charges.

Figure 1: A solid sphere of radius R and charge density ρ with a hole of radius R/2.