22583 Special Topics in Computer Engineering (2) Advanced Digital Systems Design and Verification

Lab 2: RTL Model of Two-Stage RISC-V Processor

March 13, 2024

1 Objectives

For the second lab assignment, you will write an RTL model of a two-stage pipelined RISC-V-v2 (a subset of the RISC-V instruction set) processor.

2 Tools

Use one of the following Verilog simulators (or any one of your choice):

- Intel® Quartus®
- · www.edaplayground.com
- Download Verilog from: http://bleyer.org/icarus/

3 Design Activity

The two-stage pipeline should perform instruction fetch in the first stage, while the second pipeline stage should do everything else including data memory access. If you need to refresh your memory about pipelining and the RISC-V instruction set, we recommend Computer Organization and Design: The Hardware/Software Interface, by Patterson and Hennessey.

Make sure to separate out datapath and memory components from control circuitry. The system diagram in Figure 1 can be used as an initial template for your two-stage RISC-V-v2 processor implementation, but please treat it as a suggestion. Your objective in this lab is to implement the RISC-V-v2 ISA, not to implement the system diagram so feel free to add new control signals, merge modules, or make any other modifications to the system. You will need to turn in a diagram of your datapath anyway, so it is highly recommended that you draw your datapath from the beginning in a program such as Visio, and keep it updated as you design. This reference will be very useful to speed up debugging.

For this lab assignment, you will only be implementing a subset of the RISC-V specification. Figure 2 shows the instructions that you must support.

4 Design Flow

Strictly follow the following order:

- 1. Write the Verilog code for the circuits described above.
- 2. Write Verilog testbenches to test your modules.
- Perform Functional Simulation (Run Simulation → Run Behavioral Simulation) and take snapshots of the results.

5 Deliverables

You will need to submit to E-learning (as a .zip file) including the following:

- • The Verilog code: Your design should be modular.
- Verilog testbenches: test each module separately.
- Run logs: the run result for each test case (text and waveforms)

Figure 1: Two-Stage Pipeline for RISC-V-v2 Processor. Shaded state elements need to be correctly loaded on reset

31 27	26 22	21 17	16 15 14 12 11 1	10 9 8 7	570 E E E E	1 •
,	jump target				opcode	J-type
rd	LUI-immediate				opcode	LUI-type
rd	rs1	imm[11:7]	imm[6:0]	funct3	opcode	I-type
imm[11:7]	rs1	rs2	imm[6:0]	funct3	opcode	B-type
rd	rs1	rs2	funct1		opcode	R-type
rd	rs1	rs2	rs3	funct5	opcode	R4-type
		Contro	l Transfer Instructi	ons		
imm25						J imm25
imm25					1101111	JAL imm25
imm12hi	rs1	rs2	imm12lo	000	1100011	BEQ rs1,rs2,imm12
imm12hi	rs1	rs2	imm12lo	001	1100011	BNE rs1,rs2,imm12
imm12hi	rs1	rs2	imm12lo	100	1100011	BLT rs1,rs2,imm12
imm12hi	rs1	rs2	imm12lo	101	1100011	BGE rs1.rs2.imm12
imm12hi	rs1	rs2	imm12lo	110	1100011	BLTU rs1,rs2,imm12
imm12hi	rs1	rs2	imm12lo	111	1100011	BGEU rs1,rs2,imm12
rd	rs1		imm12	000	1101011	JALR.C rd,rs1,imm1
rd	rs1		imm12	001	1101011	JALR.R rd,rs1,imm1
rd	rs1	imm12		010	1101011	JALR.J rd,rs1,imm15
imm12hi	rs1	rs2	imm12lo	010	0100011	SW rs1,rs2,imm12
Integer Compute Instructions						
rd	rs1		imm12	000	0010011	ADDI rd,rs1,imm12
rd	rs1	000000	shamt	001	0010011	SLLI rd,rs1,shamt
rd	rs1	imm12		010	0010011	SLTI-rd,rs1,imm12
rd	rs1	imm12		011	0010011	SLTIU rd,rs1,imm12
rd	rs1	imm12		100	0010011	XORI rd,rs1,imm12
rd	rs1	000000	shamt	101	0010011	SRLI rd,rs1,shamt
rd	rs1		imm12	110	0010011	ORI rd,rs1,imm12
rd	rs1	imm12		111	0010011	ANDI rd,rs1,imm12
rd	rs1	rs2	0000000	000	0110011	ADD_rd,rs1,rs2
rd	rs1	rs2	1000000	000	0110011	SUB rd,rs1,rs2
rd	rs1	rs2	0000000	001	0110011	SLL rd,rs1,rs2
rd	rs1	rs2	0000000	010	0110011	SLT rd,rs1,rs2
1	rs1	rs2	0000000	011	0110011	SLTU_rd,rs1,rs2
rd			0000000	100	0110011	XOR_rd,rs1,rs2
$_{\mathrm{rd}}$	rs1	rs2	0000000			
$_{ m rd}$	rs1	rs2	0000000	101	0110011	SRL rd,rs1,rs2
rd rd rd	rs1 rs1	rs2 rs2	0000000 0000000	101 110	0110011	OR rd,rs1,rs2
$_{ m rd}$	rs1	rs2	0000000	101		

Figure 2: Instruction listing for RISC-V