COMPUTER SCIENCE TRIPOS Part II – 2016 – Paper 9

5 Denotational Semantics (MPF)

For all PCF types τ and all $M \in PCF_{\tau \to bool}$, let $M^{\#} \subseteq \llbracket \tau \rrbracket$ be defined as

$$M^{\#} = \{ d \in [\![\tau]\!] \mid [\![M]\!](d) = true \}$$

Indicate whether the following statements are true or false, respectively providing a proof or a counterexample. You may use any standard results provided that you state them clearly.

- (a) For all PCF types τ and all $M, N \in PCF_{\tau \to bool}$, if $M^{\#} \subseteq N^{\#}$ then $\vdash M \leq_{\text{ctx}} N : \tau$. [5 marks]
- (b) For all PCF types τ and all $M,N \in \text{PCF}_{\tau \to bool}$, if $\vdash M \leq_{\text{ctx}} N : \tau$ then $M^{\#} \subseteq N^{\#}$. [5 marks]
- (c) For all PCF types τ and all $M, N \in \text{PCF}_{\tau \to bool}$, there exists $P \in \text{PCF}_{(\tau \to bool) \to ((\tau \to bool) \to (\tau \to bool))}$ such that $(PMN)^{\#} = M^{\#} \cap N^{\#}$. [5 marks]
- (d) For all PCF types τ and all $M, N \in \text{PCF}_{\tau \to bool}$, there exists $P \in \text{PCF}_{(\tau \to bool) \to ((\tau \to bool) \to (\tau \to bool))}$ such that $(PMN)^{\#} = M^{\#} \cup N^{\#}$.

Hint: Consider the fact, for which you need not provide a proof, that there is no PCF-definable function $f \in (\mathbb{B}_{\perp} \to (\mathbb{B}_{\perp} \to \mathbb{B}_{\perp}))$ such that $f \ true \perp = f \perp true = true$ and $f \ false \ false \neq true$. [5 marks]