Задание

на курсовую работу по дисциплине «Методы оптимизации»

Студент: группы ПМ-435 Гребельник Михаил Степанович

Консультант: Лукащук Станислав Юрьевич

1. Тема задания

Оптимизация численной неявной схемы и разработка параллельного алгоритма для исследования уравнения Кортевега-де-Фриза дробного порядка.

2. Основное содержание

- 2.1. Разработать численный алгоритм на основе неявной конечноразностной схемы, позволяющий проводить компьютерное моделирование течение жидкости, описываемое начально-краевой задачей для уравнения Кортевега-де-Фриза дробного порядка.
- 2.2. Написать программу на языке C++, реализующую разработанный алгоритм. Разработать параллельный алгоритм. Оптимизировать программу, используя средства OpenMP.
- 2.3. С использованием программы произвести серию вычислительных экспериментов.

3. Требования к оформлению материалов работы

Пояснительная записка к заданию должна быть оформлена в текстовом редакторе Microsoft Word в соответствии с требованиями стандартами СТО УГАТУ 016 2007 и содержать:

- •Титульный лист
- •Задание на учебную практику
- •Содержание
- •Постановка задачи
- •Алгоритм численного моделирования
- Результаты вычислительных экспериментов
- •Заключение
- •Список литературы

4. Список рекомендуемой литературы

- 4.1 Самко С. Г., Килбас А. А., Маричев О. И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987. 688с.
- 4.2 A.A. Kilbas, H.M. Srivastava, J.J. Trujillo Theory and applications of fractional differential equations. North-Holland Mathematics Studies 204. 2006 Γ . 523c.
 - 4.3 Igor Podlubny. Fractional differential equations. Academic press, 1999. 340 c.

Дата выдачи задания октября 2013 г.	Дата окончания <u>января</u> 2013 г.
Консультант	Лукащук С.Ю.
Принял к исполнению _	Гребельник М. С.

Содержание

1. Постановка задачи	4
2. Алгоритм численного моделирования	5
2.1 Преобразование уравнения	5
2.2 Численная схема	7
2.3 Аппроксимация на сетке	8
2.4 Описание метода прогонки	9
2.5 Реализация метода прогонки	10
2.6 Алгоритм проведения вычислительных экспериментов	12
3. Описание параллельного алгоритма	13
4. Результаты вычислительных экспериментов	14
Заключение	16
Список литературы	17
Приложение А. Листинг программы	18

1.Постановка задачи

Разработать численный алгоритм, позволяющий проводить компьютерное моделирование волновых процессов, описываемое следующей начально-краевой задачей для уравнения Кортевега- де- Фриза дробного порядка:

$$D_t^{\alpha}U + U \cdot J_t^{1-\alpha}(U_x) = aU_{xxx}, \alpha \in (0,1), a = const;$$
 (1)

$$J_t^{1-\alpha}U|_{t=0} = f(x), U_x|_{x=0} = U_x|_{x=1} = U_{xx}|_{x=1} = 0,$$
 (2)

где U = U(x, t)- искомая функция.

В уравнении (1) выражения

$$J_t^{1-\alpha}U = \frac{1}{\Gamma(1-\alpha)} \int_0^t \frac{U(x,\tau)}{(t-\tau)^\alpha} d\tau, \quad D_t^\alpha U = \frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial t} \int_0^t \frac{U(x,\tau)}{(t-\tau)^\alpha} d\tau, \tag{3}$$

(3) называются дробным интегралом порядка 1- α и дробной производной порядка 1- α , 0< α <1 соответственно. Дробные производные и дробные интегралы в приведенном виде называют обычно производными и интегралами Римана — Лиувилля.

В (3) через $\Gamma(z)$ выражается гамма функция:

$$\Gamma(z) = \int_0^{+\infty} t^{z-1} e^{-t} dt, \quad \Gamma(z+1) = z\Gamma(z).$$

2.Алгоритм численного моделирования 2.1 Преобразование уравнения

Рассмотрим начальное условие из (2). Справедливо утверждение[2]:

$$\lim_{t\to 0} J_t^{1-\alpha} U = \lim_{t\to 0} \frac{U(x,t)\Gamma(\alpha)}{t^{\alpha-1}} = f(x),$$

Рассмотрим дробный интеграл от функции U:

$$J_t^{1-\alpha}U \equiv \frac{1}{\Gamma(1-\alpha)} \int_0^t \frac{U(x,\tau)}{(t-\tau)^{\alpha}} d\tau =$$

$$= \frac{1}{\Gamma(1-\alpha)} \int_0^s \frac{U(x,\tau)}{(t-\tau)^{\alpha}} d\tau + \frac{1}{\Gamma(1-\alpha)} \int_s^t \frac{U(x,\tau)}{(t-\tau)^{\alpha}} d\tau =$$

$$= \frac{1}{\Gamma(1-\alpha)} \int_0^s \frac{U(x,\tau)}{(t-\tau)^{\alpha}} d\tau + {}_sJ_t^{1-\alpha}U.$$

Тогда дробная производная от функции U(x,t) может быть записана в виде

$$D_t^{\alpha}U \equiv \frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial t} \int_0^s \frac{U(x,\tau)}{(t-\tau)^{\alpha}} d\tau + {}_sD_t^{1-\alpha}U.$$

Распишем подробнее первое слагаемое, обозначив его за I, найдя частную производную

$$I = \frac{-\alpha}{\Gamma(1-\alpha)} \int_{0}^{s} \frac{U(x,\tau)}{(t-\tau)^{\alpha+1}} d\tau = \frac{1}{\Gamma(-\alpha)} \int_{0}^{s} \frac{U(x,\tau)}{(t-\tau)^{\alpha+1}} d\tau.$$

При 0 < t < s считаем, что $U(t,x) = \frac{f(x)t^{\alpha-1}}{\Gamma(\alpha)}$.

Тогда для І получаем

$$I = \frac{1}{\Gamma(-\alpha)} \int_{0}^{s} \frac{f(x)t^{\alpha-1}}{\Gamma(\alpha)(t-\tau)^{\alpha+1}} d\tau = -\frac{\alpha \sin \pi \alpha}{\pi} f(x) \int_{0}^{s} \frac{\tau^{\alpha-1}}{(t-\tau)^{\alpha+1}} d\tau,$$

так как
$$\Gamma(\alpha)\Gamma(-\alpha) = -\frac{\pi}{\alpha \sin \pi \alpha}$$
.

Далее,

$$_{s}D_{t}^{-\alpha}U = _{s}D_{t}^{-\alpha}(U - U(s)) + _{s}D_{t}^{-\alpha}U(s).$$

Выполним следующую замену зависимой переменной:

$$U - U(s) = V(x, t; s) \Rightarrow U = U(s) + V.$$

Так как U(s) не зависит от t, то справедливо

$$_{s}D_{t}^{\alpha}U(s) = U(s) \cdot _{s}D_{t}^{\alpha}(1) = U(s) \cdot \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)},$$

$$D_t^{\alpha}U(s) = I(t;s) + U(s) \cdot \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} + {}_sD_t^{\alpha}V.$$

После замены уравнение (1) примет вид

$${}_{s}D_{t}^{\alpha}V + I(t;s) + U(s)\frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} + (V+U(s)){}_{0}J_{t}^{1-\alpha}(U_{x}(s)+V_{x}) =$$

$$= a(U_{xxx}(s)+V_{xxx}).$$

Распишем подробнее выражение $J_t^{1-\alpha}U_x$:

$$J_{t}^{1-\alpha}U_{x} == \frac{1}{\Gamma(1-\alpha)} \int_{0}^{s} \frac{U_{x}(x,\tau)}{(t-\tau)^{\alpha}} d\tau + {}_{s}J_{t}^{1-\alpha}(U_{x}(s) + V_{x}) =$$

$$= \frac{1}{\Gamma(1-\alpha)} \frac{f'(x)}{\Gamma(\alpha)} \int_{0}^{s} \frac{\tau^{1-\alpha}}{(t-\tau)^{\alpha}} d\tau + U_{x}(s) {}_{s}J_{t}^{1-\alpha}(1) + {}_{s}J_{t}^{1-\alpha}V_{x} =$$

$$= \frac{\sin \pi \alpha}{\pi} f'(x) \frac{s^{\alpha}}{t^{\alpha}} \frac{1}{\alpha} {}_{2}F_{1} \left(\alpha, \alpha, \alpha + 1; \frac{s}{t}\right)$$

$$+ U_{x}(s) \frac{(t-s)^{1-\alpha}}{\Gamma(2-\alpha)} + {}_{s}J_{t}^{1-\alpha}V_{x},$$

гле

$$\Gamma(\alpha) \cdot \Gamma(1 - \alpha) = \frac{\pi}{\sin(\pi \alpha)}$$

и $_2F_1$ $\left(\alpha,\alpha,\alpha+1;\frac{s}{t}\right)$ - гипергеометрическая функция.

Перенесем дробную производную в левую часть, а остальные слагаемые – вправо:

$${}_{S}D_{t}^{\alpha}V - \alpha \frac{\sin \pi \alpha}{\pi} f(x) \frac{s^{\alpha}}{t^{1+\alpha}} \frac{1}{\alpha} \frac{t^{\alpha}}{(t-s)^{\alpha}} + U(x;s) \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)}$$

$$+ \left(V + U(x;s)\right) \left[\frac{\sin \pi \alpha}{\pi \alpha} f'(x) \frac{s^{\alpha}}{t^{\alpha}} {}_{2}F_{1} \left(\alpha, \alpha, \alpha + 1; \frac{s}{t}\right) \right.$$

$$+ \left. U_{x}(x;s) \frac{(t-s)^{1-\alpha}}{\Gamma(2-\alpha)} + {}_{s}J_{t}^{1-\alpha}V_{x} \right] - a(U_{xxx}(x;s) + V_{xxx}) = 0,$$

где

$$U(x;s) = \frac{f(x)s^{\alpha-1}}{\Gamma(\alpha)}.$$

В итоге, уравнение принимает вид:

$${}_{s}D_{t}^{\alpha}V - \frac{\sin \pi\alpha}{\pi} f(x) \frac{s^{\alpha}}{t} \frac{1}{(t-s)^{\alpha}} + \frac{s^{\alpha-1}}{(t-s)^{1-\alpha}} \frac{1}{\Gamma(1-\alpha)\Gamma(\alpha)} f(x)$$

$$+ \left(V + \frac{f(x)s^{\alpha-1}}{\Gamma(\alpha)}\right) \left[\frac{\sin \pi\alpha}{\pi\alpha} f'(x) \frac{s^{\alpha}}{t^{\alpha}} {}_{2}F_{1} \left(\alpha, \alpha, \alpha+1; \frac{s}{t}\right)\right]$$

$$+ \frac{f'(x)s^{\alpha-1}}{\Gamma(\alpha)} + {}_{s}J_{t}^{1-\alpha}V_{x} - a\left(\frac{f'''(x)s^{\alpha-1}}{\Gamma(\alpha)} + V_{xxx}\right) =$$

$$= 0. \qquad (*)$$

$$J_{t}^{1-\alpha}U|_{t=0} = f(x), U|_{x=0} = g(t)$$

2.2 Численная схема

Введем равномерную пространственно - временную сетку:

$$x_i=i\Delta x$$
 , $i=\overline{0,I}$, $t_n=s+(n-1)\Delta t$, $t_{n+1}=s+n\Delta t$.

Обозначим через искомую сеточную функцию

$$V(x,t) \rightarrow V(x_i,t_n) = V_i^n$$
.

Аппроксимируем дробную производную по формуле Грюнвальда-Летникова [3]:

$${}_{S}D_{t}^{\alpha}V = \frac{1}{(\Delta t)^{\alpha}} \sum_{j=0}^{\left[\frac{t-s}{\Delta t}\right]} (-1)^{j} {\alpha \choose j} V(x, t-j\Delta t).$$

Запишем для начально-краевой задачи (*), (**) явную конечно-разностную схему:

$$\left({}_{s}D_{t}^{\alpha}V \right) \Big|_{t=t_{n+1}} - \frac{\sin \pi \alpha}{\pi} f(x) \frac{s^{\alpha}}{t_{n+1}} \frac{1}{(t_{n+1} - s)^{\alpha}} + \frac{s^{\alpha-1}}{(t_{n+1} - s)^{\alpha}} \frac{\sin \pi \alpha}{\pi} f(x)$$

$$+ \frac{1}{2} \left\{ \left(V \big|_{t=t_{n+1}} + \frac{f(x)s^{\alpha-1}}{\Gamma(\alpha)} \right) \left[\frac{\sin \pi \alpha}{\pi \alpha} f'(x) \frac{s^{\alpha}}{t_{n}^{\alpha}} \, {}_{2}F_{1} \right. \left(\alpha, \alpha, \alpha + 1; \frac{s}{t_{n}} \right) \right.$$

$$+ \frac{f'(x)s^{\alpha-1}}{\Gamma(\alpha)} + \left. {}_{s}J_{t_{n}}^{1-\alpha}V_{x} \right] + \left(V \big|_{t=t_{n}} + \frac{f(x)s^{\alpha-1}}{\Gamma(\alpha)} \right)$$

$$\times \left[\frac{\sin \pi \alpha}{\pi \alpha} f'(x) \frac{s^{\alpha}}{t_{n+1}^{\alpha}} \, {}_{2}F_{1} \right. \left(\alpha, \alpha, \alpha + 1; \frac{s}{t_{n+1}} \right) + \frac{f'(x)s^{\alpha-1}}{\Gamma(\alpha)}$$

$$+ \left. {}_{s}J_{t_{n+1}}^{1-\alpha}V_{x} \right] \right\} - aV_{xxx} \big|_{t=t_{n+1}} - a \frac{f'''(x)s^{\alpha-1}}{\Gamma(\alpha)} = 0.$$

Для $t = t_{n+1}$, $_{s}D_{t}^{\alpha}V$ примет вид

$$\begin{aligned} (_sD_t^{\alpha}V)|_{t=t_{n+1}} &= \frac{1}{\Delta t^{\alpha}} \sum_{j=0}^{\left[\frac{s+n\cdot\Delta t-s}{\Delta t}\right]} (-1)^j \binom{\alpha}{j} V(x,s+n\Delta t-j\Delta t) = \\ &= \frac{1}{\Delta t^{\alpha}} V(x,s+n\Delta t) + \frac{1}{\Delta t^{\alpha}} \sum_{j=0}^n (-1)^j \binom{\alpha}{j} V(x,s+(n-j)\Delta t) \; . \end{aligned}$$

Расчетная формула примет вид

$$V_{i}^{n+1} + \sum_{j=0}^{n} (-1)^{j} {\alpha \choose j} V_{i}^{n-j+1} - \frac{\sin \pi \alpha}{\pi} \frac{s^{\alpha} f_{i}}{(s+n\Delta t)(n)^{\alpha}} + \frac{s^{\alpha-1}}{(n)^{\alpha}} \frac{\sin \pi \alpha}{\pi} f_{i}$$

$$+ \frac{\Delta t^{\alpha}}{2} \left(V_{i}^{n+1} + \frac{f_{i} s^{\alpha-1}}{\Gamma(\alpha)} \right)$$

$$\times \left[\frac{\sin \pi \alpha}{\pi \alpha} f_{i}' \frac{s^{\alpha}}{(s+(n-1)\Delta t)^{\alpha}} {}_{2}F_{1} \left(\alpha, \alpha, \alpha+1; \frac{s}{t_{n}} \right) + \frac{f_{i}' s^{\alpha-1}}{\Gamma(\alpha)} \right]$$

$$+ {}_{s}J_{t_{n}}^{1-\alpha} \left(\frac{V_{i+1}^{n} - V_{i}^{n}}{2\Delta x} \right) \right] + \frac{\Delta t^{\alpha}}{2} \left(V_{i}^{n} + \frac{f_{i} s^{\alpha-1}}{\Gamma(\alpha)} \right)$$

$$\times \left[\frac{\sin \pi \alpha}{\pi \alpha} f_{i}' \frac{s^{\alpha}}{(s+n\Delta t)^{\alpha}} {}_{2}F_{1} \left(\alpha, \alpha, \alpha+1; \frac{s}{t_{n+1}} \right) + \frac{f_{i}' s^{\alpha-1}}{\Gamma(\alpha)} \right]$$

$$+ {}_{s}J_{t_{n+1}}^{1-\alpha} \left(\frac{V_{i+1}^{n+1} - V_{i-1}^{n+1}}{2\Delta x} \right) \right] - a\Delta t^{\alpha} \frac{V_{i+2}^{n} - 3V_{i+1}^{n} + 3V_{i}^{n} - V_{i-1}^{n}}{(\Delta x)^{2}}$$

$$- a \frac{f_{i}''' s^{\alpha-1}}{\Gamma(\alpha)} = 0,$$

$$n = 1, 2, 3, ..., i = \overline{1, I-1}.$$

$$(4)$$

2.3 Аппроксимация на сетке

Начальные условия:

$$V_i^0 = 0, V_i^1 = 0, V_i^{n-2} = 0, V_i^{n-1} = 0, V_i^n = 0, i = \overline{0, I}.$$
 (5)

Граничное условие:

$$V_0^{n+1} = g(t_{n+1}) - \frac{f(0)s^{\alpha-1}}{\Gamma(\alpha)}, V_I^{n+1} = V_{I-1}^{n+1} = V_{I-2}^{n+1}, V_0^{n+1} = V_1^{n+1}, n = 1, 2, 3, \dots$$
 (6)

Функция f(x) в численной схеме будет иметь вид

$$f_{i} = f(x_{i}), f'_{i} = \frac{f_{i+1} - f_{i-1}}{2\Delta x}, f''_{i} = \frac{f_{i+1} - 2f_{i} + f_{i-1}}{\Delta x^{2}}, f'''_{i} = \frac{1}{2} \left(\frac{f_{i+2} - 3f_{i+1} + 3f_{i} - f_{i-1}}{\Delta x^{3}} + \frac{f_{i+1} - 3f_{i} + 3f_{i-1} - f_{i-2}}{\Delta x^{3}} \right).$$

Распишем дробный интеграл на слое t_n :

$$J_{t_n}^{1-\alpha}V = \frac{1}{\Gamma(1-\alpha)} \int_{s}^{t_n} \frac{V(x,\tau)}{(t_n-\tau)^{\alpha}} d\tau = \frac{1}{\Gamma(1-\alpha)} \sum_{i=1}^{n-1} \int_{t_i}^{t_{j+1}} \frac{V(x,\tau)}{(t_n-\tau)^{\alpha}} d\tau.$$

На интервале $[t_j, t_{j+1}]$ будем использовать линейную интерполяцию:

$$\frac{V(x,\tau)-V(x,t_j)}{V(x,t_{j+1})-V(x,t_j)}=\frac{\tau-t_j}{\Delta t},$$

Откуда:

$$V(x,\tau) = V(x,t_j) + \frac{\tau - t_j}{\Lambda t} \left[V(x,t_{j+1}) - V(x,t_j) \right].$$

Получаем:

$$sJ_{t_n}^{1-\alpha}(V_{i+1}) = \frac{1}{\Gamma(1-\alpha)} \sum_{j=1}^{n-1} \int_{t_j}^{t_{j+1}} \frac{V_{i+1}^j + \frac{\tau - t_j}{\Delta t} \left[V_{i+1}^{j+1} - V_{i+1}^j\right]}{(t_n - \tau)^{\alpha}} d\tau =$$

$$= \frac{1}{\Gamma(1-\alpha)} \sum_{j=1}^{n-1} \left(\int_{t_j}^{t_{j+1}} \frac{V_{i+1}^j - \frac{t_j}{\Delta t} \left[V_{i+1}^{j+1} - V_{i+1}^j\right]}{(t_n - \tau)^{\alpha}} d\tau +$$

$$+ \frac{1}{\Delta t} \int_{t_i}^{t_{j+1}} \frac{\tau \left[V_{i+1}^{j+1} - V_{i+1}^j\right]}{(t_n - \tau)^{\alpha}} d\tau \right).$$

Распишем дробный интеграл на слое t_{n+1} :

$$\begin{split} sJ_{t_{n+1}}^{1-\alpha}(V_{i+1}) &= \frac{1}{\Delta t \, \Gamma(1-\alpha)} \sum_{j=1}^{n} \int_{t_{j}}^{t_{j+1}} \frac{\Delta t V_{i+1}^{j} + \left(\tau - t_{j}\right) \left[V_{i+1}^{j+1} - V_{i+1}^{j}\right]}{(t_{n+1} - \tau)^{\alpha}} d\tau = \\ &= \frac{1}{\Delta t \, \Gamma(1-\alpha)} \sum_{j=1}^{n} \int_{t_{j}}^{t_{j+1}} \left(\frac{\left(\tau - t_{j}\right) V_{i+1}^{j+1}}{(t_{n+1} - \tau)^{\alpha}} + \frac{\left(\Delta t - \tau + t_{j}\right) V_{i+1}^{j}}{(t_{n+1} - \tau)^{\alpha}} \right) d\tau \\ &= \frac{1}{\Delta t \, \Gamma(1-\alpha)} \int_{t_{n}}^{t_{n+1}} \frac{\left(\tau - t_{n}\right) V_{i+1}^{n+1}}{(t_{n+1} - \tau)^{\alpha}} d\tau + \frac{1}{\Delta t \, \Gamma(1-\alpha)} \\ &\times \sum_{j=1}^{n-1} \int_{t_{j}}^{t_{j+1}} \frac{\left(\tau - t_{j}\right) V_{i+1}^{j+1}}{(t_{n+1} - \tau)^{\alpha}} d\tau \\ &+ \frac{1}{\Delta t \, \Gamma(1-\alpha)} \sum_{i=1}^{n} \int_{t_{j}}^{t_{j+1}} \frac{\left(\Delta t - \tau + t_{j}\right) V_{i+1}^{j}}{(t_{n+1} - \tau)^{\alpha}} d\tau. \end{split}$$

2.4Описание метода прогонки

Так как численная схема неявная и матрица системы является пятидиагональной, то для ее решения необходимо использовать метод прогонки.

Система уравнений Ax = F равносильна соотношению

$$c_0 y_0 - d_0 y_1 + e_0 y_2 = f_0, i = 0, (7)$$

$$-b_1y_0 + c_1y_1 - d_1y_2 + e_1y_3 = f_1, i = 1,$$
 (8)

$$a_i y_{i-2} - b_i y_{i-1} + c_i y_i - d_i y_{i+1} + e_i y_{i+2} = f_i, 2 \le i \le N - 2, \tag{9}$$

$$a_{N-1}y_{N-3} - b_{N-1}y_{N-2} + c_{N-1}y_{N-1} - d_{N-1}y_N = f_{N-1}, i = N-1,$$
 (10)

 $a_N y_{N-2} - b_N y_{N-1} + c_N y_N = f_N, i = N.$ (11)

Алгоритм состоит в следующем:

1) по формулам

$$\alpha_{i+1} = \frac{1}{\Delta_i} [d_i + \beta_i (a_i \alpha_{i-1} - b_i)], i = 2, 3, ..., N - 1,$$
 (12)

$$\alpha_1 = \frac{d_0}{c_0}, \alpha_2 = \frac{1}{\Delta_1}(d_1 - \beta_1 b_1),$$

$$\gamma_{i+1} = \frac{1}{\Delta_i} [f_i - a_i \gamma_{i-1} - \gamma_i (a_i \alpha_{i-1} - b_i)], i = 2, 3, ..., N,$$

$$\gamma_1 = \frac{f_0}{f_0}, \gamma_2 = \frac{1}{\Delta_i} (f_1 - b_1 \gamma_1),$$
(13)

$$\beta_{i+1} = \frac{e_i}{\Delta_i}, i = 1, 2, \dots, N - 2,$$

$$\beta_1 = \frac{e_0}{c_0},$$
(14)

где

$$\Delta_{i} = c_{i} - a_{i}\beta_{i-1} + \alpha_{i}(a_{i}\alpha_{i-1} - b_{i}), 2 \le i \le N,$$

$$\Delta_{1} = c_{1} - b_{1}\alpha_{1},$$
(15)

находятся прогоночные коэффициенты α_i , β_i и γ_i ;

2) неизвестные y_i находятся последовательно по формулам

$$y_{i} = \alpha_{i+1}y_{i+1} - \beta_{i+1}y_{i+2} + \gamma_{i+1}, i = N - 2, N - 3, \dots, 0$$

$$y_{N-1} = \alpha_{N}y_{N} + \gamma_{N}, y_{N} = \gamma_{N+1}$$
(16)

Это алгоритм монотонной прогонки.

2.5 Реализация метода прогонки

Положим что

$$a_i = V_{i-2}^{n+1}, b_i = V_{i-1}^{n+1}, c_i = V_{i}^{n+1}, d_i = V_{i+1}^{n+1}, e_i = V_{i+2}^{n+1} \ i = \overline{0, I}.$$

За f берутся слагаемые, не попавшие в a, b, c, d, е

Тогда в уравнении (4) приведем подобные при a, b, c, d, e ,f:

$$a: \frac{-a\Delta t^{\alpha}}{2(\Delta x)^3};$$

$$b: \frac{-a\Delta t^{\alpha}}{2(\Delta x)^{3}} + \frac{\Delta t^{\alpha}}{2} \left(V_{i}^{n} + \frac{f_{i} s^{\alpha - 1}}{\Gamma(\alpha)} \right) \frac{-1}{2\Delta x \Delta t} \frac{\left[(t - \tau)^{1 - \alpha} (\alpha \tau - t - \tau)^{(j+1)\Delta t}}{(\alpha - 2)(\alpha - 1)} \right]_{j\Delta t}$$
$$-t_{n} \frac{(t - \tau)^{1 - \alpha} (j+1)\Delta t}{\alpha - 1} \right];$$

$$c: 1 + \frac{2\alpha\Delta t^{\alpha}}{(\Delta x)^{2}} + \frac{\Delta t^{\alpha}}{2} \times \left[\frac{\sin \pi \alpha}{\pi \alpha} f'_{i} \frac{s^{\alpha}}{(s + (n-1)\Delta t)^{\alpha}} {}_{2}F_{1}^{n} \left(\alpha, \alpha, \alpha + 1; \frac{s}{t_{n}}\right) + \frac{f'_{i}s^{\alpha-1}}{\Gamma(\alpha)} + {}_{s}J_{t_{n}}^{1-\alpha} \left(\frac{V_{i+1}^{n} - V_{i}^{n}}{2\Delta x} \right) \right];$$

$$d: \frac{a\Delta t^{\alpha}}{2(\Delta x)^{3}} + \frac{\Delta t^{\alpha}}{2} \left(V_{i}^{n} + \frac{f_{i}s^{\alpha-1}}{\Gamma(\alpha)} \right) \frac{1}{2\Delta x \Delta t} \frac{1}{\Gamma(1-\alpha)} \left[\frac{(t-\tau)^{1-\alpha}(\alpha\tau - t - \tau)}{(\alpha-2)(\alpha-1)} \right]_{j\Delta t}^{(j+1)\Delta t} - t_{n} \frac{(t-\tau)^{1-\alpha}(j+1)\Delta t}{\alpha-1} \right];$$

$$e: \frac{a\Delta t^{\alpha}}{2(\Delta x)^3};$$

$$\begin{split} -F: \sum_{j=0}^{n} (-1)^{j} \binom{\alpha}{j} V_{i}^{n-j+1} - \frac{\sin \pi \alpha}{\pi} \frac{s^{\alpha} f_{i}}{(s+n\Delta t)(n)^{\alpha}} + \frac{s^{\alpha-1}}{(n)^{\alpha}} \frac{\sin \pi \alpha}{\pi} f_{i} \\ + \frac{\Delta t^{\alpha}}{2} \frac{f_{i} s^{\alpha-1}}{\Gamma(\alpha)} \\ \times \left[\frac{\sin \pi \alpha}{\pi \alpha} f_{i}' \frac{s^{\alpha}}{(s+(n-1)\Delta t)^{\alpha}} \right]_{2}^{2} F_{1}^{n} \left(\alpha, \alpha, \alpha+1; \frac{s}{t_{n}} \right) + \frac{f_{i}' s^{\alpha-1}}{\Gamma(\alpha)} \\ + \int_{t_{n}}^{1-\alpha} \left(\frac{V_{i+1}^{n} - V_{i}^{n}}{2\Delta x} \right) \right] + \frac{\Delta t^{\alpha}}{2} \left(V_{i}^{n} + \frac{f_{i} s^{\alpha-1}}{\Gamma(\alpha)} \right) \\ \times \left[\frac{\sin \pi \alpha}{\pi \alpha} f_{i}' \frac{s^{\alpha}}{(s+n\Delta t)^{\alpha}} \right]_{2}^{2} F_{1}^{n+1} \left(\alpha, \alpha, \alpha+1; \frac{s}{t_{n+1}} \right) + \frac{f_{i}' s^{\alpha-1}}{\Gamma(\alpha)} \\ - \frac{1}{2\Delta x \Delta t} \frac{1}{\Gamma(1-\alpha)} \left[\sum_{j=1}^{n-1} V_{i+1}^{j+1} \left(\frac{(t-\tau)^{1-\alpha} (\alpha \tau - t - \tau)^{(j+1)\Delta t}}{(\alpha-2)(\alpha-1)} \right) \right] \\ - t_{j} \frac{(t-\tau)^{1-\alpha} (i^{j+1})\Delta t}{\alpha-1} \\ - t_{j} \frac{(t-\tau)^{1-\alpha} (i^{j+1})\Delta t}{(\alpha-2)(\alpha-1)} \\ - \sum_{j=1}^{n-1} V_{i+1}^{j+1} \left(\frac{(t-\tau)^{1-\alpha} (\alpha \tau - t - \tau)^{(j+1)\Delta t}}{(\alpha-2)(\alpha-1)} \right) \\ - \sum_{j=1}^{n-1} V_{i-1}^{j} \left(\frac{(t-\tau)^{1-\alpha} (\alpha \tau - t - \tau)^{(j+1)\Delta t}}{(\alpha-2)(\alpha-1)} \right) \\ - \sum_{j=1}^{n} V_{i-1}^{j} \left(\frac{(t-\tau)^{1-\alpha} (\alpha \tau - t - \tau)^{(j+1)\Delta t}}{(\alpha-2)(\alpha-1)} \right) \\ - \left(1 + t_{j} \right) \frac{(t-\tau)^{1-\alpha} (\alpha \tau - t - \tau)^{(j+1)\Delta t}}{(\alpha-2)(\alpha-1)} \\ - \left(1 + t_{j} \right) \frac{(t-\tau)^{1-\alpha} (\alpha \tau - t - \tau)^{(j+1)\Delta t}}{(\alpha-2)(\alpha-1)} \right] \\ - \left(1 + t_{j} \right) \frac{(t-\tau)^{1-\alpha} (\alpha \tau - t - \tau)^{(j+1)\Delta t}}{(\alpha-2)(\alpha-1)} \\ - \left(1 + t_{j} \right) \frac{(t-\tau)^{1-\alpha} (\alpha \tau - t - \tau)^{(j+1)\Delta t}}{(\alpha-2)(\alpha-1)} \\ - \left(1 + t_{j} \right) \frac{(t-\tau)^{1-\alpha} (\alpha \tau - t - \tau)^{(j+1)\Delta t}}{(\alpha-2)(\alpha-1)} \\ - \left(1 + t_{j} \right) \frac{(t-\tau)^{1-\alpha} (\alpha \tau - t - \tau)^{(j+1)\Delta t}}{(\alpha-2)(\alpha-1)} \\ - \left(1 + t_{j} \right) \frac{(t-\tau)^{1-\alpha} (\alpha \tau - t - \tau)^{(j+1)\Delta t}}{(\alpha-2)(\alpha-1)} \\ - \left(1 + t_{j} \right) \frac{(t-\tau)^{1-\alpha} (\alpha \tau - t - \tau)^{(j+1)\Delta t}}{(\alpha-2)(\alpha-1)} \\ - \left(1 + t_{j} \right) \frac{(t-\tau)^{1-\alpha} (\alpha \tau - t - \tau)^{(j+1)\Delta t}}{(\alpha-2)(\alpha-1)} \\ - \left(1 + t_{j} \right) \frac{(t-\tau)^{1-\alpha} (\alpha \tau - t - \tau)^{(j+1)\Delta t}}{(\alpha-2)(\alpha-1)} \\ - \left(1 + t_{j} \right) \frac{(t-\tau)^{1-\alpha} (\alpha \tau - t - \tau)^{(j+1)\Delta t}}{(\alpha-2)(\alpha-1)} \\ - \left(1 + t_{j} \right) \frac{(t-\tau)^{1-\alpha} (\alpha \tau - t - \tau)^{(j+1)\Delta t}}{(\alpha-2)(\alpha-1)} \\ - \left(1 + t_{j} \right) \frac{(t-\tau)^{1-\alpha} (\alpha \tau - t - \tau)^{(j+1)\Delta t}}{(\alpha-2)(\alpha-1)} \\ - \left(1 + t_{j} \right) \frac{(t-\tau)^{1-\alpha} (\alpha \tau - t - \tau)^{(j+1)\Delta t}}{(\alpha-2)(\alpha$$

Далее для этих коэффициентов применяется метод прогонки, и получаем вектор решения для сеточной функции.

2.6 Алгоритм проведения вычислительных экспериментов

В задаче первый слой задан начальными условиями. Второй слой высчитывается по явной формуле:

$$\begin{split} V_{i}^{n+1} &= -\sum_{j=0}^{n} (-1)^{j} \binom{\alpha}{j} V_{i}^{n-j+1} + \\ &+ \Delta t^{\alpha} \left\{ \frac{\sin \pi \alpha}{\pi} \frac{s^{\alpha} f_{i}}{(s+n\Delta t)(n\Delta t)^{\alpha}} - \frac{s^{\alpha-1}}{(n\Delta t)^{\alpha}} \frac{\sin \pi \alpha}{\pi} f_{i} \right. \\ &- \left(V_{i}^{n} + \frac{f_{i} s^{\alpha-1}}{\Gamma(\alpha)} \right) \left[\frac{\sin \pi \alpha}{\pi \alpha} f_{i}' \frac{s^{\alpha}}{(s+(n-1)\Delta t)^{\alpha}} \,_{2}F_{1} \left(\alpha, \alpha, \alpha+1; \frac{s}{t_{n}} \right) \right. \\ &+ \frac{f_{i}' s^{\alpha-1}}{\Gamma(\alpha)} + \left. s J_{t_{n}}^{1-\alpha} \left(\frac{V_{i+1}^{n} - V_{i-1}^{n}}{2\Delta x} \right) \right] \\ &+ a\Delta t^{\alpha} \frac{V_{i+2}^{n} - 3V_{i+1}^{n} + 3V_{i}^{n} - V_{i-1}^{n}}{(\Delta x)^{3}} + a\Delta t^{\alpha} \frac{f_{i}''' s^{\alpha-1}}{\Gamma(\alpha)} \right\}, \\ &n = 1, 2, 3, \dots, i = \overline{1, I-1}. \end{split}$$

Далее, начиная с третьего слоя, используется метод прогонки.

На левой границе определено граничное условие, на правой границе положено условие нулевого градиента.

3. Описание параллельного алгоритма

Был реализован параллельный алгоритм с применением библиотеки OpenMP. Распараллелили подсчет коэффициентов в формуле дробной производной Грюнвальда-Летникова, подсчет начального условия на сетке, подсчет первой и второй производной функции начального условия.

Распараллелили явную схему, в которой подсчитывались начальные значения для старта неявной схемы.

Был распараллелен подсчет коэффициентов А,В,С,Г для заполнения трехдиагональной матрицы системы и вектора правой части.

Также была достигнута параллелизация нормировки конечного решения.

Параллельные регионы объявляются директивой #pragma omp parallel, в нужных местах проставлена директива reduction(+:список), где список – список общих переменных. Reduction гарантирует корректную работу с общей переменной.

4. Результаты вычислительных экспериментов

При расчете было положено $\alpha = 0.5$, $\Delta x \in \{0.001\}$,

При расчете облю положено
$$\alpha = 0.5$$
, $\Delta x \in \{0.001\}$, $\Delta t = \frac{0.1\Delta x^{\frac{3}{\alpha}}}{a}$, где $\alpha = 1$, $s = 0.1$, $f(x) = f(x) = x^2(1-x)$, $g(t) = 0$, $n = 2000$

0.3

0.25

0.15

0.10

0.05

На рис. 1 ось абсцисс обозначается за x, а ось ординат за значение на сетке. Так как Δx мало, то решения на разных временных слоях имеют малое отклонение.

Рис. 1

Также был построен объемный график по которому можно было судить о том, что волна начала подниматься. На рисунке 2 справа ось абцисс, на оси Оz находятся значения решения на сетке, а внизу ось по времени, имеет направление справа налево. Разбиение по времени очень мало.

Рис. 2

Теперь исследуем эффективность и ускорение параллельного алгоритма. Как говорилось выше, $\mathbf{n}=2000$. Обратимся к таблице 1, где Р-число ядер, Т время затраченное на расчет, S_p – ускорение, а E_p - эффективность.

Место для формулы.

P	Т, минут	S_p	E_p
1	29,035	1	1
2	15,695	1,85	0,92
4	8,681	3,34	0,83

На рисунке 3 внизу ось обозначает кол-во ядер, слева – значения ускорения и эффективности.

Заключение

Разработан численный алгоритм, позволяющий проводить компьютерное моделирование течения жидкости, описываемое начально-краевой задачей для уравнения Кортевега- де- Фриза дробного порядка. Написана программа на языке C++, реализующая разработанный алгоритм. Программа была оптимизирована средствами OpenMP. С использованием программы произведены серии вычислительных экспериментов на ЭВМ, в ходе которых было обнаружено, что численная схема устойчива при выбранных параметрах α , Δx , s.

Список литературы

- 1. Самко С. Г., Килбас А. А., Маричев О. И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987 688 с.
- 2. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations. North-Holland Mathematics Studies 204, 2006. 523 c.
 - 3. Podlubny I. Fractional differential equations. Academic press, 1999. 340 c.
- 4. Самарский А. А., Николаев Е. С., Методы решения сеточныхуравнений. Москва: Наука, 1978 -588c.

Приложение A. (справочное)

Листинг программы для вычисления сеточной функции:

```
#define USE MATH DEFINES
#define CRT SECURE NO WARNINGS
#include <math.h>
#include <time.h>
#include <iostream>
#include <fstream>
#include cess.h>
#include <conio.h>
#include "alglib\ap.h"
#include "alglib\specialfunctions.h"
using namespace std;
using namespace alglib;
int A=1,
                                  //коэффициент при правой части
      C=0,
                                  //левый край отрезка по х
                                  //правый край отрезка по х
      D=1.
                                  //начальное время t
      T1=0,
      T2=1,
                                  //конечное время t
                                  //номер слоя по времени
      n=0;
                           //задайте альфа на полуинтервале (0;1]
double alpha=0.5;
double dx=0.01;
                                  //шаг по х
double dt=0.1*(pow(dx,2/alpha))/(A);//dt вычисляется в зависимости от dx
double s=0.1;
                                  //самая первая ступенька
int stepAmountX=(D-C)/dx+1;
                                  //кол-во узлов сеточной функции
int stepAmountT=(T2-T1)/dt;
                                  //полные временные слои
int myStep=30;
                                  //число временных слоев необходимых для вычисления
int dodo=2;
                                  //заглушка для явной схемы
//массивы для прогонки
double* A1=(double*)calloc(stepAmountX,sizeof(double));//поддиагональ
double* B1=(double*)calloc(stepAmountX,sizeof(double));//диагональ
double* C1=(double*)calloc(stepAmountX,sizeof(double));//наддиагональ
double* D1=(double*)calloc(stepAmountX,sizeof(double));//здесь правая часть системы
double* X=(double*)calloc(stepAmountX,sizeof(double));//метод прогонки записывает решение
double* ksi=(double*)calloc((stepAmountX+1),sizeof(double));//прогоночные коэфициенты
double* eta=(double*)calloc((stepAmountX+1),sizeof(double));//прогоночные коэфициенты
double* func = (double*)calloc(stepAmountX, sizeof(double)); //массив значений косинуса
double* funcDer = (double*)calloc(stepAmountX, sizeof(double));//1 производная косинуса
double* funcDer2 = (double*)calloc(stepAmountX, sizeof(double));//2 производная косинуса
double** U=(double**)calloc(myStep, sizeof(double*)); //временный массив для значений V
double** Fin=(double**)calloc(myStep, sizeof(double*));//конечный массив результатов
double* Coeff = (double*)calloc(myStep, sizeof(double));
//метод прогонки
//sloy - номер временного слоя на котором выполняется прогонка
void Shuttle(int sloy){
       int N=stepAmountX;
       for(int j=0;j<N;j++)</pre>
             X[j]=0;
       }
      A1[0]=0;
      C1[N-1]=0;
      for(int i=0;i<N;i++)</pre>
       {
             B1[i]=-B1[i];
       }
       ksi[0]=eta[0]=0;
      for(int i=0;i<N;i++)</pre>
       {
             ksi[i+1]=C1[i]/(B1[i]-A1[i]*ksi[i]);
             eta[i+1]=(A1[i]*eta[i]-D1[i])/(B1[i]-A1[i]*ksi[i]);
      X[N-1]=-eta[N];
```

```
for(int i=N-2;i>-1;i--)
       {
              X[i]=ksi[i+1]*X[i+1]-eta[i+1];
       for(int i=0;i<N;i++)</pre>
       {
              X[i]=-X[i];
       for(int j=0;j<N+1;j++)</pre>
              ksi[j]=0;
              eta[j]=0;
       for(int j=0;j<N;j++)</pre>
       {
              A1[j]=B1[j]=C1[j]=D1[j]=0;
       for(int j=0;j<stepAmountX;j++)</pre>
       {
              U[sloy][j]=X[j];
       }
//гамма функция
//input - аргумент гамма функции
double gamma(double input)
{
       return alglib::gammafunction(input);
}
//записывает результаты в файл, с нормировкой или без неё
void toFile(int t,double d)
{
       double shag=0.;
       fstream str;
       str.open("out.txt", ios::out);
       for(int n=0;n<t;n++)</pre>
       {
              str<<"#"<<n<<endl; //для gnuplot
              shag=0;
              for(int i=0;i<stepAmountX;i++)</pre>
                      if(flag==true){
                             str<<shag<<"\t"<<Fin[n][i]/gamma(alpha)<<endl;</pre>
                             str<<shag<<"\t"<<Fin[n][i]<<endl;</pre>
                      shag=shag+d;
              str<<endl;
       str.close();
//гипергеометрическая функция
double hyperGeometric(double a, double b, double c, double z)
{
       if(z==0) return 1.;//подстановка 0
       double res=1., res2=1.;
       int hyperIter=20;
                                     //кол-во слагаемых для гипергеометрической функции
       for(int i=1;i<hyperIter;i++)</pre>
       {
              res2=1;
              for(int l=0;l<i-1;l++)</pre>
                      res2*=(a+1)*(b+1)/((1+1)*(c+1));
              res+=pow(z,i)*res2;
```

```
}
       return res;
//функция - начальное условие
double fCos(double x)
{
       if(flag==false)
       {
              if( abs(cos(M_PI*x/2)) > pow(10.,-15.)) return cos(M_PI*x/2);
              else return 0.;
       }
       else
       {
              double res=0;
              if ( x>=0 && x<0.5 ) res=1;</pre>
              if ( x==0.5 )
                                    res=0.5;
              if ( x>0.5 && x<=1 ) res=0;</pre>
              return res;
       }
//функция - граничное условие
double g(double t)
       return 1.;
//центральная производная
//sloy - временной слой на котором берется производная
//nextTochka - X(i+1)
//currTochka - X(i-1)
double centrDeriv(int sloy, int nextTochka, int currTochka)
{
       return (U[sloy][nextTochka]-U[sloy][currTochka])/(2*dx);
}
// dt/()
//вычисляет интеграл
//podstanovka - Tn
//up - T(j+1)
//down - Tj
double Integral1(double podstanovka,double up,double down)
{
       double v = (1/(alpha-1))*(pow(s+podstanovka*dt-up*dt,1-alpha)-
pow(s+podstanovka*dt-down*dt,1-alpha));
      cout.precision(15);
       return v;
//-
// t*dt/()
//podstanovka - Tn
//up - T(j+1)
//down - Tj
double Integral2(double podstanovka,double up,double down)
       double v=((1.)/((alpha-2)*(alpha-1)))*(pow(s+podstanovka*dt-up*dt,1-
alpha)*(alpha*up*dt-s-podstanovka*dt-up*dt)-pow(s+podstanovka*dt-down*dt,1-
alpha)*(alpha*down*dt-s-podstanovka*dt-down*dt));
      return v;
}
// dt/()
double newIntegral1(double podstanovka, int check)
{
       double ret=0;
       if (podstanovka>check)
       {
              ret=Integral1(podstanovka,check,check-1);
       return ret;
}
```

```
double newIntegral2(double podstanovka, int check)
       double ret=0:
       if (podstanovka>check)
       {
              ret=Integral2(podstanovka,check,check-1);
       }
       return ret;
//подсчет дробного интеграла на n слое
//down - номер временного слоя
//order - порядок дробного интеграла
//step - номер шага по Ох
double fracInt(double down, double order, int step)
       if(step>=stepAmountX) return 0.;
       double result=0;
       for (int j=1;j<down;j++)</pre>
              result+=newIntegral1(n-1,j+1)*(U[j][step]+((s+(j-1)*dt)/dt)*(-
U[j+1][step]+U[j][step])) + 1/(dt)*newIntegral2(n-1,j+1)*(U[j+1][step]-U[j][step]);
       return result/gamma(order);
int main()
       fstream temp,temp1;
       temp.open("temp.txt", ios::out);
       temp1.open("temp1.txt", ios::out);
       cout<<stepAmountT<<endl;</pre>
shag=0.,sum1=0.,sum2=0.,sum3=0.,sum4=0.,sum5=0.,sum6=0.,sum7=0.,sum8=0.,allSum=0.,sumGrou
p=0;
       clock t start,end,tp;
                                   //переменные для подсчета потраченного времени
       double time=0.;
                        ----проинициализируем начальные условия-----
       U=(double**)calloc(myStep, sizeof(double*));
       Fin=(double**)calloc(myStep, sizeof(double*));
       double* Us=(double*)calloc(stepAmountX, sizeof(double));//U(s)
       for(int i = 0; i < myStep; i++)</pre>
       {
              U[i] = (double*)calloc(stepAmountX, sizeof(double));
              Fin[i] = (double*)calloc(stepAmountX, sizeof(double));
       Coeff[0]=1;
       Coeff[1]=alpha;
       for(int i=2;i<myStep;i++)</pre>
       {
              Coeff[i]=Coeff[i-1]*(alpha-i+1)/(i);
       for (int i=0;i<myStep;i++)</pre>
       {
              Coeff[i]=pow(-1,i)*Coeff[i];
       for(int i=0;i<stepAmountX;i++)</pre>
       {
              func[i]=fCos(i*dx);
       for(int i=1;i<stepAmountX-1;i++)</pre>
       {
              funcDer[i]=(func[i+1]-func[i-1])/(2*dx);
              funcDer2[i]=(func[i+1]-2*func[i]+func[i-1])/(dx*dx);
       funcDer[0]=funcDer2[0]=func[0];
       funcDer[stepAmountX-1]=funcDer2[stepAmountX-1]=func[stepAmountX-1];
       for(int i=0;i<stepAmountX;i++)</pre>
```

```
{
                                                                             U[0][i]=0;
                                                                                                                                                            //начальные слои
                                                                            U[1][i]=0;
                                       for(int i=2;i<myStep;i++)</pre>
                                       {
                                                                             U[i][0]=g(s+n*dt)-fCos(0)*pow(s,alpha-1)/gamma(alpha);//левый край
                                       start=clock();
                                       for (int i=0;i<stepAmountX;i++)</pre>
                                       {
                                                                             Us[i]=func[i]*pow(s,alpha-1)/gamma(alpha);
                                       }
                                       //Явная схема
                                       for(n=1;n<dodo;n++)</pre>
                                       {
                                                                              for(int i=1;i<stepAmountX-1;i++)</pre>
                                                                              {
                                                                                                                    allSum=0.;
                                                                                                                     sum1=sum2=sum3=sum4=sum5=sum6=0.;
                                                                              sum2=sin(M_PI*alpha)*pow(s,alpha)*func[i]/(M_PI*(s+n*dt)*pow(n*dt,alpha))-
pow(s,alpha-1)*sin(M_PI*alpha)*func[i]/(pow(n*dt,alpha)*M_PI);
                                                                                                                      sum3=U[n][i]+func[i]*pow(s,alpha-1)/gamma(alpha);
                                       sum 4 = sin(M_PI*alpha)/(M_PI*alpha)*funcDer[i]*pow(s,alpha)*hyperGeometric(alpha,alpha)*funcDer[i]*pow(s,alpha)*hyperGeometric(alpha,alpha)*funcDer[i]*pow(s,alpha)*hyperGeometric(alpha,alpha)*funcDer[i]*pow(s,alpha)*hyperGeometric(alpha,alpha)*funcDer[i]*pow(s,alpha)*hyperGeometric(alpha,alpha)*funcDer[i]*pow(s,alpha)*hyperGeometric(alpha,alpha)*funcDer[i]*pow(s,alpha)*hyperGeometric(alpha,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*hyperGeometric(alpha,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer[i]*pow(s,alpha)*funcDer
ha, alpha+1, s/(s+(n-1)*dt))/pow(s+(n-1)*dt, alpha)+funcDer[i]*pow(s, alpha-1)/gamma(alpha);\\
                                                                                                                     sum5=1/(2*dx)*(fracInt(n,1-alpha,i+1)-fracInt(n,1-alpha,i-1));
                                                                                                                     sum6=A*(U[n][i+1]-2*U[n][i]+U[n][i-1])/(dx*dx) + A*pow(s,alpha-i)
1)*funcDer2[i]/gamma(alpha);
                                                                                                                     allSum+=-sum1+pow(dt,alpha)*(sum2-sum3*(sum4+sum5)+sum6);
                                                                                                                    U[n+1][i]=allSum;
                                                                             \label{lem:under} U[n+1][stepAmountX-1] = U[n+1][stepAmountX-2] + Us[stepAmountX-2] - U[n+1][stepAmountX-2] + Us[stepAmountX-2] - U[n+1][stepAmountX-2] + Us[stepAmountX-2] - U[n+1][stepAmountX-2] + Us[stepAmountX-2] - U[n+1][stepAmountX-2] + Us[stepAmountX-2] + Us
Us[stepAmountX-1];
                                       //Неявная схема
                                       for(n=dodo+1;n<myStep;n++)</pre>
                                                                              for(int i=1;i<stepAmountX-1;i++)</pre>
                                                                                                                     sum1=0;
                                                                                                                     for(int j=1;j<=n;j++)</pre>
                                                                                                                                                                                                                                                                                {sum1+=Coeff[j]*U[n-j][i];}
                                                                                                                    A1[i]=(-A*pow(dt,alpha))/pow(dx,2.) +
pow(dt,alpha)/2.*(U[n][i]+func[i]*pow(s,alpha-1)/gamma(alpha))*(1./(2.*dx*dt*gamma(1-
alpha)))*(newIntegral2(n+1,n)-(s+(n-1)*dt)*newIntegral1(n+1,n));
                                                                                                                     //i+1
                                                                                                                     C1[i-1]=(-A*pow(dt,alpha))/(pow(dx,2)) +
(pow(dt,alpha))/2.*(U[n][i]+func[i]*pow(s,alpha-1)/gamma(alpha))*((-1)/(2.*dx*dt*gamma(1-
alpha)))*(newIntegral2(n+1,n)-(s+(n-1)*dt)*newIntegral1(n+1,n));
                                                                                                                     //i
                                                                                                                    B1[i-1]=1 +
((pow(dt,alpha))/2.)*((sin(M_PI*alpha)*pow(s,alpha)*funcDer[i]*hyperGeometric(alpha,alpha
, alpha+1, s/(s+(n-1)*dt)))/(M_{PI}*alpha*pow(s+(n-1)*dt, alpha))+(funcDer[i]*pow(s, alpha-like))+(funcDer[i]*pow(s, alpha-l
1)/(gamma(alpha))) + (1./(2*dx))*(fracInt(n,1-alpha,i+1)-fracInt(n,1-alpha,i-1))) +
((2*A*pow(dt,alpha))/pow(dx,2.));
                                                                                                                     sumGroup=0;
                                                                                                                      //слагаемые - остатки от n+1 fracInt'a
                                                                                                                     for (int j=1;j<=n-1;j++)</pre>
                                                                                                                                                            sumGroup+=(U[j+1][i+1]-U[j+1][i-1])*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,j+1)-i)*(newIntegral2(n,
(s+(j-1)*dt)*newIntegral1(n,j+1));
                                                                                                                     for (int j=1;j<=n;j++)</pre>
                                                                                                                                                            sumGroup+=(U[j][i+1]-U[j][i-1])*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1)))*(newIntegral2(n,j+1)-(s+(j-1
1)*dt)*newIntegral1(n,j+1));
```

```
D1[i-1]=-(sum1 - i)
((\sin(M_PI*alpha)*pow(s,alpha)*func[i])/(M_PI*pow(n,alpha)*(s+n*dt))) + ((pow(s,alpha-indicated)))
1)*func[i]*sin(M_PI*alpha))/(M_PI*pow(n,alpha))) + ((pow(dt,alpha)*func[i]*pow(s,alpha-
1))/gamma(alpha))*((sin(M_PI*alpha)*pow(s,alpha)*funcDer[i]*hyperGeometric(alpha,alpha,al
pha+1,s/(s+(n-1)*dt)))/(M_PI*alpha*pow(s+(n-1)*dt,alpha))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(funcDer[i]*pow(s,alpha-index))+(f
((pow(dt,alpha))/2.)*(U[n][i]+func[i]*pow(s,alpha-
1)/\mathsf{gamma}(\mathsf{alpha})) * (\mathsf{sin}(\mathsf{M}_\mathsf{PI}^*\mathsf{alpha}) * \mathsf{pow}(\mathsf{s},\mathsf{alpha}) * \mathsf{funcDer}[i] * \mathsf{hyperGeometric}(\mathsf{alpha},\mathsf{alpha},\mathsf{alpha}) 
a+1,s/(s+n*dt))/(M_PI*alpha*pow(s+n*dt,alpha))+(funcDer[i]*pow(s,alpha-1)/gamma(alpha))-
(1./(2*dx*dt*gamma(1-alpha)))*sumGroup) - ((A*pow(s,alpha-
1)*funcDer2[i]*pow(dt,alpha))/(gamma(alpha))));
                                                       //(ищем A10, C9, B9, B10, D9, D10, при 11 узлах) формула универсальна для
всех не найденных А В С D
                                                       for(int i=stepAmountX-1;i<stepAmountX;i++)</pre>
                                                                                   for(int j=1;j<=n;j++)</pre>
                                                                                                                                                                                                 {sum1+=Coeff[j]*U[n-j][i];}
                                                                                   //i-1
                                                                                  A1[i]=(-A*pow(dt,alpha))/pow(dx,2.) +
pow(dt,alpha)/2.*(U[n][i]+func[i]*pow(s,alpha-1)/gamma(alpha))*(1./(2.*dx*dt*gamma(1-
alpha)))*(newIntegral2(n+1,n)-(s+(n-1)*dt)*newIntegral1(n+1,n));
                                                                                   //i+1
                                                                                   C1[i-1]=(-A*pow(dt,alpha))/(pow(dx,2)) +
(pow(dt,alpha))/2.*(U[n][i]+func[i]*pow(s,alpha-1)/gamma(alpha))*((-1)/(2.*dx*dt*gamma(1-1)/gamma(alpha)))*((-1)/(2.*dx*dt*gamma(1-1)/gamma(alpha)))*((-1)/(2.*dx*dt*gamma(1-1)/gamma(alpha)))*((-1)/(2.*dx*dt*gamma(1-1)/gamma(alpha)))*((-1)/(2.*dx*dt*gamma(1-1)/gamma(alpha)))*((-1)/(2.*dx*dt*gamma(1-1)/gamma(alpha)))*((-1)/(2.*dx*dt*gamma(1-1)/gamma(alpha)))*((-1)/(2.*dx*dt*gamma(1-1)/gamma(alpha)))*((-1)/(2.*dx*dt*gamma(1-1)/gamma(alpha)))*((-1)/(2.*dx*dt*gamma(1-1)/gamma(alpha)))*((-1)/(2.*dx*dt*gamma(1-1)/gamma(alpha)))*((-1)/(2.*dx*dt*gamma(1-1)/gamma(alpha)))*((-1)/(2.*dx*dt*gamma(1-1)/gamma(alpha)))*((-1)/(2.*dx*dt*gamma(1-1)/gamma(alpha)))*((-1)/(2.*dx*dt*gamma(1-1)/gamma(alpha)))*((-1)/(2.*dx*dt*gamma(1-1)/gamma(alpha)))*((-1)/(2.*dx*dt*gamma(1-1)/gamma(alpha)))*((-1)/(2.*dx*dt*gamma(1-1)/gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*dt*gamma(alpha)))*((-1)/(2.*dx*d
alpha)))*(newIntegral2(n+1,n)-(s+(n-1)*dt)*newIntegral1(n+1,n));
B1[i-1]=1 +
((pow(dt,alpha))/2.)*((sin(M_PI*alpha)*pow(s,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha,alpha)*funcDer[i]*hyperGeometric(alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alpha,alph
, alpha+1, s/(s+(n-1)*dt)))/(M_PI*alpha*pow(s+(n-1)*dt, alpha))+(funcDer[i]*pow(s, alpha-like))+(funcDer[i]*pow(s, alpha-lik
1)/(gamma(alpha))) + (1./(2*dx))*(fracInt(n,1-alpha,i+1)-fracInt(n,1-alpha,i-1))) +
((2*A*pow(dt,alpha))/pow(dx,2.));
                                                                                   //последняя В (В10)
                                                                                   B1[stepAmountX-1]=1 +
((pow(dt,alpha))/2.)*((sin(M_PI*alpha)*pow(s,alpha)*0*hyperGeometric(alpha,alpha,alpha+1,alpha)*0*hyperGeometric(alpha,alpha,alpha+1,alpha)*0*hyperGeometric(alpha,alpha,alpha+1,alpha)*0*hyperGeometric(alpha,alpha,alpha+1,alpha)*0*hyperGeometric(alpha,alpha,alpha+1,alpha)*0*hyperGeometric(alpha,alpha,alpha+1,alpha)*0*hyperGeometric(alpha,alpha,alpha+1,alpha)*0*hyperGeometric(alpha,alpha,alpha+1,alpha)*0*hyperGeometric(alpha,alpha,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alpha+1,alp
s/(s+(n-1)*dt)))/(M_PI*alpha*pow(s+(n-1)*dt,alpha))+(funcDer[i]*pow(s,alpha-
1)/(gamma(alpha))) + (1./(2*dx))*(fracInt(n,1-alpha,stepAmountX+1)-fracInt(n,1-
alpha,stepAmountX-1))) + ((2*A*pow(dt,alpha))/pow(dx,2.));
                                                                                  sumGroup=0;
                                                                                   //слагаемые - остатки от n+1 fracInt'a
                                                                                   for (int j=1;j<=n-1;j++)</pre>
                                                                                                               sumGroup+=(0-U[j+1][i-1])*(newIntegral2(n,j+1)-(s+(j-1))*(newIntegral2(n,j+1))
1)*dt)*newIntegral1(n,j+1));
                                                                                   for (int j=1;j<=n;j++)</pre>
                                                                                                               sumGroup+=(0-U[j][i-1])*(newIntegral2(n,j+1)-(s+(j-1))*(newIntegral2(n,j+1))
1)*dt)*newIntegral1(n,j+1));
                                                                                  D1[i-1]=-(sum1)
((\sin(M_PI*alpha)*pow(s,alpha)*func[i])/(M_PI*pow(n,alpha)*(s+n*dt))) + ((pow(s,alpha-indicated)))
1)*func[i]*sin(M_PI*alpha))/(M_PI*pow(n,alpha))) + ((pow(dt,alpha)*func[i]*pow(s,alpha-
1))/gamma(alpha))*((sin(M_PI*alpha)*pow(s,alpha)*funcDer[i]*hyperGeometric(alpha,alpha,al
pha+1,s/(s+(n-1)*dt)))/(M_PI*alpha*pow(s+(n-1)*dt,alpha))+(funcDer[i]*pow(s,alpha-index))
((pow(dt,alpha))/2.)*(U[n][i]+func[i]*pow(s,alpha-
1)/gamma(alpha))*(sin(M_PI*alpha)*pow(s,alpha)*funcDer[i]*hyperGeometric(alpha,alpha,alph
a+1,s/(s+n*dt))/(M_PI*alpha*pow(s+n*dt,alpha))+(funcDer[i]*pow(s,alpha-1)/gamma(alpha))-
(1./(2*dx*dt*gamma(1-alpha)))*sumGroup) - ((A*pow(s,alpha-
1)*funcDer2[i]*pow(dt,alpha))/(gamma(alpha))));
                                                                                   //последняя D (D10)
                                                                                   sumGroup=0;
                                                                                   for (int j=1;j<=n-1;j++)</pre>
                                                                                                               sumGroup+=(0-U[j+1][stepAmountX-1])*(newIntegral2(n,j+1)-integral2(n,j+1))
(s+(j-1)*dt)*newIntegral1(n,j+1));
                                                                                   for (int j=1;j<=n;j++)</pre>
```

```
{
                                                                                                                             sumGroup+=(0-U[j][stepAmountX-1])*(newIntegral2(n,j+1)-(s+(j-
1)*dt)*newIntegral1(n,j+1));
                                                                                             D1[stepAmountX-1]=-(sum1 -
((\sin(M_PI*alpha)*pow(s,alpha)*func[i])/(M_PI*pow(n,alpha)*(s+n*dt))) \ + \ ((pow(s,alpha-int)) \ + \ ((pow(s,alpha-int))) \ + \ 
1)*0*sin(M_PI*alpha))/(M_PI*pow(n,alpha))) + ((pow(dt,alpha)*0*pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-pow(s,alpha-p
1))/gamma(alpha))*((sin(M_PI*alpha)*pow(s,alpha)*0*hyperGeometric(alpha,alpha,alpha+1,s/(
s+(n-1)*dt))/(M PI*alpha*pow(s+(n-1)*dt,alpha))+(0*pow(s,alpha-
1)/gamma(alpha))+((1.)/(2*dx))*(fracInt(n,1-alpha,stepAmountX+1)-fracInt(n,1-
alpha, stepAmountX-1))) + ((pow(dt,alpha))/2.)*(0+0*pow(s,alpha-
1)/gamma(alpha))*(sin(M PI*alpha)*pow(s,alpha)*0*hyperGeometric(alpha,alpha,alpha+1,s/(s+
n*dt))/(M PI*alpha*pow(s+n*dt,alpha))+(0*pow(s,alpha-1)/gamma(alpha))-
(1./(2*dx*dt*gamma(1-alpha)))*sumGroup) - ((A*pow(s,alpha-
1)*0*pow(dt,alpha))/(gamma(alpha))));
                                                              Shuttle(n);
                               for(int l=0;1<myStep;1++)</pre>
                                                              for(int p=0;p<stepAmountX;p++)</pre>
                                                               {
                                                                                             Fin[1][p]=U[1][p]+Us[p];
                               }
                              end=clock();
                              time=(double)(end-start)/CLOCKS_PER_SEC;
                               cout<<"time="<<time<<" second\n";</pre>
                               toFile(myStep,dx);
                               system("plot.plt");
                               temp1.close();
                               //_getch();
                               return 0;
}
```