Digital Image Processing

Dr. Ajay Kumar Mahato
Assistant Professor
ECE Department
Gla University Mathura

DIGITAL IMAGE PROCESSING

LECTURE -5

Image Segmentation-2

Edge Detection

Gray Image A

Gradient Operator Output out

Sobel Operator Output out

Laplacian Operator L8 Output Image Out8

Edge Linking

Edge Linking

- ☐ Ideally discontinuity detection technique should identify pixels lying on the boundary between regions.
- ☐ In practice, there may be breaks in boundary and spurious intensity discontinuities
 - Due to non-uniform illumination
 - Presence of noise
- ☐ Edge linking procedure assemble edge points into meaningful boundaries. There are two approaches for Edge linking
 - Local Processing
 - Global Processing

Local Processing

□ Procedure for Local Processing:

- Take an edge detected image
- Analyse each pixel in a small neighbourhood of every points (x, y)
 - All points that are similar in nature are linked.
 - This forms a boundary of pixels that are similar in nature.
- Similarity decision based on
 - Strength of the response of gradient operator.
 - Direction of the gradient
- * Edge pixels (x', y') and (x, y) are similar if
 - $|\nabla f(x,y) \nabla f(x',y')| \le T$
 - $|\alpha(x,y) \alpha(x',y')| \le A$

Where T is a non-negative threshold

A is angle threshold

Local Processing

- If both condition are satisfied then these two points (x,y) and (x',y') can be linked together i.e. $(x',y') \in N_{xy}$
- Since edge discontinuity are present in digital image and the neighbourhood, we considered in local processing is small Neighbourhood.
- So, if (x', y') does not belong to the small neighbourhood of (x, y) in that case (x', y') cannot link with (x,y).
- So, in such cases local processing technique does not help to link edge points.

Global Processing

- ☐ The method discussed in the previous section is applicable in situation in which knowledge about pixels belonging to individual objects is available.
- □Often, we have to work in unstructured environment in which all we have is an edge map and no knowledge about where objects of interest might be.
- □In such situations, all pixels are candidates for linking, and thus have to be accepted or eliminated based on pre-defined global properties.

□Example: HOUGH Transform

Spatial Domain and Parameter Domain

Spatial Domain and Parameter Domain

- Line in spatial domain is equivalent to point in parameter domain
- Point in spatial domain is equivalent to line in parameter domain

Spatial Domain

Parameter Domain

Example 1

Step 1:

- Known
 - -1.2<=m<=-0.8
 - $step_m = 0.1$
 - m = -0.8, -0.9, -1.0, -1.1, -1.2
 - c = -mx+y

Image $\{(4,1),(3,2),(2,3),(1,4)\}$

$$c = -mx1 + y1$$

- Step 2:
 - Compute c

4.2

4.6

5.0

5.4

5.8

$$(x,y) = (4,1)$$
 $(x,y) = (3,2)$
 $c = -4m+1$ $c = -3m+$

m

-0.8

-0.9

-1.0

-1.1

-1.2

$$(x,y) = (3,2)$$

 $c = -3m+2$

$$(x,y) = (2,3)$$

 $c = -2m+3$

$$(x,y) = (1,4)$$

 $c = -m+4$

m	c
-0.8	4.4
-0.9	4.7
-1.0	5.0
-1.1	5.3
-1.2	5.6

m	c
-0.8	4.6
-0.9	4.8
-1.0	5.0
-1.1	5.2
-1.2	5.4

m	c
-0.8	4.8
-0.9	4.9
-1.0	5.0
-1.1	5.1
-1.2	5.2

	0	1	2	3	4
0					
1					
2					
2 3 4					
4					

Image $\{(4,1),(3,2),(2,3),(1,4)\}$

Step 3:

Find min and max of c

Range: 4.2 to 5.8

Interval: 0.1

$$(x,y) = (4,1)$$

 $c = -4m+1$

$$(x,y) = (3,2)$$
 (x,
c = -3m+2

$$(x,y) = (2,3)$$

 $c = -2m+3$

$$(x,y) = (2,3)$$
 $(x,y) = (1,4)$
 $c = -2m+3$ $c = -m+4$

m	c	
-0.8	4.6	
-0.9	4.8	
-1.0	5.0	
-1.1	5.2	
-1.2	5.4	

m	c
-0.8	4.8
-0.9	4.9
-1.0	5.0
-1.1	5.1
-1.2	5.2
	-0.8 -0.9 -1.0 -1.1

C _{MIN}	4.2	4.4	4.6	4.8
C _{MAX}	5.8	5.6	5.4	5.2

- Step 4:
 - Voting

$$(x,y) = (4,1)$$

 $c = -4m+1$

$$(x,y) = (3,2)$$

 $c = -3m+2$

$$(x,y) = (2,3)$$

 $c = -2m+3$

$$(x,y) = (1,4)$$

 $c = -m+4$

m	c
-0.8	4.2
-0.9	4.6
-1.0	5.0
-1.1	5.4
-1.2	5.8

	m	c
	-0.8	4.4
	-0.9	4.7
	-1.0	5.0
	-1.1	5.3
J	-1.2	5.6

m	c
-0.8	4.6
-0.9	4.8
-1.0	5.0
-1.1	5.2
-1.2	5.4
	511

m	c
-0.8	4.8
-0.9	4.9
-1.0	5.0
-1.1	5.1
-1.2	5.2

- Step 5:
 - Find equation

	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8
-0.8	1		1		1		1										
-0.9				-	1	1	1	1	7								
-1.0			1		U	7	Z		4								
-1.1		-		K	Derivation of the last of the		Contractor of the Contractor o	-		1	1	1	1				
-1.2			L	1				7	of the second		1		1		1		1

- m =-1.0
- c = 5.0
- y = -x+5

Problems in Hough Transform

- □This particular form of Hough Transform i.e. mapping from XY plane (spatial domain) to the parameter domain has a serious problem
 - The problem is in mc-plane, we are trying to find out the slope and intercept value of the straight line
 - The problem comes when this lines are vertical. In this case, the slope (m) is very large and in this method, we can't handle this much large value.
 - So, to overcome this problem; instead of using slope-intercept form of straight line, we will use the normal representation of the straight line.

$$\rho = x \cos \theta + y \sin \theta$$

Example 2

$$p = x \cos \theta + y \sin \theta$$

Edgels: (0,5), (1,4), (3,2), (3,3), (5,0)

Step 1

$$p = x \cos \theta + y \sin \theta$$

$$p = 0 \cos \theta + 5 \sin \theta$$
 (0,5)
 $p = 1 \cos \theta + 4 \sin \theta$ (1,4)
 $p = 3 \cos \theta + 2 \sin \theta$ (3,2)
 $p = 3 \cos \theta + 3 \sin \theta$ (3,3)
 $p = 5 \cos \theta + 0 \sin \theta$ (5,0)

Step 2

	1.2				
	$0\cos\theta + 5\sin\theta$	$1\cos\theta + 4\sin\theta$	$3\cos\theta + 2\sin\theta$	$3\cos\theta + 3\sin\theta$	$5\cos\theta + 0\sin\theta$
0	0	1	3	3	5
30	2.5	2.9	3.9	4	4.3
45	3.5	3.5	3.5	4.2	3.5
60	4.3	3.9	3.2	4	2.5
90	5	4	2	3	0

Step 3

• The equation for the edge will be:

$$3.5 = x \cos 45 + y \sin 45$$

Thank You