2.9 Polymères

Les polymères

Les polymères font partie d'un nombre important d'objets, dans lesquels ils ont souvent remplacé les substances naturelles;

- Les polymères désignent des matières abondantes et variées;
- La découverte des polymères était bien avant 1919 (Staudinger), mais l'essor des polymères commence essentiellement entre les deux guerres mondiales

Qu'est ce qu'un polymère?

- Polymère = Poly (nombreux) + meros (parts)
- Un polymère est une macro-molécule, organique ou non, constituée de l'enchaînement répété d'un même motif ou monomère, tous reliés entre eux par des liaisons « covalentes »
- De très haute masse molaire (jusqu'à 1.000.000g/mol);

Origine des polymères

Polymères naturels

Extraction du milieu naturel et purification

- Latex Hévéa (caoutchouc naturel)
- polysaccharides :

 La cellulose (D-glucose entre 15 à 15000),
 Les amidons, alginates,
- Polypeptides (collagène, gélatine...)

Polymères artificiels

Modification chimique des polymères naturels; **Exemple:** Les matières plastiques, le nylon, polystyrène

Exemple:

macromolécule de la cellulose

cellulose d'un mouchoir en papier grossie 200 fois en lumière polarisée.

Exemples de polymères

$$+(CH_2-CH_2)_{\overline{n}}$$
PolyéthylènePE $+(CH_2-CH)_{\overline{n}}$ PolypropylènePP $-(CH_3)$ Polychlorure de vinylePVC $+(CH_2-CH)_{\overline{n}}$ PolytétrafluoroéthylènePTFE $+(CF_2-CF_2)_{\overline{n}}$ PolystyrènePS $+(CH_2-CH)_{\overline{n}}$ PolystyrènePS $+(CH_2-CH)_{\overline{n}}$ Polymétacrylate de méthylePMMA $+(CH_2-CH)_{\overline{n}}$ Polymétacrylate de méthylePMMA

Degré de polymérisation

Le nombre de répétitions du monomère (nombre d'unités de base dans la chaine) s'appelle *degré de polymérisation* (**dp**) Le degré de polymérisation moyen est relié à la masse molaire du polymère :

$$M_{polym\`{e}re} = n \times M_{monom\`{e}re}$$

n : est le degré de polymérisation

Exemple d'application

En utilisant le tableau 2.4, calculez la masse molaire moyenne d'un polypropylène de degré de polymérisation égal à 8000.

Données:
$$M_{monomère} = 42.072 \text{ g/mol};$$

$$\boldsymbol{M}_{polym\`ere} = \boldsymbol{n} \times \boldsymbol{M}_{monom\`ere}$$

$$M_{polypropylne} = 33657 g.mol^{-1}$$

$$M_{polypropylne} = 8000 \times 42.072 \, g.mol^{-1}$$

$$M_{polypropylene} = 33657g$$

Polymérisation

La synthèse des polymères met en jeux des réactions de qui consiste donc à associer ces monomères par des liaisons carbone-carbone

Synthèse des polymères

Selon la méthode de synthèse on trouve :

Polymérisation par addition

- Réaction en chaine, le polymère s'additionne de l'extrémité de la chaine;
- Tous les atomes des molécules de base se retrouvent dans la molécule géante finale (PP, PE, PS, ...)

Polymérisation par condensation

- Réaction de la chimie organique entre les groupements fonctionnels de chaque molécule de départ;
- Il y a élimination de certains atomes des molécules de base ce qui forme de sous produits : H₂O , HCl: ou NH₃.

1. Polymérisation par addition : amorçage

- Le mode de polymérisation (synthétique) le plus courant
- La technique la plus fréquemment employée est la polymérisation par radicaux libres (molécule possédant un électron non-pairé) à partir de monomères contenant une liaison double C=C; ce procédé nécessite le recours à un catalyseur qui réalise « l'amorçage ».

2. Polymérisation par addition : Propagation

Les radicaux libres sont très instables et leur électron solitaire a alors tendance à briser la liaison double du monomère, ce qui crée un autre radical libre pour que le processus se répète...en chaîne.

3. Polymérisation par addition : Terminaison

- Comment cela se termine-t-il? Par épuisement, par couplage de chaînes ou par dismutation
 - Couplage:

Exemples de polymères obtenus par addition

Nom (sigle)	monomère	exemples d'usage	Tg1 (°C)	T _f ¹ (°C)	A% ²
polyéthylène (PE)	H C=C H	sacs de plastique, contenants alimentaires	-130 à -80	137	20 à 600
polypropylène (PP)	H CH3	contenants divers, pièces d'automobiles, fibres pour les tapis	-17	174 isotactique	250 à 600
chlorure de polyvinyle (PVC)	H C=C CI	tuyaux de plomberie, stores	80 (rigide) ³	na	5 à 80
chlorure de polyvinylidène (PVdC)	H CI	« Saran »	-18	200	160 à 250 ³
polytétrafluoroéthylène (PTFE) -teflon	F F F	Prothèses, contenants résistants aux attaques chimiques, revêtement antiadhésif	-73	335	250 à 500
polystyrène (PS)	H C=C	gobelets et contenants isolants, ustensiles jetables	903	na atactique	1 à 4 ³
polyméthacrylate de méthyle (PMMA) - plexiglas	H CH ₃	objets décoratifs, fibres optiques, lentilles, lunettes de sécurité	120	na	44

Configuration possibles des polymères: Tacticité

Disposition des substituants par rapport à la chaine de carbone

Polymérisation par condensation

- Certains atomes du monomère ne se retrouvent pas dans la chaîne finale et forment le condensat
- L'amorçage n'est pas nécessaire, car la réaction se fait à partir de fonctions déjà présentes sur les molécules du monomère
- On retrouve ce processus dans la formation des polymères naturels (comme l'amidon ou la cellulose) et dans la fabrication de certains polymères synthétiques: nylon, polyester, polyamide, polyuréthane, etc.

Polymérisation par condensation

Exemple : synthèse du Nylon 6,6

Principe de synthèse du Nylon 6,6 : à partir du : Chlorure Sébaçoyle et hexaméthylène diamine

http://www.youtube.com/watch?v=xZU3ujzluV8

Nylon 6.10 http://www.ping.be/at_home/nylon.htm

Polymérisation par condensation

Exemple: synthèse du Nylon 6,6

Polymérisation par condensation: Croissance

 La croissance du polymère se fait par combinaison de fragments plus ou moins longs; ce processus est assez lent et, en général, forme des chaînes relativement courtes

Structure des polymères

• Polymère Linéaire

Polymère réticulé

La morphologie des polymères : état amorphe

 Les chaînes se replient sur elles-même grâce aux possibilités de conformations

La morphologie des polymères : état cristallin

- Dans les zones cristallines, les longues chaînes sont empilées de manière ordonnée
- La distance moyenne entre les molécules est plus faible que dans les zones amorphes, ce qui rend les interactions (forces intermoléculaires) plus grandes
- Il faut une température plus élevée pour désorganiser une zone cristalline qu'une zone amorphe

... et juxtaposées

Exemple:

Polymère semi-cristallin

polyéthylène: taux de cristallinité jusqu'à 80%

Températures caractéristiques

- Température de transition vitreuse (T_g): température à laquelle les propriétés (par exemple la chaleur spécifique) du matériau changent; les molécules acquièrent une certaine mobilité
- Température de fusion (T_m): température à laquelle les cristaux se désorganisent; le polymère est fondu et peut être moulé

$$T_g < T_f$$

Températures caractéristiques: Remarques

- Les polymères complètement amorphes ne possèdent pas de température de cristallisation ou de fusion
- La température d'utilisation du polymère en regard de ces températures caractéristiques influence fortement les propriétés mécaniques et optiques du matériau.

Propriétés mécaniques :

polymère amorphe

- Un polymère amorphe a une seule température
- caractéristique: T_g

 Si la température d'utilisation est < T_g, le polymère a un comportement *vitreux*: *rigide* et *cassant* (semblable à celui du verre)

Propriétés mécaniques :

polymère amorphe

Exemples:

- 1. Le polystyrène atactique (Tg = 90 °c) a un allongement à la rupture de 3 %.
- Si la température est > Tg, alors le polymère est mou est caoutchouteux.

Propriétés mécaniques

Polymère semi-cristallin

- Les polymères semi-cristallins possèdent une température de transition vitreuse (T_g) et une température de fusion (T_m), avec T_q < T_m
- Si la température d'utilisation est < T_g, le polymère a un comportement vitreux, donc rigide et cassant
 - polystyrène syndiotactique (T_g = 100°C) à température ambiante;
 - polypropylène isotactique (T_q = -17°C) par grand froid d'hiver

Propriétés mécaniques

Polymère semi-cristallin

- Si la température d'utilisation est > T_{m,} le polymère a un comportement mou et caoutchouteux
- Pour une température d'utilisation entre T_g et T_m, on obtient le comportement particulier aux plastiques: visco-élastique, tenace
 - Polyéthylène linéaire (T_g = -80°C et T_m = 137°C) à température ambiante
 - polypropylène isotactique (T_g = -17°C et T_m = 174°C) à température ambiante

Propriétés mécaniques

Polymère semi-cristallin

Propriétés Optiques

- Un polymère à l'état amorphe est translucide ou transparent
- Un polymère semi-cristallin est opaque
- Des adjuvants (additifs) permettent de colorer (colorants solubles) ou opacifier (pigments dispersés) un polymère
 - Pigments: noir de carbone, oxydes métalliques

Types des polymères

Thermoplastiques

- Polymères possédant une température de fusion et qu'il est possible de faire fondre pour fabriquer des produits finis par moulage, injection...
- Thermodurcissables
 - Polymères dont la polymérisation est réticulée, formant un réseau tridimensionnel de liaisons covalentes; ils ne peuvent être fondus: en chauffant ces polymères, on augmente le degré de réticulation jusqu'à ce que la température soit suffisamment élevée pour qu'il y ait combustion (destruction des molécules)

Élastomères

 Polymères dont la structure est amorphe et dont la température d'utilisation est supérieure à la température de transition vitreuse

Thermodurcissables

- Polymères réticulés généralement par un procédé à haute température
- on obtient une molécule super-géante
- Une fois polymérisés, ils ne peuvent être fondus: leur forme est définitive, et peut se comparer à un solide covalent
- Exemples: bakélite, époxy, polycarbonate

Élastomères

- Tel quel, mou et collant à haute température, et fragile et cassant à basse température
- vulcanisation: (Ch. Goodyear, 1839): réticulation avec du soufre, pour former une super-molécule tridimensionnelle qui ne fond pas et est très résistante mécaniquement
- Élastomères synthétiques: polybutadiène, polyisobutylène, polyuréthane

Exemple d'application

- Le polyacétate de vinyle est un polymère amorphe utilisé dans la composition des adhésifs, des colles et des peintures. Sa température de transition vitreuse est 30°C.
- Il est obtenu par addition. La formule de ce polymère est :

- a) Quel est le **degré de polymérisation** de ce polymère si sa masse molaire moyenne est **688,7 kg/mol** ?
- b) Quelle masse d'oxygène est contenue dans 0,500 mol de ce polymère ?
- c) Ce polymère est-il transparent à 20°C?
- d) Ce polymère est-il ductile et tenace à 20°C?