

Wissenschafliches Rechnen mit Hilfe der Programmiersprache Julia

Damian Belz (DB) Albert Piwonski (AP) Rodrigo Rezende (RR) Stephanie Tchoumi (ST)

Wissenschaftliche Betreuer: Mirsad Hadžiefendić Marcus Christian Lehmann TU Berlin

13. Februar 2019

Stand Zwischenvortrag

LAPLACE-Gleichung mit DIRICHLET-& NEUMANN-Bedingungen

$$\text{(RWP)} \begin{cases} \Delta \, \phi = 0 & \text{in} \, \Omega \\ \partial \phi / \partial n = 0 & \text{auf} \, \Gamma_{N1} \cup \Gamma_{N2} \\ \phi = \phi_{-} & \text{auf} \, \Gamma_{D1} \\ \phi = \phi_{+} & \text{auf} \, \Gamma_{D2} \end{cases}$$

DB, RR, ST, AP

Stand Zwischenvortrag

FEM-Programmaufbau

- händisches Erstellen der Geometrie-Datei
- händisches Einlesen in Gmsh
- händisches Erstellen des Rechengitters
- händischer Export des Rechengitters
- $h\ddot{a}ndische$ $Identifikation von <math>\partial\Omega$

- Stand Zwischenvortrag
- Modifiziertes Problem & Programmaufbau Problemstellung

Programmaufbau

Rechengitter Randbedingungen Netzstruktur Systemerzeugung Lösung und Konvergenzstudie

- 3 Besonderheiten der Implementierung
 - Typisierung
 Paralleles Rechnen
- ♠ Fazit & Ausblick

- Stand Zwischenvortrag
- Modifiziertes Problem & Programmaufbau Problemstellung

Programmaufbau

Rechengitter
Randbedingungen
Netzstruktur
Systemerzeugung

3 Besonderheiten der Implementierung

Typisierung
Paralleles Rechnen

Fazit & Ausblick

Problemstellung

LAPLACE-Gleichung mit DIRICHLET-Bedingungen

$$\text{(RWP)} \begin{cases} \Delta \, \phi = 0 & \text{in} \, \Omega \\ \phi = \phi_{-} & \text{auf} \, \Gamma_{D1} \\ \phi = \phi_{+} & \text{auf} \, \Gamma_{D2} \end{cases}$$

- well-posed (Hadamard) [6]:
 - Existenz
 - Eindeutigkeit
 - Stabilität
- modelliert idealen Zylinderkondensator

- Stand Zwischenvortrag
- Modifiziertes Problem & Programmaufbau

Programmaufbau

Rechengitter

Besonderheiten der Implementierung

Typisierung

Fazit & Ausblick

Programmaufbau

FEM-Programmaufbau: Erstellung des Rechengitters

- Erstellen des Rechengitters durch .jl-Datei → Gmsh API [2]
- Definition von physical groups
- automatisierte Identifikation von $\partial\Omega = \Gamma_{D1} \cup \Gamma_{D2}$

Erstellung des Rechengitters: Eigene Implementierung

- e calcPosition(posX, posY)
 - berechnet
 Stützpunkt-Koordinaten
- o createGeometry(posX, posY)
 - erstellt Konstruktionspunkte, Kreisbögen, Kurven, Flächen, physical groups
 → ∂Ω = Γ_{D1} ∪ Γ_{D2}
- Erzeugung eines Rechengitters für Ansatzfunktionen 1. Ordnung

- Stand Zwischenvortrag
- Modifiziertes Problem & Programmaufbau

Problemstellung

Programmaufbau

Rechengitter

Randbedingungen

Systemerzeugung

- 3 Besonderheiten der Implementierung
 - Typisierung
 Paralleles Rechnen
- ♠ Fazit & Ausblick

Randbedingungen

Aufstellen der Randbedingungen

- diskrete Lösung : $A \setminus b = \phi_d$
- für DIRICHLET RB wird ϕ_d an den Randknoten definiert:
 - ϕ_d [inner_B]= u_{d1} [inner_B]
 - ϕ_d [outer_B]= u_{d2} [outer_B]

- o inner_B=.getNodesForPhysicalGroup(1,2)
- outer_B=.getNodesForPhysicalGroup(1,3)

Flächenelemente

INT	INT	
INT	INT	

.getElements(2,1)

Randelemente

INT	INT
INT	INT

.getElements(1,1)

Funktionsargumente

DB, RR, ST, AP

Über dim und tag kann die Rückgabe der Funktionen spezifiziert werden.

Lokale Steifigkeitsmatrix

elements[1]::element = (I_1, I_4, I_{12})

 $M::Array{Float} = stima((I_1, I_4, I_{12}))$

Funktion: stima(element)

- gibt M::Array{Float} für ein Element zurück
- abhängig von Ansatzfunktion und Knotenanzahl
- für jede Elementart muss eine Methode der stima() Funktion implementiert werden

Systemerzeugung

Assambly-Schleife

- Initialisieren von A. n:= Knotenanzahl
- Lokale Steifigkeitsmatrix für jedes Flächenelement.
 - Methodenauswahl durch Typ des Elements := Elementart
- Übertragen von M in A[elements[i], elements[i]]

Lösen des Systems

Beobachtung

- DIRICHLET RB: $b = b A \cdot \phi_d$
- $A \backslash b = \phi_d \rightarrow {\bf SingularExeption}: \\ det(A) = 0 \ {\bf bei} \ 0 {\bf Eintrag} \ {\bf in} \ {\bf der} \\ {\bf Hauptdiagonalen}$
- Nicht alle Knoten sind Teil des Netzes:

A[FreeNodes ∩ Ele Indicies]

10 /27

FEM-Lösung des RWP's

Konvergenzstudie

• Global Nodal Error: $\delta \coloneqq \sqrt{\sum_{i=1}^{N} (\phi_{FEM}(x_i, y_i) - \phi(x_i, y_i))^2)}$

Konvergenzstudie: Kommentare

- Global Nodal Error: $\delta = \sqrt{\sum_{i=1}^{N} (\phi_{FEM}(x_i, y_i) \phi(x_i, y_i))^2)}$
- ullet darin entspricht N der Anzahl der Elemente in dem jeweiligen Mesh
- ebenfalls möglich wäre die Betrachtung eines effektiven Fehlers pro Element: $\delta_{eff} \coloneqq \frac{1}{N} \sqrt{\sum_{i=1}^{N} (\phi_{FEM}(x_i, y_i) \phi(x_i, y_i))^2)}$

- Stand Zwischenvortrag
- 2 Modifiziertes Problem & Programmaufbau

- Besonderheiten der Implementierung Typisierung Paralleles Rechnen
- Fazit & Ausblick

- Stand Zwischenvortrag
- Modifiziertes Problem & Programmaufbau

Programmaufbau

Rechengitter
Randbedingungen
Netzstruktur
Systemerzeugung
Lösung und Konvergenzstudi

- Sesonderheiten der Implementierung Typisierung
 Paralleles Rechnen
- Fazit & Ausblick

Dynamische Typisierung

- Variablen sind nicht an Objekte eines bestimmten Typs gebunden
- die selbe Variable kann zu verschieden Zeitpunkten unterschiedliche, zueinander inkompatible Objekte referenzieren
- Typprüfungen während Laufzeit eines Programms
- Performance-Verlust durch Typprüfungen während Laufzeit
- Beispiel: a = 4

DB, RR, ST, AP

Statische Typisierung

- Typen werden während der Kompilierung geprüft
- Variablen werden zusammen mit ihrem Datentyp im Quellcode deklariiert
- Typen der Variablen sind zur Übersetzungszeit bekannt und sind nicht veränderbar
- höhere Performance, da Typen schon zur Laufzeit bekannt sind
- Beispiel: a = 4::Int64

Typisierung in Julia

- Vorteile von dynamisch und statisch getypten Sprachen
- parametrische Typdefinitionen möglich
- struct Definition möglich
- bekannte konkrete Typen, z.B.: Int64, Float64
- Methoden-Dispatch für abstrakte und konkrete Typen Methoden werden über den Argumenttyp ausgewählt


```
#point2d = Array{Float64}
    element = Tuple{Vararg{Int}} #Defined for various size of elements
    # problem input mesh type
47 v struct mesh
        coordinates::Array{Float64} # coordinates of domainpoints {Float64}
        elements::Array{element} # elements: indices point to coordinates {Int64}
        boundaries::Array{element} #boundary: indices point to coordinates {Int64}
    # creating mesh from gmsh data
54 v msh = mesh( coordinates[:,1:2],
                [tuple(elements[i,:]...) for i in 1:size(elements,1)],
                [tuple(boundary[k,:]...) for k in 1:size(boundary,1) ] )
```


- Stand Zwischenvortrag
- Modifiziertes Problem & Programmaufbau

Programmaufbau

Rechengitter
Randbedingungen
Netzstruktur
Systemerzeugung
Lösung und Konvergenzstudi

Sesonderheiten der Implementierung Typisierung

Paralleles Rechnen

♠ Fazit & Ausblick

- Wichtige Überlegungen für die Leistung:
 - Ist das Problem parallelisierbar?
 - Amdahlsches Gesetz
 - Datenbewegung:
 - Die genutzte Zeit um die Daten zu einem Core zu bringen
 - Die Größe des Problems
 - Bei größeren Probleme kann man größeren Zeitgewinn mit der Parallelisierung erreichen
- Um unseren Code parallelisieren zu können, haben wir die Zeit von verschiedenen Teilen des Programms gemessen (für Gitter mit 1365 Knotenpunkten): 1 2
 - Aufstellung der Steifigkeitsmatrix: 3.59 s
 - Lösung des Gleichungssystems: 1.95 s
 - 9 Ploten des Ergebnisses: 4.99 s

Gesamte Simulationszeit: 25.92 s

²unter Verwendung des @time Makro's nach zweitem Funktionsaufruf

¹Hardware: Intel Core i7-4702MQ CPU @ 2.2 GHz,16 GB RAM

- Es sind in Julia 3 verschiedene Niveaus von Parallelismus vorhanden
 [5]:
 - Julia Coroutines (Green Threading)
 - Multi-Threading (Testphase)
 - Multi-Core oder Distributed Processing
 - Konkurrenz*

Julia Coroutines

- Erlaubt die Abwechselung von Rechnungen
- Koordinierung von der Reihefolge von Befehlen (Tasks)

Multi-Cores

- Standard Bibliothek von Julia
- Multi processing Umgebung

- Wichtiger Befehl: @distributed
- Dieses Makro enthält Eigenschaften der Coroutines, der Multi-Core und Konkurrenz

```
1  a = zeros(1000000000);
2  @distributed for i = 1:1000000000
3     a[i] = i;
4     end
5     a
```

- Befehl um parallele for Schleifen zu programieren
- Iteration werden nicht in einer bestimten Reihefolge durchgeführt
- Umschreibung von Variablen werden lokal im Core gesehen

- Anwendung in dem Code:
 - Parallele Eigenschaft
 - Großes Problem
 - Möglichst einfache Berechnung

Originaler Code

Paralleler Code

```
47 #A Assambly alternative
48 #@parallel
49 @time @distributed for i in 1:size(msh.elements,1) # @distributed macro to parallelise
50 A[collect(msh.elements[i]),collect(msh.elements[i])]+=stima(msh,msh.elements[i])
51 end
```


• Vergleich von der Zeit:

Vergleich von der Zeit:

Seriel

Mesh Size	Zeit - A (s)	Gesamte Zeit (s)
32097	118,938688	150,315614
35221	128,04001	161,83766
39229	182,043374	213,222984
41217	209,478964	240,516532
43789	302,002495	378,614366
49637	481,744498	569,334007

Parallel

Mesh Size	Zeit - A (s)	Gesamte Zeit (s)
32097	119,396473	151,773994
35221	121,806232	155,603882
39229	184,730799	215,910409
41217	251,858964	282,9
43789	311,288495	387,902476
49637	422,394498	509,980535

- Out of Memory ab 50.000 Gitterpunkten
- · Andere Vorgehensweise wäre hier mit Parallelismus möglich

 Vergleich von der Zeit (unterschiedliche Simulationszeit bei Wiederholung):

```
Tnfo
       : 5201 vertices 10409 elements
Info
        : Writing 'nice mesh v3.msh'...
Info
        : Done writing 'nice mesh v3.msh'
  6.039364 seconds (7.60 M allocations: 4.507 GiB, 12.44% gc time)
 1.927692 seconds (4.60 M allocations: 226.599 MiB, 6.54% gc time)
  4.972373 seconds (5.15 M allocations: 256.448 MiB, 2.61% gc time)
28.767019 seconds (62.22 M allocations: 7.366 GiB, 8.85% gc time)
        : 5201 vertices 10409 elements
Tnfo
Info
        : Writing 'nice mesh v3.msh'...
Info
        : Done writing 'nice mesh v3.msh'
  5.403396 seconds (7.36 M allocations: 4.494 GiB, 11.95% gc time)
 1.761284 seconds (4.38 M allocations: 214.800 MiB, 5.56% gc time)
  2.280496 seconds (4.32 M allocations: 215.104 MiB, 4.62% gc time)
12.022765 seconds (20.15 M allocations: 5.317 GiB, 7.99% gc time)
```


- Stand Zwischenvortrag
- Modifiziertes Problem & Programmaufbau Problemstellung Programmaufbau

Rechengitter
Randbedingungen
Netzstruktur
Systemerzeugung
Lösung und Konvergenzstudie

- 8 Besonderheiten der Implementierung Typisierung Paralleles Rechnen
- Fazit & Ausblick

Zusammenfassung & Ausblick

Zusammenfassung

- komplizierteres RWP √
- Kopplung von Julia und Gmsh über Gmsh API √
- Definition eines Element- & Mesh-Typs in Julia √
- paralleles Berechnen der Steifigkeitsmatrix √
- Versionierungssystem Git: √
 - → Git Repository

Ausblick

- Grad der Parallelisierung erhöhen
- Ansatzfunktionen als Polynome höherer Ordnung (> 1)
- 3D-Problemstellungen

Vielen Dank für Ihre Aufmerksamkeit!

- [1] BEZANSON, J.; EDELMAN, A.; KARPINSKI, S.; SHAH, V.: Julia: A Fresh Approach to Numerical Computing. In: <u>SIAM Review</u> 59 (2017), Nr. 1, 65-98. http://dx.doi.org/10.1137/141000671. — DOI 10.1137/141000671
- [2] CHRISTOPHE GEUZAINE, Jean-François R.: Gmsh. http://gmsh.info/
- [3] Daniele Boffi, Michel F. Franco Brezzi B. Franco Brezzi: Mixed Finite Element Methods and Applications. Springer, 2013
- [4] GEUZAINE, Christophe; REMACLE, Jean-François: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. In: International Journal for Numerical Methods in Engineering 79 (2009), Nr. 11, S. 1309–1331. http://dx.doi.org/10.1002/nme.2579. — DOI 10.1002/nme.2579
- [5] LANGUAGE, The J.: Parallel Computing. https://docs.julialang.org/en/v1/manual/parallel-computing/#Parallel-Computing-1
- [6] SCHMIDT, Kersten: Numerics of Partial Differential Equations. TU Berlin, 2015
- [7] Sebastian Schöps, Herbert De G.: PASIROM Summer School. TU Darmstadt, 2018

E-Statik: Differentialgleichung

• FARADAY'sches Induktionsgesetz im statischen Limit:

$$rot \mathbf{E} \equiv \mathbf{0}$$

• elektrisches Feld ${\bf E}$ als Grandientenfeld vom Skalarpotential ϕ :

$$\mathbf{E} = -\mathbf{grad}\,\phi$$

lin., homog., isot., ladungsf. Material ⇒ LAPLACE-Gleichung:

$$\operatorname{div}\operatorname{\mathbf{grad}}\phi=\Delta\,\phi=0$$

Finite Elemente Methode

Finite Elemente Methode (FEM): Hauptideen [3]

- Diskretisierung von Ω in einfache Sub-Domänen (Dreiecke)
- Approximation des Funktionenraums der Lösung ϕ [7]:

$$\phi \in H^1(\Omega) : \text{(SOBOLEV-Raum 2-fach integrierbarer Funktionen)},$$

$$H^1(\Omega) \coloneqq \left\{ u \in L_2(\Omega) \middle| \operatorname{\mathbf{grad}} \ (u) \in L_2(\Omega)^3 \right\}$$

- (Knoten)-Ansatzfunktionen mit **finiter** Basis & Support: oft Polynome niedriger Ordnung, müssen Differentiationsklasse von ϕ genügen

$$LGS \Leftarrow \left\{ \begin{array}{l} \text{variationelle Formulierung des RWP} \\ \text{RITZ-GALERKIN-Methode} \\ \dots \end{array} \right.$$

Analytische Lösung ϕ

Abbildung: Analytische Lösung ϕ