Day 2: Tower Breakers, Revisited!

Two players (numbered 1 and 2) are playing a game of Tower Breakers! The rules of the game are as follows:

- Player 1 always moves first, and both players always move optimally.
- ullet Initially there are N towers of of various heights.
- The players move in alternating turns. In each turn, a player can choose a tower of height X and reduce its height to Y, where $1 \le Y < X$ and Y evenly divides X.
- If the current player is unable to make any move, they lose the game.

Given the value of N and the respective height values for all towers, can you determine who will win? If the first player wins, print 1; otherwise, print 2.

Input Format

The first line contains an integer, T, denoting the number of test cases.

Each of the 2T subsequent lines defines a test case. Each test case is described over the following two lines:

- 1. An integer, N, denoting the number of towers.
- 2. N space-separated integers, $h_0, h_1, \ldots, h_{N-1}$, where each h_i describes the height of tower i.

Constraints

- 1 < T < 100
- $1 \le N \le 100$
- $1 \le h_i \le 10^6$

Output Format

For each test case, print a single integer denoting the winner (i.e., either 1 or 2) on a new line.

Sample Input

2 2 1 2 3 1 2 3

Sample Output

1 2

Explanation

Test Case 0:

Player 1 reduces the second tower to height 1 and subsequently wins.

Test Case 1:

There are two possible moves:

- 1. Reduce the second tower to ${f 1}$
- 2. Reduce the third tower to 1.

Whichever move player ${\bf 1}$ makes, player ${\bf 2}$ will make the other move. Thus, player ${\bf 2}$ wins.