

Gerenciamento de Dados e Informação

Recuperação de Informação

Fernando Fonseca Ana Carolina Robson Fidalgo

Recuperação de Dado X Informação

	Recuperação de Dados	Recuperação de Informação	
Comparação (<i>matching</i>)	Exata	Aproximada	
Dados	Estruturados	Não estruturados	
Inferência	Dedução	Indução	
Modelo	Determinístico	Probabilístico	
Ling Consulta	Artificial	Natural	
Esp da Consulta	Completa	Incompleta	

Cln.ufpe.br

Recuperação de Informação

- Área de pesquisa e desenvolvimento que investiga métodos e técnicas para a representação, a organização, o armazenamento, a busca e a recuperação de itens de informação
- Objetivo principal
 - Facilitar o acesso a documentos (itens de informação) relevantes à necessidade de informação do usuário

Cln.ufpe.br

Histórico

- 1ª Fase: computadores cartão perfurado
 - ●Década de 1950
 - Aplicações: sistemas de recuperação de referências bibliográficas e outros serviços para bibliotecas
 - Técnicas: indexação manual
 - ◆Documentos indexados por termos de um vocabulário restrito montado manualmente (thesaurus = dicionário de sinônimos)

Cln.ufpe.

Histórico

- 1ª Fase: computadores cartão perfurado (Cont.)
 - Década de 1960
 - Aplicações: sistemas de recuperação de documentos off-line
 - Sistemas DIALOG e MEDLARS
 - Técnicas: início da indexação automática
 - ●Título e abstract
 - Algoritmos de busca

Cln.ufpe.br

Histórico

- 2ª Fase: Décadas de 1970 e 1980
 - Aumento do poder computacional
 - Aplicações
 - Sistemas de Pergunta-Resposta
 - ●Técnicas: RI + Processamento de Linguagem Natural
 - Evoluíram para interfaces em Linguagem Natural para BD

Cln.ufpe.br

Histórico

- 2ª Fase: Décadas de 1970 e 1980 (Cont.)
 - Aplicações
 - Sistemas de RI on-line
 - ●Técnicas: Estatística e Probabilidade, Modelo de Espaço Vetorial (Salton 71)
 - •SMART: 1º sistema de RI automático para o conteúdo usando Espaço Vetorial
 - Avaliação do desempenho do sistema pelo usuário

Cln.ufpe.

Histórico

- 3ª Fase: Web Década de 1990 em diante
 - Técnicas tradicionais de RI foram adaptadas ao caso da Web
 - Web: terabytes de dados não estruturados
 - Alguns problemas
 - Escalabilidade das soluções
 - Velocidade de atualização da Web
 - Velocidade de acesso aos documentos armazenados
 - ◆Explosão de serviços + agentes autônomos

Cln.ufpe.br

Engenhos de Busca

- A primeira ferramenta usada para consultar a Web
 - ◆Baseados na busca de índices de **palavras** e **frases** que aparecem em documentos
 - Posteriormente foi incluída a exploração da estrutura de *links* para aumentar a qualidade das respostas

Cln.ufpe.br

Engenhos de Busca

- Web & engenhos de busca
 - Facilidade de criação de novos documentos
 - Documentos heterogêneos, semiestruturados
 - Grande número de informações disponíveis
 - ◆Informação dinâmica
 - Maior número de pessoas interagindo com o sistema
 - Necessidade definida por meio de consulta

Cln.ufpe.br

Engenhos de Busca

- Interação usuário-engenho de busca
 - Consultas por palavra-chave, linguagem natural
 - •Dificuldade em formular consultas adequadas
 - Consultas mal formuladas, resultados de baixa precisão

Cln.ufpe.l

Etapa 2: Pré-Processamento dos Documentos

- Objetivo
 - Criar uma representação computacional do documento seguindo algum modelo
- Fases
 - Operações sobre o texto
 - Criação da representação

Cln.ufpe.l

Pré-Processamento: Operações sobre o texto

- Análise léxica
 - ◆Converte uma cadeia de caracteres em uma cadeia de palavras/termos
- Eliminação de stopwords
 - Palavras consideradas irrelevantes
 - Ex.: artigos, pronomes, alguns verbos, "WWW"...

Cln.ufpe.b

Pré-Processamento: Operações sobre o texto

- Stemming
 - ◆Redução de uma palavra ao seu radical
 - Geralmente, apenas eliminação de sufixos
 - Possibilita casamento entre variações de uma mesma palavra

Cln.ufpe.br

Pré-Processamento: Operações sobre o texto

Stemming

Termo		Stem	
	•	engineer	
		engineer	
	engineer	engineer	

Regras de redução:

ing -> 0 ed -> 0

Pré-Processamento: Representação do Documento

- Texto Completo
 - ◆Difícil (caro) de manipular computacionalmente
- Dado um documento, identificar os conceitos que melhor descrevem o seu conteúdo
- Representar o documento como um Centróide
 - Lista de termos com pesos associados ou não
 - Problema: perda da semântica

Cln.ufpe.

Modelo Booleano

- Baseado na Teoria dos Conjuntos
- Documentos e consultas são representados como conjuntos de termos de índices
- Centróide sem pesos associados
- A representação indica apenas se o termo está ou não presente no documento

Cln.ufpe.b

Modelo Espaço Vetorial: com pesos associados

- Consultas (q) e Documentos (d) representados como vetores em um espaço ndimensional
 - ●Onde *n* é o número total de termos usados indexar os documentos considerados
- Relevância: cosseno do ângulo entre q e d
 - •Quanto maior o cosseno, maior é a relevância de d para q

Representação do Documento com Pesos

- Centróide
 - Pesos associados aos termos como indicação de relevância
 - Frequência de ocorrência do termo no documento
 - **TF-IDF** = Term Frequency x Inverse **Document Frequency**

Cln.ufpe.l 33

Representação do Documento com Pesos

TF-IDF também considera palavras com baixa ocorrência na base de documentos como melhores discriminantes

TF(w): frequência da palavra w no doc

Representação do Documento com Pesos

- Centróide
 - Limitar tamanho do centróide em 50 mantendo apenas termos com maior peso
 - Aumenta a eficiência do sistema
 - Estudos mostram que isso não altera muito o poder de representação do centróide

- Enriquecendo a representação
 - ◆Considerar formatação do texto como indicação da importância dos termos
 - Título, início, negrito,...
 - Adicionar informação sobre a localização do termo no documento

hit: 1bit capitalization; 3bit font size; 12 bit position

Etapa 3: Indexação dos Documentos

- Objetivo
 - Facilitar busca dos documentos no repositório digital
- Opção imediata: varrer o texto completo
 - •Busca sequencial on-line
 - Textos pequenos ou muito voláteis

Etapa 3: Indexação dos Documentos

- Para bases maiores: indexar os documentos
 - Índices invertidos
 - Vetores e árvores de sufixos
 - Arquivos de assinatura

Índices Invertidos: Estrutura

- Composição: vocabulário (em ordem alfabética) e posição de ocorrência no texto
- Possibilita consulta/busca por proximidade e por termo composto
- Espaço requerido: pequeno para vocabulário, porém grande parte para ocorrências

Índices Invertidos: Estrutura

Exemplo

6 9 11 17 19 24 28 33 40 46 50 55 60 This is a text. A text has many words. Words are made from letters.

Vocabulário	Ocorrências	
letters	→ 60	
made	→ 50	
many	→ 28	
text	11, 19	
words	33, 40	

Índices Invertidos: Técnicas para redução de espaço

- Stemming (reduz vocabulário)
- Ocorrências dos termos endereçadas por
 - Blocos no texto
 - ◆Endereço do documento inteiro
 - Engenhos de busca na Web
 - ◆Poucos ponteiros, ponteiros menores e menos ocorrências

Bloco 1

Bloco 2

Índices Invertidos: Técnicas para redução de espaço

- Google: endereçamento "hierárquico" blocos
 - ◆Bloco + posição relativa da palavra dentro do bloco

Bloco 3 This is a text. A text has many words. Words are made from letters.

Bloco 4

Etapa 4: Recuperação

- Tabelas hash, tries, ...
 - O(tamanho da palavra)
- Lista em ordem alfabética
 - ◆O(log (tamanho do texto))
 - Mais barato em termo de espaço

Cln.ufpe.b

Etapa 4: Recuperação

- Consultas simples
 - Recupera documentos nos quais a palavra ocorre pelo menos uma vez
- Consultas compostas (booleanas)
 - Recupera documentos nos quais cada palavra da consulta ocorre pelo menos uma
 vez
 - Merge de listas
 - Combina as listas de documentos recuperados de acordo com o operador booleano da consulta

Cln.ufpe.b

String Matching

- Método usado em vários sistemas
 - ◆Busca por palavras, comparação entre arquivos
- Encontrar todas as ocorrências de uma determinada string (padrão) em um texto
- Várias soluções existentes

Cln.ufpe.br

String Matching Aproximado

- Dado um padrão P de tamanho m, um texto T de tamanho n, onde m,n>0, um inteiro k>0 e uma função de distância d, encontrar todas as substrings S de T tal que d(P,S)<=k</p>
 - •d número de operações necessárias para transformar S em P
 - •"Um texto qualquer"
 - "Eu testo.."

"texto" (d=1)

Cln.ufpe.l

String Matching Aproximado

- Várias Soluções existentes
 - ◆Força bruta (BF)
 - Landau-Vishken
 - Boyer-Moore (BM)
 - Shift-Or (SO)
 - **پ**...

Cln.ufpe.b

String Matching Aproximado

- No Radix
 - Implementação e adaptação dos algoritmos (BF,BM,SO)
 - Número de erros permitidos baseia-se no tamanho do termo a ser comparado
 - ●"Mp3" 1 erro é permitido
 - ●"Download" 3 erros são permitidos

In.ufpe.b

