Задача А. В начало строя!

Имя входного файла: movetofront.in Имя выходного файла: movetofront.out

Ограничение по времени: 4 секунды Ограничение по памяти: 256 мегабайт

Капрал Питуца любит командовать своим отрядом. Его любимый приказ «в начало строя». Он выстраивает свой отряд в шеренгу и оглашает последовательность приказов. Каждая приказ имеет вид «Солдаты с l_i по r_i — в начало строя!»

Пронумеруем солдат в начальном положении с 1 до n, слева направо. Приказ «Солдаты с l_i по r_i — в начало строя!» означает, что солдаты, стоящие с l_i по r_i включительно, перемещаются в начало строя, сохраняя относительный порядок.

Например, если в некоторый момент солдаты стоят в порядке 2, 3, 6, 1, 5, 4, после приказа: «Солдаты с 2 по 4- в начало строя!» порядок будет 3, 6, 1, 2, 5, 4.

По данной последовательности приказов найти конечный порядок солдат в строю.

Формат входного файла

В первой строке два целых числа n and m ($2 \le n \le 100\,000$, $1 \le m \le 100\,000$) — количество солдат и количество приказов. Следующие m строк содержат по два целых числа l_i и r_i ($1 \le l_i \le r_i \le n$).

Формат выходного файла

Выведите n целых чисел — порядок солдат в конечном положении после выполнения всех приказов.

movetofront.in	movetofront.out
6 3	1 4 5 2 3 6
2 4	
3 5	
2 2	

Задача В. Декартово дерево

Имя входного файла: tree.in
Имя выходного файла: tree.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Вам даны пары чисел (a_i, b_i) , Вам необходимо построить декартово дерево, такое что i-ая вершина имеет ключи (a_i, b_i) , вершины с ключом a_i образуют бинарное дерево поиска, а вершины с ключом b_i образуют кучу.

Формат входного файла

В первой строке записано число N- количество пар. Далее следует N $(1\leqslant N\leqslant 50\,000)$ пар (a_i,b_i) . Для всех пар $|a_i|,|b_i|\leqslant 30\,000$. $a_i\neq a_j$ и $b_i\neq b_j$ для всех $i\neq j$.

Формат выходного файла

Если декартово дерево с таким набором ключей построить возможно, выведите в первой строке YES, в противном случае выведите NO. В случае ответа YES, выведите N строк, каждая из которых должна описывать вершину. Описание вершины состоит из трёх чисел: номер предка, номер левого сына и номер правого сына. Если у вершины отсутствует предок или какой-либо из сыновей, то выводите на его месте число 0.

Если подходящих деревьев несколько, выведите любое.

tree.in	tree.out
7	YES
5 4	2 3 6
2 2	0 5 1
3 9	1 0 7
0 5	5 0 0
1 3	2 4 0
6 6	1 0 0
4 11	3 0 0

Задача С. Следующий

Имя входного файла: next.in
Имя выходного файла: next.out
Ограничение по времени: 3 секунды
Ограничение по памяти: 256 мегабайт

Реализуйте структуру данных, которая поддерживает множество S целых чисел, с котором разрешается производить следующие операции:

- add(i) добавить в множество S число i (если он там уже есть, то множество не меняется);
- next(i) вывести минимальный элемент множества, не меньший i. Если искомый элемент в структуре отсутствует, необходимо вывести -1.

Формат входного файла

Исходно множество S пусто. Первая строка входного файла содержит n — количество операций ($1 \le n \le 300\,000$). Следующие n строк содержат операции. Каждая операция имеет вид либо «+ i», либо «? i». Операция «? i» задает запрос next(i).

Если операция *+i* идет во входном файле в начале или после другой операции *+*, то она задает операцию add(i). Если же она идет после запроса *?*, и результат этого запроса был y, то выполняется операция $add((i+y) \bmod 10^9)$.

Во всех запросах и операциях добавления параметры лежат в интервале от 0 до 10^9 .

Формат выходного файла

Для каждого запроса выведите одно число — ответ на запрос.

next.in	next.out
6	3
+ 1	4
+ 3	
+ 3	
? 2	
+ 1	
? 4	

Задача D. Вставка ключевых значений

Имя входного файла: key.in
Имя выходного файла: key.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Вас наняла на работу компания MacroHard, чтобы вы разработали новую структуру данных для хранения целых ключевых значений.

Эта структура выглядит как массив A бесконечной длины, ячейки которого нумеруются с единицы. Изначально все ячейки пусты. Единственная операция, которую необходимо поддерживать — это операция Insert(L,K), где L — положение в массиве, а K — некоторое положительное целое ключевое значение.

Операция выполняется следующим образом:

- ullet Если ячейка A[L] пуста, то присвоить A[L] := K.
- ullet Если ячейка A[L] непуста, выполнить Insert(L+1,A[L]), а затем присвоить A[L]:=K.

По заданной последовательности из N целых чисел L_1, L_2, \ldots, L_N вам необходимо вывести содержимое этого массива после выполнения следующей последовательности операций:

 $Insert(L_1, 1)$ $Insert(L_2, 2)$... $Insert(L_N, N)$

Формат входного файла

В первой строке входного файла содержится N — число операций Insert и M — максимальный номер позиции, которую можно использовать в операции Insert. ($1 \le N \le 131\,072$, $1 \le M \le 131\,072$).

В следующей строке даны N целых чисел L_i , которые описывают операции $Insert\ (1 \leqslant L_i \leqslant M)$.

Формат выходного файла

Выведите содержимое массива после выполнения данной последовательности операций Insert. На первой строке выведите W — номер последней несвободной позиции в массиве. Далее выведите W целых чисел — $A[1], A[2], \ldots, A[W]$. Для пустых ячеек выводите нули.

key.in	key.out
5 4	6
3 3 4 1 3	4 0 5 2 3 1