Ziffernblatt für CO₂-Anzeige

Ivo Blöchliger

28. Februar 2019

Ein Messwert $m \in [0,1]$ soll in einen Winkel $w \in [0,1]$ umrechnet werden. Die Skala soll nicht-linear sein, so dass z.B. der Wert $\overline{m} = \frac{1500-400}{5000-400} = \frac{11}{46}$ in der Mitte platziert werden kann. (Skala von 400 bis 5000, 1500 in der Mitte).

Wir suchen eine Funktion f(x) so, dass m = f(w) und $f^{-1}(m) = w$, was schlussendlich implementiert werden soll.

Es gilt
$$f(0) = 0$$
 und $f(1) = 1$ und $f(\frac{1}{2}) = \overline{m}$.

Die Skalenverkürzung soll möglichst gleichmässig erfolgen, d.h. f'(w) soll eine lineare Funktion sein. Also ist f(w) eine quadratische Funktion $f(w) = aw^2 + bw + c$. Aus den obigen Bedingungen folgt c = 0 und

$$a+b=1$$
 und $\frac{1}{4}a+\frac{1}{2}b=\overline{m},$

woraus mit Maxima

solve([a+b=1, a+2*b=4*m], [a,b]);

$$a = 2 - 4m \qquad \text{und} \qquad b = 4m - 1$$

folgt.

Daraus folgt mit Maxima

 $solve((2-4*m)*w^2+(4*m-1)*w=y, w);$

$$f^{-1}(m) = \frac{\sqrt{(8 - 16\,\overline{m})\,m + 16\,\overline{m}^2 - 8\,\overline{m} + 1} + 4\,\overline{m} - 1}{8\,\overline{m} - 4}.$$

Für den Wert $\overline{m} = \frac{1500-400}{5000-400} = \frac{11}{46}$ erhält man

$$w = f^{-1}(m) = \frac{\sqrt{2208 \, y + 1} + 1}{48}$$