Summary of Halmos' Naive Set Theory

Robin Adams

August 20, 2023

Contents

1 The Axiom of Extension

 $\mathbf{2}$

Chapter 1

The Axiom of Extension

Let there be *sets*. We assume that everything is a set.

Let there be a binary relation of membership, \in . If $x \in A$ we say that x belongs to A, x is an element of A, or x is contained in A.

Axiom 1.1 (Axiom of Extension). Two sets are equal if and only if they have the same elements.

Definition 1.2 (Subset). Let A and B be sets. We say that A is a *subset* of B, or B includes A, and write $A \subset B$ or $B \supset A$, iff every element of A is an element of B.

Theorem 1.3. For any set A, we have $A \subset A$.

PROOF: Every element of A is an element of A. \square

Theorem 1.4. For any sets A, B and C, if $A \subset B$ and $B \subset C$ then $A \subset C$.

PROOF: If every element of A is an element of B, and every element of B is an element of C, then every element of A is an element of C. \Box

Theorem 1.5. For any sets A and B, if $A \subset B$ and $B \subset A$ then A = B.

PROOF: If every element of A is an element of B, and every element of B is an element of A, then A and B have the same elements, and therefore are equal by the Axiom of Extension. \square

Definition 1.6 (Proper Subset). Let A and B be sets. We say that A is a proper subset of B, or B properly includes A, iff $A \subset B$ and $A \neq B$.