

CatBoost: unbiased boosting with categorical features

Kobe University Engineering
M2 201T264T
Fuki Yamamoto

Flow of the presentation

- I. Background
- II. Preliminaries

III. Ordered TS

IV. Ordered Boosting

— Main Section

- V. Experiments & Comparison
- VI. Conclusion

Flow of the presentation

I. Background

II. Preliminaries

III. Ordered TS

IV. Ordered Boosting

V. Experiments & Comparison

VI. Conclusion

I. Background

What is CatBoost?

✓ CatBoost is **one of the implementations of GBDT** (Most recent)

- ✓ Implemented algorithm to **pre-process categorical features** for GBDT
 - Ordered TS
- ✓ Implemented some mechanisms to train model
 - Ordered Boosting
 - Symmetric Tree (Oblivious Tree)
- ✓ Implemented several advanced functions (Presented in another papers)
 - Stochastic Gradient Langevin Boosting
 - Estimate uncertainty

What is CatBoost?

✓ CatBoost is **one of the implementations of GBDT** (Most recent)

Scope of this paper & today's presentaion

- ✓ Implemented algorithm to **pre-process categorical features** for GBDT
 - Ordered TS
- ✓ Implemented some mechanisms to train model
 - Ordered Boosting
 - Symmetric Tree (Oblivious Tree)
- ✓ Implemented several advanced functions (Presented in another papers)
 - Stochastic Gradient Langevin Boosting
 - Estimate uncertainty

Flow of the presentation

I. Background & Purpose

II. Preliminaries

III. Ordered TS

IV. Ordered Boosting

V. Experiments & Comparison

VI. Conclusion

Decision Tree

- ✓ One of machine learning models with a **tree structure**
- ✓ Output the leaf weights that match the thresholds

Task: Student or not

 x_1 : Age

 x_2 : Gender

Sample1: $x_1 = 15$, $x_2 = M$ $\rightarrow \text{Yes}$

Sample2: x_1 =30, x_2 = F \rightarrow No

Gradient Boosting

- ✓ A technique that sequentially learns weak learners to fit the residuals
- ✓ In many cases, **decision trees** are used as weak learners
- ✓ High performance with tabular data

Gradient Boosting Decision Trees

- Each library uses a different structure of trees
- CatBoost uses symmetric trees with the same threshold at each depth
- Symmetric trees is suitable for parallel processing

Gradient Boosting Decision Trees

model	Tree	Special Features
XGBoost	Depth-wise	• Sparsity-aware
		• TS (use grad info)
Light GBM	Leaf-wise	• EFB
		• GOSS
		• Ordered Boosting
	Symmetric	• Ordered TS
CatBoost		• Estimate uncertainty
		• SGLB
		Mono Forest

Target Leakage (Data Leakage)

- ✓ Use information not available at the prediction in the learning process
- ✓ Causes **overfitting and over-estimation** of model performance
- ✓ E.g., include targets in the features, tune hyper-parameters with test data

Pre-processing of categorical features

✓ One Hot Encoding

- Converted to vectors that indicate if it belongs to each category
- In high cardinality cases, number of features increases significantly

✓ Target Encoding (Target Statistics, TS)

- Replace categories with statistics calculated from the target
- Prone to cause **Target Leakage** (Especially categories with little data)

One Hot Encoding Target Encoding (TS) xB \mathbf{xC} $\mathbf{x}\mathbf{1}$ t1 xA $\mathbf{x}\mathbf{1}$ t1 $\mathbf{x}\mathbf{1}$ t1 0 0 1.0 A Α 1 0 1.0 A 0 1 A 0.5 0 0 B 0 0 B 0 0 0.5 B

Existing TS methods

✓ Leave One Out TS

- Calculate TS at training with data other than self
- Calculate TS at inference for all data
- Causes Target Leakage

✓ Hold Out TS

- Calculate TS at training with Hold-out data
- Calculate TS at inference for all data
- Decrease the amount of training data

✓ Light GBM TS

- Calculate (simple) TS by gradient for each node
- Process categorical features automatically
- Causes Target Leakage

Leave-one-out TS

x1	t1	x1	t1
A	1	0.5	1
A	1	0.5	1
A	0	1.0	0
В	1	0	1

Hold-out TS

Existing Problems

✓ Existing Pre-processing for categorical features

- Large increase in the number of features (One Hot Encoding)
- Causes **Target Leakage** (TS)

✓ Existing GBDT

- Building all trees and calculation of all residuals **both use** $D \subset D_{train}$
 - → Causes **Prediction Shift** (Overfitting)
 - → Degraded performance on small datasets

So, CatBoost propose Ordered TS + Ordered Boosting

Flow of the presentation

- I. Preliminaries
- II. Background & Purpose

III. Ordered TS

- IV. Ordered Boosting
- V. Experiments & Comparison
- VI. Conclusion

Algorithm of Ordered TS

- ✓ Calculate TS based on the order of randomly sorted data
- ✓ Calculates TS from data before itself
- ✓ Simulate sequential sampling of data from true distribution

id	x1	t1		id	x1	t1		id	x1	t1
1	A	1		7	В	1		7	0	1
2	A	1		5	В	0	·	5	1.0	0
3	A	0		3	A	0		3	0	0
4	В	1	Random	1	A	1	Calculate	1	0	1
5	В	0	Sort	4	В	1	TS	4	0.5	1
6	В	0		2	A	1		2	0.5	1
7	В	1		6	В	0		6	0.33	0

III. Ordered TS

Ordered TS

Benefits

- ✓ No need to decrease the amount of training data
- ✓ Computation based on random order reduces Target Leakage

However, TS varies greatly depending on the result of sorting

How to use it in GBDT

Training: Randomly sort the data and calculate TS for each tree build

Test: Calculate TS with all training data

Flow of the presentation

- I. Preliminaries
- II. Background & Purpose
- III. Ordered TS

IV. Ordered Boosting

- V. Experiments & Comparison
- VI. Conclusion

Exact Algorithm of Ordered Boosting

- ✓ Use different data for gradient calculation and tree build
- ✓ Compute gradient from the model trained on dataset before itself
- ✓ Need to train n(the number of data) models(GBDT)
 - → Difficult → CatBoost propose more practical algorithm

 M_i^t : Model trained using first i examples for t-th iteration

 y_i : *i*-th target

r^t: residuals (gradient) for t-th iteration

Exact Algorithm of Ordered Boosting

 M_i^t : GBDT trained on first *i* examples for *t*-th iteration

 ΔM : Decision Tree

 y_i : *i*-th target

 r^t : residuals (gradient) for t-th iteration

I: the number of trees

Algorithm 1: Ordered boosting

return M_n

Changes

✓ Definition of M_i :

Model trained on first *i* examples

→ Outputs calculate & update by first i examples
 (Tree structure is common, independent of order)

✓ Prediction

Use $M_n \rightarrow$ Use model that calculate leaf weights for all data

- ✓ Use malti-random order σ_r (r = 0, ..., s) (1 based):
 - r = 0 use to calculate TS at prediction and standard order
 - $r = 1 \sim s$ use to build each trees & calculate Ordered TS
- ✓ Number of models to train: $n \to 1$
 - Randomly select r from $1 \sim s$ for each tree build
 - Compute leaf weights and split scores based on order σ_r
- ✓ Use ordered output instead of M_i (Model trained on the data up to *i*-th)
- $\rightarrow M_{r,j}$: i-th output calculated by first 2^j examples $(i \le 2^{j+1}, j: 1, ..., \log_2 n)$
- $\rightarrow grad_{r,j}$: *i*-th gradient calculated by first 2^j examples $(i \le 2^{j+1}, j: 1, ..., \log_2 n)$

$Update_M(M_r, D_{train}, \sigma)$:

$$M_{r,j}(i) = avg(grad_{r,j}(k))$$

k in same leaf $a_i = i - th \ data$

return $M_{r,j}$

Tree Structure

$Calc_leaf_weight(T_t, D_{train})$:

Calculate leaf weights based on tree structure for all data return w^t

 $r \leftarrow random(1,s)$

 $grad_{r,j}(i) \leftarrow y_{r,i} - M_{r,j}(i)$

 $T_t \leftarrow tree. fit(X, grad_{r,j})$

return T_t

Finished Tree

Prediction (T, D_{test}) :

 $Ordred_TS(D_{test}, \sigma_0)$

return $\sum \alpha w^t$

(α : learning rate)

Init(): $M_{r,j}(i) \leftarrow 0$ $\sigma \leftarrow random \quad permuta$

 $\sigma_r \leftarrow random_permutaion()$

return $M_{r,j}, \sigma$

 $Build_tree(M_{r,j}, \ D_{train}, \ \sigma)$: $r \leftarrow random(1, s)$ $grad_{r,j}(i) \leftarrow y_{r,i} - M_{r,j}(i)$ $T_t \leftarrow tree \cdot fit(X, grad_{r,j})$ return T_t

Each factor's shape & definition

$$\checkmark \ \sigma = (s, n), \ \sigma_r = (n)$$

$$\checkmark M = grad = (r, n)$$

$$\checkmark M_{r,i}(i) = (n)$$

i-th output calculated by first 2^j examples $(i \le 2^{j+1}, j: 1, ..., \log_2 n)$

$$\checkmark grad_{r,i}(i) = (n)$$

i-th gradient calculated by first 2^j examples $(i \le 2^{j+1}, j: 1, ..., \log_2 n)$

$Update_{-}M(M_{r}, D_{train}, \sigma)$:

$$M_{r,j}(i) = avg(grad_{r,j}(k))$$

k in same leaf as the i - th data)

return $M_{r,j}$

 $\begin{aligned} \textit{Build_tree}(\textit{M}_{r,j}, \ \textit{D}_{train}, \ \sigma) : \\ r \leftarrow \textit{random}(1, s) \\ \textit{grad}_{r,j}(i) \leftarrow \textit{y}_{r,i} - \textit{M}_{r,j}(i) \\ T_t \leftarrow \textit{tree} \cdot \textit{fit}(\textit{X}, \textit{grad}_{r,j}) \\ \text{return } T_t \end{aligned}$

Each factor's shape & definition

$$\checkmark \ \sigma = (s, n), \ \sigma_r = (n)$$

$$\checkmark M = grad = (r, n)$$

$$\checkmark M_{r,i}(i) = (n)$$

i-th output calculated by data up to 2^j $(i \le 2^{j+1}, j: 1, ..., \log_2 n)$

$$\checkmark grad_{r,i}(i) = (n)$$

i-th gradient calculated by data up to 2^j $(i \le 2^{j+1}, j: 1, ..., \log_2 n)$

Practical Algorithm of Ordered Boosting

$Update_M(M_r, D_{train}, \sigma)$:

$$M_{r,j}(i) = avg(grad_{r,j}(k))$$

k in same leaf as i – th data)

return $M_{r,j}$

Tree Structure

 $T_t \leftarrow tree \:.\: fit(X, grad_{r,j})$

return T_t

$Calc_leaf_weight(T_t, D_{train})$:

Calculate leaf weights based on tree structure for all data return w^t

Prediction(T, D_{test}): $Ordred_TS(D_{test}, \sigma_0)$

 \mathbf{V}_{test} , $\mathbf{\sigma}_{0}$

return $\sum \alpha w^t$

(α : learning rate)

Practical Algorithm of Ordered Boosting

$Update_M(M_r, D_{train}, \sigma)$:

 $M_{r,j}(i) = avg(grad_{r,j}(k))$

k in same leaf as the i - th data) return $M_{r,i}$

Calculate $M_{r,j}(i)$ $(2^j < i \le 2^{j+1})$ with the first 2^j data

 $Calc_leaf_weight(T_t, D_{train})$:
Calculate leaf weights

based on tree structure for all data return w^t

Build_tree($M_{r,j}$, D_{train} , σ): $r \leftarrow random(1,s)$ $grad_{r,j}(i) \leftarrow y_{r,i} - M_{r,j}(i)$ $T_t \leftarrow tree \cdot fit(X, grad_{r,j})$ return T_t

Prediction (T, D_{test}) :

 $Ordred_TS(D_{test}, \sigma_0)$

return $\sum \alpha w^t$

(α : learning rate)

Practical Algorithm of Ordered Boosting

$Update_M(M_r, D_{train}, \sigma)$:

$$M_{r,j}(i) = avg(grad_{r,j}(k))$$

k in same leaf as $i - th \ data$

return $M_{r,j}$

Tree Structure

$Calc_leaf_weight(T_t, D_{train})$:

Calculate leaf weights based on tree structure for all data return w^t

 $\begin{aligned} \textit{Build_tree}(\textit{M}_{r,j}, \; \textit{D}_{train}, \; \sigma) : \\ r \leftarrow random(1,s) \\ grad_{r,j}(i) \leftarrow y_{r,i} - M_{r,j}(i) \\ T_t \leftarrow tree \; . \; fit(X, grad_{r,j}) \\ \text{return } T_t \end{aligned}$

Prediction(T, D_{test}): Ordred_ $TS(D_{test}, \sigma_0)$

 \mathbf{V}_{test} , $\mathbf{\sigma}_{0}$

return $\sum \alpha w^t$

(α : learning rate)

Practical Algorithm of Ordered Boosting

Update_ $M(M_r, D_{train}, \sigma)$: $M_{r,i}(i) = avg(grad_{r,i}(k))$

k in same leaf as the i - th data) return $M_{r,i}$

Build_tree($M_{r,j}$, D_{train} , σ): $r \leftarrow random(1,s)$ $grad_{r,j}(i) \leftarrow y_{r,i} - M_{r,j}(i)$ $T_t \leftarrow tree \cdot fit(X, grad_{r,j})$ return T_t

$Calc_leaf_weight(T_t, D_{train})$:

Calculate leaf weights based on tree structure for all data return w^t

 $Prediction(T, D_{test}):$ $Ordred_TS(D_{test}, \sigma_0)$ $return \sum \alpha w^t$

(α : learning rate)

Computation Complexity (for one iteration)

- ✓ Calculate gradient: $O(n) \rightarrow O(s \cdot n)$ (s: number of random orders) Compute the gradient corresponding to s random order
- ✓ Build Tree (histogram method): $O(f \cdot n)$ (f: number of features) Same computation cost as plain GBDT
- ✓ Update $M_{r,i}$: $O(n) \rightarrow O(s \cdot n)$

$$(s+1) \cdot \sum_{j=1}^{\log_2 n} 2^{j+1} = (s+1)s \cdot \left(2^2 + 2^3 + \dots + 2^{\log_2 n} + 2^{\log_2 n+1}\right)$$

$$\iff = (s+1) \cdot 2^{\log_2 n + 1} \left(1 + \frac{1}{2} + \frac{1}{2^2} + \dots \right) < (s+1) \cdot 2^{\log_2 n + 2} = 4(s+1)n$$

 \checkmark Calculate Ordered TS: $O(N_{TS} \cdot n)$

 $(N_{TS}: Number of TS not calculated previous iteration)$

Ordered Boosting

✓ Benefits

- Reduce **Prediction Shift** (Fitting to training data distribution)
- Expected to improve performance on small datasets

However, the computational cost increases (Ordered TS)

✓ Feature Combination

- Automate the combination of category features
- Difficult to generate all combinations
- Combine all other categories with the category used for previous splits

Flow of the presentation

- I. Preliminaries
- II. Background & Purpose
- III. Ordered TS
- IV. Ordered Boosting
- V. Experiments & Comparison
- VI. Conclusion

V. Experiments & Comparison

Small (

Datasets (Classifficaion)

Dataset name	Instances	Features	Description
Adult ¹¹	48842	15	Prediction task is to determine whether a person makes over 50K a year. Extraction was done by Barry Becker from the 1994 Census database. A set of reasonably clean records was extracted using the following conditions: (AAGE>16) and (AGI>100) and (AFNLWGT>1) and (HRSWK>0)
Amazon ¹²	32769	10	Data from the Kaggle Amazon Employee challenge.
Click Prediction 13	399482	12	This data is derived from the 2012 KDD Cup. The data is subsampled to 1% of the original number of instances, downsampling the majority class (click=0) so that the target feature is reasonably balanced (5 to 1). The data is about advertisements shown alongside search results in a search engine, and whether or not people clicked on these ads. The task is to build the best possible model to predict whether a user will click on a given ad.
Epsilon ¹⁴	400000	2000	PASCAL Challenge 2008.
KDD appetency 15	50000	231	Small version of KDD 2009 Cup data.
KDD churn 16	50000	231	Small version of KDD 2009 Cup data.
KDD Internet ¹⁷	10108	69	Binarized version of the original dataset. The multi- class target feature is converted to a two-class nom- inal target feature by re-labeling the majority class as positive ('P') and all others as negative ('N'). Originally converted by Quan Sun.
KDD upselling 18	50000	231	Small version of KDD 2009 Cup data.
Kick prediction 19	72983	36	Data from "Don't Get Kicked!" Kaggle challenge.

Ordered TS vs. Other TS methods

- ✓ Compare **each TS methods** with CatBoost (order mode)
- ✓ The same results were obtained in Plain mode
- **✓** Ordered TS showed best results

Table 4: Comparison of target statistics, relative change in logloss / zero-one loss compared to ordered TS.

	Greedy	Holdout	Leave-one-out
Adult	+1.1% / +0.8%	+2.1% / +2.0%	+5.5% / +3.7%
Amazon	+40% / +32%	+8.3% / +8.3%	+4.5% / +5.6%
Click	+13% / +6.7%	+1.5% / +0.5%	+2.7% / +0.9%
Appetency	+24% / +0.7%	+1.6% / -0.5%	+8.5% / +0.7%
Churn	+12% / +2.1%	+0.9% / +1.3%	+1.6% / +1.8%
Internet	+33% / +22%	+2.6% / +1.8%	+27% / +19%
Upselling	+57% / +50%	+1.6% / +0.9%	+3.9% / +2.9%
Kick	+22% / +28%	+1.3% / +0.32%	+3.7% / +3.3%

Symmetric Trees vs. Other Tree methods

- ✓ Compare each GBDT methods + Ordered TS with CatBoost (plain mode)
- ✓ Match other algorithms of each method as closely as possible
- ✓ None of the GBDT methods are clearly superior

Table 9: Comparison with baselines: logloss / zero-one loss (relative increase for baselines).

	Raw setting of CatBoost	LightGBM	XGBoost
Adult	0.2800 / 0.1288	-1.4% / +0.2%	-1.7% / -0.6%
Amazon	0.1631 / 0.0533	+0.3% / 0%	+0.1% / -0.2%
Click	0.3961 / 0.1581	+0.1% / -0.1%	0% / 0%
Appetency	0.0724 / 0.0179	-0.8% / -1.0%	-0.8% / -0.4%
Churn	0.2316 / 0.0718	+0.2% / +0.7%	+0.6% / +1.6%
Internet	0.2223 / 0.0993	+0.4% / +2.4%	+1.4% / +1.9%
Upselling	0.1679 / 0.0493	-0.7% / -0.4%	-1.0% / -0.2%
Kick	0.2955 / 0.0993	+0.1% / -0.4%	-0.3% / -0.2%
Average		-0.2% / +0.2%	-0.2% / +0.2%

Ordered Boosting vs. Other GBDT methods

- ✓ Compare each **GBDT methods** + **Ordered TS** with CatBoost (order)
- ✓ CatBoost(order) showed best results for all cases
- **✓** Excellent results, especially on small datasets

	CatBoost	LightGBM	XGBoost
Adult	0.270 / 0.127	+2.4% / +1.9%	+2.2% / +1.0%
Amazon	0.139 / 0.044	+17% / +21%	+17% / +21%
Click	0.392 / 0.156	+1.2% / +1.2%	+1.2% / +1.2%
Epsilon	0.265 / 0.109	+1.5% / +4.1%	+11% / +12%
Appetency	0.072 / 0.018	+0.4% / +0.2%	+0.4% / +0.7%
Churn	0.232 / 0.072	+0.1% / +0.6%	+0.5% / +1.6%
Internet	0.209 / 0.094	+6.8% / +8.6%	+7.9% / +8.0%
Upselling	0.166 / 0.049	+0.3% / +0.1%	+0.04% / +0.3%
Kick	0.286 / 0.095	+3.5% / +4.4%	+3.2% / +4.1%

Ordered Boosting vs. Other GBDT methods

Table 6: Comparison of running times on Epsilon

√	Use Epsilon dataset		time per tree
	•	CatBoost Plain	1.1 s
√	All models matched parameters	CatBoost Ordered	1.9 s
✓	Measure mean time to build 8000 trees	XGBoost LightGBM	3.9 s 1.1 s

Table 3: Plain boosting mode: logloss, zeroone loss and their change relative to Ordered boosting mode.

- √ Compare CatBoost modes
- ✓ "order" showed good results on average (especially on small datasets)

	Logloss	Zero-one loss
Adult	0.272 (+1.1%)	0.127 (-0.1%)
Amazon	0.139 (-0.6%)	0.044 (-1.5%)
Click	0.392 (-0.05%)	0.156 (+0.19%)
Epsilon	0.266 (+0.6%)	0.110 (+0.9%)
Appetency	0.072 (+0.5%)	0.018 (+1.5%)
Churn	0.232 (-0.06%)	0.072 (-0.17%)
Internet	0.217 (+3.9%)	0.099 (+5.4%)
Upselling	0.166 (+0.1%)	0.049 (+0.4%)
Kick	0.285 (-0.2%)	0.095 (-0.1%)

VI. Conclusion

✓ CatBoost is One of major GBDT implementations released by Yandex

✓ Ordered TS

- Calculate TS based on the order of randomly sorted data
- Prevent target leakage
- Ordered TS showed better results than Other TS methods

✓ Ordered Boosting

- Train a model based on the order of randomly sorted data
- Use different data set for building trees and calculating residuals
- Ordered Boosting showed good results on small datasets

```
Algorithm 3: CatBoost
    input: \{(\mathbf{x}_i, y_i)\}_{i=1}^n, I, \alpha, L, s, Mode
 1 \sigma_r \leftarrow random permutation of [1, n] for r = 0..s;
 2 M_0(i) \leftarrow 0 \text{ for } i = 1..n;
 3 if Mode = Plain then
 4 M_r(i) \leftarrow 0 \text{ for } r = 1..s, i : \sigma_r(i) \le 2^{j+1};
                                                                                       \sigma_r(i) = 1, \dots 2^{j+1}
 5 if Mode = Ordered then
 6 | for j \leftarrow 1 to \lceil \log_2 n \rceil do
    M_{r,j}(i) \leftarrow 0 \text{ for } r = 1..s, i = 1..2^{j+1};
 8 for t \leftarrow 1 to I do
         T_t, \{M_r\}_{r=1}^s \leftarrow BuildTree(\{M_r\}_{r=1}^s, \{(\mathbf{x}_i, y_i)\}_{i=1}^n, \alpha, L, \{\sigma_i\}_{i=1}^s, Mode);
       leaf_0(i) \leftarrow GetLeaf(\mathbf{x}_i, T_t, \sigma_0) \text{ for } i = 1..n;
10
         grad_0 \leftarrow CalcGradient(L, M_0, y);
11
       foreach leaf j in T_t do
12
       b_j^t \leftarrow -\operatorname{avg}(\operatorname{grad}_0(i) \text{ for } i : \operatorname{leaf}_0(i) = j);
13
       M_0(i) \leftarrow M_0(i) + \alpha b_{lea\,f_0(i)}^t \text{ for } i = 1..n;
15 return F(\mathbf{x}) = \sum_{t=1}^{I} \sum_{j} \alpha b_{j}^{t} \mathbb{1}_{\{GetLeaf(\mathbf{x}, T_{t}, ApplyMode) = j\}};
```

```
Function BuildTree
    input: M,\{(\mathbf{x}_i,y_i)\}_{i=1}^n, \alpha, L, \{\sigma_i\}_{i=1}^s, Mode
 1 grad \leftarrow CalcGradient(L, M, y);
 r \leftarrow random(1, s);
 3 if Mode = Plain then
 4 | G \leftarrow (grad_r(i) \text{ for } i = 1..n);
 5 if Mode = Ordered then
 6 | G \leftarrow (grad_{r, \lceil \log_2(\sigma_r(i)-1) \rceil}(i) \text{ for } i = 1..n);
 7 T \leftarrow empty tree;
 8 foreach step of top-down procedure do
          foreach candidate split c do
                T_c \leftarrow \text{add split } c \text{ to } T;
10
                leaf_r(i) \leftarrow GetLeaf(\mathbf{x}_i, T_c, \sigma_r) \text{ for } i = 1..n;
11
                if Mode = Plain then
12
                     \Delta(i) \leftarrow \operatorname{avg}(\operatorname{grad}_r(p) \text{ for } p : \operatorname{leaf}_r(p) = \operatorname{leaf}_r(i)) \text{ for } i = 1..n;
13
                if Mode = Ordered then
14
                      \Delta(i) \leftarrow \operatorname{avg}(\operatorname{grad}_{r,|\log_2(\sigma_r(i)-1)|}(p) \text{ for } p : \operatorname{leaf}_r(p) = \operatorname{leaf}_r(i), \sigma_r(p) < \sigma_r(i)) \text{ for }
15
                      i = 1..n;
                loss(T_c) \leftarrow cos(\Delta, G)
         T \leftarrow \arg\min_{T} (loss(T_c))
18 leaf_{r'}(i) \leftarrow GetLeaf(\mathbf{x}_i, T, \sigma_{r'}) for r' = 1...s, i = 1...n;
19 if Mode = Plain then
     M_{r'}(i) \leftarrow M_{r'}(i) - \alpha \arg(grad_{r'}(p) \text{ for } p: leaf_{r'}(p) = leaf_{r'}(i)) \text{ for } r' = 1..s, i = 1..n;
21 if Mode = Ordered then
          for j \leftarrow 1 to \lceil \log_2 n \rceil do
               M_{r',j}(i) \leftarrow M_{r',j}(i) - \alpha \operatorname{avg}(\operatorname{grad}_{r',j}(p) \text{ for } p : \operatorname{leaf}_{r'}(p) = \operatorname{leaf}_{r'}(i), \sigma_{r'}(p) \leq 2^j) for
              r' = 1..s, \ i : \sigma_{r'}(i) \le 2^{j+1};
24 return T, M
```