Idial 110. of Questions .0	Total	No.	of	Questions	:8
----------------------------	--------------	-----	----	-----------	----

D2	004
rs	ソカ4

SEAT No.	:	
----------	---	--

[5561]-688

[Total No. of Pages :2

B.E. (Computer Engineering) MACHINE LEARNING (2015 Course) (410250) (Semester-II)

Time	: 21	/2Hours	[Max. Ma	rks : 70
			the candidates:	
	<i>1</i>)		Q.1 or 2, Q.3 or 4, Q.5 or 6, Q.7 or 8,	
	2)		ne suitable data if necessary.	
	<i>3</i>)	Neat d	liagrams must be drawn wherever necessary.	
•	4)	Figure	es to the right indicates full marks.	
Q 1)	a)		h reference to machine learning, explain the concept of achines.	laptive [6]
	b)	Exp	lain the role of machine learning algorithms in following applic Spam filtering.	eations. [6]
		b)	Natural Language processing.	
	c)	_	lain role of machine learning the following common un-supening problems:	ervised [8]
		a)	Object segmentation	
		b)	Similarity detection OR	
Q 2)	a)	Exp	lain Data formats for supervised learning problem with examp	ole.[6]
	b)		at is categorical data? What is its significance in classifications?	cation [6]
	c)	Exp	lain the Lasso, and ElasticNet types of regression.	[8]
Q 3)	a)	Wha	at problems are faced by SVM when used with real datasets	? [3]
	b)	Exp	lain the non-linear SVM with example.	[5]
	c)	Writ	te shorts notes on:	[9]
		i)	Bernoulli naive Bayes.	
		ii)	lain the non-linear SVM with example. te shorts notes on: Bernoulli naive Bayes. multinomial naive Bayes. Gaussian naive Bayes.	
		iii)	Gaussian naive Bayes.	P.T.O.

Q4)	a)	example. [8]
	b)	What are Linear support vector machines? Explain with example. [4]
	c)	Explain with example the variant of SVM, the Support vector regression. [5]
Q5)	a)	Explain the structure of binary decision tree for a sequential decision process. [8]
	b)	With reference to Clustering, explain the issue of "Optimization of clusters" [5]
	c)	Explain Evaluation methods for clustering algorithms. [4] OR
Q6)	a)	With reference to Meta Classifiers, explain the concepts of Weak and eager learner. [8]
	b) \	Write short notes on: a) Adaboost. [9]
		b) Gradient Tree Boosting.
		c) Voting Classifier.
<i>Q7</i>)	a)	With reference to Hierarchical Clustering, explain the issue of connectivity constraints. [8]
	b)	What are building blocks of deep networks, elaborate. OR
Q8)	a)	With reference to Deep Learning, Expalin the concept of Deep Architectures? [8]
	b)	Justify with elaboration the following statement: [8]
		The k-means algorithm is based on the strong initial condition to decide the Number of clusters through the assignment of 'k' initial centroids or means.