MTH 373/573: Scientific Computing

Solutions to Quiz 3

IIIT-Delhi, Monsoon 2022 Kaushik Kalyanaraman

Problem 1: Positive definiteness of normal equations matrix

5 points

Suppose that $A \in \mathbb{R}^{m \times n}$, $m \ge n$ is of rank n. Prove that the matrix $A^T A$ is positive definite.

Given that A is full rank, this means that for any $0 \neq x \in \mathbb{R}^n$, we have that $Ax \neq 0$. Thus, $\|Ax\|_2^2 = (Ax)^T (Ax) = x^T A^T Ax > 0 \implies A^T A$ is positive definite.

Problem 2: Nonsingularity of normal equations matrix

5 points

Suppose that $A \in \mathbb{R}^{m \times n}$ $m \ge n$ is of rank n. Prove that the matrix $A^T A$ is nonsingular.

Given for any $0 \neq x \in \mathbb{R}^n$, $Ax \neq 0$. Let $y := A^T Ax$. Then $x^T y = \|Ax\|_2^2 \neq 0 \implies y \neq 0$. Hence, for any nonzero x, $A^T Ax \neq 0$ meaning that $A^T A$ is nonsingular.

Problem 3: Orthogonal vectors

5 points

(a) Given two vectors u and v, what is the definition of u being orthogonal to v? (1 point)

Two vectors u and v are orthogonal if their innerproduct is 0, that is $\langle u, v \rangle = u^T v = 0 = v^T u = \langle v, u \rangle$ (since the standard innerproduct is symmetric).

(b) Prove that if two nonzero vectors are orthogonal to each other, then they must also be linearly independent. (4 points)

Consider a linear combination of two orthogonal vectors u and v with scalars α and β : $\alpha u + \beta v$. To check if u and v are independent, we need to check that the only linear combination of u and v that is 0 is the one with $\alpha = 0 = \beta$. Let $\alpha u + \beta v = 0$. Taking innerproduct of both sides with u, we obtain $\langle \alpha u, u \rangle + \langle \beta v, u \rangle = \langle 0, u \rangle \implies \alpha \langle u, u \rangle + \beta \langle v, u \rangle = \alpha + \beta \times 0 = 0$ since the innerproduct of the zero vector with any vector is 0. Thus, $\alpha = 0$. Likewise, $\beta = 0$. Hence u and v are linearly independent.

Problem 4: Orthogonal matrix norm preservation

5 points

Show that multiplication by an orthogonal matrix preserves the Euclidean norm of a vector.

Let $x \in \mathbb{R}^n$ be any vector and $Q \in \mathbb{R}^{n \times n}$ any orthogonal matrix. Then $\|Qx\|_2^2 = (Qx)^T (Qx) = x^T Q^T Qx = x^T x = \|x\|_2^2$ since $Q^T Q = I \in \mathbb{R}^{n \times n}$ the identity matrix by definition.

Problem 5: Orthogonal projector

5 points

If A is a matrix with linearly independent columns, show that $A(A^TA)^{-1}A^T$ is an orthogonal projector onto span(A).

To check that $P := A(A^TA)^{-1}A^T$ is an orthogonal projector, we need to verify that $P^2 = P$, $P^T = P$ and that span(P) = span(A).

$$P^{2} = A (A^{T} A)^{-1} A^{T} A (A^{T} A)^{-1} A^{T} = A (A^{T} A)^{-1} (A^{T} A) (A^{T} A)^{-1} A^{T}$$
$$= A ((A^{T} A)^{-1} (A^{T} A)) (A^{T} A)^{-1} A^{T} = A (A^{T} A)^{-1} A^{T} = P.$$

$$P^{T} = \left(A \left(A^{T} A \right)^{-1} A^{T} \right)^{T} = \left(A^{T} \right)^{T} \left(\left(A^{T} A \right)^{-1} \right)^{T} A^{T} = A \left(\left(A^{T} A \right)^{T} \right)^{-1} A^{T} = A \left(A^{T} A \right)^{-1} A^{T} = P.$$

Finally, for any x, we have that span $P := \{Px\} = \{A(A^TA)^{-1}A^Tx\} = \{A((A^TA)^{-1}A^Tx)\} = \{Ay\} =: \operatorname{span}(A)$.