Exercise

Kinematic Chains

Pick-and-Place In this task, you are required to prepare a robot's program. Its intended purpose is to pick up an object that is initially located on *Tray 1* and place it on *Tray 2*. The object its gripped by its handle.

A program that transports the object from tray 1 to tray 2 is structured as follows:

- 1. Move fast and without the object to hover pose Z1 just above the object on tray 1.
- 2. Move slowly and without the object to the handle of the object on tray 1.
- 3. Grip the object's handle.
- 4. Move slowly and with the object to hover pose Z1.
- 5. Move fast and with the object to hover pose Z2 above tray 2.
- 6. Move slowly and with the object to tray 2.
- 7. Release the object's handle.
- 8. Move slowly and without the object to hover pose $\mathbb{Z}2$.

Robotics and Man-Machine-Interaction I

Task 1. Determine the homogeneous transformations

To successfully program the robot, you need to know the respective homogeneous transformations. The following coordinate systems are known:

 \bullet World coordinates: W

• Table in world coordinates: ${}^{W}\underline{T}_{T}$

• Trays 1 and 2 in table coordinates: ${}^{T}\underline{T}_{A1}$, ${}^{T}\underline{T}_{A2}$

• Handle in object coordinates: ${}^{O}\underline{T}_{G}$

• Robot base in world coordinates: ${}^{W}\underline{T}_{R}$

• Robot TCP in robot base coordinates: ${}^{R}\underline{T}_{TCP}$

Determine the following transformations using semantics known from kinematic chains:

- a) The location of the handle in world coordinates given that the object is located on tray 1: ${}^{W}\underline{T}_{G1}$
- b) The location of the handle in world coordinates given that the object is located on tray 2: ${}^{W}\underline{T}_{G2}$
- c) The location of the handle in robot coordinates given that the object's handle is gripped while standing on tray 1: ${}^{R}\underline{T}_{G1}$
- d) The location of the object in robot coordinates given that the object's handle is gripped while standing on tray 1: ${}^{R}\underline{T}_{O1}$
- e) The location of the table in robot coordinates given that the object's handle is gripped while standing on tray 1: ${}^{R}\underline{T}_{T1}$

Task 2. Moving in relative coordinates

Determine the following transformations to enable the approach of the robot towards the object's handle with reduced velocity.

- a) The hover pose Z1 in world coordinates, which is located relative to the object's handle with a displacement of dz in the direction of the z axis: ${}^W\underline{T}_{Z1}$
- b) The hover pose Z2 in world coordinates, which is located relative to the object's handle with a displacement of dz in the direction of the z axis: ${}^W\underline{T}_{Z2}$

Task 3. Robot's program in world coordinates

Determine the program in world coordinates. Enumerate all coordinates the robot needs to approach in the program steps 1-8.

Task 4. Robot's program in object coordinates

As an alternative, determine the program in object coordinates. Enumerate all coordinates the robot needs to approach in the program steps 1-8.

