HIMatrix

Sicherheitsgerichtete Steuerung

Handbuch F31 03

HIMA Paul Hildebrandt GmbH Industrie-Automatisierung

Rev. 2.00 HI 800 474 D

Alle in diesem Handbuch genannten HIMA Produkte sind mit dem Warenzeichen geschützt. Dies gilt ebenfalls, soweit nicht anders vermerkt, für weitere genannte Hersteller und deren Produkte.

HIMax®, HIMatrix®, SILworX®, XMR® und FlexSILon® sind eingetragene Warenzeichen der HIMA Paul Hildebrandt GmbH.

Alle technischen Angaben und Hinweise in diesem Handbuch wurden mit größter Sorgfalt erarbeitet und unter Einschaltung wirksamer Kontrollmaßnahmen zusammengestellt. Bei Fragen bitte direkt an HIMA wenden. Für Anregungen, z. B. welche Informationen noch in das Handbuch aufgenommen werden sollen, ist HIMA dankbar.

Technische Änderungen vorbehalten. Ferner behält sich HIMA vor, Aktualisierungen des schriftlichen Materials ohne vorherige Ankündigungen vorzunehmen.

Weitere Informationen sind in der Dokumentation auf der HIMA DVD und auf unserer Webseite unter http://www.hima.de und http://www.hima.com zu finden.

© Copyright 2013, HIMA Paul Hildebrandt GmbH Alle Rechte vorbehalten.

Kontakt

HIMA Adresse: HIMA Paul Hildebrandt GmbH Postfach 1261 68777 Brühl

Tel.: +49 6202 709-0
Fax: +49 6202 709-107
E-Mail: info@hima.com

Revisions-	Änderungen	Art der Änderung	
index		technisch	redaktionell
1.00	Erstausgabe des Handbuchs		
2.00	Geändert: Bild 6 und Tabelle 6 Hinzugefügt: F31 034, SIL 4 zertifiziert nach EN 50126, EN 50128 und EN 50129, Kapitel 4.1.3	X	Х

F31 03 Inhaltsverzeichnis

Inhaltsverzeichnis

1	Einleitung	5
1.1	Aufbau und Gebrauch des Handbuchs	5
1.2	Zielgruppe	5
1.3	Darstellungskonventionen	6
1.3.1 1.3.2	Sicherheitshinweise Gebrauchshinweise	6 7
2	Sicherheit	8
2.1	Bestimmungsgemäßer Einsatz	8
2.1.1 2.1.2	Umgebungsbedingungen ESD-Schutzmaßnahmen	8 8
2.2	Restrisiken	9
2.3	Sicherheitsvorkehrungen	9
2.4	Notfallinformationen	9
3	Produktbeschreibung	10
3.1	Sicherheitsfunktion	10
3.1.1	Sicherheitsgerichtete digitale Eingänge	10
3.1.1.1 3.1.1.2	Reaktion im Fehlerfall Line Control	11 11
3.1.2	Sicherheitsgerichtete digitale Ausgänge	12
3.1.2.1	Reaktion im Fehlerfall	12
3.2	Ausstattung und Lieferumfang	13
3.2.1	IP-Adresse und System-ID (SRS)	13
3.3	Typenschild	14
3.4	Aufbau	15
3.4.1	LED-Anzeigen	16
3.4.1.1	Betriebsspannungs-LED	16
3.4.1.2 3.4.1.3	System-LEDs Kommunikations-LEDs	17 18
3.4.1.4	E/A-LEDs	18
3.4.2	Kommunikation	19
3.4.2.1 3.4.2.2	Anschlüsse für Ethernet-Kommunikation Verwendete Netzwerkports für Ethernet-Kommunikation	19 20
3.4.3 3.4.4	Reset-Taster Hardware-Uhr	21 21
3.5	Produktdaten	22
3.6	HIMatrix F31 03 zertifiziert	24

HI 800 474 D Rev. 2.00 Seite 3 von 48

Inhaltsverzeichnis F31 03

4	Inbetriebnahme	25
4.1	Installation und Montage	25
4.1.1	Anschluss der digitalen Eingänge	25
4.1.1.1	Surge auf digitalen Eingängen	26
4.1.2 4.1.3	Anschluss der digitalen Ausgänge Klemmenstecker	26 27
4.2	Ereignisaufzeichnung (SOE)	28
4.3	Konfiguration mit SILworX	29
4.3.1	Prozessormodul	29
4.3.1.1	Register Modul	29
4.3.1.2	Register Routings	31
4.3.1.3 4.3.1.4	Register Ethernet-Switch Register VLAN (port-based VLAN)	32 32
4.3.1.5	Register LLDP	33
4.3.1.6	Register Mirroring	33
4.3.2	Kommunikationsmodul	33
4.3.3	Parameter und Fehlercodes der Eingänge und Ausgänge	33 34
4.3.4 4.3.4.1	Digitale Eingänge F31 03 Register Modul	34
4.3.4.1	Register DI 20: Kanäle	35
4.3.5	Digitale Ausgänge F31 03	36
4.3.5.1	Register Modul	36
4.3.5.2	Register DO 8: Kanäle	37
5	Betrieb	38
5.1	Bedienung	38
5.2	Diagnose	38
6	Instandhaltung	39
6.1	Fehler	39
6.2	Instandhaltungsmaßnahmen	39
6.2.1	Betriebssystem laden	39
6.2.2	Wiederholungsprüfung	39
7	Außerbetriebnahme	40
8	Transport	41
9	Entsorgung	42
	Anhang	43
	Glossar	43
	Abbildungsverzeichnis	44
	Tabellenverzeichnis	45
	Index	46

Seite 4 von 48 HI 800 474 D Rev. 2.00

F31 03 1 Einleitung

1 Einleitung

Dieses Handbuch beschreibt die technischen Eigenschaften des Geräts und seine Verwendung. Das Handbuch enthält Informationen über die Installation, die Inbetriebnahme und die Konfiguration in SILworX.

1.1 Aufbau und Gebrauch des Handbuchs

Der Inhalt dieses Handbuchs ist Teil der Hardware-Beschreibung des programmierbaren elektronischen Systems HIMatrix.

Das Handbuch ist in folgende Hauptkapitel gegliedert:

- Einleitung
- Sicherheit
- Produktbeschreibung
- Inbetriebnahme
- Betrieb
- Instandhaltung
- Außerbetriebnahme
- Transport
- Entsorgung

Zusätzlich sind die folgenden Dokumente zu beachten:

Name	Inhalt	Dokumentennummer
HIMatrix Systemhandbuch Kompaktsysteme	Hardware-Beschreibung HIMatrix Kompaktsysteme	HI 800 140 D
HIMatrix Sicherheitshandbuch	Sicherheitsfunktionen des HIMatrix Systems	HI 800 022 D
HIMatrix Sicherheitshandbuch für Bahnanwendungen	Sicherheitsfunktionen des HIMatrix Systems für den Einsatz der HIMatrix in Bahnanwendungen	HI 800 436 D
SILworX Kommunikationshandbuch	Beschreibung der Kommunikationsprotokolle, ComUserTask und ihrer Projektierung in SILworX	HI 801 100 D
SILworX Online-Hilfe	SILworX-Bedienung	-
SILworX Erste Schritte	Einführung in SILworX am Beispiel des HIMax Systems	HI 801 102 D

Tabelle 1: Zusätzlich geltende Dokumente

Die aktuellen Handbücher befinden sich auf der HIMA Webseite www.hima.de. Anhand des Revisionsindex in der Fußzeile kann die Aktualität eventuell vorhandener Handbücher mit der Internetausgabe verglichen werden.

1.2 Zielgruppe

Dieses Dokument wendet sich an Planer, Projekteure und Programmierer von Automatisierungsanlagen sowie Personen, die zu Inbetriebnahme, Betrieb und Wartung der Geräte, Baugruppen und Systeme berechtigt sind. Vorausgesetzt werden spezielle Kenntnisse auf dem Gebiet der sicherheitsgerichteten Automatisierungssysteme.

HI 800 474 D Rev. 2.00 Seite 5 von 48

1 Einleitung F31 03

1.3 Darstellungskonventionen

Zur besseren Lesbarkeit und zur Verdeutlichung gelten in diesem Dokument folgende Schreibweisen:

Fett Hervorhebung wichtiger Textteile.

Bezeichnungen von Schaltflächen, Menüpunkten und Registern im

Programmierwerkzeug, die angeklickt werden können

KursivParameter und SystemvariablenCourierWörtliche Benutzereingaben

RUN Bezeichnungen von Betriebszuständen in Großbuchstaben Kap. 1.2.3 Querverweise sind Hyperlinks, auch wenn sie nicht besonders

gekennzeichnet sind. Wird der Mauszeiger darauf positioniert, verändert er seine Gestalt. Bei einem Klick springt das Dokument zur betreffenden

Stelle.

Sicherheits- und Gebrauchshinweise sind besonders gekennzeichnet.

1.3.1 Sicherheitshinweise

Die Sicherheitshinweise im Dokument sind wie folgend beschrieben dargestellt. Um ein möglichst geringes Risiko zu gewährleisten, sind sie unbedingt zu befolgen. Der inhaltliche Aufbau ist

- Signalwort: Warnung, Vorsicht, Hinweis
- Art und Quelle des Risikos
- Folgen bei Nichtbeachtung
- Vermeidung des Risikos

A SIGNALWORT

Art und Quelle des Risikos! Folgen bei Nichtbeachtung Vermeidung des Risikos

Die Bedeutung der Signalworte ist

- Warnung: Bei Missachtung droht schwere K\u00f6rperverletzung bis Tod
- Vorsicht: Bei Missachtung droht leichte K\u00f6rperverletzung
- Hinweis: Bei Missachtung droht Sachschaden

HINWEIS

Art und Quelle des Schadens! Vermeidung des Schadens

Seite 6 von 48 HI 800 474 D Rev. 2.00

F31 03 1 Einleitung

1.3.2 Gebrauchshinweise Zusatzinformationen sind nach folgendem Beispiel aufgebaut: An dieser Stelle steht der Text der Zusatzinformation. Nützliche Tipps und Tricks erscheinen in der Form: TIPP An dieser Stelle steht der Text des Tipps.

HI 800 474 D Rev. 2.00 Seite 7 von 48

2 Sicherheit F31 03

2 Sicherheit

Sicherheitsinformationen, Hinweise und Anweisungen in diesem Dokument unbedingt lesen. Das Produkt nur unter Beachtung aller Richtlinien und Sicherheitsrichtlinien einsetzen.

Dieses Produkt wird mit SELV oder PELV betrieben. Vom Produkt selbst geht kein Risiko aus. Einsatz im Ex-Bereich nur mit zusätzlichen Maßnahmen erlaubt.

2.1 Bestimmungsgemäßer Einsatz

HIMatrix Komponenten sind zum Aufbau von sicherheitsgerichteten Steuerungssystemen vorgesehen.

Für den Einsatz der Komponenten im HIMatrix System sind die nachfolgenden Bedingungen einzuhalten.

2.1.1 Umgebungsbedingungen

Art der Bedingung	Wertebereich
Schutzklasse	Schutzklasse III nach IEC/EN 61131-2
Umgebungstemperatur	0+60 °C
Lagertemperatur	-40+85 °C
Verschmutzung	Verschmutzungsgrad II nach IEC/EN 61131-2
Aufstellhöhe	< 2000 m
Gehäuse	Standard: IP20
Versorgungsspannung	24 VDC

Tabelle 2: Umgebungsbedingungen

Andere als die in diesem Handbuch genannten Umgebungsbedingungen können zu Betriebsstörungen des HIMatrix Systems führen.

2.1.2 ESD-Schutzmaßnahmen

Nur Personal, das Kenntnisse über ESD-Schutzmaßnahmen besitzt, darf Änderungen oder Erweiterungen des Systems oder den Austausch von Geräten durchführen.

HINWEIS

Geräteschaden durch elektrostatische Entladung!

- Für die Arbeiten einen antistatisch gesicherten Arbeitsplatz benutzen und ein Erdungsband tragen.
- Bei Nichtbenutzung Gerät elektrostatisch geschützt aufbewahren, z. B. in der Verpackung.

Seite 8 von 48 HI 800 474 D Rev. 2.00

F31 03 2 Sicherheit

2.2 Restrisiken

Von einem HIMatrix System selbst geht kein Risiko aus.

Restrisiken können ausgehen von:

- Fehlern in der Projektierung
- Fehlern im Anwenderprogramm
- Fehlern in der Verdrahtung

2.3 Sicherheitsvorkehrungen

Am Einsatzort geltende Sicherheitsbestimmungen beachten und vorgeschriebene Schutzausrüstung tragen.

2.4 Notfallinformationen

Ein HIMatrix System ist Teil der Sicherheitstechnik einer Anlage. Der Ausfall eines Geräts oder einer Baugruppe bringt die Anlage in den sicheren Zustand.

Im Notfall ist jeder Eingriff, der die Sicherheitsfunktion der HIMatrix Systeme verhindert, verboten.

HI 800 474 D Rev. 2.00 Seite 9 von 48

3 Produktbeschreibung

Die sicherheitsgerichtete Steuerung **F31 03** ist ein Kompaktsystem im Metallgehäuse mit 20 digitalen Eingängen und 8 digitalen Ausgängen.

Die Konfiguration erfolgt mit dem Programmierwerkzeug SILworX, siehe Kapitel 4.3.

Das Gerät ist für Ereignisaufzeichnung SOE (Sequence of Events Recording) geeignet, siehe Kapitel 4.2. Das Gerät unterstützt Multitasking und Reload. Einzelheiten hierzu siehe Systemhandbuch Kompaktsysteme HI 800 140 D.

i

Ereignisaufzeichnung, Multitasking und Reload sind nur möglich mit einer Lizenz.

Das Gerät ist TÜV zertifiziert für sicherheitsgerichtete Anwendungen bis SIL 3 (IEC 61508, IEC 61511 und IEC 62061), Kat. 4 und PL e (EN ISO 13849-1) und SIL 4 (EN 50126, EN 50128 und EN 50129).

Weitere Sicherheitsnormen, Anwendungsnormen und Prüfgrundlagen können den Zertifikaten auf der HIMA Webseite entnommen werden.

3.1 Sicherheitsfunktion

Die Steuerung verfügt über sicherheitsgerichtete digitale Eingänge und Ausgänge.

3.1.1 Sicherheitsgerichtete digitale Eingänge

Die Steuerung ist mit 20 digitalen Eingängen ausgestattet. Je eine LED signalisiert den Zustand (HIGH, LOW) eines Eingangs.

An die Eingänge können Kontaktgeber ohne eigene Spannungsversorgung oder Signal-Spannungsquellen angeschlossen werden.

Potenzialfreie Kontaktgeber ohne eigene Spannungsversorgung werden über die internen kurzschlussfesten 24-V-Spannungsquellen (LS+) versorgt. Jede davon versorgt eine Gruppe von vier Kontaktgebern. Der Anschluss erfolgt wie in Bild 1 beschrieben.

Bei Signal-Spannungsquellen muss deren Bezugspotenzial mit dem des Eingangs (L-) verbunden werden, siehe Bild 1.

Anschluss von potenzialfreien Kontaktgebern Anschluss von Signal-Spannungsquellen

Bild 1: Anschlüsse an sicherheitsgerichteten digitalen Eingängen

Bei der externen Verdrahtung und dem Anschluss von Sensoren ist das Ruhestromprinzip anzuwenden. Als sicherer Zustand im Fehlerfall wird damit bei Eingangssignalen der energielose Zustand (Low-Pegel) eingenommen.

Wird die externe Leitung nicht überwacht, dann wird ein Drahtbruch als sicherer Low-Pegel gewertet.

Seite 10 von 48 HI 800 474 D Rev. 2.00

3.1.1.1 Reaktion im Fehlerfall

Stellt das Gerät an einem digitalen Eingang einen Fehler fest, verarbeitet das Anwenderprogramm entsprechend dem Ruhestromprinzip einen Low-Pegel.

Das Gerät aktiviert die LED FAULT.

Das Anwenderprogramm muss zusätzlich zum Signalwert des Kanals den entsprechenden Fehlercode berücksichtigen.

Durch Verwendung des Fehlercodes bestehen zusätzliche Möglichkeiten, Fehlerreaktionen im Anwenderprogramm zu konfigurieren.

3.1.1.2 Line Control

Line Control ist eine Leitungsschluss- und Leitungsbruch-Erkennung, z. B. bei NOT-AUS-Eingängen nach Kat. 4 und PL e gemäß EN ISO 13849-1, die beim System F31 parametriert werden kann.

Dazu die digitalen Ausgänge DO 1 bis DO 8 des Systems mit den digitalen Eingängen DI des gleichen Systems wie folgt verbinden:

NOT-AUS 1
NOT-AUS 2

NOT-AUS-Schalter nach den Normen EN 60947-5-1 und EN 60947-5-5

Bild 2: Line Control

Die Steuerung taktet die digitalen Ausgänge, um Leitungsschluss und Leitungsbruch der Leitungen zu den digitalen Eingängen zu erkennen. Hierzu in SILworX die Systemvariable *Wert [BOOL]* -> parametrieren. Die Variablen für die Taktausgaben müssen bei Kanal 1 beginnen und direkt nacheinander liegen.

Die LED *FAULT* auf der Frontplatte der Steuerung blinkt, die Eingänge werden auf Low-Pegel gesetzt und ein (auswertbarer) Fehlercode wird erzeugt, wenn folgende Fehler auftreten:

- Querschluss zwischen zwei parallelen Leitungen,
- Vertauschung von zwei Leitungen (z. B. DO 2 an DI 3),
- Erdschluss einer der Leitungen (nur bei geerdetem Bezugspotenzial),
- Leitungsbruch oder Öffnen der Kontakte, d. h. auch beim Betätigen einer der oben gezeigten NOT-AUS-Schalter blinkt die LED FAULT, und der Fehlercode wird erzeugt.

HI 800 474 D Rev. 2.00 Seite 11 von 48

3.1.2 Sicherheitsgerichtete digitale Ausgänge

Die Steuerung ist mit 8 digitalen Ausgängen ausgestattet. Je eine LED signalisiert den Zustand (HIGH, LOW) eines Ausgangs.

Die Ausgänge 1...3 und 5...7 können bei maximaler Umgebungstemperatur jeweils mit 0,5 A belastet werden, die Ausgänge 4 und 8 mit jeweils 1 A, bei einer Umgebungstemperatur bis 50 °C mit 2 A.

Bei Überlast werden einer oder alle Ausgänge abgeschaltet. Ist die Überlast beseitigt, werden die Ausgänge automatisch wieder zugeschaltet, siehe Tabelle 14.

Die externe Leitung eines Ausgangs wird nicht überwacht, ein erkannter Kurzschluss wird aber signalisiert.

Bild 3: Anschluss von Aktoren an die Ausgänge

Eine redundante Verschaltung von zwei Ausgängen muss mit Dioden entkoppelt werden.

▲ VORSICHT

Zum Anschluss einer Last an einen 1-polig schaltenden Ausgang ist das zugehörige Bezugspotenzial L- der betreffenden Kanalgruppe zu verwenden (2-poliger Anschluss), damit die interne Schutzbeschaltung wirken kann.

Der Anschluss induktiver Lasten kann ohne Freilaufdiode am Verbraucher erfolgen. Zur Unterdrückung von Störspannungen wird jedoch eine Schutzdiode direkt am Verbraucher dringend empfohlen.

3.1.2.1 Reaktion im Fehlerfall

Stellt das Gerät ein fehlerhaftes Signal an einem digitalen Ausgang fest, setzt es diesen über die Sicherheitsschalter in den sicheren (energielosen) Zustand.

Bei einem Gerätefehler werden alle digitalen Ausgänge abgeschaltet.

Das Gerät aktiviert in beiden Fällen die LED FAULT.

Durch Verwendung des Fehlercodes bestehen zusätzliche Möglichkeiten, Fehlerreaktionen im Anwenderprogramm zu konfigurieren.

Seite 12 von 48 HI 800 474 D Rev. 2.00

3.2 Ausstattung und Lieferumfang

In der folgenden Tabelle ist die verfügbare Steuerung aufgeführt:

Bezeichnung	Beschreibung
F31 03	Steuerung (erhöhte Performance, 20 digitale Eingänge, 8 digitale
SILworX	Ausgänge),
	Betriebstemperatur 0+60 °C,
	für Programmierwerkzeug SILworX

Tabelle 3: Verfügbare Steuerung

3.2.1 IP-Adresse und System-ID (SRS)

Mit dem Gerät wird ein transparenter Aufkleber geliefert, auf dem die IP-Adressen von CPU und COM und die System-ID (SRS, System.Rack.Slot) nach einer Änderung vermerkt werden können.

Default-Wert für IP-Adresse der CPU: 192.168.0.99

Default-Wert für IP-Adresse der COM: 192.168.0.100

Default-Wert für SRS: 60 000.0.0

Die Belüftungsschlitze auf dem Gehäuse des Geräts dürfen durch den Aufkleber nicht abgedeckt werden.

Das Ändern von IP-Adresse und System-ID ist im Handbuch *Erste Schritte SILworX* beschrieben.

HI 800 474 D Rev. 2.00 Seite 13 von 48

3.3 Typenschild

Das Typenschild enthält folgende Angaben:

- Produktnamen
- Barcode (Strichcode oder 2D-Code)
- Teilenummer
- Produktionsjahr
- Hardware-Revisionsindex (HW-Rev.)
- Firmware-Revisionsindex (FW-Rev.)
- Betriebsspannung
- Prüfzeichen

Bild 4: Typenschild exemplarisch

Seite 14 von 48 HI 800 474 D Rev. 2.00

3.4 Aufbau

Das Kapitel Aufbau beschreibt das Aussehen und die Funktion der Steuerung, und die Anschlüsse zur Kommunikation.

Bild 5: Frontansicht

Bild 6: Blockschaltbild

HI 800 474 D Rev. 2.00 Seite 15 von 48

3.4.1 LED-Anzeigen

Die Leuchtdioden zeigen den Betriebszustand der Steuerung an. Die LED-Anzeigen unterteilen sich wie folgt:

- Betriebsspannungs-LED
- System-LEDs
- Kommunikations-LED
- E/A-LEDs

Beim Zuschalten der Versorgungsspannung erfolgt immer ein Leuchtdioden-Test, bei dem für kurze Zeit alle Leuchtdioden leuchten.

Definition der Blinkfrequenzen:

In der folgenden Tabelle sind die Blinkfrequenzen der LEDs definiert:

Name	Blinkfrequenz
Blinken1	lang (ca. 600 ms) an, lang (ca. 600 ms) aus
Blinken-x	Ethernet-Kommunikation: Aufblitzen im Takt der Datenübertragung

Tabelle 4: Blinkfrequenzen der Leuchtdioden

3.4.1.1 Betriebsspannungs-LED

Die Betriebsspannungs-LED ist unabhängig vom verwendeten CPU-Betriebssystem.

LED	Farbe	Status	Bedeutung
24 VDC	Grün	Ein	Betriebsspannung 24 VDC vorhanden
		Aus	Keine Betriebsspannung

Tabelle 5: Anzeige der Betriebsspannung

Seite 16 von 48 HI 800 474 D Rev. 2.00

3.4.1.2 System-LEDs

Beim Booten des Geräts leuchten alle LEDs gleichzeitig.

LED	Farbe	Status	Bedeutung
RUN	Grün	Ein	Gerät im Zustand RUN, Normalbetrieb.
ļ			Ein geladenes Anwenderprogramm wird ausgeführt
		Blinken1	Gerät im Zustand STOPP
			Ein neues Betriebssystem wird geladen.
		Aus	Gerät ist nicht im Zustand RUN oder STOPP.
ERR	Rot	Ein	Fehlende Lizenz für Zusatzfunktionen (Kommunikationsprotokolle, Reload), Testbetrieb.
		Blinken1	 Das Gerät ist im Zustand FEHLERSTOPP. Durch Selbsttest festgestellter interner Fehler, z. B. Hardware-
			Fehler oder Fehler der Spannungsversorgung.
			Das Prozessorsystem kann nur durch einen Befehl vom PADT
			wieder gestartet werden (Reboot).
			 Fehler beim Laden des Betriebssystems
		Aus	Keine Fehler festgestellt.
PROG	Gelb	Ein	 Das Gerät wird mit einer neuen Konfiguration geladen.
			■ Ein neues Betriebssystem wird geladen.
			 Änderung der WDZ oder Sicherheitszeit.
			 Prüfung auf doppelte IP-Adresse.
			Änderung der SRS.
		Blinken1	Reload wird durchgeführt
			 Es wurde eine doppelte IP-Adresse entdeckt. 1)
			 PROFINET hat einen Identify Request erhalten. 1)
		Aus	Keines der beschriebenen Ereignisse ist aufgetreten.
FORCE	Gelb	Ein	Forcen vorbereitet: Force-Schalter einer Variablen ist gesetzt, der
			Force-Hauptschalter ist noch deaktiviert. Das Gerät ist im Zustand
			RUN oder STOPP.
		Blinken1	Forcen aktiv: Mindestens eine lokale oder globale Variable hat
			ihren Force-Wert angenommen.
			■ Es wurde eine doppelte IP-Adresse entdeckt. 1)
			 PROFINET hat einen Identify Request erhalten. 1)
		Aus	Keines der beschriebenen Ereignisse ist aufgetreten.
FAULT	Gelb	Blinken1	 Das neue Betriebssystem ist verfälscht (nach dem Download).
			 Fehler beim Laden eines neuen Betriebssystems.
			 Die geladene Konfiguration ist fehlerhaft.
			 Mindestens ein E/A-Fehler wurde festgestellt.
			Es wurde eine doppelte IP-Adresse entdeckt. 1) De General (1) Es wurde eine doppelte IP-Adresse entdeckt. 1)
			PROFINET hat einen Identify Request erhalten. 1)
		Aus	Keiner der beschriebenen Fehler ist aufgetreten.
OSL	Gelb	Blinken1	 Notfall-Loader des Betriebssystems aktiv.
			■ Es wurde eine doppelte IP-Adresse entdeckt. 1)
			■ PROFINET hat einen Identify Request erhalten. 1)
		Aus	Keines der beschriebenen Ereignisse ist aufgetreten.
BL	Gelb	Blinken1	 BS und OSL Binary defekt oder Hardware-Fehler INIT_FAIL.
			Fehler der externen Prozessdaten-Kommunikation
			■ Es wurde eine doppelte IP-Adresse entdeckt. 1)
			PROFINET hat einen Identify Request erhalten. 1)
	I .	Ι Δ	Keines der beschriebenen Ereignisse ist aufgetreten.
		Aus	Refiles del Descriffeberien Ereignisse ist adigetreten.

Tabelle 6: Anzeige der System-LEDs

HI 800 474 D Rev. 2.00 Seite 17 von 48

3.4.1.3 Kommunikations-LEDs

Alle RJ-45-Anschlussbuchsen sind mit einer grünen und einer gelben LED ausgestattet. Die LEDs signalisieren folgende Zustände:

LED	Status	Bedeutung
Grün	Ein	Vollduplex-Betrieb
	Blinken1	IP-Adresskonflikt, alle Kommunikations-LEDs blinken
	Blinken-x	Kollision
	Aus	Halbduplex-Betrieb, keine Kollision
Gelb	Ein	Verbindung vorhanden
	Blinken1	IP Adresskonflikt, alle Kommunikations-LEDs blinken
	Blinken-x	Aktivität der Schnittstelle
	Aus	Keine Verbindung vorhanden

Tabelle 7: Ethernetanzeige

3.4.1.4 E/A-LEDs

LED	Farbe	Status	Bedeutung
DI 124	Gelb	Ein	High-Pegel liegt am Eingang an
		Aus	Low-Pegel liegt am Eingang an
DO 18	Gelb	Ein	High-Pegel liegt am Ausgang an
		Aus	Low-Pegel liegt am Ausgang an

Tabelle 8: Anzeige E/A-LEDs

Seite 18 von 48 HI 800 474 D Rev. 2.00

Kommunikation 3.4.2

Die Steuerung kommuniziert mit Remote I/Os über safeethernet. Eigenschaften und Konfiguration von safeethernet-Verbindungen sind im SILworX Kommunikationshandbuch HI 801 100 D beschrieben.

3.4.2.1 Anschlüsse für Ethernet-Kommunikation

Eigenschaft	Beschreibung	
Port	4 x RJ-45	
Übertragungsstandard	10BASE-T/100BASE-Tx, Halb- und Vollduplex	
Auto Negotiation	Ja	
Auto-Crossover	Ja	
IP-Adresse	Frei konfigurierbar ¹⁾	
Subnet Mask	Frei konfigurierbar ¹⁾	
Unterstützte Protokolle	 Sicherheitsgerichtet: safeethernet, PROFIsafe Standardprotokolle: Programmiergerät (PADT), OPC, Modbus-TCP, TCP-SR, SNTP, CUT, PROFINET 	
Allgemein gültige Regeln für die Vergabe von IP-Adressen und Subnet Masks müssen beachtet werden		

beachtet werden.

Tabelle 9: Eigenschaften Ethernet-Schnittstellen

Je zwei der RJ-45-Anschlüsse mit integrierten LEDs sind auf der Ober- und Unterseite des Gehäuses links angeordnet. Die Bedeutung der LEDs ist in Kapitel 3.4.1.3 beschrieben.

Das Auslesen der Verbindungsparameter basiert auf der MAC-Adresse (Media Access Control), die bei der Herstellung festgelegt wird.

CPU und COM verfügen jeweils über eine eigene MAC-Adresse. Die MAC-Adresse der CPU befindet sich auf einem Aufkleber über den beiden unteren RJ-45-Anschlüssen (1 und 2).

MAC 00:E0:A1:00:06:C0

Bild 7: Aufkleber MAC-Adresse exemplarisch

Die MAC-Adresse der COM entspricht der MAC-Adresse der CPU, wobei das letzte Byte um 1 erhöht wird.

Beispiel:

MAC-Adresse der CPU: 00:E0:A1:00:06:C0 MAC-Adresse der COM: 00:E0:A1:00:06:C1

Die Steuerung besitzt einen integrierten Switch für die Ethernet-Kommunikation. Weitere Details zu den Themen Switch und safeethernet finden sich in Kapitel Kommunikation im Systemhandbuch Kompaktsysteme HI 800 140 D.

HI 800 474 D Rev. 2.00 Seite 19 von 48 1

3.4.2.2 Verwendete Netzwerkports für Ethernet-Kommunikation

UDP Ports	Verwendung
123	SNTP (Zeitsynchronisation zwischen PES und Remote I/O, sowie externen Geräten)
502	Modbus Slave (vom Anwender änderbar)
6010	safeethernet und OPC
6005 / 6012	Falls im HH-Netzwerk nicht TCS_DIRECT gewählt wurde
8000	Programmierung und Bedienung mit SILworX
8004	Konfiguration der Remote I/O durch die PES (SILworX)
34 964	PROFINET Endpointmapper (für Verbindungsaufbau notwendig)
49 152	PROFINET RPC-Server
49 153	PROFINET RPC-Client

Tabelle 10: Verwendete Netzwerkports (UDP Ports)

TCP Ports	Verwendung
502	Modbus Slave (vom Anwender änderbar)
XXX	TCP-SR durch Anwender vergeben

Tabelle 11: Verwendete Netzwerkports (TCP Ports)

Die ComUserTask kann jeden beliebigen Port verwenden, wenn dieser nicht bereits von einem anderen Protokoll belegt ist.

Seite 20 von 48 HI 800 474 D Rev. 2.00

3.4.3 Reset-Taster

Die Steuerung ist mit einem Reset-Taster ausgerüstet. Ein Betätigen wird nur notwendig, wenn Benutzername oder Passwort für den Administratorzugriff nicht bekannt sind. Passt lediglich die eingestellte IP-Adresse der Steuerung nicht zum PADT (PC), kann durch einen Route add Eintrag im PC die Verbindungsaufnahme ermöglicht werden.

Der Taster ist durch ein kleines rundes Loch an der Oberseite des Gehäuses zugänglich, das sich ca. 5 cm vom linken Rand entfernt befindet. Die Betätigung muss mit einem geeigneten Stift aus Isoliermaterial erfolgen, um Kurzschlüsse im Innern der Steuerung zu vermeiden.

Der Reset ist nur wirksam, wenn die Steuerung neu gebootet (ausschalten, einschalten) und gleichzeitig der Taster für die Dauer von mindestens 20 s gedrückt wird. Eine Betätigung während des Betriebs hat keine Wirkung.

Eigenschaften und Verhalten der Steuerung nach einem Reboot mit betätigtem Reset-Taster:

- Verbindungsparameter (IP-Adresse und System-ID) werden auf die Default-Werte gesetzt.
- Alle Accounts werden deaktiviert, außer dem Default-Account Administrator ohne Passwort.
- Das Laden eines Anwenderprogramms oder Betriebssystems mit Default-Verbindungsparametern ist gesperrt!
 Das Laden kann erst durchgeführt werden, nachdem die Verbindungsparameter und der Account auf der Steuerung parametriert sind und die Steuerung erneut gebootet wurde.

Nach einem erneuten Reboot ohne betätigtem Reset-Taster, werden die Verbindungsparameter (IP-Adresse und System-ID) und Accounts gültig:

- Die vom Anwender parametriert wurden.
- Die vor dem Reboot mit betätigtem Reset-Taster eingetragen waren, wenn keine Änderungen vorgenommen wurden.

3.4.4 Hardware-Uhr

Bei Ausfall der Betriebsspannung reicht die Energie eines eingebauten Kondensators, um die Hardware-Uhr etwa eine Woche lang zu puffern.

HI 800 474 D Rev. 2.00 Seite 21 von 48

3.5 Produktdaten

Allgemein	
Gesamter Programm- und Datenspeicher für alle Anwenderprogramme	5 MB, abzügl. 64 kByte für CRCs
Reaktionszeit	≥ 6 ms
Ethernet-Schnittstellen	4 x RJ-45, 10BASE-T/100BASE-Tx mit integriertem Switch
Betriebsspannung	24 VDC, -15+20 %, $w_{ss} \le 15$ %, aus einem Netzgerät mit sicherer Trennung, nach Anforderungen der IEC 61131-2
Stromaufnahme	max. 8 A (mit maximaler Last) Leerlauf: ca. 0,4 A bei 24 V
Absicherung (extern)	10 A Träge (T)
Puffer für Datum/Uhrzeit	Goldcap
Betriebstemperatur	0+60 °C
Lagertemperatur	-40+85 °C
Schutzart	IP20
Max. Abmessungen (ohne Stecker)	Breite: 257 mm (mit Gehäuseschrauben) Höhe: 114 mm (mit Befestigungsriegel) Tiefe: 66 mm (mit Erdungsschraube)
Masse	1,2 kg

Tabelle 12: Produktdaten

Digitale Eingänge		
Anzahl der Eingänge		20 (nicht galvanisch getrennt)
High-Pegel:	Spannung	1530 VDC
	Stromaufnahme	≥ 2 mA bei 15 V
Low-Pegel:	Spannung	max. 5 VDC
	Stromaufnahme	max. 1,5 mA (1 mA bei 5 V)
Schaltpunkt		typ. 7,5 V
Speisung		5 x 20 V / 100 mA (bei 24 V), kurzschlussfest

Tabelle 13: Technische Daten der digitalen Eingänge

Seite 22 von 48 HI 800 474 D Rev. 2.00

Digitale Ausgänge			
Anzahl der Ausgänge	8 (nicht galvanisch getrennt)		
Ausgangsspannung	≥ L+ minus 2 V		
Ausgangsstrom	Kanäle 13 und 57: 0,5 A bis 60 °C Der Ausgangsstrom der Kanäle 4 und 8 ist abhängig von der Umgebungstemperatur:		
	Umgebungstemperatur	Ausgangsstrom	
	< 50 °C	2 A	
	5060 °C	1 A	
Minimale Last	2 mA je Kanal	_	
Interner Spannungsabfall	max. 2 V bei 2 A		
Leckstrom (bei Low-Pegel)	max. 1 mA bei 2 V		
Verhalten bei Überlast	Abschalten des betroffenen Azyklischem Wiedereinschalte		
Gesamt-Ausgangsstrom	max. 7 A Bei Überschreitung Abschalte zyklischem Wiedereinschalte		

Tabelle 14: Technische Daten der digitalen Ausgänge

HI 800 474 D Rev. 2.00 Seite 23 von 48

3.6 HIMatrix F31 03 zertifiziert

HIMatrix F31 03	
CE	EMV
TÜV	IEC 61508 1-7:2010 bis SIL 3
	IEC 61511:2004
	EN ISO 13849-1:2008
	IEC 62061:2005
	EN 50156-1:2004
	EN 298:2003
	EN 230:2005
TÜV CENELEC	Bahnanwendungen
	EN 50126: 1999 bis SIL 4
	EN 50128: 2001 bis SIL 4
	EN 50129: 2003 bis SIL 4

Tabelle 15: Zertifikate

Weitere Sicherheits- und Anwendernormen können dem TÜV-Zertifikat entnommen werden. Die Zertifikate und EC Baumusterprüfbescheinigung befinden sich auf der HIMA Webseite www.hima.de.

Seite 24 von 48 HI 800 474 D Rev. 2.00

F31 03 4 Inbetriebnahme

4 Inbetriebnahme

Zur Inbetriebnahme der Steuerung gehören der Einbau und der Anschluss sowie die Konfiguration in SILworX.

4.1 Installation und Montage

Die Montage der Steuerung erfolgt auf einer Hutschiene 35 mm (DIN) wie im HIMatrix Systemhandbuch Kompaktsysteme beschrieben.

Beim Anschluss ist auf eine störungsarme Verlegung von insbesondere längeren Leitungen zu achten, z. B. durch getrennte Verlegung von Signal- und Versorgungsleitungen.

Bei der Dimensionierung des Kabels ist darauf zu achten, dass die elektrischen Eigenschaften des Kabels keinen negativen Einfluss auf den Messkreis haben.

4.1.1 Anschluss der digitalen Eingänge

Die digitalen Eingänge werden mit folgenden Klemmen angeschlossen:

Klemme	Bezeichnung	Funktion (Eingänge)
13	LS+	Geberversorgung der Eingänge 14
14	1	Digitaler Eingang 1
15	2	Digitaler Eingang 2
16	3	Digitaler Eingang 3
17	4	Digitaler Eingang 4
18	L-	Bezugspotenzial
Klemme	Bezeichnung	Funktion (Eingänge)
19	LS+	Geberversorgung der Eingänge 58
20	5	Digitaler Eingang 5
21	6	Digitaler Eingang 6
22	7	Digitaler Eingang 7
23	8	Digitaler Eingang 8
24	L-	Bezugspotenzial
Klemme	Bezeichnung	Funktion (Eingänge)
Klemme 25	Bezeichnung LS+	Funktion (Eingänge) Geberversorgung der Eingänge 912
		(0)
25	LS+	Geberversorgung der Eingänge 912
25 26	LS+ 9	Geberversorgung der Eingänge 912 Digitaler Eingang 9
25 26 27	LS+ 9 10	Geberversorgung der Eingänge 912 Digitaler Eingang 9 Digitaler Eingang 10
25 26 27 28	LS+ 9 10 11	Geberversorgung der Eingänge 912 Digitaler Eingang 9 Digitaler Eingang 10 Digitaler Eingang 11
25 26 27 28 29	LS+ 9 10 11 12	Geberversorgung der Eingänge 912 Digitaler Eingang 9 Digitaler Eingang 10 Digitaler Eingang 11 Digitaler Eingang 12
25 26 27 28 29 30	LS+ 9 10 11 12 L-	Geberversorgung der Eingänge 912 Digitaler Eingang 9 Digitaler Eingang 10 Digitaler Eingang 11 Digitaler Eingang 12 Bezugspotenzial
25 26 27 28 29 30 Klemme	LS+ 9 10 11 12 L- Bezeichnung	Geberversorgung der Eingänge 912 Digitaler Eingang 9 Digitaler Eingang 10 Digitaler Eingang 11 Digitaler Eingang 12 Bezugspotenzial Funktion (Eingänge)
25 26 27 28 29 30 Klemme 31	LS+ 9 10 11 12 L- Bezeichnung LS+	Geberversorgung der Eingänge 912 Digitaler Eingang 9 Digitaler Eingang 10 Digitaler Eingang 11 Digitaler Eingang 12 Bezugspotenzial Funktion (Eingänge) Geberversorgung der Eingänge 1316
25 26 27 28 29 30 Klemme 31 32	LS+ 9 10 11 12 L- Bezeichnung LS+ 13	Geberversorgung der Eingänge 912 Digitaler Eingang 9 Digitaler Eingang 10 Digitaler Eingang 11 Digitaler Eingang 12 Bezugspotenzial Funktion (Eingänge) Geberversorgung der Eingänge 1316 Digitaler Eingang 13
25 26 27 28 29 30 Klemme 31 32 33	LS+ 9 10 11 12 L- Bezeichnung LS+ 13 14	Geberversorgung der Eingänge 912 Digitaler Eingang 9 Digitaler Eingang 10 Digitaler Eingang 11 Digitaler Eingang 12 Bezugspotenzial Funktion (Eingänge) Geberversorgung der Eingänge 1316 Digitaler Eingang 13 Digitaler Eingang 14

HI 800 474 D Rev. 2.00 Seite 25 von 48

4 Inbetriebnahme F31 03

Klemme	Bezeichnung	Funktion (Eingänge)
37	LS+	Geberversorgung der Eingänge 1720
38	17	Digitaler Eingang 17
39	18	Digitaler Eingang 18
40	19	Digitaler Eingang 19
41	20	Digitaler Eingang 20
42	L-	Bezugspotenzial

Tabelle 16: Klemmenbelegung der digitalen Eingänge

4.1.1.1 Surge auf digitalen Eingängen

Bedingt durch die kurze Zykluszeit der HIMatrix Systeme können digitale Eingänge einen Surge-Impuls nach EN 61000-4-5 als kurzzeitigen High-Pegel einlesen.

Folgende Maßnahmen vermeiden Fehlfunktionen in Umgebungen, in denen Surges auftreten können:

- 1. Installation abgeschirmter Eingangsleitungen
- 2. Störaustastung im Anwenderprogramm programmieren. Ein Signal muss mindestens zwei Zyklen anstehen, bevor es ausgewertet wird. Die Fehlerreaktion erfolgt entsprechend verzögert.
- $\begin{tabular}{ll} \bf Auf obige Maßnahmen kann verzichtet werden, wenn durch die Auslegung der Anlage Surges im System ausgeschlossen werden können. \end{tabular}$

Zur Auslegung gehören insbesondere Schutzmaßnahmen betreffend Überspannung, Blitzschlag, Erdung und Anlagenverdrahtung auf Basis der Angaben im Systemhandbuch (HI 800 140 D oder HI 800 190 D) und der relevanten Normen.

4.1.2 Anschluss der digitalen Ausgänge

Die digitalen Ausgänge werden mit folgenden Klemmen angeschlossen:

Klemme	Bezeichnung	Funktion (Ausgänge)
1	L-	Bezugspotenzial Kanalgruppe
2	1	Digitaler Ausgang 1
3	2	Digitaler Ausgang 2
4	3	Digitaler Ausgang 3
5	4	Digitaler Ausgang 4 (für erhöhte Last)
6	L-	Bezugspotenzial Kanalgruppe
Klemme	Bezeichnung	Funktion (Ausgänge)
7	L-	Bezugspotenzial Kanalgruppe
8	5	Digitaler Ausgang 5
9	6	Digitaler Ausgang 6
10	7	Digitaler Ausgang 7
11	8	Digitaler Ausgang 8 (für erhöhte Last)
12	L-	Bezugspotenzial Kanalgruppe

Tabelle 17: Klemmenbelegung der digitalen Ausgänge

Seite 26 von 48 HI 800 474 D Rev. 2.00

F31 03 4 Inbetriebnahme

4.1.3 Klemmenstecker

Der Anschluss der Spannungsversorgung und der Feldseite erfolgt mit Klemmensteckern, die auf die Stiftleisten der Geräte aufgesteckt werden. Die Klemmenstecker sind im Lieferumfang der HIMatrix Geräte und Baugruppen enthalten.

Die Anschlüsse der Spannungsversorgung der Geräte besitzen folgende Eigenschaften:

Anschluss Spannungsversorgung		
Klemmenstecker	4-polig, Schraubklemmen	
Leiterquerschnitt	0,22,5 mm ² (eindrähtig)	
	0,22,5 mm ² (feindrähtig)	
	0,22,5 mm ² (mit Aderendhülse)	
Abisolierlänge	10 mm	
Schraubendreher	Schlitz 0,6 x 3,5 mm	
Anzugsdrehmoment	0,40,5 Nm	

Tabelle 18: Eigenschaften Klemmenstecker der Spannungsversorgung

Anschluss Feldseite	
Anzahl Klemmenstecker	7 Stück, 6-polig, Schraubklemmen
Leiterquerschnitt	0,21,5 mm² (eindrähtig) 0,21,5 mm² (feindrähtig) 0,21,5 mm² (mit Aderendhülse)
Abisolierlänge	6 mm
Schraubendreher	Schlitz 0,4 x 2,5 mm
Anzugsdrehmoment	0,20,25 Nm

Tabelle 19: Eigenschaften Klemmenstecker der Eingänge und Ausgänge

HI 800 474 D Rev. 2.00 Seite 27 von 48

4 Inbetriebnahme F31 03

4.2 Ereignisaufzeichnung (SOE)

Die Ereignisaufzeichnung ist für globale Variable der Steuerung möglich. Die zu überwachenden globalen Variable werden mit Hilfe des Programmierwerkzeugs SILworX konfiguriert, siehe Online-Hilfe und SILworX Kommunikationshandbuch HI 801 100 D. Es können bis zu 4000 Ereignisse konfiguriert werden.

Ein Ereignis besteht aus:

Daten des Eintrags	Beschreibung	
Ereignis-ID	Die Ereignis-ID wird vom PADT vergeben	
Zeitstempel	Datum (z. B.: 21.11.2008)	
	Uhrzeit (z. B.: 9:31:57.531)	
Ereigniszustand	Alarm / Normal (boolsches Ereignis)	
	LL, L, N, H, HH (skalares Ereignis)	
Ereignisqualität	Quality good/	
	Quality bad, siehe www.opcfoundation.org	

Tabelle 20: Ereignisbeschreibung

Die Ereignisaufzeichnung erfolgt in einem Zyklus des Anwenderprogramms. Das Prozessorsystem bildet die Ereignisse aus globalen Variablen und legt sie in seinem nichtflüchtigen Ereignispuffer ab.

Der Ereignispuffer fasst 1000 Ereignisse. Bei einem vollen Ereignispuffer wird ein Overflow-System-Ereignis-Eintrag erzeugt. Danach werden solange keine Ereignisse mehr erzeugt, bis durch Lesen wieder Platz im Ereignispuffer vorhanden ist.

Seite 28 von 48 HI 800 474 D Rev. 2.00

F31 03 4 Inbetriebnahme

4.3 Konfiguration mit SILworX

Der Hardware-Editor zeigt die Steuerung ähnlich einem Basisträger, bestückt mit folgenden Modulen an:

- Prozessormodul (CPU)
- Kommunikationsmodul (COM)
- Eingangsmodul (DI 20)
- Ausgangsmodul (DO 8)

Durch Doppelklicken auf die Module öffnet sich die Detailansicht mit Registern. In den Registern der E/A-Module können die im Anwenderprogramm konfigurierten globalen Variablen den Systemvariablen zugeordnet werden.

4.3.1 Prozessormodul

Die nachfolgenden Tabellen enthalten die Parameter des Prozessormoduls (CPU) in derselben Reihenfolge wie im Hardware-Editor. Der Inhalt der Register Modul und Routings des Prozessormoduls und des Kommunikationsmoduls ist identisch.

4.3.1.1 Register Modul

Das Register Modul enthält die folgenden Parameter:

Parameter	Beschreibung			
Name	Name des Moduls			
Max. µP-Budget für HH-Protokoll aktivieren	 Aktiviert: Limit der CPU-Last aus dem Feld Max. µP-Budget für HH Protokoll [%] übernehmen. Deaktiviert: Kein Limit der CPU-Last für safeethernet verwenden. Standardeinstellung: Deaktiviert 			
Max. µP-Budget für HH-Protokoll [%]	Maximale CPU-Last des Moduls, welche bei der Abarbeitung des safe ethernet Protokolls produziert werden darf.			
	Die Maximale Last muss unter allen verwendeten Protokollen aufgeteilt werden, welche dieses Kommunikationsmodul benutzen.			
IP-Adresse	IP-Adresse der Ethernet-Schnittstelle Standardwert: 192.168.0.99			
Subnet Mask	32-Bit-Adressmaske zur Unterteilung einer IP-Adresse in Netzwerk- und Host-Adresse. Standardwert: 255.255.252.0			
Standard-Schnittstelle	Aktiviert: Schnittstelle wird als Standard-Schnittstelle für den System-Login verwendet. Standardeinstellung: Deaktiviert			
Default-Gateway	IP-Adresse des Default Gateway Standardwert: 0.0.0.0			

HI 800 474 D Rev. 2.00 Seite 29 von 48

4 Inbetriebnahme F31 03

Parameter	Beschreibung
ARP Aging Time [s]	Ein CPU- oder COM-Modul speichert die MAC-Adressen seiner Kommunikationspartner in einer MAC-/IP-Adresse Zuordnungstabelle (ARP-Cache).
	 Wenn während einer Zeitspanne von 1x2x ARP Aging Time Nachrichten vom Kommunikationspartner eintreffen, bleibt die MAC-Adresse im ARP-Cache erhalten. keine Nachrichten vom Kommunikationspartner eintreffen, wird die MAC-Adresse aus dem ARP-Cache gelöscht.
	Der typische Wert für die <i>ARP Aging Time</i> in einem lokalen Netzwerk ist 5300 s. Der Inhalt des ARP-Cache kann vom Anwender nicht ausgelesen werden.
	Wertebereich: 13600 s Standardwert: 60 s
	Bei der Verwendung von Routern oder Gateways ARP Aging Time an die zusätzlichen Verzögerungen für Hin- und Rückweg anpassen (erhöhen).
	Bei zu geringer ARP Aging Time löscht das CPU-/COM-Modul die MAC-Adresse des Kommunikationspartners aus dem ARP-Cache und die Kommunikation wird nur verzögert ausgeführt oder bricht ab. Für einen effizienten Einsatz muss die ARP Aging Time > der ReceiveTimeouts der verwendeten Protokolle sein.
MAC Learning	Mit MAC Learning und ARP Aging Time stellt der Anwender ein, wie schnell eine MAC-Adresse gelernt werden soll.
	 Folgende Einstellungen sind möglich: Konservativ (Empfohlen): Wenn sich im ARP-Cache bereits MAC-Adressen von Kommunikationspartnern befinden, so sind diese Einträge für die Dauer von mindestens 1 mal ARP Aging Time bis maximal 2 mal ARP Aging Time verriegelt und können nicht durch andere MAC-Adressen ersetzt werden. Dadurch ist sichergestellt, dass Datenpakete nicht absichtlich oder unabsichtlich auf fremde Netzwerkteilnehmer umgeleitet werden können (ARP spoofing). Tolerant: Beim Empfang einer Nachricht wird die IP-Adresse in der Nachricht mit den Daten im ARP-Cache verglichen und die gespeicherte MAC-Adresse im ARP-Cache sofort mit der MAC- Adresse aus der Nachricht überschrieben. Die Einstellung Tolerant ist zu verwenden, wenn die Verfügbarkeit der Kommunikation wichtiger ist als der sichere Zugriff (authorized access) auf die Steuerung.
IP Forwarding	Standardeinstellung: konservativ Ermöglicht einem Prozessormodul, als Router zu arbeiten und Datenpakete anderer Netzwerkknoten weiterzuleiten. Standardeinstellung: Deaktiviert

Seite 30 von 48 HI 800 474 D Rev. 2.00

F31 03 4 Inbetriebnahme

Parameter	Beschreibung
ICMP Mode	Das Internet Control Message Protocol (ICMP) ermöglicht den höheren Protokollschichten, Fehlerzustände auf der Vermittlungsschicht zu erkennen und die Übertragung der Datenpakete zu optimieren. Meldungstypen des Internet Control Message Protocol (ICMP), die vom Prozessormodul unterstützt werden: keine ICMP-Antworten Alle ICMP-Befehle sind abgeschaltet. Dadurch wird eine hohe Sicherheit gegen Sabotage erreicht, die über das Netzwerk erfolgen könnte. Echo Response Wenn Echo Response eingeschaltet ist, antwortet der Knoten auf einen Ping-Befehl. Es ist somit feststellbar, ob ein Knoten erreichbar ist. Die Sicherheit ist immer noch hoch. Host unerreichbar Für den Anwender nicht von Bedeutung. Nur für Tests beim Hersteller. alle implementierten ICMP-Antworten Alle ICMP-Befehle sind eingeschaltet. Dadurch wird eine genauere Fehlerdiagnose bei Netzwerkstörungen erreicht. Standardeinstellung: Echo Response

Tabelle 21: Konfigurationsparameter der CPU und COM, Register Modul

4.3.1.2 Register Routings

Das Register **Routings** enthält die Routing-Tabelle. Diese ist bei neu eingefügten Modulen leer. Es sind maximal 8 Routing-Einträge möglich.

Parameter	Beschreibung
Name	Bezeichnung der Routing-Einstellung
IP-Adresse	Ziel IP-Adresse des Kommunikationspartners (bei direktem Host- Routing) oder Netzwerkadresse (bei Subnet Routing) Wertebereich: 0.0.0.0255.255.255.255 Standardwert: 0.0.0.0
Subnet Mask	Definiert Ziel-Adressbereich für einen Routing-Eintrag. 255.255.255.255 (bei direktem Host-Routing) oder Subnet Mask des adressierten Subnet. Wertebereich: 0.0.0.0255.255.255 Standardwert: 255.255.255.255
Gateway	IP-Adresse des Gateways zum adressierten Netzwerk. Wertebereich: 0.0.0.0255.255.255 Standardwert: 0.0.0.1

Tabelle 22: Routing Parameter der CPU und COM

HI 800 474 D Rev. 2.00 Seite 31 von 48

4 Inbetriebnahme F31 03

4.3.1.3 Register Ethernet-Switch

Das Register Ethernet-Switch enthält die folgenden Parameter:

Parameter	Beschreibung
Name	Name des Ports (Eth1Eth4) wie Gehäuseaufdruck; pro Port darf nur eine Konfiguration vorhanden sein.
Speed [MBit/s]	10: Datenrate 10 Mbit/s
	100: Datenrate 100 Mbit/s
	Autoneg: Automatische Einstellung der Baudrate
	Standardwert: Autoneg
Flow-Control	Vollduplex: Kommunikation in beide Richtungen gleichzeitig
	Halbduplex: Kommunikation in eine Richtung
	Autoneg: Automatische Kommunikationssteuerung
	Standardwert: Autoneg
Autoneg auch bei	Das Advertising (Übermitteln der Speed und Flow-Control
festen Werten	Eigenschaften) wird auch bei fest eingestellten Werten von Speed und Flow-Control durchgeführt.
	Hierdurch erkennen andere Geräte, deren Ports auf <i>Autoneg</i> eingestellt sind, die Einstellung der HIMax Ports.
	Standardeinstellung: Aktiviert
Limit	Eingehende Multicast- und/oder Broadcast-Pakete limitieren.
	Aus: keine Limitierung
	Broadcast: Broadcast limitieren (128 kbit/s)
	Multicast und Broadcast: Multicast und Broadcast limitieren (1024 kbit/s)
	Standardwert: Broadcast

Tabelle 23: Ethernet-Switch-Parameter

4.3.1.4 Register **VLAN** (port-based VLAN)

Konfiguriert die Verwendung von port-based VLAN.

 ${f 1}$ Soll VLAN unterstützt werden, muss port-based VLAN abgeschaltet sein, so dass jeder Port mit jedem anderen Port des Switches kommunizieren kann.

Für jeden Port eines Switches kann eingestellt werden, zu welchem anderen Port des Switches empfangene Ethernet Frames gesendet werden dürfen, siehe Bild 6.

Die Tabelle im Register VLAN enthält Einträge, mit denen die Verbindung zwischen zwei Ports aktiv oder inaktiv geschaltet werden kann.

	Eth1	Eth2	Eth3	Eth4	COM
Eth1					
Eth2	aktiv				
Eth3	aktiv	aktiv			
Eth4	aktiv	aktiv	aktiv		
COM	aktiv	aktiv	aktiv	aktiv	
CPU	aktiv	aktiv	aktiv	aktiv	aktiv

Tabelle 24: Register VLAN

Seite 32 von 48 HI 800 474 D Rev. 2.00

F31 03 4 Inbetriebnahme

4.3.1.5 Register **LLDP**

LLDP (Link Layer Discovery Protocol) sendet per Multicast in periodischen Abständen Informationen über das eigene Gerät (z. B. MAC-Adresse, Gerätenamen, Portnummer) und empfängt die gleichen Informationen von Nachbargeräten.

Abhängig, ob PROFINET auf dem Kommunikationsmodul konfiguriert ist, werden von LLDP folgende Werte verwendet:

PROFINET auf COM-Modul	ChassisID	TTL (Time to Live)
verwendet	Stationsname	20 s
nicht verwendet	MAC-Adresse	120 s

Tabelle 25: Werte für LLDP

Das Prozessor- und das Kommunikationsmodul unterstützen LLDP auf den Ports Eth1, Eth2, Eth3 und Eth4.

Die folgenden Parameter legen fest, wie der betreffende Port arbeitet:

Aus LLDP ist auf diesem Port deaktiviert.

Send LLDP sendet LLDP Ethernet Frames, empfangene

LLDP Ethernet Frames werden gelöscht, ohne

diese zu verarbeiten.

Receive LLDP sendet keine LLDP Ethernet Frames, aber

empfangene LLDP Frames werden verarbeitet.

Send/Receive LLDP sendet und verarbeitet empfangene LLDP

Ethernet Frames.

Standardeinstellung: Saend/Receive

4.3.1.6 Register Mirroring

Konfiguriert, ob das Modul Ethernet-Pakete auf einen Port dupliziert, so dass sie von einem dort angeschlossenen Gerät mitgelesen werden können, z. B. zu Testzwecken.

Die folgenden Parameter legen fest, wie der betreffende Port arbeitet:

Aus Dieser Port nimmt am Mirroring nicht teil.

Egress Ausgehende Daten dieses Ports werden dupliziert.

Ingress/Egress Ein- und ausgehende Daten dieses Ports werden dupliziert.

Dest Port Duplizierte Daten werden auf diesen Port geschickt.

Standardeinstellung: Aus

4.3.2 Kommunikationsmodul

Das Kommunikationsmodul (COM) enthält die Register **Modul** und **Routings**. Deren Inhalt ist identisch mit denen des Prozessormoduls, siehe Tabelle 21 und Tabelle 22.

4.3.3 Parameter und Fehlercodes der Eingänge und Ausgänge

In den folgenden Übersichten sind die lesbaren und einstellbaren Systemparameter der Eingänge und Ausgänge einschließlich der Fehlercodes aufgeführt.

Die Fehlercodes können innerhalb des Anwenderprogramms über die entsprechenden, in der Logik zugewiesenen Variablen ausgelesen werden.

Die Anzeige der Fehlercodes kann auch in SILworX erfolgen.

HI 800 474 D Rev. 2.00 Seite 33 von 48

4 Inbetriebnahme F31 03

4.3.4 Digitale Eingänge F31 03

Die nachfolgenden Tabellen enthalten die Systemparameter des Eingangsmoduls (DI 20) in derselben Reihenfolge wie im Hardware-Editor.

4.3.4.1 Register **Modul**

Das Register **Modul** enthält die folgenden Systemparameter:

Systemparameter	Datentyp	R/W	Beschreibung		
DI Anzahl	USINT	W	Anzahl der Taktausgänge (Speiseausgänge)		
Taktspeisekanäle			Codierung	Beschreibung	
			0	Kein Taktausgang für LS/LB ¹⁾ -Erkennung vorgesehen	
			1	Taktausgang 1 für LS/LB ¹⁾ -Erkennung vorgesehen	
			2	Taktausgang 1 und 2 für LS/LB ¹⁾ -Erkennung vorgesehen	
			8	Taktausgang 18 für LS/LB ¹⁾ -Erkennung vorgesehen	
				e dürfen nicht als sicherheitsgerichtete rwendet werden!	
DI Steckpl. Taktspeise-Bg	UDINT	W	Steckplatz der auf 3 einsteller	Taktspeisebaugruppe (LS/LB ¹⁾ -Erkennung), Wert า	
DI Taktverzögerung [μs]	UINT	W	Wartezeit für Line Control (Schluss- / Querschlusserkennung)		
DI.Fehlercode	WORD	R	Fehlercodes a	ller digitalen Eingänge	
			Codierung	Beschreibung	
			0x0001	Fehler im Bereich digitale Eingänge	
			0x0002	FTZ-Test des Testmusters fehlerhaft	
ModulFehlercode	WORD	R	Fehlercodes des Moduls		
			Codierung	Beschreibung	
			0x0000	E/A-Verarbeitung, ggfs. mit Fehlern, siehe weitere Fehlercodes	
			0x0001	keine E/A-Verarbeitung (CPU nicht in RUN)	
			0x0002	keine E/A-Verarbeitung während der Hochfahrtests	
			0x0004	Hersteller-Interface in Betrieb	
			0x0010	keine E/A-Verarbeitung: falsche Parametrierung	
			0x0020	keine E/A-Verarbeitung: Fehlerrate überschritten	
			0x0040/ 0x0080	keine E/A-Verarbeitung: konfiguriertes Modul nicht gesteckt	
ModulSRS	[UDINT]	R	Steckplatznum	mer (System.Rack.Slot)	
ModulTyp	[UINT]	R	Typ des Moduls, Sollwert: 0x00A5 [165 _{dez}]		
1) LS/LB (LS = Leitung	gsschluss, L	B = Leit	ungsbruch)		

Tabelle 26: Systemparameter der digitalen Eingänge, Register Modul

Seite 34 von 48 HI 800 474 D Rev. 2.00

F31 03 4 Inbetriebnahme

4.3.4.2 Register DI 20: Kanäle

Das Register **DI 20: Kanäle** enthält die folgenden Systemparameter:

Systemparameter	Datentyp	R/W	Beschreibung		
Kanal-Nr.		R	Kanalnummer, fest vorgegeben		
-> Fehlercode	BYTE	R	Fehlercodes der digitalen Eingangskanäle		
[BYTE]			Codierung	Beschreibung	
			0x01	Fehler im digitalen Eingangsmodul	
			0x10	Leitungsschluss des Kanals	
			0x80	Unterbrechung zwischen Taktausgang DO und digitalem Eingang DI, z. B.	
				 Leitungsbruch 	
				 geöffneter Schalter 	
				L+ Unterspannung	
-> Wert [BOOL]	BOOL	R	Eingangswert der digitalen Eingangskanäle		
			0 = Eingang nic	cht angesteuert	
			1 = Eingang an	gesteuert	
Taktspeisekanal	USINT	W	Quellkanal der	Taktspeisung	
[USINT] ->			Codierung	Beschreibung	
			0	Eingangskanal	
			1	Takt vom 1. DO-Kanal	
			2	Takt vom 2. DO-Kanal	
			8	Takt vom 8. DO-Kanal	

Tabelle 27: Systemparameter der digitalen Eingänge, Register DI 20: Kanäle

HI 800 474 D Rev. 2.00 Seite 35 von 48

4 Inbetriebnahme F31 03

4.3.5 Digitale Ausgänge F31 03

Die nachfolgenden Tabellen enthalten die Systemparameter des Ausgangsmoduls (DO 8) in derselben Reihenfolge wie im Hardware-Editor.

4.3.5.1 Register **Modul**

Das Register **Modul** enthält die folgenden Systemparameter:

Systemparameter	Datentyp	R/W	Beschreibung		
DO.Fehlercode	WORD	R	Fehlercodes aller digitalen Ausgänge		
			Codierung	Beschreibung	
			0x0001	Fehler im Bereich digitale Ausgänge	
			0x0002	Test der Sicherheitsabschaltung liefert einen Fehler	
			0x0004	Test der Hilfsspannung liefert einen Fehler	
			0x0008	FTZ-Test des Testmusters fehlerhaft	
			0x0010	Testmuster der Ausgangsschalter fehlerhaft	
			0x0020	Testmuster der Ausgangsschalter (Abschalttest der Ausgänge) fehlerhaft	
			0x0040	Aktive Abschaltung über WD fehlerhaft	
			0x0200	Alle Ausgänge abgeschaltet, Gesamtstrom überschritten	
			0x0400	FTZ-Test: 1. Temperaturschwelle überschritten	
			0x0800	FTZ-Test: 2. Temperaturschwelle überschritten	
			0x1000	FTZ-Test: Überwachung der Hilfsspannung 1: Unterspannung	
ModulFehlercode	WORD	R	Fehlercodes d	es Moduls	
			Codierung	Beschreibung	
			0x0000	E/A-Verarbeitung, ggfs. mit Fehlern, siehe weitere Fehlercodes	
			0x0001	keine E/A-Verarbeitung (CPU nicht in RUN)	
			0x0002	keine E/A-Verarbeitung während der Hochfahrtests	
			0x0004	Hersteller-Interface in Betrieb	
			0x0010	keine E/A-Verarbeitung: falsche Parametrierung	
			0x0020	keine E/A-Verarbeitung: Fehlerrate überschritten	
			0x0040/ 0x0080	keine E/A-Verarbeitung: konfiguriertes Modul nicht gesteckt	
ModulSRS	UDINT	R	Steckplatznummer (System.Rack.Slot)		
ModulTyp	UINT	R	Typ des Moduls, Sollwert: 0x00B4 [180 _{dez}]		

Tabelle 28: Systemparameter der digitalen Ausgänge, Register Modul

Seite 36 von 48 HI 800 474 D Rev. 2.00

F31 03 4 Inbetriebnahme

4.3.5.2 Register **DO 8: Kanäle**

Das Register **DO 8: Kanäle** enthält folgende Systemparameter:

Systemparameter	Datentyp	R/W	Beschreibung		
Kanal-Nr.		R	Kanalnummer, fest vorgegeben		
-> Fehlercode	BYTE	R	Fehlercodes der digitalen Ausgangskanäle		
[BYTE]			Codierung	Beschreibung	
			0x01	Fehler in digitalem Ausgangsmodul	
			0x02	Ausgang abgeschaltet wegen Überlast	
			0x04	Fehler beim Rücklesen der Ansteuerung der digitalen Ausgänge	
			0x08	Fehler beim Rücklesen des Status der digitalen Ausgänge	
Wert [BOOL] ->	BOOL	W	Ausgabewert für DO Kanäle: 1 = Ausgang angesteuert 0 = Ausgang stromlos		
			Taktausgänge dürfen nicht als sicherheitsgerichtete Ausgänge verwendet werden!		

Tabelle 29: Systemparameter der digitalen Ausgänge, Register DO 8: Kanäle

HI 800 474 D Rev. 2.00 Seite 37 von 48

5 Betrieb F31 03

5 Betrieb

Die Steuerung F31 03 ist betriebsfertig. Eine besondere Überwachung der Steuerung ist nicht erforderlich.

5.1 Bedienung

Eine Bedienung der Steuerung während des Betriebs ist nicht erforderlich.

5.2 Diagnose

Eine erste Diagnose erfolgt durch Auswertung der Leuchtdioden, siehe Kapitel 3.4.1.

Die Diagnosehistorie des Geräts kann zusätzlich mit dem Programmierwerkzeug SILworX ausgelesen werden.

Seite 38 von 48 HI 800 474 D Rev. 2.00

F31 03 6 Instandhaltung

6 Instandhaltung

Im normalen Betrieb sind keine Instandhaltungsmaßnahmen erforderlich.

Bei Störungen das Gerät oder die Baugruppe durch einen identischen Typ, oder einen von HIMA zugelassenen Ersatztyp austauschen.

Die Reparatur des Geräts oder der Baugruppe darf nur durch den Hersteller erfolgen.

6.1 Fehler

Zur Fehlerreaktion der digitalen Eingänge siehe Kapitel 3.1.1.1.

Zur Fehlerreaktion der digitalen Ausgänge siehe Kapitel 3.1.2.1.

Entdecken die Prüfeinrichtungen sicherheitskritische Fehler, geht das Gerät in den Zustand STOP_INVALID und bleibt in diesem Zustand. Das bedeutet, dass das Gerät keine Eingangssignale mehr verarbeitet und die Ausgänge in den sicheren, energielosen Zustand übergehen. Die Auswertung der Diagnose gibt Hinweise auf die Ursache.

6.2 Instandhaltungsmaßnahmen

Für das Prozessormodul sind selten folgende Maßnahmen erforderlich:

- Betriebssystem laden, falls eine neue Version benötigt wird
- Wiederholungsprüfung durchführen

6.2.1 Betriebssystem laden

Im Zuge der Produktpflege entwickelt HIMA das Betriebssystem der Geräte weiter. HIMA empfiehlt, geplante Anlagenstillstände zu nutzen, um eine aktuelle Version des Betriebssystems auf die Geräte zu laden.

Zuvor anhand der Release-Liste Auswirkungen der Betriebssystemversion auf das System prüfen!

Das Betriebssystem wird über das Programmierwerkzeug geladen.

Vor dem Laden muss das Gerät im Zustand STOPP sein (Anzeige im Programmierwerkzeug). Andernfalls Gerät stoppen.

Näheres in der Dokumentation des Programmierwerkzeugs.

6.2.2 Wiederholungsprüfung

HIMatrix Geräte und Baugruppen müssen alle 10 Jahre einer Wiederholungsprüfung (Proof Test) unterzogen werden. Weitere Informationen im Sicherheitshandbuch HI 800 022 D.

HI 800 474 D Rev. 2.00 Seite 39 von 48

7 Außerbetriebnahme F31 03

7 Außerbetriebnahme

Das Gerät durch Entfernen der Versorgungsspannung außer Betrieb nehmen. Danach können die steckbaren Schraubklemmen für die Eingänge und Ausgänge und die Ethernetkabel entfernt werden.

Seite 40 von 48 HI 800 474 D Rev. 2.00

F31 03 8 Transport

8 Transport

Zum Schutz vor mechanischen Beschädigungen HIMatrix Komponenten in Verpackungen transportieren.

HIMatrix Komponenten immer in den originalen Produktverpackungen lagern. Diese sind gleichzeitig ESD-Schutz. Die Produktverpackung allein ist für den Transport nicht ausreichend.

HI 800 474 D Rev. 2.00 Seite 41 von 48

9 Entsorgung F31 03

9 Entsorgung

Industriekunden sind selbst für die Entsorgung außer Dienst gestellter HIMatrix Hardware verantwortlich. Auf Wunsch kann mit HIMA eine Entsorgungsvereinbarung getroffen werden.

Alle Materialien einer umweltgerechten Entsorgung zuführen.

Seite 42 von 48 HI 800 474 D Rev. 2.00

F31 03 Anhang

Anhang

Glossar

ARP	Beschreibung
	Address Resolution Protocol: Netzwerkprotokoll zur Zuordnung von Netzwerkadressen
1	zu Hardware-Adressen
Al	Analog Input, analoger Eingang
AO	Analog Output, analoger Ausgang
	Kommunikationsmodul
CRC	Cyclic Redundancy Check, Prüfsumme
	Digital Input, digitaler Eingang
	Digital Output, digitaler Ausgang
EMV	Elektromagnetische Verträglichkeit
EN	Europäische Normen
ESD	ElectroStatic Discharge, elektrostatische Entladung
FB	Feldbus
FBS	Funktionsbausteinsprache
FTA	Field Termination Assembly
FTZ	Fehlertoleranzzeit
ICMP	Internet Control Message Protocol: Netzwerkprotokoll für Status- und
	Fehlermeldungen
IEC	Internationale Normen für die Elektrotechnik
MAC-Adresse	Hardware-Adresse eines Netzwerkanschlusses (Media Access Control)
PADT	Programming and Debugging Tool (nach IEC 61131-3), PC mit SILworX
PE	Protective Earth: Schutzerde
PELV	Protective Extra Low Voltage: Funktionskleinspannung mit sicherer Trennung
PES	Programmierbares Elektronisches System
R	Read: Systemvariable/signal liefert Wert, z. B. an Anwenderprogramm
Rack-ID	Identifikation eines Basisträgers (Nummer)
	Es seien zwei Eingangsschaltungen an dieselbe Quelle (z. B. Transmitter) angeschlossen. Dann wird eine Eingangsschaltung <i>rückwirkungsfrei</i> genannt, wenn sie die Signale der anderen Eingangsschaltung nicht verfälscht.
R/W	Read/Write (Spaltenüberschrift für Art von Systemvariable/signal)
SB	Systembus (-modul)
SELV	Safety Extra Low Voltage: Schutzkleinspannung
SFF	Safe Failure Fraction, Anteil der sicher beherrschbaren Fehler
SIL	Safety Integrity Level (nach IEC 61508)
SILworX	Programmierwerkzeug für HIMatrix Systeme
SNTP	Simple Network Time Protocol (RFC 1769)
SRS	System.Rack.Slot Adressierung eines Moduls
SW	Software
TMO	Timeout
W	Write: Systemvariable/signal wird mit Wert versorgt, z. B. vom Anwenderprogramm
W _{SS}	Spitze-Spitze-Wert der Gesamt-Wechselspannungskomponente
Watchdog (WD)	Zeitüberwachung für Module oder Programme. Bei Überschreiten der Watchdog-Zeit geht das Modul oder Programm in den Fehlerstopp.
WDZ	Watchdog-Zeit

HI 800 474 D Rev. 2.00 Seite 43 von 48

Anhang	F31 03

Abbildungs	verzeichnis	
Bild 1: Ar	nschlüsse an sicherheitsgerichteten digitalen Eingängen	10
Bild 2: Li	ne Control	11
Bild 3: Ar	nschluss von Aktoren an die Ausgänge	12
Bild 4: Ty	penschild exemplarisch	14
Bild 5: Fr	ontansicht	15
Bild 6: BI	ockschaltbild	15
Bild 7: Au	ufkleber MAC-Adresse exemplarisch	19

Seite 44 von 48 HI 800 474 D Rev. 2.00

F31 03 Anhang

Tabellenv	verzeichnis	
Tabelle 1:	Zusätzlich geltende Dokumente	5
Tabelle 2:	Umgebungsbedingungen	8
Tabelle 3:	Verfügbare Steuerung	13
Tabelle 4:	Blinkfrequenzen der Leuchtdioden	16
Tabelle 5:	Anzeige der Betriebsspannung	16
Tabelle 6:	Anzeige der System-LEDs	17
Tabelle 7:	Ethernetanzeige	18
Tabelle 8:	Anzeige E/A-LEDs	18
Tabelle 9:	Eigenschaften Ethernet-Schnittstellen	19
Tabelle 10:	Verwendete Netzwerkports (UDP Ports)	20
Tabelle 11:	Verwendete Netzwerkports (TCP Ports)	20
Tabelle 12:	Produktdaten	22
Tabelle 13:	Technische Daten der digitalen Eingänge	22
Tabelle 14:	Technische Daten der digitalen Ausgänge	23
Tabelle 15:	Zertifikate	24
Tabelle 16:	Klemmenbelegung der digitalen Eingänge	26
Tabelle 17:	Klemmenbelegung der digitalen Ausgänge	26
Tabelle 18:	Eigenschaften Klemmenstecker der Spannungsversorgung	27
Tabelle 19:	Eigenschaften Klemmenstecker der Eingänge und Ausgänge	27
Tabelle 20:	Ereignisbeschreibung	28
Tabelle 21:	Konfigurationsparameter der CPU und COM, Register Modul	31
Tabelle 22:	Routing Parameter der CPU und COM	31
Tabelle 23:	Ethernet-Switch-Parameter	32
Tabelle 24:	Register VLAN	32
Tabelle 25:	Werte für LLDP	33
Tabelle 26:	Systemparameter der digitalen Eingänge, Register Modul	34
Tabelle 27:	Systemparameter der digitalen Eingänge, Register DI 20: Kanäle	35
Tabelle 28:	Systemparameter der digitalen Ausgänge, Register Modul	36
Tabelle 29:	Systemparameter der digitalen Ausgänge, Register DO 8: Kanäle	37

HI 800 474 D Rev. 2.00 Seite 45 von 48

Anhang F31 03

Index

Blockschaltbild	15	Reset-Taster	21
Diagnose	38	safe ethernet	19
Fehlerreaktionen		Sicherheitsfunktion	10
digitale Ausgänge	12	SRS	13
		Surge	
Frontansicht	15	Technische Daten	22
Line Control	11		

Seite 46 von 48 HI 800 474 D Rev. 2.00

HIMA Paul Hildebrandt GmbH
Postfach 1261
68777 Brühl
Tel.: +49 6202 709-0

Fax: +49 6202 709-107